第十二次书面作业参考答案

1 补充教材

3. (1) (大 M 法) $z' = -z, x_4 = x_5 - x_6$, 松弛变量 x_7, x_8 , 人工变量 x_9, x_{10}, M 充分大,标准形式为:

$$\begin{split} z' &= max[x_1 - 2x_2 + 3x_3 - 2x_5 + 2x_6 - Mx_9 - Mx_{10}] \\ \textbf{subject to:} 4x_1 - x_2 + 2x_3 - (x_5 - x_6) + x_9 &= -2 \\ x_1 + x_2 - x_3 + 2(x_5 - x_6) + x_7 &= 14 \\ -2x_1 + 3x_2 + x_3 - (x_5 - x_6) - x_8 + x_{10} &= 2 \\ x_1, x_2, x_3, x_5, x_6, x_7, x_8, x_9, x_{10} &\geq 0 \end{split}$$

单纯形表为:

	c_{j}		1	-2	3	-2	2	0	0	-M	-M	θ
c_B	x_B	\boldsymbol{b}	x_1	x_2	x_3	x_5	x_6	x_7	x_8	x_9	x_{10}	
-M	x_9	2	-4	1	-2	1	-1	0	0	1	0	2
0	x_7	14	1	1	-2	2	-2	1	0	0	0	14
-M	x_{10}	2	-2	[3]	1	-1	1	0	-1	0	1	$\frac{2}{3}$
	σ_j		1-6M	-2+4M	3-M	-2	2	0	-M	0	0	

表 1: 3(1) 的单纯形表

(2) (消元法) (也可以用大 M 法): $x_1' = -x_1$ (仍用 x_1 表示), $x_3 = x_4 - x_5$,

松弛变量 x₆,标准形式为:

$$z = max[-x_1 - 3x_2 + 2x_4 - x_5]$$
subject to: $x_1 + x_2 + x_4 - x_5 = 4$

$$2x_1 + x_2 - x_4 + x_5 + x_6 = 6$$

$$x_1, x_2, x_4, x_5, x_6 \ge 0$$

$$\updownarrow$$
subject to: $x_1 + x_2 + x_4 - x_5 = 4$

$$3x_1 + 2x_2 + x_6 = 10$$

$$x_1, x_2, x_4, x_5, x_6 \ge 0$$

单纯形表为:

	c_{j}		-1	-3	2	-2	0	θ
c_B	x_B	\boldsymbol{b}	x_1	x_2	x_4	x_5	x_6	
2	x_4	4	-1	[1]	1	-1	0	4
0	x_6	10	3	2	0	0	1	5
	σ_j	•	-3	5	0	0	0	

表 2: 3(1) 的单纯形表

4(2). 注意到 $\{x_1, x_2\}$ 不能作为一组基解,因此考虑以下 5 种情况: $(1)\{x_1, x_3\}$ 是一组基解

$$z = \begin{pmatrix} \frac{2}{5} \\ 0 \\ \frac{11}{5} \\ 0 \end{pmatrix}, z = -\frac{27}{5}$$
基可行解

 $(2)\{x_1,x_4\}$ 是一组基解

$$z = \begin{pmatrix} \frac{10}{3} \\ 0 \\ 0 \\ \frac{11}{6} \end{pmatrix}, z = 21$$
基可行解

 $(3)\{x_2,x_3\}$ 是一组基解

$$z = \begin{pmatrix} 0 \\ \frac{1}{5} \\ \frac{11}{5} \\ 0 \end{pmatrix}, z = -\frac{31}{5}$$
最优解

 $(4)\{x_2,x_4\}$ 是一组基解

$$z = \begin{pmatrix} 0 \\ \frac{5}{3} \\ 0 \\ \frac{11}{6} \end{pmatrix}, z = \frac{43}{3}$$
 基可行解

