Stanislas Exercices

Déterminants Chapitre IV

PSI

2021-2022

I. Calculs de déterminants

Indications pour l'exercice 1. Développer 2 fois selon la première ligne pour obtenir une relation de récurrence d'ordre 2 qu'il suffit alors de résoudre.

Indications pour l'exercice 2. On pourra introduire le vecteur colonne E_i qui ne contient que des 0 sauf à la ligne i où il y a un 1 puis utiliser la multilinéarité du déterminant.

Indications pour l'exercice 3. Les formules de trigonométrie assurent que la famille est liée dès que $n \ge 3$.

Lorsque n=2, on montre que le déterminant est égal à $-\sin^2(\alpha_1 - \alpha_2)$.

Indications pour l'exercice 4. En développant par rapport à la première ligne puis par rapport à la première colonne, on obtient une relation de récurrence d'ordre 2 qu'il suffit ensuite de résoudre...

Indications pour l'exercice 5.

- **1.** On calcule le coefficient $[C_nW_n]_{i,j}$. En utilisant les propriétés des racines de l'unité, on obtient $\zeta_j^{i-1}P(\zeta_j)$ où $P(X)=\sum_{\ell=1}^n a_\ell X^{\ell-1}$.
- 2. Les propriétés des déterminants de Vandermonde permettent d'obtenir $\det(C_n) = \prod_{k=1}^n P(\zeta_k)$.
- **3.** Il importe d'utiliser les propriétés des racines de l'unité pour exprimer le réel Δ_n sous forme algébrique $\Delta_n = (-1)^{n-1} \frac{n^{n-1}(n+1)}{2}$.

Indications pour l'exercice 6. On factorise la première colonne par 2 puis on effectue les opérations $C_i \leftarrow C_i - C_1$.

Indications pour l'exercice 7. En cherchant $M^{-1} = \begin{pmatrix} \alpha & \beta \\ t \beta & \gamma \end{pmatrix}$, on obtient $\gamma = S^{-1}$ puis on trouve β et α .

Indications pour l'exercice 8.

- **1.** Introduire A + iB et A iB.
- 2. Chercher un contre-exemple avec des matrices d'ordre 2.

II. Applications

Indications pour l'exercice 9.

- 1. Penser aux fonctions polynomiales.
- 2. Construire des matrices à partir des familles de vecteurs.

Indications pour l'exercice 10. On pourra passer par les endomorphismes canoniquement associés. □

Indications pour l'exercice 11. On pourra utiliser la formule du binôme de Newton puis la liberté de la famille $(X^k)_{k\in\mathbb{N}}$. On invoquera alors les déterminants de Vandermonde.

Indications pour l'exercice 12. $(i) \Rightarrow (ii)$ On montre que $\operatorname{Ker} \varphi = \{0\}$ en raisonnant sur E^* puis on utilise le théorème du rang.

- $(ii) \Rightarrow (iii)$ On montre que φ transforme les bases en bases.
- $(iii) \Rightarrow (i)$ On raisonne par contraposée en utilisant les propriétés du déterminant.

Indications pour l'exercice 13. (\Leftarrow) On construit une combinaison linéaire nulle des (f_i) puis on l'évalue en x_1, \ldots, x_n .

 (\Rightarrow) Raisonner par récurrence sur n. Lors de l'hérédité, on pourra considérer un déterminant dont la dernière colonne est $(f_1(x), \ldots, f_n(x))$ puis développer ce déterminant par rapport à sa dernière colonne en remarquant que le coefficient devant $f_n(x)$ est alors non nul. On utilisera alors la propriété d'indépendance.