Final Report: Visualizing Housing Market Trends: An Analysis of Sale Prices and Features using Tableau

1. INTRODUCTION

1.1 Project Overview

This project focuses on leveraging Tableau to visualize and analyze housing market trends, specifically concerning sale prices and property features. The primary goal is to transform complex real estate datasets into interactive and easily digestible visual insights. This will assist various stakeholders, including homebuyers, investors, and real estate professionals, in making informed decisions by identifying patterns and correlations within the housing market.

1.2 Purpose

The purpose of this project is to provide a comprehensive and intuitive platform for understanding the factors influencing housing sale prices. By visualizing data on property size, amenities, renovation status, and location, the tool aims to demystify real estate market dynamics. This will lead to improved decision-making for buyers and sellers, enable strategic planning for investors and agents, and contribute to greater transparency in the housing market.

2. IDEATION PHASE

2.1 Problem Statement

The real estate market is characterized by vast and complex datasets on housing features and sale prices. These datasets are often underutilized due to a lack of effective visualization, making it challenging for buyers, sellers, and analysts to derive insights or forecast trends efficiently.

Customer Pain Points:

I am	Um traing to	Dut	Dagayea	Which makes me
(Customer)	I'm trying to	to But Because		feel
A first-time		The available	There is no	Confused and
homebuyer	Find a home within my	market data is		
who wants to		difficult to	use tool that	
make an		interpret and	visualizes housing	hesitant to
informed	lieeus	scattered across	trends based on	
decision		multiple sources	historical sales data	proceed

I am	I'm trying to	But	Because	Which makes me	
(Customer)	i iii ti yilig to	But	because	feel	
for high-return	Identify profitable properties based on price trends and key influencing factors	extensive	No interactive visualization tool allows me to compare property appreciation	uncertain about making	
agent aiming to	Provide accurate and insightful recommendations based on market data	The data is time- consuming to analyze and spread across various reports	comprehensive tool to aggregate and visualize pricing	Less efficient, unable to provide quick, data-backed advice to clients	

Core Problem Question: How can housing sale price trends and property characteristics be visualized and analyzed using Tableau to identify patterns, improve buyer/seller decision-making, and uncover insights that support strategic real estate planning?

2.2 Empathy Map Canvas

The empathy map visually captures user behaviors and attitudes, aiding in understanding the true problem from the user's perspective, their goals, and challenges.

- Think & Feel: Users are concerned about market fluctuations and whether they are making data-driven conclusions.
- See: Users see charts and graphs in Tableau, as well as the latest data on sale prices.
- Say & Do: Users share findings with their team and compare property attributes.
- Hear: Users engage in discussions with colleagues and stay updated with market news and reports.

2.3 Brainstorming

The brainstorming session involved team collaboration to identify pressing challenges in the real estate market, particularly focusing on how property features influence housing sale prices. The objective was to visually explore trends using Tableau to help various stakeholders understand patterns of sale prices based on features like area, bedrooms, renovation status, condition, and location (zipcode groups).

Idea Listing and Grouping:

S.No	Idea Description	Category
1	Visualize average sale price by SalePriceBin	Pricing Insights
2	Analyze impact of number of bedrooms on sale price	Property Features
3	Explore relationship between Total Area and Price (scatter plot)	Size-Based Pricing
4	Compare prices for renovated vs. non-renovated homes	Renovation Analysis
5	Group insights by Zipcode Clusters	Geographical Comparison
6	Analyze house condition vs. price using dummy variables	Quality-Based Pricing

S.No	Idea Description	Category	
7	Add calculated field: TotalAreaSqft	Data Preparation	
8	Create SalePriceBin with 100k intervals	Binning / Categorization	
9	Use Tableau dashboard to combine insights	Dashboard Design	
10	Build a Story in Tableau for narrative	Storytelling & Reporting	
11	Embed Dashboard in Web Application using Flask	Deployment & Integration	
12	Add filters for Bedrooms, Condition, Renovation in Dashboard	Interactive Exploration	

