

Simulating Stochastic Processes with Variational Quantum Circuits

CQSE & NCTS
Special Seminar

National Taiwan University

November 29th, 2022

Daniel Fink

https://dx.doi.org/10.18419/opus-12068

Advisors

- University of Stuttgart
 - Prof. Dr. Christian Holm

- Free University of Berlin
 - Prof. Dr. Jens Eisert
 - Dr. Nora Tischler
 - Dr. Ryan Sweke
 - M.Sc. Paul Fährmann

What is SimTech?

- Interdisciplinary research unit
- Common target: <u>Simulation</u>
- Professorship, PostDocs, PhDs, ...
- Project Network for Quantum Computing
- Open positions available
- Funding for exchange available
- Contact: daniel.fink@icp.uni-stuttgart.de

Can we predict the future based on past observations?

Can we predict the future based on past observations?

Simulations → show possible futures

Assume linear trend f(t)Add some noise e_t

 $\rightarrow e_t$ is a stochastic process

Stock Price Trend

Stock Price Trend

Classical Models ≤ Quantum Models

How to get a quantum model?

- Classical description of the process $\rightarrow q$ -simulator
 - Binder et al., 10.1103/PhysRevLett.120.240502

- Classical description of the process $\rightarrow q$ -simulator
 - Binder et al., 10.1103/PhysRevLett.120.240502

$$Y_t = f(t) + e_t$$
 Quantum Model

- Data from the process → classical discovery algorithm
 - Yang et al., arXiv:2105.14434

Goal

Develop a quantum learning algorithm for simulation models, which uses only data as input.

Content

- Stochastic Processes
- ϵ -machine
- Quantum Circuits
- *q*-simulator
- Quantum Learning Algorithm
- Results
- Conclusion

Time Steps →

stationary

- Simulating = sampling trajectories
- Trajectory is governed by $P(\vec{X}|\vec{X})$

Classical Topological Complexity: $d_c = \log_2 N$

Example

Period-N Uniform Renewal Process

Quantum Circuits

Quantum Circuits

Quantum Circuits

q-simulator

Memory Register

Auxiliary Registers

q-simulator

Memory Register

Auxiliary Registers

q-simulator

Auxiliary Registers

memory states

Quantum Topological Complexity: $d_q = \#$ qubits

Advantage

In general:

$$d_q \le d_c$$

For some processes:

$$|d_q < d_c|$$

Thompson et al., 10.1103/PhysRevX.8.031013

Advantage

In general:

$$d_q \le d_c$$

For some processes:

$$d_q < d_c$$

Thompson et al., 10.1103/PhysRevX.8.031013

Approximate models:

$$\hat{d}_q = \hat{d}_c$$

Q-Models can have better accuracy Yang et al., arXiv:2105.14434

Advantage

In general:

$$d_q \le d_c$$

Thompson et al., 10.1103/PhysRevX.8.031013

For some processes:

$$d_q < d_c$$

Approximate models:

$$\hat{d}_q = \hat{d}_c$$

Q-Models can have better accuracy Yang et al., arXiv:2105.14434

How to get a **quantum representation** of a quantum model?

Variational Quantum Circuits

Variational Quantum Circuits

Machine Learning Model

Variational Quantum Algorithms

Idea

Approximate
$$P \rightarrow |P - \hat{P}_{\theta}| < \delta$$

Quantum Learning Algorithm

Quantum Learning Algorithm

Quantum Learning Algorithm

$$D_{KL}(P, \hat{P}) = \sum_{x} P(x) \log_2 \frac{P(x)}{\hat{P}(x)}$$

Kullback-Leibler divergence: (KL)

$$D_{KL}(P, \widehat{P}) = \sum_{x} P(x) \log_2 \frac{P(x)}{\widehat{P}(x)}$$

Kullback-Leibler divergence: (KL)

$$D_{KL}(P, \hat{P}) = \sum_{x} P(x) \log_2 \frac{P(x)}{\hat{P}(x)}$$

Kullback-Leibler divergence: (KL)

$$D_{KL}(P, \hat{P}) = \sum_{x} P(x) \log_2 \frac{P(x)}{\hat{P}(x)}$$

$$\begin{array}{ccc}
P(x) & \widehat{P}(x) \\
\hline
0 & & 1
\end{array}$$

$$D_{KL}(L, P, \widehat{P}) = \sum_{x_{1:L}} \frac{1}{L} \sum_{\bar{x}} P(\bar{x}) \cdot P(x_{1:L} | \bar{x}) \log_2 \frac{P(x_{1:L} | \bar{x})}{\widehat{P}(x_{1:L} | \bar{x})}$$

