Modern Optimization

Jean-Luc Bouchot

School of Mathematics and Statistics Beijing Institute of Technology jlbouchot@bit.edu.cn

Spring 2021

Convex functions and analysis- review

Outline

Convex functions and analysis- review

Proposition 2.1 (Cauchy Schwarz)

Remember the Cauchy-Schwarz inequality: let $\mathbf{u}, \mathbf{v} \in \mathbb{R}^d$, we have

$$|\langle \mathbf{u}, \mathbf{v} \rangle| \le \|\mathbf{u}\|\mathbf{v}\|.$$

This allows, if needed, to define an angle between the two vectors (assuming non zero vectors):

$$\cos(\alpha) = \frac{\langle \mathbf{u}, \mathbf{v} \rangle}{\|\mathbf{u}\| \|\mathbf{v}\|}.$$

Definition 2.1 (Convex sets)

Let $C \subseteq \mathbb{R}^d$. We say that C is **convex** if for any two points $x,y \in C$, for any $\lambda \in [0,1]$,

$$\lambda x + (1 - \lambda)y \in C.$$

Let's doodle some examples.

Remark 2.1

Let $\mathcal I$ be a countable index set and $\{C_i\}_{i\in\mathcal I}$ a family of convex sets. Then

 $\cap_{i\in\mathcal{I}}C_i$

is convex.

Definition 2.2 (Graph-Epigraph)

Let $f : dom(f) \to \mathbb{R}$.

- The graph of f is the set of points $\{(x, f(x)), x \in \text{dom}(f)\} \subset \mathbb{R}^{d+1}$.
- The **epigraph** of f is the set of points above the graph:

$$\mathrm{epi}(f) = \{(x,y), x \in \mathrm{dom}(f), y \geq f(x)\}.$$

Let's see what this looks like

Definition 2.3 (Convex function)

Let $f : dom(f) \to \mathbb{R}$. We say that f is **convex** if:

- \bullet dom(f) is convex, and
- ② for all $x, y \in dom(f)$, for all $\lambda \in [0, 1]$, we have

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y).$$

Let $f(x) = a^T x + c$ for a given vector $a \in \mathbb{R}^d$ and $c \in \mathbb{R}$. f is convex.

Remark 2.2

The previous example is very specific in that it is convex with, in fact, equality instead of inequality.

If a function has a strict inequality, we will talk about strict convexity (albeit limiting to $\lambda \in (0,1)$). We will come back to this in the near future.

Let $Q \in \mathbb{R}^{d \times d}$ be a positive definite matrix and define $f(x) = x^T Q x$. f is a convex function.

Proposition 2.2

Let $f : dom(f) \to \mathbb{R}$. f is convex $\Leftrightarrow epi(f)$ is convex.

Proposition 2.3 (Jensen's inequality)

Let $f: \mathrm{dom}(f) \to \mathbb{R}$ be a convex function. Let x_1, \cdots, x_n be n points in $\mathrm{dom}(f) \subset \mathbb{R}^d$ and let $\lambda_1, \cdots, \lambda_n$ be n nonnegative numbers such that $\sum \lambda_i = 1$. Then

$$f\left(\sum_{i=1}^{n} \lambda_i x_i\right) \le \sum_{i=1}^{n} \lambda_i f(x_i).$$

Proposition 2.4

Let f be a convex function on the open set dom(f). Then f is continuous.

Definition 2.4 (Lipschitz continuity)

A function $f: dom(f) \to \mathbb{R}$ is said to be **Lipschitz continuous** with Lipschitz constant L (sometimes expressed as L-Lipschitz or, if context is clear, simply f is Lipschitz) if

$$||f(x) - f(y)|| \le L||x - y||, \quad \forall x, y \in \text{dom}(f).$$

Theorem 2.1

Let $f: \text{dom}(f) \to \mathbb{R}^m$ be a differentiable function and let $X \subset \text{dom}(f)$ be an open convex set. Let $L \in \mathbb{R}^+$. The following statements are equivalent:

- f is L-Lipschitz.
- ② The differentials of f are bounded by L, i.e.

$$||Df(x)|| \le L, \quad \forall x \in X,$$

where D denotes the differential operator (or Jacobian), defined as the unique operator A such that for all y in a neighbourhood of x, we have

$$f(y) = f(x) + A(y - x) + r(y - x),$$

with

$$\lim_{v \to 0} \frac{\|r(v)\|}{\|v\|} = 0.$$

Example 2.3 (in-class)

Consider all the assumptions from the previous theorem except that X is just convex. What can be said about the conclusion?

