# William Stallings Data and Computer Communications

Κεφάλαιο 4 Μέσα μετάδοσης

#### Επισκόπηση

- Το μέσο μετάδοσης είναι το φυσικό μονοπάτι ανάμεσα στον μεταδότη και τον αποδέκτη
- Τα μέσα μετάδοσης διακρίνονται σε δύο κατηγορίες: κατευθυνόμενα και μη κατευθυνόμενα (ασύρματα)
  - Παραδείγματα κατευθυνόμενων μέσων μετάδοσης:
     συνεστραμμένο ζεύγος, χάλκινο ομοαξονικό καλώδιο,
     οπτική ίνα
  - Παραδείγματα μη κατευθυνόμενων μέσων μετάδοσης: ατμόσφαιρα, διαστημικό κενό

#### Επισκόπηση

- Σε κάθε περίπτωση το μεταδιδόμενο σήμα έχει τη μορφή ηλεκτρομαγνητικού κύματος
- Τα χαρακτηριστικά και η ποιότητα της μετάδοσης καθορίζονται από τα χαρακτηριστικά του μέσου μετάδοσης και του σήματος
  - Στα κατευθυνόμενα μέσα τα χαρακτηριστικά του μέσου μετάδοσης είναι πιο σημαντικά
    - Π.χ STP επιτρέπει μεγαλύτερο ρυθμό από UTP
  - ενώ στα μη κατευθυνόμενα μέσα είναι πιο σημαντικά τα χαρακτηριστικά του σήματος
    - Π.χ. σε radio υψηλές συχνότητες επιτρέπουν κατευθυντικότητα

#### Παράγοντες σχεδιασμού

- Ο ρυθμός μετάδοσης και η απόσταση επικοινωνίας καθορίζονται από τα ακόλουθα χαρακτηριστικά του μέσου μετάδοσης:
  - Εὐρος Ζώνης (Bandwidth)
    - Μεγαλύτερο εύρος ζώνης->μεγαλύτερος ρυθμός μετάδοσης
      - Γιατί; (Το έχουμε δει)
  - Ατέλειες Μετάδοσης (Transmission Impairments)
    - Εξασθένηση TP> Εξασθένηση coaxial>εξασθένηση fiber
  - Παρεμβολές (Interference)
    - Προκαλούνται από ομόσυχνες εκπομπές
      - Σε μη κατευθυνόμενα μέσα απο γειτονικές κεραίες
      - Σε κατευθυνόμενα από παρακείμενα καλώδια
  - Αριθμός Αποδεκτών
    - Κάθε συσκευή διασύνδεσης δέκτη με το μέσο εισάγει εξασθένηση

#### Το ηλεκτρομαγνητικό φάσμα



ELF = Extremely low frequency

= Voice frequency

LF

VLF = Very low frequency = Low frequency

MF = Medium frequency HF

= High frequency VHF = Very high frequency UHF = Ultrahigh frequency

SHF = Superhigh frequency

EHF = Extremely high frequency

#### Κατευθυνόμενα μέσα μετάδοσης

• Συνεστραμμένο ζεύγος καλωδίων

• Ομοαξονικό καλώδιο

Оптікή iva

#### Συνεστραμμένο ζεύγος καλωδίων

- Στην κατηγορία αυτή ανήκει το γνωστό τηλεφωνικό καλώδιο
- Αποτελείται από δύο χάλκινα καλώδια που είναι συνεστραμμένα μαζί για να μειωθεί η επίδραση των παρεμβολών συνακρόασης
  - Ένα καλώδιο μεταφέρει το σήμα (τάση)
  - Το δεύτερο είναι σε τάση αναφοράς (γείωση)
  - Ο δέκτης λαμβάνει το σήμα μετρώντας τη διαφορά τάσης
- Είναι το παλιότερο, φθηνότερο και συχνότερα χρησιμοποιούμενο μέσο μετάδοσης



### Συνεστραμμένο ζεύγος καλωδίων-χαρακτηριστικά

- Τυπικά, ένα πλήθος ΤΡ συσκευάζεται στο ίδιο «καλώδιο» με κοινό προστατευτικό περίβλημα
- Η συστροφή μειώνει τις παρεμβολές μεταξύ ζευγών
- Γειτονικά ζεύγη έχουν συνήθως
   διαφορετικές αποστάσεις
   συστροφής για μείωση παρεμβολών



## Συνεστραμμένο ζεύγος καλωδίων-χαρακτηριστικά

- Επηρεάζεται σημαντικά από τον ηλεκτρομαγνητικό θόρυβο και τις παρεμβολές
- Μπορεί να μεταφέρει αναλογικό σήμα εύρους ζώνης μέχρι 1 MHz ή ψηφιακό σήμα της τάξης των λίγων Mbps σε μέση απόσταση
  - -Σε μικρές αποστάσεις (LANs) από 10 Mbps-1Gbps.
    - Ethernet, Fast Ethernet, Gigabit Ethernet.
- Όταν μεταφέρει αναλογικό σήμα χρειάζεται ενισχυτή κάθε 5-6 km,
  - ενώ όταν μεταφέρει ψηφιακό σήμα χρειάζεται repeater κάθε 2-3 km

#### Συνεστραμμένο ζεύγος καλωδίων-χαρακτηριστικά

- Είναι συνήθως ήδη εγκατεστημένο (στα πλαίσια του αναλογικού τηλεφωνικού δικτύου)
  - Συνδέει την τηλεφωνική συσκευή με το κέντρο του παρόχου
  - Μπορεί να χρησιμοποιηθεί και για μεταφορά data (modems, DSL)
- Χρησιμοποιείται σε LANs υψηλής ταχύτητας (10-100 Mbps)
  - Σε εφαρμογές μεγάλων αποστάσεων ο ρυθμός μετάδοσης περιορίζεται στα 4 Mbps
- Το twisted-pair είναι φθηνότερο από τα υπόλοιπα κατευθυνόμενα μέσα μετάδοσης

