Rex Plastics

Audio Fox

Report No. REXP0001

Report Prepared By

www.nwemc.com 1-888-EMI-CERT

© 2010 Northwest EMC, Inc

22975 NW Evergreen Parkway Suite 400 Hillsboro, Oregon 97124

Certificate of Test

Last Date of Test: September 15, 2010 Rex Plastics Model: Audio Fox

Emissions					
Test Description	Specification	Test Method	Pass/Fail		
Channel Spacing	FCC 15.247:2010	ANSI C63.10:2009	Pass		
Dwell Time	FCC 15.247:2010	ANSI C63.10:2009	Pass		
Number of Hopping Frequencies	FCC 15.247:2010	ANSI C63.10:2009	Pass		
Occupied Bandwidth	FCC 15.247:2010	ANSI C63.10:2009	Pass		
Band Edge Compliance	FCC 15.247:2010	ANSI C63.10:2009	Pass		
Power Spectral Density	FCC 15.247:2010	ANSI C63.10:2009	Pass		
Spurious Radiated Emissions	FCC 15.247:2010	ANSI C63.10:2009	Pass		
Radiated Output Power	FCC 15.247:2010	ANSI C63.10:2009	Pass		
AC Powerline Conducted Emissions	FCC 15.207:2010	ANSI C63.10:2009	Pass		
AC Powerline Conducted Emissions	FCC 15.107:2010 Class B	ANSI C63.4:2003	Pass		

Modifications made to the product

See the Modifications section of this report

Test Facility

The measurement facility used to collect the data is located at:

Northwest EMC, Inc. 9349 W Broadway Ave. Brooklyn Park, MN 55445

Phone: (763) 425-2281 Fax: (763) 424-3469

This site has been fully described in a report filed with and accepted by the FCC (Federal Communications Commission) and Industry Canada (Site filing #2834E-1).

Approved By:

Don Facteau, IS Manager

100000

NVLAP Lab Code: 200881-0

This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government of the United States of America.

Product compliance is the responsibility of the client, therefore the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. This Report may only be duplicated in its entirety. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test.

Revision History

Revision 06/29/09

Revision Number	Description	Date	Page Number
00	None		

Accreditations and Authorizations

FCC

Accredited by NVLAP for performance of FCC radio, digital, and ISM device testing. Our Open Area Test Sites, certification chambers, and conducted measurement facilities have been fully described in reports filed with the FCC and accepted by the FCC in letters maintained in our files. Northwest EMC has been accredited by ANSI to ISO / IEC Guide 65 as a product certifier. We have been designated by the FCC as a Telecommunications Certification Body (TCB). This allows Northwest EMC to certify transmitters to FCC specifications in accordance with 47 CFR 2.960 and 2.962.

NVLAP

Northwest EMC, Inc. is accredited under the United States Department of Commerce, National Institute of Standards and Technology, and National Voluntary Laboratory Accreditation Program for satisfactory compliance with the requirements of ISO/IEC 17025 for Testing Laboratories. The NVLAP accreditation encompasses Electromagnetic Compatibility Testing in accordance with the European Union EMC Directive 2004/108/EC, and ANSI C63.4. Additionally, Northwest EMC is accredited by NVLAP to perform radio testing in accordance with the European Union R&TTE Directive 1999/5/EEC, the requirements of FCC, and the RSS radio standards for Industry Canada.

NVLAP LAB CODE 200881-0

Industry Canada

Accredited by NVLAP for performance of Industry Canada RSS and ICES testing. Our Open Area Test Sites and certification chambers comply with RSS-Gen, Issue 2 and have been filed with Industry Canada and accepted. Northwest EMC has been accredited by ANSI to ISO / IEC Guide 65 as a product certifier. We have been designated by NIST and recognized by Industry Canada as a Certification Body (CB) per the APEC Mutual Recognition Arrangement (MRA). This allows Northwest EMC to certify transmitters to Industry Canada technical requirements. (Site Filing Numbers - Hillsboro: 2834D-1, 2834D-2, Sultan: 2834C-1, Irvine: 2834B-1, 2834B-2, Brooklyn Park: 2834E-1)

CAB

Designated by NIST and validated by the European Commission as a Conformity Assessment Body (CAB) to conduct tests and approve products to the EMC directive and transmitters to the R&TTE directive, as described in the U.S. - EU Mutual Recognition Agreement.

NEMKO

Assessed and accredited by NEMKO (Norwegian testing and certification body) for European emissions and immunity testing. As a result of NEMKO's laboratory assessment, they will accept test results from Northwest EMC, Inc. for product certification (Authorization No. ELA 119).

Accreditations and Authorizations

Australia/New Zealand

The National Association of Testing Authorities (NATA), Australia has been appointed by the ACA as an accreditation body to accredit test laboratories and competent bodies for EMC standards. Accredited test reports or assessments by competent bodies must carry the NATA logo. Test reports made by an overseas laboratory that has been accredited for the relevant standards by an overseas accreditation body that has a Mutual Recognition Agreement (MRA) with NATA are also accepted as technical grounds for product conformity. The report should be endorsed with the respective logo of the accreditation body (NVLAP).

