SCOPE OF ACCREDITATION TO ISO/IEC 17025-2017 & KS Q ISO/IEC 17025-2017

Korea Instruments Co., Ltd.

1303, Nambusunhwan-ro, Guro-gu, Seoul, Republic of Korea Phone: 02-863-1901~4, FAX: 02-863-1905, E-mail: kic@kic21.co.kr

CALIBRATION

Valid to: Aug. 04, 2026 Accreditation No.: KC01-052

In recognition of the successful completion of the KOLAS evaluation process, accreditation is granted to this laboratory to perform the following calibrations

Field Code	Item of Calibration	on-site	Field Code	Item of Calibration	on-site	Field Code	Item of Calibration	on-site		
102.Lin	02.Linear dimension			105.Complex geometry			204.Pressure			
10203	Electrical/Mechanical	N	10503	Contact coordinate	Y	20406	Absolute pressure gauges	N		
	comparators			measuring machines		20407	Blood pressure gauges	Y		
10206	Dial/Cylinder	N	10504	Non-contact coordinate	Y	20408	Compound pressure gauges	Y		
	gauge testers			measuring machines		20409	Differential pressure gauges	Y		
10207	Doctor blades	N	10511	Measuring microscopes,	Y	20411	Gauge pressure gauges	Y		
10209	End bars	N		Profile projectors		20412	Pressure transducers/	Y		
10210	Extensometers, linear	Y	10512	Micro measuring microscopes	Y		transmitters			
	displacement transducers		10517	Stylus type roughness testers	Y	20413	Dial type vacuum gauges	Y		
10211	Filler gauges	Y	10525	Thread plug gauges	N	20414	Water depth meters	N		
10212	Film applicators	N	10527	Thread ring gauges	N	206.Vol	ume			
10213	Gap gauges	N	10529	V-blocks, Box blocks	N	20601	Volumetric glasswares	N		
10214	Gauge blocks, by comparison	N	106.Var	ious dimensional		20604	Standard volume vessels	Y		
10216	Height gauges/	Y	10601	Inside/Outside/Gear tooth	Y	20605	Concrete air content meters	N		
	measuring machines			calipers, Caliper gauges		20606	Piston type volume meters	N		
10220	Standard measuring machines	Y	10603	Cylinder/bore gauges	Y	207.Den	sity			
10223	Electronic micrometers	Y	10604	Depth gauges,Depth micrometers	Y	20704	Salinity meters	N		
10224	Height micrometers,	N	10605	Dial/Digital gauges	Y	20705	Sucrose meters	N		
	Riser blocks		10608	Grind gauges	N	20707	Chloride meters	N		
10227	Standard tape rules,	N	10609	Micro indicators,	Y	208.Vis	cosity			
	Peripheral gauges			Test indicators		20801	Kinematic viscometers;	N		
10228	Cylindrical plug/pin gauges,	Y	10610	Micrometer heads	N		capillary, etc.			
	Thread measuring wire gauges		10611	3-point micrometers	Y	20802	Dynamic viscometers;	N		
10229	Radius gauges	N	10612	Inside micrometers	Y		rotaional, etc.			
10230	Cylindrical ring gauges	N	10613	Micrometer, outside	Y	209.Flu	id flow			
10232	Step gauges	N	10617	Standard sieves	N	20901	Anemometers; hot-wire	N		
10233	Taper thickness gauges	N	201.Mas	S		20902	Anemometers; pitot tube,etc.	N		
10234	Ultrasonic thickness gauges	Y	20103	Auto-packer scale balances	Y	20908	Gas flowmeters;	N		
10235	Ultrasonic/coating	N	20105	Counter beam balances	Y		pressure			
	thickness specimens			Electric balances	Y	20909	Liquid flowers;	N		
10236	Coating thickness testers	Y	20112	Platform scale balances	Y		pressure			
104.For	m		20113	Spring scale balances	Y	20910	Liquid flowers ;	N		
10401	Form testers	Y	20116	Weights	N		electromagnetic			
10404	Optical flats	N	202.For	ce	•	20911	Gas flowers; thermal mass,	N		
10405	Optical parallels	N		Tension/Compression	Y		etc			
10406	Paralled blocks	N		testing machines		20912	Liquid flowers ; thermal	N		
10407	Precision surface	Y	20204	Push-Pull Gauges	N		mass, etc			
	plates		203.Tor	que		20914	Gas flowers ; positive	N		

10409	Roundness measurement instruments	Y	20302	Torque measuring	N		displacement		
10412	Straight edges	N		devices		20915	Liquid flowers ; positive	N	Ī
10413	Straight rules	N	20303	Torque wrenches/drivers	Y		displacement		I

Field Code	Item of Calibration	on-site	Field Code	Item of Calibration	on-site	Field Code	Item of Calibration	on-site
209.Fluid flow		402.Resistance,Capacitance and Inductan		tance			1	
20916	Gas flowers ; turbine	N	40206	Inductance bridges	Y	40427	LF spectrum analyzers	Y
20917	Liquid flowers ; turbine	N		/indicators		40429	Sweep generators	Y
20918	Gas flowers ; ultrasonic	N	40208	Inductors	Y	40430	Signal transducers	Y
20919	Liquid flowers ; ultrasonic	N	40210	Insulation testers	Y	40433	Waveform analyzers	Y
20920	Gas flowers ; variable area	N	40213	Resistance bridges &	Y	40434	AC/DC high voltage generators	Y
20921	Liquid flowers ; variable	N		Similar instruments		40435	AC/DC high voltage probes	Y
	area		40214	Resistance meters	Y	40436	Logic analyzers	Y
20922	Gas flowers ; vortex	N	40215	Resistors	Y	40437	Telephone testers	Y
20923	Liquid flowers ; vortex	N	40217	Impedance bridges	Y	40438	Video signal analyzers	Y
210. Ha	rdness			/LCR meters		406.Rad	io frequency measurements	.1
21001	Brinell Hardness	Y	403.AC	voltage, current & power	1	40601	RF amplifiers	Y
	Testing Machines			AC ammeters	Y	40602	Coaxial attenuators	Y
21002	Rockwell Hardness	Y	40302	Clamp ammeters/voltmeters	Y	40605	Burst Pulse generators	Y
	Testing Machines		40303	AC voltage/current	Y	40607	RF power meter calibrators	Y
21004	Vickers Hardness	Y		calibrators		40608	EMC transducers ; current	Y
	Testing Machines		40304	Power calibrators	N		probes, absorbing clamps, etc.	
21005	Durometer Hardness	N	40305	AC current shunts	Y	40610	Coaxial directional	Y
	Testers		40307	Voltage/current phase angle	Y		couplers/splitters	
21006	Leeb Hardness Testers	N		meters/synchro resolve meters		40613	Electrostatic discharge	N
	e/Frequency	<u>I</u>	40310	Power factor meters	Y		generators	
30102	Frequency standards	N	40311	AC power meters	Y	40614	EMC receivers	Y
	Frequency standards	N	40312	AC power supplies	Y	40615	Filters, RF/microwave	Y
30104	General frequency sources	Y	40313	Puncture/safety testers	Y	40618	Line impedance	Y
30105	Time interval sources	Y	40314	Power recorders	Y		stabilization networks ;	
30106	Time interval meters/	Y	40318	AC voltmeters	Y		LISN, CDN, ISN, etc.	
	Stop watches/Timers		404.0th	er DC & LF Measurements		40621	Mobile communication	Y
302.Vel	ocity & revolution	Į.	40401	LF amplifiers	Y		test sets	
30201	Standard RPM generators	Y	40402	DC/LF attenuators	Y	40622	Modulation meters	Y
30202	Contact type tachometers	N	40403	Multimeter calibrators	Y	40623	Network analyzers	Y
30203	Photo tachometers/	Y	40404	Oscilloscope calibrators	Y	40626	Noise impulse simulators	Y
	stroboscopes		40406	Video signal generators	Y	40635	RF power meters	Y
401.DC	voltage & current		40407	Audio distortion analyzers	Y	40636	Diode power sensors	Y
40101	DC ammeters	Y		/meters		40637	Thermocouple power sensors	Y
40102	Transconductance	Y	40408	LF filters	Y	40638	Pulse generator	Y
	amplifiers		40409	LF/Audio signal analyzers	Y	40639	Radar test sets	Y
40103	DC voltage/current	Y	40410	Line frequency meters	Y	40640	RF signal generators	Y
	calibrators		40411	Function generators	Y	40641	RF spectrum analyzers	Y
40104	Electrical temperature	Y	40413	AC/DC high voltages	Y	40642	RF speed guns	Y
	calibrators			volt meters		40643	Surge generators	Y
40105	DC current shunts	Y	40414	LF impulse generators	Y	40644	SWR meters	Y
40106	Galvanometers/null	Y	40416	Leakage current testers	Y	40645	RF terminations	Y

	detectors		40417	Electronic AC/DC loads	Y	40646	Thermistor mount, coaxial	N
40108	DC power supplies	Y	40418	Modulation meters	Y	40650	RF voltmeters	Y
40112	DC voltmeters	Y	40419	Analogue/Digital multimeters	Y	40652	Field strength meters	Y
40113	Static/Ionic voltmeters	N	40420	Noise meters	Y	40654	Dip simulators	Y
402.Res	istance,Capacitance and Induct	ance	40421	Oscilloscopes	Y	407.Fie	ld strength & antennas	
40201	Capacitance bridges/	Y	40422	LF phase meters	Y	40704	Loop antennas	N
	indicators		40423	Random wave generators	N	40705	molopole antennas	N
40202	Decade capacitors	Y	40424	Volt/Current recorders	Y			
40204	Standard capacitors	Y	40425	Relay test sets	Y			
40205	Earth testers	Y	40426	LF signal generators	Y			
Field Code	Item of Calibration	on-site	Field Code	Item of Calibration	on-site	Field Code	Item of Calibration	on-site
501.Con	tact thermometry		503.Hum	idity		601.Sou	nd in air	
50101	Temperature generators:	Y	50301	Dew-point hygrometers: chilled	N	60106	Sound level meters	N
	ovens, furnaces,			mirror,alumina thin film, etc.		603.Vib	ration	
	isothermal liquid baths,		50302	Relative humidity	N	60301	Vibration Calibrators	N
	ice-point baths, dry-block			hygrometers; polimer		60302	Vibration transducers	N
	calibrators			thinfilm, hair, etc.		60303	Vibration measuring instruments	N
50102	Temperature indicators	Y	50303	Psychrometers; assmann	N	701.Pho	tometry	
	/recorders/controllers,			ventilated, PRT type, etc.		70101	Iluminance meters	N
	temperature calibrators		50304	Temperature humidity	N	901. Ch	emical analysis	
50103	Glass thermometers;	N		recorders;Hygrothermograph,etc		90103	Gas analyzers	N
	liquid-in-glass, Beckmann		50305	Transducers; dew-point	N	90104	Exhaust gas test instrument	N
50104	Resistance thermometers;	Y		/relative humidity				
	SPRT, IPRT, thermistors,		50306	Humidity generators;	Y			
	etc.			two-pressure,				
50105	Thermal expansion	Y		two-temperature,flow mixing				
	thermometers ; bimetal,			humidity gererator,				
	gas or liquid type			constant temperature and				
50106	Thermomecoules:noble metal,	Y		humidity chamber, etc.				
	base metal, pure metal,		504.Moi	sture				
	special type, etc.		50402	Wood moisture meters	N			
50107	Temperature transducers	Y						
502.non	contact thermometry	-						
50204	Standard radiation	N						
	thermometers							
50206	Blackbody Furnaces	N						
		-		•			•	

Note

- 1. This laboratory provides calibration services in permanent standard laboratory and at on-site.
- 2. Laboratory conducts on-site calibration should meet requirements of KOLAS-SR-007.
- 3. On-site calibration is allowed to items with marking 'Y', not allowed to items with marking 'N'.
- 4. Measurement uncertainty normally is quoted as an expanded uncertainty at a coverage probability of 95 %, which usually requires the use of a coverage factor of k=2. It expresses the lowest uncertainty of measurement that can be provided by accredited calbration laboratories in normal conditions.
- 5.Due to the calibration environment such as reference standards or customers' facilities, it is note that uncertainty of measurement on a calibration certificate may be expressed larger than measurement uncertainty on scope of accreditation in general.

102. Linear dimension

Measured Quantity Instrument or Gauge	Field Code	Range	Measurement uncertainty (The Confidence Level is about 95 %)	Standard/Method of Measurement etc.
Electrical/Mechanical Comparators	10203	(0 ~ 2) mm	0.15 µm	CP-10203
Dial/Cylinder gauge testers	10206	(0 ~ 25) mm	$\sqrt{0.24^2 + 0.004 \ 2^2 \times I^2} \ \mu \text{m}$ (unit of the I :mm)	CP-10206
Doctor blades	10207	(0 ~ 10) mm	2.5 µm	CP-10207
End bars	10209	(0 ~ 500) mm	$\sqrt{0.7^2 + 0.005 \ 3^2 \times I^2} \ \mu \text{m}$ (unit of the $I:\text{mm}$)	CP-10209
Extensometers, linear displacement tranducers	10210	(0 ~ 100) mm (100 ~ 500) mm (500 ~ 1 000) mm	5.9 μm 0.031 mm 0.12 mm	CP-10210
Filler gauges	10211	(0 ~ 10) mm	0.6 µm	CP-10211
film applicators	10212	(0 ~ 10) mm	2.5 µm	CP-10212
Gap gauges	10213	(3 ~ 300) mm	$\sqrt{0.7^2 + 0.005 \ 3^2 \times l^2} \ \mu m$ (unit of the $l:mm$)	CP-10213
Gauge blocks, by comparison	10214	(0.5 ~ 100) mm	$\sqrt{81^2 + 1.3^2 \times l^2}$ nm (unit of the l :mm)	CP-10214
Height gauges/measuring machines	10216	(0 ~ 1 000) mm	$\sqrt{0.8^2 + 0.004 \ 3^2 \times l^2} \ \mu m$ (unit of the $l:mm$)	CP-10216
Standard measuring machines	10220	(0 ~ 500) mm	$\sqrt{0.3^2 + 0.003 \ 1^2 \times l^2} \ \mu \text{m}$ (unit of the l :mm)	CP-10220
Electronic micrometers	10223	(0 ~ 5) mm	0.18 μm	CP-10223
Height micrometers, Riser blocks Block calibration Head calibration	10224	(0 ~ 600) mm 30 mm	$\sqrt{0.8^2 + 0.004 \ 3^2 \times l^2} \ \mu \text{m}$ (unit of the l :mm)	CP-10224
Standard tape rules, Peripheral gauges	10227	(0 ~ 15) m	$\sqrt{0.34^2 + 0.004 \ 6^2 \times I^2} \ \text{mm}$ (unit of the l :m)	CP-10227
Cylindrical plug/pin gauges, Thread measuring wire gauges Cylindrical plug/pin gauges	10228	(0.1 ~ 200) mm	$\sqrt{0.6^2 + 0.005 \ 2^2 \times I^2} \ \mu \text{m}$ (unit of the <i>I</i> :mm)	CP-10228
Radius gauges	10229	(0.35 ~ 100) mm	3.6 µm	CP-10229
Cylindrical ring gauges	10230	(2 ~ 200) mm	$\sqrt{1.2^2 + 0.004 \ 1^2 \times l^2} \ \mu m$ (unit of the l :mm)	CP-10230

102. Linear dimension

Measured Quantity Instrument or Gauge	Field Code	Range	Measurement uncertainty (The Confidence Level is about 95 %)	Standard/Method of Measurement etc.
Step gauges	10232	(0 ~ 670) mm	$\sqrt{1.0^2 + 0.004 \ 5^2 \times l^2} \ \mu \text{m}$ (unit of the $l:\text{mm}$)	CP-10232
Taper thickness gauges	10233	(0 ~ 50) mm	30 µm	CP-10233
Ultrasonic thickness gauges	10234	(0 ~ 100) mm (100 ~ 500) mm	4 μm 8 μm	CP-10234
Ultrasonic/coating thickness specimens	10235			
Coating thickness specimens Ultrasonic specimens		$(0 \sim 10) \text{ mm}$ $(0 \sim 500) \text{ mm}$	$\sqrt{\frac{3.5 \ \mu m}{0.8^2 + 0.004 \ 3^2 \times l^2 \ \mu m}}$ (unit of the <i>l</i> :mm)	CP-10235-1 CP-10235-2
Coating thickness testers	10236	(0 ~ 7.4) mm	2.1 µm	CP-10236

104. Form

Measured Quantity Instrument or Gauge	Field Code	Range	Measurement uncertainty (The Confidence Level is about 95 %)	Standard/Method of Measurement etc.
Form testers Longitudinal direction (Z-axis) Transverse direction (X-axis)	10401	(0 ~ 100) mm (0 ~ 50) mm	$\sqrt{\frac{0.6^2 + 0.004 \ 3^2 \times l^2}{1.1^2 + 0.004 \ 1^2 \times l^2} $	CP-10401
Optical flats Flatness	10404	(0 ~ 75) mm	0.06 µm	CP-10404
Optical parallels Flatness Parallelism	10405	(0 ~ 60) mm (0 ~ 60) mm	0.06 µm 0.11 µm	CP-10405
Parallel blocks Flatness Parallelism Length differnce of both block	10406	(0 ~ 1 000) mm	1.4 μm 1.4 μm 2.0 μm	CP-10406
Precision surface plates Flatness	10407	$(1\ 000 \times 1\ 000)\ \text{mm}^2$ $(3\ 000 \times 3\ 000)\ \text{mm}^2$	3.9 µm 7.1 µm	CP-10407
Roundness measurement instruments Accuracy of detector Rotating accuracy of circumferential direction	10409	(0 ~ 30) μm 360°	0.41 µm 0.026 µm	CP-10409

Straight edges Straightness Parallelism	10412	(0 ~ 1 500) mm (0 ~ 1 500) mm	2.1 µm 2.0 µm	CP-10412
Straight rules	10413	(0 ~ 2 000) mm	0.13 mm	CP-10413

105. Complex geometry

Measured Quantity Instrument or Gauge	Field Code	Range	Measurement uncertainty (The Confidence Level is about 95 %)	Standard/Method of Measurement etc.
Contact coordinate measuring machines	10503	(0 ~ 1 000) mm	$\sqrt{1.0^2 + 0.004 \ 6^2 \times l^2} \ \mu m$ (unit of the l :mm)	CP-10503
Non-contact coordinate measuring machines	10504	(0 ~ 1 000) mm	$\sqrt{0.5^2 + 0.003 \ 7^2 \times l^2} \ \mu m$ (unit of the $l:mm$)	CP-10504
Measuring microscopes, Profile projectors Measuring microscopes Length Measuring microscopes,	10511	(0 ~ 500) mm	$\sqrt{0.6^2 + 0.004 \ 1^2 \times l^2} \ \mu m$ (unit of the $l:mm$)	CP-10511-1
Profile projectors Profile projectors Length Rectangular Scale Angle		(0 ~ 500) mm - -	$\sqrt{1.4^2 + 0.003 \ 2^2 \times l^2} \ \mu m$ (unit of the l :mm) 2.4 μm 0.06 % 1.1'	CP-10511-2
Micro measuring microscopes	10512	(0 ~ 30) mm	1.0 μm	CP-10512
Stylus type roughness testers Ra Rz H	10517	(0 ~ 5) μm (0 ~ 20) μm (0 ~ 20) μm	0.060 μm 0.20 μm 0.041 μm	CP-10517
Thread plug gauges Outside diameter Pitch Half angle of thread Thread diameter	10525	$(0 \sim 150) \text{ mm}$ $(0.2 \sim 6) \text{ mm}$ $(0 \sim 30)^{\circ}$ $(0 \sim 150) \text{ mm}$	$\sqrt{0.7^2 + 0.005 \ 1^2 \times l^2} \ \mu m$ $1.9 \ \mu m$ $2.1'$ $\sqrt{2.1^2 + 0.005 \ 1^2 \times l^2} \ \mu m$ (unit of the l :mm)	CP-10525
Thread ring gauges Pitch diameter Minor diameter	10527	(6 ~ 100) mm (6 ~ 100) mm	2.3 µm 2.5 µm	CP-10527
V-blocks, Box blocks Flatness Prallelism	10529	(0 ~ 150) mm	1.2 μm 1.9 μm	CP-10529

Gradient	0.8 µm	
Difference of both part	1.9 µm	

106. Various dimensional

Measured Quantity Instrument or Gauge	Field Code	Range	Measurement uncertainty (The Confidence Level is about 95 %)	Standard/Method of Measurement etc.
Caliper gauges	10601			
Inside/Outside/gear tooth calipers				
		$(0 \sim 200) \text{ mm}$	$\sqrt{3.6^2 + 0.004 \ 3^2 \times l^2} \ \mu m$	CP-10601-1
Caliper gauges		$(0 \sim 2\ 000)\ \text{mm}$	$\sqrt{9.2^2 + 0.004 \ 3^2 \times l^2} \ \mu m$	CP-10601-2
Inside/Outside calipers			(unit of the <i>l</i> :mm)	
Cylinder/Bore gauges	10603	(0 ~ 800) mm	0.7 µm	CP-10603

106. Various dimensional

106. Various dimensional			•	
Measured Quantity Instrument or Gauge	Field Code	Range	Measurement uncertainty (The Confidence Level is about 95 %)	Standard/Method of Measurement etc.
Depth gauges, Depth micrometers	10604	(0 ~ 300) mm (300 ~ 1 000) mm	$ \sqrt{\frac{1.0^2 + 0.004 \ 5^2 \times I^2}{7.6^2 + 0.004 \ 5^2 \times I^2} \mu m} \text{(unit of the } I : mm)} $	CP-10604
Dial/Digital gauges	10605	(0 ~ 100) mm	$\sqrt{1.7^2 + 0.004 \ 1^2 \times l^2} \ \mu \text{m}$ (unit of the l :mm)	CP-10605
Grind gauges Depth of inclined plane Straightness of scraper	10608	(0 ~ 1) mm (0 ~ 70) mm	2.7 μm 1.8 μm	CP-10608
Micro indicators, Test indicators	10609	(0 ~ 5) mm	0.5 μm	CP-10609
Micrometer head	10610	(0 ~ 50) mm	$\sqrt{0.7^2 + 0.004 \ 3^2 \times l^2} \ \mu m$ (unit of the l :mm)	CP-10610
3-points micrometers	10611	(2 ~ 200) mm	$\sqrt{3.0^2 + 0.004 \ 1^2 \times l^2} \ \mu \text{m}$ (unit of the l :mm)	CP-10611
Inside micrometers	10612	(5 ~ 1 000) mm	$\sqrt{0.9^2 + 0.004 \ 3^2 \times l^2} \ \mu \text{m}$ (unit of the l :mm)	CP-10612
Outside micrometers Outside micrometers	10613	(0 ~ 2 000) mm	$\sqrt{1.6^2 + 0.004 \ 3^2 \times l^2} \ \mu m$ (unit of the l :mm)	CP-10613-1
V-anvil micrometer		(5 ~ 25) mm	1.3 µm	CP-10613-2
Standard sieves	10617			CP-10617
Sieve Wire		(0 ~ 100) mm (0 ~ 10) mm	4.4 μm 2.9 μm	

201. Mass

Measured Quantity Instrument or Gauge	Field Code	Range	Measurement uncertainty (The Confidence Level is about 95 %)	Standard/Method of Measurement etc.
Auto-packer scale balances	20103	$(0 \sim 5) \text{ kg}$	1.1 g	CP-20103
		(5 ~ 10) kg	2.2 g	
		(10 ~ 50) kg	12 g	
		(50 ~ 200) kg	0.12 k g	
	00105	(0 011)	0.1	CD 00105
Counter beam balances	20105	$(0 \sim 311) \text{ g}$	9.1 mg	CP-20105
		$(311 \sim 2610) \mathrm{g}$	91 mg	
		$(2.61 \sim 20) \text{ kg}$	0.91 g	
Electric balancers	20109	(0 ~ 2) g	6.0 µg	CP-20109
Electric salancers	20100	$(2 \sim 10) \text{ g}$	10 µg	01 20100
		$(10 \sim 30) \text{ g}$	14 μg	
		(30 ~ 100) g	23 µg	
		(100 ~ 200) g	35 μg	
		(200 ~ 1 000) g	0.18 mg	
		$(1 \sim 2) \text{ kg}$	0.34 mg	
		$(2 \sim 10) \text{ kg}$	1.9 mg	
		$(10 \sim 30) \text{ kg}$	20 mg	
		(30 ~ 60) k g	53 mg	
		(60 ~ 150) k g	1.1 g	
		(150 ~ 300) k g	11 g	
		(300 ~ 1 000) k g	0.2 kg	

201. Mass

Measured Quantity Instrument or Gauge	Field Code	Range	Measurement uncertainty (The Confidence	Standard/Method of Measurement etc.
	00110	(0 50) 1	Level is about 95 %)	
Platform scale balances	20112	$(0 \sim 50) \text{ kg}$	19 g	CP-20112
		$(50 \sim 100) \text{ kg}$	46 g	
		$(100 \sim 200) \text{ kg}$	91 g	
		$(200 \sim 500) \text{ kg}$	0.19 kg	
Spring scale balances	20113	(0 ~ 1) kg	1.9 g	CP-20113
		(1 ~ 50) kg	91 g	
		$(50 \sim 100) \text{ kg}$	0.16 kg	
Weights	20116	E2급 (1 mg ~ 5 kg)		CP-20116
,, 01,0110	20110	1 mg	2.0 µg	01 20110
		2 mg	2.0 µg	
		5 mg	2.2 µg	
		10 mg	2.2 μg	
		20 mg	2.2 μg	
		50 mg	2.6 µg	
		100 mg	2.9 µg	
		200 mg	2.9 µg	
		500 mg	3.0 µg	
		1 g	3.0 µg	
		2 g	5.2 μg	
		5 g	14 μg	
		10 g	14 µg	
		20 g	14 µg	
		50 g	17 μg	
		100 g	20 µg	

200 g 500 g 1 kg 2 kg 5 kg	43 μg 0.13 mg 0.30 mg 0.60 mg 3.4 mg	
F1급 (10 kg ~ 20 kg) 10 kg 20 kg	10 mg 19 mg	

202. Force				
Measured Quantity Instrument or Gauge	Field Code	Range	Measurement uncertainty (The Confidence Level is about 95 %)	Standard/Method of Measurement etc.
Tension/Compression testing machine	20203			CP-20203
Pull		$(10 \sim 100) \text{ N}$	2.0×10^{-3}	
		$(100 \sim 200) \text{ N}$	2.0×10^{-3}	
		(200 ~ 500) N	2.2×10^{-3}	
		(500 ~ 1 000) N	4.0×10^{-3}	
		$(1 \sim 2) \text{ kN}$	1.5×10^{-3}	
		$(2 \sim 5) \text{ kN}$	1.9×10 ⁻³	
		$(5 \sim 10) \text{ kN}$	1.5×10^{-3}	
Push		$(10 \sim 100) \text{ N}$	2.6×10^{-3}	
		$(100 \sim 200) \text{ N}$	1.9×10^{-3}	
		$(200 \sim 500) \text{ N}$	3.6×10^{-3}	
		(500 ~ 1 000) N	2.4×10^{-3}	
		$(1 \sim 2) \text{ kN}$	3.2×10^{-3}	
		$(2 \sim 5) \text{ kN}$	1.3×10^{-3}	
		$(5 \sim 10) \text{ kN}$	1.7×10^{-3}	
		$(10 \sim 30) \text{ kN}$	1.4×10^{-3}	
		$(30 \sim 50) \text{ kN}$	2.0×10^{-3}	
		$(50 \sim 100) \text{ kN}$	2.2×10^{-3}	

		$(100 \sim 300) \text{ kN}$ $(300 \sim 500) \text{ kN}$ $(500 \sim 1 000) \text{ kN}$	1.4×10^{-3} 1.6×10^{-3} 1.6×10^{-3}	
Push-pull gauges	20204	(1 ~ 500) N	1.4×10^{-3}	CP-20204

203. Torque

Measured Quantity Instrument or Gauge	Field Code	Range	Measurement uncertainty (The Confidence Level is about 95 %)	Standard/Method of Measurement etc.
Torque measuring devices	20302	$(0.1 \sim 1) \text{ N·m}$ $(1 \sim 5) \text{ N·m}$ $(5 \sim 10) \text{ N·m}$ $(10 \sim 50) \text{ N·m}$	2.8×10^{-3} 2.8×10^{-3} 3.2×10^{-3} 2.7×10^{-3}	CP-20302
Torque wrenches/drivers	20303	$(0.001 \sim 0.009) \text{ N} \cdot \text{m}$ $(0.009 \sim 0.03) \text{ N} \cdot \text{m}$ $(0.03 \sim 0.1) \text{ N} \cdot \text{m}$ $(0.1 \sim 1) \text{ N} \cdot \text{m}$ $(1 \sim 5) \text{ N} \cdot \text{m}$ $(5 \sim 10) \text{ N} \cdot \text{m}$ $(10 \sim 50) \text{ N} \cdot \text{m}$	5.8×10^{-2} 2.5×10^{-2} 2.9×10^{-2} 1.1×10^{-2} 1.1×10^{-2} 1.1×10^{-2} 4.4×10^{-3}	CP-20303

	(50 ~ 200) N·m (200 ~ 500) N·m (500 ~ 1 000) N·m	$4.4 \times 10^{-3} 5.6 \times 10^{-3} 4.6 \times 10^{-3}$	
--	--	--	--

204. Pressure

Measured Quantity Instrument or Gauge	Field Code	Range	Measurement uncertainty (The Confidence Level is about 95 %)	Standard/Method of Measurement etc.
Absolute pressure gauges	20406	(80 ~ 110) kPa	1.5×10 ⁻⁴	CP-20406
Sphygmomanometer	20407	(0 ~ 40) kPa	0.035 kPa	CP-20407

