Clase # n de Análisis 3

Equipo clases a \LaTeX

9 de diciembre de 2020

${\bf \acute{I}ndice}$

1.	Definicion: Particiones de rectángulos y funciones escalonadas 1.1. Particiones	1 1 1
2.	Definicion: Integral doble de una función escalonada	1
3.	Teorema: Linealidad	2
4.	Teorema: Subdivisión de intervalos	2
5.	Teorema: Desigualdad de integrales	2
6.	Definicion: Integrabilidad en regiones rectangulares	2
7.	Definicion: Integrales superiores e inferiores	3
8.	Teorema: Condición para Integrabilidad	3
9.	Teorema: Computo de integrales dobles sobre regiones rectangulares	3
10	.Teorema: Fubini	4
11	.Definicion: Conjunto de contenido nulo	4
12	Teorema: Condición de Integrabilidad para funciones con discontinuidades	4
13	.Ejercicios	4

1. Definicion: Particiones de rectángulos y funciones escalonadas

1.1. Particiones

$$Q[a,b] \times [c,d] \subset \mathbb{R}^3$$

Sea P_1 una partición de [a, b], es decir: $P_1 : a = x_0 < x_1 < \ldots < x_n = b$

Sea P_2 una partición de [c, d], es decir: $P_2 : c = y_0 < y_1 < \ldots < y_m = d$

También se escribe $P_1 = \{x_0, \dots, x_n\}$ y $P_2 = \{y_0, \dots, y_m\}$

Diremos que $P = P_1 \times P_2$ (Producto cartesiano) es una partición de Q.

P' se llama refinamiento de P si $P \subseteq P'$.

1.2. Función escalonada

Una función definida en un rectángulo Q se llama escalonada si existe una partición P de Q tal que f es constante en cada uno de los rectángulos abiertos de P (Conviene introducir función indicatriz)

2. Definicion: Integral doble de una función escalonada

Sea f una funcion escalonada que toma el valor constante c_{ij} en el sub-rectángulo abierto $(x_i, \ldots, x_i) \times (y_j, \ldots, y_j)$ de un rectangulo Q. Se define la integral doble de f en Q como:

$$\iint\limits_{Q} f = \sum_{i=1}^{n} \sum_{j=1}^{m} c_{ij} (x_i - x_{i-1}) (y_j - y_{j-1})$$
 (1)

Notación: $\Delta x_i = x_i - x_{i-1}$ y $\Delta y_j = y_j - y_{j-1}$ Se escribe:

$$\sum_{i=1}^{n} \sum_{j=1}^{m} c_{ij} \Delta x_i \Delta y_j = \iint_{O} f(x, y) dx dy$$
 (2)

Nota:

En lo que sigue, s(x,y) y t(x,y) son funciones escalonadas definidas en un rectángulo Q.

3. Teorema: Linealidad

Para todo $c_1, c_2 \in \mathbb{R}$:

$$\iint\limits_{Q} [c_1 s(x,y) + c_2 t(x,y)] dx dy = c_1 \iint\limits_{Q} s(x,y) dx dy + c_2 \iint\limits_{Q} t(x,y) dx dy$$
 (3)

4. Teorema: Subdivisión de intervalos

Si Q esta dividido en dos sub-rectángulos Q_1 y Q_2 :

$$\iint\limits_{Q} s(x,y)dxdy = \iint\limits_{Q} s(x,y)dxdy + \iint\limits_{Q} s(x,y)dxdy \tag{4}$$

5. Teorema: Desigualdad de integrales

Si $s(x, y) \le t(x, y)$ para todo $(x, y) \in Q$:

$$\iint\limits_{Q} s(x,y)dxdy \le \iint\limits_{Q} t(x,y)dxdy \tag{5}$$

6. Definicion: Integrabilidad en regiones rectangulares

Sea Q un rectángulo en \mathbb{R}^2 y sea $f: \mathbb{R}^2 \to \mathbb{R}$ tal que |f(x,y)| < M si $(x,y) \in Q$ Entonces si existe un unico numero I tal que:

$$\iint\limits_{Q} s \le I \le \iint\limits_{Q} t \tag{6}$$

Para todo par de funciones escalonadas que satisfacen:

$$s(x,y) \le f(x,y) \le t(x,y)$$
 Para todo $(x,y) \in Q$ (7)

Diremos que f es integrable en Q y su integral doble sobre Q es I.

7. Definicion: Integrales superiores e inferiores

Sean:

$$S = \left\{ \iint\limits_{Q} s: \ s \text{ es funcion escalonada en } Q, \ s(x,y) \leq f(x,y) \text{ en } Q \right\}$$

$$T = \left\{ \iint_{Q} t : t \text{ es funcion escalonada en } Q, f(x, y) \leq s(x, y) \text{ en } Q \right\}$$

Diremos que la integral inferior de S en Q es $\underline{I}(f) = \sup S$ Diremos que la integral superior de S en Q es $\overline{I}(f) = \inf T$

8. Teorema: Condición para Integrabilidad

Si una función fz acotada en un rectángulo Q tiene una integral inferior $\underline{I}(f)$ y una integral superior $\overline{I}(f)$ que satisfacen:

$$\iint\limits_{Q} s \le \underline{I}(f) \le \overline{I}(f) \le \iint\limits_{Q} f \tag{8}$$

Para todas las funciones escalonadas en Q, s y t que cumplan $s(x, y) \le f(x, y) \le t(x, y)$ para todo $(x, y) \in Q$ entonces f es integrable en Q si y solo si $\underline{I}(f) = \overline{I}(f)$ en cuyo caso:

$$\iint\limits_{O} f = \underline{I}(f) = \overline{I}(f) \tag{9}$$

9. Teorema: Computo de integrales dobles sobre regiones rectangulares

Sea $Q = [a, b] \times [c, d]$, $f : Q \to \mathbb{R}$, acotada y supongamos que f es integrable en Q. Supongamos también que para cada g fija en [c, d] la integral $\int_a^b f(x, y) dx$ existe y escribamos $A(y) = \int_a^b f(x, y) dx$. Si existe la integral $\int_a^b A(y) dy$, entonces sera igual a $\iint_C f$.

Atención: entonces tendremos la formula:

$$\iint\limits_{Q} f(x,y)dxdy = \int_{c}^{d} \left[\int_{a}^{b} f(x,y)dx \right] dy \tag{10}$$

que aplica bajo ciertas condiciones.

10. Teorema: Fubini

Sea $Q = [a, b] \times [c, d]$, $f : Q \to \mathbb{R}$, Si f es continua en Q entonces f es integrable en Q. Ademas se cumple:

$$\iint\limits_{C} f(x,y)dxdy = \int_{c}^{d} \left[\int_{a}^{b} f(x,y)dx \right] dy = \int_{a}^{b} \left[\int_{c}^{d} f(x,y)dy \right] dx \tag{11}$$

11. Definicion: Conjunto de contenido nulo

Sea A un conjunto acotado del plano. Se dice que el conjunto A tiene contenido nulo, si para todo $\epsilon>0$ existe un conjunto finito de rectángulos cuya unión contiene el conjunto A y cuya suma de áreas no supera ϵ

12. Teorema: Condición de Integrabilidad para funciones con discontinuidades

Sea $Q=[a,b]\times[c,d]$, $f:Q\to\mathbb{R}$, f acotada en Q. Si el conjunto de discontinuidades de f en Q, es un conjunto de contenido nulo, entonces existe $\iint\limits_Q f$

13. Ejercicios

- $1. \ Demuestre \ que \ el \ conjunto \ de \ funciones \ escalonadas \ definidas \ en \ un \ rectángulo \ Q \ es \ un \ espacio \ lineal$
- 2. Demostrar que el valor de (1) no depende de la elección de la partición P
- 3. Sea $f : [0,1] \times [0,1] \to \mathbb{R}$ con:

$$f(x,y) = \begin{cases} 1 & x = y \\ 0 & x \neq y \end{cases}$$

Demuestre la existencia de la integral doble $\iint\limits_{\mathcal{O}} f$ y que su valor es cero.

4. Sea $f:[1,2]\times[2,4]\to\mathbb{R}$ con:

$$f(x,y) = \begin{cases} (x+y)^{-2} & x \le y \le 2x \\ 0 & \text{otro caso} \end{cases}$$

Suponiendo la existencia de $\iint_{\Omega} f$ calcule su valor.

 $5. \ \ Calcular \ las \ siguientes \ integrales, \ suponiendo \ su \ existencia:$

a)
$$\iint\limits_{Q} |\cos(x+y)| dx dy \text{ con } Q = [0,\pi] \times [0,\pi]$$

b) $\iint\limits_{Q} f(x,y) dx dy$ con $Q = [0,2] \times [0,2]$ y f(t) = mayor entero $\leq t$