- Logic Gates
 - Basic Gates (AND, OR, NOT)
 - Derived Gates (e.g., NAND, XOR, IMPLY)
- Emulating Logic Gates with MP Neuron
 - NOT, AND, OR
 - Extension to N-Input Gates
- Graphical Interpretation

Recap: Binary Decision Making

All Binary Inputs

- x_1 Fantastic weather ?
- x_2 Diverse culture ?
- x_3 Gorgeous beaches?
- x_4 | High cost of living ?
- x_5 X Island fever ?

A Binary Output

The decision-making elements that process binary values can be represented by **logic gates**.

Logic Gates

Three Basic Logic Gates

Circuit & Truth Table for AND Gate

$x_1 \text{ AND } x_2 = y$

AND Gate

Truth Table

x_1	x_2	у
1	1	1
0	1	0
1	0	0
0	0	0

A truth table shows how each possible

input of a logic gate relates to its output.

Basic vs. Derived Gates

 x_1 AND y

<i>x</i> ₁ —		2/2
	OR	→ y
x_2 -		

<i>x</i> •	NOT >)

X ₁	X ₂	У
1	1	1
0	1	0
1	0	0
0	0	0

X ₁	X ₂	У
1	1	1
0	1	1
1	0	1
0	0	0

×	У
1	0
0	1

Basic Gates

X ₁	X ₂	y
1	1	1
1	0	0
0	1	1
0	0	1

IMPLY

 $x_1 \text{ NAND } x_2 = y$

Truth Table

x_1	x_2	y	$x_1 \text{ AND } x_2$
1	1	0	1
1	0	1	0
0	1	1	0
0	0	1	0

$$x_1 XOR x_2 = y$$

Truth Table

x_1	x_2	у
0	0	0
0	1	1
1	1	0
1	0	1

Basic Gate

	ľ	1	
	ĺ		
	ř		
i	Y		
	ì		
	Ľ		
	ļ		
ř	þ		
	E		
	L		

x_1 AND y	x_1	
$\longrightarrow y$	or y	$x \longrightarrow NOI \longrightarrow y$
x_2	x_2	

X ₁	X ₂	У
1	1	1
0	1	0
1	0	0
0	0	0

X ₁	X ₂	У
1	1	1
0	1	1
1	0	1
0	0	0

х	У
1	0
0	1

 x_1 x_2

How to mimic different logic gates (NOT, AND, OR) with MP neuron?

X ₁	X ₂	У
1	1	0
0	1	1
1	0	1
0	0	1

X ₁	X ₂	У
1	1	0
0	1	1
1	0	1
0	0	0

X ₁	X ₂	У
1	1	1
1	0	0
0	1	1
0	0	1

NOT Gate

Question

Emulate **NOT** Gate with MP neuron.

NOT
$$(x) = y$$

Solution

- 1. Write the truth table
- 2. Find threshold θ
- 3. Depict Rojas diagram

When
$$x = 0$$
, $y = 1$. \Rightarrow Set threshold $\theta = 0$.

When
$$x = 1$$
, $y = 0$. \rightarrow Set x as inhibitory.

$$x \longrightarrow 0$$
 y

Predict Output *y*

If any inhibitory input is 1,

Output:
$$y = 0$$

Else

Sum:
$$z = x_1 + \cdots + x_n$$

Threshold:
$$y = \begin{cases} 1, & (z \ge \theta) \\ 0, & (z < \theta) \end{cases}$$

Output: y

Rewrite Logic Operators as Functions

Question

Emulate 2-Input AND Gate with MP neuron.

$$AND (x_1, x_2) = y$$

Solution

- 1. Write the truth table
- 2. Find threshold θ

AND neuron fires only when all the inputs are 1s.

When
$$x_1 = x_2 = 1$$
, $y = 1$.

1	0	0

Question

Emulate 2-Input AND Gate with MP neuron.

$$AND (x_1, x_2) = y$$

 $\theta \leq 2$

- 1. Write the truth table
- 2. Find threshold θ

When
$$(x_1, x_2) = (0, 1)$$
, $y = 0$.

$$x_1 + x_2 = 1 < \theta \qquad \Rightarrow \qquad \theta >$$

Inp	uts	Output
x_1	x_2	у
1	1	1

1	0	0
0	0	0

Question

Emulate 2-Input AND Gate with MP neuron.

