

Privacy I: Data Privacy

Bo Luo

Associate Professor, EECS
Director, Information Assurance Lab, ITTC
The University of Kansas, Lawrence, KS, USA
bluo@ku.edu; http://www.ittc.ku.edu/~bluo

Privacy

- What is privacy?
 - Sensitive personal information?
 - Identifiable information?
 - Information access and information flow?
 - Usage of information
- Anonymity: data anonymity, network anonymity
- Private information publishing/sharing
- Privacy preserving data mining

Regulatory requirements

- Healthcare Information Portability and Accountability Act (HIPAA)
- Governs use of patient information
 - Goal is to protect the patient
 - Basic idea: Disclosure okay if anonymity preserved
- Regulations focus on outcome
 - A covered entity may not use or disclose protected health information, except as permitted or required...
 - To individual; For treatment (generally requires consent); To public health / legal authorities
 - Use permitted where "there is no reasonable basis to believe that the information can be used to identify an individual"
- Safe Harbor Rules
 - Data presumed not identifiable if 19 identifiers removed (§ 164.514(b)(2)),
 e.g.:
 - Name, location smaller than 3 digit postal code, dates finer than year, identifying numbers
 - Shown not to be sufficient (Sweeney) Also not necessary

Data anonymity

- Data Collection: a large amount of person-specific data has been collected (over a period of time).
- Data Mining: data and knowledge extracted by data mining techniques represent a key asset to the society.
 - Analyzing trends/patterns.
 - Formulating public policies.
- Regulatory Laws: some collected data must be made public.
 - Census data

Data anonymity

- Privacy
 - The data usually contains sensitive information about respondents.
 - Respondents' privacy may be at risk.
- Two opposing goals
 - To allow researchers to extract knowledge about the data
 - To protect the privacy of every individual

Individual Privacy: protect the "record"

- Individual item in database must not be disclosed
- Not necessarily a person
 - Information about a corporation
 - Transaction record
- Disclosure of parts of record may be allowed
 - Individually identifiable information?

- Microdata table
 - Identifier (ID), Quasi-Identifier (QID), Sensitive Attribute (SA)

ID	QID			SA	
Name	Zipcode Age Sex		Disease		
Alice	47677	47677 29 F		Ovarian Cancer	
Betty	47602 22 F		Ovarian Cancer		
Charles	47678 27		М	Prostate Cancer	
David	47905	43 M		Flu	
Emily	47909	52	F	Heart Disease	
Fred	47906 47		М	Heart Disease	

First try: remove the identifiers

ID	QID			SA		
Name	Zipcode Age Sex		Disease			
Alice	47677	29	F	Ovarian Cancer		
Betty	47602	22	Ovarian Cancer			
Charles	47678 27 M		Prostate Cancer			
David	47905	43	М	Flu		
Emily	47909	52	F	Heart Disease		
Fred	47906	47	М	Heart Disease		

- Latanya Sweeney @ CMU
 - Collection of personal information is mandated in 37 states.
 - Data is de-identified, and publicly available.
 - She purchased voter's registration data from Mass. and compared with medical record.
 - 87% of the U.S. Population are uniquely identified by {date of birth, gender, ZIP}.

Removing identifiers is not enough!

ID	QID			SA		
Name	Zipcode Age Sex		Disease			
Alice	47677	29	F	Ovarian Cancer		
Betty	47602	22	Ovarian Cancer			
Charles	47678 27 M		Prostate Cancer			
David	47905	43	М	Flu		
Emily	47909	52	F	Heart Disease		
Fred	47906 47 M			Heart Disease		

Classes of Solutions

- Data Obfuscation
 - Nobody sees the real data
- Summarization
 - Only the needed facts are exposed
- Data Separation
 - Data remains with trusted parties

Data Obfuscation

- Goal: Hide the protected information
- Approaches
 - Randomly modify data
 - Swap values between records
 - Controlled modification of data to hide secrets
 - Constrains: should not change statistical distribution, should not interfere legitimate use of data
- Problems
 - Does it really protect the data?
 - Can we learn from the results?

Data Obfuscation

- Example: US Census Bureau Public Use Microdata
- US Census Bureau summarizes by census block
 - Minimum 300 people; ranges rather than values
- For research, "complete" data provided for sample populations
 - Identifying information removed: limitation of detail: geographic distinction, continuous interval; Top/bottom coding (eliminate sparse/sensitive values)
 - Swap data values among similar individuals: if individual determined, sensitive values likely incorrect

Data Summarization

- Goal: Make only innocuous summaries of data available
- Approaches
 - Overall collection statistics
 - Limited query functionality
- Problems
 - Can we deduce data from statistics?
 - Is the information sufficient?

Data Summarization

- Example: Statistical Queries
- User is allowed to query protected data
 - Queries must use statistical operators that summarize results
 - Example: Summation of total income for a group doesn't disclose individual income
 - Multiple queries can be a problem
 - Request total salary for all employees of a company
 - Request the total salary for all employees but the president
 - Now we know the president's salary

Data Summarization

Controls

- Query restriction Identify when a set of queries is safe
 - Result generated from at least k items
 - Items used to generate result have at most r items in common with those used for previous queries
- Data perturbation: introducing noise into the original data
- Output perturbation: leaving the original data intact, but introducing noise into the results

Data Separation

- Goal: Only trusted parties see the data
- Approaches
 - Data held by owner/creator
 - Limited release to trusted third party
 - Operations/analysis performed by trusted party
- Problems
 - Will the trusted party be willing to do the analysis?
 - Do the analysis results disclose private information?

- *k*-Anonymity
 - Each record is indistinguishable from at least k-1 other records
 - These k records form an equivalent class
 - k-Anonymity ensures that linking cannot be performed with confidence > 1/k.
- Generalization 替换为不太具体但语义—致的值
 - Replace with less-specific but semantically-consistent values

- 3-Anonymous table
 - Suppose that the adversary knows Alice's QI values (47677, 29, F).
 - The adversary does not know which one of the first 3 records corresponds to Alice's record.

The Microdata

	QID	SA	
Zipcode	Age	Sex	Disease
47677	29	Æ	Ovarian Cancer
47602	22	F	Ovarian Cancer
47678	27	М	Prostate Cancer
47905	43	М	Flu
47909	52	F	Heart Disease
47906	47	М	Heart Disease

The Generalized Table

	QID	SA	
Zipcode	Age	Sex	Disease
476** 476** 476**	2* 2* 2*	*	Ovarian Cancer Ovarian Cancer Prostate Cancer
4790* 4790* 4790*	[43,52] [43,52] [43,52]	* *	Flu Heart Disease Heart Disease

- This is wrong
 - 3-anonymity on each quasi-identifier
 - Uniquely identifiable on the combination

The Microdata

QID			SA		
Zipcode	Age	Sex	Disease		
476**	2*	F	Ovarian Cancer		
476**	2*	М	Ovarian Cancer		
476**	3*	F	Prostate Cancer		
479**	3*	М	Flu		
479**	3*	F	Heart Disease		
479**	2*	М	Heart Disease		

- k-Anonymity does not provide privacy if:
 - Sensitive values in an equivalence class lack diversity
 - The attacker has background knowledge

I-Diversity

- Principle
 - Each equivalence class has at least l well-represented sensitive values
- Distinct *l*-diversity
 - Each equivalence class has at least l distinct sensitive values
 - Probabilistic inference

	•••	Disease	
		•••	
		HIV]
		HIV	
10 records		•••	↑ 8 records have HIV
10 lecolus		HIV	<u>ا</u> ل ا
		pneumonia	】 2 records have
		bronchitis	J other values
		•••	

I-Diversity

- Probabilistic *l*-diversity
 - The frequency of the most frequent value in an equivalence class is bounded by 1/l.
- Entropy *l*-diversity
 - The entropy of the distribution of sensitive values in each equivalence class is at least log(l)
- Recursive (c,l)-diversity
 - The most frequent value does not appear too frequently
 - $r_1 < c(r_l + r_{l+1} + ... + r_m)$ where r_i is the frequency of the i-th most frequent value.

