Chapter 2: Arithmetic for Computers

Ngo Lam Trung

[with materials from Computer Organization and Design, 4th Edition, Patterson & Hennessy, © 2008, MK and M.J. Irwin's presentation, PSU 2008]

Content

- Integer representation and arithmetic
- □ Floating point number representation and arithmetic

What are stored inside computer?

- □ Data, of course!
- And data is represented as binary numbers
- Then how binary numbers are treated by MIPS?
 - Integers
 - Unsigned
 - Signed
 - Floating point numbers
 - Single precision
 - Double precision
 - Other formats

Unsigned Binary Integers

Using n-bit binary number to represent non-negative integer

$$\begin{split} x &= x_{n-1} x_{n-2} ... x_1 x_0 \\ &= x_{n-1} 2^{n-1} + x_{n-2} 2^{n-2} + \dots + x_1 2^1 + x_0 2^0 \end{split}$$

- □ Range: 0 to +2ⁿ 1
- Example

0000 0000 0000 0000 0000 0000 1011₂
=
$$0 + ... + 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 1 \times 2^0$$

= $0 + ... + 8 + 0 + 2 + 1 = 11_{10}$

Data range using 32 bits

0 to
$$2^{32}$$
-1 = 4,294,967,295

Eg: 32 bit Unsigned Binary Integers

Hex	Binary	Decimal
0x00000000	00000	0
0x0000001	00001	1
0x00000002	00010	2
0x00000003	00011	3
0x0000004	00100	4
0x0000005	00101	5
0x00000006	00110	6
0x0000007	00111	7
0x00000008	01000	8
0x00000009	01001	9
0xFFFFFFC	11100	2 ³² -4
0xFFFFFFD	11101	2 ³² -3
0xFFFFFFE	11110	2 ³² -2
0xFFFFFFF	11111	2 ³² -1

Convert to 32-bit integers

25 = 0000 0000 0000 0000 0000 0001 1001

125 = 0000 0000 0000 0000 0000 0000 0111 1101

255 = 0000 0000 0000 0000 0000 0000 1111 1111

Convert 32-bit integers to decimal

 $0000\ 0000\ 0000\ 0000\ 0000\ 1100\ 1111 = 207$

 $0000\ 0000\ 0000\ 0000\ 0001\ 0011\ 0011 = 307$

Signed binary integers

Using n-bit binary number to represent integer, including negative values

$$\begin{split} x &= x_{n-1} x_{n-2} ... x_1 x_0 \\ &= -x_{n-1} 2^{n-1} + x_{n-2} 2^{n-2} + \dots + x_1 2^1 + x_0 2^0 \end{split}$$

- □ Range: -2^{n-1} to $+2^{n-1} 1$
- Example

■ Using 32 bits

-2,147,483,648 to +2,147,483,647

Signed integer negation

- □ Given $x = x_{n-1}x_{n-2}$ x_1x_0 , how to calculate -x?
- □ Let $\bar{x} = 1$'s complement of x

$$\bar{x} = 1111 \dots 11_2 - x$$

(1 \rightarrow 0, 0 \rightarrow 1)

Then

$$\bar{x} + x = 1111 \dots 11_2 = -1$$

$$\rightarrow$$
 $\bar{x} + 1 = -x$

Example: find binary representation of -2

$$+2 = 0000 \ 0000 \dots 0010_2$$

 $-2 = 1111 \ 1111 \dots 1101_2 + 1$
 $= 1111 \ 1111 \dots 1110_2$

Signed binary negation

		-0	2'sc binary	decimal
		-2 ³ =	1000	-8
	-(2	2 ³ - 1) =	1001	-7
			1010	-6
K			1011	-5
complement	all the		1100	-4
bits	1011		1101	-3
0101			1110	-2
	and add a 1		1111	-1
and add a 1			0000	0
0110	1010		0001	1
\			0010	2
	complement all	the	0011	3
	bits		0100	4
			0101	5
			→ 0110	6
CO&ISA, NLT 2021		2 ³ - 1 =	0111	7

□ Find 16 bit signed integer representation of

```
16 = 0000\ 0000\ 0001\ 0000
```

-16 = 1111 1111 1111 0000

100 = 0000 0000 0110 0100

-100 = 1111 1111 1001 1100

Sign extension

- □ Given n-bit integer $x = xn_{-1}x_{n-2} x_1x_0$
- □ Find corresponding m-bit representation (m > n) with the same numeric value

$$x = xm_{-1}x_{m-2}$$
 x_1x_0

- □ → Replicate the sign bit to the left
- □ Examples: 8-bit to 16-bit
 - +2: 0000 0010 => 0000 0000 0000 0010
 - -2: 1111 1110 => 1111 1111 1111 1110

Addition and subtraction

Addition

- Similar to what you do to add two numbers manually
- Digits are added bit by bit from right to left
- Carries passed to the next digit to the left

Subtraction

Negate the second operand then add to the first operand

 $\begin{array}{c} \bullet \\ \hline 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0111_{\mathsf{two}} = 7_{\mathsf{ten}} \\ \hline 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 01101_{\mathsf{two}} = 6_{\mathsf{ten}} \\ \hline \hline 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 1101_{\mathsf{two}} = 13_{\mathsf{ten}} \\ \hline \end{array}$

Examples

□ All numbers are 8-bit signed integer

$$12 + 8 =$$

$$122 + 8 =$$

$$122 + 80 =$$

Dealing with Overflow

- Overflow occurs when the result of an operation cannot be represented in 32-bits, i.e., when the sign bit contains a value bit of the result and not the proper sign bit
 - When adding operands with different signs or when subtracting operands with the same sign, overflow can never occur

Operation	Operand A	Operand B	Result indicating overflow
A + B	≥ 0	≥ 0	< 0
A + B	< 0	< 0	≥ 0
A - B	≥ 0	< 0	< 0
A - B	< 0	≥ 0	≥ 0

Basics of logic design (Appendix B)

- Boolean logic: logic variable and operators
- Logic variable: values of 1 (TRUE) or 0 (FALSE)
- Basic operators: AND, OR, NOT
 - \square A AND B: $A \cdot B$ hay AB
 - \square A OR B: A+B
 - \square NOT A:
 - □ Order: NOT > AND > OR
- Additional operators: NAND, NOR, XOR
 - \square A NAND B: $A \cdot B$
 - \square A NOR B: A+B

Truth tables

А	В	A AND B A•B
0	0	0
0	1	0
1	0	0
1	1	1

А	В	A OR B A + B
0	0	0
0	1	1
1	0	1
1	1	1

0 1 1 0	A	NOT A
		Α
1 0	0	1
	1	0

Unary operator NOT

Α	В	A NAND B
A	Ь	A∙B
0	0	1
0	1	1
1	0	1
1	1	0

•	_	A MOR B
Α	В	AA ⊕ BB
0	0	0
0	1	0
1	0	0
1	1	0

Laws of Boolean algebra

$$A \cdot B = B \cdot A$$

$$A \bullet (B + C) = (A \bullet B) + (A \bullet C)$$

$$1 \cdot A = A$$

$$A \bullet \overline{A} = 0$$

$$0 \cdot A = 0$$

$$A \cdot A = A$$

$$A \cdot (B \cdot C) = (A \cdot B) \cdot C$$

$$\overline{A \cdot B} = \overline{A} + \overline{B}$$
 (DeMorgan's law)

$$A + B = B + A$$

$$A + (B \bullet C) = (A + B) \bullet (A + C)$$

$$0 + A = A$$

$$A + \overline{A} = 1$$

$$1 + A = 1$$

$$A + A = A$$

$$A + (B + C) = (A + B) + C$$

$$\overline{A + B} = \overline{A} \cdot \overline{B}$$
 (DeMorgan's law)

Logic gates

Name	Graphical Symbol	Algebraic Function	Truth Table
AND	A B F	$F = A \bullet B$ or $F = AB$	AB F 0000 010 100 1111
OR	A B F	F = A + B	AB F 0000 011 101 1111
NOT	A F	$F = \overline{A}$ or $F = A'$	A F 0 1 1 0
NAND	A B F	$F = \overline{AB}$	AB F 0011 011 101 110
NOR	A B F	$F = \overline{A + B}$	A B F 0 0 1 0 1 0 1 0 0 1 1 0
XOR	A B F	$F = A \oplus B$	A B F 0 0 0 0 1 1 1 0 1 1 1 0

