Erlang Solutions Ltd.

Memory Management Battle Stories

Agenda

- The Problem
- Concepts
- Statistics
- Case 1: Large binaries
- Case 2: Fragmentation
- New Features

The Problem

- Normal OS default allocator:
 - is relatively slow for many small allocations
 - uses same allocation strategy for all data, increased fragmentation
 - no cross platform fine-grained statistics
- Try it on your system, +Mea min
 - Disables erts allocators and uses malloc directly for everything
- With multi-core memory management is even more important (and even more difficult)

Concepts

- Carriers and Blocks
- Single- vs multi-block carriers
- Multiblock allocators
- Thread specific allocators

Carriers and Blocks

- Block A piece of memory requested by the VM
- Carrier A piece of memory that contains one or more blocks

```
ets:insert(Tid,{0,"HELLO"}).
ets:insert(Tid,{1,[0,1,2,....,63]}).
ets:insert(Tid,{2,[0,1,2,...,128]).
ets:delete(Tid,1).
```


Single- vs Multi-block Carriers

- Large blocks are placed in a singleblock carrier (sbc)
 - What is a large block? depends...
 - Control with +M<S>sbct (singleblock carrier threshold)
 - default is 512 kb
- Normally you want most of your data in multiblock carriers (mbc)
 - If you increase sbct you probably want to increase smbcs and Imbcs by an equal %
 - Size of carrier is controlled with +M<S>smbcs,
 +M<S>Imbcs and +M<S>mbcgs

Allocator types

- Different strategies possible for different types of data
 - eheap, binary, driver, ets
 - temporary, short lived, standard lived, long lived
 - fix size

Allocator types

- temporary
 - C function scope
 - temp gc rootset
 - dist msg decode
- standard
 - links
 - monitors
 - fixed

- short
 - ets match specs
 - short timers
 - fd select list
- long
 - code
 - atoms
- process control block
- port control block

Multiblock allocator strategies

- Block oriented
 - best fit
 - address order best fit

 - good fit
 - a fit

- Carrier oriented
- address order first fit carrier best fit
- address order first fit
 address order first fit carrier address order best fit

Best fit example

Best fit example

Carrier Allocators

- mseg alloc
 - uses /dev/zero and mmap,munmap,mremap
 - caches freed carriers
- sys alloc
 - maps to malloc,free (or posix_memalign/free)
 - carriers are a multiple of +Muycs to help avoid fragmentation
 - used for main carrier allocation +M<S>mmbcs

Memory architecture

Statistics: erlang:system_info(allocator)

- Allocator types
 - sys_alloc mseg_alloc
 - eheap_alloc ets_alloc binary_alloc driver_alloc
 - temp_alloc sl_alloc std_alloc ll_alloc fix_alloc
- Settings
 - sbc threashold, mbc allocation strategy, etc
- Features
 - aligned alloc, lock physical, etc

Statistics: erlang:system_info({allocator,Type})

```
[{instance,0,
        [{versions, ...},
        {options, ...},
        {mbcs, ...},
        {sbcs, ...},
        {calls, ...}],
        {instance,1, ...},
```


Statistics: mbcs / sbcs

Statistics: example mbc

	Current	Max (Last)	Max
blocks	1066675	1068988	1811013
blocks_size	860267920	860267920	3546346384
carriers	455	455	455
carriers_size	3763863552	3763863552	3763863552

Statistics: example mbc

	Current	Max (Last)	Max
blocks	1066675	1068988	1811013
blocks_size	820 MB	820 MB	3382 MB
carriers	455	455	455
carriers_size	3590 MB	3590 MB	3590 MB

Statistics: example sbc

	Current	Max (Last)	Max
blocks	6	6	21
blocks_size	6 MB	6 MB	20 MB
carriers	6	6	21
carriers_size	7.5 MB	7.5 MB	25 MB

Statistics: calls

	alloc	free	realloc
binary	28379577160	28378510479	985494638
mseg	24186	23725	6839
sys	0	0	0

Statistics: calls

	alloc	free	realloc
binary	28380 MC	28379 MC	985 MC
mseg	24186	23725	6839
sys	0	0	0

Statistics: mseg

cached segments	2
cache hits	424
segments	12
segments_size	12136448
segments_watermark	4
mseg alloc	464
mseg dealloc	452
mseg create	40
mseg destroy	32

Case studies

- Case 1: Large binaries
- Case 2: Fragmentation

Case 1: Large binaries

- Symptoms
 - used strace to find that many more malloc than mmap were made

Case 1: Large binaries

calls binary_alloc	321 MC
calls mseg_alloc	0.4 MC
calls sys_alloc	1.4 MC
mbcs carrier_size	2.4 GB
sbcs carrier_size	11 GB
avg sbc block size	1.68 MB

Case 1: Large binaries

- +MBsbct 2147483648
 - Put binaries that are > 2 MB to mbcs
- +MBImbcs 20480 +MBsmbcs 1024
 - Increase average mbc size to fit the new larger blocks that will be put there

Case 2: Fragmentation

- Symptoms
 - erlang:memory(total) = about 7GB
 - top showed process at about 15 GB
 - Crash dump was written to: erl_crash.dump. ets_alloc: Cannot allocate
 XYZ bytes of memory. Abnormal termination

Case 2: Fragmentation

	Current	Max
blocks	2161022	4346598
blocks_size	1647 MB	6823 MB
carriers	934	936
carriers_size	7262 MB	7271 MB
avg block sz	799 Bytes/Block	1645 Bytes/Block
avg carrier sz	7.8 MB/Carrier	7.7 MB/Carrier
block sz / carrier sz	22,7%	93,8%

Case 2: Fragmented binaries

- +MBas aobf
 - Strive to allocate binaries in address order when there are ties
- +MBlmbcs 512
 - Decreasing largest mbc size will make more carriers and hopefully be able to free them

New features

- Migration of carriers of same type
 - Added in R16B01, default in 17.0
 - Requires carrier oriented allocation strategy
- Super carrier
 - Added in R16B03

Questions?