Compound pressure gauges	20408	(−100 ~ 0) kPa	3.2×10^{-4}	CP-20408
compound pressure gauges	20400	$(0 \sim 1) \text{ kPa}$	7.0×10^{-3}	CI 20406
		(1 ~ 200) kPa	1.5×10^{-4}	
		$(0.2 \sim 2) \text{ MPa}$	9.0×10^{-5}	
		(2 ~ 7) MPa	1.7×10^{-4}	
Differential presure gauges	20409	(0 ~ 1) kPa	7.0×10 ⁻³	CP-20409
		(1 ~ 200) kPa	1.5×10^{-4}	
		(0.2 ~ 2) MPa	9.0×10^{-5}	
Gauge pressure gauges	20411	(0 ~ 1) kPa	7.0×10^{-3}	CP-20411
		(1 ~ 200) kPa	1.5×10^{-4}	
		(0.2 ~ 2) MPa	9.0×10^{-5}	
		(2 ~ 7) MPa	1.7×10^{-4}	
		(7 ~ 100) MPa	1.3×10^{-4}	
	20.44.0	(0 1) 1 D	_0	ap 00.410
Pressure transducers/	20412	$(0 \sim 1) \text{ kPa}$	3.0×10^{-3}	CP-20412
transmitters		(1 ~ 200) kPa	2.1×10^{-4}	
		(0.2 ~ 2) MPa	2.3×10^{-4}	
		(2 ~ 7) MPa	2.5×10^{-4}	
		(7 ~ 100) MPa	2.8×10^{-4}	
Dial type vacuum gauges	20413	(−100 ~ 0) kPa	8.9×10 ⁻⁴	CP-20413
Scuba pressure gauges	20414	(0 ~ 100) m	7.0×10 ⁻³	CP-20414

measureu quantity Instrument or Gauge	rieiu Code	Range	(The Confidence Level is about 95 %)	Measurement etc.
Volumetric glasswares	20601	$\begin{array}{c} (0\sim1) \text{ mL} \\ (1\sim2) \text{ mL} \\ (2\sim5) \text{ mL} \\ (5\sim10) \text{ mL} \\ (10\sim25) \text{ mL} \\ (25\sim50) \text{ mL} \\ (25\sim50) \text{ mL} \\ (50\sim100) \text{ mL} \\ (100\sim250) \text{ mL} \\ (250\sim500) \text{ mL} \\ (250\sim500) \text{ mL} \\ (1000\sim2000) \text{ mL} \\ (100000) \text{ mL} \\ (1000000) \text{ mL} \\ (100000) \text{ mL} \\ (1000000) \text{ mL} \\ (100000) \text{ mL} \\ (1000000) \text{ mL} \\ (100000) \text{ mL} \\ (100000) \text{ mL} \\ (100000) \text{ mL} \\ (100000) \text{ mL} \\ (1000000) \text{ mL} \\ (10000000) \text{ mL} \\ (100000000) \text{ mL} \\ (1000000000) \text{ mL} \\ (100000000) \text{ mL} \\ (10000000000) \text{ mL} \\ (1000$	1.5 µL 2.8 µL 3.6 µL 6.0 µL 9.3 µL 14 µL 20 µL 52 µL 88 µL 0.14 mL 0.24 mL	CP-20601
Standard volume vessels	20604	$(0 \sim 20) L$ $(20 \sim 100) L$ $(100 \sim 200) L$ $(200 \sim 500) L$ $(500 \sim 1000) L$ $(1000 \sim 2000) L$ $(2000 \sim 5000) L$ $(5000 \sim 10000) L$	6.8 mL 34 mL 65 mL 0.16 L 0.32 L 0.64 L 1.7 L 3.4 L	CP-20604
Concrete air content meters	20605	(0 ~ 10) %	0.02 %	CP-20605
Piston type volume meters	20606	$(0.1 \sim 2) \ \mu L$ $(2 \sim 5) \ \mu L$ $(5 \sim 10) \ \mu L$ $(0.01 \sim 0.02) \ mL$ $(0.02 \sim 0.05) \ mL$ $(0.05 \sim 0.1) \ mL$ $(0.1 \sim 0.2) \ mL$ $(0.2 \sim 0.5) \ mL$ $(0.5 \sim 1) \ mL$ $(1 \sim 2) \ mL$ $(2 \sim 5) \ mL$ $(5 \sim 10) \ mL$ $(20 \sim 50) \ mL$ $(50 \sim 100) \ mL$	5.8 nL 7.9 nL 9.9 nL 0.021 μL 0.045 μL 0.076 μL 0.22 μL 0.37 μL 0.73 μL 1.4 μL 3.7 μL 7.2 μL 14 μL 32 μL 64 μL	CP-20606

207. Density

Measured Quantity Instrument or Gauge	Field Code	Range	Measurement uncertainty (The Confidence Level is about 95 %)	Standard/Method of Measurement etc.
Salinity meters	20704	(0.5 ~ 15) %	0.03 %	CP-20704
Sucrose meters	20705	(0 ~ 60) %	0.15%	CP-20705
Chloride meters	20707	(0.000 ~ 1.000) %	0.006 8 %	CP-20707

208. Viscosity

Measured Quantity Instrument or Gauge	Field Code	Range	Measurement uncertainty (The Confidence Level is about 95 %)	Standard/Method of Measurement etc.
Kinematic viscometers; capillary, etc. Cpillary viscometers Ford cup viscometers Zhan cup viscometers	20801	$(2.5 \sim 200\ 000)\ \text{mm}^2/\text{s}$ $(2.5 \sim 2\ 000)\ \text{mm}^2/\text{s}$ $(2.5 \sim 2\ 000)\ \text{mm}^2/\text{s}$	$1.6\times10^{-2} \\ 2.7\times10^{-2} \\ 3.6\times10^{-2}$	CP-20801
Dynamic viscometers; rotaional Rotational viscometers	20802	(2.5 ~ 200 000) mPa·s	1.7×10 ⁻²	CP-20802

209. Fluid flow

Measured Quantity Instrument or Gauge	Field Code	Range	Measurement uncertainty (The Confidence Level is about 95 %)	Standard/Method of Measurement etc.
Anemometers ; hot-wire	20901	(2 ~ 30) m/s	5.5×10 ⁻²	CP-20901
Anemometers ; pitot tube, etc	20902	(2 ~ 30) m/s	5.5×10 ⁻²	CP-20902
Gas flowmeters :differential pressure Sonic Nozzle	20908	$(0.002 \sim 250) \text{ m}^3/\text{h}$	4.3×10 ⁻³	CP-20928
Liquid flowers ; differential pr Master Meter Weighing	20909	$(0.005 \sim 50) \text{ m}^3/\text{h}$ $(0.001 \sim 2) \text{ m}^3/\text{h}$	$2.8 \times 10^{-3} \\ 2.2 \times 10^{-3}$	CP-20926 CP-20927
Liquid flowers ; electromagnetic Master Meter Weighing	20910	$(0.005 \sim 50) \text{ m}^3/\text{h}$ $(0.001 \sim 2) \text{ m}^3/\text{h}$	$2.8 \times 10^{-3} \\ 2.2 \times 10^{-3}$	CP-20926 CP-20927
Gas flowers ; thermal mass, etc Sonic Nozzle	20911	$(0.002 \sim 250) \text{ m}^3/\text{h}$	4.3×10 ⁻³	CP-20928
Liquid flowers ; thermal mass, e Master Meter Weighing	20912	$(0.005 \sim 50) \text{ m}^3/\text{h}$ $(0.001 \sim 2) \text{ m}^3/\text{h}$	$2.8 \times 10^{-3} \\ 2.2 \times 10^{-3}$	CP-20926 CP-20927
Gas flowers ; positive displacem Sonic Nozzle	20914	(0.002 ~ 250) m ³ /h	4.3×10 ⁻³	CP-20928
Liquid flowers ; positive displa Master Meter Weighing	20915	$(0.005 \sim 50) \text{ m}^3/\text{h}$ $(0.001 \sim 2) \text{ m}^3/\text{h}$	$2.8 \times 10^{-3} \\ 2.2 \times 10^{-3}$	CP-20926 CP-20927
Gas flowers ; turbine Sonic Nozzle	20916	(0.002 ~ 250) m ³ /h	4.3×10 ⁻³	CP-20928

Liquid flowers ; turbine Master Meter Weighing	20917	$(0.005 \sim 50) \text{ m}^3/\text{h}$ $(0.001 \sim 2) \text{ m}^3/\text{h}$	$2.8 \times 10^{-3} \\ 2.2 \times 10^{-3}$	CP-20926 CP-20927
Gas flowers ; ultrasonic Sonic Nozzle	20918	(0.002 ~ 250) m ³ /h	4.3×10 ⁻³	CP-20928

209. Fluid flow

209. Fluid flow				
Measured Quantity Instrument or Gauge	Field Code	Range	Measurement uncertainty (The Confidence Level is about 95 %)	Standard/Method of Measurement etc.
Liquid flowers ; ultrasonic Master Meter Weighing	20919	$(0.005 \sim 50) \text{ m}^3/\text{h}$ $(0.001 \sim 2) \text{ m}^3/\text{h}$	$2.8 \times 10^{-3} \\ 2.2 \times 10^{-3}$	CP-20926 CP-20927
Gas flowers ; variable area Sonic Nozzle	20920	(0.002 ~ 250) m ³ /h	4.3×10 ⁻³	CP-20928
Liquid flowers ; variable area Master Meter Weighing	20921	$(0.005 \sim 50) \text{ m}^3/\text{h}$ $(0.001 \sim 2) \text{ m}^3/\text{h}$	$2.8 \times 10^{-3} \\ 2.2 \times 10^{-3}$	CP-20926 CP-20927
Gas flowers ; vortex Sonic Nozzle	20922	(0.002 ~ 250) m ³ /h	4.3×10 ⁻³	CP-20928
Liquid flowers ; vortex Master Meter Weighing	20923	$(0.005 \sim 50) \text{ m}^3/\text{h}$ $(0.001 \sim 2) \text{ m}^3/\text{h}$	$2.8 \times 10^{-3} \\ 2.2 \times 10^{-3}$	CP-20926 CP-20927

Measured Quantity Instrument or Gauge	Field Code	Range	Measurement uncertainty (The Confidence Level is about 95 %)	Standard/Method of Measurement etc.
Brinell Hardness Testing Machines	21001	(100 ~ 250) HBW 10/3 000 (250 ~ 450) HBW 10/3 000	3.2 HBW 10/3 000 4.8 HBW 10/3 000	CP-21001
Rockwell Hardness Testing Machines	21002	(20 ~ 70) HRC (20 ~ 100) HRBW	0.44 HRC 0.74 HRBW	CP-21002
Vickers Hardness Testing Machines	21004	225 HV 0.2 이하 (400 ~ 600) HV 0.2 700 HV 0.2 이상 225 HV 0.3 이하 (400 ~ 600) HV 0.3 700 HV 0.3 이상 225 HV 0.5 이하 (400 ~ 600) HV 0.5 700 HV 0.5 이상	7.4 HV 0.2 22 HV 0.2 36 HV 0.2 6.8 HV 0.3 16 HV 0.3 30 HV 0.3 6.8 HV 0.5 17 HV 0.5 26 HV 0.5	CP-21004

		225 HV 1 이하 (400 ~ 600) HV 1 700 HV 1 이상	4.6 HV 1 15 HV 1 22 HV 1	
Durometer Hardness Testers	21005	(0 ~ 100) HDA (0 ~ 100) HDD	0.44 HDA 0.44 HDD	CP-21005
Leeb Hardness Testers	21006	(400 ~ 1 000) HLD	4.6 HLD	CP-21006

301. Time/Frequency

Measured Quantity Instrument or Gauge	Field Code	Range	Measurement uncertainty (The Confidence Level is about 95 %)	Standard/Method of Measurement etc.
Frequency standards Time base Frequency	30102	(0.1 ~ 10) MHz	3.0×10 ⁻¹²	CP-30102
General frequency sources Time base Frequency	30103	(0.1 ~ 10) MHz	3.0×10 ⁻¹²	CP-30103
Frequency meters/counters Time base Frequency Input Frequency	30104	(0.1 ~ 10) MHz 1 Hz ~ 40 GHz	$3.0 \times 10^{-12} \\ 7.0 \times 10^{-7}$	CP-30104
Time interval sources Period Time base Frequency	30105	(0.1 ~ 10) MHz 10 ns ~ 5 s	$3.0 \times 10^{-12} \\ 5.8 \times 10^{-6}$	CP-30105

Time interval meters/Stop watches/Timers	30106			CP-30106
Stop watch		1 ms ~ 24 h	1.4×10^{-7}	
Timer		(1 ~ 100) s	6.4 ms	
		(100 ~ 1 000) s	64 ms	
		(1 000 ~ 10 000) s	0.64 s	

302. Velocity & revolution

302. Verocity & revolution				
Measured Quantity Instrument or Gauge	Field Code	Range	Measurement uncertainty (The Confidence Level is about 95 %)	Standard/Method of Measurement etc.
Standard RPM generators	30201			CP-30201
(Centrifugal separator)		$(6 \sim 90) \text{ min}^{-1}$	0.6min^{-1}	
		$(90 \sim 1000) \text{ min}^{-1}$	0.7 min^{-1}	
		$(1\ 000 \sim 3\ 000\)\ min^{-1}$	0.8min^{-1}	
		$(3\ 000 \sim 6\ 000\)\ min^{-1}$	1.1 min ⁻¹	
		$(6\ 000 \sim 9\ 000\)\ min^{-1}$	$1.4 \mathrm{min}^{-1}$	
		$(9\ 000\ \sim\ 10\ 000\)\ min^{-1}$	$2.5 \mathrm{min}^{-1}$	

	(10 000 ~ 15 000) min ⁻¹ 15 000 ~ 30 000) min ⁻¹ 30 000 ~ 50 000) min ⁻¹	2.8 min ⁻¹ 4.2 min ⁻¹ 6.3 min ⁻¹	
Contact type tachometers	30202	(6 ~ 1 000) min ⁻¹ (1 000 ~ 4 000) min ⁻¹	0.11 min ⁻¹ 0.2 min ⁻¹	CP-30202
Photo tachometers/ stroboscopes	30203	$(6 \sim 100) \text{ min}^{-1}$ $(100 \sim 1000) \text{ min}^{-1}$ $(1000 \sim 1000000) \text{ min}^{-1}$ $(1000 \sim 1000000) \text{ min}^{-1}$	0.061 min ⁻¹ 0.07 min ⁻¹ 0.1 min ⁻¹ 1 min ⁻¹	CP-30203

401. DC voltage & current

Level is about 95 %) measurement etc.	Measured Quantity Instrument or Gauge	Field Code	Range	Measurement uncertainty (The Confidence	Standard/Method of Measurement etc.
---	--	---------------	-------	---	--

DC ammeters	40101	(±)		CP-40101
		ОμА	11 nA	
		$(0 \sim 10) \mu A$	6.5×10^{-4}	
		$(10 \sim 100) \mu A$	1.1×10^{-4}	
		$(0.1 \sim 1) \text{ mA}$	4.4×10^{-5}	
		$(1 \sim 10) \text{ mA}$	4.1×10^{-5}	
		$(10 \sim 100) \text{ mA}$	5.4×10^{-5}	
		$(0.1 \sim 1) \text{ A}$	9.3×10^{-5}	
		$(1 \sim 10) \text{ A}$	1.9×10^{-4}	
		$(10 \sim 20) \text{ A}$ $(20 \sim 30) \text{ A}$	1.3×10^{-4} 2.3×10^{-4}	
		$(30 \sim 40) \text{ A}$	3.0×10^{-4}	
		$(40 \sim 60) \text{ A}$	2.3×10^{-4}	
		$(60 \sim 80) \text{ A}$	1.9×10^{-4}	
		(80 ~ 100) A	1.8×10^{-4}	
(D) 1	40100			OD 10100
Transconductance amplifier DC Current	40102	10 Λ	0.8 nA	CP-40102
DC Current		10 μA (10 ~ 100) μA	0.8 nA 2 nA	
		$(0.1 \sim 100) \text{ mA}$	0.02 μA	
		$(1 \sim 10) \text{ mA}$	0.02 μΛ	
		$(10 \sim 100) \text{ mA}$	2 μA	
		$(0.1 \sim 1) A$	0.03 mA	
		$(1 \sim 10) A$	0.3 mA	
		$(10 \sim 50) A$	0.010 A	
		$(50 \sim 100) A$	0.019 A	
40.0		10. 4		
AC Current		10 μΑ	0.000	
		40 Hz ~ 1 kHz	0.023 µА	
		(10 ~ 100) μA		
		40 Hz ~ 1 kHz	0.04 μΑ	
			3,02 P22	
		$(0.1 \sim 1) \text{ mA}$		
		40 Hz	0.14 μΑ	
		$40~\mathrm{Hz}\sim1~\mathrm{kHz}$	0.11 μΑ	
		(1 10)		
		$(1 \sim 10) \text{ mA}$	1.0 ^	
		40 Hz	1.3 μA	
		40 Hz ∼ 1 kHz	0.93 μΑ	
		(10 ~ 100) mA		
		40 Hz	13 μΑ	
		40 Hz ~ 1 kHz	9.2 μΑ	
			-	
		$(0.1 \sim 1) A$		
		40 Hz	0.13 mA	
		40 Hz ~ 1 kHz	0.094 mA	
		(1 ~ 10) A		
		(1~10)A 40 Hz	1.3 mA	
		40 Hz ~ 1 kHz	1.0 mA	
		10 112 1 11112	1.0 11111	
		(10 ~ 50) A		
		$40~\mathrm{Hz}\sim1~\mathrm{kHz}$	0.062 A	
		(50 300)		
		(50 ~ 100) A		

40 Hz ~ 1 kHz	0.12 A	

401. DC voltage & current

Measured Quantity Instrument or Gauge	Field Code	Range	Measurement uncertainty (The Confidence Level is about 95 %)	Standard/Method of Measurement etc.
DC voltage/current calibrators DC voltage	40103	(\pm) 0 mV $(0 \sim 1) \text{ mV}$ $(1 \sim 10) \text{ mV}$ $(10 \sim 100) \text{ mV}$ $(0.1 \sim 1) \text{ V}$ $(1 \sim 10) \text{ V}$ $(10 \sim 100) \text{ V}$ $(100 \sim 1000) \text{ V}$	0.21 μV 0.38 μV 0.39 μV 0.57 μV 3.2 μV 0.029 mV 0.45 mV 4.8 mV	CP-40103
DC Current		(\pm) $0 \mu A$ $(0 \sim 1) \mu A$ $(1 \sim 10) \mu A$ $(10 \sim 100) \mu A$ $(0.1 \sim 1) mA$ $(1 \sim 10) mA$ $(10 \sim 100) mA$ $(0.1 \sim 1) A$ $(1 \sim 10) A$ $(1 \sim 20) A$ $(20 \sim 100) A$	0.42 nA 0.44 nA 0.90 nA 1.3 nA 0.013 μA 0.14 μA 4.4 μA 0.12 mA 1.4 mA 3.9 mA 20 mA	
Resistance		$\begin{array}{c} 1 \ \Omega \\ (1 \sim 10) \ \Omega \\ (10 \sim 100) \ \Omega \\ (0.1 \sim 1) \ k\Omega \\ (1 \sim 10) \ k\Omega \\ (10 \sim 100) \ k\Omega \\ (0.1 \sim 1) \ M\Omega \\ (1 \sim 10) \ M\Omega \end{array}$	$\begin{array}{c} 16~\mu\Omega \\ 0.11~m\Omega \\ 1.1~m\Omega \\ 11~m\Omega \\ 0.10~\Omega \\ 1.2~\Omega \\ 11~\Omega \\ 0.21~k\Omega \end{array}$	
Electrical temperature calibrators Resistance(Source) PT 100 Ω JPT 1000 Ω PT 1000 Ω		$(18.52 \sim 375.70) \Omega$ $(17.14 \sim 327.03) \Omega$ $(185.20 \sim 1000.00) \Omega$ $(1000.00 \sim 3233.02) \Omega$	0.008 Ω 0.008 Ω 0.011 Ω 0.042 Ω	CP-40104
Temperature(Source) TC E J K N T R S B		$(-8.824 \sim 76.373) \text{ mV}$ $(-7.890 \sim 69.553) \text{ mV}$ $(-5.891 \sim 54.819) \text{ mV}$ $(-3.990 \sim 47.513) \text{ mV}$ $(-5.602 \sim 20.872) \text{ mV}$ $(0 \sim 21.031) \text{ mV}$ $(0 \sim 18.637) \text{ mV}$ $(1.792 \sim 13.820) \text{ mV}$	0.86 μV 0.85 μV 0.84 μV 0.83 μV 0.82 μV 0.82 μV 0.82 μV 0.81 μV	
Resistance(Measure) PT 100 Ω JPT 100 Ω PT 1000 Ω		($18.52 \sim 375.70$) Ω ($17.14 \sim 327.03$) Ω ($185.20 \sim 602.56$) Ω	0.012 Ω 0.011 Ω 0.017 Ω	

($602.56 \sim 1.758.56$) Ω ($1.758.56 \sim 3.233.02$) Ω	0.052 Ω 0.086 Ω	

401. DC voltage & current	1		T	
Measured Quantity Instrument or Gauge	Field Code	Range	Measurement uncertainty (The Confidence Level is about 95 %)	Standard/Method of Measurement etc.
Electrical temperature calibrators	40104			CP-40104
Temperature(Measure) TC E		(-8.824 ~ 76.373) mV	1.0 μV	
Ј		(-7.890 ~ 69.553) mV	0.95 μV	
K		(-5.891 ~ 54.819) mV	0.84 μV	
N		(-3.990 ~ 47.513) mV	0.79 μV	
T		(-5.602 ~ 20.872) mV	0.79 μV	
R		(0 ~ 21.031) mV	0.79 μV	
S		(0 ~ 18.637) mV	0.79 μV	
В		(1.792 ~ 13.820) mV	0.79 µV	
DC current shunts	40105			CP-40105
Resistance		$0.1~\mathrm{m}\Omega$	1.4×10^{-4}	
		$(0.1 \sim 1) \text{ m}\Omega$	1.3×10^{-4}	
		$(1 \sim 10) \text{ m}\Omega$	1.7×10^{-4}	
		$(10 \sim 100) \text{ m}\Omega$	1.0×10^{-4}	
		$(0.1 \sim 0.3) \Omega$	6.0×10^{-5}	
		$(0.3 \sim 0.4) \Omega$	5.5×10^{-5}	
Resistance		($0.4 \sim 0.5$) Ω	5.6×10^{-5}	
		$(0.5 \sim 0.6) \Omega$	5.7×10^{-5}	
		$(0.6 \sim 0.7) \Omega$	5.4×10^{-5}	
		$(0.7 \sim 0.8) \Omega$	5.5×10^{-5}	
		$(0.8 \sim 1) \Omega$	5.6×10^{-5}	
		$(1 \sim 2) \Omega$	5.0×10^{-5}	
		$(2 \sim 3) \Omega$	4.7×10^{-5}	
		$(3 \sim 4) \Omega$	4.5×10^{-5}	
		$(4 \sim 5) \Omega$	4.4×10^{-5}	
		(5 ~ 8)Ω	4.3×10^{-5}	
		(8 ~ 10)Ω	4.4×10^{-5}	
		$(10 \sim 20) \Omega$	5.0×10^{-5}	
		$(20 \sim 30) \Omega$	4.7×10^{-5}	
		$(30 \sim 40) \Omega$	4.5×10^{-5}	
		$(40 \sim 50) \Omega$	4.0×10^{-5}	
		$(50 \sim 60) \Omega$	4.7×10^{-5}	
		$(60 \sim 70) \Omega$	4.6×10^{-5}	
		$(70 \sim 80) \Omega$	4.8×10^{-5}	
		(80 ~ 90)Ω	4.7×10^{-5}	
		(90 ~ 100)Ω	4.6×10^{-5}	
Galvanometers/null detectors	40106			CP-40106
DC voltage		(±)		
		OμV	0.60 μV	
		($0 \sim 100$) μV	4.6×10^{-4}	
		($0.1 \sim 1$) mV	5.2×10^{-5}	
		(1 ~ 10) mV	5.2×10^{-5}	

	(10 ~ 100) mV (0.1 ~ 1) V (1 ~ 10) V (10 ~ 100) V (100 ~ 1 000) V	1.2×10^{-5} 1.1×10^{-5} 6.0×10^{-6} 1.3×10^{-5} 1.4×10^{-5}	
DC current	(\pm) 0 uA $(0 \sim 10) \text{ uA}$ $(10 \sim 100) \text{ uA}$ $(0.1 \sim 1) \text{ mA}$ $(1 \sim 10) \text{ mA}$ $(10 \sim 100) \text{ mA}$ $(0.1 \sim 1) \text{ A}$ $(0.1 \sim 5) \text{ A}$	6.1 nA 6.5×10^{-4} 1.1×10^{-4} 8.5×10^{-5} 7.5×10^{-5} 9.0×10^{-5} 1.5×10^{-4} 5.3×10^{-4}	

401. DC voltage & current

Measured Quantity Instrument or Gauge	Field Code	Range	Measurement uncertainty (The Confidence Level is about 95 %)	Standard/Method of Measurement etc.
DC power supply DC voltage	40108	(±) 0 V (0 ~ 100) mV	0.22 μV 3.9 × 10 ⁻⁴	CP-40108
DC current		(0.1 ~ 1 000) V (±)	2.9×10^{-5}	
		0 μ A (0 ~ 1) mA (1 ~ 10) mA (10 ~ 100) mA (0.1 ~ 1) A (1 ~ 10) A (10 ~ 100) A (100 ~ 200) A	5.8 nA 8.2×10^{-5} 2.9×10^{-4} 4.4×10^{-5} 1.3×10^{-4} 1.5×10^{-4} 2.0×10^{-4} 7.6×10^{-4}	
DC voltmeters	40112	(\pm) 0 mV $(0 \sim 10) \text{ mV}$ $(10 \sim 100) \text{ mV}$ $(0.1 \sim 1) \text{ V}$ $(1 \sim 10) \text{ V}$ $(10 \sim 100) \text{ V}$ $(100 \sim 1000) \text{ V}$	$\begin{array}{c} 0.80~\mu\mathrm{V} \\ 5.4{\times}10^{-5} \\ 1.2{\times}10^{-5} \\ 5.9{\times}10^{-6} \\ 4.0{\times}10^{-6} \\ 5.9{\times}10^{-6} \\ 7.3{\times}10^{-6} \end{array}$	CP-40112
Static/Ionic voltmeters	40113	(\pm) $(0 \sim 4) kV$ $(4 \sim 6) kV$ $(6 \sim 8) kV$ $(8 \sim 10) kV$ $(10 \sim 12) kV$ $(12 \sim 14) kV$ $(14 \sim 16) kV$ $(16 \sim 18) kV$ $(18 \sim 35) kV$	0.013 kV 0.014 kV 0.016 kV 0.017 kV 0.019 kV 0.021 kV 0.023 kV 0.025 kV 0.11 kV	CP-40113

 $(35 \sim 50) \, kV$ $0.12~\mathrm{kV}$

Measured Quantity Instrument or Gauge	Field Code	Range	Measurement uncertainty (The Confidence Level is about 95 %)	Standard/Method of Measurement etc.
Capacitance bridges/indicators Capacitance	40201	120 Hz 1 nF (1 ~ 100) nF (0.1 ~ 1) μF	3.0×10^{-4} 4.0×10^{-4} 6.0×10^{-4}	CP-40201
		1 kHz 1 pF (1 ~ 100) pF (100 ~ 1000) pF (1 ~ 100) nF (0.1 ~ 1) μF	4.9×10^{-4} 4.4×10^{-4} 1.6×10^{-4} 1.7×10^{-4} 1.9×10^{-4}	
		10 kHz 1 nF (1 ~ 100) nF (0.1 ~ 1) μF	2.6×10^{-4} 3.9×10^{-4} 5.7×10^{-4}	
		1 MHz 1 pF (1 ~ 100) pF (0.1 ~ 1) nF	4.4×10^{-4} 4.4×10^{-4} 4.4×10^{-4} 4.4×10^{-4}	
		2 MHz 1 pF (1 ~ 100) pF (0.1 ~ 1) nF	4.9×10^{-4} 4.4×10^{-4} 4.6×10^{-4}	
		3 MHz 1 pF	6.0×10^{-4}	

(1 ~ 100) pF (0.1 ~ 1) nF	$4.4 \times 10^{-4} \\ 5.2 \times 10^{-4}$	
4 MHz 1 pF (1 ~ 100) pF (0.1 ~ 1) nF	7.7×10^{-4} 4.4×10^{-4} 6.2×10^{-4}	
5 MHz 1 pF (10 ~ 100) pF (0.1 ~ 1) nF	9.8×10^{-4} 4.6×10^{-4} 7.7×10^{-4}	
10 MHz 1 pF (10 ~ 100) pF (0.1 ~ 1) nF	3.4×10^{-3} 2.4×10^{-3} 3.1×10^{-3}	
13 MHz 1 pF (10 ~ 100) pF (0.1 ~ 1) nF	$4.3 \times 10^{-3} 2.4 \times 10^{-3} 3.8 \times 10^{-3}$	

402. Resistance, Capacitance and In Measured Quantity Instrument or Gauge	Field Code	Range	Measurement uncertainty (The Confidence Level is about 95 %)	Standard/Method of Measurement etc.
Decade capacitors	40202	120 Hz		CP-40202
Capacitance		1 nF	0.001 5 nF	
		$(1 \sim 10) \text{ nF}$	0.004 3 nF	
		(10 ~ 100) nF	0.055 nF	
		(100 ~ 1 000) nF	0.59 nF	
		1 kHz		
		1 pF	0.002 1 pF	
		(1 ~ 10) pF	0.005 0 pF	
		(10 ~ 100) pF	0.047 pF	
		(100 ~ 1 000) pF	0.46 pF	
		$(1 \sim 10) \text{ nF}$	0.002 2 nF	
		(10 ~ 100) nF	0.023 nF	
		(100 ~ 1 000) nF	0.55 nF	
		(1 ~ 10) kHz		
		1 nF	0.001 5 nF	
		(1 ~ 10) nF	0.004 2 nF	
		(10 ~ 100) nF	0.043 nF	
		(100 ~ 1 000) nF	0.59 nF	
Standard capacitors	40204			CP-40204
Capacitance		1 pF		

i i			, ·
	1 kHz	4.9×10^{-4}	
	(0.001 ~ 1) MHz	4.5×10^{-4}	
	$(1 \sim 2) \text{ MHz}$	9.5×10^{-4}	
	$(2 \sim 5)$ MHz	1.3×10^{-3}	
	$(5 \sim 10) \text{ MHz}$	3.5×10^{-3}	
	(10 ~ 13) MHz	4.4×10^{-3}	
		,	
	1 kHz	4.4×10^{-4}	
	(0.001 ~ 1) MHz	4.4×10^{-4}	
	$(1 \sim 5) \text{ MHz}$	9.2×10^{-4}	
	(5 ~ 13) MHz	2.6×10^{-3}	
	(10 ~ 100) pF		
	1 kHz	4.4×10^{-4}	
	$(0.001 \sim 1) \text{ MHz}$	4.4×10^{-4}	
	$(1 \sim 5)$ MHz	9.3×10^{-4}	
	(5 ~ 13) MHz	2.6×10^{-3}	
	(100 1000) 7		
	(100 ~ 1 000) pF	,	
	1 kHz	4.5×10^{-4}	
	(0.001 ~ 1) MHz	4.5×10^{-4}	
	(1 ~ 3) MHz	9.6×10^{-4}	
	$(3 \sim 5) \text{ MHz}$	1.1×10^{-3}	
	(5 ~ 10) MHz	3.9×10^{-3}	
	(10 ~ 13) MHz	3.9×10^{-3}	
	1 nF		
	120 Hz	1.7×10^{-4}	
	$(0.12 \sim 1) \text{ kHz}$	1.7×10^{-4} 1.7×10^{-4}	
	(0.12 - 1) kHz	1.7×10^{-4} 1.7×10^{-4}	
	(1~10) KHZ	1.7 \ 10	
	(1 10) 5		
	(1 ~ 10) nF		
	120 Hz	3.4×10^{-4}	
	$(0.12 \sim 1) \text{ kHz}$	1.8×10^{-4}	
	$(1 \sim 10) \text{ kHz}$	3.3×10^{-4}	

Measured Quantity Instrument or Gauge	Field Code	Range	Measurement uncertainty (The Confidence Level is about 95 %)	Standard/Method of Measurement etc.
Standard capacitors	40204	(10 ~ 100) nF 120 Hz (0.12 ~ 1) kHz (1 ~ 10) kHz (100 ~ 1000) nF 120 Hz (0.12 ~ 1) kHz (1 ~ 10) kHz	3.4×10^{-3} 1.8×10^{-3} 3.4×10^{-3} 5.4×10^{-5} 2.0×10^{-5} 5.4×10^{-5}	CP-40204
Earth testers Resistance	40205	10 mΩ $(0.01 \sim 10) \Omega$ $(10 \sim 100) \Omega$ $(0.1 \sim 1) k\Omega$	6.6×10^{-4} 6.1×10^{-4} 6.5×10^{-4} 6.8×10^{-4}	CP-40205

