

Digitized by the Internet Archive in 2010 with funding from Boston Public Library

July to

TECHNICAL MEMORANDUM

TO: Mr. Lawrence Gaboury

Second Vice President

John Hancock Mutual Life Insurance Company

FROM:

Robert D. Klimm, Associate

HMM Associates, Inc.

DATE:

January 16, 1989

SUBJECT: TRAFFIC IMPACTS OF THE HERALD STREET

EXTENSION ON THE INTERSECTION OF

COLUMBUS AVENUE AND CLARENDON STREET

A. SUMMARY OF FINDINGS

The additional analyses performed by HMM respond to the BTD's concern about the impact of the Hancock proposal on Herald Street with an eastbound access ramp to the Massachusetts Turnpike. HMM's previous study analyzed year 2010 conditions including a one-way Herald Street Extension, but without an eastbound connector to the Massachusetts Turnpike. This was not previously analyzed since both City and State suggested the geometrics of the Massachusetts Turnpike merge lane were a problem.

The findings of our supplemental effort support the initial Level of Service (LOS) conclusions reached in July 1988. Last summer we concluded that the Columbus Avenue/Clarendon Street intersection would function at LOS D for year 2010 conditions with the project, which meant that with the addition of site traffic and Herald Street, Columbus/Clarendon traffic delays were within the acceptable range.

The data supplied by CTPS and Bruce Campbell & Associates shows a LOS D during the year 2010 AM peak hour and a LOS C during the PM peak hour at the Columbus Avenue/Clarendon Street intersection. Comparisons with this and other technical analyses confirms that HMM's conclusions are very conservative if not a "worst-case" scenario, which supports our earlier findings.

B. BACKGROUND

HMM Associates, Inc. (HMM) prepared a traffic study for the proposed Hancock Garage and Office Complex in July, 1988*. The focus of this study was to establish an updated traffic baseline condition, upon which potential project-related traffic impacts could begin to be assessed. This study was not intended to be a detailed Transportation Access Plan (required by the City under Article 31), but to evaluate the potential impacts of the project on adjacent areas.

The July, 1988 study analyzed traffic operations for 1988 existing conditions and for 1991 conditions with and without the proposed project. Both the 1988 and 1991 analyses assumed no major changes to the existing roadway network.

In addition, since the City and State were at that time (i.e., June-July 1988) in the process of analyzing alternative roadway changes as part of the Central Artery/Third Harbor Tunnel project, an additional analysis was conducted for year 2010 conditions, assuming the implementation of these improvements. Based upon discussions with the Boston Transportation Department (BTD), HMM contacted the City's traffic consultant - Bruce Campbell & Associates - and received the latest year 2010 projections which were based upon completion of the following roadway projects:

- Third Harbor Tunnel/Central Artery Project;
- New westbound off-ramp from the Massachusetts Turnpike to Berkeley Street;
- Tremont Street/Arlington Street one-way loop system; and
- Herald Street Extension continuing to Columbus Avenue or Clarendon Street.

It was indicated by the City's BTD that this alternative, designated as Alternative P-3, was the preferred alternative at the time, as should be used by HMM in our analysis of the Herald Street Extension. Accordingly, HMM used Alternative P-3 to analyze year 2010 operations at the Clarendon Street/Columbus Avenue intersection. The results of the analyses were presented in the July 1988 report, and indicated that, using the Alternative P-3 volumes with the proposed project, the Herald Street Extension, if terminated at Columbus Avenue, would result in design year operations of Level of Service (LOS) C. This LOS was within an acceptable range, and it was concluded that the Herald Street Extension could be terminated at Columbus Avenue, rather than extend further to Clarendon Street.

^{*} Hancock Garage and Office Complex Traffic Study, HMM Associates, Inc., July 22, 1988.

The July 22, 1988 report was submitted to the BTD for their review. A review meeting with the BTD was held on August 10, 1988 to discuss the report's conclusions. A subsequent meeting with the BTD was held on December 21, 1988.

As indicated by Ted Siegel and Chi-Hsin Shao of the BTD at the December 21st Meeting, the City was interested in an additional evaluation of future traffic operations at the Clarendon Street/Columbus Avenue intersection under the following year 2010 conditions:

- 1. Completion of the Herald Street Extension, one-way, eastbound;
- Completion of a westbound off-ramp from the Massachusetts Turnpike to Berkeley Street; and
- Completion of an eastbound on-ramp to the Massachusetts Turnpike from the Herald Street Extension.

The previous July 1988 analyses conducted by HMM included items 1 and 2 above; but did not include item 3, the Massachusetts Turnpike eastbound on-ramp, since the City indicated during the course of our initial study that construction of this ramp was unlikely due to State DPW concerns about geometric constraints.

C. SUPPLEMENTAL YEAR 2010 TRAFFIC ANALYSES

As discussed at the December 21, 1988 meeting with the BTD, HMM adjusted the previously used year 2010, Alternative P-3 volumes to include an eastbound on-ramp to the Massachusetts Tumpike. A conservative approach was taken during the reassignment of network volumes so as to reflect a "worst-case" condition, in terms of potential Herald Street Extension volumes.

In addition, as requested by Chi-Hsin Shao of the BTD at the December 21st meeting, an analyses was performed to estimate capacity flows at the Clarendon Street/Columbus Avenue intersection, under the year 2010 conditions with the eastbound on-ramp to the Massachusetts Turnpike.

The traffic volumes associated with the adjustments to the year 2010, Alternative P-3 volumes (with the eastbound on-ramp to the Massachusetts Turnpike) and the subsequent capacity analysis for the conditions, are presented in Attachments 1 and 2. Level of Service analyses for these conditions resulted in the following:

Location	Peak Hour	Year 2010 LOS*
Columbus Avenue at		
Clarendon Street	PM-Design Hour	D (30.5 sec/veh)

For comparative purposes, the previous analysis presented in the July 1988 report, which included an assessment of Alternative P-3 without the eastbound Massachusetts Turnpike on-ramp resulted in LOS C (15.8 sec/veh) at this intersection for the PM design hour.

Following the completion of this subsequent analysis, as requested by the BTD, HMM scheduled a meeting with representatives of BCA and Cambridge Systematics to discuss the resultant volumes, in light of work on-going as part of the City's Back Bay Traffic Study. A meeting was scheduled on January 11, 1989 at the BCA offices in Boston. Mr. George Bezkorovani represented BCA, and Mr. Robert LaPorte of Cambridge Systematics, although scheduled to attend, did not attend the meeting, but was contacted by telephone during the meeting.

At this January 11th meeting, the rationale for the reassignment of year 2010, Alternative P-3 volumes, including the eastbound on-ramp to the Massachusetts Turnpike, was discussed. It was generally agreed that the volumes developed by HMM represented a conservative estimate of the PM peak hour design flows. Mr. Bezkorovani presented year 2010 volumes which had been computer-generated by the Central Transportation Planning Staff (CTPS) which included both the Herald Street Extension and an eastbound on-ramp to the Massachusetts Turnpike. The CTPS volumes were developed for both the AM and PM peak hours. These volumes were reviewed and it was decided that it was appropriate to also evaluate the CTPS volumes at the intersection of Clarendon Street and Columbus Avenue for comparative purposes.

Accordingly, HMM performed peak hour Level of Service analyses at the Clarendon Street/Columbus Avenue intersection using the CTPS computer-generated volumes, assuming that the Herald Street Extension would not directly connect to Clarendon Street but will extend to Columbus Ave. (The volumes used for these analyses are presented in Attachment 2.) The analyses indicated that, using the year 2010 peak hour volumes, the intersection of Clarendon

^{*} The Alternative P-3 traffic volumes were adjusted by HMM to include an eastbound on-ramp to the Massachusetts Turnpike. Due to the heavy left turn volume we propose that the Clarendon Street lane assignments be revised to double left and one thru-right turn (L,L, TR). The existing signal heads, lane markings, and signal timing will need to be revised due to the double left turn lane arrangement.

Street and Columbus Avenue will operate at LOS D (38.6 sec/veh) during the AM peak hour, and LOS C (17.9 sec/veh) during the PM peak hour. Again, both of these results assume that the Herald Street Extension will terminate at Columbus Avenue.

A summary of the analyses results are presented in Table 1 for the different year 2010 volumes analyzed. The projected peak hour levels of service for the Columbus Avenue/Clarendon Street intersection will be "D" or better for the Alternative P-3 reassigned volumes, or the CTPS volumes supplied to us for the 2010 design year. This analysis is based upon full site development, construction of Herald Street to Columbus Avenue, construction of the eastbound Mass Pike on-ramp, and revising the lane assignments on Clarendon Street at Columbus Avenue.

In summary, we feel that the Herald Street Extension would be able to terminate at Columbus Avenue without having an adverse affect on traffic operations at Columbus Avenue/Clarendon Street.

TABLE 1

YEAR 2010 LEVEL OF SERVICE AND VOLUME SUMMARY: HERALD STREET EXTENSION WITH EASTBOUND ON-RAMP TO THE MASSACHUSETTS TURNPIKE

				•			
Location	Hour	PM Design Volumes - M/BCA	2010 Al Volum	M Peak Hour les - CTPS ²	2010 PM Peak Hour Volumes - CTPS ²		
	Peak Hour Volume	Level of Service	Peak Hour Volume	Level of Service	Peak Hour Volume	Level of Service	
Columbus Ave. @ Clarendon St.	3193	D (30.5 sec/veh)	2949	D (38.6 sec/veh)	2791	C (17.9 sec/veh)	
Herald St. Extension	1001		1264		600		

Source:

- Developed by HMM based upon a reassignment of volumes prepared by BCA.
- 2 Link flows conputer-generated by the Central Transportation Planning Staff. Turning movements along approaches developed by HMM.

ATTACHMENT 1*:

PEAK DESIGN HOUR VOLUMES AND OPERATIONS FOR YEAR 2010, ALTERNATIVE P-3, WITH AN ESTIMATED ON-RAMP TO THE MASSACHUSETTS TURNPIKE

^{*} Source: Volumes developed by HMM based upon a reassignment of year 2010, Alternative P-3 volumes prepared by BCA.

icslDL

HANCOCK DEVELOPMENT

: NOITS AVE. 0

IN ST.

PM PEAK HOUR 10 NB DOLL DBD7Y

)	J F	
)	C	Ĩ!	G)	F	¥L.,	

1.	RAFE	I C &	R 0 A	DWA	Y 6 (N S		
BUMPE	HV	ADJ. Ph	G LN.	BUSES		COMF. PEDS	PED	PUTTON	ARR
C% /	(=4,)	YZN	Nm	(MP)	PHE	(peds/hr)	Y/N	SEC	TYPE
0	3	Y	ja	Ċ.	0.89	0	Y	12.5	II.
()	43.	Y	10	0	0.87	U	Y	9.2	35
\sim	Ü	N	O.	()	0.90	O	N	0.0	-5
•)	()	N	0	Ŏ.	0.89	0	Υ	17.0	7.7

GEOMETRIUS / VOLUMES

				LANE GROUPS										
	VOLUME			1			2			.3				
L. i	1.11	RT	hVM	845	ίνΩ	MVM	LNS	Uni	MVM	LN45	WIT)			
	475	5.8	Ţ	j	11.0	TF	3	12.0						
135	965	O.	LT	3.	14.0	T	i.	14.0						
0	Ō	0												
763	273	TiB	1	2	24.0	TR	3.	12.0						

	8 I	GNAL	PHASI	N B			
PHASE	ist MV	SND WA	BRD MV	PROT	FMSV	Θ	Y+R
i	Т	TR		Æ		54	46
ż	LT	T			1_	54	45
2	i_	TR		i_R		40	60

HANCOCK DEVELOPMENT LONLOL

STIDN : 5 AVE. D ON ST.

PM PEAK HOUR TO NB DDLL CBD ? Y D SIGNAL

LANE GROUP FLOW RATE LANE UTIL ADJ FLOW	OW PROP OF TURMS LT RT 0.00 0.00 0.00 0.37	
T 342 184 1.00 384 TR 341 383 1.00 383	0.00 0.00 0.00 0.17	
E1 477 7.00 477		
1 685 787 1.00 787		
L 763 857 1.00 857 TR 486 546 1.00 546	1.00 0.00 0.00 0.44	
SATURATION FLOW IDEAL # OF		,i
1800 1 0.97 0.97 1.00 1.00 1.00 0. 1800 1 1.00 0.97 1.00 0.85 1.00 0.	.90 1.00 1.00 1524	4
1900 i 1.07 0.98 1.00 i.00 i.00 9. 1800 1 1.07 9.98 1.00 9.85 i.00 0.		
1800 2 1.00 1.00 1.00 1.00 1.00 0.0 1800 1 1.00 1.00 1.00 1.00 0.0		

HANCOCK DEVELOPMENT

LOF LDL

TION : AVE. a N ST.

SIGNAL

PM PEAK HOUR 10 NB DOL: CBD 7 Y

C	A	F	A	C	Ĩ	3	¥	6.4	14	Ä	l	7	3	Ī.	8
---	---	---	---	---	---	---	---	-----	----	---	---	---	---	----	---

3	RATE	PMRV LT FLCW	FLW RT			7 3		LM CR APACITY	
-	384	0	1524		M			823	0.467
	383	(7)	1302	0.294	М	0	.540	763	0.545
	477	0	1019	0.468	14		,540		0.887
	757	O.	1444	0.545	Y	0	<u>, 540</u>	780	5 g 4969 5
	857	0	2981	0 087	LA.	Ó	450	1197	0.7 19
		o o							
	H : 106 ER CYCLE							RATIOS	e San Asses
		: 6		NTERSEC	TION V	70 : 0			
로 F 작공 작	V/C GF	LE VEEN CYC	EL C ist DELAY	NTERSEC F S LN GR CAP	E R V Znd DELAY	70:0 10E	LN GR DELAY	LN GR LOS	AFP APP DELAY LOS
	V/C GF	REEN CYC	EL C	NTERSEC F 8 LN GR	E R V 2nd DELAY	7/C : 0	.964 LN GR	LN GR LOS	AFP APP
를 가 하다 기 -	V/C GF	: 6 L E V REEN CYC ATIO LEN	EL C ist DELAY	NTERSEC F S LN GR CAP	E R V 2nd DELAY	//C : 0	LN GR DELAY	LN GR LOS B	AFP APP DELAY LOS
로 F 작공 작	V/C 6F RATIO 8/ 0.467 0.	: 6 L E V REEN CYC ATIO LEN	EL C ist DELAY 10.8	NTERSEC	E R V 2nd DELAY 0.3	PF 0.85	LN GR DELAY 	LN GR LOS B B	APP APP DELAY LOS
는 # 라구 역 구	V/C GF RATIO 8/ 0.467 0. 0.545 0.	: 6 L E V REEN CYC ATIO LEN 	# E L C ist DELAY 10.8 11.4 15.1	NTERSEC	E R V 2nd DELAY 0.3 0.7	PF 0.85 0.85 0.85	LN GR DELAY 9.4 10.3	LN GR LOS B B	APP APP DELAY LOS
는 # 라구 역 구	V/C GF RATIO 8/ 0.467 0. 0.545 0.	E N CYCATTO LEN 540 100	# E L C ist DELAY 10.8 11.4 15.1	NTERSEC	E R V 2nd DELAY 0.3 0.7	PF 0.85 0.85 0.85	LN GR DELAY 9.4 10.3	LN GR LOS B B	APP APP DELAY LOS

0.719 0.400 100 19.2 1192 1.5 1.00 20.7 C 0.902 0.400 100 21.4 605 12.0 0.85 28.4 D 23.7 C

INTERSECTION DELAY : 23.5 secs/vet-LEVEL OF SERVICE : C

HANCOCK DEVELOPMENT

1-DDL BNW

CTION: B AVE. &

ON ST.

PM PEAK HOUR 10 B DDLL CBD9Y

D GIGNAL

T	RAFF	TC	& R O #	AWOF	Y 0	0 1 T T T T N D	N 8		
SEADE	40	ADJ. I	PKS LN.	HUSES		CONF. FEDS	PED	BUTTON	ARR
(%)	(%)	7/11	Nm	(Nb)	FHF	(peds/hr)	77N	SEC	TYPE
									~ ~~ ~~
()	8	Y	i. ()	1)	0.89	()	Υ	12.5	.35
(2)	4	Y	1.0	O	0.37	f)>	Y	9.>	15,
0	:)	74	O	0	0.90	Q.	N	0.0	T.
0	()	2.1	0	€	0.89	Ŏ	Y	17.0	7,4

		G E	C: PI L	TRI	CS /		. U M E GROL				
	VOLUME			1			(2)			.5	
LT	TH	RT	mVM	LNS	MD	HVM	FMS	WD	MAN	LNS	WD
—											
0	666	535	Ī	į.	11.0	TR	3.	12.0			
135	989	()	LT	1.	14.0	7	1	14.0			
0	0	()									
802	585	261	1	Z	24.0	TR	i	12.0			

	S 1	BNAL	PHASI	N G			
PHASE	1ST MV	ZND MV	SRD MV	PROT	PMSV	(5	y + 150
		***************************************		folian series series com			
1	T	ΓR		R		58	42
Ž	LT	T			l_	58	47
2	L.	TR		LR		36	64

100LBhW

HANDOOK DEVELOPMENT

TION : AVE. Ə N ST.

FM PEAK HOUR TO B DOLL CBD 7 Y SIGNAL

					-								
			V O L	U M E	A D	J U 3	THE	N T					
	MVM	GROUF VOLUME		ROUP	LANE FACT	OF	ADJ RAT	Œ		-		1	
		362 362	4	0.7	1.0)())()	407	7	0.0	- 10 10	() _e (00	
		500 524	Find See	75 17	1.0) () ()	575 717		0.2 0.0		0.0		
		802 543		01 10	i i		90 1 610		1.0 0.0				
		e como meso rescu como mesos decer como	SAT	U R A	C 1. T	N F	LOW	i					_
	IDEAL AT FLOW	# OF ! LANES	WIDTH	H.V.	ADJU GRADE	PARE	BUS	AREA	RT		ī	ADJ. FLOW	
~ =		i i		0.97	1.00	1.00			1.00 0.98	1.0)()	1524 1304	
	1800 1800	Ţ	1.07 1.07		1.00 1.00				1.00 1.00				
	1800 1800	2			i.00 I.00								

1 OOL ONW HANCOCK DEVELOPMENT

STION : B AVE. D IN ST.

