Um Algoritmo de Escalonamento para Redução do Consumo de Energia em Computação em Nuvem

Pedro Paulo Vezzá Campos Orientador: Prof. Dr. Daniel Macêdo Batista

MACo₄₉₉ – Trabalho de Formatura Supervisionado Instituto de Matemática e Estatística Universidade de São Paulo, São Paulo, Brasil [pedrovc, batista]@ime.usp.br

11 de novembro de 2013

Motivação & Conceitos

- Consumo energético
- Escalonamento de fluxos de trabalho
- Um algoritmo clássico: Heterogeneous Earliest Finish Time

Algoritmo Proposto & Experimentos

Motivação & Conceitos

- Consumo energético
- Escalonamento de fluxos de trabalho
- Um algoritmo clássico: Heterogeneous Earliest Finish Time

Algoritmo Proposto & Experimentos

Motivação & Conceitos

- Consumo energético
- Escalonamento de fluxos de trabalho
- Um algoritmo clássico: Heterogeneous Earliest Finish Time

Algoritmo Proposto & Experimentos

« O desenvolvimento de um novo algoritmo: Éxifos e frustrações

Motivação & Conceitos

- Consumo energético
- Escalonamento de fluxos de trabalho
- Um algoritmo clássico: Heterogeneous Earliest Finish Time

Algoritmo Proposto & Experimentos

O desenvolvimento de um novo algoritmo: Éxitos e frustrações

Motivação & Conceitos

- Consumo energético
- Escalonamento de fluxos de trabalho
- Um algoritmo clássico: Heterogeneous Earliest Finish Time

Algoritmo Proposto & Experimentos

O desenvolvimento de um novo algoritmo: Êxitos e frustrações

Motivação & Conceitos

- Consumo energético
- Escalonamento de fluxos de trabalho
- Um algoritmo clássico: Heterogeneous Earliest Finish Time

Algoritmo Proposto & Experimentos

O desenvolvimento de um novo algoritmo: Êxitos e frustrações

Canclusõe

Motivação & Conceitos

- Consumo energético
- Escalonamento de fluxos de trabalho
- Um algoritmo clássico: Heterogeneous Earliest Finish Time

Algoritmo Proposto & Experimentos

O desenvolvimento de um novo algoritmo: Êxitos e frustrações

Conclusões

Análise das contribuições e resultados obtidos

Motivação & Conceitos

- Consumo energético
- Escalonamento de fluxos de trabalho
- Um algoritmo clássico: Heterogeneous Earliest Finish Time

Algoritmo Proposto & Experimentos

O desenvolvimento de um novo algoritmo: Êxitos e frustrações

Conclusões

Análise das contribuições e resultados obtidos

Motivação

- 1 Motivação
- 2 Conceitos
- 3 Algoritmo Proposto
- 4 Experimentos
- 5 Conclusões

Motivação ●○○

Figura: Lei de Moore 1

¹ Fonte: Wikipédia, http://pt.wikipedia.org/wiki/Ficheiro:Lei_de_moore_2006.svg.png, em domínio público

Economia de escala
 Consolidação de pode
 computacional,
 armazenamento e

Motivação ○●○

- Economia de **escala**
- Consolidação de poder computacional, armazenamento e transferência de dados

Motivação 000

■ Economia de escala

Motivação ○●○

- Economia de escala
- Consolidação de poder computacional, armazenamento e transferência de dados

Motivação 000

Figura: Montage: Gerador de mosaicos astronômicos

Figura: Aglomerado de Plêiades figura em domínio público

Figura: Montage: Gerador de mosaicos astronômicos

Figura: Aglomerado de Plêiades, figura em domínio público

- 1 Motivação
- 2 Conceitos
- 3 Algoritmo Proposto
- 4 Experimentos
- 5 Conclusões

Custo total de posse de um rack em um datacenter

Figura: Custo total de posse de um *rack* em um *data center* típico de alta disponibilidade [Ras11]

Estratégias para economia de energia

- DVFS: Dynamic Voltage and Frequency Scaling
- Migração de máquinas virtuais
- Algoritmos de escalonamento energeticamente eficientes

Estratégias para economia de energia

- DVFS: Dynamic Voltage and Frequency Scaling
- Migração de máquinas virtuais
- Algoritmos de escalonamento energeticamente eficientes

Estratégias para economia de energia

- DVFS: Dynamic Voltage and Frequency Scaling
- Migração de máquinas virtuais
- Algoritmos de escalonamento energeticamente eficientes

