ELETTROTECNICA Ingegneria Industriale

– INTRODUZIONE ai CIRCUITI –– LEGGI di KIRCHHOFF–

Stefano Pastore

Dipartimento di Ingegneria e Architettura Corso di Elettrotecnica (043IN) a.a. 2013-14

Bibliografia

- V. Daniele, A. Liberatore, R. Graglia e S. Manetti: "Elettrotecnica", Monduzzi Editore, Bologna
- F. Ciampolini: "Elettrotecnica generale", Pitagora Editrice Bologna

Circuiti e modelli

Circuiti reali

(o fisici)

Modelli matematici

(dei singoli, componenti, delle connessioni, dei circuiti,...)

Studio dei circuiti

- Il processo completo di analisi di un circuito elettrico reale consiste in:
- 1) Stabilire il modello più appropriato per descrivere i componenti in uso nel circuito, la loro connessione e il campo di applicazione
- 2) Scrivere e risolvere le equazioni secondo il modello complessivo scelto
- 3) Verificare la correttezza delle soluzioni ottenute con opportune verifiche sul circuito reale
- In questo corso ci limitiamo al passo
 2) limitatamente a certi modelli di circuiti.

Nozioni preliminari

- Un circuito elettr(on)ico è composto dalla interconnessione di dispositivi elettro-magnetici che interagiscono tra loro
- Questi dispositivi comunicano con il mondo esterno (resto del circuito) mediante i morsetti o terminali o poli. Sono chiamati in generale multipoli
- Le grandezze fondamentali che prenderemo in considerazione per lo studio dei circuiti sono la differenza di potenziale (tensione) e la corrente elettrica

Prima classificazione

- Principali classi di modelli:
- A parametri concentrati (PC)
- A costanti distribuite
- Criteri per la scelta tra le due classi di modelli:
- Dimensioni del circuito
- Frequenze dei segnali

Esempi

- Circuito integrato con estensione d=1 mm, percorso da segnali con periodo minimo T=0.1 ns = 10^{-10} s. Per attraversare il circuito da un capo all'altro, le onde elettromagnetiche ci mettono: $\Delta t = d/c = 10^{-3}/3 \cdot 10^8 = 3.3 \cdot 10^{-12}$ s. Essendo $\Delta t << T$, il circuito può essere considerato PC.
- Circuito audio che lavora con $f_{\text{max}} = 25 \text{ kHz}$. Ne segue che $\lambda = c/f = 12 \text{ km}$. Finché $d << \lambda$, il circuito può essere considerato PC.
- Cavo coassiale lungo d=10 m dal ricevitore all'antenna satellitare. Dall'antenna esce un segnale $f_1=1$ GHz ($T_1=10^{-9}$ s), dal ricevitore un segnale $f_2=20$ KHz ($T_2=5\cdot10^{-5}$ s) (polariz. dell'antenna). Si ha che:

$$\Delta t = d/c = 10/3 \cdot 10^8 = 3.3 \cdot 10^{-8} \text{ s};$$

 $\lambda_1 = c/f_1 = 0.3 \text{ m} (<< l); \lambda_2 = c/f_2 = 1.5 \cdot 10^4 \text{ m}$
(>> l).

Modelli PC

- La velocità di propagazione delle onde elettromagnetiche è infinita, quindi il tempo di propagazione dei segnali è nullo
- Non ci sono campi elettro-magnetici esterni concatenati con il circuito, inoltre tutti i fenomeni elettrici sono confinati in certe ben definite regioni dello spazio

Ne consegue che:

- Non ci sono nozioni metriche associate al circuito, i collegamenti tra i componenti non hanno né lunghezza né alcuna estensione
- Le grandezze fisiche assumono in ogni istante lo stesso valore in tutto il circuito
- Il campo elettrico è conservativo (d.d.p.)
- Il circuito è costituito da componenti connessi tra loro solamente mediante i morsetti e isolati dal mondo esterno

Riassumendo...

- Un circuito PC è composto da un insieme di componenti a due o più terminali connessi tra loro tramite i morsetti
- I collegamenti tra componenti corrispondono a dei corti circuiti; la loro lunghezza non influenza il comportamento del circuito
- Le variazioni delle grandezze elettriche si propagano istantaneamente in tutto il circuito
- Tra morsetto e morsetto si può misurare una differenza di potenziale elettrico (ddp), chiamata impropriamente tensione
- Nei componenti e nei morsetti scorre la corrente elettrica formata da cariche positive

Differenze di potenziale

- Il concetto di differenza di potenziale è legato al lavoro compiuto da una forza esterna su una particella carica in opposizione al campo elettrico (per la definizione di campo elettrico, vedi la legge di Coulomb)
- Dal momento che supponiamo che il campo elettrico sia conservativo, questo lavoro non dipende dal percorso, ma può essere espresso come differenza di una funzione potenziale calcolata agli estremi.
- Quindi si ha: $W_{AB} = q \cdot v_{AB} = q \cdot (v_A v_B)$
- Il potenziale *v* si misura in Volt [V]

