

Построяване на оптимални кодове

- Ефективност на кода и степен на компресия
- 2. Метод на Шенон-Фано.
- 3. Метод на Хафмън.
- 4. Предимства и недостатъци на побуквеното кодиране.
- 5. Класификация на методите за компресия.
- 6. Методи за компресия без загуби.
- 7. Методи за компресия със загуби.
- 8. Смесени методи за компресия.
- 9. Граници за компресия???

1. Ефективност на кода и степен на компресия

Ефективност на кода: Отношението на ентропията на източника Ікъм цената на кода Кза този източник **H(I)/L(K)**.

Очевидно 0<H(I)/L(K)<=1.

В компютърните компресиращи програми една по-практична оценка за тяхната ефективност е степента на компресия

Степен на компресия

(1-L_{compressed}/L_{uncompressed})*100%

където L_{uncompressed} и L_{compressed} са съответно дължината на съобщението (например файл) преди и след компресия.

Понякога вместо горната величина се дава просто отношението некомпресирана:компресирана дължина (Например: 10:1). Това е поудобно при големи степени на компресия - основно при компресия със загуби.

2. Метод на Шенон-Фано

Алгоритъмът на Шенон-Фано се базира на следното:

- За двубуквена азбука оптималния код е K={0,1} с цена L(K) = 1.
 Горната цена на кода ще бъде равна на ентропията на източника (т.е. кодът ще има максимална ефективност (т.е. кодът це има максима ефективност (т.е. кодът це има ефективност (т.е. кодът це има

$$\sum_{i=1}^{j} p_i \, u \sum_{i=j+1}^{n} p_i \, c$$
а максимално близки до 0.5, т.е. ако j е такова, че с

минимизира
$$\left|\sum_{i=1}^{j}p_{i}-\sum_{i=j+1}^{n}p_{i}\right|$$

• Оптималният код за I₁ ще бъде максимално ефективен ако

Пример за кодиране по Шенон-Фано

Методът на Шенон-Фано не гарантира получаването на оптимален код.

3. Метод на Хафмън

Методът на Хафмън позволява получаване на **оптимален** код за зададен източник. Той се базира на следните две теореми:

Ако I е n буквен източник с вероятности

$$p_1 >= p_2 >= ..p_j >= ..> = p_n$$

то съществува оптимален префиксен код с дължини на кодовите думи

като последните две кодови думи имат вида а0 и а1 (а е двоична поредица). Ако К е оптимален код с кодови думи {a₁,a₂,...a_n} за **n** буквен източник с вероятности $p_1 >= p_2 >= ..p_i >= ..>= p_n$ то кодът К' с кодови думи $a_1, a_2, ... a_{i-1}, a_{i+1}, ..., a_i 0, a_i 1$ е оптимален за n+1 буквен източник с вероятности $p_1 >= p_2 >= ... p_{i-1} >= , p_{i+1} >= ... >= p_n >= q >= s$ където q+s=p_i. Пример за кодиране по Хафмън A={a,b,c,d,e} P={0.1,0.15,0.16,0.2,0.39} H(I)=2.16 bits/symbol 039 >0.61 0.39 0.39 0.20 0.25 0.16 0.20 0.15 0.10 0.16 1 000 001 010 011 K={011,010,001,000,1} L(K)=2.22 bits/symbol 4. Предимства и недостатъци на побуквеното кодиране. Предимства • Кодирането е без загуба на информация. Ако източника е известен, то съществува алгоритъм за построяване на оптимален за този източник код PDFmyURL.com (Хафмън).

Кодирането и декодирането са прости и бързи алгоритми, които лесно се реализират софтуерно и хардуерно.

• Недостатъци

Кодирането се базира на предварително зададен източник (статичен модел). "Построяването" на източника точника точника

Пример Модел на английската азбука с фиксирани вероятности, използван като източник за а) литературен текст. b) текст на Pascal.

• Кодирането може да е далече от оптималното ако първичната азбука на източника е с малък брой букви.

