

- Customer ID Unique identifier for each customer.
- 📌 Age Age of the customer.
- * Gender Gender of the customer (Male/Female).
- Item Purchased The item purchased by the customer.
- Category Category of the item purchased.
- Purchase Amount (USD) The amount of the purchase in USD.
- 📌 Location Location where the purchase was made.
- Size Size of the purchased item.
- Color Color of the purchased item.
- Season Season during which the purchase was made.
- * Review Rating Rating given by the customer for the purchased item.
- Subscription Status Indicates if the customer has a subscription (Yes/No).
- Shipping Type Type of shipping chosen by the customer.
- Discount Applied Indicates if a discount was applied to the purchase (Yes/No).
- → Promo Code Used Indicates if a promo code was used for the purchase (Yes/No).
- revious Purchases Number of previous purchases made by the customer.
- Payment Method Customer's most preferred payment method.
- Frequency of Purchases Frequency at which the customer makes purchases (e.g., Weekly, Fortnightly, Monthly).

from google.colab import drive
drive.mount('/content/drive')

Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount("/content/drive", force_remount=True).

!pip install WordCloud

```
Requirement already satisfied: WordCloud in /usr/local/lib/python3.11/dist-packages (1.9.4)
Requirement already satisfied: numpy>=1.6.1 in /usr/local/lib/python3.11/dist-packages (from WordCloud) (1.26.4)
Requirement already satisfied: pillow in /usr/local/lib/python3.11/dist-packages (from WordCloud) (11.1.0)
Requirement already satisfied: matplotlib in /usr/local/lib/python3.11/dist-packages (from WordCloud) (3.10.0)
Requirement already satisfied: contourpy>=1.0.1 in /usr/local/lib/python3.11/dist-packages (from matplotlib->WordCloud) (1.3.1)
Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.11/dist-packages (from matplotlib->WordCloud) (0.12.1)
Requirement already satisfied: fonttools>=4.22.0 in /usr/local/lib/python3.11/dist-packages (from matplotlib->WordCloud) (4.55.8)
Requirement already satisfied: kiwisolver>=1.3.1 in /usr/local/lib/python3.11/dist-packages (from matplotlib->WordCloud) (1.4.8)
Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.11/dist-packages (from matplotlib->WordCloud) (3.2.1)
Requirement already satisfied: python-dateutil>=2.7 in /usr/local/lib/python3.11/dist-packages (from matplotlib->WordCloud) (2.8.2)
Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.11/dist-packages (from python-dateutil>=2.7->matplotlib->WordCloud
```

```
# importing libraries
```

import numpy as np # Importing the numpy library for array operations and mathematical functions
import pandas as pd # Use for exploring the data
import seaborn as sns # it has also plot
import matplotlib.pyplot as plt # for some extra plot functions

reading the data set
shop = pd.read_csv('/content/drive/MyDrive/Colab Notebooks/shopping_trends_updated.csv')

import plotly.express as px # this library can makes interactive plots

```
→ (3900, 18)
```

shop.to_excel('/content/drive/MyDrive/Colab Notebooks/shopping_trends_updated.xlsx')

shop.head()

	Customer ID	Age	Gender	Item Purchased	Category	Purchase Amount (USD)	Location	Size	Color	Season	Review Rating	Subscription Status	Shipping Type	Discou Appli
(1	55	Male	Blouse	Clothing	53	Kentucky	L	Gray	Winter	3.1	Yes	Express	,
1	2	19	Male	Sweater	Clothing	64	Maine	L	Maroon	Winter	3.1	Yes	Express	•
2	2 3	50	Male	Jeans	Clothing	73	Massachusetts	S	Maroon	Spring	3.1	Yes	Free Shipping	`
				~									Next Dav	•

shop.dtypes

	0
Customer ID	int64
Age	int64
Gender	object
Item Purchased	object
Category	object
Purchase Amount (USD)	int64
Location	object
Size	object
Color	object
Season	object
Review Rating	float64
Subscription Status	object
Shipping Type	object
Discount Applied	object
Promo Code Used	object
Previous Purchases	int64
Payment Method	object
Frequency of Purchases	object

dtype: object

 $\ensuremath{\mbox{\#}}$ it shows the names of the columns shop.columns

shop.info()

<</pre>
<<class 'pandas.core.frame.DataFrame'>
RangeIndex: 3900 entries, 0 to 3899
Data columns (total 18 columns):

Data	cordinis (cocar 10 cordini	15).	
#	Column	Non-Null Count	Dtype
0	Customer ID	3900 non-null	int64
1	Age	3900 non-null	int64
2	Gender	3900 non-null	object
3	Item Purchased	3900 non-null	object
4	Category	3900 non-null	object
5	Purchase Amount (USD)	3900 non-null	int64
6	Location	3900 non-null	object
7	Size	3900 non-null	object

```
8
          Color
                                  3900 non-null
                                                  object
      9
          Season
                                  3900 non-null
                                                  object
      10
          Review Rating
                                  3900 non-null
                                                   float64
         Subscription Status
      11
                                  3900 non-null
                                                  object
      12
          Shipping Type
                                  3900 non-null
                                                  object
      13 Discount Applied
                                  3900 non-null
                                                  object
         Promo Code Used
                                  3900 non-null
      14
                                                  obiect
                                  3900 non-null
      15 Previous Purchases
                                                  int64
      16 Payment Method
                                  3900 non-null
                                                  object
      17 Frequency of Purchases 3900 non-null
                                                  object
     dtypes: float64(1), int64(4), object(13)
     memory usage: 548.6+ KB
shop.shape
→ (3900, 18)
shop.isnull().sum()
                            0
          Customer ID
                            0
              Age
             Gender
                            0
         Item Purchased
            Category
      Purchase Amount (USD) 0
            Location
              Size
                            0
              Color
                            0
             Season
          Review Rating
                            0
        Subscription Status
          Shipping Type
                            0
         Discount Applied
                            0
        Promo Code Used
                            0
        Previous Purchases
                            n
         Payment Method
      Frequency of Purchases 0
     dtype: int64
print(f"The unique values of the 'Gender' column are: {shop['Gender'].unique()}")
print()# This will print a blank line
print(f"The unique values of the 'Category' column are: {shop['Category'].unique()}")
print()# This will print a blank line
print(f"The unique values of the 'Size' column are: {shop['Size'].unique()}")
print()# This will print a blank line
print(f"The unique values of the 'Subscription Status' column are: {shop['Subscription Status'].unique()}")
print()# This will print a blank line
print(f"The unique values of the 'Shipping Type' column are: {shop['Shipping Type'].unique()}")
print()# This will print a blank line
print(f"The unique values of the 'Discount Applied' column are: {shop['Discount Applied'].unique()}")
print()# This will print a blank line
print(f"The unique values of the 'Promo Code Used' column are: {shop['Promo Code Used'].unique()}")
print()# This will print a blank line
print(f"The unique values of the 'Payment Method' column are: {shop['Payment Method'].unique()}")
→ The unique values of the 'Gender' column are: ['Male' 'Female']
     The unique values of the 'Category' column are: ['Clothing' 'Footwear' 'Outerwear' 'Accessories']
     The unique values of the 'Size' column are: ['L' 'S' 'M' 'XL']
     The unique values of the 'Subscription Status' column are: ['Yes' 'No']
     The unique values of the 'Shipping Type' column are: ['Express' 'Free Shipping' 'Next Day Air' 'Standard' '2-Day Shipping'
     The unique values of the 'Discount Applied' column are: ['Yes' 'No']
```

₹

```
The unique values of the 'Promo Code Used' column are: ['Yes' 'No']

The unique values of the 'Payment Method' column are: ['Venmo' 'Cash' 'Credit Card' 'PayPal' 'Bank Transfer' 'Debit Card']
```

OBSERVATION:

Upon initial examination of the dataset, it is evident that we have a comprehensive and well-structured dataset with 3900 rows and 18 columns. The data is complete, with no missing values, which allows us to proceed confidently with our analysis.

