Introduction to Reinforcement Learning

Koganti Nishanth

June 21, 2019

Overview

- ① Why RL?
- 2 What is RL?
- 3 Components
- 4 Examples
- 6 Resources

Branches of Machine Learning

Domains of Reinforcement Learning

Examples of Reinforcement Learning

- Performing stunts on an helicopter¹.
- Managing an investment portfolio.
- Playing atari games better than humans².
- Defeating world champion of Go³.
- Performing drug discovery⁴.

¹Abbeel, et al. "An application of reinforcement learning to aerobatic helicopter flight." in NIPS 2007.

²Mnih, et al. "Human-level control through deep reinforcement learning." in *Nature 2015*.

³Silver, et al. "Mastering the game of Go with deep neural networks and tree search." in *Nature 2016.*

⁴AlphaFold 2018. Available at https://deepmind.com/blog/alphafold/

Autonomous Helicopter Flight¹

 $^{^1\}mbox{Abbeel, et al.}$ "An application of reinforcement learning to aerobatic helicopter flight." in NIPS 2007.

Characteristics of Reinforcement Learning

What makes Reinforcement Learning different?

- There is no supervision, only a reward signal.
- Feedback is delayed, not instantaneous.
- Agent's actions effect subsequent data it receives.

Reward Hypothesis

Reinforcement learning is based on the reward hypothesis:

Reward Hypothesis

All goals can be described by maximization of expected cumulative reward.

Example of rewards:

- Helicopter Flight:
 - Reward for following desired trajectory.
 - Punishment for crashing.
- Play Atari games:
 - Reward/punishment for increasing/decreasing score.

Agent and Environment

- At each step t, the agent:
 - Executes action a_t .
 - Receives states s_t.
 - Receives scalar reward r_t .
- The environment:
 - Receives action a_t.
 - Emits observation s_{t+1} .
 - Emits scalar reward r_{t+1} .

Major Components of RL Agents

- RL Agent may include following components:
 - Policy: Agent's behavior function.
 - Value function: Utility of each state and/or action.
 - Model: Agent's representation of the environment.

Policy

- A policy models the agent's behavior.
- Function from state to action.
- Deterministic policy: $a = \pi(s)$.
- Stochastic policy: $\pi(a|s) = \mathbb{P}[a_t = a|s_t = s]$.

Value Function

- Value function is a prediction of future reward.
- Used to evaluate the goodness/badness of states.
- Select between actions using this value function.

$$v_{\pi}(s) = \mathbb{E}_{\pi}[r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \cdots | s_t = s]$$

Is this a good state for white?

Model

- A model predicts what the environment will do next
- ullet ${\cal P}$ predicts the next state
- ullet ${\cal R}$ predicts the next reward

$$\mathcal{P}_{ss'}^{a} = \mathbb{P}[s_{t+1} = s' | s_t = s, a_t = a]$$

$$\mathcal{R}_s^a = \mathbb{R}[r_{t+1}|s_t = s, a_t = a]$$

Taxonomy of RL Algorithms

Maze Example

- Rewards: -1 per time step.
- Actions: N,S,E,W.
- State: Agent's position on maze.

Maze Example: Policy

Red arrows indicate actions taken as per policy.

Maze Example: Value Function

Numbers in grid indicate expected *long-term* rewards for that cell.

Maze Example: Model

 $\mathcal{P}^a_{ss'}$ and \mathcal{R}^a_s are shown by grid and numbers. Note: Model can be imperfect!

Case Study: Atari Game Play

- Learn directly from interactive game play.
- Relies on value function based RL.
- Approximate value function using deep neural network.

¹Mnih, et al. "Human-level control through deep reinforcement learning." in *Nature 2015*.

Tutorials for RL

- Andrew Ng: CS 229 Course Lectures 16-201.
- David Silver: Reinforcement Learning Course².
- Spinning up with Deep Reinforcement Learning: OpenAI³.

¹https://www.youtube.com/watch?v=UzxY1bK2c7E

²http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html

³https://spinningup.openai.com/en/latest/

Software Resources

- Awesome Reinforcement Learning: github.com/aikorea/awesome-rl.
- OpenAl Gym: github.com/openai/gym.
- Unity ML: github.com/Unity-Technologies/ml-agents.
- garage: github.com/rlworkgroup/garage.
- trfl: github.com/deepmind/trfl/.

Thank You