Advanced Regression: Introduction to non-linear regression

Garyfallos Konstantinoudis

Feb 27, 2024

Non-linear regression

So far we have studied the linear regression models, which are very flexible tool for estimating relationships in a set of data. In particular, we have seen:

- Model set up, fitting, and residual diagnostics.
- Model building and model comparison.
- ANOVA/ likelihood ratio test.
- Random intercepts and random slopes.

Note

One of the most crucial assumptions of the previous lecture was that the associations between the outcome and the covariates are linear. What if the association was not linear?

A clarification

In the name normal (or Poisson, binomial, etc.) linear model, the word 'linear' refers to the response being modelled as a linear combination of covariates, i.e.

$$Y_i \sim N(\beta_1 + \beta_2 X_{i2} + \dots + \beta_p X_{ip}, \sigma^2)$$

It does not refer to each covariate-response relationship being linear. Therefore the following is also within the class of normal linear models

$$Y_i \sim N(\beta_1 + \beta_2 X_i + \beta_3 X_i^2, \sigma^2)$$

Here, the relationship between Y and x is quadratic, but it is still a linear model.

So how do you tell if the relationship is linear?

- Plot each covariate against the response and see what shape the relationship is.
- Make sure you plot it with the transformation used in the model.
- If linear, fit a linear model, if not start thinking of the shape of the relationship.
- Fit as simple a model as possible, do not overcomplicate it unnecessarily. (Occam's razor)

Example

Associations are not solely linear

```
library(dplyr)
library(ggplot2)

set.seed(11)
x <- rnorm(n = 1000)
y <- 0.5 * x * x + rnorm(1000, sd = 0.3)

ggplot(data = data.frame(x = x, y = y), aes(x = x, y = y)) +
    geom_point(cex = 1.2) +
    theme_bw() +
    geom_smooth(method = "lm", formula = y ~ x, se = FALSE, linewidth = 1) +
    theme(text = element_text(size = 15))</pre>
```


Basis Expansions

We need to define a set of flexible functions that could capture relationships that are not linear. In general, we can write:

$$Y_i = \sum_{j}^{K} \beta_j \phi_j(X_j) + \epsilon_i$$

which we can write: $f(X) = \beta^T \Phi(X)$ and we say that $\Phi(X)$ is a basis system for f.

The polynomial basis function

$$\Phi(X) = (1)$$
 ,
thus $Y_i = \beta_0 + \epsilon_i$

The polynomial basis function

$$\Phi(X) = (1)$$
 ,
thus $Y_i = \beta_0 + \epsilon_i$

The polynomial basis function

$$\Phi(X) = (1~X~X^2)$$
 ,
thus $Y_i = \beta_0 + \beta_1 X + \beta_2 X^2 + \epsilon_i$

The polynomial basis function

$$\Phi(X) = (1~X~X^2~X^3)$$
 ,
thus $Y_i = \beta_0 + \beta_1 X + \beta_2 X^2 + \beta_3 X^3 + \epsilon_i$

The polynomial basis function

$$\Phi(X) = (1 \; X \; X^2 \; X^3 \; X^4)$$
 ,
thus

$$Y_i=\beta_0+\beta_1X+\beta_2X^2+\beta_3X^3+\beta_4X^4+\epsilon$$

The polynomial basis function

$$\Phi(X) = (1 \; X \; X^2 \; X^3 \; X^4 \; X^5)$$
 ,
thus

$$Y_{i} = \beta_{0} + \beta_{1}X + \beta_{2}X^{2} + \beta_{3}X^{3} + \beta_{4}X^{4} + \beta_{5}X^{5} + \epsilon_{i}$$

Example

Call:

 $lm(formula = y \sim x)$

Residuals:

Min 1Q Median 3Q Max -1.6386 -0.4645 -0.1876 0.2583 6.0883

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.49486 0.02471 20.03 <2e-16 ***
x 0.01564 0.02481 0.63 0.529

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.7813 on 998 degrees of freedom Multiple R-squared: 0.000398, Adjusted R-squared: -0.0006036

F-statistic: 0.3973 on 1 and 998 DF, p-value: 0.5286

Fit a polynomial in R

$$lm(y \sim x + I(x^2) + I(x^3)) \%\%$$
 summary()