VCCI

Accepted as an Associate Member to the VCCI, Acceptance No. 564. Conducted and radiated measurement facilities have been registered in accordance with Regulations for Voluntary Control Measures, Article 8. (Registration Numbers. - Hillsboro: C-1071, R-1025, G-84, C-2687, T-1658, and R-2318, Irvine: R-1943, G-85, C-2766, and T-1659, Sultan: R-871, G-83, C-1784, and T-1511, Brooklyn Park: R-3125, G-86, G-141, C-3464, and T-1634).

BSMI

Northwest EMC has been designated by NIST and validated by C-Taipei (BSMI) as a CAB to conduct tests as described in the APEC Mutual Recognition Agreement (US0017). License No.SL2-IN-E-1017.

GOST

Northwest EMC, Inc. has been assessed and accredited by the Russian Certification bodies Certinform VNIINMASH, CERTINFO, SAMTES, and Federal CHEC, to perform EMC and Hygienic testing for Information Technology Products. As a result of their laboratory assessment, they will accept test results from Northwest EMC, Inc. for product certification

KCC

Northwest EMC, Inc is a CAB designated by MRA partners and recognized by Korea. (Assigned Lab Numbers: Hillsboro: US0017, Irvine: US0158, Sultan: US0157)

VIETNAM

Vietnam MIC has approved Northwest EMC as an accredited test lab. Per Decision No. 194/QD-QLCL (dated December 15, 2009), Northwest EMC test reports can be used for Vietnam approval submissions.

SCOPE

For details on the Scopes of our Accreditations, please visit: http://www.nwemc.com/accreditations/

Northwest EMC Locations

Oregon Labs EV01-EV12 22975 NW Evergreen Pkwy Suite 400 Hillsboro, OR 97124 (503) 844-4066 California Labs OC01-OC13 41 Tesla Irvine, CA 92618 (949) 861-8918 Minnesota Labs MN01-MN08 9349 W Broadway Ave. Brooklyn Park, MN 55445 (763) 425-2281 Washington Labs SU01-SU07 14128 339th Ave. SE Sultan, WA 98294 (360) 793-8675 New York Labs WA01-WA04 4939 Jordan Rd. Elbridge, NY 13060 (315) 685-0796

Rev 11/17/06

Party Requesting the Test

Company Name:	Rex Plastics
Address:	12515 NE 95th St
City, State, Zip:	Vancouver, WA 98682
Test Requested By:	Rich Clark
Model:	Audio Fox
First Date of Test:	September 10, 2010
Last Date of Test:	September 15, 2010
Receipt Date of Samples:	August 20, 2010
Equipment Design Stage:	Prototype
Equipment Condition:	No Damage

Information Provided by the Party Requesting the Test

Functional Description of the EUT (Equipment Under Test):	
2.4 GHz ISM radio	

Testing Objective:	
Seeking approval by a TCB under FCC 15.247.	

Configurations

CONFIGURATION 1 REXP0001

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
Audio Fox Tx Device	Rex Plastics	IA2	None

Peripherals in test setup boundary					
Description Manufacturer Model/Part Number Serial Number					
Power Brick	Rex Plastics	FE 4126 120D060	None		
IA2 Development Tool	Ascendtek	None	None		

Remote Equipment Outside of Test Setup Boundary					
Description	Manufacturer	Model/Part Number	Serial Number		
Laptop	Lenovo	7417TPU	L3-A9994 08/09		
Laptop Brick	Lenovo	PA-1650-17I	11S92P1160Z1ZBGH88WJHE		
DC Power Supply	EZ	GP-4303D	0907005		

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
AC Power	No	1.1m	No	Power Brick	AC Mains
AC Power Laptop	No	0.97 m	No	Laptop Brick	AC Mains
DC Power	No	2.10 m	No	Audio Fox Tx Module	Power Brick
DC Power Laptop	No	1.80 m	Yes	Laptop	Laptop Brick
Serial Cable	Yes	12.2m	No	IA2 Development Tool	Laptop
DC Power	No	1.50 m	No	IA2 Development Tool	DC Power Supply
AC Power	No	1.80 m	No	DC Power Supply	AC Mains
4 Wires	No	0.14 m	No	Audio Fox Tx Module	IA2 Development Tool
RCA	No	1.80 m	No	Audio Fox Tx Module	Unterminated
Coax - BNC	Yes	0.90 m	No	Audio Fox Tx Module	Unterminated
PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown.					

Revision 4/28/03

	Equipment modifications							
Item	Date	Test	Modification	Note	Disposition of EUT			
1	9/10/2010	Radiated Output Power	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.			
2	9/10/2010	Band Edge Compliance	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.			
3	9/10/2010	Occupied Bandwidth	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.			
4	9/13/2010	Spurious Radiated Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.			
5	9/13/2010	Power Spectral Density	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.			
6	9/14/2010	Channel Spacing	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.			
7	9/14/2010	Dwell Time	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.			
8	9/14/2010	Number of Hopping Frequencies	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.			
9	9/15/2010	AC Powerline Conducted Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	Scheduled testing was completed.			

Channel Spacing

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT					
Description	Manufacturer	Model	D	Last Cal.	Interval
Antenna, Horn (DRG)	ETS Lindgren	3115	AIP	12/22/2009	24
MN05 Cables	ESM Cable Corp.	Double Ridge Guide Horn Cables	MNI	7/19/2010	13
Spectrum Analyzer	Agilent	E4446A	AAT	2/24/2010	12

MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.

TEST DESCRIPTION

The channel carrier frequencies in the 2400-2483.5MHz band must be separated by 25 kHz or the 20dB bandwidth of the hopping channel, whichever is greater. Or, if the output power is less than 125 mW, the channel separation can be 25 kHz or 2/3 of the 20dB bandwidth. The EUT was operated in pseudorandom hopping mode. The spectrum was scanned across two adjacent peaks. The separation between the peaks of these channels was measured.

NORTHWEST EMC		Channel	Spaci	ng			ΧM	Ait 2010.01.14
	Audio Fox					Work Order:	REYPOOO1	
Serial Number:							09/14/10	
	Rex Plastics					Temperature:		
Attendees:						Humidity:		
Project:					В	arometric Pres.:		
	Trevor Buls		Power:	120VAC/60Hz		Job Site:	MN05	
TEST SPECIFICATI	ONS			Test Method				
FCC 15.247:2010				ANSI C63.10:2009				
COMMENTS								
None								
DEVIATIONS FROM	TEST STANDARD							
No Deviations	TIEST STANDARD							
Configuration #	1	Signature True	vor	Buls				
					Value	Lir	nit	Results
Group 1		_			1.977 MHz	>11		Pass
Group 2					2.010 MHz	> 1 [Pass
Group 3					1.997 MHz	> 1 [Pass
Group 4					2.044 MHz	> 1 [ИHz	Pass

Channel Spacing

Group 1

Result: Pass Value: 1.977 MHz Limit: > 1 MHz

 Group 2

 Result:
 Pass
 Value:
 2.010 MHz
 Limit:
 > 1 MHz

Channel Spacing

Group 3

Result: Pass Value: 1.997 MHz Limit: > 1 MHz

 Group 4

 Result:
 Pass
 Value:
 2.044 MHz
 Limit:
 > 1 MHz

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Antenna, Horn (DRG)	ETS Lindgren	3115	AIP	12/22/2009	24
MN05 Cables	ESM Cable Corp.	uble Ridge Guide Horn Cab	MNI	7/19/2010	13
Spectrum Analyzer	Agilent	E4446A	AAT	2/24/2010	12

MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.

TEST DESCRIPTION

The average dwell time per hopping channel was measured at one hopping channel in the middle of the authorized band. The measurement was made in a radiated configuration in a semi-anechoic chamber with the fundamental of the carrier fully maximized for its highest radiated power. The hopping function of the EUT was enabled.

NORTHWEST			DWELL TIME			XIVIII 2010.01.1
EMC						
	T: Audio Fox			W	ork Order: REXP000	1
Serial Number				T	Date: 09/14/10	
	r: Rex Plastics				nperature: 23.68°C	
Attendees	t: None				Humidity: 44% etric Pres.: 1020.8	
	y: Trevor Buls		Power: 120VAC/60Hz		Job Site: MN05	
TEST SPECIFICA			Test Method		Job Site. WiNOS	
FCC 15.247:2010	TIONS		ANSI C63.10:2	2009		
-CC 15.247.2010			ANSI 663.10.2	.009		
COMMENTS						
Normal Hopping r	mode.					
	OM TEST STANDAR	RD				
No Deviations						
Configuration #	1	Signatu	ure Trevor Bul	2		
				Value	Limit	Results
Group 1	Ded - Mish			0.000	Os a Dalaw	D
	Pulse Width			3.698 ms	See Below	Pass
	Period			57.51 ms	See Below	Pass
	600 ms Sweep			11 Pulses in 600 ms	See Below	Pass
Group 2	6 s Sweep			105 Pulses in 6 sec	See Below	Pass
310up 2	Pulse Width			3.698 ms	See Below	Pass
	Period			57.51 ms	See Below	Pass
	600 ms Sweep			11 Pulses in 600 ms	See Below	Pass
	6 s Sweep			105 Pulses in 6 sec	See Below	Pass
Group 3	0 0 0 moop			100 1 0.000 111 0 000	000 20.011	. 400
o.oup o	Pulse Width			3.681 ms	See Below	Pass
	Period			57.5 ms	See Below	Pass
	600 ms Sweep			11 Pulses in 600 ms	See Below	Pass
	6 s Sweep			105 Pulses in 6 sec	See Below	Pass
Group 4						
·	Pulse Width			3.698 ms	See Below	Pass
	Period			57.51 ms	See Below	Pass
	600 ms Sweep			11 Pulses in 600 ms	See Below	Pass
	6 s Sweep			105 Pulses in 6 sec	See Below	Pass
		e total dwell time shall not excee s = 15 channels * 0.4)	ed 400 ms in 6 seconds.			
	Mongurod					
	Measured:	200 20 mg				
	Group 1	388.29 ms				
	Group 2	388.29 ms				
	Group 3	386.51 ms				
	Group 4	388.29 ms				

VM# 2040 04 44

Group 1, Pulse Width

Result: Pass Value: 3.698 ms Limit: See Below

Group 1, Period

Result: Pass Value: 57.51 ms Limit: See Below

Group 1, 600 ms Sweep

Result: Pass Value: 11 Pulses in 600 ms Limit: See Below

Group 1, 6 s Sweep

Result: Pass Value: 105 Pulses in 6 sec Limit: See Below

Group 2, Pulse Width

Result: Pass Value: 3.698 ms Limit: See Below

Group 2, Period

Result: Pass Value: 57.51 ms Limit: See Below

Group 2, 600 ms Sweep

Result: Pass Value: 11 Pulses in 600 ms Limit: See Below

Group 2, 6 s Sweep

Result: Pass Value: 105 Pulses in 6 sec Limit: See Below

Group 3, Pulse Width

Result: Pass Value: 3.681 ms Limit: See Below

Group 3, Period

Result: Pass Value: 57.5 ms Limit: See Below

Group 3, 600 ms Sweep

Result: Pass Value: 11 Pulses in 600 ms Limit: See Below

Group 3, 6 s Sweep

Result: Pass Value: 105 Pulses in 6 sec Limit: See Below

Group 4, Pulse Width

Result: Pass Value: 3.698 ms Limit: See Below

Group 4, Period

Result: Pass Value: 57.51 ms Limit: See Below

Group 4, 600 ms Sweep

Result: Pass Value: 11 Pulses in 600 ms Limit: See Below

Group 4, 6 s Sweep

Result: Pass Value: 105 Pulses in 6 sec Limit: See Below

Number of Hopping Frequencies

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Antenna, Horn (DRG)	ETS Lindgren	3115	AIP	12/22/2009	24
MN05 Cables	ESM Cable Corp.	Double Ridge Guide Horn Cables	MNI	7/19/2010	13
Spectrum Analyzer	Agilent	E4446A	AAT	2/24/2010	12

MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.

TEST DESCRIPTION

The number of hopping frequencies was measured across the authorized band. The measurement was made in a radiated configuration in a semi-anechoic chamber with the fundamental of the carrier fully maximized for its highest radiated power. The hopping function of the EUT was enabled.

NORTHWEST		Number of Honn	ina Er	aguanaiaa				XMit 2010.01.14
EMC		Number of Hopp	ing Fr	equencies				
EUT:	Audio Fox					Work Order:	REXP0001	
Serial Number:	None						09/14/10	
	Rex Plastics					Temperature:		
Attendees:						Humidity:		
Project:					Ba	arometric Pres.:		
	Trevor Buls			120VAC/60Hz		Job Site:	MN05	
TEST SPECIFICATI	IONS			Test Method				
FCC 15.247:2010				ANSI C63.10:2009				
COMMENTS								
None								
DEVIATIONS FROM	A TEST STANDARD							
No Deviations	TEST STANDARD							
Configuration #	1	Signature Tree	vor	Buls				
					Value	Lir	nit	Results
Group 1					Frequencies	≥ 15 Fre		Pass
Group 2					Frequencies		quencies	Pass
Group 3				15	Frequencies	≥ 15 Fre	quencies	Pass
Group 4				15	Frequencies	≥ 15 Fre	quencies	Pass

Number of Hopping Frequencies

Group 1

Result: Pass Value: 15 Frequencies Limit: ≥ 15 Frequencies

Group 2

Result: Pass Value: 15 Frequencies Limit: ≥ 15 Frequencies

Number of Hopping Frequencies

Group 3

Result: Pass Value: 15 Frequencies Limit: ≥ 15 Frequencies

Group 4

Result: Pass Value: 15 Frequencies Limit: ≥ 15 Frequencies

OCCUPIED BANDWIDTH

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Antenna, Horn (DRG)	ETS Lindgren	3115	AIP	12/22/2009	24
MN05 Cables	ESM Cable Corp.	Double Ridge Guide Horn Cables	MNI	7/19/2010	13
Spectrum Analyzer	Agilent	E4446A	AAT	2/24/2010	12

MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.

TEST DESCRIPTION

The occupied bandwidth was measured with the EUT set to low, medium, and high transmit frequencies. The measurement was made in a radiated configuration in a semi-anechoic chamber with the fundamental of the carrier fully maximized for its highest radiated power. The EUT was transmitting at its maximum data rate in a no hop mode.

NORTHWEST EMC		OCCUPIED E	BANDV	WIDTH			XMit 2010.01.14
EUT:	Audio Fox					Work Order:	REXP0001
Serial Number:							09/10/10
	Rex Plastics					Temperature:	
Attendees:						Humidity:	
Project:					E	Barometric Pres.:	
	Trevor Buls		Power:	120VAC/60Hz		Job Site:	MN05
TEST SPECIFICATI	ONS			Test Method			
FCC 15.247:2010				ANSI C63.10:2009			
COMMENTS							
None DEVIATIONS FROM	MITEST STANDARD						
No Deviations							
Configuration #	1	Signature Tree	vor	Buls			
					Value	Lir	
Low Channel	_		•		1.367 Mhz	3 N	
Mid Channel					1.318 Mhz	3 M	
High Channel					1.363 Mhz	3 N	Hz Pass

OCCUPIED BANDWIDTH

Low Channel

Result: Pass Value: 1.367 Mhz Limit: 3 MHz

Mid Channel

Result: Pass Value: 1.318 Mhz Limit: 3 MHz

OCCUPIED BANDWIDTH

High Channel

Result: Pass Value: 1.363 Mhz Limit: 3 MHz

BAND EDGE COMPLIANCE

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Antenna, Horn (DRG)	ETS Lindgren	3115	AIP	12/22/2009	24
MN05 Cables	ESM Cable Corp.	Double Ridge Guide Horn Cables	MNI	7/19/2010	13
Spectrum Analyzer	Agilent	E4446A	AAT	2/24/2010	12

MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.

TEST DESCRIPTION

The spurious RF conducted emissions at the edges of the authorized band were measured with the EUT set to low and high transmit frequencies. The measurement was made in a radiated configuration in a semi-anechoic chamber with the fundamental of the carrier fully maximized for its highest radiated power. The EUT was transmitting at its maximum data rate in a no hop mode. The channels closest to the band edges were selected. The spectrum was scanned across each band edge from 10 MHz below the band edge to 10 MHz above the band edge.

NORTHWEST EMC		BAND EDGE COMP	LIANCE		XMit 2010.01.14
EUT:	Audio Fox			Work Order:	REXP0001
Serial Number:	None			Date:	09/10/10
Customer:	Rex Plastics			Temperature:	22.32°C
Attendees:	None			Humidity:	51%
Project:	None			Barometric Pres.:	1013.5
	Trevor Buls	Power	120VAC/60Hz	Job Site:	MN05
TEST SPECIFICATI	ONS		Test Method		
FCC 15.247:2010			ANSI C63.10:2009		
COMMENTS					
None					
DEVIATIONS FROM	M TEST STANDARD				
No Deviations					
Configuration #	1	Signature Trevor	Buls		
					mit Results
Low Channel	·	<u> </u>			dBc Pass
High Channel			-48.8	9 dBc -20	dBc Pass

BAND EDGE COMPLIANCE

Low Channel

Result: Pass Value: -47.22 dBc Limit: -20 dBc

High Channel

Result: Pass Value: -48.89 dBc Limit: -20 dBc

POWER SPECTRAL DENSITY

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Antenna, Horn (DRG)	ETS Lindgren	3115	AIP	12/22/2009	24
MN05 Cables	ESM Cable Corp.	Double Ridge Guide Horn Cables	MNI	7/19/2010	13
Spectrum Analyzer	Agilent	E4446A	AAT	2/24/2010	12

MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.

TEST DESCRIPTION

The peak power spectral density measurements were measured with the EUT set to low, mid, and high transmit frequencies. The measurement was made in a radiated configuration in a semi-anechoic chamber with the fundamental of the carrier fully maximized for its highest radiated power. The EUT was transmitting at its maximum data rate for each modulation type available. Per the procedure outlined in FCC KDB 558074, March 23, 2005, the spectrum analyzer was used as follows:

The emission peak(s) were located and zoom in on within the passband. The resolution bandwidth was set to 3 kHz, the video bandwidth was set to greater than or equal to the resolution bandwidth. The sweep speed was set equal to the span divided by 3 kHz (sweep = (SPAN/3 kHz)). For example, given a span of 1.5 MHz, the sweep should be 1.5 x $10^6 \div 3 \times 10^3 = 500$ seconds. External attenuation was used and added to the reading. The following FCC procedure was used for modifying the power spectral density measurements:

"If the spectrum line spacing cannot be resolved on the available spectrum analyzer, the noise density function on most modern conventional spectrum analyzers will directly measure the noise power density normalized to a 1 Hz noise power bandwidth. Add 35 dB for correction to 3 kHz."

The field strength measurement power spectral density was converted to effective radiated power spectral density (dBm/3kHz) (EIRP) using the Friis transmission equation. A simplified version is found in ANSI C63.10:2009, Equation 6.

NORTHWEST EMC		PC	WER S	SPECT	TRAL DENSI	ΤΥ		XMit 2010.01.1
EUT	: Audio Fox						Work Order: REXP0001	
Serial Number	r: None						Date: 09/13/10	
Customer	r: Rex Plastics						Temperature: 23.13°C	
Attendees	: None						Humidity: 50%	
Project	t: None					Baro	metric Pres.: 1019.3	
Tested by	/: Trevor Buls				Power: 120VAC/60H	z	Job Site: MN05	
TEST SPECIFICAT	TIONS				Test Method			
FCC 15.247:2010					ANSI C63.10	:2009		
COMMENTS								
None	OM TEST STANDARD							
None DEVIATIONS FRO	OM TEST STANDARD		Signature	Tre	vor Bul	ls		
None DEVIATIONS FRO No Deviations	OM TEST STANDARD	Reading	Signature Reading	Tree Factor	vor Bul	PSD EIRP	Limit	
None DEVIATIONS FRO No Deviations	OM TEST STANDARD						Limit (dBm/3kHz) (EIRP)	Results
None DEVIATIONS FRO No Deviations Configuration #	OM TEST STANDARD		Reading	Factor	PSD Field Strength	PSD EIRP		Results Pass
None DEVIATIONS FRO No Deviations	OM TEST STANDARD	(dBm/Hz)	Reading (dBm/3kHz)	Factor (dB)	PSD Field Strength (dBm/3kHz/meter)	PSD EIRP (dBm/3kHz) (EIRP)	(dBm/3kHz) (EIRP)	

POWER SPECTRAL DENSITY

 Low Channel

 Result: Pass
 Value: -82.06 dBm/1Hz
 Limit: ≤ 8 dBm/3 kHz

 Mid Channel

 Result: Pass
 Value: -81.55 dBm/1Hz
 Limit: ≤ 8 dBm/3 kHz

POWER SPECTRAL DENSITY

High Channel

Result: Pass Value: -82.01 dBm/1 Hz Limit: ≤ 8 dBm/3 kHz

EMC

Spurious Radiated Emissions

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

Transmitting GFSK -12 dB RF power setting. High Channel 72 - 2472.1 MHz

Transmitting GFSK -12 dB RF power setting. Low Channel 6 - 2406.1 MHz

Transmitting GFSK -12 dB RF power setting. Mid Channel 39 - 2439.1 MHz

POWER SETTINGS INVESTIGATED

120VAC/60Hz

CONFIGURATIONS INVESTIGATED

REXP0001 - 1

REAPOUUT - T

FREQUENCY RANGE INVESTIGATED
Start Frequency 30 MHz Stop Frequency 25 GHz

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

FOUIDMENT					
FEQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Inter
High Pass Filter	Micro-Tronics	HPM50111	HGQ	7/9/2010	13 r
Low Pass Filter	Micro-Tronics	LPM50004	HGK	7/9/2010	13 r
Attenuator, 20 dB, 'SMA'	SM Electronics	SA6-20	REO	7/9/2010	13 r
Pre-Amplifier	Miteq	JSD4-18002600-26-8P	APU	1/27/2010	13 ו
MN05 Cables	N/A	18-26GHz Standard Gain Horn Cable	EVD	1/27/2010	13 ו
Antenna, Horn	ETS	3160-09	AHG	NCR	0 n
Antenna, Horn	ETS Lindgren	3160-08	AIQ	NCR	0 n
Antenna, Horn	ETS	3160-07	AXP	NCR	0 r
Pre-Amplifier	Miteq	AMF-6F-12001800-30-10P	AVW	7/19/2010	13
Pre-Amplifier	Miteq	AMF-6F-08001200-30-10P	AVV	7/19/2010	13
MN05 Cables	ESM Cable Corp.	Standard Gain Horn Cables	MNJ	7/19/2010	13
Antenna, Horn (DRG)	ETS Lindgren	3115	AIP	12/22/2009	24
MN05 Cables	ESM Cable Corp.	Double Ridge Guide Horn Cables	MNI	7/19/2010	13
Pre-Amplifier	Miteq	AM-1616-1000	AVY	7/19/2010	13
Pre-Amplifier	Miteq	AMF-3D-00100800-32-13P	AVX	7/19/2010	13
MN05 Cables	ESM Cable Corp.	Bilog Cables	MNH	1/15/2010	13
Antenna, Biconilog	ETS Lindgren	3142D	AXN	12/30/2009	13
Spectrum Analyzer	Agilent	E4446A	AAT	2/24/2010	12

MEASUREMENT	F BANDWIDTHS			
	Frequency Range	Peak Data	Quasi-Peak Data	Average Data
	(MHz)	(kHz)	(kHz)	(kHz)
	0.01 - 0.15	1.0	0.2	0.2
	0.15 - 30.0	10.0	9.0	9.0
	30.0 - 1000	100.0	120.0	120.0
i	Above 1000	1000.0	N/A	1000.0

Measurements were made using the IF bandwidths and detectors specified. No video filter was used, except in the case of the FCC Average Measurements above 1GHz. In that case, a peak detector with a 10Hz video bandwidth was used.

MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.

