Texto base:

Stuart Russel e Peter Norving - "Inteligência Artificial"

junho/2007

- Uma variante da busca em feixe estocástica
- Estado sucessor gerado pela combinação de dois estados pais
- Analogia com a seleção natural:
 - Busca em feixe estocástica reprodução assexuada
 - Algoritmo genético reprodução sexuada

- Começam com um conjunto de k estados gerados aleatoriamente chamado de população
- Um estado é chamado de indivíduo, ou cromossomo
 - Normalmente representado por uma cadeia de valores
 - Ex: Um estado das 8 rainhas deve especificar a posição das 8 rainhas, cada uma em uma coluna de 8 quadrados
 - Pode ser representado por 8 dígitos, variando de 1 a 8
 - Ou por uma cadeia de 24 bits = cada 3 bits = 1 posição

Exemplo indivíduo – 8 rainhas

- 24748552 = 001|011|110|011|111|100|100|001
- \blacksquare 3 2 7 5 2 4 1 1 = 010|001|110|100|001|011|000|000

8					*			
7			*					
6								
5						*	*	
4		*		*				
3 2								
2	*							*
1								

8								
7			*					
ϵ								
5				*				
4						*		
3	*							
3 2		*			*			
1							*	*

- Cada estado (ou indivíduo) é avaliado pela função de avaliação
 chamada de função de fitness
- Quanto melhor o estado maior é o valor da função fitness
 - Ex. das 8 rainhas: no de pares de rainhas não atacantes
 - 24748552 = 24
 - 3 2 7 5 2 4 1 1= 23
 - 2 4 4 1 5 1 2 4 = 20
 - 3 2 5 4 3 2 1 3 = 11

- Se o método de seleção dar maior probabilidade de um indivíduo com maior valor de fitness ser escolhido...
- Temos as seguinte probabilidades de escolha:
 - 2 4 7 4 8 5 5 2 = 24 => 31%
 - 3 2 7 5 2 4 1 1= 23 => 29%
 - 2 4 4 1 5 1 2 4 = 20 => 26%
 - 3 2 5 4 3 2 1 3 = 11 => 14%

- Vamos supor que aleatoriamente (mas respeitando a probabilidade) foram selecionados os indivíduos:
 - 247 | 48552
 - 327 | 52411
 - 24415|124
 - 32752 | 411
- Normalmente, um ponto de crossover é escolhido ao acaso

- E os filhos gerados por meio do crossover são:
 - 327 | 48552
 - 247 | 52411
 - 24415|411
 - 32752 | 124
- Este processo de reprodução faz com que o algoritmo genético explore estados longe dos estados pais, no começo da execução
- À medida em que os melhores indivíduos ficam na população, a probabilidade de gerar um filho longe dos pais, diminui

- Os indivíduos gerados podem sofre mutação com uma pequena probabilidade
- A idéia é que quando os pais são muito parecidos, a mutação possa trazer alguma característica que ajude a escapar do ótimo local
 - 327 | 48**3**52
 - 247 | 52411
 - **2**4415|41**6**
 - **326**52|**124**

Algoritmo Genético - Geral

```
Função ALGORITMO-GENÉTICO (população, FN-FITNESS) retorna um indivíduo
Entradas: população, um conjunto de indivíduos
           FN FITNESS, uma função que mede a adaptação de um indivíduo
Repita
   nova população <- conjunto vazio
   para i<-1 até TAMANHO(população) faça
     x <- SELEÇÃO-ALEATÓRIA (população, FN-FITNESS)
     v <- SELEÇÃO-ALEATÓRIA (população, FN-FITNESS)
     filho <- REPRODUZ(x,y)</pre>
     se (pequena probabilidade aleatória)
        então filho <- MUTAÇÃO(filho)</pre>
    adicionar filho à nova população
Até algum critério de parada
Retornar o melhor indivíduo da população, de acordo com FN-FITNESS
```

