	<pre>international_plan</pre>
<pre>In [6]: Out[6]: In [7]:</pre>	df.shape (3333, 21)
Out[7]: In [8]:	<pre>df.isnull().values.any() # Verificação valores vazios df.empty False # Verificando o balanceamento da variável target (churn), na qual, valor 'no' = cliente não desistiu e # valor 'yes' = cliente desistiu da operada; churn = pd.DataFrame(df.churn.value_counts())</pre>
Out[8]: In [9]:	churn # Constata-se que a variável TARGET está proporcionalmente desbalanceada e, portanto, é neces sário o balanceamento dos dados para # aplicar o algoritimo de machine learning. churn %_churns no 2850 85.508551 yes 483 14.491449 #Remoção da variável 'Unnamed: 0 ', pois trata-se de apenas um índice do dataset; #Remoção da variável 'number_customer_service_calls', pois refere-se a um número de serviço
In [10]: Out[10]:	do cliente(irrelevante para o modelo) df.drop(['Unnamed: 0'], axis= 1, inplace= True) df.drop(['number_customer_service_calls'], axis= 1, inplace= True) df.head(10) state account_length area_code international_plan voice_mail_plan number_vmail_messages total_day_minutes total 0 KS 128 area_code_415 no yes 25 265.1 1 OH 107 area_code_415 no yes 26 161.6 2 NJ 137 area_code_415 no no 0 243.4 3 OH 84 area_code_408 yes no 0 299.4 4 OK 75 area_code_415 yes no 0 166.7 5 AL 118 area_code_510 yes no 0 223.4
In [11]: Out[11]:	6 MA 121 area_code_510 no yes 24 218.2 7 MO 147 area_code_415 yes no 0 157.0 8 LA 117 area_code_408 no no 0 184.5 9 WV 141 area_code_415 yes yes 37 258.6 # Limpeza da variável 'area_code' df.area_code = df.area_code.apply(lambda x: x.split('_')[2]) df.head() state account_length area_code international_plan voice_mail_plan number_vmail_messages total_day_minutes total_day
In [12]:	<pre>0 KS 128 415 no yes 25 265.1 1 OH 107 415 no yes 26 161.6 2 NJ 137 415 no no 0 0 243.4 3 OH 84 408 yes no 0 299.4 4 OK 75 415 yes no 0 166.7 # Convertendo variáveis categóricas para variáveis numéricas (0 e 1): Label Encoding from sklearn.preprocessing import LabelEncoder number= LabelEncoder() df.international_plan= number.fit_transform(df.international_plan) df.voice_mail_plan = number.fit_transform(df.voice_mail_plan) df.state = number.fit_transform(df.state)</pre>
Out[12]:	df.churn = number.fit_transform(df.churn) state account_length area_code international_plan voice_mail_plan number_vmail_messages total_day_minutes total_day 0 16 128 415 0 1 25 265.1 1 35 107 415 0 1 26 161.6 2 31 137 415 0 0 0 243.4 3 35 84 408 1 0 0 299.4 4 36 75 415 1 0 0 166.7
In [13]:	#Convertendo 'area_code' to numeric df.area_code = pd.to_numeric(df['area_code']) # Análise exploratória (Estatística descritiva) # Análise de distribuição dos dados através de um Histograma; # Embora a maior parte dos dados apresentarem distribuição normal, será necessário a padroni zação dos dados para o #algoritmo Logistic Regression; df.hist() plt.show() account length area code thurn international plan code thurn
In [17]:	# Matrix de correlação com seaborn corr_matrix = df.corr(method='pearson') plt.figure(figsize=(12,10)) plt.title('Correlation Heatmap') sea.heatmap(corr_matrix, square=True, cmap='coolwarm', xticklabels= True, yticklabels= True, annot=True , fmt='.2f', linewidths=.5 , linecolor='white', vmin=-1, vmax=1) plt.show() state vv 0.00 0.02 0.00 0.03 0.03 0.01 0.00 0.01 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.01
In [18]:	total_day_minutes -0.01 0.01 0.01 0.05 0.00 0.00 100 0.01 100 0.01 0.02 0.01 0.00 0.02 0.00 0.01 0.01
Out[18]: In [19]:	#Selecting highly correlated features # A correlação entre a variável target e as demais é baixa; apenas 4 variáveis mostraram uma correlação de apenas >=20 %. relevant_features = cor_target[cor_target>0.2] relevant_features international_plan
Out[19]:	#Verifica-se diversos outliers presentes nas variáveis;
In [20]:	Feature Selection - Seleção Univariada # Extração de Variáveis com Testes Estatísticos Univariados from sklearn.feature_selection import SelectKBest from sklearn.feature_selection import chi2 #Separando input e output x= df.iloc[:,0:18] # Função para seleção de variáveis (4) best_var = SelectKBest(score_func = chi2, k = 4) # Executa a função de pontuação em (X, y) e obtém os recursos selecionados fit = best_var.fit(x, y) # Reduz X para os recursos selecionados features = fit.transform(x) # Resultados print('\nNúmero original de features:', x.shape[1]) print('\nNúmero reduzido de features:', features.shape[1]) print('\nNúmero reduzido de features:', features.shape[1]) Número original do foatures: 18
