Worksheet 8

Felix Funk, MATH Tutorial - Mech 221

1 Revision on Eigenvalues and Eigenvectors

Problem: Eigenvalues and Eigenvectors.

Calculate the eigenvalues and (generalized) eigenvectors of the following matrices:

$$B_1 = \begin{bmatrix} 2 & 1 \\ 0 & 1 \end{bmatrix}, \quad B_2 = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}, \quad B_3 = \begin{bmatrix} -3 & 0 \\ 0 & -3 \end{bmatrix}, \quad B_4 = \begin{bmatrix} -3 & 1 \\ 0 & -3 \end{bmatrix}, \quad B_5 = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix}.$$

 B_4 and B_5 have defective eigenvalues and therefore generalized eigenvectors. If you need a reminder for these, then read the section on repeated eigenvalues with defects, first, and come back after that.

Reminder: Repeated Eigenvalues With Defects. Sometimes, eigenvalues coincide $\lambda = \lambda_1 = \lambda_2 = \ldots = \lambda_m$ but we can only find k linear independent eigenvectors $v_1, \ldots, v_k, k < m$. In this case, we have to find m-k generalized eigenvectors. Not every eigenvector has a defect and some eigenvectors have a more severe defects than others. When an eigenvector is defective we find a w such that $(\lambda I - A)w = v$. If the defect is more severe, we can find x such that $(\lambda I - A)x = w$, etc. Let us illustrate this problem using the following matrix

Let

$$C = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 2 & 1 & -1 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 2 \end{bmatrix}$$

- 1. Find the eigenvalue λ of C:
- 2. Observe that C has only two eigenvectors $v_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$ and $v_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}$.
- 3. Show that v_1 does not have a defect.
- 4. Calculate the generalized eigenvectors w_2 and x_2 to the eigenvector v_2 such that $(I\lambda C)w_2 = v_2$ and $(I\lambda C)x_2 = w_2$

See in Zpages

switch /

2 Solving Linear Systems of ODEs

Introduction: Eigenvalue method Using eigenvalues and eigenvectors, we can find the general solution to linear systems of n differential equations given in the form

$$y' = Ay$$
, with $y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$ and an $n \times n$ constant coefficient matrix A . (1)

In the following subsections we distinguish between four distinct cases; distinct real eigenvalues, complex pairs of eigenvalues, repeated eigenvalues, and repeated eigenvalues with defects.

2.1 Distinct real eigenvalues

Introduction: Distinct real eigenvalues If the matrix A has n distinct eigenvalues $\lambda_1, \ldots \lambda_n$ with corresponding real eigenvectors $v_1, \ldots v_n$, then the general solution has the form

$$y(t) = c_1 e^{\lambda_1 t} v_1 + c_2 e^{\lambda_2 t} v_2 + \dots c_n e^{\lambda_n t} v_n$$

with coefficients $c_1, c_2, \ldots c_n$.

Example: Model problem. Solve the IVP

$$y' = B_1 y$$
 with $B_1 = \begin{bmatrix} 2 & 1 \\ 0 & 1 \end{bmatrix}$ and $y(0) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$.

- 1. The eigenvalues of B_1 are $\lambda_1 = l$ and $\lambda_2 = 2$. The corresponding eigenvectors are $v_1 = \begin{bmatrix} l \\ -1 \end{bmatrix}$ and $v_2 = \begin{bmatrix} l \\ -1 \end{bmatrix}$.
- 2. The general solution is

$$y(t) = c_1 e^{t} \begin{pmatrix} 1 \\ -1 \end{pmatrix} + c_2 e^{2t} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

3. Solve the IVP by determining c_1, c_2 .

$$y(t) = c_1 \begin{pmatrix} i \\ -1 \end{pmatrix} + c_2 \begin{pmatrix} i \\ 0 \end{pmatrix} = 0 \quad c_1 = -(-1) \quad j = -j + c_2, c_2 = 2$$

$$y(t) = \begin{pmatrix} -e^{\frac{t}{2}} + 2 \cdot e^{2t} \\ -e^{\frac{t}{2}} \end{pmatrix}$$

1. Revision on Eigenvalues 2 Eigenveckers

•
$$B_i = \begin{bmatrix} 2 & 1 \\ 0 & 1 \end{bmatrix}$$
 $\approx \begin{bmatrix} \lambda_1 = 1 & \lambda_2 = 2 \end{bmatrix}$ or millspace, hermal

$$\frac{\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} - \begin{pmatrix} 2 \\ 0 \end{pmatrix}}{2i I_2 - B_i} = \begin{pmatrix} -i & -1 \\ 0 & 0 \end{pmatrix}$$

$$\frac{\text{Kern}(2i I_2 - B_i) = 8pan(\binom{i}{i})}{1 \Rightarrow v_i = \binom{i}{i}}$$

$$\text{Kern} (2_{2} + I_{2} - B_{1}) = \text{Hem} \left(\begin{pmatrix} 2 & 0 \\ 6 & 2 \end{pmatrix} - \begin{pmatrix} 2 & 1 \\ 0 & 1 \end{pmatrix} \right) = \text{Rem} \left(\begin{pmatrix} 0 & -1 \\ 0 & 1 \end{pmatrix} \right) = \text{Span} \left(\begin{pmatrix} 1 \\ 0 \end{pmatrix} \right)$$

$$= \text{Span} \left(\begin{pmatrix} 1 \\ 0 \end{pmatrix} \right)$$

•
$$B_2 = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$

• $\lambda^2 + 1 = 0$ (as $\det(\lambda I - B_2) = 0$)

• $\lambda_{1,2} = \pm i \cdot (\lambda_1 = -i \cdot \lambda_2 = i)$

$$\lambda_{1}I_{2}-B_{2}=(-i\omega_{1}-i\omega_{2})$$
 yethern $(\lambda_{1}I_{2}-B_{2})=i\int_{0}^{\infty}(-i\omega_{1}-i\omega_{2})(\frac{u^{(i)}}{u^{(i)}})$
 $-i\omega_{2}v^{(i)}-v^{(2)}=0$ $=0$ $v^{(2)}=-iv^{(i)}$ $=(\frac{u^{(i)}}{u^{(i)}})$

$$\lambda_{2}\Gamma_{2}-B_{2} = (i - 1) \Rightarrow \nu_{2} \in \text{Kerm}(\lambda_{2}\Gamma_{2}-B_{2}) \text{ if } (\nu_{2}^{(i)} - \nu_{2}^{(i)} = 0)$$

$$U_2 = \begin{pmatrix} 1 \\ i \end{pmatrix}$$

- * B_3 * is a diagonal matrix => $2_1 = 1_2 = -3$ (eigenvalues on diagonal) and the eigenvectors $v_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ $v_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$
- * By is an upper chageral matrix => 1, = l_2 =-3 (eigenvalues and igg) However, Kern (*6-3)· I_2 - B_4) = kern(0.1) = span ((1)). With that, let's look for a generalized eigenvector.

The gen, eigenvector satisfies
$$(-C-i)I_2 + B_4$$
, $W_1 = V_1$
 $\begin{pmatrix} 0 & +1 \\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} w_1^{(1)} \\ w_1^{(2)} \end{pmatrix} = \begin{pmatrix} v_1^{(1)} \\ v_2^{(2)} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$

wrong order, core)

