DESCRIPTIVA UNIVARIANTE:

Medidas de posición:

Frecuencia relativa	f_i	$f_i = \frac{n_i}{n}$
Media	\bar{x}	$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = \frac{1}{n} \sum_{i=1}^{k} x_i n_i$
Mediana	m _e	Dato que se encuentra en el centro de la muestra ordenada
Moda	m _o	El dato que más se repite, (pueden ser varios)
Cuartiles	$C_1C_2C_3$	Datos que dividen la muestra ordenada en 4 partes iguales.

Medidas de dispersión:

Medidas de dispersión:		
Rango	R	$R = Maximo x_i - minimo x_i$
Varianza	S^2	$S^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2} = \left(\frac{1}{n} \sum_{i=1}^{n} x_{i}^{2}\right) - \bar{x}^{2} =$ $= \frac{1}{n} \sum_{i=1}^{k} (x_{i} - \bar{x})^{2} n_{i} = \left(\frac{1}{n} \sum_{i=1}^{k} x_{i}^{2} n_{i}\right) - \bar{x}^{2}$
Desviación típica	S	$S = +\sqrt{S^2}$
Cuasi-Varianza	$ar{\mathcal{S}}^2$	$\bar{S}^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})^2 = \frac{1}{n-1} \sum_{i=1}^k (x_i - \bar{x})^2 n_i$ $nS^2 = (n-1)\bar{S}^2 \to \text{Relación entre varianza y cuasi-varianza}$
Cuasi-Desviación típica	S	$\bar{S} = \sqrt{\bar{S}^2}$
Coeficiente de variación	CV	$CV = \frac{S}{\bar{x}}$
Error estándar	es	$es = \frac{s}{\sqrt{n-1}} = \frac{\bar{s}}{\sqrt{n}}$

Medidas de forma:

Coeficiente de Asimetría	ϕ_1	$\varphi_1 = \frac{\frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^3}{S^3}$	<0 Distribución asimétrica izda.=0 Distribución simétrica>0 Distribución asimétrica dcha.			
Coeficiente de Deformación O de Curtosis	ϕ_2	$\varphi_2 = \frac{\frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^4}{S^4} - 3$	<0 Platicurtica =0 Mesocurtica >0 Lepticurtica			

DESCRIPTIVA BIVARIANTE:

Distribución condicional	$f_{j_{i}} f_{i_{j}}$	$f_{j_{i}} = \frac{n_{ij}}{n_{i}} \; ; \; f_{i_{j}} = \frac{n_{ij}}{n_{ij}}$	X/Y	F ₁	F ₂		F_k	n _{i.}		
Frecuencia esperada	$fe_{(ij)}$	$fe_{ij} = \frac{n_{i.} \times n_{.j}}{n}$	C_1 C_2	n ₁₁ n ₂₁	n ₁₂ n ₂₂		n _{1k}	n _{1.}		
Independencia	X e Y son Independientes si: $n_{ij} = fe_{ij}$; $\forall ij$		 C _f	n _{fl}	n _{f2}	n _{ij}	n _{fk}	n _{f.}		
Residuos	e_{ij}	$e_{ij} = n_{ij} - f e_{ij}$	n .j	n _{.1}	n _{.2}		n _{.k}	n		
Coeficiente P de	$P \equiv \chi^2$	$P \equiv \chi^2 = \sum_{\forall ij} \frac{\left(e_{ij}\right)^2}{f e_{ij}}$		$\chi^2 \in [0, nt]$						
Pearson (Relación)	$I = \chi$			$t = \min . \left[(f-1)y(k-1) \right]$						
Coeficiente V de Cramer	V	$V = \sqrt{\frac{\chi^2}{n \times t}}$	$V\epsilon[0,1]$							
Coeficiente C de Contingencia	С	$C = \sqrt{\frac{\chi^2}{\chi^2 + n}}$			C ∈ [0,1)					
	_	$S_{xy} = \frac{1}{n} \sum_{i=1}^{n} \left(X_i - \overline{X} \right) \left(Y_i - \overline{Y} \right) = \left(\frac{1}{n} \sum_{i=1}^{n} X_i Y_i \right) - \overline{X} \overline{Y} = 0$								
Covarianza	S_{xy}	$= \frac{1}{n} \sum_{i=1}^{f} \sum_{j=1}^{k} \left(X_i - \overline{X} \right) \left(Y_j - \overline{Y} \right) n_{ij}$								
Coeficiente de Correlación Lineal de Pearson	R_{xy}	$R_{xy} = \frac{S_{xy}}{S_x \times S_y}$		$R_{xy}\epsilon[-1,1]$						
Tipificación de Datos	z_i	$z_i = \frac{x_i - \overline{x}}{S}$		$\overline{Z} = 0$; $S_z = 1$						