Пример При предаване по факс. Азбука от две букви: {черно, бяло}. Цена на оптималния код е 1 бит/символ. Ентропия на източника е H=p log 2 p+(1-p) log 2 (1-p) <= 1

• Алгоритъма на Хафмън е за т.н. **модел от 0-лев порядък** (отчитат се само вероятностите на буквите на първичната азбука p_i, но не и 'взаимните' вероятности p_{ii}, p_{iik} и т.н).

• Преодоляване на недостатъците

Използване на динамични модели.

Пример Оценка на вероятностите от честотата на срещане на символите в самото съобщение. предават и вероятностите.

За достатъчно дълги съобщения. Недостатък: трябва да се

Използване на модели от по-висок порядък. Трудности: 1. Броят на отчитаните вероятностите расте много бързо. 2. с.
 Построяването на адекватен модел е трудно.

Пример Параметри на модели от различен порядък: **Брой вероят ност и** Пример за азбука с 30 букви Отчитани Порядък Брой вероятности на модела вероятности на буквите p=1/n-1 0 $p_{1}, p_{2}..p_{n}$ 30 n $p_1, p_2..p_n$ p₁₁, p₂₁..p_{n1} n+n² 930 p₁₂, p₂₂..p_{n2} p_{1n}, p_{2n}..p_{nn} $p_{1}, p_{2}..p_{n}$ p₁₁, p₂₁..p_{n1} p₁₂, p₂₂..p_{n2} $n+n^2+n^3$ 27930 $p_{1n}, p_{2n}..p_{nn}$ p₁₁₁, p₁₂₁..p_{1n1}

C	
C	<u></u>
C	1-
C	1
C	1
C	1-
000	
C	12
C	77777777777
C	77777
C	12
C	1-
C	1-
c_	T~
C	1~
C	1~
C	T~
C	1-
C	777777
C	-
C	T~
C	T~
0000000000	77777
-	1-
C	T
C	T
C	77777777777777
C	T
C	T
C	T
C	T
C	1~
C	1~
C	1-
0000	
C	-
_	TT
C	1~
C	1~
C	-
C	-
C	-
C	-
C	-
C	-
C	-

Буква	Вероятност	Интервал	
Space	0.1	0.0 - 0.1	
A	0.1	0.1 - 0.2	
В	0.1	0.2 - 0.3	
E	0.1	0.3 - 0.4	
G	0.1	0.4 - 0.5	
Ĩ	0.1	0.5 - 0.6	
i	0.2	0.6 - 0.8	
S	0.1	0.8 - 0.9	
Ť	0.1	0.9 - 1.0	

Вероятности на буквите в свобщението BILL GATES

Следваща буква	Долна граница	Горна граница	
	0.0	1.0	
В	0.2	0.3	
i i	0.25 0.256	0.26 0.258	
- Ī	0.2572	0.2576	
Space	0.2572	0.25724	
Ģ	0.257216	0.257220	
A	0.2572164	0.2572168	
F	0.25721676 0.257216772	0.2572168 0.257216776	
S	0.2572167752	0.2572167756	

Кодиране на съобщението BILL GATES

Чнело	Буква	Граннци		Интервал
0.2572167752 0.572167752 0.72167752	B I L	0.2 0.5 0.6	0.3 0.6 0.8	0.1 0.1 0.2
0.6083876 0.041938 0.41938 0.1938	Space G A	0.6 0.0 0.4 0.2	0.8 0.1 0.5 0.3	0.2 0.1 0.1 0.1
0.938 0.38 0.8 0.0	T E S	0.9 0.3 0.8	1.0 0.4 0.9	0.1 0.1 0.1

Декодиране на свобщението BILL GATES

• Математически трансформации - Фурие и др.

7. Методи за компресия със загуби.

Къде е допустимо?: Информация, свързана с човешки възприятия (5-те сетива).

Пример Звук: 20 Hz - 20 kHz, но най-голяма чувствителност в средната честотна област и <u>нормален</u> интензитет.

Методи:

