Semaine n° 8: du 4 novembre au 8 novembre

Lundi 4 novembre

- Cours à préparer : Chapitre IX Calcul matriciel
 - Partie 1.1 : Somme de deux matrices; produit par un scalaire; produit matriciel.
 - Partie 1.2 : Puissances d'une matrice carrée ; formule du binôme de Newton.
 - Partie 1.3: Matrices carrées inversibles.
- Exercices à rendre en fin de TD (liste non exhaustive)
 - Feuille d'exercices nº 7 : exercices 1, 2, 3, 4, 5, 8.

Mardi 5 novembre

- Cours à préparer : Chapitre IX Calcul matriciel
 - Partie 1.4: Matrices élémentaires; produit de matrices élémentaires; opérations élémentaires sur les lignes et les colonnes d'une matrice, matrices d'opérations élémentaires.
 - Partie 1.5: Transposée d'une matrice; matrice symétrique, matrice antisymétrique.
- Exercices à corriger en classe
 - Feuille d'exercices nº 7 : exercices 6, 7.

Jeudi 7 novembre

- Cours à préparer : Chapitre IX Calcul matriciel
 - Partie 1.6 : Inversibilité des matrices triangulaires.
 - Partie 2 : Matrice associée à un système linéaire ; cas d'une matrice inversible.
- Exercices à corriger en classe
 - Feuille d'exercices nº 8 : exercices 1, 4, 5.

Vendredi 8 novembre

- Cours à préparer : Chapitre X Relations d'ordre et d'équivalence
 - Partie 1: Relation binaire; relation binaire réflexive, transitive, symétrique, antisymétrique.
- Exercices à corriger en classe
 - Feuille d'exercices nº 8 : exercice 10.

Échauffements

Mardi 5 novembre

• Déterminer, sans aucun calcul d'intégrale, une primitive des fonctions suivantes :

 $-t \mapsto te^{-t^{2}}$ $-t \mapsto \frac{t^{3}}{1+t^{4}}$ $-t \mapsto \tan^{2} t$ $-t \mapsto \tan^{3} t$ $-t \mapsto \frac{1}{\cos^{2} t \sqrt{\tan t}}$

ullet Cocher toutes les assertions vraies : Soit A, B et C trois ensembles.

 $\Box (A \cap B) \cup C = A \cap (B \cup C);$ $\Box A \cap B \cup C = A \cap B \cup A \cap C;$ $\Box \ (A \cap B) \cup C = (A \cup C) \cap (B \cup C).$

Jeudi 7 novembre

• Soit l'application $f: \mathbb{R} \longrightarrow \mathbb{R}$ Déterminer $f([-4,5]), f^{-1}([-3,0]), f^{-1}(\{-4\})$ et $f^{-1}(\{-2\}).$

 \bullet Cocher toutes les assertions vraies : Soit A et B deux ensembles.

 $\Box \ \operatorname{Si} \ A \subset B, \ \mathscr{P}(A) \subset \mathscr{P}(B) \, ;$ $\Box \ \operatorname{Si} \ A \subset B, \ A \in \mathscr{P}(B) \, ;$ \square Si $x \in A$, $x \in \mathscr{P}(A)$;

 $\Box A \subset \mathscr{P}(A)$.

Vendredi 8 novembre

• Soit $C = \begin{pmatrix} 1 & 3 \\ 1 & -2 \end{pmatrix}$. Calculer C^3 et C^{-1} .

• Cocher toutes les assertions vraies : Soit E, F, G trois ensembles, et $f: E \to F$ et $g: F \to G$. Alors,

 \square si f est injective, $g\circ f$ aussi ;

 \square si $g \circ f$ est surjective, f aussi;

 \square si $g \circ f$ est injective, f aussi;

 \square si $g \circ f$ est bijective, f et g aussi.

 \square si f et g sont surjectives, $g \circ f$ aussi;