Logica Propozițională. Întrebări și exerciții pentru testarea înțelegerii.

Următoarea listă de întrebări și exerciții este proiectată pentru a testa înțelegerea conceptelor din primele 7 cursuri, despre Logica Propozițională. Unele întrebări au răspunsuri punctuale, iar altele au răspunsuri deschise.

Puteți folosi întrebările pentru a vă testa gradul de înțelegere a conceptelor în felul următor: pentru fiecare întrebare, trebuie să știți răspunsul și să îl puteți argumenta convingător și cu încredere.

Dacă nu știți răspunsul la o întrebare, nu are sens să întrebați colegii sau profesorul – nu vă va ajuta cu nimic să aflați răspunsul. Trebuie pur si simplu să reluați studiul cursurilor.

• Sintaxa Logicii Propoziționale

- Orice formulă propozițională are cel puțin un conector logic.
- Orice variabilă propozițională este o formulă propozițională.
- Orice formulă propozițională are un număr par de paranteze.
- Orice formulă propozițională din $LP_{\wedge,\vee}$ are un număr impar de simboluri.
- Dacă arborele de sintaxă abstractă a unei formule propoziționale are un număr par de noduri, atunci formula conține cel puțin o negație.
- Există formule propozitionale cu un arbore abstract de sintaxă cu 0 noduri.
- Numărul de subformule ale unei formule este egal cu numărul de noduri din arborele de sintaxă abstractă al formulei.
- Înălțimea arborelui de sintaxă abstractă al unei formule este mai mică sau egală cu numărul de conectori din formulă.
- Numărul de noduri ale arborelui unei formule poate fi egal cu înălțimea arborelui formulei.
- Conectorul principal al formule $(\neg p \lor q)$ este negația.
- Conectorul principal al formule $((\neg p \land q) \lor q)$ este conjuncția.
- Conectorul principal al formule $\neg((\neg p \land q) \lor q)$ este negația.
- Următoarele cuvinte sunt formule din $LP_{\neg,\wedge,\vee}$: $(\neg p)$, $(\neg \neg p)$, p+q, $p\cdot q$, $(p\wedge q)$, $\neg(\neg p)$, $\neg\neg q$, $(\neg p)\vee q$, $(\neg p\vee q)$, $(\neg p\vee q)$, $(\neg p\vee q)$, $(\neg p\vee q)$, (q), $\neg\neg\neg$, $\vee(p,q)$.

• Semantica Logicii Propoziționale

- Negația oricărei tautologii este o tautologie.
- Negația oricărei contingențe (formulă satisfiabilă dar nevalidă) este o contingență.
- Negația unei formule este nesatisfiabilă.
- Dacă φ este nesatisfiabilă, atunci $\varphi \vee \psi$ este nesatisfiabilă.
- Dacă φ este tautologie, atunci $\neg \varphi \lor \psi$ este nesatisfiabilă.
- Dacă φ_1 și φ_2 sunt tautologii, atunci $\varphi_1 \wedge \varphi_2$ este tautologie.
- Dacă φ_1 și φ_2 sunt tautologii, atunci $\neg \varphi_1 \wedge \varphi_2$ este satisfiabilă.
- Orice tautologie este satisfiabilă.
- Orice formulă satisfiabilă este și tautologie.
- Negația oricărei contradicții este o tautologie.
- Negația unei formule satisfiabile este nesatisfiabilă.
- Nu există formule nevalide care să fie satisfiabile.
- Orice variabilă propozitională, văzută ca formulă, este satisfiabilă.