Idea Prioritization Table:

S.No	Idea Description	Impact	Feasibility	Priority
1	Visualize average sale price by SalePriceBin	High	Easy	High
2	Analyze impact of number of bedrooms on sale price	High	Easy	High
3	Explore TotalArea vs Price (scatter plot)	High	Easy	High
4	Compare prices for renovated vs. non-renovated homes	High	Medium	High
5	Group insights by Zipcode Clusters	Medium	Medium	Medium
6	Analyze house condition vs. price	High	Medium	High
7	Add calculated field: TotalAreaSqft	Medium	Easy	High
8	Create SalePriceBin with 100k intervals	Medium	Easy	High
9	Use Tableau dashboard to combine insights	High	Easy	High
10	Build a Story in Tableau	High	Medium	High
11	Embed Dashboard in Web Application	High	Hard	Medium
12	Add filters for Bedrooms, Condition, Renovation	Medium	Easy	Medium

3. REQUIREMENT ANALYSIS

3.1 Customer Journey Map

The customer journey map outlines the user's experience across various stages of interacting with the housing market trends dashboard.

Stage	Awareness	Consideration	Exploration	Decision	Retention
Actions & Touchpoints	Sees dashboard via social media, real estate newsletter, or Tableau Public	Clicks link to access Tableau dashboard Reads intro, explores navigaion	Interacts with filters (location, price, features) Examines charts (bar, line, bubble, etc.)	Exports charts Shares insights Satisfied, Confident	Subscribes for updates Leaves feedback
Experience & Emotions	Curious, Interested	Engaged, Cautious	Filters confusing, charts slow to load	Limited export/ share, unclear formats	No updates, ignored feedback
Pain Points	Unsure if dashboard is relevant	Overwhelmed by options, unclear layout	Add example use cases performance	Offer multiple export/share formats	Stay informed, contribute to improvement
Opportunities	Use clear, benefit driven headlines and visuals	Provide guided wallkthrough streemline	Add example use case optimizermænce	Offer multiple export/share clear guides	Stay informed contribute to improvement
Goals	Attract interest, set expectations	Understand project scope and usability	Find actionable insights	Enable notifications	Stay informed, contribute to improvement

3.2 Solution Requirement

Functional Requirements (FR):

FR	Functional Requirement	Sub Requirement (Story / Sub-Task)			
No.					
FR-1	Data Import	- Import data from CSV			
		- Live database integration (e.g., MySQL, if applicable)			
FR-2	Data Cleaning &	- Clean missing values			
	Transformation	- Add calculated fields (e.g., TotalAreaSqft, SalePriceBin)			
FR-3	Data Visualization	- Create Tableau worksheets			
FN-3	Data visualization	- Build multiple interactive dashboards			
		- Filter by location, price range, features (e.g., bedrooms,			
FR-4	User Interaction	condition, renovation)			
	- Comparative charts (bar, scatter, etc.)				
FR-5	User Access	- Role-based views (Homebuyer, Investor, Agent, Analyst)			
נ-או ו	USEI ACCESS	- Download/export insights (PDF/image)			

FR	Functional Requirement	Sub Paguiroment (Stary / Sub Tack)				
No.	(Epic)	Sub Requirement (Story / Sub-Task)				
FR-6	Feedback Loop	- Stakeholder	review	&	feedback	
FN-0		- Implement iterative r	evision cycles			

Non-functional Requirements (NFR):

NFR	Non-Functional	Description			
No.	Requirement				
NFR-1	Usability	Intuitive UI with clear filters, legends, and navigation for all users			
NFR-2	Security Role-based access control; secure database connection				
NFR-3	Reliability	Handles malformed data smoothly; ensures visualization and			
	,	calculation accuracy			
NFR-4	Performance	Fast loading and responsive visualizations, even with large			
		datasets			
NFR-5	Availability	Accessible on desktops, tablets, mobiles; minimal downtime			
NFR-6	Scalability	Supports future data growth and feature expansions			

