MATH 16210 (Honors Calculus II IBL) Notes

Steven Labalme

January 16, 2021

Contents

6	Construction of the Real Numbers			
	6.1	Journal	1	
	6.2	Discussion	6	

Script 6

Construction of the Real Numbers

6.1 Journal

- 1/12: **Definition 6.1.** A subset A of \mathbb{Q} is said to be a **cut** (or **Dedekind cut**) if it satisfies the following:
 - (a) $A \neq \emptyset$ and $A \neq \mathbb{Q}$.
 - (b) If $r \in A$ and $s \in \mathbb{Q}$ satisfy s < r, then $s \in A$.
 - (c) A does not have a last point; i.e., if $r \in A$, then there is some $s \in A$ with s > r.

We denote the collection of all cuts by \mathbb{R} .

Lemma 6.2. Let A be a Dedekind cut and $x \in \mathbb{Q}$. Then $x \notin A$ if and only if x is an upper bound for A.

Proof. Suppose first that $x \notin A$. To prove that x is an upper bound for A, Definition 5.6 tells us that it will suffice to show that for all $r \in A$, $r \le x$. Let r be an arbitrary element of A. Then by the contrapositive of Definition 6.1b and the hypothesis that $x \notin A$, we know that $r \notin A$, $x \notin \mathbb{Q}$, or $x \not< r$. But since $r \in A$ and $x \in \mathbb{Q}$, it must be that $x \not< r$. Therefore, $r \le x$, as desired.

Now suppose that x is an upper bound for A. By Definition 5.6, this implies that for all $r \in A$, $r \le x$. Therefore, since there is no $r \in A$ with r > x, by the contrapositive of Definition 6.1c, $x \notin A$, as desired. \square

Exercise 6.3.

- (a) Prove that for any $q \in \mathbb{Q}$, $\{x \in \mathbb{Q} \mid x < q\}$ is a Dedekind cut. We then define $\mathbf{0} = \{x \in \mathbb{Q} \mid x < 0\}$.
- (b) Prove that $\{x \in \mathbb{Q} \mid x \leq 0\}$ is not a Dedekind cut.
- (c) Prove that $\{x \in \mathbb{Q} \mid x < 0\} \cup \{x \in \mathbb{Q} \mid x^2 < 2\}$ is a Dedekind cut.

Proof of a. Let q be an arbitrary element of \mathbb{Q} . To prove that $A = \{x \in \mathbb{Q} \mid x < q\}$ is a Dedekind cut, Definition 6.1 tells us that it will suffice to show that $A \neq \emptyset$; $A \neq \mathbb{Q}$; if $f \in A$ and $f \in \mathbb{Q}$ satisfy $f \in A$, then there is some $f \in A$ with $f \in A$ with $f \in A$. We will take this one claim at a time.

To show that $A \neq \emptyset$, Definition 1.8 tells us that it will suffice to find an element of A. By Exercise 3.9d, q is not the first point of \mathbb{Q} . Thus, by Definition 3.3, there exists an object $x \in \mathbb{Q}$ such that x < q. By the definition of A, this implies that $x \in A$, as desired.

To show that $A \neq \mathbb{Q}$, Definition 1.2 tells us that it will suffice to find an element of \mathbb{Q} that is not an element of A. By hypothesis, $q \in \mathbb{Q}$. By Exercise 3.9d, $q \not< q$. Therefore, $q \in \mathbb{Q}$ but $q \notin A$, as desired.

To show that if $r \in A$ and $s \in \mathbb{Q}$ satisfy s < r, then $s \in A$, we let $r \in A$ and $s \in \mathbb{Q}$ be arbitrary elements of their respective sets that satisfy s < r and seek to verify that $s \in A$. Since $r \in A$, r < q. This combined with the fact that s < r implies by transitivity that s < q. Therefore, since $s \in \mathbb{Q}$ and s < q, $s \in A$, as desired.

To show that if $r \in A$, then there is some $s \in A$ with s > r, we let $r \in A$ and seek to find such an s. By the definition of A, r < q. Thus, by Additional Exercise 3.1, there exists a point $s \in \mathbb{Q}$ such that r < s < q. Since $s \in \mathbb{Q}$ and s < q, $s \in A$. It follows that s is the desired element of A satisfying s > r.

