R/Stata Introduction

Alexandra Naumenko

1 R vs Stata Introduction

1.a Advantages of Stata

- · user friendly
- convenient canned packages for statistical analysis
- quality control via StataCorp
- most popular statistical programming software used in academia (for the social sciences)

1.b Advantages of R

- free
- open source (code can easily be shared internationally)
- advanced graphics/data visualization options
- R is very marketable skill for data science oriented private sector jobs

1.c Objective

We will perform the same exercise in both R and Stata so you can familiarize yourself with the syntax and get a sense of which one you would enjoy using more for assignments.

1.d Resources

Stata

- Stata Manual http://www.stata.com/manuals/u.pdf
- the help command example: *help reg* will pull up more detailed information about executing a regression.

R

- ?'command' will pull up more detailed information about executing a regression. ?'command' performs a search.
- Heiss' "Using R for Introductory Econometrics" (2016) available for a cheap price on Amazon or as a free ebook on their webpage.

2 Example Routine in Stata

Your version might not already have some packages installed so keep the following commands for installing useful packages in mind.

• ssc install estout, replace

2.a Importing and Viewing Data

Start by opening a do file editor. The editor is useful for staying organized and having a script to look back to at a later time. The command window is mainly useful for experimenting with commands and using the help command.

- 1. determine working directory *cd "insert file pathway here"*
- 2. I recommend always having *clear* at the top of your do file so you can rerun the script smoothly
- 3. import the data¹ import delimited mroz
- 4. view the data to assess how effectively Stata read the data file browse
- 5. assess summary stats *sum*

2.b Cleaning the Data

- 1. Often you want to rename variables to keep syntax more compact or to clarify what the variable is. In our case, let's shorten hourstotalin1975 to hours. *rename hourstotalin1975 hours*
- 2. Perhaps you want to drop missing values for wage.²
 drop if wage == .
 item A useful addition to the dataset might be a dummy variable for whether the women works fulltime (i.e., 40 hours a week)
 gen fulltime = hours>40*52

2.c Plotting data

You suspect that education and wage should be highly correlated. You want to investigate this question with visuals.

reg wage educ
predict fitted
scatter wage educ || line fitted educ

¹syntax varies slightly depending on the type of file e.g., .dta, .xls etc

²you will learn in this class why this is often not a good idea

2.d Analysis

• We suspect that wage is not heavily distributed so we will look at a histogram *hist wage*

• Since the histogram validated our suspicion, we should log wage to correct for this. To simplify the analysis, we will restrict the sample to those who are employed (wage>0). All the log 0's would have resulting in missing values so the unemployed observations will drop out in the following regressions by default.

gen lwage = log(wage)

• Education clearly doesn't explain wage entirely on its own so we would benefit from adding a control. Let's add in experience. reg lwage educ exper

2.e Presenting results

You are now happy with your analysis and you want to display your results in a table. Your audience will be interested in your significance levels so you want to make sure to include those!

reg lwage educ exper eststo clear eststo: quietly reg wage educ eststo: quietly reg wage educ exper esttab

1 .
2 . cd "C:\Users\ANaumenko\Dropbox\590"
C:\Users\ANaumenko\Dropbox\590

3 . 4 . clear

5 . import delimited mroz
 (16 vars, 753 obs)

6 . sum

Max	Min	Std. Dev.	Mean	Obs	Variable
1	0	.4956295	.5683931	753	inlf
4950	0	871.3142	740.5764	753	hoursto~1975
3	0	.523959	.2377158	753	kidslt6
8	0	1.319874	1.353254	753	kidsge6
60	30	8.072574	42.53785	753	age
17	5	2.280246	12.28685	753	educ
25	0	3.241794	2.365276	750	wage
9.98	0	2.419887	1.849734	753	repwage
60	30	8.058793	45.12085	753	husage
17	3	3.020804	12.49137	753	huseduc
40.509	.4121	4.230559	7.482179	753	huswage
17	0	3.367468	9.250996	753	motheduc
17	0	3.57229	8.808765	753	fatheduc
14	3	3.114934	8.623506	753	unem
1	0	.4795042	.6427623	753	city
45	0	8.06913	10.63081	753	exper

7 .
8 . rename hourstotalin1975 hours

9 . drop if wage == .
 (3 observations deleted)

