

MATHEMATICAL REASONING **Chapter 10**

LEYES DE COMPOSICIÓN @ SACO OLIVEROS

HELICO MOTIVATING

RELOJES MATEMÁTICOS

¿QUÉ ES UNA LEY DE COMPOSICIÓN INTERNA

Es una operación matemática definida en un determinado conjunto. También se le puede llamar operación binaria, y puede tener una presentación algebraica o una presentación tabular.

$$a * b = a + b - 12$$

Fila de entrada

Columna de entrada

Cuerpo o matriz de resultados

PROPIEDADES

CUMPLE LAS PROPIEDADES:

- CLAUSURA
- CONMUTATIVA
- ELEMENTO NEUTRO
- ELEMENTO INVERSO

Se refiere a que todos los elementos, tanto los de partida como los resultados, sean elementos de un mismo conjunto dado.

Ejemplo:

Sea:
$$A = \{1; 2; 3; 4\}$$

*	1	2	3	4
1	1	2	3	4
2	2	3	4	1
3	3	4	1	2
4	4	1	2	3

OBSERVACIÓN

SE OBSERVA QUE TODOS LOS ELEMENTOS DE LA TABLA PERTENECEN AL CONJUNTO A

PROPIEDAD CONMUTATIVA

Una operación será conmutativa si se cumple que:

$$a * b = b * a$$

En una tabla:

OBSERVACIÓN

DESPUÉS DE VERIFICAR
QUE LA FILA Y COLUMNA
DE ENTRADA ESTEN EN
EL MISMO ORDEN; SI SE
DA LA DISTRIBUCIÓN
SIMÉTRICA RESPECTO A
LA DIAGONAL PRINCIPAL
ES CONMUTATIVA.

Por lo tanto, es: conmutativa

PROPIEDAD DEL ELEMENTO NEUTRO (e)

$$a * e = e * a = a$$

En una operación algebraica:

$$a * b = a + b - 12$$

$$a * e = a + e - 12$$

$$\alpha = \alpha + e - 12$$

$$12 = e$$

En una operación tabular:

*	1	2	3	4	
1	3	4	1	2	
2	4	1	2	3	
3	1	2	3	4	e = 3
4	2	3	4	1	

PROPIEDAD del elemento inverso

Se define en 7:

Halle el valor de 5^{-1} en: e=10

$$e = 10$$

$$m \Delta n = m + n - 10$$

$$a \Delta a^{-1} = a + a^{-1} - 10$$

$$e = a + a^{-1} - 10$$

$$10 = a + a^{-1} - 10$$

$$20 - a = a^{-1}$$

$$20 - 5 = 5^{-1}$$

$$15 = 5^{-1}$$

$$a \Delta a^{-1} = a^{-1} \Delta a = e$$

En una operación tabular: Halle el valor de 4⁻¹

Δ	1	2	3	4	$\rho = 3$
1	3	4	1	2	
2	4	1	2	3	
3	1	2	3	4	
4	2	3	4	1	$4^{-1}=2$

HELICO PRACTICE

Determine el elemento neutro de la operación * si:

$$a*b=a+b+2$$

RESOLUCIÓN

Operando

$$a * e = a + e + 2$$

$$\alpha = \alpha + e + 2$$

$$\Rightarrow e = -2$$

A partir de la tabla determine el elemento neutro de la operación *, *y determine*: $1^{-1} * 2^{-1}$

RESOLUCIÓN

De la tabla: e=1

$$e = 1$$

$$a * a^{-1} = a^{-1} * a = e$$

CALCULANDO

$$1 * 1^{-1} = 1$$
 $-1 = 1$

$$2 * 2^{-1} = 1$$
 \longrightarrow $2^{-1} = 4$

ME PIDEN:

$$1^{-1} * 2^{-1} = 1 * 4 = 4$$

Del problema anterior, $determine \ 3^{-1} * 4^{-1}$

*	1	2	3	4
1	1	2	3	4
2	2	3	4	1
3	3	4	1	2
4	4	1	2	3

RESOLUCIÓN

$$e=1$$

$$a * a^{-1} = a^{-1} * a = e$$

CALCULANDO

$$3 * 3^{-1} = 1$$
 $3^{-1} = 3$

$$4 * 4^{-1} = 1$$
 \longrightarrow $4^{-1} = 2$

ME PIDEN:

$$3^{-1} * 4^{-1} = 3 * 2 = 4$$

Calcular 31 * 24

*	1	2	3	4
1	7	9	11	13
2	12	14	16	18
3	17	19	21	23

RESOLUCIÓN

POR LO TANTO:
$$a * b = 5a + 2b$$

$$31 * 24 = 5(31) + 2(24) = 203$$

Escriba verdadero(v) o falso(f) según corresponda respecto a la operación a * b = a + b + 1

```
La operación * es conmutativa ......()

El elemento neutro es -1......()

2^{-1} = -4.....()
```


RESOLUCIÓN

I. La operación es conmutativa ()

Para que sea conmutativa:

$$a * b = b * a$$

$$a * b = a + b + 1$$

 $b * a = b + a + 1$

OBSERVACIÓN

La suma es una operación conmutativa, por lo tanto, como la regla solo consta de suma, sin necesidad de reemplazar, se afirma que es conmutativa

VERDADERO

II. El elemento neutro es $-1 \dots$ ()

$$a * e = e * a = a$$

$$a * e = a + e + 1$$

$$\alpha = \alpha + e + 1$$

$$e = -1$$
VERDADERO

$$III.2^{-1} = -4...$$
 ()

Halando el inverso de 2

$$a * a^{-1} = a^{-1} * a = e$$

$$2 * 2^{-1} = 2 + 2^{-1} + 1$$

$$-1 = 3 + 2^{-1}$$

$$2^{-1} = -4$$

OBSERVACIÓN

REGLA DE DEFINICIÓN:

$$a * b = a + b + 1$$

ELEMENTO NEUTRO:

$$e = -1$$

VERDADERO

La cantidad de gramos de sal y de ají molido necesarios para la preparación de cierta cantidad de platos de cebiche se anotaron en la siguiente tabla.

