Examen¹ la Geometrie II, seria 11, 18.06.2022

Nume și prenume:	
Grupa:	

I. Decideți dacă următoarele afirmații sunt adevărate sau false, justificând pe scurt alegerea:

- 1. Submulțimea $\mathcal{A} = \{(x,y,z) \in \mathbb{R}^3 \mid x \geq 0\} \subset \mathbb{R}^3$ este un subspațiu afin al lui \mathbb{R}^3 cu structura afină canonică. (0,5p)
- 2. Suma (join-ul) a două drepte distincte în spațiul afin \mathbb{R}^2 (privite ca subspații afine) este întreg \mathbb{R}^2 . (0,5p)
- 3. Între orice două spații afine reale de aceeași dimensiune există un izomorfism afin. (0,5p)
- 4. În spațiul euclidian \mathbb{R}^3 , imaginea unui triunghi dreptunghic prin proiecția ortogonală pe un plan afin este tot un triunghi dreptunghic. (0,5p)
- 5. Pentru orice două drepte proiective din $\mathbb{P}^2\mathbb{R}$, există o conică proiectivă nedegenerată tangentă la ambele. (0,5p)
- 6. O hipercuadrică $\Gamma \subset \mathbb{P}^n\mathbb{C}$ fară puncte singulare nu poate fi o reuniune de două hiperplane proiective. (0,5p)

II. Redactaţi rezolvările complete:

- 1. În $\mathcal{A} = \mathbb{R}^3$ cu structura euclidiană canonică, fie planul $\pi : x 2y + z + 2 = 0$ și dreapta $d : \frac{x+1}{1} = \frac{y-2}{2} = \frac{z-3}{2}$. Notăm cu pr_{π} și pr_d proiecțiile ortogonale pe planul π , respectiv pe dreapta d.
- a) Determinați poziția relativă a lui d față de π . (0,25p)
- b) Fie P = (5, 5, 5). Calculați $pr_{\pi}(P)$. (0,25p)
- c) Calculați $pr_{\pi}(d)$ și $pr_{d}(\pi)$. (0,5p)
- d) Daţi exemplu de cuadrică nedegenerată $\Gamma \subset \mathcal{A}$ şi de $P_0 \in \Gamma$ astfel încât $\pi = T_{P_0}\Gamma$ i.e. planul tangent la Γ în P_0 .

 Justificaţi răspunsul.
- **2.** Fie $\mathcal{A} = \mathbb{R}^3$ cu structura euclidiană canonică și $f: \mathcal{A} \to \mathcal{A}, f(x,y,z) = \frac{1}{3}(x-2y+2z+4,2x-y-2z+1,2x+2y+z).$
- a) Demonstrați că f este aplicație afină și determinați urma ei. (0,3p)
- b) Decideți dacă f este izomorfism afin. (0,2p)
- c) Decideți dacă există o dreaptă $d \subset \mathcal{A}$ astfel încât $f(d) \parallel d$. (0,7p)
- d) Decideţi dacă există un plan $\pi \subset \mathcal{A}$ astfel încât $f(\pi) \parallel \pi$. (0,8p)
- **3.** Fie planul afin complex \mathbb{C}^2 şi completatul său proiectiv $\overline{\mathbb{C}^2} \simeq \mathbb{P}^2\mathbb{C}$, unde identificăm $(z,w) \in \mathbb{C}^2$ cu $[z:w:1] \in \mathbb{P}^2\mathbb{C}$. Fie $\mathcal{C} \subset \mathbb{C}^2$ curba algebrică de ecuație $w^2 = z^3 + 2$ şi $\overline{\mathcal{C}} \subset \mathbb{P}^2\mathbb{C}$ închiderea sa proiectivă.
- a) Determinați ecuația omogenă a lui $\overline{\mathcal{C}}$ și demonstrați că $\Omega = [0:1:0]$ este singurul său punct de la infinit. (0,25p)
- b) Definim funcția $S: \mathbb{P}^2\mathbb{C} \to \mathbb{P}^2\mathbb{C}, \ S([z:w:\zeta]) = [z:-w:\zeta].$ Demonstrați că S este un izomorfism proiectiv care invariază $\overline{\mathcal{C}}$. (0,25p)
- c) Pentru $A = [-1:1:1] \in \overline{\mathcal{C}}$, demonstrați că $AS(A) \cap \overline{\mathcal{C}} = \{A, S(A), \Omega\}$. (0,5p)
- d) Pentru orice $P \in \overline{C}$, $P \neq \Omega$, demonstrați că $P\Omega \cap \overline{C} = {\Omega, P, S(P)}$. (0,5p)
- 4. În spațiul afin $\mathcal{A} = \mathbb{R}^3$ cu structura afină canonică, fie dreptele

$$d_1 = \{(t, -t, t) \mid t \in \mathbb{R}\}, \quad d_2 : \left\{ \begin{array}{cccc} x & - & y & = & 0 \\ x & - & z & = & 0 \end{array} \right. \text{ si } d_3 : \frac{x}{3} = \frac{y}{2} = z.$$

Scrieți ecuația unei cuadrice $\Gamma \subset \mathbb{R}^3$ care conține dreptele d_1, d_2 și d_3 . Este aceasta unică? (1p)

¹Se acordă 1 punct din oficiu. Timp de lucru: 3 ore. Succes!