Redes Recurrentes

Orlando Ramos Flores

Contenido

- Introducción
- Bidirectional Long Short-Term Memory (Bi-LSTM)
 - o Arquitectura de una Bi-LSTM
 - Resumen

Introducción

Introducción: Red Recurrente

General structure of a regular unidirectional RNN shown (a) with a delay line and (b) unfolded in time for two time steps.

Introducción:

Fig. 2. Visualization of the amount of input information used for prediction by different network structures.

Introducción:

3. General structure of the bidirectional recurrent neural network (BRNN) shown unfolded in time for three time steps.

Bidirectional Long Short-Term Memory

Bidirectional Long Short-Term Memory: Bi-LSTM

- El modelo LSTM bidireccional (Bi-LSTM)
 mantiene dos estados separados para las
 entradas hacia adelante y hacia atrás
 generadas por dos LSTM diferentes.
- La primera LSTM es una secuencia regular que comienza desde el principio de la oración, mientras que en la segunda LSTM, la secuencia de entrada se alimenta en el orden opuesto.
- La idea detrás de la red bidireccional es capturar información de las entradas circundantes.
- Por lo general, aprende más rápido que el enfoque unidireccional, aunque depende de la tarea.

Bi-LSTM

- Para cualquier paso t dado un mini-batch de entrada X_tεℝ^{nxd}, donde n es el número de muestras y d es el número de entradas en cada muestra. Y φ sea la función de activación de la capa oculta.
- Los estados ocultos hacia adelante y hacia atrás para este paso de tiempo son:

$$\overrightarrow{\mathbf{H}}_t \in \mathbb{R}^{n imes h}$$
 y $\overleftarrow{\mathbf{H}}_t \in \mathbb{R}^{n imes h}$

donde **h** es el número de unidades ocultas.

Las actualizaciones de los estados ocultos hacia adelante y hacia atrás son los siguientes: $\overrightarrow{\mathbf{H}}_t = \phi(\mathbf{X}_t\mathbf{W}_{xh}^{(f)} + \overrightarrow{\mathbf{H}}_{t-1}\mathbf{W}_{hh}^{(f)} + \mathbf{b}_h^{(f)}),$ $\overleftarrow{\mathbf{H}}_t = \phi(\mathbf{X}_t\mathbf{W}_{xh}^{(b)} + \overleftarrow{\mathbf{H}}_{t+1}\mathbf{W}_{hh}^{(b)} + \mathbf{b}_h^{(b)})$

$$\mathbf{W}_{xh}^{(f)} \in \mathbb{R}^{d \times h}, \mathbf{W}_{hh}^{(f)} \in \mathbb{R}^{h \times h}, \mathbf{W}_{xh}^{(b)} \in \mathbb{R}^{d \times h}, \text{ and } \mathbf{W}_{hh}^{(b)} \in \mathbb{R}^{h \times h}$$

$$\mathbf{b}_h^{(f)} \in \mathbb{R}^{1 imes h} \; \mathrm{y} \; \mathbf{b}_h^{(b)} \in \mathbb{R}^{1 imes h}$$

Understanding LSTM Networks -- colah's blog, http://colah.github.io/posts/2015-08-Understanding-LSTMs

Bi-LSTM

- Después, se concatenan los estados \rightarrow coultos hacia adelante y hacia atrás \mathbf{H}_t y \mathbf{H}_t para obtener el estado oculto $\mathbf{H}_t \in \mathbb{R}^{n \times 2h_t}$ con este alimentar a la capa de salida.
- En Bi-LSTM profundos con múltiples capas ocultas, dicha información se transmite como entrada a la siguiente capa bidireccional.
- Por último, la capa de salida calcula la salida $O_t \in \mathbb{R}^{n \times q}$, donde q es el número de salidas (targets).

$$\mathbf{O}_t = \mathbf{H}_t \mathbf{W}_{hq} + \mathbf{b}_q$$

$$\mathbf{W}_{hq} \in \mathbb{R}^{2h imes q} \qquad \mathbf{b}_q \in \mathbb{R}^{1 imes q}$$

Bi-LSTM: Resumen

- Una de las características clave de una RNN bidireccional es que la información de ambos extremos de la secuencia se usa para estimar la salida.
- Es decir, usamos información de observaciones futuras y pasadas para predecir la actual.
- Sin embargo, las RNN bidireccionales también son extremadamente lentas.
- Las razones principales de esto son que la propagación hacia adelante requiere recurrencias tanto hacia adelante como hacia atrás en capas bidireccionales y que la propagación hacia atrás depende de los resultados de la propagación hacia adelante.
- Por lo tanto, los gradientes tendrán una cadena de dependencia muy larga.