Quiz 3 - PrequizReview

Chapters 9 – 10

Chapters 9 - 10

- 9. Sinusoidal Steady State Analysis
- 10. Sinusoidal Steady-State Power Calculations

Chapter 9 – Sinusoidal Steady-State Analysis

Main ideas:

• The Sinusoidal Source

$$v = V_m \cos(\omega t + \phi)$$

 $f = \frac{1}{T} \qquad \omega = 2 \pi f$

Complex Numbers

$$z = x + jy$$
 Rectangular form
 $z = r/\phi$ Polar form
 $z = re^{j\phi}$ Exponential form

Complex number arithmetic

The Phasor

 $v(t) = V_m \cos(\omega t + \phi)$

$$\mathbf{V} = V_m / \underline{\phi}$$

X

Circuit		
Element	Impedance	Reactance
Resistor	R	_
Inductor	$j\omega L$	ωL
Capacitor	$j(-1/\omega C)$	$-1/\omega C$

 Passive Circuit Elements in the Frequency Domain

$$V = RI$$
 $V = j\omega LI$

$$I \mid I = j\omega CV$$

KVL & KCL, Series-Parallel Equivalent

 $\mathbf{Z}_{eq} = \frac{\mathbf{V}}{\mathbf{I}} = \mathbf{Z}_1 + \mathbf{Z}_2 + \dots + \mathbf{Z}_n$

 $\frac{1}{\mathbf{Z}_{co}} = \frac{1}{\mathbf{Z}_1} + \frac{1}{\mathbf{Z}_2} + \dots + \frac{1}{\mathbf{Z}_n}$

*j*y

 $\mathbf{V}_1 + \mathbf{V}_2 + \dots + \mathbf{V}_n = 0$

 $\mathbf{I}_1 + \mathbf{I}_2 + \cdots \stackrel{3}{+} \mathbf{I}_n = 0$

Chapter 9 – Sinusoidal Steady-State Analysis

Main ideas:

Source Transformations,
 Thevenin & Norton Equivalents

Frequency-domain linear circuit; may contain both independent and dependent sources.

Frequency-domain linear circuit; may contain both independent and dependent sources. \bullet b

Node Voltage & Mesh Current Methods

Superposition

Sources with different ω

The Transformer (Linear & Ideal)

Phasor Diagrams $I_b = \begin{bmatrix} j\omega L_1 I \\ I_a \end{bmatrix} \underbrace{V_L}_{R_1 I} \underbrace{V_L}_{R_1 I}$

Problem: Thevenin's Equivalent

Problem 9.50

Find the Thevenin equivalent circuit with respect to terminals a, b.

Problem: Node Voltage Method

Problem 9.57

Find V_o I_o

9.9 The Mesh Current Method Example 9.14

Example 9.14:

Find V_1 V_2 V_3

9.11 The Transformer, Ideal Transformer

<u>Problem – Currents & Voltages</u>

Find $I_1 \& V_0$

$$\frac{N_2}{N_1} = n$$

$$\boldsymbol{Z}_{R} = \frac{1}{n^2} \ \boldsymbol{Z}_{L}$$

$$\frac{\mathbf{V}_2}{\mathbf{V}_1} = \frac{N_2}{N_1} = n$$

$$\frac{\mathbf{I}_2}{\mathbf{I}_1} = \frac{N_1}{N_2} = \frac{1}{n}$$

Chapter 10 – Sinusoidal Steady-State Power

Main ideas:

Instantaneous Power

$$p(t) = \frac{1}{2} V_m I_m \cos(\theta_v - \theta_i) + \frac{1}{2} V_m I_m \cos(2\omega t + \theta_v - \theta_i)$$

Average (or Real) and Reactive Power

$$P = \frac{1}{2} V_m I_m Cos(\theta_v - \theta_i)$$
 \longrightarrow REAL POWER, in Watts +ve VARS for Inductance

 $Q = \frac{1}{2} V_m I_m Sin(\theta_v - \theta_i)$ REACTIVE POWER, in VARS

-ve VARS for Capacitance

Also:

$$\theta = \theta_v - \theta_i$$
 $\cos (\theta_v - \theta_i)$
POWER FACTOR ANGLE
POWER FACTOR

Rms Value and Power Calculations

$$V_{\rm rms} = \frac{V_m}{\sqrt{2}} \qquad \substack{({\it Real}) \quad P = \frac{1}{2}V_m I_m Cos(\theta_v - \theta_i) \\ ({\it Reactive}) \quad Q = \frac{1}{2}V_m I_m Sin(\theta_v - \theta_i)} \qquad \substack{{\it becomes} \quad P = V_{rms} I_{rms} Cos(\theta_v - \theta_i) \\ {\it becomes} \quad Q = V_{rms} I_{rms} Sin(\theta_v - \theta_i)}$$

Complex Power

Complex Power =
$$\mathbf{S} = P + jQ = \mathbf{V}_{rms}(\mathbf{I}_{rms})^*$$

= $|\mathbf{V}_{rms}| |\mathbf{I}_{rms}| / \theta_v - \theta_i$
Apparent Power = $S = |\mathbf{S}| = |\mathbf{V}_{rms}| |\mathbf{I}_{rms}| = \sqrt{P^2 + Q^2}$
Real Power = $P = \text{Re}(\mathbf{S}) = S\cos(\theta_v - \theta_i)$
Reactive Power = $Q = \text{Im}(\mathbf{S}) = S\sin(\theta_v - \theta_i)$
Power Factor = $\frac{P}{S} = \cos(\theta_v - \theta_i)$

Power factor correction, Max Power Transfer

$$\mathbf{Z}_L = R_L + jX_L = R_{\mathrm{Th}}^{\mathcal{G}} - jX_{\mathrm{Th}} = \mathbf{Z}_{\mathrm{Th}}^*$$

10.5 Power Calculations

Example 10.6 Calculating Average & Reactive Power

- a) Calculate phasors $V_L \& I_L$
- b) Calculate the reactive & average powers delivered to the load
- c) Calculate the reactive & average powers delivered to the line
- d) Calculate the reactive & average powers supplied by the source

$$\mathbf{S} = \mathbf{V}_{\text{rms}}(\mathbf{I}_{\text{rms}})^*$$

 $\mathbf{S} = P + jQ$
 $\mathbf{S} = |\mathbf{I}_{rms}|^2 \mathbf{Z}$

10.5 Power Calculations HW problem 3

Problem 3:

When connected to a 120 V (rms), 60-Hz power line, a load absorbs 4kW at a lagging power factor of 0.8. Find the value of Capacitance, C, necessary to raise the power factor to 0.95 lagging.

Maximum Power Transfer

Problem 10.44

- a) What is the maximum average power transferred to Z_L ?
- b) What percentage of the total power developed is transferred to the load impedance found above?

