DS7: Induction et thermodynamique

Durée : 4h. Les calculatrices sont autorisées. Le devoir est probablement trop long pour être terminé, faites-en le maximum.

Exercice 1: Compression isotherme d'un gaz parfait (TD16)

On place dans un cylindre de section S un volume V_1 d'un gaz parfait à la pression P_1 et à la température T_1 . Le cylindre est fermé par un piston mobile. On effectue une compression isotherme du gaz en appliquant une pression extérieure P_e sur le piston. On considère que la transformation est quasi-statique, c'est à dire qu'à chaque instant la pression P_e est égale à la pression P du gaz.

- 1. En pratique, comment doit-on faire pour que la compression du gaz soit réellement isotherme?
- 2. On comprime le gaz jusqu'à un volume V_2 , exprimer alors sa pression P_2 .
- 3. Exprimer la pression du gaz en fonction de son volume, calculer le travail fourni au gaz par les forces de pression.
- 4. On admet que lors de la compression adiabatique d'un gaz parfait, la quantité PV^{γ} reste constante. Avec $\gamma = \frac{7}{5}$ pour un gaz parfait diatomique (air). Déterminer le travail fourni par les forces de pression lorsque la compression est adiabatique.
- 5. En pratique, comment procède-t-on pour effectuer une compression adiabatique?
- 6. Le travail fourni par les forces de pression sera-t-il plus important lors d'une compression adiabatique ou lors d'une compression isotherme? Justifier.

Exercice 2: Transformation cyclique d'un gaz parfait

On considère n moles de gaz parfait monoatomique enfermé dans un cylindre fermé par un piston mobile. Initialement, le volume du cylindre est V_1 , la pression du gaz est P_1 et sa température T_1 , c'est l'état 1. Le cylindre est en contact thermique avec un réservoir d'eau à la température T_1 . Dans toute la première partie, le réservoir d'eau est considéré comme un thermostat.

Le gaz subit la série de transformations suivante :

- Compression adiabatique quasistatique jusqu'au volume $V_2 < V_1$: état 2;
- Refroidissement isochore pour revenir à la température T_1 du thermostat : état 3;
- Détente isotherme quasistatique pour revenir à l'état 1.

Pour une transformation adiabatique quasistatique, la loi de Laplace indique qu'à chaque instant de la transformation on a $PV^{\gamma} = \text{constante}$ avec $\gamma = \frac{5}{3}$ pour un gaz parfait monoatomique.

- 1. Rappeler le premier principe de la thermodynamique pour un système au repos.
- 2. Qu'est-ce qu'une transformation adiabatique, en pratique quelles sont les transformations que l'on pourra considérer comme adiabatiques?
- 3. Qu'est-ce qu'une transformation isotherme, en pratique quelles sont les transformations que l'on pourra considérer comme isothermes ?
- 4. Exprimer la pression P_2 atteinte par le gaz dans l'état 2 en fonction de P_1 , V_1 et V_2 .
- 5. En déduire l'expression de la température T_2 atteinte par le gaz dans l'état 2 en fonction de T_1 , V_1 et V_2 .
- 6. Représenter les transformations subies par le gaz dans un diagramme (P, V).
- 7. Montrer que le travail des forces de pression reçu par le gaz lors de la transformation $1\rightarrow 2$ vaut :

$$W_{12} = \frac{3}{2} P_1 V_1 \left(\left(\frac{V_1}{V_2} \right)^{\gamma - 1} - 1 \right)$$

On pourra au choix calculer l'intégrale donnant le travail W_{12} ou utiliser le premier principe entre les états 1 et 2.

- 8. Que vaut le travail W_{23} reçu par le système lors de la transformation $2 \to 3$? Exprimer la chaleur Q_{23} reçue par le système au cours de cette transformation en fonction de T_1 et T_2 . On pourra judicieusement appliquer le premier principe.
- 9. Exprimer le travail W_{31} et la chaleur Q_{31} reçus par le système au cours de la transformation $3 \to 1$ en fonction de V_2 et V_1 .

