# Exercises Qing Liu

## Séverin Philip

2 septembre 2018

# 1 Some topics in commutative algebra

#### 1.1 Tensor products

Exercise . (1.3)

Démonstration. On a des applications canoniques

$$M \otimes N \to M \otimes N/N' \to M/M' \otimes N/N'$$
.

On note  $\phi$  la composée qui est surjective. Par le corollaire 1.13 on sait que le noyau de la première flèche est  $id \otimes j = j_M$  où j est l'inclusion de N' dans N et le noyau de la deuxième  $i \otimes id = i_{N/N'}$  avec i l'inclusion de M' dans M. On a donc  $\operatorname{Im} i_N + \operatorname{Im} j_M \subset \operatorname{Ker} \phi$ . Maintenant si  $z \in \operatorname{Ker} \phi$ , la deuxième flèche est nulle donc l'image de z par la première est dans  $\operatorname{Im} i_{N/N'}$ , c'est-à-dire une somme finie d'éléments de la forme  $x \otimes \bar{y}$  avec  $x \in M'$ . Il peut s'ajouter à cela une somme finie d'éléments du noyau de la première flèche. Dans tous les cas on a  $z \in \operatorname{Im} i_N + \operatorname{Im} j_M$ .

La deuxième partie découle directement, on a

$$\mathbb{Z}/n\mathbb{Z} \otimes \mathbb{Z}/m\mathbb{Z} \simeq (\mathbb{Z} \otimes \mathbb{Z})/(\operatorname{Im} i + \operatorname{Im} j).$$

De plus,  $\operatorname{Im} i \simeq n\mathbb{Z}$  et  $\operatorname{Im} j \simeq m\mathbb{Z}$  en tant que Z-modules donc leur somme est  $n\mathbb{Z} + m\mathbb{Z} = l\mathbb{Z}$ .

#### 1.2 Flatness

Exercise . (2.4)

Démonstration. (i)  $\Rightarrow$  (ii) On suppose que  $I \neq I^2$ . Alors on a une application injective (l'inclusion)  $I \rightarrow A$ . On tensorise avec A/I et on obtient

$$I \otimes A/I \to A \otimes A/I \simeq A/I$$
.

Si  $x \in I \setminus I^2$ , on a  $x \otimes \overline{1}$  non nul dans  $I \otimes A/I$  mais son image dans A/I est nulle, l'application obtenu en tensorisant n'est pas injective, A/I n'est pas plat sur A.

- $(ii) \Rightarrow (iii)$  Par le lemme de Nakayama il existe  $z \in I$  tel que I = zI. Par suite, (z) = I. On a en particulier  $(z) = (z^2)$  d'où  $z = \lambda z^2$  avec  $\lambda \in A$ . On pose  $e = \lambda z$  et on a  $e^2 = e$ . Il reste à voir que (z) = (e). Une inclusion est triviale, pour l'autre, on a  $z = \lambda z^2 = ez \in (e)$ . On a donc montrer que I = eA avec e idempotent.
- $(iii)\Rightarrow (i)$  Soit  $f\colon N\to N'$  une application injective entre deux A-modules. On considère  $f\otimes id\colon N\otimes A/I\to N'\otimes A/I$ . Soit  $x\otimes \bar{y}$  un élément du noyau de cette application. Alors  $f(x)\otimes \bar{y}=0$  donne que  $f(x)=\lambda\cdot d$  avec  $d\in N'$  et  $\lambda\in I$ . On a  $\lambda=ae$  avec  $a\in A$  par (iii). Alors,  $f(ex)=ae^2\cdot d=f(x)$ , donc x=ex et  $x\otimes \bar{y}=0$ . (Ici je ne suis pas sur que considérer un élément de la forme  $x\otimes y$  suffise... Il faudrait prendre un élément général qui est une somme de ces trucs et alors je crois pas que l'argument marche?)

Exercise . (2.5)

Démonstration. Si A est un corps tout A-module est libre donc plat sur A. Sinon, il existe un idéal non nul propre  $I \subset A$  et par l'exercice précédent, A/I est plat sur A si et seulement si I = (e) pour un idempotent e de A. Comme A est supposé intègre il n'a pas d'idempotent et donc A/I n'est pas plat sur A.

# 2 General properties of Schemes

# 2.1 Reduced schemes and integral schemes

Exercise . (4.2)

Démonstration. Le morphisme canonique  $\operatorname{Spec} \mathcal{O}_{X,x} \to X$  est donné par le morphisme  $\mathcal{O}_X(U) \to \mathcal{O}_{X,x}$  pour un ouvert affine U de X contenant x. On note  $\mathcal{O}_X(U) = A$  et l' morphisme est celui de localisation en  $\mathfrak p$  idéal premier associé à x. Si y est un point de U qui se spécialise en x,  $x \in \overline{\{y\}}$ , par définition si  $\mathfrak q$  est l'idéal premier associé à y, on a  $\mathfrak q \subset \mathfrak p$  d'où  $\mathfrak q$  est un idéal premier du localisé  $A_{\mathfrak p}$ . Par suite y est dans l'image de  $\operatorname{Spec} A_{\mathfrak p} \to \operatorname{Spec} A$ . Il est clair que réciproquement un élément de cette image provient d'un idéal premier de  $A_{\mathfrak p}$  et donc par localisation d'un idéal premier de A inclus dans

 $\mathfrak{p}$  ce qui correspond à un point qui se spécialise en x. Comme le morphisme  $\operatorname{Spec} \mathcal{O}_{X,x} \to X$  est indépendant du choix de U (Pourquoi?) cela suffit.

