

Bölüm 5

Manyetizma

Prof. Dr. Bahadır BOYACIOĞLU

Manyetizma

TO A G

- Akım Taşıyan İletkene Etkiyen Kuvvet
- Düzgün Manyetik Alandaki Akım İlmeğine etkiyen Tork
- Yüklü bir Parçacığın Manyetik Alan içerisindeki Hareketi
- Bir Akımın Manyetik Alanı –Biot-Savart Yasası
- Bir Akım Çemberinin Manyetik Alanı
- Paralel Akımlar arasındaki Kuvvet
- Bir Selonoidin Manyetik Alanı

Akım Taşıyan bir İletkene Etkiyen Kuvvet

- Manyetik bir alana yerleştirilen bir akım taşıyan telin üzerinde bir kuvvet oluşur.
- Akım, hareket halindeki birçok yüklü parçacıklardan oluşan bir toplamdır.
- Kuvvetin yönü sağ el kuralına göre belirlenir.
- 1) Akım yoktur, bu nedenle herhangi bir kuvvet yoktur. Bu nedenle, tel dikey olarak kalır
- 2) Manyetik alan sayfa düzleminden içe doğru giriyor. Akım yukarı doğru. Kuvvet sola doğrudun
- 3) Manyetik alan sayfa düzleminden içe doğru giriyor. Akım aşağı doğru. Kuvvet sola doğru<mark>dur.</mark>

(X)E

Manyetik alan sayfa düzleminden içe doğru

Manyetik alan sayfa düzleminden dışa doğru

Akım Taşıyan bir İletkene Etkiyen Kuvvet

Akım geçen tel manyetik alan içine konulduğunda: L uzunluğundaki kısmına etki eden kuvvet;

Akım Taşıyan bir İletkene Etkiyen Kuvvet

Şekilde görüldüğü gibi akım taşıyan bir tele etki eden kuvvetin sağ el kuralına göre belirlenmesi

Düzgün Manyetik Alandaki Akım İlmeğine etkiyen Tork

Dikdörtgen ilmek, düzgün bir manyetik alanda bir I akımı taşıdığını düşünelim.

1 ve 3 taraflarında manyetik kuvvet: F=0

2 ve 4 taraflarında manyetik kuvvet: F=BIb

Kuvvetler O noktası çevresinde bir tork üretir. O noktasına göre tork;

$$\tau = F_1 \frac{a}{2} + F_2 \frac{a}{2} = IAB$$

A=ab dikdörtgen ilmeğin alanı

- Alana dik v hızıyla dış bir manyetik alanda hareket eden bir parçacığı düşünün.
- Kuvvet daima dairesel yolun merkezine yönlendirir.
- Manyetik kuvvet, parçacık hızının yönünü değiştirerek, merkezcil bir ivmeye neden olur.

Manyetik ve merkezcil kuvvetler eşitlenirse:

$$F_{B} = qvB = \frac{mv^{2}}{r}$$

$$mv$$

r için çözüm:

$$r = \frac{mv}{qB}$$

r yarıçapı, parçacığın doğrusal momentumuyla doğru ve manyetik alanla ters orantılıdır

Bir Akımın Manyetik Alanı -Biot-Savart Yasası

 μ_0 sabiti boşluğun manyetik geçirgenliği ve değeri μ_0 = 4π x 10^{-7} T· m / A

Bir Akım Çemberinin Manyetik Alanı

Akım taşıyan bir çemberin merkezinde oluşan manyetik alan

$$B = \frac{\mu_0 I}{2r}$$

Aralarında r uzaklığı bulunan paralel iki doğrusal telde, aynı ve zıt yönde I_1 ve I_2 akımları geçtiği zaman tellerde oluşan kuvvet;

akımlar aynı yönlü ise birbirlerine çekerler, zıt yönlü ise iterler.

Bir Selonoidin Manyetik Alanı

Amper yasasını kullanarak manyetik alan hesaplanırsa

$$B = \mu_o \frac{N}{\ell} I = \mu_o n I$$

n = N / l, birim uzunluğuna göre sarım sayısıdır.