Assignment: Comparing Reinforcement Learning Algorithms

Objective: The goal of this assignment is to apply and compare different reinforcement learning (RL) algorithms on the same game or environment. You will implement and evaluate the following algorithms:

- 1. Dynamic Programming
- 2. Monte Carlo Methods
- 3. Temporal Difference (TD) Learning
- 4. Q-Learning
- 5. SARSA
- 6. $TD(\lambda)$ with Eligibility Traces

You will analyze their performance, strengths, and weaknesses in terms of convergence speed, computational complexity, and ability to handle delayed rewards.

Instructions

Step 1: Choose a Game or Environment

Select a simple game or environment that can be modeled as a Markov Decision Process (MDP). Please ensure that your chosen environment is **not the same as other students' choices** to encourage creativity and diversity in problem-solving. Examples include:

- Grid World: A grid-based environment where the agent navigates from a start state to a goal state while avoiding obstacles.
- Cart-Pole: A classic control problem where the agent must balance a pole on a cart.
- Frozen Lake: A slippery grid world where the agent must navigate from the start to the goal while avoiding holes.
- Custom Game: Design your own small-scale game with well-defined states, actions, rewards, and transitions.

Ensure the game satisfies the following criteria:

- Finite state and action spaces.
- Clear reward structure (e.g., positive rewards for goals, negative rewards for penalties).
- Deterministic or stochastic transitions.

Step 2: Implement the RL Algorithms

For the chosen game, implement the following algorithms:

- 1. Dynamic Programming:
 - Use Value Iteration or Policy Iteration to compute the optimal policy and value function.
 - Assume full knowledge of the environment's dynamics (transition probabilities and rewards).
- 2. Monte Carlo Methods:
 - Simulate episodes under a random or exploratory policy.
 - Estimate the value function by averaging returns over multiple episodes.
- 3. Temporal Difference (TD) Learning:
 - Use TD(0) to update the value function after each step.
 - Compare the results with Monte Carlo methods.
- 4. Q-Learning:
 - Implement Q-Learning to estimate the optimal action-value function.
 - Use an ε -greedy policy for exploration.
- 5. SARSA:
 - Implement SARSA to evaluate the current behavior policy.
 - Compare its performance with Q-Learning.
- 6. $TD(\lambda)$ with Eligibility Traces:

- Extend TD Learning by incorporating eligibility traces.
- Experiment with different values of λ (e.g., λ = 0.2, 0.5, 0.8) to observe the impact on learning.

Step 3: Run Experiments

For each algorithm:

- 1. Set Parameters:
 - Discount factor (gamma): Typically 0.9.
 - Learning rate (alpha): Start with 0.1 and adjust as needed.
 - Exploration rate (epsilon): Start with 0.1 for ε -greedy policies.
 - Number of episodes or steps: Ensure sufficient iterations for convergence.
- 2. Record Metrics:
 - Convergence speed: How quickly does the algorithm find the optimal policy?
 - Computational cost: Measure runtime or memory usage.
- Quality of the learned policy: Evaluate the policy's performance (e.g., average reward per episode).
- 3. Visualize Results:
 - Plot the value function or Q-values for each state or state-action pair.
- Show the convergence of the algorithm over time (e.g., total reward per episode vs. number of episodes).

Step 4: Compare Results

Write a report comparing the performance of the algorithms. Address the following questions:

- 1. Convergence:
 - Which algorithm converges fastest? Why?
 - How does the choice of parameters (e.g., gamma, alpha, lambda) affect convergence?
- 2. Handling Delayed Rewards:
 - Which algorithm handles delayed rewards most effectively? Why?
 - How does $TD(\lambda)$ compare to TD(0) and Monte Carlo methods in this regard?
- 3. Exploration vs. Exploitation:
 - How do Q-Learning and SARSA differ in balancing exploration and exploitation?
 - In what scenarios does SARSA outperform Q-Learning?
- 4. Computational Complexity:
 - Which algorithm is the most computationally efficient? Why?
 - How does the use of eligibility traces in $TD(\lambda)$ impact memory and runtime?
- 5. Policy Quality:
 - Which algorithm produces the best policy (highest cumulative reward)?
- Are there scenarios where suboptimal policies are acceptable (e.g., safety-critical environments)?

Step 5: Submit Your Work

- 1. Code:
 - Include implementations of all algorithms.
 - Provide clear comments and documentation.
- 2. Report:
 - Summarize the game/environment you chose.
 - Present experimental results (plots, tables, etc.).
 - Analyze and compare the performance of the algorithms.
 - Discuss the strengths and limitations of each algorithm.
- 3. Visualization:
 - Include visualizations of the value function, Q-values, and policy for each algorithm.
 - Highlight differences in the learned policies.