

ZG09 CO₂ Module User Manual

Contents

1 GENERAL DESCRIPTION	3
2 FEATURES OF DESIGN	3
3 SPECIFICATION	3
4 UART	5
5 RS485 COMMUNICATION	7
6 I2C COMMUNICATION	7
7 PWM OUTPUT	7
8 DAV OUTPUT	8
9 RELIABILITY9	8
10 RESPONSE TIME	9
11 CO ₂ RMS NOISE	c

1. General Description

This document describes the user guide of ZG09.

This is a preliminary specification, any update might without notification.

Copyright:

All rights reserved. Reproduction in any manner, in whole or in part is straightly prohibited without written permission of ZyAura.com. This information contained in this document is subject to change without notice.

Limited Warranty:

This data sheet contains information specific to products manufactured at the time of its publication. Contents herein do not constitute a warranty.

Trademark Acknowledgements:

All trademarks are the property of their respective owners.

2. Features of Design

NDIR (non-dispersive infrared) sensor

The diffusion and sampling method are both available.

Measurement range: 0~10,000ppm

Output interface: UART, RS485, I2C, PWM, DAC

3. Specification

CO ₂ Measurement range	0~10,000ppm	
Measurement Interval	2 sec	
CO ₂ Accuracy	±50ppm±3% of reading	
CO ₂ RMS Noise	<10ppm @ 400ppm, <20ppm @ 1000ppm	
CO ₂ Repeatability	±20ppm	
Resolution	1ppm	
Response Time	about 1min for diffusion (90% Rise Time)	
Pressure Dependence	0.13% of reading per mm Hg	
Warm-Up Time (Cold Start)	30 sec @ 25°C	
Power Supply	5.0VDC±0.5 supply	
Power Consumption	Max. (0.8 ms shot capture) <190mA, avg. <34mA	
IR OFF Avg. Current (mA)	<10mA	
Operating Temperature	0~50°C	
Storage Temperature	-20~60°C	
Operating Humidity	0-95% RH	
Storage Humidity	0-95% RH	
Dimensions	32.2mm x 20.2mm x 13.7mm	

Communication:

••	''
UART	3.3V level
	Modbus RTU protocol
RS485	SCL pin for RS485 R/T control pin shared
I2C	Max. clock 400kHz
PWM	3.3V level at 1kHz
DAC Output	0~1V = 800~1,200ppm

Pin assignment of ZG09

Figure 1. Module External Drawing Note: The dimensions in this drawing are for reference only.

Pin Configuration:

Pin	Function
PWM	CO₂ ppm PWM output
DAO	DAC output
G	Ground
5V	Power input +5V
SDA	I2C Data pin
SCL	I2C Clock pin (default) or RS485 R/T control pin
TX	UART TX
RX	UART RX
V	3.3V output

http://www.ZyAura.com REV. 082018

4. UART

UART default:

BPS: 19200 Data Bit: 8 Parity bit: None Stop bit: 1

Protocol:

The protocol for ZG09 UART is Modbus RTU, commends are for sending and receiving:

Send

ID	Function Code	Start	Length	CRC
(1 Byte)	(1 Byte)	(2 Bytes)	(2 Bytes)	(2 Bytes)
FEH	03H	0000H (Note 1)	0003H	XXXX

Receive

ID	Function Code	Length	data	CRC
(1 Byte)	(1 Byte)	(1 Byte)	(N Bytes)	(2 Bytes)
FEH	03H	06H (Note 2)	6 * 8 bit (Note 3)	XXXX

Note 1: Start = Start address for getting data. i.e. CO₂ value = 0x0B

Note 2: The length of Data

Note 3: Data length for Receiving = Length for Sending x 2

ID

The user can define the ID code of the device. The factory default is 0x01, 0xFA and 0xFE reserved for broadcast commands.

Function Code 0x03 Read 0x06 Write

Start

Start	Read / Write	Description
00(0x00) : SlaveID	R/W	ID: The factory default is 0x01.
		250 (0xFA) and 254 (0xFE) are reserved for broadcast and
		cannot be adjusted.
01(0x01) : BPS	R/W	Baud rate setting (settings will be applied after reset or repower)
		0x00 : 9600
		0x01: 19200 (default)
		0x02 : 38400
		0x03:57600
02(0x02) : Uart Parity Set	R/W	Uart Parity setting (settings will be applied after reset or repower)
		0x00:n82
		0x01:n81 (default)
		0x02:e81
		0x03:o81
11(0x0B) : CO ₂ Value	R	CO ₂ concentration reading in units of ppm.

Example for getting CO₂ data:

Send the command, FA03 000B 0001 E043, to 250(0xFA) with the broadcast method.

The sensor is addressed as "Any address" (0xFE or 0xFA).

