EKSAMENSSAMARBEIDENDE FORKURSINSTITUSJONER

Forkurs for ingeniørutdanning og maritim høgskoleutdanning Universitetet i Stavanger, Universitetet i Tromsø, Høgskolen i Buskerud, Høgskulen i Sogn og Fjordane, Høgskolen i Sør-Trøndelag, Høgskolen i Telemark, Høgskolen i Vestfold, Høgskolen i Østfold, Høgskolen i Ålesund, Sjøkrigsskolen

Eksamensoppgave

30. mai 2012

MATEMATIKK

Bokmål

Eksamenstid: 5 timer

Hjelpemidler:Godkjent tabell og kalkulator.

Andre opplysninger:

Dette oppgavesettet inneholder fire oppgaver med deloppgaver. Du skal svare på <u>alle oppgavene og deloppgavene</u>.

Oppgavesettet har fire tekstsider medregnet forsiden.

OPPGAVE 1

a) Skriv så enkelt som mulig:

1)
$$e^{\ln\left(\frac{1}{2}\right) + \ln(2)}$$

2)
$$32^{\frac{2}{5}} \cdot 4a \cdot \left(\frac{1}{a}\right)^2$$

- b) Løs likningen ved regning: $\cos 2x = \frac{1}{2} \operatorname{der} x \in [0, 2\pi]$
- c) Løs likningen ved regning: $\sqrt{x^2 + 16} = \sqrt{2} x$
- d) Løs likningssettet grafisk eller ved regning:

I:
$$4x - y = 2$$

II:
$$x + y = 3$$

e)

- 1) En uendelig geometrisk rekke har $a_1 = 5$ og $k = \ln 6 2$. Begrunn hvorfor rekka er konvergent og finn summen.
- 2) En uendelig geometrisk rekke har $a_1 = 5$ og $k = \ln x 2$. For hvilke verdier av x er rekka konvergent?
- f) Figuren nedenfor viser omdreiningslegemet som dannes når vi dreier grafen til $g(x) = x^2 360^\circ$ om x-aksen fra x = 0 til x = 2. Beregn volumet av omdreiningslegemet.

- g) Regn ut integralet: $\int x \sin x \, dx$
- h) Sannsynligheten for at en tilfeldig valgt forkursstudent stryker i norsk til eksamen er 4%. Sannsynligheten for at en tilfeldig valgt student stryker i engelsk er 5%.
 Sannsynligheten for at en student som stryker i engelsk også stryker i norsk er 30%.
 Finn sannsynligheten for at en student som stryker i norsk også stryker i engelsk.

OPPGAVE 2

Gitt funksjonen $f(x) = \frac{3x^2 - 48}{x^2 - 4}$

- a) Finn nullpunktene til f.
- b) Vis at $f'(x) = \frac{72x}{(x^2-4)^2}$ og regn ut koordinatene til bunnpunktet til f.
- c) Finn eventuelle asymptoter til f.
- d) Regn ut likningen for tangenten til f i punktet (4, f(4)).
- e) Vis ved polynomdivisjon at uttrykket for f kan skrives $f(x) = 3 \frac{36}{x^2 4}$. Bruk dette til å regne ut arealet av området begrenset av grafen til f og linjene x = -1 og x = 1.

OPPGAVE 3

a)

- 1) Bruk formelen for sinus til en sum av to vinkler til å finne en eksakt verdi for $\sin 120^{\circ}$.
- 2) Vis at $\sin(90^{\circ} + v) = \cos(v)$.

Figuren nedenfor viser en sirkel med sentrum i origo og radius 4. Trekanten ABC har hjørner i A(-4,0), B(0,-4) og C på sirkelen. Vinkelen mellom x — aksen og OC er α

b) Regn ut arealene av trekantene COB og ABC dersom $\, lpha = 30^{\circ} \,$

Vi lar $0^{\circ} < \alpha < 90^{\circ}$.

- c) Bruk at $\sin(90^{\circ} + \alpha) = \cos \alpha$ og $\sin(180^{\circ} \alpha) = \sin \alpha$ til å vise at vi kan uttrykke arealet av trekanten ABC som $A(\alpha) = 8 + 8\cos \alpha + 8\sin \alpha$
- d) Bestem ved regning den vinkelen α som gir det største arealet av trekanten ABC.

OPPGAVE 4

Gitt punktene A(3,2,1), B(6,7,-3) og C(0,5,1)

- a) Regn ut \overrightarrow{AB} , \overrightarrow{AC} og vinkelen mellom disse to vektorene.
- b) Regn ut arealet av trekanten ABC.
- c) Vis ved regning at likningen for planet α utspent av punktene A, B og C er x+y+2z-7=0
- d) Vis at punktet D(2,5,0) ligger i planet α .
- e) Gitt $\vec{v} = [1,1,2]$. Regn ut koordinatene til punktet E når $\overrightarrow{DE} = \vec{v}$. Finn en parameterfremstilling av linja gjennom D og E.
- f) Vis at punktet T(4,7,4) ligger på linja gjennom D og E. Finn høyden av pyramiden ABCT der T er pyramidens toppunkt.

Løsning FK matematikk 30.05.2012

Oppgave 1

a) 1)
$$e^{(\ln 1)} = 1$$
 2) $(\sqrt[5]{32})^2 \cdot 4a \cdot \frac{1}{a^2} = 4 \cdot \frac{4}{a} = \frac{16}{a}$

- b) $\cos(2x) = \frac{1}{2} \operatorname{når} 2x = \cos^{-1}\left(\frac{1}{2}\right)$, dvs. $\operatorname{når} 2x = \frac{\pi}{3} + k \cdot 2\pi$ eller $2x = \frac{5\pi}{3} + k \cdot 2\pi$. Dette gir at $x = \frac{\pi}{6} + k \cdot \pi$ eller $x = \frac{5\pi}{6} + k \cdot \pi$, dvs $x = \frac{\pi}{6}$ eller $x = \frac{7\pi}{6}$ eller $x = \frac{5\pi}{6}$ eller $x = \frac{5\pi}{6} + \pi = \frac{11\pi}{6}$
- c) Opphøyer i andre potens og får $x^2 + 16 = 2x^2$, dvs. $-x^2 + 16 = 0$, altså $-(x^2 16) = 0$, dvs. x = -4, eller x = 4. Setter vi prøve på svaret, ser vi at x = -4 ikke stemmer, så svaret er x = 4.
- d) Likning II gir at y = -x + 3, som innsatt i likning I gir 4x (-x + 3) = 2 som gir at x = 1. Svaret blir dermed x = 1 og y = 2.
- e) 1) Rekka er konvergent fordi den oppgitte $k = \ln 6 2$ er et tall mellom 1 og -1. Summen er $s = \frac{5}{1 (\ln 6 2)} = -\frac{5}{\ln 6 3}$
 - 2) Rekka er konvergent når $-1 < \ln x 2 < 1$, dvs. når $1 < \ln x$ og samtidig $\ln x < 3$. Dette gir at rekka er konvergent når $x < e^3$ og samtidig x > e. Svar: Rekka er konvergent når $x \in \langle e, e^3 \rangle$.
- f) $V = \pi \int_0^2 (x^2)^2 dx = \pi \left[\frac{1}{5} x^5 \right]_0^2 = \frac{32}{5} \pi \approx 20,11$
- g) Delvis integrasjon med u=x og $v'=\sin x$ gir u'=1 og $v=-\cos x$ som gir at $\int x \sin x \, dx = -x \cos x + \int \cos x \, dx = -x \cos x + \sin x + C$
- h) E: Stryker i engelsk. N: Stryker i norsk. Da er P(E) = 0.05, P(N) = 0.04 og P(N|E) = 0.3. Altså er $P(E|N) = \frac{P(N|E)P(E)}{P(N)} = \frac{0.3 \cdot 0.05}{0.04} = \frac{0.375}{0.04} = 37.5\%$.

Oppgave 2

- a) f(x) = 0 når $3x^2 = 48$ dvs. når $x = \pm 4$.
- b) Den deriverte til f er null bare når x=0, og drøfting med fortegnsskjema viser at dette er et bunnpunkt. Koordinatene for bunnpunktet er (0,12)
- c) Horisontal asymptote: $\lim_{x\to\pm\infty} f(x) = 3$, så y = 3 er horisontal asymptote. Nevneren er null når $x = \pm 2$, så dette er vertikale asymptoter. Funksjonen har ingen skrå asymptoter.
- d) Stigningstallet til tangenten er f'(4) = 2, og tangenten går gjennom punktet (4,0). Likningen for tangenten er da gitt ved y 0 = 2(x 4) som gir y = 2x 8

