Foundations of Computing Lecture 1

Arkady Yerukhimovich

January 17, 2023

Modeling Computation

Outline

Strings, Languages, and Automata

2 Deterministic Finite Automata (DFA)

Strings

- Alphabet Σ : Set of symbols
 - Ex: $\Sigma = \{a, b\}, \Sigma = \{0, 1\}$
- ullet String: finite sequence of symbols from Σ
 - ex: v = aba, w = abaaa
 - ex: v = 001, w = 11001
 - λ empty string
 - Length of a string: |v| = 3 and $|\lambda| = 0$
- Operations on Strings
 - Concatenation: vw = abaabaaa
 - Reverse: $w^R = aaaba$
 - Repeat: $v^2 = abaaba$ and $v^0 = \lambda$

Languages

- Language L: Set of strings
 - Usually meant to capture strings that satisfy some property
- More formally:
 - $\Sigma^* = \mathsf{set}$ of all strings formed by concatenating zero or more symbols from Σ
 - \bullet Ex: If $\Sigma = \{0,1\}$ then $\Sigma * = \{$ all binary strings, including empty string}
- Examples: $L_1 = \{ab, aa\}$ and $L_2 = \{a^nb^n : n \ge 0\}$

We will define computation as deciding membership in a language.

A Simple Example: A Light Switch

Viewing this as a language

```
L_{light} = \{ \text{ set of all flip sequences resulting in the light being on} \}

L_{light} = \{ 1 \text{ flip, } 3 \text{ flips, } 5 \text{ flips, } ... \}
```

Automata

- An automaton is an abstract model of a computing device
- An automaton consists of:
 - An input mechanism
 - A control unit
 - Possibly, a storage mechanism
 - · Possibly, an output mechanism
- Control unit can be in any number of internal states, as determined by a next-state or transition function
- There are a finite number of states

Automata we will study

- Finite Automata (Deterministic and Non-deterministic)
 - These model Finite State Machines with no memory
- Pushdown automata
 - Add the simplest form of memory to a Finite state machine
- Turing Machines
 - These model today's computers in terms of computational ability
 - This will be the main model of computation used in computability and complexity theory

Outline

Strings, Languages, and Automata

2 Deterministic Finite Automata (DFA)

Modeling Computation

Finite Automata by Picture

Computation on string x = 1101

- Start in state *q*1
- 2 read 1, follow transition to q2
- \odot read 1, follow transition to q2
- read 0, follow transition to q3
- \odot read 1, follow transition to q2
- "accept" (output 1) because q2 is an accept state

Finite Automaton – Formal Definition

Finite Automaton

A finite automaton is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where:

- Q is a finite set of states
- \bullet Σ is a finite input alphabet
- $\delta: Q \times \Sigma \to Q$ is the transition function
- $q_0 \in Q$ is the start state
- $F \subseteq Q$ is the set of accept states

Example Automaton

Defining this formally: $M = (Q, \Sigma, \delta, q1, F)$

- $Q = \{q1, q2, q3\}$
- $\Sigma = \{0, 1\}$

- q1 is the start state
- $F = \{q2\}$

Language accepted by M

Accepting a string

- M accepts a string x (over Σ) if M(x) stops in an accept state
- We already saw that this M accepts 1101
- What other strings does *M* accept?

Accepting a language

- M accepts a language L if it accepts ALL strings in L and NO strings not in L
- Every M accepts exactly one language L(M)

What language does M accept?

L(M):

- String must contain at least one 1
- After the last 1, there must be an even number of 0's

Why study this?

- Finite Automata are one of the most basic models of computation
- Turns out they capture some very useful functionalities
 - We will see next week, that finite automata correspond to regular expressions

Next...

- Labs this week:
 - Review of proof techniques
 - Review languages/strings/graphs
 - In-class exercises
- Thursday lecture:
 - More about finite automata and their properties
- Your to do list:
 - Sign up for Piazza
 - (optional) Download and install JFLAP (check tutorial on course webpage)