图论作业(第8周)

黄瑞轩 PB20111686

Chap 7 Prob. 7

- (1.1) 首先,因为 $\chi(K_1)=1$,且 K_1 的真子图只有零图 Z , $\chi(Z)=0$,故 K_1 是 1 色临界图。若还有其他 1 色临界图,设为 G ,则 $\nu(G)>1$,则 G 的一个真子图 $G'=(V(G),\varnothing)$ 也是 $\chi(G')=1$ 的,矛盾。
- (1.2) 首先,因为 $\chi(K_2)=2$,且 K_2 的真子图只有 $H_1=(V(K_2),\varnothing), H_2=K_1, H_3=Z$,这里 $\chi(H_1)=\chi(H_2)=1<2, \chi(Z)=0<2$,故 K_2 是 2 色临界图。若还有其他 2 色临界图,设为 G ,则 $\nu(G)>2$,因为 $\chi(G)=2$,所以 G 一定有边,所以 G 一定有 K_2 作为其真子图,矛盾。
- (1.3) 首先,因为 $\chi(C_k)=3, k\equiv 1 \pmod{2}, k\geq 3$,任取 C_k 的一个子图 H ,若 H 是连通的,则 H 是一个轨道, $\chi(H)\leq 2$;若 H 不是连通的,则 H 是若干个轨道之并,同样有 $\chi(H)\leq 2$,故 $C_k, k\equiv 1 \pmod{2}, k\geq 3$ 是 A 色临界图。若还有其他 A 色临界图,设为 A ,则 A 不是二分图,则 A 含有奇圈,矛盾。
 - (2) 设 $n \equiv 0 \pmod{2}$, 轮 W_{n-1} 。
- (3) 化为证明 $\delta \geq k-1$,反证,若 $\delta < k-1$,假设 $\deg(u) = \delta$,设 u 的邻顶集合为 N(u) ,则 $\{u\} + N(u)$ 用到的色数 $\leq \delta + 1 < k$,则 $\chi(G-u) = \chi(G)$,与 G 是 k 色临界图矛盾。

Chap 7 Prob. 8

首先 $\nu(C)\geq 3$,则 $\nu\geq 4$ 。中间的顶点关联 $\nu-1$ 条边,一定需要 $\nu-1$ 种颜色。不妨将这 $\nu-1$ 条轴边颜色按顺序记为 $i_1,i_2,\ldots,i_{\nu-1}$,下面所说的加法是对模 $\nu-1$ 而言的。

因为颜色数 $\nu-1\geq 3$,给夹在 i_j,i_{j+1} 之间的圈边染色一定能再选出一种,比如拿 i_{j+2} 给 i_j,i_{j+1} 之间的圈边染色即可。所以给圈染色不需要其他另外的颜色,总共需要 $\nu-1$ 种颜色,即 $\chi'(W_\nu)=\nu-1$ 。

Chap 7 Prob. 9

输入:二分图 $G=X\ \dot\cup\ Y$ (不妨设 $|X|\le |Y|$)。

输出: G 的正常 Δ 边着色。

算法过程:

- (1) 备份 $G_0 \leftarrow G$; 若 $|X| \neq |Y|$, 向 X 添加 |Y| |X| 个孤立顶点; 令 i=1 ; 转 (2) 。
- (2) 若 $\Delta = \delta$, 转(4), 否则转(3)。
- (3) 选择 $v \in X, \deg(v) = \delta(X)$ (X 中度数最小的顶点), $u \in Y, \deg(u) = \delta(Y)$,令 $G \leftarrow G + uv$,转(2)。
- (4) 用匈牙利算法对 G 做完备匹配,得 M_i 。若 $G-M_i$ 无边,则计算每个 $E_j=M_j\cap G_0 (1\leq j\leq i)$,输出 $\cup_{j=1}^i E_j$,算法停止。否则 $i\leftarrow i+1$, $G\leftarrow G-M_i$ 。

Chap 7 Prob. 10

设 $\mathcal{C}=\{E_1,E_2,\cdots,E_\delta\}$ 是图 G 的一个最佳 δ 边着色。反证,如果题中所述的着色不存在,则存在一个顶点 v_0 和两种颜色 i 与 j ,使得 i 色不在 v_0 关联的边中出现,但 j 色在 v_0 关联的边中至少出现两次,则边导出子图 $G\left[E_i\cup E_j\right]$ 中含 v_0 的连通片是一个奇圈,这与 G 是二分图矛盾。

