Context Free Languages

$$G_{pal} = (\{P\}, \{0, 1\}, A, P)$$

- $\begin{array}{ccccc} 2. & P & \rightarrow & 0 \\ 3. & P & \rightarrow & 1 \\ 4. & P & \rightarrow & 0P0 \end{array}$
- $5. \quad P \quad \rightarrow \quad 1P1$

Prove that $L(G_{pal})$ is the set of palindromes over the given alphabet.

$$G_{pal} = (\{P\}, \{0, 1\}, A, P)$$

- $\begin{array}{ccccc} 2. & P & \rightarrow & 0 \\ 3. & P & \rightarrow & 1 \\ 4. & P & \rightarrow & 0P0 \end{array}$

Prove that $L(G_{pal})$ is the set of palindromes over the given alphabet.

This proof has two parts (⇒ and ←)

$$G_{pal} = (\{P\}, \{0, 1\}, A, P)$$

- $P \rightarrow \epsilon$
- $2. \quad P \quad \rightarrow \quad 0$
- $3. \quad P \rightarrow 1$
- 4. $P \rightarrow 0P0$
- $5. \quad P \quad \rightarrow \quad 1P1$

- This proof has two parts (⇒ and ⇐)
 - 1) $(w = w^R) \Rightarrow w \in L(G_{pal})$
 - 2) $w \in L(G_{pal}) \Rightarrow (w = w^R)$

$$(w = w^R) \Rightarrow w \in L(G_{pal})$$

- 1. $P \rightarrow \epsilon$
- $2. \quad P \quad \rightarrow \quad 0$
- $3. \quad P \quad \rightarrow \quad 1$
- 4. $P \rightarrow 0P0$
- $5. \quad P \quad \rightarrow \quad 1P1$

• Proof [by induction on |w|]:

BASIS: We use lengths 0 and 1 as the basis.

If
$$|w| = 0$$
 or $|w| = 1$, then w is ϵ , 0, or 1.

Since there are productions $P \to \epsilon$, $P \to 0$, and $P \to 1$, we conclude that $P \stackrel{*}{\Rightarrow} w$ in any of these basis cases.

- Note, $w \in L(G_{pal})$ is same $P \stackrel{*}{\Rightarrow} w$
- Note, $(w = w^R)$ means w begins and ends with the same character.

If |w| = 0 or |w| = 1, then w is ϵ , 0, or 1.

Since there are productions $P \to \epsilon$, $P \to 0$, and $P \to 1$, we conclude that $P \stackrel{*}{\Rightarrow} w$ in any of these basis cases.

If |w| = 0 or |w| = 1, then w is ϵ , 0, or 1.

Since there are productions $P \to \epsilon$, $P \to 0$, and $P \to 1$, we conclude that $P \stackrel{*}{\Rightarrow} w$ in any of these basis cases.

Inductive Hypothesis: Let for $|w| \le k$ where $(w = w^R)$, $P \stackrel{*}{\Rightarrow} w$ is true. **Inductive Step:** We need to show for |w| = k + 1, $P \stackrel{*}{\Rightarrow} w$ is true.

If |w| = 0 or |w| = 1, then w is ϵ , 0, or 1.

Since there are productions $P \to \epsilon$, $P \to 0$, and $P \to 1$, we conclude that $P \stackrel{*}{\Rightarrow} w$ in any of these basis cases.

Inductive Hypothesis: Let for $|w| \le k$ where $(w = w^R)$, $P \stackrel{*}{\Rightarrow} w$ is true. **Inductive Step:** We need to show for |w| = k + 1, $P \stackrel{*}{\Rightarrow} w$ is true.

Note, w = 0x0 or w = 1x1, where |x| = k - 1.

Then, $P \Rightarrow 0P0 \stackrel{*}{\Rightarrow} 0x0$ (Since $|x| \leq k$, so $P \stackrel{*}{\Rightarrow} x$ is true).

So, $P \stackrel{*}{\Rightarrow} w$ is true. With a similar argument, $P \Rightarrow 1P1 \stackrel{*}{\Rightarrow} 1x1$

If |w| = 0 or |w| = 1, then w is ϵ , 0, or 1.

Since there are productions $P \to \epsilon$, $P \to 0$, and $P \to 1$, we conclude that $P \stackrel{*}{\Rightarrow} w$ in any of these basis cases.

Inductive Hypothesis: Let for $|w| \le k$ where $(w = w^R)$, $P \stackrel{*}{\Rightarrow} w$ is true. **Inductive Step:** We need to show for |w| = k + 1, $P \stackrel{*}{\Rightarrow} w$ is true.

Note, w = 0x0 or w = 1x1, where |x| = k - 1.

Then, $P \Rightarrow 0P0 \stackrel{*}{\Rightarrow} 0x0$ (Since $|x| \leq k$, so $P \stackrel{*}{\Rightarrow} x$ is true).

So, $P \stackrel{*}{\Rightarrow} w$ is true. With a similar argument, $P \Rightarrow 1P1 \stackrel{*}{\Rightarrow} 1x1$

This completes our proof for : $(w = w^R) \Rightarrow w \in L(G_{pal})$

$$w \in L(G_{pal}) \Rightarrow (w = w^R)$$

Proof [by induction on number of steps in the derivation]:

BASIS: If the derivation is one step, then it must use one of the three productions that do not have P in the body. That is, the derivation is $P \Rightarrow \epsilon$, $P \Rightarrow 0$, or $P \Rightarrow 1$. Since ϵ , 0, and 1 are all palindromes, the basis is proven.

INDUCTION:

- Assume for n steps it is true.
- Then, show for (n+1) steps it must be true.

Left as an exercise.

Sentential Forms

G = (V, T, P, S) is a CFG, then any string α in $(V \cup T)^*$ such that $S \stackrel{*}{\Rightarrow} \alpha$ is a sentential form.

Sentential Forms

G = (V, T, P, S) is a CFG, then any string α in $(V \cup T)^*$ such that $S \stackrel{*}{\Rightarrow} \alpha$ is a sentential form.

A context-free grammar for simple expressions

$$E \Rightarrow E * E \Rightarrow E * (E) \Rightarrow E * (E + E) \Rightarrow E * (I + E)$$

Sentential Forms

G = (V, T, P, S) is a CFG, then any string α in $(V \cup T)^*$ such that $S \stackrel{*}{\Rightarrow} \alpha$ is a sentential form.

If $S \stackrel{*}{\underset{lm}{\Rightarrow}} \alpha$, then α is a left-sentential form,

and if $S \stackrel{*}{\underset{rm}{\Rightarrow}} \alpha$, then α is a right-sentential form.

Note that the language L(G) is those sentential forms that are in T^* ; i.e., they consist solely of terminals.

- $2. \qquad E \quad \rightarrow \quad E+E$
- $3. \qquad E \quad \rightarrow \quad E * E$
- $4. \qquad E \quad \rightarrow \quad (E)$

A context-free grammar for simple expressions

$$E \Rightarrow E * E \Rightarrow E * (E) \Rightarrow E * (E + E) \Rightarrow E * (I + E)$$

 Is this sentential form left-sentential? Or right-sentential?

- 4. $E \rightarrow (E)$

A context-free grammar for simple expressions

$$E \Rightarrow E * E \Rightarrow E * (E) \Rightarrow E * (E + E) \Rightarrow E * (I + E)$$

- Is this sentential form left-sentential? Or right-sentential?
- It is a sentential form. But neither left nor right.

Exercise 5.1.2: The following grammar generates the language of regular expression $0^*1(0+1)^*$:

$$\begin{array}{ccc} S & \rightarrow & A1B \\ A & \rightarrow & 0A \mid \epsilon \\ B & \rightarrow & 0B \mid 1B \mid \epsilon \end{array}$$

Give leftmost and rightmost derivations of the following strings:

- * a) 00101.
 - b) 1001.
 - c) 00011.

Note, the given grammar is not a regular grammar (even-though it generates a regular language).

• $S \rightarrow aS|bS|a|b|\epsilon$

• $S \rightarrow aS|bS|a|b|\epsilon$

• Answer: All strings. Σ^*

1.
$$S \to S_1 S | \epsilon$$
,

2.
$$S_1 \rightarrow aS_1b|ab$$

1.
$$S \to S_1 S | \epsilon$$
,

2.
$$S_1 \rightarrow aS_1b|ab$$

Recall that the $S \to aSb|\epsilon$ generates $\{a^nb^n|n \geq 0\}$.

1.
$$S \rightarrow S_1 S | \epsilon$$
,

2.
$$S_1 \rightarrow aS_1b|ab$$

Recall that the $S \to aSb|\epsilon$ generates $\{a^nb^n|n \geq 0\}.$

Starting from S_1 we get $\{a^nb^n|n\geq 1\}$

1.
$$S \rightarrow S_1 S | \epsilon$$
,

2.
$$S_1 \rightarrow aS_1b|ab$$

Recall that the $S \to aSb|\epsilon$ generates $\{a^nb^n|n \ge 0\}$.

Starting from S_1 we get $\{a^nb^n|n\geq 1\}$

The answer:

$$a^{n_1}b^{n_1}a^{n_2}b^{n_2} \dots a^{n_k}b^{n_k} \in L(G)$$

$$L(G) = (\{a^n b^n | n \ge 1\})^*$$

$$S \to SS \mid [S] \mid (S) \mid [] \mid ()$$

$$S \rightarrow SS \mid [S] \mid (S) \mid [] \mid ()$$

Set of all balanced parentheses with alphabet { (,), [,] }

- 1. $S \rightarrow aB|bA$
- 2. $B \rightarrow b|bS|aBB$
- 3. $A \rightarrow a|aS|bAA$

1. $S \rightarrow SaSbS|SbSaS|\epsilon$