BASIC CONCEPT

- 1.2 Pointers and Dynamic Memory Allocation
- 1.3 Algorithm Specification
- 1.4 Data Abstraction

1.5 Performance Analysis

1.6 Performance Measurement

Evaluating Programs

– ...

Criterias:

- Does the program meet the original specifications of the task?
- Does it work correctly?
- Does the program contain <u>documentation</u> that shows how to use it and how it works?
- Does the program effectively use functions to create logical units?
- Is the program's code readable?
- Does the program efficiently use primary and secondary storage?
- Is the program's running time acceptable for the task?

Performance Evaluation

Performance Analysis

- Focuses on obtaining estimates of time and space that are machine independent
- Known as complexity theory

Performance Measurement

Machine dependent running times

Complexity: Space and Time

Space complexity

The amount of memory that a program needs to run to completion.

Time complexity

The amount of computation time that a program needs to run to completion.

1.5.1 SPACE COMPLEXITY

Space Complexity

The space needed by a program:

- (1) Fixed Space Requirements (c)
 - Independent on the number and size of the program's inputs and outputs and size of the program's inputs and fight, 에너지 해내 왕점

एक्ट्र मुक्के ज्ञान

- Space for instruction(code), simple variables, fixed-size structured variables, and constants
- (2) Variable Space Requirements $(S_P(I))$
 - Depend on the <u>characteristics of particular instance I</u> of the program;
 - The number, size, and values of the inputs and outputs
 - The additional space required when a function uses recursion

Space Complexity

Total space requirement **S(P)** of any program:

$$S(P) = c + S_P(I)$$

Usually concerned with only ...

When we want to compare the space complexity of several programs

Ex $1.6 \rightarrow S_{abc}(I) = ...$

* **Program 1.10:** Simple arithmetic function (p.23)

```
float abc(float a, float b, float c)

{

return a + b + b * c + (a + b - c) / (a + b) + 4.00;
}
```

```
Ex 1.7 \rightarrow S_{sum}(I) = ?

- In Pascal: ...

- In C: ..
```

*Program 1.11: Iterative function for summing a list of numbers (p.24)

```
float sum(float list[], int n)

{
    float tempsum = 0;
    int i;
    for (i = 0; i < n; i + +)
        tempsum += list [i];
    return tempsum;
}
```

Ex $1.8 \rightarrow S_{rsum}(I) = ?$

相的

```
*Program 1.12: Recursive function for summing a list of numbers float rsum(float list[], int n)

{
    if (n) return rsum(list, n-1) + list[n-1];
    return 0;
}
```

Ex
$$1.8 \rightarrow S_{rsum}(I) = ?$$

```
*Program 1.12: Recursive function for summing a list of numbers float rsum(float list[], int n)
{
   if (n) return rsum(list, n-1) + list[n-1];
   return 0;
}
```

For each recursive call, compiler must save the parameters, local variables, the return address for each recursive call

Type	Name	Number of bytes
parameter: array pointer	list[]	4
parameter: integer	n	4
return address: (used internally)		4
TOTAL per recursive call		12

Figure 1.1: Space needed for one recursive call of Program 1.12

→ If the array has 1000 numbers? Toputal and Flot mpa 3th 로네임

BASIC CONCEPT

- 1.2 Pointers and Dynamic Memory Allocation
- 1.3 Algorithm Specification
- 1.4 Data Abstraction

1.5 Performance Analysis

- Space Complexity
- Time Complexity
- Asymptotic Notation
- Practical Complexities
- 1.6 Performance Measurement

Time T(P) taken by a program P:

$$T(P) = C + T_{P}(I)$$

- C: compile time (Constant)
- $T_P(I)$: run (or execution) time

Compile time

- Fixed
- Independent of instance characteristics (本种 基礎)

Determining T_p is not an easy task

It requires a detailed knowledge of the compiler's attributes

Ex)

- Suppose we have a simple program that adds and subtracts numbers:
- $T_P(n) = c_a ADD(n) + c_s SUB(n) + c_l LDA(n) + c_{st} STA(n)$
 - *n*: instance characteristic
 - c_a , c_s , c_b constants (time needed to perform each operation)

Alternative:

- Count # of operations the program performs
- Machine-independent estimate, but we must know how to divide the program into distinct steps

Def.: program step

A syntactically or semantically meaningful <u>program segment</u> whose execution time is independent of the instance characteristics

Ex)

Each executable statement is counted as one step:

```
a = 2; // 1 step a = a + b + b * c + (a + b - c) / (a + b) + 4.0; // 1 step of the last | step |
```

How to count program steps?

