DEPARTMENT OF MATHEMATICS & STATISTICS MM102 APPLICATIONS OF CALCULUS

Complex Numbers: Exercise Sheet for Week 5

1.	Find	the	${\rm solutions}$	of	the	following	${\it quadratic}$	equations	(for	$z \in$	\mathbb{C}^{n}).
----	------	-----	-------------------	----	-----	-----------	-------------------	-----------	------	---------	------------------	----

(a)
$$z^2 - 4z + 5 = 0$$
, (b) $z^2 + 6 = 0$.

(b)
$$z^2 + 6 = 0$$
.

(c)
$$z^2 + 24z + 26 = 0$$
, (d) $3z^2 - z + 3 = 0$.

(d)
$$3z^2 - z + 3 = 0$$

2. If
$$z_1 = 2 + 3i$$
 and $z_2 = 3 - 4i$ express the following expressions in the form $a + ib$ where a and b are real.

(a)
$$z_1 - 2z_2$$
,

(b)
$$z_1^2$$
,

(b)
$$z_1^2$$
, (c) $z_1 z_2$, (d) $\overline{z}_1 z_2$,

(d)
$$\overline{z}_1 z_2$$
,

(e)
$$\frac{z_1}{z_2}$$
.

3. Express the following in the form
$$a + ib$$
 where a and b are real.

(a)
$$(1+2i)+(-3+6i)$$
 (b) $(4-2i)-(6-7i)$

(b)
$$(4-2i)-(6-7i)$$

(c)
$$2(3+2i)-3(1-3i)$$

(d)
$$i(4-i)$$

(e)
$$(2+i)(6-2i)$$

(f)
$$(3+i)(4-11i)$$

(g)
$$(1-i)(6+3i)$$

(g)
$$(1-i)(6+3i)$$
 (h) $2(1+3i)-(3-7i)(2+6i)$

(i)
$$(8+2i)(-6-4i)(3-2i)$$

(j)
$$\frac{3+4i}{4-3i}$$

(k)
$$\frac{2+3i}{7-i}$$

(1)
$$\frac{(1+i)(2+3i)}{1-i}$$

(m)
$$\frac{1}{4-3i} + \frac{1}{4+3i}$$
 (n) $\frac{1+i}{2+i} + \frac{3-i}{1-i}$

(n)
$$\frac{1+i}{2+i} + \frac{3-i}{1-i}$$

(o)
$$\frac{10i}{1+3i}$$

4. Solve the following equations for
$$z \in \mathbb{C}$$
:

(a)
$$z^2 + 4z + 7 = 0$$
, (b) $z^2 + 4iz + 7 = 0$.

(b)
$$z^2 + 4iz + 7 = 0$$

5. By equating the real and imaginary parts, solve the following equations for the real numbers
$$x$$
 and y .

(a)
$$x+iy-4i = 3y-2ix+9$$

(b)
$$x + iy = \frac{1}{x - iy} + 2$$
,

(a)
$$x+iy-4i = 3y-2ix+9$$
, (b) $x+iy = \frac{1}{x-iy}+2$, (c) $\frac{1-x+2iy}{2x-iy} = 1-3i$.

Draw an Argand diagram to represent the following complex numbers.

(a)
$$2 + 2i$$

(b)
$$4-4i$$

(b)
$$4-4i$$
 (c) $-3i$ **(d)** $-\sqrt{3}+i$

(e)
$$\frac{1}{-\sqrt{3}+i}$$
 (f) -5 (g) $-2-\sqrt{12}i$.

(g)
$$-2 - \sqrt{12}i$$

7. Let
$$z_1 = 1 + 2i$$
, $z_2 = 3 - i$ and $z_3 = -3i$. Draw an Argand diagram to represent the following complex numbers.

(a)
$$z_1 - \overline{z}_2$$
,

(b)
$$z_1 z_3$$
,

(c)
$$\frac{z_2}{z_3}$$

(d)
$$\frac{1}{z_2}$$
,

(a)
$$z_1 - \overline{z}_2$$
, (b) $z_1 z_3$, (c) $\frac{z_2}{z_3}$, (d) $\frac{1}{z_2}$, (e) $z_2 z_3 - z_1$.

8.	Draw	Argand diagr	ams t	o show t	the regions	s in	the complex	plane tha	at satisfy the
	follow	ring relationshi	ps.						
	(a)	z =1,	(b)	$\arg z =$	1, (c)	z < 2,	(d)	$-\frac{\pi}{4} \le \arg z \le \frac{\pi}{3},$
	(e)	z > 3 and	$0 \le \epsilon$	$\arg z \leq \frac{\tau}{2}$	$\frac{\tau}{4}$, (2)	f)	$\operatorname{Re}(z) > 3,$	(g)	$\frac{1}{2} < z < 4.$
9.	Find	the modulus	and r	rincipal	value of t	he :	argument of	the follow	ing complex

Find the modulus and principal value of the argument of the following complex numbers:

(a) 1+i, (b) $\sqrt{3}-i$, (c) $-4-4\sqrt{3}i$,

(d) -6,

(e) 2i, (f) -4+4i, (g) $\cos\left(\frac{\pi}{12}\right)+i\sin\left(\frac{\pi}{12}\right)$, (h) $\cos\left(\frac{\pi}{4}\right)-i\sin\left(\frac{\pi}{4}\right)$.

10. Find the polar form of the following complex numbers using the principal value of the argument in each case.

(a) $2 - \sqrt{12}i$ (b) 3 + 4i (c) -12 (d) -128 - 128i

(e) 6 + 6i

(f) 4*i*

(g) -2i **(h)** $-3 + \sqrt{3}i$.

11. Calculate the modulus, argument and principal value of z = 3 + 2i. Also, express z is polar form using the principal value of the argument.

12. Write the following numbers in the form x + iy where $x, y \in \mathbb{R}$.

(a) $3 \operatorname{cis} \left(\frac{15}{4}\pi\right)$, (b) $6 \operatorname{cis} \left(\frac{11}{6}\pi\right)$, (c) $2 \operatorname{cis} (7\pi)$.

13. Use the polar form to find the modulus of $\frac{(6-i)^2(12+5i)}{-7-24i}$.