Devoir Maison n°1

Exercice 1.

a) Calculer la limite de la suite

$$\sum_{m>1} \frac{n}{m} \sin(\frac{1}{nm}) \ .$$

b) Calculer la limite de la suite

$$\int_{\mathbb{R}} \frac{e^{-x^2}}{2\cos(\frac{x}{n}) - 1} \, \mathbb{1}_{\{3|\cos(\frac{x}{n})| \ge 2\}} \, dx \, .$$

c) Ré-exprimer l'intégrale suivante sous la forme d'une série "simple"

$$\int_0^\infty \frac{\sin(ax)}{e^x - 1} dx \ .$$

d) Calculer la limite de la suite

$$\int_0^{+\infty} \frac{\sin(nx^n)}{nx^{n+1/2}} dx \ .$$

Exercice 2. On souhaite prouver que les fonctions continues à support compact sont denses dans $L^1(\mathbb{R},\mathcal{B}(\mathbb{R}),\lambda)$ où λ désigne la mesure de Lebesgue. On admettra le fait suivant : pour tout $A\in\mathcal{B}(\mathbb{R})$

$$\lambda(A) = \inf\{\lambda(O) : O \text{ ouvert }, A \subset O\}$$
$$= \sup\{\lambda(K) : K \text{ compact }, K \subset A\}$$

Dans tout l'exercice, on travaille sur \mathbb{R} .

- a) Soient K un compact et O un ouvert tels que $K \subset O$. Montrer par l'absurde que la distance de K à O^c est strictement positive, c'est-à-dire, $\inf\{|x-y|:x\in K,y\in O^c\}>0$.
- b) Montrer que pour tout compact K et tout ouvert O tels que $K \subset O$ il existe une fonction φ continue à support compact telle que $\mathbf{1}_K \leq \varphi \leq \mathbf{1}_O$.
- c) En déduire que pour tout borélien A de mesure de Lebesgue finie, la fonction $\mathbf{1}_A$ est la limite dans L^1 d'une suite de fonctions continues à support compact.
- d) Montrer que pour toute fonction $f \in L^1(\mathbb{R}, \mathcal{B}(\mathbb{R}), \lambda)$, il existe une suite de fonctions étagées f_n telles que $||f f_n||_{L^1} \to 0$.

e) En déduire que pour toute fonction $f \in L^1(\mathbb{R}, \mathcal{B}(\mathbb{R}), \lambda)$, il existe une suite de fonctions continues à support compact φ_n telle que $||f - \varphi_n||_{L^1} \to 0$.

Exercice 3. On se donne (E, \mathcal{A}, μ) un espace mesuré, avec $\mu(E) < +\infty$, f une fonction mesurable de E dans \mathbb{R} , ainsi qu'une suite de fonctions mesurables $(f_n)_{n\geq 1}$ convergeant vers f μ -presque partout. On souhaite prouver le résultat suivant, appelé Théorème d'Egoroff : pour tout $\delta > 0$, on peut trouver un ensemble mesurable, dont le complémentaire est de mesure au plus δ , et sur lequel la suite $(f_n)_{n\geq 1}$ converge **uniformément** vers f.

- a) Soit $\varepsilon > 0$. On définit, pour $n \ge 1$, $A_n^{\varepsilon} = \{x \in E : |f_n(x) f(x)| > \varepsilon\}$. Que vaut $\mu (\limsup_{n \to \infty} A_n^{\varepsilon})$?
- b) En déduire que pour tout $\delta > 0$, il existe $A \in \mathcal{A}$ tel que $\mu(A^c) \leq \delta$ et $N \in \mathbb{N}^*$ tels que

$$\forall n \ge N \quad \forall x \in A \quad |f_n(x) - f(x)| \le \varepsilon.$$

c) En déduire que pour tout $\delta > 0$ il existe $B \in \mathcal{A}$ vérifiant $\mu(B^c) \leq \delta$ et $(f_n)_{n \geq 1}$ converge uniformément vers f sur B.

On remarquera que ce théorème a pour conséquence le fait suivant. Soient a < b deux réels, et $f:]a,b[\to \mathbb{R}$ mesurable. Pour tout $\delta>0$, il existe $A\in \mathcal{B}(]a,b[)$ vérifiant $\lambda(A^c)\leq \delta$ (λ désignant la mesure de Lebesgue) et tel que $f_{|A}$ soit continue. En effet, toute fonction mesurable est limite λ -presque partout d'une suite de fonctions continues à support compact, et l'on peut utiliser le théorème d'Egoroff.