

Advanced RNA-seq training

Time course experiment analysis

Damir Baranasic

1st December 2017

RNA-seq whole transcriptome assessment

novel and known transcripts

allele specific expression
gene fusion
IncRNA
eRNA
alternatively spliced
variants

transcripts quantification

differential expression

Time course experiments

development and growth reaction to a treatment/condition over time

single time series

one condition
all time points compared to
the first one (control)

multi time series

several conditions simultaneously controls are sampled over time with the samples

periodic and cyclic time series

single or multiple conditions
reoccurring expression patterns and
their difference between conditions

complex >> a lot of samples and synchronization needed

Analysis workflow

similar to static RNA-seq experiments

Experimental design

critical

number of time points number of replicates there are tools to estimate this parameters, but they don't consider multi-factor experiments

when in doubt

more replicates better than greater sequencing depth

bad design

statistical power $\frac{1}{2}$ number of false positives

Data analysis

static tools

sequencing depth and
library size
batch effect >>
protocol
sequencing platform
technical variability

time course

do not consider correlation between neighbouring time points

Choosing the right method

questions to address

number of replicates

experimental design

two-way or multi factor

differential expression of RNA isoforms

Training steps

Workflow

data normalisation with DESeq2

size factor correction drawn from the negative binomial distribution

maSigPro

GLM with negative binomial distribution as a linking function

$$y_i = \beta_0 + \beta_1 t_i + \beta_2 t_i^2 + \beta_3 z_{1i} + \beta_4 t_i z_{1i} + \beta_5 t_i^2 z_{1i} + \varepsilon_i$$

functional enrichment with clusterProfiler

hypergeometric distribution testing finds functional terms occurring significantly more thann expected

Data used in this training

Christelle Etard, Olivier Armant, Urmas Roostalu, Victor Gourain, Marco Ferg and Uwe Strähle

Loss of function of myosin chaperones triggers Hsf1-mediated transcriptional response in skeletal muscle cells

Genome Biology 2015 16:267

https://doi.org/10.1186/s13059-015-0825-8

RNA-seq Strahle Lab 0005AS. < SequencingID > . USERvgourain.R. ReadsPerGene.out.tab

Hpf
wt
unc45b

24 DCD001548SQ DCD001559SQ DCD001560SQ DCD001554SQ

48
DCD001546SQ
DCD001558SQ
DCD001564SQ
DCD001555SQ

72
DCD001547SQ
DCD001545SQ
DCD001565SQ
DCD001551SQ

All the libraries were:

unstranded

paired-ended

sequenced on Illumina HiSeq 2000

producing 50 bp long reads.

References

- [1] Daniel Spies and Constance Ciaudo. **Dynamics in Transcriptomics: Advancements in RNA-seq Time Course and**
 - **Dynamics in Transcriptomics: Advancements in RNA-seq Time Course and Downstream Analysis.** *Comput Struct Biotechnol J.* 2015; 13: 469–477.
- [2] Michael I Love, Wolfgang Huber and Simon Anders.

 Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2.

 Genome Biology. 2014; 15: 550.
- [3] María José Nueda, Sonia Tarazona and Ana Conesa.

 Next maSigPro: updating maSigPro bioconductor package for RNA-seq time series.

 Bioinformatics. 2014; 30(18): 2598–2602.
- [4] Guangchuang Yu, Li-Gen Wang, Yanyan Han and Qing-Yu He. clusterProfiler: an R Package for Comparing Biological Themes Among Gene Clusters. *OMICS: A Journal of Integrative Biology*. 2012; 16(5): 284-287.