CS 441 Discrete Mathematics for CS Lecture 22

Relations II

Milos Hauskrecht

milos@cs.pitt.edu 5329 Sennott Square

CS 441 Discrete mathematics for CS

M. Hauskrecht

Cartesian product (review)

- Let $A = \{a_1, a_2, ...a_k\}$ and $B = \{b_1, b_2, ...b_m\}$.
- The Cartesian product A x B is defined by a set of pairs $\{(a_1 b_1), (a_1, b_2), \dots (a_1, b_m), \dots, (a_k, b_m)\}.$

Example:

Let $A=\{a,b,c\}$ and $B=\{1\ 2\ 3\}$. What is AxB?

$$AxB = \{(a,1),(a,2),(a,3),(b,1),(b,2),(b,3)\}$$

CS 441 Discrete mathematics for CS

Binary relation

<u>Definition:</u> Let A and B be sets. A binary relation from A to B is a subset of a Cartesian product A x B.

Example: Let $A = \{a,b,c\}$ and $B = \{1,2,3\}$.

• $R=\{(a,1),(b,2),(c,2)\}$ is an example of a relation from A to B.

CS 441 Discrete mathematics for CS

M. Hauskrecht

Representing binary relations

- We can graphically represent a binary relation R as follows:
 - if **a R b** then draw an arrow from a to b.

$$a \rightarrow b$$

Example:

- Let $A = \{0, 1, 2\}, B = \{u,v\}$ and $R = \{(0,u), (0,v), (1,v), (2,u)\}$
- Note: $R \subseteq A \times B$.
- · Graph:

CS 441 Discrete mathematics for CS

Representing binary relations

• We can represent a binary relation R by a **table** showing (marking) the ordered pairs of R.

Example:

- Let $A = \{0, 1, 2\}, B = \{u,v\}$ and $R = \{(0,u), (0,v), (1,v), (2,u)\}$
- Table:

R	u	V	or	T	
				R u	V
0	X	X		0 1	1
1		X		1 0	1
2	X			2 1	0

CS 441 Discrete mathematics for CS

M. Hauskrecht

Properties of relations

Properties of relations on A:

- Reflexive ✓
- Irreflexive \checkmark
- Symmetric ~
- Anti-symmetric
- Transitive

CS 441 Discrete mathematics for CS

Reflexive relation

Reflexive relation

- $R_{div} = \{(a b), if a | b\}$ on $A = \{1,2,3,4\}$
- $R_{div} = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,4), (3,3), (4,4)\}$

• A relation R is reflexive if and only if MR has 1 in every position on its main diagonal.

CS 441 Discrete mathematics for CS

M. Hauskrecht

Irreflexive relation

Irreflexive relation

- R_{\neq} on A={1,2,3,4}, such that $\mathbf{a} \ \mathbf{R}_{\neq} \mathbf{b}$ if and only if $\mathbf{a} \neq \mathbf{b}$.
- $R_{\neq} = \{(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)\}$

• A relation R is irreflexive if and only if MR has 0 in every position on its main diagonal.

CS 441 Discrete mathematics for CS

Symmetric relation

Symmetric relation:

- R_{\neq} on A={1,2,3,4}, such that $\mathbf{a} \ \mathbf{R}_{\neq} \mathbf{b}$ if and only if $\mathbf{a} \neq \mathbf{b}$.
- $R_{\neq} = \{(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)\}$

• A relation R is symmetric if and only if $m_{ij} = m_{ji}$ for all i,j.

CS 441 Discrete mathematics for CS

M. Hauskrecht

Anti-symmetric relation

<u>Definition</u> (anti-symmetric relation): A relation on a set A is called anti-symmetric if

• $[(a,b) \in R \text{ and } (b,a) \in R] \rightarrow a = b \text{ where } a,b \in A.$

Example 3:

- Relation R_{fun} on $A = \{1,2,3,4\}$ defined as:
 - $R_{fun} = \{(1,2),(2,2),(3,3)\}.$
- Is R_{fun} anti-symmetric?
- Answer: Yes. It is anti-symmetric

CS 441 Discrete mathematics for CS

Anti-symmetric relation

Antisymmetric relation

• relation $R_{\text{fun}} = \{(1,2),(2,2),(3,3)\}$

$$MR_{fun} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

A relation is antisymmetric if and only if m_{ij} = 1 → m_{ji} = 0 for i≠ j.

CS 441 Discrete mathematics for CS

M. Hauskrecht

Transitive relation

Definition (transitive relation): A relation R on a set A is called **transitive** if

- $[(a,b) \in R \text{ and } (b,c) \in R] \rightarrow (a,c) \in R \text{ for all } a,b,c \in A.$
- Example 1:
- $R_{div} = \{(a b), if a | b\}$ on $A = \{1,2,3,4\}$
- $R_{div} = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,4), (3,3), (4,4)\}$
- Is R_{div} transitive?
- Answer: -

CS 441 Discrete mathematics for CS

Transitive relation

Definition (transitive relation): A relation R on a set A is called **transitive** if

- $[(a,b) \in R \text{ and } (b,c) \in R] \rightarrow (a,c) \in R \text{ for all } a,b,c \in A.$
- Example 1:
- $R_{div} = \{(a b), if a | b\}$ on $A = \{1,2,3,4\}$
- $R_{div} = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,4), (3,3), (4,4)\}$
- Is R_{div} transitive?
- · Answer: Yes.

CS 441 Discrete mathematics for CS

M. Hauskrecht

Transitive relation

Definition (transitive relation): A relation R on a set A is called **transitive** if

- $[(a,b) \in R \text{ and } (b,c) \in R] \rightarrow (a,c) \in R \text{ for all } a,b,c \in A.$
- Example 2:
- R_{\neq} on A={1,2,3,4}, such that $\mathbf{a} R_{\neq} \mathbf{b}$ if and only if $\mathbf{a} \neq \mathbf{b}$.
- R_{\neq} ={(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)}
- Is R_{\neq} transitive?
- Answer:

CS 441 Discrete mathematics for CS

Transitive relation

Definition (transitive relation): A relation R on a set A is called **transitive** if

- $[(a,b) \in R \text{ and } (b,c) \in R] \rightarrow (a,c) \in R \text{ for all } a,b,c \in A.$
- Example 2:
- R_{\neq} on A={1,2,3,4}, such that $\mathbf{a} \ \mathbf{R}_{\neq} \mathbf{b}$ if and only if $\mathbf{a} \neq \mathbf{b}$.
- $R_{\neq} = \{(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)\}$
- Is R_≠ transitive?
- Answer: No. It is not transitive since $(1,2) \in \mathbb{R}$ and $(2,1) \in \mathbb{R}$ but (1,1) is not an element of \mathbb{R} .

CS 441 Discrete mathematics for CS

M. Hauskrecht

Transitive relations

Definition (transitive relation): A relation R on a set A is called **transitive** if

- $[(a,b) \in R \text{ and } (b,c) \in R] \rightarrow (a,c) \in R \text{ for all } a,b,c \in A.$
- Example 3:
- Relation R_{fun} on $A = \{1,2,3,4\}$ defined as:
 - $R_{\text{fun}} = \{(1,2),(2,2),(3,3)\}.$
- Is R_{fun} transitive?
- Answer:

CS 441 Discrete mathematics for CS

Transitive relations

Definition (transitive relation): A relation R on a set A is called **transitive** if

- $[(a,b) \in R \text{ and } (b,c) \in R] \rightarrow (a,c) \in R \text{ for all } a,b,c \in A.$
- Example 3:
- Relation R_{fun} on $A = \{1,2,3,4\}$ defined as:
 - $R_{\text{fun}} = \{(1,2),(2,2),(3,3)\}.$
- Is R_{fun} transitive?
- Answer: Yes. It is transitive.