In [21]: Out[21]:	Número original de features: 18 Número reduzido de features: 4 Features (Variáveis Selecionadas): [[25.
In [22]:	2 0.0 243.4 41.38 121.2 3 0.0 299.4 50.90 61.9 4 0.0 166.7 28.34 148.3 Feature Selection - Recursive Feature Elimination # Import dos módulos from sklearn.feature_selection import RFE from sklearn.linear_model import LogisticRegression import warnings warnings.filterwarnings('ignore')
In []:	<pre># Criação do modelo modelo = LogisticRegression() # RFE rfe = RFE(modelo, 3) fit = rfe.fit(x, y) # Print dos resultados print("Variáveis Preditoras:", x.columns[0:18]) print("Variáveis Selecionadas: %s" % fit.support_) print("Ranking dos Atributos: %s" % fit.ranking_) print("Número de Melhores Atributos: %d" % fit.n_features_) Variáveis Preditoras: Index(['state', 'account_length', 'area_code', 'international_plan', 'voice_mail_plan', 'number_vmail_messages', 'total_day_minutes', 'total_day_calls', 'total_day_charge', 'total_eve_minutes', 'total_eve_calls', 'total_eve_charge', 'total_night_minutes', 'total_night_calls', 'total_night_charge', 'total_intl_minutes', 'total_intl_calls', 'total_intl_charge'], dtype='object') Variáveis Selecionadas: [False False False True True False False</pre>
In [23]:	Feature Selection - Ensemble # Importância do Atributo com o Extra Trees Classifier # Import dos Módulos from sklearn.ensemble import ExtraTreesClassifier # Criação do Modelo - Feature Selection modelo = ExtraTreesClassifier() modelo.fit(x, y) # Print dos Resultados print(x.columns[0:18]) print(modelo.feature_importances_) Index(['state', 'account_length', 'area_code', 'international_plan', 'voice_mail_plan', 'number_vmail_messages', 'total_day_minutes', 'total_day_calls', 'total_day_charge', 'total_eve_minutes', 'total_eve_calls', 'total_eve_charge', 'total_night_minutes', 'total_night_calls', 'total_inght_charge', 'total_intl_minutes', 'total_intl_calls', 'total_intl_charge'], dtype='object') [0.0432953 0.04293907 0.02710827 0.07184055 0.01872 0.01800938 0.042342037 0.04736174 132552396 0.0623204 0.04231638 0.06140052
In [24]:	0.12242037 0.04776417 0.13252386 0.0623604 0.04331638 0.06140953 0.04592336 0.044526765 0.04754067 0.0532969 0.06058713 0.05567697] ### Ordenando o resultado do maior para o menor ## As 3 variáveis mais importante neste método foram: # 'total_day_charge', 'total_day_minutes', 'international_plan' df_importance = modelo.feature_importances. df_importance.sort_values(by=[0], ascending= False) 0 8 0.132524 6 0.122420 3 0.071841 9 0.062360 11 0.061410 16 0.060587 17 0.055677 15 0.053297 7 0.047764 14 0.047541 12 0.047541 12 0.045923 13 0.045268 10 0.043316 0 0.043395 1 0.042399 2 0.027108 4 0.018720 5 0.018009
In [25]:	PCA (Principal Component Analysis) # Feature Extraction from sklearn.decomposition import PCA from sklearn.preprocessing import StandardScaler # Gerando outro dataset de treino #Separando input e output x1= df.iloc[:,0:18] y=df.iloc[:,0:18] ## Padronizando os dados scaler= StandardScaler().fit(x1) standardx = scaler.transform(x1) # Seleção de atributos pca = PCA(.95) pca = PCA(n_components = 4) pca.fit(standardx) fit_pca = pca.transform(standardx)
Out[25]:	pca_df = pd.DataFrame(data = fit_pca, columns = ['principal component 1', 'principal component 2', 'principal component 3', "principal component 4']) #Print pca_df principal component 1 principal component 2 principal component 3 principal component 4 1
	4 -1.068688 -0.823577 -0.635462 0.762775 3328 1.260652 -0.569365 1.702145 -2.497620 3329 0.080122 -0.844403 -1.567299 0.820277 3330 -0.435639 1.998808 0.026402 -0.656141 3331 0.798615 -0.055045 -1.292827 2.745441 3332 1.076641 1.398818 -0.343993 -3.115884
In [26]:	<pre>Modelo de Machine Learning: Logistic Regression / PCA from sklearn.linear_model import LogisticRegression from sklearn.model_selection import train_test_split from sklearn.model_selection import KFold from sklearn.model_selection import cross_val_score import warnings</pre>
