Exercise Sheet 12

Discrete Mathematics, 2020.11.3

- 1. We call f a choice function of S if $f: S \to \bigcup S$ and $f(X) \in X$ for any $X \in S$. Thus, the axiom of choice actually says: if $\emptyset \not\in S$ then S has at least a choice function. Now, please determine whether f is a choice function of S in the following examples. (If yes, you only need to say yes. If no, briefly explain why.)
 - a) $S = \{\{0\}, \{1\}, \{2\}\}, f = \{(\{0\}, 0), (\{1\}, 1), (\{2\}, 2)\}$
 - b) $S = \{\{0\}, \{1\}, \{2\}\}, f = \{(0,0), (1,1), (2,2)\}$
 - c) $S = \emptyset$, $f = \emptyset$
 - d) $S = \mathcal{P}(\mathbb{N}), f = \{(\{m \in \mathbb{N} \mid m \ge n\}, n) \mid n \in \mathbb{N}\}$
- 2. Suppose R is an equivalence relation on A. Prove that there exists an injection from $\{[a]_R \mid a \in A\}$ into A, based on the axiom of choice.

1. We call f a choice function of S if $f: S \to \bigcup S$ and $f(X) \in X$ for any $X \in S$. Thus, the	
axiom of choice actually says: if $\emptyset \notin S$ then S has at least a choice function. Now, please determine whether f is a choice function of S in the following examples. (If yes, you only need to say yes. If no, briefly explain why.)	
a) $S = \{\{0\}, \{1\}, \{2\}\}, f = \{(\{0\}, 0), (\{1\}, 1), (\{2\}, 2)\}$ b) $S = \{\{0\}, \{1\}, \{2\}\}, f = \{(0, 0), (1, 1), (2, 2)\}$	
c) $S = \emptyset$, $f = \emptyset$	
d) $S = \mathcal{P}(\mathbb{N}), f = \{(\{m \in \mathbb{N} \mid m \ge n\}, n) \mid n \in \mathbb{N}\}$	
(a) Yes	
(b) No. 0\$S. I is not a function from S to US.	
(c) Yes	
(d) No. {:}eP(N), but {:}∮{ {ineN m>n} neN/j	
So if its not a function from S to US.	
(Actually, \$es)	
2. Suppose R is an equivalence relation on A . Prove that there exists an injection from $\{[a]_R \mid a \in A\}$ into A , based on the axiom of choice.	
S={Talp aeA}, US=A. \$\delta\$	
Then exist a function $f\colon S o A$, s.t. $f(x)\in X$, for any $X\in S$	
Now we want to prove that f is a injection:	
A A A A A A A A A A A A A A A A A A A	
$f(x_1) = f(x_2) = \alpha \Rightarrow$	
αεχ, Λ αεχ ₂ ⇒	
$\chi, \cap \chi_2 \neq \emptyset \implies$	
X1 = X2	
Q.E.D.	