BUILDING EFFICIENT AND COMPACT DATA STRUCTURES FOR SIMPLICIAL COMPLEXES

Karthik C. S.

Weizmann Institute of Science.

Joint work with Jean-Daniel Boissonnat (INRIA) and Sébastien Tavenas (MPI).

$$V = \{1, 2, 3, 4, 5, 6\}$$

1

$$V = \{1, 2, 3, 4, 5, 6\}$$

A simplicial complex $K \subseteq \mathcal{P}(V)$:

$$\diamond \ p \in V \Rightarrow \{p\} \in K.$$

$$\diamond \ \sigma \in K, \tau \subseteq \sigma \Rightarrow \tau \in K.$$

1

$$V = \{1, 2, 3, 4, 5, 6\}$$

A simplicial complex $K \subseteq \mathcal{P}(V)$:

$$\diamond p \in V \Rightarrow \{p\} \in K$$
.

$$\diamond \ \sigma \in K, \tau \subseteq \sigma \Rightarrow \tau \in K.$$

$$V = \{1, 2, 3, 4, 5, 6\}$$

A simplicial complex $K \subseteq \mathcal{P}(V)$:

$$\diamond \ p \in V \Rightarrow \{p\} \in K.$$

$$\diamond \ \sigma \in \mathsf{K}, \tau \subseteq \sigma \Rightarrow \tau \in \mathsf{K}.$$

L

$$V = \{1, 2, 3, 4, 5, 6\}$$

A simplicial complex $K \subseteq \mathcal{P}(V)$:

$$\diamond p \in V \Rightarrow \{p\} \in K$$
.

$$\diamond \ \sigma \in K, \tau \subseteq \sigma \Rightarrow \tau \in K.$$

.

$$V = \{1, 2, 3, 4, 5, 6\}$$

A simplicial complex $K \subseteq \mathcal{P}(V)$:

$$\diamond p \in V \Rightarrow \{p\} \in K$$
.

$$\diamond \ \sigma \in K, \tau \subseteq \sigma \Rightarrow \tau \in K.$$

$$V = \{1, 2, 3, 4, 5, 6\}$$

A simplicial complex $K \subseteq \mathcal{P}(V)$:

$$\diamond p \in V \Rightarrow \{p\} \in K$$
.

$$\diamond \ \sigma \in K, \tau \subseteq \sigma \Rightarrow \tau \in K.$$

- 6 vertices
- 3 dimensional
- 3 maximal simplices
- 28 simplices

L

Agenda

Find a representation for simplicial complexes:

AGENDA

Find a representation for simplicial complexes:

* Small size.

AGENDA

Find a representation for simplicial complexes:

- * Small size.
- * Perform queries quickly:
 - Simplex Membership.
 - Simplex Insertion.
 - Simplex Removal.

SIMPLEX TREE

Introduced by Boissonnat and Maria [ESA '12, Algorithmica '14].

3

SIMPLEX TREE

Storage: $\Theta(m \log n)$

m: # of simplices
n: # of vertices

SIMPLEX TREE

Storage: $\Theta(m \log n)$

m: # of simplices
n: # of vertices

 σ : a simplex

 d_{σ} : dimension of σ

Insertion: $\mathcal{O}(2^{d_{\sigma}}d_{\sigma}\log n)$

Removal: $\mathcal{O}(m \log n)$

3

ROADMAP

Our Results:

- Compression of Simplex Tree.
- New Data Structure:
 - ★ Compact.
 - * Better performance.

SIMPLEX TREE: LET'S STORE LESS!

SIMPLEX TREE: LET'S STORE LESS!

SIMPLEX AUTOMATON

SIMPLEX AUTOMATON

SIMPLEX AUTOMATON

MINIMAL SIMPLEX AUTOMATON

MINIMAL SIMPLEX AUTOMATON

Hopcroft's Algorithm: $O(m \log m \log n)$ time.

7

MINIMAL SIMPLEX AUTOMATON: A DISCUSSION

 \star Simplex Tree: Simplex \leftrightarrow Node.

Minimal Simplex Automaton: Simplex \leftrightarrow Path.

8

MINIMAL SIMPLEX AUTOMATON: A DISCUSSION

- \star Simplex Tree: Simplex \leftrightarrow Node.

 Minimal Simplex Automaton: Simplex \leftrightarrow Path.
- * Answering static queries remains unchanged.

MINIMAL SIMPLEX AUTOMATON: A DISCUSSION

- \star Simplex Tree: Simplex \leftrightarrow Node.

