Devoir à la maison n°17

- ▶ Le devoir devra être rédigé sur des copies *doubles*.
- ▶ Les copies ne devront comporter ni rature, ni renvoi, ni trace d'effaceur.
- ▶ Toute copie ne satisfaisant pas à ces exigences devra être intégralement récrite.

Problème 1 –

Dans tout le problème, E est un R-espace vectoriel de dimension 3.

Partie I -

- **1.** Démontrer que deux matrices semblables de $\mathcal{M}_3(\mathbb{R})$ ont même déterminant.
- **2.** Soit u un endomorphisme de E et soit i et j deux entiers naturels. On considère l'application w de Ker u^{i+j} vers E définie par : $w(x) = u^j(x)$.
 - **a.** Montrer que $\operatorname{Im} w \subset \operatorname{Ker} \mathfrak{u}^{\mathfrak{i}}$.
 - **b.** En déduire que $\dim(\operatorname{Ker} u^{i+j}) \leq \dim(\operatorname{Ker} u^i) + \dim(\operatorname{Ker} u^j)$.
- 3. Soit u un endomorphisme de E vérifiant : $u^3 = 0$ et rg u = 2.
 - **a.** Montrer que $\dim(\operatorname{Ker} \mathfrak{u}^2)=2$. (On pourra utiliser deux fois la question **I.2.b**).
 - **b.** Montrer que l'on peut trouver un vecteur a non nul de E tel que $u^2(a) \neq 0$, et en déduire que la famille $(u^2(a), u(a), a)$ est une base de E.
 - **c.** Écrire alors la matrice U de u et la matrice V de $u^2 u$ dans cette base.
- **4.** Soit u un endomorphisme de E vérifiant : $u^2 = 0$ et rg u = 1.
 - **a.** Montrer que l'on peut trouver un vecteur b non nul de E tel que $u(b) \neq 0$.
 - **b.** Justifier l'existence d'un vecteur c de Ker $\mathfrak u$ tel que la famille $(\mathfrak u(\mathfrak b),\mathfrak c)$ soit libre, puis montrer que la famille $(\mathfrak b,\mathfrak u(\mathfrak b),\mathfrak c)$ est une base de E.
 - **c.** Écrire alors la matrice U' de u et la matrice V' de $u^2 u$ dans cette base.

Partie II -

Soit désormais une matrice A de $\mathcal{M}_3(\mathbb{R})$ semblable à une matrice du type $T = \begin{pmatrix} 1 & \alpha & \beta \\ 0 & 1 & \gamma \\ 0 & 0 & 1 \end{pmatrix}$ de $\mathcal{M}_3(\mathbb{R})$.

On se propose de montrer que la matrice A est semblable à son inverse A^{-1} .

On pose alors $N = \begin{pmatrix} 0 & \alpha & \beta \\ 0 & 0 & \gamma \\ 0 & 0 & 0 \end{pmatrix}$, et soit une matrice P de $GL_3(\mathbb{R})$ telle que $P^{-1}AP = T = I_3 + N$.

- 1. Expliquer pourquoi la matrice A est bien inversible.
- 2. Calculer N^3 et montrer que $P^{-1}A^{-1}P = I_3 N + N^2$.
- 3. On suppose dans cette question que N=0, montrer alors que les matrices A et A^{-1} sont semblables.
- **4.** On suppose dans cette question que rg N = 2. On pose $M = N^2 N$.
 - **a.** En utilisant la question **I.3**, montrer que la matrice N est semblable à la matrice $\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$ et en déduire une matrice semblable à la matrice M.
 - **b.** Calculer M^3 et déterminer rg M.
 - **c.** Montrer que les matrices M et N sont semblables.
 - **d.** Montrer alors que les matrices A et A^{-1} sont semblables.
- 5. On suppose dans cette question que $\operatorname{rg}(N)=1$. On pose $M=N^2-N$. Montrer que les matrices A et A^{-1} sont semblables.
- **6. Exemple**: soit la matrice $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 2 \end{pmatrix}$.

On note $(\mathfrak{a},\mathfrak{b},\mathfrak{c})$ une base de E et u l'endomorphisme de E de matrice A dans cette base.

- **a.** Montrer que $\text{Ker}(\mathfrak{u}-i\mathfrak{d}_E)$ est un sous-espace vectoriel de E de dimension 2 dont on donnera une base (e_1,e_2) .
- **b.** Justifier que la famille (e_1, e_2, c) est une base de E, et écrire la matrice de u dans cette base.
- **c.** Montrer que les matrices A et A^{-1} sont semblables.
- 7. Réciproquement, toute matrice de $\mathcal{M}_3(\mathbb{R})$ semblable à son inverse est-elle nécessairement semblable à une matrice du type $T = \begin{pmatrix} 1 & \alpha & \beta \\ 0 & 1 & \gamma \\ 0 & 0 & 1 \end{pmatrix}$?