מתמטיקה דיסקרטית - תרגול 4

סמסטר קיץ תשפ"ד

נושאים: יחסי שקילות.

יחסי שקילות

הגדרה 1. יחס R הוא הוא רפלקסיבי, סימטרי וטרנזיטיבי.

a שקילות של $a\in A$ יהי הי שקילות מעל A יהי A יחס יחס שקילות של היחס מוגדרת להיות מוגדרת להיות

$$[a]_R := \{ b \in A \mid b R a \},\,$$

a עם R עם ביחס A- עם כלומר - כל

$$.[a]_R
eq \emptyset : a \in [a]_R$$
 ולכן רפלקסיבי R .1 .1 הערה

$$[a]_R = [b]_R$$
 אז $a R b$ אם .2

$$[a]_R\cap [b]_R=\emptyset$$
 אז $(a,b)
otin R$.3

הגדרה A תהי A קבוצה ויהי R יחס שקילות מעל A. נגדיר את קבוצת המנה להיות

$$A/R = \{ [a]_R \mid a \in A \}.$$

נשים לב שמחלקות השקילות הן אוסף קבוצות לא ריקות, זרות, שאיחודן הוא כל הקבוצה.

משפט 1. כל יחס שקילות משרה חלוקה של A, וכל חלוקה של A משרה יחס שקילות.

:א שלה: \mathcal{F} וחלוקה $A = \{1, 2, 3, 4, 5\}$ דוגמה 1. נגדיר

$$\mathcal{F} = \left\{ \left\{ 1, 2, 3 \right\}, \left\{ 4, 5 \right\} \right\}.$$

נסמן את יחס השקילות המושרה מ- $\mathcal F$ ב- $\mathcal F$. נרצה שמחלקות השקילות של $R_{\mathcal F}$ יהיו המחלקות מ-a,b עמצאות מכאן, נרצה שלכל $a,b\in A$ יתקיים ש- $a,b\in A$ באותה מחלקה ב- $\mathcal F$ אמ"מ שנמצאות בחלוקה (כלומר a a (כלומר a a b). מכאן, היחס הוא

$$R_{\mathcal{F}} = \{(1,1), (1,2), (1,3), (2,2), (2,1), (2,3), (3,1), (3,2), (3,3)\} \cup \{(4,4), (4,5), (5,4), (5,5)\}.$$

תרגיל 1. בכל סעיף נתונה קבוצה R ויחס R מעליה. בדקו האם R רפלקסיבי, אנטי-רפלקסיבי, סימטרי, אנטי-סימטרי חלש, אנטי-סימטרי חזק או טרנזיטיבי. במידה ו-R הוא יחס שקילות, מצאו את A/R.

$$.x^2 = y^2 \iff x R y , A = \mathbb{R} .1$$

$$X \cap \mathbb{Z} = Y \cap \mathbb{Z} \iff X R Y A = \mathcal{P}(\mathbb{Q})$$
 .2

$$(a-2) \cdot (b-2) > 0 \iff a \ R \ b \ A = \mathbb{N}^+$$
 .3

$$x^2=y^2\iff x\mathrel{R} y$$
 , $A=\mathbb{R}$.1 .1 פתרון 1.

- לכן בפרט (לכן ת' א א ולכן א x R xולכן $x^2=x^2$ מתקיים א מתקיים לכל רפלקסיבי: אנטי-רפלקסיבי).
 - סימטרי: לכל $x, y \in A$ סימטרי: לכל $R \bullet$

$$x R y \iff x^2 = y^2 \iff y^2 = x^2 \iff y R x.$$

. לכן בפרט R לא אנטי-סימטרי

- וגם $x^2=y^2$ אזי y R גום x R y-ש כך $x,y,z\in A$ אזי x x סרנזיטיבי: יהיו x x y מטרנזיטיביות שוויון מתקיים x $y^2=z^2$
- לכן $x^2=y^2\iff x\;R\;y\;,y\in A$ לכל $x\in A$ יהי היי שקילות. יהי לכל יהי $x\in A$ יהי לכל יהי $x=\pm y$

$$A/R = \{\{x, -x\} \mid x \in \mathbb{R}_{\geq 0}\}.$$

$$X \cap \mathbb{Z} = Y \cap \mathbb{Z} \iff X R Y A = \mathcal{P}(\mathbb{Q})$$
 .2

- לכן בפרט (לכן בא אנטי-רפלקסיבי: לכל א מתקיים מתקיים א מתקיים א אנטי-רפלקסיבי: לכל א אנטי-רפלקסיבי).
 - מתקיים $X,Y\in A$ סימטרי: לכל R

$$X\ R\ Y\iff X\cap\mathbb{Z}=Y\cap\mathbb{Z}\iff Y\cap\mathbb{Z}=X\cap\mathbb{Z}\iff Y\ R\ X,$$
לכן בפרט R לא אנטי-סימטרי.

