```
In [1]: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
```

In [3]: df=pd.read_csv(r"C:\Users\user\Downloads\2_2015.csv")
 df.fillna(0,inplace=True)
 df

Out[3]:

	Country	Region	Happiness Rank	Happiness Score	Standard Error	Economy (GDP per Capita)	Family	Health (Life Expectancy)	Free
0	Switzerland	Western Europe	1	7.587	0.03411	1.39651	1.34951	0.94143	0.6
1	Iceland	Western Europe	2	7.561	0.04884	1.30232	1.40223	0.94784	0.6
2	Denmark	Western Europe	3	7.527	0.03328	1.32548	1.36058	0.87464	0.6
3	Norway	Western Europe	4	7.522	0.03880	1.45900	1.33095	0.88521	0.6
4	Canada	North America	5	7.427	0.03553	1.32629	1.32261	0.90563	0.6
153	Rwanda	Sub- Saharan Africa	154	3.465	0.03464	0.22208	0.77370	0.42864	0.5
154	Benin	Sub- Saharan Africa	155	3.340	0.03656	0.28665	0.35386	0.31910	0.4
155	Syria	Middle East and Northern Africa	156	3.006	0.05015	0.66320	0.47489	0.72193	0.1
156	Burundi	Sub- Saharan Africa	157	2.905	0.08658	0.01530	0.41587	0.22396	0.
157	Togo	Sub- Saharan Africa	158	2.839	0.06727	0.20868	0.13995	0.28443	0.3
450 roug v 40 polymore									

158 rows × 12 columns

```
In [4]: df.head()
```

Out[4]:

	Country	Region	Happiness Rank	Happiness Score	Standard Error	Economy (GDP per Capita)	Family	Health (Life Expectancy)	Freedo
0	Switzerland	Western Europe	1	7.587	0.03411	1.39651	1.34951	0.94143	0.665
1	Iceland	Western Europe	2	7.561	0.04884	1.30232	1.40223	0.94784	0.628
2	Denmark	Western Europe	3	7.527	0.03328	1.32548	1.36058	0.87464	0.649
3	Norway	Western Europe	4	7.522	0.03880	1.45900	1.33095	0.88521	0.669
4	Canada	North America	5	7.427	0.03553	1.32629	1.32261	0.90563	0.632
4.0									

In [5]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 158 entries, 0 to 157
Data columns (total 12 columns):

Ducu	cordinis (cocar 12 cordinis):		
#	Column	Non-Null Count	Dtype
0	Country	158 non-null	object
1	Region	158 non-null	object
2	Happiness Rank	158 non-null	int64
3	Happiness Score	158 non-null	float64
4	Standard Error	158 non-null	float64
5	Economy (GDP per Capita)	158 non-null	float64
6	Family	158 non-null	float64
7	Health (Life Expectancy)	158 non-null	float64
8	Freedom	158 non-null	float64
9	Trust (Government Corruption)	158 non-null	float64
10	Generosity	158 non-null	float64
11	Dystopia Residual	158 non-null	float64

dtypes: float64(9), int64(1), object(2)

memory usage: 14.9+ KB

```
In [6]: df=pd.read_csv("2_2015.csv")
```

In [7]: import seaborn as sns

In [8]: sns.pairplot(df)

Out[8]: <seaborn.axisgrid.PairGrid at 0x1e0a1080c10>


```
In [9]: sns.displot(df['Generosity'])
```

Out[9]: <seaborn.axisgrid.FacetGrid at 0x1e0a6d47dc0>


```
Out[10]: Country
                                            0
         Region
                                            0
         Happiness Rank
                                            0
         Happiness Score
                                            0
         Standard Error
                                            0
         Economy (GDP per Capita)
                                            0
         Family
                                            0
         Health (Life Expectancy)
                                            0
         Freedom
                                            0
         Trust (Government Corruption)
                                            0
         Dystopia Residual
         dtype: int64
```

In [11]: sns.heatmap(df1.corr())

Out[11]: <AxesSubplot:>

In [12]: from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression

In [13]: df1.isna().sum()

Out[13]: Country 0 Region 0 Happiness Rank 0 Happiness Score 0 Standard Error 0 0 Economy (GDP per Capita) 0 Family Health (Life Expectancy) 0 Freedom 0 Trust (Government Corruption) 0 Dystopia Residual dtype: int64

```
In [23]: y=df1['Happiness Rank']
         x=df1.drop(['Country', 'Happiness Rank', 'Region'], axis=1)
         x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
         print(x train)
               Happiness Score Standard Error
                                                 Economy (GDP per Capita)
                                                                              Family \
         138
                         3.989
                                        0.06682
                                                                   0.67866
                                                                             0.66290
         22
                         6.810
                                        0.06476
                                                                   1.04424 1.25596
                         5.477
         70
                                        0.07197
                                                                   1.00761 0.98521
         101
                         4.857
                                        0.05062
                                                                   1.15406 0.92933
                         7.378
                                        0.02799
                                                                   1.32944 1.28017
         6
                            . . .
                                                                        . . .
                                                                                 . . .
          . .
                                            . . .
         48
                         5.960
                                        0.05412
                                                                   1.32376 1.21624
         49
                         5.948
                                        0.03914
                                                                   1.25114 1.19777
                         5.548
         69
                                        0.04175
                                                                   0.95847 1.22668
         37
                         6.298
                                        0.03868
                                                                   1.29098
                                                                             1.07617
         87
                         5.102
                                        0.04802
                                                                   1.15991 1.13935
               Health (Life Expectancy) Freedom Trust (Government Corruption)
         138
                                 0.31051 0.41466
                                                                           0.11686
         22
                                 0.72052
                                          0.42908
                                                                           0.11069
         70
                                 0.70950 0.56066
                                                                           0.07521
         101
                                 0.88213
                                         0.07699
                                                                           0.01397
         6
                                 0.89284
                                          0.61576
                                                                           0.31814
          . .
                                     . . .
                                                                               . . .
                                 0.74716
         48
                                          0.45492
                                                                           0.30600
         49
                                 0.95446
                                          0.26236
                                                                           0.02901
         69
                                 0.53886
                                         0.47610
                                                                           0.30844
         37
                                 0.87530
                                          0.39740
                                                                           0.08129
         87
                                 0.87519
                                         0.51469
                                                                           0.01078
               Dystopia Residual
         138
                         1.68135
         22
                         3.19131
         70
                         1.76145
         101
                         1.80101
         6
                         2.46570
          . .
                              . . .
         48
                         1.73797
         49
                         2.02518
         69
                         1.86984
         37
                         2.32323
         87
                         1.26462
         [107 rows x 8 columns]
In [24]:
         model=LinearRegression()
         model.fit(x_train,y_train)
         model.intercept_
```

Out[24]: 297.1524499401098

```
In [25]: model.coef_
Out[25]: array([-26.92401634, -29.70457572, -12.69173816, -15.35442221,
                 -17.13611956, -18.78902373, -2.93847116, -12.41537647])
In [26]:
         prediction=model.predict(x_test)
         plt.scatter(y_test,prediction)
Out[26]: <matplotlib.collections.PathCollection at 0x1e0a8dd45b0>
           160
           140
           120
           100
           80
           60
            40
           20
                               60
                                     80
                                          100
                    20
                                               120
                                                     140
                                                           160
In [27]:
         model.score(x_test,y_test)
Out[27]: 0.9876499329152798
```

In []: