Model Inference & Partitioning Regression Error

SDS 291

2/5/2020

1. Lecture Notes

A. Separating Model Variance

A.1. SSTotal

A.2. SSModel

A.3. SSError

B. ANOVA Table
B.1. Degrees of Freedom
B.2. Mean Squared Model / Mean Squared Error
B.3. F Statistic

B.5. Regression Standard Error

2. In-Class Activity

Regression Output

```
##
## Call:
## lm(formula = y1 ~ x1, data = anscombe)
## Residuals:
       Min
                 1Q
                      Median
                                           Max
## -1.92127 -0.45577 -0.04136 0.70941 1.83882
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
                3.0001
                           1.1247
                                    2.667 0.02573 *
## (Intercept)
                0.5001
                                    4.241 0.00217 **
## x1
                           0.1179
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 1.237 on 9 degrees of freedom
## Multiple R-squared: 0.6665, Adjusted R-squared: 0.6295
## F-statistic: 17.99 on 1 and 9 DF, p-value: 0.00217
```

- 1. Interpret the slope in a sentence.
- 1. Use the information in the table for x1 to calculate the t-value for the slope.
- 1. Test the hypothesis that x1 has a linear relationship with y1.
- 1. Calculate the 95% confidence interval for the slope to 3 decimal places ($t^* = 2.26$) and interpret in a sentence.

Residuals and Model Error

	obser	vepdredicted	residual			model deviation	
x1	(y)	$(\hat{y} \text{ line})$	$(y - \hat{y})$	$residual^2$	mean y (\bar{y})	$\hat{y} - \bar{y}$	model^2
4	4.26				7.5		
5	5.68				7.5		
6	7.24				7.5		
7	4.82				7.5		
8	6.95				7.5		
9	8.81				7.5		
10	8.04				7.5		
11	8.33				7.5		
12	10.84				7.5		
13	7.58				7.5		
14	9.96				7.5		
Sum the Residuals				$and\ Model$		<u>_</u>	

- 1. Calculate the residual (observed predicted, or $y-\bar{y}$) and the model (predicted mean, or $\hat{y}-\bar{y}$) for each value of x.
- 2. Square each residual and model term.
- 3. Calculate the sum of squared residuals (SSR) and the Sum of Squares of the Model (SSM).
- 4. Calculate the sum of squares total (SST = SSR + SSM)

5. Calculate
$$r^2$$
 $(r^2 = \frac{SSModel}{SSTotal})$ or $r^2 = 1 - \frac{SSError}{SSTotal})$

ANOVA Table

Source	df	Sum of Squares	Mean Square	F-Statistic
Model Error	1 n-2			
— Total	— n-1			
			<u>-</u>	

- 1. Calculate the mean squares for the model $(MSModel = \frac{SSModel}{1})$ and the $MSError = \frac{SSE}{n-2})$
- 2. Calculate the F statistic: $F = \frac{MSModel}{MSError}$
- 3. Look at the F Distribution calculator (at https://gallery.shinyapps.io/dist_calc/) and estimate the p-value for your F statistic with 1 and n-2 degrees of freedom.
- 4. Calculate Regression Standard Error ($\hat{\sigma}_{\epsilon}=\sqrt{\frac{SSE}{n-2}}$) and interpret in a sentence.

Comparing to R output

Regression Output

```
summary(m1)
##
## Call:
## lm(formula = y1 ~ x1, data = anscombe)
##
## Residuals:
       Min
                 1Q Median
                                  3Q
                                          Max
## -1.92127 -0.45577 -0.04136 0.70941 1.83882
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 3.0001 1.1247 2.667 0.02573 *
## x1
                0.5001
                          0.1179 4.241 0.00217 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 1.237 on 9 degrees of freedom
## Multiple R-squared: 0.6665, Adjusted R-squared: 0.6295
## F-statistic: 17.99 on 1 and 9 DF, p-value: 0.00217
```

Confidence Intervals

ANOVA table

3. F statistic

4. R^2 5. $\hat{\sigma}_{\epsilon}$