Data Mining <u>Classification: Basic Concepts, Decision Trees,</u> and Model Evaluation

Lecture Notes for Chapter 4 Part II

Introduction to Data Mining by

Tan, Steinbach, Kumar

Adapted by Qiang Yang (2010)

Continuous Attribute: Binary Split for Temperature?

Outlook	Tempreature	Humidity	Windy	Class
Sunny	40	high	false	N
sunny	37	high	true	N
overcast	34	high	false	Р
rain	26	high	false	Р
rain	15	normal	false	Р
rain	13	normal	true	N
overcast	17	normal	true	Р
sunny	28	high	false	N
sunny	25	normal	false	Р
rain	23	normal	false	Р
sunny	27	normal	true	Р
overcast	22	high	true	Р
overcast	40	normal	false	Р
rain	31	high	true	N

Finding the best split

- Sort the Temperature attribute
- For each possible binary split, calculate the information gain
 - That is, calculate the entropy: -p(P)*logp(P) p(N)*logp(N)
 - Select the smallest one
- Let the value be L. Two branches: Temperature<L, and Temperature >=L.

Measures of Node Impurity

□ Gini Index

Entropy (already covered)

Misclassification error

How to Find the Best Split: let M be the measure

Measure of Impurity: GINI

Gini Index for a given node t:

$$GINI(t) = 1 - \sum_{j} [p(j|t)]^{2}$$

(NOTE: p(j/t) is the relative frequency of class j at node t).

- Maximum (1 1/n_c) when records are equally distributed among all classes, implying least interesting information
- Minimum (0.0) when all records belong to one class, implying most interesting information

C1	0
C2	6
Gini=	0.000

C1	1 -
C2	5
Gini=	0.278

C1	2
C2	4
Gini=	0.444

C1	3
C2	3
Gini=	0.500

Examples for computing GINI

$$GINI(t) = 1 - \sum_{j} [p(j|t)]^{2}$$

$$P(C1) = 0/6 = 0$$
 $P(C2) = 6/6 = 1$
 $Gini = 1 - P(C1)^2 - P(C2)^2 = 1 - 0 - 1 = 0$

P(C1) =
$$1/6$$
 P(C2) = $5/6$
Gini = $1 - (1/6)^2 - (5/6)^2 = 0.278$

$$P(C1) = 2/6$$
 $P(C2) = 4/6$
Gini = 1 - $(2/6)^2$ - $(4/6)^2$ = 0.444

Splitting Based on GINI

- Used in CART, SLIQ, SPRINT.
- When a node p is split into k partitions (children), the quality of split is computed as,

$$GINI_{split} = \sum_{i=1}^{k} \frac{n_i}{n} GINI(i)$$

where, n_i = number of records at child i, n_i = number of records at node p.

Binary Attributes: Computing GINI Index

- Splits into two partitions
- Effect of Weighing partitions:
 - Larger and Purer Partitions are sought for.

	Parent
C1	6
C2	6
Gini	= 0.500

Gini(N1)

$$= 1 - (5/7)^2 - (2/7)^2$$

= 0.194

Gini(N2)

$$= 1 - (1/5)^2 - (4/5)^2$$

= 0.528

	N1	N2							
C1	5	1							
C2	2	4							
Gini=0.333									

Gini(Children)

= 0.333

Multi-way Splits: Computing Gini Index

- For each distinct value, gather counts for each class in the dataset
- Use the count matrix to make decisions

Multi-way split

		CarType									
	Family	Sports	Luxury								
C1	1	2	1								
C2	4	1	1								
Gini	0.393										

Two-way split (find best partition of values)

	CarType								
	{Sports, Luxury}	{Family}							
C1	3	1							
C2	2	4							
Gini	0.400								

	CarType								
	{Sports}	{Family, Luxury}							
C1	2	2							
C2	1	5							
Gini	0.419								

Continuous Attributes: Computing Gini Index

- Use Binary Decisions based on one value
- Several Choices for the splitting value
 - Number of possible splitting valuesNumber of distinct values
- Each splitting value has a count matrix associated with it
 - Class counts in each of the partitions, A < v and A ≥ v
- Simple method to choose best v
 - For each v, scan the database to gather count matrix and compute its Gini index
 - Computationally Inefficient!
 Repetition of work.

