# **Ensemble Methods**

Data Intelligence and Learning (<u>DIAL</u>) Lab

Prof. Jongwuk Lee



# **Ensemble Method Basics**

### What is the Ensemble Method?



> It utilizes the prediction of multiple base models to improve generalizability and robustness over a single model.

- > They must differ somehow.
  - Trained with different data
  - Different algorithms
  - Different choices of hyperparameters



- > It is usually easy to implement.
  - The hard part is how to design ensembles according to the goal.

# **Types of Ensemble Methods**



### > Bagging

- It is the short form for bootstrap aggregating.
- Train classifiers independently on random subsets of training data.
  - E.g., random forest



**Parallel** 

### > Boosting

- Train classifiers sequentially.
- Learns from previous predictor mistakes to make better predictions.
  - E.g., AdaBoost, gradient tree boosting



Sequential

# **Recap: Bias-Variance Decomposition**



 $\succ$  A training set  $\mathcal{D}$  consists of n pairs sampled independent and identically distributed (i.i.d.) from a data distribution  $p_{\rm data}$ .



# **Recap: Bias-Variance Decomposition**



- $\succ$  For each training set  $\mathcal{D}_i$ , we train a classifier  $h_i$ .
- $\triangleright$  We make prediction for each classifier  $h_i(x)$  at a query x.
  - Pick a fixed query sample x (denoted with green color).
- > Note: Different results come from the choice of training sets.



# **Recap: Bias-Variance Decomposition**



- > It is also similar to regression.
  - That is,  $y = h_i(\mathbf{x})$  is a random variable.



We discuss its expectation and variance over the distribution of the training set.





# Bagging

### **Motivation**



- $\triangleright$  We sample m independent training sets  $\{\mathcal{D}_i\}_{i=1}^m$ .
- $\succ$  Learn a classifier  $h_i$  for each training set  $\mathcal{D}_i$  and take the average for prediction.

$$y = \frac{1}{m} \sum_{i=1}^{m} y_i$$
 where  $y_i = h_i(\mathbf{x})$ 

> How does it affect bias and variance of the expected loss?

### **Motivation**



➢ Bias is unchanged because the average prediction has the same expectation.

$$\mathbb{E}[y] = \mathbb{E}\left[\frac{1}{m}\sum_{i=1}^{m}y_i\right] = \frac{1}{m}\mathbb{E}\left[\sum_{i=1}^{m}y_i\right] = \mathbb{E}[y_i]$$

➤ Variance is reduced because of averaging over independent samples.

$$Var[y] = Var\left[\frac{1}{m}\sum_{i=1}^{m} y_i\right] = \frac{1}{m^2}\sum_{i=1}^{m} Var[y_i] = \frac{1}{m}Var[y_i]$$

### **Motivation**



 $\triangleright$  For i.i.d. random variables  $x_i$  with mean  $\overline{x}$ ,

$$\frac{1}{m} \sum_{i=1}^{m} x_i \to \bar{x} \text{ as } m \to \infty$$

(Weak law of large numbers)

 $\succ$  Learn a classifier  $h_i$  for each training set  $\mathcal{D}_i$  and take the average.

$$\hat{h} = \frac{1}{m} \sum_{i=1}^{m} h_i \to \bar{h} \text{ as } m \to \infty$$

Let  $\bar{h}$  denote the prediction for  $\mathcal{D}$ .

- > Good news: The variance vanishes.
- $\succ$  Problem: We do not have m datasets, we only have  ${\mathcal D}$  .

# **Key Idea of Bagging**



### Bootstrap aggregating (Bagging)

• Use an **empirical distribution** from a training set  $\mathcal{D}$ .



### > Overall process

ullet Take a single dataset  ${\mathcal D}$  with n samples.

ullet Generate m new datasets by sampling n training examples from  ${\mathcal D}$ 

with replacement.

 Average the predictions of models trained on each dataset.



# **Bootstrap Sampling**



### > Random sampling with replacement

Assume that the original data has 10 samples.

| Dataset         | 1 | 2 | 3  | 4  | 5 | 6 | 7  | 8  | 9 | 10 |
|-----------------|---|---|----|----|---|---|----|----|---|----|
| $\mathcal{D}_1$ | 7 | 8 | 10 | 8  | 2 | 5 | 10 | 10 | 5 | 9  |
| $\mathcal{D}_2$ | 1 | 4 | 9  | 1  | 2 | 3 | 2  | 7  | 3 | 2  |
| $\mathcal{D}_3$ | 1 | 8 | 5  | 10 | 5 | 5 | 9  | 6  | 3 | 7  |

