CE043 - GAMLSS

Família GAMLSS - Distribuições tipo binomial

Silva, J.P; Taconeli, C.A.

31 de agosto, 2020

Conteúdo

Introdução

2 Superdispersão e subdispersão

3 O problema do excesso ou escassez de zeros

Introdução

Introdução

- Chamamos distribuições tipo binomial as distribuições com suporte no conjunto finito $\{0, 1, 2, ..., n\}$.
- Tais distribuições são usualmente aplicadas na análise de dados de contagens com um limite superior fixo e conhecido (n);
- Nas situações em que temos eventos binários (sucesso vs fracasso) sob contagem, independentes e com probabilidade de sucesso (0<μ<1), então o número de sucessos (Y) tem distribuição binomial, com função de probabilidades:

$$P(Y=y)|n,\mu\rangle = \binom{n}{y}\mu^y(1-\mu)^{n-y}$$
, para $y=0,1,...,n$.

ullet Para n=1 temos, como caso particular, a distribuição Bernoulli.

Introdução

 A média e a variância da distribuição binomial são dadas, respectivamente, por:

$$E(Y) = n\mu; \quad Var(Y) = n\mu(1-\mu).$$

- Assim como ocorre para a distribuição Poisson, dados de contagens do tipo binomial também estão sujeito a super (ou sub) dispersão e excesso ou escassez de zeros.
- A biblioteca gamlss dispõe de modelos capazes de acomodar tais problemas na análise de contagens com suporte em $\{0, 1, 2, ..., n\}$.

Modelos probabilísticos para variáveis tipo binomial

Tabela 1: Distribuições com suporte em $R_y = \{0, 1, 2, ..., n\}$

Distribuição	Nome gamlss	Parâmetro (função de ligação)			
		μ	σ	ν	au
binomial	BI	logit	-	-	-
beta-binomial	BB	logit	\log	-	-
double-binomial	DBI	logit	\log	-	-
zero-adj beta-binomial	ZABB	logit	\log	logit	-
zero-adj binomial	ZABI	logit	logit	-	-
zero-inf beta-binomial	ZIBB	logit	\log	logit	-
zero-inf binomial	ZIBI	logit	logit	-	-

- Distribuições tipo binomial podem apresentar super ou subdispersão relativa à distribuição binomial.
- Uma alternativa usual para lidar com superdispersão em dados do tipo binomial é a distribuição beta-binomial;
- A beta-binomial é produzida por uma mistura envolvendo as duas distribuições que compõem seu nome.
- Seja $Y|\pi\sim \mathrm{BI}(n,\pi)$, e considere que π é uma variável aleatória com distribuição beta: $\pi\sim \mathrm{BEo}\left(\frac{\mu}{\sigma},\frac{1-\mu}{\sigma}\right)$, com $E(\pi)=\mu$.

• Dessa forma, marginalmente Y tem distribuição beta-binomial, denotada por $Y \sim \mathrm{BB}(n,\mu,\sigma)$, com n inteiro conhecido, $0 < \mu < 1$, $\sigma > 0$, com média $\mathrm{E}(Y) = n\mu$ e variância:

$$Var(Y) = n\mu(1 - \mu) \left[1 + \frac{\sigma(n-1)}{(1+\sigma)} \right] > n\mu(1-\mu),$$

de maneira que a beta-binomial se apresenta como alternativa à binomial no caso de superdispersão.

• A distribuição double-binomial, denotada por $\mathtt{DBI}(n,\mu,\sigma)$, $0 < \mu < 1, \, \sigma > 0$ é uma alternativa à binomial baseada na família exponencial dupla.

• A média de $Y \sim \mathtt{DBI}(n, \mu, \sigma)$ é dada por $\mathrm{E}(Y) = n\mu$ e a variância (aproximada) é $\mathrm{Var}(Y) = \sigma n \mu (1 - \mu)$.

• Assim, a distribuição DBI acomoda superdispersão (relativa à binomial) para $\sigma > 1$, e subdispersão quando $\sigma < 1$.

• Assim como visto anteriormente, para dados de contagens, distribuições do tipo binomial também podem apresentar excesso ou escassez de zeros;

 Novamente, as versões zero-inflacionadas e as zero-ajustadas dos modelos usuais permitem acomodar esse problema;

 As distribuições relacionadas na sequência estão explicitamente implementadas na biblioteca gamlss.

• Binomial zero-inflacionada ZIBI (n, μ, σ) : associa probabilidade σ a Y = 0 e probabilidade $(1-\sigma)$ a uma BI (n, μ) ;

• beta-binomial zero-inflacionada ZIBB (n, μ, σ, ν) : associa probabilidade ν a Y=0 e probabilidade $(1-\nu)$ a uma BB (n, μ, σ) ;

• Importante reforçar que distribuições zero-inflacionadas permitem modelar apenas dados com excesso de zeros (e não escassez).

• Binomial zero-ajustada ZIBI (n, μ, σ) : associa probabilidade σ a Y = 0 e probabilidade $(1-\sigma)$ a uma binomial truncada em zero;

• beta-binomial zero-inflacionada ZIBB (n, μ, σ, ν) : associa probabilidade ν a Y=0 e probabilidade $(1-\nu)$ a uma beta-binomial truncada em zero;

• Distribuições zero-ajustadas permitem modelar tanto dados com excesso escassez de zeros.

Sessão R

 Nesta sessão R vamos analisar dados usando as distribuições tipo-binomial implementadas no gamlss.