

Lógica de predicados

Matemática General

Coordinador: Prof. Simontacchi Lautaro
Prof. Ing. Silvina Moreira

Automatización y Control

Matemática = Lenguaje de símbolos

Veamos algunos símbolos que nos van a ser útiles:

Variables:

xyz(wuvt)

Números:

abcd

Símbolos matemáticos:

• Símbolos Lógicos:

$$\boxed{\bigvee \land \Rightarrow \Leftrightarrow \forall \exists}$$

$$\frac{PEC+A}{(1)} = ax + b$$

$$\frac{Y}{2} = 3x + 5$$

Lógica de predicados

Se utiliza en la ciencia (y en general) para los razonamientos y teorías

Comencemos con este nuevo idioma!!!

Proposición: podemos decir si son V o F

Clasificación: Simples y Compuestas

Nombre	Símbolo	Notación	Lectura	
Conjunción	△	p^q	₽ y A	
Disyunción	<u>y</u>	p∨q	рóq	
Disyunción exclusiva	V	p⊻q	ó p ó)q (no ambas)	
Implicación	\rightarrow	$p \rightarrow q$	p implica q	
Bicondicional	\rightarrow	$p \leftrightarrow q$	p si y solo si q	
Negación		¬p	no p	
- regarder		P	me p	

Conectivos

Lógicos

Las proposiciones compuestas pueden tener mas de dos proposiciones simples unidas por los conectivos lógicos, veamos como se simbolizan

Guía para la símbolización:

- I dentifico los conectivos las proposiciones simples
 - >símbolízo la oración!

En este caso la coma reemplaza al "entonces"

Condicional

Si la información no es completa para compradores y vendedores, hay una falla de mercado

Conjunción

p: la información no es completa para compradores

q: la información no es completa para vendedores

r: hay una falla en el mercado

$$(p \rightarrow q) \iff p \ y \sim q$$

"Si * es cerrada en A entonces p*q ∈ A, es mentira, solo si, * es cerrada en A y p*q ∉ A"

¿cuántas posibilidades voy a tener?

Built de l'10p	cant ac pos	
1 proposición	2 posibilidades	
2 proposiciones	4 posibilidades	
3 proposiciones	8 posibilidades	
4 proposiciones	16 posibilidades	
N proposiciones	¿؟	

Veamos el siguiente ejemplo:

Función proposicional

¿Cómo se simboliza?

Universo = conjunto donde "vive" la variable (en el ejemplo U = { los pares} o U = { -6; -8; 6; 50}

Defino la función proposicional: P(x) = x = x = 0

Veamos ahora estas frases:

$$P(x) = x \in \mathbb{N}$$

simboliza?

Cuantificador Universal (Para

Todos): $\forall x P(x)$

Cuantificador Existencial

(Existe): $\exists \chi Q(x)$

¿Cuándo son verdaderas o falsas? - (+x 1(x))=]x P(x)

$$-/\forall x P(y) = \exists x P(x)$$

Eso es todo amigos!!!!!

Muchas gracias!!!!