

4F10: Latent Variable and Sequence Models

Mark Gales

Michaelmas 2021

Latent Variable Models

- Previous lecture examined relationships in data samples
 - conditional-independence important
- It is possible to introduce latent variables into the model
 - do not have to have any "meaning"
 - these variables are never observed in test (possibly in training)
 - marginalised over to get probabilities
 - discrete (mixture models, HMMs), continuous (factor-analysis)
- Revise/extend material from 3F8 & previous 4F10 lecture
 - · simple language models
 - latent variable models
 - Expectation-Maximisation (EM)
 - hidden Markov models
 - conditional random fields

Language Modelling

Language Modelling

Consider the word sequence

The cat sat on the ???

language modelling can be viewed as answering

What is the missing word ????

Writing this in terms of probabilities

$$P(w_i|\hat{w}_1,\ldots,\hat{w}_{i-1})=P(w_i|\hat{\mathbf{w}}_{1:i-1})$$

- $\hat{\mathbf{w}}_{1:i-1} = \hat{w}_1, \dots, \hat{w}_{i-1}$ observed words at positions 1 to i-1
- w_i unknown word to be estimated (guessed) at position i

Language Modelling - Data Generation

- Predicted word can then be used as input for data generation
 - simple auto-regressive data generation process

$$\hat{w}_i \sim P(w_i | \hat{w}_1, \dots, \hat{w}_{i-1}); \quad P(w_{i+1} | \hat{w}_1, \dots, \hat{w}_i)$$

- Very simple process for generating data
 - initialise process with $w_0 = \langle s \rangle$, sentence start symbol

```
<s> ???
<s> The ???
<s> The cat ???
<s> The cat ???
<free P(w_1|<s>, The)
P(w_2|<s>, The, cat)
P(w_3|<s>, The, cat, sat)
<s> The cat sat ???
P(w_4|<s>, The, cat, sat, on)
P(w_5|<s>, The, cat, sat, on)
```

Language Modelling - Simple?

- How large would a language model be consider
 - vocabulary size |V|: (number of possible words) $65536 = 2^{16}$
 - sentence length L: (length of sentence to generate) $8 = 2^3$
- How large does the model need to be to predict the last word:
 - number of possible histories (any sentence): $(|V|)^{L-1} = 2^{112}$
 - number of possible words (any sentence): $|V| = 2^{16}$
 - total number of parameters: $(|V|)^{L} = 2^{128} = 3.4 \times 10^{38}$
- Directly modelling all sentences not possible!
 - · size of model dominated by number of histories
 - how to get a compact history representation?

N-Gram Language Models (Markov-Chain 3M1)

Simplest approach to make history compact - truncate

$$P(w_i|\mathbf{w}_{1:i-1}) \approx P(w_i|\mathbf{w}_{i-N+1:i-1})$$

notation: $\mathbf{w}_{1:i-1}$ (rather than $\hat{\mathbf{w}}_{1:i-1}$) as consider all "histories"

- N determines the length of the history to consider
- N = 1 unigram, N = 2 bigram, N = 3 trigram ...
- A discrete model estimated from data

$$P(w_i|\boldsymbol{w}_{i-N+1:i-1}) \approx \frac{\mathcal{C}(w_{i-N+1},\ldots,w_i)}{\mathcal{C}(w_{i-N+1},\ldots,w_{i-1})}$$

- ullet $\mathcal{C}()$ counts number of occurences in the training data
- "separate" probability computed for every word
- general probability mass function (PMF) smoothing approaches

William Shakespeare (1564-1616)

Writing Shakespeare

- Unigram No prior information
 - Every enter now severally so, let
 - Will rash been and by I the me loves gentle me not slavish page, the and hour; ill let
- Bigram Current word
 - What means, sir. I confess she? then all sorts, he is trim, captain.
 - The world shall- my lord!
- Trigram Current and previous word
 - Indeed the duke; and had a very good friend.
 - Sweet prince, Falstaff shall die. Harry of Monmouth's grave.
- 4-gram Current and previous two words
 - It cannot be but so.
 - Enter Leonato's brother Antonio, and the rest, but seek the weary beds of people sick.

Guardian Article - 9th September 2020

Opinion Artificial intelligence (AI)

A robot wrote this entire article. Are you scared yet, human?