I-Diversity

- Limitations:
- A single sensitive attribute
 - Two values: HIV positive (1%) and HIV negative (99%)
 - Very different degrees of sensitivity
- I-diversity may be unnecessary to achieve
 - 2-diversity is unnecessary for an equivalence class that contains only negative records
- I-diversity may be difficult to achieve
- Skewness attack
- Similarity attack

Privacy

- •k-Anonymity and I-Diversity are powerful and popular solutions (from technical point of view).
- For more reading: t-closeness.

Case Study: The Netflix Prize

- The Netflix Prize: who has the best prediction algorithm?
 - 100M ratings from 480K users on 17K movies
 - Data was (not so) carefully sanitized: anonymized, modified dates, partial data.
 - Movie information (title and year) was provided
- Arvind Narayanan and Vitaly Shmatikov, Robust Deanonymization of Large Datasets (How to Break Anonymity of the Netflix Prize Dataset), Oakland 2008.
 - Netflix was sued and Netflix Prize II was canceled.
- Anonymization is NOT enough!

- Still remember Shannon Secrecy?
 - Probability of guessing the plaintext knowing the ciphertext = probability of guessing plaintext without knowing ciphertext.
 - Probability of any message giving a ciphertext is the same
- Consider an object O_k , and a characteristic D, which is a survey characteristic. For the object O_k this characteristic assumes the value D_k . If the release of the statistics S makes it possible to determine the value of D_k more accurately than it is possible without access to S, a disclosure has taken place.
 - Dalenius, T. 1977. Towards a methodology for statistical disclosure control.
 Statistik Tidskrift 15, 429-444, 2–1.

 "Perfect privacy": Anything that can be learned about a respondent from the published dataset (or statistical database) can be learned without access to the database.

• Unfortunately, this is NOT achievable.

- "Perfect privacy"?
- I will participate in the survey only if my participation will not change the output.
 - Privacy vs. Utility?
- Published result will not disclose any information about me.
 - It will, whether you are in the survey or not.
- Whether I submit my information or not, the attacker's information gain from the dataset (through whatever statistical query) stays ALMOST the same.

- "Perfect privacy"?
 - We have a database of all the employees in the company
 - Users could only issue aggregate queries (e.g., sum, average) on the salary attribute
 - Two queries: before and after the CEO's resignation
 - Now you know the CEO's salary
 - What if the database only gives you an approximate result?
- A protocol that has a probability distribution over outputs such that if person i changed her input from x_i to any other allowed x_i , the relative probabilities of any output do not change by much.

Differential Privacy **

- A theoretical model
 - Dataset D
 - D_1 and D_2 are two versions of D, differ on at most one record
 - M is a statistical query or a data mining algorithm

M is ε -differential private, if

$$Pr[M(D_1) = R] \le e^{\varepsilon} \times Pr[M(D_2) = R]$$

• Whether you (or anyone) are in the dataset or not, no outputs (and consequences of outputs) would become significantly more or less likely.

Differential Privacy

- A theoretical model
 - Dataset D
 - D_1 and D_2 are two versions of D, differ on at most one record
 - M is a statistical query or a data mining algorithm

M is ε -differential private, if

$$\Pr[M(D_1) = R] \le e^{\varepsilon} \times \Pr[M(D_2) = R]$$

• D_1 and D_2 are neighboring datasets (or adjacent datasets)

Differential Privacy

- Output perturbation
 - Add noise to the output
 - But, how much?
 - Consider these two functions:
 - 1. Return the average salary
 - 2. Return the total summary
- The scale of the added noise
 - be proportional to the maximum difference between two neighboring datasets

- Sensitivity of a function
 - How much one record could affect the output?
 - D_1 and D_2 are two *neighboring datasets*, differ in at most one record.

$$\Delta f = \max_{D_1, D_2} |M(D_1) - M(D_2)|$$

- Example: count() have sensitivity 1
- Sensitivity of sum(): largest value of the attribute.

