APUNTS DE L'ASSIGNATURA: MATEMÀTIQUES I. ÀLGEBRA LINEAL

Margalida Mas i Joan Torrens

Capítol 4

Aplicacions lineals

Una vegada estudiada l'estructura d'espai vectorial, el següent és estudiar les funcions o aplicacions que conserven aquesta estructura. En general, aquest tipus de funcions s'anomenen *morfismes*, però en el cas d'espais vectorials s'utilitza més el terme *aplicació lineal*.

Definició 1. Siguin E i F espais vectorials sobre el mateix cos \mathbb{K} . Direm que una aplicació $f: E \to F$ és lineal si compleix

- i) f(x+y) = f(x) + f(y) per a tots $x, y \in E$.
- ii) $f(\alpha \cdot x) = \alpha \cdot f(x)$ per a tot $\alpha \in \mathbb{K}$ i per a tot $x \in E$.

Proposició 2. Siguin E, F dos \mathbb{K} -espais vectorials i $f: E \to F$ una aplicació. Aleshores són equivalents

- i) f és lineal.
- $ii) \ f(\alpha \cdot x + \beta \cdot y) = \alpha \cdot f(x) + \beta \cdot f(y) \ per \ a \ tots \ \alpha, \beta \in \mathbb{K} \ i \ per \ a \ tots \ x, y \in E.$

iii)
$$f\left(\sum_{i=1}^{n} \alpha_i \cdot x_i\right) = \sum_{i=1}^{n} \alpha_i \cdot f(x_i)$$
 per a tots $a_i \in \mathbb{K}$ i $x_i \in E$.

Demostració: $i) \Longrightarrow ii$). Com que f és lineal tenim

$$f(\alpha \cdot x + \beta \cdot y) = f(\alpha \cdot x) + f(\beta \cdot y) = \alpha \cdot f(x) + \beta \cdot f(y).$$

- $ii) \Longrightarrow iii$). És un simple exercici d'inducció.
- $iii) \Longrightarrow i$). És evident ja que la suma de dos vectors i el producte d'un escalar per un vector són casos particulars de combinacions lineals.

Exemple 3. Les aplicacions següents són exemples d'aplicacions lineals:

- 1. L'aplicació $Id: E \to E$ definida per Id(x) = x per a tot $x \in E$ (aplicació identitat).
- 2. L'aplicació $f: E \to F$ definida per f(x) = 0 per a tot $x \in E$ (aplicació zero, habitualment denotada també per 0).
- 3. Fixat qualsevol $\alpha \in \mathbb{K}$, l'aplicació $f_{\alpha} : E \to E$ definida per $f_{\alpha}(x) = \alpha x$ per a tot $x \in E$.
- 4. L'aplicació $f: \mathbb{R}^2 \to \mathbb{R}^3$ definida per f(x,y) = (x+y,2x-y,y-x) per a tot $(x,y) \in \mathbb{R}^2$.
- 5. L'aplicació $f: \mathbb{R}^n \to \mathbb{R}^m$ definida per

$$f(x_1, \dots, x_n) = (\sum_{i=1}^n a_{1i}x_i, \dots, \sum_{i=1}^n a_{mi}x_i)$$

amb tots els $a_{ji} \in \mathbb{K}$ per i = 1, ..., n, j = 1, ..., m.

6. Sigui E un K-espai vectorial qualsevol i F un subespai vectorial. Llavors les aplicacions

$$i_F: F \to E \quad (inclusi\'o de F en E), \quad \pi_F: E \to E/F \quad (projecci\'o sobre F)$$

 $x \mapsto x \qquad \qquad x \mapsto [x]_F$

són aplicacions lineals.

- 7. Si E és un K-espai vectorial i $\{x_1, x_2, ..., x_n\}$ és una base de E, sabem que tot element $x \in E$ s'escriu de forma única com $x = \alpha_1 x_1 + \alpha_2 x_2 + ... + \alpha_n x_n$. Aleshores, l'aplicació $f : E \to K^n$ definida per $f(x) = (\alpha_1, \alpha_2, ..., \alpha_n)$ és lineal (exercici).
- 8. Si F,G són subespais vectorials complementaris d'un \mathbb{K} -espai vectorial, llavors sabem que $E=F\oplus G$ i que tot $x\in E$ s'escriu de manera única com $x=y_x+z_x$ amb $y_x\in F$ i $z_x\in G$. Llavors les aplicacions

$$p_F: E \to F$$
 i $p_G: E \to G$

definides respectivament per $p_F(x) = y_x$ i $p_G(x) = z_x$ per a tot $x \in E$ són lineals. Vegem-ho, siguin $x = y_x + z_x$ i $u = y_u + z_u$ les descomposicions de x i u, i siguin $\alpha, \beta \in \mathbb{K}$. Notem que llavors

$$\alpha \cdot x + \beta \cdot u = \alpha \cdot (y_x + z_x) + \beta \cdot (y_u + z_u) = (\alpha \cdot y_x + \beta \cdot y_u) + (\alpha \cdot z_x + \beta \cdot z_u)$$

essent aquesta darrera expressió l'única manera d'escriure $\alpha \cdot x + \beta \cdot u$ com suma d'un element de F més un de G. Per tant,

$$p_F(\alpha \cdot x + \beta \cdot u) = \alpha \cdot y_x + \beta \cdot y_u = \alpha \cdot p_F(x) + \beta \cdot p_F(u).$$

Anàlogament es veu per p_G .

Exemple 4. L'aplicació $f: \mathbb{R}^2 \to \mathbb{R}^3$ definida per

$$f(x,y) = (x + y, x + y - 1, y)$$

no és lineal. Ho podeu veure com a exercici directament de la definició. Però també és immediat a partir de la proposició següent ja que, per aquesta f, $f(0,0) = (0,-1,0) \neq (0,0,0)$.

Proposició 5. Siguin E, F dos \mathbb{K} -espais vectorials $i \ f : E \to F$ una aplicació lineal. Aleshores:

- 1. $f(0_E) = 0_F$
- 2. f(-x) = -f(x)
- 3. Si H és un subespai vectorial de E, aleshores f(H) és subespai vectorial de F.
- 4. Si K és un subespai vectorial de F, aleshores $f^{-1}(K)$ és un subespai vectorial de E.
- 5. Si G és un altre \mathbb{K} -espai vectorial i $f: E \to F$, $g: F \to G$ són aplicacions lineals, aleshores l'aplicació $g \circ f: E \to G$ és lineal.

Demostració: Vegem les propietats una per una.

- $f(0_E) = f(0_E + 0_E) = f(0_E) + f(0_E)$, d'on necessàriament, restant $f(0_E)$ a cada banda, tenim $f(0_E) = 0_F$.
- Notem que $f(-x) + f(x) = f(-x+x) = f(0_E) = 0_F$ i per tant, f(-x) = -f(x).
- Suposem que H és un subespai vectorial de E i siguin $y_1, y_2 \in f(H)$ i $\alpha, \beta \in \mathbb{K}$. Per definició de f(H), existiran $x_1, x_2 \in H$ tals que $y_i = f(x_i)$ per a i = 1, 2 i llavors

$$\alpha \cdot y_1 + \beta \cdot y_2 = \alpha \cdot f(x_1) + \beta \cdot f(x_2) = f(\alpha \cdot x_1 + \beta \cdot x_2) \in f(H)$$

ja que $\alpha \cdot x_1 + \beta \cdot x_2$ és un element de H per ser H subespai vectorial.

- Sigui K un subespai vectorial de F i siguin $x_1, x_2 \in f^{-1}(K)$ i $\alpha, \beta \in \mathbb{K}$. Per definició de $f^{-1}(H)$, tendrem que $f(x_1), f(x_2) \in G$ i, per ser K subespai vectorial de F, també $\alpha \cdot f(x_1) + \beta \cdot f(x_2)$ és un element de K. Però,

$$f(\alpha \cdot x_1 + \beta \cdot x_2) = \alpha \cdot f(x_1) + \beta \cdot f(x_2) \in K$$

d'on $\alpha \cdot x_1 + \beta \cdot x_2 \in f^{-1}(K)$.

- Per a tots $x_1, x_2 \in E$ i $\alpha, \beta \in \mathbb{K}$, tenim

$$g \circ f(\alpha \cdot x_1 + \beta \cdot x_2) = g(f(\alpha \cdot x_1 + \beta \cdot x_2)) = g(\alpha \cdot f(x_1) + \beta \cdot f(x_2)) =$$
$$= \alpha \cdot g(f(x_1)) + \beta \cdot g(f(x_2)) = \alpha \cdot (g \circ f)(x_1) + \beta \cdot (g \circ f)(x_2)$$

on la segona igualtat és certa per ser f lineal i la tercera ho és per ser g lineal. \square

Definició 6. Com a cas particular de la proposició anterior tenim que F(E) és un subespai vectorial de F que s'anomena subespai vectorial imatge de f i es denota també per

$$f(E) = Img(f) = \{ f(x) \mid x \in E \}.$$

Anàlogament, tenim que $f^{-1}(\{0\})$ és un subespai vectorial de E que s'anomena nucli de f i es denota per

$$Ker(f) = \{x \in E \mid f(x) = 0\}.$$

Notació: Denotarem per $\mathcal{L}(E, F) = \{f : E \to F \mid f \text{ és lineal}\}.$

Exercici 7. Provau que $\mathcal{L}(E,F)$ amb les operacions

$$(f+g)(x) = f(x) + g(x), \quad f, g \in \mathcal{L}(E, F)$$

$$(\alpha f)(x) = \alpha f(x), \quad f \in \mathcal{L}(E, F), \alpha \in \mathbb{K}$$

és un K-espai vectorial. (Només cal demostrar que la suma d'aplicacions lineals és lineal i que el producte d'un escalar per una aplicació lineal és també lineal).

Definició 8. Sigui $f: E \to F$ una aplicació lineal, direm que

- \bullet és un monomorfisme si f és injectiva.
- és un epimorfisme si f és exhaustiva.
- és un isomorfisme si f és bijectiva.
- Si E = F direm que f 'es un endomorfisme.
- Si f és un endomorfisme bijectiu direm que és un automorfisme.
- Donats dos \mathbb{K} -espais vectorials E, F, si existeix un isomorfisme $f: E \to F$ es diu que E i F són isomorfs i es denota per $E \cong F$.

Proposició 9. Siguin E, F dos \mathbb{K} -espais vectorials isomorfs. Sigui $f: E \to F$ un isomorfisme, llavors existeix l'aplicació inversa de $f, f^{-1}F \to E$, i és també lineal.

Demostració: Si f és un isomorfisme és bijectiva i per tant existeix la seva inversa $f^{-1}: F \to E$. Per veure que és lineal, siguin $y_1, y_2 \in F$, com que f és bijectiva existeixen uns únics $x_1, x_2 \in E$ tals que $f(x_i) = y_i$ per a i = 1, 2 o, equivalentment, $x_i = f^{-1}(y_i)$. Llavors

$$f^{-1}(y_1+y_2) = f^{-1}(f(x_1)+f(x_2)) = f^{-1}(f(x_1+x_2)) = x_1+x_2 = f^{-1}(y_1)+f^{-1}(y_2).$$

Anàlogament es veu que $f^{-1}(\alpha \cdot y) = \alpha \cdot f^{-1}(y)$ i per tant f^{-1} és lineal.

Exemple 10. \mathbb{R}^2 $i \mathbb{C}$ són dos \mathbb{R} -espais vectorials isomorfs. Un isomorfisme seria $f: \mathbb{R}^2 \to \mathbb{C}$ donat per

$$f(x,y) = x + yi$$
 per a tot $(x,y) \in \mathbb{R}^2$.

Comprovau com a exercici que aquesta aplicació és efectivament lineal i bijectiva.

Proposició 11. Siqui $f: E \to F$ una aplicació lineal, aleshores:

- 1. f és monomorfisme $\Leftrightarrow Ker(f) = \{0\}.$
- 2. f és epimorfisme $\Leftrightarrow F = Img(f)$.

Demostració: Demostrarem només l'apartat 1 ja que el segon és obvi per definició d'aplicació exhaustiva. Per demostrar 1, suposem primer que f és un monomorfisme. Sigui $x \in Ker(f)$, aleshores f(x) = 0 i per ser f lineal, f(0) = 0. Així tenim que f(x) = f(0), i com que f és injectiva x = 0.

Recíprocament, suposem f(x) = f(x'). Aleshores f(x) - f(x') = 0 i, per ser f lineal, tenim que f(x) - f(x') = f(x - x') = 0, d'on $x - x' \in Ker(f) = \{0\}$. Consequentment x - x' = 0, és a dir, x = x'.

Exemple 12. a) L'aplicació $f: \mathbb{R}^3 \to \mathbb{R}^2$ definida per

$$f(x, y, z) = (x + y - 2z, x - y + z)$$

és lineal: Notem que el seu nucli són els vectors $(x, y, z) \in \mathbb{R}^3$ tals que f(x, y, z) = (x + y - 2z, x - y + z) = (0, 0), que és el mateix que

$$\begin{cases} x+y-2z=0\\ x-y+z=0. \end{cases}$$

Si resolem aquest sistema homogeni obtenim que les solucions són $\{(x, 3x, 2x) \mid x \in \mathbb{R}\}$. D'aquesta manera, Ker(f) = <(1, 3, 2)>.

b) $g: \mathbb{R}^3 \to \mathbb{R}^4$ definida per f(x,y,z) = (x+y+z,x+z,x+y,x) és un monomorfisme, ja que és lineal i en aquest cas el nucli ve donat pels $(x,y,z) \in \mathbb{R}^3$ tals que

$$\begin{cases} x+y+z=0\\ x+z=0\\ x+y=0\\ x=0. \end{cases}$$

amb solució única (0,0,0). És a dir, $Ker(f) = \{0\}$ i f és injectiva.

c) Sigui E un \mathbb{K} -espai vectorial i F, G dos subespais vectorials de E amb $F \cap G = \{0\}$. Hem vist en el capítol anterior que podem construir la suma directa de F i G com a \mathbb{K} -espais vectorials i també com a subespais vectorials, denotant

els dos conceptes per $F \oplus G$. Vegem que els dos espais vectorials resultants són isomorfs. Definim,

$$\varphi: F \oplus G \to F \oplus G$$
$$(x,y) \mapsto x+y$$

Llavors, φ és lineal ja que

$$\varphi((x,y) + (x',y')) = \varphi(x+x',y+y') = (x+x') + (y+y') = (x+y) + (x'+y') = \varphi(x,y) + \varphi(x',y').$$

 φ és exhaustiva ja que tot element de $F \oplus G$ és de la forma x + y amb $x \in F$ i $y \in G$. Per últim, tanbé és injectiva ja que si $\varphi(x, y) = 0$, llavors

$$x+y=0 \implies x=-y \in F \cap G \implies x=y=0 \implies (x,y)=(0,0).$$

Tenim per tant que φ és un isomorfisme.

En el cas d'espais vectorials de dimensió finita, els subespais nucli i imatge d'una aplicació lineal f estan sempre lligats pel següent resultat conegut amb el nom de $Teorema\ del\ rang$.

Teorema 13. Siguin E, F dos \mathbb{K} -espais vectorial amb E de dimensió finita n i $f: E \to F$ una aplicació lineal. Aleshores Ker(f) i Img(f) són de dimensió finita i

$$dimE = dimKer(f) + dimImg(f).$$

Demostració: Sabem que Ker(f) és un subespai vectorial de E i per tant haurà de ser de dimensió finita. Suposem dim(Ker(f)) = r i sigui u_1, \ldots, u_r una base de Ker(f). Completem-la fins a una base de E: $u_1, \ldots, u_r, u_{r+1}, \ldots, u_n$. Les imatges per f dels k primers vectors són 0 (ja que són vectors del nucli), vegem que les imatges dels altres n-r vectors $f(u_{r+1}), \ldots, f(u_n)$ són una base de Img(f).

• Linealment independents. Sigui $\sum_{i=r+1}^{n} a_i \cdot f(u_i) = 0$ una combinació lineal d'ells igual a 0. Llavors,

$$0 = \sum_{i=r+1}^{n} a_i \cdot f(u_i) = f\left(\sum_{i=r+1}^{n} a_i \cdot u_i\right).$$

Així, $\sum_{i=r+1}^{n} a_i \cdot u_i \in Ker(f)$ i per tant serà combinació lineal de la base de ker(f):

$$\sum_{i=r+1}^{n} a_i \cdot u_i = \sum_{i=1}^{r} a_i \cdot u_i \quad \Longrightarrow \quad \sum_{i=1}^{r} a_i \cdot u_i - \sum_{i=r+1}^{n} a_i \cdot u_i = 0.$$

Ara bé, com que u_1, \ldots, u_n és una base de E, són linealment independents i per tant, tots els escalars anteriors han de ser 0. En particular, $a_{r+1} = \ldots = a_n = 0$.

• Generen. Sigui $y \in Img(f)$, existirà un $x \in E$ tal que y = f(x) i aquest x serà combinació lineal de la base u_1, \ldots, u_n . Per tant,

$$y = f(x) = f\left(\sum_{i=1}^{n} a_i \cdot u_i\right) = \sum_{i=1}^{n} a_i \cdot f(u_i) = \sum_{i=r+1}^{n} a_i \cdot f(u_i)$$

ja que els r primers verifiquen $f(u_i) = 0$ per ser vectors del nucli de f.

Amb les notacions que hem considerat tenim dimE = n, dimKer(f) = r i amb el que hem provat dimImg(f) = n - r. Per tant, tenim efectivament que dimE = dimKer(f) + dimImg(f).

Definició 14. La dimensió del subespai vetorial imatge s'anomena habitualment rang de f, i es denota per rang(f). És a dir: rang(f) = dimImg(f). Notem que aleshores el Teorema del rang queda

$$dimE = dimKer(f) + rang(f).$$

El Teorema del rang ens permet veure una caracterització senzilla de quan dos espais vectorials de dimensió finita són isomorfs.

Proposició 15. Dos \mathbb{K} -espais vectorials de dimensió finita E i F són isomorfs si i només si dimE = dimF

Demostració: Si E i F són isomorfs existeix un isomorfisme $f: E \to F$. Com que f és bijectiu es verifica $Ker(f) = \{0\}$ i Img(f) = F i, aplicant el Teorema del rang, tenim

$$dim(E) = dimKer(f) + dimImg(f) = 0 + dimF \implies dimE = dimF.$$

Recíprocament, si dimE = dimF = n considerem u_1, \ldots, u_n una base de E i v_1, \ldots, v_n una base de F. Donat un $x \in E$ qualsevol s'escriurà de manera única com $x = \sum_{i=1}^n a_i \cdot u_i$ i llavors definim l'aplicació $f : E \to F$ donada per

$$f(x) = f\left(\sum_{i=1}^{n} a_i \cdot u_i\right) = \sum_{i=1}^{n} a_i \cdot v_i.$$

Aquesta f és:

• Lineal, ja que

$$f(x+y) = f\left(\sum_{i=1}^{n} a_i \cdot u_i + \sum_{i=1}^{n} b_i \cdot u_i\right) = f\left(\sum_{i=1}^{n} (a_i + b_i) \cdot u_i\right) =$$

$$= \sum_{i=1}^{n} (a_i + b_i) \cdot v_i = \sum_{i=1}^{n} a_i \cdot v_i + \sum_{i=1}^{n} b_i \cdot v_i = f(x) + f(y),$$

i anàlogament es veu que $f(\alpha \cdot x) = \alpha \cdot f(x)$.

- Exhaustiva, ja que tot $y \in F$ és combinació lineal dels v_i , $y = \sum_{i=1}^n a_i \cdot v_i$ i llavors $x = \sum_{i=1}^n a_i \cdot u_i$ és clarament una antiimatge.
- Injectiva, ja que si $x = \sum_{i=1}^{n} a_i \cdot u_i$ és tal que f(x) = 0 llavors $\sum_{i=1}^{n} a_i \cdot v_i = 0$ i com que els v_i són linealment independents $a_i = 0$ per a tot $i = 1, \ldots, n$. Però llavors $x = \sum_{i=1}^{n} a_i \cdot u_i = 0$. És a dir $Ker(f) = \{0\}$ i f és injectiva.

