北京大学数学科学学院期末试题

2011 - 2012 学年 第一学期

考试科目:	数学分析	考试时间:	11 年	12 月	30 ⊟
-------	------	-------	------	------	------

姓 名:

学 号:

本试题共 八 道大题满分 100 分

- 1. (15) 求导数
 - (1) $y = (1 + x^2)^x$, $\vec{x} \frac{dy}{dx}$;
 - (2) $x = ln(1+t^2); y = t arctant$, $\dot{x} \frac{dy}{dx}; \frac{d^2y}{dx^2};$
 - (3) y = y(x) 由方程 tany xy = 0 确定,求 $\frac{dy}{dx}$.
- 2. (15) 求极限
 - $(1)\lim_{x\to 0}(\frac{1}{x}-\frac{1}{tanx});$
 - (2) $\lim_{x\to+\infty} (\sqrt[7]{x^7+x^6} \sqrt[7]{x^7-x^6});$
 - (3) $\lim_{x\to+\infty} (\frac{2}{\pi} arctanx)^x$.
- 3. (15) 求不定积分
- (1) $\int x^{\frac{1}{3}} ln^2 x dx$;
 - (2) $\int x^3 \sqrt[3]{1+x^2} dx$;
 - (3) $\int \frac{\cos x dx}{\sqrt{2+\cos^2 x}}$.
- 4. (10) (1) 设 f(x) 在 (0,1) 可导且无界,证明 f'(x) 的值域是一个无界区间; (2) 若 f(x) 在 [0,1] 可导,是否 f'(x) 的值域一定是一个有界区间? (说明理由)
- 5. (12) 证明 $f(x) = x^{\frac{1}{2}} lnx$ 在 $(0, +\infty)$ 一致连续.
- 6. (15) (1) 求 $f(x) = x^2 sinx$ 在 x = 1 处的带 Peano 余项的 Taylor 公式; (2) 求 $f^{(n)}(1), n = 0, 1, ...$
- 7. (10) 设 f(x) 在区间 [a,b](a>0) 可导且 f(a)=0, f(b)=1. 证明:存在 $\xi\in(a,b)$, 使得 $f'(\xi)\xi^3(b^2-a^2)=2a^2b^2.$
- 8. (8) 设 f(x) 在 (-1,1) 可微, f'(0) = 1 并且对于 $\forall x, y, x + y \in (-1,1)$ 满足 $f(x+y) = \frac{f(x)+f(y)}{1-f(x)f(y)}$,求 f(x).