

Optimización

Técnicas para NLPs

Docente: Cristian Guarnizo Lemus

Contenido

- 1. Métodos de Penalización y de Barrera.
- 2. Serie de problemas mas simples con Restricciones (LCL, SQP)

Métodos de Penalización y Barrera

- Idea: reemplazar el problema de restricciones por una secuencia de problemas de optimización sin restricciones. Como remover las restricciones?
- Método de penalización cuadrático (QPM): reemplazar las restricciones adicionando una penalización cuadrático en la función objetivo.
 - Aproximación desde los puntos infactibles.
- Método del Langrangiano Aumentado (ALM): Mejora de QPM que evita los mal-condicionamientos por medio de la estimación de los parámetros de Lagrange.
- Método de Log-Barrier (LBM): usar la barrera del logaritmo para forzar una estricta satisfacción de las desigualdades.
 - Aproximación desde los puntos factibles.

Método de Barrera logarítmica (LBM): desigualdades

$$\min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x})$$

s.t.
$$c_i(x) \leq 0, i \in I$$

• Reemplazar la restricciones por una barrera de logaritmo en la función objetivo:

$$P(\mathbf{x}; \mu) = f(\mathbf{x}) - \mu \sum_{i \in I} \log[-c_i(\mathbf{x})]$$

con parámetro de barrera $\mu > 0$.

- La barrera impone iteraciones estrictamente factibles
 - $P(x; u) \rightarrow \infty$ para $0 > c_i(x) \rightarrow 0$. Entonces, para $\mu > 0$ se impone c(x) < 0.
- Similar a QPM, solucionar una secuencia de problemas sin restricción
 - Solucionar en una iteración el inicio de la siguiente iteración.
 - Mientras $\mu \to 0$, las aproximaciones de x se vuelven mejores.

La barrera logarítmica LogBar

$$\min_{x \in R} x$$
s.t. $x \ge 0$

$$x \le 1$$

$$P(x; \mu) = x - \mu(\log[x] + \log[1 - x])$$

Somos Innovación Tecnológica con Senior

r Sentido Humano

Barrera logarítmica (LBM): Igualdades y Desigualdades

Problema NLP general: $\min_{x \in \mathbb{R}^n} f(x)$

s.t.
$$c_i(\mathbf{x}) = 0$$
, $i \in E$
 $c_i(\mathbf{x}) \le 0$, $i \in I$

Reemplazar las restricciones de desigualdad por una barrera logarítmica
 Reemplazar las restricciones de igualdad por una penalización cuadrática

$$B(\mathbf{x}; \mu) = f(\mathbf{x}) + \frac{1}{2\mu} \sum_{i \in E} [c_i(\mathbf{x})]^2 - \mu \sum_{i \in I} \log[-c_i(\mathbf{x})]$$

- Similar al caso de las desigualdades, solucionamos con una secuencia de problemas sin restricciones.
- Método de punto interior con respecto a: $c_i(x^{(k)}) < 0$, $i \in I$
- Violación de las restricciones de igualdad: $c_i(x^{(k)}) \neq 0$, $i \in E$
 - Las igualdades no tienen interior.

Chequeo

Cual es la idea principal en los métodos de barrera?

Cual es la diferencia entre los métodos de penalización cuadrático y el método de barrera?

Contenido

- 1. Métodos de Penalización y de Barrera.
- 2. Serie de problemas mas simples con Restricciones (LCL, SQP)

Problema de optimización no-lineal (NLP)

Formulación general:

$$\min_{\mathbf{x} \in D} f(\mathbf{x})$$

s.t.
$$c_i(x) = 0, i \in E$$

 $c_i(x) \le 0, i \in I$

$$x = [x_1, x_2, ..., x_n]^{\mathsf{T}} \in D$$
 un vector (punto n -dimensional)

D conjunto anfitrión

 $f: D \to R$ función objetivo

 $c_i: D \to R$ funciones de restricción $\forall i \in E \cup I$

E el conjunto índice de las restricciones de igualdad

I el conjunto índice de las restricciones de desigualdad

- Tres estrategias de solución:
 - Eliminación de variables (convertir a un problema sin restricciones).
 - Aproximación como una serie de problemas sin restricción.
 - Aproximación como una serie de problemas mas simples con restricciones.

Método Lagrangiano con restricciones lineales

El método del Lagrangiano con restricciones lineales (LCL) es una modificación del método del Lagrangiano Aumentado.

- En cada paso, se linealizan las restricciones.
- Para el problema $\min_{x \in \mathbb{R}^n} f(x)$

s.t.
$$c_i(x) = 0$$
, $i \in E$

en la iteración k resolver $\min_{\mathbf{x} \in \mathbb{R}^n} F^{(k)}(\mathbf{x})$

s.t.
$$\nabla c_i(x^{(k)})^T (x - x^{(k)}) + c_i(x^{(k)}) = 0, i \in E$$

• Para $F^{(k)}$, a menudo se selecciona el Lagrangiano Aumentado.

$$F^{(k)}(\boldsymbol{x}) = f(\boldsymbol{x}) + \sum_{i \in E} \lambda_i^{(k)} \bar{c}_i^{(k)}(\boldsymbol{x}) + \frac{1}{2\mu} \sum_{i \in E} \left[\bar{c}_i^{(k)}(\boldsymbol{x}) \right]^2$$

$$\bar{c}_i^{(k)}(\mathbf{x}) = c_i(\mathbf{x}) - c_i(\mathbf{x}^{(k)}) - \nabla c_i(\mathbf{x}^{(k)})^T (\mathbf{x} - \mathbf{x}^{(k)})$$

Junios Innovación Tecnológica con Sentido Humano

Programación Secuencial Cuadrática (SQP)

- SQP provee la base para algunos buenos códigos de optimización.
- Se considera el siguiente problema de optimización $\min_{x \in R^n} f(x)$

s.t.
$$c_i(\mathbf{x}) = 0$$
, $i \in E$

- Idea principal: solucionar una secuencia $\{k\}$ de QPs, donde se aproxima el NLP en la iteración $x^{(k)}$ por una QP.
- La forma mas fácil: Aproximación por series de Taylor

$$\min_{\boldsymbol{p}\in R^n} \frac{1}{2} \boldsymbol{p}^T \boldsymbol{\nabla}^2 f(\boldsymbol{x}^{(k)}) \boldsymbol{p} + (\boldsymbol{\nabla} f(\boldsymbol{x}^{(k)}))^T \boldsymbol{p}$$

s.t.
$$\left(\nabla c(x^{(k)})\right)^T p + c(x^{(k)}) = 0$$

Se puede interpretar como el método de Newton para solucionar las condiciones KKT.

Algoritmo Básico SQP

Puntos importantes no discutidos:

- Aproximación de la matriz Hessiana (p.e., actualización BFGS, en métodos quasi Newtons).
- Solución de las ecuaciones Newton-Lagrange en cada paso del QP.
- Criterio de parada.
- Inclusión de desigualdades.

Algoritmo Básico:

- Selectionar $x^{(0)}$.
- Para k = 1, 2, ...
 - Calcular $f^{(k)} = f(x^{(k-1)})$, $\nabla f^{(k)} = \nabla f(x^{(k-1)})$, $c^{(k)} = c(x^{(k-1)})$, $A^{(k)} = \nabla c(x^{(k-1)})$, actualizar $B^{(k)}$
 - Solucionar el QP para p.
 - $x^{(k)} = x^{(k-1)} + p.$
 - Si las condiciones de optimalidad se satisfacen, PARAR.

Vigilada Mineducación

Somos Innovación Tecnológica con Sentido Humano

Método Quasi-Newton

Definiciones: $f^{(k)} = f(\mathbf{x}^{(k)}), \ \mathbf{g}^{(k)} := \nabla f(\mathbf{x}^{(k)}) \ \mathbf{y} \ \mathbf{H}^{(k)} := \nabla^2 f(\mathbf{x}^{(k)})$

Del método de Newton:

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \mathbf{p}^{(k)}$$

 $[\nabla^2 f(\mathbf{x}^{(k)})] \mathbf{p}^{(k)} = -\nabla f(\mathbf{x}^{(k)}) \Rightarrow \mathbf{H}^{(k)} \mathbf{p}^{(k)} = -\mathbf{g}^{(k)}$

Idea:

El sistema lineal $\mathbf{H}^{(k)}\mathbf{p}^{(k)} = -\mathbf{g}^{(k)}$ se puede solucionar aproximadamente por un método iterativo.

Observaciones:

Factorizaciones como LU o Cholesky – costo computacional alto.

Ocurren errores grandes para problemas mal condicionados.

No se requiere la solución exacta.

Método Quasi-Newton (2)

Idea: reducir la compejidad simplificando el calculo de $H^{(k)}$ (Davidon):

- Reemplazar $H^{(k)}$ por una aproximación $B^{(k)}$.
- En vez de calular $\mathbf{B}^{(k)}$, buscamos una simple actualización usando la información de las ultimas iteraciones.

Metodo:

- Considerar la aproximación cuadrática de f en $\mathbf{x}^{(k)}$, $m^{(k)}(\mathbf{p}) = f^{(k)} + [\mathbf{g}^{(k)}]^T \mathbf{p} + \frac{1}{2} \mathbf{p}^T \mathbf{B}^{(k)} \mathbf{p}$.
- Condición de optimalidad de primer orden: $p^{(k)} = -B^{(k)^{-1}}g^{(k)}$
- Por convexidad es necesaria y suficiente para la minimización de $m^{(k)}(\mathbf{p})$.
- Construir la aproximación cuadrática en $x^{(k+1)} = x^{(k)} + \alpha_k p^{(k)}$

$$m^{(k+1)}(\mathbf{p}) = f^{(k+1)} + [\mathbf{g}^{(k+1)}]^T \mathbf{p} + \frac{1}{2} \mathbf{p}^T \mathbf{B}^{(k+1)} \mathbf{p}$$

• Que condiciones debe satisfacer $B^{(k+1)}$?