A mon avis ça dépend pas du choix de l'ouvert car si tu prends un autre ouvert V, tu peux trouver un affine W dans  $U \cap V$ . Alors tu écris un diagramme commutatif avec tous les  $\mathcal{O}_X(X)$ ,  $\mathcal{O}_X(U)$ ,  $\mathcal{O}_X(V)$ ,  $\mathcal{O}_X(W)$ , les flèches de restrictions et les flèches vers  $\mathcal{O}_{X,x}$ . Ensuite tu appliques Spec et tu vois que tous les morphismes coïncident.

# Exercise . (4.3)

 $D\acute{e}monstration$ . On a une inclusion  $\mathcal{O}_K[T] \hookrightarrow K[T]$  qui induit un morphisme  $j \colon \operatorname{Spec} K[T] \to \operatorname{Spec} \mathcal{O}_K[T]$ . On montre que c'est une immersion ouverte. Si  $\mathfrak{p} \in \operatorname{Spec} K[T]$ ,  $j(\mathfrak{p}) = \mathfrak{p} \cap \mathcal{O}_K[T]$ . L'image de j est  $\operatorname{Spec} \mathcal{O}_K[T] \setminus V(t)$  qui est ouverte. En effet, si  $t \in \mathfrak{p} \cap \mathcal{O}_K[T]$  alors  $t \in \mathfrak{p}$  et  $\mathfrak{p} = K[T]$  ce qui est impossible. Inversement, si  $t \notin \mathfrak{p}$  avec  $\mathfrak{p}$  idéal premier de  $\mathcal{O}_K[T]$  alors par localisation en  $S = \mathcal{O}_K[T] \setminus \{0\}$  ( $\mathcal{O}_K \setminus \{0\}$ ?) on a  $\mathfrak{p}K[T]$  idéal premier qui vérifie  $\mathfrak{p}K[T] \cap \mathcal{O}_K[T] = \mathfrak{p}$ . Il reste à voir que  $j_x^{\sharp}$  est un isomorphisme en tout point  $x \in \operatorname{Spec} K[T]$  ce qui est trivialement le cas (même une égalité).

Yes je suis d'accord, en fait pour l'homéomorphisme on peut direct appliquer 2.1.7.c) avec  $S = \mathcal{O}_K \setminus \{0\}$ . Les morphismes entre les fibres sont bien des égalités je suis d'accord.

L'idéal (T) est le seul point de Spec K[T] qui se spécialise en (T,t). (Je crois ?)

Je suis d'accord car cela revient à chercher les polynômes irréductibles P de K[T] tels que  $(P) \cap \mathcal{O}_K[T] \subset (T,t)$ . En localisant tu as nécessairement T|P et donc P = T. Enfin je crois que c'est bon.

#### Exercise . (4.8)

Démonstration. Soit x un point de X et  $(U_i)$  les ouverts affines qui recouvrent X (en nombre fini). On suppose que  $x \in U_1$  quitte à renuméroté les ouverts. Le point x correspond à un idéal premier  $\mathfrak{p}$  contenu dans un idéal maximal  $\mathfrak{m}$  de  $\mathcal{O}_X(U_1)$  qui lui même correspond à un point fermé de  $U_1$ . On a donc l'existence de  $x_1 \in U_1$  fermé dans  $U_1$  et  $x_1 \in \overline{\{x\}}$  la fermeture étant prise dans X. Si  $x_1$  est fermé dans tous les autres  $U_i$  qui le contiennent il est fermé dans X. Sinon il existe un  $i \in \{2, \ldots, n\}$  tel que  $x_1 \in U_i$  et  $x_1$  n'est pas fermé dans  $U_i$ . On peut à nouveau supposer que i = 2 et par le même argument qu'avant obtenir  $x_2 \in U_2$  fermé dans  $U_2$  et  $x_2 \notin U_1$ . En répétant le procédé au plus n fois on obtient un point fermé dans tous les ouverts affines  $U_i$  qui le contiennent.

#### Exercise . (4.11)

Démonstration. (i)  $\Rightarrow$  (ii) On montre que  $f^{\sharp}(U)$  est injectif pour tout ouvert affine U de Y. Soit  $g \in \mathcal{O}_Y(U)$  tel que  $f^{\sharp}(U)(g) = 0$ . Pour tout  $y = f(x) \in U \cap f(X)$  on a

$$f_x^{\sharp} \colon \mathcal{O}_{Y,f(x)} \to \mathcal{O}_{X,x}$$

qui est un morphisme local et  $f_x^{\sharp}(g) = 0 \in \mathfrak{m}_x$ . D'où  $g \in \mathfrak{m}_{f(x)}$ . Or l'ensemble  $\{y \in U, g \in \mathfrak{m}_y\}$  est un fermé de U, celui-ci contient f(X) c'est donc U tout entier. Il suit que  $g \in \bigcap_{\mathfrak{p} \in \operatorname{Spec} \mathcal{O}_X(U)} \mathfrak{p}$  est nilpotent.

Comme Y est réduit g = 0. Le résultat est vrai sans l'hypothèse U affine en prenant un recouvrement par des ouverts affine.

