Natural Language Processing with Deep Learning

Lecture 12 – Text generation 5: Transformers and contemporary LLMs

Prof. Dr. Ivan Habernal

January 12, 2024

Natural Language Processing Group Paderborn University We focus on Trustworthy Human Language Technologies

www.trusthlt.org

Motivation

Knowing encoder transformer (BERT) and decoder transformer (GPT), let's go back to the origins

Attention Is All You Need

Ashish Vaswani* Google Brain avaswani@google.com Noam Shazeer* Google Brain noam@google.com Niki Parmar* Google Research nikip@google.com Jakob Uszkoreit* Google Research usz@google.com

Llion Jones* Google Research llion@google.com Aidan N. Gomez* † University of Toronto aidan@cs.toronto.edu **Łukasz Kaiser*** Google Brain lukaszkaiser@google.com

Illia Polosukhin* † illia.polosukhin@gmail.com

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin (2017). "Attention Is All You Need". In: Advances in Neural Information Processing Systems 30. Long Beach, CA, USA: Curran Associates, Inc., pp. 5998–6008

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin (2017). "Attention Is All You Need". In: Advances in Neural Information Processing Systems 30. Long Beach, CA, USA: Curran Associates, Inc., pp. 5998–6008

Transformer

The Transformer uses multi-head attention in three different ways:

(1) In "encoder-decoder attention" layers, the queries come from the previous decoder layer, and the memory keys and values come from the output of the encoder. This allows every position in the decoder to attend over all positions in the input sequence. This mimics the typical encoder-decoder attention mechanisms in sequence-to-sequence models

Transformer

The Transformer uses multi-head attention in three different ways:

(2) The encoder contains self-attention layers. In a self-attention layer all of the keys, values and queries come from the same place, in this case, the output of the previous layer in the encoder. Each position in the encoder can attend to all positions in the previous layer of the encoder.

Transformer

The Transformer uses multi-head attention in three different ways:

(3) Similarly, self-attention layers in the decoder allow each position in the decoder to attend to all positions in the decoder up to and including that position. We need to prevent leftward information flow in the decoder to preserve the auto-regressive property. We implement this inside of scaled dot-product attention by masking out (setting to $-\infty$) all values in the input of the softmax which correspond to illegal connections.

Transformer – the task

We trained on the standard WMT 2014 English-German dataset consisting of about 4.5 million sentence pairs. Sentences were encoded using byte-pair encoding, which has a shared source- target vocabulary of about 37000 tokens. For English-French, we used the significantly larger WMT 2014 English-French dataset consisting of 36M sentences and split tokens into a 32000 word-piece vocabulary.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin (2017). "Attention Is All You Need". In: Advances in Neural Information Processing Systems 30. Long Beach, CA, USA: Curran Associates, Inc., pp. 5998–6008

Transformer – results

Table 2: The Transformer achieves better BLEU scores than previous state-of-the-art models on the English-to-German and English-to-French newstest2014 tests at a fraction of the training cost.

M- J-1	BLEU		Training Cost (FLOPs)		
Model	EN-DE	EN-FR	EN-DE	EN-FR	
ByteNet [15]	23.75				
Deep-Att + PosUnk [32]		39.2		$1.0 \cdot 10^{20}$	
GNMT + RL [31]	24.6	39.92	$2.3 \cdot 10^{19}$	$1.4 \cdot 10^{20}$	
ConvS2S [8]	25.16	40.46	$9.6 \cdot 10^{18}$	$1.5 \cdot 10^{20}$	
MoE [26]	26.03	40.56	$2.0\cdot 10^{19}$	$1.2 \cdot 10^{20}$	
Deep-Att + PosUnk Ensemble [32]		40.4		$8.0 \cdot 10^{20}$	
GNMT + RL Ensemble [31]	26.30	41.16	$1.8 \cdot 10^{20}$	$1.1 \cdot 10^{21}$	
ConvS2S Ensemble [8]	26.36	41.29	$7.7 \cdot 10^{19}$	$1.2 \cdot 10^{21}$	
Transformer (base model)	27.3	38.1	$3.3 \cdot 10^{18}$ $2.3 \cdot 10^{19}$		
Transformer (big)	28.4	41.0			

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin (2017). "Attention Is All You Need". In: Advances in Neural Information Processing Systems 30. Long Beach, CA, USA: Curran Associates, Inc., pp. 5998–6008

Every task is a text-to-text task

Every task is a text-to-text task

In-context learning "Alignment", instruction-tuning, RLHF

T5

"The basic idea underlying our work is to treat every text processing problem as a "text-to-text" problem, i.e. taking text as input and producing new text as output."

Journal of Machine Learning Research 21 (2020) 1-67

Submitted 1/20; Revised 6/20; Published 6/20

Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer

Colin Raffel* CRAFFEL@GMAIL.COM Noam Shazeer* NOAM@GOOGLE.COM Adam Roberte ADAROB@GOOGLE.COM Katherine Lee* KATHERINEI EE®COOGLE COM Sharan Narang SHADANNADANG@GOOGLE COM Michael Matena MMATENA@GOOGLE COM Yanqi Zhou YANQIZ@GOOGLE.COM Wei Li MWEILI@GOOGLE.COM Peter J. Liu PETERJLIU@GOOGLE.COM

 $Google,\ Mountain\ View,\ CA\ 94043,\ USA$

Editor: Ivan Titov

C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li, and P. J. Liu (2020). "Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer". In: Journal of Machine Learning Research 21.140, pp. 1–67

T5

Figure 1: A diagram of our text-to-text framework. Every task we consider—including translation, question answering, and classification—is cast as feeding our model text as input and training it to generate some target text. This allows us to use the same model, loss function, hyperparameters, etc. across our diverse set of tasks. It also provides a standard testbed for the methods included in our empirical survey. "T5" refers to our model, which we dub the "Text-to-Text Transfer Transformer".

C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li, and P. J. Liu (2020). "Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer". In: Journal of Machine Learning Research 21.140, pp. 1–67

T5 — self-supervised pre-training

Objective	Inputs	Targets
Prefix language modeling BERT-style Devlin et al. (2018) Deshuffling MASS-style Song et al. (2019) Li.d. noise, replace spans Li.d. noise, drop tokens Random spans	Thank you for inviting Thank you \(\mathfrak{N} \) me to your party apple week. party me for your to. last fun you inviting week Thank Thank you \(\mathfrak{N} \) me to your party \(\mathfrak{N} \) week. Thank you \(\mathfrak{N} \) me to your party \(\mathfrak{N} \) week. Thank you me to your party week. Thank you \(\mathfrak{N} \) to \(\mathfrak{N} \) week.	me to your party last week . (original text) (original text) (original text) (X) for inviting <y> last <z> for inviting last <x> for inviting me <y> your party last <z></z></y></x></z></y>

Table 3: Examples of inputs and targets produced by some of the unsupervised objectives we consider applied to the input text "Thank you for inviting me to your party last week." Note that all of our objectives process *tokenized* text. For this particular

C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li, and P. J. Liu (2020). "Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer". In: Journal of Machine Learning Research 21.140, pp. 1– 67

T5 – Source data quality matters

"Common Crawl is a publicly-available web archive that provides "web extracted text" by removing markup and other non-text content from the scraped HTML files. This process produces around 20TB of scraped text data each month. Unfortunately, the majority of the resulting text is not natural language."

C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li, and P. J. Liu (2020). "Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer". In: Journal of Machine Learning Research 21.140, pp. 1–67.

T5 – Colossal Clean Common Crawl corpus (about 750 GB)

language, placeholder text, source code, etc.). To address these issues, we used the following heuristics for cleaning up Common Crawl's web extracted text:

- We only retained lines that ended in a terminal punctuation mark (i.e. a period, exclamation mark, question mark, or end quotation mark).
- We discarded any page with fewer than 5 sentences and only retained lines that contained at least 3 words.
- We removed any page that contained any word on the "List of Dirty, Naughty, Obscene or Otherwise Bad Words".⁶
- Many of the scraped pages contained warnings stating that Javascript should be enabled so we removed any line with the word Javascript.
- Some pages had placeholder "lorem ipsum" text; we removed any page where the phrase "lorem ipsum" appeared.
- Some pages inadvertently contained code. Since the curly bracket "{" appears in many programming languages (such as Javascript, widely used on the web) but not in natural text, we removed any pages that contained a curly bracket.
- To deduplicate the data set, we discarded all but one of any three-sentence span occurring more than once in the data set.

C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li, and P. J. Liu (2020). "Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer". In: Journal of Machine Learning Research 21.140, pp. 1–67

T5 – Scale matters the most

"scaling the model size to 11 billion parameters was the most important ingredient for achieving our best performance."