CS 441 Discrete mathematics for CS

M. Hauskrecht

Combining relations

<u>Definition:</u> Let A and B be sets. A **binary relation from A to B** is a subset of a Cartesian product A x B.

• Let $R \subseteq A \times B$ means R is a set of ordered pairs of the form (a,b) where $a \in A$ and $b \in B$.

Combining Relations

- Relations are sets → combinations via set operations
- Set operations of: union, intersection, difference and symmetric difference.

CS 441 Discrete mathematics for CS

Combining relations

Example:

- Let $A = \{1,2,3\}$ and $B = \{u,v\}$ and
- R1 = $\{(1,u), (2,u), (2,v), (3,u)\}$
- $R2 = \{(1,v),(3,u),(3,v)\}$

What is:

• $R1 \cup R2 = ?$

CS 441 Discrete mathematics for CS

M. Hauskrecht

Combining relations

Example:

- Let $A = \{1,2,3\}$ and $B = \{u,v\}$ and
- R1 = $\{(1,u), (2,u), (2,v), (3,u)\}$
- $R2 = \{(1,v),(3,u),(3,v)\}$

What is:

- R1 \cup R2 = {(1,u),(1,v),(2,u),(2,v),(3,u),(3,v)}
- $R1 \cap R2 = ?$

CS 441 Discrete mathematics for CS

Combining relations

Example:

- Let $A = \{1,2,3\}$ and $B = \{u,v\}$ and
- R1 = {(1,u), (2,u), (2,v), (3,u)}
- $R2 = \{(1,v),(3,u),(3,v)\}$

What is:

- R1 \cup R2 = {(1,u),(1,v),(2,u),(2,v),(3,u),(3,v)}
- $R1 \cap R2 = \{(3,u)\}$
- R1 R2 = ?

CS 441 Discrete mathematics for CS

M. Hauskrecht

Combining relations

Example:

- Let $A = \{1,2,3\}$ and $B = \{u,v\}$ and
- R1 = {(1,u), (2,u), (2,v), (3,u)}
- $R2 = \{(1,v),(3,u),(3,v)\}$

What is:

- R1 \cup R2 = {(1,u),(1,v),(2,u),(2,v),(3,u),(3,v)}
- $R1 \cap R2 = \{(3,u)\}$
- R1 R2 = $\{(1,u),(2,u),(2,v)\}$
- R2 R1 = ?

CS 441 Discrete mathematics for CS

Combining relations

Example:

- Let $A = \{1,2,3\}$ and $B = \{u,v\}$ and
- R1 = {(1,u), (2,u), (2,v), (3,u)}
- $R2 = \{(1,v),(3,u),(3,v)\}$

What is:

- R1 \cup R2 = {(1,u),(1,v),(2,u),(2,v),(3,u),(3,v)}
- $R1 \cap R2 = \{(3,u)\}$
- R1 R2 = $\{(1,u),(2,u),(2,v)\}$
- R2 R1 = $\{(1,v),(3,v)\}$

CS 441 Discrete mathematics for CS

M. Hauskrecht

Combination of relations

Representation of operations on relations:

- Question: Can the relation be formed by taking the union or intersection or composition of two relations R1 and R2 be represented in terms of matrix operations?
- Answer: Yes

CS 441 Discrete mathematics for CS

Definition. The **join**, denoted by \lor , of two m-by-n matrices (a_{ij}) and (b_{ii}) of 0s and 1s is an m-by-n matrix (m_{ii}) where

- $m_{ij} = a_{ij} \vee b_{ij}$ for all i,j = pairwise or (disjunction)
- Example:
- Let $A = \{1,2,3\}$ and $B = \{u,v\}$ and
- R1 = $\{(1,u), (2,u), (2,v), (3,u)\}$
- $R2 = \{(1,v),(3,u),(3,v)\}$
- MR1 = 1 0 MR2 = 0 1 M(R1 \vee R2)= 1 1 1 1 0 0 1 1 1

CS 441 Discrete mathematics for CS

M. Hauskrecht

Combination of relations: implementation

Definition. The **meet**, denoted by \triangle , of two m-by-n matrices (a_{ij}) and (b_{ii}) of 0s and 1s is an m-by-n matrix (m_{ii}) where

- $m_{ij} = a_{ij} \wedge b_{ij}$ for all i,j= pairwise and (conjunction)
- Example:
- Let $A = \{1,2,3\}$ and $B = \{u,v\}$ and
- R1 = $\{(1,u), (2,u), (2,v), (3,u)\}$
- R2 = {(1,v),(3,u),(3,v)}

CS 441 Discrete mathematics for CS

Definition: Let R be a relation from a set A to a set B and S a relation from B to a set C. The composite of R and S is the relation consisting of the ordered pairs (a,c) where a ∈ A and c ∈ C, and for which there is a b ∈ B such that (a,b) ∈ R and (b,c) ∈ S. We denote the composite of R and S by S o R.

Examples:

- Let $A = \{1,2,3\}$, $B = \{0,1,2\}$ and $C = \{a,b\}$.
- $R = \{(1,0), (1,2), (3,1), (3,2)\}$
- $S = \{(0,b),(1,a),(2,b)\}$
- S o R = ?

CS 441 Discrete mathematics for CS

M. Hauskrecht

Composite of relations

Definition: Let R be a relation from a set A to a set B and S a relation from B to a set C. The **composite of R and S** is the relation consisting of the ordered pairs (a,c) where a ∈ A and c ∈ C, and for which there is a b ∈ B such that (a,b) ∈ R and (b,c) ∈ S. We denote the composite of R and S by S o R.

Examples:

- Let $A = \{1,2,3\}$, $B = \{0,1,2\}$ and $C = \{a,b\}$.
- $R = \{(1,0), (1,2), (3,1), (3,2)\}$
- $S = \{(0,b),(1,a),(2,b)\}$
- S o R = $\{(1,b),(3,a),(3,b)\}$

CS 441 Discrete mathematics for CS

Definition. The **Boolean product**, **denoted by ②**, of an m-by-n matrix (a_{ii}) and n-by-p matrix (b_{ik}) of 0s and 1s is an m-by-p matrix (m_{ik}) where

• $m_{ik} = 1$, if $a_{ij} = 1$ and $b_{jk} = 1$ for some k=1,2,...,n0, otherwise

Examples:

- Let $A = \{1,2,3\}$, $B = \{0,1,2\}$ and $C = \{a,b\}$.
- R = {(1,0), (1,2), (3,1),(3,2)}
 S = {(0,b),(1,a),(2,b)}
- S o R = $\{(1,b),(3,a),(3,b)\}$

CS 441 Discrete mathematics for CS

M. Hauskrecht

Implementation of composite

Examples:

- Let $A = \{1,2\}, B = \{1,2,3\} C = \{a,b\}$
- $R = \{(1,2),(1,3),(2,1)\}$ is a relation from A to B
- $S = \{(1,a),(3,b),(3,a)\}$ is a relation from B to C.

$$M_{R} = \begin{bmatrix} 0 & \overline{1} & \overline{1} \\ 1 & 0 & 0 \end{bmatrix} \quad M_{S} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 1 & 1 \end{bmatrix}$$

CS 441 Discrete mathematics for CS

Examples:

- Let $A = \{1,2\}, \{1,2,3\} C = \{a,b\}$
- $R = \{(1,2),(1,3),(2,1)\}$ is a relation from A to B
- $S = \{(1,a),(3,b),(3,a)\}$ is a relation from B to C.
- SOR = $\{(1,b),(1,a),(2,a)\}$

$$M_{R} = 1$$
 0 1 1 1 1 0 0 0 $M_{S} = 0$ 0 1 1

$$M_R \odot M_S = \begin{bmatrix} x & x \\ x & x \end{bmatrix}$$

CS 441 Discrete mathematics for CS

M. Hauskrecht

Implementation of composite

Examples:

- Let $A = \{1,2\}, \{1,2,3\} C = \{a,b\}$
- $R = \{(1,2),(1,3),(2,1)\}$ is a relation from A to B
- $S = \{(1,a),(3,b),(3,a)\}$ is a relation from B to C.
- S O R = $\{(1,b),(1,a),(2,a)\}$

$$M_{R} = 1$$
 0 0 $M_{S} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 1 & 1 \end{bmatrix}$

$$M_R \odot M_S = 1 x$$
 $x x$

CS 441 Discrete mathematics for CS

Examples:

- Let $A = \{1,2\}, \{1,2,3\} C = \{a,b\}$
- $R = \{(1,2),(1,3),(2,1)\}$ is a relation from A to B
- $S = \{(1,a),(3,b),(3,a)\}$ is a relation from B to C.
- SOR = $\{(1,b),(1,a),(2,a)\}$

CS 441 Discrete mathematics for CS

M. Hauskrecht

Implementation of composite

Examples:

- Let $A = \{1,2\}, \{1,2,3\} C = \{a,b\}$
- $R = \{(1,2),(1,3),(2,1)\}$ is a relation from A to B
- $S = \{(1,a),(3,b),(3,a)\}$ is a relation from B to C.
- S O R = $\{(1,b),(1,a),(2,a)\}$

$$M_{R} = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix} \quad M_{S} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}$$

$$M_{R} \odot M_{S} = \begin{bmatrix} 1 & 1 \\ 1 & x \end{bmatrix}$$

CS 441 Discrete mathematics for CS

Examples:

- Let $A = \{1,2\}, \{1,2,3\} C = \{a,b\}$
- $R = \{(1,2),(1,3),(2,1)\}$ is a relation from A to B
- $S = \{(1,a),(3,b),(3,a)\}$ is a relation from B to C.
- S O R = $\{(1,b),(1,a),(2,a)\}$

$$M_{R} = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix} \qquad M_{S} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$M_{R} \odot M_{S} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$$

$$M_{S \cap R} = ?$$

CS 441 Discrete mathematics for CS

M. Hauskrecht

Implementation of composite

Examples:

- Let $A = \{1,2\}, \{1,2,3\} C = \{a,b\}$
- $R = \{(1,2),(1,3),(2,1)\}$ is a relation from A to B
- $S = \{(1,a),(3,b),(3,a)\}$ is a relation from B to C.
- S O R = $\{(1,b),(1,a),(2,a)\}$

$$M_{R} = 1$$
 0 1 1 1 1 0 0 0 $M_{S} = 0$ 0 1 1 1

$$M_R \odot M_S = 1 \qquad 1 \qquad 1 \qquad 1 \qquad 0$$

$$M_{S \odot R} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$$

CS 441 Discrete mathematics for CS

Definition: Let R be a relation on a set A. The **powers R**ⁿ, n = 1,2,3,... is defined inductively by

•
$$R^1 = R$$
 and $R^{n+1} = R^n \cap R$.

Examples

- $R = \{(1,2),(2,3),(2,4),(3,3)\}$ is a relation on $A = \{1,2,3,4\}$.
- $R^1 = ?$

CS 441 Discrete mathematics for CS

M. Hauskrecht

Composite of relations

Definition: Let R be a relation on a set A. The **powers** \mathbb{R}^n , n = 1,2,3,... is defined inductively by

•
$$R^1 = R$$
 and $R^{n+1} = R^n \cap R$.

Examples

- $R = \{(1,2),(2,3),(2,4),(3,3)\}$ is a relation on $A = \{1,2,3,4\}$.
- $R^1 = R = \{(1,2),(2,3),(2,4),(3,3)\}$
- $R^2 = ?$

CS 441 Discrete mathematics for CS

Definition: Let R be a relation on a set A. The **powers R**ⁿ, n = 1,2,3,... is defined inductively by

• $R^1 = R$ and $R^{n+1} = R^n \cap R$.

Examples

- $R = \{(1,2),(2,3),(2,4),(3,3)\}$ is a relation on $A = \{1,2,3,4\}$.
- $R^1 = R = \{(1,2),(2,3),(2,4),(3,3)\}$
- $R^2 = \{(1,3), (1,4), (2,3), (3,3)\}$
- $R^3 = ?$

CS 441 Discrete mathematics for CS

M. Hauskrecht

Composite of relations

Definition: Let R be a relation on a set A. The **powers R**ⁿ, n = 1,2,3,... is defined inductively by

• $R^1 = R$ and $R^{n+1} = R^n \cap R$.

Examples

- $R = \{(1,2),(2,3),(2,4),(3,3)\}$ is a relation on $A = \{1,2,3,4\}$.
- $R^1 = R = \{(1,2),(2,3),(2,4),(3,3)\}$
- $R^2 = \{(1,3), (1,4), (2,3), (3,3)\}$
- $R^3 = \{(1,3), (2,3), (3,3)\}$
- $R^4 = ?$

CS 441 Discrete mathematics for CS

Definition: Let R be a relation on a set A. The **powers Rⁿ**, n = 1,2,3,... is defined inductively by

•
$$R^1 = R$$
 and $R^{n+1} = R^n \cap R$.

Examples

- $R = \{(1,2),(2,3),(2,4),(3,3)\}$ is a relation on $A = \{1,2,3,4\}$.
- $R^1 = R = \{(1,2),(2,3),(2,4),(3,3)\}$
- $R^2 = \{(1,3), (1,4), (2,3), (3,3)\}$
- $R^3 = \{(1,3), (2,3), (3,3)\}$
- $R^4 = \{(1,3), (2,3), (3,3)\}$
- $R^{k} = ?, k > 3.$

CS 441 Discrete mathematics for CS

M. Hauskrecht

Composite of relations

Definition: Let R be a relation on a set A. The **powers R**ⁿ, n = 1,2,3,... is defined inductively by

•
$$\mathbf{R}^1 = \mathbf{R}$$
 and $\mathbf{R}^{n+1} = \mathbf{R}^n \cap \mathbf{R}$.

Examples

- $R = \{(1,2),(2,3),(2,4),(3,3)\}$ is a relation on $A = \{1,2,3,4\}$.
- $R^1 = R = \{(1,2),(2,3),(2,4),(3,3)\}$
- $R^2 = \{(1,3), (1,4), (2,3), (3,3)\}$
- $R^3 = \{(1,3), (2,3), (3,3)\}$
- $R^4 = \{(1,3), (2,3), (3,3)\}$
- $R^k = R^3, k > 3$.

CS 441 Discrete mathematics for CS

Transitive relation

Definition (transitive relation): A relation R on a set A is called **transitive** if

- $[(a,b) \in R \text{ and } (b,c) \in R] \rightarrow (a,c) \in R \text{ for all } a,b,c \in A.$
- Example 1:
- $R_{div} = \{(a b), if a | b\}$ on $A = \{1,2,3,4\}$
- $R_{div} = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,4), (3,3), (4,4)\}$
- Is R_{div} transitive?
- Answer: ?

CS 441 Discrete mathematics for CS

M. Hauskrecht

Transitive relation

Definition (transitive relation): A relation R on a set A is called **transitive** if

- $[(a,b) \in R \text{ and } (b,c) \in R] \rightarrow (a,c) \in R \text{ for all } a,b,c \in A.$
- Example 1:
- $R_{div} = \{(a b), if a | b\} \text{ on } A = \{1,2,3,4\}$
- $R_{div} = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,4), (3,3), (4,4)\}$
- Is R_{div} transitive?
- · Answer: Yes.