Let's delve into the columns and their significance in understanding our custome

- Customer ID: This column serves as a unique identifier for each customer, enabling us to differentiate between individuals.
- Age: The age column provides insights into the age demographics of our customers, helping us understand their preferences and behaviors.
- Gender: This column showcases the gender of the customers, enabling us to analyze buying patterns based on gender.
- **Item Purchased:** Here, we can identify the specific products that customers have bought, allowing us to gain an understanding of popular choices.
- Category: The category column categorizes the products into different groups such as clothing, footwear, and more, aiding us in analyzing trends within specific product categories.
- Purchase Amount (USD): This column reveals the amount customers spent on their purchases, providing insights into their spending habits
- Location: The location column indicates the geographical location of customers, which can help identify regional trends and preferences.
- Size: This column denotes the size of the purchased products, assisting in understanding size preferences across different categories.
- Color: Here, we can determine the color preferences of customers, aiding in analyzing color trends and their impact on purchasing decisions
- Season: The season column allows us to identify the season during which customers made their purchases, enabling us to explore seasonal shopping trends.
- Review Rating: This column showcases the ratings given by customers, providing valuable feedback on product satisfaction and quality.
- Subscription Status: This column indicates whether customers have opted for a subscription status, which can help us understand customer loyalty and engagement.
- **Shipping Type:** Here, we can identify the different shipping methods used to deliver products to customers, shedding light on preferred shipping options.
- **Discount Applied:** This column indicates whether a discount was applied to the purchased products, enabling us to analyze the impact of discounts on customer behavior.
- **Promo Code Used:** Here, we can identify whether customers utilized promo codes during their purchases, helping us evaluate the effectiveness of promotional campaigns.
- **Previous Purchases:** This column reveals the number of previous purchases made by customers, aiding in understanding customer loyalty and repeat business.
- Payment Method: The payment method column showcases the various methods used by customers to make their purchases, allowing us to analyze preferred payment options.
- Frequency of Purchases: This column provides insights into the frequency at which customers make purchases, helping us identify patterns and customer buying habits.

ustomer buying habits. With this rich and diverse dataset, we are well-equipped to explore customer shopping trends, understand their preferences, and uncover valuable insights that can drive informed decision-making and enhance the overall customer experience. Let's embark on this exciting analysis journey!

1 What is the overall distribution of customer ages in the dataset?

shop['Age'].value_counts()

count

	count
Age	
69	88
57	87
41	86
25	85
49	84
50	83
54	83
27	83
62	83
32	82
19	81
58	81
42	80
43	79
28	79
31	79
37	77
46	76
29	76
68	75
59	75
63	75
56	74
36	74
55	73
52	73
64	73
35	72
51	72
65	72
40	72
45	72
47	71
66	71
30	71
23	71
38	70
53	70
18	69
21	69
26	69
34	68
48	68
24	68
39	68
70	67
22	66
61	65
01	00

```
60
               65
       33
               63
       20
               62
       67
               54
               51
     dtype: int64
shop['Age'].mean()
44.06846153846154
shop['Gender'].unique()
array(['Male', 'Female'], dtype=object)
shop['Age\_category'] = pd.cut(shop['Age'], \ bins=[0,15,\ 18\ ,\ 30\ ,\ 50\ ,\ 70]\ ,\ labels=['child'\ ,\ 'teen'\ ,\ 'Young\ Adults'\ ,'Middle-Aged\ Acceptainty']
                                                                                                        , 'old'] )
fig = px.histogram(shop , y = 'Age' , x = 'Age_category')
fig.show()
\overline{\mathbf{T}}
```


shop.columns

2 How does the average purchase amount vary across different product categories?

```
dtype='object')
shop['Category'].unique()
⇒ array(['Clothing', 'Footwear', 'Outerwear', 'Accessories'], dtype=object)
shop.groupby('Category')['Purchase Amount (USD)'].mean()
```

ř		Purchase	Amount	(USD)
	Category			
	Accessories		59.8	38710
	Clothing		60.0	25331
	Footwear		60.2	255426
	Outerwear		57.1	72840
	dtype: float64			

3 Which gender has the highest number of purchases?

```
shop.columns

Index(['Customer ID', 'Age', 'Gender', 'Item Purchased', 'Category', 'Purchase Amount (USD)', 'Location', 'Size', 'Color', 'Season', 'Review Rating', 'Subscription Status', 'Shipping Type', 'Discount Applied', 'Promo Code Used', 'Previous Purchases', 'Payment Method', 'Frequency of Purchases', 'Age_category'], dtype='object')

sns.barplot(shop , x = 'Gender' , y = 'Purchase Amount (USD)')

Axes: xlabel='Gender', ylabel='Purchase Amount (USD)'>
```


4 What are the most commonly purchased items in each category?

Category	Item Purchased	
Accessories	Jewelry	171
	Belt	161
	Sunglasses	161
	Scarf	157
	Hat	154
	Handbag	153
	Backpack	143
	Gloves	140
Clothing	Blouse	171
	Pants	171
	Shirt	169
	Dress	166
	Sweater	164
	Socks	159
	Skirt	158
	Shorts	157
	Hoodie	151
	T-shirt	147
	Jeans	124
Footwear	Sandals	160
	Shoes	150
	Sneakers	145
	Boots	144
Outerwear	Jacket	163
	Coat	161

dtype: int64

 $\label{eq:fig} \mbox{ fig = px.histogram(shop , x = 'Item Purchased' , color = 'Category')} \\ \mbox{ fig.show()}$