 $(5)\{x_3,x_4\}$ 是一组基解

$$z = \begin{pmatrix} 0 \\ 0 \\ \frac{5}{2} \\ -\frac{1}{4} \end{pmatrix}, 不是基可行解$$

5.(1).*x*₃, *x*₄ 为松弛变量,标准形式为:

$$z = max[2x_1 + 3x_2 + 0x_3 + 0x_4]$$
 subject to: $2x_1 + x_2 + x_3 = 8$
$$x_1 + 2x_2 + x_4 = 7$$

$$x_1, x_2, x_3, x_4 \ge 0$$

单纯形表为:换入 x_2 (σ_j 中最大的),换出 x_4 (\boldsymbol{b} 除以 x_2 这一列得到的 θ 的非负值中最小的),得到新的单纯形表,依次进行直至 σ_j 都小于等于 0:

最优解:
$$x = \begin{pmatrix} 3 \\ 2 \\ 0 \\ 0 \end{pmatrix}$$
, $z = 12$

	c_{j}		2	3	0	0	θ
c_B	x_B	b	x_1	x_2	x_3	x_4	
0	x_3	8	2	1	1	0	8
0	x_4	7	1	[2]	0	1	$\frac{7}{2}$
	σ_{j}		2	3	0	0	

表 3: 5(1) 的单纯形表 1

	c_{j}		2	3	0	0	θ
c_B	x_B	b	x_1	x_2	x_3	x_4	
0	x_3	$\frac{9}{2}$	$\left[\frac{3}{2}\right]$	0	1	$-\frac{1}{2}$	3
3	x_2	$\frac{7}{2}$	$\frac{1}{2}$	1	0	$\frac{1}{2}$	7
	σ_{j}		$\frac{1}{2}$	0	0	$-\frac{3}{2}$	

表 4: 5(1) 的单纯形表 2

	c_{j}		2	3	0	0	θ
c_B	x_B	b	x_1	x_2	x_3	x_4	
2	x_3	3	1	0	$\frac{2}{3}$	$-\frac{1}{3}$	
3	x_4	2	0	1	$-\frac{1}{3}$	1	
	σ_{j}		0	0	$-\frac{1}{3}$	$-\frac{4}{3}$	

表 5: 5(1) 的单纯形表 3

$(2).x_4, x_5, x_6$ 为松弛变量,标准形式为:

$$z = max[3x_1 - 2x_2 + 5x_3 + 0x_4 + 0x_5 + 0x_6]$$
 subject to: $3x_1 + 2x_3 + x_4 = 13$
$$x_2 + 3x_3 + x_5 = 17$$

$$2x_1 + 2x_2 + x_3 + x_6 = 13$$

$$x_1, x_2, x_3, x_4, x_5, x_6 \ge 0$$

单纯形表为: 最优解:
$$x = \begin{pmatrix} \frac{5}{9} \\ 0 \\ \frac{17}{3} \\ 0 \\ 0 \\ \frac{56}{9} \end{pmatrix}$$
 , $z = 30$

	c_{j}		3	-2	5	0	0	0	θ
c_B	x_B	b	x_1	x_2	x_3	x_4	x_5	x_6	
0	x_4	13	3	0	2	1	0	0	$\frac{13}{2}$
0	x_5	17	0	1	[3]	0	1	0	$\frac{17}{3}$
0	x_6	13	2	1	1	0	0	1	13
	σ_j		3	-2	5	0	0	0	

表 6: 5(2) 的单纯形表 1

	c_{j}		3	-2	5	0	0	0	θ
c_B	x_B	\boldsymbol{b}	x_1	x_2	x_3	x_4	x_5	x_6	
0	x_4	$\frac{5}{3}$	[3]	$-\frac{2}{3}$	0	1	$-\frac{2}{3}$	0	$\frac{5}{9}$
5	x_3	$\frac{17}{3}$	0	$\frac{1}{3}$	1	0	$\frac{1}{3}$	0	∞
0	x_6	$\frac{22}{3}$	2	$\frac{2}{3}$	0	0	$-\frac{1}{3}$	1	$\frac{11}{3}$
	σ_{j}		3	$-\frac{11}{3}$	0	0	$-\frac{5}{3}$	0	

