Let A be a nonempty set, and let

$$S_A = \{f : A \longrightarrow A : f \text{ is both 1 to 1 and onto}\}\$$

Show that S_A is a group under composition. Is S_A an Abelian group?

a. Closure: Want to show that, \forall f, g \in S_A, f o g \in S_A

Let f, $g \in S_A$, and let $a \in A$.

Since both f and g are well defined, f(a) and g(a) exist.

Since both f and g map to A, $f(a) \in A$ and $g(a) \in A$. (1)

Since both f and g are one to one, f(a) and g(a) are unique. (2)

By (1) and (2), f(g(a)) and g(f(a)) both exist and are unique.

Therefore, both f o g and g o f are one-to-one.

Now, we want to show that they're onto.

Suppose $\exists a_0 \in A$ such that $f(g(a)) \neq a_0$ (or that $g(f(a)) \neq a_0$), $\forall a \in A$.

However, if $a_0 \in A$, then it gets mapped onto by both f and g.

So that means there exists some a_f and a_g in A such that $f(a_g) = a_0$ (or $g(a_f) = a_0$).

And since a_f and a_g are in A, they get mapped to by f and g, respectively.

Thus, a contradiction.

b. Associativity: Want to show that, \forall f, g, h \in S_A, (f o g) o h = f o (g o h).

Let f, g, $h \in S_A$, and let $a \in A$.

Let $h(a) = a_h$, $g(h(a)) = a_{gh}$, $f(a) = a_f$, $f(g(a)) = a_{fg}$, which are all defined since f, g, and h are all well defined and onto.

Notice that $((f \circ g) \circ h)(a) = f(g(a_h))$ and $(f \circ (g \circ h))(a) = f(a_{gh})$.

Want to show: $g(a_h) = a_{gh}$.

Well, $g(a_h) = g(a(h))$ by definition, and $a_{gh} = g(a(h))$ by definition.

Hence, result.

- c. **Identity:** Want to show that $\exists I \in S_A$ such that I o f = f o I = f, $\forall f \in S_A$.
- d. **Inverse:** Want to show that, $\forall f \in S_A$, $\exists f^{-1}$ such that $f(f^{-1}(a)) = f^{-1}(f(a)) = a$, $\forall a \in A$.

 S_A is **NOT** an Abelian group (since function composition is not commutative).