Università degli Studi di Salerno. Corso di Laurea in Informatica. Corso di Ricerca Operativa A.A. 2004-2005 Esame del 17/11/2004 (Riservato a Studenti Fuori Corso)

Nome	Cognome
Matricola/	

1. (5 punti) Data la seguente tabella dei costi per un problema del trasporto, applicare l'algoritmo dell'angolo di nordovest per trovare una soluzione di base iniziale. Verificare se tale base è ottima ed in caso negativo calcolare la base successiva utilizzando l'algoritmo per il problema del trasporto.

	1	2	3	4	O_i
1	7	9	3	1	15
2	6	2	8	3	20
3	7	5	9	3	10
$d_j \rightarrow$	10	15	10	10	-

2. Considerare il seguente problema di programmazione lineare:

max
$$-x_1 - 3x_2$$

con i vincoli
 $-5x_1 + 3x_2 \le 15$
 $x_1 + x_2 \ge 3$
 $x_{1 \ge 0}$, $x_{2 \ge 0}$

dopo averlo trasformato in forma standard:

- a) (4 punti) Partendo dalla base ammissibile B={3,2} determinare attraverso l'algoritmo del simplesso la soluzione ottima.
- b) (4 punti) determinare gli intervalli di variabilità di ognuno dei termini noti affinché il punto di ottimo (trovato al punto a) non cambi.

3.	(6 punti) Dopo aver formulato il duale del problema di programmazione lineare dell'esercizio al punto 2, scrivere le condizioni degli scarti complementari relative alla coppia di problemi individuata
1	(4 punti) Scrivere la formulazione matematica del problema del trasporto relativo all'esercizio 1.
4.	(4 punti) Scrivere la formulazione matematica dei problema dei trasporto ferativo ali esercizio 1.

- 5. Una compagnia produce piatti e bicchieri di ceramica. Il guadagno per ogni confezione di piatti venduta è pari a 30 euro, mentre il guadagno per una confezione di bicchieri è pari a 10 euro. Ogni giorno si devono produrre almeno due confezioni di piatti per ogni numero di confezioni di bicchieri. Il numero di confezioni di bicchieri giornalmente prodotto è al più 3. Infine, sono disponibili al più 6 kg di materia prima ogni giorno. Per produrre una confezione di piatti occorre 1 kg di materia prima mentre per produrre una confezione di bicchieri occorre ½ kg di materia prima. Si vuole conoscere la quantità di confezioni di piatti e di bicchieri da produrre giornalmente per massimizzare il guadagno totale, rispettando i vincoli di produzione. Con riferimento al problema descritto:
 - a) (4 punti) si formuli il corrispondente modello di programmazione lineare;
 - b) (3 punti) si risolva graficamente il problema, individuando il vertice corrispondente alla soluzione ottima.

6. (4 punti) Considerare il seguente problema di programmazione lineare:

max
$$3x_1 - 2x_2$$

con i vincoli

$$-5x_1 + 3x_2 \le k \\ x_1 + x_2 \ge 3k$$

$$x_1 + x_2 \ge 3k$$

$$x_{1\geq0}$$
, $x_{2\geq0}$

Dopo aver trasformato il problema in forma standard, determinare tutti i valori di k che rendono la base B={2,3} ammissibile