- Orice tautologie este consecință semantică din mulțimea vidă de formule.
- Orice tautologie este consecință semantică a oricărei formule satisfiabile.
- Orice formula satisfiabilă este consecință semantică a oricărei tautologii.
- Orice formulă este o consecintă semantică a oricărei formule nesatisfiabile.
- Disjuncția a două formule satisfiabile este o formulă satisfiabilă.
- Conjunctia a două tautologii este tautologie.
- Dacă o formulă este consecință semantică a unei tautologii, atunci formula este și ea tautologie.
- Nicio formulă nu este consecintă semantică a unei contradictii.
- O formulă nesatisfiabilă este echivalentă doar cu alte formule nesatisfiabile.
- Dacă $\varphi_1 \equiv \varphi_2$ și φ_1 este consecință semantică a unei mulțimi de formule Γ, atunci sigur Γ $\models \varphi_2$.
- O contingență poate fi echivalentă cu o formulă validă.
- Dacă $\varphi_1 \equiv \varphi_2$, atunci $\varphi_1 \models \varphi_2$.
- Dacă $\varphi_1 \models \varphi_2$ și $\varphi_1 \models \varphi_2$ și $\varphi_2 \models \varphi_1$, atunci φ_1 și φ_2 sunt contradicții.
- Dacă φ_1 este tautologie, atunci $\varphi_1 \to \varphi_2$ este tautologie.
- Dacă φ_1 este satisfiabilă, atunci $\varphi_1 \to \varphi_2$ este tautologie.
- Dacă φ_2 este tautologie, atunci $\varphi_1 \to \varphi_2$ este tautologie.
- Dacă φ_2 este satisfiabilă, atunci $\varphi_1 \to \varphi_2$ este tautologie.
- Dacă $\varphi_1 \models \varphi_2$ și $\neg \varphi_3 \models \neg \varphi_2$, atunci $\varphi_1 \models \varphi_2$.
- O formulă este validă ddacă este consecință semantică din multimea vidă de formule.
- Dacă $\models \varphi_1 \rightarrow \varphi_2$, atunci $\models \neg \varphi_2 \rightarrow \neg \varphi_1$.
- Dacă $\varphi_1 \models \neg \varphi_2$ și $\varphi_2 \models \neg \varphi_1$, atunci $\varphi_1 \equiv \varphi_2$.
- Dacă $\Gamma \models \varphi_1$ și $\Gamma \models \neg \varphi_1$, atunci $\Gamma \models \bot$.
- Dacă $\varphi_1 \models \neg \varphi_1$, atunci φ_1 este o contradicție.
- Dacă $\neg \varphi_1 \models \varphi_1$, atunci φ_1 este o contradicție.
- Există o formulă satisfiabilă φ astfel încât $\varphi \models \bot$.
- Dacă φ este tautologie și $\Gamma \cup \{\varphi\} \models \varphi'$, atunci $\Gamma \models \varphi'$.
- Dacă $\Gamma \cup \{\varphi\} \models \varphi'$ și $\Gamma \models \varphi'$, atunci φ este o tautologie.

• Sintaxă și Semantică

- Orice formulă propozițională este echivalentă cu o formulă care conține cel mult o negație pe orice drum de la o frunză la rădăcină în arborele de sintaxă abstractă.
- Dacă $\varphi_1 \equiv \varphi_2$, atunci $\varphi_1 = \varphi_2$.
- Orice formulă nesatisfiabilă are cel puțin 6 simboluri.
- Orice tautologie are cel putin 6 simboluri.
- Orice contradicție este negația unei tautologii.
- Orice contradicție este echivalentă negația unei tautologii.
- Orice formulă din $LP_{\neg,\wedge,\vee}$ care nu conține simbolul \neg este validă.
- Orice formulă din $LP_{\wedge,\vee}$ este satisfiabilă.
- Logica $LP_{\neg,\perp}$ este la fel de expresivă precum $LP_{\wedge,\vee}$.
- Orice contradicție din logica $LP_{\neg, \land, \lor}$ conține cel puțin un conector \land .

- Orice contradicție din logica $LP_{\neg, \land, \lor}$ conține cel puțin un conector \neg .
- Orice contradicție din logica $LP_{\neg, \wedge, \vee}$ conține cel puțin un conector \vee .
- Logica $LP_{\wedge,\rightarrow}$ este la fel de expresivă ca logica $LP_{\vee,\neg}$.
- Fie conectorul binar X cu următoarea semantică: $\hat{\tau}(\varphi_1 \mathsf{X} \varphi_2) = \overline{\hat{\tau}(\varphi_1) \cdot \hat{\tau}(\varphi_2)}$. Logica LP_X este la fel de expresivă ca $LP_{\neg, \land, \lor}$.
- Fie conectorul binar 0 cu următoarea semantică: $\hat{\tau}(\varphi_1 0 \varphi_2) = \overline{\hat{\tau}(\varphi_1) + \hat{\tau}(\varphi_2)}$. Logica LP_0 este echiexpresivă cu $LP_{\neg, \land, \lor}$.
- Logica $LP_{\neg, \land, \lor}$ este la fel de expresivă ca logica $LP_{\leftrightarrow, \bot}$.

