

Software and Robotic Integration Feedback Control

Rachel Sparks, Ph.D. Rachel.sparks@kcl.ac.uk
Lecturer in Surgical & Interventional Engineering
School of Biomedical Engineering & Imaging Sciences

Robot Control Diagram

Robot Control Diagram

What is a Robot?

What is a Robot?

Feedback Control

The aim of feedback control is to ensure the goal state is reached with

- Minimal delay
- · Minimum steady state error
- · As quickly as possible
- Stability i.e. will converge to a final solution

Feedback Control

Unlike in ROS where we can set a joint to a given state:

- Motors apply force to move a joint friction, damping, or external forces can all cause a
 joint motion to deviate from the desired state
- · Over time small errors tend to be multiplicative and cause drift that may need to be corrected
- The state of the world can be dynamic i.e. the world may change relative position or another state in response to the movement in the robot that may require updating the plan.

Feedback Block Diagram

Feedback Block Diagram

Feedback Design

- · The goal is to pick an appropriate feedback function F(s) to appropriately alter the forward function C(s) and converge to a reference state R (i.e. minimize measurement error)
- The entire system has a closed loop transfer function (Laplacian Space)

$$x(s) = \frac{C(s)}{1 + C(s)F(s)}$$

Feedback Algorithm Design

$$H(s) = \frac{C(s)}{1 + C(s)F(s)}$$

Care must be taken to ensure H(s) is stable

- $\label{eq:bounded} Both the bounded output (BiBO): for any input x(t) < B the output will also be y(t) < B$ $\mbox{ The poles of } H(s) \mbox{ must have real negative values (Laplacian Transform/Bode Plot)}$

Follower Robot

The goal is to keep R1 at a fixed distance d_r from R2.

- R2 moves at a constant speed s
- Input[x(t) = u]: On-Off DC motor
- Output [y(t) = d]:distance between R1 and R2

$$c(e) = \begin{cases} u = u_{max}, & e > \epsilon \\ u = 0, & e \le \epsilon \end{cases}$$

Follower Robot - Feed forward Only

Proportional Control

* Linear feedback control proportional to the measured error $\boldsymbol{e}(t)$

$$C_{out} = K_p e(t) + C_0 \label{eq:cout}$$

where K_p is the gain, C_{out} is the control output and c_0 is the control output when the reference R have been achieved

- Advantage: easy to control and tune small K_p will ensure error remains bounded
- Disadvantages:
 - Slow to converge as you near the goal the change in state gets smaller and smaller Must carefully select K_p to reduce overshooting and ensure convergence

Follower Robot – Proportional Control

Follower Robot – Proportional Control

Follower Robot - Proportional Control

Follower Robot - Proportional Control

Integral Control

 ${\ }^{\star}{\ }$ Feedback control proportional to the integral of the measured error.

$$C_{out} = K_i \int_0^t e(\tau) d\tau + C_0$$

where K_i is the gain.

- · Over time the feedback will grow
- Advantage: Large steps after sufficient time has passed, Disadvantage: Unstable over long time scales. $c_{out} \rightarrow \infty$ as $t \rightarrow \infty$

Proportional Integral Control

· Initially proportional control dominates, overtime integral control will dominate

$$C_{out} = K_p e(t) + K_i \int_0^t e(\tau) d\tau + C_0$$

- Advantages: converges to the desired solution
 Disadvantages: slow to converge, still prone to overshooting

Follower Robot – PI Control

Follower Robot – PI Control

Derivative Control

Responds to the change in error over time

$$C_{out} = K_d \frac{d(e(t))}{dt} + c_0$$

- Advantage: have a rapid response to changes in the system
 Disadvantages: sensitive to noise in sensors, unstable

PID Controller

Combines proportional, integral, and derivative control and has the best system response

$$C_{out} = K_p e(t) + K_i \int_0^t e(\tau) d\tau + K_d \frac{d(e(t))}{dt} + C_0$$

- Advantages: rapid convergence, can be precisely tuned to precisely fit to a given problem
 Disadvantages: tuning the parameters between the three components can be difficult

Follower Robot – PID Control

Transfer Functions

Feedback System	Transfer Function
P	K_p
PI	$K_p + \frac{K_i}{\alpha D}$
PD	$K_p + K_d \alpha D$
PID	$K_p + \frac{K_i}{\alpha D} + K_d \alpha D$

Feedback Control Summary

- Feedback control is needed in real world systems to

 Remedy systemic issues friction, manufacturer variability in parts,

 Account for sensor error noise in measurements, drift in localization

 - Correct for variability applied effort for motors, external forces, change in object positions

- Feedback requires considering

 What information (P,I,D) to consider for error measurements

 What is the desired time response (fast or slow?, robust to noise?)

 Stability of the Transfer function really require full course on Control Theory.