

SWINBURNE
UNIVERSITY OF
TECHNOLOGY

Network Security and Resilience / Advanced Security

Networks Review

Lecture two

Outline of Lecture

- Review of major access network technologies
- Discussion of their potential security weaknesses

Learning objectives

- You should be able to
 - Describe the major access network technologies
 - identify (in broad terms) their security weaknesses
 - Explain (in broad terms) how these security weaknesses can be managed

Networks

- Many ways to classify network technologies
 - Topological location: Core / Distribution / Access
 - Medium: Wireless / Copper / Fibre
 - Ownership: Public / Corporate / Home
 - Coverage: PAN / LAN / MAN / WAN
 - Capacity: 1000Ethernet / Cable Modem / ADSL2
 - Purpose: IoT, Voice, Data
- Mostly interested in access networks
 - Most likely to be subject to attack
 - include Ethernet, ADSL, Cable Modem, Wireless LAN, UMTS, GPRS, WiMax, HSPA, LTE
- But some interesting issues in core networks
 - BGP exploits
 - One known Lawful Interception exploit

- Access networks concerned with 'last mile' problem
 - Provide connectivity to a geographically distributed population
- Core networks shift large volumes of traffic between different nodes in the network which may be located vast distances apart
- Many different access networks
 - appropriate network depends on many factors
 - population density of users to be connected
 - the distance to the nearest core network node (such as a telephone exchange or wireless base station)
 - existing installed network infrastructure
 - purpose of network

- Not all kinds of Access Networks are available in all places at all times
 - coverage often limited
 - eg, coverage of some broadband wireless networks is often limited. WLAN for example has a range of only tens of metres
 - dependence on what other infrastructure has been deployed
 - eg, Cable Modem networks have usually been deployed in the wake of cable television deployment.
 - eg, ADSL networks are usually deployed on existing two-wire telephony infrastructure
 - Long history of cellular networks building data networks on voice networks
 - GPRS on GSM, HSPA on UMTS

- Not all access networks have the same level of reliability
 - low reliability may be acceptable or may be incorporated into the network design
 - usually reflected as fluctuations in bandwidth
 - Example: wireless is inherently unreliable, but protocol design (such as TCP) ensures reliable delivery of data
- Not all access networks have the same usage and implementation costs
 - networks built on some technologies (such as LTE) are much more expensive to implement (and hence to use) than say wireless LAN networks
- Not all access networks have the same coverage
 - public networks usually have greater coverage than private networks

- Not all access networks have the same capacity
 - usually a tradeoff of some kind
 - eg, LTE high coverage: but bit rate usually less than 1 Gbps
 - eg, WLAN small coverage: but bit rates up to 7 Gbps (802.11ac)
- Not all access networks are as secure as each other
 - wireless networks generally less secure than wired networks
- In summary, there are many different access network technologies with different capabilities, purposes and costs
- There is no single 'best' access network

Overview of access network technologies

- Can be differentiated by physical layer and data link layers
- Physical layer
 - transmission medium and how individual bits are encoded onto it
 - wireless, coaxial cable, twisted pair, optic fiber
 - bits encoded as variations in amplitude, phase, frequency, baseband
 - multiplexing TDM, FDM, CDM
- Data link layer
 - concerned with the transmission of blocks of bits called 'frames'
 - multiple users accessing a single channel usually requires a Medium Access Control mechanism
 - possibly some error correction mechanism

Overview of access network technologies

- Connectionless and connection oriented networks
 - Connection oriented networks involve some initial signalling phase where a logical connection is set up between the source and the destination
 - Connectionless networks do not have such a signalling process
- Circuit switched and packet switched
 - Circuit switched connects two or more DTEs (data terminal equipment) and permits the exclusive use of a data circuit between them until the connection is released
 - Packet switched splits data into chunks which are separately routed over a shared network