 $(ii) \Rightarrow (iii)$  Par la proposition 4.18 le morphisme  $\mathcal{O}_X(U) \to \mathcal{O}_{X,x}$  est injectif pour tout  $x \in U$  donc en particulier si  $V \subset U$  est un ouvert,  $\mathcal{O}_X(U) \to \mathcal{O}_X(V)$  est injectif. En effet le diagramme suivant commute



Le résultat suit trivialement de cette remarque et de l'injectivité de  $\mathcal{O}_Y(V) \to \mathcal{O}_X(f^{-1}(V))$  par (ii).

 $(iii) \Rightarrow (iv)$  Soit V un ouvert de Y contenant  $f(\xi_X)$ . Le diagramme suivant commute et par (iii) les flèches sont injectives.

$$\mathcal{O}_{Y}(V) \longrightarrow \mathcal{O}_{X}(f^{-1}(V))$$

$$\downarrow \qquad \qquad \downarrow$$

$$\mathcal{O}_{Y,f(\xi_{X})} \longrightarrow \mathcal{O}_{X,\xi_{X}}$$

Comme  $\xi_X$  est le point générique de X qui est un schéma entier (integral?) son idéal maximal associé est (0). Par injectivité et le fait que  $f_{\xi_X}^{\sharp}$  est local l'idéal maximal de  $f(\xi_X)$  est donc lui même (0). Il suit que  $f(\xi_X) = \xi_Y$ .

 $(iv) \Rightarrow (v)$  Trivial.

 $(v) \Rightarrow (i)$  Comme Y est un schéma entier  $\overline{\{\xi_Y\}} = Y$ .

# 3 Morphisms and base change

## 3.1 The technique of base change

Proposition 3.1. 1.4 Démonstration du point d.

Démonstration. On considère U,V des sous-schémas ouvert de X et Y. Il faut vérifier que  $i \times j$  induit un isomorphisme de  $U \times_S V$  dans  $p^{-1}(U) \cap q^{-1}(V)$ . Soit Z un schéma et f,g des morphismes  $Z \to U, Z \to V$ . En composant avec les injections de U,V dans X et Y on obtient un diagramme commutatif



Il suit que la flèche du milieu se factorise par  $p^{-1}(U) \cap q^{-1}(V)$ . Comme le morphisme  $i \times j$  est l'unique morphisme de  $U \times_S V$  dans  $X \times_S Y$  faisant commuter les diagrammes et se factorisant par  $p^{-1}(U) \cap q^{-1}(V)$  c'est un isomorphisme  $U \times_S V \simeq p^{-1}(U) \cap q^{-1}(V)$ .

#### Exercise . (1.7)

Démonstration. On suppose X,Y et S affines, c'est-à-dire  $X=\operatorname{Spec} M,$   $Y=\operatorname{Spec} N$  et  $S=\operatorname{Spec} R.$  Le résultat dans le cas général suit du cas affine par recollement (Intuitivement ok, l'idée doit marcher mais un truc détaillé serait bien...). On note  $f\colon R\to M,\ g\colon R\to N.$  Soit  $(\mathfrak{p},\mathfrak{q})\in X\times Y$  tels que  $\mathfrak{p}\in X_s,\ \mathfrak{q}\in Y_s$  pour un point  $s\in S.$  On a donc  $f^{-1}(\mathfrak{p})=s$  d'où les morphismes

$$R \longrightarrow M \longrightarrow M/\mathfrak{p}$$

induisent

$$R/s \rightarrow \longrightarrow M/\mathfrak{p}$$

$$k(s) \longrightarrow k(\mathfrak{p})$$

et il en est de même pour  $\mathfrak q$  et N. On a donc des morphismes  $M\to k(\mathfrak p)$  et

 $N \to k(\mathfrak{q})$  tel que le diagramme suivant commute



et donc par propriété du produit tensoriel on obtient l'existence de la flèche en pointillé d'où un morphisme naturel

Spec 
$$(k(\mathfrak{p}) \otimes_{k(s)} k(\mathfrak{q})) \to X \times_S Y$$
.

On vérifie maintenant que l'image de ce morphisme est contenu dans l'ensemble

$$\{z \in X \times_S Y, \ p(z) = \mathfrak{p}, q(z) = \mathfrak{q}\}.$$

Il faut vérifier que si I est un idéal premier de  $k(\mathfrak{p}) \otimes_{k(s)} k(\mathfrak{q})$  alors  $\varphi^{-1}(I)$  est l'idéal  $\mathfrak{p}$  de M où  $\varphi$  est l'application  $M \to k(\mathfrak{p}) \otimes_{k(s)} k(\mathfrak{q})$ . Comme  $\varphi(\mathfrak{p}) = 0$  on a une inclusion. Maintenant, si  $m \in M \setminus \mathfrak{p}$  est tel que  $\varphi(m) \in I$  alors comme  $\varphi(m) = \overline{m} \otimes 1$  qui est inversible dans  $k(\mathfrak{p}) \otimes_{k(s)} k(\mathfrak{q})$  ce qui est impossible car alors  $I = k(\mathfrak{p}) \otimes_{k(s)} k(\mathfrak{q})$ . Donc  $\varphi^{-1}(I) = \mathfrak{p}$  et ce raisonnement appliqué à N et  $\mathfrak{q}$  assure l'inclusion.

Il faut maintenant voir qu'un idéal I de  $M \otimes_R N$  tel que  $i^{-1}(I) = \mathfrak{p}$  et  $j^{-1}(I) = \mathfrak{q}$  où i, j sont les applications  $M \to M \otimes_R N$ ,  $N \to M \otimes_R N$  est tel que  $M \otimes_R N \to k(I)$  se factorise par  $k(\mathfrak{p}) \otimes_{k(s)} k(\mathfrak{q})$ . En effet,  $\mathfrak{p} \otimes 1$  est donc dans I et est envoyé sur 0 dans k(I) donc on a une factorisation

$$M \otimes_R N \to M/\mathfrak{p} \otimes_R N/\mathfrak{q} \to k(I).$$

Il reste à voir que l'on peut étendre cette dernière flèche à  $k(\mathfrak{p}) \otimes_{k(s)} k(\mathfrak{q})$ . Il suit donc une factorisation de  $k(I) \to X \times_S Y$  en

$$k(I) \longrightarrow \operatorname{Spec} (k(\mathfrak{p}) \otimes_{k(s)} k(\mathfrak{q})) \longrightarrow X \times_S Y.$$

Exercise . (1.8)

Démonstration. C'est une conséquence de l'exercice précédent. Soit  $y \in Y$ , il existe un  $s \in S$  tel que  $y \in Y_s$ . Par surjectivité de  $X \to S$  la fibre  $X_s$  au dessus de s est non vide donc contient un point  $x \in X$ . Par l'exercice 1.7 l'ensemble

$${z \in X \times_S Y, \ p(z) = \mathfrak{p}, q(z) = \mathfrak{q}}$$

est homéomorphe à Spec  $(k(\mathfrak{p}) \otimes_{k(s)} k(\mathfrak{q}))$  qui est non vide donc contient au moins un point. Le morphisme  $q: X \times_S Y$  est donc surjectif.

#### Exercise . (1.10)

Démonstration. Par la propriété universelle du produit fibré en tant qu'ensembles les applications  $p\colon X\times_S Y\to X$  et  $q\colon X\times_S Y\to Y$  donnent l'existence d'une unique application continue  $f\colon |X\times_S Y|\to |X|\times_{|S|}|Y|$ . Cette application est surjective par l'exercice 1.7.

On considère le produit tensoriel  $\mathbb{C} \otimes_{\mathbb{R}} \mathbb{C}$ . On a

$$\mathbb{C} \otimes_{\mathbb{R}} \mathbb{C} = \mathbb{C} \otimes_{\mathbb{R}} \mathbb{R}[X]/(X^2+1) = \mathbb{C}[X]/(X^2+1) = \mathbb{C}(X)/(X+i)(X-i)$$

et ce dernier anneau est isomorphe à  $\mathbb{C} \times \mathbb{C}$  (Spécifier l'isomorphisme). Comme il n'y a qu'un point dans Spec  $\mathbb{C}$  le produit fibré des deux ensembles  $|\operatorname{Spec} \mathbb{C}|$  sur  $|\operatorname{Spec} \mathbb{R}|$  ne contient qu'un seul point. Par contre Spec  $(\mathbb{C} \times \mathbb{C})$  contient deux idéaux premiers (1,0) et (0,1). L'application f est donc surjective mais pas injective ces deux points du produit fibré de schémas ayant même image dans le produit fibré d'ensembles.

#### 3.2 Applications to algebraic varieties

#### Exercise . (2.4)

Démonstration. On va considérer le cas où  $S = \operatorname{Spec} k$  pour un corps k. Comme Y est de type finie sur k, pour U un ouvert affine de Y,  $\mathcal{O}_Y(U)$  est une k-algèbre de type finie.

Pour un ouvert affine V de X contenant x on a un morphisme canonique  $\operatorname{Spec} \mathcal{O}_{X,x} \to V$  provenant d'un morphisme  $\mathcal{O}_X(V) \to \mathcal{O}_{X,x}$ . On a  $f_x^\sharp(U) \colon \mathcal{O}_Y(U) \to \mathcal{O}_{\operatorname{Spec} \mathcal{O}_{X,x}}(f_x^{-1}(U))$ . Or  $\mathcal{O}_{\operatorname{Spec} \mathcal{O}_{X,x}}(f_x^{-1}(U))$  correspond à une localisation de  $\mathcal{O}_{X,x}$  et comme  $\mathcal{O}_Y(U)$  est une k-algèbre de type finie, l'image de  $f_x$  qui est un k-morphisme est déterminé par l'image des générateurs de  $\mathcal{O}_Y(U)$  sur k. Soient  $y_1, \ldots, y_n$  ces générateurs et  $\frac{f_i}{g_i}$  leurs images. Soit g le produit des  $g_i$ , D(g) est un ouvert affine principal W contenant x de V et l'on a  $\frac{f_i}{g_i} \in \mathcal{O}_X(W)$ . On peut donc définir le morphisme  $f_U$  de U dans V tel que  $f_U \circ i_x = f_x$ . On peut définir des morphismes  $f_U$  de cette façon pour tout ouvert affine U de Y qui se recolle par construction et obtenir le morphisme f souhaité.