#### Συνεστραμμένο ζεύγος καλωδίων-χαρακτηριστικά

- Ωστόσο τα τεχνικά χαρακτηριστικά του είναι υποδεέστερα των υπολοίπων μέσων μετάδοσης
  - γι'αυτό ο επιτεύξιμος ρυθμός μετάδοσης είναι μικρός και η μέγιστη απόσταση σχετικά περιορισμένη
- Αιτίες:
  - Η εξασθένηση μεταβάλλεται σημαντικά για αυξανόμενη συχνότητα

• Με αποτέλεσμα να περιοριζόμαστε στο εύρος συχνοτήτων που μπορούμε να

χρησιμοποιήσουμε

Το μέσο μετάδοσης επηρρεάζεται από

- Ηλεκτρομαγνητικό θόρυβο
- Κρουστικό θόρυβο



#### Θωρακισμένο και μη θωρακισμένο ΤΡ

- Μη θωρακισμένο ζεύγος (UTP)
  - Κοινό τηλεφωνικό καλώδιο
  - Σε πληθώρα σε όλα σχεδόν τα κτίρια
  - —Η φθηνότερη επιλογή
  - Εύκολη εγκατάσταση
  - Επιρρεπές σε ηλεκτρομαγνητικές παρεμβολές
- Θωρακισμένο ζεύγος (STP)
  - Μεταλικό κάλυμα το οποίο ελαττώνει τις παρεμβολές
  - —Πιο ακριβή επιλογή
  - —Δύσκολος χειρισμός (μεγάλη διατομή, βάρος)

#### Θωρακισμένο και μη θωρακισμένο ΤΡ









#### Κατηγορίες UTP

- Cat 3
  - Το γνωστό τηλεφωνικό καλώδιο
  - συχνά αποκαλείται voice-grade twisted pair
  - Bandwidth ἑως 16 MHz
  - Έχει 7.5-10cm twist length και μπορεί να υποστηρίξει ρυθμούς μετάδοσης μέχρι 16 Mbps
- Cat 4
  - Bandwidth ἑως 20 MHz
- Cat 5
  - Bandwidth ἑως 100 MHz
  - Καλωδίωση data-πλέον εγκαθίσταται συχνά σε καινούρια κτίρια
  - Η πυκνότερη περιέλιξη (0.6-0.85 cm twist length) αυξάνει το κόστος του,
    - αλλά ταυτόχρονα αναβαθμίζει τα τεχνικά χαρακτηριστικά του και το καθιστά ικανό να υποστηρίξει μέχρι 100 Mbps με παρόμοιο crosstalk
- Cat 5E (Βελτιωμένο) –βλ. πίνακες
- Cat 6
- Cat 7

| <b>Συγκριση θωρακισ</b>   | μενου και μη            |
|---------------------------|-------------------------|
| συνεστραμμένου ζε         | :ύγους                  |
| Εξασθένηση (dB per 100 m) | Near-end Crosstalk (dB) |

150-ohm

STP

**Category 3** 

**UTP** 

41

32

23

150-ohm

**STP** 

58

58

50.4

47.5

38.5

31.3

**Category 5** 

**UTP** 

62

53

44

41

32

| Σύν                    | γκριση θωρακισ            | μένου και μη            |  |  |  |
|------------------------|---------------------------|-------------------------|--|--|--|
| συνεστραμμένου ζεύγους |                           |                         |  |  |  |
|                        | Εξασθένηση (dB per 100 m) | Near-end Crosstalk (dB) |  |  |  |

| 20 | γκριση θωρακισ            | μενου και μη            |
|----|---------------------------|-------------------------|
| σu | νεστραμμένου ζε           | :ύγους                  |
|    | Εξασθένηση (dB per 100 m) | Near-end Crosstalk (dB) |

1.1

2.2

4.4

6.2

12.3

21.4

Category 5

**UTP** 

2.0

4.1

8.2

10.4

22.0

Συχνότητα

(MHz)

1

4

16

25

100

300

**Category 3** 

**UTP** 

2.6

5.6

13.1

| Σύγ                    | γκριση θωρακισ  | μένου και μη |  |  |  |
|------------------------|-----------------|--------------|--|--|--|
| συνεστραμμένου ζεύγους |                 |              |  |  |  |
|                        | ET 0' (ID 400 ) |              |  |  |  |

| Ζυγκριση σωρακισμένου και μη                       |
|----------------------------------------------------|
| συνεστραμμένου ζεύγους                             |
| ECarolisman (dD new 100 m)  New and Creatally (dD) |

#### Νέες κατηγορίες ΤΡ

|                                  | Category<br>3 Class C | Category<br>5 Class<br>D | Category<br>5E | Category<br>6 Class E | Category<br>7 Class F |
|----------------------------------|-----------------------|--------------------------|----------------|-----------------------|-----------------------|
| Εύρος<br>ζώνης                   | 16 MHz                | 100 MHz                  | 100 MHz        | 200 MHz               | 600 MHz               |
| Τύπος<br>καλωδίο<br>υ            | UTP                   | UTP/FTP                  | UTP/FTP        | UTP/FTP               | SSTP                  |
| Κόστος<br>σύνδεσης<br>(Cat 5 =1) | 0.7                   | 1                        | 1.2            | 1.5                   | 2.2                   |



FTP: Aluminum Foil Shield

#### Ομοαξονικό καλώδιο

- Μπορεί να λειτουργήσει σε μεγαλύτερο συχνοτικό εύρος
  - Άρα να δώσει υψηλότερες ταχύτητες από το ΤΡ
- Όπως και το twisted pair, αποτελείται από δύο αγωγούς, μόνο που η διάταξή τους είναι εντελώς διαφορετική
- Αποτελείται από έναν εσωτερικό αγωγό που περιβάλλεται από έναν εξωτερικό αγωγό κυλινδρικής μορφής
- Μεταξύ των δύο αγωγών παρεμβάλεται μονωτής, ενώ ο εξωτερικός αγωγός περιβάλλεται από πλαστικό κάλυμμα ή θωράκιση
- Μπορεί να χρησιμοποιηθεί σε μεγαλύτερες αποστάσεις από το TP
  - Και να υποστηρίξει περισσότερους σταθμούς στο ίδιο μέσο μετάδοσης

#### Ομοαξονικό καλώδιο



To connect coaxial cable to device, we need BNC (Bayonet Neill-Concelman) connector

#### BNC connectors



#### Εφαρμογές ομοαξονικού καλωδίου

- Το ομοαξονικό καλώδιο είναι το μέσο μετάδοσης με τις περισσότερες εφαρμογές
- Διανομή τηλεοπτικού σήματος
  - Κεραία πρός δέκτη TV
  - Καλωδιακή TV
    - Μπορεί να μεταφέρει αρκετές δεκάδες τηλεοπτικά σήματα σε αποστάσεις της τάξης των δεκάδων χιλιομέτρων
- Τηλεφωνικές συνδέσης μεγάλης απόστασης
  - Με τη χρήση πολύπλεξης συχνότητας (FDM) μπορεί να μεταφέρει έως 10,000 τηλεφωνικές κλήσεις ταυτόχρονα
  - Αντικαθίσταται σταδιακά από οπτική ίνα, δορυφόρους, microwave links
- Συνδέσεις Ι/Ο ψηφιακών συσκευών σε μικρές αποστάσεις
- Τοπικά δίκτυα

#### Ομοαξονικό καλώδιο – χαρακτηριστικά μετάδοσης

- Το ομοαξονικό καλώδιο μπορεί να μεταφέρει τόσο αναλογικά όσο και ψηφιακά σήματα
  - —Πιο αποδοτικα από ΤΡ



- Λόγω της θωράκισής του και της ομοαξονικής συστικό δομής του είναι πιο ανθεκτικό από το twisted pair, στις παρεμβολές και στο crosstalk
- Οι κυριότεροι περιορισμοί στη χρήση του τίθενται από την εξασθένηση, το θερμικό θόρυβο και τον intermodulation noise (όταν εφαρμόζεται FDM)

#### Ομοαξονικό καλώδιο – χαρακτηριστικά μετάδοσης

- Αναλογική μετάδοση
  - -Ενισχυτές κάθε μερικά km
  - -- Μικρότερη εμβέλεια για χρήση μεγαλύτερους εύρους συχνοτήτων
    - Το παραπάνω εύρος εκτείνεται ως 500MHz
- Ψηφιακή μετάδοση
  - -Επαναλήπτες κάθε 1km
    - Η μικρότερη απόσταση για υψηλότερους ρυθμούς δεδομένων

#### Οπτική ίνα-αρχή λειτουργίας

Από τι υλικό;

Sender

- Πιο αποδοτικές (<BER) ινες από καθαρο λιωμενο πυριτιο
  - Δυσκολο να κατασκευαστουν
- Ινες γυαλιου: πιο οικονομικες, με καλή απόδοση
- Πλαστικές ίνες: ικανοποιητική απόδοση για μικρές αποστάσεις



Cladding

Core

Cladding

Receiver

#### Οπτική ίνα-αρχή λειτουργίας



- (b) Graded-index multimode
- Input pulse
  Output pulse
  - (c) Single mode

 Μειωμένη διάμετρος πυρήνα σε σχέση με step-index

Διαφορετικός δείκτης διαθλάσης πυρήνα

Υψηλοτερος στο κεντρο

Επιτρεπει διέλευση μονο μιας ακτινας

Optical Fiber Transmission Modes

- Τεράστιο εύρος ζώνης
  - Σε μία μόνο οπτική ίνα φτάνει σε μερικές δεκάδες
     THz
  - το εκμεταλλευόμαστε χρησιμοποιώντας κυρίως τις δυο περιοχές χαμηλής εξασθένησης οπτικού σήματος των 200 nm περίπου, η πρώτη στα 1310 nm και η δεύτερη στα 1550 nm



Οι δυο βασικές περιοχές χαμηλής εξασθένησης (απώλειας) οπτικού σήματος μιας οπτικής ίνας

#### • Τεράστιο εύρος ζώνης Πχ

- στη μπάντα του 1 μΜ κάθε μονοτροπικής οπτικής ίνας, το διαθέσιμο εύρος ζώνης είναι κατά τρεις τάξεις μεγέθους περισσότερο από ολόκληρο το χρησιμοποιούμενο εύρος ζώνης ραδιοφωνικών συχνοτήτων, που είναι περίπου 25 GHz!
- η χωρητικότητα καναλιού μίας μόνο οπτικής είναι μεγαλύτερη από ένα τυπικό άθροισμα τηλεφωνικής κυκλοφορίας των Ηνωμένων Πολιτειών σε περίοδο αιχμής!

#### Υπάρχει θεωρητική δυνατότητα αρκετών δεκάδων Tb/s

οπτικά συστήματα μετάδοσης που συνδυάζουν τις τεχνικές πολυπλεξίας WDM και TDM και που φτάνουν αθροιστικά σε ρυθμούς bit της τάξης του 1 Tb/s έγιναν εμπορικά διαθέσιμα πριν από δυο περίπου χρόνια

- Καλύτερες ποιότητες σημάτων
  - Η οπτική μετάδοση δεν επηρρεάζεται από ηλεκτρομαγνητικά πεδία
    - Συνεπώς οι οπτικές ίνες επιδεικνύουν ανώτερη επίδοση από άλλα μέσα μετάδοσης
  - -Για δεδομένη απόσταση, το BER μιας μετάδοσης σε οπτική ίνα είναι σημαντικά καλύτερο από το BER μιας μετάδοσης σε χάλκινο καλώδιο ή μιας ασύρματης (wireless) μετάδοσης
    - Συνηθισμένες τιμές για το BER είναι από 10<sup>-9</sup> έως 10<sup>-15</sup> αντίστοιχα, ενώ για τους αντίστοιχους χάλκινους συνδέσμους το BER δεν θα ήταν καλύτερο από μόλις 10<sup>-5</sup>
  - Έτσι η αντοχή στο θόρυβο (noise immunity) της οπτικής ίνας είναι μεγαλύτερη από τα άλλα μέσα μετάδοσης που συχνά υποφέρουν αρκετά από ηλεκτρομαγνητικές παρεμβολές

- Χαμηλή εξασθένιση σήματος
  - —η εξασθένησή τους μπορεί να είναι χαμηλή ως και 0.25 dB/km



- Χαμηλή εξασθένιση σήματος
  - -Τέτοια επίπεδα εξασθένησης συνεπάγονται τη δυνατότητα ενός οπτικού σήματος σε αυτή τη ζώνη να διανύσει μια απόσταση περίπου 120 km προτού χρειαστεί ενίσχυση ή αναγέννηση
  - -Στο ίδιο σχήμα μπορούμε να διακρίνουμε και την ζώνη των 1310 nm με τυπική απώλεια 0.4 dB/km αυτή έχει επίσης χρησιμοποιηθεί σε οπτικά συστήματα επικοινωνίας
  - Η τρίτη ζώνη χαμηλής εξασθένησης στα 800 nmδεν φαίνεται στο σχήμα
    - Σε αυτή τη ζώνη οι απώλειες είναι μεγαλύτερες από τις δύο προηγούμενες (γύρω στα 2.5 dB/km) και κυρίως χρησιμοποιήθηκε στα πρώτα οπτικά συστήματα

- Χαμηλή εξασθένιση σήματος
  - Υπάρχουν και άλλοι τύποι οπτικών ινών σαν την καινούρια allwave ίνα για παράδειγμα
    - Αυτή παρέχει περισσότερο οπτικό φάσμα προς εκμετάλλευση καθώς εξαφανίζει τις απώλειες στην περιοχή γύρω στα 1385 nm της συμβατικής ίνας, όπου όπως φαίνεται και στο Σχήμα η απώλεια της συμβατικής ίνας προς στιγμήν ανεβαίνει



- Ευκολία εγκατάστασης & συντήρησης
  - Μια οπτική ίνα καλής ποιότητας είναι μερικές φορές λιγότερο εύθραυστη από έναν χάλκινο σύνδεσμο
  - —Οι οπτικές ίνες δεν παθαίνουν διάβρωση και είναι λιγότερο ευάλωτες σε φθορές λόγω διαφόρων περιβαλλοντικών συνθηκών
  - Είναι ιδιαίτερα εύκαμπτες,
  - –ζυγίζουν λιγότερο από τα χάλκινα καλώδια
  - και έχουν λιγότερες απαιτήσεις σε χώρο

- Καλύτερη ασφάλεια
  - —Αποτελεί ασφαλές μέσο μετάδοσης καθώς δεν είναι δυνατόν να διαβαστούν ή να μεταβληθούν τα μεταδιδόμενα οπτικά σήματα χωρίς φυσική διάσπαση της ίνας
  - -Για πολλές κρίσιμες εφαρμογές (ηλεκτρονικού εμπορίου, στρατιωτικές), οι οπτικές ίνες προτιμώνται αντί π. χ. των χάλκινων μέσων μετάδοσης
    - από τα οποία υπάρχει γενικά η δυνατότητα να αντληθούν παράνομα πολύτιμες μεταδιδόμενες πληροφορίες από τα ηλεκτρομαγνητικά τους πεδία

#### Οπτική ίνα-Εφαρμογές

- Συνδέσεις μεγάλων αποστάσεων
- Συνδέσεις σε μητροπολιτικό επίπεδο
- Συνδέσεις μεταγωγής σε αγροτικές περιοχές
- Βρόχοι συνδρομητή
- LANs

#### Οπτική ίνα-χαρακτηριστικά μετάδοσης

- Поµпоі
  - -Δίοδοι εκπομπής φωτός (Light Emitting Diode, LED)
    - Φθηνότεροι
    - Μεγαλύτερο θερμοκρασιακό εύρος λειτουργίας
    - Μεγαλύτερος χρόνος ζωής
  - —Injection Laser Diode (ILD)
    - Πιο ακριβοί
    - Μεγαλύτεροι ρυθμοί μετάδοσης
- Πολυπλεξία μήκους κύματος (WDM)
  - —Η τεχνολογια που επιτρέπει την πλήρη εκμετάλλευση του bandwidth μιας ίνας

## Χρήση συχνοτήτων από εφαρμογές για οπτικές ίνες

| Μήκος κύματος<br>(στο κενό)<br>εύρος (nm) | Εύρος<br>συχνοτήτων<br>(THz) | Ετικέτα<br>μπάντας | Τύπος ίνας | Εφαρμογή |
|-------------------------------------------|------------------------------|--------------------|------------|----------|
| 820 to 900                                | 366 έως 333                  |                    | Πολύτροπη  | LAN      |
| 1280 to 1350                              | 234 έως 222                  | S                  | Μονότροπη  | Various  |
| 1528 to 1561                              | 196 έως 192                  | С                  | Μονότροπη  | WDM      |
| 1561 to 1620                              | 185 έως 192                  | L                  | Μονότροπη  | WDM      |



(a) Twisted pair (based on [REEV95])



(b) Coaxial cable (based on [BELL90])



(c) Optical fiber (based on [FREE02])



(d) Composite graph

#### Δίκτυα πρόσβασης

- Στις μέρες μας χρησιμοποιείται συνδυασμός οπτικής ίνας και χαλκού για το δίκτυο πρόσβασης
- Πόσο ομως από το καθένα;

### **Digital Subscriber Line (DSL)**

- Ο τοπικός βρόχος (local loop) βασίζεται σε συνεστραμμένο ζεύγος καλωδίων χαλκού
  - Local loop: το φυσικό κύκλωμα συνεστραμμένου ζεύγους μεταλλικών καλωδίων που συνδέει έναν συνδρομητή με το πλησιέστερο αστικό τηλεφωνικό κέντρο
- DSL:Μετατρέπει το απλό τηλεφωνικό καλώδιο σε ένα κανάλι μεγάλου εύρους ζώνης με τη χρήση ειδικών modems, τα οποία τοποθετούνται στις δυο άκρες της γραμμής



### **Digital Subscriber Line (DSL)**

- DSL
  - Χρησιμοποιεί φάσμα του ζεύγους καλωδίων που δε χρησιμοποιείται απο τη τηλεφωνία <sup>4 κΗΣ 25.875 κΗΣ 138 κΗΣ 1</sup>



1104 kHz

- οι συχνότητες που χρησιμοποιεί εξασθενούν περισσότερο από αυτές της τηλεφωνίας, με αποτέλεσμα να μπορεί να λειτουργήσει σε αποστάσεις έως 5 χλμ. από το τηλεφωνικό κέντρο
- Όσο μεγαλώνει η απόσταση από το τηλεφωνικό κέντρο τόσο μειώνεται η ταχύτητα μετάδοσης δεδομένων που μπορεί να επιτευχθεί
- ADSL2 / ADSL2+: ἑως 24/3.5 Mbps
  - στην πράξη πολύ λίγοι χρήστες μπορούν να συνδεθούν σε αυτές τις ταχύτητες, λόγω της απόστασής τους από το τηλεφωνικό κέντρο.

### **Very-high-bitrate DSL (VDSL)**

- Τεχνολογία που προσφέρει γρηγορότερους ρυθμούς μετάδοσης δεδομένων από το ADSL/ADSL2+
  - Aka: FTTc
- Πως;
  - Μειώνται η χρήση του συνεστραμμένου ζεύγους
  - ο εξοπλισμός (DSLAM) τοποθετείται σε επίπεδο γειτονιάς
  - Η μικρότερη απόσταση εισάγει και μικρότερες εξασθενήσεις
  - Taxὑτητες: VDSL έως 52/16 Mbps, VDSL2 έως 100/100 Mbps





### **VDSL** & vectoring

• Το πρόβλημα: crosstalk μεταξύ γειτονικών συνεστραμμένων ζευγών

 Η λύση: Εκτίμηση θορύβου crosstalk και πρόσθεση «αντίθετου» σήματος



### FTTB / FTTH

- Fiber To The Building
  - περιορίζει στο ελάχιστο την χρήση καλωδίου χαλκού
- FTTB
  - Για αυτόν ακριβώς το λόγο, μπορεί να προσφέρει πολύ υψηλότερες ταχύτητες από το VDSL

- Fiber to the Home
  - η οπτική ίνα φτάνει μέχρι το χώρο (κατοικίας ή εργασίας) του τελικού χρήστη
  - Χρησιμοποιεί πλήρως οπτικές ίνες
    - => μπορεί να πετύχει πάρα πολύ υψηλούς ρυθμούς μετάδοσης δεδομένων (τάξης Gbps)

### Ασύρματη μετάδοση

- Υπάρχουν δύο είδη ασύρματης μετάδοσης: η κατευθυνόμενη (directional) και η μη κατευθυνόμενη (omnidirectional)
- Κατά την κατευθυνόμενη μετάδοση η μεταδίδουσα κεραία εκπέμπει μια εστιασμένη ηλεκτρομαγνητική δέσμη και πρέπει η μεταδίδουσα και η λαμβάνουσα κεραία να είναι σωστά ευθυγραμμισμένες, ώστε η μετάδοση να είναι επιτυχής
- Κατά την μη κατευθυνόμενη μετάδοση το μεταδιδόμενο σήμα διαδίδεται προς κάθε κατεύθυνση και μπορεί να ληφθεί από πολλές κεραίες τοποθετημένες σε διάφορες θέσεις
- Όσο υψηλότερη είναι η συχνότητα του σήματος τόσο πιο εύκολη είναι η εστίασή του σε μια δέσμη

### Συχνότητες ασύρματης μετάδοσης

- Υπάρχουν τρία τμήματα του φάσματος συχνοτήτων που χρησιμοποιούνται για ασύρματες μεταδόσεις:
  - —2-40 GHz (μικροκυματικές συχνότητες)
    - Στις συχνότητες αυτές έχουμε εξαιρετικά κατευθυνόμενες δέσμες και γι'αυτό οι μικροκυμματικές συχνότητες είναι κατάλληλες για επικοινωνίες point-to-point
  - —30 MHz − 1 GHz (ραδιοσυχνότητες)
    - Οι συχνότητες αυτές είναι κατάλληλες για μη κατευθυνόμενη μετάδοση
  - -3x10<sup>11</sup> Hz 2x10<sup>14</sup> Hz (υπέρυθρο φάσμα)
    - Χρησιμοποιείται για τοπικές point-to-point και multipoint εφαρμογές σε περιορισμένους χώρους μεγέθους δωματίου

### Κεραίες

- Ηλεκτρικός αγωγός που χρησιμοποιείται για διάχυση ηλεκτρομαγνητικής ενέργειας η για συλλογή αυτής
- Екпоµпἡ
  - Ηλεκτρική ενέργεια από τον πομπό
  - Μετατρέπεται σε ηλεκτρομαγνητική ενέργεια από την κεραία
  - Και διαχέεται στο περιβάλλον αυτής
- Λἡψη
  - Ηλεκτρομαγνητική ενέργεια προσπίπτει στην κεραία
  - Μετατρέπεται σε ηλεκτρικό σήμα από τη κεραία
  - Το σήμα αυτό δίδεται στο δέκτη
- Η ίδια κεραία χρησιμοποιείται κατά κανόνα και για εκπομπή και για λήψη

### Πρότυπο εκπομπής

- Ισοτροπική κεραία
  - διοχετεύει την ηλεκτρομαγνητική ενέργεια που εκπέμπει κατά την ίδια ποσότητα σε κάθε κατεύθυνση
  - Για αυξανόμενη απόσταση η λαμβανόμενη ισχύς μειώνεται αντιστρόφως ανάλογα του τετραγώνου της απόστασης, καθώς μοιράζεται σε μεγαλύτερη σφαιρική επιφάνεια



$$P_{\rm R} = \frac{P_{\rm \pi o \mu \pi o \acute{v}}}{4\pi {\rm R}^2}$$

# Μη ισοτροπικές κεραίες-κέρδος κεραίας

- Στη πράξη, δεν υπάρχει ισοτροπική κεραία καθώς καμία δε δίνει απόλυτα σφαιρική διάδοση
  - Επιπλέον, συμφέρει να συγκεντρώσουμε την εκπεμπόμενη ισχύ προς συγκεκριμένη κατεύθυνση
- Ο παράγοντας G (παράγοντας κέρδους-antenna gain) δείχνει το κέρδος στη λαμβανόμενη ισχύ σε σχέση με αυτήν της ισοτροπικής κεραίας
  - Πχ στο b) σε απόσταση  $R_r$  η ισχύς P'είναι διπλάσια από ότι h P στο a). Άρα:



$$\left(\frac{\mathbf{P'}}{\mathbf{P}}\right) = 2 = G$$

$$10\log\left(\frac{\mathbf{P'}}{\mathbf{P}}\right) = 3 dB = G_{dBi}$$

### Παράγοντας κέρδους κεραίας

- Παράγοντας που σχετίζεται με τον παράγοντα κέρδους είναι και η ενεργός επιφάνεια  $A_e$  (effective arrea) της κεραίας
- Σχετίζεται με τη φυσική επιφάνεια A της κεραίας με τον τύπο:  $A_e = KA$ , όπου K ο συντελεστής απόδοσης της κεραίας (συνήθως K από 0.55 έως 0.75)
- Η ενεργός επιφάνεια αντιστοιχεί στο τμήμα της φυσικής επιφάνειας που απορροφά το σύνολο της εισερχόμενης ακτινοβολίας στην κεραία
- Σχέση G-A<sub>e</sub>:

$$G = \frac{4\pi A_e}{\lambda^2} = \frac{4\pi f^2 A_e}{c^2}$$

### Παραβολική κεραία

- Χρησιμοποιούνται σε terrestrial microwave και satellite εφαρμογές
- Το παραβολικό σχήμα δημιουργεί τη δυνατότητα
  - επικεντρωμένης (focused) εκπομπής,
  - επικέντρωσης της εισερχόμενης ακτινοβολίας σε ένα σημείο (δέκτης)



#### **Terrestrial Microwave**

- Χρησιμοποιούνται παραβολικές κεραίες διαμέτρου 3m, για τη μετάδοση και τη λήψη ηλεκτρομαγνητικών κυμμάτων συχνότητας 2-40 GHz
- Επιτυγχάνονται υψηλοί ρυθμοί μετάδοσης δεδομένων, της τάξης των εκατοντάδων Mbps
- Η ηλεκτρομαγνητική δέσμη ταξιδεύει σε ευθεία γραμμή και πρέπει να υπάρχει οπτική επαφή των κεραιών μετάδοσης και λήψης
- Συχνά οι κεραίες μικροκυμμάτων τοποθετούνται σε σημαντικό ύψος από το έδαφος, έτσι ώστε να μπορούν να μεταδίδουν πάνω από μεσολαβούντα εμπόδια
- Για μεγάλες αποστάσεις, χρησιμοποιούνται επαναλήπτες

### **Terrestrial Microwave**

- Χρησιμοποιούνται για επικοινωνίες μεγάλων αποστάσεων όταν δεν μπορεί να χρησιμοποιηθεί οπτική ίνα ή ομοαξονικό κλώδιο
  - Απαιτούν πολύ λιγότερους repeaters ή ενισχυτές από το ομοαξονικό καλώδιο για την ίδια απόσταση, αλλά απαιτούν οπτική επαφή ανάμεσα στις δύο κεραίες
- Συνήθως χρησιμοποιούνται για τη μετάδοση τηλεφωνικού ή τηλεοπικού σήματος
- Επίσης, τα τελευταία χρόνια αυξάνεται η χρήση τους για κοντινές ζεύξεις point-to-point μεταξύ κτιρίων
  - Πχ για closed-circuit TV
  - ή για τη σύνδεση τοπικών δικτύων
- Επίσης, μια εταιρία μπορεί να χρησιμοποιήσει μικροκυμματική ζεύξη για να εξασφαλίσει μια μακρινή ζεύξη στην ίδια πόλη
  - παρακάμπτοντας την τηλεφωνική εταιρία

### **Terrestrial Microwave**



# Commonly used Terrestrial Microwave bands

Typical Digital Microwave Performance

| Band (GHz) | Bandwidth (MHz) | Data Rate (Mbps) |
|------------|-----------------|------------------|
| 2          | 7               | 12               |
| 6          | 30              | 90               |
| 11         | 40              | 135              |
| 18         | 220             | 274              |

Πιο συχνά χρησιμοποιούμενη περιοχή: 4 GHz - 6 GHz

Λόγω μεγάλης χρήσης της παραπάνω, πλέον χρησιμοποιείται και η περιοχή των 11 GHz

#### 12 GHz: cable TV systems

Συνδέσεις μικροκυμάτων χρησιμοποιούνται για τη μεταφορα τηλεοπτικού σήματος σε τοπικά κέντρα. Στη συνέχεια το σήμα μοιράζεται με coaxial cable στους συνδρομητές

22 GHz: Μικροκύματα υψηλότερων συχνοτήτων χρησιμοποιούνται για short point-to-point links μεταξύ κτιρίων

Υψίσυχνα μικροκύματα δεν είναι αποδοτικά για long range transmission εξαιτίας αυξημένης εξασθένησης

## Δορυφορικές μικροκυματικές επικοινωνίες

- Ο δορυφόρος λειτουργεί ως αναμεταδότης
- LEO, MEO, GEO
- Λαμβάνει το σήμα σε μια συχνότητα, το ενισχύει και το επαναμεταδίδει σε άλλη συχνότητα
- Εφαρμογές
  - —Τηλεόραση
  - Τηλεφωνία σε μακρινές αποστάσεις
  - —Ιδιωτικά εταιρικά δίκτυα



Figure 9.6 Typical Satellite Footprint

# Δορυφορικές συνδέσεις σημείου προς σημείο



(a) Point-to-point link

# Δορυφορικές συνδέσεις εκπομπής



## Δορυφορικές μικροκυματικές επικοινωνίες

- Συνήθως χρησιμοποιείται η περιοχή συχνοτήτων 1-10
   GHz. Το εύρος ζώνης είναι περίπου 100 MHz
- Η καθυστέρηση διάδοσης είναι περίπου 270 msec και είναι ανεξάρτηση από τη θέση των σταθμών εδάφους που επικοινωνούν
- Μια σχετικά πρόσφατη εξέλιξη είναι η τεχνολογία VSAT

προσφέρει δορυφορική επικοινωνία με χρήση δορυφορικών κεραιών μικρών διαστάσεων (διάμετρος 5ft) και χαμηλού κόστους



Figure 4.7 Typical VSAT Configuration

### Πλεονεκτήματα

- Μεγάλη κάλυψη. Εξαιτίας του μεγάλου ύψους περιστροφής, οι δορυφορικές εκπομπές έχουνε μεγάλη περιοχή λήψης
- Δυνατότητα Broadcast/multicast
- Κάλυψη σε περιοχές χωρίς επίγεια υποδομή.
- Διαθεσιμότητα a-priori γνωστή (δεν υπάρχει NLOS).

