

Trigonometric Functions Ex 5.2 Q 1 We have,

$$\cos ec^2\theta - \cot^2\theta = 1$$

$$\Rightarrow \cos ec^2\theta = 1 + \cot^2\theta$$

$$\Rightarrow \cos \theta c \theta = \pm \sqrt{1 + \cot^2 \theta}$$

In the third quadrant cosec⊕ is negative

$$\cos \theta = -\sqrt{1 + \cot^2 \theta}$$

$$= -\sqrt{1 + \left(\frac{12}{5}\right)^2} \qquad \left[\because \cot \theta = \frac{12}{5}\right]$$

$$= -\sqrt{1 + \frac{144}{25}}$$

$$= -\sqrt{\frac{169}{25}}$$

$$= -\frac{13}{5}$$
13

$$\cos e c \theta = -\frac{13}{5}$$

Now,
$$\tan \theta = \frac{1}{\cot \theta}$$
$$= \frac{1}{\frac{12}{5}}$$
$$= \frac{5}{12}$$

We have,

$$\sin^2\theta + \cos^2\theta = 1$$

$$\Rightarrow$$
 $\sin^2 \theta = 1 - \cos^2 \theta$

$$\Rightarrow \sin\theta = \pm\sqrt{1-\cos^2\theta}$$

In the 2^{nd} quadrant $\sin \theta$ is positive and $\tan \theta$ is negative

$$\sin \theta = \sqrt{1 - \cos^2 \theta}$$

$$= \sqrt{1 - \left(-\frac{1}{2}\right)^2} \qquad \left[\because \cos \theta = -\frac{1}{2} \right]$$

$$= \sqrt{1 - \frac{1}{4}}$$

$$= \sqrt{\frac{3}{4}}$$

$$= \frac{\sqrt{3}}{2}$$

and,
$$\tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{\frac{\sqrt{3}}{2}}{-\frac{1}{2}} = -\sqrt{3}$$

Now,
$$\csc\theta = \frac{1}{\sin\theta} = \frac{1}{\frac{\sqrt{3}}{2}} = \frac{2}{\sqrt{3}}$$

$$\sec\theta = \frac{1}{\cos\theta} = \frac{1}{-\frac{1}{2}} = -2$$

and
$$\cot \theta = \frac{1}{\tan \theta} = \frac{1}{-\sqrt{3}} = \frac{-1}{\sqrt{3}}$$

Hence,
$$\sin \theta = \frac{\sqrt{3}}{2}$$
, $\tan \theta = -\sqrt{3}$,

$$\cos ec\theta = \frac{2}{\sqrt{3}}$$
, $\sec \theta = -2$ and $\cot \theta = \frac{-1}{\sqrt{3}}$

In the third quadrant cosecθ is negative

$$\cos \theta = -\sqrt{1 + \cot^2 \theta}$$

$$= -\sqrt{1 + \left(\frac{4}{3}\right)^2}$$

$$= -\sqrt{1 + \frac{16}{9}}$$

$$= -\sqrt{\frac{25}{9}}$$

$$= -\frac{5}{3}$$
Now, $\sin \theta = \frac{1}{\cos \theta c \theta} = \frac{1}{\frac{-5}{3}} = \frac{-3}{5}$
and, $\cos \theta = \frac{1}{\sec \theta} = \frac{1}{\frac{-5}{4}} = \frac{-4}{5}$
Hence, $\sin \theta = \frac{-3}{5}$, $\cos \theta = \frac{-4}{5}$, $\csc \theta = -\frac{5}{3}$, $\sec \theta = \frac{-5}{4}$ and $\cot \theta = \frac{4}{3}$

We have,

$$\sin^2\theta + \cos^2\theta = 1$$

$$\Rightarrow \cos^2\theta = 1 - \sin^2\theta$$

$$\Rightarrow$$
 $\cos \theta = \pm \sqrt{1 - \sin^2 \theta}$

In the 1st quadrant $\cos\theta$ is positive and $\tan\theta$ is also positive

$$\cos \theta = \sqrt{1 - \sin^2 \theta}$$

$$= \sqrt{1 - \left(\frac{3}{5}\right)^2}$$

$$= \sqrt{1 - \frac{9}{25}}$$

$$= \sqrt{\frac{16}{25}}$$

$$= \frac{4}{5}$$

and,
$$\tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{\frac{3}{5}}{\frac{4}{5}} = \frac{3}{4}$$

Now,
$$\cos \theta c\theta = \frac{1}{\sin \theta} = \frac{1}{\frac{3}{5}} = \frac{5}{3}$$

$$\sec \theta = \frac{1}{\cos \theta} = \frac{1}{\frac{4}{5}} = \frac{5}{4}$$

and,
$$\cot \theta = \frac{1}{\tan \theta} = \frac{1}{\frac{3}{4}} = \frac{4}{3}$$

Hence,
$$\cos\theta = \frac{4}{5}$$
, $\cos e c \theta = \frac{5}{3}$, $\tan\theta = \frac{3}{4}$, $\sec\theta = \frac{5}{4}$, and $\cot\theta = \frac{4}{3}$

******* END *******