Esta tabla pertenece a la cebichería "Sol y Mar", ¿ Cuántos platos de cebiche se obtendrán utilizando de 15 gramos de sal y 40 gramos de ají molido?

RESOLUCIÓN

Δ	2	4	6	8
2	6	8	10	12
4	10	12	14	16
6	14	16	18	20
8	18	20	22	24

POR LO TANTO:
$$a * b = 2a + b$$

$$15 * 40 = 2(15) + 40 = 70$$

Como se sabe, en los antiguos Sangakus japoneses (Tablillas sagradas ofrecidas a los dioses) la mayoría de problemas giran en torno al cálculo de la proporción entre los radios de circunferencias, semicircunferencias y sectores circulares, relacionados entre sí; pero, a un investigador matemático le llamó la atención que en uno de ellos encontró la siguiente situación: "Se define dentro de los reales la operación:

$$a * b = \sqrt{3ab(b * a)}$$

de acuerdo a esta, determine $3^{-1} * 4^{-1}$. Intrigado se dedicó a encontrar dicho resultado. ¿Podría usted encontrar el mismo?

Se define en los reales $a * b = \sqrt{3ab(b*a)}$, determine $3^{-1} * 4^{-1}$

RESOLUCIÓN

Redefiniendo:

$$b*a = \sqrt{3ba(a*b)}$$

$$a*b = \sqrt{3ab}\sqrt{3ba(a*b)}$$

$$(a*b)^4 = \left(\sqrt{3ab}\sqrt{3ba(a*b)}\right)^4$$

$$(a*b)^4 = \left(\sqrt{3ab}\right)^4 \left(\sqrt{3ba(a*b)}\right)^4$$

$$(a*b)^4 = 3^2 a^2 b^2 3ba(a*b)$$

$$(a * b)^3 = 3^3 a^3 b^3$$

 $a * b = 3ab$

Hallando elemento neutro

$$a * e = e * a = a$$

$$a * e = 3 e a$$

$$= 3 e a$$

$$\frac{1}{3} = e$$

RESOLUCIÓN

Halando el inverso de 3^{-1} * 4^{-1} :

$$a * a^{-1} = a^{-1} * a = e$$

$$a * a^{-1} = 3. a. a^{-1}$$

$$\frac{1}{3} = 3a. a^{-1}$$

$$\frac{1}{9a} = a^{-1}$$

$$3^{-1}$$

$$4^{-1}$$

OBSERVACIÓN

ELEMENTO NEUTRO:

$$e = \frac{1}{3}$$

NOS PIDEN:

$$3^{-1} * 4^{-1} = \frac{1}{27} * \frac{1}{36} = 3. \frac{1}{27} \cdot \frac{1}{36}$$

RESPUESTA:
$$\frac{1}{108}$$

HELICO WORKSHOP

HELICO | WORKSHOP

1. Determine el elemento neutro de la operación

$$a * b = a + b - 5$$

2. Si $A = \{1; 2; 3; 4\}$, indique el elemento neutro de la operación

\odot	1	2	3	4
1	3	4 1 2 3	1	2
2	4	1	2	3
3	1	2	3	4
4	2	3	4	1

Además, determine $4^{-1} \# 2^{-1}$.

3. Si $B = \{2, 4, 6, 8\}$, y se define la operación * mediante

determine $(6^{-1} \# 8^{-1}) \# 2^{-1}$.

4. Se define en \mathbb{Z} la operación

$$a*b = a+b+1$$

Determine 2^{-1} .

HELICO | WORKSHOP

5. En \mathbb{R} se define:

#	1	2	3	4
1	5	3	1	-1
2		10		
3	19	17	15	13
4	26	24	22	20

Calcule $12\sqrt{3} \# 3\sqrt{3}$

6. Las diversas operaciones matemáticas fueron surgiendo por la necesidad del hombre de dar respuestas a situaciones de cálculo en la vida cotidiana; luego los matemáticos encontraron propiedades comunes entre ellas y generaron las llamadas leyes de composición que dan una base formal a las nuevas operaciones que van apareciendo, como por ejemplo esta:

$$m \triangle n = \sqrt{2mn(n \triangle m)}$$

en la cual se podría calcular inclusive con sus elementos simétricos o inversos el resultado siguiente: $3^{-1} \Delta 6^{-1}$. ¿Podría usted realizarlo?

7. En un concurso de becas se propuso el siguiente problema:

Δ	3	6	9	12
3	15	24	33	42
6		30	39	48
9	27	36	45	54
12	33	42	51	60

Calcule $5\sqrt{2} \ \forall \ \sqrt{8}$

Muchos alumnos no pudieron hacer el problema y Alex llevó la pregunta a su profesor Rubén, quien lo guió para que pueda resolverlo. ¿Podrías tú resolver el problema?

MUCHAS GRACIAS

