SPICE Problem Set#2

p-n Junction Diode

At 300 K assume

 E_g =1.12 eV, N_C = 2.8x10¹⁹/cm³, N_V =10¹⁹/cm³, μ_n =1500 cm²/V-s, μ_p = 500 cm²/V-s, $\varepsilon_{r,Si}$ =11.9, τ_n = τ_p =1 μ s for Si,

 E_q =0.66 eV, N_C = 1x10¹⁹/cm³, N_V =6x10¹⁸/cm³, μ_n =3900 cm²/V-s, μ_p = 1900 cm²/V-s, $\varepsilon_{r,Ge}$ =16, τ_n = τ_p =1 μ s for Ge,

 E_g =1.42 eV, N_C = 4.7x10¹⁷/cm³, N_V =7x10¹⁸/cm³, μ_n =8500 cm²/V-s, μ_p = 400 cm²/V-s, $\varepsilon_{r,GaAs}$ =13.1, τ_n = τ_p =0.1 μ s for GaAs, and kT=0.0259 eV, ε_0 =8.85x10⁻¹⁴ F/cm.

Diode cross-sectional area $A=1~\mu m^2$, p-sided acceptor doping as $N_A=10^{18}$ /cm³ and n-sided donor doping as $N_D=10^{16}$ /cm³.

Q1. Separately implement Si, Ge and GaAs p-n junction diodes with a voltage dependent current source as

$$I = I_0 \left(\exp \left(\frac{V}{\eta_1 V_T} \right) - 1 \right) \quad \text{with} \quad \eta_1 = 1. \quad \text{Use} \quad I_0 \quad \text{as} \qquad \qquad I_0 = q A \left(\frac{D_p \, p_{n0}}{L_p} + \frac{D_n n_{p0}}{L_n} \right) \quad , \qquad L_n = \sqrt{D_n \tau_n} \quad , \qquad L_n =$$

For all three diodes, plot current I as a function of voltage V varying from 0 to 0.75 V in a semilog axis (linear x-axis and logarithmic y-axis) for T=300K. Estimate the values of the parameters I_0 from the plot and check if the values match well with the ones used in the simulation. Also plot the I-V characteristics of these diodes for T=200 K and T=400 K.

- **Q2.** Simulate Full Wave Bridge rectifier circuits with (a) Ge, (b) Si and (c) GaAs p-n diodes and 1 k Ω load resistances. Apply (i) 10 V p-p, (ii) 100 V p-p input sine waves at 50 Hz. Observe the output waveforms in time domian when (i) T = 300 K, (ii) 400 K and (iii) 500 K. Under what kind of input voltages and temperatures, will you use Ge, Si or GaAs diodes in this rectification purpose?
- **Q3.** Implement a Si p-n junction diode with voltage dependent current source as

$$I = I_0 \big(\exp\big(\frac{V}{\eta_1 V_T}\big) - 1 \big) + I_{0r} \big(\exp\big(\frac{V}{\eta_2 V_T}\big) - 1 \big) \quad \text{with } \eta_1 = 1 \text{ and } \eta_2 = 2. \text{ Find } I_0 \text{ following the expression in } Q1 = 1 \big)$$

and use I_{0r} as $I_{0r} = \frac{qAn_iW}{2\tau}$ with W as the space charge width and $\tau = \tau_p = \tau_n$.

Plot current I as a function of voltage V varying from 0 to 0.75 V in a semilog axis at T=300 K. Estimate the values of the parameters I_0 and I_{0r} from the combined plot and check if these values match with the ones used in the simulation. Repeat this problem for Ge and GaAs p-n junction diodes and compare the I-V characteristics.

Q4. Add a series resistor $R=10~m\Omega$ in the diode implementation of **Q3** so that the current equation becomes implicit as

$$I = I_0 \left(\exp\left(\frac{V - IR}{\eta_1 V_T} \right) - 1 \right) + I_{0r} \left(\exp\left(\frac{V - IR}{\eta_2 V_T} \right) - 1 \right)$$
 . Use the parameter values obtained in **Q3**. Plot current I as

a function of voltage V varying from 0 to 0.75 V in a semilog axis at T=300 K for a Si p-n diode. Vary the resistance values from 1 m Ω to 10 Ω and show the difference in the plots.

Q5. For a Si p-n diode, implement the charging current $\frac{dQ_j}{dt}$ in parallel with the current source given in **Q1**

where Q_j is obtained as $Q_j = \int_0^V C_j dV = \int_0^V \left(\frac{C_{j0}}{\sqrt{1 - \frac{V}{V_{bi}}}}\right) dV$. Run a fixed frequency AC simulation at f=2

MHz to find out the Y-parameter and plot the junction capacitance versus voltage varying from -2 V to 0.75 V. Also plot $1/C_j^2$ versus V to extract the parameters C_{j0} and V_{bi} and check if they match with the calculated values.

Q6. From the simulation of **Q5**, plot the conductance versus current for a Si p-n diode. If the current source expression in **Q5** is taken from **Q4** with R=1 Ω , plot the conductance versus current and compare with the previous plot. If one varies R from 1 m Ω to 10 Ω , how this conductance plot changes?

Q7. In the problem of Q5 for a Si p-n diode, implement one additional parallel charging current component as

 $\frac{dQ_{diff}}{dt}$ where $Q_{diff} = I \tau$ with $\tau = \tau_p = \tau_n$. Now run a fixed frequency AC simulation at f=2 MHz to find out

the Y-parameter and plot the junction capacitance versus voltage for voltage varying from -2 V to 0.75 V. Compare this plot with the one obtained from $\mathbf{Q5}$. Plot the diffusion and junction capacitance components separately.