## 3.3 Some global properties of morphisms

## Exercise . (3.1)

Démonstration. Par hypothèse les morphismes  $f_i : f^{-1}(Y_i) \to Y_i$  sont des immersions fermés et se recollent. Comme f(X) est fermé il suit que f est une immersion fermée topologique. Il reste à voir que les applications locales sur les faisceaux sont surjectives. Or c'est un problème local et on peut donc se restreindre à  $Y_i$  où le résultat vient à nouveau de l'hypothèse sur les  $f_i$ .  $\square$ 

#### Exercise . (3.2)

Démonstration.  $(iii) \Rightarrow (ii)$  Tout morphisme de X dans un schéma Y est séparé, c'est en particulier le cas du morphisme vers Spec  $\mathbb{Z}$  qui est un schéma affine.

- $(ii) \Rightarrow (i)$  La composition de morphismes séparés est séparé et tout morphisme entre schéma affines est séparé. Par hypothèse il existe  $f: X \to \operatorname{Spec} A$  séparé et on a  $\operatorname{Spec} A \to \operatorname{Spec} \mathbb{Z}$  séparé, donc  $X \to \operatorname{Spec} \mathbb{Z}$  est séparé.
- $(i) \Rightarrow (iii)$  Je n'ai pas réussi mais je pense qu'il faut voir qu'il y a un lien entre le produit fibré sur  $\mathbb{Z}$  et sur un schéma Y et obtenir la diagonale de l'un comme image réciproque de la diagonale de l'autre.

#### **Exercise** . (3.10)

Démonstration. On a un diagramme commutatif



Le triangle de gauche est commutatif donc  $p \circ (Id_X, f) = Id_X$ .

On a un autre diagramme commutatif



On vérifie que  $\Gamma_f$  l'image de  $(Id_X, f)$  est  $\varphi^{-1}(\Delta_Y)$ . Si  $x \in X$ , l'élément  $(Id_X, f)(x)$  est déterminé uniquement (Est-ce vrai???) par ces deux égalités

$$p((Id_X, f)(x)) = x;$$

$$q((Id_X, f)(x)) = f(x).$$

Or si  $x \in \varphi^{-1}(\Delta_Y)$ , on a  $p_Y(\varphi(x)) = q_Y(\varphi(x))$  car  $\varphi(x) \in \Delta_Y$ . D'où

$$f \circ p(x) = p_Y(\varphi(x)) = q_Y(\varphi(x)) = q(x).$$

Donc  $x = (Id_X, f)(p(x))$  par la caractérisation précédente. La réciproque est claire en remontant les égalités.

# 4 Some local properties

#### 4.1 Normal schemes

Exercise . (1.4)

 $D\acute{e}monstration$ . Si X est normal alors il est normal en tout point donc en particulier pour les points fermés.

Soit  $x \in X$  un point qui n'est pas fermé. Alors par l'exercice 2.4.8 il existe un point fermé y dans  $\overline{\{x\}}$ . Soit V un ouvert affine contenant y, alors si  $x \notin V$  on aurait  $x \in X \setminus V$  qui est fermé donc en particulier  $\overline{\{x\}} \subset X \setminus V$  et donc  $y \in X \setminus V$  ce qui est une contradiction. Il suit que  $x \in V$  et que l'on obtient  $\mathcal{O}_{X,x}$  par localisation de  $\mathcal{O}_{X,y}$ . Ce dernier est donc réduit, intègre ou normal si  $\mathcal{O}_{X,y}$  l'est ce qui prouve l'implication.

Exercise . (1.9)

Démonstration. On considère A un anneau de Dedekind et  $X = \operatorname{Spec} A$ . Soit  $x_0 \in \operatorname{Spec} A$  un point fermé et  $U = X \setminus \{x_0\}$  un ouvert. On note  $\mathfrak{m}_0$  l'idéal associé à  $x_0$  et t un générateur de  $\mathfrak{m}_0$  dans  $A_{\mathfrak{m}_0}$ . L'idéal (t) se décompose en produit d'idéaux premiers car A est un anneau de Dedekind donc

$$(t) = \mathfrak{m}_0 \prod_{i=1}^n \mathfrak{m}_i^{a_i}$$

et  $V(t) = \{x_0, \ldots x_n\}$  les points  $x_i$  étant ceux des idéaux  $\mathfrak{m}_i$ . On note  $t_i$  un générateur de  $\mathfrak{m}_i$  dans  $A_{\mathfrak{m}_i}$ . On peut choisir  $t_i$  tel que  $t_i \notin \mathfrak{m}_0$ . En effet, si  $\mathfrak{m}_i \setminus \mathfrak{m}_i^2 \subset \mathfrak{m}_0$  on aurait  $\mathfrak{m}_i \subset \mathfrak{m}_0$  et donc égalité par maximalité. On a  $t = ut_i^{a_i}$  dans  $A_{\mathfrak{m}_i}$  où u est inversible donc  $t \cdot t_i^{-a_i} = u$  et par suite  $f = t^{-1}t_i^{a_i} \prod_{i \neq j} t_j^{a_j} = u' \in A_{\mathfrak{m}_i} = \mathcal{O}_{X,x_i}$ . Il existe donc des ouverts  $U_i$  contenant  $x_i$  tels que  $f \in \mathcal{O}_X(U_i)$  et  $U_i$  ne contient pas  $x_0$ . Il est de plus clair que  $f \in \mathcal{O}_X(X \setminus V(t))$ . Il suit que  $f \in \mathcal{O}_X(U)$  car les  $U_i$  et  $X \setminus V(t)$  forment un recouvrement ouvert de U.

