4.1 ANSWERS TO EXERCISES

4.1 Exercise 1

- 1. change in concentration of reactants or products per unit time
- 2. a) 1 wrt A, 2 wrt B
 - b) 3
 - c) $250 \text{ mol}^{-2} \text{dm}^6 \text{s}^{-1}$
 - d) $2.5 \times 10^{-4} \text{ moldm}^{-3} \text{s}^{-1}$
- 3. $8.3 \times 10^{-3} \text{ mol}^{-1} \text{dm}^3 \text{s}^{-1}$
 - rate determining step does not involve hydrogen
- 4. $rate = k[PCl_3][Cl_2]^2 k = 1.05 \times 10^{-3} \text{ mol}^{-2} \text{dm}^6 \text{s}^{-1}$
- 5. $2.00 \text{ mol}^{-2} \text{dm}^6 \text{s}^{-1}$
- 6. $\text{rate} = k[H_2][NO]^2$ $k = 8.3 \times 10^4 \text{ mol}^{-2} \text{dm}^6 \text{s}^{-1}$

4.1 Exercise 2

- a) will increase
 - greater collision energy
 - so greater chance of activation energy being exceeded
 - so greater fraction of successful collisions
 - k increases
- b) will increase
 - more particles per unit volume
 - so collision frequency increases
 - k unchanged
- c) will increase
 - more particles per unit volume
 - so collision frequency increases
 - k unchanged
- d) will increase
 - alternative reaction pathway
 - so lower activation energy
 - so greater fraction of successful collisions
 - (k increases unless catalyst in rate equation in which case k unchanged)