### > Building a classifier on each dataset

- Each sample has  $(1 1/n)^n$  probability that is not selected.
- The expected size of training data:  $1 (1 1/n)^n$

# **Overall Process of Bagging**





# **Bagging Example**



 $\triangleright$  In this example, n=7, m=3



## **Bagging Example**



### > Predicting a new sample x



### **Effect of Correlation**



- $\triangleright$  Problem: The datasets are not perfectly independent, so we do not get the 1/m variance reduction.
  - If the sampled predictions have variance  $\sigma^2$  and correlation  $\rho$ ,

$$Var[y] = Var\left[\frac{1}{m}\sum_{i=1}^{m} y_i\right] = \frac{1}{m}(1-\rho)\sigma^2 + \rho\sigma^2$$

- > Solution: We introduce additional variability into the model to reduce sample correlation.
  - It is helpful to use multiple configurations of the same model.

### What is Random Forest?



- ➤ It is a bagged decision tree with an extra trick to decorrelate the predictions.
- ➤ Introduce two sources of randomness: Bagging and random feature vectors
  - Random dataset: Each tree is grown using bootstrap sampling.
  - Random feature vectors: At each node, the best split is chosen from a random subset of attributes instead of all the attributes.
- > Despite the simplicity, it often works well.
  - It is one of the widely used models in Kaggle competitions.

### **Overall Process of Random Forest**





### Pseudo-code of Random Forest



# Precondition: A training set $S := (x_1, y_1), \dots, (x_n, y_n)$ , features F, and number of trees in forest B. 1 function RANDOMFOREST(S, F)2 $H \leftarrow \emptyset$ 3 for $i \in 1, \dots, B$ do 4 $S^{(i)} \leftarrow A$ bootstrap sample from S5 $h_i \leftarrow \text{RANDOMIZEDTREELEARN}(S^{(i)}, F)$ 6 $H \leftarrow H \cup \{h_i\}$ 7 end for 8 return H

At each node:

10 function RANDOMIZEDTREELEARN(S, F)

 $f \leftarrow \text{very small subset of } F$ 

Split on best feature in f

return The learned tree

9 end function

15 end function

11

12

13

**Algorithm 1** Random Forest



# **Boosting**

# What is Boosting?



- > Train classifiers sequentially, focusing on training samples that the previous classifiers got wrong.
  - To focus on specific samples, boosting uses a weighted training set.



# **Adaptive Boosting (AdaBoost)**



- > Combine multiple weak learners.
  - Learning a weak learner for a training dataset.
  - Assigning larger weights to incorrect samples.



# **Weighted Training Set**



- Learn a classifier using different weights for samples.
  - The classifier **tries harder** on samples with **higher costs**.
- > How to change the cost function?

$$\sum_{i=1}^{n} \frac{1}{n} \mathbb{I}[h(x^{(i)} \neq y^{(i)}] \text{ becomes } \sum_{i=1}^{n} w^{(i)} \mathbb{I}[h(x^{(i)}) \neq y^{(i)}]$$

 $\succ$  Usually, it requires  $w^{(i)}>0$  and  $\sum_{i=1}^n w^{(i)}=1$ .

# Weak Classifier (or Learner)



- > It is a simple learning model that outputs a hypothesis that performs slightly better than a chance.
- > Consider weak learners that are computationally efficient.
  - E.g., decision trees
  - Even simpler: A decision tree with a single split.







### **Overall Process of AdaBoost**



### > Notations

- Input:  $\mathcal{D} = \{(\mathbf{x}^{(i)}, y^{(i)}): 1 \le i \le n\}$ , where  $y^{(i)} \in \{-1, +1\}$
- A classifier or hypothesis function  $h: \mathbf{x} \to \{-1, +1\}$
- 0-1 loss function:  $\mathbb{I}[h(x^{(i)}) \neq y^{(i)}]$

### $\triangleright$ It learns weak learners sequentially until T times.

- For each iteration, it learns weak learners.
- It computes the weighted error and the classifier coefficient.
- Using the classifier coefficient, it updates data weights.