# 4.2 Regular schemes

#### **Définition 4.1.** (2.1)

Démonstration. On montre que  $\mathfrak{m}_x/\mathfrak{m}_x^2$  est le produit tensoriel de  $\mathcal{O}_{X,x}$  modules  $\mathfrak{m}_x \otimes_{\mathcal{O}_{X,x}} k(x)$ . Soit  $\phi \colon \mathfrak{m}_x \times k(x) \to \mathfrak{m}_x/\mathfrak{m}_x^2$  donné par  $\phi(\overline{a},b) = \overline{ab}$  pour  $a,b \in \mathcal{O}_{X,x} \times \mathfrak{m}_x$ . L'application  $\phi$  est  $\mathcal{O}_{X,x}$  bilinéaire. On considère  $f \colon \mathfrak{m}_x \times k(x) \to Z$  une application bilinéaire. Soient  $a,b \in \mathcal{O}_{X,x} \times \mathfrak{m}_x$ . Comme f est  $\mathcal{O}_{X,x}$  bilinéaire on a

$$f(\overline{a},b)=f(a\cdot\overline{1},b)=af(\overline{1},b)=f(\overline{1},ab).$$

Il reste à voir que l'application  $\mathcal{O}_{X,x}$  linéaire  $\tilde{f}: b \mapsto f(\overline{1}, b)$  se factorise par le quotient  $\mathfrak{m}_x/\mathfrak{m}_x^2$ . Si  $b \in \mathfrak{m}_x^2$  par linéarité on peut supposer b = cd avec  $c, d \in \mathfrak{m}_x$  et on a  $\tilde{f}(b) = f(\overline{1}, cd) = f(\overline{c}, d) = f(\overline{0}, d) = 0$ . On a donc un diagramme commutatif

ce qui donne le résultat.

L'application  $f_x^{\sharp}$  est locale donc  $f_x^{\sharp-1}(\mathfrak{m}_x^2)=\mathfrak{m}_y^2$  d'où  $f_{x|\mathfrak{m}_y}^{\sharp}$  induit

$$\tilde{f}^{\sharp}_{x} \colon \mathfrak{m}_{y}/\mathfrak{m}_{y}^{2} o \mathfrak{m}_{x}/\mathfrak{m}_{x}^{2}.$$

Soit  $g \in T_{X,x}$  on a  $g \circ \tilde{f}_x^{\sharp} \colon \mathfrak{m}_y/\mathfrak{m}_y^2 \to k(x)$ . Si k(y) = k(x) on a donc une application canonique

$$\begin{array}{ccc} T_{X,x} & \longrightarrow & T_{Y,y} \\ g & \longmapsto & g \circ \tilde{f}_x^{\sharp}. \end{array}$$

Dans le cas général  $k(y) \subset k(x)$  et on effectue une extension des scalaires à droite.

## Exercise . (2.1)

Démonstration. On  $f_x^{\sharp}(\mathfrak{m}_x)$  engendre  $\mathfrak{m}_x$  si et seulement s'il existe des éléments  $a_1,\ldots,a_n$  de  $\mathfrak{m}_y$  tels que  $f_x^{\sharp}(a_i)$  engendre  $\mathfrak{m}_x$ . Il suit que les  $f_x^{\sharp}(a_i)$  forment une partie génératrice de  $\mathfrak{m}_x/\mathfrak{m}_x^2$  et donc une forme linéaire  $g\in T_{X,x}$  est entièrement déterminé par ses valeurs en ces points d'où l'injectivité de  $T_{f,x}$ . Réciproquement, si  $f_x^{\sharp}(\mathfrak{m}_y)$  n'engendre pas  $\mathfrak{m}_x$  alors si  $b_1,\ldots b_n$  engendre  $\mathfrak{m}_x$  et est minimale alors c'est une base de  $\mathfrak{m}_x/\mathfrak{m}_x^2$  en tant que k(x)-espace vectoriel. Supposons que  $b_n$  ne soit pas dans l'image  $f_x^{\sharp}(\mathfrak{m}_y)$  alors deux formes linéaires qui coïncident sur  $b_1,\ldots,b_{n-1}$  et diffèrent sur  $b_n$  auront même image par  $T_{f,x}$ .

(Pas réussi à démontrer la deuxième assertion dans le cas de type finie)

#### Exercise . (2.2)

Démonstration. La variété algébrique affine  $\operatorname{Spec} k[x,y,z]/(x^2-yz)$  est de dimension 2 car il y a une relation algébrique liant x,y,z et donc le degré de transcendance de l'anneau sur k est 2. L'anneau local en o=(0,0,0) est aussi de dimension 2 l'idéal associé étant maximal. L'idéal maximal de  $\mathcal{O}_{X,o}$  est engendré par x,y,z et la dimension sur k(o)=k de  $(x,y,z)/(x,y,z)^2$  est 3 donc la variété n'est pas régulière en o. En effet, la relation  $x^2=yz$  ne donne pas d'information modulo  $(x,y,z)^2$  et donc  $(x,y,z)/(x,y,z)^2$  est engendré par x,y,z.

Le critère Jacobien donne que l'anneau est régulier en tout point de X(k) sauf (0,0,0), la matrice étant

$$\begin{bmatrix} 2x & -z & -y \end{bmatrix}$$

donc de rang 1 partout sauf au point 0.

