Transformaciones conformes

Curvas suaves

Sea $\mathcal C$ curva en $\mathbb R^2$ parametrizada por $\mathcal C$: $\vec r=\vec r(t), t\in [a,b]$, es decir $\mathcal C$: $\begin{cases} x=X(t) \\ y=Y(t) \end{cases}$ con $t\in [a,b]$. Se dice que $\mathcal C$ es una **curva suave** si las funciones X,Y poseen derivadas continuas y no simultáneamente nulas en [a,b]. En tal caso, como $\|\vec r(t)\| \neq 0$, queda definido en cada punto de $\mathcal C$ el vector tangente unitario

$$\vec{T}(t) = \frac{\vec{r}'(t)}{\|\vec{r}(t)\|} = \frac{\langle X'(t), Y'(t) \rangle}{\sqrt{(X'(t))^2 + (Y'(t))^2}}$$

- La dirección de $\vec{T}(t)$ es la de la recta tangente a $\mathcal C$ y el sentido de $\vec{T}(t)$ es el de un desplazamiento a lo largo de $\mathcal C$ que se produce al incrementar el parámetro en una cantidad infinitesimal dt. Así, $\vec{T}(t)$ determina la orientación de la curva $\mathcal C$ originada por valores crecientes del parámetro.
- $\vec{T}(t)$ varía con continuidad a lo largo de \mathcal{C} , de modo que no sufre cambios bruscos en su dirección, mostrando que \mathcal{C} no presenta puntos "angulosos".

En lo que sigue será conveniente acostumbrarse a considerar $\mathcal{C} \subseteq \mathbb{C}$, donde cada $(X(t),Y(t)) \in \mathcal{C}$ se piensa como el número complejo Z(t)=X(t)+iY(t). Es decir,

$$C: z = \overbrace{X(t) + iY(t)}^{Z(t)} \text{ con } t \in [a, b]$$

Las condiciones de suavidad se traducen en que Z'(t) = X'(t) + iY'(t) es continua y no nula en [a,b]. Ele vector Z'(t) es un vector tangente a $\mathcal C$ en cada punto Z(t). Al incrementar los valores del parámetro t el punto Z(t) recorre $\mathcal C$ en el sentido indicado por Z'(t).

Ejemplo

1) Sea \mathcal{C} el segmento que une los puntos (1,0) y (0,2). Podemos parametrizarlo por

$$C: \begin{cases} x = t \\ y = 2 - 2t \text{ con } t \in [0,1] \end{cases}$$

1) Como subconjunto del plano complejo se describe mediante

$$C: z = \overbrace{t + i(2 - 2t)}^{Z(t)} \text{ con } t \in [0, 1]$$

El vector Z'(t) = X'(t) + iY'(t) = 1 - 2i es tangente a \mathcal{C} en cada punto.

La orientación por valores crecientes del parámetro t recorre $\mathcal C$ por abscisas crecientes pues X'(t)=1>0. También podemos decir esa orientación corresponde a ordenadas decrecientes puesto que Y'(t)=-2<0.

2) Sea \mathcal{C} la circunferencia de ecuación $x^2 + (y-1)^2 = 4$. Podemos parametrizarla por \mathcal{C} : $\begin{cases} x = 2\cos t \\ y = 1 + 2\sin t \end{cases}$ con $t \in [0,2\pi]$.

Entonces
$$Z(t) = i + 2(\cos t + i \sin t) = i + 2e^{it}$$
.

Es decir,
$$C: z = i + 2e^{it}$$
 con $t \in [0,2\pi]$

Un vector tangente es
$$Z'(t) = \frac{d}{dt}(i + 2e^{it}) = 2ie^{it}$$
.

La orientación por valores crecientes del parámetro \boldsymbol{t}

recorre \mathcal{C} en sentido antihorario.

Notar que en este caso no podemos decir

por ejemplo que esa orientación corresponde a abscisas crecientes dado que

 $X(t) = 2 \cos t$ no es función monótona en $[0,2\pi]$.

