

Machine Learning

Session 3 - Decision trees & Ensemble methods

Introduction

What did we do last time?

Course outline

Intro to ML course

Session 1: Introduction to ML & Regression

Session 2: Supervised classification

Session 3: Decision trees & Ensemble methods

Deep Learning

What are decision trees?

Vocabulary <u>Image source</u>

Definition Purity of a node

A node is 100% pure when all of its data belongs to a single class.

It is 100% impure when it contains the same proportion of each class. (e.g. 50/50 for binary classification)

Several functions can be used to compute the impurity of a node:

- Gini Index
- Cross-entropy
- Misclassification error

Different splits are tested recursively to find the best partitioning

Strength and weaknesses of decision trees

Strengths

- Flexible (few hypotheses)
- Easy to interpret (explicit rules)
- Non-linear (complex decision boundaries)

Weaknesses

- Prone to overfitting
- Unstable to noise
- Expensive on large datasets

Ensemble methods

Bootstrapping
Recombining
existing data to
create datasets

Aggregating
Training an
algorithm for
each dataset

The principle is similar to bagging, except trees are built upon random subsets of features

Random forests <u>Image source</u>

Strength and weaknesses of ensemble methods

Strengths

- Tends to increase accuracy
- Robust to noise
- Helps reduce overfitting

Weaknesses

- Requires more ressources
- Makes interpretation more difficult

Practical work

The notebook contains all the necessary instructions

Debrief

Debrief

What did we learn today?

What could we have done better?

What are we doing next time?

Machine Learning

Session 3 - Decision trees & Ensemble methods

