$12n_{0806} (K12n_{0806})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle u^5 - u^4 + 2u^3 + b + 4u - 2, \ u^5 - u^4 + 2u^3 + a + 4u - 1, \ u^6 - 2u^5 + 3u^4 - 2u^3 + 4u^2 - 4u + 1 \rangle \\ I_2^u &= \langle -u^5a - u^4a - 2u^3a - au - u^2 + b - u - 1, \ -u^5a - 2u^4a - 4u^3a - 3u^2a + a^2 - 3au + u^2 + 1, \\ u^6 + u^5 + 3u^4 + u^3 + 3u^2 - u + 1 \rangle \\ I_3^u &= \langle 734u^{11} - 3080u^{10} + \dots + 7763b - 15155, \ 1450u^{11} - 7683u^{10} + \dots + 7763a - 6462, \\ u^{12} - 5u^{11} + 13u^{10} - 25u^9 + 45u^8 - 72u^7 + 93u^6 - 97u^5 + 87u^4 - 68u^3 + 39u^2 - 17u + 7 \rangle \\ I_4^u &= \langle -u^7 - 2u^4 - u^3 + u^2 + b + 1, \ u^9 + 2u^6 + u^5 - 2u^4 + a - u, \ u^{10} + u^9 + u^7 + 2u^6 - u^5 - 3u^4 - 2u^3 + u + 1 \rangle \\ I_5^u &= \langle -u^9 - u^7 - u^6 - u^5 + u^3 + 2u^2 + b - 1, \ -u^9 - u^7 - u^6 - u^5 + u^3 + 2u^2 + a, \\ u^{10} + u^9 + u^7 + 2u^6 - u^5 - 3u^4 - 2u^3 + u + 1 \rangle \\ I_6^u &= \langle u^2 + b, \ u^2 + a + 1, \ u^3 - u^2 + 2u - 1 \rangle \\ I_7^u &= \langle -u^7 + 5u^6 - 12u^5 + 19u^4 - 20u^3 + 14u^2 + b - 8u + 3, \\ -3u^7 + 12u^6 - 25u^5 + 34u^4 - 29u^3 + 17u^2 + 2a - 9u + 2, \\ u^8 - 4u^7 + 9u^6 - 14u^5 + 15u^4 - 13u^3 + 9u^2 - 4u + 2 \rangle \\ I_8^u &= \langle au + u^2 + b - a + u + 1, \ -u^3a - 2u^2a - u^3 + a^2 - au - u^2 - u, \ u^4 + u^3 + u^2 + 1 \rangle \\ I_9^u &= \langle b + 1, \ -u^4 - u^2 + 2a, \ u^6 - u^5 + u^4 + u^3 + 2 \rangle \\ I_{10}^u &= \langle b - a - 1, \ a^2 - a - 4, \ u + 1 \rangle \end{aligned}$$

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

$$I_{11}^{u} = \langle -u^{2} + b - u, -u^{3} - 3u^{2} + a - 3u - 2, u^{4} + 2u^{3} + 2u^{2} + u - 1 \rangle$$

$$I_{12}^{u} = \langle 2u^{3} + 4u^{2} + b + 5u + 2, 2u^{3} + 4u^{2} + a + 5u + 3, u^{4} + 2u^{3} + 2u^{2} + u - 1 \rangle$$

* 12 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 85 representations.

 $^{^{2}}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle u^5 - u^4 + 2u^3 + b + 4u - 2, \ u^5 - u^4 + 2u^3 + a + 4u - 1, \ u^6 - 2u^5 + 3u^4 - 2u^3 + 4u^2 - 4u + 1 \rangle$$

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{5} + u^{4} - 2u^{3} - 4u + 1 \\ -u^{5} + u^{4} - 2u^{3} - 4u + 2 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{5} - u^{4} + 2u^{3} + 4u - 1 \\ u^{5} - u^{4} + 2u^{3} + 3u - 1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{5} - u^{4} + 2u^{3} + 4u - 1 \\ u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -3u^{5} + 4u^{4} - 6u^{3} + 2u^{2} - 11u + 5 \\ -u^{5} + u^{4} - u^{3} - 3u + 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 3u^{5} - 4u^{4} + 7u^{3} - 2u^{2} + 11u - 5 \\ u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{5} + u^{4} - 2u^{3} + u^{2} - 4u + 1 \\ -u^{5} + u^{4} - 2u^{3} + u^{2} - 4u + 2 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -3u^{5} + 4u^{4} - 6u^{3} + 2u^{2} - 11u + 4 \\ -2u^{5} + 3u^{4} - 4u^{3} + 2u^{2} - 7u + 3 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -2u^{5} + 3u^{4} - 5u^{3} + 2u^{2} - 8u + 4 \\ -u \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $4u^5 8u^4 + 12u^3 4u^2 + 12u 20$

Crossings	u-Polynomials at each crossing
c_1, c_4, c_7 c_{10}	$u^6 - 2u^5 - 3u^4 + 6u^3 + 4u + 1$
c_2, c_3, c_5 c_6, c_8, c_9 c_{11}, c_{12}	$u^6 + 2u^5 + 3u^4 + 2u^3 + 4u^2 + 4u + 1$

Crossings	Riley Polynomials at each crossing
c_1, c_4, c_7 c_{10}	$y^6 - 10y^5 + 33y^4 - 18y^3 - 54y^2 - 16y + 1$
c_2, c_3, c_5 c_6, c_8, c_9 c_{11}, c_{12}	$y^6 + 2y^5 + 9y^4 + 6y^3 + 6y^2 - 8y + 1$

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.565321 + 1.037410I		
a = 0.556120 - 0.294180I	5.73543 + 5.68242I	-3.14521 - 5.86849I
b = 1.55612 - 0.29418I		
u = -0.565321 - 1.037410I		
a = 0.556120 + 0.294180I	5.73543 - 5.68242I	-3.14521 + 5.86849I
b = 1.55612 + 0.29418I		
u = 0.716429		
a = -2.52645	-9.00346	-10.3960
b = -1.52645		
u = 0.378183		
a = -0.608191	-0.650275	-15.5180
b = 0.391809		
u = 1.01802 + 1.26802I		
a = 1.011200 - 0.788474I	-8.3108 - 15.2657I	-11.89809 + 7.17299I
b = 2.01120 - 0.78847I		
u = 1.01802 - 1.26802I		
a = 1.011200 + 0.788474I	-8.3108 + 15.2657I	-11.89809 - 7.17299I
b = 2.01120 + 0.78847I		

II.
$$I_2^u = \langle -u^5a - u^4a - 2u^3a - au - u^2 + b - u - 1, -u^5a - 2u^4a + \cdots + a^2 + 1, u^6 + u^5 + 3u^4 + u^3 + 3u^2 - u + 1 \rangle$$

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{5}a + u^{4}a + 2u^{3}a + au + u^{2} + u + 1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u^{5} - u^{4} - 2u^{3} + au - u + 1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u^{5} - u^{4} + u^{2}a - 2u^{3} + au - u + 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{4}a + u^{5} - u^{3}a + u^{4} - 2u^{2}a + 2u^{3} + u^{2} - a + u - 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{4}a + u^{5} + u^{4}a + u^{2}a + 2u^{3}a - u^{4}a + 2u^{2}a - 3u^{3}a + u - u^{2}a + u - u + 2 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{5}a - u^{4}a - 2u^{3}a + u^{4} + u^{3}a - 2u + u^{2}a + u - u + 2 + a - u + u + u - u^{2}a - u^{2}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-3u^4 7u^3 10u^2 9u 16$

Crossings	u-Polynomials at each crossing
c_1, c_4, c_7 c_{10}	$u^{12} - u^{11} + \dots - 11u + 1$
c_2, c_6, c_8 c_{12}	$(u^6 - u^5 + 3u^4 - u^3 + 3u^2 + u + 1)^2$
c_3, c_5, c_9 c_{11}	$u^{12} + 5u^{11} + \dots + 17u + 7$

Crossings	Riley Polynomials at each crossing	
c_1, c_4, c_7 c_{10}	$y^{12} - 19y^{11} + \dots - 37y + 1$	
c_2, c_6, c_8 c_{12}	$(y^6 + 5y^5 + 13y^4 + 21y^3 + 17y^2 + 5y + 1)^2$	
c_3, c_5, c_9 c_{11}	$y^{12} + y^{11} + \dots + 257y + 49$	

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.028955 + 1.263070I		
a = 0.565560 - 0.864727I	4.88968 - 2.84039I	-6.95695 + 2.68362I
b = 1.113440 - 0.846070I		
u = 0.028955 + 1.263070I		
a = -0.374177 - 0.442775I	4.88968 - 2.84039I	-6.95695 + 2.68362I
b = -1.46946 + 0.08347I		
u = 0.028955 - 1.263070I		
a = 0.565560 + 0.864727I	4.88968 + 2.84039I	-6.95695 - 2.68362I
b = 1.113440 + 0.846070I		
u = 0.028955 - 1.263070I		
a = -0.374177 + 0.442775I	4.88968 + 2.84039I	-6.95695 - 2.68362I
b = -1.46946 - 0.08347I		
u = -0.80039 + 1.17645I		
a = -1.035600 - 0.905749I	-9.60039 + 6.66133I	-12.05452 - 4.58491I
b = -1.97804 - 1.00830I		
u = -0.80039 + 1.17645I		
a = 0.760760 + 1.153110I	-9.60039 + 6.66133I	-12.05452 - 4.58491I
b = 0.764071 - 0.032173I		
u = -0.80039 - 1.17645I		
a = -1.035600 + 0.905749I	-9.60039 - 6.66133I	-12.05452 + 4.58491I
b = -1.97804 + 1.00830I		
u = -0.80039 - 1.17645I		
a = 0.760760 - 1.153110I	-9.60039 - 6.66133I	-12.05452 + 4.58491I
b = 0.764071 + 0.032173I		
u = 0.271430 + 0.485552I		
a = 0.041323 - 0.362162I	-1.04656 + 1.35140I	-15.4885 - 6.6994I
b = 1.22951 + 0.79439I		
u = 0.271430 + 0.485552I		
a = -0.45786 + 2.36589I	-1.04656 + 1.35140I	-15.4885 - 6.6994I
b = 0.340472 + 0.389317I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.271430 - 0.485552I		
a = 0.041323 + 0.362162I	-1.04656 - 1.35140I	-15.4885 + 6.6994I
b = 1.22951 - 0.79439I		
u = 0.271430 - 0.485552I		
a = -0.45786 - 2.36589I	-1.04656 - 1.35140I	-15.4885 + 6.6994I
b = 0.340472 - 0.389317I		

III.
$$I_3^u = \langle 734u^{11} - 3080u^{10} + \dots + 7763b - 15155, \ 1450u^{11} - 7683u^{10} + \dots + 7763a - 6462, \ u^{12} - 5u^{11} + \dots - 17u + 7 \rangle$$

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -0.186783u^{11} + 0.989695u^{10} + \cdots - 4.53265u + 0.832410 \\ -0.0945511u^{11} + 0.396754u^{10} + \cdots - 3.56421u + 1.95221 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -0.147108u^{11} + 0.473657u^{10} + \cdots + 4.45537u - 2.03465 \\ -0.261883u^{11} + 1.26240u^{10} + \cdots + 4.45537u - 2.03465 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -0.147108u^{11} + 0.473657u^{10} + \cdots + 4.45537u - 2.03465 \\ -0.214865u^{11} + 0.915239u^{10} + \cdots - 1.11323u - 0.803427 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -0.267809u^{11} + 0.983254u^{10} + \cdots + 2.83086u - 1.89733 \\ -0.107948u^{11} + 0.660054u^{10} + \cdots - 3.27631u - 0.615870 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -0.0769033u^{11} + 0.516939u^{10} + \cdots - 1.73606u + 0.269226 \\ -0.154322u^{11} + 0.879170u^{10} + \cdots - 5.04895u + 2.11001 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -0.448023u^{11} + 2.12405u^{10} + \cdots - 7.41852u + 1.75486 \\ -0.355790u^{11} + 1.53111u^{10} + \cdots - 6.45008u + 2.87466 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0.0617029u^{11} - 0.295118u^{10} + \cdots + 1.00502u - 0.336854 \\ -0.0854051u^{11} + 0.178539u^{10} + \cdots + 5.42831u + 1.17686 \\ 0.131779u^{11} - 0.397656u^{10} + \cdots - 5.42831u + 1.17686 \\ 0.131779u^{11} - 0.397656u^{10} + \cdots - 2.68775u + 0.645627 \end{pmatrix}$$

