Data Analysis Course Time Series Analysis & Forecasting

Venkat Reddy

Contents

- ARIMA
 - Stationarity
 - AR process
 - MA process
 - Main steps in ARIMA
 - Forecasting using ARIMA model
 - · Goodness of fit

Drawbacks of the use of traditional models

- There is no systematic approach for the identification and selection of an appropriate model, and therefore, the identification process is mainly trial-and-error
- There is difficulty in verifying the validity of the model
 - Most traditional methods were developed from intuitive and practical considerations rather than from a statistical foundation

ARIMA

ARIMA Models

- Autoregressive Integrated Moving-average
- A "stochastic" modeling approach that can be used to calculate the probability of a future value lying between two specified limits

AR & MA Models

- Autoregressive AR process:
 - Series current values depend on its own previous values
 - AR(p) Current values depend on its own p-previous values
 - P is the order of AR process
- Moving average MA process:
 - The current deviation from mean depends on previous deviations
 - MA(q) The current deviation from mean depends on q- previous deviations
 - q is the order of MA process
- Autoregressive Moving average ARMA process

Data Analysis Course Venkat Reddy

AR Process $\rightarrow P$

AR(1)
$$y_t = a1^* y_{t-1}$$

AR(2) $y_t = a1^* y_{t-1} + a2^* y_{t-2}$
AR(3) $y_t = a1^* y_{t-1} + a2^* y_{t-2} + a3^* y_{t-3}$

Data Analysis Course Venkat Reddy

MA Process -> 4

MA(1)
$$\varepsilon_{t} = b1*\varepsilon_{t-1}$$

MA(2) $\varepsilon_{t} = b1*\varepsilon_{t-1} + b2*\varepsilon_{t-2}$
MA(3) $\varepsilon_{t} = b1*\varepsilon_{t-1} + b2*\varepsilon_{t-2} + b3*\varepsilon_{t-3}$

ARIMA Models

- Autoregressive (AR) process:
 - Series current values depend on its own previous values
- Moving average (MA) process:
 - The current deviation from mean depends on previous deviations
- Autoregressive Moving average (ARMA) process
- Autoregressive Integrated Moving average (ARIMA)process.
- ARIMA is also known as Box-Jenkins approach. It is popular because of its generality;
- It can handle any series, with or without seasonal elements, and it has welldocumented computer programs

ARIMA Model

$$\begin{tabular}{ll} \begin{tabular}{ll} \beg$$

ARIMA (2,0,1)
$$y_t = a_1 y_{t-1} + a_2 y_{t-2} + b_1 \varepsilon_{t-1}$$

ARIMA (3,0,1) $y_t = a_1 y_{t-1} + a_2 y_{t-2} + a_3 y_{t-3} + b_1 \varepsilon_{t-1}$
ARIMA (1,1,0) $\Delta y_{t=1} = a_1 \Delta y_{t-1} + \varepsilon_t$, where $\Delta y_t = y_t - y_{t-1}$
ARIMA (2,1,0) $\Delta y_t = a_1 \Delta y_{t-1} + a_2 \Delta y_{t-2} + \varepsilon_t$ where $\Delta y_t = y_t - y_{t-1}$

To build a time series model issuing ARIMA, we need to study the time series and identify p,d,q

ARIMA equations

- ARIMA(1,0,0)
 - y_t = a₁y_{t-1} + ε_t
- ARIMA(2,0,0)
 - $y_t = a_1 y_{t-1} + a_2 y_{t-2} + \varepsilon_t$
- ARIMA (2,1,1)
 - $\Delta yt = a_1 \Delta y_{t-1} + a_2 \Delta y_{t-2} + b_1 \epsilon_{t-1}$ where $\Delta yt = yt yt 1$

Overall Time series Analysis & Forecasting Process

- Prepare the data for model building- Make it stationary
- · Identify the model type
- Estimate the parameters
- Forecast the future values

ARIMA (p,d,q) modeling

To build a time series model issuing ARIMA, we need to study the time series and identify p,d,q

