

Final Exam

Linear Algebra February 19, 2021

Departamento de Matemáticas, FIUBA

Instructions

- 1. All solutions must be presented with rigor and clarity. Justify your answers thoroughly.
- 2. When referencing any results from the course, provide proper citations or references.
- 3. Maintain a concise and legible writing style throughout your answers.
- 4. Best of luck!

Question 1

Consider three complex vector spaces U, V, and W, each of finite dimension, and equipped with inner products. Let us examine two linear functions:

$$U \xrightarrow{f} V \xrightarrow{g} W$$

Prove that if the image of f (Im(f)) is equal to the null space of g (Nu(g)), then the linear function $h = f \circ f^* + g^* \circ g : V \to V$ represents an isomorphism.

Hint: Consider v, an element in the kernel of h. What can you deduce about $\langle g(v), g(v) \rangle$?

Question 2

Let V be a finite-dimensional vector space over a field K, with n as its dimension. Additionally, let f and $g: V \to V$ be two endomorphisms of V such that $f \circ g = g \circ f$.

- 1. Prove that if f is diagonalizable, and its characteristic polynomial has simple roots, then g is also diagonalizable.
- 2. Show that if $f^n = 0$ and $f^{n-1} \neq 0$, then there exists a polynomial $P \in K[X]$ such that g = P(f).

Question 3

Let V be a complex vector space of finite dimension equipped with an inner product, and let $f: V \to V$ be a linear function. If $f^* + f = 0$, then prove that f is diagonalizable, and its eigenvalues have null real parts.

Question 4

Let $n \in \mathbb{N}$ and let k be a field.

- (a) Let A and B be two matrices of $M_n(\mathbb{k})$. Prove that there exists an invertible matrix $C \in M_n(\mathbb{k})$ such that $A = CB \iff \{x \in \mathbb{k}^n : Ax = 0\} = \{x \in \mathbb{k}^n : Bx = 0\}.$
- (b) If a matrix $A \in M_n(\mathbb{k})$ has the same rank as its square A^2 , then there exists an invertible matrix D such that $A^2 = DA$.

Question 5

Let n be in \mathbb{N} and let $V = \mathbb{R}[X]_{\leq n}$ be the vector space of polynomials with real coefficients that are either zero or have degree at most n.

(a) For each $t \in \mathbb{R}$, we consider the linear function $\phi_t : V \to \mathbb{R}$ defined as follows:

$$\phi_t(p) = p(t)$$
 for every $p \in V$.

Show that if t_0, \ldots, t_n are n+1 pairwise distinct elements of \mathbb{R} , then the set $\{\phi_{t_0}, \ldots, \phi_{t_n}\}$ forms a basis for the dual space V^* .

- (b) Now, suppose n = 2, and let $I : V \to \mathbb{R}$ be the linear function defined as $I(p) = \int_0^1 p(x) dx$ for every polynomial $p \in V$. Express I as a linear combination of ϕ_0 , $\phi_{1/2}$, and ϕ_1 .
- (c) Continuing with the assumption that n=2, is it possible to express the function I from the previous part as a linear combination of two functions ϕ_{t_1} and ϕ_{t_2} , by appropriately choosing the numbers t_1 and t_2 ?