Probability and Two(+1) Way Tables

Berkeley gender discrimination case

	Admit	Deny	Total
Men	3,738	4,704	8,442
Women	1494	2,827	4321
Total	5,232	7,531	12,763

P(Man and Admitted) = 3,738 = 29.31.

Joint prob distribution

Admit Pen

Admit $\frac{3738}{12,763} = 293^{7} \frac{4704}{12,763} = 36.9^{4}$ Women $\frac{1.491}{12,763} = 11.7^{1/2} \frac{2827}{12,763} = 22.1^{7/2}$

Marginal Prob distributions Gender

 $P(Men) = \frac{6442}{12,763} = 66.17$

 $P(Vomen) = \frac{4321}{12,763} = 33.97$

<u>Accepance</u>

 $P(Accepted) = \frac{5.237}{12.763} = 41.0$

 $P(Deny) = 1 - P(Accepte) = 590^{4}$ = $\frac{7.531}{12.763} = 590^{7}$ Joint Probability

The prob of two specific outcomes

The prob of two specific outcomes

Of the two variables considered

P(Var 1 and Var 2)

Joint Prob = Value from middle

The grand total

Marginal Probability

The prob of a single variable taking a specific value while ignoring the other variable

Other variable Value from the margins

Marginal Prob = The grand total

Conditional Probability

Conditioned on a specific value of one variable, what is the probability of the ather variable

Conditional Prob = Value from the conter Value from the margins

Conditional Prob Pistributions

 $P(Accept | Man) = \frac{3,738}{8,442} = \frac{44.3^{7.}}{100}$

P(Deny | Men) = (-P(A|M) = 55.7) = 4,704 8,442

 $P(Accept | Women) = \frac{1,494}{4,321} = \frac{34,6^{+}}{}$

Momen) = 65.47.

The frends that we abserve in any data can change or at least become

/ CP - [1

The frends that we observe in any data can change or at least become more neumed when we consider other variables.

1.101		(),,			•	C 19 Prop
3-1W24	table:	Gend	er Ad,	miHance,	Depurt	ment Conditional Prob Condition on depostment and Gender 2(1) cont A Men = 511 = 62".
) " (" (Me	n,	Wom	en	Condition on action
		Accept	Deny	Accept	- Deny	Gender 511 - 17/1. Az
	A	5l)	314	ВЬ	22	P(Accept A, Men) = 825
1) is charged		353		17	G	Conder Gender $P(Accept A, Men) = 85 = 62^{1/2}$ $P(Accept A, Women) = 86 = 82^{1/2}$
Department	V	120		202	39)	P(Accept B, M) = 353 = 63 ¹ .
		1				P(A B, W) = 17 687.

Simpson's Paradox

The relationship between acceptance and gender reverses when we consider a third variable.

 $P(A | B, W) = \frac{17}{25} \cdot 66^{7}$ $P(A | B, W) = \frac{17}{25} \cdot 66^{7}$ $P(A | C, M) = \frac{170}{325} \cdot 37^{7}$ $P(A | C, W) = \frac{202}{593} = 34^{7}$

Example: Survival rates for ambulatory helicopters are lower than rates for ground based ambulances.

If you consider severity of injury helicopters are better.

