Document Title

WANG Xiyu

August 27, 2024

Contents

1	Intr	roduction	1
2	ϵ -C]	losure	1
	2.1	Subsection Title	2
		2.1.1 Subsubsection Title	5

1 Introduction

2 ϵ -Closure

 ϵ -Closure of a state refers to the set of states where through n ϵ transitions (consuming n ϵ starting from the state by the NFA), that could be reached.

Consider the below NFA, of which the transition function is listed as:

 2ϵ -CLOSURE 2

$$\delta(q_1, b) = \{q_2\}$$

$$\delta(q_2, a) = \{q_0, q_2\}$$

$$\delta(q_2, b) = \{q_1\}$$

Thus the ϵ -Closure of each state is:

$$EClose(q_0) = \{q_0, q_2\}$$

$$EClose(q_1) = \{q_1\}$$

$$EClose(q_2) = \{q_2\}$$

2.1 Subsection Title

2.1.1 Subsubsection Title

// Add your code example here

Column 1	Column 2	Column 3
Data 1	Data 2	Data 3

Table 1: Table caption

Figure 1: This is a sample caption.