- Publicado em 2002
- Heurística para um problema NP-difícil
- Bastante aceito na comunidade científica (Quase mil citações)
- Duas fases: priorização e seleção

- Publicado em 2002
- Heurística para um problema NP-difícil!
- Bastante aceito na comunidade científica (Quase mil citações)
- Duas fases: priorização e seleção

- Publicado em 2002
- Heurística para um problema NP-difícil!
- Bastante aceito na comunidade científica (Quase mil citações)
- Duas fases: priorização e seleção

- Publicado em 2002
- Heurística para um problema NP-difícil!
- Bastante aceito na comunidade científica (Quase mil citações)
- Duas fases: priorização e seleção

- Qual tarefa escalonar primeiro?

$$rank_u(n_i) = \overline{w_i} + \max_{n_i \in succ(n_i)} (\overline{c_{i,j}} + rank_u(n_j))$$

- Qual tarefa escalonar primeiro?
- Algoritmo offline

$$rank_u(n_i) = \overline{w_i} + \max_{n_j \in succ(n_i)} (\overline{c_{i,j}} + rank_u(n_j))$$

Fase de priorização

- Qual tarefa escalonar primeiro?
- Algoritmo offline
- Ordenação topológica:

$$rank_u(n_i) = \overline{w_i} + \max_{n_i \in succ(n_i)} (\overline{c_{i,j}} + rank_u(n_j))$$

Fase de seleção

- Minimizar o tempo mais cedo de conclusão (Earliest finish time)
- Busca por um espaço vago grande o suficiente

Fase de seleção

- Minimizar o tempo mais cedo de conclusão (Earliest finish time)
- Busca por um espaço vago grande o suficiente

²Este exemplo foi adaptado de [THW02]

Tarefa	P1	P2	P3	$rank_u(n_i)$
1	14	16	9	108.000
2	13	19	18	77.000
3	11	13	19	80.000
4	13	8	17	80.000
5	12	13	10	69.000
6	13	16	9	63.333
7	7	15	11	42.667
8	5	11	14	35.667
9	18	12	20	44.333
10	21	7	16	14.667

2

²Este exemplo foi adaptado de [THW02]

Tarefa	P1	P2	P3	$rank_u(n_i)$
1	14	16	9	108.000
2	13	19	18	77.000
3	11	13	19	80.000
4	13	8	17	80.000
5	12	13	10	69.000
6	13	16	9	63.333
7	7	15	11	42.667
8	5	11	14	35.667
9	18	12	20	44.333
10	21	7	16	14.667

2

²Este exemplo foi adaptado de [THW02]

Agenda

- 1 Motivação
- 2 Conceitos
- 3 Algoritmo Proposto
- 4 Experimentos
- 5 Conclusões

PowerHEFT

- Variante do HEFT, faz uso de uma estratégia de lookahead
- Motivação: Otimizar o consumo energético de uma tarefa sozinha não é eficiente
- Desenvolvido em conjunto com a mestranda Elaine Naomi Watanabe (elainew@ime.usp.br)

PowerHEFT

- Variante do HEFT, faz uso de uma estratégia de lookahead
- Motivação: Otimizar o consumo energético de uma tarefa sozinha não é eficiente
- Desenvolvido em conjunto com a mestranda Elaine Naomi Watanabe (elainew@ime.usp.br)

PowerHEFT

- Variante do HEFT, faz uso de uma estratégia de lookahead
- Motivação: Otimizar o consumo energético de uma tarefa sozinha não é eficiente
- Desenvolvido em conjunto com a mestranda Elaine Naomi
 Watanabe (elainew@ime.usp.br)

```
PowerHEFTLookahead()
```

```
V = \{VmMaisRapida\} // VMs usadas ao escalonar
    O = os tipos de VMs que podem ser instanciadas
    Ordene o conjunto de tarefas segundo o critério rank,
    enquanto há tarefas não escalonadas
 5
         t = a tarefa não escalonada de maior rank_{tt}
6
         // Vamos tentar escalonar t em uma VM existente
         para cada v em V:
8
              ESCALONAR POWER HEFT (t, v)
9
         // Vamos tentar escalonar t em uma nova VM
10
         para cada o em O:
              V = V \cup \{o\}
11
12
             Atualize os valores de ranku
13
              t = a tarefa não escalonada de maior rank_{tt}
              ESCALONAR POWER HEFT (t, o)
14
15
         Escalone t na VM que minimiza a energia consumida
16
         Atualize V e rank, caso necessário
```

