ML Homework2

TAs' email address: jhhlab.tw@gmail.com

Description:

1. Naive Bayes classifier

Create a Naive Bayes classifier for each handwritten digit that support discrete and continuous features.

- Input:
 - 1. Training image data from MNIST
 - You Must download the MNIST from this website and parse the data by yourself.
 (Please do not use the build in dataset or you'll not get 100.)
 - Please read the description in the link to understand the format.
 - Basically, each image is represented by 28 × 28 × 8 bits (Whole binary file is in big endian format; you need to deal with it), you can use a char arrary to store an image.
 - image.

 | Mpixel 引大小 大小刀 | htt (= 8 bits)

 There are some headers you need to deal with as well, please read the link for more details.

 **There are some headers you need to deal with as well, please read the link for more details.

 **There are some headers you need to deal with as well, please read the link for more details.

 **There are some headers you need to deal with as well, please read the link for more details.
 - 2. Training lable data from MNIST.
 - 3. Testing image from MNIST
 - 4. Testing label from MNIST
 - 5. Toggle option
 - 0: discrete mode
 - 1: continuous mode

TRAINING SET IMAGE FILE (train-images-idx3-ubyte)

offset	type	value	description
0000	32 bit integer	0x00000803(2051)	magic number
0004	32 bit integer	60000	number of images
8000	32 bit integer	28	number of rows
0012	32 bit integer	28	number of columns
0016	unsigned byte	??	pixel
0017	unsigned byte	??	pixel
xxxx	unsigned byte	??	pixel

TRAINING SET LABEL FILE (train-labels-idx1-ubyte)

offset	type	value	description
0000	32 bit integer	0x00000801(2049)	magic number
0004	32 bit integer	60000	number of items
0008	unsigned byte	??	label
0009	unsigned byte	??	label
xxxx	unsigned byte	??	label

The labels values are from 0 to 9.

• Output:

- Print out the posterior (in log scale to avoid underflow) of the ten categories (0-9) for each image in INPUT 3. Don't forget to marginalize them so sum it up will equal to 1.
- For each test image, print out your prediction which is the category having the highest posterior, and tally the prediction by comparing with INPUT 4.
- Print out the imagination of numbers in your Bayes classifier
 - For each digit, print a 28×28 binary image which 0 represents a white pixel, and 1 represents a black pixel.
 - The pixel is 0 when Bayes classifier expect the pixel in this position should less then 128 in original image, otherwise is 1.
- Calculate and report the error rate in the end.

• Function:

1. In Discrete mode:

■ Tally the frequency of the values of each pixel into 32 bins. For example, The gray level 0 to 7 should be classified to bin 0, gray level 8 to 15 should be bin 1 ... etc. Then perform Naive Bayes classifier. **Note** that to avoid empty bin, you can use a peudocount (such as the minimum value in other bins) for instead.

2. In Continuous mode:

- Use MLE to fit a Gaussian distribution for the value of each pixel. Perform Naive Bayes classifier.
- Sample input & output (**for reference only**)

```
Postirior (in log scale):
2
  0: 0.11127455255545808
  1: 0.11792841531242379
  2: 0.1052274113969039
  3: 0.10015879429196257
  4: 0.09380188902719812
  5: 0.09744539128015761
  6: 0.1145761939658308
9
  7: 0.07418582789605557
10
  8: 0.09949702276138589
11
  9: 0.08590450151262384
  Prediction: 7, Ans: 7
12
13
14
  Postirior (in log scale):
15
  0: 0.10019559729888124
  1: 0.10716826094630129
16
  2: 0.08318149248873129
17
  3: 0.09027637439145528
18
19
  4: 0.10883493744297462
  5: 0.09239544343955365
2.0
  6: 0.08956194806124541
21
22
  7: 0.11912349865671235
  8: 0.09629347315717969
23
24
  9: 0.11296897411696516
  Prediction: 2, Ans: 2
25
26
27
  ... all other predictions goes here ...
28
29
  Imagination of numbers in Bayesian classifier:
30
31
  0:
  32
  33
  34
  35
  36
37
  39
```

```
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
... all other imagination of numbers goes here ...
62
6.3
9:
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
```

2. Online learning

Use online learning to learn the beta distribution of the parameter p (chance to see 1) of the coin tossing trails in batch.

