Math 251, Wed 6-Oct-2021 -- Wed 6-Oct-2021
Discrete Mathematics
Fall 2021

Wednesday, October 6th 2021

Wk 6, We

Topic:: Big-Oh heirarchy HW:: PS06 due Thurs.

3. It is a fact that, for all real numbers x > 2,

$$10|x^6| \leq |17x^6 - 45x^3 + 2x + 8| \leq 30|x^6|.$$

Given this, what sort of Big-O, Big- Ω and/or Big- Θ statements are possible here?

Conclusion:
$$17x^6 - 45x^3 + 2x + 8$$
 is $\Theta(x^6)$
(i.e., its of order $x^{6"}$)

Some Facts:

Triangle Inequality
$$|x+y| \leq |x|+|y|$$

ZEN VI

1. If $m \ge n$ and f is a polynomial of degree n, then f(x) is $O(x^m)$.

$$\begin{aligned} f(x) &= a_{n}x^{n} + a_{n-1}x^{n-1} + \cdots + a_{n}x + a_{0} \\ |f(x)| &= |a_{n}x^{n} + a_{n-1}x^{n-1} + \cdots + a_{n}x + a_{0}| \leq |a_{n}x^{n}| + |a_{n-1}x^{n-1}| + \cdots + |a_{n}x| + |a_{0}| \\ &= |a_{n}||x^{n}| + |a_{n-1}||x^{n-1}| + \cdots + |a_{n}||x^{n}| + |a_{0}|| \\ &\in |a_{n}||x^{n}| + |a_{n-1}||x^{n}| + \cdots + |a_{n}||x^{n}| + |a_{0}||x^{n}| = |x^{n}| \left(|a_{n}| + \cdots + |a_{n}| + |a_{0}| \right) \\ &\in |x^{m}| \left(|a_{n}| + \cdots + |a_{n}| + |a_{0}| \right) - giving \quad f \text{ is } O(x^{m}) \quad \text{withesses} \\ &= 1, \quad C = \left(|a_{0}| + |a_{1}| + \cdots + |a_{n}| \right). \end{aligned}$$

2. n! is $O(n^n)$ and, as a consequence, $\log_b n!$ is $O(n \log_b n)$, for any b > 1.

$$n! = n(n-1)(n-2) \cdots (i) \leq n \cdot n \cdot n = n^n$$

 $\log_b n! \leq \log_b (n^n) = n \log_b n$

3. It can be shown that $n < 2^n$ for $n \ge 1$ and, as a consequence, $\log_b n$ is O(n) for all b > 1.

4. If $f_1(x)$ is $O(g_1(x))$ and $f_2(x)$ is $O(g_2(x))$, then $(f_1 + f_2)(x)$ is $O(\max(|g_1(x)|, |g_2(x)|))$.

$$\int_{\mathbb{R}^{2}} \int_{\mathbb{R}^{2}} \int_{$$

5. If $f_1(x)$ is $O(g_1(x))$ and $f_2(x)$ is $O(g_2(x))$, then $(f_1f_2)(x)$ is $O(g_1(x)g_2(x))$.

$$\times^3(\log_2 x)$$
 is $O(x^4)$.

6. As a result of Facts 3 and 5, we have

$$n \log_b n$$
 is $O(n^2)$, $x^p (\log_b x)^q$ is $O(x^{p+q})$, etc.

7. If f(x) is O(g(x)) and g(x) is O(h(x)), the f(x) is O(h(x)).

8. For any values a, b > 1, $\log_a x$ is $O(\log_b x)$.

9. Let c > b > 1, and d > 0. For comparing of a power function x^d with an exponential growth function b^x , we have

 x^d is $O(b^x)$, but not vice versa.

For comparing the two exponential growth functions c^x , b^x we have

 b^x is $O(c^x)$, but not vice versa.

So, 2^{\times} is $O(3^{\times})$, but 3^{\times} is not $O(2^{\times})$

10. It requires calculus, but it can be shown that for any b > 0, c > 0, $(\log_b x)^c$ is O(x).

There is, therefore, this increasing sequence of orders: 1, $\log_b n$, $(\log_b n)^2$, $(\log_b n)^3$, ..., n, $n \log_b n$, $n(\log_b n)^2$, ..., n^2 , $n^2 \log_b n$, n^3 , ..., n^3 ,

Show that $f(x) = x^2$ is not O(x). We'll prove this by contradiction — i.e. assume the opposite is true, and see if lead to a contradiction.

Start: Assume x^2 is O(x), which means there are witnesses C>0 and k>0 such that, whenever $x\geq k$, $C|x|\geq |x^2|$.

Let choose $x^*=1+\max(C,k)$. Since $x^*>k$, we have $C|x^*|\geq |(x^*)^2|=|x^*||x^*|\geq (C+1)|x^*|$ by $|x^*|$ Now divide both sides of $C|x^*|\geq (C+1)|x^*|$ by $|x^*|$

Theorem 1: Let f(x) be a polynomial of degree n—that is,

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0,$$

with $a_n \neq 0$. Then

- f(x) is $O(x^s)$ for all integers $s \ge n$.
- f(x) is not $O(x^r)$ for all integers r < n.
- f(x) is $\Omega(x^r)$ for all integers $r \le n$.
- f(x) is not $\Omega(x^s)$ for all integers s > n.
- f(x) is $\Theta(x^n)$.