CH 13 - Oligopoly and Strategic Behavior

ECON 1B CSUS

Oligopoly

Oligopoly

- A market situation in which there are only a few sellers
- Each seller knows that the other sellers will react to its changes in prices and quantities
- Strategic dependence

– Firms must decide whether to collude or compete!

Two Conflicting Tendencies

- What is best for the individual firm often conflicts with what is best for the industry (or what is best for you and me!)
- P and Q will depend on whether the firms collude or compete.
 - Pattern #1: Collusive agreements breakdown, this spurs intense price competition that, in turn, sow the seeds of another collusive effort, and the cycle repeats.
 - Pattern #2: Collusive agreements tend to be stable because all parties recognize that it is in their best interest to maintain a higher price structure.

Game Theory

- Game theory
 - Branch of mathematics that economists use to analyze the strategic behavior of decision makers
 - Can help us determine the best course of action among players in a game
- Basic components of a game
 - Players
 - Strategies
 - Payoffs

Prisoner's Dilemma

You and your partner rob a bank and get caught.

 The District Attorney offers to go easy on you if you confess to the crime.

What would you do, what should you do?

The Prisoner's Dilemma

Study the following payoff matrix for a Prisoner's Dilemma game. Both partners agree never to rat on each other (Don't Confess to the authorities). But they are interrogated separately.

		Tony			
		Confess		Don't Confess	
Manny	Confess	10 years in jail	10 years in jail	goes free	25 years in jail
	Don't Confess	25 years in jail	goes free	1 year in jail	1 year in jail

Analyzing the Prisoner's Dilemma—1

Analyzing the Prisoner's Dilemma—2

Game Theory

- Dominant strategy
 - A best response for a player to choose no matter what the other player chooses
 - Not all games or players in a game have a dominant strategy
- Nash equilibrium implications?
 - If both players have a dominant strategy, the intersection of those dominant strategies will be the Nash equilibrium.
 - Neither player will want to unilaterally deviate.

The Nash Equilibrium

 A Nash Equilibrium is characterized as: a point at which neither player can do better by changing his strategy while the other player's strategy remains unchanged.

Advertising and the Prisoner's Dilemma

Intuition of Advertising Prisoner's Dilemma

Advertising

- If both firms advertise, costs go up, but each firm's campaign cancels out the other.
- Both firms would be better off NOT advertising.
- But, if one firm agrees to not advertise, the other firm would.

Payoff Matrix

Multiple Equilibria

Conclusion

Oligopoly

- A market structure in which there are a small number of firms
- Firms interact strategically
- Can be competitive
- Can be collusive

Game Theory

- How to model the strategic interaction between firms
- Dominant Strategy
- Nash Equilibrium