2018-2019 page 1/5

10. Montrer qu'au cours d'un cycle, le travail et la chaleur reçus par le système sont :

$$W = P_1 V_1 \left[\frac{3}{2} \left(\left(\frac{V_1}{V_2} \right)^{\gamma - 1} - 1 \right) - \ln \frac{V_1}{V_2} \right] \quad \text{et} \quad Q = -W$$

- 11. Quel est le signe de W? Quel est le signe de Q? On pourra donner un argument physique, ou étudier mathématiquement le signe de W et Q.
- 12. Expliquer qualitativement ce qu'il va se passer avec l'eau du réservoir lorsqu'on effectue un grand nombre de cycles identiques. Pourra-t-on toujours le considérer comme un thermostat?

Exercice 3 : SÉQUESTRATION DU CO₂

Les activités humaines ont accru sensiblement le taux de la concentration de $\rm CO_2$ dans l'atmosphère : autour de 280 ppm il y a 250 ans, il est actuellement de 387 ppm (soit une augmentation de 38%). Afin de ne pas dépasser la limite de 450 ppm au-delà de laquelle les conséquences les plus dramatiques du réchauffement climatique seront inévitables de nombreuses options sont envisagées afin de limiter les rejets de $\rm CO_2$ dans l'atmosphère.

Masse volumique de l'océan	$\rho_0 = 1.03 \times 10^3 \mathrm{kg/m^3}$
Température de l'océan	$T_0 = 280 \mathrm{K}$
Pression à la surface de l'océan	$P_0 = 1 \mathrm{bar}$
Constante des gaz parfaits	$R = 8.31 \mathrm{JK^{-1}mol^{-1}}$
Masse molaire du CO_2	$M_{\rm CO_2} = 44.0 \mathrm{g}\mathrm{mol}^{-1}$

Table 1 – Données thermodynamiques relatives au problème

Une première proposition un peu simple consiste à former des blocs de CO_2 solide à l'aide d'installations frigorifiques puis de les laisser tomber dans des fosses marines. On effectue les approximations suivantes :

- L'océan est un fluide homogène au repos, de température constante, incompressible et indilatable.
- Les blocs de CO₂ sont incompressibles et indilatables. Ils ont de plus une masse constante tout au long de la descente dans la fosse (approximation forte).

On donne ci-dessous le diagramme de phases de CO_2 .

Caractéristiques des points a, b, c :

Point $a, T_a = 280 \,\mathrm{K}, P_a = 4 \times 10^3 \,\mathrm{bar};$

Point $b, T_b = 304 \,\mathrm{K}, P_b = 70.4 \,\mathrm{bar};$

Point c, $T_c = 216 \,\mathrm{K}$, $P_c = 5{,}11 \,\mathrm{bar}$.

FIGURE 1 – Diagramme du phases du CO₂.

- 1. Donner le nom de l'état physique dans chacune des quatre zones 1, 2, 3 et 4.
- 2. Donner les noms des points c et b et préciser leur particularité.
- 3. Un morceau de dioxyde de carbone solide est laissé sur une table dans un laboratoire. Ce solide est-il stable ou au contraire observe-t-on un changement d'état (préciser alors son nom)?
- 4. Quelle doit être la pression minimale de l'eau pour que le CO₂ reste solide dans son emplacement de stockage?
- 5. On note z la profondeur du point considéré avec z=0 correspondant à la surface de l'océan. Sachant que dans le cas d'un fluide au repos, la pression à une profondeur z est $P(z)=P(0)+\rho gz$. Quelle devrait être la profondeur minimale de la fosse marine pour que le bloc de CO_2 reste solide? Commenter le résultat.

La méthode précédente de séquestration présente de nombreux inconvénients : perte partielle du CO_2 lors de la chute du bloc, dissolution du CO_2 dans l'eau de mer (et donc modification de son pH) et risque de libération brutale du CO_2 piégé. Une solution plus raisonnable est de réinjecter le CO_2 dans le sous-sol et de le piéger dans un aquifère salin (réserve souterraine d'eau salée).

Le CO_2 gazeux est capté, il subit des compressions successives jusqu'à obtention d'un fluide. Ce dernier est ensuite injecté dans un aquifère salin dont la profondeur est nécessairement supérieure à $800 \, \text{m}$. Dans de telles conditions de

2018-2019 page 2/5

température et de pression le CO₂ est supercritique. Moins dense que l'eau de l'aquifère, il monte puis s'accumule sous un piège structurel (une roche composée par exemple d'argile).

