DSR-Disadvantage

Path Data

As the network size grow length of path also increase.

Path

As network size grows, route path also increased. Data packet's header also increase.

Path

AODV-Concept

Reactive routing

- Pure on-demandroute acquisition system
- The routes are created when needed, so called "on-demand"

A broadcast route discovery mechanism
RREQ (Route Request packet) broadcasting to find a route RREP (Route Reply packet) is used to set up forward path

Dynamic establishment of route table entries

Nodes lie on active paths only maintain routing information

Maintenance of timer-based states

A routing table entry is expired if not used recently

Destination sequence number
Prevention of routing loops
Avoidance of old and broken routes

AODV-Concept

Objective: A wants to send data to E.

Route Discovery

1. Every Node maintain two counters

Sequence Number

Broadcast_id: increments whenever the source issues a new RREQ

2. Source broadcast RREQ data packet for searching route

<source_addr, source_sequence#, broadcast_id, dest_addr, dest_sequence#, hop_cnt>

it is a time stamp. When destination send RREP it increase sequence number, when it send RREQ.

AODV-Concept

3. Destination replies using RREP (Route Reply) unicasting

<source_addr, dest_addr, dest_sequence#, hop_cnt, lifetime>

RREP contains the current sequence number, hop count = 0, full lifetime

4. Intermediate Node

Discard duplicate packet

Send RREP if it has active route with higher sequence number.

Otherwise broadcast packet.

C will set a reverse path to node from which it is receiving RREQ. C store information in table.

ADDV-Routing Table Entry

AODV-Routing Table Entry

AODV-Routing Table Entry

ADDV-Routing Table Entry

ADDV-Routing Table Entry

C increase hop count in RREQ. C check it's routing table if it has a valid route to E it reply.

C check it's routing table and finds nothing. C add a entry for reverse path to source.

C increase hop count in RREQ.

C check it's routing table if it has a valid route to E it reply.

C check it's routing table and finds nothing. C add a entry for reverse path to source.

ADDV-Route Reply [RREP]

<E,A,120,0>

Dest	Next	Нор	Seq
А	А	1	1

lext H	ob Sed
2	1
	2

D

AODV-Route Reply [RREP]

<source_addr, dest_addr, dest_sequence#, hop_cnt, lifetime>

ADDV-Route Reply [RREP]

<source_addr, dest_addr, dest_sequence#, hop_cnt, lifetime>

ADDV-Route Reply [RREP]

D will create an entry for node E.

ADDV-Route Reply (RREP)

C will create an entry for node E.

ADDV-Route Reply [RREP]

A will create an entry for node E.