Check for updates

https://doi.org/10.1038/s41467-021-22166-4

OPEN

SARS-CoV-2 infection rewires host cell metabolism and is potentially susceptible to mTORC1 inhibition

Peter J. Mullen¹, Gustavo Garcia Jr², Arunima Purkayastha³, Nedas Matulionis ¹, Ernst W. Schmid¹, Milica Momcilovic⁴, Chandani Sen³, Justin Langerman¹, Arunachalam Ramaiah⁵, David B. Shackelford ^{4,6}, Robert Damoiseaux^{2,6,7,8,9}, Samuel W. French ^{6,10}, Kathrin Plath ^{1,4,6,9,11}, Brigitte N. Gomperts^{3,4,6,9,11}, Vaithilingaraja Arumugaswami^{2,6,12} & Heather R. Christofk ^{1,6,11,12}

Viruses hijack host cell metabolism to acquire the building blocks required for replication. Understanding how SARS-CoV-2 alters host cell metabolism may lead to potential treatments for COVID-19. Here we profile metabolic changes conferred by SARS-CoV-2 infection in kidney epithelial cells and lung air-liquid interface (ALI) cultures, and show that SARS-CoV-2 infection increases glucose carbon entry into the TCA cycle via increased pyruvate carbox-ylase expression. SARS-CoV-2 also reduces oxidative glutamine metabolism while maintaining reductive carboxylation. Consistent with these changes, SARS-CoV-2 infection increases the activity of mTORC1 in cell lines and lung ALI cultures. Lastly, we show evidence of mTORC1 activation in COVID-19 patient lung tissue, and that mTORC1 inhibitors reduce viral replication in kidney epithelial cells and lung ALI cultures. Our results suggest that targeting mTORC1 may be a feasible treatment strategy for COVID-19 patients, although further studies are required to determine the mechanism of inhibition and potential efficacy in patients.

SARS-CoV-2 messes with the citric acid (TCA) cycle of infected kidney and lung cells

- Pyruvate entry using pyruvate carboxylase is increased
- Oxidative use of glutamine is reduced upon infection

Master regulator mTORC1's activity is increased during SARS-CoV-2 infection

DEPTOR

mTORC1 inhibitors reduce SARS-CoV-2 infection in air-liquid interface (ALI) cells

d Mucociliary ALI cultures

Tanaka et al. *J. Clin. Invest.* 125 (2015) 1591–1602

