

Pautes

Continguts i Pautes

Sessió de teoria del 27/05/2021

Contingut

De: 6.2.2.1 Estats d'oxidació. Tercera regla de *Fajans*Fins: 6.2.4 Nombre de coordinació i geometria dels
compostos de coordinació (fins nombre de

coordinació = 5)

Alfonso Polo Ortiz Departament de Química (Química Inorgànica) Universitat de Girona

© Alfonso Polo Ortiz [Nom del titular dels drets d'explotació], 2021 Els continguts d'aquest document (excepte textos i imatges no creats per l'autor) estan subjectes a la llicència de Creative Commons: Reconeixement-NoComercial-CompartirIgual 4.0

Exercici 6.12. Per als fosfats de Ca(II) i Cd(II):

- a) Utilitzant les regles d'Slater, calcula el nombre atòmic efectiu dels cations.
- b) Raona quin d'ells presentarà una major característica covalent
- c) Es poden relacionar aquests resultats amb la fragilitat òssia observada a la malaltia "itai" causada per una intoxicació amb Cadmi?

Dades:
$$Z_{Ca} = 20$$
, $Z_{Cd} = 48$, $r_{Ca^{2+}} = 100$ pm, $r_{Cd^{2+}} = 95$ ppm

Resposta:
$$Z^*_{Ca} = 3.16$$
, $Z^*_{Cd} = 4.70$

a)
$$\begin{array}{l} \text{Ca$^{2+}$: $Z=20$; $1s^22s^22p^63s^23p^6$;} \\ (1s)^2(2s2p)^8(3s3p)^8 \\ Z^*_{(4s4p)} = 20 - \left[(8x0.85) + (10x1)\right] = 3.16 \\ \\ \text{Cd}^{2+}$: $Z=48$; $1s^22s^22p^63s^23p^64s^23d^{10}4p^65s^04d^{10}$;} \\ (1s)^2(2s2p)^8(3s3p)^8(3d)^{10}(4s4p)^8(4d)^{10}(4f)^0(5s5p)^0 \\ Z^*_{(5s5p)} = 48 - \left[(18x0.85) + (28x1)\right] = 4.70 \\ \end{array}$$

Exercici 6.12. Per als fosfats de Ca(II) i Cd(II):

- a) Utilitzant les regles d'Slater, calcula el nombre atòmic efectiu dels cations.
- b) Raona quin d'ells presentarà una major característica covalent
- c) Es poden relacionar aquests resultats amb la fragilitat òssia observada a la malaltia "itai" causada per una intoxicació amb Cadmi?

Dades:
$$Z_{Ca} = 20$$
, $Z_{Cd} = 48$, $r_{Ca^{2+}} = 100$ pm, $r_{Cd^{2+}} = 95$ ppm

Resposta:
$$Z^*_{Ca} = 3.16$$
, $Z^*_{Cd} = 4.70$

b) la regla de Fajans
$$\Rightarrow$$
 \uparrow Covalència \Leftrightarrow \uparrow $\phi_{M^{n+}} = Z^+/r_{M^{n+}}$ $\phi_{Ca^{2+}} \approx \phi_{Cd^{2+}}$ 3a regla de Fajans \Rightarrow \Rightarrow Ca²⁺: [Ar] \Leftrightarrow Cd²⁺: [Kr]4 d^{10} Més covalent: \Rightarrow Cd₃(PO₄)₂

c) No
$$\Rightarrow$$
 Punt fusió \Leftrightarrow Fragilitat $Ca_3(PO_4)_2$: 1670 °C $Cd_3(PO_4)_2 \approx 1500$ °C

Exercici 6.13. Organitza raonadament els següents lligands en monodentats, polidentats ambidentats.

- a) (CH₃)₃CCH₂CH₂NH₂.
- b) (CH₃)₃SiCH₂CH₂NH₂.
- c) (CH₃)₂AsCH₂CH₂NH₂.
- d) NO₂-.
- e) CH₃C(CH₂PPh₂)₃.

Resposta: mono, mono, poli (bi), ambi, poli (tri).

Lligands monodentats: 1 sol àtom donador: a) i b)

$$\ddot{N}_{H_2}$$
 \ddot{N}_{H_2} \ddot{N}_{H_2}

Lligands polidentats: > 1 àtom donador i poden quelatar: c) i e)

Lligands ambidentats: bidentats que no poden quelatar a l'àtom metàl·lic, perquè els dos àtoms donadors estan molt prop entre ells i habitualment es troben relacionats per un sistema π :