For problems 1 through 5 evaluate the given indefinite integrals.

$$1. \int \left(\frac{6}{\sqrt{x}} + 6\sqrt{x}\right) dx$$

$$2. \int \left(\frac{3}{s^2} - 4s^8\right) ds$$

$$3. \int (9x+4)^2 dx$$

$$4. \int \frac{3x^3 + 6x^2}{x} \, dx$$

$$5. \int (\sec^2 t - 6) dt$$

6. Solve the initial value problem $f'(x) = x^2 - 2x$ with $f(1) = \frac{1}{3}$.

7. Given the velocity function $v(t)=2\cos t$ and the initial position s(0)=0 find the position function.

Written Homework 10

Page	of	

8. Given the acceleration function of an object moving along a line, find the position function with the given initial velocity and initial position. a(t) = 4, v(0) = -3, s(0) = 2

9. The velocities (in m/s) of an automobile moving along a straight freeway over a 4 second period are given in the following table.

t(s)	0	0.5	1	1.5	2	2.5	3	3.5	4
v (m/s)	20	25	30	35	30	30	35	40	40

Find the indicated Riemann sum approximations to the displacement on [0,4] with n=4 subintervals.

(a) Left Riemann sum.

(b) Right Riemann sum.

(c) Midpoint Riemann sum.

- 10. Consider the function $f(x) = x^2 + 2$ on the interval [0,2]. Find the area of the region with the indicated Riemann sum and state whether the sum is an over-estimate or underestimate. Divide the interval into n = 4 subintervals.
 - (a) Left Riemann sum.

(b) Right Riemann sum.

(c) Midpoint Riemann sum.