 $\Rightarrow \begin{cases} w_1^{(1)} - w_1^{(2)} \\ w_1^{(2)} - w_2^{(2)} \end{cases} = \begin{pmatrix} w_1^{(2)} \\ w_1^{(2)} - w_2^{(2)} \end{pmatrix} = \begin{pmatrix} 0 \\ (+1) \end{pmatrix}$
 $\Rightarrow \begin{cases} w_1^{(2)} - w_1^{(2)} \\ w_2^{(2)} - w_2^{(2)} \end{cases} = \begin{pmatrix} w_1^{(2)} \\ w_1^{(2)} - w_2^{(2)} \end{pmatrix} = \begin{pmatrix} w_1^{(2)} \\ w_2^{(2)} - w_2^{(2)} - w_2^{(2)} \end{pmatrix} = \begin{pmatrix} w_1^{(2)} \\ w_2^{(2)} - w_2^{(2)} - w_2^{(2)} \end{pmatrix} = \begin{pmatrix} w_1^{(2)} \\ w_2^{(2)} - w_2^{(2)} - w_2^{(2)} \end{pmatrix} = \begin{pmatrix} w_1^{(2)} \\ w_2^{(2)} - w_2^{(2)} - w_2^{(2)} \end{pmatrix} = \begin{pmatrix} w_1^{(2)} \\ w_2^{(2)} - w_2^{(2)} - w_2^{(2)} \end{pmatrix} = \begin{pmatrix} w_1^{(2)} \\ w_2^{(2)} - w_2^{(2)} - w_2^{(2)} \end{pmatrix} = \begin{pmatrix} w_1^{(2)} \\ w_2^{(2)} - w_2^{(2)} - w_2^{(2)} \end{pmatrix} = \begin{pmatrix} w_1^{(2)} \\ w_2^{(2)} - w_2^{(2)} - w_2^{(2)} \end{pmatrix} = \begin{pmatrix} w_1^{(2)} \\ w_2^{(2)} - w_2^{(2)} - w_2^{(2)} \end{pmatrix} = \begin{pmatrix} w_1^{(2)} \\ w_2^{(2)} - w_2^{(2)} - w_2^{(2)} \end{pmatrix} = \begin{pmatrix} w_1^{(2)} \\ w_2^{(2)} - w_2^{(2)} - w_2^{(2)} \end{pmatrix} = \begin{pmatrix} w_1^{(2)} \\ w_2^{(2)} - w_2^{(2)} - w_2^{(2)} \end{pmatrix} = \begin{pmatrix} w_1^{(2)} \\ w_2^{(2)} - w_2^{(2)} - w_2^{(2)} \end{pmatrix} = \begin{pmatrix} w_1^{(2)} \\ w_2^{(2)} - w_2^{(2)} - w_2^{(2)} \end{pmatrix} = \begin{pmatrix} w_1^{(2)} \\ w_2^{(2)} - w_2^{(2)} - w_2^{(2)} \end{pmatrix} = \begin{pmatrix} w_1^{(2)} \\ w_2^{(2)} - w_2^{(2)} - w_2^{(2)} \end{pmatrix} = \begin{pmatrix} w_1^{(2)} \\ w_2^{(2)} - w_2^{(2)} - w_2^{(2)} \end{pmatrix} = \begin{pmatrix} w_1^{(2)} \\ w_2^{(2)} - w_2^{(2)} - w_2^{(2)} - w_2^{(2)} \end{pmatrix} = \begin{pmatrix} w_1^{(2)} \\ w_2^{(2)} - w_2^{(2)} - w_2^{(2)} - w_2^{(2)} \end{pmatrix} = \begin{pmatrix} w_1^{(2)} \\ w_2^{(2)} - w_2^{(2)} - w_2^{(2)} - w_2^{(2)} - w_2^{(2)} \end{pmatrix} = \begin{pmatrix} w_1^{(2)} \\ w_2^{(2)} - w_2^{(2)} - w_2^{(2)} - w_2^{(2)} - w_2^{(2)} \end{pmatrix} = \begin{pmatrix} w_1^{(2)} \\ w_2^{(2)} - w_2^$

2.2 Complex eigenvalues

Introduction: Pair of complex eigenvalues

We can observe complex conjugate pairs of eigenvalues $\lambda = \mu + i\omega$ and $\lambda^* = \mu - i\omega$ with eigenvectors v and v^* . The contribution of the pair of complex eigenvalues to the general solution is

$$c_1 \cdot Re(e^{(\mu+i\omega)t}v) + c_2 \cdot Im(e^{(\mu+i\omega)t}v). \tag{2}$$

Using the Euler identity, one can obtain two linear independent solutions.

Example: Model problem. Given is the second order equation x'' + x = 0. Transform the system in a first system of differential equations by utilizing $y_1 = x$ and $y_2 = x'$. Solve the IVP x(0) = 0, x'(0) = 1.

- 1. Find B_2 such that $y' = B_2 y$. Set $y_1 = x$, $y_2 = x'$ \Rightarrow $y_1 = y_2 \cdot y_2 = x' = -x$ $\Rightarrow \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} (+) = \begin{pmatrix} 0 \\ -1 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} (+)$ $\Rightarrow B_2 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$
- 2. The eigenvalues of B_2 are $\lambda_1 = -\ell$ and $\lambda_2 = +\ell$. The corresponding eigenvectors are $v_1 = \begin{bmatrix} i \\ -i \end{bmatrix}$ and $v_2 = \begin{bmatrix} i \\ i \end{bmatrix}$. Change either λ , and ν , of λ_2 and ν_2
- 3. The general solution is $Re\left(e^{-it}\begin{pmatrix} 1\\ -i \end{pmatrix}\right) = Re\left(\frac{\cos(t)}{-i\cos(t)}\right) = \left(\frac{\cos(t)}{-\sin(t)}\right)$ $\left(m\left(e^{it}\begin{pmatrix} 1\\ -i \end{pmatrix}\right) = \left(\frac{\sin(t)}{-\cos(t)}\right) + c_2\left(\frac{\sin(t)}{-\cos(t)}\right)$ $y(t) = \left(\frac{\cos(t)}{-\sin(t)}\right) + c_2\left(\frac{\sin(t)}{-\cos(t)}\right)$

4. Solve the IVP by determining
$$c_1, c_2$$
.

$$(1 = \chi(0) = y_1(0) \\
(1 = \chi'(0) = y_2(0))$$

$$(2) = (1 = 0) \\
(3) = (2) = (4)$$

$$y(t) = (4) \\
y(t) = (5) \cdot (4) \\
(4) \cdot (6) = (4) \cdot (6) = (4)$$

5. Obtain x(t).

2.3 Repeated Eigenvalues Without Defects

Introduction: Repeated Eigenvalues Without Defects. Sometimes, eigenvalues coincide, i.e. we have $\lambda = \lambda_1 = \lambda_2 = \ldots = \lambda_m$. However, we may still find m linear independent eigenvectors v_1, \ldots, v_m then we can still find the contribution of the eigenvalue to the solution analogous to the first subsection

$$c_1 e^{\lambda t} v_1 + c_2 e^{\lambda t} v_2 + \ldots + c_m e^{\lambda t} v_m$$

with arbitrary coefficients $c_1, c_2, \ldots c_m$.

Example: Model problem. Solve the IVP

$$y' = B_3 y$$
 with $B_3 = \begin{bmatrix} -3 & 0 \\ 0 & -3 \end{bmatrix}$ and $y(0) = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

- 1. The eigenvalues of B_3 are $\lambda_1 = 3$ and $\lambda_2 = 3$. The corresponding eigenvectors are $v_1 = \begin{bmatrix} i \\ 0 \end{bmatrix}$ and $v_2 = \begin{bmatrix} i \\ 0 \end{bmatrix}$.
- 2. The general solution is

$$y(t) = \begin{pmatrix} c_1 e^{-3t} \\ c_2 e^{-3t} \end{pmatrix}$$

3. Solve the IVP by determining c_1, c_2 .

$$\binom{0}{1} = \binom{c_1}{c_2}$$

$$y(t) = \begin{pmatrix} 0 \\ e^{-3\lambda} \end{pmatrix}$$

Repeated Eigenvalues with Defects

Introduction: Solving Systems of Differential Equations with Defective Eigenvalues Defective eigenvectors result in special terms. If an eigenvector has a defect of 1, i.e we find w(as defined on the front page) but no further defect, then the defective eigenvector contributes

$$c_1 v e^{\lambda t} + c_2 (vt + w) e^{\lambda t}.$$

If the defect is 2, then the contribution is

$$c_1 v e^{\lambda t} + c_2 (vt + w) e^{\lambda t} + c_3 (v \frac{t^2}{2} + wt + x) e^{\lambda t}.$$

Example: Model problem. Find the solution to

Compare to front page

$$y' = Cy, y(0) = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 1 \end{bmatrix}.$$

1. The eigenvector v_1 does not have a defect, hence it contributes to the general solution:

$$c_1 \cdot \begin{pmatrix} c \\ c \\ c \end{pmatrix} = c_1 \cdot \begin{pmatrix} c \\ c \\ c \end{pmatrix}$$

2. The eigenvector v_2 has a defect of order 2 and contributes to the general solution

$$e^{2t} \cdot \left(c_2 \cdot \begin{pmatrix} c \\ c \\ 6 \end{pmatrix} + c_3 \cdot \begin{pmatrix} c \\ t \\ 6 \end{pmatrix} + c_4 \begin{pmatrix} c \\ t \\ c \\ c \end{pmatrix} + \begin{pmatrix} c \\ t \\ c \\ c \end{pmatrix} + \begin{pmatrix} c \\ c \\ t \\ c \end{pmatrix} + \begin{pmatrix} c \\ c \\ t \\ c \\ c \end{pmatrix} \right)$$

3. The general solution is

$$y(t) = \begin{pmatrix} e^{2t} \\ 0 \\ 6 \end{pmatrix} + C_2 \cdot \begin{pmatrix} e^{2t} \\ 0 \\ 0 \end{pmatrix} + C_3 \cdot \begin{pmatrix} e^{2t} \\ te^{2t} \\ 0 \end{pmatrix} + C_4 \cdot \begin{pmatrix} e^{2t} \\ e^{2t} \\ te^{2t} \end{pmatrix} + C_4 \cdot \begin{pmatrix} e^{2t} \\ e^{2t} \\ te^{2t} \end{pmatrix}$$

4. Solve the IVP by determining the four coefficients.

Folive the IVP by determining the four coefficients.

$$\begin{pmatrix} c_1 \\ c_2 \\ + c_3 + c_4 \\ y(t) = \end{pmatrix}$$

$$\begin{pmatrix} c_1 \\ c_2 \\ + c_4 + c_2 \\ + c_4 \end{pmatrix}$$

$$\begin{pmatrix} c_1 \\ c_$$

2.5 Mixed Problems

Problemset: 1.

1. A system of equations is given by

$$y'_1 = \alpha y_1 + y_2,$$

 $y'_2 = \beta y_2 + y_3,$
 $y'_3 = \gamma y_3,$

for some real constants α, β, γ .

- (a) Let α, β, γ be real and pairwise different. For which values of α, β, γ is the system unstable / stable?
- (b) For some real constant let $q = \alpha = \beta = \gamma$. Determine y(t) for the initial value problem $y_1(0) = 1$ and $y_2(0) = y_3(0) = 0$. For which values of q is the system unstable?
- 2. Find the general solution to $y' = B_4 y$ and $y' = B_5 y$.
- 3. Transform the mass-spring-damper system my'' + cy' + ky = 0 into a system of first order equations. Show that the characteristic equation has repeated roots if and only if the transformed system has an eigenvalue with defect.

$$|x| = 4, \ |z| = 6 \ (3) \ (y) \ ($$

1.(b)
$$A = \begin{pmatrix} 9 & 9 & 9 \\ 9 & 9 & 9 \end{pmatrix}$$
 => $a = b = b = b = g = g$ and $b = b = b = g = g$

Sole signushie.