表 7: 5(2) 的单纯形表 2

	c_{j}		3	-2	5	0	0	0	θ
c_B	x_B	\boldsymbol{b}	x_1	x_2	x_3	x_4	x_5	x_6	
3	x_1	$\frac{5}{9}$	1	$-\frac{2}{9}$	0	$-\frac{1}{3}$	$-\frac{2}{9}$	0	
5	x_3	$\frac{17}{3}$	0	$\frac{1}{3}$	1	0	$\frac{1}{3}$	0	
0	x_6	$\frac{56}{9}$	0	$\frac{10}{9}$	0	$-\frac{2}{3}$	$\frac{1}{9}$	1	
	σ_j		0	-3	0	-1	-1	0	

表 8: 5(2) 的单纯形表 3

6(1).1. 大 M 法: $z' = -z, x_3, x_4$ 为松弛变量, x_5, x_6 为人工变量, 标准形式为:

$$z' = max[-3x_1 + x_2 + 0x_3 + 0x_4 - Mx_5 - Mx_6]$$
 subject to: $3x_1 + x_2 - x_3 + x_5 = 3$
$$2x_1 - 3x_2 - x_4 + x_6 = 1$$

$$x_1, x_2, x_3, x_4, x_5, x_6 \ge 0$$

单纯形表为:

	c_{j}		-3	1	0	0	-M	-M	θ
c_B	x_B	b	x_1	x_2	x_3	x_4	x_5	x_6	
-M	x_5	3	3	1	-1	0	1	0	1
-M	x_6	1	[2]	-3	0	-1	0	1	$\frac{1}{2}$
	σ_j		-3+5M	1-2M	-M	-M	0	0	

表 9: 6(1) 的单纯形表 1

	c_{j}		-3	1	0	0	-M	-M	θ
c_B	x_B	b	x_1	x_2	x_3	x_4	x_5	x_6	
-M	x_5	$\frac{3}{2}$	0	$\left[\frac{11}{2}\right]$	-1	$\frac{3}{2}$	1	$-\frac{3}{2}$	$\frac{3}{11}$
-3	x_1	$\frac{1}{2}$	1	$-\frac{3}{2}$	0	$-\frac{1}{2}$	0	$\frac{1}{2}$	$-\frac{1}{3}$
	σ_j		0	$\frac{11}{2}M-\frac{7}{2}$	-M	$\frac{3}{2}M - \frac{3}{2}$	0	$-\frac{5}{2}M + \frac{3}{2}$	

表 10: 6(1) 的单纯形表 2

	c_{j}			1	0	0	-M	-M	θ
c_B	x_B	\boldsymbol{b}	x_1	x_2	x_3	x_4	x_5	x_6	
1	x_2	$\frac{3}{11}$	0	1	$-\frac{2}{11}$	$\frac{3}{11}$	$\frac{2}{11}$	$-\frac{3}{11}$	
-3	x_1	$\frac{10}{11}$	1	0	$-\frac{3}{11}$	$-\frac{1}{11}$	$\frac{3}{11}$	$\frac{1}{11}$	
	σ_{j}		0	0	$-\frac{7}{11}$	$-\frac{6}{11}$	$-M + \frac{7}{11}$	$-M + \frac{6}{11}$	

表 11: 6(1) 的单纯形表 3

最优解:
$$x = \begin{pmatrix} \frac{10}{11} \\ \frac{3}{11} \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$
, $\max z' = -\frac{27}{11}$, $\min z = \frac{27}{11}$

2. 二阶段法: 第一阶段 (tables 12 to 14): 标准形式为:

$$z'=max[-x_5-x_6]$$
 subject to: $3x_1+x_2-x_3+x_5=3$ $2x_1-3x_2-x_4+x_6=1$ $x_1,x_2,x_3,x_4,x_5,x_6\geq 0$