 Minimal Simplex Automaton: Simplex \leftrightarrow Path.
- * Answering static queries remains unchanged.
- ⋆ Dynamic queries: more complex.

EXPERIMENTS

Data Set 1: Rips Complex from sampling of Klein bottle in \mathbb{R}^5 .

n	α	d	k	т	Size After	Compression
					Compression	Ratio
10,000	0.15	10	24,970	604,573	218,452	2.77
10,000	0.16	13	25,410	1,387,023	292,974	4.73
10,000	0.17	15	27,086	3,543,583	400,426	8.85
10,000	0.18	17	27,286	10,508,486	524,730	20.03

EXPERIMENTS

Data Set 1: Rips Complex from sampling of Klein bottle in \mathbb{R}^5 .

n	α	d	k	m	Size After	Compression
					Compression	Ratio
10,000	0.15	10	24,970	604,573	218,452	2.77
10,000	0.16	13	25,410	1,387,023	292,974	4.73
10,000	0.17	15	27,086	3,543,583	400,426	8.85
10,000	0.18	17	27,286	10,508,486	524,730	20.03

Data Set 2: Flag complexes generated from random graph $G_{n,p}$.

пр	d	k	т	Size After	Compression	
				Compression	Ratio	
25	0.8	17	77	315,370	467	537.3
30	0.75	18	83	4,438,559	627	7,079.0
35	0.7	17	181	3,841,591	779	4,931.4
40	0.6	19	204	9,471,220	896	10,570.6
50	0.5	20	306	25,784,504	1,163	22,170.7

Labeling of Vertices

- Size of ST is invariant over labeling.
- Size of MSA is dependent on labeling.

Labeling of vertices

- Size of ST is invariant over labeling.
- Size of MSA is dependent on labeling.

Labeling of Vertices

Theorem

The task of finding a labeling to minimize size of MSA is NP-Complete.

STARTING A NEW CHAPTER

Build a data structure which has:

- Slightly worse performance on membership query.
- Smaller size.
- Quicker insertion and removal.

STARTING A NEW CHAPTER

Build a data structure which has:

- Slightly worse performance on membership query.
- Smaller size.
- Quicker insertion and removal.

Inspiration:

Deterministic Finite state Automaton(DFA)

vs

Non-deterministic Finite state Automaton(NFA).

 Store only maximal simplices in Trie.

• Size: $\mathcal{O}(kd \log n)$.

k: # of maximal simplices

We have a matching lower bound.

• Store only maximal simplices in Trie.

• Size: $\mathcal{O}(kd \log n)$.

• Transitive Closure.

• Path(s) \leftrightarrow Simplex.

• Size: $\mathcal{O}(kd \log n)$.

• Transitive Closure.

 $\bullet \ \ \mathsf{Path}(\mathsf{s}) \leftrightarrow \mathsf{Simplex}.$

NFA recognizing all simplex words.

MAXIMAL SIMPLEX TREE

• Size: $\mathcal{O}(kd \log n)$.

• Transitive Closure.

 $\bullet \ \ \mathsf{Path}(\mathsf{s}) \leftrightarrow \mathsf{Simplex}.$

Insertion and Removal are quicker(?).

MAXIMAL SIMPLEX TREE

• Size: $\mathcal{O}(kd \log n)$.

• Transitive Closure.

 $\bullet \ \ \mathsf{Path}(\mathsf{s}) \leftrightarrow \mathsf{Simplex}.$

Membership is still not efficient!

MAXIMAL SIMPLEX TREE

• Size: $\mathcal{O}(kd \log n)$.

• Transitive Closure.

 $\bullet \ \, \mathsf{Path}(\mathsf{s}) \leftrightarrow \mathsf{Simplex}.$

We will fix this and build NFA: Simplex Array List.

UNPREFIXED MAXIMAL SIMPLEX TREE

Common prefixes are not merged.

UNPREFIXED MAXIMAL SIMPLEX TREE

Transitive Closure.

UNPREFIXED MAXIMAL SIMPLEX TREE

Ensure all children are of same label.

Duplicate from top to bottom.

Store label of children.

Sort according to second coordinate.

