Project Euler 35. Circular Primes

hiragn

2024年12月21日

1. 問題の概要

197 は巡回素数と呼ばれる。桁を回転させたときに得られる数 197, 971, 719 がすべて素数だからである。100 未満の巡回素数は 13 個ある。

2, 3, 5, 7, 11, 13, 17, 31, 37, 71, 73, 79, 97

100万未満の巡回素数はいくつあるか?

https://projecteuler.net/problem=35

2. RotateLeft で回転

「桁の回転」は IntegerDigits で作った桁数字のリストを RotateLeft して FromDigits で数に戻せば実現できます。

もとの数から回転で移れる数のリストを作って、それらがすべて素数かどうか調べました。 対象となる素数は $PrimePi[10^6]=78,498$ 個です。

```
In[]:= Clear["Global'*"];
RepeatedTiming[
cond[n_] :=

AllTrue[FromDigits@RotateLeft[IntegerDigits@n, #] & /@
Range@IntegerLength@n, PrimeQ];
ans = Length@Parallelize@Select[Prime@Range@PrimePi[10^6], cond]]

Out[]= {0.37419, 55}
```

3. グラフのサイクルを数える

素数iから1回の回転で素数jに移れるときiからjに辺を張ってグラフを作ります。このグラフのサイクルに属する頂点の個数が答え。

回転で自分自身に移る 2, 3, 5, 7, 11 は別枠として数えると解けます。こちらの方が速いのは意外でした。

```
In[]:= Clear["Global'*"];
RepeatedTiming[
nmax = 10^6;
f[n_] := Module[{m = FromDigits@RotateLeft@IntegerDigits@n},
If[PrimeQ@m, n -> m, Nothing]];
g = Graph[f /@ Prime@Range@PrimePi@nmax];
ans = Length@Union[{2, 3, 5, 7, 11},
Flatten[VertexList /@ FindCycle[g, Infinity, All]]]]

Out[] = {0.303139, 55}
```