# Survey of distributed system based OLAP

Hao wang, Wang xi

## Introduction

Distributed Database: Concept, MapReduce, Hadoop, Cutting-edge applications

OLAP: Concept, types, MR-Cube

## Distributed Database

A **distributed database** is a database in which storage devices are not all attached to a common processor. It may be stored in multiple computers, located in the same physical location; or may be dispersed over a network of interconnected computers. Unlike parallel systems, in which the processors are tightly coupled and constitute a single database system, a distributed database system consists of loosely coupled sites that share no physical components. [via Wikipedia]

MapReduce Introduction → Hadoop project



## OLAP (data cube)

Dimension: a set of data features eg. product, date, country

Level: different aspects of dimension eg. Date: year, month, day

Member: member of specific dimension eg. all products data in Apri 13 at Urbana

Measure: basic unit of OLAP cube eg. sale data of shampoo in Apri 13 at Urbana



## OLAP (operation)

Roll up (drill-up): summarize data climbing up hierarchy or by dimension reduction

Drill down (roll down): reverse of roll-up
higher level summary → lower level summary or detailed data
introducing new dimensions to gather data we interested in

Slice and dice: project and select

Pivot (rotate): reorient the cube to translate 3D → 2D planes

# OLAP (types)

Multidimensional OLAP (MOLAP) stores data in optimized multi-dimensional arrays storage

Relational OLAP (ROLAP) stores data in relational database

Hybrid OLAP (HOLAP)
combination of MOLAP and ROLAP

# MR-cube(building)

#### Full Source Scan:

Using HBase facilities to scan the whole source filtering it by the attributes the user

#### **Indexed Random Access:**

Building indexes beforehand to easily obtain the identifiers of the desired tuples and then retrieve the data by random access

### Index Filtered Scan:

Combination of above two approaches

## MR-cube(computation)

## Partially algebraic measures:

#### Computing from sub-groups:

- (1)mutually exclusive on the full tuple
- (2)mutually exclusive after projecting on the algebraic attribute

## Sampling approach:

Generating sample from cube computation on small random dataset According to the result of sample, divide date into reducer-friendly and reducer unfriendly parts

#### Batch areas:

Map: emits one key-value pair per batch for each data tuple

→ reducing the amount of intermediate data

Reduce: executes traditional cube computation algorithm over results of map step

# **Application**

#### Apache Kylin





## Conclusion

The Distributed System's development

The OLAP technology's development

Apache Kylin project applications on OLAP based Distributed System

### Reference

Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on large clusters. Communications of the ACM, 51(1):107–113, 2008.

RayonStorage blog. Hadoop introduction. 2011

- Jeffrey Dean and Sanjay Ghemawat. Mapreduce: a flexible data processing tool. Communications of the ACM, 53(1):72–77, 2010.
- J. Dean, S. Ghemawat, Mapreduce: simplified data processing on large clusters, Communications of the ACM 51 (1) (2008) 107–113.
- W. H. Inmon, Building the data warehouse, John wiley & sons, 2005.
- E. F. Codd, S. B. Codd, C. T. Salley, Providing olap (on-line analytical 135 processing) to user-analysts: An it mandate, Codd and Date 32.
- S. Chaudhuri, U. Dayal, An overview of data warehousing and olap technology, ACM Sigmod record 26 (1) (1997) 65–74.
- O. Council, Olap and olap server definitions (1997).
- A. Abell'o, J. Ferrarons, O. Romero, Building cubes with mapreduce, in: 140 Proceedings of the ACM 14th international workshop on Data Warehousing and OLAP, ACM, 2011, pp. 17–24.
- A. Nandi, C. Yu, P. Bohannon, R. Ramakrishnan, Data cube materialization and mining over mapreduce, IEEE transactions on knowledge and data engineering 24 (10) (2012) 1747–1759.