1. Solution

The sample size, *n*, is 63. We determine the indeces and values of Q1, Q2, and Q3.

Quartile	Formula for <i>i</i>	i	X
Q1	$\lceil 0.25 imes 63 ceil$	16	22
Q2	$\lceil 0.5 \times 63 \rceil$	32	24.21
Q3	$\lceil 0.75 \times 63 \rceil$	48	27.07

We determine the IQR.

$$IQR = Q3 - Q1$$

= 27.07 - 22
= 5.07

We determine the outlier boundaries.

lower boundary = Q1
$$- 1.5 \times IQR$$

= $22 - 1.5 \times 5.07$
= 14.395
upper boundary = Q3 + $1.5 \times IQR$
= $27.07 + 1.5 \times 5.07$
= 34.675

We determine the outliers.

outliers =
$$\{36.03, 37.14\}$$

We identify the ends of the whiskers: 20.02 and 33.31. We plot the boxplot.

2. Solution

The sample size, *n*, is 72. We determine the indeces and values of Q1, Q2, and Q3.

Quartile	Formula for <i>i</i>	i	Х
Q1	$\lceil 0.25 imes 72 \rceil$	18	21.98
Q2	$\lceil 0.5 \times 72 \rceil$	36	22.49
Q3	$\lceil 0.75 \times 72 \rceil$	54	22.69

We determine the IQR.

$$IQR = Q3 - Q1$$

= 22.69 - 21.98
= 0.71

We determine the outlier boundaries.

lower boundary = Q1
$$- 1.5 \times IQR$$

= 21.98 $- 1.5 \times 0.71$
= 20.915
upper boundary = Q3 + 1.5 $\times IQR$
= 22.69 + 1.5 $\times 0.71$
= 23.755

We determine the outliers.

outliers =
$$\{20.17\}$$

We identify the ends of the whiskers: 21.03 and 23. We plot the boxplot.

