Building Regression Models with scikit-learn

UNDERSTANDING LINEAR REGRESSION AS A MACHINE LEARNING PROBLEM

Janani Ravi CO-FOUNDER, LOONYCORN www.loonycorn.com

Overview

Linear regression as a machine learning problem

Mean Square Error (MSE) as loss function

Interpreting the results of a regression analysis

R² for evaluating regression models

Prerequisites and Course Outline

Prerequisites

Basic Python programming

No prior ML exposure required

High school math

Prerequisite Courses

Building Your First scikit-learn Solution

Course Outline

Understanding the regression problem
Building simple regression models
Building regularized regression models
Advanced regression techniques
Hyperparameter tuning for regression

Connecting the Dots Using Linear Regression

"My mind is made up. Don't confuse me with the facts."

Some powerful person

Thoughtful, Fact-based Point of View

Fact-based

Built with painstakingly collected data

Thoughtful

Balanced, weighing pros and cons

Point of View

Prediction, recommendation, call to action

Two Sets of Statistical Tools

Descriptive Statistics

Identify important elements in a dataset

Inferential Statistics

Explain those elements via relationships with other elements

Two Hats of a Data Professional

Find the Dots

Identify important elements in a dataset

Connect the Dots

Explain those elements via relationships with other elements

Data in One Dimension

Unidimensional data points can be represented using a line, such as a number line

Data in One Dimension

Unidimensional data is analysed using statistics such as mean, median, standard deviation

It's often more insightful to view data in relation to some other, related data

Bidimensional data can be represented in a plane

We can draw any number of curves to fit such data

We can draw any number of curves to fit such data

A straight line represents a linear relationship

We could either make this curve pass through each point...

...Or in some sense "fit" the data in aggregate

A curve has a "good fit" if the distances of points from the curve are small

Overfitting by finding a very complicated curve often only hurts predictive accuracy

Often, a straight line works just fine

Finding the "best" such straight line is called Linear Regression

The linear regression relationship can be expressed as y = A + Bx

Regression not only gives us the equation of this line, it also signals how reliable the line is

High quality of fit

Low quality of fit

R² is a measure of how well the linear regression fits the underlying data

Prediction Using Regression

Given a new value of x, use the line to predict the corresponding value of y

Prediction Using Regression

Regression also allows to specify prediction intervals (similar to confidence intervals) around this point estimate

Linear Regression can easily be extended to n-dimensional data

Setting Up The Regression Problem

X Causes Y

Cause Independent variable

EffectDependent variable

X Causes Y

Cause

Explanatory variable

Effect

Dependent variable

Linear Regression involves finding the "best fit" line

Let's compare two lines, Line 1 and Line 2

The first line has y-intercept A₁

In the first line, if x changes by 1 unit, y decreases by -B₁ units

(B₁ is negative because of downward slope, so -B₁ is positive)

The second line has y-intercept A₂

In the second line, if x changes by 1 unit, y decreases by -B₂ units

(B₂ is negative because of downward slope, so -B₂ is positive)

The "best fit" line is the one where the sum of the squares of the lengths of these dotted lines is minimum

The "best fit" line is the one where the sum of the squares of the lengths of these dotted lines is minimum

The "best fit" line is the one where the sum of the squares of the lengths of the errors is minimum

The "best fit" line is the one where the sum of the squares of the lengths of the errors is minimum

The "best fit" line is the one where the sum of the squares of the lengths of the errors is minimized

Finding this line is the objective of the regression problem

Residuals of a regression are the difference between actual and fitted values of the dependent variable

To find the "best fit" line we need to make some assumptions about regression error

There is a fine distinction between errors and residuals - but we can ignore it

Regression Line: y = A + BxX

Ideally, residuals should

- have zero mean
- common variance
- be independent of each other
- be independent of x
- be normally distributed

Demo

Installing the scikit-learn library

Demo

Exploring and visualizing relationships in data

Risks in Multiple Regression

Simple and Multiple Regression

Simple Regression

Data in 2 dimensions

Simple and Multiple Regression

Simple Regression

Risks exist, but can usually be mitigated analysing R² and residuals

Multiple Regression

Risks are more complicated, require interpreting regression statistics

Risks in Simple Regression

No cause-effect relationship

Regression on completely unrelated data series

Mis-specified relationship

Non-linear (exponential or polynomial) fit

Incomplete relationship

Multiple causes exist, we have captured just one

Diagnosing Risks in Simple Regression

No cause-effect relationship

low R², plot of X ~ Y has no pattern

Mis-specified relationship

high R², residuals are not independent of each other

Incomplete relationship

low R², residuals are not independent of x

Mitigating Risks in Simple Regression

No cause-effect relationship

Wrong choice of X and Y - back to drawing board

Mis-specified relationship

Transform X and Y - convert to logs or returns

Incomplete relationship

Add X variables (move to multiple regression)

The big new risk with multiple regression is **multicollinearity**: X variables containing the same information