- Ensuring Stationarity
 - Determine the appropriate values of d
- Identification:
 - Determine the appropriate values of p & q using the ACF, PACF, and unit root tests
 - p is the AR order, d is the integration order, q is the MA order
- Estimation:
 - Estimate an ARIMA model using values of p, d, & q you think are appropriate.
- Diagnostic checking:
 - Check residuals of estimated ARIMA model(s) to see if they are white noise; pick best model with well behaved residuals.
- Forecasting:
 - Produce out of sample forecasts or set aside last few data points for in-sample forecasting.

The Box-Jenkins Approach

Step-1: Stationarity

Some non stationary series

Stationarity

- In order to model a time series with the Box-Jenkins approach,
 the series has to be stationary
- In practical terms, the series is stationary if tends to wonder more or less uniformly about some fixed level
- In statistical terms, a stationary process is assumed to be in a particular state of statistical equilibrium, i.e., p(x_t) is the same for all t
- In particular, if z_t is a stationary process, then the first difference ∇z_t = z_t - z_{t-1}and higher differences ∇^dz_t are stationary

Testing Stationarity

- Dickey-Fuller test
 - P value has to be less than 0.05 or 5%
 - If p value is greater than 0.05 or 5%, you accept the null hypothesis, you conclude that the time series has a unit root.
 - In that case, you should first difference the series before proceeding with analysis.

What DF test?

- Imagine a series where a fraction of the current value is depending on a fraction of previous value of the series.
- DF builds a regression line between fraction of the current value Δy_t and fraction of previous value δy_{t-1}
- The usual t-statistic is not valid, thus D-F developed appropriate critical values. If P value of DF test is <5% then the series is stationary

Demo: Testing Stationarity

Sales_1 data

Demo: Testing Stationarity

Augmented Dickey-Fuller Unit Root Tests										
Туре	Lags	Rho	Pr < Rho	Tau	Pr < Tau	F	Pr > F			
Zero Mean	0	0.3251	0.7547	0.74	0.8695					
	1	0.3768	0.7678	1.26	0.9435					
	2	0.3262	0.7539	1.05	0.9180					
Single Mean	0	-6.9175		-1.77	0.3858	2.05	0.561			
	1	-3.5970		-1.06	0.7163	1.52	0.691			
	2	-3.7030		-0.88	0.7783	1.02	0.811			
Trend	0	-11.8936	0.2428	-2.50	0.3250	3.16	0.562			
	1	-7.1620	0.6017	-1.60	0.7658	1.34	0.906			
	2	-9.0903	0.4290	-1.53	0.7920	1.35	0.904			

Achieving Stationarity

- Differencing: Transformation of the series to a new time series where the values are the differences between consecutive values
- Procedure may be applied consecutively more than once, giving rise to the "first differences", "second differences", etc.
- Regular differencing (RD)

(1st order)
$$\nabla x_t = x_t - x_{t-1}$$

(2nd order) $\nabla^2 x_t = (\nabla x_t - \nabla x_{t-1}) = x_t - 2x_{t-1} + x_{t-2}$

- It is unlikely that more than two regular differencing would ever be needed
- Sometimes regular differencing by itself is not sufficient and prior transformation is also needed

Differentiation

Actual Series

Series After Differentiation

Demo: Achieving Stationarity

```
data lagsales_1;
set sales_1;
sales1=sales-lag1(sales);
run;
```

Augmented Dickey-Fuller Unit Root Tests										
Туре	Lags	Rho	Pr < Rho	Tau	Pr < Tau	F	Pr > F			
Zero Mean	0	-37.7155	<.0001	-7.46	<.0001					
	1	-32.4406	<.0001	-3.93	0.0003					
	2	-19.3900	0.0006	-2.38	0.0191					
Single Mean	0	-38.9718		-7.71	0.0002	29.70	0.0010			
	1	-37.3049		-4.10	0.0036	8.43	0.0010			
	2	-25.6253		-2.63	0.0992	3.50	0.2081			
Trend	0	-39.0703	<.0001	-7.58	0.0001	28.72	0.0010			
	1	-37.9046	<.0001	-4.08	0.0180	8.35	0.0163			
	2	-25.7179	0.0023	-2.59	0.2875	3.37	0.5234			