GPT-3

- Deep-learning has revolutionised language modelling
 - GPT-3 is a large language model from OpenAI
 - about 175 billion model parameters trained on 500 billion tokens
- Architecure of model will be discussed later in course

Latent Variable Models

"Static" Latent Variable Generative Models

- N-gram language model use word sequence as context
 - causes exponential grow in size of model with history length
- Alternative: introduce a variable that represents the history
 - this variable may be discrete or continuous
 - just needs to represent the history in an appropriate form
- This section introduces latent variables
 - initially for "static" data for example mixture models
 - the next section will discuss application to sequence models for example HMMs

Gaussian Mixture Models

- Gaussian mixture models (GMMs) are based on Gaussians
 - form of the Gaussian distribution:

$$p(\mathbf{x}) = \mathcal{N}(\mathbf{x}; \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{\left(2\pi\right)^{d/2} |\boldsymbol{\Sigma}|^{1/2}} \exp\left(-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^{\mathsf{T}} \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})\right)$$

Each component modelled using a Gaussian distribution

$$p(\mathbf{x}) = \sum_{m=1}^{M} P(c_m)p(\mathbf{x}|c_m) = \sum_{m=1}^{M} P(c_m)\mathcal{N}(\mathbf{x}; \boldsymbol{\mu}_m, \boldsymbol{\Sigma}_m)$$

- component prior: $P(c_m)$
- component distribution: $p(x|c_m) = \mathcal{N}(x; \mu_m, \Sigma_m)$
- Flexible model, able to model range of distributions

Gaussian Mixture Model Example

$$\mathcal{N}(\pmb{\mu}_1, \pmb{\Sigma})$$

$$\mu_1 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \quad \mu_2 = \begin{bmatrix} -2 \\ 2 \end{bmatrix}, \quad \mathbf{\Sigma} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$0.7\mathcal{N}\left(\boldsymbol{\mu}_{1},\boldsymbol{\Sigma}\right)+0.3\mathcal{N}\left(\boldsymbol{\mu}_{2},\boldsymbol{\Sigma}\right)$$

$$\mathbf{\Sigma} = \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right]$$

Latent Variable Generative Models

- Factor Analysis Gaussian Mixture Model Discrete Mixture Model
 - Three Bayesian Networks (BNs) for an observation x
 - Extensively used in many machine learning applications

Factor Analysis

- Two views of Factor Analysis (FA)
 - low-dimensional manifold representation
 - compact covariance matrix for multi-variate Gaussians
- Form of model dimensionality of z less than x, p < d
 - $p(z) = \mathcal{N}(z; 0, I)$: low-dimensional subspace representation
 - p(x|z) = N(x; Cz, Σ_{diag}):
 C loading matrix, Σ_{diag} diagonal covariance matrix
 - if $\Sigma_{\text{diag}} = \sigma^2 I$ model is probabilistic PCA
- As all elements Gaussian closed-form solution

$$p(\mathbf{x}) = \int p(\mathbf{x}|\mathbf{z})p(\mathbf{z})d\mathbf{z} = \mathcal{N}(\mathbf{x}; \mathbf{0}, \mathbf{CC}^{\mathsf{T}} + \mathbf{\Sigma}_{\mathsf{diag}})$$

Expectation Maximisation

Gaussian Mixture Model Example

Parameter Estimation

- Would like to estimate latent variable model parameters, heta
 - training data $\mathcal{D} = \{ \mathbf{x}_1, \dots, \mathbf{x}_N \}$
 - generative model: maximum (log-)likelihood

$$\hat{m{ heta}} = rg \max_{m{ heta}} \left\{ \mathcal{L}(m{ heta})
ight\} = rg \max_{m{ heta}} \left\{ \sum_{i=1}^N \log \left(p(m{x}_i; m{ heta})
ight)
ight\}$$

- Gradient descent could be used
 - need to determine learning rate ...

Is there any alternative?