Kullback-Leibler divergence: (KL)

$$D_{KL}(P, \hat{P}) = \sum_{x} P(x) \log_2 \frac{P(x)}{\hat{P}(x)}$$

$$D_{KL}(L, P, \hat{P}) =$$

average over pasts

mean over time steps

$$D_{TV}(P,\widehat{P}) = \frac{1}{2} \sum_{x} |P(x) - \widehat{P}(x)|$$

$$D_{TV}(P,\hat{P}) = \frac{1}{2} \sum_{x} |P(x) - \hat{P}(x)|$$

$$D_{TV}(P,\widehat{P}) = \frac{1}{2} \sum_{x} |P(x) - \widehat{P}(x)|$$

$$\begin{array}{c} P(x) & \widehat{P}(x) \\ \hline 0 & \end{array}$$

$$D_{TV}(L, P, \hat{P}) = \frac{1}{2} \sum_{x_{1:L}} \sum_{\bar{x}} |P(x_{1:L} | \bar{x}) - \hat{P}(x_{1:L} | \bar{x})|$$

$$D_{TV}(P,\widehat{P}) = \frac{1}{2} \sum_{x} |P(x) - \widehat{P}(x)|$$

$$\begin{array}{c} P(x) & \hat{P}(x) \\ \hline 0 & \end{array}$$

$$D_{TV}(L, P, \hat{P}) =$$
sum up pasts

sum up time steps

Absolute Measure: TV Distance

sum up pasts

sum up time steps

Relative Measure: KL Divergence

average over pasts

mean over time steps

Quantum Learning Algorithm

Ideally, use validation metric:

$$D_{KL}(P, \widehat{P}) = \sum_{x} P(x) \log_2 \frac{P(x)}{\widehat{P}(x)}$$

Ideally, use validation metric:

$$D_{KL}(P, \hat{P}) = \sum_{x} P(x) \log_2 \frac{P(x)}{\hat{P}(x)}$$

unknown

inefficient

Ideally, use validation metric:

$$D_{KL}(P, \hat{P}) = \sum_{x} P(x) \log_2 \frac{P(x)}{\hat{P}(x)}$$

unknown

inefficient

We need an alternative!

Maximum Mean Discrepancy: (MMD)

$$MMD[P, \hat{P}] = 0 \iff P = \hat{P}$$

Problem 1

Let X and Y be random variables with probability distributions P and \widehat{P} . Moreover, let $x = x_1, x_2, ..., x_m$ and $y = y_1, y_2, ..., y_n$ be i.i.d. observations.

Can we decide whether $P \neq \hat{P}$?

from Gretton et al., "A Kernel Two-Sample Test", Journal of ML Research, 2012

Lemma 1

Let (X, d) be a metric space. Then, $P = \hat{P}$ if and only if

$$\mathbb{E}_{x \sim P}[f(x)] = \mathbb{E}_{y \sim \widehat{P}}[f(y)] \text{ for all } f \in C(\mathcal{X}),$$

where $\mathcal{C}(\mathcal{X})$ are all bounded continuous functions on \mathcal{X} .

Lemma 1

Let (\mathcal{X}, d) be a metric space. Then, $P = \hat{P}$ if and only if

$$\mathbb{E}_{x \sim P}[f(x)] = \mathbb{E}_{y \sim \widehat{P}}[f(y)] \text{ for all } f \in C(\mathcal{X}),$$

where C(X) are all bounded continuous functions on X.

Problem: C(X) has infinite dimension \rightarrow cannot be used practically.