Security of access networks

- Generally wireless networks less secure than wired networks
 - Difficult to constrain signal to a specific area (confidentiality)
 - More error prone (integrity)
 - Subject to interference (availability)
- Connectionless networks (generally) less secure than switched networks
 - Connectionless networks usually broadcast data, making sniffing possible
- Packet switched networks less secure than connection oriented networks
 - Packets can be copied and stored more easily than a stream of bits

Exercise

- If your organization proposed using the following technology would you be more or less concerned than if they used LTE?
 - Uses ISM band
 - Corporate ownership
 - No built in encryption
 - Low bit rate
 - Wireless technology
 - Broadcast
 - Some separation of users based on frequency and other factors but limited
 - Uses the Aloha protocol to deal with channel contention

Specific technologies

- Will review each of the following and make some comment on their inherent level of security
 - Ethernet
 - ADSL
 - Cable Modem
 - Wireless LAN
 - LTE
 - 5G NR
 - Bluetooth

Ethernet

- Frame-based LAN technology
- Defines frame formats, MAC controls
 - Mostly standardised by IEEE 802.3
- Development history
 - Originally shared coaxial cable
 - Problems with larger networks
 - One fault could stop all attached stations from transmitting
 - · Increased broadcast domain
 - Led to ethernet bridges
 - Ethernet hub and UTP
 - Ethernet switches
 - Ethernet layer 3 switches

Security of Ethernet

- Switched Ethernet can be very secure
 - But can be subverted
 - Switch can be made to operate in broadcast mode
 - MAC flooding
 - causes switch MAC tables to be filled so that existing entries are deleted
 - frames with unknown MAC addresses are broadcast
 - Misconfiguration errors: Trunks and Access ports
 - Lots of configuration to prevent these but creates opportunities for misconfigurations
 - ARP poisoning

Cable Modem networks

- Cable Television based
- Use CATV infrastructure for data networking
- Implemented as an inverted tree
 - root of the tree referred to as the 'head-end'
- An analog medium
 - 6 MHz broadcast channels
 - data from multiple users is modulated onto multiple 6MHz channels
- Usually an asymmetric network
 - high bit rate forward link
 - low in reverse link

Cable Modem

Main standard is DOCSIS

- Data Over Cable Service Interface Specification
- Supports delivery of Ethernet frames between the cable modem and the head-end
- Specifies a Medium Access Control mechanism for sharing of channels

DOCSIS Architecture

- Cable Modem (CM) at the Customer premises
- Cable Modem Termination System (CMTS) at the head-end

Cable Modem Network Architecture

Security of Cable Modem networks

- DOCSIS has some useful built-in security mechanisms
 - but not always implemented
 - CMTS security provided by 'hooks' to other services (such as authentication via 802.1X)
- DOCSIS security has two protocol components:
 - an encapsulation protocol for encrypting packet data across the cable network
 - a key management protocol for providing the secure distribution of keying material from the CMTS to client CMs.

ADSL and **VDSL**

- Digital Subscriber Line technologies leverage existing telephone networks to provide broadband access.
- First major one was ISDN
- The most important of these technologies now are xDSL family
 - xDSL is a family of subscriber link technologies including Asymmetric DSL, High-speed DSL (HDSL), Very high speed DSL (VDSL) and variations of each
 - xDSL uses the existing PSTN twisted pair copper loop otherwise used for standard telephony.
 - Uses ATM for data transport
 - Operates in parallel with the existing telephone service but independently and without affecting it.
 - Uses different frequencies to that of standard telephony School of Science, Computing and Engineering Technologies

xDSL Architecture

- At each end of the analog loop is an xDSL transmission unit
 - Modulates the digital bitstream onto the local analog loop using frequencies above those used by telephony
 - At the local PSTN exchange the bitstream is demodulated by another xDSL TU and passed onto the parallel data network via a DSL Access Module (DSLAM) which provides connectivity to the Internet
- xDSL is not an end-to-end networking technology.
 - Provides the last hop to a customer site
 - At the exchange, communications over the ADSL link are separated from any telephony communications and transferred through an entirely independent network.

