Background: 4G/3G Mobile Networks

Outline

Evolution of mobile networks

Network architecture

Network operations and protocol stack

Ubiquitous Mobile Network Services

In-building

Driving

Outdoor

Subway

Walking

High-speed train

Ubiquitous Mobile Network Services

- Global Mobile Data Traffic
 - 7.2 exabytes/month in 2016 (63% growth)
 - 18 fold growth in the past five years
 - 7 fold growth by 2021 (49 exabytes/month)

Source: Cisco Visual Networking Index, 2017: Global Mobile Data Traffic Forecast Update, 2016–2021 White Paper

Ubiquitous Mobile Network Services

- Smartphones: primary internet access points
 - By 2021, 98% traffic and 75% connections from "smart" devices
 - 4G: 75% traffic and 53% connections
 - 5G: 1.5% traffic and 0.2% connections

Empowered by Mobile Networks

 the only large-scale, wide-area wireless network system in par with the Internet

Empowered by Mobile Networks

Mobile Network Evolution

Standards Body: 3GPP

- An international standards body
- Evolves and standardizes GSM, UMTS, LTE among others

The 3rd Generation Partnership Project (3GPP) unites [Six] telecommunications standard development organizations (ARIB, ATIS, CCSA, ETSI, TTA, TTC), known as "Organizational Partners" and provides their members with a stable environment to produce the highly successful Reports and Specifications that define 3GPP technologies

We will primarily discuss 3GPP standards

Cellular Network Standards

Generation	3GPP Circuit	3GPP Packet	3GPP2	Wimax Forum
	Switched	Switched		TOTATT
2G	GSM		cdmaOne	
2.5G		GPRS		
2.75G		EDGE		
3G	UMTS		CDMA2000	
3.5G		HSPA/+	CDMA EV-DO	
4G		LTE	UMB	WiMAX

What is LTE?

- LTE stands for "Long Term Evolution"
- Fourth-generation (4G) cellular technology from 3GPP
- Deployed worldwide
- 4G LTE: First global standard
 - Increased speed
 - IP-based network (All circuits are gone/fried!)
 - New air interface: OFDMA (Orthogonal Frequency-Division Multiple Access), MIMO (multiple antennas)
 - Also includes duplexing, timing, carrier spacing, coding...
 - New service paradigm (e.g., VolTE)

What is LTE?

- LTE is always evolving and 3GPP often has new "releases"
 - First release: Rel-8
 - Current: Rel-11, Rel-12
 - Toward LTE-Advanced (4.5G)

Network Architecture Evolution

Telecomm Infrastructure

IP-based Internet

Inter-Generation Technologies

- CS networks need to be able to connect with PS networks and other distinct cellular networks
 - The internet is a good example of PS network
- GPRS (General packet radio service)
 - 2.5G packet switched technology
- EDGE (Enhanced Data Rates for GSM Evolution)
 - 2.75G packet switched technology
- HSPA (High Speed Packet Access)
 - 3.5/3.75 packet switched data technology
 - There were a few quick iterations on this technology, thus "variants"

2G Network Architecture (GSM)

2G Based on Circuit Switching (CS)

End-end resources reserved for "call"

- link bandwidth, switch capacity
- dedicated resources: no sharing
- circuit-like (guaranteed) performance
- call setup required

CS Signaling

- used to setup, maintain teardown VC
- used in 2G, as well as in 3G
- not used in today's Internet

4G Network Architecture (LTE)

MME: Mobility Management Entity BS: Base Station (4G: eNodeB)

Packet Switching (PS)

- Sequence of A & B packets does not have fixed pattern, bandwidth shared on demand → statistical multiplexing
- Store-and-forward at intermediate routers
- Used by the Internet

PS Signaling

- no call setup at network layer
- routers: no state about end-to-end connections
 - no network-level concept of "connection"
- packets forwarded using destination host address
 - packets btw same source-dest pair may take different paths

3G/4G Network Architecture

So far, Our Focus

 We mainly focus on current 3G/4G systems, particularly 4G LTE network

Outline

✓ Evolution of mobile networks

✓ Network architecture

Network operations and protocol stack

Operations

Two main planes in operation in parallel:

- Data plane (also called User plane): content delivery
- Control plane: signaling functions

There is an additional plane that works with the above two planes:

•Management plane: configurations, monitoring

Illustration of Data and Control Planes

Illustration of Data and Control Planes

EPS: Evolved Packet System

PDCP: Packet Data Convergence Protocol

RLC: Radio Link Control

MAC: Medium Access Control

Data-Plane Protocols: IP + lower layers

- Packet Data Convergence Protocol (PDCP) header compression, radio encryption
- Radio Link Control (RLC) Readies packets to be transferred over the air interface
- Medium Access Control (MAC) Multiplexing, QoS

Control-Plane Protocols

- Control utilities: mobile network specific
 - Different from Internet counterparts

Control-Plane Protocols in 4G/3G

- Variants for same/similar control functions
 - Hybrid 4G/3G systems
 - Domains separated for voice (CS) and data (PS)

Distributed Operations: Device, base station, core networks

Put Them Together

Setting up data service in 4G

Data and Control Planes in LTE

Setting Up Data Service in 4G

PDN: Public Data Network

EPS: Evolved Packet System

Setting Up Data Service in 4G

Summary and Discussion

- Primer on mobile network: architecture, protocols, operations
 - And its evolution
 - And its complexity

- Difference from wired Internet and WiFi
 - What?
 - Why?

After-class Reading (Optional)

- Learn more about control plane protocols and their interactions: SIGCOMM'14
- Learn more about radio connection setup: check RRC papers

 LTE tutorial and reference: https://www.tutorialspoint.com/lte/

Action Items

- Work on your course project early
 - Topic and team

- Check the reference and reading list
 - Updates shortly

Next Chapter: 5G apps