

Phystech @ DataScience

Логистическая регрессия

Задача классификации

Ô

Классификация

 \mathscr{X} — пространство объектов,

Истинное правило классификации:

неизвестная функция $f: \mathscr{X} \to \mathscr{Y}$.

Пространство \mathscr{X} разбивается на подпространства (decision regions) $\mathscr{X}_y = \{x \in \mathscr{X} \mid f(x) = y\},$ границы которых называются разделяющими поверхностями (decision surfaces).

Часто $\mathscr{X} \subset \mathbb{R}^d$, в т.ч. могут быть категориальные.

Типы классификации

- 1. Двухклассовая. $\mathscr{Y} = \{0,1\}$ или $\mathscr{Y} = \{-1,1\}$.
- 2. Многоклассовая.

$$\mathscr{Y} = \{1,...,K\}$$
 или $\mathscr{Y} = \{(1,0,...,0),(0,1,...,0),...,(0,0,...,1)\}.$

Задача классификации:

предложить оценку $\widehat{f}: \mathscr{X} \to \mathscr{Y}$ правила классификации на основе обуч. выборки $(x_1,Y_1),...,(x_n,Y_n)$, где $x_i=(x_{i1},...,x_{id})\in \mathscr{X}$, $Y_i\in \mathscr{Y}$, как можно точнее приближающую неизвестное правило классиф-ции.

Оценку правила классификации чаще будем называть моделью.

Вероятностная природа

Часто предполагается случайная принадлежность классу: ϕ ункция f при повторении эксперимента один и тот же объект $x \in \mathscr{X}$ может отнести как одному классу, так и к другому.

 \implies имеет смысл предсказывать вероятность $P_x(Y = y)$ принадлежности объекта x каждому из классов.

Точечная оценка: $\underset{y \in \mathscr{Y}}{\operatorname{arg max}} P_x(Y = y)$

Если классы неравнозначны: $\underset{y \in \mathscr{Y}}{\arg\max} [w_y \, \mathsf{P}_x(Y=y)],$ $w_y -$ приоритетность класса

Признак 1

Примеры:

- 1. $P(Y = 0 \mid X = x_2) = 0.95$, $P(Y = 1 \mid X = x_2) = 0.05$ Уверенное предсказание в пользу класса 0.
- 2. $P(Y = 0 \mid X = x_1) = 0.55$, $P(Y = 1 \mid X = x_1) = 0.45$ Модель не уверена в предсказании.

Линейные модели

 $y(x) = \theta^T x$ — линейная модель регрессии.

Линейная модель в классификации:

Разделяющая поверхность — линейная гиперплоскость в пр-ве \mathscr{X} .

В многоклассовом случае — при дополнении до гиперплоскости.

Например, при $\mathscr{Y} = \{-1,1\}$ линейна модель $y(x) = \operatorname{sign}(\theta^T x)$.

Замечание.

Исходное пр-во признаков может быть предварительно преобразовано с помощью нелинейных функций, в частности можно включить константный признак. В таком случае разделяющая поверхность лин. классификатора не будет линейной в исходном пространстве.

Логистическая регрессия

Логистическая регрессия

Пространство объектов $x \in \mathscr{X} \subset \mathbb{R}^d$.

Множество классов $\mathscr{Y} = \{0, 1\}.$

Класс объекта x имеет распределение $Bern(\mu(x)) \in [0,1]$.

Предположение:

$$\mu_{\theta}(x) = \sigma(\theta^T x),$$

где $\sigma(z) = \frac{1}{1+e^{-z}}$ — логистическая сигмоида.

Логстическая регрессия

Разделяющая поверхность $\{\mu_{\theta}(x)=1/2\}=\{\theta^Tx=0\}$ линейна, а значит логистическая регрессия является линейным классификатором.

Чем больше значение $\theta^T x$, тем более вероятен класс 1.

Свойства:

- 1. $\sigma(-z) = 1 \sigma(z)$. При $z = \theta^T x$ это вероятность класса 0;
- 2. Обратная функция $z(s) = \ln \frac{s}{1-s}$ **логит-функция**;
- 3. $\frac{d\sigma}{dz} = \sigma(z)(1 \sigma(z))$.

Ê

Обучение

Пусть дана обучающая выборка $(x_1, Y_1), ..., (x_n, Y_n)$, где $x_i = (x_{i1}, ..., x_{id}) \in \mathscr{X}$ и случайный класс $Y_i \sim Bern(\mu_{\theta}(x_i))$.

Функция правдоподобия:

$$L_Y(\theta) = \prod_{i=1}^n \mu_{\theta}(x_i)^{Y_i} (1 - \mu_{\theta}(x_i))^{1 - Y_i}$$

Будем ее максимизировать численно с помощью *градиентного подъема*. Это лучше выполнять с помощью логарифмической функции правдоподобия

$$\ell_Y(\theta) = \log L_Y(\theta) = \sum_{i=1}^n \left[Y_i \log \sigma(\theta^T x_i) + (1 - Y_i) \log \left(1 - \sigma(\theta^T x_i) \right) \right]$$

Ô

Градиентный спуск

Пусть задача оптимизации имеет вид

$$f(\theta) \to \min_{\theta}$$
,

где $f(\theta)$ — дифференцируемая функция; $\nabla_{\theta} f(\theta)$ — градиент $f(\theta)$.

Итеративные методы оптимизации последовательно приближают текущее значение параметра θ к оптимальному θ^* .

Наблюдение (матан 1 курс): В малой окрестности точки направление скорейшего роста функции — ее градиент $\nabla_{\theta}f(\theta)$, направление скорейшего убывания — антиградиент $-\nabla_{\theta}f(\theta)$.

Градиентный спуск

Итерация:

$$\theta_{t+1} = \theta_t - \eta \nabla_{\theta} f(\theta_t).$$

Антиградиент вычитается с заданным малым коэффициентом η , который часто называют коэффициентом скорости обучения или learning rate.

Подбор η осуществляется пользователем.

Критерии останова:

- 1. Лимит на число итераций.
- 2. Early stopping. Не происходит уменьшения $f(\theta)$ в течение какого-то зафиксированного числа шагов.
- 3. Ограничение на норму невязки.

Норма невязки: $\|f(\theta_{t+1}) - f(\theta_t)\|$ становится ниже порога.

Максимизация $\ell_Y(\theta)$

$$\ell_{Y}(\theta) = \log L_{Y}(\theta) = \sum_{i=1}^{n} \left[Y_{i} \log \sigma(\theta^{T} x_{i}) + (1 - Y_{i}) \log \left(1 - \sigma(\theta^{T} x_{i}) \right) \right]$$

Ее производная равна

$$\frac{\partial \ell_{Y}(\theta)}{\partial \theta} = \sum_{i=1}^{n} \left[Y_{i} - \sigma(\theta^{T} x_{i}) \right] x_{i}.$$

Получаем формулу градиентного подъема

$$\theta_{t+1} = \theta_t + \eta \sum_{i=1}^n \left[Y_i - \sigma(\theta_t^T x_i) \right] x_i$$

Максимизация $\ell_Y(\theta)$

Можно также проводить **стохастический** градиентный подъем, выбирая случайный индекс i

$$\theta_{t+1} = \theta_t + \eta \left[Y_i - \sigma(\theta_t^T x_i) \right] x_i$$

Вектор параметров сдвигается вдоль направления выбранного объекта x_i настолько, насколько модель ошибается на этом объекте.

Обозначения:

- ▶ Градиентный спуск Gradient descent GD;
- ▶ Стохастический градиентный спуск Stochastic GD SGD.

Переобучение модели

Пусть

- 1. Классы линейно разделимы;
- 2. Среди признаков есть константа;
- 3. θ : $\{\theta^T x = 0\}$ в точности разделяет два класса.

Тогда $\forall c>0 \; \{c\theta^Tx=0\}$ в точности разделяет два класса.

Ho
$$L_Y(c\theta) = \prod_{i=1}^n \sigma(c\theta^T x_i)^{Y_i} \left(1 - \sigma(c\theta^T x_i)\right)^{1 - Y_i} \to 1 \text{ при } c \to \infty.$$

При конечном θ максимум функции правдоподобия не достигается.

Проблемы

- 1. Предсказания вероятностей классов близки к 0 или 1, что не информативно при решении реальных задач.
- Может быть выбрана произвольная гиперплоскость, в точности разделяющая два класса. При разных запусках один и тот же объект между классами может относится с вероятностью 1 как к одному классу, так и к другому.

Если классы близки к линейно разделимым, оптимальное θ хотя не бесконечно, но может быть достаточно большим, что также влечет подобные проблемы.

В качестве решения проблемы обычно используют регуляризацию.