AC Voltage 40 Hz 0.1 V (0.1 ~ 1) V (1.7 100) V 1.5×10 ⁻⁴ (1.00 ~ 300) V 1.6×10 ⁻⁴ (300 ~ 500) V 1.1×10 ⁻⁴ (500 ~ 1 000) V 1.2×10 ⁻⁴ (40 ~ 100) Hz 0.1 V (0.1 ~ 1) V (1.1×10 ⁻⁴ (1 ~ 100) V 1.1×10 ⁻⁴ (1 ~ 100) V 1.1×10 ⁻⁴ (300 ~ 500) V 1.1×10 ⁻⁴ (1 ~ 100) V 1.6×10 ⁻⁴ (1 ~ 100) V 1.6×10 ⁻⁴ (300 ~ 500) V 1.1×10 ⁻⁴ (500 ~ 1 000) V 1.2×10 ⁻⁴ 100 Hz ~ 1 kHz 0.1 V (100 ~ 300) V 1.1×10 ⁻⁴ (100 ~ 300) V 1.1×10 ⁻⁴ (300 ~ 500) V 1.1×10 ⁻⁴ (300 ~ 500) V 1.1×10 ⁻⁴ (100 ~ 300) V 1.2×10 ⁻⁴ AC Current 40 Hz ~ 1 kHz 1 A (1 ~ 10) A 8.5×10 ⁻⁴ (10 ~ 30) A 8.2×10 ⁻⁴ (10 ~ 30) A 8.2×10 ⁻⁴ (10 ~ 30) A 8.2×10 ⁻³ (30 ~ 50) A 1.2×10 ⁻³ Inductance bridges/indicators Standard Inductance 1 kHz CP-40206			$(1 \sim 100) \text{ k}\Omega$	7.1×10^{-4}	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	AC Voltage			_4	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$(500 \sim 1\ 000)\ V \qquad \qquad 1.2 \times 10^{-4}$ $(40 \sim 100)\ Hz \qquad \qquad 0.1\ V \qquad \qquad 1.3 \times 10^{-4}$ $(0.1 \sim 1)\ V \qquad \qquad 1.2 \times 10^{-4}$ $(1 \sim 100)\ V \qquad \qquad 1.1 \times 10^{-4}$ $(1 \sim 100)\ V \qquad \qquad 1.1 \times 10^{-4}$ $(1 \sim 100)\ V \qquad \qquad 1.1 \times 10^{-4}$ $(300 \sim 500)\ V \qquad \qquad 1.1 \times 10^{-4}$ $(500 \sim 1\ 000)\ V \qquad \qquad 1.2 \times 10^{-4}$ $(0.1\ V \qquad \qquad 1.3 \times 10^{-4}$ $(0.1\ V \qquad \qquad 1.2 \times 10^{-4}$ $(1 \sim 100)\ V \qquad \qquad 1.2 \times 10^{-4}$ $(1 \sim 100)\ V \qquad \qquad 1.1 \times 10^{-4}$ $(100 \sim 300)\ V \qquad \qquad 1.1 \times 10^{-4}$ $(300 \sim 500)\ V \qquad \qquad 1.1 \times 10^{-4}$ $(300 \sim 500)\ V \qquad \qquad 1.1 \times 10^{-4}$ $(500 \sim 1\ 000)\ V \qquad \qquad 1.2 \times 10^{-4}$ $(500 \sim 1\ 000)\ V \qquad \qquad 1.2 \times 10^{-4}$ $(1 \sim 10)\ A \qquad \qquad 8.5 \times 10^{-4}$ $(1 \sim 10)\ A \qquad \qquad 8.5 \times 10^{-4}$ $(10 \sim 30)\ A \qquad \qquad 8.2 \times 10^{-4}$ $(10 \sim 30)\ A \qquad \qquad 8.2 \times 10^{-4}$ $(30 \sim 50)\ A \qquad \qquad 1.2 \times 10^{-3}$ $(50 \sim 100)\ A \qquad \qquad 1.3 \times 10^{-3}$ $(50 \sim 100)\ A \sim 100$ $(50 \sim 100)\ A \sim 100$					
$(40 \sim 100) \text{Hz} \qquad \qquad 0.1 \text{V} \qquad \qquad 1.3 \times 10^{-4} \qquad \qquad \\ (0.1 \sim 1) \text{V} \qquad \qquad 1.2 \times 10^{-4} \qquad \qquad \\ (1 \sim 100) \text{V} \qquad \qquad 1.1 \times 10^{-4} \qquad \qquad \\ (1 \sim 100) \text{V} \qquad \qquad 1.1 \times 10^{-4} \qquad \qquad \\ (300 \sim 500) \text{V} \qquad \qquad 1.1 \times 10^{-4} \qquad \qquad \\ (500 \sim 1 000) \text{V} \qquad \qquad 1.2 \times 10^{-4} \qquad \qquad \\ (500 \sim 1 000) \text{V} \qquad \qquad 1.2 \times 10^{-4} \qquad \qquad \\ (0.1 \sim 1) \text{V} \qquad \qquad \qquad 1.2 \times 10^{-4} \qquad \qquad \\ (1 \sim 100) \text{V} \qquad \qquad 1.1 \times 10^{-4} \qquad \qquad \\ (100 \sim 300) \text{V} \qquad \qquad 1.1 \times 10^{-4} \qquad \qquad \\ (300 \sim 500) \text{V} \qquad \qquad 1.1 \times 10^{-4} \qquad \qquad \\ (300 \sim 500) \text{V} \qquad \qquad 1.1 \times 10^{-4} \qquad \qquad \\ (300 \sim 500) \text{V} \qquad \qquad 1.2 \times 10^{-4} \qquad \qquad \\ (300 \sim 500) \text{V} \qquad \qquad 1.2 \times 10^{-4} \qquad \qquad \\ (300 \sim 500) \text{V} \qquad \qquad 1.2 \times 10^{-4} \qquad \qquad \\ (300 \sim 500) \text{V} \qquad \qquad 1.2 \times 10^{-4} \qquad \qquad \\ (300 \sim 500) \text{A} \qquad \qquad 3.6 \times 10^{-4} \qquad \qquad \\ (10 \sim 30) \text{A} \qquad \qquad 8.2 \times 10^{-4} \qquad \qquad \\ (300 \sim 500) \text{A} \qquad \qquad 1.2 \times 10^{-3} \qquad \qquad \\ (10 \sim 30) \text{A} \qquad \qquad 8.2 \times 10^{-4} \qquad \qquad \\ (300 \sim 500) \text{A} \qquad \qquad 1.2 \times 10^{-3} \qquad \qquad \\ (10 \sim 30) \text{A} \qquad \qquad 8.2 \times 10^{-4} \qquad \qquad \\ (300 \sim 500) \text{A} \qquad \qquad 1.2 \times 10^{-3} \qquad \qquad \\ (10 \sim 30) \text{A} \qquad \qquad 8.2 \times 10^{-4} \qquad \qquad \\ (300 \sim 500) \text{A} \qquad \qquad 1.2 \times 10^{-3} \qquad \qquad \\ (10 \sim 30) \text{A} \qquad \qquad 8.2 \times 10^{-4} \qquad \qquad \\ (300 \sim 500) \text{A} \qquad \qquad 1.2 \times 10^{-3} \qquad \qquad \\ (10 \sim 30) \text{A} \qquad \qquad 8.2 \times 10^{-4} \qquad \qquad \\ (300 \sim 500) \text{A} \qquad \qquad 1.2 \times 10^{-3} \qquad \qquad \\ (10 \sim 30) \text{A} \qquad \qquad 8.2 \times 10^{-4} \qquad \qquad \\ (10 \sim 30) \text{A} \qquad \qquad 8.2 \times 10^{-4} \qquad \qquad \\ (300 \sim 500) \text{A} \qquad \qquad 1.2 \times 10^{-3} \qquad \qquad \\ (10 \sim 30) \text{A} \qquad \qquad 1.2 \times 10^{-3} \qquad \qquad \\ (10 \sim 30) \text{A} \qquad \qquad 1.2 \times 10^{-3} \qquad \qquad \\ (10 \sim 30) \text{A} \qquad \qquad 1.2 \times 10^{-3} \qquad \qquad \\ (10 \sim 30) \text{A} \qquad \qquad 1.2 \times 10^{-3} \qquad \qquad \\ (10 \sim 30) \text{A} \qquad \qquad 1.2 \times 10^{-3} \qquad \qquad \\ (10 \sim 30) \text{A} \qquad \qquad 1.2 \times 10^{-3} \qquad \qquad \\ (10 \sim 30) \text{A} \qquad \qquad 1.2 \times 10^{-3} \qquad \qquad \\ (10 \sim 30) \text{A} \qquad \qquad 1.2 \times 10^{-3} \qquad \qquad \\ (10 \sim 30) \text{A} \qquad \qquad 1.2 \times 10^{-3} \qquad \qquad \\ (10 \sim 30) \text{A} \qquad \qquad 1.2 \times 10^{-3} \qquad \qquad \\ (10 \sim 30) \text{A} \qquad \qquad 1.2 \times 10^{-3} \qquad \qquad \\ (10 \sim 30) \text{A} \qquad \qquad 1.2 \times 10^{-3} \qquad \qquad \\ (10 \sim 30) \text{A} \qquad \qquad 1.2 \times 10^{-3} \qquad \qquad \\ (10 \sim 30) \text{A} \qquad \qquad 1.2 \times 10^{-3} \qquad \qquad \\ (10 \sim 30) \text{A} \qquad \qquad 1.2 \times 10^{-3} \qquad \qquad \\ (10 \sim 30) \text{A} \qquad \qquad 1.2 \times 10^{-3} \qquad \qquad \\ (10 \sim 30) \text$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			(500 ~ 1 000) V	1.2×10^{-4}	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			(40 ~ 100) Hz		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			0.1 V	1.3×10^{-4}	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			$(0.1 \sim 1) \text{ V}$		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			$(1 \sim 100) \text{ V}$		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			$(1 \sim 100) \text{ V}$		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			(300 ~ 500) V	1.1×10^{-4}	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			100 Hz ~ 1 kHz		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				1.3×10^{-4}	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$AC \ Current \\ AC \ AC$					
AC Current $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	AC Current		40 Hz ~ 1 kHz		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				3.6×10^{-4}	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					
Inductance bridges/indicators Standard Inductance					
Standard Inductance 1 kHz 100 μH 0.045 μH 1 mH 0.000 32 mH 10 mH 100 mH 0.032 mH				1.3×10 ⁻³	
Standard Inductance 1 kHz 100 μH 0.045 μH 1 mH 0.000 32 mH 10 mH 100 mH 0.032 mH	Inductance bridges/indicators	40206			CP-40206
100 μH			1 kHz		
1 mH	Industrial			0.045 11H	
10 mH 0.003 2 mH 100 mH 0.032 mH					
100 mH 0.032 mH					
0.000 02 11					
			111	0.000 02 11	

Measured Quantity Instrument or Gauge	Field Code	Range	Measurement uncertainty (The Confidence Level is about 95 %)	Standard/Method of Measurement etc.
Inductance bridges/indicators Decade Inductance	40206	1 kHz $100 μH$ $(0.1 \sim 0.9) mH$ $(0.9 \sim 1) mH$ $(1 \sim 9) mH$ $(9 \sim 10) mH$ $(10 \sim 90) mH$ $(90 \sim 100) mH$	2.2×10^{-3} 2.5×10^{-3} 1.6×10^{-3} 2.5×10^{-3} 1.3×10^{-3} 2.5×10^{-3} 1.3×10^{-3}	CP-40206

Accreditation No · NCUI-U52				
		(100 ~ 900) mH (0.9 ~ 1) mH	$2.5 \times 10^{-3} \\ 5.2 \times 10^{-4}$	
Inductors Inductance	40208	1 kHz 100 μH (0.1 ~ 1) mH (1 ~ 10) mH (10 ~ 100) mH (0.1 ~ 1) H	0.046 µH 0.000 34 mH 0.003 4 mH 0.034 mH 0.000 34 H	CP-40208
Insulation testers DC Voltage (Output)	40210	$(10 \sim 1\ 000) \text{ V}$ $(1 \sim 5) \text{ kV}$ $(5 \sim 10) \text{ kV}$	0.071 V 14 V 17 V	CP-40210
DC Voltage (Input)		(1 ~ 20) V (20 ~ 200) V (200 ~ 1 000) V	0.000 75 V 0.007 5 V 0.071 V	
AC Voltage (Input)		$(1 \sim 10) \text{ V}$ $(10 \sim 20) \text{ V}$ $(20 \sim 200) \text{ V}$ $(200 \sim 1000) \text{ V}$	0.001 0 V 0.004 4 V 0.045 V 0.11 V	
Insulation Resistance		$(1 \sim 10) \text{ k}\Omega$ $(10 \sim 100) \text{ k}\Omega$ $(0.1 \sim 1) \text{ M}\Omega$ $(1 \sim 10) \text{ M}\Omega$ $(10 \sim 100) \text{ M}\Omega$ $(100 \sim 500) \text{ M}\Omega$ $(0.5 \sim 1) \text{ G}\Omega$ $(1 \sim 5) \text{ G}\Omega$ $(5 \sim 10) \text{ G}\Omega$ $(10 \sim 50) \text{ G}\Omega$ $(50 \sim 100) \text{ G}\Omega$ $(100 \sim 500) \text{ G}\Omega$ $(0.5 \sim 1) \text{ T}\Omega$	0.000 78 kΩ 0.007 8 kΩ 0.000 078 MΩ 0.000 87 MΩ 0.017 MΩ 0.31 MΩ 0.001 0 GΩ 0.005 9 GΩ 0.014 GΩ 0.067 GΩ 0.14 GΩ 1.3 GΩ 0.002 5 TΩ	
Resistance		10 mΩ $(0.01 \sim 10)$ Ω $(10 \sim 100)$ Ω $(0.1 \sim 1)$ kΩ $(1 \sim 100)$ kΩ	6.6×10^{-3} 6.1×10^{-4} 6.5×10^{-4} 6.8×10^{-4} 7.1×10^{-4}	

402. Resistance, Capacitance and The	luctance			
Measured Quantity Instrument or Gauge	Field Code	Range	Measurement uncertainty (The Confidence Level is about 95 %)	Standard/Method of Measurement etc.
Resistance bridges&Similar instruments	40213			CP-40213
Measuring ARM		0.01 Ω	4.8×10^{-4}	

Ratio ARM		$(0.01 \sim 0.1) \Omega$ $(0.1 \sim 1) \Omega$ $(1 \sim 10) \Omega$ $(10 \sim 1000) \Omega$ $(100 \sim 1000) \Omega$ $(1 \sim 100) k\Omega$ $(10 \sim 1000) k\Omega$ $(100 \sim 1000) k\Omega$ $(1 \sim 100) M\Omega$ $1 m\Omega$ $10 m\Omega$ $100 m\Omega$ 1Ω $1 k\Omega$ 100Ω $1 k\Omega$ $100 k\Omega$ $1 M\Omega$	6.0×10^{-5} 1.4×10^{-5} 8.9×10^{-6} 7.7×10^{-6} 7.7×10^{-6} 7.7×10^{-6} 7.8×10^{-6} 9.2×10^{-6} 2.0×10^{-5} 2.4×10^{-4} 1.2×10^{-4} 5.9×10^{-5} 1.4×10^{-5} 1.3×10^{-5} 1.7×10^{-5}	
Resistance meters	40214			CP-40214
DC Resistance AC Resistance		$\begin{array}{c} 1 \text{ m}\Omega \\ (1 \sim 10) \text{ m}\Omega \\ (10 \sim 100) \text{ m}\Omega \\ (0.1 \sim 1) \Omega \\ (0.1 \sim 1) \Omega \\ (1 \sim 100) \Omega \\ (10 \sim 100) \Omega \\ (0.1 \sim 1) \Omega \\ (10 \sim 100) \Omega \\ (0.1 \sim 1) \Omega \\ (10 \sim 100) \Omega \\ (0.1 \sim 1) \Omega \\ (10 \sim 100) \Omega \\ (0.1 \sim 1) \Omega \\ (10 \sim 100) \Omega \\ (0.1 \sim 1) \Omega \\ (10 \sim 100) \Omega \\ (0.1 \sim 1) \Omega \\ (10 \sim 100) \Omega \\ (0.1 \sim 1) \Omega \\ (10 \sim 100) \Omega \\ (0.1 \sim 1) \Omega \\ (10 \sim 100) \Omega \\ (0.1 \sim 1) \Omega \\ (10 \sim 100) \Omega \\ (0.1 \sim 1) \Omega \\ (10 \sim 100) \Omega \\ (0.1 \sim 1) \Omega \\ (10 \sim 100) \Omega \\ (0.1 \sim 1) \Omega \\ (10 \sim 100) \Omega \\ (0.1 \sim 1) \Omega \\ (10 \sim 100) \Omega \\ (0.1 \sim 1) \Omega \\ (10 \sim 100) \Omega \\ (0.1 \sim 1) \Omega \\ (10 \sim 100) \Omega \\ (0.1 \sim 1) \Omega \\ (10 \sim 100) \Omega \\ (0.1 \sim 1) \Omega \\ (10 \sim 100) \Omega \\ (10 \sim 100$	$ \begin{array}{c} 1.6 \times 10^{-4} \\ 7.0 \times 10^{-4} \\ 1.2 \times 10^{-3} \\ 1.2 \times 10^{-3} \end{array} $	
		$(10 \sim 100) \text{ k}\Omega$ (0.1 ~ 1) MΩ	3.0×10^{-4} 1.7×10^{-4}	

Measured Quantity Instrument or Gauge	Field Code	Range	Measurement uncertainty (The Confidence Level is about 95 %)	Standard/Method of Measurement etc.
Resistors	40215		Devel to about 50 N)	CP-40215
DC Resistance	10210	$1~\mathrm{m}\Omega$	0.41 μΩ	01 10210
De Redistance		$(1 \sim 10) \text{ m}\Omega$	1.0 μΩ	
		$(10 \sim 100) \text{ m}\Omega$	9.2 μΩ	
		$(0.1 \sim 1) \Omega$	53 μΩ	
		$(1 \sim 10) \Omega$	0.40 mΩ	
		$(10 \sim 100) \Omega$	1.1 mΩ	
		$(0.1 \sim 1) \text{ k}\Omega$	1.1 mΩ	
		$(1 \sim 10) \text{ k}\Omega$	91 mΩ	
		$(10 \sim 100) \text{ k}\Omega$	0.86 Ω	
		$(0.1 \sim 1) \text{ M}\Omega$	11 Ω	
		$(1 \sim 10) \text{ M}\Omega$	0.24 kΩ	
		(1 - 10) 1/152	0.24 K32	
Decade Resistance		1 mΩ	4.7 μΩ	
		$(1 \sim 10) \text{ m}\Omega$	4.8 μΩ	
		$(10 \sim 100) \text{ m}\Omega$	6.0 μΩ	
		$(0.1 \sim 1) \Omega$	14 μΩ	
		$(1 \sim 10) \Omega$	0.089 mΩ	
		(10 ~ 100) Ω	0.77 mΩ	
		$(0.1 \sim 1) \text{ k}\Omega$	7.7 mΩ	
		$(1 \sim 10) \text{ k}\Omega$	77 mΩ	
		$(10 \sim 100) \text{ k}\Omega$	0.78 Ω	
		$(0.1 \sim 1) \text{ M}\Omega$	9.2 ♀	
		$(1 \sim 10) \text{ M}\Omega$	0.20 kΩ	
		$(10 \sim 100) \text{ M}\Omega$	14 kΩ	
		$(0.1 \sim 1) \text{ G}\Omega$	1.6 ΜΩ	
AC Resistance		10 mΩ		
ne neorovano		1 kHz	0.060 mΩ	
		(10 ~ 100)mΩ		
		1 kHz	0.30 mΩ	
		(0.1 ~ 1)Ω		
		$(0.1 \sim 1) \Omega$ 1 kHz	0.33 mΩ	
		1 КПZ	0.55 11152	
		(1 ~ 10)Ω		
		1 kHz	$3.3~\mathrm{m}\Omega$	
		$(1kHz \sim 1 MHz)$	7.2 mΩ	
		(10 ~ 100)Ω		
		1 kHz	0.032 Ω	
		(1 kHz \sim 1 MHz)	0.048 Ω	
		$(0.1 \sim 1) \text{k}\Omega$		
		1 kHz	0.32 Ω	
		100 kHz	0.66 Ω	
		1 MHz	0.48 Ω	
		(1 ~ 10)kΩ		
		1 kHz	3.2 Ω	
		100 kHz	6.6 Ω	
			I .	i

(10 ~ 100)kΩ 1 kHz (1 kHz ~ 100 kHz)	33 Ω 66 Ω	
($0.1 \sim 1$)M Ω 1 kHz	0.21 kΩ	

Measured Quantity Instrument or Gauge	Field Code	Range	Measurement uncertainty (The Confidence Level is about 95 %)	Standard/Method of Measurement etc.
Impedance bridges/LCR meters	40217			CP-40217
RESISTANCE		1 kHz		
		10 mΩ	6.0×10^{-3}	
		$(10 \sim 100) \text{ m}\Omega$	3.0×10^{-3}	
		(0.1 ~ 1) Ω	1.3×10^{-3}	
		(1~10)Ω	7.1×10^{-4}	
		(10 ~ 100) Ω	5.2×10^{-4}	
		$(0.1 \sim 1) \text{ k}\Omega$	5.2×10^{-4}	
		$(1 \sim 10) \text{ k}\Omega$	4.2×10^{-4}	
		$(10 \sim 100) \text{ k}\Omega$	5.2×10^{-4}	
		$(0.1 \sim 1) M\Omega$	1.7×10^{-4}	
		100 kHz		
		1 kΩ	4.7×10^{-4}	
		$(1 \sim 10) \text{ k}\Omega$	4.7×10^{-4}	
		$(10 \sim 100) \text{ k}\Omega$	7.4×10^{-5}	
		1 MHz		
		10 Ω	7.1×10^{-4}	
		(10 ~ 100) Ω	2.4×10^{-4}	
		$(0.1 \sim 1) \text{ k}\Omega$	2.4×10^{-4}	
		$(1 \sim 10) \text{ k}\Omega$	4.7×10^{-4}	
CAPACITANCE		1 kHz		
CAFACTTANCE		1 pF	4.8×10^{-4}	
		(1 ~ 100) pF	4.3×10^{-4} 4.3×10^{-4}	
		$(0.1 \sim 1) \text{ nF}$	1.4×10^{-4}	
		$(1 \sim 100) \text{ nF}$	2.3×10^{-4}	
		(0.1 ~ 1) μF	2.4×10^{-4}	
		100 H		
		120 Hz	2.4×10^{-4}	
		1 nF	2.4×10^{-4} 3.8×10^{-4}	
		(1 ~ 100) nF (0.1 ~ 1) μF	6.5×10^{-4}	
		10 kHz	0.4.10-4	
		1 nF	2.4×10^{-4}	
		$(1 \sim 100) \text{ nF}$	3.8×10^{-4}	
		(0.1 ~ 1) μF	6.5×10^{-5}	
		1 MHz		
		1 pF	4.4×10^{-4}	
		(1 ~ 100) pF	4.3×10^{-4}	
		(0.1 ~ 1) nF	4.4×10^{-4}	
		2 MHz		
		1 pF	4.9×10^{-4}	

(1 ~ 100) pF (0.1 ~ 1) nF	$4.3 \times 10^{-4} \\ 4.5 \times 10^{-4}$	
3 MHz 1 pF (1 ~ 100) pF (0.1 ~ 1) nF	5.9×10^{-4} 4.4×10^{-4} 5.1×10^{-4}	
4 MHz 1 pF (1 ~ 100) pF (0.1 ~ 1) nF	7.6×10^{-4} 4.4×10^{-4} 6.2×10^{-4}	

Measured Quantity Instrument or Gauge	Field Code	Range	Measurement uncertainty (The Confidence Level is about 95 %)	Standard/Method of Measurement etc.
Impedance bridges/LCR meters	40217	5 MHz 1 pF (1 ~ 100) pF	9.8×10^{-4} 4.5×10^{-4}	CP-40217
		$(0.1 \sim 1) \text{ nF}$ $(0.1 \sim 1) \text{ nF}$	7.6×10^{-4}	
		1 pF (1 ~ 100) pF (0.1 ~ 1) nF	$3.4 \times 10^{-3} 2.4 \times 10^{-3} 3.1 \times 10^{-3}$	
		13 MHz 1 pF (1 ~ 100) pF (0.1 ~ 1) nF	4.3×10^{-3} 2.4×10^{-3} 3.8×10^{-3}	
INDUCTANCE		1 kHz $100 \ \mu H$ (0.1 ~ 1) mH (1 ~ 10) mH (10 ~ 100) mH (0.1 ~ 1) H	4.6×10^{-4} 4.0×10^{-4} 3.4×10^{-4} 3.4×10^{-4} 4.0×10^{-4}	

403. AC voltage, current & power

Measured Quantity Instrument or Gauge	Field Code	Range	Measurement uncertainty (The Confidence Level is about 95 %)	Standard/Method of Measurement etc.
AC ammeters	40301			CP-40301
		0.1 uA		
		10 Hz	0.81 uA	
		10 Hz ~ 40 Hz	0.79 uA	
		$40 \text{ Hz} \sim 1 \text{ kHz}$	0.79 uA	
		1 kHz ~ 10 kHz	0.66 uA	
		0.1 μΑ ~ 10 μΑ		
		10 Hz	82 nA	
		10 Hz ~ 40 Hz	7.9×10^{-3}	
		$40~\mathrm{Hz}\sim1~\mathrm{kHz}$	7.9×10^{-3}	
		1 kHz ~ 10 kHz	6.7×10^{-2}	
		10 μΑ ~ 100 μΑ		
		10 Hz	0.96 uA	
		10 Hz ~ 40 Hz	8.7×10^{-4}	
		$40 \text{ Hz} \sim 1 \text{ kHz}$	8.5×10^{-4}	
		1 kHz ~ 10 kHz	7.7×10^{-3}	
		100 μA ~ 1 mA		
		10 Hz	0.42 uA	
		10 Hz ~ 40 Hz	2.1×10^{-4}	
		$40~\mathrm{Hz}\sim1~\mathrm{kHz}$	2.0×10^{-4}	
		1 kHz ~ 10 kHz	1.8×10^{-3}	
		1 mA ~ 10 mA		
		10 Hz	0.30 uA	
		10 Hz ~ 40 Hz	2.1×10^{-4}	
		$40~\mathrm{Hz}\sim1~\mathrm{kHz}$	1.8×10^{-4}	
		1 kHz ~ 10 kHz	1.7×10^{-3}	
		10 mA ~ 100 mA		
		10 Hz	0.31 uA	

10 Hz ~ 40 Hz	2.2×10^{-4}	
40 Hz ~ 1 kHz	1.8×10^{-4}	
1 kHz ~ 10 kHz	1.3×10^{-3} 1.3×10^{-3}	
I KIIZ IO KIIZ	1.3 \(\) 10	
100 mA ~ 1 A		
10 Hz	3.3×10^{-4}	
10 Hz ~ 40 Hz	3.3×10^{-4}	
40 Hz ~ 1 kHz	3.3×10^{-4}	
1 kHz ~ 10 kHz	7.2×10^{-3}	
	7.2 / 10	
1 A ~ 10 A		
40 Hz ~ 1 kHz	5.3×10^{-4}	
1 kHz ~ 10 kHz	5.3×10^{-4}	
10 A ~ 20 A		
50 Hz ~ 100 Hz	2.5×10^{-4}	
100 Hz ~ 1 kHz	2.5×10^{-4}	
20 A ~ 50 A		
50 Hz ~ 100 Hz	2.4×10^{-4}	
100 Hz ~ 1 kHz	2.0×10^{-4}	
50 A ~ 100 A		
50 Hz ~ 100 Hz	1.7×10^{-4}	
100 Hz ~ 1 kHz	1.5×10^{-4}	
	1.5	

403. AC voltage, current & power

Measured Quantity Instrument or Gauge	Field Code	Range	Measurement uncertainty (The Confidence Level is about 95 %)	Standard/Method of Measurement etc.
Clamp ammeters/voltmeters	40302			CP-40302
DC Voltage		0 mV	0.001 1 mV	
		$(0 \sim 10) \text{ mV}$	0.000 82 mV	
		(10 ~ 100) mV	0.006 6 mV	
		$(0.1 \sim 1) V$	0.000 066 V	
		$(1 \sim 10) V$	0.000 66 V	
		(10 ~ 100) V	0.006 6 V	
		$(0.1 \sim 1) \text{kV}$	0.066 V	
AC Voltage		$(1 \sim 2) \text{ mV}$		
		10 Hz	0.006 8 mV	
		10 Hz ~ 10 kHz	0.006 6 mV	
		(2 ~ 20) mV		
		10 Hz	0.011 mV	
		10 Hz ~ 10 kHz	0.007 6 mV	
		(20 ~ 50) mV		
		10 Hz	0.026 mV	
		10 Hz ~ 40 Hz	0.015 mV	
		40 Hz ~ 20 kHz	0.014 mV	
		20 kHz ~ 50 kHz	0.020 mV	
		50 kHz ~ 100 kHz	0.042 mV	
		100 kHz ~ 200 kHz	0.070 mV	
		200 kHz ~ 500 kHz	0.099 mV	
		500 kHz ~ 1 MHz	0.19 mV	

(50 ~ 100) mV		
10 Hz	0.037 mV	
10 Hz ~ 40 Hz	0.018 mV	
40 Hz ~ 20 kHz	0.017 mV	
20 kHz ~ 50 kHz	0.029 mV	
50 kHz ~ 100 kHz	0.064 mV	
100 kHz ~ 200 kHz	0.12 mV	
200 kHz ~ 500 kHz	0.17 mV	
500 kHz ~ 1 MHz	0.32 mV	
(100 ~ 500) mV		
10 Hz	0.18 mV	
10 Hz ~ 40 Hz	0.10 mV	
40 Hz ~ 20 kHz	0.083 mV	
20 kHz ~ 50 kHz	0.090 mV	
50 kHz ~ 100 kHz	0.12 mV	
100 kHz ~ 200 kHz	0.32 mV	
200 kHz ~ 500 kHz	0.72 mV	
500 kHz ~ 1 MHz	1.2 mV	
(0.5 ~ 1) V		
10 Hz	0.30 mV	
10 Hz ~ 40 Hz	0.13 mV	
40 Hz ~ 20 kHz	0.093 mV	
20 kHz ~ 50 kHz	0.12 mV	
50 kHz ~ 100 kHz	0.17 mV	
100 kHz ~ 200 kHz	0.52 mV	
200 kHz ~ 500 kHz	1.3 mV	
500 kHz ~ 1 MHz	2.1 mV	

Measured Quantity Instrument or Gauge	Field Code	Range	Measurement uncertainty (The Confidence Level is about 95 %)	Standard/Method of Measurement etc.
Clamp ammeters/voltmeters	40302			CP-40302
AC Voltage		$(1 \sim 5) V$		
		10 Hz	1.8 mV	
		10 Hz ~ 40 Hz	0.98 mV	
		$40~\mathrm{Hz}\sim20~\mathrm{kHz}$	0.82 mV	
		20 kHz ~ 50 kHz	0.90 mV	
		$50 \text{ kHz} \sim 100 \text{ kHz}$	1.1 mV	
		$100 \text{ kHz} \sim 200 \text{ kHz}$	2.3 mV	
		$200 \text{ kHz} \sim 500 \text{ kHz}$	7.2 mV	
		$500 \text{ kHz} \sim 1 \text{ MHz}$	11 mV	
		(5 ~ 10) V		
		10 Hz	3.0 mV	
		10 Hz ~ 40 Hz	1.3 mV	
		$40~\mathrm{Hz}\sim20~\mathrm{kHz}$	0.92 mV	
		$20 \text{ kHz} \sim 50 \text{ kHz}$	1.2 mV	
		$50 \text{ kHz} \sim 100 \text{ kHz}$	1.5 mV	
		$100 \text{ kHz} \sim 200 \text{ kHz}$	3.6 mV	
		200 kHz \sim 500 kHz	13 mV	

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$40 \text{ Hz} \sim 20 \text{ kHz}$ 0.006 0 V 20 kHz $\sim 50 \text{ kHz}$ 0.007 7 V	
$20 \text{ kHz} \sim 50 \text{ kHz}$ 0.007 7 V	
50 kHz ~ 100 kHz 0.013 V	
(50 ~ 100) V	
10 Hz 0.029 V	
10 Hz ~ 40 Hz 0.012 V	
40 Hz ~ 20 kHz 0.007 7 V	
$20 \text{ kHz} \sim 50 \text{ kHz}$ 0.011 V	
50 kHz ~ 100 kHz 0.020 V	
(100 ~ 500) V	
50 Hz 0.24 V	
50 Hz ~ 1 kHz 0.086 V	
(500 ~ 1 000) V	
50 Hz 0.43 V	
50 Hz ~ 1 kHz 0.11 V	
DC Current 0 mA 0.066 μA	
$(0 \sim 1) \text{ A}$ 2.3×10^{-3}	
$(1 \sim 10) A$ 2.4×10^{-3}	
$(10 \sim 200) \text{ A}$ 2.3×10^{-3}	
$(200 \sim 1\ 000) \text{ A}$ 2.4×10^{-3}	
AC Current 1 mA	
$10 \text{ Hz} \sim 1 \text{ kHz}$ 2.3×10^{-3}	
(1 ~ 2) mA	
$10 \text{ Hz} \sim 1 \text{ kHz}$ 2.4×10^{-3}	
$1 \text{ kHz} \sim 10 \text{ kHz}$ 4.3×10^{-3}	
$(2 \sim 5) \text{ mA}$	
$10 \text{ Hz} \sim 1 \text{ kHz}$ 2.4×10^{-3}	
$1 \text{ kHz} \sim 10 \text{ kHz}$ 3.2×10^{-3}	

Measured Quantity Instrument or Gauge	Field Code	Range	Measurement uncertainty (The Confidence Level is about 95 %)	Standard/Method of Measurement etc.
Clamp ammeters/voltmeters	40302			CP-40302
AC Current		(5 ~ 20) mA		
		$10~\mathrm{Hz}\sim1~\mathrm{kHz}$	2.4×10^{-3}	
		1 kHz ~ 10 kHz	2.9×10^{-3}	
		(20 ~ 50) mA		
		10 Hz ~ 1 kHz	2.4×10^{-3}	
		1 kHz ~ 10 kHz	2.8×10^{-3}	
		(50 ~ 100) mA		
		10 Hz ~ 1 kHz	2.4×10^{-3}	
		1 kHz ~ 10 kHz	2.6×10^{-3}	

_	_		
	(0.1 ~ 0.2) A		
	10 Hz ~ 1 kHz	2.5×10^{-3}	
	1 kHz ~ 10 kHz	8.5×10^{-3}	
		0.0 × 10	
	(0.2 ~ 0.5) A		
	10 Hz ~ 1 kHz	2.5×10^{-3}	
	1 kHz ~ 10 kHz	7.8×10^{-3}	
	I KHZ TO KHZ	7.6 × 10	
	(0.5 ~ 1) A		
	10 Hz ~ 1 kHz	2.5×10^{-3}	
	1 kHz ~ 10 kHz	7.6×10^{-3}	
	1 KHZ 10 KHZ	7.6 \ 10	
	(1 ~ 2) A		
	40 Hz ~ 1 kHz	2.7×10^{-3}	
	1 kHz ~ 10 kHz		
	1 KHZ ~ 10 KHZ	4.8×10^{-3}	
	(2 ~ 10) A		
	$(2 \sim 10) \text{ A}$ $40 \text{ Hz} \sim 1 \text{ kHz}$	2.4×10^{-3}	
	1 kHz ~ 10 kHz	4.4×10^{-3}	
	(10 ~ 20) A		
	40 Hz ~ 60 Hz	0.5 × 10 ⁻³	
		2.5×10^{-3}	
	60 Hz ~ 100 Hz	2.7×10^{-3}	
	100 Hz ~ 1 kHz	5.5×10^{-3}	
	1 kHz ~ 10 kHz	6.0×10^{-2}	
	(00		
	(20 ~ 40) A	3	
	40 Hz ~ 60 Hz	2.4×10^{-3}	
	60 Hz ~ 100 Hz	2.5×10^{-3}	
	100 Hz ~ 1 kHz	3.8×10^{-3}	
	1 kHz ~ 10 kHz	4.8×10^{-2}	
	(10)		
	(40 ~ 60) A	2	
	40 Hz ~ 100 Hz	2.5×10^{-3}	
	100 Hz ~ 1 kHz	3.2×10^{-3}	
	(22		
	(60 ~ 80) A		
	40 Hz ~ 100 Hz	2.4×10^{-3}	
	100 Hz ~ 1 kHz	3.0×10^{-3}	
	(80 ~ 100) A		
	40 Hz ~ 100 Hz	2.4×10^{-3}	
	100 Hz ~ 1 kHz	2.8×10^{-3}	

Measured Quantity Instrument or Gauge	Field Code	Range	Measurement uncertainty (The Confidence Level is about 95 %)	Standard/Method of Measurement etc.
Clamp ammeters/voltmeters AC Current	40302	60 Hz		CP-40302
		(100 ~ 200) A (200 ~ 400) A (400 ~ 600) A	2.7×10^{-3} 2.4×10^{-3} 2.7×10^{-3}	

		(600 ~ 1000) A	2.5×10^{-3}	
Resistance		$\begin{array}{c} (\ 0 \sim 1\)\ \Omega \\ (\ 1 \sim 10\)\ \Omega \\ (\ 10 \sim 100\)\ \Omega \\ (\ 0.1 \sim 1\)\ k\Omega \\ (\ 1 \sim 10\)\ k\Omega \\ (\ 10 \sim 100\)\ k\Omega \\ (\ 0.1 \sim 1\)\ M\Omega \\ (\ 1 \sim 10\)\ M\Omega \\ (\ 10 \sim 100\)\ M\Omega \end{array}$	0.000 12 Ω 0.000 66 Ω 0.006 3 Ω 0.000 062 kΩ 0.000 62 kΩ 0.006 3 kΩ 0.000 066 MΩ 0.000 76 MΩ 0.012 MΩ	
AC voltage/current calibrators	40303			CP-40303
AC Voltage		10 Hz ~ 40 Hz (1 ~ 100) mV (0.1 ~ 1) V (1 ~ 10) V (10 ~ 100) V	0.014 mV 0.11 mV 1.1 mV 0.013 V	
		10 11- 40 11-		
		10 Hz ~ 40 Hz (100 ~ 200) V (200 ~ 300) V (300 ~ 600) V (600 ~ 1 000) V	0.019 V 0.037 V 0.073 V 0.14 V	
		40 Hz ~ 20 kHz		
		$(1 \sim 100) \text{ mV}$ $(0.1 \sim 1) \text{ V}$ $(1 \sim 10) \text{ V}$ $(10 \sim 100) \text{ V}$ $(100 \sim 200) \text{ V}$ $(200 \sim 300) \text{ V}$ $(300 \sim 600) \text{ V}$ $(600 \sim 1000) \text{ V}$	0.010 mV 0.084 mV 0.85 mV 0.008 7 V 0.013 V 0.020 V 0.038 V 0.088 V	
		20 kHz ~ 100 kHz (1 ~ 100) mV (0.1 ~ 1) V (1 ~ 10) V (10 ~ 100) V (100 ~ 200) V (200 ~ 300) V (300 ~ 600) V	0.024 mV 0.12 mV 1.3 mV 0.014 V 0.026 V 0.17 V 0.35 V	
		100 kHz \sim 500 kHz (1 \sim 100) mV (0.1 \sim 1) V (1 \sim 10) V (10 \sim 20) V	0.033 mV 0.17 mV 1.7 mV 0.003 2 V	
		500 kHz ~ 1 MHz (1 ~ 100) mV (0.1 ~ 1) V (1 ~ 10) V (10 ~ 20) V	0.15 mV 1.1 mV 0.013 V 0.026 V	

	Managered Quantity	Field	Measurement uncertainty Standard Mathod of	
--	--------------------	-------	--	--

measured quantity Instrument or Gauge	Code	Range	(The Confidence Level is about 95 %)	Measurement etc.
AC voltage/current calibrators	40303			CP-40303
AC current		40 Hz ~ 1 kHz		
		$(10 \sim 100) \mu A$	0.28 μΑ	
		$(0.1 \sim 1) \text{ mA}$	0.48 μΑ	
		$(1 \sim 10) \text{ mA}$	0.004 8 mA	
		$(10 \sim 100) \text{ mA}$	0.028 mA	
		$(0.1 \sim 1) \text{ A}$	0.86 mA	
		$(1 \sim 10) A$	11 mA	
		(10 ~ 100) A	0.13 A	
		1 kHz ~ 10 kHz		
		$(10 \sim 100) \mu A$	1.6 μΑ	
		$(0.1 \sim 1) \text{ mA}$	1.7 μΑ	
		$(1 \sim 10) \text{ mA}$	0.016 mA	
		$(10 \sim 100) \text{ mA}$	0.031 mA	
		$(0.1 \sim 1) \text{ A}$	6.6 mA	
Power calibrators	40304			CP-40304
AC Voltage		40 Hz ~ 20 kHz		
		$(0.1 \sim 1) V$	6.4×10^{-5}	
		$(1 \sim 10) V$	5.5×10^{-5}	
		$(10 \sim 100) V$	6.0×10^{-5}	
		$(100 \sim 200) \text{ V}$	5.2×10^{-5}	
		40 Hz ~ 10 kHz		
		(200 ~ 1 000) V	5.6×10^{-5}	
		20 kHz ~ 50 kHz		
		$(0.1 \sim 1) V$	8.3×10^{-5}	
		(1 ~ 10) V	4.8×10^{-5}	
		(10 ~ 100) V	5.3×10^{-5}	
		50 kHz ~ 100 kHz		
		$(0.1 \sim 1) V$	1.0×10^{-4}	
		$(1 \sim 100) V$	8.1×10^{-5}	
		100 kHz ~ 500 kHz		
		$(0.1 \sim 1) V$	4.4×10^{-4}	
		(1 ~ 10) V	4.0×10^{-4}	
		500 kHz ~ 1 MHz		
		$(0.1 \sim 1) V$	1.1×10^{-3}	
		(1 ~ 10) V	1.2×10^{-3}	
AC Current		40 Hz ~ 10 kHz	_	
		1 mA	6.0×10^{-5}	
		$(1 \sim 10) \text{ mA}$	3.9×10^{-5}	
		(10 ~ 100) mA	3.9×10^{-5}	
		$(0.1 \sim 1) A$	4.1×10^{-5}	
		(1 ~ 10) A	4.9×10^{-5}	
		(10 ~ 20) A	4.9×10^{-5}	
AC Wattage		(50 ~60) Hz	,	
		$(0.6 \sim 120) \text{ W}$	1.8×10^{-4}	
		$(120 \sim 240) \text{ W}$	1.5×10^{-4}	
		$(240 \sim 1\ 200)\ W$	1.8×10^{-4}	1

Measured Quantity Instrument or Gauge	Field Code	Range	Measurement uncertainty (The Confidence Level is about 95 %)	Standard/Method o Measurement etc.
Power calibrators	40304			CP-40304
Power Factor		$(50 \sim 60) \text{ Hz}$		
		lead, lag (0 ~ 0.3)	0.000 13	
		lead, lag (0.3 ~ 0.5)	0.000 14	
		lead, lag (0.5 ~ 0.8)	0.000 16	
		lead, lag (0.8 ~ 1)	0.000 17	
AC current shunts	40305			CP-40305
Resistance	40000	0.1 mΩ		C1 40000
Resistance		$(40 \sim 60) \text{ Hz}$	4.6×10^{-4}	
		$(60 \sim 100) \text{ Hz}$	6.0×10^{-4}	
		$(0.1 \sim 1) \text{ kHz}$	1.6×10^{-4}	
		(0.1 ~ 1) KHZ	1.0 × 10	
		$(0.1 \sim 1) \text{ m}\Omega$		
		$(40 \sim 60) \text{ Hz}$	3.4×10^{-4}	
		$(60 \sim 100) \text{ Hz}$	5.0×10^{-4}	
		$(0.1 \sim 1) \text{ kHz}$	1.6×10^{-4}	
		(1 ~ 10) mΩ		
		$40~\mathrm{Hz}\sim5~\mathrm{kHz}$	5.4×10^{-4}	
		(10 ~ 100) mΩ		
		10 Hz ~ 1 kHz	2.4 × 10 ⁻⁴	
		$(1 \sim 10) \text{ kHz}$	$3.4 \times 10^{-4} \\ 7.2 \times 10^{-4}$	
		(0.1 ~ 1) Ω	4	
		10 Hz	3.2×10^{-4}	
		(10 ~ 40) Hz	2.2×10^{-4}	
		$40 \text{ Hz} \sim 1 \text{ kHz}$	1.8×10^{-4}	
		$(1 \sim 10)$ kHz	1.2×10^{-3}	
		(1 ~ 10) Ω		
,		10 Hz	3.0×10^{-4}	
		$(10 \sim 40) \text{ Hz}$	2.2×10^{-4}	
,		40 Hz ~ 1 kHz	1.8×10^{-4}	
		$(1 \sim 10)$ kHz	1.6×10^{-3}	
		(10 ~ 100) Ω		
		(10 ~ 100) 52 10 Hz	3.0×10^{-4}	
		$(10 \sim 40) \text{ Hz}$	3.0×10^{-4} 2.2×10^{-4}	
		$(10 \sim 40) \text{ Hz}$ $40 \text{ Hz} \sim 1 \text{ kHz}$	2.2×10^{-4} 1.8×10^{-4}	
		$(1 \sim 10) \text{ kHz}$	1.8×10^{-3} 1.8×10^{-3}	
tage/current phase angle meters/	40307			CP-40307
synchro resolve meters	10007		0.012°	01 40001
Phase		$(50 \sim 60) \text{ Hz}$		
5		-180° ~ 180°		
Power factor meters	40310			CP-40310

lead, lag (0 ~ 1) 0.000 22	
AC power meters $ \begin{array}{c} \text{AC Voltage} \\ \text{AC Voltage} \\ \end{array} \begin{array}{c} 1 \text{ mV} \\ \\ (10 \text{ Hz}) \\ (10 \text{ Hz} \sim 10 \text{ kHz}) \\ \end{array} \begin{array}{c} 9.0 \mu\text{V} \\ 9.1 \mu\text{V} \\ \end{array} \\ 1 \text{ mV} \sim 10 \text{ mV} \\ \\ (10 \text{ Hz} \sim 10 \text{ kHz}) \\ \end{array} \begin{array}{c} 11 \mu\text{V} \\ 10 \mu\text{V} \\ \end{array} $	11

Measured Quantity Instrument or Gauge	Field Code	Range	Measurement uncertainty (The Confidence Level is about 95 %)	Standard/Method o Measurement etc.
AC power meters	40311			CP-40311
AC Voltage		10 mV ~ 100 mV		
		(10 Hz)	37 μV	
		(10 Hz ~ 20 kHz)	18 μV	
		(20 kHz ~ 200 kHz)	0.12 mV	
		(200 kHz ~ 1 MHz)	0.32 mV	
		100 mV ~ 1 V		
		(10 Hz)	0.29 mV	
		(10 Hz ~ 40 Hz)	0.12 mV	
		$(40 \text{ Hz} \sim 20 \text{ kHz})$	67 μV	
		$(20 \text{ kHz} \sim 200 \text{ kHz})$	0.51 mV	
		$(200 \text{ kHz} \sim 1 \text{ MHz})$	2.1 mV	
		1 V ~ 10 V		
		(10 Hz)	2.9 mV	
		$(10 \text{ Hz} \sim 40 \text{ Hz})$	1.2 mV	
		$(40 \text{ Hz} \sim 20 \text{ kHz})$	0.65 mV	
		$(20 \text{ kHz} \sim 100 \text{ kHz})$	1.4 mV	
		(100 kHz ~ 1 MHz)	19 mV	
		10 V ~ 100 V		
		(10 Hz)	29 mV	
		$(10 \text{ Hz} \sim 40 \text{ Hz})$	12 mV	
		(40 Hz ~ 20 kHz)	7.1 mV	
		($20 \text{ kHz} \sim 100 \text{ kHz}$)	19 mV	
		100 V ~ 300 V		
		(50 Hz)	29 mV	
		$(50 \text{ Hz} \sim 60 \text{ Hz})$	28 mV	
		$(60 \text{ Hz} \sim 1 \text{ kHz})$	48 mV	
		300 V ~ 600 V		
		(50 Hz)	59 mV	
		(50 Hz ~ 60 Hz)	54 mV	
		(60 Hz ~ 1 kHz)	62 mV	
		(UU FIZ ~ 1 KFIZ)	OZ IIIV	
		600 V ~ 1 000 V		
		(50 Hz ~ 1 kHz)	85 mV	
AC Current		1 mA		
222 2 240		(10 Hz)	0.30 μΑ	
		$(10 \text{ Hz} \sim 1 \text{ kHz})$	0.21 μA	

(1 kHz ~ 10 kHz)	1.8 μΑ	
1 mA ~ 10 mA		
(10 Hz)	3.0 μΑ	
(10 Hz ~ 1 kHz)	2.1 μΑ	
(1 kHz ~ 10 kHz)	17 μΑ	
10 mA ~ 100 mA		
(10 Hz)	31 μΑ	
(10 Hz ~ 1 kHz)	22 μA	
(1 kHz ~ 10 kHz)	0.13 mA	
100 mA ~ 1 A		
(40 Hz)	0.33 mA	
(40 Hz ~ 60 Hz)	0.14 mA	
(60 Hz ~ 1 kHz)	0.33 mA	
(1 kHz ~ 10 kHz)	7.2 mA	

Measured Quantity Instrument or Gauge	Field Code	Range	Measurement uncertainty (The Confidence Level is about 95 %)	Standard/Method of Measurement etc.
AC power meters	40311			CP-40311
AC Current		1 A ~ 10 A		
AC Current		(40 Hz)	5.3 mA	
		(40 Hz ~ 60 Hz)	1.5 mA	
		(60 Hz ~ 1 kHz)	5.3 mA	
		(1 kHz ~ 10 kHz)	37 mA	
		10 A ~ 40 A		
		(40 Hz)	23 mA	
		$(40 \text{ Hz} \sim 60 \text{ Hz})$	7.2 mA	
		$(40 \text{ Hz} \sim 100 \text{ Hz})$	34 mA	
		($100 \text{ Hz} \sim 1 \text{ kHz}$)	0.11 A	
		$(1 \text{ kHz} \sim 10 \text{ kHz})$	1.9 A	
		40 A ~ 100 A		
		(40 Hz)	33 mA	
		$(40 \text{ Hz} \sim 60 \text{ Hz})$	33 mA	
		(60 Hz ~ 100 Hz)	49 mA	
		(100 Hz ~ 1 kHz)	0.16 A	
		100 A ~ 1 000 A		
		(50 Hz)	2.6 A	
		(50 Hz ~ 60 Hz)	2.6 A	
DC Voltage		1 mV	6.2 μV	
		$1 \text{ mV} \sim 100 \text{ mV}$	6.3 µV	
		100 mV ~ 3 V	16 μV	
		$3~V \sim 10~V$	0.10 mV	
		10 V ~ 100 V	0.84 mV	
		100 V ~ 1 000 V	11 mV	
DC Current		100 μΑ	0.014 μΑ	
		$100 \mu A \sim 1 mA$	0.044 μΑ	
		$1 \text{ mA} \sim 10 \text{ mA}$	0.41 μΑ	
		10 mA ~ 100 mA	5.3 µA	

	100 mA ~ 1 A 1 A ~ 10 A	0.093 mA 4.1 mA	
	10 A ~ 40 A 40 A ~ 100 A	7.7 mA 0.013 A	
	100 A ~ 1 000 A	2.4 A	
AC Wattage	(50 Hz ~ 60 Hz) 1.2 W 1.2 W ~ 120 W 120 W ~ 24 kW	7.0×10^{-4} 7.5×10^{-4} 3.1×10^{-4}	
DC Wattage	1.2 W $1.2 \text{ W} \sim 24 \text{ W}$ $24 \text{ W} \sim 4.8 \text{ kW}$	$2.3 \times 10^{-4} 3.7 \times 10^{-4} 1.3 \times 10^{-3}$	
Power Factor	(50 Hz ~ 60 Hz) Lead, Lag (0 ~ 1)	0.000 24	
Harmonic Voltage	(50 Hz ~ 60 Hz) 0.5 % ~ 20 %	0.091 %	
Harmonic Current	(50 Hz ~ 60 Hz) 0.5 % ~ 20 %	0.061 %	

Measured Quantity Instrument or Gauge	Field Code	Range	Measurement uncertainty (The Confidence Level is about 95 %)	Standard/Method of Measurement etc.
AC power supplies	40312			CP-40312
AC Voltage		10 Hz		
		100 mV	0.015 mV	
		$(0.1 \sim 1) \text{ V}$	0.12 mV	
		$(1 \sim 10) \text{ V}$	0.52 mV	
		(10 ~ 100) V	0.011 V	
		40 Hz ~ 20 kHz		
		100 mV	0.015 mV	
		$(0.1 \sim 1) \text{ V}$	0.12 mV	
		$(1 \sim 10) \text{ V}$	0.54 mV	
		$(10 \sim 100) \text{ V}$	0.012 V	
		$(100 \sim 200) \text{ V}$	0.014 V	
		$(200 \sim 300) \text{ V}$	0.038 V	
		$(300 \sim 600) \text{ V}$	0.074 V	
		(600 ~ 1 000) V	0.15 V	
		20 kHz ~ 100 kHz		
		100 mV	0.024 mV	
		$(0.1 \sim 1) \text{ V}$	0.13 mV	
		$(1 \sim 10) \text{ V}$	1.4 mV	
		$(10 \sim 100) \text{ V}$	0.015 V	
		$(100 \sim 200) \text{ V}$	0.027 V	
		$(200 \sim 300) \text{ V}$	0.18 V	
		(300 ~ 600) V	0.35 V	
		100 kHz ~ 500 kHz		
		100 mV	0.034 mV	
		$(0.1 \sim 1) \text{ V}$	0.18 mV	

	(1 ~ 10) V	1.8 mV	
	(10 ~ 20) V	3.3 mV	
	500 kHz ~ 1 MHz		
	100 mV	0.15 mV	
	$(0.1 \sim 1) \text{ V}$	1.1 mV	
	$(1 \sim 10) \text{ V}$	0.013 V	
	(10 ~ 20) V	0.026 V	
AC Current	40 Hz ~ 1 kHz		
	$(0.1 \sim 1) \text{ mA}$	0.64 μΑ	
	$(1 \sim 10) \text{ mA}$	0.003 7 mA	
	$(10 \sim 100) \text{ mA}$	0.037 mA	
	(0.1 ~ 1) A	0.36 mA	
	$(1 \sim 10) \text{ A}$ $(10 \sim 100) \text{ A}$	8.5 mA 0.13 A	
	(10 · 100) A	0.13 A	
Frequency	40 Hz ~ 1 kHz	0.005 9 Hz	
DO W. L.			
DC Voltage	(±) 0 V	0.22	
	$(0 \sim 100) \text{ mV}$	$0.22 \mu V$ 3.9×10^{-4}	
	$(0.1 \sim 1000) \text{ mV}$	3.9×10^{-5} 2.9×10^{-5}	
		2.0 / 10	
DC Current	(±)		
	0 μΑ	5.8 nA	
	$(0 \sim 1) \text{ mA}$	8.2×10^{-5}	
	$(1 \sim 10) \text{ mA}$ $(10 \sim 100) \text{ mA}$	2.9×10^{-4}	
	$(10 \sim 100) \text{ mA}$ $(0.1 \sim 1) \text{ A}$	$4.4 \times 10^{-5} \\ 1.3 \times 10^{-4}$	
	$(1 \sim 10) A$	1.5×10^{-4} 1.5×10^{-4}	
	$(10 \sim 100) A$	2.0×10^{-4}	
	(100 ~ 200) A	7.6×10^{-4}	

Measured Quantity Instrument or Gauge	Field Code	Range	Measurement uncertainty (The Confidence Level is about 95 %)	Standard/Method of Measurement etc.
Puncture/safety testers	40313			CP-40313
DC Voltage		(±)		
		$(0.1 \sim 1) \text{ kV}$	9.0×10^{-2}	
		$(1 \sim 10) \text{kV}$	9.0×10^{-3}	
		$(10 \sim 20) \text{kV}$	1.0×10^{-2}	
		$(20 \sim 50) \text{kV}$	6.7×10^{-3}	
		$(50 \sim 70) \text{kV}$	3.3×10^{-3}	
		$(70 \sim 100) \text{kV}$	7.0×10^{-3}	
AC Voltage		60 Hz		
		$(0.1 \sim 1) \text{ kV}$	6.0×10^{-2}	
		$(1 \sim 6) kV$	3.0×10^{-2}	
		$(6 \sim 9) \text{ kV}$	4.3×10^{-3}	
		$(9 \sim 15) \text{kV}$	7.0×10^{-3}	
		$(15 \sim 20) \text{kV}$	1.0×10^{-2}	
		$(20 \sim 50) \text{kV}$	6.7×10^{-3}	
		$(50 \sim 70) \text{kV}$	5.0×10^{-3}	
		$(70 \sim 100) \text{kV}$	3.8×10^{-3}	
DC Current		$(0.1 \sim 0.5) \text{ mA}$	1.2×10^{-2}	
		$(0.5 \sim 1) \text{ mA}$	1.3×10^{-2}	
		$(1 \sim 50) \text{ mA}$	1.2×10^{-2}	
		(50 ~ 100) mA	1.3×10^{-2}	

AC Current		60 Hz $(0.1 \sim 0.5) \text{ mA}$ $(0.5 \sim 1) \text{ mA}$ $(1 \sim 50) \text{ mA}$ $(50 \sim 100) \text{ mA}$	1.2×10^{-2} 1.4×10^{-2} 1.3×10^{-2} 1.4×10^{-2}	
Times		(1 ~ 60) s	71 ms	
Insulation Voltage		$(10 \sim 500) \text{ V}$ $(0.5 \sim 5) \text{ kV}$ $(5 \sim 10) \text{ kV}$	0.08 V 13 V 17 V	
Insulation Resistance		$(1 \sim 10) \text{ k}\Omega$ $(10 \sim 100) \text{ k}\Omega$ $(0.1 \sim 1) \text{ M}\Omega$ $(1 \sim 10) \text{ M}\Omega$ $(10 \sim 100) \text{ M}\Omega$ $(100 \sim 500) \text{ M}\Omega$ $(0.5 \sim 1) \text{ G}\Omega$ $(1 \sim 5) \text{ G}\Omega$ $(5 \sim 10) \text{ G}\Omega$ $(10 \sim 50) \text{ G}\Omega$ $(50 \sim 100) \text{ G}\Omega$ $(100 \sim 500) \text{ G}\Omega$ $(0.5 \sim 1) \text{ T}\Omega$	0.000 8 kΩ 0.007 8 kΩ 0.000 08 MΩ 0.000 87 MΩ 0.017 MΩ 0.31 MΩ 0.001 0 GΩ 0.005 9 GΩ 0.014 GΩ 0.067 GΩ 0.14 GΩ 1.3 GΩ 0.002 5 TΩ	
Power recorders AC Wattage	40314	(50 Hz ~ 60 Hz) 1.2 W 1.2 W ~ 120 W 120 W ~ 24 kW	7.0×10^{-4} 7.5×10^{-4} 3.1×10^{-4}	CP-40314
DC Wattage		1.2 W $1.2 \text{ W} \sim 24 \text{ W}$ $24 \text{ W} \sim 4.8 \text{ kW}$	$2.3 \times 10^{-4} 3.7 \times 10^{-4} 1.3 \times 10^{-3}$	

Measured Quantity Instrument or Gauge	Field Code	Range	Measurement uncertainty (The Confidence Level is about 95 %)	Standard/Method of Measurement etc.
AC voltmeters	40318			CP-40318
AC Voltage		0.1 mV		
		10 Hz	6.5 µV	
		10 Hz ~ 40 Hz	6.5 µV	
		$40~\mathrm{Hz}\sim1~\mathrm{kHz}$	6.5 μV	
		1 kHz ~ 20 kHz	8.1 µV	
		20 kHz ~ 50 kHz	10 μV	
		$50 \text{ kHz} \sim 100 \text{ kHz}$	19 μV	
		$100 \text{ kHz} \sim 500 \text{ kHz}$	35 μV	
		500 kHz ~ 1 MHz	61 µV	
		0.1 mV ~ 10 mV		
		10 Hz	8.2 μV	
		10 Hz ~ 40 Hz	8.0×10^{-4}	
		$40~\mathrm{Hz}\sim1~\mathrm{kHz}$	7.0×10^{-4}	
		$1 \text{ kHz} \sim 20 \text{ kHz}$	8.8×10^{-4}	

1	1	1	
	20 kHz ~ 50 kHz	1.2×10^{-3}	
	50 kHz ~ 100 kHz	2.3×10^{-3}	
	100 kHz ~ 500 kHz	4.6×10^{-3}	
	500 kHz ~ 1 MHz	8.3×10^{-3}	
	10 mV ~ 100 mV		
	10 Hz	37 μV	
	10 Hz ~ 40 Hz	1.7×10^{-4}	
	40 Hz ~ 1 kHz	1.6×10^{-4}	
	1 kHz ~ 20 kHz	1.6×10^{-4}	
	20 kHz ~ 50 kHz	2.8×10^{-4}	
	50 kHz ~ 100 kHz	6.4×10^{-4}	
	100 kHz ~ 500 kHz	1.7×10^{-3}	
	500 kHz ~ 1 MHz	3.2×10^{-3}	
	000 11112 1 111112	J.2 ^ 10	
	100 mV ~ 1 V		
	10 Hz	0.29 mV	
	10 Hz ~ 40 Hz	1.2×10^{-4}	
	40 Hz ~ 1 kHz	6.7×10^{-5}	
	1 kHz ~ 20 kHz	6.7×10^{-5} 6.7×10^{-5}	
	20 kHz ~ 50 kHz	1.0×10^{-4}	
	50 kHz ~ 100 kHz	1.0×10 1.5×10^{-4}	
	100 kHz ~ 500 kHz	1.3×10^{-3} 1.3×10^{-3}	
	500 kHz ~ 1 MHz	1.3×10 2.1×10^{-3}	
	500 KHZ 1 MHZ	2.1 × 10	
	1 V ~ 10 V		
	10 Hz	2.9 mV	
	10 Hz ~ 40 Hz	1.2×10^{-4}	
	40 Hz ~ 1 kHz	6.5×10^{-5}	
	1 kHz ~ 20 kHz	6.5×10^{-5}	
	20 kHz ~ 50 kHz	1.0×10^{-4}	
	50 kHz ~ 100 kHz	1.4×10^{-4}	
	100 kHz ~ 500 kHz	1.3×10^{-3}	
	500 kHz ~ 1 MHz	1.9×10^{-3}	
	10.17 100.17		
	10 V ~ 100 V	7700	
	10 Hz 10 Hz ~ 40 Hz	29 mV	
	10 Hz ~ 40 Hz 40 Hz ~ 1 kHz	$1.2 \times 10^{-4} \\ 7.2 \times 10^{-5}$	
	1 kHz ~ 20 kHz	7.2×10 7.1×10^{-5}	
	20 kHz ~ 50 kHz	1.1×10^{-4}	
	50 kHz ~ 100 kHz	1.1×10^{-4} 1.9×10^{-4}	
		2.0	
	100 V ~ 1 000 V		
	50 Hz	4.3×10^{-4}	
	$50 \text{ Hz} \sim 1 \text{ kHz}$	8.5×10^{-5}	