Oppgave 3

- a) $\sin 120^{\circ} = \sin(90^{\circ} + 30^{\circ}) = \sin 90^{\circ} \cos 30^{\circ} \cos 90^{\circ} \sin 30^{\circ} = 1 \cdot \frac{\sqrt{3}}{2} 0 \cdot \frac{1}{2} = \frac{\sqrt{3}}{2}$ og $\sin(90^{\circ} + v) = \sin 90^{\circ} \cos v - \cos 90^{\circ} \sin v = 1 \cdot \cos v - 0 = \frac{\cos v}{2}$
- b) I $\triangle COB$ kjenner vi to sider og vinkelen mellom dem, og arealsetningen gir da at $A_{\triangle COB}=\frac{1}{2}\cdot 4\cdot 4\cdot \sin\left(90^\circ+30^\circ\right)=8\cdot \frac{\sqrt{3}}{2}.$ Videre må $\angle COA=180^\circ-30^\circ=150^\circ$, og igjen kan vi bruke arealsetningen for å finne at $A_{\triangle COA}=\frac{1}{2}\cdot 4\cdot 4\cdot \sin 150^\circ=8\cdot \frac{1}{2}=4.$ Til slutt: $A_{\triangle AOB}=\frac{1}{2}\cdot 4\cdot 4\cdot 4\cdot \sin 150^\circ=8\cdot \frac{1}{2}=4.$ Arealet av hele trekanten er derfor $A=8\cdot \frac{\sqrt{3}}{2}+4+8=\underline{4\sqrt{3}+12}$
- c) $A_{\Delta COB} = \frac{1}{2} \cdot 4 \cdot 4 \cdot \sin(90^{\circ} + \alpha) = 8\sin(90^{\circ} + \alpha) = 8\cos\alpha \text{ og } A_{\Delta COA} = \frac{1}{2} \cdot 4 \cdot 4 \cdot \sin(180^{\circ} \alpha) = 8\sin(180^{\circ} \alpha) = 8\sin\alpha$. Derfor er det totale arealet $A(\alpha) = 8 + 8\cos\alpha + 8\sin\alpha$.
- d) Sett $A(\alpha) = 8 + 8\cos\alpha + 8\sin\alpha$. Da er $A'(\alpha) = -8\sin\alpha + 8\cos\alpha$. Dette gir at $A'(\alpha) = 0$ når $\sin\alpha = \cos\alpha$, dvs. når $x = \frac{\pi}{4}$ eller $x = \frac{5\pi}{4}$. Fortegnsskjema viser at $x = \frac{\pi}{4}$ gir toppunkt for $A(\alpha)$. Arealet er altså størst når $\alpha = 45^{\circ}$.

Oppgave 4

- a) $\overrightarrow{AB} = [3.5, -4], \overrightarrow{AC} = [-3.3.0].$ Vinkel: $\cos v = \frac{[3.5, -4] \cdot [-3.3.0]}{|[3.5, -4]| \cdot |[-3.3.0]} = \frac{6}{\sqrt{50}\sqrt{18}} = 0.2$ som gir $v = \cos^{-1} 0.2 \approx 78.46^{\circ}$
- b) $\frac{1}{2} |\overrightarrow{AB} \times \overrightarrow{AC}| = \frac{1}{2} |[12,12,24]| = \frac{1}{2} \sqrt{12^2 + 12^2 + 24^2} = 6\sqrt{6}$
- c) En normalvektor til planet er $\overrightarrow{AB} \times \overrightarrow{AC} = [12,12,24] = 12[1,1,2]$, og likningen for planet α er (x-3)+(y-2)+2(z-1)=0, som etter opprydding blir $\underline{x+y+2z-7=0}$
- d) Vi sjekker om koordinatene til D passer inn i likningen for planet: 2+5+0-7=0, så det stemmer. Da ligger Di planet α .
- e) $\overrightarrow{DE} = [x-2,y-5,z] = [1,1,2]$ gir at koordinatene til E er (x,y,z) = (3,6,2). Parameterfremstilling av linja gjennom D og E: $\begin{cases} x=2+t \\ y=5+t \\ z=2t \end{cases}$
- f) Ved å velge t=2 i paramterfremstillingen for linja gjennom D og E, får vi $\begin{cases} x=2+2=4\\ y=5+2=7,\\ z=2\cdot 2=4 \end{cases}$ som er koordinatene til T. Derfor ligger T på linja. Høyden av pyramiden: Linja gjennom D og E er normal til planet α , så derfor er lengden av \overrightarrow{DT} nettopp høyden i pyramiden. $|\overrightarrow{DT}|=\sqrt{2^2+2^2+4^2}=\sqrt{24}$.