- Troca informações entre processos de busca paralelos
- A principal vantagem vem da operação de crossover:
 - Combinar grandes blocos de genes que evoluem de forma independente para executar funções úteis
 - Ex: a colocação da três primeiras rainhas nas posições 2, 4 e 6 (em que elas não se atacam as outras) constitui um bloco útil
 - Estes blocos podem ser combinados com outros, para formar uma solução

- A combinação de blocos úteis funciona usando a idéia de esquema
- Um esquema é uma sub-cadeia na qual algumas posições podem ser deixadas sem especificação
- Ex: 246****
- Cadeias do tipo 24625176 são chamadas instâncias do problema

Questões centrais

- Como representar os indivíduos?
- Quem é a população inicial?
- Como definir a função objetivo?
- Quais são os critérios de seleção?
- Como aplicar/definir o operador de reprodução?
- Como aplicar/definir o operador de mutação?
- Como garantir a convergência e ao mesmo tempo a solução ótima?

Exemplo 1

Problema: Use um AG para encontrar o ponto máximo da função:

$$f(x) = x^2$$

com x sujeito as seguintes restrições:

$$0 \le x \le 31$$

 $x \ne inteiro$

Indivíduo

- Cromossomo
 - Estrutura de dados que representa uma possível solução para o problema de forma não ambígua
 - Os parâmetros do problema de otimização são representados por cadeias de valores.
 - Exemplos:
 - Vetores de reais, (2.345, 4.3454, 5.1, 3.4)
 - Cadeias de bits, (111011011)
 - Vetores de inteiros, (1,4,2,5,2,8)
 - ou outra estrutura de dados.

Indivíduo

- Na implementação, cada indivíduo tem um valor de fitness associado a ele
- Aptidão pode ser:
 - Igual a função objetivo
 - Baseado no ranking do indivíduo da população

Cromossomo do Problema 1

- Cromossomos binários com 5 bits:
 - 0 = 00000
 - 31 = 11111
- Aptidão
 - Neste problema, a aptidão pode ser a própria função objetivo.
 - Exemplo:

aptidão
$$(00011) = f(3) = 9$$

População Inicial do Problema 1

É aleatória (mas quando possível, o conhecimento da aplicação pode ser utilizado para definir população inicial)

Pop.	
inicial	

cromossomos	X	f(x)	
A ₁ = 1 1 0 0 1	25	625	54,5%
A ₂ =0 1 1 1 1	15	225	19,6%
A3=01110	14	196	17,1%
A ₄ =0 1 0 1 0	10	100	8,7%

Probabilidade de seleção proporcional a aptidão

$$p_i = \frac{f(x_i)}{\sum_{k=1}^{N} f(x_k)}$$

- Seleção
 - Tem como objetivo propagar material genético dos indivíduos mais adaptados
 - Os melhores indivíduos (maior aptidão) são selecionados para gerar filhos
 - Dirige o AG para as melhores regiões do espaço de busca
- Tipos mais comuns de seleção
 - Proporcional a aptidão (roleta)
 - Torneio
 - Ranking (os n mais adaptados)

Se

Seleção proporcional a aptidão (Roleta)

Problema: converge muito rápido por causa da variação pequena

- Torneio: escolhe-se n (tipicamente 2) indivíduos aleatoriamente da população e o melhor é selecionado.
- Ranking: seleciona-se os n indivíduos mais adaptados

Reprodução - Crossover

- Função:
 - combinar e/ou perpetuar material genético dos indivíduos mais adaptados
 - Cria novos indivíduos misturando características de dois ou mais indivíduos pais (crossover) - variação
- Em termos de busca:
 - Principais mecanismos de busca do AG
 - Permite explorar áreas desconhecidas do espaço de busca