- Use Gaussian Mixture Models as the example
 - discrete latent variable (for continuous see examples paper)

"Simple" Expectation Maximisation

- If you knew the component for each observation simple
 - standard (multi-variate) Gaussian distribution
 - ullet but you don't make an initial guess of the parameters $oldsymbol{ heta}^{(0)}$

- set k = 0, using parameters θ^(k)
 "assign" each observation to a component use Bayes' decision rule for assignment
- yields component id for each observation
- simple to update model $o heta^{(k+1)}$
- repeat process, k = k + 1

Each iteration guaranteed not to decrease likelihood

- "Hard" assignment not always reasonable (overlapping data)
 - derive a more general iterative approach

Jensen's Inequality

Jensen's inequality states:

$$f\left(\sum_{m=1}^{M}\lambda_{m}x_{m}\right)\geq\sum_{m=1}^{M}\lambda_{m}f(x_{m})$$

f() is any concave function and

$$\sum_{m=1}^{M} \lambda_m = 1, \quad \lambda_m \ge 0 \ m = 1, \dots, M$$

From the diagram above (left)

$$f(c) = f((1 - \lambda)a + \lambda b) \ge (1 - \lambda)f(a) + \lambda f(b)$$

• Interested in applying to GMMs - λ_m component prior $P(c_m)$

$$\log \left(\sum_{m=1}^{M} \lambda_m p(\mathbf{x}|c_m) \right) \geq \sum_{m=1}^{M} \lambda_m \log \left(p(\mathbf{x}|c_m) \right), \quad \sum_{m=1}^{M} \lambda_m = 1, \quad \lambda_m \geq 0$$

EM for Discrete Latent Variables

• Changing parameters from $heta^{(k)}$ to $heta^{(k+1)}$ - desire

$$\mathcal{L}(\boldsymbol{\theta}^{(k+1)}) - \mathcal{L}(\boldsymbol{\theta}^{(k)}) = \sum_{i=1}^{N} \log \left(\frac{p(\boldsymbol{x}_i; \boldsymbol{\theta}^{(k+1)})}{p(\boldsymbol{x}_i; \boldsymbol{\theta}^{(k)})} \right) \ge 0$$

This can be written as

$$\mathcal{L}(\theta^{(k+1)}) - \mathcal{L}(\theta^{(k)}) = \sum_{i=1}^{N} \log \left(\frac{1}{p(\mathbf{x}_{i}; \theta^{(k)})} \sum_{m=1}^{M} \left(p(\mathbf{x}_{i}, \mathbf{c}_{m}; \theta^{(k+1)}) \right) \right)$$

$$= \sum_{i=1}^{N} \log \left(\frac{1}{p(\mathbf{x}_{i}; \theta^{(k)})} \sum_{m=1}^{M} \left(\frac{P(\mathbf{c}_{m} | \mathbf{x}_{i}; \theta^{(k)}) p(\mathbf{x}_{i}, \mathbf{c}_{m}; \theta^{(k+1)})}{P(\mathbf{c}_{m} | \mathbf{x}_{i}; \theta^{(k)})} \right) \right)$$

• Jensen's inequality - use $P(c_m|\mathbf{x}_i; \boldsymbol{\theta}^{(k)})$ as λ_m

$$\mathcal{L}(\boldsymbol{\theta}^{(k+1)}) - \mathcal{L}(\boldsymbol{\theta}^{(k)}) \geq \sum_{i=1}^{N} \sum_{m=1}^{M} P(c_m | \boldsymbol{x}_i; \boldsymbol{\theta}^{(k)}) \log \left(\frac{p(\boldsymbol{x}_i, c_m; \boldsymbol{\theta}^{(k+1)})}{p(\boldsymbol{x}_i; \boldsymbol{\theta}^{(k)}) P(c_m | \boldsymbol{x}_i; \boldsymbol{\theta}^{(k)})} \right)$$

Auxiliary Functions

• This inequality can be written as

$$\mathcal{L}(\boldsymbol{\theta}^{(k+1)}) - \mathcal{L}(\boldsymbol{\theta}^{(k)}) \geq \mathcal{Q}(\boldsymbol{\theta}^{(k)}, \boldsymbol{\theta}^{(k+1)}) - \mathcal{Q}(\boldsymbol{\theta}^{(k)}, \boldsymbol{\theta}^{(k)})$$

where

$$\mathcal{Q}(\boldsymbol{\theta}^{(k)}, \boldsymbol{\theta}^{(k+1)}) = \sum_{i=1}^{N} \sum_{m=1}^{M} P(c_m | \boldsymbol{x}_i; \boldsymbol{\theta}^{(k)}) \log \left(p(\boldsymbol{x}_i, c_m; \boldsymbol{\theta}^{(k+1)}) \right)$$