Definition 1

Let $F(\mathcal{X})$ be a class of functions $f: \mathcal{X} \to \mathbb{R}$. The MMD is defined as

$$MMD(F,P,\widehat{P}) = \sup_{f \in F} \left(\mathbb{E}_{x \sim P}[f(x)] - \mathbb{E}_{y \sim \widehat{P}}[f(y)] \right).$$

Definition 1

Let $F(\mathcal{X})$ be a class of functions $f: \mathcal{X} \to \mathbb{R}$. The MMD is defined as

$$MMD(F, P, \widehat{P}) = \sup_{f \in F} \left(\mathbb{E}_{x \sim P}[f(x)] - \mathbb{E}_{y \sim \widehat{P}}[f(y)] \right).$$

Practically, we can estimate the MMD via

$$MMD(F,P,\widehat{P}) = \sup_{f \in F} \left(\frac{1}{m} \sum_{i=1}^{m} f(x_i) - \frac{1}{n} \sum_{j=1}^{n} f(y_j) \right).$$

Definition 1

Let $F(\mathcal{X})$ be a class of functions $f: \mathcal{X} \to \mathbb{R}$. The MMD is defined as

$$MMD(F, P, \widehat{P}) = \sup_{f \in F} \left(\mathbb{E}_{x \sim P}[f(x)] - \mathbb{E}_{y \sim \widehat{P}}[f(y)] \right).$$

If we choose F(X) = C(X), we get Lemma 1, i.e., $MMD(F, P, \hat{P}) = 0$ iff $P = \hat{P}$.

Definition 1

Let $F(\mathcal{X})$ be a class of functions $f: \mathcal{X} \to \mathbb{R}$. The MMD is defined as

$$MMD(F,P,\widehat{P}) = \sup_{f \in F} \left(\mathbb{E}_{x \sim P}[f(x)] - \mathbb{E}_{y \sim \widehat{P}}[f(y)] \right).$$

If we choose F(X) = C(X), we get Lemma 1, i.e., $MMD(F, P, \hat{P}) = 0$ iff $P = \hat{P}$.

However, we can get the same with a universal reproducing kernel Hilbert space (RKHS).

Universal RKHS

Definition 2 (simplified)

A Hilbert space F(X) of functions $f: X \to \mathbb{R}$ is called a RKHS, if a function $k: X \times X \to \mathbb{R}$ exists, such that

 $k(\cdot,\cdot)$ is symmetric and positive semi-definite and

$$k(x,y) = \langle k(\cdot,y), k(x,\cdot) \rangle_F$$
 for all $x,y \in \mathcal{X}$.

We call $k(\cdot,\cdot)$ a reproducing kernel function.

Universal RKHS

Definition 3

A RKHS F(X) is called universal, if $F(X) \subset C(X)$ is dense.

That means, any function $f \in C(X)$ can be approximated by functions in F(X).

E.g. Gaussian kernel functions are universal:

$$k(x,y) = \frac{1}{c} \sum_{i=1}^{c} \exp\left(-\frac{|x-y|^2}{2\sigma_i}\right)$$

Theorem 1

Let F(X) be the unit ball of a universal RKHS. Then

$$MMD(F, P, \widehat{P}) = 0$$
 iff $P = \widehat{P}$.

Theorem 2

Let X, X' be random variables with distribution P and Y, Y' be random variables with distribution \widehat{P} , respectively. Then

$$MMD^{2}(F,P,\widehat{P}) = \underset{x \sim P, x' \sim P}{\mathbb{E}}[k(x,x')] - 2 \underset{x \sim P, y' \sim \widehat{P}}{\mathbb{E}}[k(x,y')] + \underset{y \sim \widehat{P}, y' \sim \widehat{P}}{\mathbb{E}}[k(y,y')]$$

Theorem 2

Let X, X' be random variables with distribution P and Y, Y' be random variables with distribution \hat{P} , respectively. Then

$$MMD^{2}(F,P,\widehat{P}) = \underset{x \sim P, x' \sim P}{\mathbb{E}}[k(x,x')] - 2 \underset{x \sim P, y' \sim \widehat{P}}{\mathbb{E}}[k(x,y')] + \underset{y \sim \widehat{P}, y' \sim \widehat{P}}{\mathbb{E}}[k(y,y')]$$

I.e., we can calculate the MMD based on expectation values.

Theorem 2

Let X, X' be random variables with distribution P and Y, Y' be random variables with distribution \hat{P} , respectively. Then

$$MMD^{2}(F,P,\widehat{P}) = \underset{x \sim P, x' \sim P}{\mathbb{E}}[k(x,x')] - 2 \underset{x \sim P, y' \sim \widehat{P}}{\mathbb{E}}[k(x,y')] + \underset{y \sim \widehat{P}, y' \sim \widehat{P}}{\mathbb{E}}[k(y,y')]$$

I.e., we can calculate the MMD based on expectation values.

We can estimate the expectation values based only on samples.

Maximum Mean Discrepancy

Theorem 2

Let X, X' be random variables with distribution P and Y, Y' be random variables with distribution \hat{P} , respectively. Then

$$MMD^{2}(F,P,\widehat{P}) = \underset{x \sim P, x' \sim P}{\mathbb{E}}[k(x,x')] - 2 \underset{x \sim P, y' \sim \widehat{P}}{\mathbb{E}}[k(x,y')] + \underset{y \sim \widehat{P}, y' \sim \widehat{P}}{\mathbb{E}}[k(y,y')]$$

I.e., we can calculate the MMD based on expectation values.

We can estimate the expectation values based only on samples.

→ We can estimate the "distance" between probability distributions based only on samples.

Maximum Mean Discrepancy

Theorem 2

Let X, X' be random variables with distribution P and Y, Y' be random variables with distribution \hat{P} , respectively. Then

$$MMD^{2}(F,P,\widehat{P}) = \underset{x \sim P, x' \sim P}{\mathbb{E}}[k(x,x')] - 2 \underset{x \sim P, y' \sim \widehat{P}}{\mathbb{E}}[k(x,y')] + \underset{y \sim \widehat{P}, y' \sim \widehat{P}}{\mathbb{E}}[k(y,y')]$$

In our work, we use Gaussian kernel functions

$$k(x,y) = \frac{1}{c} \sum_{i=1}^{c} \exp\left(-\frac{|x-y|^2}{2\sigma_i}\right)$$

with $\sigma = \{0.1, 0.5, 1.0, 5.0\}.$

Maximum Mean Discrepancy: (MMD)

$$MMD[P, \hat{P}] = 0 \iff P = \hat{P}$$

$$MMD[P, \hat{P}] = 0 \iff P = \hat{P}$$

$$C(\boldsymbol{\theta}) = \sum_{\bar{x}} w_{\bar{x}} \cdot \text{MMD}^{2}[P, \hat{P}_{\boldsymbol{\theta}} | \bar{x}]$$

$$C(\boldsymbol{\theta}) = \sum_{\dot{x}} w_{\dot{x}} \cdot \text{MMD}^{2}[P, \hat{P}_{\boldsymbol{\theta}} | \dot{x}]$$

$$C(\boldsymbol{\theta}) = \sum_{\bar{x}} w_{\bar{x}} \cdot \text{MMD}^{2}[P, \hat{P}_{\boldsymbol{\theta}} | \bar{x}] + R_{\bar{x}}(\boldsymbol{\theta})$$

Regularization = penalizes models with a large set of memory states

Quantum Learning Algorithm

- Use gradient-based optimizer → ADAM (state-of-the-art ML)
- Make use of the parameter-shift rule (state-of-the-art QML)

- Use gradient-based optimizer → ADAM (state-of-the-art ML)
- Make use of the parameter-shift rule (state-of-the-art QML)

$$f(\theta) = \langle \psi(\theta) | M | \psi(\theta) \rangle$$

- Use gradient-based optimizer → ADAM (state-of-the-art ML)
- Make use of the parameter-shift rule (state-of-the-art QML)

- Use gradient-based optimizer → ADAM (state-of-the-art ML)
- Make use of the parameter-shift rule (state-of-the-art QML)

$$f(\theta) = \langle \psi(\theta) | M | \psi(\theta) \rangle$$

$$-R(\alpha_1(\theta)) - R$$

$$-R(\alpha_2(\theta)) - \Rightarrow \qquad \nabla f(\theta) = ?$$

- Use gradient-based optimizer → ADAM (state-of-the-art ML)
- Make use of the parameter-shift rule (state-of-the-art QML)

$$f(\theta) = \langle \psi(\theta) | M | \psi(\theta) \rangle$$

- Use gradient-based optimizer → ADAM (state-of-the-art ML)
- Make use of the parameter-shift rule (state-of-the-art QML)

$$f(\theta) = \langle \psi(\theta) | M | \psi(\theta) \rangle$$

- Use gradient-based optimizer → ADAM (state-of-the-art ML)
- Make use of the parameter-shift rule (state-of-the-art QML)

Quantum Learning Algorithm

- Make sure the ansatz contains an optimal solution
- → Reverse-Engineering: start from a known solution

- Make sure the ansatz contains an optimal solution
- → Reverse-Engineering: start from a known solution

- Make sure the ansatz contains an optimal solution
- → Reverse-Engineering: start from a known solution

- Make sure the ansatz contains an optimal solution
- → Reverse-Engineering: start from a known solution

Encoding

Quantum Memory States:

$$|\sigma_0\rangle = \sqrt{\frac{1}{2}}|0\rangle + \sqrt{\frac{1}{2}}|1\rangle$$

 $|\sigma_1\rangle = |1\rangle$

$$|0\rangle - \mathbf{X} - |\sigma_1\rangle$$

$$|0\rangle - |H| - |\sigma_0\rangle$$

Encoding

Quantum Memory States:

$$|\sigma_0\rangle = \sqrt{\frac{1}{2}}|0\rangle + \sqrt{\frac{1}{2}}|1\rangle$$

 $|\sigma_1\rangle = |1\rangle$

$$|0\rangle - X - |\sigma_1\rangle$$

$$|0\rangle - H - |\sigma_0\rangle$$

but this is static, we want to be able to "learn" it

Encoding

Quantum Memory States:

$$|\sigma_0\rangle = \sqrt{\frac{1}{2}}|0\rangle + \sqrt{\frac{1}{2}}|1\rangle$$

 $|\sigma_1\rangle = |1\rangle$

$$|0\rangle - X - |\sigma_1\rangle$$

$$|0\rangle - H - |\sigma_0\rangle$$

but this is static, we want to be able to "learn" it

$$|0\rangle - H - |\sigma_{0}\rangle$$

$$|0\rangle - RY(1 \cdot \frac{\pi}{2}) - |\sigma_{0}\rangle$$

$$|0\rangle - RY(\bar{x} \cdot \frac{\pi}{2}) - X - |\sigma_{x}\rangle$$

$$|0\rangle - RY(\bar{x} \cdot \frac{\pi}{2}) - RX(\pi) - |\sigma_{x}\rangle$$

$$|0\rangle - E(\bar{x}) - |\sigma_{x}\rangle$$

Simulator

Simulator:

$$T|\sigma_0\rangle|0\rangle = \sqrt{\frac{1}{2}}|\sigma_0\rangle|0\rangle + \sqrt{\frac{1}{2}}|\sigma_1\rangle|1\rangle$$
$$T|\sigma_1\rangle|0\rangle = |\sigma_0\rangle|1\rangle$$

Simulator

Simulator:

$$T|\sigma_0\rangle|0\rangle = \sqrt{\frac{1}{2}}|\sigma_0\rangle|0\rangle + \sqrt{\frac{1}{2}}|\sigma_1\rangle|1\rangle$$
$$T|\sigma_1\rangle|0\rangle = |\sigma_0\rangle|1\rangle$$

again, we want to be able to "learn" it

Simulator

Simulator:

$$T|\sigma_0\rangle|0\rangle = \sqrt{\frac{1}{2}}|\sigma_0\rangle|0\rangle + \sqrt{\frac{1}{2}}|\sigma_1\rangle|1\rangle$$
$$T|\sigma_1\rangle|0\rangle = |\sigma_0\rangle|1\rangle$$

again, we want to be able to "learn" it

Results

Results

Without Regularization

 $E(\dot{x}, \boldsymbol{\theta})$

memory states for $x_i = 1$

memory states for $x_i = 0$

With Regularization

 $U(\boldsymbol{\theta})$

Conclusion

- Developed a hybrid quantum learning algorithm for simulation models
- Learning algorithm is memory efficient
- Extended MMD for simulation models → Decrease KL and TV
- Regularization → small set of memory states
- Learned models show constantly good simulation performance

Outlook

Apply the algorithm to more complex processes

Outlook

- Apply the algorithm to more complex processes
- → Data encoding is crucial, e.g.,

must be able to distinguish all possible inputs

Outlook

- Apply the algorithm to more complex processes
- → Data encoding is crucial, e.g.,

$$\begin{array}{c} D(\ddot{x},\pmb{\theta}) \\ |0\rangle & - \frac{RX(\ddot{x}\;\theta_1)}{RX(\theta_2)} \end{array}$$
 must be able to distinguish all possible inputs

→ Consider general time-series data, i.e., without any/much assumptions

Let's discuss