Exercises for MA 413- Statistics for Data Science

This sheet will be handed out lecture 16/11/2019, overlapping a little with material from the previous week and later material.

- 1. Let $Y_1, \ldots Y_n \stackrel{\text{iid}}{\sim} \text{Gamma}(3, \lambda)$, for $n \geq 2$.
 - (a) Determine the MLE of λ .
 - (b) What is the expectation of $\hat{\lambda}$ the MLE?
 - (c) Construct an unbiased estimator of λ , let us denote this by $\tilde{\lambda}_c = c\hat{\lambda}$.
 - (d) Find the MSE of $\hat{\lambda}$ and of $\tilde{\lambda}_c$, and determine which estimator is preferred.
 - (e) Would another loss function be more appropriate? What does this imply?
- 2. Assume you observe $Y_1, \ldots Y_n$ from the Bernoulli (θ) , independently. Construct the MLE estimator. Construct an alternative estimator of λ , let us denote this by $\tilde{\lambda}_c = c\hat{\lambda}$, for some unspecified c.
 - (a) Find the MSE of the MLE $\hat{\theta}$.
 - (b) For a fixed but unknown value of c find the MSE of $\tilde{\lambda}_c$
 - (c) Determine the optimal value of $c \in \mathbb{R}^+$.
- 3. Consider using the asymmetric loss function

$$\mathcal{L}(a,b) = a/b - 1 - \log(a/b)$$

For the problem of Qn 1 write down the expected loss for the MLE as well as the bias corrected estimator.

- 4. Let X_1, \ldots, X_n have a Poisson distribution with mean μ . Our null hypothesis is $\mu = \mu_0$ and our alternative hypothesis is $\mu = \mu_1$, where $\mu_0 < \mu_1$. Describe how to test the hypothesis.
- 5. Let X_1, \ldots, X_n have a Gaussian distribution with unknown mean μ , and a known variance σ_0^2 . Our null hypothesis is $\mu = \mu_0$ and our alternative hypothesis is $\mu = \mu_1$, where $\mu_0 < \mu_1$. Describe how to test the hypothesis.
- 6. Consider Stein's unit variance log-likelihood for $Y_i \sim N(\mu_i, 1)$, independently,

$$\ell(\boldsymbol{\mu}) = -\frac{n}{2}\log(2\pi) - \frac{1}{2}\sum_{i=1}^{n} \{Y_i - \mu_i\}^2$$

- (a) Determine $\nabla_{\mu_i} \ell(\boldsymbol{\mu})$. Solve for $\nabla_{\mu_i} \ell(\boldsymbol{\mu}) = 0$
- (b) Show that this solution is a maximum.
- (c) Determine the expected square loss of that estimator.

(d) Define the estimator (for some specified $\theta \in \mathbb{R}^+$):

$$\tilde{\mu}_i = \begin{cases} Y_i & \text{if} & |Y_i| > \theta \\ 0 & \text{if} & |Y_i| \le \theta \end{cases}$$
 (1)

Show that the expected loss of $\widetilde{\mu}_i$ is

$$\mathcal{L}(\widetilde{\mu}_i, \mu_i) = \mathbb{E}\left\{ (\widetilde{\mu}_i - \mu_i)^2 \right\}$$
 (2)

$$=2\int_{\theta}^{\infty} (y-\mu_i)^2 \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(y-\mu_i)^2} dy + 2\mu_i^2 \left\{ \Phi\left(\theta-\mu_i\right) - \left(\Phi\left(-\mu_i\right)\right) \right\}. \tag{3}$$

We also define

$$I(\mu_i, \theta) = \left[2(y - \mu_i) \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(y - \mu_i)^2} \right]_{\theta}^{\infty} - 2 \int_{\theta}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(y - \mu_i)^2} dy$$
 (4)

Simplify these expressions (3) and (4) additionally.

- (e) Combining these expressions (3) and (4) we get another for the estimation risk of $\tilde{\mu}_i$. Plot this using matlab as a function of μ_i taking i) $\theta = 0.1$, ii) $\theta = 1$ and iii) $\theta = 2\log(n)$. How do these cases vary? What does this tell us about the estimation problem? It is reasonable to use unscaled numbers (in σ) as the variance is fixed to unity.
- 7. Let Y_1, \ldots, Y_n be iid uniform random variables on the interval $(0, \phi)$. Let M_n be the maximum of the n random variables. We wish to test $H_0: \phi = 1/2$ versus $H_1: \phi > 1/2$. The Wald test is not appropriate as M_n does not converge to a Gaussian. Suppose that we decide to test this hypothesis by rejecting H_0 when $M_n > r$.
 - (a) Determine the power function of this test.
 - (b) What choice of r will enable us to have a test of size 0.1?
 - (c) Please determine the p-value of a sample size n = 22 with $M_n = 0.47$. What conclusion would you make about H_0 ?
 - (d) In a sample of n = 20 with $M_n = 0.51$, what is the p-value? What conclusion about H_0 would you make?
- 8. Let Y_1, \ldots, Y_n be independent $N(\mu, 1)$ random variables. Consider testing the hypothesis

$$H_0: \mu = 0$$
 vs $H_1: \mu = 1$

- (a) Let the rejection region be of the form $\{\underline{Y}:T(\underline{Y})>c\}$ (for c>0), where T is the sample mean. Find c so that the test has size α .
- (b) Find $\beta(1)$.
- (c) How does $\beta(1)$ behave as $n \to \infty$?

9. Assume we take a random sample Y_1, \ldots, Y_n from a Poisson (μ) distribution. For some fixed and given μ_0 describe the Wald test for

$$H_0: \mu = \mu_0 \quad \text{vs} \quad H_1: \mu \neq \mu_0.$$

10. Assume you have $Y_1, \dots, Y_n \sim N\left(\mu, \sigma^2\right)$. For a fixed and given $\sigma_0 > 0$, describe the Wald test for

$$H_0: \sigma = \sigma_0 \quad \text{vs} \quad H_1: \sigma \neq \sigma_0$$

You may assume μ known and given.