Spherical solutions for stars

Daniel Wysocki

Rochester Institute of Technology

General Relativity I Presentations December 14th, 2015

Spherical stars

Spherical solutions for stars

Daniel Wysocki

eneral Relativity I Presentation December 14th, 2015

2015-12-12

Introduction

Spherical stars
Introduction

Introduction

December 14th, 2015

2015-12-12

Spherically symmetric coordinates

Spherical stars —Spherically symmetric coordinates

Spherically symmetric coordinates

General metric

$$ds^2 = -dt^2 + dr^2 + r^2(d\theta^2 + \sin^2\theta d\phi^2)$$

Metric on 2-sphere

Schutz (2009, p. 256)

Daniel Wysocki (RIT)

$$dl^2 - r^2(d\theta^2 + \sin^2\theta d\phi^2) = r^2d\Omega^2$$

13

_

Spherical stars

December 14th, 2015

4 / 24

Spherical stars

___Two-sphere in flat spacetime

-Spherically symmetric coordinates

Two-sphere in flat spacetime $\frac{d^2-d^2+dr^2+r^2(dr^2+dr^2+dr^2+dr^2)}{dr^2-dr^2+dr^2+r^2(dr^2+dr^2+dr^2+dr^2)}$

Schutz (2009, p. 256)

Two-sphere in flat spacetime

General metric

$$ds^2 = -dt^2 + dr^2 + r^2(d\theta^2 + \sin^2\theta d\phi^2)$$

Metric on 2-sphere

$$dl^2 = r^2(d\theta^2 + \sin^2\theta d\phi^2) \equiv r^2 d\Omega^2$$

12^

Spherical stars -Spherically symmetric coordinates

Two-sphere in flat spacetime

Two-sphere in flat spacetime $ds^2 = -dt^2 + dr^2 + r^2(d\theta^2 + \sin^2\theta d\phi^2)$ $dl^2 = r^2(d\theta^2 + \sin^2\theta d\phi^2) \equiv r^2 d\Omega^2$

Schutz (2009, p. 256)

Schutz (2009, p. 256)

Metric on 2-sphere

$$dl^2 = f(r', t)d\Omega^2$$

Relation to r

$$f(r',t) \equiv r$$

120

Schutz (2009, pp. 256–257)

Spherical stars

December 14th, 2015

5 / 24

Spherical stars

Spherically symmetric coordinates

☐Two-sphere in curved spacetime

Metric on 2-sphere

$$dl^2 = f(r', t)d\Omega^2$$

Relation to r

$$f(r',t) \equiv r^2$$

13^

Schutz (2009, pp. 256–257)

December 14th, 2015

Spherical stars

-Spherically symmetric coordinates

__Two-sphere in curved spacetime

Meaning of r

- "curvature" or "area" coordinate
 - radius of curvature and area

Figure:

Surface with circular symmetry but no coordinate r = 0.

Schutz (2009, p. 257)

Daniel Wysocki (RIT)

December 14th, 2015

Spherical stars -Spherically symmetric coordinates

 \sqsubseteq Meaning of r

Mark

Meaning of r

• "curvature" or "area" coordinate

- radius of curvature and area
- *not* proper distance from center

Figure:

Surface with circular symmetry but no coordinate r = 0.

Schutz (2009, p. 257)

Daniel Wysocki (RIT)

Spherical stars

December 14th, 2015

Spherical stars -Spherically symmetric coordinates

 \sqsubseteq Meaning of r

Mark

Meaning of r

• "curvature" or "area" coordinate

- radius of curvature and area
- *not* proper distance from center
- r = const, t = const
 - $A = 4\pi r^2$
 - $C=2\pi r$

Figure:

Surface with circular symmetry but no coordinate r = 0.

Schutz (2009, p. 257)

Daniel Wysocki (RIT)

Spherical stars

December 14th, 2015

Spherical stars -Spherically symmetric coordinates

 \sqsubseteq Meaning of r

General metric

$$ds^{2} = q_{00} dt^{2} + 2q_{0r} dr dt + q_{rr} dr^{2} + r^{2} d\Omega^{2}$$

 $g_{00}, g_{0r}, \text{ and } g_{rr} \text{ functions of } t \text{ and } r$

Spherical stars

-Spherically symmetric coordinates

Spherically symmetric spacetime

 $ds^2 = g_{00} dt^2 + 2g_{0r} dr dt + g_{rr} dr^2 + r^2 d\Omega^2$ g_{0r}, g_{0r} , and g_{rr} functions of t and r