- This is known as the auxiliary function
 - optimising the log-likelihood requires

$$\mathcal{Q}(\boldsymbol{\theta}^{(k)}, \boldsymbol{\theta}^{(k+1)}) - \mathcal{Q}(\boldsymbol{\theta}^{(k)}, \boldsymbol{\theta}^{(k)}) \geq 0$$

• increase is lower bound on the increase in the log likelihood.

EM Example

Data generated from the following GMM:

$$x \sim 0.4 \times \mathcal{N}(1,1) + 0.6 \times \mathcal{N}(-1,1)$$

• find first component mean: initial estimate is 0.5:

$$x^{(0)} \sim 0.4 \times \mathcal{N}(0.5, 1) + 0.6 \times \mathcal{N}(-1, 1)$$

• log-likelihood and auxillary function differences to $\mathcal{L}(\boldsymbol{\theta}^{(0)})$ and $\mathcal{Q}(\boldsymbol{\theta}^{(0)},\boldsymbol{\theta}^{(0)})$ plotted above

General form and Continuous Auxiliary Functions

- For GMMs the latent variable of interest is c_m , generalise
 - consider a set of latent variable $Z = \{z_1, \dots, z_N\}$
 - associated with the set of observations $\mathbf{X} = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}$
- The general form of auxiliary function becomes

$$\mathcal{Q}(\boldsymbol{\theta}^{(k)}, \boldsymbol{\theta}^{(k+1)}) = \sum_{\forall \boldsymbol{Z}} P(\boldsymbol{Z}|\boldsymbol{X}; \boldsymbol{\theta}^{(k)}) \log \left(p(\boldsymbol{X}, \boldsymbol{Z}; \boldsymbol{\theta}^{(k+1)}) \right)$$

- require posteriors over the latent variables Z
- The continuous latent variable case version is

$$Q(\boldsymbol{\theta}^{(k)}; \boldsymbol{\theta}^{(k+1)}) = \int p(\boldsymbol{Z}|\boldsymbol{X}; \boldsymbol{\theta}^{(k)}) \log \left(p(\boldsymbol{X}, \boldsymbol{Z}; \boldsymbol{\theta}^{(k+1)}) \right) d\boldsymbol{Z}$$

applicable to HMMs, FA models, Kalman Smoothers ...

Hidden Markov Models

Discrete Kalman Filters (3F8)

- Continuous latent variable (similar to FA)
 - linear relationship between variables

$$oldsymbol{z}_t = oldsymbol{A} oldsymbol{z}_{t-1} + oldsymbol{
u}_t; \quad oldsymbol{x}_t = oldsymbol{C} oldsymbol{z}_t + oldsymbol{\epsilon}_t$$

- ν_t are Gaussian distributed (and independent) $\mathcal{N}(\mathbf{0}, \mathbf{\Sigma}_{
 u})$
- ϵ_t are Gaussian distributed (and independent) $\mathcal{N}(\mathbf{0}, \mathbf{\Sigma}_{\epsilon})$

Discrete Kalman Filters (3F8)

This yields the following equations

$$p(\boldsymbol{z}_t|\boldsymbol{z}_{t-1}) = \mathcal{N}(\boldsymbol{z}_t; \boldsymbol{A}\boldsymbol{z}_{t-1}, \boldsymbol{\Sigma}_{
u}); \quad p(\boldsymbol{x}_t|\boldsymbol{z}_t) = \mathcal{N}(\boldsymbol{x}_t; \boldsymbol{C}\boldsymbol{z}_t, \boldsymbol{\Sigma}_{\epsilon})$$

