linear_regression

January 16, 2021

0.1 Linear regression workbook

This workbook will walk you through a linear regression example. It will provide familiarity with Jupyter Notebook and Python. Please print (to pdf) a completed version of this workbook for submission with HW #1.

ECE C147/C247, Winter Quarter 2021, Prof. J.C. Kao, TAs: N. Evirgen, A. Ghosh, S. Mathur, T. Monsoor, G. Zhao

```
[1]: import numpy as np
import matplotlib.pyplot as plt

#allows matlab plots to be generated in line
%matplotlib inline
```

0.1.1 Data generation

For any example, we first have to generate some appropriate data to use. The following cell generates data according to the model: $y = x - 2x^2 + x^3 + \epsilon$

```
np.random.seed(0)  # Sets the random seed.
num_train = 200  # Number of training data points

# Generate the training data
x = np.random.uniform(low=0, high=1, size=(num_train,))
y = x - 2*x**2 + x**3 + np.random.normal(loc=0, scale=0.03, size=(num_train,))
f = plt.figure()
ax = f.gca()
ax.plot(x, y, '.')
ax.set_xlabel('$x$')
ax.set_ylabel('$y$')
```

[2]: Text(0, 0.5, '\$y\$')

0.1.2 QUESTIONS:

Write your answers in the markdown cell below this one:

- (1) What is the generating distribution of x?
- (2) What is the distribution of the additive noise ϵ ?

0.1.3 ANSWERS:

- (1) Uniform Distribution
- (2) Normal Distribution

0.1.4 Fitting data to the model (5 points)

Here, we'll do linear regression to fit the parameters of a model y = ax + b.

```
[4]: # Plot the data and your model fit.
f = plt.figure()
ax = f.gca()
ax.plot(x, y, '.')
ax.set_xlabel('$x$')
ax.set_ylabel('$y$')

# Plot the regression line
xs = np.linspace(min(x), max(x),50)
xs = np.vstack((xs, np.ones_like(xs)))
plt.plot(xs[0,:], theta.dot(xs))
```

[4]: [<matplotlib.lines.Line2D at 0x7ff40b2da550>]

0.1.5 QUESTIONS

(1) Does the linear model under- or overfit the data?

(2) How to change the model to improve the fitting?

0.1.6 ANSWERS

- (1) Underfit
- (2) Add two more parameters to estimate x^2 and x^3

0.1.7 Fitting data to the model (10 points)

Here, we'll now do regression to polynomial models of orders 1 to 5. Note, the order 1 model is the linear model you prior fit.

```
[5]: N = 5
    xhats = []
    thetas = []
    # ----- #
    # START YOUR CODE HERE #
    # ====== #
    for i in range(1, N+1):
        xhats.append(np.vstack([x**deg for deg in range(i, -1, -1)]))
    for xhat in xhats:
        thetas.append(np.dot(np.dot(np.linalg.inv(np.dot(xhat,xhat.T)),xhat),y))
    # GOAL: create a variable thetas.
    # thetas is a list, where theta[i] are the model parameters for the polynomial \Box
     \hookrightarrow fit of order i+1.
       i.e., thetas[0] is equivalent to theta above.
    # i.e., thetas[1] should be a length 3 np.array with the coefficients of the
     \rightarrow x^2, x, and 1 respectively.
    # ... etc.
    # ====== #
    # END YOUR CODE HERE #
    # ====== #
```

```
[6]: # Plot the data
f = plt.figure()
ax = f.gca()
ax.plot(x, y, '.')
ax.set_xlabel('$x$')
ax.set_ylabel('$y$')

# Plot the regression lines
plot_xs = []
for i in np.arange(N):
```

```
if i == 0:
        plot_x = np.vstack((np.linspace(min(x), max(x),50), np.ones(50)))
    else:
        plot_x = np.vstack((plot_x[-2]**(i+1), plot_x))
        plot_xs.append(plot_x)

for i in np.arange(N):
        ax.plot(plot_xs[i][-2,:], thetas[i].dot(plot_xs[i]))

labels = ['data']
[labels.append('n={}'.format(i+1)) for i in np.arange(N)]
bbox_to_anchor=(1.3, 1)
lgd = ax.legend(labels, bbox_to_anchor=bbox_to_anchor)
```


0.1.8 Calculating the training error (10 points)

Here, we'll now calculate the training error of polynomial models of orders 1 to 5.

```
[7]: training_errors = []

# ============ #

# START YOUR CODE HERE #

# ========= #

# GOAL: create a variable training_errors, a list of 5 elements,
# where training_errors[i] are the training loss for the polynomial fit of order i+1.

for i in range(5):
```

Training errors are:

```
[0.4759922176725402, 0.21849844418537057, 0.16339207602210737, 0.16330707470593964, 0.16322958391050588]
```

0.1.9 QUESTIONS

- (1) What polynomial has the best training error?
- (2) Why is this expected?

0.1.10 ANSWERS

- (1) Order 5 Polynomial
- (2) Higher order polynomials can model higher order (non-linear) patterns in the data as well as lower order patterns

0.1.11 Generating new samples and testing error (5 points)

Here, we'll now generate new samples and calculate testing error of polynomial models of orders 1 to 5.

```
[8]: x = np.random.uniform(low=1, high=2, size=(num_train,))
y = x - 2*x**2 + x**3 + np.random.normal(loc=0, scale=0.03, size=(num_train,))
f = plt.figure()
ax = f.gca()
ax.plot(x, y, '.')
ax.set_xlabel('$x$')
ax.set_ylabel('$y$')
```

[8]: Text(0, 0.5, '\$y\$')


```
[9]: xhats = []
for i in np.arange(N):
    if i == 0:
        xhat = np.vstack((x, np.ones_like(x)))
        plot_x = np.vstack((np.linspace(min(x), max(x),50), np.ones(50)))
    else:
        xhat = np.vstack((x**(i+1), xhat))
        plot_x = np.vstack((plot_x[-2]**(i+1), plot_x))

    xhats.append(xhat)
```

```
[10]: # Plot the data
f = plt.figure()
ax = f.gca()
ax.plot(x, y, '.')
ax.set_xlabel('$x$')
ax.set_ylabel('$y$')

# Plot the regression lines
plot_xs = []
for i in np.arange(N):
    if i == 0:
        plot_x = np.vstack((np.linspace(min(x), max(x),50), np.ones(50)))
    else:
        plot_x = np.vstack((plot_x[-2]**(i+1), plot_x))
```

```
plot_xs.append(plot_x)

for i in np.arange(N):
    ax.plot(plot_xs[i][-2,:], thetas[i].dot(plot_xs[i]))

labels = ['data']
[labels.append('n={}'.format(i+1)) for i in np.arange(N)]
bbox_to_anchor=(1.3, 1)
lgd = ax.legend(labels, bbox_to_anchor=bbox_to_anchor)
```


print ('Testing errors are: \n', testing_errors)

Testing errors are:

[161.72330369101167, 426.38384890115805, 6.251394216818595, 2.374153042237893, 429.8204349731892]

0.1.12 QUESTIONS

- (1) What polynomial has the best testing error?
- (2) Why polynomial models of orders 5 does not generalize well?

0.1.13 ANSWERS

- (1) Order 3 Polynomial
- (2) Order 5 polynomial overfits the data because the data is generated from an order 3 polynomial equation

[]: