

GeoModels:

un paquete para el análisis de datos geoestadísticos gaussianos y no-gaussianos

* Moreno Bevilacqua

** Víctor Morales-Oñate

Camilo Gómez-Narváez

* Instituto de Estadística, Facultad de Ciencias, Universidad de Valparaiso, Chile.

** Instituto Superior de Investigación y Postgrados, Facultad de Ciencias Económicas, Universidad Central del Ecuador, Ecuador.

¿Por qué el análisis de datos espaciales?

¿Qué tipos de datos espaciales se pueden

analizar?

Areales

Resúmenes que representan comunidades

Georreferenciados

Fenómenos aleatorios medidos en localizaciones predefinidas

Procesos Puntuales

Tanto la localización como el fenómeno presenta características aleatorias

El paquete ofrece:

Procedimientos para:

Simulación

Estimación

Predicción

- Datos espaciales o espacio-temporales
- Conjuntos uni o bivariados
- Espacios Euclidianos o en la esfera

El paquete ofrece:

Procedimientos para:

Simulación

Estimación

Predicción

- Datos espaciales o espacio-temporales
- Conjuntos uni o bivariados
- Espacios Euclidianos o en la esfera

Datos Georreferenciados

Respecto a otros paquetes de

Métodos de Estimación

Máximo Verosimilitud

Completa (cuando sea posible)

Ponderada Compuesta a Parejas

Métodos de Estimación

Máximo Verosimilitud

Completa (cuando sea posible)

Ponderada Compuesta a Parejas

Opciones de cómputo en paralelo (Núcleos, GPU)

Modelos Distribucionales

Continuos		Discretos	
Gaussiano	Gaussiano Asimétrico	Bernoulli Binomial	
T de Student	Logístico		
		Binomial Negativo	
Gamma		Poisson	
Weibull			

LogGaussiano

LogLogístico

Circulares

Wrapped-Gaussian

Espaciales

(Euc. Dist.)

Matern

Exponencial

Wave

Cauchy

Wendland Generalizada

Stable

(Geodes. Dist.)

Matern

Cauchy Generalizada

Multiquadratic

Sinpower

Smoke

Espaciales

(Euc. Dist.)

Exponencial

Wave

Cauchy

Matern

Wendland Generalizada

Stable

(Geodes. Dist.)

Matern

Cauchy Generalizada

Multiquadratic

Sinpower

Smoke

Espacio-Temporales

(No Sep.)

Gneiting

Porcu

lacocesare

Stein

Multiquadratic

Wendland Generalizada

Sinpower

(Separables)

Exponencial-Exponencial

Matern-Matern

Stable-Stable

Wendland-Wendland

Espaciales

(Euc. Dist.)

Matern

Exponencial

Wave

Cauchy

Wendland Generalizada

Stable

(Geodes. Dist.)

Matern

Cauchy Generalizada

Multiquadratic

Sinpower

Smoke

Espacio-Temporales

(No Sep.)

Gneiting

Porcu

lacocesare

Stein

Multiquadratic

Wendland Generalizada

Sinpower

(Separables)

Exponencial-Exponencial

Matern-Matern

Stable-Stable

Wendland-Wendland

Bivariadas

Matern

Matern (restringido)

Matern (separable)

Wendland

Wendland (restringido)

Wendland (separable)

Smoke

Espaciales

(Euc. Dist.) Matern

Exponencial

Wave

Cauchy

Wendland Generalizada

Stable

(Geodes. Dist.)

Matern

Cauchy Generalizada

Multiquadratic

Sinpower

Smoke

Espacio-Temporales

(No Sep.)

Gneiting Porcu

lacocesare

Stein

Multiquadratic

Wendland Generalizada

Sinpower

(Separables)

Exponencial-Exponencial

Matern-Matern

Stable-Stable

Wendland-Wendland

Bivariadas

Matern

Matern (restringido)

Matern (separable) Wendland

Wendland (restringido)

Wendland (separable)

Smoke

Tapering

(Esp.)

Bohman

Wendland

(Esp.Temp.)

