Physical Chemistry (Chem 132A)

Lecture 18 Wednesday, November 15

Homework #7 is due November 18

Schedule

- 1. Homework 7 is due on Saturday, November 18. This will probably be the last homework assignment before the second midterm.
- 2. Second Midterm exam: Wednesday, November 22 second midterm will cover Chapters 1—6, 19
 - there will be a seating chart
 - same procedures as midterm 1
 1 page notes allowed
 bring calculator

How do Reactions Occur?

$$A + B \rightarrow C$$

Collisions!!

Foundations: B.3 - The Boltzmann Distribution

Chapter 1B: molecular speed distributions and collisions

pgs. 37--43

The Boltzmann Distribution

$$\frac{N_j}{N_i} = e^{-\frac{(\varepsilon_j - \varepsilon_i)}{kT}}$$

$$\frac{N_j}{N_i} = e^{-\frac{(E_j - E_i)}{RT}}$$

E is energy per mole R is gas constant = $N_A k$

Distribution of Molecular Speeds

$$\varepsilon = \frac{1}{2}mv_x^2 + \frac{1}{2}mv_y^2 + \frac{1}{2}mv_z^2$$
 Kinetic energy of molecule

f(v)dv = fraction of molecules with speed in the range v to v + dv

$$f(v) = Ke^{-\left(\frac{1}{2}mv_x^2 + \frac{1}{2}mv_y^2 + \frac{1}{2}mv_z^2\right)} = Ke^{-\left(\frac{1}{2}mv_x^2\right)}e^{-\left(\frac{1}{2}mv_y^2\right)}e^{-\left(\frac{1}{2}mv_y^2\right)} = f(v_x)f(v_y)f(v_z)$$

$$\int_{-\infty}^{+\infty} f(v_x)dv_x = 1$$

$$f(v) = 4\pi \left(\frac{m}{2\pi kT}\right)^{\frac{3}{2}} v^2 e^{-\frac{mv^2}{2kT}}$$
 This can also be written in terms of M and R

Properties of the Boltzmann Speed Distribution

Calculation of Averages

$$\left\langle v^n \right\rangle = \int_0^\infty v^n f(v) dv$$

$$v_{mean} = \int_{0}^{\infty} v f(v) dv = \left(\frac{8RT}{\pi M}\right)^{1/2}$$

$$v_{rms} = \left(\int_{0}^{\infty} v^2 f(v) dv\right)^{1/2} = \left(\frac{3RT}{M}\right)^{1/2}$$
 Root mean square speed

For $N_2(gas)$ at 25 °C

$$v_{mean} = 475 \text{ m/sec}$$

$$V_{\rm rms} = 515 \text{ m/sec}$$

Summary of Speed Averages

Collisions

Define collision Cross Section: $\sigma = \pi d^2$

Collision frequency
$$z = \sigma v_{rel} N/V$$

$$z = \frac{\sigma v_{rel} P}{kT}$$

Mean Free Path

Average distance traveled between colllisions

$$\lambda = \frac{v_{rel}}{z} = \frac{kT}{\sigma p}$$

Example: N₂(gas) at 25 °C and 1Atm pressure

$$\lambda = 9.5 \times 10^{-8} \text{m}$$

Diffusion and Transport

Molecules move randomly in straight paths between collisions.

FLUX

Flux (J) is the quantity of a property passing through a given area in a given time interval divided by the area and the time duration.

Flux of matter---"diffusion" e.g. molecules/m²sec

Flux doesn't have to be matter---e.g. could be energy, etc.

Fick's Law

Empirically the flux is often related to the spatial first derivative of some related property.

$$J(matter) \approx \frac{dN}{dz}$$
 Fick's first law

Concentration Gradient Leads to Diffusion

Direction of Flux??

$$J(matter) = -D\frac{dN}{dz}$$
 D = Diffusion Coeficient

UNITS?

$$J(matter) = -D\frac{dN}{dz}$$

 $\frac{dN}{dz}$

Has units number •m⁻³m⁻¹= number •m⁻⁴

J should have units number•m⁻²sec⁻¹

This means the units of D are: m²sec⁻¹

Thermal Energy Flux

$$J(thermalenergy) = -\kappa \frac{dT}{dz}$$

K Is the coefficient of thermal conductivity

K Units are: $JK^{-1}m^{-1}s^{-1}$ $Js^{-1} = 1$ Watt

K Units are often: WK $^{-1}$ m $^{-1}$

Since units of dT/dz are Km⁻¹ the units of Thermal energy flux are: Wm⁻²s⁻¹

Variation of thermal conductivity for different gases

Table 19A.1* Transport properties of gases at 1 atm

	κ/(mW K ⁻¹ m ⁻¹) 273 K	$\eta/\mu P^{\ddagger}$	
2		273 K	293 K
Ar	16.3	210	223
CO_2	14.5	136	147
He	144.2	187	196
N_2	24.0	166	176

^{*} More values are given in the Resource section.

$$K \approx v_{\text{mean}}$$
 $v_{\text{mean}} = \left(\frac{8RT}{\pi M}\right)^{1/2}$

 $^{^{\}ddagger} 1 \mu P = 10^{-7} \text{ kg m}^{-1} \text{ s}^{-1}$.

FLUX OF MOMENTUM AND VISCOSITY

$$J(xmomentum) = -\eta \frac{dv_x}{dz}$$

 η = coeficient of viscosity

THE END

SEE YOU FRIDAY