Projet 7: Implémentez un modèle de scoring

Islem HABIBI Parcours Data Scientist

Contexte

- Evaluation du risque de crédit
- Identifier des clients susceptibles de faire faillite.

- Minimisation des pertes financières
- Optimisation de la stratégie d'accord des prêts

Besoin: Construire des modèles prédictifs sophistiqués pour évaluer ce risque de manière automatique et précise

Problématique

Prédiction de la faillite

Analyse approfondie des données

Modèles prédictifs robustes

- Résultat interprétable par les conseillers de l'agence
- mise à disposition du modèle dans un dashboard interactif

Objectifs

- Construire un modèle de scoring prédictif pour évaluer la probabilité de faillite des clients.
- Déployer l'application dashboard et l'API sur une plateforme Cloud gratuite.
- Développer un dashboard interactif qui permet aux gestionnaires de la relation client d'interpréter les prédictions du modèle et d'améliorer leur connaissance client.

Traitements des données

- Fusion des bases "application_train" et "application_test" pour nettoyage.
- Utilisation de "HomeCredit_columns_description" pour la compréhension et sélection des variables.
- Suppression des variables non pertinentes et remplacement par des variables généralistes.

Nettoyage des données

- Transformation des valeurs négatives en valeurs absolues pour certaines variables clés.
- Élimination des outliers et des variables corrélées.
- Séparation des données en ensembles d'entraînement et de test.

Encodage et Normalisation

- Utilisation de la fonction data_processing
 - Encodage des variables catégorielles avec LabelEncoder et OneHotEncoder
 - normalisation des données avec MinMaxScaler
- Préparation des données de test pour utilisation ultérieure.

Entraînement des modèles

- Échantillonnage de 1500 individus de chaque classe cible pour maintenir l'équilibre.
- Cross-validation et optimisation des hyperparamètres avec GridSearchCV.
- Algorithmes testés:
 - Régression Logistique
 - XGBoost
 - K-Neighbors
 - Decision Tree
- Sélection des meilleurs modèles selon diverses métriques de scoring.

Testing des modèles

1

Evaluation des performances des modèles avec `Model_testing`

2

Sélection du meilleur hyperparamètre

- 1. Le score métier
- 2. Le recall (sensibilité)
- 3. La spécificité
- 4. Le ROC AUC Score
- 5. L'accuracy (exactitude)
- 6. Le score de précision

	Model	Scoring Method	Best Parameters	Best Estimator	Best Score
0	Logistic Regression	Accuracy	{'C': 10, 'max_iter': 200, 'penalty': 'l2'}	LogisticRegression(C=10, max_iter=200)	0.589583
1	Logistic Regression	Precision	{'C': 10, 'max_iter': 200, 'penalty': 'l2'}	LogisticRegression(C=10, max_iter=200)	0.592035
2	Logistic Regression	Recall	{'C': 175, 'max_iter': 200, 'penalty': 'l2'}	LogisticRegression(C=175, max_iter=200)	0.613359
3	Logistic Regression	F1	{'C': 175, 'max_iter': 200, 'penalty': 'l2'}	LogisticRegression(C=175, max_iter=200)	0.600706
4	Logistic Regression	ROCAUC	{'C': 10, 'max_iter': 200, 'penalty': 'l2'}	LogisticRegression(C=10, max_iter=200)	0.589402
5	XGBoost	Accuracy	{'eta': 0.2, 'learning_rate': 0.1, 'max_depth'	XGBClassifier(base_score=None, booster=None, c	0.613333
6	XGBoost	Precision	{'eta': 0.2, 'learning_rate': 0.01, 'max_depth	XGBClassifier(base_score=None, booster=None, c	0.792308
7	XGBoost	Recall	{'eta': 0.2, 'learning_rate': 0.2, 'max_depth'	XGBClassifier(base_score=None, booster=None, c	0.645529
8	XGBoost	F1	{'eta': 0.2, 'learning_rate': 0.2, 'max_depth'	XGBClassifier(base_score=None, booster=None, c	0.627743
9	XGBoost	ROC AUC	{'eta': 0.2, 'learning_rate': 0.1, 'max_depth'	XGBClassifier(base_score=None, booster=None, c	0.613075
10	K-Neighbors	Accuracy	{'algorithm': 'auto', 'n_neighbors': 8, 'weigh	KNeighborsClassifier(n_neighbors=8, weights='d	0.558750
11	K-Neighbors	Precision	{'algorithm': 'auto', 'n_neighbors': 2, 'weigh	KNeighborsClassifier(n_neighbors=2)	0.592859
12	K-Neighbors	Recall	{'algorithm': 'auto', 'n_neighbors': 9, 'weigh	KNeighborsClassifier(n_neighbors=9)	0.608482
13	K-Neighbors	F1	{'algorithm': 'auto', 'n_neighbors': 8, 'weigh	KNeighborsClassifier(n_neighbors=8, weights='d	0.581713
14	K-Neighbors	ROCAUC	{'algorithm': 'auto', 'n_neighbors': 8, 'weigh	KNeighborsClassifier(n_neighbors=8, weights='d	0.558253
15	Decision Tree	Accuracy	{'criterion': 'gini', 'max_depth': 10, 'max_fe	DecisionTreeClassifier(max_depth=10, max_featu	0.585833
16	Decision Tree	Precision	{'criterion': 'gini', 'max_depth': 3, 'max_fea	DecisionTreeClassifier(max_depth=3, max_featur	0.608544
17	Decision Tree	Recall	{'criterion': 'gini', 'max_depth': 3, 'max_fea	DecisionTreeClassifier(max_depth=3, max_featur	0.867184
18	Decision Tree	F1	{'criterion': 'gini', 'max_depth': 3, 'max_fea	DecisionTreeClassifier(max_depth=3, max_featur	0.649018
19	Decision Tree	ROC AUC	{'criterion': 'gini', 'max_depth': 5, 'max_fea	DecisionTreeClassifier(max_depth=5, max_featur	0.582096

Optimisation et sélection du modèle final

- Test de différents seuils pour optimiser le seuil de classification.
- La fonction
 `best_threshold` pour
 identifier le meilleur seuil

Évaluation des performances des modèles avec diverses métriques

Sélection du modèle final

Precision	Recall	F1	Accuracy	ROC AUC Score	Score Metier
0.61	0.65	0.63	0.63	0.63	1122

Analyse du Data Drift

- Utilisation de la bibliothèque Evidently pour détecter le drift dans les données.
- Une dérive de données a été détectée dans 28,571 % des colonnes (8 sur 28).