AND
$$(x_1, x_2) = y$$

- 1. Write the truth table
- 2. Find threshold θ

When
$$(x_1, x_2) = (1, 0), y = 0.$$

$$x_1 + x_2 = 1 < \theta \qquad \Rightarrow \quad \theta > 1$$

	Inp	outs	Output
_	x_1	x_2	у
≤ 2	1	1	1

$$\theta > 1$$
 0 1 0

$$\theta > 1$$
 1 0 0 0 0

Question

Emulate 2-Input AND Gate with MP neuron.

$$AND (x_1, x_2) = y$$

 $\theta > 0$

Solution

- 1. Write the truth table
- 2. Find threshold θ

When
$$(x_1, x_2) = (0, 0), y = 0.$$

$$x_1 + x_2 = 0 < \theta \qquad \Rightarrow 0$$

	Inputs		Output
_	x_1	x_2	у
$\theta \leq 2$	1	1	1
$\theta > 1$	0	1	0
$\theta > 1$	1	0	0

0

Question

Emulate 2-Input AND Gate with MP neuron.

$$AND (x_1, x_2) = y$$

- 1. Write the truth table
- 2. Find threshold $\theta = 2$

$$<\theta \leq 2 \iff \theta > 1$$

$$\theta > 1$$

$$\theta > 0$$

	Inputs		Output
	x_1	x_2	у
	1	1	1
	0	1	0
ľ	1	0	0
ľ	0	0	0

Question

Emulate 2-Input AND Gate with MP neuron.

$$AND (x_1, x_2) = y$$

- 1. Write the truth table
- 2. Find threshold $\theta = 2$
- 3. Depict Rojas diagram

Inp	Inputs	
x_1	x_2	у
1	1	1
0	1	0
1	0	0
0	0	0

3-Input AND Gate

$$x_1 \text{ AND } x_2 = y$$
 AND $(x_1, x_2) = y$

2-INPUT Gate

$$x_1 \text{ AND } x_2 \text{ AND } x_3 = y$$

AND
$$(x_1, x_2, x_3) = y$$
3-INPUT Gate

3-Input AND Gate

Question

Emulate 3-Input AND Gate with MP neuron.

AND
$$(x_1, x_2, x_3) = y$$

Solution

- 1. Write the truth table
- 2. Find threshold θ

An AND neuron fires only when all the inputs are 1s.

$$y = 1 \quad \text{if } x_1 + x_2 + x_3 = 3 \ge \theta$$

$$y = 0 \quad \text{if } x_1 + x_2 + x_3 = 2 < \theta$$

$$y = 0 \quad \text{if } x_1 + x_2 + x_3 = 1 < \theta$$

$$y = 0 \quad \text{if } x_1 + x_2 + x_3 = 0 < \theta$$

v + v + v	Inputs		s	Output
$x_1 + x_2 + x_3$	x_1	x_2	x_3	у
3	1	1	1	1
2	0	1	1	0
2	1	0	1	0
1	0	0	1	0
2	1	1	0	0
9 ≤ 3 1	0	1	0	0
1	1	0	0	0
0	0	0	0	0

3-Input AND Gate

Question

Emulate 3-Input AND Gate with MP neuron.

AND
$$(x_1, x_2, x_3) = y$$

- 1. Write the truth table
- 2. Find threshold $\theta = 3$
- 3. Depict Rojas diagram

v + v + v		Input	s	Output
$x_1 + x_2 + x_3$	<i>x</i> ₁	x_2	x_3	у
3	1	1	1	1
2	0	1	1	0
2	1	0	1	0
1	0	0	1	0
2	1	1	0	0
1	0	1	0	0
1	1	0	0	0
0	0	0	0	0

N-Input AND Gate

2 INPUTS

$$\mathsf{AND}(x_1, x_2) = y$$

3 INPUTS

$$AND(x_1, x_2, x_3) = y$$

N INPUTS

$$AND(x_1, x_2, \cdots, x_N) = y$$

AND neuron fires only when all the inputs are 1s.

$$y = \begin{cases} 1 & \text{if } x_1 = x_2 = \dots = x_N = 1 \\ 0 & \text{otherwise} \end{cases} \quad \Rightarrow \quad y = \begin{cases} 1 & \text{if } x_1 + x_2 + \dots + x_N \ge N \\ 0 & \text{otherwise} \end{cases}$$

Question

Emulate 2-Input OR Gate with MP neuron.

$$OR(x_1, x_2) = y$$

Solution

- 1. Write the truth table
- 2. Set threshold θ

OR neuron fires when any input is 1.

