从代数角度浅析 L^p 空间上的有界线性算子

侯力广 521070910043 数学科学学院

摘 要: 针对线性赋范空间 L^p 内的有界线性算子,从代数角度引入算子零空间与像空间的概念,并证明了一定条件下二者均构成 L^p 的子空间。其次证明了 L^p 与其子空间形成的商空间之间的同构与同胚关系。

关键词: L^p 空间; 子空间; 有界线性算子; 同构; 同胚;

首先我们引入有界线性算子的子空间、零空间、像空间的定义

定义 1 设 A 是一个 L^p 空间, $B \subset A$. 若 B 依 A 中的运算与范数构成一个 L^p 空间, 则称 A 的子集 B 为 A 的 L^p 子空间.

定义 2 设 $\varphi:A\to B$ 是从 L^p 空间 A 到 L^p 空间 B 内的有界线性算子, 则分别称集合 $\{x\mid x\in A, \varphi(x)=0\}$ 与 $\{y\mid y\in B, \exists x\in A, st\,\varphi(x)=y\}$ 为 φ 的零空间与像空间,且分别记为 $\operatorname{Ker}\varphi$ 与 $\operatorname{Im}\varphi$.

继而考虑 $\operatorname{Ker} \varphi$, $\operatorname{Im} \varphi$ 和 L^p 空间 A, B 的关系

引理 1 设 A, B 都是 L^p 空间, $\varphi : A \to B$ 是有界线性算子, 则 $\operatorname{Ker} \varphi$ 是 A 的一个 L^p 子空间.

证 易知 $\operatorname{Ker} \varphi$ 是 A 的线性子空间. 若 $\{x_n\}$ 是 $\operatorname{Ker} \varphi$ 中一个收敛于 $x \in A$ 的序列, $x_n \to x(n \to \infty)$, 则由 φ 的有界性 (可导出连续性) 及范数的连续性, 可推知 $x \in \operatorname{Ker} \varphi$, 因此 $\operatorname{Ker} \varphi$ 是闭的. 所以 $\operatorname{Ker} \varphi$ 是 A 的 L^p 子空间.

引理 2 设 A, B 都是 L^p 空间, 且 A 是列紧的, $\varphi: A \to B$ 是有界线性算子, 则 $\operatorname{Im} \varphi$ 是 B 的一个 L^p 子空间.

证 易知 $\operatorname{Im} \varphi$ 是 B 的线性子空间. 若 $\{y_n\}$ 是 $\operatorname{Im} \varphi$ 中任一收敛于 $y \in B$ 的序列, $y_n \to y(n \to \infty)$, 则由 φ 的有界性及 A 的列紧性, 可推知 $y \in \operatorname{Im} \varphi$. 因而 $\operatorname{Im} \varphi$ 是闭的. 所以 $\operatorname{Im} \varphi$ 是 B 的 L^p 子空间.

设 A 是一个 L^p 空间, S 是 A 的子空间. 因 S 是 A 的闭线性子空间, 当 $||x|| = 0, x = 0 \in S$,定义商空间 $A/S = \{[x] = x + S \mid x \in A\}$,可证其依下列加法, 数乘及范数构成一个 L^p 空间:

$$[x] + [y] = [x + y]$$

 $\alpha[x] = [\alpha x]$
 $\|[x]\| = \inf_{x \in [x]} \|x\|$

式中 $\alpha \in F, F$ 为数域. 故良定,此 L^p 空间称为 A 关于 S 的商空间。有映射 $\varphi: A \to A/S$,使得 $\varphi(x) = [x], x \in A$,且是一个自然有界线性算子.

引理 3 设 A, B 都是 L^p 空间, $\varphi: A \to B$ 是有界线性算子, 则映射 $\psi: A/\operatorname{Ker} \varphi \to B$ 使 $\psi([x]) = \varphi(x), x \in A$,也是一个有界线性算子.