3.3 Data Flow Diagram

The data flow for this project would involve:

- 1. Data Ingestion: Raw housing data (e.g., from CSVs or databases).
- 2. Data Transformation: Python scripts for cleaning, feature engineering (e.g., TotalAreaSqft, SalePriceBin).
- 3. Data Storage: Optionally, storing processed data in a structured database (e.g., MySQL).
- 4. Data Visualization: Tableau connecting to the processed data to create dashboards and stories.
- 5. Web Deployment: A Flask application serving the Tableau visualizations to end-users via a web browser.

3.4 Technology Stack

The comprehensive technology stack involves various components for data sources, processing, analytics, and visualization.

The technology stack for this project includes:

- Data Sources: User Uploaded Sale Data, Public Real Estate Listings, News Feeds, Government
 Property Records, Third-Party Market Reports, Social Media Feeds.
- Data Ingestion and Processing: Mechanisms to process raw data from various sources.
- Data Storage: Solutions for storing processed data.
- Analytics and Modeling:
 - Cluster Analysis
 - Time Series Analysis
 - Predictive Modeling
 - Comparative Feature Analysis
 - Geographic Mapping
- Visualization Layer: Connects analytics to user groups, primarily driven by Tableau.
- User Groups: Real Estate Agents, Home Buyers and Sellers, Market Analysts, Urban Planners,
 Public and Media.

4. PROJECT DESIGN

4.1 Problem Solution Fit

The solution directly addresses the identified problem of complex and underutilized housing market data by providing interactive, insightful visualizations. It bridges the gap between raw data and actionable insights, enabling stakeholders to make data-driven decisions. The fit is achieved by offering a user-friendly interface that simplifies the exploration of trends influenced by property features and location, thereby resolving the pain points of scattered and difficult-to-interpret information.

4.2 Proposed Solution

Our solution transforms static housing datasets into interactive, insightful visualizations using Tableau. The project involves cleaning and transforming the data, creating calculated fields and Key Performance Indicators (KPIs), and developing a dashboard that highlights key trends, comparisons, and location-based analyses. The solution is optionally deployed via a Flask web application for broader accessibility.

S.No.	Parameter	Description
1	Problem Statement	The real estate market involves vast and complex datasets on housing features and sale prices. These datasets are often underutilized due to lack of effective visualization, making it difficult for buyers, sellers, and analysts to draw insights or forecast trends.
2		Our solution transforms static housing datasets into interactive, insightful visualizations using Tableau. The project involves cleaning and transforming

S.No.	Parameter	Description
		the data, creating calculated fields and KPIs, and developing a dashboard that highlights key trends, comparisons, and location-based analyses. The solution is deployed via a Flask web app.
3	Novelty / Uniqueness	This project leverages Tableau's powerful visual capabilities to go beyond basic data analytics. By combining calculated fields, condition segmentation, and geographic mapping, the dashboard offers a dynamic exploration of how features like bedrooms, area, renovation, and location influence housing prices.
4	Social Impact / Customer Satisfaction	This solution enables real estate buyers, sellers, agents, and market researchers to make informed decisions. It improves housing transparency, supports better urban planning, and enhances user engagement with clear visuals and actionable insights.
5	Business Model (Revenue Model)	This dashboard can be scaled and offered as a subscription-based SaaS tool to real estate companies, market research firms, or housing consultancies. Advanced forecasting modules, API integrations, and custom dashboards can be monetized as premium features.
6	Scalability of the Solution	The system is designed to be scalable and adaptable. It can incorporate new datasets (like rental trends or economic indicators), extend to new regions or cities, and integrate with ML models for price predictions, thereby offering long-term growth potential.