ID	Function Code	Start	Length	CRC	Note
(1 Byte)	(1 Byte)	(2 Bytes)	(2 Bytes)	(2 Bytes)	Note
(1) FAH	03H	000BH	0001H	E043H	
(2) FEH	04H	0003H	0001H	D5C5H	

Commend for data returning 0103 0201 F8B8 56

ID	Function Code	Length	data	CRC	Note
(1 Byte)	(1 Byte)	(1 Byte)	(N Bytes)	(2 Bytes)	Note
(1) FAH	03H	02H	01ACH	5C7DH	428ppm
(2) FEH	04H	02H	0197H	ED1AH	407ppm

Data length for Receiving =Length for Sending x 2 CO₂ value is 0x01ACH = 428ppm, 0x0197=407ppm

```
CRC Code
```

```
unsigned int Crc16(unsigned char * data, unsigned char length)
  unsigned int reg_crc=0xFFFF;
  while(length--)
                    ^= *data++;
         reg_crc
         for(j=0;j<8;j++)
               if(reg_crc & 0x01) /* LSB(b0)=1 */
                     reg_crc=reg_crc
                                      >>1 ^ 0xA001;
               else
                     reg_crc=reg_crc >>1;
         }
  return reg_crc;
}
CRC Code (Lookup Table)
unsigned int Crc(unsigned char *ucTx, unsigned int Len)
   (Len && ucTx)
     unsigned char *ucPtr=ucTx;
     unsigned char ucCRCHi = 0xff;
     unsigned char ucCRCLo = 0xff;
     unsigned uIndex;
     while(Len--)
         uIndex = ucCRCHi ^ *ucPtr++;
         ucCRCHi = ucCRCLo ^ ucCRCHigh[uIndex];
        ucCRCLo = ucCRCLow[uIndex];
     return (unsigned int)(ucCRCLo << 8) | (unsigned int)ucCRCHi;
     }
  else
     return 0;
unsigned char ucCRCHigh[] =
  0x00,0xc1,0x81,0x40,0x01,0xc0,0x80,0x41,0x01,0xc0,0x80,0x41,0x00,0xc1,0x81,
  0x40,0x01,0xc0,0x80,0x41,0x00,0xc1,0x81,0x40,0x00,0xc1,0x81,0x40,0x01,0xc0,
  0x80,0x41,0x01,0xc0,0x80,0x41,0x00,0xc1,0x81,0x40,0x00,0xc1,0x81,0x40,0x01,
  0xc0,0x80,0x41,0x00,0xc1,0x81,0x40,0x01,0xc0,0x80,0x41,0x01,0xc0,0x80,0x41,
  0x00,0xc1,0x81,0x40,0x01,0xc0,0x80,0x41,0x00,0xc1,0x81,0x40,0x00,0xc1,0x81,
  0x40,0x01,0xc0,0x80,0x41,0x00,0xc1,0x81,0x40,0x01,0xc0,0x80,0x41,0x01,0xc0,
  0x80,0x41,0x00,0xc1,0x81,0x40,0x00,0xc1,0x81,0x40,0x01,0xc0,0x80,0x41,0x01,
```


unsigned char ucCRCLow[] =

};

0x00,0xc0,0xc1,0x01,0xc3,0x03,0x02,0xc2,0xc6,0x06,0x07,0xc7,0x05,0xc5,0xc4, 0x04,0xcc,0x0c,0x0d,0xcd,0x0f,0xcf,0xce,0x0e,0x0a,0xca,0xcb,0x0b,0xc9,0x09, 0x08,0xc8,0xd8,0x18,0x19,0xd9,0x1b,0xdb,0xda,0x1a,0x1e,0xde,0xdf,0x1f,0xdd, 0x1d,0x1c,0xdc,0x14,0xd4,0xd5,0x15,0xd7,0x17,0x16,0xd6,0xd2,0x12,0x13,0xd3, 0x11,0xd1,0xd0,0x10,0xf0,0x30,0x31,0xf1,0x33,0xf3,0xf2,0x32,0x36,0xf6,0xf7, 0x37,0xf5,0x35,0x34,0xf4,0x3c,0xfc,0xfd,0x3d,0xff,0x3f,0x3e,0xfe,0xfa,0x3a, 0x3b,0xfb,0x39,0xf9,0xf8,0x38,0x28,0xe8,0xe9,0x29,0xeb,0x2b,0x2a,0xea,0xee, 0x2e,0x2f,0xef,0x2d,0xed,0xec,0x2c,0xe4,0x24,0x25,0xe5,0x27,0xe7,0xe6,0x26, 0x22,0xe2,0xe3,0x23,0xe1,0x21,0x20,0xe0,0xa0,0x60,0x61,0xa1,0x63,0xa3,0xa2, 0x62,0x66,0xa6,0xa7,0x67,0xa5,0x65,0x64,0xa4,0x6c,0xac,0xad,0x6d,0xaf,0x6f, 0x6e.0xae.0xaa.0x6a.0x6b.0xab.0x69.0xa9.0xa8.0x68.0x78.0xb8.0xb9.0x79.0xbb. 0x7b,0x7a,0xba,0xbe,0x7e,0x7f,0xbf,0x7d,0xbd,0xbc,0x7c,0xb4,0x74,0x75,0xb5, 0x77,0xb7,0xb6,0x76,0x72,0xb2,0xb3,0x73,0xb1,0x71,0x70,0xb0,0x50,0x90,0x91, 0x51,0x93,0x53,0x52,0x92,0x96,0x56,0x57,0x97,0x55,0x95,0x94,0x54,0x9c,0x5c,0x5d,0x9d,0x5f,0x9f,0x9e,0x5e,0x5a,0x9a,0x9b,0x5b,0x99,0x59,0x58,0x98,0x88, 0x48,0x49,0x89,0x4b,0x8b,0x8a,0x4a,0x4e,0x8e,0x8f,0x4f,0x8d,0x4d,0x4c,0x8c, 0x44,0x84,0x85,0x45,0x87,0x47,0x46,0x86,0x82,0x42,0x43,0x83,0x41,0x81,0x80,0x40

