20MECH5131/6031 Intro to Robotics

Homework #6, End Effectors (90 pts total)

Student Name: _____ Hongui Yi Score:

Solve the following problems or briefly answer questions.

Prob.1. (15 pts)

(a) D = 2 in R = 1 in

$$2 fa = P \cdot A = 35 \frac{16f}{in} \times (\pi \times (|in|)^2) = |07.76| kf$$
.
(b) $fa \cdot |in| = fa = 2 in$
 $fa = \frac{1}{2} fa = \frac{1}{2} \times \frac{|09.76| kf}{2} = 27.47 | kf$
(c) $2 ft = 2 kfc$
 $+12 f : 2 ft - W - ma = 0$
 $\Rightarrow 0 = \frac{2 kfc - W}{m} = 38.61 ft/s^2$

Prob.2. (10 pts)

For
$$A = \frac{10 \text{ pts}}{32.2} = 0.621 \text{ sing}$$

$$A = \frac{10 \text{ pts}}{32.2} = 0.621 \text{ sing}$$

$$A = \frac{10 \text{ pts}}{32.2} = 0.621 \text{ sing}$$

$$A = \frac{10 \text{ pts}}{32.2} = 0.621 \text{ sing}$$

$$A = \frac{10 \text{ pts}}{32.2} = 0.621 \text{ sing}$$

$$A = \frac{10 \text{ pts}}{32.2} = 0.621 \text{ sing}$$

$$A = \frac{10 \text{ pts}}{32.2} = 0.621 \text{ sing}$$

$$A = \frac{10 \text{ pts}}{32.2} = 0.621 \text{ sing}$$

$$A = \frac{10 \text{ pts}}{32.2} = 0.621 \text{ sing}$$

$$A = \frac{10 \text{ pts}}{32.2} = 0.621 \text{ sing}$$

$$A = \frac{10 \text{ pts}}{32.2} = 0.621 \text{ sing}$$

$$A = \frac{10 \text{ pts}}{32.2} = 0.621 \text{ sing}$$

$$A = \frac{10 \text{ pts}}{32.2} = 0.621 \text{ sing}$$

$$A = \frac{10 \text{ pts}}{32.2} = 0.621 \text{ sing}$$

$$A = \frac{10 \text{ pts}}{32.2} = 0.621 \text{ sing}$$

$$A = \frac{10 \text{ pts}}{32.2} = 0.621 \text{ sing}$$

$$A = \frac{10 \text{ pts}}{32.2} = 0.621 \text{ sing}$$

$$A = \frac{10 \text{ pts}}{32.2} = 0.621 \text{ sing}$$

$$A = \frac{10 \text{ pts}}{32.2} = 0.621 \text{ sing}$$

$$A = \frac{10 \text{ pts}}{32.2} = 0.621 \text{ sing}$$

$$A = \frac{10 \text{ pts}}{32.2} = 0.621 \text{ sing}$$

$$A = \frac{10 \text{ pts}}{32.2} = 0.621 \text{ sing}$$

$$A = \frac{10 \text{ pts}}{32.2} = 0.621 \text{ sing}$$

$$A = \frac{10 \text{ pts}}{32.2} = 0.621 \text{ sing}$$

$$A = \frac{10 \text{ pts}}{32.2} = 0.621 \text{ sing}$$

$$A = \frac{10 \text{ pts}}{32.2} = 0.621 \text{ sing}$$

$$A = \frac{10 \text{ pts}}{32.2} = 0.621 \text{ sing}$$

$$A = \frac{10 \text{ pts}}{32.2} = 0.621 \text{ sing}$$

$$A = \frac{10 \text{ pts}}{32.2} = 0.621 \text{ sing}$$

$$A = \frac{10 \text{ pts}}{32.2} = 0.621 \text{ sing}$$

$$A = \frac{10 \text{ pts}}{32.2} = 0.621 \text{ sing}$$

$$A = \frac{10 \text{ pts}}{32.2} = 0.621 \text{ sing}$$

$$A = \frac{10 \text{ pts}}{32.2} = 0.621 \text{ sing}$$

$$A = \frac{10 \text{ pts}}{32.2} = 0.621 \text{ sing}$$

$$A = \frac{10 \text{ pts}}{32.2} = 0.621 \text{ sing}$$

$$A = \frac{10 \text{ pts}}{32.2} = 0.621 \text{ sing}$$

$$A = \frac{10 \text{ pts}}{32.2} = 0.621 \text{ sing}$$

$$A = \frac{10 \text{ pts}}{32.2} = 0.621 \text{ sing}$$

$$A = \frac{10 \text{ pts}}{32.2} = 0.621 \text{ sing}$$

$$A = \frac{10 \text{ pts}}{32.2} = 0.621 \text{ sing}$$

$$A = \frac{10 \text{ pts}}{32.2} = 0.621 \text{ sing}$$

$$A = \frac{10 \text{ pts}}{32.2} = 0.621 \text{ sing}$$

$$A = \frac{10 \text{ pts}}{32.2} = 0.621 \text{ sing}$$

$$A = \frac{10 \text{ pts}}{32.2} = 0.621 \text{ sing}$$

$$A = \frac{10 \text{ pts}}{32.2} = 0.621 \text{ sing}$$

$$A = \frac{10 \text{ pts}}{32.2} = 0.621 \text{ sing}$$

$$A = \frac{10 \text{ pts}$$

Prob. 3. (10 pts)

Prob. 4. (20 pts)

Prob.5. (8 pts)

In the field of fruit collection, pneumatic finger pliers or soft finger pliers can be used. For example, a robot with soft finger grippers can lift an apple from a basket to a box without crushing it. This is because the pneumatic finger gripper can be used for any geometric shape of the object because it is soft. In addition, its force is controlled by pressure, so it is gentle and does not damage the object.

Prob. 6. (27 pts)

a) (9 pts)

Criteria I: Environment protection. The robot and gripper work in a foundry where the environment is relatively unclean. Therefore, the protection of the gripper should be considered. **Criteria II: Cycle time.** In order to have high productivity, the cycle time of the gripper is important.

Criteria III: Object shape. For better operation, the gripper should be able to move the object tightly. Therefore, a suitable gripper should match the shape of the object.

b) (9 pts)

Type I: Vacuum gripper: VGC10 Type II: Soft gripper: SG-a-S Type II: Mechanical gripper: RG6

University of Cincinnati College of Engineering and Applied Science

 Table 1: Three Types of Grippers

	Type I	Type II	Type III
Manufacturers	Onrobot	Onrobot	Onrobot
Model	VGC10	SG-a-S	RG6
Gripper Type	Vacuum	Soft	Mechanical
Description	A compact, customizable electrical vacuum gripper	A flexible food-grade robot gripper	A flexible two finger robot gripper with wide stroke

c) (9 pts)

I recommend Type I: Onboard VGC10. A weighted rating matrix is shown below:

 Table 2: Weighted Matrix

		VGC10		SG-a-S		RG6	
Criteria	Importance Weight	Rating	Weighted Rating	Rating	Weighted Rating	Rating	Weighted Rating
Protection due to environmental issues	0.3	4	1.2	4	1.2	1.2 3 0.9	
Adaptation to object shape	0.3	4	1.2	2	0.6	2	0.6
Speed	0.1	3	0.3	1	0.1	3	0.3
Payload	0.1	4	0.4	2	0.2	3	0.3
Work Range	0.1	4	0.4	2	0.2	2	0.2
Accuracy	0.1	2	0.2	4	0.4	4	0.4
Sum	1	21	3.7	15	2.7	17	2.7

The major specifications are listed below:

University of Cincinnati College of Engineering and Applied Science

1. Datasheet

1.1. VGC10

General Properties		Minimum	Typical	Maximum	Unit			
Vacuum		5 %	-	80 %	[Vacuum]			
		-0.05	-	-0.810	[Bar]			
		1.5	-	24	[inHg]			
Air flow		0	-	12	[L/min]			
Payload	With default attachments	-	-	6 *	[kg]			
		-	-	13.2 *	[lb]			
	With customized attachments	-	10	15	[kg]			
		-	20	33.1	[lb]			
Vacuum cups		1	-	7	[pcs.]			
Gripping time		-	0.35	-	[s]			
Releasing time		-	0.20	-	[s]			
Vacuum pump		Integrated, electric BLDC						
Dust filters		Integrated	Integrated 50µm, field replaceable					
IP Classification		IP54						
Dimensions		101 x 100 x	101 x 100 x 100					
		3.97 x 3.94	[inch]					
Weight		0.814	[kg]					
		1.79	[lb]					

Reference

- [1] https://onrobot.com/us/products/vgc10
- [2] https://onrobot.com/us/products/soft-gripper
- [3] https://onrobot.com/us/products/rg6-gripper