

Learning outcomes

- Basic phylogenetic theory
- How to construct a phylogeny
 - different methods/input data
 - visualisation

Shared ancestry

- Phylogenies trace patterns of shared ancestry between lineages.
- Each lineage also has ancestors that are unique to that lineage and ancestors that are shared between lineages - common ancestors

Clades

- A clase is a grouping that includes a common ancestor and all descendants (living or extinct) of that ancestor
- Phylogenies make it easy to tell if a group of lineages forms a clade.
- Clades may include a few isolates/species or many thousands, and can be nested within larger clades

Interpretation

- They do not imply some species/ isolates are more 'advanced' than others.
- A speciation event resulted in two lineages - moss, and fern/pine/ rose. Both lineages have had equal time to evolve.
 - Mosses are not more primitive, nor ancestral to other plants
 - They share a common ancestor

Building a tree

- Reconstruct a phylogeny to form a hypothesis about how isolates are related
 - Data can be physical characteristics (morphology), behavioural traits, or genetic data
 - DNA, protein sequences
 - Whole genome?
 - SNPs?
 - Sets of genes?

Considerations for building a tree for fungi

- Size of the genome
- Amount of recombination/ clonality
- Choice:
 - whole genome sequence
 - wgSNPs
 - all genes/subset of genes

Building trees Methods

- UPGMA
 - assumes equal rates of evolution throughout
- Neighbor-Joining (NJ)
 - generates sub-trees, and closest sub-trees are joined together in a step-wise manner
- Parsimony
 - grouping isolates in ways that minimise number of evolutionary changes
 - simple answer is often true (Occam's razor)
- Bayesian/likelihood based
 - produce lots of trees covering various hypotheses to produce a 'best' supported phylogeny

Building phylogenies with wgSNPs RAxML

- Maximum Likelihood (Bayesian) approach
 - enables bootstrapping to get support for branches
- Requires a PHYLIP or FASTA input
- We can combine multiple vcf files (filtered snps/'LowConf' labelled) in to a single FASTA file and construct a phylogeny on multiple isolates
 - First, all vcf files need to be in the same directory (using the command 'cp' or 'mv')

Building phylogenies with wgSNPs

How to handle low confidence SNPs?

- Do not remove them
 - Consider them as 'missing' instead
 - If that position is low confidence because it has low mapping quality or coverage, it may be we don't have enough evidence for or against it being a real SNP
 - Change low confidence positions to 'N', which will be read by phylogeny software as 'missing'
- Index all vcf files and merge into one file using vcftools
- Convert into a multiFASTA file using bcftools

Building phylogenies with wgSNPs RAxML

- Two models of approximation: CAT and GAMMA
 - Do not use CAT if you have less than 50-100 taxa in your input file use GAMMA instead
 - CAT is better than GAMMA if using protein sequence as it accommodates rate heterogeneity
- Bootstrap over 100 replicates
- Can have BIN or GTR
 - BIN is for binary (presence/absence)
 - GTR = 'General Time Reversible' model of nucleotide substitution under Gamma model of rate heterogeneity, which reduced computational burden
 - -p random seed
 - -x rapid bootstrap random seed
 - -f a = bootstrap
 - -N = number of bootstrap iterations
- raxml -s file.fa -m GTRGAMMA -p 12345 -f a -x 12345 -N 100 -n trichophyton -w /path/to/output/directory

Building phylogenies with wgSNPs RAxML output files

- 1. Best-scoring ML tree
- 2. Best-scoring ML tree with support values (bipartitions)
- 3. Best-scoring ML tree with support values as branch labels (bipartitionsBranchLabels)
- Depends on your analysis requirements which one you use, and which software you use to visualise
 - e.g. FigTree does not understand the bipartitionsBranchLabels format but will understand the bipartitions file

Visualising phylogenies FigTree

- Free to download (https://github.com/rambaut/figtree/) and use
- Available for all OS
- Quite basic

Visualising phylogenies ggTree

- Derived from ggplot2 as an R graphics package
- https://yulab-smu.top/treedatabook/

