

Modulhandbuch für den Studiengang

Angewandte Informatik (AIN)

Bachelor of Science

HTWG Konstanz

Nach SPO Nr. 3 . (Version nach Amtsblatt Nr. 96 | Senat 10.12.2019) Stand: 15.06.2020

Gültig ab Wintersemester 2020/2021

Inhalt

Das Modulhandbuch enthält Informationen zum Umfang, der Lernform, den Inhalten, der Literatur, der Prüfungsart, dem Arbeitsaufwand, den ECTS-Leistungspunkten, den Voraussetzungen, dem Lernergebnis und den Modulverantwortlichen der Module des Bachelorstudiengangs Angewandte Informatik (AIN).

Einordnung

Das Modulhandbuch ist der Studien- und Prüfungsordnung (SPO) untergeordnet, d.h. für alle Inhalte, die durch die Studien- und Prüfungsordnung geregelt sind, z.B. insbesondere ECTS-Punkte, Prüfungsformen, - anforderungen und -arten, sind die Angaben in der Studien- und Prüfungsordnung entscheidend und rechtlich bindend.

Legende

Hinsichtlich Veranstaltungsart, Prüfungsform und Prüfungsart werden die Bezeichnungen aus der Studienund Prüfungsordnung verwendet und auf diese verwiesen (siehe Studien- und Prüfungsordnung der Hochschule Konstanz Technik, Wirtschaft und Gestaltung für die Bachelorstudiengänge (SPOBa) § 39).

Abkürzungen

SWS = Semesterwochenstunden

ECTS = European Credit Transfer System

PM = Pflichtmodul
WPM = Wahlpflichtmodul
GS = Grundstudium
HS = Hauptstudium
V = Vorlesung

Ü = Übung (mit Betreuung)

LÜ = Laborübung

W = Workshop, Seminar

P = Praktikum E = Exkursion

PSS = Integriertes praktisches Studiensemester

Kx = Klausur (x = Dauer in Minuten)

Mx = Mündliche Prüfung (x = Dauer in Minuten)

R = Referat

SP = sonstige schriftliche oder praktische Arbeit

AB = Ausarbeitungen/Berichte LP = Labor-/Programmierarbeiten

PR = Präsentation TE = Testat PJ = Projekt

Dokumentinformation

Version: SPO Nr. 3 | Version nach Amtsblatt Nr. 96 | Senat 10.12.2019

Stand: 15.06.2020

Editors: Prof. Dr. Irenäus Schoppa, Dr. Sabine Düsterhöft, Prof. Dr. Rainer Mueller

Erstellung: Automatisch generiert von INdigit am 09.07.2020 um 06:38 Uhr.

Aufbau des Studiengangs Angewandte Informatik (Bachelor of Science) für Studierende mit Studienbeginn ab Wintersemester 2020/2021:

Semester 1 Mathematik 1 | Digitaltechnik | Programmiertechnik 1

| Softwaremodellierung

Mathematik 2 | Stochastik | Programmiertechnik 2 | **Semester 2**

Systemprogrammierung | Rechnerarchitekturen

Sensoren, Signale und Systeme | Algorithmen und **Semester 3**

Theoretische Informatik | Software Engineering |

Betriebssysteme | Datenbanksysteme 1

Semester 4 Integriertes Praktisches Studiensemester

Grundlagen der IT-Sicherheit/Foundations of IT-**Semester 5**

Security | Rechnernetze | Module der

Vertiefungsrichtung (AI, ES, SE)

Verteilte Systeme | Teamprojekt | Module der Semester 6

Vertiefungsrichtung (AI, ES, SE)

Gruppenbetreuung | Bachelorarbeit | Module der **Semester 7**

Vertiefungsrichtung (AI, ES, SE)

Module der gewählten

Vertiefungsrichtung: Artificial

Intelligence (AI)

Artificial Intelligence | Mobile Roboter | Computergrafik | 2D Computer Vision | 3D Computer

Vision | Parallel Computing | Wahlpflichtmodul

Module der gewählten

Vertiefungsrichtung:

Embedded Systems (ES)

Embedded Systems | Kommunikationstechnik | Mikroprozessorsysteme | Digitale Systeme | Parallel

Computing | Ubiquitous Computing |

Wahlpflichtmodul

Module der gewählten

Vertiefungsrichtung: Software

Engineering (SE)

Web-Applikationen | Sprachkonzepte |

Softwarearchitektur | Softwarequalitätssicherung | Datenbanksysteme 2 | Mobile Anwendungen |

Wahlpflichtmodul

Modul 01	Mathematik 1			
Modul-Koordination	Start	Modul-Kürzel/-Nr.	ECTS-Punkte	Arbeitsaufwand
Prof. Dr. R. Axthelm	SoSe, WS	MAT1/01	8	240 h
	Dauer	SWS	Kontaktzeit	Selbststudium
	1 Semester	6	90 h	150 h

Einsatz des Moduls im	Angestrebter	Modul-Typ	Beginn im	SPO-Version /
Studiengang	Abschluss	(PM/WPM)	Studiensemester	Jahr
AIN	B.Sc.	PM	1	

Inhaltliche Teilnahme Voraussetzung	
Verwendbarkeit des Moduls im o.g. Studiengang	Als Vorkenntnis erforderlich für Modul: STO/06, SSS/10, COGR/AI3, 3DCV/AI5, nützlich für alle Vertiefungsrichtungen Sinnvoll zu kombinieren mit Modul:

Püfungsleistungen des Moduls		Benotete Prüfung	Unbenotete Prüfung	Unbenoteter Leistungsnachweis
	Modulprüfung (MP)	K90		
	Modulteilprüfung (MTP)			SP (TE)
Zusammensetzung der Endnote	 ☑ Note der benoteten Modul(teil)prüfung ☐ ECTS-gewichtetes artihmetisches Mittel der benoteten Modulteilprüfungen ☐ Sonstiges: 			

Die Studierenden beherrschen mathematische Symboliken und Schreibweisen und haben ein Verständnis für aussagelogische Schlussfolgerungen sowie mengentheoretische Strukturen. Sie sind in der Lage grundlegende Berechnungsmethoden der Linearen Algebra durchzuführen, um ingenieurtechnische Fragestellungen zu bearbeiten. Sie begreifen darüber hinaus die Bedeutung der verschiedenen Themen für ihr spezielles Studienfach.

Personale Kompetenzen: Die Studierenden können mathematische Themen selbständig erarbeiten und Übungsaufgaben selbständig lösen. In den Übungen wird das Zusammenarbeiten von Studierenden gefördert, insbesondere dann wenn sie unterschiedlichen Kenntnisstand haben. Jeder Studierende wird motiviert, Buch über den eigenen Erfolg zu führen.

Lehr- und Lernformen	oximes Vorlesung $oximes$ Übung $oximes$ Selbststudium $oximes$ Workshop/Seminar $oximes$ Projekt $oximes$ Labor
Lem- und Lemormen	\square Exkursion \square E-Learning \square Hausarbeit \square Sonstiges:

Teilmodul Lehrende	Art	sws	ECTS	Lehrinhalt
Mathematik 1 Prof. Dr. R. Axthelm	V	4	4	 Grundlagen (Mengen, Aussagen- und Prädikatenlogik) Relationen algebraische Strukturen Matrizen und Determinanten lineare Gleichungssysteme Homomorphismen und affine Abbildungen Vektorräume und Basen Eigenwerte und Eigenvektoren
Mathematik 1 Übungen Prof. Dr. R. Axthelm	Ü	2	4	 In den Übungen werden Berechnungsmethoden zu den Themen in der Vorlesung geübt.

Literatur/Medien	Axthelm, Unterlagen zur Mathematik 1 (Grundlagen und Lineare Algebra) auf http://www-home.htwg-konstanz.de/~raxthelm		
Sprache	Deutsch	Zuletzt aktualisiert	30.10.2018

Modul 02	Digitaltechnik			
Modul-Koordination	Start	Modul-Kürzel/-Nr.	ECTS-Punkte	Arbeitsaufwand
Prof. Dr. I. Schoppa	SoSe, WS	DIGI/02	8	240 h
	Dauer	SWS	Kontaktzeit	Selbststudium
	1 Semester	6	90 h	150 h

Einsatz des Moduls im	Angestrebter	Modul-Typ	Beginn im	SPO-Version /
Studiengang	Abschluss	(PM/WPM)	Studiensemester	Jahr
AIN	B.Sc.	PM	1	

Inhaltliche Teilnahme Voraussetzung	
Verwendbarkeit des Moduls	Als Vorkenntnis erforderlich für Modul: REAR/09, MPS/ES3, DSYS/ES4
im o.g. Studiengang	Sinnvoll zu kombinieren mit Modul:

Püfungsleistungen des Moduls		Benotete Prüfung	Unbenotete Prüfung	Unbenoteter Leistungsnachweis
	Modulprüfung (MP)	K90		
	Modulteilprüfung (MTP)			SP (TE)
Zusammensetzung der Endnote	 ☑ Note der benoteten Modul(teil)prüfung ☐ ECTS-gewichtetes artihmetisches Mittel der benoteten Modulteilprüfungen ☐ Sonstiges: 			

Die Studierenden sind mit den theoretischen Grundlagen der Digitaltechnik auf der Logikebene vertraut, und beherrschen Verfahren zur systematischen Analyse und Synthese digitaler Systeme. Sie sind in der Lage, geeignete Modelle und Methoden zur Lösung spezifischer Aufgabenstellungen sowie Verfahren zur Optimierung der gefundenen Lösungen anzuwenden. Sie verfügen über Kenntnisse im Aufbau und in der Funktionsweise digitaler Grundschaltungen.

Personale Kompetenzen: Durch das projektorientierte Labor werden die Teamfähigkeit und die Fähigkeit zur Erstellung technischer Berichte gestärkt.

Lehr- und Lernformen	oximes Vorlesung $oximes$ Übung $oximes$ Selbststudium $oximes$ Workshop/Seminar $oximes$ Projekt $oximes$ Labor
Lem- und Lemonnen	\square Exkursion \square E-Learning \square Hausarbeit \square Sonstiges:

Teilmodul Lehrende	Art	sws	ECTS	Lehrinhalt
Digitaltechnik Prof. Dr. I. Schoppa	V	4	5	 Zahlensysteme und Rechenarithmetik Grundlagen der Codierung Boolesche Algebra und logische Grundfunktionen graphische und algorithmische Minimierungsverfahren Dekodierer, Multiplexer, Demultiplexer Schaltketten und Arithmetikschaltungen Logikfamilien und deren Kenndaten dynamisches Verhalten von Schaltnetzen asynchrone und synchrone Flipflops Zustandsautomaten Register, Schieberegister und Zähler Registertransferoperationen Realisierungen von Steuerwerken Synthese von Schaltwerken
Digitaltechnik Übungen Prof. Dr. I. Schoppa	Ü	2	3	Durch Übungen werden folgende Schlüssel- und Methodenkompetenzen entwickelt: - Teamarbeit in kleinen Gruppen - Präsentation der Lösungsmethoden

Literatur/Medien	 Schoppa, I.: Vorlesungs- und Übungsunterlagen, HTWG Konstanz. Beuth, K: Elektronik 4. Digitaltechnik, Vogel Fachbuchverlag, 2006. Pernards, P.: Digit altechnik, Hüthig Verlag, 1992. Pernards, P.: Digitaltechnik 2, Einführung in die Schaltwerke, Hüthig Verlag, 1995.
------------------	--

	- Borucki, L.: Digitaltechnik, Teubner Verlag, 5. Auflage, 2000.					
Sprache	Deutsch	Zuletzt aktualisiert	30.10.2018			

Modul 03	Programmiertechnik 1							
Modul-Koordination	Start	Start Modul-Kürzel/-Nr. ECTS-Punkte Arbeitsaufwand						
Prof. Dr. H. von Drachenfels	SoSe, WS PROG1/03 8 240 h							
	Dauer	SWS	Kontaktzeit	Selbststudium				
	1 Semester	6	90 h	150 h				

Einsatz des Moduls im	Angestrebter	Modul-Typ	Beginn im	SPO-Version /
Studiengang	Abschluss	(PM/WPM)	Studiensemester	Jahr
AIN	B.Sc.	PM	1	SPO 3 / 2020

Inhaltliche Teilnahme Voraussetzung	
Verwendbarkeit des Moduls im o.g. Studiengang	Als Vorkenntnis erforderlich für Modul: PROG2/07, SYPR/08, SENG/12, SPKO/SE2 Sinnvoll zu kombinieren mit Modul:

Püfungsleistungen des Moduls		Benotete Prüfung	Unbenotete Prüfung	Unbenoteter Leistungsnachweis
	Modulprüfung (MP)	K120		
	Modulteilprüfung (MTP)			SP (LP)
Zusammensetzung der Endnote	☒ Note der benoteten Mod☐ ECTS-gewichtetes artihm☐ Sonstiges:	` ''	oteten Modulteilprüfung	gen

Die Studierenden kennen und verstehen die grundlegenden Konzepte der imperativen und objektorientierten Programmierung. Sie können einfache Problemstellungen mit Programmen lösen und können mit den für die praktische Umsetzung erforderlichen Programmierwerkzeugen umgehen.

Personale Kompetenzen: Sie sind in der Lage, sich die Zeit für das termingerechte Lösen einer Aufgabenstellung einzuteilen.

Lehr- und Lernformen	☑ Vorlesung □ Übung ☑ Selbststudium □ Workshop/Seminar □ Projekt ☑ Labor
Lem una Lemonnen	☐ Exkursion ☐ E-Learning ☐ Hausarbeit ☐ Sonstiges:

Teilmodul Lehrende	Art	sws	ECTS	Lehrinhalt	
Programmiertechnik 1 Prof. Dr. H. von Drachenfels	V	4	5	 Einführung in die Programmierung am Beispiel der Sprache Java Daten: Literale, Variablen, Typen Anweisungen: Ausdrücke, Operatoren, Ablaufsteuerung Klassen: Pakete, Methoden, Variablen, Objekte Objektorientierung: Kapselung, Vererbung, Polymorphie dynamische Bindung 	
Programmiertechnik 1 Übungen Prof. Dr. H. von Drachenfels	LÜ	2	3	 Spezifikationen lesen und in Programme umsetzen Programme testen und auf Einhaltung von Stilregeln prüfen Programme im Labor vorführen, die Lösung verteidigen Umgang mit Werkzeugen (Linux, Editor, Compiler, Buildmanagement, Qualitätssicherung) den eigenen Arbeitsaufwand und Lernfortschritt dokumentieren und reflektieren 	

Literatur/Medien	 von Drachenfels, H.: Unterlagen zur Programmiertechnik 1 auf http://www-home.htwg-konstanz.de/~drachen/ Mössenböck, H.: Sprechen Sie Java?, 5. Auflage, Dpunkt Verlag, 2014 Ratz, D. et al.: Grundkurs Programmieren in Java, 7. Auflage, Hanser Verlag, 2014 Schildt, H.: Java, A Beginner's Guide, 7. Auflage, Osborne, 2017 Deutsch 		
Sprache	Deutsch	Zuletzt aktualisiert	30.10.2018

Modul 04	Softwaremodel	Softwaremodellierung						
Modul-Koordination	Start	Start Modul-Kürzel/-Nr. ECTS-Punkte Arbeitsaufwand						
Prof. Dr. O. Eck	SoSe, WS	SOMO/04	6	180 h				
	Dauer	SWS	Kontaktzeit	Selbststudium				
	1 Semester	5	75 h	105 h				

Einsatz des Moduls im	Angestrebter	Modul-Typ	Beginn im	SPO-Version /
Studiengang	Abschluss	(PM/WPM)	Studiensemester	Jahr
AIN	B.Sc.	PM	1	SPO 3 / 2020

Inhaltliche Teilnahme Voraussetzung	
Verwendbarkeit des Moduls	Als Vorkenntnis erforderlich für Modul:
im o.g. Studiengang	Sinnvoll zu kombinieren mit Modul: DBSYS1/14

Püfungsleistungen des Moduls		Benotete Prüfung	Unbenotete Prüfung	Unbenoteter Leistungsnachweis	
	Modulprüfung (MP)	K90			
	Modulteilprüfung (MTP)			SP (LP)	
Zusammensetzung der Endnote	 ☑ Note der benoteten Modul(teil)prüfung ☐ ECTS-gewichtetes artihmetisches Mittel der benoteten Modulteilprüfungen ☐ Sonstiges: 				

Die Studierenden sind in der Lage, Aufgaben und Probleme zu untersuchen, systematisch zu erfassen und zu beschreiben und in detaillierte, möglichst vollständige und formal korrekte Spezifikationen zu überführen, bevor diese durch Software implementiert werden. Die Studierenden haben Kenntnisse über die wichtigsten Techniken und Beschreibungen zur Modellierung von Software. Durch die Laborübungen entwickeln die Studierenden die Methodenkompetenz, Systeme zu modellieren und Softwaresysteme zu entwerfen. Zusätzlich können die Studierenden aktuelle, komplexe Modellierungswerkzeuge bedienen.

i enr- una i erniormen	☑ Vorlesung ☑ Übung ☐ Selbststudium ☐ Workshop/Seminar ☐ Projekt ☒ Labor
	☐ Exkursion ☐ E-Learning ☐ Hausarbeit ☐ Sonstiges:

Teilmodul Lehrende	Art	sws	ECTS	Lehrinhalt
Softwaremodellierung Prof. Dr. O. Eck	V	3	3	 Theoretische Grundlagen und praxisrelevante Aspekte zur Modellierung von Software Algebraische Spezifikation Modellierung durch Aussagenlogik, Prädikatenlogik Backus-Naur-Form, reguläre Ausdrücke Grundlagen der Systemanalyse, Beschreibungsmittel Datenmodellierung von Entity Relationship-Modellen Zustandsmodellierung mit Petrinetzen Objektorientierte Modellierung am Beispiel UML
Softwaremodellierung Übungen Prof. Dr. O. Eck	LÜ	2	3	 Werkzeuge zur Modellierung von Systemen Praktische Übungsaufgaben Vertiefung und Anwendung der Inhalte der Vorlesung

Literatur/Medien	Auflage, 2015	lierung – Grundlagen und formale chen, 4. Auflage, 2018 steme – Eine Einführung, De Gruyter, 10. UML 2 glasklar: Praxiswissen für die UML- flage, 2012 uit UML 2.5: Objektorientierte
Sprache	Deutsch	Zuletzt aktualisiert 30.10.2018

Modul 05	Mathematik 2			
Modul-Koordination	Start	Modul-Kürzel/-Nr.	ECTS-Punkte	Arbeitsaufwand
Prof. Dr. R. Axthelm	SoSe, WS	MAT2/05	6	180 h
	Dauer	SWS	Kontaktzeit	Selbststudium
	1 Semester	5	75 h	105 h

Einsatz des Moduls im Studiengang	Angestrebter Abschluss	Modul-Typ (PM/WPM)	7.	
AIN	B.Sc.	PM	2	SPO 3 / 2020

Inhaltliche Teilnahme Voraussetzung	
Verwendbarkeit des Moduls im o.g. Studiengang	Als Vorkenntnis erforderlich für Modul: SSS/10, COGR/AI3, 3DCV/AI5, nützlich für alle Vertiefungsrichtungen Sinnvoll zu kombinieren mit Modul:

Püfungsleistungen des Moduls		Benotete Prüfung	Unbenotete Prüfung	Unbenoteter Leistungsnachweis	
	Modulprüfung (MP)	K90			
	Modulteilprüfung (MTP)			SP (LP, TE)	
Zusammensetzung der Endnote	 ☑ Note der benoteten Modul(teil)prüfung ☐ ECTS-gewichtetes artihmetisches Mittel der benoteten Modulteilprüfungen ☐ Sonstiges: 				

Die Studierenden beherrschen grundlegende Grenzwert-, Ableitungs- und Integrationsmethoden, sowie einge Anwendungsfelder dazu. Sie begreifen darüberhinaus die Bedeutung der verschiedenen Themen für ihr spezielles Studienfach. Zur besseren Verankerung der Lerninhalte erarbeiten die Studierende kleinere Programme im Zusammenhang zu den Vorlesungsthemen.

Personale Kompetenzen: Die Studierenden können mathematische Themen selbständig erarbeiten und Übungsaufgaben selbständig lösen. In den Übungen wird das Zusammenarbeiten von Studierenden gefördert, insbesondere dann wenn sie unterschiedlichen Kenntnisstand haben. Ein rein selbstständiges Erarbeiten kleinerer Themenabschnitte ist gefordert und prüfungsrelevant. Jeder Studierende wird motiviert, Buch über den eigenen Erfolg zu führen.

Lehr- und Lernformen	oximes Vorlesung $oximes$ Übung $oximes$ Selbststudium $oximes$ Workshop/Seminar $oximes$ Projekt $oximes$ Labor
	\square Exkursion \square E-Learning \square Hausarbeit \square Sonstiges:

Teilmodul Lehrende	Art	sws	ECTS	Lehrinhalt
Mathematik 2 Prof. Dr. R. Axthelm	V	2	2	 Grenzwert und Differentiation Integralrechnung Taylorreihe Differentialrechnung in höheren Raumdimensionen Anwendungen aus dem Bereich Optimierung und Modellbildung
Mathematik 2 Übungen Prof. Dr. R. Axthelm	Ü	2	2	In den Übungen werden Berechnungsmethoden zu den Themen in der Vorlesung und den zugehörigen Tutorials geübt.
Mathematik 2 Labor Prof. Dr. R. Axthelm	LÜ	1	2	In den Laborstunden werden Lösungsmethoden aus den Mathematikvorlesungen in Programme umgesetzt. Die Programmiersprache ist dabei frei wählbar, wobei sich der Support in den Veranstaltungen auf Matlab bzw. Octave beschränkt.

Literatur/Medien	Unterlagen zur Mathematik 2 (Analysis) auf http://www-home.htwg-konstanz.de/~raxthelm					
Sprache	Deutsch Zuletzt aktualisiert 30.10.2018					

Modul 06	Stochastik			
Modul-Koordination	Start	Modul-Kürzel/-Nr.	ECTS-Punkte	Arbeitsaufwand
Prof. Dr. B. Staehle	SoSe, WS	STO/06	5	150 h
	Dauer	sws	Kontaktzeit	Selbststudium
	1 Semester	3	45 h	105 h

Einsatz des Moduls im	Angestrebter	Modul-Typ	Beginn im	SPO-Version /
Studiengang	Abschluss	(PM/WPM)	Studiensemester	Jahr
AIN	B.Sc.	PM	2	SPO 3 / 2020

Inhaltliche Teilnahme Voraussetzung	MAT1/01
Verwendbarkeit des Moduls	Als Vorkenntnis erforderlich für Modul: MAT2/05
im o.g. Studiengang	Sinnvoll zu kombinieren mit Modul: Nützlich für alle Vertiefungsrichtungen

Püfungsleistungen des Moduls		Benotete Prüfung	Unbenotete Prüfung	Unbenoteter Leistungsnachweis
	Modulprüfung (MP)	K60		
	Modulteilprüfung (MTP)			SP (LP, AB)
Zusammensetzung der Endnote	 ☑ Note der benoteten Modul(teil)prüfung ☐ ECTS-gewichtetes artihmetisches Mittel der benoteten Modulteilprüfungen ☐ Sonstiges: 			

Die Studierenden lernen Konzepte und Methoden der Stochastik kennen und sind in der Lage sie zur Lösung konkreter Beispiele anzuwenden. Sie sind einerseits in der Lage, einen gegebenen Datensatz mit Hilfe elektronischer Werkzeuge übersichtlich darzustellen und wichtige Kenngrößen abzuleiten. Andererseits können sie aber auch ein wahrscheinlichkeitstheoretisches Modell eines zufallsabhängigen Systems erstellen und mit wichtige Schlüsse hieraus ableiten.

Personale Kompetenzen: Die Studierenden haben gelernt, alleine oder in kleinen Gruppen geeignete stochastische Modelle und Methoden zur Lösung abstrakter Aufgabenstellungen zu finden und ihre Erkenntnisse ihren Mitstudierenden zu präsentieren. Die Studierenden können die gesellschaftliche Relevanz von statistischen Methoden und Darstellungsformen einordnen und bewusst irreführende Statistiken identifzizieren.

i enr- una i erniormen	oximes Vorlesung $oximes$ Übung $oximes$ Selbststudium $oximes$ Workshop/Seminar $oximes$ Projekt $oximes$ Labor
	\square Exkursion \square E-Learning \square Hausarbeit \square Sonstiges:

Teilmodul Lehrende	Art	sws	ECTS	Lehrinhalt
Stochastik Prof. Dr. B. Staehle	V	2	3	 Deskriptive Statistik: Graphische Darstellungen, Kenngrößen ein- und zweidimensionaler Daten Wahrscheinlichkeitsrechnung: Ereignisse und (bedingte) Wahrscheinlichkeiten, Kombinatorik, diskrete und stetige Zufallsvariablen, deren Verteilungen, Erwartungswert und Varianz Induktive Statistik: Punkt- und Intervallschätzungen
Stochastik Übungen Prof. Dr. B. Staehle	Ü, LÜ	1	2	 Lösung verschiedener praxisnaher Aufgabenstellungen Statistische Aufbereitung und Analyse von Datensätze Präsentation der Lösungsmethoden- und Ergebnisse vor der Gruppe

Literatur/Medien	 Staehle, B., Vorlesungs- und Übungst konstanz.de/moodle/ Teschl und Teschl, Mathematik für In Springer Vieweg, 3. Auflage, 2012. Papula, Mathematik für Ingenieure ur Wahrscheinlichkeitsrechnung, Math Ausgleichsrechnung, Band 3, Viewe Downey, Think Stats - Exploratory Da 	formatiker: Band 2: Ana nd Naturwissenschaftler ematische Statistik, Feh g, 7. Auflage, 2016.	nlysis und Statistik, : Vektoranalysis, ler- und
Sprache	Deutsch	Zuletzt aktualisiert	30.10.2018

Modul 07	Programmiertechnik 2					
Modul-Koordination	Start	Start Modul-Kürzel/-Nr. ECTS-Punkte Arbeitsaufwand				
Prof. Dr. O. Bittel	SoSe, WS	PROG2/07	7	210 h		
	Dauer	SWS	Kontaktzeit	Selbststudium		
	1 Semester	6	90 h	120 h		

Einsatz des Moduls im	Angestrebter	Modul-Typ	Beginn im	SPO-Version /
Studiengang	Abschluss	(PM/WPM)	Studiensemester	Jahr
AIN	B.Sc.	PM	2	SPO 3 / 2020

Inhaltliche Teilnahme Voraussetzung	PROG1/03
Verwendbarkeit des Moduls im o.g. Studiengang	Als Vorkenntnis erforderlich für Modul: ALTH/11, SENG/12, DBSYS1/14, FITSEC/16, SPKO/SE2 Sinnvoll zu kombinieren mit Modul:

Püfungsleistungen des Moduls		Benotete Prüfung	Unbenotete Prüfung	Unbenoteter Leistungsnachweis
	Modulprüfung (MP)	K120		
	Modulteilprüfung (MTP)			SP (LP)
Zusammensetzung der Endnote	 ☑ Note der benoteten Modul(teil)prüfung ☐ ECTS-gewichtetes artihmetisches Mittel der benoteten Modulteilprüfungen ☐ Sonstiges: 			

- Beherrschen der Grundlagen der objektorientierten, generischen und funktionalen Programmierung am Beispiel von Java.
 Container, Sortier- und Suchverfahren verstehen und einsetzen können.
 Praktische Erfahrung mit Programmierwerkzeugen (Editor, Compiler und Debugger).

Personale Kompetenzen: Die Studierenden können Lösungen zu Programmieraufgabe finden und präsentieren.

☐ Exkursion ☐ E-Learning ☐ Hausarbeit ☐ Sonstiges:	Lehr- und Lernformen	oximes Vorlesung $oximes$ Übung $oximes$ Selbststudium $oximes$ Workshop/Seminar $oximes$ Projekt $oximes$ Labor
	Lem und Lemonnen	☐ Exkursion ☐ E-Learning ☐ Hausarbeit ☐ Sonstiges:

Teilmodul Lehrende	Art	sws	ECTS	Lehrinhalt
Programmiertechnik 2 Prof. Dr. O. Bittel	V	4	4	 Entwurf und Implementierung von Datentypen Linear verkettete Listen: einfach verkettete Listen, doppelt verkettete Listen, Ringlisten Grundlegende Datentypen: Listen, Keller, Schlange, Iteratoren Generische Datentypen Rekursive Funktion, Teile-und-Herrsche-Verfahren, Endrekursion Komplexitätsanalyse elementare Sortierverfahren, QuickSort, MergeSort allgemeine Bäume, Binäre Suchbäume, Dictionaries Java-Collections Funktionale Programmierung mit Lambdas + Stromverarbeitung Thread-Programmierung Einfache Entwurfsmuster Graphische Benutzeroberflächen mit AWT und Swing
Programmiertechnik 2 Übungen Prof. Dr. O. Bittel	LÜ	2	3	 Programme mit einer integrierten Entwicklungsumgebung erstellen und testen Selbsterstelle Programme im Rahmen von Codereviews erklären können.

Literatur/Medien	

Hochschule Konstanz
Fakultät Informatik

Modulhandbuch des Studiengangs Angewandte Informatik, Bachelor of Science

	 Scheffler, Wiesenberger, Seese und F 2014. Arnold, Gosling und Holmes, The Jav 2008. Naftalin, Mastering Lambdas: Java Pr Hill, 2014. 	 Arnold, Gosling und Holmes, The Java Programming Language, Addison Wesley, 2008. Naftalin, Mastering Lambdas: Java Programming in a Multicore World, McGraw-Hill, 2014. Bloch, Effective Java, Addison Wesley, 2017. 				
		- Bloch, Effective Java, Addison Wesley, 2017. - Weiss, Data Structures and Algorithm Analysis in Java, Addison Wesley, 2012.				
Sprache	Deutsch	Zuletzt aktualisiert	30.10.2018			

Modul 08	Systemprogrammierung							
Modul-Koordination	Start Modul-Kürzel/-Nr. ECTS-Punkte Arbeitsaufwa							
Prof. Dr. H. von Drachenfels	SoSe, WS	SYPR/08	6	180 h				
	Dauer	SWS	Kontaktzeit	Selbststudium				
	1 Semester	5	75 h	105 h				

Einsatz des Moduls im	Angestrebter	Modul-Typ	Beginn im	SPO-Version /
Studiengang	Abschluss	(PM/WPM)	Studiensemester	Jahr
AIN	B.Sc.	PM	2	

Inhaltliche Teilnahme Voraussetzung	PROG1/03
Verwendbarkeit des Moduls	Als Vorkenntnis erforderlich für Modul: BSYS/13, MPS/ES3, SPKO/SE2
im o.g. Studiengang	Sinnvoll zu kombinieren mit Modul: REAR/09

Püfungsleistungen des Moduls		Benotete Prüfung	Unbenotete Prüfung	Unbenoteter Leistungsnachweis
	Modulprüfung (MP)	K90		
	Modulteilprüfung (MTP)			SP (LP)
Zusammensetzung der Endnote	 ☑ Note der benoteten Modul(teil)prüfung ☐ ECTS-gewichtetes artihmetisches Mittel der benoteten Modulteilprüfungen ☐ Sonstiges: 			

Die Studierenden kennen und verstehen die Besonderheiten der Systemprogrammierung im Vergleich zur Anwendungsprogrammierung. Insbesondere können Sie mit dem elementaren Konzept Zeiger/Adresse und einer dynamischen Speicherverwaltung ohne automatische Speicherbereinigung umgehen. Sie können Programme in Übersetzungseinheiten und statische/dynamische Bibliotheken gliedern und können mit den erforderlichen Werkzeugen umgehen.

Personale Kompetenzen: Die Studierenden können Lösungen zu Programmieraufgabe finden und präsentieren. Ihnen ist die Bedeutung von Normen und Standards für Systemsoftware bewusst und sie können in einschlägigen Quellen dazu recherchieren.

Lahr- und Larnforman	oximes Vorlesung $oxdot$ Übung $oxdot$ Selbststudium $oxdot$ Workshop/Seminar $oxdot$ Projekt $oxdot$ Labor
Lehr- und Lernformen	\square Exkursion \square E-Learning \square Hausarbeit \square Sonstiges:

Teilmodul Lehrende	Art	sws	ECTS	Lehrinhalt
Systemprogrammierung Prof. Dr. H. von Drachenfels	V	3	3	 Einführung in die Systemprogrammierung mit den Sprachen C und C++ C-Daten: Unterschiede zu Java, Zeiger, Felder, Zeichenketten, Strukturen C-Anweisungen: Unterschiede zu Java C-Programme: Funktionen, Makros, Übersetzungseinheiten, Bibliotheken C++: Erweiterungen gegenüber C Systemschnittstelle: Ein-/Ausgabe, Dateien, Speicherverwaltung Werkzeuge: Linux, Editor, Compiler/Linker, Debugger, make
Systemprogrammierung Übungen Prof. Dr. O. Bittel	LÜ	2	3	 Programmieraufgaben lösen und Lösungen im Labor vorführen Ergebnisse von Tests und Laufzeitmessungen dokumentieren und interpretieren Umgang mit Werkzeugen (Linux, Editor, Compiler/Linker, Debugger, make) den eigenen Arbeitsaufwand und Lernfortschritt dokumentieren und reflektieren

Literatur/Medien	 von Drachenfels, H.: Unterlagen zur Lehrveranstaltung auf http://www-home.htwg-konstanz.de/~drachen/
------------------	--

	 Kernighan, B. W.; Ritchie, D. M.: Programmieren in C. Hanser 1990 Stroustrup, B.: Die C++-Programmiersprache. Hanser 2015 				
Sprache	Deutsch Zuletzt aktualisiert 30.10.2018				

Modul 09	Rechnerarchitekturen			
Modul-Koordination	Start	Modul-Kürzel/-Nr.	ECTS-Punkte	Arbeitsaufwand
Prof. Dr. J. Neuschwander	SoSe, WS	REAR/09	6	180 h
	Dauer	SWS	Kontaktzeit	Selbststudium
	1 Semester	5	75 h	105 h

Einsatz des Moduls im	Angestrebter	Modul-Typ	Beginn im	SPO-Version /
Studiengang	Abschluss	(PM/WPM)	Studiensemester	Jahr
AIN	B.Sc.	PM	2	

Inhaltliche Teilnahme Voraussetzung	DIGI/02
Verwendbarkeit des Moduls	Als Vorkenntnis erforderlich für Modul: BSYS/13, MPS/ES3, DSYS/ES4
im o.g. Studiengang	Sinnvoll zu kombinieren mit Modul:

Püfungsleistungen des Moduls		Benotete Prüfung	Unbenotete Prüfung	Unbenoteter Leistungsnachweis
	Modulprüfung (MP)	K90		
	Modulteilprüfung (MTP)			SP (LP)
Zusammensetzung der Endnote	 ☑ Note der benoteten Modul(teil)prüfung ☐ ECTS-gewichtetes artihmetisches Mittel der benoteten Modulteilprüfungen ☐ Sonstiges: 			

Die Studierenden beherrschen die fundamentalen Prinzipien, Strukturen und Prozesse von klassischer Rechnerarchitekturen. Sie können verschiedene Architekturkonzepte unterscheiden und kennen die Strukturen, Mechanismen und Probleme moderner superskalarer Maschinen. Sie besitzen fundamentale Kenntnisse über die verschiedenen Ebenen einer Speicherhierarchie in Rechnersystemen sowie über die zeitgerechte Verlagerung von Daten zwischen den Hierarchieebenen und die damit zusammenhängenden Problemstellungen. Durch die Laborübungen haben die Studierenden Kenntnisse zur maschinennahen Programmierung klassischer von-Neumann Architekturen erworben.

Personale Kompetenzen: Die Studierenden können in kleinen Gruppen Lösungen zu Aufgabenstellungen finden, dokumentieren und präsentieren.

Lehr- und Lernformen	oximes Vorlesung $oximes$ Übung $oximes$ Selbststudium $oximes$ Workshop/Seminar $oximes$ Projekt $oximes$ Labor
	\square Exkursion \square E-Learning \square Hausarbeit \square Sonstiges:

Teilmodul Lehrende	Art	sws	ECTS	Lehrinhalt
Rechnerarchitekturen Prof. Dr. J. Neuschwander	V, Ü	3	3	 Historie der Rechnerentwicklung Klassische Rechnerarchitekturen (Operations- und Steuerwerk) Busssysteme und Speicherbausteine Befehlsklassen und Adressierungsdaten, Assemblerprogrammierung RISC-Architekturen Pipeline-Architekturen, Leistungssteigerung und Abhängigkeiten Superskalare Prozessoren, Sprungzielvorhersage Speicherhierarchie und Prozesse Cache-Speicher, Strukturen und Probleme Virtuelle Adressierung, Paging und Segmentierung Ausnahmeverarbeitung
Rechnerarchitekturen Übungen Prof. Dr. J. Neuschwander	LÜ	2	3	Durch Laborübungen werden folgende Schlüssel- und Methodenkompetenzen entwickelt: - Teamarbeit in kleinen Gruppen, Zeitmanagement (Abgaben) - Anwendung von Lösungsmethoden, Dokumentation und Verteidigung einer Lösung

Literatur/Medien	- Neuschwander: Unterlagen zum Kurs auf der Webseite verfügbar
------------------	--

Hochschule Konstanz
Fakultät Informatik

Modulhandbuch des Studiengangs Angewandte Informatik, Bachelor of Science

	 Flik: Mikroprozessorsysteme, 7. Aufla Patterson, Hennessy: Rechnerorganis Verlag,2011. Tanenbaum: Rechnerarchitektur, Pea 	ation und Rechnerentwo	
Sprache	Deutsch	Zuletzt aktualisiert	30.10.2018

Modul 10	Sensoren, Sign	Sensoren, Signale und Systeme				
Modul-Koordination	Start	Start Modul-Kürzel/-Nr. ECTS-Punkte Arbeitsaufwa				
Prof. Dr. M. Franz	SoSe, WS	SSS/10	6	180 h		
	Dauer	sws	Kontaktzeit	Selbststudium		
	1 Semester	5	75 h	105 h		

Einsatz des Moduls im	Angestrebter	Modul-Typ	Beginn im	SPO-Version /
Studiengang	Abschluss	(PM/WPM)	Studiensemester	Jahr
AIN	B.Sc.	PM	3	SPO 3 / 2020

Inhaltliche Teilnahme Voraussetzung	MAT1/01, MAT2/05	
Verwendbarkeit des Moduls	Als Vorkenntnis erforderlich für Modul:	
im o.g. Studiengang	Sinnvoll zu kombinieren mit Modul:	

Püfungsleistungen des Moduls		Benotete Prüfung	Unbenotete Prüfung	Unbenoteter Leistungsnachweis	
	Modulprüfung (MP)	K90			
	Modulteilprüfung (MTP)			SP (LP, TE)	
Zusammensetzung der Endnote	 ✓ Note der benoteten Modul(teil)prüfung ☐ ECTS-gewichtetes artihmetisches Mittel der benoteten Modulteilprüfungen ☐ Sonstiges: 				

Die Studierenden kennen wichtige Arbeitsmethoden der digitalen Signalverarbeitung und der linearen Systemtheorie und können diese exemplarisch auf Sensoren und messtechnische Themen anwenden. Mit Hilfe dieser Methoden sind sie in der Lage, sich selbständig in Themen der Signalverarbeitung und Sensorik weiter zu vertiefen. Im Rahmen der für die Laborübungen anzufertigenden Protokolle lernen die Studenten die Grundregeln des wissenschaftlichen Schreibens und die Benutzung der dafür benötigten Software.

Personale Kompetenzen: Mit der Durchführung der Laborübungen wird auch die Fähigkeit zum Teamwork in kleinen Gruppen gestärkt.

Lehr- und Lernformen	oximes Vorlesung $oximes$ Übung $oximes$ Selbststudium $oximes$ Workshop/Seminar $oximes$ Projekt $oximes$ Labor
	\square Exkursion \square E-Learning \square Hausarbeit \square Sonstiges:

Teilmodul Lehrende	Art	sws	ECTS	Lehrinhalt
Signale, Systeme und Sensoren Prof. Dr. M. Franz	V	3	3	Die Vorlesung führt in die grundlegenden Verfahren zur Untersuchung und Modellierung digitaler Signale und Systeme ein. Zu Beginn werden - die Grundlagen der Sensorik und Messtechnik behandelt, insbesondere der Umgang mit und die Analyse von Messwerten sowie Fragen der Kalibrierung von Sensoren. - Darauf aufbauend werden die mathematische Darstellung von Signalen und die wichtigsten Grundsignale vorgestellt, bevor ausführlich auf die Fourieranalyse eingegangen wird. - Diese Grundlagen ermöglichen das Verständnis der linearen Systeme, mit deren Hilfe Signale verarbeitet werden können. Das erworbene Wissen wird auf zwei wichtigen Anwendungsgebieten vertieft: Filterung von Signalen und Diskretisierung von kontinuierlichen Signalen durch Abtastung.

Signale, Systeme und Sensoren Übungen Prof. Dr. M. Franz	LÜ	2	3	Die Laborübungen vertiefen die in der Vorlesung behandelten Themen und vermitteln deren praktische Anwendung. Schwerpunkte des Praktikums: - Aufbau Kalibrierung und Einsatz eines einfachen Entfernungsmessers - Kalibrierung von digitalen Kameras - Fourieranalyse und Akustik - Aufbau eines einfachen Spracherkenners - Abtastung und Digitalisierung
--	----	---	---	--

Literatur/Medien	 Franz, M.O.: Unterlagen zu Sensoren, Moodle unter AIN/SSS) U. Karrenberg, "Signale – Prozesse – S A. V. Oppenheim, A. S. Willsky: Signa 	Systeme", Springer, Heio	delberg, 2005.
Sprache	Deutsch	Zuletzt aktualisiert	30.10.2018

Modul 11	Algorithmen und Theoretische Informatik								
Modul-Koordination	Start	Start Modul-Kürzel/-Nr. ECTS-Punkte Arbeitsaufwand							
Prof. Dr. O. Bittel	SoSe, WS	S ALTH/11	8	240 h					
	Dauer	sws	Kontaktzeit	Selbststudium					
	1 Semester	6	90 h	150 h					

Einsatz des Moduls im	Angestrebter	Modul-Typ	Beginn im	SPO-Version /
Studiengang	Abschluss	(PM/WPM)	Studiensemester	Jahr
AIN	B.Sc.	PM	3	

Inhaltliche Teilnahme Voraussetzung	PROG2/07
Verwendbarkeit des Moduls im o.g. Studiengang	Als Vorkenntnis erforderlich für Modul: Nützlich für alle Vertiefungsrichtungen Sinnvoll zu kombinieren mit Modul:

Püfungsleistungen des Moduls		Benotete Prüfung	Unbenotete Prüfung	Unbenoteter Leistungsnachweis	
	Modulprüfung (MP)	K120			
	Modulteilprüfung (MTP)			SP (LP, AB)	
Zusammensetzung der Endnote	 ☑ Note der benoteten Modul(teil)prüfung ☐ ECTS-gewichtetes artihmetisches Mittel der benoteten Modulteilprüfungen ☐ Sonstiges: 				

Die Studierenden kennen klassische Algorithmen und Datenstrukturen, verstehen diese und können diese für die Lösung praktischer Probleme anwenden. Sie haben verschiedene formaler Sprachklassen, ihre Erzeugung mit Grammatiken und ihre algorithmische Verarbeitung mit Hilfe von Automaten kennengelernt. Die Studierenden sind in der Lage, abstrakte Beschreibungen von Algorithmen in eine konkrete Programmiersprache wie beispielsweise Java umzusetzen.

Personale Kompetenzen: Sie haben gelernt, geeignete Modelle und Methoden zur Lösung abstrakter Aufgabenstellungen zu finden und ihren Mitstudierenden zu präsentieren und mit diesen zu reflektieren. Mit der Durchführung der praktischen Aufgaben wird die Fähigkeit zum selbstständigen Arbeiten gestärkt.

Lehr- und Lernformen	oximes Vorlesung $oximes$ Übung $oximes$ Selbststudium $oximes$ Workshop/Seminar $oximes$ Projekt $oximes$ Labor
	\square Exkursion \square E-Learning \square Hausarbeit \square Sonstiges:

Teilmodul Lehrende	Art	sws	ECTS	Lehrinhalt
Algorithmen und Datenstrukturen Prof. Dr. O. Bittel	V	2	2	 Komplexitätsanalyse, Suchen: Hashverfahren, AVL-Bäume, B-Bäume, Rot-Schwarz-Bäume, Tries, kd-Bäume, Suche in Texten Algorithmen auf Graphen: Tiefen- und Breitensuche, topologisches Sortieren, minimal aufspannende Bäume, kürzeste Wege, Zusammenhangskomponenten Vorrangswarteschlangen: Binäre Heaps, Index-Heaps, Binomiale Heaps
Algorithmen und Datenstrukturen Übungen Prof. Dr. O. Bittel	LÜ	1	2	
Theoretische Informatik Prof. Dr. B. Staehle	V	2	2	 Theoretische Grundlangen: Mengenlehre, Logik Formale Sprachen: Grammatiken, Chomsky-Hierarchie Automatentheorie: endliche Automaten, Kellerautomaten Berechenbarkeitstheorie: Turingmaschinen, Entscheidbarkeit, Berechenbarkeit Komplexitätstheorie: Komplexitätsklassen, NP-Vollständigkeit
Theoretische Informatik Übungen Prof. Dr. B. Staehle	Ü	1	2	

Literatur/Medien	 Bittel, Vorlesungs- und Übungsunterlikonstanz.de/~bittel/ain_alda.html Weiss, Data Structures and Algorithms. Sedgewick und Wayne, Algorithms, 4 Ottmann und Widmayer, Algorithmen Staehle, Vorlesungs- und Übungsunte konstanz.de/moodle/ Hoffmann, Theoretische Informatik, C Wagenknecht und Hielscher, Formale Compiler, Springer Vieweg, 2014. Hedtstück, Einführung in die theoreti Automatentheorie, Oldenbourg Ver 	Analysis in Java, Addiso th ed., Addison-Wesley, und Datenstrukturen, S erlagen, siehe https://m Carl Hanser Verlag, 201! Sprachen, abstrakte Au sche Informatik: formal	on Wesley, 2010. 2011. Spektrum, 2002. oodle.htwg- tomaten und			
Sprache	Deutsch Zuletzt aktualisiert 30.10.2018					

Modul 12	Software Engineering					
Modul-Koordination	Start Modul-Kürzel/-Nr. ECTS-Punkte Arbeitsaufwand					
Prof. Dr. M. Boger	SoSe	SENG/12	5	150 h		
	Dauer	sws	Kontaktzeit	Selbststudium		
	1 Semester	4	60 h	120 h		

Einsatz des Moduls im	Angestrebter	Modul-Typ	Beginn im	SPO-Version /
Studiengang	Abschluss	(PM/WPM)	Studiensemester	Jahr
AIN	B.Sc.	PM	3	

Inhaltliche Teilnahme Voraussetzung	PROG1/03, PROG2/07
Verwendbarkeit des Moduls im o.g. Studiengang	Als Vorkenntnis erforderlich für Modul: WAPP/SE1, SPKO/SE2, SOAR/SE3, SWQS/SE4, MOAN/SE6 Sinnvoll zu kombinieren mit Modul:

Püfungsleistungen des Moduls		Benotete Prüfung	Unbenotete Prüfung	Unbenoteter Leistungsnachweis
	Modulprüfung (MP)	SP (LP, PR, AB)		
	Modulteilprüfung (MTP)			
Zusammensetzung der Endnote	 ☑ Note der benoteten Modul(teil)prüfung ☐ ECTS-gewichtetes artihmetisches Mittel der benoteten Modulteilprüfungen ☐ Sonstiges: 			

Die Studierenden leisten den Schritt von der Betrachtung von Software im Kleinen (Klassen, Aufgaben) hin zu zusammenhängenden Softwarestrukturen (Komponenten, Pattern) und fertigen Produkten oder Projekten. Sie entwickeln aus einem Programm ein fertiges Produkt, das getestet, optimiert und dokumentiert ist. Die Studenten lernen die Verwendung der jeweils richtigen Technik oder Sprache für den richtigen Zweck unter Abwägung von Kosten und Nutzen.

Lernziele des Moduls

Personale Kompetenzen: Die Studierenden beherrschen die Entwicklung von größeren Softwaresystemen im Team unter Einsatz moderner Software-Engineering-Methoden und -Werkzeugen. Hierfür lernen sie das Arbeiten im Team, das Planen des Softwareentwicklungsprojektes nach unterschiedlichen Prozessmodellen, die Abschätzung von Kosten und Einplanung von Fertigstellungsterminen. Die Studierenden können erarbeitete Lehrinhalte fachlich kompetent vertreten und an Entscheidungsprozessen im Team teilhaben.

Lehr- und Lernformen	☑ Vorlesung ☐ Übung ☑ Selbststudium ☐ Workshop/Seminar ☐ Projekt ☑ Labor
Lem una Lermonnen	☐ Exkursion ☐ E-Learning ☐ Hausarbeit ☐ Sonstiges:

Teilmodul Lehrende	Art	sws	ECTS	Lehrinhalt
Software Engineering Prof. Dr. M. Boger	V	2	3	 Einführung in die Funktionale Programmierung Versionsverwaltungssysteme und Softwareintegration Testen von Softwaresystemen Schichten- und Komponentenarchitekturen Entwicklungsprozessmodelle Designpatterns Dependency Injection Entwicklung von textuellen und graphischen Benutzeroberflächen Dokumentation von Softwareanforderungen und Softwarearchitekturen
Software Engineering Übungen Prof. Dr. M. Boger	LÜ	2	2	

Literatur/Medien	 Scott Chacon: Pro Git, Apress, http://progit.org J. Ludewig, H. Lichter: Software Engineering, dpunkt verlag Ken Schwaber: Agiles Projektmanagement mit Scrum, Microsoft Press E. Gamma et al.: Design Patterns, Addison-Wesley R. Martin: Clean Code, Prentice
------------------	--

	Hall		
Sprache	Deutsch	Zuletzt aktualisiert	30.10.2018

Modul 13	Betriebssysteme						
Modul-Koordination	Start	Start Modul-Kürzel/-Nr. ECTS-Punkte Arbeitsaufw					
Prof. Dr. M. Mächtel	SoSe, WS	SoSe, WS BSYS/13 6					
	Dauer	SWS	Kontaktzeit	Selbststudium			
	1 Semester	4	60 h	120 h			

Einsatz des Moduls im	Angestrebter	Modul-Typ	Beginn im	SPO-Version /
Studiengang	Abschluss	(PM/WPM)	Studiensemester	Jahr
AIN	B.Sc.	PM	3	SPO 3 / 2020

Inhaltliche Teilnahme Voraussetzung	SYPR/08, REAR/09
Verwendbarkeit des Moduls	Als Vorkenntnis erforderlich für Modul: ESYS/ES1, PACO/ES5, PACO/Al6
im o.g. Studiengang	Sinnvoll zu kombinieren mit Modul:

Püfungsleistungen des Moduls		Benotete Prüfung	Unbenotete Prüfung	Unbenoteter Leistungsnachweis
	Modulprüfung (MP)	K90		
	Modulteilprüfung (MTP)			SP (LP)
Zusammensetzung der Endnote	 ☑ Note der benoteten Modul(teil)prüfung ☐ ECTS-gewichtetes artihmetisches Mittel der benoteten Modulteilprüfungen ☐ Sonstiges: 			

Die Studierenden theoretische und praktische Konzepte und Methoden gängiger Betriebssysteme. Sie sind in der Lage geeignete Methoden zur Lösung spezifischer Aufgabenstellungen anzuwenden. Sie verfügen über praktische Laborerfahrung im Umgang mit Systemschnittstellen von Betriebssystemen.

Personale Kompetenzen: Sie sind in der Lage, sich in 2er-Gruppen die Zeit für das termingerechte Lösen einer Aufgabenstellung einzuteilen.

Lehr- und Lernformen	☑ Vorlesung ☐ Übung ☑ Selbststudium ☐ Workshop/Seminar ☐ Projekt ☒ Labor
Lem una Lemonnen	☐ Exkursion ☐ E-Learning ☐ Hausarbeit ☐ Sonstiges:

Teilmodul Lehrende	Art	sws	ECTS	Lehrinhalt
Betriebssysteme Prof. Dr. M. Mächtel	V	2	2	 Klassifikation der Betriebssysteme Betriebsmittel- und Prozessverwaltung Nebenläufigkeit Speicherverwaltung Datei- und Ein-/Ausgabeverwaltung
Betriebssysteme Übungen Prof. Dr. M. Mächtel	LÜ	2	4	 Spezifikationen lesen und in Programme umsetzen Spezifikationen lesen und Aufgabenstellung mit Hilfe von Simulationsprogrammen lösen Programme und Simulationsergebnisse vorführen, die Lösung verteidigen Umgang mit Werkzeugen (Linux, Editor, Compiler, Buildmanagement)

Literatur/Medien	 Arpaci-Dusseau, Remzi and Arpaci-Dusseau, Andrea; Operating Systems: Three Easy Pieces, neuste Version Stallings, William: Operating Systems, akt. Auflage, Prentice Hall, neuste Version. Silberschatz, Abraham: Operating System Concepts, akt. Auflage, John Wiley & Sons, neuste Version. 						
Sprache	Deutsch	Zuletzt aktualisiert	30.10.2018				

Modul 14	Datenbanksysteme 1						
Modul-Koordination	Start	Start Modul-Kürzel/-Nr. ECTS-Punkte Arbeitsaufwand					
Prof. Dr. O. Eck	SoSe, WS	DBSYS1/14	5	150 h			
	Dauer	sws	Kontaktzeit	Selbststudium			
	1 Semester	4	60 h	90 h			

Einsatz des Moduls im	Angestrebter	Modul-Typ	Beginn im	SPO-Version /
Studiengang	Abschluss	(PM/WPM)	Studiensemester	Jahr
AIN	B.Sc.	PM	3	SPO 3 / 2020

Inhaltliche Teilnahme Voraussetzung	SOMO/04 , PROG2/07		
Verwendbarkeit des Moduls	Als Vorkenntnis erforderlich für Modul: DBSYS2/SE5		
im o.g. Studiengang	Sinnvoll zu kombinieren mit Modul:		

Püfungsleistungen des Moduls		Benotete Prüfung	Unbenotete Prüfung	Unbenoteter Leistungsnachweis
	Modulprüfung (MP)	K90		
	Modulteilprüfung (MTP)			SP (LP, AB)
Zusammensetzung der Endnote	 ✓ Note der benoteten Modul(teil)prüfung ☐ ECTS-gewichtetes artihmetisches Mittel der benoteten Modulteilprüfungen ☐ Sonstiges: 			

Die Studierenden verfügen über Kenntnisse über die grundsätzlichen Einsatzmöglichkeiten und die Verwendung von Datenbanksystemen. Sie sind in der Lage diese Kenntnisse zur Lösung konkreter Aufgabenstellungen anzuwenden. Dabei können sie im Rahmen eines Datenbankentwurfs Anforderungen an eine Datenbankanwendung erheben, eine konzeptuelle Datenbank-Modellierung durchführen und diese in ein Datenbankschema überführen. Die Studierenden können komplexere Suchanfragen an eine Datenbank stellen und Datenbankanwendungen programmieren.

Personale Kompetenzen: Sie sind in der Lage, sich die Zeit für das termingerechte Lösen einer Aufgabenstellung in einem Team einzuteilen.

