Heures (Hebdo)	4.0
Cours	2.0
Exercices	2.0
Pratique	0.0
Total	56.0

Langue	français
Semestre	Printemps
Mode d'évaluation	Examen écrit
Session	Juillet
Format de l'enseignment	Cours, exercices

Cursus	Туре	ECTS
Baccalauréat universitaire en mathématiques	N/A	6.0
Baccalauréat universitaire en mathématiques, informatique et sciences numériques	N/A	5.0

Mécanique quantique pour mathémne-s

13M071 | Alba Grassi

Objectifs

Ce cours est une introduction en mécanique quantique destinée aux étudiant-e-s en mathématiques.

Description

- 0. Rappel de physique classique.
- 1. Rappel dalgèbre linéaire.
- 2. Mécanique quantique en dimension finie :
- a. Axiomes et structure, partie I : états, observables, linterprétation probabiliste, principe dincertitude de Heisenberg.
- b. Exemple dun système quantique : le spin 1/2.
- c. Axiomes et structure, partie II : lévolution quantique, léquation de Schrödinger, symétries et lois de conservation.
- 3. Mécanique quantique en dimension infinie :
- a. Rappel : espaces de Hilbert.
- b. Axiomes et structure : un aperçu.
- c. Opérateurs sur les espaces de Hilbert.
- d. Spectre et Mesure
- 4. Loscillateur harmonique.
- 5. Particule libre et paquet dondes.
- 6. Barrière de potentiel.
- 7. Évidences expérimentales.