Final Environmental Impact Statement for

Developing Home Port Facilities for Three NIMITZ-Class Aircraft Carriers in Support of the U.S. Pacific Fleet

Coronado, California • Bremerton, Washington Everett, Washington • Pearl Harbor, Hawaii

Volume 6
Supplemental Information for Pearl Harbor, Hawaii
July 1999

19990714 006

Department of the Navy

Final Environmental Impact Statement for

Developing Homeporting Facilities for Three NIMITZ-Class Aircraft Carriers in Support of the U.S. Pacific Fleet

Coronado, California • Bremerton, Washington Everett, Washington • Pearl Harbor, Hawaii

VOLUME 6

Pearl Harbor Naval Shipyard Supplemental Information

July 1999

Department of the Navy

DISTRIBUTION STATEMENT A
Approved for Public Release
Distribution Unlimited

TABLE OF CONTENTS

VOLUME 6: PEARL HARBOR SUPPLEMENTAL INFORMATION

Summary of New Facilities Required at PHNSY
 Marine Biology and Water Quality Assessment of Selected Sites in Pearl Harbor
 Data Report, Pearl Harbor Sediment
 Traffic Impact Study for Aircraft Carrier Homeporting at Pearl Harbor
 Hawaii Air Quality Data
 Pearl Harbor Historic Inventory

SUMMARY OF NEW FACILITIES REQUIRED AT PHNSY

1	APPENDIX 2
2	SUMMARY OF NEW FACILITIES REQUIRED AT PEARL HARBOR
3	Piers B2/3
4	Equipment/Supporting Items
5 6	Bollards, camels, various piping, hoses, and fittings required to connect the CVN to support services.
7	Drydock #4
8	Electrical upgrades, telephone lines.
9	Utility Upgrades
10	Shore Power
11 12	New substation, install permanent 11.5/4.16 kV substation at B-2/3 area including two primary (11.5 kV) circuits, underground duct lines and manholes
13	Steam
14	Upgrades to existing steam distribution lines
15	Sanitary Sewer
16	Upgrades to existing utility
17	Telephone
18	Install 100-line trunk cable
19	Operational Support Area
20	Parking
21 22	Shipyard has approximately 1,200 unused parking spaces located in various lots (D, A, Night Shift, C, C-annex, H). Shuttle bus transportation is provided during regular working hours.
23 24 25	The CVN would generate a parking requirement of 2,500 parking stalls. An alternative that the Navy would consider is construction of a parking structure and additional surface parking spaces.
26	Laydown Area
27 28 29	Buildings 92, 391, 292, 1577, 1445, and 1683 would be demolished and the area repaved for laydown space. Building functions would be relocated as part of the shipyard's internal consolidation program.

- 1 CIA Fence
- 2 The current CIA fence will be relocated as part of the shipyard's internal consolidation
- 3 program. The realignment will allow entry and exit of ship's personnel without traversing
- 4 designated CIA boundaries.
- 5 Warehouse Space
- 6 Buildings 393 and 394 (approximately 200,000 square feet) would meet CVN requirements. No
- 7 major refurbishment of the buildings would be required.
- 8 Controlled Industrial Facility (CIF)
- 9 A 48,000 square foot structure used for the inspection, modification, and repair of radiologically
- 10 controlled equipment and components associated with the Naval nuclear propulsion plants
- 11 would be constructed. Buildings 4, 4A, 5, 5A, and 8 in the shipyard would be demolished to
- 12 make room for the CIF. Existing building functions would be relocated as part of the
- 13 shipyard's internal consolidation program.

MARINE BIOLOGY AND WATER QUALITY ASSESSMENT OF SELECTED SITES IN PEARL HARBOR

MARINE BIOLOGY AND WATER QUALITY ASSESSMENT OF SELECTED SITES IN PEARL HARBOR, HAWAII

In Support of

ENVIRONMENTAL IMPACT STATEMENT FOR AIRCRAFT CARRIER HOMEPORTING WITHIN PACIFIC FLEET'S UNITED STATES ASSETS

Submitted by:

MARINE RESEARCH CONSULTANTS 4467 Sierra Dr. Honolulu, HI 96816

To:

BELT COLLINS HAWAII 680 Ala Moana Blvd. Honolulu, HI 96813

November 11, 1997

1.0 PURPOSE

An Environmental Impact Statement (EIS) is currently in preparation to evaluate the potential effects of homeporting an aircraft carrier in Pearl Harbor, Oahu, Hawaii. The location of the potential berthing site of the carrier is Piers B2/3 located in East Loch. These piers are presently part of the Pearl Harbor shipyard and are used for berthing of transient vessels. In order for the aircraft carrier to safely enter and exit the harbor, dredging of the Pearl Harbor entrance channel, the turning basin off the eastern side of Ford Island, and the area off Piers B2/3 to a depth of 50+ feet would be required. In order to fully address the potential impacts of the proposed action it is necessary to conduct a field program to evaluate the present marine environmental setting. With such a baseline of existing conditions, it will be possible to evaluate the potential effects of the proposed homeporting. The purpose of this report is to present the results of an assessment of the bottom communities (invertebrates, fish, and marine plants) and water quality at selected, representative sites.

2.0. SURVEY TEAM

The survey team was headed by Dr. Steven Dollar of Marine Research Consultants. Dr. Dollar was responsible for planning of all surveys, execution of all fieldwork, and preparation of all report documents. Drs. Richard Brock and Julie Brock performed analysis of benthic infauna. All water quality analyses were performed in the laboratory of Marine Analytical Specialists in Honolulu, Hl. Marine Analytical Specialists possesses all appropriate certifications by the U.S. Environmental Protection Agency (EPA) to perform the required analyses (EPA Lab certification NO. HI00009).

3.0. WATER QUALITY ASSESSMENT

3.1 METHODS

3.1.1 SAMPLING SITES

Ten sites in the Pearl Harbor entrance channel, off Piers B2/3 and in the turning basin were selected by Belt Collins for sediment coring to evaluate the effects of dredging. The sediment coring is being addressed as part of a separate study performed by Belt Collins under contract with SAIC. In order to maintain consistency between that and the present study, water quality sampling stations and biotic community assessment

stations were located at the same ten sites. These sites were located by latitude and longitude recorded by GPS positioning during sediment sampling (Figure 1).

3.1.2. MONITORING CONSTITUENTS

Chemical composition of marine waters in Pearl Harbor was evaluated by analysis of all constituents specified by State of Hawaii, Department of Health water quality standards for embayments (Chapter 11-54-06): total nitrogen (TN), nitrate + nitrite nitrogen ($NO_3^- + NO_2^-$), ammonium (NH_4^+), total phosphorus (TP), turbidity, chlorophyll a, dissolved oxygen, temperature, and pH. Several additional constituents were also measured to characterize water quality: orthophosphate phosphorus (PO_4^{-3}), dissolved silica (Si), total suspended solids (TSS), and salinity.

3.1.3. SAMPLING PROTOCOL

Water sampling was conducted twice; once on September 16, 1997 during a period of relatively dry weather, and once on October 9, 1997. The September survey was conducted following a prolonged period (several weeks) of dry weather, and during a period of no ship traffic in the harbor. The October survey was conducted approximately 24 hours after a period of moderate rainfall, and during a period when ship traffic was transiting the harbor channel. At each survey site 3 samples were collected; one within the upper 25 cm of the water column, one at the mid-point of the water column, and one within 1 m of the Harbor floor (total of 30 samples). Water samples were collected from a small (7 m) boat using 1.8-liter Niskin oceanographic sampling bottles. These bottles contain spring-loaded end-caps which are cocked in an open position allowing free flow-through as the bottle is lowered to the desired sampling depth. At the desired depth, a weighted messenger is released from the surface which trips the end-caps to close, isolating a volume of water. Following collection, samples were transferred from the Niskin bottles to triple-rinsed I-liter polyethylene bottles and stored on ice until return to the laboratory. In-situ field measurements included dissolved oxygen and water temperature using a YSI Model 58 field meter with precision of 0.01 milligrams per liter (mg/l) and 0.1°C., respectively. Measurements for pH were determined in the field with a Hahn Instruments Model 9025 millivolt meter with a precision of 0.01 pH units.

In addition to discrete water samples, continuous profiles of salinity, temperature, and turbidity were acquired at each station using a Ocean Sensors Model 100 CTD.

3.1.4. - LABORATORY ANALYTICAL METHODOLOGY

All water samples were delivered to the laboratory within 4 hours of collection and were analyzed within 48 hours of delivery. Analysis for inorganic nutrients was conducted using automated techniques on a Technicon II autoanalyzer. TN and TP were analyzed in a similar fashion following oxidative digestion. All nutrient procedures were performed according to standard methods for seawater analysis (Strickland and Parsons 1968). Turbidity was determined using a Turner Designs laboratory nephelometer. TSS was determined gravimetrically after filtered samples are dried to constant weight using a Mettler electrobalance. Salinity was determined using an AGE Instruments Model 2100 laboratory salinometer with a precision of 0.0001‰. Chl a was measured with a Hach 3000 spectrophotometer.

3.1.5. FIELD AND LABORATORY QUALITY ASSURANCE/QUALITY CONTROL (QA/QC)

3.1.5.1. - Laboratory Certification

The analytical laboratory, Marine Analytical Specialist, possesses current "acceptable" ratings in the USEPA Water Quality Performance Evaluation Study (WPO-26) conducted in conjunction with the State of Hawaii Department of Health. Such certification indicates that the laboratory is practicing acceptable procedures regarding the use of standards, laboratory blanks, duplicates, and spiked samples for calibration and identification of potential interferences which might compromise accuracy and precision.

3.1.5.2. - Instrument calibration

Field instruments were calibrated in the field prior to use as recommended by the manufacturer. YSI oxygen probes were calibrated at 100% saturation; pH probes were calibrated using a two point buffer calibration (7 and 10). Autoanalyzer analytical precision and reproducibility was determined on every run using duplicate sea water blanks and triplicate standards. The AGE salinometer was calibrated using IAPSO Copenhagen sea water standards. The Turner Designs nephelometer was calibrated using EPA formazin turbidity standards. The Hach spectrophotometer was calibrated with Sigma Chl a standards.

3.1.5.3. - Trip blanks

Each time a group of bottles was prepared for use in the field, pairs of bottles of each type were selected from the batch and filled with filtered seawater. One pair of the bottles remained in the laboratory, and one bottle was transported to the sampling location and returned to the laboratory in the identical manner as used for the samples. Trip blank bottle pairs were subjected to the same analyses as the sample water. Variation, if any, in concentrations between bottle pairs of more than could be attributed to (1) interaction between the blank sample water and the container, and/or (2) a handling procedure that altered the sample analysis results. Protocols for the study were as follows: the concentration levels of any contaminants found in the trip blank were not used to correct sample data. Rather, contaminant levels would be noted and compared to field sample results. If the variation of field blanks was not at least an order below the magnitude of field sample results, field sample results would be discarded and resampling conducted. Results of trip blank analysis showed no variation of more than 10%.

3.1.5.4. - Laboratory Quality Control

Duplicate samples were taken at random from field sampling sites and returned to the laboratory. Such duplicates were labeled in a blind manner such that it was not apparent to the analyst which samples were duplicates. Data from duplicate QC replicates were used as a measure of performance of the laboratory analyses, and as a indicator of potential cross- contamination, but were not be used to alter or correct analytical data. Because every chemical constituent has a different level of precision associated with the analysis, it is not possible to specify a general limit of acceptability of precision of blind duplicates. Therefore each constituent was evaluated separately in terms of acceptable laboratory precision as determined from blind replicates.

3.2. RESULTS OF WATER CHEMISTRY ANALYSES

3.2.1. Vertical and Horizontal Stratification

Tables I and 2 show results of all water chemistry analyses for samples collected in Pearl Harbor on September 16, 1997, While Tables 3 and 4 show similar results collected on October 9, 1997. For applicable constituents, Tables I and 3 show concentrations of nutrients in micromolar units (µM), while Tables 2 and 4 show the

same data in units of micrograms per liter (µg/L). Also shown in Tables 1-4 are the concentrations of State of Hawaii Department of Health water quality criteria for the Pearl Harbor estuary. Figures 2-13 show bar graphs of water quality constituents measured at the 10 sampling stations on September 16, 1997, while figures 17-28 show bar graphs for the results of the October 9, 1997 sampling. In each figure the top graph shows surface concentrations, the middle graph shows concentrations at mid-depth in the water column, and the bottom graph shows concentrations near the harbor floor.

Several trends are apparent in the water chemistry data. At all stations salinity increases with depth, with a distinct surface layer of lower salinity water overlying higher salinity water (Figures 2 and 17). Salinity of the surface layer was lower at all stations during the October sampling compared to the September sampling. However, salinity of water near the bottom was higher at all but one station in the October sampling compared to September. As a result, the vertical gradients of salinity throughout the harbor were steeper in October than in September. Salinity at the inshore stations near potential berthing site at Piers B2/B3 (Stations I and 2) was similar to values in mid-channel during both surveys. Vertical stratification of waters in the Pearl Harbor channels is a consistent feature of the estuary, occurring as a result of freshwater input from streamflow and groundwater efflux that persists as a surface layer as water flows out of the harbor to the ocean. The difference in stratification between the two surveys most likely reflects rainfall that occurred prior to the October 9, 1997 sampling.

Dissolved Si mirrors salinity, with highest values in all surface samples, and decreasing concentrations with depth. As Si is present in high concentrations in surface water and groundwater compared to ocean water, the pattern of high Si in the low salinity surface layer reflects the estuarine nature of Pearl Harbor. As with salinity, corresponding concentrations of Si are consistently higher in the October survey compared to the September sampling.

Concentrations of dissolved inorganic plant nutrients (NO₃⁻, PO₄³⁻, NH₄⁺) show distinctly different patterns. During the September sampling, the concentrations of NO₃⁻ were lowest in the surface and mid-depth samples compared to bottom samples, in contrast to concentrations of Si, which were highest at the surface (Figure 4). In all cases, concentrations of NO₃⁻ in surface samples were very low, near the limit of detection (Figure 4). During the October sampling, such a pattern was not evident, with some of the highest concentrations of NO₃⁻ in surface samples (Figure 19).

Concentrations of PO_4^{3-} (Figure 5) and NH_4^+ (Figure 6) in September also showed slight vertical gradients with lowest concentrations in surface waters, and highest near the bottom. These gradients were small compared to those of NO_3^- . In addition, the concentrations of PO_4^{3-} and NH_4^+ were greater than measured for NO_3^- . In most marine environments in Hawaii, the concentrations of NO_3^- are generally higher than either PO_4^{3-} or NH_4^+ . The relative decrease in the concentration of NO_3^- during the dry period when the September sampling occurred is likely a result of uptake by phytoplankton in the water column of Pearl Harbor.

During the October sampling, there is little indication of vertical gradients of either PO_4^{3-} (Figure 20) or NH_4^+ (Figure 21). Overall, concentrations of all dissolved inorganic nutrients at all stations were higher in October compared to September. The relative increase in concentrations and lack of vertical gradients appears to be a result of rainfall that occurred prior to the October sampling.

Values of dissolved organic nitrogen and dissolved organic phosphorus in September (Figures 7 and 8) show no distinct vertical or horizontal stratification and are relatively constant throughout the sampling regime. Similarly, concentrations of total nitrogen (Figure 9) and total phosphorus (Figure 10) show no distinct patterns with depth or distance in the harbor in September. During the October survey, concentrations of dissolved organic nitrogen and phosphorus were slightly higher in surface samples and decreased with depth (Figures 22 and 23). Concentrations of total nitrogen (Figure 24) and total phosphorus (Figure 25) also decreased slightly with depth in the water column in October.

With one exception (bottom sample, Station 6) TSS and turbidity were relatively uniform through the water column as well as over the horizontal span of the sampling regime in September (Figures 11 and 12). Both TSS and turbidity were elevated in the bottom sample at Station 6. It is possible that this anomaly was the result of resuspension of material into the water column from the sampling gear striking the bottom or from recent ship traffic rather than from any hydrographic factor unique to this site.

During the October sampling, the patterns of TSS and turbidity were substantially different than in September. While there was no apparent difference in TSS and turbidity with respect to depth during the September survey, both constituents were generally elevated in surface samples relative to mid-depth and bottom samples during

the October survey. Samples in October were collected during ship movements through the Pearl Harbor channel. Samples at Station 4 were collected immediately after a ship passed through the area. It can be seen that the ship passage caused extremely high concentrations of TSS (Figure 26) and turbidity (Figure 27) throughout the water column. Observations of the water surface indicated that the turbid plume created by the propellor wash of the ship remained visible for approximately 30 minutes.

Concentrations of Chl a, temperature and dissolved oxygen also showed no apparent stratification during either the September survey (Figure 13) or the October survey (Figure 28). Overall, concentrations of Chl a were slightly elevated in September relative to October.

Also shown in Tables 1-4 are the results of replicate samples collected during each survey. With the exception of NH_4^+ , all replicates are in close agreement. Concentrations of NH_4^+ commonly vary in such a manner as a result of biotic activity in samples collected in Hawaiian water. Thus, the variation replicate samples is not likely not an analytical artifact.

Figures 14-16 show vertical profiles of salinity, temperature and turbidity at the 10 sampling stations during the September survey, while Figures 29-31 show similar profiles in October. Profiles are shown in three groupings; Stations 1-3 near the berthing are; Stations 4-7 in the Ford Island channel; and Stations 8-10 in the main entrance channel. As with the discrete samples, it can be seen in Figures 14 and 29 that there is a general gradient of decreasing salinity with depth. Surface salinity was lower at all stations during October compared to September, while bottom salinities were similar during both surveys. The steeper gradients and reduced surface salinity reflect the recent rainfall in the Pearl Harbor area. During September the gradients are steepest in the upper 1-2 m of Stations 1-3, at a depth of 7-8 m at Stations 4-7, and from 2-6 m at Stations 8 and 10 (data were lost from Station 9). During October the gradients were steepest at Stations 5 and 10.

Profiles of temperature showed virtually mirror images of salinity during both surveys, with a warmer surface layer relative to bottom water (Figures 15 and 30). The steepest gradients of temperature were at the same depths as the steepest gradients of salinity.

Profiles of turbidity showed relatively constant values through the upper water column at all stations in September (Figure 16). Many of the stations had increasing turbidity in

the lower water column near the sediment-water interface. As with the discrete samples, the highest turbidity was near the bottom at Station 6. During October, profiles of turbidity were substantially more variable with overall higher concentrations than in September (Figure 31). It is also evident in the profile from Station that the recent passage of a large ship increases the turbidity substantially throughout the water column.

3.3.2. Compliance with DOH Criteria

Tables I and 2 show State of Hawaii Department of Health (DOH) water quality standards for the "not to exceed 2% and 10% of the time" and geometric mean criteria for the Pearl Harbor estuary. While these criteria are not statistically applicable with only a single sampling, comparison of the data with these limits is useful for gaining an understanding of the general state of water quality of the study area.

Inspection of Tables I and 2 indicates that no samples exceeded any of the DOH specific criteria. In fact, only several measurements were even within an order of magnitude of the specific criteria. In particular, all measurements of NO₃⁻ were at least an order of magnitude lower than DOH criteria. The wide discrepancy between measured data and DOH specific criteria is likely a response to the lack of rainfall during the days preceding the sampling. As a result, the measured water chemistry in the area of proposed dredging to support the homeporting reflected dry conditions with little apparent influence from surface runoff into Pearl Harbor. Should the survey be repeated following a period of heavy rainfall, it is likely that patterns of water chemistry, and the relationship with DOH criteria would have been substantially different.

4.0 MARINE BIOTIC ASSESSMENT

4.1 FIELD SURVEY PROCEDURES

4.1.1 Benthic Photo-transects

Past research has revealed that the harbor floor consists of mostly fine-grained sediment. At each of the 10 survey sites, bottom type and community structure were characterized by a photo-transect method. At each sampling location, a 25 m long transect tape was stretched along the bottom parallel to the axis of the channel. A

quadrat frame with dimensions of 1 m \times 0.7 m (3 feet \times 2 feet) was sequentially placed over 5 random marks on the transect tape so that the tape bisects the long axis of the frame. At each mark a color photograph recorded the segment of channel floor enclosed by the quadrat frame. Quadrats were photographed with a Nikonos camera with a super wide angle lens (15 mm, 94° field of view) using color film. In addition to the photo-quadrats, investigators visually estimated the percent cover of any benthic macro-biota, burrows, and bared substrata (i.e., sand, limestone, rubble) enclosed within the entire quadrat frame.

Following fieldwork, area coverage of each component of bottom cover in the quadrat photos was determined using an overlay grid. Benthic species and substratum type within each grid was summed to calculate area coverage. Field data provided input on small organisms that were not visible in photographs. Thus, the method provided for accurate estimates of cover of organisms that comprise a large percentage of the harbor floor through photographic coverage, as well as occurrence of very small and/or rare organisms that are not visible in photographs. Few, if any other methods provide for such accurate characterization of both extremes of benthic community structure.

Results of the photo-quadrats and in-situ cover estimates were used to calculate indices of community structure (e.g., percent cover, number of species, and species diversity). The photo-quadrat transect and analysis method is a modification of the technique described in Kinzie and Snider (1978), and has been employed in numerous field studies of Hawaiian reef communities (e.g., Dollar 1979, 1982, 1994, 1997; Dollar and Tribble 1993; Grigg and Maragos 1974).

Quantitative assessment of reef fish community structure was conducted in conjunction with the benthic surveys. As the transect tape was being laid along the bottom, all fish observed within a band approximately 2 meters wide along the transect path were identified by species name, abundance, and approximate size. Care was taken to conduct the fish surveys so that the minimum disturbance was created by divers, ensuring the least possible dispersal of fish. Only readily visible individuals were included in the census.

The solid structures consisting of the pilings of Piers B2/3 contained substantially different biota than the channel floor. As the pilings were not amenable to the phototransect methods, biotic composition was assessed by compilation of a species list with ranking of relative abundance of organisms (e.g. rare, common, abundant), along with

photo-documentation of typical assemblages. Assemblages of fish within the piling structures were also assessed.

In addition, any endangered or protected species, particularly sea turtles, that were noted within the survey area were reported.

4.1.2 Benthic Infauna

Much of the biotic communities of the soft-sediment channel floor consisted of infauna. Assessment of infauna was conducted on representative core samples. Cores were hand-collected by inserting 4" PVC tubes into the sediment to a depth of approximately 10 cm, capping the top and bottom of the tube, and retrieving the sample. Triplicate cores were collected at each of the 10 sites. Once collected, these sediment samples were placed into jars, rinsing all material from the sampler into the sample jar. The sediment was fixed in 10 percent formalin and stained with rose bengal to aid the identification of live (at the time of sampling) material for approximately 48 hours. Samples were then elutriated and poured through 1.0 mm and 0.5 mm mesh sieves to retain the macrofauna, and subsequently transferred to 70% ethanol. Biota retained on the 1.0 mm sieve were sorted to major taxonomic groups. The material collected from the 0.5 mm size fraction was retained for reference, but was not analyzed further for this study.

4.2. RESULTS

4.2.1 Benthic Photo-transects

At all 10 survey stations, the overall physical composition of the channel floor was similar, consisting of very fine silt and mud perforated with numerous holes from burrowing organisms (Figure 17). At all stations, water clarity was very poor with limited visibility that decreased with depth. Near the bottom, visibility at many of the stations was near zero owing to high suspended loads of flocculent particulates. The fine grained material was easily stirred into suspension by the slightest movement of divers or survey equipment. Once flocculent material was stirred from the bottom, forming a dense cloud of high turbidity, the water column remained turbid, as currents near the bottom were near zero, and the settling velocity of the suspended material was long relative to dive time.

The planned benthic survey method involved placing a transect tape on the sediment surface and subsequently placing a quadrat frame over random marks on the tape. In practice, this method was only viable at Station 10 (Figure 18). At the other nine stations, the act of laying the quadrat frame on the tape was sufficient to consistently raise a turbidity cloud that completely restricted visibility. As a result, quantitative assessments of macrofauna were not possible at stations 1-9.

During the entire benthic survey, no motile invertebrates or fish were observed on the channel floor. However, as mentioned above, burrows were common throughout the survey area. At station 10, there was an average of 47.6 burrows per quadrat (n=5, s.d.=10.0), which equates to an average of 72 burrows m². Observations of the bottom at the other nine stations indicate similar burrow densities.

As noted in Section 4.2.2, neither the infaunal analysis nor the photo transect methods provided a means to explicitly identify the species responsible for the holes. However, past work in the harbor has shown that many of these holes are dug and occupied by a variety of crustaceans, molluscs, a few fishes and several other groups including a holothurian (Chiridota rigida) and sipunculan (Sipunculus sp.). Bivalve molluscs found in the sediment include the tellinid Angulus nucella and clam Hiatella hawaiiensis, and undoubtedly other mollusc species in this habitat. Swimming crabs include Podophthalmus vigil, Portunus sanguinolentus, Scylla serrata, and Thalamita crenata. Burrowing ghost shrimps (Callinassa sp.), and mantis shrimps (Squilla sp. and Lysiosquilla maculata) are also occasionally encountered in this habitat. In general, the larger crustaceans (crabs and Lysiosquilla) are not usually seen underwater but are most easily found by placing bait on the bottom as an attractant. There are several small fishes that are often associated with burrows in the mud. Among these are a burrowing goby (Oxyurichthys lonchotus), an eleotrid (Asterropteryx semipunctatus), and the goby, (Psilogobius mainlandi) which lives as a commensal with the alpheid shrimp, Alpheus mackayi. (Bishop Museum 1977; Environmental Assessment Co. 1977).

Observations were also conducted of the dock pilings adjacent to Stations I-3. Most of the submerged portions of the pilings were covered with a variety of sponges, primarily of the genera *Microciona* and *Halichondria* (Figure 19). Other prominent biota on the upper portions of the pilings were hydroids. Very few bivalves were observed on the pilings. Most of the biota on the pilings was coated with a layer of fine brown mud. The basal portions of most of the pilings were devoid of fouling growth, as was the sediment surface under the docks. No fish were observed during the entire

underwater survey of the dock area. Similarly, no endangered or protected species, particularly sea turtles, were observed at any time during the survey.

4.2.2. Benthic Infauna

Composition and consistency of sediments varied among the ten stations from very fine terrigenous mud to mud with mixed carbonate and unidentified broken shell pieces (from oysters, barnacles, etc.). However, within the replicates from a given station, the sample material appeared to be relatively homogeneous. Dark-colored fine sediment or mud was present in all samples except those from Station 8. Samples from Stations 1 (replicate nos. 1, 2, 3), 3 (replicate nos. 7, 8, 9), 4 (replicate nos. 10, 11, 12), and 5 (replicate nos. 13, 14, 15) were comprised entirely of the fine dark mud. The sediment from Station 2 (replicate nos. 3, 4, 5) was a mix of unidentified bryozoan, hydroid, barnacle, oyster, and tubeworm fragments mixed with fine mud. The material from Stations 6 (replicate nos. 16, 17, 18) and 9 (replicate nos. 25, 26, 27) was dominated by dark-colored fine mud with a considerable amount of rotting terrestrial vegetation mixed in. Also present in the material from Station 9 was what appeared to be charcoal in the mud. The sediment collected at Station 7 (replicate nos. 19, 20, 21) had fragments from unidentified serpulid tubeworms, bivalves (including the oyster Ostrea sandvicensis), gastropods, and sponge spicules. The material from Station 10 (replicate nos. 28, 29, 30) contained shell fragments from gastropods, bivalves, and serpulid tubeworms, as well as fragments of foraminiferans. The sediment from Station 8 (replicate nos. 22, 23, 24) was different from any of the others in that it was comprised of a very fine pale-colored mud which, based on color alone, was probably carbonate, thus having a reef origin. Because of the dark color, it is assumed that the fine mud encountered at the other stations is probably primarily basalt originating from land.

Table 5 shows results of infaunal analyses. The abundance of live-collected macrofauna retained on the 1.0 mm sieve is very low in all samples; no live-collected macrofauna was recorded in eight of the thirty samples (27% of the total). Those samples with no live-collected macrofauna included nos. 5, 8, 11, 12, 14, 18, and 22. The macrofauna retained on the 1.0 mm mesh sieve is dominated by polychaetes. Only one non-polychaete was found, an unidentified anemone in replicate no. 24. Only one replicate (no. 26) had three taxa present, 8 replicates (nos. 2, 3, 10, 13, 24, 28, 29, and 30) had two taxa present, and the remaining 13 replicates had one taxon present. The overall grand mean number of taxa per sample is 1.1, while the range of mean taxa per station was 0.7 - 2.0.

Similarly, the abundance of individuals was low, with a range of mean individuals per station of 0.7 - 2.7. Two samples (replicate nos. 2 and 26) had five individual organisms present, two samples (nos. 28 and 30) had three organisms, eight samples (nos. 1, 3, 10, 13, 17, 23, 24, and 29) contained two organisms, and ten samples had only one individual present (nos. 4, 6, 7, 9, 15, 16, 19, 21, 25, and 27). As noted above, the remaining samples had no live-collected organisms present in the 1.0 mm size fraction. In terms of abundance, the polychaete *Capitella sp.* was the most common, occurring in 16 of the 30 samples. The second most common species were *Podarke sp.* and *Sternaspis sp.*, each occurring in three samples. The low number of organisms in the 1.0 mm size fraction samples precludes the use of any meaningful statistical procedures on these data.

The relatively low abundance and diversity of species in the samples examined in this study may be related to the fact that many of these samples were from active shipping channels. As large ships and their tug tenders move through the harbor they create considerable propellor wash which stirs up the sediment such that it is easily seen from the surface. At some sites this disturbance probably occurs multiple times per day. At such levels of disturbance, it is not surprising that the benthic fauna is rather depauperate. Analysis of sediment samples from areas in Pearl Harbor, but removed from active shipping lanes revealed substantially greater numbers of species and individuals (Environmental Assessment Co. 1997).

It is apparent the infaunal cores were not effective in sampling the organisms responsible for the numerous burrow holes observed in the harbor floor. Most of these organisms are very motile and are capable of avoiding the presence of divers by burrowing deep into the sediment.

5.0 SUMMARY and CONCLUSIONS

Results of the marine assessment reveal no particularly sensitive environmental conditions. Evaluation of water quality indicated vertical stratification of salinity suggesting input of freshwater into the estuary from either rainfall or groundwater discharge. Concentrations of nutrients and other constituents were far below all DOH water quality criteria (except turbidity in the wake of a ship) indicate that there is little input of potential pollutants in the vicinity of the project site at the time of sampling.

The data suggest that infaunal benthic communities are not well developed at the ten sites examined in this study. This poor community development may be due to the

location of the study sites in harbor channels and turning basins which are actively used by shipping. The movement of shipping through these areas causes considerable disturbance to the substratum by propellor wash. It is hypothesized that this high level of disturbance has resulted in the depauperate condition encountered in these communities. Benthic macrofauna appear abundant by the numerous burrows in the soft mud bottom. However, owing to their motility, these organisms were not sampled during this study. All of the burrowing organisms are likely found throughout the soft-bottom environments of Pearl Harbor, and do not appear to include any rare species. No endangered or protected species were observed in the area, and only green sea turtles would be expected to occur at any time in the vicinity of the proposed project.

Overall, results of the present survey indicate that the proposed activities should have little or no significant or irreversible impacts on the environmental setting off of the project area. The most likely mechanisms for negative impacts to marine ecosystems from the proposed activities are removal of sediment to deepen the channels, and increases in turbidity associated with the dredging and sediment removal. While infaunal organisms will undoubtedly be removed during the dredging operation, there should be a large reservoir of undisturbed biota that to recolonize the channel areas following completion of the project.

While the magnitude of sediment resuspension may be substantial for the period of the dredging operation, it is apparent that resuspension is presently a normal component of this environment. Frequent transit of the harbor channels by deep draft ships resuspends surface sediment in a manner that probably does not differ qualitatively from that which would occur during dredging. While resuspension may temporarily increase from the present level during dredging activities, it does not appear that any aspect of the marine environment is presently at a threshold level that would be affected by temporarily increased sediment suspension. Rather, the existing biotic communities appear to be presently limited to organisms that can tolerate high suspended sediment loads.

Short term changes in water quality resulting from construction would also not be of a magnitude to affect benthic composition in the vicinity of the project site. Normal fluctuations in water chemistry in the Harbor as a function of rainfall are likely of a higher magnitude than the changes in water chemistry that may occur as a result of the proposed project. While the appearance of endangered or protected species is not likely, it is a possibility that such species, particularly sea turtles could enter the area during the dredging. Mitigation measures could include temporary suspension of

operations until endangered species leave the work area. It appears that as long as reasonable steps are taken in dredging practices, there should be no adverse impacts to the marine environment from the proposed project.

6.0 REFERENCES CITED

PFFFFF

F

f

FF

- B.P. Bishop Museum. 1997. Biodiversity of marine communities in Pearl Harbor, Oahu, Hawaii with observations on introduced exotic species. Contribution No. 1997-014, Hawaii Biological Survey, Bishop Museum Press, Honolulu. vii+76p.+appendices.
- Dollar, S. J. 1979. Ecological response to relaxation of sewage stress off Sand Island, Oahu, Hawaii. Water Resources Research Center, Tech. Rpt. No. 124.
- Dollar, S. J. 1982. Wave stress and coral community structure in Hawaii. Coral Reefs 1:71-81.
- Dollar, S. J. and G. W. Tribble. 1993. Recurrent storm disturbance and recovery: a long-term study of coral communities in Hawaii. Coral Reefs 12:223-233.
- Dollar, S. J. 1994. Hamakua Sugar Mill coral community recovery study: Phase I, Final Report. Prepared for U.S. Environmental Protection Agency, Region IX, San Francisco CA.
- Dollar, S. J. 1997. Hamakua Sugar Mill coral community recovery study: Phase II. Final Report. Prepared for U.S. Environmental Protection Agency, Region IX, San Francisco CA.
- Environmental Assessment Co. 1997. Benthic macrofaunal invertebrates of Pearl Harbor April 1997. Prepared for Marine Research Consultants, Honolulu. 6p.
- Grigg, R. W. and J. E. Maragos. 1974. Recolonization of hermatypic corals on submerged lava flows in Hawaii. Ecology 55:387-395.
- Strickland J. D. H. and T. R. Parsons. 1 968. A practical handbook of sea-water analysis. Fisheries Research Bd. of Canada, Bull. 1 67. 31 1 p.

Results of water quality analyses (in micromolar units (uM) for applicable constituents) from samples collected at 10 stations in Pearl Harbor, Hawaii on September 16, 1997. "S" indicates surf surface sample, "M" indicates mid depth sample, and "B" indicates bottom sample. For station location, see Figure 1. TABLE 1.

	TURB TSS SALT pH (mg/l) (mg/l) (olo) (rel) (rel) (o.32 3.00 33.34 8.10 0.30 2.20 34.54 8.12 0.50 2.23 34.62 8.08 8.13 0.40 2.27 33.58 8.13 0.40 8.11 0.39 2.13 33.49 8.13 0.35 2.00 34.10 8.11 0.35 2.00 34.00 8.11 0.35 2.00 34.00 8.11 0.35 2.20 34.02 8.12 0.35 2.20 34.02 8.12 0.35 2.20 34.05 8.12 0.35 2.20 34.05 8.12 0.50 2.87 34.47 8.06 0.51 2.53 34.39 8.08 8.12 0.50 2.87 34.47 8.06 0.46 3.20 34.20 8.11 0.48 3.13 0.55 3.00 34.58 8.13 0.55 0.43 3.00 34.58 8.14 0.45 0.45 2.87 34.51 8.14 0.45 2.87 34.51 8.14 0.45 2.87 34.51 8.14 0.39 3.07 33.69 8.14 0.39 3.07 33.69 8.14 0.39 3.67 33.46 8.14 0.39 3.67 33.47 8.12 0.50 3.07 33.69 8.14 0.39 3.67 33.46 8.14 0.39 3.67 33.47 8.12 0.59 3.67 33.46 8.14 0.51 2.13 34.47 8.12
TSS SALT PH Chi-a (mg/l) (o/oo) (rel) (ug/l) 3.00 33.34 8.10 0.70 2.20 34.54 8.12 0.87 2.21 33.58 8.13 0.90 2.07 34.56 8.11 1.29 2.07 34.56 8.11 0.74 2.13 33.49 8.13 0.80 2.20 34.02 8.12 0.73 1.93 34.05 8.12 0.73 1.93 34.05 8.12 0.77 1.87 34.55 8.06 0.78 2.23 34.09 8.11 0.58 2.20 34.02 8.12 0.77 1.87 34.55 8.06 0.78 2.20 34.02 8.12 1.45 2.20 34.02 8.12 1.01 10.87 34.14 8.12 1.01 10.87 34.47 8.06 1.16 3.00 34.58 8.04 1.16 3.13 33.41 8.13 0.86 3.00 34.59 8.13 1.28 3.00 34.59 8.14 1.30 2.93 33.69 8.14 1.30 2.93 33.69 8.14 1.22 3.07 33.69 8.14 1.15 2.27 33.48 8.12 0.84 3.07 33.69 8.14 1.15 2.27 33.48 8.12 0.84 3.07 33.69 8.14 1.15 2.27 33.48 8.12 0.84 3.07 33.56 8.14 1.41 4.00 33.56 8.14 1.04 2.13 34.47 8.12 0.72	3 TSS SALT pH Chl-a Temp. 1 (mg/l) (loo) (rel) (lug/l) (deg. C.) 2.20 33.34 8.10 0.70 28.24 2.20 34.54 8.12 0.87 27.92 2.53 34.62 8.08 0.73 27.74 2.27 34.56 8.11 0.90 28.26 2.07 34.56 8.11 0.74 27.61 2.07 34.56 8.11 0.74 27.61 2.07 34.56 8.11 0.74 27.61 2.03 34.00 8.11 0.74 27.61 2.00 34.58 8.09 0.73 27.63 2.20 34.00 8.11 0.77 27.96 1.93 34.58 8.08 0.73 28.07 2.23 34.05 8.12 0.77 27.96 1.80 33.94 8.13 0.63 28.07 2.53
(rej) (ug/l) 8.10 0.70 8.12 0.87 8.08 0.73 8.13 0.90 8.11 1.29 8.13 0.80 8.12 0.73 8.13 0.80 8.12 0.73 8.12 0.73 8.13 0.63 8.12 0.74 8.13 0.63 8.14 1.65 8.14 1.28 8.14 1.32 8.14 1.41 8.14 1.41 8.14 1.41 8.14 1.41 8.14 1.41	(re) (lug/l) (deg. C.) 8.10 0.70 28.24 8.12 0.87 27.92 8.08 0.73 27.74 8.13 0.90 28.26 8.11 0.74 27.97 8.13 0.80 28.14 8.13 0.80 28.14 8.12 0.77 27.96 8.09 0.73 27.97 8.12 0.79 27.97 8.12 0.77 27.96 8.00 0.78 27.91 8.12 0.77 27.96 8.12 0.77 27.96 8.14 1.62 28.07 8.14 1.20 27.75 8.14 1.30 28.52 8.14 1.30 28.52 8.14 1.30 28.52 8.14 1.30 28.56 8.14 1.30 28.56 8.14 1.30 28.56 8.14 1.30 28.56 8.14 1.41 28.46 8.14 1.41 28.46 8.14 1.41 28.46 8.14 1.04 28.90
Ch-a (ugh) 0.73 0.73 0.73 0.73 0.73 0.73 0.73 0.73	Chl-a Temp. (ug/l) (deg.C.) 0.70 28.24 0.87 27.92 0.73 27.74 0.90 28.26 1.29 27.97 0.74 27.61 0.80 28.14 0.79 27.96 0.77 27.96 0.77 27.96 0.77 27.96 0.77 27.96 0.78 28.07 1.16 27.91 1.16 27.79 1.16 27.79 1.16 27.79 1.16 27.79 1.16 27.79 1.16 27.79 1.16 28.00 1.16 27.75 1.17 28.00 1.18 28.11 0.86 27.75 1.30 28.52 1.30 28.52 1.30 28.52 1.31 28.46 1.14 28.46 1.15 28.06 0.96 27.83 0.96 27.83 0.96 27.83 0.96 27.83
	(deg, C,) 28.24 27.92 27.92 27.74 28.26 27.97 27.96 27.96 27.96 27.96 27.96 27.96 27.96 27.97 27.91 27.91 27.92 28.07 27.93 28.01 28.01 28.02 28.03 28.04 27.75 27.75 27.75 28.00 28.06 28.06 28.06 28.07 27.75 27.75 28.00 28.06 28.06 28.06 28.06 28.06 28.07 27.75 28.06 28.06 28.06 28.06 28.06 28.06 28.06 28.06 28.06 28.06 28.06 28.06 28.06 28.06 28.06 28.06

Results of water quality analyses (in units of micrograms per liter {ug/L} for applicable constituents) from samples collected at 10 stations in Pearl Harbor, Hawaii on September 16, 1997. "S" indicates surface sample, "M" indicates mid depth sample, and "B" indicates bottom sample. For station location, see Figure 1. TABLE 2.

S 10g1/1 10g1/1	STATION	DEPTH	PO4	NO3	NH4	20	ВОР	NOO	TP	N.	TURB		SALINITY	Ħ.	Chl-a	Temp.	05	02	
0.28 70.10 1.44.20 14.85 14.46.2 0.32 3.00 3.35.4 8.10 0.089 77.20 7.20 2.10 257.04 1.05 14.65 14.65 0.32 2.20 3.45 8.10 0.78 27.74 7.20 2.10 257.04 1.05 14.65 14.65 1.65 0.33 2.27 3.45 8.11 0.789 27.74 7.20 0.56 383.25 1.76 1.22.22 0.33 2.07 3.45 8.11 1.289 27.87 7.20 0.56 383.25 1.76 1.22.22 0.33 2.17 3.45 8.17 1.289 2.76 7.20 2.27 3.45 8.17 1.76 7.22 1.280 0.33 2.17 3.45 8.17 7.22 1.280 0.33 2.17 3.45 8.17 7.29 8.20 3.42 8.10 0.73 2.74 9.20 3.45 8.11 1.280 7.26 9.20	No.		(ng/L)	(J/Br/)	(ng/L)	(na/L)	(J/Br/)	(hg/L)	(ng/L)	(hg/L)	(utn)	(mg/L)	(00/0)	(Lei)	(InBril)	(deg. C.)	(mg/l)	Casal	_
126 1960 1147 1145 1	1	S	2.79	0.14	0.28	701.96	11.47	144.20	14.26	144.62	0.32	3.00	33,34	8.10	0.696	28.24	7.39	91.23	
210 25704 1085 146.56 15.9 146.57 146.56 15.9 146.57		Σ	4.34	1.68	1.26	196.00	11.47	142.10	15.81	145.04	0.30	2.20	34.54	8.12	0.867	27.92	7.29	00.06	_
0.70 575 96 12.40 12.22 16.50 12.22 16.50 12.22 16.50 12.22 16.50 12.22 16.50 12.22 16.50 12.26 13.40 81.1 12.80 27.97 7.56 16.50 16.50 12.26 12.20 34.50 81.1 10.786 27.97 7.26 16.50 16.50 16.50 16.20 16		60	434	0.84	2.10	257.04	10.85	146.58	15.19	149.52	0.50	2.53	34.62	8.08	0.728	27.74	7.40	91.36	_
0.56 333.22 11.47 12.16 17.05 122.39 27.05 <t< td=""><td>2</td><td>S</td><td>3.10</td><td>0.14</td><td>0.70</td><td>575.96</td><td>12.40</td><td>122.22</td><td>15.50</td><td>122.92</td><td>0.33</td><td>2.27</td><td>33.58</td><td>8.13</td><td>0.899</td><td>28.26</td><td>7.58</td><td>93.77</td><td>_</td></t<>	2	S	3.10	0.14	0.70	575.96	12.40	122.22	15.50	122.92	0.33	2.27	33.58	8.13	0.899	28.26	7.58	93.77	_
182 21784 10.05 140.28 145.00 0.38 2.07 34.56 8.11 0.736 27.61 7.29 8.12 1.25 27.18 7.29 2.07 2.00	l	2	5.58	0.14	0.56	383.32	11.47	121.66	17.05	122.36	0.40	2.60	34.10	8.11	1.293	27.97	7.26	89.63	_
0.98 663.04 12.40 149.38 15.50 15.95 2.13 33.49 81.3 0.785 28.14 7.56 2.8 1.2 2.8 2.0 7.2 3.34.0 81.3 0.785 2.8 2.0		60	4.65	0.70	1.82	217.84	10.85	140.28	15.50	142.80	0.38	2.07	34.56	8.11	0.736	27.61	7.29	90.00	
1.26 33.2.64 11.78 151.62 16.43 153.16 0.33 2.00 34.20 81.2 0.739 27.96 72.6 12.6 1.26 20.24 11.16 134.82 15.50 14.70 0.31 1.93 34.00 8.11 0.733 27.96 7.26 15.6 7.26 7.26 7.26 17.6 17.60 17.60 7.78 7.78 7.78 7.78 7.78 7.78 7.44 17.60 7.78	67	c/s	3.10	0.14	0.98	663.04	12.40	149.38	15.50	150.50	0.39	2.13	33.49	8.13	0.795	28.14	7.56	93.33	
1.56 261.24 11.16 134.02 15.50 197.20 0.31 1.93 34.56 8.09 0.733 27.63 7.50 7.44 1.20 1.20 160.26 16.26 1.50 1.50 1.92	,	2	4.65	0.28	1.26	332.64	11.78	151.62	16.43	153.16	0.33	2.00	34.20	8.12	0.790	27.96	7.26	89.63	_
1.26 417.48 1.209 162.54 15.50 164.08 0.35 1.38 34.00 8.11 0.500 28.07 7.44 9.15 1.44 9.15 7.45 9.45 1.45 1.45 1.45 1.45 1.45 1.45 1.45 1.45 1.45 1.45 1.45 1.45 1.45 1.45 1.45 1.45 1.45 1.45 1.40 3.75 1.25 3.34 8.12 0.780 2.78 7.44 2.75 7.50 7.45 1.45 1.45 1.45 1.40 3.75 2.33 3.40 8.12 0.780 2.78 7.44 2.75 7.44 2.75 7.44 2.75 7.44 2.75 7.44 2.75 7.44 2.75 7.44 2.75 7.44 2.75 7.44 2.75 7.44 2.75 7.44 3.75 3.40 8.12 0.780 7.44 3.75 3.40 8.12 0.780 7.44 3.75 3.44 8.12 1.44 </td <td></td> <td>. 00</td> <td>4.34</td> <td>0.42</td> <td>1.96</td> <td>261.24</td> <td>11.16</td> <td>134.82</td> <td>15.50</td> <td>137.20</td> <td>0.31</td> <td>1.93</td> <td>34.58</td> <td>8.09</td> <td>0.733</td> <td>27.63</td> <td>7.50</td> <td>92.71</td> <td>_</td>		. 00	4.34	0.42	1.96	261.24	11.16	134.82	15.50	137.20	0.31	1.93	34.58	8.09	0.733	27.63	7.50	92.71	_
1.54 401.52 15.09 150.36 16.43 152.18 0.33 2.20 34.02 81.2 0.773 27.96 7.45 4.45 15.24 16.26 0.36 1.87 34.05 81.2 0.773 27.96 7.45 1.46 27.80 27.80 7.45 1.48 1.46 27.80 7.45 1.48 1.	4	S	3.41	0.28	1.26	417.48	12.09	162.54	15.50	164.08	0.35	1.93	34.00	8.11	0.580	28.07	7.44	91.90	_
4.34 332.08 11.16 175.00 167.4 182.56 0.36 187 34.55 8.06 0.780 27.60 7.43 2.80 444.68 13.02 184.38 16.12 187.74 0.37 2.33 34.05 8.12 0.780 27.51 7.50 7.50 2.88 346.64 11.16 152.88 17.36 18.20 18.74 8.12 0.56 27.61 7.24 9.80 1.54 346.64 11.16 152.88 17.05 18.61 0.33 1.80 33.94 8.13 0.634 27.61 7.24 1.40 383.60 16.72 15.70 0.73 1.80 33.94 8.13 0.63 27.61 7.24 1.40 383.60 16.74 14.26 0.73 14.0 33.94 8.13 0.66 27.61 7.24 17.66 2.80 3.20 14.40 14.40 14.40 14.44 17.26 14.23 0.59 34		Σ	4.34	0.28	1.54	401.52	12.09	150.36	16.43	152.18	0.33	2.20	34.02	8.12	0.773	27.96	7.45	92.01	
2.80 414.68 13.02 164.38 16.12 187.44 0.37 2.33 34.05 8.12 0.815 2.80 7.50 7.50 1.82 397.32 12.40 13.02 16.36 0.50 2.87 34.14 8.12 14.02 28.07 7.44 8.08 17.22 1.44 8.12 14.02 26.00 7.82 17.44 8.08 17.24 17.22 17.44 8.08 8.08 18.35 27.61 7.22 17.44 18.35 27.61 7.22 17.44 8.08 8.08 8.08 8.08 17.22 17.44 17.22 14.09 17.24 8.08 8.13 10.06 28.07 7.43 17.2 17.2 17.2 17.00 0.78 4.00 34.08 8.13 10.06 28.07 7.43 17.4 17.6 17.4 10.87 34.4 8.13 10.06 28.07 7.43 17.6 17.6 17.6 17.6 17.6 17.6 17.6 1		6 0	5.58	3.22	4.34	332.08	11.16	175.00	16.74	182.56	96.0	1.87	34.55	8.06	0.780	27.60	7.43	91.70	
1,82 397,32 12,40 136,92 17.36 139.16 0.50 2.87 34.14 8.12 1.449 27.31 7.44 8.12 1.449 27.31 7.44 1.449 33.32 1.33.39 8.13 0.643 2.80 1.33.4 8.12 1.406 28.07 7.42 1.22 1.440 383.60 8.93 1.48 1.51 1.52 1.40 33.94 8.12 1.006 28.07 7.43 1.22 1.40 383.60 1.39.4 1.736 1.42 1.087 3.40 8.12 1.006 28.07 7.43 1.22 1.40 33.94 8.12 1.006 28.07 7.43 1.22 1.40 33.94 8.12 1.006 28.07 7.43 7.45 7.42 1.00 3.24 8.11 1.006 28.07 7.45 7.46 7.42 3.00 3.42 3.44 8.13 0.04 3.20 3.42 8.14 1.162 27.59 7.58 2.24 <td< td=""><td>2</td><td>S</td><td>3.10</td><td>0.56</td><td>2.80</td><td>414.68</td><td>13.02</td><td>184.38</td><td>16.12</td><td>187.74</td><td>0.37</td><td>2.33</td><td>34.05</td><td>8.12</td><td>0.815</td><td>28.07</td><td>7.50</td><td>92.70</td><td></td></td<>	2	S	3.10	0.56	2.80	414.68	13.02	184.38	16.12	187.74	0.37	2.33	34.05	8.12	0.815	28.07	7.50	92.70	
2.38 346.64 11.16 152.88 17.05 156.10 0.51 2.53 34.39 8.08 1.955 27.61 7.22 1.54 430.92 12.71 150.08 16.12 156.00 0.33 1.80 33.94 8.13 0.634 28.20 7.82 2.80 355.32 11.16 139.44 17.36 142.38 0.59 3.67 34.11 8.12 1.008 28.00 7.58 3.22 414.40 11.47 138.88 16.43 142.38 0.59 3.67 34.11 8.12 1.038 28.01 7.48 3.22 414.40 11.47 138.88 16.43 142.38 0.59 3.67 34.11 1.60 28.00 7.58 3.22 246.40 11.16 143.22 143.20 0.48 3.20 3.45 8.13 1.67 27.79 7.58 4.20 246.40 11.16 143.22 165.90 0.52 2.20 8.13	1	Σ	4.96	0.42	1.82	397.32	12.40	136.92	17.36	139.16	0.50	2.87	34.14	8.12	1.449	27.91	7.44	92.01	
1.54 430.92 1.271 150.08 16.12 151.90 0.33 1.80 33.94 8.13 0.634 28.20 7.82 1.40 333.60 8.99 124.88 15.81 126.70 0.78 4.00 34.08 8.12 1.066 28.07 7.43 2.80 355.32 11.16 138.48 15.81 126.32 1.42 1.066 28.07 1.79 7.69 3.22 414.40 11.78 17.86 143.22 1.42 0.69 32.0 34.20 8.11 1.606 28.07 7.46 1.12 334.20 11.78 17.86 17.85 148.40 0.43 32.0 34.20 8.11 1.62 27.78 7.46 2.24 661.80 15.50 16.89 0.33 3.13 33.41 8.11 1.62 27.68 7.18 2.24 661.80 15.50 16.50 0.43 3.29 34.20 8.11 1.62 7.46 7		m	5.89	0.84	2.38	346.64	11.16	152.88	17.05	156.10	0.51	2.53	34.39	8.08	1.935	27.61	7.22	89.37	_
1.40 383.60 8.99 124.88 15.81 126.70 0.78 4.00 34.08 8.12 1.006 28.07 7.43 2.80 355.32 11.16 139.44 17.36 143.22 1.42 10.87 34.77 8.05 1.157 27.79 7.58 3.22 414.40 11.47 138.88 16.43 142.36 0.69 3.67 34.11 8.12 1.006 28.07 7.46 3.92 350.28 10.54 143.92 16.43 148.40 0.43 3.00 34.58 8.04 1.162 28.01 7.46 2.24 681.80 12.40 166.46 15.81 168.98 0.38 3.13 33.41 8.13 1.76 28.01 7.46 0.84 400.40 11.16 145.92 16.50 0.52 5.20 33.99 8.14 1.36 7.46 1.40 186.46 16.74 189.84 0.04 2.93 3.69 8.14	9	S	3.41	0.28	1.54	430.92	12.71	150.08	16.12	151.90	0.33	1.80	33.94	8.13	0.634	28.20	7.82	95.34	
2.80 355.32 11.16 139.44 17.36 143.22 14.2 10.87 34.47 8.06 1.157 27.79 7.58 3.22 414.40 11.47 138.88 16.43 142.38 0.59 3.67 34.11 8.12 1.038 28.01 7.46 1.12 356.28 10.78 178.76 0.46 3.20 34.50 8.11 1.620 28.00 7.50 2.34 350.28 10.54 143.92 16.43 16.40 0.43 3.00 34.58 8.04 1.620 7.50 7.50 2.34 400.40 11.16 14.392 16.43 16.898 0.52 5.20 34.59 8.13 1.76 27.58 7.18 0.84 400.40 11.16 14.798 17.36 15.470 0.53 30.0 34.59 8.13 1.76 28.11 7.46 1.40 786.86 13.02 18.48 16.72 18.48 0.50 30.0	1	Σ	6.82	0.42	1.40	383.60	8.99	124.88	15.81	126.70	0.78	4.00	34.08	8.12	1.006	28.07	7.43	91.51	
3.22 414.40 11.47 138.88 16.43 142.38 0.59 3.67 34.11 8.12 1.038 28.01 7.46 1.12 354.20 11.78 178.36 17.05 179.76 0.46 3.20 34.20 8.11 1.620 28.00 7.50 3.92 350.28 10.54 143.92 16.43 148.40 0.43 3.00 34.58 8.04 1.162 27.58 7.18 2.24 681.80 12.40 166.46 15.81 168.89 0.38 3.13 33.41 8.13 1.276 28.01 7.46 4.20 246.40 11.16 147.98 17.36 165.90 0.55 3.00 34.59 8.14 1.276 28.11 7.46 4.20 246.40 11.16 147.98 17.36 165.40 0.50 3.07 33.69 8.14 1.316 28.12 7.54 1.40 148.20 148.54 16.74 188.44 0.40		60	6.20	0.98	2.80	355.32	11.16	139.44	17.36	143.22	1.42	10.87	34.47	8.06	1.157	27.79	7.58	93.79	
1.12 354.20 11.78 178.36 17.05 179.76 0.46 3.20 34.20 8.11 1.620 28.00 7.50 3.92 350.28 10.54 143.92 16.43 148.40 0.43 3.00 34.58 8.04 1.162 27.58 7.18 2.24 661.80 12.40 166.46 15.81 168.98 0.38 3.13 33.41 8.13 0.837 27.75 7.46 4.20 246.40 11.16 147.98 15.50 165.90 0.52 5.20 33.99 8.13 1.276 28.11 7.66 4.20 246.40 11.16 147.98 16.24 0.653 3.07 33.69 8.14 1.276 28.17 7.66 1.40 7.30 18.46 16.12 164.48 0.50 2.87 34.51 8.14 1.26 28.05 7.24 1.40 16.15 16.12 16.13 17.36 0.44 2.47 33.48	7	S	4.96	0.28	3.22	414.40	11.47	138.88	16.43	142.38	0.59	3.67	34.11	8.12	1.038	28.01	7.46	92.10	
3.92 350.28 10.54 143.92 16.43 148.40 0.43 3.00 34.58 8.04 1.162 27.58 7.18 2.24 681.80 12.40 166.46 15.81 168.98 0.38 3.13 33.41 8.13 0.837 28.41 7.46 0.84 400.40 11.16 164.92 15.50 165.90 0.52 5.20 33.99 8.13 1.276 28.11 7.46 4.20 246.40 11.16 147.38 17.36 154.70 0.53 3.07 33.69 8.13 1.276 28.11 7.54 1.40 798.56 13.02 184.66 16.12 186.48 0.50 3.45 8.14 1.296 28.52 8.25 1.40 798.56 13.02 184.66 16.12 186.48 0.50 3.451 8.14 1.296 28.15 7.54 1.40 798.56 15.90 16.12 16.12 16.12 16.12 17.136		Σ	5.27	0.28	1.12	354.20	11.78	178.36	17.05	179.76	0.46	3.20	34.20	8.11	1.620	28.00	7.50	92.59	
2.24 681.80 12.40 166.46 15.81 168.98 0.38 3.13 33.41 8.13 0.837 28.41 7.46 0.84 400.40 11.16 164.92 15.50 165.90 0.52 5.20 33.99 8.13 1.276 28.11 7.50 4.20 2.46.40 11.16 147.98 17.36 154.70 0.53 3.00 34.59 8.13 1.276 28.11 7.54 1.40 798.56 13.02 184.66 16.12 186.48 0.50 3.07 33.02 8.14 1.398 28.52 8.25 8.25 7.54 1.40 798.56 13.02 187.46 16.72 186.48 0.40 2.93 33.69 8.14 1.316 28.10 7.54 3.22 236.88 12.09 148.54 16.13 17.136 0.41 2.47 33.43 8.14 1.216 28.46 7.21 2.24 570.64 13.05 16.54		8	5.89	95.0	3.92	350.28	10.54	143.92	16.43	148.40	0.43	3.00	34.58	8.04	1.162	27.58	7.18	88.78	
0.84 400.40 11.16 164.92 15.50 165.90 0.52 5.20 33.99 8.13 1.276 28.11 7.60 4.20 246.40 11.16 147.98 17.36 154.70 0.53 3.00 34.59 8.10 0.857 27.75 7.54 1.40 798.56 13.02 184.66 16.12 186.48 0.50 3.07 33.02 8.14 1.298 28.52 8.25 1.82 513.80 13.02 187.46 16.12 189.84 0.40 2.93 33.69 8.14 1.298 28.52 8.25 3.22 236.88 12.09 148.54 16.12 153.72 0.45 2.87 34.51 8.14 1.316 28.46 7.21 1.40 611.52 16.12 170.52 0.39 3.07 33.43 8.14 1.216 28.46 7.21 2.24 570.64 13.02 167.48 15.69 0.31 2.53 34.48	8	S	3.41	0.28	2.24	681.80	12.40	166.46	15.81	168.98	0.38	3.13	33.41	8.13	0.837	28.41	7.46	92.78	
4.20 246.40 11.16 147.98 17.36 154.70 0.53 3.00 34.59 8.10 0.857 27.75 7.54 1.40 798.56 13.02 184.66 16.12 186.48 0.50 3.07 33.02 8.14 1.298 28.52 8.25 1.208 13.02 184.66 16.12 186.48 0.50 3.07 33.02 8.14 1.298 28.52 8.25 1.208 13.02 187.46 16.12 186.48 0.40 2.93 33.69 8.14 1.316 28.10 7.87 1.86 18.14 1.316 28.10 7.87 1.86 1.86 0.41 2.47 33.69 8.14 1.316 28.10 7.87 1.88 1.89 1.148 1.88 <		Σ	4.34	0.14	0.84	400.40	11.16	164.92	15.50	165.90	0.52	5.20	33.99	8.13	1.276	28.11	7.60	93.83	
1,40 798.56 13.02 184.66 16,12 186,48 0.50 3.07 33.02 8.14 1.298 28.52 8.25 1,82 513.80 13.02 187.46 16,74 189.84 0.40 2.93 33.69 8.14 1.316 28.10 7.87 3,22 236.88 12.09 148.54 16.12 153.72 0.45 2.87 33.63 8.14 1.316 28.10 7.87 1,40 611.52 12.09 169.40 15.19 171.36 0.41 2.47 33.43 8.14 1.216 28.46 7.21 2,24 570.64 13.02 167.72 16.12 170.52 0.39 3.07 33.48 8.14 1.160 28.96 7.56 1,36 605.64 11.78 143.82 155.94 0.31 2.53 34.48 8.14 1.407 28.90 7.69 1,36 605.64 11.42 15.81 170.10 0.51 4.00		ю	6.20	2.52	4.20	246.40	11.16	147.98	17.36	154.70	0.53	3.00	34.59	8.10	0.857	27.75	7.54	93.12	
1.82 513.80 13.02 187.46 16.74 189.84 0.40 2.93 33.69 8.14 1.316 28.10 7.87 3.22 236.88 12.09 148.54 16.12 153.72 0.45 2.87 34.51 8.14 1.316 28.10 7.89 1.40 611.52 12.09 169.40 15.19 171.36 0.41 2.47 33.43 8.14 1.216 28.46 7.21 2.24 570.64 13.02 167.72 16.12 170.52 0.39 3.07 33.48 8.14 1.160 28.46 7.56 1.36 605.64 11.78 139.72 15.60 143.92 0.39 3.67 33.46 8.14 1.407 28.46 7.55 1.36 605.64 11.47 164.64 15.81 170.10 0.51 4.00 33.56 8.14 1.07 28.90 7.59 2.76 215.32 11.47 114.24 15.50 121.66	6	တ	3.10	0.42	1.40	798.56	13.02	184.66	16.12	186.48	0.50	3.07	33.02	8.14	1.298	28.52	8.25	101.85	
3.22 2.36.88 12.09 148.54 16.12 153.72 0.45 2.87 34.51 8.11 0.956 27.83 7.68 1.40 611.52 12.09 169.40 15.19 171.36 0.41 2.47 33.43 8.14 1.216 28.46 7.21 2.24 570.64 13.02 167.72 16.12 170.52 0.39 3.07 33.61 8.14 1.150 28.06 7.56 2.26 217.56 10.54 151.48 156.94 0.31 2.53 34.48 8.12 0.845 28.06 7.55 1.36 605.64 11.78 139.72 15.50 143.92 0.39 3.67 33.46 8.14 1.407 28.46 7.34 2.18 574.00 12.40 164.64 15.81 170.10 0.51 4.00 33.56 8.14 1.038 28.06 7.59 10.00 2.00 10.00 20.00 30.00 4.00 33.56		Σ	3.72	0.56	1.82	513.80	13.02	187.46	16.74	189.84	0.40	2.93	33.69	8.14	1.316	28.10	7.87	97.16	
1.40 611.52 12.09 169.40 15.19 171.36 0.41 2.47 33.43 8.14 1.216 28.46 7.21 2.24 570.64 13.02 167.72 16.12 170.52 0.39 3.07 33.61 8.14 1.150 28.06 7.56 2.26 217.56 10.54 151.48 156.94 0.31 2.53 34.48 8.12 0.845 28.06 7.56 1.36 605.64 11.78 139.72 15.50 143.92 0.39 3.67 33.46 8.14 1.407 28.46 7.34 2.18 574.00 12.40 164.64 15.81 170.10 0.51 4.00 33.56 8.14 1.038 28.06 7.59 10.00 2.76 215.32 11.47 114.24 15.50 121.66 0.41 2.13 34.47 8.12 0.716 28.90 7.69 10.00 20.00 30.00 560.00 300.00 4.00		80	4.03	1.96	3.22	236.88	12.09	148.54	16.12	153.72	0.45	2.87	34.51	8.11	0.956	27.83	7.68	94.81	
2.24 570.64 13.02 167.72 16.12 170.52 0.39 3.07 33.61 8.14 1.150 28.06 7.56 2.66 217.56 10.54 151.48 14.88 156.94 0.31 2.53 34.48 8.12 0.845 28.00 7.65 1.36 605.64 11.78 139.72 15.50 143.92 0.39 3.67 33.46 8.14 1.407 28.46 7.34 2.18 574.00 12.40 164.64 15.81 170.10 0.51 4.00 33.56 8.14 1.038 28.06 7.55 10.00 2.76 215.32 11.47 114.24 15.50 121.66 0.41 2.13 34.47 8.12 0.716 28.90 7.69 10.00 20.00 300.00 4.00 30.00 4.00 20.00 10.00 10.00 10.00 20.00 10.00 20.00 10.00 20.00 10.00 20.00 20.00 20.00 </td <td>10</td> <td>ဟ</td> <td>3.10</td> <td>0.56</td> <td>1.40</td> <td>611.52</td> <td>12.09</td> <td>169.40</td> <td>15.19</td> <td>171.36</td> <td>0.41</td> <td>2.47</td> <td>33.43</td> <td>8.14</td> <td>1.216</td> <td>28.46</td> <td>7.21</td> <td>89.01</td> <td></td>	10	ဟ	3.10	0.56	1.40	611.52	12.09	169.40	15.19	171.36	0.41	2.47	33.43	8.14	1.216	28.46	7.21	89.01	
2.66 217.56 10.54 151.48 156.94 0.31 2.53 34.48 8.12 0.845 28.90 7.65 1.36 605.64 11.78 139.72 15.50 143.92 0.39 3.67 33.46 8.14 1.407 28.46 7.34 2.18 574.00 12.40 164.64 15.81 170.10 0.51 4.00 33.56 8.14 1.038 28.06 7.55 10.00 2.76 215.32 11.47 114.24 15.50 121.66 0.41 2.13 34.47 8.12 0.716 28.90 7.69 10.00 20.00 300.00 4.00 8.00 4.00 20.00 10		Σ	3.10	0.56	2.24	570.64	13.02	167.72	16.12	170.52	0.39	3.07	33.61	8.14	1.150	28.06	7.56	93.33	
1.36 605.64 11.78 139.72 15.50 143.92 0.39 3.67 33.46 8.14 1.407 28.46 7.34 2.18 574.00 12.40 164.64 15.81 170.10 0.51 4.00 33.56 8.14 1.038 28.06 7.55 10.00 2.76 215.32 11.47 114.24 15.50 121.66 0.41 2.13 34.47 8.12 0.716 28.90 7.69 10.00 20.00 300.00 4.00 4.00 4.00 10.00		8	4.34	2.80	2.66	217.56	10.54	151.48	14.88	156.94	0.31	2.53	34.48	8.12	0.845	28.90	7.65	94.44	
2.18 574.00 12.40 164.64 15.81 170.10 0.51 4.00 33.56 8.14 1.038 28.06 7.55 10.00 20.00 10.00 60.00 300.00 4.00 4.00 4.00 7.69 7.69 10.00 20.00 130.00 550.00 80.00 60.00 750.00 10.00 10.00	10REP	ဟ	3.72	0.84	1.36	605.64	11.78	139.72	15.50	143.92	0.39	3.67	33.46	8.14	1.407	28.46	7.34	90.62	
2.76 215.32 11.47 114.24 15.50 121.66 0.41 2.13 34.47 8.12 0.716 28.90 7.69 0 10.00 60.00 300.00 4.00 3.50 10.00 0 20.00 550.00 8.00 10.00 10.00 0 30.00 750.00 15.00 15.00		Σ	3.41	0.70	2.18	574.00	12.40	164.64	15.81	170.10	0.51	6.00	33.56	8.14	1.038	28.06	7.55	93.21	
0 10.00 60.00 300.00 4.00 3.50 0 20.00 130.00 550.00 8.00 10.00 0 30.00 750.00 15.00 20.00		æ	4.03	2.24	2.76	215.32	11.47	114.24	15.50	121.66	0.41	2.13	34.47	8.12	0.716	28.90	7.69	94.94	
15.00 10.00 60.00 300.00 4.00 40.00 20.00 130.00 550.00 8.00 70.00 30.00 20.00 750.00 15.00	DOH Was fo	I PEARL F	IARBOR E	STUARY															
40.00 20.00 130.00 550.00 8.00	Geo. Mean			15.00	10.00				00.09	300.00	4.00				3.50				
70.00 30.00 200.00 750.00 15.00	10%			40.00	20.00				130.00	550.00	8.00				10.00				
	2%			20.00	30.00				200.00	750.00	15.00				20.00				

Results of water quality analyses (in micromolar {µM} units for applicable constituents) from samples collected at 10 stations in Pearl Harbor, Hawaii on October 9, 1997. "S" indicates surface sunface sample, "M" indicates mid depth sample, and "B" indicates bottom sample. For station location, see Figure 1. TABLE 3.