Lehr- und Lernformen	oximes Vorlesung $oxdot$ Übung $oxdot$ Selbststudium $oxdot$ Workshop/Seminar $oxdot$ Projekt $oxdot$ Labor
Lem- una Lemionnen	\square Exkursion \square E-Learning \square Hausarbeit \square Sonstiges:

Teilmodul Lehrende	Art	sws	ECTS	Lehrinhalt
Datenbanksysteme 1 Prof. Dr. O. Eck	V	2	3	 Konzeptioneller Datenbankentwurf Relationales Datenbankmodell Normalformenlehre Anfragesprache SQL Einbettung SQL in Programmiersprachen
Datenbanksysteme 1 Übungen Prof. Dr. O. Eck	LÜ	2	2	 Datenbankentwurf Datenbank-Abfragen mit SQL Datenbank-Programmierung

Literatur/Medien	 Eck, O.: Vorlesungsfolien und Übung: Kemper, A., Eickler, A.: Datenbanksys Auflage, 2015 Elmasri, R., Navathe, D.B.: Fundamen 2017 Date, C.J., Darwen, H.: SQL - Der Star 	steme – Eine Einführung tals of Database System	ns, Pearson, 7. Aufl.,
Sprache	Deutsch	Zuletzt aktualisiert	30.10.2018

Modul 15	Integriertes Praktisches Studiensemester							
Modul-Koordination	Start	Start Modul-Kürzel/-Nr. ECTS-Punkte Arbeitsaufwand						
Praktikantenamtsleiter	SoSe, WS	IPSS/15	30	900 h				
	Dauer	SWS	Kontaktzeit	Selbststudium				
	1 Semester	2	30 h	870 h				

Einsatz des Moduls im	Angestrebter	Modul-Typ	Beginn im	SPO-Version /
Studiengang	Abschluss	(PM/WPM)	Studiensemester	Jahr
AIN	B.Sc.	PM	4	SPO 3 / 2020

Inhaltliche Teilnahme Voraussetzung	Grundstudium
Verwendbarkeit des Moduls	Als Vorkenntnis erforderlich für Modul: BACH/23
im o.g. Studiengang	Sinnvoll zu kombinieren mit Modul:

Püfungsleistungen des Moduls		Benotete Prüfung	Unbenotete Prüfung	Unbenoteter Leistungsnachweis		
	Modulprüfung (MP)					
	Modulteilprüfung (MTP)			SP, R		
Zusammensetzung der Endnote	 □ Note der benoteten Modul(teil)prüfung □ ECTS-gewichtetes artihmetisches Mittel der benoteten Modulteilprüfungen □ Sonstiges: 					

Die Studierenden haben die betrieblichen Abläufe und Anforderungen an einem beispielhaften Informatik-Arbeitsplatz aus eigener Erfahrung kennengelernt. Sie können Fachkompetenzen in ihrer Bedeutung für die Berufstätigkeit einschätzen und können sie praxisorientiert anwenden und erweitern.

Personale Kompetenzen: Die Studierenden haben personale kompetenzen im Bereich Sozialkompetenz (insb. Kommunikations-, Kooperations-, Team-, und Konfliktfähigkeit, Interdisziplinarität) und im Bereich Selbstkompetent(insb. Selbstreflecktion und Selbstständigkeit) in ihrer Bedeutung für die Berufstätigkeit trainiert. Sie können sie schon teilweise anwenden und dabei erweitern.

Lehr- und Lernformen	\square Vorlesung \square Übung \boxtimes Selbststudium \boxtimes Workshop/Seminar \square Projekt \square Labor
Lein- und Leimormen	\square Exkursion \square E-Learning \square Hausarbeit \boxtimes Sonstiges: Integriertes Praxissemester

Teilmodul Lehrende	Art	sws	ECTS	Lehrinhalt
Praktisches Studiensemester Professoren der Fakultät IN	PSS	0.15	27 Praktisches Studiensemester (PSS): - Praktikum in einem Betrieb oder in einer Einrichtung der Berufspraxis.	- Praktikum in einem Betrieb oder in einer anderen
Blockveranstaltungen zum PSS Lehrbeauftragte(r)	W	1.85	3	Blockveranstaltungen zum PSS: - Bestandsaufnahme - Wie schätze ich mich ein? Was sind meine Ziele? - Wege in den Arbeitsmarkt - Wo findet man eine Stelle? Stelleanalyse - Bewerbung Inhalte, Telefonbewerbung, Onlinebewerbung - Vorstellungsgespräch Interview, Emotionale Intelligenz, Kommunikation - Assesmentcenter - Grundlagen der Studien-Berichtserstellung am Beispiel PSS-Bericht - Frfahrungsberichte der Praktikanten (WIN/6)

Literatur/Medien			
Sprache	Deutsch	Zuletzt aktualisiert	30.10.2018

Modul 16	Grundlagen der IT-Sicherheit/Foundations of IT-Security					
Modul-Koordination	Start Modul-Kürzel/-Nr. ECTS-Punkte Arbeitsaufwand					
Prof. Dr. H. Langweg	SoSe, WS	FITSEC/16	6	180 h		
	Dauer	SWS	Kontaktzeit	Selbststudium		
	1 Semester	4	60 h	120 h		

Einsatz des Moduls im	Angestrebter	Modul-Typ	Beginn im	SPO-Version /
Studiengang	Abschluss	(PM/WPM)	Studiensemester	Jahr
AIN	B.Sc.	PM	5	SPO 3 / 2020

Inhaltliche Teilnahme Voraussetzung	PROG2/07
Verwendbarkeit des Moduls	Als Vorkenntnis erforderlich für Modul:
im o.g. Studiengang	Sinnvoll zu kombinieren mit Modul:

Püfungsleistungen des Moduls		Benotete Prüfung	Unbenotete Prüfung	Unbenoteter Leistungsnachweis		
	Modulprüfung (MP)	K90				
	Modulteilprüfung (MTP)			SP (LP, AB)		
Zusammensetzung der Endnote	 ✓ Note der benoteten Modul(teil)prüfung ☐ ECTS-gewichtetes artihmetisches Mittel der benoteten Modulteilprüfungen ☐ Sonstiges: 					

Die Studierenden beherrschen die grundlegenden Begriffe, Mechanismen und Verfahren informationstechnischer Sicherheit und können diese auf reale betriebliche Systemstrukturen anwenden. Grundlegende kryptographische Verfahren und deren Anwendung sind bekannt. Die Studierenden verstehen die Wirkungsmechanismen IT-technischer Bedrohungen und beherrschen geeignete Maßnahmen zum Schutz von IT-Infrastrukturen, insbesondere auch die Ausgestaltung softwareintensiver Systeme mit dem Ziel geringer Verwundbarkeit gegenüber intelligenten Angreifern über den gesamten Lebenszyklus.

Personale Kompetenzen: Die Studierenden entwickeln durch die praktische Anwendung von Angriffsmethoden und die Analyse von deren Folgen ein Bewusstsein für die verantwortungsvolle Nutzung und Gestaltung von Informationstechnik.

Lehr- und Lernformen	oximes Vorlesung $oximes$ Übung $oximes$ Selbststudium $oximes$ Workshop/Seminar $oximes$ Projekt $oximes$ Labor
	\square Exkursion \square E-Learning \square Hausarbeit \square Sonstiges:

Teilmodul Lehrende	Art	sws	ECTS	Lehrinhalt
Einführung in die IT- Sicherheit Prof. Dr. H. Langweg	V	1	1	 Goals and Principles - Data Protection, Design Principles for Secure Systems, Privacy By Design Security Management - ISO2700x, BSI Grundschutz, HR Security, Physical Security, Common Criteria, CVE Authentication - User Authentication, Passwords, Tokens, PKI Secure Operating Environments - OS Security, Access Control, Malware, Antivirus, Trusted Computing Cryptographic Primitives and Algorithms - Symmetric Encryption, Asymmetric Encryption, AES Applications of Cryptography - RSA, ECC, Electronic Signatures Network Security - Email Security, PKI, TLS, DH, IPv6 Security, DoS, IDS, Firewalls, Wireless Security
Einführung in die IT- Sicherheit Übungen Prof. Dr. H. Langweg	Ü, LÜ	1	2	

Softwaresicherheit Prof. Dr. H. Langweg	V	1	1	 Software Vulnerabilities -Taxonomies, CWE, OWASP Top 10 Offensive Security - CAPEC, Attack Vectors, CTF Secure Programming -Defensive Programming, Threat Analysis, List of Banned Functions Source Code Analysis - Supply Chain, Dependencies, Code Inspection, Data Flow Analysis, Patterns, Tools, Automation Security Testing -Absence/Presence of Vulnerabilities, Structured Testing, Abuse Cases, Penetration Testing, Fuzzing Secure Software Development Lifecycle - Principles, Practices, Activities, Integration, Software Delivery and Integrity Software Maintenance - Greenfield/Brownfield, Third-party Dependencies, Risk Analysis, Patching
Softwaresicherheit Übungen Prof. Dr. H. Langweg	Ü, LÜ	1	2	

Literatur/Medien	- Stallings, W. (2006). Crypto 2	outer Security. ISBN 978-0-470-74115-3 ography and Network Security. ISBN 978-0-131-87316- re Security: Building Security In. ISBN 978-0-321-
Sprache	Deutsch	Zuletzt aktualisiert 30.10.2018

Modul 17	Rechnernetze			
Modul-Koordination	Start	Modul-Kürzel/-Nr.	ECTS-Punkte	Arbeitsaufwand
Prof. Dr. D. Staehle	SoSe, WS	RNET/17	6	180 h
	Dauer	SWS	Kontaktzeit	Selbststudium
	1 Semester	4	60 h	120 h

Einsatz des Moduls im	Angestrebter	Modul-Typ	Beginn im	SPO-Version /
Studiengang	Abschluss	(PM/WPM)	Studiensemester	Jahr
AIN	B.Sc.	PM	5	

Inhaltliche Teilnahme Voraussetzung	
Verwendbarkeit des Moduls	Als Vorkenntnis erforderlich für Modul: VESY/18
im o.g. Studiengang	Sinnvoll zu kombinieren mit Modul:

Püfungsleistungen des Moduls		Benotete Prüfung	Unbenotete Prüfung	Unbenoteter Leistungsnachweis
	Modulprüfung (MP)	K90		
	Modulteilprüfung (MTP)			SP (LP)
Zusammensetzung der Endnote	 ☑ Note der benoteten Modul(teil)prüfung ☐ ECTS-gewichtetes artihmetisches Mittel der benoteten Modulteilprüfungen ☐ Sonstiges: 			

Die Studierenden erlangen ein grundlegendes Verständnis für Datenkommunikation sowie den Aufbau und die Funktionsweise des weltweiten Internets. Sie lernen die wichtigsten Netzknoten (Router, Switches, Proxies, etc.) kennen und verstehen die wichtigsten Internet-Protokolle (Routingprotokolle, TCP/IP, etc.). Damit sind sie in der Lage, die Eigenschaften verschiedener Kommunikationsnetze bei der Entwicklung von Applikationen zu berücksichtigen sowie kleinere Netze zu administrieren. Die Studierenden gewinnen im Labor erste Erfahrungen mit Tools, um Internetverkehr zu erfassen und zu analysieren. Sie beherrschen die Spezifikation von Anwendungsprotokollen und können verteilte Anwendungen basierend auf TCP/UDP Sockets implementieren.

Personale Kompetenzen: Durch das Labor wird sowohl die Fähigkeit zur Zusammenarbeit im Team als auch die Fähigkeit zur Koordination über Teamgrenzen hinweg gestärkt.

Lehr- und Lernformen	oximes Vorlesung $oximes$ Übung $oximes$ Selbststudium $oximes$ Workshop/Seminar $oximes$ Projekt $oximes$ Labor
	\square Exkursion \square E-Learning \square Hausarbeit \square Sonstiges:

Teilmodul Lehrende	Art	sws	ECTS	Lehrinhalt	
Rechnernetze Prof. Dr. B. Staehle	V	2	3	 Grundlagen von Rechnernetzen: Aufbau und Struktur, Paketdatenübertragung, Protokolle Grundlagen von Sockets und der verteilten Programmierung Funktionsweise von http und Übersicht der http Versionen, DNS Transportprotokolle: Ports, UDP, TCP, Datenflusssteuerung Verkehrslenkung und Adressierung im Internet: Switching in LANs, Routing Protokolle, IPv6, NAT 	
Rechnernetze Übungen Prof. Dr. B. Staehle	LÜ	2	3	 Umgang mit Tools zur Analyse des Netzwerks: WireShark, Ping, Traceroute, netstat, Entwurf von Protokollen auf der Anwendungsschicht Programmierung verteilter Anwendungen basierend auf Datagram und Streaming Sockets 	

Literatur/Medien	 Staehle, D.: Vorlesungs- und Übungsunterlagen, HTWG Konstanz. Kurose, James F., Ross, Keith W.: Computernetze - Ein Top-Down Ansatz mit Schwerpunkt Internet - Pearson Studium, Addison-Wesley. 			
Sprache	Deutsch	Zuletzt aktualisiert	30.10.2018	

Modul 18	Verteilte Systeme				
Modul-Koordination	Start	Modul-Kürzel/-Nr.	ECTS-Punkte	Arbeitsaufwand	
Prof. DrIng. O. Haase	SoSe, WS	VESY/18	6	180 h	
	Dauer	SWS	Kontaktzeit	Selbststudium	
	1 Semester	4	60 h	120 h	

Einsatz des Moduls im	Angestrebter	Modul-Typ	Beginn im	SPO-Version /
Studiengang	Abschluss	(PM/WPM)	Studiensemester	Jahr
AIN	B.Sc.	PM	6	SPO 3 / 2020

Inhaltliche Teilnahme Voraussetzung	RNET/17
Verwendbarkeit des Moduls	Als Vorkenntnis erforderlich für Modul:
im o.g. Studiengang	Sinnvoll zu kombinieren mit Modul:

Püfungsleistungen des Moduls		Benotete Prüfung	Unbenotete Prüfung	Unbenoteter Leistungsnachweis
	Modulprüfung (MP)	K90		
	Modulteilprüfung (MTP)			SP (TE)
Zusammensetzung der Endnote	 ☑ Note der benoteten Modul(teil)prüfung ☐ ECTS-gewichtetes artihmetisches Mittel der benoteten Modulteilprüfungen ☐ Sonstiges: 			

Die Studierenden verfügen über breite Kenntnisse im Bereich verteilter Systeme und sind sich der inhärenten Komplexität verteilter Systeme bewusst. Sie haben theoretische und praktische Kenntnisse der wichtigsten Fragestellungen, Algorithmen und Kommunikationsparadigmen in verteilten Systemen und können beurteilen, in welchen Anwendungsszenarien und Architekturen diese eingesetzt werden können.

Personale Kompetenzen: Die Studierenden können in kleinen Gruppen Aufgabenstellungen bearbeiten.

Lenr- lina Lerntormen	oximes Vorlesung $oximes$ Übung $oximes$ Selbststudium $oximes$ Workshop/Seminar $oximes$ Projekt $oximes$ Labor
	\square Exkursion \square E-Learning \square Hausarbeit \square Sonstiges:

Teilmodul Lehrende	Art	sws	ECTS	Lehrinhalt
Verteilte Systeme Prof. DrIng. O. Haase	V	2	3	 Vor- und Nachteile verteilter Systeme, Skalierbarkeit, Verteilungstransparenz Nebenläufigkeit in verteilten Systemen Verteilte Architekturen Synchronisation Namensdienste Replikation und Konsistenz Sicherheit Fehlertoleranz verteilte objekt-orientierte Systeme Blockchains Durch Übungen werden folgende Schlüssel- und Methodenkompetenzen entwickelt: Teamarbeit in kleinen Gruppen
Verteilte Systeme Übungen Prof. DrIng. O. Haase	LÜ	2	3	

Literatur/Medien	 Haase, O.: Vorlesungs- und Übungsunterlagen, HTWG Konstanz. A. S.Tanenbaum, M. van Steen. Verteilte Systeme: Prinzipien und Paradigmen. Addison-Wesley, 2007. ISBN 978-3827372932. O. Haase. Kommunikation in verteilten Anwendungen - Einführung in Sockets, Java RMI, CORBA und Jini, 2.Auflage. Oldenbourg, 2008. ISBN 978-3486584813. Roger Wattenhofer. Distributed Ledger Technology - The Science of the Blockchain. ISBN 978-1544232102.
------------------	---

Hochschule Konstanz Fakultät Informatik Modulhandbuch des Studiengangs Angewandte Informatik, Bachelor of Science

Sprache Deutsch	Zuletzt aktualisiert	30.10.2018
-----------------	----------------------	------------

Modul 19	Teamprojekt			
Modul-Koordination	Start	Modul-Kürzel/-Nr.	ECTS-Punkte	Arbeitsaufwand
Studiendekan / Studiengangsleiter AIN	SoSe, WS	TPRJ/19	9	270 h
	Dauer	SWS	Kontaktzeit	Selbststudium
	1 Semester	1	15 h	255 h

Einsatz des Moduls im	Angestrebter	Modul-Typ	Beginn im	SPO-Version /
Studiengang	Abschluss	(PM/WPM)	Studiensemester	Jahr
AIN	B.Sc.	PM	6	SPO 3 / 2020

Inhaltliche Teilnahme Voraussetzung	Grundstudium
Verwendbarkeit des Moduls im o.g. Studiengang	Als Vorkenntnis erforderlich für Modul: Sinnvoll zu kombinieren mit Modul: Modulen einer Vertiefungsrichtung

Püfungsleistungen des Moduls		Benotete Prüfung	Unbenotete Prüfung	Unbenoteter Leistungsnachweis
	Modulprüfung (MP)	SP (LP, AB)		
	Modulteilprüfung (MTP)			
Zusammensetzung der Endnote	☐ Note der benoteten Modul(teil)prüfung ☐ ECTS-gewichtetes artihmetisches Mittel der benoteten Modulteilprüfungen ☐ Sonstiges:			

Die Studierenden sind in der Lage unter Anleitung eine größere Aufgabenstellung im Team zu lösen. Sie beherrschen defür die Instrumente zur Projektplanung, -Kontrolle und -Steuerung. Sie können sich hinreichend schnell und zielgerichtet die Aufgabenstellung analysieren und sich in ein fachfremdes Thema einarbeiten. Sie sind in der Lage, ein Softwaresystem, eine Dienstleistung, ein Artefakt o.ä. gemäß Vorgaben planen, entwerfen, ggf. implementieren, testen, qualitätssichern und dokumentieren.

Personale Kompetenzen: Die Studierenden können sich selbst organisieren und die Projektergebnisse dokumentieren und präsentieren. Sie sind in der Lage selbst zu entscheiden, welche marktüblichen Werkzeuge und Methoden für die Lösung des jeweiligen Problems geeignet sind. Sie können im Team ergebnisorientiert an der Aufgabenstellung arbeiten, mit gängigen Medien kommunizieren und Konflikte lösen.

Lehr- und Lernformen	□ Vorlesung □ Übung ⊠ Selbststudium □ Workshop/Seminar ⊠ Projekt □ Labor
Lem- una Lemionnen	☐ Exkursion ☐ E-Learning ☐ Hausarbeit ☐ Sonstiges:

Teilmodul Lehrende	Art	sws	ECTS	Lehrinhalt
Teamprojekt Professoren der Fakultät IN	Р	1	9	Teams von 2 bis 7 Studierenden führen gemeinsam ein praxisnahes internes Projekt unter Anleitung eines Betreuers durch. Die fachlichen Inhalte sind abhängig von dem gewählten Projektthema.

Literatur/Medien	Abhängig vom jeweiligen Thema				
Sprache	Deutsch	Zuletzt aktualisiert	30.10.2018		

Modul 20	Gruppenbetreuung							
Modul-Koordination	Start	Start Modul-Kürzel/-Nr. ECTS-Punkte Arbeitsaufwand						
Studiendekan / Studiengangsleiter AIN	SoSe, WS	GRUB/20	3	90 h				
	Dauer	SWS	Kontaktzeit	Selbststudium				
	1 Semester	3	60 h	30 h				

Einsatz des Moduls im	Angestrebter	Modul-Typ	Beginn im	SPO-Version /
Studiengang	Abschluss	(PM/WPM)	Studiensemester	Jahr
AIN	B.Sc.	PM	7	

Inhaltliche Teilnahme Voraussetzung	Grundstudium
Verwendbarkeit des Moduls	Als Vorkenntnis erforderlich für Modul:
im o.g. Studiengang	Sinnvoll zu kombinieren mit Modul: Modulen aus dem Grundstudium

Püfungsleistungen des Moduls		Benotete Prüfung	Unbenotete Prüfung	Unbenoteter Leistungsnachweis
	Modulprüfung (MP)		SP (AB)	
	Modulteilprüfung (MTP)			
Zusammensetzung der Endnote	 □ Note der benoteten Modul(teil)prüfung □ ECTS-gewichtetes artihmetisches Mittel der benoteten Modulteilprüfungen □ Sonstiges: 		jen	

Die Studierende können Arbeitsgruppen inhaltlich betreuen. Sie haben gelernt, erworbenes Wissen an andere zu vermitteln, wobei diese Vermittlung schriftlich, im allgemeinen Dialog mit der gesamten Arbeitsgruppe oder im individuellen Coaching von Kleingruppen geschehen kann. Es werden hierbei vor allem Sozial-, Selbst- und Methodenkompetenz gestärkt, aber auch die fachlichen Inhalte der zugeordneten Lehrveranstaltung vertieft.

Personale Kompetenzen: Die Studierenden können Schulungen eigenverantwortlich durchführen und anleiten. Sie haben gelernt, mit Lernenden auf deren Verständnisniveau zu kommunizieren und bei Konflikten in Kleingruppen zu moderieren.

Lehr- und Lernformen	oximes Vorlesung $oxdot$ Übung $oxdot$ Selbststudium $oxdot$ Workshop/Seminar $oxdot$ Projekt $oxdot$ Labor
Lenii- unu Leniionnien	\square Exkursion \square E-Learning \square Hausarbeit \square Sonstiges:

Teilmodul Lehrende	Art	sws	ECTS	Lehrinhalt
Methoden zur Gruppenbetreuung Lehrbeauftragte(r)	V, W	1	1	Methoden der Gruppenbetreuung: - Selbst- und Ergebnispräsentationen vor der Gruppe - Erfolgsfaktoren der Gruppen- / Teamarbeit - Professioneller Einsatz von Visualisierungsmedien - Grundlagen und Methoden der Kommunikation, Fragetechniken; Aktives Zuhören; 4-Seiten-Modell - Professionelle Feedback: Methoden des Feedbacks; Spielregeln; ABC-Modell - Motivation; Modelle und Umsetzung im Tutorium - Praktische Fragen reflektieren und optimieren
Tutoriat Professoren der Fakultät IN	Ü, LÜ	2	2	Tutorium: - Eigenverantwortliche Tätigkeit als Tutor in der Betreuung von Übungen, Praktika, Laboren etc Betreuung und Begleitung der Tätigkeit durch den Dozenten der zugehörigen Lehrveranstaltung - Vertiefung der fachlichen Inhalte der zugehörigen Lehrveranstaltung

Literatur/Medien			
Sprache	Deutsch	Zuletzt aktualisiert	30.10.2018

Modul 21	Bachelorarbeit			
Modul-Koordination	Start	Modul-Kürzel/-Nr.	ECTS-Punkte	Arbeitsaufwand
Studiendekan / Studiengangsleiter AIN	SoSe, WS	BARB/21	12	360 h
	Dauer	SWS	Kontaktzeit	Selbststudium
	1 Semester	0	0 h	360 h

Einsatz des Moduls im	Angestrebter	Modul-Typ	Beginn im	SPO-Version /
Studiengang	Abschluss	(PM/WPM)	Studiensemester	Jahr
AIN	B.Sc.	PM	7	SPO 3 / 2020

Inhaltliche Teilnahme Voraussetzung	Grundstudium, IPSS/15
Verwendbarkeit des Moduls	Als Vorkenntnis erforderlich für Modul:
im o.g. Studiengang	Sinnvoll zu kombinieren mit Modul: Modulen einer Vertiefungsrichtung

Püfungsleistungen des Moduls		Benotete Prüfung	Unbenotete Prüfung	Unbenoteter Leistungsnachweis
	Modulprüfung (MP)	SP		
	Modulteilprüfung (MTP)			
Zusammensetzung der Endnote	 □ Note der benoteten Modul(teil)prüfung □ ECTS-gewichtetes artihmetisches Mittel der benoteten Modulteilprüfungen ☑ Sonstiges: Die Modulnote errechnet sich aus dem arithmetischen Mittel der Noten der beiden Prüfer der Bachelorarbeit. 			

Die Studierenden sind in der Lage, innerhalb einer vorgegebenen Frist eine Problemstellung aus dem Bereich Informatik zu bearbeiten. Sie folgen dabei wissenschaftlichen Methoden und Erkenntnissen, können Arbeiten fremder Personen abgrenzen und/oder ggf. mit eigenen Ideen zusammenführen. Sie können die Lösungen methodisch erarbeiten, praktisch umsetzen und die Ergebnisse in der schriftlichen Ausarbeitung der Abschlussarbeit strukturiert darstellen.

Personale Kompetenzen: Die Studierenden sind in der Lage, selbstständig zu arbeiten und sich während ihrer Abschlussarbeit selbst organisieren. Sie können ihren Fortschritt über einen längeren Zeitraum kritisch reflektieren und die Arbeit innerhalb der vorgegebenen Frist umsetzen. Sie sind in der Lage, sich kritisch mit der Aufgabenstellung und dem zugehörigen Themengebiet auseinander setzen. Sie können ihre Vorgehensweise und ihre Ergebnisse mit anderen zu diskutieren und Feedback entgegennehmen.

Lehr- und Lernformen	☐ Vorlesung ☐ Übung ☒ Selbststudium ☐ Workshop/Seminar ☐ Projekt ☐ Labor
zem una zermormen	☐ Exkursion ☐ E-Learning ☐ Hausarbeit ☒ Sonstiges: Abschlussarbeit

Teilmodul Lehrende	Art	sws	ECTS	Lehrinhalt
Bachelorarbeit Professoren der Fakultät IN	Р	0	12	Abhängig vom jeweiligen Thema

Literatur/Medien	Abhängig vom jeweiligen Thema		
Sprache	Deutsch	Zuletzt aktualisiert	30.10.2018

Modul Al1	Artificial Intelligence						
Modul-Koordination	Start	Start Modul-Kürzel/-Nr. ECTS-Punkte Arbeitsaufwand					
Prof. Dr. O. Bittel	SoSe	ARIN/AI1	6	180 h			
	Dauer	SWS	Kontaktzeit	Selbststudium			
	1 Semester	4	60 h	120 h			

Einsatz des Moduls im	Angestrebter	Modul-Typ	Beginn im	SPO-Version /
Studiengang	Abschluss	(PM/WPM)	Studiensemester	Jahr
AIN	B.Sc.	PM	5-7	SPO 3 / 2020

Inhaltliche Teilnahme Voraussetzung	
Verwendbarkeit des Moduls	Als Vorkenntnis erforderlich für Modul:
im o.g. Studiengang	Sinnvoll zu kombinieren mit Modul: 2DCV/AI4, 3DCV/AI5, MORO/AI2

Püfungsleistungen des Moduls		Benotete Prüfung	Unbenotete Prüfung	Unbenoteter Leistungsnachweis
	Modulprüfung (MP)	K90		
	Modulteilprüfung (MTP)			SP (LP)
Zusammensetzung der Endnote	☒ Note der benoteten Mod☐ ECTS-gewichtetes artihm☐ Sonstiges:	· · · ·	oteten Modulteilprüfung	gen

- Grundlegende Begriffe und Methoden der künstlichen Intelligenz kennen lernen.

- Lösung von typischen Problemstellungen mit Hilfe von Python

Personale Kompetenzen: Zeit-/Selbstmanagement für individuelle Laboraufgaben mit vorgegebenen Abgabeterminen. Die Studierenden können die gesellschaftlichen Chancen und Risiken der KI einschätzen. Sie entwickeln ein Bewusstsein für ethische Leitlinien.

renr- und rerniormen	oximes Vorlesung $oximes$ Übung $oximes$ Selbststudium $oximes$ Workshop/Seminar $oximes$ Projekt $oximes$ Labor
	☐ Exkursion ☐ E-Learning ☐ Hausarbeit ☐ Sonstiges:

Teilmodul Lehrende	Art	sws	ECTS	Lehrinhalt
Artificial Intelligence Prof. Dr. O. Bittel	V	2	3	 Was ist künstliche Intelligenz Problemlösen durch Suchen Wissen und Schließen Unsicheres Wissen und Schließen Maschinelles Lernen
Artificial Intelligence Übungen Prof. Dr. O. Bittel / Prof. Dr. M. Franz / Prof. Dr. G. Umlauf	LÜ	2	3	

Literatur/Medien	 Ertel, Grundkurs Künstliche Intelligen Russel und Norvig, Künstliche Intellig 		
Sprache	Deutsch	Zuletzt aktualisiert	, ,

Modul Al2	Mobile Roboter	•		
Modul-Koordination	Start	Modul-Kürzel/-Nr.	ECTS-Punkte	Arbeitsaufwand
Prof. Dr. O. Bittel	WS	MORO/AI2	6	180 h
	Dauer	SWS	Kontaktzeit	Selbststudium
	1 Semester	4	60 h	120 h

Einsatz des Moduls im	Angestrebter	Modul-Typ	Beginn im	SPO-Version /
Studiengang	Abschluss	(PM/WPM)	Studiensemester	Jahr
AIN	B.Sc.	PM	5-7	SPO 3 / 2020

Inhaltliche Teilnahme Voraussetzung	
Verwendbarkeit des Moduls	Als Vorkenntnis erforderlich für Modul:
im o.g. Studiengang	Sinnvoll zu kombinieren mit Modul: 2DCV/AI4, 3DCV/AI5, ARIN/AI1

Püfungsleistungen des Moduls		Benotete Prüfung	Unbenotete Prüfung	Unbenoteter Leistungsnachweis
	Modulprüfung (MP)	M30		
	Modulteilprüfung (MTP)			SP (LP)
Zusammensetzung der Endnote	☒ Note der benoteten Mod☐ ECTS-gewichtetes artihm☐ Sonstiges:	· / ·	oteten Modulteilprüfung	gen

Lernziele des	 Grundlegende Begriffe der mobilen Robotik kennen lernen Termingerechte Lösung typischer Problemstellungen mit Hilfe von Python und Roboter-
Moduls	Entwicklungs- und Simulationsumgebungen.

Lehr- und Lernformen	oximes Vorlesung $oxdot$ Übung $oxdot$ Selbststudium $oxdot$ Workshop/Seminar $oxdot$ Projekt $oxdot$ Labor
Lem- una Lemionnen	\square Exkursion \square E-Learning \square Hausarbeit \square Sonstiges:

Teilmodul Lehrende	Art	sws	ECTS	Lehrinhalt
Mobile Roboter Prof. Dr. O. Bittel	V	2	3	 Koordinatensysteme und Transformationen Kinematik Sensorik Einführung in Lokalisierung und Kartenerstellung Einführung in Planung und Navigation Steuerungsarchitekturen Roboter-Entwicklungsumgebungen
Mobile Roboter Übungen Prof Dr O Rittel	Ü	2	3	

Literatur/Medien	 Hertzberg, Lingemann und Nüchter, I Thrun, Burgard and Fox, Probabilistic 	Robotics, MIT Press, 2005. On to Autonomous Mobile Robots, 2nd ed., ion, MIT Press, 2005.
Sprache	Deutsch	Zuletzt aktualisiert 30.10.2018

Modul AI3	Computergrafik					
Modul-Koordination	Start	Modul-Kürzel/-Nr.	ECTS-Punkte	Arbeitsaufwand		
Prof. Dr. G. Umlauf	WS	COGR/AI3	6	180 h		
	Dauer	SWS	Kontaktzeit	Selbststudium		
	1 Semester	4	60 h	120 h		

Einsatz des Moduls im	Angestrebter	Modul-Typ	Beginn im	SPO-Version /
Studiengang	Abschluss	(PM/WPM)	Studiensemester	Jahr
AIN	B.Sc.	PM	5-7	SPO 3 / 2020

Inhaltliche Teilnahme Voraussetzung	MAT1/1 , MAT2/5
Verwendbarkeit des Moduls	Als Vorkenntnis erforderlich für Modul:
im o.g. Studiengang	Sinnvoll zu kombinieren mit Modul: 2DCV/AI4

Püfungsleistungen des Moduls		Benotete Prüfung	Unbenotete Prüfung	Unbenoteter Leistungsnachweis	
	Modulprüfung (MP)	M30			
	Modulteilprüfung (MTP)			SP (LP)	
Zusammensetzung der Endnote	 ✓ Note der benoteten Modul(teil)prüfung ☐ ECTS-gewichtetes artihmetisches Mittel der benoteten Modulteilprüfungen ☐ Sonstiges: 				

Die Studierenden sind in der Lage, die Problemstellungen der Computergrafik eigenständig in den Render-Prozess einzuordnen und Lösungsvorschläge zu erarbeiten. Sie kennen verschiedene Ausprägungen des Render-Prozesses und können den Ablauf an konkrete Anforderungen abändern bzw. konzipieren. Sie kennen verschiedene Prinzipien, Techniken, Algorithmen, mathematischen Beschreibungen und Modelle der Computergrafik und können diese an konkreten Beispielen anwenden. Durch die Laborübungen entwickeln die Studierenden die Methodenkompetenz, Computergrafiksysteme zu modellieren, zu entwerfen und zu realisieren. Zusätzlich können die Studierenden aktuelle Bibliotheken und Entwicklungstools der Computergrafik bedienen.

Personale Kompetenzen: Schlüsselkompetenz erhalten die Studierenden durch den seminarähnlichen Charakter der Laborübungen, in dem die Studierenden die von ihnen erarbeiteten Lösungen vor der Gruppe präsentieren.

Lehr- und Lernformen	oximes Vorlesung $oxdot$ Übung $oxdot$ Selbststudium $oxdot$ Workshop/Seminar $oxdot$ Projekt $oxdot$ Labor
Lem und Lermonnen	\square Exkursion \square E-Learning \square Hausarbeit \square Sonstiges:

Teilmodul Lehrende	Art	sws	ECTS	Lehrinhalt
Computergrafik Prof. Dr. G. Umlauf	V	2	3	 Hardware-Gundlagen Rasterisierung Transformationen und Projektionen Repräsentation und Modellierung von Objekten Rendering (Beleuchtung, Schattierung, Ray-Tracing, etc.) Sichtbarkeitsberechnungen Mapping-Techniken (Texture-Mapping, Bump-Mapping, etc.)
Computergrafik Übungen Prof. Dr. G. Umlauf	LÜ	2	3	

Literatur/Medien	 G. Umlauf: Vorlesungs- und Übungsunterlagen, HTWG Konstanz. M. Bender, M. Brill: Computergrafik, Hanser Verlag, 2. Auflage, 2005. J.D. Foley, A. van Dam, S.K. Feiner, J.F. Hughes: Computer Graphics - Principles and Practice, Addison-Wesley, 2nd edition, 1997. A. Watt: 3d Computer Graphics, Pearson, 2000. D. Shreiner, M. Woo, J. Neider, T. Davis: OpenGL - Programming Guide, Addison-Wesley, 2007. 					
Sprache	Deutsch Zuletzt aktualisiert 30.10.2018					

Modul AI4	2D Computer Vision			
Modul-Koordination	Start	Modul-Kürzel/-Nr.	ECTS-Punkte	Arbeitsaufwand
Prof. Dr. M. Franz	WS	2DCV/AI4	6	180 h
	Dauer	SWS	Kontaktzeit	Selbststudium
	1 Semester	4	60 h	120 h

Einsatz des Moduls im	Angestrebter	Modul-Typ	Beginn im	SPO-Version /
Studiengang	Abschluss	(PM/WPM)	Studiensemester	Jahr
AIN	B.Sc.	PM	5-7	SPO 3 / 2020

Inhaltliche Teilnahme Voraussetzung	
Verwendbarkeit des Moduls im o.g. Studiengang	Als Vorkenntnis erforderlich für Modul: Sinnvoll zu kombinieren mit Modul: 3DCV/AI5

Püfungsleistungen des Moduls		Benotete Prüfung	Unbenotete Prüfung	Unbenoteter Leistungsnachweis
	Modulprüfung (MP)	SP (LP, PR)		
	Modulteilprüfung (MTP)			SP (LP)
Zusammensetzung der Endnote	☒ Note der benoteten Mod☐ ECTS-gewichtetes artihm☐ Sonstiges:	` ''	oteten Modulteilprüfung	gen

- Die Grundlagen der automatischen Verarbeitung von zweidimensionalen Bildern in Industrie, Medizin und Wirtschaft kennenlernen.
- Digitale Bildverarbeitung anhand einfacher Beispiele praktizieren.

Personale Kompetenzen: Mit der Durchführung der Laborübungen und des Abschlussprojekts wird die Fähigkeit zum Teamwork in kleinen Gruppen geübt, sowie Präsentationstechniken im praktischen und individuellen Einsatz.

Lehr- und Lernformen	oximes Vorlesung $oxdot$ Übung $oxdot$ Selbststudium $oxdot$ Workshop/Seminar $oxdot$ Projekt $oxdot$ Labor
	☐ Exkursion ☐ E-Learning ☐ Hausarbeit ☐ Sonstiges:

Teilmodul Lehrende	Art	sws	ECTS	Lehrinhalt
2D Computer Vision Prof. Dr. M. Franz	V	2	3	Die Vorlesung führt in die Grundlagen der digitalen Bildverarbeitung ein. Dabei werden zunächst Fragen der Bildaufnahme, Digitalisierung und Bildsensorik behandelt. Die theoretische Grundlage bildet die diskrete Signalverarbeitung und die Fouriertransformation, für die im Laufe der Vorlesung ein intuitives Verständnis erarbeitet wird. Auf dieser Grundlage werden die klassischen Bildverarbeitungsoperationen besprochen, d.h. Filterung, Punktoperatoren, morphologische Filter, regionenbasierte Verfahren und Interest-Point-Operatoren. Mit diesen Verfahren können bereits komplexere Fragestellungen angegangen werden, wie z.B. Detektion von einfachen Kurven, Texturanalyse und Bildvergleiche
2D Computer Vision Ü bungen Prof. Dr. M. Franz	LÜ	2	3	In den Übungen werden die besprochenen Verfahren mit Hilfe von Python umgesetzt und an konkreten industriellen und nichtindustriellen Bildverarbeitungsproblemen getestet. In einem umfangreicheren Abschlussprojekt wird ein komplexes Projekt bearbeitet und vor den anderen Studenten präsentiert.

