DERIVATIVE OF STANDARD FUNCTIONS

f(x)	$\frac{d}{dx}(f(x))$	f(x)	$\frac{d}{dx}(f(x))$
X ⁿ	nx^{n-1} ; $n \in R$	sec x	$\sec x \tan x, x \neq (2n+1)\frac{\pi}{2}$
e ^x	e ^x	cosec x	-cosec x cot x ; x≠ n $π$
X×	x*(1 + ln x)	cot x	–cosec²x, x≠nπ
a ^x	a [×] log _e a ; a > 0, a≠ 1	sin ⁻¹ x	$\frac{1}{\sqrt{1-x^2}} \; ; -1 < x < 1$
log _e x	$\frac{1}{x}$; x > 0	cos ⁻¹ x	$-\frac{1}{\sqrt{1-x^2}} \; ; -1 < x < 1$
log _a x	$\frac{1}{x\log_{e} a}; x > 0$	tan⁻¹x	$\frac{1}{1+x^2} ; x \in R$
sin x	cos x	sec ⁻¹ x	$\frac{1}{ x \sqrt{x^2-1}}; x >1$
cos x	–sin x	cosec ⁻¹ x	$\frac{-1}{ x \sqrt{x^2-1}} \; ; x > 1$
tan x	$\sec^2 x ; x \neq (2n+1) \frac{\pi}{2} n \in I$	cot ⁻¹ x	$\frac{-1}{1+x^2} \; ; x \in R$

RULES FOR DIFFERENTIATION

$$\frac{d}{dx}(K(f(x)) = K \cdot \frac{d}{dx}(f(x)), \text{ where } K \text{ is constant}$$

$$\frac{d}{dx}\{f(x)\pm g(x)\} = \frac{d}{dx}(f(x))\pm \frac{d}{dx}(g(x))$$

Product Rule:
$$\frac{d}{dx} \{f(x).g(x)\} = f(x)\frac{d}{dx}(g(x)) + g(x)\frac{d}{dx}(f(x))$$

Quotient Rule:
$$\frac{d}{dx} \left\{ \frac{f(x)}{g(x)} \right\} = \frac{g(x) \frac{d}{dx} (f(x)) - f(x) \frac{d}{dx} (g(x))}{(g(x))^2}$$

Chain Rule: If y is a function of u, u is a function of v and v a function of x, then

$$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dv} \times \frac{dv}{dx}$$

Parametric differentiation: If x = P(t), y = Q(t), where 't' is parameter then,

$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{\frac{d}{dt}(Q(t))}{\frac{d}{dt}(P(t))} = \frac{Q'(t)}{P'(t)}$$

Differentiation of one function w.r.t. other function

$$\frac{d(f(x))}{d(g(x))} = \frac{\frac{d}{dx}(f(x))}{\frac{d}{dx}(g(x))} = \frac{f'(x)}{g'(x)}$$

Logarithmic differentiation: It is applicable in following cases:

All are functions of 'x'

$$\rightarrow$$
 y = $f_1.f_2.f_3....f_n$ (product, divide or power form)

$$\rightarrow$$
y = (f(x)) $g(x)$

* Take log on both sides and then differentiate.