PM PEAK HOUR tO BIDIL CBD 7 Y) STENAL

10	A	10	(i)	£3	Ę	- Y	ÉÀ	1.1	(-)	l.,	Y	13	Ĺ	(3)	

GR 2M	ADJ FLOW RATE	HMSV LT FLCW	ADJ SAT FLW RI	FLOW RATIO	CRIT ?	GREEN	LN GR CAPACITY	V/C RATIO	
	407	()	1524	0.267	N	0.580	(384	0.460	
÷	407	Ō	1304	0.312	ri .	0.580	250	0,538	
г	575	0	1070	0.537	Υ	0.580	621	0.926	
	717	O	1 144	0.497	И	0.580	80.9	0.854	
	901	Ó	. 981	0.302	N	0.360	1073	0.840	
R	510	0	1503	0,406	Υ	0.360	541	1.128	
ENGT	H: 10	0.0	9	UM OF C	RITICAL L	ANES" FL	OW RATTUS	: 0.943	
1E F	PER CYCLE	* · · · · · · · · · · · · · · · · · · ·	I	NTERSEC	TION V/C	: 1,003			

LEVEL OF SERVICE

GR 7M	V/C RATIO	GREEN RATIC	CYC	lst DELAY	LN GR CAP	2nd DELAY	PF 	LN GR DELAY	LN GR LOS	APP DELAY	APP LOS
r TR		0.580 0.580	100 100	9.1 9.7	884 754	0.3 0.6	0.85 0.85	8.0 8.8	B	8.4	В
	0.926 0.856	0.580 0.580	100 100	14.5 13.3	621 838		0.85 0.85	24.6 16.6	C C	20.1	G
FR		0.360 0.360	100 100	22.3 26.2	1075 541	4.3 77.3	1.00 0.85	26.6 88.0	T) F	51.4	ine La

INTERSECTION DELAY: 30.5 secs/veh LEVEL OF SERVICE : D

ATTACHMENT 2*:

CAPACITY FLOWS AT THE CLARENDON STREET/
COLUMBUS AVENUE INTERSECTION

^{*} Source: HMM Associates.

HANCOCK DEVELOPMENT

10KLDLM

TION " : AVE. 0

N ST Pri STE	PEAK	HOUR	10 N	B LL MAX	63	DTY				
RADE	HV	"Eda Myy	PKG LN	A D W A BUSES (Nb)	FHE	CONF. (peds	FEDS /hr)	PED I		TYFE
	3	М А А	10	0 0	0.89	: £	0 3 0	11 7 7	12.5 9.2 0.0 17.0	73 75
	TH			R I C S 1 LNS WO	LA	NE GROU 2	JFG.	Myth	3 n LNS	WD
	965			1 11.0 1 14.0		i 1				
393 393			1	D D4.0) TR	i.	12.0			
PHA:				L PH nv sri) MV I	PROT	PMSV			Y+R
2 1 2 2 3	ege facility	T LT LT	TR T T TR			R L		,	42 2, 42 47	

LOKLOLM

HANCOCK DEVELOPMENT

CTION: B AVE. D DN ST.

PM PEAK HUUR D SIGNAL

PM PEAK HOUR 10 NB LL MAX CBD 2 Y

HVM	VOLUME	FLOW IN G	FOUR	FACT		RAT	E	LT	Г	83	
	500 453		562 109) () ()		2	0.0	00	0.0 0.1	0
LT	475 525		146 18	1.0		546 718		0.2 0.0		0.0	
L TR	: 393 486		65 46	1.0 1.0	-	1565 546) ()) ()		
	gener making nggar agamat at may sengag gangan	s a r						. — — — — ,,,,,,			
IDEAL AT FLOW		T A R		ADJU GRADE	STMENT PARK	FACTO BUS	RS AREA	RT	L7	-	ADJ.
AT FLOW 1800		WIDTH	H.V.	ADJU GRADE 	STMENT PARK 1.00	FACTO BUS 1.00	RS AREA	RT 	L.C	- >0	
1800 1800 1800	LAMES 1	0.97 1.00	H.V. 0.97 0.97	ADJU GRADE 1.00 1.00	STMENT PARK 1.00 0.85	FACTO BUS 1.00 1.00	RS AREA 0.90 0.90	RT 1.00 0.98	1.0 i.0	- >0 >0 >0	FLOV

HANCOCK DEVELOPMENT

LOKEDLIT

TION: avE. ∂ N ST.

SLEWAL

FM PEAK HOUR 10 NB LL MAX CBD 2 Y

CAPACITY A	N	A 1	- Y	(3)	I	13
------------	---	-----	-----	-----	---	----

58: A 1	DJ FLOW HATE		DJ FAT FLW RT	FLOW RATIO	CRIT ?	GREEN RATIO	LN 68 CAPACITY	V/C FATIO
	552	0	1524	0.369	L1	0.470	640	0.878
	509	()	1510	0.389	N	0.420	550	J. 925
	546	9	1070	0.510	И	0.470	503	1.095
	718	Ō	1444	0.497	Υ	0.470	679	1.057
	1535	0	298i	0.525	Υ	0.470	1401	1.117
	546	٠,)	1513	0.361	M -	0.470	711	0.748
IGTH	: 100	. 0	5	UM OF CA	RITICAL LA	ANES' FL	DW RATTOS	: 1.023
FE	R CYCLE	; 9	ī	NTERSEC	TION V/C :	: 1.123		

LEVEL OF SERVICE

BR M	V/C RATIO	GREEN RATIO	CYC LEN	lst DELAY	LN GR CAP	2nd DELAY	PF	LN GR DELAY	LN GR LOS	APP DELAY	APP LOS
e R	0.878 0.925	0.420	100	20.3 20.5	640 550	9.3 15.6	0.85 0.85	25.2 31.0	D D	17.9	7)
T		0.470 0.470	100 100	21.8 21.2	503 679	58.9 43.4	0.85 0.85	∆8.5 54.9	5	60.8	I.
R		0.470 0.470	100 100	22.5 16.7	1401 711	40.4 3.5	i.00 0.85	82.9 17.2	F O	65. 9	ķī.

