```
library(rstan)
library(rstanarm)
library(tidyverse)
m333 <- read_csv("../data/subsets/dat_small.csv") %>%
  filter(province == "M333")
## Warning: Missing column names filled in: 'X1' [1]
## Parsed with column specification:
## cols(
##
     .default = col_double(),
##
     subsection = col_character(),
     section = col_character(),
##
##
     province = col_character()
## )
## See spec(...) for full column specifications.
mod <- stan_lmer(BIOLIVE_TPA ~ 1 + nlcd11 + (1 | subsection),</pre>
                 data = m333,
                 verbose = FALSE)
##
## SAMPLING FOR MODEL 'continuous' NOW (CHAIN 1).
## Chain 1:
## Chain 1: Gradient evaluation took 0.000362 seconds
## Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 3.62 seconds.
## Chain 1: Adjust your expectations accordingly!
## Chain 1:
## Chain 1:
## Chain 1: Iteration:
                        1 / 2000 [ 0%]
                                            (Warmup)
## Chain 1: Iteration: 200 / 2000 [ 10%]
                                            (Warmup)
## Chain 1: Iteration: 400 / 2000 [ 20%]
                                            (Warmup)
## Chain 1: Iteration: 600 / 2000 [ 30%]
                                            (Warmup)
## Chain 1: Iteration: 800 / 2000 [ 40%]
                                            (Warmup)
## Chain 1: Iteration: 1000 / 2000 [ 50%]
                                            (Warmup)
## Chain 1: Iteration: 1001 / 2000 [ 50%]
                                            (Sampling)
## Chain 1: Iteration: 1200 / 2000 [ 60%]
                                            (Sampling)
## Chain 1: Iteration: 1400 / 2000 [ 70%]
                                            (Sampling)
## Chain 1: Iteration: 1600 / 2000 [ 80%]
                                            (Sampling)
## Chain 1: Iteration: 1800 / 2000 [ 90%]
                                            (Sampling)
## Chain 1: Iteration: 2000 / 2000 [100%]
                                            (Sampling)
## Chain 1:
## Chain 1:
            Elapsed Time: 7.98935 seconds (Warm-up)
## Chain 1:
                           3.752 seconds (Sampling)
## Chain 1:
                           11.7414 seconds (Total)
## Chain 1:
##
## SAMPLING FOR MODEL 'continuous' NOW (CHAIN 2).
## Chain 2:
## Chain 2: Gradient evaluation took 0.000157 seconds
```

```
## Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 1.57 seconds.
## Chain 2: Adjust your expectations accordingly!
## Chain 2:
## Chain 2:
## Chain 2: Iteration:
                          1 / 2000 [ 0%]
                                            (Warmup)
## Chain 2: Iteration: 200 / 2000 [ 10%]
                                            (Warmup)
## Chain 2: Iteration: 400 / 2000 [ 20%]
                                            (Warmup)
## Chain 2: Iteration: 600 / 2000 [ 30%]
                                            (Warmup)
## Chain 2: Iteration: 800 / 2000 [ 40%]
                                            (Warmup)
## Chain 2: Iteration: 1000 / 2000 [ 50%]
                                            (Warmup)
## Chain 2: Iteration: 1001 / 2000 [ 50%]
                                            (Sampling)
## Chain 2: Iteration: 1200 / 2000 [ 60%]
                                            (Sampling)
## Chain 2: Iteration: 1400 / 2000 [ 70%]
                                            (Sampling)
## Chain 2: Iteration: 1600 / 2000 [ 80%]
                                            (Sampling)
## Chain 2: Iteration: 1800 / 2000 [ 90%]
                                            (Sampling)
## Chain 2: Iteration: 2000 / 2000 [100%]
                                            (Sampling)
## Chain 2:
## Chain 2: Elapsed Time: 9.02879 seconds (Warm-up)
## Chain 2:
                           3.696 seconds (Sampling)
## Chain 2:
                           12.7248 seconds (Total)
## Chain 2:
##
## SAMPLING FOR MODEL 'continuous' NOW (CHAIN 3).
## Chain 3:
## Chain 3: Gradient evaluation took 0.000141 seconds
## Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 1.41 seconds.
## Chain 3: Adjust your expectations accordingly!
## Chain 3:
## Chain 3:
## Chain 3: Iteration:
                         1 / 2000 [ 0%]
                                            (Warmup)
                        200 / 2000 [ 10%]
## Chain 3: Iteration:
                                            (Warmup)
## Chain 3: Iteration: 400 / 2000 [ 20%]
                                            (Warmup)
                        600 / 2000 [ 30%]
## Chain 3: Iteration:
                                            (Warmup)
## Chain 3: Iteration: 800 / 2000 [ 40%]
                                            (Warmup)
## Chain 3: Iteration: 1000 / 2000 [ 50%]
                                            (Warmup)