																	Π						Г			Γ			Γ						Г	T		
02	(%sat)	93.83	90.00	91.36	91.23	89.63	93.09	93.33	91.48	92.72	91.73	92.10	91.60	92.10	90.37	89.38	95.19	91.48	93.83	93.21	92.59	88.89	92.84	93.83	93.21	89.01	93.33	94.44	90.62	93.21	94.94	101.85	97.16	94.81				
05	(Mg/l)	7.60	7.29	7.40	7.39	7.26	7.54	7.56	7.41	7.51	7.43	7.46	7.42	7.46	7.32	7.24	7.71	7.41	7.60	7.55	7.50	7.20	7.52	7.60	7.55	7.21	7.56	7.65	7.34	7.55	69.7	8.25	7.87	7.68				
Temp.	(deg. C.)	28.30	27.60	27.10	28.25	27.25	27.10	28.15	27.26	27.10	27.97	27.26	27.30	28.45	27.18	27.02	28.12	27.33	27.08	28.49	27.27	27.03	28.42	27.26	27.02	28.30	27.48	27.14	28.30	27.48	27.14	28.57	27.48	27.14				
Chl-a	(hg/l)	1.17	0.95	0.91	0.77	0.95	0.72	0.95	1.01	0.72	1.08	1.52	1.01	0.79	0.88	1.20	0.89	0.88	0.70	0.74	1.23	1.03	1.16	0.79	99.0	1.20	1.01	0.73	1.28	96.0	0.73	3.41	0.86	0.46		3.50	10.00	20.00
Ħ	(rel)	8.10	8.10	8.12	8.12	8.11	8.14	8.13	8.12	8.14	8.12	8.12	8.12	8.12	8.12	8.11	8.13	8.12	8.14	8.13	8.12	8.12	8.13	8.14	8.15	8.11	8.13	8.14	8.10	8.13	8.14	8.18	8.16	8.16				
SALT	(00/0)	32.71	34.33	34.80	32.17	34.80	34.90	32.40	34.40	34.85	33.74	34.31	34.86	31.81	34.09	33.76	33.12	34.09	34.86	32.67	34.21	34.69	32.97	34.54	34.88	32.46	34.31	34.70	32.44	34.30	34.70	30.99	34.44	34.83				
TSS	(l/gm)	2.93	1.67	1.53	7.93	1.87	1.33	2.67	2.20	2.27	29.13	54.07	19.93	4.20	1.67	3.00	2.40	3.13	1.93	4.93	2.47	2.47	2.93	2.87	2.40	3.00	2.93	1.00	2.53	2.07	2.13	7.87	0.67	0.67				
TURB	(utn)	0.62	0.30	0.38	0.75	0.55	0.50	0.90	0.43	0.48	3.80	9.00	3.30	0.79	0.38	99.0	0.55	99.0	0.40	0.76	0.40	0.44	0.54	0.50	0.44	09.0	0.45	0.36	99.0	0.60	0.44	9.1	0.34	0.23		4.00	8.00	15.00
N.	(MJ)	12.23	11.27	10.47	11.40	12.11	9.67	10.10	12.88	10.56	11.91	10.05	10.39	15.45	13.58	13.16	12.18	11.00	9.64	13.74	10.41	10.85	14.20	10.26	9.79	13.59	11.89	12.35	13.38	13.13	11.37	21.26	15.57	9.84		21.43	39.29	53.57
ПР	(MI)	0.65	09.0	0.54	0.65	0.72	0.52	0.49	99.0	0.53	0.63	69.0	99.0	0.64	0.59	09.0	0.58	0.51	0.57	0.63	0.62	0.58	0.50	95.0	0.54	0.56	0.59	0.56	0.59	0.63	0.55	0.75	0.55	0.47		1.94	4.19	6.45
DON	(MH)	12.15	10.76	10.32	10.47	11.96	9.42	9.81	12.72	10.41	11.62	9.68	10.04	14.92	13.23	12.88	12.00	10.75	9.43	13.48	10.08	10.51	13.93	10.04	9.48	13.38	11.66	12.09	12.96	12.74	11.01	20.50	15.25	9.50				
90P	(MI)	0.45	0.39	0.35	0.44	0.40	0.39	0.37	0.50	0.40	0.40	0.32	0.42	0.50	0.44	0.40	0.47	0.33	0.45	0.47	0.47	0.42	0.39	0.43	0.41	0.46	0.44	0.41	0.47	0.47	0.36	0.61	0.44	0.37				
Si	(mM)	35.64	10.02	5.43	37.93	6.24	4.14	36.81	9.17	4.61	21.46	13.33	6.16	56.42	14.79	22.11	28.59	14.92	4.77	37.82	11.80	7.50	30.04	8.03	4.08	37.44	11.37	6.29	37.45	11.27	6.05	28.04	7.94	3.55				
NH4	(Mrl)	90.0	0.17	0.11	0.45	0.11	0.13	0.21	0.10	0.11	0.24	0.30	0.20	0.29	97.0	0.20	0.18	0.23	0.20	0.25	0.31	0.30	0.25	0.20	0.23	0.19	0.21	0.22	0.39	0.36	0.32	0.28	0.27	0.21		0.71	1.43	2.14
NO3	(MH)	0.02	0.34	0.04	0.48	0.04	0.12	90.0	90.0	0.04	0.05	0.07	0.15	0.24	60.0	0.08	0.00	0.02	0.01	0.01	0.02	0.04	0.02	0.02	0.08	0.02	0.02	0.04	0.03	0.03	0.04	0.48	0.05	0.13	TUARY	1.07	2.86	5.00
P04	(M/I)	0.20	0.21	0.19	0.21	0.32	0.13	0.12	0.16	0.13	0.23	0.37	0.24	0.14	0.15	0.20	0.11	0.18	0.12	0.16	0.15	0.16	0.11	0.13	0.13	0.10	0.15	0.15	0.12	0.16	0.19	0.14	0.11	0.10	ARBOR ES			
DEРТН		တ	Σ	മ	တ	Σ	83	တ	Σ	മ	တ	Σ	8	တ	Σ	В	တ	2	æ	ဟ	Σ	8	တ	Σ	В	ဟ	Σ	80	တ	Σ	8	တ	Σ	8	I PEARL H			
STATION	No.	-			7	_		9			4			ro.			9			7			œ			o,			9 REP			9			DOH WGS for PEARL HARBOR ESTUARY	Geo. Mean	10%	2%

Results of water quality analyses (in micrograms per liter{µg/L} for applicable constituents) from samples collected at 10 stations in Pearl Harbor, Hawaii on October 9, 1997. "S" indicates surface sample, "M" indicates mid depth sample, and "B" indicates bottom sample. For station location, see Figure 1. TABLE 4.

	L T T	90 40	NO3	NH4	S	DOP	NOO	д	Z	TURB	TSS	SALINITY	ī	Chi-a	lemp.	0	00
No.		(hg/L)	(hg/L)	(µg/L)	(ng/L)	(hg/L)	(hg/L)	(µg/L)	(hg/L)	(ntn)	(mg/L)	(00/0)	(rel)	(hgr)	(deg. C.)	(mg/l)	(%sat)
1	တ	6.20	0.28	0.84	997.92	9.45	170.10	20.15	171.22	0.62	2.93	32.71	8.10	1.17	28.30	2.60	93.83
	Σ	6.51	4.76	2.38	280,56	8.19	150.64	18.60	157.78	0.30	1.67	34.33	8.10	0.95	27.60	7.29	90.00
	80	5.89	95.0	1.54	152.04	7.35	144.48	16.74	146.58	0.38	1.53	34.80	8.12	0.91	27.10	7.40	91.36
2	S	6.51	6.72	6.30	1062.04	9.24	146.58	20.15	159.60	0.75	7.93	32.17	8.12	0.77	28.25	7.39	91.23
	Σ	9.92	0.56	1.54	174.72	8.40	167.44	22.32	169.54	0.55	1.87	34.80	8.11	0.95	27.25	7.26	89.63
	60	4.03	1.68	1.82	115.92	8.19	131.88	16.12	135.38	0.50	1.33	34.90	8.14	0.72	27.10	7.54	93.09
9	တ	3.72	1.12	2.94	1030.68	77.7	137.34	15,19	141.40	06.0	2.67	32.40	8.13	96'0	28.15	7.56	93.33
	Σ	4.96	0.84	1.40	256.76	10.50	178.08	20.46	180.32	0.43	2.20	34.40	8.12	1.01	27.26	7.41	91.48
	60	4.03	0.56	1.54	129.08	8.40	145.74	16.43	147.84	0.48	2.27	34.85	8.14	0.72	27.10	7.51	92.72
4	တ	7.13	0.70	3.36	88.009	8.40	162.68	19.53	166.74	3.80	29.13	33.74	8.12	1.08	27.97	7.43	91.73
	Σ	11.47	96'0	4.20	373.24	6.72	135.52	21.39	140.70	9.00	24.07	34.31	8.12	1.52	27.26	7.46	92.10
	മ	7.44	2.10	2.80	172.48	8.82	140.56	20.46	145.46	3.30	19.93	34.86	8.12	1.01	27.30	7.42	91.60
S	S	4.34	3.36	4.06	1579.76	10.50	208.88	19.84	216.30	0.79	4.20	31.81	8.12	0.79	28.45	7.46	92.10
	Σ	4.65	1.26	3.64	414.12	9.24	185.22	18.29	190.12	0.38	1.67	34.09	8.12	0.88	27.18	7.32	90.37
	80	6.20	1.12	2.80	619.08	8.40	180.32	18.60	184.24	0.68	3.00	33.76	8.11	1.20	27.02	7.24	86.38
9	S	3.41	0.00	2.52	800.52	9.87	168.00	17.98	170.52	0.55	2.40	33.12	8.13	0.89	28.12	7.71	95.19
	Σ	5.58	0.28	3.22	417.76	6.93	150.50	15.81	154.00	99'0	3.13	34.09	8.12	0.88	27.33	7.41	91.48
	60	3.72	0.14	2.80	133.56	9.45	132.02	17.67	134.96	0.40	1.93	34.86	8.14	0.70	27.08	7.60	93.83
7	S	4.96	0.14	3.50	1058.96	9.87	188.72	19.53	192.36	92.0	4.93	32.67	8.13	0.74	28.49	7.55	93.21
	Σ	4.65	0.28	4.34	330.40	9.87	141.12	19.22	145.74	0.40	2.47	34.21	8.12	1.23	27.27	7.50	92.59
	60	4.96	0.56	4.20	210.00	8.82	147.14	17.98	151.90	0.44	2.47	34.69	8.12	1.03	27.03	7.20	88.89
8	ဟ	3.41	0.28	3.50	841.12	8.19	195.02	15.50	198.80	0.54	2.93	32.97	8.13	1.16	28.42	7.52	92.84
	Σ	4.03	0.28	2.80	224.84	9.03	140.56	17.36	143.64	0.50	2.87	34.54	8.14	0.79	27.26	7.60	93.83
	80	4.03	1.12	3.22	114.24	8.61	132.72	16.74	137.06	0.44	2.40	34.88	8.15	99'0	27.02	7.55	93.21
6	တ	3.10	0.28	2.66	1048.32	99.6	187.32	17.36	190.26	0.60	3.00	32.46	8.11	1.20	28.30	7.21	89.01
	Σ	4.65	0.28	2.94	318.36	9.24	163.24	18.29	166.46	0.45	2.93	34.31	8.13	1.01	27.48	7.56	93.33
	80	4.65	0.56	3.08	176.12	8.61	169.26	17.36	172.90	0.36	9.	34.70	8.14	0.73	27.14	7.65	94.44
9 REP	တ	3.72	0.42	5.46	1048.60	9.87	181.44	18.29	187.32	99.0	2.53	32.44	8.10	1.28	28.30	7.34	90.62
	Σ	4.96	0.42	5.04	315.56	9.87	178.36	19.53	183.82	0.60	2.07	34.30	8.13	96.0	27.48	7.55	93.21
	В	5.89	0.56	4.48	169.40	7.58	154.14	17.05	159.18	0.44	2.13	34.70	8.14	0.73	27.14	7.69	94.94
0	S	4:34	6.72	3.92	785.12	12.81	287.00	23.25	297.64	1.8	7.87	30.99	8.18	3.41	28.57	8.25	101.85
	Σ	3.41	0.70	3.78	222.32	9.24	213.50	17.05	217.98	0.34	0.67	34.44	8.16	0.86	27.48	7.87	97.16
	В	3.10	1.82	2.94	99.40	7.77	133.00	14.57	137.76	0.23	0.67	34.83	8.16	0.46	27.14	7.68	94.81
DOH WOS for PEARL HARBOR ESTUARY	or PEARL H	HARBOR E	STUARY														
Geo. Mean			15.00	10.00				60.00	300.00	4.00	ı			3.50			
10%			40.00	20.00				130.00	550.00	8.00				10.00			
2%			70.00	30.00				200.00	750.00	15.00				20.00			

Taxonomic list of all live-collected invertebrates retained on a 1.0 mm mesh sieve at 10 sampling stations in Pearl Harbor. For station locations, see Figure 1. TABLE 5.

П	30						-							2									_			7	က		
9															_		-											2.0	1
1 1														2	•		•						_				ю С	7	-
	7 28																				_								_
1	27													~												-	_	7	
6	1																						က		-	8	ß	1.7	(
	22											_														-	_		_
	24				-									~												7	7		
œ	23													2												-	7	1.0	•
	22																									0	0		
	21													←												-	-		
_	20																									0	0	0.7	1
	6										_	-														-	-		
	8																									0	0		-
<u></u>	7 1													7														2.0	•
9	6 1													• •												Ĺ	_	0	•
	-							-																		-	_	-	_
	15							•	_																	-	~	0	•
2	14																									0	0	1.0	•
	13													_												2	2		_
	12																									0			
4	11																									0	0	0.7	C
	9											_		_								_				2	7		_
	6													_												-	-		
က	8																									0	0	0.7	7
	7													-												-	-		
	9		•																							-	-		
7	2													_												0	0	0.7	7
	4																									-	_		
	3													_			_									2	7		_
_	2							,	_					4												2	2	7	0
ľ	_													7													7	-	•
-	-																					_				\vdash	_		_
Station No.	Replicate No.	Taxonomic Unit	Phylum Cnidaria Class Anthozoa	Order Actiniaria	Anemone sp.	Phylum Annelida	Class Polycheata	Fam. Hesionidae	Podarke sp.	Fam. Spionidae	Frionospio	Steeristrupi P. cirrifera	Fam, Capitellidae	Capitella sp.	Dasybranchus sp.	Fam. Chaetopteridae	Spiochaetopterus sp.	Fam. Cossuridae	Cossura sp.	Fam. Cirratulidae	Cirratulid sp.	Fam. Sternaspidae	Sternaspis sp.	Fam. Sabellidae	Sabellid nov. sp.	NO. OF TAXA	NO. INDIVIDUALS	MEAN TAXA/STATION	TOTAL CONTRACTOR
a	3e	Ta	된 건	ō	4	Phy	ਹ	щ,		Τ,	_	_	- ш			ш		_				_		_		2	2	Z	:

FIGURE 2. Measurements of salinity (in parts per thousand) in surface, mid, and bottom waters from 10 stations in the vicinity of the Aircraft Carrier Homeporting project. Samples were collected on September 16, 1997. For station location, see Figure 1.

FIGURE 3. Measurements of silicate in surface, mid, and bottom waters from 10 stations in the vicinity of the Aircraft Carrier Homeporting project. Samples were collected on September 16, 1997. For station location, see Figure 1.

FIGURE 4. Measurements of nitrate in surface, mid, and bottom waters from 10 stations in the vicinity of the Aircraft Carrier Homeporting project. Samples were collected on September 16, 1997. Absence of data bar indicates sample was below detection limit. For station location, see Figure 1.

FIGURE 5. Measurements of phosphate in surface, mid, and bottom waters from 10 stations in the vicinity of the Aircraft Carrier Homeporting project. Samples were collected on September 16, 1997. For station location, see Figure 1.

FIGURE 6. Measurements of ammonium in surface, mid, and bottom waters from 10 stations in the vicinity of the Aircraft Carrier Homeporting project. Samples were collected on September 16, 1997. For station location, see Figure 1.

FIGURE 7. Measurements of dissolved organic nitrogen in surface, mid, and bottom waters from 10 stations in the vicinity of the Aircraft Carrier Homeporting project. Samples were collected on September 16, 1997. For station location, see Figure 1.

FIGURE 8. Measurements of dissolved organic phosphorus in surface, mid, and bottom waters from 10 stations in the vicinity of the Aircraft Carrier Homeporting project. Samples were collected on September 16, 1997. For station location, see Figure 1.

FIGURE 9. Measurements of total nitrogen in surface, mid, and bottom waters from 10 stations in the vicinity of the Aircraft Carrier Homeporting project. Samples were collected on September 16, 1997. For station location, see Figure 1.

FIGURE 10. Measurements of total phosphorus in surface, mid, and bottom waters from 10 stations in the vicinity of the Aircraft Carrier Homeporting project. Samples were collected on September 16, 1997. For station location, see Figure 1.

FIGURE 11. Measurements of total suspended solids in surface, mid, and bottom waters from 10 stations in the vicinity of the Aircraft Carrier Homeporting project. Samples were collected on September 16, 1997. For station location, see Figure 1.

FIGURE 12. Measurements of turbidity in surface, mid, and bottom waters from 10 stations in the vicinity of the Aircraft Carrier Homeporting project. Samples were collected on September 16, 1997. For station location, see Figure 1.

FIGURE 13. Measurements of chlorophyll a in surface, mid, and bottom waters from 10 stations in the vicinity of the Aircraft Carrier Homeporting project. Samples were collected on September 16, 1997. For station location, see Figure 1.

FIGURE 14. Continuous vertical profiles (in parts per thousand) of salinity at 9 stations in the vicinity of the Aircraft Carrier Homeporting project collected on September 16, 1997. Data for Station 9 not available. For station locations, see Figure 1.

FIGURE 15. Continuous vertical profiles of temperature at 10 stations in the vicinity of the Aircraft Carrier Homeporting project collected on September 16, 1997. For station locations, see Figure 1.

FIGURE 16. Continuous vertical profiles of turbidity at 10 stations in the vicinity of the Aircraft Carrier Homeporting project collected on September 16, 1997. Note x-axis scale change for Stations 4 - 7. For station locations, see Figure 1.

FIGURE 17. Measurements of salinity (in parts per thousand) in surface, mid, and bottom waters from 10 stations in the vicinity of the Aircraft Carrier Homeporting project. Samples were collected on October 9, 1997. For station location, see Figure 1.

FIGURE 18. Measurements of silicate in surface, mid, and bottom waters from 10 stations in the vicinity of the Aircraft Carrier Homeporting project. Samples were collected on October 9, 1997. For station location, see Figure 1.

FIGURE 19. Measurements of nitrate in surface, mid, and bottom waters from 10 stations in the vicinity of the Aircraft Carrier Homeporting project. Samples were collected on October 9, 1997. Absence of data bar indicates sample was below detection limit. For station location, see Figure 1.

FIGURE 20. Measurements of phosphate in surface, mid, and bottom waters from 10 stations in the vicinity of the Aircraft Carrier Homeporting project. Samples were collected on October 9, 1997. For station location, see Figure 1.

FIGURE 21. Measurements of ammonium in surface, mid, and bottom waters from 10 stations in the vicinity of the Aircraft Carrier Homeporting project. Samples were collected on October 9, 1997. For station location, see Figure 1.

FIGURE 22. Measurements of dissolved organic nitrogen in surface, mid, and bottom waters from 10 stations in the vicinity of the Aircraft Carrier Homeporting project. Samples were collected on October 9, 1997. For station location, see Figure 1.

FIGURE 23. Measurements of dissolved organic phosphorus in surface, mid, and bottom waters from 10 stations in the vicinity of the Aircraft Carrier Homeporting project. Samples were collected on October 9, 1997. For station location, see Figure 1.

FIGURE 24. Measurements of total nitrogen in surface, mid, and bottom waters from 10 stations in the vicinity of the Aircraft Carrier Homeporting project. Samples were collected on October 9, 1997. For station location, see Figure 1.

FIGURE 25. Measurements of total phosphorus in surface, mid, and bottom waters from 10 stations in the vicinity of the Aircraft Carrier Homeporting project. Samples were collected on October 9, 1997. For station location, see Figure 1.

FIGURE 26. Measurements of total suspended solids in surface, mid, and bottom waters from 10 stations in the vicinity of the Aircraft Carrier Homeporting project. Samples were collected on October 9, 1997. Note: data collected at Station 4 shortly after the passing of a large ship. For station location, see Figure 1.

FIGURE 27. Measurements of turbidity in surface, mid, and bottom waters from 10 stations in the vicinity of the Aircraft Carrier Homeporting project. Samples were collected on October 9, 1997. Note: Data collected at Station 4 shortly after the passing of a large ship. For station location, see Figure 1.

FIGURE 28. Measurements of chlorophyll a in surface, mid, and bottom waters from 10 stations in the vicinity of the Aircraft Carrier Homeporting project. Samples were collected on October 9, 1997. For station location, see Figure 1.

FIGURE 29. Continuous vertical profiles (in parts per thousand) of salinity at 9 stations in the vicinity of the Aircraft Carrier Homeporting project collected on October 9, 1997. Data for Station 8 not available. For station locations, see Figure 1.

FIGURE 30. Continuous vertical profiles of temperature at 9 stations in the vicinity of the Aircraft Carrier Homeporting project collected on October 9, 1997. Data for Station 8 not available. For station locations, see Figure 1.

FIGURE 31. Continuous vertical profiles of turbidity at 9 stations in the vicinity of the Aircraft Carrier Home Porting project collected on October 9, 1997. Note y-axis scale change for Station 4 (data collected shortly after the passing of a large ship). Data for Station 8 not available. For station locations, see Figure 1.

FIGURE 32. Underwater views of floor of Pearl Harbor entrance channel and turning basin showing numerous burrow holes from benthic macroinfauna.

FIGURE 33. Photographs of benthic photo-transect quadrats at Station 10 in Pearl Harbor entrance channel.

FIGURE 34. Underwater photographs of pilings of Piers B2/B3. Predominant biota is the orange sponge of the genus Microciona.

DATA REPORT, PEARL HARBOR SEDIMENT

Data Report

PEARL HARBOR SEDIMENT

Prepared for Belt Collins Hawaii 680 Ala Moana Boulevard First Floor Honolulu, HI 96813-5407

Prepared by MEC Analytical Systems, Inc.

December 1997

TABLE OF CONTENTS

1.0	INTRODUCTION			
1.1				
2.0				
2.1				
2.2	Navigation, station locations and operations	2		
2.3	Sample Collections			
2.4	Field QA/QC Procedures			
3.0	LABORATORY PROCEDURES			
3.1	Laboratory Analyses	8		
3.	1.1 Procedures: Physical and Chemical Analyses	8		
3.	1.2 Procedures: Solid Phase Bioassay			
	1.3 Procedures: Suspended-Particulate Phase Bioassays			
3.2	Laboratory QA/QC Procedures	. 10		
	2.1 QA/QC for Chemistry Analyses	. 10		
	2.2 QA/QC for Bioassays	. 11		
4.0	RESULTS	. 13		
4.1 Field Results				
4.2 Chemistry results				
4.2.1 Physical Chemistry				
4.2.2 Analytical Chemistry				
4.2.2 TCLP Chemistry				
4.3 Bloassay Results 4.3.1 Solid Phase Tests.				
4.	4.3.1 Solid Phase Tests			
5.0	REFERENCES	24		
J.U	REFERENCES			

1.0 INTRODUCTION

This project supports impacts analysis associated with an environmental impact statement (EIS) and is <u>not</u> intended to provide data appropriate for an ocean disposal permit application.

Therefore, the objective of this sampling effort was to obtain screening level chemistry and bioassay results for bulk sediment at proposed future dredge sites.

1.1 SAMPLE SITES

The sampling sites consist of areas to be transited or occupied by a NIMITZ-class CVN, i.e.

- berths B2 and B3 in the PHNSY
- the turning basin between berths B2 and B3 and Ford Island
- the inner channel from Bishop Point to Hospital Point

Recent (1995-1996) bathymetric surveys indicated existing depths of about 43 to 50 feet below MLLW in these locations. The project dredge depth would be 50 feet below MLLW; therefore, to allow for two feet of over-dredging, samples were obtained to a depth of approximately 52' below MLLW.

Samples from 10 locations were obtained and a total of 10 composite samples were analyzed.

2.0 FIELD SAMPLING PROCEDURES

A total of 10 project locations were sampled for sediments by coring using an electric vibracore. In addition, one reference site was sampled. Samples were obtained by MEC Analytical Systems Inc. (MEC) of Carlsbad, California; P&R Water Taxi of Honolulu, Hawaii provided the vessel "Hapa" to support the sampling equipment.

2.1 SAMPLE LOCATIONS

Samples from ten locations were obtained from the project area (Figure 1). Multiple cores were taken at some sites to provide sufficient volume for analysis.

- **B2/3.** Core samples from 3 locations were obtained. One location from within 50 feet of each berth (Site 1 at B2 and Site 2 at B3), and a third midway between Sites 1 and 2 and approximately 350 feet from the pier (Site 3).
- Turning basin. Four core samples were obtained from the roughly rectangular turning basin, one from the center of each quadrant (Sites 4-7).
- Inner channel. Three core samples were obtained from the inner channel. One was obtained off Bishop Point, one approximately 1000 feet north of Waipio Point, and one off the southern end of Ford Island (Sites 8-10).
- Reference sample. Carbonate sand was obtained from the subtidal zone offshore of Lanikai beach, on the windward side of Oahu.
- Control sample. The matrix from which laboratory animals were collected was used as the control sample in the solid phase bioassay testing.

2.2 NAVIGATION, STATION LOCATIONS AND OPERATIONS

Sample locations were documented using a Magnavox MX200 Differential GPS. A Trimble Pro-Beacon differential receiver utilized the USCG differential signal for the correction. Overall accuracy is rated at 2-5 meters. Repeat readings were taken at stations to assess temporal fluctuations. Readings were averaged when appropriate. Locations are presented as latitude and longitude in the WGS84 system (Table 2-1).

Field Sampling Schedule

Sampling activities took place on 29 October through 1 November, including mob and demob.

Vessel

Field sampling was conducted from the "Hapa", a twin engine 50-foot vessel with a 15 foot beam. The vessel was outfitted with an A-frame/winch, which was used to deploy and recover the vibracore.

BELT COLLINS HAWAII 17 DECEMBER, 1997 2

Figure 1. Station Locations

Navigation and Positioning

All open-harbor (i.e., turning basin and inner channel) stations were accessed by transiting to the pre-determined station location. A marker buoy was deployed at the target site and a weighted tape measure was used to check the depth. If the depth was less than -50 feet MLLW, then a vibracore sample was collected. If the depth exceeded -50 feet MLLW, then the vessel was moved to an area nearby at a depth of less than 50 feet MLLW. After setting the marker buoy, the stern of the vessel was then maneuvered adjacent to the marker buoy and the equipment was deployed over the stern to collect the sample. Differential GPS (DGPS) positions were logged at the beginning and end of the time during which each core was collected. DGPS positions were also recorded when the buoy was deployed.

Stations 1 and 2 along Berth 2/3 were positioned approximately 50 feet away from the pier and located along the pier using distance marks painted on the pier. Station 1 was taken approximately 50 feet away from the pier and 1,100 feet southwest from the northwest corner of the pier (Berth 2). Station 2 was approximately 50 feet off of the pier and 150 feet southwest from the northwest corner of the pier (Berth 3). Station 3 was located approximately 350 feet away from the pier and 550 feet southwest from the northwest corner of the pier.

2.3 SAMPLE COLLECTIONS

Sample Collection Procedures

The samples were collected using an electric vibratory coring system (vibracorer) provided by MEC Analytical Systems of Carlsbad, CA. The vibracorer is an electric powered sediment sampling system utilizing two electric motors to rotate eccentric weights that vibrate an aluminum head. Attached to the head was a steel core tube; inside the steel tube was a cellulose-acetate-butyrate (CAB) liner. Attached to the penetrating end of the pipe/liner system is a stainless steel cutter/catcher mechanism that traps the sediment in the liner. Core liners were cut to the appropriate length to accommodate sampling to the required project depth plus 2 feet. The core liners were approximately 3.8 inches in inside diameter.

The deployment and retrieval of the coretube and vibracorer was conducted from the vessel in the following manner. First, the vibracorer and coretube of appropriate length were prepared and attached while laid out on the aft deck. The vibracorer was then lifted into a vertical orientation and deployed over the stern using a cable and winch attached to the A-frame. A measuring tape was attached to the vibracorer head to document depth of penetration. The coretube and vibracorer assembly was then lowered to the benthic surface.

When the coretube nose reached the sediment surface, the distance on the measuring tape and the latitude and longitude were noted on the core log form. The vibracorer was turned on and cable was released slowly until the unit reached the intended depth. The distance on the measuring tape was again logged. The time, date, core length and any other pertinent information were recorded in the logbook. Once each core was taken, the coretube/vibracorer assembly was

returned to the deck. The core liner was removed from the outer coretube, and end caps were installed to prevent leakage of core sediments. Each core was kept in a vertical orientation and allowed to sit until disturbed surface sediments settled.

Sample Collection and Handling Procedures

As samples were collected, logs and field notes recorded the following parameters:

- Depth of each coring station as measured from mean lower low water (MLLW). This was accomplished using a weighted line and the NOAA predicted tide charts.
- Date and time of collection.
- Name of field person(s) collecting and logging in the sample.
- The sample station identification number.
- Length of each core section and recovery for each core sample.
- Qualitative notation of apparent resistance of sediment column to coring.
- Any deviation from the approved sampling plan.

Core Extrusion and Logging

The core samples were extruded onto clean polyethylene lined core trays. Pre-cleaned stainless steel utensils were used to manipulate the sediment.

The following information was recorded in the sediment coring logs:

- Date, time, and name of person logging sample.
- Station and sample identification.
- Depth of water at location.
- Sediment sample depth.
- Approximate grain size distribution.
- Color
- Biological structures (e.g., shells, tubes, macrophytes, and bioturbation).
- Presence of debris (e.g., wood chips, wood fibers, other industrial artifacts).
- Presence of oil sheen.
- Odor (e.g., hydrogen sulfide, petroleum hydrocarbons).

Sample Compositing

Sediment core samples exhibited minimal stratification. Samples at Sites 1 and 2 were split between top and bottom to assess temporal changes in deposition of contaminants. For the remaining sites, the entire length of the core to dredge plan depth +2 feet was composited (Table 2-1). All compositing was performed after the core log descriptions were complete. The core sediments were transferred into clean stainless steel bowls and mixed thoroughly using clean stainless steel utensils. The samples were aliquoted for chemical characterization, physical properties and bioassay testing.

Table 2-1, Compositing Scheme

SAMPLE ID	LOCATION	DESCRIPTION
1-2 T	Adjacent to Pier B2/3	Composite of upper halves from two stations (Sites 1 and 2) obtained adjacent to Pier B2/3
1-2 B	Adjacent to Pier B2/3	Composite of lower halves from two stations (Sites 1 and 2) obtained adjacent to Pier B2/3
3	Adjacent to Pier B2/3	Vertical composite of one core location (Site 3) obtained adjacent to Pier B2/3
4 - 7	Turning Basin	Vertical composite of each of four cores obtained from the turning basin
8 -10	Inner channel	Vertical composite of each of three cores obtained from the inner channel

Decontamination

All sampling core liners were thoroughly cleaned prior to use according to the following procedure:

- Wash with brush and Alconox ™ soap.
- · Rinse with seawater.
- Rinse with distilled water.
- After cleaning, immediately place the core liners inside the core tube.

Compositing and sampling equipment, (e.g., mixing bowls and compositing utensils) was cleaned according to the following procedure:

- Wash with brush and Alconox TM soap.
- Rinse with potable water.
- Rinse with distilled or deionized water.
- Rinse with pesticide grade Methanol.
- Rinse with pesticide Hexane.

Sampling equipment was kept uncontaminated by enclosing the bowls and utensils in clean polyethylene bags prior to use. Clean latex gloves were worn during all sediment manipulations to prevent contamination.

BELT COLLINS HAWAII 17 DECEMBER, 1997 6

7

Sample Transport and Chain-of-Custody

After compositing, samples aliquoted for chemical characterization were placed in precleaned containers provided by the chemistry laboratory. Samples for bioassay and physical testing were placed in polyethylene bags, air removed, and sealed. All sediment samples were placed in ice chests with wet ice and held at approximately 4° in darkness. The samples were batch shipped to the laboratories at the conclusion of field sampling

Specific procedures were as follows:

- Sample bottles were clearly labeled with sample station and number, date and time of collection, type of analysis, and sampler's initials.
- All samples were documented on a Chain of Custody (COC). The COCs were enclosed in the cooler with the samples and sent to the laboratory for analysis. The field team retained copies of the COCs.
- Samples were packaged and shipped in accordance with USDOT regulations. Sample bottles were placed in coolers with wet ice and packed with bubble wrap to prevent breakage.
- The coolers were clearly labeled with sufficient information (name of project, time and date container was sealed, person sealing the cooler and recipient's office name and address) to enable positive identification.
- A sealed watertight envelope containing COC forms was enclosed in the cooler.
- Signed and dated chain-of-custody seals were placed on all coolers prior to shipping.
- Coolers were taped securely with duct tape or other packing tape to prevent them from breaking open during shipment.

2.4 FIELD QA/QC PROCEDURES

Field sampling. The field sampling quality assurance objectives were met by MEC Analytical Systems Inc. Internal MEC Standard Operating Procedures (SOPs) define vibracore sampling, sample preservation and shipping, and Chain of Custody systems. Sample logs were completed in ink. Copies of the sample logs are presented in Appendix A. A photographic record of each core is presented in Appendix B.

3.0 LABORATORY PROCEDURES

Physical analyses were performed by MEC Analytical Systems Inc. of Carlsbad, California. Analytical chemistry was performed by Columbia Analytical Services of Kelso, Washington. Toxicity testing was performed by Ogden Environmental of San Diego, California.

3.1 LABORATORY ANALYSES

Physical and chemical analyses. Test and reference sediments were analyzed for the standard suite of Tier III parameters detailed in the Evaluation of Dredged Material Proposed for Ocean Disposal Testing Manual ("Green Book", EPA/ACOE, 1991). The target analytes were 13 priority pollutant metals, polychlorinated biphenyls (PCBs), pesticides, phenols, TRPH (total recoverable petroleum hydrocarbons), polynuclear aromatic hydrocarbons (PAHs), organic tin, total sulfides, ammonia, total organic carbon, and particle size. In addition to the "Green Book" list of analyses, the Toxicity Characteristic Leaching Procedure (TCLP) method was performed on 13 metals to evaluate upland disposal options.

Bioassays. Two bioassay-screening tests were performed for test and reference samples: a solid phase (SP) test (amphipod) and a suspended particulate phase (SPP) test (bivalve larva). Percent survival of individuals by replicate after ten days was calculated for the solid phase test. Percent survival and percent normal development of larvae to the "d-hinge" stage was calculated for the liquid/suspended phase test. Analysis of each test matrix compared individual samples to the reference sediment data using the t-test statistic.

3.1.1 Procedures: Physical and Chemical Analyses

Physical properties. Tests to characterize the physical properties of the sediments were performed to predict the behavior of sediments after disposal and to compare reference and test sediments. Physical analyses of the dredge material included grain size, total organic carbon (TOC), and total solids.

- Grain size analysis determined the percentages of the general size classes that make up the sediment (gravel, sand, silt, and clay). Gravel and sand fractions were separated using nested sieves; silt and clay fractions were separated using the gravimetric/pipette method (Plumb 1981).
- TOC, made up of volatile and nonvolatile organic compounds, was determined by EPA
 Method 9060. Sediments were treated with hydrochloric or sulfuric acid to remove the
 inorganic carbon (carbonates and bicarbonates) prior to TOC analysis (Plumb, 1981).
- Total solids were determined by weighing the organic and inorganic material remaining in a sample after it was dried at a specific temperature. Total solids were measured and used to convert concentrations of the chemical parameters from a wet-weight to a dry-weight basis.

Belt Collins Hawaii 17 December, 1997

Chemistry. Sediment chemistry was used to identify and quantify the concentrations of contaminants within sediments proposed for dredging and ocean disposal. The test sediments and reference sediments were examined for the list of chemicals shown in Table 1 of the SAP, based upon information presented in the Draft Regional Implementation Manual (RIM) for the State of Hawaii (ACOE/EPA, 1997).

Analytical methods were EPA Methods recommended in the Green Book and shown in the tables in Section 4. Organic tin analysis used methodology described in Krone et al., 1988. Porewater was analyzed for ammonia and sulfides using standard laboratory water quality meters and ion selective electrodes (Orion SA-720). Procedural blanks, reagent blanks, and standard reference materials were analyzed, and results are incorporated into a discussion of the analytical quality assurance and control parameters.

3.1.2 Procedures: Solid Phase Bioassay

Solid phase bioassays were used to estimate the potential impact of ocean disposal on benthic infauna. Sediment was evaluated using the 10-day solid phase test with the amphipod *Grandidierella japonica*. Prior to bioassay testing, ammonia (ion selective electrode), sulfides (photometric) and salinity (conductivity probe) were measured within interstitial water from reference, test, and control sediments. Sediments were press sieved through a 2.0-mm mesh to remove organisms, using only the water available in the sediment sample. Each sediment type (test, reference and control) was tested with five laboratory replicates. Control sediment was obtained from the area the *G. japonica* were collected.

Experiments were conducted in 1-liter glass test chambers containing a single 2-cm layer of test, reference or control material. Overlying water was renewed every other day. Initial stocking densities were 20 amphipods in each replicate. Aeration was provided through plastic pipettes, with care taken to avoid disturbing the sediment. Water quality measurements (pH, salinity, temperature and dissolved oxygen) were taken in one replicate from each test treatment daily. Ammonia was measured at the start and finish of the test for each sediment type. All instruments were calibrated and logged daily prior to use. After 10 days, the animals were carefully sieved from the sediments and counted.

Statistical methods described in the Green Book were utilized to determine if significant mortality occurred. Control survival was required to be equal to or above 90 percent for the test to be considered valid. To evaluate the relative sensitivity of the organisms, reference toxicity tests were conducted using standard reference toxicants (Lee, 1980).

3.1.3 Procedures: Suspended-Particulate Phase Bioassays

Suspended-particulate phase (SPP) bioassay tests were used to estimate potential impacts of ocean disposal on organisms living in the water column. The SPP tests were performed according to the Green Book using a 4:1 dilution of seawater to test sediment. The species tested was the bivalve larvae (*Crassostrea gigas*.). The bivalve larva test was performed on the test

sediment elutriates at concentrations of 0, 1, 10, 50 and 100 percent. The test (ASTM, 1992) was run for 48 hrs.

The ASTM method requires a test criterion of 70 percent survival of normally developed D-hinge larvae in the control treatment. At the termination of the study, point estimate statistical techniques (e.g., LC_{50} and EC_{50}) were used to analyze the results.

3.2 LABORATORY QA/QC PROCEDURES

Quality assurance procedures to be used for sediment testing were consistent with methods described in the Green Book. All samples were tracked using chain-of-custody sheets and sample receipt logs. Sample storage conditions and holding times were adhered to strictly.

3.2.1 QA/QC for Chemistry Analyses

Chemistry. For trace chemical analysis, the procedures included documentation of the following criteria for each sample matrix type: analytical reproducibility, analytical detection limits, recovery of *in situ* metals and organics, and COC documentation.

The quality assurance objectives for chemical analysis conducted by Columbia Analytical Sciences (CAS) are detailed in their laboratory QA manual. These objectives for accuracy and precision involve all aspects of the testing process, including:

- Calibration methods and frequency
- Data analysis, validation, and reporting
- Internal quality control
- Preventive maintenance
- · Procedures to assure data accuracy and completeness

Laboratory QC samples. Environmental sample matrix spike and matrix spike duplicate analyses were performed at a rate of \geq 5%. Method or reagent blanks were analyzed at a frequency of \geq 5% or for every analytical batch, whichever was greater. In the absence of adequate sample quantity to perform matrix spiking for all matrix types, either the imaginary matrix as described in SW-846 or laboratory water was used for preparing matrix spikes. Matrix spikes are an environmental sample, which is split into three separate aliquots, and one aliquot is analyzed free from matrix spike introduction. A known concentration of the analyte of interest is added to the other two aliquots prior to sample preparation and analysis. Both percent recovery and relative percent difference are reported for matrix spikes/matrix spike duplicates. Spike data can provide an indication of matrix bias or interference on analyte recovery. Duplicate data can provide an indication of laboratory precision.

Results of all laboratory QC analyses are reported with the final data, and are presented in Appendix C and D. Any QC samples that failed to meet the QC criteria specified in the methodology or in the SAP are identified and the corresponding data appropriately flagged. All

Quality Assurance/Quality Control records for the various testing programs will be kept on file for review by regulatory agency personnel.

3.2.2 QA/QC for Bioassays

The quality assurance objectives for toxicity testing are those detailed in U.S. EPA (1985a, 1985b) and the Green Book (EPA/COE, 1991). These objectives for accuracy and precision involve all aspects of the testing process, including: (1) water and sediment sampling and handling; (2) source and condition of test organisms; (3) condition of equipment; (4) test conditions; (5) instrument calibration; (6) use of reference toxicants; (7) record keeping; and (8) data evaluation. The methods employed in the toxicity testing program are detailed in Ogden's Laboratory SOPs and specific test protocols. These SOPs have been audited and approved by an independent, EPA recommended laboratory and placed in the QA files, as well as in laboratory files. All Ogden laboratory staff receives regular documented training in SOPs and test methods.

A reference toxicant was tested on each test organism during the test period to establish the validity of the toxicity data. For those species with substantive reference toxicant data available, the LC₅₀ and EC₅₀ should fall within two standard deviations of the laboratory mean. Water quality measurements were monitored to ensure they fell within prescribed limits, and corrective actions (EPA recommended) were taken if necessary. All limits established for this program met or exceeded those recommended by EPA.

Data collected and produced as a result of analysis was recorded on approved data sheets that are part of the permanent data record for the program.

If any aspect of a test deviated from protocol, the test was evaluated to determine whether it was valid according to the relevant regulatory agencies and the clients. If it was determined to be unacceptable, the client was notified, and the test was repeated.

Data Analysis, Validation and Reporting. All acute and chronic toxicity tests were performed according to protocols and conditions listed in Ogden's test protocols. Raw data and study records were checked to ensure that required test conditions were within specifications cited in the SOPs. Major deviations from protocol required approval from both the client and the quality control manager. Unforeseen circumstances that may have affected the integrity of the study are reported with the test results. The data, analysis and report were also reviewed for accuracy by the Quality Control Manager.

Internal Quality Control. Ogden's quality control staff performed periodic audits to ensure that test conditions, data collection and test procedures were conducted according to Green Book and Ogden protocols. Animal receipt and maintenance logbooks were used to record the source and health of organisms. Reference toxicant tests were used for an internal check on organism health and performance.

Preventive Maintenance. Key analytical equipment is maintained routinely to ensure that equipment failure or changes in operational parameters can be prevented. Procedures used to maintain equipment are included in the Maintenance and Calibration Log. Replacement parts are

available for commonly expected repairs and replacement. Spare parts include pH electrodes, dissolved oxygen (DO) probe membrane replacement kits, calibrated thermometers, pipettes, graduated cylinders, etc.

Stock standard solutions were stored in at least two separate containers, so that a fresh standard solution is available in case the stock standard currently in use becomes contaminated. Working standards, which are in frequent contact with electrodes, pipettes, etc. were kept in separate working bottles to reduce chances of contamination of stock standards.

Procedures Used to Assess Data Precision, Accuracy, and Completeness. The precision of the reference toxicant LC₅₀ determinations are shown by calculating the 95 percent confidence intervals. The computer program used to analyze the data is designed in such a way that, regardless of the data characteristics, it will calculate an LC₅₀ and corresponding confidence intervals as long as sufficient mortality is observed. Accuracy cannot be determined as a true value but rather must be determined relative to a reference value of the substance being measured.

The precision of all the analytical instruments (DO meter, pH meter, balances, etc.) is assumed to be that stipulated by the manufacturer. The accuracy of the measurements is assessed through daily calibration.

BELT COLLINS HAWAII 17 DECEMBER, 1997 12

4.0 RESULTS

Sediments from Pearl Harbor were collected and analyzed to determine the magnitude and spatial extent of chemical contamination within material proposed for dredging and ocean disposal. The study included chemical analysis of sediment samples for metals, PAHs, PCBs, pesticides, phenols, organic tin, sulfides, ammonia. To address the alternative of upland disposal of sediments, TCLP extraction and metal analysis of the extract was performed. The physical parameters particle size, TOC, and percent solids were also measured. Two common dredge sediment characterization tests were performed, the solid phase (SP) 10 day acute amphipod test and the suspended particulate phase (SPP) 48 hour bivalve larvae survival and development test.

4.1 FIELD RESULTS

Field sampling was performed on 30 and 31 October 1997. Table 4-1 summarizes the field core log locations, water depths and sample lengths. Information from the first acceptable core is presented. Information on additional cores collected for bioassay volume is included in Appendix A.

Table 4-1 Core Log Summary

STATION ID	LATITUDE (DEGMIN, WGS84)	LONGITUDE (DEGMIN, WGS84)	WATER DEPTH (FT MLLW)	TARGET CORE LENGTH (FT)	FINAL CORE LENGTH	# OF, CORES
1	21° 21.272'	157° 57.382'	44.5	7.5	4.0	3
2	21° 21.399'	157° 57.300'	45.6	6.4	6.4	1
3	21° 21.368'	157° 57.380'	45.5	6.5	6.5	1
4	21° 21.560'	157° 57.335'	46.8	5.2	5.2	2
5	21° 21.792'	157° 57.067'	45.7	6.3	4.5	2
6	21° 21.475'	157° 57.335'	48.6	3.4	3.4	2
7	21° 21.555'	157° 57.019'	44.8	7.2	7.2	1 .
8	21° 21.163'	157° 57.865'	43.9	8.1	8.1	1
9	21° 20.976'	157° 58.082'	47.4	4.6	4.4	3
10	21° 19.924'	157° 58.168'	48.0	4.0	4.0	2

Refusal was not encountered at any of the sites. Retrieval was slightly reduced at site 9. Sample compression and liquefaction were the most likely causes of the reduced retrieval. At sites 1 and 5, significant amounts of reduced retrieval after complete penetration were encountered. The most likely mechanism for limited retrieval at Sites 1 and 5 was presumed to be blockage of the core tube by coral fragments or rocks, combined with loose sediments. In loose sediments, the coral/rocks plug the core tip and push sediment away from the core tip instead of into the tube. Multiple attempts at several locations at sites 1 and 5 resulted in consistent low recoveries.

4.2 CHEMISTRY RESULTS

Physical chemistry results are presented in Section 4.2.1. Analytical chemistry results are presented in Section 4.2.2. Results of TCLP analysis are presented in Section 4.2.3. The abbreviation ND refers to "not detected". However, data with the value of "ND" are more accurately quantified as "less than the MRL (Method Reporting Limit)".

4.2.1 Physical Chemistry

Summary data for physical chemistry are presented in Table 4-2. Original laboratory reports are provided in Appendix C.

Table 4-2 Grain Size, TOC, Percent Solids

STATION ID	%GRAVEL	% SAND	% SILT	% CLAY	TOC (%)	% SOLIDS
1-2T	0	11	41.3	47.7	1.050	47
1-2B	0	10	40.1	50	0.875	59
3	0	2.7	46.5	50.9	0.909	43
4	0	4.2	34.9	60.9	0.980	49
5	0	22.4	38.7	38.9	0.650	53
6	0	5.3	39.2	55.4	0.924	46
7	0	21.6	30.8	47.6	0.933	54
8	0	42.5	33.2	24.3	0.403	63
9	0	23.4	44.8	31.8	0.693	51
10	0	44.8	31.9	23.4	2.831	69
Reference	0	. 97	1.1	1.9	0.127	76

4.2.2 Analytical Chemistry

Summary data for analytical chemistry are presented in Table 4-3. Chemistry laboratory reports are provided by CAS and are presented in Appendix D.

Sediments from the 1-2T in general contained the highest levels of the chemicals analyzed. Of the metals, lead, copper and zinc were present within the 1-2T sample at levels that are sometimes associated with toxicity. The high zinc level measured at 1-2T may have been associated with one or more chips from cathodic protection devices used on ships. Elemental metal material is not typically available to biological organisms, and is not easily associated with toxicity. Of the organic chemicals, PAHs and PCBs were also measured within the 1-2T sample at levels that at times have been associated with biological effects.

Table 4-3

	Total Metals										
			(M		ethod 60 EPA M						
				Units	mg/Kg	(ppm)					
Analyte	1-2T	1-2B	3	4	5	6	7	8	9	10	Ref.
Antimony	1	0	0	0	0	0	0	0	0	0	0
Arsenic	8	8	6	5	3	4	5	4	7	4	2
Beryllium	0	0	0	0	1	0	0	0	0	0	ND
Cadmium	1	1	0	0	0	0	0	0	0	0	0
Chromium	88	66	73	70	87	64	70	25	86	32	9
Copper	212	98	68	40	56	38	24	12	41	10	3
Lead	208	67	36	20	33	19	2	7	30	68	1
Mercury	2	2	1	0	1	0	0	0	1	0	ND
Nickel	39	41	41	40	48	40	45	23	49	24	21
Selenium	2	2	ND	ND	1	1	1	ND	1	ND	ND
Silver	1	0	1	0	0	0	0	0	1	0	0
Thallium	0	0	0	0	0	0	0	0	0	0	ND
Zinc	1450	106	95	76	115	72	41	25	83	165	6
Sulfide, Dissolved	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

		Base	Neutral/	Acid Se	mi-volati	ile Orgai	nic Com	pound			
EPA Method 8270, PAHs and Phenols											
Units Ug/Kg (ppb)											
Analyte	1-2T	1-2B	3	4	5	6	7	8	9	10	Ref.
Phenol	67	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Base Neutral/Acid Semi-volatile Organic Compound											
			EPA l	Method 8	8270, PA	Hs and	Phenols				
				Unit	ts Ug/Kg	(ppb)					
Analyte	1-2T	1-2B	3	4	5	6	7	8	9	10	Ref.
2-Chlorophenol	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Nitrophenol	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,4-Dimethylphenol	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,4-Dichlorophenol	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene	24	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Chloro-3- methylphenol	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,4,6-Trichlorophenol	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acenaphthylene	27	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dimethyl Phthalate	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acenaphthene	107	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,4-Dinitrophenol	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Nitrophenol	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Fluorene	136	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Diethyl Phthalate	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Methyl-4,6- dinitrophenol	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Pentachlorophenol	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Phenanthrene	2300	44	21	ND	ND	ND	ND	ND	ND	ND	ND
Anthracene	700	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ·
Di-n-butyl Phthalate	56	ND	32	37	ND	15	41	22	48	ND	20
Fluoranthene	5100	109	78	26	38	21	ND	ND	55	ND	ND
Pyrene	4300	140	87	30	48	23	ND	ND	71	ND	ND
Butyl Benzyl Phthalate	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benz(a)anthracene	2100	46	50	ND	ND	ND	ND	ND	37	ND	ND
Chrysene	2100	53	64	22	27	22	ND	ND	45	ND	ND
Bis(2-ethylhexyl) Phthalate	360	ND	240	ND	ND	ND	ND	ND	ND	ND	ND
Di-n-octyl Phthalate	ND	ND	ND	ND	ND	ND	ND	38	ND	ND	ND
Benzo(b)fluoranthene	2100	129	200	92	151	83	ND	ND	148	41	ND
Benzo(k)fluoranthene	1800	42	65	29	48	28	ND	23	47	ND	ND
Benzo(a)pyrene	2100	88	131	51	84	48	ND	ND	97	25	ND
Indeno(1,2,3- cd)pyrene	1200	38	7 7	32	46	26	ND	ND	44	ND	ND
Dibenz(a,h)anthracene	190	ND	20	ND	ND	ND	ND	ND	ND-	ND	ND
Benzo(g,h,i)perylene	1000	36	66	30	42	23	ND	ND	49	ND	ND

Butyltins Method = Krone et al., 1988											
Units Ug/Kg (ppb)											
Tri-n-butyltin	41	2	10	4	2	5	ND	2	5	ND	1
Di-n-butyltin	25	2	16	3	4	4	ND	2	3	ND	ND
n-Butyltin	ND										

		Organo	chlorine	Pesticid	es and P	olychlo	inated I	Biphenyls			
			EPA M	ethod 8	081, Pest	ticides a	nd PCBs				
					its (dry g/Kg (pp						
Analyte	1-2T	1-2B	3	4	5	6	7	8	9	10	Ref.
alpha-BHC	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
beta-BHC	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
gamma-BHC(Lindane)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
delta-BHC	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Heptachlor	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Aldrin	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Heptachlor Epoxide	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Endosulfan I	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dieldrin	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4,4'-DDE	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Endrin	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Endosulfan II	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4,4'-DDD	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Endrin Aldehyde	ND	ND	<3	ND	3	ND	ND	ND	ND	ND	ND
Endosulfan Sulfate	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4,4'-DDT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Endrin Ketone	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methoxychlor	ND	ND	ND	ND	ND	ND	14	ND	ND	ND	ND
Chlordane	<15	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toxaphene	<300	ND	<70	<50	<80	<45	ND	ND	<40	ND	ND
Aroclor 1016	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Aroclor 1221	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Aroclor 1232	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Aroclor 1242	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Aroclor 1248	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Aroclor 1254	79	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Aroclor 1260	238	ND	95	70	110	64	ND	30	50	ND	ND

4.2.2 TCLP Chemistry

Summary data for TCLP chemistry are presented in Table 4-4. Chemistry laboratory reports are provided by CAS and are presented in Appendix D.

TCLP data indicate that none of the 13 metals was present in the leachate at levels above the detection limits. I.e., the CLP extraction did not liberate detectable amounts of the metals from the marine sediments.

BELT COLLINS HAWAII 17 DECEMBER, 1997 18

Table 4-4 TCLP Chemistry Results

				T	CLP Me	tals					
				Unit	s Mg/L ((ppm)					
Analyte	1-2T	1-2B	3	4	5	6	7	8	9	10	Ref.
Antimony	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Arsenic	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Beryllium	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cadmium	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chromium	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Copper	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Lead	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Mercury	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Nickel	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Selenium	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Silver	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Thallium	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Zinc	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

4.3 BIOASSAY RESULTS

Solid Phase test results are presented in section 4.3.1. Suspended Particulate testing results are presented in Section 4.3.2. Bioassay laboratory reports provided by Ogden Environmental detail analytical results, statistical evaluations and other test information such as water quality and QA/QC issues. The bioassay laboratory report is provided in Appendix E.

4.3.1 Solid Phase Tests

Summary data for solid phase tests are presented in Table 4-5.

Organisms were exposed to test sediments for 10 days. Test sediments were sieved after ten days. The live and dead amphipods were recorded after sieving. Test data indicate that all SP test samples passed EPA/ACOE "Green Book" ocean disposal criteria (significantly reduced survival compared to reference coupled with a mean survival reduction > 20% from the reference).

Table 4-5 Solid Phase Bioassay Results

TEST SITE	REPLICATE	NO. ALIVE	NO. DEAD	% SURVIVAL	AVE. % SURVIVAL
Control	Α	18	2	90	
	В	20	0	100	
	С	20	0	100	
	D	20	0	100	
	E	20	0	100	98
Reference	Α	18	2	90	
	В	17	3	85	
	С	19	1	95	
	D	20	0	100	
	E	20	0	100	94
1-2 Top	Α	18	2	90	
	В	18	2	90	
	С	17	3	85	
	D	19	1	95	
	E	20	0	100	92
1-2 Bottom	Α	18	2	90	
	В	17	3	85	
	С	18	2	90	
	D	19	1	95	
	E	17	. 3	85	89
3	A	19	1	95	
	В	18	2	90	
	С	18	2	90	
	D	17	3	85	
	E	18	2	90	90
4	A	16	4	80	
	В	19	1	95	
	c	19	1	95	
	D	18	2	90	
	E	20	0	100	92
5	A	19	I	95	
	В	18	2	90	
	C	19	1	95	
	D	18	2	90	
	E	19	1	95	93
6	A	20	0	100	
Ü	В	19	1	95	
	C	20	0	100	
	D	19	1	95	
	E	19	1	95	97
7	A	15	5	75	
,	В	19	1	95	
	С	19	1	95 95	
	<u> </u>	17	1	7.0	

TEST SITE	REPLICATE	NO. ALIVE	NO. DEAD	% SURVIVAL	AVE. % SURVIVAL
7	D .	20	0	100	
,	E	19	1	95	92
8	A	20	0	100	
ŭ	В	20	0	100	
	C	19	1	95	
	D	18	2	90	
·	E	20	0	100	97
9	A	19	1	95	
	В	18	2	90	
	С	19	1	95	
	D	19	1	95	
	E	20	0	100	95
10	Α	19	1	95	
	В	20	0	100	
	C	18	2	90	
	D	20	0	100	
	Е	18	2	90	95

4.3.2 Suspended Particulate Phase Tests

Summary data for suspended particulate phase tests are presented in Table 4-6. Complete laboratory reports are provided in Appendix E.

For the survival endpoint, SPP tests indicated that significantly different LC₅₀ levels were present at five sites (1-2 Bottom; 3; 4; 6; and 7). The LC₅₀ (Lethal Concentration 50) represents the calculated concentration of the sediment elutriate that would result in mortality of 50% compared to the control water. Samples from Sites 1-2 Top; 5; 8; 9; 10 and Reference had LC₅₀ results of >100% concentration of elutriate. Of the samples that produced LC₅₀ values less than 100%, the values ranged from a low of 67% survival at 1-2 Bottom to 81% survival at Station 6.

For the development endpoint, SPP tests indicated significantly different EC₅₀ (Effects Concentration 50) concentrations at five sites (1-2 Bottom; 3; 4; 6; and 7). The EC₅₀ represents the calculated concentration of the sediment elutriate that would effect normal development by 50% when compared to the control water. Samples from Sites 1-2 Top; 5; 8; 9; 10 and Reference had EC₅₀ results of >100% concentration of elutriate. Of the samples that produced EC₅₀ values less than 100%, the EC₅₀ values ranged from a low of 62% at Site 4 to a high of 73% at Site 3.

This SPP data indicate that the sediment will likely pass EPA/ACOE ocean disposal criteria for these tests. The EPA/ACOE allow input of the SPP data into various models that allow for dilution to be factored in. Oceanographic data such as depth, temperature, and currents; specific vessel factors such as volume, speed of discharge, and speed of vessel; and sediment factors such as percent moisture, particle size and cohesiveness are combined to predict biological effects on the water column biota. Past experience with running the models indicates that EC₅₀ levels of the

magnitude measured in this project do not cause failure of the "Green Book" SPP ocean disposal criteria. The information does indicate that some low level toxicity is present within the project area. This contamination may have ramifications in future bioaccumulation testing and SP testing of different species.

Table 4-6 SPP Bioassay Results

	Suspended Particulate Pha	ase Analyses (percent elutriate)
Test Site	Bivalve Larvae Survival LC ₅₀	Bivalve Larvae Development EC ₅₀
Reference	>100	>100
1T+2T	>100	>100
1B+2B	67	65
3	77	73
4	77	62
5	>100	>100
6	81	71
7	70	70
8	>100	>100
9	>100	>100
10	>100	>100

5.0 REFERENCES

ASTM, 1992. Annual Book of Standards. Vol. 11.04. Guide for conducting 10-day static sediment toxicity tests with marine and estuarine amphipods. E-1367-90.

ASTM, 1992. Annual Book of Standards. Vol. 11.04. Guide for conducting static acute toxicity tests starting with embryos of four species of saltwater bivalve mollusca. E-724-89.

Belt Collins and Associates (1990) Final Environmental Impact Statement: Proposed Developments at Naval Base Pearl Harbor. Prepared for Pacific Division, Naval Facilities Engineering Command.

Belt Collins Hawaii (1997) Sampling and Analysis Plan Pearl Harbor Sediments for Draft Environmental Impact Statement for Aircraft Carrier Homeporting Within Pacific Fleet's United States Assets. Prepared for Science Applications International Corporation

Plumb, R. H., Jr., 1981. Procedure for Handling and Chemical Analysis of Sediment and Water Samples. Technical Report EPA/CE-81-1, prepared by Great Lakes Laboratory, State University College at Buffalo, Buffalo, NY, for the U.S. Environmental Protection Agency/Corps of Engineers Technical Committee on Criteria for Dredged and Fill Material. Published by the U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS.

