1. a)
$$(2+1)(2^2-62+8)$$
 or $(2-4)(2^2-2)$ My

or $(2-2)(2^2-32-4)$ My

$$2^3-52^2+22+8 \text{ A}$$
b) $\int_{2}^{4} x^3-52^2+2x+8 \text{ d}x$ Al

 $(64-\frac{320}{3}+16+32)-(4-\frac{49}{3}+4+16)$ or $\frac{16}{3}-\frac{32}{3}$ MI

OBTAINS $-\frac{16}{3}$ o. \pm Al

STATUS OR INDICATES ARM $=\frac{16}{3}$ AI) At 6 dep

2
$$8a - 4 - 10 + b = 36$$
 or $8a + b = 50$ o. E MI $-8a - 4 + 10 + b = 40$ or $-8a + b = 34$ o. E MI Sowth BY ANY MITTLED MI $a = 1$ Al c.a. o $b = 42$ Al c.a. o

b)
$$\frac{4+4}{4-10}$$
 o. \in My $-\frac{4}{3}$ A1

$$\frac{3}{4} = \frac{3}{4} (x - 4) = \frac{3}{4} (x - 4) = \frac{3}{4} (x + 1) =$$

4.
$$1 + 6kx + 15k^2x^2 + 20k^3x^3$$
 $20k^3 = 2x 15k^2 \text{ o.} \in MI$
 $k = \frac{3}{2}$ Al

0.7071 0.5 0.4082 0.3136 0.3162 SIDNS 5 YAWED, SMEIBLE ACCUPACY, ALLOW 1 FREDR

CORRECT STRUCTURES" (FIRST + CHRT + 2 SUM OF THE REST) MI

ONB 3.55 c.a.o Al

6.
$$tayp = \frac{1}{3}$$

$$tayp = \frac{1}{3} \text{ or } \pm \frac{13}{3} \text{ Al } \underline{\text{most HANF}} \pm \frac{1}{6}$$

$$\frac{11}{6} \sqrt{\frac{51}{6}} \sqrt{\frac{111}{6}} \text{ A4}$$

(a)
$$3^2 - 3^2 - 2x3x3\cos^{277} = 0$$
 or Similar MI (ALTHRNATIVH)
 $\sqrt{27}$ or $3\sqrt{3}$ AL

- b) = x3x3x sin = My
 = 4x3 or 3.897 A
- 2# 2 or 3 BI

 \(\frac{1}{2} \times 3^2 \times \frac{3}{2} \times \f

FINDS SECTOR BI

FINDS

- 8. a) ATTIMPT TO FIND SURFACE AREA BI $5x^2 + xy = 60$ AI $V = 150x^2y$ BI

 SUBSTITUTES FROM INTO V & GFTS ANSWER CONVINCINCY AF
 - b) $(90c 2250x^2) = 0$ M(M(OBTANS x = 2 ONLY A)
 - SINT OF -4500x BI
 -9000 <0 of STATIL MAX A
 - d) SUBS $\frac{11}{3} = 2^{11} 1070 \frac{5}{3}^{2} + 20 = 60^{11} \text{ MI H}$ OBTAINS 0 = 20 A1

$$9. a) \frac{2+12}{x^2} = \frac{22-3}{2x+12}$$

BI ETTHRE DATIO BI both where

$$(2x+12)^2 = 2x^3 - 3x^2$$
 M
 $x^2+24x+144=2x^3-3x^2$
§ SIMPLIFES CONVINCINGLY TO FRENCE 4

(2-6) (
$$x^2+4x+12$$
) Al
Show $4^2-4x1x12$ or ATTMPTS SOUTION OF MI
 $x^2+4x+12$ A
CONCUMBES $x=6$ Is THE ONLY SOUTION AI

c)
$$a = 36$$
 BI SEEN OR IMPLIED $\frac{36!}{1-\frac{1}{2}!}$ My $\frac{36!}{1-\frac{1}{2}!}$ My $\frac{36!}{1-\frac{1}{2}!}$ Al

a)
$$(\frac{1}{2})^{\frac{3}{3}} = 0.315$$
 MI $\log(\frac{1}{2})^{\frac{3+4}{3}} = \log(0.315)$ MI $2 = 0$ (0.8.5) AI $2 = 0$ (0.8.5. $1 = 0$) (0.8.5. $1 = 0$)

b)
$$\log (9+1)^2$$
 B1
 $\log_2 \left[\frac{89-1}{9+1}\right]$ or $\log \left[\frac{8}{9+4}\right]$ B1
 $\frac{89-1}{(9+1)^2} = \frac{8}{9+4}$ A1
 $(\frac{89-1}{(9+4)} = \frac{8(9+1)^2}{0.5}$ o. $\frac{1}{5}$ M1
 $\frac{69-1}{(9+4)} = \frac{9}{5}$ O. $\frac{1}{5}$ M1
 $\frac{69-1}{5} = \frac{4}{5}$ o. $\frac{1}{5}$ A1