Claims

1. A compound represented by the formula (I)

$$\begin{array}{c|c}
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

- wherein ring B represents a cyclic hydrocarbon group which may have substituent(s); Z represents hydrogen atom or a cyclic group which may have substituent(s); R1 represents hydrogen atom, a hydrocarbon group which may have substituent(s), a heterocyclic group which may have substituent(s) or an acyl group; R2 represents amino group 10 which may have substituent(s); D represents a bond or a divalent group; E represents a bond, -CO-, -CON(Ra)-, -COO-, $-N(R^{a})CON(R^{b})$ -, $-N(R^{a})COO$ -, $-N(R^{a})SO_{2}$ -, $-N(R^{a})$ -, -O-, -S-, -SO- or -SO₂- (R^a and R^b each independently represents hydrogen atom or a hydrocarbon group which may have 15 substituent(s)); G represents a bond or a divalent group; L represents a bond or a divalent group; A represents hydrogen atom or a substituent; X and Y each represents hydrogen atom or an independent substituent; and represents that R² and an atom on ring B may form a ring, 20 or a salt thereof.
 - 2. The compound according to claim 1, wherein E is

- -CO-, -CON(R^a)-, -COO-, -N(R^a)CON(R^b)-, -N(R^a)COO-, -N(R^a)SO₂-, -N(R^a)-, -O-, -S-, -SO- or -SO₂- (R^a and R^b each independently represents hydrogen atom or a hydrocarbon group which may have substituent(s)).
- 3. The compound according to claim 1, wherein L is(1) a bond or,
 - (2) a divalent hydrocarbon group which may contain -0- or -S- and may possess 1 to 5 substituents selected from i) a C_{1-6} alkyl group,
- 10 ii) a halogeno- C_{1-6} alkyl group,
 - iii) phenyl group,
 - iv) benzyl group,

15

- v) amino group which may have substituent(s),
- vi) hydroxy group which may have substituent(s), and
 vii) carbamoyl groups or thiocarbamoyl groups which each may
 be substituted by:
- a) a C_{1-6} alkyl group,
- b) a phenyl group which may have substituent(s), or
- c) a heterocyclic group which may have substituent(s).
- 20 4. The compound according to claim 1, wherein Z is a cyclic group which may have substituent(s).
 - 5. The compound according to claim 1, wherein D is a divalent group bonded to the ring through a carbon atom.
- 6. The compound according to claim 1, wherein ring 25 B is benzene ring which may have substituent(s) and L is a 26 alkylene group.
 - 7. The compound according to claim 1, wherein G represents a divalent hydrocarbon group which may have substituent(s) and ring B does not form a ring together with

R².

- 8. The compound according to claim 1, wherein A is hydrogen atom, ring B is benzene ring, Z is a phenyl group substituted by a halogen, and R^1 is a C_{1-6} alkyl or C_{7-14} aralkyl group which each may be substituted by substituent(s) selected from (1) hydroxy, (2) phenyl, (3) a C_{1-6} alkyl carbonyl or a C_{6-14} aryl-carbonyl, and (4) amino groups which may be substituted by a C_{1-6} alkyl sulfonyl or a C_{6-14} aryl-sulfonyl.
- 9. The compound according to claim 1, wherein X and Y each independently is hydrogen atom, a halogen, hydroxy, a C₁₋₆ alkoxy, a halogeno-C₁₋₆ alkoxy, a C₇₋₁₄ aralkyloxy, a benzoyl-C₁₋₆ alkoxy, a hydroxy-C₁₋₆ alkoxy, a C₁₋₆ alkoxy-carbonyl-C₁₋₆ alkoxy, a C₃₋₁₄ cycloalkyl-C₁₋₆ alkoxy, an imidazol-1-yl-C₁₋₆ alkoxy, a C₇₋₁₄ aralkyloxy-carbonyl-C₁₋₆ alkoxy, or a hydroxyphenyl-C₁₋₆ alkoxy;

ring B is benzene ring which may be substituted by a C_{1-6} alkoxy, or tetrahydroisoquinoline ring or isoindoline ring which is formed by combination with \mathbb{R}^2 ;

Z is a C₆₋₁₄ aryl group, a C₃₋₁₀ cycloalkyl group, piperidyl group, thienyl group, furyl group, pyridyl group, thiazolyl group, indanyl group or indolyl group which may have 1 to 3 substituents selected from a halogen, formyl, a halogeno-C₁₋₆ alkyl, a C₁₋₆ alkoxy, a C₁₋₆ alkyl-carbonyl, oxo and pyrrolidinyl;

A is hydrogen atom;

D is a C_{1-6} alkylene group;

G is a bond, or a C_{1-6} alkylene group which may contain phenylene and may be substituted by phenyl;

R¹ is hydrogen atom, a C₁₋₆ alkyl group, a C₂₋₆ alkenyl group, a C₆₋₁₄ aryl group or a C₇₋₁₄ aralkyl group which each may be substituted by substituent(s) selected from (1) a halogen, (2) nitro, (3) amino which may have 1 or 2 substituents selected from a C₁₋₆ alkyl which may be substituted by a C₁₋₆ alkyl-carbonyl, benzoyloxycarbonyl and a C₁₋₆ alkylsulfonyl, (4) hydroxy which may be substituted by (i) a C₁₋₆ alkyl which may be substituted by hydroxy, a C₁₋₆ alkyl-carbonyl, carboxy or a C₁₋₆ alkoxy-carbonyl, (ii) phenyl which may be substituted by hydroxy, (iii) benzoyl or (iv) a mono- or di- C₁₋₆ alkylamino-carbonyl, (5) a C₃₋₆ cycloalkyl, (6) phenyl which may be substituted by hydroxy or a halogeno-C₁₋₆ alkyl and (7) thienyl, furyl, thiazolyl, indolyl or benzyloxycarbonylpiperidyl;