- U.S. Army Corps of Engineers and U.S. Environmental Protection Agency. 1997. Regional Implementation Manual. Requirements and Procedures for Evaluation of Dredged Material Proposed for Ocean Disposal in the State of Hawaii. Draft. January, 1997.
- U.S. Environmental Protection Agency, 1985. Methods for Measuring the Acute Toxicity of Effluents to Freshwater and Marine Organisms. Third Edition. Peltier, W.H. and Weber, C.I., eds. Environmental Protection Agency, Environmental Monitoring and Support Laboratory, Cincinnati, OH, EPA/600/4-85/013.
- U.S. Environmental Protection Agency, 1987. Short-Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Marine and Estuarine Organisms. Weber, C.I., et al., eds. Environmental Protection Agency, Environmental Monitoring and Support Laboratory, Cincinnati, OH, EPA/600/4-87/028.
- U.S. Environmental Protection Agency, 1989. General Requirements for Sediment Testing of Dredged Material Proposed for Ocean Dumping. Region 9, 1989.
- U.S. Environmental Protection Agency and U.S. Army Corps of Engineers. 1991. Evaluation of Dredged Material Proposed for Ocean Disposal- Testing Manual. Office of Water. Washington, DC. EPA-503/8-91/001. February, 1991.

Belt Collins Hawaii 17 December, 1997 24

Appendix A

Core Logs

Date:	3/001	97 Proje	ct: Navy Homepoi	rting, Pearl Harbor	Recorder	Hardeh
Station		* *		Attemp	t of _	3
Latitude	e: 21°	21.264	Longitud	le: 157° 57, 382		Nav Datum: WGS 84
Time:	353	Depth (ft):5	Tide (ft):	Dep - Tide = 45.5	-1=445	Depth MLLW (ft):
SAP DE	光		c=4.5	Target Core Length	7.5	Final Core Length (ft):
		15.5	Finish Tape (ft)	43.5	Finish-Star	rt = Penetration (ft)
Pen. Depth	Retriev Depth				Sample II	
(ft)	(ft)	Color	Odor / Ksnl	Sediment Type	by Depth	Misc.
1	11	langard	//	27 (1)/0029	1.7	
2	2	d			, \	
3	3			Sittley/shell	eef 1-2B	
4	4	4		1		
5	5			•	•	
6	6					
7	7				•	
8	8					
9	9					
10	10				·	
11	11					
12	12					
13	13					
14	14					
15	15					
Notes:	Ohrex	and sum	d blast pato	4-260		
	Tip	Pluggeda	v/rocks/pe	refshell mater	rial -li	nited retrieval

VIBRACORE CORING LOG

Date:	3/001	97	Project	: Navy	Homeporti	ng, Pearl Ha	bor	Recorder	Haro	1.h
Station	ID:						Attempt	2 of	3	
Latitude		21.2	69'		Longitude	1570	7. 384	1	Nav Dati	ım: WGS 84
Time:	431	Depth (ft):	Tide	(ft): (•(Dep - Tide	- 41=4	4.4	Depth M	LLW (ft):
SAP De	p.	SAP-MI	52-4	44	5	Target Co	re Length:		Final Co.	re Length (ft):
Start Ta	ape (ft)	35.5		Finish	Tape (ft)	43.5		Finish-Star	t = Pene -35.5	etration (ft)
Pen. Depth	Retriev Depth						4	Sample II		
(ft)	(ft)	Co	lor		Odor	Sedimer	it Type	by Depth	-	Misc.
1	1	Tan	svey	μ	Ne-	SilHd	ay	1-27		
2	2		•			W.	1-6	V	1	
3	3					Sitt/da	per	1-2 B		
4	4 V.	4		- 4	/	4		V	3.5	
5	5`							•		
6	6									
7	7									
8	8									
9	9									
10	10									
11	11									_
12	12									
13	13									
14	14					·				
15	15									
Notes:	51	ation	ns (red	か当	tock /	30-1501	off o	of pie	v to
	1	ryo	ed a	usic	rog	t/veef	tip pl	490	•	
Ų	7TU	0 5+0	dl	pluse	ged a/	rock/	ref m	- knial		
•		•	T		, ,	•				

MEU ANALY HUAL SYSTEMS INCURPURATED VIBRACORE CORING LOG

Date: 3	te:3/3(497 Project: Navy Homeporting, Pearl Harbor Recorder: Fairly, Attempt 3 of 3												
	Attempt 3 of 3 titude: 7/07/282 Longitude: 157° 57.381′ Nav Datum: WGS 84												
Latitude	210	21.7	182	′		1570	57.3	811					
Time:	5:18	Depth (ft): 5.5	Tide	(ft):/./		5-1.1		Depth MLLW (ft):				
SAP De		SAP-MI	5 2 =		:=7.6	Target Co	re Length:	7.6	Final Core Length (ft):				
Start Ta	pe (ft)	35.5	•	Finish	Tape (ft)	44.5		Finish-Sta	rt = Penetration (ft)				
Pen. Depth (ft)	Retriev Depth (ft)	Co	ior		Odor	Sedimer	nt Type	Sample II by Depth	I				
1	1	Ten 6	re/	No	ne	s:14/a	ay	1-27					
2	2							1					
3	3					sil+/clay	/pak/pe	¢1-2B					
4	4			1	1	J'		1	·				
5	5												
6	6												
7	7					·							
8	8												
9	9												
10	10												
11	11												
12	12								·				
13	13												
14	14												
15	15			<u> </u>									
Notes:			5/1	tien	no	red to	27	25' f	ion pien a feriol-				
			Ti	P	plugge	d by	oct/n	ect M	a fenol-				
					Refrie	ial liv	m+ed	•					

Date: 3	3100	797	Project	: Navy Home	porting, F	'earl Harl	bor _	Record	er: Hardin
Station	1D: 2	-					Attempt		of
Latitud	e: 21°	21.3	44'	Longit	tude: /5	7° 5	7.300	,	Nav Datum: WGS 84
Time:	325	Depth	8.5	Tide (ft):	De	p - Tide:	5-09-	45.6	Depth MLLW (ft):
SAPDE	ep.	SAP-M	LW To	54562	6.4 Ta	rget Core	e Length:	5.4	Final Core Length (ft):
Start Ta	ape (ft)	36.5		Finish Tape	(ft)	£ 44,	5		tart = Penetration (ft)
Pen. Depth (ft)	Retriev Depth (ft)		lor	Odor		Sediment	t Type	Sample by Dep	ID
1	1	Tan/6	ires	Hone		silt/da	y-Sand	1.27	
2	2					SiA	Tay	-	
3	3					*			
4	4					<u> </u>		1-28	
5	5					\bot			
6	6								
7	78.	4		V		G		V	-6.47
81/2	8								
9	9								
10	10								
11	11	ļ							
12	12								
13	13								
14	14								
15	15								<u>,</u>
Notes:									

Date:	31/00	1/97	, Project:	Navy I	Homeportii	ng, Pearl	Harbo	r	Rec	order:	Have	lin	
Station	ID: 3	,						ttempt _	1	of _			
Latitude	21	21.	368		Longitude:	15	7° 5	7.38	0	1	Nav Dat	um: WG	S 84
Time:	122	Depth	(ft): 46	Tide (ft): Ø.5	Dep -	Tide=	0.5-	45	.5	Depth N	ILLW (ft)	:
SAP De	P.52	SAP-N	ALLW =	45,5	=6.5	- Target	t Core I	ength:	6.	5	Final Co	re Lengti	n (ft):
Start Ta	ape (ft)	36		Finish ⁻	Tape (ft)	545	<u></u>		Finis 4	h-Star	= Pen	etration 9	(ft)
Pen. Depth	Retriev		Color		Odor		iment T	vpe		nple ID Depth		Misc.	
(ft)	(ft) 1		Grey	M		silty	day		7	3			
2	2				(361 (4)			200
3	3									*/			
4	4					,		31					
5	5							311					
6	6									,	;		
7	7								Dit	card	6.5	5′_	
8	8	1		- 4			*		_	P.			
9	9												
10	10												
11	11					Ä.							
12	12												
13	13												
14	14												
15	15												
Notes:													
		<u> </u>	,						-				

Date:	loct	97	Project	Navy Ho	omeporti	ng, Pearl I	larbor	Reco	rder:	Hawlih
Station	7	4					Attempt		of _	2
Latitude	e: 21	° 21.	362	Lo	ngitude:	1570	57.33	5		Nav Datum: WGS 84 Depth MLLW (ft):
Time:	245	Depth (7.5	Tide (ft	0.7	Dep - T	77.5-0.	7:46.	8	Depth MLLW (ft):
SAP De	p.	SAP-MI	LW \$.8 = 5	7.2	ì arget (Core Length:	5.21		Final Core Length (ft):
Start Ta	ape (ft)	37.5		Finish Ta	na /f+1	46.5		Finish-	Start	t = Penetration (ft) \$ \(\frac{4}{5} - 37.5 \)
Pen. Depth (ft)	Retriev Depth (ft)	Co	lor	Od		Sedim	ent Type	Sampl by De		Misc.
. 1	1	Toyl	re/o	Non	12	silt	Cloy	4,		
2	2		•				,			
3	3									
4	4	1	0							
5	5	agriff	1200 1121							
6	6	7						Disa	orli	5.2'
7	7	1						1	•	
8	8	1								
9	3	V	d	J			γ	V		
10	10									
11	11									
12	12									
13	13					· · · · · · · · · · · · · · · · · · ·				
14	14									
15	15									
Notes:	D Jo	one d	ut.	spots	in	COR	no odor			
				•						

Date:	30/00	1/97 Pr	oject:	Navy Homeporti	ng, Pearl Harb	or	Recorder:	Hardin
Station	1 ID: 5	-				Attempt _	of	2
Latitud	ie: 21°	21.79	1	Longitude:	157057	Ø65	1	Nav Datum: WGS 84
Time:	509	Depth (ft)	41	Tide (ft):/3	Dep - Tide =	13=45		Depth MLLW (ft):
SAP D	ер. 5 2	SAP-MLLV	× = 2	45.7-6.3	Target Core	Length:	5.3	Final Core Length (ft):
Start T	ape (ft)		F	Finish Tape (ft)	44		Finish-Start	Penetration (ft)
Pen. Depth (ft)	Retriev Depth (ft)	Color		Odor	Sedimept	Type	Sample ID by Depth	Misc.
1	1	Light		None	sitt/d	ay	5	
2	2				V,			
3	3	V		Ψ	sit/de	of Grace	V	·
4	4							
5	5							
6	6							
1	7		·		Sample 1 hard pac cutter	refrice	al live	ted by
8	8				hard pac	ked no	atrial	Blacking
9	9				atter	head.		/
10	10							
11	11							
12	12							
13	13							
14	14							
15	15							
Notes:				· · · · · ·				

Date: 3	Project: Navy Homeporting, Pearl Harbor Recorder: Harbin Attempt 2 of 2													
Station	ID: 4						Attempt	2	of _	2				
Latitud	2102	1.55	3		Longitude	157	57.3	38	6.	Nav Datur	n: WGS 84			
Time:	429	Depth (Tide	(ft):0.5	Dep - 7	ide = 7.2 - 0.3	5=9	6.7	Depth ML	LW (ft):			
SAP De	p.	SAP-MI	LW.	7=5	3	Target	Core Length:	5.	3	Final Core	Length (ft):			
Start Ta	ape (ft)	37.7		Finish	Tage (ft)	43.2				t = Penet 37.2 = (
Pen. Depth (ft)	Retriev Depth (ft)	Co	lor		Odor	Sedir	nent Type	Sa	mple ID		Misc.			
1	1	lan		μ	bre	silt	day	4	l					
2	2		0			Sur	lday meshel							
3														
4														
5	5 5 4 4.5'													
6	3/ 3/ - 4,5													
7	7													
8	8	- ,-												
9	9													
10	10													
11	11								,					
12	12						un.							
13	13													
14	14													
15	15													
Notes:	Some compaction of core Limited (1) dart spot in core, no odor													
· · · · · · · · · · · · · · · · · · ·	Some compaction of core / Limited													
	(1)	dar	£ sp	oot	in as	e, no	odor							
					,									

Date:30	124/	17	Project	Navy F	lomeporti	ng, Pearl	Harbor	Re	ecorder:	Hardin
Station	ID: 5	-				-	Attempt	3	2_ of _	2
Latitude	210	21.7	92	L	ongitude	/5	7° 0 57	7.06	8	Nav Datum: WGS 84
Time: /	545	Depth	(ft): 7	Tide (f	(t):/.3	Dep - 1	ride = -/.3=	: 45	.7	Depth MLLW (ft):
SAP De		SAP-MI	LLW =	5.7=	6.3	Target	Core Length:	6.3	?	Final Core Length (ft):
Start Ta	pe (ft)	37			1841	46			ish-Start	t = Penetration (ft)
Pen. Depth	Retriev Depth	Со	lor	0	dor	Sadir	nent Type		mple ID	Misc.
(ft)	(ft)	Urgh			ne	SH/	-7	1	5	
2	2	1				/-				
3	3 .									
4	4					cil+le	day bravel		,	
5	_5_V	V		W						-4.5
6	6									
7	7									,
8	8					Reti	rieval lia	e vite	ed by	Lacked Very compac
9	9					Car	e tip-	e	lderen	I very compac
10	10							_		
11	11							_		
12	12							-		
13	13							-		
14	14							-		
15	15						-			
Notes:		Sec.	and	Core	Jaker	n for	Bioass	ayt	<u>S.</u>	.t.
									<u> </u>	
	<u> </u>									

Date: 3	3/ Oc-	+	27	Project	: Navy	/ Homeporti	ng, Pearl Har	bor	Recorder	Hardin
Station		6	-			-		Attempt_	1 of	2
Latitude	21	U	21.	473	, /	Longitude:	1570 3	7.33	\	Nav Datum: WGS 84
Time:			Depth ((ft): %.4	Dep - Tide	-0.4=	48.6	Depth MLLW (ft):
SAP De			SAP-MI	LW_=,	6= :	3.4	Target Co	e Length:	3.4	Final Core Length (ft):
Start Ta	pe (ft)	i	2		Finish	Tape (ft)	48		Finish-Sta	rt = Penetration (ft)
Pen. Depth (ft)	Retrie Depti		Со	lor		Odor	Sedimen	t Type	Sample II by Depth	
1	1		Ton		μ	ine	SiH/d		6	
2	2		1			1	1)	
3	3									
4	4	1							\$ One	ander 3-8-
5	5	1	V		4	1			\$ 10	
6.	6								79	
7	7						•			
8	8									
9	9									
10	10									
11	11									·
12	12									
13	13									
14	14			<u> </u>						
15	15									
Notes:	1		some	she	Ns	•				

Date: 2	Block	97	Project:	Navy I	lomeporti	ng, Pearl	Harbor		Recorder	Have	din	
Station							Attem	pt _	9 of	2	_	
Latitude	210	21.	477	'	ongitude	157	57.3.	33			atum: WG	
	055				6.4	Dep - 7	Fide = 44.5	-8.	4:44	Depth	MLLW (ft):
SAP De	پ	SAP-ML	LW 74	1=2	29	1	Core Lengt	_	7	2.	Core Lengt	
Start Ta	ape (ft)	4.53	39.5	Finish 7	Tape (ft)	545	-44.5	- Fi	nish-Sta	rt = Pe	enetration 5	(ft)
Pen. Depth	Retriev Depth (ft)	Col)dor		ment Type	5	Sample II by Depth		Misc.	
(ft)	1	Tan	01	Mar		Sil	Holoy		6			
2	2	1		1								
3	3								W.	19	91	
4	4	J		V		V		-	Viza	roled		
5	5							d/	#			
63	6					,						
7	7											
8	8											
9	9											
10	10											
11	11											
12	12											
13	13											
14	14											
15	15		_									
Notes:		Sec	and	Q	re-	uken	for B	1,54	ssay			
			·									

Date: 3	dx11	97	Project	: Navy	Homeporti	ng, Pearl	Harbor		Re	corder:	Ha	dia	
Station	1D: 7	,					At	tempt		of _	1		
Latitude	210	21.			Longitude		73.5				Nav [Datum:	WGS 84
Time: /	425	Depth (ft):6'	Tide	111	Dep -	Tide = 6-1.2	-40	4.8		Depti	h MLLV 44.8	V (ft):
SAP De	p.	SAP-ML	LW -	4.8=	7.2	Target	Core Le	ength:	7.2	•	Final 7	Core L	ength (ft):
Start Ta	pe (ft)	36		Finish	Tape (ft)	46				sh-Star			tion (ft)
Pen. Depth (ft)	Retriev Depth (ft)	Co	lor		Odor	Sedi	ment Ty	pe ,	Sar	nple ID Depth			sc.
1 ∫	1	TAN	1	No	ne	Siff	days	and	1	7			
2	2	1				W	shell)			
3 \	3												
4	4												
5	5												
6	6												
7	7				<i>U</i>		/			,			
8	8					\mathcal{I}				<u> </u>		7.2	
9	9 1/	N		-	/	<u> </u>			V	10150		٩	
10	10												
11	11												
12	12												
13	13												
14	14												
15	15												
Notes:													
								, ,					
									····-				

								_					
Date:	ration ID: 3 Project: Navy Homeporting, Pearl Harbor Recorder: Land Market I of Attempt of												
		}					Attempt	1	of _				
Latitude	218	26	63 ¹		Longitude	1570	57.86	5'	1	Nav Dat	um: WGS 84		
Time: /	347	Depth	(ft):45	Tide			ie=45-1.1			Depth N	ILLW (ft):		
SAP De	°52	SAP-M	LiW =	3.9 2	8.1	Target C	ore Length:	8.1	1	Final Co	re Length (ft):		
-	ape (ft)			Finish	Tape (ft)	45.5		Finis	h-Star	t = Pen	etration (ft)		
Pen.	Retriev												
Depth	Depth								nple ID		Misc.		
(ft)	(ft)	9	olor		Odor		ent Type	Бу	Depth	 	IVIISC.		
1	1	Tung (<i>sey</i>	M	ine	Silt/	Clay	3	3				
2	2		• 1				'						
3	3		_		L	Silt	day						
4	4			Su	Gder	Lan	id (shell						
5	5							i					
6	6												
7	7												
8	8	N			1		/	1	1	- 8./			
9	9					Λ Λ «	1						
1,0	19/	5				VV		4	M	4			
11	11												
12	12												
13	13												
14	14												
15	15												
Notes:	Notes:												
					•					,			

Date: 30/001/47 Project: Navy Homeporting, Pearl Harbor Recorder: Hardin									
Station ID: 4 Attempt 1 of 3									
Latitude: 210 20.975' Longitude: 1573 58.085' Nav Datum: WGS 84									
Time:	049	Depth (ft):	Tide (ft): 8.5	Dep - Tide = 47.5 Target Core Length:		Depth MLLW (ft):			
			52-475-4.5	Target Core Length:	4.5'	Final Core Length (ft):			
Start Tape (ft)		# 3 8 0	Finish Tape (ft)	44,0	Finish-Star	t = Penetration (ft)			
Pen. Depth (ft)	Retriev Depth (ft)	Color	Odor	Sediment Type	Sample ID by Depth				
1	1			•					
2	2			1					
3	3								
4	4								
5	5								
6	6		Nos	AMPLE					
7	7								
8	8								
9	9								
10	10				-				
11	11								
12	12								
13	13								
14	14								
15	15								
Notes:		Gre los	1-Core co	Her/catch	er risk	ts sheared-			

Date:	Date: 30001/97 Project: Navy Homeporting, Pearl Harbor Recorder: Hardin									
Station	1 ID: 9						Attempt _	2	of _	
Latitud	le: 21°	20.9	777	Tide (ft):	de:	1570	58.08	3 '		lav Datum: WGS 84
	11:13	Depth	(ft);	Tide (ft):	,	Dep - Tide	B-86=	47.4	ا د	Depth MLLW (ft):
SAP D	ep52	SAP-M	52-4	7.4=4.6		l arget Co	re Length:	7.6		Final Core Length (ft):
Start T	ape (ft) 3	8		Finish Tape (ft) 44			Finish-Start = Penetration (ft)			
Pen. Depth (ft)	Retriev Depth (ft)	Co	olor	Odor		Sedimer	nt Type	Samp by D		Misc.
1	1	Tar		None		Siltson		9		
2	2									
3	3				<u> </u>	C191/0	1/ Rick			
4	4					ارا۱۱۰۰	na pest			
5	5	V		Ψ	士			-1		4,4
6	, 6									
7	7									
8	8									
9	9		-							
10	10									
11	11									
12	12				_					
13	13									
14	14									
15	15									
Notes:										

Date: 34x497 Project: Navy Homeporting, Pearl Harbor Recorder: Hardin									
Station ID: 9 24.975 # Attempt 3 of 3									
Latitud	le: 21	0 24.975	Longitude:	157 58	0831	Nav Datum: WGS 84			
Time: 1/42 Depth (ft):			Longitude:	Dep - Tide =	1.7= 47.4	47.4 Depth MLLW (ft):			
SAP D	2	SAP-MILW = 52-47.	4= 4.6	Target Core I	Length: 4.6	Final Core Length (ft):			
Start T	ape (ft)	38.1	Finish Tape (ft)	#F46.1	Finish Sta	rt = Penetration (ft)			
Pen. Depth	Retriev Depth				Sample II				
(ft)	(ft)	Color	Mne	Sediment 7		Misc.			
1	1	lan	1	3/ 1/ 50/					
2	2								
3	3			Siltso	net				
4	4			K	skeef				
5	5 .	4	7		1	4.6"			
6	, 6				Dizan	4.6°			
7	7								
8	8	J		V					
9	9								
10	10				-				
11	11								
12	12								
13	13								
14	14								
15	15		_						
Notes: 2nd out taken for Bibassay									
					300				

Date: 3007/97 Project: Navy Homeporting, Pearl Harbor Recorder:										
Station ID: Of 2										
Latitude: 210 14.922' Longitude: 1573 56.168 Nav Datum: WGS 84										
Time:	354	Depth	(ft):43S	Tide (ft): Dep - Tide			=48.5-03=40 Depth MLLW (ft):			
SAP Dep. SAP-MLLW = 4 Start Tape (ft) 38.5							e Length:			
Start Ta	pe (ft)	38.5		Finish Tape (ft) 44.5				Finish-Start = Penetration (ft)		
Pen. Depth (ft)	Retriev Depth (ft)	Co	olor		Odor	Sediment	t Type	Sample II by Depth	1	
1	1	Tor			re	Silyson		(0		
2	2	1								
3	3									
4	4	V		N	,	Rock-Sun	d-silf	A	40'	
5	5									
6	6									
7	7									
8	8									
9	9									
10	10									
11	11									
12	12									
13	13									
14	14									
15	15									
Notes:										

Date:	loc1/	97 Project	: Navy Homeportin	ng, Pearl Ha	rbor	Recorder:	Hardin	
Station	ID:	(Ø			Attempt _	2_of_	2	
Latitude	210	19.924	Longitude:	1570	50.168		Nav Datum: WGS 84	
Time:	10:0	Depth (ft):	Tide (ft):	Dep - Tide	e= - 18,4:4	7.1	Depth MLLW (ft):	
SAP Dep. SAP-MLLW = 4.9 Target Core Length: 4.9 Final Core Length: (
Start Ta	pe (ft)	37.5	Finish Tape (ft)	43.5		Finish-Star	t = Penetration (ft)	
Pen. Depth (ft)	Retriev Depth (ft)	Color	Odor	Sedimęı	nt Type	Sample ID by Depth		
1 /	1	Jan	None		and peck	10		
2	2					1		
3	3			Sand/A	ock raf			
4	4							
5	5 V _	V	V	w w		<u> </u>	4.5'	
6	6			·				
7	7							
8	8			and the second s				
9	9							
10	10							
11	11							
12	12							
13	13				·			
14	14							
15	15							
Notes: Se cond cope taken for Bibassay								
								

Appendix B

Core Photographs

Station 3

Station 5

Station 6

Station 7

Station 8

Station 10

Station 9

Appendix C
Physical Chemistry

November 17, 1997

Batch No.: 971114A

Dear John:

Enclosed are the results of samples submitted to our laboratory on 07Nov97 for analysis of TOC (Method ASTM D2579, modified). For your reference, these samples have been assigned our batch number 971114A.

All analyses were performed consistent with our laboratory's quality assurance program and all samples met the quality control criteria specified in the above methods and/or our internal SOPs.

Please call if you have any questions.

Sincerely,

Brian Riley

Laboratory Manager

Analytical Report

Project: Pearl Harbor Homeporting

Contact: John Hardin

Date Received: 07Nov97

Sample Matrix: Soil

Date Analyzed: 14Nov97 Batch No.: 971114A

Total Organic Carbon Analysis Method: ASTM D2579, modified Percent (%)

Sample I.D.	MRL	Result
1-2-B	0.002	0.875
1-2-T SITE 3	0.002 0.002	1.050 0.909
SITE 3	0.002	0.909
SITE 5	0.002	0.650
SITE 6	0.002	0.924
SITE 7	0.002	0.933
SITE 8	0.002	0.403
SITE 9	0.002	0.693
SITE 10	0.002	2.831
GRANDID CONTROL	0.002	0.046
REFERENCE	0.002	0.127

Method blank

ND

Date: 17Nov97

Page 2 of 3

QA/QC Report

Project: Pearl Harbor Homeporting Contact: John Hardin

Sample Matrix: Soil

Date Received: 07Nov97 Date Analyzed: 14Nov97 Batch No.: 971114A

Duplicate Summary Total Organic Carbon Percent (%)

Sample I.D.	Sample Result	Duplicate Result	Average	RPD
REFERENCE	0.127	0.122	0.124	3.739
SITE 9	0.693	0.690	0.691	0.477

ASTM D2579, modified

Approved by:_

Date: 17Nov 97

Page 3 of 3

Contract:

Pearl Harbor Homeporting

Contact person: Date of analysis: John Hardin 10Nov97 14Nov97

Date of report: Analysis method:

Sieve/pipette (Plumb, 1981)

Sample Identification: 1-2-T

Total sample weight:

18.345 grams

	Size	Weight		Cumulative
Microns	Phi	grams	Percent	Percent
2000.000	-1.0	0.000	0.000	0.000
1414.214	-0.5	0.018	0.098	0.098
1000.000	0.0	0.103	0.561	0.660
707.107	0.5	0.194	1.058	1.717
500.000	1.0	0.314	1.712	3.429
353.553	1.5	0.541	2.949	6.378
250.000	2.0	0.171	0.932	7.310
176.777	2.5	0.191	1.041	8.351
125.000	3.0	0.186	1.014	9.365
88.388	3.5	0.180	0.981	10.346
62.500	4.0	0.117	0.638	10.984
31.250	5.0	0.787	4.288	15.272
15.625	6.0	1.863	10.156	25.428
7.812	. 7.0	2.650	14.444	39.873
3.906	8.0	2.277	12.413	52.286
1.953	9.0	1.449	7.899	60.185
< 1.953	> 9.0	7.304	39.815	100.000

% < 4 phi = 89.016

% > 1 phi = 1.717

% gravel = 0.000

% sand = 10.984

% silt = 41.302

= 47.714% clay

Sample Statistics

Med	ian	Me	an	Dispersion	Skewness
phi	microns	phi	microns		
7.816	4.44	8.420	2.92	3.349	0.180

5th percentile = 1.266

16th percentile = 5.072

50th percentile = 7.816

84th percentile = 11.769

95th percentile =

*** 84th percentile extrapolated ***

*** 95th percentile not reached ***

Pearl Harbor Homeporting Contract:

John Hardin Contact person: Date of analysis: 10Nov97 14Nov97 Date of report:

Sieve/pipette (Plumb, 1981) Analysis method:

1-2-B Sample Identification:

19.429 grams Total sample weight:

Microns 2000.000 1414.214 1000.000 707.107 500.000 353.553 250.000 176.777 125.000 88.388 62.500 31.250 15.625 7.812	Size Phi -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 5.0 6.0 7.0	Weight grams 0.000 0.014 0.128 0.135 0.152 0.148 0.228 0.230 0.353 0.268 0.284 0.787 1.946 2.608	Percent 0.000 0.072 0.659 0.695 0.782 0.762 1.174 1.184 1.817 1.379 1.462 4.049 10.016 13.425	Cumulative Percent 0.000 0.072 0.731 1.426 2.208 2.970 4.143 5.327 7.144 8.523 9.985 14.034 24.050 37.475
3.906	8.0	2.443	12.573	50.048 59.424
1.953 < 1.953	9.0 > 9.0	1.822 7.884	40.576	100.000

% < 4 phi = 90.015
% > 1 phi = 1.426
% gravel = 0.000
% sand = 9.985

= 40.063% silt

% clay = 49.952

Sample Statistics

Med	ian	Me	an	Dispersion	Skewness
phi 7.996	microns 3.92	phi 8.407	microns 2.95	3.211	0.128

5th percentile = 2.362 16th percentile = 5.196 50th percentile = 7.996 84th percentile = 11.618

95th percentile =

*** 84th percentile extrapolated *** *** 95th percentile not reached ***

Contract: Pearl Harbor Homeporting

Contact person: John Hardin
Date of analysis: 10Nov97
Date of report: 14Nov97

Analysis method: Sieve/pipette (Plumb, 1981)

Sample Identification: SITE 3

Total sample weight: 17.376 grams

Size	Weight		Cumulative
Phi	grams	Percent	Percent
-1.0	0.000	0.000	0.000
-0.5	0.000	0.000	0.000
0.0	0.004	0.023	0.023
0.5	0.004	0.023	0.046
1.0	0.022	0.127	0.173
	0.195	1.122	1.295
	0.045	0.259	1.554
	0.037	0.213	1.767
	0.038	0.219	1.985
3.5	0.052	0.299	2.285
4.0	0.070	0.403	2.688
5.0	0.787	4.527	7.215
6.0	1.987	11.437	18.652
7.0	2.691	15.488	34.139
8.0	2.608	15.011	49.150
9.0	1.656	9.531	58.681
> 9.0	7.180	41.319	100.000
	Phi -1.0 -0.5 0.0 0.5 1.0 2.5 3.0 3.5 4.0 5.0 6.0 7.0 8.0 9.0	Phi grams -1.0 0.000 -0.5 0.000 0.0 0.004 0.5 0.004 1.0 0.022 1.5 0.195 2.0 0.045 2.5 0.037 3.0 0.038 3.5 0.052 4.0 0.070 5.0 0.787 6.0 1.987 7.0 2.691 8.0 2.608 9.0 1.656	Phi grams Percent -1.0 0.000 0.000 -0.5 0.000 0.000 0.0 0.004 0.023 0.5 0.004 0.023 1.0 0.022 0.127 1.5 0.195 1.122 2.0 0.045 0.259 2.5 0.037 0.213 3.0 0.038 0.219 3.5 0.052 0.299 4.0 0.070 0.403 5.0 0.787 4.527 6.0 1.987 11.437 7.0 2.691 15.488 8.0 2.608 15.011 9.0 1.656 9.531

% < 4 phi = 97.312

% > 1 phi = 0.046

% gravel = 0.000

% sand = 2.688

% silt = 46.463

clay = 50.850

Sample Statistics

Med	ian	Me	an	Dispersion	Skewness
phi 8.089	microns 3.67	phi 8.712	microns 2.38	2.944	0.212

5th percentile = 4.511 16th percentile = 5.768

50th percentile = 8.089 84th percentile = 11.656

95th percentile =

*** 84th percentile extrapolated ***
*** 95th percentile not reached ***

Contract:
Contact person:
Date of analysis:
Date of report:
Da

Analysis method: Sieve/pipette (Plumb, 1981)

Sample Identification: SITE 4

Total sample weight: 19.469 grams

Microns 2000.000 1414.214 1000.000 707.107 500.000 353.553	Phi -1.0 -0.5 0.0 0.5 1.0	Weight grams 0.000 0.001 0.038 0.033 0.045 0.053	Percent 0.000 0.005 0.195 0.169 0.231 0.272	Cumulative Percent 0.000 0.005 0.200 0.370 0.601 0.873
176.777	2.5	0.105	0.539	1.854
125.000	3.0	0.168	0.863	2.717
88.388	3.5	0.132	0.678	3.395
62.500	4.0	0.160	0.822	4.217
31.250	5.0	0.911	4.678	8.895
15.625	6.0	1.987	10.208	19.103
7.812	7.0	2.526	12.972	32.075
3.906	8.0	1.366	7.018	39.093
1.953	9.0	2.898	14.886	53.979
	> 9.0	8.960	46.021	100.000
< I.900	7 3.0	0.500	10.021	

% < 4 phi = 95.783
% > 1 phi = 0.370
% gravel = 0.000
% sand = 4.217
% silt = 34.876
% clay = 60.907

Sample Statistics

Median		M∈	ean	Dispersion	Skewness
phi 8.733	microns 2.35	phi 8.356	microns	2.660	-0.141

5th percentile = 4.167
16th percentile = 5.696
50th percentile = 8.733
84th percentile = 11.017
95th percentile = .
*** 84th percentile extrapolated ***
*** 95th percentile not reached ***

Contract:

Pearl Harbor Homeporting

Contact person: Date of analysis:

John Hardin 10Nov97

Date of report: Analysis method:

14Nov97 Sieve/pipette (Plumb, 1981)

Sample Identification: SITE 5

Total sample weight:

20.666 grams

	Size	Weight		Cumulative
Microns	Phi	grams	Percent	Percent
2000.000	-1.0	0.000	0.000	0.000
1414.214	-0.5	0.113	0.547	0.547
1000.000	0.0	0.285	1.379	1.926
707.107	0.5	0.368	1.781	3.707
500.000	1.0	0.399	1.931	5.637
353.553	1.5	0.743	3.595	9.233
250.000	2.0	0.373	1.805	11.037
176.777	2.5	0.626	3.029	14.067
125.000	3.0	0.679	3.286	17.352
88.388	3.5	0.587	2.840	20.193
62.500	4.0	0.453	2.192	22.385
31.250	5.0	1.408	6.812	29.196
15.625	6.0	2.236	10.819	40.015
7.812	7.0	2.360	11.420	51.435
3.906	8.0	1.987	9.617	61.051
1.953	9.0	1.449	7.012	68.063
< 1.953	> 9.0	6.600	31.937	100.000

% < 4 phi = 77.615% > 1 phi = 3.707% gravel = 0.000

= 22.385% sand

% silt = 38.666= 38.949% clay

Sample Statistics

Median Mean		Dispersion	Skewness		
phi	microns	phi	microns		•
6.874	8.52	6.835	8.76	4.041	-0.010

5th percentile = 0.83516th percentile = 2.794

50th percentile = 6.874

84th percentile = 10.875

95th percentile =

*** 84th percentile extrapolated *** *** 95th percentile not reached ***

Contract: Pearl Harbor Homeporting
Contact person: John Hardin

Date of analysis: 10Nov97
Date of report: 14Nov97

Analysis method: Sieve/pipette (Plumb, 1981)

Sample Identification: SITE 6

Total sample weight: 17.727 grams

Microns 2000.000 1414.214 1000.000 707.107 500.000 353.553 250.000 176.777 125.000 88.388	Phi -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0	Weight grams 0.000 0.007 0.016 0.040 0.053 0.074 0.138 0.123 0.199 0.156	Percent 0.000 0.039 0.090 0.226 0.299 0.417 0.778 0.694 1.123 0.880	Cumulative Percent 0.000 0.039 0.130 0.355 0.654 1.072 1.850 2.544 3.667 4.547
125.000 88.388 62.500	* · ·			
31.250 15.625	5.0 6.0	0.538 1.573	3.036 8.875	8.350 17.225 29.837
7.812 3.906 1.953 < 1.953	7.0 8.0 9.0 > 9.0	2.236 2.608 1.780 8.049	12.612 14.714 10.043 45.406	44.551 54.594 100.000

% < 4 phi = 94.686
% > 1 phi = 0.355
% gravel = 0.000
% sand = 5.314
% silt = 39.237
% clay = 55.449

Sample Statistics

Med	lian	Me	an	Dispersion	Skewness
phi 8.543	microns 2.68	phi 8.895	microns 2.10	3.033	0.116

5th percentile = 3.795
16th percentile = 5.862
50th percentile = 8.543
84th percentile = 11.928
95th percentile = .
*** 84th percentile extrapolated ***
*** 95th percentile not reached ***

Contract: Pearl Harbor Homeporting

Contact person: John Hardin
Date of analysis: 10Nov97
Date of report: 14Nov97

Analysis method: Sieve/pipette (Plumb, 1981)

Sample Identification: SITE 7

Total sample weight: 21.269 grams

	Size	Weight		Cumulative
Microns	Phi	grams	Percent	Percent
2000.000	-1.0	0.000	0.000	0.000
1414.214	-0.5	0.077	0.362	0.362
1000.000	0.0	0.173	0.813	1.175
707.107	0.5	0.191	0.898	2.073
500.000	1.0	0.162	0.762	2.835
353.553	1.5	0.421	1.979	4.814
250.000	2.0	0.353	1.660	6.474
176.777	2.5	0.718	3.376	9.850
125.000	3.0	0.920	4.325	14.175
88.388	3.5	0.961	4.518	18.693
62.500	4.0	0.611	2.873	21.566
31.250	5.0	1.756	8.257	29.823
15.625	6.0	1.628	7.653	37.476
7.812	7.0	1.456	6.847	44.323
3.906	8.0	1.713	8.055	52.378
1.953	9.0	2.913	13.694	66.073
< 1.953	> 9.0	7.216	33.927	100.000

% < 4 phi = 78.434

% > 1 phi = 2.073

% gravel = 0.000

% sand = 21.566

% silt = 30.812

% clay = 47.622

Sample Statistics

Med	ian	Me	an	Dispersion	Skewness
phi	microns	phi	microns		
7.705	4.79	6.823	8.83	3.621	-0.243

5th percentile = 1.556

16th percentile = 3.202

50th percentile = 7.705

84th percentile = 10.445

95th percentile =

*** 84th percentile extrapolated ***
*** 95th percentile not reached ***

Contract: Pearl Harbor Homeporting

Contact person: John Hardin
Date of analysis: 10Nov97
Date of report: 14Nov97

Analysis method: Sieve/pipette (Plumb, 1981)

Sample Identification: SITE 8

Total sample weight: 24.904 grams

Size Weight		Cumulative
Microns Phi grams	Percent	Percent
2000.000 -1.0 0.000	0.000	0.000
1414.214 -0.5 0.089	0.357	0.357
1000.000 0.0 0.566	2.273	2.630
707.107 0.5 0.520	2.088	4.718
500.000 1.0 0.538	2.160	6.879
353.553 1.5 0.631	2.534	9.412
250.000 2.0 1.367	5.489	14.901
176.777 2.5 1.832	7.356	22.258
125.000 3.0 2.532	10.167	32.425
88.388 3.5 1.549	6.220	38.645
62.500 4.0 0.953	3.827	42.472
31.250 5.0 2.056	8.256	50.728
15.625 6.0 2.699	10.836	61.564
7.812 7.0 2.142	8.600	70.164
3.906 8.0 1.371	5.504	75.668
1.953 9.0 0.900	3.612	79.280
< 1.953 > 9.0 5.160	20.720	100.000

% < 4 phi = 57.528

% > 1 phi = 4.718

% gravel = 0.000

% sand = 42.472 % silt = 33.196

% clay = 24.332

Sample Statistics

Med	lian	M∈	an	Dispersion	Skewness
A	microns 33.22	phi 5.867	microns 17.14	3.792	0.252

5th percentile = 0.565 16th percentile = 2.075 50th percentile = 4.912 84th percentile = 9.659

95th percentile =

*** 84th percentile extrapolated ***
*** 95th percentile not reached ***

Contract: Pearl Harbor Homeporting

John Hardin Contact person: Date of analysis: 10Nov97 Date of report: 14Nov97

Sieve/pipette (Plumb, 1981) Analysis method:

Sample Identification: SITE 9

Total sample weight: 20.542 grams

	Size	Weight		Cumulative
Microns	Phi	grams	Percent	Percent
2000.000	-1.0	0.000	0.000	0.000
1414.214	-0.5	0.000	0.000	0.000
1000.000	0.0	0.263	1.280	1.280
707.107	0.5	0.262	1.275	2.556
500.000	1.0	0.271	1.319	3.875
353.553	1.5	0.271	1.319	5.194
250.000	2.0	0.404	1.967	7.161
176.777	2.5	0.446	2.171	9.332
125.000	3.0	0.848	4.128	13.460
88.388	3.5	0.889	4.328	17.788
62.500	4.0	1.148	5.589	23.376
31.250	5.0	1.628	7.924	31.300
15.625	6.0	2.784	13.554	44.854
7.812	7.0	2.741	13.345	58.199
3.906	8.0	2.056	10.009	68.208
1.953	9.0	1.414	6.881	75.089
< 1.953	> 9.0	5.117	24.911	100.000

% < 4 phi = 76.624% > 1 phi = 2.556% gravel = 0.000 % sand = 23.376

% silt = 44.831= 31.792% clay

Sample Statistics

Median		Me	ean	Dispersion	Skewness
phi	microns	phi	microns		
6.386	11.96	6,611	10.23	3.318	0.068

5th percentile = 1.426 16th percentile = 3.293 50th percentile = 6.386 84th percentile = 9.929

95th percentile =

*** 84th percentile extrapolated *** *** 95th percentile not reached ***

Contract: Pearl Harbor Homeporting
Contact person: John Hardin

Contact person: John Har Date of analysis: 10Nov97 Date of report: 14Nov97

Analysis method: Sieve/pipette (Plumb, 1981)

Sample Identification: SITE 10

Total sample weight: 27.566 grams

	Size	Weight	•	Cumulative
Microns	Phi	grams	Percent	Percent
2000.000	-1.0	0.000	0.000	0.000
1414.214	-0.5	0.143	0.519	0.519
1000.000	0.0	0.433	1.571	2.090
707.107	0.5	0.733	2.659	4.749
500.000	1.0	0.864	3.134	7.883
353.553	1.5	1.579	5.728	13.611
250.000	2.0	0.871	3.160	16.771
176.777	2.5	2.137	7.752	24.523
125.000	3.0	1.865	6.766	31.288
88.388	3.5	2.075	7.527	38.816
62.500	4.0	1.640	5.949	44.765
31.250	5.0	2.613	9.479	54.244
15.625	6.0	2.613	9.479	63.722
7.812	7.0	1.671	6.060	69.782
3.906	8.0	1.885	6.837	76.619
1.953	9.0	1.542	5.594	82.213
< 1.953	> 9.0	4.903	17.787	100.000

% < 4 phi = 55.235 % > 1 phi = 4.749

% gravel = 0.000

% sand = 44.765 % silt = 31.854

% clay = 31.854% clay = 23.381

Sample Statistics

Med	lian	Me	ean	Dispersion	Skewness
phi 4.552	microns 42.62		microns 21.16	3.684	0.274

5th percentile = 0.540 16th percentile = 1.878 50th percentile = 4.552

84th percentile = 9.247 95th percentile = .

*** 84th percentile extrapolated ***
*** 95th percentile not reached ***

Contract:

Pearl Harbor Homeporting

Contact person: Date of analysis:

John Hardin 10Nov97

Date of report:

14Nov97

Analysis method:

Sieve/pipette (Plumb, 1981)

Sample Identification: Total sample weight:

GRANDID CONTROL 30.462 grams

	Size	Weight		Cumulative
Microns	Phi	grams	Percent	Percent
2000.000	-1.0	0.000	0.000	0.000
1414.214	-0.5	0.000	0.000	0.000
1000.000	0.0	0.000	0.000	0.000
707.107	0.5	0.005	0.016	0.016
500.000	1.0	0.028	0.092	0.108
353.553	1.5	4.666	15.318	15.426
250.000	2.0	4.723	15.505	30.931
176.777	2.5	7.358	24.155	55.086
125.000	3.0	6.750	22.159	77.244
88.388	3.5	5.165	16.956	94.200
62.500	4.0	0.890	2.922	97.122
31.250	5.0	0.086	0.281	97.403
15.625	6.0	0.086	0.281	97.684
7.812	7.0	0.043	0.141	97.825
3.906	8.0	0.043	0.141	97.966
1.953	9.0	0.043	0.141	98.106
< 1.953	> 9.0	0.577	1.894	100.000

% < 4 phi = 2.878

% > 1 phi = 0.016

gravel = 0.000

% sand = 97.122

% silt = 0.844

clay = 2.034

Sample Statistics

Med	ian	Me	an	Dispersion	Skewness
phi	microns	phi	microns	-	
2.395	190.16	2.359	194.94	0.840	-0.043

5th percentile = 1.160 16th percentile = 1.519 50th percentile = 2.395 84th percentile = 3.199 95th percentile = 3.637

Contract: Pearl Harbor Homeporting

Contact person: John Hardin
Date of analysis: 10Nov97
Date of report: 14Nov97

Analysis method: Sieve/pipette (Plumb, 1981)

Sample Identification: REFERENCE Total sample weight: 27.882 grams

	C:=	Weight		Cumulative
	Size		Percent	Percent
Microns	Phi	grams		0.000
2000.000	-1.0	0.000	0.000	
1414.214	-0.5	0.000	0.000	0.000
1000.000	0.0	0.000	0.000	0.000
707.107	0.5	0.000	0.000	0.000
500.000	1.0	0.002	0.007	0.007
	1.5	1.496	5.365	5.373
353.553			5.964	11.337
250.000	2.0	1.663		
176.777	2.5	5.867	21.042	32.379
125,000	3.0	10.094	36.203	68.582
88.388	3.5	7.317	26.243	94.825
62.500	4.0	0.609	2.184	97.009
31.250	5.0	0.086	0.307	97.316
15.625	6.0	0.129	0.461	97.777
7.812	7.0	0.043	0.154	97.931
	8.0	0.043	0.154	98.085
3.906				98.238
1.953	9.0	0.043	0.154	
< 1.953	> 9.0	0.491	1.762	100.000

% < 4 phi = 2.991
% > 1 phi = 0.000
% gravel = 0.000
% sand = 97.009
% silt = 1.075
% clay = 1.915

Sample Statistics

Median		Me	ean	Dispersion	Skewness
10000	microns 149.34	F	microns 153.65	0.591	-0.069

5th percentile = 1.465 16th percentile = 2.111 50th percentile = 2.743 84th percentile = 3.294 95th percentile = 3.540

Contract: Pearl Harbor Homeporting

Contact person: John Hardin
Date of analysis: 10Nov97

Date of report: 14Nov97

Analysis method: Sieve/pipette (Plumb, 1981)

Sample Identification: SITE 8 A

Total sample weight: 24.904 grams

	Size	Weight		Cumulative
Microns	Phi	grams	Percent	Percent
2000.000	-1.0	0.000	0.000	0.000
1414.214	-0.5	0.089	0.357	0.357
1000.000	0.0	0.566	2.273	2.630
707.107	0.5	0.520	2.088	4.718
500.000	1.0	0.538	2.160	6.879
353.553	1.5	0.631	2.534	9.412
250.000	2.0	1.367	5.489	14.901
176.777	2.5	1.832	7.356	22.258
125.000	3.0	2.532	10.167	32.425
88.388	3.5	1.549	6.220	38.645
62.500	4.0	0.953	3.827	42.472
31.250	5.0	2.056	8.256	50.728
15.625	6.0	2.699	10.836	61.564
7.812	7.0	2.142	8.600	70.164
3.906	8.0	1.371	5.504	75.668
1.953	9.0	0.900	3.612	79.280
< 1.953	> 9.0	5.160	20.720	100.000

% < 4 phi = 57.528

% > 1 phi = 4.718

% gravel = 0.000

% sand = 42.472

% silt = 33.196% clay = 24.332

Sample Statistics

Median		M∈	ean	Dispersion	Skewness	
phi	microns	phi	microns			
4.912	33.22	5,867	17.14	3.792	0.252	

5th percentile = 0.565

16th percentile = 2.075

50th percentile = 4.912 84th percentile = 9.659

95th percentile =

*** 84th percentile extrapolated ***
*** 95th percentile not reached ***

Contract: Contact person: Date of analysis:

Date of report:

Analysis method: Sample Identification: SITE 8 B

Total sample weight:

Pearl Harbor Homeporting

John Hardin 10Nov97

14Nov97

Sieve/pipette (Plumb, 1981)

25.056 grams

Microns 2000.000 1414.214 1000.000 707.107 500.000 353.553 250.000 176.777 125.000 88.388 62.500 31.250 15.625 7.812 3.906 1.953	Size Phi -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 5.0 6.0 7.0 8.0 9.0	Weight grams 0.000 0.000 0.743 0.555 0.529 0.640 1.357 1.975 2.503 1.526 0.987 2.313 2.570 1.842 1.585 1.071	Percent 0.000 0.000 2.965 2.215 2.111 2.554 5.416 7.882 9.990 6.090 3.939 9.231 10.257 7.351 6.325 4.274	Cumulative Percent 0.000 0.000 2.965 5.180 7.292 9.846 15.262 23.144 33.134 39.224 43.163 52.395 62.652 70.003 76.328 80.602
	9.0	1.071	4.274	80.602
	> 9.0	4.860	19.398	100.000

% < 4 phi = 56.837

% > 1 phi = 5.180

% gravel = 0.000 = 43.163

% sand = 33.165% silt

= 23.672% clay

Sample Statistics

Median		M∈	ean	Dispersion	Skewness	
-	microns	phi 5.760	microns 18.45	3.713	0.275	

5th percentile = 0.459 16th percentile = 2.047 50th percentile = 4.741 84th percentile = 9.473

95th percentile =

*** 84th percentile extrapolated *** *** 95th percentile not reached ***

Appendix D

Analytical Chemistry

November 14, 1997

Service Request No: K9708126

John Hardin Columbia Analytical Services, Inc. 6060 Corte del Cedro, Palomar Airport Bus Park Carlsbad, CA 92009

Re: Homeport-Pearl Harbor

Dear John:

Enclosed are the results of the sample(s) submitted to our laboratory on November 3, 1997. For your reference, these analyses have been assigned our service request number K9708126.

All analyses were performed according to our laboratory's quality assurance program. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the samples analyzed.

Please call if you have any questions. My extension is 258.

Respectfully submitted,

Linde Gulat

Columbia Analytical Services, Inc.

Lynda A. Huckestein Project Chemist

LAH/bf

Page 1 of <u>59</u>

Client: Project:

Sample Matrix:

MEC Analytical Systems, Inc.

Homeport-Pearl Harbor

Sediment

Service Request No.: Date Received:

K9708126 11/3/97

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of Columbia Analytical Services, Inc. (CAS). This report contains analytical results for sample(s) designated for Tier II data deliverables. When appropriate to the method, method blank results have been reported with each analytical test. Surrogate recoveries have been reported for all applicable organic analyses. Additional quality control analyses reported herein include: Laboratory Duplicate (DUP), Matrix Spike (MS), Matrix/Duplicate Matrix Spike (MS/DMS), and Laboratory Control Sample (LCS).

All EPA recommended holding times have been met for analyses in this sample delivery group.

The following difficulties were experienced during analysis of this batch:

The Relative Percent Difference (RPD) for the replicate analysis of Zinc in sample Sta-10 was outside the normal CAS control limits. The variability in the results is attributed to the heterogeneous character of the sample. Mixing techniques within the scope of the EPA methodology were used, but were not sufficient for complete homogenization of this sample.

The Matrix Spike (MS) recovery of Antimony for sample Sta-10 was outside the normal CAS control limits because of suspected matrix interference. The Matrix Spike (MS) recoveries of Mercury and Zinc for samples Sta-1-2-B and Sta-10 were not calculated. The analyte concentration in the sample was significantly higher than the added spike concentration, preventing accurate evaluation of the spike recovery. No further corrective action was taken.

As requested, all sediment samples were analyzed for butyltin compounds. Results for the mono-butyl, di-butyl, tributyl tin compounds are reported in the results section of this report. Mono-butyl tin was not detected in any of the sediment samples, however, the results for this compound should be considered as estimated. Recovery of mono-butyl tin is extremely poor by this method in comparison to other butyl tin compounds. All QA/QC associated with the other compounds in the analysis met CAS acceptance criteria.

For the Butyltins analysis, monobutyltin was detected in the method blank above the method reporting limit. All samples that had detectable levels of this compound were reextracted and confirmed the absence of monobutyltin. Since no monobutyltin was detected in the sample and the error associated with levels detected in the method blanks equates to a high bias, the elevated recoveries likely have no significance to the sample results. No further corrective action was taken.

The Tri-n-propyltin surrogate recovery for Butyltins in sample Sta-9 was outside normal CAS control limits because of suspected matrix interference. Since the recovery of Tri-n-pentyltin was acceptable, no further corrective action was taken.

One or two of the surrogate recoveries for Semivolatiles in samples Sta-1-2-T, Sta-3,4,5,6,7 and 10 were outside normal CAS control limits because of suspected matrix interference. The chromatogram showed components that prevented accurate quantitation of the surrogate. No further corrective action was taken.

Approved by	iant	_Date_	u	1,4	97	
						_

Analytical Report

Client:

MEC Analytical Systems, Inc.

Project:

Homeport-Pearl Harbor

Sample Matrix:

Sediment

Service Request: K9708126

Date Collected: 10/31/97

Date Received: 11/3/97

Total Solids

Prep Method:

Test Notes:

Sta-9

Sta-10

Reference

NONE

160.3M

Analysis Method:

Units: PERCENT

Basis: NA

Result Date Notes Result Analyzed Lab Code Sample Name 58.6 K9708126-001 11/4/97 Sta-1-2-B 47.0 K9708126-002 11/4/97 Sta-1-2-T 43.2 K9708126-003 11/4/97 Sta-3 49.0 11/4/97 K9708126-004 Sta-4 52.8 K9708126-005 11/4/97 Sta-5 46.2 K9708126-006 11/4/97 Sta-6 54.2 11/4/97 K9708126-007 Sta-7 11/4/97 63.4 K9708126-008 Sta-8 11/4/97 50.7

11/4/97

11/4/97

K9708126-009

K9708126-010

K9708126-011

Approved By:

TSSample/021397a

69.1

75.6

Analytical Report

Client:

MEC Analytical Systems, Inc.

Project:

Homeport-Pearl Harbor

Sample Matrix: Sediment

Service Request: K9708126

Date Collected: 10/31/97

Date Received: 11/3/97 Date Extracted: NA

Date Analyzed: 11/5/97

Sulfide, Dissolved EPA Method 376.2 Modified Units: mg/Kg (ppm) Dry Weight Basis

Sample Name	Lab Code	MRL	Result
Sta-1-2-B	K9708126-001	3.0	ND
Sta-1-2-T	K9708126-002	3.0	ND
Sta-3	K9708126-003	3.0	ND
Sta-4	K9708126-004	3.0	ND
Sta-5	K9708126-005	3.0	ND
Sta-6	K9708126-006	3.0	ND
Sta-7	K9708126-007	3.0	ND
Sta-8	K9708126-008	3.0	ND
Sta-9	K9708126-009	3.0	ND
Sta-10	K9708126-010	3.0	ND
Reference	K9708126-011	3.0	ND
Method Blank	K9708126-MB	3.0	ND

Approved By:

1AMRL/102594 08126WET.MR1 - 1AMRL 11/10/97

Date: 1110197

Analytical Report

Client:

MEC Analytical Systems, Inc.

Project:

Homeport-Pearl Harbor

Sample Matrix: Sediment

Service Request: K9708126 Date Collected: 10/31/97 Date Received: 11/3/97

Date Extracted: 11/5/97

Total Metals Units: mg/Kg (ppm) Dry Weight Basis

		Sample Name: Lab Code: Date Analyzed:	Sta-1-2-B K9708126-001 11/7/97	Sta-1-2-T K9708126-002 11/7/97	Sta-3 K9708126-003 11/7/97
Analyte	EPA Method	MRL			
Antimony	200.8	0.02	0.17	0.93	0.08
Arsenic	200.8	0.5	8.1	7.7	6.3
Beryllium	200.8	0.02	0.33	0.41	0.39
Cadmium	200.8	0.02	0.60	0.61	0.22
Chromium	200.8	0.2	66.0	88.0	73.0
Copper	200.8	0.1	97.6	212	68.1
Lead	200.8	0.02	67.3	208	36.3
	7471A	0.02	1.87	2.01	0.75
Mercury Nickel	200.8	0.2	40.6	39.2	41.0
Selenium	200.8	1	2	2	ND
	200.8	0.02	0.24	0.68	0.59
Silver	200.8	0.02	0.09	0.09	0.07
Thallium Zinc	200.8	0.5	106	1450	95.2

Approved By:

3S30EPA/102094 08126ICP.GJ1 - Sample 11/10/97

_ Date: _///10/97

Page No.:

00005

Analytical Report

Client:

MEC Analytical Systems, Inc.

Project:

. Homeport-Pearl Harbor

Sample Matrix: Sediment

Service Request: K9708126 Date Collected: 10/31/97

Date Received: 11/3/97

Date Extracted: 11/5/97

Total Metals Units: mg/Kg (ppm) Dry Weight Basis

		Sample Name: Lab Code:	Sta-4 K9708126-004	Sta-5 K9708126-005	Sta-6
		Date Analyzed:	11/7/97	11/7/97	K9708126-006 11/7/97
		Date Analyzou.	11/////	11/////	11///3/
	EPA				
Analyte	Method	MRL			
Antimony	200.8	0.02	0.04	0.04	0.07
Arsenic	200.8	0.5	5.0	3.4	4.1
Beryllium	200.8	0.02	0.42	0.50	0.47
Cadmium	200.8	0.02	0.18	0.17	0.10
Chromium	200.8	0.2	70.4	86.8	63.7
Copper	200.8	0.1	39.6	55.8	37.9
Lead	200.8	0.02	19.9	33.2	19.2
Mercury	7471A	0.02	0.34	0.84	0.27
Nickel	200.8	0.2	40.4	47.7	40.2
Selenium	200.8	1	ND	1	1
Silver	200.8	0.02	0.33	0.42	0.20
Thallium	200.8	0.02	0.07	0.07	0.07
Zinc	200.8	0.5	76.2	. 115	72.4

Date: 1110 67 Approved By:

3830EPA/102094 0×126ICP.GJ1 - Sample (2) 11/10/97

Analytical Report

Client:

MEC Analytical Systems, Inc.

Project:

Homeport-Pearl Harbor

Sample Matrix: Sediment

Service Request: K9708126

Date Collected: 10/31/97

Date Received: 11/3/97

Date Extracted: 11/5/97

Total Metals Units: mg/Kg (ppm) Dry Weight Basis

		Sample Name: Lab Code: Date Analyzed:	Sta-7 K9708126-007 11/7/97	Sta-8 K9708126-008 11/7/97	Sta-9 K9708126-009 11/7/97
Analyte	EPA Method	MRL			
Antimony	200.8	0.02	0.03	0.09	0.07
Arsenic	200.8	0.5	5.4	4.0	7.4
Beryllium	200.8	0.02	0.36	0.14	0.48
Cadmium	200.8	0.02	0.07	0.07	0.29
Chromium	200.8	0.2	69.9	24.6	86.0
Copper	200.8	0.1	24.0	12.2	40.7
Lead	200.8	0.02	1.86	7.48	30.4
Mercury	7471A	0.02	0.03	0.21	0.68
Nickel	200.8	0.2	44.5	23.1	48.8
Selenium	200.8	1	1	ND	1
Silver	200.8	0.02	0.10	0.08	0.54
Thallium	200.8	0.02	0.09	0.09	0.09
Zinc	200.8	0.5	40.5	25.4	82.5

Approved By:

3S30EPA/102094 0R126ICP.GJI - Sample (3) 11/10/97

Analytical Report

Client:

MEC Analytical Systems, Inc.

Project:

Homeport-Pearl Harbor

Sample Matrix: Sediment

Service Request: K9708126

Date Collected: 10/31/97 Date Received: 11/3/97

Date Extracted: 11/5/97

Total Metals Units: mg/Kg (ppm) Dry Weight Basis

		Sample Name: Lab Code: Date Analyzed:	Sta-10 K9708126-010 11/7/97	Reference K9708126-011 11/7/97	Method Blank K9708126-MB 11/7/97
Analyte	EPA Method	MRL			
Antimony	200.8	0.02	0.09	0.05	ND
Arsenic	200.8	0.5	3.9	2.3	ND
Beryllium	200.8	0.02	0.14	ND	ND
Cadmium	200.8	0.02	0.07	0.06	ND
Chromium	200.8	0.2	31.5	9.4	ND
Copper	200.8	0.1	10.1	2.6	ND
Lead	200.8	0.02	67.6	1.26	0.03
Mercury	7471A	0.02	0.06	ND	ND
Nickel	200.8	0.2	23.9	21.0	ND
Selenium	200.8	1	ND	ND	ND
Silver	200.8	0.02	0.13	0.06	ND
Thallium	200.8	0.02	0.04	ND	ND
Zinc	200.8	0.5	165	6.2	1.0

Approved By:

3S30EPA/102094 081261CP.GJ1 - Sample (4) 11/10/97

Page No.

0000

Analytical Report

- Client:

MEC Analytical Systems, Inc.

Project:

Homeporting - Pearl Harbor

Sample Matrix: Sediment

Service Request: K9708126

Date Collected: 10/31/97

Date Received: 11/3/97

Date TCLP Performed: 11/4/97

Date Extracted: 11/5/97

Toxicity Characteristic Leaching Procedure (TCLP)

EPA Method 1311

Metals

Units: mg/L (ppm) in TCLP Extract

			Sample Name: Lab Code: Date Analyzed:	Sta-1-2-B K9708126-001 11/6/97	Sta-1-2-T K9708126-002 11/6/97	Sta-3 K9708126-003 11/6/97
	EPA		Regulatory			
Analyte	Method	MRL	Limit*			
Antimony	3010A/6010A	0.1	-	ND	ND	ND
Arsenic	3010A/6010A	0.1	5	ND	ND	ND
Beryllium	3010A/6010A	0.01	-	ND	ND	ND
Cadmium	3010A/6010A	0.01	1	ND	ND	ND
Chromium	3010A/6010A	0.01	5	ND	ND	ND
Copper	3010A/6010A	0.05	_	ND	ND	ND
Lead	3010A/6010A	0.05	5	ND	ND	ND
Mercury	7470A	0.001	0.2	ND	ND	ND
Nickel	3010A/6010A	0.05	•	ND	ND	ND
Selenium	3010A/6010A	0.1	1	ND	ND	ND
Silver	3010A/6010A	0.01	5	ND	ND	ND
Thallium	3010A/6010A	0.2	-	ND	ND	ND
Zinc	3010A/6010A	0.5	-	ND	ND	ND

From 40 CFR Part 261, et al., and Federal Register, March 29, 1990 and June 29, 1990.

Approved By: _ TCLP/102194

08126ICP.JC1 - Sample 11/10/97

000009

Analytical Report

Client:

MEC Analytical Systems, Inc.

Project:

Homeporting - Pearl Harbor

Sample Matrix: Sediment

Service Request: K9708126

Date Collected: 10/31/97

Date Received: 11/3/97 Date TCLP Performed: 11/4/97

Date Extracted: 11/5/97

Toxicity Characteristic Leaching Procedure (TCLP)

EPA Method 1311

Metals

Units: mg/L (ppm) in TCLP Extract

		Sample Name: Lab Code: Date Analyzed:	Sta-4 K9708126-004 11/6/97	Sta-5 K9708126-005 11/6/97	Sta-6 K9708126-000 11/6/97
EPA Mothod	MDI	Regulatory			
Method	WINL	Limit			
3010A/6010A	0.1	-	ND	ND	ND
3010A/6010A	0.1	5	ND	ND	ND
3010A/6010A	0.01	-	ND	ND	ND
3010A/6010A	0.01	1	ND	ND	ND
3010A/6010A	0.01	5	ND	ND	ND
3010A/6010A	0.05	-	ND	ND	ND
3010A/6010A	0.05	5	ND	ND	ND
7470A	0.001	0.2	ND	ND	ND
3010A/6010A	0.05	-	ND	ND	ND
3010A/6010A	0.1	1	ND	ND	ND
3010A/6010A	0.01	5	ND	ND	ND
3010A/6010A	0.2	-	ND	ND	ND
3010A/6010A	0.5	_	ND	ND	ND
	Method 3010A/6010A	Method MRL 3010A/6010A 0.1 3010A/6010A 0.1 3010A/6010A 0.01 3010A/6010A 0.01 3010A/6010A 0.01 3010A/6010A 0.05 3010A/6010A 0.05 3010A/6010A 0.05 3010A/6010A 0.05 3010A/6010A 0.1 3010A/6010A 0.01 3010A/6010A 0.2	Lab Code: Date Analyzed: EPA Regulatory Method MRL Limit* 3010A/6010A 0.1 - 3010A/6010A 0.1 5 3010A/6010A 0.01 - 3010A/6010A 0.01 1 3010A/6010A 0.01 5 3010A/6010A 0.05 - 3010A/6010A 0.05 - 3010A/6010A 0.05 - 3010A/6010A 0.1 1 3010A/6010A 0.01 5 3010A/6010A 0.01 5 3010A/6010A 0.01 5 3010A/6010A 0.2 -	Lab Code: K9708126-004 Date Analyzed: 11/6/97 EPA Regulatory Method MRL Limit* 3010A/6010A 0.1 - ND 3010A/6010A 0.1 5 ND 3010A/6010A 0.01 - ND 3010A/6010A 0.01 1 ND 3010A/6010A 0.01 5 ND 3010A/6010A 0.05 - ND 3010A/6010A 0.05 5 ND 3010A/6010A 0.05 - ND 3010A/6010A 0.1 1 ND 3010A/6010A 0.01 5 ND 3010A/6010A 0.02 - ND 3010A/6010A 0.2 - ND </td <td>Lab Code: K9708126-004 K9708126-005 Date Analyzed: 11/6/97 K9708126-005 EPA Regulatory Method MRL Limit* 3010A/6010A 0.1 - ND ND 3010A/6010A 0.1 5 ND ND 3010A/6010A 0.01 - ND ND 3010A/6010A 0.01 1 ND ND 3010A/6010A 0.01 5 ND ND 3010A/6010A 0.05 - ND ND 3010A/6010A 0.05 5 ND ND 3010A/6010A 0.05 - ND ND 3010A/6010A 0.05 - ND ND 3010A/6010A 0.05 - ND ND 3010A/6010A 0.01 5 ND ND 3010A/6010A 0.01 5 ND ND 3010A/6010A 0.01 5 ND ND <td< td=""></td<></td>	Lab Code: K9708126-004 K9708126-005 Date Analyzed: 11/6/97 K9708126-005 EPA Regulatory Method MRL Limit* 3010A/6010A 0.1 - ND ND 3010A/6010A 0.1 5 ND ND 3010A/6010A 0.01 - ND ND 3010A/6010A 0.01 1 ND ND 3010A/6010A 0.01 5 ND ND 3010A/6010A 0.05 - ND ND 3010A/6010A 0.05 5 ND ND 3010A/6010A 0.05 - ND ND 3010A/6010A 0.05 - ND ND 3010A/6010A 0.05 - ND ND 3010A/6010A 0.01 5 ND ND 3010A/6010A 0.01 5 ND ND 3010A/6010A 0.01 5 ND ND <td< td=""></td<>

From 40 CFR Part 261, et al., and Federal Register, March 29, 1990 and June 29, 1990.

Approved By:

TCLP/102194 0×1261CP.JC1 - Sample (2) 11/10/97

Date: 11/10/97

Analytical Report

Client:

MEC Analytical Systems, Inc.

Project:

Homeporting - Pearl Harbor

Sample Matrix: Sediment

Service Request: K9708126

Date Collected: 10/31/97

Date Received: 11/3/97

Date TCLP Performed: 11/4/97

Date Extracted: 11/5/97

Toxicity Characteristic Leaching Procedure (TCLP)

EPA Method 1311

Metals

Units: mg/L (ppm) in TCLP Extract

			Sample Name: Lab Code: Date Analyzed:	Sta-7 K9708126-007 11/6/97	Sta-8 K9708126-008 11/6/97	Sta-9 K9708126-009 11/6/97
	EPA	* 577.	Regulatory			
Analyte	Method	MRL	Limit*			
Antimony	3010A/6010A	0.1	•	ND	ND	ND
Arsenic	3010A/6010A	0.1	5	ND	ND	ND
Beryllium	3010A/6010A	0.01	_	ND	ND	ND
Cadmium	3010A/6010A	0.01	1	ND	ND	ND
Chromium	3010A/6010A	0.01	5	ND	ND	ND
Copper	3010A/6010A	0.05	-	ND	ND	ND
Lead	3010A/6010A	0.05	5	ND	ND	ND
Mercury	7470A	0.001	0.2	ND	ND	ND
Nickel	3010A/6010A	0.05	-	ND	ND	ND
Selenium	3010A/6010A	0.1	1	ND	ND	ND
Silver	3010A/6010A	0.01	5	ND	ND	ND
Thallium	3010A/6010A	0.2	-	ND	ND	ND
Zinc	3010A/6010A	0.5	-	ND	ND	ND

From 40 CFR Part 261, et al., and Federal Register, March 29, 1990 and June 29, 1990.

Approved By:

TCLP/102194

0×1261CP.JC1 - Sample (3) 11/10/97

_ Date: __///iO /97-__

Page No.:

00011

Analytical Report

Client:

MEC Analytical Systems, Inc.

Project:

Homeporting - Pearl Harbor

Sample Matrix: Sediment

Service Request: K9708126 Date Collected: 10/31/97

Date Received: 11/3/97

Date TCLP Performed: 11/4/97

Date Extracted: 11/5/97

Toxicity Characteristic Leaching Procedure (TCLP)

EPA Method 1311

Metals

Units: mg/L (ppm) in TCLP Extract

			Sample Name: Lab Code: Date Analyzed:	Sta-10 K9708126-010 11/6/97	Sta-Reference K9708126-011 11/6/97	Method Blank K9706537-MB 11/6/97
Analyte	EPA Method	MRL	Regulatory Limit*			
Antimony	3010A/6010A	0.1	-	ND	ND	ND
Arsenic	3010A/6010A	0.1	. 5	ND	ND	ND
Beryllium	3010A/6010A	0.01	-	ND	ND	ND
Cadmium	3010A/6010A	0.01	1	ND	ND	ND
Chromium	3010A/6010A	0.01	5	ND	, m	ND
Copper	3010A/6010A	0.05	-	ND		ND
Lead	3010A/6010A	0.05	5	ND		ND
Mercury	7470A	0.001	0.2	ND		ND
Nickel	3010A/6010A	0.05	-	ND		ND
Selenium	3010A/6010A	0.1	1	711-		ND
Silver	3010A/6010A	0.01	c	a TE	STING, INC.	ND
Thallium	3010A/6010A	0.2	AAT	IC CONSULTING & (602	921-0049	ND
Zinc	3010A/6010A	0.5	A PAIN	FIC CONSULTING & TE: (602) 921-8044 Fax: (602)		ND :

From 40 CFR Part 261, et al., and Federal Regis

_____, 1990 and June 29, 1990.

Approved By:	$\subset \mathcal{K}$	Date:	11/10/97
TCLP/102194			. ,
0X126ICP.JC1 - Sample (4) 11/10/97	•		

0.0012

Analytical Report

Client:

MEC Analytical Systems, Inc.

Project:

Homeport-Pearl Harbor

Sample Matrix: Sediment

Service Request: K9708126 Date Collected: 10/31/97

Date Received: 11/3/97 Date Extracted: 11/10/97

Date Analyzed: 11/11/97

Petroleum Hydrocarbons EPA Methods 9071/418.1 Units: mg/Kg (ppm) Dry Weight Basis

Sample Name	Lab Code	MRL	Result
Sta-1-2-B	K9708126-001	20	623
Sta-1-2-T	K9708126-002	20	1000
Sta-3	K9708126-003	20	291
Sta-4	K9708126-004	20	271
Sta-5	K9708126-005	20	643
Sta-6	K9708126-006	20	166
Sta-7	K9708126-007	20	21
Sta-8	K9708126-008	20	104
Sta-9	K9708126-009	. 20	1330
Sta-10	K9708126-010	20	66
Reference	K9708126-011	20	ND
Method Blank	K971110-MB	20	ND

Date: 11/12/97 Approved By: _

Analytical Report

Client: Project:

В

MEC Analytical Systems, Inc. Homeport-Pearl Harbor

Sample Matrix:

Sediment

Date Collected: 10/31/97
Date Received: 11/3/97
Date Extracted: 11/4/97

Organochlorine Pesticides and Polychlorinated Biphenyls

Units: Basis: Methods:	ug/Kg (ppb) Dry EPA 3550A/8080		Sample Name: Lab Code: Date Analyzed:	Sta-1-2-B K9708126-001 11/7/97	Sta-1-2-T K9708126-002 11/7-9/97	Sta-3 K9708126-003 11/8-9/97
Analyte		MRL				
alpha-BHC		2		ND	ND	ND
beta-BHC		2		ND	ND	ND
gamma-BHC(Lindan	ie)	2 2 .		ND	ND	ND
delta-BHC	-	2		ND	ND	ND
Heptachlor		2		ND	ND	ND
Aldrin		2		ND	ND	ND
Heptachlor Epoxide		2		ND	ND	ND
Endosulfan I		2		ND	ND	ND
Dieldrin	•	2		ND	ND	ND
4,4'-DDE		2 2 2 2 2 2 2 2 2 2 2 2 2 2		ND	3	ND
Endrin		2		ND	ND	ND
Endosulfan II		2		ND	ND	ND
4,4'-DDD		2		ND	ND	ND
Endrin Aldehyde		2		ND	ND	<3 (B)
Endosulfan Sulfate		2		ND	ND	ND
4,4'-DDT		2		ND	ND	ND
Endrin Ketone		2		ND	ND	ND
Methoxychlor		4		ND	ND	ND
Chlordane		10	•	ND	<15 (B)	ND
Toxaphene		30		ND	<300 (B)	<70 (B)
Aroclor 1016		10		ND	ND	ND
Aroclor 1221		10		ND	ND	ND
Aroclor 1232		10		ND	ND	ND
Aroclor 1242		10		ND	ND	ND
Aroclor 1248		10		ND	ND	ND
Aroclor 1254		10		ND	7 9	ND
Aroclor 1260		10		ND	238	95

The MRL is elevated because of matrix interferences.

0.0.014

Analytical Report

Client: Project: MEC Analytical Systems, Inc. Homeport-Pearl Harbor

Sample Matrix:

Sediment

- S

Date Collected: 10/31/97 **Date Received:** 11/3/97 **Date Extracted:** 11/4/97

Organochlorine Pesticides and Polychlorinated Biphenyls

Units: Basis: Methods:	ug/Kg (ppb) Dry EPA 3550A/8080		Sample Name: Lab Code: Date Analyzed:	Sta-4 K9708126-004 11/9/97	Sta-5 K9708126-005 11/9/97	Sta-6 K9708126-006 11/9/97
Analyte		MRL				
alpha-BHC beta-BHC beta-BHC gamma-BHC(Lindan delta-BHC Heptachlor Aldrin Heptachlor Epoxide Endosulfan I Dieldrin 4,4'-DDE Endrin Endosulfan II 4,4'-DDD Endrin Aldehyde Endosulfan Sulfate 4,4'-DDT Endrin Ketone Methoxychlor Chlordane Toxaphene Aroclor 1016	ne)	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		98555555555555555555555555555555555555	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	88888888888888888888888888888888888888
Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254		10 10 10 10 10		MD MD MD MD MD	ND ND ND ND ND	ND ND ND ND ND
Aroclor 1260		10		70	110	64

The MRL is elevated because of matrix interferences.

Analytical Report

Client:

В

MEC Analytical Systems, Inc.

Project: Sample Matrix: Homeport-Pearl Harbor

Sediment

Service Request: K9708126
Date Collected: 10/31/97

Date Received: 11/3/97
Date Extracted: 11/4/97

Organochlorine Pesticides and Polychlorinated Biphenyls

Units: Basis: Methods:	ug/Kg (ppb) Dry EPA 3550A/8080		Sample Name: Lab Code: Date Analyzed:	Sta-7 K9708126-007 11/9/97	Sta-8 K9708126-008 11/9/97	Sta-9 K9708126-009 11/9/97
Analyte		MRL				
alpha-BHC		2		ND	ND	ND
beta-BHC		2		ND	ND	ND
gamma-BHC(Lindan	e)	2		ND	ND	ND
delta-BHC	•	2		ND	ND	ND
Heptachlor		2 2 2 2 2 2 2 2 2		ND	ND	ND
Aldrin		2		ND	ND	ND
Heptachlor Epoxide		2		ND	ND	ND
Endosulfan I		2		ND	ND	ND
Dieldrin		2		ND	ND	ND
4,4'-DDE		2		ND	ND	ND
Endrin		2 2		ND	ND	ND
Endosulfan II		2		ND	ND	ND
4,4'-DDD		2 2 2 2		ND	ND	ND
Endrin Aldehyde		2		ND	ND	ND
Endosulfan Sulfate		2		ND	ND	ND
4,4'-DDT		2		ND	ND	ND
Endrin Ketone		2		ND	ND	ND
Methoxychlor		4		14	ND	ND
Chlordane		10		ND	ND	ND
Toxaphene		30		ND	ND	<40 (B)
Aroclor 1016		10		ND	ND	ND
Aroclor 1221		10		ND	ND	ND
Aroclor 1232		10		ND	ND	ND
Aroclor 1242		10		ND	ND	ND
Aroclor 1248		10		ИD	ND	ND
Aroclor 1254		10		ND	ND	ND
Aroclor 1260		10	•	ND	30	50

The MRL is elevated because of matrix interferences.

Approved By: _______ Date: 11 14/97

00016

Page No.:

Analytical Report

Client: Project: MEC Analytical Systems, Inc.

Sample Matrix:

Homeport-Pearl Harbor

Sediment

Service Request: K9708126 Date Collected: 10/31/97 Date Received: 11/3/97 Date Extracted: 11/4/97

Organochlorine Pesticides and Polychlorinated Biphenyls

Units: Basis: Methods:	ug/Kg (ppb) Dry EPA 3550A/8080		Sample Name: Lab Code: Date Analyzed:	Sta-10 K9708126-010 11/9/97	Reference K9708126-011 11/9/97	Method Blank KWG9703407-4 11/7/97
Analyte		MRL				
alpha-BHC beta-BHC tamma-BHC(Lindane delta-BHC Heptachlor Aldrin Heptachlor Epoxide Endosulfan I Dieldrin 4'-DDE Indrin Endosulfan II 4,4'-DDD Indrin Aldehyde indosulfan Sulfate 4,4'-DDT Endrin Ketone Methoxychlor Chlordane I oxaphene Aroclor 1016 Croclor 1221 Lroclor 1232	e)	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		856666666666666666666666666666666666666	888888888888888888888888888888888888888	888888888888888888888888888888888888888
Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260		10 10 10		ND ND ND	ND ND ND	ND ND ND

(A) Date: 1/14/91 approved By: __

0.0017

Analytical Report

Client:

MEC Analytical Systems, Inc.

Project:

Homeport-Pearl Harbor

Sample Matrix:

Sediment

Service Request: K9708126

Date Collected: 10/31/97

Date Received: 11/3/97

Butyltins

Sample Name:

Sta-1-2-B

Lab Code: Test Notes: K9708126-001

Units: ug/Kg (ppb)

Basis: Dry

Analysis Dilution Prep Date Date Result Analyte Method Method Factor Extracted Analyzed MRL Notes Result Tri-n-butyltin TIN-SVG C.A.Krone et al. 1 1 2 11/4/97 11/7/97 Di-n-butyltin C.A.Krone et al. TIN-SVG 1 1 11/4/97 11/7/97 2 n-Butyltin C.A.Krone et al. TIN-SVG 1 1 11/4/97 11/7/97 ND

Approved By:

1522/052595

Date: 11/14/97

08126SVG.JSI - 1 11/14/97

Page No.:

Analytical Report

Client:

Project:

MEC Analytical Systems, Inc. Homeport-Pearl Harbor

Sample Matrix:

Sediment

Service Request: K9708126

Date Collected: 10/31/97

Date Received: 11/3/97

Butyltins

Sample Name:

Lab Code:

Sta-1-2-T K9708126-002 Units: ug/Kg (ppb)

Basis: Dry

Test Notes:

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Tri-n-butyltin Di-n-butyltin n-Butyltin	C.A.Krone et al. C.A.Krone et al. C.A.Krone et al.	TIN-SVG TIN-SVG TIN-SVG	1 1 1	1 1 1	11/4/97 11/4/97 11/8/97	11/7/97 11/7/97 11/10/97	41 25 ND	

Approved By:

po

Date: 11/14/97

08126SVG.JS1 - 2 11/14/97

Analytical Report

Client:

MEC Analytical Systems, Inc.

Project:

Sample Matrix:

Homeport-Pearl Harbor

Service Request: K9708126

Date Collected: 10/31/97

Sediment

Date Received: 11/3/97

Butyltins

Sample Name:

Sta-3

Lab Code:

K9708126-003

Units: ug/Kg (ppb)

Basis: Dry

Test Notes:

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Tri-n-butyltin	C.A.Krone et al.	TIN-SVG	1	1	11/4/97	11/7/97	10	
Di-n-butyltin	C.A.Krone et al.	TIN-SVG	1	1	11/4/97	11/7/97	16	
n-Butyltin	C.A.Krone et al.	TIN-SVG	1	I	11/8/97	11/10/97	ND	

08126SVG.JS1 - 3 11/14/97

Analytical Report

Client:

MEC Analytical Systems, Inc.

Project:

Homeport-Pearl Harbor

Sample Matrix:

Sediment

Service Request: K9708126

Date Collected: 10/31/97

Date Received: 11/3/97

Butyltins

Sample Name:

Lab Code: Test Notes: Sta-4

K9708126-004

Units: ug/Kg (ppb)

Basis: Dry

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Tri-n-butyltin	C.A.Krone et al.	TIN-SVG	1	1	11/4/97	11/7/97	4	
Di-n-butyltin	C.A.Krone et al.	TIN-SVG	1	1	11/4/97	11/7/97	3	
n-Butyltin	C.A.Krone et al.	TIN-SVG	1	1	11/4/97	11/7/97	ND	

Approved By:

1822/052595

Analytical Report

Client:

MEC Analytical Systems, Inc.

Project: Sample Matrix: Homeport-Pearl Harbor Sediment Service Request: K9708126

Date Collected: 10/31/97

Date Received: 11/3/97

Butyltins

Sample Name:

Lab Code: Test Notes: Sta-5

K9708126-005

Units: ug/Kg (ppb)

Basis: Dry

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Tri-n-butyltin	C.A.Krone et al.	TIN-SVG	1	1	11/4/97	11/7/97	2	
Di-n-butyltin	C.A.Krone et al.	TIN-SVG	1	1	11/4/97	11/7/97	4	
n-Butyltin	C.A.Krone et al.	TIN-SVG	1	1	11/4/97	11/7/97	ND	

Approved By: ______

______Date: 11/14/47

Analytical Report

Client:

MEC Analytical Systems, Inc.

Project:

Sample Matrix:

Homeport-Pearl Harbor Sediment

Service Request: K9708126

Date Received: 11/3/97

Date Collected: 10/31/97

Butyltins

Sample Name:

Lab Code: Test Notes: Sta-6

K9708126-006

Units: ug/Kg (ppb)

Basis: Dry

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Tri-n-butyltin	C.A.Krone et al.	TIN-SVG	1	1	11/4/97	11/7/97	5	
Di-n-butyltin	C.A.Krone et al.	TIN-SVG	1	1	11/4/97	11/7/97	4	
n-Butyltin	C.A.Krone et al.	TIN-SVG	1	1	11/4/97	11/7/97	ND	

Approved By: 1S22/052595

__ Date: 11/4/97

08126SVG.JS2 - 6 11/14/97

Analytical Report

Client:

MEC Analytical Systems, Inc.

Project:

Homeport-Pearl Harbor

Sample Matrix:

Sediment

Service Request: K9708126

Date Collected: 10/31/97

Date Received: 11/3/97

Butyltins

Sample Name:

Sta-7

Lab Code:

Test Notes:

K9708126-007

Units: ug/Kg (ppb)

Basis: Dry

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Tri-n-butyltin	C.A.Krone et al.	TIN-SVG	1	1	11/4/97	11/7/97	ND	
Di-n-butyltin	C.A.Krone et al.	TIN-SVG	1	1	11/4/97	11/7/97	ND	
n-Butyltin	C.A.Krone et al.	TIN-SVG	1	1	11/4/97	11/7/97	ND	

Approved By: 1S22/052595

Date: 11 14 97

08126SVG.JS2 - 711/14/97

Analytical Report

Client:

MEC Analytical Systems, Inc.

Project:

Sample Matrix:

Homeport-Pearl Harbor

Sediment

Service Request: K9708126

Date Collected: 10/31/97

Date Received: 11/3/97

Butyltins

Sample Name:

Lab Code:

Test Notes:

Sta-8

K9708126-008

Units: ug/Kg (ppb)

Basis: Dry

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Tri-n-butyltin	C.A.Krone et al.	TIN-SVG	1	1	11/4/97	11/7/97	2	
Di-n-butyltin	C.A.Krone et al.	TIN-SVG	1	1	11/4/97	11/7/97	2	
n-Butyltin	C.A.Krone et al.	TIN-SVG	1	1	11/4/97	11/7/97	ND	

Approved By: 1S22/052595

_ Date: __11/14/97

08126SVG.JS2 - 8 11/14/97

c

Analytical Report

Client:

MEC Analytical Systems, Inc.

Project:

Homeport-Pearl Harbor

Sample Matrix:

Sediment

Service Request: K9708126

Date Collected: 10/31/97

Date Received: 11/3/97

Butyltins

Sample Name:

Sta-9

Lab Code:

K9708126-009

C.A.Krone et al.

C.A.Krone et al.

Units: ug/Kg (ppb)

Basis: Dry

3

ND

Test Notes:

Di-n-butyltin

n-Butyltin

Analysis Prep **Dilution** Date Date Result Analyte Method Method MRL Factor Extracted Analyzed Result Notes Tri-n-butyltin C.A.Krone et al. TIN-SVG 1 1 11/4/97 11/7/97 5

1

1

1

11/4/97

11/4/97

11/7/97

11/7/97

TIN-SVG

TIN-SVG

Approved By:

Date: __

1822/052595

Analytical Report

Client:

MEC Analytical Systems, Inc.

Project:

Homeport-Pearl Harbor

Sample Matrix:

Sediment

Service Request: K9708126

Date Collected: 10/31/97

Date Received: 11/3/97

Butyltins

Sample Name:

Lab Code:

Sta-10

Test Notes:

K9708126-010

Units: ug/Kg (ppb)

Basis: Dry

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Tri-n-butyltin	C.A.Krone et al.	TIN-SVG	1	1	11/4/97	11/7/97	ND	
Di-n-butyltin	C.A.Krone et al.	TIN-SVG	1	1	11/4/97	11/7/97	ND	
n-Butyltin	C.A.Krone et al.	TIN-SVG	1	1	11/4/97	11/7/97	ND	

Approved By: 1822/052595

Date: 11/14/97

08126SVG.JS2 - 10 11/14/97

Analytical Report

Client:

MEC Analytical Systems, Inc.

Project:

Homeport-Pearl Harbor

Sample Matrix:

Sediment

Service Request: K9708126

Date Collected: 10/31/97 Date Received: 11/3/97

Butyltins

Sample Name:

Lab Code:

Reference

K9708126-011

Units: ug/Kg (ppb)

Basis: Dry

Test Notes:

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Tri-n-butyltin	C.A.Krone et al.	TIN-SVG	1	1	11/4/97	11/7/97	1	
Di-n-butyltin	C.A.Krone et al.	TIN-SVG	1	1	11/4/97	11/7/97	ND	
n-Butyltin	C.A.Krone et al.	TIN-SVG	1	1	11/8/97	11/10/97	ND	

Approved By:

1822/052595

Date: 4/14/97

Analytical Report

Client:

Project:

Sample Matrix:

MEC Analytical Systems, Inc.

Homeport-Pearl Harbor

Sediment

Service Request: K9708126

Date Collected: NA

Date Received: NA

Butyltins

Sample Name:

Method Blank K971104-SB Units: ug/Kg (ppb)

Basis: Dry

Lab Code: Test Notes:

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Tri-n-butyltin	C.A.Krone et al.	TIN-SVG	1	1	11/4/97	11/7/97	ND	
Di-n-butyltin	C.A.Krone et al.	TIN-SVG	1	1	11/4/97	11/7/97	ND	
n-Butyltin	C.A.Krone et al.	TIN-SVG	1	1	11/4/97	11/7/97	8	

Approved By:

IS22/052595

Date: 11/14/97

08126SVG.JS1 - MB 11/14/97

Analytical Report

Client:

MEC Analytical Systems, Inc.

Project:

Sample Matrix:

Homeport-Pearl Harbor Sediment

Service Request: K9708126

Date Collected: NA Date Received: NA

Butyltins

Sample Name:

Method Blank

Units: ug/Kg (ppb)

Lab Code:

K971108-SB

Basis: Dry

Test Notes:

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
n-Butyltin	C.A.Krone et al.	TIN-SVG	1	1	11/8/97	11/10/97	39	

Approved By: 1S22/052595

08126SVG.JS4 - MB 11/14/97

Analytical Report

Client: Project: Sample Matrix: MEC Analytical Systems, Inc. Homeport-Pearl Harbor

Sediment

Service Request: K9708126 **Date Collected:** 10/31/97 **Date Received:** 11/3/97 **Date Extracted:** 11/4/97

Base Neutral/Acid Semivolatile Organic Compound

Units:	ug/kg		Sample Name:	Sta-1-2-B	Sta-1-2-T	Sta-3
			Lab Code:	K9708126-001	K9708126-002	K9708126-003
Basis:	Dry EPA 3550A/SIM		Date Analyzed:	11/10/97	11/10/97	11/10/97
Methods:	EFA 3330A/SIM		Duit Linny Loui.			
Analyte		MRL				
_Phenol		50		ND	67	ND
-Chlorophenol		50		ND	ND	ND
-Nitrophenol	_	40		ND	ND	ND
2,4-Dimethylpher	nol	200		ND	ND	ND
_2,4-Dichloropher	nol	100		ND	ND	ND
Vaphthalene		20		ND	24	ND
-Chloro-3-methy	ylphenol	50		ND	ND	ND
2,4,6-Trichloroph		30		ND	ND	ND
Acenaphthylene		20		ND	27	ND
imethyl Phthala	ite	10		ND	ND	ND
cenaphthene		10		ND	107	ND
2,4-Dinitropheno	1	300		ND	ND	ND
4-Nitrophenol		100		ND	ND	ND
luorene		20		ND	136	ND
iethyl Phthalate		10		ND	ND	ND
2-Methyl-4,6-din		100		ND	ND	ND
Pentachloropheno		300		ND	ND	ND
henanthrene		20		44	2300	21
nthracene		20	·	ND	700	ND
Di-n-butyl Phthal	ate	10		ND	56	32
Fluoranthene		20		109	5100	78
vrene		20		140	4300	87
utyl Benzyl Phtl	halate	10		ND	ND	ND
Benz(a)anthracen		20		46	2100	50
Chrysene		20		53	2100	64
is(2-ethylhexyl)	Phthalate	200		ND	360	240
i-n-octyl Phthala		10		ND	ND	ND
Benzo(b)fluorantl		20		129	2100	200
Benzo(k)fluorantl		20		42	1800	65
enzo(a)pyrene		20		88	2100	131
deno(1,2,3-cd)p	ovrene	20		38	1200	77
Dibenz(a,h)anthra		20		ND	190	20
Benzo(g,h,i)peryl		20		36	1000	66
Delizo(g,ii,i)peryi		20				

Dy

Date: 11 1357

Analytical Report

Client:

MEC Analytical Systems, Inc.

Project:

Homeport-Pearl Harbor

Sample Matrix: Sediment

Date Collected: 10/31/97
Date Received: 11/3/97
Date Extracted: 11/4/97

Base Neutral/Acid Semivolatile Organic Compound

Units: Basis: Methods:	ug/kg Dry EPA 3550A/SIM		Sample Name: Lab Code: Date Analyzed:	Sta-4 K9708126-004 11/10/97	Sta-5 K9708126-005 11/10/97	Sta-6 K9708126-006 11/10/97
Analyte		MRL				
Phenol		50		ND	ND	ND
2-Chlorophenol		50		ND	ND	ND
2-Nitrophenol	-	40		ND	ND	ND
2,4-Dimethylphen		200		ND	ND	ND
2,4-Dichloropheno	01	100		ND	ND	ND
Naphthalene		20		ND	ND	ND
4-Chloro-3-methyl		50		ND	ND	ND
2,4,6-Trichlorophe	enol	30		ND	ND	ND
Acenaphthylene		20		ND	ND	ND
Dimethyl Phthalate	e	10		ND	ND	ND
Acenaphthene		10		ND	ND	ND
2,4-Dinitrophenol		300		ND	ND	ND
4-Nitrophenol		100		ND	ND	ND
Fluorene		20		ND	ND	ND
Diethyl Phthalate		10		ND	ND	ND
2-Methyl-4,6-dinit		100		ND	ND	ND
Pentachlorophenol Phenanthrene		300		ND	ND	ND
Anthracene		20	•	ND	ND	ND
Di-n-butyl Phthalat	te	20 10		ND	ND	ND
Fluoranthene	ic .	20		37	ND	15
Pyrene		20		26 30	38 48	21
Butyl Benzyl Phtha	alate	10		ND		23
Benz(a)anthracene		20		ND	ND ND	ND
Chrysene		20		22	27	ND 22
Bis(2-ethylhexyl) I	Phthalate	200		ND	ND	ND
Di-n-octyl Phthalat		10		ND	ND	ND
Benzo(b)fluoranthe		20		92	151	83
Benzo(k)fluoranthe		20		29	48	28
Benzo(a)pyrene		20		51	84	48
Indeno(1,2,3-cd)py	rene	20		32	46	26
Dibenz(a,h)anthrac		20		ND	ND	ND
Benzo(g,h,i)peryler		20		30	42	23
					- -	

Analytical Report

Client: Project: MEC Analytical Systems, Inc.

Sample Matrix:

Homeport-Pearl Harbor Sediment Service Request: K9708126

Date Collected: 10/31/97

Date Received: 11/3/97

Date Extracted: 11/4/97

Base Neutral/Acid Semivolatile Organic Compound

Units: Basis: Methods:	ug/kg Dry EPA 3550A/SIM		Sample Name: Lab Code: Date Analyzed:	Sta-7 K9708126-007 11/10/97	Sta-8 K9708126-008 11/11/97	Sta-9 K9708126-009 11/11/97
Analyte		MRL				
Phenol		50		ND	ND	ND
2-Chlorophenol		50		ND	ND	ND
2-Nitrophenol		40		ND	ND	ND
2,4-Dimethylphenol		200		ND	ND	ND
2,4-Dichlorophenol		100		ND	ND	ND
Naphthalene		20		ND	ND	ND
4-Chloro-3-methylpi	henol	50		ND	ND	ND
2,4,6-Trichlorophen		30		ND	ND	ND
Acenaphthylene		20		ND	ND	ND
Dimethyl Phthalate		10		ND	ND	ND
Acenaphthene		10		ND	ND	ND
2,4-Dinitrophenol		300		ND	ND	ND
4-Nitrophenol		100		ND	ND	ND
Fluorene		20		ND	ND	ND
Diethyl Phthalate		10		ND	ND	ND
2-Methyl-4,6-dinitro	ophenol	100		ND	ND	ND
Pentachlorophenol		300		ND	ND	ND
Phenanthrene		20		ND	ND	ND
Anthracene		20	•	ND	ND	ND
Di-n-butyl Phthalate		20		41	22	48
Fluoranthene		20		ND	ND	55
Pyrene		10		ND	ND	71
Butyl Benzyl Phthal	ate	20		ND	ND	ND
Benz(a)anthracene		20		ND	ND	37
Chrysene		200		ND	ND	45
Bis(2-ethylhexyl) Ph	nthalate	10		ND	ND	ND
Di-n-octyl Phthalate		20		ND	38	ND
Benzo(b)fluoranther		20		ND	ND	148
Benzo(k)fluoranther		20		ND	23	47
Benzo(a)pyrene		20		ND	ND	97
Indeno(1,2,3-cd)pyro	ene	20		ND	ND	44
Dibenz(a,h)anthrace		20		ND	ND	ND
Benzo(g,h,i)perylen		20		ND	ND	49

Approved By: _

M

Date: 11.13.57

Analytical Report

Client: Project: MEC Analytical Systems, Inc.

Sample Matrix:

Homeport-Pearl Harbor Sediment **Date Collected:** 10/31/97

Date Received: 11/3/97
Date Extracted: 11/4/97

Base Neutral/Acid Semivolatile Organic Compound

Units: Basis:	ug/kg Dry		Sample Name: Lab Code:	Sta-10 K9708126-010	Reference K9708126-011	Method Blank KWG9703390-4
Methods:	EPA 3550A/SIM		Date Analyzed:	11/11/97	11/7/97	11/7/97
						•
Analyte		MORIL				
Phenol		50		ND	ND	ND
2-Chlorophenol		50		ND	ND	ND
2-Nitrophenol		40		ND	ND	ND
2,4-Dimethylphenol		200		ND	ND	ND
2,4-Dichlorophenol		100		ND	ND	ND
Naphthalene		20		ND	ND	ND
4-Chloro-3-methylphe		50		ND	ND	ND
2,4,6-Trichloropheno	1	30		ND	ND	ND
Acenaphthylene		20		ND	ND	ND
Dimethyl Phthalate		10		ND	ND	ND
Acenaphthene		10		ND	ND	ND
2,4-Dinitrophenol		300		ND	ND	ND
4-Nitrophenol		100		ND	ND	ND
Fluorene		20		ND	ND	ND
Diethyl Phthalate		10		ND	ND	ND
2-Methyl-4,6-dinitrop	henol	100		ND	ND	ND
Pentachlorophenol		300		ND	ND	ND
Phenanthrene		20		ND	ND	ND
Anthracene		20		ND	ND	ND
Di-n-butyl Phthalate		20		ND	20	ND
Fluoranthene		20		ND	ND	ND
Pyrene		10		ND	ND	ND
Butyl Benzyl Phthalat	e	20		ND	ND	ND
Benz(a)anthracene		20		ND	ND	ND
Chrysene		200		ND	ND	ND
Bis(2-ethylhexyl) Phtl	halate	10		ND	ND	ND
Di-n-octyl Phthalate		20		ND	ND	ND
Benzo(b)fluoranthene		20		41	ND	ND
Benzo(k)fluoranthene		20		ND	ND	ND
Benzo(a)pyrene		20		25	ND	ND
Indeno(1,2,3-cd)pyren		20		ND	ND	ND
Dibenz(a,h)anthracene	2	20		ND	ND	ND
Benzo(g,h,i)perylene		20		ND	ND	ND

Ma

Date: 11-13-57

APPENDIX A LABORATORY QA/QC RESULTS

QA/QC Report

Client:

MEC Analytical Systems, Inc.

Project:

Homeport-Pearl Harbor

Sample Matrix:

Sediment

Service Request: K9708126 Date Collected: 10/31/97

Date Received: 11/3/97

Duplicate Summary

Total Solids

Prep Method:

NONE

Analysis Method: 160.3M

Units: PERCENT

Basis: NA

Test Notes:

Lab Code Sample Name

Date Analyzed

Duplicate Sample Result

Sample Result

Percent Average Difference Result Notes

Sta-1-2-B

K9708126-001DUP

11/4/97

58.6

48.4

53.5

19

Relative

Approved By:

TSDup/021397a

QA/QC Report

Client:

MEC Analytical Systems, Inc.

Project:

Homeport-Pearl Harbor

Sample Matrix: Sediment

Service Request: K9708126

Date Collected: 10/31/97 Date Received: 11/3/97

Date Extracted: NA Date Analyzed: 11/5/97

Duplicate Summary Sulfide, Dissolved EPA Method 376.2 Modified Units: mg/Kg (ppm) Dry Weight Basis

			Sample	Duplicate Sample		Relative Percent
Sample Name	Lab Code	MRL	Result	Result	Average	Difference
Sta-1-2-B	K9708126-001D	3.0	ND	ND	ND	-

Approved By: DUP1A/102194

08126WET.MR1 - DUP 11/10/97

Date: 11 1019}

Page No.:

QA/QC Report

Client:

MEC Analytical Systems, Inc.

Project:

Homeport-Pearl Harbor

Sample Matrix: Sediment

Service Request: K9708126

Date Collected: 10/31/97

Date Received: 11/3/97

Date Extracted: NA Date Analyzed: 11/5/97

Matrix Spike Summary Sulfide, Dissolved EPA Method 376.2 Modified Units: mg/Kg (ppm) Dry Weight Basis

							Percent
					Spiked		Recovery
Sample Name	Lab Code	MRL	Spike Level	Sample Result	Sample Result	Percent Recovery	Acceptance Limits
Sta-1-2-B	K9708126-001MS	3.0	203	ND	117	58	-

11/10197 Date: ___ Approved By:

MS1A/102194 08126WET.MR1 - MS 11/10/97

Page No. 00038

QA/QC Report

Client:

MEC Analytical Systems, Inc.

Project:

Homeport-Pearl Harbor

LCS Matrix:

Sediment

Service Request: K9708126

Date Collected: NA

Date Received: NA

Date Extracted: NA Date Analyzed: 11/5/97

Laboratory Control Sample Summary

Sulfide, Dissolved EPA Method 376.2 Modified

Units: mg/L (ppm)

CAS Percent Recovery Acceptance

Limits

Analyte Sulfide, Dissolved Value 4.86

True

3.84

Result

Recovery 79

Percent

Approved By: LCS/102194

08126WET.MR1 - LCS 11/10/97

QA/QC Report

Client:

MEC Analytical Systems, Inc.

Project:

Homeport-Pearl Harbor

Sample Matrix: Sediment

Service Request: K9708126

Date Collected: 10/31/97 Date Received: 11/3/97

Date Extracted: 11/5/97 Date Analyzed: 11/7/97

Duplicate Summary Total Metals Units: mg/Kg (ppm) Dry Weight Basis

Sample Name:

Sta-10

Lab Code:

K9708126-010

Das Cour.	 EPA		Sample	Duplicate Sample		Relative Percent
Analyte	Method	MRL	Result	Result	Average	Difference
Antimony	200.8	0.02	0.09	0.10	0.10	10
Arsenic	200.8	0.5	3.9	4.2	4.0	8
Beryllium	200.8	0.02	0.14	0.15	0.14	7
Cadmium	200.8	0.02	0.07	0.10	0.08	38
Chromium	200.8	0.2	31.5	32.9	32.2	4
Copper	200.8	0.1	10.1	10.7	10.4	6
Lead	200.8	0.02	67.6	57.2	62.4	17
Mercury	7471A	0.02	1.87	2.34	2.10	22
Nickel	200.8	0.2	23.9	25.1	24.5	5
Selenium	200.8	1	ND	ND	ND	
Silver	200.8	0.02	0.13	0.13	0.13	<1
Thallium	200.8	0.02	0.04	0.04	0.04	<1
Zinc	200.8	0.5	165	111	138	39(A)

Duplicate analysis was performed on Sample Sta-1-2-B; Lab Code K9708126-001.

Outside acceptance limits; see case narrative.

Approved By:

DUPISEPA/102194

Date: ///0/97

QA/QC Report

Client:

MEC Analytical Systems, Inc.

Project:

Homeport-Pearl Harbor

Sample Matrix: Sediment

Service Request: K9708126 Date Collected: 10/31/97

Date Received: 11/3/97 Date Extracted: 11/5/97

Date Analyzed: 11/7/97

CAS

Matrix Spike Summary Total Metals Units: mg/Kg (ppm) Dry Weight Basis

Sample Name:

Sta-10

Lab Code:	K9708126-010		0.11	G 1	Spiked	D (Percent Recovery
Analyte	•	MRL	Spike Level	Sample Result	Sample Result	Percent Recovery	Acceptance Limits
Antimony		0.02	36	0.09	7.97	22(A)	30-130
Arsenic		0.5	14	3.9	16.9	93	60-130
Beryllium		0.02	3.6	0.14	3.46	92	60-130
Cadmium		0.02	3.6	0.07	3.17	86	60-130
Chromium		0.2	14	31.5	45.8	102	60-130
Copper		0.1	18	10.1	27.3	96	60-130
Lead		0.02	72	67.6	120	73	60-130
Mercury(M)		0.02	0.07	1.87	2.42	NA	60-130
Nickel		0.2	36	23.9	57.8	94	60-130
Selenium		1	7.2	ND	7	97	60-130
Silver		0.02	3.6	0.13	2.83	75	60-130
Thallium		0.02	7.2	0.04	7.55	104	60-130
Zinc		0.5	72	165	139	NA	60-130

NA

Not Applicable; see case narrative.

Α

Outside acceptance limits; see case narrative.

M

Matrix Spike analysis was performed on Sample Sta-1-2-B; Lab Code K9708126-001.

Date: 11/10/97 Approved By: MS1S/102194

0×1261CP.GJ1 - Spike 11/10/97

QA/QC Report

Client:

MEC Analytical Systems, Inc.

Project:

Homeport-Pearl Harbor

LCS Matrix:

Sediment

Service Request: K9708126

Date Collected: NA
Date Received: NA

Date Analyzed: 11/7/97

Laboratory Control Sample Summary

Total Metals
Units: mg/Kg (ppm)

Source:

ERA Priority Pollutant/CLP Inorganic Soils

	EPA		Control
Analyte	Method	Result	Limits
Antimony	200.8	29.0	12.2-90.1
Arsenic	200.8	50.4	43.9-81.5
Beryllium	200.8	72.8	67.0-107
Cadmium	200.8	64.7	51.4-130
Chromium	200.8	61.7	59.4-94.6
Copper	200.8	46.6	45.9-70.4
Lead	200.8	122	82.7-160
Mercury	7471A	2.33	1.60-3.41
Nickel	200.8	139	122-204
Selenium	200.8	72.2	65.5-118
Silver	200.8	70.8	51.4-87.7
Thallium	200.8	49.4	24.0-76.8
Zinc	200.8	112	84.1-144

Approved By: _____ Date: ______ Date: ________

LCSEPA/102194 08126ICP.GJI - ERA 230 11/10/97

QA/QC Report

Client:

MEC Analytical Systems, Inc.

Project:

Homeporting - Pearl Harbor

Sample Matrix: Sediment

Service Request: K9708126

Date Collected: 10/31/97

Date Received: 11/3/97

Date TCLP Performed: 11/4/97

Date Extracted: 11/5/97

Date Analyzed: 11/6/97

Matrix Spike Summary

Toxicity Characteristic Leaching Procedure (TCLP)

EPA Method 1311

Metals

Units: mg/L (ppm) in TCLP Extract

Sample Name:

Sta-1-2-B

Lab Code:

K9708126-001

Analyte	Spike Level	Sample Result	Spiked Sample Result	Percent Recovery*
Antimony	1	ND	0.96	96
Arsenic	4	ND	3.9	98
Beryllium	0.1	ND	0.10	100
Cadmium	0.1	ND	0.10	100
Chromium	0.4	ND	0.36	90
Copper	0.5	ND	0.49	98
Lead	1	ND	0.92	92
Mercury	0.01	ND	0.010	100
Nickel	1	ND	0.91	91
Selenium	2	ND	2.1	105
Silver	0.1	ND	0.09	90
Thallium	10	ND	9.1	91
Zinc	1	ND	1.12	112

Percent recovery information is provided in order to assess the performance of the method on this matrix.

Approved By:	JL	Date:	11/10/97
TCD************************************			

QA/QC Report

Client: Project: MEC Analytical Systems, Inc. Homeporting - Pearl Harbor

LCS Matrix:

Water

Service Request: K9708126

Date Collected: NA
Date Received: NA
Date Analyzed: 11/6/97

Laboratory Control Sample Summary

Total Metals

Units: mg/L (ppm) in TCLP Extract

Source:

Inorganic Ventures ICV

CAS Percent

EPA Method	True Value	Result	Percent Recovery	Recovery Acceptance Limits	
3010A/6010A	2.5	2.6	104	85-115	
3010A/6010A	2.5	2.4	96	85-115	
3010A/6010A	0.125	0.123	98	85-115	
3010A/6010A	1.25	1.22	98	85-115	
3010A/6010A	0.5	0.504	101	85-115	
3010A/6010A	0.625	0.616	99	85-115	
3010A/6010A	2.5	2.48	99	85-115	
7470A	0.01	0.011	110	85-115	
3010A/6010A	1.25	1.26	101	85-115	
3010A/6010A	2.5	2.4	96	85-115	
	0.625	0.584	93	85-115	
3010A/6010A	7.5	7.4	99	85-115	
3010A/6010A	1.25	1.19	95	85-115	
	Method 3010A/6010A	Method Value 3010A/6010A 2.5 3010A/6010A 2.5 3010A/6010A 0.125 3010A/6010A 1.25 3010A/6010A 0.5 3010A/6010A 0.625 3010A/6010A 2.5 7470A 0.01 3010A/6010A 1.25 3010A/6010A 2.5 3010A/6010A 0.625 3010A/6010A 7.5	Method Value Result 3010A/6010A 2.5 2.6 3010A/6010A 2.5 2.4 3010A/6010A 0.125 0.123 3010A/6010A 1.25 1.22 3010A/6010A 0.5 0.504 3010A/6010A 0.625 0.616 3010A/6010A 2.5 2.48 7470A 0.01 0.011 3010A/6010A 1.25 1.26 3010A/6010A 2.5 2.4 3010A/6010A 0.625 0.584 3010A/6010A 7.5 7.4	EPA Method True Value Result Percent Recovery 3010A/6010A 2.5 2.6 104 3010A/6010A 2.5 2.4 96 3010A/6010A 0.125 0.123 98 3010A/6010A 1.25 1.22 98 3010A/6010A 0.5 0.504 101 3010A/6010A 0.625 0.616 99 3010A/6010A 2.5 2.48 99 7470A 0.01 0.011 110 3010A/6010A 1.25 1.26 101 3010A/6010A 2.5 2.4 96 3010A/6010A 0.625 0.584 93 3010A/6010A 7.5 7.4 99	

LCSEPA/102194 081261CP.JC1 - LCSW 11/10/97

QA/QC Report

Client:

MEC Analytical Systems, Inc.

Project:

Homeport-Pearl Harbor

Sample Matrix:

Sediment

Service Request: K9708126

Date Collected: 10/31/97
Date Received: 11/3/97

Date Extracted: 11/10/97

Date Analyzed: 11/11/97

Matrix Spike/Duplicate Matrix Spike Summary

Petroleum Hydrocarbons EPA Methods 9071/418.1 Units: mg/Kg (ppm) Dry Weight Basis

Sample Name:

Sta-7

Lab Code:

K9708126-007DMS

Percent Recovery

CAS Relative Spike Level Sample Spike Result Acceptance Percent Analyte MS **DMS** Result MS **DMS** MS **DMS** Limits Difference Oil 1400 1500 21 1310 1380 92 91 59-125 2

approved By:	My	Date:	11/12/97	

QA/QC Report

Client: Project: MEC Analytical Systems, Inc.

Homeport-Pearl Harbor

LCS Matrix:

Sediment

Service Request: K9708126

Date Collected: NA Date Received: NA Date Extracted: 11/10/97

Date Analyzed: 11/11/97

Laboratory Control Sample Summary Petroleum Hydrocarbons EPA Methods 9071/418.1 Units: mg/Kg (ppm)

			CAS		
				Percent	
				Recovery	
	True		Percent	Acceptance	
Analyte	Value	Result	Recovery	Limits	
Oil	800	766	96	72-111	

Date: 1/12/97 Approved By:

LCS/102194 08126PHC.CRI - 418sLCS 11/11/97

Page No.:

QA/QC Report

Client:

MEC Analytical Systems, Inc.

Project:

Homeport-Pearl Harbor

Sample Matrix:

Sediment

Service Request: K9708126

Date Collected: 10/31/97 Date Received: 11/3/97

Date Extracted: 11/4/97

Date Analyzed: 11/7 - 11/9/97

Surrogate Recovery Summary

Organochlorine Pesticides and Polychlorinated Biphenyls

Prep Method:

EPA 3550A

Analysis Method: 8080

Units: Percent

Basis: Dry

		Test	Percent Recovery				
Sample Name	Lab Code	Notes	Tetrachloro-m-xylene	Decachlorobiphenyl			
04- 1 2 D	770700107 001		•				
Sta-1-2-B	K9708126-001		32	40			
Sta-1-2-T	K9708126-002		25	56			
Sta-3	K9708126-003		32	47			
Sta-4	K9708126-004		43	58			
Sta-5	K9708126-005		38	51			
Sta-6	K9708126-006		38	46			
Sta-7	K9708126-007		45	51			
Sta-8	K9708126-008		46	52			
Sta-9	K9708126-009		33	45			
Sta-10	K9708126-010		41	47			
Reference	K9708126-011		44	65			
Method Blank	KWG9703407-4		50	95			
Sta-7	K9708126-007MS		49	84			
Sta-7	K9708126-007DMS		49	81			
Lab Control Sample	KWG9703407-3		60	86			

CAS Acceptance Limits:

20-107

20-142

			1 1
Approved By:	in	Date:	11/14/97
SI IP 2/021307a	<u> </u>		

08126SVG.LP3 - SUR 11/13/97

QA/QC Report

Client:

MEC Analytical Systems, Inc.

Project:

Homeport-Pearl Harbor

Sample Matrix:

Sediment

Service Request: K9708126

Date Collected: 10/31/97

Date Received: 11/3/97

Date Extracted: 11/4/97

Date Analyzed: 11/8/97

Matrix Spike/Duplicate Matrix Spike Summary Organochlorine Pesticides and Polychlorinated Biphenyls

ample Name:

Sta-7

K9708126-007MS

K9708126-007DMS

Units: ug/Kg (ppb)

Basis: Dry

Lab Code: Test Notes:

Percent Recovery

											CAS	Relative	
	Prep	Analysis		Spike	e Level	Sample	Spike	Result			Acceptance	Percent	Result
Analyte	Method	Method	MRL	MS	DMS	Result	MS	DMS	MS I	DMS	Limits	Difference 1	Notes
amma-BHC(Lindane)	EPA 3550A	8080	2	11	11	ND	7	7	64	64	20-141	<1	
Heptachlor	EPA 3550A	8080	2	11	11	ND	7	7	64	64	20-108	<1	
Aldrin	EPA 3550A	8080	2	11	11	ND	6	6	55	55	20-181	<1	
_Dieldrin	EPA 3550A	8080	2	11	11	ND	8	9	73	82	20-183	12	
Endrin	EPA 3550A	8080	2	11	11	ND	9	9	82	82	20-164	<1	
4,4'-DDT	EPA 3550A	8080	2	11	11	ND	7	8	64	73	20-185	13	

0x126SVG.LP3 - DMS 11/13/97

QA/QC Report

Client:

MEC Analytical Systems, Inc.

Project:

Homeport-Pearl Harbor

LCS Matrix:

Sediment

Service Request: K9708126

Date Collected: NA

Date Received: NA

Date Extracted: 11/4/97

Date Analyzed: 11/7/97

Laboratory Control Sample Summary

Organochlorine Pesticides and Polychlorinated Biphenyls

Sample Name:

Lab Control Sample

Units: ug/Kg (ppb)

Lab Code: KWC

KWG9703407-3

Basis: Dry

Test Notes:

CAS Percent Recovery Prep **Analysis** Percent Acceptance True Result Analyte Method Method Value Result Recovery Limits Notes gamma-BHC(Lindane) EPA 3550A 8080 13 10 77 21-123 Heptachlor EPA 3550A 8080 13 9 69 31-112 Aldrin 8080 9 EPA 3550A 13 69 26-127 Dieldrin EPA 3550A 8080 13 85 .11 18-161 Endrin EPA 3550A 8080 13 11 85 32-135 4,4'-DDT EPA 3550A 8080 77 13 10 30-146

LCS/031497a 0×126SVG.LP3 - LCS 11/13/97

Page No.:

QA/QC Report

Client:

MEC Analytical Systems, Inc.

Project:

Homeport-Pearl Harbor

Sample Matrix:

Sediment

Service Request: K9708126

Date Collected: 10/31/97

Date Received: 11/3/97

Date Extracted: 11/4/97

Date Analyzed: 11/7/97

Surrogate Recovery Summary

Butyltins

Prep Method:

· C.A.Krone et al.

Analysis Method: TIN-SVG

Units: PERCENT

Basis: NA

		Test	Percent :	Recovery
Sample Name	Lab Code	Notes	Tri-n-propyltin	Tri-n-pentyltin
Sta-1-2-B	K9708126-001		115	89
Sta-1-2-T	K9708126-002		126	103
Sta-3	K9708126-003		143	104
Sta-4	K9708126-004		111	77
Sta-5	K9708126-005		116	84
Sta-6	K9708126-006		86	80
Sta-7	K9708126-007		49	48
Sta-8	K9708126-008		164	110
Sta-9	K9708126-009		211 A	136
Sta-10	K9708126-010		141	116
Reference	K9708126-011		177	127
Reference	K9708126-011MS		173	145
Reference	K9708126-011DMS		110	62
Lab Control Sample	K971104-SL		47	58
Method Blank	K971104-SB		131	115

CAS Acceptance Limits:

20-195

20-172

Outside acceptance limits; see case narrative.

Approved By:

SUR2/052595 08126SVG.JS1 - SUR 11/14/97

Date: 11/14/17

00050

QA/QC Report

Client:

MEC Analytical Systems, Inc.

Project:

Homeport-Pearl Harbor

Sample Matrix:

Sediment

Service Request: K9708126

Date Collected: 10/31/97

Date Received: 11/3/97

Date Extracted: 11/8/97
Date Analyzed: 11/10/97

Surrogate Recovery Summary

Butyltins

Prep Method:

C.A.Krone et al.

Analysis Method: TIN-SVG

Units: PERCENT

Basis: NA

Sample Name	Lab Code	Test Notes	Percent Tri-n-propyltin	Recovery Tri-n-pentyltin
Sta-1-2-T	K9708126-002R		68	67
Sta-3	K9708126-003R		95	88
Reference	K9708126-011R		86	76
Reference	K9708126-011MS		111	104
Reference	K9708126-011DMS		90	78
Lab Control Sample	K971108-SL		55	63
Method Blank	K971108-SB		118	110

CAS Acceptance Limits:

20-195

20-172

Approved By:	1		I	Date:	1/14/
	$\neg \tau$	_			

SUR2/052595 08126SVG.JS4 - SUR 11/14/97

QA/QC Report

Client:

MEC Analytical Systems, Inc.

Project:

Homeport-Pearl Harbor

Sample Matrix:

Sediment

Service Request: K9708126

Date Collected: 10/31/97

Date Received: 11/3/97

Date Extracted: 11/4/97

Date Analyzed: 11/7/97

Matrix Spike/Duplicate Matrix Spike Summary

Butyltins

Sample Name:

Reference

K9708126-011MS,

K9708126-011DMS

Units: ug/Kg (ppb)

Basis: Dry

Lab Code: Test Notes:

Percent Recovery

	Prep	Analysis		Snik	e T evel	Sample	Snike	Recult			CAS Acceptance	Relative Percent	Result
Analyte	Method	Method	MRL	•	DMS	Result	MS	DMS	MS	DMS	Limits	Difference	Notes
Tri-n-butyltin	C.A.Krone et al	TIN-SVG	1	13	13	1	22	10	162	69	20-200	75	
Di-n-butyltin	C.A.Krone et al	TIN-SVG	1	13	13	ND	19	8	146	62	20-200	81	
n-Butyltin	C.A.Krone et al	TIN-SVG	1	13	13	1	4	3	23	15	20-200	29	

08126SVGJS1 - DMS 11/14/97

Page No.:

QA/QC Report

Client:

MEC Analytical Systems, Inc.

Project:

Homeport-Pearl Harbor

Sample Matrix:

Sediment

Service Request: K9708126

Date Collected: 10/31/97

Date Received: 11/3/97

Date Extracted: 11/8/97

Date Analyzed: 11/10/97

Matrix Spike/Duplicate Matrix Spike Summary

Butyltins

Sample Name:

Reference

Lab Code: Test Notes: K9708126-011MS,

K9708126-011DMS

Units: ug/Kg (ppb)

Basis: Dry

Percent Recovery

Analyte	Prep Method	Analysis Method	MRL	•	Level DMS	Sample Result	Spike MS	Result DMS	MS	DMS	CAS Acceptance Limits	Relative Percent Difference	Result Notes
Tri-n-butyltin	C.A.Krone et al	TIN-SVG	1	13	13	ND	15	12	115	92	20-200	22	
Di-n-butyltin	C.A.Krone et al	TIN-SVG	1	13	13	ND	13	11	100	85	20-200	17	
n-Butyltin	C.A.Krone et al	TIN-SVG	1	13	13	ND	0.1	0.04	<1	<1	20-200	86	Α

Δ

Outside acceptance limits; see case narrative.

Approved By:

DMS/052595

08126SVG.JS4 - DMS 11/14/97

Date: 11/14/97

00053

Page No

QA/QC Report

Client:

MEC Analytical Systems, Inc.

Project:

Homeport-Pearl Harbor

LCS Matrix:

Sediment

Service Request: K9708126

Date Collected: NA

Date Received: NA

Date Extracted: 11/4/97

Date Analyzed: 11/7/97

Laboratory Control Sample Summary

Butyltins

Sample Name:

Lab Control Sample

Lab Code:

K971104-SL

Dutyluli

Units: ug/Kg (ppb)

Basis: Dry

Test Notes:

CAS Percent Recovery Result Percent Acceptance **Analysis** True Prep Notes Value Recovery Limits Method Method Result Analyte TIN-SVG 10 6 60 20-164 C.A.Krone et al Tri-n-butyltin 3 30 20-164 10 Di-n-butyltin C.A.Krone et al TIN-SVG TIN-SVG 10 1 10 20-164 Α C.A.Krone et al n-Butyltin

Α

Outside acceptance limits, see case narrative.

Approved By: ____

LCS/52595 08126SVG.JS1 - LCS 11/14/97 Date: 11/14/97

00054

QA/QC Report

Client:

MEC Analytical Systems, Inc.

Project:

Homeport-Pearl Harbor

LCS Matrix:

Sediment

Service Request: K9708126

Date Collected: NA

Date Received: NA

Date Extracted: 11/8/97

Date Analyzed: 11/10/97

Laboratory Control Sample Summary

Butyltins

Sample Name:

Lab Control Sample

Lab Code:

K971108-SL

Dutyllin

Units: ug/Kg (ppb)

Basis: Dry

Test Notes:

CAS Percent Recovery Prep Analysis True Percent Acceptance Result Analyte Method Method Value Result Recovery Limits Notes Tri-n-butyltin C.A.Krone et al TIN-SVG 10 7 70 20-164 Di-n-butyltin C.A.Krone et al TIN-SVG 10 7 70 20-164 n-Butyltin C.A.Krone et al TIN-SVG 10 11 110 20-164

Approved By:

1

Date: 11/14/97

LCS/52595 08126SVG.JS4 - LCS 11/14/97

Page No:

QA/QC Report

Client:

MEC Analytical Systems, Inc.

Project:

Homeport-Pearl Harbor

Sample Matrix:

Sediment

Service Request: K9708126

Date Collected: 10/31/97 **Date Received:** 11/3/97

Date Extracted: 11/4/97 **Date Analyzed:** 11/7 - 11/11/97

Surrogate Recovery Summary

Prep Method: EPA 3550A Analysis Method: SIM Base Neutral/Acid Semivolatile Organic Compound

Units: Percent Basis: Dry

		Test		Per	c e n t	Rec	o v e r y	
Sample Name	Lab Code	Notes	2FP	PHIL	NBZ	FBP	TBP	TPH
Sta-1-2-B	K9708126-001		86	91	83	. 76	104	126
Sta-1-2-T	K9708126-002		81	88	79	80	115 A	169 A
Sta-3	K9708126-003		84	86	82	85	117 A	147 A
Sta-4	K9708126-004		77	88	78	80	120 A	159 A
Sta-5	K9708126-005		75	81	80	73	99	155 A
Sta-6	K9708126-006		64	63	74	76	108	147 A
Sta-7	K9708126-007		65	68	81	77	111 A	130
Sta-8	K9708126-008		62	58	81	78	105	128
Sta-9	K9708126-009		51	55	64	68	95	139
Sta-10	K9708126-010		53	73	79	88	126 A	140
Reference	K9708126-011		84	84	80	77	85	98
Reference	K9708126-011MS		91	91	88	85	9 9	102
Reference	K9708126-011DMS		74	76	69	69	85	90
Lab Control Sample	KWG9703390-3		58	78	82	80	36	96
Method Blank	KWG9703390-4		44	69	88	82	15	104

CAS Acceptance Limits: 5-106 5-96 5-134 5-120 5-110 15-145

2FP 2-Fluorophenol
PHL Phenol-d5
NBZ Nitrobenzene-d5
FBP 2-Fluorobiphenyl
TBP 2,4,6-Tribromophenol

TPH Terphenyl-d14

Outside acceptance limits; see case narrative.

Approved By:

Dus

Date: //-13-57

QA/QC Report

Client:

MEC Analytical Systems, Inc.

Project:

Homeport-Pearl Harbor

Sample Matrix:

Sediment

Service Request: K9708126

Date Collected: 10/31/97

Date Received: 11/3/97

Date Extracted: 11/4/97
Date Analyzed: 11/7/97

Matrix Spike/Duplicate Matrix Spike Summary Base Neutral/Acid Semivolatile Organic Compound

Sample Name:

Reference

Lab Code: Test Notes: K9708126-011MS

K9708126-011DMS

Units: ug/kg

Basis: Dry

Percent Recovery

											CAS	Relative	
	Prep	Analysis		Spike	Level	Sample	Spike	Result			Acceptance	Percent	Result
Analyte	Method	Method	MRL	MS	DMS	Result	MS	DMS	MS	DMS	Limits	Difference	Notes
Phenol	EPA 3550A	SIM	50	270	270	ND	225	195	83	72	21-100	14	_
2-Chlorophenol	EPA 3550A	SIM	50	270	270	ND	214	185	79	69	20-105	15	
4-Chloro-3-methylphenol	EPA 3550A	SIM	50	270	270	ND	232	218	86	81	23-108	6	
Acenaphthene	EPA 3550A	SIM	10	270	270	ND	227	207	84	77	43-117	9	_
4-Nitrophenol	EPA 3550A	SIM	100	270	270	ND	250	230	93	85	22-113	8	
Pyrene	EPA 3550A	SIM	20	270	270	ND	249	239	92	89	24-143	4	

Approved By: _______ Date: _/ 1. / 3 - 5 7

QA/QC Report

Client:

MEC Analytical Systems, Inc.

Project:

Homeport-Pearl Harbor

LCS Matrix:

Sediment

Service Request: K9708126

Date Collected: NA

Date Received: NA

Date Extracted: 11/4/97

Date Analyzed: 11/7/97

Laboratory Control Sample Summary

Base Neutral/Acid Semivolatile Organic Compound

Sample Name: Lab Code:

Lab Control Sample

KWG9703390-3

Units: ug/kg Basis: Dry

Test Notes:

Analyte	Prep Method	Analysis Method	True Value	Result	Percent Recovery	CAS Percent Recovery Acceptance Limits	Result Notes
Phenol	EPA 3550A	SIM	250	199	80	32-96	
2-Chlorophenol	EPA 3550A	SIM	250	155	62	34-102	
4-Chloro-3-methylphenol	EPA 3550A	SIM	250	203	81	36-102	
Acenaphthene	EPA 3550A	SIM	250	238	95	44-112	
4-Nitrophenol	EPA 3550A	SIM	250	240	96	23-113	
Pyrene	EPA 3550A	SIM	250	252	101	44-126	

Date: 11:13-57 Approved By:

LCS/031497a

(Ma Check One) ه د(و

6060 Corte del Cedro • Carlsbad, CA 92009-1514 • (619) 931-9225, FAX 931-9251 6060 Corte del Cedro ● Carisbad, CA SZCUSTICT (17.5), FAX 931-1580 2433 Impala Drive ● Carisbad, CA 92008 ● (619) 931-8081, FAX 931-1580 98 Main Street, Suite #428 ● Tiburon, CA 94920 ● (415) 435-1847, FAX 435-0479 DATE _

 $\chi g g g g g$ 00283

12/47

PAGE

690**0**0 からんのよのい CAS Kelso 9 RECEIVED BY Sta-1-2-B 7 Str-のく しょりんん ANALYSIS/TEST REQUESTED RELINQUISHED BY PRESERVED HOW/ COMMENTS 0 4 US COMENTS SPECIAL INSTRUCTIONS/COMMENTS AHMA 6 CONTAINERS RELINQUISHED BY NUMBER & TYPE OF AN JOH INITIALS Sel Harbor Jarine MATRIX The chin TIME PROJECT NAME/SURVEY/PROJECT NUMBER Khove Airbill N reported. 12/18/07 10/30/27 10/31/67 N 32/47 123/97 12/31/57 123/17 11/47 DATE 八日の SHIPPING: () () Sec RELINQUISHED BY 2 Reference SAMPLE J.D. PROJECT MÅNAGEF 4/1 a 1 Shipping VIA: PHONE/FAX COMPANY ADDRESS 7 314

Signature

Signature

Signature

Firm

E

Fig

Date/Time

Date/Time

Date/Time

YELLOW - lab

WHITE - return to originator

Date/Time

Date/Time //

-

Date/Time First

Appendix E

Bioassay Report

Final Report Sediment Characterization Study CVN Homeporting Project Pearl Harbor, Hawaii

Prepared for

MEC Analytical Systems 2433 Impala Drive Carlsbad, California 92008

Prepared by

Ogden Environmental and Energy Services Co., Inc. Bioassay Laboratory 5550 Morehouse Drive, Suite B San Diego, California 92121 (619) 458-9044

December 1997 Project No. 3-1842-1000

SECTION 1 - INTRODUCTION

Toxicity testing was conducted on marine sediments collected in Pearl Harbor, Hawaii in support of the EIS impacts analysis for Aircraft Carrier Homeporting Within Pacific Fleet's United States Assets. Screening bioassays on bulk sediment were performed in accordance with standardized test protocols using the amphipod Grandidierella japonica and larvae of the bivalve Crassostrea gigas. The sediment testing program was coordinated by MEC Analytical Systems, Inc. (MEC) of Carlsbad, California. Sediments were collected by MEC personnel between October 30 and October 31, 1997 in Pearl Harbor, Hawaii. Reference sediment was collected on November 1, 1997 in Lanakai Beach, Oahu, Hawaii. Toxicity testing was performed between November 4 and November 14, 1997 at the Ogden Environmental and Energy Services Bioassay Laboratory in San Diego, California. All tests were conducted in accordance with the project sampling and analysis plan (Appendix A).

SECTION 2 - METHODS AND MATERIALS

2.1 SAMPLE COLLECTION AND SHIPPING

Sediment collection was initiated on October 30 and completed on November 1, 1997. Samples were received by MEC in Carlsbad, California by freight service on November 1 and 3, 1997. Appropriate chain-of-custody procedures were employed during collection and transport of the samples. Following receipt, the samples were homogenized and sieved by MEC and Ogden personnel in MEC's laboratory. Ogden transported the prepared samples in a cooler containing blue ice packs to Ogden's Bioassay Laboratory in San Diego. The sediment samples were received in good condition. Sample descriptions and identification information were recorded in the laboratory's sample receipt log. The samples were then placed in the laboratory's coldroom and maintained at 4°C until test initiation. The samples were identified as Reference, 1-2T (1T+2T), 1-2B (1B+2B), 3, 4, 5, 6, 7, 8, 9, and 10.

2.2 ORGANISM PROCUREMENT AND HANDLING

Amphipods

Test specimens of *Grandidierella japonica* were collected in Newport Bay, California by Mr. David Gutoff. Sediment cores were taken from the bay bottom and lightly sieved to remove the amphipods. The test specimens were then transported in clean, lined buckets containing sieved site sediment and seawater. The amphipods were identified and sorted to the species level by Mr. Gutoff prior to transport to the laboratory. Test animals were delivered to the lab on November 1, 1997.

Mr. Gutoff maintains a quality assurance log containing the date, weather conditions, physical conditions, and any specific comments pertaining to each collection event. Upon arrival at the laboratory, organism receipt information was recorded in a log book where physical parameters and animal condition were specified. The amphipods were acclimated to test conditions in order to promote and confirm animal health prior to test initiation. During the acclimation period, the animals were observed for any indications of significant mortality.

Bivalves

The test animal used was the Pacific oyster *Crassostrea gigas* procured from Mr. A.K. Siewers of Santa Cruz, California. The oyster brood stock were packed and shipped to arrive at the laboratory on November 7, 1997. In the laboratory, the date of organism receipt was recorded in a log book where arrival conditions were also noted. Oyster brood stock were acclimated to test conditions upon arrival and observed for mortality and abnormal behavior prior to test initiation.

2.3 BIOASSAY PROTOCOLS

Amphipod Bioassays

Amphipod tests were conducted according to the guidelines outlined in ASTM E 1367-92. Animals were exposed to test sediments for 10 days to determine any effect on amphipod survival. Toxicity test exposures were conducted under static-renewal conditions in 1-liter glass jars. Five replicates were analyzed for each test, reference, or control site. Two centimeters of test, reference, or control sediment were placed in each test chamber and covered with 950 milliliters (mL) of clean seawater. Test chambers were aerated through a 1-mL, cotton-plugged pipette at a rate of approximately one bubble per second. Test chambers were randomized and placed in an environmental chamber maintained at 15±1°C. The temperature of the testing chamber is continuously recorded and the data generated is maintained onsite.

Tests were initiated with the random addition of twenty amphipods to each of the five replicates per sediment type. Replicate test chambers for each test site, reference, and control were used for daily water quality measurements. Overlying water was renewed every other day in all test chambers. After 10 days, surviving test animals were gently removed by sieving the entire contents of each beaker through a Nitex® mesh screen. Organisms were counted and survival was determined based on visual observations.

Temperature, dissolved oxygen, pH, and salinity were monitored daily in a surrogate test chamber for each sediment site. All water quality measurements recorded during the 10-day amphipod exposure were in the range defined as acceptable by the test protocol. Subsamples of overlying water from each site were collected for ammonia analysis both at the beginning and end of the test period.

A reference toxicant test was conducted in conjunction with the site sediment tests to ensure that organisms were not impacted by stresses other than contamination in the test material (e.g., injury or disease, unfavorable physical or chemical conditions in the test containers, improper handling, or acclimation).

Bivalve Bioassays

Bivalve larvae tests were conducted according to the guidelines outlined in ASTM E 724-89. Survival and development of larvae were evaluated as endpoints to determine the effect of suspended-particulate material on bivalve larvae. Testing was conducted in 20-mL glass scintillation vials maintained at 20±1°C. Five replicates were tested for each concentration using 10 mL of test material per test chamber. Test chambers were arranged in randomized fashion. Fertilized eggs were introduced randomly into each test vessel from a well-mixed stock. Embryos were exposed to the test material for 67 hours. Development was not complete at the end of the 48-hour incubation period, therefore, the test protocol allows for the continuation of the test until complete development is observed in a surrogate control vial. The assays were terminated by adding 1 mL of 5 percent buffered formalin to each test vial.

Larval survival and development was determined by transferring a subsample of the preserved larvae onto a Sedgwick-Rafter® counting chamber, followed by visual observations made using a compound microscope. A total larvae count was made to assess survival. To determine normal development, all surviving larvae were scored as either normal or abnormal. Normal larvae were defined as those that had successfully reached the D-shaped prodissoconch I development stage. Photographs of normal and abnormal bivalve larvae are contained in the ASTM protocol.

Temperature, dissolved oxygen, pH, and salinity were monitored daily in a surrogate test chamber for the 100 percent test material from each site. All water quality measurements during the 67-hour exposure were in the range defined as acceptable by the test protocol. Subsamples of the lab control and the 100 percent test material from each site were collected for ammonia analysis both at the beginning and end of the test period.

A concurrent reference toxicant test using copper chloride was also conducted to ensure that the organisms were not being affected by stresses other than contamination in the test material (e.g., injury or disease, unfavorable physical or chemical conditions in the test chambers, improper handling, or insufficient acclimation).

2.4 QUALITY ASSURANCE PROCEDURES - TOXICITY TESTS

Test organisms used in the toxicity tests were collected in areas known to be generally free of pollutants or purchased from reputable culturist. Organisms were purchased from vendors who were screened by reputation, depth of knowledge concerning the organism of choice, and their ability to consistently deliver healthy test organisms. Upon receipt in the bioassay lab, test organisms were slowly acclimated to test conditions in environmentally controlled holding areas. Acclimation was performed in accordance with the test protocol associated with each test organism. Test organisms are evaluated on a performance basis for every test conducted in the laboratory.

The Bioassay Laboratory is certified by the State of Washington to conduct sediment testing (Washington is the only state that currently offers sediment testing certification). Ogden has consistently complied with all quality assurance regulations related to the Washington State certification program. The laboratory implements quality assurance procedures with application to all aspects of testing from source, handling, condition, receipt, and storage of samples and test organisms as well as calibration and maintenance of instruments and equipment used during testing. All data generated by the laboratory are monitored for completeness and accuracy at the end of each day and at the end of each individual test period to ensure generation of the highest quality data. Laboratory negative control and reference toxicant (i.e., positive control) testing are conducted concurrent to every sample assay and act to confirm test organism quality, sound laboratory conditions, and appropriateness of procedures.

2.5 STATISTICAL ANALYSES

Results were calculated using ToxCalc Comprehensive Toxicity Data Analysis and Database Software, Version 5.0. Statistical analyses for the amphipod assays were conducted by comparing the reference sediment with each test site. Probit Method was used to calculate the lethal effect concentration (LC_{50}) for the amphipod reference toxicant data.

Bivalve development data were analyzed by comparing the lab control with each test site concentration series. The LC_{50} and the median effect concentration (EC_{50}) were calculated for survival and normality data, respectively, for each of the bivalve sites. Probit Method was used to calculate the EC_{50} normality value for the bivalve reference toxicant data.

SECTION 3 - RESULTS

Test results are summarized in Table 3-1. The results for each test are outlined on Tables 3-2 through 3-13. Appendices B, C, and D contain water quality observations, test site statistical analyses, and reference toxicant data, respectively.

Table 3-1. Bioassay Results Summary Homeporting Pearl Harbor Grandidierella japonica and Crassostrea gigas

Test Site	Solid Phase Analyses Amphipod Average Percent Survival	Suspended Particula Bivalve Survival LC ₅₀ (percent elutriate)	ite Phase Analyses Bivalve Normality EC ₅₀ (percent elutriate)
Control	98	NA	NA
Reference	94	>100	>100
1-2T	92	>100	>100
1-2B	89	67	65
3	90	77	73
4	92	77	62
5	93	>100	>100
6	97	81	71
7	92	, 70	70
8	97	>100	>100
9	95	>100	>100
10	95	>100	>100

NA = Not applicable

3.1 AMPHIPOD BIOASSAYS

Mean amphipod laboratory control survival was 98 percent. This value exceeds the protocol requirement of 90 percent and indicates that the test conditions were adequate and the test series was valid. The mean reference toxicant control survival was 100 percent. The LC₅₀ value was determined to be 2.4 mg/L CdCl₂.

Reference Survival

The average amphipod reference survival was 94 percent. No minimum survival requirements are specified in the Green Book or the ASTM protocol for reference sediments. The high level of reference survival, however, provides verification that testing conditions were adequate, and meaningful comparisons can be made with test sediment replicates.

Site 1-2T Survival

Average survival for this site was 92 percent. Statistical analysis indicated no significant difference in survival between the reference and test site.

Site 1-2B Survival

Average survival for this site was 89 percent. Statistical analysis indicated no significant difference in survival between the reference and test site.

Site 3 Survival

Average survival for this site was 90 percent. Statistical analysis indicated no significant difference in survival between the reference and test site.

Site 4 Survival

Average survival for this site was 92 percent. Statistical analysis indicated no significant difference in survival between the reference and test site.

Site 5 Survival

Average survival for this site was 93 percent. Statistical analysis indicated no significant difference in survival between the reference and test site.

Site 6 Survival

Average survival for this site was 97 percent. Statistical analysis indicated no significant difference in survival between the reference and test site.

Site 7 Survival

Average survival for this site was 92 percent. Statistical analysis indicated no significant difference in survival between the reference and test site.

Site 8 Survival

Average survival for this site was 97 percent. Statistical analysis indicated no significant difference in survival between the reference and test site.

Site 9 Survival

Average survival for this site was 95 percent. Statistical analysis indicated no significant difference in survival between the reference and test site.

Site 10 Survival

Average survival for this site was 95 percent. Statistical analysis indicated no significant difference in survival between the reference and test site.

3.2 BIVALVE LARVAE BIOASSAYS

The average number of larvae contained in the five laboratory control replicates at test termination was determined to be 12.2 bivalve larvae per mL. This average was used as a baseline to determine if statistically significant reductions in survival occurred in the test treatments. A single group of control replicates was tested in association with the test sites. Average laboratory control normality was 93 percent. This average was calculated by dividing the total number of normal larvae by the total larvae counted. This value exceeds the protocol requirement of 70 percent and indicates that the test conditions were adequate and the test series was valid. The reference toxicant exhibited an average control normality of 89 percent. The EC₅₀ value was 13.9 µg/L CuCl₂ for normality data.

Reference Survival and Normality

Statistical analyses indicated no significant difference in either survival or normality between the lab control and any elutriate treatment. The LC_{50}/EC_{50} values for both survival and normality were >100 percent elutriate.

Site 1-2T Survival and Normality

Statistical analyses indicated no significant difference in either survival or normality between the lab control and any elutriate treatment. The LC_{50}/EC_{50} values for both survival and normality were >100 percent elutriate.

Site 1-2B Survival and Normality

Statistical analyses indicated a significant difference in survival between the lab control and the 50 and 100 percent elutriate treatments. Statistical analyses indicated a

significant difference in normality between the lab control and the 50 and 100 percent elutriate treatments. The LC_{50} for survival was 67 percent elutriate and the EC_{50} normality value was 65 percent elutriate.

Site 3 Survival and Normality

Statistical analyses indicated a significant difference in survival between the lab control and the 10, 50, and 100 percent elutriate treatments. Further analyses indicated a significant difference in normality between the lab control and the 50 and 100 percent elutriate treatments. The LC_{50} for survival was 77 percent elutriate and the EC_{50} normality value was 73 percent elutriate.

Site 4 Survival and Normality

Statistical analyses indicated a significant difference in survival between the lab control and the 1, 10, 50, and 100 percent elutriate treatments. Analyses of normality data indicated a significant difference between the lab control and the 50 and 100 percent elutriate treatments. The LC_{50} survival value was 77 percent elutriate and the EC_{50} normality value was 62 percent elutriate.

Site 5 Survival and Normality

Statistical analyses indicated no significant difference in survival between the lab control and any elutriate treatment. Statistical analyses indicated a significant difference in normality between the lab control and the 50 and 100 percent elutriate treatments. The LC_{50}/EC_{50} values for both survival and normality were >100 percent elutriate.

Site 6 Survival and Normality

Statistical analyses indicated a significant difference in survival between the lab control and the 100 percent elutriate treatment. Statistical analyses indicated a significant difference in normality between the lab control and the 50 and 100 percent elutriate

treatments. The LC₅₀ survival value was 81 percent elutriate and the EC₅₀ normality value was 71 percent elutriate.

Site 7 Survival and Normality

Statistical analyses indicated a significant difference in survival between the lab control and the 10, 50, and 100 percent elutriate treatments. Statistical analyses indicated a significant difference in normality between the lab control and the 10, 50, and 100 percent elutriate treatments. The LC_{50} survival value was 70 percent elutriate and the EC_{50} normality value was 70 percent elutriate.

Site 8 Survival and Normality

Statistical analyses indicated no significant difference in survival between the lab control and any elutriate treatment. A significant difference in normality was identified between the lab control and the 1, 10, 50, and 100 percent elutriate treatments. The LC_{50}/EC_{50} values for both survival and normality were >100 percent elutriate.

Site 9 Survival and Normality

Statistical analyses indicated a significant difference in survival between the lab control and the 100 percent elutriate treatment. Analyses of normality data indicated a significant difference between the lab control and the 50 and 100 percent elutriate treatments. The LC_{50}/EC_{50} values for both survival and normality were >100 percent elutriate.

Site 10 Survival and Normality

Statistical analyses indicated no significant difference in either survival or normality between the lab control and any elutriate treatment. The LC_{50}/EC_{50} values for both survival and normality were >100 percent elutriate.

Table 3-2. 10-Day Solid Phase Bioassay with Grandidierella japonica

Control A 18 2 90 B 20 0 100 C 20 0 100 D 20 0 100 E 20 0 100 B 17 3 85 C 19 1 95 D 20 0 100 E 20 0 100 94 4 18 2 90 B 18 2 90 90 B 18 2 90 92 1-2B A 18 2 90 90 B 17 3 85 90 92 1-2B A 18 2 90 90 90 B 17 3 85 89 89 3 A 19 1 95 90 B 18 2 90	Test ±		Number Alive	Number Dead	Percent Survival	Average Percent Survival
B 20 0 100 100 P8 Reference A 18 2 90 90 100 P4 B 17 3 85 P5	Site	кер	Alive			Creent Burvivar
C	Control					
D 20 0 100 98		В				
Reference A 18 2 90 90 85		C				
Reference A 18 2 90 B 17 3 85 C 19 1 95 D 20 0 100 E 20 0 100 E 20 0 100 94 1-2T A 18 2 90 C 17 3 85 D 19 1 95 E 20 0 100 92 1-2B A 18 2 90 B 17 3 85 C 18 2 90 D 19 1 95 E 17 3 85 S 89 3 A 19 1 95 E 17 3 85 S 89 3 A 19 1 95 C 18 2 90 D 17 3 85 E 18 2 90 D 17 3 85 E 18 2 90 D 90 4 A 16 4 80 B 19 1 95 C 19 1 95		D E				98
B 17 3 85 95 100 94 1-2T A 18 2 90 90 90 100 92 1-2B A 18 2 90 100 92 1-2B A 18 2 90 90 90 90 90 90 90 90 3 A 19 1 9 1 95 85 89 3 A 19 17 3 85 85 89 3 A 19 1 95 85 89		E	20		700	
B	Reference	Α	18	2	90	
D 20 0 100 94		В		3		
E 20 0 100 94 1-2T A 18 2 90 B 18 2 90 C 17 3 85 D 19 1 95 E 20 0 100 92 1-2B A B B 17 B C 18 2 90 90 90 4 A B B 19 C 19 1 95 90 90 90 4 B B 19 C 19 1 95 95 90 90 90 90		С	19			
1-2T						0.4
B		E	20	0	100	94
B	1_2T	Δ	18	2	90	
D E 20 0 100 95 100 92 1-2B A 18 2 90 85 85 85 89 1-2B A 18 2 90 90 90 90 90 A 19 1 95 89 3 A 19 1 95 89 3 A 19 1 95 89 A 18 2 90 90 90 4 A A 16 4 80 80 90 90 4 A A 16 4 80 80 90 90 4 A A 16 4 80 95 95 95	1-21	В		2		
D E 20 0 100 95 100 92 1-2B A 18 2 90 85 85 85 89 1-2B A 18 2 90 90 90 90 90 A 19 1 95 89 3 A 19 1 95 89 3 A 19 1 95 89 A 18 2 90 90 90 4 A A 16 4 80 80 90 90 4 A A 16 4 80 80 90 90 4 A A 16 4 80 95 95 95		C		3		
1-2B		D		1		
B 17 3 85 90 D 19 1 95 85 89 3 A 19 1 95 90 D 18 2 90 D 17 3 85 E 18 2 90 D 17 3 85 E 18 2 90 90 90 4 A A 16 A 80 B 19 C 19 1 95		E	20	0	100	92
B 17 3 85 90 D 19 1 95 85 89 3 A 19 1 95 90 D 18 2 90 D 17 3 85 E 18 2 90 D 17 3 85 E 18 2 90 90 90 4 A A 16 A 80 B 19 C 19 1 95	1.2R	Δ	18	2	90	,
3 A 19 1 95 B 18 2 90 C 18 2 90 D 17 3 85 E 18 2 90 90 4 A 16 4 80 B 19 1 95 C 19 1 95	1-20	В		3		
3 A 19 1 95 B 18 2 90 C 18 2 90 D 17 3 85 E 18 2 90 90 4 A 16 4 80 B 19 1 95 C 19 1 95		C		2	90	
3 A 19 1 95 B 18 2 90 C 18 2 90 D 17 3 85 E 18 2 90 90 4 A 16 4 80 B 19 1 95 C 19 1 95		D		1		
B 18 2 90 D 17 3 85 E 18 2 90 90 90 90 90 90		E	17	. 3	85	89
B 18 2 90 D 17 3 85 E 18 2 90 90 90 90 90 90	2	Δ	10	1	95	
D 17 3 85 90 90 4 A 16 4 80 B 19 1 95 C 19 1 95	,	B		2		
D 17 3 85 90 90 4 A 16 4 80 B 19 1 95 C 19 1 95		Č		2		
4 A 16 4 80 B 19 I 95 C 19 I 95						
B 19 I 95 C 19 I 95		E	18	2	90	90
B 19 I 95 C 19 1 95			16	1	90	
C 19 1 95 95 90 90	4	A D	10 10			
D 18 2 90		ר		_	95	
		D	18		90	
D 18 2 90 E 20 0 100 92		E	20	0		92

Table 3-2 (Continued). 10-Day Solid Phase Bioassay with Grandidierella japonica

Test.	Rep	Number Alive	Number Dead	Percent Survival	Average Percent Survival
5	A B C D E	19 18 19 18 19	1 2 1 2 1	95 90 95 90 95	93
6	A B C D E	20 19 20 19	0 1 0 1 1	100 95 100 95 95	97
7	A B C D E	15 19 19 20 19	5 1 1 0 1	75 95 95 100 95	92
8	A B C D E	20 20 19 18 20	0 0 1 2	100 100 95 90 100	97
9	A B C D E	19 18 19 19 20	1 2 1 1 0	95 90 95 95 100	95
10	A B C D E	19 20 18 20 18	1 0 2 0 2	95 100 90 100 90	95

Table 3-3. Bivalve Larvae Development Results Summary - Reference

Elutriate Concentration (percent)	Rep	Total Larvae	Number Normal Larvae Counted	Percent Normal	Average Percent Normal	Average Percent Survival
(Percent)	Α	116	106	91		
Laboratory	В	126	119	94		
Control	С	109	107	98	•	
00	D	132	120	91		
	E	125	113	90	93	100
	A	107	96	90		
	В	120	110	92		
1	С	155	133	86		
	D	99	92	93		
	E	118	111	94	91	93
	Α	78	70	90		
	В	88	84	95		
10	С	93	81	87		
•	D	83	79	95		
	E	90	84	93	92	71 ·
	Α	102	98	96		
	В	69	63	91		
50	С	135	123	91		
	D	146	108	74		
	Е	94	88	94	89	84
	A	104	101	97		
	В	118	111	94		
100	С	133	110	83		
	D	142	126	89		
	E	147	129	88	90	97

EC50 normality value is >100 percent elutriate.

LC₅₀ survival value is >100 percent elutriate.

Table 3-4. Bivalve Larvae Development Results Summary - Site 1-2T

Elutriate Concentration (percent)	Rep	Total Larvae	Number Normal Larvae Counted	Percent Normal	Average Percent Normal	Average Percent Survival
	Α	116	106	91		
Laboratory	В	126	119	94		
Control	С	109	107	98		
	D	132	120	91		
	E	125	113	90	93	100
	Α	113	108	96		
	В	113	104	92		
1	С	144	134	93		
	D	114	101	89		
	Е	103	102	99	94	93
	Α	107	104	97		
	В	124	115	93		
10	С	136	125	92		
	D	109	104	. 95		
	Е	140	129	92	94	96
	Α	188	179	95		
	В	88	80	91		
50	С	121	113	93		
	D	151	141	93		
	E	179	167	93	93	94
	Α	132	120	91		
	В	116	106	91		
100	С	156	136	87		
	D	103	95	92	,	
·	Е	118	101	86	89	95

EC50 normality value is >100 percent elutriate.

LC₅₀ survival value is >100 percent elutriate.

Table 3-5. Bivalve Larvae Development Results Summary - Site 1-2B

Elutriate Concentration (percent)	Rep	Total Larvae	Number Normal Larvae Counted	Percent Normal	Average Percent Normal	Average Percent Survival
	Α	116	106	91		
Laboratory	В	126	119	94		
Control	С	109	107	98		
	D	132	120	91		
	E	125	113	90	93	100
	Α	94	91	97		
	В	108	101	94	^ ·	
1	С	95	92	97		
	D	106	92	87		
	Е	76	70	92	93	79
	Α	73	67	92		
	В	151	138	91		
10	С	146	137	94		
	D	120	109	91		
	Е	105	95	90	92	89
	Α	82	33	40		
	В	69	46	67		
50	С	95	76	80		
	D	65	41	63		
	Е	107	76	71	64*	69*
	Α	19	1	5		
	В	26	8	31	·	
100	С	14	2	14		
	D	13	2	15		
	E	22	4	18	17*	15*

EC₅₀ normality value is 65 percent elutriate.

LC50 survival value is 67 percent elutriate.

^{*} Statistically significant (p≤0.05)

Table 3-6. Bivalve Larvae Development Results Summary - Site 3

Elutriate Concentration (percent)	Rep	Total Larvae	Number Normal Larvae Counted	Percent Normal	Average Percent Normal	Average Percent Survival
	A	116	106	91		
Laboratory	В	126	119	94		
Control	С	109	107	98		
	D	132	120	91		
	Е	125	113	90	93	100
	Α	154	121	79		
	В	123	98	80		
1	С	226	193	85		
	D	104	91	88		
	Е	110	92	84	83	95
	Α	.110	92	84		
	В	206	176	85		
10	С	114	103	90		
	D	114	106	93		
	Е	73	62	85	87	88*
	Α	104	88	85		
	В	112	86	77		
50	С	103	79	77		
	D	85	61	72		
	Е	107	77	72	76*	84*
	. A	31	9	29		
	В	28	9	32		
100	С	14	0	0		
	D	30	2	7		
	E	23	2	9	15*	21*

EC50 normality value is 73 percent elutriate.

LC50 survival value is 77 percent elutriate.

^{*} Statistically significant (p≤0.05)

Table 3-7. Bivalve Larvae Development Results Summary - Site 4

-Concentration		Larvae	Number Normal Larvae	= Normal	Average Percent Normal	Average Percent Survival
(percent)				91		
_	A	116	106			
Laboratory	В	126	119	94		
Control	С	109	107	98		·
	D	132	120	91		
	E	125	113	90	.93	100
	Α	147	123	84		
	В	78	72	92		
1	С	77	61	79		
	D	88	78	89		
	Е	80	68	85	86	73*
	Α	83	70	84		
	В	91	82	90		
10	С	102	88	86		
	D	96	80	· 83		
	Е	116	94	81	85	80*
	A	140	95	68		
	В	74	39	53		•
50	С	81	48	59		
	D	88	55	63		
	Е	69	34	49	58*	71*
	Α	40	4	10		
	В	39	22	56		
100	С	46	0	0		
	D	52	8	15	,	
	E	43	1	2	17*	36*

EC₅₀ normality value is 62 percent elutriate.

LC50 survival value is 77 percent elutriate.

^{*} Statistically significant (p<0.05)

Table 3-8. Bivalve Larvae Development Results Summary - Site 5

Concentration		Total Larvae	Number Normal Larvae Counted	Percent Normal	Average Percent Normal	Percent
	Α	116	106	91		
Laboratory	В	126	119	94		
Control	С	109	107	98		
	D	132	120	91		
	Е	125	113	90	.93	100
	Α	149	131	88		·
	В	121	99	82		
1	С	122	98	80	0	0 0
	D	97	76	78		
	Е	85	76	89	84	90
	Α	116	108	93		
	В	65	63	97		
10	С	131	114	87		
	D	96	87	91		
	E	65	58	89	91	76 ·
	Α	75	62	83		
	В	91	80	88		
50	С	82	66.	80		
	D	99	93	94		
	E	84	73	87	86*	71
	Α	101	84	83		
	В	141	130	92		
100	С	105	87	83		
	D	74	60	81		
	Е	131	108	82	84*	86

EC50 normality value is >100 percent elutriate.

LC₅₀ survival value is >100 percent elutriate.

^{*} Statistically significant (p≤0.05)

Table 3-9. Bivalve Larvae Development Results Summary - Site 6

Elutriate Concentration (percent)			Number Normal Larvae Counted	Percent Normal	Average Percent Normal	Average Percent Survival
	Α	116	106	91		
Laboratory	В	126	119	94		
Control	С	109	107	98		
	D	132	120	91		
	E	125	113	90	. 93	100
	Α	131	106	81		
	В	96	87	91		
1	С	126	110	87		
	D	160	138	86		
	Е	109	86	79	85	94
	A	. 116	100	86		
	В	100	92	92		
10	С	134	121	90		
	D	82	68	83		
	E	93	78	84	87	84
	A	129	110	85		
	В	108	82	76		
50	С	121	94	- 78		
	D	93	75	81		
	E	150	128	85	81*	93
	A	30	2	7		
	В	29	7	24		
100	С	34	1	3		
	D	63	8	13		
	E	54	2	4	10*	35*

EC₅₀ normality value is 71 percent elutriate.

LC50 survival value is 81 percent elutriate.

^{*} Statistically significant (p≤0.05)

Table 3-10. Bivalve Larvae Development Results Summary - Site 7

Elutriate Concentration (percent)		Larvae	Number Normal Larvae Counted		Average Percent Normal	Average Percent Survival
	Α	116	106	91		
Laboratory	В	126	119	94		
Control	С	109	107	98		· .
	D	132	120	91		
	E	125	113	90	.93	100
	Α	117	101	86		
	В	137	113	82	V	
1	С	106	89	84		
	D	116	99	85		
	Е	73	62	85	85	88
	Α	104	91	88		
	В	94	83	88		
10	С	59	50	85		
	D	66	49	74		
	Ε	90	75	83	84*	68*
	Α	83	55	66		
	В	71	54	76		
50	С	114	97	85		
	D	65	49	75		
	Е	74	60	81	77*	67*
	Α	60	0	0		
	В	31	4	13		
100	С	44	3	7		
	D	71	10	14		
	Е	32	9	28	12*	39*

EC50 normality value is 70 percent elutriate.

LC50 survival value is 70 percent elutriate.

^{*} Statistically significant (p≤0.05)

Table 3-11. Bivalve Larvae Development Results Summary - Site 8

Elutriate = Concentration (percent) -			Number Normal Larvae Counted		Average Percent Normal	Average Percent Survival
	A	116	106	91		
Laboratory	В	126	119	94		
Control	С	109	107	98		•
	D	132	120	91		
	Е	125	113	90	. 93	100
	Α	97	77	79		
	В	105	93	89		
1	С	36	25	69		
	D	102	77	75		
	E	102	93	91	81*	73
	Α	80	55	69		
	В	107	83	78		
10	С	113	88	78		
	D	115	102	89		
	E	113	87	77	78*	87
	Α	81	56	69		
	В	90	75	83		
50	С	113	97	86		
	D	180	159	88		
	Е	158	130	82	82*	87
	Α	97	74	76		
	В	129	86	67		
100	С	94	74	79		
	D	122	98	80		
	E	88	64	73	75*	86

EC₅₀ normality value is >100 percent elutriate.

LC50 survival value is >100 percent elutriate.

^{*} Statistically significant (p≤0.05)

Table 3-12. Bivalve Larvae Development Results Summary - Site 9

Elutriate Concentration (percent)		Larvae	Number Normal Larvae Counted	Percent -	101 - 10 Programme 1 - 4 - 5 - 4 - 5 - 4 - 5 - 5 - 5 - 5 - 5	Average Percent Survival
	Α	116	106	91		
Laboratory	В	126	119	94		
Control	С	109	107	98		
	D	132	120	91		
	Е	125	113	90	93	100
	Α	116	99	85		
	В	131	120	92		
1	С	110	98	89		
	D	140	130	93		
	Е	144	133	92	90	97
	Α	106	94	89		
	В	99	88	89		
10	С	126	106	84		
	D	76	64	84		
	Е	145	140	97	88	86
	Α	97	70	72		
	В	135	117	87		
50	С	133	124	93		
	D	114	99	87		
	E	93	81	87	85*	90
	Α	74	58	78		
	В	35	27	77		
100	С	111	86	77		
	D	111	94	85		
	E	79	66	84	80*	67*

EC50 normality value is >100 percent elutriate.

LC50 survival value is >100 percent elutriate.

^{*} Statistically significant (p<0.05)

Table 3-13. Bivalve Larvae Development Results Summary - Site 10

Elutriate Concentration (percent)		Total Larvae	Number Normal Larvae Counted	Percent Normal	Average Percent Normal	Percent
	Α	116	106	91		
Laboratory	В	126	119	94		*
Control	С	109	107	98		
	D	132	120	91		
	E	125	113	90	93	100
	Α	131	114	87		
	В	79	68	86		
1	С	98	87	89		
	D	127	114	90		
	E	88	81	92	89	84
	Α	107	98	92		
	В	93	83	89		
10	С	127	118	93		
	D	82	71	87		
	Е	99	91	92	90	83
	Α	96	90	94		
	В	67	65	97		
50	С	71	66	93		
	D	82	75	91		
	Е	121	109	90	93	72
	Α	109	100	92		
	В	44	39	89		
100	С	126	104	83		
	D	171	161	94		
	E	102	96	94	90	82

EC50 normality value is >100 percent elutriate.

LC50 survival value is >100 percent elutriate.

SECTION 4 - REFERENCES

- American Society for Testing and Materials (ASTM), 1993. Conducting 10-day Static Sediment Toxicity Tests with Marine and Estuarine Amphipods. ASTM Designation E 1367-92.
- American Society for Testing and Materials (ASTM), 1993. Conducting Static Acute Toxicity Test Starting with Embryos of Four Species of Saltwater Bivalve Molluscs. ASTM Designation E 724-89.
- Tidepool Scientific Software, 1992-1994. ToxCalc Comprehensive Toxicity Data Analysis and Database Software, Version 5.0.

APPENDIX A

SAMPLING AND ANALYSIS PLAN

SAMPUNG AND ANALYSIS PLAN PEARL HARBOR SEDMENT

SAMPLING AND ANALYSIS PLAN PEARL HARBOR SEDIMENTS

FOR

DRAFT ENVIRONMENTAL IMPACT STATEMENT FOR AIRCRAFT CARRIER HOMEPORTING WITHIN PACIFIC FLEET'S UNITED STATES ASSETS

Prepared by

Belt Collins Hawali 680 Ala Moana Boulevard Honolulu, Hawali 96813

Prepared for

Science Applications International Corporation

BELT COLLINS HAWAE

8 SEPTEMBER, 1997

PAGE 1

1.1 INTRODUCTION

1.1.1 OBJECTIVES OF STUDY

This project supports impacts analysis associated with an environmental impact statement (EIS) and is not intended to provide data appropriate for an ocean disposal permit application.

The ElS for Aircrast Carrier Homeporting Within Pacific Fleet's United States Assets will evaluate impacts of homeporting a NIMITZ-class nuclear aircrast carrier (CVN) at pier B2/3 in the Pearl Harbor Naval Shipyard (PHNSY). In order to accommodate the CVN, the Pearl Harbor Inner Channel, turning basin, and the berth (the area adjacent to pier B2/3) will require dredging to a design depth of 50' below mean lower low water (MLLW). The impacts of disposing dredge spoils either at the South Oahu Ocean Dredged Material Disposal Site (ODMDS) or at a neurshore or upland disposal site will depend on the chemical nature of the dredged sediment, based on standardized testing procedures.

Therefore, in support of the EIS impacts analysis, the objective of this sampling effort is to obtain <u>screening</u> level chemistry and bioassay results for bulk sediment at the dredge sites, i.e., the berth, turning busin, and inner channel. The level of detail will be appropriate to assessing the general volume of material likely to be suitable for ocean disposal and the quantity for which alternative disposal sites are expected to be necessary.

1.1.2 PROJECT TEAM AND RESPONSIBILITIES

Project planning and coordination will be performed by Amy Sheridan at Belt Collins Hawaii. This task includes logistics arrangements with Pearl Harbor Port Operations and the Signal Tower, preparation of this Sampling and Analysis Plan (SAP), and writing up results for the EIS.

Field sample collection will be managed by David Robinson of MEC Analytical Systems, Inc. of Carlsbad, California; the field manager will be John Hardin. Barge support will be furnished by Sea Engineering Inc (Waimanalo, Hawaii), supervisor Ted Durland. Additional technical support will be provided by John Evans of SAIC.

Laboratory preparation and analysis will be performed by Ogden Environmental Services. Ogden will manage its own lab QA/QC and will prepare the laboratory report for MEC.

1.1.3 SAMPLE SITES

1.1.3.1 Sample Sites

The sampling sites consist of areas to be transitted or occupied by a NIMITZ-class CVN, i.e.

(bertlis B2 and B3 in the PHNSY

SAMPLING AND ANALYSIS PLAN PEARL HAPBOR SEDIMENT

- (the turning basin between berth and Ford Island
- (the inner channel from Bishop Point to Hospital Point

Recent (1995-1996) bathymetric surveys indicate existing depths of about 43 to 50 feet below MLLW in these locations. The project dredge depth would be 50 feet below MLLW; therefore, samples will be obtained to a depth of approximately 52' below MLLW.

A minimum of 10 cores will be obtained and a total of 10 composite samples will be analyzed. Compositing decisions will be finalized at the time of sampling, after visual inspection of the cores. It is anticipated that the 10 composited samples will consist of the following:

- 1 TComposite of upper halves (or layers, if such exist) of two cores obtained adjacent to B2/3
- 20 Composite of lower halves (or layers) of two cores obtained adjacent to B2/3
- 3□ Vertical composite of core obtained ±300 feet off of B2/3
- 40-7. Vertical composite of each of four turning basin samples (i.e., excluding central core). Alternatively, if obvious layering is present, samples will consist of composited upper halves and lower halves of two sets of two cores.
- 8.- 10. Vertical composite of each of three inner channel samples

If substantially heterogeneous sediments are encountered in the turning basin, the fifth core will be submitted as an additional sample, and two of the inner channel samples will be composited for a total of 10 samples.

1.1.3.2 Existing Condition of Sites

Pearl Harbor channel sediment is generally very fine and is routinely disturbed and resuspended by passing ships. The sediment/water interface tends to be gradual in most locations. The result is a highly nephelous surface sediment layer of indeterminate thickness, with more consolidated sediment underneath. Surface samples have been obtained from various harbor locations over the last 10 years. In general, analysis has shown the presence of heavy metals, organotin, petroleum hydrocarbons, and PAHs in various concentrations.

Berths B2/3 have been used to dock various naval vessels since World War II. It is not known when these particular berths were last dredged. Sediments are expected to be well consolidated. Although no sediment samples have been obtained or analyzed from immediately offshore of the berth, sampling results from other Pearl Hurbor piers suggest that sediments may contain heavy metals, organotin, or petroleum products commonly associated with ship servicing and maintenance.

The turning basin is an area transitted by most vessels entering or leaving the shippard, the Naval Station, Ford Island, and the FISC piers. Sediment in this area is expected to be well-mixed and poorly consolidated. Analysis of nearby sediment surfaces (Operations Division, 1990) indicate the presence of heavy metals and minor petroleum products, but no pesticides, PAHs (polynuclear aromatic hydrocarbons), or phthalates.

PEAPL HARBOR SEDIMENT

The Inner channel is transitted by all vessels entering and leaving all three lochs of Pearl Harbor. Sediment in this area is expected to be well-mixed and poorly consolidated. Previous samples obtained from this area contained heavy metals (notably silver) and PCBs (Grovhoug, 1992).

1.2 FIELD SAMPLING PROCEDURES

A total of 10 samples will be analyzed, together with one reference sample and one control sample.

1.2.1 SAMPLE LOCATIONS

A minimum of 10 cores will be obtained from the site (Figure 1). Additional cores may be required to provide sufficient volume for analysis.

- (B2/3: At least 3 cores will be obtained, one each from B2 and B3 within 50 feet of the pier, and a third midway between the first two but 300 feet from the pier (see Figure X).
- (Turning basin: At least 5 cores will be obtained from the roughly rectangular turning basin, one from the center of each quadrant and one from the center of the basin.
- (Inner channel: Three cores will be obtained from the approximate center of the inner channel. One will be obtained opposite Bishop Point, one approximately 1000 feet north of Waiplo Point, and one at the southern end of Ford Island
- Reference sample: The sample will be carbonate sand obtained offshore of Lanikai beach, on the windward side of Oahu.
- Control sample: The matrix in which laboratory animals are received will be used as the control sample.

Approximate latitudes and longitudes for each sample are given below. However, because the purpose of the study is general characterization of relatively large areas, pre-survey location accuracy is less important than accurate documentation of actual sample locations, it is anticipated that the positional accuracy of core samples using GPS with US Coast Guard differential signal will be within 3 to 5 meters of the intended locations. Position averaging will be used during the period at each station to obtain the most accurate fix obtainable with the equipment.

1:	N21°21'30", W157°57'35"	6.	N21°21'38", W157°57'28"
2:	N21°21'48", W157°57'25"	7:	N21°21'45", W157°57'15"
3:	N21°21'35", W157°57'25"	8:	N21°21'15", W157°58'00"
4:	N21°21'40", W157°57'48"	9:	N21°20'48", W157°58'30"

10:

N21°20'00', W157°58'35"

BELT COLLINS HAWAR

5:

N21°22'10". W157°57'25"

BAMPLING AND ANALYBIB PLAN PEARL HAPBOR SEDIMENT

If the vibracore encounters refusal (e.g., rubble piles, coral), the location will be moved to one side. If refusal occurs for three attempts at one location, the sampling team will leave that station and continue on to sample other locations. The refused location will be revisited after all other stations are completed, for sampling to the depth achievable.

1.2.2 FIELD OPERATIONS

Samples will be obtained using a vibracore mounted on a barge. The barge will be stabilized at the coring stations by three- or four-point moorings, depending on current and wind conditions at open water station near the pier, two lines may be tied off to the pier, with anchors set bayward of the barge. The barge will mobilize out of Rainbow Marina within Pearl Harbor and Aiea Buy.

Fleid Sampling Schedule

Sampling activities are planned for September 5th through 7th, including mobilization and demobilization. Due to the high frequency of marine traffic in the Pearl Harbor main channel and adjoining areas, contact will be maintained via cellular phone with Chief Christopherson of the Pearl Harbor Port Operations and Signal Tower for ship traffic updates. Additionally, marine traffic will be monitored on marine radio channel(s) 16 and 69 for any additional news or emergencies. The barge will fly day markers for vessels with restricted maneuverability, as coordinated with Port Operations.

Vessel(s)

Field sampling will be conducted from a non-powered stationary platform (e.g., approximately 20 x 20 ft. barge). A Boston Whaler (approximately 15 feet) will be used to position and moor the barge. Additionally, the Whaler will be used to transport sample team members, equipment and sample cores between the barge and shore. The sampling platform and Whaler will be provided by Sea Engineering, Inc. (SEI). The barge will be outfitted with a 15-foot-high Aframe/crane, which will be used to deploy and recover the vibracore. Additionally, a DGPS (Global Positioning Satellite with differential correction) receiver will be used to document station locations. The barge is large enough to accommodate the vibracore and related equipment. The 15' A-frame is within the Ford Island Bridge 30' overhead clearance of the fixed span.

Navigation and Positioning

Target stations and depths have been selected for the sediment characterization study. Sample locations are discussed in detail in section 1.2.1. Briefly, the stations are located in three general areas including; pier-side (3 ea.), turning basin (5 ea.) and inner channel (3 ea.).

All open-harbor (i.e., turning basin and inner channel) stations will be accessed by transporting the barge to the approximate station location. The barge will be secured by making a four-point mooring using the Whaler to deploy the requisite anchors/mooring equipment. Once the barge has been secured, differential GPS positions will be continuously logged (e.g., every half-hour).

BAMPLING AND ANALYSIS PLAN PEARL HARBOR SEDIMENT

Pler-side stations will be accessed by maneuvering the barge into position using the Whaler and securing it to the pier with mooring lines. Additional lines may be required on the offshore side of the barge if additional stability is required. These additional mooring lines will be deployed in the same fashion as the four-point mooring discussed above.

1.2.3 SAMPLE COLLECTIONS

Sample Collection Procedures

The samples will be collected using a vibratory coring system (vibracorer) provided by MEC Analytical Systems of Carlabad, CA. The Ressfelder P-5 vibracorer was selected for the project due to its success collecting unconsolidated and consolidated sediments in marine environments. The vibracorer is an air-powered sediment sampling system featuring a pneumatic impacting bin vibrator head, which drives an aluminum or steel core tube containing a cellulose-acetate-butryate (CAB) liner into the sediment. Core liners will be cut to accommodate the required project depth plus 1-2 feet. The core liners are approximately 3.5 inch inside diameter.

The deployment and retrieval of the coretube and vibracorer will be conducted from the barge in the following manner. Bottom depth will be verified at each station, once the barge has been positioned and the appropriate sample depth will be calculated and logged. The coretube and vibracorer will be prepared and attached while laid out on the barge. The coretube will be measured so that the correct length of sample will be taken. The core lengths will vary and are dependent upon the bathymetry, intended project depth, and sample location. The Vibracorer will then be attached to a cable deployed from the barge crane/A-frame and the whole assembly lifted into a vertical orientation and deployed over the side of the barge. A measuring tape will be attached to the vibracorer head to indicate the coring depth. The coretube and vibracorer assembly will then be lowered to the benthic surface.

When the coretube nose has reached the sediment surface, the distance on the measuring tape will be note on the core log form, with the initial position fix. The vibracorer will be actuated and the driven to the intended depth. The distance on the measuring tape will again be logged. Additionally, the time, date, core length and any other pertinent information will be recorded in the logbook. Once the core has been taken, the coretube/vibracorer assembly will be recovered aboard the barge. The coretube will be removed from the vibracorer head. The core liner will be removed from the outer coretube and endcaps installed to prevent leakage of core sediments. The core will be kept in a vertical orientation and allowed to sit until disturbed surface sediments have settled. Prior to relocating the barge, the latitude and longitude fix will be annotated to reflect any changes resulting from position averaging.

Sample Collection and Handling Procedures

As samples are collected, logs and field notes of all core samples will be maintained and correlated to the sampling location map. Included in this log will be the following:

SAMPLING AND ANALYSIS PLAN PEARL HARBOR SEDIMENT

- (Elevation of each boring station sampled as measured from mean lower low water (MLLW). This will be accomplished using a lead line to determine depth at the sampling location, referenced to an on-site tide gauge set to MLLW or other local tidal reference.
- Date and time of collection of each sediment core sample.
- Names of field supervisor and person(s) collecting and logging in the sample.
- Weather conditions.
- The sample station number as provided by Belt Collins.
- Length and depth intervals of each core section and recovery for each sediment sample as measured from MLLW.
- Qualitative notation of apparent resistance of sediment column to coring.
- Any deviation to the approved sampling plan.

Core Extrusion and Logging.

The sample handling area will be decontaminated and clean aluminum foil and/or polyethylene sheets will be placed under the core to prevent contamination during handling. The core samples will be extraded into stainless steel tubs or bowls. Using an aluminum foil-covered tool if resistance is too great may provide assistance. In the event the sample cannot be extruded intact, the CAB core tube will be cut open longitudinally using a saw or utility knife. Pre-cleaned stainless steel utensils will be used to manipulate the sediment. Any deviations to the procedures will be documented in the field notebook.

The following information will be recorded in the field notebook and sediment coring log:

- Date, time, and name of person logging sample.
- Station and sample identification;
- Depth of water at location.*
- Sediment sample depth.
- Gross physical characterization of the sediment.
- Approximate grain size distribution.
- Density/consistency.
- Plasticity.
- Color
- Moisture content.
- Biological structures (e.g., shells, tubes, macorphytes, and bioturbation).
- Presence of debris (e.g., wood chips, wood fibers, other human industrial artifacts).
- Presence of oil sheen.
- Odor (e.g., hydrogen sulfide, potroleum hydrocarbons).

Sample Compositing.

Sediment core samples will only be composited if it is determined that multiple strata have been encountered during the coring process. If this is the case, similar strata will be composited between multiple cores. Only cores collected from similar areas will be composited (e.g., only turning basin sediments will be composited together, etc.). Compositing will be performed after

SAMPLING AND ANALYSIS PLAN PEARL HARBOR SEDIMENT

the sediment has been described. The core sections will be extruded into decontaminated stainless bowls and mixed thoroughly using decontaminated stainless steel utensils. The samples will be aliquoted for chemical characterization, physical properties and bioassay testing.

After compositing, samples aliquoted for chemical characterization and physical properties will be placed in pre-cleaned containers provided by Ogden laboratories. Samples for bioassay testing will be placed in polyethylene (or similar) hags, oxygen removed, and placed in buckets and sealed. Samples for physical, chemical and bioassay will be containerized and preserved in accordance with EPA/USACE "Green Book" methods. One noted exception is that all samples will be preserved at approximately 4° C using wet ice and held in darkness. Each container will be clearly labeled with the project name, sample/composite identification, type of analysis to be performed, date and time sampled and initials of person(s) preparing the sample, and referenced by entry into the logbook. Additionally, all samples will be documented on a Chain of Custody (COC). A copy of the COC(s) will be enclosed in the cooler with the samples and sent to the laboratory for analysis. The field team will retain additional copies of the COC(s). Any residual sediment will be disposed of in the harbor as close to the point of collection as possible.

Decontamination.

All sampling core liners will be thoroughly cleaned prior to use according to the following procedure:

- ⟨ Wash with brush and Alconox ™ soap.
- Rinse with potable water.
- (Rinsc with distilled or deionized water.

The core liners will be kept clean by taping end caps over the exposed ends of the tubes. Additional decontamination will be conducted on all compositing and sampling equipment, (e.g., mixing bowls compositing utensils, scoops, etc.). Sampling equipment will be cleaned according to the following procedure:

- ⟨ Wash with brush and Alconox ™ soap.
- (Rinse with potable water.
- (Rinse with distilled or deionized water.
- (Rinse with pesticide grade Methanol.
- (Rinse with pesticide Hexane.

Sample equipment may be kept clean by wrapping in aluminum foll prior to use. All core sediment handling will be done using nitrile or equivalent gloves to prevent contamination.

Sample Transport and Chain-of-Custody.

At the end of each day the sediment samples will be packed into coolers for delivery to the laboratories and preserved at approximately 4° C using wet ice. The samples will be shipped at the conclusion of field sampling. Specific procedures are as follows:

BAMPUNG AND AHALYSIS PLAN PEARL HARBOR SEDIMENT

- Sample bottles will be clearly labeled with sample station and number, depth, date and time of collection, type of analysis, and sampler's initials.
- Samples will be packaged and shipped in accordance with USDOT regulations. Sample bottles will be placed coolers with blue ice or wet ice and packed with either bubble wrap or vermiculite to prevent breakage.
- (The coolers will be clearly labeled with sufficient information (name of project, time and date container was sealed, person scaling the cooler and recipient's office name and address) to enable positive identification.
- (A scaled envelope (e.g., Ziploc bag) containing chain-of-custody forms will be enclosed in a plastic bag and taped to the inside lid of the cooler.
- (Signed and dated chain-of-custody seals will be placed on all coolers prior to shipping.
- Coolers will be taped securely with duct tape, strapping tape or other to prevent them from breaking open during shipment.

1.2.4 FIELD QA/QC PROCEDURES

Fleld sampling. The field sampling quality assurance objectives will be met by MEC Analytical Systems Inc. Internal MEC Standard Operating Procedures (SOPs) define vibracore sampling, sample preservation and shipping, and Chain of Custody systems. Sample logs are completed in ink. A photographic record of each core will be compiled.

1.3 DATA ANALYSIS AND REPORTING

The samples will be analyzed by Ogden Environmental and Energy Services San Diego, California and Cohumbia Analytical Services in Kelso, Washington.

1.3.1 ANALYSES

Physical and chemical analyses. Test and reference sediments will be analyzed for the standard suite of Tier II parameters required by the Green Book: 15 priority pollutant metals, PCBs, pesticides, phenols, TRPH (total recoverable petroleum hydrocarbons), PAHs, organic tim, total sulfides, and ammonia.

Bioassays. Two bioassay screening tests will be performed for each of the ten composite core samples and one reference sediment sample. A solid phase test using amphipods and a liquid/suspended phase test using bivalve larva will be conducted. Potential sediment toxicity will be determined by monitoring species survival.

1.3.1.1 Procedures: Physical and Chemical Analyses

Physical properties. Tests to characterize the physical properties of the sediments will be performed to predict the behavior of sediments after disposal and to compare reference and test

BANIPUNG AND ANALYSIS PLAN
PEARL HARBOR SEDIMENT

sediments. Physical analyses of the dredge material will include grain size, total organic carbon (TOC), and total solids.

- Grain size analysis will determine percentages of the general size classes that make up the sediment (gravel, sand, silt, and clay). Gravel and sand fractions will be separated using nested sieves; silt and clay fractions will be separated using the gravimetric/pipette method (Plumb 1981). The frequency distribution of the size ranges (reported in millimeters) of the sediments will be presented in the report.
- (TOC, made up of volatile and nonvolatile organic compounds, will be determined by EPA Method 9060. Sediments will be treated with hydrochloric or sulfuric acid to remove the inorganic carbon (carbonates and bicarbonates) prior to TOC analysis (Plumb, 1981). Total solids will also be measured and used to convert concentrations of the chemical parameters from a wet-weight to a dry-weight basis.
- Total solids will be determined by weighing the organic and inorganic material remaining in a sample after it has been dried at a specific temperature. Total sulfides (EPA 9030) and ammonia, will also be measured. Porewater obtained by centrifugation will be analyzed for ammonia, pH and salinity using the standard laboratory water quality meters (Orion SA-720, Orion SA-250 and Orion 140, respectively).

Chemistry. Sediment chemistry is used to characterize potential contaminants at dredge spoils disposal sites. The test sediments and reference sediments will be examined based upon information presented in the Draft Regional Implementation Manual (RIM) for the State of Hawali (ACOE/EPA 1997). Analyses will be conducted for Trace Metals, PCBs, Pesticides, Phenols, TRPH, PAHs and Organitins. In addition, test sediments will be analyzed for 15 priority pollutant metals using the Toxicity Characteristic Leaching Procedure (TCLP).

Analytical methods will be EPA Methods recommended by the U.S. EPA/ACOE (Green Book; 1991) and shown on Table 1. Organic tin analysis will use methodology described in Krone et al., 1988. Porewater will be analyzed for ammonia and sulfides using standard laboratory water quality meters and ion selective electrodes (Orion SA-720). Procedural blanks, reagent blanks, and standard reference materials will be analyzed, and results will be incorporated into a discussion of the analytical quality assurance and control parameters.

1.3.1.2 Procedures: Solid Phase

Solid phase bioassays will be used to estimate the potential impact of ocean disposal on benthic infauna. Dredge material will be evaluated using the 10-day solid phase test with the amphipod Grandidierellu japonicu, if available. If healthy G. japonica are not available, either Rhepoxynius abronius or Ampelisca abdita will be used. Prior to bioassay testing, ammonia (ion selective electrode), sulfides (photo-metric) and salinity (conductivity probe) will be measured within interstitial water from reference, test, and control-sediments. Sediments will press sieved through a 2.0 mm mesh to remove organisms, using only the water available in the sediment sample. Each sediment type (test, reference and control) will require five laboratory replicates. Control sediment will be sediments in which the organisms have been collected.

1 ,4 =

SAMPLING AND ANALYSIS PLAN PEARL HARBOR SEDIMENT

Experiments will be conducted in 1-liter glass test chambers containing a single 2-cm layer of test, reference or control material. Overlying water will be renewed every other day. Initial stocking densities will be 20 amphipods in each replicate. Aeration will be provided through glass or plastic pipettes, with care taken to avoid disturbing the sediment. Water quality measurements will be taken in one replicate from each test treatment daily and will include pH, salinity, temperature and dissolved oxygen. Ammonia will be measured at the start and finish of the test for each sediment type. All instruments used will be calibrated and logged daily. After 10 days, the animals will be carefully sieved from the sediments and counted.

Statistical methods described in the Green Book (EPA/COF, 1991) will be utilized to determine if significant mortality occurred. If control survival is below 90 percent, the test will be repeated. To evaluate the relative sensitivity of the organisms, reference toxicity tests will be conducted using standard reference toxicants (Lec. 1980).

1.3.1.3 Procedures: Suspended-Particulate Phase

Suspended-particulate phase (SPP) bioassay tests will be used to estimate potential impacts of ocean disposal on organisms living in the water column. The SPP test will be performed according to the Green Book (EPA/COE, 1991) using a 4:1 dilution of seawater to test sediment. The species to be tested is the bivalve larvae (either Mytilus edulis or Crassostrea sp.). The bivalve larvae test will be run on the test sediment elutriates at concentrations of 0, 1, 10, 50 and 100 percent. The test (ASTM, 1992) will be run for 48 hours, or longer if necessary, for the development of the bivalve larvae to the "D-hinge" stage.

The ASTM method requires a test criterion of 70 percent survival of normally developed D-hinge larvae in the control treatment. At the termination of the study, point estimate statistical techniques (e.g., LC50, EC50, IC%) will be used to analyze the results.

1.3.1.4 Laboratory deliverables.

A draft report of bloassay testing results will be provided by Ogden Environmental and Energy Services. The report will include; all raw data sheets, a tabular summary of results for each test performed, a methods and materials section, including a narrative of the testing parameters and any difficulties encountered and a QA/QC section describing all quality control parameters and results.

A draft report of chemistry analysis results will be submitted by Columbia Analytical Services. This report will include; raw data sheets, a tabular summary of results for each analysis, methods and materials (including a narrative of procedures) and a QA/QC section.

1.3.2 LABORATORY QA/QC PROCEDURES

Quality assurance procedures to be used for sediment testing are consistent with methods described in the Green Book (EPA/COE, 1991). All samples will be tracked using chain-of-custody sheets and sample receipt logs. Sample storage conditions and holding times will be adhered to strictly.

QA/QC for Bioassays 1.3.2.1

11:0195357705

ENVIKUNMENTHL . SCIENCES

The quality assurance objectives for toxicity testing are those detailed in U.S. EPA (1985a, 1985b) and the Green Book (EPA/COE, 1991). These objectives for accuracy and precision involve all aspects of the testing process, including: (1) water and sediment sampling and handling; (2) source and condition of test organisms; (3) condition of equipment; (4) test conditions; (5) instrument calibration; (6) use of reference toxicants; (7) record keeping; and (8) data evaluation. The methods employed in the toxicity testing program are detailed in Ogden's Laboratory Standard Operating Procedures (SOPs) and specific test protocols. These SOPs have been audited and approved by an independent, EPA recommended laboratory and placed in the QA files, as well as in laboratory files. All Ogden laboratory staff receive regular documented training in SOPs and test methods....

A reference toxicant will be tested on each test organism during the test period to establish the validity of the toxicity data. For those species with substantive reference toxicant data available. the LC50 and EC50 should fall within two standard deviations of the laboratory mean. Water quality measurements will be monitored to ensure they fall within prescribed limits, and corrective actions (EPA recommended) will be taken if necessary. All limits established for this program meet or exceed those recommended by EPA.

Data collected and produced as a result of analysis will be recorded on approved data sheets which will become the permanent data record for the program.

If any aspect of a test deviates from protocol, the test will be evaluated to determine whether it is valid according to the regulatory agency to which it will be submitted. If it is determined to be invalid, the client will be notified if necessary, and the test will be repeated.

Data Analysis, Validation and Reporting. All acute and chronic toxicity tests are performed according to protocols and conditions listed in Ogden's test protocols. Raw data and study records are checked to ensure that required test conditions are within specifications cited in the SOPs. Major deviations from protocol must be approved by both the client and the quality control manager. Unforeseen circumstances that may affect the integrity of the study are reported with the test results. The data, analysis and report are also reviewed for accuracy by the Quality Control Manager.

Internal Quality Control. Ogden's quality control staff performs periodic audits to ensure that test conditions, data collection and test procedures are conducted according to Green Book and Ogden protocols. Animal receipt and maintenance log books are used to record the source and health of organisms. Reference toxicant tests act as an internal check on organism health and performance.

Preventive Maintenance. Key analytical equipment is maintained routinely to ensure that equipment failure or changes in operational parameters can be prevented. Procedures used to maintain equipment are included in the Maintenance and Calibration Log. Replacement parts are available for commonly expected repairs and replacement. Spare parts include pH electrodes, dissolved oxygen (DO) probe membrane replacement kits, calibrated thermometers, pipettes, graduated cylinders, etc.

BAMPLING AND ANALYSIS PLAN PEARL HARBOR SEDIMENT

Stock standard solutions are stored in at least two separate containers, so that a fresh standard solution is available in case the stock standard currently in use becomes contaminated. Working standards which are in frequent contact with electrodes, pipettes, etc., are kept in separate working bottles to reduce chances of contamination of stock standards.

Procedures Used to Assess Data Precision, Accuracy, and Completeness. The precision of the reference toxicant LC50 determinations will be shown by calculating the 95 percent confidence intervals. The computer program used to analyze the data is designed in such a way that, regardless of the data characteristics, it will calculate an LC50 and corresponding confidence intervals as long as sufficient mortality is observed. Accuracy cannot be determined as a true value but rather must be determined relative to a reference value of the substance being measured.

The precision of all the analytical instruments (DO meter, pH meter, balances, etc.) is assumed to be that stipulated by the manufacturer. The accuracy of the measurements is assessed through daily calibration.

1.3.2.2 QA/QC for Chemical Analyses

Chemistry. For trace chemical analysis, the procedures include documentation of the following criteria for each sample matrix type: analytical reproducibility, analytical detection limits, recovery of in situ metals and organics, and chain of custody documentation.

The quality assurance objectives for chemical analysis conducted by Columbia Analytical Sciences (CAS) are detailed in their laboratory QA manual. These objectives for accuracy and precision involve all aspects of the testing process, including:

- (Calibration methods and frequency
- (Data analysis, validation, and reporting
- (Internal quality control;
- (Preventive maintenance
- Procedures to assure data accuracy and completeness

Laboratory QC samples. Environmental sample matrix spike and matrix spike duplicate analysis will be performed at a rate of 5%. Method or reagent blanks will be analyzed at a frequency of 5% or for every analytical batch, whichever is greater. In the absence of adequate sample quantity to perform matrix spiking for all matrix types, either the imaginary matrix as described in SW-846 or a laboratory water will be used for preparing matrix spikes. Matrix spikes are an environmental sample which is aplit into three separate aliquots and one aliquot is analyzed free from matrix spike introduction. A known concentration of the analyte of interest is added to the other two aliquots prior to sample preparation and analysis. Both percent recovery and relative percent difference are reported for matrix spikes/matrix spike duplicates. Spike data can provide an indication of matrix bias or interference on analyte recovery. Duplicate data can provide an indication of laboratory precision.

BAMPLING AND ANALYSIS PLAN
PEARL HARBOR SEDIMENT

Results of all laboratory QC analyses will be reported with the final data. Any QC samples that fail to meet the QC criteria specified in the methodology or in this STP will be identified and the corresponding data appropriately qualified in the final report. All Quality Assurance/Quality Control records for the various testing programs will be kept on file for review by regulatory agency personnel.

1.3.3 REPORTING

MEC will provide a draft report, which will include field sampling results and bioassay and chemistry results. The Field Sampling report will include core logs, photographs and descriptions of all core samples. Methods and materials used during the sampling, locations of all sample stations in degrees latitude and longitude using differential GPS data. Description of any deviations made from the sampling plan.

Bioassay and chemistry analysis reports will include bulk chemistry (raw) data, a tabular summary of results for all analyses, methods and materials used for the analyses and a QA/QC section describing all appropriate laboratory quality control parameters and results.

Results will be summarized and evaluated in the BIS by Belt Collins Hawaii.

1.4 REFERENCES

Belt Collins and Associates (1990) Final Environmental Impact Statement: Proposed Developments at Naval Base Pearl Harbor. Prepared for Pacific Division, Naval Facilities Engineering Command.

Dollar, Stephen (1989) Marine Environmental Assessment of Pearl Harbor in Bell Collins & Associates (1990) Final Environmental Impact Statement: Proposed Developments at Naval Base Pearl Harbor. Prepared for Pacific Division, Naval Facilities Engineering Command.

Grovhoug, Joseph G. (June 1992) Evaluation of Sediment Contamination in Pearl Harbor. Prepared for naval Facilities Engineering Command, Pacific Division, Pearl Harbor, Hawaii (Code 114).

Environmental Sciences Division, Naval Ocean Systems Center (1991) Foxtrot Pier and Shore Improvements: Bioassay & Bioaccumultion Tests on Dredged Material from Pearl Harbor, Prepared for Naval Facilities Engineering Command, Pacific Division, Pearl Harbor, Hawaii.

Ogden Environmental (1996) Sediment Characterization Study for Ocean Disposal Wharf Y2.

Prepared for Moffatt & Nicol Engineers.

Ogden Environmental (1996) Definitive Dredge Material Testing for Ocean Disposal, Pearl Harbor Submarine Base Piers S4-5 and S8-9. Prepared for Moffatt & Nicol Engineers.

ASTM, 1992. Annual Book of Standards. Vol. 11.04. Guide for conducting 10-day static sediment toxicity tests with marine and estuarine amphipods. E-1367-90.

SAMPLING AND ANALYSIS PLAN PEARL HARBOR SEDIMENT

ASTM, 1992. Annual Book of Standards. Vol. 11.04. Guide for conducting static acute toxicity tests starting with embryos of four species of saltwater bivalve mollusca. E-724-89.

Plumb, R. H., Jr., 1981. Procedure for Handling and Chemical Analysis of Sediment and Water Samples. Technical Report EPA/CE-81-1, prepared by Great Lakes Laboratory, State University College at Buffalo, Buffalo, NY, for the U.S. Environmental Protection Agency/Corps of Engineers Technical Committee on Criteria for Dredged and Fill Material. Published by the U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS.

U.S. Army Corps of Engineers and U.S. Environmental Protection Agency. 1997. Regional Implementation Manual. Requirements and Procedures for Evaluation of Dredged Material Proposed for Ocean Disposal in the State of Hawaii. Draft. January, 1997.

U.S. Environmental Protection Agency, 1985b. Methods for Measuring the Acute Toxicity of Effluents to Freshwater and Marine Organisms. Third Edition. Peltier, W.H. and Weber, C.L. eds. Environmental Protection Agency, Environmental Monitoring and Support Laboratory, Cincinnati, OH, EPA/600/4-85/013.

U.S. Environmental Protection Agency, 1987. Short-Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Marine and Estuarine Organisms. Weber, C.L. et al., eds. Environmental Protection Agency, Environmental Monitoring and Support Laboratory, Cincinnati, OH, EPA/600/4-87/028.

U.S. Environmental Protection Agency, 1989. General Requirements for Sediment Testing of Dredged Material Proposed for Ocean Dumping. Region 9, 1989.

U.S. Environmental Protection Agency and U.S. Army Corps of Engineers. 1991. Evaluation of Dredged Material Proposed for Ocean Disposal-Testing Manual. Office of Water. Washington, DC. EPA-503/8-91/001. February, 1991.