D'aquesta manera l'aplicació f definida és un isomorfisme i E,F són isomorfs. \square

Una versió similar al resultat anterior però referit a quan una aplicació f concreta és un isomorfisme és el següent.

Proposició 16. Siguin E i F dos \mathbb{K} -espais vectorials de dimensió finita i $f: E \to F$ una aplicació lineal. Aleshores f és un isomorfisme si i només si dimE = dimF i $Kerf = \{0\}$.

Demostració: Si f és un isomorfisme, E i F són isomorfs i per tant dimE = dimF. A més a més $Ker(f) = \{0\}$ ja que f és injectiva.

Recíprocament, f és injectiva per ser $Ker(f) = \{0\}$ i, aplicant el Teorema del rang a l'aplicació lineal f, tenim

$$dimF = dimE = dimKer(f) + rang(f) = 0 + dimImg(f).$$

Així, Img(f) és un subespai vectorial de F de la mateixa dimensió i, per tant, Img(f) = F, és a dir f és exhaustiva. Per tant, f és un isomorfisme.

Proposició 17. Siguin E i F dos \mathbb{K} -espais vectorials, $f: E \to F$ una aplicació lineal i x_1, x_2, \ldots, x_n vectors de E.

- a) Si f és injectiva (monomorfisme) i u_1, u_2, \ldots, u_n són linealment independents, aleshores $f(u_1), f(u_2), \ldots, f(u_n)$ són linealment independents.
- b) Si f és un exhaustiva (epimorfisme) i u_1, u_2, \ldots, u_n generen E, aleshores $f(u_1), f(u_2), \ldots, f(u_n)$ generen F.

Demostració: a). Sigui $\sum_{i=1}^{n} a_i \cdot f(u_i) = 0$ una combinació lineal igual a zero. Llavors, per ser f lineal tendrem $f(\sum_{i=1}^{n} a_i \cdot u_i) = 0$ i, per ser f injectiva, el nucli és trivial d'on $\sum_{i=1}^{n} a_i \cdot u_i = 0$. Ara, com que els u_i són linealment independents, tots els escalars han de ser 0, és a dir, $a_1 = \ldots = a_n = 0$.

b). Sigui $y \in F$. Per ser f exhaustiva existeix un $x \in E$ tal que f(x) = y. Com que els u_i generen E, x serà combinació lineal d'ells i llavors

$$y = f(x) = f\left(\sum_{i=1}^{n} a_i \cdot u_i\right) = \sum_{i=1}^{n} a_i \cdot f(u_i),$$

és a dir, els $f(u_i)$ generen tot F.

Observació 18. Notau que la mateixa demostració de l'apartat b) anterior prova que, si u_1, u_2, \ldots, u_n generen E i $f: E \to F$ és una aplicació lineal qualsevol, llavors $f(u_1), f(u_2), \ldots, f(u_n)$ generen Img(f). En el cas de ser f exhaustiva, Img(f) = F i per tant, en aquest cas, $f(u_1), f(u_2), \ldots, f(u_n)$ generen tot F.

Una altra aplicació del teorema del rang és la següent proposició.

Proposició 19. Sigui $f: E \to F$ una aplicació lineal entre \mathbb{K} -espais vectorials amb E de dimensió finita i G un subespai vectorial de E. Aleshores es verifica

$$dim(G) = dim(G \cap Ker(f)) + dim(f(G)).$$

Demostració: Basta considerar $f_{/G}: G \to F$ la restricció de f al subespai G. Clarament aquesta restricció continua sent lineal i el seu nucli ve donat per $G \cap Ker(f)$. Llavors, aplicant-li el teorema del rang obtenim el resultat. \square

Proposició 20. (Primer Teorema d'Isomorfia) Sigui $f: E \to F$ una aplicació lineal. Llavors $E/Ker(f) \cong Img(f)$. Més concretament, l'aplicació que a cada classe mòdul el nucli de f, li fa correspondre la imatge per f d'un qualsevol dels seus representants, $[x] \mapsto f(x)$ és un isomorfisme d'espais vectorials.

Demostració: Definim l'aplicació $\varphi: E/Ker(f) \to Img(F)$ donada per $\varphi([x]) = f(x)$ i veim que és un isomorfisme.

i) φ està ben definida. És a dir no depèn del representant elegit. Si [x] = [y], llavors $x \sim_{Ker(f)} y$, és a dir,

$$x-y \in Ker(f) \implies f(x-y) = 0 \implies f(x) - f(y) = 0 \implies f(x) = f(y).$$

ii) φ és lineal, ja que

$$\varphi([x] + [y]) = \varphi([x + y]) = f(x + y) = f(x) + f(y) = \varphi([x]) + \varphi([y]).$$

- iii) φ és injectiva ja que si $\varphi([x]) = f(x) = 0$ tenim que $x \in Ker(f)$ i per tant [x] = [0].
- iv) φ és exhaustiva perquè tot element de Img(f) és de la forma f(x) amb un $x \in E$ i llavors [x] és una antiimatge.

Observació 21. Aquest teorema és cert per espais vectorials de qualsevol dimensió (no necessàriament finita). Notem que en el cas de dim(E) finita, podiem haver vist que E/Ker(f) i Img(f) són isomorfs simplement perquè tenen la mateixa dimensió, ja que

$$dim(E/Ker(f)) = dim(E) - dim(Ker(f)) = dim(Img(f))$$

on la darrera igualtat és deguda al Teorema del rang.

Exemple 22. Considerem l'aplicació lineal $f: \mathbb{R}^2 \to \mathbb{R}$ donada per f(x,y) = x-y. El nucli de f correspon al subespai vectorial $Ker(f) = \{(x,y) \mid x=y\} = \langle (1,1) \rangle$. Aleshores el conjunt quocient $\mathbb{R}^2/Ker(f)$ està format per totes les rectes paral·leles al vector v = (1,1) (paral·leles a la diagonal de \mathbb{R}^2). Notem que f és exhaustiva, és a dir, $Img(f) = \mathbb{R}$. L'isomorfisme φ donat per la Proposició 20 és,

$$\varphi([(x,y)]) = f(x,y) = x - y = f([(x-y,0)]).$$

Cada classe d'equivalència [(x,y)] correspon a una recta paral·lela a (1,1) que talla a l'eix de les x's en el punt (x-y,0). Així, φ fa correspondre a cada recta de $\mathbb{R}^2/Ker(f)$ la seva intersecció amb l'eix de les x's.

Proposició 23. Descomposició canònica d'una aplicació lineal $Sigui\ f: E \to F$ una aplicació lineal. Llavors f es pot posar com a composició de tres aplicacions lineals, una exhaustiva, una bijectiva (isomorfisme) i una injectiva, segons el diagrama

$$\begin{array}{ccc} E & \to^f & F \\ \downarrow^\pi & \uparrow_i \\ E/Ker(f) & \to^\varphi & Img(f) \end{array}$$

on π denota la projecció, i la inclusió i φ l'isomorfisme donat pel primer teorema d'isomorfia. És a dir, $f = i \circ \varphi \circ \pi$.

Demostració: Efectivament tenim que per a tot $x \in E$,

$$i \circ \varphi \circ \pi(x) = i \circ \varphi([x]) = i(f(x)) = f(x).$$

Del primer teorema d'isomorfia en poden deduir fàcilment l'anomenat segon teorem d'isomorfia.

Proposició 24. (Segon Teorems d'isomorfia) Sigui E un \mathbb{K} -espai vectorial i F, G subespais vectorials de E. Llavors es cumpleix,

$$(F+G)/F \cong G/(F\cap G).$$

Demostració: Definim l'aplicació $f:G\to (F+G)/F$ donada per

$$f(y) = [y] = [0+y] \in (F+G)/F \qquad \text{per a tot} \quad y \in G.$$

És clar que f és una aplicació lineal. Vegem que també és exhaustiva. Donats $x \in F, y \in G$ tenim que y és una antiimatge de [x+y], ja que

$$[x + y] = [x] + [y] = [0] + [y] = [y] = f(y).$$

A més a més, el nucli d'aquesta aplicació és

$$Ker(f) = \{y \in G \mid f(y) = [y] = [0]\} = \{y \in G \mid y \in F\} = F \cap G.$$

Aleshores, aplicant el primer teorema d'isomorfia a l'aplicació f tenim el isomorfisme desitjat.

4.1 Matriu associada a una aplicació lineal.

Començam aquesta secció amb un resultat que ens assegura que tota aplicació lineal $f: E \to F$ queda totalment determinada si coneixem la imatge dels vectors d'una base de E i que aquesta pot venir donada per n vectors quassevol (diferents o no) de F.

Proposició 25. Siguin E i F dos \mathbb{K} -espais vectorials, E de dimensió finita, $\{u_1, \ldots, u_n\}$ una base de E i $\{v_1, \ldots, v_n\}$ n vectors qualssevol de F. Aleshores existeix una única aplicació lineal $f: E \to F$ tal que

$$f(u_i) = v_i$$
 per $a \quad i = 1, \dots, n$.

A més a més, aquesta aplicació f verifica

- i) f és monomorfisme si i només si v_1, \ldots, v_n són linealment independents.
- ii) f és epimorfisme si i només si v_1, \ldots, v_n generen F.
- iii) f és isomorfisme si i només si v_1, \ldots, v_n són base de F.

Demostració: Per a tot $x \in E$ tendrem $x = \sum_{i=1}^{n} a_i \cdot u_i$ i llavors, com que tota aplicació lineal transforma una combinació lineal en la combinació lineal de les imatges, l'aplicació que cercam ha de verificar per força

$$f(x) = f\left(\sum_{i=1}^{n} a_i \cdot u_i\right) = \sum_{i=1}^{n} a_i \cdot v_i.$$

Així l'única possible és aquesta i una demostració idèntica a la feta a la Proposició 15 prova que aquesta aplicació així definida és efectivament lineal. A més a més

i) si f és monomorfisme aleshores v_1,\ldots,v_n són linealment independents (Proposició 17-a). Recíprocament, sigui $x=\sum_{i=1}^n a_i\cdot u_i\in Ker(f)$, llavors

$$0 = f(x) = f\left(\sum_{i=1}^{n} a_i \cdot u_i\right) = \sum_{i=1}^{n} a_i \cdot v_i$$

i com que els v_i són linealment independents ha de ser $a_i = 0$ per a tot i = 1, ..., n. És a dir, x = 0.

ii) si f és epimorfisme aleshores v_1, \ldots, v_n generen F (Proposició 17-b). Recíprocament, sigui $y \in F$ qualsevol, llavors existeixen escalars a_1, \ldots, a_n tals que

$$y = \sum_{i=1}^{n} a_i \cdot v_i = \sum_{i=1}^{n} a_i \cdot f(u_i) = f\left(\sum_{i=1}^{n} a_i \cdot u_i\right)$$

d'on y és imatge d'un vector de E i per tant, f és exhaustiva.

iii) Evident a partir de i) i ii).

¹El resultat és cert també per dimensions infinites. Aleshores si $\{u_i \mid i \in I\}$ és una base de E i $\{v_i \mid i \in I\}$ vectors qualssevol de F, existeix una única aplicació lineal tal que $f(u_i) = v_i$ per a tot $i \in I$.

Definició 26. (Matriu associada a una aplicació lineal)

Siguin E, F K-espais vectorials de dimensió finita i $f: E \to F$ lineal. Siguin $B = \{u_1, u_2, \ldots, u_n\}$ una base ordenada de E i $B' = \{v_1, v_2, \ldots, v_m\}$ una base ordenada de F. Aleshores

$$f(u_1) \in F \Rightarrow f(u_1) = \sum_{i=1}^{m} a_{i1} \cdot v_i = a_{11} \cdot v_1 + a_{21} \cdot v_2 + \dots + a_{m1} \cdot v_m$$

$$f(u_2) \in F \Rightarrow f(u_2) = \sum_{i=1}^{m} a_{i2} \cdot v_i = a_{12} \cdot v_1 + a_{22} \cdot v_2 + \dots + a_{m2} \cdot v_m$$

$$\vdots$$

$$f(u_j) = \in F \Rightarrow f(u_j) = \sum_{i=1}^{m} a_{ij} \cdot v_i = a_{1j} \cdot v_1 + a_{2j} \cdot v_2 + \dots + a_{mj} \cdot v_m$$

$$f(u_j) = \in F \Rightarrow f(u_j) = \sum_{i=1}^{m} a_{ij} \cdot v_i = a_{1j} \cdot v_1 + a_{2j} \cdot v_2 + \dots + a_{mj} \cdot v_m$$

:

$$f(u_n) \in F \Rightarrow f(u_n) = \sum_{i=1}^m a_{in} \cdot v_i = a_{1n} \cdot v_1 + a_{2n} \cdot v_2 + \ldots + a_{mn} \cdot v_m.$$

S'anomena matriu associada a f respecte de les bases donades B i B', la matriu

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$

on els elements de la columna j són les coordenades de $f(u_j)$, j = 1, ..., n, respecte de la base $B' = \{v_1, ..., v_m\}$ de F.

En els casos d'un endomorfisme $f: E \to E$, la matriu de f respecte de les bases B i B s'anomena simplement matriu de f respecte de la base B.

Quan en una aplicació lineal volguem explicitar quines són les bases considerades a cada espai vectorial ho escriurem per $f: E_B \to F_{B'}$ o també $f: E_{\{u_i\}} \to F_{\{v_i\}}$. Així, la matriu associada a $f: E \to F$ respecte de les bases B i B' l'escriurem habitualment com $A = M(f: E_B \to F_{B'})$ indicant per subíndexos quines són les bases considerades a cada espai vectorial.

