

Dataset / problem

Having a set of images of roads taken from cars, we now need to build a network able to identify the location and dimensions of traffic signs located in those pictures and classify them.

Pipeline

Filter bounding boxes by size

Remove unconfident classifications

Non-max suppression

Hyperparameters (boxes proposal)

TEST_PRE_NMS_TOPK = 8000

- TEST_POST_NMS_TOPK = 2000
- PROPOSAL_NMS_THRESH = 0.7

Hyperparameters (selecting boxes)

- Boxes between 15 and255 kept
- Keep if CNN classified with confidence is 70% or over
- Non-max suppression overlap of 0.7

CNN model

- We added batch normalization to the inner layers
- Added MaxPooling(3,3) to inner layers
- Increased kernel size of our first layer, starting from 11 and ending to 3 in the following layers.
- Removed Dropout, empirically gave us worse results.

CNN model

Final reults

MAP = 36.97%

Time = 1,400 seconds

Binary classification

- Classifier to determine if an image is a sign or not
- Reduced the mAP value to 29.46%
- Would need further investigation but may be due to poor training data

Box position

- Take a look at the images
- Access candidate box coordinates
- Filter out those placed in the margins
- Reduced the mAP value to 23.60%

Advantage of dataset inspection

Inspecting the dataset to see how large the signs appeared help to remove incorrect proposed location

The issue with lighting

The system has an issue where it does not detect signs that are shadow/darkness

 Incorrectly detects the sun / glare as a sign

David Burrell Miguel Pérez Ignacio Martínez