第4章 大域的な共形不変性

Conformal Field Theory

P. D. Francesco, P. Mathieu and D. Sènèchal

Ryoi Ohashi

Department of Applied Physics Nagoya University

Contents

- 4.1 共形群
- 4.2 古典的場の理論における共形不変性

d 次元における共形群の表現

エネルギー・運動量テンソル

4.3 量子場の理論における共形不変性

相関関数

Ward 恒等式

2次元における零トレース

大域的な共形不変性

共形群

d 次元における共形変換

共形変換

計量テンソル $g_{\mu\nu}$ について、座標の可逆変換 $x \to x'$ に対してスケール不変性を持つ変換のこと。

$$g'_{\mu\nu}(\mathbf{x}') = \Lambda(x)g_{\mu\nu}(x) \tag{4.1}$$

無限小変換 $x^{\mu} \rightarrow x'^{\mu} = x^{\mu} + \epsilon^{\mu}(x)$ を考えると、(4.1) の左辺は

$$\partial_{\mu}\epsilon_{\nu} + \partial_{\nu}\epsilon_{\mu} = f(\boldsymbol{x})g_{\mu\nu} \tag{4.3}$$

$$\Leftrightarrow f(x) = \frac{2}{d} \partial_{\rho} \epsilon^{\rho} \tag{4.4}$$

となれば、(4.1) について $\Lambda(x) = 1 - f(x)$ となり共形変換となる。

デカルト計量 $(g_{\mu\nu} = \eta_{\mu\nu} = \text{diag}(1, 1, 1, \dots, 1))$ を仮定

f(x) に要求される条件式

$$(2-d)\,\partial_{\nu}\partial_{\nu}f = \eta_{\mu\nu}\partial^{2}f \tag{4.7}$$

$$(d-1)\partial^2 f = 0 (4.8)$$

(4.7)(4.8) と次元との関係

- d=1のとき
 (4.8)が自明な式になってしまうことから、fは微分可能な関数であれば、 どのような場合でも共形変換となる。
- d = 2 のとき
 特別な代数構造が現れる → 共形場理論で一般的に扱われる次元
- $d \ge 3$ のとき (4.7)(4.8) の 2 式により厳しい制限を受ける。 \rightarrow 大域的共形変換で成立する。

d>3 次元における共形変換

式 (4.4): $f(x)=\frac{2}{d}\partial_{\rho}\epsilon^{\rho}$ を用いて、無限小変換量 ϵ を評価すると、 $(c_{\mu\nu\rho}=c_{\mu\rho\nu}$ として)

- a_{μ} : $x'_{\mu} = x_{\mu} + a_{\mu}$ なので<u>並進移動</u>を表している。
- $b_{\mu\nu}x^{\nu}$: $m_{\mu\nu} = b_{\mu\nu} (= -b_{\nu\mu})$ とおくと引き伸ばしと回転に分解される。

$$b_{\mu\nu} = \frac{$$
引き伸ばし 回転 $m_{\mu\nu}$ (4.12)

• $c_{\mu\nu\rho}x^{\nu}x^{\rho}$: 特殊共形変換 (SCT) を表す。

$$x'^{\mu} = x^{\mu} + 2(\mathbf{x} \cdot \mathbf{b})x^{\mu} - b^{\mu}x^{2}$$
 (4.14)

大域共形変換

(無限小に限らず) 有限の共形変換は次の 4 つで表される。

並進:
$$x'^{\mu} = x^{\mu} + a^{\mu}$$

引き伸ばし:
$$x'^{\mu} = \alpha x^{\mu}$$

回転:
$$x'^{\mu} = M^{\mu}_{\nu} x_{\mu}$$
 $M^{\mu}_{\nu} = -M^{\nu}_{\mu}$

SCT:
$$x'^{\mu} = \frac{x^{\mu} - b^{\mu}x^2}{1 - 2b \cdot x + b^2x^2}$$
 (4.15)

また (2.126) にしたがって、それぞれの無限小変換における生成子を計算すると、

大域共形変換の生成子

並進: $P_{\mu} = -i\partial_{\mu}$

引き伸ばし: $D = -ix^{\mu}\partial_{\mu}$

回転: $L_{\mu\nu} = i(x_{\mu}\partial_{\nu} - x_{\nu}\partial_{\mu})$

SCT: $K_{\mu} = -i(2x_{\mu}x^{\nu}\partial_{\nu} - x^{2}\partial_{\mu})$ (4.18)

大域的な共形不変性

古典的場の理論における共形不変性

4.2.1 *d* 次元における共形群の表現

無限小変換

無限小共形変換のパラメータを ω_g とおいたときに、多成分場 $\Phi(x)$ に対して働く生成子 T_a の行列成分を調べる。

ightarrowSchur の補題により、場のスケール次元 Δ が性質を特徴づけることがわかる。 有限変換

有限な共形変換のもとでは $\pmb{\sharp}$ プライマリー場であれば上記の議論が成立する。 スピンレスな場 $\phi(\pmb{x})$ を仮定したとき、共形変換 $\pmb{x} \to \pmb{x}'$ における場の変化は次の通り。

