Inventing the Cloud Century

Inventing the Cloud Century

How Cloudiness Keeps Changing Our Life, Economy and Technology

Marcus Oppitz Klosterneuburg Austria Peter Tomsu Leitzersdorf Austria

ISBN 978-3-319-61160-0 ISBN 978-3-319-61161-7 (eBook) DOI 10.1007/978-3-319-61161-7

Library of Congress Control Number: 2017944452

© Springer International Publishing AG 2018

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

To our wives, Irmgard and Tanja for their patience And to our families

Preface

The idea for this book was formed in the spring of 2015. We were working for Cisco at that time, one of the large players in network technology. Like every other company in the market, Cisco was on its way to embrace the new opportunities generated by cloud computing and the Internet of Things. Fascinated with bringing together the concept of cloud services and new network architectures to create new business models, we started to work on a model involving different types of ownerships to create a more precise definition of what cloud-based services could offer. The result was a first initial publication; a short summary is part of the chapter entitled "Cloud Computing." Soon we discovered that we had touched the tip of an iceberg. Cloud computing and cloud services seemed to be nothing more than the momentary status of an evolution that was started long ago and that was on its way to change economy, technology, and society in an accelerating and dramatic way.

Both of us had started our careers as engineers in the mid-1970s at the University of Technology Vienna at the time when computing and computer sciences began its journey toward a key technology for businesses. Our working environment was dictated by mainframe computers, by punch cards, and—if you were lucky—by very simple green-screen terminals. After university, we went on different paths in our professional careers. Marcus started to work in the software business building own companies and start-ups. Peter concentrated a great part of his professional life on the development and deployment of new networking technologies and cloud architectures. When we met again, 40 years later, everything had changed completely. Computers went into the background; they became a kind of commodity in your shirt pocket. Networks, the Internet, the Web, and Web-based services had become the driving power for computer science, business, and society. Smart environments using cognitive computing and the Internet of Things had started to disrupt many businesses and industry segments. Digitalization had become a prerequisite for all kinds of organizations or corporations, requiring the acceptance of new technologies but also creating a demand for change and transition of business models. The social and political impact of social media pulled communities into the global village and created many new challenges for politics and media.

viii Preface

Within those 40 years, we had been part of a huge transition starting with the first PCs and networks in the 1970s and moving to the expansion of the Internet, to the revolution triggered by the Web, and to the concept of cloud computing and cloud business today.

Those changes and transitions gained speed over the last decades and seem to point to a future that would be influenced by the economy of cloud-based services. Exploring the path of this evolution and trying projections into the future became a fascinating idea for both of us. There are Terabytes of literature about technological developments, social and political impacts, and the rapidly changing economy. What we had in mind is the interlock of these three dimensions to explore the making of today's cloud ecosystems as witnessed by followers of older service ecosystems that were based on networks. We also wanted to describe the move of services to the cloud and the long-term trend that is still progressing at high velocity. Successful technology is always accompanied by compelling business models and ecosystems including private, public, and federal organizations. Our target was to explore the evolution of service ecosystems, describe their similarities and differences, and analyze the way they created and changed industries. Based on the status of cloud computing and related technologies like virtualization, Internet of Things, fog computing, big data, and analytics, we tried to provide an outlook into the possibilities of future technologies, the future of the Internet, and the possible impacts on business and society moving to the cloud century.

This book is our result.

We address readers like engineers, historians, or economists who are interested in an interdisciplinary view on the history, status, and future projection of the Internet, the Web, and cloud computing. We aimed to connect the technical view with the economic history and the social effects of service ecosystems based on networks. We have tried to follow a storytelling approach, moving along the lines of historical evolution. While sometimes drilling down into technical details, this is not a technical textbook.

Vienna Marcus Oppitz 2017 Peter Tomsu

Contents

Introducing Cloudiness	1
In Search for a Better Life	2
Service Ecosystems: The Five Magic Elements	6
Creation and Innovation	10
Structure of the Book	14
References	19
A Short History of Service Ecosystems	21
Cloud: An Old Concept	22
Water	23
Public Transport and Postal Services	25
The First Transport Networks	25
International Rollout	30
Business and Market Today	31
Social Impact	32
Railway	33
Technology 1.0: The Steam Age	35
Technology 2.0: Electricity, Diesel and High-Speed	40
Social and Economic Impact	42
References	44
Early Information Network Services	45
The First Optical Communication Network	45
Social and Economic Impact	47
The Electric Telegraph	48
Social and Economic Impact	56
Telephone	58
Technology	58
Building an Ecosystem	60
Social and Economic Impact	63
Wireless	64

