Dimensional Data Modeling

Day 3

EcZachly Inc

What are we talking about today?

- Additive vs non-additive dimensions
- The power of Enums
- When should you use flexible data types?
- Graph data modeling

What makes a dimension additive?

- Additive dimensions mean that you don't "double count"
- For example, age is additive
 - The population is equal to 20 year olds + 30 year olds + 40 year olds
- Application interface is NOT additive
 - The number of active users != # of users on web + # of users on Android + # of users on iPhone
- Counting drivers by cars is NOT additive
 - The number of Honda drivers != # of Civic drivers + # of Corolla driver + # of Accord drivers ...

The essential nature of additivity

- A dimension is additive over a specific window of time, if and only if, the grain of data over that window can only ever be one value at a time!

How does additivity help?

- You don't need to use COUNT(DISTINCT) on preaggregated dimensions
- Remember non-additive dimensions are usually only non-additive with respect to COUNT aggregations but not SUM aggregations

When should you use enums?

- Enums are great for low-to-medium cardinality
- Country is a great example of where Enums start to struggle.

Why should you use enums?

- Built in data quality
- Built in static fields
- Built in documentation

Enumerations and subpartitions

- Enumerations make amazing subpartitions because
 - You have an exhaustive list
 - They chunk up the big data problem into manageable pieces
- The little book of pipelines <u>example</u>

What type of use cases is this enum pattern useful?

EcZachly Inc

- Whenever you have tons of sources mapping to a shared schema
 - Airbnb:
 - Unit Economics (fees, coupons, credits, insurance, infrastructure cost, taxes, etc)
 - Netflix:
 - Infrastructure Graph (applications, databases, servers, code bases, CI/CD jobs, etc)
 - Facebook
 - Family of Apps (oculus, instagram, facebook, messenger, whatsapp, threads, etc)

How do you model data from disparate sources into a shared schema?

EcZachly Inc

Flexible schema!

Flexible schemas

- Benefits

- You don't have to run ALTER TABLE commands
- You can manage a lot more columns
- Your schemas don't have a ton of "NULL" columns
- "Other_properties" column is pretty awesome for rarely-used-but-needed columns

- Drawbacks

- Compression is usually worse, (especially if you use JSON)
- Readability, queryability

How is graph data modeling different?

Graph modeling is RELATIONSHIP focused, not ENTITY focused.

- Because of this, you can do a very poor job at modeling the entities.
 - Usually the model looks like
 - Identifier: STRING
 - Type: STRING
 - Properties: MAP<STRING, STRING>

How is graph data modeling different?

Graph modeling is RELATIONSHIP focused, not ENTITY focused.

- The relationships are modeled a little bit more in depth
 - Usually the model looks like
 - subject_identifier: STRING
 - Subject_type: VERTEX_TYPE
 - Object_identifier: STRING
 - Object_type: VERTEX_TYPE
 - Edge_type: EDGE_TYPE
 - Properties: MAP<STRING, STRING>

Graph Diagram

The lab today

In the lab today we'll be building a graph data model out of the NBA data sets we've been working with so far!