4.3 Solution Architecture

The solution architecture is designed for efficient data processing, visualization, and web deployment. The solution begins with users uploading real estate data in CSV format, which is cleaned and transformed using Python. The processed data is optionally stored in a MySQL database managed through MySQL Workbench. Tableau Public connects to this structured data to create dynamic dashboards for visual analysis. A Flask web application, styled with HTML and CSS, hosts these dashboards on the web. End users access the platform via a browser to explore trends, filter data, and gain actionable insights.

- User Interaction: Users input CSV data.
- Data Processing: Python script for cleaning and transformation.
- Data Storage: Optional MySQL database via Workbench.
- Visualization: Tableau Public for dashboard creation.
- Web Deployment: Flask web application with HTML/CSS.
- End User Access: Users interact via a web browser.

5. PROJECT PLANNING & SCHEDULING

5.1 Project Planning

The project planning outlines the key phases and activities involved in the development of the solution. Project Phases:

- Ideation Phase:
 - o Define the Problem Statements
 - Empathize & Discover (Empathy Map)
 - o Brainstorm & Idea Prioritization
- Project Design Phase-II:
 - Technology Stack (Architecture & Stack)
 - Solution Requirements (Functional & Non-functional)
 - Data Flow Diagram & User Stories
 - Proposed Solution
 - Solution Architecture
 - o Problem Solution Fit

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members
Sprint-	Data Acquisition & Preparation	USN-1	As a data analyst, I can identify and acquire relevant housing market datasets (e.g., sale prices, property features, location data) so that I have the raw material for analysis.	3	High	Borra Jaswanth Kumar
Sprint-	Data Acquisition & Preparation	USN-2	As a data analyst, I can clean and preprocess the acquired datasets (handle missing values, correct inconsistencies) so that the data is ready for Tableau.	5	High	Chinta Divya
Sprint-	Initial Visualization Setup	USN-3	As a Tableau user, I can connect Tableau to the cleaned dataset so that I can start building visualizations.	2	High	Gudi Maruthi
Sprint- 2	Core Visualizations	USN-4	As a data analyst, I can create a scatter plot showing sale price vs. square footage so that I can identify basic correlations.	3	Medium	Borra Hemanth

6. FUNCTIONAL AND PERFORMANCE TESTING

6.1 Performance Testing

The performance testing phase was designed to ensure that the Tableau dashboards and the Flask web application provide fast loading and responsive visualizations, even when handling large datasets. This directly addresses the NFR-4 (Performance) requirement. Key metrics for performance testing would include dashboard load times, filter application speed, and overall responsiveness of the user interface.

The performance testing methodology included the following stages:

Stage 1: Data Collection & Understanding

- Actions & Tools: Review dataset fields (Sale_Price, Bedrooms, Bathrooms, Area, Renovation info, Zipcode Groups, etc.); Clean and format in Excel/MySQL.
- Objectives: Ensure data quality, understand variable significance.

Stage 2: Data Preprocessing

- Actions & Tools: Bin numerical features (e.g., Price, Age of House); Create calculated fields (e.g., Price per Sqft, Renovated Status); Derive meaningful groupings (e.g., Zipcode_Group).
- Objectives: Enable intuitive filtering, meaningful comparisons.

Stage 3: Dashboard Planning

- Actions & Tools: Sketch layout (filters on side/top, charts in grid); Map visuals to questions (e.g., "Which areas have the highest renovated house prices?").
- Objectives: Define clear goals and user flow.

Stage 4: Visualization Building in Tableau

- Actions & Tools: Use bar/line charts for trend over time; Bubble/map views for geographic distribution; Filters: Zipcode, Features, Renovation.
- Objectives: Communicate patterns, spatial insights.

• Stage 5: Story Integration

- Actions & Tools: Create Tableau Story to guide users: from Overview → Deep Dive →
 Insights; Add captions to explain visual intent.
- Objectives: Enhance narrative, support user understanding.

Stage 6: Performance Testing

- Actions & Tools: Test responsiveness, filter logic; Ensure tooltips and legends work;
 Optimize load times.
- Objectives: Maximize usability and engagement.