404. Other DC & LF Measurements

Measured Quantity Instrument or Gauge	Field Code	Range	Measurement uncertainty (The Confidence Level is about 95 %)	Standard/Method of Measurement etc.
LF amplifiers	40401			CP-40401
Amplifier		DC 10 mV ~ 100 mV 100 mV ~ 1 V 1 V ~ 1 000 V	2.6×10^{-4} 1.0×10^{-6} 1.2×10^{-5}	
		10 Hz 10 mV ~ 100 mV 100 mV ~ 1 V	3.5×10^{-3} 3.8×10^{-4}	

1 1	1 V ~ 10 V	2.0 × 10-4	
	10 V ~ 100 V	3.0×10^{-4} 3.1×10^{-4}	
	10 V 100 V	5.1 \(\) 10	
	10 Hz ~ 40 Hz		
	$10 \text{ mV} \sim 100 \text{ mV}$	3.3×10^{-3}	
	100 mV ~ 1 V	1.9×10^{-4}	
	1 V ~ 10 V	1.9×10^{-4} 1.4×10^{-4}	
	10 V ~ 100 V	1.4×10^{-4} 1.5×10^{-4}	
	100 V ~ 1 000 V	1.8×10^{-4}	
	100 / 1 000 /	1.0 \ 10	
	40 Hz ~ 1 kHz		
	10 mV ~ 100 mV	3.3×10^{-3}	
	100 mV ~ 1 V	1.8×10^{-4}	
	1 V ~ 10 V	1.1×10^{-4}	
	10 V ~ 100 V	1.2×10^{-4}	
	100 V ~ 1 000 V	1.2×10^{-4} 1.6×10^{-4}	
	100 , 1 000 ,	1.0 /\ 10	
	1 kHz ~ 10 kHz		
	10 mV ~ 100 mV	3.3×10^{-3}	
	100 mV ~ 1 V	2.1×10^{-4}	
	1 V ~ 10 V	1.5×10^{-4}	
	10 V ~ 100 V	1.4×10^{-4}	
	100 V ~ 1 000 V	1.6×10^{-4}	
	10 kHz ~ 30 kHz		
	$100 \text{ mV} \sim 1 \text{ V}$	3.7×10^{-4}	
	$1~\mathrm{V}\sim10~\mathrm{V}$	2.6×10^{-4}	
	$10 \text{ V} \sim 100 \text{ V}$	2.6×10^{-4}	
	$100 \text{ V} \sim 1 000 \text{ V}$	2.8×10^{-4}	
	$30 \text{ kHz} \sim 100 \text{ kHz}$		
	$100 \text{ mV} \sim 1 \text{ V}$	8.6×10^{-4}	
	$1~\mathrm{V}\sim10~\mathrm{V}$	6.0×10^{-4}	
	$10 \text{ V} \sim 100 \text{ V}$	6.6×10^{-4}	
	$100 \text{ kHz} \sim 1 \text{ MHz}$		
	$100 \text{ mV} \sim 1 \text{ V}$	1.2×10^{-2}	
	1 V ~ 10 V	1.2×10^{-2}	
	DC		
	0 dB ~ 30 dB	0.01 dB	
	30 dB ~ 40 dB	0.01 dB 0.01 dB	
	$40 \text{ dB} \sim 50 \text{ dB}$	0.03 dB	
	50 dB ~ 60 dB	0.10 dB	
	10 Hz	0.01 10	
	$0 \text{ dB} \sim 10 \text{ dB}$	0.01 dB	
	10 dB ~ 20 dB 20 dB ~ 30 dB	0.03 dB 0.10 dB	
	30 dB ~ 40 dB	0.10 dB 0.27 dB	
	00 dD 40 dD	0.27 00	

Measured Quantity Instrument or Gauge	Field Code	Range	Measurement uncertainty (The Confidence Level is about 95 %)	Standard/Method of Measurement etc.
LF amplifiers	40401			CP-40401
Amplifier		10 Hz ~ 40 Hz		
		0 dB ~ 10 dB	0.01 dB	
		10 dB ~ 20 dB	0.02 dB	

1	i i		1	
		20 dB ~ 30 dB	0.07 dB	
		30 dB ~ 40 dB	0.13 dB	
		40 dB ~ 50 dB	0.63 dB	
		50 dB ~ 60 dB	1.5 dB	
		30 42 00 42	1.0 ab	
		40 Hz ~ 1 kHz		
		0 dB ~ 10 dB	0.01 dB	
		10 dB ~ 10 dB 10 dB ~ 20 dB		
			0.01 dB	
		20 dB ~ 30 dB	0.06 dB	
		$30 \text{ dB} \sim 40 \text{ dB}$	0.11 dB	
		40 dB ~ 50 dB	0.58 dB	
		50 dB ~ 60 dB	1.3 dB	
		1 kHz ~ 30 kHz		
		0 dB ~ 10 dB	0.02 dB	
		10 dB ~ 20 dB	0.06 dB	
		20 dB ~ 30 dB	0.22 dB	
		30 dB ~ 40 dB	0.23 dB	
		40 dB ~ 50 dB	0.91 dB	
		50 dB ~ 60 dB	2.2 dB	
		00 dD 00 dD	2,2 (1)	
		30 kHz ~ 100 kHz		
		$0 \text{ dB} \sim 10 \text{ dB}$	0.02 dB	
		10 dB ~ 20 dB	0.06 dB	
		20 dB ~ 30 dB	0.22 dB	
		30 dB ~ 40 dB	0.56 dB	
		100 kHz ~ 200 kHz		
		$0 \text{ dB} \sim 10 \text{ dB}$	0.09 dB	
		10 dB ~ 20 dB	0.22 dB	
		10 db - 20 db	0.22 05	
		200 kHz ~ 1 MHz		
		$0 \text{ dB} \sim 10 \text{ dB}$	0.38 dB	
		10 dB ~ 20 dB	0.99 dB	
		10 dB ~ 20 dB	0.99 db	
DC/LF attenuators	40402			CP-40402
Attenuator	10402	10 Hz		01 10102
Attenuator		0 dB ~ -40 dB	0.006 dB	
		$-40 \text{ dB} \sim -50 \text{ dB}$	0.007 dB	
		$-50 \text{ dB} \sim -60 \text{ dB}$	0.007 dB 0.018 dB	
		50 ab ~ -00 ab	U.U16 UD	
		10 Hz ~ 20 kHz		
		$0 \text{ dB} \sim -40 \text{ dB}$	0.005 dB	
		$-40 \text{ dB} \sim -50 \text{ dB}$	0.003 dB 0.008 dB	
		-40 dB ~ -50 dB -50 dB ~ -60 dB		
		-30 db ~ -00 db	0.020 dB	
		20 kHz ~ 100 kHz		
		$0 \text{ dB} \sim -30 \text{ dB}$	0.006 dB	
		$-30 \text{ dB} \sim -40 \text{ dB}$	0.028 dB	
		-40 dB ~ -50 dB	0.028 dB 0.030 dB	
		-50 dB ~ -60 dB	0.039 dB	
			1	

Measured Quantity Instrument or Gauge	Field Code	Range	Measurement uncertainty (The Confidence Level is about 95 %)	Standard/Method o Measurement etc.
DC/LF attenuators	40402			CP-40402
Attenuator		100 kHz ~ 200 kHz		
		$0 \text{ dB} \sim -30 \text{ dB}$	0.027 dB	
		$-30 \text{ dB} \sim -40 \text{ dB}$	0.091 dB	
		$-40 \text{ dB} \sim -50 \text{ dB}$	0.11 dB	
		$-50 \text{ dB} \sim -60 \text{ dB}$	0.13 dB	
		200 kHz ~ 1 MHz		
		$0 \text{ dB} \sim -30 \text{ dB}$	0.13 dB	
		$-30 \text{ dB} \sim -50 \text{ dB}$	0.19 dB	
		$-50 \text{ dB} \sim -60 \text{ dB}$	0.23 dB	
Multimeter calibrators	40403			CP-40403
DC Voltage		(±)		
		0 mV	0.23 µV	
		$(0 \sim 10) \text{ mV}$	0.23 μV	
		$(10 \sim 100) \text{ mV}$	0.50 μV	
		$(0.1 \sim 1) \text{ V}$	3.0 µV	
		$(1 \sim 10) \text{ V}$	38 µV	
		$(10 \sim 100) \text{ V}$	0.49 mV	
		$(0.1 \sim 1) \text{ kV}$	6.8 mV	
DC Current		(±)		
		ОμА	0.47 nA	
		$(0 \sim 100) \mu A$	3.9 nA	
		$(0.1 \sim 1) \text{ mA}$	25 nA	
		$(1 \sim 10) \text{ mA}$	0.24 μΑ	
		$(10 \sim 100) \text{ mA}$	2.4 μΑ	
		$(0.1 \sim 1) \text{ A}$	24 μΑ	
		$(1 \sim 10) A$	0.27 mA	
		(10 ~ 20) A	0.75 mA	
AC Voltage		40 Hz ~ 20 kHz		
		$(1 \sim 100) \text{ mV}$	6.7 µV	
		$(0.1 \sim 1) \text{ V}$	58 μV	
		$(1 \sim 10) \text{ V}$	0.59 mV	
		$(10 \sim 100) \text{ V}$	14 mV	
		$(0.1 \sim 1.0) \text{ kV}$	56 mV	
		20 kHz ~ 50 kHz		
		$(1 \sim 100) \text{ mV}$	9.1 μV	
		$(0.1 \sim 1) \text{ V}$	56 μV	
		$(1 \sim 10) \text{ V}$	0.57 mV	
		$(10 \sim 100) \text{ V}$	14 mV	
		50 kHz ~ 100 kHz		
		$(1 \sim 100) \text{ mV}$	11 μV	
		$(0.1 \sim 1) \text{ V}$	79 μV	
		(1 ~ 10) V	0.88 mV	
		$(10 \sim 100) \text{ V}$	14 mV	
		100 kHz ~ 500 kHz		
		$(1 \sim 100) \text{ mV}$	0.045 mV	
		$(0.1 \sim 1) \text{ V}$	0.27 mV	
	1	$(1 \sim 10) \text{ V}$	4.1 mV	

	500 kHz ~ 1 MHz (1 ~ 100) mV (0.1 ~ 1) V (1 ~ 10) V	0.12 mV 0.90 mV 13 mV	
--	--	-----------------------------	--

Measured Quantity Instrument or Gauge	Field Code	Range	Measurement uncertainty (The Confidence Level is about 95 %)	Standard/Method o Measurement etc.
Multimeter calibrators AC Current	40403	10 Hz		CP-40403
		$(0.01 \sim 1) \text{ mA}$	0.084 μΑ	
		$(1 \sim 10) \text{ mA}$	0.77 μΑ	
		$(10 \sim 100) \text{ mA}$	7.7 µA	
		$(0.1 \sim 1) \text{ A}$	0.033 mA	
		$(1 \sim 10) \text{ A}$ $(10 \sim 20) \text{ A}$	0.41 mA 0.82 mA	
		(10 20) 11	0,021	
		$10~\mathrm{Hz}\sim10~\mathrm{kHz}$		
		$(0.01 \sim 1) \text{ mA}$	0.052 μΑ	
		$(1 \sim 10) \text{ mA}$	0.39 μΑ	
		$(10 \sim 100) \text{ mA}$	3.9 µА	
		$(0.1 \sim 1) \text{ A}$	0.033 mA	
		$(1 \sim 10) A$	0.41 mA	
		$(10 \sim 20) \text{ A}$	0.82 mA	
Resistance		1 Ω	10 μΩ	
		$(1 \sim 10) \Omega$	0.11 mΩ	
		$(10 \sim 100) \Omega$	0.79 mΩ	
		$(0.1 \sim 1) \text{ k}\Omega$	7.5 mΩ	
		$(1 \sim 10) \text{ k}\Omega$	52 mΩ	
		$(10 \sim 100) \text{ k}\Omega$	0.76 Ω	
		$(0.1 \sim 1) \text{ M}\Omega$	11 Ω	
		$(1 \sim 10) \text{ M}\Omega$	0.14 kΩ	
		$(10 \sim 100) \text{ M}\Omega$	1.5 kΩ	
Oscilloscope calibrators	40404			CP-40404
DC Voltage Amplitude(1 MΩ)	10101	(\pm)		01 10101
		$(1 \sim 5) \text{ mV}$	0.9 μV	
		$(5 \sim 50) \text{ mV}$	1.1 μV	
		$(50 \sim 500) \text{ mV}$	8 μV	
		$(500 \sim 5) \text{ V}$	8 μV	
		$(5 \sim 50) \text{ V}$	0.9 mV	
		$(50 \sim 200) \text{ V}$	9 mV	
AC Voltage Amplitude		100 Hz ~ 1 kHz		
no vortage nimpritude		$1 \text{ mV} \sim 10 \text{ mV}$	0.033 mV	
		$10 \text{ mV} \sim 50 \text{ mV}$	0.034 mV	
		50 mV ~ 100 mV	0.037 mV	
		100 mV ~ 200 mV	0.042 mV	
		200 mV ~ 500 mV	0.16 mV	
		500 mV ~ 1 V	0.20 mV	
		1 V ~ 2 V	0.24 mV	
		$2~\mathrm{V}\sim5~\mathrm{V}$	1.6 mV	
		5 V ~ 10 V	2.0 mV	
		10 V ~ 20 V	2.4 mV	
		$20~\mathrm{V}\sim50~\mathrm{V}$	16 mV	
	1	50 V ~ 100 V	20 mV	

100 V ~ 200 V	23 mV	

Measured Quantity Instrument or Gauge	Field Code	Range	Measurement uncertainty (The Confidence Level is about 95 %)	Standard/Method of Measurement etc
scilloscope calibrators	40404			CP-40404
AC Voltage Amplitude		1 kHz ~ 10 kHz		
-		$1 \text{ mV} \sim 10 \text{ mV}$	0.034 mV	
		$10 \text{ mV} \sim 20 \text{ mV}$	0.034 mV	
		$20 \text{ mV} \sim 50 \text{ mV}$	0.035 mV	
		50 mV ~ 100 mV	0.039 mV	
		100 mV ~ 200 mV	0.044 mV	
		200 mV ~ 500 mV	0.17 mV	
		500 mV ~ 1 V	0.21 mV	
		1 V ~ 2 V	0.27 mV	
		2 V ~ 5 V	1.7 mV	
		5 V ~ 10 V	2.1 mV	
		10 V ~ 20 V	2.7 mV	
		20 V ~ 50 V	17 mV	
		50 V ~ 100 V	21 mV	
			27 mV	
		100 V ~ 200 V	27 mv	
		10 kHz ~ 20 kHz		
		$1 \text{ mV} \sim 5 \text{ mV}$	0.037 mV	
		$5 \text{ mV} \sim 10 \text{ mV}$	0.038 mV	
		$10 \text{ mV} \sim 20 \text{ mV}$	0.039 mV	
		$20 \text{ mV} \sim 50 \text{ mV}$	0.045 mV	
		$50 \text{ mV} \sim 100 \text{ mV}$	0.057 mV	
		$100 \text{ mV} \sim 200 \text{ mV}$	0.084 mV	
		$200 \text{ mV} \sim 500 \text{ mV}$	0.23 mV	
		500 mV ~ 1 V	0.33 mV	
		1 V ~ 2 V	0.51 mV	
		$2 \text{ V} \sim 5 \text{ V}$	2.3 mV	
		5 V ~ 10 V	3.3 mV	
		10 V ~ 20 V	5.1 mV	
		20 V ~ 50 V	23 mV	
		50 V ~ 100 V	33 mV	
		100 V ~ 200 V	51 mV	
Time Marker Generator		1 ns ~ 5 s	9.3×10^{-8}	
Cina Waya Cananata		600 m V		
Sine Wave Generator		600 mV	0.0.1.10=3	
		50 kHz ~ 100 kHz	2.0×10^{-3}	
		100 kHz ~ 3 000 MHz	2.8×10^{-2}	
ideo signal generators	40406			CP-40406

Luminance	(500 ~ 800) mV	4.1 mV	
Burst	(200 ~ 400) mV	4.9 mV	
Sync	(200 ~ 400) mV	4.9 mV	
Frequency Sub carrier Frequency	(3.5 ~ 4.5) MHz	0.88 Hz	
Line Frequency PAL NTSC	15.625 kHz 15.734 kHz	19 Hz 19 Hz	
Field Frequency PAL NTSC	50.00 Hz 59.94 Hz	0.059 Hz 0.071 Hz	
Color Bar Luminance	(50 ~ 714) mV	4.1 mV	

Measured Quantity Instrument or Gauge	Field Code	Range	Measurement uncertainty (The Confidence Level is about 95 %)	Standard/Method of Measurement etc.
Video signal generators	40406			CP-40406
Chrominance		$(50 \sim 714) \text{ mV}$	8.8 mV	
Phase		(0 ~ 360) °	1.4 °	
H-Timming				
H Blanking		$(6.9 \sim 16.4) \mu s$	0.062 µs	
Sync-to-Burst Start		(5 ~ 8) μs	0.036 µs	
		(4 0)	0.004	
Sync Duration, Width		(1 ~ 8) µs	0.024 µs	
C D: Tr		00 1	1.4	
Sync Rise Time		80 ns ~ 1 μs	14 ns	
Sync Fall Time		80 ns ~ 1 μs	12 ns	
Sync ran Time		00 нз - 1 µs	12 115	
Burst Duration, Width		(1.4 ~ 3) μs	0.036 µs	
Barge Baration, Width		(1.1 0) μ5	0.000 μ3	
Audio distortion analyzers/meters	40407			CP-40407
AC Input level		(1 mV)		
_		40 Hz ~ 10 kHz	9 μV	
		$10 \text{ kHz} \sim 100 \text{ kHz}$	20 μV	
		$(1 \text{ mV} \sim 10 \text{ mV})$		
		$40 \text{ Hz} \sim 10 \text{ kHz}$	10 μV	
		$10 \text{ kHz} \sim 100 \text{ kHz}$	24 μV	
		$(10 \text{ mV} \sim 100 \text{ mV})$		
		40 Hz ~ 10 kHz	71 µV	
		10 kHz ~ 100 kHz	73 µV	
		(100		
		$(100 \text{ mV} \sim 1 \text{ V})$ $40 \text{ Hz} \sim 10 \text{ kHz}$	0.71 mV	
		40 Hz ~ 10 kHz 10 kHz ~ 100 kHz	0.71 mV 0.72 mV	
		10 KHZ ·- 100 KΠZ	U.12 IIIV	
I	ı İ		1	I

1	(1 V ~ 10 V)		
	40 Hz ~ 100 kHz	7.1 mV	
	(10 V ~ 100 V)		
		0.071 17	
	40 Hz ~ 10 kHz	0.071 V	
	10 kHz ~ 100 kHz	0.073 V	
	(100 V ~ 300 V)		
	50 Hz	0.12 V	
	50 Hz ~ 500 Hz	0.084 V	
	500 Hz ~ 1 kHz	0.084 V	
AC Input level flatness	1 V (40 Hz ~ 100 kHz)	0.72 mV	
AC Output level	(1 mV)		
	40 Hz ~ 20 kHz	19 μV	
	20 kHz ~ 50 kHz	35 μV	
	50 kHz ~ 100 kHz	69 μV	
	$(1 \text{ mV} \sim 10 \text{ mV})$		
	40 Hz ~ 20 kHz	20 μV	
	20 kHz ~ 50 kHz	39 μV	
	50 kHz ~ 100 kHz	72 μV	

Measured Quantity Instrument or Gauge	Field Code	Range	Measurement uncertainty (The Confidence Level is about 95 %)	Standard/Method of Measurement etc.
Audio distortion analyzers/meters	40407			CP-40407
AC Output level		$(10 \text{ mV} \sim 100 \text{ mV})$		
		40 Hz ~ 1 kHz	0.021 mV	
		1 kHz ~ 20 kHz	0.042 mV	
		20 kHz ~ 50 kHz	0.095 mV	
		50 kHz ~ 100 kHz	0.11 mV	
		(100 mV ~ 1 V)		
		40 Hz ~ 1 kHz	0.59 mV	
		1 kHz ~ 20 kHz	0.62 mV	
		20 kHz ~ 50 kHz	0.77 mV	
		50 kHz ~ 100 kHz	0.78 mV	
		(1 V ~ 10 V)		
		40 Hz ~ 1 kHz	1.3 mV	
		1 kHz ~ 20 kHz	2.6 mV	
		20 kHz ~ 50 kHz	7.1 mV	
		50 kHz ~ 100 kHz	7.2 mV	
AC Output level flatness		1 V (40 Hz ~ 10 kHz)	0.79 mV	
_		$(10 \text{ kHz} \sim 100 \text{ kHz})$	0.93 mV	
DC Input level		10 mV ~ 100 mV	0.58 mV	
_		$0.1 \text{ V} \sim 1 \text{ V}$	0.70 mV	
		1 V ~ 10 V	7.0 mV	
		10 V ~ 300 V	70 mV	
DC Output level		10 mV ~ 100 mV	0.58 mV	

		$0.1 \text{ V} \sim 1 \text{ V}$ $1 \text{ V} \sim 10 \text{ V}$ $10 \text{ V} \sim 50 \text{ V}$	0.70 mV 7.0 mV 70 mV	
Input Frequency		1 Hz ~ 100 kHz	1.1×10^{-5}	
Output Frequency		1 Hz ~ 100 kHz	7.0×10^{-6}	
Distortion		400 Hz ~ 1 kHz (0.1 ~ 31.6) %	1.2×10^{-2}	
		400 Hz ~ 1 kHz (-10 ~ -60) dB	0.03 dB	
LF filters Cut off Frequency	40408	100 Hz 100 Hz ~ 1 kHz 1 kHz ~ 10 kHz 10 kHz ~ 90 kHz	0.11 Hz 1.1 Hz 2.8 Hz 20 Hz	CP-40408
insertion Loss		5 Hz ~ 10 MHz	0.15 dB	
LF/Audio signal analyzers	40409			CP-40409
AC Input level		(1 mV) 40 Hz ~ 10 kHz 10 kHz ~ 100 kHz (1 mV ~ 10 mV) 40 Hz ~ 10 kHz 10 kHz ~ 100 kHz	9 μV 20 μV 10 μV 24 μV	

0 mV ~ 100 mV) 40 Hz ~ 10 kHz 10 kHz ~ 100 kHz 00 mV ~ 1 V) 40 Hz ~ 10 kHz 10 kHz ~ 100 kHz	71 μV 73 μV 0.71 mV	CP-40409
40 Hz ~ 10 kHz 10 kHz ~ 100 kHz 00 mV ~ 1 V) 40 Hz ~ 10 kHz	73 μV	
10 kHz ~ 100 kHz 00 mV ~ 1 V) 40 Hz ~ 10 kHz	73 μV	
00 mV ~ 1 V) 40 Hz ~ 10 kHz		
$40~\mathrm{Hz}\sim10~\mathrm{kHz}$	0.71 mV	
	0.71 mV	
10 kHz ~ 100 kHz		
	0.72 mV	
V ~ 10 V)		
$40~\mathrm{Hz}\sim100~\mathrm{kHz}$	7.1 mV	
) V ~ 100 V)		
40 Hz ~ 10 kHz	0.071 V	
10 kHz ~ 100 kHz	0.073 V	
00 V ~ 300 V)		
50 Hz	0.12 V	
50 Hz ~ 500 Hz		
500 Hz ~ 1 kHz	0.084 V	
	10 kHz ~ 100 kHz 00 V ~ 300 V) 50 Hz 50 Hz ~ 500 Hz	40 Hz ~ 10 kHz 10 kHz ~ 100 kHz 0.071 V 0.073 V 00 V ~ 300 V) 50 Hz 50 Hz 0.12 V 0.084 V

AC Input level flatness	1 V (40 Hz ~ 100 kHz)	0.72 mV	
AC Output level	(1 mV)		
	40 Hz ~ 20 kHz	19 μV	
	20 kHz ~ 50 kHz	35 μV	
	50 kHz ~ 100 kHz	69 µV	
	(1 mV ~ 10 mV)		
	40 Hz ~ 20 kHz	20 μV	
	20 kHz ~ 50 kHz	39 μV	
	50 kHz ~ 100 kHz	72 µV	
	(10 mV ~ 100 mV)		
	40 Hz ~ 1 kHz	0.021 mV	
	1 kHz ~ 20 kHz	0.042 mV	
	20 kHz ~ 50 kHz	0.095 mV	
	50 kHz ~ 100 kHz	0.11 mV	
	(100 mV ~ 1 V)		
	40 Hz ~ 1 kHz	0.59 mV	
	1 kHz ~ 20 kHz	0.62 mV	
	20 kHz ~ 50 kHz	0.77 mV	
	50 kHz ~ 100 kHz	0.78 mV	
	(1 V ~ 10 V)		
	40 Hz ~ 1 kHz	1.3 mV	
	1 kHz ~ 20 kHz	2.6 mV	
	20 kHz ~ 50 kHz	7.1 mV	
	50 kHz ~ 100 kHz	7.2 mV	
AC output level flatness	1 V (40 Hz ~ 10 kHz)	0.79 mV	
	(10 kHz ~ 100 kHz)	0.93 mV	
DC Input level	10 mV ~ 100 mV	0.58 mV	
·	0.1 V ~ 1 V	0.70 mV	
	1 V ~ 10 V	7.0 mV	
	10 V ~ 300 V	70 mV	

Measured Quantity Instrument or Gauge	Field Code	Range	Measurement uncertainty (The Confidence Level is about 95 %)	Standard/Method of Measurement etc.
LF/Audio signal analyzers	40409			CP-40409
DC Output level		$10 \text{ mV} \sim 100 \text{ mV}$	0.58 mV	
		$0.1 \text{ V} \sim 1 \text{ V}$	0.70 mV	
		$1 \text{ V} \sim 10 \text{ V}$	7.0 mV	
		$10 \text{ V} \sim 50 \text{ V}$	70 mV	
Input frequency		$1 \text{ Hz} \sim 100 \text{ kHz}$	1.1×10^{-5}	
Output frequency		1 Hz ~ 100 kHz	7.0×10^{-6}	
Distortion		400 Hz ~ 1 kHz (0.1 ~ 31.6) %	1.2×10^{-2}	
		400 Hz ~ 1 kHz (-10 ~ -60) dB	0.03 dB	

Linr frequency meters Frequency	40410	$(10 \sim 100) \text{ Hz}$ $(0.1 \sim 1) \text{ kHz}$	0.001 1 Hz 0.011 Hz	CP-40410
Function generators	40411			CP-40411
Output Frequency		$1 \text{ Hz} \sim 1 \text{ GHz}$ $1 \text{ GHz} \sim 3 \text{ GHz}$	$5.8 \times 10^{-6} $ 2.9×10^{-6}	
AC Output Level		$(10 \text{ Hz} \sim 1 \text{ kHz})$		
		10 mV 10 mV ~ 100 mV	8.3×10^{-4} 4.2×10^{-4}	
		$0.1 \text{ V} \sim 1 \text{ V}$ $1 \text{ V} \sim 10 \text{ V}$ $10 \text{ V} \sim 20 \text{ V}$	1.8×10^{-4} 1.3×10^{-4} 1.6×10^{-4}	
		20 V ~ 30 V	1.0×10 1.2×10^{-4}	
		$(1 \text{ kHz} \sim 10 \text{ kHz})$		
		10 mV 10 mV ~ 100 mV	$8.7 \times 10^{-4} \\ 4.2 \times 10^{-4}$	
		$0.1 \text{ V} \sim 1 \text{ V}$	1.9×10^{-4}	
		$1~\mathrm{V}\sim10~\mathrm{V}$	1.6×10^{-4}	
		10 V ~ 20 V 20 V ~ 30 V	$1.5 \times 10^{-4} \\ 1.2 \times 10^{-4}$	
AC Output Level Flatness		(40 Hz ~ 60 Hz)		
•		0.0 dB	0.19 dB	
		(60 Hz ~ 100 kHz)		
		0.0 dB	0.14 dB	
		(100 kHz ~ 1 MHz) 0.0 dB	0.20 dB	
		(10 Hz ~ 100 kHz) 100 mV	0.6 mV	
		100 mV ~ 1 V	0.8 mV	
		(10 Hz ~ 1 kHz)	0.0 17	
		1 V ~ 10 V 10 V ~ 30 V	0.9 mV 3.5 mV	
		(1 kHz ~ 10 kHz)	10 7	
		1 V ~ 10 V 10 V ~ 30 V	1.2 mV 3.6 mV	

Measured Quantity Instrument or Gauge	Field Code	Range	Measurement uncertainty (The Confidence Level is about 95 %)	Standard/Method of Measurement etc.
Function generators AC Output Level Flatness	40411	(10 kHz ~ 100 kHz) 1 V ~ 10 V 10 V ~ 30 V	5.5 mV 20 mV	CP-40411
Attenuation		1 kHz 10 dB ~ -20 dB	0.14 dB	

		-20 dB ~ -60 dB	0.19 dB	
DC Offset		(-20 ~ 20) V	0.8 mV	
Rise/fall Time		1 ns 1 ns ~ 100 μs	$1.1 \times 10^{-2} \\ 1.2 \times 10^{-3}$	
AC/DC high voltages volt meters DC Voltage	40413	$(0.1 \sim 0.2) \text{ kV}$ $(0.2 \sim 0.3) \text{ kV}$ $(0.3 \sim 0.4) \text{ kV}$ $(0.4 \sim 0.5) \text{ kV}$ $(0.5 \sim 0.6) \text{ kV}$ $(0.6 \sim 0.8) \text{ kV}$ $(0.8 \sim 0.9) \text{ kV}$ $(0.9 \sim 1) \text{ kV}$ $(1 \sim 2) \text{ kV}$ $(2 \sim 3) \text{ kV}$ $(3 \sim 6) \text{ kV}$ $(6 \sim 9) \text{ kV}$	1.0×10^{-2} 5.0×10^{-3} 4.7×10^{-3} 4.0×10^{-3} 3.6×10^{-3} 3.4×10^{-3} 3.2×10^{-3} 3.2×10^{-3} 3.1×10^{-3} 3.1×10^{-3} 3.1×10^{-3} 3.1×10^{-3}	CP-40413
AC Voltage		60 Hz $(0.1 \sim 0.2) \text{ kV}$ $(0.2 \sim 0.3) \text{ kV}$ $(0.3 \sim 0.4) \text{ kV}$ $(0.4 \sim 0.5) \text{ kV}$ $(0.5 \sim 0.6) \text{ kV}$ $(0.6 \sim 0.7) \text{ kV}$ $(0.7 \sim 0.8) \text{ kV}$ $(0.8 \sim 0.9) \text{ kV}$ $(0.9 \sim 1) \text{ kV}$ $(1 \sim 2) \text{ kV}$ $(2 \sim 3) \text{ kV}$ $(3 \sim 4) \text{ kV}$ $(4 \sim 5) \text{ kV}$ $(5 \sim 6) \text{ kV}$	1.0×10^{-1} 5.1×10^{-2} 3.4×10^{-2} 2.6×10^{-2} 2.0×10^{-2} 1.7×10^{-2} 1.5×10^{-2} 1.3×10^{-2} 1.1×10^{-2} 1.0×10^{-2} 5.2×10^{-3} 3.6×10^{-3} 2.8×10^{-3} 3.5×10^{-3}	
LF impulse generators Output Voltage	40414	1 V (1 ~ 5) V 5 V ~ 20 kV	$0.014 \text{ V} \\ 1.3 \times 10^{-2} \\ 5.2 \times 10^{-2}$	CP-40414
Pulse Width		50 ns 50 ns ~ 100 ms	0.014 ns 1.4×10^{-3}	
Rising Time		1 ns 1 ns ~ 100 ms	0.016 ns 1.4×10^{-3}	

101. Other be a Br Measaremente			7	
Measured Quantity Instrument or Gauge	Field Code	Range	Measurement uncertainty (The Confidence Level is about 95 %)	Standard/Method of Measurement etc.

Lookogo overent to-to-	40410		T	CD 40416
Leakage current testers	40416	101	8.6 nA	CP-40416
DC Current		10 μA		
		(10 ~ 100) μA	0.059 μΑ	
		$(0.1 \sim 1) \text{ mA}$	0.58 μΑ	
		$(1 \sim 10) \text{ mA}$	0.005 8 mA	
		(10 ~ 100) mA	0.058 mA	
AC C		40 Hz ~ 1 kHz		
AC Current			0.000	
		10 μA	0.080 μΑ	
		(10 ~ 100) μA	0.11 μΑ	
		$(0.1 \sim 1) \text{ mA}$	0.62 μΑ	
		$(1 \sim 10) \text{ mA}$	0.006 2 mA	
		(10 ~ 100) mA	0.062 mA	
AC Voltage		40 Hz ~ 1 kHz		
ne voitage		$(10 \sim 100) \text{ mV}$	0.060 mV	
		$(0.1 \sim 100) \text{ mV}$		
			0.59 mV	
		$(1 \sim 10) V$	5.9 mV	
		(10 ~ 100) V	0.059 V	
		(100 ~ 1 000) V	0.59 V	
Electronic AC/DC loads	40417			CP-40417
DC Voltage	10411	(0 ~ 1 000) V	1.3×10^{-5}	01 10111
20 1011480		(0 1 000) 1	1,0 /\ 10	
DC Current		1 mA	7.9×10^{-5}	
2 2 2 3 3 3 2 3 2 3 2 3 3 3 3 3 3 3 3 3		$(1 \sim 10) \text{ mA}$	7.3×10^{-5}	
		$(10 \sim 100) \text{ mA}$	1.3×10^{-4}	
		(0.1 ~ 1) A	1.7×10^{-4}	
		(1 ~ 10) A	1.5×10^{-4}	
		$(10 \sim 100) A$	1.9×10^{-4}	
AC Voltage		50 Hz ~ 400 Hz		
		$(0.1 \sim 1\ 000)\ V$	2.2×10^{-4}	
AC Current		50 Hz ~ 400 Hz		
		1 mA	6.6×10^{-4}	
		$(1 \sim 10) \text{ mA}$	5.5×10^{-4}	
		(10 ~ 100) mA	5.9×10^{-4}	
		(0.1 ~ 1) A	7.9×10^{-4}	
		(1 ~ 100) A	1.3×10^{-3}	
Charge and Discharge Tester				
DC Voltage		0 mV	0.98 µV	
		$(0 \sim 1\ 000)\ V$	1.3×10^{-5}	
70.0		(1)		
DC Current		(±)	- .	
(Charge/Discharge)		0 μΑ	5.8 nA	
		$(0 \sim 1) \text{ mA}$	8.2×10^{-5}	
		$(1 \sim 10) \text{ mA}$	2.9×10^{-4}	
		$(10 \sim 100) \text{ mA}$	4.4×10^{-5}	
		$(0.1 \sim 1) \text{ A}$	1.3×10^{-4}	
		$(1 \sim 10) \text{ A}$	1.5×10^{-4}	
		$(10 \sim 100) \text{ A}$	1.9×10^{-4}	
		(100 ~ 1 000) A	2.1×10^{-4}	
	I		1	

Measured Quantity Instrument or Gauge	Field Code	Range	Measurement uncertainty (The Confidence Level is about 95 %)	Standard/Method of Measurement etc.
Modulation meters	40418			CP-40418
Frequency Modulation		$1 \text{ kHz} \sim 400 \text{ kHz}$	2.5×10^{-2}	
Amplitude Modulation		5 % ~ 99 %	2.5×10 ⁻²	
			(상대불확도)	
Phase Modulation		1 rad ~ 10 rad	2.5×10 ⁻²	
Distortion of Modulation		0 % ~ 10 %	1.5×10 ⁻²	
Distortion of modulation		0 % 10 %	(상대불확도)	
Analoque/Digital multimeters	40419			CP-40419
DC Voltage		(1)		
		(±)	V 00 0	
		0 mV $0 \text{ mV} \sim 10 \text{ mV}$	$0.80~\mu V \ 5.4 \times 10^{-5}$	
		$10 \text{ mV} \sim 10 \text{ mV}$ $10 \text{ mV} \sim 100 \text{ mV}$	1.2×10^{-5}	
		100 mV ~ 1 V	5.9×10^{-6}	
		100 mV ~ 1 V 1 V ~ 10 V	4.0×10^{-6}	
		10 V ~ 100 V	5.9×10^{-6}	
		100 V ~ 1 000 V	7.3×10^{-6}	
AC V-14		0.1 77		
AC Voltage		0.1 mV	6.6.47	
		10 Hz 10 Hz ~ 40 Hz	6.6 μV 6.5 μV	
		40 Hz ~ 1 kHz	6.5 μV	
		1 kHz ~ 20 kHz	8.2 μV	
		20 kHz ~ 50 kHz	10 μV	
		50 kHz ~ 100 kHz	19 μV	
		100 kHz ~ 500 kHz	35 μV	
		500 kHz ~ 1 MHz	61 μV	
		0.1 mV ~ 10 mV		
		10 Hz	8.2 µV	
		10 Hz ~ 40 Hz	8.0×10^{-4}	
		40 Hz ~ 1 kHz	7.0×10^{-4}	
		1 kHz ~ 20 kHz	8.8×10^{-4}	
		20 kHz ~ 50 kHz	1.2×10^{-3}	
		50 kHz ~ 100 kHz	2.3×10^{-3}	
		100 kHz ~ 500 kHz	4.6×10^{-3}	
		500 kHz \sim 1 MHz	8.3×10^{-3}	
		10 mV ~ 100 mV		
		10 Hz	37 μV	
		10 Hz ~ 40 Hz	1.7×10^{-4}	
		$40~\mathrm{Hz}\sim1~\mathrm{kHz}$	1.6×10^{-4}	
		$1 \text{ kHz} \sim 20 \text{ kHz}$	1.6×10^{-4}	
		$20 \text{ kHz} \sim 50 \text{ kHz}$	2.8×10^{-4}	
		$50 \text{ kHz} \sim 100 \text{ kHz}$	6.4×10^{-4}	
		100 kHz \sim 500 kHz	1.7×10^{-3}	
		500 kHz ~ 1 MHz	3.2×10^{-3}	

Measured Quantity Instrument or Gauge	Field Code	Range	Measurement uncertainty (The Confidence Level is about 95 %)	Standard/Method o Measurement etc.
Analoque/Digital multimeters	40419			CP-40419
AC Voltage		$100 \text{ mV} \sim 1 \text{ V}$		
_		10 Hz	0.29 mV	
		10 Hz ~ 40 Hz	1.2×10^{-4}	
		40 Hz ~ 1 kHz	6.7×10^{-5}	
		1 kHz ~ 20 kHz	6.7×10^{-5}	
		20 kHz ~ 50 kHz	1.0×10^{-4}	
		50 kHz ~ 100 kHz	1.5×10^{-4}	
		100 kHz ~ 500 kHz	1.3×10^{-3}	
		500 kHz ~ 1 MHz	2.1×10^{-3}	
		1 V ~ 10 V		
		10 Hz	2.9 mV	
		10 Hz ~ 40 Hz	1.2×10^{-4}	
		40 Hz ~ 1 kHz	6.5×10^{-5}	
		1 kHz ~ 20 kHz	6.5×10^{-5}	
		20 kHz ~ 50 kHz	1.0×10^{-4}	
			1.0×10^{-4} 1.4×10^{-4}	
		50 kHz ~ 100 kHz		
		100 kHz ~ 500 kHz	1.3×10^{-3}	
		500 kHz ~ 1 MHz	1.9×10^{-3}	
		10 V ~ 100 V	00 11	
		10 Hz	29 mV	
		10 Hz ~ 40 Hz	1.2×10^{-4}	
		40 Hz ~ 1 kHz	7.2×10^{-5}	
		$1 \text{ kHz} \sim 20 \text{ kHz}$	7.1×10^{-5}	
		$20 \text{ kHz} \sim 50 \text{ kHz}$	1.1×10^{-4}	
		50 kHz ~ 100 kHz	1.9×10^{-4}	
		100 V ~ 1 000 V		
		50 Hz	4.3×10^{-4}	
		50 Hz ~ 1 kHz	8.5×10^{-5}	
DC Current		(±)		
		О µА	11 nA	
		$0 \mu A \sim 10 \mu A$	6.5×10^{-4}	
		$10 \mu A \sim 100 \mu A$	1.1×10^{-4}	
		$100 \mu A \sim 1 mA$	4.4×10^{-5}	
		$1 \text{ mA} \sim 10 \text{ mA}$	4.1×10^{-5}	
		10 mA ~ 100 mA	5.4×10^{-5}	
		100 mA ~ 1 A	9.3×10^{-5}	
		1 A ~ 10 A	4.1×10^{-4}	
		10 A ~ 20 A	1.3×10^{-3}	

0.1 μΑ		
10 Hz	81 nA	
10 Hz ~ 40 Hz	79 nA	
40 Hz ~ 1 kHz	79 nA	
1 kHz ~ 10 kHz	0.66 µA	
0.1 μΑ ~ 10 μΑ		
10 Hz	82 nA	
10 Hz ~ 40 Hz		
40 Hz ∼ 1 kHz		
1 kHz ~ 10 kHz	6.7×10^{-2}	
	10 Hz 10 Hz ~ 40 Hz 40 Hz ~ 1 kHz 1 kHz ~ 10 kHz 0.1 μA ~ 10 μA 10 Hz 10 Hz	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Measured Quantity Instrument or Gauge	Field Code	Range	Measurement uncertainty (The Confidence Level is about 95 %)	Standard/Method of Measurement etc.
Analoque/Digital multimeters	40419			CP-40419
AC Current		10 μΑ ~ 100 μΑ		
		10 Hz	96 nA	
		10 Hz ~ 40 Hz	8.7×10^{-4}	
		40 Hz ~ 1 kHz	8.5×10^{-4}	
		1 kHz ~ 10 kHz	7.7×10^{-3}	
		100 μA ~ 1 mA		
		10 Hz	0.30 μΑ	
		10 Hz ~ 40 Hz	2.1×10^{-4}	
		40 Hz ~ 1 kHz	1.8×10^{-4}	
		$1 \text{ kHz} \sim 10 \text{ kHz}$	1.8×10^{-3}	
		1 mA ~ 10 mA		
		10 Hz	3.0 μΑ	
		10 Hz ~ 40 Hz	2.1×10^{-4}	
		40 Hz ~ 1 kHz	1.8×10^{-4}	
		$1 \text{ kHz} \sim 10 \text{ kHz}$	1.7×10^{-3}	
		10 mA ~ 100 mA		
		10 Hz	31 µA	
		10 Hz ~ 40 Hz	2.2×10^{-4}	
		40 Hz ~ 1 kHz	1.8×10^{-4}	
		$1 \text{ kHz} \sim 10 \text{ kHz}$	1.3×10^{-3}	
		100 mA ~ 1 A		
		10 Hz	0.33 mA	
		10 Hz ~ 40 Hz	3.3×10^{-4}	
		40 Hz ~ 1 kHz	3.3×10^{-4}	
		1 kHz ~ 10 kHz	7.2×10^{-3}	
		1 A ~ 10 A		
		40 Hz	5.3×10^{-4}	
		40 Hz ~ 500 Hz	5.3×10^{-4}	
		500 Hz ~ 1 kHz	5.3×10^{-4}	
		1 kHz ~ 10 kHz	5.3×10^{-4}	

	10 A ~ 20 A 50 Hz 50 Hz ~ 100 Hz 100 Hz ~ 400 Hz 400 Hz ~ 1 kHz	2.0×10^{-3} 2.0×10^{-3} 2.3×10^{-3} 2.3×10^{-3}	
Resistance	$1 \Omega \sim 10 \Omega$ $1 \Omega \sim 100 \Omega$ $10 \Omega \sim 100 \Omega$ $100 \Omega \sim 1 k\Omega$ $1 k\Omega \sim 10 k\Omega$ $10 k\Omega \sim 100 k\Omega$ $100 k\Omega \sim 1 M\Omega$ $1 M\Omega \sim 10 M\Omega$ $1 M\Omega \sim 100 M\Omega$	$\begin{array}{c} 0.13 \text{ m}\Omega \\ 2.5 \times 10^{-5} \\ 1.2 \times 10^{-5} \\ 1.0 \times 10^{-5} \\ 1.0 \times 10^{-5} \\ 1.5 \times 10^{-5} \\ 2.3 \times 10^{-5} \\ 4.5 \times 10^{-5} \\ 1.1 \times 10^{-4} \end{array}$	

404. Other DC & LF Measurements

Measured Quantity Instrument or Gauge	Field Code	Range	Measurement uncertainty (The Confidence Level is about 95 %)	Standard/Method of Measurement etc.
Noise meters	40420			CP-40420
Input Level		10 Hz		
		$(1 \sim 10) \text{ mV}$	1.3×10^{-2}	
		$(10 \sim 100) \text{ mV}$	3.7×10^{-4}	
		$(0.1 \sim 1) \text{ V}$	3.0×10^{-4}	
		$(1 \sim 10) \text{ V}$	3.0×10^{-4}	
		$(10 \sim 100) \text{ V}$	3.0×10^{-4}	
		10 Hz ~ 40 Hz		
		$(1 \sim 10) \text{ mV}$	8.7×10^{-3}	
		$(10 \sim 100) \text{ mV}$	1.9×10^{-4}	
		$(0.1 \sim 1) \text{ V}$	1.4×10^{-4}	
		$(1 \sim 10) \text{ V}$	1.4×10^{-4}	
		$(10 \sim 100) \text{ V}$	1.4×10^{-4}	
		40 Hz ~ 20 kHz		
		$(1 \sim 10) \text{ mV}$	8.2×10^{-3}	
		$(10 \sim 100) \text{ mV}$	1.8×10^{-4}	
		$(0.1 \sim 1) \text{ V}$	1.1×10^{-4}	
		$(1 \sim 10) \text{ V}$	1.1×10^{-4}	
		$(10 \sim 100) \text{ V}$	1.1×10^{-4}	
		20 kHz ~ 50 kHz		
		$(1 \sim 10) \text{ mV}$	1.0×10^{-2}	
		$(10 \sim 100) \text{ mV}$	2.9×10^{-4}	
		$(0.1 \sim 1) \text{ V}$	1.4×10^{-4}	
		$(1 \sim 10) \text{ V}$	1.3×10^{-4}	
		$(10 \sim 100) \text{ V}$	1.4×10^{-4}	
		50 kHz ~ 100 kHz		

		-
$(1 \sim 10) \text{ mV}$	1.9×10^{-2}	
$(10 \sim 100) \text{ mV}$	6.4×10^{-4}	
$(0.1 \sim 1) \text{ V}$	1.7×10^{-4}	
$(1 \sim 10) \text{ V}$	1.6×10^{-4}	
(10 ~ 100) V	2.1×10^{-4}	
100 kHz ~ 200 kHz		
(1 ~ 10) mV	3.2×10^{-2}	
$(10 \sim 100) \text{ mV}$	1.1×10^{-3}	
$(0.1 \sim 1) \text{ V}$	5.2×10^{-4}	
$(1 \sim 10) \text{ V}$	3.6×10^{-4}	
200 kHz ~ 500 kHz		
$(1 \sim 10) \text{ mV}$	3.6×10^{-2}	
$(10 \sim 100) \text{ mV}$	1.7×10^{-3}	
$(0.1 \sim 1) \text{ V}$	1.2×10^{-3}	
$(1 \sim 10) \text{ V}$	1.2×10^{-3}	
500 kHz ~ 1 MHz		
$(1 \sim 10) \text{ mV}$	6.0×10^{-2}	
(10 ~ 100) mV	3.2×10^{-3}	
$(0.1 \sim 1) \text{ V}$	3.2×10^{-3}	
$(1 \sim 10) \text{ V}$	1.8×10^{-3}	
50 Hz ~ 1 kHz		
(100 ~ 300) V	3.3×10^{-4}	

Measured Quantity Instrument or Gauge	Field Code	Range	Measurement uncertainty (The Confidence Level is about 95 %)	Standard/Method of Measurement etc.
Noise meters Weighting	40420	CCTIC CCIR/ARM DIN JIS	0.19 dB 0.19 dB 0.19 dB 0.19 dB	CP-40420
Frequency Response		1 V 10 Hz 10 Hz ~ 40 Hz 40 Hz ~ 20 kHz 20 kHz ~ 50 kHz 50 kHz ~ 100 kHz 100 kHz ~ 1 MHz	3.0×10^{-4} 1.4×10^{-4} 1.1×10^{-4} 1.3×10^{-4} 1.7×10^{-4} 2.0×10^{-3}	
Oscilloscopes DC Voltage	40421	$1 \text{ mV} \sim 5 \text{ mV}$ $5 \text{ mV} \sim 10 \text{ mV}$ $10 \text{ mV} \sim 20 \text{ mV}$ $20 \text{ mV} \sim 50 \text{ mV}$ $50 \text{ mV} \sim 100 \text{ mV}$ $100 \text{ mV} \sim 200 \text{ mV}$ $200 \text{ mV} \sim 500 \text{ mV}$ $500 \text{ mV} \sim 1 \text{ V}$	0.031 mV 0.033 mV 0.037 mV 0.049 mV 0.094 mV 0.14 mV 0.34 mV 0.80 mV	CP-40421

Square Wave Voltage	$1 \ V \sim 2 \ V$ $2 \ V \sim 5 \ V$ $5 \ V \sim 10 \ V$ $10 \ V \sim 20 \ V$ $20 \ V \sim 50 \ V$ $1 \ mV \sim 5 \ mV$ $5 \ mV \sim 10 \ mV$ $10 \ mV \sim 20 \ mV$ $20 \ mV \sim 50 \ mV$ $50 \ mV \sim 100 \ mV$ $100 \ mV \sim 200 \ mV$ $200 \ mV \sim 500 \ mV$ $500 \ mV \sim 1 \ V$ $1 \ V \sim 2 \ V$ $2 \ V \sim 5 \ V$ $5 \ V \sim 10 \ V$ $10 \ V \sim 20 \ V$	1.2 mV 2.6 mV 7.9 mV 12 mV 26 mV 0.024 mV 0.032 mV 0.043 mV 0.044 mV 0.14 mV 0.33 mV 0.65 mV 0.96 mV 3.4 mV 4.7 mV 9.6 mV 16 mV 37 mV	
Time Marker	1 ns ~ 5 ns 5 ns ~ 50 ns 50 ns ~ 500 ns 500 ns ~ 5 μ s 5 μ s ~ 50 μ s 50 μ s ~ 500 μ s 500 μ s ~ 5 ms 5 ms ~ 50 ms 50 ms ~ 500 ms 500 ms ~ 5 s	0.000 8 ns 0.008 ns 0.008 ns 0.000 8 μs 0.008 μs 0.008 μs 0.000 8 ms 0.008 ms 0.008 ms 0.008 ms	

404. Other DC & LF Measurements

Measured Quantity Instrument or Gauge	Field Code	Range	Measurement uncertainty (The Confidence Level is about 95 %)	Standard/Method of Measurement etc.
Oscilloscopes	40421			CP-40421
Bandwidth (at 600 mV)		50 kHz ~ 100 MHz	11 mV	
		100 MHz ~ 500 MHz	22 mV	
		500 MHz ~ 1 100 MHz	28 mV	
		1 100 MHz ~ 6 GHz	32 mV	
		6 GHz ~ 18 GHz	34 mV	
		18 GHz ~ 26 GHz	46 mV	
		26 GHz ~ 33 GHz	77 mV	
Calout Signal Volt		10 mV ~ 100 mV	0.2 mV	
		$100 \text{ mV} \sim 200 \text{ mV}$	1.1 mV	
		$200 \text{ mV} \sim 500 \text{ mV}$	1.1 mV	
		500 mV ~ 1 V	2.0 mV	
		$1 \text{ V} \sim 2 \text{ V}$	11 mV	
		$2 \text{ V} \sim 5 \text{ V}$	11 mV	
		5 V ~ 10 V	13 mV	

Calout Signal Frequency		100 Hz ~ 500 Hz 500 Hz ~ 5 kHz 5 kHz ~ 20 kHz	0.071 Hz 0.71 Hz 7.1 Hz	
LF phase meters Phase	40422	(50 ~ 60) Hz (-180 ~ 180)°	0.072°	CP-40422
Random wave generators Output Frequency	40423	1 Hz ~ 1 GHz 1 GHz ~ 3 GHz	$5.8 \times 10^{-6} $ 2.9×10^{-6}	CP-40423
Output Level		$(10 \text{ Hz} \sim 1 \text{ kHz})$ 10 mV $10 \text{ mV} \sim 100 \text{ mV}$ $0.1 \text{ V} \sim 1 \text{ V}$ $1 \text{ V} \sim 10 \text{ V}$ $10 \text{ V} \sim 20 \text{ V}$ $20 \text{ V} \sim 30 \text{ V}$ $(1 \text{ kHz} \sim 10 \text{ kHz})$ 10 mV $10 \text{ mV} \sim 100 \text{ mV}$ $0.1 \text{ V} \sim 10 \text{ V}$ $1 \text{ V} \sim 10 \text{ V}$ $10 \text{ V} \sim 20 \text{ V}$ $20 \text{ V} \sim 30 \text{ V}$	8.3×10^{-4} 4.2×10^{-4} 1.8×10^{-4} 1.3×10^{-4} 1.6×10^{-4} 1.2×10^{-4} 4.2×10^{-4} 1.9×10^{-4} 1.6×10^{-4} 1.5×10^{-4} 1.2×10^{-4}	
AC Output Level Flatness		(40 Hz ~ 60 Hz) 0.0 dB (60 Hz ~ 100 kHz) 0.0 dB (100 kHz ~ 1 MHz)	0.19 dB 0.14 dB	
		(100 kHz × 1 kHz) 0.0 dB (10 Hz ~ 100 kHz) 100 mV 100 mV ~ 1 V	0.20 dB 0.6 mV 0.8 mV	
		(10 Hz ~ 1 kHz) 1 V ~ 10 V 10 V ~ 30 V	0.9 mV 3.5 mV	

Measured Quantity Instrument or Gauge	Field Code	Range	Measurement uncertainty (The Confidence Level is about 95 %)	Standard/Method of Measurement etc.
Random wave generators AC Output Level Flatness	40423	(1 kHz ~ 10 kHz) 1 V ~ 10 V 10 V ~ 30 V (10 kHz ~ 100 kHz) 1 V ~ 10 V 10 V ~ 30 V	1.2 mV 3.6 mV 5.5 mV 20 mV	CP-40423

Attenuation		1 kHz 10 dB ~ -20 dB -20 dB ~ -60 dB	0.14 dB 0.19 dB	
DC offset		(-20 ~ 20) V	0.8 mV	
Rise/fall Time		1 ns 1 ns ~ 100 μs	$1.1 \times 10^{-2} \\ 1.2 \times 10^{-3}$	
Volt/Current recorders DC Voltage	40424	(\pm) 0 mV $(0 \sim 10) \text{ mV}$ $(10 \sim 100) \text{ mV}$ $(0.1 \sim 1) \text{ V}$ $(1 \sim 10) \text{ V}$ $(10 \sim 100) \text{ V}$ $(0.1 \sim 1) \text{ kV}$	$\begin{array}{c} 0.79~\mu\text{V} \\ 4.6\times10^{-4} \\ 2.9\times10^{-5} \\ 1.0\times10^{-5} \\ 6.1\times10^{-6} \\ 1.3\times10^{-5} \\ 1.4\times10^{-5} \end{array}$	CP-40424
DC Current		(\pm) 0 μA (0 ~ 100) μA (0.1 ~ 1) mA (1 ~ 10) mA (10 ~ 100) mA (0.1 ~ 1) A (1 ~ 10) A	0.011 μ A 6.5 × 10 ⁻⁴ 8.4 × 10 ⁻⁵ 7.2 × 10 ⁻⁵ 9.2 × 10 ⁻⁵ 1.5 × 10 ⁻⁴ 7.1 × 10 ⁻⁴	
Relay test sets DC Voltage	40425	(0.1 ~ 700) V	5.8×10^{-5}	CP-40425
DC Current		$ \begin{array}{c} 1 \text{ mA} \\ (1 \sim 10) \text{ mA} \\ (10 \sim 100) \text{ mA} \\ (0.1 \sim 1) \text{ A} \\ (1 \sim 10) \text{ A} \\ (10 \sim 100) \text{ A} \end{array} $	$0.58 \mu A$ 2.9×10^{-4} 2.9×10^{-4} 1.7×10^{-4} 1.8×10^{-4} 3.5×10^{-4}	
AC Voltage		(50 Hz ~ 1 kHz) (0.1 ~ 750) V	1.0×10^{-4}	
AC Current		$(50 \text{ Hz} \sim 1 \text{ kHz})$ 1 mA $(1 \sim 10) \text{ mA}$ $(10 \sim 100) \text{ mA}$ $(0.1 \sim 1) \text{ A}$ $(1 \sim 10) \text{ A}$ $(10 \sim 100) \text{ A}$	0.71 μ A 4.1 × 10 ⁻⁴ 3.1 × 10 ⁻⁴ 3.6 × 10 ⁻⁴ 1.2 × 10 ⁻³ 1.3 × 10 ⁻³	

Measured Quantity Instrument or Gauge	Field Code	Range	Measurement uncertainty (The Confidence Level is about 95 %)	Standard/Method of Measurement etc.
LF signal generators	40426			CP-40426
Output Frequency		1 Hz ~ 100 MHz	5.8×10^{-6}	

I				
Output Voltage		$(10 \text{ Hz} \sim 1 \text{ kHz})$ 10 mV $10 \text{ mV} \sim 100 \text{ mV}$ $0.1 \text{ V} \sim 1 \text{ V}$ $1 \text{ V} \sim 10 \text{ V}$ $10 \text{ V} \sim 20 \text{ V}$	8.3×10^{-4} 4.2×10^{-4} 1.8×10^{-4} 1.3×10^{-4} 1.6×10^{-4}	
		(1 kHz ~ 10 kHz) 10 mV 10 mV ~ 100 mV 0.1 V ~ 1 V 1 V ~ 10 V 10 V ~ 20 V	8.7×10^{-4} 4.2×10^{-4} 1.9×10^{-4} 1.6×10^{-4} 1.5×10^{-4}	
AC Output Level Flatness		(60 Hz ~ 100 kHz) 0.0 dB	0.14 dB	
		(100 kHz ~ 1 MHz) 0.0 dB	0.20 dB	
		(10 Hz ~ 100 kHz) 100 mV 100 mV ~ 1 V	0.6 mV 0.8 mV	
		(10 Hz ~ 1 kHz) 1 V ~ 10 V 10 V ~ 20 V	0.9 mV 3.2 mV	
		(1 kHz ~ 10 kHz) 1 V ~ 10 V 10 V ~ 20 V	1.2 mV 3.0 mV	
		(10 kHz ~ 100 kHz) 1 V ~ 10 V 10 V ~ 20 V	5.5 mV 15 mV	
Attenuation		1 kHz 10 dB ~ -20 dB -20 dB ~ -60 dB	0.14 dB 0.19 dB	
DC offset		(-20 ~ 20) V	0.8 mV	
LF spectrum analyzers Time Base	40427	10 MHz	0.007 1 Hz	CP-40427
Center Frequency		10 Hz ~ 20 Hz 20 Hz ~ 200 Hz 200 Hz ~ 2 kHz 2 kHz ~ 20 kHz 20 kHz ~ 200 kHz 200 kHz ~ 100 MHz	7.1×10^{-6} 7.1×10^{-6} 7.1×10^{-7} 7.1×10^{-8} 7.1×10^{-9} 7.1×10^{-10}	
Frequency Counter		10 Hz ~ 20 Hz 20 Hz ~ 200 Hz 200 Hz ~ 2 kHz 2 kHz ~ 20 kHz 20 kHz ~ 200 kHz 200 kHz ~ 100 MHz	7.1×10^{-5} 7.1×10^{-6} 7.1×10^{-7} 7.1×10^{-8} 7.1×10^{-9} 7.1×10^{-10}	

Measured Quantity Instrument or Gauge	Field Code	Range	Measurement uncertainty (The Confidence Level is about 95 %)	Standard/Method of Measurement etc.
LF spectrum analyzers Frequency Resonse	40427	9 kHz ~ 100 MHz	0.15 dB	CP-40427
Scale Fidelity		(0~100)dB	0.06 dB	
If Frequency Gain		(0~100)dB	0.06 dB	
		9 kHz ~ 100 MHz	0.9 dB	
		10 Hz ~ 3 MHz	2.4×10^{-3}	
		10 Hz ~ 3 MHz	3.1×10^{-3}	
		10 Hz ~ 3 MHz	0.04 dB	
Frequency Span		1 kHz ~ 100 MHz	1.1×10^{-4}	
Output Frequency		1 MHz ~ 100 MHz	6.1×10^{-8}	
Output Level		9 kHz ~ 100 MHz	0.16 dB	
Sweep generators Output Frequency	40429	1 Hz ~ 100 MHz	5.8×10 ⁻⁶	CP-40429
Output Voltage		(10 Hz ~ 1 kHz)		
		10 mV	8.3×10 ⁻⁴	
		10 mV ~ 100 mV 0.1 V ~ 1 V	4.2×10^{-4} 1.8×10^{-4}	
		1 V ~ 10 V	1.3×10 ⁻⁴	
		10 V ~ 20 V	1.6×10^{-4}	
		(1 kHz ~ 10 kHz)		
		10 mV	8.7×10^{-4}	
		10 mV ~ 100 mV	4.2×10^{-4}	
		$0.1 \text{ V} \sim 1 \text{ V}$	1.9×10^{-4}	
		1 V ~ 10 V	1.6×10^{-4}	
		10 V ~ 20 V	1.5×10^{-4}	
AC Output Level Flatness		(40 Hz ~ 60 Hz) 0.0 dB	0.19 dB	
		(60 Hz ~ 100 kHz) 0.0 dB	0.14 dB	
		(100 kHz ~ 1 MHz)		
		0.0 dB	0.20 dB	
		(10 Hz ~ 100 kHz)		
		100 mV 100 mV ~ 1 V	0.6 mV 0.8 mV	
		(10 Hz ~ 1 kHz)		
		1 V ~ 10 V 10 V ~ 20 V	0.9 mV 3.2 mV	
		(1 kHz ~ 10 kHz)		
	I	1 V ~ 10 V	1.2 mV	