Adder implementation

□ 1-bit full adder

Inputs			Outputs	
Α	В	Cin	S	Cout
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

$$\Box S = Cin \oplus (A \oplus B)$$

$$\bigcirc$$
 Cout = $AB + BCin + ACin$

Adder implementation

N-bit ripple-carry adder

Performance depends on data length

→ Performance is low

Making addition faster: infinite hardware

- Parallelize the adder with the cost of hardware
- Given the addition:

$$a_{n-1}a_{n-2} a_1a_0 + b_{n-1}b_{n-2} b_1b_0$$

 \Box Let c_i is the carry at bit i

$$c2 = (b1.c1) + (a1.c1) + (a1.b1)$$

 $c1 = (b0.c0) + (a0.c0) + (a0.b0)$

Find c2 from a0, b0, a1, b1?

Making addition faster: Carry Lookahead

- Approach
 - Make hardwired 4 bit adder → fast and simple enough
 - Develop a carry lookahead unit to calculate the carry bit before finishing the addition
- At bit i

$$ci + 1 = (bi \cdot ci) + (ai \cdot ci) + (ai \cdot bi)$$
$$= (ai \cdot bi) + (ai + bi) \cdot ci$$

Denote

$$gi = ai \cdot bi$$

 $pi = ai + bi$

Then

$$ci + 1 = gi + pi \cdot ci$$

Carry lookahead

With 4-bit adder

$$c1 = g0 + (p0 \cdot c0)$$

$$c2 = g1 + (p1 \cdot g0) + (p1 \cdot p0 \cdot c0)$$

$$c3 = g2 + (p2 \cdot g1) + (p2 \cdot p1 \cdot g0) + (p2 \cdot p1 \cdot p0 \cdot c0)$$

$$c4 = g3 + (p3 \cdot g2) + (p3 \cdot p2 \cdot g1) + (p3 \cdot p2 \cdot p1 \cdot g0)$$

$$+ (p3 \cdot p2 \cdot p1 \cdot p0 \cdot c0)$$

- → All carry bits can be calculated after 3 gate delay
- → All result bits can be calculated after maximum of 4 gate delay

→ How to implement bigger adder?

Carry lookahead

□ For 16-bit adder → fast C1, C2, C3, C4 is needed

Carry lookahead

Denote

$$P0 = p3 \cdot p2 \cdot p1 \cdot p0$$

$$G0 = g3 + (p3 \cdot g2) + (p3 \cdot p2 \cdot g1) + (p3 \cdot p2 \cdot p1 \cdot g0)$$

$$P1 = p7 \cdot p6 \cdot p5 \cdot p4$$

$$G1 = g7 + (p7 \cdot g6) + (p7 \cdot p6 \cdot g5) + (p7 \cdot p6 \cdot p5 \cdot g4)$$

$$P2 = p11 \cdot p10 \cdot p9 \cdot p8$$

$$G2 = g11 + (p11 \cdot g10) + (p11 \cdot p10 \cdot g9) + (p11 \cdot p10 \cdot p9 \cdot g8)$$

$$P3 = p15 \cdot p14 \cdot p13 \cdot p12$$

$$G3 = g15 + (p15 \cdot g14) + (p15 \cdot p14 \cdot g13) + (p15 \cdot p14 \cdot p13 \cdot g12)$$

Then big-carry bits can be calculated fast

$$C1 = G0 + (P0 \cdot c0)$$

$$C2 = G1 + (P1 \cdot G0) + (P1 \cdot P0 \cdot c0)$$

$$C3 = G2 + (P2 \cdot G1) + (P2 \cdot P1 \cdot G0) + (P2 \cdot P1 \cdot P0 \cdot c0)$$

$$C4 = G3 + (P3 \cdot G2) + (P3 \cdot P2 \cdot G1) + (P3 \cdot P2 \cdot P1 \cdot G0) + (P3 \cdot P2 \cdot P1 \cdot P0 \cdot c0)$$

