Geometria B

Università degli Studi di Trento Corso di Laurea in Matematica A.A. 2018/2019 2 luglio 2019

Lo studente svolga i seguenti esercizi. **Ogni risposta deve essere adeguatamente motivata**. Si terrà conto non solo della correttezza dei risultati, ma anche della completezza e chiarezza delle spiegazioni.

ATTENZIONE. Il testo è composto da due pagine (la seconda pagina è sul retro di questo foglio).

Esercizio 1. Sia J l'intervallo [0,2] della retta reale, sia τ la topologia su J indotta da quella euclidea di \mathbb{R} , e siano α e β i seguenti due sottoinsiemi di τ :

$$\alpha := \{\emptyset\} \cup \{A \in \tau \mid 1 \in A\}, \qquad \beta := \{\emptyset\} \cup \{A \in \tau \mid (1, 2] \subset A\}.$$

- (1a) Si dimostri che α e β sono due topologie su J che non soddisfano la condizione di Hausdorff e che non sono confrontabili.
- (1b) Si definisca una applicazione continua $f:(J,\alpha)\to (J,\beta)$ che non sia costante.
- (1c) Si dica se (J,α) è connesso per archi. Si dica inoltre se (J,β) è connesso.
- (1d) Sia \mathcal{R} la relazione di equivalenza su J definita ponendo:

$$x \mathcal{R} y$$
 se e soltanto se $x = y$ oppure $x \neq y$ e $\{x, y\} \subset (1, 2]$.

Si dimostri che lo spazio topologico quoziente di (J,β) modulo $\mathcal R$ non è omeomorfo a (J,α) .

(1e) Si dica se il prodotto topologico tra (J, α) e (J, β) è compatto.

SOLUZIONE. (1a) Evidentemente $\{\emptyset, J\} \subset \alpha \cap \beta$ per definizione. Sia $\{A_i\}_{i \in I}$ una famiglia nonvuota (cioè $I \neq \emptyset$) di sottoinsiemi di β . Poiché $A_i \in \tau$ e $(1,2] \subset A_i$ per ogni $i \in I$ e τ è stabile per unione arbitraria, si ha che $\bigcup_{i \in I} A_i \in \tau$ e $(1,2] \subset \bigcup_{i \in I} A_i$, ovvero $\bigcup_{i \in I} A_i \in \beta$. Similmente, se I è finito, essendo τ stabile anche per intersezione finita, vale che $\bigcap_{i \in I} A_i \in \tau$ e $(1,2] \subset \bigcap_{i \in I} A_i$, ovvero $\bigcap_{i \in I} A_i \in \beta$. Dunque β è una topologia su J. Ripetendo parola per parola i precedenti ragionamenti con il singoletto $\{1\}$ al posto di (1,2], otteniamo che anche α è una topologia su J. Queste due topologie non sono di Hausdorff in quanto ogni coppia di aperti nonvuoti A e B ha intersezione nonvuota: più precisamente, $A \cap B$ contiene 1 se gli aperti A e B sono presi in α , oppure contiene (1,2] se gli aperti sono presi in β . Si osservi infine che $(0,2) \in \alpha \setminus \beta$ e $(1,2] \in \beta \setminus \alpha$, dunque α e β non sono confrontabili.

(1b) Sia $f:(J,\alpha)\to (J,\beta)$ la funzione definita ponendo $f(t):=\frac{3}{2}$ se $t\in[0,2)$ e f(2):=2. Tale funzione è evidentemente non costante, ma è anche continua. Infatti, $f^{-1}(\emptyset)=\emptyset\in\alpha$ e, per ogni $A\in\beta\setminus\{\emptyset\},\ A\supset(1,2]\supset\{\frac{3}{2},2\}$ e quindi $f^{-1}(A)\supset f^{-1}(\{\frac{3}{2},2\})=J$, ovvero $f^{-1}(A)=J\in\beta$.

- (1c) L'intervallo euclideo (J,τ) è connesso per archi. Poiché $\alpha \prec \tau$, ogni arco continuo in (J,τ) rimane continuo anche in (J,α) . Segue che (J,α) è connesso per archi. (J,β) è connesso in quanto ogni coppia di aperti nonvuoti di β ha intersezione nonvuota.
- (1d) Sia $\pi: J \to J/\mathfrak{R}$ la proiezione naturale al quoziente topologico. Osserviamo che $[2]_{\mathfrak{R}} = (1,2]$ è un aperto π -saturo di (J,β) . Quindi il singoletto $\{\pi(2)\} = \pi((1,2])$ è un aperto del quoziente J/\mathfrak{R} . D'altra parte, ogni aperto nonvuoto di α contiene un interno euclideo di 1, dunque contiene infiniti punti (mai uno solo). Segue che J non possiede singoletti che siano aperti in α . Dunque (J,α) non è omeomorfo a J/\mathfrak{R} .
- (1e) Per Heine-Borel (J,τ) è compatto. Osserviamo che, per definizione, τ è più fine sia di α che di β ; dunque le applicazioni identità id : $(J,\tau) \to (J,\alpha)$ e id : $(J,\tau) \to (J,\beta)$ sono surgettive e continue. Segue che (J,α) e (J,β) sono entrambi compatti, come il loro prodotto topologico.