Literatur/Medien	 Franz, M.O.: Unterlagen zu 2D Computer Vision, HTWG Konstanz (in Moodle unter AIN/2DCV) W. Burger & M. J. Burge: Digitale Bildverarbeitung. Springer 2006. 		
Sprache	Deutsch	Zuletzt aktualisiert	30.10.2018

Modul AI5	3D Computer Vision			
Modul-Koordination	Start	Modul-Kürzel/-Nr.	ECTS-Punkte	Arbeitsaufwand
Prof. Dr. G. Umlauf	SoSe	3DCV/AI5	6	180 h
	Dauer	sws	Kontaktzeit	Selbststudium
	1 Semester	4	60 h	120 h

Einsatz des Moduls im	Angestrebter	Modul-Typ	Beginn im	SPO-Version /
Studiengang	Abschluss	(PM/WPM)	Studiensemester	Jahr
AIN	B.Sc.	PM	5-7	SPO 3 / 2020

Inhaltliche Teilnahme Voraussetzung	MAT1/1, MAT2/5
Verwendbarkeit des Moduls	Als Vorkenntnis erforderlich für Modul:
im o.g. Studiengang	Sinnvoll zu kombinieren mit Modul: 2DCV/Al4

Püfungsleistungen des Moduls		Benotete Prüfung	Unbenotete Prüfung	Unbenoteter Leistungsnachweis
	Modulprüfung (MP)	M30		
	Modulteilprüfung (MTP)			SP (LP)
Zusammensetzung der Endnote	☒ Note der benoteten Mod☐ ECTS-gewichtetes artihm☐ Sonstiges:	· / ·	oteten Modulteilprüfung	gen

Die Studierenden sind in der Lage, die Problemstellungen der 3d-Datenerfassung eigenständig in konkrete Anwendungssituationen einzuordnen und Lösungsvorschläge zu erarbeiten. Sie kennen verschiedene Hardware-Techniken und ihre Vor- und Nachteile im konkreten Einsatz. Sie kennen den Scan-Prozess und können den Ablauf an konkrete Anforderungen abändern bzw. konzipieren. Sie kennen verschiedene Prinzipien, Techniken, Algorithmen, mathematischen Beschreibungen und Modelle der 3d-Datenverarbeitung und können diese an konkreten Beispielen anwenden. Durch die Projektarbeit entwickeln die Studierenden die Methodenkompetenz, den 3d-Scan_Process zu modellieren, zu entwerfen und zu realisieren.

Personale Kompetenzen: Schlüsselkompetenz erhalten die Studierenden durch Teamarbeit in den Projekten, in dem die Studierenden die von Lösungen gemeinsame, zielorientiert erarbeiten und vor der Gruppe präsentieren müssen.

Lehr- und Lernformen	oximes Vorlesung $oxdot$ Übung $oxdot$ Selbststudium $oxdot$ Workshop/Seminar $oxdot$ Projekt $oxdot$ Labor
Lem und Lemonnen	\square Exkursion \square E-Learning \square Hausarbeit \square Sonstiges:

Teilmodul Lehrende	Art	sws	ECTS	Lehrinhalt
3D Computer Vision Prof. Dr. G. Umlauf	V	2	3	 Grundlagen der 3d-Datenverarbeitung Affine und projektive Geometrie Hardware-Techniken zur 3d-Datenerfassung (Photogrammetrie, Structured-Light, Laser-Scanning, Shape-from-X, etc) Algorithmische Methoden der 3d-Datenerfassung Methoden der 3d-Rekonstruktion
3D Computer Vision Übungen Prof. Dr. G. Umlauf	LÜ	2	3	

Literatur/Medien	 G. Umlauf: Vorlesungs- und Übungsu Richard Sziliski: Computer Vision, Sp Richard Hartley, Andrwe Zissman: Mu Cambridge University Press, 2003. 	ringer, 2011.	
Sprache	Deutsch	Zuletzt aktualisiert	30.10.2018

Modul Al6	Parallel Computing			
Modul-Koordination	Start	Modul-Kürzel/-Nr.	ECTS-Punkte	Arbeitsaufwand
Prof. Dr. M. Mächtel	SoSe	PACO/AI6	6	180 h
	Dauer	SWS	Kontaktzeit	Selbststudium
	1 Semester	4	60 h	120 h

Einsatz des Moduls im	Angestrebter	Modul-Typ	Beginn im	SPO-Version /
Studiengang	Abschluss	(PM/WPM)	Studiensemester	Jahr
AIN	B.Sc.	PM	5-7	SPO 3 / 2020

Inhaltliche Teilnahme Voraussetzung	BSYS/13
Verwendbarkeit des Moduls	Als Vorkenntnis erforderlich für Modul:
im o.g. Studiengang	Sinnvoll zu kombinieren mit Modul: RNET/17, VESY/18

Püfungsleistungen des Moduls		Benotete Prüfung	Unbenotete Prüfung	Unbenoteter Leistungsnachweis
	Modulprüfung (MP)	SP (LP)		
	Modulteilprüfung (MTP)			
Zusammensetzung der Endnote	☒ Note der benoteten Mod☐ ECTS-gewichtetes artihm☐ Sonstiges:	` ''	oteten Modulteilprüfung	gen

Die Studenten beherrschen theoretische und praktische Konzepte und Methoden zur Programmierung paralleler Systeme. Sie sind in der Lage geeignete Methoden zur Lösung spezifischer Aufgabenstellungen anzuwenden. Sie verfügen über praktische Laborerfahrung im Umgang mit verschiedener Programmierkonzepten und Programmiersprachen von parallelen Systemen.

Personale Kompetenzen: Durch Laboraufgaben werden folgende Schlüssel- und Methodenkompetenzen entwickelt:

- Teamarbeit in kleinen Gruppen
- Präsentation der Lösungsmethoden

Lehr- und Lernformen	oximes Vorlesung $oxdot$ Übung $oxdot$ Selbststudium $oxdot$ Workshop/Seminar $oxdot$ Projekt $oxdot$ Labor
Lem- una Lemionnen	\square Exkursion \square E-Learning \square Hausarbeit \square Sonstiges:

Teilmodul Lehrende	Art	sws	ECTS	Lehrinhalt
Parallel Computing Prof. Dr. M. Mächtel	V	2	2	 Grundlagen und Konzepte von parallelen Systemen Rechnerarchitekturen für Parallele Systeme Programmiermodelle für gemeinsamen Speicher Performance Analyse paralleler Programme Thread Programming, GPU Programming Parallelisierung Nebenläufigkeitsprobleme paralleler Programmierung Rechenlastverteilung
Parallel Computing Übungen Prof. Dr. M. Mächtel	LÜ	2	4	 Spezifikationen lesen und in der Entwicklung eines eigenen parallelen Systems umsetzen Umgang mit Werkzeugen (Linux, Editor, Compiler, Buildmanagement) Systeme und nötige Anwendungs-Programme vorführen, die Lösung verteidigen Darstellung der Ergebnisse in technischen Berichten

Literatur/Medien	 Pacheco, Peter S.: An Introduction to Thomas Rauber Gudula Rünger: Para Systems Günther Bengel, Christian Baun, Mar Parallele und Verteilte Systeme 	llel Programmung for Multircore and Cluster
Sprache	Deutsch	Zuletzt aktualisiert 30.10.2018

Modul AI7	Wahlpflichtmodul			
Modul-Koordination	Start	Modul-Kürzel/-Nr.	ECTS-Punkte	Arbeitsaufwand
Studiendekan / Studiengangsleiter AIN	SoSe, WS	WPM/AI7	12	360 h
	Dauer	SWS	Kontaktzeit	Selbststudium
	1 Semester	8	120 h	240 h

Einsatz des Moduls im	Angestrebter	Modul-Typ	Beginn im	SPO-Version /
Studiengang	Abschluss	(PM/WPM)	Studiensemester	Jahr
AIN	B.Sc.	WPM	5-7	SPO 3 / 2020

Inhaltliche Teilnahme Voraussetzung	Grundstudium
Verwendbarkeit des Moduls	Als Vorkenntnis erforderlich für Modul:
im o.g. Studiengang	Sinnvoll zu kombinieren mit Modul: Modulen aus der Vertiefungsrichtung Al

Püfungsleistungen des Moduls		Benotete Prüfung	Unbenotete Prüfung	Unbenoteter Leistungsnachweis
	Modulprüfung (MP)	X	X	
	Modulteilprüfung (MTP)			
Zusammensetzung der Endnote	 ☑ Note der benoteten Modul(teil)prüfung ☐ ECTS-gewichtetes artihmetisches Mittel der benoteten Modulteilprüfungen ☐ Sonstiges: 		jen	

Lernziele des Moduls	Die Studierenden haben vertiefte Kenntnisse in Spezialgebieten der Informatik erworben.Falls sie Fächer aus dem Studium Generale ausgewählt haben, haben sie fachübergreifendeMethoden- und Sozialkompetenzen erworben.
-------------------------	---

Lehr- und Lernformen	oximes Vorlesung $oximes$ Übung $oximes$ Selbststudium $oximes$ Workshop/Seminar $oximes$ Projekt $oximes$ Labor
Lem- una Lemonnen	\square Exkursion \square E-Learning \square Hausarbeit \square Sonstiges:

Teilmodul Lehrende	Art	sws	ECTS	Lehrinhalt
Wahlpflichtmodul gemäß Aushang Studiendekan / Studiengangsleiter AIN	Х	8	12	Lehrinhalte, Prüfungsmodalitäten und ggf. eine Gruppeneinteilung werden durch den/die Dozenten/Dozentin i.d.R. in der ersten Vorlesungsstunde bekannt gegeben. Es dürfen Veranstaltungen im Umfang von maximal 6 ECTS-Punkten aus dem Studium Generale gewählt werden.

Literatur/Medien	Abhängig vom jeweiligen Wahlpflichtmodul		
Sprache	Deutsch, ggf. Englisch	Zuletzt aktualisiert	30.10.2018

Modul ES1	Embedded Systems				
Modul-Koordination	Start	Modul-Kürzel/-Nr.	ECTS-Punkte	Arbeitsaufwand	
Prof. Dr. M. Mächtel	WS	ESYS/ES1	6	180 h	
	Dauer	SWS	Kontaktzeit	Selbststudium	
	1 Semester	4	60 h	120 h	

Einsatz des Moduls im	Angestrebter	Modul-Typ	Beginn im	SPO-Version /
Studiengang	Abschluss	(PM/WPM)	Studiensemester	Jahr
AIN	B.Sc.	PM	5-7	SPO 3 / 2020

Inhaltliche Teilnahme Voraussetzung	BSYS/13
Verwendbarkeit des Moduls	Als Vorkenntnis erforderlich für Modul:
im o.g. Studiengang	Sinnvoll zu kombinieren mit Modul: RNET/17, MPS/ES3

Püfungsleistungen des Moduls		Benotete Prüfung	Unbenotete Prüfung	Unbenoteter Leistungsnachweis
	Modulprüfung (MP)	K90		
	Modulteilprüfung (MTP)			SP (LP)
Zusammensetzung der Endnote	 ☑ Note der benoteten Modul(teil)prüfung ☐ ECTS-gewichtetes artihmetisches Mittel der benoteten Modulteilprüfungen ☐ Sonstiges: 			

Die Studenten beherrschen theoretische und praktische Konzepte und Methoden zum Aufbau eines kompletten eingebetteten Systems, mit dem Schwerpunkt auf die verschiedenen Softwarekomponenten. Sie sind in der Lage geeignete Methoden zur Lösung spezifischer Aufgabenstellungen anzuwenden. Sie verfügen über praktische Laborerfahrung im Umgang mit verschiedener Systemsoftware von eingebetteten Systemen.

Personale Kompetenzen: Durch Laboraufgaben werden folgende Schlüssel- und Methodenkompetenzen entwickelt:

- Teamarbeit in kleinen Gruppen
- Präsentation der Lösungsmethoden

Lehr- und Lernformen	oximes Vorlesung $oximes$ Übung $oximes$ Selbststudium $oximes$ Workshop/Seminar $oximes$ Projekt $oximes$ Labor
Lem- una Lemiormen	\square Exkursion \square E-Learning \square Hausarbeit \square Sonstiges:

Teilmodul Lehrende	Art	sws	ECTS	Lehrinhalt
Embedded Systems Prof. Dr. M. Mächtel	V	2	2	 Grundlagen und Konzepte von Embedded Systems Methoden der Entwicklung von Embedded Systems Tools zur Erstellung eines kompletten eingebetteten Systems (Fokus Software) Treiberprogrammierung Aspekte der verteilten Systemsoftware in Embedded Systems Sicherheitsaspekte abhängig von der jeweiligen Systemsoftwareschicht von eingebetteten Systemsn Nebenläufigkeitsprobleme in Systemsoftwarekomponenten mit Fokus Embedded Systems
Embedded Systems Übungen Prof. Dr. M. Mächtel	LÜ	2	4	 Spezifikationen lesen und in der Entwicklung eines eigenen embedded Systems umsetzen Umgang mit Werkzeugen (Linux, Editor, Compiler, Buildmanagement) Systeme und nötige Anwendungs-Programme vorführen, die Lösung verteidigen Darstellung der Ergebnisse in technischen Berichten

Literatur/Medien	Quade, Jürgen: Embedded Linux Iernen mit dem Raspberry Pi: Linux-Systeme selber bauen und programmieren, neuste Auflage
------------------	---

Hochschule Konstanz Fakultät Informatik Modulhandbuch des Studiengangs Angewandte Informatik, Bachelor of Science

Sprache Deutsch	Zuletzt aktualisiert	30.10.2018
-----------------	----------------------	------------

Modul ES2	Kommunikationstechnik			
Modul-Koordination	Start	Modul-Kürzel/-Nr.	ECTS-Punkte	Arbeitsaufwand
Prof. Dr. D. Staehle	SoSe	KOTE/ES2	6	180 h
	Dauer	SWS	Kontaktzeit	Selbststudium
	1 Semester	4	60 h	120 h

Einsatz des Moduls im	Angestrebter	Modul-Typ	Beginn im	SPO-Version /
Studiengang	Abschluss	(PM/WPM)	Studiensemester	Jahr
AIN	B.Sc.	PM	5-7	SPO 3 / 2020

Inhaltliche Teilnahme Voraussetzung	
Verwendbarkeit des Moduls	Als Vorkenntnis erforderlich für Modul:
im o.g. Studiengang	Sinnvoll zu kombinieren mit Modul: MPS/ES3

Püfungsleistungen des Moduls		Benotete Prüfung	Unbenotete Prüfung	Unbenoteter Leistungsnachweis
	Modulprüfung (MP)	M30		
	Modulteilprüfung (MTP)			SP (LP)
Zusammensetzung der Endnote	 ✓ Note der benoteten Modul(teil)prüfung ☐ ECTS-gewichtetes artihmetisches Mittel der benoteten Modulteilprüfungen ☐ Sonstiges: 			

Die Studierenden verstehen die nachrichtentechnischen Grundlagen für Informatiker. Sie können einfache Algorithmen zur Quellcodierung, Kanalcodierung, Leitungscodierung und digitalen Modulation in Matlab umsetzen. Sie kennen die gängigen Schnittstellen und Bussysteme für Eingebettete Systeme und können deren Möglichkeiten und Grenzen einschätzen. Die Studierenden sind mit den Grundlagen der Funkübertragung vertraut, die sie am Beispiel WLAN kennenlernen.

Lehr- und Lernformen	oximes Vorlesung $oximes$ Übung $oximes$ Selbststudium $oximes$ Workshop/Seminar $oximes$ Projekt $oximes$ Labor
	\square Exkursion \square E-Learning \square Hausarbeit \square Sonstiges:

Teilmodul Lehrende	Art	sws	ECTS	Lehrinhalt
Kommunikationstechnik Prof. Dr. D. Staehle	V	2	3	 Quellcodierung: Informationstheoretische Grundlagen, Entropiecodierung, Wörterbuchcodierung Kanalcodierung: Grundlagen, Blockcodes, Faltungscodes Leitungscodierung und digitale Modulation Schnittstellen und Bussysteme für Eingebettete Systeme WLAN: Medienzugriff, LDPC Codes, OFDM, MIMO
Kommunikationstechnik Übungen Prof. Dr. D. Staehle	LÜ	2	3	 Umgang mit der Communication Toolbox in Matlab Entwicklung der Simulation einer WLAN-Übertragung Anwendung und Testen von Schnittstellen und Bussystemen auf einem Eingebetteten System

Literatur/Medien	 Dirk Staehle: Vorlesungs- und Übung Matlab Hilfe Dirk W. Hoffmann, Einführung in die Springer Vieweg, 2014 Martin Meyer, Kommunikationstechn Nachrichtenübertragung, Vieweg-Sp. Peter Adam Höher, Grundlagen der d Theorie zu Mobilfunkanwendungen Werner Martin, Nachrichtentechnik - Laufl., 2010 Andrea Goldsmith, Wireless Communication 	Informations- und Codie ik-Konzepte der modern oringer, 5. Aufl., 2014 igitalen Informationsübe , 2. Aufl., 2013 Eine Einführung für alle ications, Cambridge Un	erungstheorie, nen ertragung - Von der Studiengänge, 7. iversity Press, 2005
Sprache	Deutsch	Zuletzt aktualisiert	30.10.2018

Modul ES3	Mikroprozessorsysteme						
Modul-Koordination	Start	Start Modul-Kürzel/-Nr. ECTS-Punkte Arbeitsaufwand					
Prof. Dr. I. Schoppa	SoSe	MPS/ES3	6	180 h			
	Dauer	sws	Kontaktzeit	Selbststudium			
	1 Semester	4	60 h	120 h			

Einsatz des Moduls im	Angestrebter	Modul-Typ	Beginn im	SPO-Version /
Studiengang	Abschluss	(PM/WPM)	Studiensemester	Jahr
AIN	B.Sc.	PM	5-7	SPO 3 / 2020

Inhaltliche Teilnahme Voraussetzung	DIGI/02, SYPR/08, REAR/09
Verwendbarkeit des Moduls	Als Vorkenntnis erforderlich für Modul:
im o.g. Studiengang	Sinnvoll zu kombinieren mit Modul: DSYS/ES4

Püfungsleistungen des Moduls		Benotete Prüfung	Unbenotete Prüfung	Unbenoteter Leistungsnachweis
	Modulprüfung (MP)	SP (LP, TE)		
	Modulteilprüfung (MTP)			
Zusammensetzung der Endnote	☑ Note der benoteten Mod☐ ECTS-gewichtetes artihm☐ Sonstiges:	` ''	oteten Modulteilprüfung	en

Lernziele	des
Moduls	

Durch das Modul erwerben die Studierenden die Befähigung, auf der Basis von Standard Hardware- und Softwarekomponenten vernetzte eingebettete Mikroprozessorsysteme zu realisieren.