Demo: Achieving Stationarity

Achieving Stationarity-Other methods

- Is the trend stochastic or deterministic?
 - If stochastic (inexplicable changes in direction): use differencing
 - If deterministic(plausible physical explanation for a trend or seasonal cycle): use regression
- Check if there is variance that changes with time
 - YES: make variance constant with log or square root transformation
- Remove the trend in mean with:
 - 1st/2nd order differencing
 - Smoothing and differencing (seasonality)
- If there is seasonality in the data:
 - Moving average and differencing
 - Smoothing

Step2: Identification

Identification of orders p and q

- Identification starts with d
- ARIMA(p,d,q)
- What is Integration here?
- First we need to make the time series stationary
- We need to learn about ACF & PACF to identify p,q
- Once we are working with a stationary time series, we can examine the ACF and PACF to help identify the proper number of lagged y (AR) terms and ε (MA) terms.

Autocorrelation Function (ACF)

- Autocorrelation is a correlation coefficient. However, instead
 of correlation between two different variables, the correlation
 is between two values of the same variable at times X_i and
 X_{i+k}.
- Correlation with lag-1, lag2, lag3 etc.,
- The ACF represents the degree of persistence over respective lags of a variable.

$$\begin{split} \rho_k &= \gamma_k / \, \gamma_0 = \text{covariance at lag k/ variance} \\ \rho_k &= \underbrace{E[(y_t - \mu)(y_{t-k} - \mu)]^2}_{E[(y_t - \mu)^2]} \\ \text{ACF (0) = 1, ACF (k) = ACF (-k)} \end{split}$$

ACF Graph

Partial Autocorrelation Function (PACF)

- The exclusive correlation coefficient
- Partial regression coefficient The lag k partial autocorrelation is the partial regression coefficient, θ_{kk} in the k^{th} order auto regression
- In general, the "partial" correlation between two variables is the amount of correlation between them which is not explained by their mutual correlations with a specified set of other variables.
- For example, if we are regressing a variable Y on other variables X1, X2, and X3, the partial correlation between Y and X3 is the amount of correlation between Y and X3 that is not explained by their common correlations with X1 and X2.
- $y_t = \theta_{k1}y_{t-1} + \theta_{k2}y_{t-2} + ... + \theta_{kk}y_{t-k} + \epsilon_t$
- Partial correlation measures the degree of <u>association</u> between two <u>random variables</u>, with the effect of a set of controlling random variables removed.

PACF Graph

Identification of AR Processes & its order -p

- For AR models, the ACF will dampen exponentially
- The PACF will identify the order of the AR model:
 - The AR(1) model (y_t = a₁y_{t-1} + ε_t) would have one significant spike at lag 1 on the PACF.
 - The AR(3) model (y_t = a₁y_{t-1}+a₂y_{t-2}+a₃y_{t-3}+ε_t) would have significant spikes on the PACF at lags 1, 2, & 3.

AR(1) model

$$y_t = 0.8y_{t-1} + \varepsilon_t$$

AR(1) model

$$y_t = 0.77y_{t-1} + \varepsilon_t$$

AR(1) model

$$y_t = 0.95y_{t-1} + \varepsilon_t$$

AR(2) model

$$y_t = 0.44y_{t-1} + 0.4y_{t-2} + \varepsilon_t$$

AR(2) model

$$y_t = 0.5y_{t-1} + 0.2y_{t-2} + \varepsilon_t$$

AR(3) model

$$y_t = 0.3y_{t-1} + 0.3y_{t-2} + 0.1y_{t-3} + \epsilon_t$$

Once again

Properties of the ACF and PACF of MA, AR and ARMA Series

Process	MA(q)	AR(p)	ARMA(p,q)	
Auto-correlation function Cuts off Partial Infinite. Tails off. Autocorrelation function Exponentials & Cosine waves.		Infinite. Tails off. Dumped Exponentials and/or Cosine waves	Infinite: Tails off. Damped Exponentials and/or Cosine waves after q-p.	
		Cuts off	Infinite. Tails off. Dominated by damped Exponentials & Cosine waves after p-q.	
function	Exponentials & Costra waves	Cuty of	Equation & Consuments after p-q.	