INTERSECTION DELAY : 55.3 secs/veh LEVEL OF SERVICE : E

ATTACHMENT 3*:

YEAR 2010 VOLUMES FROM CTPS

^{*} Source: Central Transportation Planning Staff.

			ES. INC.) NO OF	
PROJECT	HERAL			3003		1-12-89	
SUBJECT	AM 201	0 110	といいわ			CHECK_	
506 Z36	17 1271 × 17	179	489 FIIZ / B38 IZS	7	1257	COLUMBUS 838	AVE

() 601 to 506 must be a 'cs;

of 100 + 2.3.

(2) =0, 17 are estimates

HANCUCK DEVELOPMENT

10ABLE

ERSECTION: JMBUS AVE. a RENDON ST.

CDAY AM PEAK HOUR TO KILL HER CADTY JATED SIGNAL

SRADE	ΗV	ADJ.	PKG LN.	RUSES		CONF. FEDS	PED	BUITTON	AF
(%)	(%)	Y/N	h∔m	(Nb)	PHF	(peds/hr)	77N	SEC	TIF
		1100 III. 1000 1000 100				north latter Market Stand March Stand amount about the con-			
(¨)	:3	Y	1:0	0	0.39	()	7	12.5	
()	+		1.0	\odot	0.87	()	Y	9.2	- 3
0	Ö	j:J	0	0	0.90	0	N	0.0	7
0	0	N	Ō	()	0.89	0	Y	17.0	

SEOMETRICS / VOLUMES

			****	62 1 66	, , ,		LAN	E GROL				
		VOLUME			į			2			3	
y FII	L.T	TH	ET	mvm	LM2	CIM	MVM	LNS	MD	MVM	LNS	WD
Œ vB	0	1403	1. 7	;	1	11.0	TR	i	12.0			
υB	118	501	O	1_7	1	14.0	7	1	14.0			
Æ.	0	(")	O									
P	843	50	17	1	2	25.0	TR	4	12.0			
			S	IBN	A L.	PHA	SINO	i i				
P	PHA	SE	IST MV	2N	D MV	JRD M	IV PI	ROT	PMSV		G	Y +R

		S 1	GNAL	PHASI	N G			
S.E.	PHASE	ist mv	ZND MV	SRD MV	PROT	PMSV	G	Y+R
			1000 0000 0000 0000 0000 0000					*** *** ***
ΞB	1	T	TR		R		54	45
$I\!\!B$	1	1T	T			L.	54	46
113	2	LT	"T		L.		5	95
iB.	3	ł.,	TR		LR		31	69

TOAKLL

HANCOCK DEVELOPMENT

RSECTION : MBUS AVE. 0 ENDON ST.

DAY AM PEAK HOUR 10 BILL HER CBD / Y

ATED SIGNAL

		A G F	UMF	.4 D	JUS	T M E	N T			
MVM	VOLUME	IN F	ROUP	FACT	OR	RAT	E	L.3	1	IENS FT
T	760	8	54	1.0	0	854		0.0	Ó Ó	
LT T	118 501									
				ADJU	STMENT	FACTO	F.S			ADJ. FLOW
1800	i		0.97	1.00						
1800 1800	1. j									
1800 1800	53 1									
	MVM T FR LT T LT TR IDEAL BAT FLOW 1800 1800 1800	T 760 FR 660 LT 118 T 501 L. 843 TR 67 TDEAL # 0F BAT FLOW LANES 1800 1 1800 1 1800 1	LANE GROUP FLOW MVM VOLUME IN 8 T 760 8 FR 650 7 LT 118 1 T 501 5 1. 843 9 TR 67 SAT IDEAL # OF HOTH BAT FLOW LANES WIDTH 1800 1 0.97 1800 1 1.07 1800 1 1.07	LANE GROUP FLOW RATE IN GROUP T 760 854 FR 660 742 LT 118 136 T 501 576 1. 843 947 TR 67 75 SATURA IDEAL # OF HOTH H.V. 1800 1 0.97 0.97 1800 1 1.07 0.98 1800 1 1.07 0.98	LANE GROUP FLOW RATE LANE FACT T 760 854 1.0 FR 650 742 1.0 LT 118 136 1.0 T 501 576 1.0 1. 843 947 1.0 TR 67 75 1.0 SATURATION BAT FLOW LANES WIDTH H.V. GRADE 1800 1 0.97 0.97 1.00 1800 1 1.07 0.93 1.00 1800 1 1.07 0.98 1.00	LANE GROUP FLOW RATE LANE UTIL MVM VOLUME IN GROUP FACTOR T 760 854 1.00 FR 650 742 1.00 LT 118 136 1.00 T 501 576 1.00 1. 843 947 1.00 TR 67 75 1.00 SATURATION FACTOR TOPAL # OF WIDTH H.V. GRADE PARK 1800 1 0.97 0.97 1.00 1.00 1800 1 1.07 0.98 1.00 0.85 1800 1 1.07 0.98 1.00 0.85	LANE GROUP FLOW RATE LANE UTIL ADJ MVM VOLUME TN GROUP FACTOR RAT T 760 854 1.00 854 FR 650 742 1.00 742 LT 118 136 1.00 133 T 501 576 1.00 576 1. 843 947 1.00 947 TR 67 75 1.00 75 S A T U R A T I O N F L O W TOPAL # OF HALL WIDTH H.V. GRADE PARK BUS 1800 1 0.97 0.97 1.00 1.00 1.00 1800 1 1.00 0.97 1.00 0.85 1.00 1800 1 1.07 0.98 1.00 0.85 1.00 1800 1 1.07 0.98 1.00 0.85 1.00	T 760 854 1.00 854 1.00 742 1.00 742	LANE GROUP FLOW RATE LANE UTIL ADJ FLOW PROPMYM VOLUME IN GROUP FACTOR RATE L1 T 760 854 1.00 854 0.0 FR 660 742 1.00 742 0.0 LT 118 136 1.00 136 1.0 T 501 576 1.00 576 0.0 L 843 947 1.00 947 1.0 TR 67 75 1.00 75 0.0 S A T U R A T I O N F L O W IDEAL # DF FACTOR RATE LANE UTIL ADJ FLOW AREA RT 1800 1 0.97 0.97 1.00 1.00 1.00 0.90 1.00 1800 1 1.00 0.97 1.00 0.85 1.00 0.90 1.00 1800 1 1.07 0.98 1.00 0.85 1.00 0.90 1.00	LANE GROUP FLOW RATE LANE UTIL ADJ FLOW PROP OF THE MVM VOLUME IN GROUP FACTOR RATE L) I I I I I I I I I I I I I I I I I I

LOAKUL.

HANCOCK DEVELOPMENT

ERSECTION : MRUS AVE. 0 RENDON ST.

DAY AM PEAK HOUR 10 B LL HER CBD ? Y MATED SIGNAL

CAPACIEV ANALVSIS

		i j 1- 1-	1 () (2	H L I S	t -:0		
LN SR MVM	ADJ FLCW PATE		DJ SAT FLW RT	FLOW RATIO	CRIT ?	GREEN RATIO	IN SE CAPACITY	V/C RATIO
	854	C)	1524	0.540	γ	0.540	823	1.038
TR	742	0	1330	OFFER	N	0.540	718	1.40 0
l., 1"	1.36	O	305	0,444	N	0.590	181	0.751
7	17.5	\odot	1.444	5.399	N	0.590	A man and a man	0.670
L.	947	0	36)40	0.312	Υ	0.310	942	1.005
TR	75	Q	1559	0.048	14	0,310	483	0.155
E LENGT TIME F	TH: 300 PER CYCLE				RITICAL LA TION V/C		OW RATIOS	: 0.872

LEVEL OF SERVICE

LN 5R MVM	V/C GREEN RAJIO RATIO	CYC LEN	ist DELAY	LN GR CAP	2nd DELAY	FF	LN GR DELAY	LN GR LOG	APP DELAY	APP LOS
	1.038 0.540	100	18.3	823	34.5	0.85	44.9	i		
TR	1.033 0.540	100	18.2	719	34.8	0.85	45.0	£	44.7	Ē.
LT	0.751 0.590	100	11.5	181	10.7	0.85	18.9	C		
	0.676 0.590	100	10.5	852	1.5	0.85	10.3	E	11 9	14

L 1.005 0.310 100 26.3 942 23.7 1.00 50.0 E TR 0.155 0.310 100 19.0 483 0.0 0.85 16.1 C 47.5 E

INTERSECTION DELAY : 38.6 secs/veh LEVEL OF SERVICE : D

 $\frac{893}{893 \cdot 547} \cdot 811 = 501 \text{ LT}$ 310 must be SB Theo 3) 893 - 501 - 43 = 749 349 + 265 = 617 oc. $21 \cdot 300 + 265 - 578 - 419$ $08 \cdot 9 \times 900$

HANCOCK DEVELOPMENT

ERSECTION : IMBUS AVE. D RENDON ST.