43.5

APPENDIX B

WATER QUALITY OBSERVATIONS

AMPHIPOD BIOASSAYS

Appendix Table B-1. 10-Day Solid Phase Bioassay with Grandidierella japonica

Day	Temperature (°C) Initial Fina	Temperature PC tial Final	Dissolv (mg Initial)	Dissolved O2 (mg/L) Initial Final	pH (units Initial	pH (units) il Final	Salinity (ppt) Initial	alinity (ppt) Final	NH3 (mg/L)
0	15.9		8.1		7.69		30		0.1*
1	14.6		9.8		7.87		29		
7	14.8	14.5	8.0	8.6	7.89	8.02	30	29	
3	14.8		8.3		7.94		29		
4	14.8	15.0	8.0	8.2	7.94	7.98	28	29	
'n	14.9		8.3		7.98		30		
9	16.2	15.0	7.4	8.3	8.01	8.01	30	30	
7	14.8		8.2		7.88		31		
∞	14.9	14.6	8.3	8.5	7.93	7.81	30	31	
6	14.6		8.5		69.2		30		
10		15.4		8.7		7.88		30	3.1

Appendix Table B-2. 10-Day Solid Phase Bioassay with Grandidierella japonica

				Reference	nce				
Day	Tempe (°) Initial	Temperature (°C) iitial Final	Dissolv (mg Initial	Dissolved O2 (mg/L)	pH (units Initial	pH (units) al Final	Salinity (ppt) Initial	alinity (ppt) I Final	NH3 (mg/L)
0	16.0		8.2		8.09		30		0.4*
,,,,,			8.4		7.90		29		
7		14.4	8.0	8.5	7.89	8.05	30	29	
က	14.6		8.3		8.01		. 29		
4	14.8		8.0	7.9	7.94	8.03	28	29	
ĸ	14.8		8.2		8.03		30		
9	16.2	14.8	7.4	8.3	8.01	8.08	30	30	
. 1	14.8		8.1		7.93		31		
∞			8.3	8.6	7.93	7.88	30	31	
. 6	14.5		9.8		7.79	94. 94.	. 31		
10.		15.4		8.8		7.95		31	4.1

*Sample was measured using an ion electrode in place of the spectrophotometer.

Appendix Table B-3. 10-Day Solid Phase Bioassay with Grandidierella japonica

				1-2T	T				
Day	Tempe (°(Initial	Femperatures (°C) ('itial Final	*Dissolved ((mg/L) Initial ** Fi	Dissolved O2 (mg/L)	(units)	fr its) Final	Salinity (ppt) Initial Fin	nity pt) Final	NH3 (mg/L)
0	16.0		7.8		8.01		30		0.904*
1 2	15.1	14.4	8.6	8.6	7.97	8 10	29	79	
l 160	14.6		8.1		8.04		30		
4	14.8	15.0	8.0	8.2	7.94	8.04	28	30	
S V	15.1	17.0	8.2	0	8.04		31		
۰ ۲	16.2	o t	8.1	1.0	7.92)0.0	30 31	7	
%	14.9	14.5	8.3	8.6	7.93	7.87	30	31	
6	14.4		8.7		7.83		31		
10		15.2		8.8		7.98		30	3.5

^{*}Sample was measured using an ion electrode in place of the spectrophotometer.

Appendix Table B-4. 10-Day Solid Phase Bioassay with Grandidierella japonica

				1-2B	В				
Day	Tempe (%) Initial	Temperatüre (°©) itial Final	Dissolved O ₂ (mg/L) Initial Final	ved O2 (L) Final	pH (units Initial	pH (units) Initial Final	Sali (p Initial	Salinity (ppt) al Final	NH3 (mg/L)
0 1 2 4 7 7 7 8 9 9	16.0 15.1 14.8 14.8 14.9 16.2 15.0 14.9	14.4 15.2 15.0 14.5	7.8 8.5 8.0 8.2 8.2 7.4 8.0 8.3 8.3	8.5 8.0 8.5 8.5	8.10 8.02 7.89 8.20 7.94 8.14 8.01 7.98 7.93 7.93	8.27 8.19 8.17 8.00 8.00	30 29 30 28 31 30 30	29 29 31 31 30	4.71•

*Sample was measured using an ion electrode in place of the spectrophotometer.

Appendix Table B-5. 10-Day Solid Phase Bioassay with Grandidierella japonica

	NH3 (mg/L)	3.5
	Salinity (ppt) tial Final	31 33 39 39
	Sali (p Initial	30 29 30 28 31 30 30
	pH (units) al Final	8.18 8.19 7.95 8.04
3	pH (units Initial	7.89 8.14 7.89 8.18 7.94 8.01 7.99 7.93
Site 3	Dissolved O ₂ (mg/L) Initial Final	8.5 8.2 8.3 8.4 8.7
	Dissolv (mg Initial	8.1 8.5 8.0 8.2 8.3 7.4 8.3 8.3
	Temperature (°C) nitial Final	14.5 15.1 14.9 14.5
	Tempe (% Initial	16.0 14.6 14.8 14.8 14.9 16.2 14.9 14.9
	Day	0 1 2 3 4 4 7 7 7 9 9

Appendix Table B-6. 10-Day Solid Phase Bioassay with Grandidierella japonica

				Site 4	4				
Day	Tempe (°) Initial	remperature (°C)	Dissolv (mg Initial	Dissolved O ₂ (mg/L) itial Final	pH (units Initial	pH (units) al Final	Salinity (ppt) Initial F	alinity (ppt) I Final	NH3 (mg/L)
0	16.0		7.3	7 7 7 1 1 1 1 8 8	8.02		30		7.7
-	14.8		8.5		8.22		29		>
7	14.8	14.4	8.0	8.5	7.89	8.33	30	29	
ĸ	14.6		8.3		8.24		30	1. *,	
4	14.8	15.1	8.0	8.1	7.94	8.23	28	30	
w	15.0		8.3		8.21	A .	31		
9	16.2	15.0	7.4	8.1	8.01	8.22	30	31	
7	15.0		8.1		8.03		31]#1 ⁷	
∞	14.9	14.5	8.3	8.5	7.93	7.99	30	31	
6	14.5		9.8		7.94		31		
10	•	15.4		8.7		8.05		30	8.3

Appendix Table B-7. 10-Day Solid Phase Bioassay with Grandidierella japonica

				Site 5	2				
Day	Tempe (°(Initial	Temperature (°C) nitial Final	Dissolved O2 (mg/L) Initial : Final	Dissolved O2 (mg/L) itial : Final	m (un Initial	pH (units) al Final	Sali (p Initial	Salinity (ppt) al Final	NH3 (mg/L)
0	16.0		8.0		7.82		30		2.3
-	14.7		8.5		8.02		29		
2	14.8	14.5	8.0	8.5	7.89	8.12	30	56	
3	14.6		8.4		8.08		29		
4	14.8	15.1	8.0	8.1	7.94	8.07	28	29	one of the second
S	14.9		8.2		8.07	100 mg/s	31		
9	16.2	15.0	7.4	8.2	8.01	8.09	30	31	
7	15.0		8.2		7.94		31		
	14.9	14.6	8.3	9.8	7.93	7.89	30	31	
6	14.5		9.8		7.91		30		
10	,.	15.5		8.7		8.03		30	4.3

Appendix Table B-8. 10-Day Solid Phase Bioassay with Grandidierella japonica

				Site 6	9				
Day	Tempe (°)	Temperature (°C)	Dissolved O (mg/L)	Dissolved O2 (mg/L)	d (un)	pH (units)	Sali (p	Salinity (ppt)	NH3 (mg/L)
C	16.0	12 12 12 12 12 12 12 12 12 12 12 12 12 1	7.6		8.08		30		3.5
· -	14.7		8.5		8.12		29		
2	14.8	14.6	8.0	8.5	7.89	8.23	30	29	
8	14.8		8.2		8.18		29		
4	14.8	15.2	8.0	8.1	7.94	8.18	28	29	
v	15.0		8.2		8.14		31		
9	16.2	15.0	7.4	8.2	8.01	8.18	30	31	
7	15.1		8.1		8.08		30	-	• •
∞	14.9	14.6	8.3	8.5	7.93	7.98	30	30	
6	14.6		8.6		7.96		30		
10		15.4		8.7		8.07		30	5.2

Appendix Table B-9. 10-Day Solid Phase Bioassay with Grandidierella japonica

				Site 7	7				
Day	Tempe (°) Initial	Temperature (°C) nitial Final	Dissolved O2 (mg/L) Initial Final	ed 02 (L) Final	pH (units Initial	pH (units) ial Final	Salinity (ppt) Initial F	alinity (ppt) 11 Final	NH3 (mg/L)
0	16.0		8.2		8.09		30		4.0
-	14.8		8.5		8.21		56		
2	14.8	14.6	8.0	8.5	7.89	8.30	30	. 59	
е —	14.8		8.2		8.24		30		
4	14.8	15.1	8.0	8.0	7.94	8.23	28	30	
5	15.0		8.2		8.16		31		
9	16.2	15.1	7.4	8.1	8.01	8.17	30	30	
7.	15.1		8.0		8.01		30		:
∞	14.9	14.6	8.3	8.3	7.93	7.97	30	30	
6	14.6		9.8		7.96		30		
10		15.4		8.6		8.07		30	0.9

Appendix Table B-10. 10-Day Solid Phase Bioassay with Grandidierella japonica

Site 8	Temperature Dissolved O ₂ pH (units) (ppt) (mg/L) (mg/L) Initial Final Initial Final	16.0 8.5 8.08 30 2.0 14.8 8.6 8.4 7.89 8.14 30 29 14.8 14.6 8.0 8.4 7.89 8.14 30 29 14.8 15.1 8.0 8.1 7.94 8.09 28 29 15.0 8.2 8.1 7.94 8.09 28 29 15.0 8.2 8.0 31 30 30 16.2 15.2 7.4 8.2 8.01 8.09 30 30 15.1 14.6 8.3 8.5 7.93 7.89 30 30 38 14.6 8.6 8.6 7.93 7.89 30 30 38 14.6 8.5 8.6 7.93 7.89 30 30 3.8
	100 100 100 100 100 100 100 100 100 100	
	Day	0 1 2 3 4 4 7 7 7 9 9

Appendix Table B-11. 10-Day Solid Phase Bioassay with Grandidierella japonica

				Site 9	6				
Day	Tempe (% Initial	Femperature (°C) ittial Final	Dissolv (mg Initial	Dissolved O ₂ (mg/L) itial Final	d (un Initial	pH (units) al Final	Salin (pp Initial	Salinity (ppt) al Final	NH3 (mg/L)
0	16.0		7.8		8.10		30		2.2
-	14.9		8.4		7.97		29	:	
7	14.8	14.5	8.0	8.5	7.89	8.09	30	29	
ю	14.8		8.3		8.05		29		.4
4	14.8	15.2	8.0	8.1	7.94	8.06	28	29	
v	15.1		8.2		8.05		31	:	
9	16.2	15.1	7.4	8.1	8.01	8.07	30	30	
7	15.1		8.1		7.98		30		
∞	14.9	14.5	8.3	8.4	7.93	7.89	30	30	
6	14.6		8.6		7.93		30		
10		15.5		8.6		8.01		30	1.5

Appendix Table B-12. 10-Day Solid Phase Bioassay with Grandidierella japonica

BIVALVE BIOASSAYS

Appendix Table B-13. Bivalve Larvae Water Quality
Pearl Harbor Homeporting Project

Test Site	0	Dissolved O ₂ (mg/L) 24 48F	ed (02 (L) (48#	The second secon	67-	pH (qinlis) 24	(s) (s)	(42)		Sallmiffy (ppt) 24°	(iy 0 48		0	Temperature (°C) 1. 24 °C 48	rature) 48		NH3 (mg/L)	(3) (L) 67
Lab Control	8.7	7.3	7.2	6.5	8.07	7.85	7.87	7.62	33	33	34	34	20.3	20.4	20.4	20.4	1.5	0.0
Reference	8.1	6.4	6.7	6.5	7.95	7.76	7.84	7.63	33	33	35	35	20.3	20.3	20.4	20.6	6.0	0.0
1-2T	5.9	6.4	6.9	6.5	8.28	8.00	8.01	7.79	33	33	34	34	20.3	20.4	20.4	20.4	4.9	4.9
1-2B	6.1	9.9	8.9	6.4	8.18	8.09	8.13	7.97	33	33	34	34	20.3	20.4	20.4	20.4	14.3	17.0
3	5.8	8.9	6.9	6.5	8.19	8.10	8.18	8.01	33	33	34	34	20.3	20.4	20.4	20.4	13.7	12.8
4	5.0	6.7	8.9	9.9	8.23	8.12	8.20	8.05	33	33	34	34	20.3	20.4	20.4	20.4	19.2	15.5
w	6.1	6.7	6.9	8.9	7.90	7.88	7.99	7.86	33	33	34	34	20.3	20.4	20.4	20.6	5.2	4.3
9	5.6	6.7	6.9	9.9	8.22	8.09	8.15	8.00	33	33	34	34	20.3	20.4	20.4	20.4	12.6	11.5
7	5.8	6.9	6.9	9.9	8.21	8.10	8.17	8.01	33	33	34	34	20.3	20.4	20.4	20.4	12.9	11.2
&	7.0	6.9	7.0	6.9	8.05	7.97	8.04	7.88	33	33	34	34	20.3	20.4	20.4	20.6	6.3	5.2
6	6.2	8.9	7.1	6.9	8.22	8.00	8.02	7.84	33	33	34	34	20.3	20.5	20.4	20.6	2.9	3.7
10	7.3	7.1	7.1	6.9	8.32	7.96	7.90	7.70	33	33	34	34	20.3	20.4	20.4	20.3	0:0	0.0

APPENDIX C

TEST SITE STATISTICAL ANALYSES

AMPHIPOD

Amphipod 10-day Survival Bioassay-Proportion Alive													
Start Date: End Date: Sample Date:	11/4/97 11/14/97		Lab ID:	9711-023 CAOEE-O ASTM 93	gden Bioassay	Sample ID: Sample Type: Test Species:	MEC-Homeporting Pearl Harbor SED-Marine Sediments GJ-Grandidierella japonica						
Comments:	Site: 1-2T	2	- 3	4	5								
Conc-	0.9000	0.8500	0.9500	1.0000	1.0000								
REF-Control 1-2T	0.9000	0.9000			1.0000								

				Transform	n: Untrans		1-Tailed			
Conc-	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD
REF-Control	0.9400	1.0000	0.9400	0.8500	1.0000	6.935	5			
1-2T	0.9200		0.9200	0.8500	1.0000	6.197	5	0.516	1.860	0.0028

A	Statistic	Critical	Skew	Kurt
Auxiliary Tests Shapiro-Wilk's Test indicates normal distribution (p > 0.01)	0.95286	0.781	-0.1299	-1.1925
F-Test indicates equal variances (p = 0.80)	1.30769	23.1539		
Hypothesis Test (1-tail, 0.05)				
- Foret differences				

	Amphipod 10-day Survival Bioassay-Proportion Alive													
Start Date:	11/4/97			9711-024	-d Di	Sample ID:	MEC-Homeporting Pearl Harbor							
End Date:	11/14/97				gden Bioassay	Sample Type:	SED-Marine Sediments							
Sample Date:			Protocol:	ASTM 93		Test Species:	GJ-Grandidierella japonica							
Comments:	Site: 1-2B													
Conc-	1	2	3	4	5									
REF-Control	0.9000	0.8500	0.9500	1.0000	1.0000									
1-2B	0.9000	0.8500	0.9000	0.9500	0.8500									

			Transform: Untransformed						1-Tailed	
Conc-	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD
REF-Control	0.9400	1.0000	0.9400	0.8500	1.0000	6.935	5			•
1-2B	0.8900	0.9468	0.8900	0.8500	0.9500	4.700	5	1.443	1.860	0.0022

Auxiliary Tests	Statistic	Critical	Skew	Kurt
Shapiro-Wilk's Test indicates normal distribution (p > 0.01)	0.89457	0.781	-0.2723	-0.8956
F-Test indicates equal variances (p = 0.41)	2.42857	23.1539		
Hypothesis Test (1-tail 0.05)				

	Amphipod 10-day Survival Bioassay-Proportion Alive												
Start Date: End Date: Sample Date: Comments:	11/4/97 11/14/97 Site: 3		Lab ID:	9711-025 CAOEE-O ASTM 93	gden Bioassay	Sample ID: Sample Type: Test Species:	MEC-Homeporting Pearl Harbor SED-Marine Sediments GJ-Grandidierella japonica						
Conc-	1	2	3	4	5								
REF-Control	0.9000	0.8500	0.9500	1.0000	1.0000								
Site 3	0.9500	0.9000	0.9000	0.8500	0.9000	-	•						

			Transform: Untransformed						1-Tailed	
Conc-	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD
REF-Control	0.9400	1.0000	0.9400	0.8500	1.0000	6.935	5			
Site 3	0.9000	0.9574	0.9000	0.8500	0.9500	3.928	5	1.206	1.860	0.0020

Auxiliary Tests	Statistic	Critical	Skew	Kurt
Shapiro-Wilk's Test indicates normal distribution (p > 0.01)	0.92663	0.781	-0.4137	-0.4456
F-Test indicates equal variances (p = 0.26)	3.4	23.1539		
Hypothesis Test (1-tail, 0.05)				

			Am	phipod 10	-day Survival Bi	oassay-Proportion	n Alive
Start Date:	11/4/97		Test ID:	9711-026		Sample ID:	MEC-Homeporting Pearl Harbor
End Date:	11/14/97		Lab ID:	CAOEE-O	gden Bioassay	Sample Type:	SED-Marine Sediments
Sample Date:			Protocol:	ASTM 93		Test Species:	GJ-Grandidierella japonica
Comments:	Site: 4						
Conc-	1	2	3	4	5		
REF-Control	0.9000	0.8500	0.9500	- 1.0000	1.0000	,	
Site 4	0.8000	0.9500	0.9500	0.9000	1.0000		

				Transform: Untransformed					1-Tailed		
Conc-	Mean	N-Mean -	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD	
REF-Control	0.9400	1.0000	0.9400	0.8500	1.0000	6.935	5				
Site 4	0.9200	0.9787	0.9200	0.8000	1.0000	8.242	5	0.447	1.860	0.0037	

Auxiliary Tests	Statistic	Critical	Skew	Kurt
Shapiro-Wilk's Test indicates normal distribution (p > 0.01)	0.92615	0.781	-0.7172	-0.5362
F-Test indicates equal variances (p = 0.78)	1.35294	23.1539		
Hypothesis Test (1 tail 0.05)				

nypotnesis rest (1-tail, 0.05)

Homoscedastic t Test indicates no significant differences

		Amphipod 10-day Survival Bioassay-Proportion Alive												
Start Date: End Date: Sample Date: Comments:	11/4/97 11/14/97 Site: 5		Lab ID:	9711-027 CAOEE-O ASTM 93	gden Bioassay	Sample ID: Sample Type: Test Species:	MEC-Homeporting Pearl Harbor SED-Marine Sediments GJ-Grandidierella japonica							
Conc-	1	2	3 .	4	5									
REF-Control	0.9000	0.8500	0.9500	1.0000	1.0000									
Site 5	0.9500	0.9000	0.9500	0.9000	0.9500									

				Transform: Untransformed					1-Tailed	
Conc-	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD
REF-Control	0.9400	1.0000	0.9400	0.8500	1.0000	6.935	5			
Site 5	0.9300	0.9894	0.9300	0.9000	0.9500	2.945	5	0.316	1.860	0.0019

Auxiliary Tests	Statistic	Critical	Skew	Kurt
Shapiro-Wilk's Test indicates normal distribution (p > 0.01)	0.92778	0.781	-0.5171	-0.0876
F-Test indicates equal variances (p = 0.12)	5.66667	23.1539		
Hypothesis Test (1-tail 0.05)				

Hypothesis Test (1-tail, 0.05)
Homoscedastic t Test indicates no significant differences

	Amphipod 10-day Survival Bioassay-Proportion Alive													
Start Date:	11/4/97		Test ID:	9711-028		Sample ID:	MEC-Homeporting Pearl Harbor							
End Date:	11/14/97		Lab ID:	CAOEE-O	gden Bioassay	Sample Type:	SED-Marine Sediments							
Sample Date:			Protocol:	ASTM 93		Test Species:	GJ-Grandidierella japonica							
Comments:	Site: 6													
Conc-	1	2	3	4	5									
REF-Control	0.9000	0.8500	0.9500	1.0000	1.0000		-							
Site 6	1.0000	0.9500	1.0000	0.9500	0.9500	-	•							

				Transform: Untransformed			_	1-Tailed		
Conc-	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD
REF-Control	0.9400	1.0000	0.9400	0.8500	1.0000	6.935	5			
Site 6	0.9700	1.0319	0.9700	0.9500	1.0000	2.823	5	-0.949	1.860	0.0019

Auxiliary Tests	Statistic	Critical	Skew	Kurt
Shapiro-Wilk's Test indicates normal distribution (p > 0.01)	0.93868	0.781	-0.4375	-0.0876
F-Test indicates equal variances (p = 0.12)	5.66667	23.1539		
Hypothesis Test (1-tail, 0.05)				

			Am	phipod 10	-day Survival B	ioassay-Proportion	n Alive
Start Date: End Date: Sample Date:	11/4/97 11/14/97		Test ID: Lab ID:	9711-029	gden Bioassay	Sample ID: Sample Type: Test Species:	MEC-Homeporting Pearl Harbor SED-Marine Sediments GJ-Grandidierella japonica
Comments:	Site: 7						
Conc-	1	2	3	4	5		
REF-Control	0.9000	0.8500	0.9500	1.0000	1.0000		
Site 7	0.7500	0.9500	0.9500	1.0000	0.9500		

				Transform	n: Untran	sformed			1-Tailed	
Conc-	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD
REF-Control	0.9400	1.0000	0.9400	0.8500	1.0000	6.935	5			
Site 7	0.9200	0.9787	0.9200	0.7500	1.0000	10.594	5	0.381	1.860	0.0051

Auxiliary Tests	Statistic	Critical	Skew	Kurt
Shapiro-Wilk's Test indicates normal distribution (p > 0.01)	0.85378	0.781	-1.3606	1.34532
F-Test indicates equal variances (p = 0.46)	2.23529	23.1539		
Hunethoric Toet /1 tail 0.05)				

Hypothesis Test (1-tail, 0.05)
Homoscedastic t Test indicates no significant differences

Amphipod 10-day Survival Bioassay-Proportion Alive											
Start Date:	11/4/97		Test ID:	9711-030		Sample ID:	MEC-Homeporting Pearl Harbor				
End Date:	11/14/97		Lab ID:	CAOEE-O	gden Bioassay	Sample Type:	SED-Marine Sediments				
Sample Date:			Protocol:	ASTM 93		Test Species:	GJ-Grandidierella japonica				
Comments:	Site: 8										
Conc-	1	2	3	4	5						
REF-Control	0.9000	0.8500	0.9500	1.0000	1.0000						
Site 8	1.0000	1.0000	0.9500	0.9000	1.0000						

			•	Transform: Untransformed				_	1-Tailed	
Conc-	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD
REF-Control	0.9400	1.0000	0.9400	0.8500	1.0000	6.935	5			
Site 8	0.9700	1.0319	0.9700	0.9000	1.0000	4.610	5	-0.849	1.860	0.0023

Auxiliary Tests	Statistic	Critical	Skew	Kurt
Shapiro-Wilk's Test indicates normal distribution (p > 0.01)	0.9093	0.781	-0.5977	-0.9252
F-Test indicates equal variances (p = 0.48)	2.125	23.1539		
Hypothesis Test (1-tail, 0.05)			***************************************	

			Am	phipod 10	-day Survival Bi	oassay-Proportion	Alive
Start Date: End Date: Sample Date: Comments:	11/4/97 Test II 11/14/97 Lab ID	Lab ID:	9711-031 CAOEE-C ASTM 93	gden Bioassay	Sample ID: Sample Type: Test Species:	MEC-Homeporting Pearl Harbor SED-Marine Sediments GJ-Grandidierella japonica	
Conc-	1	2	3	4	5		
REF-Control	0.9000	0.8500	0.9500	⁻ 1.0000	1.0000		•
Site 9	0.9500	0.9000	0.9500	0.9500	1.0000		

				Transform	n: Untran	sformed	_	1-Tailed		
Conc-	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD
REF-Control	0.9400	1.0000	0.9400	0.8500	1.0000	6.935	5			
Site 9	0.9500	1.0106	0.9500	0.9000	1.0000	3.722	5	-0.302	1.860	0.0020

Auxiliary Tests	Statistic	Critical	Skew	Kurt
Shapiro-Wilk's Test indicates normal distribution (p > 0.01)	0.92663	0.781	-0.4137	-0.4456
F-Test indicates equal variances (p = 0.26)	3.4	23.1539		
Hypothesis Test (1-tail, 0.05)				

			Am	phipod 10	-day Survival B	ioassay-Proportior	n Alive
Start Date:		Test ID:	9711-032		Sample ID:	MEC-Homeporting Pearl Harbor	
End Date:	11/14/97	1	Lab ID:	CAOEE-0	gden Bioassay	Sample Type:	SED-Marine Sediments
Sample Date:		ı	Protocol:	ASTM 93		Test Species:	GJ-Grandidierella japonica
Comments:	Site: 10						
Conc-	1	2	3	4	5		
REF-Control	0.9000	0.8500	0.9500	1.0000	1.0000		
Site 10	0.9500	1.0000	0.9000	1.0000	0.9000		
,							

		_		Transform: Untransformed					1-Tailed		
Conc-	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD	
REF-Control	0.9400	1.0000	0.9400	0.8500	1.0000	6.935	5				
Site 10	0.9500	1.0106	0.9500	0.9000	1.0000	5.263	5	-0.272	1.860	0.0025	

Auxiliary Tests	Statistic	Critical	Skew Kur
Shapiro-Wilk's Test indicates normal distribution (p > 0.01)	0.89109	0.781	-0.3043 -1.45
F-Test indicates equal variances (p = 0.62)	1.7	23.1539	
11 11 11 11 11 11 11 11 11 11 11 11 11			

Hypothesis Test (1-tail, 0.05)

Homoscedastic t Test indicates no significant differences

BIVALVE

			Bivalve L	arval Sur	vival and Develo	opment Test-Prop	ortion Alive
ind Date: Sample Date:	11/7/97 11/9/97		Test ID:	9711-011 CAOEE-O	gden Bioassay	Sample ID: Sample Typ <u>e:</u> Test Species:	MEC-Homeporting Pearl Harbon SED-Marine Sediments CG-Crassostrea gigas
Comments:	Site: REF	ERENCE					
Conc-	1	2	3	4	5		
L-Lab Control	1.0000	1.0000	1.0000	1.0000	1.0000		
1	0.8799	0.9868	1.0000	0.8141	0.9704		
10	0.6414	0.7237	0.7648	0.6826	0.7401		
50	0.8388	0.5674	1.0000	1.0000	0.7730		
100	0.8553	0.9704	1.0000	1.0000	1.0000		•

			Tr	ansform:	Arcsin So	_	1-Tailed			
Conc-	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD
L-Lab Control	1.0000	1.0000	1.4269	1.4269	1.4269	0.000	5			
1	0.9303	0.9303	1.3245	1.1251	1.4558	10.971	5	1.170	2.300	0.2012
*10	0.7105	0.7105	1.0037	0.9288	1.0645	5.344	5	4.838	2.300	0.2012
*50	0.8359	0.8359	1.1878	0.8530	1.4269	20.633	5	2.734	2.300	0.2012
100	0.9651	0.9651	1.3718	1.1805	1.4269	7.849	5	0.630	2.300	0.2012

Auxiliary Tests				*****	Statistic		Critical		Skew	Kurt	
Shapiro-Wilk's Test indicates non	mal distribu	tion (p > 0).01)		0.94123		0.888			1.39375	
Equality of variance cannot be co											
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df	
Dunnett's Test	100	>100			0.09386	0.09583	0.14422	0.01913	7.1E-04	4, 20	

		Į.	Bivalve La	arval Surv	ival and Develo	pment Test-Propo	rtion Normal
Start Date:	11/7/97		Test ID:	9711-011		Sample ID:	MEC-Homeporting Pearl Harbor
End Date:	11/9/97		Lab ID:	CAOEE-O	gden Bioassay	Sample Type:	SED-Marine Sediments
Sample Date:			Protocol:	ASTM 87		Test Species:	CG-Crassostrea gigas
Comments:	Site: REF	ERENCE					
Conc-	1	2	3	4	5		
L-Lab Control	0.9138	0.9444	0.9817	0.9091	0.9040		
1	0.8972	0.9167	0.8581	0.9293	0.9407		
10	0.8974	0.9545	0.8710	0.9518	0.9333		
50	0.9608	0.9130	0.9111	0.7397	0.9362	•	
100	0.9712	0.9407	0.8271	0.8873	0.8776	•	

	Mean		Tra	ansform:	Arcsin So	quare Root		1-Tailed		
Conc-		N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD
L-Lab Control	0.9306	1.0000	1.3122	1.2558	1.4349	5.715	5			
1	0.9084	0.9761	1.2667	1.1845	1.3248	4.319	5	0.807	2.300	0.1297
10	0.9216	0.9904	1.2926	1.2034	1.3559	5.158	5	0.346	2.300	0.1297
50	0.8922	0.9587	1.2524	1.0354	1.3714	10.244	5	1.061	2.300	0.1297
100	0.9008	0.9679	1.2617	1.1419	1.4001	8.018	5	0.895	2.300	0.1297

Auxiliary Tests					Statistic		Critical 0.888			Kurt 0.76269
Shapiro-Wilk's Test indicates non	mal distribu	ition (p > 0).01)		0.96351					
Bartlett's Test indicates equal var		3.36252		13.2767						
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df
Dunnett's Test	100	>100			0.07796	0.08342	0.00304	0.00795	0.81883	4, 20

			Bivalve L	.arval Sur	vival and Develo	opment Test-Propo	ortion Alive
Start Date: End Date: Sample Date:	11/7/97 11/9/97		Test ID: Lab ID: Protocol:	CAOEE-O	gden Bioassay	Sample ID: Sample Type: Test Species:	MEC-Homeporting Pearl Harbor SED-Marine Sediments CG-Crassostrea gigas
Comments:	Site: 1-2T	2	3 .	4	5		
L-Lab Control	1.0000	1,0000	1.0000	1.0000	1.0000		
1	0.9293	0.9293	1.0000	0.9375	0.8470		
10	0.8799	1.0000	1.0000	0.8964	1.0000		
50	1.0000	0.7237	0.9951	1.0000	1.0000		
100	1.0000	0.9539	1.0000	0.8470	0.9704		

			Tra	ansform:	Arcsin So	uare Root	t		1-Tailed	
Conc-	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD
L-Lab Control	1.0000	1.0000	1.4269	1.4269	1.4269	0.000	5			
1	0.9286	0.9286	1.3034	1.1690	1.4269	7.026	5	1.656	2.300	0.1714
10	0.9553	0.9553	1.3482	1.2170	1.4269	8.029	5	1.057	2.300	0.1714
50	0.9438	0.9438	1.3597	1.0173	1.5005	14.271	5	0.902	2.300	0.1714
100	0.9543	0.9543	1.3550	1.1690	1.4269	7.982	5	0.964	2.300	0.1714

Auxiliary Tests					Statistic		Critical		Skew	Kurt
Shapiro-Wilk's Test indicates nor	-normal dis	stribution (p <= 0.01)		0.83755		0.888		-1.6205	3.1948
Equality of variance cannot be co										
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df
Dunnett's Test	100	>100			0.07562	0.07721	0.00979	0.01389	0.59796	4, 20

			Bivalve L	arval Surv	ival and Develor	oment Test-Propo	rtion Normal
Start Date:	11/7/97		Test ID:	9711-012		Sample ID:	MEC-Homeporting Pearl Harbor
End Date:	11/9/97		Lab ID:	CAOEE-O	gden Bioassay	Sample Type:	SED-Marine Sediments
Sample Date:			Protocol:	ASTM 87		Test Species:	CG-Crassostrea gigas
Comments:	Site: 1-2T						
Conc-	1	2	3	4	5		
L-Lab Control	0.9138	0.9444	0.9817	0.9091	0.9040		-
1	0.9558	0.9204	0.9306	0.8860	0.9903	-	
10	0.9720	0.9274	0.9191	0.9541	0.9214		
50	0.9521	0.9091	0.9339	0.9338	0.9330		
100	0.9091	0.9138	0.8718	0.9223	0.8559		

			Tra	ansform:	Arcsin So	uare Roof		1-Tailed			
Conc-	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD	
L-Lab Control	0.9306	1.0000	1.3122	1.2558	1.4349	5.715	5				
1	0.9366	1.0064	1.3292	1.2263	1.4721	6.986	5	-0.426	2.300	0.0921	
10	0.9388	1.0088	1.3249	1.2824	1.4026	3.944	5	-0.318	2.300	0.0921	
50	0.9324	1.0019	1.3090	1.2645	1.3502	2.318	5	0.080	2.300	0.0921	
100	0.8946	0.9613	1.2424	1.1815	1.2884	3.747	5	1.743	2.300	0.0921	

Auxiliary Tests					Statistic		Critical		Skew	Kurt
Shapiro-Wilk's Test indicates nor	mal distribu	rtion (p > 0	0.01)		0.93425		0.888		0.80593	0.65323
Bartlett's Test indicates equal var	Bartlett's Test indicates equal variances (p = 0.29)									
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df
Dunnett's Test	100	>100			0.05267	0.05636	0.00621	0.00401	0.2271	4, 20

			Bivalve I	Larval Sur	vival and Develo	opment Test-Prop	ortion Alive
Start Date: End Date: Sample Date:	11/7/97 11/9/97		Lab ID:	9711-013 CAOEE-O ASTM 87	gden Bioassay	Sample ID: Sample Type: Test Species:	MEC-Homeporting Pearl Harbon SED-Marine Sediments CG-Crassostrea gigas
Comments:	Site: 1-2B						
Conc-	1	2	3	44	5		
L-Lab Control	1.0000	1.0000	1.0000	1.0000	1.0000		
1	0.7730	0.8882	0.7813	0.8717	0.6250		
10	0.6003	1.0000	1.0000	0.9868	0.8635		
50	0.6743	0.5674	0.7813	0.5345	0.8799		
100	0.1563	0.2138	0.1151	0.1069	0.1809		

			Tra	ansform:	Arcsin Sc	uare Root		1-Tailed			Total	
Conc-	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD	Resp	Number
1-Lab Control	1.0000		1,4269	1.4269	1,4269	0.000	5				1	61
±1	0.7878		1.1009	0.9117	1.2298	11.501	5	3.537	2.300	0.2120	12	61
		0.7676	1.1003	0.8864	1.4558	19.037	5	1,619	2.300	0.2120	7	61
10	0.8901			0.8200	1.2170	16.694	5	4.766	2.300	0.2120	20	61
*50	0.6875		0.9875			15.502	5	11.127	2.300	0.2120	52	61
*100	0.1546	0.1546	0.4011	0.3331	0.4807	15.502	5	11.127	2.000	0.2120	02	0.

Auxiliary Tests					Statistic		Critical		Skew	Kurt
Shapiro-Wilk's Test indicates nor	mal distribu	ition (p >	0.01)		0.94264		0.888		-0.8813	1.91313
Equality of variance cannot be co							****	1105	E Dack	df
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	
					0.10086					4. 20

Dunnett's Test			10	30	££.0001		•					
					Maximun	n Likeliho	od-Probit					
Parameter	Value	SE	95% Fidu	cial Limit	s	Control		Critical		Mu	Sigma	iter
Slope	5.51623	0.99266	3.57062	7.46184		0.01316	4.95777	9.21035	0.08	1.82388	0.18128	11
Intercept	-5.0609	1.8486	-8.6842	-1.4377								
TSCR	0.10636	0.02279	0.06169	0.15103			1.0			11/		
Point	Probits		95% Fidu		s		0.9					
EC01	2.674	25.2436	13.8984	33.9456			-			#/		
EC05	3.355	33.5502	21.4195	42.1825			0.8 -			 /		
EC10	3.718	39.0442	26.914	47.4678			0.7 -			 	Ì	
EC15	3.964	43.2506	31.3474	51.4841			- 00					
EC20	4.158	46.9146	35.3372	54.9934			Response 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9			II I		
EC25	4.326	50.3044	39.1078	58.2753			Ö 0.5 -				l	
EC40	4.747	59.9725	50.0163	68.0804			Se 0.4			/ I !		
EC50	5.000	66.6622	57.372	75.5683			œ 0.41					
EC60	5.253	74.0982	65.0161	84.9032			0.3 -		İ	7	i	
EC75	5.674	88.3392	77.8089	105.999			0.2		/	I /	Ì	
EC80	5.842	94.7222	82.9259	116.64					/	[]		
EC85	6.036	102.747	89.0019	130.86			0.1 -		* / <u>/</u> /	/		
EC90	6.282	113.816	96.9225	151.802			0.0 -		···· / //	******		
EC95	6.645	132.454	109.46	190.056				1	10	100	1000	
EC99	7.326	176.039	136.464	291.954					Dos	е		

Bivalve Larval Survival and Development Test-Proportion Alive

Start Date: End Date:

Sample Date:

11/7/97 11/9/97 Test ID: 9711-013

Lab ID: CAOEE-Ogden Bioassay

Protocol: ASTM 87

Sample ID: Sample Type: Test Species: MEC-Homeporting Pearl Harbor

SED-Marine Sediments CG-Crassostrea gigas

Comments: Site: 1-2B

						oment Test-Propo	1450 H
Start Date:	11/7/97			9711-013		Sample ID:	MEC-Homeporting Pearl Harbor
End Date:	11/9/97		Lab ID:	CAOEE-0	gden Bioassay	Sample Type:	SED-Marine Sediments
Sample Date:			Protocol:	ASTM 87		Test Species:	CG-Crassostrea gigas
Comments:	Site: 1-2B						-
Conc-	1	2	3	4	5		
L-Lab Control	0.9138	0.9444	0.9817	0.9091	0.9040	•	
1	0.9681	0.9352	0.9684	0.8679	0.9211		
10	0.9178	0.9139	0.9384	0.9083	0.9048		
50	0.4024	0.6667	0.8000	0.6308	0.7103		
100	0.0526	0.3077	0.1429	0.1538	0.1818		

			Transform: Arcsin Square Root						1-Tailed		Number	Total	
Conc-	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD	Resp	Number	
I -Lab Control	0.9306	1.0000	1.3122	1.2558	1.4349	5.715	5				43	608	
L-Lab Control	0.9321	1.0017	1.3163	1.1989	1.3921	6.134	5	-0.063	2.300	0.1499	33	479	
10	0.9321	0.9850	1.2786	1.2571	1.3199	1.931	5	0.515	2.300	0.1499	49	595	
	0.6420	0.6899	0.9340	0.6872	1.1071	16.612	5	5.804	2.300	0.1499	146	418	
*50		0.000			0.5880	31.090	5	13.842	2.300	0.1499	77	94	
*100	0.1678	0.1803	0.4101	0.2315	0.5880	31.090	5	13.842	2.300	0.1499	- "		

Auxiliary Tests					Statistic		Critical		Skew	Kurt
Shapiro-Wilk's Test indicates non	mal distribu	tion (p >	0.01)		0.93934		0.888		-0.4782	1.47636
Bartlett's Test indicates equal var			,		9.9468		13.2767			
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df
Dunnett's Test	10	50	22.3607		0.09239	0.09886	0.76854	0.01062	1.3E-11	4, 20

				M	aximum		od-Probit					
Parameter	Value	SE	95% Fidu	cial Limits				Critical		Mu	Sigma	Iter
Slope	4.60977	0.72483	3.1891	6.03044		0.07072	0.13892	9.21035	0.93	1.81353	0.21693	4
Intercept	-3.36	1.3433	-5.9928	-0.7271								
TSCR	0.07227	0.00918		0.09026			1.0 7			11/		
Point	Probits		95% Fidu	cial Limits			0.9					
EC01	2.674	20.3645	11.5389	27.6933			-			II/		
EC05	3.355	28.6228	18.7742	36.1146			0.8	:		<i>i</i> 7/		
EC10	3.718	34.3181	24.2921	41.6815			0.7			#/		
EC15	3.964	38.7879	28.8656	45.9764						H		
EC20	4.158	42.7521	33.0663	49.7648			Response 9.0				•	
EC25	4.326	46.4743	37.1058	53.3319			Ö 0.5 -			///		
EC40	4.747	57.355	49.135	64.1108			8 0.4 -			H		
EC50	5.000	65.0924	57.4702	72.4991			ox 0.4			/		
EC60	5.253	73.8736	66.2356	83.2025			0.3 -		/	#		
EC75	5.674	91.1691	81.1928	108.045			0.2		/,	[]		
EC80	5.842	99.1068	87.3644	120.756			-		/ /	' <i>j</i>		
EC85	6.036	109.236	94.8633	137.891			0.1 -		///	l		
EC90	6.282	123.463	104.905	163.435			0.0					
EC95	6.645	148.03	121.34	211.01				1	10	100	1000	
EC99	7.326	208.059	158.537	342.673					Dos	e		

Bivalve Larval Survival and Development Test-Proportion Normal

Start Date: End Date:

11/7/97 11/9/97 Test ID: 9711-013

Protocol: ASTM 87

Lab ID: CAOEE-Ogden Bioassay

Sample ID: Sample Type: **Test Species:**

MEC-Homeporting Pearl Harbor

SED-Marine Sediments CG-Crassostrea gigas

Sample Date: Comments:

Site: 1-2B

					vivai ailu Develt	opment Test-Prop	NEC Homogeting Boorl Harbor
Start Date:	11/7/97			9711-014		Sample ID:	MEC-Homeporting Pearl Harbor
End Date:	11/9/97			_	gden Bioassay	Sample Type:	SED-Marine Sediments CG-Crassostrea gigas
Sample Date:		1	Protocol:	ASTM 87		Test Species:	CO-Classostica gigas
Comments:	Site: 3						
Conc-	1	2	3	4	5		
L-Lab Control	1.0000	1.0000	1.0000	1.0000	1.0000		
1	1.0000	1.0000	1.0000	0.8553	0.9046	-	
10	0.9046	1.0000	0.9375	0.9375	0.6003		
50	0.8553	0.9211	0.8470	0.6990	0.8799		
100	0.2549	0.2303	0.1151	0.2467	0.1891		

			Tra	ansform:	Arcsin Sc	uare Root			1-Tailed		Number	Total
Conc-	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD	Resp	Number
I -I ab Control	1.0000	1.0000	1,4269	1.4269	1,4269	0.000	5				1	61
1	0.9520	0.9520	1.3436	1.1805	1.4269	8.724	5	1.079	2.300	0.1776	4	61
*10	0.8760	0.8760	1.2413	0.8864	1,4269	16.727	5	2.404	2.300	0.1776	9	61
*50	0.8405	0.8405	1.1685	0.9901	1.2860	9.387	5	3.346	2.300	0.1776	10	61
*100	0.2072	0.2072	0.4691	0.3462	0.5293	16.041	5	12.403	2.300	0.1776	49	61

Auxiliary Tests					Statistic		Critical		Skew	Kurt
Shapiro-Wilk's Test indicates non	-normal dis	stribution	(p <= 0.01)		0.8686		0.888		-1.5066	3.34073
Equality of variance cannot be co								MOT	E Dunh	df
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	
Dunnett's Test	1	10	3.16228		0.07929	0.08095	0.73049	0.01491	4.7E-10	4, 20

		1	10	3.16228		0.07929	0.08095	0.73049	0.01491	4.76-10	4, 20
				Maximun	Likeliho	od-Probit					
Value	SE	95% Fidu			Control	Chi-Sq	Critical		Mu	Sigma	Iter
7.09805	1.27549	4.59809	9.59801		0.01316	3.64026	9.21035	0.16	1.88847	0.14088	10
-8.4044	2.45528	-13.217	-3.5921								
0.07893	0.01993	0.03987	0.11799			1.0 -			///		
Probits		95% Fidu	cial Limit	s		0.9			III	1	
2.674	36.3684	22.486	46.2341			-			 		
3.355	45.3666	31.4422	54.7744			0.8 -			17	1	
3.718	51.041	37.5275	60.0626			0.7 -					
3.964	55.2653	42.2336	63.9945						ili	İ	
4.158	58.8706	46.3429	67.3726			9 0.6	1		Ш		
4.326	62.1505	50.1345	70.4841			0.5 -					
4.747	71.2487	60.7214	79.4978			188 c 4				1	
5.000	77.3516	67.6497	86.0844			œ 0.4]	1				
5.253						0.3 -	ł		H		
						02-	1		/ I i		
						0.2 -					
			130.108			0.1 -	1	/	II		
			145.7			0.0	<u> </u>	//	//		
			173.107			0.0	1	10	100	1000	
			241.039				•				
	7.09805 -8.4044 0.07893 Probits 2.674 3.355 3.718 3.964 4.158 4.326 4.747 5.000 5.253 5.674 5.842 6.036 6.282 6.645	7.09805 1.27549 -8.4044 2.45528 0.07893 0.01993 Probits 2.674 36.3684 3.355 45.3666 3.718 51.041 3.964 55.2653 4.158 58.8706 4.326 62.1505 4.747 71.2487 5.000 77.3516 5.253 83.9773 5.674 96.2707 5.842 101.634 6.036 108.264 6.282 117.225 6.645 131.887	7.09805 1.27549 4.59809 -8.4044 2.45528 -13.217 0.07893 0.01993 0.03987 Probits 95% Fidu 2.674 36.3684 22.486 3.355 45.3666 31.4422 3.718 51.041 37.5275 3.964 55.2653 42.2336 4.158 58.8706 46.3429 4.326 62.1505 50.1345 4.747 71.2487 60.7214 5.000 77.3516 67.6497 5.253 83.9773 74.7631 5.674 96.2707 86.4978 5.842 101.634 91.0894 6.036 108.264 96.444 6.282 117.225 103.268 6.645 131.887 113.756	Value SE 95% Fiducial Limit 7.09805 1.27549 4.59809 9.59801 -8.4044 2.45528 -13.217 -3.5921 0.07893 0.01993 0.03987 0.11799 Probits 95% Fiducial Limit 2.674 36.3684 22.486 46.2341 3.355 45.3666 31.4422 54.7744 3.718 51.041 37.5275 60.0626 3.964 55.2653 42.2336 63.9945 4.158 58.8706 46.3429 67.3726 4.326 62.1505 50.1345 70.4841 4.747 71.2487 60.7214 79.4978 5.000 77.3516 67.6497 86.0844 5.253 83.9773 74.7631 93.9718 5.674 96.2707 86.4978 110.955 5.842 101.634 91.0894 119.247 6.036 108.264 96.444 130.108 6.282 117.225 103.268 1	Value SE 95% Fiducial Limits 7.09805 1.27549 4.59809 9.59801 -8.4044 2.45528 -13.217 -3.5921 0.07893 0.01993 0.03987 0.11799 Probits 95% Fiducial Limits 2.674 36.3684 22.486 46.2341 3.355 45.3666 31.4422 54.7744 3.718 51.041 37.5275 60.0626 3.964 55.2653 42.2336 63.9945 4.158 58.8706 46.3429 67.3726 4.326 62.1505 50.1345 70.4841 4.747 71.2487 60.7214 79.4978 5.000 77.3516 67.6497 86.0844 5.253 83.9773 74.7631 93.9718 5.674 96.2707 86.4978 110.955 5.842 101.634 91.0894 119.247 6.036 108.264 96.444 130.108 6.282 117.225 103.268	Value SE 95% Fiducial Limits Control 7.09805 1.27549 4.59809 9.59801 0.01316 -8.4044 2.45528 -13.217 -3.5921 0.01316 0.07893 0.01993 0.03987 0.11799 Probits 95% Fiducial Limits 2.674 36.3684 22.486 46.2341 3.355 45.3666 31.4422 54.7744 3.718 51.041 37.5275 60.0626 3.964 55.2653 42.2336 63.9945 4.158 58.8706 46.3429 67.3726 4.326 62.1505 50.1345 70.4841 4.747 71.2487 60.7214 79.4978 5.000 77.3516 67.6497 86.0844 5.253 83.9773 74.7631 93.9718 5.674 96.2707 86.4978 110.955 5.842 101.634 91.0894 119.247 6.036 108.264 96.444 130.108 <t< td=""><td>Value SE 95% Fiducial Limits Control Chi-Sq 7.09805 1.27549 4.59809 9.59801 0.01316 3.64026 -8.4044 2.45528 -13.217 -3.5921 0.01316 3.64026 10.07893 0.01993 0.03987 0.11799 1.0 - Probits 95% Fiducial Limits 0.9 - 2.674 36.3684 22.486 46.2341 0.8 - 3.355 45.3666 31.4422 54.7744 0.8 - 3.718 51.041 37.5275 60.0626 0.7 - 3.964 55.2653 42.2336 63.9945 0.7 - 4.158 58.8706 46.3429 67.3726 90.6 - 4.326 62.1505 50.1345 70.4841 0.5 - 4.747 71.2487 60.7214 79.4978 0.3 - 5.000 77.3516 67.6497 86.0844 0.3 - 5.674 96.2707 86.4978 110.955 0.2 - 5.842 101.634 <td< td=""><td>Value SE 95% Fiducial Limits Control Chi-Sq Critical 7.09805 1.27549 4.59809 9.59801 0.01316 3.64026 9.21035 -8.4044 2.45528 -13.217 -3.5921 0.07893 0.01993 0.03987 0.11799 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.0 0.7 0.0 0.0 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0<!--</td--><td>Value SE 95% Fiducial Limits Control Chi-Sq Critical P-value 7.09805 1.27549 4.59809 9.59801 0.01316 3.64026 9.21035 0.16 -8.4044 2.45528 -13.217 -3.5921 0.07893 0.01993 0.03987 0.11799 1.0 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0</td><td>Value SE 95% Fiducial Limits Control Chi-Sq Critical Critical P-value Mu 7.09805 1.27549 4.59809 9.59801 0.01316 3.64026 9.21035 0.16 1.88847 8.4044 2.45528 -13.217 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921</td><td>Value SE 95% Fiducial Limits Control Chi-Sq Critical P-value Mu Sigma 7.09805 1.27549 4.59809 9.59801 0.01316 3.64026 9.21035 0.16 1.88847 0.14088 -8.4044 2.45528 -13.217 -3.5921 -3.5921 -3.5921 0.0193 0.01993 0.03987 0.11799 1.0 </td></td></td<></td></t<>	Value SE 95% Fiducial Limits Control Chi-Sq 7.09805 1.27549 4.59809 9.59801 0.01316 3.64026 -8.4044 2.45528 -13.217 -3.5921 0.01316 3.64026 10.07893 0.01993 0.03987 0.11799 1.0 - Probits 95% Fiducial Limits 0.9 - 2.674 36.3684 22.486 46.2341 0.8 - 3.355 45.3666 31.4422 54.7744 0.8 - 3.718 51.041 37.5275 60.0626 0.7 - 3.964 55.2653 42.2336 63.9945 0.7 - 4.158 58.8706 46.3429 67.3726 90.6 - 4.326 62.1505 50.1345 70.4841 0.5 - 4.747 71.2487 60.7214 79.4978 0.3 - 5.000 77.3516 67.6497 86.0844 0.3 - 5.674 96.2707 86.4978 110.955 0.2 - 5.842 101.634 <td< td=""><td>Value SE 95% Fiducial Limits Control Chi-Sq Critical 7.09805 1.27549 4.59809 9.59801 0.01316 3.64026 9.21035 -8.4044 2.45528 -13.217 -3.5921 0.07893 0.01993 0.03987 0.11799 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.0 0.7 0.0 0.0 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0<!--</td--><td>Value SE 95% Fiducial Limits Control Chi-Sq Critical P-value 7.09805 1.27549 4.59809 9.59801 0.01316 3.64026 9.21035 0.16 -8.4044 2.45528 -13.217 -3.5921 0.07893 0.01993 0.03987 0.11799 1.0 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0</td><td>Value SE 95% Fiducial Limits Control Chi-Sq Critical Critical P-value Mu 7.09805 1.27549 4.59809 9.59801 0.01316 3.64026 9.21035 0.16 1.88847 8.4044 2.45528 -13.217 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921</td><td>Value SE 95% Fiducial Limits Control Chi-Sq Critical P-value Mu Sigma 7.09805 1.27549 4.59809 9.59801 0.01316 3.64026 9.21035 0.16 1.88847 0.14088 -8.4044 2.45528 -13.217 -3.5921 -3.5921 -3.5921 0.0193 0.01993 0.03987 0.11799 1.0 </td></td></td<>	Value SE 95% Fiducial Limits Control Chi-Sq Critical 7.09805 1.27549 4.59809 9.59801 0.01316 3.64026 9.21035 -8.4044 2.45528 -13.217 -3.5921 0.07893 0.01993 0.03987 0.11799 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.0 0.7 0.0 0.0 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 </td <td>Value SE 95% Fiducial Limits Control Chi-Sq Critical P-value 7.09805 1.27549 4.59809 9.59801 0.01316 3.64026 9.21035 0.16 -8.4044 2.45528 -13.217 -3.5921 0.07893 0.01993 0.03987 0.11799 1.0 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0</td> <td>Value SE 95% Fiducial Limits Control Chi-Sq Critical Critical P-value Mu 7.09805 1.27549 4.59809 9.59801 0.01316 3.64026 9.21035 0.16 1.88847 8.4044 2.45528 -13.217 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921</td> <td>Value SE 95% Fiducial Limits Control Chi-Sq Critical P-value Mu Sigma 7.09805 1.27549 4.59809 9.59801 0.01316 3.64026 9.21035 0.16 1.88847 0.14088 -8.4044 2.45528 -13.217 -3.5921 -3.5921 -3.5921 0.0193 0.01993 0.03987 0.11799 1.0 </td>	Value SE 95% Fiducial Limits Control Chi-Sq Critical P-value 7.09805 1.27549 4.59809 9.59801 0.01316 3.64026 9.21035 0.16 -8.4044 2.45528 -13.217 -3.5921 0.07893 0.01993 0.03987 0.11799 1.0 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0	Value SE 95% Fiducial Limits Control Chi-Sq Critical Critical P-value Mu 7.09805 1.27549 4.59809 9.59801 0.01316 3.64026 9.21035 0.16 1.88847 8.4044 2.45528 -13.217 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921 -3.5921	Value SE 95% Fiducial Limits Control Chi-Sq Critical P-value Mu Sigma 7.09805 1.27549 4.59809 9.59801 0.01316 3.64026 9.21035 0.16 1.88847 0.14088 -8.4044 2.45528 -13.217 -3.5921 -3.5921 -3.5921 0.0193 0.01993 0.03987 0.11799 1.0

Bivalve Larval Survival and Development Test-Proportion Alive MEC-Homeporting Pearl Harbor 11/7/97 Test ID: 9711-014 Sample ID: Start Date: Lab ID: CAOEE-Ogden Bioassay Sample Type: SED-Marine Sediments End Date: 11/9/97 Sample Date: Protocol: ASTM 87 **Test Species:** CG-Crassostrea gigas Comments: Site: 3

		E	Bivalve La	arval Surv	ival and Develop	oment Test-Propo	rtion Normal
Start Date:	11/7/97		Test ID:	9711-014		Sample ID:	MEC-Homeporting Pearl Harbor
	11/9/97		Lab ID:	CAOEE-O	gden Bioassay	Sample Type:	SED-Marine Sediments
Sample Date:			Protocol:	ASTM 87		Test Species:	CG-Crassostrea gigas
•	Site: 3						
Conc-	1	2	3	4	5		
L-Lab Control	0.9138	0.9444	0.9817	0.9091	0.9040		
1	0.7857	0.7967	0.8540	0.8750	0.8364		
10	0.8364	0.8544	0.9035	0.9298	0.8493		
50	0.8462	0.7679	0.7670	0.7176	0.7196		
100	0.2903	0.3214	0.0000	0.0667	0.0870		-

			Tra	ansform:	Arcsin Sc	uare Roof			1-Tailed		Number	Total
Conc-	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD	Resp	Number
1-Lab Control	0.9306	1.0000	1.3122	1.2558	1.4349	5.715	5		-		43	608
*1	0.8296	0.8914	1.1470	1.0895	1.2094	4.400	5	2.428	2.300	0.1564	122	717
10	0.8747	0.9399	1.2127	1.1543	1.3027	5.224	5	1.463	2.300	0.1564	78	617
*50	0.7637	0.8206	1.0652	1.0106	1,1677	5.985	5	3.631	2.300	0.1564	120	511
*100	0.1531	0.1645	0.3733	0.1340	0.6028	54.621	5	13.805	2.300	0.1564	104	126

Auxiliary Tests					Statistic		Critical		Skew	Kurt
Shapiro-Wilk's Test indicates non	mal distribu	ition (p >	0.01)		0.93644		0.888		0.3289	1.30853
Bartlett's Test indicates equal var					11.1205		13.2767			
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df
Dunnett's Test	10	50	22.3607		0.09719	0.10399	0.69863	0.01156	7.0E-11	4, 20

		•	Maxi	mum Likeliho	od-Probit					
Parameter	Value	SE	95% Fiducial Limits	Control	Chi-Sq	Critical	P-value	Mu	Sigma	Ite
Slope	6.24377	1.68868	-1.022 13.5096	0.07072	10.3665	9.21035	5.6E-03	1.86093	0.16016	7
Intercept	-6.6192	3.1938	-20.361 7.12265							
TSCR	0.09345	0.0226	-0.0038 0.19068		1.0 -					
Point	Probits		95% Fiducial Limits		0.9					
EC01	2.674	30.7849			-			1	į	
EC05	3.355	39.581			0.8 -			T		
EC10	3.718	45.2556			0.7 -			- 1		
EC15	3.964	49.5371						- 1		
EC20	4.158	53.227			Response 0.0 0.4 1.0 0.4 1.1			- 1		
EC25	4.326	56.6108			0.5 -			- 1	1	
EC40	4.747	66.1226			80.4			1		
EC50	5.000	72.5982			œ 0.4			1		
EC60	5.253	79.708			0.3 -			1		
EC75	5.674	93.1005			0.2 -]		
EC80	5.842	99.0192			-		•	7		
EC85	6.036	106.395			0.1		• /	/		
EC90	6.282	116.461			0.0 -			******		
EC95	6.645	133.157				1	10	100	1000	
EC99	7.326	171.204					Dos	e		

Bivalve Larval Survival and Development Test-Proportion Normal 11/7/97 Test ID: 9711-014 Sample ID: MEC-Homeporting Pearl Harbor Start Date: Lab ID: CAOEE-Ogden Bioassay Sample Type: SED-Marine Sediments End Date: 11/9/97 **Test Species:** CG-Crassostrea gigas Protocol: ASTM 87 Sample Date: Site: 3 Comments:

Dose-Response Plot

			Rivaive I	Larvai Sur	vival and Devel	opment Test-Prop	JI HOIT Alive
Start Date:	11/7/97		Test ID:	9711-015		Sample ID:	MEC-Homeporting Pearl Harbor
End Date:	11/9/97		Lab ID:	CAOEE-O	gden Bioassay	Sample Type:	SED-Marine Sediments
Sample Date:			Protocol:	ASTM 87		Test Species:	CG-Crassostrea gigas
Comments:	Site: 4				_		
Conc-	1	2	3	4	5		
L-Lab Control	1.0000	1.0000	1.0000	1.0000	1.0000		
1	1.0000	0.6414	0.6332	0.7237	0.6579		
10	0.6826	0.7484	0.8388	0.7895	0.9539		
50	1.0000	0.6086	0.6661	0.7237	0.5674		
100	0.3289	0.3207	0.3783	0.4276	0.3536		

			Tra	ansform:	Arcsin Sc	uare Root			1-Tailed		Number	Total
Conc-	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD	Resp	Number
1-Lab Control	1.0000	1,0000	1.4269	1.4269	1.4269	0.000	5				1	61
*1	0.7313	0.7313	1.0479	0.9203	1.4269	20.548	5	3.826	2.300	0.2279	16	61
*10	0.8026	0.8026	1.1248	0.9723	1.3545	12.912	5	3.050	2.300	0.2279	12	61
*50	0.7132	0.7132	1.0294	0.8530	1.4269	22,415	5	4.013	2.300	0.2279	18	61
*100	0.7132	0.3618	0.6450	0.6020	0.7128	6.924	5	7.893	2.300	0.2279	39	61

Auxiliary Tests					Statistic		Critical		Skew	Kurt
Shapiro-Wilk's Test indicates non	-normal dis	stribution (p <= 0.01)		0.79462		0.888		1.74085	3.10312
Equality of variance cannot be co										
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df
Dunnett's Test	<1	1			0.11138	0.11372	0.39001	0.02454	5.3E-06	4, 20

Trim Level EC50 95% CL

0.0%
5.0%
10.0%
20.0%
Auto-36.7% 76.793 73.743 79.970

Bivalve Larval Survival and Development Test-Proportion Alive

Start Date: End Date:

11/7/97 11/9/97 Test ID: 9711-015

Lab ID: CAOEE-Ogden Bioassay

Sample ID: Sample Type: MEC-Homeporting Pearl Harbor

SED-Marine Sediments

Sample Date: Comments:

Site: 4

Protocol: ASTM 87

Test Species:

CG-Crassostrea gigas

Start Date: End Date: Sample Date:	11/7/97 11/9/97		Lab ID:	9711-015 CAOEE-O ASTM 87	gden Bioassay	Sample ID: Sample Type: Test Species:	MEC-Homeporting Pearl Harbor SED-Marine Sediments CG-Crassostrea gigas
Comments:	Site: 4						
Conc-	1	2	3	4			
L-Lab Control	0.9138	0.9444	0.9817	0.9091	0.9040		
1	0.8367	0.9231	0.7922	0.8864	0.8500		
10	0.8434	0.9011	0.8627	0.8333	0.8103		
50	0.000		0.4928				
100	0.1000	0.5641	0.0000	0.1538	0.0233		

			Tra	ansform:	Arcsin Sc	uare Root	1		1-Tailed			Total
Conc-	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD	Resp	Number
L-Lab Control	0.9306	1.0000	1,3122	1.2558	1.4349	5.715	5				43	608
1	0.8577	0.9216	1.1884	1.0975	1.2898	6.153	5	1.312	2.300	0.2169	68	470
10	0.8502	0.9136	1.1753	1.1202	1.2509	4.203	5	1.451	2.300	0.2169	74	488
*50	0.5832	0.6267	0.8698	0.7782	0.9680	8.750	5	4.691	2.300	0.2169	181	452
		0.0207	0.3603	0.0738	0.8497	84.170	5	10.094	2,300	0.2169	185	220
*100	0.1682	0.1000	0.3003	0.0730	0.0451	04.170	•					

Auxiliary Tests					Statistic		Critical		Skew	Kurt
Shapiro-Wilk's Test indicates non	-normal dis	tribution	$(p \le 0.01)$		0.8298		0.888		1.56189	6.96961
Bartlett's Test indicates unequal v					17.9428		13.2767			
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df
Dunnett's Test	10	50	22.3607		0.14417	0.15426	0.73516	0.02223	1.5E-08	4, 20

				Maxi	mum Likeliho	od-Probit					
Parameter	Value	SE	95% Fidu	cial Limits	Control	Chi-Sq	Critical		Mu	Sigma	Ite
Slope	4.50848	1.073	-0.1083	9.12524	0.07072	9.64755	9.21035	8.0E-03	1.79514	0.2218	9
Intercept	-3.0933	1.98465	-11.633	5.44591							
TSCR .	0.10316	0.02065	0.0143	0.19202		1.0 T					
Point	Probits		95% Fidu	cial Limits		0.9				1	
EC01	2.674	19.017				- 1			4		
EC05	3.355	26.9339				0.8			ſ	1	
EC10	3.718	32.4251				0.7			- .		
EC15	3.964	36.7494							- 1		
EC20	4.158	40.5938				980.0			1		
EC25	4.326	44.211				Response 9.0			1		
EC40	4.747	54.8203				es o			1		
EC50	5.000	62.3929				7			4		
EC60	5.253	71.0115		**		0.3 -			1		
EC75	5.674	88.0521				0.2		1		1	
EC80	5.842	95.8982				-		/		- 1	
EC85	6.036	105.93				0.1		* /		1	
EC90	6.282	120.057				0.0		 /	******		
EC95	6.645	144.534				1		10	100	1000	
EC99	7.326	204.705						Dos	е		

Bivalve Larval Survival and Development Test-Proportion Normal Sample ID:

Start Date: End Date: Sample Date:

11/9/97

11/7/97

Test ID: 9711-015 Lab ID: CAOEE-Ogden Bioassay

Sample Type: Protocol: ASTM 87

Test Species:

MEC-Homeporting Pearl Harbor

SED-Marine Sediments CG-Crassostrea gigas

Comments: Site: 4

Dose-Response Plot

					titul and a second	opment Test-Propo	ACO III Dead Harbor
Start Date:	11/7/97		Test ID:	9711-016		Sample ID:	MEC-Homeporting Pearl Harbor
End Date:	11/9/97		Lab ID:			Sample Type:	SED-Marine Sediments
Sample Date:						Test Species:	CG-Crassostrea gigas
Comments:	Site: 5						
Conc-	1	2	3	4	5		
L-Lab Control	1.0000	1.0000	1.0000	1.0000	1.0000		
1	1,0000	0.9951	1.0000	0.7977	0.6990		
10	0.9539	0.5345	1.0000	0.7895	0.5345		
50	50 0.6168 0.7484 0.6743 0.8141 0.6908	0.6908					
100	0.8306	1.0000	0.8635	0.6086	1.0000		

