MATH 4720 / MSSC 5720

Instructor: Mehdi Maadooliat

Chapter 8 (Part B)

Department of Mathematical and Statistical Sciences

BACK TO ANOVA: WHAT IF EQUALITY OF THE VARIANCES FAIL?

- The assumption that the sample are generated from normal distribution is not very important as long as the total sample size is large.
- Note that conceptually the test statistic $F = \frac{SS_B/df_B}{SS_E/df_E}$ still makes sense.
- The major problem is with the assumption $\sigma_1=\sigma_2=\cdots=\sigma_t$. If this cannot be assumed, F- test must not be used.
- If H_0 : $\sigma_1 = \sigma_2 = \cdots = \sigma_t$ is rejected, then one approach is to transform the data if the variances σ^2 is a function of the mean μ .

2

EQUALITY OF VARIANCES FAIL CONT'D

Transforming the data:

Treatment Levels

1	2	3	•			t
y_{11}	y_{21}	y_{31}		•	•	y_{t1}
y_{12}	y_{22}	y_{32}	•	•	•	y_{t2}
•	•	•				•
•	•	•				•
y_{1n_1}	y_{2n_2}	y_{3n_3}	•	•	•	y_{tn_t}
		======	≡	==	==	
$N(\mu_1, \sigma_1^2)$	$N(\mu_2,\sigma_2^2)$	$N(\mu_3, \sigma_3^2)$				$N(\mu_t, \sigma_t^2)$

- If $\sigma^2 \propto \mu$, then use $Y_T = \sqrt{Y}$ or $\sqrt{Y + 0.375}$
- If $\sigma^2 \propto \mu^2$, then use $Y_T = \ln(Y)$ or $\ln(Y+1)$
- If $\sigma^2 \propto \mu(1-\mu)$, then use $Y_T = \sin^{-1} \sqrt{Y}$

BOOK EXAMPLE 8.4

 Biologists believe that Mississippi river causes the oxygen level to be depleted near the Gulf of Mexico. To test this hypothesis water samples are taken at different distances from the mouth of Mississippi river, and the amounts of dissolve oxygen (in ppm) are recorded

Distance

a)
O
0
0
ù O K
en C
gen (
gen (
ygen (
ygen (
xygen (
)xygen (
Oxygen (

1 KM	5 KM	10 KM	20 KM
1	4	20	37
5	8	26	30
			•
			•
2	3	24	33
$\overline{y}_{1.} = 2.2$	$\overline{y}_{2.} = 4.6$	$\overline{y}_{3.} = 21.2$	$\overline{y}_{4.} = 31.4$
$s_1 = 1.476$	$s_2 = 2.119$	$s_3 = 4.7333$	$s_4 = 5.522$

EXAMPLE 8.4 CONT'D

- H_0 : $\sigma_1 = \sigma_2 = \cdots = \sigma_t$
- > In R: levene.test(unlist(exmp8.4), rep(1:4,each=10))

Test for Equal Variances: Oxygen Content versus Distance to Mouth

- Levene's test p value is 0.02.
- Reject the H_0 : Equality of variances
- Let's calculate $\frac{s_i^2}{\bar{y}_{i.}}$ for i=1,2,3,4

EXAMPLE 8.4 CONT'D

•
$$\overline{y}_{1.} = 2.2$$
 $\overline{y}_{2.} = 4.6$ $\overline{y}_{3.} = 21.2$ $\overline{y}_{4.} = 31.4$ $s_1 = 1.476$ $s_2 = 2.119$ $s_3 = 4.7333$ $s_4 = 5.522$

•
$$\frac{s_1^2}{\bar{y}_1} = 0.99$$
 $\frac{s_2^2}{\bar{y}_2} = 0.97$ $\frac{s_3^2}{\bar{y}_3} = 1.06$ $\frac{s_4^2}{\bar{y}_4} = 0.97$

- So, nearly, Variance $\propto Mean$.
- We use the transformation $Y_T = \sqrt{Y + 0.375}$

Distance

 Now, the ANOVA on this transformed data can be performed.