(ii) Obstruction class = -1

Crossings	u-Polynomials at each crossing
c_1, c_4, c_7 c_{10}	$u^{12} - u^{11} + \dots - 11u + 1$
c_2, c_6, c_8 c_{12}	$u^{12} + 5u^{11} + \dots + 17u + 7$
c_3, c_5, c_9 c_{11}	$(u^6 - u^5 + 3u^4 - u^3 + 3u^2 + u + 1)^2$

Crossings	Riley Polynomials at each crossing	
c_1, c_4, c_7 c_{10}	$y^{12} - 19y^{11} + \dots - 37y + 1$	
c_2, c_6, c_8 c_{12}	$y^{12} + y^{11} + \dots + 257y + 49$	
c_3, c_5, c_9 c_{11}	$(y^6 + 5y^5 + 13y^4 + 21y^3 + 17y^2 + 5y + 1)^2$	

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.239056 + 0.890852I		
a = 0.79735 + 1.21505I	-1.04656 + 1.35140I	-15.4885 - 6.6994I
b = 1.22951 + 0.79439I		
u = -0.239056 - 0.890852I		
a = 0.79735 - 1.21505I	-1.04656 - 1.35140I	-15.4885 + 6.6994I
b = 1.22951 - 0.79439I		
u = 1.176420 + 0.148869I		
a = 0.164789 + 0.045651I	-1.04656 - 1.35140I	-15.4885 + 6.6994I
b = 0.340472 - 0.389317I		
u = 1.176420 - 0.148869I		
a = 0.164789 - 0.045651I	-1.04656 + 1.35140I	-15.4885 - 6.6994I
b = 0.340472 + 0.389317I		
u = -0.007700 + 0.692554I		
a = -0.709646 - 0.783990I	4.88968 - 2.84039I	-6.95695 + 2.68362I
b = 1.113440 - 0.846070I		
u = -0.007700 - 0.692554I		
a = -0.709646 + 0.783990I	4.88968 + 2.84039I	-6.95695 - 2.68362I
b = 1.113440 + 0.846070I		
u = 0.874959 + 1.026640I		
a = -0.92937 + 1.12242I	-9.60039 - 6.66133I	-12.05452 + 4.58491I
b = -1.97804 + 1.00830I		
u = 0.874959 - 1.026640I		
a = -0.92937 - 1.12242I	-9.60039 + 6.66133I	-12.05452 - 4.58491I
b = -1.97804 - 1.00830I		
u = -0.69640 + 1.36818I		
a = -0.727697 - 0.439865I	4.88968 + 2.84039I	-6.95695 - 2.68362I
b = -1.46946 - 0.08347I		
u = -0.69640 - 1.36818I		
a = -0.727697 + 0.439865I	4.88968 - 2.84039I	-6.95695 + 2.68362I
b = -1.46946 + 0.08347I		

	Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u =	1.39178 + 0.95258I		
a =	0.761714 - 0.875845I	-9.60039 + 6.66133I	-12.05452 - 4.58491I
b =	0.764071 - 0.032173I		
u =	1.39178 - 0.95258I		
a =	0.761714 + 0.875845I	-9.60039 - 6.66133I	-12.05452 + 4.58491I
b =	0.764071 + 0.032173I		

$$\text{IV. } I_4^u = \langle -u^7 - 2u^4 - u^3 + u^2 + b + 1, \ u^9 + 2u^6 + u^5 - 2u^4 + a - u, \ u^{10} + u^9 + u^7 + 2u^6 - u^5 - 3u^4 - 2u^3 + u + 1 \rangle$$

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{9} - 2u^{6} - u^{5} + 2u^{4} + u \\ u^{7} + 2u^{4} + u^{3} - u^{2} - 1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u^{9} - u^{7} - u^{6} - u^{5} + u^{3} + 2u^{2} \\ -2u^{9} - 3u^{6} - u^{5} + 3u^{4} + 2u^{3} + 2u^{2} - 1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u^{9} - u^{7} - u^{6} - u^{5} + u^{3} + 2u^{2} \\ u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{8} + u^{6} + u^{5} + u^{4} - u^{2} - u \\ 2u^{9} + u^{8} - u^{7} + 3u^{6} + 2u^{5} - 4u^{4} - 4u^{3} - 2u^{2} + 2 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 2u^{9} - u^{8} + u^{6} - 4u^{4} - 3u^{3} - u^{2} + 3u + 2 \\ u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{9} + u^{8} + u^{6} + 2u^{5} - 3u^{3} - 2u^{2} + u + 1 \\ 2u^{9} + u^{8} + u^{7} + 3u^{6} + 3u^{5} - 2u^{3} - 3u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 2u^{9} + u^{8} + 2u^{6} + 3u^{5} - 2u^{4} - 4u^{3} - 3u^{2} + u + 2 \\ u^{9} + u^{8} - u^{7} + u^{6} + 2u^{5} - 2u^{4} - 3u^{3} - u^{2} + u + 2 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u^{9} - u^{5} + 2u^{4} + 3u^{3} + u^{2} - 2u - 1 \\ -u \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-13u^9 9u^8 2u^7 20u^6 24u^5 + 8u^4 + 21u^3 + 16u^2 + 2u 18$

Crossings	u-Polynomials at each crossing	
c_1, c_7	$u^{10} - 2u^9 - 2u^8 + 12u^6 + 9u^5 - 43u^4 + 11u^3 + 37u^2 - 29u + 7$	
c_2, c_3, c_5 c_6, c_8, c_9 c_{11}, c_{12}	$u^{10} - u^9 - u^7 + 2u^6 + u^5 - 3u^4 + 2u^3 - u + 1$	
c_4, c_{10}	$(u^5 + 2u^4 - 2u^3 - 2u^2 + u + 1)^2$	

