```
In [18]: import numpy as np
import pandas as pd
import scipy.stats as stats
```

Hypothesis Testing Exercise

A F&B manager wants to determine whether there is any significant difference in the diameter of the cutlet between two units. A randomly selected sample of cutlets was collected from both units and measured? Analyze the data and draw inferences at 5% significance level. Please state the assumptions and tests that you carried out to check validity of the assumptions.

```
In [19]: df=pd.read_csv('Cutlets.csv')
In [20]: df
```

0 1		
()) T	1 /// 1	
Out	20	

ut[20]:		Unit A	Unit B
,	0	6.8090	6.7703
	1	6.4376	7.5093
	2	6.9157	6.7300
	3	7.3012	6.7878
	4	7.4488	7.1522
	5	7.3871	6.8110
	6	6.8755	7.2212
	7	7.0621	6.6606
	8	6.6840	7.2402
	9	6.8236	7.0503
	10	7.3930	6.8810
	11	7.5169	7.4059
	12	6.9246	6.7652
	13	6.9256	6.0380
	14	6.5797	7.1581
	15	6.8394	7.0240
	16	6.5970	6.6672
	17	7.2705	7.4314
	18	7.2828	7.3070
	19	7.3495	6.7478
	20	6.9438	6.8889
	21	7.1560	7.4220
	22	6.5341	6.5217
	23	7.2854	7.1688
	24	6.9952	6.7594
	25	6.8568	6.9399
	26	7.2163	7.0133
	27	6.6801	6.9182
	28	6.9431	6.3346
	29	7.0852	7.5459
	30	6.7794	7.0992
	31	7.2783	7.1180
	32	7.1561	6.6965

Unit A Unit B33 7.3943 6.578034 6.9405 7.3875

H0 == Mean for Y1 and Y2 are equal (There is no significance difference between diameter of the Culets)

H1 == Mean for Y1 and Y2 are not equal (There is a significance difference between diameter of the Culets)

<pre>unit_A=df['Unit A']</pre>
<pre>unit_B=df['Unit B']</pre>
<pre>stats.ttest_rel(unit_A,unit_B)</pre>
TtestResult(statistic=0.7536787225614316, pvalue=0.4562300768038412, df=34)
TtestResult(statistic=0.7536787225614316, pvalue=0.4562300768038412, df=34)
pvalue > α hence we accept null hypothesis
therefore there is no significance difference between diameter of the cultes

A hospital wants to determine whether there is any difference in the average Turn Around Time (TAT) of reports of the laboratories on their preferred list. They collected a random sample and recorded TAT for reports of 4 laboratories. TAT is defined as sample collected to report dispatch.

Analyze the data and determine whether there is any difference in average TAT among the different laboratories at 5% significance level.

```
In [24]: df=pd.read_csv('LabTAT.csv')
In [25]: df
```

Out[25]:		Laboratory 1	Laboratory 2	Laboratory 3	Laboratory 4
1:	0	185.35	165.53	176.70	166.13
	1	170.49	185.91	198.45	160.79
	2	192.77	194.92	201.23	185.18
	3	177.33	183.00	199.61	176.42
	4	193.41	169.57	204.63	152.60
	•••				
	115	178.49	170.66	193.80	172.68
	116	176.08	183.98	215.25	177.64
	117	202.48	174.54	203.99	170.27
	118	182.40	197.18	194.52	150.87
	119	182.09	215.17	221.49	162.21

120 rows × 4 columns

H0 == Mean for Y1,Y2,Y3 & Y4 are equal (there is no difference in average TAT among the different laboratories)

H1 == Mean for Y1,Y2,Y3 & Y4 are not equal (there is a difference in average TAT among the different laboratories)

Sales of products in four different regions is tabulated for males and females. Find if male-female buyer rations are similar across regions

```
In [27]: df=pd.read_csv('BuyerRatio.csv')

In [28]: df

Out[28]: Observed Values East West North South

0 Males 50 142 131 70

1 Females 435 1523 1356 750
```

H0 = male-female buyer rations are similar across regions

H1 = male-female buyer rations are not similar across regions

Assume $\alpha = 5\%$

TeleCall uses 4 centers around the globe to process customer order forms. They audit a certain % of the customer order forms. Any error in order form renders it defective and has to be reworked before processing. The manager wants to check whether the defective % varies by centre. Please analyze the data at 5% significance level and help the manager draw appropriate inferences

```
In [30]: df=pd.read_csv('Costomer+OrderForm.csv')
In [31]: df
```

Out[31]:		Phillippines	Indonesia	Malta	India
	0	Error Free	Error Free	Defective	Error Free
	1	Error Free	Error Free	Error Free	Defective
	2	Error Free	Defective	Defective	Error Free
	3	Error Free	Error Free	Error Free	Error Free
	4	Error Free	Error Free	Defective	Error Free
	•••				
	295	Error Free	Error Free	Error Free	Error Free
2	296	Error Free	Error Free	Error Free	Error Free
	297	Error Free	Error Free	Defective	Error Free
298	298	Error Free	Error Free	Error Free	Error Free
	299	Error Free	Defective	Defective	Error Free

300 rows × 4 columns

H0 = Defective % does not varies by centre

H1 = Defective % varies by centre

 $statistic = 3.8589606858203545,\ pvalue = 0.2771020991233144$

pvalue > α hence null hypothesis is accepted

therfore Defective % does not varies by centre

In []: