МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ФАКУЛЬТЕТ ПРИКЛАДНОЙ МАТЕМАТИКИ И ИНФОРМАТИКИ

Кафедра компьютерных технологий и систем

ИМИТАЦИОННОЕ И СТАТИСТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ОТЧЁТ ПО ЛАБОРАТОРНОЙ РАБОТЕ № 1

Савицкой Елизаветы Дмитриевны студентки 4 курса, 4 группы

1) №2, ctp. 52

Моделирование непрерывных случайных величин (НСВ)

Основными методами построения моделирующих алгоритмов для указанных законов распределения являются:

- метод обратной функции;
- метод исключения;
- метод функциональных преобразований,

и другие методы, основанные на учете свойств распределений.

Универсальными методами проверки точности моделирования НСВ являются критерии согласия (χ^2 Пирсона, Колмогорова и др.), а также критерии серий, реализованные в пакете. Графические методы анализа точности моделирования НСВ включают:

- анализ гистограммы частот распределения;
- анализ эмпирической функции распределения

Одномерное нормальное распределение

НСВ $\xi \in \mathbb{R}^1$ с плотностью распределения

$$p_{\xi}(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\{-\frac{(x-\mu)^2}{2\sigma^2}\}$$

имеет одномерное нормальное (гауссово) распределение с параметрами: средним значением $\mu \in R^1$ и дисперсией $\sigma^2 > 0$, (обозначается $N_1(\mu, \sigma^2)$). Функция распределения (0,1) N1 обозначается $\Phi(x)$ и имеет вид:

$$\Phi(x) = F_{\eta}(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{t^{2}}{2}} dt$$

и называется функцией Лапласа. Случайные величины ξ и η связаны соотношением:

$$\xi = \eta + \sigma \cdot \eta$$

где σ - среднее квадратическое (стандартное) отклонение. Таким образом, задача моделирования $\xi \sim N_1(\mu, \sigma^2)$) сводится к моделированию стандартной гаусовской СВ η и применению формулы $\xi = \eta + \sigma \cdot \eta$.

Задание

Используя случайные выборки реализаций объема n=1000, сравнить по точности и быстродействию методы моделирования СВ $\xi \sim N_1(\mu, \sigma^2)$. Положить: $\mu_1=0$, $\sigma^2=1.2$,: $\mu_1=1$, $\sigma^2=0.1$. Получить последовательность реализаций СВ ξ с «усеченным» нормальным распределением. Оценить долю пропущенных реализаций СВ η из n=1000 смоделированных. Положить: $\sigma^2=9$, $\mu=3$,6,9.

$$\xi = \begin{cases} \frac{x, \ ecлu \quad x > 0 \ (\ ede \ x - peanusayus \quad CB \ \eta \sim N_1(\mu\sigma^2),}{nponycкaemcs \ в \ npomuвном \ cnyчae} \end{cases}$$

Алгоритмы моделирования для нормального распределения

Первый алгоритм реализуем методом суммирования, основанном на центральной предельной теореме: если $a_1,a_2,a_3,...,a_N$ - независимые БСВ, то при $N\to\infty$ случайная величина $\zeta=\sqrt{\frac{12}{N}}\Bigl(\sum_{i=1}^N a_i-\frac{N}{2}\Bigr)$ распределена асимптотически нормально, так что $F_\zeta(x)\to\Phi(x), x\in R^1$. На практике приемлемая точность аппроксимации стандартной гаусовской СВ достигается при N=12.

```
# алгоритм реализуемый методом суммирования, основанном на центральной предельной теореме

| def sampling_using_the_central_limit_theorem(sample_of_realizations_, location, scale, n_):
| start_time = timeit.default_timer()
| for _ in range(n_):
| sample_of_realizations_.append(location + scale * (sum([random() for _ in range(12)]) - 6))
| end_time = timeit.default_timer()
| return end_time - start_time
```

Второй алгоритм основан на методе функционального преобразования БСВ. Известно, что если a_1 , a_2 - независимые БСВ, то случайные величины

$$\eta_1 = \sqrt{-2 * lna_1} * \sin(2\pi a_2), \ \eta_2 = \sqrt{-2 * lna_1} * \cos(2\pi a_2)$$

Являются независимыми стандартными гаусовскими. Таким образом, алгоритм моделирования $\eta \sim (0,1)$ N1 на основе данного метода позволяет получить из двух реализаций a_1, a_2 БСВ две независимые реализации СВ η с помощью преобразований.

```
# алгоритм основанный на методе функционального преобразования БСВ

def sampling_using_method_of_functional_transformations(sample_of_realizations_, location, scale, n_):
    start_time = timeit.default_timer()
    for counter in range(int(n_ / 2)):
        a1 = random()
        a2 = random()
        n1 = math.sqrt(-2 * math.log(a1)) * math.sin(2 * math.pi * a2)
        n2 = math.sqrt(-2 * math.log(a1)) * math.cos(2 * math.pi * a2)
        sample_of_realizations_.append(location + n1 * scale)
        sample_of_realizations_.append(location + n2 * scale)
        end_time = timeit.default_timer()
        return end_time - start_time
```

Критерий серий

Критерий серий предназначен для проверки гипотезы о случайности выборки $\{x_1, x_2, \dots, x_n\}$. Критерий основан на исследовании знаковой последовательности разностей:

 $x_i - x_{med}(i = \overline{1,n})$, где x_{med} - медиана выборки $\{x_i\}$. Знаковая последовательность состоит из знаков " + ", " – ", соответствующих разностям и характеризуется:

- $\gamma(K)$ общим числом серий;
- T(K) протяжённостью самой длинной серии, где $K(K \le N)$ число элементов знаковой последовательности.

Под "серией" понимается последовательность подряд идущих одинаковых знаков. Очевидно, если $\{x_i\}$ - случайная выборка, то знаковая последовательность не должна содержать слишком длинных серий, а общее число серий не должно быть слишком

малым. Если одно из следующих неравенств $\gamma(K) > [0.5(K+1-1.96\sqrt{K-1})];$ отвергается, то гипотеза о случайности выборки $\{x_i\}$ $T(K) < [3.3 \log_{10}(K+1)]$ отвергается.

```
time_using_the_central_limit_theorem_02 = sampling_using_the_central_limit_theorem(
   sample using the central limit theorem 02, location 01 02, scale 01 02, n)
time_using_method_of_functional_transformations_01 = sampling_using_method_of_functional_transformations(
   sample_using_functional_transformations_02, location_01_02, scale_01_02, n)
# критерий серий
                 sequence_of_signed_differences.append(1)
    print(sequence_of_signed_differences)
    series = []
    while counter < len(sequence_of_signed_differences) - 1:</pre>
        len_of_series = 0
            counter_in_series += 1
```

```
len_of_series += 1
               len_of_series += 1
    series.append(len_of_series)
number_of_elements_of_signed_sequence = len(sequence_of_signed_differences) # число элементов знаковой
sample_of_truncated_normal_distribution_02, location_02_02, scale_02, n)
```

Результаты

Выводы

В первой части задания алгоритм основанный на методе функционального преобразования БСВ дал более быстрый результат (примерно в 4 раз быстрее), оба алгоритма прошли проверку точности моделирования с помощью критерия серий, но анализ гистограммы частот распределения показал, что более точный результат дал алгоритм, основанный на методе функционального преобразования БСВ. Во второй части с ростом коэффициента сдвига, доля пропущенных реализаций СВ уменьшалась (от 0.157 при $\mu = 3$ до 0.002 при $\mu = 9$).