Math 297 Discussion 3*

Annie Xu

January 29, 2019

1 Important Definitions

Recall our definition of metric space.

Definition 1.1. A topology on a set X is a collection \mathcal{T} of subsets of X having the following properties:

- 1. \emptyset and X are in \mathcal{T} .
- 2. The union of the elements of any subcollection of \mathcal{T} is in \mathcal{T} .
- 3. The intersection of the elements of any finite subcollection of \mathcal{T} is in \mathcal{T} .

A set X for which a topology \mathcal{T} has been specified is called a topological space.

2 Topological Properties

- 1) Fine and coarse (relative)
- 2) Continuity of function in topological spaces

Definition 2.1. Let X and Y be topological spaces. A function $f: X \to Y$ is said to be **continuous** if for each open subset V of Y, the set $f^{-1}(V)$ is an open subset of X.

Note: If the topology of the range space Y is given by a basis \mathcal{B} , then to prove continuity of f it suffices to show that the inverse image of every basis element is open. Why?

If the topology on Y is given by a subbasis S, to prove continuity of f it will even suffice to show that the inverse image of each subbasis element is open. Why?

Exercises

- 1. Let X be a topological space; let A be a subset of X. Suppose that for each $x \in A$ there is an open set U containing x such that $U \subset A$. Show that A is open in X.
- 2. Consider the nine topologies on the board. Compare them; that is, for each pair of topologies, determine whether they are comparable, and if so, which is finer.
- 3. Show that the collection \mathcal{T}_c of all subsets U of X such that $X \setminus U$ either is countable or is all of X. Show that \mathcal{T}_c is a topology on the set X. Is the collection $\mathcal{T}_{\infty} = \{U | X U \text{ is infinite or empty or all of } X\}$ a topology on X?
- 4. (a) If \mathcal{T}_{α} is a family of topologies on X, show that $\bigcap \mathcal{T}_{\alpha}$ is a topology on X. Is $\bigcup \mathcal{T}_{\alpha}$ a topology on X? (b) If $X = \{a, b, c\}$, let $\mathcal{T}_1 = \{\emptyset, X, \{a\}, \{a, b\}\}$, and $\mathcal{T}_2 = \{\emptyset, X, \{a\}, \{b, c\}\}$. Find the smallest topology containing \mathcal{T}_1 and \mathcal{T}_2 , and the largest topology contained in \mathcal{T}_1 and \mathcal{T}_2 .

^{*}Reference: Walter Rudin. Principles of Mathematical Analysis. McGraw-Hill, NY, 2003.