CSE260 Lab Report

Experiment Name: Design a circuit that outputs 2's complement of a 3-bit number using encoder and decoder.

Submitted by

Name: Shabab Abdullah

ID: 20301005

Section: 09

Date: 29.08.2021

Scanned with CamScanner

Name of the experiment o

Design a eincuit that outputs 2's complement of a 3-bit number using encoder and decoder.

Objective:

- 1) To investigate the output of 2's complement using encoder and re decoder.
- ii) To get familiar with encoder and decoder.
- To goin experience working, with practical circuits.

- i) 74 IS 138 decoder.
- ii) 74 IS 148 encoder.
 - iii) NOT GATE
 - W) LED BLUE
 - V) LOGIC- STATES
 - vi) Giround.

Scanned with CamScanner

Scanned with CamScanner

Result and Discussion g

The circuits accepts a three-bit value as an input and transforms it to its corresponding two-bit complement by reversing the form of the two-bit complement.

Truth Table ?

Inputs				Outputs			Active Low outputs				Output Line connection	
Minterms	C	B	P	Mintern	D2	D.	Do	D2	D	Do	Decoder	Encoder
0	0	0	0	0	0	0	0	1	1	1	0	7
1	0	0	1	7	1	1	1	0	0	0	1	6
2	0	1	0	6	1	1	0	0	O	1	2	5
3	O	1	1	5	1	0	1	0	1	0	3	4
4	1	0	0	4	1	0	0	O	1	1	4	3
5				3		l	1	1	0	D		2
6	1 1		1 1	2	0	1.	0	1	0	1		1
7			1	1	0	0	1	1	1	0	7	0

Decoder output will connect with encoder 0. And,

Decoder output will connect with encoder 7.

3-bit Number diagram

To get 1's complement, we have to connect: $0 \rightarrow 7$, $1 \rightarrow 6$, $2 \rightarrow 5$, $3 \rightarrow 4$, $4 \rightarrow 3$, $5 \rightarrow 2$, $6 \rightarrow 1$, $7 \rightarrow 40$.

We can build a code converter that includes an encoder and a decoder. We may create a BCD to Excess-3 code converter by combining 3×8 decoders and 8×3 encoders.