Crossings	Riley Polynomials at each crossing
c_1, c_7	$y^{10} - 8y^9 + \dots - 323y + 49$
c_2, c_3, c_5 c_6, c_8, c_9 c_{11}, c_{12}	$y^{10} - y^9 + 2y^8 - 5y^7 + 10y^6 - 9y^5 + 3y^4 + 2y^3 - 2y^2 - y + 1$
c_4,c_{10}	$(y^5 - 8y^4 + 14y^3 - 12y^2 + 5y - 1)^2$

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.833438 + 0.554152I		
a = -0.812076 - 0.979588I	1.24137 + 6.64784I	-13.9589 - 7.4975I
b = -2.03262 - 0.35101I		
u = -0.833438 - 0.554152I		
a = -0.812076 + 0.979588I	1.24137 - 6.64784I	-13.9589 + 7.4975I
b = -2.03262 + 0.35101I		
u = -1.016860 + 0.408978I		
a = -1.31220 - 0.69239I	-11.5552	-19.8669 + 0.I
b = -0.590675		
u = -1.016860 - 0.408978I		
a = -1.31220 + 0.69239I	-11.5552	-19.8669 + 0.I
b = -0.590675		
u = 0.868230 + 0.062281I		
a = 0.481330 - 0.323224I	-1.22103 + 1.14013I	-11.60766 - 5.93486I
b = 0.327959 + 0.538837I		
u = 0.868230 - 0.062281I		
a = 0.481330 + 0.323224I	-1.22103 - 1.14013I	-11.60766 + 5.93486I
b = 0.327959 - 0.538837I		
u = -0.186852 + 0.738915I		
a = 0.52801 + 1.66326I	-1.22103 + 1.14013I	-11.60766 - 5.93486I
b = 0.327959 + 0.538837I		
u = -0.186852 - 0.738915I		
a = 0.52801 - 1.66326I	-1.22103 - 1.14013I	-11.60766 + 5.93486I
b = 0.327959 - 0.538837I		
u = 0.668920 + 1.200250I		
a = -1.385060 + 0.017518I	1.24137 - 6.64784I	-13.9589 + 7.4975I
b = -2.03262 + 0.35101I		
u = 0.668920 - 1.200250I		
a = -1.385060 - 0.017518I	1.24137 + 6.64784I	-13.9589 - 7.4975I
b = -2.03262 - 0.35101I		

$$\text{V. } I_5^u = \langle -u^9 - u^7 - u^6 - u^5 + u^3 + 2u^2 + b - 1, \ -u^9 - u^7 - u^6 - u^5 + u^3 + 2u^2 + a, \ u^{10} + u^9 + u^7 + 2u^6 - u^5 - 3u^4 - 2u^3 + u + 1 \rangle$$

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{9} + u^{7} + u^{6} + u^{5} - u^{3} - 2u^{2} \\ u^{9} + u^{7} + u^{6} + u^{5} - u^{3} - 2u^{2} + 1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{9} - u^{8} + u^{6} - u^{5} - 2u^{4} + 2u + 1 \\ u^{9} - u^{8} + u^{6} - u^{5} - 2u^{4} + 2u + 1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{9} - u^{8} + u^{6} - u^{5} - 2u^{4} + 2u + 1 \\ -u^{9} - u^{8} + u^{7} - 2u^{6} - 2u^{5} + 2u^{4} + 2u^{3} - 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{8} + u^{6} + u^{5} + u^{4} - u^{2} - u \\ -u^{9} - u^{6} - u^{5} + 2u^{4} + u^{3} - 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{9} + u^{8} + 2u^{6} + 2u^{5} - 2u^{3} - 2u^{2} \\ -u^{9} + u^{7} - u^{6} - u^{5} + 4u^{4} + 2u^{3} - u^{2} - u - 1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{9} + u^{7} + u^{6} + u^{5} - u^{3} - u^{2} + 1 \\ u^{9} + u^{7} + u^{6} + u^{5} - u^{3} - u^{2} + 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 2u^{9} + u^{7} + 2u^{6} + 2u^{5} - 2u^{4} - 2u^{3} - 2u^{2} + 1 \\ 3u^{9} - u^{8} + u^{7} + 3u^{6} + u^{5} - 4u^{4} - 2u^{3} - 2u^{2} + 2u + 2 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u^{9} + u^{8} + 2u^{6} + 2u^{5} - u^{4} - u^{3} - u^{2} - u + 1 \\ u^{9} - u^{8} - u^{7} + u^{6} - u^{5} - 4u^{4} - u^{3} + u^{2} + 2u + 1 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$-13u^9 - 9u^8 - 2u^7 - 20u^6 - 24u^5 + 8u^4 + 21u^3 + 16u^2 + 2u - 18u^2 + 2u^4 + 21u^3 + 16u^2 + 2u - 18u^2 + 2u^4 + 21u^3 + 16u^2 + 2u - 18u^4 + 21u^3 + 16u^2 + 2u - 18u^2 + 2u^2 + 2u^2$$

Crossings	u-Polynomials at each crossing
c_1, c_7	$ (u^5 + 2u^4 - 2u^3 - 2u^2 + u + 1)^2 $
c_2, c_3, c_5 c_6, c_8, c_9 c_{11}, c_{12}	$u^{10} - u^9 - u^7 + 2u^6 + u^5 - 3u^4 + 2u^3 - u + 1$
c_4, c_{10}	$u^{10} - 2u^9 - 2u^8 + 12u^6 + 9u^5 - 43u^4 + 11u^3 + 37u^2 - 29u + 7$

Crossings	Riley Polynomials at each crossing
c_1, c_7	$(y^5 - 8y^4 + 14y^3 - 12y^2 + 5y - 1)^2$
c_2, c_3, c_5 c_6, c_8, c_9 c_{11}, c_{12}	$y^{10} - y^9 + 2y^8 - 5y^7 + 10y^6 - 9y^5 + 3y^4 + 2y^3 - 2y^2 - y + 1$
c_4, c_{10}	$y^{10} - 8y^9 + \dots - 323y + 49$

