Ηλεκτρολογικό Σχέδιο

ΕΞΑΜΗΝΙΑΙΑ ΕΡΓΑΣΙΑ

ΠΑΠΑΔΟΠΟΥΛΟΣ ΧΑΡΑΛΑΜΠΟΣ - 03120199

Ανάλυση των πινάκων:

Για τον υποπίνακα του Υπογείου (Π3):

- Α1: Γραμμή φωτιστικών:
 Έχουμε μόνο ένα απλό φωτιστικό οροφής, οπότε 0,5Α
- Α2: Γραμμή ρευματοδοτών:
 Έχουμε 2 ρευματοδότες, οπότε 2 * 2 = 4A

Οπότε,

Υπογείου (Π3)	lb	In	I _n Αποζεύκτη	S	Σωληνας	Μήκος	Πτώση Τάσης
A1	0,5	10	1	3 * 1,5	13,5	5,21	0,3196
A2	A2 4 16 -		3 * 2,5	16	9,67	4,3322	
Σύνολο	4,5	20	(2p)25	3*4	20	-	-

Για την πτώση τάσης χρησιμοποιήσαμε τον τύπο $u=b\left(\rho_1*\frac{L}{S}*cos\varphi+\lambda*L*sin\varphi\right)*I_b.$

Αναφορικά με το b, θεωρήσαμε b=2 καθώς χρησιμοποιούμε μία μόνο φάση.

Θεωρήσαμε $cos \varphi = 0.8 sin \varphi = 0.6$

Όσον αφορά την αναχώρηση:

Βρίσκουμε KVA = 15 * 230 = 3,45kVA, το οποίο σημαίνει ότι μπορούμε να χρησιμοποιήσουμε μόνο μία φάση και δεν χρειάζεται διαχωρισμός.

Μέγιστο φορτίο: $I_b = 4.5A$

Άρα,

20A MCB

Αποζεύκτης 25Α

ΔΔΡ τύπου Α με ονομαστικό διαφορικό ρεύμα λειτουργίας 30mA και ονομαστικό ρεύμα ίσο με του αποζεύκτη 25A

Οι αγωγοί θα έχουν διατομή 3*4mm και ο σωλήνας διάμετρο $20mm^2$

Για τον υποπίνακα του Ισογείου (Π2):

- Α1: Γραμμή φωτιστικών: Έχουμε 5 απλά φωτιστικά (3 στον χώρο και 2 στο κλιμακοστάσιο), οπότε 5*0.5=2.5A.
- Α2: Γραμμή ρευματοδοτών:
 Έχουμε 4 ρευματοδότες, οπότε 3 * 2 + 1 * 0,5 = 6,5A.
- Α3: Γραμμή ρευματοδοτών:
 Έχουμε 3 ρευματοδότες, οπότε 3 * 2 = 6A.
 Οπότε,

Ισογείου (Π2)	I _b	In	I _n Αποζεύκτη	S	Σωληνας	Μήκος	Πτώση Τάσης	
A1	2,5	10	-	3*1,5	13,5	41,85	4,0404	
A2	6,5	16	-	3*2,5	16	15,4	5,83856	
А3	6	16	-	3*4	16	37,33	11,19888	
Σύνολο	15	20	(2p)25	3*4	20	-	-	

Για την πτώση τάσης χρησιμοποιήσαμε τον τύπο $u = b\left(\rho_1 * \frac{L}{S} * cos \varphi + \lambda * L * sin \varphi\right) * I_b$.

Αναφορικά με το b, θεωρήσαμε b=1 καθώς έχουμε τριφασική παροχή, χωρίς διαχωρισμό φάσεων.

Θεωρήσαμε $cos \varphi = 0.8 sin \varphi = 0.6$

Στην γραμμή A3 θεωρήσαμε αρχικά $S=2,5mm^2$, όμως έτσι η τιμή ξέφευγε από τα αποδεκτά όρια, οπότε χρησιμοποιήσαμε $4mm^2$.