Spherically symmetric spacetime

2015-12-12

Static spacetimes

Spherical stars
Static spacetimes

Static spacetimes

- generalizes to spherically symmetric, asymptotically flat Einstein
- a Dial-1- 07- 41- ----

• Birkhoff's theorem says that the Schwarzschild metric applies to point 2

Motivation

- leads to simple derivation of Schwarzschild metric
- generalizes to spherically symmetric, asymptotically flat Einstein vacuum field equations
- Dinlehoff's theorem

• Birkhoff's theorem says that the Schwarzschild metric applies to point 2

• generalizes to spherically symmetric, asymptotically flat Einstein vacuum field equations

• Birkhoff's theorem

• Birkhoff's theorem says that the Schwarzschild metric applies to point 2

Definition

A spacetime is static if we can find a time coordinate t for which

(i) the metric independent of t

$$g_{\alpha\beta,t} = 0$$

(ii) the geometry unchanged by time reversal

$$t \rightarrow -t$$

- ullet a spacetime which only satisfies the first condition is stationary
 - e.g. rotating star

Definition

A spacetime is static if we can find a time coordinate t for which

(i) the metric independent of t

$$g_{\alpha\beta,t} = 0$$

(ii) the geometry unchanged by time reversal

$$t \rightarrow -t$$

- ullet a spacetime which only satisfies the first condition is stationary
 - e.g. rotating star

Time reversal

$$\Lambda: (t, x, y, z) \rightarrow (-t, x, y, z)$$

$$g_{\bar{\alpha}\bar{\beta}} = \Lambda^{\alpha}_{\ \bar{\alpha}} \Lambda^{\beta}_{\ \bar{\beta}} g_{\alpha\beta} = g_{\alpha\beta}$$

$$\Lambda^{0}_{\ \overline{0}} = x^{0}_{\ ,\overline{0}} = -x^{0}_{\ ,0} = -1$$

$$\Lambda^{i}_{\ \overline{j}} = x^{i}_{\ ,\overline{j}} = x^{i}_{\ ,j} = \delta^{i}_{\ j}$$

$$\Lambda^{0}_{\ \overline{i}} = x^{0}_{\ ,\overline{i}} = x^{0}_{\ ,i} = 0$$

$$g_{\bar{0}\bar{0}} = (\Lambda^0_{\bar{0}})^2 g_{00} = g_{00}$$

$$g_{\bar{0}\bar{r}} = \Lambda^0_{\bar{0}} \Lambda^r_{\bar{r}} g_{0r} = -g_{0r}$$

$$g_{\bar{r}\bar{r}} = (\Lambda^r_{\bar{r}})^2 g_{rr} = g_{rr}$$

184

Spherical stars

-Static spacetimes

__Time reversal

•
$$g_{\bar{0}\bar{r}} = -g_{0r} = 0$$

Schutz (2009, p. 258)

Time reversal

$$\Lambda: (t, x, y, z) \to (-t, x, y, z)$$

$$g_{\bar{\alpha}\bar{\beta}} = \Lambda^{\alpha}{}_{\bar{\alpha}} \Lambda^{\beta}{}_{\bar{\beta}} g_{\alpha\beta} = g_{\alpha\beta}$$

Transformation

$$\begin{split} & \Lambda^0_{\ \bar{0}} = x^0_{\ ,\bar{0}} = -x^0_{\ ,0} = -1 \\ & \Lambda^i_{\ \bar{j}} = x^i_{\ ,\bar{j}} = x^i_{\ ,j} = \delta^i_{\ j} \\ & \Lambda^0_{\ \bar{i}} = x^0_{\ \bar{i}} = x^0_{\ ,i} = 0 \end{split}$$

Metric

$$g_{\bar{0}\bar{0}} = (\Lambda^0_{\bar{0}})^2 g_{00} = g_{00}$$

$$g_{\bar{0}\bar{r}} = \Lambda^0_{\bar{0}} \Lambda^r_{\bar{r}} g_{0r} = -g_{0r}$$

$$g_{\bar{r}\bar{r}} = (\Lambda^r_{\bar{r}})^2 g_{rr} = g_{rr}$$

Spherical stars
—Static spacetimes
—Time reversal

•
$$g_{\bar{0}\bar{r}} = -g_{0r} = 0$$

Time reversal

$$\Lambda: (t, x, y, z) \rightarrow (-t, x, y, z)$$

$$g_{\bar{\alpha}\bar{\beta}} = \Lambda^{\alpha}{}_{\bar{\alpha}}\Lambda^{\beta}{}_{\bar{\beta}}g_{\alpha\beta} = g_{\alpha\beta}$$

Transformation

$$\begin{split} & \Lambda^0_{\bar{0}} = x^0_{,\bar{0}} = -x^0_{,0} = -1 \\ & \Lambda^i_{\bar{j}} = x^i_{,\bar{j}} = x^i_{,j} = \delta^i_{\,j} \\ & \Lambda^0_{\bar{i}} = x^0_{\,\bar{i}} = x^0_{,i} = 0 \end{split}$$

Metric

$$g_{\bar{0}\bar{0}} = (\Lambda^0_{\ \bar{0}})^2 g_{00} = g_{00}$$

$$g_{\bar{0}\bar{r}} = \Lambda^0_{\ \bar{0}} \Lambda^r_{\ \bar{r}} g_{0r} = -g_{0r}$$

$$g_{\bar{r}\bar{r}} = (\Lambda^r_{\ \bar{r}})^2 g_{rr} = g_{rr}$$

Spherical stars

Static spacetimes

__Time reversal

Time reversal

$$\bullet \ g_{\bar{0}\bar{r}} = -g_{0r} = 0$$

Simplified metric

$$ds^{2} = g_{00} dt^{2} + g_{rr} dr^{2} + r^{2} d\Omega^{2}$$

Replacement

$$g_{00} \to -e^{2\Phi}$$
, $g_{rr} \to e^{2\Lambda}$, provided $g_{00} < 0 < g_{rr}$

Static spherically symmetric metric

$$ds^2 - e^{2\Phi} dt^2 + e^{2\Lambda} dr^2 + r^2 d\Omega^2$$

$$\lim_{r \to \infty} \Phi(r) = \lim_{r \to \infty} \Lambda(r) = 0$$

Schutz (2009, pp. 258–259)

Spherical stars
—Static spacetimes

└─The metric

- constraint $g_{00} < 0 < g_{rr}$ holds for stars but not black holes
- ullet limits at infinity tell us that spacetime is asymptotically flat

Simplified metric

$$ds^{2} = q_{00} dt^{2} + q_{rr} dr^{2} + r^{2} d\Omega^{2}$$

Replacement

$$g_{00} \rightarrow -e^{2\Phi}$$
, $g_{rr} \rightarrow e^{2\Lambda}$, provided $g_{00} < 0 < g_{rr}$

Static spherically symmetric metric

$$ds^{2} = -e^{2\Phi} dt^{2} + e^{2\Lambda} dr^{2} + r^{2} d\Omega^{2}$$

$$\lim_{r \to \infty} \Phi(r) = \lim_{r \to \infty} \Lambda(r) = 0$$

Schutz (2009, pp. 258–259)

└─The metric

- constraint $g_{00} < 0 < g_{rr}$ holds for stars but not black holes
- limits at infinity tell us that spacetime is asymptotically flat

Simplified metric

$$ds^{2} = q_{00} dt^{2} + q_{rr} dr^{2} + r^{2} d\Omega^{2}$$

Replacement

$$g_{00} \rightarrow -e^{2\Phi}$$
, $g_{rr} \rightarrow e^{2\Lambda}$, provided $g_{00} < 0 < g_{rr}$

Static spherically symmetric metric

$$\mathrm{d}s^2 = -e^{2\Phi}\,\mathrm{d}t^2 + e^{2\Lambda}\,\mathrm{d}r^2 + r^2\mathrm{d}\Omega^2$$

$$\lim_{r\to\infty}\Phi(r) = \lim_{r\to\infty}\Lambda(r) = 0$$

134

- Daniel Wysocki (RIT) Spherical stars
- December 14th, 2015

Static spacetimes —The metric

Spherical stars

- constraint $g_{00} < 0 < g_{rr}$ holds for stars but not black holes
- limits at infinity tell us that spacetime is asymptotically flat

$$G_{\alpha\beta} = R^{\alpha\beta} - \frac{1}{2}g_{\alpha\beta}R$$

Einstein tensor components

$$G_{tt} = \frac{1}{r^2} e^{2\Phi} \frac{d}{dr} [r(1 - e^{-2\Lambda})],$$

$$G_{rr} = -\frac{1}{r^2} e^{2\Lambda} (1 - e^{-2\Lambda}) + \frac{2}{r} \Phi'$$

$$G_{\theta\theta} = r^2 e^{-2\Lambda} [\Phi'' + (\Phi')^2 + \Phi'/r - \Phi'\Lambda' - \Lambda'/r],$$

$$G_{\phi\phi} = \sin^2 \theta G_{\theta\theta}$$

Schutz (2009, pp. 165, 260)

Spherical stars

Static spacetimes

LEinstein Tensor

ein tensor

Einstein Tensor

Schutz (2009, pp. 165, 260)

Sinstein tensor $G_{\alpha\beta} = R^{\alpha\beta} - \frac{1}{2}g_{\alpha\beta}R$

 $G_{12} = \frac{1}{r^2} e^{2\phi} \frac{i\sigma}{dr} [r(1 - e^{-2\Lambda})],$ $G_{12} = -\frac{1}{r^2} e^{2\Lambda} (1 - e^{-2\Lambda}) + \frac{2}{r} \Phi'$ $G_{32} = r^2 e^{-2\Lambda} [\Phi'' + (\Phi')^2 + \Phi'/r - \Phi'/\Lambda' - \Lambda'/r]$ $G_{32} = \sin^2\theta G_{32}$

• $x' \equiv dx/dr$

Einstein Tensor

General Einstein tensor

$$G_{\alpha\beta} = R^{\alpha\beta} - \frac{1}{2}g_{\alpha\beta}R$$

Einstein tensor components

$$G_{tt} = \frac{1}{r^2} e^{2\Phi} \frac{d}{dr} [r(1 - e^{-2\Lambda})],$$

$$G_{rr} = -\frac{1}{r^2} e^{2\Lambda} (1 - e^{-2\Lambda}) + \frac{2}{r} \Phi'$$

$$G_{\theta\theta} = r^2 e^{-2\Lambda} [\Phi'' + (\Phi')^2 + \Phi'/r - \Phi'\Lambda' - \Lambda'/r],$$

$$G_{\phi\phi} = \sin^2 \theta G_{\theta\theta}$$

151

Spherical stars

Static spacetimes

Einstein Tensor

record Function to some $G_{n,j} = R^{-1} - \frac{1}{2} \mu_{ij} M$ which is the order components $G_{n} = \frac{1}{12} 2^{2n} \frac{d}{dr} [i(1-e^{-i\phi})_{i}],$ $G_{n} = -\frac{1}{12} 2^{2n} \frac{d}{dr} [i(1-e^{-i\phi})_{i}],$ $G_{m} = -\frac{1}{2} e^{2n} [1-e^{-i\phi}]_{i} - e^{i\phi} N - e^{i\phi} N - A/r],$ $G_{m} = e^{2n} M G_{m,j}$ where $G_{m} = e^{2n} M G_{m,j}$ and $G_{m,j} = e^{2n} M G_{m,j}$ Solution (2.5).

Einstein Tensor

• $x' \equiv dx/dr$

Schutz (2009, pp. 165, 260)

Spherical stars

December 14th, 2015

3 / 24

Spherical stars
Static perfect fluid

Static perfect fluid

Static perfect fluid

$$\vec{U} \cdot \vec{U} = -1$$
 (conservation law)

Solving for U^0

$$a_{00}(U^0)^2 = -1 \implies U^0 = (-a_{00})^{-1/2} = e^{-\Phi}$$

Solving for U

$$U_0 = a_{00}U^0 = -e^{\frac{a_0}{2}}$$

Spherical stars
—Static perfect fluid

 \sqsubseteq Four-velocity

• "conservation law" is the conservation of four-momentum

$$g_{00}U^0U^0 = -1 \implies (U^0)^2 = (-g_{00})^{-1}$$

 $\implies U^0 = (-g_{00})^{-1/2}$
 $\implies U^0 = (e^{2\Phi})^{-1/2} = e^{-\Phi}$

Schutz (2009, p. 260)

$$\vec{U} \cdot \vec{U} = -1$$
 (conservation law)

Solving for U^0

$$q_{00}(U^0)^2 = -1 \implies U^0 = (-q_{00})^{-1/2} = e^{-\Phi}$$

Solving for U

$$U_0 = a_{00}U^0 = -e^{a_{00}}$$

Spherical stars
—Static perfect fluid

 \sqsubseteq Four-velocity

• "conservation law" is the conservation of four-momentum

$$g_{00}U^0U^0 = -1 \implies (U^0)^2 = (-g_{00})^{-1}$$

 $\implies U^0 = (-g_{00})^{-1/2}$
 $\implies U^0 = (e^{2\Phi})^{-1/2} = e^{-\Phi}$