5. RS485 Communication

Schematic

};

Figure 2

Connect with the Chip SP3072 for RS-485/RS422 for long distance monitoring. Shield wire is required for long distance. The chip SP3072 can be powered by 3V power from ZG09 as Figure 2. Keep the lead as short as possible. Please refer Item 4. UART for Modbus Protocol.

6. I2C Communication

The speed of I2C is 100KHz to 400KHz.

7. PWM Output

Adjustable CO₂ measurement range PWM VCC (3.0~3.3V) level at 1 kHz output 0~10,000ppm. Schematic is as Figure 3. AL1=0~10,000ppm, AL2=0~10,000ppm. The AL1<AL2 setting is for HVAC. AL1>AL2 setting is for agriculture, If the gas concentration for agriculture is 0-10,000ppm, then the AL1=0ppm, AL2=10,000ppm.

Figure 3

Application	AL1 0~10,000ppm	AL2 0~10,000ppm	Remark
CO ₂ monitoring	0ppm (0V)	10,000ppm (VCC)	
HVAC	800ppm default (<800ppm=0V)	1200ppm default (>1200ppm=VCC)	Note 1
Agriculture	Adjustable	Adjustable	Note 2

Note 1: For HVAC, the ventilation will be activated when the CO₂ concentration is higher than AL2 1200ppm (adjustable). The ventilation will be inactivated when the CO₂ lower than 800ppm(adjustable).

Note 2: For planting, the alarm setting is AL1>AL2. The CO₂ generator will be activated when the CO₂ concentration is lower than AL2 400ppm (adjustable). The CO₂ generator will be inactivated when the CO₂ concentration is higher than AL2 1200ppm (adjustable). The difference between AL1 and AL2 has to be 100ppm at least.

8. DAV Output

DAV output can be controlled by user. For high precise CO_2 monitoring is not recommended. Output $0\sim1V$ = default $800\sim1,200$ ppm (210 steps). The range can be controlled by AL1 and AL2. Users can use comparator to control the relay. AL2>AL1 is for HVAC. AL1>AL2 is for agriculture. When AL1 is 800ppm and the CO_2 reading is also 800ppm, DAV output is 0V. AL1=0 and AL2=10,000ppm is for full range output.

9. Reliability

9.1 Long term stability

16 samples were on long-term test (25°C, 70% RH, 500 hours) and the average results are shown in Figure 4. The Y axis is the CO₂ concentration and the X axis is the time.

Figure 4

9.2 Temperature cycle test

16 samples were on long-term test (-20° C, +65, $+60^{\circ}$ C, 85% RH, 400 hours) and the average results are shown in Figure 5. The Y axis is the CO₂ concentration and the X axis is the time.

Figure 5

9.3 High/Low temperature test

The performance of CO_2 , at $-20^{\circ}C \sim 60^{\circ}C$ and $5V \pm 0.25V$, is displayed on Figure 6. The performance is consistent in $4.75 \sim 5.25V$. The accuracy will be affected when the voltage drops to 4.5V.

Figure 6

10. Response Time

It shows how much time is needed for CO_2 monitor to reach the 90% response to step change. Test methods 1: putting the monitor in the environment at 1,000ppm in 10 minutes, then move it to the environment at 400ppm.

Test method 2: putting the monitor in the environment at 400ppm in 10 minutes, then move it to the environment at 1,000ppm.

Test Method	Time
400ppm~1,000ppm	~60sec (90% response to step change)
1,000ppm~400ppm	~120sec (90% response to step change)

11. CO₂ RMS Noise

Measure for 3 hours in conditions: CO_2 concentration of 1000ppm and 25°C±2°C. The stability and variation are less than ±20ppm.

Figure 7