

Module 7

Upsampling and Downsampling, Part II

Overview

- Multistage downsampling concept
- Interpolated FIR (IFIR)
- IFIR design example
- Other stretch factors
- Multistage decimator design
- Multistage design example

Multistage Decimator Design

H(z) can be designed using the IFIR technique with stretch factor M_1 ($M=M_1xM_2$)

Multistage Decimator Design

 Using the noble identity, the two stage implementation is

 If each stage is implemented with a polyphase structure, the total computation rate is

$$\frac{{}^{N}_{G}}{{}^{M}_{1}{}^{M}_{2}} + \frac{{}^{N}_{I}}{{}^{M}_{1}} = \frac{D(\delta_{1}/2, \delta_{2})}{{}^{M}_{1}{}^{M}_{2}(\omega_{s} - \omega_{p})} + \frac{D(\delta_{1}/2, \delta_{2})}{2\pi - M_{1}(\omega_{s} + \omega_{p})}$$

Multistage Decimator Design

- As M_1 increases the 1st term (N_G) decreases while the 2nd term (N_I) increases. There is a value of M_1 that minimizes the overall computational rate.
- Development presented for two stages, but the concept can be extended to multiple stages.

- Design a 2-stage decimator with M=50 and the following filter specifications:
 - $\circ \omega_{p} = 7/8 \text{ m/50}, \ \omega_{s} = \pi/50$
 - $\circ \delta_1 = 0.01, \delta_2 = 0.001$
- Direct implementation using the Parks-McClellan algorithm requires a filter order of N=2033 and a computational rate of N/M=40.7.

 Overall computation rate for a 2-stage decimator:

$$\frac{{}^{N}_{G}}{{}^{M}_{1}{}^{M}_{2}} + \frac{{}^{N}_{I}}{{}^{M}_{1}} = \frac{D(\delta_{1}/2, \delta_{2})}{{}^{M}_{1}{}^{M}_{2}(\omega_{s} - \omega_{p})} + \frac{D(\delta_{1}/2, \delta_{2})}{2\pi - M_{1}(\omega_{s} + \omega_{p})}$$

M ₁	M ₂	Computation Rate
2	25	24.8
5	10	11.8
10	5	7.8
25	2	6.9

M₁=25, M₂=2 minimizes

← the computation rate

- Filter parameters for G(z) and I(z) are (M₁=25,M₂=2):
 - $\circ G(z)$

$$\circ M_1 \omega_p = 7\pi/16, M_1 \omega_s = \pi/2$$

 $\circ \delta_1/2 = 0.005, \delta_2 = 0.001$ $\Rightarrow N_G = 90$

 $\circ I(z)$

$$\circ \omega_p = 7/8 \text{ m/50}, 2\text{m/M}_1 - \omega_s = 3\text{m/50} \Rightarrow N_1 = 142$$

 $\circ \delta_1/2 = 0.005, \delta_2 = 0.001$