CS 441 Discrete mathematics for CS

Connection to Rⁿ

Theorem: The relation R on a set A is transitive <u>if and only if</u> $R^n \subseteq R$ for n = 1,2,3,...

Proof: biconditional (if and only if)

(\leftarrow) Suppose $R^n \subseteq R$, for n = 1, 2, 3, ...

- Let $(a,b) \in R$ and $(b,c) \in R$
- by the definition of R O R, $(a,c) \in R \cap R = R^2 \subseteq R$
- Therefore R is transitive.

CS 441 Discrete mathematics for CS

M. Hauskrecht

Connection to Rⁿ

Theorem: The relation R on a set A is transitive if and only if $R^n \subseteq R$ for n = 1,2,3,...

Proof: biconditional (if and only if)

 (\rightarrow) Suppose R is transitive. Show Rⁿ ⊆ R, for n =1,2,3,....

- Let P(n): $R^n \subseteq R$. Mathematical induction.
- Basis Step:

CS 441 Discrete mathematics for CS

Connection to Rⁿ

Theorem: The relation R on a set A is transitive if and only if $R^n \subseteq R$ for n = 1,2,3,...

Proof: biconditional (if and only if)

 (\rightarrow) Suppose R is transitive. Show Rⁿ ⊆ R, for n =1,2,3,...

- Let $P(n) : R^n \subseteq R$. Mathematical induction.
- **Basis Step:** P(1) says $R^1 = R$ so, $R^1 \subseteq R$ is true.

CS 441 Discrete mathematics for CS

M. Hauskrecht

Connection to Rⁿ

Theorem: The relation R on a set A is transitive if and only if $R^n \subseteq R$ for n = 1,2,3,....

Proof: biconditional (if and only if)

 (\rightarrow) Suppose R is transitive. Show Rⁿ ⊆ R, for n =1,2,3,...

- Let $P(n) : R^n \subseteq R$. Mathematical induction.
- Basis Step: P(1) says $R^1 = R$ so, $R^1 \subseteq R$ is true.
- **Inductive Step:** show $P(n) \rightarrow P(n+1)$
- Want to show if $R^n \subseteq R$ then $R^{n+1} \subseteq R$.

CS 441 Discrete mathematics for CS

Connection to Rⁿ

Theorem: The relation R on a set A is transitive if and only if $R^n \subseteq R$ for n = 1, 2, 3, ...

Proof: biconditional (if and only if)

(→) Suppose R is transitive. Show $R^n \subset R$, for n = 1,2,3,...

- Let $P(n) : R^n \subset R$. Mathematical induction.
- Basis Step: P(1) says $R^1 = R$ so, $R^1 \subseteq R$ is true.
- **Inductive Step:** show $P(n) \rightarrow P(n+1)$
- Want to show if $R^n \subseteq R$ then $R^{n+1} \subseteq R$.
- Let $(a,b) \in R^{n+1}$ then by the definition of $R^{n+1} = R^n \cap R$ there is an element $x \in A$ so that $(a,x) \in R$ and $(x,b) \in R^n \subseteq R$ (inductive hypothesis). In addition to $(a,x) \in R$ and $(x,b) \in R$, R is transitive; so $(a,b) \in R$.
- Therefore, $R^{n+1} \subseteq R$.

CS 441 Discrete mathematics for CS

M. Hauskrecht

Number of reflexive relations

Theorem: The number of reflexive relations on a set A, where |A| = n is: $2^{n(n-1)}$.

Proof:

- A reflexive relation R on A **must contain** all pairs (a,a) where a ∈ A.
- All other pairs in R are of the form (a,b), $a \neq b$, such that $a, b \in A$.
- How many of these pairs are there? Answer: n(n-1).
- How many subsets on n(n-1) elements are there?
- Answer: $2^{n(n-1)}$.

CS 441 Discrete mathematics for CS