Searching for Subspace Trails and Truncated Differentials

March 5th, 2018

Horst Görtz Institute for IT Security Ruhr-Universität Bochum

Gregor Leander, Cihangir Teczan, and Friedrich Wiemer

RUB

Differential Cryptanalysis

SPN Cipher

Differential Cryptanalysis

SPN Cipher

Definition [Knu94; BLN14]

Let $F: \mathbb{F}_2^n \to \mathbb{F}_2^n$. A truncated differential of probability one is a pair of affine subspaces U+s and V+t of \mathbb{F}_2^n , s. t.

$$\forall u \in U : \forall x \in \mathbb{F}_2^n : F(x) + F(x + u + s) \in V + t$$

Structural Attacks

Subspace Trail Cryptanalysis

Main Idea

RUB

Structural Attacks

Subspace Trail Cryptanalysis

Main Idea

Structural Attacks

Subspace Trail Cryptanalysis

Main Idea

Subspace Trail Cryptanalysis [GRR16] (Last Year's FSE)

Let (U_0,\ldots,U_r) be subspaces of \mathbb{F}_2^n , and $F:\mathbb{F}_2^n\to\mathbb{F}_2^n$. We write

$$U_0 \xrightarrow{F} \cdots \xrightarrow{F} U_r \iff 0 \le i < r : \forall a \in U_i^{\perp} : \exists b \in U_{i+1}^{\perp} : F(U_i + a) \subseteq U_{i+1} + b$$

Outline

Outline

- 1 Motivation
- 2 Link to Truncated Differentials
- 3 Security against Subspace Trail Attacks

The Image of the Derivative is in the Subspace

Lemma

Let $U \stackrel{F}{\to} V$ be a subspace trail. Then for all $u \in U$ and all $x: F(x) + F(x+u) \in V$.

Proof

The Image of the Derivative is in the Subspace

Lemma

Let $U \stackrel{F}{\to} V$ be a subspace trail. Then for all $u \in U$ and all $x: F(x) + F(x+u) \in V$.

Proof

The Image of the Derivative is in the Subspace

Lemma

Let $U \stackrel{F}{\to} V$ be a subspace trail. Then for all $u \in U$ and all $x: F(x) + F(x+u) \in V$.

Proof

Link to Truncated Differentials

RUB

Direct consequence from above Lemma

Theorem (Subspaces Trails are Truncated Differentials with probability one)

Let $U \stackrel{F}{\rightarrow} V$ be a subspace trail.

Then U+0 and V+0 form a truncated differential with probability one.

Subspace Trails are thus a special case of truncated differentials.

RUB

Provable Resistant against Subspace Trails How to search efficiently for Subspace Trails?

Security against Subspace Trails?

Given the round function $F: \mathbb{F}_2^n \to \mathbb{F}_2^n$ of an SPN cipher, prove the resistance against subspace trail attacks!

1

Provable Resistant against Subspace Trails

How to search efficiently for Subspace Trails?

Security against Subspace Trails?

Given the round function $F: \mathbb{F}_2^n \to \mathbb{F}_2^n$ of an SPN cipher, prove the resistance against subspace trail attacks!

Main problem: Too many possible starting points.

Already for initially one-dimensional subspaces there are $2^n - 1$ possibilities.

Can't we just activate a single S-box and check to what this leads us?

1

Provable Resistant against Subspace Trails

How to search efficiently for Subspace Trails?

Security against Subspace Trails?

Given the round function $F: \mathbb{F}_2^n \to \mathbb{F}_2^n$ of an SPN cipher, prove the resistance against subspace trail attacks!

Main problem: Too many possible starting points.

Already for initially one-dimensional subspaces there are $2^n - 1$ possibilities.

Can't we just activate a single S-box and check to what this leads us?

The short answer is: No!¹

¹The long answer is: Read our paper ⊕

Approach to the Algorithm

How to reduce the number of starting points?

SPN Cipher

Easy parts

- Given a starting subspace, computing the trail is easy.
- The effect of the linear layer *L* to a subspace *U* is clear:

$$U \stackrel{L}{\rightarrow} L(U)$$

Approach to the Algorithm

How to reduce the number of starting points?

