Coursera Guided Project

RStudio for Six Sigma Control Charts

Moses Gummadi

bit.ly/OpExChannel

Learning Objectives

Overview Of Statistical Process Control (SPC)

Understand Data Types & Select Control Chart

Rules To Detect Out Of Control Signal In A Process

Plot & Interpret Variables Charts (XmR, Xbar-R, Xbar-S)

Plot & Interpret Attribute Charts (NP, P, U and C)

Learning Objectives

Overview Of Statistical Process Control (SPC)

Understand Data Types & Select Control Chart

Rules To Detect Out Of Control Signal In A Process

Plot & Interpret Variables Charts (XmR, Xbar-R, Xbar-S)

Plot & Interpret Attribute Charts (NP, P, U and C)

Purpose of Control Charts

Monitor Process Inputs (Xs) And Process Outputs (Ys)

Detect When The Process Goes Out Of Control

Control Charts Do Not

Reflect The Process Capability In Meeting The Specs

Identify The Causes Underlying Process Disturbances

Common Cause Variation

Random Variation

Process In Control

Special Cause Variation

Non-Random Variation

Process Out Of Control

Data Types For Control Charts

Control Chart Selection Algorithm

Upper Control Limit

Centre Line

Lower Control Limit

Upper Control Limit

Centre Line

Lower Control Limit

Upper Control Limit

Centre Line

Zone A Zone B Zone B Zone A

Zone C

Zone C

Lower Control Limit

Rule 1

One or more points beyond Zone A

Rule 2

2 out of 3 consecutive points fall in Zone A or beyond

Rule 3

4 out of 5 consecutive points fall in Zone B or beyond

Rule 4

9+ consecutive points on the same side of the centre line

Nelson's Rules

Rule 1	One or more points beyond Zone A		
Rule 2	9+ consecutive points on the same side of the CL		
Rule 3	6+ consecutive points steadily increasing (decreasing)		
Rule 4	14+ consecutive points alternating up and down		
Rule 5	2 out of 3 consecutive points fall in Zone A or beyond	WE	
Rule 6	4 out of 5 consecutive points fall in Zone B or beyond	WE	
Rule 7	15+ consecutive points are in Zone C, either side of CL		
Rule 8	8+ points in a row on either size of CL; but none in Zone	C	

Control Chart Formulae

Chart Type	Centre Line	LCL	UCL
X in XMR Chart	$ar{x}$	$\bar{x} - 3\overline{MR}/d_2$	$\bar{x} + 3\overline{MR}/d_2$
MR in XMR Chart	\overline{MR}		$D_4\overline{MR}$
X in Xbar-R Chart	$ar{ar{x}}$	$\bar{\bar{x}} - A_2 \bar{R}$	$\bar{\bar{x}} + A_2 \bar{R}$
R in Xbar-R Chart	$ar{R}$	$D_3 \bar{R}$	$D_4ar{R}$
X in Xbar-S Chart	$ar{ar{x}}$	$\bar{\bar{x}} - A_3 \bar{s}$	$\bar{\bar{x}} + A_3\bar{s}$
S in Xbar-S Chart	$oldsymbol{ar{S}}$	$B_3 \overline{s}$	$B_4ar{s}$
P-Chart	$ar{p}$	$\bar{p} - 3\sqrt{\bar{p}(1-\bar{p})/n_i}$	$\bar{p} + 3\sqrt{\bar{p}(1-\bar{p})/n_i}$
NP-Chart	$n\bar{p}$	$n\bar{p} - 3\sqrt{n\bar{p}(1-\bar{p})}$	$n\bar{p} + 3\sqrt{n\bar{p}(1-\bar{p})}$
C-Chart	\bar{c}	$\bar{c} - 3\sqrt{\bar{c}}$	$\bar{c} + 3\sqrt{\bar{c}}$
U-Chart	ū	$\bar{u} - 3\sqrt{\bar{u}/n}$	$\bar{u} + 3\sqrt{\bar{u}/n}$