When $x_1 = x_2 = 1$, y = 1.

$$x_1 + x_2 = 2 \ge \theta$$

0 10

 $\theta \leq 2$

 $x_1 \qquad x_2 \qquad \vdots$

1 1 1

0 1 1

1 0 1

0 0

Question

Emulate 2-Input OR Gate with MP neuron.

$$OR(x_1, x_2) = y$$

- 1. Write the truth table
- 2. Set threshold θ

When
$$(x_1, x_2) = (0, 1), y = 1.$$

$$x_1 + x_2 = 1 \ge \theta \quad \Rightarrow \quad \theta \le 1$$

	Inp	uts	Output
	x_1	x_2	у
$\theta \le 2$	1	1	1
$\theta \le 1$	0	1	1
	1	0	1
	0	0	0

Question

Emulate 2-Input OR Gate with MP neuron.

$$OR(x_1, x_2) = y$$

 $\theta \leq 2$

 $\theta \leq 1$

 $\theta \leq 1$

- 1. Write the truth table
- 2. Set threshold θ

When
$$(x_1, x_2) = (1, 0), y = 1.$$

$$x_1 + x_2 = 1 \ge \theta \quad \Rightarrow \quad \theta \le 1$$

Inp	uts	Output
x_1	x_2	у
1	1	1
0	1	1
1	0	1
0	0	0

Question

Emulate 2-Input OR Gate with MP neuron.

$$OR(x_1, x_2) = y$$

 $\theta \leq 2$

 $\theta \leq 1$

 $\theta \leq 1$

 $\theta > 0$

0

Solution

- 1. Write the truth table
- 2. Set threshold θ

When
$$(x_1, x_2) = (0, 0)$$
, $y = 0$.

	Inp	uts	Output
	x_1	x_2	у
	1	1	1
3	0	1	1

0

0

Question

Emulate 2-Input OR Gate with MP neuron.

$$OR(x_1, x_2) = y$$

- 1. Write the truth table
- 2. Set threshold $\theta = 1$

$$\theta \leq 1$$

$$\theta \leq 1$$

$$\theta \leq 1$$

$$\theta \leq 1$$

Inp	uts	Output
x_1	x_2	У
1	1	1
0	1	1
1	0	1
0	0	0

Question

Emulate 2-Input OR Gate with MP neuron.

$$OR(x_1, x_2) = y$$

- 1. Write the truth table
- 2. Set threshold $\theta = 1$
- 3. Depict Rojas diagram

Inp	uts	Output
x_1	x_2	у
1	1	1
0	1	1
1	0	1
0	0	0

3-Input OR Gate

$$x_1 \text{ OR } x_2 = y$$
 OR $(x_1, x_2) = y$

OR
$$(x_1, x_2) = y$$

2-INPUT Gate

$$x_1 ext{ OR } x_2 ext{ OR } x_3 = y$$

3-Input OR Gate

Question

Emulate 3-Input OR Gate with MP neuron.

OR
$$(x_1, x_2, x_3) = y$$

Solution

- 1. Write the truth table
- 2. Find threshold θ

OR neuron fires when any input is 1.

$$y = 1 \quad \text{if } x_1 + x_2 + x_3 = 3 \ge \theta$$

$$y = 1 \quad \text{if } x_1 + x_2 + x_3 = 2 \ge \theta$$

$$y = 1 \quad \text{if } x_1 + x_2 + x_3 = 1 \ge \theta$$

$$y = 0 \quad \text{if } x_1 + x_2 + x_3 = 0 < \theta$$

v. + v. + v.	Inputs		s Output	
$x_1 + x_2 + x_3$	x_1	x_2	x_3	У
3	1	1	1	1
2	0	1	1	1
2	1	0	1	1
1	0	0	1	1
2	1	1	0	1
9 ≤ 1 1	0	1	0	1
1	1	0	0	1
0	0	0	0	0

3-Input OR Gate

Question

Emulate 3-Input OR Gate with MP neuron.