Stage 7: Export & Feedback

- Actions & Tools: Enable export features (PNG, PDF, share link); Add feedback prompts or embed survey links.
- o Objectives: Promote shareability, gather improvement input.

7. RESULTS

7.1 Output Screenshots

The implementation involved data cleaning and transformation using Python, followed by the creation of interactive visualizations in Tableau. The key outputs are the Tableau Dashboards and the Tableau Story, which provide comprehensive insights into housing market trends.

- Dashboard: Comprehensive House Price Analysis
- Story: A narrative flow guiding users through key insights.

Dashboard

Story

8. ADVANTAGES & DISADVANTAGES

Advantages:

- Enhanced Decision-Making: Provides clear, actionable insights for homebuyers, investors, and real estate professionals.
- Improved Transparency: Simplifies complex real estate data, making market trends accessible to a wider audience.
- Interactive Exploration: Users can dynamically filter and analyze data based on various features (e.g., bedrooms, area, renovation, location).
- Scalability: Designed to incorporate new datasets, extend to new regions, and integrate with advanced analytics (e.g., ML models).
- Data-Driven Insights: Moves beyond traditional reports to provide evidence-based understanding of market dynamics.
- User Engagement: Utilizes intuitive visualizations to enhance user interaction and comprehension.

Disadvantages:

- Data Dependency: The accuracy and depth of insights are highly dependent on the quality and availability of raw input data.
- Tableau Public Limitations: Reliance on Tableau Public might limit certain advanced features
 or require an enterprise license for full functionality and private deployment.
- Initial Setup Complexity: Initial data cleaning, transformation, and dashboard design require significant effort and expertise.

- No Direct Forecasting (Current Version): While capable of historical analysis, the current implementation does not include advanced predictive modeling for future price trends without further integration.
- Maintenance: Requires ongoing maintenance for data updates and visualization adjustments as market conditions change.

9. CONCLUSION

This project successfully developed an interactive Tableau-based solution for visualizing housing market trends. By transforming complex real estate datasets into clear, actionable insights, the solution empowers various stakeholders, including homebuyers, investors, and real estate professionals, to make informed decisions. The project effectively addressed the pain points of difficult-to-interpret and scattered data by providing a centralized, easy-to-use visualization tool.

The solution's novelty lies in its dynamic exploration of how features like bedrooms, area, renovation status, and location influence housing prices, leveraging Tableau's advanced capabilities. The robust architecture supports data import, cleaning, transformation, and visualization, deployed through a Flask web application for broader accessibility. The identified functional and non-functional requirements ensure a usable, secure, reliable, performant, available, and scalable system.

10. FUTURE SCOPE

The system is designed to be scalable and adaptable, offering significant potential for future enhancements:

- New Datasets Integration: Incorporate additional datasets, such as rental trends or broader economic indicators, to enrich the analysis.
- Geographic Expansion: Extend the solution to cover new regions or cities, making it a more comprehensive tool for diverse markets.
- Machine Learning Integration: Integrate machine learning models for advanced price predictions and forecasting modules, offering premium features.
- API Integrations: Develop APIs for seamless integration with other real estate platforms or data sources.
- Custom Dashboards: Offer custom dashboard creation as a monetized premium feature for specific client needs.
- Enhanced User Feedback Loop: Implement more structured mechanisms for stakeholder review and iterative revision cycles to continuously improve the solution.

11. APPENDIX

Dataset Link

The project utilized a transformed housing dataset.

Transformed_Housing_Data2.csv
 (https://www.kaggle.com/datasets/rituparnaghosh18/transformed-housing-data-2)

GitHub & Project Demo Link

The Tableau dashboards and story are publicly accessible.

- Tableau Public Link for Dashboard and Story:
 - o <u>Comprehensive House Price Analysis Dashboard</u>
 - o <u>Tableau Story</u>