MATH453 Elementary Number Theory1Strings, Enumeration, and PermuationReila ZhengKevin Gao

Q: How many outcomes ar ethere if you roll a die and toss a coin?

A: # of outcomes for a die: 6; # of outcomes for a coin: 2; Hence, $6 \times 2 = 12$

Q: How many outcomes are there if you either roll a die or toss a coin?

A: 6 + 2 = 8

Q: How many ways to get from home to Bahen without backtracking? Strings

[Binary String] A binary string of length n is an ordered list of length n of elements from $\{0,1\}$.

10011 is a binary string of length 5. $\emptyset = \{\}$ is a binary string of length 0.

Similarly, a **ternary string** of length n is an ordered list of length n of elements from $\{0, 1, 2\}$. [X-String] Let $X = \{a_1, \ldots, a_n\}$ be the alphabet. An X-string of length k is an ordered list of elements from the set X. In the previous example, the path from home to Bahen without backtracking can be thought of as an $\{N, E\}$ -strings.

Q: How to relate the set of paths from home to Bahen without backtracking with some set of $\{N, E\}$ -strings?

A: Note that not every $\{N, E\}$ -strings can represent a path. In our specific examples, we need exactly walk 5 blocks east an **Q**: How many $\{N, E\}$ -strings of length 9 are there?

A: Let $S = \{all\{N, E\} - stringsoflength9\}$. For each $S \in S$, $S = s_1 s_2 \dots s_9$. For each position, there are two choices, N or For $X = \{a_1, \ldots, a_n\}$, the number of X-strings of length k is n^k , where $n, k \ge 1$ are natural numbers. Denote $S = s_1 \ldots s_k \in \mathcal{S}$. For s_i , there are n choices for $i \in \{1, \ldots, k\}$. So there are

 $ktimes = n^k such strings.$

[Array] An array of length n is an ordered list where the elements in position i comes from some alphabet X_i .

Ontario health cards have the format: 10 digits of $\{0,1,\ldots,9\}$ followed by two letters from $\{A,\ldots,Z\}$. There are $(10)^1$ Permutations

Let $X = \{a_1, \ldots, a_n\}$ be a set of distinct object. [Permutation] A permutation of length k is an X-string of length k such that there is no repetition. Suppose $X = \{a, b, c, d\}$. abc is a permutation of length 3. \emptyset is a permutation of length 0. However, bab is not a permu Because a permutation requires there be no repetition, there is no permutation of length k for X of size n if k > n.

Q: How many permutations of length 4 are there of $X = \{a, b, c, d\}$?

A: Let $S = s_1 s_2 s_3 s_4$ be a permutation. There are 4 choices for s_1 . After choosing s_1 , there are 3 choices left for s_2 . After c [Factorial] For any $n \in \text{such that } n \geq 0$, n factorial is defined as

In particular, we define 0! = 1.