Correnti e potenze

• La corrente elettrica è un flusso di cariche positive in un conduttore:

$$i = \frac{\mathrm{d}q}{\mathrm{d}t}$$

- La corrente *i* si misura in Ampere [A]
- La potenza elettrica dissipata o erogata in un bipolo si ricava da:

$$p = \frac{\mathrm{d}W}{\mathrm{d}t} = v \frac{\mathrm{d}q}{\mathrm{d}t} = vi$$

• Si misura in Watt [W]

Definizioni

- Consideriamo un circuito formato soltanto da componenti a due terminali, detti bipoli
- Nodo: punto in cui si congiungono due o più morsetti o terminali
- *Ramo* (o arco o lato): singolo percorso circuitale tra due nodi corrispondente a un bipolo
- Maglia: insieme di due o più rami che formano un cammino chiuso

Convenzioni di segno

Convenzione normale o degli utilizzatori

- La freccia della tensione punta verso il terminale dove entra la corrente
- $v(t) = e_1(t) e_2(t)$
- se $v(t) > 0 \rightarrow e_1(t) > e_2(t)$
- $p = v i > 0 \Rightarrow$ potenza dissipata
- $p = v i < 0 \Rightarrow$ potenza erogata

Convenzioni di segno (2)

Convenzione non-normale o dei generatori

- La freccia della tensione punta verso il terminale dove esce la corrente
- $v(t) = e_2(t) e_1(t)$
- se $v(t) > 0 \rightarrow e_2(t) > e_1(t)$
- $p = v i > 0 \Rightarrow$ potenza erogata
- $p = v i < 0 \Rightarrow$ potenza dissipata

Nodi e rami in un circuito

- In un circuito ci sono *n* nodi e *b* rami
- Un nodo è preso come riferimento per il potenziale (0 V)
- Ad ognuno dei *n*–1 nodi rimanenti è associato un potenziale
- Ad ogni ramo, corrispondente a un bipolo, è associata una corrente e una differenza di potenziale (tensione)

I Legge di Kirchhoff

 Il primo principio di Kirchhoff (KCL, IK) afferma che la somma algebrica delle correnti che entrano o escono da ogni nodo è identicamente nulla in ogni istante di tempo

$$i_1(t) + i_2(t) + i_3(t) + \dots + i_n(t) = 0$$

 Si deve fissare un verso convenzionale positivo rispetto al nodo per stabilire se le correnti devono essere prese con il segno più o quello meno; per esempio, prendiamo come positive le correnti uscenti dal nodo

II Legge di Kirchhoff

 Il secondo principio di Kirchhoff (KVL, IIK) afferma che la somma algebrica delle ddp (tensioni) lungo una maglia è identicamente nulla in ogni istante di tempo

$$v_{12} + v_{23} + v_{34} + \ldots + v_{n1} = 0$$

 seconda formulazione: Ogni ddp di ramo è data dalla differenza dei relativi potenziali di nodo

$$v_{12} = e_1 - e_2$$

 Si deve fissare un verso convenzionale positivo nella maglia per stabilire se le ddp devono essere prese con il segno più o quello meno; per esempio, prendiamo come positivo il verso orario

Leggi di Kirchhoff - esempi

• Scriviamo le equazioni di IK per il seguente circuito, in cui n = 4 e b = 6

$$1: i_a + i_b + i_f = 0$$

$$2:-i_b+i_c+i_d=0$$

$$3:-i_d + i_e - i_f = 0$$

$$0:-i_{a}-i_{c}-i_{e}=0$$

Leggi di Kirchhoff – esempi (2)

- La somma delle equazioni è identicamente nulla, per cui risultano essere linearmente dipendenti. Si deve allora togliere una qualsiasi delle equazioni; di regola si toglie l'equazione relativa al nodo preso come riferimento. Restano 3 equazioni
- Scriviamo le IIK per un insieme di maglie indipendenti; si dimostra che tale numero è pari a b-(n-1) = 3

$$abc: v_a - v_b - v_c = 0$$

$$cde: v_c - v_d - v_e = 0$$

$$bdf: v_b + v_d - v_f = 0$$

Leggi di Kirchhoff - equazioni

- Si deve scegliere innanzi tutto il nodo di riferimento
- Si fissano arbitrariamente i versi delle correnti per ogni ramo
- le tensioni possono essere poste secondo la convenzione normale
- Si scrivono le *n*–1 equazioni indipendenti per IK e le *b*–(*n*–1) equazioni indipendenti per IIK, per un totale di *b* equazioni

Teorema di Tellegen

- Potenze virtuali: calcolate con insiemi di correnti e tensioni che soddisfano IK e IIK, ma non sono legate tra loro, ovvero non sono riferite a dei precisi componenti.
- Se eseguiamo il bilancio energetico in un circuito PC, ovvero sommiamo le potenze virtuali di tutti i componenti (rami del circuito), troviamo che questa somma è nulla:

$$\sum_{k} p_{k}(t) = \sum_{k} v_{k}(t) i_{k}(t) = \mathbf{v}^{T} \mathbf{i} = 0$$

Considerazioni riassuntive

- Incognite del circuito:
 - -b correnti
 - -b tensioni
 - 2b incognite
- Equazioni topologiche:
 - IK \rightarrow n-1 equazioni
 - IIK \rightarrow *b*-(*n*-1) equazioni
 - b equazioni topologiche
- Equazioni costitutive:
 - b equazioni costitutive
- Sistema completo: $2b \times 2b$