Método Quasi-Newton (3)

Condiciones de $B^{(k+1)}$:

1. Gradiente de $m^{(k+1)}$ en $x^{(k+1)}$ debe ser igual al gradiente de f.

$\nabla m^{(k+1)}(p) = g^{(k+1)} + B^{(k+1)}p$	
At $x = x^{(k+1)}$, $p = 0$	At $\boldsymbol{x} = \boldsymbol{x}^{(k)}$, $\boldsymbol{p} = -\alpha_k \boldsymbol{p}^{(k)}$
Queremos $\nabla m^{(k+1)}(0) = g^{(k+1)}$	Queremos $\mathbf{p}m^{(k+1)}(-\alpha_k\mathbf{p}^{(k)})=\mathbf{g}^{(k)}$
Satisface automáticamente	$\Rightarrow \boldsymbol{g}^{(k+1)} - \alpha_k \boldsymbol{B}^{(k+1)} \boldsymbol{p}^{(k)} = \boldsymbol{g}^{(k)}$ $\Rightarrow \boldsymbol{B}^{(k+1)} \alpha_k \boldsymbol{p}^{(k)} = \boldsymbol{g}^{(k+1)} - \boldsymbol{g}^{(k)}$
	$\Rightarrow B^{(k+1)}s^{(k)} = y^{(k)}, \text{ donde } s^{(k)} = x^{(k+1)} - x^{(k)} \text{y} y^{(k)} = g^{(k+1)} - g^{(k)}$

2. Debido que $\mathbf{B}^{(k+1)}$ es simétrica definida positiva: $\mathbf{s}^{(k)} \mathbf{B}^{(k+1)} \mathbf{s}^{(k)} > 0$, $\forall \mathbf{s}^{(k)} \neq \mathbf{0} \Rightarrow \mathbf{s}^{(k)} \mathbf{y}^{(k)} > 0$

Método Quasi-Newton (3)

Condiciones de $B^{(k+1)}$:

 $\mathbf{B}^{(k+1)}\mathbf{s}^{(k)} = \mathbf{y}^{(k)}$ gives many solutions for $\mathbf{B}^{(k+1)}$

• Unique solution: $B^{(k+1)}$ should be close to $B^{(k)}$

$$\min_{\boldsymbol{B}} \left\| \boldsymbol{B} - \boldsymbol{B}^{(k)} \right\|_{W} \leftarrow \text{weighted Frobenius-Norm}$$
s. t. $\boldsymbol{B}^{T} = \boldsymbol{B}$

$$\left\| \boldsymbol{A} \right\|_{W} = \left\| W^{1/2} \boldsymbol{A} W^{1/2} \right\|_{F}, \text{ for any } W \text{ s.t. } W y_{k} = s_{k}$$

$$\left\| \boldsymbol{B} \boldsymbol{s}^{(k)} = \boldsymbol{y}^{(k)} \right\|_{F}^{2} : R^{n \times n} \rightarrow R_{\geq 0}, \left\| \boldsymbol{C} \right\|_{F}^{2} = \sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij}^{2}$$

$$\Rightarrow \boldsymbol{B}^{(k+1)} = \left(\boldsymbol{I} - \frac{1}{\boldsymbol{y}^{(k)^T} \boldsymbol{s}^{(k)}} \boldsymbol{y}^{(k)} \boldsymbol{s}^{(k)^T}\right) \boldsymbol{B}^{(k)} \left(\boldsymbol{I} - \frac{1}{\boldsymbol{y}^{(k)^T} \boldsymbol{s}^{(k)}} \boldsymbol{s}^{(k)} \boldsymbol{y}^{(k)^T}\right) + \frac{1}{\boldsymbol{y}^{(k)^T} \boldsymbol{s}^{(k)}} \boldsymbol{y}^{(k)} \boldsymbol{y}^{(k)^T} \quad \to \text{DFP formula}$$

$$\Rightarrow B^{(k+1)^{-1}} = \left(I - \frac{1}{y^{(k)^T} s^{(k)}} s^{(k)} y^{(k)^T}\right) B^{(k)^{-1}} \left(I - \frac{1}{y^{(k)^T} s^{(k)}} y^{(k)} s^{(k)^T}\right) + \frac{1}{y^{(k)^T} s^{(k)}} s^{(k)} s^{(k)^T} \rightarrow \text{BFGS formula}$$

Vigilada Mineduca

1 Gracias!