			Transform: Arcsin Square Root						1-Tailed	
Conc-	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD
L-Lab Control	1,0000	1.0000	1.4269	1.4269	1.4269	0.000	5			
1	0.8984	0.8984	1.2897	0.9901	1.5005	17.606	5	1.112	2.300	0.2837
*10	0.7625		1,1031	0.8200	1.4269	25.978	5	2.625	2.300	0.2837
*50	0.7089	0.7089	1.0037	0.9033	1.1251	8.436	5	3.431	2.300	0.2837
100	0.8605	• • • • • • • •	1.2175	0.8948	1.4269	18.250	5	1.697	2.300	0.2837

Auxiliary Tests					Statistic		Critical		Skew	Kurt
Shapiro-Wilk's Test indicates non	mal distribu	ition (p > 0).01)		0.9441		0.888		-0.2338	-0.4963
Equality of variance cannot be co										
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df
Dunnett's Test	100	>100			0.15141	0.15459	0.13432	0.03804	0.02459	4, 20

			Bivalve La	arval Surv	ival and Develor	pment Test-Propor	rtion Normal	
Start Date:	11/7/97		Test ID:	9711-016		Sample ID:	MEC-Homeporting Pearl Harbor	
End Date:	11/9/97		Lab ID:	CAOEE-Ogden Bioassay		Sample Type:	SED-Marine Sediments	
Sample Date:			Protocol:	ASTM 87		Test Species:	CG-Crassostrea gigas	
Comments:	Site: 5							
Conc-	1	2	3	4	5			
L-Lab Control	0.9138	0.9444	0.9817	0.9091	0.9040			
1	0.8792	0.8182	0.8033	0.7835	0.8941			
10	0.9310	0.9692	0.8702	0.9063	0.8923			
50	0.8267	0.8791	0.8049	0.9394	0.8690			
100	0.8317	0.9220	0.8286	0.8108	0.8244			

			Tra	ansform:	Arcsin So	quare Root	t		1-Tailed		
Conc-	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD	
L-Lab Control	0.9306	1.0000	1.3122	1.2558	1.4349	5.715	5	•			
*1	0.8357	0.8980	1.1567	1.0868	1.2394	5.795	5	3.360	2.300	0.1064	
10	0.9138	0.9820	1.2796	1.2023	1.3945	5.807	5	0.705	2.300	0.1064	
*50	0.8638	0.9282	1.1986	1.1133	1.3221	6.738	5	2.455	2.300	0.1064	
*100	0.8435	0.9064	1.1678	1.1208	1.2877	5.810	5	3.120	2.300	0.1064	

Auxiliary Tests					Statistic		Critical		Skew	Kurt
Shapiro-Wilk's Test indicates non	-normal dis	stribution	(p <= 0.01)		0.87185		0.888		0.8307	-0.5758
Bartlett's Test indicates equal var	iances (p =	1.00)			0.17428		13.2767			
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df
Dunnett's Test	10	50	22.3607		0.06204	0.06638	0.02399	0.00535	0.00953	4, 20

						pment Test-Propo Sample ID:	MEC-Homeporting Pearl Harbo				
Start Date:	11/7/97		Test ID:								
End Date:	11/9/97		Lab ID:	CAOEE-O	gden Bioassay	Sample Type:	SED-Marine Sediments				
Sample Date:		Protocol: ASTM 87				Test Species:	CG-Crassostrea gigas				
Comments:	Site: 6										
Conc-	1	2	3	4	5						
L-Lab Control	1.0000	1.0000	1.0000	1.0000	1.0000		•				
1	1.0000	0.7895	1.0000	1.0000	0.8964	-	·				
10	0.9539	0.8224	1.0000	0.6743	0.7648						
50	1.0000	0.8882	0.9951	0.7648	1.0000						
100	0.2467	0.2385	0.2796	0.5181	0.4441						

			Tra	ansform:	Arcsin So	uare Root	t		1-Tailed		Number	Total
Conc-	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD	Resp	Number
L-Lab Control	1.0000	1.0000	1.4269	1,4269	1.4269	0.000	5				1	61
1	0.9372	0.9372	1.3236	1.0941	1.4269	11.406	5	1.096	2.300	0.2168	4	61
*10	0.8431	0.8431	1.1890	0.9635	1.4269	16.459	5	2.523	2.300	0.2168	10	61
					1.5005	13.474	5	1.031	2.300	0.2168	5	61
50	0.9296	0.9296	1.3297	1.0645			_		2.300	0.2168	41	61
*100	0.3454	0.3454	0.6240	0.5102	0.8035	21.440	5	8.517	2.300	0.2100	41	01

Auxiliary Tests					Statistic		Critical		Skew	Kurt
Shapiro-Wilk's Test indicates non	mal distribu	ition (p >	0.01)		0.95768		0.888		-0.2454	-0.6841
Equality of variance cannot be co	nfirmed									
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	ar
Dunnett's Test	50	100	70.7107		0.10401	0.10619	0.51651	0.02222	2.8E-07	4, 20

| Value | Valu

Trim Level EC50 95% CL

0.0%
5.0%
10.0%
20.0%
Auto-33.3% 81.309 79.252 83.420

Bivalve Larval Survival and Development Test-Proportion Alive MEC-Homeporting Pearl Harbor Start Date: 11/7/97 Test ID: 9711-017 Sample ID: **SED-Marine Sediments** End Date: 11/9/97 Lab ID: CAOEE-Ogden Bioassay Sample Type: Sample Date: Protocol: ASTM 87

Comments: Site: 6 **Test Species:**

CG-Crassostrea gigas

			Bivalve La	arval Surv	ival and Develor	oment Test-Propo	rtion Normal
Start Date:	11/7/97		Test ID:	9711-017		Sample ID:	MEC-Homeporting Pearl Harbor
End Date:	11/9/97		Lab ID:	CAOEE-O	gden Bioassay	Sample Type:	SED-Marine Sediments
Sample Date:			Protocol:	ASTM 87		Test Species:	CG-Crassostrea gigas
Comments:	Site: 6						
Conc-	1	2	3 .	4	5		
L-Lab Control	0.9138	0.9444	0.9817	0.9091	0.9040		
1	0.8092	0.9063	0.8730	0.8625	0.7890		
10	0.8621	0.9200	0.9030	0.8293	0.8387		
50	0.8527	0.7593	0.7769	0.8065	0.8533		
100	0.0667	0.2414	0.0294	0.1270	0.0370		

			Tra	ansform:	Arcsin Sc	uare Roo	t		1-Tailed		Number	Total
Conc-	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD	Resp	Number
L-Lab Control	0.9306	1.0000	1.3122	1.2558	1.4349	5.715	5				43	608
*1	0.8480	0.9112	1.1738	1.0935	1.2596	5.747	5	2.556	2.300	0.1245	95	622
10	0.8706	0.9355	1.2061	1.1448	1.2840	5.032	5	1.959	2.300	0.1245	66	525
*50	0.8097	0.8701	1.1213	1.0580	1.1778	4.912	5	3.526	2.300	0.1245	112	601
*100	0.1003	0.1078	0.3010	0.1724	0.5136	46.647	5	18.684	2.300	0.1245	190	210

Auxiliary Tests					Statistic		Critical		Skew	Kurt
Shapiro-Wilk's Test indicates nor	mal distribu	tion (p >	0.01)		0.94932		0.888		0.77674	0.78167
Bartlett's Test indicates equal var	iances (p =	0.31)			4.78748		13.2767			
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df
Dunnett's Test	10	50	22.3607		0.07431	0.07951	0.83855	0.00732	1.7E-13	4, 20

				Ma	aximum Likelihoo	od-Probit	:				
Parameter	Value	SE	95% Fidu	cial Limits	Control	Chi-Sq	Critical	P-value	Mu	Sigma	iter
Slope	8.46197	0.7242	7.04254	9.8814	0.07072	8.61022	9.21035	0.01	1.85229	0.11818	7
Intercept	-10.674	1.37922	-13.377	-7.9708							
TSCR	0.09871	0.0093	0.08048	0.11694		1.0 -			11/		
Point	Probits		95% Fidu	cial Limits		0.9			I		
EC01	2.674	37.7898	32.0802	42.6075		٠.۶]			T		
EC05	3.355	45.4894	39.9572	50.103		0.8 -			- 1		
EC10	3.718	50.2162	44.8821	54.6687		0.7					
EC15	3.964	53.6798	48.5187	58.0116		- 1			- 1	l	
EC20	4.158	56.6022	51.5971	60.8381		9.0.6			- 1		
EC25	4.326	59.2358	54.3735	63.3956		Respons 0.4			1		
EC40	4.747	66.4283	61.9202	70.4747		is a			1		
EC50	5.000	71.1693	66.8203	75.261		₽ 0.4			ı		
EC60	5.253	76.2486	71.9593	80.5386		0.3			1		
EC75	5.674	85.5068	80.9516	90.6327		0.2			1		
EC80	5.842	89.4853	84.6645	95.1601		٧.٤]			1		
EC85	6.036	94.3569	89.1015	100.843		0.1			7		
EC90	6.282	100.865	94.8719	108.644		0.0		V //	/		
EC95	6.645	111.346	103.878	121.612		1		10	100	1000	
EC99	7.326	134.033	122.589	150.932		'		Dos			

Bivalve Larval Survival and Development Test-Proportion Normal Start Date: 11/7/97 Test ID: 9711-017 Sample ID: MEC-Homeporting Pearl Harbor End Date: 11/9/97 Lab ID: CAOEE-Ogden Bioassay Sample Type: SED-Marine Sediments Sample Date: Protocol: ASTM 87 **Test Species:** CG-Crassostrea gigas Comments: Site: 6

			Bivalve	Larval Sur	vival and Devel	opment Test-Prop	ortion Alive
Start Date: End Date: Sample Date:	11/7/97 11/9/97		Lab ID:	9711-018 CAOEE-O ASTM 87	gden Bioassay	Sample ID: Sample Type: Test Species:	MEC-Homeporting Pearl Harbor SED-Marine Sediments CG-Crassostrea gigas
Comments:	Site: 7		3		5		
Conc-	7	2		4 2000	4.0000		
L-Lab Control	1.0000	1.0000	1.0000	1.0000	1.0000		
1	0.9622	1.0000	0.8717	0.9539	0.6003		
10	0.8553	0.7730	0.4852	0.5428	0.7401		
50	0.6826	0.5839	0.9375	0.5345	0.6086		
100	0.4934	0.2549	0.3618	0.5839	0.2632		

			Tra	ansform:	Arcsin Sc	uare Roo	t		1-Tailed		Number	Total
Conc-	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD	Resp	Number
L-Lab Control	1.0000	1.0000	1.4269	1.4269	1.4269	0.000	5				1	61
1	0.8776	0.8776	1.2495	0.8864	1.4269	17.540	5	1.677	2.300	0.2434	7	61
*10	0.6793	0.6793	0.9779	0.7706	1.1805	17.644	5	4.244	2.300	0.2434	20	61
*50	0.6694	0.6694	0.9750	0.8200	1.3181	20,468	5	4.271	2.300	0.2434	22	61
*100	0.3914	0.3914	0.6724	0.5293	0.8697	22.227	5	7.131	2.300	0.2434	38	61

Auxiliary Tests					Statistic		Critical		Skew	Kurt
Shapiro-Wilk's Test indicates non	mal distribu	rtion (p >	0.01)		0.98214		0.888		-0.0449	0.50608
Equality of variance cannot be co										
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df
Dunnett's Test	1	10	3.16228		0.12206	0.12462	0.41844	0.02799	8.3E-06	4, 20

				Maxii	mum Likeliho	od-Probit					••
Parameter	Value	SE	95% Fidu	cial Limits	Control	Chi-Sq	Critical	P-value	Mu	Sigma	lte
Slope	0.68871	0.13357	0.42691	0.95051	0.01316	4.58808	9.21035	0.1	1.84563	1.452	3
Intercept	3.7289	0.20426	3.32855	4.12925							
TSCR	0.01327	0.01462	-0.0154	0.04193		1.0 ¬					
Point	Probits		95% Fidu	cial Limits		0.9					
EC01	2.674	0.02936	0.00043	0.20327		0.8 -			///		
EC05	3.355	0.28662	0.01646	1.09733		•		j	T/-		
EC10	3.718	0.96565	0.1126	2.74494		0.7 -			//		
EC15	3.964	2.19145	0.40504	5.18358		9 0.6 -		· 🤺			
EC20	4.158	4.20338	1.09822	8.76459		Response 9.0 0.0 4 9.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		H/H	/		
EC25	4.326	7.34975	2.51716	14.1201		Se 0.4					
EC40	4.747	30.0449	15.8543	60.2797				4			
EC50	5.000	70.0857	37.2919	185.648		0.3 -		/7/			
EC60	5.253	163.489	77.5179	646.98		0.2 -					
EC75	5.674	668.322	234.988	5738.73		0.1	/	4/			
EC80	5.842	1168.58	359.215	13862.3		0.0	//	//			
EC85	6.036	2241.44	585.806	38969.7		0.0	001 0.1	1 100	10000	0 1E+08	
EC90	6.282	5086.71	1077.88	143868		0.0	001 0.	. 100	, 10000		
EC95	6.645	17137.6	2642.44	1004058							
EC99	7.326	167293	14037.6	3.9E+07				Dos	e		

		E	Bivalve La	rval Surv	ival and Develor	oment Test-Propo	rtion Normal
	11/7/97 11/9/97				gden Bioassay	Sample ID: Sample Type: Test Species:	MEC-Homeporting Pearl Harbor SED-Marine Sediments CG-Crassostrea gigas
Comments:	Site: 7						
Conc-	1	2	3	4	5		
L-Lab Control	0.9138	0.9444	0.9817	0.9091	0.9040		
. 1	0.8632	0.8248	0.8396	0.8534	0.8493		
10	0.8750	0.8830	0.8475	0.7424	0.8333		
50	0.6627	0.7606	0.8509	0.7538	0.8108		
100	0.0000	0.1290	0.0682	0.1408	0.2813		•

			Tra	ansform:	Arcsin Sc	uare Root	t		1-Tailed		Number	Total
Conc-	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD	Resp	Number
L-Lab Control	0.9306	1.0000	1.3122	1.2558	1.4349	5.715	5				43	608
1	0.8461	0.9092	1.1680	1.1390	1.1920	1.724	5	2.253	2.300	0.1472	85	549
*10	0.8362	0.8986	1.1579	1.0385	1.2217	6.283	5	2.410	2.300	0.1472	65	413
*50	0.7677	0.8250	1.0715	0.9511	1.1743	7.815	5	3.760	2.300	0.1472	92	407
*100	0.1239	0.1331	0.3280	0.0646	0.5590	55.300	5	15.373	2.300	0.1472	212	238

Auxiliary Tests					Statistic				Skew	Kurt
Shapiro-Wilk's Test indicates normal distribution (p > 0.01) Bartlett's Test indicates unequal variances (p = 9.21E-03)					0.94376	0.888			-0.3622	2.81855
				13.4655			13.2767			
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df
Dunnett's Test	1	10	3.16228		0.09047	0.0968	0.75878	0.01025	1.1E-11	4, 20

	Maximum Likelihood-Probit											
Parameter	Value	SE	95% Fidu	cial Limits	Control	Chi-Sq	Critical	P-value	Mu	Sigma	Iter	
Slope	7.57059	1.45749	1.2995	13.8417	0.07072	11.3201	9.21035	3.5E-03	1.84643	0.13209	7	
Intercept	-8.9786	2.75577	-20.836	2.87851								
TSCR	0.10822	0.02245	0.01163	0.2048		1.0 -			11			
Point	Probits	95% Fiducial Limits				0.9						
EC01	2.674	34.6057	0.65048	52.9527		0.9			† /			
EC05	3.355	42.5761	2.13507	60.4464		0.8 -			1/			
EC10	3.718	47.5505	3.9993	65.2553		0.7		į	1/			
EC15	3.964	51.231	6.08187	69.0074				i	1/			
EC20	4.158	54.3582	8.45421	72.4181		Response 0.0 0.4 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1			1/	·		
EC25	4.326	57.1928	11.1707	75.7749		0.5		;	li			
EC40	4.747	65.0085	21.9038	87.4163		disc.		/				
EC50	5.000	70.2158	31.6062	98.9919		2 0.4 −		/	:			
EC60	5.253	75.8402	43.1283	118.541		0.3 -		/				
EC75	5.674	86.2042	60.9832	189.638		0.2 -		/ /				
EC80	5.842	90.6995	66.5802	240.147		0.2		/ 🛉		ŀ		
EC85	6.036	96.236	72.1969	323.066		0.1 -	•	/ ♦ .				
EC90	6.282	103.685	78.3296	478.869		0.0		/				
EC95	6.645	115.799	86.3776	878.13		0.5	1 1	10	100 100	10000		
EC99	7.326	142.47	100.374	2831.39			., ,	Dose				
Significant he	terogeneity	detected	(p = 3.488)	-03)				DUSC				

Bivalve Larval Survival and Development Test-Proportion Normal

Test ID: 9711-018 Sample ID: MEC-Homeporting Pearl Harbor
Lab ID: CAOEE-Ogden Bioassay Sample Type: SED-Marine Sediments
Protocol: ASTM 87 Test Species: CG-Crassostrea gigas

Dose-Response Plot

Start Date:

End Date:

Sample Date: Comments:

11/7/97

11/9/97

Site: 7

Bivalve Larval Survival and Development Test-Proportion Alive Start Date: 11/7/97 Test ID: 9711-018 Sample ID: MEC-Homeporting Pearl Harbor Sample Type: 11/9/97 Lab ID: CAOEE-Ogden Bioassay SED-Marine Sediments End Date: Protocol: ASTM 87 **Test Species:** CG-Crassostrea gigas Sample Date: Comments: Site: 7

			Bivalve L	arval Sur	vival and Develo	pment Test-Prope	
Start Date: End Date:	11/7/97 11/9/97		Test ID:		gden Bioassay	Sample ID: Sample Type:	MEC-Homeporting Pearl Harbor SED-Marine Sediments
Sample Date:			Protocol:			Test Species:	CG-Crassostrea gigas
Comments:	Site: 8						
Conc-	1	2	3	4	5		
L-Lab Control	1.0000	1.0000	1.0000	1.0000	1.0000		
1	0.7977	0.8635	0.2961	0.8388	0.8388		
10	0.6579	0.8799	0.9293	0.9457	0.9293		
50	0.6661	0.7401	0.9293	1.0000	1.0000		
100	0.7977	1.0000	0.7730	1.0000	0.7237	•	

			Tra	ansform:	Arcsin Sc	quare Roo	_	1-Tailed		
Conc-	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD
L-Lab Control	1.0000	1.0000	1.4269	1.4269	1.4269	0.000	5			
*1	0.7270	0.7270	1.0375	0.5753	1.1924	25.086	5	3.224	2.300	0.2778
10	0.8684	0.8684	1.2204	0.9460	1.3357	13.070	5	1.710	2.300	0.2778
50	0.8671	0.8671	1.2292	0.9547	1.4269	18.014	5	1.637	2.300	0.2778
100	0.8589	0.8589	1.2099	1.0173	1.4269	16.574	5	1.796	2.300	0.2778

Auxiliary Tests					Statistic		Critical		Skew	Kurt	
Shapiro-Wilk's Test indicates non	mal distribu	ition (p > 0).01)		0.91494		0.888		-0.9544	0.57945	
Equality of variance cannot be co	nfirmed										
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df	
Dunnett's Test	100	>100			0.147	0.15008	0.09526	0.03648	0.06633	4, 20	

Start Date:	11/7/97		Test ID:	9711-019		Sample ID:	MEC-Homeporting Pearl Harbor
End Date:	11/9/97		Lab ID:	CAOEE-O	gden Bioassay	Sample Type:	SED-Marine Sediments
Sample Date:			Protocol:	ASTM 87		Test Species:	CG-Crassostrea gigas
Comments:	Site: 8						
Conc-	1	2	3	4	5		
L-Lab Control	0.9138	0.9444	0.9817	0.9091	0.9040		
1	0.7938	0.8857	0.6944	0.7549	0.9118		
10	0.6875	0.7757	0.7788	0.8870	0.7699		
50	0.6914	0.8333	0.8584	0.8833	0.8228		
100	0.7629	0.6667	0.7872	0.8033	0.7273		

			Tr	ansform:	Arcsin So	uare Roo	t		1-Tailed		
Conc-	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD	
L-Lab Control	0.9306	1.0000	1.3122	1.2558	1.4349	5.715	5				
*1	0.8081	0.8684	1.1265	0.9851	1.2692	10.540	5	3.279	2.300	0.1302	
*10	0.7798	0.8379	1.0869	0.9776	1.2279	8.257	5	3.978	2.300	0.1302	
*50	0.8178	0.8788	1.1351	0.9818	1.2222	8.101	5	3.127	2.300	0.1302	
*100	0.7495	0.8054	1.0483	0.9553	1.1113	5.916	5	4.660	2.300	0.1302	

Auxiliary Tests					Statistic		Critical		Skew	Kurt
Shapiro-Wilk's Test indicates non	mal distribu	ition (p > 0	0.01)		0.97554		0.888		0.02767	-0.493
Bartlett's Test indicates equal var	iances (p =	0.79)			1.69355		13.2767			
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df
Dunnett's Test	<1	1			0.07834	0.08382	0.05133	0.00802	0.00174	4, 20

	<u> </u>		Bivalve I	Larval Sur	vival and Devel	opment Test-Prop	ortion Alive
Start Date: End Date: Sample Date:	11/7/97 11/9/97		Test ID: Lab ID:	9711-020	gden Bioassay	Sample ID: Sample Type: Test Species:	MEC-Homeporting Pearl Harbor SED-Marine Sediments CG-Crassostrea gigas
Comments:	Site: 9						
Conc-	1	2	3	4	5		
L-Lab Control	1.0000	1.0000	1.0000	1.0000	1.0000		
1	0.9539	1.0000	0.9046	1.0000	1.0000		
10	0.8717	0.8141	1.0000	0.6250	1.0000		
50	0.7977	1.0000	1.0000	0.9375	0.7648		•
100	0.6086	0.2878	0.9128	0.9128	0.6497		

			Tra	ansform:	Arcsin Sc	uare Root	t		1-Tailed	
Conc-	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD
L-Lab Control	1.0000	1.0000	1.4269	1.4269	1.4269	0.000	5			
1	0.9717	0.9717	1.3784	1.2568	1.4269	5.431	5	0.415	2.300	0.2688
10	0.8622	0.8622	1.2190	0.9117	1.4269	17.874	5	1.779	2.300	0.2688
50	0.9000	0.9000	1.2681	1.0645	1.4269	13.729	5	1.359	2.300	0.2688
*100	0.6743	0.6743	0.9881	0.5663	1.2711	29.908	5	3.754	2.300	0.2688

Auxiliary Tests				-	Statistic		Critical			Kurt	
Shapiro-Wilk's Test indicates non	mal distribu	ition (p >	0.01)		0.9556		0.888		-0.4602	0.63418	
Equality of variance cannot be co											
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df	
Dunnett's Test	50	100	70.7107		0.1403	0.14324	0.14683	0.03415	0.01135	4, 20	

			Bivalve La	arval Surv	ival and Develo	pment Test-Propo	rtion Normal
Start Date:	11/7/97		Test ID:	9711-020		Sample ID:	MEC-Homeporting Pearl Harbor
End Date:	11/9/97		Lab ID:	CAOEE-O	gden Bioassay	Sample Type:	SED-Marine Sediments
Sample Date:			Protocol:	ASTM 87		Test Species:	CG-Crassostrea gigas
Comments:	Site: 9						
Conc-	1	2	3	4	5		
L-Lab Control	0.9138	0.9444	0.9817	0.9091	0.9040		
1	0.8534	0.9160	0.8909	0.9286	0.9236		
10	0.8868	0.8889	0.8413	0.8421	0.9655		
50	0.7216	0.8667	0.9323	0.8684	0.8710		
100	0.7838	0.7714	0.7748	0.8468	0.8354	•	

		_	Tra	ansform:	Arcsin So	quare Roo	t		1-Tailed	
Conc-	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD
L-Lab Control	0.9306	1.0000	1.3122	1.2558	1.4349	5.715	5			
1	0.9025	0.9698	1.2560	1.1779	1.3002	4.014	5	1.153	2.300	0.1121
10	0.8849	0.9509	1.2332	1.1610	1.3840	7.370	5	1.622	2.300	0.1121
*50	0.8520	0.9156	1.1845	1.0150	1.3076	8.916	5	2.620	2.300	0.1121
*100	0.8025	0.8623	1.1115	1.0723	1.1687	4.115	5	4.118	2.300	0.1121

Auxiliary Tests					Statistic		Critical		Skew	Kurt
Shapiro-Wilk's Test indicates non	mal distribu	tion (p >	0.01)		0.96439		0.888		0.13162	0.81131
Bartlett's Test indicates equal var	iances (p =	0.47)			3.57322		13.2767			
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df
Dunnett's Test	10	50	22.3607		0.06582	0.07043	0.02874	0.00593	0.00678	4, 20

			Bivalve I	Larval Sur	vival and Develo	opment Test-Prop	ortion Alive
Start Date:	11/7/97		Test ID:	9711-021		Sample ID:	MEC-Homeporting Pearl Harbor
End Date:	11/9/97		Lab ID:	CAOEE-C	gden Bioassay	Sample Type:	SED-Marine Sediments
Sample Date:			Protocol:	ASTM 87		Test Species:	CG-Crassostrea gigas
Comments:	Site: 10						
Conc-	1	2	3	4	5		
L-Lab Control	1.0000	1.0000	1.0000	1.0000	1.0000		
1	1.0000	0.6497	0.8059	1.0000	0.7237		
10	0.8799	0.7648	1.0000	0.6743	0.8141		
50	0.7895	0.5510	0.5839	0.6743	0.9951		
100	0.8964	0.3618	1.0000	1.0000	0.8388		

			Tra	ansform:	Arcsin So	quare Roo	t		1-Tailed	
Conc-	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD
L-Lab Control	1.0000	1.0000	1.4269	1.4269	1.4269	0.000	5			
1	0.8359	0.8359	1.1846	0.9374	1.4269	19.408	5	1.682	2.300	0.3313
10	0.8266	0.8266	1.1594	0.9635	1.4269	15.153	5	1.857	2.300	0.3313
*50	0.7188	0.7188	1.0528	0.8365	1.5005	25.594	5	2.597	2.300	0.3313
100	0.8194	0.8194	1.1800	0.6454	1.4269	27.204	5	1.714	2.300	0.3313

Auxiliary Tests	· · · · · · · · · · · · · · · · · · ·	,			Statistic		Critical		Skew	Kurt
Shapiro-Wilk's Test indicates nor	mal distribu	ition (p > 0).01)		0.95682		0.888		-0.1532	0.90348
Equality of variance cannot be co	nfirmed									
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df
Dunnett's Test	100	>100			0.18876	0.19272	0.09428	0.05188	0.16505	4, 20

•			Bivalve L	arval Surv	ival and Develor	ment Test-Propo	
Start Date:	11/7/97		Test ID:	9711-021		Sample ID:	MEC-Homeporting Pearl Harbor
End Date:	11/9/97		Lab ID:	CAOEE-O	gden Bioassay	Sample Type:	SED-Marine Sediments
Sample Date:			Protocol:	ASTM 87		Test Species:	CG-Crassostrea gigas
Comments:	Site: 10						
Conc-	1	2	3	4	5		-
L-Lab Control	0.9138	0.9444	0.9817	0.9091	0.9040	-	
1	0.8702	0.8608	0.8878	0.8976	0.9205		
10	0.9159	0.8925	0.9291	0.8659	0.9192		
50	0.9375	0.9701	0.9296	0.9146	0.9008		
100	0.9174	0.8864	0.8254	0.9415	0.9412		

			Tra	ansform:	Arcsin Sc	uare Roo	t		1-Tailed	
Conc-	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD
L-Lab Control	0.9306	1.0000	1.3122	1.2558	1.4349	5.715	5			
. 1	0.8874	0.9535	1.2300	1.1884	1.2849	3.080	5	2.157	2.300	0.0876
10	0.9045	0.9720	1.2586	1.1958	1.3013	3.358	5	1.406	2.300	0.0876
50	0.9305	0.9999	1.3084	1.2504	1.3972	4.278	5	0.098	2.300	0.0876
100	0.9024	0.9697	1.2597	1.1397	1.3265	6.238	5	1.378	2.300	0.0876

Auxiliary Tests					Statistic		Critical		Skew	Kurt
Shapiro-Wilk's Test indicates non	mal distribu	tion (p > 0).01)		0.98188		0.888		0.19696	0.08939
Bartlett's Test indicates equal var	iances (p =	0.56)			2.96735		13.2767			
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df
Dunnett's Test	100	>100			0.04978	0.05326	0.00628	0.00363	0.18295	4, 20

APPENDIX D

REFERENCE TOXICANT

AMPHIPOD

Appendix Table D-1. Amphipod Water Quality Reference Toxicant Bioassay

96	14.8	14.6 14.6	14.5 14.5	14.5	14.5	14.4
ure 72	14.9	14.5 14.5	14.4 14.4	14.4	14.4	14.4
Temperature (°C) 24 48 72	14.5	14.4 14.4	14.3	14.3	14.4 14.4	14.3 14.3
Tem 24	14.6 14.6	14.4 14.4	14.3	14.2	14.4	14.4 14.4
0	15.6	15.6	15.5	15.5	15.4	15.4
96	28	28	28	28	28	28
72	28	28	28	28	28	28
Salinity (ppt) 48	28	28	28	28	28	28
24	28	28	28	28	28	28
0	30	30	30	30	30	30
96	7.84	7.85	7.86 7.86	7.86 7.86	7.87	7.86 7.86
72	7.84	7.87	7.88	7.89	7.90	7.89
pH; (units) 48	7.89	7.89	7.89	7.89	7.89	7.90
24	7.96	7.96	7.97 7.97	7.96	7.96	7.96
	8.14	8.14	8.14	8.14	8.14	8.14
96 	8.1	8.0	8.1	8.1	8.1	8.1
	8.1	8.2	8.3	8.3	8.4	8.3
Dissolved Oxyge (mg/L) 0 24 48 72	8.3	8.3	8.4	8.4	8.4	8.5
Dissol	8.5	8.6	8.6	8.6	8.6	8.6
	8.3	8.2	8.2	8.1	8.2	8.1
Rep	A B	A B	A B	A B	A B	A B
CdCl ₂ Concentration (mg/L)	Control	0.25	0.50	1.0	2.0	4.0

BIVALVE

Appendix Table D-2. Bivalve Larvae Water Quality Reference Toxicant Bioassay

CuCl ₂ D	Dissolved Oxygen (mg/L)	ssolved Oxygen (mg/L)	en (†)		pH (uni	(5) (5) (48)	29	0	Salimity (ppt) 24	<u>د</u> 48 ک	29		1 emperature (°C) 24 48	aure 48	29
	7.2	7.1	9.9	7.80	7.74	7.92	7.72	33	32	34	34	20.3	20.5	20.4	20.3
8.3	7.4	7.1	6.7	7.86	7.77	7.93	7.75	33	33	34	35	20.3	20.6	20.4	20.3
8.2	7.4	7.1	6.7	7.88	7.80	7.94	7.76	33	33	34	35	20.3	20.4	20.4	20.3
8.2	7.4	7.2	8.9	7.90	7.83	7.95	77.7	33	33	34	35	20.3	20.4	20.3	20.1
8.2	7.4	7.3	8.9	7.92	7.84	7.95	77.7	33	33	34	35	20.3	20.4	20.4	20.1
8.2	7.4	7.2	6.8	7.94	7.85	7.94	7.78	33	33	34	35	20.3	20.4	20.4	20.3

STATISTICAL ANALYSES

AMPHIPOD

Appendix Table D-3. Amphipod Bioassay Reference Toxicant Survival Results

FE 25				Ī		
Average Percent Survival	100	100	100	85	45	40
Percent Survival	100	100	100	06	40 50	40
Final Number of Amphipods	10 10	10	10	6	4 5	4 4
ofAmphipods	10 10	10	10 10	10	10	10
Rep	A B	A B	A B	A B	A B	ВВ
CdCl ₂ Concentration (mg/L)	Control	0.25	0.50	1.0	2.0	4.0

			An	phipod 10-day Survival E	Bioassay-Proportion	n Alive
Start Date:	11/4/97		Test ID:	971104GJRA	Sample ID:	REF-Ref Toxicant
End Date:	11/8/97		Lab ID:	CAOEE-Ogden Bioassay	Sample Type:	CDCL-Cadmium chloride
Sample Date:			Protocol:	ASTM 93	Test Species:	GJ-Grandidierella japonica
Comments:					·	
Conc-mg/L	1	2		_		
L-Lab Control	1.0000	1.0000				
0.25	1.0000	1.0000				
0.5	1.0000	1.0000				
1	0.9000	0.8000				
2	0.4000	0.5000				
4	0.4000	0.4000				

				Transform	n: Untran	sformed				
Conc-mg/L	Mean	N-Mean	Mean	Min	Max	CV%	N	Me	an	N-Mean
L-Lab Control	1.0000	1.0000	1.0000	1.0000	1.0000	0.000	2	1.0	000	0.0000
0.25	1.0000	1.0000	1.0000	1.0000	1.0000	0.000	2	1.0	000	0.0000
0.5	1.0000	1.0000	1.0000	1.0000	1.0000	0.000	2	1.0	000	0.0000
1	0.8500	0.8500	0.8500	0.8000	0.9000	8.319	2	0.8	500	0.1500
2	0.4500	0.4500	0.4500	0.4000	0.5000	15.713	2	0.4	500	0.5500
4	0.4000	0.4000	0.4000	0.4000	0.4000	0.000	2	0.4	000	0.6000

Slope 2.2 ntercept 4.7 SCR	/alue .21898	SE 1.1162 0.45466	nfirmed 95% Fidu	Maxin Icial Limits 4.40674	mum Likeliho Control 0	od-Probit Chi-Sq 0.93328	Critical		Mu	Sigma	lter
Parameter V Slope 2.3 ntercept 4.3	/alue .21898 .13755	SE 1.1162 0.45466	95% Fidu 0.03122	Maxin Icial Limits 4.40674	Control	Chi-Sq	Critical			Sigma	Iter
Slope 2.3 ntercept 4.5 TSCR	.21898 .13755	1.1162 0.45466	0.03122	4.40674	Control	Chi-Sq	Critical			Sigma	Iter
Slope 2.3 ntercept 4.5 TSCR	.21898 .13755	1.1162 0.45466	0.03122	4.40674						Sigma	Iter
ntercept 4.1	.13755	0.45466			0	0.03328	44.0440				
SCR			3.24641	5.02869		0.33320	11.3449	0.82	0.38867	0.45066	3
	robits										
laint D-	robits					1.0 -					
		mg/L	95% Fidu	cial Limits		0.9		\mathcal{U}		:	
C01	2.674	0.21892	#######	0.72087		0.8					
C05	3.355	0.44402	#######	1.06671		- 4					
C10	3.718	0.64733	########	1.33809		0.7					
C15	3.964	0.83482	#######	1.58626		و 0.6 ي		*		/	
C20	4.158	1.02185	#######	1.85532		<u>0.5</u>	-				
C25	4.326	1.21536	#######	2.19283		Response 0.6		/ -		i	
C40	4.747	1.88146	0.00062	9.0998		0.3					
C50	5.000	2.4472	0.86877	967704		0.2		- 1/			
C60	5.253	3.18304	1.72362	4.9E+08		4		#			
C75	5.674	4.92757	2.61844	4.9E+08		0.1]			
C80	5.842	5.86073	2.95357	4.9E+08		0.0	7 7 7 T T T T T T T T T T T T T T T T T		****		
C85	6.036	7.17373	3.35963	4.9E+08		1E-	09 1E-05	0.1	1000 1E+	-07 1E+11	
C90	6.282	9.25144	3.91026	4.9E+08							
C95	6.645	13.4876	4.83933	4.9E+08							
C99	7.326	27.3561	7.08733	4.9E+08				Dose n			

Amphipod 10-day Survival Bioassay-Proportion Alive Sample ID:

Start Date: End Date:

11/4/97 11/8/97 Test ID: 971104GJRA

Lab ID: CAOEE-Ogden Bioassay

Sample Type: **Test Species:**

REF-Ref Toxicant CDCL-Cadmium chloride

GJ-Grandidierella japonica

Sample Date: Comments:

Protocol: ASTM 93

Dose-Response Plot

BIVALVE

Appendix Table D-4. Bivalve Larvae Development Bioassay Reference Toxicant Survival and Normality Results

			<u> </u>			
Average % Normal	68	- 98	. 83	27	01	L
Percent Normal	87 84 87 90	89 90 85 78	88 77 82 87 81	65 77 73 17	11 10 4 11	4 2 8 11 9
Average %Survival	:	66	96	76	94	63
Total Number	109 70 113 51 87	133 83 98 109 85	97 79 102 105	71 103 101 97 87	88 101 62 91 84	55 49 62 28 75
Number Abnormal	14 11 15 5 3	15 8 15 14 19	12 18 18 14	25 24 27 27 25	78 86 56 87 75	53 48 57 25 68
Number Normal	95 59 98 46 84	118 75 83 95 66	85 61 84 91 62	46 79 74 70 62	10 15 6 9	2 1 5 3
Rep	B C C E	B C E	EDCBA	EDCBA	A B O O B	EDCBA
CuCl ₂ Concentration (ug/L)	Control	2.5	\$	10	20	40

		E	Bivalve La	arval Surv	ival and Develo	oment Test-Propo	rtion Normal	
Start Date:	11/7/97		Test ID:	971107CC	RT	Sample ID:	REF-Ref Toxicant	-
End Date:	11/9/97		Lab ID:	CAOEE-O	gden Bioassay	Sample Type:	CUCL-Copper chloride	
Sample Date:		1	Protocol:	ASTM 87	-	Test Species:	CG-Crassostrea gigas	
Comments:			•					
Conc-ug/L	1	2	3	4	5			
L-Lab Control	0.8716	0.8429	0.8673	0.9020	0.9655			
2.5	0.8872	0.9036	0.8469	0.8716	0.7765			
- 5	0.8763	0.7722	0.8235	0.8667	0.8052			
10	0.6479	0.7670	0.7327	0.7216	0.7126			
20	0.1136	0.1485	0.0968	0.0440	0.1071			
40	0.0364	0.0204	0.0806	0.1071	0.0933			

			Tra	ansform:	Arcsin So	quare Roo	t		1-Tailed		Number	Total
Conc-ug/L	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD	Resp	Number
L-Lab Control	0.8898	1.0000	1.2403	1.1632	1.3840	6.964	5				48	430
2.5	0.8572	0.9633	1.1870	1.0783	1.2551	5.773	5	1.213	2.360	0.1038	71	508
5	0.8288	0.9314	1.1465	1.0732	1.2114	5.029	5	2.133	2.360	0.1038	77	460
*10	0.7164	0.8051	1.0100	0.9355	1.0670	4.736	5	5.235	2.360	0.1038	128	459
*20	0.1020	0.1146	0.3201	0.2112	0.3956	21.138	5	20.915	2.360	0.1038	382	426
*40	0.0676	0.0759	0.2534	0.1433	0.3335	32.275	5	22.431	2.360	0.1038	251	269

Auxiliary Tests					Statistic		Critical		Skew	Kurt
Shapiro-Wilk's Test indicates norr	nal distribu	ition (p >	0.01)		0.96888		0.9		-0.0629	-0.3918
Bartlett's Test indicates equal vari	iances (p =	0.89)			1.65359		15.0863			
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df
Dunnett's Test	5	10	7.07107		0.07176	0.08021	1.01558	0.00484	5.5E-19	5, 24

				Max	imum Likeliho	od-Probit					
Parameter	Value	SE	95% Fidu	cial Limits	Control	Chi-Sq	Critical	P-value	Mu	Sigma	Iter
Slope	4.09373	1.17843	0.34343	7.84402	0.11163	51.1489	11.3449	4.6E-11	1.14193	0.24428	4
Intercept	0.32523	1.44911	-4.2865	4.93695							
TSCR	0.12103	0.04828	-0.0326	0.27467		1.0 -			7		
Point	Probits	ug/L	95% Fidu	cial Limits		0.9			* /		
EC01	2.674	3.74681	#######	8.40533		0.8					
EC05	3.355	5.49712	########	10.5448		- 4		j			
EC10	3.718	6.74343	0.00022	12.0037		0.7		/	/		
EC15	3.964	7.74029	0.00112	13.1843		Response 0.6 0.5 0.4 0.4		/	/		
EC20	4.158	8.63665	0.00402	14.2891		Q 0.5		/	/		
EC25	4.326	9.48793	0.01202	15.4081		8 0.4 -					
EC40	4.747	12.0239	0.17962	19.6383		0.3					
EC50	5.000	13.8654	0.83573	24.8532		0.2			!		
EC60	5.253	15.9889	3.16654	38.6234		0.1					
EC75	5.674	20.2626	10.594	219.955							
EC80	5.842	22.2598	12.9835	578.034		0.0 +	111111111	111mg 1 11	THE TESTING	1 1 1 1 1 1 1 1 1	
EC85	6.036	24.8376	15.2671	1921.64		1E-	07 0.0001	0.1	100 100	000 1E+08	
EC90	6.282	28.5092	17.7179	9204.31							
EC95	6.645	34.9729	21.008	98669.7				•			
EC99	7.326	51.3103	27.1906	8982190				Docc :	·~/)		
Significant he	terogeneity	detected	(p = 4.55E)	-11)				Dose u	igiL		

Bivalve Larval Survival and Development Test-Proportion Normal

Start Date: End Date:

11/7/97 11/9/97 Test ID: 971107CGRT

Lab ID: CAOEE-Ogden Bioassay

Protocol: ASTM 87

Sample Type: **Test Species:**

Sample ID:

REF-Ref Toxicant CUCL-Copper chloride

CG-Crassostrea gigas

Sample Date: Comments:

			Bivalve I	Larval Sur	vival and Develo	opment Test-Prope	ortion Alive	
Start Date: End Date: Sample Date: Comments:	11/7/97 11/9/97		Lab ID:	971107C0 CAOEE-O ASTM 87	BRT gden Bioassay	Sample ID: Sample Type: Test Species:	REF-Ref Toxicant CUCL-Copper chloride CG-Crassostrea gigas	
Conc-ug/L	1	2	3	4	5			
L-Lab Control	1.0000	1.0000	1.0000	1.0000	1.0000			
2.5	1.0000	0.9651	1.0000	1.0000	0.9884			
5	1.0000	0.9186	1.0000	1.0000	0.8953			
10	0.8256	1.0000	1.0000	1.0000	1.0000			
20	1.0000	1.0000	0.7209	1.0000	0.9767			
40	0.6395	0.5698	0.7209	0.3256	0.8721			

			Tra	ansform:	Arcsin So	quare Roo	t		1-Tailed		_
Conc-ug/L	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD	
L-Lab Control	1.0000	1.0000	1.3995	1.3995	1.3995	0.000	5				
2.5	0.9907	0.9907	1.4088	1.3829	1.4628	2.200	5	-0.115	2.360	0.1916	
5	0.9628	0.9628	1.3442	1.2414	1.3995	5.722	5	0.680	2.360	0.1916	
10	0.9651	0.9651	1.3476	1.1400	1.3995	8.612	5	0.639	2.360	0.1916	
20	0.9395	0.9395	1.3261	1.0142	1.4177	13.159	5	0.904	2.360	0.1916	
*40	0.6256	0.6256	0.9217	0.6072	1.2051	23.779	5	5.885	2.360	0.1916	

Auxiliary Tests					Statistic		Critical		Skew	Kurt
Shapiro-Wilk's Test indicates non	-normal dis	tribution	$(p \le 0.01)$		0.83643		0.9		-1.0519	3.04979
Equality of variance cannot be co	nfirmed									
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df
Dunnett's Test	20	40	28.2843		0.09695	0.09985	0.16926	0.01647	2.3E-05	5, 24

CONTROL CHARTS

Grandidierella japonica 96 hr. Survival Control Chart

Dates	Values	Mean	-1 SD	-2 SD	+1 SD	+2 SD
06/25/96	2.4113	2.5999	1.4781	0.3564	3.7216	4.8433
09/18/96	2.0062	2.5999	1.4781	0.3564	3.7216	4.8433
03/11/97	2.5205	2.5999	1.4781	0.3564	3.7216	4.8433
07/01/97	4.7440	2.5999	1.4781	0.3564	3.7216	4.8433
09/16/97	1,4700	2.5999	1,4781	0.3564	3.7216	4.8433
11/04/97	2.4472	2.5999	1.4781	0.3564	3.7216	4.8433

Crassostrea gigas Normality Control Chart

Dates	Values	Mean	-1 SD	-2 SD	+1 SD	+2 SD
05/23/97	25.2228	20.2626	15.9448	11.6270	24.5804	28.8981
06/04/97	20.2377	20.2626	15.9448	11.6270	24.5804	28.8981
07/02/97	22.8654	20.2626	15.9448	11.6270	24.5804	28.8981
08/28/97	16.7294	20.2626	15.9448	11.6270	24.5804	28.8981
09/03/97	27.1307	20.2626	15.9448	11.6270	24.5804	28.8981
09/12/97	16.7280	20.2626	15.9448	11.6270	24.5804	28.8981
09/25/97	21.2497	20.2626	15.9448	11.6270	24.5804	28.8981
10/29/97	18.3340	20.2626	15.9448	11.6270	24.5804	28.8981
11/07/97	13.8654	20.2626	15.9448	11.6270	24.5804	28.8981

APPENDIX E

CHAIN-OF-CUSTODY FORMS

AWYICA SSTEML INC.

e Check One

8080 Corte del Cedra • Carlabed, CA 92009-1514 • (619) 931-9225, FAX 931-9251
Z433 Impala Drive • Carlabad, CA 92008 • (619) 931-8081, FAX 931-1580
98 Main Street, Sulte #428 • Tiburon, CA 94928 • (415) 435-1847, FAX 435-0479
DAT

CHAIN OF CUSTODY 10/31 DATE

9

11,300 7.00,000 4.20% Hool 60 Joh 5,500 .98% 9.90 RECEIVED BY Q Christon - 542. (550c) Archive: 9.9°C 9. 0 70). 4 AKILMY . 8.20 9 Archie: 72ºc Dato/Three Arche BILLIERI E Bioassay Value ANALYSIS/TEST REQUESTED RELINQUISHED BY PRESERVED HOW/ COMMENTS 400 Dale Time Signatura E 金がが RECEIVED BY Signature SPECIAL INSTRUCTIONS/COMMENTS: E RELINQUIBHED BY 5 NUMBER & TYPE OF h RUS AM | SA INITIALS ナン Signabar Firm しているく MATRIX Descritor 7687 かのと RECEIVED BY TIME Oe Ha Air Fresh AIDIN NO. PROJECT NAMERSURVEY/PROJECT NUMBER 10/3/11/7 10/21/97 12/16/01 12/31/6 10/30/11 12/so/21 DAYE 12/0 SHIPPING 566 CORSE RELINQUISHED BY PROJECT MANAGER SAMPLE 1.D. 1 3 a 4 5 1 Shipping VIA: PHONEFAX ーソナス COMPANY ADORESS Į 7 4

WHITE seature to cultivator . YELLOW - Lib. . PINK - wis ned by originator

OGDEN ENVIRONMENTAL AND ENERGY SERVICES

5550 Morehouse Drive, Suite B San Diego, CA 92121

Bioassay Laboratory Chain of Custody

619-458-9044, ext. 208		DATE 3 NW. 97 PAGE 1 OF 1
WEC Analytical	ANALYSIS REQUIRED	PROJECT MANAGER
	(rai)	SAMPLERS (SIGNATURE)
760-931-9225		
المودد	wdo G	
SAMPLE ID DATE TIME MATRIX CONTAINER	f. ₁₅	CONCENTRATIONS/COMMENTS
Returney formet 11/1/17 listed sed pour /		homogenized and sput to two 1
		aliquetr - one transferred to
PROJECT INFORMATION SAMPLE RECEIPT	RELINGUISHED BY	RELINQUISHED BY
TOTAL NO. OF CONTAINERS		(Signature) (Signature)
CHAIN OF CUSTODY SEALS	KACK-DUIN 113	(Printed Name)
DV CPAYACE REC'D. GOOD CONDITION/COLD		(minor various)
hand-delivered conforms to record	(Company)	(Company)
SPECIAL INSTRUCTIONS/COMMENTS:	RECEIVED BY	RECEIVED BY HEADON POOR 1/2 3:25
to he tested w/ Kem. Film + control	(Signature)	(Time) (Signature) W S. Hustry (1999)
expudsed 11/5/97.	(8)	(Date) (Printed Name) (Date)
MFC received softment on 11/3/97 in Carlsbad	(Comparty)	Ogden Bloassay Lab Log-in No.

XQO O

6060 Corte del Cedro • Carlsbad, CA 92009-1514 • (619) 931-9225, FAX 931-9251 2433 Impala Drive • Carlsbad, CA 92008 • (619) 931-8081, FAX 931-1580 98 Main Street, Suite #428 • Tiburon, CA 94920 • (415) 435-1847, FAX 435-0479

CHAIN OF CUSTODY 02013

PAGE

A.

DATE

PROJECT NAME/SURVEX/PROJECT NUMBER	OJECT NUMBER	8	ting 10	0808		d	ANALYSIS/TEST REQUESTED	race Or
NAGER F. Handin				Ż,	2			
MEP			4,	A STATE OF THE STA	PE OI			
ADDRESS COFF CAPI	10	60/00	9		rt & R INERS			
PHONE/FAX 731 8001		200	760 931 9251	25	BBMUI ATNO:			
SAMPLE I.D.	ш	TIME	MATRIX	INITIALS	O N		PRESERVED HOW/	
1-2-7	12	1700	sed imant	19	3×14			
• •		/	1	,	,			
3								
4								
75								
1								
4								
8								
9					1			
SPR-10	<i>→</i>		>	-	>			***
				٥	•			•
								-
								•
HS.	SHIPPING:		SPE	SPECIAL INSTR	INSTRUCTIONS/COMMENTS:	IMENTS:		
Shipping VIA:	Airbill No:	.o.						
RELINQUISHED BY	RECEIVED TO Starting	RECEIVED B	. \	RELINQUISHED BY	SHED ВҮ	RECEIVED BY	RELINQUISHED BY	RECEIVED BY
Signalure	Signature	len C		ure		Signature	Signature	Signature
76	Firm 11/3	12/21	Firm			Firm	Fim	Firm
	Date/Time		Date/Time	lime		Date/Time	Date/Time	Date/Time
			>	WHITE - return to originator	originator • YELL	 YELLOW-lab PINK-retained by originator 		

TRAFFIC IMPACT STUDY FOR AIRCRAFT CARRIER HOMEPORTING AT PEARL HARBOR

TRAFFIC IMPACT STUDY for

AIRCRAFT CARRIER HOMEPORTING at

PEARL HARBOR

Prepared for

Belt Collins Hawaii

Prepared by

May 1999

TABLE OF CONTENTS

CHAPTER		Page
1.	INTRODUCTION	1-1
2.	EXISTING CONDITIONS	2-1
	Existing Roadways	2-1
	Existing Traffic Volumes	2-3
	Existing Traffic Conditions at Key Intersections	2-4
	Methodology for Analyzing Levels of Service	2-4
	Intersection Conditions	2-5
	Nimitz and Makalapa Gates	2-6
	Public Transportation	2-7
3.	2005 CONDITIONS WITHOUT CARRIER	3-1
	Planned Roadway Improvements	3-1
	Traffic Growth Without the Carrier	3-1
	Area Traffic Growth Factors	3-1
	Ford Island Bridge	3-2
	USS Missouri	3-3
	Peak Arrival and Departure Hour Traffic Volumes	3-3
	Conditions at Key Locations	3-3
4.	2005 CONDITIONS WITH CARRIER	4-1
	Description of Carrier Operations and Assumptions	4-1
	Vehicle Trip Generation	4-2
	Peak Arrival and Departure Hour Traffic Volumes	4-2
	Traffic Conditions and Potential Mitigation	4-3
	Criteria Used to Identify Mitigation Needs	4-3
	Kamehameha Highway/Makalapa Road/Radford Drive	4-3
	North Road/Makalapa Road	4-4
	North Road/Avenue A	. 4-4
	Nimitz Highway/North Road/South Avenue	4-4
	Nimitz and Makalapa Gates	4-5
	Potential Transportation Management Actions	4-5
	Public Transit Usage	4-5
5	SUMMARY AND CONCLUSIONS	5-1

Chapter 1 INTRODUCTION

The U.S. Navy is considering the homeporting of a new aircraft carrier at the Pearl Harbor Naval Complex on the island of Oahu, Hawaii. The aircraft carrier would be berthed at B2/3 (Figure 1-1). A new parking facility would be constructed at the site of existing Building 68 for use by crew and maintenance personnel. Crew and maintenance personnel would also use other existing parking facilities in the Pearl Harbor Naval Shipyard area west of North Road.

Operations of aircraft carriers normally follow a two-year cycle, with each portion of the cycle having a different effect on the levels of vehicular traffic at the naval base. The two-year operating cycle for the aircraft carrier is anticipated to be:

- Approximately 25% of the time, the carrier would be away on an overseas tour of duty (6 months of every 2 years). During this period there would be little traffic associated with the aircraft carrier other than travel by those family members of the crew.
- Approximately 50% of the time, the carrier would carry out normal operations and training from Pearl Harbor, with most of the time spent berthed at B2/3. During this period, the aircraft carrier would generate traffic at the naval base by the 3,217 crew and by service and delivery vehicles.
- Approximately 25% of the time, the carrier would be undergoing special depot-level
 maintenance while berthed at B2/3, with the work performed by workers temporarily
 relocated to Honolulu from the Mainland. During this period, traffic at the naval base
 would increase as a result of both the crew and the additional maintenance workers.
 The number of additional maintenance workers is expected to range between 450 and
 1,300 over the course of the six-month maintenance period.

This traffic analyses reflects the six-month special depot-level maintenance portion of the normal two-year cycle since this should represent the greatest impact upon the area roadways. The traffic study addresses the following:

- 1. The estimated number of the peak hour vehicle trips generated by the aircraft carrier.
- 2. Traffic increases on the roadways providing access to the aircraft carrier and the parking facilities.
- 3. Impact on traffic conditions at the intersection of Kamehameha Highway with Makalapa Road/Radford Drive, the key traffic signal-controlled intersection providing access to the parking areas for the aircraft carrier crew and maintenance personnel.
- 4. Impact on traffic conditions at the intersections of North Road with Makalapa Road, Avenue A, and Nimitz Highway/South Avenue, the key intersections within the base that would be affected by traffic traveling to/from the aircraft carrier.

The traffic analysis focuses on the peak hours for arrival (6:30 to 7:30 AM) and departure (4:00 to 5:00 PM) of the carrier day shift personnel, whose normal work hours are 7:30 AM to 4:30 PM. The assessment represents conditions in year 2005.

Source: CVN Homeport Analysis, Belt Collins Hawaii, 9/97

0 600 1200 2400 SCALE IN FEET Figure 1-1
PROJECT LOCATION

Chapter 2 EXISTING CONDITIONS

The planned berth and parking location for the aircraft carrier are located within the core area of the Pearl Harbor Naval Complex. The Berth B2/3 area, planned for use by the aircraft carrier, is located at the northeast end of the Pearl Harbor Naval Shipyard and adjacent to the Pearl Harbor Naval Station. The planned site for the parking structure serving the carrier would be located approximately 2,000 feet east of the berths on the site of Building 68.

EXISTING ROADWAYS

The primary regional access to the Pearl Harbor Naval Complex is provided by the H-1 Freeway and the Nimitz-Kamehameha Highway facilities. The Pearl Harbor interchange provides the primary linkage between the H-1 Freeway and the local area roadway network. Most traffic to/from the Berth B-2/B-3 area uses either the Nimitz Gate, which provides access to both the H-1 Freeway and the Nimitz-Kamehameha Highway facilities, or the Makalapa Gate, which provides access to Kamehameha Highway. Within the base, traffic would use either North Road and Avenue A, or South Avenue and Avenue D to travel to and from the carrier berth and parking areas. The principal roadways in the study area, with the number of lanes and type of traffic controls at key intersections, are depicted in Figure 2-1.

Nimitz Highway - This State highway links the Pearl Harbor Naval Complex to the H-1 Freeway and to the Honolulu International Airport and Downtown Honolulu areas. The key traffic constraints are at the Nimitz Gate, where up to four inbound lanes and four outbound lanes can be provided through the security checkpoint, and at the adjacent intersection with North Road and South Avenue inside the Naval Station.

Kamehameha Highway - This State highway connects to the Nimitz Highway and to the H-1 Freeway at the Pearl Harbor interchange to provide access to the east. Kamehameha Highway extends west to provide access to the central and western areas of Oahu. In the Pearl Harbor area, the highway typically provides three through lanes in each direction and has a landscaped median divider separating the two travel directions.

Makalapa Road - This roadway connects Kamehameha Highway to North Road, and extends eastward as Radford Drive to provide access to the Moanalua-Johnson Circle NEX/Commissary area and to the Moanalua Terrace military housing areas. The section west of Kamehameha Highway is a median-divided roadway with a total of six lanes, while the section east of Kamehameha Highway is a four-lane undivided highway. At Makalapa Gate, the roadway can provide up to three inbound lanes and two outbound lanes through the security checkpoint.

North Road - This is the major roadway providing circulation within the areas of the Naval Station north of Nimitz Gate. North Road provides two lanes in each travel direction. At several

EXISTING LANES &

TRAFFIC CONTROLS AT KEY STUDY INTERSECTIONS

AREA BASE - 11/3/97

key intersections, one of the lanes is marked as a left- or right-turn lane, thus providing only one lane for through traffic.

South Avenue - This major four-lane roadway provides access from the Nimitz Gate area to the areas of the Naval Complex west of North Road. No turn lanes are provided on South Avenue at the key intersections other than at the Nimitz Highway intersection.

Avenue A - This four-lane roadway extends west from North Road to the vicinity of Building 68, and provides access to Berths B-2/B-3 via Club Road and Avenue C.

Avenue D - This four-lane road extends west of South Avenue and would be used to access either the Building 68 parking site or Berths B2/3. In the afternoon period, traffic cones are placed at the South Avenue intersection with Avenue D to force all westbound traffic to turn right onto Avenue D, thus providing continuous flow from Avenue D onto South Avenue for traffic exiting the base.

Key Intersections - The normal number and use of lanes are indicated in Figure 2-1. However, special traffic operations are provided at several locations during the peak traffic periods to accommodate the heavy volumes of traffic.

Nimitz Highway at North Road and South Avenue

- During the peak morning arrival period, traffic cones are placed at the intersection to prohibit the through movements between the North Road and South Avenue approaches, and the left turn from North Road. This permits nonstop traffic flow from Nimitz Highway inbound to both North Road and South Avenue, with two lanes provided for each movement. The right-turn movement from South Avenue to Nimitz Highway is permitted. During the traffic counts, the coning operation extended from before 6:00 AM to about 7:10 AM.
- During the peak afternoon departure period, traffic cones are placed at the intersection
 to prohibit the through movement from South Avenue to North Road and the left-turn
 movement from Nimitz Highway to South Avenue. This permits nonstop traffic flow
 from both North Road and South Avenue to Nimitz Highway to exit the base, with
 two lanes provided for each of the exiting movements. During the traffic counts, the
 coning operation extended from about 3:10 to 4:55 PM.

North Road at Makalapa Road

- The Makalapa Road approach is striped for two left-turn and one right-turn lane. However, one of the left-turn lanes is blocked by traffic cones throughout the day other than the morning peak arrival period when a traffic control officer is present to direct traffic. At that time, the traffic cones are removed by the officer and traffic is allowed to turn left from both left-turn lanes under the officer's direction.
- During the traffic counts, a traffic control officer directed traffic movements at the intersection between about 6:00 and 7:30 AM to prevent the left-turn movement from Makalapa Road from stacking back to Kamehameha Highway. With the alternating

- right-of-way with the all-way STOP sign control, the higher volumes of left-turn lane cannot be accommodated by the single left-turn lane.
- During the traffic counts, a traffic control officer directed traffic movements at the intersection between about 3:15 and 4:30 PM to expedite traffic flow.

North Road at Avenue A

• A traffic control officer directs traffic at this intersection between about 6:15 and 7:15 PM and 3:15 and 4:45 PM to expedite traffic movement.

EXISTING TRAFFIC VOLUMES

Existing weekday traffic volumes are available for several area roadways from recent State of Hawaii Department of Transportation (State DOT) 24-hour machine counts. These include the intersection of Kamehameha Highway with Makalapa Road, made on March 11-12, 1997 and on Nimitz Highway near Nimitz Gate, made on February 27, 1995. Based on these State DOT counts, the typical weekday traffic volumes are:

Kamehameha Highway, east of Makalapa Road	24,700 vehicles
Makalapa Road	
South of Kamehameha Highway	19,900
North of Kamehameha Highway	16,600
Nimitz Highway, east of Center Drive	19,800

Wilbur Smith Associates (WSA) conducted special turning movement counts at the key intersections during the weekday morning and afternoon commute peak periods. These counts were made between 6:00 and 8:30 AM and between 3:00 and 6:00 PM on October 1, 1997.

The highest one-hour volumes (peak hour) during these count periods occurred from 6:00 to 7:00 AM and from 3:15 to 4:15 PM. However, the major day work shift for the aircraft carrier personnel is expected to be 7:30 AM to 4:30 PM, which would result in most of the carrier traffic arriving and departing later than the present peak one-hour commute traffic. Most of the traffic is expected to occur between 6:30 and 7:30 AM and 4:00 and 5:00 PM. The present traffic volumes during the carrier peak arrival and departure hours are presented for the key intersections in Figures 2-2 and 2-3, respectively. The volumes in the 6:30-7:30 AM period are about 85% of those for the base morning peak hour, while the volumes in the 4:00-5:00 PM period are about 75% of those for the base afternoon peak hour.

Nimitz Gate is used by about 50% more peak direction traffic than Makalapa Gate during both the 6:30-7:30 AM and 4:00-5:00 PM periods. The highest volumes on the base roadways occur on South Avenue during the morning period and on North Road during the afternoon period.

Figure 2-2
YEAR 1997 MORNING ARRIVAL
PEAK HOUR TRAFFIC (6:30-7:30 AM)

BASE - 11/3/97

Figure 2-3 YEAR 1997 AFTERNOON DEPARTURE PEAK HOUR TRAFFIC (4:00-5:00 PM)
BASE - 11/3/97

EXISTING TRAFFIC CONDITIONS AT KEY INTERSECTIONS

Traffic conditions were analyzed for the morning and afternoon one-hour periods that would accommodate the highest volumes of future carrier traffic.

Methodology for Analyzing Levels of Service

The Transportation Research Board (TRB), a division of the National Science Foundation, has developed standardized methods for use in evaluating the effectiveness and quality of service for roadways and streets. Different methodologies are available for analyzing traffic signal-controlled intersections and other types of roadways.

The TRB evaluation methods use a concept known as level-of-service (LOS). This concept describes facility operations on a letter basis from A to F, which signify excellent to unacceptable conditions, respectively. The methods generally compare traffic volumes on a facility to the facility's theoretical capacity. Capacity is estimated based on the facility's physical characteristics (e.g. number and widths of lanes), traffic characteristics (e.g. types of vehicles), and type of traffic controls. The comparisons are frequently referred to as the volume-to-capacity ratio (V/C). The methodologies are described in the 1994 Highway Capacity Manual (1994 HCM)¹.

Signal-Controlled Intersections - Traffic conditions at traffic signal-controlled intersections were evaluated using the Operations Analysis methodology described in the 1994 HCM. Using this method, the level-of-service is based on the average delay time per vehicle passing through the intersection. The delay time, calculated in seconds, is the result of the phasing and timing of the traffic signal as well as the intersection's physical layout and the composition of the traffic. Average delay time and level-of-service are estimated for the entire intersection, for each roadway approach, and for each traffic movement or lane group. A description of the characteristics and criteria associated with LOS A through LOS F is provided in Figure 2-4.

The methodology also calculates a ratio of actual or estimated peak hour traffic volumes to the theoretical capacity of the intersection. This ratio indicates the proportion of available capacity being used by traffic volumes and where there is unused capacity available for future traffic increases. This volume-to-capacity ratio (V/C) reflects the physical characteristics of the intersection and the traffic characteristics, and is somewhat independent of the efficiency of the traffic signal phasing/timing.

Unsignalized Intersections - At intersections with STOP sign controls, the level of service was calculated using the 1994 HCM procedures for intersections with STOP or YIELD signs. In this methodology, the six levels of service, A through F, are used to describe traffic conditions for those-movements that must yield to other movements:

- Left-turn out of the side street or driveway;
- Through movement from the side street,

Highway Capacity Manual. Special Report 209, Transportation Research Board, Third Edition. 1994.

The OPERATIONS LEVEL METHODOLOGY, which is described in the Transportation Research Board's Highway Capacity Manual, defines Level of Service (LOS) for signalized intersections in terms of delay. Technically, delay is the amount of time an average vehicle must wait at an intersection before being able to pass through the intersection. For signalized intersections, the relationship between LOS and delay is based on the average stopped delay per vehicle for a fifteen minute period.

LEVEL OF SERVICE 'A' - Delay 0.0 to 5.0 seconds

Describes operations with very low delay, i.e., less than 5 seconds per vehicle. This occurs when signal progression is extremely favorable. Most vehicles arrive during the green phase and are not required to stop at all.

Corresponding V/C ratios usually range from 0.00 to 0.60.

Describes operations with delay in the range of 5 to 15 seconds per vehicle generally characterized by good signal progression and/or short cycle lengths. More vehicles are required to stop than for LOS 'A' causing higher levels of average delay.

Corresponding V/C ratios usually range from 0.61 to 0.70.

Describes operations with delay in the range of 15 to 25 seconds per vehicle. Occasionally, vehicles may be required to wait more than one red signal phase. The number of vehicles stopping at this level is significant although many still pass through the intersection without stopping.

Corresponding V/C ratios usually range from 0.71 to 0.80.

LEVEL OF SERVICE 'D' - Delay 25.1 to 40.0 seconds

Describes operations with delay in the range of 25 of 40 seconds per vehicle. At LOS 'D', the influence of congestion becomes more noticeable. Many vehicles stop, and the proportion of vehicles not stopping declines. The number of vehicles failing to clear the signal during the first green phase is noticeable.

Corresponding V/C ratios usually range from 0.81 to 0.90.

LEVEL OF SERVICE 'E' - Delay 40.1 to 60.0 seconds

Describes operations with delay in the range of 40 to 60 seconds per vehicle. These high delay values generally indicate poor signal progression, long cycle lengths and high V/C ratios. Vehicles frequently fail to clear the intersection during the first green

Corresponding V/C ratios usually range from 0.91 to 1.00.

LEVEL OF SERVICE 'F' - Delay 60.1 seconds plus

Describes operations with delay in excess of 60 seconds per vehicle. This condition often occurs with oversaturation, i.e., when arrival flow rates exceed the capacity of the intersection.

Corresponding V/C ratios of over 1.00 are usually associated.

SOURCE: Transportation Research Board, "Operations Level Methodology-Signalized Intersections", Highway Capacity Manual, Special Report 209, 1985.

LOS 'C'

LOS 'D'

Figure 2-4

- · Right-turn out of the side street or driveway, and
- Left-turn into the side street.

Through vehicles on the major streets are not required to yield to other movements at two-way STOP controlled intersections.

The general indicator of intersection delay is determined by calculating the one-hour capacity for each key movement, based on the conflicting traffic volumes, and then comparing the number of vehicles making that maneuver to the calculated capacity. The unused or "reserve" capacity for the movement is then used to identify a delay time and a level-of-service for that movement. Unlike analysis at signalized intersections, an overall intersection level-of-service is not calculated, but a level-of-service is calculated for each lane group subject to the STOP or YIELD condition.

The level-of-service criteria for unsignalized intersections with STOP or YIELD controls is defined in Table 2-1.

	Table 2-1
	LEVEL-OF-SERVICE CRITERIA FOR UNSIGNALIZED INTERSECTIONS Traffic Impact Study for Aircraft Carrier Homeporting at Pearl Harbor
LOS	Average Stopped Delay (seconds/vehicle)
A	<5.0
В	5.1 - 10.0
С	10.1 - 20.0
D	20.1 - 30.0
E	30.1 - 45.0
F	>45

Intersection Conditions

The traffic conditions at each of the key intersections are summarized in Table 2-2. Since there is no established methodology for analyzing manually controlled intersections, the traffic conditions at the North Road intersections with Makalapa Road and Avenue A are presented for the present STOP sign controls without the effect of the traffic control officer. Conditions are also presented for these two intersection with traffic signal controls and the existing number of lanes, since this

may better reflect conditions with a traffic control officer assigning rights-of-way to each movement, and since traffic signals are planned for installation at both intersections.

The intersection of Kamehameha Highway with Makalapa Road accommodates the present morning traffic in the 6:30-7:30 AM period at acceptable overall traffic conditions, with the traffic approximating 72% of the intersection capacity and conditions at LOS D. Long traffic queues do form for the northbound left turn into the naval base and on the Radford Drive approach. These waiting queues typically do clear during each green phase, with LOS E conditions for these movements.

With STOP sign control, the analyses indicate that the intersection of Makalapa Road with North Road would operate at LOS F during both the morning and afternoon analyses hours. During brief periods when the traffic control officer ceased to manually direct traffic movements, long queues quickly formed on the Makalapa Road (westbound) approach, with the queue extending beyond the security gate during the morning. With the manual traffic control, the intersection was observed to operate with only short queues on each approach.

With the planned installation of traffic signal controls, the North Road-Makalapa Road intersection would operate at acceptable conditions, with the analysis hour volumes using about 64% and 55% of the capacity in the morning and afternoon analysis hours, respectively. Overall conditions would be at LOS C and D in the morning and afternoon analysis hours, respectively. The estimated conditions with the traffic signal are likely reflective of the actual present conditions with manual traffic control.

With STOP sign control, the analyses indicate that the intersection of Makalapa Road with Avenue A would operate at LOS F during both the morning and afternoon analyses hours. During the afternoon period, long queues of vehicles waiting to turn left were observed to form on Avenue A. Installation of traffic signal controls would provide acceptable conditions with the existing lanes in the morning, but not in the afternoon when the traffic volumes would approximate the capacity (see Table 2-2). The planned signal project also includes the striping of a second (double) left-turn lane on the Avenue A approach. This would provide acceptable afternoon conditions with the existing traffic volumes equal to 76% of capacity.

The Nimitz Highway intersection with North Road and South Avenue was observed to operate with minimal disruption during the period when the traffic cones were used to provide continuous flow to the peak travel direction movements. Near the end of the analyses hours for the carrier, the traffic cones were removed. The analyses of the traffic conditions during the period when the cones were not in place, as listed in Table 2-2, indicates that the STOP sign controlled movements would operate at LOS F in the morning period.

Nimitz and Makalapa Gates

Vehicles entering the Nimitz and Makalapa Gates must pass through a security checkpoint. Under normal conditions, the entering vehicles slow to permit the security guards to view the

			Table 2-2				
	EXISTING WEEKDAY INTERSECTION CONDITIONS Traffic Impact Study for Aircraft Carrier Homeporting at Pearl Harbor	G WEEKDA	VY INTERS	EXISTING WEEKDAY INTERSECTION CONDITIONS Impact Study for Aircraft Carrier Homeporting at Pearl I	NDITIONS ng at Pearl Han	.bor	
	Traffic	Mor	Morning Arrival Hour	Hour	Af	Afternoon Departure Hour	e Hour
Intersection	Control	N/C	ADPV	SOT	V/C	ADPV	ros
Kamehameha Hwy/	Signal	0.721	37.8	Q	0.866	44.0	ш
Makalapa Rd/Radford Dr.							
North Rd./Makalapa Rd.	STOP Sign	9 10 8	*	Œ	i	*	江
	Signal	0.640	20.6	ပ	0.547	20.3	ບ
North Rd./Avenue A	STOP Sign		1		1	*	L
	Signal	0.586	27.3	D	1.006	55.8	ш
Nimitz Flwy/North Rd./	STOP Sign	-	140.9	F	:	11.2	S
South Ave.							
Nofee:							
ŧŧ	Ratio of traffic volumes to theoretical capacity of intersection for traffic signals and security check locations	ical capacity	of intersection	on for traffic s	ignals and secu	rity check location	v
= >	per vehicle, in seco	inds.			0	•	į
11	Level-of-Service.						
* = Not calculated.							
[327250]					Wilbu	Wilbur Smith Associates; October 1997	s; October 1997

base decal affixed to each vehicle. Each guard position/lane can accommodate about 600 vehicles per hour for this level of security check.² Based on this capacity, the present traffic volumes entering the Naval Station in the 6:30-7:30 AM period approximates 75% of the capacity at the Nimitz Gate and 71% of the capacity of the Makalapa Gate.

PUBLIC TRANSPORTATION

The City and County of Honolulu provides TheBus fixed-route service to the Pearl Harbor Naval Complex, as well as special TheHandi-Van services for those not able to use the fixed-route service. One urban trunk route and four express routes provide service within the naval base, with all four of these routes traveling on Avenue A, Club Road past the Building 68 parking site, and Eighth Street. The routes provide service within two blocks (2,000 feet) of Berths B2/3 Pier. These routes are:

- Route 3 Kaimuki-Pearl Harbor Route 3 provides service to the naval base from the urban Honolulu areas east of Pearl Harbor, including the Downtown and airport areas. The route provides service from Honolulu to the Nimitz Gate seven days a week from about 5:00 AM until midnight with service frequencies generally between 10 and 30 minutes. However, service is provided along the portion of the route inside the naval base only on weekdays and Saturdays during the morning and afternoon commute periods. Route 3 provides 6 morning and 3 afternoon bus trips to the Berth B2/3 area on weekdays, and 3 morning and 2 afternoon trips on Saturdays.
- Route 83A Wahiawa-Mililani Express This route provides 2 morning and 2
 afternoon bus trips during weekday commute hours from the Central Oahu area and
 Schofield Barracks to the base.
- Route 86A Kaneohe-Kahaluu Express This route provides 1 morning and 1 afternoon bus trip during weekday commute hours from the Windward Oahu area to the base.
- Route 93A Waianae Coast Express This route provides 1 morning and 1 afternoon bus trip during weekday commute hours from the Waianae section of west Oahu to the base.
- Route 95 Hawaii Kai Express This route provides 1 morning and 1 afternoon bus trip during weekday commute hours from the southeastern section of Oahu to the base.

In addition to these routes that provide service into the base, several other TheBus routes provide service along Kamehameha Highway with transfers possible to Route 3. These routes include:

- Route 20 Waikiki-Pearlridge
- Route 47 Waikiki/Honolulu-Waipahu
- Route 48 Honolulu-Waikele/Ewa Mill
- Route 49 Honolulu-Ewa Beach
- Route 50 Makakilo/Kapolei/Village Park-Honolulu.

² Traffic Impact Report, Ford Island Bridge, Pearl Harbor Naval Station, prepared by the Military Traffic Management Command, Department of the Army, December 22, 1994.

Chapter 3 2005 CONDITIONS WITHOUT CARRIER

The new aircraft carrier would be located at Pearl Harbor Naval Complex by 2005. Year 2005 is used as the basis of this analysis although the first depot-level maintenance period may not occur until 2006. Forecast conditions are presented for this 2005 analysis year as a base from which to identify the incremental effects of the aircraft carrier operations on area traffic.

PLANNED ROADWAY IMPROVEMENTS

The Ford Island Bridge, now under construction, will be open to traffic in the near future. The bridge is expected to affect traffic circulation in the area, as discussed in the next section.

Improvements are planned for two of the key intersections along North Road within the Pearl Harbor Naval Complex.

• North Road at Makalapa Road

Installation of a traffic signal is planned for this intersection in order to more effectively use the intersection capacity. The traffic signal would permit the existing second left turn lane to be used throughout the day instead of only when there is a traffic control officer present to direct traffic. With a traffic signal, the traffic control officer should no longer be needed during the peak traffic periods.

· North Road at Avenue A

Installation of a traffic signal is planned for this intersection. When the signal is installed, a second (double) left-turn lane will be added to the Avenue A approach to increase intersection capacity. The traffic signal should eliminate the need for a traffic control officer during peak traffic periods.

Both of these intersection improvements are assumed to be completed by 2005.

TRAFFIC GROWTH WITHOUT THE CARRIER

Traffic volumes within the study area would be affected by several factors:

- General traffic growth in the area
- Opening of the Ford Island Bridge and related changes to uses on Ford Island
- Location of the USS Missouri at Ford Island as a visitor attraction.

Area Traffic Growth Factors

A growth factor was applied to existing traffic volumes to reflect increased travel to/from the existing land uses in the area, and any increases in through traffic. Two different factors were used, with a lower one applying to traffic within or entering or exiting the Pearl Harbor Naval Complex, and a higher factor for the other traffic movements along Kamehameha Highway.

An annual growth factor of 0.5% was used for naval base traffic, including vehicles entering/exiting the base via Kamehameha Highway. This is the factor used in the previous study for the Ford Island Bridge.¹

The growth factor for traffic along Kamehameha Highway was determined from the traffic counts for the nearest count station for which recent historic count data was available. Historic count data at the Kamehameha Highway-Radford Drive intersection (State DOT count station #5B) was used as the basis for this growth rate. The most recent data, for the 1995 to 1997 period, indicates an average annual growth rate of approximately 2.50 percent. The resultant growth factor was estimated as:

Roadways	Average Annual Growth Rate	Growth to 2005
Kamehameha Highway	2.5%	21.8%
Traffic entering, exiting, and within the navy base	0.5%	4.1%

Ford Island Bridge

Access to Ford Island is presently provided by ferries that operate from several landings in the naval base. The major landing and parking area is at Halawa Landing, located north along Kamehameha Highway near where the bridge will connect to the highway. Ferry service also operates from Merry's Point landing near the intersection of North Road and Avenue A, and from Hospital Point near Berths B2/3. Most personnel who work on Ford Island currently park near one of these landings and use the ferry service, thus they are included in the existing traffic counts.

Once the bridge is completed, traffic in the study area will change due to several factors:

- Personnel now driving to the Merry's Point and Hospital Point landings will no longer have to enter through the Makalapa and Nimitz Gates, thus reducing traffic at the key intersections within the base and, to some extent, along Kamehameha Highway.
- The SEAL operations will be relocated from Ford Island to Pearl City Peninsula, thus reducing traffic in the area.
- The development of additional housing on Ford Island would primarily affect commute period traffic through shifting the approach and departure direction of vehicles entering and exiting the navy base at Makalapa and Nimitz Gates, and should not significantly increase the overall traffic volumes. The housing would affect residence locations of existing personnel, but not increase the number of personnel. The housing would add some peak-hour trips by dependents, as well as trips during off-peak periods.

¹ Traffic Impact Report, Ford Island Bridge, prepared by the Military Traffic Management Command, Department of the Army, 1994

The net effect of the bridge on traffic patterns at the study intersections will be complex with both increases and decreases, but should not result in large changes that would greatly affect traffic conditions at the key study intersections. Therefore, no adjustments were made to the traffic volumes for the purpose of this study.

USS Missouri

The USS Missouri is planned for relocation to a berth at Ford Island prior to 2005. The ship will be operated as a companion visitor attraction to the USS Arizona Memorial. The ship will be accessed via shuttle bus service from the USS Arizona Memorial parking lot north of the study area. A restaurant may also be developed as part of the operation of the ship.

The USS Missouri is expected to increase the numbers of persons visiting the area. Most of these vehicles would travel along Kamehameha Highway through the study area. The year 2005 volumes along Kamehameha Highway were increased to reflect the USS Missouri traffic, based on the forecasts provided in the traffic impact study conducted for the ship.²

Peak Arrival and Departure Hour Traffic Volumes

The estimated traffic volumes at the key intersections in the study area are depicted in Figures 3-1 and 3-2 for the morning peak arrival hour and the afternoon peak departure hour, respectively.

CONDITIONS AT KEY LOCATIONS

Year 2005 traffic conditions without the aircraft carrier are summarized in Table 3-1. The conditions reflect the intersection modifications planned for the intersections of North Road with Makalapa Road and Avenue A.

Conditions at the intersection of Kamehameha Highway with Makalapa Road/Radford Drive would significantly worsen in both peak hours. In the morning period, the forecast volumes would be well within capacity (80.8%), but the increases would worsen the vehicle delay to LOS E. The projected traffic volumes would exceed intersection capacity by 5.4% in the afternoon period, with delays reflective of LOS F conditions.

Within the base, the North Road intersections with Makalapa Road and with Avenue A would both operate at acceptable levels of service with volumes well below capacity.

The estimated numbers of vehicles entering through the Nimitz and Makalapa Gates during the 6:30-7:30 AM period would be well within the estimated capacities for those two security checkpoints. The forecast volumes would approximate 77.3% of the Nimitz Gate capacity and 73.9% of the Makalapa Gate capacity.

² Traffic Impact Analysis Report, USS Missouri Memorial, prepared by Belt Collins Hawaii, October 1997.

Figure 3-1
YEAR 2005 WITHOUT CARRIER

MORNING ARRIVAL PEAK HOUR TRAFFIC

BASE - 11/3/97

Figure 3-2
YEAR 2005 WITHOUT CARRIER

AFTERNOON DEPARTURE PEAK HOUR TRAFFIC

BASE - 11/3/97

			Table 3-1				
2005 WEE	KDAY INTERSECTION CONDITIONS WITHOUT THE AIRCRAFT CARRIER Testific lungest Study for Aircraft Carrier Homenorting of Paged Hordon	ECTION CC	ONDITIONS	WITHOUT	THE AIRCRA	FT CARRIER	
	Traffic	Mor	Morning Arrival Hour	Hour	Af	Afternoon Departure Hour	e Hour
Intersection	Control	N/C	ADPV	TOS	V/C	ADPV	ros
Kamehameha Hwy/	Existing	808.0	40.2	B	1.054	66.5	Ā
Makalapa Rd/Radford Dr.	Lancs						
North Rd./Makalapa Rd.	Planned	0.667	21.4	J	0.571	21.2	၁
	Signal						
North Rd./Avenue A	Planned						
	Signals	0.495	20.6	ŭ	0.798	28.6	۵
	& Lanes						
Nimitz Hwy/North Rd./	STOP	:	200.8	Ľ	-	12.1	Э
South Ave.	Sign						
Notes:							
[1	volumes to theoret	ical capacity	of intersection	on for traffic s	ignals and secu	Ratio of traffic volumes to theoretical capacity of intersection for traffic signals and security check locations.	S.
ADPV = Average delay p	Average delay per vehicle, in seconds.	onds.					
LOS = Level-of-Service.	ં						-
* = Not calculated.							
[327250]					Wilbu	Wilbur Smith Associates; October 1997	s; October 1997

Chapter 4 2005 CONDITIONS WITH CARRIER

The aircraft carrier could be operating from the Pearl Harbor Naval Complex by 2005. The traffic assessment reflects conditions during depot-level maintenance phase of the operational cycle, during which both the crew and temporary maintenance workers would be working at the ship each weekday.

DESCRIPTION OF CARRIER OPERATIONS AND ASSUMPTIONS

Ship's Crew

The traffic assessment reflects a crew size of 3,217 officers and enlisted personnel remaining assigned to the ship while undergoing the depot-level maintenance. The following inputs and assumptions were used in the traffic forecasts:

- Most of the crew is assumed to work the day shift, with duty hours extending from 7:30 AM to 4:30 PM. The crew members on the evening/night shift are assumed to arrive at 4:30 PM and depart at 7:30 AM.
- Unmarried crew members with a rank of E-5 or below are assumed to live on the aircraft carrier, while all others are assumed to live in military family housing or within the residential communities of Oahu. Of the crew, 2,509 will have a rank of E-5 or less, and 44% of these personnel are expected to be married.
- On a typical day, the crew and other trips related to routine activities on the vessel are estimated to generate 850 vehicle trips during the morning and afternoon peak traffic hours, with approximately 91% of these trips inbound to the vessel in the morning peak hour and outbound in the afternoon peak hour, and the remaining 9% in the off-peak direction.¹
- The directional distribution and routing of trips was based on the present traffic patterns for the naval base.

Depot-Level Maintenance Workers

The largest number of special maintenance workers expected to work on the vessel at any given time during the depot-level maintenance period is 1,300. These workers would be quartered outside the naval base, most likely at hotels and other short-term accommodations. The assumptions used in the analysis were selected to develop a "worst case" scenario for traffic impacts. These include:

• The special maintenance personnel are assumed to work weekdays with two work shifts each day. The shift hours are assumed to coincide with those of the crew, with the day shift working from 7:30 AM to 4:30 PM, and the second shift working from

327250

¹ The trip generation was derived from traffic counts at West Coast naval bases. (SAIC, April 28, 1999)

4:30 PM until after midnight. One-half of the maintenance specialists are assumed to work on each shift.

- On a typical weekday, all of the personnel are assumed to work at the aircraft carrier.
- The maintenance personnel are assumed to commute to the base via a combination of rental cars, vans, and special minibus transportation. An average of 2.5 workers per vehicle was used to estimate the traffic generation.
- The directional distribution and routing of trips was based on the present traffic patterns for the naval base.

VEHICLE TRIP GENERATION

A total of 1,110 vehicle trip origins or destinations are estimated for the carrier during the morning peak hour and 1,370 for the afternoon peak hour on a weekday during the depot-level maintenance period, based on the preceding assumptions. As listed in the following table, approximately 77% and 62% of the trips in the morning and afternoon peak hours, respectively, would be made by the ship's crew and other routine daily activities. The special maintenance personnel would represent about 25% of the trips in the peak travel direction during each peak hour.

Time Period &	To	From	
Source of Trips	Carrier	Carrier	Totals
Morning Peak Arrival Hour			
Crew, deliveries, etc.	773	77	850
Maintenance Personnel	260	0	260
Totals	1,033	77	1,110
Afternoon Peak Departure Hour			
Crew, deliveries, etc.	77	773	850
Maintenance Personnel	260	260	520
Totals	337	1,033	1,370

PEAK ARRIVAL AND DEPARTURE HOUR TRAFFIC VOLUMES

The resultant year 2005 traffic volumes at key intersections during the depot-level maintenance period are depicted in Figures 4-1 and 4-2 for the peak arrival and departure hours, respectively.

The crew and maintenance personnel would result in large increases in traffic along Nimitz Highway, Makalapa Road, North Road, and South Avenue in the peak travel direction. As summarized in Table 4-1, the carrier traffic would increase peak direction traffic volumes along these road segments by between 25% and 55%. Without the maintenance personnel, the increases would approximate 18% to 40%.

Figure 4-1
YEAR 2005 WITH CARRIER
MORNING ARRIVAL PEAK HOUR TRAFFIC

Figure 4-2
YEAR 2005 WITH CARRIER
AFTERNOON DEPARTURE PEAK HOUR TRAFFIC
327251\BASE - 5/2/99

North of Makalapa Gate, the carrier would increase southbound traffic along Kamehameha Highway by about 9% and northbound traffic by almost 2% in the morning arrival hour. In the afternoon, the proportional increases would amount to about 6% northbound and 5% southbound.

TRAFFIC CONDITIONS AND POTENTIAL MITIGATION

Traffic conditions with the aircraft carrier undergoing special depot-level maintenance at the Pearl Harbor Naval Complex are summarized in Table 4-2 for the key intersections on the access routes into the base. The traffic conditions represent the worst case within the normal two-year operations cycle for an aircraft carrier.

Criteria Used to Identify Mitigation Needs

The impacts of the aircraft carrier on the roadway system are considered to warrant mitigation for the following types of impacts:

- 1. The additional traffic generated by the aircraft carrier would result in weekday peak hour traffic volumes that exceed the planned capacity of a roadway segment or a key intersection.
- 2. For an intersection with traffic signal controls, the additional traffic generated by the aircraft carrier would result in an increase of 0.02 or greater in the peak hour volume-to-capacity ratio of a key intersection that is projected to operate at near-capacity conditions (0.95 or greater).
- 3. For an intersection with STOP sign controls, the additional traffic generated by the aircraft carrier would worsen peak hour conditions to level of service F.

Kamehameha Highway Intersection with Makalapa Road/Radford Drive

The aircraft carrier traffic would significantly impact conditions at this intersection during the afternoon peak departure hour when the additional traffic would exacerbate the congested conditions anticipated without the carrier. With the carrier undergoing depot-level maintenance, the estimated traffic would exceed the intersection capacity by 17% versus traffic exceeding the capacity by about 5.4% without the carrier (Chapter 3). Without the maintenance personnel, the additional traffic associated with the carrier would increase the volume-to-capacity ratio to about 1.14. Traffic delays for all of the scenarios would reflect LOS F conditions. The additional carrier-related traffic, both with and without the depot-level maintenance traffic, would represent a significant worsening of conditions in the afternoon peak hour.

In the morning peak arrival hour, the additional traffic would result in total volumes approximating 89% of capacity. Delays would be at LOS E conditions, similar to those without the carrier.

To improve conditions, the Makalapa Road and Radford Drive approaches could each be widened by one lane. The additional lane would be used to provide an exclusive left-turn lane, with left-turns also permitted from one shared through/left-turn lane. The additional lanes would be sufficient to offset the impacts of the carrier traffic during the depot level maintenance period, with the afternoon peak hour traffic exceeding the intersection capacity by 1.5% and average delay improved to LOS E. With only the crew-related traffic, the afternoon peak hour traffic would be equivalent to 99.9% of capacity with the additional lanes.

Although the additional lanes on the Radford Drive and Makalapa Road approaches would mitigate the impacts of the carrier traffic, the intersection would operate at undesirable levels during the afternoon peak hour. To improve traffic conditions to acceptable levels, the north leg of Kamehameha Highway could be widened to provide a second (double) left-turn lane for traffic turning onto Radford Drive. This lane, combined with the additional lanes on the Makalapa and Radford approaches would improve the volume-to-capacity ratio to 0.932 in the afternoon peak hour with the depot-level maintenance traffic.

North Road Intersection with Makalapa Road

This intersection would operate at acceptable conditions with the increase in traffic, based on the planned installation of a traffic signal at this intersection.

North Road Intersection with Avenue A

The carrier would result in a large increase in the number of vehicles turning left from Avenue A during the afternoon departure hour, and a smaller increase in the number of vehicles turning left into Avenue A. With the depot-level maintenance traffic, the carrier would increase afternoon traffic from about 80% of capacity without the carrier, to about 5.2% over the intersection capacity with the carrier, resulting in a significant impact. Without the maintenance-related traffic, the crew vehicles would increase the afternoon peak hour traffic volumes to about 90% of capacity. The intersection would operate at acceptable levels in the morning with the planned installation of the traffic signal and addition of a second left-turn lane on Avenue A.

The widening of North Road to provide a second (double) left-turn lane for traffic turning from northbound North Road to Avenue A is the only minor intersection modification that would improve conditions. The additional left-turn lane would not fully offset the impacts of the crew and maintenance traffic, but it would result in acceptable conditions with the peak hour traffic equivalent to about 90.3% of capacity. With only the increased traffic from the crew, the traffic would approximate 84.3% of capacity.

Alternatively, if no improvements are made at this intersection, more of the carrier traffic would be likely to exit the area via Avenue D and South Avenue rather than Avenue A and Makalapa Gate. This route appears to have sufficient capacity to accommodate the additional number of vehicles necessary to alleviate the potential problems at Avenue A, even with no improvements beyond those currently planned for the intersection.

Nimitz Highway Intersection with North Road/South Avenue

As described in Chapter 2, this intersection is coned to restrict certain conflicting traffic movements during the peak entry and exit periods for base traffic. During the traffic surveys, the traffic cones were removed before the end of the peak hours for the carrier traffic, which are later than the existing peak hours. The service levels for the restricted movements, which are permitted during the last 15 to 20 minutes of the carrier peak hours, are projected to worsen with the addition of the carrier traffic.

With the addition of the aircraft carrier, it would be appropriate to extend the period during which these movements are restricted to 8:00 AM in the morning and to 5:30 PM in the afternoon. This would require those vehicles making these movements to use alternative routes to bypass this intersection. This would affect an estimated 78 and 40 vehicles during the morning and afternoon periods, respectively.

Nimitz and Makalapa Gates

During the depot-level maintenance period, the estimated traffic during the 6:30-7:30 AM period may exceed the capacity of the existing security checkpoint at Nimitz Gate by as much as 6%, with peak hour volumes at Makalapa Gate approximating 93% of the capacity at that security checkpoint. This would significantly impact conditions at Nimitz Gate, resulting in queuing of traffic and increased delays for traffic waiting to enter the base through the Nimitz checkpoint. The potential transportation management actions described below would reduce impacts at Nimitz Gate to less than significant levels.

Without the maintenance worker traffic, the increased crew traffic would result in total morning peak hour volumes approximating 88% of capacity at Makalapa Gate and 99% of capacity at Nimitz Gate.

Potential Transportation Management Actions

The potential congestion at the security gates and the key intersections could be reduced through one or more actions to reduce peak traffic demands. These include:

- 1. Use staggered start and end times for the crew and maintenance workers on the day shift to disperse the traffic over a longer period of time.
- 2. Emphasize the use of shuttle buses for transport of maintenance workers between their housing and the carrier.
- 3. Restrict use of cars by maintenance workers to those with 3 or more occupants.

			Table 4-1				
	ESTIMATED	>-	RAFFIC INCRE	ASES WITH A	EAR 2005 TRAFFIC INCREASES WITH AIRCRAFT CARRIER	IER	
Roadway Location	Direction	Moi	Morning Arrival Hour	ur	Afte	Afternoon Departure Hour	Hour
		Traffic	Increase in	Percent	Traffic	Increase in	Percent
		w/o Carrier	# of Vehicles	Increase	w/o Carrier	# of Vehicles	Increase
Kamehameha Hwy	Northbound	958	16	1.7	2.007	114	5.7
North of Makalapa Rd	Southbound	1,671	155	9.3	1,370	71	5.2
Radford Dr.	Eastbound	563	16	2.8	804	186	23.1
East of Kamehameha Hwy.	Westbound	720	165	22.9	719	70	6.7
Makalapa Gate	Eastbound	474	36	7.6	953	351	36.8
	Westbound	1,331	341	25.6	584	148	25.3
Nimitz Gate	Eastbound	356	41	11.5	1,319	682	51.7
	Westbound	1,856	692	37.3	441	189	42.9
North Rd.	Northbound	778	36	4.6	720	351	48.8
South of Makalapa Rd.	Southbound	872	341	39.1	654	148	22.6
North Rd.	Northbound	630	961	31.1	477	189	39.6
North of Nimitz Highway	Southbound	285	0	0.0	724	310	42.8
South Ave.	Eastbound	310	41	13.2	684	372	54.4
Southwest of Nimitz Hwy	Westbound	1,465	496	33.9	53	0	0.0
[327250]	-			e and		Wilhur Smith Ass	Wilhur Smith A secciates Annil 1000
						Wildul Dillill Ass	ociaics, April 199

,

	Tabl	Table 4-2					
2005 WEEK Tra	2005 WEEKDAY INTERSECTION CONDITIONS WITH THE AIRCRAFT CARRIER Traffic Impact Study for Aircraft Carrier Homeporting at Pearl Harbor	TIONS W arrier Ho	/ITH THE meporting	AIRCRA at Pearl H	FT CARR arbor	IER	
	Traffic	Morn	Morning Arrival Hour	Hour	Afterno	Afternoon Departure Hour	e Hour
Intersection	Control	A/C	ADPV	ros	A/C	ADPV	ros
Kamehameha Hwy/	Existing Lanes	0.891	42.0	Ε	1.170	*	ഥ
Makalapa Rd/Radford Dr.	Add 1 EB & 1 WB Lane	0:831	38.4	Ω	1.015	56.1	田
	Above & Add 2nd SB Left- Turn Lane	1	1	ı	0.932	46.2	凹
North Rd./Makalapa Rd.	Planned Signal	0.769	23.4	ပ	0.627	21.4	၁
North Rd./Avenue A	Planned Signals & Lanes	0.627	18.1	ပ	1.052	*	Ŧ
	Add NB 2nd Left-Turn Lane	ł	1	1	0.903	38.3	D
Nimitz Hwy/North Rd./ South Ave.	STOP Sign	l	341.7	ݖ	-	24.2	D
Notes: V/C = Ratio of traffic w ADPV = Average delay pe LOS = Level-of-Service. * = Not calculated.	Ratio of traffic volumes to theoretical capacity of intersection for traffic signals and security check locations. Average delay per vehicle, in seconds. Level-of-Service. Not calculated.	fintersecti	on for traffi	ic signals ar Wilbur Si	nd security o	signals and security check locations. Wilbur Smith Associates; April 1999	ns. 1999

PUBLIC TRANSIT USAGE

Use of TheBus public transit system was based on trip factors developed by the 1993 survey and study of the system.² For the Airport area, which includes the Honolulu International Airport and Pearl Harbor Naval Complex, that study estimated that the average use of the bus services for work trips amounted to 0.066 trip ends per employee. Half of these would be trips to the area and half would be trips leaving the area. Based on this rate, the estimated number of work trips on a peak day during the depot-level maintenance period would be as follows:

Crew	212	trip ends per day
Maintenance Workers	_86	
Total	298	

This would amount to about 130 persons arriving and 20 persons leaving via TheBus in the morning peak period, and the reverse number in the afternoon. If spread across the 11 present morning peak period bus trips, this would average approximately 12 riders per inbound bus and 3 riders per outbound bus. For the 8 afternoon bus trips, this would average 16 persons per outbound bus and 7 persons per inbound bus.

Field checks indicate that the buses typically have 20 to 40 passengers per bus in the peak travel direction at the perimeter of the base. Thus, there appears to be adequate total bus capacity at present to accommodate the additional usage. However, individual express bus or Route 3 bus trips could experience loads exceeding the available seats and require some standees.

² TheBus Comprehensive Operations Analysis, prepared for The Honolulu Public Transit Authority by Barton-Aschman Associates, Inc., August 1993.

Chapter 5 SUMMARY AND CONCLUSIONS

The U.S. Navy is considering the homeporting of an aircraft carrier at the Pearl Harbor Naval Complex. The carrier would be berthed at B2/3, with parking provided at existing lots and a new parking structure in the area near the berth. The carrier would have a crew of 3,217 personnel. For six months out of each two-year operating cycle, the carrier would undergo special depotlevel maintenance, with up to 1,300 Mainland specialists temporarily relocated to Oahu for various stages of the maintenance process.

EXISTING CONDITIONS

The key intersections near the Makalapa and Nimitz Gates, which would be used by traffic to/from the carrier, presently operate at acceptable conditions. However, this requires special manual traffic control and/or restriction of traffic movements at the intersections of North Road with Makalapa Road, Avenue A, and Nimitz Highway within the naval base.

2005 CONDITIONS WITHOUT THE CARRIER

Traffic conditions during the peak arrival and departure hours (for the carrier crew) are expected to be at acceptable levels for each of the key intersections with two exceptions:

- The afternoon traffic at the intersection of Kamehameha Highway and Makalapa Road/Radford Drive is projected to exceed capacity by about 5% and result in LOS F conditions.
- The morning traffic at the Nimitz Highway intersection with North Road/South Avenue would result in LOS F conditions for two minor movements, both of which are restricted during the earlier portion of the morning peak traffic period.

2005 CONDITIONS WITH THE CARRIER

The primary analyses is based on the depot-level maintenance period with 3,217 crew and 1,300 additional special maintenance personnel working on the vessel.

During normal weekday operations with the carrier in port, the crew and related activities would generate a total of about 850 vehicle trips to or from the carrier during both the morning and afternoon peak hours. During the depot-level maintenance period, the special maintenance workers would add 260 and 520 vehicle trips during the morning and afternoon peak hours, respectively.

During the special maintenance period, the carrier-related traffic would increase the peak direction traffic during the morning peak arrival hour, by 37.3% at Nimitz Gate, 25.6% at Makalapa Gate,

and 9.3% on Kamehameha Highway north of the Makalapa Road intersection. Without the special maintenance workers, the traffic increases with only the carrier's crew would approximate 28% at Nimitz Gate, 19% at Makalapa Gate, and 7% on Kamehameha Highway north of the Makalapa Road intersection. Traffic volumes along North Road, South Avenue, and Avenue A would experience proportional increases similar to those at Nimitz Gate. Increases during the afternoon peak hour would be slightly greater than those in the morning.

The traffic increases would have a significant impact on several of the intersections. These impacts could be mitigated through the addition of turn lanes, redirecting traffic, and actions to encourage ridesharing. The locations and the proposed mitigation measures for the carrier impacts are as follows:

Kamehameha Highway at Makalapa Road/Radford Drive

The carrier would worsen conditions in the afternoon peak hour when the traffic is projected to exceed the intersection capacity with or without the carrier. The recommended mitigation actions to reduce impacts to less than significant levels are:

- Widen the Makalapa Road approach by one lane.
- Widen the Radford Drive approach by one lane.

North Road at Avenue A

With the carrier, traffic during the depot-level maintenance period would exceed the capacity of this intersection during the afternoon peak departure hour. The recommended mitigation actions to reduce impacts to less than significant levels are:

- Add a second (double) left-turn lane to the northbound approach of North Road.
- Encourage exiting traffic to use Avenue D and South Avenue to exit the naval base during the afternoon peak period.

Nimitz Highway at North Road/South Avenue

The carrier traffic would extend the duration of the morning and afternoon peak traffic periods by about 15 to 30 minutes after the existing restrictions are lifted on the movements that conflict with the predominate entry (morning) and exit (afternoon) along Nimitz Highway. These movements would be delayed by and disrupt the flow of the carrier traffic to/from the base. However, these impacts would not be significant. Actions to improve conditions for these movements would include:

• Extend the use of traffic cones to restrict those movements that conflict with the peak traffic flow until 7:30 AM and until 5:00 PM.

Nimitz Gate

Traffic volumes during the morning arrival peak hour may exceed the capacity of the security checkpoint at this gate during the depot-level maintenance period.

The significant traffic impacts at Nimitz Gate could be mitigated, and traffic conditions at the other problem locations could be improved, by the following transportation management actions:

- Use staggered work shift hours, particularly for those on the day shift.
- Emphasize the use of shuttle buses for transport of maintenance workers.
- Limit issuance of vehicle passes for maintenance worker access to the base.

The aircraft carrier is estimated to increase public transit use by an estimated 150 passenger trips in both the morning and afternoon peak commute periods. The existing bus services should have sufficient capacity to accommodate this increase.

SECTION 6.10

HAWAII AIR QUALITY DATA

			NATIONAL S	STANDARDS b
D 11 ((A Tiese	Hawaii Standards ^{a,c}	Primary c,d	Secondary ^{c,e}
Pollutant	Averaging Time	Stunuarus	0.08 ppm	Same as primary
Ozone	8-hour	_	$(160 \mu g/m^3)$	ounic as primas
	1-hour	0.05 ppm	0.12 ppm	Same as primary
	1-nour	$(100 \mu g/m^3)$	$(235 \mu g/m^3)$	ounie as pre-
<u> </u>	8-hour	4.5 ppm	9 ppm	
Carbon	8-nour	(5 mg/m^3)	(10 mg/m^3)	
monoxide	1-hour	9 ppm	35 ppm	
	1-nour	(10 mg/m^3)	(40 mg/m^3)	
X ***	Ammal	0.037 pm	0.053 ppm	Same as primary
Nitrogen	Annual	$(70 \mu g/m^3)$	$(100 \mu g/m^3)$	ounic us primas
dioxide	1 hann	(70 µg/ III°)	(100 μg/ III)	
	1-hour	0.02	0.03 ppm	
Sulfur dioxide	Annual	0.03 ppm	$(80 \mu g/m^3)$	
	04.1	$(80 \mu g/m^3)$	0.14 ppm	_
	24-hour	0.14 ppm	$(365 \mu g/m^3)$	
	0.1	$(365 \mu g/m^3)$	(303 μg/ πι-)	0.5 ppm
	3-hour	0.5 ppm	_	$(1,300 \mu g/m^3)$
	A1	$(1,300 \mu g/m^3)$	50 μg/m ³	Same as primar
PM10	Annual	_	50 μg/ με	Same as primar
	(arithmetric			
	mean)			
	Annual			
	(geometric mean)		$150 \mu g/m^3$	Same as primar
D) (24-hour	_	15 μg/m ³	Same as primar
PM2.5	Annual	_	13 μg/ Πι	ounce us primar
	(arithmetic mean)		$65 \mu g/m^3$	Same as primar
	24-hour	60	05 μg/ μι	ounic as primar
Total Suspended	Annual	60	_	_
Particulate	(geometric mean)			
Matter (TSP)	Mariana Daile	150		
	Maximum Daily	150	_	
TT 1	Average	25 nnm		_
Hydrogen	1-hour	35 ppm	_	
Sulfide (H2S)	Calandar acceptan	$(0.05 \mu g/m^3)$	$1.5 \mu g/m^3$	Same as primar
Lead	Calendar quarter	$1.5 \mu\mathrm{g/m^3}$	1.5 μg/ πι	–
	30-day average			adad more than once a v
The ozo	is, other than for ozone an ne standard is attained who ations above the standard i rations are expressed first in	en the expected number on is equal to or less than one.	rverages, are not to be exce f days per calendar year wi	th maximum hourly aver

(c) Primary Standards: The levels of air quality necessary, with an adequate margin of safety to protect the public health. Each state must attain the primary standards no later than 3 years after that states implementation plan is approved by the EPA.

(d) Secondary Standards: The levels of air quality necessary to protect the public welfare from any known or anticipated adverse effects of a pollutant.

(e) Not to be exceeded more than twice in 7 consecutive days.

Table 6.10-2. 1996 DON Air Emissions of Permitted Sources Pearl Harbor Area and Ford Island

		PEA	rl Harbor A	AREA	
Activity	PM10	SO ₂	со	NO2	VOC
Pearl Harbor Naval Shipyard	0.6	0	0	0	2
Naval Station, Pearl Harbor	2.1	1.2	0	0.5	0
Fleet Industrial Supply Center, Pearl Harbor	0	0	0	0	14.8
Public Works Center, Pearl Harbor	0	162.6	0	15.4	0.3
Naval Submarine Base, Pearl Harbor	0	0	0	0	0.2
Total Tons/Year	2.7	163.8	0	15.9	17.3
			FORD ISLAND)	
Naval Station, Pearl Harbor	0	0.2	0.3	0.8	0
Public Works Center, Pearl Harbor	0	0.9	0	0.3	0
Total Tons/Year	0	1.1	0.3	1.1	0

Note: Naval Submarine Base, Pearl Harbor, has since been realigned into Naval Station, Pearl Harbor, and Naval Intermediate

Maintenance Facility, Pearl Harbor. Source: COMNAVBASE Pearl Harbor (1998).

Table 6.10-3. Peak Annual Construction Emissions for Homeporting 1 CVN at PHNSY.

	·		Tons per Year		
Year/Construction Activity	VOC	CO	NOx	SOx	PM10
Year 1					
Dredging	4.05	29.57	127.36	14.68	3.67
Controlled Industrial Facility	0.97	5.49	8.09	0.77	0.46
Annual Total	5.02	35.06	135.45	15.45	4.13
Year 2	Ø-39 (1)	1022 48	行副独立		
Controlled Industrial Facility	0.16	0.79	1.51	0.16	0.08
Parking Structure	0.16	0.79	1.51	0.16	0.08
Annual Total	0.32	1.58	3.02	0.32	0.16
Peak Year (#1)	5.02	35.06	135.45	15.45	4.13

Notes: (1) Dredging emissions based on a total dredging volume of 3,000,000 cubic yards (cy).

Table 6.10-4. Emission Source Data Associated with Hydraulic Dredging and Disposal Activities at Pearl Harbor - CVN Homeporting.

O TIT I TOTAL	· · · · · · · · · · · · · · · · · · ·							
Construction Activity/	Power	Load	#	Hourly	Fuel Use	Hours	Total Work	Total
Equipment Type	Rating (Hp)	Factor	Active	Hp-Hrs	(Gal/Hr)	Per Day	Days	Fuel Use
Hydraulic Dredging (1)								
Generator	1,500	0.80	2	2,400	122.4	24	150	440,640
Tender Vessel	400	0.40	1	160	8.0	2	150	2,400
Survey Vessel	100	0.40	1	40	2.0	2	150	600
Runabout Vessel	60	0.40	1	24	1.2	2	150	360
Ocean Disposal (2)								
Tug Boat	2,200	0.60	1	1,320	66.0	16.0	150	158,400

Notes: (1) Based on a daily/total dredging rate of 20,000/3,000,000 cy dry, or 32,000/4,800,000 cy bulked.

Table 6.10-5. Emission Factors for Dredging/Disposal Activities at Pearl Harbor - CVN Homeporting.

	Fuel	Fuel Pounds/1000 Gallons (1)						
Equipment Type	Type	VOC	CO	NOx	SO2	PM	PM10	Source
Stationary Engines >600 Hp	D	11.1	111.0	424.8	39.5	13.6	13.3	(1)
Power - Inboard	D	51.6	81.5	380.0	26.9	24.0	23.0	(2)
Power - Inboard	G	145.6	2676.0	101.0	6.4	1.6	1.6	(2)
Tug Boats	D	19.0	57.0	419.0	75.0	9.0	8.8	(3)

Notes: (1) AP-42, Table 3.4-1, Vol. I (EPA 1996).

- (2) Development of an Improved Inventory of Emissions from Pleasure Craft in California (ARB 1995).
- (3) Lloyd's Register of Shipping, London 1990, 1993, and 1995. From Acurex Env. Corp. 1996.

Table 6.10-6. Emissions for Hydraulic Dredging and Disposal Activities at Pearl Harbor - CVN Homeporting Project.

	Tons								
Construction Activity/Equipment Type	VOC	co	NOx	SO2	PM	PM10			
Hydraulic Dredging									
Generator	2.4	24.5	93.6	8.7	3.0	2.9			
Tender Vessel	0.1	0.1	0.5	0.0	0.0	0.0			
Survey Vessel	0.0	0.0	0.1	0.0	0.0	0.0			
Runabout Vessel	0.0	0.5	0.0	0.0	0.0	0.0			
Ocean Disposal									
Tugboat	1.5	4.5	33.2	5.9	0.7	0.7			
Total Emissions - Tons	4.1	29.6	127.4	14.7	3.7	3.7			

⁽²⁾ Based on a daily disposal rate of 32,000 cy (bulked), or eight barge loads. Total disposal volume of 4,800,000 cy (bulked). A round trip distance to the ocean disposal site would be 10 nautical miles and an average speed of 5 knots.

Table 6.10-7. ADT Composite Fleet Mix MOBILE 5 VOC Emission Factors

	5 MPH				25 MPH			Composite		
Year	Winter	Summer	% Time	Winter	Summer	% Time	Winter	Summer	% Time	Winter
2005	5.69	6.26	0.05	1.68	1.81	0.30	1.00	1.08	0.65	1.50

Table 6.10-8. ADT Composite Fleet Mix MOBILE 5 CO Emission Factors

5 MPH				25 MPH		55 MPH			Composite	
Year	Winter	Summer	% Time	Winter	Summer	% Time	Winter	Summer	% Time	Winter
2005	51.22	51.82	0.05	15.77	15.77	0.30	7.51	7.51	0.65	12.19

Table 6.10-9. ADT Composite Fleet Mix MOBILE 5 NOx Emission Factors

5 MPH				25 MPH			Composite			
Year	Winter	Summer	% Time	Winter	Summer	% Time	Winter	Summer	% Time	Winter
				1						
2005	2.63	2.63	0.05	2.02	2.02	0.30	2.59	2.59	0.65	2.42

Table 6.10-10. Worst-Case Vehicle Miles Travelled for the Pearl Harbor +1 CVN Alternative.

*	Week-day	Week-end	Annual	Miles/	Total Annual
Project Source	ADT	ADT(1)	ADT (2)	Trip	Miles
CVN Berthed	4,530	906	801,810	15.0	12,027,150
PIA Workers (3)	1,920	0	249,600	15.0	3,744,000
CVN Crew Dependents (4)	11,050	11,050	4,033,250	3.0	12,099,750
Onbase Motorpool Mileage (5)	NA	NA	NA	NA	150,000

- (1) Week-end ADT assumed to be 20 percent of week-day estimates.
- (2) Maximum annual berthing of 229 days for a CVN would occur in association with a PIA cycle.
- (3) PIA worker commutes would occur for 6 months of a worst-case year.
- (4) CVN crew dependent trips would occur off-base.
- (5) (USN Public Works, NAVSTA Everett 1998).

Table 6.10-11. Worst-Case Annual Vehicle Emissions for the Pearl Harbor +1 CVN Alternative.

Tons per Year	46.3	377.1	74.7					
+1 CVN/2005	92,614	754,122	149,423					
Project Scenario/Year	VOC	CO	NOx					
	Pounds per Year							

Table 6.10-12. Operational Emissions for One CVN at Pearl Harbor Naval Shipyard.

1 CVN						Emis	sions (Pou	Emissions (Pounds per Year)	ar)					TOTAL	AL	TOTAL
	Vessel	Abr		NG	Em Gens	Janitorial	Misc.	Paints &	Parts	Propane	Fuel			EMISSIONS	SNOI	PHSY+FSC
	Power Plant Blasting OWPF Boilers	Blasting	OWPF	Boilers	Onboard	Supplies	200	Solvents	Cleaner	Equip.	Tanks	GSE	Vehicles	Lb/Yr	Ton/Yr	(Ton/Yr)
XON					16,320					4		244	149,423	165,991	83.0	83.02
SOX					1,080					0		16		1,096	0.5	0.55
8					3,540					-		53	754,122	757,716	378.9	378.86
PM		5			1,160					0		15	1,235	2,415	1.2	1.21
voc			127		099	1,421	1,264	5,282		0	5,021	23	92,614	106,412	53.2	55.97
Mater (4)	Alatan (4) Comissions based on Toble E 40 9 Volume E	od on Toble	1000	Jump 5												-

Notes: (1) Emissions based on Table 5.10-2, Volume 5.

(2) Vehicular emissions from Table 6.10-5, Voume 6, section 6.10.

Table 6.10-13. Emissions from Operation of + 1 CVN at FSC Equivalent at Pearl Harbor Naval Shipyard.

Abr NG Blasting OWPF Boile	-, 0,	Emissions (Pounds per Year)				TOTAL	
	Janitorial Supplies					IOIAL	
* *	Supplies		Parts	Propane	Fuel	EMISSIONS	
4		VOC Solvents	Solvents Cleaner	Equip	Tanks	Lb/Yr Ton/Yr	Ton/Yr
						49	0.02
						0	00.0
01 01						10	0.01
9 Wd						9	0.00
VOC 3	474		496		4,549	5,522	2.76

Hawaii Air Quality Data 1991-1993

State of Hawaii Department of Health Clean Air Branch

TABLE III.A

NUMBER OF TIMES FEDERAL AND STATE AIR QUALITY STANDARDS EXCEEDED
(January 1991 to December 1993)

	Dept. of Health, Oahu	Pearl City, Oahu	Liliha, Oahu	Waimanalo, Oahu	Waikiki, Oahu	Makaiwa, Oshu	West Beach, Oahu	Kapolei, Oahu
CARBON MONOXIDE (1-hour standard) 1. No. of samples 2. Federal standard exceeded 3. State standard exceeded	962 0 2				1056 0 0		805 0 2	721 0
PARTICULATE MATTER (24-hour standard) 1. No. of samples 2. Federal standard exceeded 3. State standard exceeded	7 6		149 0					
SULFUR OXIDES (24-hour standard) 1. No. of samples 2. Federal standard exceeded 3. State standard exceeded	0 0 707					000	825 0 0	. 000
NITROGEN DIOXIDE* (24-hour standard) 1. No. of samples 2. Federal standard exceeded 3. State standard exceeded							215	131
PM-10 (24-hour standard) 1. No. of samples 2. Federal standard exceeded	51	147	131	142			138	141
LEAD (24-hour standard) 1. No. of samples 2. Federal standard exceeded 3. State standard exceed	145 0 0		148 0 0					

*A.q.S. for Nitrogen Dioxide is 70 ug/m³ (annual mean, arithmetic).

TABLE III.B

NUMBER OF TIMES FEDERAL AND STATE AIR QUALITY STANDARDS EXCEEDED (January 1991 to December 1993)

	Sand Island, Oahu	Lihue, Kauai	Lahaina, Maui	Kihei, Maui
CARBON MONOXIDE (1-hour standard) 1. No. of samples 2. Federal standard exceeded 3. State standard exceeded		. , ,		
PARTICULATE MATTER (24-hour standard) 1. No. of samples 2. Federal standard exceeded 3. State standard exceeded				
SULFUR OXIDES (24-hour standard) 1. No. of samples 2. Federal standard exceeded 3. State standard exceeded				6 0 0
OZONE (1-hour standard) 1. No. of samples 2. Federal standard exceeded 3. State standard exceeded	900 0 16			
PM-10 (24-hour standard) 1. No. of samples 2. Federal standard exceeded		129 0	138 0	57 0
<u>LEAD</u> (24-hour standard) 1. No. of samples 2. Federal standard exceeded 3. State standard exceed	. , .			

SECTION 6.13

PEARL HARBOR HISTORIC INVENTORY

SECTION 6.13 PEARL HARBOR HISTORIC INVENTORY

Source: Historic Preservation Plan (Feb 1978). U.S. Naval Base Pearl Harbor (DON NAVFACENGCOM)

Figure 6.13-2. Historic Properties at the Proposed Project Area PHNSY (Page 1 of 2)

Figure 6.13-2. Historic Properties at the Proposed Project Area PHNSY (Page 2 of 2)

		-
REMARKS	ADMIN BLDG ELEC (AUTO) SHOP (ACHP 3/31/80) ELEC SHOP (ACHP 3/31/80) FOUNDRY WOODWORKING SHOP BOAT SHOP PATTERN SHOP SHIPFITTING/WELDING SHOP SUPPLY	ELECTRONIC WEAPONS SHOP OUTSIDE MACHINE SHOP CRUSHER/PULVERIZER HAMMERHEAD CRANE (ACHF 2/8/79) MARINE RAILWAY *3 (12/11/81) DRY DOCK 1 *1
LTR TO NPS		
PHOTOS TAKEN		
FACILITY STATUS	* Demolished	DEWOLISHED
LTR TO ACHP.		
LTR TO SHPO		
PROJ PROJ NO. ACTION		
PROJ NO.		
SHPO	8/27/81	12/30/60 12/30/80 12/30/80 DEFERRED 12/11/81
ORIG. CAT	~	888 -
CURRENT USE	KULT TRNG FAC MULT SANE WOODWRKG SANE MULT	MULT Koundry Sake
ACT.	SRYD SRYD SRYD SRYD SRYD SRYD SRYD SRYD	SHYD SHYD SHYD SHYD SHYD
CONSTR. DATE	1913 1911 1913 1916 1916 1916 1941	1943 1943 1942 1935 1943
FACILITY NO.	1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	214 215 1170 1307 5777

CATEGORY 2

REMARKS	66 1923 SHYD WHSE DEFERRED 69 1923 SHYD KULT DEFERRED 71 1924 SHYD KULT DEFERRED 178 1942 SHYD PLNG OFFC 178 1942 SHYD PLNG OFFC
REI	ST
LTR TO NPS	1 1 1 1 1 1 1 1
PHOTOS TAKEN	1 1 2 2 1 1 1 1
FACILITY	DEMOLISHED
LTR TO ACEP.	
LTR TO SHPO	
PROJ ACTION	
PROJ NO.	
SHPO	DEFERRED DEFERRED DEFERRED
ORIG. CAT	
CURRENT USE	WHSE KULT KULT PLNG OFFC
ACT.	SHYD SHYD SHYD SHYD
CONSTR. DATE	1923 1923 1924 1942
FACILITY NO.	66 69 71 178

Ţ

PEARL HARBOR HISTORIC INVENTORY NAVAL SHIPYARD

REMARKS	STORAGE MED CLINIC/SAFETY OFFICE STORAGE BLDG I ANNEXES BLDG I ANNEXE BLDG I ANNEXES BLDG I ANNEXES BLDG I ANNEXES BLDG I ANNEXES BLDG I ANNEXES BLDG I ANNEXES BLDG I ANNEXES BLDG I ANNEXES BLDG I ANNEXES BLDG I ANNEXES BLDG I ANNEXES BLDG I ANNEXES BLDG I ANNE
LTR TO KPS	
PHOTOS TAKEN	2/90
FACILITY	Dec .
LTR TO ACHP	
LTR TO SHPO	
PROJ	
PROJ NO.	
SHPO	10/6/80 12/30/80 12/30/80 12/30/80 12/30/80 12/30/80 12/30/80 12/30/80
ORIG.	0 0000000 0 00 0
CURRENT USE	SAME SHOPS WULT WULT WULT WULT WULT WULT WULT WULT
ACT.	SHYD SHYD SHYD SHYD SHYD SHYD SHYD SHYD
CONSTR. DATE	1938 1944 1944 1941 1941 1941 1943 1943 1943
FACILITY NO.	114 1554 1554 16 10 10 11 11 14 18 34 34 34 34 34 36 67 67 81 81 81 81 82 81 81 81 81 81 81 81 81 81 81 81 81 81

REMARKS	REPAIR PIER/WHARF REPAIR PIER/WHARF REPAIR PIER/WHARF REPAIR PIER/WHARF REPAIR PIER/WHARF REPAIR PIER/WHARF REPAIR PIER/WHARF REPAIR PIER/WHARF REPAIR PIER/WHARF REPAIR PIER/WHARF REPAIR WHARF REPAIR
LTR TO NPS	D 5/18/90 D 5/18/90 D 5/18/90 D 5/18/90
PHOTOS TAKEN	1/80 1/90 1/90 1/90
FACILITY	
LTR TO ACHP.	
LTR TO SHPO	
PROJ ACTION	I KPROVE I KPROVE I KPROVE I KPROVE I KPROVE
PROJ NO.	P-441B 441B P-441B
SHPO	12/30/80 12/11/81 12/11/81
ORIG.	
CURRENT USE	SAME SAME SAME SAME SAME SAME SAME SAME
ACT.	SHTO SHTO SHTO SHTO SHTO SHTO SHTO SHTO
CONSTR. DATE	19936 19936 19936 19936 19936 19936 19944 19942 19942 19942 19942 19942 19942 19942 19943
FACILITY NO.	B11 B13 B14 B15 B16 B16 B17 B19 B20 GD3 GD-1 GD-1 GD-1 GD-2 GD-2 GD-2 S1059 S1133 S1133 S1133 S1133 S1181 S17 S780 S780 S780 S780 S780 S780

REMARKS	SUB, SALVAGE GEAR STORE HOUSE STORE HOUSE STORAGE *7 SHIPFITTING & BOILER SHOP FORGE & PROPELLER SHOP FLEC POWER PLANT STORAGE LATRINE STORAGE LATRINE STORAGE & GARAGE *6 KUNITIONS STORAGE & DINING RMS LATRINE STORAGE & BINING RMS LATRINE STORAGE & SUPPLY ADMIN BLDG TRANS, REPAIR SHOP SUFPLY INSIDE/OUTSIDE MACH SHOP CENTRAL TOOL SHOP CENTRAL TOOL SHOP LATRINE FLAM STOREHOUSE WELDING SCHOOL STORAGE *7 STORAGE *7	STORAGE
LTR TO NPS		
PHOTOS TAKEN		
FACILITY	PENDING	
LTR TO ACHP.		
LTR TO SHPO		
PROJ	ROOF REP	
PROJ NO.	 	
SHPO	12/30/80 12/30/80 12/30/80 12/30/80 12/30/80 12/30/80 12/30/80 12/30/80 12/30/80	12/30/80
ORIG.		7
CURRENT USE	STGE SAKE SAKE SAKE KULT KULT KULT SAKE SAKE SAKE SAKE SAKE SAKE SAKE SAKE	SHOPS
ACT.	SHYD SHYD SHYD SHYD SHYD SHYD SHYD SHYD	SHYD
CONSTR. DATE	1943 1944 1944 1913 1913 1917 1918 1919 1919 1919 1919 1943 1925 1925 1925 1925 1925 1925	1933
FACILITY NO.	715-7154 742 742 742 742 742 742 742 742 742 742	129

8	LATRINES *9 LATRINES *9 RIGGING GEAR STOREHOUSE READ OR LATRINE STORAGE & GARAGE *6 LUMBER WILL RIGGER'S & LABORERS SHOP STORAGE *5 GEN WHSE GEN WHSE CAFETERIA DRYDOCK 2 *2 LATRINE STORAGE REPAIR HOUSE QUALITY ASSURANCE OFFICE FIRE STATION DISPENSARY LATRINE *10 CAFETERIA *10 RADIATION HEALTH LAB WARINE RAILWAY *3 FOUNDRY STORAGE BLDG PIPE SHOP ANNEX DRY DOCK MAINTENANCE WELDING ANALYSIS SHOP (FORMER CAT 2 SHPO 10/6 XY-RAY LAB ADMIN STGE ADMIN STGE ADMIN STGE ADMIN STGE ADMIN STGE	TORES
REMARKS	LATRINES ** LATRINES ** RIGGING GEL READ OR LA STORAGE ** LUNEER MILL RIGGER'S & STORAGE ** GEN WHSE GEN WHSE CAFETERIA DRYDOCK 2 ** LATRINE STORAGE ** LATRINE CAFETERIA DISPENSARY LATRINE ** LATRINE ** CAFETERIA RADIATION WARINE RAII FOUNDRY ST PIPE SHOP DRY DOCK M WELDING AN 'Y-RAY LAB ADMIN RPIO OFFICI	5000
LTR TO NPS		
PHOTOS TAKEN		
FACILITY		
LTR TO ACHP		
LTR TO SHPO		
PROJ ACTION		
PROJ NO.		
SHP0 RECAT	12/30/80 12/30/80 12/30/80 12/30/80 12/30/80 12/30/80	
ORIG. CAT	99 - 9999	
CURRENT USE	SAKE SAKE SAKE SAKE SAKE SAKE SAKE SAKE	ľ
ACT.	SHYD SHYD SHYD SHYD SHYD SHYD SHYD SHYD	
CONSTR. DATE	1938 1935 1937 1940 1942 1942 1941 1941 1942 1942 1943 1943 1944 1943 1944 1944 1945 1944 1945 1944 1945 1944 1945 1946	
FACILITY NO.	134 135 135 141 153 154 157 157 157 157 157 157 157 157 157 157	,

REMARKS	LATRINE SHIPYARD REFAIR SHOP WELDING TRAINING WELDING TRAINING WAREHOUSE WAREHOUSE WAREHOUSE WAREHOUSE CHAIN STOREHOUSE CHAIN FALL TEST/REPAIR STORAGE *11	STORAGE BRIDGE CRANE WAY
LTR TO NPS	-	
PHOTOS TAKEN	,. .	
FACILITY		
LTR TO ACHP		
LTR TO SHPO		
PROJ ACTION		
PROJ NO.		
SHPO	10/6/80 12/30/80 12/30/80 12/30/80	12/30/80
ORIG. CAT	~ ~~~	-
CURRENT USE	SAME SAME SAME SAME KULT KULT SAME SAME	SAME
ACT.	SHYD SHYD SHYD SHYD SHYD SHYD SHYD SHYD	SHYD
· ·	1941 1942 1942 1942 1945 1945 1943 1943 1943	1946
FACILITY RO.	387 381 391 393 394 398 536 823 824 825	1236

REMARKS	BIXE SHELTER BOWB SHELTER TANK TANK TANK TANK TANK TANK TANK BOWB SHELTER BOWB SHEL
LTR TO NPS	
PHOTOS TAKEN	
FACILITY	
LTR TO ACHP	
LTR TO SHPO	•
PROJ ACTION	•
PROJ NO.	
SHPO	.1
ORIG. CAT	~ ~
CURRENT USE	FALLOUT S SAME SAME
ACT.	SHYD SHYD SHYD SHYD SHYD SHYD SHYD SHYD
CONSTR. DATE	1994 1994 1994 1994 1994 1994 1994 1994
FACILITY NO.	\$846 \$1013 \$1014 \$1062 \$1063 \$1064 \$1065 \$1066 \$1116 \$1119 \$1119 \$1119 \$1119 \$1119 \$1110 \$1111 \$1115 \$115 \$115 \$115 \$115 \$115 \$115 \$115 \$115 \$115 \$115 \$115 \$115 \$115 \$1

REMARKS	REPAIR WHARF BUS STOP PASSENGER PLATFORM TRANSDUCER TEST SITE TRANSDUCER TEST SITE CARPORT NUCLEAR WASTE FAC OUTBOUSE SAND BLAST TRAKSDUCER TANK DISTILLED WATER TANK BATTERY WASTEOUSE ELECTROLYTER WATER TANK ACID TOPPING TANK ACID TOPPING TANK ACID TOPPING TANK ACID TOPPING TANK ACID TOPPING TANK ACID TOPPING TANK ACID TOPPING TANK ACID TOPPING TANK ACID TOPPING TANK ACID TOPPING TANK ACID TOPPING TANK SANCK SANCK SHOP
LTR TO NPS	
PH0T0S TAKEN	
FACILITY STATUS	
LTR TO ACRP.	
LTR TO SHPO	
PROJ ACTION	
PROJ NO.	
SHPO	.4
ORIG.	
CURRENT USE	SAME SAME SAME SAME SAME SAME SAME SAME
ACT.	SHYD SHYD SHYD SHYD SHYD SHYD SHYD SHYD
CONSTR. DATE	1966 1953 1957 1960 1960 1963 1970 1970 1969 1969 1969 1969 1973 1973 1973
FACILITY NO.	B2 9A 1175 1176 1176 1234 1254 1274 1201 1361 1375 1375 1375 1375 1375 1375 1375 1409