Identification of MA Processes & its order - q

- Recall that a MA(q) can be represented as an AR(∞), thus we expect the opposite patterns for MA processes.
- The PACF will dampen exponentially.
- The ACF will be used to identify the order of the MA process.
- MA(1) (yt = εt + b1 εt-1) has one significant spike in the ACF at lag 1.
- MA (3) (yt = εt + b1 εt-1 + b2 εt-2 + b3 εt-3) has three significant spikes in the ACF at lags 1, 2, & 3.

MA(1)

$$y_t = -0.9\varepsilon_{t-1}$$

MA(1)

 $y_t = 0.7\varepsilon_{t-1}$

MA(1)

 $y_{t} = 0.99 \epsilon_{t-1}$

MA(2)

$$y_t = 0.5\varepsilon_{t-1} + 0.5\varepsilon_{t-2}$$

MA(2)

$$y_t = 0.8\varepsilon_{t-1} + 0.9\varepsilon_{t-2}$$

MA(3)

$$y_t = 0.8\epsilon_{t-1} + 0.9\epsilon_{t-2} + 0.6\epsilon_{t-3}$$

Once again

Properties of the ACF and PACF of MA, AR and ARMA Series

Process	MA(q)	AR(p)	ARMA(p,q)	
Auto-correlation Cuts off Partial Infinite. Tails off. Autocorrelation function Exponentials & Cosine waves.		Infinite. Tails off. Damped Exponentials and/or Cosine waves	Infinite: Tails off. Damped Exponentials and/or Cosine waves after q-p.	
		Conts off	Infinite. Tails off. Dominated by damped Exponentials & Cosine wave- after p-q.	
function	Exponentials & Cosme waves	Court of	Equation & Coras waves darp-q.	

ARMA(1,1)

$$y_t = 0.6y_{t-1} + 0.8\epsilon_{t-1}$$

ARMA(1,1)

$$y_t = 0.78y_{t-1} + 0.9\epsilon_{t-1}$$

ARIMA(2,1)

$$y_t = 0.4y_{t-1} + 0.3y_{t-2} + 0.9\epsilon_{t-1}$$

ARMA(1,2)

$$y_t = 0.8y_{t-1} + 0.4\varepsilon_{t-1} + 0.55\varepsilon_{t-2}$$

ta Analysis Course Venkat Reddy

ARMA Model Identification

Properties of the ACF and PACF of MA, AR and ARMA Series

Process MA(q)		AR(p)	ARMA(p,q)	
Auto-correlation function	Custs off	Infinite. Tails off. Damped Exponentials and/or Cosine waves	Infinite. Tails off. Damped Exponentials and/or Cosine waves after q-p. Infinite. Tails off. Dominated by damped Exponentials & Cosine waves after p-q.	
Partial Autocorrelation function	Infinite. Tails off. Dominated by damped Exponentials & Cosine waves.	Cuts off		
function	Exponentials & Cosme waves.	CALL OF	Exponentials & Costan Waves after p-q.	