III [20].	<pre>warnings.filterwarnings('ignore') # Criando o modelo modelo = LogisticRegression() # Definindo os valores para os folds num_folds = 10 # Separando os dados em folds kfold = KFold(num_folds, True, random_state= 10) # Criando o modelo modelo = LogisticRegression() resultado = cross_val_score(modelo, fit_pca, y, cv = kfold) # Usamos a média e o desvio padrão print("Acurácia Final: %.2f%%" % (resultado.mean() * 100.0))</pre>
	<pre># Criando o modelo modelo = LogisticRegression() # Definindo os valores para os folds num_folds = 10 # Separando os dados em folds kfold = KFold(num_folds, True, random_state= 10) # Criando o modelo modelo = LogisticRegression() resultado = cross_val_score(modelo, fit_pca, y, cv = kfold) # Usamos a média e o desvio padrão</pre>
In [27]:	# Criando o modelo modelo = LogisticRegression() # Definindo os valores para os folds num_folds = 10 # Separando os dados em folds kfold = KFold(num_folds, True, random_state= 10) # Criando o modelo modelo = LogisticRegression() resultado = cross_val_score(modelo, fit_pca, y, cv = kfold) # Usamos a média e o desvio padrão print("Acurácia Final: %.2f%%" % (resultado.mean() * 100.0)) Acurácia Final: 85.69% # Exclusão de variáveis que apresentaram menor correlação ou importância conforme as técnica s de feature selection realizadas x.drop(['state'], axis=1, inplace= True) x.drop(['area_code'], axis=1, inplace= True) x.drop(['total_day_calls'], axis=1, inplace= True) x.drop(['total_eve_calls'], axis=1, inplace= True) x.drop(['total_night_calls'], axis=1, inplace= True)
In [27]:	# Criando o madelo modelo = LogisticRegression() # Definindo os valores para os folds num_folds = 10 # Separando os dados em folds # Criando o modelo modelo = LogisticRegression() # Criando o modelo modelo = LogisticRegression() # Criando o modelo modelo = LogisticRegression() # Usamos a média e o desvio padrão print("Acurada Final: % 25%" % (resultado.mean() ' 180.0)) # Criando o deviziveis que apresentaram menor correlação ou importância conforme as técnica se feature selection realizadas x.drop(['state'], axis=1, inplaces True) x.drop(['tatad.gode'] modes], logisto planace True) x.drop(['tatad.gode'] modes], logisto planace True) x.drop(['total.acy.calis'], axis=1, inplaces True) x.drop(['total.chi.charge'], axis=1, inplaces True) x.drop(
In [27]: In [34]:	# Cramato a modela modela = LagisticRegression() # Definition to suppression() ## Foreign to suppression or folds ## Foreign to suppression or folds ## Foreign to suppression or folds ## Foreign to suppression() ## Cramato a modela ## Foreign to a modela ## Foreig
In [27]: In [34]:	# Crando o modelo modelo = LegisticRegression() # Separando os dados ser fois num_foids = 30 # Separando os dados ser fois num_foids = 30 # Separando os dados ser fois # Foisial en foisial(num_foids, True, random_state=10) # Crando o modelo modelo = LegisticMegression() # Crando o modelo modelo = LegisticMegression() # Crando o modelo modelo = LegisticMegression() # Separando o modelo # Legistic = 0 desalo padrio # Print(*Poissain Field : %:They * % (resultado.mean() * 190.0)) # Auracia [First] & Alia (
In [27]: In [39]:	# Cortando o momento model o LogisticRegression() # model of LogisticRegression() # model of LogisticRegression() # model of LogisticRegression() # model of LogisticRegression() # model o Logistic Pegression utilizated divisão dos decos de forma estática, 70% decos de forma setática, 70% decos decos de forma setática, 70% decos decos de forma setática, 70% decos de forma setática, 70%
In [27]: In [39]:	# Contained or controls Control to Conjusticiongression() # Configuration or delate or Colds Man. Tolds = 10 * Securements or delate or Colds Man. Tolds = 10 * Securements or delate or Colds Man. Tolds = 10 * Securements or delate or Colds Frestlate = Colds. Colds. * Colds. Colds. Colds. * Colds. Colds. Colds. Colds. Colds. * Colds. Colds. Colds. Colds. Colds. * Colds. Colds. Colds. Colds. Colds. Colds. * Colds. Colds. Colds. Colds. Colds. Colds. Colds. * Colds. Colds. Colds. Colds. Colds. Colds. Colds. Colds. Colds. * Colds. Colds
In [27]: In [34]: In [35]:	### Company of the Co
In [27]: In [34]: In [35]:	Contact Cont