	10 V ~ 20 V	3.0 mV	
	(10 kHz ~ 100 kHz) 1 V ~ 10 V 10 V ~ 20 V	5.5 mV 15 mV	

Measured Quantity Instrument or Gauge	Field Code	Range	Measurement uncertainty (The Confidence Level is about 95 %)	Standard/Method o Measurement etc.
Sweep generators	40429			CP-40429
Attenuation		1 kHz		
		10 dB ~ -20 dB	0.14 dB	
		$-20 \text{ dB} \sim -60 \text{ dB}$	0.19 dB	
DC offset		(-20 ~ 20) V	0.8 mV	
Signal transducers	40430			CP-40430
DC Voltage		Ο μV	0.22 μV	
		$(0 \sim 10) \text{ mV}$	8.1×10^{-4}	
		$(10 \sim 100) \text{ mV}$	4.1×10^{-5}	
		$(0.1 \sim 1) \text{ V}$	1.2×10^{-5}	
		$(1 \sim 10) \text{ V}$	7.7×10^{-6}	
		(10 ~ 100) V	2.1×10^{-5}	
DC Current		0 μΑ	0.86 nA	
		$(0 \sim 1) \text{ mA}$	1.1×10^{-4}	
		$(1 \sim 10) \text{ mA}$	4.4×10^{-5}	
		$(10 \sim 100) \text{ mA}$	1.2×10^{-4}	
		$(0.1 \sim 1) \text{ A}$	2.5×10^{-4}	
		(1 ~ 10) A	6.3×10 ⁻⁴	
Waveform analyzers	40433			CP-40433
AC Input Voltage		$(1 \text{ mV} \sim 10 \text{ mV})$		
		$40~\mathrm{Hz}\sim10~\mathrm{kHz}$	10 μV	
		10 kHz ~ 100 kHz	24 μV	
		$(10 \text{ mV} \sim 100 \text{ mV})$		
		40 Hz ~ 10 kHz	71 µV	
		$10 \text{ kHz} \sim 100 \text{ kHz}$	73 µV	
		(100 mV ~ 1 V)		
		40 Hz ~ 10 kHz	0.71 mV	
		10 kHz ~ 100 kHz	0.72 mV	
		(1 V ~ 10 V)		
		40 Hz ~ 100 kHz	7.1 mV	
		(10 V ~ 100 V)		
		40 Hz ~ 10 kHz	0.071 V	
		10 kHz ~ 100 kHz	0.073 V	
AC Output Voltage		(1 mV ~ 10 mV)		
no output fortuge		40 Hz ~ 10 kHz	7.3 µV	
		10 kHz ~ 50 kHz	32 μV	
		$50 \text{ kHz} \sim 100 \text{ kHz}$	32 µV	
	1		1	

40 Hz ~ 1 kHz 1 kHz ~ 10 kHz 10 kHz ~ 50 kHz 50 kHz ~ 100 kHz	0.010 mV 0.022 mV 0.056 mV 0.056 mV	
(100 mV ~ 1 V) 100 Hz ~ 1 kHz 1 kHz ~ 10 kHz 10 kHz ~ 50 kHz 50 kHz ~ 100 kHz	0.58 mV 0.62 mV 0.80 mV 0.80 mV	

Measured Quantity Instrument or Gauge	Field Code	Range	Measurement uncertainty (The Confidence Level is about 95 %)	Standard/Method of Measurement etc.
Waveform analyzers	40433			CP-40433
AC Output Voltage		$(1 \text{ V} \sim 10 \text{ V})$		
		100 Hz ~ 1 kHz	1.0 mV	
		$1 \text{ kHz} \sim 10 \text{ kHz}$	2.2 mV	
		$10 \text{ kHz} \sim 50 \text{ kHz}$	5.6 mV	
		50 kHz ~ 100 kHz	5.6 mV	
		(10 V ~ 100 V)		
		$100 \text{ Hz} \sim 1 \text{ kHz}$	11 mV	
		$1 \text{ kHz} \sim 10 \text{ kHz}$	22 mV	
		$10 \text{ kHz} \sim 50 \text{ kHz}$	56 mV	
		50 kHz ~ 100 kHz	56 mV	
Input Frequency		10 Hz ~ 100 kHz	1.2×10 ⁻⁵	
Output Frequency		10 Hz ~ 100 kHz	7.6×10 ⁻⁶	
AC/DC high voltage generators	40434			CP-40434
DC Output Voltage		$0.1~\mathrm{kV}$	0.008 2 kV	
		$(0.1 \sim 5) \text{ kV}$	2.9×10^{-3}	
		$(5 \sim 10) \text{ kV}$	1.8×10^{-3}	
		$(10 \sim 15) \text{kV}$	1.5×10^{-3}	
		$(15 \sim 20) \text{ kV}$	6.8×10^{-3}	
		$(20 \sim 30) \text{kV}$	4.6×10^{-3}	
		$(30 \sim 40) \text{ kV}$	3.5×10^{-3}	
		$(40 \sim 50) \text{kV}$	2.9×10^{-3}	
		$(50 \sim 60) \text{kV}$	2.5×10^{-3}	
		$(60 \sim 70) \text{kV}$	2.2×10^{-3}	
		$(70 \sim 80) \text{kV}$	2.0×10^{-3}	
		$(80 \sim 90) \text{kV}$	1.9×10^{-3}	
		(90 ~ 100) kV	1.8×10^{-3}	
AC Output Voltage		60 Hz		
		0.1 kV	$0.032 \; kV$	
		$(0.1 \sim 5) \text{ kV}$	3.0×10^{-3}	
		$(5 \sim 10) \text{ kV}$	1.8×10^{-3}	
		$(10 \sim 15) \text{ kV}$	1.5×10^{-3}	
		$(15 \sim 20) \text{ kV}$	6.8×10^{-3}	
		$(20 \sim 30) \text{kV}$	4.6×10^{-3}	
		$(30 \sim 40) \text{kV}$	3.6×10^{-3}	
		$(40 \sim 50) \text{ kV}$	2.9×10^{-3}	

|--|

404. Other DC & LF Measurements

Measured Quantity Instrument or Gauge	Field Code	Range	Measurement uncertainty (The Confidence Level is about 95 %)	Standard/Method of Measurement etc.
AC/DC high voltage probes DC Voltage	40435	(\pm) 0.1 V ~ 1 000 V $(1 \sim 2) \text{ kV}$ $(2 \sim 5) \text{ kV}$	1.0×10^{-4} 3.2×10^{-3} 3.1×10^{-3}	CP-40435
AC Voltage		$(5 \sim 9) \text{ kV}$ $50 \text{ Hz} \sim 1 \text{ kHz}$ $0.1 \text{ V} \sim 1 \text{ kV}$	3.1×10^{-3} 2.0×10^{-4}	
		60 Hz $(1 \sim 2) \text{ kV}$ $(2 \sim 3) \text{ kV}$ $(3 \sim 4) \text{ kV}$ $(4 \sim 5) \text{ kV}$ $(5 \sim 6) \text{ kV}$	4.0×10^{-3} 3.0×10^{-3} 2.8×10^{-3} 2.8×10^{-3} 2.6×10^{-3}	
Logic analyzers DC Voltage	40436	(- 10 ~ 10) V	7.6×10 ⁻⁵	CP-40436
Telephone testers Bell Frequency	40437	(1 ~ 100) Hz	0.58 Hz	CP-40437
Bell Voltage		(1 ~ 100) V (100 ~ 150) V	0.58 V 0.59 V	
Tone Frequency		(1 209, 1 336) Hz (1 477) Hz (697, 770) Hz (852, 941) Hz	0.8 Hz 0.9 Hz 0.5 Hz 0.6 Hz	
Tone Level		(- 20 ~ 0) dBm	0.3 dB	

Power Of Local Line		(16 ~ 96) V	0.6 V	
Video signal analyzers	40438			CP-40438
Color Bar Level		YL 62.2 IRE 444.1 mV	6.5 mV	
(NTSC)		CY 88.2 IRE 629.7 mV	7.9 mV	
		G 82.4 IRE 588.3 mV	7.9 mV	
		MG 82.4 IRE 588.3 mV	7.9 mV	
		R 88.2 IRE 629.7 mV	7.9 mV	
		B 62.2 IRE 444.1 mV	6.5 mV	
Color Bar Level				
(PAL)		YL 470.5 mV	3.7 mV	
		CY 663.8 mV	7.6 mV	
		G 620.1 mV	6.5 mV	
		MG 620.1 mV	6.5 mV	
		R 663.8 mV	7.6 mV	
		B 470.5 mV	5.5 mV	
Phase				
(NTSC/PAL)		YL 167.1°	1.4 °	
(WISC/17L)		CY 283.4 °	1.4°	
		G 240.8 °	1.4°	
		MG 60.8 °	1.4°	
		R 103.8 °	1.4 °	
		В 347.1 °	1.4 °	
		D 011.1	1.1	

404. Other DC & LF Measurements

Measured Quantity Instrument or Gauge	Field Code	Range	Measurement uncertainty (The Confidence Level is about 95 %)	Standard/Method of Measurement etc.
Video signal analyzers	40438			CP-40438
Frequency Response				
(NTSC)		$(50 \text{ kHz} \sim 100 \text{ kHz})$		
		714 mV	19 mV	
(PAL)		$(50 \text{ kHz} \sim 100 \text{ kHz})$		
		800 mV	21 mV	
Frequency				
Bust (NTSC)		3.579 545 MHz	1.5 Hz	
(PAL)		4.433 619 MHz	2.1 Hz	
Line (NTSC)		15.734 kHz	1.2 Hz	
(PAL)		15.625 kHz	1.2 Hz	
Field (NTSC)		59.94 Hz	0.012 Hz	
(PAL)		50.00 Hz	0.012 Hz	

406. Radio frequency measurements	1			
Measured Quantity Instrument or Gauge	Field Code	Range	Measurement uncertainty (The Confidence Level is about 95 %)	Standard/Method of Measurement etc.
RF amplifiers	40601			CP-40601
Gain		$(0 \sim 40) \text{ dB}$		
		5 Hz ~ 9 kHz	0.15 dB	
		9 kHz ~ 5 GHz	0.17 dB	
		5 GHz ~ 18 GHz	0.27 dB	
		18 GHz ~ 40 GHz	0.29 dB	
		(40 ~ 60) dB		
		5 Hz ~ 9 kHz	0.19 dB	
		9 kHz ~ 5 GHz	0.17 dB	
		5 GHz ~ 18 GHz	0.27 dB	
		18 GHz ~ 40 GHz	0.29 dB	
		(60 ~ 70) dB		
		5 Hz ~ 9 kHz	0.21 dB	
		9 kHz ~ 5 GHz	0.17 dB	
		5 GHz ~ 18 GHz	0.27 dB	
Coaxial attenuators	40602			CP-40602
Attenuator		$(0 \sim 10) dB$		

1	F 11- 0 CH	0.10 JD	ı
	5 Hz ~ 2 GHz	0.18 dB	
	2 GHz ~ 20 GHz	0.31 dB	
	20 GHz ~ 30 GHz	0.68 dB	
	30 GHz ~ 40 GHz	0.96 dB	
	(10 ~ 20) dB		
	5 Hz ~ 2 GHz	0.20 dB	
	2 GHz ~ 20 GHz	0.31 dB	
	20 GHz ~ 30 GHz	0.73 dB	
	30 GHz ~ 40 GHz	1.1 dB	
	(20 ~ 30) dB		
	5 Hz ~ 2 GHz	0.21 dB	
	2 GHz ~ 20 GHz	0.31 dB	
	20 GHz ~ 30 GHz	0.75 dB	
	30 GHz ~ 40 GHz	1.1 dB	
	(30 ~ 40) dB		
	5 Hz ~ 2 GHz	0.23 dB	
	2 GHz ~ 20 GHz	0.31 dB	
	20 GHz ~ 30 GHz	0.76 dB	
	30 GHz ~ 40 GHz	1.1 dB	
	(40 ~ 50) dB		
	5 Hz ~ 2 GHz	0.24 dB	
	2 GHz ~ 20 GHz	0.31 dB	
	20 GHz ~ 30 GHz	0.77 dB	
	30 GHz ~ 40 GHz	1.1 dB	
	(50 ~ 60) dB		
	5 Hz ~ 2 GHz	0.26 dB	
	2 GHz ~ 20 GHz	0.33 dB	
	20 GHz ~ 30 GHz	0.79 dB	
	30 GHz ~ 40 GHz	1.2 dB	
	50 GHZ 40 GHZ	1.2 00	
	<u>l</u>		

Measured Quantity Instrument or Gauge	Field Code	Range	Measurement uncertainty (The Confidence Level is about 95 %)	Standard/Method of Measurement etc.
Coaxial attenuators Attenuator	40602	(60 ~ 70) dB		CP-40602
110001144001		5 Hz ~ 100 Hz	0.33 dB	
		100 Hz ~ 3 GHz	0.25 dB	
		3 GHz ~ 5 GHz 5 GHz ~ 20 GHz	0.31 dB 0.45 dB	
		20 GHz ~ 30 GHz	0.82 dB	
		30 GHz ~ 40 GHz	1.2 dB	
		(70 ~ 80) dB		
		5 Hz ~ 100 Hz	0.50 dB	
		100 Hz ~ 3 GHz	0.37 dB	
		3 GHz ~ 20 GHz	0.50 dB	

		20 GHz ~ 30 GHz 30 GHz ~ 40 GHz	0.85 dB 1.2 dB	
		(80 ~ 110) dB 150 kHz ~ 18 GHz	0.60 dB	
Burst Pulse generators Output Voltage	40605	(-4 ~ 4) kV	6.0×10^{-3}	CP-40605
Pulse Width		(10 ~ 200) ns	1.4×10^{-3}	
Rise time		1 ns ~ 1 μs	1.4×10^{-3}	
Repetition Frequency		(1 ~ 100) kHz	5.9×10^{-3}	
Burst Duration Time		10 ms $(10 \sim 15)$ ms $(15 \sim 20)$ ms $(20 \sim 30)$ ms $(30 \sim 40)$ ms $(40 \sim 50)$ ms	0.014 ms 8.8×10^{-4} 6.6×10^{-4} 4.4×10^{-4} 3.3×10^{-4} 2.7×10^{-4}	
Burst period		(10 ~ 100) ms (100 ~ 200) ms (200 ~ 300) ms (300 ~ 400) ms	$ \begin{array}{c} 1.4 \times 10^{-3} \\ 6.6 \times 10^{-4} \\ 4.4 \times 10^{-4} \\ 3.3 \times 10^{-4} \end{array} $	
RF power meter calibrators Range	40607	3 μW 10 μW 30 μW 100 μW 300 μW 1 mW 3 mW 10 mW 30 mW	2.5×10^{-5} 1.1×10^{-5} 2.5×10^{-5} 1.1×10^{-5} 2.6×10^{-5} 4.9×10^{-5} 2.0×10^{-5} 7.2×10^{-6} 3.6×10^{-6} 5.3×10^{-6}	CP-40607
EMC transducers ; current probes, Current Probe Transfer impedance	40608	5 Hz ~ 1 000 MHz	1.8 dB	CP-40608
Absorbing Clamp Insertion loss		(30 ~ 1 000) MHz	2.2 dB	

Measured Quantity Instrument or Gauge	Field Code	Range	Measurement uncertainty (The Confidence Level is about 95 %)	Standard/Method of Measurement etc.
Coaxial directional couplers/splitters	40610			CP-40610
Coupling Factor		(0 ~ 10) dB		
		9 kHz \sim 2 GHz	0.18 dB	
		$2 \text{ GHz} \sim 20 \text{ GHz}$	0.31 dB	
		20 GHz ~ 30 GHz	0.68 dB	
		30 GHz ~ 40 GHz	0.96 dB	

heereditation no : heor 002				
		(10 ~ 20) dB		
		9 kHz \sim 2 GHz	0.20 dB	
		$2 \text{ GHz} \sim 20 \text{ GHz}$	0.31 dB	
		20 GHz ~ 30 GHz	0.73 dB	
		30 GHz ~ 40 GHz	1.1 dB	
		(20 ~ 30) dB		
		9 kHz ~ 2 GHz	0.21 dB	
		2 GHz ~ 20 GHz	0.21 dB 0.31 dB	
		20 GHz ~ 30 GHz	0.75 dB	
		30 GHz ~ 40 GHz	1.1 dB	
		$(30 \sim 40) dB$		
		9 kHz \sim 2 GHz	0.23 dB	
		$2 \text{ GHz} \sim 4 \text{ GHz}$	0.25 dB	
		(40 ~ 50) dB		
		9 kHz ~ 1 GHz	0.24 dB	
			0.21	
		$(50 \sim 60) dB$		
		9 kHz \sim 1 GHz	0.26 dB	
		(60 ~ 70) dB		
		9 kHz ~ 1 GHz	0.33 dB	
		g KHZ T GHZ	0.55 db	
Electrostatic discharge generators	40613			CP-40613
Peak Current		\pm (0 A ~ 112.5 A)	2.7×10^{-2}	
T1 Current				
T1 Current (330 Ω)		±(0 A ~ 60 A)	2.8×10^{-2}	
(350 ½) (2 kΩ)		$\pm (0 \text{ A} \sim 60 \text{ A})$ $\pm (0 \text{ A} \sim 8.25 \text{ A})$	2.8×10 2.7×10^{-2}	
(2 KS2)		±(0 A ~ 0.23 A)	2.7×10	
T2 Current				
(330 Ω)		\pm (0 A ~ 30 A)	2.8×10^{-2}	
(2 kΩ)		\pm (0 A ~ 4.5 A)	2.7×10^{-2}	
Т:		0.0	0.010	
Time		0.6 ns	0.019 ns	
		$0.6 \text{ ns} \sim 0.7 \text{ ns}$	0.016 ns	
		$0.7 \text{ ns} \sim 0.8 \text{ ns}$	0.014 ns	
		$0.8 \text{ ns} \sim 0.9 \text{ ns}$	0.013 ns	
		0.9 ns ~ 1.0 ns	0.012 ns	
HV		\pm (1 kV ~ 2 kV)	1.3×10^{-2}	
11 V		$\pm (2 \text{ kV} \sim 4 \text{ kV})$	8.5×10^{-3}	
		$\pm (4 \text{ kV} \sim 5 \text{ kV})$	8.5×10 7.2×10^{-3}	
		$\pm (5 \text{ kV} \sim 7 \text{ kV})$	8.0×10^{-3}	
		$\pm (7 \text{ kV} \sim 9 \text{ kV})$	7.6×10^{-3}	
		\pm (9 kV ~ 15 kV)	7.3×10^{-3}	
		$\pm (15 \text{ kV} \sim 30 \text{ kV})$	7.5×10^{-3}	

406.	Radio	frequency	measurements

Measured Ouantity	Field		Measurement uncertainty	Standard/Method of
Measured Qualitry	rieid	Dongo	(The Confidence	Standard/Method of
Instrument or Gauge	Code	Range	(The Contridence	Massurament atc

THOUTURE OF GAUSE	40014		Level is about 95 %)	CD 40C14
CMC receivers Time Base	40614	10 MHz	0.007 1 Hz	CP-40614
Center Freqeuncy		10 Hz ~ 20 Hz 20 Hz ~ 200 Hz 200 Hz ~ 2 kHz 2 kHz ~ 20 kHz 20 kHz ~ 200 kHz 200 kHz ~ 40 GHz	7.1×10^{-5} 7.1×10^{-6} 7.1×10^{-7} 7.1×10^{-8} 7.1×10^{-9} 7.1×10^{-10}	
Freqeuncy Counter		10 Hz ~ 20 Hz 20 Hz ~ 200 Hz 200 Hz ~ 2 kHz 2 kHz ~ 20 kHz 20 kHz ~ 200 kHz 200 kHz ~ 40 GHz	7.1×10^{-5} 7.1×10^{-6} 7.1×10^{-7} 7.1×10^{-8} 7.1×10^{-9} 7.1×10^{-10}	
Frequency Response		9 kHz ~ 1 GHz 1 GHz ~ 8 GHz 8 GHz ~ 20 GHz 20 GHz ~ 26 GHz 26 GHz ~ 34 GHz 34 GHz ~ 40 GHz	0.15 dB 0.17 dB 0.23 dB 0.25 dB 0.30 dB 0.32 dB	
Scale Fidelity		(0 ~ 100) dB	0.06 dB	
If Frequency Gain		(0 ~ 100) dB	0.06 dB	
Display Average Noise Level		9 kHz ~ 40 GHz	1.0 dB	
RBW		10 Hz ~ 3 MHz	2.4×10^{-3}	
RBW Selectivity		10 Hz ~ 3 MHz	3.1×10^{-3}	
RBW Swiching		10 Hz ~ 3 MHz	0.04 dB	
Frequency Span		1 kHz ~ 20 GHz	1.1×10^{-4}	
Output Frequency		1 MHz ~ 1 GHz	6.1×10^{-8}	
Output Level		9 kHz ~ 1 GHz	0.16 dB	
RF filters Cut off Frequency	40615	5 Hz ~ 10 Hz 10 Hz ~ 100 Hz 100 Hz ~ 1 kHz 1 kHz ~ 10 kHz 10 kHz ~ 100 kHz 100 kHz ~ 1 MHz 1 MHz ~ 10 MHz 10 MHz ~ 100 MHz 100 MHz ~ 1 GHz 1 GHz ~ 10 GHz 10 GHz ~ 20 GHz 20 GHz ~ 30 GHz 30 GHz ~ 40 GHz	1.4 mHz 1.7 mHz 9.3 mHz 93 mHz 0.94 Hz 9.5 Hz 20 Hz 0.20 kHz 1.8 kHz 18 kHz 33 kHz 48 kHz 55 kHz	CP-40615

Measured Quantity Instrument or Gauge	Field Code	Range	Measurement uncertainty (The Confidence Level is about 95 %)	Standard/Method of Measurement etc.
RF filters Insertion Loss	40615	5 Hz ~ 10 MHz 10 MHz ~ 50 MHz 50 MHz ~ 2 GHz 2 GHz ~ 18 GHz 18 GHz ~ 25 GHz 25 GHz ~ 40 GHz	0.15 dB 0.18 dB 0.24 dB 0.26 dB 0.32 dB 0.46 dB	CP-40615
Line impedance stabilization networks; LISN, CDN, ISN, etc. LISN Impedance Insertion Loss Phase CDN Impedance Insertion Loss Phase	40618	9 kHz ~ 1 GHz 9 kHz ~ 1 GHz 9 kHz ~ 1 GHz 9 kHz ~ 230 MHz 9 kHz ~ 230 MHz 9 kHz ~ 230 MHz	0.78 Ω 0.16 dB 0.6° 2.9 Ω 0.16 dB 0.6°	CP-40618
Mobile communication test sets Time Base	40621	10 MHz	0.007 1 Hz	CP-40621
Output Frequency		10 Hz ~ 6 GHz	1.0×10^{-8}	
Output Level		9 kHz ~ 100 kHz (20 ~ 0) dBm (0 ~ -10) dBm (-10 ~ -60) dBm 100 kHz ~ 1 GHz (20 ~ -30)dBm (-30 ~ -60)dBm (-60 ~ -120)dBm	0.23 dB 0.26 dB 0.30 dB 0.23 dB 0.27 dB 0.60 dB	
		1 GHz ~ 6 GHz (20 ~ -30)dBm (-30 ~ -60)dBm (-60 ~ -120)dBm	0.26 dB 0.29 dB 0.61 dB	
Flatness of Output Level		9 kHz ~ 50 MHz 50 MHz ~ 6 GHz	0.16 dB 0.18 dB	
Freqeuncy Modulation		0 kHz ~ 400 kHz	2.5×10^{-2}	
Amplitude Modulation		0 % ~ 100 %	2.5 × 10 ⁻² (상대불확도)	
Phase Modulation		0 rad ~ 400 rad	2.5×10^{-2}	

Distortion of Mudulation	0 % ~ 10 %	1.5 × 10 ⁻² (상대불확도)	
Harmonics	9 kHz ~ 6 GHz	2 dB	
Input Frequuncy	10 Hz ~ 6 GHz	7.1×10^{-8}	

Measured Quantity	Field		Measurement uncertainty	Standard/Method of
Instrument or Gauge	Code	Range	(The Confidence Level is about 95 %)	Measurement etc.
obile communication test sets	40621			CP-40621
Frequency Response		9 kHz ~ 1 GHz	0.15 dB	
		1 GHz ~ 6 GHz	0.17 dB	
Linearity of Input Level		(0 ~ 100) dB	0.06 dB	
AC Input Voltage		10 mV		
		40 Hz ~ 10 kHz	10 μV	
		$10 \text{ kHz} \sim 100 \text{ kHz}$	24 µV	
		(10 mV ~ 100 mV)		
		40 Hz ~ 10 kHz	71 µV	
		10 kHz ~ 100 kHz	73 μV	
		$(1 V \sim 10 V)$		
		40 Hz ~ 100 kHz	7.1 mV	
		(10 V ~ 30 V)		
		$40~\mathrm{Hz}\sim10~\mathrm{kHz}$	0.070 V	
		10 kHz ~ 100 kHz	0.071 V	
AC output Voltage		10 mV		
		$40~\mathrm{Hz}\sim20~\mathrm{kHz}$	20 μV	
		20 kHz ~ 40 kHz	39 µV	
		($10 \text{ mV} \sim 100 \text{ mV}$)		
		$40~\mathrm{Hz}\sim1~\mathrm{kHz}$	0.021 mV	
		$1 \text{ kHz} \sim 20 \text{ kHz}$	0.042 mV	
		20 kHz ~ 40 kHz	0.095 mV	
		($100 \text{ mV} \sim 1 \text{ V}$)		
		$40~\mathrm{Hz}\sim1~\mathrm{kHz}$	0.59 mV	
		$1 \text{ kHz} \sim 20 \text{ kHz}$	0.62 mV	
		20 kHz ~ 40 kHz	0.77 mV	
		(1 V ~ 6 V)		
		40 Hz ~ 1 kHz	1.1 mV	
		1 kHz ~ 20 kHz	1.9 mV	
		20 kHz ~ 40 kHz	5.2 mV	
DC input Voltage		10 mV ~ 100 mV	0.58 mV	
		$0.1~\mathrm{V}\sim1~\mathrm{V}$	0.70 mV	
		$1~\mathrm{V}\sim10~\mathrm{V}$	7.0 mV	

		10 V ~ 30 V	76 mV	
Modulation meters	40622			CP-40622
Frequency Modulation		0 kHz ~ 400 kHz	2.5×10^{-2}	
Amplitude Modulation		0 % ~ 100 %	2.5 × 10 ⁻² (상대불확도)	
Phase Modulation		0 rad ~ 400 rad	2.5×10^{-2}	
Distortion of Modulation		0 % ~ 10 %	1.5 × 10 ⁻² (상대불확도)	

Measured Quantity Instrument or Gauge	Field Code	Range	Measurement uncertainty (The Confidence Level is about 95 %)	Standard/Method of Measurement etc.
Network Analyzer Time base	40623	10 MHz	0.007 1 Hz	CP-40623
Output Frequency		5 Hz ~ 40 GHz	1.0×10^{-8}	
Output Level		9 kHz ~ 100 kHz (20 ~ 0) dBm (0 ~ -10) dBm ($-10 \sim -60$) dBm	0.23 dB 0.26 dB 0.30 dB	
		100 kHz ~ 1 GHz (20 ~ -30)dBm (-30 ~ -60)dBm (-60 ~ -120)dBm	0.23 dB 0.27 dB 0.60 dB	
		1 GHz ~ 18 GHz (20 ~ -30)dBm (-30 ~ -60)dBm (-60 ~ -120)dBm	0.27 dB 0.30 dB 0.61 dB	
Output Level		18 GHz ~ 26 GHz (20 ~ −30)dBm	0.29 dB	
		26 GHz ~ 40 GHz (20 ~ −30)dBm	0.43 dB	
Flatness of Output Level		9 kHz ~ 50 MHz 50 MHz ~ 6 GHz 6 GHz ~ 18 GHz 18 GHz ~ 26 GHz 26 GHz ~ 40 GHz	0.16 dB 0.18 dB 0.20 dB 0.29 dB 0.43 dB	
Dynamic Attenuation		50 MHz ~ 18 GHz (0 ~ 10) dB (10 ~ 20) dB (20 ~ 30) dB	0.08 dB 0.09 dB 0.10 dB	

		$(30 \sim 40) dB$ $(40 \sim 50) dB$ $(50 \sim 60) dB$ $(60 \sim 70) dB$ $(70 \sim 80) dB$	0.11 dB 0.12 dB 0.12 dB 0.13 dB 0.15 dB	
Noise impulse simulators	40626			CP-40626
Peak Voltage		±0.1 kV	6.1×10^{-2}	
		$\pm (0.1 \sim 0.2) \text{ kV}$	3.5×10^{-2}	
		$\pm (0.2 \sim 0.3) \text{ kV}$	2.8×10^{-2}	
		$\pm (0.3 \sim 0.4) \text{ kV}$	2.5×10^{-2}	
		$\pm (0.4 \sim 0.9) \text{ kV}$	2.2×10^{-2}	
		$\pm (0.9 \sim 4) \text{ kV}$	2.0×10^{-2}	
Pulse Width		50 ns	0.013 ns	
		50 ns ~ 500 ns	0.13 ns	
		500 ns ~ 1 μs	0.001 3 µs	

Measured Quantity Instrument or Gauge	Field Code	Range	Measurement uncertainty (The Confidence Level is about 95 %)	Standard/Method of Measurement etc.
RF power meters Power Range	40635	3 μW ~ 100 mW	3.1×10^{-3}	CP-40635
Ref. Power Output		1 mW	14 µW	
High Power Range		100 mW 1.5 MHz ~ 50 MHz 50 MHz ~ 1 GHz	5.5 mW 8.6 mW	
		100 mW ~ 20 W 1.5 MHz ~ 50 MHz 50 MHz ~ 1 GHz	$5.5 \times 10^{-2} \\ 8.6 \times 10^{-2}$	
		20 W ~ 50 W 1.5 MHz ~ 25 MHz 25 MHz ~ 1 GHz	5.5×10^{-2} 5.3×10^{-2}	
		50 W ~ 80 W 80 MHz ~ 1 GHz	5.2×10^{-2}	
		80 W ~ 100 W 80 MHz ~ 400 MHz 400 MHz ~ 1 GHz	$4.6 \times 10^{-2} \\ 5.3 \times 10^{-2}$	
Diode power sensors Cal Factor	40636	1 μW ~ 100 mW 9 kHz ~ 10 MHz 10 MHz ~ 50 MHz 50 MHz ~ 5 GHz	2.1×10^{-2} 2.3×10^{-2} 2.4×10^{-2}	CP-40636