Algoritmo

ESCALONARPOWERHEFT(tarefa, VM)

- 1 F = filhos diretos da tarefa no DAG
- 2 Escalone tarefa em VM
- 3 Escalone F utilizando o algoritmo HEFT
- 4 // A modelagem energética utilizada está descrita em [GMDC+13]
- 5 energia = ESTIMARENERGIACONSUMIDA()
- 6 Volte para o escalonamento do começo do laço
- 7 retorne energia

Agenda

- 1 Motivação
- 2 Conceitos
- 3 Algoritmo Proposto
- 4 Experimentos
- 5 Conclusões

Simuladores

CloudSim v3 lançado em 2010, quase 300 citações

WorkflowSim lançado em abril de 2013

CloudSim_DVFS lançado em junho de 2013 (!!

Simuladores

CloudSim v3 lançado em 2010, quase 300 citações WorkflowSim lançado em abril de 2013
CloudSim DVES lançado em junho de 2013 (III)

Simuladores

CloudSim v3 lançado em 2010, quase 300 citações WorkflowSim lançado em abril de 2013 CloudSim DVFS lançado em junho de 2013 (!!)

Agenda

- 1 Motivação
- 2 Conceitos
- 3 Algoritmo Proposto
- 4 Experimentos
- 5 Conclusões

```
Simuladores muito novos e
posteo testados
para es
para es
para es
```

Técnicas

- Simuladores muito novos e pouco testados
- Dificuldades para estender as funcionalidades para as necessidades do TCC

Técnicas

- Simuladores muito novos e pouco testados
- Dificuldades para estender as funcionalidades para as necessidades do TCC

Técnicas

- Simuladores muito novos e pouco testados
- Dificuldades para estender as funcionalidades para as necessidades do TCC

Técnicas

- Simuladores muito novos e pouco testados
- Dificuldades para estender as funcionalidades para as necessidades do TCC

Técnicas

- Simuladores muito novos e pouco testados
- Dificuldades para estender as funcionalidades para as necessidades do TCC

- O HEFT é um algoritmo simples e elegante
- Trabalho ainda em andamento para superá-lo
- Escalonamento energeticamente eficiente é uma área de pesquisa inaugurada há meses

Técnicas

- Simuladores muito novos e pouco testados
- Dificuldades para estender as funcionalidades para as necessidades do TCC

- O HEFT é um algoritmo simples e elegante
- Trabalho ainda em andamento para superá-lo
- Escalonamento energeticamente eficiente é uma área de pesquisa inaugurada há meses

Técnicas

- Simuladores muito novos e pouco testados
- Dificuldades para estender as funcionalidades para as necessidades do TCC

- O HEFT é um algoritmo simples e elegante
- Trabalho ainda em andamento para superá-lo
- Escalonamento energeticamente eficiente é uma área de pesquisa inaugurada há meses

Técnicas

- Simuladores muito novos e pouco testados
- Dificuldades para estender as funcionalidades para as necessidades do TCC

- O HEFT é um algoritmo simples e elegante
- Trabalho ainda em andamento para superá-lo
- Escalonamento energeticamente eficiente é uma área de pesquisa inaugurada há meses

Este TCC

- Fez um estudo de diversas técnicas de escalonamento e simulação em computação em nuvem
- Implementou com a ajuda da mestranda Elaine Watanabe um algoritmo novo para resolver o problema do escalonamento energeticamente eficiente
- Contribuiu com projetos de software livre

Este TCC

- Fez um estudo de diversas técnicas de escalonamento e simulação em computação em nuvem
- Implementou com a ajuda da mestranda Elaine Watanabe um algoritmo novo para resolver o problema do escalonamento energeticamente eficiente
- Contribuiu com projetos de software livre

Este TCC

- Fez um estudo de diversas técnicas de escalonamento e simulação em computação em nuvem
- Implementou com a ajuda da mestranda Elaine Watanabe um algoritmo novo para resolver o problema do escalonamento energeticamente eficiente
- Contribuiu com projetos de software livre

Obrigado! Perguntas?

L.A. Barroso e U. Hölzle. The case for energy-proportional computing. *Computer*, 40(12):33–37, 2007.

Tom Guérout, Thierry Monteil, Georges Da Costa, Rodrigo Neves Calheiros, Rajkumar Buyya e Mihai Alexandru. Energy-aware simulation with dvfs. *Simulation Modelling Practice and Theory*, v.39, i.1 p.76-91, 2013.

Neil Rasmussen. Determining Total Cost of Ownership for Data Center and Network Room Infrastructure. Relatório técnico, Schneider Electric, Paris, 2011.

H. Topcuoglu, S. Hariri e Min-You Wu. Performance-effective and low-complexity task scheduling for heterogeneous computing. *IEEE Transactions on Parallel and Distributed Systems*, 13(3):260–274, 2002

L.A. Barroso e U. Hölzle. The case for energy-proportional computing. *Computer*, 40(12):33–37, 2007.

Tom Guérout, Thierry Monteil, Georges Da Costa, Rodrigo Neves Calheiros, Rajkumar Buyya e Mihai Alexandru. Energy-aware simulation with dvfs. *Simulation Modelling Practice and Theory*, v.39, i.1, p.76-91, 2013.

Neil Rasmussen. Determining Total Cost of Ownership for Data Center and Network Room Infrastructure. Relatório técnico, Schneider Electric, Paris, 2011.

H. Topcuoglu, S. Hariri e Min-You Wu. Performance-effective and low-complexity task scheduling for heterogeneous computing. *IEEE Transactions on Parallel and Distributed Systems*, 13(3):260–274, 2002.

L.A. Barroso e U. Hölzle. The case for energy-proportional computing. *Computer*, 40(12):33–37, 2007.

Tom Guérout, Thierry Monteil, Georges Da Costa, Rodrigo Neves Calheiros, Rajkumar Buyya e Mihai Alexandru. Energy-aware simulation with dvfs. *Simulation Modelling Practice and Theory*, v.39, i.1, p.76-91, 2013.

Neil Rasmussen. Determining Total Cost of Ownership for Data Center and Network Room Infrastructure. Relatório técnico, Schneider Electric, Paris, 2011.

H. Topcuoglu, S. Hariri e Min-You Wu. Performance-effective and low-complexity task scheduling for heterogeneous computing. *IEEE Transactions on Parallel and Distributed Systems*, 13(3):260–274, 2002

L.A. Barroso e U. Hölzle. The case for energy-proportional computing. *Computer*, 40(12):33–37, 2007.

Tom Guérout, Thierry Monteil, Georges Da Costa, Rodrigo Neves Calheiros, Rajkumar Buyya e Mihai Alexandru. Energy-aware simulation with dvfs. *Simulation Modelling Practice and Theory*, v.39, i.1, p.76-91, 2013.

Neil Rasmussen. Determining Total Cost of Ownership for Data Center and Network Room Infrastructure. Relatório técnico, Schneider Electric, Paris, 2011.

H. Topcuoglu, S. Hariri e Min-You Wu. Performance-effective and low-complexity task scheduling for heterogeneous computing. *IEEE Transactions on Parallel and Distributed Systems*, 13(3):260–274, 2002.

Conclusões

Um Algoritmo de Escalonamento para Redução do Consumo de Energia em Computação em Nuvem

Pedro Paulo Vezzá Campos Orientador: Prof. Dr. Daniel Macêdo Batista

MACo₄₉₉ – Trabalho de Formatura Supervisionado Instituto de Matemática e Estatística Universidade de São Paulo, São Paulo, Brasil [pedrovc, batista]@ime.usp.br

11 de novembro de 2013

Algoritmo

HETEROGENEOUS-EARLIEST-FINISH-TIME()

- Defina os custos computacionais das tarefas e os custos de de comunicação das arestas com valores médios
- 2 Calcule *rank_u* para todas as tarefas varrendo o grafo de "baixo para cima", iniciando pela tarefa final.
- 3 Ordene as tarefas em uma lista de escalonamento utilizando uma ordem não crescente de valores de $rank_u$.
- 4 enquanto há tarefas não escalonadas na lista
- Selecione a primeira tarefa, n_i da lista de escalonamento.
- 6 **para** cada processador p_k no conjunto de processadores 7 Calcule o tempo mais cedo de conclusão da tarefa p_k
 - Calcule o tempo mais cedo de conclusão da tarefa n_i , considerando que ela execute em p_k
- Defina a tarefa n_i para executar no processador p_j que minimiza o tempo mais cedo de conclusão da tarefa n_i .

Modelagem energética

Velocidades (GHz)	0.8	1.0	1.2	1.5	1.7
Nível ocioso (W)			153		167
Nível máximo (W)	228	238	249	260	272

Tabela: Frequências do Grid'5000 Reims com as medidas de potência durante cargas mínima e máxima (0% e 100% de uso dos 24 núcleos de um nó de processamento) [GMDC+13]