单纯形表为:

	c_{j}			0	0	0	-1	-1	θ
c_B	x_B	b	x_1	x_2	x_3	x_4	x_5	x_6	
-1	x_5	3	3	1	-1	0	1	0	1
-1	x_6	1	[2]	-3	0	-1	0	1	$\frac{1}{2}$
	σ_{j}			-2	-1	-1	0	0	

表 12: 6(1) 的单纯形表 4

c_j			-3	1	0	0	-1	-1	θ
c_B	x_B	b	x_1	x_2	x_3	x_4	x_5	x_6	
-1	x_5	$\frac{3}{2}$	0	$\left[\frac{11}{2}\right]$	-1	$\frac{3}{2}$	1	$-\frac{3}{2}$	$\frac{3}{11}$
0	x_1	$\frac{1}{2}$	1	$-\frac{3}{2}$	0	$-\frac{1}{2}$	0	$\frac{1}{2}$	$-\frac{1}{3}$
σ_{j}			0	$\frac{11}{2}$	-1	$\frac{3}{2}$	0	$-\frac{5}{2}$	

表 13: 6(1) 的单纯形表 5

第二阶段 (table 15):

c_{j}			-3	1	0	0	-1	-1	θ
c_B	x_B	\boldsymbol{b}	x_1	x_2	x_3	x_4	x_5	x_6	
0	x_2	$\frac{3}{11}$	0	1	$-\frac{2}{11}$	$\frac{3}{11}$	$\frac{2}{11}$	$-\frac{3}{11}$	
0	x_1	$\frac{10}{11}$	1	0	$-\frac{3}{11}$	$-\frac{1}{11}$	$\frac{3}{11}$	$\frac{1}{11}$	
	σ_j		0	0	0	0	-1	-1	

表 14: 6(1) 的单纯形表 6

	c_{j}		c_j -3		1	0	0	
c_B	x_B	\boldsymbol{b}	x_1	x_2	x_3	x_4		
1	x_2	$\frac{3}{11}$	0	1	$-\frac{2}{11}$	$\frac{3}{11}$		
-3	x_1	$\frac{10}{11}$	1	0	$-\frac{3}{11}$	$-\frac{1}{11}$		
	σ_{j}		0	0	$-\frac{7}{11}$	$-\frac{6}{11}$		

表 15: 6(1) 的单纯形表 7

最优解:
$$x = \begin{pmatrix} \frac{10}{11} \\ \frac{3}{11} \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$
, $\max z' = -\frac{27}{11}$, $\min z = \frac{27}{11}$

- 8. 黄金分割法:1.9737; 斐波那契法: 2.0952
- 9. 关于最速下降法相邻两步搜索方向垂直: 设第 k 步搜索方向为 p_k , 考虑第 k 步确定 x_{k+1} 的精确一维搜索: $\min_{\lambda \in [0,\infty]} x_k + \lambda p_k$, 对 λ 求导,则理论上要找的 λ^* 应满足: $\nabla f(x_k + \lambda^* p_k) \cdot p_k = 0$,而 $p_{k+1} = \nabla f(x_{k+1}) = \nabla f(x_k + \lambda^* p_k)$,这也就证明了该结论。

最速下降法:
$$x_1 \approx \begin{pmatrix} 0.8571 \\ -1.7143 \\ -0.8571 \end{pmatrix}, x_2 \approx \begin{pmatrix} 0.6636 \\ -1.6175 \\ -1.2442 \end{pmatrix}, x_3 \approx \begin{pmatrix} 0.8438 \\ -1.6785 \\ -1.3496 \end{pmatrix}$$

牛顿迭代法;
$$x_1 = \begin{pmatrix} 1 \\ -1.5 \\ -1.5 \end{pmatrix}$$