Personale Kompetenzen: Durch das projektorientierte Labor werden die Teamfähigkeit und die Fähigkeit zur Erstellung technischer Berichte gestärkt.

i enr- una i erniormen	oximes Vorlesung $oxdot$ Übung $oxdot$ Selbststudium $oxdot$ Workshop/Seminar $oxdot$ Projekt $oxdot$ Labor
	\square Exkursion \square E-Learning \square Hausarbeit \square Sonstiges:

Teilmodul Lehrende	Art	sws	ECTS	Lehrinhalt
Mikroprozessorsysteme Prof. Dr. I. Schoppa	V	2	2	 Architekturen eingebetteter Mikroprozessorsysteme Fallstudien ausgewählter Mikroprozessoren und -controller Fallstudien ausgewählter Bussysteme Echtzeitbetriebssysteme Hardwarenahe Programmierung in C und Assembler Messtechnische Untersuchung der Systeme
Mikroprozessorsysteme Übungen Prof. Dr. I. Schoppa	LÜ	2	4	Die Lehrinhalte werden abschnittsweise über Laborübungen (inkl. Fragen, Diskussion, Teamarbeit in kleinen Gruppen, Präsentation der Lösungsmethoden) vertieft. Sie werden ferner permanent über eine Vielzahl von konkreten Praxisbeispielen veranschaulicht.

Literatur/Medien	 Schoppa, I.: Vorlesungs- und Übungs Davies, J. H.: MSP430 Microcontroller Schaefer, M., Gnedina, A. und weitere Software für Steuerungen mit Siche Arbeitsschutz und Arbeitsmedizin, Nagy, C.: Embedded Systems Design 2013 	Basics, Newnes, 2008. E: Programmierregeln fürheitsaufgaben, Bundes 1998.	r die Erstellung von anstalt für
Sprache	Deutsch	Zuletzt aktualisiert	30.10.2018

Modul ES4	Digitale Systeme						
Modul-Koordination	Start	Modul-Kürzel/-Nr.	ECTS-Punkte	Arbeitsaufwand			
Prof. Dr. I. Schoppa	WS	WS DSYS/ES4 6 180 h					
	Dauer	SWS	Kontaktzeit	Selbststudium			
	1 Semester	4	60 h	120 h			

Einsatz des Moduls im	Angestrebter	Modul-Typ	Beginn im	SPO-Version /
Studiengang	Abschluss	(PM/WPM)	Studiensemester	Jahr
AIN	B.Sc.	PM	5-7	SPO 3 / 2020

Inhaltliche Teilnahme Voraussetzung	DIGI/02, REAR/09
Verwendbarkeit des Moduls	Als Vorkenntnis erforderlich für Modul:
im o.g. Studiengang	Sinnvoll zu kombinieren mit Modul: MPS/ES3

Püfungsleistungen des Moduls		Benotete Prüfung	Unbenotete Prüfung	Unbenoteter Leistungsnachweis
	Modulprüfung (MP)	SP (LP)		
	Modulteilprüfung (MTP)			
Zusammensetzung der Endnote	 ☑ Note der benoteten Modul(teil)prüfung ☐ ECTS-gewichtetes artihmetisches Mittel der benoteten Modulteilprüfungen ☐ Sonstiges: 			

Die Studierenden sind mit den theoretischen Grundlagen der Digitaltechnik auf der Logikebene vertraut, und beherrschen Verfahren zur systematischen Analyse und Synthese digitaler Systeme. Sie sind in der Lage, geeignete Modelle und Methoden zur Lösung spezifischer Aufgabenstellungen sowie Verfahren zur Optimierung der gefundenen Lösungen anzuwenden. Sie verfügen über Kenntnisse im Aufbau und in der Funktionsweise digitaler Grundschaltungen.

Personale Kompetenzen: Die Studierenden können, alleine oder in kleinen Gruppen, Lösungen zu Aufgabenstellungen finden und ihre Erkenntnisse präsentieren.

Lehr- und Lernformen	oximes Vorlesung $oxdot$ Übung $oxdot$ Selbststudium $oxdot$ Workshop/Seminar $oxdot$ Projekt $oxdot$ Labor
	\square Exkursion \square E-Learning \square Hausarbeit \square Sonstiges:

Teilmodul Lehrende	Art	sws	ECTS	Lehrinhalt
Digitale Systeme Prof. Dr. I. Schoppa	V	2	2	 Einführung in VHDL Verhaltens- und Strukturbeschreibung VHDL-Codierungsstil und Entwurfsmuster Modellierung von Schaltnetzen und Schaltwerken programmierbare Logikbausteine FPGA/CPLD Systeme mit kooperierenden Schaltwerken Handshaking und Synchronisationsverfahren Fließbandorganisierte Rechenwerke Soft-Core-Prozessoren
Digitale Systeme Übungen Prof. Dr. I. Schoppa	LÜ	2	4	Die Lehrinhalte werden abschnittsweise über Laborübungen (inkl. Fragen, Diskussion, Teamarbeit in kleinen Gruppen, Präsentation der Lösungsmethoden) vertieft. Sie werden ferner permanent über eine Vielzahl von konkreten Praxisbeispielen veranschaulicht.

Literatur/Medien	 Schoppa, I.: Vorlesungs- und Übungs Skahill, K.: VHDL for Programmable L Chu, P.: FPGA Prototyping by VHDL-E: Armstrong, J., Gray. F.: VHDL Design: Hall, 2000. 	.ogic, Addison-Wesley, 1 xamples, Wiley, 2008.	996.
Sprache	Deutsch	Zuletzt aktualisiert	30.10.2018

Modul ES5	Parallel Computing								
Modul-Koordination	Start	Start Modul-Kürzel/-Nr. ECTS-Punkte Arbeitsaufwand							
Prof. Dr. M. Mächtel	SoSe	PACO/ES5	6	180 h					
	Dauer	SWS	Kontaktzeit	Selbststudium					
	1 Semester	4	60 h	120 h					

Einsatz des Moduls im	Angestrebter	Modul-Typ	Beginn im	SPO-Version /
Studiengang	Abschluss	(PM/WPM)	Studiensemester	Jahr
AIN	B.Sc.	PM	5-7	SPO 3 / 2020

Inhaltliche Teilnahme Voraussetzung	BSYS/13
Verwendbarkeit des Moduls	Als Vorkenntnis erforderlich für Modul:
im o.g. Studiengang	Sinnvoll zu kombinieren mit Modul: RNET/17, VESY/18

Püfungsleistungen des Moduls		Benotete Prüfung	Unbenotete Prüfung	Unbenoteter Leistungsnachweis
	Modulprüfung (MP)	SP (LP)		
	Modulteilprüfung (MTP)			
Zusammensetzung der Endnote	 ✓ Note der benoteten Modul(teil)prüfung ☐ ECTS-gewichtetes artihmetisches Mittel der benoteten Modulteilprüfungen ☐ Sonstiges: 		gen	

Die Studenten beherrschen theoretische und praktische Konzepte und Methoden zur Programmierung paralleler Systeme. Sie sind in der Lage geeignete Methoden zur Lösung spezifischer Aufgabenstellungen anzuwenden. Sie verfügen über praktische Laborerfahrung im Umgang mit verschiedener Programmierkonzepten und Programmiersprachen von parallelen Systemen.

Personale Kompetenzen: Durch Laboraufgaben werden folgende Schlüssel- und Methodenkompetenzen entwickelt:

- Teamarbeit in kleinen Gruppen

- - Präsentation der Lösungsmethoden

Lehr- und Lernformen	oximes Vorlesung $oxdot$ Übung $oxdot$ Selbststudium $oxdot$ Workshop/Seminar $oxdot$ Projekt $oxdot$ Labor
Lem- und Lemonnen	\square Exkursion \square E-Learning \square Hausarbeit \square Sonstiges:

Teilmodul Lehrende	Art	sws	ECTS	Lehrinhalt
Parallel Computing Prof. Dr. M. Mächtel	V	2	2	 Grundlagen und Konzepte von parallelen Systemen Rechnerarchitekturen für Parallele Systeme Programmiermodelle für gemeinsamen Speicher Performance Analyse paralleler Programme Thread Programming, GPU Programming Parallelisierung Nebenläufigkeitsprobleme paralleler Programmierung Rechenlastverteilung
Parallel Computing Übungen Prof. Dr. M. Mächtel	LÜ	2	4	 Spezifikationen lesen und in der Entwicklung eines eigenen parallelen Systems umsetzen Umgang mit Werkzeugen (Linux, Editor, Compiler, Buildmanagement) Systeme und nötige Anwendungs-Programme vorführen, die Lösung verteidigen Darstellung der Ergebnisse in technischen Berichten

Literatur/Medien	 Pacheco, Peter S.: An Introduction to Thomas Rauber Gudula Rünger: Para Systems Günther Bengel, Christian Baun, Mar Parallele und Verteilte Systeme 	llel Programmung for Multircore and Cluster
Sprache	Deutsch	Zuletzt aktualisiert 30.10.2018

Modul ES6	Ubiquitous Computing				
Modul-Koordination	Start	Modul-Kürzel/-Nr.	ECTS-Punkte	Arbeitsaufwand	
Prof. Dr. R. Seepold	SoSe, WS	UbiCom/ES6	6	180 h	
	Dauer	SWS	Kontaktzeit	Selbststudium	
	1 Semester	4	60 h	120 h	

Einsatz des Moduls im	Angestrebter	Modul-Typ	Beginn im	SPO-Version /
Studiengang	Abschluss	(PM/WPM)	Studiensemester	Jahr
AIN	B.Sc.	PM	5-7	SPO 3 / 2020

Inhaltliche Teilnahme Voraussetzung	
Verwendbarkeit des Moduls	Als Vorkenntnis erforderlich für Modul:
im o.g. Studiengang	Sinnvoll zu kombinieren mit Modul:

Püfungsleistungen des Moduls		Benotete Prüfung	Unbenotete Prüfung	Unbenoteter Leistungsnachweis
	Modulprüfung (MP)	SP (PR, AB)		
	Modulteilprüfung (MTP)			SP (LP, TE)
Zusammensetzung der Endnote	Note der benoteten Modul(teil)prüfung □ ECTS-gewichtetes artihmetisches Mittel der benoteten Modulteilprüfungen □ Sonstiges:		gen	

Die Studierenden sind mit den Grundlagen von Ubiquitous Computing, Internet of Things und mit deren Anwendungen aus dem Bereich Active Assisted Living/Telemonitoring vertraut. Sie haben typische Szenarien kenngelernt und können diese bewerten. Sie sind in der Lage Problemstellungen zu analysieren und spezifische Lösungsvorschläge zu erarbeiten. Sie können einfache Problemlösungen selbständige programmieren.

Personale Kompetenzen: Die Studierenden können, alleine oder in kleinen Gruppen, Lösungen zu Aufgabenstellungen aus der Ubiquitous Computing finden und ihre Erkenntnisse präsentieren. Die Studierenden können die gesellschaftliche Relevanz von Ubiquitous Computing insbesondere in Bereichen wie z.B. ein selbstbestimmtes Leben, nachhaltige Pflege, Betreuung sowie Komfort und Gesundheit im Alter zu Hause ebenso einordnen, wie eine dezentrale, ressourcenschonende Energieversorgung.

	☑ Vorlesung □ Übung ☑ Selbststudium □ Workshop/Seminar □ Projekt ☑ Labor
Lem una Lemonnen	☐ Exkursion ☐ E-Learning ☐ Hausarbeit ☐ Sonstiges:

Teilmodul Lehrende	Art	sws	ECTS	Lehrinhalt
Ubiquitous Computing Prof. Dr. R. Seepold	V	2	3	 Einführung, Begriffsdefinition Sensoren, Aktoren Peripher-Technologien Standards Hardware-Schnittstellen Protokoll-Schnittstellen Kontextsensitivität Integrationsplattformen Anwendungen Durch Übungen werden folgende Schlüssel- und Methodenkompetenzen entwickelt: Teamarbeit in kleinen Gruppen Eigenständige Lösungserarbeitung Präsentation der Lösungsmethoden
Ubiquitous Computing Übungen Prof. Dr. R. Seepold	LÜ	2	3	

Literatur/Medien	Seepold, R.: Vorlesungs- und Übungsunterlagen, HTWG Konstanz.		
Sprache	Englisch	Zuletzt aktualisiert	30.10.2018

Modul ES7	Wahlpflichtmodul				
Modul-Koordination	Start	Start Modul-Kürzel/-Nr. ECTS-Punkte Arbeitsaufw			
Studiendekan / Studiengangsleiter AIN	SoSe, WS	WPM/ES7	12	360 h	
	Dauer	SWS	Kontaktzeit	Selbststudium	
	1 Semester	8	120 h	240 h	

Einsatz des Moduls im	Angestrebter	Modul-Typ	Beginn im	SPO-Version /
Studiengang	Abschluss	(PM/WPM)	Studiensemester	Jahr
AIN	B.Sc.	WPM	5-7	

Inhaltliche Teilnahme Voraussetzung	Grundstudium
Verwendbarkeit des Moduls	Als Vorkenntnis erforderlich für Modul:
im o.g. Studiengang	Sinnvoll zu kombinieren mit Modul: Modulen aus der Vertiefungsrichtung ES

Püfungsleistungen des Moduls		Benotete Prüfung	Unbenotete Prüfung	Unbenoteter Leistungsnachweis
	Modulprüfung (MP)	X	X	
	Modulteilprüfung (MTP)			
Zusammensetzung der Endnote	 ☑ Note der benoteten Modul(teil)prüfung ☐ ECTS-gewichtetes artihmetisches Mittel der benoteten Modulteilprüfungen ☐ Sonstiges: 			

Lernziele des	Die Studierenden haben vertiefte Kenntnisse in Spezialgebieten der Informatik erworben.Falls sie
Moduls	Fächer aus dem Studium Generale ausgewählt haben, haben sie fachübergreifende Methoden- und
Moduls	Sozialkompetenzen erworben.

l enr- una i erntormen	oximes Vorlesung $oximes$ Übung $oximes$ Selbststudium $oximes$ Workshop/Seminar $oximes$ Projekt $oximes$ Labor
	\square Exkursion \square E-Learning \square Hausarbeit \square Sonstiges:

Teilmodul Lehrende	Art	sws	ECTS	Lehrinhalt
Wahlpflichtmodul gemäß Aushang Studiendekan / Studiengangsleiter AIN	Х	8	12	Lehrinhalte, Prüfungsmodalitäten und ggf. eine Gruppeneinteilung werden durch den/die Dozenten/Dozentin i.d.R. in der ersten Vorlesungsstunde bekannt gegeben. Es dürfen Veranstaltungen im Umfang von maximal 6 ECTS-Punkten aus dem Studium Generale gewählt werden.

Literatur/Medien	Abhängig vom jeweiligen Wahlpflichtmodul		
Sprache	Deutsch, ggf. Englisch	Zuletzt aktualisiert	30.10.2018

Modul SE1	Web-Applikatio	Web-Applikationen			
Modul-Koordination	Start	Modul-Kürzel/-Nr.	ECTS-Punkte	Arbeitsaufwand	
Prof. Dr. M. Boger	WS	WAPP/SE1	6	180 h	
	Dauer	sws	Kontaktzeit	Selbststudium	
	1 Semester	4	60 h	120 h	

Einsatz des Moduls im	Angestrebter	Modul-Typ	Beginn im	SPO-Version /
Studiengang	Abschluss	(PM/WPM)	Studiensemester	Jahr
AIN	B.Sc.	PM	5-7	SPO 3 / 2020

Inhaltliche Teilnahme Voraussetzung	SENG/12
Verwendbarkeit des Moduls	Als Vorkenntnis erforderlich für Modul:
im o.g. Studiengang	Sinnvoll zu kombinieren mit Modul: SOAR/SE3, SWQS/SE4, MOAN/SE6

Püfungsleistungen des Moduls		Benotete Prüfung	Unbenotete Prüfung	Unbenoteter Leistungsnachweis	
	Modulprüfung (MP)	SP (LP, PR, AB)			
	Modulteilprüfung (MTP)				
Zusammensetzung der Endnote	 ☑ Note der benoteten Modul(teil)prüfung ☐ ECTS-gewichtetes artihmetisches Mittel der benoteten Modulteilprüfungen ☑ Sonstiges: Die Note ergibt sich aus einem zusammenhängenden Projekt 				

	Die Studierenden erlangen ein vertieftes Wissen über Internettechnologien und die Entwicklung von Web-Anwendungen.
Lernziele des Moduls	Personale Kompetenzen: Die Studierenden setzen diese in kleinen Teams in einem zusammenhängen Projekt um, dass im Verlauf des Semesters auf Basis der behandelten Themen entwickelt wird.Die Studierenden können die gesellschaftliche Relevanz von Web-Appikationen insbesondere im Bereich Datenschutz einordnen.

Lehr- und Lernformen	☑ Vorlesung ☑ Übung ☑ Selbststudium ☐ Workshop/Seminar ☑ Projekt ☑ Labor
	\square Exkursion \square E-Learning \square Hausarbeit \square Sonstiges:

Teilmodul Lehrende	Art	sws	ECTS	Lehrinhalt
Web-Applikationen Prof. Dr. M. Boger	V	2	2	 Fortgeschrittene Konzepte von HTML, CSS, SVG Browsertechnologien, Skriptsprachen im Browser (Javascript) Userinterface Design, UX Responsive Design (Bootstrap) Servertechnologien (Play) Kommunikation zwischen Browser und Server (AJAX, Comet, Web- Sockets) Clientseitige Frameworks (Vue) Authentifizierung Deployment
Web-Applikationen Ü bungen Prof. Dr. M. Boger	LÜ	2	4	

Literatur/Medien			
Sprache	Deutsch	Zuletzt aktualisiert	30.10.2018

Modul SE2	Sprachkonzepte					
Modul-Koordination	Start	Modul-Kürzel/-Nr.	ECTS-Punkte	Arbeitsaufwand		
Prof. Dr. H. von Drachenfels	WS SPKO/SE2 6 180					
	Dauer	SWS	Kontaktzeit	Selbststudium		
	1 Semester	4	60 h	120 h		

Einsatz des Moduls im	Angestrebter	Modul-Typ	Beginn im	SPO-Version /
Studiengang	Abschluss	(PM/WPM)	Studiensemester	Jahr
AIN	B.Sc.	PM	5-7	SPO 3 / 2020

Inhaltliche Teilnahme Voraussetzung	PROG1/03, PROG2/07, SYPR/08, SENG/12
Verwendbarkeit des Moduls	Als Vorkenntnis erforderlich für Modul:
im o.g. Studiengang	Sinnvoll zu kombinieren mit Modul:

Püfungsleistungen des Moduls		Benotete Prüfung	Unbenotete Prüfung	Unbenoteter Leistungsnachweis
	Modulprüfung (MP)	K90		
	Modulteilprüfung (MTP)			SP (LP)
Zusammensetzung der Endnote	 ☑ Note der benoteten Modul(teil)prüfung ☐ ECTS-gewichtetes artihmetisches Mittel der benoteten Modulteilprüfungen ☐ Sonstiges: 			

Die Studierenden kennen die wichtigsten Sprachkonzepte und können diese kritisch beurteilten. Sie können einschätzen, welche Sprachkonzepte für welche Problemstellung geeignet sind. Die Studierenden verstehen die Funktionsweise von Compilern und Interpretern. Sie sind in der Lage Compilerbau-Werkzeuge anzuwenden.