Esercizio 2. Sia X uno spazio topologico e sia A un suo sottoinsieme. Si dimostri che

$$\operatorname{Fr}(\operatorname{int}(A)) \cup \operatorname{Fr}(\overline{A}) \subset \operatorname{Fr}(A),$$

dove $\operatorname{int}(A)$ è la parte interna di A in X, \overline{A} è la chiusura di A in X e $\operatorname{Fr}(B)$ è la frontiera di B in X per ogni $B \in \mathcal{P}(X)$.

Si esibisca inoltre un esempio di spazio topologico X e di un suo sottoinsieme A tale che $\operatorname{Fr}(\operatorname{int}(A)) \cup \operatorname{Fr}(\overline{A}) \neq \operatorname{Fr}(A)$.

SOLUZIONE. Sia $x \in \operatorname{Fr}(\operatorname{int}(A)) \cup \operatorname{Fr}(\overline{A})$. Dobbiamo provare che $x \in \operatorname{Fr}(A)$. Supponiamo in prima battuta che $x \in \operatorname{Fr}(\operatorname{int}(A))$. Quindi, per ogni intorno aperto U di x in X, $U \cap \operatorname{int}(A) \neq \emptyset$ e $U \not\subset \operatorname{int}(A)$. Dalla prima condizione, essendo $\operatorname{int}(A) \subset A$, segue subito che $U \cap A \neq \emptyset$. D'altra parte l'aperto U non può esser completamente contenuto in A, altrimenti $U \subset \operatorname{int}(A)$, che contraddice l'ipotesi. Segue che $x \in \operatorname{Fr}(A)$. Supponiamo ora che $x \in \operatorname{Fr}(\overline{A})$. Quindi, per ogni intorno aperto U di x in X, $U \cap \overline{A} \neq \emptyset$ e $U \not\subset \overline{A}$. Dalla seconda condizione, essendo $A \subset \overline{A}$, segue subito che $U \not\subset A$. D'altra parte $U \cap A \neq \emptyset$, altrimenti A sarebbe completamente contenuto nel chiuso $X \setminus U$ e quindi anche \overline{A} avrebbe la stessa proprietà, ovvero $U \cap \overline{A} = \emptyset$, che contraddice l'ipotesi. Segue che $x \in \operatorname{Fr}(A)$ anche in questo caso. La dimostrazione è completa.

Se X è il 2-insieme $\{a,b\}$ dotato della topologia banale e $A:=\{a\}$, allora $\operatorname{Fr}(\operatorname{int}(A))=\operatorname{Fr}(\emptyset)=\emptyset$, $\operatorname{Fr}(\overline{A})=\operatorname{Fr}(X)=\emptyset$ e $\operatorname{Fr}(A)=X$. Dunque

$$\operatorname{Fr}(\operatorname{int}(A)) \cup \operatorname{Fr}(\overline{A}) = \emptyset \neq X = \operatorname{Fr}(A).$$

Ecco un altro esempio. Sia X la retta reale dotata della topologia euclidea e sia $A := [0,1] \cap \mathbb{Q}$. Allora $\operatorname{Fr}(\operatorname{int}(A)) = \operatorname{Fr}(\emptyset) = \emptyset$, $\operatorname{Fr}(\overline{A}) = \operatorname{Fr}([0,1]) = \{0,1\}$ e $\operatorname{Fr}(A) = [0,1]$. Dunque

$$\operatorname{Fr}(\operatorname{int}(A)) \cup \operatorname{Fr}(\,\overline{A}\,) = \{0,1\} \neq [0,1] = \operatorname{Fr}(A).$$

Esercizio 3. Siano C e C' le circonferenze nel piano y=0 definite da

$$C = \{(x, y, z) \in \mathbb{R}^3 \mid y = 0, (x - 2)^2 + z^2 = 1\}$$

$$C' = \{(x, y, z) \in \mathbb{R}^3 \mid y = 0, (x - 3)^2 + z^2 = 4\}$$

e sia X lo spazio topologico ottenuto ruotando l'insieme $C \cup C'$ attorno all'asse z.

(3a) Si calcoli il gruppo fondamentale di X.

(3b) Si calcoli l'abelianizzato del gruppo fondamentale di X e si stabilisca se X è omeomorfo a una superficie compatta.