DAY PM PEAK HOUR 10 B LL HER CRD?Y JATED SIGNAL

	TF	RAFF	TC	% R C A	5 W A	Y 0.0	отттаи	N S		
	GRADE	HV	ADJ.	PKS LN.	BUSES		CONF. PEDS	FED	BUTTON	AFC.
Ξ.	(%)	(%)	ANM	Nm	(Mb)	127-117	(dedaytur)	AN	SEC	TYPE
-										W F1 MARK - M
3	C)	8	Υ	1.0	O	0.89	O	Y	12.6	5
3	0	4	Y	3 ()	O.	0.87	Ō	Y	9.2	- 3
3	0	0	£4	0	O	0.90	0	N	0.0	3
	(2)	(3)	is a	0	()	0.00	- 65	· V	1.7 ()	* **

			S E	N M E	TRI	C S /		. U M E GROL				
		VOLUME			1			2			3	
P	1. '}'	T :- ;	RT	MYH	LNS	MD	MUM	LNS	711)	MVM	LNS	Did
<u> </u>	Ċ	3.41	238	3	1	11.0	TR	j.	12.0			
ψŒ	54	1151	0	LT	1	14.0	-	j.	14.0			
4Et	0	Ō	Q.									
BB.	557	370	43	1.	2	25.0	TR	1	12.0			

		5 1	GNAL	FHASI	N G			
o po	PHASE	1ST MV	END MV	SRD MV	PROT	PMSV	9	Y+K

ΞB	1	T	TR		R		54	46
4P	i	LT	1			i	54	46
ИĒ	2	L.T	T		L		5	95
RP.	3	1	TR		1.5		75.3	49

HANCOCK DEVELOPMENT 10BKLL RSECTION : MBUS AVE. 5

171271989

HMM ASSOCIATES

RENDON ST. DAY PM PEAK HOUR 10 B LL HER CBD 7 Y JATED SIGNAL

: 1

			V O L	UME	ΑБ	.1 U 5	TME	NT				
:DACH	MVM LANE	GROUP VOLUME	FLOW :	ROUP	LANE FACT		ADJ RAT	E	L_T		TURNS RT	
a man man store than		305 504	.3	43 42	1.0	0	343 342			0 6	0.00	
	L.T T	605 605		97 97	1.0 1.0		597 597			3 ()		
	L TR	E57 413		26 64	1.0 1.0		526 464		3.0 0.0	0 :		
			SAT	U R A	TIO	N F	L 0 W				THE THE THE STATE AND STATE OF	
MVM	IDEAL SAT FLOW		WIDTH	H.V.		STMENT PARK		RS AREA			ITL.(ΟW
T TR	1800 1800	i	0,97	0.97	1.00	1.00	1.00	0.90		1.0	0 151	24
;_ T T		1			1.00 i.00							

L 1800 2 1.02 1.00 1.00 1.00 1.00 0.90 1.00 0.92 3040 TR 1800 1 1.00 1.00 1.00 1.00 1.00 0.90 0.97 1.00 1576

10PMLL

HANCOCK DEVELOPMENT

ERSECTION : JMBUS AVE. 7

RENDON ST.

(DAY PM PEAK HOUR 10 % LL HER CBD ? Y

JATED SIGNAL

CAPACITY ANAL-313

LN AR . MVM	ADJ FLOW RATE	PMSV LT FLOW	ADJ SAT FL/ RT	FLOW BATTO	CRIT ?	GREEN RATIO	:N GR CAPACIT\	U/C RATIO	
Ţ	343	(-	1524	0.725	r.	0.540	32.5	0.417	
TR	347		1159	0.295	5.4	0.540	120 11 12 12 12 12 12 12 12 12 12 12 12 12	0.546	
1 3 T	697	O	1597	0.436	N	0,570	947	0.740	
7	6/27	0	1444	o.48J	Y	0.570	the state of	14,046	
L.	626	\bigcirc	5040	0.206	N	0.310	941	0.685	
TR	464	()	1596	0.291	Y	0.50	495	0.937	
E LENGT) 3 Time D	H : 100 ER CYCLE				RITICAL LA		ON RATIOS	: 0.774	

LEVEL OF SERVICE

LN GR	V/C FREEN		ist	LN GR	2nd		LN SR	LN BR	APP A	FF
MVM	SATIO RATIO	LEN	DELAY	CAP	DELAY	FF	DELAY	L85	DELAY L	.05
							~~~~~~~~			
7	0.417 0.540	100	10.4	823	0,2	0.85	9.0	13		
TE	0.546 0.540	100	11.4	626	0.8	0.85	10.4	Fr	9.7	Ë,
LT	0.740 0.570	100	11.3	942	2.2	0.85	11.5	8		
7	0.818 0.590	100	12.3	852	4.4	0.85	14.3	<u>F</u> .}	12.8	<u>;</u> ;
		4		- 10	1100		~ ·			
i .	0.665 0.310			942	1.3		24.1	0		
TE	0.937 0.310	1.00	25 5	195	19 5	0.25	13.7 A.	10		10

INTERSECTION DELAY : 17.9 secs/veh LEVEL OF SERVICE : 0





