Can we analytically solve neural networks?

no.

I don't care tho

Thomas Narramore

Department of Mathematics and Computer Science Western Colorado University

Spring 2024

Consider a shallow neural network with input \vec{x} , output \vec{y} , and hidden layer \vec{h} . Using activation function a.

Figure: first set of weights is W_h , second set is W_y with bias $\vec{b_h}$, $\vec{b_y}$

In matrix notation:

$$f(\vec{x}) = W_y \left(a(W_h \vec{x} + \vec{b_n}) + \vec{b_y} \right)$$

Using

$$f(\vec{x}) = W_y \left(a(W_h \vec{x} + \vec{b_n}) + \vec{b_y} \right)$$

given a set functions inputs

$$data = \{(\vec{x_1}, \vec{y_1}), \dots (\vec{x_n}, \vec{y_n})\}$$

we want W_h , W_y , $\vec{b_h}$, $\vec{b_y}$ such that

$$f(\vec{x}) = \vec{y}$$

For all $(\vec{x}, \vec{y}) \in data$

One approach: minimize loss, $L = (\vec{y} - f(\vec{x}))$ Using calculus:

- 1. Take the partial derivatives $\frac{\partial L}{\partial w_{l,i,j}}$ and $\frac{\partial L}{\partial b_{l,i}}$ for every weight and bias
- 2. Set them to 0.
- 3. Solve nonlinear system of $O\left(|\vec{h}| \times (|\vec{x}| + |\vec{y}|) \times |data|\right)$ equations.

Our matrix equation for the whole network is

$$\vec{x} = W_y \left(a(W_h \vec{x} + \vec{b_n}) + \vec{b_y} \right)$$

Writing out the equation for a single element of \vec{y} :

$$ec{y_k} = a \left(\sum_{j=1}^{|ec{h}|} w_{jk} imes a \left(\sum_{i=1}^{|ec{x}|} (w_{ij} imes x_i) + b_j \right) + b_k \right)$$

So the loss L of each input/output equation y_k looks like:

$$L = (f(x) - y_k)^2$$

$$= \left(a \left(\sum_{j=1}^{|\vec{h}|} w_{jk} \times a \left(\sum_{i=1}^{|\vec{Z}|} (w_{ij} \times x_i) + b_j\right) + b_k\right) - y_k\right)^2$$

Taking the derivative with respect to a weight in the output layer:

$$\frac{\partial L}{\partial w_{j,k}} = 2a'\left(f(\vec{x})\right)a\left(\sum_{i=1}^{|\vec{x}|}(w_{ij}x_i) + b_j\right) - 2y_k$$

Loss:

$$L = (f(x) - y_k)^2$$

$$= \left(a\left(\sum_{j=1}^{|\vec{h}|} w_{jk} \times a\left(\sum_{i=1}^{||\vec{x}||} (w_{ij} \times x_i) + b_j\right) + b_k\right) - y_k\right)^2$$

Taking the derivative with respect to a weight in the hidden layer:

$$\frac{\partial L}{\partial w_{i,j}} = 2a' \left(f \left(\sum_{j=1}^{|\vec{h}|} w_{jk} \times a \left(\sum_{i=1}^{||\vec{x}||} (w_{ij}x_i) + b_j \right) + b_k \right) \right) a' \left(\sum_{i=1}^{||\vec{x}||} (x_i) \right) - 2y_k$$

To solve, set derivative to zero.

We have $O(|data| \times |\vec{h}| \times |\vec{y}|)$ equations of the form

$$2a'\left(f(\vec{x})\right)a\left(\sum_{i=1}^{|\vec{x}|}(w_{ij}x_i)+b_j\right)-2y_k=0$$

and $O(|data| \times |\vec{h}| \times |\vec{x}|)$ of the form

$$2a'\left(f\left(\sum_{j=1}^{|\vec{h}|} w_{jk} \times a\left(\sum_{i=1}^{||\vec{x}||} (w_{ij}x_i) + b_j\right) + b_k\right)\right) a'\left(\sum_{i=1}^{||\vec{x}||} (x_i)\right) - 2y_k$$

$$= 0$$

- ▶ The difficulty of this depends on the activation function.
- Generally solving a non-linear systems is intractable (NP-Hard? Undecidable?)

- We know we need non-linearity to approximate non-linear functions.
- What if we use a quadratic activation function?
- Get a linear derivative and simplify the chain rule expressions.

$$y = (\theta_0 + \theta_1(\theta_{10} + \theta_{11}x)^2 + \theta_2(\theta_{20} + \theta_{21}x)^2)^2$$

$$=$$

$$((\theta_0 + \theta_1\theta_{10}^2 + \theta_2\theta_2^2) + (\theta_{10}\theta_{11}\theta_1 + \theta_{20}\theta_{21}\theta_2)x + (\theta_1\theta_{11}^2 + \theta_2\theta_{21})x^2)^2$$

You just get 4th degree polynomial output.