Crossover

- Os filhos são formados a partir dos bits dos pais
- Cruzamento em um ponto
 - Pai 1: 1010101011 | 0101010111
 - Pai 2: 0000100101 | 0101110010
 - Filho1: 10101010110101110010
 - Filho2: 00001001010101010111
- Cruzamento multi-ponto
 - Pai 1: 101010 | 101101 | 01010111
 - Pai 2: 000010 | 010101 | 01110010
 - Filho1: 000010 | 101101 | 01110010
 - Filho2: 101010 | 010101 | 01010111

Crossover

- Os pontos de corte dos cruzamentos em um ponto ou multiponto podem ser estáticos ou escolhidos aleatoriamente
- Quanto mais estruturada for a representação do cromossomo, mais difícil fica de se definir o cruzamento

Mutação

- Objetivo:
 - gerar diversidade (p/ escapar de ótimos locais)
- Tipos:
 - Gerativa
 - Destrutiva
 - Swap
 - Swap de seqüência

 Obs: Existe uma "taxa de mutação" (ex. % da população selecionada) que pode diminuir com o tempo para garantir convergência

Crossover e mutação do Problema 1

Adição dos filhos à nova população

- Objetivo:
 - garantir uma convergência adequada
- Tipos:
 - simples: a nova geração substitui a antiga
 - elitista ou steady-state: a nova geração se mistura com a antiga
- Critérios de substituição no caso elitista:
 - os piores
 - os mais semelhantes
 - para evitar convergência prematura
 - os melhores
 - os pais
 - aleatoriamente, ...

A primeira geração do Problema 1

Substituição simples

cron	nossomos	X	f(x)	prob. de seleção
1	11011	27	729	29,1%
2	11001	25	625	24,9%
3	11001	25	625	24,9%
4	10111	23	529	21,1%

As demais gerações do Problema 1

				+/
			X	I(X)
O	1	1101	1 27	729
Segunda Geração	2	1100	0 24	576
	3	1011	1 23	529
	4	1010	1 21	441
			X	f(x)
Terceira Geração	1	1101		f(x) 729
Terceira Geração	1 2	1 1 0 1 1 0 1 1	1 27	
Terceira Geração	•		1 27 1 23	729

As demais gerações do Problema 1

				$f(\mathbf{v})$
			X	I(X)
~	1	11111	31	961
Quarta Geração	2	11011	27	729
	3	10111	23	529
	4	10111	23	529
			X	f(x)
Quinta Geração	1	11111		f(x) 961
Quinta Geração	1 2		31	
Quinta Geração	•		31 31	961

Problema 2

Achar o máximo da função utilizando Algoritmos Genéticos

$$f(x) = x \operatorname{seno}(10\pi x) + 1,0$$

Restrita ao intervalo:

$$-1,0 \le x \le 2,0$$

Problema 2

Máximo global:

$$x = 1,85055$$

 $f(x) = 2,85027$

Problema 2

- Função multimodal com vários pontos de máximo.
- É um problema de otimização global (encontrar o máximo global)
- Não pode ser resolvido pela grande maioria dos métodos de otimização convencional.
- Há muitos métodos de otimização local, mas para otimização global são poucos.

O Cromossomo Problema 2

- Representar o único parâmetro deste problema (a variável x) na forma de um cromossomo:
 - Quantos bits deverá ter o cromossomo?
 - Quanto mais bits melhor precisão numérica
 - Longos cromossomos são difíceis de manipular
- Cromossomo com 22 bits
 - 1000101110110101000111

População gerada aleatoriamente

Pouca melhoria

A maioria dos indivíduos encontraram o máximo global

Na geração 15 o AG já encontrou o ponto máximo

- A substituição simples da geração antiga pela nova podem destruir a melhor indivíduo
- Por que perder a melhor solução encontrada?
- Elitismo transfere cópias dos melhores indivíduos para a geração seguinte

Elitismo no Problema 2

Critérios de Parada

- Número de gerações
- Encontrou a solução (quando esta é conhecida)
- Perda de diversidade (estagnação)
- Convergência
 - nas últimas k gerações não houve melhora na aptidão