Základy počítačovej grafiky a spracovania obrazu

Základné operácie pre prácu s obrazom

Doc. RNDr. Milan Ftáčnik, CSc.

Cvičenia – obrazárska časť

- Zvládnutie základov MATLAB-u
- Zvládnutie narábania s obrazmi ako aj tvorby jednoduchých algoritmov
- Projekty sú zamerané na vybrané problémy, ktoré má študent naprogramovať a vysvetliť dosiahnutý výsledok z hľadiska použitých metód spracovania obrazu

Úvod do MATLAB-u

- Interaktívny nástroj na analýzu, návrh a riešenie problémov
- Matematické funkcie pre lineárnu algebru, štatistiku, Fourierovu analýzu, filtrovanie...
- Funkcie na vizualizáciu 2D a 3D dát
- Nástroje na vytvorenie GUI

Úvod do MATLAB-u

- Využitie: spracovanie signálu, spracovanie obrazu, testovanie a meranie, finančné modelovanie a analýza, výpočtová biológia...
- Toolboxy rozširujú prostredie MATLAB na riešenie tried problémov z konkrétnych oblastí

Úvod do MATLAB-u

Function list

http://www.mathworks.com/help/matlab/functionlist.html

Tutorial

http://www.mathworks.com/help/pdf_doc/mat lab/getstarted.pdf

Toolboxy

- Image Aquisition Toolbox
- Image Processing Toolbox

- Computer Vision System Toolbox
- Statistics and Machine Learning Toolbox
- Neural Networks Toolbox

•

Image Processing Toolbox

Image Analysis

 segmentácia, matematická morfológia, extrakcia príznakov, detekcia hrán

Spracovanie obrazu

 zvýšenie kontrastu, prevod medzi farebnými modelmi

Prostredie MATLAB-u

Prostredie MATLAB-u

- Command window
 - písanie príkazov, výstupy, chyby
- Workspace
 - premenné, ich hodnoty a typy
- Command History
 - použité príkazy sa dajú "drag and drop" do command window

- help command
- lookfor keyword
- •F1

Command window

$$-3 + 4 - 7$$

$$-k = 3 + 4 - 7$$

- k
- •k;
- ·3^2*4
- •2+2 / 1+1

Command Window

- 1/0 (Inf)
- 0/0 (NaN)
- MATLAB je Case Sensitive!
- K a k sú rôzne premenné
- 15 miest, ale ukazuje len 5
- format long / format short

Command Window

- MATLAB má množstvo vstavaných funkcií
- sin, cos, tan, asin, acos
- sin(pi/2)
- log, log10, log2
- log10(100)

Vektory v MATLAB-e

$$\bullet$$
V = [1, 2, 3, 4]

$$\bullet$$
V = [1 2 3 4]

V = start: step: end

$$V = 2:2:9$$

$$v = [2, 4, 6, 8]$$

$$v = [2, 3, 4, 5]$$

Vektory v MATLAB-e

- V = linspace(1,5,10)
- -V(4) = 0
- V(5:7) = 0
- V(1:2:7) = 0

Matice v MATLAB-e

• Vytvorenie:

- \bullet A = [1, 2, 3; 4, 5, 6; 7, 8, 9] rozmeru 3x3
- Špeciálne matice:
- p = zeros(3,3) == zeros(3);
- o = ones(3,3) == ones(3);
- r = rand(3,3) == rand(3); rovnomerné rozdelenie
- r1 = randn(1,10); normálne rozdelenie
- k = magic(3);

Matice v MATLAB-e

Prístup (riadok, stĺpec)

ans = 4

: celý riadok alebo stĺpec

ans =

2

5

8

Interval

2

5

Operácie

maticové:

Medzi prvkami:

```
.*, ./, .^, sqrt(), sin(), cos(), ...
```

- size(A) rozmery
- sum(A) suma po stĺpcoch
- sum(sum(A)) suma všetkých prvkov
- sum(A(:))

Operácie II


```
    >> A+A
```

ans =
$$246$$

8 10 12

14 16 18

>> A*A

ans = 30 36 42

66 81 96

102 126 150

>> A.*A

ans = 149

16 25 36

49 64 81

19

Indexovanie matice

- Indexovanie jedným indexom:
 - Začíname vľavo hore, prejdeme dole po stĺpci a potom prejdeme na vrch ďalšieho stĺpca a pokračujeme [r,c] = ind2sub([rows, cols], idx)
- Indexovanie dvoma indexami:
 - Klasický spôsob, ktorý už bol prezentovaný (aj s využitím intervalov alebo celých riadkov či stĺpcov)
 idx = sub2ind([rows, cols], r, c)

Zadanie

Vygenerujte maticu pomocou rand(8). Premente všetky prvky ktoré by boli na šachovnici na čiernom políčku na 1. Následne premente všetky prvky menšie ako 0.3 na 0.

HINT: indexovať vieme aj pomocou podmienky, napr. R(R==1) vráti tie prvky z R, ktorých hodnota je 1.

Zadanie

Vygenerujte maticu pomocou rand(8). Premente všetky prvky ktoré by boli na šachovnici na čiernom políčku na 1. Následne premente všetky prvky menšie ako 0.3 na 0.

Riešenie napr:

```
R = rand(8)
```

$$R(1:2:7,2:2:8) = 1$$

$$R(2:2:8,1:2:7) = 1$$

$$R(R<0.3) = 0$$

Zadanie

Vygenerujte maticu pomocou magic(8) a z nej vytvorte maticu 8x4 len z prvkov na bielych políčkach.

Zadanie

Vygenerujte maticu pomocou magic(8) a z nej vytvorte maticu 8x4 len z prvkov na bielych políčkach.

Riešenie napr:

```
A = magic(8)
s = [1 0;0 1]
I = repmat(s,4)
B = reshape(A(I == 1),[8 4])
```

Názvy premenných

- Začína písmenom
- Bez diakritiky a medzier
- Rozlišuje veľkosť písmen
- Odlišné od názvov príkazov a preddefinovaných premenných
- exist meno

Logické operátory

Logické operátory

$$==$$
, <, >, $\sim=$, \sim , ...

- find('podmienka')
 - vráti indexy vyhovujúcich prvkov

Symbol	Represents	Symbol	Represents
>	Greater than	>=	Greater or equal to
<	Less than	<=	Less or equal to
~=	Not equal to	==	Equal to
Not	~	And	&
Or	(single vertical line)		

Riadiace príkazy

flow control:

- -if
- switch
- for
- while
- break

FOR variable=expr statements

IF expression

statements

ELSEIF expression

ELSEIF expression statements

ELSE

statements

END

Timing

- tic; prikazy; toc;
- V sekundách
- V m-file
 - t0 = cputime
 -príkazy, výpočty
 - t1 = cputime
 - fprintf('vypočet trval %g', t1- t0)

Alokácia premenných


```
tic tic x = 0; x = zeros(1,100000); for k = 2:100000 for k = 2:100000 x(k) = x(k-1) + 5; end end toc
```

toc

MATLAB vektorizácia

• Chceme vytvoriť pole kde $v(p) = \frac{P}{\sin(p) + 2}$

```
1. for p = 1:1000

v(p) = p/(\sin(p)+2); end
```

- 2. v = zeros(1,1000);for p = 1:1000v(p) = p/(sin(p)+2); end
- 3. p = 1:1000v = p./(sin(p)+2)

MATLAB vektorizácia

• Chceme vytvoriť pole kde $v(p) = \frac{P}{\sin(p) + 2}$

```
    for p = 1:1000
    v(p) = p/(sin(p)+2); end 1,82 s
    v = zeros(1,1000);
    for p = 1:1000
    v(p) = p/(sin(p)+2); end 0,16 s
```

3.
$$p = 1:1000$$

 $v = p./(sin(p)+2)$
0,0083 s

Obrazy

- binárne: {0,1}
 - im2uint8(I) im2double(I)
- šedotónové: uint8, double ...
- RGB: m × n × 3

1	1	1	1	1	1	1	1	1	1
1	1	1	0	0	0	0	0	0	0
1	1	1	1	0	0	0	0	0	0
1	1	1	0	0	0	0	0	0	0
1	1	1	0	0	0	0	0	0	0
1	1	1	0	0	0	0	0	0	0
1	1	1	0	0	0	0	0	0	0
1	1	1	1	0	0	0	0	0	0
1	1	1	1	1	1	1	1	1	1

Obrazy II

0.2157 0.2826 0.3822

624 0.3344 0.3344 624 0.3344 0.3344

- binárne: {0,1}
- šedotónové: uint8, double ...
- RGB: m × n × 3

		0.4308	0.2483	0.26
W	1		3344	0.26
	N N		-	
The same		152 Ve		8
0				
3 M	No.		200	
=	6		3	
Took !		1		
0:1	No.	100		
		1		
1				
11				

Obrazy III

binárne: {0,1}

šedotónové: uint8, doul

RGB: m × n × 3

Import a export obrazu


```
img = imread('apple.jpg');
dim = size(img);
figure;
imshow(img);
imwrite(img, 'output.bmp', 'bmp');
```

Import a export obrazu II

- Štandardné obrazy sú dostupné cez stránku http://www.sccg.sk/~ftacnik/standardne %20obrazy.docx
- Všetky sú čiernobiele

Sčítanie dvoch obrazov

Scitanie dvoch obrazov II

Hrubá sila

```
• for i = 1:size(apple,1)
   for j = 1:size(apple, 2)
     for k = 1:size(apple, 3)
       output(i,j,k) = (apple(i,j,k)+orange(i,j,k))/2
     end
   end
 end
```

Sčítanie dvoch obrazov IV

Maticový prístup

tic

output = (apple + orange)/2;

toc

Funguje za podmienky, že rozmery oboch obrazov sú rovnako veľké.

