UNIDADE UNIVERSITÁRIA: Faculdade de Ciências e Tecnologia

CURSO: Matemática (Licenciatura)

DEPARTAMENTO RESPONSÁVEL: Departamento de Matemática e Computação

PROFESSORA RESPONSÁVEL: Profa. Dr. Irineu Lopes Palhares Junior (**irineu.palhares@unesp.br**)

IDENTIFICAÇÃO
IDENTIFICAÇÃO

IDENTIFICAÇÃO					
CÓDIGO		SERIAÇÃO			
	Cálculo Numérico Avançado	2º Ano/2º Semestre			
OBRIG/OPT/EST	PRÉ E CO-REQUISITO	ANUAL/SEM			
Obrigatória		Semestral			

CRÉDITOS	CARGA HORÁRIA TOTAL	DISTRIBUIÇÃO DA CARGA HORÁRIA			
		TEÓRICA	PRÁTICA	TEO/PRAT	OUTRAS
04	60 h	60 h	0 h		

CONTEÚDO PROGRAMÁTICO (título e descriminação das Unidades)

- 1 Métodos computacionais para decomposição matricial:
 - Decomposição LU e Cholesky. Decomposição QR e SVD.
- 2 Métodos iterativos para solução de sistemas lineares:
 - Jacobi e Gauss-Seidel, SOR e Gradiente Conjutado.
- 3 Cálculo numérico de autovalores e autovetores:
 - Método da potência e suas variações. Método QR. Casos especiais de matrizes tridiagonais.
- 4 Solução numérica de Equações Diferenciais Ordinárias:
- Problema de Valor Inicial. Aplicação de diferenciação numérica. Métodos de Euler e Runge-Kutta. Análise de convergência e estabilidade. Métodos multi-passos.
- 5 Solução numérica de Equações Diferenciais Ordinárias:
 - Problema de Valor de Contorno.
- 6 Método de Euler:
 - Tratamento de condições de contorno

BIBLIOGRAFIA BÁSICA

FRANCO, N. M. B. Cálculo Numérico. São Paulo, Pearson, 2007.

RUGGIERO, M. A. G.; LOPES, V. L. Cálculo numérico: aspectos teóricos e computacionais. 2. ed. São Paulo: Makron, 1996.

BURDEN, R. L; FAIRES, J. D. Análise numérica. 1. ed. São Paulo: Cengage Learning, 2008.

BIBLIOGRAFIA COMPLEMENTAR

CUNHA, C. C. Métodos Numéricos. Campinas: Unicamp, 2001.

QUARTERONI, A.; SALERI, F. Scientific Computing with MATLAB and OCTAVE. New York, Springer, 2006. JOHANSSON, R. Numerical Python: Scientific Computing and Data Science Applicatioons with Numpy, Scipy and Matplotlib. Apress, 2018.

CRITÉRIO DE AVALIAÇÃO DA APRENDIZAGEM

Provas: P1, P2 e Exame Trabalhos: T1 e T2.

Exame: Segundo o novo Regimento da UNESP e esta avaliação deverá ser aplicada no período especificado no calendário escolar da FCT/UNESP.

Média Final = média ponderada das provas e trabalhos. As provas terão peso de 80% e os trabalhos de 20%. Assim, a média final será MF=0.8*(0.5*(P1+P2)) + 0.2*(0.5*(T1+T2)). O aluno será aprovado se a média final for maior ou igual a 5,0.

Datas das Provas:

P1: 05/10/2023 P2: 14/12/2023 Exame: 21/12/2023

Datas dos Trabalhos:

T1: 09/09/2023 T2: 04/11/2023

HORÁRIO DE ATENDIMENTO AO ALUNO: Segundas-feiras das 15h às 16h – minha sala (prof. visitante) – Prédio Departamento de Matemática e Computação (DMC).

AULAS PREVISTAS

Agosto: 03 - 10 - 17 - 24 - 31

Setembro: 09 - 21 - 28Outubro: 05 - 19 - 26

Novembro: 04 - 09 - 16 - 23 - 30

Dezembro: 07--14

Acesse o calendário pelo link:

https://docs.google.com/spreadsheets/d/1T_2eNy1mW-o7U_b4SCOwGr2zz3OBzprhR-U83gi-5W8/edit?

usp=sharing