Physics 415 - Lecture 2

January 24, 2025

Summary: Binomial Distribution

The binomial distribution gives the likelihood that an event with probability p occurs n times in N independent trials:

$$P_N(n) = \binom{N}{n} p^n q^{N-n} = \frac{N!}{n!(N-n)!} p^n (1-p)^{N-n}$$

where q = 1 - p.

- Mean: $\overline{n} = Np$
- Variance: $\sigma_n^2 = \overline{n^2} (\overline{n})^2 = Npq$
- Relative width (RMS deviation / mean): $\frac{\Delta n_{rms}}{\overline{n}} = \frac{\sqrt{Npq}}{Np} = \sqrt{\frac{q}{p}} \frac{1}{\sqrt{N}}$

Important regime to understand is $N \gg 1$.

Gaussian Approximation to Binomial Distribution $(N \gg 1)$

It is convenient to work with $\ln P_N(n)$:

$$\ln P_N(n) = \ln N! - \ln n! - \ln(N - n)! + n \ln p + (N - n) \ln q$$

For $N \gg 1$, we use Stirling's formula (see Reif App. A.6 for derivation):

$$N! \approx \sqrt{2\pi N} \left(\frac{N}{e}\right)^N \quad (N \gg 1)$$

or more conveniently for logarithms:

$$\ln N! \approx N \ln N - N + \frac{1}{2} \ln(2\pi N)$$

Applying this to $\ln N!$, $\ln n!$, and $\ln (N-n)!$ (assuming $n \gg 1$ and $N-n \gg 1$):

$$\ln P_N(n) \approx \left(N \ln N - N + \frac{1}{2} \ln(2\pi N) \right)$$

$$- \left(n \ln n - n + \frac{1}{2} \ln(2\pi n) \right)$$

$$- \left((N - n) \ln(N - n) - (N - n) + \frac{1}{2} \ln(2\pi(N - n)) \right)$$

$$+ n \ln p + (N - n) \ln q$$

Grouping terms:

$$\ln P_N(n) \approx \frac{1}{2} \ln \left(\frac{2\pi N}{2\pi n \cdot 2\pi (N-n)} \right) + N \ln N - n \ln n - (N-n) \ln (N-n) + n \ln p + (N-n) \ln q$$

Let x = n/N. Then n = Nx and N - n = N(1 - x).

$$\ln P_N(n) \approx \frac{1}{2} \ln \left(\frac{N}{2\pi n(N-n)} \right)$$

$$+ N \ln N - Nx \ln(Nx) - N(1-x) \ln(N(1-x))$$

$$+ Nx \ln p + N(1-x) \ln q$$

$$\ln P_N(n) \approx \frac{1}{2} \ln \left(\frac{N}{2\pi n(N-n)} \right) + N \ln N - Nx(\ln N + \ln x) - N(1-x)(\ln N + \ln(1-x)) + Nx \ln p + N(1-x) \ln q$$

$$\ln P_N(n) \approx \frac{1}{2} \ln \left(\frac{N}{2\pi n(N-n)} \right) + (N - Nx - N(1-x)) \ln N - N[x \ln x + (1-x) \ln(1-x)] + N[x \ln p + (1-x) \ln q]$$

The $\ln N$ terms cancel. Let $f(x) = [x \ln x + (1-x) \ln (1-x)] - [x \ln p + (1-x) \ln q]$. Then $\ln P_N(n) \approx \frac{1}{2} \ln \left[\frac{N}{2\pi n(N-n)} \right] - N f(n/N)$.

$$\implies P_N(n) \approx \sqrt{\frac{N}{2\pi n(N-n)}} e^{-Nf(n/N)} \quad (\text{for } n \gg 1, N-n \gg 1)$$

For N large, $P_N(n)$ will be sharply peaked near its maximum at $n = \tilde{n}$. We seek an approximation for $P_N(n)$ near $n = \tilde{n}$.

The maximum of $P_N(n)$ corresponds to the minimum of f(x). We find the minimum by setting $f'(x) = \frac{\mathrm{d}f}{\mathrm{d}x} = 0$.

$$f'(x) = [\ln x + 1 - \ln(1 - x) - 1] - [\ln p - \ln q] = \ln\left(\frac{x}{1 - x}\right) - \ln\left(\frac{p}{q}\right) = \ln\left(\frac{qx}{p(1 - x)}\right)$$

Setting $f'(\tilde{x}) = 0 \implies \frac{q\tilde{x}}{p(1-\tilde{x})} = 1 \implies q\tilde{x} = p(1-\tilde{x}) \implies (q+p)\tilde{x} = p \implies \tilde{x} = p$. So the peak occurs at $\tilde{x} = \tilde{n}/N = p \implies \tilde{n} = Np$, which is the mean value.

Now expand f(x) about $x = \tilde{x} = p$:

$$f(x) \approx f(\tilde{x}) + f'(\tilde{x})(x - \tilde{x}) + \frac{1}{2}f''(\tilde{x})(x - \tilde{x})^2$$

We have $f'(\tilde{x}) = 0$.

$$f(\tilde{x}) = p \ln p + q \ln q - (p \ln p + q \ln q) = 0$$

We need the second derivative:

$$f''(x) = \frac{\mathrm{d}}{\mathrm{d}x} \ln\left(\frac{qx}{p(1-x)}\right) = \frac{p(1-x)}{qx} \cdot \frac{qp(1-x) - qx(-p)}{(p(1-x))^2} = \frac{p(1-x)}{qx} \cdot \frac{pq}{(p(1-x))^2} = \frac{q}{x(1-x)p}$$

$$f''(x) = \frac{\mathrm{d}}{\mathrm{d}x} \left(\ln x - \ln(1-x) - (\ln p - \ln q)\right) = \frac{1}{x} - \frac{1}{1-x}(-1) = \frac{1}{x} + \frac{1}{1-x} = \frac{1}{x(1-x)}$$
At $x = \tilde{x} = p$: $f''(p) = \frac{1}{p(1-p)} = \frac{1}{pq}$.

So, $f(x) \approx \frac{1}{2} f''(p) (x-p)^2 = \frac{1}{2pq} (n/N-p)^2 = \frac{(n-Np)^2}{2N^2pq}$. The exponent becomes $-Nf(n/N) \approx -N\frac{(n-Np)^2}{2N^2pq} = -\frac{(n-Np)^2}{2Npq}$.

$$\implies P_N(n) \approx \sqrt{\frac{N}{2\pi n(N-n)}} e^{-\frac{(n-Np)^2}{2Npq}}$$

Finally, because the exponential factor is sharply peaked at $n = \tilde{n} = Np$, we may approximate the n dependence in the prefactor by replacing n with $\tilde{n} = Np$ and N - n with $N - \tilde{n} = Nq$:

$$n(N-n) \approx (Np)(Nq) = N^2pq$$

$$\sqrt{\frac{N}{2\pi n(N-n)}} \approx \sqrt{\frac{N}{2\pi N^2 pq}} = \sqrt{\frac{1}{2\pi N pq}} = \frac{1}{\sqrt{2\pi\sigma_n^2}}$$

where $\sigma_n^2 = Npq$ is the variance. Thus, the Gaussian approximation to the binomial distribution for $N \gg 1$ is:

$$P_N(n) pprox rac{1}{\sqrt{2\pi Npq}} e^{-rac{(n-Np)^2}{2Npq}}$$

This can be written as:

$$P_N(n) pprox rac{1}{\sqrt{2\pi\sigma^2}} e^{-rac{(n-\mu)^2}{2\sigma^2}}$$

where $\mu = Np$ (mean) and $\sigma^2 = Npq$ (variance). This is the Gaussian (or Normal) distribution. This result is an example of the "central limit theorem".

The Gaussian distribution can be shown to be properly normalized when treated as a continuous distribution (replacing sum by integral for large N):

$$\sum_{n=0}^{N} P_N(n) \approx \int_{-\infty}^{\infty} \mathrm{d}n P_N(n) = \int_{-\infty}^{\infty} \mathrm{d}n \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(n-\mu)^2}{2\sigma^2}} = 1$$

(See Section 1 of notes for Gaussian integrals).

Distributions with Multiple Variables

Consider two random variables u and v (generalization to more variables is straightforward).

- Possible values: $\{u_i\}, i = 1, ..., M; \{v_i\}, j = 1, ..., L.$
- Joint probability: $P(u_i, v_j) = \text{prob that } u = u_i \text{ and } v = v_j$.
- Normalization: $\sum_{i=1}^{M} \sum_{j=1}^{L} P(u_i, v_j) = 1$.
- "Unconditional" probability distributions (marginal distributions):
 - $-P_u(u_i) = \sum_{i=1}^{L} P(u_i, v_i) = \text{prob } u = u_i, \text{ irrespective of } v.$
 - $-P_v(v_j) = \sum_{i=1}^M P(u_i, v_j) = \text{prob } v = v_j, \text{ irrespective of } u.$

Statistical Independence

An important special case is when the probability that one variable assumes a certain value is independent of the value assumed by the other variable. The variables are "statistically independent" or "uncorrelated". In this case:

$$P(u_i, v_j) = P_u(u_i)P_v(v_j)$$
 (for statistically independent u, v)

Mean Values

The mean of a function F(u, v) is:

$$\overline{F(u,v)} = \sum_{i=1}^{M} \sum_{j=1}^{L} P(u_i, v_j) F(u_i, v_j)$$

A special case is the mean of a product $f(u) \times g(v)$ when u and v are statistically independent:

$$\overline{f(u)g(v)} = \sum_{i,j} P(u_i, v_j) f(u_i) g(v_j)$$

$$= \sum_{i,j} P_u(u_i) P_v(v_j) f(u_i) g(v_j) \quad \text{(using independence)}$$

$$= \left(\sum_{i=1}^M P_u(u_i) f(u_i) \right) \times \left(\sum_{j=1}^L P_v(v_j) g(v_j) \right)$$

$$= \overline{f(u)} \times \overline{g(v)}$$

$$\implies \overline{f(u)g(v)} = \overline{f(u)} \times \overline{g(v)} \quad \text{if } u, v \text{ are statistically independent}$$

 $\implies f(u)g(v) = f(u) \times g(v)$ if u, v are statistically independent

The average "factorizes". (This is not true in general!)

Continuous Probability Distributions

We will often encounter "continuous" probability distributions, where a random variable X can assume a continuous range of values, e.g., $a_1 < x < a_2$. Example: Gaussian distribution $\mathcal{P}(()x) = \frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$ for $-\infty < x < \infty$.

For a continuous distribution, it does not make sense to consider the probability of X taking any particular value (which would be vanishingly small). Rather, we consider the probability that the random variable lies in a small range between x and x + dx.

- $\mathcal{P}(()x)dx = \text{probability to find the random variable in the range } (x, x + dx).$
- $\mathcal{P}(()x)$ is the "probability density".
- Normalization: $\int_{a_1}^{a_2} dx \mathcal{P}(()x) = 1$. (cf. $\sum P(x_i) = 1$)
- Mean of a function f(x): $\overline{f(x)} = \int_{a_1}^{a_2} \mathrm{d}x \mathcal{P}((x)) f(x)$. (cf. $\overline{f(x)} = \sum P(x_i) f(x_i)$)

Examples of important continuous probability distributions:

- Gaussian: $\mathcal{P}(()x) = \frac{1}{\sqrt{2\pi\sigma^2}}e^{-(x-\mu)^2/(2\sigma^2)}$
- Dirac delta: $\mathcal{P}(()x) = \delta(x x_0)$
- Lorentzian: $\mathcal{P}(()x) = \frac{1}{\pi} \frac{\gamma}{\gamma^2 + (x x_0)^2}$

Transformation of Continuous Distributions

For continuous probability distributions, it's important to know how to transform from one random variable x to another random variable y = f(x). That is, given the distribution $\mathcal{P}(y(x), y(x))$ what is the distribution $\mathcal{P}(y(y), y(x))$ of y = f(x)?

Consider the probability conservation: the probability that y falls in the range (y, y + dy) must be equal to the probability that x falls in the corresponding range(s) $(x_i, x_i + dx_i)$. In general, there may be multiple points x_i such that $y = f(x_i)$.