Lehr- und Lernformen	oximes Vorlesung $oxdot$ Übung $oxdot$ Selbststudium $oxdot$ Workshop/Seminar $oxdot$ Projekt $oxdot$ Labor
Lem's und Lemiormen	\square Exkursion \square E-Learning \square Hausarbeit \square Sonstiges:

Teilmodul Lehrende	Art	sws	ECTS	Lehrinhalt
Sprachkonzepte Prof. Dr. H. von Drachenfels	V	2	3	 Programmierparadigmen Syntax, Semantik und Pragmatik von Programmiersprachen Compiler und Interpreter Speicherverwaltung, insbesondere Garbage Collection
Sprachkonzepte Übungen Prof. Dr. H. von Drachenfels	LÜ	2	3	 Programmieraufgaben Verwendung Compilerbau-Werkzeuge Vertiefung der Inhalte der Vorlesung

Literatur/Medien	 von Drachenfels, H.: Unterlagen zur Lehrveranstaltung auf http://www-home.htwg-konstanz.de/~drachen/ Sestoft, P.: Programming Language Concepts. Springer 2017 Parr, T.: Language Implementation Patterns. Raleigh [u.a.]: Pragmatic Bookshelf, 2010 				
Sprache	Deutsch Zuletzt aktualisiert 30.10.2018				

Modul SE3	Softwarearchitektur					
Modul-Koordination	Start	Start Modul-Kürzel/-Nr. ECTS-Punkte Arbeitsaufwand				
Prof. Dr. M. Boger	WS	SOAR/SE3	6	180 h		
	Dauer	sws	Kontaktzeit	Selbststudium		
	1 Semester	4	60 h	120 h		

Einsatz des Moduls im	Angestrebter	Modul-Typ	Beginn im	SPO-Version /
Studiengang	Abschluss	(PM/WPM)	Studiensemester	Jahr
AIN	B.Sc.	PM	5-7	

Inhaltliche Teilnahme Voraussetzung	SENG/12
Verwendbarkeit des Moduls im o.g. Studiengang	Als Vorkenntnis erforderlich für Modul: Sinnvoll zu kombinieren mit Modul: WAPP/SE1, SWQS/SE4

Püfungsleistungen des Moduls		Benotete Prüfung	Unbenotete Prüfung	Unbenoteter Leistungsnachweis
	Modulprüfung (MP)	SP (LP, PR, AB)		
	Modulteilprüfung (MTP)			
Zusammensetzung der Endnote	 ☑ Note der benoteten Modul(teil)prüfung ☐ ECTS-gewichtetes artihmetisches Mittel der benoteten Modulteilprüfungen ☑ Sonstiges: Die Note ergibt sich aus einem zusammenhängenden Projekt 			

Die Studierenden erlernen grundlegende Kenntnisse zur Beurteilung, Entwicklung und Dokumentation von Softwarearchitekturen. Die Studierenden lernen Konzepte von Architekturen, wie Schichten, Abstraktion, Entkopplung und Komponentenbildung kennen und anwenden. Sie lernen Softwarearchitekturen für Einzelplatzlösungen, erweiterbare Systeme, verteilte Systeme, persistente Systeme, service-orientierte Systeme und Websysteme kennen. Sie lernen Mechanismen zur Entwicklung skalierbarer und erweiterbarer Systeme kennen. Sie lernen Techniken zur Messung und zur Optimierung der Performance kennen.

Lehr- und Lernformen	☑ Vorlesung ☑ Übung ☑ Selbststudium ☐ Workshop/Seminar ☑ Projekt ☑ Labor
Lem una Lemonnen	☐ Exkursion ☐ E-Learning ☐ Hausarbeit ☐ Sonstiges:

Teilmodul Lehrende	Art	sws	ECTS	Lehrinhalt
Softwarearchitektur Prof. Dr. M. Boger	V	2	2	 Grundlagen der Softwarearchitektur Vertiefte Konzepte der funktionalen Programmierung Monaden Futures Aktormodell Verteilung Microservices Docker Persistence Performance-Messung und Optimierung Architektur-Muster
Softwarearchitektur Übungen Prof. Dr. M. Boger	LÜ	2	4	

Literatur/Medien			
Sprache	Deutsch	Zuletzt aktualisiert	30.10.2018

Modul SE4	Softwarequalitätssicherung					
Modul-Koordination	Start	Start Modul-Kürzel/-Nr. ECTS-Punkte Arbeitsaufwand				
Prof. Dr. M. J. Eiglsperger	SoSe SWQS/SE4 6 180					
	Dauer	SWS	Kontaktzeit	Selbststudium		
	1 Semester	4	60 h	120 h		

Einsatz des Moduls im	Angestrebter	Modul-Typ	Beginn im	SPO-Version /
Studiengang	Abschluss	(PM/WPM)	Studiensemester	Jahr
AIN	B.Sc.	PM	5-7	SPO 3 / 2020

Inhaltliche Teilnahme Voraussetzung	SENG/12
Verwendbarkeit des Moduls im o.g. Studiengang	Als Vorkenntnis erforderlich für Modul: Sinnvoll zu kombinieren mit Modul: WAPP/SE1, SOAR/SE3

Püfungsleistungen des Moduls		Benotete Prüfung	Unbenotete Prüfung	Unbenoteter Leistungsnachweis
	Modulprüfung (MP)	K90		
	Modulteilprüfung (MTP)			SP (LP)
Zusammensetzung der Endnote	 ✓ Note der benoteten Modul(teil)prüfung ☐ ECTS-gewichtetes artihmetisches Mittel der benoteten Modulteilprüfungen ☐ Sonstiges: 			

Lernziele	des
Moduls	

Die Studierenden kennen und verstehen die grundlegenden Konzepte der konstruktiven und der analytischen Qualitätssicherung für Software. Sie können Tests in allen Phasen des Softwarelebenszyklus erstellen, ausführen und bewerten und können mit den dafür notwendigen Werkzeugen umgehen. Die Studierenden können die Rolle des Testens in Plangetriebenen und Agilen Softwareentwicklungsprozessen einordnen.

Personale Kompetenzen: Psychologie des Testens

Lenr- lina Lerntormen	oximes Vorlesung $oximes$ Übung $oximes$ Selbststudium $oximes$ Workshop/Seminar $oximes$ Projekt $oximes$ Labor
	\square Exkursion \square E-Learning \square Hausarbeit \square Sonstiges:

Teilmodul Lehrende	Art	sws	ECTS	Lehrinhalt
Softwarequalitätssicherung Prof. Dr. M. J. Eiglsperger	V	2	3	 Qualitätskriterien von Software nach ISO/IEC 25000. Konstruktive versus analytische Qualitätssicherung Integration der Softwarequalitätssicherung in Software-Entwicklungsprozesse. Testen im Software Lebenszyklus: Komponententest, Integrationstest, Systemtest, Akzeptanztest Testen in Agilen Projekten. Statische Testverfahren, z.B. Reviews, Inspektionen, Code Metriken. Dynamische Testverfahren, Blackbox-Testverfahren und Whitebox-Testverfahren Testwerkzeuge Psychologie des Testens
Softwarequalitätssicherung Übungen Prof. Dr. M. J. Eiglsperger	LÜ	2	3	 Testfälle entwickeln. Komponententest, Integrationstest, Systemtest, Akzeptanztest erstellen, durchführen und bewerten. Automatische und manuelle Prüfung an Software durchführen. Testwerkzeuge anwenden um Problemstellungen zu lösen.

Literatur/Medien	 Spillner Andreas, Linz Tilo: Basiswissen Softwaretest: Aus- und Weiterbildung zum Certified Tester – Foundation Level nach ISTQB-Standard, 5. Auflage, dpunkt.verlag, 2012. Crispin Lisa, Gregory Janet: Agile Testing: A Practical Guide for Testers and Agile Teams, 1st Edition, Addison-Wesley Professional, 2009.
------------------	---

Hochschule Konstanz Fakultät Informatik Modulhandbuch des Studiengangs Angewandte Informatik, Bachelor of Science

Sprache Deutsch	Zuletzt aktualisiert	30.10.2018
-----------------	----------------------	------------

Modul SE5	Datenbanksysteme 2						
Modul-Koordination	Start	Start Modul-Kürzel/-Nr. ECTS-Punkte Arbeitsaufwand					
Prof. Dr. O. Eck	WS	DBSYS2/SE5	6	180 h			
	Dauer	SWS	Kontaktzeit	Selbststudium			
	1 Semester	4	60 h	120 h			

Einsatz des Moduls im	Angestrebter	Modul-Typ	Beginn im	SPO-Version /
Studiengang	Abschluss	(PM/WPM)	Studiensemester	Jahr
AIN	B.Sc.	PM	5-7	

Inhaltliche Teilnahme Voraussetzung	DBSYS1/14
Verwendbarkeit des Moduls im o.g. Studiengang	Als Vorkenntnis erforderlich für Modul: Sinnvoll zu kombinieren mit Modul:

Püfungsleistungen des Moduls		Benotete Prüfung	Unbenotete Prüfung	Unbenoteter Leistungsnachweis
	Modulprüfung (MP)	K90		
	Modulteilprüfung (MTP)			SP (LP)
Zusammensetzung der Endnote	 ✓ Note der benoteten Modul(teil)prüfung ☐ ECTS-gewichtetes artihmetisches Mittel der benoteten Modulteilprüfungen ☐ Sonstiges: 			

Die Studierenden haben grundlegende Kenntnisse über Konzepte von Datenbanksystemen, verstehen deren Einsatzmöglichkeiten und kennen deren Funktionsweise. Die Studierenden wissen, wie sie die Sicherheit und Performance von Datenbanksystemen beeinflussen können. Sie kennen verschiedene Datenbanktypen und grundlegende Speicherstrukturen und können deren Vor- und Nachteile bewerten. Sie können einschätzen, welcher Datenbanktyp für eine Aufgabenstellung geeignet ist. Sie haben die Fähigkeit, Software für verschiedene Datenbanktypen zu programmieren.

Personale Kompetenzen: Die Studierenden sind in der Lage ihre Kenntnisse anhand von Literatur selbständig zu vertiefen. Die Studierenden können, alleine oder in kleinen Gruppen, Lösungen zu Aufgabenstellungen aus der Digitaltechnik finden.

Lehr- und Lernformen	oximes Vorlesung $oxdot$ Übung $oxdot$ Selbststudium $oxdot$ Workshop/Seminar $oxdot$ Projekt $oxdot$ Labor
	\square Exkursion \square E-Learning \square Hausarbeit \square Sonstiges:

Teilmodul Lehrende	Art	sws	ECTS	Lehrinhalt	
Datenbanksysteme 2 Prof. Dr. O. Eck	V	2	3	 Transaktionsverwaltung und Fehlerbehandlung Sicherheitsaspekte von relationalen Datenbanken Optimierung relationaler Datenbanken Betriebliche Anwendungen von Datenbanken Kategorisierung und theoretische Grundlagen von NoSQL-Datenbanken Dokumentenorientierte und graphbasierte NoSQL-Datenbanken 	
Datenbanksysteme 2 Übungen Prof. Dr. O. Eck	LÜ	2	3	 Vertiefung und Anwendung der Inhalte der Vorlesung Programmierung von NoSQL-Datenbanken 	

Literatur/Medien	 Eck, O.: Vorlesungsfolien und Übungs Kemper, A., Eickler, A.: Datenbanksys Auflage, 2015 Elmasri, R., Navathe, D.B.: Fundamen 2017 Edlich, S., Friedland, A., Hampe, J., Br die Welt nichtrelationaler Web 2.0 E 2011 	steme – Ēine Einführung tals of Database System auer, B., Brücklner, M.:	s, Pearson, 7. Aufl., NoSQL: Einstieg in
Sprache	Deutsch	Zuletzt aktualisiert	30.10.2018

Modul SE6	Mobile Anwendungen						
Modul-Koordination	Start	Start Modul-Kürzel/-Nr. ECTS-Punkte Arbeitsaufwand					
Prof. Dr. M. J. Eiglsperger	WS	MOAN/SE6	6	180 h			
	Dauer	SWS	Kontaktzeit	Selbststudium			
	1 Semester	4	60 h	120 h			

Einsatz des Moduls im	Angestrebter	Modul-Typ	Beginn im	SPO-Version /
Studiengang	Abschluss	(PM/WPM)	Studiensemester	Jahr
AIN	B.Sc.	PM	5-7	SPO 3 / 2020

Inhaltliche Teilnahme Voraussetzung	SENG/12
Verwendbarkeit des Moduls	Als Vorkenntnis erforderlich für Modul:
im o.g. Studiengang	Sinnvoll zu kombinieren mit Modul: WAPP/SE1

Püfungsleistungen des Moduls		Benotete Prüfung	Unbenotete Prüfung	Unbenoteter Leistungsnachweis
	Modulprüfung (MP)	SP		
	Modulteilprüfung (MTP)			
Zusammensetzung der Endnote	 ✓ Note der benoteten Modul(teil)prüfung ☐ ECTS-gewichtetes artihmetisches Mittel der benoteten Modulteilprüfungen ☐ Sonstiges: 			

Die Studierenden kennen die spezifischen Herausforderungen bei der Realisierung mobiler Anwendungen. Sie können verschiedene mobile Anwendungen unter Benutzung unterschiedlicher Technologien realisieren und ausliefern. Sie sind in der Lage eine native Android Anwendung mit den entsprechenden Werkzeugen zu entwickeln und auszuliefern welche mittels einer GUI mit dem User, mittels Sensoren mit der Umwelt und mittels einer Schnittstelle mit einer Serveranwendung kommunizieren kann, sowie lokal Daten speichert und asynchron mit dem User kommuniziert.

Personale Kompetenzen: Die Studierenden setzen diese in kleinen Teams in einem zusammenhängenden Projekt um, dass im Verlauf des Semesters auf Basis der behandelten Themen entwickelt wird. Die Studierenden können die gesellschaftliche Relevanz von mobilen Anwendungen insbesondere im Bereich Datenschutz einordnen.

Lehr- und Lernformen	oximes Vorlesung $oxdot$ Übung $oxdot$ Selbststudium $oxdot$ Workshop/Seminar $oxdot$ Projekt $oxdot$ Labor
	\square Exkursion \square E-Learning \square Hausarbeit \square Sonstiges:

Teilmodul Lehrende	Art	sws	ECTS	Lehrinhalt
Mobile Anwendungen Prof. Dr. M. J. Eiglsperger	V	2	2	 Kontext und Rolle von mobilen Anwendungen und Plattformen. Prinzipielle Ablauf, Iterative Entwicklung und Rapid Prototyping von mobilen Anwendungen. Entwicklung von Benutzeroberflächen für ein mobiles OS. Datenspeicherung auf mobilen Geräten. Lebenszyklus einer Mobilen Anwendung. Kommunikation mit anderen Mobilen Anwendungen. Sensoren und ihre Schnittstellen. Cross-Plattform Entwicklung.
Mobile Anwendungen Übungen Prof. Dr. M. J. Eiglsperger	LÜ	2	4	 Beherrschen der Werkzeuge für die Entwicklung. Erstellen von Beispielapplikationen in unterschiedlichen Technologien inklusive Analyse, Entwurf, Entwicklung, Test und Bereitstellung.

Literatur/Medien	Dirk Louis, Peter Müller: Android: Der schnelle und einfache Einstieg in die Programmierung und Entwicklungsumgebung, 2. Auflage, Hanser Verlag, 2016.		
Sprache	Deutsch	Zuletzt aktualisiert	30.10.2018

Modul SE7	Wahlpflichtmodul			
Modul-Koordination	Start	Modul-Kürzel/-Nr.	ECTS-Punkte	Arbeitsaufwand
Studiendekan / Studiengangsleiter AIN	SoSe, WS	WPM/SE7	12	360 h
	Dauer	SWS	Kontaktzeit	Selbststudium
	1 Semester	8	120 h	240 h

Einsatz des Moduls im	Angestrebter	Modul-Typ	Beginn im	SPO-Version /
Studiengang	Abschluss	(PM/WPM)	Studiensemester	Jahr
AIN	B.Sc.	WPM	5-7	SPO 3 / 2020

Inhaltliche Teilnahme Voraussetzung	Grundstudium
Verwendbarkeit des Moduls im o.g. Studiengang	Als Vorkenntnis erforderlich für Modul: Sinnvoll zu kombinieren mit Modul: Modulen aus der Vertiefungsrichtung SE

Püfungsleistungen des Moduls		Benotete Prüfung	Unbenotete Prüfung	Unbenoteter Leistungsnachweis
	Modulprüfung (MP)	Χ	X	
	Modulteilprüfung (MTP)			
Zusammensetzung der Endnote	 ☑ Note der benoteten Modul(teil)prüfung ☐ ECTS-gewichtetes artihmetisches Mittel der benoteten Modulteilprüfungen ☐ Sonstiges: 		jen	

Lernziele des Moduls	Die Studierenden haben vertiefte Kenntnisse in Spezialgebieten der Informatik erworben.Falls sie Fächer aus dem Studium Generale ausgewählt haben, haben sie fachübergreifende Methoden- und Sozialkompetenzen erworben.
-------------------------	--

Lehr- und Lernformen	oximes Vorlesung $oximes$ Übung $oximes$ Selbststudium $oximes$ Workshop/Seminar $oximes$ Projekt $oximes$ Labor
	\square Exkursion \square E-Learning \square Hausarbeit \square Sonstiges:

Teilmodul Lehrende	Art	sws	ECTS	Lehrinhalt
Wahlpflichtmodul gemäß Aushang Studiendekan / Studiengangsleiter AIN	Х	8	12	Lehrinhalte, Prüfungsmodalitäten und ggf. eine Gruppeneinteilung werden durch den/die Dozenten/Dozentin i.d.R. in der ersten Vorlesungsstunde bekannt gegeben. Es dürfen Veranstaltungen im Umfang von maximal 6 ECTS-Punkten aus dem Studium Generale gewählt werden.

Literatur/Medien	Abhängig vom jeweiligen Wahlpflichtmodul				
Sprache	Deutsch, ggf. Englisch	Zuletzt aktualisiert	30.10.2018		