## Chain 3: Iteration: 1001 / 2000 [ 50%]
                                            (Sampling)
## Chain 3: Iteration: 1200 / 2000 [ 60%]
                                            (Sampling)
## Chain 3: Iteration: 1400 / 2000 [ 70%]
                                            (Sampling)
## Chain 3: Iteration: 1600 / 2000 [ 80%]
                                            (Sampling)
## Chain 3: Iteration: 1800 / 2000 [ 90%]
                                            (Sampling)
## Chain 3: Iteration: 2000 / 2000 [100%]
                                            (Sampling)
## Chain 3:
## Chain 3: Elapsed Time: 8.11648 seconds (Warm-up)
## Chain 3:
                           3.09289 seconds (Sampling)
## Chain 3:
                           11.2094 seconds (Total)
## Chain 3:
## SAMPLING FOR MODEL 'continuous' NOW (CHAIN 4).
## Chain 4:
## Chain 4: Gradient evaluation took 0.000154 seconds
## Chain 4: 1000 transitions using 10 leapfrog steps per transition would take 1.54 seconds.
## Chain 4: Adjust your expectations accordingly!
## Chain 4:
## Chain 4:
```

```
## Chain 4: Iteration: 1 / 2000 [ 0%]
                                           (Warmup)
## Chain 4: Iteration: 200 / 2000 [ 10%]
                                           (Warmup)
## Chain 4: Iteration: 400 / 2000 [ 20%]
                                           (Warmup)
## Chain 4: Iteration: 600 / 2000 [ 30%]
                                           (Warmup)
## Chain 4: Iteration: 800 / 2000 [ 40%]
                                           (Warmup)
## Chain 4: Iteration: 1000 / 2000 [ 50%]
                                           (Warmup)
                                           (Sampling)
## Chain 4: Iteration: 1001 / 2000 [ 50%]
## Chain 4: Iteration: 1200 / 2000 [ 60%]
                                           (Sampling)
## Chain 4: Iteration: 1400 / 2000 [ 70%]
                                           (Sampling)
## Chain 4: Iteration: 1600 / 2000 [ 80%]
                                           (Sampling)
## Chain 4: Iteration: 1800 / 2000 [ 90%]
                                           (Sampling)
## Chain 4: Iteration: 2000 / 2000 [100%]
                                           (Sampling)
## Chain 4:
## Chain 4: Elapsed Time: 8.52788 seconds (Warm-up)
## Chain 4:
                           3.42436 seconds (Sampling)
## Chain 4:
                           11.9522 seconds (Total)
## Chain 4:
# ggplot(m333, aes(x = nlcd11,
               y = BIOLIVE\_TPA)) +
#
   geom_point() +
   facet_wrap(~subsection)
mod_df <- data.frame(</pre>
 fitted = mod$fitted.values,
  subsection = m333 %>% dplyr::select(subsection),
  true = mod$y
mod df %>%
  yardstick::metrics(truth = true,
                     estimate = fitted)
## # A tibble: 3 x 3
##
     .metric .estimator .estimate
##
     <chr> <chr>
                          <dbl>
## 1 rmse
          standard
                           29.4
## 2 rsq
           standard
                           0.461
## 3 mae
             standard
                           20.7
sub_mean <- mod_df %>%
  group_by(subsection) %>%
  summarize(mean_y = mean(true))
## 'summarise()' ungrouping output (override with '.groups' argument)
mod_df %>%
  group_by(subsection) %>%
  yardstick::rmse(truth = true,
                  estimate = fitted) %>%
  left join(sub mean) %>%
  summarize(cv = .estimate / mean_y)
```

```
## Joining, by = "subsection"
## # A tibble: 20 x 1
##
         cv
##
      <dbl>
## 1 0.812
## 2 0.677
## 3 0.975
## 4 0.607
## 5 1.08
## 6 0.652
## 7 0.708
## 8 1.19
## 9 0.810
## 10 0.670
## 11 0.888
## 12 0.710
## 13 1.05
## 14 0.742
## 15 0.957
## 16 0.609
## 17 0.694
## 18 0.743
## 19 0.711
## 20 0.728
mod_df %>%
  group_by(subsection) %>%
  summarize(bayes_cv = sd(fitted) / mean(fitted),
            direct_cv = sd(true) / mean(true)) %>%
  summarize(mean(bayes_cv / direct_cv)) %>%
  pull()
## 'summarise()' ungrouping output (override with '.groups' argument)
## [1] 0.6675408
mod_df %>%
  group_by(subsection) %>%
  summarize(bayes_cv = sd(fitted) / mean(fitted),
            direct_cv = sd(true) / mean(true)) %>%
  mutate(subsection = fct_reorder(subsection, direct_cv)) %>%
  ggplot(aes(x = subsection)) +
  geom_point(aes(y = bayes_cv, color = "goldenrod"), ) +
  geom_point(aes(y = direct_cv, color = "forestgreen")) +
  theme_bw() +
  scale_color_manual(
   name = 'Estimate Type',
    values = c('goldenrod' = 'goldenrod',
               'forestgreen' = 'forestgreen'),
    labels = c('Direct (Mean)', 'Hierarchical Bayesian'),
    guide = "legend"
```

```
theme(axis.text.x = element_text(
   angle = 90,
   vjust = 0.5,
   hjust = 1
),
legend.position = "bottom") +
labs(x = "Subsection",
   y = "Coeffcient of Variation")
```

## 'summarise()' ungrouping output (override with '.groups' argument)



Estimate Type 

Direct (Mean) 

Hierarchical Bayesian

```
theme_bw() +
scale_color_manual(
  name = 'Estimate Type',
  values = c('goldenrod' = 'goldenrod',
             'forestgreen' = 'forestgreen'),
 labels = c('Direct (Mean)', 'Hierarchical Bayesian'),
  guide = "legend"
) +
theme(axis.text.x = element_text(
  angle = 90,
  vjust = 0.5,
  hjust = 1
),
legend.position = "bottom") +
labs(x = "Subsection",
     y = "Estimate")
```

## 'summarise()' ungrouping output (override with '.groups' argument)



Estimate Type • Direct (Mean) • Hierarchical Bayesian

## All the provinces

```
df <- read_csv("../data/subsets/dat_small.csv")</pre>
```

```
## Warning: Missing column names filled in: 'X1' [1]
## Parsed with column specification:
## cols(
     .default = col_double(),
##
     subsection = col_character(),
     section = col_character(),
    province = col_character()
##
## )
## See spec(...) for full column specifications.
df <- df %>%
 mutate(id = province) %>%
  group_by(id) %>%
 nest()
models_df <- list()</pre>
cv <- c()
models <- readRDS("models.rds")</pre>
for(i in 1:14) {
  # models[[i]] <- stan lmer(BIOLIVE TPA ~ 1 + nlcd11 + (1 | subsection),</pre>
                   data = df[[i,2]][[1]],
                   verbose = FALSE)
  models_df[[i]] <- data.frame(</pre>
  fitted = models[[i]]$fitted.values,
  subsection = df[[i,2]][[1]] %>% dplyr::select(subsection),
  true = models[[i]]$y
  ) }
cv <- list()
for(i in 1:14){
cv[i] <- models df[[i]] %>%
  group_by(subsection) %>%
  summarize(bayes_cv = sd(fitted, na.rm = TRUE) / mean(fitted, na.rm = TRUE),
            direct_cv = sd(true, na.rm = TRUE) / mean(true, na.rm = TRUE)) %>%
 summarize(median(bayes_cv / direct_cv, na.rm = TRUE))
## 'summarise()' ungrouping output (override with '.groups' argument)
```

```
## 'summarise()' ungrouping output (override with '.groups' argument)

unlist(cv)

## [1] 0.7874218 0.6088884 0.7469403 0.2930950 0.7840197 0.7830745 0.6622711
## [8] 0.6516997 0.7034978 0.6956291 0.6941903 0.6490448 0.9724442 0.7304559

mean(unlist(cv))
```

## [1] 0.6973338