Μέγιστο φορτίο: $I_b = 15A$

Άρα,

20A MCB

Αποζεύκτης 25Α

ΔΔΡ τύπου Α με ονομαστικό διαφορικό ρεύμα λειτουργίας 30mA και ονομαστικό ρεύμα ίσο με του αποζεύκτη 25A

Οι αγωγοί θα έχουν διατομή 3*4mm και ο σωλήνας διάμετρο $20mm^2$

Για τον γενικό πίνακα:

- Α1: Αναχώρηση υποπίνακα ισογείου (Π2).
- Α2: Αναχώρηση υποπίνακα υπογείου (Π3).
- Α3: Γραμμή φωτιστικών Σαλονιού, Κουζίνας, Βεράντας και Μπαλκονιού. Έχουμε 2 πολύφωτα και 6 απλά φωτιστικά, οπότε 6*0.5+2*2=7A
- Α4: Γραμμή φωτιστικών Υπνοδωματίων, Μπάνιου και Χολ. Έχουμε 4 απλά φωτιστικά, οπότε 4*0.5=2A
- Α5: Γραμμή ρευματοδοτών Σαλονιού και Μπαλκονιού.
 Έχουμε συνολικά 6 ρευματοδότες, οπότε 3 * 2 + 3 * 0,5 = 7,5A.
- Α6: Γραμμή ρευματοδοτών Υπνοδωματίου 2 και Βεράντας. Έχουμε συνολικά 6 ρευματοδότες, οπότε 3*2+3*0,5=7,5A.
- Α7: Γραμμή ρευματοδοτών Κουζίνας.
 Έχουμε συνολικά 4 ρευματοδότες, οπότε 3 * 2 + 1 * 0,5 = 6,5A.
- Α8: Γραμμή ρευματοδοτών Υπνοδωματίου 1 και Χολ.
 Έχουμε συνολικά 5 ρευματοδότες, οπότε 3 * 2 + 2 * 0,5 = 6,5A.
- Α9: Γραμμή ηλεκτρικής μονοφασικής κουζίνας.
 Εφόσον δεν γνωρίζουμε την ισχύ της κουζίνας, θεωρούμε την τυποποιημένη τιμή 25Α.
- Α10: Γραμμή ενισχυμένου ρευματοδότη για ψυγείο.
 Εφόσον δεν γνωρίζουμε την ισχύ του ψυγείου, θεωρούμε την τυποποιημένη τιμή 16A.
- Α11: Γραμμή ενισχυμένου ρευματοδότη για πλυντήριο πιάτων.
 Εφόσον δεν γνωρίζουμε την ισχύ του πλυντηρίου πιάτων, θεωρούμε την τυποποιημένη τιμή 16Α.
- Α12: Γραμμή ενισχυμένου ρευματοδότη για κλιματιστικό.
 Θεωρούμε κλιματιστικό 12.000btu, οπότε 20Α.
- Α13: Γραμμή ενισχυμένου ρευματοδότη για κλιματιστικό.
 Θεωρούμε κλιματιστικό 9.000btu, οπότε 16A.

- Α14: Γραμμή ενισχυμένου ρευματοδότη για κλιματιστικό.
 Θεωρούμε κλιματιστικό 9.000btu, οπότε 16Α.
- Α15: Γραμμή μονοφασικού θερμοσίφωνα.
 Εφόσον δεν γνωρίζουμε την ισχύ του θερμοσίφωνα, θεωρούμε την τυποποιημένη τιμή
 25A.
- Α16: Γραμμή ενισχυμένου ρευματοδότη πλυντηρίου ρούχων.
 Εφόσον δεν γνωρίζουμε την ισχύ του πλυντηρίου ρούχων, θεωρούμε την τυποποιημένη τιμή 16Α.

Οπότε,

Γενικός (Π1)	l _b	In	I _n Αποζεύκτη	S	Σωληνας	L ₁	L ₂	L ₃	Μήκος	Πτώση Τάσης
A1	15	20	25	5*2,5	16		15		3	0,3622
A2	4,5	20	25	5*2,5	16			4,5	6	0,2173
А3	7	10	-	3*1,5	13,5		7		43	8,0556
A4	2	10	-	3*1,5	13,5			2	37,37	2,0002
A5	7,5	16	-	3*2,5	16	7,5			22,34	2,6969
A6	7,5	16	-	3*2,5	16		7,5		26,43	3,1906
A7	6,5	16	-	3*2,5	16			6,5	19,91	2,0831
A8	7	16	-	3*2,5	16			7	34,99	3,9424
A9		25	(2p)32	3*6	20	25			8,22	8,9583
A10		16	-	3*2,5	16			16	6,59	1,6972
A11		16	-	3*2,5	16			16	8,57	2,2071
A12		20	-	3*4	20	20			6,43	1,2983
A13		16	-	3*2,5	16		16		16,09	4,1438
A14		16	-	3*2,5	16			16	6,81	1,7538
A15		20	(2p)25	3*4	20		20		21,32	4,3049
A16		16	-	3*2,5	16	16			20,58	5,3001
Σύνολο		3*63	(4p) 63	5*16	32	68,5	50,5	63,5	-	1

Για την πτώση τάσης χρησιμοποιήσαμε τον τύπο $u = b\left(\rho_1 * \frac{L}{S} * cos \varphi + \lambda * L * sin \varphi\right) * I_b$.

Αναφορικά με το b, θεωρήσαμε b=2 για όλες τις γραμμές καθώς έχουμε διαχωρισμό φάσεων, με εξαίρεση μόνο τις αναχωρήσεις των πινάκων όπου b=1.

Με εξαίρεση την κουζίνα και τον θερμοσίφωνα (όπου $cos \varphi=1$), θεωρήσαμε $cos \varphi=0.8 \ sin \varphi=0.6$

Για τον υπολογισμό της γενικής αναχώρησης λαμβάνουμε την μεγαλύτερη τιμή από τις 3 φάσεις, δηλαδή τα 80,5Α. Στην τιμή αυτή πρέπει να χρησιμοποιήσουμε συντελεστή ετεροχρονισμού 0,75. Πρώτα όμως θα αφαιρέσω την ένταση των ρευματοδοτών αφού εκεί έχει υπολογιστεί ήδη ο ετεροχρονισμός.

Οπότε,

$$68,5 - 7,5 = 61A$$

$$61 * 0.75 = 45.75$$

$$45.75 + 7,5 = 53.25A$$

Οπότε θα χρειαστούμε 3 ασφάλειες τήξεως 63A, αποζεύκτη φορτίου 63A και ΔΔΡ τύπου A, με ονομαστικό διαφορικό ρεύμα λειτουργίας 30mA και ονομαστικό ρεύμα 63A. Οι πέντε αγωγοί θα έχουν διάμετρο $5*16~mm^2$ και ο σωλήνας διάμετρο 23mm.

Δεν απαιτείται χρήση SPDs, καθώς δεχόμαστε το γεγονός ότι το διαμέρισμα βρίσκεται σε περιοχή όπου η MT και η XT είναι με υπόγεια καλώδια.

Μελέτη Διακινδύνευσης:

Θα διεκπεραιώσουμε μια μελέτη διακινδύνευσης για μια κατοικία στην Πάτρα.

Από τον Μετεωρολογικό Χάρτη βλέπουμε πως $T_d=25=>N_g=2$,5.

Επίσης, $f_{env} = 850$.

Μήκος αξιολόγησης σε km διακινδύνευσης $L_p = 2 * 0.199 = 0.398 km$.

Κρίσιμο επίπεδο κινδύνου $\mathit{CRL} = \frac{f_{env}}{L_p*N_g} = 824,\!12 < 1000.$

Οπότε, χρειάζεται εγκατάσταση διάταξης προστασίας έναντι μεταβατικής υπέρτασης. Το υπό μελέτη κτίριο δεν διαθέτει σύστημα αντικεραυνικής προστασίας και έχει σύστημα γείωσης TN.

Επιλέγουμε SPD κατηγορίας Π τύπου CT1, διαμόρφωση 4+0, ονομαστικού ρεύματος εκφόρτισης 10KA.