準プライマリー場

$$\phi(x) \to \phi'(x') = \left| \frac{\partial x'}{\partial x} \right|^{-\frac{\Delta}{d}} \phi(x)$$
 (4.32)

4.2.2 エネルギー・運動量テンソル

任意の無限小座標変換 $x^{\mu} \to x'^{\mu} = x^{\mu} + \epsilon^{\mu}$ における作用 S の変化量は、エネルギー・運動量テンソル $T^{\mu\nu}$ を用いて次のようになる。

$$\delta S = \frac{1}{2} \int d^d x T^{\mu\nu} (\partial_\mu \epsilon_\mu + \partial_\nu \epsilon_\mu) \tag{4.34}$$

無限小の共形変換の場合は ϵ が (4.3)(4.4) を満たすので

$$\delta S = \frac{1}{d} \int d^d x T^{\mu}_{\ \mu} \partial_{\rho} \epsilon_{\rho} \tag{4.35}$$

 \rightarrow 任意の共形変換で最小作用の原理が成立するには、トレース $T^\mu_{\ \mu}$ が 0 であることが要求される。

作用の不変性

共形変換 ⇒ 作用は不変になる (※逆は一般に成立しない)

大域的な共形不変性

量子場の理論における共形不変性

4.3.1 相関関数

2点相関関数、3点相関関数

スケール・並進・回転・SCT における不変性より関数型を制限することで導ける。

2 点相関関数

$$\langle \phi_1(\boldsymbol{x}_1)\phi_2(\boldsymbol{x}_2)\rangle = \begin{cases} \frac{C_{12}}{|\boldsymbol{x}_1 - \boldsymbol{x}_2|^{2\Delta}} & \text{if } \Delta = \Delta_1 = \Delta_2\\ 0 & \text{if } \Delta_1 \neq \Delta_2 \end{cases}$$
(4.55)

3 点相関関数

$$\langle \phi_1(\boldsymbol{x}_1)\phi_2(\boldsymbol{x}_2)\phi_3(\boldsymbol{x}_3)\rangle = \frac{C_{123}^{(abc)}}{x_{12}^{\Delta_1 + \Delta_2 - \Delta_3} x_{23}^{\Delta_2 + \Delta_3 - \Delta_1} x_{31}^{\Delta_3 + \Delta_1 - \Delta_2}}$$
 (4.61)
但し、 $x_{ij} = |\boldsymbol{x}_i - \boldsymbol{x}_j|$

4.3.1 相関関数

4 点相関関数

4 点以上ではスケール・並進・回転・SCT では一意に形は決まらない。 \rightarrow 4 点の場合では 2 つの交差比が許され、任意性が生まれる。

4 点相関関数

4.3.2 Ward 恒等式

Ward 恒等式 (2.157) が共形変換の下ではどのように表せるのか

並進不変

$$\partial_{\mu} \left\langle T^{\mu}_{\ \nu} X \right\rangle = \sum_{i} \delta(\boldsymbol{x} - \boldsymbol{x}_{i}) \frac{\partial}{\partial x_{i}^{\nu}} \left\langle X \right\rangle$$
 (4.63)

ローレンツ (回転)不変

$$\langle (T^{\rho\nu} - T^{\nu\rho})X \rangle = -i \sum_{i} \delta(\boldsymbol{x} - \boldsymbol{x}_{i}) S^{\nu\rho} \langle X \rangle \tag{4.66}$$

スケール不変

$$\langle T^{\mu}_{\ \mu} X \rangle = -\sum \delta(\boldsymbol{x} - \boldsymbol{x}_i) \Delta_i \langle X \rangle$$
 (4.68)

4.3.3 2次元における零トレース

Schwinger 関数と呼ばれる関数を定義する。

Schwinger 関数

$$S_{\mu\nu\rho\sigma}(\mathbf{x}) = \langle T_{\mu\nu}(\mathbf{x})T_{\rho\sigma}(\mathbf{0})\rangle$$
 (4.69)

この関数は共形不変性および保存則 $\partial^{\mu}T_{\mu\nu}=0$ によって関数が決定する。

$$S_{\mu\nu\rho\sigma}(\mathbf{x}) = \frac{A}{(\mathbf{x}^2)^4} \left\{ (3g_{\mu\nu}g_{\rho\sigma} - g_{\mu\rho}g_{\nu\sigma} - g_{\mu\sigma}g_{\nu\rho})(\mathbf{x}^2)^2 - 4\mathbf{x}^2 (g_{\mu\nu}x_{\rho}x_{\sigma} + g_{\rho\sigma}x_{\mu}x_{\nu}) + 8x_{\mu}x_{\nu}x_{\rho}x_{\sigma} \right\}$$
(4.77)

(4.77) を用いてトレースを計算すると

トレースレス

$$S^{\mu}_{\mu}{}^{\sigma}_{\sigma}(\boldsymbol{x}) = \langle T^{\mu}_{\mu}(\boldsymbol{x})T^{\sigma}_{\sigma}(\boldsymbol{0})\rangle = 0$$
 (4.78)

→期待値および標準偏差はゼロとなる