

TÉCNICAS DE COMPRESSÃO **NÃO DESTRUTIVA**

Teoria da informação

- 01. POSSÍVEL SOLUÇÃO PARA COMPRESSÃO NÃO DESTRUTÍVA
- **02.** RESULTADOS DA INVESTIGAÇÃO
- **03.** CONCLUSÃO E CONSIDERAÇÕES FINAIS

COIMBRA

NOME DO DOCENTE

Paulo de Carvalho

Este trabalho foi-nos proposto pelo docente Paulo de Carvalho no âmbito da disciplina Teoria de Informação com o intuito de colocarmos os conhecimentos anteriormente adquiridos em prática com a finalidade de criação de um novo algoritmo de compressão.

POSSÍVEL SOLUÇÃO PARA COMPRESSÃO NÃO DESTRUTÍVA

POSSÍVEL SOLUÇÃO PARA COMPRESSÃO NÃO DESTRUTÍVA

ENCADEAMENTO de algoritmos

Possível solução para compressão não destrutiva

- Codificação entrópico
- Preditores
- Algoritmos das etapas de dependência estatística

DATASET

File Name	Data type	Size (Bytes)	Description
war_and_pe ace	Text in english (.txt) format	3 359 549	The Project Gutenberg EBook of War and Peace, by Leo Tolstoy
cromenco_cl 0	Image File (.bmp) format	33 987 318	Monochromat ic image of a chromenco computer and other devices

CODEC CONCEPTUALIZADO

E as suas componentes

1^a etapa (BW)

- Facilita a compressão
- Organiza a fonte (permite explorar a redundância)
- bastante eficiente em fontes de texto

PROBLEMA:

 Transformada, pensada e construída para fontes textuais

Base 64

- Permite representar uma imagem como sequência de caracteres;
- Cada caracter é codificado em 6 bits;
- A fonte de informação é vista como bits (esta está agrupada em conjuntos de 8 bits, ou seja, bytes);
- Criam-se agrupamentos de 6 bits a começar pela esquerda;
- Verifica-se a correspondência desses 6 bits com um caracter da tabela;
- Escreve-se esse caráter na mensagem a ser transmitida;

SUMA:

- Aumenta a redundância da fonte;
- É introduzido algum overhead no ficheiro

2ª etapa (RLE)

 Ao aplicar este algoritmo a fontes de texto com conjuntos de símbolos sequenciais iguais conseguimos eliminar o overhead produzido e comprimir a fonte de dados

 Dados redundantes são colmatados com o uso deste algoritmo

3ª etapa (BZIP2)

 Algoritmo poderoso e eficiente na compressão de texto e imagem

RESULTADOS DA INVESTIGAÇÃO

Linguagem de programação usada

Python 3.7

Fontes

Wikipédia Github Sites Livraria standard Python

Encadeamento

Funções feitas por nós que permitem o uso dos diversos algoritmos e o seu encadeamento.

Especificações do computador usado para obtenção de resultados

Intel i7-8750H (12 cores) processador (clock speed de 2.200GHz), 16GB de RAM e correndo o sistema operativo Linux (Ubuntu 19.10 x86_64)

Algorithm	Text Original Size (bytes)	Text Final Size (bytes)	Ratio (txt)	Image Original Size (bytes)	Image Final Size (bytes)	Ratio (img)
Bzip2	3 359 549	8 884 54	3,78	33 987 318	7 717 164	4,40
РРМ	3 359 549	14 398 61	2,33	33 987 318	8 205 563	4,14
PNG				33 987 318	12 772 549	2,66
BW	3 359 549	3 473 091	0,96	33 987 318	45 729 625	0,74
BW→RLE	3 359 549	3 456 008	0,97	33 987 318	32 302 300	1,05

Tab3.

Resultados obtidos após aplicação direta destes algoritmos no Dataset fornecido

Algorithm	Text Original Size (bytes)	Text Final Size (bytes)	Ratio (txt)	Image Original Size (bytes)	Image Final Size (bytes)	Ratio (img)
BW ⁻ RLE PPM	3 359 549	1 965 284	1.70	33 987 318	18 893 541	1.80
PPM⁻Bzip2	3 359 549	1 446 760	2.32	33 987 318	10 939 387	3.11
PNG [¬] Bzip2				33 987 318	12 272 731	2.77
PNG [→] PPM				33 987 318	12 234 415	2.78
BW ⁻ Bzip2	3 359 549	1 954 283	1.72	33 987 318	17 342 202	1.96
Bzip2→PPM	3 359 549	944 779	4.37	33 987 318	7 785 234	3.55

Tab4.

Resultados obtidos após aplicação de algumas combinações dos algoritmos anteriores no Dataset fornecido

1	i	i	i	ı	r	i
Algorithm Steps	Text Start Size (bytes)	Text Final Size (bytes)	Ratio (txt)	Image Start Size (bytes)	Image Final Size (bytes)	Ratio (img)
BW	3 359 549	3 473 091	0.96	33 987 318	45 729 625	0.74
BW→ RLE	3 473 091	3 456 008	0.97	45 729 625	32 302 300	1.05
BW→RLE→ Bzip2	3 456 008	1952 669	1.72	32 302 300	17 502 354	1.94

Tab5.

Resultados parciais e finais obtidos após aplicação do nosso algoritmo no Dataset fornecido

CONCLUSÃO E CONSIDERAÇÕES FINAIS

CONCLUSÃO

AUMENTO DA REDUNDÂNCIA

Diminuição da taxa de compressão

0	Α	16	Q	32	g	48	w
1	В	17	R	33	h	49	x
2	С	18	S	34	i	50	у
3	D	19	Т	35	j	51	Z
4	E	20	U	36	k	52	0
5	F	21	V	37	1	53	1
6	G	22	W	38	m	54	2
7	Н	23	X	39	n	55	3
8	1	24	Υ	40	0	56	4
9	J	25	Z	41	р	57	5
10	K	26	а	42	q	58	6
11	L	27	b	43	r	59	7
12	M	28	С	44	s	60	8
13	N	29	d	45	t	61	9
14	0	30	е	46	u	62	+
15	Р	31	f	47	v	63	/

BASE 64

Agrupa sequências de 8 bits em sequências de 6 bits

Universidade de Coimbra

Gabriel Fernandes Maria Dias Pedro Rodrigues www.uc.pt