From the diagram: $\mathcal{P}(y|y)|dy = \sum_i \mathcal{P}(x_i)|dx_i|$, where the sum is over all x_i such that $f(x_i) = y$. Since $dy = \frac{df}{dx}dx = f'(x)dx$, we have $|dx_i| = \frac{|dy|}{|f'(x_i)|} = |\frac{dx}{dy}|_{x=x_i}|dy|$.

$$\mathcal{P}(y|y)|dy = \sum_{i} \mathcal{P}(x(x_i) \left| \frac{dx}{dy} \right|_{x=x_i} |dy|$$

$$\implies \mathcal{P}(y) = \sum_{i} \mathcal{P}(x(x_i) \left| \frac{dx}{dy} \right|_{x=x_i})$$

where the sum is over all roots x_i of y = f(x) for a fixed y.

Example: X-component of a Random 2D Vector

Consider a 2D vector \vec{B} with fixed length $B = |\vec{B}|$, equally likely to point in any direction θ (where θ is the angle with the x-axis). The probability distribution for the angle θ is uniform:

$$\mathcal{P}(\theta)\theta(\theta) = \frac{1}{2\pi}, \quad 0 \le \theta < 2\pi$$

Let $y = B_x$ be the x-component of \vec{B} . We have the relation:

$$B_x(\theta) = B\cos\theta$$

We want to find the probability distribution $\mathcal{P}(B_x(B_x))$. Note that $-B \leq B_x \leq B$.

For a given value of B_x (where $-B < B_x < B$), there are two angles θ_1 and $\theta_2 = 2\pi - \theta_1$ such that $B_x = B\cos\theta_1 = B\cos\theta_2$. (Let $\theta_1 = \arccos(B_x/B)$). We use the general formula: $\mathcal{P}(_1B_x(B_x)) = \sum_{i=1,2} \mathcal{P}(_1\theta(\theta_i)) \left| \frac{\mathrm{d}\theta}{\mathrm{d}B_x} \right|_{\theta=\theta_i}$. We need the derivative $\frac{\mathrm{d}\theta}{\mathrm{d}B_x}$. It's easier to compute $\frac{\mathrm{d}B_x}{\mathrm{d}B_x}$:

$$\frac{\mathrm{d}B_x}{\mathrm{d}\theta} = \frac{\mathrm{d}}{\mathrm{d}\theta}(B\cos\theta) = -B\sin\theta$$

So, $\left|\frac{\mathrm{d}\theta}{\mathrm{d}B_x}\right| = \frac{1}{|-B\sin\theta|} = \frac{1}{|B|\sin\theta|}$. Since $\sin^2\theta + \cos^2\theta = 1$, $|\sin\theta| = \sqrt{1-\cos^2\theta} = \sqrt{1-(B_x/B)^2} = \frac{\sqrt{B^2-B_x^2}}{B}$. Therefore, $\left|\frac{\mathrm{d}\theta}{\mathrm{d}B_x}\right| = \frac{1}{B(\sqrt{B^2-B_x^2}/B)} = \frac{1}{\sqrt{B^2-B_x^2}}$. This derivative is the same for θ_1 and θ_2 since $|\sin(\theta_1)| = |\sin(2\pi-\theta_1)|$.

Now apply the formula:

$$\mathcal{P}(_{)}B_{x}(B_{x}) = \mathcal{P}(_{)}\theta(\theta_{1}) \left| \frac{\mathrm{d}\theta}{\mathrm{d}B_{x}} \right|_{\theta_{1}} + \mathcal{P}(_{)}\theta(\theta_{2}) \left| \frac{\mathrm{d}\theta}{\mathrm{d}B_{x}} \right|_{\theta_{2}}$$

$$= \left(\frac{1}{2\pi}\right) \frac{1}{\sqrt{B^{2} - B_{x}^{2}}} + \left(\frac{1}{2\pi}\right) \frac{1}{\sqrt{B^{2} - B_{x}^{2}}}$$

$$= 2 \times \frac{1}{2\pi} \frac{1}{\sqrt{B^{2} - B_{x}^{2}}}$$

$$\mathcal{P}(B_x(B_x)) = \frac{1}{\pi \sqrt{B^2 - B_x^2}} \quad \text{for } -B < B_x < B$$

This distribution is peaked near $B_x = \pm B$ and minimum at $B_x = 0$.