OR
$$(x_1, x_2, x_3) = y$$

- Write the truth table
- 2. Find threshold $\theta = 1$
- 3. Depict Rojas diagram

$x_1 + x_2 + x_3$	l .	Input		Output
	<i>x</i> ₁	x_2	A3	у
3	1	1	1	1
2	0	1	1	1
2	1	0	1	1
1	0	0	1	1
2	1	1	0	1
1	0	1	0	1
1	1	0	0	1
0	0	0	0	0

2 INPUTS

3 INPUTS

N INPUTS

$$\mathsf{OR}(x_1, x_2) = y$$

$$\mathsf{OR}(x_1, x_2, x_3) = y$$

$$OR(x_1, x_2, \cdots, x_N) = y$$

OR neuron fires as long as any input is 1.

$$y = \begin{cases} 1 & \text{if } x_1 = 1 \text{ or } x_2 = 1 \text{ or } \dots x_N = 1 \\ 0 & \text{otherwise} \end{cases} \quad \Rightarrow \quad y = \begin{cases} 1 & \text{if } x_1 + x_2 + \dots + x_N \ge 1 \\ 0 & \text{otherwise} \end{cases}$$

Comparison btw OR and AND Gate

2 INPUTS

3 INPUTS

N INPUTS

$$\mathsf{OR}(x_1, x_2) = y$$

$$\mathsf{OR}(x_1, x_2, x_3) = y$$

$$OR(x_1, x_2, \cdots, x_N) = y$$

$$\mathsf{AND}(x_1, x_2) = y$$

$$\mathsf{AND}(x_1, x_2, x_3) = y$$

$$\mathsf{AND}(x_1, x_2, \cdots, x_N) = y$$

Recap: Straight Line Equation

The equation of a line, whose x-intercept is a and y-intercept is b, is

$$\frac{x}{a} + \frac{y}{b} = 1$$

$$\frac{x}{\theta} + \frac{y}{\theta} = 1$$

$$x + y = \theta$$

Graphical Interpretation of AND Gate

$$\mathsf{AND}(x_1, x_2) = y$$

x_1	x_2	у
1	1	1
0	1	0
1	0	0
0	0	0

x_1	x_2	у
1	1	1
0	1	0
1	0	0
0	0	0

x_1	x_2	у
1	1	1
0	1	0
1	0	0
0	0	0

Graphical Interpretation of OR Gate

	x_1	x_2	у	$x_2 \qquad x_1 + x_2 \ge 1$	
_	1	1	1	2	
	0	1	1	(0, 1) (1, 1)	
	1	0	1		
-	0	0	0	(0, 0) (1, 0) 2	x_1

x_1	x_2	у	$x_1 + x_2 \ge \theta (\theta = 1)$
1	1	1	2
0	1	1	(0, 1) (1, 1)
1	0	1	
0	0	0	(0,0) $(1,0)$ $(1,0)$ $(1,0)$ $(1,0)$

- Limitations of MP Neuron
- Single-Layer Perceptron
 - A Bio-Inspired Binary Classifier
 - Weights & Bias
 - Computational Model
- Two Vector Forms of Perceptron

Limitations of MP Neuron

Limitations of MP Neuron

Inputs and output are limited to binary values only.

Limitations of MP Neuron

Limitations of MP Neuron

- Inputs and output are limited to binary values only.
- All inputs are treated as equally important. There is no chance to assign more importance to some inputs.

Limitations of MP Neuron

Limitations of MP Neuron

- Inputs and output are limited to binary values only.
- All inputs are treated as equally important. There is no chance to assign more importance to some inputs.
- A manual setting of threshold θ is always required.

Perceptron

Frank Rosenblatt
Psychologist
Cornell University

 Rosenblatt invented Perceptron, a learning model for a single-layer neural net, which was inspired by biological principles and showed an ability to learn.

An image of the perceptron from Rosenblatt's "The Design of an Intelligent Automation", which paved the way for NC.

Hebbian Learning Rule

Perceptron vs MP Neuron

Weighted Sum

$$z = w_1x_1 + w_2x_2 + \dots + w_nx_n$$

$$R \ni x_1 \qquad w_1$$

$$R \ni x_2 \qquad \sum_{i=w_n} \theta$$

$$R \ni x_n$$

Threshold

$$y = \begin{cases} 1 & (z \ge \theta) \\ 0 & (z < \theta) \end{cases}$$

 $y \in \{0, 1\}$

Perceptron covers MP neuron as a special case when

- all $x_i \in \{0,1\}$
- all $w_i = 1$
- θ is set manually

	Perceptron	MP Neuron	
Inputs	Real numbers	Binary (0 or 1)	
Weights	Each input carries a weight (which can be learned)	All inputs are equally important.	
Threshold	Can be learned automatically	Manually set by users	

Perceptron: A Bio-Inspired Binary Classifier

Weighted Sum

$z = w_1 x_1 + w_2 x_2$

Threshold

$$y = \begin{cases} 1 & (z \ge \theta) \\ 0 & (z < \theta) \end{cases}$$

- In ML, Perceptron is a binary classifier for supervised learning.
- In NC, Perceptron is
 a single-layer neuron
 with a threshold function

Bias

Weighted Sum

$$z = w_1 x_1 + \dots + w_n x_n$$

Threshold

$$y = \begin{cases} 1 & (z \ge \theta) \\ 0 & (z < \theta) \end{cases}$$

In a Perceptron:

- (x_1, \dots, x_n) is real-valued;
- (w_1, \dots, w_n) is real-valued
- The neuron "fires" if the weighted sum $\geq \theta$.

Heaviside Function

$$H(z) = \begin{cases} 1, & (z \ge 0) \\ 0, & (z < 0) \end{cases}$$

$$z = w_1 x_1 + \dots + w_n x_n - \theta$$

Bias

Weighted Sum

Threshold

$$z = w_1 x_1 + \dots + w_n x_n + b$$

$$y = H(z)$$

Heaviside Function

$$H(z) = \begin{cases} 1, & (z \ge 0) \\ 0, & (z < 0) \end{cases}$$

$$z = w_1 x_1 + \dots + w_n x_n - \theta$$

In a Perceptron:

- (x_1, \dots, x_n) is real-valued;
- (w_1, \dots, w_n) is real-valued
- The neuron "fires" if the weighted sum ≥ θ.

Why Bias is Important

Without Bias

Without Bias

With Bias

With Bias

Two Vector Forms of Perceptron

Vector Form 1

Let
$$\mathbf{x} = [x_1, \dots, x_n]^T$$

 $\mathbf{w} = [w_1, \dots, w_n]$

Then
$$y = H(\mathbf{w} \cdot \mathbf{x} + b)$$

Vector Form 2

Let
$$\mathbf{x} = [x_1, \dots, x_n, b]^T$$

 $\mathbf{w} = [w_1, \dots, w_n, 1]$

Ther
$$y = H(\mathbf{w} \cdot \mathbf{x})$$

Explain Form 1

Let
$$\mathbf{w} = [w_1, \dots, w_n]$$
 $\mathbf{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$

Thus
$$\mathbf{w} \cdot \mathbf{x} + \mathbf{b}$$

= $\mathbf{w}_1 \mathbf{x}_1 + \dots + \mathbf{w}_n \mathbf{x}_n + \mathbf{b}$

Explain Form 2

Let
$$\mathbf{w} = [w_1, \dots, w_n, b]$$
 $\mathbf{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$

Thus
$$\mathbf{w} \cdot \mathbf{x}$$

= $\mathbf{w}_1 \mathbf{x}_1 + \dots + \mathbf{w}_n \mathbf{x}_n + \mathbf{b} \times \mathbf{1}$

Exercise

A perceptron has two inputs (x_1, x_2) . Given weights $(w_1, w_2) = (3, 1)$ and bias b = -3, depict the diagram of this perceptron, and predict its output when $(x_1, x_2) = (0, 1)$ and $(x_1, x_2) = (1, 1)$, respectively.

Vector Form 1

Let
$$\mathbf{x} = [x_1, \dots, x_n]^T$$

 $\mathbf{w} = [w_1, \dots, w_n]$

Then $y = H(\mathbf{w} \cdot \mathbf{x} + b)$

$$x_1 \xrightarrow{w_1 \le 3} \sum_{x_2 \le b = -3} y$$

When
$$x = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$\therefore y = H(-2) = 0$$

Exercise

A perceptron has two inputs (x_1, x_2) . Given weights $(w_1, w_2) = (3, 1)$ and bias b = -3, depict the diagram of this perceptron, and predict its output when $(x_1, x_2) = (0, 1)$ and $(x_1, x_2) = (1, 1)$, respectively.

Vector Form 1

Let
$$\mathbf{x} = [x_1, \dots, x_n]^T$$

 $\mathbf{w} = [w_1, \dots, w_n]$

Then $y = H(\mathbf{w} \cdot \mathbf{x} + b)$

When
$$x = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$w \cdot x + b = [3, 1] \cdot \begin{bmatrix} 1 \\ 1 \end{bmatrix} - 3$$

$$= 3 \times 1 + 1 \times 1 - 3 = 1 \ge 0$$

$$\therefore y = H(1) = 1 \checkmark$$