Chap 7 Prob. 14

令 $X=\{x_1,x_2,x_3,x_4,x_5\}$, $Y=\{y_1,y_2,y_3,y_4,y_5\}$, 当且仅当 $A[x_i,y_j]=p_{ij}$ 时,在 x_i,y_j 之间连 p_{ij} 条边。构造二分图 G=(X,E,Y) 如下:

- (1) 由于 $\Delta=4$, 故需要安排 4 节课。
- (2) 利用习题9的算法, 过程如下:

教室数为 $\max_{i=1}^4 |E_i| = 4$ 。

Chap 7 Prob. 16

设此平面图的平面嵌入为 G ,其对偶图为 G^* ,首先证明 G 的割集必包含偶数条边。 G 的顶点都有偶数条边,如果要使 G 删除一些边后变成连通片 G_1,G_2,\ldots,G_ω ,对 G_1 考虑,要取消 G_1 中顶点与 $G_2\cup\ldots\cup G_\omega$ 中顶点的联系,必然要在 G_1 的顶点处在原图中删除偶数条边,对于 G_i ($1\leq i\leq \omega$) 都是这样,故 G 的割集必包含偶数条边。

再来证明 G 的割集与 G^* 的圈——对应。设 G^* 中任取一个圈,为 C ,因为 G 中的边 f 在 G^* 中一定有边 f^* 穿过它,即与之对应,则在 G 中删除在 G 中对应的边, G 将不连通,因为 G 中被 G 包围起来的顶点将没有穿过 G 的其他方式,故 G^* 的圈对应 G 的割集。

G 的割集都有偶数条边,所以 G^* 中的圈都是偶圈,所以 G^* 是二分图。

Chap 7 Prob. 19

运用递推公式写过于繁杂,这里采用颜色多项式的意义来写。由于两个图顶点分布相同,为了叙述方便,这里将顶点从上到下,从左到右命名为 $1\sim 6$ 号。

(1) 给 2 号顶点染色有 k 种方法,则给 3 号顶点染色有 k-1 种方法,当 1,6 号顶点颜色相同时,给这两个顶点染色有 k-2 种方法,则给 4 号顶点染色有 k-1 种方法,则给 5 号顶点染色有 k-2 种方法,则给 6 号顶点染色有 k-1 种方法,则给 6 号顶点染色有 6 号顶点染色有染色,

$$p_k(G) = k(k-1)[(k-2)(k-1)(k-2) + (k-2)(k-3)(k-2)(k-3)] = k(k-1)(k-2)^2(k^2 - 5k + 8)$$

(2) 仿照(1),从4号顶点开始染色,过程不再赘述,颜色多项式为

$$p_k(H) = k(k-1)[(k-2)(k-1)(k-2) + (k-2)(k-3)(k-2)(k-3)] = k(k-1)(k-2)^2(k^2 - 5k + 8)$$

Chap 7 Prob. 20

即求 $p_k(W_{\nu})$, 我们有

$$p_k(W_{\nu}) = kp_{k-1}(C_{\nu-1})$$

而

$$p_m(C_n) = p_m(P_n) - p_m(C_{n-1})$$

这里 $p_m(P_n)$ 是长度为 n 的轨道的颜色多项式,即

$$p_m(P_n)=m(m-1)^{n-1}$$

求 $p_m(C_n)$ 的通项公式。

$$p_m(C_n) = p_m(P_n) - p_m(C_{n-1}) \Rightarrow \frac{p_m(C_n)}{(-1)^n} - \frac{p_m(C_{n-1})}{(-1)^{n-1}} = (-1)^n p_m(P_n)$$

对第二个等式做累加,直至为 a_4-a_3 的形式,即

$$\frac{p_m(C_n)}{(-1)^n} - \frac{p_m(C_3)}{(-1)^3} = \sum_{i=4}^n (-1)^i p_m(P_i)$$

$$= \frac{m}{m-1} \sum_{i=4}^n (1-m)^i$$

$$= \frac{m}{m-1} \left(\sum_{i=1}^n -\sum_{i=1}^3 \right) (1-m)^i$$

$$= \frac{m}{m-1} \left[\frac{(1-m)[1-(1-m)^n]}{m} - (1-m) - (1-m)^2 - (1-m)^3 \right]$$

$$= (1-m)^n + (m-1)^3$$

而 $p_m(C_3)=m(m-1)(m-2)$,故

$$p_m(C_n) = (-1)^n[(1-m)^n + (m-1)^3 - m(m-1)(m-2)] = (-1)^n[(1-m)^n + (m-1)]$$

根据 $p_m(C_n)$ 的定义,得

$$p_k(W_
u) = k p_{k-1}(C_{
u-1}) = (-1)^{
u-1} k [(2-k)^{
u-1} + k - 2]$$