C*-ALGEBRAS, THE GELFAND-NAIMARK THEOREM, AND [OTHER THING]

LUKE ARMITAGE

1. Introduction

- 1.1. **History of C*-Algebras.** A brief timeline of the development on the theory. The theory of C*-algebras has its basis in W. Heisenberg's use of so-called "matrix mechanics" in the modelling of algebras of physical observables in quantum mechanical systems. In [1925], Heisenberg
- 1.2. C^* -Algebras. A brief overview of what a C^* -algebra is.
 - banach space
 - banach algebra
 - *-algebra
 - C* algebra
 - representations

Definition 1. A C*-algebra is a Banach algebra $(A, \|\cdot\|)$ with involution $*: A \to A$ with the condition that

$$||x^*x|| = ||x||^2 \text{ for all } x \in A.$$

I HAVE CHANGED A THING This condition is known as the C^* axiom. The study of C*-algebras started with the consideration of matrix mechanics by H

There are many statements of the theorem; this here comes from [ref].

Theorem (Gelfand-Naimark, Commutative). Every commutative, unital C^* -algebra A is isometrically *-isomorphic to the algebra of continuous functions on the algebra of characters on A.

The theorem first appeared in [gelfand-naimark] in a form relating 'normed rings' and a closed subrings of the set of bounded operators on a Hilbert space.

- 1.3. **Aims.** The aims for my project are, provisionally:
 - Take the Gelfand-Naimark theorem, and understand its contents and proof.
 - Consider the representation theory of C*-algebras, using the Gelfand-Naimark-Segal construction as a starting point.

• (as 'further reading') Give an overview of areas in which operator algebra theory can be taken (for example, Cuntz algebras and operator K-theory, von Neumann algebras and Factors, abstract harmonic analysis).

References