root

Go Up

Name	SupportVectorMachines
Version	1.1
Description	Support Vector Machines Bundle
License	http://www.apache.org/licenses/LICENSE-2.0
Copyright	Copyright (C) 2017 HPCC Systems
Authors	HPCCSystems
DependsOn	ML_Core, PBblas
Platform	6.2.0

Table of Contents

Confusion.ecl

Generate the confusion matrix, to compare actual versus predicted response variable values

Converted.ecl

Module for various data conversions between standard ML Bundle formats and those used by libSVM

CrossValidate.ecl

Perform n-fold cross-validation to assess the performance of the given model parameters

GridSearch.ecl

Perform grid search over parameters gamma and C

ModelSummary.ecl

Generate human-readable summary of SVM models

predict.ecl

Module for generating predictions on data from SVM models

Scale.ecl

Scaling and column statistics for datasets in problem format

SVC.ecl

Support vector machine classification

SVR.ecl

Support Vector Machine Regression		
train.ecl		
Train SVM classification and regression models		
Types.ecl		
SupportVectorMachines type definitions		
Datasets		
Examples		
libsvm		
Performance		
Validation		

<div>

${\bf Support Vector Machines}$

July 6, 2022

Support Vector Machine implementations.

Prerequisites: this bundle is a wrapper for the LibSVM library, and so requires LibSVM be installed on all nodes of the cluster. Note: some distributions may have a development version, and that the development version is required if there is more than one version.

Confusion

Go Up

IMPORTS

_versions.ML_Core.V3_2_2.ML_Core.Types |

DESCRIPTIONS

CONFUSION Confusion

DATASET(Confusion_Detail) Confusion

(DATASET(DiscreteField) dependents, DATASET(DiscreteField) predicts)

Generate the confusion matrix, to compare actual versus predicted response variable values.

PARAMETER dependents ||| TABLE (DiscreteField) — the original response values.

PARAMETER predicts || TABLE (DiscreteField) — the predicted responses.

RETURN TABLE ({ UNSIGNED2 wi , UNSIGNED4 classifier , INTEGER4 actual_class , INTEGER4 predict_class , UNSIGNED4 occurs , BOOLEAN correct , REAL8 pctActual , REAL8 pctPred }) — confusion matrix in Confusion_Detail format.

INTERNAL <div/>

SEE ML_Core.Types.Confusion_Detail

Converted

Go Up

IMPORTS

```
__versions.ML_Core.V3_2_2.ML_Core |
__versions.ML_Core.V3_2_2.ML_Core.Types |
```

DESCRIPTIONS

CONVERTED Converted

Converted

Module for various data conversions between standard ML Bundle formats and those used by libSVM.

INTERNAL <div/>

Children

- 1. ToInstance: Convert dataset in NumericField format (with separate NumericFields for dependent and independent variables) to an SVM_Instance format
- 2. FromModel: Convert from SVM Model type to standardized Layout_Model format
- 3. ToModel : Convert from standardized ML Layout_Model format to SVM Model format used by libSVM

TOINSTANCE ToInstance

Converted \

ToInstance

(DATASET(ML_Types.NumericField) Ind, DATASET(ML_Types.NumericField) Dep=dummy)

Convert dataset in NumericField format (with separate NumericFields for dependent and independent variables) to an SVM_Instance format.

PARAMETER <u>Ind</u> || TABLE (NumericField) — NumericField dataset of independent variables.

PARAMETER Dep || TABLE (NumericField) — NumericField dataset of dependent variable(s) (default: empty dataset).

RETURN TABLE ({ UNSIGNED2 wi , UNSIGNED8 rid , REAL8 y , REAL8 max_value , TABLE (SVM_Feature) x }) — Dataset converted to SVM_Instance format.

SEE SupportVectorMachines.Types.SVM_Instance

FROMMODEL FromModel

Converted \

FromModel

(UNSIGNED id base = 1000, DATASET(SVM.Types.Model) mdl)

Convert from SVM Model type to standardized Layout_Model format. The Layout_Model format is harder to interpret, but more generalized.

PARAMETER <u>id_base</u> ||| UNSIGNED8 — Base number from which to start model IDs (default: 1000).

PARAMETER mdl || TABLE (Model) — Object of SVM Model type (see Types.Model).

RETURN TABLE ({ UNSIGNED2 wi , UNSIGNED8 id , UNSIGNED4 number , REAL8 value }) — Convert SVM model in Layout_Model format (see ML_Core.Types for format definition).

SEE Types.Model

SEE ML_Core.Types.Layout_Model

TOMODEL ToModel

Converted \

ToModel

(DATASET(ML_Types.Layout_Model) mdl)

Convert from standardized ML Layout_Model format to SVM Model format used by libSVM. The SVM model format is less general, but easier to interpret.

PARAMETER mdl || TABLE (Layout_Model) — Trained SVM in Layout_Model format.

RETURN TABLE ({ UNSIGNED2 wi , INTEGER4 id , UNSIGNED2 svmType , UNSIGNED2 kernelType , INTEGER4 degree , REAL8 gamma , REAL8 coef0 , UNSIGNED4 k , UNSIGNED4 l , BOOLEAN scale , TABLE (FeatureStats) scaleInfo , TABLE (SVM_SV) sv , TABLE (R8Entry) sv_coef , TABLE (R8Entry) rho , TABLE (R8Entry) probA , TABLE (R8Entry) probB , TABLE (I4Entry) labels , TABLE (I4Entry) nSV }) — Converted SVM model in SVM Model format.

SEE ML_Core.Types.Layout_Model

SEE Types.Model

CrossValidate

Go Up

IMPORTS

```
Types | libsvm.Types | libsvm | libsvm.Converted | _versions.ML_Core.V3_2_2.ML_Core.Types |
```

DESCRIPTIONS

CROSSVALIDATE CrossValidate

```
CrossValidate

( DATASET(Parms) p = DATASET(Types.Training_Parameters_Default),
DATASET(ML_Types.NumericField) observations, DATASET(ML_Types.NumericField)
actuals, UNSIGNED2 folds = 10)
```

Perform n-fold cross-validation to assess the performance of the given model parameters.

```
PARAMETER \underline{\mathbf{p}} ||| TABLE ( Parms ) — The parameters which define the model(s) to be trained.
```

PARAMETER observations ||| TABLE (NumericField) — The observed explanatory values.

PARAMETER <u>actuals</u> ||| TABLE (NumericField) — The dependent variable(s).

PARAMETER folds || UNSIGNED2 — No Doc

RETURN TABLE ({ UNSIGNED2 wi , INTEGER4 id , REAL8 correct , REAL8 mse , REAL8 r_sq }) — Dataset of cross-validated scores.

INTERNAL <div/>

GridSearch

Go Up

IMPORTS

Types | std.system.Thorlib | _versions.ML_Core.V3_2_2.ML_Core.Types |

DESCRIPTIONS

GRIDSEARCH GridSearch

GridSearch

(Grid_Plan plan = Types.SVM_Grid_Plan_Default, T_Base base =
Types.Training_Base_Default, DATASET(ML_Types.NumericField) observations,
DATASET(ML Types.NumericField) actuals)

Perform grid search over parameters gamma and C. The grid resolution is increased automatically to utilize any otherwise idle nodes. For a single given set of model parameters, models can be tuned to a number of datasets by concatenating multiple datasets into single 'observations' and 'actuals' datasets, with separate datasets being identified by a work ID column, 'wi'.

- **PARAMETER** plan ||| ROW (Grid_Plan) A structure defining preferences for the grid resolution and number of CV folds used in evaluation of candidate models. In SVM_Grid_Plan format.
- **PARAMETER** base ||| ROW (T_Base) The fixed model parameters (those other than gamma and C) in Training_Base format.
- **PARAMETER** <u>observations</u> ||| TABLE (NumericField) The observed explanatory values in NumericField format.
- **PARAMETER** <u>actuals</u> ||| TABLE (NumericField) The observed dependent varible(s) used to build the model(s) in NumericField format.

RETURN TABLE ({ UNSIGNED2 wi , INTEGER4 id , REAL8 correct , REAL8 mse , REAL8 r_sq , UNSIGNED2 svmType , UNSIGNED2 kernelType , INTEGER4 degree , REAL8 coef0 , REAL8 eps , REAL8 nu , REAL8 p , INTEGER4 nr_weight , BOOLEAN shrinking , BOOLEAN prob_est , BOOLEAN scale , TABLE (I4Entry) lbl , TABLE (R8Entry) weight , REAL8 gamma , REAL8 C }) — Dataset with sets of model parameters and corresponding cross-validated scores in GridSearch_Result format.