On considère une quantité n_0 de CO_2 occupant un volume $V_0=10\,\mathrm{m}^3$ à une température $T_0=298\,\mathrm{K}$ et une pression $p_0=1\,\mathrm{bar}$.

On désire vérifier la validité du modèle du gaz parfait appliqué au $\rm CO_2$ gazeux. Pour un kilogramme de $\rm CO_2$ gazeux à une température de $\rm 280\,K$, on obtient les résultats suivants :

\overline{P} (bar)	0,804	0,868	0,968	1,060	1,130	1,179
V (m ³)	0,658	0,610	0,547	0,499	0,468	0,449

- 6. Rappeler les hypothèses du modèle du gaz parfait. Quelle relation lie $P,\,V\,n$ et T dans ce modèle.
- 7. Ce modèle est-il compatible avec les résultats expérimentaux?

On donne ci-dessous le diagramme de Clapeyron et des données thermodynamiques relatives à CO₂.

T(K)	235	250	265	280	295
P_{sat} (pression de vapeur saturante en bar)	10,7	18,0	28,1	41,9	59,5
v_l (volume massique du liquide à l'ébullition en m³ kg ⁻¹)	9.0×10^{-4}	9.6×10^{-4}	1.0×10^{-3}	$1,1\times10^{-3}$	$1{,}3\times10^{-3}$
v_v (volume massique de la vapeur saturante en m ³ kg ⁻¹)	3.6×10^{-2}	2.1×10^{-2}	$1{,}3\times10^{-2}$	$8,1 \times 10^{-3}$	4.7×10^{-3}

TABLE 2 – Données thermodynamiques relatives au dioxyde de carbone. La vapeur saturante correspond à la vapeur en équilibre avec du liquide.

- 8. Compléter le diagramme de Clapeyron (températures) et tracer l'isotherme à 295 K.
- 9. Identifier sur le diagramme les courbes de rosée et d'ébullition.
- 10. À une température de 295 K et à la pression de 59 bar, le gaz peut-il être considéré comme parfait?

La quantité n_0 de CO_2 est à présent soumise à diverses transformations la faisant passer par les états A, B, C et D caractérisés par leur température et leur volume :

Point	A	В	C	D
Température (K)	280	280	295	310
Volume (ℓ)	120	53	53	53

- 11. Placer les points A, B, C et D sur le diagramme de Clapeyron et préciser l'état physique du CO_2 pour chacun de ces états.
- 12. Préciser la pression pour chacun des états A, B, C et D.
- 13. Dans le cas de systèmes biphasiques, préciser la composition massique du mélange.
- 14. Déterminer le travail fourni par le compresseur pour effectuer la transformation $A \to B$

Exercice 4: MOTEUR ASYNCHRONE (CCP 2012)

Aucune connaissance préalable du principe de fonctionnement de la machine asynchrone n'est nécessaire pour traiter ce problème. Cette machine se compose principalement de deux parties :

- le stator réalisé à l'aide d'un ensemble de bobines fixes destinées à engendrer dans une zone limitée de l'espace un champ magnétique tournant $\vec{B}(t)$,
- le rotor modélisé ici par un cadre conducteur rectangulaire de surface S mobile autour d'un axe.

I – Étude du stator

Le stator est constitué d'un ensemble de 3 bobines dont les axes sont perpendiculaires à Oz et régulièrement décalés de $\frac{2\pi}{3}$. Ces bobines sont parcourues par des courants sinusoïdaux de pulsation ω_s dont les intensités sont les suivantes :

$$i_1(t) = I_0 \cos(\omega_s t), \quad i_2(t) = I_0 \cos\left(\omega_s t - \frac{2\pi}{3}\right), \quad \text{et} \quad i_3(t) = I_0 \cos\left(\omega_s t - \frac{4\pi}{3}\right)$$

La fréquence d'alimentation de ces bobines est égale à $f_s = \frac{\omega_s}{2\pi} = 50\,\mathrm{Hz}$. Chaque bobine crée en O un champ magnétique qui peut se mettre sous la forme : $\vec{B}_k = Ki_k(t)\vec{e}_k$ (K est une constante qui s'exprime en Hm^{-2} et \vec{e}_k est le vecteur unitaire de l'axe de la k^{ime} bobine.