Wendland

Un pequeño tutorial

Simulación de datos espaciales

```
require(GeoModels)
require(fields)
executed in 61ms, finished 21:50:22 2019-09-20
```

1. Simulación y estimación

1.1 Localizaciones Espaciales:

```
1  x = seq(0,1,0.03)
2  y = seq(0,1,0.03)
3
4  coords = expand.grid(x,y)
  num_coords = length(x)^2
  print(num_coords)
7  plot(coords,xlab = "",ylab = "")
executed in 257ms, finished 21:36:14 2019-09-20
```

[1] 1156

1.2 Distribución

```
1 model = "Tukeyh"
2 NuisParam(model,bivariate = FALSE,2)

executed in 59ms, finished 10:33:23 2019-09-22

'mean' 'mean1' 'nugget' 'sill' 'tail'

1 mean = 3
2 mean1 = 2
3 nugget = 0
4 sill = 1.5
5 tail = 0.35

executed in 75ms, finished 10:33:24 2019-09-22
```

1.3 Modelo de Correlación

executed in 52ms, finished 10:33:25 2019-09-22

```
cmodel = "GenWend"
CorrParam(cmodel)

executed in 52ms, finished 10:33:25 2019-09-22

'power2' 'scale' 'smooth'

power2 = 4
scale = 0.2
smooth = 1
```

1.4 Todos los Parámetros del Modelo

mean	mean1	nugget	sill	tail	power2	scale	smooth
3	2	0	1.5	0.35	4	0.2	1

1.5 Matriz de Diseño

```
1 a0 = rep(1,num_coords)
2 a1 = runif(num_coords)
3 X = cbind(a0,a1); head(X)
```

executed in 73ms, finished 10:33:28 2019-09-22

a1	a0
0.62916397	1
0.57995746	1
0.06689904	1
0.87266550	1
0.32127008	1
0.88867613	1

1.6 Simulación

executed in 338ms, finished 10:41:03 2019-09-22

Estimación de parámetros

1.7 Estimación de los Parámetros

```
start = list(mean = mean, mean1 = mean1, scale = scale, sill = sill, tail = tail)
fixed = list(nugget = nugget, power2 = power2, smooth = smooth)
maxdist = 0.1
```

executed in 52ms, finished 10:33:37 2019-09-22

1.7.1 Verosimilitud completa

```
1 fit1 = GeoFit(data = data,x,y,grid = TRUE,corrmodel = cmodel,
                likelihood = "Full", type = "Standard", sparse = True,
                model = model.X = X.start = start.fixed = fixed)
 4 fit1
executed in 7m 25s, finished 10:50:43 2019-09-22
Maximum Likelihood Fitting of Tukevh Random Fields
Setting: Full Likelihood
Model: Tukeyh
Type of the likelihood objects: Standard
Covariance model: GenWend
Optimizer: Nelder-Mead
Number of spatial coordinates: 1156
Number of dependent temporal realisations: 1
Type of the random field: univariate
Number of estimated parameters: 5
Type of convergence: Successful
Maximum log-Likelihood value: -1476.19
AIC: 2962
BIC: 2988
Estimated parameters:
 mean mean1 scale sill
3.0125 2.0515 0.2182 1.9048 0.4606
```

1.7.2 Verosimilitud ponderada compuesta a parejas

Maximum Composite-Likelihood Fitting of Tukeyh Random Fields

Setting: Marginal Composite-Likelihood

Model: Tukeyh

Type of the likelihood objects: Pairwise

Covariance model: GenWend

Optimizer: Nelder-Mead

Number of spatial coordinates: 1156 Number of dependent temporal realisations: 1

Type of the random field: univariate Number of estimated parameters: 5

Type of convergence: Successful

Maximum log-Composite-Likelihood value: -73883.99

Estimated parameters:

mean mean1 scale sill tail 2.9115 1.9281 0.1968 1.6109 0.2638

¿Trabajos Futuros?

- Modelos con distribuciones asimétricas, bimodales y multimodales.
- Cómputo intenso en GPU para Linux (ya disponible en Mac).

Muchas Gracias!!!

GeoModels: un paquete para el análisis de datos geoestadísticos gaussianos y

no-gaussianos