# Compute First Networking (CFN) dyncast Scenarios and Requirements

draft-geng-rtgwg-cfn-dyncast-ps-usecase-00

```
L. Geng, China MobileP. Liu, China MobileP. Willis, BT
```

# ICT Infrastructure Redefinition



#### **Facts in China Mobile**

- •CDN nodes in every city (330+) and major county (250+), with 25000+ servers installed
  - •These nodes can be upgrade to vCDN and then edge computing infrastructure
  - More diverse computing resource need to be provided;
- More edge computing nodes will be setup in an on-demand manner
  - •County aggregation 6000+, Access aggregation 10,000+, On-site 100,000+

Service providers are offering the integrated computing and networking infrastructure.

# Why edge computing?



# General Challenges of Edge Computing

- Resource Limitation
  - fewer servers 10s of server per node.
- Heterogeneous Hardware
  - CPU, GPU, Memory, ASICs
- Dynamic Load
  - Available resources change quickly
- Edge-cloud Coordination
  - Edge does not solve all
- High Cost
  - On-site maintenance is expensive
- Mission Critical
  - Users are counting on you (i.e. 100% reliability of industry automation)!

Many of this challenges are NOT solvable solely in "Computing Domain".

Nearest but not the best.
How could the "Network
Domain" Help?

# Requirements

## Providing Functional Equivalency

 Same level of user experience no matter where you are and which edge sites you are connected

# Providing Service Dynamics

 Traffics are diverted/steered to preferred edge sites according to infrastructure status and user SLA requirements



#### **Applying CFN-dyncast in AR/VR use cases**

- •Training in center cloud, whilst detection in edge DC
- •Rendering tasks need to be diverted to GPU infrastructure
- •Traffic/compute offloading for tide effect (Theatre/Sport stadium cases)

#### Use Case – Connected Car



#### **Applying CFN-dyncast in Connected Car Use Cases**

- Mission critical traffic is diverted to the closest sites
- •Non-real-time traffic diverted to the cloud (Entertainment, Traffic status etc. )
- •Protection and fast service requirement in the case of edge site failure

### Current Practices, considerations and gaps - efficiency and latency



- Use geographical location, pick closest
  - Edges are not so far apart. Locations do not matter most.
- Health check in an infrequent base (>1s), switch when fail-over
  - Limited computing resources on edge, change rapidly (<1s)</li>
- Random or round robin pick, network cost is not a concern or updated infrequently just to keepalive
  - Edges are not deployed in equal cost way, network status is considered at a later stage not at the same time
- Centralized determination, good for content retrieval.
  - Not be as good as for computation which has more dynamic nature and larger number
- Early binding: clients query first and then steer traffic.
  - Edge computing flow can be short. Early binding has high overhead.
- · Caching at the client.
  - Stale info could be used.
- Others:
  - Network based solution uses least network cost, computing load is not considered
  - Traditional anycast bases on single request/reply packet, no flow affinity

### Proposed CFN-dyncast Features to solve the gaps

# 1. Anycast based service addressing methodology

- Anycast makes sure data packet potentially can reach any of the edges
- Mapping of a unique service identifier to specific unicast address

# 2. Flow Affinity

Service continuity needs to be handled

## 3. Computing Aware Routing

- Forwarding nodes is aware of the computing status
- Methods for notification and dimensions of computing resource measurement needs to be studied

# In Summary

- Service providers are offering the integrated computing and networking infrastructure
- Problem: How to optimally route service demands based on computing and network metrics to the best edge?
- Existing IETF protocol specification work does not sufficiently solve the identified problem at the network level
  - Exposing up-to-date computing resources to the network layer
  - Computing and network metrics collection, representation, distribution and how to use them for edge determination

# Thank you!