

acm international collegiate programming contest INDONESIA NATIONAL CONTEST INC 2018

Problem I Expected Value of a Permutation

You have an array of N integers $A = [A_1, A_2, \cdots, A_N]$. Summing all integers in A is boring, so you decided to take it to the next level. You have a permutation P of 1 to N generated randomly. Each permutation from 1 to N has an equal probability to be chosen as P.

You also want to define arrays $X_0, X_1, X_2, ..., X_N$ and an integer Y as follows:

- $X_0 = A$
- X_i for $1 \le i \le N$ is defined as X_{i-1} but all integers whose indices are multiples of i are changed to 0.
- $Y = sum(X_1) + sum(X_2) + \cdots + sum(X_N)$, where $sum(X_i)$ is the sum of all integers in the array X_i .

For example, if A = [4, 1, 2, 3, 4] and P = [3, 2, 4, 1, 5], then:

- $X_0 = [4, 1, 2, 3, 4]$
- $X_1 = [4,1,0,3,4] \leftarrow P_1 = 3$, so, the 3^{rd} element of X_1 is changed to 0.
- $X_2 = [4,0,0,0,4] \leftarrow P_2 = 2$, so, the 2^{nd} and 4^{th} elements of X_2 are changed to 0.
- $X_3 = [4,0,0,0,4] \leftarrow P_3 = 4$, so, the 4^{th} element of X_3 is changed to 0.
- $X_4 = [0,0,0,0,0] \leftarrow P_4 = 1$, so, all elements of X_4 are changed to 0.
- $X_5 = [0, 0, 0, 0, 0] \leftarrow P_5 = 5$, so, the 5^{th} element of X_5 is changed to 0.

Therefore, Y = 12 + 8 + 8 + 0 + 0 = 28 in this case.

Since P is generated randomly, you are wondering the expected value of Y. Let $\frac{C}{D}$ be the expected value of Y where C and D are relatively prime non-negative integers. Print the value of $(C \times D^{-1}) \mod 1000000007$. In other words, you must print the value of the unique integer K ($0 \le K < 1000000007$) satisfying $C \equiv DK \pmod{10000000007}$.

Input

Input begins with an integer N ($1 \le N \le 100000$) representing the number of integers in A. The second line contains N integers: A_i ($0 \le A_i \le 10^9$) representing the array A.

Output

Output in a line the expected value of Y using the format specified in the problem description.

acm international collegiate programming contest INDONESIA NATIONAL CONTEST INC 2018

Sample Input

Sample Output

500000020

Explanation for the sample input/output

There are 5! = 120 possible permutations for the value of P.

- When the value of P = [3, 2, 4, 1, 5], the value of Y = 28 as described in the problem statement above.
- When the value of P = [2, 1, 3, 4, 5], the value of Y = 10.

•