- Everything is Gaussian and linear closed-form solutions
 - don't remember these for illustration purposes

$$\begin{aligned} & p(\mathbf{x}_{t}|\mathbf{x}_{1},...,\mathbf{x}_{t-1}) \\ & = \int p(\mathbf{x}_{t}|\mathbf{z}_{t})p(\mathbf{z}_{t}|\mathbf{x}_{1},...,\mathbf{x}_{t-1})d\mathbf{z}_{t} \\ & = \int p(\mathbf{x}_{t}|\mathbf{z}_{t}) \int p(\mathbf{z}_{t}|\mathbf{z}_{t-1})p(\mathbf{z}_{t-1}|\mathbf{x}_{1},...,\mathbf{x}_{t-1})d\mathbf{z}_{t-1}d\mathbf{z}_{t} \\ & = \int p(\mathbf{x}_{t}|\mathbf{z}_{t}) \int p(\mathbf{z}_{t}|\mathbf{z}_{t-1}) \frac{p(\mathbf{x}_{t-1}|\mathbf{z}_{t-1})p(\mathbf{z}_{t-1}|\mathbf{x}_{1},...,\mathbf{x}_{t-2})}{p(\mathbf{x}_{t-1}|\mathbf{x}_{1},...,\mathbf{x}_{t-2})} d\mathbf{z}_{t-1}d\mathbf{z}_{t} \end{aligned}$$

Hidden Markov Model

Hidden Markov Models

- Important sequence data is the hidden Markov model (HMM)
 - an example of a dynamic Bayesian network (DBN)
 - consider a sequence of observations x_1, \ldots, x_T

- add discrete latent variables
 - q_t describes discrete state-space
 - conditional independence assumptions

$$P(q_t|q_0,...,q_{t-1}) = P(q_t|q_{t-1}) p(\mathbf{x}_t|\mathbf{x}_1,...,\mathbf{x}_{t-1},q_0,...,q_t) = p(\mathbf{x}_t|q_t)$$

The likelihood of the data is

$$p(\mathbf{x}_1,\ldots,\mathbf{x}_T) = \sum_{\mathbf{q}\in\mathbf{Q}_T} P(\mathbf{q})p(\mathbf{x}_1,\ldots,\mathbf{x}_T|\mathbf{q}) = \sum_{\mathbf{q}\in\mathbf{Q}_T} P(q_0)\prod_{t=1}^T P(q_t|q_{t-1})p(\mathbf{x}_t|q_t)$$

 Q_T is all possible state sequences for T observations

HMM Parameters

- Two types of states often defined for HMMs (total N states)
 - emitting states: produce the observation sequence
 - non-emitting states: used to define valid state and end states
- The parameters are normally split into two
 - states are denoted s_i , assume s_1 and s_N are non-emitting
 - transition matrix **A**: $a_{ij} = P(q_t = s_j | q_{t-1} = s_i)$ is the probability of transitioning from state s_i to state s_i
 - state output probability $\{b_2(\mathbf{x}_t), \dots, b_{N-1}(\mathbf{x}_t)\}$: $b_j(\mathbf{x}_t) = p(\mathbf{x}_t|q_t = \mathbf{s}_j)$ is the output distribution for state \mathbf{s}_j
- Need to estimate $\theta = \{ \boldsymbol{A}, b_2(\boldsymbol{x}_t), \dots, b_{N-1}(\boldsymbol{x}_t) \}$
 - usually trained using Expectation-Maximisation (EM)

Hidden Markov Model

- To design a classifier need to determine:
 - transition matrix: discrete state-space and allowed transitions
 - state output distribution: form of distribution $p(x_t|q_t)$
- Can be used as a generative classifier (HMM for exch class ω)

$$\hat{\omega} = \arg\max_{\omega} \left\{ P(\omega | \mathbf{x}_1, \dots, \mathbf{x}_T) \right\} = \arg\max_{\omega} \left\{ P(\omega) p(\mathbf{x}_1, \dots, \mathbf{x}_T | \omega) \right\}$$

need to be able to compute $p(\mathbf{x}_1, \dots, \mathbf{x}_T | \omega)$ efficiently

Viterbi Approximation

- Viterbi Algorithm important technique (inc. for HMMs)
 - approximate likelihood as

$$p(\mathbf{x}_1,\ldots,\mathbf{x}_T) = \sum_{\mathbf{q}\in\mathbf{Q}_T} p(\mathbf{x}_1,\ldots,\mathbf{x}_T,\mathbf{q}) \approx p(\mathbf{x}_1,\ldots,\mathbf{x}_T,\hat{\mathbf{q}})$$

where

$$\hat{m{q}} = \{\hat{q}_0, \dots, \hat{q}_{T+1}\} = \arg\max_{m{q} \in m{Q}_T} \{p(m{x}_1, \dots, m{x}_T, m{q})\}$$

- This yields:
 - an approximate likelihood (lower bound) for the model
 - the best state-sequence through the discrete-state space

Viterbi Algorithm

- Need to find the best state-sequence, \hat{q} ,
 - searching through all possible state-sequences impractical ...