INTERNAL <div/>

SEE Types.SVM_Grid_Plan

SEE Types.Training_Base

SEE ML_Core.Types.NumericField

SEE Types.GridSearch_Result

ModelSummary

Go Up

IMPORTS

_versions.ML_Core.V3_2_2.ML_Core.Types |

DESCRIPTIONS

MODELSUMMARY ModelSummary

```
DATASET({UNSIGNED4 r, STRING60 txt}) ModelSummary

( DATASET(Core_Types.Layout_Model) model )
```

Generate human-readable summary of SVM models.

PARAMETER model || TABLE (Layout_Model) — Trained SVM models in Layout_Model format.

RETURN TABLE ({ UNSIGNED4 r , STRING60 txt }) — A single-column dataset which contains human-readable information about the SVM models.

INTERNAL <div/>

predict

Go Up

IMPORTS

libsvm | _versions.ML_Core.V3_2_2.ML_Core.Types |

DESCRIPTIONS

PREDICT Predict

Predict

(DATASET(Model) models, DATASET(ML_Types.NumericField) observations)

Module for generating predictions on data from SVM models.

PARAMETER models || TABLE (Model) — Trained SVM models.

PARAMETER observations ||| TABLE (NumericField) — Independent variables to apply model to and generate predictions.

INTERNAL <div/>

Children

- 1. Prediction: Get predictions (classes or values) only
- 2. Pred Values: Get predictions (classes or values) and decision values
- 3. Pred_Prob_Est: Get predictions (classes or values) and probabilities

PREDICTION Prediction

Predict \

Prediction

Get predictions (classes or values) only.

RETURN TABLE ({ UNSIGNED2 wi , INTEGER4 id , UNSIGNED8 rid , REAL8 target_y , REAL8 predict_y }) — Dataset with predictions.

PRED_VALUES Pred_Values

Predict \

Pred Values

Get predictions (classes or values) and decision values. Values are empty if not supported.

RETURN TABLE ({ UNSIGNED2 wi , INTEGER4 id , UNSIGNED8 rid , REAL8 target_y , REAL8 predict_y , TABLE (R8Entry) decision_values }) — Dataset with predictions and decision values.

PRED_PROB_EST Pred_Prob_Est

Predict \

Pred_Prob_Est

Get predictions (classes or values) and probabilities. Values are empty if not supported.

RETURN TABLE ({ UNSIGNED2 wi , INTEGER4 id , UNSIGNED8 rid , REAL8 target_y , REAL8 predict_y , TABLE (R8Entry) prob_estimates }) — Dataset with predictions and probabilities.

1	റ
	.≺
1	v

Scale

Go Up

IMPORTS

Types | libsvm | libsvm.Types | _versions.ML_Core.V3_2_2.ML_Core.Types |

DESCRIPTIONS

SCALE Scale

Scale

(Problem prob, BOOLEAN Scale = true)

Scaling and column statistics for datasets in problem format.

PARAMETER prob || ROW (Problem) — Dataset in problem format.

PARAMETER Scale || BOOLEAN — Optional boolean value indicating whether or not data should be centered and scaled (default: true).

INTERNAL <div/>

Children

- 1. stats: Get means and standard deviations for a set of predictors
- 2. problemScaled: Standardize (center and scale) dataset in problem data format

STATS stats

Scale \

stats

Get means and standard deviations for a set of predictors.

RETURN TABLE ({ INTEGER4 indx , REAL8 mean , REAL8 sd }) — Dataset with one row per predictor with columns for the mean and standard deviation of each. This can be passed later to "problemScaled" to standardize data appropriately.

PROBLEMSCALED problemScaled

Scale \

problemScaled

Standardize (center and scale) dataset in problem data format.

RETURN ROW (Problem) — A standardized replica of the input problem dataset.

SVC

Go Up

IMPORTS

```
Types | libsvm.Types | _versions.PBblas.V3_0_2.PBblas | _versions.ML_Core.V3_2_2.ML_Core | _versions.ML_Core.V3_2_2.ML_Core.Types | _versions.ML_Core.V3_2_2.ML_Core.Interfaces |
```

DESCRIPTIONS

SVC SVC

SVC

```
( Types.SVM_Type svmType = LibSVM_Types.LibSVM_Type.C_SVC, Types.Kernel_Type kernelType = LibSVM_Types.LibSVM_Kernel.RBF, REAL8 gamma = 0.05, REAL8 C = 1, INTEGER4 degree = 3, REAL8 coef0 = 0.0, REAL8 eps = 0.001, REAL8 nu = 0.5, REAL8 p = 0.1, BOOLEAN shrinking = true, BOOLEAN prob_est = true, BOOLEAN scale = true, INTEGER4 nr_weight = 0, DATASET(Types.I4Entry) lbl = DATASET([], Types.I4Entry), DATASET(Types.R8Entry) weight = DATASET([], Types.R8Entry))
```

Support vector machine classification.

Utilizes the open-source libSVM under the hood.

This module is appropriate for small to medium sized Machine Learning problems or multitudes of small-to-medium problems using the Myriad interface.

This is due to both scaling limitations endemic to SVM, as well as the fact that libSVM runs independently on each node, and cannot, therefore scale to very large single problems.

Other techniques should be employed for Machine Learning with more than 10,000 data points.

This module also provides a mechanism for doing a grid search for regularization parameters using the full resources of the HPCC cluster rather than searching sequentially (see GridSearch.ecl).

- PARAMETER symType || UNSIGNED2 The SVC type, which may be one of 0 (C_SVC, default), 1 (NU_SVC), or 2 (ONE_CLASS).
- **PARAMETER** kernelType ||| UNSIGNED2 The kernel used in training and predicting, which may be one of 0 (LINEAR), 1 (POLY), 2 (RBF, default), 3 (SIGMOID), or 4 (PRECOMPUTED).
- PARAMETER gamma | | REAL8 Parameter needed for all kernels except LINEAR (default: 0.05).
- PARAMETER <u>C</u> ||| REAL8 Cost of constraint violation (default: 1).
- PARAMETER degree || INTEGER4 Parameter needed for kernel of type POLY (default: 3).
- PARAMETER <u>coef0</u> ||| REAL8 Parameter needed for kernels of type POLY and SIGMOID (default: 0).
- PARAMETER eps ||| REAL8 Tolerance of termination criterion (default: 0.001).
- PARAMETER <u>nu</u> ||| REAL8 Parameter needed for NU_SVC and ONE_CLASS (default: 0.5).
- **PARAMETER** p ||| REAL8 Epsilon in the insensitive-loss function (default: 0.1).
- PARAMETER shrinking || BOOLEAN Flag indicating the use of shrinking-heuristics (default: true).
- PARAMETER prob_est || BOOLEAN Whether to train for probability estimates (default true).
- PARAMETER scale || BOOLEAN Whether to standardize the data (subtract mean, divide by sd) before fitting.
- PARAMETER <u>nr_weight</u> ||| INTEGER4 The number of elements in the 'lbl' parameter (default: 0).
- **PARAMETER** <u>Ibl</u> ||| TABLE (I4Entry) Labels to indicate classes, used with the 'weight' parameter (default: []).
- **PARAMETER** weight ||| TABLE (R8Entry) Class weights, assigned to classes using the 'lbl' parameter (default: ||).
- PARENT _versions.ML_Core.V3_2_2.ML_Core.Interfaces.IClassify </home/amar/.HPCCSystems/bundles/_versions/ML_Core/V3_2_2/ML_Core/Interfaces/IClassify.ecl>

Children

- 1. GetModel: Calculate a model to fit the observation data to the observed classes
- 2. Classify: Classify the values for new observations using models trained by the GetModel function

- 3. Report: Report the confusion matrix for the classifier and training data
- 4. Tune: Perform a regularization tuning in order to align the granularity of the algorithm with the complexity of the data
- 5. GetTunedModel: Choose the best set of regularization parameters and use it to train the models
- 6. CrossValidate: Perform n-fold cross-validation of a given model for each work-item
- 7. ModelSummary: Generate human-readable model summary of trained SVM model(s)

GETMODEL GetModel

SVC \

DATASET(Layout_Model) GetModel (DATASET(NumericField) observations, DATASET(DiscreteField) classifications)

Calculate a model to fit the observation data to the observed classes. For a single given set of model parameters, models can be fit to a number of datasets by concatenating multiple datasets into single 'observations' and 'classifications' datasets, with separate datasets being identified by a work-item number ('wi'), in the NumericField and DiscreteField datasets.

PARAMETER observations ||| TABLE (NumericField) — The observed explanatory values in NumericField format.

PARAMETER <u>classifications</u> ||| TABLE (DiscreteField) — The observed classification used to build the model in DiscreteField format.

RETURN TABLE ({ UNSIGNED2 wi , UNSIGNED8 id , UNSIGNED4 number , REAL8 value }) — The encoded models in Layout_Model format.

SEE ML_Core.Types.NumericField

SEE ML_Core.Types.DiscreteField

SEE ML_Core.Types.Layout_Model

OVERRIDE

CLASSIFY Classify

SVC \

```
DATASET(ML_Types.Classify_Result) Classify

( DATASET(Layout_Model) model,
DATASET(NumericField) new_observations)
```

Classify the values for new observations using models trained by the GetModel function.

PARAMETER <u>model</u> ||| TABLE (Layout_Model) — The models, which should be produced by a corresponding GetModel function.

PARAMETER <u>new_observations</u> ||| TABLE (NumericField) — Observations to be classified in NumericField format.

RETURN TABLE ({ UNSIGNED2 wi , UNSIGNED8 id , UNSIGNED4 number , INTEGER4 value , REAL8 conf }) — Classifications with a probability value in Classify_Results format.

SEE ML_Core.Types.NumericField

SEE ML_Core.Types.Classify_Results

OVERRIDE

REPORT Report

SVC \

```
DATASET(ML_Types.Confusion_Detail) Report

( DATASET(Layout_Model) model,
DATASET(NumericField) observations,
DATASET(DiscreteField) classifications)
```

Report the confusion matrix for the classifier and training data.

PARAMETER <u>model</u> ||| TABLE (Layout_Model) — The models, which should be produced by a corresponding GetModel function.

PARAMETER observations ||| TABLE (NumericField) — The explanatory values in NumericField format.

PARAMETER <u>classifications</u> ||| TABLE (DiscreteField) — The classifications associated with the observations in DiscreteField format.

RETURN TABLE ({ UNSIGNED2 wi , UNSIGNED4 classifier , INTEGER4 actual_class , INTEGER4 predict_class , UNSIGNED4 occurs , BOOLEAN correct , REAL8 pctActual , REAL8 pctPred }) — The confusion matrix showing correct and incorrect results in Confusion_Detail format.

```
SEE ML_Core.Types.NumericField
```

SEE ML Core. Tyeps. Discrete Field

SEE ML_Core.Types.Confusion_Detail

OVERRIDE

TUNE Tune

SVC \

```
DATASET(Types.GridSearch_Result) Tune

( INTEGER4 folds = 10, REAL8 start_log2C = -5,
   REAL8 stop_log2C = 15, REAL8 maxIncr_log2C = 2,
   REAL8 start_log2gamma = -15, REAL8 stop_log2gamma =
   3, REAL8 maxIncr_log2gamma = 2,
   DATASET(NumericField) observations,
   DATASET(DiscreteField) classifications)
```

Perform a regularization tuning in order to align the granularity of the algorithm with the complexity of the data. This is to avoid under or over fitting of the data.

Finds a reasonable setting for the regularization parameters gamma and C by performing a grid search over them and testing each using cross-validation. The parameters that provide the lowest out-of-sample error (i.e. when tested on data not in the training set) are the ones chosen.

Returns a set of training parameter combinations and their results that can then be passed to GetTunedModel below to acquire a model that has been properly regularized.

The grid resolution is increased automatically to utilize any otherwise idle nodes.

For a single given set of model parameters, models can be tuned to a number of datasets by concatenating multiple datasets into single 'observations' and 'classifications' datasets, with separate datasets being identified by a work ID column, 'wi'.

- **PARAMETER** folds ||| INTEGER4 The number of cross-validation folds for evaluating each candidate model.
- **PARAMETER** start_log2C ||| REAL8 The lower bound for log2(C): C >= $2^(start_log2C)$.
- **PARAMETER** stop_log2C ||| REAL8 The upper bound for log2(C): C <= $2^(start_log2C)$.
- PARAMETER maxIncr_log2C ||| REAL8 Taximum allowable exponential increment for C.
- PARAMETER start_log2gamma ||| REAL8 The lower bound for log2(gamma): gamma >= 2^(start_log2gamma).
- PARAMETER stop_log2gamma ||| REAL8 The upper bound for log2(gamma): gamma <= 2^(start_log2gamma).
- **PARAMETER** maxIncr_log2gamma ||| REAL8 Taximum allowable exponential increment for gamma.
- **PARAMETER** <u>observations</u> ||| TABLE (NumericField) The observed explanatory values in NumericField format.
- **PARAMETER** <u>classifications</u> ||| TABLE (DiscreteField) The observed classification used to build the model in DiscreteField format.
- RETURN TABLE ({ UNSIGNED2 wi , INTEGER4 id , REAL8 correct , REAL8 mse , REAL8 r_sq , UNSIGNED2 svmType , UNSIGNED2 kernelType , INTEGER4 degree , REAL8 coef0 , REAL8 eps , REAL8 nu , REAL8 p , INTEGER4 nr_weight , BOOLEAN shrinking , BOOLEAN prob_est , BOOLEAN scale , TABLE (I4Entry) lbl , TABLE (R8Entry) weight , REAL8 gamma , REAL8 C }) Dataset with sets of model parameters and corresponding cross-validated scores in GridSearch_Result format.
- SEE GetTunedModel
- SEE Types.GridSearch_Result

GETTUNEDMODEL GetTunedModel

SVC \

DATASET(Layout_Model) GetTunedModel (DATASET(Types.GridSearch_Result) tuneResult, DATASET(NumericField) observations, DATASET(DiscreteField) classifications)

Choose the best set of regularization parameters and use it to train the models. Using the output of Tune(), find the best set of modeling parameters for each work id, and train the corresponding models. The the most regularized (i.e. coarsest) set of parameters that achieved near-maximum performance is used to create the models.

PARAMETER <u>tuneResult</u> ||| TABLE (GridSearch_Result) — The results of a grid search over C and gamma, produced by Tune().

PARAMETER <u>observations</u> ||| TABLE (NumericField) — The observed explanatory values in NumericField format.

PARAMETER <u>classifications</u> ||| TABLE (DiscreteField) — The observed classification used to build the model in DiscreteField format.

RETURN TABLE ({ UNSIGNED2 wi , UNSIGNED8 id , UNSIGNED4 number , REAL8 value }) — The encoded models in Layout_Model format.

SEE Tune

SEE ML_Core.Types.NumericField

SEE ML_Core.Types.DiscreteField

SEE ML_Core.Types.Layout_Model

CROSSVALIDATE CrossValidate

SVC \

Perform n-fold cross-validation of a given model for each work-item.

For a single given set of model parameters, models can be cross-validated against a number of datasets by concatenating multiple datasets into single 'observations' and 'classifications' datasets, with separate datasets being identified by a work ID column, 'wi'.

PARAMETER <u>folds</u> || INTEGER4 — The number of cross-validation folds.

PARAMETER <u>observations</u> ||| TABLE (NumericField) — The observed explanatory values in NumericField format.

PARAMETER <u>classifications</u> ||| TABLE (DiscreteField) — The observed classification used to build in DiscreteField format.

RETURN TABLE ({ UNSIGNED2 wi , INTEGER4 id , REAL8 correct , REAL8 mse , REAL8 r_sq }) — Dataset of cross-validated scores in Cross-Validate_Result format.

SEE ML_Core.NumericField

SEE ML_Core.DiscreteField

SEE Types.CrossValidate_Result

MODELSUMMARY ModelSummary

SVC \

DATASET({UNSIGNED4 r, STRING60 Txt})	ModelSummary
(DATASET(Layout_Model) model)	

Generate human-readable model summary of trained SVM model(s).

Multiple models can be simultaneously summarized by concatenating a number of models into a single 'model' object, with separate models being identified by a work ID column, 'wi'.

PARAMETER <u>model</u> ||| TABLE (Layout_Model) — The models, which should be produced by a corresponding GetModel function.

RETURN TABLE ({ UNSIGNED4 r , STRING60 txt }) — Single-column dataset with textual description of models.

SVR

Go Up

IMPORTS

```
Types | libsvm.Types | _versions.PBblas.V3_0_2.PBblas | _versions.ML_Core.V3_2_2.ML_Core | _versions.ML_Core.V3_2_2.ML_Core.Types | _versions.ML_Core.V3_2_2.ML_Core.Interfaces |
```

DESCRIPTIONS

SVR SVR

SVR

(DATASET(NumericField) X = DATASET([], NumericField), DATASET(NumericField) Y = DATASET([], NumericField), Types.SVM_Type svmType = LibSVM_Types.LibSVM_Types.C_SVC, Types.Kernel_Type kernelType = LibSVM_Types.LibSVM_Kernel.RBF, REAL8 gamma = 0.05, REAL8 C = 1, INTEGER4 degree = 3, REAL8 coef0 = 0.0, REAL8 eps = 0.001, REAL8 nu = 0.5, REAL8 p = 0.1, BOOLEAN shrinking = true, BOOLEAN prob_est = true, BOOLEAN scale = true, INTEGER4 nr_weight = 0, DATASET(Types.I4Entry) lbl = DATASET([], Types.I4Entry), DATASET(Types.R8Entry) weight = DATASET([], Types.R8Entry))

Support Vector Machine Regression.