- 1. Using a global variable, count
- 2. Using a tabular method

```
float sum(float list[], int n)
{
  float tempsum = 0;
  int i;
  for (i = 0; i < n; i++)
    tempsum += list[i];
  return tempsum;
}</pre>
```

Program 1.11: Iterative function for summing a list of numbers

```
Number of steps?:...
```

Program 1.13: Program 1.11 with count statements

Ex 1.10 [Recursive summing]

Program 1.15: Program 1.12 with count statements added

Number of steps? ...

[Ex.1.12] Tabular method

(steps/execution)

Statement	s/e	Frequency	Total steps	
float sum(float list[], int n)	0	0	0	
{	0	0	0	
float tempsum $= 0$;	1	1	①	
int i;	0	0	0	
for $(i = 0; i < n; i++)$	1	n+1	$n+1 \rightarrow TH$	मेर किला केडा। व्यक्ता मार्थ
tempsum += list[i];	1	n	\overline{n}	
return tempsum;	1	1	1	
}	0	0	0	
Total			2 <i>n</i> +3	

[Ex.1.13]

Statement	s/e	Frequency	Total steps
float rsum(float list[], int n)	0	0	0
{	0	0	0
if (n)	1	n+1	n+1
return rsum(list, $n-1$) + list[$n-1$];	1	n	n
return ()	1	1	1
}	0	0	0
Total			(2n+2)

$$\times 2n + 3$$
 (iterative) > $2n + 2$ (recursive)

[Ex.1.14]

Statement	s/e	Frequency	Total Steps
void add(int a[][MAX_SIZE] · · ·)	0	0	0
{	0	0	0
int i, j;	0	O COST	fr. 0
for (i=0; i <rows; i++)<="" td=""><td>1</td><td>rows 1</td><td>rows+1</td></rows;>	1	rows 1	rows+1
for $(j = 0; j < cols; j++)$	1	rows · (cols+1) $rows \cdot cols + rows$
c[i][j] = a[i][j] + b[i][j];	1	rows · cols	$rows \cdot cols$
}	0	0	0
Total			2rows · cols + 2rows+1
		DEDA	23.
		<u> </u>	2 ELEN 7

Figure 1.4: Step count table for matrix addition

BASIC CONCEPT

- 1.2 Pointers and Dynamic Memory Allocation
- 1.3 Algorithm Specification
- 1.4 Data Abstraction

1.5 Performance Analysis

- Space Complexity
- Time Complexity
- Asymptotic Notation
- Practical Complexities
- 1.6 Performance Measurement

1.5.3 ASYMPTOTIC NOTATION (O, Ω, Θ)

Motivation to determine step counts:

- To compare the time complexities of two programs for the same function
- To predict the growth in run time <u>as the instance characteristics</u>
 <u>change</u>

Determining the exact step count (either worst case or average)

- Exceedingly difficult task for most of the programs
- The notion of a step is itself inexact
- Not very useful for comparative purposes

Asymptotic complexity

- Provides meaningful(but inexact) statements about the time and space complexities of a program
- Determined quite easily without determining the exact step count

Notations: O, Ω, Θ

- O (Big "oh"): Upper bound 길에 이번도 했다
- Ω (Omega): Lower bound আ পাৰ্য প্ৰাণ্ড
- $-\Theta$ (Theta): Upper and lower bound

Def.) [Big "oh"] $f(n) = \mathbf{O}(\mathbf{g}(n))$ iff there exist positive constants c and n_0 such that $f(n) \le c\mathbf{g}(n)$ for all $n, n \ge n_0$.

 $\forall n, n \ge n_0,$ g(n) is an upper bound on the value of f(n)At a me $h \ge \frac{\pi}{2}$

Def.) [Big "oh"]
$$f(n) = O(g(n))$$
 $g(n) = O(g(n))$ $g(n)$

Ex. 1.15)

```
Theorem 1.2:

if f(n) = a_m n^m + ... + a_1 n + a_0,

then f(n) = O(n^m).
```

O(1) is called constant

 $O(n^2)$: quadratic

 $O(n^3)$: cubic

 $O(2^n)$: exponential

Computing Times:

$$O(1) \le O(\log n) \le O(n) \le O(n \log n) \le O(n^2) \le O(n^3) \le O(2^n)$$

Def.) [Omega]
$$f(n) = \Omega(g(n))$$

iff $\exists c, n_0 > 0$, s.t. $f(n) \ge cg(n)$ for $\forall n, n \ge n_0$

For all $n, n \ge n_0$, g(n) is a **lower bound** on the value of f(n)

