# Causality and directed acyclic graphs

# Get to know and have some intuition about

- Causality in philosophy (of science)
- Conditional independence relations
- Causal discovery algorithms
- Confounds and back doors



David Hume (1711-1776)

How can you be sure to infer a causal effect from C to E when it is possible that there is another variable that causes the relation between C and E?



How can you be sure to infer a causal effect from C to E when it is possible that there is another variable that causes the relation between C and E?



How can you be sure to infer a causal effect from C to E when it is possible that there is another variable that causes the relation between C and E?



In experimental studies (randomization) there are no confounds because all influence of other variables is non-systematic.

#### Confounds and interventions

#### No-confounding, causal definition

Denote by  $P(y \mid do(x))$  the probability of Y = y under the hypothetical intervention X = x. Then X and Y are not confounded if and only if

$$P(y \mid do(x)) = P(y \mid x)$$

for all x and y, and  $P(y \mid x)$  is the conditional probability.



| Combined                         | $\boldsymbol{E}$ | $\neg E$ |          | Recovery rate |                                  |
|----------------------------------|------------------|----------|----------|---------------|----------------------------------|
| Drug $(C)$<br>No drug $(\neg C)$ | 20<br>16         | 20<br>24 | 40<br>40 | 50%<br>40%    | $P(E \mid C) > P(E \mid \neg C)$ |
|                                  | 36               | 44       | 80       |               |                                  |
| Males                            | E                | $\neg E$ |          | Recovery rate |                                  |
| Drug $(C)$<br>No drug $(\neg C)$ | 18<br>7          | 12<br>3  | 30<br>10 | 60%<br>70%    | $P(E \mid C) < P(E \mid \neg C)$ |
|                                  | 25               | 15       | 40       |               |                                  |
| Females                          | E                | $\neg E$ |          | Recovery rate |                                  |
| Drug $(C)$<br>No drug $(\neg C)$ | 2<br>9           | 8<br>21  | 10<br>30 | 20%<br>30%    | $P(E \mid C) < P(E \mid \neg C)$ |
|                                  | 11               | 29       | 40       |               |                                  |

Simpson's Paradox is when you find in this example:

.

Simpson's Paradox is when you find in this example:

1. Drug works for the whole population:  $P(E \mid C) > P(E \mid \neg C)$ 

Simpson's Paradox is when you find in this example:

- 1. Drug works for the whole population:  $P(E \mid C) > P(E \mid \neg C)$
- 2. Drug does not work for females:  $P(E \mid C, F) < P(E \mid \neg C, F)$

Simpson's Paradox is when you find in this example:

- 1. Drug works for the whole population:  $P(E \mid C) > P(E \mid \neg C)$
- 2. Drug does not work for females:  $P(E \mid C, F) < P(E \mid \neg C, F)$
- 3. Drug does not work for males:  $P(E \mid C, \neg F) < P(E \mid \neg C, \neg F)$

Simpson's Paradox is when you find in this example:

- 1. Drug works for the whole population:  $P(E \mid C) > P(E \mid \neg C)$
- 2. Drug does not work for females:  $P(E \mid C, F) < P(E \mid \neg C, F)$
- 3. Drug does not work for males:  $P(E \mid C, \neg F) < P(E \mid \neg C, \neg F)$

It is unclear which table to use: the combined table or the two separate tables





1. Infer the effect of *C* (drug) on *E* (recovery)



- 1. Infer the effect of *C* (drug) on *E* (recovery)
- 2. *F* (gender) influences both (is a common cause of) *C* and *E*



- 1. Infer the effect of *C* (drug) on *E* (recovery)
- 2. *F* (gender) influences both (is a common cause of) *C* and *E*

F (gender) is a confound!

#### Causal relation and laws

#### John Stuart Mill's conditions

- A always co-occurs with B
- A occurs before B
- There is no alternative explanation for the co-occurrence of A and B

But this was unsatisfactory because A does not always occur with B; no universality.



John Stuart Mill (1806-1973)



David Hume (1711-1776)









• What if we only used *C* to determine *E*?



- What if we only used *C* to determine *E*?
- What if we used *C* and *F* to determine *E*?



- What if we only used C to determine E?
- What if we used C and F to determine E?
- Would the residuals of E (after regressions)
  be the same in both cases?



- What if we only used *C* to determine *E*?
- What if we used C and F to determine E?
- Would the residuals of E (after regressions)
  be the same in both cases?
- No! So we can check whether for some set of nodes the residuals are the same for different subsets and manipulations



Kossakowski, Maas, Waldorp (2020, in revision)



Kossakowski, Maas, Waldorp (2020, in revision)

ç







Whether we control C using M or not, if we have both F and C and the residuals remain the same, then we have the correct set of direct causes.