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Continuous Attributes: Computing Gini Index...

- For efficient computation: for each attribute,
 - Sort the attribute on values
 - Linearly scan these values, each time updating the count matrix and computing gini index
 - Choose the split position that has the least gini index

Cheat No				No No			0	Ye	Yes Ye		s	Υe	es	N	0	No		No		No			
•			Taxable Income																				
Sorted Values	→	60 70		75		5	85 90)	9	5	10	00	120		125		220					
Split Positions		55 65		7	72		80 87		7	9	2	9	97		10 1		22 1		72 230		0		
		<=	>	<=	>	<=	^	\	^	\=	^	V =	>	<=	^	<=	^	"	^	<=	>	<=	>
	Yes	0	3	0	3	0	3	0	3	1	2	2	1	3	0	3	0	3	0	3	0	3	0
	No	0	7	1	6	2	5	3	4	3	4	3	4	3	4	4	3	5	2	6	1	7	0
	Gini	0.4	20	0.4	400 0.375		0.343		43 0.4		0.4	100	<u>0.3</u>	<u>800</u>	0.3	43	0.3	75	0.4	00	0.4	20	

Training Set: Build a Decision Tree 1

Outlook	Tempreature	Humidity	Windy	Class
Sunny	hot	high	false	N
sunny	hot	high	true	N
overcast	hot	high	false	Р
rain	mild	high	false	Р
rain	cool	normal	false	Р
rain	cool	normal	true	N
overcast	cool	normal	true	Р
sunny	mild	high	false	N
sunny	cool	normal	false	Р
rain	mild	normal	false	Р
sunny	mild	normal	true	Р
overcast	mild	high	true	Р
overcast	hot	normal	false	Р
rain	mild	high	true	N

Classification Error

Classification error at a node t:

$$Error(t) = 1 - \max_{i} P(i \mid t)$$

- Measures misclassification error made by a node.
 - ◆ Maximum (1 1/n_c) when records are equally distributed among all classes, implying least interesting information
 - Minimum (0.0) when all records belong to one class, implying most interesting information

Examples for Computing Error

$$Error(t) = 1 - \max_{i} P(i \mid t)$$

C1	0
C2	6

$$P(C1) = 0/6 = 0$$
 $P(C2) = 6/6 = 1$

Error =
$$1 - \max(0, 1) = 1 - 1 = 0$$

$$P(C1) = 1/6$$
 $P(C2) = 5/6$

Error =
$$1 - \max(1/6, 5/6) = 1 - 5/6 = 1/6$$

$$P(C1) = 2/6$$
 $P(C2) = 4/6$

Error =
$$1 - \max(2/6, 4/6) = 1 - 4/6 = 1/3$$

Comparison among Splitting Criteria

For a 2-class problem:

Tree Induction

- Greedy strategy.
 - Split the records based on an attribute test that optimizes certain criterion.

- Issues
 - Determine how to split the records
 - How to specify the attribute test condition?
 - How to determine the best split?
 - Determine when to stop splitting

Stopping Criteria for Tree Induction

Stop expanding a node when all the records belong to the same class

Stop expanding a node when all the records have similar attribute values

Early termination (to be discussed later)

Decision Tree Based Classification

Advantages:

- Inexpensive to construct
- Extremely fast at classifying unknown records
- Easy to interpret for small-sized trees
- Accuracy is comparable to other classification techniques for many simple data sets

Example: C4.5

- Simple depth-first construction.
- Uses Information Gain
- Sorts Continuous Attributes at each node.
- Needs entire data to fit in memory.
- Unsuitable for Large Datasets.
 - Needs out-of-core sorting.

You can download the software from: http://www.cse.unsw.edu.au/~quinlan/c4.5r8.tar.gz