	1 KM	5 KM	10 KM	20 KM
ata	1.173	2.092	4.514	6.114
ed D	2.318	2.894	5.136	5.511
orm.		•	•	
Transformed Data		•	•	
Tra	1.541	1.837	4.937	5.777
	$\overline{y}_{1.} = 1.54$	$\overline{y}_{2.} = 2.19$	$\overline{y}_{3.} = 4.62$	$\overline{y}_{4.} = 5.62$
	$s_1^2 = 0.24$	$s_2^2 = 0.22$	$s_3^2 = 0.29$	$s_4^2 = 0.24$

A COMPREHENSIVE MODELING APPROACH

(USEFUL FOR MODEL ASSESSMENT AND EXTENSIONS)

• To generalized the ANOVA, it is easier to think of one-factor ANOVA in the following way:

$$y_{ij} = \mu + \tau_i + \epsilon_{ij}, \qquad j = 1, 2, ..., n_i, \qquad i = 1, 2, ..., t$$

- Here,
 - τ_i is the effect due to i^{th} treatment,
 - $-\mu$ is the overall effect irrespective of the treatment,
 - ϵ_{ij} s are the random errors
- Assumption:
 - The random errors $\epsilon_{ij}s$ are independent and normally distributed

-
$$Var(\epsilon_{ij}) = \sigma^2$$
 (a constant value)

HOW ABOUT THE HYPOTHESIS TEST?

To test the effect of the treatment, we can test

- H_0 : $\tau_i = 0$, for all i = 1, 2, ..., t
- H_a : $\tau_i \neq 0$, for some i
- Test Statistics and decision rule are same as before

• TS:
$$F = \frac{SS_B/df_B}{SS_E/df_E}$$

• Decision Rule: Reject H_0 in favor of H_a if

$$-F > F_{\alpha}(df_B, df_E)$$

CHECKING THE ASSUMPTIONS

• To check the assumption, we first estimate the errors ϵ_{ij} by r_{ij} (called residuals)

$$r_{ij} = y_{ij} - \hat{\mu} - \hat{\tau}_i$$

- To test, normal distribution of errors ϵ_{ij} , we look at the normal probability plot of r_{ij} .
- To test that the $Var(\epsilon_{ij}) = constant$, we look at the scatter plot of the residuals r_{ij} and the predicted values \hat{y}_{ij} , where

$$\hat{y}_{ij} = \hat{\mu} + \hat{\tau}_i$$

GOING BACK TO EXAMPLE 8.4

 Biologists believe that Mississippi river causes the oxygen level to be depleted near the Gulf of Mexico. To test this hypothesis water samples are taken at different distances from the mouth of Mississippi river, and the amounts of dissolve oxygen (in ppm) are recorded

Distance

a)
O
0
0
ù O K
en C
gen (
gen (
ygen (
ygen (
xygen (
)xygen (
Oxygen (

1 KM	5 KM	10 KM	20 KM
1	4	20	37
5	8	26	30
	•		•
2	3	24	33
$\overline{y}_{1.} = 2.2$	$\overline{y}_{2.} = 4.6$	$\overline{y}_{3.} = 21.2$	$\overline{y}_{4.} = 31.4$
$s_1 = 1.476$	$s_2 = 2.119$	$s_3 = 4.7333$	$s_4 = 5.522$

WRONG ANOVA

- In R:
 - model1 <- aov(unlist(exmp8.4)~ factor(rep(1:4,each=10)))</p>
 - summary(model1)

One-way ANOVA: Oxygen Content versus Distance to Mouth

Source DF SS MS F P
Distance to Mouth 3 5793.1 1931.0 129.70 0.000
Error 36 536.0 14.9
Total 39 6329.1
$$S = 3.859 R-Sq = 91.53\$ R-Sq(adj) = 90.83\$$$

- plot(model1)
- Although the normal probability plot is not very closed to straight line
- But we have relatively large total sample size n=40

