巡回セールスマン問題

モデリングとシミュレーション特論

2019年度

只木進一

サンプルプログラム

https://github.com/modeling-andsimulation-mc-saga/TSP

例:巡回セールスマン Traveling Salesman Problem

- $N 個の都市<math>c_i$ と距離 $d(c_i, c_j)$
 - ▶完全グラフと仮定
 - ▶本来通過できない都市間は距離を非常に 大きく設定する
- ■全ての都市を一回だけ回って、出発点に戻る経路のうち、最短経路を求める
 - ▶全部調べて、一番良いものを選ぶ

- ■可能な経路: (N-1)!/2
 - ■Nとともに指数関数的に増大
 - ▶現実的問題が実際的時間で解けない

■Stirlingの公式

ln n! = n ln n - n + O(ln n)

\boldsymbol{n}	n!
1	1
2	2
3	6
4	24
5	120
6	720
7	5040
8	40320
9	362880
10	3628800

$\ln n! = \sum_{k=1}^{n} \ln k$

手に負えません! Uncontrollable!

最適化問題の近似解 Approximate optimum solutions

- ■現実的な最適化問題は、真の最適解を 求めることが本当の目的か?
 - ■適正な時間内に、良い解を求めれば良い のではないか?
 - ▶短時間で、良い近似解を求める方法は?

自然は上手に最適化している? the Nature can optimize?

- ▶徐冷による結晶成長
 - ▶ゆっくり冷えると、きれいな結晶に
- ▶タンパク質
 - ▶生体内での合成で、適正な構造
- ▶アリの食餌
 - ▶次第に最短距離を利用する
- ■遺伝
 - ■適応度の高い種が生き残る

近似的最適化手法を自然から学ぶ

自然がしている最適化? Optimization in the Nature?

- ▶でたらめに、解空間を調べる
- ▶よさそうなところを丁寧に調べる

- ●すごく素朴な
 - ▶合理化の方法は?
 - ■様々な近似解法

確率過程 stochastic processes

- ■過程が、非決定的に進む
 - ●例:すごろく:さいころの目だけ、進む (それぞれ、確率1/6)
 - \blacksquare 例:ある状態Aから確率pで状態Bへ変化し、確率1-pでそのままAに留まる

simulated annealing (徐冷) 温度が徐々に下がるのをまねる

- ■有限温度
 - ■温度によって指定された遷移確率で、で たらめに状態を探索
 - ▶高温ほどでたらめさが大きい
 - ▶温度に応じた範囲で探索
 - Monte Carlo Simulation
- ●徐々に温度を下げる
 - ▶探索範囲を狭くする

巡回路とその変更 Hamilton path and its update

- ►N都市を巡るある順路μ
 - $\blacksquare \mu = [c_0^{\mu}, c_1^{\mu}, \cdots, c_{N-1}^{\mu}, c_N^{\mu} = c_0^{\mu}]$
- ►経路長: $D^{\mu} = \sum_{k=0}^{N-1} d(c_k^{\mu}, c_{k+1}^{\mu})$

►経路μからでたらめに二点(p,q)を選ぶ

$$\left[c_0^{\mu}, c_1^{\mu}, \cdots, c_p^{\mu}, c_{p+1}^{\mu}, \cdots, c_{q-1}^{\mu}, c_q^{\mu}, \cdots, c_N^{\mu}\right]$$

■二点(p,q)の間を反転して新しい経路 vとする

$$\nu = \left[c_0^{\mu}, c_1^{\mu}, \cdots, c_q^{\mu}, c_{q-1}^{\mu}, \cdots, c_{p+1}^{\mu}, c_p^{\mu}, \cdots, c_N^{\mu}\right]$$

- $D^{\nu} < D^{\mu}$ ならば
 - ■新しい経路νを選択する
 - ▶短い経路ならば選ぶ
- $D^{\nu} \geq D^{\mu}$ ならば
 - ■確率 $\exp(-(D^{\nu}-D^{\mu})/T)$ で新しい経路 ν を 選択する
 - ■長い経路ならば、温度に依存した確率で 選ぶ

状態遷移イメージ state transition

 $D^{\nu} \leq D^{\mu}$ の場合

▶平衡になるには

$$e^{-\left(D^{\mu}-D^{\nu}\right)/T}p(\nu) = p(\mu)$$
 $p(\nu) \propto e^{-D^{\nu}/T}, \qquad p(\mu) \propto e^{-D^{\mu}/T}$

- ▶経路変更を十分繰り返す
- ■ある温度Tで、順路µが実現する確率

$$P(\mu) = Z^{-1} \exp(-D^{\mu}/T)$$
$$Z = \sum_{\mu} \exp(-D^{\mu}/T)$$

- ■Zは、規格化定数。分配関数とも言う。
- ■経路長の長い経路は指数関数的に少ない 確率で発生

有限温度の統計力学

Statistical Physics at Finite Temperature

- -エネルギー順位が $\{E_i\}$ である系
- ■温度T
- Boltzmann定数k_B

$$P_i = rac{1}{Z}e^{-E_i/k_BT} \ Z = \sum_i e^{-E_i/k_BT}$$

18

徐冷 annealing

- ■高温
 - ■様々な経路を試す
- ▶温度をゆっくりと下げていく
 - ▶選択の幅が次第に狭くなる
- ▶最短経路のものだけが生き残る

クラス設計 Class Plan

- ►経路のクラスRoute
 - ►List<Point> path:頂点列
 - ■double pathLength:経路長
- ■Simulationクラス
 - ▶新しい経路への確率的変更
 - ■温度を下げる