### Μειονεκτήματα

- Κόστος εγκατάστασης (ιδιαίτερα για LEO)
- Χρόνος εγκατάστασης
- Μεγάλη καθυστέρηση διάδοσης
  - Εξαιτίας του μεγάλου ύψους περιστροφής
  - Προβλήματα στην εφαρμογή πρωτοκόλλων για επίγειες επικοινωνίες

# Commonly used bands for satellite communications

| Band | Representative Uplink /<br>Downlink frequencies (GHz) | Primary<br>Use |
|------|-------------------------------------------------------|----------------|
| L    | 1.8 / 1.6                                             | Maritime       |
| С    | 6 / 4                                                 | Traditional    |
| X    | 8 / 7                                                 | Military       |
| Ku   | 14 / 12                                               | Current        |
| Ka   | 30 / 20<br>44 / 22                                    | Emerging       |
| V    | 50                                                    | Military       |

### Εφαρμογές

- Δορυφορική τηλεφωνία
- Κυψελωτά συστήματα.
  - Παροχή μεγαλύτερων κυψελών (overlay cells) σε παραδοσιακά κυψελωτά συστήματα
- Δυνατότητα δικτύωσης από εναέρια συστήματα μεταφοράς
- Global Positioning Systems (GPS)
- Internet access



(a) The Iridium satellites form six necklaces around the earth. (b) 1628 moving cells cover the earth.

### Εφαρμογές







#### **GPS**



#### **Satellite-based Internet access**



#### Access Network





Access/core network

Internet access through a hybrid system

### Ραδιοκύματα (radio)

- Πρόκειται για ηλεκτρομαγνητικά κύματα στην περιοχή συχνοτήτων 30 MHz – 1 GHz
- Η μετάδοση είναι μη κατευθυνόμενη. Π.χ.
  - FM radio, UHF каї VHF TV
- Για την μέγιστη απόσταση μετάδοσης και τις απώλειες ισχύουν οι ίδιες σχέσεις όπως στα μικροκύματα
- Λόγω του μεγαλύτερου μήκους κύματος λ, οι απώλειες είναι μικρότερες απ'ότι στη μικροκυματική μετάδοση
- Ευάλωτη σε πολύδρομη διάδοση

## Ραδιοκύματα (radio)

| Band                           | Frequency<br>Range | Free-Space<br>Wavelength Range | Propagation Characteristics                                                                         | Typical Use                                                                                                            |
|--------------------------------|--------------------|--------------------------------|-----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| ELF (extremely low frequency)  | 30 to 300 Hz       | 10,000 to 1000 km              | GW                                                                                                  | Power line frequencies; used by some home control systems                                                              |
| VF (voice frequency)           | 300 to 3000 Hz     | 1000 to 100 km                 | GW                                                                                                  | Used by the telephone system for analog subscriber lines                                                               |
| VLF (very low<br>frequency)    | 3 to 30 kHz        | 100 to 10 km                   | GW;low attenuation day and night;high atmospheric noise level                                       | Long-range navigation; submarine communication                                                                         |
| LF (low frequency)             | 30 to 300 kHz      | 10 to 1 km                     | GW; slightly less reliable than VLF; absorption in daytime                                          | Long-range navigation; marine communication radio beacons                                                              |
| MF (medium frequency)          | 300 to 3000 kHz    | 1000 to 100 m                  | GW and night SW; attenuation low at<br>night, high in day; atmospheric noise                        | Maritime radio; direction finding;<br>AM broadcasting                                                                  |
| HF (high frequency)            | 3 to 30 MHz        | 100 to 10 m                    | SW; quality varies with time of day, season, and frequency                                          | Amateur radio; international broadcasting,<br>military communication; long-distance aircraft<br>and ship communication |
| VHF (very high<br>frequency)   | 30 to 300 MHz      | 10 to 1 m                      | LOS; scattering because of temperature inversion; cosmic noise                                      | VHF television; FM broadcast and two-way<br>radio, AM aircraft communication; aircraft<br>navigational aids            |
| UHF (ultra high<br>frequency)  | 300 to 3000 MHz    | 100 to 10 cm                   | LOS; cosmic noise                                                                                   | UHF television; cellular telephone; radar;<br>microwave links; personal communications<br>systems                      |
| SHF (super high<br>frequency)  | 3 to 30 GHz        | 10 to 1 cm                     | LOS; rainfall attenuation above 10 GHz;<br>atmospheric attenuation due to oxygen<br>and water vapor | Satellite communication; radar; terrestrial microwave links; wireless local loop                                       |
| EHF (extremely high frequency) | 30 to 300 GHz      | 10 to 1 mm                     | LOS; atmospheric attenuation due to oxygen and water vapor                                          | Experimental; wireless local loop                                                                                      |
| Infrared                       | 300 GHz to 400 THz | 1 mm to 770 nm                 | LOS                                                                                                 | Infrared LANs; consumer electronic applications                                                                        |
| Visible light                  | 400 THz to 900 THz | 770 nm to 330 nm               | LOS                                                                                                 | Optical communication                                                                                                  |

### Διάδοση Ground Wave

- Συμβαίνει μόνο σε χαμηλές συχνότητες, έως 2
   MHz
- Τα ραδιοσήματα ακολουθούν την καμπυλότητα της Γης
- Η εμβέλεια εξαρτάται από τη συχνότητα: παγκόσμια για 100 kHz λιγότερη από 100 για ΑΜ σταθμούς (~1 MHz)



