```
In [1]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings('ignore')
```

```
In [2]: df = pd.read_csv("AirPassengers.csv")
    df.head()
```

Out[2]:

	Month	#Passengers
0	1949-01	112
1	1949-02	118
2	1949-03	132
3	1949-04	129
4	1949-05	121

```
In [3]: df.rename(columns={'#Passengers':'Passengers'},inplace = True)
```

```
In [4]: plt.rcParams.update({'figure.figsize':(12,6)})
df['Passengers'].plot()
```

Out[4]: <AxesSubplot:>

Moving Averages

- 1. Simple Moving Average (SMA)
- 2. Cumulative Moving Average (CMA)
- 3. Exponential Moving Average (EMA) / Exponential Weighted Moving Average (EWMA)

SMA/ Rolling Mean

$$SMA_t = \frac{x_t + x_{t-1} + x_{t-2} + \dots + x_{t-n}}{n}$$

```
In [5]: df['SMA_30']=df['Passengers'].rolling(window = 30).mean()
```

In [6]: df['SMA_30'].dropna().plot()

Out[6]: <AxesSubplot:>


```
In [7]: df['Passengers'].plot()
df['SMA_30'].dropna().plot()
```

Out[7]: <AxesSubplot:>

In []:

Conclusion: Passenger column has uptrend/increasing trend(Pattern)

CMA

$$CMA_t = \frac{x_1 + x_2 + \ldots + x_n}{n}$$

In [8]: | df['CMA']=df['Passengers'].expanding().mean()

In [9]: df

Out[9]:

_		Month	Passengers	SMA_30	CMA
_	0	1949-01	112	NaN	112.000000
	1	1949-02	118	NaN	115.000000
	2	1949-03	132	NaN	120.666667
	3	1949-04	129	NaN	122.750000
	4	1949-05	121	NaN	122.400000
	139	1960-08	606	432.566667	275.514286
	140	1960-09	508	437.433333	277.163121
	141	1960-10	461	441.200000	278.457746
	142	1960-11	390	442.100000	279.237762
	143	1960-12	432	442.000000	280.298611

144 rows × 4 columns

```
In [10]: df['Passengers'].plot()
    df['CMA'].plot()
```

Out[10]: <AxesSubplot:>

In []:

EMA / EWMA

$$EMA_t = \alpha * x_t + (1 - \alpha) * EMA_{t-1}$$

alpha is smoothing factor

Range of alpha is between 0 to 1

```
In [11]: # df['EMA']=df['Passengers'].ewm(span=4, adjust=False).mean()
df['EMA_0.1']=df['Passengers'].ewm(alpha = 0.1).mean()
df['EMA_0.3']=df['Passengers'].ewm(alpha = 0.3).mean()
```

```
In [12]: df['Passengers'].plot()
    df['EMA_0.1'].plot()
    df['EMA_0.3'].plot(color='r')
```

Out[12]: <AxesSubplot:>

In []: