

Departamento de Ciências e Tecnologias da Informação

LICENCIATURA EM ENGENHARIA DE TELECOMUNICAÇÕES E INFORMÁTICA

SINAIS ALEATÓRIOS EM TELECOMUNICAÇÕES E INFORMÁTICA

Enunciado do Primeiro Trabalho

Simulação e Análise do Atraso de um Encaminhador de Redes de Comutação de Pacotes

Ano Lectivo 2023/2024

Objetivo

O objetivo deste trabalho é avaliar o desempenho de atraso de um encaminhador usado em redes de comutação de pacotes.

Descrição

Em redes de comutação de pacotes, os pacotes são encaminhados ao longo da rede pelos encaminhadores (routers). Uma das medidas de desempenho dessas redes e encaminhadores é o atraso que os pacotes sofrem ao passarem pelas redes e encaminhadores.

Nos encaminhadores das redes de comutação de pacotes, há duas fontes principais de atraso dos pacotes (ver Figura 1):

- i) o atraso que os pacotes sofrem enquanto aguardam na fila de espera, T_f , e
- ii) o atraso associado ao envio dos pacotes para o encaminhador seguinte, designado por atraso de serviço, T_s .

Enquanto o atraso na fila de espera é determinado pela quantidade de pacotes na fila de espera, o atraso de serviço é determinado pelo comprimento do pacote. Tendo origens diferentes, considera-se que estes atrasos são independentes.

Figura 1. Esquema ilustrativo de um encaminhador das redes de comutação de pacotes em que se realçam as duas fontes principais de atraso.

Considera-se que

- i) o atraso total do encaminhador, T_t , é igual à soma dos atrasos na fila de espera e no serviço: $T_t = T_f + T_s$;
- ii) o atraso na fila de espera apresenta uma distribuição uniforme entre 0 e o valor máximo, t_{max} (o valor de t_{max} depende do número do grupo);

- iii) o atraso de serviço segue uma função densidade de probabilidade exponencial com média t_m (o valor de t_m depende do número do grupo), dada por $f_{Ts}(x) = \frac{1}{t_m} e^{-x/t_m} u(x)$;
- iv) um encaminhador apresenta um desempenho aceitável de atraso se o 95° percentil do atraso total do encaminhador for menor do que o dobro da média do atraso total.

Ouestões

- Sem recorrer à função densidade de probabilidade do atraso total do encaminhador, obtenha analiticamente as expressões da média e do desvio padrão do atraso total e calcule os valores correspondentes.
- 2) Obtenha analiticamente a expressão da função de densidade de probabilidade (PDF) do atraso total do encaminhador.
- 3) Usando o resultado obtido em 2), represente graficamente a PDF do atraso total do encaminhador e as PDFs do atraso na fila de espera e do atraso de serviço, e explique as diferenças observadas.
- 4) Usando Matlab, gere amostras do atraso na fila de espera e do atraso de serviço e, a partir destas, do atraso total. A partir destas amostras, obtenha, por simulação em Matlab, estimativas das PDFs do atraso na fila de espera, do atraso de serviço e do atraso total. Represente graficamente as estimativas obtidas e analise criticamente se estão de acordo com o esperado.
- 5) Sobreponha a PDF do atraso total representado em 3) e a respetiva estimativa da PDF obtida em 4), compare os resultados obtidos e explique as diferenças observadas.
- 6) Avalie, quantificando, se o encaminhador que está a considerar no seu trabalho apresenta um desempenho aceitável. Para isso, calcule analiticamente o 95º percentil do atraso total do encaminhador e confirme, por simulação, o resultado obtido a partir da representação gráfica da função de distribuição cumulativa.

Nota: O programa desenvolvido em Matlab para geração das amostras e estimativa da probabilidade deve ser anexado ao relatório do trabalho. Para poder obter estimativas adequadas das PDFs devem ser consideradas pelo menos 5 000 000 de amostras e 60 bins no intervalo em que cada PDF toma valores significativamente diferentes de zero.