TEST DESCRIPTION

The highest gain of each type of antenna to be used with the EUT was tested. The EUT was configured for low, mid, and high band transmit frequencies. For each configuration, the spectrum was scanned throughout the specified range. In addition, measurements were made in the restricted bands to verify compliance. While scanning, emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and the EUT antenna in three orthogonal axis, and adjusting measurement antenna height and polarization, and manipulating the EUT antenna in 3 orthogonal planes (per ANSI C63.10:2009). A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.

A Duty Cycle Correction Factor was added to the Average data: 20*log((3.71*2)/100ms) = 22.6

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Antenna Height (meters)	Azimuth (degrees)	Duty Cycle Correction Factor	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)
4812.950	64.8	3.6	1.0	292.0	0.0	0.0	Vert	PK	0.0	68.4	74.0	-5.6
4811.992	61.2	3.6	1.0	292.0	22.6	0.0	Vert	AV	0.0	42.2	54.0	-11.8
4811.659	57.5	3.6	1.0	311.0	0.0	0.0	Horz	PK	0.0	61.1	74.0	-12.9
2330.675	44.5	-4.3	1.4	228.0	0.0	20.0	Horz	PK	0.0	60.2	74.0	-13.8
2330.675	43.7	-4.3	1.2	203.0	0.0	20.0	Vert	PK	0.0	59.4	74.0	-14.6
7219.366	48.3	11.0	1.0	243.0	0.0	0.0	Vert	PK	0.0	59.3	74.0	-14.7
4811.967	53.6	3.6	1.0	311.0	22.6	0.0	Horz	AV	0.0	34.6	54.0	-19.4
7217.496	42.7	11.0	1.5	244.0	0.0	0.0	Horz	PK	0.0	53.7	74.0	-20.3
7217.650	42.0	11.0	1.0	243.0	22.6	0.0	Vert	AV	0.0	30.4	54.0	-23.6
2331.000	35.5	-4.3	1.4	228.0	22.6	20.0	Horz	AV	0.0	28.6	54.0	-25.4
2330.958	34.4	-4.3	1.2	203.0	22.6	20.0	Vert	AV	0.0	27.5	54.0	-26.5
7217.646	32.9	11.0	1.5	244.0	22.6	0.0	Horz	AV	0.0	21.3	54.0	-32.7
9623.184	49.1	-9.3	1.2	201.0	0.0	0.0	Horz	PK	0.0	39.8	74.0	-34.2
9622.883	47.8	-9.3	1.2	312.0	0.0	0.0	Vert	PK	0.0	38.5	74.0	-35.5
9623.417	38.1	-9.3	1.2	201.0	22.6	0.0	Horz	AV	0.0	6.2	54.0	-47.8
9623.308	36.2	-9.3	1.2	312.0	22.6	0.0	Vert	AV	0.0	4.3	54.0	-49.7

NORTHWEST Spurious Radiated Emissions Work Order: REXP0001 Date: 09/13/10 Project: None Temperature: 23.13 Job Site: MN05 **Humidity**: 49.85 Tested by: Trevor Buls Barometric Pres. 1019.3 Serial Number: None **EUT:** Audio Fox Configuration: 1 - Basic Configuration **Customer:** Rex Plastics Attendees: None EUT Power: 120VAC/60Hz Transmitting GFSK -12 dB RF power setting. High Channel 72 - 2472.1 MHz **Operating Mode: Deviations:** EUT on Side. DCCF = 20*log((3.71*2)/100ms) = 22.6 Comments Test Specifications Test Method FCC 15.247:2010 ANSI C63.10:2009 Run# Test Distance (m) Antenna Height(s) 1-4m Results Pass 14 80 70 60 • 50 40 30 8 20 10

N	ш	-	9	7

11000

16000

21000

0

1000

6000

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Antenna Height (meters)	Azimuth (degrees)	Duty Cycle Correction Factor	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)
2485.000	58.1	-4.4	1.2	79.0	0.0	20.0	Horz	PK	0.0	73.7	74.0	-0.3
4943.565	66.7	4.1	1.0	281.0	0.0	0.0	Vert	PK	0.0	70.8	74.0	-3.2
4943.948	63.3	4.1	1.0	281.0	22.6	0.0	Vert	AV	0.0	44.8	54.0	-9.2
4943.682	55.8	4.1	1.0	231.0	0.0	0.0	Horz	PK	0.0	59.9	74.0	-14.1
2483.992	42.3	-4.4	3.7	61.0	0.0	20.0	Vert	PK	0.0	57.9	74.0	-16.1
7417.492	45.2	12.1	1.0	254.0	0.0	0.0	Vert	PK	0.0	57.3	74.0	-16.7
4943.990	52.1	4.1	1.0	231.0	22.6	0.0	Horz	AV	0.0	33.6	54.0	-20.4
7415.402	41.1	12.1	1.4	242.0	0.0	0.0	Horz	PK	0.0	53.2	74.0	-20.8
7415.651	38.8	12.1	1.0	254.0	22.6	0.0	Vert	AV	0.0	28.3	54.0	-25.7
9888.950	52.3	-8.8	1.0	218.0	0.0	0.0	Horz	PK	0.0	43.5	74.0	-30.5
2487.500	29.9	-4.4	1.2	79.0	22.6	20.0	Horz	AV	0.0	22.9	54.0	-31.1
9889.800	50.5	-8.8	1.2	242.0	0.0	0.0	Vert	PK	0.0	41.7	74.0	-32.3
7415.594	32.1	12.1	1.4	242.0	22.6	0.0	Horz	AV	0.0	21.6	54.0	-32.4
2483.283	28.6	-4.4	3.8	61.0	22.6	20.0	Vert	AV	0.0	21.6	54.0	-32.4
9887.450	44.9	-8.8	1.0	218.0	22.6	0.0	Horz	AV	0.0	13.5	54.0	-40.5
9887.475	40.7	-8.8	1.2	242.0	22.6	0.0	Vert	AV	0.0	9.3	54.0	-44.7