10. gen fulltime = hours>40*52

11. 12. regress wage educ

Source	SS	df	MS	Numbe F(1,	r of obs	=	750 84.97
Model Residual	802.963927 7068.44834	1 748	802.963927 9.44979724	Prob R-squ	> F ared	= =	0.0000 0.1020
Total	7871.41227	749	10.5092287		-squared MSE	=	0.1008 3.0741
wage	Coef.	Std. Err.	t	P> t	[95% C	onf.	Interval]
educ _cons	.4531805 -3.203405	.0491626 .6144493		0.000 0.000	.35666 -4.4096	_	.5496935 -1.997155

13. predict fitted (option xb assumed; fitted values)

14. scatter wage educ || line fitted educ

15.
16. hist wage
 (bin=27, start=0, width=.92592593)

18. gen lwage = log(wage)
(325 missing values generated)

19. 20.

21. reg lwage educ exper

Source	SS	df	MS		er of obs	=	425
 Model	33.3218942	2	16.6609471	` '	422) > F	=	37.21 0.0000
Residual	188.96186	422	.447776919	- 1	uared	=	0.1499
Total	222.283754	424	.524254136		R-squared MSE	=	0.1459 .66916
lwage	Coef.	Std. Err.	t	P> t	[95% Cc	nf.	Interval]
educ exper _cons	.1098211 .0157862 4084307	.0141757 .0040258 .1906785	3.92	0.000 0.000 0.033	.081957 .007873 783228	31	.137685 .0236993 0336327

- 22. eststo clear
- 23. eststo m1: quietly reg lwage educ
- 24. eststo m2: quietly reg lwage educ exper

25. 26. esttab

	(1) lwage	(2) lwage
educ	0.109*** (7.56)	0.110*** (7.75)
exper		0.0158*** (3.92)
_cons	-0.191 (-1.03)	-0.408* (-2.14)
N	425	425

t statistics in parentheses
* p<0.05, ** p<0.01, *** p<0.001</pre>

^{27.} esttab m1 m2 using RegResults.rtf, label nonumber title("Education Effects on Wage")
> mtitle("Model 1" "Model 2") replace
(output written to RegResults.rtf)

name

name

28.

29. 30. clear

31. input famid str4 name inc

inc

- famid
 1. 2 "Art" 22000
 2. 1 "Bill" 30000
 3. 3 "Paul" 25000
 4. end

- 32. save dads, replace file dads.dta saved
- 33. list

	famid	name	inc
1.	2	Art	22000
2.	1	Bill	30000
3.	3	Paul	25000

34.

35. 36. 37. clear

38. input famid str4 name inc

inc

- famid
 1. 1 "Bess" 15000
 2. 3 "Pat" 50000
 3. 2 "Amy" 18000
 4. end

- 39. save moms, replace
 file moms.dta saved
- 40. list

	famid	name	inc
1.	1	Bess	15000
2.	3	Pat	50000
3.	2	Amy	18000

- 41. 42. clear
- 43. use dads
- 44. append using moms
- 45. list

	famid	name	inc
1.	2	Art	22000
2.	1	Bill	30000
3.	3	Paul	25000
4.	1	Bess	15000
5.	3	Pat	50000
6.	2	Amy	18000

46.

47. 48. clear

49. use dads

50. rename name DadName

51. rename inc DadInc

52. merge 1:1 famid using moms

Result	# of obs.
not matched matched	0 3 (_merge==3)

53. list

	famid	DadName	DadInc	name	inc	_merge
1.	1	Bill	30000	Bess	15000	matched (3)
2.	2	Art	22000	Amy	18000	matched (3)
3.	3	Paul	25000	Pat	50000	matched (3)

54.

55. 56. log close

name: <unnamed>
log: C:\Users\ANaumenko\Dropbox\590\log_day1.smcl
log type: smcl
closed on: 22 Aug 2018, 11:52:01

	(1)	(2)
	wage	wage
educ	0.453***	0.431***
	(9.22)	(9.02)
exper		0.0928***
-		(6.87)
cons	-3.203***	-3.924***
_	(-5.21)	(-6.48)
N	750	750

t statistics in parentheses

3 Example Routine in R

Your version might not already have some packages used in this activity installed so keep the following commands for installing these packages in mind.

```
install.packages('data.table')
install.packages('stargazer')
```

This is a useful site for learning about the various packages:

 $https://cran.r-project.org/web/packages/available_packages_by_name.html$

3.a Importing and Viewing Data

Start by opening an R script. The editor is useful for staying organized and having a script to look back to at a later time. The console window is mainly useful for experimenting with commands and using the help command.

- 1. determine working directory setwd(insert your path here)³
- 2. import the data⁴ imroz <- read.csv("mroz.csv")
- 3. view the data to assess how effectively R read the data file *head(mroz)*
- 4. assess summary stats *summary(mroz)*

^{*} p<0.05, ** p<0.01, *** p<0.001

³it's annoying but R requires forward slashes in between folders

⁴syntax varies slightly depending on the type of file e.g., .dta, .xls etc

3.b Cleaning the Data

- 1. Often you want to rename variables to keep syntax more compact or to clarify what the variable is. In our case, let's shorten hourstotalin1975 to hours.

 names(mroz)[names(mroz) == "hourstotalin1975"] <- "hours"
- 2. Perhaps you want to drop missing values for wage.⁵ *mroz2* <- *na.omit(mroz)*
- 3. A useful addition to the dataset might be a dummy variable for whether the women works fulltime (i.e., 40 hours a week)

```
\{mroz2\$fulltime \leftarrow mroz2\$hours > 40*52\}
```

3.c Plotting data

You suspect that education and wage should be highly correlated. You want to investigate this question with visuals.

```
reg_1 <- lm(wage ~ educ, data = mroz2) \\
plot(mroz2$educ, mroz2$wage) \\
abline(lm(wage ~ educ, data = mroz2))</pre>
```


3.d Analysis

• We suspect that wage is not heavily distributed so we will look at a histogram

```
hist (mroz2$wage)
```

⁵you will learn in this class why this is often not a good idea

Histogram of mroz2\$wage

- Since the histogram validated our suspicion, we should log wage to correct for this. Unlike in Stata, we don't have to generate a new variable. We can just insert it into the regression command. To simplify the analysis, we will restrict the sample to those who are employed (wage>0).
- Education clearly doesn't explain wage entirely on its own so we would benefit from adding control. Let's add in experience.
- A benefit of R over Stata is that you can apply transformations to variables in the regression instead of generating them beforehand like you have to do in Stata⁶

```
install.packages('data.table')
library(data.table)
mroz3 <- as.data.table(mroz2)
mroz3 <- mroz3[which(wage >0),]

reg_2 <- lm(log(wage) ~ educ, data = mroz3)
reg_3 <- lm(log(wage) ~ educ + exper, data = mroz3)</pre>
```

3.e Presenting results

You are now happy with your analysis and you want to display your results in a table. Your audience will be interested in your significance levels so you want to make sure to include those!

```
install.packages('stargazer')
library(stargazer)
stargazer(reg_2, reg_3, type = "text")
```

⁶Stata will run using all the observations with missing values for lwage, but in R, you have to go out of your way to ensure your regression is only run on non-missing values to avoid an error.

Table 1:

	Dependent variable:			
	log(v	wage)		
	(1)	(2)		
educ	0.109***	0.110***		
	(0.014)	(0.014)		
exper		0.016***		
1		(0.004)		
Constant	-0.191	-0.408**		
	(0.185)	(0.191)		
Observations	425	425		
R^2	0.119	0.150		
Adjusted R ²	0.117	0.146		
Residual Std. Error	0.680 (df = 423)	0.669 (df = 422)		
F Statistic	57.099*** (df = 1; 423)	37.208*** (df = 2; 422		
Nota	*1	1 1· **n < 0 05· ***n < 0 0		

Note:

*p<0.1; **p<0.05; ***p<0.01

```
setwd ("C:/Users/ANaumenko/Dropbox/590")
mroz <- read.csv("mroz.csv")</pre>
head (mroz)
summary (mroz)
names(mroz)[names(mroz) == "hourstotalin1975"] <- "hours"</pre>
mroz2 <- na.omit(mroz)</pre>
mroz2$fulltime <- mroz2$hours > 40*52
reg_1 \leftarrow lm(wage \sim educ, data = mroz2)
plot(mroz2$educ, mroz2$wage)
abline(lm(wage ~ educ, data = mroz2))
hist (mroz2$wage)
library (data.table)
mroz3 <- as.data.table(mroz2)
mroz3 \leftarrow mroz3 [which(wage > 0),]
reg_2 \leftarrow lm(log(wage) \sim educ, data = mroz3)
reg_3 \leftarrow lm(log(wage) \sim educ + exper, data = mroz3)
library (stargazer)
stargazer(reg_2, reg_3, type = "latex")
```