Theorem 2.2

Let $f: dom(f) \to \mathbb{R}$ with dom(f) open. Assume furthermore that f is differentiable on dom(f). Then f is convex if and only if

- dom(f) is convex and
- the inequality $f(y) \ge f(x) + \nabla f(x)^T (y-x)$ holds for all $x, y \in \text{dom}(f)$.

Use the first order condition to show the convexity of $f: \mathbb{R}^2 \to \mathbb{R}$ defined as $f(x_1, x_2) = x_1^2 + x_2^2$.

Theorem 2.3

Let f be a twice continuously differentiable function. Then f is convex if and only if $\mathrm{dom}(f)$ is convex and for all $x \in \mathrm{dom}(f) \subseteq \mathbb{R}^n$ the Hessian $H_f(x) = \nabla^2 f(x)$ is positive semidefinite.

Lemma 1

A function $f : dom(f) \subseteq \mathbb{R}^d \to \mathbb{R}$ is convex if and only $g_{x,y}(t) := f(x+ty)$ is (univariate) convex as a function of f.

Note that the domain of g is dependent on the variables $x, y \in dom(f)$.

The negative entropy function f defined as

$$f: \left\{ \begin{array}{ccc} \mathbb{R}_{>0} & \to & \mathbb{R} \\ x & \mapsto & x \log(x) \end{array} \right.$$

is a convex function.

Let f be the function defined as

$$f: \left\{ \begin{array}{ccc} \mathbb{R} \times \mathbb{R}_{>0} & \to & \mathbb{R} \\ (x,y) & \mapsto & \frac{x^2}{y}. \end{array} \right.$$

f is convex.

Definition 2.5 (Convex hull)

For a set C, its convex hull is defined as the set of all convex combinations of points in C, i.e.

$$\mathrm{conv}(C) := \left\{ y = \sum_{i=1}^k \alpha_i x_i \text{ for some } k \in \mathbb{N}, \{x_i\}_i \in C^k, \alpha_i \geq 0, \sum \alpha_i = 1 \right\}.$$

Definition 2.6 (Cones)

A set C is called a **cone** if it is nonnegative homogeneous, i.e.

$$\forall \alpha \geq 0, x \in C, \alpha x \in C.$$

Definition 2.7 (Convex cones)

A set C is called a convex cone if it is a cone and convex, i.e.

$$\forall \alpha \geq 0, \beta \geq 0, x, y \in C, \alpha x + \beta y \in C.$$

Let $\Sigma_s^n := \{x \in \mathbb{R}^n : ||x||_0 := \#\{i : x_i \neq 0\} \leq s\}$ be the set of s sparse vectors in \mathbb{R}^n with $s \leq n$. Σ_s^n is a cone but not a convex cone.

Exercise 2.1 (in-class)

We work in unit spheres and balls:

- Show that $\mathbb{S}^{d-1} = \{x \in \mathbb{R}^d : ||x|| = 1\}$ is not convex.
- Let $x \neq y$ be two vectors such that $\|x\|_2 = \|y\|_2 = 1$. Show that $z_{\lambda} := \lambda x + (1 \lambda)y$ is such that $\|z_{\lambda}\|_1 = 1$ if and only if $\lambda = 1$ or 0.
- Similarly, consider $\lambda=1/2$. Show that $\|z_{1/2}\|_2=1$ if and only if x=y (which we prevented)
- Show that this is no longer true if we use the ℓ_1 norm.
- What happens when using the ℓ_{∞} norm?

Proposition 2.5

Let f be a convex function in two variables x and y and let C denote a non empty set. Then,

$$g(x) := \inf_{y \in C} f(x, y)$$

is convex provided $g(x) > \infty$.

Moreover, its domain is defined as the projection along a coordinate of C:

$$dom(g) = \{x : \exists y \in C, (x, y) \in dom(f)\}.$$

Definition 2.8 (Conjugate function)

Let $f: \mathbb{R}^d \to \mathbb{R}$. Its **convex conjugate** (sometimes called Fenchel conjugate) is defined as the function $f^*: \mathbb{R}^d \to \mathbb{R}$ such that

$$f^*(y) = \sup_{x \in \text{dom}(f)} \left(y^T x - f(x) \right)$$

Find the analytical expressions of the convex conjugate of the following functions

- Linear/affine functions: $f(x) = a^T x + b$
- ② Let Q be a positive definite matrix. Define $f(x) = x^T Q x$.
- **3** $f = \chi_S$ where $S \subset \mathbb{R}^d$ is a subset and χ_S denotes the indicator function:

$$\chi_S(x) = 0$$
, if $x \in S$, ∞ , elsewhere.

Exercise 2.2 (in-class)

Find the Fenchel conjugate of the following functions:

- Maximum function: $f(x) = \max_i(x_i)$.
- Piecewise linear function: assume given 2m numbers $a_1 \leq \cdots \leq a_m$ and b_1, \cdots, b_m , and define $f(x) = \max_i (a_i x + b_i)$.

Proposition 2.6

The Fenchel/convex conjugate enjoys the following properties:

- f^* is convex, independently of the convexity (or lack thereof) of f.
- Fenchel's inequality holds:

$$f(x) + f^*(y) \ge x^T y.$$

• if f is convex and its epigraph is closed, $f^{**} = f$.

Proposition 2.7 (Legendre transform)

If f is convex, differentiable, and $\mathrm{dom}(f)=\mathbb{R}^d$, its Fenchel conjugate is called Legendre transform and

$$\forall z \in \mathbb{R}^d, f^*(y) = z^T \nabla f(z) - f(z),$$

for $y = \nabla f(z)$.

Definition 2.9 (Convex optimization)

The minimization (optimization) problem

$$\min f_0(x)$$

s.t. $f_i(x) \leq 0, i \in \mathcal{I},$
and $f_i(x) = 0, i \in \mathcal{E},$

is said to be a **convex optimization problem** if the objective function f_0 is convex and the feasible set is convex.

Definition 2.10 (Standard form)

A convex optimization problem is said to be in standard form if

- f_i for $i \in \mathcal{I}$ is a convex function and
- f_i for $i \in \mathcal{E}$ is an affine function.

Is the following problem in \mathbb{R}^2 convex? If yes, write it in standard form.

$$\min f_0(x) = ||x||^2$$
s.t. $f_1(x) = \frac{x_1}{1 + x_2^2} \le 0$,
and $f_2(x) = (x_1 + x_2)^2 = 0$.

Definition 2.11

Given a function f, a point x^{\ast} is called a local minimizer of f if there exists a R>0 such that

$$f(x^*) \le f(y)$$

for all feasible y with $||x^* - y|| \le R$.

Remark 2.3

It is easy to see that a local optimum point \boldsymbol{x}^* solves the following optimization problem

$$\begin{aligned} \min & f_0(z) \\ \text{s.t.} & f_i(z) \leq 0, i \in \mathcal{I}, \\ & f_i(z) = 0, i \in \mathcal{E}, \\ & \|z - x^*\| \leq R, \end{aligned}$$

for some R > 0.

Definition 2.12

A feasible point x^* is said to be a global optimum to a convex (un/constrained) optimization problem if

$$f(x^*) \le f(y)$$

for all feasible point $y \in C$. (C being the feasible set)

Lemma 2

Let (\mathcal{P}) be a convex minimization problem and let x^* be a local optimum solution. Then x^* is globally optimal.

Exercise 2.3

True or false:

- A convex optimization problem always has a minimizer.
- If a convex objective function is bounded below, the associated unconstrained minimization problem admits at least one solution.
- The optimal set (set of globally optimal points) of a convex optimization problem is convex.
- The optimal set S of an unconstrained convex problem is limited to (at most) a singleton (i.e. either $S=\varnothing$ or $S=\{x^*\}$ for a unique optimal point x^* .)

Theorem 2.4 (First order optimality)

Let (\mathcal{P}) be a convex constrained optimization problem and let C denote the feasible set. Assume moreover that f_0 is differentiable. Then the point $x^* \in C$ is optimal if and only if

$$\nabla f_0(x^*)^T(y-x^*) \ge 0$$
, for all $y \in C$.

Consider the following optimization problem with box constraints:

$$\min f_0(\mathbf{x}) = \frac{1}{2}\mathbf{x}^T P x + q^T x + r$$

s.t. $-1 \le x, y, z \le 1$,

with

$$P = \begin{bmatrix} 13 & 12 & -2 \\ 12 & 17 & 6 \\ -2 & 6 & 12 \end{bmatrix}, \quad q = \begin{bmatrix} -22 \\ -14.5 \\ 13 \end{bmatrix}, \quad r = 1.$$

Show that $\mathbf{x}^* = [1, 1/2, -1]^T$ solves this problem.

Remark 2.4

Consequences of the previous theorem:

lacktriangledown if (\mathcal{P}) is unconstrained, the first order optimality condition becomes

$$\nabla f(x^*) = 0.$$

② if the constraints are only linear equality constraints (Ax = b, $A \in \mathbb{R}^{p \times d}$), then the first order optimality condition reads

$$\nabla f_0(x^*) + A^T v = 0$$
, for all $v \in \mathbb{R}^p$.