

Modelling Multi-tier Enterprise Applications Behaviour with Design of Experiments Technique

Tatiana Ustinova, Pooyan Jamshidi Imperial College London

DICE

Horizon 2020 Research & Innovation Action Grant Agreement no. 644869 http://www.dice-h2020.eu

DevOps

https://upload.wikimedia.org/wikipedia/commons/b/b5/Devops.svg

Research Aim and Objectives

Aim:

Is DoE good to model and predict application performance?

Objectives:

- Introduce DoE.
- 2. Build app performance model.
- Model prediction accuracy.

Test environment: 3-tier web-based enterprise application

Design of Experiments: Introduction

Linear Regression model: $Y = I + A * X + \varepsilon$

where

$$Y = \begin{bmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{bmatrix} \quad I = \begin{bmatrix} I_1 \\ I_2 \\ \vdots \\ I_n \end{bmatrix} \quad A = \begin{bmatrix} a_{11} a_{12} \dots a_{1m} \\ a_{21} a_{22} \dots a_{2m} \\ \vdots & \vdots & \vdots \\ a_{n1} a_{n2} \cdots a_{nm} \end{bmatrix} \quad X = \begin{bmatrix} X_1 \\ X_2 \\ \vdots \\ X_m \end{bmatrix} \quad \varepsilon = \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_n \end{bmatrix} \quad \text{ℓ- error term}$$

Design of Experiments: Introduction

- 1. How to choose values for factors?
- 2. How many experiments to fit the model?
- 3. What if there are too many factors?

DoE: Screening Procedure

Two levels for each factor

	Levels			
	Low (-1)	High (1)		
Number of users	3	20		
User think time, s	10	1		
Execution time, min (steady state)	10	30		
Workload mix (user class)	1	III		

 $2^4 = 16$ 5 h 20 min execution time

Full Factorial Design

2^k runs, where k – number of factors

Fractional Factorial Design for 4 factors

$$2^{4-1} = 8 \text{ runs}$$

DoE: Screening procedure (contd.)

DoE: Screening procedure (contd.)

Allocation of variation, %

Effect	Response time CPU utilisation			
N_users	26.03	54.27		
Think time	4.53	42.99		
User class	36.25	1.14		
N_users:Think time	19.13	0.59		
N users:User class	6.63	7.886*10 ⁻⁶		
Think time:User class	1.5x10 ⁻⁸	1.8917*10 ⁻⁴		
N_users:Think time: User class	5.42	12 0.91		
Error	2.01 7.6946*10 ⁻⁴			

DoE: Constructing the Model

Box-Wilson Response Surface Design

Linear Regression Models

Name	Formula			
Linear	$y = I + a_1 x_1 + a_2 x_2 + a_3 x_3$			
Interactions	$y=I+a_1x_1+a_2x_2+a_3x_3+a_4x_1:x_2+a_5x_1:x_3+a_6x_2:x_3$			
Pure Quadratic	$y=I+a_1x_1+a_2x_2+a_3x_3+a_4x_1^2+a_5x_2^2+a_6x_3^2$			
Quadratic	$y = I + a_1 x_1 + a_2 x_2 + a_3 x_3 + a_4 x_1 : x_2 + a_5 x_1 : x_3 + a_6 x_2 : x_3 + a_7 x_1^2 + a_8 x_2^2 + a_9 x_3^2$			
Full Polynomial	$y = I + a_1 x_1 + a_2 x_2 + a_3 x_3 + a_4 x_1 : x_2 + a_5 x_1 : x_3 + a_6 x_2 : x_3 + a_7 x_1 : x_2 : x_3 + a_8 x_1^2 + a_9 x_2^2 + a_{10} x_3^2 + a_{11} x_1^2 : x_2 + a_{12} x_1 : x_2$ $^2 + + a_{13} x_1^2 : x_3$			

DoE: Constructing the Model (cont.)

Fit based on DoE results for various values of user think time

Model Prediction Accuracy

Prediction accuracy: error and bias

		Total prediction error σ, %		Bias, %	
		RT	CPU	RT	CPU
Response Surface models	Linear	6.51	4.3	-3.62	-0.75
	Interactions	6.32	4.09	-2.6	-0.65
	Pure quadratic	5.11	4.93	-2.02	-0.79
	Quadratic	5.42	4.09	-1.0	-0.69
	Full polynomial	5.12	4.06	-1.97	-0.96
FF		6.896	3.987	-4.96	-0.32
MVA		40.0	11.4	-234.6	7.29

Conclusions

- DoE prediction accuracy: 5-6% for RT and 4-5% for Ucpu. Out-of-the box QN algorithm - 40% and 12% respectively.
- DoE captured app's 'anomalous' behaviour w/o information about its 'insides'.
- Screening: 3 factors 98% of variation in RT and 99.9% in Ucpu.
- Fractional factorial designs use with care.

Feedback and Discussion Starter Qs

1. What is the place of DoE in Continuous Testing?

2. CT presents challenges to DevOps. Design of Experiments might be a solution.

Thank you!