1 Методичка НГУ

1.12

 $\overline{A_n^k} = n^k$ — число размещений с повторениями. Пусть n — число возможных букв, тогда n^k — число уникальных пар. Для 33 букв данное число равно 1089. Таким образом для аудитории в 120 человек нельзя сказать, что там всегда найдутся два человека с одинаковыми инициалами. По информации из википедии число студентов НГУ $6000 \Rightarrow$ по крайней мере два человека с одинаковыми инициалами там найдутся.

2.4 a

$$A = A_1 A_2 A_3 A_4 + A_1 A_2 \overline{A_3 A_4} + A_1 A_2 A_3 \overline{A_4} + A_1 A_2 \overline{A_3} A_4 + \overline{A_1 A_2} A_3 A_4$$

3.4

m=2 — конфигураций нас устраивает; $n=C_n^k=10$ — вариантов всего. Таким образом $P(A)=\frac{2}{10}.$

6.8

Пусть X_1^S — событие, что X_1 был отправлен, а X_1^R — X_1 принят. Тогда надо найти вероятность: $P(X_1^S/X_1^R)$. Искать будем по теореме

Байеса. $P(X_1^S)=\frac{1}{3}; P(X_1^R/X_1^S)=\frac{9}{10}; P(X_1^R)=\frac{1}{3}\cdot\frac{9}{10}+\frac{2}{3}\cdot\frac{8}{10}$. Таким образом:

$$P(X_1^S/X_1^R) = \frac{P(X_1^S) \cdot P(X_1^R/X_1^S)}{P(X_1^R)} = \frac{9/30}{13/30} = \frac{9}{13}$$

7.9

 $P(A_1)$ — вероятность, что с первого станка. $P(CFG/A_i) = C_n^k p^k q^{(n-k)}$ — так ищем вероятность получения искомой конфигурации на i-станке. По теореме Байеса найдем:

$$P(A_1/CFG) = \frac{P(A_1) \cdot P(CFG/A_1)}{\sum_{i=1}^{3} P(CFG/A_i) \cdot P(A_i)} = 0.29$$

8.4

Найдем по теореме Муавра-Лапласа: 0.0041

9.21(1)

 $\frac{66}{85}$

2 Свешников

4.1

$$0.7 \cdot 0.2 + 0.8 \cdot 0.3 + 0.7 \cdot 0.8 = 0.94$$

7.1

 A_w — достали белый шар, A_u — достали из урны, где 5 белых шаров.

$$P(A_w/A_u) = \frac{1/10.5/6}{1/2 + 5/6.1/10} = \frac{5}{32}$$

14.1

$$P(A) = 1 - P(\overline{A}) = 1 - \frac{0.001*100}{0!}e^{-0.1} \approx 0.095$$