Acurácia aumentou de 86.30% para 87%;

Previsão do modelo

#Acurácia

print(report)

AUC: 68.71%

accuracy macro avg weighted avg

Acurácia Final: 87.00%

pred = model.predict(x_teste)

AUC aumentou de AUC: 66.34% para 68.71%

model = LogisticRegression(C=0.01, penalty='12', random_state= 20)
model.fit(x_treino, y_treino)

score = model.score(x_teste, y_teste)
print("\nAcurácia Final: %.2f%%" % (score * 100.00))

report = classification_report(y_teste, pred)

0.69 0.83

print('\nAUC: %.2f%%' % (roc_auc_score(pred, y_teste) * 100))

precision recall f1-score support

0.87 0.58 0.84 1000 1000 1000

0 0.89 0.98 0.93 871 1 0.49 0.16 0.24 129

> 0.57 0.87

PROJETO: Prevendo Customer Churn em Operadoras de Telecom

Problema de negócio: prever se um cliente vai cancelar seu plano SIM ou NÃO.

In [3]: # Alteração de parâmetros para visualizar dataset com grande números de colunas

import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sea
from sklearn.feature_selection import VarianceThreshold

import warnings
warnings.filterwarnings('ignore')

pd.set_option("display.max_columns", 100)

Carregamento e limpeza dos dados

Data: 09/03/2020

In [2]: ### Bibliotecas