Demo1: Identification of the model

```
proc arima data= chem_readings plots=all;
identify var=reading scan esacf center ;
run;
```


ACF is dampening, PCF graph cuts off. - Perfect example of an AR process

Demo: Identification of the model

PACF cuts off after lag 2

1.
$$d = 0, p = 2, q = 0$$

SAS ARMA(+d,q) Tenta	tive Order Sele	ction Tests	
SCAN ESACF				
p+d	q	p+d q		
2	0	2	3	
1	5	4	4	
		5	3	

$$y_t = a1y_{t-1} + a2y_{t-2} + \varepsilon_t$$

LAB: Identification of model

- Download web views data
- Use sgplot to create a trend chart
- What does ACF & PACF graphs say?
- Identify the model using below table
- Write the model equation

Properties of the ACF and PACF of MA, AR and ARMA Series

Process	MA(q)	AR(p)	ARMA(p,q)	
Auto-correlation function	Cuts off	Infinite. Tails off. Damped Exponentials and/or Cosine waves	Infinite. Tails off. Dumped Exponentials and/or Cosine waves after q-p.	
Partial Autocorrelation function	humite. Tails off. Dominated by damped Exponentials & Cosine waves.	Cuts off	Infinite. Tails off. Dominated by damped Exponentials & Cosine waves after p-q.	
Tunction	West,		oper b-d	

Step3: Estimation

Parameter Estimate

- We already know the model equation. AR(1,0,0) or AR(2,1,0) or ARIMA(2,1,1)
- We need to estimate the coefficients using Least squares.
 Minimizing the sum of squares of deviations

min
$$\sum_{t} \varepsilon_{t}^{2}$$

$$min \sum_{t=2}^{T} (y_t - \phi y_{t-1})^2$$

Demo1: Parameter Estimation

· Chemical reading data

```
proc arima data=chem_readings;
identify var=reading scan esacf center;
estimate p=2 q=0 noint method=ml;
run;
```

Maximum Likelihood Estimation					
Parameter	Estimate	Standard Error	t Value	Approx Pr > t	Lag
AR1,1	0.42444	0.06928	6.13	<.0001	1
AR1,2	0.25315	0.06928	3.65	0.0003	2

$$y_t = 0.424y_{t-1} + 0.2532y_{t-2} + \varepsilon_t$$

Lab: Parameter Estimation

· Estimate the parameters for webview data

Step4: Forecasting

Forecasting

- Now the model is ready
- We simply need to use this model for forecasting

```
proc arima data=chem_readings;
identify var=reading scan esacf center;
estimate p=2 q=0 noint method=ml;
forecast lead=4;
run;
```

	Forecasts for variable Reading					
Obs	Forecast	Std Error	95% Confidence Limits			
198	17.2405	0.3178	16.6178	17.8633		
199	17.2235	0.3452	16.5469	17.9000		
200	17.1759	0.3716	16.4475	17.9043		
201	17.1514	0.3830	16.4007	17.9020		

LAB: Forecasting using ARIMA

· Forecast the number of sunspots for next three hours

Validation: How good is my model?

- Does our model really give an adequate description of the data
- Two criteria to check the goodness of fit
 - Akaike information criterion (AIC)
 - Schwartz Bayesiancriterion (SBC)/Bayesian information criterion (BIC).
- These two measures are useful in comparing two models.
- The smaller the AIC & SBC the better the model

Goodness of fit

- Remember... Residual analysis and Mean deviation, Mean Absolute Deviation and Root Mean Square errors?
- Four common techniques are the:
 - Mean absolute deviation,

$$MAD = \sum_{i=1}^{n} \frac{|Y_i - \hat{Y}_i|}{n}$$

Mean absolute percent error

MAPE
$$= \frac{100}{n} \sum_{i=1}^{n} \frac{\left| Y_{i} - \hat{Y}_{i} \right|}{Y_{i}}$$

Mean square error,

$$MSE = \sum_{i=1}^{n} \frac{\left(\hat{\mathbf{Y}}_{i} - \hat{\mathbf{Y}}_{i} \right)^{2}}{n}$$

· Root mean square error.

$$RMSE = \sqrt{MSE}$$

Lab: Overall Steps on sunspot example

- Import the time series data
- Prepare the data for model building- Make it stationary
- · Identify the model type
- Estimate the parameters
- Forecast the future values

Thank you