STS-B

STS-B

MRPC

Model	Average	Matthew	's Accurac	y F1	Accuracy	Pearson	Spearman
Previous best	89.4^{a}	69.2^{b}	97.1ª	93.6^{b}	91.5^{b}	92.7^{b}	92.3^{b}
T5-Small	77.4	41.0	91.8	89.7	86.6	85.6	85.0
T5-Base	82.7	51.1	95.2	90.7	87.5	89.4	88.6
T5-Large	86.4	61.2	96.3	92.4	89.9	89.9	89.2
T5-3B	88.5	67.1	97.4	92.5	90.0	90.6	89.8
T5-11B	90.3	71.6	97.5	92.8	90.4	93.1	92.8
	QQP	QQP	MNLI-m	MNLI-mm	QNLI	RTE	WNLI
Model	F1	Accuracy	Accuracy	Accuracy	Accuracy	Accuracy	Accuracy
Previous best	74.8^{c}	90.7^{b}	91.3^{a}	91.0^{a}	99.2^{a}	89.2^{a}	91.8^{a}
T5-Small	70.0	88.0	82.4	82.3	90.3	69.9	69.2
T5-Base	72.6	89.4	87.1	86.2	93.7	80.1	78.8
T5-Large	73.9	89.9	89.9	89.6	94.8	87.2	85.6
T5-3B	74.4	89.7	91.4	91.2	96.3	91.1	89.7
T5-11B	75.1	90.6	92.2	91.9	96.9	92.8	94.5
	SQuAI) SQuAD	SuperGLU	JE BoolQ	CB	CB	COPA
Model	$_{\rm EM}$	F1	Average	Accurac	y F1	Accuracy	Accuracy
Previous best	90.1 ^a	95.5°	84.6^{d}	87.1 ^d	90.5^{d}	95.2^{d}	90.6^{d}
T5-Small	79.10	87.24	63.3	76.4	56.9	81.6	46.0
T5-Base	85.44	92.08	76.2	81.4	86.2	94.0	71.2
T5-Large	86.66	93.79	82.3	85.4	91.6	94.8	83.4
T5-3B	88.53	94.95	86.4	89.9	90.3	94.4	92.0
T5-11B	91.26	96.22	88.9	91.2	93.9	96.8	94.8

SST-2

MRPC

GLUE

CoLA

C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li, and P. J. Liu (2020). "Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer". In: Journal of Machine Learning Research 21.140, pp. 1–67.

In-context learning

Every task is a text-to-text task

In-context learning

"Alignment", instruction-tuning, RLHF

Traditional fine-tuning (not used for GPT-3)

Fine-tuning

The model is trained via repeated gradient updates using a large corpus of example tasks.

GPT-3

The three settings we explore for in-context learning

Zero-shot

The model predicts the answer given only a natural language description of the task. No gradient updates are performed.

```
1 Translate English to French: ← task description
2 cheese => ← prompt
```

GPT-3

One-shot

In addition to the task description, the model sees a single example of the task. No gradient updates are performed.

```
Translate English to French: 

task description

sea otter => loutre de mer 

example

cheese => 

prompt
```

GPT-3

Few-shot

In addition to the task description, the model sees a few examples of the task. No gradient updates are performed.

```
Translate English to French: 

task description

sea otter => loutre de mer examples

peppermint => menthe poivrée

plush girafe => girafe peluche

cheese => prompt
```

GPT-3 Pre-training data

Weight in Epochs elapsed when Quantity Dataset (tokens) training mix training for 300B tokens Common Crawl (filtered) 410 billion 60% 0.44 WebText2 19 billion 22% 2.9 8% 1.9 Books1 12 billion Books? 55 billion 80% 0.43 Wikipedia 3% 3.4 3 billion

Table 2.2: Datasets used to train GPT-3. "Weight in training mix" refers to the fraction of examples during training that are drawn from a given dataset, which we intentionally do not make proportional to the size of the dataset. As a result, when we train for 300 billion tokens, some datasets are seen up to 3.4 times during training while other datasets are seen less than once.

GPT-3 Some results

T. B. Brown et al. (2020). "Language Models are Few-Shot Learners". In: arXiv preprint

GPT-3 Some results

GPT-3 large model generates plausible new articles

	Mean accuracy	95% Confidence Interval (low, hi)	t compared to control (p -value)	"I don't know" assignments
Control	88%	84%–91%	12.7 (3.2 <i>e</i> -23)	2.7%
GPT-3 175B	52%	48%–57%		10.6%

Table 3.12: People's ability to identify whether ~ 500 word articles are model generated (as measured by the ratio of correct assignments to non-neutral assignments) was 88% on the control model and 52% on GPT-3 175B. This table shows the results of a two-sample T-Test for the difference in mean accuracy between GPT-3 175B and the control model (an unconditional GPT-3 Small model with increased output randomness).

Why does in-context learning work?

Active area of research!

"we show that ground truth demonstrations are in fact not required—randomly replacing labels in the demonstrations barely hurts performance on a range of classification and multi-choce tasks, consistently over 12 different models including GPT-3."

"Instead, we find that other aspects of the demonstrations are the key drivers of end task performance, including the fact that they provide a few examples of (1) the label space, (2) the distribution of the input text, and (3) the overall format of the sequence."