Call:

$$lm(formula = y \sim x + I(x^2) + I(x^3))$$

Residuals:

Min 1Q Median 3Q Max -1.14539 -0.20239 0.01008 0.20206 0.95031

Coefficients:

Estimate Std. Error t value Pr(>|t|) (Intercept) -0.012156 0.011541 -1.053 0.292 x 0.007367 0.014781 0.498 0.618 $I(x^2)$ 0.511645 0.006724 76.096 <2e-16 *** $I(x^3)$ -0.004603 0.003786 -1.216 0.224

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.2982 on 996 degrees of freedom Multiple R-squared: 0.8547, Adjusted R-squared: 0.8542 F-statistic: 1952 on 3 and 996 DF, p-value: < 2.2e-16

How can we test the linearity assumption

- Notice that the linear model is nested in the quadratic form
- The same holds for cubic vs quadratic vs linear

```
mod1 <- lm(y \sim x + I(x^2))
mod2 <- lm(y \sim x + I(x^2) + I(x^3))
anova(mod1, mod2)
```

Analysis of Variance Table

Model 1: $y \sim x + I(x^2)$


```
Model 2: y ~ x + I(x^2) + I(x^3)
Res.Df RSS Df Sum of Sq F Pr(>F)
1 997 88.702
2 996 88.571 1 0.13147 1.4784 0.2243
```

Pros and cons

Pros

- These curves are quite flexible—a quadratic can fit most biologically plausible curves
- The curves only use 1(quadratic) or 2(cubic) degrees of freedom more than linear, unlike dummy variable models
- The results are not sensitive to choice of boundaries (there aren't any)
- Outliers mostly influence the extremes of the curve, not the center part

Cons

• They use more degrees of freedom than linear, and therefore have less power

• There is still some sensitivity to influential observations

Other types of basis function

• Harmonics - The Fourier basis function

$$1, sin(\omega X), cos(\omega X), sin(2\omega X), cos(2\omega X), \dots,$$

$$sin(m\omega X), cos(m\omega X)$$

• constant ω defines the period of oscillation of the first sine/cosine pair. This is $\omega = 2\pi/P$ where P is the period.

Example: Fourier basis function

$$\Phi(X) = (1 \; sin(\omega X) \; cos(\omega X) \; sin(2\omega X) \; cos(2\omega X))$$
 ,
thus

$$Y_i = \beta_0 + \beta_1 sin(\omega X) + \beta_2 cos(\omega X) + \beta_3 sin(2\omega X) + \beta_4 cos(2\omega X) + \epsilon_i$$

Pros and cons

Pros

- Excellent computational properties, especially if the observations are equally spaced.
- Natural for describing periodic data, such as the annual weather cycle
- The results are not sensitive to choice of boundaries (there aren't any)

Cons

• functions are periodic; this can be a problem if the data are, for example, growth curves.

Parametric non-linear effects

- The following models captured the non-linear relationships using simple non-linear functions.
- These types of models are to be preferred if possible, because again they are simpler to make inference from, e.g. the relationship is quadratic.
- However, there may be times when the relationship being modelled does not look like a parametric function. Then what should you do?

Parametric non-linear effects

Consider the following form

```
set.seed(11)
x <- rnorm(n = 1000)
y <- numeric(1000)
y[x < 0] <- 1 + 0.5 * x[x < 0] + 0.2 * x[x < 0]^2 + rnorm(n = length(x[x < 0]), sd = 0.2)
y[x >= 0] <- 0.5 + sin(2 * pi / 2 * x[x >= 0]) + rnorm(n = length(x[x > 0]), sd = 0.3)

ggplot() +
    geom_point(aes(x = x, y = y), cex = 1.3, col = cols[1]) +
    theme_bw() +
    xlab("") +
    ylab("") +
    theme(text = element_text(size = 15))
```


It doesn't look like any simple parametric form (e.g. polynomial, sinusoidal, etc), so what do you do?

Smooth functions

- There are many methods to estimate non-linear relationships such as that on the previous slide.
- They are generically called smooth functions, and include splines (lots of different types), kernel smoothers and local linear smoothers.
- We will focus on splines in this lab, because they are simple to understand graphically and are easy to fit to the data.

