Nguyen Xuan Binh 887799 Exercise Sheet 17 Exercise 2: Let $A \in \mathbb{R}^{n \times n}$ have singular values $\sigma_1, \ldots, \sigma_n$ such that $\sigma_1 \geq \sigma_2 \geq \ldots$
3 0 1 3 dn. Show that
We have: $ A _2^2 = \sup_{x \in \mathbb{Z}} \frac{ Ax _2^2}{ x _2^2} = \sup_{x \in \mathbb{Z}} \frac{(Ax)^T Ax}{x^T x} = \sup_{x \in \mathbb{Z}} \frac{(USV^Tx)^T USV^Tx}{x^T x}$
$= \sup_{x \to \infty} \frac{x! \vee S! \vee U! \vee S \vee x}{x \to \infty} = \sup_{x \to \infty} \frac{x! \vee S! S \vee x}{x \to \infty} (U \text{ is unitary})$
Let $y = Vx = y^Ty = (Vx)^TVx = x^TV^TVx = x^Tx (V is unitary)$