(Pour la normalité il n'y a pas de critère?)

L'anneau  $A=k[x,y,z]/(x^2-yz)$  est normal. Soit  $\varphi\colon k[x,y,z]\to k[S,T]$  l'application défini par  $\varphi(x)=ST,\ \varphi(y)=S^2$  et  $\varphi(z)=T^2$ . Alors le noyau de  $\varphi$  est  $(x^2-yz)$ . L'inclusion  $(x^2-yz)\subset \operatorname{Ker}\varphi$  est par définition. Pour

l'inclusion réciproque soit f dans le noyau, on effectue la divison de f par  $(x^2-yz)$  dans l'anneau k[y,z][x]. On obtient  $f=g(x^2-yz)+r$  où  $\deg_x r \leq 1$ . On a r=a(y,z)x+b(y,z) et de plus,  $\varphi(r)=0$ . Il suit  $a(S^2,T^2)ST+b(S^2,T^2)=0$  ce qui est possible seulement si a=b=0 par considération des degrés en S ou T. On a obtenu que  $A\simeq k[S^2,T^2,ST]$ . En particulier c'est un sous-anneau de k[S,T] est l'extension est entière car T est racine de  $X^2-T^2$  et de même pour S. On en déduit à nouveau que A est de dimension 2. Finalement comme k[S,T] est factoriel il est normal. Donc si  $f\in \operatorname{Frac}(k[S^2,T^2,ST))$  est entier sur celui-ci on a  $f\in k[S,T]$  donc pour  $f=\frac{P}{O}$  on obtient

$$P = R(S, T)Q.$$

Il reste à remarque qu'un élément  $h = \sum a_{ij}S^iT^j \in k[S,T]$  appartient à  $k[S^2,T^2,ST]$  si et seulement si  $a_{ij}=0$  pour i-j impair. On en déduit une contradiction si R n'appartient pas à  $k[S^2,T^2,ST]$ .

#### Exercise . (2.3)

 $D\acute{e}monstration$ . a) En utilisant le critère Jacobien on obtient que tous les points sont lisses (donc réguliers) sauf peut être (0,0) mais celui-ci n'est pas sur la variété.

b) La fibre spéciale est donné par le produit tensoriel

$$\mathcal{O}_K[x,y]/(x^2+y^3+t^n)\otimes_{\mathcal{O}_K}\mathcal{O}_K/\mathfrak{m}=\mathcal{O}_K/\mathfrak{m}\otimes_{\mathcal{O}_K}\mathcal{O}_K=k[x,y]/(x^2+y^3).$$

Le schéma affine associé est réduit si et seulement si  $(x^2 + y^3)$  est radical. Comme k[x, y] est factoriel il suffit de montrer que  $x^2 + y^3$  est premier. Dans k[y][x] si on a

$$(a(y)x + b(y))(c(y)x + d(y)) = x^2 + y^3$$

alors a(y)c(y)=1, a(y)d(y)+b(y)c(y)=0 et  $b(y)d(y)=y^3$ . La première égalité donne  $a(y)=\lambda\in k^*$  et  $c(y)=\lambda^{-1}$ . Il suit par la deuxième que les degrés en y de b et d sont égaux et donc la troisième égalité ne peut avoir lieu. L'anneau est réduit et le lemme 1.18 permet de conclure à la normalité.

- (Il faut encore montrer la platitude des  $\mathcal{O}_X(U)$  et normalité de  $X_K$ )
- c) L'anneau  $A_{\mathfrak{m}}$  est de dimension 2 où  $\mathfrak{m}$  est l'idéal maximal engendré par (x,y,t). On a  $\mathfrak{m}^2=(t^2,tx,ty,x^2,xy,y^2)$  et donc

$$x^2 + y^3 + t^n = 0 \Rightarrow t^n = 0 \mod \mathfrak{m}^2.$$

Il suit que si n = 1 on a  $\mathfrak{m}/\mathfrak{m}^2$  engendré par (x, y) donc le point est régulier. Si n > 1, il n'y a pas de nouvelles relations et le point est singulier.

(J'aimerai bien une interprétation de ce qu'il se passe quand n > 1 c'est vraiment bizarre ce truc)

## 4.3 Flat morphisms and smooth morphisms

#### Lemme 4.2. (3.20)

Démonstration. (Je pense avoir compris de loin, mais j'aimerai bien une démonstration claire du fait que  $\mathcal{O}_{X_y,x} = \mathcal{O}_{X,x} \otimes k(y)$ , c'est-à-dire que l'anneau local de la fibre est simplement pris en tensorisant avec k(y).)

On se place dans le cas où  $Y = \operatorname{Spec} B$  est affine.

Tout d'abord on a, comme dans la démonstration du lemme  $3.7 \mathcal{O}_{X,x}/\mathfrak{m}_y \mathcal{O}_{X,x} = \mathcal{O}_{X,x} \otimes B/\mathfrak{m}_y = \mathcal{O}_{X_y,x}$ . Il faut donc voir que ce dernier anneau est k(x). Comme on a supposé  $X_y$  fini, c'est un schéma affine de dimension 0 noethérien. L'anneau local  $\mathcal{O}_{X_y,x}$  est donc de dimension 0 et réduit ce qui assure que l'unique idéal maximal est (0) donc que c'est un corps, le corps résiduel étant k(x) c'est k(x). La condition est donc bien suffisante.

