Foundations of Data Science, Fall 2020

11a. Multiclass Classification, Measuring Performance

Prof. Dan Olteanu

Dast Data (Systems+Theory)

Nov 6, 2020

https://lms.uzh.ch/url/RepositoryEntry/16830890400

Multiclass Classification

Number of classes: C > 2

In practice, one of the following approaches is common

One-vs-One:

- Train (^C₂) different classifiers for all pairs of classes
- · For new input: Choose the most common classification for the classifiers

One-vs-Rest:

- Train C different classifiers, one class vs the rest C-1
- Typical for classifiers that yield class membership probability or scores
- For new input \mathbf{x}_{new} : Pick the class with the largest probability or score Break ties by value of $\mathbf{w} \cdot \mathbf{x}_{\text{new}} + w_0$

Multiclass Classification

One-vs-One

- Training K(K-1)/2 classifiers
- Each training procedure only uses on average $\frac{2}{K}$ of the training data
- "Natural" learning problems are

One-vs-Rest

- · Training only K classifiers
- Each training procedure uses the entire training data
- Less "natural" learning problems (#negative points >> #positive points)

A more efficient method: **Reducing Multiclass to Binary.** *E. Allwein, R. Schapire, Y. Singer.* ICML'00 best paper award.

- Divide classes into pairs of disjoint subsets
- Train a binary classifier to separate the subsets of each pair
- Use an error correcting approach to determine the class label

Measuring Performance

Regression: Same loss function applied to test data as for training

Classification: Number of misclassified data points (classification error)

However, not all mistakes are equally problematic

- Mistakenly blocking a legitimate comment vs failing to mark abuse on online message boards
- Failing to detect medical risk vs inaccurately predicting chance of risk

Classification using logistic regression: $p(y = 1 \mid \mathbf{x}_{\text{new}}, \mathbf{w}) = \sigma(\mathbf{w} \cdot \mathbf{x}_{\text{new}})$

- We used threshold 0.5 to label a point positive
- If we want very few false positives, we raise the threshold at 0.9: Predict something as positive only if it were 90% sure

Decision boundary for generative models: $p(y=1 \mid \mathbf{x}_{\text{new}}, \mathbf{w})/p(y=0 \mid \mathbf{x}_{\text{new}}, \mathbf{w})$

- We used ratio 1 to treat all errors equally
- Change the ratio if one type of errors is more costly than the other

Measuring Performance for Binary Classification

Confusion Matrix

• True Positive Rate, Sensitivity, Recall: $\mathrm{TPR} = \frac{\mathrm{TP}}{\mathrm{TP} + \mathrm{FN}}$

TPR = Ratio of true positives to actual positives

- False Positive Rate, Fall-out: $\mathrm{FPR} = \frac{\mathrm{FP}}{\mathrm{FP} + \mathrm{TN}}$

FPR = Ratio of false positives to actual negatives

True negative rate, Specificity = 1 - FPR

• Precision: $P = \frac{TP}{TP + FP}$

Precision = Ratio of true positives to predicted positives

Accuracy = (true positives + true negatives)/(positives + negatives)

Which Decision Boundary is Best? Receiver Operating Characteristic (ROC)

- · We only need to try out those thresholds that make a difference
- Instead of analysing many confusion matrices, ROC curves gives an intuitive compact representation of all of them
- ROC space defined by True Positive Rate vs False Positive Rate
- TPR (sensitivity): What proportion of infections were correctly classified?

$$\mbox{TPR} = \frac{\mbox{True Positives}}{\mbox{True Positives} + \mbox{False Negatives}}$$

• FPR (1-specificity): What proportion of not infected were incorrectly classified?

$$\mbox{FPR} = \frac{\mbox{False Positives}}{\mbox{False Positives} + \mbox{True Negatives}}$$

Precision-Recall Curves

Another metric beyond ROC curves: Replace FPR with Precision

$$\mbox{Precision} = \frac{\mbox{True Positives}}{\mbox{True Positives} + \mbox{False Positives}}$$

Precision gives the proportion of positive results that were correctly classified

Precision preferred over False Positive Rate in some scenarios

- If there were lots of negative samples
- Precision does not include True Negatives, so not affected by imbalance
- In practice: Studying a rare events, e.g., a rare disease. There are many more samples that do not observe the event than those that observe it.

12

Measuring Performance for Multiclass Classification

Recall the confusion matrix for binary classification:

	Actual Labels			
Prediction	yes	no		
yes	true positive	false positive		
no	false negative	true negative		

For multi-class classification, we generalise it:

	Actual Labels				
Prediction	1	2		K	
1	N ₁₁	N ₁₂		N _{1K}	
2	N ₂₁	N_{22}		N_{2K}	
:	:	:	·	÷	
K	N_{K1}	N_{K2}		N_{KK}	

 $\textit{N}_{i,j}$: # items of class j in the dataset that were predicted to be of class i

Good classifier: large diagonal entries and small off-diagonal entries

13