

Aula 15 - Máquinas Universais

Uma máquina tem que ser suficientemente poderosa para **simular** todas as características importantes de máquinas reais ou teóricas, de tal forma que os resultados provados fossem válidos para modelos com mais recursos e **para qualquer função computável** que possa ser representada.

Uma máquina deve também ser simples no seu modo de operação para que suas propriedades possam ser estudadas e para que as conclusões gerais possam ser feitas sobre a classe de funções por ela computada.

Logo se for possível representar qualquer algoritmo como um programa em tal máquina, então ela é chamada de **Máquina Universal**. As evidências de que uma máquina é universal são classificadas como:

- Evidência Interna: Consiste na demonstração de que qualquer extensão das capacidades da máquina proposta computa, no máximo, a mesma classe das funções, ou seja, não aumenta o seu poder computacional;
- Evidência Externa: Consiste no exame de outros modelos que definem a noção de algoritmo, juntamente com a prova de que são, no máximo, computacionalmente equivalentes.

A investigação da solucionabilidade de um problema é a investigação da existência de um algoritmo capaz de resolvê-lo ou não.

Conceitos Básicos:

- Símbolo: menor unidade;
- Alfabeto: conjunto de símbolos;
- Palavra: sequência de símbolos;
- Linguagem: conjunto de sentenças sobre um alfabeto.

Tipos de Dados: Qualquer conjunto contável que apresente descrição finita (naturais, inteiros, caracteres, valores-verdade, vetores, entre outros). Não satisfazem essa condição, por exemplo, o conjunto dos números irracionais (representação, aproximação, truncamento, erro, entre outros).

O modelo mais utilizado como formalização de algoritmo é a **Máquina de Turing (MT)**, proposta em 1936, por Alan Turing.

A Máquina de Turing (MT) basicamente consiste de:

- Mecanismos simples para realizar cálculos;
- Uma fita (usada para entrada, saída e rascunho);
- Uma unidade de controle (estado da máquina);
- Um programa (função que define o estado da máquina).

Em 1936, Alonzo Church apresentou a **Hipótese de Church**, a qual afirma que qualquer função computável pode ser processada por uma **MT** (existe um algoritmo expresso na forma de MT capaz de processar a função).

Como a noção de algoritmo não é matematicamente precisa, é impossível demonstrar que a MT é o dispositivo mais genérico de computação. Mas as evidências internas e externas foram sempre verificadas, reforçando a Hipótese de Church, ou seja, os demais modelos de máquinas (Máquina Norma, Máquina de Post, Máquinas com Pilhas, entre outras) possuem no máximo, a mesma capacidade computacional da MT.

Os seguintes modelos são equivalentes à Máquina de Turing:

- **Máquina Norma:** Uma máquina de registradores, sendo que o conjunto de registradores é infinito;
 - Máquina de Post: Baseada na estrutura de dados do tipo fila;
- **Máquina com Pilhas:** Baseada na estrutura de dados do tipo pilha, onde são necessárias pelo menos duas pilhas para simular o mesmo poder computacional de uma fita (MT) ou fila.

Também é verificado que algumas extensões da MT não aumentam o seu poder computacional como, por exemplo, **não-determínismo** (tentativa de vários caminhos), **múltiplas fitas** (mais de uma fita), **múltiplas unidades de controle** (mais de uma unidade de controle) e **fitas infinitas nas duas extremidades**.

As três maneiras de abordar o estudo de Máquina de Turing, como:

- Processamento de Funções;
- Reconhecimento de Linguagens;
- Solucionabilidade de Problemas.

14.1 Máquinas de Turing

Foi proposta por Alan Turing em meados de 1936, e tem como características básicas:

- É universalmente conhecida e aceita como formalização de algoritmo;
- Trata-se de um mecanismo simples que formaliza a ideia de uma pessoa que realiza cálculos;
- Possui o mesmo poder computacional de qualquer computador de propósito geral;
- Não constituí uma máquina, mas um programa para uma máquina universal;
- O ponto de partida de Turing for analisar a situação na qual uma pessoa, equipada com um instrumento de escrita e um apagador, realiza cálculos em uma folha de papel organizada em quadrados;
 - Inicialmente, a folha de papel contém somente os dados iniciais do problema;
 - O trabalho da pessoa pode ser resumido em sequências de operações simples como:
 - ✓ Ler o símbolo de um quadrado;
 - ✓ Alterar um símbolo em um quadrado;
 - ✓ Mover os olhos para outro quadrado;
 - ✓ Quando é encontrada alguma representação satisfatória para a resposta desejada, a pessoa termina seus cálculos.

- Para viabilizar esse procedimento, as seguintes hipóteses são aceitáveis:
 - ✓ A natureza bidimensional do papel não é um requerimento essencial para os cálculos;
 - √ É assumido que o papel consiste de uma fita infinita organizada em quadrados (células);
 - ✓ O conjunto de símbolos pode ser finito;
 - ✓ O conjunto de estados da mente da pessoa durante o processo de cálculo é finito;
 - ✓ Existem dois estados em particular: Estado Inicial (q0) e o Estado Final (qf), correspondendo ao início e ao fim dos cálculos, respectivamente.
- O comportamento da pessoa a cada momento é determinado somente pelo seu estado presente e pelo símbolo para o qual sua atenção está voltada;
- A pessoa é capaz de observar e alterar o símbolo de apenas um quadrado de cada vez, bem como de transferir sua atenção somente para um dos quadrados adjacentes.

Noção como Máquina

Fita:

- Usada simultaneamente com dispositivo de entrada, saída e de memória de trabalho;
- É finita à esquerda e infinita (tão grande quanto necessário) à direta, sendo dividida em células, cada uma das quais armazenando um símbolo;
- Os símbolos podem pertencer:
 - ✓ Ao alfabeto de entrada;
 - ✓ Ao alfabeto auxiliar;
 - ✓ Representar branco (β);
 - ✓ Representar o início de fita (☼).

Inicialmente, a palavra a ser processada ocupa as células mais à esquerda, após o marcador de início de fita, ficando as demais com *branco*.

Unidade de Controle:

- Reflete o estado corrente da máquina;
- Possui um número finito e predefinido de estados;
- Possui uma unidade de leitura e gravação (cabeça da fita), a qual acessa uma célula da fita de cada vez;
- A cabeça da fita lê o símbolo de uma célula de cada vez e grava um novo símbolo;
- Após a leitura/gravação (a gravação é realizada na mesma célula de leitura), a cabeça move-se uma célula para a direita ou esquerda.

Programa ou Função de Transição:

- O programa comanda as leitura e gravações, o sentido de movimento da cabeça e define o estado da máquina;
- O programa é uma função que, dependendo do estado corrente da máquina e do símbolo lido, determina o símbolo a ser gravado, o sentido do movimento da cabeça e o novo estado.

14.2 Modelo Formal Máquina de Turing:

- Uma máquina de Turing é um dispositivo teórico constituído de oito componentes, ou seja, 8-upla: $\mathbf{M} = (\Sigma, \mathbf{Q}, \delta, \mathbf{q0}, \mathbf{F}, \mathbf{V}, \beta, \diamondsuit)$, onde:
 - Σ alfabeto de símbolos de entrada;
 - Q conjunto de estados possíveis da máquina, o qual é finito;
 - δ programa ou função de transição (é uma função parcial);
 - q0 estado inicial da máquina, tal que q0 é elemento de Q;
 - F conjunto de estados finais, tal que F está contido em Q;
 - V alfabeto auxiliar;
 - β símbolo especial que representa o branco;
 - 🜣 símbolo especial de marcador que represente o início da fita.

Observação: ❖ símbolo de início de fita ocorre exatamente uma vez e sempre na célula mais à esquerda da fita, auxiliando na identificação de que a cabeça da fita se encontra na célula mais à esquerda da fita.