5 Are there any specific seasons or months where customer spending is significantly higher?

```
shop['Season'].unique()

array(['Winter', 'Spring', 'Summer', 'Fall'], dtype=object)

shop[shop['Season'] == 'Summer'].value_counts().sum()

shop[shop['Season'] == 'Winter'].value_counts().sum()

for 971

shop[shop['Season'] == 'Spring'].value_counts().sum()

shop[shop['Season'] == 'Fall'].value_counts().sum()

fig = px.histogram(shop , x = 'Season' , range_y= [200 , 1500] )

fig.show()

shop[show()
```


6 What is the average rating given by customers for each product category?

```
shop_groupby = shop.groupby('Category')['Review Rating'].mean().reset_index()
fig = px.bar(shop_groupby ,x= 'Category' , y = 'Review Rating' )
fig.show()
```


7 Are there any notable differences in purchase behavior between subscribed and nonsubscribed customers?

```
shop.columns

Index(['Customer ID', 'Age', 'Gender', 'Item Purchased', 'Category', 'Purchase Amount (USD)', 'Location', 'Size', 'Color', 'Season', 'Review Rating', 'Subscription Status', 'Shipping Type', 'Discount Applied', 'Promo Code Used', 'Previous Purchases', 'Payment Method', 'Frequency of Purchases', 'Age_category'], dtype='object')

shop['Subscription Status'].unique()

array(['Yes', 'No'], dtype=object)

sns.barplot(shop , x = 'Subscription Status' , y = 'Purchase Amount (USD)')

Axes: xlabel='Subscription Status', ylabel='Purchase Amount (USD)'>

60

50

60

Yes

No

Subscription Status
```

233081
shop.groupby('Subscription Status')['Purchase Amount (USD)'].mean()

shop['Purchase Amount (USD)'].sum()

Purchase Amount (USD)

Subscription Status				
No	59.865121			
Yes	59.491928			

dtype: float64

8 Which payment method is the most popular among customers?

shop.groupby('Payment Method')['Purchase Amount (USD)'].mean().sort_values(ascending= False)

₹		Purchase Amount (USD)
	Payment Method	
	Debit Card	60.915094
	Credit Card	60.074516
	Bank Transfer	59.712418
	Cash	59.704478
	PayPal	59.245199
	Venmo	58.949527

dtype: float64

shop_groupby = shop.groupby('Payment Method')['Purchase Amount (USD)'].mean().reset_index()

 $\label{fig} \mbox{ fig = px.bar(shop_groupby , x = 'Payment Method' , y = 'Purchase Amount (USD)')} \\ \mbox{ fig.show()}$

→

sns.barplot(shop ,x='Payment Method' , y = 'Purchase Amount (USD)')

9 Do customers who use promo codes tend to spend more than those who don't?

```
shop_groupby = shop.groupby('Promo Code Used')['Purchase Amount (USD)'].sum().reset_index()
fig = px.sunburst(shop , path=['Gender' , 'Promo Code Used'] , values='Purchase Amount (USD)')
fig.show()
```


 $\label{fig} \mbox{fig = px.bar(shop_groupby , x= 'Promo Code Used' , y = 'Purchase Amount (USD)')} \\ \mbox{fig.show()}$

10 How does the frequency of purchases vary across different age groups?

```
shop[['Age' , 'Age_category']]
₹
                       Age_category
             Age
        0
              55
                                 old
              19
                        Young Adults
        1
        2
              50 Middle-Aged Adults
        3
              21
                        Young Adults
              45 Middle-Aged Adults
      3895
              40 Middle-Aged Adults
      3896
              52
      3897
              46 Middle-Aged Adults
      3898
              44 Middle-Aged Adults
      3899
              52
     3900 rows × 2 columns
shop['Age_category'].unique()
    ['old', 'Young Adults', 'Middle-Aged Adults', 'teen']
Categories (5, object): ['child' < 'teen' < 'Young Adults' < 'Middle-Aged Adults' < 'old']</pre>
shop_group = shop.groupby('Frequency of Purchases')['Age'].sum()
px.sunburst(shop , path=['Frequency of Purchases','Age_category'] , values='Age')
```

The default of observed=False is deprecated and will be changed to True in a future version of pandas. Pass observed=False to retain

11 Are there any correlations between the size of the product and the purchase amount?

```
shop.columns
```


12 Which shipping type is preferred by customers for different product categories?

```
shop.groupby('Category')['Shipping Type'].value_counts().sort_values(ascending= False)
\overline{\Rightarrow}
                                                                                 count
                   Category Shipping Type
                  Clothing
                                                                                      297
                                                   Standard
                                               Free Shipping
                                                                                      294
                                                Next Day Air
                                                                                      293
                                                    Express
                                                                                      290
                                               Store Pickup
                                                                                      282
                                             2-Day Shipping
                                                                                      281
               Accessories
                                               Store Pickup
                                                                                      217
                                                Next Day Air
                                                                                      211
                                                   Standard
                                                                                      208
                                             2-Day Shipping
                                                                                      206
                                                    Express
                                                                                      203
                                               Free Shipping
                                                                                      195
                 Footwear
                                              Free Shipping
                                                                                      122
                                                    Standard
                                                                                       100
                                                Store Pickup
                                                                                        98
                                                    Express
                                                                                        96
                                                Next Day Air
                                                                                        93
                                             2-Day Shipping
                                                                                        90
                 Outerwear
                                              Free Shipping
                                                                                        64
                                                    Express
                                                                                        57
                                               Store Pickup
                                                                                        53
                                                Next Day Air
                                                                                        51
                                             2-Day Shipping
                                                                                        50
                                                    Standard
                                                                                         49
            dtype: int64
shop['Shipping\_Category'] = shop['Shipping Type']. \\ map(\{'Express': 0, 'Free Shipping': 1, 'Next Day Air': 2, Institute of the property of 
                                                                                                                                           'Standard': 3, '2-Day Shipping': 4, 'Store Pickup': 5})
shop['Category'].unique()
⇒ array(['Clothing', 'Footwear', 'Outerwear', 'Accessories'], dtype=object)
shop['Category_num'] =shop['Category'].map({'Clothing':1, 'Footwear':2, 'Outerwear':3, 'Accessories':4})
     13 How does the presence of a discount affect the purchase decision of customers?
shop.columns
Index(['Customer ID', 'Age', 'Gender', 'Item Purchased', 'Category',
                                'Purchase Amount (USD)', 'Location', 'Size', 'Color', 'Season',
                              'Review Rating', 'Subscription Status', 'Shipping Type',
'Discount Applied', 'Promo Code Used', 'Previous Purchases',
'Payment Method', 'Frequency of Purchases', 'Age_category',
                              'Shipping_Category', 'Category_num'],
                           dtype='object')
shop_group = shop.groupby('Discount Applied')['Purchase Amount (USD)'].sum().reset_index()
px.histogram(shop\_group \ , \ x = 'Discount \ Applied' \ , \ y = 'Purchase \ Amount \ (USD)')
```


fig = px.sunburst(shop , path = ['Gender' , 'Discount Applied'], values='Purchase Amount (USD)' , color= 'Gender')
fig.show()

14 Are there any specific colors that are more popular among customers?

```
px.histogram(shop , x = 'Color')
```


shop['Color'].value_counts().nlargest(5)

		count
	Color	
	Olive	177
	Yellow	174
	Silver	173
	Teal	172
	Green	169
	dtype: in	t64

15 What is the average number of previous purchases made by customers?

shop['Previous Purchases'].mean()

→ 25.35153846153846

16 Are there any noticeable differences in purchase behavior between different locations?

shop.groupby('Location')['Purchase Amount (USD)'].mean().sort_values(ascending = False)

Purchase Amount (USD)

	Purchase	Amount (USD)
Location		
Alaska		67.597222
Pennsylvania		66.567568
Arizona		66.553846
West Virginia		63.876543
Nevada		63.379310
Washington		63.328767
North Dakota		62.891566
Virginia		62.883117
Utah		62.577465
Michigan		62.095890
Tennessee		61.974026
New Mexico		61.901235
Rhode Island		61.444444
Texas		61.194805
Arkansas		61.113924
Illinois		61.054348
Mississippi		61.037500
Massachusetts		60.888889
lowa		60.884058
North Carolina		60.794872
Wyoming		60.690141
South Dakota		60.514286
New York		60.425287
Ohio		60.376623
Montana		60.250000
Idaho		60.075269
Nebraska		59.448276
New Hampshire		59.422535
Alabama		59.112360
California		59.000000
Indiana		58.924051
Georgia		58.797468
South Carolina		58.407895
Oklahoma		58.346667
Missouri		57.913580
Hawaii		57.723077
Louisiana		57.714286
Oregon		57.337838
Vermont		57.176471
Maine		56.987013
New Jersey		56.746269
Minnesota		56.556818
Colorado		56.293333
Wisconsin		55.946667
Florida		55.852941
Maryland		55.755814
Kentucky		55.721519
Delaware		55.325581