0.1 Communication Link

- Bit pipe with a given capacity C (bit/s)
- Link capacity -> rate at which bits are transmitted to the link
- Link may transport multiplexed traffic streams

Important Variables and Expressions

 \mathbf{C}

channel capacity (total capacity)

0.2 Multiplexing Strategies

- Statistical Multiplexing
- Frequency Division Multiplexing
- Time Division Multiplexing

0.3 Statistical Multiplexing

• Packets of all traffic streams merged in a single quele (first-come, first-served)

Important Variables and Expressions

 ${f L}$

Length of packet

 T_{frame}

time of transmition

$$T_{frame} = L/C \tag{1}$$

0.4 Frequency Division Multiplexing

- Link capacity C subdivided into m portions
- Channel bandwidth W subdivided into m channels of W/m Hz
- Capacity of each channel = C/m

Important Variables and Expressions

 \mathbf{L}

Length of packet

 T_{frame}

time of transmition

 \mathbf{m}

number of divisions

 \mathbf{W}

channel bandwidth

$$T_{frame} = Lm/C (2)$$

0.5 Time Division Multiplexing

- Time axis divided into m slots of fixed length
- ullet Communication -> m channels with capacity C/m

Important Variables and Expressions

 ${f L}$

Length of packet

 T_{frame}

time of transmition

 \mathbf{m}

number of divisions

$$T_{frame} = Lm/C (3)$$

0.6 Queue Models

Figura 1: Depiction of a queue model

- Characterization of Delay Important performance parameter in computer networks
- Customers (packet to be transmitted through a link) arrive at random times to obtain service (transmit a packet)

Important Variables and Expressions

 λ

arrival rate

 μ service rate

 \mathbf{N}

Average number of customers/packets in the network

 \mathbf{T}

Average delay per packet -> waiting plus service times

 ρ

traffic intensity (occupation of the server)

 $T_{pac(frame)}$

Service time = packet transmission time

$$T_{pac(frame)} = L/C = 1/\mu \tag{4}$$

$$\rho = \lambda/\mu \tag{5}$$

0.6.1 M/M/1 Queue

Important Variables and Expressions

 T_W

average waiting time

 N_W

average number of clients waiting

$$N = \rho/1 - \rho = \lambda/\mu - \lambda \tag{6}$$

$$T = 1/\mu - \lambda \tag{7}$$

$$T_W = T - T_S = 1/\mu - \lambda - 1/\mu = \rho/\mu(1 - \rho)$$
 (8)

$$N_W = T_w \lambda = \lambda/\mu - \lambda - \lambda/\mu = N - \rho \tag{9}$$

0.6.2 M/D/1 Queue

$$T_W = \lambda E(T_{pac(frame)}^2)/2(1-\rho) \tag{10}$$