### Διάδοση μέσω ιονόσφαιρας

- Γίνεται σε συχνότητες 3-30 MHz
- Τα ραδιοκύματα «ανακλώνται» στην ιονόσφαιρα
- Δυνατή παγκόσμια εμβέλεια μέσω διαδοχικών αναπηδήσεων του σήματος στην ιονόσφαιρα και το έδαφος



# Εξασθένηση λόγω απόστασης (free space path loss)

 Ρόλο παίζουν η συχνότητα του σήματος και η απόσταση. Για ισοτροπική κεραία, έχουμε:

$$\frac{P_{\pi o \mu \pi o \acute{v}}}{P_{\delta \acute{e} \kappa \tau n}} = \left(\frac{4\pi d}{\lambda}\right)^2 = \left(\frac{4\pi f d}{c}\right)^2$$

- Συνεπώς, σε σταθερή απόσταση η μεταβολή στη λαμβανόμενη ισχύ είναι ανάλογη του f<sup>2</sup>, Συνεπώς, σήματα μεγαλύτερης συχνότητας εξασθενίζουν πιο εύκολα
- Αξίζει να σημειωθεί ότι οι απώλειες μεταβάλλονται ανάλογα με το τετράγωνο της απόστασης (*d*)
- Απαιτείται η χρήση repeaters κάθε 10-100 km

# Εξασθένηση λόγω απόστασης (free space path loss)

• Για μη-ισοτροπική κεραία, έχουμε:

$$\frac{P_{\text{πομπού}}}{P_{\text{δέκτη}}} = \frac{(4\pi\text{d})^2}{G_{\text{πομπού}}G_{\text{δέκτη}}\lambda^2} = \frac{(\lambda\text{d})^2}{A_{\text{πομπού}}A_{\delta\text{έκτη}}} = \frac{(\text{cd})^2}{f^2A_{\text{πομπού}}A_{\delta\text{έκτη}}}$$

 Συνεπώς, σήματα μεγαλύτερης συχνότητας πλέον είναι πιο ανθεκτικά

# Εξασθένηση λόγω απόστασης (free space path loss)

- •Οι προηγούμενοι τύποι λαμβανόμενης ισχύος ισχύουν για σημεία στη *μακρινή περιοχή* της κεραίας.
- •Για την περίπτωση της ισοτροπικής κεραίας και ένα τέτοιο σημειο σε απόσταση  $d_o$  στο οποίο η ισχύς είναι γνωστή,  $P(d_o)$ , για  $d>d_o$ :

$$P_{\delta \varepsilon \kappa \tau \eta} = P_{d_o} \left( \frac{\mathbf{d}_0}{\mathbf{d}} \right)^2$$

### Μηχανισμοί διάδοσης

- Ανάκλαση: Συμβαίνει όταν το ηλεκτρομαγνητικό κύμα πέσει πάνω σε αντικείμενο διαστάσεων >>λ. Ανακλάται μέρος της ισχύος του σήματος
- <u>Περίθλαση</u>: Συμβαίνει όταν το ηλεκτρομαγνητικό κύμα πέσει πάνω σε αδιαπέραστο αντικείμενο. Δευτερεύοντα ηλεκτρομαγνητικά κύματα δημιουργούνται πίσω από το αδιαπέραστο αντικείμενο. Αυτό εξηγεί την λήψη RF σε περιβάλλοντα χωρίς LOS
- Διασπορά: Συμβαίνει όταν το ηλεκτρομαγνητικό κύμα πέσει πάνω σε αντικείμενο διαστάσεων <=λ</li>
  - Προκαλεί πολύ περισσότερα δευτερεύοντα RF κύματα από τους άλλους
     2 μηχανισμούς
  - Η δυσκολότερη στη πρόβλεψη
  - Σε περιβάλλοντα πόλης προκαλείται πχ από οδικά σήματα, στύλους φωτός, φυλλωσίες δέντρων κτλ



Ανάκλαση (R), Περίθλαση (D), Διασπορά (S)

### Μηχανισμοί διάδοσης

- Η σχετική συνεισφορά των παραπάνω τριών μηχανισμών διάδοσης στο τελικό λαμβανόμενο σήμα, εξαρτάται από το περιβάλλον
- Σε περιπτώσεις όπου υπάρχει LOS μεταξύ transmitterreceiver, η διάθλαση και η διασπορά δεν έχουν σημαντική επίδραση
- Αντιθέτως, σε περιπτώσεις όπου δεν υπάρχει LOS μεταξύ transmitter-receiver, (π.χ ο χρήστης ενός κινητού στο δρόμο μιας πόλης) η διάθλαση και η διασπορά καθορίζουν σε μεγάλο βαθμό την ποιότητα του λαμβανόμενου σήματος

## Πολύδρομη διάδοση



(a) Microwave line of sight



(b) Mobile radio



One of the worst cases of multipath time dispersion observed in a cellular radio system. Measurement made inSan Francisco, California.



Μεταβολή σήματος (εποικοδομητική/καταστροφική) λόγω multipath propagation

Received power (dB)

Fast, small-scale fading signal

Slow fading local average

Transmitter-Receiver distance

### Υπέρυθρη εκπομπή

- Δεν διαπερνούν τους τοίχους
  - —παράδειγμα;
- Δεν απαιτείται κάποια άδεια για τη χρήση των συχνοτήτων τους

- Χρήση line-of-sight, point-to-point
  - —Δε χρησιμοποιούνται σε εξωτερικούς χώρους (παρεμβολές από ηλιακό φως)
- IrDA: Infrared Data Association

### Υπέρυθρη εκπομπή

### Πλεονεκτήματα IR:

- Απλή αποδιαμόρφωση με ανίχνευση πλάτους σήματος
- —Το παραπάνω οδηγεί σε απλούς receivers
- —Δεν επηρεάζεται από ηλεκτρομαγνητικό θόρυβο
- —Δε διαπερνάει τοίχους=>security & ελάττωση co-channel interference

### Μειονεκτήματα IR:

- Δε μπορεί να χρησιμοποιηθεί έξω από κτίρια
- —Περιορισμός ισχύος εκπομπής για θέματα υγείας=> μικρές εμβέλειες