$12n_{0533} (K12n_{0533})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle b-u, \ 685852313u^{18} - 556454916u^{17} + \dots + 653732120a + 7160013, \ u^{19} - u^{18} + \dots - u - 1 \rangle \\ I_2^u &= \langle -5.47513 \times 10^{57}u^{27} - 1.03765 \times 10^{58}u^{26} + \dots + 1.25931 \times 10^{60}b + 3.43121 \times 10^{60}, \\ &= 2.52837 \times 10^{60}u^{27} + 8.41887 \times 10^{58}u^{26} + \dots + 3.70867 \times 10^{62}a - 9.79223 \times 10^{62}, \\ &= 2u^{28} - 31u^{26} + \dots - 1810u + 589 \rangle \\ I_3^u &= \langle b+u, \ 2u^8 + 8u^7 + 6u^6 - 13u^5 - 23u^4 - 10u^3 + 3u^2 + a + 3u + 1, \\ &= u^9 + 4u^8 + 3u^7 - 7u^6 - 13u^5 - 5u^4 + 5u^3 + 4u^2 - 1 \rangle \\ I_4^u &= \langle b+1, \ 3a - 4u - 2, \ 2u^2 + 4u + 3 \rangle \\ I_5^u &= \langle b+1, \ a^2 + 2, \ u-1 \rangle \\ I_6^u &= \langle 2b-a-2, \ a^2 + 2, \ u-1 \rangle \\ I_7^u &= \langle b+1, \ a, \ u-1 \rangle \end{split}$$

* 7 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 63 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle b-u, \ 6.86 \times 10^8 u^{18} - 5.56 \times 10^8 u^{17} + \dots + 6.54 \times 10^8 a + 7.16 \times 10^6, \ u^{19} - u^{18} + \dots - u - 1 \rangle$$

$$\begin{aligned} a_2 &= \begin{pmatrix} 1 \\ 0 \end{pmatrix} \\ a_6 &= \begin{pmatrix} 0 \\ u \end{pmatrix} \\ a_3 &= \begin{pmatrix} 1 \\ u^2 \end{pmatrix} \\ a_9 &= \begin{pmatrix} -1.04913u^{18} + 0.851197u^{17} + \dots + 7.34496u - 0.0109525 \\ u \end{pmatrix} \\ a_7 &= \begin{pmatrix} 0.158099u^{18} + 0.275222u^{17} + \dots - 2.08930u - 3.03953 \\ -0.293094u^{18} + 0.271534u^{17} + \dots + 2.24707u + 0.197936 \end{pmatrix} \\ a_{10} &= \begin{pmatrix} -1.04913u^{18} + 0.851197u^{17} + \dots + 7.34496u - 0.0109525 \\ 0.293094u^{18} - 0.271534u^{17} + \dots + 0.247070u - 0.197936 \end{pmatrix} \\ a_{11} &= \begin{pmatrix} -1.04913u^{18} + 0.851197u^{17} + \dots + 6.34496u - 0.0109525 \\ 0.293094u^{18} - 0.271534u^{17} + \dots + 6.34496u - 0.0109525 \\ 0.293094u^{18} - 0.271534u^{17} + \dots + 0.247070u - 0.197936 \end{pmatrix} \\ a_1 &= \begin{pmatrix} -u^2 + 1 \\ -u^4 \end{pmatrix} \\ a_5 &= \begin{pmatrix} u \\ u \end{pmatrix} \\ a_6 &= \begin{pmatrix} -0.0634274u^{18} - 0.299411u^{17} + \dots - 0.689516u - 0.693690 \\ 0.309916u^{18} - 0.197991u^{17} + \dots - 0.689516u - 0.693690 \end{pmatrix} \\ a_8 &= \begin{pmatrix} -0.489325u^{18} + 0.908085u^{17} + \dots + 2.86952u - 2.02077 \\ 0.146260u^{18} - 0.320706u^{17} + \dots + 1.12146u + 0.224248 \end{pmatrix} \\ a_{12} &= \begin{pmatrix} 0.652817u^{18} - 1.22239u^{17} + \dots - 1.72619u + 2.50033 \\ -0.0560035u^{18} + 0.251833u^{17} + \dots - 0.0119146u - 0.862668 \end{pmatrix} \end{aligned}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$-\frac{98599477}{81716515}u^{18} + \frac{19045887}{32686606}u^{17} + \dots + \frac{1773159057}{163433030}u + \frac{96551023}{32686606}u^{17} + \dots$$

Crossings	u-Polynomials at each crossing
c_1	$u^{19} + 29u^{18} + \dots - 21u + 1$
c_2, c_5, c_{10}	$u^{19} + u^{18} + \dots - u + 1$
c_3	$u^{19} - 12u^{18} + \dots - 112u + 8$
c_4	$u^{19} + u^{18} + \dots + 38u + 19$
c_6, c_9	$u^{19} - 11u^{18} + \dots + 192u - 16$
c_7, c_8, c_{11}	$u^{19} - 6u^{17} + \dots + 2u + 1$
c_{12}	$u^{19} - 2u^{18} + \dots + 640u + 206$