### **Overall Process of AdaBoost**



- > Initialize sample weights:  $w^{(i)} = 1/n$  for i = 1, ..., n.
- $\triangleright$  For each iteration t = 1, ..., T
  - Fit a classifier to weighted data.

$$h_t \leftarrow \underset{h \in \mathcal{H}}{\operatorname{argmin}} \sum_{i=1}^n w^{(i)} \mathbb{I}[h(\mathbf{x}^{(i)}) \neq y^{(i)}]$$

Compute the weighted error and classifier coefficient.

$$\operatorname{err}_{t} = \frac{\sum_{i=1}^{n} w^{(i)} \mathbb{I}[h(\mathbf{x}^{(i)}) \neq y^{(i)}]}{\sum_{i=1}^{n} w^{(i)}}$$

$$\alpha_t = \frac{1}{2} \ln \frac{1 - \operatorname{err}_t}{\operatorname{err}_t}$$

• Update sample weights.

$$w^{(i)} \leftarrow w^{(i)} \exp\left(-\alpha_t y^{(i)} h_t(\mathbf{x}^{(i)})\right)$$

> Return  $H(\mathbf{x}) = \operatorname{sign}(\sum_{t=1}^{T} \alpha_t h_t(\mathbf{x})).$ 

# **Updating Sample Weights**



- > Reassign higher weights for incorrect samples.
  - Assume that the weak learner returns error  $err_t < 0.5$ .

$$\alpha_t = \frac{1}{2} \ln \frac{1 - \operatorname{err}_t}{\operatorname{err}_t} = \ln \sqrt{\frac{1 - \operatorname{err}_t}{\operatorname{err}_t}}$$

> If the sample is incorrect,

$$w^{(i)} \leftarrow w^{(i)} \exp(\alpha_t) = w^{(i)} \sqrt{\frac{1 - \operatorname{err}_t}{\operatorname{err}_t}}$$

Weights are higher.

> Otherwise,

$$w^{(i)} \leftarrow w^{(i)} \exp(\alpha_t) = w^{(i)} \sqrt{\frac{\operatorname{err}_t}{1 - \operatorname{err}_t}}$$

Weights are lower.



### > Round 1

$$\mathbf{w} = \left(\frac{1}{10}, \dots, \frac{1}{10}\right)$$



$$\operatorname{err}_1 = 0.3$$
  $\alpha_1 = \frac{1}{2} \ln(\frac{1 - 0.3}{0.3}) = \frac{1}{2} \ln \frac{7}{3} \approx 0.42$ 

$$\operatorname{err}_{t} = \frac{\sum_{i=1}^{n} w^{(i)} \mathbb{I}[h(x^{(i)}) \neq y^{(i)}]}{\sum_{i=1}^{n} w^{(i)}}$$

$$\alpha_t = \frac{1}{2} \ln \frac{1 - \operatorname{err}_t}{\operatorname{err}_t}$$



> How to update sample weights?



|   | <b>x</b> <sub>1</sub> | $\mathbf{x}_2$ | $\mathbf{x}_3$ | <b>X</b> <sub>4</sub> | <b>X</b> <sub>5</sub> | <b>X</b> <sub>6</sub> | <b>X</b> <sub>7</sub> | <b>X</b> <sub>8</sub> | <b>X</b> <sub>9</sub> | X <sub>10</sub> |
|---|-----------------------|----------------|----------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------|
| у | +                     | +              | _              | _                     | _                     | +                     | +                     | +                     | _                     | _               |
| ŷ | +                     | +              | _              | _                     | _                     | _                     | _                     | _                     | _                     | _               |

|            | $\mathbf{x}_1$        | $\mathbf{x}_{2}$      | $\mathbf{x}_3$        | $X_4$                 | <b>X</b> <sub>5</sub> | <b>X</b> <sub>6</sub> | <b>x</b> <sub>7</sub> | <b>X</b> <sub>8</sub> | <b>X</b> <sub>9</sub> | x <sub>10</sub>        |
|------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|------------------------|
| Original   | 1/10                  | 1/10                  | 1/10                  | 1/10                  | 1/10                  | 1/10                  | 1/10                  | 1/10                  | 1/10                  | 1/10                   |
| Update     | $1/10 \\ *\sqrt{3/7}$ | $1/10 \\ *\sqrt{7/3}$ | $1/10 \\ *\sqrt{7/3}$ | $1/10 \\ *\sqrt{7/3}$ | $1/10 \\ *\sqrt{7/3}$ | 1/10<br>* $\sqrt{7/3}$ |
| Update     | 3                     | 3                     | 3                     | 3                     | 3                     | 7                     | 7                     | 7                     | 3                     | 3                      |
| Normalized | 1/14                  | 1/14                  | 1/14                  | 1/14                  | 1/14                  | 1/6                   | 1/6                   | 1/6                   | 1/14                  | 1/14                   |



### ➤ Round 2







$$err_2 = 0.21$$

$$\alpha_2 = \frac{1}{2} \ln \left( \frac{1 - 0.21}{0.21} \right) \approx 0.66$$



> How to update sample weights?