Proof of b. To prove that $A = \{x \in \mathbb{Q} \mid x \leq 0\}$ is not a Dedekind cut, Definition 6.1 tells us that it will suffice to show that A does have a last point. To show this, we will demonstrate that 0 is the last point of A. To demonstrate this, Definition 3.1 tells us that it will suffice to confirm that $0 \in A$ and for all $x \in A$, $x \leq 0$. Since $0 \leq 0$ and $0 \in \mathbb{Q}$, $0 \in A$. Additionally, by the definition of A, it is true that for all $x \in A$, $x \leq 0$.

Proof of c. Let $B = \{x \in \mathbb{Q} \mid x < 0\}$ and let $C = \{x \in \mathbb{Q} \mid x^2 < 2\}$. To prove that $A = B \cup C$ is a Dedekind cut, Definition 6.1 tells us that it will suffice to show that $A \neq \emptyset$; $A \neq \mathbb{Q}$; if $A \neq \mathbb{Q}$ satisfy $A \neq \mathbb{Q}$ satisf

To show that $A \neq \emptyset$, Definition 1.8 tells us that it will suffice to find an element of A. Since $-1 \in \mathbb{Q}$ and $-1 < 0, -1 \in B$. Therefore, by Definition 1.5, $-1 \in A$, as desired.

To show that $A \neq \mathbb{Q}$, Definition 1.2 tells us that it will suffice to find an element of \mathbb{Q} that is not an element of A. Since $2 \in \mathbb{Q}$ and $2 \geq 0$, $2 \notin B$. Additionally, since $2^2 \geq 2$, $2 \notin C$. Therefore, by Definition 1.5, $2 \notin A$, as desired.

To show that if $r \in A$ and $s \in \mathbb{Q}$ satisfy s < r, then $s \in A$, we let $r \in A$ and $s \in \mathbb{Q}$ be arbitrary elements of their respective sets that satisfy s < r and seek to verify that $s \in A$. Since $r \in A$, Definition 1.5 tells us that $r \in B$ or $r \in C$. We now divide into two cases. Suppose first that $r \in B$. Then s < r < 0, which implies that $s \in B$, meaning that $s \in A$. Now suppose that $r \in C$. We divide into two cases again $(r \le 0 \text{ and } r > 0)$. If $r \le 0$, then $s < r \le 0$ implies that s < 0. Thus, by the definition of B, $s \in B$, implying that $s \in A$. On the other hand, if r > 0, then $0 < s^2 < r^2 < 2$. Thus, by the definition of C, $s \in C$, implying that $s \in A$.

To show that A does not have a last point, suppose for the sake of contradiction that A has a last point p. We now divide into two cases $(p \le 0 \text{ and } p > 0)$. Suppose first that $p \le 0$. Since p is the last point of A, Definition 3.3 tells us that $x \le p$ for all $x \in A$. But $1 \in A$ (since $1 \in \mathbb{Q}$ and $1^2 = 1 < 2$ implies $1 \in B$, implies $1 \in A$) and $1 > 0 \ge p$, a contradiction. Now suppose that p > 0. Definition 3.3 tells us that $p \in A$, but the condition that p > 0 means $p \notin B$, so we must have $p \in C$. However, by the proof of Exercise 4.24, $\frac{2(p+1)}{p+2}$ will be an element of B (and therefore A) that is greater than p no matter how large p is, a contradiction.

Definition 6.4. If $A, B \in \mathbb{R}$, we say that A < B if A is a proper subset of B.

Exercise 6.5. Show that \mathbb{R} satisfies Axioms 1, 2, and 3.

Proof. By Exercise 6.3a, $\{x \in \mathbb{Q} \mid x < 0\} \in \mathbb{R}$ since $0 \in \mathbb{Q}$. Therefore, Axiom 1 is immediately satisfied.

Axiom 2 asserts that \mathbb{R} must have an ordering <. As such, it will suffice to verify that the ordering given by Definition 6.4 satisfies the stipulations of Definition 3.1. To prove that < satisfies the trichotomy, it will suffice to show that for all $A, B \in \mathbb{R}$, exactly one of the following holds: A < B, B < A, or A = B.

We first show that no more than one of the three statements can simultaneously be true. Let A, B be arbitrary elements of \mathbb{R} . We divide into three cases. First, suppose for the sake of contradiction that A < B and B < A. By Definition 6.4, this implies that $A \subseteq B$ and $B \subseteq A$. Thus, by Definition 1.3, $A \subset B, B \subset A$, and $A \neq B$. But by Theorem 1.7, $A \subset B$ and $B \subset A$ implies that A = B, a contradiction. Second, suppose for the sake of contradiction that A < B and A = B. By Definition 6.4, the former statement implies that $A \subseteq B$. Thus, by Definition 1.3, $A \neq B$, a contradiction. The proof of the third case (B < A and A = B) is symmetric to that of the second case.

We now show that at least one of the three statements is always true. Let A, B be arbitrary elements of \mathbb{R} , and suppose for the sake of contradiction that $A \not< B$, $B \not< A$, and $A \ne B$. Since $A \not< B$ and $B \not< A$, we have by Definition 6.4 that $A \not\subseteq B$ and $B \not\subseteq A$. Thus, by Definition 1.3, $A \not\subset B$ or A = B, and $B \not\subset A$ or A = B. But $A \ne B$ by hypothesis, so it must be that $A \not\subset B$ and $B \not\subset A$. It follows from the first statement by Definition 1.3 that there exists an object $x \in A$ such that $x \notin B$, and there exists an object $y \in B$ such that $y \notin A$. Since $x \notin B$, Lemma 6.2 implies that x is an upper bound of B. Consequently, by Definition 5.6, $p \le x$ for all $p \in B$, including y. Similarly, $p \le y$ for all $p \in A$, including x. Thus, we have $y \le x$ and $x \le y$, implying that x = y. But since $y \in B$, this implies that $x \in B$, a contradiction.

To prove that < is transitive, it will suffice to show that for all $A, B, C \in \mathbb{R}$, if A < B and B < C, then A < C. Let A, B, C be arbitrary elements of \mathbb{R} for which it is true that A < B and B < C. By Definition 6.4, we have $A \subseteq B$ and $B \subseteq C$. Thus, by Script 1, $A \subseteq C$. Therefore, by Definition 6.4, A < C.

Axiom 3 asserts that \mathbb{R} must have no first or last point. We will take this one argument at a time

Suppose for the sake of contradiction that \mathbb{R} has some first point A. Then by Definition 3.3, $A \leq X$ for every $X \in \mathbb{R}$. Now since A is a Dedekind cut, Definition 6.1 tells us that $A \neq \emptyset$. Thus, by Definition 1.8, there exists some $q \in A$. Additionally, $A \subset \mathbb{Q}$ by Definition 6.1, so $q \in A$ implies that $q \in \mathbb{Q}$. It follows by Exercise 6.3a that $B = \{x \in \mathbb{Q} \mid x < q\}$ is a Dedekind cut. We now seek to prove that $B \subseteq A$. To do this, Definition 1.3 tells us that it will suffice to show that $B \neq A$ and $B \subset A$. To show that $B \neq A$, Definition 1.2 tells us that it will suffice to find an element of A that is not an element of B. Conveniently, $A \subseteq A$ is an element of $A \subseteq A$ be an arbitrary element of $A \subseteq A$. Then by the definition of $A \subseteq A$ and $A \subseteq A$ be an arbitrary element of $A \subseteq A$ by that $A \subseteq A$ are desired. Having proven that $A \subseteq A$ befinition 6.1b (which clearly applies to $A \subseteq A$) that $A \subseteq A$ be a desired. Having proven that $A \subseteq A$ be a periodic of $A \subseteq A$. But this contradicts the previously demonstrated fact that $A \subseteq A$ for every $A \subseteq A$, including $A \subseteq A$. But this contradicts the previously demonstrated fact that $A \subseteq A$ for every $A \subseteq A$, including $A \subseteq A$.