- Consider generating the observation sequence x_1, \ldots, x_7
 - topology 3 emitting states with strict left-to-right
 - representation of all possible state sequences on the right

Extending Partial Paths with Time

- Red partial path to time 4
- Green possible extensions

- Partial path state sequence $\{1, 2, 2, 3, 3\}$ $(\phi_3(4))$ extend:
 - stay in state s_3 and generate x_5 : $\log(a_{33}b_3(x_5))$
 - move to state s_4 and generate x_5 : $log(a_{34}b_4(x_5))$
- Hence:

$$\phi_3(5) = \phi_3(4) + \log(a_{33}b_3(\mathbf{x}_5)), \quad \phi_4(5) = \phi_3(4) + \log(a_{34}b_4(\mathbf{x}_5))$$

Best Partial Path to a State/Time

- Red possible partial paths
- Green state of interest

- Consider best partial path to state s_4 at time 5 $(\phi_4(5))$
 - move from state s_3 and generate x_5 : $\log(a_{34}b_4(x_5))$
 - stay in state s_4 and generate x_5 : $\log(a_{44}b_4(x_5))$
- Select "best":

$$\phi_4(5) = \max \{\phi_3(4) + \log(a_{34}), \phi_4(4) + \log(a_{44})\} + \log(b_4(\boldsymbol{x}_5))$$

Viterbi Algorithm for HMMs

- The Viterbi algorithm for HMMs can then be expressed as:
 - Initialisation: (LZER0= log(0))

$$\phi_1(0) = 0.0, \quad \phi_j(0) = \mathtt{LZER0}, 1 < j < \textit{N}, \quad \phi_1(t) = \mathtt{LZER0}, 1 \leq t \leq \textit{T}$$

Recursion:

for
$$t=1,\ldots,T$$

for $j=2,\ldots,N-1$
 $\phi_j(t)=\max_{1\leq k\leq N}\left\{\phi_k(t-1)+\log(a_{kj})\right\}+\log(b_j(\mathbf{x}_t))$

• Termination:

$$\log(p(\mathbf{x}_1,\ldots,\mathbf{x}_T,\hat{\mathbf{q}})) = \max_{1 < k < N} \{\phi_k(T) + \log(a_{kN})\}$$

• Can also store best previous state to yield best sequence $\hat{m{q}}$.

All Paths to a State/Time

- Red possible partial paths
- Green state of interest

$$\mathsf{LAdd}(a,b) = \log(\exp(a) + \exp(b))$$
$$\exp(\mathsf{LAdd}(a,b)) = \exp(a) + \exp(b)$$

- Total path to state s_i at time t is $\alpha_i(t)$
 - total path to state s_4 at time 5 given by (see Viterbi)

$$\alpha_4(5) = \mathsf{LAdd}(\alpha_3(4) + \log(a_{34}), \alpha_4(4) + \log(a_{44})) + \log(b_4(\mathbf{x}_5))$$

Forward-Backward Algorithm

- $\alpha_i(t)$ is related to the forward-probability used to train HMMs
 - recursion for this form of model can be expressed as

$$egin{aligned} lpha_j(t) &= \log \left(p(\mathbf{x}_1, \dots, \mathbf{x}_t, q_t = \mathbf{s}_j)
ight) \ &= \log \left(\sum_{k=1}^N \exp \left(lpha_k(t-1) + \log(a_{kj})
ight)
ight) + \log(b_j(\mathbf{x}_t)) \end{aligned}$$