Utilizes the open-source libSVM under the hood.

This module is appropriate for small to medium sized Machine Learning problems or multitudes of small-to-medium problems using the Myriad interface.

This is due to both scaling limitations endemic to SVM, as well as the fact that libSVM runs

independently on each node, and cannot, therefore scale to very large single problems.

Other techniques should be employed for Machine Learning with more than 10,000 data points.

This module also provides a mechanism for doing a grid search for regularization parameters using the full resources of the HPCC cluster rather than searching sequentially (see GridSearch.ecl).

PARAMETER $\underline{\mathbf{X}}$ ||| TABLE (NumericField) — The observed explanatory values in NumericField format.

PARAMETER Y || TABLE (NumericField) — The observed values the model aims to fit in NumericField format.

PARAMETER symType || UNSIGNED2 — The SVR type, which may be one of 3 (EPSILON_SVR, default), or 4 (NU_SVR).

PARAMETER kernelType ||| UNSIGNED2 — The kernel used in training and predicting, which may be one of 0 (LINEAR), 1 (POLY), 2 (RBF, default), 3 (SIGMOID), or 4 (PRECOMPUTED).

PARAMETER gamma ||| REAL8 — regularization parameter needed for all kernels except LINEAR (default: 0.05).

PARAMETER <u>C</u> ||| REAL8 — Cost of constraint violation regularization parameter (default: 1).

PARAMETER degree || INTEGER4 — Parameter needed for kernel of type POLY (default: 3).

PARAMETER <u>coef0</u> ||| REAL8 — Parameter needed for kernels of type POLY and SIGMOID (default: 0).

PARAMETER eps ||| REAL8 — Tolerance of termination criterion (default: 0.001).

PARAMETER <u>nu</u> ||| REAL8 — Parameter needed for NU_SVC and ONE_CLASS (default: 0.5).

PARAMETER $\underline{\mathbf{p}}$ ||| REAL8 — Epsilon in the insensitive-loss function (default: 0.1).

PARAMETER shrinking ||| BOOLEAN — Flag indicating the use of shrinking-heuristics (default: true).

PARAMETER prob_est || BOOLEAN — Whether to train for probability estimates (default true).

PARAMETER scale ||| BOOLEAN — Whether to standardize the data (subtract mean, divide by sd) before fitting.

PARAMETER nr_weight ||| INTEGER4 — No Doc

PARAMETER <u>lbl</u> ||| TABLE (I4Entry) — No Doc

PARAMETER weight || TABLE (R8Entry) — No Doc

SEE ML_Core.Types.NumericField

PARENT _versions.ML_Core.V3_2_2.ML_Core.Interfaces.IRegression

 $</home/amar/. HPCCS ystems/bundles/_versions/ML_Core/V3_2_2/ML_Core/Interfaces/IRegression. Geometric for the contraction of the contraction of$

Children

- 1. GetModel: Train and return a model that fits the observation data to the observed values
- 2. Predict: Predict values for the new observations using models trained by the GetModel function
- 3. Tune: Perform a regularization tuning in order to align the granularity of the algorithm with the complexity of the data
- 4. GetTunedModel: Choose the best set of regularization parameters and use it to train the models
- 5. CrossValidate: Perform n-fold cross-validation of a given model for each work ID
- 6. ModelSummary: Generate human-readable model summary of trained SVM model(s)

GETMODEL GetModel

SVR \

DATASET(Layout_Model) GetModel

Train and return a model that fits the observation data to the observed values. For a single given set of model parameters, models can be fit to a number of datasets by concatenating multiple datasets into single 'X' and 'Y' datasets, with separate datasets being identified by a work-item column, 'wi'.

RETURN — The encoded models in Layout_Model format.

SEE ML_Core.Types.Layout_Model

OVERRIDE

PREDICT Predict

SVR \

```
DATASET(NumericField) Predict

( DATASET(NumericField) newX, DATASET(Layout_Model) model)
```

Predict values for the new observations using models trained by the GetModel function.

PARAMETER <u>model</u> ||| TABLE (Layout_Model) — The models, which should be produced by a corresponding GetModel function.

PARAMETER <u>newX</u> ||| TABLE (NumericField) — Observations to be classified in NumericField format.

RETURN TABLE ({ UNSIGNED2 wi , UNSIGNED8 id , UNSIGNED4 number , REAL8 value }) — Predictions in NumericField format.

SEE ML_Core.Types.NumericField

OVERRIDE

TUNE Tune

$\mathrm{SVR} \ \backslash$

```
DATASET(Types.GridSearch_Result) Tune

( INTEGER4 folds = 10, REAL8 start_log2C = -5,
REAL8 stop_log2C = 15, REAL8 maxIncr_log2C = 2,
REAL8 start_log2gamma = -15, REAL8 stop_log2gamma =
3, REAL8 maxIncr_log2gamma = 2)
```

Perform a regularization tuning in order to align the granularity of the algorithm with the complexity of the data. This is to avoid under or over fitting of the data.

Finds a reasonable setting for the regularization parameters gamma and C by performing a grid search over them and testing each using cross-validation. The parameters that provide the lowest out-of-sample error (i.e. when tested on data not in the training set) are the ones chosen.

Returns a set of training parameter combinations and their results that can then be passed to GetTunedModel below to acquire a model that has been properly regularized.

The grid resolution is increased automatically to utilize any otherwise idle nodes.

For a single given set of model parameters, models can be tuned to a number of datasets by concatenating multiple datasets into single 'observations' and 'classifications' datasets, with separate datasets being identified by a work ID column, 'wi'.

PARAMETER <u>folds</u> ||| INTEGER4 — The number of cross-validation folds for evaluating each candidate model.

PARAMETER start_log2C ||| REAL8 — The lower bound for log2(C): C >= 2^(start_log2C).

PARAMETER stop_log2C ||| REAL8 — The upper bound for log2(C): C <= $2^(start_log2C)$.

PARAMETER maxIncr_log2C ||| REAL8 — Taximum allowable exponential increment for C.

PARAMETER start_log2gamma ||| REAL8 — The lower bound for log2(gamma): gamma >= $2^{(start_log2gamma)}$.

PARAMETER stop_log2gamma ||| REAL8 — The upper bound for log2(gamma): gamma <= $2^(start_log2gamma)$.

PARAMETER gamma. | | REAL8 — Taximum allowable exponential increment for

RETURN TABLE ({ UNSIGNED2 wi , INTEGER4 id , REAL8 correct , REAL8 mse , REAL8 r_sq , UNSIGNED2 svmType , UNSIGNED2 kernelType , INTEGER4 degree , REAL8 coef0 , REAL8 eps , REAL8 nu , REAL8 p , INTEGER4 nr_weight , BOOLEAN shrinking , BOOLEAN prob_est , BOOLEAN scale , TABLE (I4Entry) lbl , TABLE (R8Entry) weight , REAL8 gamma , REAL8 C }) — Dataset with sets of model parameters and corresponding cross-validated scores in GridSearch_Result format.

SEE GetTunedModel

SEE Types.GridSearch_Result

GETTUNEDMODEL GetTunedModel

SVR \

DATASET(Layout_Model) | GetTunedModel

(DATASET(Types.GridSearch Result) tuneResult)

Choose the best set of regularization parameters and use it to train the models. Using the output of Tune(), find the best set of modeling parameters for each work id, and train the corresponding models. The the most regularized (i.e. coarsest) set of parameters that achieved near-maximum performance is used to create the models.

PARAMETER <u>tuneResult</u> ||| TABLE (GridSearch_Result) — The results of a grid search over C and gamma, produced by Tune().

RETURN TABLE ({ UNSIGNED2 wi , UNSIGNED8 id , UNSIGNED4 number , REAL8 value }) — The encoded models.

CROSSVALIDATE CrossValidate

SVR \

Perform n-fold cross-validation of a given model for each work ID. For a single given set of model parameters, models can be cross-validated against a number of datasets by concatenating multiple datasets into single 'X' and 'Y' datasets, with separate datasets being identified by a work ID column, 'wi'.

PARAMETER folds || INTEGER4 — The number of cross-validation folds.

RETURN TABLE ({ UNSIGNED2 wi , INTEGER4 id , REAL8 correct , REAL8 mse , REAL8 r_sq }) — Dataset of cross-validated scores i Cross-Validate_Result format.

SEE Types.CrossValidate_Result

MODELSUMMARY ModelSummary

SVR \

Generate human-readable model summary of trained SVM model(s).

Multiple models can be simultaneously summarized by concatenating a number of models into a single 'model' object, with separate models being identified by a work ID column, 'wi'.

PARAMETER model ||| TABLE (Layout_Model) — The models, which should be produced by a corresponding GetModel function.

RETURN TABLE ({ UNSIGNED4 r , STRING60 txt }) — Single-column dataset with textual description of models.

train

Go Up

IMPORTS

```
Types | libsvm.Types | libsvm | libsvm.Converted | _versions.ML_Core.V3_2_2.ML_Core.Types |
```

DESCRIPTIONS

TRAIN Train

```
DATASET(Model) Train

( DATASET(Parms) p = DATASET(Types.Training_Parameters_Default),
DATASET(ML_Types.NumericField) observations,
DATASET(ML_Types.NumericField) actuals)
```

Train SVM classification and regression models.

PARAMETER observations ||| TABLE (NumericField) — The observed explanatory values.

PARAMETER <u>actuals</u> ||| TABLE (NumericField) — The dependent variable(s).

RETURN TABLE ({ UNSIGNED2 wi , INTEGER4 id , UNSIGNED2 svmType , UNSIGNED2 kernelType , INTEGER4 degree , REAL8 gamma , REAL8 coef0 , UNSIGNED4 k , UNSIGNED4 l , BOOLEAN scale , TABLE (FeatureStats) scaleInfo , TABLE (SVM_SV) sv , TABLE (R8Entry) sv_coef , TABLE (R8Entry) rho , TABLE (R8Entry) probA , TABLE (R8Entry) probB , TABLE (I4Entry) labels , TABLE (I4Entry) nSV }) — Trained SVM model(s) in SVM Model format.

Types

Go Up

IMPORTS

libsvm.Types |

DESCRIPTIONS

TYPES Types

Types

SupportVectorMachines type definitions.

Children

- 1. Model ID
- 2. R8Entry
- 3. I4Entry
- 4. SVM_Type
- 5. Kernel_Type
- 6. SVM Feature: Feature value data structure for communication with libSVM
- 7. SVM_Instance: Support Vector Machine Instance structure for communication with libSVM
- 8. SVM_SV: Support Vector data structure for communication with libSVM
- 9. SVM_Grid_Args: Arguments for grid search
- 10. SVM_Grid_Plan: This record provides the format for the argument to GridSearch

- 11. SVM_Grid_Plan_Default : Default Grid Plan
- 12. Training_Base: Training Parameter Base Record
- 13. Training_Base_Default: Default base training parameters
- 14. Training_Parameters
- 15. Training Parameters Default : Default Training Parameters
- 16. FeatureStats: Inforation about each feature
- 17. Model: Record to libSVM form of the model
- 18. CrossValidate Result: Record to hold the results of call to CrossValidate
- 19. GridSearch_Result: Record for the results of call to GridSearch Contains both CrossValidate_Result and Training_Parameters
- 20. Feature Scale: Record to hold scale information for each feature
- 21. Class Scale
- 22. Scale_Parms
- 23. SVM_Scale
- 24. SVM Prediction
- 25. SVM_Pred_Values
- 26. SVM Pred Prob Est

MODEL_ID Model_ID

Types \

Model ID

RETURN INTEGER4 —

R8ENTRY R8Entry Types \ R8Entry INTERNAL <div/> **I4ENTRY** I4Entry Types \ I4Entry INTERNAL <div/> SVM_TYPE SVM_Type Types \ SVM_Type INTERNAL <div/> KERNEL_TYPE Kernel_Type Types \ Kernel_Type

SVM_FEATURE SVM_Feature

Types \

SVM Feature

Feature value data structure for communication with libSVM

FIELD <u>nominal</u> ||| UNSIGNED4 — The feature identifier.

FIELD $\underline{\mathbf{v}} \parallel \parallel \text{REAL8} - \text{The feature value.}$

INTERNAL <div/>

SVM_INSTANCE SVM_Instance

Types \

SVM Instance

Support Vector Machine Instance structure for communication with libSVM

FIELD <u>wi</u> || UNSIGNED2 — The work-item number.

FIELD <u>rid</u> ||| UNSIGNED8 — The source identifier.

FIELD $\underline{\mathbf{y}} \parallel \parallel \text{REAL8} - \text{The Y (dependent) value.}$

FIELD max_value ||| REAL8 — Maximum value for feature Y.

FIELD $\underline{\mathbf{x}}$ ||| TABLE (SVM_Feature) — Independent data for this observation in SVM_Feature format.

SEE SVM_Feature

SVM_SV SVM_SV

Types \

 SVM_SV

Support Vector data structure for communication with libSVM

FIELD v_ord || UNSIGNED8 — Identifier for the vector

FIELD <u>features</u> ||| TABLE (SVM_Feature) — Dataset of SVM_Feature records

INTERNAL <div/>

SVM_GRID_ARGS SVM_Grid_Args

Types \

SVM_Grid_Args

Arguments for grid search. This is a sub-format for SVM_Grid_Plan below.

FIELD start ||| REAL8 — The value at which to start the search.

FIELD stop ||| REAL8 — The value at which to stop the search.

FIELD max_incr ||| REAL8 — The maximum increment to use in the search.

SEE SVM_Grid_Plan

SVM_GRID_PLAN SVM_Grid_Plan

Types \

SVM_Grid_Plan

This record provides the format for the argument to GridSearch.

FIELD log2_C ||| ROW (SVM_Grid_Args) — Start, stop and increment values for the log base 2 of C, in SVM_Grid_Args format.

FIELD <u>log2_gamma</u> ||| ROW (SVM_Grid_Args) — Start, stop and increment values for the log base 2 of gamma, in SVM_Grid_Args format.

FIELD folds || UNSIGNED4 — No Doc

SEE SVM_Grid_Args

SEE GridSearch

INTERNAL <div/>

SVM_GRID_PLAN_DEFAULT SVM_Grid_Plan_Default

Types \

SVM Grid Plan Default

Default Grid Plan

RETURN ROW (SVM_Grid_Plan) —

SEE SVM_Grid_Plan

TRAINING_BASE Training_Base

Types \

Training_Base

Training Parameter Base Record

- FIELD symtype || UNSIGNED2 No Doc
- FIELD kerneltype || UNSIGNED2 No Doc
- FIELD degree || INTEGER4 No Doc
- FIELD coef0 ||| REAL8 No Doc
- FIELD eps ||| REAL8 No Doc
- FIELD <u>nu</u> ||| REAL8 No Doc
- FIELD p ||| REAL8 No Doc
- FIELD nr_weight ||| INTEGER4 No Doc
- **FIELD** shrinking ||| BOOLEAN No Doc
- FIELD prob_est ||| BOOLEAN No Doc
- **FIELD** scale || BOOLEAN No Doc
- FIELD <u>lbl</u> ||| TABLE (I4Entry) No Doc
- FIELD weight || TABLE (R8Entry) No Doc

INTERNAL <div/>

TRAINING_BASE_DEFAULT Training_Base_Default

Types \

Training_Base_Default

Default base training parameters

```
RETURN ROW ( Training_Base ) —
```

INTERNAL <div/>

TRAINING_PARAMETERS Training_Parameters

Types \

Training_Parameters

```
FIELD id || INTEGER4 — No Doc
```

FIELD
$$\underline{\mathbf{p}} \parallel \parallel \text{REAL8} - \text{No Doc}$$

TRAINING_PARAMETERS_DEFAULT Training_Parameters_Default

Types \

 $Training_Parameters_Default$

Default Training Parameters

RETURN ROW (Training_Parameters)—

INTERNAL <div/>

FEATURESTATS FeatureStats

Types \

FeatureStats

Inforation about each feature

FIELD indx ||| INTEGER4 — No Doc

FIELD mean ||| REAL8 — No Doc

FIELD sd ||| REAL8 — No Doc

INTERNAL <div/>

MODEL Model

Types \

Model

Record to libSVM form of the model

```
FIELD wi || UNSIGNED2 — No Doc
FIELD id || INTEGER4 — No Doc
FIELD symtype || UNSIGNED2 — No Doc
FIELD kerneltype || UNSIGNED2 — No Doc
FIELD degree || INTEGER4 — No Doc
FIELD gamma ||| REAL8 — No Doc
FIELD coef0 ||| REAL8 — No Doc
FIELD <u>k</u> || UNSIGNED4 — No Doc
FIELD 1 | UNSIGNED4 — No Doc
FIELD scale || BOOLEAN — No Doc
FIELD scaleinfo || TABLE (FeatureStats) — No Doc
FIELD <u>sv</u> || TABLE ( SVM_SV ) — No Doc
FIELD sv_coef || TABLE ( R8Entry ) — No Doc
FIELD rho || TABLE (R8Entry) — No Doc
FIELD proba || TABLE (R8Entry) — No Doc
FIELD probb || TABLE ( R8Entry ) — No Doc
FIELD <u>labels</u> ||| TABLE ( I4Entry ) — No Doc
```

INTERNAL <div/>

CROSSVALIDATE_RESULT CrossValidate_Result

Types \

 $CrossValidate_Result$

Record to hold the results of call to CrossValidate

FIELD <u>nsv</u> ||| TABLE (I4Entry) — No Doc

FIELD <u>wi</u> || UNSIGNED2 — The work-item number.

- **FIELD** <u>id</u> ||| INTEGER4 The id of the cross-validation set (i.e. fold).
- FIELD correct ||| REAL8 The number of correct values.
- FIELD mse ||| REAL8 The mean squared error of the regression
- **FIELD** $\underline{\mathbf{r}}$ $\underline{\mathbf{sq}}$ ||| REAL8 The R-squared value indicating the strength of the regression.

GRIDSEARCH_RESULT GridSearch_Result

Types \

GridSearch_Result

Record for the results of call to GridSearch Contains both CrossValidate_Result and Training_Parameters.

- FIELD <u>wi</u> || UNSIGNED2 The work-item number.
- **FIELD** <u>id</u> || INTEGER4 The id of the cross-validation set (i.e. fold).
- **FIELD** correct ||| REAL8 The number of correct values.
- **FIELD** <u>mse</u> ||| REAL8 The mean squared error of the regression
- **FIELD** $\underline{\mathbf{r}}$ $\underline{\mathbf{sq}}$ ||| REAL8 The R-squared value indicating the strength of the regression.
- FIELD gamma ||| REAL8 The gamma regularization parameter value.
- **FIELD** $\underline{\mathbf{C}}$ ||| REAL8 The C regularization parameter value.
- FIELD symtype ||| UNSIGNED2 No Doc
- FIELD kerneltype || UNSIGNED2 No Doc
- **FIELD** degree ||| INTEGER4 No Doc
- FIELD <u>coef0</u> ||| REAL8 No Doc
- FIELD eps ||| REAL8 No Doc
- FIELD <u>nu</u> ||| REAL8 No Doc
- FIELD p ||| REAL8 No Doc
- FIELD <u>nr_weight</u> ||| INTEGER4 No Doc

- **FIELD** shrinking ||| BOOLEAN No Doc
- FIELD prob_est ||| BOOLEAN No Doc
- FIELD scale || BOOLEAN No Doc
- FIELD <u>lbl</u> ||| TABLE (I4Entry) No Doc
- FIELD weight ||| TABLE (R8Entry) No Doc

FEATURE_SCALE Feature_Scale

Types \

Feature Scale

Record to hold scale information for each feature

- FIELD <u>nominal</u> ||| UNSIGNED4 No Doc
- FIELD min_value ||| REAL8 No Doc
- **FIELD** max_value ||| REAL8 No Doc

INTERNAL <div/>

CLASS_SCALE Class_Scale

Types \

Class_Scale

- FIELD y_min ||| REAL8 No Doc
- FIELD y_max ||| REAL8 No Doc

SCALE_PARMS Scale_Parms

Types \

Scale Parms

```
FIELD x_lower ||| REAL8 — No Doc
```

INTERNAL <div/>

SVM_SCALE SVM_Scale

Types \

SVM Scale

```
FIELD x_lower ||| REAL8 — No Doc
```

SVM_PREDICTION SVM_Prediction

Types \

SVM_Prediction

```
FIELD wi || UNSIGNED2 — No Doc
```

INTERNAL <div/>

SVM_PRED_VALUES SVM_Pred_Values

Types \

SVM_Pred_Values

```
FIELD wi || UNSIGNED2 — No Doc
```

SVM_PRED_PROB_EST SVM_Pred_Prob_Est

Types \

$SVM_Pred_Prob_Est$

- FIELD wi || UNSIGNED2 No Doc
- FIELD id || INTEGER4 No Doc
- FIELD <u>rid</u> ||| UNSIGNED8 No Doc
- FIELD target_y ||| REAL8 No Doc
- FIELD predict_y ||| REAL8 No Doc
- FIELD prob_estimates ||| TABLE (R8Entry) No Doc

Datasets

Go Up

Table of Contents

HeartScale.ecl

Defines the heart_scale example dataset

Datasets/

HeartScale

Go Up

IMPORTS

_versions.ML_Core.V3_2_2.ML_Core.Types |

DESCRIPTIONS

HEARTSCALE heartScale

heartScale

Defines the heart_scale example dataset.

Children

1. content: Specification of heart_scale dataset (270 rows, 15 columns)

CONTENT content

 $heartScale \setminus$

content

Specification of heart_scale dataset (270 rows, 15 columns).

Examples

Go Up

Table of Contents

libsvm

Go Up

Table of Contents

Constants.ecl	
Converted.ecl	
LibSVMVersion.ecl	
SVMCrossValidate.ecl	
SVMPredict.ecl	
SVMTrain.ecl	
Types.ecl	

libsvm/ Constants

Go Up

DESCRIPTIONS

CONSTANTS Constants

Constants

No Documentation Found

Children

1. LibSVM BadParm: No Documentation Found

LIBSVM_BADPARM LibSVM_BadParm

Constants \

LibSVM_BadParm

No Documentation Found

RETURN INTEGER8 —

libsvm/ Converted

Go Up

IMPORTS

libsvm.Types | Types | std |

DESCRIPTIONS

CONVERTED Converted

Converted

No Documentation Found

Children

- 1. LIBSVMDATA2Instance: No Documentation Found
- 2. Instance2Problem: No Documentation Found

LIBSVMDATA2INSTANCE LIBSVMDATA2Instance

Converted \

DATASET(SVM_Instance) LIBSVMDATA2Instance
(STRING fname)

No Documentation Found

PARAMETER fname || STRING — No Doc

RETURN TABLE ({ UNSIGNED2 wi , UNSIGNED8 rid , REAL8 y , REAL8 max_value , TABLE (SVM_Feature) x }) —

INSTANCE2PROBLEM Instance2Problem

Converted \

```
DATASET(ECL_LibSVM_ProblemList) Instance2Problem

(DATASET(SVM_Instance) ds)
```

No Documentation Found

PARAMETER <u>ds</u> ||| TABLE (SVM_Instance) — No Doc

RETURN TABLE ({ UNSIGNED2 wi , UNSIGNED4 elements , INTEGER4 entries , UNSIGNED4 features , REAL8 max_value , TABLE (R8Entry) y , TABLE (LibSVM_Node) x }) —

${\stackrel{\rm libsvm/}{\bf LibSVMVersion}}$

Go Up

DESCRIPTIONS

LIBSVMVERSION LibSVMVersion

LibSVMVersion

$\frac{\rm libsvm/}{\rm SVMCrossValidate}$

Go Up

IMPORTS

libsym.Types | libsym.Constants | libsym.Converted |

DESCRIPTIONS

SVMCROSSVALIDATE SVMCrossValidate

Result SVMCrossValidate

(SVM_Parms prm, Problem prb, UNSIGNED2 nr_fold, UNSIGNED4 err_code=ErrCode)

No Documentation Found

PARAMETER prm ||| ROW (SVM_Parms) — No Doc

PARAMETER prb ||| ROW (Problem) — No Doc

PARAMETER nr_fold ||| UNSIGNED2 — No Doc

PARAMETER err_code || UNSIGNED4 — No Doc

RETURN ROW ({ REAL8 mse , REAL8 r_sq , REAL8 correct }) —

$\begin{array}{c} {}^{\rm libsvm/} \\ {\bf SVMPredict} \end{array}$

Go Up

IMPORTS

libsym.Types | libsym.Constants | libsym.Converted |

DESCRIPTIONS

SVMPREDICT SVMPredict

DATASET(R8Entry) SVMPredict

(Model ecl_model, DATASET(Node) ecl_nodes, Rqst output_request)

No Documentation Found

PARAMETER ecl_model ||| ROW (Model) — No Doc

PARAMETER ecl_nodes ||| TABLE (Node) — No Doc

PARAMETER output_request || UNSIGNED2 — No Doc

RETURN TABLE (R8Entry) —

libsvm/ SVMTrain

Go Up

IMPORTS

libsvm.Types | libsvm.Constants | libsvm.Converted |

DESCRIPTIONS

SVMTRAIN SVMTrain

```
ECL_LibSVM_Model SVMTrain

(SVM_Parms prm, Problem prb)
```

No Documentation Found

PARAMETER prb ||| ROW (Problem) — No Doc

RETURN ROW ({ UNSIGNED2 svmType , UNSIGNED2 kernelType , INTEGER4 degree , REAL8 gamma , REAL8 coef0 , UNSIGNED4 k , UNSIGNED4 l , UNSIGNED4 elements , UNSIGNED4 pairs_A , UNSIGNED4 pairs_B , UNSIGNED4 nr_label , UNSIGNED4 nr_nSV , TABLE (LibSVM_Node) sv , TABLE (R8Entry) sv_coef , TABLE (R8Entry) rho , TABLE (R8Entry) probA , TABLE (R8Entry) probB , TABLE (I4Entry) labels , TABLE (I4Entry) nSV })—

$rac{ m libsvm/}{ m Types}$

Go Up

DESCRIPTIONS

TYPES Types

Types

No Documentation Found

Children

- 1. LibSVM_Output: No Documentation Found
- 2. LibSVM Kernel: No Documentation Found
- 3. LibSVM_Type: No Documentation Found
- 4. LibSVM Node: No Documentation Found
- 5. R8Entry: No Documentation Found
- 6. I4Entry: No Documentation Found
- 7. ECL LibSVM ProblemList: No Documentation Found
- 8. ECL_LibSVM_Problem: No Documentation Found
- 9. ECL LibSVM Parameter: No Documentation Found
- 10. ECL LibSVM Train Param: No Documentation Found
- 11. ECL_LibSVM_Model: No Documentation Found
- 12. CrossValidate Result: No Documentation Found
- 13. LibSVM_Version_set: No Documentation Found

LIBSVM_OUTPUT LibSVM_Output

LIBSVM_NODE LibSVM_Node

Types \

LibSVM_Node

No Documentation Found

FIELD indx || INTEGER4 — No Doc

FIELD value ||| REAL8 — No Doc

R8ENTRY R8Entry

Types \

R8Entry

No Documentation Found

FIELD <u>v</u> ||| REAL8 — No Doc

I4ENTRY I4Entry

Types \

I4Entry

No Documentation Found

FIELD <u>v</u> ||| INTEGER4 — No Doc

ECL_LIBSVM_PROBLEMLIST ECL_LibSVM_ProblemList

Types \

$ECL_LibSVM_ProblemList$

No Documentation Found

- FIELD wi || UNSIGNED2 No Doc
- FIELD <u>elements</u> || UNSIGNED4 No Doc
- FIELD entries || INTEGER4 No Doc
- FIELD features || UNSIGNED4 No Doc
- FIELD max_value ||| REAL8 No Doc
- FIELD y || TABLE (R8Entry) No Doc
- FIELD <u>x</u> ||| TABLE (LibSVM_Node) No Doc

ECL_LIBSVM_PROBLEM ECL_LibSVM_Problem

Types \

$ECL_LibSVM_Problem$

- FIELD <u>elements</u> || UNSIGNED4 No Doc
- **FIELD** <u>entries</u> ||| INTEGER4 No Doc
- FIELD <u>features</u> || UNSIGNED4 No Doc
- FIELD max_value ||| REAL8 No Doc
- FIELD y || TABLE (R8Entry) No Doc
- FIELD <u>x</u> ||| TABLE (LibSVM_Node) No Doc

ECL_LIBSVM_PARAMETER ECL_LibSVM_Parameter

Types \

ECL LibSVM Parameter

No Documentation Found

- FIELD symtype || UNSIGNED2 No Doc
- FIELD kerneltype || UNSIGNED2 No Doc
- FIELD degree || INTEGER4 No Doc
- FIELD gamma ||| REAL8 No Doc
- FIELD <u>coef0</u> ||| REAL8 No Doc

ECL_LIBSVM_TRAIN_PARAM ECL_LibSVM_Train_Param

Types \

ECL_LibSVM_Train_Param

- FIELD symtype ||| UNSIGNED2 No Doc
- FIELD kerneltype || UNSIGNED2 No Doc
- **FIELD** degree ||| INTEGER4 No Doc
- FIELD gamma ||| REAL8 No Doc
- FIELD coef0 ||| REAL8 No Doc
- **FIELD** cache_size ||| REAL8 No Doc
- FIELD eps ||| REAL8 No Doc
- FIELD <u>c</u> ||| REAL8 No Doc
- FIELD <u>nu</u> ||| REAL8 No Doc

```
FIELD p ||| REAL8 — No Doc
```

ECL_LIBSVM_MODEL ECL_LibSVM_Model

Types \

ECL LibSVM Model

- FIELD symtype || UNSIGNED2 No Doc
- FIELD kerneltype || UNSIGNED2 No Doc
- **FIELD** degree ||| INTEGER4 No Doc
- FIELD gamma ||| REAL8 No Doc
- FIELD coef0 ||| REAL8 No Doc
- FIELD $\underline{\mathbf{k}} \parallel \parallel \text{UNSIGNED4} \text{No Doc}$
- FIELD $\underline{1} \parallel UNSIGNED4$ No Doc
- FIELD elements || UNSIGNED4 No Doc
- FIELD pairs_a || UNSIGNED4 No Doc
- **FIELD pairs_b** ||| UNSIGNED4 No Doc
- FIELD nr_label ||| UNSIGNED4 No Doc
- FIELD nr_nsv ||| UNSIGNED4 No Doc
- FIELD sv || TABLE (LibSVM_Node) No Doc
- FIELD sv_coef || TABLE (R8Entry) No Doc

- FIELD <u>rho</u> || TABLE (R8Entry) No Doc
- FIELD proba || TABLE (R8Entry) No Doc
- FIELD probb || TABLE (R8Entry) No Doc
- FIELD <u>labels</u> ||| TABLE (I4Entry) No Doc
- FIELD <u>nsv</u> ||| TABLE (I4Entry) No Doc

CROSSVALIDATE_RESULT CrossValidate_Result

Types \

CrossValidate Result

No Documentation Found

- FIELD <u>mse</u> ||| REAL8 No Doc
- FIELD r_sq ||| REAL8 No Doc
- FIELD correct ||| REAL8 No Doc

LIBSVM_VERSION_SET LibSVM_Version_set

Types \

SET OF UNSIGNED2 | LibSVM_Version_set

No Documentation Found

RETURN SET (UNSIGNED2) —

Performance

Go Up

Table of Contents

GetModelPerformanceMyriad.ecl
PredictPerformanceMyriad.ecl
ToModelPerformanceMyriad.ecl
TunePerformanceMyriad.ecl

Performance/

${\bf Get Model Performance Myriad}$

Go Up

IMPORTS

```
__versions.PBblas.V3_0_2.PBblas | __versions.PBblas.V3_0_2.PBblas.internal | __versions.PBblas.V3_0_2.PBblas.internal.Types | __versions.PBblas.V3_0_2.PBblas.Types | __versions.PBblas.V3_0_2.PBblas.internal.MatDims | __versions.PBblas.V3_0_2.PBblas.test | __versions.PBblas.V3_0_2.PBblas.test.MakeTestMatrix | __versions.ML_Core.V3_2_2.ML_Core | __versions.ML_Core.V3_2_2.ML_Core | __versions.ML_Core.V3_2_2.ML_Core.Types | __versions.Types | __
```

DESCRIPTIONS

GETMODELPERFORMANCEMYRIAD GetModelPerformanceMyriad

```
XPORT GetModelPerformanceMyriad

(UNSIGNED4 test_size, BOOLEAN regress)
```

No Documentation Found

PARAMETER test_size || UNSIGNED4 — No Doc

PARAMETER regress || BOOLEAN — No Doc

RETURN TABLE ({ UNSIGNED2 wi , UNSIGNED8 id , UNSIGNED4 number , REAL8 value }) -

Performance/

${\bf Predict Performance Myriad}$

Go Up

IMPORTS

```
__versions.PBblas.V3_0_2.PBblas | __versions.PBblas.V3_0_2.PBblas.internal | __versions.PBblas.V3_0_2.PBblas.internal.Types | __versions.PBblas.V3_0_2.PBblas.Types | __versions.PBblas.V3_0_2.PBblas.internal.MatDims | __versions.PBblas.V3_0_2.PBblas.test | __versions.PBblas.V3_0_2.PBblas.test.MakeTestMatrix | __versions.ML_Core.V3_2_2.ML_Core | __versions.ML_Core.V3_2_2.ML_Core | __versions.ML_Core.V3_2_2.ML_Core.Types | __versions.Types | __vers
```

DESCRIPTIONS

PREDICTPERFORMANCEMYRIAD PredictPerformanceMyriad

```
XPORT PredictPerformanceMyriad

(UNSIGNED4 test_size, BOOLEAN regress)
```

No Documentation Found

PARAMETER test_size || UNSIGNED4 — No Doc

PARAMETER regress || BOOLEAN — No Doc

RETURN TABLE ({ UNSIGNED2 wi , UNSIGNED8 id , UNSIGNED4 number , REAL8 value }) -

Performance/

${\bf To Model Performance Myriad}$

Go Up

IMPORTS

```
__versions.PBblas.V3_0_2.PBblas | __versions.PBblas.V3_0_2.PBblas.internal | __versions.PBblas.V3_0_2.PBblas.internal.Types | __versions.PBblas.V3_0_2.PBblas.Types | __versions.PBblas.V3_0_2.PBblas.internal.MatDims | __versions.PBblas.V3_0_2.PBblas.test | __versions.PBblas.V3_0_2.PBblas.test.MakeTestMatrix | __versions.ML_Core.V3_2_2.ML_Core | __versions.ML_Core.V3_2_2.ML_Core | __versions.ML_Core.V3_2_2.ML_Core.Types | __versions.Types | __vers
```

DESCRIPTIONS

TOMODELPERFORMANCEMYRIAD ToModelPerformanceMyriad

```
XPORT ToModelPerformanceMyriad

(UNSIGNED4 test_size, BOOLEAN regress)
```

No Documentation Found

PARAMETER test_size || UNSIGNED4 — No Doc

PARAMETER regress || BOOLEAN — No Doc

RETURN TABLE ({ UNSIGNED2 wi , INTEGER4 id , UNSIGNED2 svmType , UNSIGNED2 kernelType , INTEGER4 degree , REAL8 gamma , REAL8 coef0 , UNSIGNED4 k , UNSIGNED4 l , BOOLEAN scale , TABLE (FeatureStats) scaleInfo , TABLE (SVM_SV) sv , TABLE (R8Entry) sv_coef , TABLE (R8Entry) rho , TABLE (R8Entry) probA , TABLE (R8Entry) probB , TABLE (I4Entry) labels , TABLE (I4Entry) nSV })—

Performance/

${\bf Tune Performance Myriad}$

Go Up

IMPORTS

```
__versions.PBblas.V3_0_2.PBblas | __versions.PBblas.V3_0_2.PBblas.internal | __versions.PBblas.V3_0_2.PBblas.internal.Types | __versions.PBblas.V3_0_2.PBblas.Types | __versions.PBblas.V3_0_2.PBblas.internal.MatDims | __versions.PBblas.V3_0_2.PBblas.test | __versions.PBblas.V3_0_2.PBblas.test.MakeTestMatrix | __versions.ML_Core.V3_2_2.ML_Core | __versions.ML_Core.V3_2_2.ML_Core | __versions.ML_Core.V3_2_2.ML_Core.Types | __versions.Types | __
```

DESCRIPTIONS

TUNEPERFORMANCEMYRIAD TunePerformanceMyriad

```
XPORT TunePerformanceMyriad

(UNSIGNED4 test_size, REAL8 maxIncr_log2C, REAL8 maxIncr_log2Gamma, BOOLEAN regress)
```

No Documentation Found

PARAMETER test_size || UNSIGNED4 — No Doc

```
PARAMETER maxincr_log2c ||| REAL8 — No Doc
```

PARAMETER maxincr_log2gamma ||| REAL8 — No Doc

PARAMETER regress || BOOLEAN — No Doc

RETURN TABLE ({ UNSIGNED2 wi , INTEGER4 id , REAL8 correct , REAL8 mse , REAL8 r_sq , UNSIGNED2 svmType , UNSIGNED2 kernelType , INTEGER4 degree , REAL8 coef0 , REAL8 eps , REAL8 nu , REAL8 p , INTEGER4 nr_weight , BOOLEAN shrinking , BOOLEAN prob_est , BOOLEAN scale , TABLE (I4Entry) lbl , TABLE (R8Entry) weight , REAL8 gamma , REAL8 C })—

Validation

 ${\rm Go}\ {\rm Up}$

Table of Contents

 $R_Validation.ecl$

Validation/

R_Validation

Go Up

DESCRIPTIONS

R_VALIDATION R_Validation

R Validation

No Documentation Found

Children

- 1. NumberOfSVs_SVC_NoScaling: No Documentation Found
- 2. SVCoefs_SVC_NoScaling: No Documentation Found
- 3. Predictions_SVC_NoScaling: No Documentation Found
- 4. Probabilities_SVC_NoScaling: No Documentation Found
- 5. NumberOfSVs_SVC_Scaling: No Documentation Found
- 6. SVCoefs_SVC_Scaling: No Documentation Found
- 7. Predictions_SVC_Scaling: No Documentation Found
- 8. Probabilities_SVC_Scaling: No Documentation Found
- 9. NumberOfSVs_SVR_NoScaling: No Documentation Found
- 10. SVCoefs_SVR_NoScaling: No Documentation Found
- 11. Predictions_SVR_NoScaling: No Documentation Found
- 12. NumberOfSVs_SVR_Scaling: No Documentation Found
- 13. SVCoefs_SVR_Scaling: No Documentation Found
- 14. Predictions SVR Scaling: No Documentation Found

- 15. GridSearchResults_SVC : No Documentation Found16. GridSearchResults SVR : No Documentation Found
- NUMBEROFSVS_SVC_NOSCALING NumberOfSVs_SVC_NoScaling

R_Validation \

NumberOfSVs_SVC_NoScaling

No Documentation Found

RETURN INTEGER8 —

SVCOEFS_SVC_NOSCALING SVCoefs_SVC_NoScaling

R_Validation \

SVCoefs_SVC_NoScaling

No Documentation Found

RETURN TABLE ({ INTEGER8 ID , STRING20 Test , REAL8 R }) -

PREDICTIONS_SVC_NOSCALING Predictions_SVC_NoScaling

R_Validation \

 ${\bf Predictions_SVC_NoScaling}$

RETURN TABLE ({ INTEGER8 ID , STRING20 Test , REAL8 R }) —	
PROBABILITIES_SVC_NOSCALING Probabilities_SVC_NoScaling	
R_Validation \	
Probabilities_SVC_NoScaling	
No Documentation Found	
RETURN TABLE ({ INTEGER8 ID , STRING20 Test , REAL8 R }) $-$	
NUMBEROFSVS_SVC_SCALING NumberOfSVs_SVC_Scaling	
R_Validation \	
NumberOfSVs_SVC_Scaling	
No Documentation Found	
RETURN INTEGER8 —	

SVCOEFS_SVC_SCALING SVCoefs_SVC_Scaling

R_Validation \setminus

 ${\bf SVCoefs_SVC_Scaling}$

RETURN	TABLE ({ INTEGER8 ID ,	STRING20 Test,	REAL8 R }) -	_

PREDICTIONS_SVC_SCALING Predictions_SVC_Scaling

R_Validation \

Predictions_SVC_Scaling

No Documentation Found

RETURN TABLE ({ INTEGER8 ID , STRING20 Test , REAL8 R }) -

PROBABILITIES_SVC_SCALING Probabilities_SVC_Scaling

R_Validation \

Probabilities_SVC_Scaling

No Documentation Found

RETURN TABLE ({ INTEGER8 ID , STRING20 Test , REAL8 R }) -

NUMBEROFSVS_SVR_NOSCALING NumberOfSVs_SVR_NoScaling

R_Validation \

 $Number Of SVs_SVR_No Scaling$

SVCOEFS_SVR_NOSCALING SVCoefs_SVR_NoScaling

R_Validation \

SVCoefs_SVR_NoScaling

No Documentation Found

RETURN TABLE ({ INTEGER8 ID , STRING20 Test , REAL8 R }) -

PREDICTIONS_SVR_NOSCALING Predictions_SVR_NoScaling

R_Validation \

 ${\bf Predictions_SVR_NoScaling}$

No Documentation Found

RETURN TABLE ($\{ \text{ INTEGER8 ID }, \text{STRING20 Test }, \text{REAL8 R } \})$

NUMBEROFSVS_SVR_SCALING NumberOfSVs_SVR_Scaling

R_Validation \

NumberOfSVs_SVR_Scaling

SVCOEFS_SVR_SCALING SVCoefs_SVR_Scaling

R_Validation \

SVCoefs_SVR_Scaling

No Documentation Found

RETURN TABLE ({ INTEGER8 ID , STRING20 Test , REAL8 R }) -

PREDICTIONS_SVR_SCALING Predictions_SVR_Scaling

R_Validation \

Predictions_SVR_Scaling

No Documentation Found

RETURN TABLE ($\{ \text{ INTEGER8 ID }, \text{STRING20 Test }, \text{REAL8 R } \})$

GRIDSEARCHRESULTS_SVC GridSearchResults_SVC

R_Validation \

GridSearchResults SVC

RETURN	TABLE ({ INTEGER8 ID ,	REAL8 Cost,	REAL8 Gamma,	REAL8 R }) —	-
--------	---------	-----------------	-------------	--------------	-----------	-----	---

GRIDSEARCHRESULTS_SVR GridSearchResults_SVR

 $R_Validation \$

 ${\bf Grid Search Results_SVR}$

No Documentation Found

RETURN TABLE ({ INTEGER8 ID , REAL8 Cost , REAL8 Gamma , REAL8 R }) —