Exercises on Spectral Analysis

1/ (Wiener-Khinchin formula)

Given a 2nd order signal $(X(n), n \in \mathbb{Z})$ and a sequence of weight functions $W_N(n), N = 1, 2, \dots$ consider the sequence of Fourier transformations

$$\tilde{X}_N(\lambda) = \frac{1}{\sqrt{N}} \sum_n X(n) W_N(n) \exp(-i2\pi \lambda n)$$

and its mean square limit $\tilde{X}(\lambda) = \lim_{N \to \infty} \tilde{X}_N(\lambda)$.

- 1.1 Under which conditions $\tilde{X}(\lambda)$ and $\tilde{X}(\lambda')$ are uncorrelated for $\lambda \neq \lambda'$?
- 1.2 Show that $E|\tilde{X}(\lambda)|^2 = \Gamma(\lambda)$ where $\Gamma(.)$ is the spectral density of X(.).

2/ (Interferences formula)

Let X(n) and Y(n) be resp. the input and output sequences of a stationary linear system with the transfer function $H(\lambda)$. Show that their spectral densities Γ_X and Γ_Y verify the relation

$$\Gamma_Y(\lambda) = \Gamma_X(\lambda)|H(\lambda)|^2$$
.

3/ (Phase shifts)

During its transmission, a continuous-time stationary signal X(t) is subject to randomly occurring phase shifts at Poisson times $t_1, t_2, ...$ of a Poisson Process N(t) such that the received signal is

$$Y(t) = X(t + \Phi + \varphi(t))$$

with

$$\varphi(t) = \sum_{\{t_k < t\}} \varphi_k$$

where φ_k are i.i.d. with known characteristic function $g(u) = E(\exp iu\varphi_k)$ and Φ is a constant r.v. equidistributed on $(0,2\pi)$ independent of the φ_k . The underlying Poisson process has intensity μ .

- 3.1 Consider first a single harmonic component $X(t) = \exp(i2\pi\lambda_0 t)$. Calculate E(Y(t)) and the correlation function $\gamma_Y(t,t-\tau) = E\left[Y(t)Y^*(t-\tau)\right]$.
- 3.2. Compute the spectral density $\Gamma_Y(\lambda)$ and analyze the effect of μ on the line shift and widening.
- 3.3 Supposing that the statistics of X, N, Φ, φ_k are independent calculate the above functions with the random signal X(t) sum of its harmonics.