Suppose for the sake of contradiction that \mathbb{R} has some last point A. Then by Definition 3.3, $X \leq A$ for every $X \in \mathbb{R}$. Now since A is a Dedekind cut, Definition 6.1 tells us that $A \neq \mathbb{Q}$. Thus, by Definition 1.2, there exists some $q \in \mathbb{Q}$ such that $q \notin A$. It follows by Lemma 6.2 that q is an upper bound of A. Consequently, by Definition 5.6, $x \leq q$ for all $x \in A$. Additionally, by Exercise 6.3a, $B = \{x \in \mathbb{Q} \mid x < q + 1\}^{[1]}$ is a Dedekind cut. We now seek to prove that $A \subsetneq B$. As before, this means we must show that $A \neq B$ and $A \subset B$. To show that $A \neq B$, Definition 1.2 tells us that it will suffice to find an element of B that is not an element of A. Since $x \leq q$ for all $x \in A$ and q < q + 0.5 < q + 1, $q + 0.5 \notin A$ and $q + 0.5 \in B$ is the desired object. To show that $A \subset B$, Definition 1.3 tells us that we must confirm that every element of A is an element of A. Let $A \subset B$ be an arbitrary element of $A \subset B$. As an element of $A \subset B$ be an arbitrary element of $A \subset B$. But this contradicts the previously demonstrated fact that $A \subset A$ for every $A \subset \mathbb{R}$, including $A \subset B$. But this contradicts the previously demonstrated fact that $A \subset A$ for every $A \subset \mathbb{R}$, including $A \subset B$.

1/14: **Lemma 6.6.** A nonempty subset of \mathbb{R} that is bounded above has a supremum.

Proof. Let X be an arbitrary nonempty subset of \mathbb{R} that is bounded above. To prove that $\sup X$ exists, we will show that $\sup X = U = \bigcup \{Y \mid Y \in X\}$. To show this, Definition 5.7 tells us that it will suffice to demonstrate that $U \in \mathbb{R}$, U is an upper bound of X, and if U' is an upper bound of X, then $U \leq U'$. Let's begin.

To demonstrate that $U \in \mathbb{R}$, Definition 6.1 tells us that it will suffice to confirm that $U \neq \emptyset$; $U \neq \mathbb{Q}$; if $r \in U$ and $s \in \mathbb{Q}$ satisfy s < r, then $s \in U$; and if $r \in U$, then there is some $s \in U$ with s > r.

As the union of a nonempty subset of nonempty sets, Script 1 implies that $U \neq \emptyset$.

To demonstrate that $U \neq \mathbb{Q}$, Definition 1.2 tells us that it will suffice to find a point $p \in \mathbb{Q}$ such that $p \notin U$. Since X is bounded above, we have by Definition 5.6 that there exists a Dedekind cut $V \in \mathbb{R}$ such that $Y \subseteq V$ for all $Y \in X$. It follows by Definition 6.4 that $Y \subset V$ for all $Y \in X$. Thus, by Script 1, $U \subset V$. Now since V is a Dedekind cut, we know by Definition 6.1 that $V \subset \mathbb{Q}$ and $V \neq \mathbb{Q}$, meaning that there exists a point $p \in \mathbb{Q}$ such that $p \notin V$. Consequently, since $U \subset V$, $p \notin U$, as desired.

To demonstrate that if $r \in U$ and $s \in \mathbb{Q}$ satisfy s < r, then $s \in U$, we let $r \in U$ and $s \in \mathbb{Q}$ be arbitrary elements of their respective sets that satisfy s < r and seek to verify that $s \in U$. Since $r \in U$, Definition 1.13 tells us that $r \in Y$ for some $Y \in X$. Thus, since Y is a Dedekind cut, $s \in \mathbb{Q}$ and s < r implies that $s \in Y$. Therefore, $s \in U$.

To demonstrate that if $r \in U$, then there is some $s \in U$ with s > r, we let $r \in U$ and seek to find such an s. Since $r \in U$, Definition 1.13 tells us that $r \in Y$ for some $Y \in X$. Thus, since Y is a Dedekind cut, there exists a point $s \in Y$ with s > r. Therefore, $s \in U$.

To demonstrate that U is an upper bound of X, Definition 5.6 tells us that it will suffice to confirm that $Y \leq U$ for all $Y \in X$. To confirm this, Definition 6.4 tells us that it will suffice to verify that $Y \subset U$ for all $Y \in X$. But by an extension of Theorem 1.7b, this is true.

Now suppose for the sake of contradiction that there exists an upper bound U' of X such that U' < U. It follows by Definitions 6.4 and 1.3 that there exists a point $p \in U$ such that $p \notin U'$. Thus, by the former statement and Definition 1.13, $p \in Y$ for some $Y \in X$. Additionally, since U' is an upper bound of X, we

¹Note that we add 1 to q to treat the case that $q = \sup A$, a case in which we would have B = A if B were defined as $\{x \in \mathbb{Q} \mid x < q\}$.

have by Definitions 5.6 and 6.4 that $Y \subset U'$ for all $Y \in X$. But this implies by Definition 1.3 that $p \in U'$, a contradiction.

1/19: **Exercise 6.7.** Show that \mathbb{R} satisfies Axiom 4.

Proof. Suppose for the sake of contradiction that \mathbb{R} does not satisfy Axiom 4. It follows that \mathbb{R} is not connected, implying by Definition 4.22 that $\mathbb{R} = A \cup B$ where A, B are disjoint, nonempty, open sets. Since A, B are disjoint and nonempty, we know that there exist distinct objects $a \in A$ and $b \in B$. WLOG, let a < b

We now seek to prove that the set $A \cap \underline{ab}$ is nonempty and bounded above. To prove that $A \cap \underline{ab}$ is nonempty, Definition 1.8 tells us that it will suffice to find an element of $A \cap \underline{ab}$. Since $a \in A$ and A is open, we have by Theorem 4.10 that there exists a region \underline{cd} such that $a \in \underline{cd}$ and $\underline{cd} \subset A$. It follows by Definitions 3.10 and 3.6 that a < d, implying by Lemma $6.10^{[2]}$ that there exists some point $x \in \mathbb{R}$ such that c < a < x < d < b (note that d < b since if b < d, then $b \in \underline{cd}$ would contradict the fact that $\underline{cd} \subset A$). Consequently, $x \in \underline{cd}$, meaning that $x \in A$, and $x \in \underline{ab}$. Therefore, $x \in A \cap \underline{ab}$, as desired. To prove that $A \cap \underline{ab}$ is bounded above, Definition 5.6 tells us that it will suffice to show that b is an upper bound of $A \cap \underline{ab}$. To show this, Definition 5.6 tells us that it will suffice to confirm that $y \leq b$ for all $y \in A \cap \underline{ab}$. Let y be an arbitrary element of $A \cap \underline{ab}$. Then by Definition 1.6, $y \in A$ and $y \in \underline{ab}$. It follows from the latter statement by Definitions 3.10 and 3.6 that y < b, i.e., $y \leq b$, as desired.

Having established that $A \cap \underline{ab} \subset \mathbb{R}$ is nonempty and bounded above, we can invoke Lemma 6.6 to learn that $A \cap \underline{ab}$ has a supremum $\sup(A \cap \underline{ab})$. We now divide into two cases $(\sup(A \cap \underline{ab}) \in A$ and $\sup(A \cap \underline{ab}) \in B$; it follows from the definitions of A and B that exactly one of these cases is true). Suppose first that $\sup(A \cap \underline{ab}) \in A$. Then since A is open, we have by Theorem 4.10 that there exists a region \underline{ef} such that $\sup(A \cap \underline{ab}) \in \underline{ef}$ and $\underline{ef} \subset A$. It follows from the former condition that $\sup(A \cap \underline{ab}) < f$. Thus, by Lemma 6.10, there exists an object $z \in \mathbb{R}$ such that $e < \sup(A \cap \underline{ab}) < z < f < b$ (note that f < b for the same reason that d < b). Consequently, $z \in \underline{ef}$, implying that $z \in A$, and $z \in \underline{ab}$. Thus, we have found an element of $A \cap \underline{ab}$ that is greater than $\sup(A \cap \underline{ab})$, contradicting Definitions 5.7 and 5.6. The proof is symmetric in the other case.

1/14: **Definition 6.8.** Let C be a continuum satisfying Axioms 1-4. Consider a subset $X \subset C$. We say that X is **dense** in C if every $p \in C$ is a limit point of X.

Lemma 6.9. A subset $X \subset C$ is dense in C if and only if $\overline{X} = C$.

Proof. Suppose first that $X \subset C$ is dense in C. To prove that $\overline{X} = C$, Definition 1.2 tells us that it will suffice to show that every point $p \in \overline{X}$ is an element of C and vice versa. Clearly, every element of \overline{X} is an element of C. On the other hand, let p be an arbitrary element of C. Since X is dense in C, Definition 6.8 tells us that $p \in LP(X)$. Therefore, by Definitions 1.5 and 4.4, $p \in \overline{X}$.

Now suppose that $\overline{X} = C$. To prove that X is dense in C, Definition 6.8 tells us that it will suffice to show that every $p \in C$ is a limit point of X. Let p be an arbitrary element of C. By Corollary 5.4, this implies that $p \in LP(C)$. It follows that $p \in LP(\overline{X})$. Thus, by Definition 4.4, $p \in LP(X \cup LP(X))$. Consequently, by Theorem 3.20, $p \in LP(X)$ or $p \in LP(LP(X))$. We now divide into two cases. If $p \in LP(X)$, then we are done. On the other hand, if $p \in LP(LP(X))$, the lemma from Theorem 4.6 asserts that $p \in LP(X)$, and we are done again.

Our next goal is to prove that \mathbb{Q} is dense in \mathbb{R} . Just to make sense of that statement, we need to decide how to think of \mathbb{Q} as a subset of \mathbb{R} . For every rational number $q \in \mathbb{Q}$, define the corresponding real number as the Dedekind cut

$$i(q) = \{ x \in \mathbb{Q} \mid x < q \}$$

For example, $\mathbf{0} = i(0)$. It can be verified that this gives a well-defined injective function $i : \mathbb{Q} \to \mathbb{R}$. We identify \mathbb{Q} with its image $i(\mathbb{Q}) \subset \mathbb{R}$ so that the rational numbers \mathbb{Q} are a subset of the real numbers \mathbb{R} . (Similarly, \mathbb{N} and \mathbb{Z} can be understood as subsets of \mathbb{R} .)

Lemma 6.10. Given $A, B \in \mathbb{R}$ with A < B, there exists $p \in \mathbb{Q}$ such that A < i(p) < B.

²We may use this lemma since it does not depend on this result, Definition 6.8, or Lemma 6.9.

Proof. Since A < B, Definition 6.4 tells us that $A \subsetneq B$. Thus, by Definition 1.3, there exists a point q such that $q \in B$ and $q \notin A$. Since $q \in B$ where B is a Dedekind cut, we have by Definition 6.1 that there exists a point $p \in B$ with p > q. Additionally, since $q \notin A$ implies that q is an upper bound of A by Lemma 6.2, we know by Definition 5.6 that $x \leq q$ for all $x \in A$. It follows since q < p that $x \leq p$ for all $x \in A$, meaning by Definition 5.6 and Lemma 6.2 that $p \notin A$. Having established that $p, q \in B$, $p, q \notin A$, and q < p, we are now ready to prove that A < i(p) < B. Definition 6.4 tells us that we may do so by showing that $A \subsetneq i(p)$ and $i(p) \subsetneq B$. We will take this one argument at a time.

To show that $A \subseteq i(p)$, Definition 1.3 tells us that it will suffice to verify that every element of A is an element of i(p) and that there exists an element of i(p) that is not an element of A. We treat the former statement first. As previously mentioned, $x \le p$ for all $x \in A$. This combined with the fact that $p \notin A$ implies that x < p for all $x \in A$. Thus, by the definition of i(p), $x \in i(p)$ for all $x \in A$, as desired. As to the latter statement, since q < p, we have by the definition of i(p) that $q \in i(p)$. However, we also know that $q \notin A$, as desired.

To show that $i(p) \subseteq B$, we must verify symmetric arguments to before. For the former statement, let r be an arbitrary element of i(p). Then by the definition of i(p), r < p. Since $p \in B$ and $r \in \mathbb{Q}$ satisfy r < p, we have by Definition 6.1 that $r \in B$, as desired. As to the latter statement, p is clearly an element of B that is not an element of i(p), as desired.

1/19: **Theorem 6.11.** $i(\mathbb{Q})$ is dense in \mathbb{R} .

Proof. To prove that $i(\mathbb{Q})$ is dense in \mathbb{R} , Definition 6.8 tells us that it will suffice to show the every point $X \in \mathbb{R}$ is a limit point of $i(\mathbb{Q})$. Let X be an arbitrary element of \mathbb{R} . To show that $X \in LP(i(\mathbb{Q}))$, Definition 3.13 tells us that it will suffice to verify that for every region \underline{AB} with $X \in \underline{AB}$, we have $\underline{AB} \cap (i(\mathbb{Q}) \setminus \{X\}) \neq \emptyset$. Let \underline{AB} be an arbitrary region with $X \in \underline{AB}$. It follows by Definitions 3.10 and 3.6 that A < X < B. Thus, by Lemma 6.10, there exists $p \in \mathbb{Q}$ such that A < i(p) < X < B. By Definitions 3.6 and 3.10, $i(p) \in \underline{AB}$. By Definitions 1.18, $i(p) \in i(\mathbb{Q})$. By Exercise 6.5, i(p) < X implies that $i(p) \neq X$. Combining the last three results with Definitions 1.11 and 1.6, we have that $i(p) \in \underline{AB} \cap (i(\mathbb{Q}) \setminus \{X\})$, as desired.