- Laplace distribution
 - Lap(μ , b): μ is the position, b is the scale (also called spread)

$$P(x|\mu, b) = \frac{1}{2b} e^{-\frac{|x-\mu|}{b}}$$

• Add Laplacian noise.

On query f, to achieve ε -differential privacy, use scaled symmetric noise Lap(b) with $b=\frac{\Delta f}{\varepsilon}$.

Thus, the distribution of the returned value will be:

$$Pr(R = x | D \text{ is the true world}) = \frac{\varepsilon}{2\Delta f} e^{-\frac{|x - F(D)|\varepsilon}{\Delta f}}$$

• Add Laplacian noise.

On query f, to achieve ε -differential privacy, use scaled symmetric noise Lap(b) with $b=\frac{\Delta f}{\varepsilon}$.

Can you prove that this achieves ε-differential privacy?

Differential Privacy

- Good for low-sensitivity functions/queries
 - Good: count()
 - Not so good: sum()
 - Even worse: max(), min()
- Statistical inference
 - Repeated queries
- Implementation
- Still trade-off between utility and privacy

Differential Privacy

Name School year Absence days					
Chris	1	1			
Kelly	2	2			
Pat	3	3			
Terry	4	10			

Attack model: The adversary knows the true world X. His goal is to figure out absence of a victim individual in X by using knowledge of X.

Query: mean absence days vs. mean school year

Possible world(ω) $\epsilon = 5$	$\epsilon = 2$	$\epsilon = 1$	$\epsilon = 0.5$	$\epsilon = 0.1$	$\epsilon = 0.01$
$\{1, 2, 3\}$	0.9705	0.5519	0.4596	0.3477	0.2328	0.2482
$\{1, 2, 10\}$	0.0159	0.1859	0.2019	0.2305	0.2527	0.2503
$\{1, 3, 10\}$					0.2558	
$\{2, 3, 10\}$	0.0049	0.1159	0.1594	0.2048	0.2588	0.2509

"There always exists a distribution that is more likely than others given the query response." -- Lee 2011

Lee, Jaewoo, and Chris Clifton. "How much is enough? choosing ε for differential privacy." *International Conference on Information Security*. Springer Berlin Heidelberg, 2011.

Privacy

Plausible deniability: Plausible deniability is the ability for persons (typically senior officials in a formal or informal chain of command) to deny knowledge of or responsibility for any damnable actions committed by others (usually subordinates in an organizational hierarchy) because of a lack of evidence that can confirm their participation, even if they were personally involved in or at least willfully ignorant of the actions.

-- Wikipedia

Plausible deniability

- Personalized pages reveal private information
 - Recommendations are based on inferred attributes

Pól Mac Aonghusa and Douglas J. Leith. 2016. Don't Let Google Know I'm Lonely. ACM Trans. Priv. Secur. 19, 1, Article 3 (August 2016), 25 pages.

Plausible deniability

- Personalized pages reveal private information
 - Recommendations are based on inferred attributes
 - Search engines
 - Social networks
 - Online shopping/recommendation
 - Advertising
 - Media: videos, books, news, etc.

Plausible deniability

Threat model

- Distinguishability instead of individual identifiability
 - Does not seek to identify the user as an individual
 - Seeks to determine the user's likely interest in commercially valuable topics
 - Privacy becomes an issue when any of the topics match subjects deemed sensitive by the user
- Research Challenges
 - How to quantify (model) plausible deniability?
 - How to enforce?
 - It's not easy to confuse the search engines!