Déploiement

heroku

- Enregistrement du modèle final avec MLflow / Pickle.
- Déploiement sur cloud sous forme d'API Flask via Heroku.
- Présentation des fonctionnalités de l'API, y compris les valeurs de Shapley et les graphiques SHAP.


```
Make Predictions
Predict on a Spark DataFrame:
                                                                                                                          n
 import mlflow
 from pyspark.sql.functions import struct, col
 logged model = 'runs:/7faa0e8554a24261a5cce0b499c4026c/model'
 # Load model as a Spark UDF. Override result type if the model does not return double values.
 loaded model = mlflow.pyfunc.spark udf(spark, model uri=logged model, result type='double')
 # Predict on a Spark DataFrame.
 df.withColumn('predictions', loaded model(struct(*map(col, df.columns))))
Predict on a Pandas DataFrame:
 import mlflow
 logged model = 'runs:/7faa0e8554a24261a5cce0b499c4026c/model'
 # Load model as a PyFuncModel.
 loaded model = mlflow.pyfunc.load model(logged model)
 # Predict on a Pandas DataFrame.
 import pandas as pd
```

loaded_model.predict(pd.DataFrame(data))

Prédiction de Modèle

Télécharger le fichier CSV des clients: Choisir un fichier Aucun fichier choisi

Entrer l'ID du client (SK_ID_CURR): exemple 208550 ou 144092

Prédire

Dashboard Interactif

- Développement d'un dashboard avec Streamlit pour l'utilisation de l'API de prédiction de crédit.
- Présentation des fonctionnalités interactives pour les utilisateurs.

Dashboard interactif pour la prédiction de crédit

Estimation pour les clients inscrits

Identifiant de crédit: tester avec 208550 et 144092

Résultat

Sauvegarde de tous les livrables dans un référentiel GitHub (outil de gestion de version)

https://github.com/islem-habibi/projet_7

```
C:\Users\islem\OneDrive\Bureau\projet_7>echo "# projet_7" >> README.md
C:\Users\islem\OneDrive\Bureau\projet_7>ls
README.md
                        data_drift_test.ipynb
                                                   mlflow_flask_deployment.py
                                                                                     test_unitaire.py
app_streamlit.py
                        data_processing_module.py projet7_final_version_2024.ipynb
data_drift_report.html data_stability.html
                                                   score_metier_func.pv
C:\Users\islem\OneDrive\Bureau\projet 7>git init
Initialized empty Git repository in C:/Users/islem/OneDrive/Bureau/projet_7/.git/
C:\Users\islem\OneDrive\Bureau\projet_7>git add .
warning: in the working copy of 'data_drift_test.ipynb', LF will be replaced by CRLF the next time Git touches it
warning: in the working copy of 'data_processing_module.py', LF will be replaced by CRLF the next time Git touches it
warning: in the working copy of 'projet7_final_version_2024.ipynb', LF will be replaced by CRLF the next time Git touches it
warning: in the working copy of 'score_metier_func.py', LF will be replaced by CRLF the next time Git touches it
warning: in the working copy of 'test_unitaire.py'. LF will be replaced by CRLF the next time Git touches it
C:\Users\islem\OneDrive\Bureau\projet_7>git commit -m "first commit"
[master (root-commit) a19384c] first commit
 10 files changed, 13308 insertions(+)
 create mode 100644 README.md
 create mode 100644 app_streamlit.py
 create mode 100644 data_drift_report.html
 create mode 100644 data_drift_test.ipynb
 create mode 100644 data_processing_module.py
 create mode 100644 data_stability.html
 create mode 100644 mlflow flask deployment.pv
 create mode 100644 projet7_final_version_2024.ipynb
 create mode 100644 score_metier_func.py
 create mode 100644 test_unitaire.py
C:\Users\islem\OneDrive\Bureau\projet 7>git branch -M main
C:\Users\islem\OneDrive\Bureau\projet_7>git remote add origin https://github.com/islem-habibi/projet_7.git
C:\Users\islem\OneDrive\Bureau\projet_7>git push -u origin main
Enumerating objects: 12. done.
Counting objects: 100% (12/12), done.
Delta compression using up to 12 threads
Compressing objects: 100% (11/11), done.
Writing objects: 100% (12/12), 2.56 MiB | 1.96 MiB/s, done.
Total 12 (delta 1), reused 0 (delta 0), pack-reused 0
remote: Resolving deltas: 100% (1/1), done.
To https://github.com/islem-habibi/projet_7.git
 * [new branch]
                     main -> main
branch 'main' set up to track 'origin/main'.
C:\Users\islem\OneDrive\Bureau\projet_7>
```

Conclusion

Cross-validation : Modèle robuste et performant

Déploiement: API Flask

Dashboard interactif: Streamlit

Impact sur la gestion des risques financiers et la prise de décision en matière de crédit pour "Prêt à dépenser".

Merci pour votre attention