Optimalizácia výkonu

- Rýchle vektorové a maticové operácie
- Pomalé cykly

Ako vektorizovať kód:

https://uk.mathworks.com/help/matlab/matlab prog/vectorization.html

Súradnicový systém

Obraz ako matica

```
f = \begin{bmatrix} f(1,1) & f(1,2) & \cdots & f(1,N) \\ f(2,1) & f(2,2) & \cdots & f(2,N) \\ \vdots & & \vdots & & \vdots \\ f(M,1) & f(M,2) & \cdots & f(M,N) \end{bmatrix}
```

Triedy (typy) dát obrazu

Name	Description	
double	Double-precision, floating-point numbers in the approximate range $\pm 10^{308}$ (8 bytes per element).	
single	Single-precision floating-point numbers with values in the approximate range $\pm 10^{38}$ (4 bytes per element).	
uint8	Unsigned 8-bit integers in the range [0, 255] (1 byte per element).	
uint16	Unsigned 16-bit integers in the range [0, 65535] (2 bytes per element).	
uint32	Unsigned 32-bit integers in the range [0, 4294967295] (4 bytes per element).	
int8	Signed 8-bit integers in the range $[-128, 127]$ (1 byte per element).	
int16	Signed 16-bit integers in the range $[-32768, 32767]$ (2 bytes per element).	
int32	Signed 32-bit integers in the range $[-2147483648, 2147483647]$ (4 bytes per element).	
char	Characters (2 bytes per element).	
logical	Values are 0 or 1 (1 byte per element).	

Zmena triedy dát

```
f =
    -0.5 0.5
     0.75 1.5
Performing the conversion
>> g = im2uint8(f)
yields the result
g
           128
    191
          255
```

Zmena triedy dát

- Obraz f je RGB obraz
- Príkaz g = rgb2gray(f) z neho urobí
 šedoúrovňový obraz s kladnými hodnotami od
 0 do 255
- Príkaz k = double (g) konvertuje obraz g na hodnoty s dvojitou presnosťou
- Príkaz t = uint8(k) konvertuje obraz k na obraz s kladnými hodnotami od 0 do 255

M-file

- Ukladajú sa ako meno.m a editujú sa v editore MATLABu
- Súčasťou m-file je:
 - The function definition line
 - The H1 line
 - Help text
 - The function body
 - Comments

Riadok definície funkcie

Píše sa nasledovne:

```
function [outputs] = name(inputs)
```

Napr. funkcia súčtu a súčinu 2 obrazov

```
function [s, p] = sumprod(f, g)
```

Volanie funkcie:

```
>> [s, p] = sumprod(f, g);
```

Riadok H1

 Je to textový riadok hneď po riadku definície funkcie, ktorý obsahuje jednoduchý komentár o činnosti funkcie, napr.

%SUMPROD Computes the sum and product of two images.

- Riadok H1 sa objaví po zadaní príkazu
 - >> help function_name

Ostatné časti M-filu

- Help text nasleduje za riadkom H1 do prvého vykonateľného príkazu, pričom každý riadok začína %
- Telo funkcie obsahuje MATLAB-ovský kód
- Komentárové riadky všetky, ktoré sa začínajú % a nie sú súčasťou H1 a Help

Aritmetické operátory

Operator	Name	Comments and Examples
+	Array and matrix addition	a + b, A + B, or a + A.
_	Array and matrix subtraction	a - b, A - B, A - a, or a - A.
. *	Array multiplication	Cv = A.*B, C(I, J) = A(I, J)*B(I, J).
*	Matrix multiplication	A*B, standard matrix multiplication, or a*A, multiplication of a scalar times all elements of A.
. /	Array right division [†]	C = A./B, C(I, J) = A(I, J)/B(I, J).
. \	Array left division [†]	$C = A. \setminus B, C(I, J) = B(I, J)/A(I, J).$
/	Matrix right division	A/B is the preferred way to compute A*inv(B).
\	Matrix left division	A\B is the preferred way to compute inv(A)*B.
. ^	Array power	If $C = A.^B$, then $C(I, J) = A(I, J)^B(I, J)$.
^	Matrix power	See help for a discussion of this operator.
• 1	Vector and matrix transpose	A. ', standard vector and matrix transpose.
I	Vector and matrix complex conjugate transpose	A', standard vector and matrix conjugate transpose. When A is real A.' = A'.
+	Unary plus	+A is the same as 0 + A.
-	Unary minus	-A is the same as 0 - A or -1*A.
:	Colon	Discussed in Section 2.8.1.