Multiple Regression

Regression Equation:

$$y = C_1 + C_2 X_1 + ... + C_k X_{k-1}$$

$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ \dots \\ y_n \end{bmatrix} = \begin{bmatrix} 1 & x_{11} & x_{1k-1} \\ 1 & x_{21} & x_{2k-1} \\ 1 & x_{31} & x_{3k-1} \\ \dots & \dots & \dots \\ 1 & x_{n1} & x_{nk-1} \end{bmatrix} + \begin{bmatrix} C_1 \\ C_2 \\ \dots & C_k \end{bmatrix}$$

n Rows, 1 Column

n Rows, k Columns k Rows, 1 Column

Multiple Regression

Regression Equation:

$$y = C_1 + C_2 X_1 + ... + C_k X_{k-1}$$

Bad News: Multicollinearity Detected

Highly correlated explanatory variables

Good News: No Multicollinearity Detected

Uncorrelated explanatory variables

Bad News: Multicollinearity Detected

Highly correlated explanatory variables

Multicollinearity Kills Regression's Usefulness

Explaining Variance

The R² as well as the regression coefficients are not very reliable

Making Predictions

The regression model will perform poorly with out-of-sample data

Multicollinearity: Prevention and Cure

Big-picture understanding of the data

Nuts and Bolts

Setting up data right

Heavy Lifting

Factor analysis, principal components analysis (PCA)

Common Sense

Think deeply about each x variable

Eliminate closely related ones

Dig down to underlying causes

Nuts and Bolts

'Standardize' the variables
Rely on adjusted-R², not plain R²
Set up dummy variables right
Distribute lags

Heavy Lifting

Find underlying factors that drive the correlated x variables

Principal Component Analysis (PCA) is a great tool

Interpreting the Results of a Regression Analysis

The most common and popular metric for evaluating regression

Between 0 and 100%

Unfortunately, always increases by adding new x variables

Can lead to overfitting

Adjusted R² preferred for evaluating multiple regression

 \mathbb{R}^2

Adjusted- $R^2 = R^2 \times (Penalty for adding irrelevant variables)$

Adjusted-R²

Increases if irrelevant* variables are deleted

(*irrelevant variables = any group whose F-ratio < 1)

Regression with Categorical Variables

Proposed Regression Equation:

$$y = A + Bx$$

Height of individual

Average height of parents

Not a great fit - regression line is far from all points!

We can easily plot a great fit for males...

...and another great fit for females

Two lines - same slope, different intercepts

Regression Line For Males:

$$y = A_1 + Bx$$

Regression Line For Females:

$$y = A_2 + Bx$$

Combined Regression Line:

$$y = A_1 + (A_2 - A_1)D + Bx$$

D = 0 for males

= 1 for females

Regression Line For Males:

$$y = A_1 + Bx$$

Regression Line For Females:

$$y = A_2 + Bx$$

Combined Regression Line:

$$y = A_1 + (A_2 - A_1)D + Bx$$

$$D = 0$$
 for males

$$y = A_1 + (A_2 - A_1)D + Bx$$

$$= A_1 + B_X$$

Regression Line For Males:

$$y = A_1 + Bx$$

Regression Line For Females:

$$y = A_2 + Bx$$

Combined Regression Line:

$$y = A_1 + (A_2 - A_1)D + Bx$$

D = 1 for females

$$y = A_1 + (A_2 - A_1) + Bx$$

$$= A_2 + B_X$$

Original Regression Equation:

$$y = A + Bx$$

Height of individual

Average height of parents

Combined Regression Line:

$$y = A_1 + (A_2 - A_1)D + Bx$$

D = 0 for males

= 1 for females

Combined Regression Line:

$$y = A_1 + (A_2 - A_1)D + Bx$$

D = 0 for males

= 1 for females

The data contained 2 groups, so we added 1 dummy variable

Given data with k groups, set up k-1 dummy variables, else multicollinearity occurs

Dummy and Other Categorical Variables

Dummy Variables

Binary - 0 or 1

Categorical Variables

Finite set of values - e.g. days of week, months of year...

To include non-binary categorical variables, simply add more dummies

Testing for Seasonality

Proposed Regression Equation:

$$y = A + BQ_1 + CQ_2 + DQ_3$$

returns

Average stock Quarter of the year

The data contains 4 groups, so we added 3 dummy variables

Testing for Seasonality

$$y = A + BQ_1 + CQ_2 + DQ_3$$

The data contains 4 groups, so we added 3 dummy variables

```
Q_1 = 1 for Jan, Feb, Mar
```

= 0 for other quarters

 $Q_2 = 1$ for Apr, May, Jun

= 0 for other quarters

 $Q_3 = 1$ for July, Aug, Sep

= 0 for other quarters

Summary

Linear regression as a machine learning problem

Mean Square Error (MSE) as loss function

Interpreting the results of a regression analysis

R² for evaluating regression models