

New camera platform for science

Collaboration meeting for phase contrast Camera, DESY, 01 March 2017

M. Caselle

KIT, Institut für Prozessdatenverarbeitung und Elektronik CMS periodical meeting

Outline

Motivations

IPE- Readout board - "High-Flex"

- New CMOS CCD sensors
- Readout electronics and embedded-vision systems
- New solution for ...

- Preparing for the next beam test at PETRA
- Conclusions & what's next

Motivation

- Increasing demand of high-resolution and/or high-speed cameras for X-ray:
 - High-resolution and low-noise → large CCD (60 Mpixel)
 - High-speed tomography → 1 Mpixel @ minimum frame rate of 5 kfps
 - Technology trend → FPGA with integrated Distributed Multi-processor systems
 - Heterogeneous systems based on FPGA GPUs CPUs SoC
 - Move FPGA "development code" from "engineering" → to "physics"
 - On-line data processing on FPGA with partial re-programming written C/C++ or OpenCL
 - Embedded-vision → camera control, calibration, data-processing algorithm, etc. by Multi-Processor SoC and FPGA on same device
 - High-performance data-processing applications
 - PCIe-DMA based on GPUDirect technology
 - High-performance UFO-framework for GPUs data-processing

New CCD – 60 Mpixel for phase contrast

Large Image format (53.8 x 40.3 mm²)

- 60 Mpixel (8956H x 6708V) pixels pitch of 6x6 μm² has a 4:3 aspect ratio
- Fast variable electronic shuttering
- Vertical sub-sampling → ROI algorisms

Well-capability

> 40 ke⁻

- >95% fill factor
- High sensitivity, high dynamic range (> 70dB)
- Low dark current and low fixed pattern noise, low readout noise

Architecture:

The device has four identical low-noise output amplifiers, one at each corner of the chip, to allow simultaneous readout through one, two or four outputs.

The Dynamic Range is >11 true bits at 60° C and 25 MHz pixel frequency.

Figure 11: Dark current versus temperature.

Good operation point over the dew point (15° C)

Current readout system

Readout system based on IPE card so-called "High-Flex" and not ML605

It uses the KIT-DMA based on "GPUDirect" technology for a fast data transfer from data source to GPU up to 120 Gb/s

Futures readout system – under design

Next readout infrastructure – MP SoC

Future KIT-readout infrastructure: Heterogeneous (FPGA -> MPSoC -> GPUs)

FPGA today based on 3D-ASICs technology:

- Power ARM Processors for Application program and Real-time
- Large and high performance FPGA
- 3) High Bandwidth Memory (URAM)

Zynq UltraScale+ CG

How optimize a heterogeneous FPGA + MPSoC + GPU system in according to specific applications?

Common programming language for FPGA and GPUs ... ?

PhD: Weijia Wang

Workflow

"Scientific"

New algorithm

(many times)

"Engineering"

Basic infrastructure

(only one time)

SDAccel Development Environment

Vivado Design Suite

Active Board

OpenCL on FPGA – working principle

OpenCL applications consist of two parts: Host program + Kernels

Kernel in the FPGA


```
__kernel void
sum(__global const float *a,
__global const float *b,
__global float *answer)
{
int xid = get_global_id(0);
answer[xid] = a[xid] + b[xid];
}
```

Example: performs the vector addition of two arrays, *a* and *b*, while writing the results back to an output array answer.

FPGA offers massive amounts of fine-grained parallelism

Unlike CPUs and GPUs, where parallel threads can be executed on different cores, FPGAs offer a different strategy → Kernel functions can be transformed into dedicated and deeply pipelined hardware circuits → multithreaded using the concept of pipeline parallelism

Store

20 Mpixels camera for next beam test @ PETRA

User Bank Register

Status and errors – 20Mpix camera

Before an after readout must be = 8449FFFF

Single or sequence frames acquired

Before an after readout must be = 00003001

Status and errors – 20Mpix camera (II)