Solutions to I_5^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.833438 + 0.554152I		
a = -0.885525 - 0.234725I	1.24137 + 6.64784I	-13.9589 - 7.4975I
b = 0.114475 - 0.234725I		
u = -0.833438 - 0.554152I		
a = -0.885525 + 0.234725I	1.24137 - 6.64784I	-13.9589 + 7.4975I
b = 0.114475 + 0.234725I		
u = -1.016860 + 0.408978I		
a = 2.06801 + 0.83175I	-11.5552	-19.8669 + 0.I
b = 3.06801 + 0.83175I		
u = -1.016860 - 0.408978I		
a = 2.06801 - 0.83175I	-11.5552	-19.8669 + 0.I
b = 3.06801 - 0.83175I		
u = 0.868230 + 0.062281I		
a = -0.719333 + 0.353776I	-1.22103 + 1.14013I	-11.60766 - 5.93486I
b = 0.280667 + 0.353776I		
u = 0.868230 - 0.062281I		
a = -0.719333 - 0.353776I	-1.22103 - 1.14013I	-11.60766 + 5.93486I
b = 0.280667 - 0.353776I		
u = -0.186852 + 0.738915I		
a = 0.541694 + 0.738059I	-1.22103 + 1.14013I	-11.60766 - 5.93486I
b = 1.54169 + 0.73806I		
u = -0.186852 - 0.738915I		
a = 0.541694 - 0.738059I	-1.22103 - 1.14013I	-11.60766 + 5.93486I
b = 1.54169 - 0.73806I		
u = 0.668920 + 1.200250I		
a = 0.495151 - 0.447313I	1.24137 - 6.64784I	-13.9589 + 7.4975I
b = 1.49515 - 0.44731I		
u = 0.668920 - 1.200250I		
a = 0.495151 + 0.447313I	1.24137 + 6.64784I	-13.9589 - 7.4975I
b = 1.49515 + 0.44731I		

VI.
$$I_6^u = \langle u^2 + b, \ u^2 + a + 1, \ u^3 - u^2 + 2u - 1 \rangle$$

a) Art colorings
$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{2} - 1 \\ -u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{2} + 1 \\ u^{2} - u + 1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{2} + 1 \\ u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 0 \\ -u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u^{2} - 1 \\ -u^{2} + u - 1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -1 \\ u^{2} \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-8u^2 + 8u 20$

Crossings	u-Polynomials at each crossing
c_1, c_4, c_7 c_{10}	$u^3 + u^2 - 1$
c_2, c_5, c_8 c_{11}	$u^3 - u^2 + 2u - 1$
c_3, c_6, c_9 c_{12}	$u^3 + u^2 + 2u + 1$

Crossings	Riley Polynomials at each crossing
c_1, c_4, c_7 c_{10}	$y^3 - y^2 + 2y - 1$
$c_2, c_3, c_5 c_6, c_8, c_9 c_{11}, c_{12}$	$y^3 + 3y^2 + 2y - 1$

Solutions to I_6^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.215080 + 1.307140I		
a = 0.662359 - 0.562280I	6.04826 - 5.65624I	-4.98049 + 5.95889I
b = 1.66236 - 0.56228I		
u = 0.215080 - 1.307140I		
a = 0.662359 + 0.562280I	6.04826 + 5.65624I	-4.98049 - 5.95889I
b = 1.66236 + 0.56228I		
u = 0.569840		
a = -1.32472	-2.22691	-18.0390
b = -0.324718		

VII.
$$I_7^u = \langle -u^7 + 5u^6 + \dots + b + 3, \ -3u^7 + 12u^6 + \dots + 2a + 2, \ u^8 - 4u^7 + \dots - 4u + 2 \rangle$$

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{7} - 5u^{6} + 12u^{5} - 19u^{4} + 20u^{3} - 14u^{2} + 8u - 3 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -\frac{1}{2}u^{7} + 2u^{6} + \dots - \frac{7}{2}u + 1 \\ u^{2} - u + 1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -\frac{1}{2}u^{7} + 2u^{6} + \dots - \frac{7}{2}u + 1 \\ -u^{3} + 2u^{2} - 2u + 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} \frac{1}{2}u^{7} - 2u^{6} + \dots + \frac{3}{2}u + 1 \\ u^{5} - 3u^{4} + 5u^{3} - 6u^{2} + 3u - 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{7} - 2u^{6} + u^{5} + 3u^{4} - 9u^{3} + 9u^{2} - 5u + 3 \\ u^{7} - 3u^{6} + 5u^{5} - 5u^{4} + u^{3} + 2u^{2} - 2u + 2 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{7} - 2u^{6} + u^{5} + 3u^{4} - 9u^{3} + 9u^{2} - 5u + 3 \\ u^{7} - 3u^{6} + 5u^{5} - 5u^{4} + u^{3} + 2u^{2} - 2u + 2 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} \frac{3}{2}u^{7} - 6u^{6} + \dots + \frac{3}{2}u + 1 \\ u^{7} - 5u^{6} + 11u^{5} - 16u^{4} + 15u^{3} - 9u^{2} + 5u - 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} \frac{1}{2}u^{7} - 3u^{6} + \dots + \frac{15}{2}u - 4 \\ -u^{6} + 3u^{5} - 5u^{4} + 6u^{3} - 4u^{2} + 4u - 3 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} \frac{3}{2}u^{7} - 5u^{6} + \dots - \frac{1}{2}u + 2 \\ u^{7} - 4u^{6} + 9u^{5} - 13u^{4} + 12u^{3} - 8u^{2} + 4u - 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-4u^7 + 17u^6 40u^5 + 60u^4 64u^3 + 52u^2 32u + 8$

Crossings	u-Polynomials at each crossing
c_1, c_4, c_7 c_{10}	$u^8 - 2u^7 + 3u^5 - 3u^4 + 3u^2 - u + 1$
c_2, c_8	$u^8 - 4u^7 + 9u^6 - 14u^5 + 15u^4 - 13u^3 + 9u^2 - 4u + 2$
c_3, c_9	$(u^4 - u^3 + u^2 + 1)^2$
c_5, c_{11}	$(u^4 + u^3 + u^2 + 1)^2$
c_6, c_{12}	$u^8 + 4u^7 + 9u^6 + 14u^5 + 15u^4 + 13u^3 + 9u^2 + 4u + 2$

Crossings	Riley Polynomials at each crossing
c_1, c_4, c_7 c_{10}	$y^8 - 4y^7 + 6y^6 - 3y^5 + 7y^4 - 12y^3 + 3y^2 + 5y + 1$
c_2, c_6, c_8 c_{12}	$y^8 + 2y^7 - y^6 - 12y^5 - 5y^4 + 25y^3 + 37y^2 + 20y + 4$
c_3, c_5, c_9 c_{11}	$(y^4 + y^3 + 3y^2 + 2y + 1)^2$

Solutions to I_7^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.192965 + 0.870342I		
a = -0.81301 + 1.44822I	-0.732875 - 0.991478I	-4.06428 - 5.52190I
b = -1.51646 + 0.88804I		
u = 0.192965 - 0.870342I		
a = -0.81301 - 1.44822I	-0.732875 + 0.991478I	-4.06428 + 5.52190I
b = -1.51646 - 0.88804I		
u = -0.138557 + 0.767522I		
a = 0.066843 - 1.409780I	3.20028 + 5.62938I	-9.43572 - 5.34414I
b = 1.41071 - 0.54257I		
u = -0.138557 - 0.767522I		
a = 0.066843 + 1.409780I	3.20028 - 5.62938I	-9.43572 + 5.34414I
b = 1.41071 + 0.54257I		
u = 1.354460 + 0.250532I		
a = 0.008624 + 0.392991I	-0.732875 - 0.991478I	-4.06428 - 5.52190I
b = 0.164655 - 0.167700I		
u = 1.354460 - 0.250532I		
a = 0.008624 - 0.392991I	-0.732875 + 0.991478I	-4.06428 + 5.52190I
b = 0.164655 + 0.167700I		
u = 0.59113 + 1.35317I		
a = -0.762459 + 0.087166I	3.20028 - 5.62938I	-9.43572 + 5.34414I
b = -1.55891 + 0.36873I		
u = 0.59113 - 1.35317I		
a = -0.762459 - 0.087166I	3.20028 + 5.62938I	-9.43572 - 5.34414I
b = -1.55891 - 0.36873I		

 $VIII. \\ I_8^u = \langle au + u^2 + b - a + u + 1, \ -u^3 a - 2u^2 a - u^3 + a^2 - au - u^2 - u, \ u^4 + u^3 + u^2 + 1 \rangle$

(i) Arc colorings

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -au - u^{2} + a - u - 1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -a \\ -u^{3} + au + 1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{2}a - u^{3} + au + 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 0 \\ -u^{3}a - u^{2}a + u^{3} - au + u^{2} - a - 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} a \\ -u^{2}a + 2u^{3} - 2au + u^{2} - 2 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{3}a + a + 1 \\ -u^{3}a - au - u^{2} + a - u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u^{3}a + a + 1 \\ -u^{3}a + 1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u^{3}a + u^{2}a + au + a + u \\ -u^{2}a - 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-u^3 + 5u^2 + 4u 4$

Crossings	u-Polynomials at each crossing
$c_1, c_4, c_7 \ c_{10}$	$u^8 - 2u^7 + 3u^5 - 3u^4 + 3u^2 - u + 1$
c_2, c_8	$(u^4 + u^3 + u^2 + 1)^2$
c_3, c_9	$u^8 + 4u^7 + 9u^6 + 14u^5 + 15u^4 + 13u^3 + 9u^2 + 4u + 2$
c_5, c_{11}	$u^8 - 4u^7 + 9u^6 - 14u^5 + 15u^4 - 13u^3 + 9u^2 - 4u + 2$
c_6, c_{12}	$(u^4 - u^3 + u^2 + 1)^2$

Crossings	Riley Polynomials at each crossing	
c_1, c_4, c_7 c_{10}	$y^8 - 4y^7 + 6y^6 - 3y^5 + 7y^4 - 12y^3 + 3y^2 + 5y + 1$	
c_2, c_6, c_8 c_{12}	$(y^4 + y^3 + 3y^2 + 2y + 1)^2$	
c_3, c_5, c_9 c_{11}	$y^8 + 2y^7 - y^6 - 12y^5 - 5y^4 + 25y^3 + 37y^2 + 20y + 4$	

Solutions to I_8^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.351808 + 0.720342I		
a = -0.646554 - 0.195306I	-0.732875 + 0.991478I	-4.06428 + 5.52190I
b = -1.51646 - 0.88804I		
u = 0.351808 + 0.720342I		
a = -0.29599 + 1.82302I	-0.732875 + 0.991478I	-4.06428 + 5.52190I
b = 0.164655 + 0.167700I		
u = 0.351808 - 0.720342I		
a = -0.646554 + 0.195306I	-0.732875 - 0.991478I	-4.06428 - 5.52190I
b = -1.51646 + 0.88804I		
u = 0.351808 - 0.720342I		
a = -0.29599 - 1.82302I	-0.732875 - 0.991478I	-4.06428 - 5.52190I
b = 0.164655 - 0.167700I		
u = -0.851808 + 0.911292I		
a = 0.885365 - 0.203552I	3.20028 + 5.62938I	-9.43572 - 5.34414I
b = 1.41071 - 0.54257I		
u = -0.851808 + 0.911292I		
a = -0.442818 - 0.763288I	3.20028 + 5.62938I	-9.43572 - 5.34414I
b = -1.55891 - 0.36873I		
u = -0.851808 - 0.911292I		
a = 0.885365 + 0.203552I	3.20028 - 5.62938I	-9.43572 + 5.34414I
b = 1.41071 + 0.54257I		
u = -0.851808 - 0.911292I		
a = -0.442818 + 0.763288I	3.20028 - 5.62938I	-9.43572 + 5.34414I
b = -1.55891 + 0.36873I		

IX.
$$I_9^u = \langle b+1, -u^4-u^2+2a, u^6-u^5+u^4+u^3+2 \rangle$$

$$a_{3} = \begin{pmatrix} 1\\0 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0\\u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1\\-u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u\\u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} \frac{1}{2}u^{4} + \frac{1}{2}u^{2}\\-1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -\frac{1}{2}u^{4} - \frac{1}{2}u^{2}\\-\frac{1}{2}u^{5} - \frac{1}{2}u^{3} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -\frac{1}{2}u^{4} - \frac{1}{2}u^{2}\\-u^{3} - 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} \frac{1}{2}u^{5} + \frac{1}{2}u^{4} + \dots + u + 1\\u^{4} + u + 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -\frac{1}{2}u^{5} - \frac{1}{2}u^{3} - u^{2} - u\\-\frac{1}{2}u^{5} - \frac{1}{2}u^{3} - u^{2} - u - 1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -\frac{1}{2}u^{5} + \frac{1}{2}u^{4} + \dots - \frac{1}{2}u^{2} + 1\\-\frac{1}{2}u^{5} + \frac{1}{2}u^{3} - u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} \frac{1}{2}u^{5} + \frac{1}{2}u^{4} + \frac{1}{2}u^{3} + \frac{1}{2}u^{2} + u\\ \frac{1}{2}u^{5} + \frac{1}{2}u^{3} + u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} \frac{1}{2}u^{5} - \frac{1}{2}u^{4} + \frac{1}{2}u^{3} + \frac{1}{2}u^{2}\\ \frac{1}{2}u^{5} + \frac{1}{2}u^{3} + u \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $u^5 u^3 + 2u^2 12$

Crossings	u-Polynomials at each crossing	
$c_1, c_4, c_7 \ c_{10}$	$(u^3 + u^2 - u + 1)^2$	
c_2, c_3, c_5 c_6, c_8, c_9 c_{11}, c_{12}	$u^6 + u^5 + u^4 - u^3 + 2$	

Crossings	Riley Polynomials at each crossing
c_1, c_4, c_7 c_{10}	$(y^3 - 3y^2 - y - 1)^2$
$c_2, c_3, c_5 c_6, c_8, c_9 c_{11}, c_{12}$	$y^6 + y^5 + 3y^4 + 3y^3 + 4y^2 + 4$

Solutions to I_9^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.822087 + 0.503636I		
a = -0.042641 - 0.763625I	2.61340 + 3.17729I	-10.45631 - 2.23029I
b = -1.00000		
u = -0.822087 - 0.503636I		
a = -0.042641 + 0.763625I	2.61340 - 3.17729I	-10.45631 + 2.23029I
b = -1.00000		
u = 0.402444 + 1.109930I		
a = -0.361615 - 0.509199I	2.61340 - 3.17729I	-10.45631 + 2.23029I
b = -1.00000		
u = 0.402444 - 1.109930I		
a = -0.361615 + 0.509199I	2.61340 + 3.17729I	-10.45631 - 2.23029I
b = -1.00000		
u = 0.919643 + 0.835431I		
a = -1.09574 + 0.99541I	-10.1616	-13.08738 + 0.I
b = -1.00000		
u = 0.919643 - 0.835431I		
a = -1.09574 - 0.99541I	-10.1616	-13.08738 + 0.I
b = -1.00000		

X.
$$I_{10}^u = \langle b - a - 1, a^2 - a - 4, u + 1 \rangle$$

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} a \\ a+1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} a -1 \\ a \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} a-1 \\ 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -3 \\ -a-1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -2a+3 \\ -2 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} a+1 \\ a+2 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} a+4 \\ 2a+3 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} a-2 \\ 1 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = -26

Crossings	u-Polynomials at each crossing		
c_1, c_4, c_7 c_{10}	$u^2 + u - 4$		
$c_2, c_3, c_5 c_6, c_8, c_9 c_{11}, c_{12}$	$(u-1)^2$		

Crossings	Riley Polynomials at each crossing		
c_1, c_4, c_7 c_{10}	$y^2 - 9y + 16$		
c_2, c_3, c_5 c_6, c_8, c_9 c_{11}, c_{12}	$(y-1)^2$		

Solutions to I_{10}^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.00000		
a = -1.56155	-11.5145	-26.0000
b = -0.561553		
u = -1.00000		
a = 2.56155	-11.5145	-26.0000
b = 3.56155		

XI. $I_{11}^u = \langle -u^2 + b - u, -u^3 - 3u^2 + a - 3u - 2, u^4 + 2u^3 + 2u^2 + u - 1 \rangle$

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{3} + 3u^{2} + 3u + 2 \\ u^{2} + u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 2u^{3} + 4u^{2} + 5u + 3 \\ u^{3} + 2u^{2} + 2u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 2u^{3} + 4u^{2} + 5u + 3 \\ u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{3} - 4u^{2} - 5u - 4 \\ -u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -2u^{3} - 7u^{2} - 9u - 9 \\ -u^{3} - u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{3} + 2u^{2} + 2u + 2 \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -2u^{3} - 5u^{2} - 6u - 3 \\ -u^{2} - u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -2u^{3} - 6u^{2} - 8u - 7 \\ -u \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $5u^2 + 5u 1$

Crossings	u-Polynomials at each crossing
c_1, c_7	$u^4 + 3u^3 + u^2 - 5u - 5$
c_2, c_5, c_8 c_{11}	$u^4 + 2u^3 + 2u^2 + u - 1$
c_3, c_6, c_9 c_{12}	$u^4 - 2u^3 + 2u^2 - u - 1$
c_4,c_{10}	$(u^2 - 3u + 1)^2$

Crossings	Riley Polynomials at each crossing		
c_1, c_7	$y^4 - 7y^3 + 21y^2 - 35y + 25$		
c_2, c_3, c_5 c_6, c_8, c_9 c_{11}, c_{12}	$y^4 - 2y^2 - 5y + 1$		
c_4,c_{10}	$(y^2 - 7y + 1)^2$		

Solutions to I_{11}^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.500000 + 1.169630I		
a = -0.927051 - 0.722871I	4.60582	-9.09017 + 0.I
b = -1.61803		
u = -0.500000 - 1.169630I		
a = -0.927051 + 0.722871I	4.60582	-9.09017 + 0.I
b = -1.61803		
u = -1.43168		
a = 0.919556	-11.1856	2.09020
b = 0.618034		
u = 0.431683		
a = 3.93455	-11.1856	2.09020
b = 0.618034		

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -2u^{3} - 4u^{2} - 5u - 3 \\ -2u^{3} - 4u^{2} - 5u - 2 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{2} + 2u + 2 \\ u^{2} + u + 2 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{2} + 2u + 2 \\ u^{2} + 2u + 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{3} - 4u^{2} - 5u - 4 \\ -u^{3} - 4u^{2} - 4u - 3 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{3} + 3u^{2} + 5u + 3 \\ u^{3} + 3u^{2} + 4u + 2 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -2u^{3} - 3u^{2} - 5u - 3 \\ -2u^{3} - 3u^{2} - 5u - 2 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -5u^{3} - 10u^{2} - 13u - 8 \\ -5u^{3} - 9u^{2} - 11u - 6 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u + 1 \\ u + 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $5u^2 + 5u 1$

Crossings	u-Polynomials at each crossing
c_1, c_7	$(u^2 - 3u + 1)^2$
c_2, c_5, c_8 c_{11}	$u^4 + 2u^3 + 2u^2 + u - 1$
c_3, c_6, c_9 c_{12}	$u^4 - 2u^3 + 2u^2 - u - 1$
c_4, c_{10}	$u^4 + 3u^3 + u^2 - 5u - 5$

Crossings	Riley Polynomials at each crossing
c_1, c_7	$(y^2 - 7y + 1)^2$
c_2, c_3, c_5 c_6, c_8, c_9 c_{11}, c_{12}	$y^4 - 2y^2 - 5y + 1$
c_4,c_{10}	$y^4 - 7y^3 + 21y^2 - 35y + 25$

Solutions to I_{12}^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.500000 + 1.169630I		
a = 0.118034 + 0.276112I	4.60582	-9.09017 + 0.I
b = 1.118030 + 0.276112I		
u = -0.500000 - 1.169630I		
a = 0.118034 - 0.276112I	4.60582	-9.09017 + 0.I
b = 1.118030 - 0.276112I		
u = -1.43168		
a = 1.82864	-11.1856	2.09020
b = 2.82864		
u = 0.431683		
a = -6.06471	-11.1856	2.09020
b = -5.06471		

XIII. u-Polynomials

Crossings	u-Polynomials at each crossing
	$ (u^2 - 3u + 1)^2(u^2 + u - 4)(u^3 + u^2 - 1)(u^3 + u^2 - u + 1)^2 $
c_1, c_4, c_7	$(u^4 + 3u^3 + u^2 - 5u - 5)(u^5 + 2u^4 - 2u^3 - 2u^2 + u + 1)^2$
c_{10}	$(u^6 - 2u^5 - 3u^4 + 6u^3 + 4u + 1)(u^8 - 2u^7 + 3u^5 - 3u^4 + 3u^2 - u + 1)^2$
	$(u^{10} - 2u^9 - 2u^8 + 12u^6 + 9u^5 - 43u^4 + 11u^3 + 37u^2 - 29u + 7)$
	$(u^{12} - u^{11} + \dots - 11u + 1)^2$
	$((u-1)^2)(u^3-u^2+2u-1)(u^4+u^3+u^2+1)^2(u^4+2u^3+\cdots+u-1)^2$
c_2, c_5, c_8	$(u^6 - u^5 + 3u^4 - u^3 + 3u^2 + u + 1)^2(u^6 + u^5 + u^4 - u^3 + 2)$
c_{11}	$\cdot (u^6 + 2u^5 + 3u^4 + 2u^3 + 4u^2 + 4u + 1)$
	$\cdot (u^8 - 4u^7 + 9u^6 - 14u^5 + 15u^4 - 13u^3 + 9u^2 - 4u + 2)$
	$\cdot (u^{10} - u^9 - u^7 + 2u^6 + u^5 - 3u^4 + 2u^3 - u + 1)^2$
	$ (u^{12} + 5u^{11} + \dots + 17u + 7) $
	$((u-1)^2)(u^3+u^2+2u+1)(u^4-2u^3+\cdots-u-1)^2(u^4-u^3+u^2+1)^2$
c_3, c_6, c_9	$(u^6 - u^5 + 3u^4 - u^3 + 3u^2 + u + 1)^2(u^6 + u^5 + u^4 - u^3 + 2)$
c_{12}	$\cdot (u^6 + 2u^5 + 3u^4 + 2u^3 + 4u^2 + 4u + 1)$
	$\cdot (u^8 + 4u^7 + 9u^6 + 14u^5 + 15u^4 + 13u^3 + 9u^2 + 4u + 2)$
	$\cdot (u^{10} - u^9 - u^7 + 2u^6 + u^5 - 3u^4 + 2u^3 - u + 1)^2$
	$\cdot (u^{12} + 5u^{11} + \dots + 17u + 7)$

XIV. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_4, c_7	$ (y^2 - 9y + 16)(y^2 - 7y + 1)^2(y^3 - 3y^2 - y - 1)^2(y^3 - y^2 + 2y - 1) $ $ \cdot (y^4 - 7y^3 + 21y^2 - 35y + 25)(y^5 - 8y^4 + 14y^3 - 12y^2 + 5y - 1)^2 $
c_{10}	$(y^6 - 10y^5 + 33y^4 - 18y^3 - 54y^2 - 16y + 1)$
	$(y^8 - 4y^7 + 6y^6 - 3y^5 + 7y^4 - 12y^3 + 3y^2 + 5y + 1)^2$
	$ (y^{10} - 8y^9 + \dots - 323y + 49)(y^{12} - 19y^{11} + \dots - 37y + 1)^2 $
	$(y-1)^2(y^3+3y^2+2y-1)(y^4-2y^2-5y+1)^2$
c_2, c_3, c_5	$(y^4 + y^3 + 3y^2 + 2y + 1)^2(y^6 + y^5 + 3y^4 + 3y^3 + 4y^2 + 4)$
c_6, c_8, c_9	$(y^6 + 2y^5 + 9y^4 + 6y^3 + 6y^2 - 8y + 1)$
c_{11}, c_{12}	$(y^6 + 5y^5 + 13y^4 + 21y^3 + 17y^2 + 5y + 1)^2$
	$(y^8 + 2y^7 - y^6 - 12y^5 - 5y^4 + 25y^3 + 37y^2 + 20y + 4)$
	$ (y^{10} - y^9 + 2y^8 - 5y^7 + 10y^6 - 9y^5 + 3y^4 + 2y^3 - 2y^2 - y + 1)^2 $
	$(y^{12} + y^{11} + \dots + 257y + 49)$