

AMENDMENTS TO THE CLAIMS:

This listing of claims will replace all prior versions, and listings, of claims in the application:

LISTING OF CLAIMS:

1. (canceled)
2. (previously presented) An active matrix addressing LCD device comprising:
 - an active matrix substrate having a transparent, dielectric plate, thin-film transistors (TFTs) arranged on the plate, and pixel electrodes arranged on the plate;
 - gate electrodes of the TFTs having a first multilevel conductive structure;
 - scan lines connected to the corresponding gate electrodes and having the first multilevel conductive structure;
 - common electrodes formed on the plate to be opposite to corresponding ones of said pixel electrodes; and
 - common lines formed on the plate to be connected to corresponding ones of said common electrodes;
 - the first multilevel conductive structure including a TiN film located at a top of the first multilevel conductive structure, an Al-based film located below the TiN film, and at least one Ti film located at at least one of an upper position

and a lower position with respect to the Al-based film;

the TiN film of the first multilevel conductive structure having a nitrogen concentration of 25 atomic % or higher;

the common electrodes and the common lines having a second multilevel conductive structure;

the second multilevel conductive structure including a TiN film located at a top of the second multilevel conductive structure, an Al-based film located below the TiN film, and at least one Ti film located at at least one of an upper position and a lower position with respect to the Al-based film; and

the TiN film of the second multilevel conductive structure having a nitrogen concentration of 25 atomic % or higher.

3. (canceled)

4. (original) The device according to claim 2, wherein each of the common lines has a terminal at its end for electrical connection to an external circuit;

and wherein the TiN film is exposed from the second multilevel conductive structure at the terminal.

5. (canceled)

6. (currently amended) An active matrix addressing LCD device comprising:

an active matrix substrate having a transparent, dielectric plate, thin-film transistors (TFTs) arranged on the plate, and pixel electrodes arranged on the plate;

gate electrodes of the TFTs having a first multilevel conductive structure;

scan lines connected to the corresponding gate electrodes and having the first multilevel conductive structure;

~~the first multilevel conductive structure including a TiN film located at a top of the first multilevel conductive structure, an Al-based film located below the TiN film, and at least one Ti film located at at least one of an upper position and a lower position with respect to the Al-based film; and~~

~~the a~~ TiN film of the first multilevel conductive structure having a nitrogen concentration of 25 atomic % or higher,

wherein the first multilevel conductive structure is a three-level structure formed by the TiN film located at the top, ~~the a~~ Ti film located at the middle, and ~~the an~~ Al-based film located at the bottom.

7. (cancelled)

8. (previously presented) An active matrix addressing LCD device comprising:

an active matrix substrate having a transparent,

dielectric plate, thin-film transistors (TFTs) arranged on the plate, and pixel electrodes arranged on the plate;

gate electrodes of the TFTs having a first multilevel conductive structure;

scan lines connected to the corresponding gate electrodes and having the first multilevel conductive structure;

the first multilevel conductive structure including a TiN film located at a top of the first multilevel conductive structure, an Al-based film located below the TiN film, and at least one Ti film located at at least one of an upper position and a lower position with respect to the Al-based film; and

the TiN film of the first multilevel conductive structure having a nitrogen concentration of 25 atomic % or higher,

wherein the first multilevel conductive structure is a four-level structure formed by the TiN film located at the top, the Ti film located at the upper middle, the Al-based film located at the lower middle, and the Ti film located at the bottom.

9. (original) The device according to claim 2, wherein the first multilevel conductive structure is a three-level structure formed by the TiN film located at the top, the Ti film located at the middle, and the Al-based film located at the

bottom.

10. (original) The device according to claim 2, wherein the first multilevel conductive structure is a three-level structure formed by the TiN film located at the top, the Al-based film located at the middle, and the Ti film located at the bottom.

11. (original) The device according to claim 2, wherein the first multilevel conductive structure is a four-level structure formed by the TiN film located at the top, the Ti film located at the upper middle, the Al-based film located at the lower middle, and the Ti film located at the bottom.

12-14. (canceled)

15. (previously presented) An active matrix addressing LCD device comprising:

an active matrix substrate having a transparent, dielectric plate, thin-film transistors (TFTs) arranged on the plate, and pixel electrodes arranged on the plate;

source electrodes of the TFTs having a first multilevel conductive structure;

drain electrodes of the TFTs having the first multilevel conductive structure;

signal lines connected to the corresponding source electrodes and having the first multilevel conductive structure;

the first multilevel conductive structure including a TiN film located at a top of the structure, an Al-based film located below the TiN film, and at least one Ti film located at at least one of an upper position and a lower position with respect to the Al-based film; and

the TiN film of the first multilevel conductive structure having a nitrogen concentration of 25 atomic % or higher, wherein each of the TFTs comprises a gate insulating film formed to cover the gate electrode, a semiconductor island formed on the gate insulating film, a source electrode formed on the island, a drain electrode formed on the island to form a channel gap between the drain electrode and the source electrode.

16. (previously presented) An active matrix addressing LCD device comprising:

an active matrix substrate having a transparent, dielectric plate, thin-film transistors (TFTs) arranged on the plate, and pixel electrodes arranged on the plate;

source electrodes of the TFTs having a first multilevel conductive structure;

drain electrodes of the TFTs having the first multilevel conductive structure;

signal lines connected to the corresponding source electrodes and having the first multilevel conductive structure;

the first multilevel conductive structure including a TiN film located at a top of the structure, an Al-based film located below the TiN film, and at least one Ti film located at at least one of an upper position and a lower position with respect to the Al-based film; and

the TiN film of the first multilevel conductive structure having a nitrogen concentration of 25 atomic % or higher, wherein the first multilevel conductive structure is a three-level structure formed by the TiN film located at the top, the Ti film located at the middle, and the Al-based film located at the bottom.

17. (previously presented) An active matrix addressing LCD device comprising:

an active matrix substrate having a transparent, dielectric plate, thin-film transistors (TFTs) arranged on the plate, and pixel electrodes arranged on the plate;

source electrodes of the TFTs having a first multilevel conductive structure;

drain electrodes of the TFTs having the first multilevel conductive structure;

signal lines connected to the corresponding source electrodes and having the first multilevel conductive structure;

the first multilevel conductive structure including a

TiN film located at a top of the structure, an Al-based film located below the TiN film, and at least one Ti film located at at least one of an upper position and a lower position with respect to the Al-based film; and

the TiN film of the first multilevel conductive structure having a nitrogen concentration of 25 atomic % or higher, wherein the first multilevel conductive structure is a three-level structure formed by the TiN film located at the top, the Al-based film located at the middle, and the Ti film located at the bottom.

18. (previously presented) An active matrix addressing LCD device comprising:

an active matrix substrate having a transparent, dielectric plate, thin-film transistors (TFTs) arranged on the plate, and pixel electrodes arranged on the plate;

source electrodes of the TFTs having a first multilevel conductive structure;

drain electrodes of the TFTs having the first multilevel conductive structure;

signal lines connected to the corresponding source electrodes and having the first multilevel conductive structure;

the first multilevel conductive structure including a TiN film located at a top of the structure, an Al-based film

located below the TiN film, and at least one Ti film located at at least one of an upper position and a lower position with respect to the Al-based film; and

the TiN film of the first multilevel conductive structure having a nitrogen concentration of 25 atomic % or higher, wherein the first multilevel conductive structure is a four-level structure formed by the TiN film located at the top, the Ti film located at the upper middle, the Al-based film located at the lower middle, and the Ti film located at the bottom.

19. (previously presented) An active matrix addressing LCD device comprising:

an active matrix substrate having a transparent, dielectric plate, thin-film transistors (TFTs) arranged on the plate, and pixel electrodes arranged on the plate;

source electrodes of the TFTs having a first multilevel conductive structure;

drain electrodes of the TFTs having the first multilevel conductive structure;

signal lines connected to the corresponding source electrodes and having the first multilevel conductive structure;

the first multilevel conductive structure including a TiN film located at a top of the structure, an Al-based film

located below the TiN film, and at least one Ti film located at at least one of an upper position and a lower position with respect to the Al-based film; and

the TiN film of the first multilevel conductive structure having a nitrogen concentration of 25 atomic % or higher,

wherein the pixel electrodes have the first multilevel conductive structure, and

wherein the first multilevel conductive structure is a three-level structure formed by the TiN film located at the top, the Ti film located at the middle, and the Al-based film located at the bottom.

20. (previously presented) An active matrix addressing LCD device comprising:

an active matrix substrate having a transparent, dielectric plate, thin-film transistors (TFTs) arranged on the plate, and pixel electrodes arranged on the plate;

source electrodes of the TFTs having a first multilevel conductive structure;

drain electrodes of the TFTs having the first multilevel conductive structure;

signal lines connected to the corresponding source electrodes and having the first multilevel conductive structure;

the first multilevel conductive structure including a TiN film located at a top of the structure, an Al-based film located below the TiN film, and at least one Ti film located at at least one of an upper position and a lower position with respect to the Al-based film; and

the TiN film of the first multilevel conductive structure having a nitrogen concentration of 25 atomic % or higher,

wherein the pixel electrodes have the first multilevel conductive structure, and

wherein the first multilevel conductive structure is a three-level structure formed by the TiN film located at the top, the Al-based film located at the middle, and the Ti film located at the bottom.