Before an after readout must be = 00000000

FSM Stimuli → Here you can find if the trigger has been accepted by the

camera and under-processing

FSM_Stimuli	
FSM_Stimuli_idle	= 4'h0;
FSM_Stimuli_check_num_trig	= 4'h1;
FSM_Stimuli_check_for_ex_trigger	= 4'h2;
FSM_Stimuli_counting_time	= 4'h3;
FSM_Stimuli_check_busy	= 4'h4;
FSM_Stimuli_check_new_frame_req	= 4'h5;
FSM_Stimuli_generate_end_of_all_FR	= 4'h6;
FSM_Stimuli_wait_all_done	= 4'h7;
FSM_Stimuli_wait_until_readout_start	= 4'h8;
FSM_Stimuli_wait_until_readout_finished	= 4'h9;

Status and Errors – feedback

Test procedure

1000 frames acquired with external edge-trigger configuration

Status and Errors – feedback (II)

Img_a004 files: S_1 = 8449ffff, S_2 = 40003001 and S_3 = 80000000

Readout FSMs = OK Camera in Busy[∧], Camera wait for readout → still during the integration time

Img_d004 files: S_1 = 8449ffff, S_2 = 00003001 and S_3 = 00000000 NO ERRORS

Case of TANGO HW-timeout, errors 005, 234, 381, 390 ...

Img_b005 files: S_1 = 8449ffff, S_2 = 00003001 and S_3 = 00000000

NO ERRORs

Img_a005 files: S_1 = 8449ffff, S_2 = 00003001 and S_3 = 00000000 NO trigger sent !!!!

Img_c005 files: S_1 = 8449ffff, S_2 = 40003001 and S_3 = 80000000 trigger received

Img_d005 files: S_1 = 8449ffff, S_2 = 00003001 and S_3 = 00000000 NO ERRORS

No errors, seems no data because no trigger !!!!!!

Status and Errors – B_896, 904, 928, 953

Case of TANGO SW-timeout

Img_a896 files: S_1 = 8449ffff, S_2 = 40003001 and S_3 = 80000405

DDR filling to be check

Camera in Busy (because processing a trigger)

Camera wait for readout → still during the integration time

Img_b896 files: $S_1 = 8449ffff$, $S_2 = 00003001$ and $S_3 = 00000000$

User bank register

9050	8449ffff	00003001	00000000	00000000	Camera completely
9060:	0000000	0000000	00000000	00000000	1 3
9070:	0000000	00000000	00000000	00000000	reset
9080:	0000000	00000000	00000000	00000000	Should be in readout?
9090:	0000000	0000000	00000000	00000000	
90a0:	0000000	0000000	00000000	00000000	
90b0:	0000000	0000000	00000000	00000000	How is it possible?
90c0:	0000000	00000000	00000000	00000000	•
90d0:	0000000	00000000	00000000	00000000	
90e0:	00000000	00000000	00000000	00000000	Cont'd
					3 3 t G

Status and Errors – B_896, 904, 928, 953

 Img_c896 files: $S_1 = 8449$ ffff, $S_2 = 40003001$ and $S_3 = 80000000$

No errors, just the data are not full transferred to PC because PC not ready

Status and Errors – B_949

Case of TANGO SW-timeout

Img_a949 9050: 8449ffff 40003001 80000000 00000000

Trigger received

Img_b949

9050: 8449ffff 00003001 00000000 00000000

9060: 00000001 00000000 50f00000 00000000

One error in the data

Img_d949

9050 8449ffff 00003001 00000000 00000000

9060: 00000002 00000000 50f00000 00000000

Got same error

Next Run number # 950 → OK

Status and Errors – B_988

Case of TANGO SW-timeout

Img_a988 9050: 8449ffff 40003001 80000000 000000000

9070: 122d3000 122d3000 122d5000 122d3000

Trigger received

Img_B988 9050: 8449ffff 00003001 00000000 00000000 NO errors

9070: 14864000 14864000 14866000 14864000

Readout DONE

Img_C988 9050: 8449ffff 40003001 80000000 00000000

9070: 14864000 14864000 14866000 14864000

Img_d988 New trigger received

9050: 8449ffff 00003001 00000000 00000000

9070: 14864000 14864000 14866000 14864000 NO READOUT

IPE-Camera

KIT, Institut für Prozessdatenverarbeitung und Elektronik

Current 20Mpix – FMC

Corner defect

Thank you for your attention