Splines

- Splines were originally thin splints of wood used to trace complex, smooth curves in engineering and architectural.
- Splines were pinned to the drawing at points where the spline changed its curvature.

Piecewise Linear Splines

- We begin fitting splines by dividing the range of exposure into pieces.
- Instead of fitting a constant in each piece, we fit a separate linear term in each piece.
- This has more power since it allows variation within categories to predict variation in outcome.
- We can use fewer categories to capture the deviation from a strictly linear curve because we have slopes within category.

Linear threshold in R

Call:

```
lm(formula = y \sim x:(x <= -1) + x:(x <= 0.5) + x:(x <= 1.5) + x:(x <= 3), data = dat)
```

Residuals:

```
Min 1Q Median 3Q Max -1.68966 -0.23877 -0.01464 0.22753 1.57659
```

Coefficients:

```
Estimate Std. Error t value Pr(>|t|) (Intercept) 1.07015 0.02093 51.138 < 2e-16 *** x:x \le -1FALSE -0.12120 0.09429 -1.285 0.19895 x:x \le -1TRUE -0.45275 0.10641 -4.255 2.29e-05 ***
```

```
x:x <= 0.5TRUE 1.07042     0.06596     16.228 < 2e-16 ***
x:x <= 1.5TRUE -0.18660     0.04292     -4.348 1.52e-05 ***
x:x <= 3TRUE     -0.25576     0.09853     -2.596     0.00957 **
---
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1</pre>
```

Residual standard error: 0.4497 on 994 degrees of freedom Multiple R-squared: 0.269, Adjusted R-squared: 0.2653 F-statistic: 73.14 on 5 and 994 DF, p-value: < 2.2e-16

Linear threshold in R

Linear splines in R

```
library(splines)
fit <- lm(y ~ bs(x, degree = 1, knots = c(-1, 0.5, 1.5, 3)), data = dat)

ggplot() +
    geom_point(aes(x = x, y = y), col = cols[1], cex = 1) +
    theme_bw() +
    xlab("") +
    ylab("") +
    geom_line(aes(x = dat$x, y = fit$fitted.values), lwd = 1) +
    theme(text = element_text(size = 15))</pre>
```


Linear splines

Linear threshold model

$$Y_i = \beta_0^{(1)} + \beta_1^{(1)} x + \epsilon \qquad x \le -1$$
 (1)

$$Y_i = \beta_0^{(2)} + \beta_1^{(2)} x + \epsilon \qquad -1 < x \le 0.5$$
 (2)

$$Y_i = \beta_0^{(2)} + \beta_1^{(2)} x + \epsilon \qquad -1 < x \le 0.5 \tag{2}$$

$$Y_{i} = \beta_{0}^{(3)} + \beta_{1}^{(3)} x + \epsilon \qquad 0.5 < x \le 1.5$$

$$Y_{i} = \beta_{0}^{(4)} + \beta_{1}^{(4)} x + \epsilon \qquad 1.5 < x \le 3$$
(4)

$$Y_i = \beta_0^{(4)} + \beta_1^{(4)} x + \epsilon \qquad 1.5 < x \le 3 \tag{4}$$

$$Y_i = \beta_0^{(5)} + \beta_1^{(5)} x + \epsilon \qquad x \ge 3 \tag{5}$$

(6)

Linear spline model

$$Y_i = \beta_0 + \beta_1 x + \beta_2 (x+1)_+ + \beta_3 (x-0.5)_+ + \beta_4 (x-1.5)_+ + \beta_5 (x-3)_+ + \epsilon$$

$$(x-k)_{+} = \begin{cases} 0, & x < k \\ x-k, & x \ge k \end{cases}$$

Linear splines in R without a package

```
lm(y \sim x + I((x + 1) * (x >= -1)) + I((x - 0.5) * (x >= 0.5)) + I((x - 1.5) * (x >= 1.5))
ggplot() +
  geom_point(aes(x = x, y = y), cex = 1.3, col = cols[1]) +
  theme_bw() +
```

```
xlab("") +
ylab("") +
geom_line(aes(x = dat$x, y = mod2$fitted.values), lwd = 1) +
theme(text = element_text(size = 15))
```


