TRIGONOMETRY Chapter 07

Razones trigonométricas de un ángulo en posición normal II

Divide las dificultades que examinas en tantas partes como sea posible para su mejor solución.

René Descartes 1596 - 1650

<u>ÁNGULOS CUADRANTALES</u>

Son aquellos ángulos trigonométricos cuyo lado final se encuentra sobre algún semieje, por tal razón no pertenecen a cuadrante alguno

Podemos decir: Que es todo ángulo múltiplo del ángulo recto, por consiguiente

RAZONES TRIGONOMÉTRICAS DE ÁNGULOS CUADRANTALES

RT ⊀	0°	90°	180°	270°	360°
sen	0	1	0	-1	0
cos	1	0	-1	0	1
tan	0	ND	0	ND	0
cot	ND	0	ND	0	ND
sec	1	ND	-1	ND	1
csc	ND	1	ND	-1	ND

OBSERVACIÓN:

Si α es un ángulo cuadrantal

 $sen\alpha = \{ -1; 0; 1 \}$

 $cos\alpha = \{ -1; 0; 1 \}$

 $tan\alpha = 0$

 $cot\alpha = 0$

N.D: No Determinado

SIGNO DE LAS RAZONES TRIGONOMÉTRICAS EN LOS CUADRANTES

Regla práctica:

OBSERVACIÓN

Si
$$0^{\circ} < \alpha < 90^{\circ}$$
 \Rightarrow $\alpha \in IC$

Si
$$90^{\circ} < \alpha < 180^{\circ} \Rightarrow \alpha \in IIC$$

Si
$$180^{\circ} < \alpha < 270^{\circ} \implies \alpha \in IIIC$$

Si
$$270^{\circ} < \alpha < 360^{\circ} \Rightarrow \alpha \in IVC$$

ÁNGULOS COTERMINALES

Son aquellos ángulos trigonométricos que tienen el mismo lado inicial, lado final y vértice.

en

θ son las medidas de los ángulos coterminales en el mismo sentido.

Siendo α y θ las medidas de dos ángulos coterminales, se cumple.

I.
$$\alpha - \theta = 360^{\circ} n$$
; $n \in \mathbb{Z}$

II. Rt
$$(\alpha)$$
 = Rt (θ)

In Siendo θ y β ángulos cuadrantales diferentes, positivos y menores o iguales a 360°, se cumple que $\sqrt{1-\cos\theta}+\sqrt{\cos\theta-1}=1+\sin\beta$... (*) calcule θ + β.

RESOLUCIÓN

$$1 - \cos\theta \ge 0 \quad \land \quad \cos\theta - 1 \ge 0$$

$$\cos\theta \le 1 \quad \land \quad \cos\theta \ge 1$$

$$\cos\theta = 1$$

$$\theta = \{0^\circ; 360^\circ\}, \text{ como } 0^\circ < \theta \le 360^\circ$$

$$\theta = 360^\circ$$

REEMPLAZANDO EN (*)

$$\sqrt{1-\cos\theta} + \sqrt{\cos\theta} - 1 = 1 + \sin\beta$$

$$0 \qquad 0$$

$$-1 = \sin\beta \qquad \beta = 270^{\circ}$$

2. Siendo los ángulos α y θ ángulos cuadrantales, positivos y menores a una vuelta, tal que se cumple sen α + tan θ = – 1, efectúe

$$F = \frac{\operatorname{sen}\left(\frac{\alpha}{3}\right) + \cos\left(\frac{\theta}{2}\right)}{\csc(\alpha - \theta)}$$

Recordar:

RT	0°	90°	180°	270°	360°
sen	0	1	0	-1	0
cos	1	0	-1	0	1
tan	0	ND	0	ND	0

RESOLUCIÓN

Como 0° <
$$\alpha$$
 y θ < 360° y $\frac{\sin \alpha}{1} + \frac{\tan \theta}{1} = -1$

