Package 'naivebayes'

January 3, 2018

Type Package
Title High Performance Implementation of the Naive Bayes Algorithm
Version 0.9.2
Author Michal Majka
Maintainer Michal Majka <michalmajka@hotmail.com></michalmajka@hotmail.com>
Description High performance implementation of the Naive Bayes algorithm.
<pre>URL http://github.com/majkamichal/naivebayes</pre>
<pre>BugReports http://github.com/majkamichal/naivebayes/issues</pre>
License GPL-2
Encoding UTF-8
NeedsCompilation no
Repository CRAN
Date/Publication 2018-01-03 04:41:25 UTC
R topics documented:
naive_bayes
plot.naive_bayes
predict.naive_bayes
tables
Index 8

naive_bayes

	Naive Bayes Classifier	naive_bayes
--	------------------------	-------------

Description

naive_bayes is used to fit Naive Bayes model in which predictors are assumed to be independent within each class label.

Usage

```
## Default S3 method:
naive_bayes(x, y, prior = NULL, laplace = 0,
    usekernel = FALSE, ...)

## S3 method for class 'formula'
naive_bayes(formula, data, prior = NULL, laplace = 0,
    usekernel = FALSE, subset, na.action = stats::na.pass, ...)
```

Arguments

X	numeric matrix or dataframe with categorical (character/factor/logical) or metric (numeric) predictors.
У	class vector (character/factor/logical).
formula	an object of class "formula" (or one that can be coerced to "formula") of the form class ~ predictors (class has to be a factor/character/logical).
data	numeric matrix or dataframe with categorical (character/factor/logical) or metric (numeric) predictors.
laplace	value used for Laplace smoothing. Defaults to 0 (no Laplace smoothing).
usekernel	logical; if TRUE, density is used to estimate the densities of metric predictors.
prior	vector with prior probabilities of the classes. If unspecified, the class proportions for the training set are used. If present, the probabilities should be specified in the order of the factor levels.
subset	an optional vector specifying a subset of observations to be used in the fitting process.
na.action	a function which indicates what should happen when the data contain NAs. By default (na.pass), missing values are not removed from the data and are then omited while constructing tables. Alternatively, na.omit can be used to exclude rows with at least one missing value before constructing tables. other graphical parameters to density (na.rm defaults to TRUE).

Details

Metric predictors are handled by assuming that they follow Gaussian distribution, given the class label. Alternatively, kernel density estimation can be used to estimate their class-conditional distributions. Missing values are not included into constructing tables. Logical variables are treated as categorical variables.

naive_bayes 3

Value

naive_bayes returns an object of class "naive_bayes" which is a list with following components:

data list with two components: x (dataframe with predictors) and y (class variable).

tables list of tables. For each categorical predictor a table with class-conditional proba-

bilities and for each metric predictor a table with means and standard deviations

or density objects for each class.

prior numeric vector with prior probabilities.

laplace value of Laplace smoothing.

levels character vector with values of the class variable.

usekernel logical; TRUE, if the density was used for estimating densities of numeric vari-

ables.

call the call that produced this object.

Author(s)

Michal Majka, <michalmajka@hotmail.com>

See Also

```
predict.naive_bayes, plot.naive_bayes, tables
```

Examples

```
data(iris)
nb <- naive_bayes(Species ~ ., data = iris)</pre>
plot(nb)
nb_kernel <- naive_bayes(x = iris[-5], y = iris[ ,5], usekernel = TRUE)</pre>
plot(nb_kernel)
## Not run:
vars <- 10
rows <- 500000
y <- sample(c("a", "b"), rows, TRUE)
# Only categorical variables
X1 <- as.data.frame(matrix(sample(letters[5:9], vars * rows, TRUE),</pre>
                             ncol = vars))
nb_cat <- naive_bayes(x = X1, y = y)
nb_cat
system.time(pred2 <- predict(nb_cat, X1))</pre>
# Only numeric variables
X2 <- as.data.frame(matrix(rnorm(vars * rows), ncol = vars))</pre>
nb_num <- naive_bayes(x = X2, y = y)
nb_num
system.time(pred2 <- predict(nb_num, X2))</pre>
```

plot.naive_bayes

```
## End(Not run)
```

plot.naive_bayes Plot Method for naive_bayes Object

Description

Plot method for objects of class "naive_bayes" designed for a quick look at the marginal probabilities of predictor variables given the class.

Usage

```
## S3 method for class 'naive_bayes'
plot(x, which = NULL, ask = FALSE, legend = TRUE,
  legend.box = FALSE, arg.num = list(), arg.cat = list(), ...)
```

Arguments

х	object of class inheriting from "naive_bayes".
which	variables to be plotted (all by default). This can be any valid indexing vector or vector containing names of variables.
ask	logical; if TRUE, the user is asked before each plot, see par(ask=.).
legend	logical; if TRUE a legend will be be plotted.
legend.box	logical; if TRUE a box will be drawn around the legend.
arg.num	other parameters to be passed as a named list to matplot.
arg.cat	other parameters to be passed as a named list to mosaicplot.
	not used.

Details

Conditional probabilities are visualised by matplot (for metric predictors) and mosaicplot (for categorical predictors). In case of non parametric estimation of class-conditional densities, the bandwidths are reported. Nothing is returned.

Author(s)

Michal Majka, <michalmajka@hotmail.com>

See Also

```
naive_bayes, predict.naive_bayes, tables
```

predict.naive_bayes 5

Examples

predict.naive_bayes

Predict Method for naive_bayes Objects

Description

Classification based on Naive Bayes models.

Usage

```
## S3 method for class 'naive_bayes'
predict(object, newdata = NULL, type = c("class","prob"),
    threshold = 0.001, ...)
```

Arguments

object of class inheriting from "naive_bayes".

newdata numeric matrix or dataframe with categorical (character/factor/logical) or metric

(numeric) predictors.

type if "class", new data points are classified according to the highest posterior prob-

abilities. If "prob", the posterior probabilities for each class are returned.

threshold value by which zero probabilities corresponding to metric variables are replaced

(zero probabilities corresponding to categorical variables can be handled with

Laplace smoothing).

... not used.

Details

Computes conditional posterior probabilities for each class using the Bayes' rule. If no new data is provided, the data from the object is used. Logical variables are treated as categorical variables. Predictors with missing values are not included into the computation of posterior probabilities.

Value

predict.naive_bayes returns a factor with class corresponding to the maximal conditional posterior probability or a matrix with conditional posterior probabilities for each class.

6 tables

Author(s)

Michal Majka, <michalmajka@hotmail.com>

See Also

```
naive_bayes, plot.naive_bayes, tables
```

Examples

```
ind_iris <- sample(1:nrow(iris), size = round(0.3 * nrow(iris)))</pre>
iris_train <- iris[-ind_iris, ]</pre>
iris_test <- iris[ind_iris, ]</pre>
nb_iris <- naive_bayes(Species ~ ., iris_train)</pre>
predict(nb_iris, iris_test)
head(predict(nb_iris, iris_test, type = "prob"))
## Not run:
vars <- 10
rows <- 500000
y <- sample(c("a", "b"), rows, TRUE)
# Only categorical variables
X1 <- as.data.frame(matrix(sample(letters[5:9], vars * rows, TRUE),</pre>
                             ncol = vars))
nb_cat <- naive_bayes(x = X1, y = y)
nb_cat
system.time(pred2 <- predict(nb_cat, X1))</pre>
# Only numeric variables
X2 <- as.data.frame(matrix(rnorm(vars * rows), ncol = vars))</pre>
nb_num <- naive_bayes(x = X2, y = y)
nb_num
system.time(pred2 <- predict(nb_num, X2))</pre>
## End(Not run)
```

tables

Browse Tables of Naive Bayes Classifier

Description

Auxiliary function for "naive_bayes" objects for easy browsing tables.

Usage

```
tables(object, which = NULL)
```

tables 7

Arguments

object of class inheriting from "naive_bayes".

which tables to be showed (all by default). This can be any valid indexing vector or

vector containing names of variables.

Details

Default print method for "naive_bayes" objects shows at most five first tables. The auxiliary function tables returns by default all tables.

Value

list with tables.

Author(s)

Michal Majka, <michalmajka@hotmail.com>

See Also

```
naive_bayes, predict.naive_bayes, plot.naive_bayes
```

Examples

```
data(iris)
nb <- naive_bayes(Species ~ ., data = iris)
tables(nb, "Sepal.Length")
tables(nb, 1:2)</pre>
```

Index

```
density, 2, 3

legend, 4

matplot, 4

mosaicplot, 4

na.omit, 2

na.pass, 2

naive_bayes, 2, 4, 6, 7

par, 4

plot.naive_bayes, 3, 4, 6, 7

predict.naive_bayes, 3, 4, 5, 7

tables, 3, 4, 6, 6
```