

MATH 152 - PYTHON LAB 5

Directions: Use Python to solve each problem. (Template link)

1. Given
$$f(x) = \frac{x^3 - 4x + 3}{(x - 5)^2(x^2 + 3)(x^2 + 5)}$$

- (a) The partial fraction decomposition of f(x) is $\frac{A}{(x-5)} + \frac{B}{(x-5)^2} + \frac{Cx+D}{x^2+3} + \frac{Ex+F}{x^2+5}$. Using this, write and solve a system of equations to find A through F (as you would by hand). Integrate the resulting partial fraction decomposition.
- (b) Use Python to find the partial fraction decomposition of f and integrate the result.
- (c) Integrate f directly and indicate whether your integrals (a), (b), and (c) are the same or not.
- 2. (a) Calculate the value of a so that $\int_0^\infty \frac{x^2}{x^4 + a^2} dx = 0.1$. (Note: When defining x and a as symbolic variables, include positive = True to clear up some issues when calculating.)
 - (b) Find the value of a such that $\int_1^a x^6 e^{-x^7} dx = \int_a^\infty x^6 e^{-x^7} dx$.
 - (c) Evaluate $\int_{1}^{a} x^{6}e^{-x^{7}} dx$ using the value found in part (b), then use your result to print the value of $\int_{1}^{\infty} x^{6}e^{-x^{7}} dx$ without integrating again.

3. Let
$$f(x) = \frac{|x|\cos^2(x)}{x^3}$$
 and $g(x) = \frac{1}{x^2}$.

- (a) Show $\int_{1}^{\infty} g(x) dx$ converges.
- (b) Plot f and g on the same axes in the domain $x \in [1, 10]$ to show $f(x) \leq g(x)$ on the given interval.
- (c) Evaluate $\int_{1}^{\infty} f(x) dx$. Give exact and approximate answers.