|   | <b>x</b> <sub>1</sub> | $\mathbf{X}_2$ | $\mathbf{x}_3$ | <b>X</b> <sub>4</sub> | <b>X</b> <sub>5</sub> | <b>X</b> <sub>6</sub> | <b>x</b> <sub>7</sub> | <b>X</b> <sub>8</sub> | X <sub>9</sub> | X <sub>10</sub> |
|---|-----------------------|----------------|----------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|----------------|-----------------|
| У | +                     | +              | _              | _                     | _                     | +                     | +                     | +                     | _              | _               |
| ŷ | +                     | +              | +              | +                     | +                     | +                     | +                     | +                     | _              | _               |

|            | <b>x</b> <sub>1</sub>      | <b>X</b> <sub>2</sub> | $\mathbf{x}_3$          | <b>X</b> <sub>4</sub>   | <b>X</b> <sub>5</sub>     | <b>X</b> <sub>6</sub>      | <b>X</b> <sub>7</sub> | <b>X</b> <sub>8</sub> | X <sub>9</sub> | X <sub>10</sub> |
|------------|----------------------------|-----------------------|-------------------------|-------------------------|---------------------------|----------------------------|-----------------------|-----------------------|----------------|-----------------|
| Original   | 1/14                       | 1/14                  | 1/14                    | 1/14                    | 1/14                      | 1/6                        | 1/6                   | 1/6                   | 1/14           | 1/14            |
| Update     | $\frac{1/14}{\sqrt{3/11}}$ | 1/14<br>∗√3/11        | 1/14<br>* $\sqrt{11/3}$ | 1/14<br>* $\sqrt{11/3}$ | 1/14<br>* \(\sqrt{11/3}\) | $\frac{1/6}{*\sqrt{3/11}}$ | $1/6  * \sqrt{3/11}$  | $1/6  * \sqrt{3/11}$  | 1/14<br>∗√3/11 | 1/14<br>* √3/11 |
| Normalized | 0.045                      | 0.045                 | 0.167                   | 0.167                   | 0.167                     | 0.106                      | 0.106                 | 0.106                 | 0.045          | 0.045           |



### ➤ Round 3





$$err_3 = 0.14$$

$$\alpha_3 = \frac{1}{2} \ln \left( \frac{1 - 0.14}{0.14} \right) \approx 0.92$$



### > Final classifier



# **AdaBoost Minimizes the Training Error**



 $\succ$  AdaBoost assumes that each weak learner is  $\gamma$ -better than a random predictor.

### Theorem

Assume that at each iteration of AdaBoost the WeakLearn returns a hypothesis with error  $\operatorname{err}_t \leq \frac{1}{2} - \gamma$  for all  $t = 1, \ldots, T$  with  $\gamma > 0$ . The training error of the output hypothesis  $H(\mathbf{x}) = \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t h_t(\mathbf{x})\right)$  is at most

$$L_N(H) = \frac{1}{N} \sum_{i=1}^N \mathbb{I}\{H(\mathbf{x}^{(i)}) \neq t^{(i)})\} \le \exp(-2\gamma^2 T).$$

- > It is called geometric convergence. It is fast!
  - The error decreases with the number of iterations.



### **Generalization Error of AdaBoost**



- > The training error of AdaBoost converges to zero.
  - What about the test error?
- > As we add weak classifiers, the overall classifier becomes more complex.
  - We expect that the complex classifier may overfit.
- > But often, it does not.
  - Sometimes, the test error decreases even after the training error is zero!



# **Face Detection using AdaBoost**



- > Famous application of boosting: detecting faces in images
  - The weak learner compares the total intensity in two rectangular pieces of the image.
    - It is easy to evaluate many base classifiers, which are very fast at runtime.
    - A Smart way to make inferences in real-time (in 2001 hardware).
  - The algorithm adds classifiers greedily based on the quality of the weighted training cases.



# Face Detection Results using AdaBoost













## **Summary**



> Ensembles combine classifiers with improving performance.

### > Bagging

- Bias is not changed (much.)
- Reduces variance (large ensemble cannot cause overfitting.)
- Learns ensemble elements sequentially.
- Needs to minimize the correlation between ensemble elements.

### > Boosting

- Reduces bias.
- Increases variance (large ensemble can cause overfitting.)
- Learns ensemble elements in parallel.
- Has a high dependency on ensemble elements.

# Q&A





### Random Forest vs. AdaBoost





# Law of Large Numbers (LLN)



> If we randomly draw independent observations from any population with a finite mean  $\mu$ , the sample mean  $\overline{x}$  of the observed values approaches the true mean  $\mu$  of the population as the number of observations goes to  $\infty$ .



# **Example: Law of Large Numbers**



> We generated a normally distributed variable with mean  $\mu=100$  and standard deviation  $\sigma=4$ . To obtain each plotted point, we calculate the mean up to each n.