REGRESIÓN Y CORRELACIÓN LINEAL

Modelo lineal simple	$Y/X \to Y = a + bX + \varepsilon \Rightarrow \hat{Y} = a + bX ; b = \frac{S_{XY}}{S_X^2} ; a = \overline{Y} - b\overline{X}$ $X/Y \to X = a' + b' Y + \varepsilon' \Rightarrow \hat{X} = a' + b'Y ; b' = \frac{S_{XY}}{S_Y^2} ; a' = \overline{X} - b'\overline{Y}$	$b \times b' = \frac{S_{xy}^2}{S_x^2 \times S_y^2} = \left(\frac{S_{xy}}{S_x \times S_y}\right)^2 = R_{xy}^2 = R^2$
Modelo lineal múltiple	$Y = a + b_1 X_1 + b_2 X_2 + + b_k X_k + \varepsilon \Rightarrow \hat{Y} = a + b_1 X_1 + b_2 X_2 + + b_k X_k$ $b_i = -\frac{A_{1,i+1}}{A_{11}} ; a = \overline{Y} - b_1 \overline{X}_1 - b_2 \overline{X}_2 b_k \overline{X}_k$	$A_{ij} \equiv$ adjunto al elemento a_{ij} de la Matriz de Covarianzas
Vector de Medias. Matriz de covarianzas. Matriz de Correlaciones.	$\vec{\mu}_{yxz} = \begin{pmatrix} \overline{y} \\ \overline{z} \end{pmatrix}; \sum_{y,x,z} = \begin{pmatrix} S_y^2 & S_{xy} & S_{zy} \\ S_{xy} & S_x^2 & S_{zx} \\ S_{zy} & S_{zx} & S_z^2 \end{pmatrix}; \Gamma_{yxz}$ $= \begin{pmatrix} 1 & r_{xy} & r_{zy} \\ r_{xy} & 1 & r_{zx} \\ r_{zy} & r_{zx} & 1 \end{pmatrix}$	
Matriz de Covarianzas de las v. independientes (A ₁₁)	$\Sigma_{x} = \begin{pmatrix} S_{x}^{2} & S_{xz} \\ S_{zx} & S_{z}^{2} \end{pmatrix}$	
Coeficiente de Correlación Simple	$R_{xy} = \frac{S_{xy}}{S_x \times S_y}$	$R_{xy}\epsilon[-1,1]$
Coeficiente de Correlación Múltiple	$R_{_{Y}} = \frac{S_{_{Y\dot{Y}}}}{S_{_{Y}} \times S_{_{\dot{Y}}}}$	$R_y \epsilon [-1,1]$
Coeficiente de determinación (Bondad)	$R^2 = 1 - \frac{S_{\varepsilon}^2}{S_y^2}$	$R^2 \in [0,1]$
Varianza residual	$S_{\varepsilon}^{2} = \frac{Det \sum_{yx}}{A_{11}}$	
Coeficiente correlación parcial	$S_{\varepsilon}^{2} = \frac{Det \sum_{yx}}{A_{11}}$ $R_{yx,z} = R_{xy,z} = \frac{R_{xy} - R_{xz}R_{yz}}{\sqrt{1 - R_{xz}^{2}}\sqrt{1 - R_{yz}^{2}}} = -\frac{A_{12}}{\sqrt{A_{11}A_{22}}}$	