21. (previously presented) An active matrix addressing LCD device comprising:

an active matrix substrate having a transparent, dielectric plate, thin-film transistors (TFTs) arranged on the plate, and pixel electrodes arranged on the plate;

source electrodes of the TFTs having a first multilevel conductive structure;

drain electrodes of the TFTs having the first multilevel conductive structure;

signal lines connected to the corresponding source electrodes and having the first multilevel conductive structure;

the first multilevel conductive structure including a TiN film located at a top of the structure, an Al-based film located below the TiN film, and at least one Ti film located at at least one of an upper position and a lower position with respect to the Al-based film; and

the TiN film of the first multilevel conductive structure having a nitrogen concentration of 25 atomic % or higher,

wherein the pixel electrodes have the first multilevel conductive structure, and

wherein the first multilevel conductive structure is a four-level structure formed by the TiN film located at the top, the Ti film located at the upper middle, the Al-based film located at the lower middle, and the Ti film located at the bottom.

22. (original) An active matrix addressing LCD device comprising:

an active matrix substrate having a transparent, dielectric plate, thin-film transistors (TFTs) arranged on the plate, and pixel electrodes arranged on the plate;

gate electrodes of the TFTs having a first multilevel

conductive structure;

scan lines connected to the corresponding gate electrodes and having the first multilevel conductive structure;

the first multilevel conductive structure including a TiN film located at a top of the structure, an Al-based film located below the TiN film, and at least one Ti film located at at least one of an upper position and a lower position with respect to the Al-based film;

the TiN film of the first multilevel conductive structure having a nitrogen concentration of 25 atomic % or higher;

source electrodes of the TFTs having a second multilevel conductive structure;

drain electrodes of the TFTs having the second multilevel conductive structure;

signal lines connected to the corresponding source electrodes and having the second multilevel conductive structure;

the second multilevel conductive structure including a TiN film located at a top of the structure, an Al-based film located below the TiN film, and at least one Ti film located at an upper position or both an upper position and a lower position with respect to the Al-based film; and

the TiN film of the second multilevel conductive

structure having a nitrogen concentration of 25 atomic % or higher.

23. (original) The device according to claim 22, further comprising:

common electrodes formed on the plate to be opposite to the corresponding pixel electrodes; and

common lines formed on the plate to be connected to the corresponding common electrodes;

wherein the common electrodes and the common lines have the first multilevel conductive structure.

24. (original) The device according to claim 22, wherein the pixel electrodes have the first multilevel conductive structure.

25. (original) The device according to claim 23, wherein the pixel electrodes have the first multilevel conductive structure.

26. (original) The device according to claim 22, wherein each of the scan lines has a terminal at its end for electrical connection to an external circuit;

and wherein the TiN film is exposed from the first multilevel conductive structure at the terminal.

27. (original) The device according to claim 23, wherein each of the common lines has a terminal at its end for

electrical connection to an external circuit;

and wherein the TiN film is exposed from the second multilevel conductive structure at the terminal.

28. (original) The device according to claim 22, wherein each of the TFTs comprises a gate insulating film formed to cover the gate electrode, a semiconductor island formed on the gate insulating film, a source electrode formed on the island, a drain electrode formed on the island to form a channel gap between the drain electrode and the source electrode.

29. (original) The device according to claim 22, wherein the first multilevel conductive structure is a three-level structure formed by the TiN film located at the top, the Ti film located at the middle, and the Al-based film located at the bottom.

30. (original) The device according to claim 22, wherein the first multilevel conductive structure is a three-level structure formed by the TiN film located at the top, the Al-based film located at the middle, and the Ti film located at the bottom.

31. (original) The device according to claim 22, wherein the first multilevel conductive structure is a four-level structure formed by the TiN film located at the top, the Ti film located at the upper middle, the Al-based film located at the

lower middle, and the Ti film located at the bottom.

32. (original) The device according to claim 23, wherein the first multilevel conductive structure is a three-level structure formed by the TiN film located at the top, the Ti film located at the middle, and the Al-based film located at the bottom.

33. (original) The device according to claim 23, wherein the first multilevel conductive structure is a three-level structure formed by the TiN film located at the top, the Al-based film located at the middle, and the Ti film located at the bottom.

34. (original) The device according to claim 23, wherein the first multilevel conductive structure is a four-level structure formed by the TiN film located at the top, the Ti film located at the upper middle, the Al-based film located at the lower middle, and the Ti film located at the bottom.

35. (original) An active matrix addressing LCD device comprising:

an active matrix substrate having a transparent, dielectric plate, thin-film transistors (TFTs) arranged on the plate, and pixel electrodes arranged on the plate;

gate electrodes of the TFTs having a first multilevel conductive structure;

scan lines connected to the corresponding gate electrodes and having the first multilevel conductive structure;

the first multilevel conductive structure including a TiN film located at a top of the structure, an Al-based film located below the TiN film, and at least one Ti film located at at least one of an upper position and a lower position with respect to the Al-based film;

the TiN film of the first multilevel conductive structure having a nitrogen concentration of 25 atomic % or higher;

source electrodes of the TFTs having a second multilevel conductive structure;

drain electrodes of the TFTs having the second multilevel conductive structure;

signal lines connected to the corresponding source electrodes and having the second multilevel conductive structure;

the second multilevel conductive structure including a TiN film located at a top of the structure, an Al-based film located below the TiN film, and at least one Ti film located at an upper position or both an upper position and a lower position with respect to the Al-based film; and

the TiN film of the second multilevel conductive structure having a nitrogen concentration of 25 atomic % or

higher.

36. (original) The device according to claim 35,
further comprising:

common electrodes formed on the plate to be opposite to
the corresponding pixel electrodes; and

common lines formed on the plate to be connected to the
corresponding common electrodes;

wherein the common electrodes and the common lines have
the first multilevel conductive structure.

37. (original) The device according to claim 35,
wherein the pixel electrodes have the second multilevel
conductive structure.

38. (original) The device according to claim 35,
wherein each of the scan lines has a terminal at its end for
electrical connection to an external circuit;

and wherein the TiN film is exposed from the first
multilevel conductive structure at the terminal.

39. (original) The device according to claim 35,
wherein each of the signal lines has a terminal at its end for
electrical connection to an external circuit;

and wherein the TiN film is exposed from the second
multilevel conductive structure at the terminal.

40. (original) The device according to claim 36, wherein each of the common lines has a terminal at its end for electrical connection to an external circuit;

and wherein the TiN film is exposed from the first multilevel conductive structure at the terminal.

41. (original) The device according to claim 35, wherein each of the TFTs comprises a gate insulating film formed to cover the gate electrode, a semiconductor island formed on the gate insulating film, a source electrode formed on the island, a drain electrode formed on the island to form a channel gap between the drain electrode and the source electrode.

42. (original) The device according to claim 35, wherein the first multilevel conductive structure is a three-level structure formed by the TiN film located at the top, the Ti film located at the middle, and the Al-based film located at the bottom.

43. (original) The device according to claim 35, wherein the first multilevel conductive structure is a three-level structure formed by the TiN film located at the top, the Al-based film located at the middle, and the Ti film located at the bottom.

44. (original) The device according to claim 35, wherein the first multilevel conductive structure is a four-level

structure formed by the TiN film located at the top, the Ti film located at the upper middle, the Al-based film located at the lower middle, and the Ti film located at the bottom.

45. (original) The device according to claim 35, wherein the first multilevel conductive structure is a three-level structure formed by the TiN film located at the top, the Ti film located at the middle, and the Al-based film located at the bottom.

46. (original) The device according to claim 35, wherein the first multilevel conductive structure is a three-level structure formed by the TiN film located at the top, the Al-based film located at the middle, and the Ti film located at the bottom.

47. (original) The device according to claim 35, wherein the first multilevel conductive structure is a four-level structure formed by the TiN film located at the top, the Ti film located at the upper middle, the Al-based film located at the lower middle, and the Ti film located at the bottom.

48. (original) The device according to claim 35, wherein the second multilevel conductive structure is a three-level structure formed by the TiN film located at the top, the Ti film located at the middle, and the Al-based film located at the bottom.

49. (original) The device according to claim 35, wherein the second multilevel conductive structure is a three-level structure formed by the TiN film located at the top, the Al-based film located at the middle, and the Ti film located at the bottom.

50. (original) The device according to claim 35, wherein the second multilevel conductive structure is a four-level structure formed by the TiN film located at the top, the Ti film located at the upper middle, the Al-based film located at the lower middle, and the Ti film located at the bottom.

51. (original) The device according to claim 35, wherein the second multilevel conductive structure is a three-level structure formed by the TiN film located at the top, the Ti film located at the middle, and the Al-based film located at the bottom.

52. (original) The device according to claim 35, wherein the second multilevel conductive structure is a three-level structure formed by the TiN film located at the top, the Al-based film located at the middle, and the Ti film located at the bottom.

53. (original) The device according to claim 35, wherein the second multilevel conductive structure is a four-level structure formed by the TiN film located at the top, the Ti

film located at the upper middle, the Al-based film located at the lower middle, and the Ti film located at the bottom.