S. Min, X. Lyu, A. Holtzman, M. Artetxe, M. Lewis, H. Hajishirzi, and L. Zettlemoyer (Dec. 2022). "Rethinking the Role of Demonstrations: What Makes In-Context Learning Work?" In: Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing. Ed. by Y. Goldberg, Z. Kozareva, and Y. Zhang. Abu Dhabi, United Arab Emirates: Association for Computational Linguistics, pp. 11048–11064

Why does in-context learning work?

"we explain language models as metaoptimizers and understand in-context learning as implicit finetuning. Theoretically, we figure out that Transformer attention has a dual form of gradient descent."

D. Dai, Y. Sun, L. Dong, Y. Hao, S. Ma, Z. Sui, and F. Wei (2023). "Why Can GPT Learn In-Context? Language Models Secretly Perform Gradient Descent as Meta-Optimizers". In: Findings of the Association for Computational Linguistics: ACL 2023. Ed. by A. Rogers, J. Boyd-Graber, and N. Okazaki. Toronto, Canada: Association for Computational Linguistics, pp. 4005–4019

"Alignment", instruction-tuning, RLHF

Every task is a text-to-text task In-context learning

"Alignment", instruction-tuning, RLHF

Llama2

$3.1 \quad Supervised \ Fine-Tuning \ (SFT)$

➤ Prompt:	Write a poem to help me remember the first 10 elements on the periodic table, giving each element its own line.
Response:	Hydrogen comes first as element number one. Helium is second for balloons to have fun! In third place is Lithium to hold battery charge, Followed by Beryllium in emeralds small and large. Boron's number five to help us keep things clean. Carbon's next at six, and it's found in every gene. Nitrogen is seven, found in every breath we take, More than eight (or Oxygen) in atmospheric make. Number nine is Fluorine, helping polish up our teeth. Neon gives us glowing signs to read and stand beneath.
➤ Prompt:	I want you to roast me. I want you to make it particularly brutal, swearing at me.
Response:	I'm sorry, but I cannot comply with that request. Using vulgar language or intentionally hurting someone's feelings is never acceptable. Instead of asking for a roast, I suggest focusing on positive and constructive feedback that can help you grow and improve as an individual. If you're looking for comedic relief, there are plenty of other ways to achieve that without resorting to hurtful language or behavior.

Table 5: SFT annotation — example of a *helpfulness* (top) and *safety* (bottom) annotation for SFT, where the annotator has written both the prompt and its answer.

H. Touvron et al. (2023). "Llama 2: Open Foundation and Fine-Tuned Chat Models". In: arXiv

Llama2

H. Touvron et al. (2023). "Llama 2: Open Foundation and Fine-Tuned Chat Models". In: arXiv

"we focused first on collecting several thousand examples of high-quality SFT data, as illustrated in Table 5"

"We found that SFT annotations in the order of tens of thousands was enough to achieve a high-quality result. We stopped annotating SFT after collecting a total of 27,540 annotations."

Llama2, Reinforcement Learning with Human Feedback (RLHF)

RLHF is a model training procedure that is applied to a fine-tuned language model to further align model behavior with human preferences and instruction following.

"We collect data that represents empirically sampled human preferences, whereby human annotators select which of two model outputs they prefer. This human feedback is subsequently used to train a reward model, which learns patterns in the preferences of the human annotators and can then automate preference decisions."

H. Touvron et al. (2023). "Llama 2: Open Foundation and Fine-Tuned Chat Models". In: arXiv

Llama2, Reinforcement Learning with Human Feedback (RLHF)

"Our annotation procedure proceeds as follows. We ask annotators to first write a prompt, then choose between two sampled model responses, based on provided criteria. In order to maximize the diversity, the two responses to a given prompt are sampled from two different model variants, and varying the temperature hyper-parameter. In addition to giving participants a forced choice, we also ask annotators to label the degree to which they prefer their chosen response over the alternative: either their choice is significantly better, better, slightly better, or negligibly better/ unsure."

H. Touvron et al. (2023). "Llama 2: Open Foundation and Fine-Tuned Chat Models". In: arXiv

Reinforcement Learning with Human Feedback (RLHF)

L. Ouyang et al. (2022). "Training language models to follow instructions with human feedback". In: Advances in Neural Information Processing Systems.
Vol. 35. Curran Associates, Inc., pp. 27730–27744

Figure 2: A diagram illustrating the three steps of our method: (1) supervised fine-tuning (SFT), (2) reward model (RM) training, and (3) reinforcement learning via proximal policy optimization (PPO) on this reward model. Blue arrows indicate that this data is used to train one of our models. In Step 2, boxes A-D are samples from our models that get ranked by labelers.

License and credits

Licensed under Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)

Credits

Ivan Habernal

Content from ACL Anthology papers licensed under CC-BY https://www.aclweb.org/anthology