Crossings	Riley Polynomials at each crossing	
c_1	$y^{19} - 89y^{18} + \dots + 167y - 1$	
c_2, c_5, c_{10}	$y^{19} - 29y^{18} + \dots - 21y - 1$	
c_3	$y^{19} + 4y^{18} + \dots + 2272y - 64$	
c_4	$y^{19} + 17y^{18} + \dots + 342y - 361$	
c_{6}, c_{9}	$y^{19} + 9y^{18} + \dots + 10112y - 256$	
c_7, c_8, c_{11}	$y^{19} - 12y^{18} + \dots + 20y - 1$	
c_{12}	$y^{19} - 44y^{18} + \dots + 39624y - 42436$	

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.011380 + 0.313488I		
a = 0.32432 + 1.42243I	3.19066 + 0.85534I	-5.53948 - 2.70144I
b = 1.011380 + 0.313488I		
u = 1.011380 - 0.313488I		
a = 0.32432 - 1.42243I	3.19066 - 0.85534I	-5.53948 + 2.70144I
b = 1.011380 - 0.313488I		
u = -0.563817 + 0.542216I		
a = -1.26815 + 1.02395I	7.09944 + 1.17461I	4.73931 - 3.05170I
b = -0.563817 + 0.542216I		
u = -0.563817 - 0.542216I		
a = -1.26815 - 1.02395I	7.09944 - 1.17461I	4.73931 + 3.05170I
b = -0.563817 - 0.542216I		
u = 0.678408		
a = 0.230292	-1.17152	-9.47840
b = 0.678408		
u = -0.102826 + 0.584964I		
a = 1.67025 - 1.13096I	4.80007 - 6.25425I	1.28229 + 2.73136I
b = -0.102826 + 0.584964I		
u = -0.102826 - 0.584964I		
a = 1.67025 + 1.13096I	4.80007 + 6.25425I	1.28229 - 2.73136I
b = -0.102826 - 0.584964I		
u = -0.263709 + 0.494501I		
a = -0.994354 - 0.913393I	2.36863 - 1.74565I	-1.37224 + 0.88301I
b = -0.263709 + 0.494501I		
u = -0.263709 - 0.494501I		
a = -0.994354 + 0.913393I	2.36863 + 1.74565I	-1.37224 - 0.88301I
b = -0.263709 - 0.494501I		
u = -0.006101 + 0.333119I		
a = -2.12160 + 1.28521I	0.09772 - 1.41403I	1.26259 + 3.76239I
b = -0.006101 + 0.333119I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.006101 - 0.333119I		
a = -2.12160 - 1.28521I	0.09772 + 1.41403I	1.26259 - 3.76239I
b = -0.006101 - 0.333119I		
u = -1.82852 + 0.27307I		
a = -0.568825 + 0.667950I	-9.74488 + 5.38592I	-1.90391 - 4.79888I
b = -1.82852 + 0.27307I		
u = -1.82852 - 0.27307I		
a = -0.568825 - 0.667950I	-9.74488 - 5.38592I	-1.90391 + 4.79888I
b = -1.82852 - 0.27307I		
u = 1.90401 + 0.14512I		
a = 0.798373 + 0.448929I	-8.63257 + 5.48554I	-4.82467 - 3.57754I
b = 1.90401 + 0.14512I		
u = 1.90401 - 0.14512I		
a = 0.798373 - 0.448929I	-8.63257 - 5.48554I	-4.82467 + 3.57754I
b = 1.90401 - 0.14512I		
u = -1.90239 + 0.21588I		
a = -0.651528 + 0.330559I	-11.79520 + 2.21872I	-6.42414 + 1.59237I
b = -1.90239 + 0.21588I		
u = -1.90239 - 0.21588I		
a = -0.651528 - 0.330559I	-11.79520 - 2.21872I	-6.42414 - 1.59237I
b = -1.90239 - 0.21588I		
u = 1.91277 + 0.40668I	- 0500 44 00505	0 400F0 . A 08000 F
a = 0.696362 + 0.544185I	-7.3598 - 14.6056I	-3.48053 + 6.86328I
b = 1.91277 + 0.40668I		
u = 1.91277 - 0.40668I	F 9500 + 14 90505	0.40050 0.00005
a = 0.696362 - 0.544185I	-7.3598 + 14.6056I	-3.48053 - 6.86328I
b = 1.91277 - 0.40668I		