16-bit Adder

□ Dertermine g_i , pi, G_i , Pi when adding the two 16-bit numbers

$$a = 0001 1010 0011 0011$$

 $b = 1110 0101 1110 1011$

 \Box Calculate c_{15}

$$\begin{array}{c} \exists \ p_i, g_i \\ pi = ai \cdot bi \\ pi = ai + bi \end{array} \\ \begin{array}{c} \exists \ p_i, g_i \\ pi = ai + bi \end{array} \\ \begin{array}{c} \exists \ p_i, g_i \\ \exists \ p_i, g_i \\$$

$$G0 = g3 + (p3 \cdot g2) + (p3 \cdot p2 \cdot g1) + (p3 \cdot p2 \cdot p1 \cdot g0)$$

$$= 0 + (1 \cdot 0) + (1 \cdot 0 \cdot 1) + (1 \cdot 0 \cdot 1 \cdot 1) = 0 + 0 + 0 + 0 + 0 = 0$$

$$G1 = g7 + (p7 \cdot g6) + (p7 \cdot p6 \cdot g5) + (p7 \cdot p6 \cdot p5 \cdot g4)$$

$$= 0 + (1 \cdot 0) + (1 \cdot 1 \cdot 1) + (1 \cdot 1 \cdot 1 \cdot 0) = 0 + 0 + 1 + 0 = 1$$

$$G2 = g11 + (p11 \cdot g10) + (p11 \cdot p10 \cdot g9) + (p11 \cdot p10 \cdot p9 \cdot g8)$$

$$= 0 + (1 \cdot 0) + (1 \cdot 1 \cdot 0) + (1 \cdot 1 \cdot 1 \cdot 0) = 0 + 0 + 0 + 0 = 0$$

$$G3 = g15 + (p15 \cdot g14) + (p15 \cdot p14 \cdot g13) + (p15 \cdot p14 \cdot p13 \cdot g12)$$

$$= 0 + (1 \cdot 0) + (1 \cdot 1 \cdot 0) + (1 \cdot 1 \cdot 1 \cdot 0) = 0 + 0 + 0 + 0 = 0$$

 $ightharpoonup c_{15}$ is actually C_4

$$C4 = G3 + (P3 \cdot G2) + (P3 \cdot P2 \cdot G1) + (P3 \cdot P2 \cdot P1 \cdot G0) + (P3 \cdot P2 \cdot P1 \cdot P0 \cdot c0) = 0 + (1 \cdot 0) + (1 \cdot 1 \cdot 1) + (1 \cdot 1 \cdot 1 \cdot 0) + (1 \cdot 1 \cdot 1 \cdot 0 \cdot 0) = 0 + 0 + 1 + 0 + 0 = 1$$

Compare performance of 16-bit ripple carry and 16-bit carry lookahead adders, assuming delay of all logic gates are equal?

Multiply

Binary multiplication is just a bunch of right shifts and adds

n-bit multiplicand and multiplier → 2n-bit product

Example

Multiplicand		1000_{ten}
Multiplier	Χ	1001_{ten}
		1000
		0000
		0000
		1000
Product		1001000 _{ten}

Add and Right Shift Multiplier Hardware

Fast multiplier – Design for Moore

■ Why is this fast?

Fast multiplier – Design for Moore

- How fast is this?
- Anything wrong?

Multiply Instruction

Multiply (mult and multu) produces a double precision product (2 x 32 bit)

- Two additional registers: hi and lo
- □ Low-order word of the product is stored in processor register
 ¹o and the high-order word is stored in register
- Instructions mfhi rd and mflo rd are provided to move the product to (user accessible) registers in the register file

Division

Division is just a bunch of quotient digit guesses and left shifts and subtracts

dividend = quotient x divisor + remainder

Left Shift and Subtract Division Hardware

Divide Instruction

Divide (div and divu) generates the reminder in hi and the quotient in lo

- Instructions mfhi rd and mflo rd are provided to move the quotient and reminder to (user accessible) registers in the register file
- As with multiply, divide ignores overflow so software must determine if the quotient is too large. Software must also check the divisor to avoid division by 0.

Signed integer multiplication and division

- Reuse unsigned multiplication then fix product sign later
- Multiplication
 - Multiplicand and multiplier are of the same sign: keep product
 - Multiplicand and multiplier are of different sign: negate product
- Division:
 - Dividend and divisor of the same sign:
 - Keep quotient
 - Keep/negate remainder so it is of the same sign with dividend
 - Dividend and divisor of different sign:
 - Negate quotient
 - Keep/negate remainder so it is of the same sign with dividend

Signed integer with Booth algorithm

Representing Big (and Small) Numbers

- Encoding non-integer value?
 - □ Earth mass: (5.9722±0.0006)×1024 (kg)

 - PI number

- Problem: how to represent the above numbers?
- → We need reals or floating-point numbers!
- → Floating point numbers in decimal:
 - **→** 1000
 - $\rightarrow 1 \times 10^3$
 - $\rightarrow 0.1 \times 10^4$

Floating point number

■ In decimal system

$$2013.1228 = 201.31228 * 10$$

$$= 20.131228 * 10^{2}$$

$$= 2.0131228 * 10^{3}$$

$$= 20131228 * 10^{-4}$$

What is the "standard" form?

$$2.0131228 * 10^3 = 2.0131228E + 03$$
mantissa exponent

- □ In binary $X = \pm 1.xxxxx * 2^{yyyy}$
- Sign, mantissa, and exponent need to be represented

Floating point number

Floating point representation in binary

- Still have to fit everything in 32 bits (single precision)
- □ Bias = 127 with single precision floating point number

	S	E (exponent)	F (fraction)
1 sig	jn b	oit 8 bits	23 bits

Defined by the IEEE 754-1985 standard

Single precision: 32 bit

Double precision: 64 bit

Correspond to float and double in C

Ex1: convert X into decimal value

 $X = 1100\ 0001\ 0101\ 0110\ 0000\ 0000\ 0000\ 0000$

```
sign = 1 \rightarrow X is negative

E = 1000 0010 = 130

F = 10101100...00

\rightarrow X = (-1)<sup>1</sup> x 1.101011000..00 x 2<sup>130-127</sup>

= -1.101011 x 2<sup>3</sup> = -1101.011

= -13.375
```

Ex2: find decimal value of X

 $X = 0011 \ 1111 \ 1000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000$

sign = 0
e = 0111 1111 = 127
m = 000...0000 (23 bit 0)
X =
$$(-1)^0$$
 x 1.00...000 x $2^{127-127}$ = 1.0

Ex3: find binary representation of X = 9.6875 in IEEE 754 single precision

Converting X to plain binary

$$9_{10} = 1001_2$$

$$\rightarrow$$
 9.6875₁₀ = 1001.1011₂

Ex3: find binary representation of X = 9.6875 in IEEE 754 single precision

$$X = 9.6875_{(10)} = 1001.1011_{(2)} = 1.0011011 \times 2^{3}$$

Then
$$S = 0$$

$$e = 127 + 3 = 130_{(10)} = 1000 \ 0010_{(2)}$$

$$m = 001101100...00 \ (23 \ bit)$$

- \square 1.0₂ x 2⁻¹ =
- □ 100.75₁₀ =

Some special values

- □ Largest+: 0 11111110 1.11111111111111111111111 = $(2-2^{-23}) \times 2^{254-127}$

Too large or too small values

- Overflow (floating point) happens when a positive exponent becomes too large to fit in the exponent field
- Underflow (floating point) happens when a negative exponent becomes too large to fit in the exponent field

- Reduce the chance of underflow or overflow is to offer another format that has a larger exponent field
 - Double precision takes two MIPS words

s E (exponent)		F (fraction)						
1 bit	11 bits	20 bits						
F (fraction continued)								
<u> </u>	<u> </u>							

32 bits

Reduce underflow with the same bit length?

De-normalized number

IEEE 754 FP Standard Encoding

- Special encodings are used to represent unusual events
 - ± infinity for division by zero
 - NAN (not a number) for invalid operations such as 0/0
 - True zero is the bit string all zero

Single Pre	ecision	Double Precision		Object
E (8)	F (23)	E (11)	F (52)	Represented
0000 0000	0	0000 0000	0	true zero (0)
0000 0000	nonzero	0000 0000	nonzero	± denormalized number
0111 1111 to +127,-126	anything	01111111 to +1023,-1022	anything	± floating point number
1111 1111	+ 0	1111 1111	- 0	± infinity
1111 1111	nonzero	1111 1111	nonzero	not a number (NaN)

Floating Point Addition

Addition (and subtraction)

$$(\pm F1 \times 2^{E1}) + (\pm F2 \times 2^{E2}) = \pm F3 \times 2^{E3}$$

- Step 0: Restore the hidden bit in F1 and in F2
- Step 1: Align fractions by right shifting F2 by E1 E2 positions (assuming E1 ≥ E2) keeping track of (three of) the bits shifted out in G R and S
- Step 2: Add the resulting F2 to F1 to form F3
- □ Step 3: Normalize F3 (so it is in the form 1.XXXXX ...)
 - If F1 and F2 have the same sign → F3 ∈[1,4) → 1 bit right shift F3 and increment E3 (check for overflow)
 - If F1 and F2 have different signs → F3 may require many left shifts each time decrementing E3 (check for underflow)
- Step 4: Round F3 and possibly normalize F3 again
- Step 5: Rehide the most significant bit of F3 before storing the result

Floating Point Addition Example

Add

$$(0.5 = 1.0000 \times 2^{-1}) + (-0.4375 = -1.1100 \times 2^{-2})$$

- Step 0:
- Step 1:
- □ Step 2:

- Step 3:
- Step 4:
- Step 5:

Floating Point Addition Example

- Add: 0.5 + (-0.4375) = ? $(0.5 = 1.0000 \times 2^{-1}) + (-0.4375 = -1.1100 \times 2^{-2})$
 - □ Step 0: Hidden bits restored in the representation above
 - Step 1: Shift significand with the smaller exponent (1.1100) right until its exponent matches the larger exponent (so once)
 - Step 2: Add significands
 1.0000 + (-0.111) = 1.0000 0.111 = 0.001
 - Step 3: Normalize the sum, checking for exponent over/underflow
 - $0.001 \times 2^{-1} = 0.010 \times 2^{-2} = ... = 1.000 \times 2^{-4}$
 - □ Step 4: The sum is already rounded, so we're done
 - Step 5: Rehide the hidden bit before storing

Floating Point Multiplication

Multiplication

$$(\pm F1 \times 2^{E1}) \times (\pm F2 \times 2^{E2}) = \pm F3 \times 2^{E3}$$

- Step 0: Restore the hidden bit in F1 and in F2
- Step 1: Add the two (biased) exponents and subtract the bias from the sum, so E1 + E2 127 = E3
 - also determine the sign of the product (which depends on the sign of the operands (most significant bits))
- Step 2: Multiply F1 by F2 to form a double precision F3
- □ Step 3: Normalize F3 (so it is in the form 1.XXXXX ...)
 - Since F1 and F2 come in normalized → F3 ∈[1,4) → 1 bit right shift F3 and increment E3
 - Check for overflow/underflow
- Step 4: Round F3 and possibly normalize F3 again
- Step 5: Rehide the most significant bit of F3 before storing the result

Floating Point Multiplication Example

Multiply

$$(0.5 = 1.0000 \times 2^{-1}) \times (-0.4375 = -1.1100 \times 2^{-2})$$

- Step 0:
- Step 1:

- Step 2:
- Step 3:
- Step 4:
- Step 5:

CO&ISA, NLT 2021

60

Floating Point Multiplication Example

Multiply

$$(0.5 = 1.0000 \times 2^{-1}) \times (-0.4375 = -1.1100 \times 2^{-2})$$

- □ Step 0: Hidden bits restored in the representation above
- Step 1: Add the exponents (not in bias would be -1 + (-2) = -3 and in bias would be (-1+127) + (-2+127) 127 = (-1-2) + (127+127-127) = -3 + 127 = 124
- Step 2: Multiply the significands
 1.0000 x 1.110 = 1.110000
- Step 3: Normalized the product, checking for exp over/underflow
 1.110000 x 2⁻³ is already normalized
- □ Step 4: The product is already rounded, so we're done
- Step 5: Rehide the hidden bit before storing

Support for Accurate Arithmetic

- □ IEEE 754 FP rounding modes
 - □ Always round up (toward +∞)
 - □ Always round down (toward -∞)
 - Truncate
 - Round to nearest even (when the Guard || Round || Sticky are 100) always creates a 0 in the least significant (kept) bit of F
- Rounding (except for truncation) requires the hardware to include extra F bits during calculations
 - □ Guard and Round bit 2 additional bits to increase accuracy
 - Sticky bit used to support Round to nearest even; is set to a 1 whenever a 1 bit shifts (right) through it (e.g., when aligning F during addition/subtraction)

Calculate:

$$0.2 \times 5 = ?$$

$$0.333 \times 3 = ?$$

$$(1.0/3) \times 3 = ?$$