Arquitectura e Ingeniería de Computadores. Examen Parcial (Problemas). 27/01/2005

- 1) Sea un DLX segmentado en cinco etapas, sin planificación dinámica, y con las siguientes características:
 - Un dato se puede escribir y leer de un registro en el mismo ciclo de reloj.
 - Existe anticipación de operandos (Forwarding)
 - La etapa de ejecución es multiciclo y, además de la habitual ALU de operaciones enteras, existen las siguientes unidades funcionales segmentadas: 1 Sumador/restador en punto flotante de dos etapas (A1, A2) y 1 Multiplicador de cinco etapas (M1, M2, M3, M4, M5).

Esta máquina ejecuta el siguiente programa:

```
Id f10, 0(r1)
muld f4, f0, f10
Id f12, 0(r2)
addd f2, f12, f4
Id f4, 8(r1)
muld f12, f4, f12
Id f14, 16(r1)
```

Sabiendo que:

- Las dependencias LDE se detectan en la primera etapa de cada unidad funcional y se resulten mediante cortocircuito cuando los operandos están disponibles.
- Los riesgos estructurales se detectan y se resuelven mediante espera en la última etapa de cada Unidad Funcional.
- Los riesgos EDE entre dos instrucciones, A y B tal que A precede a B, se resuelven mediante inhibición de la escritura de la instrucción A.

Construya el diagrama de tiempo (instrucciones – ciclos de reloj), marcando sobre él todas los riegos que se presenten y los cortocircuitos que se apliquen. Explique detalladamente, en cada caso, la causa de cualquier posible riesgo y cualquier posible parada (2 puntos).

2) Un computador con planificación dinámica de instrucciones mediante el método de Tomasulo, ejecuta el siguiente programa (izquierda) y posee Unidades Funcionales segmentadas, Estaciones de Reserva, Load Buffers y Store Buffers con las siguientes características (derecha):

	add	r1, r0, r0
	add	r2, r0, r0
	addi	r3, r0, #0
loop	ld	f0, 0(r1)
•	ld	f2, 8(r1)
	muld	f2, f2, f0
	ld	f4, 0(r2)
	ld	f6, 8 (r2)
	subd	f4, f0, f4
	addd	f6, f6, f2
	muld	f2, f6, f2
	sd	0(r1), f2
	addi	r1, r1, #16
	addi	r2, r2, #16
	sgti	r3, r1, #1000
	beqz	loop
	nop	

UF	CANT	LATEN	SEGM
FP ADD	1	2	SI
FP MUL	1	5	SI
INT ALU	1	1	SI
LOAD	1	2	SI
STORE	1	2	SI

ER y BUFFERS	CANT
FP ADD	2
FP MUL	2
INT ALU	2
LOAD	2
STORE	2

Sabiendo que la frecuencia de reloj es de 500 MHz, que un dato no se puede escribir en el CDB y ser usado por una instrucción dependiente en el mismo ciclo, y que se aplican saltos retardados con un "delay slot" de una instrucción, se pide:

- a) Muestre en qué ciclos de reloj se realiza cada fase de cada instrucción en la primera iteración del bucle (1,5 puntos).
- b) Cuál sería el rendimiento en MFLOPS si el bucle se ejecutara muchas veces y el número de estaciones de reserva, load buffers y store buffers no estuviera limitado (0,75 puntos).
- c) Vuelva a responder a la pregunta del apartado a), pero suponiendo ahora que el computador realiza ejecución especulativa utilizando un Buffer de Reordenamiento (0,75 puntos).