II.
$$I_2^u = \langle -5.48 \times 10^{57} u^{27} - 1.04 \times 10^{58} u^{26} + \dots + 1.26 \times 10^{60} b + 3.43 \times 10^{60}, \ 2.53 \times 10^{60} u^{27} + 8.42 \times 10^{58} u^{26} + \dots + 3.71 \times 10^{62} a - 9.79 \times 10^{62}, \ 2u^{28} - 31u^{26} + \dots - 1810u + 589 \rangle$$

$$a_{2} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -0.00681744u^{27} - 0.000227005u^{26} + \dots - 8.46563u + 2.64036 \\ 0.00434772u^{27} + 0.00823983u^{26} + \dots + 3.63527u - 2.72467 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0.00201318u^{27} + 0.000373266u^{26} + \dots + 1.62410u + 3.93942 \\ 0.00381269u^{27} + 0.000556062u^{26} + \dots - 0.710321u + 1.46510 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -0.00681744u^{27} - 0.000227005u^{26} + \dots - 8.46563u + 2.64036 \\ 0.00232347u^{27} + 0.00897606u^{26} + \dots + 5.43757u - 2.65782 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -0.0111652u^{27} - 0.00846684u^{26} + \dots - 12.1009u + 5.36503 \\ -0.000787486u^{27} + 0.00285253u^{26} + \dots - 0.739078u - 0.231186 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{2} + 1 \\ -u^{4} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -0.00531622u^{27} - 0.00441396u^{26} + \dots - 13.8077u + 0.531340 \\ 0.00187207u^{27} - 0.00379823u^{26} + \dots - 6.50788u + 0.163980 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -0.0119948u^{27} - 0.00659420u^{26} + \dots - 10.2083u + 8.38054 \\ 0.00447526u^{27} + 0.000556236u^{26} + \dots - 3.48973u + 1.29218 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -0.00515768u^{27} + 0.00174483u^{26} + \dots - 2.12442u + 4.32190 \\ -0.00281226u^{27} + 0.00400340u^{26} + \dots + 4.13143u - 0.354315 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $0.0000410394u^{27} 0.0223862u^{26} + \cdots 14.9786u + 4.40670$

Crossings	u-Polynomials at each crossing	
c_1	$4(4u^{28} + 124u^{27} + \dots + 3496386u + 346921)$	
c_2, c_5, c_{10}	$2(2u^{28} - 31u^{26} + \dots + 1810u + 589)$	
c_3	$(u^{14} + 3u^{13} + \dots + 6u + 2)^2$	
c_4	$4(4u^{28} + 4u^{27} + \dots + 2910u + 1318)$	
c_{6}, c_{9}	$(u^{14} + 4u^{13} + \dots + 6u + 2)^2$	
c_7, c_8, c_{11}	$2(2u^{28} - 3u^{26} + \dots + 18u + 143)$	
c_{12}	$4(4u^{28} + 4u^{27} + \dots - 331822u + 51386)$	

Crossings	Riley Polynomials at each crossing		
c_1	$16(16y^{28} - 1192y^{27} + \dots + 1.12038 \times 10^{13}y + 1.20354 \times 10^{11})$		
c_2, c_5, c_{10}	$4(4y^{28} - 124y^{27} + \dots - 3496386y + 346921)$		
c_3	$(y^{14} + 7y^{13} + \dots + 40y + 4)^2$		
c_4	$16(16y^{28} + 120y^{27} + \dots + 3.30726 \times 10^7y + 1737124)$		
c_{6}, c_{9}	$(y^{14} + 14y^{12} + \dots - 16y + 4)^2$		
c_7, c_8, c_{11}	$4(4y^{28} - 12y^{27} + \dots - 208818y + 20449)$		
c_{12}	$16(16y^{28} - 872y^{27} + \dots + 9.39179 \times 10^9y + 2.64052 \times 10^9)$		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.966382 + 0.110966I		
a = -0.828099 - 0.574299I	1.97484 - 7.76173I	-3.86929 + 6.38577I
b = -0.89736 - 1.22031I		
u = -0.966382 - 0.110966I		
a = -0.828099 + 0.574299I	1.97484 + 7.76173I	-3.86929 - 6.38577I
b = -0.89736 + 1.22031I		
u = 0.851893 + 0.576043I		
a = 0.774805 + 0.118277I	-0.285405 - 1.292740I	-2.58201 + 4.98724I
b = 1.41322 - 0.39522I		
u = 0.851893 - 0.576043I		
a = 0.774805 - 0.118277I	-0.285405 + 1.292740I	-2.58201 - 4.98724I
b = 1.41322 + 0.39522I		
u = 0.809296 + 0.758852I		
a = -0.701976 + 0.470898I	-1.78597 - 2.14155I	-6.76179 + 4.84545I
b = -0.656408 + 0.320572I		
u = 0.809296 - 0.758852I		
a = -0.701976 - 0.470898I	-1.78597 + 2.14155I	-6.76179 - 4.84545I
b = -0.656408 - 0.320572I		
u = 0.820658 + 0.108803I		
a = -0.497392 - 0.319928I	0.227845 - 0.102984I	-1.99347 - 4.00034I
b = -0.69832 + 1.71552I		
u = 0.820658 - 0.108803I		
a = -0.497392 + 0.319928I	0.227845 + 0.102984I	-1.99347 + 4.00034I
b = -0.69832 - 1.71552I		
u = -0.656408 + 0.320572I		
a = 1.047290 + 0.742422I	-1.78597 - 2.14155I	-6.76179 + 4.84545I
b = 0.809296 + 0.758852I		
u = -0.656408 - 0.320572I		
a = 1.047290 - 0.742422I	-1.78597 + 2.14155I	-6.76179 - 4.84545I
b = 0.809296 - 0.758852I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.130570 + 0.630186I		
a = 0.307163 - 1.004640I	5.45172 + 3.41582I	0.19962 - 2.07440I
b = 0.261322 - 0.276894I		
u = -1.130570 - 0.630186I		
a = 0.307163 + 1.004640I	5.45172 - 3.41582I	0.19962 + 2.07440I
b = 0.261322 + 0.276894I		
u = 1.41322 + 0.39522I		
a = 0.288054 - 0.467672I	-0.285405 + 1.292740I	-2.58201 - 4.98724I
b = 0.851893 - 0.576043I		
u = 1.41322 - 0.39522I		
a = 0.288054 + 0.467672I	-0.285405 - 1.292740I	-2.58201 + 4.98724I
b = 0.851893 + 0.576043I		
u = -0.89736 + 1.22031I		
a = -0.584215 - 0.278401I	1.97484 + 7.76173I	-3.86929 - 6.38577I
b = -0.966382 - 0.110966I		
u = -0.89736 - 1.22031I		
a = -0.584215 + 0.278401I	1.97484 - 7.76173I	-3.86929 + 6.38577I
b = -0.966382 + 0.110966I		
u = 0.261322 + 0.276894I		
a = -2.02402 - 2.94250I	5.45172 - 3.41582I	0.19962 + 2.07440I
b = -1.130570 - 0.630186I		
u = 0.261322 - 0.276894I		
a = -2.02402 + 2.94250I	5.45172 + 3.41582I	0.19962 - 2.07440I
b = -1.130570 + 0.630186I		
u = -1.77785 + 0.35616I		
a = 0.794821 - 0.439524I	-10.49050 + 7.03206I	-4.68824 - 5.11742I
b = 2.03221 - 0.27091I		
u = -1.77785 - 0.35616I		
a = 0.794821 + 0.439524I	-10.49050 - 7.03206I	-4.68824 + 5.11742I
b = 2.03221 + 0.27091I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.78768 + 0.39075I		
a = -0.782070 - 0.541782I	-9.89698 - 1.84815I	-3.80483 - 0.45512I
b = -1.84939 - 0.11154I		
u = 1.78768 - 0.39075I		
a = -0.782070 + 0.541782I	-9.89698 + 1.84815I	-3.80483 + 0.45512I
b = -1.84939 + 0.11154I		
u = -0.69832 + 1.71552I		
a = -0.082350 + 0.251169I	0.227845 - 0.102984I	-1.99347 - 4.00034I
b = 0.820658 + 0.108803I		
u = -0.69832 - 1.71552I		
a = -0.082350 - 0.251169I	0.227845 + 0.102984I	-1.99347 + 4.00034I
b = 0.820658 - 0.108803I		
u = -1.84939 + 0.11154I		
a = 0.680577 - 0.647893I	-9.89698 + 1.84815I	-3.80483 + 0.45512I
b = 1.78768 - 0.39075I		
u = -1.84939 - 0.11154I		
a = 0.680577 + 0.647893I	-9.89698 - 1.84815I	-3.80483 - 0.45512I
b = 1.78768 + 0.39075I		
u = 2.03221 + 0.27091I		
a = -0.676121 - 0.433678I	-10.49050 - 7.03206I	-4.00000 + 5.11742I
b = -1.77785 - 0.35616I		
u = 2.03221 - 0.27091I		
a = -0.676121 + 0.433678I	-10.49050 + 7.03206I	-4.00000 - 5.11742I
b = -1.77785 + 0.35616I		

III.
$$I_3^u = \langle b+u, \ 2u^8 + 8u^7 + \dots + a+1, \ u^9 + 4u^8 + \dots + 4u^2 - 1 \rangle$$

$$a_{2} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -2u^{8} - 8u^{7} - 6u^{6} + 13u^{5} + 23u^{4} + 10u^{3} - 3u^{2} - 3u - 1 \\ -u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{8} + 3u^{7} - u^{6} - 10u^{5} - 6u^{4} + 7u^{3} + 9u^{2} + u - 2 \\ -u^{7} - 3u^{6} + 7u^{4} + 5u^{3} - u^{2} - u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -2u^{8} - 8u^{7} - 6u^{6} + 13u^{5} + 23u^{4} + 10u^{3} - 3u^{2} - 3u - 1 \\ -u^{7} - 3u^{6} + 7u^{4} + 5u^{3} - u^{2} - 3u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -2u^{8} - 8u^{7} - 6u^{6} + 13u^{5} + 23u^{4} + 10u^{3} - 3u^{2} - 2u - 1 \\ -u^{7} - 3u^{6} + 7u^{4} + 6u^{3} - u^{2} - 3u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -2u^{8} - 8u^{7} - 6u^{6} + 13u^{5} + 23u^{4} + 10u^{3} - 3u^{2} - 2u - 1 \\ -u^{7} - 3u^{6} + 7u^{4} + 6u^{3} - u^{2} - 3u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u^{2} + 1 \\ -u^{4} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u^{2} + 1 \\ -u^{4} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u^{8} - 3u^{7} + u^{6} + 10u^{5} + 6u^{4} - 8u^{3} - 9u^{2} + 2u + 2 \\ 2u^{8} + 7u^{7} + 2u^{6} - 16u^{5} - 16u^{4} + 2u^{3} + 8u^{2} + u - 1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u^{7} - 4u^{6} - 3u^{5} + 7u^{4} + 12u^{3} + 3u^{2} - 3u \\ -u^{8} - 3u^{7} + 6u^{5} + 4u^{4} + u^{3} - 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $6u^8 + 22u^7 + 14u^6 35u^5 59u^4 26u^3 + 10u^2 4$

Crossings	u-Polynomials at each crossing
c_1	$u^9 - 10u^8 + 39u^7 - 77u^6 + 97u^5 - 91u^4 + 51u^3 - 26u^2 + 8u - 1$
c_2, c_{10}	$u^9 + 4u^8 + 3u^7 - 7u^6 - 13u^5 - 5u^4 + 5u^3 + 4u^2 - 1$
	$u^9 + 2u^8 + 3u^7 - 4u^5 - 6u^4 + 7u^2 + 5u + 1$
C4	$u^9 - u^6 + 5u^5 - 14u^4 - 3u^3 + 3u^2 + u - 1$
<i>c</i> ₅	$u^9 - 4u^8 + 3u^7 + 7u^6 - 13u^5 + 5u^4 + 5u^3 - 4u^2 + 1$
c_6	$u^9 - 2u^8 + 5u^7 - 6u^6 + 11u^5 - 8u^4 + 10u^3 - 5u^2 + 4u - 1$
c_7	$u^9 + u^8 - 2u^7 - 2u^6 + 2u^5 + 3u^4 + 2u^3 + 2u^2 + u + 1$
c_8,c_{11}	$u^9 - u^8 - 2u^7 + 2u^6 + 2u^5 - 3u^4 + 2u^3 - 2u^2 + u - 1$
<i>c</i> ₉	$u^9 + 2u^8 + 5u^7 + 6u^6 + 11u^5 + 8u^4 + 10u^3 + 5u^2 + 4u + 1$
c_{12}	$u^9 + 2u^8 - 6u^7 - 7u^6 + 15u^5 + 4u^4 - 8u^3 - 3u^2 + 2u - 1$

Crossings	Riley Polynomials at each crossing		
c_1	$y^9 - 22y^8 + \dots + 12y - 1$		
c_2, c_5, c_{10}	$y^9 - 10y^8 + 39y^7 - 77y^6 + 97y^5 - 91y^4 + 51y^3 - 26y^2 + 8y - 1$		
c_3	$y^9 + 2y^8 + y^7 - 2y^5 - 10y^4 + 44y^3 - 37y^2 + 11y - 1$		
c_4	$y^9 + 10y^7 - 7y^6 - y^5 - 220y^4 + 101y^3 - 43y^2 + 7y - 1$		
c_6, c_9	$y^9 + 6y^8 + 23y^7 + 62y^6 + 113y^5 + 132y^4 + 96y^3 + 39y^2 + 6y - 1$		
c_7, c_8, c_{11}	$y^9 - 5y^8 + 12y^7 - 14y^6 + 6y^5 + y^4 - 6y^2 - 3y - 1$		
c_{12}	$y^9 - 16y^8 + 94y^7 - 261y^6 + 393y^5 - 318y^4 + 134y^3 - 33y^2 - 2y - 1$		

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.865294 + 0.634244I		
a = 0.435521 - 1.098430I	5.42733 + 5.08303I	0.17320 - 7.12597I
b = 0.865294 - 0.634244I		
u = -0.865294 - 0.634244I		
a = 0.435521 + 1.098430I	5.42733 - 5.08303I	0.17320 + 7.12597I
b = 0.865294 + 0.634244I		
u = -0.538784 + 0.553717I		
a = -1.116470 + 0.596317I	4.45461 + 7.56243I	-0.11124 - 7.39319I
b = 0.538784 - 0.553717I		
u = -0.538784 - 0.553717I		
a = -1.116470 - 0.596317I	4.45461 - 7.56243I	-0.11124 + 7.39319I
b = 0.538784 + 0.553717I		
u = 1.45391		
a = -0.210908	-0.245409	0.377120
b = -1.45391		
u = 0.526629 + 0.094661I		
a = -0.38098 + 1.63789I	-0.68115 + 1.57729I	-9.12272 - 4.78889I
b = -0.526629 - 0.094661I		
u = 0.526629 - 0.094661I		
a = -0.38098 - 1.63789I	-0.68115 - 1.57729I	-9.12272 + 4.78889I
b = -0.526629 + 0.094661I		
u = -1.84951 + 0.27593I		
a = 0.667388 - 0.551500I	-10.72300 + 4.06248I	-5.12780 - 2.06389I
b = 1.84951 - 0.27593I		
u = -1.84951 - 0.27593I		
a = 0.667388 + 0.551500I	-10.72300 - 4.06248I	-5.12780 + 2.06389I
b = 1.84951 + 0.27593I		

IV.
$$I_4^u = \langle b+1, \ 3a-4u-2, \ 2u^2+4u+3 \rangle$$

$$a_{1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 1 \\ -2u - \frac{3}{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} \frac{4}{3}u + \frac{2}{3} \\ -1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -\frac{4}{3}u - \frac{8}{3} \\ -u - 2 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} \frac{4}{3}u + \frac{2}{3} \\ 2u + 2 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} \frac{4}{3}u + \frac{5}{3} \\ 0.5 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 2u + \frac{5}{2} \\ 2u + \frac{15}{4} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} \frac{5}{3}u + \frac{4}{3} \\ \frac{3}{2}u + 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -\frac{1}{3}u - \frac{2}{3} \\ -\frac{3}{2}u - 2 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} \frac{4}{3}u + \frac{13}{16} \\ u + \frac{14}{14} \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 0

Crossings	u-Polynomials at each crossing		
c_1	$4u^2 - 4u + 9$		
c_2, c_7	$2u^2 + 4u + 3$		
c_3, c_6, c_9	$u^2 + 2$		
C ₄	$(2u+1)^2$		
c_5,c_{11}	$2u^2 - 4u + 3$		
c_8	$(u+1)^2$		
c_{10}	$(u-1)^2$		
c_{12}	$(2u-1)^2$		

Crossings	Riley Polynomials at each crossing		
c_1	$16y^2 + 56y + 81$		
c_2, c_5, c_7 c_{11}	$4y^2 - 4y + 9$		
c_3, c_6, c_9	$(y+2)^2$		
c_4, c_{12}	$(4y-1)^2$		
c_{8}, c_{10}	$(y-1)^2$		

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.000000 + 0.707107I		
a = -0.666667 + 0.942809I	4.93480	0
b = -1.00000		
u = -1.000000 - 0.707107I		
a = -0.666667 - 0.942809I	4.93480	0
b = -1.00000		

V.
$$I_5^u = \langle b+1, \ a^2+2, \ u-1 \rangle$$

$$a_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} a \\ -1 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 2 \\ a+1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} a \\ a-1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} a+1 \\ a \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 1 \end{pmatrix}$$

$$\begin{pmatrix} 2a - 1 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 2a-1 \\ -2 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 2a - 1 \\ -2 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} -a + 1 \\ 1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 2 \\ a+1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 0

Crossings	u-Polynomials at each crossing
c_1, c_2, c_7 c_{10}	$(u-1)^2$
c_3, c_4	$u^2 + 2u + 3$
c_5, c_8, c_{11}	$(u+1)^2$
c_6, c_9, c_{12}	$u^2 + 2$

Crossings	Riley Polynomials at each crossing		
$c_1, c_2, c_5 \\ c_7, c_8, c_{10} \\ c_{11}$	$(y-1)^2$		
c_3, c_4	$y^2 + 2y + 9$		
c_6, c_9, c_{12}	$(y+2)^2$		

Solutions to I_5^u		$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.00000 $a = 1.00000$	1.414210I	4.93480	0
b = -1.00000	1.1112101	1.00 100	
u = 1.00000 $a = 1.00000$	- 1.414210 <i>I</i>	4.93480	0
b = -1.00000	1.4142101	1.00100	

VI.
$$I_6^u = \langle 2b - a - 2, \ a^2 + 2, \ u - 1 \rangle$$

$$a_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} a \\ \frac{1}{2}a + 1 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 2 \\ -a+2 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} a \\ \frac{3}{2}a + 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} \frac{1}{2}a - 1\\ a \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} -2a+1 \\ -2a-1 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} -\frac{1}{2}a + 3\\ -2a + 2 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 2 \\ -a+2 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 0

Crossings	u-Polynomials at each crossing		
c_1, c_2, c_7	$(u-1)^2$		
c_3, c_4, c_6 c_9, c_{12}	$u^2 + 2$		
c_5, c_{11}	$(u+1)^2$		
c_8	$2(2u^2 - 4u + 3)$		
c_{10}	$2(2u^2 + 4u + 3)$		

Crossings	Riley Polynomials at each crossing		
c_1, c_2, c_5 c_7, c_{11}	$(y-1)^2$		
c_3, c_4, c_6 c_9, c_{12}	$(y+2)^2$		
c_8, c_{10}	$4(4y^2 - 4y + 9)$		

	Solutions to I_6^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u =	1.00000		
a =	1.414210I	4.93480	0
b =	1.000000 + 0.707107I		
u =	1.00000		
a =	$-\ 1.414210I$	4.93480	0
b =	1.000000 - 0.707107I		

VII.
$$I_7^u = \langle b+1,\ a,\ u-1 \rangle$$

$$a_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 0

Crossings	u-Polynomials at each crossing		
$c_1, c_2, c_4 \\ c_8, c_{10}, c_{11}$	u-1		
c_3, c_5, c_7	u+1		
c_6, c_9, c_{12}	u		

Crossings	Riley Polynomials at each crossing		
c_1, c_2, c_3 c_4, c_5, c_7 c_8, c_{10}, c_{11}	y-1		
c_6, c_9, c_{12}	y		

Solutions to I_7^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.00000		
a = 0	0	0
b = -1.00000		

VIII. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$(u-1)^{5}(4u^{2}-4u+9)$ $\cdot (u^{9}-10u^{8}+39u^{7}-77u^{6}+97u^{5}-91u^{4}+51u^{3}-26u^{2}+8u-1)$ $\cdot (u^{19}+29u^{18}+\cdots-21u+1)$ $\cdot (4u^{28}+124u^{27}+\cdots+3496386u+346921)$
c_2	$(u-1)^{5}(2u^{2}+4u+3)$ $\cdot (u^{9}+4u^{8}+3u^{7}-7u^{6}-13u^{5}-5u^{4}+5u^{3}+4u^{2}-1)$ $\cdot (u^{19}+u^{18}+\cdots-u+1)(2u^{28}-31u^{26}+\cdots+1810u+589)$
c_3	$(u+1)(u^{2}+2)^{2}(u^{2}+2u+3)(u^{9}+2u^{8}+\cdots+5u+1)$ $\cdot ((u^{14}+3u^{13}+\cdots+6u+2)^{2})(u^{19}-12u^{18}+\cdots-112u+8)$
C4	$(u-1)(2u+1)^{2}(u^{2}+2)(u^{2}+2u+3)$ $\cdot (u^{9}-u^{6}+\cdots+u-1)(u^{19}+u^{18}+\cdots+38u+19)$ $\cdot (4u^{28}+4u^{27}+\cdots+2910u+1318)$
<i>c</i> ₅	$(u+1)^{5}(2u^{2}-4u+3)$ $\cdot (u^{9}-4u^{8}+3u^{7}+7u^{6}-13u^{5}+5u^{4}+5u^{3}-4u^{2}+1)$ $\cdot (u^{19}+u^{18}+\cdots-u+1)(2u^{28}-31u^{26}+\cdots+1810u+589)$
c_6	$u(u^{2}+2)^{3}(u^{9}-2u^{8}+\cdots+4u-1)$ $\cdot ((u^{14}+4u^{13}+\cdots+6u+2)^{2})(u^{19}-11u^{18}+\cdots+192u-16)$
c_7	$(u-1)^{4}(u+1)(2u^{2}+4u+3)$ $\cdot (u^{9}+u^{8}-2u^{7}-2u^{6}+2u^{5}+3u^{4}+2u^{3}+2u^{2}+u+1)$ $\cdot (u^{19}-6u^{17}+\cdots+2u+1)(2u^{28}-3u^{26}+\cdots+18u+143)$
<i>c</i> ₈	$4(u-1)(u+1)^{4}(2u^{2}-4u+3)$ $\cdot (u^{9}-u^{8}-2u^{7}+2u^{6}+2u^{5}-3u^{4}+2u^{3}-2u^{2}+u-1)$ $\cdot (u^{19}-6u^{17}+\cdots+2u+1)(2u^{28}-3u^{26}+\cdots+18u+143)$
<i>c</i> ₉	$u(u^{2}+2)^{3}(u^{9}+2u^{8}+\cdots+4u+1)$ $\cdot((u^{14}+4u^{13}+\cdots+6u+2)^{2})(u^{19}-11u^{18}+\cdots+192u-16)$
c_{10}	$4(u-1)^{5}(2u^{2}+4u+3)$ $\cdot (u^{9}+4u^{8}+3u^{7}-7u^{6}-13u^{5}-5u^{4}+5u^{3}+4u^{2}-1)$ $\cdot (u^{19}+u^{18}+\cdots-u+1)(2u^{28}-31u^{26}+\cdots+1810u+589)$
c_{11}	$(u-1)(u+1)^{4}(2u^{2}-4u+3)$ $\cdot (u^{9}-u^{8}-2u^{7}+2u^{6} + 2u^{5}-3u^{4}+2u^{3}-2u^{2}+u-1)$ $\cdot (u^{19}-6u^{17}+\cdots+2u+1)(2u^{28}-3u^{26}+\cdots+18u+143)$
c_{12}	$u(2u-1)^{2}(u^{2}+2)^{2}$ $\cdot (u^{9}+2u^{8}-6u^{7}-7u^{6}+15u^{5}+4u^{4}-8u^{3}-3u^{2}+2u-1)$ $\cdot (u^{19}-2u^{18}+\cdots+640u+206)$ $\cdot (4u^{28}+4u^{27}+\cdots-331822u+51386)$

IX. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$((y-1)^5)(16y^2 + 56y + 81)(y^9 - 22y^8 + \dots + 12y - 1)$ $\cdot (y^{19} - 89y^{18} + \dots + 167y - 1)$ $\cdot (16y^{28} - 1192y^{27} + \dots + 11203834917014y + 120354180241)$
c_2, c_5	$(y-1)^{5}(4y^{2}-4y+9)$ $\cdot (y^{9}-10y^{8}+39y^{7}-77y^{6}+97y^{5}-91y^{4}+51y^{3}-26y^{2}+8y-1)$ $\cdot (y^{19}-29y^{18}+\cdots-21y-1)$ $\cdot (4y^{28}-124y^{27}+\cdots-3496386y+346921)$
c_3	$(y-1)(y+2)^{4}(y^{2}+2y+9)$ $\cdot (y^{9}+2y^{8}+y^{7}-2y^{5}-10y^{4}+44y^{3}-37y^{2}+11y-1)$ $\cdot ((y^{14}+7y^{13}+\cdots+40y+4)^{2})(y^{19}+4y^{18}+\cdots+2272y-64)$
c_4	$(y-1)(y+2)^{2}(4y-1)^{2}(y^{2}+2y+9)$ $\cdot (y^{9}+10y^{7}-7y^{6}-y^{5}-220y^{4}+101y^{3}-43y^{2}+7y-1)$ $\cdot (y^{19}+17y^{18}+\cdots+342y-361)$ $\cdot (16y^{28}+120y^{27}+\cdots+33072624y+1737124)$
c_6, c_9	$y(y+2)^{6}$ $(y^{9} + 6y^{8} + 23y^{7} + 62y^{6} + 113y^{5} + 132y^{4} + 96y^{3} + 39y^{2} + 6y - 1)$ $((y^{14} + 14y^{12} + \dots - 16y + 4)^{2})(y^{19} + 9y^{18} + \dots + 10112y - 256)$
c_7, c_{11}	$(y-1)^{5}(4y^{2}-4y+9)$ $\cdot (y^{9}-5y^{8}+12y^{7}-14y^{6}+6y^{5}+y^{4}-6y^{2}-3y-1)$ $\cdot (y^{19}-12y^{18}+\cdots+20y-1)(4y^{28}-12y^{27}+\cdots-208818y+20449)$
<i>c</i> ₈	$16(y-1)^{5}(4y^{2}-4y+9)$ $\cdot (y^{9}-5y^{8}+12y^{7}-14y^{6}+6y^{5}+y^{4}-6y^{2}-3y-1)$ $\cdot (y^{19}-12y^{18}+\cdots+20y-1)(4y^{28}-12y^{27}+\cdots-208818y+20449)$
c_{10}	$16(y-1)^{5}(4y^{2}-4y+9)$ $\cdot (y^{9}-10y^{8}+39y^{7}-77y^{6}+97y^{5}-91y^{4}+51y^{3}-26y^{2}+8y-1)$ $\cdot (y^{19}-29y^{18}+\cdots-21y-1)$ $\cdot (4y^{28}-124y^{27}+\cdots-3496386y+346921)$
c_{12}	$y(y+2)^{4}(4y-1)^{2}$ $\cdot (y^{9} - 16y^{8} + 94y^{7} - 261y^{6} + 393y^{5} - 318y^{4} + 134y^{3} - 33y^{2} - 2y - 1)$ $\cdot (y^{19} - 44y^{18} + \dots + 39624y - 42436)$ $\cdot (16y^{28} - 872y^{27} + \dots \cancel{34} + 9391789456y + 2640520996)$