Fixades unes bases de E i F, la matriu associada a una aplicació lineal, respecte d'aquestes bases, és l'eina amb que, molt sovint, estudiam aquesta aplicació lineal. Notem per exemple que se satisfà

$$rang(f) = dim Img(f) = dim (\langle f(e_1), \dots, f(e_n) \rangle) = rang(A).$$

A més a més, aquesta matriu ens permet calcular les coordenades de la imatge d'un vector qualsevol, de la següent manera.

Proposició 27. (Equació matricial d'una aplicació lineal)

Siguin E, F \mathbb{K} -espais vectorials de dimensió finita $i \ f : E \to F$ lineal. Siguin $\{u_1, u_2, \ldots, u_n\}$ una base ordenada de $E \ i \ \{v_1, v_2, \ldots, v_m\}$ una base ordenada de F.

A tot $x \in E$, $x = \sum_{j=1}^{n} x_j \cdot u_j = x_1 \cdot u_1 + x_2 \cdot u_2 + \ldots + x_n \cdot u_n$, li associam la matriu columna

$$X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$

formada per les coordenades de x respecte de la base $\{u_1, u_2, \ldots, u_n\}$.

Al vector $y = f(x) \in F$, $y = \sum_{i=1}^m y_i \cdot v_i = y_1 \cdot v_1 + y_2 \cdot v_2 + \ldots + y_m \cdot v_m$, li associam la matriu columna

$$Y = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{pmatrix}$$

formada per les coordenades de y respecte de la base $\{v_1, v_2, \dots, v_m\}$.

Si A és la matriu associada a f respecte de les bases donades, aleshores Y = AX. En forma desenvolupada:

$$\begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}.$$

Demostració: Sabem que si $x = \sum_{j=1}^{n} x_j \cdot u_j$ llavors

$$f(x) = f\left(\sum_{j=1}^{n} x_j \cdot u_j\right) = \sum_{j=1}^{n} x_j \cdot f(u_j)$$

i com que les coordenades de cada $f(u_j)$ en la base v_i venen donades per la columna j de A, tenim,

$$f(x) = \sum_{j=1}^{n} x_j \cdot \left(\sum_{i=1}^{m} a_{ij} \cdot v_i\right) = \sum_{j=1}^{m} \left(\sum_{i=1}^{n} a_{ij} x_j\right) \cdot v_i.$$

Això ens diu que les coordenades de y = f(x) en la base v_i són.

$$y_i = \sum_{j=1}^n a_{ij} x_j$$
 per a tot $i = 1, \dots, n$

com voliem demostrar.

Exemple 28. Sigui $f: \mathbb{R}^3 \to \mathbb{R}^2$ definida per f(x,y,z) = (x+y,y-z). Clarament f és lineal, volem trobar la matriu associada a f respecte de les bases canòniques de \mathbb{R}^3 i \mathbb{R}^2 respectivament. Calculam

$$f(e_1) = f(1,0,0) = (1,0);$$
 $f(e_2) = f(0,1,0) = (1,1);$ $f(e_3) = f(0,0,1) = (0,-1).$

Llavors la matriu cercada és

$$A = \left(\begin{array}{ccc} 1 & 1 & 0 \\ 0 & 1 & -1 \end{array}\right).$$

Notem que llavors

$$f(x,y,z) = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x+y \\ y-z \end{pmatrix}.$$

Observació 29. Tota matriu $A_{m \times n}$ es pot considerar com a la matriu associada a una aplicació lineal $f: E \to F$ (on dimE = n, dimF = m) respecte d'unes bases donades. Si no deim el contrari, quan diguem que $A_{m \times n}$ és la matriu associada a f, ens referirem que ho serà respecte de les bases canòniques de E i F respectivament.

Exemple 30. Sabem que la matriu

$$A_{3\times 4} = \left(\begin{array}{cccc} 1 & 2 & -1 & 3 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{array}\right)$$

és la matriu associada a l'aplicació lineal $f: \mathbb{R}^4 \to \mathbb{R}^3$ (respecte de les bases canòniques). Llavors per saber de quina aplicació lineal es tracta basta fer $f(x_1, x_2, x_3, x_4) = (y_1, y_2, y_3)$ on

$$\begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = \begin{pmatrix} 1 & 2 & -1 & 3 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} x_1 + 2x_2 - x_3 + x_4 \\ x_2 + x_3 \\ x_1 + x_4 \end{pmatrix}.$$

Així, f és l'aplicació lineal definida per

$$f(x_1, x_2, x_3, x_4) = (x_1 + 2x_2 - x_3 + x_4, x_2 + x_3, x_1 + x_4).$$

Exemple 31. 1.- Sigui E un \mathbb{K} -espai vectorial de dimensió n i sigui $B = \{u_i\}_{i=1}^n$ una base ordenada de E. Llavors la matriu de l'aplicació lineal identitat (Id: $E \to E$) respecte de la base B (en els dos llocs), és la matriu identitat I_n (cada columna j correspon a escriure el vector $Id(u_j) = u_j$ com a combinació lineal de u_1, \ldots, u_n). És a dir

$$M(Id: E_B \to E_B) = I_n$$
 per a qualsevol base B de E.

2.- Suposem en canvi que consideram l'aplicació lineal identitat, $Id: E \to E$, i volem calcular la seva matriu associada respecte de les bases $B = \{u_1, \ldots, u_n\}$ i $B' = \{v_1, \ldots, v_n\}$. Llavors cada columna correspondrà a escriure el vector $Id(u_j) = u_j$ com a combinació lineal de la base v_1, \ldots, v_n . Però aquesta matriu és exactament la matriu que haviem anomenat matriu del canvi de base de B' a B. És a dir

$$M(Id: E_B \to E_{B'}) = matriu \ del \ canvi \ de \ base \ de \ B' \ a \ B.$$

3.- Suposem ara $f: E \to F$ un isomorfisme. Llavors, si consideram una base qualsevol $B = \{u_1, \ldots, u_n\}$ de E i la base $f(B) = \{f(u_1), \ldots, f(u_n)\}$ de F (que sabem que és base per ser f un isomorfisme), la matriu associada a f respecte d'aquestes bases és la matriu identitat I_n . És a dir,

$$M(f: E_B \to F_{f(B)}) = I_n$$
 per a qualsevol base B de E.

Exemple 32. Sigui $B' = \{u_1, u_2, u_3\}$ la base de \mathbb{R}^3 donada per $u_1 = (1, 0, 0), u_2 = (1, 1, 0), u_3 = (1, 1, 1)$. Si B és la base canònica, trobau la matriu associada a l'aplicació identitat $Id : \mathbb{R}^3_{B'} \to \mathbb{R}^3_B$. Calculau també les coordenades del vector u = (-1, -2, 7) respecte de la base B'.