Schutz (2009, p. 260)

Constraints

$$U^i = 0 \text{ (static)}$$
 $\vec{U} \cdot \vec{U} = -1 \text{ (conservation law)}$

Solving for U^0

$$q_{00}(U^0)^2 = -1 \implies U^0 = (-q_{00})^{-1/2} = e^{-\Phi}$$

Solving for U_0

$$U_0 = q_{00}U^0 = -e^{\Phi}$$

451

Spherical stars

-Static perfect fluid

 $\chi_{00}(U^{0})^{2} = -1 \implies U^{0} = (-g_{00})^{-1/2} = e^{-\Phi}$ Schutz (2009, p. 200)

Four-velocity

Four-velocity

• "conservation law" is the conservation of four-momentum

$$g_{00}U^0U^0 = -1 \implies (U^0)^2 = (-g_{00})^{-1}$$

 $\implies U^0 = (-g_{00})^{-1/2}$
 $\implies U^0 = (e^{2\Phi})^{-1/2} = e^{-\Phi}$

Schutz (2009, p. 260)

$$T_{\alpha\beta} = (\rho + p)U_{\alpha}U_{\beta} + pg_{\alpha\beta}$$

Components of $T_{\alpha\beta}$

$$T_{00} = (\rho + p)e^{2\Phi} + p(-e^{2\Phi}) = \rho e^{2\Phi}$$

$$T_{\alpha\beta} = 0 \text{ for } \alpha \neq \beta; \quad T_{ii} = pg_{ii}$$

$$T_{max} = ne^{2\Lambda}; \quad T_{na} = nr^2; \quad T_{na} = nr^2 \sin^2 \theta = T_{na} \sin^2 \theta$$

154

Spherical stars

Static perfect fluid

_Stress-energy tensor

Stress-energy tensor $T_{ab} = (p+p)U_aU_b + p_{ba}$ $T_{ab} = (p+p)U_aU_b + p_{ba}$

Schutz (2009, p. 200)

- $T_{\alpha\beta} = 0$ because
 - the cross terms make $g_{\alpha\beta} = 0$ - T_{0i} makes one of the U's $U_i = 0$
- likewise, $T_{ii} = pg_{ii}$ because $U_iU_i = 0$

$T_{\alpha\beta}$ for perfect fluid

$$T_{\alpha\beta} = (\rho + p)U_{\alpha}U_{\beta} + pg_{\alpha\beta}$$

Components of $T_{\alpha\beta}$

$$T_{00} = (\rho + p)e^{2\Phi} + p(-e^{2\Phi}) = \rho e^{2\Phi}$$

$$T_{\alpha\beta} = 0 \text{ for } \alpha \neq \beta; \quad T_{ii} = pg_{ii}$$

$$T_{rr} = pe^{2\Lambda}; \quad T_{\theta\theta} = pr^2; \quad T_{\phi\phi} = pr^2 \sin^2 \theta = T_{\theta\theta} \sin^2 \theta$$

124

Spherical stars Static perfect fluid

_Stress-energy tensor

Stress-energy tensor $T_{\alpha\beta} = (\rho + p)U_{\alpha}U_{\beta} + pg_{\alpha\beta}$ $T_{rr} = pe^{2\Lambda}; \quad T_{\theta\theta} = pr^2; \quad T_{\phi\phi} = pr^2 \sin^2\theta = T_{\theta\theta} \sin^2\theta$ Schutz (2009, p. 200)

- $T_{\alpha\beta} = 0$ because
 - the cross terms make $g_{\alpha\beta} = 0$ - T_{0i} makes one of the U's $U_i = 0$
- likewise, $T_{ii} = pg_{ii}$ because $U_iU_i = 0$

Local thermodynamic equilibrium

$$p = p(\rho, S) \approx p(\rho)$$

- pressure related to energy density and specific entropy
- we often deal with negligibly small entropies

Spherical stars Static perfect fluid -Equation of state

124

Conservation laws

$$T^{\alpha\beta}_{\ \ ;\beta}=0$$

$$(\rho + p)\frac{\mathrm{d}\Phi}{\mathrm{d}r} = -\frac{\mathrm{d}}{\mathrm{d}r}$$

Schutz (2009, pp. 175, 261)

Spherical stars -Static perfect fluid

Equations of motion

Conservation laws

$$T^{\alpha\beta}_{\ \ ;\beta} = 0$$

• symmetries make only non-trivial solution $\alpha = r$ TODO: prove

$$(\rho + p)\frac{\mathrm{d}\Phi}{\mathrm{d}r} = -\frac{\mathrm{d}}{\mathrm{d}r}$$

Equations of motion

Spherical stars -Static perfect fluid

Equations of motion

Schutz (2009, pp. 175, 261)

$$T^{\alpha\beta}_{\ \ ;\beta} = 0$$

• symmetries make only non-trivial solution $\alpha = r$ TODO: prove

Equation of motion

$$(\rho + p)\frac{\mathrm{d}\Phi}{\mathrm{d}r} = -\frac{\mathrm{d}}{\mathrm{d}r}$$

Spherical stars

-Static perfect fluid

Equations of motion

Schutz (2009, pp. 175, 261)

Equations of motion • symmetries make only non-trivial solution $\alpha = r$ $(\rho + p)\frac{d\Phi}{dr} = -\frac{d\rho}{dr}$

Schutz (2009, pp. 175, 261)

Equation of motion (continued)

TODO

Show 10.31

Spherical stars
—Static perfect fluid

TODO Show 10.31

Equation of motion (continued)

Equation of motion (continued)

Exterior Geometry

Exterior Geometry

Schwarzschild metric

TODO

Schwarzschild metric

TODO

12^

Birkhoff and Langer (1923)

Spherical stars Exterior Geometry

□Birkhoff's Theorem

Birkhoff's Theorem

Let the geometry of a given region of spacetime

Let the geometry of a given region of spacetime:

- be spherically symmetric

12^

Spherical stars

Exterior Geometry

Birkhoff's Theorem

Birkhoff and Langer (1923)

Birkhoff's Theorem

Let the geometry of a given region of spacetime

Let the geometry of a given region of spacetime:

- be spherically symmetric
- 2 be a solution to the Einstein field equations in vacuum.

Then that geometry is necessarily a piece of the Schwarzschild geometry.

(Proof given in Misner, Thorne, and Wheeler (1973, pp. 843–844))

13

Spherical stars

Exterior Geometry

└─Birkhoff's Theorem

Birkhoff's Theorem

Let the geometry of a given region of spacetime:

be spherically symmetric
 be a solution to the Einstein field equations in vac

Then that geometry is necessarily a piece of the Schwarzschil geometry.

Birkhoff and Langer (1923)

Birkhoff and Langer (1923)

- be spherically symmetric
- 2 be a solution to the Einstein field equations in vacuum.

Then that geometry is necessarily a piece of the Schwarzschild geometry.

(Proof given in Misner, Thorne, and Wheeler (1973, pp. 843–844))

13

ı

Spherical stars

Exterior Geometry

└─Birkhoff's Theorem

Birkhoff's Theorem

Let the geometry of a given region of spacetime:

• be spherically symmetric

be a solution to the Einstein field equations in vacuum.

Then that geometry is necessarily a piece of the Schwarzschild

(Proof given in Misner, Thorne, and Wheeler (1973, pp. 843

Birkhoff and Langer (1923)

• be spherically symmetric

Birkhoff and Langer (1923)

Daniel Wysocki (RIT)

2 be a solution to the Einstein field equations in vacuum.

Then that geometry is necessarily a piece of the Schwarzschild geometry.

(Proof given in Misner, Thorne, and Wheeler (1973, pp. 843-844))

Spherical stars

13^

December 14th, 2015

Spherical stars

—Exterior Geometry

cal stars

-Birkhoff's Theorem

Let the powerfy of a given right of specifies.

© 10 exploration (grantering or 20 a specifies in the contract of the contract

(Proof given in Misner, Thorne, and Wheeler (1973, pp. 843–844)

Birkhoff and Langer (1923)

References

References

References

- Spherical stars References

- G. D. Birkhoff and R. E. Langer. Relativity and modern physics.
- S. M. Carroll. Spacetime and geometry. An introduction to general relativity. 2004.
 - C. W. Misner, K. S. Thorne, and J. A. Wheeler. *Gravitation*. 1973.
- B. Schutz. A First Course in General Relativity. May 2009.
 - N. Stergioulas. Rotating Stars in Relativity. Living reviews in relativity, 6:3, June 2003. [Online; accessed 2015-12-09]. DOI: 10.12942/1rr-2003-3. eprint: gr-qc/0302034.

C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation B. Schutz. A First Course in General Relativity. May 2009. N. Sterejonlas Rotatine Stars in Relativity. Living reviews in

relativity. 2004.

1923.