序号

得分

苏州大学 物理化学 (一) 下 课程期中考试试卷

考试形式 闭 卷 2022年4月共4页

院系材料与化学化工学部_年级_														
学号_	之号													
	题型		一、选择题				二、计算题 三、问答题							
得分														
一、选择题 (每题 2 分, 共 20 分, 请将答案填写在下表中)														
	题 号	1	2	3	4	5	6	7	8	9	10			
	答 案													
该电 (A) (B) (C)	解质溶液溶解质是: A ⁺ B ⁻ 型 A ⁺ B ²⁻ 型 A ²⁺ B ²⁻ 型 A ³⁺ B ⁻ 3	민 민	<i>m</i> = ().05 n	nol•]	kg ⁻¹ ,	其离	子强	度为	0.15	mol		-1, B)
(A) (B) (C)	-休克尔理 非理想气 强电解质 氢键 液体的行	体引, 行为		举:								(В)
3. 某甲	电池反应 为	J Zr	n(s)+	Mg^{2+}	a=0.	1)=2	Zn ²⁺ (a	<i>i</i> =1)∃	-Mg(s) F	用实验	金 测	得诊	核电池
的电动	势 E=0.23	312 V	, 则曰	电池的	E^{\ominus}	为:						(D)
	(A) 0.2903 (C) 0.0233					, ,	-0.23 -0.20							
4. 298	K时,反	应为	Zn(s)	+Fe ²	²⁺ (aq)	=Zn	²⁺ (aq)	+Fe	(s) 首	的电池	u的 E	[©] 为	0.3	323 V,
则其平征	衡常数 <i>K</i> ≅	为:										(В)
,	A) 2.89×10 C) 5.53×10				B) 8.4 D) 2.3									

5.	25°C 时, φ^{\ominus} (Fe ³⁺ ,Fe ²⁺) = 0.771 V, φ^{\ominus} (Sn ⁴⁺ ,Sn ²⁺) = 0.150	V ,	反	反应
2Fe	$e^{3+}(a=1) + \operatorname{Sn}^{2+}(a=1) = \operatorname{Sn}^{4+}(a=1) + 2\operatorname{Fe}^{2+}(a=1)$ 的 $\Delta_{r}G_{m}^{\ominus}$ 为	((C)	
	(A) -268.7 kJ • mol ⁻¹			
	(B) -177.8 kJ • mol ⁻¹ (C) -119.9 kJ • mol ⁻¹			
	(D) 119.9 kJ • mol ⁻¹			
6.	25℃时, H ₂ 在锌上的超电势为 0.7 V, φ [⊕] (Zn ²⁺ /Zn) = -0.763 V, 电	且解	<u>~</u> 4	含有
Zn ²	$^{2+}(a=0.01)$ 的溶液,为不使 H_2 析出,溶液的 pH 值至少应控制在	(A))
	(A) $pH > 2.06$ (B) $pH > 2.72$			
	(C) $pH > 7.10$			
	(D) $pH > 8.02$			
7.	电解金属盐的水溶液时, 在阴极上:	(В)
	(A) 还原电势愈正的粒子愈容易析出 (B) 还原电势与其超电势之代数和愈正的粒子愈容易析出			
	(C) 还原电势与兵超电势之代数和惠正的拉丁惠谷勿析出 (C) 还原电势愈负的粒子愈容易析出			
	(D) 还原电势与其超电势之和愈负的粒子愈容易析出			
8.	下列对铁表面防腐方法中属于"电化保护"的是:	(\mathbf{C})
	(A) 表面喷漆 (B) 电镀			
	(B) 电镀 (C) Fe 表面上镶嵌 Zn 块			
	(D) 加缓蚀剂			
9.	某具有简单级数的反应, $k = 0.1 \text{ dm}^3 \cdot \text{mol}^{-1} \cdot \text{s}^{-1}$,起始浓度为 0.1 m	ıol	• dn	n ⁻³ ,
当点	反应速率降至起始速率 1/4 时,所需时间为:	(D)
	(A) 0.1 s (B) 333 s			
	(C) 30 s			
	(D) 100 s			
10.	反应 A $\xrightarrow{k_1}$ B (I); A $\xrightarrow{k_2}$ D (II), 已知反应 I 的活化能	<i>E</i> 1	大王	戶反
	II 的活化能 E_2 ,以下措施中哪一种不能改变 B 和 D 的比例?			
	(A) 提高反应温度 (B) 延长反应时间	`		,
	(C) 加入适当催化剂 (D) 降低反应温度			

得分

二、计算题 (共 5 题 60 分)

1. 本题 10 分

在 298K 时,饱和 AgCl 水溶液的电导率是 2.68×10^{-4} S·m⁻¹,而形成此溶液的水的电导率是 8.60×10^{-5} S·m⁻¹,硝酸、盐酸及硝酸银水溶液在 298 K 时极限摩尔电导率(用 S·m²·mol⁻¹表示)分别是 4.21×10^{-2} , 4.26×10^{-2} , 1.33×10^{-2} ,计算在此温度下 AgCl 在水中的溶解度。

[答]
$$\kappa(AgCl) = \kappa(溶液) - \kappa(水) = 1.82 \times 10^{-4} \text{ S} \cdot \text{m}^{-1}$$

$$\Lambda_{m}^{\infty}(AgCl) = \Lambda_{m}^{\infty}(AgNO_{3}) + \Lambda_{m}^{\infty}(HCl) - \Lambda_{m}^{\infty}(HNO_{3}) = 1.38 \times 10^{-2} \,\mathrm{S} \cdot \mathrm{m}^{2} \cdot \mathrm{mol}^{-1}$$

$$c = \frac{\kappa(\text{AgCl})}{\Lambda_{\text{m}}(\text{AgCl})} \approx \frac{\kappa(\text{AgCl})}{\Lambda_{\text{m}}^{\infty}(\text{AgCl})} = 1.32 \times 10^{-2} \,\text{mol} \cdot \text{m}^{-3} = 1.32 \times 10^{-5} \,\text{mol} \cdot \text{dm}^{-3}$$
$$= 1.89 \times 10^{-3} \,\text{g} \cdot \text{dm}^{-3}$$

2. 本题 10 分

在乙酸乙酯皂化反应中, 当酯和 NaOH 起始浓度相等时, 测定结果如下: 在 4 min 时, 碱的浓度为 5.30 mol • dm⁻³, 第 6 min 时, 浓度为 4.58 mol • dm⁻³, 已知 该反应为二级, 求反应的速率常数 k (初始浓度为 8.04 mol • dm⁻³)。

[答]
$$k = \frac{1}{t} \frac{x}{a(a-x)}$$
, $k_1 = 0.0160 \text{ mol}^{-1} \cdot \text{dm}^3 \cdot \text{min}^{-1}$,

$$k_2=0.0156 \text{ mol}^{-1} \cdot \text{dm}^3 \cdot \text{min}^{-1}, \quad \overline{k}=0.0158 \text{ mol}^{-1} \cdot \text{dm}^3 \cdot \text{min}^{-1}$$

3. 本题 10 分

NH₂NO₂ 在碱性溶液中分解为气态 N₂O 和液态水,反应为一级反应。当把 50.0 mg NH₂NO₂ 加入到 288 K 具有一定碱性的缓冲溶液中,经 70 min 后有 6.19 ml N₂O 气体放出(已换算成 288 K, p^{\ominus} 下的干燥体积),求 288 K 时 NH₂NO₂ 在此溶液中发生分解反应的半衰期。

[答] 初始 NH_2NO_2 的量 n_0 =0.0500/62.0=8.07×10⁻⁴ mol 生成 N_2O 量 n'=pV/RT=2.62×10⁻⁴ mol 剩余 NH_2NO_2 量 n=(8.07 - 2.62)×10⁻⁴ mol

$$k = \frac{1}{t} \ln \frac{[\text{NH}_2 \text{NO}_2]_0}{[\text{NH}_2 \text{NO}_2]} = 0.0056 \text{ min}^{-1}$$

$$t_{\frac{1}{2}} = \ln 2/k = 124 \text{ min}$$

4. 本题 15 分

298 K 时有反应: $H_2(p^{\ominus}) + 2AgCl(s) = 2Ag(s) + 2HCl(0.1 \text{ mol·kg}^{-1})$

- (1) 将此反应设计成可逆电池;
- (2) 计算 $HCl(0.1 \text{ mol·kg}^{-1})$ 的 γ_{\pm} ,已知 E = 0.3522 V, $\varphi^{\ominus}(AgCl|Ag) = 0.2223 \text{ V}$;
- (3) 计算电池反应的平衡常数 K^{\ominus} :
- (4) 当 Ag(s)插在 HCl 为 1.0 mol·kg^{-1} , $\gamma_{\pm}=0.809$ 的溶液中时,求 H_2 的平衡分压。 [答] (1) $Pt,H_2(p^{\Theta})|HCl(0.1 \text{ mol kg}^{-1})|AgCl(s)|Ag(s)$;

(2)
$$E=E^{\ominus} - (RT/2F) \ln a_{HC1}^2 = E^{\ominus} - (RT/2F) \ln (0.1^2 \times \gamma_+^2)^2$$
; $\gamma_{\pm} = 0.796$

(3)
$$K^{\ominus} = \exp(zE^{\ominus}F/RT) = 3.32 \times 10^7$$
;

(4)
$$K^{\ominus} = a_{\text{HCl}}^2 / a_{\text{H}_2} = (1 \times 0.809)^4 / (p_{\text{H}_2} / p^{\ominus}) = 3.32 \times 10^7$$

 $p_{\text{H}_2} = 1.31 \times 10^{-3} \text{ Pa}$

5. 本题 15 分

用镍作电极,镀镍溶液中 NiSO₄ • 5H₂O 含量为 270 g • dm⁻³(溶液中还有 Na₂SO₄, MgSO₄,NaCl 等物质),已知氢在镍上的超电势为 0.42 V,氧在镍上的超电势为 0.1V, 问在阴极和阳极上首先析出(或溶解)的可能是哪种物质?(已知 298 K 时, φ [©] (Ni²⁺/Ni) = -0.25 V, φ [©] (Na⁺/Na)= -2.714 V,

 φ^\ominus (Mg²⁺/Mg)= -2.363 V, φ^\ominus (O₂/H₂O,Pt)= 1.23 V , M_r (NiSO₄ • 5H₂O) = 245)。 [答]

阴极: Ni²⁺⁺ 2e⁻ → Ni
$$\phi_{ijjjj} = \phi^{\ominus} + RT/2F \times \ln a(\text{Ni}^{2+}) = -0.25 \text{ V}$$
H⁺⁺ e⁻ → (1/2)H₂

$$\phi_{ijjjj} = \phi^{\ominus} + RT/F \times \ln a(\text{H}^+)/[p(\text{H}_2)/p^{\ominus}]^{1/2} = -0.414 \text{ V}$$

$$\phi_{\pi ijjjj} = \phi_{ijjjj} - \eta = -0.83 \text{ V}$$
Na⁺⁺ e⁻ → Na $\phi^{\ominus} = -2.714 \text{ V}$

$$Mg^{2+}+2e^{-}\rightarrow Mg$$
 $\phi^{\ominus}=-2.363 \text{ V}$ 所以阴极上先析出 Ni 。

阳极:
$$H_2O \rightarrow 1/2 O_2 + 2H^+ + 2e^-$$

 $\phi_{\pi \circ j : !!} = \phi_{\circ j : !!} + \eta = 0.916 V$

Ni
$$\rightarrow$$
 Ni²⁺ + 2e⁻, ϕ^{\ominus} = -0.25 V 所以阳极上是 Ni 溶解

得分

三、问答题(共20分)

1. 本题 10 分

实验表明, 铜能溶解于 NaCN 溶液中, 反应是:

$$2 \text{ Cu(s)} + 4 \text{ CN}^{-} + 2 \text{ H}_2\text{O} \longrightarrow 2 \text{ Cu(CN)}_2^{-} + 2 \text{ OH}^{-} + \text{H}_2 \uparrow$$

- (1) 将该反应设计成可逆电池并写出电极和电池反应加以检验。
- (2) 问在什么情况下反应才能自发进行?

己知: φ^{\ominus} (Cu(CN) $_{7}^{-}$,Cu,CN $_{-}^{-}$) = -0.43 V, φ^{\ominus} (H₂O,OH $_{-}^{-}$,H₂) = -0.83 V

[答](1) 电池为 Cu(s) | CN-,Cu(CN)2- || OH- | H2 | Pt

(-)
$$2 \text{ Cu(s)} + 4 \text{ CN} \rightarrow 2 \text{ Cu(CN)}_2 + 2 \text{ e}^{-1}$$

$$(+) 2 H_2O + 2 e^{-} \rightarrow 2OH^- + H_2(g)$$

电池反应与已知的相同。

(2)
$$E^\ominus = \phi_{\pm}^\ominus - \phi_{\pm}^\ominus = -0.40 \,\mathrm{V}$$
 小于零, 在标准态时电池非自发。

只有增加反应物浓度,降低产物浓度,使 $\Delta G < 0, E > 0$ 。反应才能自发进行。

2. 本题 10 分

反应 $A + B \rightarrow P$ 之速率方程为 $-\frac{dc_A}{dt} = kc_A c_B$, 当将反应物按计量数进料时,试简述该反应的特征。

[答] (1)
$$\frac{1}{c}$$
 -t 作图为一直线

(2)
$$t_{\alpha} \propto \frac{1}{c_0}$$

(3) k 的单位为[浓度·时间]-1