Tarea 02

Matemáticas para las ciencias aplicadas I

Beristain Hernández Daniel, García Vázquez Ian Israel Merino Peña Kevin Ariel 29 de septiembre de 2019

Continuidad

1. Determine si las siguientes funciones son continuas en x_0

a)
$$f(x) = \begin{cases} \sqrt{x^2 - 1} & \text{si } x \ge 1 \\ x^2 - 2x + 1, & \text{si } x \in [0, 1] \end{cases}$$
 en $x_0 = 1$
b) $h(x) = \begin{cases} \frac{|x|}{x}, & \text{si } x \ne 0 \\ 1, & \text{si } x = 0 \end{cases}$ en $x_0 = 1$
c) $g(x) = \begin{cases} \sqrt{1 - x^2}, & \text{si } x \in [0, 1] \\ -\sqrt{1 - (x - 2)^2}, & \text{si } x \in [1, 2] \end{cases}$ en $x_0 = 1$

- 2. Se inyecta una fármaco a un paciente cada 12 horas. En la Fig. 1 se muestra la concentración c(t) del fármaco en el torrente sanguíneo después de t horas.
 - a) ¿Para que valores de t, c(t) tiene discontinuidades?
 - b) ¿Qué tipo discontinuidades tiene?

Figura 1: Concentración de un fármaco

Teorema del valor intermedio

3. Mostrar que existe algún número x, tal que:

a)
$$\sin x = x - 1$$

b)
$$x^{179} + \frac{163}{1 + x^2 + \sin^2 x} = 119$$

c)
$$\cos x - \frac{1}{2} = x - 1$$

d)
$$(2x^2 - 2)^2 = -x + 1$$

4. Vea si en los siguientes incisos se cumple el teorema de valor intermedio y, en ese caso, calcule un valor intermedio.

a)
$$f(x) = x^3$$
 en $[-1, 1]$

b)
$$gf(x) = x^3$$
 en $[0, 2]$

c)
$$h(x) = x^2 + 4x + 4$$
 en $[0, 1]$

d)
$$k(x) = 3x^2 - x - 1$$
 en $[-1, 1]$

5. Pruebe que las ecuaciones dadas, tienen una raíz en el intervalo que se señala

a)
$$x^3 + 7x^2 - 3x - 5 = 0$$
 en $[-3, 2, 0, 1]$

b)
$$x^5 - 4x^3 + x^2 - 1 = 0$$
 en $[-2,1,1,5]$

c)
$$x \sin x - \frac{1}{2} = 0$$
 en $[-1, 2]$

d)
$$x \cos x + \frac{1}{2} = 0$$
 en $[-1, 3, 5]$

Derivada

6. Partiendo de la definición de derivada, mostrar que

a) si
$$f(x) = \frac{1}{x}$$
, entonces $f'(a) = -\frac{1}{a^2}$ para $a \neq 0$

b) si
$$f(x) = \frac{1}{x^2}$$
, entonces $f'(a) = -\frac{2}{a^3}$ para $a \neq 0$

c) si
$$f(x) = \sqrt{x}$$
, entonces $f'(a) = \frac{1}{2\sqrt{a}}$ para $a > 0$

7. Encontrar la ecuación de la recta tangente en el punto (a, f(a)) para las siguientes funciones

a)
$$f(x) = \frac{1}{x}$$
 para $a \neq 0$

b)
$$f(x) = \frac{1}{x^2}$$
 para $a \neq 0$

c)
$$f(x) = \sqrt{x}$$
 para $a > 0$

8. Calcular f'(x) para cada una de las siguientes funciones (sin importar los dominios de fyf').

a)
$$f(x) = \sin(x + x^2)$$

b)
$$f(x) = \sin(x) + \sin(x^2)$$

c)
$$f(x) = \sin(\cos(x))$$

d)
$$f(x) = \sin(\sin(x))$$

e)
$$f(x) = \sin(x + \sin(x))$$

f)
$$f(x) = \sin(\cos(\sin(x)))$$

g)
$$f(x) = \sin\left(\frac{\cos(x)}{x}\right)$$

$$f(x) = \frac{\sin(\cos(x))}{x}$$

i)
$$f(x) = \frac{\cos(\cos(x))}{x}$$

Teorema de Rolle

9. Dadas las siguientes funciones, encontrar un punto que satisfaga el teorema de Rolle

a)
$$f: [-2,0] \longrightarrow \mathbb{R}$$
 tal que $f(x) = x^2 + 2x + 1$

b)
$$f:[0,2] \longrightarrow \mathbb{R}$$
 tal que $f(x) = x^2 - 2x + 1$

c)
$$f: [-2, 0] \longrightarrow \mathbb{R}$$
 tal que $f(x) = \frac{1}{x^2 + 2x + 1}$

d)
$$f:[0,2] \longrightarrow \mathbb{R}$$
 tal que $f(x) = \frac{1}{x^2 - 2x + 1}$

