Introduction to Motion Control

ROCHESTER MAKERSPACE 2021

Class Objectives

- 1. Become familiar common types of motors
- 2. Focus on motors typically used by hobbyists
- 3. Understand how to control motors
- 4. Understand cautions when using motors with microcontrollers/microcomputers
- 5. Provide projects to demonstrate motor control on Raspberry Pi and Arduino
- 6. Provide examples of typical motor applications
- 7. Provide list of resources for learning more

Types of Common Electric Motors

- ► There are two main motor classifications, ac and dc, with three application areas, constant speed, variable speed and position (or torque) control.
- AC Motors

AC motors are typically associated with industrial applications and will not be address further in this class.

DC Motors

Although large DC motor are common in industrial application smaller DC motor are favored by the hobbyist and include:

- ▶ DC Brushed Motors simple, cost effective, lightweight and easy to control. Excellent torque at low speed but produce electrical noise. Used as drives for hobby vehicles.
- ▶ DC Brushless Motors -- mechanically simpler than brushed motors but require more complex controllers and gearboxes and can be found in multicoptors and drones.
- Servo Motors good for projects needing precise control of angular or linear position such as robots.
- Stepper Motors move in discrete, precise steps and are found in CNC machines and 3D printers.

Brushed DC Motor Description

► Components:

- ▶ Stator: Generates a stationary magnetic field that surrounds the rotor
- ▶ Rotor (armature): Made up of one or more windings. Produce a magnetic field when energized
- Brushes: As the motor turns, carbon brushes slide over the commutator, coming in contact with different segments of the commutator
- ► Commutator: Segments are attached to different rotor windings, generating a dynamic magnetic field inside the motor.

Brushed DC Motor Example

- ▶ DC Gearbox Motor "TT Motor" 200 RPM 3 to 6 VDC
 - Operating Voltage Range: 3~7.5V
 - Rated Voltage: 6V
 - ▶ Max No-load Current (3V): 140 mA
 - Max No-load Current (6V): 170 mA
 - ▶ No-load Speed (3V): 90 rpm
 - ▶ No-load Speed (6V): 160 rpm
 - ► Max Output Torque: 0.8 kgf cm
 - ► Max Stall Current: 2.8 A
- Pololu Micro Metal Gearmotor
 - See spec sheet

Brushed DC Direction Control: H-Bridge

- ► An H-Bridge circuit contains four switches with the motor at the center forming an H-like arrangement.
- Closing two particular switches at the same time reverses the polarity of the voltage applied to the motor. This causes change in spinning direction of the motor.
- The control circuit prevents closing both switches on the same side of the H-Bridge, thus preventing a short from Vcc to GND.

Brushed DC Speed Control: PWM

Brushed DC Motor Drivers

Model	L298N	TB6612	DRV8833	DRV8871
Current	2A	1.2A	1.5A	2A
Peak Current	3A	3.3A	2A	3.6A
Operating Voltage	3.2 – 40 V	4.5 – 15 V	2.7 – 10.8 V	6.5 – 45 V
Efficiency	40-70%	91-95%	70-90%	
Total MCU pins	6	6	4	2
PWM Pins	2	2	2/4	2
Number of motor outputs	2	2	2	1
Technology	Bipolar	MOSFET	MOSFET	MOSFET
Approximate cost	\$2.50	\$5.00	\$5.00	\$7.50

Servo Motor Description

- Components:
 - Motor
 - ▶ Potentiometer: Shaft position
 - ▶ Gear Assembly: Reduce RPM to increase torque
 - ► Controlling circuit: Feedback
 - ▶ Input signal: PWM pulse width
- ► An error signal is generated between the potentiometer and the input signal. The error signal causes the motor shaft to turn, changing the voltage on the potentiometer, thus reducing the error until the motor stops when the error is 0.

Brushless DC Motor (BLDC) Description

- Brushless DC motor control is not quite as simple as the regular brushed type. Brushless motors require a controller that can sense the proper time to reverse the voltage to the coils.
- ▶ Some motors have built-in hall-effect sensors that can detect the orientation of the rotor. Controllers for this type of motor require sensor inputs to read these hall sensors.
- Other 'sensorless' motor controllers sense the back EMF in the motor coils themselves to detect the rotor position. Most ESC (Electronic Speed Controls) for brushless RC motors use this technique.
- Brushless motors designed for autonomous and remote control aircraft and vehicles typically require a separate controller. These are typically of the sensorless type and use standard servo type pulsed signals for speed control.
- ▶ Applications include RC controlled planes and drones.

Brushless DC Motor (BLDC) Description

Servo/BLDC Control

Stepper Motor Description

Advantages

- Steppers don't require a sensor to detect the motor position since the motor moves by simply counting steps.
- ▶ Although the motor does need a controller it doesn't need complex calculation or tuning to work properly.
- With micro stepping high positional accuracy can be achieved.
- ▶ Good torque at low speed and great for holding position.

Disadvantages

- ► Can miss steps if torque load is too high.
- Always drain maximum current.
- ▶ Low torque and noisy at high speeds.

Bipolar Stepper Motor Example

- ► TPP-47-002
 - ► NEMA 17
 - ▶ Step Angle: 1.8 deg
 - ► Holding Torque: 33Ncm(47oz.in)
 - Rated Current/phase: 1.2 A
 - ▶ Phase Resistance: 2.4 ohms
 - ▶ Inductance: 4.7 mH
 - ► Application: 3D Printer

Bipolar Full Step Sequence

Rotation

Unipolar Step	02-03	Q1-Q4	Q6-Q7	Q5-Q8
1	Z	OFF	ΠN	OFF
2	OFF	ΠN		OFF
3	OFF	ΠN	OFF	
4	ΠN	OFF	OFF	
1	П	OFF	\square	OFF

Unipolar Stepper Motor Example

- ▶ 28BYJ-48
 - ▶ Rated Voltage: 5V DC
 - ▶ Number of Phases: 4
 - ▶ Stride Angle: 5.625°/64
 - ▶ Pull in torque: 300 gf.cm
 - ▶ Insulated Power: 600VAC/1mA/1s
 - ► Coil: Unipolar 5 lead coil

Unipolar Full Step Sequence

Unipolar Step	Q1	Q2	03	Q4
1	ΠN	OFF	ΠN	OFF
2	OFF	\square		OFF
3	OFF	Z	ΠFF	ΠN
4	ΠN	OFF	□FF	ΠN
1	ΠN	OFF	ПΝ	OFF

Stepper Motor Half Step Sequence

Stepper Motor Drivers

Model	DRV8825	A4988	TMC2208	ULN2003
Туре	Bipolar	Bipolar	Bipolar	Unipolar
Max Current per coil	2.2 A	2.0 A	2.0 A	600 mA
Continuous current per coil	1.5 A	1.0 A	1.2 A	
Max step resolution	1/32	1/16	1/256	N/A
Logic range	2.5 – 5.25 V	3 – 5.5 V	3 – 5 V	5 V
Supply Voltage Range	8.2 – 45 V	8 – 35 V	5.5 – 36 V	50 V
Interface	Step/Dir	Step/Dir	Step/Dir	Channels
Approximate cost	\$9.00	\$2.00	\$15.00	\$1.50

Integrated Stepper Motor Driver

- ▶ gShield v5
 - **▶** ~ \$50
 - Arduino Uno Shield
 - 3x TI DRV8818 Stepper Drivers
 - Runs grbl firmware
 - https://github.com/gnea/grbl
 - ► Application: CNC Router

Integrated Stepper Motor Driver

- ► RAMPS 1.4
 - ~ \$20 including DRV8825 Motor Drivers
 - Arduino Mega Shield
 - Different drivers may be used
 - Runs Marlin firmware
 - https://marlinfw.org/
 - ► Application: 3D printer

Project – Brushed DC Motor

- ▶ Driver: L298N
- Raspberry Pi Wiring
 - ▶ IN1 to GPIO26
 - ▶ IN2 to GPIO19
 - ▶ IN3 to GPIO20
 - ▶ IN4 to GPIO16
- Set power input to 7.4 V
- Open MotionControlClass/BrushedDC/key_brushedDc.py using the Geany IDE
- Run key_brushedDc.py
- Put cursor focus in terminal window that pops up.
- Arrow keys to move motors.
- Enter key to stop
- 'a' to terminate program

Project – Servo Motor

- Use mechanical crane
- Raspberry Pi Wiring:
 - Servo Pan: GPIO18
 - ▶ Servo Tilt: GPIO17
- Set power input to 5V
- Open MotionControlClass/ServoMotor/key_Serv oMotor.py using the Geany IDE
- Run key_ServoMotor.py
- Put cursor focus in terminal window that pops up.
- Arrow keys to move motors.
- Enter key to stop
- 'q' to terminate program

Project – Brushless DC Motor

- Driver: ESC
- Guide:

https://howtomechatronics.com/tu torials/arduino/arduino-brushlessmotor-control-tutorial-esc-bldc/

- Arduino Wiring:
 - ▶ Speed control: Pin 9
 - ▶ Pot Wiper: A0
- Open MotionControlClass/BldcMotor/Bld cMotor.ino using the Arduino IDE
- Upload the sketch

Project – Unipolar Stepper Motor

- Driver: ULN2003
- ► Guide: https://www.makerguides.com/28byj-48-stepper-motor-arduino-tutorial/
- Arduino Wiring
 - ▶ IN1 to Pin 11
 - ▶ IN2 to Pin 10
 - ▶ IN3 to Pin 9
 - ▶ IN4 to Pin 8
- Set power input to 5V
- Open MotionControlClass/UnipolarStepper/BasicUnip olarStepper/BasicUnipolarStepper.ino using the Arduino IDE
- Upload the sketch
- The motor will rotate 1 revolution, reverse and rotate 1 revolution in the opposite direction and repeat forever.

fritzing

Project: Unipolar with ATTiny

- Driver: ULN2003
- Plug in 28BYJ-48 motor with red wire nearest C3/C4
- Power board with USB-C power block
- ► The motor will rotate in the clockwise direction looking at the shaft side of the motor.

Project: Unipolar with ATTiny

```
static inline void decrMotor( void ){
switch( MotorState ) { //prior to decrement
case 7: //1001->x___->0001
  clear_bit( S1_PORT, S1 );
  break;
case 6: //0001-> ^ ->0011
  set bit( S3 PORT, S3 );
case 5: //0011-> X->0010
  clear bit( S4 PORT, S4 );
  break;
case 4: //0010->_^_->0110
  set bit( S2 PORT, S2 );
case 3: //0110-> X ->0100
  clear bit( S3 PORT, S3 );
  break;
case 2: //0100->^ ->1100
  set bit( S1 PORT, S1 );
  break;
case 1: //1100->_X__->1000
  clear_bit( S2_PORT, S2 );
case 0: //1000-> ^->1001
  set bit( S4 PORT, S4 );
  MotorState = 8;
  break;
} MotorState--;
```

Project – Bipolar Stepper Motor

- Driver: DRV8825
- ► Guide: https://www.makerguides.com/drv8825stepper-motor-driver-arduino-tutorial/
- Arduino Wiring:
 - ► Arduino Pin 3: Direction
 - ► Arduino Pin 2: Step
- Set power input to 12V
- Open MotionControlClass/BipolarStepper/Basic BipolarStepper/BasicBipolarStepper.ino using the Arduino IDE
- Upload the sketch

Class notes and code

- ▶ All the class notes and code can be downloaded from GitHub:
 - https://github.com/RochesterMakerSpace/MotionControlClass
- ▶ Pull down the green "Code" button and select "Download ZIP"