		5 GHz ~ 10 GHz 10 GHz ~ 18 GHz 18 GHz ~ 24 GHz 24 GHz ~ 40 GHz	2.6×10^{-2} 3.0×10^{-2} 3.7×10^{-2} 4.6×10^{-2}	
Thermocouple power sensors Cal Factor	40637	1 μW ~ 100 mW 9 kHz ~ 10 MHz 10 MHz ~ 50 MHz 50 MHz ~ 5 GHz 5 GHz ~ 10 GHz 10 GHz ~ 18 GHz 18 GHz ~ 24 GHz 24 GHz ~ 40 GHz	2.1×10^{-2} 2.3×10^{-2} 2.4×10^{-2} 2.6×10^{-2} 3.0×10^{-2} 3.7×10^{-2} 4.6×10^{-2}	CP-40637
Pulse generators Frequency	40638	1 Hz ~ 200 MHz	7.6×10^{-7}	CP-40638
Output Level		40 Hz 10 mV $(10 \sim 20) \text{ mV}$ $(20 \sim 50) \text{ mV}$ $(50 \sim 100) \text{ mV}$ $(100 \sim 200) \text{ mV}$ $(200 \sim 500) \text{ mV}$ $(0.5 \sim 1) \text{ V}$ $(1 \sim 2) \text{ V}$ $(2 \sim 5) \text{ V}$ $(5 \sim 10) \text{ V}$ $(10 \sim 20) \text{ V}$	$18 \ \mu V$ 9.0×10^{-4} 3.8×10^{-4} 2.2×10^{-4} 3.9×10^{-4} 1.8×10^{-4} 1.3×10^{-4} 1.8×10^{-4} 1.8×10^{-4} 1.3×10^{-4} 3.9×10^{-4} 1.3×10^{-4} 3.9×10^{-4}	

Measured Quantity Instrument or Gauge	Field Code	Range	Measurement uncertainty (The Confidence Level is about 95 %)	Standard/Method of Measurement etc.
Pulse generators	40638			CP-40638
Output Level		40 Hz ∼ 1 kHz		
		10 mV	18 µV	
		$(10 \sim 20) \text{ mV}$	9.0×10^{-4}	
		$(20 \sim 50) \text{ mV}$	3.8×10^{-4}	
		$(50 \sim 100) \text{ mV}$	2.2×10^{-4}	
		$(100 \sim 200) \text{ mV}$	3.9×10^{-4}	
		$(200 \sim 500) \text{ mV}$	1.7×10^{-4}	
		$(0.5 \sim 1) \text{ V}$	1.3×10^{-4}	
		$(1 \sim 2) \text{ V}$	3.9×10^{-4}	
		$(2 \sim 5) \text{ V}$	1.7×10^{-4}	
		$(5 \sim 10) \text{ V}$	1.3×10^{-4}	
		(10 ~ 20) V	3.9×10^{-4}	
		1 kHz ~ 10 kHz		
		10 mV	21 µV	
		$(10 \sim 20) \text{ mV}$	1.2×10^{-3}	
		$(20 \sim 50) \text{ mV}$	5.8×10^{-4}	
		(50 ~ 100) mV	4.2×10^{-4}	
		$(100 \sim 200) \text{ mV}$	5.4×10^{-4}	
		$(200 \sim 500) \text{ mV}$	3.1×10^{-4}	
		$(0.5 \sim 1) \text{ V}$	2.6×10^{-4}	

$(1 \sim 2) \text{ V}$	5.4×10^{-4}	
$(2 \sim 5) \text{ V}$	3.1×10^{-4}	
(5 ~ 10) V	2.6×10^{-4}	
(10 ~ 20) V	5.4×10^{-4}	
10 kHz ~ 20 kHz		
10 mV	21 μV	
$(10 \sim 20) \text{ mV}$	1.2×10^{-3}	
$(20 \sim 50) \text{ mV}$	5.8×10^{-4}	
$(50 \sim 100) \text{ mV}$	4.2×10^{-4}	
(100 ∼ 200) mV	5.5×10^{-4}	
(200 ~ 500) mV	3.3×10^{-4}	
$(0.5 \sim 1) \text{ V}$	2.6×10^{-4}	
$(1 \sim 2) \text{ V}$	5.5×10^{-4}	
$(2 \sim 5) \text{ V}$	3.2×10^{-4}	
$(5 \sim 10) \text{ V}$	2.6×10^{-4}	
(10 ~ 20) V	5.4×10^{-4}	
20 kHz ~ 50 kHz		
10 mV	40 μV	
$(10 \sim 20) \text{ mV}$	2.3×10^{-3}	
$(20 \sim 50) \text{ mV}$	1.3×10^{-3}	
(50 ~ 100) mV	9.5×10^{-4}	
(100 ~ 200) mV	1.6×10^{-3}	
(200 ~ 500) mV	9.4×10^{-4}	
$(0.5 \sim 1) \text{ V}$	7.2×10^{-4}	
$(1 \sim 2) \text{ V}$	1.6×10^{-3}	
$(2 \sim 5) \text{ V}$	9.4×10^{-4}	
$(5 \sim 10) \text{ V}$	7.2×10^{-4}	
(10 ~ 20) V	1.6×10^{-3}	

Measured Quantity Instrument or Gauge	Field Code	Range	Measurement uncertainty (The Confidence Level is about 95 %)	Standard/Method of Measurement etc.
Pulse generators	40638			CP-40638
Output Level		50 kHz ~ 100 kHz		
		10 mV	72 μV	
		$(10 \sim 20) \text{ mV}$	3.8×10^{-3}	
		$(20 \sim 50) \text{ mV}$	1.7×10^{-3}	
		$(50 \sim 100) \text{ mV}$	1.2×10^{-3}	
		(100 ~ 200) mV	1.7×10^{-3}	
		$(200 \sim 500) \text{ mV}$	9.6×10^{-4}	
		$(0.5 \sim 1) \text{ V}$	7.2×10^{-4}	
		$(1 \sim 2) \text{ V}$	1.7×10^{-3}	
		$(2 \sim 5) \text{ V}$	9.4×10^{-4}	
		$(5 \sim 10) \text{ V}$	7.2×10^{-4}	
		$(10 \sim 20) \text{ V}$	1.8×10^{-3}	
Period		1 ns ~ 1 s	1.3×10^{-3}	

Î.	I	1	I	İ
Pulse Width		1 ns ~ 1 s	1.3×10^{-3}	
Delay Time		1 ns ~ 1 s	1.3×10^{-3}	
Double Pulse		1 ns ~ 1 s	1.3×10^{-3}	
Radar test sets Output Frequency	40639	100 kHz ~ 40 GHz	1.0×10^{-8}	CP-40639
Output Level		9 kHz ~ 100 kHz (20 ~ 0) dBm (0 ~ -10) dBm (-10 ~ -60) dBm	0.23 dB 0.26 dB 0.30 dB	
		100 kHz ~ 1 GHz (20 ~ -30)dBm (-30 ~ -60)dBm (-60 ~ -120)dBm	0.23 dB 0.27 dB 0.60 dB	
		1 GHz ~ 18 GHz (20 ~ -30)dBm (-30 ~ -60)dBm (-60 ~ -120)dBm	0.27 dB 0.30 dB 0.61 dB	
Frequency Response		9 kHz ~ 50 MHz 50 MHz ~ 6 GHz 6 GHz ~ 18 GHz	0.16 dB 0.18 dB 0.20 dB	
Frequency Modulation		0 kHz ~ 400 kHz	2.5×10^{-2}	
Amplitude Modulation		0 % ~ 100 %	2.5 × 10 ⁻² (상대 불확도)	
Distortion of Modulation		0 % ~ 10 %	1.5 × 10 ⁻² (상대 불확도)	
Pulse Width		10 ns ~ 10 ms	1.3×10^{-3}	
Input Frequency		100 kHz ~ 18 GHz	8.4×10^{-6}	
Input Level		(0 ~ -80) dB	0.08 dB	

Measured Quantity Instrument or Gauge	Field Code	Range	Measurement uncertainty (The Confidence Level is about 95 %)	Standard/Method of Measurement etc.
Radar test sets High power	40639	100 mW 1.5 MHz ~ 50 MHz 50 MHz ~ 1 GHz	5.5 mW 8.6 mW	CP-40639
		100 mW ~ 20 W 1.5 MHz ~ 50 MHz 50 MHz ~ 1 GHz	5.5×10^{-2} 8.6×10^{-2}	

1	Ì	•	1	ı
		20 W ~ 50 W 1.5 MHz ~ 50 MHz 50 MHz ~ 1 GHz	5.5×10^{-2} 5.3×10^{-2}	
		50 W ~ 80 W 80 MHz ~ 1 GHz	5.2×10^{-4}	
		80 W ~ 100 W 80 MHz ~ 400 MHz 400 MHz ~ 1 GHz	$4.6 \times 10^{-2} \\ 5.3 \times 10^{-2}$	
RF signal generators Time Base	40640	10 MHz	0.007 1 Hz	CP-40640
Frequency		20 Hz ~ 40 GHz	1.0×10^{-8}	
			(Relative Uncertainty)	
Output Level		9 kHz ~ 100 kHz (20 \sim 0) dBm (0 ~ -10) dBm (-10 ~ -60) dBm	0.23 dB 0.26 dB 0.30 dB	
		100 kHz ~ 1 GHz (20 ~ -30) dBm (-30 ~ -60) dBm (-60 ~ -120) dBm	0.23 dB 0.27 dB 0.60 dB	
		1 GHz ~ 18 GHz (20 ~ -30) dBm (-30 ~ -60) dBm (-60 ~ -120) dBm	0.27 dB 0.30 dB 0.61 dB	
		18 GHz ~ 26 GHz (20 ~ -30) dBm	0.29 dB	
		26 GHz ~ 40 GHz (20 ~ -30) dBm	0.43 dB	
Frequency Response		9 kHz ~ 50 MHz 50 MHz ~ 6 GHz 6 GHz ~ 18 GHz 18 GHz ~ 26 GHz 26 GHz ~ 40 GHz	0.16 dB 0.18 dB 0.20 dB 0.29 dB 0.43 dB	
Frequency Modulation		0 kHz ~ 400 kHz	2.5×10^{-2}	
Amplitude Modulation		0 % ~ 100 %	$\begin{array}{c} 2.5 \times 10^{-2} \\ \text{(Relative Uncertainty)} \end{array}$	
Phase Modulation		0 rad ~ 400 rad	2.5×10^{-2}	

Measured Quantity Instrument or Gauge	Field Code	Range	Measurement uncertainty (The Confidence Level is about 95 %)	Standard/Method of Measurement etc.
RF signal generators	40640			CP-40640
Distortion of Modulation		0 % ~ 10 %	1.5×10^{-2}	

			(Relative Uncertainty)	
Hamonics		9 kHz ~ 26.5 GHz	2.0 dB	
RF spectrum analyzers Time Base	40641	10 MHz	0.007 1 Hz	CP-40641
Center Frequency		10 Hz ~ 20 Hz 20 Hz ~ 200 Hz 200 Hz ~ 2 kHz 2 kHz ~ 20 kHz 20 kHz ~ 200 kHz 200 kHz ~ 40 GHz	7.1×10^{-5} 7.1×10^{-6} 7.1×10^{-7} 7.1×10^{-8} 7.1×10^{-9} 7.1×10^{-10}	
Frequency Counter		10 Hz ~ 20 Hz 20 Hz ~ 200 Hz 200 Hz ~ 2 kHz 2 kHz ~ 20 kHz 20 kHz ~ 200 kHz 200 kHz ~ 40 GHz	7.1×10^{-5} 7.1×10^{-6} 7.1×10^{-7} 7.1×10^{-8} 7.1×10^{-9} 7.1×10^{-10}	
Frequency Response		9 kHz ~ 1 GHz 1 GHz ~ 8 GHz 8 GHz ~ 20 GHz 20 GHz ~ 26 GHz 26 GHz ~ 34 GHz 34 GHz ~ 40 GHz	0.15 dB 0.17 dB 0.23 dB 0.25 dB 0.30 dB 0.32 dB	
Scale Fidelity		(0 ~ 100) dB	0.06 dB	
If Frequency Gain		(0 ~ 100) dB	0.06 dB	
Average Noise Level		9 kHz ~ 40 GHz	1.0 dB	
RBW		10 Hz ~ 3 MHz	2.4×10^{-3}	
RBW Selectivity		10 Hz ~ 3 MHz	3.1×10^{-3}	
RBW Switching		10 Hz ~ 3 MHz	0.04 dB	
Frequency Span		1 kHz ~ 20 GHz	1.1×10^{-4}	
Output Frequency		1 MHz ~ 1 GHz	6.1×10^{-8}	
Output Level		9 kHz ~ 1 GHz	0.16 dB	
RF speed guns Speed	40642	(5 ~ 2000) m/s	0.073 m/s	CP-40642
Surge generators Peak Voltage	40643	(-20 ~ 20) kV	3.9×10^{-2}	CP-40643
Front Time		0.1 μs (0.1 ~ 0.4) μs (0.4 ~ 1.2) μs (1.2 ~ 4.0) μs (4.0 ~ 10.0) μs	0.000 77 μ s 2.0 × 10 ⁻³ 1.6 × 10 ⁻³ 7.9 × 10 ⁻⁴ 1.7 × 10 ⁻³	

Measured Quantity Instrument or Gauge	Field Code	Range	Measurement uncertainty (The Confidence Level is about 95 %)	Standard/Method Measurement etc
Surge generators	40643		Bever is assured wy	CP-40643
Duration Time		10 μs	0.069 µs	
		(10 ~ 30) μs	3.5×10^{-3}	
		(30 ~ 50) μs	1.8×10^{-3}	
		(50 ~ 60) μs	2.4×10^{-3}	
		(60 ~ 100) μs	1.6×10^{-3}	
		(100 ~ 200) μs	6.1×10^{-4}	
		(200 ~ 500) μs	2.5×10^{-4}	
		(500 ~ 1 000) μs	1.3×10^{-3}	
Peak Current		(- 5 000 ~ 5 000) A	1.9×10^{-2}	
Front Time		1 μs	0.007 3 µs	
		(1.0 ~ 2.0) μs	3.7×10^{-3}	
		(2.0 ~ 8.0) μs	2.1×10^{-3}	
		(8.0 ~ 10.0) μs	1.5×10^{-3}	
Duration Time		10 μs	0.073 μs	
Daration 11mc		(10 ~ 12) μs	6.1×10^{-3}	
		(12 ~ 24) μs	4.6×10^{-3}	
		(24 ~ 100) μs	4.6×10 2.1×10^{-3}	
SWR meters	40644	(Δ4 100) μS	Z.1 × 10	CP-40644
Time Base		10 MHz	0.007 1 Hz	
Output Frequency		20 Hz ~ 26 GHz	1.0×10^{-8}	
Output Level		9 kHz ~ 100 kHz		
		$(10 \sim 0) \text{ dBm}$	0.23 dB	
		$(0 \sim -10) \text{ dBm}$	0.26 dB	
		$(-10 \sim -30) \text{ dBm}$	0.30 dB	
		100 kHg - 1 CHz		
		100 kHz ~ 1 GHz	0.00 15	
		$(10 \sim -30) \text{ dBm}$	0.23 dB	
		1 GHz ~ 10 GHz		
		($10 \sim -30$) dBm	0.26 dB	
		10 GHz ~ 26 GHz		
		(10 ~ -30) dBm	0.29 dB	
SWR		50 MHz ~ 1 GHz		
SiiK		1.04	0.023	
		1.04	0.023	
		1.50 2.00	0.025 0.042	
		$1 \text{ GHz} \sim 4 \text{ GHz}$		
		1.04	0.023	
		1.20	0.029	
		1.50	0.040	
		2.00	0.070	
		4 GHz ~ 18 GHz		

1.04 1.20	0.031 0.035	
1.50	0.050	
2.00	0.090	

Measured Quantity Instrument or Gauge	Field Code	Range	Measurement uncertainty (The Confidence Level is about 95 %)	Standard/Method o Measurement etc.
RF terminations VSWR	40645	5 Hz ~ 3 GHz 3 GHz ~ 20 GHz 20 GHz ~ 40 GHz	0.008 3 0.015 0.030	CP-40645
Coaxial thermistor mounts Cal Factor	40646	1 μW ~ 100 mW 10 MHz ~ 50 MHz 50 MHz ~ 5 GHz 5 GHz ~ 10 GHz 10 GHz ~ 18 GHz	$2.3\times10^{-2} \\ 2.4\times10^{-2} \\ 2.6\times10^{-2} \\ 2.9\times10^{-2}$	CP-40646
RF voltmeters Voltage	40650	100 kHz 1 mV (1 ~ 10) mV (10 ~ 100) mV (0.1 ~ 1) V (1 ~ 10) V (10 ~ 100) V	0.019 mV 0.025 mV 0.11 mV 0.000 87 V 0.008 7 V 0.088 V	CP-40650
		1 MHz 1 mV (1 ~ 10) mV (10 ~ 100) mV (0.1 ~ 1) V (1 ~ 10) V	0.063 mV 0.083 mV 0.33 mV 0.002 2 V 0.020 V	
Field strength meters	40652			CP-40652
Input Freqeuncy		10 Hz ~ 20 Hz 20 Hz ~ 200 Hz 200 Hz ~ 2 kHz 2 kHz ~ 20 kHz 20 kHz ~ 200 kHz 200 kHz ~ 40 GHz	7.1×10^{-5} 7.1×10^{-6} 7.1×10^{-7} 7.1×10^{-8} 7.1×10^{-9} 7.1×10^{-10}	
Frequency Response		9 kHz ~ 1 GHz 1 GHz ~ 8 GHz 8 GHz ~ 20 GHz 20 GHz ~ 26 GHz 26 GHz ~ 34 GHz 34 GHz ~ 40 GHz	0.15 dB 0.17 dB 0.23 dB 0.25 dB 0.30 dB 0.32 dB	
Scale Fidelity		(0 ~ 100) dB	0.06 dB	
If Frequency Gain		(0 ~ 100) dB	0.06 dB	

Dip simulators	40654			CP-40654
AC Voltage		10 V	0.058 V	
		(10 ~ 50) V	1.2×10^{-3}	
		(50 ~ 100) V	5.9×10^{-4}	
		(100 ~ 150) V	4.8×10^{-4}	
		(150 ~ 250) V	3.7×10^{-4}	
		$(250 \sim 300) V$	3.0×10^{-4}	
		(
Dip up AC Voltage		(0 ~ 120) %	_	
		(0 ~ 240) V	3.1×10^{-2}	
Duration Time		(1 ~ 1 000) ms	1.3×10^{-3}	
Duration Time		(1 1 000) IIIS	1.3 × 10	

407. Field strength & antennas

Measured Quantity Instrument or Gauge	Field Code	Range	Measurement uncertainty (The Confidence Level is about 95 %)	Standard/Method of Measurement etc.
Loop antennas Antenna factor	40704	30 Hz ~ 30 MHz	2.3 dB	CP-40704
molopole antennas Antenna factor	40705	9 kHz ~ 30 MHz	1.8 dB	CP-40705

501. Contact thermometry

Measured Quantity Instrument or Gauge	Field Code	Range	Measurement uncertainty (The Confidence Level is about 95 %)	Standard/Method of Measurement etc.
Temperature generators; ovens, furnaces, isothermal liquid baths, ice-point baths, dry-block	50101			
calibrators				
ovens		(-80 ~ 250) ℃	0.66 ℃	CP-50101-1
Temperature generators		$(-196 \sim 550) \text{ °C}$ $(550 \sim 1 \ 100) \text{ °C}$	0.02 ℃ 0.86 ℃	CP-50101-2
Temperature indicators/recorders	50102			CP-50102
/controllers, temperature calibrators Include Sensor		(−196 ~ 550) ℃	0.08 ℃	
include Sensor		(550 ~ 1 100) ℃	0.95 ℃	
Exclude Sensor(Resistance)		(−196 ~ 550) ℃	0.10 ℃	
(Thermocouple)		(−196 ~ 1 100) °C	0.36 ℃	
Temperature Calibrators				
Resistance(Source)		(−190 ~ 630) ℃	0.18 ℃	CP-40104
TC E		(−196 ~ 1 100) ℃	0.22 ℃	
J		(−196 ~ 1 100) ℃	0.23 ℃	
K		(−196 ~ 1 100) ℃	0.31 ℃	
N		(-196 ~ 1 100) ℃	0.41 ℃	
R		(0 ~ 1 100) ℃	0.74 ℃	
S		(0 ~ 1 100) ℃	0.73 ℃	
В		(600 ~ 1 100) ℃	0.75 ℃	
Т		(-196 ~ 399) ℃	0.31 ℃	
Resistance(Input)		(−190 ~ 630) ℃	0.19 ℃	
TC E		(−196 ~ 1 100) °C	0.19 ℃	
J		(−196 ~ 1 100) °C	0.24 ℃	
K		(−196 ~ 1 100) ℃	0.34 ℃	

N R S B T		$(-196 \sim 1\ 100)\ ^{\circ}$ $(0 \sim 1\ 100)\ ^{\circ}$ $(0 \sim 1\ 100)\ ^{\circ}$ $(600 \sim 1\ 100)\ ^{\circ}$ $(-196 \sim 399)\ ^{\circ}$	0.45 ℃ 0.80 ℃ 0.80 ℃ 0.88 ℃ 0.34 ℃	
Glass thermometers ; liquid- in-glass, Beckmann liquid-in-glass	50103	$(-80 \sim -50)$ °C $(-50 \sim 400)$ °C $(400 \sim 550)$ °C	0.25 ℃ 0.09 ℃ 0.25 ℃	CP-50103
Resistance thermometers ; SPRT, IPRT, thermistors, etc	50104	(−196 ~ 550) ℃	0.05 ℃	CP-50104
Thermal expansion thermometers; bimetal, gas or liquid type bimetal	50105	(-80 ~ 100) ℃ (100 ~ 250) ℃ (250 ~ 550) ℃	0.32 ℃ 0.67 ℃ 1.4 ℃	CP-50105
Thermomecouples; noble metal, base metal, pure metal, special type, etc. Base metal	50106	(-196 ~ 550) ℃ (550 ~ 1 100) ℃	0.66 ℃ 1.3 ℃	CP-50106-1
Noble metal		$(0 \sim 550) ^{\circ}$ $(550 \sim 1 \ 100) ^{\circ}$	1.1 ℃ 1.2 ℃	CP-50106-2

501. Contact thermometry

oor, contact thermometry				
Measured Quantity Instrument or Gauge	Field Code	Range	Measurement uncertainty (The Confidence Level is about 95 %)	Standard/Method of Measurement etc.
Temperature transducers	50107			CP-50107
Temperature		(−196 ~ 550) ℃	0.23 ℃	
		(550 ~ 1 100) ℃	0.96 ℃	

502. non contact thermometry

Measured Quantity Instrument or Gauge	Field Code	Range	Measurement uncertainty (The Confidence Level is about 95 %)	Standard/Method of Measurement etc.
Standard radiation thermometers Temperature	50204	$(0 \sim 100) ^{\circ} ^{\circ} ^{\circ} $ $(100 \sim 200) ^{\circ} ^{\circ} ^{\circ} $ $(200 \sim 500) ^{\circ} ^{\circ} ^{\circ} $ $(500 \sim 800) ^{\circ} ^{\circ} ^{\circ} $ $(800 \sim 1 000) ^{\circ} ^{\circ} ^{\circ} $	1.3 ℃ 1.5 ℃ 1.9 ℃ 2.5 ℃ 2.9 ℃	CP-50204
Blackbody Furnaces	50206	$(0 \sim 100) ^{\circ} ^{\circ} ^{\circ} $ $(100 \sim 200) ^{\circ} ^{\circ} ^{\circ} $ $(200 \sim 500) ^{\circ} ^{\circ} ^{\circ} $ $(500 \sim 800) ^{\circ} ^{\circ} ^{\circ} $ $(800 \sim 1 \ 000) ^{\circ} ^{\circ} ^{\circ} $	1.4 °C 1.6 °C 1.8 °C 2.3 °C 2.7 °C	CP-50206

503. Humidity				
Measured Quantity Instrument or Gauge	Field Code	Range	Measurement uncertainty (The Confidence Level is about 95 %)	Standard/Method of Measurement etc.
Dew-point hygrometers: chilled mirror, alumina thin film, etc.	50301			CP-50301
Dew-point		(-75 ~ -60) ℃dp	0.66°Cdp	
		(-60 ~ 20) ℃dp	0.37 ℃dp	
Relative humidity hygrometers; polimer thinfilm, hair, etc.	50302			
Hair (Relative Humidity)		(4 ~ 20) % R.H. (20 ~ 50) % R.H. (50 ~ 70) % R.H. (70 ~ 90) % R.H. (90 ~ 95) % R.H.	2.4 % R.H. 1.5 % R.H. 1.8 % R.H. 2.3 % R.H. 3.1 % R.H.	CP-50302-1
Polimer thinfilm(Digital hygro meter) (Relative humidity)		(4 ~ 20) % R.H. (20 ~ 50) % R.H. (50 ~ 70) % R.H.	2.4 % R.H. 1.5 % R.H. 1.8 % R.H.	CP-50302-2

		(70 ~ 90) % R.H. (90 ~ 95) % R.H.	2.3 % R.H. 3.1 % R.H.	
(Temperature)		$(-80 \sim 0) ^{\circ} \text{C}$ $(0 \sim 70) ^{\circ} \text{C}$ $(70 \sim 100) ^{\circ} \text{C}$ $(100 \sim 150) ^{\circ} \text{C}$	0.64 ℃ 0.53 ℃ 1.5 ℃ 2.1 ℃	
Psychrometers; assmann ventilated, PRT type, etc.	50303			CP-50303
PRT type(Relative humidity)		$(4 \sim 20) \%$ R.H. $(20 \sim 50) \%$ R.H. $(50 \sim 70) \%$ R.H. $(70 \sim 90) \%$ R.H. $(90 \sim 95) \%$ R.H.	2.7 % R.H. 1.6 % R.H. 2.0 % R.H. 2.5 % R.H. 3.2 % R.H.	
Temperature humidity recorders ; Hygrothermograph, etc.	50304			CP-50304
Relative humidity		(10 ~ 20) % R.H. (20 ~ 50) % R.H. (50 ~ 70) % R.H. (70 ~ 90) % R.H. (90 ~ 95) % R.H.	2.3 % R.H. 1.5 % R.H. 1.8 % R.H. 2.3 % R.H. 3.1 % R.H.	
Temperature		(-20 ~ 50) °C (50 ~ 100) °C	0.47 °C 1.5 °C	
Transducers ; dew-point/ relative humidity	50305			CP-50305
Relative humidity		(4 ~ 20) % R.H. (20 ~ 50) % R.H. (50 ~ 70) % R.H. (70 ~ 90) % R.H. (90 ~ 95) % R.H.	2.4 % R.H. 1.6 % R.H. 1.8 % R.H. 2.4 % R.H. 3.1 % R.H.	

503. Humidity

Measured Quantity Instrument or Gauge	Field Code	Range	Measurement uncertainty (The Confidence Level is about 95 %)	Standard/Method of Measurement etc.
Humidity generators ; two-pressure,	50306			CP-50306
two-temperature, flow mixing humidity				
generator, constant temperature				
and humidity chamber, etc.		$(4 \sim 20) \%$ R.H.	2.6 % R.H.	
		(20 ~ 50) % R.H.	2.7 % R.H.	
Constant Temperature and humidity chamber		$(50 \sim 70) \%$ R.H.	3.5 % R.H.	
(Relative humidity)		(70 ~ 95) % R.H.	4.5 % R.H.	
		(-80 ~ 250) ℃	0.70 ℃	
(Temperature)				

504. Moisture

Measured Quantity Instrument or Gauge	Field Code	Range	Measurement uncertainty (The Confidence Level is about 95 %)	Standard/Method of Measurement etc.
Wood moisture meters	50402	(8 ~ 25) % M.C.	3.5 % M.C.	CP-50402

601. Sound in air

Measured Quantity Instrument or Gauge	Field Code	Range	Measurement uncertainty (The Confidence Level is about 95 %)	Standard/Method of Measurement etc.
Sound level meters	60106	31.5 Hz 63 Hz	0.5 dB 0.4 dB	CP-60107

125 Hz	0.3 dB	
250 Hz	0.2 dB	
500 Hz	0.2 dB	
1 kHz	0.2 dB	
2 kHz	0.2 dB	
4 kHz	0.2 dB	
8 kHz	0.5 dB	
12.5 kHz	0.8 dB	

Measured Quantity Instrument or Gauge	Field Code	Range	Measurement uncertainty (The Confidence Level is about 95 %)	Standard/Method of Measurement etc.
Vibration Calibrators	60301	(20 ~ 1 250) Hz	1.7 %	CP-60301
Vibration transducers acceleration	60302	10 Hz (10 ~ 630) Hz (630 ~ 1 250) Hz (1 250 ~ 2 500) Hz (2 500 ~ 5 000) Hz	1.9 % 1.6 % 2.3 % 2.5 % 2.8 %	CP-60302
Vibration measuring instruments acceleration	60303	10 Hz (10 ~ 20) Hz (20 ~ 630) Hz (630 ~ 1 250) Hz	2.4 % 1.8 % 1.6 % 2.3 %	CP-60303
velocity		10 Hz $(10 \sim 20) \text{ Hz}$ $(20 \sim 160) \text{ Hz}$ $(160 \sim 630) \text{ Hz}$ $(630 \sim 1\ 000) \text{ Hz}$ $(1\ 000 \sim 1\ 250) \text{ Hz}$	2.0 % 1.7 % 1.6 % 1.7 % 2.4 % 2.5 %	
displacement		10 Hz $(10 \sim 20) \text{ Hz}$ $(20 \sim 80) \text{ Hz}$ $(80 \sim 160) \text{ Hz}$ $(160 \sim 315) \text{ Hz}$	2.0 % 1.7 % 1.6 % 1.7 % 2.6 %	

Measured Quantity Instrument or Gauge	Field Code	Range	Measurement uncertainty (The Confidence Level is about 95 %)	Standard/Method of Measurement etc.
Iluminance meters	70101	$(1 \sim 10) \text{ lx}$ $(10 \sim 100) \text{ lx}$ $(100 \sim 1000) \text{ lx}$ $(1000 \sim 3000) \text{ lx}$ $(3000 \sim 5000) \text{ lx}$	3.1 % 2.7 % 2.8 % 2.9 % 3.4 %	CP-70101

901. Chemical analysis

Measured Quantity Instrument or Gauge	Field Code	Range	Measurement uncertainty (The Confidence Level is about 95 %)	Standard/Method of Measurement etc.
Gas analyzers / Carbon Dioxide(CO ₂) Carbon Monoxide(CO) Oxygen(O ₂) Methane(CH ₄) Hydrogen(H ₂) Sulfur Dioxide(SO ₂) Isobutane(i-C ₄ H ₁₀) Nitrogen Monoxide(NO) Propane(C ₃ H ₈) Hydrongen sulfide(H ₂ S)		(0 ~ 5 000) μmol/mol (0.5 ~ 5) cmol/mol (0 ~ 100) μmol/mol (0 ~ 18) cmol/mol (0 ~ 2) cmol/mol (0 ~ 2) cmol/mol (0 ~ 500) μmol/mol (0 ~ 1) cmol/mol (0 ~ 500) μmol/mol (0 ~ 1) cmol/mol (0 ~ 1) cmol/mol (0 ~ 30) μmol/mol	1.7×10^{-2} 1.7×10^{-2} 2.2×10^{-2} 2.0×10^{-2} 1.7×10^{-2} 2.1×10^{-2} 2.2×10^{-2} 2.7×10^{-2} 2.2×10^{-2} 2.4×10^{-2} 4.9×10^{-2}	CP-90103
Exhaust gas test instrument / Oxygen(O2) Carbon Dioxide(CO2) Sulfur Dioxide(SO2) Nitrogen Monoxide(NO) Propane(C3H8) Carbon Monoxide(CO)	90104	(0 ~ 18) cmol/mol (0 ~ 5) cmol/mol (0 ~ 1 000) μmol/mol (0 ~ 1 000) μmol/mol (0 ~ 1) cmol/mol (0 ~ 1 000) μmol/mol	2.0×10^{-2} 1.6×10^{-2} 2.2×10^{-2} 2.2×10^{-2} 2.4×10^{-2} 2.2×10^{-2}	CP-90104