- 1. Justifier l'unité de K.
- 2. On donne le théorème de Ferraris :

$$\sum_{k=0}^{p-1} \cos\left(\omega_s t - \frac{2k\pi}{p}\right) \vec{e}_{k+1} = \frac{p}{2} \left(\cos(\omega_s t)\vec{e}_x + \sin(\omega_s t)\vec{e}_y\right) \tag{1}$$

En déduire que la somme des champs magnétiques créés par les 3 bobines au point O est un champ tournant \vec{B} dont on donnera l'expression dans la base (\vec{e}_x, \vec{e}_y) . Donner la norme du champ magnétique $B_0 = ||\vec{B}||$ en fonction de K et I_0 .

3. Quelle est la vitesse de rotation du champ? Calculer sa valeur numérique en tours par minute.

II – Entraînement du rotor

Le rotor est modélisé par un cadre conducteur rectangulaire de surface S orientée selon la normale \vec{n} qui tourne autour de l'axe Oz avec une vitesse angulaire ω ($\omega \ge 0$).

- 4. Exprimer le flux Φ du champ magnétique \vec{B} généré par le stator à travers le cadre en fonction de B_0 , S, ω , ω_s et t.
- 5. En déduire la force électromotrice e(t) induite dans le cadre en fonction du flux maximum $\Phi_0 = B_0 S$, de la vitesse angulaire de glissement $\Omega = \omega_s \omega$ et de t.

Le cadre est équivalent à un circuit constitué d'une inductance L en série avec une résistance R.

- 6. Dessiner un schéma équivalent du rotor en faisant apparaître la fem induite e(t).
- 7. Établir l'équation différentielle vérifiée par le courant i(t) induit dans le cadre.
- 8. On se place en régime permanent sinusoïdal, l'intensité dans le cadre s'écrit alors sous la forme $i(t) = I_M \sin(\Omega t \Psi)$. Ce qui donne l'intensité complexe : $\underline{i}(t) = I_M e^{j(\Omega t \Psi \frac{\pi}{2})}$ et la fem complexe : $\underline{e} = |\underline{e}| e^{j(\Omega t \frac{\pi}{2})}$. Montrer que l'intensité complexe dans le cadre s'écrit :

$$\underline{i}(t) = \frac{\Phi_0 \Omega}{R + jL\Omega} e^{j\left(\Omega t - \frac{\pi}{2}\right)} \tag{2}$$

- 9. En déduire l'expression de I_M en fonction de Φ_0 , Ω , R et L. Exprimer $\cos(\Psi)$ en fonction de Ω , R et L et préciser le signe de $\sin(\Psi)$.
- 10. On donne $\Phi_0 = 10^{-3} \,\mathrm{Tm}^2$ et $L = 100 \,\mathrm{mH}$. Donner la valeur numérique de la valeur efficace de i(t) dans le cas où $R \ll L\Omega$.
- 11. Comment mesure-t-on en pratique une intensité efficace? On rappelle l'expression du moment magnétique \vec{M} du rotor : $\vec{M} = i(t)S\vec{n}$.
- 12. Exprimer le couple électromagnétique $\vec{\Gamma}$ des forces de Laplace qui s'exercent sur le cadre, puis sa projection $\Gamma = \vec{\Gamma} \cdot \vec{e}_z$ sur l'axe de rotation en fonction de $S, B_0, I_M, \Psi, \Omega$ et t.
- 13. On donne la relation $\sin(a)\sin(b) = \frac{1}{2}(\cos(a-b) \cos(a+b))$. Montrer que la valeur moyenne de Γ , notée Γ_m est donnée par :

$$\Gamma_m = \left(\frac{\Phi_0^2}{2L}\right) \frac{RL\Omega}{R^2 + (L\Omega)^2}.$$
 (3)

14. On donne l'allure de $\Gamma_m(\omega)$:

À quoi correspond la limite de Γ_m quand ω tend vers 0? En quoi cela constitue-t-il un avantage par rapport à d'autres types de moteur (par exemple pour un moteur synchrone $\lim_{\omega \to 0} \Gamma_m = 0$)? Dans quelles conditions le couple est-il moteur ou au contraire résistant?

2018-2019 page 5/5