Reemplazando en F:

$$F = \frac{\text{sen}90^{\circ} + \text{cos}90^{\circ}}{\text{csc}90^{\circ}}$$

$$F = \frac{1+0}{1}$$

$$\theta = 180^{\circ}$$

$$\Rightarrow$$
 $\alpha = 270^{\circ}$

3. Siendo θ un ángulo positivo y menor a una vuelta se cumple

 $tan\theta . sen120^{\circ} < 0$ $cos\theta . tan300^{\circ} > 0$

Indique el signo de sen2θ

RESOLUCIÓN

$$tan\theta$$
 $sen120^{\circ} < 0$

$$\theta \in IIC \lor \theta \in IVC$$

$$\cos\theta$$
 $\tan 300^{\circ} > 0$

Recordar:

4. El profesor de matemática pide a sus alumnos que indiquen el cuadrante al cual pertenece el ángulo θ que cumple

 $sen\theta$. $\sqrt{tan\theta} + cot\theta < 0$

Los alumnos respondieron:

Andrea: $\theta \in IC$

Fernando: $\theta \in IIC$

Carlos: $\theta \in IIIC$

Daniela: $\theta \in IVC$

¿ Quién dio la respuesta

correcta?

(+)

5. El código de una caja fuerte está dado por un número de tres cifras, las cuales son

$$a = 9sec0^{\circ} - sen90^{\circ} + tan360^{\circ}$$

$$b = 5\tan 45^{\circ} - 3\cos 180^{\circ} + \cos 0^{\circ}$$

$$c = \cos 90^{\circ} - 9\csc 270^{\circ} - 2\sec 60^{\circ}$$

Efectúe las operaciones, ordena en **forma decreciente** y averigüe dicho código.

RESOLUCIÓN

Recordar

RT [∢]	0°	90°	180°	270°	360°
sen	0	1	0	-1	0
cos	1	0	-1	0	1
tan	0	ND	0	ND	0
cot	ND	0	ND	0	ND
sec	1	ND	-1	ND	1
csc	ND	1	ND	-1	ND

$$a = 9(1) - 1 + 0 \rightarrow a = 8$$

$$b = 5(1) - 3(-1) + 1 \rightarrow b = 9$$

$$c = (0) - 9(-1) - 2(2) \rightarrow c = 5$$

Ordenando en forma decreciente: 985

El código será: 985

6.En la figura, se cumple que tanα.tan β + senα.csc β = 5. Calcule tan α

Del gráfico se observa que α y β son las medidas de dos ángulos coterminales, luego se cumple :

Rt (
$$\alpha$$
)= Rt(β)

Del dato:

$$tan\alpha.tan\beta + sen\alpha.csc\beta = 5$$

 $tan\alpha.tan\alpha + sen\alpha.csc\alpha = 5$
 $tan^2\alpha + 1 = 5$

$$\tan^2 \alpha = 4$$
 \Rightarrow $\tan \alpha = \pm 2$

Como $\alpha \in IVC$

$$\tan \alpha = -2$$

7. La secretaria del colegio RESOLUCIÓN tiene actualmente K años; para averiguar su edad, ! ella dice que para los ángulos α y θ coterminales $\rightarrow x = -\sqrt{5}$, r = 3del segundo cuadrante se cumple:

$$\cos\alpha = -\frac{\sqrt{5}}{3} \qquad \text{y} \quad \csc\theta = \frac{4\text{K} - 10}{2\text{K} + 10}$$

¿Cuál será la edad de la secretaria dentro de 5 años?

$$\cos\alpha = \frac{-\sqrt{5}}{3} = \frac{x}{r}$$

$$\rightarrow$$
 $x = -\sqrt{5}$, $r = 3$

Sabemos:

$$r = \sqrt{x^2 + y^2}$$
$$3 = \sqrt{(-\sqrt{5})^2 + y^2}$$

$$\rightarrow y = \pm 2$$

Como $\alpha \in IIC$

$$\rightarrow$$
 y = 2

Luego:

$$\csc\alpha = \csc\theta = \frac{3}{2}$$

$$\csc\theta = \frac{4K - 10}{2K + 10} = \frac{3}{2}$$

$$2(4K - 10) = 3(2K + 10)$$

 $K = 25$

Dentro de 5 años la secretaria tendrá 30 años