

2N2102 Silicon NPN Transistor General Purpose Amplifier and Switch TO-39 Type Package

Description:

The 2N2102 is a silicon NPN transistor in a TO39 type package intended for a wide variety of small–signal and medium power applications in military and industrial equipment.

Absolute	Maximum	Ratings:
Aboolate	MIGAIIIIGIII	Hutiligo.

Collector–Base Voltage (I _E = 0), V _{CBO}	120V
Collector–Emitter Voltage (I _B = 0), V _{CEO}	65V
Collector–Emitter Voltage (R _{BE} ≤10Ω), V _{CER}	V08
Emitter-Base Voltage (I _C = 0), V _{EBO}	7V
Collector Current, I _C	1A
Total Device Dissipation, P _D	
$T_A \le +25^{\circ}C$	1W
T _A ≤ +25°C	5W
Operating Junction Temperature, T _J	+175°C
Storage Temperature Range, T _{stg} 65	5° to +175°C
Thermal Resistance, Junction-to-Case, R _{thJC}	+30°C/W
Thermal Resistance, Junction-to-Ambient, R _{thJA}	. +150°C/W

Electrical Characteristics: $(T_C = +25^{\circ}C \text{ unless otherwise specified})$

Parameter	Symbol	Test Conditions		Min	Тур	Max	Unit
Collector Cutoff Current	I _{CBO}	V _{CB} = 60V		_	_	2	nA
			T _C = +150°C	_	_	2	μΑ
Emitter Cutoff Current	I _{EBO}	V _{BE} = 5V		_	_	5	nA
Collector-Emitter Breakdown Voltage	V _{(BR)CEO}	$I_C = 100 \mu A, I_E = 0$		120	_	_	V
Collector-Emitter Sustaining Voltage	V _{CEO(sus)}	I _C = 30mA, I _B = 0, Note 1		65	_	_	V
Collector-Emitter Saturation Voltage	V _{CE(sat)}	$I_C = 150 \text{mA}, I_B = 15 \text{mA}, \text{Note 1}$		_	_	0.5	V
Base-Emitter Saturation Voltage	V _{CE(sat)}	I _C = 150mA, I _B = 15mA, Note 1		_	_	1.1	V

Note 1. Pulse Test: Pulse Width + 300μs, Duty Cycle ≤ 1%.

Electrical Characteristics: $(T_C = +25^{\circ}C \text{ unless otherwise specified})$

Parameter	Symbol	Test Conditions		Min	Тур	Max	Unit
DC Current Gain	h _{FE}	V _{CE} = 10V, Note 1	$I_C = 10\mu A$	10	-	-	
			$I_C = 100 \mu A$	20	-	-	
			I _C = 10mA	35	-	-	
			I _C = 150mA	40	-	120	
			I _C = 500mA	25	-	-	
			I _C = 1A	10	-	-	
High Frequency Current Gain	h _{fe}	I _C = 50mA, V _{CE} = 10V, f = 20MHz, Note 1		ı	6	ı	
Noise Figure	NF	$I_{C} = 300\mu A, V_{CE} = 10V, f = 1KHz, BW = 1Hz, R_{g} = 510\Omega$		ı	I	8	dB
Collector-Base Capacitance	C _{CBO}	$I_E = 0 V_{CB} = 10V, f = 1MHz$		-	1	15	pF
Emitter-Base Capacitance	C _{EBO}	I _C = 0 V _{EB} = 500mV, f = 1MHz		-	_	80	pF

Note 1. Pulse Test: Pulse Width + $300\mu s$, Duty Cycle \leq 1%.

