NPDAs Accept Context-Free Languages

Theorem:

Context-Free
Languages
(Grammars)

Languages
Accepted by
NPDAs

Proof - Step 1:

```
Context-Free
Languages
Languages
(Grammars)

Languages
Accepted by
NPDAs
```

Convert any context-free grammar G to a NPDA M with: L(G) = L(M)

Proof - Step 2:

```
Context-Free
Languages
(Grammars)

Languages
Accepted by
NPDAs
```

Convert any NPDA M to a context-free grammar G with: L(G) = L(M)

Deterministic PDA

DPDA

Deterministic PDA: DPDA

Allowed transitions:

$$\underbrace{q_1} \xrightarrow{a,b \to w} \underbrace{q_2}$$

$$\underbrace{q_1}^{\lambda, b \to w} q_2$$

(deterministic choices)

Allowed transitions:

(deterministic choices)

Not allowed:

(non-deterministic choices)

DPDA example

$$L(M) = \{a^n b^n : n \ge 0\}$$

The language
$$L(M) = \{a^n b^n : n \ge 0\}$$

is deterministic context-free

Definition:

A language $\,L\,$ is deterministic context-free if there exists some DPDA that accepts it

Example of Non-DPDA (NPDA)

$$L(M) = \{ww^R\}$$

$$a, \lambda \rightarrow a$$
 $a, a \rightarrow \lambda$
 $b, \lambda \rightarrow b$ $b, b \rightarrow \lambda$
 $\downarrow q_0$ $\lambda, \lambda \rightarrow \lambda$ $\downarrow q_1$ $\lambda, \$ \rightarrow \$$ $\downarrow q_2$

Not allowed in DPDAs

NPDAs

Have More Power than

DPDAs

It holds that:

Deterministic
Context-Free
Languages
(DPDA)

Context-Free
Languages
NPDAs

Since every DPDA is also a NPDA

We will actually show:

We will show that there exists a context-free language L which is not accepted by any DPDA

The language is:

$$L = \{a^n b^n\} \cup \{a^n b^{2n}\} \qquad n \ge 0$$

We will show:

- L is context-free
- L is not deterministic context-free

$$L = \{a^n b^n\} \cup \{a^n b^{2n}\}$$

Language L is context-free

Context-free grammar for L:

$$S \rightarrow S_1 \mid S_2$$

$$\{a^nb^n\} \cup \{a^nb^{2n}\}$$

$$S_1 \rightarrow aS_1b \mid \lambda$$

$$\{a^nb^n\}$$

 $\{a^nb^{2n}\}$

$$S_2 \rightarrow aS_2bb \mid \lambda$$

Theorem:

The language
$$L = \{a^nb^n\} \cup \{a^nb^{2n}\}$$

is not deterministic context-free

(there is no DPDA that accepts L)

Proof: Assume for contradiction that

$$L = \{a^n b^n\} \cup \{a^n b^{2n}\}$$

is deterministic context free

Therefore:

there is a DPDA $\,M\,$ that accepts $\,L\,$

DPDA M with $L(M) = \{a^nb^n\} \cup \{a^nb^{2n}\}$

accepts $a^n b^n$

DPDA M with $L(M) = \{a^nb^n\} \cup \{a^nb^{2n}\}$

Such a path exists because of the determinism

Fact 1: The language $\{a^nb^nc^n\}$ is not context-free

(we will prove this at a later class using pumping lemma for context-free languages)

Fact 2: The language $L \cup \{a^nb^nc^n\}$ is not context-free

$$(L = \{a^n b^n\} \cup \{a^n b^{2n}\})$$

(we can prove this using pumping lemma for context-free languages)

We will construct a NPDA that accepts:

$$L \cup \{a^nb^nc^n\}$$

$$(L = \{a^n b^n\} \cup \{a^n b^{2n}\})$$

which is a contradiction!

The NPDA that accepts $L \cup \{a^nb^nc^n\}$

Connect final states of M' with final states of M

Since $L \cup \{a^nb^nc^n\}$ is accepted by a NPDA

it is context-free

Contradiction!

(since $L \cup \{a^n b^n c^n\}$ is not context-free)

Therefore:

Not deterministic context free

$$L = \{a^n b^n\} \cup \{a^n b^{2n}\}$$

There is no DPDA that accepts

End of Proof

Supplementary proof: https://goo.gl/zoPKmY