

Pilani Campus

Computer Networks (CS F303)

Virendra Singh Shekhawat Department of Computer Science and Information Systems

Second Semester 2020-2021 Module-4 < Network Layer>

Agenda

- NAT Firewall
- ICMP Protocol
- IPv6 Protocol

Network Address Translation (NAT)

	Ran	ge	Total
10.0.0.0	to	10.255.255.255	2^{24}
172.16.0.0	to	172.31.255.255	2^{20}
192.168.0.0	to	192.168.255.255	2^{16}

- Motivation: local network uses just one IP address as far as outside world is concerned
 - Can change addresses of devices in local network without notifying outside world
 - Can change ISP without changing addresses of devices in local network
 - Devices inside local net not explicitly addressable, visible by outside world (a security plus)

all datagrams leaving local network have same single source NAT IP address: 138.76.29.7, different source port numbers datagrams with source or destination in this network have 10.0.0/24 address for source, destination (as usual)

How it Works???

Facts about NAT

- 16-bit port-number field
 - How many devices can be connected?

- NAT is controversial
 - Routers should only process up to layer 3
 - Violates end-to-end argument
 - Address shortage should instead be solved by IPv6

NAT Traversal Problem

- Client wants to connect to server with address 10.0.0.1
 - Server address 10.0.0.1 local to LAN (client can't use it as destination address)
 - Only one externally visible NATed address:
 138.76.29.7

Solutions [.1]

- Statically configure NAT to forward incoming connection requests at given port to server
 - e.g., (138.76.29.7, port 25000) always forwarded to 10.0.0.1 port 25000
- Universal Plug and Play (UPnP) Internet Gateway Device (IGD) Protocol.
 Allows NATed host to:
 - Learn public IP address (138.76.29.7)
 - e.g., BitTorrent application in the host asks NAT to create a hole that maps (10.0.0.1,3345) to (138.76.29.7,5001)
 - Add/remove port mappings (with lease times)

Solutions [..2]

- Relaying (used in Skype)
 - NATed client establishes connection to relay
 - External client connects to relay
 - Relay bridges packets between two connections

IPv6 Motivation

- *Initial Motivation*: 32-bit address space soon to be completely allocated.
- Additional motivation:
 - Header format helps speed processing/forwarding
 - Header changes to facilitate QoS
- *IPv6 datagram format:*
 - Fixed-length 40 byte header
 - No fragmentation allowed
- Ipv6 deployment status
 - https://en.wikipedia.org/wiki/IPv6_deployment

IPv4 vs IPv6

Order	Header Type	Next Header Code
1	Basic IPv6 Header	-
2	Hop-by-Hop Options	0
3	Destination Options (with Routing Options)	60
4	Routing Header	43
5	Fragment Header	44
6	Authentication Header	51
7	Encapsulation Security Payload Header	50
8	Destination Options	60
9	Mobility Header	135
	No next header	59
Upper Layer	ТСР	6
Upper Layer	UDP	17
Upper Layer	ICMPv6	58

Source: www.cisco.com

12

Transition from IPv4 to IPv6

innovate achieve lead

- Not all routers can be upgraded simultaneously
 - No "flag days"
 - How will network operate with mixed IPv4 and IPv6 routers?
- Tunneling: IPv6 datagram carried as payload in IPv4 datagram among IPv4 routers

Tunneling [.1]

Tunneling [..2]

innovate

Dual Stack Approach

- The Internet Control Message Protocol (ICMP) is a helper protocol that supports
 IP with facility for
 - Error reporting and Simple queries
 - Used by hosts and routers to communicate network layer information to each other
- ICMP lies just above IP
 - ICMP messages are encapsulated as IP datagrams

When a host receives an IP packet with ICMP specified as the upper layer protocol, it demultiplexes the packet to ICMP, just as it would de-multiplex a packet to TCP/UDP

ICMP Message Types

Туре	Message Type	Description
3	Destination Unreachable	Packet could not be delivered
11	Time Exceeded	Time to live field hit 0
12	Parameter Problem	Invalid header field
4	Source Quench	Choke Packet
5	Redirect	Teach a router about geography
8	Echo	Ask a machine if it is alive
0	Echo Reply	Yes, I am alive
13	Timestamp Request	Same as Echo request, but with timestamp
14	Timestamp Reply	Same as Echo reply, but with timestamp

Code	Definition
0	Net Unreachable
1	Host Unreachable
2	Protocol Unreachable
3	Port Unreachable
4	Fragmentation needed & Don't Fragment was set
5	Source Route failed
6	Destination Network Unknown
7	Destination Host Unknown
8	Source Host Isolated
9	Communication Destination Network is Administratively Prohibited
10	Communication Destination Host is Administratively Prohibited
11	Destination Network Unreachable for Type of Service
12	Destination Host Unreachable for Type of Service
13	Communication Administratively Prohibited
14	Host Precedence Violation
15	Precedence Cutoff Violation 18

Traceroute and ICMP

- Source sends series of UDP segments to dest
 - first set has TTL =1
 - second set has TTL=2, etc.
 - unlikely port number
- When nth set of datagrams arrives to nth router:
 - router discards datagrams
 - and sends source ICMP messages (type 11, code 0)
 - ICMP messages includes name of router & IP address

When ICMP messages arrives, source records RTTs

Stopping criteria:

- UDP segment eventually arrives at destination host
- Destination returns ICMP "port unreachable" message (type 3, code 3)
- Source stops

Thank You!