• Deductia Naturală

- Arătați că ¬¬e și LEM sunt derivabile una din cealaltă (celelalte 13 reguli de inferență pot fi folosite).
- Arătați că regula LEM este echivalentă (fiecare poate fi derivată din cealaltă, plus celelalte 13 reguli) cu oricare dintre următoarele reguli derivate:

PEIRCE
$$\frac{10}{((\varphi_1 \to \varphi_2) \to \varphi_1) \to \varphi_1}$$

$$\frac{10}{(\varphi_1 \to \varphi_2) \to (\neg \varphi_1 \lor \varphi_2)}$$

- Există o derivare prin deducție naturală a secvenței $\neg\neg(p \lor \neg p)$ care nu folosește regula $\neg\neg e$
- Orice derivare a secvenței $\vdash p \lor q$ folosește cel puțin o dată regula $\neg \neg e$.
- Seventa $\vdash p \land \neg p$ este derivabilă.
- Dacă $\varphi_1 \vdash \varphi_2$ și $\varphi_2 \vdash \varphi_1$ sunt secvențe derivabile, atunci $\varphi_1 \equiv \varphi_2$.
- Dacă $\Gamma \vdash \varphi$ și $\varphi \equiv \varphi'$, atunci $\Gamma \vdash \varphi'$.
- Dacă $\Gamma \models \varphi$ și secvența $\Gamma \vdash \neg \varphi$ este validă, atunci φ este o contradicție.
- Dacă $\Gamma \vdash \varphi_1$ și $\models \varphi_2 \rightarrow \varphi_2$, atunci $\Gamma \vdash \varphi_2$.
- Dacă $\varphi_1 \vdash \bot$, atunci φ_1 este nesatisfiabilă.
- Dacă $\varphi_1 \in LP_{\wedge,\vee,\neg}$ și $\varphi_2 \in LP_{\to,\perp}$ astfel încât $\varphi_1 \equiv \varphi_2$, atunci nu e obligatoriu ca $\varphi_1 \vdash \varphi_2$.
- Dacă $\varphi_1 \in LP_{\wedge,\vee,\neg}$ și $\varphi_2 \in LP_{\to,\perp}$ astfel încât $\varphi_1 \equiv \varphi_2$, atunci nu e obligatoriu ca $\varphi_1 \vdash \varphi_2$.
- Noțiunile de secvență validă și formulă validă sunt similare.
- Arătați că următoarele secvențe sunt valide:
 - * $\{((p \land q) \land r)\} \vdash (q \land r);$
 - * $\{((p \land q) \land r), r'\} \vdash (r' \land q);$
 - * $\{((p \land q) \land r)\} \vdash (r \land (q \land p));$
 - * $\{((p \land q) \rightarrow r), p, q\} \vdash r;$
 - * $\{(p \rightarrow r), p, q\} \vdash (q \land r);$
 - * $\{((p \land q) \rightarrow r), p, q\} \vdash r;$
 - * $\{((p \land q) \rightarrow r)\} \vdash (p \rightarrow (q \rightarrow r));$
 - $* \ \{(\mathtt{p} \! \rightarrow \! (\mathtt{q} \! \rightarrow \! \mathtt{r}))\} \vdash ((\mathtt{p} \wedge \mathtt{q}) \! \rightarrow \! \mathtt{r});$

```
 \begin{split} * & \{ (p \land q) \} \vdash (r \lor p); \\ * & \{ (p \lor q), (p \to r), (q \to r) \} \vdash r; \\ * & \{ (p \to r), (q \to r) \} \vdash ((p \lor q) \to r); \\ * & \{ (p \lor q) \} \vdash \neg (\neg p \land \neg q); \\ * & \{ (p \land q) \} \vdash \neg (\neg p \lor \neg q); \\ * & \{ (\neg p \lor \neg q) \} \vdash \neg (p \land q); \\ * & \{ (\neg p \land \neg q) \} \vdash (\neg p \land \neg q); \\ * & \{ \neg (p \lor q) \} \vdash (\neg p \land \neg q); \\ * & \{ \neg (p \lor q) \} \vdash (p \land q); \\ * & \{ \neg (\neg p \lor \neg q) \} \vdash (p \land q); \\ * & \{ \neg (\neg p \land \neg q) \} \vdash (p \lor q). \end{split}
```