- שמכילים שלו שמכילים שביחס לכן איז. כל האיברים שהיהי אלו שמכילים. איז יהי אלו שמכילים לכן אותם מספרים שלמים כמו אות לכן אותם מספרים שלמים למו

$$A/R = \{ \{ S \in \mathcal{P} (\mathbb{Q}) \mid S \cap \mathbb{Z} = C \} \mid C \subseteq \mathbb{Z} \}.$$

- $(a-2) \cdot (b-2) > 0 \iff a \ R \ b \ A = \mathbb{N}^+$.3
- ולכן , $(a-2)\cdot(a-2)=(a-2)^2\geq 0$ מתקיים $a\in A$ לכל , ולכן רפלקסיבי: לכל $a\in A$ אנטי-רפלקסיבי). $a\ R\ a$
 - מתקיים $a,b\in A$ סימטרי: לכל R

$$a R b \iff (a-2)\cdot(b-2) \ge 0 \iff (b-2)\cdot(a-2) \ge 0 \iff b R a.$$

לכן בפרט R לא אנטי-סימטרי.

- $(a-2)\cdot(b-2)\geq$ אזי a אזי a פרן ש-a מרנזיטיבי: יהיו a אזי a כך ש-a, b, $c\in A$ אזי a טרנזיטיבי: יהיו $(b-2)\cdot(c-2)\geq0$ שווי סימן. באותו האופן $(c-2)\cdot(c-2)\geq0$ שווי סימן ומתקיים $(c-2)\cdot(c-2)$ שווי סימן ומתקיים $(c-2)\cdot(c-2)$ מר $(c-2)\cdot(c-2)\geq0$
- (x-2) אמ"מ עם א הוא ביחס עם $y\in A$ כל הוא יהי והי $x\in A$ יהי יהי אמ"מ (x-2) אלילי, ולכן היחיד ב-x (x-2) אוי סימן. ווי סימן. x=1 מתקיים (x-2) אי-שלילי, ולכן לכל $x\in A$ לכל $x\in A$ אי-שלילי, ולכן

$$A/R = \left\{ \{1\}, \underbrace{\mathbb{N}^+ \setminus \{1\}}_{\{2,3,\dots\}} \right\}.$$

d מחלקות השקילות של יחס החפיפה מודולו

אמ"מ r אמ"מ ב-d עם שארית n מתחלק ב-n נאמר שn נאמר ארית אמ"מ הגדרה n יהיו ווארית n כך n ב $d\cdot q+r$ כך ער ב $q\in\mathbb{Z}$ וקיים ווארית r< d

סימון: יהי $n \in \mathbb{Z}, d \in \mathbb{N}^+$ כך ש-n מתחלק ב- $n \in \mathbb{Z}, d \in \mathbb{N}^+$ סימון: יהי $n \in \mathbb{Z}, d \in \mathbb{N}^+$ הוכח בתרגיל הבית שונים כאלה). נסמן מספר זה ב- $n \in \mathbb{Z}$ מודולו n").

הטענה. יהי שני כיווני את נוכיח , $m,n\in\mathbb{Z}$ ויהיו $d\in\mathbb{N}^+$ יהי

m אם $m \equiv_d n$ אז $m \equiv_d n$ אם $m \equiv_d m$ אם $m \equiv_d m$ אם $m \equiv_d m$ אם $m \equiv_d m$ נסמן $m \equiv_d m \mod d$ ו-c $m \equiv_d m \mod d$ שארית, קיימים $m \equiv_d m \mod d + m$ כך שירית, קיימים $m \equiv_d m \mod d + m$ עם ארית, קיימים $m \equiv_d m \mod d + m$

$$m - n = (d \cdot p + r) - (d \cdot q + s) = d \cdot (p - q) + (r - s).$$

לכן, מהגדרת חלוקה עם שארית, m-n מתחלק ב-d עם שארית בנוסף, הוכחנו הכין, מהגדרת שונות. מכאן להתחלק ב-d עם שתי שאריות שונות. מכאן

$$r - s = 0 \implies r = s$$
.

 $n \mod d = m \mod d$ ולכן

.r עם שארית d-ב

אז $m\equiv_d n$ אז $m\mod d=m\mod d$ אם המל $m=m\mod d$ אם הארית, קיימים האדרת חלוקה עם האדרת הלוקה עם הארית, קיימים האדרת חלוקה עם הארית, קיימים הארית, קיימים הארית, מכאן $n=d\cdot q+r$ ו מכאן

$$m - n = (d \cdot p + r) - (d \cdot q + r) = d \cdot (p - q).$$

לכן עבור $d\mid (m-n)$ ולכן ,
 $m-n=d\cdot (p-q)$ מתקיים $p-q\in\mathbb{Z}$ ולכן לכן
 $m\equiv_d n$

טענה 2. יהי $d\in\mathbb{N}^+$ ויהי $d>r\in\mathbb{N}$. מחלקת השקילות $d>r\in\mathbb{N}^+$ היא קבוצת כל המספרים מענה 2. יהי d>r עם שארית d>r בנוסף, כל מחלקות השקילות של d=r מתחלקים ב-b עם שארית d>r נוכיח שלכל d>r מתקיים d>r אמ"מ $d\in\mathbb{N}^+$ הוכחה. יהי $d\in\mathbb{N}^+$ ויהי d>r נוכיח שלכל

- $n \mod d = r$ אמ"מ $n \equiv_d r$ ש"מ של, $n \equiv_d r$ אמ"מ אמ"מ הדוע אמ"מ הדוע אמ"מ הוא אמ"מ הוא אמ"מ החלק ב $m \mod d = r$ הנוסף, $r \mod d = r$