SOLUZIONE. (3a) X è l'unione di due tori T_1 e T_2 lungo la circonferenza interna C''. Applicando Seifert-Van Kampen agli aperti $U_1 \sim T_1$ e $U_2 \sim T_2$ ottenuti unendo ai due tori un intorno aperto (in X) di C'' in modo che $C'' \sim U_1 \cap U_2$, si ottiene:

$$\pi(U_1, P) = \langle \alpha, \beta \mid \alpha \beta \alpha^{-1} \beta^{-1} = 1 \rangle, \ \pi(U_2, P) = \langle \gamma, \delta \mid \gamma \delta \gamma^{-1} \delta^{-1} = 1 \rangle, \ \pi(U_1 \cap U_2, P) = \langle \epsilon \mid \emptyset \rangle,$$

con $P \in C''$ e con i generatori β e δ corrispondenti alla circonferenza C''. Si ha dunque $i_{1*}(\epsilon) = \beta$, $i_{2*}(\epsilon) = \delta$ e quindi

$$\pi(X, x_0) = \langle \alpha, \beta, \gamma, \delta \mid \alpha \beta \alpha^{-1} \beta^{-1} = 1, \ \gamma \delta \gamma^{-1} \delta^{-1} = 1, \ \beta = \delta \rangle$$

$$\simeq \langle \alpha, \beta, \gamma \mid [\alpha, \beta] = 1, \ [\gamma, \beta] = 1 \rangle$$

$$\simeq \langle \alpha, \gamma \mid \emptyset \rangle \times \langle \beta \mid \emptyset \rangle \simeq (\mathbb{Z} * \mathbb{Z}) \times \mathbb{Z}$$

Lo stesso risultato si può ottenere osservando che X è omeomorfo al prodotto topologico di $S^1 \vee S^1$ con S^1 , da cui si può ricavare che $\pi(X, x_0) \simeq \pi(S^1 \vee S^1, x_1) \times \pi(S^1, x_2) \simeq (\mathbb{Z} * \mathbb{Z}) \times \mathbb{Z}$. (Vale sempre: $\pi(X \times Y, (x, y)) \simeq \pi(X, x) \times \pi(Y, y)$).

(3b) $Ab(\pi(X, x_0)) = \langle \alpha, \beta, \gamma | [\alpha, \beta] = 1, [\gamma, \beta] = 1, [\alpha, \beta] = 1 \rangle \simeq \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z} = \mathbb{Z}^3$. Nessuna superficie compatta ha gruppo fondamentale isomorfo a $(\mathbb{Z} * \mathbb{Z}) \times \mathbb{Z}$, per cui X non è omeomorfa (né omotopicamente equivalente) a una superficie compatta (si possono anche confrontare gli abelianizzati e concludere allo stesso modo).

Esercizio 4. (4a) Si calcoli l'integrale

$$I = \int_{-\pi}^{\pi} \frac{1}{5 + 4\sin x} dx.$$

(4b) Si determini un disco aperto centrato nell'origine che contenga tutti gli zeri del polinomio $f(z) = z^{11} + 12z^7 - 3z^2 + z - 2$. Quanti zeri di f stanno nel disco aperto di raggio uno centrato nell'origine?

SOLUZIONE. (4a) La funzione $1/(5+4\sin x)$ coincide con la restrizione alla circonferenza unitaria S^1 della funzione olomorfa $1/(5+4(z-z^{-1})/(2i))=zi/(2z^2+5zi-2)$. Sia

$$f(z) = \frac{1}{zi} \frac{1}{5 + 4\frac{z - z^{-1}}{2i}} = \frac{1}{2z^2 + 5zi - 2}.$$

Allora, per il Teorema dei residui,

$$I = \int_{-\pi}^{\pi} \frac{1}{5 + 4\sin x} dx = \int_{S^1} f(z) dz = 2\pi i \sum_{i} \text{Res}_{z_i}(f).$$

Si ha $2z^2 + 5zi - 2 = 2(z - z_1)(z - z_2)$, con $z_1 = -i/2$ e $z_2 = -2i$. Dunque solo il polo semplice z_1 appartiene al disco unitario, con residuo

Res_{z₁}(f) =
$$\lim_{z \to z_1} f(z)(z - z_1) = \frac{1}{2(z_1 - z_2)} = \frac{1}{3i}$$
.

Dunque $I = 2\pi i/(3i) = 2\pi/3$.

(4b) Si può applicare il Teorema di Rouché a f(z) e a $g(z) = 12z^7$ sul disco unitario, in quanto, per |z| = 1,

$$|f(z) - g(z)| = |z^{11} - 3z^2 + z - 2| \le |z|^{11} + 3|z|^2 + |z| + 2 = 7 < |g(z)| = 12.$$

Dunque f ha 7 zeri, contati con la molteplicità, nel disco unitario aperto centrato nell'origine. Per trovare un disco che contenga tutte gli 11 zeri di f, si può provare con raggio R=2 e $h(z)=z^{11}$:

$$|f(z) - h(z)| = |12z^7 - 3z^2 + z - 2| \le 12|z|^7 + 3|z|^2 + |z| + 2 = 12 \cdot 2^7 + 3 \cdot 2^2 + (2+2) < (12+3+1)2^7 = 2^{11}.$$

Quindi il disco di raggio 2 contiene tutti gli zeri di f.