ADSL Architecture

Security of xDSL

- Generally very secure
 - point to point
 - wired medium
 - risks are more at higher layers

Wireless LANs

- Wireless LANs protocols defined by the IEEE 802.11 work group for the ISM band
 - All 802.11 networks use a common MAC layer, but vary in the physical layer details.
 - Most commonly used is the 802.11g and 802.11n standard operating in the 2.4 GHz Industrial, Scientific and Medical band (ISM).
 - 802.11n takes advantage of developments in transmitter receiver design (MIMO)
 - 802.11ac up to 7 Gbps (depending on configuration)

Wireless LANs

- Wireless LANs operate in the ISM band
 - An area of spectrum that is minimally regulated in which anyone may operate radio equipment subject to a minimal set of restraints, primarily on power levels
 - 802.11 is subject to interference from Bluetooth communications devices, some cordless telephones, and Microwave ovens.

Wireless LAN Architecture

Security in WLANs

- Historically a very weak area
 - Wireless communications can't be contained within a single building
 - Remarkable how far a usable signal can propagate
 - Authentication necessary to prevent 'back door' access into rest of network
- Wired Equivalence Privacy (WEP)
 - No longer in use
- Wi-Fi Protected Access (WPA and WPA2)
 - IEEE 802.11i standard
 - encryption and frequent change of keys
- Will deal with advances in 802.11 security in depth later in the subject

Long Term Evolution (LTE)

- Sometimes "4G"
- From the fourth generation cellular onwards the core and radio network were separated with the intention of allowing them to develop separately
 - LTE is radio access network and Evolved Packet System (EPS) is the network core
- LTE and EPS build on successful history of security of other cellular networks
- Flexible security architecture allowing for implementation of developments in cryptography

5G NR

- "Fifth Generation New Radio"
 - Fifth generation of cellular
- Three broad areas of activity defined by use cases
 - eMBB Enhanced Mobile Broadband
 - mMTC Massive Machine Type Communication
 - URLLC Ultra Reliable and Low Latency Communications
- These define what the network will do, not how they will do it
- But we can say a few things about implementation
 - eMBB is a straightforward evolution of LTE
 - mMTC will adapt existing cellular network technologies intended for IoT mainly NB-IoT and LTE-M
 - URLLC is the interesting one

5G NR

URLLC

- Will require development of technologies in 30+ GHz range
- Consequent short range and many more base stations
 - (higher frequency means poorer propagation)
- Will make available huge amounts of bandwidth
 - Will have 20 to 30 x previous BW
- Will require changes to core network
 - Low latency
- Complex 'front haul' and 'back haul' networks

5G NR Security

- Builds on successful LTE / EPC framework which is in turn derived from successful earlier generation security frameworks
- Fixes some limitations from earlier generations related to SIM card identifier (IMSI)
- Still not clear as to how to scale up NB-IoT and LTE-M to expected huge number of devices in mMTC

Bluetooth (IEEE 802.15.1)

- A cable replacement specification
- Short range, low bit rates
- Not really an access technology, but can be used in tandem with access technologies
 - Handsfree connection to mobile phone
 - Wireless connection of peripherals keyboard, monitor, mouse to Personal Computer
 - PDA connection to Personal Computer
- Quite a few Bluetooth exploits
 - More (much more) later in the semester

Many emerging IoT network technologies

- General
 - LoraWAN, Bluetooth Low Energy, Bluetooth Mesh, 6LoWPAN
- Personal
 - ANT and ANT+
- Home automation
 - ZigBee integrated with IP
- Cellular
 - SigFox, NB-IoT, LTE- M (LTE for Machines)
- Industrial Internet of Things
 - PROFINET, TSN, UA, OPC

Conclusion

- Many access network technologies
- All with different strengths and weaknesses including different levels of security
- Important access networks are
 - Ethernet, ADSL, Cable Modem, Wireless LAN, 3G, WiMax, HSPA,
 LTE, Bluetooth
- Wireless networks intrinsically less secure than wired networks
 - require specific action to make them secure

