Professores:

Norton T. Roman

Fátima L. S. Nunes

Slides elaborados a partir de materiais dos professores Marcos Chaim, Cid de Souza, Cândida da Silva e Delano M. Beder

Quais vocês já conhecem?

- Quais vocês já conhecem?
 - Seleção (Selection Sort)
 - Inserção (Insertion Sort)
 - Bolha (Bubble Sort)

- Quais vocês já conhecem?
 - Seleção (Selection Sort)
 - Inserção (Insertion Sort)
 - Bolha (Bubble Sort)

Qual é o melhor ???

- Quais vocês já conhecem?
 - Seleção (Selection Sort)
 - Inserção (Insertion Sort)
 - Bolha (Bubble Sort)

Qual é o melhor ???

Inserção

Bolha

```
void bolha(int [] numeros)
{
   for (ivet = numeros.length - 1; ivet > 0; ivet--)
   {
      for (isubv = 0; isubv < ivet; isubv++)

      if (numeros[isubv] > numeros[isubv+1])
      {
        temp = numeros[isubv];
        numeros [isubv] = numeros [isubv+1];
        numeros [isubv+1] = temp;
      }
   }
}
```


Melhor em quê?

- g memória
- # dificuldade

Recordando...

Algoritmo

O que é?

Recordando...

勇 Algoritmo

Informalmente (Cormen et al., 2002):

- Qualquer procedimento computacional bem definido que toma algum valor ou conjunto de valores como entrada e produz algum valor ou conjunto de valores com saída.
- Sequência de passos computacionais que transformam a entrada na saída.

Ø Que é analisar um algoritmo?

O que é analisar um algoritmo?

- Prever os recursos de que o algoritmo necessitará.
- Quais recursos?

O que é analisar um algoritmo?

- Prever os recursos de que o algoritmo necessitará.
- Quais recursos?
 - memória, largura de banda de comunicação, hardware
 - principal: tempo de computação
- Análise de algoritmos:
 - permite escolher o algoritmo mais eficiente dentre um conjunto de candidatos para resolver um problema

- Em geral, tempo de duração de um algoritmo cresce com o tamanho da entrada
 - É usual descrever o tempo de execução de um programa como uma função do tamanho de sua entrada.

- Em geral, tempo de duração de um algoritmo cresce com o tamanho da entrada
 - Tamanho de entrada (n):
 - depende do problema estudado
 - » maioria dos problemas: número de itens de entrada
 - exemplo: ordenação (quantidade de elementos do arranjo)
 - Tempo de execução:
 - quantidade de operações primitivas ou etapas executadas para uma determinada entrada
 - vamos considerar que cada linha i leva um tempo constante ci

- Função de custo de um algoritmo
 - representa o custo de tempo de cada instrução e o número de vezes que cada instrução é executada

custo vezes

Exemplo: insertion-sort(A) (entrada: array A que tem tamanho n)

1 p	ara j = 2 até tamanho[A] faça	C_1	n
2	chave = A[j]	C ₂	n-1
3 /	/ ordenando elementos à esquerda	0	n-1
4	i = j - 1	C_4	n-1
5	<pre>enquanto i > 0 e A[i] > chave faça</pre>	C ₅	$\sum_{\substack{j=2\\ \sum_{j=2}^{n} (t_{j}-1)}}^{n} t_{j}$ $\sum_{j=2}^{n} (t_{j}-1)$
6	A[i+1] = A[i]	C ₆	$\sum_{j=1}^{j-2} (t_j - 1)$
7	i = i -1	C ₇	$\sum_{i=2}^{j=2} (t_i - 1)$
8	fim enquanto		j=2
9	A[i+1] = chave	C ₈	n-1

10 fim para

 Tempo de execução do algoritmo = soma dos tempos de execução para cada instrução

$$T(n)=c_1n+c_2(n-1)+c_4(n-1)+c_5\sum_{j=2}^n t_j+c_6\sum_{j=2}^n (t_j-1)+c_7\sum_{j=2}^n (t_j-1)+c_8(n-1)$$

custo

vezes

1 para j = 2 até tamanho[A] faça n C_1 n-1chave = A[j] C_2 n-1// ordenando elementos à esquerda i = i - 1n-1 C_{Λ} enquanto i > 0 e A[i] > chave faça A[i+1] = A[i]6 i = i - 1fim enquanto 8 n-1A[i+1] = chave9 C_8

10 fim para

Tempo de execução do algoritmo = soma dos tempos de execução para cada instrução

$$T(n)=c_1n+c_2(n-1)+c_4(n-1)+c_5\sum_{j=2}^n t_j+c_6\sum_{j=2}^n (t_j-1)+c_7\sum_{j=2}^n (t_j-1)+c_8(n-1)$$

- Melhor caso: vetor já ordenado (A[i] ≤ chave na linha 5 → t_j=1 para j=2,3,...,n)
- T(n)= c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 (n-1) + c_8 (n-1) = (c_1 + c_2 + c_4 + c_5 + c_8)n (c_2 + c_4 + c_5 + c_8)
- ► Tempo de execução, neste caso, pode ser expresso como an + b para constantes a e b que dependem dos custos de instrução c_i → função linear de n

Tempo de execução do algoritmo = soma dos tempos de execução para cada instrução

$$T(n)=c_1n+c_2(n-1)+c_4(n-1)+c_5\sum_{j=2}^n t_j+c_6\sum_{j=2}^n (t_j-1)+c_7\sum_{j=2}^n (t_j-1)+c_8(n-1)$$

Pior caso: vetor em ordem inversa (deve comparar cada elemento A[j] com cada elemento do subarranjo ordenado A[j... j-1] → t_j=j para j=2,3,...,n)

$$\sum_{j=2}^{n} (j) = \frac{n(n-1)}{2} - 1 \qquad \sum_{j=2}^{n} (j-1) = \frac{n(n-1)}{2}$$

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \frac{n(n-1)}{2} - 1 + c_6 \frac{n(n-1)}{2} + c_7 \frac{n(n-1)}{2} + c_8 (n-1) = \left(\frac{c_5}{2} + \frac{c_6}{2} + \frac{c_7}{2}\right) n^2 + \left(c_1 + c_2 + c_4 + \frac{c_5}{2} - \frac{c_6}{2} - \frac{c_7}{2} + c_8\right) n \quad -(c_2 + c_4 + c_5 + c_8)$$

Tempo de execução, neste caso, pode ser expresso como an² + bn + c para constantes a, b e c que dependem dos custos de instrução c_i → função quadrática de n

Em geral:

- tempo de execução de um algoritmo é fixo para uma determinada entrada
- analisamos apenas o pior caso dos algoritmos:
 - é um limite superior sobre o tempo de execução de qualquer entrada;
 - pior caso ocorre com muita frequência para alguns algoritmos.
 Exemplo: registro inexistente em um banco de dados;
 - muitas vezes, o caso médio é quase tão ruim quanto o pior caso

- Nas análises anteriores, foram feitas algumas simplificações em relação às constantes, chegando à função linear e à função quadrática
- Taxa de crescimento ou ordem de crescimento:
 - considera apenas o termo inicial de uma fórmula (exemplo: an²), pois os termos de mais baixa ordem são relativamente insignificantes para grandes valores de n;
 - ignora o coeficiente constante do termo inicial também por ser menos significativo para grandes entradas;
 - Portanto, dizemos que: a ordenação por inserção, por exemplo, tem um tempo de execução do pior caso igual a Θ(n²) (*lê-se "theta de n ao quadrado"*);
 - Em geral, consideramos um algoritmo mais eficiente que outro se o tempo de execução do seu pio caso apresenta uma ordem de crescimento mais baixa.

與 Complexidade

(cs) sf (complexo+dade) Qualidade do que é complexo.

g Complexo

(cs) adj (lat complexu) 1 Que abrange ou encerra muitos elementos ou partes. 2 Que pode ser considerado sob vários pontos de vista. 3 Complicado.

與 Complexidade

(cs) sf (complexo+dade) Qualidade do que é complexo.

g Complexo

(cs) adj (lat complexu) 1 Que abrange ou encerra muitos elementos ou partes. 2 Que pode ser considerado sob vários pontos de vista. 3 Complicado.

த Assintótico

adj (assíntota+ico²) Geom 1 Pertencente ou relativo à assíntota. 2 Qualificativo do espaço compreendido entre uma curva e a sua assíntota. 3 Diz-se da direção paralela de uma assíntota. Var: assimptótico.

∌ Assintota

sf (gr asýmptotos) Geom Linha reta que se aproxima indefinidamente de uma curva sem nunca poder tocála. Var: assímptota.

த Assintota

sf (gr asýmptotos) Geom Linha reta que se aproxima indefinidamente de uma curva sem nunca poder tocá-

la. Var: assímptota.

A função f(x)=1/x tem como assíntotas os eixos coordenados.

(Fonte: http://pt.wikipedia.org/wiki/Assímptota)

Crescimento Assintótico de Funções

- Escolha do algoritmo não é um problema crítico quando *n* é pequeno.
 - O problema é quando n cresce.
- Por isso, é usual analisar o comportamento das funções de custo quando *n* é bastante grande:
 - analisa-se o comportamento assintótico das funções de custo;
 - representa o limite do comportamento da função de custo quando n cresce.

Crescimento Assintótico de Funções

- Eficiência assintótica dos algoritmos:
 - estuda a maneira como o tempo de execução de um algoritmo aumenta com o tamanho da entrada no limite, à medida que o tamanho da entrada aumenta indefinidamente (sem limitação)
 - em geral, um algoritmo que é assintoticamente mais eficiente será a melhor escolha para toda as entradas, exceto as pequenas.

Comportamento Assintótico

Vamos comparar funções assintoticamente, ou seja, para valores grandes, desprezando constantes multiplicativas e termos de menor ordem.

	n = 100	n = 1000	$n = 10^4$	$n = 10^6$	$n = 10^9$
log n	2	3	4	6	9
n	100	1000	10 ⁴	10^{6}	10 ⁹
$n \log n$	200	3000	$4 \cdot 10^4$	$6 \cdot 10^{6}$	$9 \cdot 10^{9}$
n ²	10 ⁴	10 ⁶	10 ⁸	10 ¹²	10^{18}
$100n^2 + 15n$	$1,0015 \cdot 10^6$	$1,00015 \cdot 10^8$	$pprox 10^{10}$	$pprox 10^{14}$	$\approx 10^{20}$
2 ⁿ	$\approx 1,26 \cdot 10^{30}$	$\approx 1,07 \cdot 10^{301}$?	?	?

Comportamento Assintótico

Supondo uma máquina que execute 1 milhão (106) de operações por segundo

Função de custo	10	20	30	40	50	60
n	0,00001s	0,00002s	0,00003s	0,00004s	0,00005s	0,00006s
n ²	0,0001s	0,0004s	0,0009s	0,0016s	0,0025s	0,0036s
n ³	0,001s	0,008s	0,027s	0,064s	0,125s	0,216s
n ⁵	0,1s	3,2s	24,3s	1,7min	5,2min	12,96min
2 ⁿ	0,001s	1,04s	17,9min	12,7dias	35,7 anos	366 séc.
3 ⁿ	0,059s	58min	6,5anos	3855séc.	10 ⁸ séc.	10 ¹³ séc.

Comportamento Assintótico

- Influência do aumento de velocidade dos computadores no tamanho do problema, considerando a complexidade assintótica
 - Exemplo: um aumento de 1000 vezes na velocidade do computador resolve, considerando o mesmo tempo, um problema dez vezes maior de complexidade $\Theta(n^3)$ e um problema 1000 vezes maior se a complexidade for $\Theta(n)$.

Função de custo	Computador Atual (C)	Computador 100C	Computador 1000C
n	x	100 <i>x</i>	1000 <i>x</i>
n ²	x	10 <i>x</i>	31.6 <i>x</i>
n ³	x	4, 6 <i>x</i>	10 <i>x</i>
2 ⁿ	x	x + 6, 6	x + 10

Comportamento Assintótico – Resumindo...

- Se f(n) é a função de complexidade de um algoritmo A
 - O comportamento assintótico de f (n) representa o limite do comportamento do custo (complexidade) de A quando n cresce.
- A análise de um algoritmo (função de complexidade)
 - Geralmente considera apenas algumas operações elementares ou mesmo uma operação elementar (e.g., o número de comparações).
- A complexidade assintótica relata crescimento assintótico das operações elementares.

B Definição:

Uma função g(n) domina assintoticamente outra função f(n) se existem duas constantes positivas c e m tais que, para n ≥ m, tem-se |f(n)| ≤ c . |g(n)|.

B Definição:

Uma função g(n) domina assintoticamente outra função f(n) se existem duas constantes positivas c e m tais que, para n ≥ m, tem-se |f(n)| ≤ c . |g(n)|.

Exemplo:

$$g(n) = n e f(n) = n^2$$

Alguém domina alguém?

尊 ???

B Definição:

Uma função g(n) domina assintoticamente outra função f(n) se existem duas constantes positivas c e m tais que, para n ≥ m, tem-se |f(n)| ≤ c . |g(n)|.

- **Exemplo:**
- $g(n) = n e f(n) = n^2$
- Alguém domina alguém?
 - $|n| \le |n^2|$ para todo $n \in \mathbb{N}$
- Para c = 1 e $m = 0 \Rightarrow |g(n)| \leq |f(n)|$
- Portanto, f (n) domina assintoticamente g(n).

- $g(n) = n e f(n) = -n^2$
- # Alguém domina alguém?
 - 穿???

- $g(n) = n e f(n) = -n^2$
- Alguém domina alguém?
 - $|n| \le |-n^2|$ para todo n ∈ N.
 - Por ser módulo, o sinal não importa
 - \not Para c = 1 e $m = 0 \Rightarrow |g(n)| \leq |f(n)|$.
- Portanto, f (n) domina assintoticamente g(n).

$$g(n) = (n+1)^2 e f(n) = n^2$$

Alguém domina alguém?

穿???

 $g(n) = (n+1)^2 e f(n) = n^2$

Alguém domina alguém?

yamos colocar em um gráfico

- $g(n) = (n+1)^2 e f(n) = n^2$
- # Alguém domina alguém?
 - Vamos colocar em um gráfico
 - p |n²| ≤ |(n+1)²|, para n ≥ 0
 - g(n) domina f(n)

$$g(n) = (n+1)^2 e f(n) = n^2$$

- # Alguém domina alguém?
 - § Será somente isso?
 - Mão há como f(n) dominar g(n)?

鎮???

$$g(n) = (n+1)^2 e f(n) = n^2$$

Alguém domina alguém?

- Não há como f(n) dominar g(n)?
 - Embre que a definição envolve tambem uma constante.
 - $\under \under \und$
 - # Então $|(n+1)^2| \leq |cn^2|$
 - # Mas, para isso, basta que $|(n+1)^2| \le |(\sqrt{c} n)^2|$,
 - ø ou |n+1| ≤ |√c n|
 - Se $\sqrt{c} = 2$, ou seja, c=4, isso é verdade

- $g(n) = (n+1)^2 e f(n) = n^2$
- Alguém domina alguém?
 - $|(n+1)^2| \le |4n^2|$, para $n \ge 0$
 - f(n) domina g(n), para n ≥ 1
- Messe caso, dizemos que f(n) e g(n) dominam assintoticamente uma a outra.

- Knuth(1971) * criou a notação O (lê-se "O grande") para expressar que g(n) domina assintoticamente f(n)
 - Escreve-se f(n) = O(g(n)) e lê-se: "f(n) é da ordem no máximo g(n)".
- Para que serve isto para o Bacharel em Sistemas de Informação?

^{*}Knuth, D.E. (1971) "Mathematical Analysis of Algorithms". *Proceedings IFIP Congress 71, vol. 1, North Holland, Amsterdam, Holanda, 135-143.*

- Knuth(1971) * criou a notação O (lê-se "O grande") para expressar que g(n) domina assintoticamente f(n)
 - Escreve-se f(n) = O(g(n)) e lê-se: "f(n) é da ordem no máximo g(n)".
- Para que serve isto para o Bacharel em Sistemas de Informação?
 - Muitas vezes calcular a função de complexidade **g(n)** de um algoritmo A é complicado.
 - É mais fácil determinar que f(n) é O(g(n)), isto é, que assintoticamente f(n) cresce no máximo como g(n).

^{*}Knuth, D.E. (1971) "Mathematical Analysis of Algorithms". *Proceedings IFIP Congress 71, vol. 1, North Holland, Amsterdam, Holanda, 135-143.*

B Definição:

 $O(g(n)) = \{f(n): existem constantes positivas <math>c \in n_0$ tais que $0 \le f(n) \le cg(n)$, para todo $n \ge n_0$

Informalmente, dizemos que, se f(n) ∈ O(g(n)), então f(n) cresce no máximo tão rapidamente

quanto g(n).

B Definição:

 $O(g(n)) = \{f(n): existem constantes positivas <math>c \in n_0$ tais que $0 \le f(n) \le cg(n)$, para todo $n \ge n_0$

$$\frac{3}{2}n^2 - 2n \in O(n^2)$$
 ?

穿???

Definição:

 $O(g(n)) = \{f(n): existem constantes positivas <math>c \in n_0$ tais que $0 \le f(n) \le cg(n)$, para todo $n \ge n_0$

$$\frac{3}{2}n^2 - 2n \in O(n^2)$$
 ?

Fazendo c = 3/2, teremos
$$\left| \frac{3}{2} n^2 - 2n \right| \le \left| \frac{3}{2} n^2 \right|$$
, para $n_0 \ge 2$

Outras constantes podem existir, mas o que importa é que existe alguma escolha para as constantes

Usamos a notação *O* para dar um limite superior sobre uma função, dentro de um fator constante.

Gom a notação *O* podemos descrever frequentemente o tempo de execução de um algoritmo apenas inspecionando a estrutura global do algoritmo.

Exemplo:

- estrutura de laço duplamente aninhado no algoritmo insertion-sort (visto anteriormente) produz um limite superior $O(n^2)$ no pior caso:
 - grando do laço interno é limitado na parte superior por O(1) (constante)
 - 🦸 índices i e j são no máximo n
 - laço interno é executado no máximo uma vez para cada um dos nº pares de valores correspondentes a *i* e *j*

Operações com a notação O

```
f(n) = O(f(n))
c \times f(n) = O(f(n)), c \text{ \'e uma constante}
O(f(n)) + O(f(n)) = O(f(n))
O(O(f(n))) = O(f(n))
O(f(n)) + O(g(n)) = O(max(f(n), g(n)))
O(f(n))O(g(n)) = O(f(n)g(n))
f(n)O(g(n)) = O(f(n)g(n))
```


Operações com a notação O

- A regra O(f(n)) + O(g(n)) = O(max(f(n),g(n)))pode ser usada para calcular o tempo de execução de uma sequência de trechos de um programa
 - Suponha 3 trechos: O(n), $O(n^2)$ e O(nlogn)
 - Qual o tempo de execução do algoritmo como um todo?
 - 穿???

Operações com a notação O

- A regra O(f(n)) + O(g(n)) = O(max(f(n),g(n)))pode ser usada para calcular o tempo de execução de uma sequência de trechos de um programa
 - Suponha 3 trechos: O(n), $O(n^2)$ e O(nlogn)
 - Qual o tempo de execução do algoritmo como um todo?
 - Expresse que o tempo de execução é a soma dos tempos de cada trecho
 - $O(n) + O(n^2) + O(nlogn) = max(O(n), O(n^2), O(nlogn)) = O(n^2)$

Notação Ω

B Definição:

- $\Omega(g(n)) = \{f(n): \text{ existem constantes positivas } c \in n_0 \text{ tais que } 0 \le cg(n) \le f(n), \text{ para todo } n \ge n_0 \}$
- Informalmente, dizemos que, se $f(n) \in \Omega(g(n))$, então f(n) cresce no mínimo tão lentamente quanto g(n).
 - Note que se $f(n) \in O(g(n))$ define um limite superior para f(n), $\Omega(g(n))$ define um limite inferior

Notação Ω

B Definição:

 $\Omega(g(n)) = \{f(n): \text{ existem constantes positivas } c \in n_0 \text{ tais que } 0 \le cg(n) \le f(n), \text{ para todo } n \ge n_0 \}$

$$\frac{3}{2}n^2 - 2n \in \Omega(n^2)$$
?

穿???

Notação Ω

Definição:

 $\Omega(g(n)) = \{f(n): \text{ existem constantes positivas } c \in n_0 \text{ tais que } 0 \le cg(n) \le f(n), \text{ para todo } n \ge n_0 \}$

$$\frac{3}{2}n^2 - 2n \in \Omega(n^2)$$
?

Fazendo c = 1/2, teremos
$$\left| \frac{3}{2} n^2 - 2n \right| \ge \left| \frac{1}{2} n^2 \right|$$
, para $n_0 \ge 2$

B Definição:

- $\Theta(g(n)) = \{f(n): \text{ existem constantes positivas } c_1, c_2 \in n_0 \}$ tais que $0 \le c_1 g(n) \le f(n) \le c_2 g(n), \text{ para todo } n \ge n_0 \}$
- Informalmente, dizemos que, se $f(n) \in \Theta(g(n))$, então f(n) cresce tão rapidamente quanto g(n).

Definição:

 $\Theta(g(n)) = \{f(n): \text{ existem constantes positivas } c_1, c_2 \in n_0 \text{ tais que } 0 \le c_1 g(n) \le f(n) \le c_2 g(n), \text{ para todo } n \ge n_0 \}$

$$\frac{3}{2}n^2 - 2n \in \Theta(n^2) ?$$

穿???

Definição:

 $\Theta(g(n)) = \{f(n): \text{ existem constantes positivas } c_1, c_2 \in n_0 \text{ tais que } 0 \le c_1 g(n) \le f(n) \le c_2 g(n), \text{ para todo } n \ge n_0 \}$

$$\frac{3}{2}n^2 - 2n \in \Theta(n^2)$$
 ?

Fazendo
$$c_1 = 1/2$$
 e $c_2 = 3/2$ teremos $\left| \frac{1}{2} n^2 \right| \le \left| \frac{3}{2} n^2 - 2n \right| \le \left| \frac{3}{2} n^2 \right|$

para $n_0 \ge 2$

Mas, já vimos que:

$$\frac{3}{2}n^2 - 2n \in O(n^2) \to \left| \frac{3}{2}n^2 - 2n \right| \le \left| \frac{3}{2}n^2 \right|$$

$$\frac{3}{2}n^2 - 2n \in \Omega(n^2) \longrightarrow \left| \frac{1}{2}n^2 \right| \le \left| \frac{3}{2}n^2 - 2n \right|$$
 e...

$$\frac{3}{2}n^2 - 2n \in \Theta(n^2) \to \left| \frac{1}{2}n^2 \right| \le \left| \frac{3}{2}n^2 - 2n \right| \le \left| \frac{3}{2}n^2 \right|$$

Será coincidência?

Mas, já vimos que:

$$\frac{3}{2}n^2 - 2n \in O(n^2) \to \left| \frac{3}{2}n^2 - 2n \right| \le \left| \frac{3}{2}n^2 \right|$$

$$\frac{3}{2}n^2 - 2n \in \Omega(n^2) \longrightarrow \left| \frac{1}{2}n^2 \right| \le \left| \frac{3}{2}n^2 - 2n \right|$$
 e...

$$\frac{3}{2}n^2 - 2n \in \Theta(n^2) \to \left| \frac{1}{2}n^2 \right| \le \left| \frac{3}{2}n^2 - 2n \right| \le \left| \frac{3}{2}n^2 \right|$$

Será coincidência?

- ₽ Não!
- \mathbf{S} Se $\mathbf{f}(\mathbf{n}) \in \mathbf{O}(\mathbf{g}(\mathbf{n}))$ e $\mathbf{f}(\mathbf{n}) \in \Omega$ ($\mathbf{g}(\mathbf{n})$), então $\mathbf{f}(\mathbf{n}) \in \mathcal{O}(\mathbf{g}(\mathbf{n}))$

- Será coincidência?
 - **貿 Não!**
 - Se $f(n) \in \mathcal{O}(g(n))$ e $f(n) \in \mathcal{\Omega}(g(n))$, então $f(n) \in \mathcal{O}(g(n))$

B Definição:

- $o(g(n)) = \{f(n): para toda constante positiva <math>c$, existe uma constante $n_0 > 0$ tal que $0 \le f(n) < cg(n)$, para todo $n \ge n_0$
- Informalmente, dizemos que, se $f(n) \in o(g(n))$, então f(n) cresce mais lentamente que g(n).
 - Intuitivamente, na notação **o**, a função f(n) tem crescimento muito menor que g(n) quando **n** tende para o infinito

$$p = 1000n^2 \in o(n^3)$$
 ?

Para todo valor de c, um n_0 que satisfaz a definição é:

$$n_0 = \left| \frac{1000}{c} \right| + 1$$

- Qual a diferença entre O e o?
 - O: <u>existem</u> constantes positivas $c \in n_0$ tais que $0 \le f(n) \le cg(n)$, para todo $n \ge n_0$
 - A expressão 0 ≤ f(n) ≤ cg(n) é válida para <u>alguma</u> constante c>0
 - *o*: <u>para toda</u> constante positiva *c*, existe uma constante $n_0 > 0$ tal que $0 \le f(n) < cg(n)$, para todo $n \ge n_0$
 - A expressão 0 ≤ f(n) < cg(n) é válida para toda constante c>0

Notação ω

B Definição:

- $\omega(g(n)) = \{f(n): para toda constante positiva <math>c$, existe uma constante $n_0 > 0$ tal que $0 \le cg(n) < f(n)$, para todo $n \ge n_0 \}$
- Informalmente, dizemos que, se $f(n) \in \omega(g(n))$, então f(n) cresce mais rapidamente que g(n).
 - Intuitivamente, na notação ω , a função f(n) tem crescimento muito maior que g(n) quando n tende para o infinito

Notação ω

- ω está para Ω , da mesma forma que σ está para σ
 - Θ e Ω são chamados de assintoticamente firmes

$$\left|\frac{1}{1000}n^2\right| \in \omega(n)$$
?

9???

Notação ω

 ω está para Ω , da mesma forma que σ está para σ

 $m{\Theta}$ e $m{\Omega}$ são chamados de assintoticamente firmes

$$\left|\frac{1}{1000}n^2\right| \in \omega(n)$$

Para todo valor de c, um n_0 que satisfaz a definição é:

$$n_0 = |1000c| + 1$$

Definições equivalentes

$$f(n) \in o(g(n))$$
 se $\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$
 $f(n) \in O(g(n))$ se $\lim_{n \to \infty} \frac{f(n)}{g(n)} < \infty$
 $f(n) \in \Theta(g(n))$ se $0 < \lim_{n \to \infty} \frac{f(n)}{g(n)} < \infty$
 $f(n) \in \Omega(g(n))$ se $\lim_{n \to \infty} \frac{f(n)}{g(n)} > 0$
 $f(n) \in \omega(g(n))$ se $\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty$

Propriedades das Classes

Reflexividade:

$$f(n) \in O(f(n)).$$

 $f(n) \in \Omega(f(n)).$
 $f(n) \in \Theta(f(n)).$

Simetria:

 $f(n) \in \Theta(g(n))$ se, e somente se, $g(n) \in \Theta(f(n))$.

Simetria Transposta:

 $f(n) \in O(g(n))$ se, e somente se, $g(n) \in \Omega(f(n))$. $f(n) \in o(g(n))$ se, e somente se, $g(n) \in \omega(f(n))$.

Propriedades das Classes

Transitividade:

```
Se f(n) \in O(g(n)) e g(n) \in O(h(n)), então f(n) \in O(h(n)).
Se f(n) \in \Omega(g(n)) e g(n) \in \Omega(h(n)), então f(n) \in \Omega(h(n)).
Se f(n) \in \Theta(g(n)) e g(n) \in \Theta(h(n)), então f(n) \in \Theta(h(n)).
Se f(n) \in o(g(n)) e g(n) \in o(h(n)), então f(n) \in o(h(n)).
Se f(n) \in \omega(g(n)) e g(n) \in \omega(h(n)), então f(n) \in \omega(h(n)).
```


Exercício

Quais as relações de comparação assintótica (O, Ω, Θ) das funções:

$$f_1(n) = 2^{\pi}$$

 $f_2(n) = 2^n$
 $f_3(n) = n \log n$
 $f_4(n) = \log n$
 $f_5(n) = 100n^2 + 150000n$
 $f_6(n) = n + \log n$
 $f_7(n) = n^2$
 $f_8(n) = n$

	<i>f</i> ₁	f ₂	f ₃	f ₄	f ₅	<i>f</i> ₆	<i>f</i> ₇	f ₈
f_1	Θ							
f_2		Θ						
f ₂ f ₃			Θ					
f ₄				Θ				
f_5					Θ			
f_6						Θ		
<i>f</i> ₇							Θ	
f ₈								Θ

Referências

- Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest & Clifford Stein. Algoritmos Tradução da 2a. Edição Americana. Editora Campus, 2002 (Capítulo 3).
- Michael T. Goodrich & Roberto Tamassia. Estruturas de Dados e Algoritmos em Java. Editora Bookman, 4a. Ed. 2007 (Capítulo 4).
- Mívio Ziviani. Projeto de Algoritmos com implementações em C e Pascal. Editora Thomson, 2a. Edição, 2004 (Seção 1.3).

Complexidade Assintótica

Professores:

Norton T. Roman

Fátima L. S. Nunes

Slides elaborados a partir de materiais dos professores Marcos Chaim, Cid de Souza, Cândida da Silva e Delano M. Beder

