Ejercicio Grupo 1, 2 y 3 de Óptica I. Fecha entrega 12 de diciembre

- 1. Construir un sistema de lentes (puede ser con una lente pero se valorará hacer un sistema con 2 o tres lentes) y realizar los siguientes cálculos
 - a. Calcula la focal de la lente y la posición de los planos principales y focales
 - b. Representa mediante el OSLO el trazado de rayos de este sistema para tres haces (uno que pasa por el extremo, un segundo a la mitad mm y un tercero a 0,5 mm)
 - c. Utiliza el setup como calculadora paraxial y calcula la posición de la imagen y el aumento para una posición del objeto distinto del infinito
 - d. Estudia las aberraciones de este sistema AEL (gráfica) siguiendo los pasos de la práctica (apartado Representación de la Aberración Esférica: página 28)
 - e. Calcula cuál tendría que ser el radio de una o varias de las superficies de una de las lentes para que se minimice la aberración esférica y la focal sea la mitad del valor que se obtenía.

El informe, que puede ser por parejas, tiene que incluir pantallazos del sistema y de las pantallas dónde obtenéis los resultados de los distintos apartados. Junto con el informe tenéis que enviarme el archivo del sistema óptico que habéis diseñado.

Notas: Os doy varios ejemplos de lentes que podéis utilizar

Lente 1 (doblete pegado)	Lente 2	Lente 3
R ₁ = -46 mm	R ₁ = 70 mm	R ₁ = 21 mm
e ₁ = 2.5 mm	R ₂ = -50 mm	R ₂ = -21 mm
n ₁ = 1,52	e = 10 mm	e = 10 mm
R ₂ = -36,7 mm	n = 1,5	n = 1,45
e ₂ = 4.1 mm	Φ _{L2} = 40 mm	Φ _{L2} = 11 mm
n ₂ = 1,67		
R ₃ = 108 mm		
Φ _L = 25 mm		

También podéis utilizar las lentes del catálogo de OSLO. Para lo cuál tenéis que seguir estos pasos

Seleccionáis una de las lentes y le dais a la V:

Y luego desagrupáis las superficies de la lente para saber sus características