As $(A - q \cdot I_3)$ $(a - q \cdot I_3)$

2. Similar to before
$$y(t) = (c_1e^{-3t} + c_2 \cdot b \cdot e^{-3t})$$
 $c_{11}c_2 \in \mathbb{R}$
for B_4 , $y = B_4 y$
and $y(t) = (c_1 + c_2 t)$
 c_2
 c_3e^{-t} for B_5 , $y = B_5 y$.

Transformed sys
$$y_1 = y_1 \cdot y_2 = y_1'$$
 $3i' = y_2$
 $3i' = y_2$
 $3i' = y_2$
 $3i' = y_3$
 $3i' = y_2$
 $3i' = y_3$
 $3i' = y_3$

root.

3 Application: Mathematics of Love, Nullclines and Phase Planes

I'm following Cole Zmurchok's example and sharing his code for the following section.

Introduction: Romeo and Juliet

Let R(t) denote Romeo's feelings for Juliet at time t, and J(t) denote Juliet's feelings for Romeo at time t where positive values indicate positive feelings and negative values indicate negative feelings.

Suppose that Romeo and Juliet respond to their own feelings as well as each other's feelings, so that

$$\frac{dR}{dt} = a_R R + b_R J,$$

$$\frac{dJ}{dt} = a_J J + b_J R,$$

where $a_R, b_R, a_J, b_J \in \mathbb{R}$. Given $a_R, b_R, a_J, b_J \in \mathbb{R}$ can we describe the evolution of Romeo and Juliet's feelings for each other over time?

1. Write this first-order constant coefficient linear system as a matrix ODE.

$$x'(t) = {\binom{R}{J}}(t) = {\binom{\alpha_R \ b_R}{b_3 \ \alpha_{\overline{J}}}} {\binom{R}{J}}(t) = A \cdot x \quad x = {\binom{R}{J}}$$

- 2. Download the code from the webpage to get a handle on the system behaviour. How does the system behave in the following cases?
 - (a) Case A: $a_R = 2$, $b_R = 1$, $b_J = 0$, $a_J = 1$.
 - (b) Case B: $a_R = 0$, $b_R = 1$, $b_J = -1$, $a_J = 0$.
 - (c) Case C: $a_R = -3$, $b_R = 0$, $b_J = 0$, $a_J = -3$.
 - (d) Case D: $a_R = -3$, $b_R = 1$, $b_J = 0$, $a_J = -3$.
- 3. For each of these cases we can find the explicit solution $x(t) = \begin{bmatrix} R(t) \\ J(t) \end{bmatrix}$, find the nullclines, sketch the phase-plane and classify the stability of the origin. Suppose R(0) = J(0) = 1.

Example: Case A.

 $a_R = 2, b_R = 1, b_J = 0, a_J = 1.$ This gives

$$\frac{dx}{dt} = Ax = \begin{bmatrix} 2 & 1 \\ G & 1 \end{bmatrix} \cdot x$$

Find or recall the general solution $\tilde{x}(t)$ from the previous sections.

Find the nullclines.

$$C = R = 2R + 1$$
] (C=) $R = -\frac{1}{2}J$

Sketch the solutions, R(t), and J(t), and sketch the phase-plane (J(t) versus R(t)).

Your turn. Find the explicit solution $x(t) = \begin{bmatrix} R(t) \\ J(t) \end{bmatrix}$ for Case B, Case C and Case D. Find the nullclines, sketch the phase plane, and classify the stability of the origin.

More?

Can you predict the outcome of the love affair given any set of parameters $\{a_R, b_R, b_J, a_J\}$?

Can you improve my code to compare the results of ode45 with the exact solution of the system? Can you plot nullclines? Can you plot a vector field and several trajectories (such as Figure 3.5-3.7 in WFT.pdf?)