

Nome: Giciele Solinger Ribeiro - 32335_______ Data: 19 de junho de 2018

1. Controle de Qualidade. Os dados a seguir foram obtidos em um ensaio R&R. Determine os parâmetros $\%R\&R_{VT}$ e $\%R\&R_{TOL}$ desses processos de medição e indique se eles são adequados ou não e o motivo (Extraído do livro Fundamentos de Metrologia Científica e Industrial de Armando Albertazzi G. Jr. e André R. de Souza, 2^a edição, página 409).

	Peças									
C	Operadores		2	3	4	5	6	7	8	9
	Medição 1	76.26	76.05	76.06	76.1	76.08	76.07	76.11	76.24	76.37
A	Medição 2	76.22	76.32	76.06	76.22	76.35	76.07	76.01	76.18	76.07
	Medição 3	76.17	76.12	76.15	76.21	75.94	76.15	76.05	76	75.84
	Medição 1	75.99	75.83	76.03	76.3	76.12	75.89	76.37	76.41	76.43
В	Medição 2	76.13	76.21	76.03	76.17	76.05	76.19	76.02	76.08	75.91
	Medição 3	76.14	76.41	76.18	76.43	76.13	76.23	76.12	76.47	76
	Medição 1	76.26	76.11	76.1	75.96	76.31	76.28	76.08	76.35	76.37
$\mid C \mid$	Medição 2	75.79	76.12	76.24	76.04	75.94	76.11	76.34	76.04	75.96
	Medição 3	76.06	76.1	76.16	76.29	75.95	76.14	76.2	76.31	76.17

2. Ajuste Linear. Para determinar a constante de elasticidade de uma mola, um estudante pendura várias massas M em uma extremidade da mola e mede a sua correspondente dimensão l. Os resultados obtidos estão apresentados na Tabela 1. Como a força $mg = k(l-l_0)$ é o comprimento da mola sem distensão, esses dados devem se ajustar a uma reta, $l = l_0 + (g/k)m$. Faça um ajuste por mínimos quadrados para essa reta, considerando os dados apresentados, e determine as melhores estimativas para l_0 e para k. Calcule o comprimento l e sua incerteza para o peso de 1kg (Extraído do livro Introdução à análise de erros de John R. Taylor, 2^a edição, página 200).

Peso m (gramas)	200	300	400	500	600	700	800	900
Comprimento l (cm)								

Tabela 1: Comprimento versus peso para uma mola M.

3. Medidas Correlacionadas. Considere o modelo matemático abaixo para medição de uma resistência com base nos valores simultaneamente observados de corrente e voltagem sob condições ambientais idênticas, utilizando um voltímetro e um amperímetro (ambos os instrumentos estavam com escala selecionada visando a menor incerteza associada ao conjunto de medições em questão, ver Tabelas 3 e 4), considerando a influência de correlação entre as variáveis e tendo ciência de que a temperatura ambiente estava oscilando entre 19°C e 25°C. Determine a incerteza no cálculo de R com 99.73% de confiança de acordo com a quantidade de algarismos significativos de acordo com o Método de Monte Carlo.

$$R = (V_a + V_{resol} + V_{calib} + V_{temp})/(I_a + I_{resol} + I_{calib} + I_{temp})$$
, sendo:

N	1	2	3	4	5	6	7	8
$V_a(V)$	11.14	11.64	9.01	9.17	9.07	11.55	9.51	11.09
$I_a (mA)$	111.083	116.894	89.637	91.156	90.5	116.294	95.629	110.175

Tabela 2: Medições simultâneas de voltagem e corrente

Faixa	Precisão
200mV, 2V, 20V, 200V	$\pm (0.5\% + 3D)$
1000V	$\pm (1.0\% + 5D)$

Tabela 3: Incerteza do voltímetro de 3 1/2 dígitos, segundo o certificado de calibração, válida para temperatura ambiente oscilando entre $-10^{\circ}C$ e $40^{\circ}C$.

Incerteza
$\pm (0.8\% + 3D)$
$\pm (1.2\% + 4D)$
$\pm (2.0\% + 5D)$

Tabela 4: Incerteza do amperímetro de 5 1/2 dígitos, segundo o certificado de calibração, válida para temperatura de $23^{\circ}C \pm 5^{\circ}C$ e umidade relativa < 75%.