A função programa considera o estado corrente e o símbolo lido da fita para determinar o novo estado, o símbolo a ser gravado e o sentido de movimento da cabeça, sendo que esquerda e direita são representados por **E** e **D**, respectivamente. A função programa pode ser interpretada como um diagrama, como mostrado na figura abaixo:

A computação de uma Máquina de Turing M, para uma palavra de entrada w, consiste na sucessiva aplicação da função programa a partir do estado inicial e da cabeça posicionada na célula mais à esquerda da fita até ocorrer uma condição de parada. O processamento de M para a entrada w pode parar ou ficar processando indefinidamente (ciclo ou *loop* infinito).

A parada do processamento de uma máquina de Turing para uma entrada e pode ser de duas maneiras:

- Aceita a entrada w. Atinge um estado final: a máquina pára, e a palavra w é aceita;
- Rejeita a entrada w. São duas possibilidades:

1ª a função programa é indefinida para o argumento (símbolo lido e estado corrente): a máquina pára, e a palavra w é rejeitada;

2ª o argumento corrente da função programa define um movimento à esquerda, e a cabeça da fita já se encontra na célula mais à esquerda: a máquina pára, e a palavra w é rejeitada.

14.3 Linguagem Aceita - Linguagem Rejeitada - Linguagem Loop

Seja M = $(\Sigma, Q, \delta, q0, F, V, \beta, \phi)$ uma Máquina de Turing, então:

a) Linguagem Aceita ou Linguagem Reconhecida por M, denotada por: ACEITA(M) ou L(M)

É o conjunto de todas as palavras pertencentes a Σ^* aceitas por M, a partir do estado inicial q0;

b) A Linguagem Rejeitada por M, denotada por: REJEITA(M)

É o conjunto de todas as palavras pertencentes a Σ^* rejeitadas por M, a partir do estado inicial q0;

c) A Linguagem Loop de M, denotada por: LOOP(M)

É o conjunto de todas as palavras pertencentes a Σ^* para as quais M fica processando indefinidamente a partir do estado inicial q0.

Exemplo 1: Máquina de Turing: Duplo Balanceamento

Considere a Linguagem: $L = \{a^nb^n \mid n \ge 0\}$

A Máquina de Turing: $M = (\{a, b\}, \{q0, q1, q2, q3, q4\}, \delta, q0, \{q4\}, \{A, B\}, \beta, \diamondsuit)$

Função Programa (MT): Duplo Balanceamento

δ	٥	а	b	Α	В	β
q0	(q0, ≎, D)	(q1, A, D)			(q3, B, D)	(q4, β, D)
q1		(q1, a, D)	(q2, B, E)		(q1, B, D)	
q2		(q2, a, E)		(q0, A, D)	(q2, B, E)	
q3					(q3, B, d)	(q4, β, D)
q4						

Diagrama (MT): Duplo Balanceamento

Computação (MT): Duplo Balanceamento para a entrada aabb

٥	а	а	b	b	β		Φ	а	а	b	b	β	
q0						•		q0					
٥	Α	а	b	b	β		≎	Α	а	b	b	β	
		q1								q1			
٥	Α	а	В	b	β		≎	Α	а	В	b	β	
		q2						q2					
٥	Α	а	В	b	β		≎	Α	Α	В	b	β	
q0							q1						
٥	Α	Α	В	b	β		≎	Α	Α	В	В	β	
q1							q0						
٥	Α	Α	В	В	β		≎	Α	Α	В	В	β	
	·			q3								q3	
٥	Α	Α	В	В	β	β							
				•	•	q4							

Computação (MT): Duplo Balanceamento para a entrada abba

	•	,			•								
٥	а	b	b	а	β		≎	а	b	b	a	β	
q0								q0					
٥	Α	b	b	а	β		≎	Α	В	b	a	β	
							q2						
٥	Α	В	b	а	β		≎	Α	В	b	а	β	
		q0								q3			
٥	Α	В	???		β		≎					β	

Exemplo 2: Máquina de Turing: Palavra e sua Reversa

Considere a seguinte linguagem sobre o alfabeto {a, b}:

Considere a Linguagem: $L = \{ww^r \mid w \text{ pertence a } \{a, b\}^*\}$

A Máquina de Turing: M = ()

Função Programa (MT): Palavra Reserva