RADIATED OUTPUT POWER

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

Transmitting GFSK -12 dB RF power setting

POWER SETTINGS INVESTIGATED

120VAC/60Hz

CONFIGURATIONS INVESTIGATED

1 - Basic Configuration

FREQUENCY RANGE INVESTIGATED

Start Frequency 2400 MHz Stop Frequency 2483.5 MHz

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Antenna, Horn (DRG)	ETS Lindgren	3115	AIP	12/22/2009	24
MN05 Cables	ESM Cable Corp.	uble Ridge Guide Horn Cab	MNI	7/19/2010	13
Spectrum Analyzer	Agilent	E4446A	AAT	2/24/2010	12 mo

MEASUREMEN'	T BANDWIDTHS			
	Frequency Range	Peak Data	Quasi-Peak Data	Average Data
	(MHz)	(kHz)	(kHz)	(kHz)
	0.01 - 0.15	1.0	0.2	0.2
	0.15 - 30.0	10.0	9.0	9.0
	30.0 - 1000	100.0	120.0	120.0
	Above 1000	1000.0	N/A	1000.0

Measurements were made using the IF bandwidths and detectors specified. No video filter was used, except in the case of the FCC Average Measurements above 1GHz. In that case, a peak detector with a 10Hz video bandwidth was used.

MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.

TEST DESCRIPTION

The antennas to be used with the EUT were tested. The EUT was transmitting and while set at the lowest channel, a middle channel, and the highest channel available. While scanning, emissions from the EUT were maximized by rotating the EUT, adjusting the measurement antenna height and polarization, and manipulating the EUT and EUT antenna in 3 orthogonal planes (per ANSI C63.10:2009). The amplitude and frequency were noted. The EUT was then replaced with a horn antenna. A signal generator was connected to the horn antenna and its output was adjusted to match the level previously noted for each frequency. The output of the signal generator was recorded, and by factoring in the gain (dBi) of the horn antenna the effective radiated power for each emission was determined.

AC POWERLINE CONDUCTED EMISSIONS

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

MODES OF OPERATION

Typical

Channel 72 - High Channel.

Channel 39 - Mid Channel.

Channel 6 - Low Channel.

POWER SETTINGS INVESTIGATED

120VAC/60Hz

CONFIGURATIONS INVESTIGATED

REXP0001-4

REXP0001-3

SAMPLE CALCULATIONS

Conducted Emissions: Adjusted Level = Measured Level + Transducer Factor + Cable Attenuation Factor + External Attenuator

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Attenuator, 20 dB	SM Electronics	SA01B-20	REF	12/11/2009	13 mo
High Pass Filter	TTE	H97-100K-50-720B	HGN	6/28/2010	13 mo
Receiver	Rohde & Schwarz	ESCI	ARF	3/30/2010	12 mo
MN03 Cables	ESM Cable Corp.	Conducted Cables	MNC	6/8/2010	13 mo
LISN	Solar	9252-50-R-24-BNC	LIQ	3/12/2010	12 mo
LISN	Solar	9252-50-R-24-BNC	LIO	3/12/2010	12 mo

(MHz)			Average Data
(141112)	(kHz)	(kHz)	(kHz)
0.01 - 0.15	1.0	0.2	0.2
0.15 - 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0

MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.

TEST DESCRIPTION

Using the mode of operation and configuration noted within this report, conducted emissions tests were performed. The frequency range investigated (scanned), is also noted in this report. Conducted power line measurements are made, unless otherwise specified, over the frequency range from 150 kHz to 30 MHz to determine the line-to-ground radio-noise voltage that is conducted from the EUT power-input terminals that are directly (or indirectly via separate transformer or power supplies) connected to a public power network. Equipment is tested with power cords that are normally used or that have electrical or shielding characteristics that are the same as those cords normally used. Typically those measurements are made using a LISN (Line Impedance Stabilization Network), the 50ohm measuring port is terminated by a 50ohm EMI meter or a 50ohm resistive load. All 50ohm measuring ports of the LISN are terminated by 50ohm.

AC Powerline Conducted Emissions

AC Powerline Conducted Emissions

AC Powerline Conducted Emissions

