AFFINITY FUNCTIONS AND CENTRALITY MEASURES IN SOCIAL NETWORK ANALYSIS

21, September, 2021

J. Fumanal Idocin, O. Cordón, A. Alonso Betanzos, H. Bustince, M. Minárová

SOCIAL NETWORK ANALYSIS

- Extract patterns and knowledge from relationships in social networks.
- Typical problems: detect clusters, leaders, propagate information, process mining...

Eurovision 2018 Final Votes

CENTRALITY MEASURES

- Centrality measures are metrics to ponder the importance of each actor in the network.
- Some prototypical examples:
 - Degree centrality: Node degree.
 - Betweenness centrality: Number of times actor X is in the shortest path between two other actors.
 - Closenness centrality: Average of the shortest path between X and the rest of the actors in the network.

 Functions that characterize a pairwise relationship between actors x & y, according to some social criteria:

$$F_C(x, y) \rightarrow [0,1]$$

- 0: no affinity at all
- 1: complete affinity

(Similar to fuzzy sets, but the idea of memberships is changed by the idea of affinity)

Fumanal-Idocin, J., Alonso-Betanzos, A., Cordón, O., Bustince, H., & Minárová, M. (2020). Community detection and social network analysis based on the Italian wars of the 15th century. Future Generation Computer Systems, 113, 25-40.

Best Common Friend Affinity: importance of the best shared relationship.

Fumanal-Idocin, J., Alonso-Betanzos, A., Cordón, O., Bustince, H., & Minárová, M. (2020). Community detection and social network analysis based on the Italian wars of the 15th century. Future Generation Computer Systems, 113, 25-40.

Machiavelli Affinity: similarity in the social structures around both actors.

Fumanal-Idocin, J., Alonso-Betanzos, A., Cordón, O., Bustince, H., & Minárová, M. (2020). Community detection and social network analysis based on the Italian wars of the 15th century. Future Generation Computer Systems, 113, 25-40.

- Some affinity functions dramatically increase the density of the graph.
 - In those cases, the idea of shortest path or degree do not work.
 - However, we can be interested in both expressing the social trait of the affinity function and ponder it with a centrality measure.

Centrality measure for affinity functions

PROPOSAL

Centrality measure + Affinity functions

PROPOSAL

Centrality measure + Affinity functions

Semantic Value

- Semantic Value: X
 - Ponder each actor based on:
 - What the actor gives to the network (Intrinsic value)
 - What the actor receives from the network (Extrinsic value)

The Semantic Value is the natural union of both:

$$\mathbf{X}(x) = \cup (\mathbf{A}(x), \mathbf{Y}(x))$$

Unique/intrinsic value of Actor X:

What the actor gives to the network (Application dependant)

(Runic letter "calc", meaning "Chalice")

Extrinsic value of Actor X: the interaction with others

What the actor receives from the network (Has an actual formula)

(Runic letter "Eolh", meaning "Elk")

Extrinsic value: the interaction with others

$$\Psi(x) = \bigcup_{i=1}^{a} \{ F_C(X_i, x) \mathbb{X}(X_i) - \bigcup_{j \in J} \{ \cap (F_C(X_i, x) \mathbb{X}(X_i), F_C(X_j, x) \mathbb{X}(X_j)) \}$$

Extrinsic value: the interaction with others

$$\Psi(x) = \bigcup_{i=1}^{a} \{F_C(X_i, x) \mathbb{X}(X_i) - \bigcup_{j \in J} \{ \cap (F_C(X_i, x) \mathbb{X}(X_i), F_C(X_j, x) \mathbb{X}(X_j)) \}$$
 Affinity functions

Extrinsic value: the interaction with others

$$\forall (x) = \bigcup_{i=1}^a \{F_C(X_i, x) \mathbb{X}(X_i) - \cup_{j \in J} \{ \cap (F_C(X_i, x) \mathbb{X}(X_i), F_C(X_j, x) \mathbb{X}(X_j)) \}$$
 Affinity functions

IMPORTANT: Circular dependencies

- Approximating the original formula: remove the recursivity by simplifying the Semantic Value for the Intrinsic value.
- Determining the intrinsic value?
 - Application dependant: four our case, the number of times each actor appeared in the original text.

 $0 \rightarrow *$

- We can convert the Semantic Value into a Centrality Measure.
 - Compatible con Affinity functions! (or at least some of them)

EXPERIMENTAL RESULTS

Viking gods and Social network analysis

- The Prose Edda or the Younger Edda by Snorri Sturluson (1179-1241) is a medieval Icelandic compilation of mythical texts.
- The original stories contain material from traditional sources, reaching the Viking Age.
- Stories of: Odin, Thor, Loki, Ragnarök, and so on...

The Younger Edda

	S	E	Freq. (I)	Degree	Betweenness	Closeness	Eigencentrality
Odin	215.00	106.00	109	1113	0.47	0.75	0.37
Thor	176.63	44.63	132	508	0.14	0.61	0.26
Loki	100.58	34.58	66	291	0.06	0.56	0.22
King	53.63	13.63	40	79	0.02	0.49	0.07
Frey	51.01	20.01	31	167	0.02	0.53	0.17
Har	50.24	16.24	34	116	0.03	0.52	0.09
Sigurd	45.02	19.02	26	178	0.02	0.52	0.13
Balder	43.69	14.69	29	151	0.02	0.52	0.14
Freyja	28.78	10.78	18	154	0.01	0.51	0.16
Norse	24.06	4.06	20	37	0.00	0.46	0.04

Odin is the top for all metrics.

 Expected: he has many names, many attributes...

Top 3 are all gods:

Odin, Thor, Loki.

(Top 10, 6 of them)

NOT many abstract concepts:

Anthropocentism!

 NOT expected! We expected abstract ideas to receive more information from the rest of the network than individual actors.

CONCLUSIONS

- Affinity functions require special considerations to work with centrality measures.
- Semantic value: intrinsic + extrinsic
- Semantic value as centrality measure DOES work with affinity functions
 - Properties and patterns related to the original material seem to appear more clearly.

REFERENCES

- About **Myth Networks** and **Semantic Value**: Fumanal-Idocin, J., Cordón, O., Dimuro, G., Minárová, M., and Bustince, H. (2021). The Concept of Semantic Value in Social Network Analysis: an Application to Comparative Mythology, arXiv preprint.
- Affinity functions: Fumanal-Idocin, J., Alonso-Betanzos, A., Cordón, O., Bustince, H., & Minárová, M. (2020). Community detection and social network analysis based on the Italian wars of the 15th century. Future Generation Computer Systems, 113, 25-40.

Check out the code! https://github.com/Fuminides/noumenon_project