Giro de tangentes

Sea f(z) analítica en $z_0 = x_0 + iy_0$ tal que $f'(z_0) \neq 0$. Ya hemos mencionado que la derivada de una función analítica es también analítica. En particular dicha derivada es continua. Como $f'(z_0) \neq 0$ entonces $f'(z) \neq 0$ en un entorno $E(z_0,R)$ de z_0 . En efecto, como f'(z) es continua entonces |f'(z)| es continua y no nula en z_0 , por lo que ha de ser |f'(z)| > 0 en un entorno de z_0 , lo que implica que $f'(z_0) \neq 0$ en dicho entorno.

Consideremos una curva suave $C: z = Z(t), t \in [a, b]$, orientada por valores crecientes del parámetro.

Supongamos C está incluida en $E(z_0, R)$ y pasa por el punto $Z(t_0) = z_0$ con $t_0 \in (a, b)$.

Un vector director de la recta tangente en ese punto es $Z'(t_0)$.

Sea $\alpha_0 \in \arg(Z'(t_0))$ el ángulo de inclinación de la recta tangente a \mathcal{C} en z_0 .

Sea $f(\mathcal{C})$ la curva imagen por el punto imagen $w_0 = f(z_0)$. Entonces:

$$f(\mathcal{C}): w = W(t), t \in [a, b], \text{ donde } W(t) = f(Z(t)).$$

Veamos que $f(\mathcal{C})$ es suave. En efecto, en virtud de la regla de la cadena:

$$W'(t) = \frac{d}{dt} f(Z(t)) = \underbrace{f'(Z(t))}_{\neq 0} \underbrace{Z'(t)}_{\neq 0} \neq 0$$

(*): $C \subset E(z_0, R)$ así que para todo t es $Z(t) \in E(z_0, R)$ y en ese entorno f' no se anula.

(**): Z'(t) no se anula en (a, b) por ser Z(t) suave.

Además, f'(Z(t)) es continua en [a,b] por ser composición de continuas, así que f'(Z(t))Z'(t) es continua allí por ser producto de continuas.

Notar Cuando el parámetro t crece el punto Z(t) se desplaza a lo largo de \mathcal{C} en la dirección de Z'(t). Ese "punto móvil" Z(t) es mapeado por f en el "punto móvil" W(t) = f(Z(t)). La orientación de la curva imagen $f(\mathcal{C})$ por valores crecientes del parámetro t queda reflejada por el vector W'(t).

En particular: $W'(t_0) = f'(Z(t_0))Z'(t_0) = f'(z_0)Z'(t_0)$

Esta igualdad vincula el vector tangente $W'(t_0)$ a $f(\mathcal{C})$ en $w_0=f(z_0)$ con el vector tangente $Z'(t_0)$ a \mathcal{C} en z_0 . Comparando argumentos:

$$\underbrace{\arg(W'(t_0))}_{\beta_0} = \arg(f'(z_0)Z'(t_0)) = \underbrace{\arg(f'(z_0))}_{\gamma_0} + \underbrace{\arg(Z'(t_0))}_{\alpha_0}$$

Dado que $\gamma_0 = \operatorname{Arg}(f'(z_0))$ depende del punto z_0 y de la función f pero no de \mathcal{C} , lo anterior muestra que podemos interpretar γ_0 como el **ángulo de giro de rectas tangentes** en z_0 . Si se traslada la imagen $f(\mathcal{C})$ haciendo coincidir w_0 con z_0 , la recta tangente a $f(\mathcal{C})$ en se obtendrá rotando un ángulo γ_0 alrededor del punto la recta tangente a \mathcal{C} .

Si se mantiene f y el punto z_0 pero se cambia \mathcal{C} , eventualmente cambiarán las rectas tangentes, α_0

y β_0 , pero γ_0 será el mismo.

<u>Notar</u>: lo anterior "se cae" si $f'(z_0) = 0$. En ese caso no queda definido un "ángulo de rotación de tangentes" en z_0 .