14

Storage: $\mathcal{O}((\log k + \log n) \cdot) = \mathcal{O}(kd^3(\log k + \log n))$

Storage: $\mathcal{O}((\log k + \log n) \cdot kd \cdot m) = \mathcal{O}(kd^3(\log k + \log n))$

Storage: $\mathcal{O}((\log k + \log n) \cdot kd \cdot d \cdot) = \mathcal{O}(kd^3(\log k + \log n))$

Storage: $\mathcal{O}((\log k + \log n) \cdot kd \cdot d \cdot d) = \mathcal{O}(kd^3(\log k + \log n))$

One parameter to rule them all: λ .

One parameter to rule them all: λ .

 $\lambda(e)$: # of maximal simplices that contain an edge e of K.

$$\lambda = \max_{e \in K} \lambda(e).$$

One parameter to rule them all: λ .

 $\lambda(e)$: # of maximal simplices that contain an edge e of K.

$$\lambda = \max_{e \in K} \lambda(e).$$

 λ is at most k.

Value of λ

Data Set: Rips Complex from sampling of Klein bottle in \mathbb{R}^5 .

No	n	α	d	k	m	λ	SAL
1	10,000	0.15	10	24,970	604,573	53	424,440
2	10,000	0.16	13	25,410	1,387,023	61	623,238
3	10,000	0.17	15	27,086	3,543,583	67	968,766
4	10,000	0.18	17	27,286	10,508,486	91	1,412,310

Is the triangle 2-3-5 Step 1: Find A_2 , A_3 , and A_5 . in the complex?

Is the triangle 2-3-5 in the complex?

Step 2: Find labels $(2,3,\star)$, $(3,5,\star)$, and $(5,\star,\star)$.

Is the triangle 2-3-5 in the complex?

Step 3: Is there a directed path hitting A_2 , A_3 , and A_5 .

Is the triangle 2-3-5 in the complex?

Step 3: Is there a directed path hitting A_2 , A_3 , and A_5 .

MEMBERSHIP ON SAL

 $\underline{\mathsf{Input}} \colon \mathsf{A} \mathsf{ simplex } \sigma = \mathsf{v}_{\ell_0} \cdots \mathsf{v}_{\ell_{d_\sigma}}.$

Task: Check if σ is in K.

- 1. Find $A_{\ell_0}, \ldots, A_{\ell_{d_{\sigma}}}$.
- 2. Determine B_{ℓ_i} (contiguous subarray of A_{ℓ_i}) such that it contains all nodes of the form (ℓ_i, ℓ_{i+1}, z) .
- 3. Let \mathcal{P} be projection onto third coordinate.

$$\sigma \in K \iff \bigcap_{0 \leq i \leq d_{\sigma}} \mathcal{P}(B_{\ell_i}) \neq \emptyset.$$

Insertion on SAL

 $\underline{\mathsf{Input}} \colon \mathsf{A} \mathsf{\ maximal\ simplex\ } \sigma = \mathsf{\textit{v}}_{\ell_0} \cdots \mathsf{\textit{v}}_{\ell_{d_\sigma}}.$

Task: Insert σ in K.

- 1. Remove all $\tau \in K$ which were maximal but are now contained in K.
 - 1.1 For every edge $e \subseteq \sigma$ compute Z_e :

$$Z_e = \{ \tau \in K \mid \tau \text{ is maximal, } e \subseteq \tau \}.$$

- 1.2 Check if any simplex $\bigcup_{e \in \sigma} Z_e$ is in σ . If yes then, remove them.
- 2. Build connected component for σ in SAL.
- 3. Updating the arrays A_{ℓ_i} .

REMOVAL ON SAL

 $\underline{\mathsf{Input}} \colon \mathsf{A} \mathsf{ simplex } \sigma = \mathsf{v}_{\ell_0} \cdots \mathsf{v}_{\ell_{d_\sigma}}.$

Task: Remove σ from K.

- 1. Obtain the set Z_{σ} of maximal simplices in K which contain σ .
- 2. For every $\tau \in Z_{\sigma}$, remove τ from K and insert the facets of τ which do not contain σ .