Per calcular la matriu només hem d'escriure cada element u_j com a combinació lineal de la base canònica. És a dir, la matriu cercada és

$$P = \left(\begin{array}{ccc} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{array}\right),$$

que correspon a la matriu del canvi de base de B a B'. Per trobar les coordenades del vector u = (-1, -2, 7) en la base $\{u_1, u_2, u_3\}$ recordem que

$$\begin{pmatrix} -1 \\ -2 \\ 7 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix}$$

d'on

$$\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = P^{-1} \begin{pmatrix} -1 \\ -2 \\ 7 \end{pmatrix}$$

i així

$$\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} -1 \\ -2 \\ 7 \end{pmatrix} = \begin{pmatrix} 1 \\ -9 \\ 7 \end{pmatrix}.$$

Proposició 33. Siguin E, F i G \mathbb{K} -espais vectorials de dimensió finita i siguin $f: E \to F i g: F \to G$ aplicacions lineals. Siguin $\{e_1, e_2, \ldots, e_n\}, \{u_1, u_2, \ldots, u_m\}$ i $\{v_1, v_2, \ldots, v_s\}$ bases ordenades de E, F i G respectivament.

$$\underbrace{E_{\{e_i\}} \ \stackrel{f}{\longrightarrow} \ F_{\{u_i\}} \ \stackrel{g}{\longrightarrow} \ G_{\{v_i\}}}_{g \circ f}$$

Siguin A, B, C les matrius de f, g i $g \circ f$ respecte d'aquestes bases. Aleshores, C = BA, és a dir:

$$M(g \circ f : E_{\{e_i\}} \to G_{\{v_i\}}) = M(g : F_{\{u_i\}} \to G_{\{v_i\}}) \ M(f : E_{\{e_i\}} \to F_{\{u_i\}}).$$

Demostració: Si $A = (a_{ij})$ és la matriu de f en les bases $\{e_j\}, \{u_i\}$ i $B = (b_{jk})$ és la de g en les bases $\{u_i\}, \{v_k\}$, llavors:

$$f(e_j) = \sum_{i=1}^m a_{ij} \cdot v_i, \quad i \quad g(u_i) = \sum_{k=1}^s b_{ki} \cdot v_k.$$

Per tant,

i

$$(g \circ f)(e_j) = g(f(e_j)) = g\left(\sum_{i=1}^m a_{ij} \cdot u_i\right) = \sum_{i=1}^m a_{ij} \cdot g(u_i) = \sum_{i=1}^m a_{ij} \cdot \left(\sum_{k=1}^s b_{ki} \cdot v_k\right)$$
$$= \sum_{k=1}^s \left(\sum_{i=1}^m b_{ki} a_{ij}\right) \cdot v_k = \sum_{k=1}^s c_{kj} \cdot v_k.$$

És a dir, cada element c_{kj} de la matriu C coincideix amb l'expressió $\sum_{i=1}^{m} b_{ki} a_{ij}$ que no és més que la fila k de B multiplicada per la columna j de A.

Aquest darrer resultat demostra en particular que el producte de matrius és associatiu (es correspon amb la composició d'aplicacions lineals i aquesta sabem que és associativa). A més a més, s'en deduiex el següent corol·lari.

Corol·lari 34. Siguin E, F \mathbb{K} -espais vectorials isomorfs de dimensió finita i siguin $\{e_1, e_2, \ldots, e_n\}, \{v_1, v_2, \ldots, v_n\}$ bases ordenades de E i F respectivament. Sigui $f: E \to F$ un isomorfisme i siguin A i B les matrius associades a f i f^{-1} respecte d'aquestes bases respectivament. Aleshores, A i B són invertibles i $B = A^{-1}$. És a dir,

$$M(f^{-1}: F_{\{v_i\}} \to F_{\{e_i\}}) = M(f: E_{\{e_i\}} \to F_{\{v_i\}})^{-1}$$

Demostració: Immediat ja que per la proposició anterior

$$M(f: E_{\{e_i\}} \to F_{\{v_i\}}) \ M(f^{-1}: F_{\{v_i\}} \to E_{\{e_i\}}) = M(Id: F_{\{v_i\}} \to F_{\{v_i\}}) = I_n$$

$$M(f^{-1}: F_{\{v_i\}} \to E_{\{e_i\}}) \ M(f: E_{\{e_i\}} \to F_{\{v_i\}}) = M(Id: E_{\{e_i\}} \to E_{\{e_i\}}) = I_n.$$

En particular, si en el Corol·lari anterior prenem E = F i $\{e_i\}, \{v_i\}$ bases de E, obtenim que la matriu del canvi de base de $\{e_i\}$ a $\{v_i\}$ i la matriu del canvi de base de $\{v_i\}$ a $\{e_i\}$ són inverses l'una de l'altra (cosa que ja haviem demostrat en el tema anterior).

Proposició 35. Siguin E, F \mathbb{K} -espais vectorials de dimensió finita, n i m respectivament. Llavors l'espai vectorial de les aplicacions lineals de E en F, $\mathcal{L}(E, F)$, és de dimensió finita $m \times n$.

Demostració: Fixem $\{u_1, u_2, \dots, u_n\}$ una base de E i $\{v_1, v_2, \dots, v_m\}$ una base de F. Donada una $f: E \to F$ lineal, definim la següent aplicació $\varphi: \mathcal{L}(E, F) \to M_{m \times n}(\mathbb{K})$ donada per

$$\varphi(f) = M(f : E_{\{u_i\}} \to F_{\{v_i\}}).$$

Clarament φ és una aplicació lineal ja que, fixades les bases, (vegeu-ho com a exercici)

$$M(f+g:E_{\{u_i\}}\to F_{\{v_i\}})=M(f:E_{\{u_i\}}\to F_{\{v_i\}})+M(g:E_{\{u_i\}}\to F_{\{v_i\}})$$

i

$$M(\alpha \cdot f : E_{\{u_i\}} \to F_{\{v_i\}}) = \alpha \cdot M(f : E_{\{u_i\}} \to F_{\{v_i\}})$$

(vegeu-ho com a exercici). A més a més, és un isomorfisme ja que

- φ és injectiva. Si $\varphi(f) = 0$ llavors $M(f : E_{\{u_i\}} \to F_{\{v_i\}}) = 0$ i per tant $f(u_j) = 0$ per a tot $j = 1, \ldots, n$. És a dir f és l'aplicació lineal 0 i $Ker(\varphi) = \{0\}$.
- φ és exhaustiva. Ja hem vist que qualsevol matriu $A \in M_{m \times n}(\mathbb{K})$ és la matriu associada a una aplicació lineal respecte de les bases fixades.

Hem trobat un isomorfisme entre $\mathcal{L}(E,F)$ i $M_{m\times n}(\mathbb{K})$ i per tant els dos espais vectorials tenen la mateixa dimensió $m\times n$.