- There's also a term related to the backward-probability
 - consider observation at time t given state s_i , $\beta_i(t)$

$$eta_j(t) = \log\left(p(oldsymbol{x}_{t+1}, \dots, oldsymbol{x}_T | q_t = \mathbf{s}_j)
ight) \ = \log\left(\sum_{k=1}^N \exp\left(eta_k(t+1) + \log(a_{jk}) + \log(b_k(oldsymbol{x}_{t+1}))
ight)
ight)$$

The posterior required for EM can be expressed as

$$P(q_t = \mathbf{s}_j | \mathbf{x}_1, \dots, \mathbf{x}_T) = \exp(\alpha_j(t) + \beta_j(t))/Z, \quad Z = \sum_{i=1}^N \exp(\alpha_i(t) + \beta_i(t))$$

Conditional Random Fields

Discriminative Sequence Models

- HMMs compute the joint distribution of words and tags
 - the posterior probability of the tag sequence t_{1:L}

$$P(\mathbf{t}_{1:L}|\mathbf{w}_{1:L}) = \frac{P(\mathbf{t}_{1:L}, \mathbf{w}_{1:L})}{P(\mathbf{w}_{1:L})} = \frac{P(\mathbf{t}_{1:L}, \mathbf{w}_{1:L})}{\sum_{\tilde{\mathbf{t}}_{1:L}} P(\tilde{\mathbf{t}}_{1:L}, \mathbf{w}_{1:L})}$$

summation is over all possible L-length tag sequences

- a generative sequence model
- Discrimative sequence models directly model $P(t_{1:L}|w_{1:L})$
 - required to be a valid probability mass function (PMF)
 - but only sequence probability needs to be a valid PMF
 - not the individual tag predictions, or word probabilities
- Here tags will be states $(q_{1:T})$ and words features $(x_{1:T})$
 - similar to discussion of HMMs

Simple Discriminative Sequence Models

Generative Model

Discriminative Model

- Generative model (left) and discriminative model (right)
 - right BN a maximum entropy Markov model

$$P(q_0,\ldots,q_T|\mathbf{x}_1,\ldots,\mathbf{x}_T) = \prod_{t=1}^T P(q_t|q_{t-1},\mathbf{x}_t)$$

state posterior probability (Z_t normalisation term time t):

$$P(q_t|q_{t-1}, oldsymbol{x}_t) = rac{1}{Z_t} \exp\left(\sum_{i=1}^D \lambda_i f_i(q_t, q_{t-1}, oldsymbol{x}_t)
ight)$$

Sequence Maximum Entropy Models

- State posteriors modelled in Maximum Entropy Markov model
 - can extend to the complete sequence

$$P(q_0,\ldots,q_T|\mathbf{x}_1,\ldots,\mathbf{x}_T) = \frac{1}{Z} \exp\left(\sum_{i=1}^D \lambda_i f_i(q_0,\ldots,q_T,\mathbf{x}_1,\ldots,\mathbf{x}_T)\right)$$

- Problem is that there are a vast number of possible features:
 What features to extract from state/observation sequence?
 - need to be able to handle variations in length of the sequence
 - ullet keep the number of model parameters $oldsymbol{\lambda}$ reasonable

(Simple) Linear Chain Conditional Random Fields

- Extract features based on undirected graph
 - conditional independence assumptions similar to HMM (though undirected)
- Posterior model becomes

$$P(q_0,\ldots,q_T|\boldsymbol{x}_1,\ldots,\boldsymbol{x}_T) = \frac{1}{Z} \exp\left(\sum_{t=1}^T \left(\sum_{i=1}^{D_t} \lambda_i^t f_i(q_t,q_{t-1}) + \sum_{i=1}^{D_a} \lambda_i^a f_i(q_t,\boldsymbol{x}_t)\right)\right)$$

- D_{t} number of transition style features with parameters λ^{t}
- $D_{\rm a}$ number of acoustic style features with parameters $\lambda^{\rm a}$
- Directly related to (unnormalised) HMM parameters

$$\sum_{i=1}^{D_{\rm t}} \lambda_i^{\rm t} f_i(\mathbf{s}_i, \mathbf{s}_j) \; \log(a_{ij}) \; \; \text{and} \; \; \sum_{i=1}^{D_{\rm a}} \lambda_i^{\rm a} f_i(\mathbf{s}_i, \boldsymbol{x}_t) \; \log(b_i(\boldsymbol{x}_t))$$