• Forme Normale

- Orice formulă în FNC este satisfiabilă.
- Orice formulă în FND este satisfiabilă.
- Orice formulă în FNC este validă.
- Orice formulă în FND este validă.
- Dacă o formulă este în FNC, este trivial să verificăm dacă este sau nu validă.
- Dacă o formulă este în FND, este trivial să verificăm dacă este sau nu satisfiabilă.
- O formulă este în FNN (engleză: negation normal form) dacă singurele ei subformule de forma $\neg \varphi$ sunt literali, adică $\varphi \in A$. Găsiți un algoritm pentru a găsi o FNN pentru orice formulă dată la intrare.
- Disjunctia este asociativă.
- Conjuncția este asociativă.
- Disjunctia este comutativă.
- Conjunctia este comutativă.
- Implicatia este asociativă.
- Dubla implicație este asociativă.
- Implicația este comutativă.
- Dubla implicație este comutativă.
- Disjuncția/conjuncția/implicația/dubla implicație este distribuitivă față de disjuncție/conjuncție/implicație/d implicație.

• Rezoluție

- Dacă $\varphi_1, \ldots, \varphi_n, \varphi$ sunt clauze și $\varphi_1, \ldots, \varphi_n \models \varphi$, atunci φ poate fi obținută prin rezolutie din $\varphi_1, \ldots, \varphi_n$.
- Dacă $\varphi_1, \ldots, \varphi_n, \varphi$ sunt clauze și φ poate fi obținută prin rezoluție din $\varphi_1, \ldots, \varphi_n$, atunci φ este o contradictie.
- Dacă $\varphi_1, \ldots, \varphi_n, \varphi$ sunt clauze și φ poate fi obținută prin rezoluție din $\varphi_1, \ldots, \varphi_n$, atunci $\{\varphi_1, \ldots, \varphi_n\}$ este inconsistentă.
- Dacă $\varphi_1, \ldots, \varphi_n, \varphi$ sunt literali și $\varphi_1, \ldots, \varphi_n \models \varphi$, atunci φ poate fi obținută prin rezoluție din $\varphi_1, \ldots, \varphi_n$.
- Dacă φ este o formulă în FND, atunci φ^c este în FNC.
- Dacă φ este o formulă în FND, atunci φ este nesatisfiabilă dacă clauza vidă se poate obține prin rezoluție din clauzele formulei φ^c .

- Dacă $\models \varphi_1 \rightarrow p$, atunci p se poate obține prin rezoluție pornind de la FNC-ul formulei φ_1 .
- FNC-ul unei formule poate fi exponențial mai mare decât formula.
- În schimb, FND-ul unei formule nu este cu mult mai mare decât formula.
- FNC-ul unei formule valide conține doar clauze care sunt tautologii.
- Dacă ipotezele regulii de rezoluție binară sunt tautologii, și concluzia este tautologie.
- Dacă ipotezele regulii de rezoluție binară sunt satisfiabile, și concluzia este satisfiabilă.
- În contextul rezoluției, formulele $p \vee q$ și $p \wedge q$ sunt amândouă notate cu $\{p,q\}$.
- Demonstrați, folosind rezoluția, că următoarele formule sunt valide:
 - $* p \rightarrow p;$
 - $* \ (p \wedge q) \mathop{\rightarrow} (p \vee q);$
 - $* (p \rightarrow q) \leftrightarrow (\neg p \rightarrow \neg q).$
- Demonstrați, folosind rezoluția, consecințele semantice aferente secvențelor din secțiunea dedicată deducției naturale.