截止时间: 2021. 5. 11 (周二)

姓名:陈稼霖 学号:45875852

成绩:

第 1 题 得分: _____. 考虑临近作用的铁磁性 Ising 模型,写出自由能

$$F_I(M) = -\frac{kT}{N} \ln Q_{N_{\uparrow}}$$

在零磁场下展开到 M^4 的形式. 讨论此展开式在 $T > T_c$ 和 $T < T_c$ 的图像并求出两种情况下 $F_I(M)$ 的最小值和相应的磁化强度 M. (此类展开只适用于临界温度附近,故展开式中各项的系数只需保留到 $|T - T_c|$ 的领头阶.)

解: Ising 模型的自由能为

$$F_I(M) = -kT \ln Q_{N_{\uparrow}} = -\mu H \mathcal{N} M + \frac{n \varepsilon \mathcal{N} M^2}{2} + \frac{kT \mathcal{N} (1+M)}{2} \ln \frac{1+M}{2} + \frac{kT \mathcal{N} (1-M)}{2} \ln \frac{1-M}{2}, \qquad (1)$$

将其展开到 M^4 的形式得

$$F_{I}(M) = -\mu H \mathcal{N} M + \frac{n \varepsilon \mathcal{N} M^{2}}{2} + \frac{k T \mathcal{N}}{2} (1 + M) \left[-\ln 2 + M - \frac{1}{2} M^{2} + \frac{1}{3} M^{3} - \frac{1}{4} M^{4} \right]$$

$$+ \frac{k T \mathcal{N}}{2} (1 - M) \left[-\ln 2 - M - \frac{1}{2} M^{2} - \frac{1}{3} M^{3} - \frac{1}{4} M^{4} \right]$$

$$= \mathcal{N} k T \left[\frac{1}{12} M^{4} + \left(\frac{n \varepsilon}{2kT} + \frac{1}{2} \right) M^{2} - \frac{\mu H}{kT} M - \ln 2 \right],$$
(2)

零磁场下,上式可化为

$$F_I(M) = \mathcal{N}kT \left[\frac{1}{12} M^4 + \left(\frac{n\varepsilon}{2kT} + \frac{1}{2} \right) M^2 - \ln 2 \right]. \tag{3}$$

Bragg-Williams 公式:

$$\frac{\partial}{\partial M} \left(\frac{1}{\mathcal{N}} \ln Q_{N_{\uparrow}} \right) = 0, \tag{4}$$

$$\Longrightarrow \frac{1}{3}M^3 = \left(\frac{T_c}{T} - 1\right)M,\tag{5}$$

其中 $T_c = -\frac{n\varepsilon}{k}$.

当 $T>T_c$, $\frac{T_c}{T}+1>0$,由 Bragg-Williams 公式解得 M=0 (图 (1)),亦即 $F_I(M)$ 仅有一个最小值,这一最小自由能为

$$F_I(M=0) = -\mathcal{N}kT\ln 2. \tag{6}$$

图 1: $T > T_c$ 下,Bragg-Williams 公式的情况,其中蓝线代表函数 $\frac{M^3}{3}$,橙线代表函数 $\left(\frac{T_c}{T}-1\right)M$

当 $T < T_c$, $\frac{T_c}{T} + 1 < 0$,由 Bragg-Williams 公式解得三个根 M = 0, $M = \pm \sqrt{3\left(\frac{T_c}{T} - 1\right)}$ (图 $(\ref{eq:continuous})$),其中

$$\frac{\partial^2}{\partial M^2} F_I = \mathcal{N}kT \left(M^2 + 1 - \frac{T_c}{T} \right) = \begin{cases} \mathcal{N}kT \left(1 - \frac{T_c}{T} \right) < 0, & M = 0, \\ \frac{2}{3} \left(\frac{T_c}{T} - 1 \right) > 0, & M = \pm \sqrt{3 \left(\frac{T_c}{T} - 1 \right)}. \end{cases}$$
 (7)

故 F_I 在 M=0 处取极大值,在 $M=\pm\sqrt{3\left(\frac{T_c}{T}-1\right)}$ 处取极小值. 自由能取极小值处即对应 Ising 的真实状态,此时自由能为

$$F_I\left(M = \pm\sqrt{3\left(\frac{T_c}{T} - 1\right)}\right) = \mathcal{N}kT\left[-\frac{17}{108}\left(\frac{T_c}{T} - 1\right)^2 - \ln 2\right]. \tag{8}$$

图 2: $T < T_c$ 下,Bragg-Williams 公式的情况,其中蓝线代表函数 $\frac{M^3}{3}$,橙线代表函数 $\left(\frac{T_c}{T}-1\right)M$