SPN Cipher

Easy parts

- Given a starting subspace, computing the trail is easy.
- The effect of the linear layer *L* to a subspace *U* is clear:

$$U \stackrel{L}{\rightarrow} L(U)$$

S-box: First Observation

For an S-box S and $U \stackrel{S}{\to} V$, because of the above lemma, $\forall x \in \mathbb{F}_2^n$ and $\forall u \in U$:

$$S(x) + S(x+u) \in V$$

$$\iff \langle \alpha, S(x) + S(x+u) \rangle = 0 \quad \forall \alpha \in V^{\perp}.$$

Approach to the Algorithm

How to reduce the number of starting points?

SPN Cipher

Easy parts

- Given a starting subspace, computing the trail is easy.
- The effect of the linear layer *L* to a subspace *U* is clear:

$$U \stackrel{L}{\rightarrow} L(U)$$

S-box: First Observation

For an S-box S and $U \stackrel{S}{\to} V$, because of the above lemma, $\forall x \in \mathbb{F}_2^n$ and $\forall u \in U$:

$$S(x) + S(x+u) \in V$$

$$\iff \langle \alpha, S(x) + S(x+u) \rangle = 0 \quad \forall \alpha \in V^{\perp}.$$

By definition, V^{\perp} is thus the set of zero-linear structures of S.

Theorem

Let $F:\mathbb{F}_2^{kn}\to\mathbb{F}_2^{kn}$ be an S-box layer that applies k S-boxes with no non-trivial linear structures in parallel. Then every essential subspace trail $U\overset{F}{\to}V$ is of the form

$$U=V=U_1\times\cdots\times U_k,$$

where $U_i \in \{\{0\}, \mathbb{F}_2^n\}$.

In particular, in this case, bounds from activating S-boxes are optimal.

SPN Round: S-box layer

Algorithm

- Simply (de-)activate S-boxes
- Compute resulting subspace trail

Complexity (No. of starting Us)

For k S-boxes: 2^k (can be further decreased to k).

This approach is independent of the S-box, i. e. any S-box without linear structures behaves the same with respect to subspace trails.

Algorithm

- Simply (de-)activate S-boxes
- Compute resulting subspace trail

Complexity (No. of starting Us)

For k S-boxes: 2^k (can be further decreased to k).

This approach is independent of the S-box, i. e. any S-box without linear structures behaves the same with respect to subspace trails.

The problem with S-boxes that have linear structures

Subspace trails through S-box layers with *one*-linear structures are not necessarily a direct product of subspaces (see e.g. PRESENT).

Possibility II S-boxes with linear structures

Observation

Algorithm Idea

Compute the subspace trails for any starting point $W_{i,\alpha} \in \mathbb{W}$, with

$$W_{i,\alpha} := (\underbrace{0,\ldots,0}_{i-1},\alpha,0,\ldots,0)$$

Complexity (Size of ₩)

For an S-box layer $F: \mathbb{F}_2^{kn} \to \mathbb{F}_2^{kn}$ with k S-boxes, each n-bit: $|\mathbb{W}| = k \cdot (2^n - 1)$

Conclusion/Questions

Thank you for your attention!

Main Result

 Provable bound length of every possible subspace trail in SPN cipher

Open Problems

- Other structures then SPNs?
- Truncated Differentials?

Mainboard & Questionmark Images: flickr

References I

- [Knu94] L. R. Knudsen. "Truncated and Higher Order Differentials". In: FSE'94. Vol. 1008. LNCS. Springer, 1994, pp. 196–211. doi: 10.1007/3-540-60590-8_16.
- [BLN14] C. Blondeau, G. Leander, and K. Nyberg. "Differential-Linear Cryptanalysis Revisited". In: FSE'14. Vol. 8540. LNCS. Springer, 2014, pp. 411–430. doi: 10.1007/978-3-662-46706-0_21.
- [GRR16] L. Grassi, C. Rechberger, and S. Rønjom. "Subspace Trail Cryptanalysis and its Applications to AES". In: IACR Trans. Symmetric Cryptol. 2016.2 (2016), pp. 192–225. doi: 10.13154/tosc.v2016.i2.192-225.