R² is (1) unsubstituted amino group, (2) piperidyl group or (3) amino which may have 1 or 2 substituents selected from (i) benzyl, (ii) a C_{1-6} alkyl which may be substituted by amino or phenyl, (iii) a mono- or di- C_{1-6} alkyl-carbamoyl, or a mono- or di- C_{1-6} alkyl-thiocarbamoyl, (iv) a C_{1-6}

alkoxy-carbonyl, (v) a C_{1-6} alkyl-sulfonyl, (vi) piperidylcarbonyl and (vii) a C_{1-6} alkyl-carbonyl which may be substituted by a halogen or amino;

E is a bond, $-CON(R^a)$ -, $-N(R^a)CO$ -, $-N(R^a)CON(R^b)$ - (R^a and R^b each represents hydrogen atom or a C_{1-6} alkyl group);

L is a C_{1-6} alkylene group which may contain -O- and may be substituted by a C_{1-6} alkyl.

10. The compound according to claim 1, wherein X and Y each independently is hydrogen atom, a halogen, hydroxy or a C_{1-6} alkoxy;

ring B is benzene ring or, by combination with R^2 , tetrahydroisoquinoline ring or isoindoline ring;

Z is phenyl group which may be substituted by a halogen, D is a C_{1-6} alkylene group, G is a C_{1-6} alkylene group;

 R^1 is a C_{1-6} alkyl group or a C_{7-14} aralkyl group which each may be substituted by substituent(s) selected from (1) hydroxy, (2) phenyl and (3) amino which may be substituted by a C_{1-6} alkyl-carbonyl or a C_{1-6} alkylsulfonyl;

R² is unsubstituted amino group;

10 E is -CONH-;

5

L is a C_{1-6} alkylene group.

11. A prodrug of the compound according to claim 1 or a salt thereof.

12. A process for producing a compound of the formula15 (I-a)

$$\begin{array}{c|c}
X & & & \\
N & & & \\
R^1 & & & \\
\end{array}$$

$$\begin{array}{c|c}
R^a \\
D - CON - G - Z \\
\end{array}$$

$$\begin{array}{c|c}
(1-a)
\end{array}$$

[wherein the symbols have the same meanings as described above] or a salt thereof which comprises:

reacting a compound represented by the formula (IIa)

[wherein R^{2a} represents amino group which may be protected and substituted, and other symbols have the same meanings as described in claim 1], a reactive derivative thereof or a salt thereof, with a compound represented by the formula

[wherein the symbols have the same meanings as described in the claim 1] or a salt thereof to produce a compound of the formula (Ia-a)

$$\begin{array}{c|c}
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

10

5

[wherein the symbols have the same meanings as described above] or a salt thereof, and optionally, subjecting it to

de-protecting reaction.

- 13. A pharmaceutical composition which comprises a compound according to claim 1 or a salt thereof.
- 14. A pharmaceutical composition according to claim13 which is a somatostatin receptor function regulator.
 - 15. A pharmaceutical composition according to claim
 14 wherein the somatostatin receptor function regulator is
 a somatostatin receptor agonist.
- 16. A pharmaceutical composition according to claim10 13 which is an agent for preventing or treating diabetes,obesity, diabetic complications or intractable diarrhea.
 - 17. A method for regulating a somatostatin receptor function which comprises administering a compound represented by the formula (I)

$$\begin{array}{c|c}
X & D \\
N & O \\
N & D \\
R^1 & O \\
\end{array}$$
(1)

15

[wherein ring B represents a cyclic hydrocarbon group which
may have substituent(s); Z represents hydrogen atom or a
cyclic group which may have substituent(s); R¹ represents
hydrogen atom, a hydrocarbon group which may have

substituent(s), a heterocyclic group which may have
substituent(s) or an acyl group; R² represents amino group
which may have substituent(s); D represents a bond or a

divalent group; E represents a bond, -CO-, $-CON(R^a)-$, -COO-, $-N(R^a)CON(R^b)-$, $-N(R^a)COO-$, $-N(R^a)SO_2-$, $-N(R^a)-$, -O-, -S-, -SO- or $-SO_2-$ (R^a and R^b each independently represents hydrogen atom or a hydrocarbon group which may have substituent(s)); G represents a bond or a divalent group; L represents a bond or a divalent group; A represents hydrogen atom or a substituent; X and Y each represents hydrogen atom or an independent substituent; and represents that R^2 and an atom on ring B may form a ring] or a salt thereof.

18. Use of a compound represented by the formula (I)

$$\begin{array}{c|c}
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

10

15

20

[wherein ring B represents a cyclic hydrocarbon group which may have substituent(s); Z represents hydrogen atom or a cyclic group which may have substituent(s); R^1 represents hydrogen atom, a hydrocarbon group which may have substituent(s), a heterocyclic group which may have substituent(s) or an acyl group; R^2 represents amino group which may have substituent(s); D represents a bond or a divalent group; E represents a bond, $-CO_-$, $-CON(R^a)_-$, $-COO_-$, $-N(R^a)CON(R^b)_-$, $-N(R^a)COO_-$, $-N(R^a)SO_2_-$, $-N(R^a)_-$, $-O_-$, $-S_-$, $-SO_-$ or $-SO_2_-$ (R^a and R^b each independently represents hydrogen atom or a hydrocarbon group which may have

substituent(s)); G represents a bond or a divalent group; L represents a bond or a divalent group; A represents hydrogen atom or a substituent; X and Y each represents hydrogen atom or an independent substituent; and represents that R² and an atom on ring B may form a ring] or a salt thereof, for manufacturing a medicament for regulating a somatostatin receptor function.