证 易知 ψ 是一个线性算子. 下面证明 ψ 的有界性: 设 $A/\operatorname{Ker}\varphi$ 中序列 $\{[x_n]\}$ 收敛于 [x] , $[x_n] \to [x](n \to \infty)$. $\forall \varepsilon > 0$, \exists 自然数 N , \exists n > N , \exists \exists \exists $x_n \in [x_n]$, \exists $x_n \in [x_n]$

$$\|\psi\left([x_n]\right) - \psi([x])\| = \|\varphi\left(x_n\right) - \varphi\left(x\right)\| \le \|\varphi\| \cdot \|x_n - x\| < \|\varphi\| \cdot \varepsilon$$

所以 $\psi([x_n]) \to \psi([x])$ $(n \to \infty)$, 即 ψ 是连续的, 因而 ψ 也是有界的.

再考虑 A, B 与其子空间形成的商空间之间的关系

定理 1 设 A, B 都是 L^p 空间, $\varphi: A \to B$ 是有界线性算子,则 B 的 L^p 子空间 S' 的完全原像 $S = \varphi^{-1}(S')$ 是 A 的 L^p 子空间,并且 L^P 商空间 A/S 与 B/S' 同构.

证 易知 $S \in A$ 的线性子空间, 又设在 S 中序列 $\{x_n\}$ 收敛于 $x \in A, x_n \to x(n \to \infty)$, 则有 $\varphi(x_n) \to \varphi(x)(n \to \infty)$. 因 $S' \in B$ 的闭线性子空间, 故 $\varphi(x) \in S', x \in S$, 从而 $S \in B$ 是闭的, 因此 $S \in A$ 的 L^p 子空间.

令 $\psi: A/S \to B/S'$, 使 $\forall [x] \in A/S, \psi([x]) = [\varphi(x)]$, 其中 $x \in [x]$ (在映射 ψ 的作用下, [x] 的像不因代表元的选择改变而改变), 且 ψ 是从 A/S 到 B/S' 上的单射 (即双射), ψ 是一个线性算子, $\forall [x_1], [x_2] \in A/S, \alpha \in F$, 有

$$\psi([x_1] + [x_2]) = \psi([x_1 + x_2]) = [\varphi(x_1 + x_2)]$$

$$= [\varphi(x_1)] + [\varphi(x_2)] = \psi([x_1]) + \psi([x_2])$$

$$\psi(\alpha[x_1]) = \psi([\alpha x_1]) = [\varphi(\alpha x_1)] = \alpha[\varphi(x_1)] = \alpha\psi([x_1])$$

所以 A/S 与 B/S' 同构.

定理 2 若与定理 1 同设, 则 A/S 与 B/S' 也同胚.

证 令 $\tilde{\varphi}: B \to B/S'$ 为自然有界线性算子, 则合成映射 $\tilde{\varphi} \circ \varphi: A \to B/S'$ 为一个有界线性算子, 且 $\operatorname{Ker}(\tilde{\varphi} \circ \varphi) = S$. 由引理 3 可知 $\tilde{\varphi} \circ \varphi$ 导出的映射 $\varphi: A/S \to B/S'$ 为一个有界线性算子, 因而也为一个连续线性算子.

因 ψ 是 L^p 空间 A/S 到 L^p 空间 B/S' 上的有界线性算子, 且 ψ 是一一对应的, 于 是由 Banach 逆算子定理知 ψ^{-1} 也是有界线性算子, 因而逆算子 ψ^{-1} 是连续线性算子. 由于 ψ 与 ψ^{-1} 都是连续的, 又 ψ 是从 A/S 到 B/S' 的双射, 所以 L^p 商空间 A/S 与 B/S' 同胚.

参考文献

- [1] 关肇直, 张恭庆, 冯德兴. 线性泛函分析入门 [M]. 上海科学技术出版社.1979
- [2] 夏道行, 吴卓人, 严绍宗, 舒五昌. 实变函数与泛函分析 [M]. 人民教育出版社.1979
- [3] 李恒沛. 关于域 F 上的向量空间 V 的一个性质的证明. 北京航空航天大学学报 [D]. 1994. 20(3). 322-323
- [4] 李恒沛. L^p 空间上的有界线性算子的某些性质. 北京航空航天大学学报 [D]. 1995. 21(3). 87-89