Def.) [Omega]
$$f(n) = \Omega(g(n))$$

iff $\exists c, n_0 > 0$, s.t. $f(n) \ge cg(n) \forall n, n \ge n_0$

Ex 1.16)

$$n \ge 1,$$
 $3n + 2 \ge 3n$ $\Rightarrow 3n + 2 = \Omega(n)$
 $n \ge 1,$ $100n + 6 \ge 100n$ $\Rightarrow 100n + 6 = \Omega(n)$
 $n \ge 1,$ $10n^2 + 4n + 2 \ge n^2$ $\Rightarrow 100n^2 + 4n + 2 = \Omega(n^2)$

Def.) [Theta]
$$f(n) = \Theta(g(n))$$

iff $\exists c_1, c_2, n_0 > 0$, s.t. $c_1g(n) \le f(n) \le c_2g(n)$ for $\forall n, n \ge n_0$

g(n): both an upper and lower bound on the value of f(n)

Def.) [Theta]
$$f(n) = \Theta(g(n))$$

iff $\exists c_1, c_2, n_0 > 0$, s.t. $c_1g(n) \le f(n) \le c_2g(n) \forall n, n \ge n_0$

Ex. 1.17)

- $-3n+2=\Theta(n)$
 - \rightarrow n ≥ 2, 3n ≤ 3n+2 ≤ 4n
- $-10n^2+4n+2 = \Theta(n^2)$
- $-6*2^n+n^2=\Theta(2^n)$

Theorem 1.3: If $f(n) = a_m n^m + ... + a_1 n + a_0$ and $a_m > 0$, then $f(n) = \Omega(n^m)$.

Theorem 1.4: If $f(n) = a_m n^m + ... + a_1 n + a_0$ and $a_m > 0$, then $f(n) = \Theta(n^m)$.

O (Big "oh"): Upper bound

 Ω (Omega): Lower bound

Θ (Theta): Upper and lower bound

Ex 1.18 [Complexity of matrix addition]:

Statement	Asymptotic complexity		
void add(int a[][MAX_SIZE] · · ·)	0		
{	0		
int i, j;	0		
for (i=0; i <rows; i++)<="" td=""><td colspan="3">$\Theta(rows)$</td></rows;>	$\Theta(rows)$		
for $(j = 0; j < cols; j++)$	$\Theta(rows.cols)$		
c[i][j] = a[i][j] + b[i][j];	$\Theta(rows.cols)$		
}	0		
Total	$\Theta(rows.cols)$		

Figure 1.5: Time complexity of matrix addition

1.5.4 PRACTICAL COMPLEXITIES

$\log n$	n	$n \log n$	n^2	n^3	2^n
0	1	0	1	1	2
1	2	2	4	8	4
2	4	8	16	64	16
3	8	24	64	512	256
4	16	64	256	4096	65,536
5	32	160	1024	32,768	4,294,967,296

Figure 1.7: Function values

Figure 1.8 Plot of function values

				f(n))		
n	n	$n\log_2 n$	n^2	n^3	n^4	n 10	2 ⁿ
10	.01 µs	.03 µs	.1 μs	1 µs	10 µs	10 s	1 μs
20	.02 μ.	.09 μs	.4 μs	8 μ.	160 μs	2.84 h	1 ms
30	.03 μ	.15 μ	.9 μ	27 μ	810 д	6.83 d	1 s
40	.04 µs	.21 μs	1.6 µs	64 µs	2.56 ms	121 d	18 m
50	.05 μs	.28 µs	2.5 µs	125 μs	6.25 ms	3.1 y	13 d
100	.10 µs	.66 µs	10 μs	1 ms	100 ms	3171 y	4*10 ¹³ y
10 ³	1 μs	9.96 µs	1 ms	1 s	16.67 m	3.17*10 ¹³ y	32*10 ²⁸³ y
104	10 µs	130 µs	100 ms	16.67 m	115.7 d	3.17*10 ²³ y	
105	100 μs	1.66 ms	10 s	11.57 d	3171 y	3.17*10 ³³ y	
10 ⁶	1 ms	19.92 ms	16.67 m	31.71 y	3.17*10 ⁷ y	3.17*10 ⁴³ y	

 μ s = microsecond = 10⁻⁶ seconds; ms = milliseconds = 10⁻³ seconds s = seconds; m = minutes; h = hours; d = days; y = years