Maintenant si f est non ramifié on a  $k(x) = \mathcal{O}_{X,x}/\mathfrak{m}_y \mathcal{O}_{X,x} = \mathcal{O}_{X_y,x}$  pour tout  $x \in X_y$ . La dimension de la fibre est donc 0 et elle est réduite.

#### Exercise . (3.1)

Démonstration. C'est une application directe du corollaire 2.12. En effet, on a

$$\mathcal{O}_{X_s,x} = \mathcal{O}_{X,x}/\mathfrak{m}_s \mathcal{O}_{X,x} = \mathcal{O}_{X,x}/t \mathcal{O}_{X,x}$$

par hypothèse et l'anneau  $\mathcal{O}_{X,x}$  est régulier.

#### Exercise . (3.2)

Démonstration. Le fait que le morphisme est quasi-fini assure que pour tout  $x \in X$  qui n'est pas fermé il existe un point fermé dans  $\overline{\{x\}}$  et donc comme la question est locale on peut se restreindre à  $X = \operatorname{Spec} A$  et  $Y = \operatorname{Spec} B$  affines.

Le résultat suit alors du diagramme suivant et du fait que la localisation est plate. Si  $x_1$  n'est pas fermé, il existe  $x_2$  dans sa fermeture, donc si  $\mathfrak{p}_1$  est l'idéal associé à  $x_1$  et  $\mathfrak{m}_1$  celui associé à  $x_2$  on a  $\mathfrak{p}_1 \subset \mathfrak{m}_1$  et le diagramme



et comme par hypothèse  $\mathcal{O}_{X,x_2}$  est plat sur  $\mathcal{O}_{Y,y}$  c'est le cas de ses localisés donc de  $\mathcal{O}_{X,x_2}$  qui est obtenu par localisation en  $\mathfrak{p}_1$ .

# 5 Coherent sheaves and Cech cohomology

#### 5.1 Coherent sheaves on a scheme

Exercise . (1.1)

Démonstration. Soient  $f: X \to Y$  une application entre deux schémas,  $\mathcal{F}$  un  $\mathcal{O}_X$ -module et  $\mathcal{G}$  un  $\mathcal{O}_Y$ -module. On a, pour U ouvert de X,

$$f^{-1}f_*\mathcal{F}(U) = \lim_{\substack{\longrightarrow\\f(U) \subset V}} f_*\mathcal{F}(V) = \lim_{\substack{\longrightarrow\\f(U) \subset V}} \mathcal{F}(f^{-1}(V)).$$

Comme  $f(U) \subset V$  on a  $U \subset f^{-1}(V)$  d'où l'application de restriction par définition d'un faisceau  $\mathcal{F}(f^{-1}(V)) \to \mathcal{G}(U)$ . De plus à nouveau par définition d'un faisceau ses applications sont compatibles à la limite directe et donc induise une application canonique  $\alpha \colon f^{-1}f_*\mathcal{F} \to \mathcal{F}$ .

D'autre part, pour V ouvert de Y,

$$f_*f^{-1}\mathcal{G}(V) = f^{-1}\mathcal{G}(f^{-1}(V)) = \lim_{\substack{\to \ f(f^{-1}(V)) \subset U}} \mathcal{G}(U).$$

Or  $f(f^{-1}(V) \subset V$  donc  $\mathcal{G}(V)$  est un élément de la limite directe. Il suit qu'on a une application canonique  $\mathcal{G}(V) \to f_* f^{-1} \mathcal{G}(V)$  qui consiste simplement à prendre la classe d'un élément dans la limite. On en déduit une application  $\beta \colon \mathcal{G} \to f_* f^{-1} \mathcal{G}$ .

On peut étendre ces applications au cas de l'image inverse de  $\mathcal{O}_X$ -modules. On a  $f^*f_*\mathcal{F} = f^{-1}f_*\mathcal{F} \otimes_{f^{-1}\mathcal{O}_Y} \mathcal{O}_X$ . D'où  $\tilde{\alpha} \colon h \otimes t \mapsto t \cdot \beta(h) \in \mathcal{F}$ . De la même manière on définit  $\tilde{\alpha} \colon h \mapsto 1 \otimes \alpha(h)$ .

Il reste à voir que ces applications induisent un isomorphisme

$$\operatorname{Hom}_{\mathcal{O}_{Y}}(f^{*}\mathcal{G}, \mathcal{F}) \simeq \operatorname{Hom}_{\mathcal{O}_{Y}}(\mathcal{G}, f_{*}\mathcal{F}).$$

Soit  $\varphi \colon f^*\mathcal{G} \to \mathcal{F}$ . Alors on obtient une application induite  $\tilde{\varphi} \colon f_*f^*\mathcal{G} \to f_*\mathcal{F}$  et en composant à droite par  $\tilde{\beta}$  on obtient une application de  $\operatorname{Hom}_{\mathcal{O}_Y}(\mathcal{G}, f_*\mathcal{F})$ . Le diagramme est le suivant

$$\mathcal{G} \xrightarrow{\tilde{\beta}} f_* f^* \mathcal{G} \xrightarrow{\tilde{\varphi}} f_* \mathcal{F} .$$

On obtient de la même manière une application inverse. On vérifie avec les formules qu'elles sont inverses l'une de l'autre.  $\Box$