方式和控制字

方式

8086

总线

- 芯片总线
- 内总线
- 外总线

数据传输四个阶段

- 总线请求和仲裁
- 寻址
- 数据传送
- 结束

存储器

- RAM
 - o SRAM
 - DRAM
 - NVRAM
- ROM
 - o MROM
 - o PROM
 - o EPROM
 - o EEPROM

与CPU连接

- 位扩充:扩充数据位
- 字扩充:扩充容量 用部分地址线选芯片

译码

- 全译码:片选+片内
- 部分译码:部分高位地址片选
- 线选译码:一根线表示01

IO

编码

- 单独编码
- 统一编码

传送方式

- 程序控制
 - 。 无条件
 - **查询** test al,01h;检查端口
 - 。 中断
- DMA

• I/O处理机

工作方式

- 中断请求
- 中断响应
- 关中断
- 断点保护
- 中断识别
- 现场保护
- 中断服务
- 恢复现场
- 开中断
- 中断返回

8259

类型

- 内部中断:异常
 - 。 触发错中断
 - 指令中断 INT N
 - o 溢出中断 INTO
 - 单步中断 TF
- 外部中断:中断
 - 。 NMI 向量号为2
 - INT:**IF**

8253

方式

- 0. 计数结束中断
- 1. 可编程单稳脉冲
- 2. 频率发生器 (分频器)
- 3. 方波发生器
- 4. 软件触发选通信号
- 5. 硬件触发选通信号

每种工作方式的过程类似:

- 1. 设定工作方式
- 2. 设定计数初值
- 3. (硬件启动)
- 4. 计数初值进入减1计数器
- 5. 每输入一个时钟计数器减1的计数过程
- 6. 计数过程结束

8237

软件命令

$A_3 A_2 A_1 A_0$

- 清除高/低触发器软件命令
 - $\circ \ A_3 A_2 A_1 A_0$ = 1100,使高/低触发器清零
- 主清除命令
 - \circ $A_3A_2A_1A_0$ = 1101,使高/低触发器清零
 - 。 还使命令、状态、请求、临时寄存器清零

- 。 使屏蔽寄存器置为全1 (禁止DMA请求)
- 。 主清除命令与硬件的RESET信号具有相同的功能
- 清屏蔽寄存器命令
 - $A_3 A_2 A_1 A_0 = 1110$,使4个屏蔽位都清零(允许DMA请求)

传送方式

- 请求传送方式
 - o DREQ有效就传送 无效就暂时中止
 - 。 直到字节数寄存器为FFFFH或外部信号终结
 - 。 可由外设利用 DREQ 控制传送过程
- 单字节传送方式
 - 。 每次传送一个字节后 交还系统总线控制权
 - 。 效率低
- 数据块传送方式
 - 由 DREQ 启动就传送数据
 - 。 直到字节数寄存器为FFFFH或外部信号终结
 - 。 效率高
 - 。 CPU长时间无法控制总线
- 级联方式
 - 。 第二级的 HRQ和 HLDA 连到第一级某通道的 DREQ和 DACK上
 - 。 实际操作由第二级芯片完成
 - 。 第二级芯片优先权与所连2通道优先权对应

8255

方式

- 0. 基本输入输出方式
 - 1. 适用于无条件传送和查询方式的接口电路
- 1. 选通输入输出方式
 - 1. 适用于查询和中断方式的接口电路
- 2. 双向选通传送方式
 - 1. 适用于与双向传送数据的外设
 - 2. 适用于查询和中断方式的接口电路

控制字

8259

ICW固定写入顺序 OCW无写入顺序

ICW1

D7	D6	D5	D4	D3	D2	D1	D0
Χ	X	Χ	1	LTIM	X	SNGL	IC4
建议为0			作为标志	中断触发方式		单片或级联方式	是否写入ICW4

中断触发方式

0. 边沿触发

1. 电平触发

SNGL:

- 0. 级联
- 1. 单片

ICW₂

D7	D6	D5	D4	D3	D2	D1	D0
T7	T6	T5	T4	T3	X	X	X

设置中断向量号

- T7~T3为中断向量号的高5位
- 低3位由8259A自动确定
- IR0为000、IR1为001、.....、IR7为111

ICW3

D7	D6	D5	D4	D3	D2	D1	D0
S7	S6	S5	S4	S3	S2/ID2	S1/ID1	S0/ID0

级联命令字

- 主片8259A: $S_i=1$ 对应 IR_i 有从片
- 从片8259A:ID0~ID2编码说明从片INT引脚接到主片的IR引脚

ICW4

D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	SFNM	BUF	M/S	AEOI	μ PM
			嵌套方式 特殊(1)/普通(0)全嵌套	缓冲方式:缓冲(1)	M/S*	AutoEOI	

μ PM:微处理器类型

- 0. 8位8080/8085
- 1. 16位80x86

普通全嵌套:

- 8259A的中断优先权顺序固定不变
- 中断请求后,8259A对当前请求中断中**优先权最高**的中断IRi予以响应,将其向量号送上数据总线,对应ISR的Di位置位,至到中断结束(ISR的Di位复位)
- 在ISR的Di位置位期间,禁止再发生同级和低级优先权的中断,但允许高级优先权中断的嵌套

OCW1

D7	D6	D5	D4	D3	D2	D1	D0
M7	M6	M5	M4	M3	M2	M1	M0

屏蔽命令字 Di=Mi对应IRi

为1禁止IRi中断

OCW2

D7	D6	D5	D4	D3	D2	D1	D0
R	SL	EOI	0	0	L2	L1	LO
产生中断	结束EOI命令	和改变优先权顺序			指定	IR	引脚

R SL EOI 为一组

L2~0为一组

OCW3

D7	D6	D5	D4	D3	D2	D1	D0
0	ESMN	SMM	0	1	Р	RR	RIS
	设置中断	屏蔽方式			规定随后读取	状态字	含义

ESMN SMM一组

P RR RIS—组

状态字

- A_0 为低 OCW3中RR和RIS设定读取IRR或ISR P设定为读取查询字
- A_0 为高 读取都是IMR

查询字反应8259A是否有中断请求

D7	D6	D5	D4	D3	D2	D1	D0
1					W2	W1	W0
是否有外设请求中断					当前中断请求	的	最高优先级

8253

CS* A1 A0	I/O地址	RD*	WR*
0 0 0	40H	Read Cnt0	Write Cnt0
0 0 1	41H	Read Cnt1	Write Cnt1
0 1 0	42H	Read Cnt2	Write Cnt2
0 1 1	43H	NOP	写控制字

写入控制字I/O地址 $A_1A_0=11$

D7	D6	D5	D4	D3	D2	D1	D0
计数器		读写格式		工作方式			数制

计数器:

00	01	10	11
计数器0	计数器1	计数器2	非法

读写格式:

00	01	10	11
计数器锁存	低字节only	高字节only	先低字节后高字节

工作方式: 000-101 方式0-5

数制

0. binary

1. BCD

8237

模式寄存器

通道的方式控制字

最低二位选择通道

D7	D6	D5	D4	D3	D2	D1	D0
传送方式		地址增量	自动初始化 传送类型			通道	

传送方式:

	模式
00	请求
01	单字节
10	数据块
11	级联

地址增量

0 自增

1 自减

工作方式

	传送类型
00	DMA校验
01	DMA写
10	DMA读
11	非法

命令寄存器

存放8237A的命令字

影响每个DMA通道

复位清零

D2=1设置8237A为DMAC

位	7	6	5	4	3	2	1	0
标志	DACK	DREQ	写	优先权	时序	DMAC	通道0地址改变	存储器间传送
1	高有效	低有效	扩展写	循环	压缩	禁止DMAC工作	禁止	允许
0			滞后写	固定	正常			

8255

CS* A1 A0	I/O地址	RD*	WR*
0 0 0	60H	Read PA	Write PA
0 0 1	61H	Read PB	Write PB
0 1 0	62H	Read PC	Write PC
0 1 1	63H	非法	写控制字

初始化编程

8259

- 8259A开始工作前,必须进行初始化编程:
- 给8259A写入初始化命令字**ICW**

```
1 mov al,11h ;写入ICW1
2 out 20h,al
3 jmp intr1
4 intr1: mov al,08h ;写入ICW2
5 out 21h,al
6 jmp intr2
7 intr2: mov al,04h ;写入ICW3
8 out 21h,al
9 jmp intr3
10 intr3: mov al,1h ;写入ICW4
11 out 21h,al
```

8253

```
1 mov al,36h;00110110B
2 ;计数器0为方式3,采用二进制计数,
3 ;先低后高写入计数值
4 out 43h,al ;写入方式控制字
5 mov al,0 ;计数值为0
6 out 40h,al ;写入低字节计数值
7 out 40h,al ;写入高字节计数值
```

```
1 mov al,54h

2 ;计数器1为方式2,采用二进制计数,只写低8位计数值

3 out 43h,al ;写入方式控制字

4 mov al,18 ;计数初值为18

5 out 41h,al ;写入计数值
```

8237

- 写入命令寄存器
- 可先输出主清除命令 进行软件复位
- 然后写入命令字

8255

```
1 MOV AL,10011001B;99H 方式控制字
2 OUT 63H,AL
```