Linear Chain Conditional Random Fields

- Extract features based on undirected graph
 - conditional independence assumptions extended to previous state
- Posterior model becomes

$$P(q_0,\ldots,q_T|\mathbf{x}_1,\ldots,\mathbf{x}_T) = \frac{1}{Z} \exp\left(\sum_{t=1}^T \left(\sum_{i=1}^D \lambda_i f_i(q_t,q_{t-1},\mathbf{x}_t)\right)\right)$$

- More interesting than HMM-like features
 - features the similar to (general) MaxEnt Markov model
 - BUT normalised globally not locally

Normalisation term

- Need to be able to compute the normalisation term efficiently
 - initially consider the simple linear chain case

$$Z = \sum_{\boldsymbol{q} \in \boldsymbol{Q}_T} \exp \left(\sum_{t=1}^T \left(\sum_{i=1}^{D_{\rm t}} \lambda_i^{\rm t} f_i(q_t, q_{t-1}) + \sum_{i=1}^{D_{\rm a}} \lambda_i^{\rm a} f_i(q_t, \boldsymbol{x}_t) \right) \right)$$

- Left-to-right topology and observation sequence x_1, \ldots, x_7
 - use equivalent of forward-backward algorithm

General Sequence CRFs (reference)

- General CRF use undirected graphical model to define features
 - need to be able to handle sequence data dynamic CRF
 - undirected graph repeated each time instance set of cliques C
- The posterior probability for this form of model is

$$P(q_0,\ldots,q_T|\boldsymbol{x}_1,\ldots,\boldsymbol{x}_T) = \frac{1}{Z} \exp\left(\sum_{t=1}^T \sum_{\mathcal{C} \in \boldsymbol{C}} \boldsymbol{\lambda}_{\mathcal{C}}^\mathsf{T} \boldsymbol{f}(\boldsymbol{q}_{\mathcal{C}t},\boldsymbol{x}_1,\ldots,\boldsymbol{x}_T,t)\right)$$

- $oldsymbol{\lambda}^{\mathsf{T}}_{\mathcal{C}}$ time-independent parameters associated with clique \mathcal{C}
- $f(q_{Ct}, x_1, \dots, x_T, t)$ time-dependent features extracted from clique C with time-dependent label sequence q_{Ct}

Example of a Sequence CRF (reference)

Cliques associated with linear CRF

$$\mathbf{C} = \{\mathcal{C}_1, \mathcal{C}_2\}$$

- 1. transitions: $C_1 = \{q_t, q_{t-1}\}$
- **2.** acoustics: $C_2 = \{q_t, \boldsymbol{x}_t\}$

Posterior model for the simple linear chain CRF

$$P(q_0, \dots, q_T | \mathbf{x}_1, \dots, \mathbf{x}_T) = \frac{1}{Z} \exp \left(\sum_{t=1}^T \sum_{C \in \mathbf{C}} \boldsymbol{\lambda}_C^\mathsf{T} \mathbf{f}(\mathbf{q}_{Ct}, \mathbf{x}_1, \dots, \mathbf{x}_T, t) \right)$$

$$= \frac{1}{Z} \exp \left(\sum_{t=1}^T \left(\boldsymbol{\lambda}^{\mathsf{tT}} \mathbf{f}(q_t, q_{t-1}) + \boldsymbol{\lambda}^{\mathsf{aT}} \mathbf{f}(q_t, \mathbf{x}_t) \right) \right)$$

Training CRFs

Training for CRFs is normally fully observed

training observation sequence
$$x_1, \dots, x_T$$

training label sequence y_1, \dots, y_T

- where $y_{\tau} \in \{\omega_1, \dots, \omega_K\}$
- No need to use EM (or related approaches)
- Need to find the model parameters λ so that

$$\hat{\lambda} = \arg \max_{\lambda} \left\{ P(y_1, \dots, y_T | \mathbf{x}_1, \dots, \mathbf{x}_T; \lambda) \right\}$$

$$= \arg \max_{\lambda} \left\{ \frac{1}{Z} \exp \left(\sum_{i=1}^{D} \lambda_i f_i(\mathbf{x}_1, \dots, \mathbf{x}_T, y_1, \dots, y_T) \right) \right\}$$