Banker's algo.

(Eheck sequence of process).

Provids Safe sequence.

Deadlock detection f. Recovery.

(2)

Consider the System with 5 procus < Po P, P2 P3 P4> & 3 recourses Available. Allocation passibooks. Max A BC C ABC B Pox 5 Pix 2 P2 . 2 2 3 0 2 0 [5|3|2/ 0 0 2 L P3 X 2 Pyx 4 3 4 3 0 a) final Much Matrix Is the bystem in a Sage state , if yes final safe sequence. Need = Max - allocation Available = Total - allo cation = 1101517 | -= 13/3/2 if Newd & available execute Prouss. Old available + allacation else. forward.

Banker's Algo.

Need avoidable: $\angle P_L:P_3:P_4|_{SP} \longrightarrow (M)$

=> Po Need available

1743 332

17143 4 31312

forward.

=> P_ Neud available

1-122 \(\) 3/3/2

| execute P_

Hens av. = old av. + ollowing n = 3/3/2 + 12/0/0

- 532

=) P2 Mened available.
[61010] 4 [51312]
forward

F) P3. [0 111] (532]

execute P3

New av. = 532 +21

332 -122 -122 -120

+ 122 1322) execution
Terminal

\$10 †322 532 Py =) [4/3/0] \(\begin{align*} \beg

Po => 1743 4 745 execut Po New av. = 1745 + 0110 = 4855

2 = [5 0 0] <u>C [7 | 3 | 5 |</u>

exemte p

A)ens av = 7 5 5 + 302 = 10 5 7

=> Safe Stats = Safe Signer \(\frac{P_1 P_3 P_4 P_0 P_2}{P_3} \) Consider the system with 5 prouves (Po PiP2P314)

3 Resources (ABC)

11 7 8)

a) find Med Materix

b) It the system in a safe state, if yes find safe sequence.

T	allecation	May
Po	ABC	ABC
P ₁	2 10	3 2 2
P2	2 1 2	9 0 2
P3	1 20	2 2 2
Py	1 0 0	4 3 2

The state of the s