WRONG ANALYSIS CONT'D

- Fitted values versus Residuals:
 - Scatterplot of \widehat{y}_{ij} versus r_{ij}

- Due to cone shape, we can conclude that $Var(\epsilon_i)$ is not constant.
- We can further say that this variance is a function of the mean of y_i . $_{_{12}}$

CORRECT ANALYSIS BASED ON TRANSFORMED DATA

- $Var(y_i) = Var(\epsilon_i) \propto E(y_i)$ the mean of y_i .
- $Y_T = \sqrt{Y + 0.375}$
- \rightarrow model2 <- aov(unlist(sqrt(exmp8.4+0.375)) \sim factor(rep(1:4,each=10)))
- summary(model2)

One-way ANOVA: Y_t versus Distance to Mouth

Source DF SS MS F P
Distance to Mouth 3 113.095 37.698 153.30 0.000
Error 36 8.853 0.246
Total 39 121.948
$$S = 0.4959 \quad R-Sq = 92.74% \quad R-Sq(adj) = 92.14%$$

- For the transformed variable ANOVA we need to check the assumptions
 - Normal distributions of the errors
 - $Var(\epsilon_i)$ = constant are satisfied.

CHECKING THE ASSUMPTIONS BASED ON TRANSFORMED DATA

- plot(model2)
- $Var(\epsilon_i)$ = constant

Normal distributions of the errors

TWO-FACTOR ANALYSIS OF VARIANCE

- Two Way ANOVA
- In R
 - aov(Y ~ Factor.A * Factor.B)

Levels

- Factor A: Low High
- Factor B Low Medium High

A COMPREHENSIVE MODELING APPROACH

The observation Y is affected by two factors A and B

$$y_{ijk} = \mu + \alpha_i + \beta_j + \gamma_{ij} + \epsilon_{ijk}$$

Here

- α_i effect of i^{th} level of factor A
- β_i effect of j^{th} level of factor B
- γ_{ij} called the interaction effect of A and B
- ϵ_{ijk} random errors

• Assumptions:

- (1) Errors are normally distributed
- (2) $Var(\epsilon_{ijk}) =$ Constant.

WHAT IS INTERACTION EFFECT?

Meaning of Interaction Effect

WHAT IS INTERACTION EFFECT? CONT'D

 No Interaction

Interaction

AUSTRALIAN INSTITUTE OF SPORT EXAMPLE

Response Variable: Weight

Factor A: Gender

Factor B: Sport

- Two-way ANOVA: yield versus Factor A, Factor B
 - In R:
 - summary(model3 <- aov(Wt ~ gender * sport, data=ais2))</p>

	DF	SS	MS	F value	Pr (>F)
Gender	1	7424	7424	95.845	<2e-16 ***
Sport	6	10975	1829	23.614	<2e-16 ***
Interaction	6	185	31	0.398	0.879
Error	144	11155	77		

CHECKING THE ASSUMPTIONS BASED ON TRANSFORMED DATA

- plot(model3)
- $Var(\epsilon_i)$ = constant

Normal distributions of the errors

ANOVA RESULTS BASED ON THE TRANSFORMED DATA

Assumptions of errors seems to be satisfied

- H_0 : $\gamma_{ij} = 0$ vs. H_a : $\gamma_{ij} \neq 0$
 - TS. F = 0.398, p-value = 0.897
 - There is no significant interaction
- H_0 : $\alpha_i = 0$ vs. H_a : $\alpha_i \neq 0$
 - TS. F = 95.845, p-value $< 2 * 10^{-16}$
 - Significant effect of Gender
- H_0 : $\beta_i = 0$ vs. H_a : $\beta_i \neq 0$
 - TS. F = 23.614, p-value $< 2 * 10^{-16}$
 - Significant effect of Sport

INTERACTION

- In R:
- with(ais2, {interaction.plot(sport, gender, Wt, fixed = TRUE)})
- with(ais2, {interaction.plot(gender, sport, Wt, fixed = TRUE)})

