

Pontificia Universidad Católica de Chile Facultad de Física Estática y Dinámica

Profesor: Ulrich Volkmann

Ayudante: Claudio Hernández (cghernandez@uc.cl)

## Ayudantía 8

1. Santiago Tour: FUNicular Considere un bloque de masa m que desliza sobre un plano inclinado en un ángulo  $\theta$  respecto a la horizontal. Entre el bloque y la superficie existe un coeficiente de roce dinámico  $\mu = ax$ , donde a es una constante conocida y x es la distancia recorrida por la caja. Si esta última es tirada por una cuerda ideal que se va enrollando en una polea ideal gracias a un motor, determine la potencia suministrada por el motor en función del tiempo si la caja se eleva con rapidez constante  $v_0$ .



2. Resortemanía IV: A New Hooke Considere un sistema de resortes como se muestra en la figura de abajo, en ausencia de gravedad. El largo natural de los resortes  $k_2$  y  $k_3$  es  $l_0$ , y el de  $k_1$  es  $2l_0$ . Si inicialmente la caja de masa m está quieta  $d_0$  unidades bajo la posición de equilibrio y se suelta, determine la posición, velocidad y aceleración de la misma en todo instante posterior.



3. **Péndulo Alocado** Considere una cuenta de masa m, en presencia de gravedad, atada a una cuerda ideal de largo  $l_0$ , que se encuentra anclada a la pared en su otro extremo. Inicialmente, se golpea la cuenta cuando forma un ángulo  $\theta_0$  con la vertical, y ésta adquiere una rapidez  $v_0$  no muy grande. Determine la posición angular como función del tiempo si tanto  $\theta_0$  como  $v_0$  apuntan en la dirección opuesta a las manecillas del reloj.