- Input:
 - 1. A file contains many lines of binary outcomes:

```
1  01010101110110110101
2  0110101
3  010110101101
```

- 2. parameter a for the initial beta prior
- 3. parameter b for the initial beta prior
- Output: Print out the Binomial likelihood (based on MLE, of course), Beta prior and posterior probability (parameters only) for each line.
- Function: Use Beta-Binomial conjugation to perform online learning.
- Sample input & output (for reference only)
 - Input: A file (here shows the content of the file)

```
1  $ cat testfile.txt
2  01010101010101010101
3  0110101
4  010110101101
5  010110101110011010
6  111101100011110
7  101110111000110
8  1010010111
9  11101110110
10  01000111101
11  110100111
12  01101010111
```

- Output
 - Case 1: a = 0, b = 0

```
case 2: 0110101
 7
    Likelihood: 0.29375515303997485
8
    Beta prior: a = 11 b = 11
9
    Beta posterior: a = 15 b = 14
10
    case 3: 010110101101
11
12
    Likelihood: 0.2286054241794335
    Beta prior: a = 15 b = 14
13
14
    Beta posterior: a = 22 b = 19
15
    case 4: 0101101011101011010
16
17
    Likelihood: 0.18286870706509092
    Beta prior: a = 22 b = 19
18
19
    Beta posterior: a = 33 b = 27
20
    case 5: 111101100011110
21
   Likelihood: 0.2143070548857833
22
    Beta prior: a = 33 b = 27
23
24
    Beta posterior: a = 43 b = 32
25
26
    case 6: 1011110111000110
27
    Likelihood: 0.20659760529408
    Beta prior: a = 43 b = 32
28
    Beta posterior: a = 52 b = 38
29
30
    case 7: 1010010111
31
   Likelihood: 0.25082265600000003
32
33
    Beta prior: a = 52 b = 38
34
    Beta posterior: a = 58 b = 42
35
    case 8: 11101110110
36
    Likelihood: 0.2619678932864457
37
    Beta prior: a = 58 b = 42
38
39
    Beta posterior: a = 66 b = 45
40
    case 9: 01000111101
41
   Likelihood: 0.23609128871506807
42
    Beta prior: a = 66 b = 45
43
44
    Beta posterior: a = 72 b = 50
45
46
    case 10: 110100111
    Likelihood: 0.27312909617436365
47
    Beta prior: a = 72 b = 50
48
49
    Beta posterior: a = 78 b = 53
50
51
   case 11: 01101010111
   Likelihood: 0.24384881449471862
52
   Beta prior: a = 78 b = 53
53
```

```
Beta posterior: a = 85 b = 57
```

■ Case 2: a = 10, b = 1

```
case 1: 0101010101001011010101
    Likelihood: 0.16818809509277344
 2
 3
   Beta prior: a = 10 b = 1
    Beta posterior: a = 21 b = 12
 4
 5
    case 2: 0110101
 6
 7
    Likelihood: 0.29375515303997485
                 a = 21 b = 12
 8
    Beta prior:
    Beta posterior: a = 25 b = 15
9
10
    case 3: 010110101101
11
12
    Likelihood: 0.2286054241794335
    Beta prior: a = 25 b = 15
13
    Beta posterior: a = 32 b = 20
14
15
    case 4: 0101101011101011010
16
17
    Likelihood: 0.18286870706509092
18
    Beta prior: a = 32 b = 20
19
    Beta posterior: a = 43 b = 28
20
21
    case 5: 111101100011110
   Likelihood: 0.2143070548857833
22
    Beta prior: a = 43 b = 28
23
24
    Beta posterior: a = 53 b = 33
25
26
    case 6: 1011110111000110
    Likelihood: 0.20659760529408
27
28
    Beta prior: a = 53 b = 33
29
    Beta posterior: a = 62 b = 39
30
    case 7: 1010010111
31
   Likelihood: 0.25082265600000003
32
    Beta prior: a = 62 b = 39
33
    Beta posterior: a = 68 b = 43
34
35
36
    case 8: 11101110110
37
    Likelihood: 0.2619678932864457
    Beta prior: a = 68 b = 43
38
39
    Beta posterior: a = 76 b = 46
40
41
    case 9: 01000111101
   Likelihood: 0.23609128871506807
42
43
    Beta prior: a = 76 b = 46
44
    Beta posterior: a = 82 b = 51
45
```

3. Show the distribution of online learning

Following the result of **2. Online learning**, try to show distribution of prior, likelihood function and posterior **step by step**.

For example, the prior is given by a beta distribution with parameters a=2, b=2, and the likelihood function, given with N=m=1, corresponds to a single observation of x=1, so that the posterior is given by a beta distribution with parameters a=3, b=2.

4. Prove Beta-Binomial conjugation

Try to proof Beta-Binomial conjugation and write the process on paper.

X You should write down the proof process on paper and take a picture. When you hand in HW02, it must contain your code and picture.

NOTE:

- O Use whatever programming language you prefer.
- O You can't use **numpy.random.beta** in HW02. That would be great if you implement all distribution by yourself.
- O HW02 must contain your code and proof process (can be .pdf or any image format).