Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»

Факультет Систем управления и робототехники

Отчет по лабораторной работе № 1.01 Исследование распределения случайной величины ${\it Bapuaht 3}$

Состав группы:

Гырдымов Антон R3138 Карташова Екатерина R3135

Преподаватель:

Попов Антон Сергеевич

1) Цель работы:

Исследование распределения случайной величины на примере многократных измерений десятисекундного интервала времени.

2) Задачи, решаемые при выполнении работы:

- Провести многократные измерения десятисекундного интервала времени.
- Построить гистограмму распределения результатов измерения.
- Вычислить среднее значение и дисперсию полученной выборки.
- Сравнить гистограмму с графиком функции Гаусса с такими же, как и у экспериментального распределения средним значением и дисперсией.

3) Объект исследования:

Распределение случайной величины

4) Метод эксперементального исследования:

Прямые многократные измерения

5) Рабочие формулы и исходные данные:

Плотность вероятности (1):
$$\rho(t) = \lim_{\substack{N \to \infty \\ \Delta t \to 0}} \frac{\Delta N}{N\Delta t} = \frac{1}{N} \frac{dN}{dt}$$

Функция Гаусса (2):
$$\rho(t) = \frac{1}{\sigma\sqrt{2\pi}} exp\left(-\frac{(t-\langle t \rangle)^2}{2\sigma^2}\right)$$

Среднее арифметическое всех результатов измерений (3): $\langle t \rangle_N = \frac{1}{N}(t_1 + t_2 + ... + t_N) = \frac{1}{N}\sum_{i=1}^N t_i$

Выборочное среднеквадратичное отклонение (4):
$$\sigma_N = \sqrt{\frac{1}{N-1}\sum_{i=1}^N (t_i - \langle t \rangle)^2}$$

Максимальное значение плотности распределения (5): $\rho_{max} = \frac{1}{\sigma \sqrt{2\pi}}$

Вероятность попадания результата измерения в интервал [1, 2] (6): $P(t_1 < t < t_2) = \int\limits_{t_1}^{t_2} \rho(t) dt \approx \frac{N_{12}}{N}$

Вероятность при условии реализации нормального распределения случайной величины (7):

$$t \in [\langle t \rangle - \sigma, \langle t \rangle + \sigma], P_{\sigma} \approx \dots$$

$$t \in [\langle t \rangle - 2\sigma, \langle t \rangle + \sigma], P_{2\sigma} \approx \dots$$

$$t \in [\langle t \rangle - 3\sigma, \langle t \rangle + \sigma], P_{3\sigma} \approx \dots$$

$$t \in [\langle t \rangle - 3\sigma, \langle t \rangle + \sigma], P_{3\sigma} \approx ...$$

Формула вычисления границы интервалов (8):

$$[\langle t \rangle_N - \sigma_N, \langle t \rangle_N + \sigma_N]$$

$$\begin{aligned} & \left[\langle t \rangle_N - 2\sigma_N, \langle t \rangle_N + 2\sigma_N \right] \\ & \left[\langle t \rangle_N - 3\sigma_N, \langle t \rangle_N + 3\sigma_N \right] \end{aligned}$$

$$[\langle t \rangle_N - 3\sigma_N, \langle t \rangle_N + 3\sigma_N]$$

Среднеквадратичное отклонение среднего значения (9): $\sigma_{\langle t \rangle} = \sqrt{\frac{1}{N(N-1)} \sum_{i=1}^{N} (t_i - \langle t \rangle)^2}$

Доверительная вероятность (10): $\alpha = P(t \in [\langle t \rangle - \Delta t, \langle t \rangle + \Delta t])$

6)Измерительные приборы:

J	№ п/п	Наименование	Тип прибора	Используемый диапазон	Погрешность прибора
	1	Секундомер	Стрелочный	0 - 10, 5 c	0.1
	2	Секундомер	Цифровой	0 - 10, 5 c	0.01

7) Результаты прямых измерений и их обработки (таблицы, примеры расчетов)

