Physique

Semestre d'automne 2018

Simon Bossoney Guido Burmeister

moodle.epfl.ch

Série 12

Exercice 1

Dehors, la température est de 0°C et l'air est saturé d'humidité. On aère une chambre de manière à renouveler l'air. Ensuite, on chauffe la chambre jusqu'à la température de 22°C. Déterminer l'humidité relative de l'air qui s'y trouve.

$$(p_{\rm sat}(0^{\circ}{\rm C}) = 0.46 \,{\rm cmHg}, \, p_{\rm sat}(22^{\circ}{\rm C}) = 1.98 \,{\rm cmHg}). \,({\rm Monard, \, chaleur \, ex. \, 3 \, p. \, 86})$$

Exercice 2

Un objet se déplace sur une droite dirigée par \vec{e}_x suivant l'horaire

$$x(t) = A\sin(\omega t + \phi).$$

Calculer sa vitesse et son accélération à chaque instant. Comparer ces fonctions entre elles. Les représenter graphiquement pour les valeurs

$$A = 5 \,\mathrm{m} \quad \omega = \frac{\pi}{40} \,\mathrm{s}^{-1} \quad \phi = 0 \,.$$

Exercice 3

On a creusé un couloir à travers un astre homogène de masse volumique ρ et de rayon R, passant par son centre. Depuis la surface, on lâche un objet dans le couloir. Décrire le mouvement de l'objet.

Exercice 4

Deux charges électriques identiques Q>0 se trouvent à une distance 2R l'une de l'autre. On envoie une troisième charge positive q de masse m depuis le point milieu en direction de l'une des charges avec une faible vitesse \vec{v}_0 . La force électrique entre deux charges q>0 et Q>0 étant d'intensité $F=\frac{1}{4\pi\varepsilon_0}\frac{qQ}{r^2}$ (ε_0 est une constante, r la distance entre les charges), donner le mouvement de la charge q.

Exercice 5

On suspend une masse m à l'extrémité d'un ressort vertical de longueur au repos ℓ_0 et de constante k .

- (a) Quelle est la longueur du ressort à l'équilibre de la masse?
- (b) Lorsque la masse oscille, que valent la pulsation et la période du mouvement? Indication : pour commencer, choisir l'origine au point de fixation du ressort au plafond. Choisir ensuite une origine plus appropriée.

Exercice 6

On pousse un pendule simple de masse m et de longueur L de sorte à lui donner une vitesse horizontale $\vec{v_0}$ lorsqu'il est en position verticale. Il oscille alors avec une petite amplitude.

- (a) Que vaut la tension du fil lorsque le fil est vertical?
- (b) Quelle est la hauteur la plus grande atteinte par la masse m?
- (c) Donner l'angle que fait le pendule avec la verticale en fonction du temps.
- (d) Combien d'aller-retour à la seconde le pendule effectue-t-il?

Exercice 7

Une bille de masse m est propulsée par un ressort de constante k sur un rail situé dans un plan vertical, formé d'un segment AB d'angle α avec le sol, suivi d'un arc de cercle BC, de rayon R et dont le centre est à la même hauteur que A, et d'un segment horizontal CD de longueur L. La masse s'immobilise en D.

Sur le trajet de A à C, les frottements sont négligeables. Sur le trajet de C à D, un frottement constant s'exerce sur m.

Soit d_0 la compression initiale du ressort.

- (a) Si la masse ne décolle pas du rail, donner la condition sur d_0 pour que m passe en C.
- (b) Quelle est l'intensité de la force de frottement sur le tronçon CD?
- (c) Donner la condition sur d_0 pour que m ne décolle pas du rail en B.

Exercice 8

Remarque préliminaire. Un fil est élastique si, en extension, il se comporte comme un ressort : la force de rappel a pour norme $T = k(l-l_0)$, où l est la longueur totale du fil en extension, l_0 sa longueur au repos et k sa constante de rigidité (voir le dessin ci-contre).

On considère un fil élastique, de constante k et de longueur au repos l_0 , fixé à un mur vertical en un point A. Le sommet B d'un demi-cercle de rayon R se trouve au niveau de A et à la distance l_0 .

Depuis B, on tire alors sur le fil élastique le long du demi-cercle jusqu'à la position repérée par l'angle $\alpha_0 = \pi/3$ et on y attache une masse. On lâche alors le fil.

Tous les frottements étant négligeables, déterminer la masse dans les cas suivants :

- (a) elle reste à l'équilibre en α_0 ;
- (b) elle remonte le long du demi-cercle et décolle au sommet B.

Exercice 9

Deux gaz monoatomiques initialement à pression, volume et température p_1 , V_1 , T_1 et p_2 , V_2 , T_2 sont séparés par une cloison. Tout le dispositif est hermétique et isolé de l'environnement. La cloison est ensuite enlevée.

Calculez la pression et la température d'équilibre.

Exercice 10

Une boîte de section horizontale S, hermétique et isolée, repose sur le sol. Un piston de masse m la sépare en deux parties, la partie inférieure contenant un gaz monoatomique, la partie supérieure étant vide. Lorsque le piston est bloqué à la hauteur h_0 , la température du gaz est T_0 et sa pression vaut $p_0 = \frac{2mg}{S}$.

(a) Déterminer le nombre de molécules du gaz.

On débloque le piston. Il se déplace (sans frottement) et s'immobilise à une nouvelle hauteur.

- (b) Déterminer la nouvelle pression du gaz. Donner la relation entre la hauteur du piston et la température du gaz.
- (c) L'énergie interne du gaz a-t-elle changé ? Sous quelle forme retrouve-t-on la différence d'énergie ?
- (d) Déterminer la nouvelle température du gaz.

Réponses

Ex. 1 23.23%.

Ex. 2
$$\ddot{x} = -\omega_0^2 x$$

Ex. 3
$$R\cos(\omega_0 t)$$

Ex. 4
$$\frac{v_0}{\omega_0}\sin(\omega_0 t)$$

Ex. 5 (a)
$$\ell_0 + \frac{mg}{k}$$
 (b) $\omega_0 = \sqrt{\frac{k}{m}}$

Ex. 6 (a)
$$m\left(g + \frac{v_0^2}{L}\right)$$
 (b) $\frac{v_0^2}{2g}$ **(c)** $\frac{v_0}{L\omega_0}\sin(\omega_0 t)$ **(d)** $\frac{1}{2\pi}\sqrt{\frac{g}{L}}$

Ex. 7 (a)
$$d_0 \ge \sqrt{\frac{2mgR}{k}}$$
 (b) $\frac{1}{L} (\frac{1}{2}kd_0^2 - mgR)$ (c) $d_0 < \sqrt{\frac{3mgR\cos\alpha}{k}}$.

Ex. 8 (a)
$$\frac{2\pi Rk}{3\sqrt{3}g}$$
 (b) $\frac{kR\pi^2}{18g}$

Ex. 9
$$\frac{p_1V_1+p_2V_2}{V_1+V_2}$$
 et $\frac{N_1T_1+N_2T_2}{N_1+N_2}$.

Ex. 10 (a)
$$\frac{2mgh_0}{kT_0}$$
 (b) $hT_0 = 2h_0T$ (c) E_{pot} (d) $\frac{4}{5}T_0$.