Por ejemplo, $f(z) = z^2$ en el origen $z_0 = 0$, donde f'(0) = 0.

- \mathcal{C} : y = x es mapeada en $T(\mathcal{C})$: u = 0 así que la tangente a \mathcal{C} gira 45° .
- \mathcal{C}^* : $y = \frac{x}{\sqrt{3}}$ (con ángulo de inclinación $\alpha_0 = \frac{\pi}{6}$) es mapeada en $T(\mathcal{C})$: $v = \sqrt{3} \, u$ (con ángulo de inclinación $\alpha_0 = \frac{\pi}{3}$) así que la tangente a \mathcal{C} gira 30°.

Así, no todas las curvas por $z_0 = 0$ son tales que sus rectas tangentes giran el mismo ángulo... Siendo $f(z) = z^2$ analítica en el origen $z_0 = 0$, esto sólo puede atribuirse a que f'(0) = 0.

Ejemplo: Sean $f(z) = \frac{z-1}{z-i}$, $z_0 = 1+i$

- a) Mostrar que f determina un ángulo de rotación de tangentes γ_0 en z_0 . Calcular γ_0 .
- b) Comprobar a) para la curva \mathcal{C} : $x^2 + y^2 = 2$, hallando la imagen $f(\mathcal{C})$ y las ecuaciones de las rectas tangentes a \mathcal{C} en z_0 y a $f(\mathcal{C})$ en $w_0 = f(z_0)$.

<u>Rta</u>

a)
$$f'(z) = \frac{(z-i)-(z-1)}{(z-i)^2} = \frac{1-i}{(z-i)^2}$$
 es analítica en $z_0 = 1 + i$.

Además, $f'(1+i) = \frac{1-i}{((1+i)-i)^2} = 1-i \neq 0$. Por lo tanto, queda definido el ángulo de rotación de tangentes en z_0 mediante:

$$\gamma_0 = Arg(f'(1+i)) = Arg(1-i) = -\frac{\pi}{4}$$

b)
$$w = \frac{z-1}{z-i} \Leftrightarrow w(z-i) = z-1 \Leftrightarrow wz-iw = z-1 \Leftrightarrow wz-z = iw-1 \Leftrightarrow wz-z = iw-1 \Leftrightarrow z = \frac{iw-1}{w-1}$$

La recta tangente a \mathcal{C} en $z_0=1+i$ es x+y=2. Su ángulo de inclinación es $\alpha_0=3\pi/4$.

Por otra parte,

$$z \in \mathcal{C} \Leftrightarrow x^2 + y^2 = 2 \Leftrightarrow |z| = \sqrt{2} \Leftrightarrow \left| \frac{iw - 1}{w - 1} \right| = \sqrt{2} \Leftrightarrow \frac{|iw - 1|}{|w - 1|} = 2 \Leftrightarrow |iw - 1| = \sqrt{2}|w - 1| \Leftrightarrow \frac{|iu - 1|}{|w - 1|} \Leftrightarrow |i(u + iv) - 1| = \sqrt{2}|(u + iv) - 1| \Leftrightarrow$$

$$\Leftrightarrow |-v - 1 + iu| = \sqrt{2}|(u - 1) + iv| \Leftrightarrow (-v - 1)^2 + u^2 = 2(u - 1)^2 + 2v^2 \Leftrightarrow \frac{Z(t) = \sqrt{2}e^{it}}{0 \le t \le 2\pi}$$

$$\Leftrightarrow v^2 + 2v + 1 + u^2 = 2u^2 - 4u + 2 + 2v^2 \Leftrightarrow$$

$$\Leftrightarrow u^2 - 4u + v^2 - 2v = -1 \Leftrightarrow (u - 2)^2 + (v - 1)^2 = 4 \Leftrightarrow w \in f(\mathcal{C}) \uparrow^y$$

Entonces, la recta tangente a $f(\mathcal{C})$ en $w_0 = f(1+i) = \frac{(1+i)-1}{(1+i)-i} = i$ es claramente u=0.

Su ángulo de inclinación es $\beta_0 = \frac{\pi}{2}$

Tal como lo prevé la teoría expuesta: $\gamma_0 + \alpha_0 = -\frac{\pi}{4} + \frac{3\pi}{4} = \frac{\pi}{2} = \beta_0$

Conformidad

Sea f(z) analítica en $z_0 = x_0 + iy_0$. Se dice que la transformación T: w = f(z) es **conforme en el punto z_0** si preserva en magnitud y signo el ángulo entre pares de curvas suaves por z_0 .

Expliquemos en detalle el significado.

Sean C_1 y C_2 curvas suaves por z_0 :

$$C_1: z = Z_1(t), t \in [a, b]$$
 $C_2: z = Z_2(t), t \in [a, b]$

donde

- $Z_1(t_0) = Z_0 = Z_2(t_0)$
- $Z_1'(t), Z_2'(t)$ continuas en [a, b] y tales que $Z_1'(t_0) \neq 0, Z_2'(t_0) \neq 0$

Las imágenes de las curvas son

$$f(\mathcal{C}_1): z = \overbrace{f(Z_1(t))}^{W_1(t)}, t \in [a, b] \qquad \mathcal{C}_2: z = \overbrace{f(Z_2(t))}^{W_2(t)}, t \in [a, b]$$

Sea α_{12} el ángulo de lado inicial $Z_1'(t_0)$ y lado final $Z_2'(t_0)$ y sea β_{12} el ángulo de lado inicial $W_1'(t_0)$ y lado final $W_2'(t_0)$. Si f es conforme en z_0 entonces $\beta_{12}=\alpha_{12}$

Ejemplo $f(z) = \bar{z}$ no es conforme en ningún punto z_0 . Basta el siguiente contraejemplo.

$$C_1: z = z_0 + t, t \in [-1,1]$$

 $C_2: z = z_0 + it, t \in [-1,1]$

Entonces

$$T(C_1): w = z_0 + t, t \in [-1,1]$$

 $T(C_2): w = z_0 - it, t \in [-1,1]$

Por lo tanto, cuando t = 0 resulta:

$$Z'_1(0) = 1$$
 $Z'_2(0) = i$
 $W'_1(0) = 1$ $W'_2(0) = -i$

Luego,

$$\alpha_{12} = \frac{\pi}{2} \neq -\frac{\pi}{2} = \beta_{12}$$

Teorema Seaf(z) analítica en z_0 . Se verifica:

T: w = f(z) es conforme en z_0 si y sólo si $f'(z_0) \neq 0$

<u>Dem</u>

$$\Leftarrow$$
) Sean $\mathcal{C}_1: z = Z_1(t), t \in [a,b]$ $\mathcal{C}_2: z = Z_2(t), t \in [-1,1]$ parametrizaciones suaves con $Z_1(t_0) = Z_0 = Z_2(t_0)$.

Sea $w_0 = f(z_0)$ y γ_0 : ángulo de rotación de tangentes en z_0

Si

 α_1 : ángulo de inclinación de \mathcal{C}_1 en z_0

 α_2 : ángulo de inclinación de \mathcal{C}_2 en z_0

 β_1 : ángulo de inclinación de $T(\mathcal{C}_1)$ en w_0

 β_2 : ángulo de inclinación de $T(\mathcal{C}_2)$ en w_0

entonces

$$\beta_1 = \alpha_1 + \gamma_0 \qquad \beta_2 = \alpha_2 + \gamma_0$$

Por lo tanto,

$$\beta_{12} = \beta_2 - \beta_1 = (\alpha_2 + \gamma_0) - (\alpha_1 + \gamma_0) = \alpha_2 - \alpha_1 = \alpha_{12}$$

Ejemplo Seaf(z) = iz + Ln(z).

- a) ¿Cuál es el dominio de conformidad de T: w = f(z)?
- b) Si \mathcal{C}_1 : $(x-2)^2+(y-1)^2=2$ hallar la ecuación de la recta tangente a la imagen $f(\mathcal{C}_1)$ en el punto $w_0=f(1)$.
- c) Si \mathcal{C}_2 : $y = \frac{1}{2} \frac{1}{2}(x-2)^2$, ¿qué ángulo forman $f(\mathcal{C}_1)$ y $f(\mathcal{C}_2)$ en el punto $w_0 = f(1)$?

<u>Rta</u>

a)
$$D_{ana}(f) = \mathbb{C} - \{x + iy : y = 0, x \le 0\}$$

$$f'(z) = i + \frac{1}{z}$$
 así que $f'(z) = 0 \Leftrightarrow z = i$

Entonces el dominio de conformidad es

$$D_{conf}(f) = \mathbb{C} - (\{i\} \cup \{x + iy : y = 0, x \le 0\})$$

b)
$$z_0 = 1 \in D_{conf}(f), \ w_0 = f(z_0) = i$$

$$f'(z_0) = f'(1) = 1 + i$$

El ángulo de rotación de tangentes en $z_0 = 1$ bajo la transformación w = f(z) es

$$\gamma_0 = \operatorname{Arg}(f'(1)) = \operatorname{Arg}(1+i) = \frac{\pi}{4}$$

Sea α_1 el ángulo de inclinación de la recta tangente a C_1 en $z_0=1$ y β_1 el ángulo de inclinación de la recta tangente a $f(C_1)$ en $w_0=f(1)=i$. Por la rotación de tangentes:

$$\beta_1 = \alpha_1 + \gamma_0 = \alpha_1 + \frac{\pi}{4}$$

Para hallar α_0 derivamos implícitamente $(x-2)^2+(y-1)^2=2$, obteniendo: $2(x-2)+2(y-1)y'=_\pi 0$. En el punto $z_0=1$ esto da 2(1-2)+2(0-1)y'(1)=0 así que y'(1)=-1. Si orientamos \mathcal{C}_1 en sentido antihorario resulta $\alpha_1=\arctan(-1)=-\frac{\pi}{4}$

Entonces, $\beta_1 = \alpha_1 + \frac{\pi}{4} = -\frac{\pi}{4} + \frac{\pi}{4} = 0$. Luego, la recta tangente a $f(\mathcal{C}_1)$ en el punto $w_0 = f(1) = i$ es la recta horizontal v = 1.

c) Sean α_{12} el ángulo orientado desde \mathcal{C}_1 hasta \mathcal{C}_2 y β_{12} el ángulo orientado desde $T(\mathcal{C}_1)$ hasta $T(\mathcal{C}_2)$. Como f es conforme en $z_0=1$, preserva el ángulo entre pares de curvas por z_0 , es decir $\beta_{12}=\alpha_{12}$

$$\alpha_{12} = \alpha_2 - \alpha_1$$

Para hallar α_2 derivamos $y=\frac{1}{2}-\frac{1}{2}(x-2)^2$ obteniendo y'=-(x-2). En el punto $z_0=1$ esto da y'(1)=1. Entonces $\alpha_2=\arctan(1)=\frac{\pi}{4}$ Luego, $\alpha_{12}=\alpha_2-\alpha_1=\frac{\pi}{4}-\left(\frac{\pi}{4}\right)=\frac{\pi}{2}$ Entonces, $\beta_{12}=\frac{\pi}{2}$

En la figura se muestran las curvas y sus imágenes en un mismo plano y se identifican en color rosa los vectores tangentes a \mathcal{C}_1 y $T(\mathcal{C}_1)$ y en color verde los vectores tangentes \mathcal{C}_2 y $T(\mathcal{C}_2)$. Se observa que el ángulo entre ellos se preserva en magnitud y signo, cuando se pasa de las curvas dadas a las curvas imagen. En este ejemplo ese ángulo es recto.