Cubic splines

Similarly we can define higher order polynomial splines, for instance:

$$Y_i = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3 + \tag{7}$$

$$\beta_4(X+1)_+ + \beta_5(X+1)_+^2 + \beta_6(X+1)_+^3 +$$
 (8)

$$\beta_7(x-0.5)_+ + \beta_8(x-0.5)_+^2 + \beta_9(x-0.5)_+^3 +$$
 (9)

$$dots + \epsilon \tag{10}$$

$$(x-k)_{+} = \begin{cases} 0, & x < k \\ x-k, & x \ge k \end{cases}$$
 (11)

which reduces to the following to ensure smooth curvature on the knots (it can be seen after deriving the first and second derivative):

$$Y_i = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x_3 + \tag{12}$$

$$\beta_6(x+1)_+^3 + \beta_9(x-0.5)_+^3 + \dots + \epsilon \tag{13}$$

Cubic splines in R

```
fit_c \leftarrow lm(y \sim bs(x, degree = 3, knots = c(-1, 0.5, 1.5, 3)), data = dat)
```

without the splines package:

```
fit_nopack <- lm( y ~ x + I(x^2) + I(x^3) + I((x + 1)^3 * (x >= -1)) + I((x - 0.5)^3 * (x >= 0.5)) + I((x - 1.5)^3 * (x >= 1.5)) + I((x - 3)^3 * (x >= 3)), data = dat )
```


Splines

A spline of order n is a piecewise polynomial function of degree n-1 in a variable x. (Basis) Splines can be:

- Piecewise constant.
- Linear.
- Quadratic.
- Cubic.
- higher order polynomials.
- etc.

Why are the borders so wiggly?

Natural cubic splines

- Splines can have high variance in the boundaries.
- This problem aggravates if knots too few.
- The natural spline constraints the fit to be linear before and after the first and last knots.
- This stabilises the fitting and makes a more reasonable assumption.

Natural cubic splines in R

```
fit_ns <- lm(y ~ ns(x, knots = c(-1, 0.5, 1.5, 3)), data = dat)

ggplot() +
    geom_point(aes(x = x, y = y), cex = 1.3, col = cols[1]) +
    theme_bw() +
    xlab("") +
    ylab("") +
    geom_line(aes(x = dat$x, y = fit_ns$fitted.values), lwd = 1) +
    theme(text = element_text(size = 15))</pre>
```


Well, better fit be achieved with more knots

```
fit_ns2 <- lm(y ~ ns(x, df = 10), data = dat)

ggplot() +
   geom_point(aes(x = x, y = y), cex = 1.3, col = cols[1]) +</pre>
```

```
theme_bw() +
xlab("") +
ylab("") +
geom_line(aes(x = dat$x, y = fit_ns2$fitted.values), lwd = 1)
```


... and more

```
fit_ns2 <- lm(y ~ ns(x, df = 50), data = dat)

ggplot() +
   geom_point(aes(x = x, y = y), cex = 1.3, col = cols[1]) +
   theme_bw() +
   xlab("") +
   ylab("") +
   geom_line(aes(x = dat$x, y = fit_ns2$fitted.values), lwd = 1)</pre>
```


... and more

```
fit_ns3 <- lm(y ~ ns(x, df = 100), data = dat)

ggplot() +
   geom_point(aes(x = x, y = y), cex = 1.3, col = cols[1]) +
   theme_bw() +
   xlab("") +
   ylab("") +
   geom_line(aes(x = dat$x, y = fit_ns3$fitted.values), lwd = 1)</pre>
```


... and more

```
fit_ns4 <- lm(y ~ ns(x, df = 1000), data = dat)

ggplot() +
   geom_point(aes(x = x, y = y), cex = 1.3, col = cols[1]) +
   theme_bw() +
   xlab("") +
   ylab("") +
   geom_line(aes(x = dat$x, y = fit_ns4$fitted.values), lwd = 1)</pre>
```


is this a useful model?

Summary

- Introduction to different basis function and how to fit them in R
- Theory and application of linear splines
- Understand more flexible non-parametric functions (focus on splines)

Questions?