	Simplex Tree	Simplex Array List	
Storage	$\mathcal{O}(k2^d \log n)$	$\mathcal{O}(k \frac{d^3}{\log n} + \log k))$	
Membership	$\mathcal{O}(d_{\sigma}\log n)$	$\mathcal{O}(d_\sigma\lambda\log(kd))$	
Insertion	$\mathcal{O}(2^{d_{\sigma}}d_{\sigma}\log n)$	$\mathcal{O}(d_{\sigma}^3\lambda(d_{\sigma}+\log(kd)))$	
Removal	$\mathcal{O}(k2^d \log n)$	$\mathcal{O}(d_{\sigma}d^{3}\lambda\log(kd))$	

	Simplex Tree	Simplex Array List	
Storage	$\mathcal{O}(k2^d \log n)$	$\mathcal{O}(kd^3(\log n + \log k))$	
Membership	$\mathcal{O}(d_{\sigma}\log n)$	$\mathcal{O}(d_{\sigma} \frac{\lambda}{\lambda} \log(kd))$	
Insertion	$\mathcal{O}(2^{d_{\sigma}}d_{\sigma}\log n)$	$\mathcal{O}(d_{\sigma}^3\lambda(d_{\sigma}+\log(kd)))$	
Removal	$\mathcal{O}(k2^d \log n)$	$\mathcal{O}(d_{\sigma}d^3\lambda\log(kd))$	

	Simplex Tree	Simplex Array List	
Storage	$\mathcal{O}(k2^d \log n)$	$\mathcal{O}(kd^3(\log n + \log k))$	
Membership	$\mathcal{O}(d_{\sigma}\log n)$	$\mathcal{O}(d_\sigma\lambda\log(kd))$	
Insertion	$\mathcal{O}(2^{d_{\sigma}}d_{\sigma}\log n)$	$\mathcal{O}(d_{\sigma}^{3}\lambda(d_{\sigma}+\log(kd)))$	
Removal	$\mathcal{O}(k2^d \log n)$	$\mathcal{O}(d_{\sigma}d^3\lambda\log(kd))$	

	Simplex Tree	Simplex Array List	
Storage	$\mathcal{O}(k2^d \log n)$	$\mathcal{O}(kd^3(\log n + \log k))$	
Membership	$\mathcal{O}(d_{\sigma}\log n)$	$\mathcal{O}(d_\sigma\lambda\log(kd))$	
Insertion	$\mathcal{O}(2^{d_{\sigma}}d_{\sigma}\log n)$	$\mathcal{O}(d_{\sigma}^3\lambda(d_{\sigma}+\log(kd)))$	
Removal	$\mathcal{O}(k^{2^d} \log n)$	$\mathcal{O}(d_{\sigma}d^{3}\lambda\log(kd))$	

	Simplex Tree	Simplex Array List	
Storage	$\mathcal{O}(k2^d \log n)$	$\mathcal{O}(k \frac{d^3}{\log n} + \log k))$	
Membership	$\mathcal{O}(d_{\sigma}\log n)$	$\mathcal{O}(d_{\sigma} \frac{\lambda}{\lambda} \log(kd))$	
Insertion	$\mathcal{O}(2^{d_{\sigma}}d_{\sigma}\log n)$	$\mathcal{O}(d_{\sigma}^{3}\lambda(d_{\sigma}+\log(kd)))$	
Removal	$\mathcal{O}(k^{2^d} \log n)$	$\mathcal{O}(d_{\sigma}d^{3}\lambda\log(kd))$	

SAL VS ST: EXPERIMENTS

- Marc Glisse and Sivaprasad implemented SAL.
- Data Set: Rips Complex from sampling of Klein bottle in \mathbb{R}^5 .
- Operations: Insertion and removal of random simplices, and contraction of randomly chosen edges.

SAL VS ST: EXPERIMENTS

- Marc Glisse and Sivaprasad implemented SAL.
- Data Set: Rips Complex from sampling of Klein bottle in \mathbb{R}^5 .
- Operations: Insertion and removal of random simplices, and contraction of randomly chosen edges.

No	n	α	Average d_{σ}	k	ST Time (s)	SAL Time (s)
1	1,000	0.3	11.78	4,299	72	34
2	2,500	0.3	13.77	15,605	Killed	76
3	10,000	0.2	6.9	29,676	Killed	52

Thank you!

1-SAL vs 0-SAL: Experiments

- Marc Glisse and Sivaprasad implemented SAL.
- Data Set: Rips Complex from sampling of Klein bottle in \mathbb{R}^5 .
- Operations: Insertion and removal of random simplices, and contraction of randomly chosen edges.

No	n	α	Average d_{σ}	k	ST Time (s)	0-SAL Time (s)	1-SAL Time (s)
1	1,000	0.3	11.78	4,299	72	5	34
2	2,500	0.3	13.77	15,605	Killed	66	76
3	10,000	0.2	6.9	29,676	Killed	114	52

• average $\lambda_1 = 2.17$; average $\lambda_0 = 23.25$.