№	t_i, c	$t_i - \langle t \rangle, c$	$(t_i - \langle t \rangle)^2, c^2$
1	$\frac{t_i, c}{10,07}$	$\frac{\iota_i - \langle \iota_f, \iota_f \rangle}{0,0096}$	0,00009216
2	10,07	0,0396	0,00156816
3	10,14	0,0796	0,00633616
4	10,14	0,0790	0,0053010
5		•	0,02547210
	10,02	-0,0404	′
6	9,9	-0,1604	0,02572816
7	10,23	0,1696	0,02876416
8	10,24	0,1796	0,03225616
9	10,08	0,0196	0,00038416
10	9,99	-0,0704	0,00495616
11	10,04	-0,0204	0,00041616
12	10,25	0,1896	0,03594816
13	10,3	0,2396	0,05740816
14	10,07	0,0096	0,00009216
15	9,96	-0,1004	0,01008016
16	9,97	-0,0904	0,00817216
17	10,11	0,0496	0,00246016
18	9,77	-0,2904	0,08433216
19	10,08	0,0196	0,00038416
20	9,95	-0,1104	0,01218816
21	10,03	-0,0304	0,00092416
22	9,98	-0,0804	0,00646416
23	10,08	0,0196	0,00038416
24	10,08	0,0196	0,00038416
25	9,98	-0,0804	0,00646416
26	10,12	0,0596	0,00355216
27	10,36	0,2996	0,08976016
28	9,91	-0,1504	0,02262016
29	10,15	0,0896	0,00802816
30	9,99	-0,0704	0,00495616
31	10,02	-0,0404	0,00163216
32	9,97	-0,0904	0,00817216
33	9,95	-0,1104	0,01218816
34	9,87	-0,1904	0,03625216
35	9,88	-0,1804	0,03254416
36	10	-0,0604	0,00364816
37	10,22	0,1596	0,02547216
38	10,19	0,1296	0,01679616
39	10,14	0,0796	0,00633616
40	10,13	0,0696	0,00484416
41	9,98	-0,0804	0,00646416
42	10,2	0,1396	0,01948816
43	10,31	0,2496	0,06230016
44	10,05	-0,0104	0,00010816
45	10,01	-0,0504	0,00254016
46	10	-0,0604	0,00364816
47	9,8	-0,2604	0,06780816
48	10,15	0,0896	0,00802816
49	10,1	0,0396	0,00156816
50	9,88	-0,1804	0,03254416
	$\langle t \rangle_{50} = 10,0604$	$\sum_{i=1}^{50} t_i - \langle t \rangle = 0,00c$	$\sigma_{50} = 0,1305085813$
	, , ,		$ \rho_{max} = 3,056873038 $
L	I .		, ,

8) Расчет результатов косвенных измерений (таблицы, примеры расчетов):

Границы	ΔN	$\frac{\Delta N}{N\Delta t}, c^{-1}$	t, c	ρ, c^{-1}
интервалов,				
c				
9,77	2	0,5	9,81	2,533283478
9,85				
9,86	5	1,25	9,9	3,047912544
9,94				
9,95	16	4	9,99	2,533283478
10,03				
10,04	12	3	10,08	3,047912544
10,12				
10,13	7	1,75	10,17	2,533283478
10,21				
10,22	6	1,5	10,26	3,056873038
10,3				
10,31	2	0,5	10,35	3,056873038
10,39				

$$\begin{split} & [\langle t \rangle_N - \sigma_N, \langle t \rangle_N + \sigma_N] = [9, 81 - 0, 13; 9, 81 + 0, 13] = [9, 68; 9, 94] \\ & [\langle t \rangle_N - 2\sigma_N, \langle t \rangle_N + 2\sigma_N] = [9, 9 - 0, 26; 9, 9 + 0, 26] = [9, 64; 10, 16] \\ & [\langle t \rangle_N - 3\sigma_N, \langle t \rangle_N + 3\sigma_N] = [9, 99 - 0, 39; 9, 99 + 0, 39] = [9, 73; 10, 25] \end{split}$$

	Интервал, с		ΔN	$P \approx \frac{\Delta N}{N}$
$\langle t \rangle_N \pm \sigma_N$	9,68	9,94	7	0,14
$\langle t \rangle_N \pm 2\sigma_N$	9,64	10,16	40	0,8
$\langle t \rangle_N \pm 3\sigma_N$	9,73	10,25	47	0,94

9) Расчет результатов косвенных измерений (таблицы, примеры расчетов) Среднеквадратичное отклонение среднего значения:

$$\sigma_{\langle t \rangle} = \sqrt{\frac{1}{50*49} \sum_{i=1}^{N} (t_i - \langle t \rangle)^2} = \sqrt{\frac{1}{50*49} * 0,834592} = 0,0184567 \approx 0,02c$$

10) Графики

Рис. 1: Гистограмма и функция Гаусса

11) Окончательные результаты:

- Среднее арифметическое всех результатов измерений $\langle t \rangle_{50} = 10,06c$
- Выборочное среднеквадратичное отклонение $\sigma_{50} = 0, 13c$
- Максимальное значение плотности распределения $ho_{max} = 3,06c^{-1}$
- Среднеквадратичное отклонение среднего значения $\sigma_{\langle t \rangle} = 0,02c$