Set Theory Notes

by Tyler Wright

github.com/Fluxanoia fluxanoia.co.uk

These notes are not necessarily correct, consistent, representative of the course as it stands today or, rigorous. Any result of the above is not the author's fault.

0 Notation

We commonly deal with the following concepts in Set Theory which I will abbreviate as follows for brevity:

Term	Notation

Contents

0	Not	ation	1
1	The	Fundamentals	3
	1.1	The Set ω	3
	1.2	Axiom of Extensionality	3
	1.3	Axiom of Pair Sets	3
	1.4	Axiom of the Powerset	3
	1.5	Axiom of the Empty Set	3

1 The Fundamentals

1.1 The Set ω

We have the set of natural numbers, $\mathbb{N} = \{0, 1, 2, \ldots\}$, and from this, we define ω :

$$\omega = \{0, 1, 2, \ldots\},\$$

where for some n in ω ,

$$n = \{0, 1, 2, \dots, n - 1\},\$$

with 0_{ω} being the empty set. We can go beyond this definition, defining:

$$\omega + 1 = \{0, 1, 2, \dots, \omega\},\$$

$$\omega + 2 = \{0, 1, 2, \dots, \omega, \omega + 1\},\$$

$$\cdots$$

$$\omega + n = \{0, 1, 2, \dots, \omega, \omega + 1, \dots \omega + n - 1\}.$$

1.2 Axiom of Extensionality

For two sets a and b, we have that a = b if and only if for all x we have that:

$$x \in a \iff x \in b$$
.

For two classes A and B, we have that A = B if and only if for all x we have that:

$$x \in a \iff x \in b$$
.

1.3 Axiom of Pair Sets

For any sets x and y, there is a set $z = \{x, y\}$. This is the (unordered) pair set of x and y.

1.4 Axiom of the Powerset

For each set x, there exists a set which is the collection of the subsets of x, the powerset $\mathcal{P}(x)$.

For some set x, we have the powerset defined as follows $\mathcal{P}(x) = \{z \text{ such that } z \subseteq x\}.$

1.5 Axiom of the Empty Set

There exists a set with no members, the empty set \varnothing .

We have the empty set defined as follows $\emptyset = \{x \text{ such that } x \neq x\}.$