Corollary 6.12 (The Archimedean Property). Let $A \in \mathbb{R}$ be a positive real number. Then there exist nonzero natural numbers $n, m \in \mathbb{N}$ such that $i(\frac{1}{n}) < A < i(m)$.

Proof. We will first prove that there exists a nonzero natural number n such that $i(\frac{1}{n}) < A$. We will then prove that there exists a nonzero natural number m such that A < i(m). Let's begin.

Since $A \in \mathbb{R}$ is positive, we know that 0 < A. Thus, by Lemma 6.10, there exists $\frac{p}{n} \in \mathbb{Q}$ such that $0 < i(\frac{p}{n}) < A$. As permitted by Exercise 3.9b, we choose $\frac{p}{n} \in \left[\frac{p}{n}\right]$ to be an object such that 0 < n (this means that $n \in \mathbb{N}$). Consequently, by Scripts 2 and 3, we know that $0 < \frac{1}{n} \le \frac{p}{n}$. It follows that $i(\frac{1}{n}) \le i(\frac{p}{n})$ since $x \in i(\frac{1}{n})$ implies $x < \frac{1}{n} \le \frac{p}{n}$ implies $x \in i(\frac{p}{n})$, implies $i(\frac{1}{n}) \subset i(\frac{p}{n})$. Therefore, $i(\frac{1}{n}) \le i(\frac{p}{n}) < A$, as desired.

Suppose for the sake of contradiction that no natural number m exists such that A < i(m). Then $A \ge i(m)$ for all $m \in \mathbb{N}$. Thus, by Definition 6.4, $i(m) \subset A$ for all $m \in \mathbb{N}$. Now let $\frac{p}{q}$ be an arbitrary element of \mathbb{Q} , again with a positive denominator. It follows by Scripts 2 and 3 that $\frac{p}{q} < 1$ if $p \le 0$ and $\frac{p}{q} < p$ if p > 0. Either way, $\frac{p}{q} < m$ for some nonzero natural number $m \in \mathbb{N}$, meaning that $\frac{p}{q} \in i(m)$ for some $m \in \mathbb{N}$. This implies that $\frac{p}{q} \in A$. But by Definition 1.3, this means that $\mathbb{Q} \subset A$, implying that $A = \mathbb{Q}$ by Theorem 1.7a. This contradicts Definition 6.1.

Corollary 6.13. $i(\mathbb{N})$ is an unbounded subset of \mathbb{R} .

Proof. Suppose for the sake of contradiction that $i(\mathbb{N})$ is bounded above. Then by Definition 5.6, there exists a point $A \in \mathbb{R}$ such that $i(n) \leq A$ for all $n \in \mathbb{N}$. Note that A is a positive real number since $0 = i(0) \leq A$. But by Corollary 6.12, A < i(n) for some $n \in \mathbb{N}$, a contradiction.

Corollary 6.14. If $A \in \mathbb{R}$ is a real number, then there is an integer n such that $i(n-1) \leq A < i(n)$.

Proof. Suppose for the sake of contradiction that there exists a real number A for which there does not exist an integer n such that $i(n-1) \le A$ and A < i(n). In other words, for all integers n, i(n-1) > A or $A \ge i(n)$. We now divide into two cases. Suppose first that i(n-1) > A for all $n \in \mathbb{Z}$, and suppose for the sake of

contradiction that $p \in A$. Then by Scripts 2 and 3, there exists a natural number m < p. Thus, i(m) < A, a contradiction. The proof is symmetric in the other case.

6.2 Discussion

- 1/12: Upper limit at signing up for 4-5 across the script.
 - Lemma 6.2 is probably more straightforward using a contradiction argument.
 - Briefly restate the algebra of Exercise 4.24 in Exercise 6.3c.
- 1/14: Turning in Script 5 journals is optional it will boost your grade a bit if you do.
 - Your journal grade will be whichever is higher: the average of all your journal grades with and without Script 5.
 - Script 5 will probably be due Wednesday, 1/20.
 - In Lemma 6.6, do we need to prove that the union of arbitrarily many Dedekind cuts is, itself, a Dedekind cut? Yes.