Algorithms Illuminated Part 1: The Basics

Tim Roughgarden

© 2017 by Tim Roughgarden

All rights reserved. No portion of this book may be reproduced in any form without permission from the publisher, except as permitted by U. S. copyright law.

Printed in the United States of America

First Edition

Cover image: Stanza, by Andrea Belag

ISBN: 978-0-9992829-0-8 (Paperback) ISBN: 978-0-9992829-1-5 (ebook)

Library of Congress Control Number: 2017914282

Soundlikeyourself Publishing, LLC San Francisco, CA tim.roughgarden@gmail.com www.algorithmsilluminated.org

Contents

P :	reface		vii
1	Inti	roduction	1
	1.1	Why Study Algorithms?	1
	1.2	Integer Multiplication	3
	1.3	Karatsuba Multiplication	6
	1.4	MergeSort: The Algorithm	12
	1.5	MergeSort: The Analysis	18
	1.6	Guiding Principles for the Analysis of Algorithms	26
	Prol	olems	33
2	Asy	emptotic Notation	36
	2.1	The Gist	36
	2.2	Big-O Notation	45
	2.3	Two Basic Examples	47
	2.4	Big-Omega and Big-Theta Notation	50
	2.5	Additional Examples	54
	Prol	olems	57
3	Div	ide-and-Conquer Algorithms	60
	3.1	The Divide-and-Conquer Paradigm	60
	3.2	Counting Inversions in $O(n \log n)$ Time	61
	3.3	Strassen's Matrix Multiplication Algorithm	71
	*3.4	An $O(n \log n)$ -Time Algorithm for the Closest Pair	77
	Prol	olems	90
4	$\operatorname{Th}\epsilon$	e Master Method	92
	4.1	Integer Multiplication Revisited	92
	4.2	Formal Statement	95
	4.3	Six Examples	97

vi Contents

	*4.4	Proof of the Master Method	103
	Prob	olems	114
5	Qui	ckSort	117
	5.1	Overview	117
	5.2	Partitioning Around a Pivot Element	121
	5.3	The Importance of Good Pivots	128
	5.4	Randomized QuickSort	132
	*5.5	Analysis of Randomized QuickSort	135
	*5.6	Sorting Requires $\Omega(n \log n)$ Comparisons	145
	Prob	blems	151
6	Line	ear-Time Selection	155
	6.1	The RSelect Algorithm	155
	*6.2	Analysis of RSelect	163
	*6.3	The DSelect Algorithm	167
	*6.4	Analysis of DSelect	172
	Prob	blems	180
\mathbf{A}	Qui	ck Review of Proofs By Induction	183
	A.1	A Template for Proofs by Induction	183
	A.2	Example: A Closed-Form Formula	184
	A.3	Example: The Size of a Complete Binary Tree	185
В	Qui	ck Review of Discrete Probability	186
	B.1	Sample Spaces	186
	B.2	Events	187
	B.3	Random Variables	189
	B.4	Expectation	190
	B.5	Linearity of Expectation	192
	B.6	Example: Load Balancing	195
In	dex		199