Teorema del Valor Medio

10. Dadas las siguientes funciones, encontrar un punto que satisfaga el teorema del Valor Medio

a)
$$f: [-1,1] \longrightarrow \mathbb{R}$$
 tal que $f(x) = x^{4/3}$

b)
$$f: [-1,2] \longrightarrow \mathbb{R}$$
 tal que $f(x) = x^2 - 1$

c)
$$f:[0,2] \longrightarrow \mathbb{R}$$
 tal que $f(x) = x^3 - 2x - 1$

d)
$$f: [-2,0] \longrightarrow \mathbb{R}$$
 tal que $f(x) = x^3 - 2x + 2$

Regla de L'Hôpital

11. Calcular los siguientes limites. Analice si se puede aplicar la regla de L'Hôpital

a)
$$\lim_{x \to 0} \frac{x}{\tan(x)}$$

$$b)\lim_{x\to 0}\frac{\cos^2(x)-1}{x^2}$$

$$c)\lim_{x\to 0} \frac{b^2\cos(ax) - 1}{x}$$

$$\mathrm{d}) \lim_{x \to 0} \frac{\sqrt{x+1} - 1}{x}$$

e)
$$\lim_{x \to 1} \frac{2x^2 - 4x + 2}{5x^2 - 10x + 5}$$

$$f)\lim_{x\to 0}\frac{x-\sin(x)}{x^2}$$

Derivadas de funciones compuestas

- 12. Para cada una de las siguientes funciones, hallar f'(f(x)).
 - a) $f(x) = \frac{1}{1+x}$
 - b) $f(x) = \sin(x)$
 - c) $f(x) = x^2$
 - d) f(x) = 17
- 13. Para cada una de las siguientes funciones, hallar f(f'(x)).
 - a) $f(x) = \frac{1}{x}$
 - b) $f(x) = x^2$
 - c) f(x) = 17x
 - d) f(x) = 17
- 14. Para cada una de las siguientes funciones, hallar el máximo y el mínimo en los intervalos indicados, hallando los puntos del intervalo en que la derivada es cero y comparando los valores en estos puntos con los valores en los extremos.
 - a) $f(x) = x^3 x^2 8x + 1$ sobre [-2, 2]
 - b) $f(x) = \frac{x+1}{x^2+1}$ sobre $[-1, \frac{1}{2}]$
 - c) $f(x) = x^3 + x + 1$ sobre [-1, 1]
 - d) $f(x) = \frac{x}{x^2 1}$ sobre [0, 5]

Interpretación geométrica de la derivada

- 15. Cada una de las figuras siguientes, representan la gráfica de la derivada de una función f. Hallar todos los máximos y mínimos locales de la función f correspondiente, además diga cuando f es creciente o decreciente.
- 16. Utilizar los resultados sobre el significado de la derivada para esbozar la gráfica de las siguientes funciones (aplicar criterios de la primera y segunda derivada).

4

a)
$$f(x) = x + \frac{1}{x}$$

b)
$$f(x) = x + \frac{3}{x^2}$$

c)
$$f(x) = \frac{x^2}{x^2 - 1}$$

d)
$$f(x) = \frac{1}{x^2 + 1}$$

17. Mostrar que

- (a) Gráfica de la derivada de f
- (b) Gráfica de la derivada de f

Figura 2

- a) la suma de un número real positivo y su recíproco es por lo menos 2.
- b) Entre todos los rectángulos de igual perímetro, el de mayor área es el cuadrado.
- c) Entre todos los rectángulos con la misma área, el cuadrado es el de perímetro mínimo.
- d) Entre todos los rectángulos que pueden inscribirse en una circunferencia, el cuadrado es el de área máxima.
 - e) La razón de variación del volumen de una esfera respecto a su radio, es igual a su área.
- 18. Encuentre el punto para el cual
 - a) la recta tangente a la parábola $f(x)=x^2-7x+3$, es paralela a la recta 5x+3y-3=0
 - b) la recta tangente a la parábola $f(x)=x^2-7x+3$, es paralela a la recta 3x-y-4=0
 - c) la recta tangente a la parábola $f(x)=x^2-7x+3,$ es paralela a la recta 2x+3y-3=0