- 0.25
- 0.4
- 0.1
- 0.625

✓ If X is a random variable that can obtain one of two values (Bernoulli random variable), then P(X = 1) = p = 1 - P(X = 0) = 1 - q. Which of the following propositions is true?

*1/1

- E[X] = 1-p
- E[X] = p
- E[X] = 0.5
- None of the above

✓ You have trained a linear regression model on a dataset (X, Y) and plotted *1/1 the residuals r against the predicted values y[^] . Here is the plot:

- r and y[^] are independent but linearly correlated
- r and y^ are dependent and linearly correlated
- r and y^ are dependent but linearly uncorrelated
- r and y[^] are independent and linearly uncorrelated
- **X** Given $x = \cos \varphi$ and $y = \sin \varphi$, where φ is an RV uniformly distributed *0/1 between (0, 2π). Are x and y correlated?

O No

1/1

✓ Does this figure resemble a valid CDF

Yes

● No

O No

1/1

O No

0.25

0.5

0.75

 \times Given the discrete CDF, F(X), shown; find the probability that X=6 * 0/1

0

● 0.25×

0.5

0.75

- 0
- 0.25
- 0.5
- 0.75

✓ If X is an RV with Gaussian distribution with mean m = 1 and standard *1/1 deviation σ = 2, find the probability that X < 1.

- 0
- 0.5
- 0.68
- 0.95

✓	If X is an RV with Gaussian distribution with mean m = 1 and standard deviation σ = 1, find the probability that $X = 1$.	*1/1
•	0	✓
\bigcirc	0.5	
\bigcirc	0.68	
\bigcirc	0.95	
✓	If X is an RV with Gaussian distribution with mean m = 2 and standard deviation σ = 2, find the probability that $0 < X < 4$	*1/1
) 0	
	0.5	
•	0.68	✓
	0.95	