

Introduction

- Object detection is a crucial task in computer vision that involves identifying and locating objects within an image or video.
- This task is fundamental for various applications, including autonomous driving, video surveillance, and medical imaging.

What is Object Detection?

- Object detection is a computer vision technique that combines image classification and object localization to identify and locate objects within an image. Unlike image classification, which assigns a single label to an entire image, object detection identifies multiple objects and their locations using bounding boxes.
- Key Concepts in Object Detection
 - Object Localization: This involves determining the location of objects within an image by drawing bounding boxes around them.
 - Object Classification: This involves identifying the category to which the detected object belongs.
 - Bounding Boxes: These are rectangular boxes used to define the location of objects within an image

Is this a dog?

What is there in image and where?

Which pixels belong to which object?

Image Classification

Object Detection

Image Segmentation

Applications of Object Detection

- Object detection has a wide range of applications, including:
 - Autonomous Vehicles: Detecting pedestrians, vehicles, and other obstacles to navigate safely.
 - Video Surveillance: Identifying suspicious activities or objects in realtime to enhance security.
 - Medical Imaging: Detecting anomalies or diseases in medical scans to assist in diagnosis.
 - Retail: Monitoring inventory and customer behavior in stores

Challenges in Object Detection

- **Imbalanced Datasets**: In many domains, negative samples (images without the object of interest) vastly outnumber positive samples, making it difficult to train accurate models.
- **Domain Adaptation**: Models trained on one type of data may not perform well on another due to differences in data distribution. Techniques like unsupervised domain adaptation are used to address this issue.
- Real-Time Processing: Achieving real-time performance while maintaining high accuracy is a significant challenge, especially in applications like autonomous driving and video surveillance.

Traditional Image Processing Techniques

- Traditional Image Processing Techniques
- Traditional image processing techniques for object detection often involve feature extraction followed by classification. Some of the notable methods include:
 - Histogram of Oriented Gradients (HOG): This technique extracts gradient orientation histograms from an image and uses them as features for object detection. It is particularly effective for human detection.
 - Viola-Jones Algorithm: Widely used for face detection, this algorithm uses
 Haar-like features and a cascade of boosted classifiers to detect objects in
 real-time.
 - Bag of Features Model: Similar to the bag of words model in text processing, this approach represents an image as an unordered collection of features, which are then used for classification.

Understanding HOG Features

- HOG features were first introduced by Dalal and Triggs in 2005 as a robust feature extraction method for pedestrian detection.
- The core idea behind HOG is to capture the distribution of gradient orientations in an image, which can be used to describe the shape and appearance of objects.
- HOG features are computed by dividing an image into small cells, calculating the gradient orientations within each cell, and then aggregating these orientations into a histogram. This histogram represents the distribution of gradient orientations, which can be used as a feature vector for object detection.

Advantages of HOG Feature

- HOG features have several benefits that make them an attractive choice for object detection:
 - Robustness to lighting changes: HOG features are invariant to changes in lighting conditions, making them suitable for object detection in realworld scenarios.
 - Robustness to occlusions: HOG features can handle partial occlusions, allowing for accurate object detection even when objects are partially hidden.
 - Computational efficiency: HOG features can be computed efficiently, making them suitable for real-time object detection applications.
 - Flexibility: HOG features can be used with various classification algorithms, such as Support Vector Machines (SVMs) and Random Forests, to name a few.

HOG Example with Python

By computing the distribution of local intensity gradients or edge directions in an image,
HOG features capture the presence of specific shapes and edges.

HOG Example with Skimage

- Added a title to the figure for better context.
- Added annotations to the subplots for clarity.
- Ensure compatibility with color images.
- Removed the unnecessary channel axis specification.
- Improved layout and spacing for better aesthetics.

Neural Network-Based Techniques

- With the advent of deep learning, neural network-based techniques have become the standard for object detection. These methods include:
 - Convolutional Neural Networks (CNNs): CNNs are widely used for object detection due to their ability to automatically learn features from data. They are the backbone of many state-of-the-art object detection models.
 - Region-Based CNN (R-CNN): This method generates region proposals and then classifies each region using a CNN. Variants like Fast R-CNN and Faster R-CNN have improved the speed and accuracy of this approach.

Neural Network-Based Techniques

- You Only Look Once (YOLO): YOLO is a single-stage object detector that divides the image into a grid and predicts bounding boxes and class probabilities for each grid cell in one pass, making it extremely fast.
- Single Shot MultiBox Detector (SSD): SSD is another single-stage detector that uses a series of convolutional layers to predict bounding boxes and class scores for multiple objects in an image.

YOLO: You Only Look Once - Real Time Object Detection

- YOLO was proposed by Joseph Redmond et al. in 2015. It was proposed to deal with the problems faced by the object recognition models at that time,
- Fast R-CNN is one of the state-of-the-art models at that time but it has its own challenges such as this network cannot be used in real-time, because it takes 2-3 seconds to predicts an image and therefore cannot be used in real-time. Whereas, in YOLO we have to look only once in the network i.e. only one forward pass is required through the network to make the final predictions.

Architecture

Architecture

- This architecture takes an image as input and resizes it to 448*448 by keeping the aspect ratio same and performing padding. This image is then passed in the CNN network.
- This model has 24 convolution layers, 4 max-pooling layers followed by 2 fully connected layers.
- For the reduction of the number of layers (Channels), we use 1*1 convolution that is followed by 3*3 convolution. Notice that the last layer of YOLOv1 predicts a cuboidal output.
- This is done by generating (1, 1470) from final fully connected layer and reshaping it to size (7, 7, 30).
- This architecture uses Leaky ReLU as its activation function in whole architecture except the last layer where it uses linear activation function.

Example -- YOLO

Object Localization

0

1

30

28

28

82

0

.

-

.

al Natwork Output \

Prediction

Prediction

Challenge of YOLO

Figure 2: The Model. Our system models detection as a regression problem. It divides the image into an $S \times S$ grid and for each grid cell predicts B bounding boxes, confidence for those boxes, and C class probabilities. These predictions are encoded as an $S \times S \times (B * 5 + C)$ tensor.

References

- https://www.geeksforgeeks.org/introduction-to-object-detection-using-image-processing/
- https://www.geeksforgeeks.org/hog-feature-visualization-in-python-using-skimage/
- https://www.geeksforgeeks.org/yolo-you-only-look-once-real-time-object-detection/
- Video Tutorial for YOLO
 - https://www.youtube.com/watch?v=ag3DLKsl2vk