Observació 36. L'isomorfisme definit en la demostració anterior té un invers $\varphi^{-1}: M_{m \times n}(\mathbb{K}) \to \mathcal{L}(E, F)$ i sabem que també és isomorfisme. Per tant, transforma bases en bases. Així, la imatge de la base canònica de $M_{m \times n}(\mathbb{K})$ és una base de $\mathcal{L}(E, F)$:

$$\varphi^{-1}(e_{ij}) = f_{ij}.$$

Notau que cada $f_{ij}: E \to F$ és l'aplicació lineal definida per

$$f_{ij}(u_i) = v_i$$
, i $f_{ij}(u_k) = 0$ per a tot $k \neq j$

ja que la seva matriu respecte de les bases $\{u_i\}$ i $\{v_i\}$ ha de ser e_{ij} .

Proposició 37. (Canvi de bases en aplicacions lineals)

Siguin E, F \mathbb{K} -espais vectorials de dimensió finita, $\{e_1, e_2, \ldots, e_n\}$ una base de E $i \{v_1, v_2, \ldots, v_m\}$ una base de F. Sigui $f : E \to F$ lineal i A la matriu associada a f respecte d'aquestes bases. Siguin $\{e'_1, e'_2, \ldots, e'_n\}$ i $\{v'_1, v'_2, \ldots, v'_m\}$ bases E i de F respectivament. Llavors, si B és la matriu associada a f respecte d'aquestes noves bases, es verifica que

$$B = Q^{-1}AP$$

on P és la matriu del canvi de base de $\{e_i\}$ a $\{e'_i\}$ i Q és la matriu del canvi de base de $\{v_i\}$ a $\{v'_i\}$.

Demostració: Tenim el diagrama:

$$E_{\{e_i\}} \xrightarrow{f} F_{\{v_j\}}$$

$$Id \uparrow \qquad \downarrow Id$$

$$E_{\{e'_i\}} \xrightarrow{f} F_{\{v'_j\}}$$

que simplement expressa el fet que $f = Id \circ f \circ Id$. Però detallant les bases tenim:

$$M(f: E_{\{e'_i\}} \to F_{\{v'_i\}}) =$$

$$= M(Id: F_{\{v_i\}} \to F_{\{v_i'\}}) \ M(f: E_{\{e_i\}} \to F_{\{v_j\}}) \ M(Id: E_{\{e_i'\}} \to E_{\{e_i\}}).$$

Ara bé, sabem que la matriu $M(Id: E_{\{e_i'\}} \to E_{\{e_i\}})$ correspon a la matriu del canvi de base de $\{e_i\}$ a $\{e_i'\}$ (que hem anomenat P) i la matriu $M(Id: F_{\{v_j\}} \to F_{\{v_j'\}})$ correspon a la matriu del canvi de base de $\{v_j'\}$ a $\{v_j'\}$ (o equivalentment, a la inversa de la matriu del canvi de base de $\{v_j\}$ a $\{v_j'\}$, que hem anomenat Q). D'aquesta manera la igualtat de matrius anterior s'escriu

$$B = Q^{-1}AP.$$

Observació 38. Notem que en el cas E = F, si les bases $\{e_i\}$, $\{v_i\}$ coincideixen i les bases $\{e'_i\}$, $\{v'_i\}$ també coincideixen, llavors l'expressió anterior queda:

$$B = P^{-1}AP.$$

Exemple 39. Sigui $f: \mathbb{R}^4 \to \mathbb{R}^4$ l'aplicació lineal definida per

$$f(x_1, x_2, x_3, x_4) = (2x_3, x_1 + x_3, x_2 - 2x_3, x_4)$$

• Volem calcular la matriu associada a f respecte de la base canònica $\{e_1, e_2, e_3, e_4\}$.

$$f(1,0,0,0) = (0,1,0,0)$$

$$f(0,1,0,0) = (0,0,1,0)$$

$$f(0,0,1,0) = (2,1,-2,0)$$

$$f(0,0,0,1) = (0,0,0,1)$$

d'on la matriu que cercam és

$$A = \left(\begin{array}{cccc} 0 & 0 & 2 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & -2 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right)$$

• Trobem ara la matriu associada a f respecte de la base $\{u_1, u_2, u_3, u_4\}$ on

$$u_1 = e_1$$
, $u_2 = e_1 + e_2$, $u_3 = e_1 + e_2 + e_3$, $u_4 = e_1 + e_2 + e_3 + e_4$.

Si deim B a aquesta matriu aleshores

$$B = P^{-1}AP$$

on P és la matriu del canvi de base de $\{e_i\}$ a $\{u_i\}$, és a dir

$$P = \left(\begin{array}{cccc} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{array}\right).$$

 $Si\ calculam\ P^{-1}\ obtenim$

$$P^{-1} = \begin{pmatrix} 1 & -1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

i aleshores

$$B = P^{-1}AP = \begin{pmatrix} -1 & -1 & 0 & 0 \\ 1 & 0 & 3 & 3 \\ 0 & 1 & -1 & -2 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

Exemple 40. Sigui $f: \mathbb{R}^3 \to \mathbb{R}^2$ i

$$A = \left(\begin{array}{ccc} 2 & 1 & 0 \\ 0 & 1 & -1 \end{array}\right)$$

la matriu associada a f respecte de les bases canòniques de \mathbb{R}^3 i \mathbb{R}^2 . Si consideram les bases $\{u_1, u_2, u_3\}$ i $\{v_1, v_2\}$ de \mathbb{R}^3 i \mathbb{R}^2 respectivament donades per

$$u_1 = e_1 + e_2 + e_3$$
 $u_2 = e_2 + 2e_3$, $u_3 = 2e_2 + e_3$

i

$$v_1 = 2e_1 + e_2, \quad v_2 = e_1,$$

la matriu associada a f respecte d'aquestes noves bases serà

$$B = Q^{-1}AP$$

on P és la matriu del canvi de base de $\{e_i\}$ a $\{u_i\}$ i Q és la matriu del canvi de base de $\{e_i\}$ a $\{v_i\}$. Per tant

$$P = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 2 \\ 1 & 2 & 1 \end{pmatrix} \qquad i \qquad Q = \begin{pmatrix} 2 & 1 \\ 1 & 0 \end{pmatrix}$$

d'on

$$Q^{-1} = \begin{pmatrix} 0 & 1 \\ 1 & -2 \end{pmatrix} \qquad i \qquad B = Q^{-1}AP = \begin{pmatrix} 0 & -1 & 1 \\ 3 & 3 & 0 \end{pmatrix}.$$

Definició 41. Sigui E un \mathbb{K} - espai vectorial de dimensió n i $f: E \to E$ un endomorfisme. Es defineix determinant de l'endomorfisme f com det f = |A| on A és la matriu associada a f respecte d'una base de E.

Notem que si A' és la matriu associada a f respecte d'una altra base, tenim que $A' = P^{-1}AP$ d'on

$$|A'| = |P^{-1}| |A| |P| = |P|^{-1} |A| |P| = |A|,$$

és a dir, el determinant d'un endomorfisme no depèn de la base utilitzada.