

1. Introdução aos Números Fuzzy Aspectos conceituais

- Os números fuzzy são constituídos por conjuntos fuzzy, definidos em universos de discurso discretos ou contínuos, que permitem a quantificação da incerteza e da imprecisão associada a uma dada informação.
- Por meio dos números fuzzy, algumas das declarações que podem ser mapeadas são as seguintes:
 - > Em torno de 8.
 - > Perto de 50.
 - > Aproximadamente 7.
 - > Frequentemente 4.
- A partir do conceito de números fuzzy, diversas outras aplicações podem ser definidas, tais como funções fuzzy, programação linear fuzzy, geometrica analítica fuzzy, sistemas de equações fuzzy, etc.

2. Definição de Números Fuzzy

Propriedades requeridas

- Um número fuzzy pode ser definido por um conjunto fuzzy A, representado por uma função de pertinência, tendo-se as seguintes propriedades:
 - ➤ Convexidade
 - ❖ O conjunto fuzzy A deve ser convexo. $\mu_A(\lambda \cdot x_1 + (1-\lambda) \cdot x_2) \ge \min\{\mu_A(x_1); \mu_A(x_2)\}$
 - ➤ Normalidade
 - ♦ O conjunto fuzzy *A* deve ser normal. $\mu_A(x) = 1$, para algum x ∈ X
 - > Suporte
 - O suporte do conjunto fuzzy A deve ser limitado.

 $Supp(A) = \left\{ x \in X \mid \mu_A(x) > 0 \right\}$

3

3. Descrição de Números Fuzzy

Teorema da representação

 A descrição de números fuzzy pode ser efetuada por meio da aplicação do teorema da representação, em que diz que qualquer conjunto fuzzy A pode ser especificado por intermédio de seus α-cortes, ou seja:

$$A = \bigcup_{0 \le \alpha \le 1} \alpha \cdot A_{\alpha}$$

> Onde A_{α} é o intervalo do universo de discurso onde μ_{A} (x) ≥ α.

3. Descrição de Números Fuzzy Conceito de α-corte

 Um corte α em um conjunto fuzzy A é especificado por um conjunto que contem todos os elementos de A, pertencentes ao universo de discurso X, que possuem grau de pertinência maior ou igual a α, ou seja:

$$A_{\alpha} = \{ x \in X \mid \mu_A(x) \ge \alpha \}$$

Exemplo 1. Seja o conjunto fuzzy discreto *A* dado por:

$$A = 0.3 / 1 + 0.7 / 2 + 1.0 / 3 + 0.9 / 4 + 0.6 / 5 + 0.2 / 6$$
, com $X = \{1, 2, 3, 4, 5, 6\}$
 $A_{0.4} = ?$

Exemplo 2. Seja o conjunto fuzzy contínuo *A* dado por:

3. Descrição de Números Fuzzy Representação de \alpha-corte

 Para um número fuzzy A, caracterizado pelas propriedades anteriores, um α-corte em A pode ser representado por um par de valores definidos pela seguinte expressão:

$$A_{\alpha} = [a_1^{(\alpha)}; a_2^{(\alpha)}]$$

 A figura seguinte ilustra o conceito relacionado à representação por α-cortes:

3. Descrição de Números Fuzzy

Análise comparativa

 Ilustração comparativa mostrando as diferenças entre número real (e intervalo real) e número fuzzy (e intervalo fuzzy).

4. Operações com Números Fuzzy Operação de ADIÇÃO

Sejam dois números fuzzy A e B, definidos num universo de discurso X, representados respectivamente pelas funções de pertinência μ_A(x) e μ_B(x). A operação de ADIÇÃO entre A e B pode ser definida em função de seus respectivos α-cortes, ou seja:

$$A + B = [a_1^{(\alpha)}; a_2^{(\alpha)}] + [b_1^{(\alpha)}; b_2^{(\alpha)}]$$

 Assim, o resultado desta operação de ADIÇÃO é então dada por:

$$\textit{A} + \textit{B} = [\textit{a}_{1}^{(\alpha)} + \textit{b}_{1}^{(\alpha)} \text{ ; } \textit{a}_{2}^{(\alpha)} + \textit{b}_{2}^{(\alpha)}], \text{ para } \alpha \in [0;1].$$

 Sejam os números fuzzy 2 e 6, definidos em um mesmo universo de discurso X, representados pelas funções de pertinência μ_A(x) e μ_B(x), conforme ilustra a figura abaixo. Obtenha o conjunto C correspondente à SOMA de ambos.

	α	$a_1^{(\alpha)}$	$a_2^{(\alpha)}$	$b_1^{(\alpha)}$	$b_2^{(\alpha)}$	$C_1^{(\alpha)}$	$C_2^{(\alpha)}$
н	0.0	1.0	3.0	4.0	8.0	5.0	11.0
н	0.1	1.1	2.9	4.2	7.8	5.3	10.7
	0.2	1.2	2.8	4.4	7.6	5.6	10.4
н	0.3	1.3	2.7	4.6	7.4	5.9	10.1
	0.4	1.4	2.6	4.8	7.2	6.2	9.8
	0.5	1.5	2.5	5.0	7.0	6.5	9.5
	0.6	1.6	2.4	5.2	6.8	6.8	9.2
	0.7	1.7	2.3	5.4	6.6	7.1	8.9
н	0.8	1.8	2.2	5.6	6.4	7.4	8.6
н	0.9	1.9	2.1	5.8	6.2	7.7	8.3
	1.0	2.0	2.0	6.0	6.0	8.0	8.0

4. Operações com Números Fuzzy Operação de SUBTRAÇÃO

Sejam dois números fuzzy A e B, definidos num universo de discurso X, representados respectivamente pelas funções de pertinência μ_A(x) e μ_B(x). A operação de SUBTRAÇÃO entre A e B pode ser definida em função de seus respectivos α-cortes, ou seja:

$$A-B=[a_1^{(\alpha)}; a_2^{(\alpha)}]-[b_1^{(\alpha)}; b_2^{(\alpha)}]$$

$$B-A=[b_1^{(\alpha)};\ b_2^{(\alpha)}]-[a_1^{(\alpha)};\ a_2^{(\alpha)}]$$

 Assim, o resultado desta operação de SUBTRAÇÃO é então dada por:

$$A - B = [a_1^{(\alpha)} - b_2^{(\alpha)}; \ a_2^{(\alpha)} - b_1^{(\alpha)}], \ para \ \alpha \in [0;1]$$

$$\textit{B}-\textit{A}=[\textit{b}_{1}^{(\alpha)}-\textit{a}_{2}^{(\alpha)};~\textit{b}_{2}^{(\alpha)}-\textit{a}_{1}^{(\alpha)}],~\textrm{para}~\alpha\in[0;1]$$

 Sejam os números fuzzy 2 e 6, definidos no mesmo universo de discurso X, representados pelas funções de pertinência μ_A(x) e μ_B(x), conforme ilustra a figura abaixo. Obtenha o conjunto C correspondente à SUBTRAÇÃO de B menos A.

α	$a_1^{(\alpha)}$	$a_2^{(\alpha)}$	$b_1^{(\alpha)}$	$b_2^{(\alpha)}$	$C_1^{(\alpha)}$	$C_2^{(\alpha)}$
0.0	1.0	3.0	4.0	8.0	1.0	7.0
0.1	1.1	2.9	4.2	7.8	1.3	6.7
0.2	1.2	2.8	4.4	7.6	1.6	6.4
0.3	1.3	2.7	4.6	7.4	1.9	6.1
0.4	1.4	2.6	4.8	7.2	2.2	5.8
0.5	1.5	2.5	5.0	7.0	2.5	5.5
0.6	1.6	2.4	5.2	6.8	2.8	5.2
0.7	1.7	2.3	5.4	6.6	3.1	4.9
0.8	1.8	2.2	5.6	6.4	3.4	4.6
0.9	1.9	2.1	5.8	6.2	3.7	4.3
1.0	2.0	2.0	6.0	6.0	4.0	4.0

4. Operações com Números Fuzzy Operação de MULTIPLICAÇÃO

Sejam dois números fuzzy A e B, definidos num universo de discurso X, representados respectivamente pelas funções de pertinência μ_A(x) e μ_B(x). A operação de MULTIPLICAÇÃO entre A e B pode ser definida em função de seus respectivos α-cortes, ou seja:

$$A \times B = [a_1^{(\alpha)}; a_2^{(\alpha)}] \times [b_1^{(\alpha)}; b_2^{(\alpha)}]$$

 Assim, o resultado desta operação de MULTIPLICAÇÃO é então dada por:

$$\textbf{A} \times \textbf{B} = [\textbf{a}_1^{(\alpha)} \times \textbf{b}_1^{(\alpha)}; \ \textbf{a}_2^{(\alpha)} \times \textbf{b}_2^{(\alpha)}], \ \text{para} \ \alpha \in \textbf{[0;1]}$$

 Sejam os números fuzzy 2 e 6, definidos em um mesmo universo de discurso X, representados pelas funções de pertinência μ_A(x) e μ_B(x), conforme ilustra a figura abaixo. Obtenha o conjunto C correspondente à **MULTIPLICAÇÃO** de A por B.

α	$a_1^{(\alpha)}$	$a_2^{(\alpha)}$	$b_1^{(\alpha)}$	$b_2^{(\alpha)}$	$C_1^{(\alpha)}$	$C_2^{(\alpha)}$
0.0	1.0	3.0	4.0	8.0	4.00	24.00
0.1	1.1	2.9	4.2	7.8	4.62	22.62
0.2	1.2	2.8	4.4	7.6	5.28	21.28
0.3	1.3	2.7	4.6	7.4	5.98	19.98
0.4	1.4	2.6	4.8	7.2	6.72	18.72
0.5	1.5	2.5	5.0	7.0	7.50	17.50
0.6	1.6	2.4	5.2	6.8	8.32	16.32
0.7	1.7	2.3	5.4	6.6	9.18	15.18
0.8	1.8	2.2	5.6	6.4	10.08	14.08
0.9	1.9	2.1	5.8	6.2	11.02	13.02
1.0	2.0	2.0	6.0	6.0	12.00	12.00

4. Operações com Números Fuzzy Operação de DIVISÃO

Sejam dois números fuzzy A e B, definidos num universo de discurso X, representados respectivamente pelas funções de pertinência μ_A(x) e μ_B(x). A operação de **DIVISÃO** entre A e B pode ser definida em função de seus respectivos α-cortes, ou seja:

$$A \div B = [a_1^{(\alpha)}; a_2^{(\alpha)}] \div [b_1^{(\alpha)}; b_2^{(\alpha)}]$$

 Assim, o resultado desta operação de DIVISÃO é então dada por:

$$A \div B = [\frac{a_1^{(\alpha)}}{b_2^{(\alpha)}}; \frac{a_2^{(\alpha)}}{b_1^{(\alpha)}}], \text{ para } \alpha \in [0;1]$$

 Sejam os números fuzzy 2 e 6, definidos em um mesmo universo de discurso X, representados pelas funções de pertinência μ_A(x) e μ_B(x), conforme ilustra a figura abaixo.
 Obtenha o conjunto C correspondente à **DIVISÃO** de A por B.

α	$a_1^{(\alpha)}$	$a_2^{(\alpha)}$	$b_1^{(\alpha)}$	$b_2^{(\alpha)}$	$C_1^{(\alpha)}$	$C_2^{(\alpha)}$
0.0	1.0	3.0	4.0	8.0	0.125	0.750
0.1	1.1	2.9	4.2	7.8	0.141	0.690
0.2	1.2	2.8	4.4	7.6	0.158	0.636
0.3	1.3	2.7	4.6	7.4	0.176	0.587
0.4	1.4	2.6	4.8	7.2	0.194	0.542
0.5	1.5	2.5	5.0	7.0	0.214	0.500
0.6	1.6	2.4	5.2	6.8	0.235	0.461
0.7	1.7	2.3	5.4	6.6	0.258	0.426
0.8	1.8	2.2	5.6	6.4	0.281	0.393
0.9	1.9	2.1	5.8	6.2	0.306	0.362
1.0	2.0	2.0	6.0	6.0	0.333	0.333

4. Operações com Números Fuzzy Operação de MINIMO

Sejam dois números fuzzy A e B, definidos num universo de discurso X, representados respectivamente pelas funções de pertinência μ_A(x) e μ_B(x). A operação de **MÍNIMO** entre A e B pode ser definida em função de seus respectivos α-cortes, ou seja:

$$Min(A,B) = Min\{[a_1^{(\alpha)}; a_2^{(\alpha)}], [b_1^{(\alpha)}; b_2^{(\alpha)}]\}$$

 Assim, o resultado desta operação de MÍNIMO é então dada por:

$$Min(A,B) = [Min\{a_1^{(\alpha)}, b_1^{(\alpha)}\}; Min\{a_2^{(\alpha)}; b_2^{(\alpha)}\}]$$

16

 Sejam os números fuzzy 2 e 6, definidos em um mesmo universo de discurso X, representados pelas funções de pertinência μ_A(x) e μ_B(x), conforme ilustra a figura abaixo. Obtenha o conjunto C correspondente ao MÍNIMO de ambos.

α	a ₁ ^(α)	$a_2^{(\alpha)}$	$b_1^{(\alpha)}$	$b_2^{(\alpha)}$	C ₁ ^(α)	$C_2^{(\alpha)}$
0.0	1.0	3.0	4.0	8.0	1.0	3.0
0.1	1.1	2.9	4.2	7.8	1.1	2.9
0.2	1.2	2.8	4.4	7.6	1.2	2.8
0.3	1.3	2.7	4.6	7.4	1.3	2.7
0.4	1.4	2.6	4.8	7.2	1.4	2.6
0.5	1.5	2.5	5.0	7.0	1.5	2.5
0.6	1.6	2.4	5.2	6.8	1.6	2.4
0.7	1.7	2.3	5.4	6.6	1.7	2.3
0.8	1.8	2.2	5.6	6.4	1.8	2.2
0.9	1.9	2.1	5.8	6.2	1.9	2.1
1.0	2.0	2.0	6.0	6.0	2.0	2.0

4. Operações com Números Fuzzy Operação de MÁXIMO

Sejam dois números fuzzy A e B, definidos num universo de discurso X, representados respectivamente pelas funções de pertinência μ_A(x) e μ_B(x). A operação de MÁXIMO entre A e B pode ser definida em função de seus respectivos α-cortes, ou seja:

$$Max(A,B) = Max\{[a_1^{(\alpha)}; a_2^{(\alpha)}], [b_1^{(\alpha)}; b_2^{(\alpha)}]\}$$

 Assim, o resultado desta operação de MÁXIMO é então dada por:

$$Max(A,B) = [Max\{a_1^{(\alpha)}, b_1^{(\alpha)}\}; Max\{a_2^{(\alpha)}; b_2^{(\alpha)}\}]$$

18