Figure 1.9: Times on a 1-billion-steps-per-second computer

BASIC CONCEPT

- 1.2 Pointers and Dynamic Memory Allocation
- 1.3 Algorithm Specification
- 1.4 Data Abstraction
- 1.5 Performance Analysis

1.6 Performance Measurement

1.6.1 Clocking

Timing events in C

- Use **clock()** or **time()** function in the C standard library.
- #include <time.h>

	Method 1	Method 2
Start timing	start = clock();	start = time(NULL);
Stop timing	stop = clock();	stop = time(NULL);
Type returned	clock_t	time_t
Result in seconds	duration = ((double) (stop-start)) / CLOCKS_PER_SEC;	duration = (double) difftime(stop,start);

Ex 1.22 [Worst-case performance of selection sort]:

```
#include <stdio.h>
#include <time.h>
#include "selectionSort.h"
#define MAX SIZE 1001
void main(void)
  int i, n, step = 10;
   int a[MAX_SIZE];
  double duration;
  clock_t start;
  /* times for n = 0, 10, ..., 100, 200, ..., 1000 */
  printf("
           n time\n");
  for (n = 0; n \le 1000; n += step)
   {/* get time for size n */
     /* initialize with worst-case data */
     for (i = 0; i < n; i++)
        a[i] = n - i;
     start = clock();
     sort(a, n);
     duration = ((double) (clock() - start))
                           / CLOCKS PER SEC;
     printf("%6d %f\n", n, duration);
     if (n == 100) step = 100;
```

```
void main(void)
   int i, n, step = 10;
   int a[MAX_SIZE];
   double duration;
   /* times for n = 0, 10, ..., 100, 200, ..., 1000 */
                                time\n");
   printf(" n repetitions
   for (n = 0; n \le 1000; n += step)
      /* get time for size n */
      long repetitions = 0;
      clock_t start = clock();
      do
         repetitions++;
        /* initialize with worst-case data */
         for (i = 0; i < n; i++)
            a[i] = n - i;
         sort(a, n);
      } while (clock() - start < 1000);</pre>
           /* repeat until enough time has elapsed */
      duration = ((double) (clock() - start))
                            / CLOCKS PER SEC;
      duration /= repetitions;
      printf("%6d %9d %f\n", n, repetitions, duratio
      if (n == 100) step = 100;
```

selection Sept than Attass = QP

n	repetitions	time
0	8690714	0.000000
10	2370915	0.000000
20	604948	0.000002
30	329505	0.000003
40	205605	0.000005
50	145353	0.000007
60	110206	0.000009
70	85037	0.000012
80	65751	0.000015
90	54012	0.000019
100	44058	0.000023
200	12582	0.000079
300	5780	0.000173
400	3344	0.000299
500	2096	0.000477
600	1516	0.000660
700	1106	0.000904
800	852	0.001174
900	681	0.001468
1000	550	0.001818

2000 - $\approx n^2$ 1500 1000 time 500 0 50 100 1000 500 Time axis in microseconds

Figure 1.12: Graph of worst-case performance of selection sort

Figure 1.11: Worst-case performance of selection sort (seconds)

#define SWAP(x, y, t) ((t) = (x), (x) = (y), (y) = (t))

```
void sort(int list[], int n)
{
    int i, j, min, temp;
    for(i = 0; i < n-1; i++) {
        min = i;
        for (j = i + 1; j < n; j++)
            if(list[j] < list[min])
            min = j;
        SWAP(list[i], list[min], temp);
    }
}</pre>
```

Program 1.4: Selection sort

```
void main(void)
  int i, n, step = 10;
  int a[MAX_SIZE];
  double duration;
  /* times for n = 0, 10, ..., 100, 200, ..., 1000 */
  printf(" n repetitions
                                  time\n");
  for (n = 0; n \le 1000; n += step)
     /* get time for size n */
     long repetitions = 0;
     clock_t start = clock();
     do
        repetitions++;
        /* initialize with worst-case data */
        for (i = 0; i < n; i++)
           a[i] = n - i;
        sort(a, n);
      } while (clock() - start < 1000);</pre>
           /* repeat until enough time has elapsed */
      duration = ((double) (clock() - start))
                            / CLOCKS PER SEC;
     duration /= repetitions;
     printf("%6d %9d %f\n", n, repetitions, duratio
     if (n == 100) step = 100;
```

Program 1.25: More accurate timing program for selection sort

BASIC CONCEPT

- 1.2 Pointers and Dynamic Memory Allocation
- 1.3 Algorithm Specification
- 1.4 Data Abstraction
- 1.5 Performance Analysis
- 1.6 Performance Measurement