Programare logică și funcțională - examen scris -

<u>Notă</u>

- 1. Subjectele se notează astfel: of 1p; A 1.5p; B 2.5p; C 2.5p; D 2.5p.
- 2. Problemele Prolog vor fi rezolvate în SWI Prolog. Se cere: (1) explicarea codului și a raționamentului; (2) modelul recursiv de rezolvare, pentru fiecare predicat folosit; (3) specificarea fiecărui predicat (semnificația parametrilor, model de flux, tipul predicatului determinist/nedeterminist).
- 3. Problemele Lisp vor fi rezolvate în Common Lisp. Se cere: (1) explicarea codului și a raționamentului; (2) modelul recursiv de rezolvare, pentru fiecare funcție folosită; (3) specificarea fiecărei funcții (semnificația parametrilor).
- A. Fie L o listă numerică și următoarea definiție de predicat PROLOG având modelul de flux (i, o):

f([],0). $f([H|T],S):-\underline{f(T,S1)}$,S1>=2,!,S is S1+H. $f([_|T],S):-\underline{f(T,S1)}$,S is S1+1.

Rescrieți această definiție pentru a evita apelul recursiv **f(T,S)** în ambele clauze. Nu redefiniți predicatul. Justificați răspunsul.

J.	B. Dându-se o listă neliniară conținând atât atomi numeric total de atomi nenumerici la nivel superficial din acele nivel) este număr par. <u>De exemplu</u> , pentru lista (A B 12	subliste (incluzând și list (5 D (A F (10 B) D (5 F)	a originală) al căror prim atom numeric 1)) C 9) rezultatul va fi 7.	(la oric

C. Dându-se o listă formată din numere întregi, să se genereze în PROLOG lista permutărilor având proprietatea că valoarea absolută a diferenței dintre două valori consecutive din permutare este <=3. Se vor scrie modelele matematice și modelele de flux pentru predicatele folosite.

Exemplu- pentru lista $L=[2,7,5] \Rightarrow [[2,5,7], [7,5,2]]$ (nu neapărat în această ordine)

D.	Se consideră o listă neliniară. Să se scrie o funcție LISP care să aibă ca rezultat lista inițială din care au fost eliminați toți atomii nenumerici de pe nivelurile pare (nivelul superficial se consideră 1). Se va folosi o funcție MAP. <u>Exemplu</u> pentru lista (a (1 (2 b)) (c (d))) rezultă (a (1 (2 b)) ((d)))