Statistics 568 Bayesian Analysis

Spring 2021

Homework 6

Due: Wed 03/03/21 @ 11:59pm

rutgers.instructure.com/courses/120689

Problem 1. Rejection sampling for Gaussian tail. Consider rejection sampling from the (unormalized) target distribution

$$q(\theta) = \phi(\theta) \mathbf{1} \{\theta > c\},$$

where ϕ is the standard normal density, and c>0. Consider using an Exponential distribution with parameter λ as the proposal distribution.

1. Derive that the smallest covering constant needed for the $Exp(\lambda)$ proposal is

$$M^* = \frac{\exp\left\{\left(\lambda^2 - 2\lambda c\right)/2\right\}}{\sqrt{2\pi}\lambda\left(1 - \Phi\left(c\right)\right)}.$$

- 2. Prove that using the $Exp(\lambda)$ proposal with the above covering constant M^* , the best acceptance rate of the rejection sampler is $1/M^*$.
- 3. Show that the best choice of λ that meets the above acceptance rate is

$$\lambda^* = \left(c + \sqrt{c^2 + 4}\right) / 2.$$

4. Graphically depict the target distribution and their corresponding best proposal distribution, properly scaled by the corresponding M^* values, for c = 0,1,2 (that is, you will produce three plots, compactly displayed). Report the best acceptance rates in these three situations.

Note. You may either think of the target distribution as N(0,1) truncated on $[c,\infty)$, and cover it with the scaled $Exp(\lambda)$ shifted to the right by c. Alternatively, you can also think of the target as the N(-c,1) distribution truncated on $[0,\infty)$, and cover it with the scaled $Exp(\lambda)$ starting at zero. These constitute identical sampling tasks. The math of the latter may be easier.

Problem 2. BDA Chapter 10, Exercise 6.

Problem 3. BDA Chapter 10, Exercise 7.