x Contents

Technology	64
Building Business: The Begin of the Electronic Industry	66
Standards	67
Broadcasting	68
Technology	68
Building Radio Business	69
Standards and Regulation	70
Social Impact	71
Status Before Internet and Cloud Computing	71
References	72
Making of Digital Computers	75
History of Computing	77
From Mechanical to Electrical Computing	77
1928–1936: Mathematical Theory—Gödel, Turing and von Neumann	78
1936 The Turing Machine	78
Von Neumann Architecture	80
Women and the Development of Computers	81
The Birth of IBM: The Mother of Mainframes	82
1960 Mainframes and Early Computing	82
Early User Interfaces	83
Mainframe and Virtualization	83
The Big Mainframe Players	84
1970 The Rise of Minicomputers	85
1980 Personal Computers	85
The Homebrew Computer Club	86
Computers from the Starting Period	87
1977 Apple II: The First Personal Computer for Everyone	87
The Rise of PCs	88
1980 From Personal Computers to Workstations	89
1990 PCs Getting Mature	90
1990s Servers Replacing Mainframes	92
2010 Mainframes Renaissance	92
Supercomputers Versus Modern Mainframes	93
Mainframes in the Middle of the 2010s	94
The Economic Cloud Solution	94
References	95
Networks for Sharing and Connecting	97
Evolution of Computer Networks	97
Ethernet: The Epic Foundation for Local Area Networks	100
Other Local Area Network Standards	102
From Ethernet to Structured Cabling	104
Principles of Layered Networking	104
Bridges Expanding LANs Beyond Cabling Limitations	105

Contents xi

Switches Enabling Scalable Fast Networking	107
Routers and Cisco	108
Networking Standards	109
The Birth of Modern Networking	110
The Internet Protocol Suite	112
Internet Protocol Suite Layers Defined	114
OSI Reference Model	115
ATM: Attempt to Integrate Data and Voice	117
The Success of the Internet Protocol Suite	121
Internet Protocol Next Generation aka IPv6	123
IPng/IPv6 Advancements	125
IPv6 Packet Format	127
IPv6 Deployment	128
References	128
Manager Westerl Change	121
Managing Virtual Storage	131
Shared Storage Model	133
Different Types of Storage Virtualization	135
Disk Virtualization	136
Tape Storage Virtualization	136
File System Virtualization	137
File/Record Virtualization	137
Block Virtualization	138
References	138
From Physical to Virtual Servers	139
Server Virtualization Overview	139
Server Virtualization Methods in Detail	141
Open Virtualization Format (OVF)	146
References	148
Software Defined Virtual Networks	149
Some SDN History and Evolution	149
Legacy Networking Limitations Driving SDN	151
SDN Disrupting Legacy Networking	155
Concept and Promise of SDN	158
High Level View of SDN	159
Centralized Versus Distributed Control and Data Planes	162
Control Plane	163
Forwarding and Data Plane	165
Separation of Control and Data Planes	165
Different Functional Planes of Network Elements	167
Evolution of Control Plane Concepts	168
Open SDN Implementations	171
OpenFlow	171
OpenDaylight (ODL)	179
Open Compute Project (OCP)	181

xii Contents

SDN Market and Implementations	182
VMware and Nicira	183
Cisco ACI: Application Centric Infrastructure	
Big Switch Networks	194
References	199
Duilding the Internet	201
Building the Internet	201
Preparations	202
Connecting Machines and People	210
Building the Basement: Unix and C	210
Rollout of the Internet	214
Connecting to the Internet	219
The First Communities	220
The Commercialization of the Internet	220
The IT Market at the End of the 1980s	226
The Internet Before the Web	226
Reference	227
	221
World Wide Web	229
The World Wide Web Is Born	229
Browsers	233
Sharing Pictures, Music and Video	235
Starting with Web Portals and Search	237
Improving Efficiency: Java, PHP and Web Services	240
Building First Businesses	244
Starting with e-Commerce	244
Smart Search: Google and Followers	247
Free Content	250
The Dot-com Bubble	251
The IT Market in the Early 2000s	253
Web 2.0 and the Social Networks	253
Travel	255
Social Media: Facebook and Others	257
Pictures, Music and Video	259
Mobile and Smart	261
The IT Market in 2005	261
Leaving the Desk	262
A Disruptive Business Model for Software	265
The IT Market in 2010	266
Reference	266
Cloud Computing	267
What Is Cloud Computing?	267
Similarities and Differences to Other Service Ecosystems	271
Definitions of Cloud Computing	274

Contents xiii

The Official NIST Definition	274
The ITU Cloud Reference Architecture	282
The Ownership Model	283
Native Cloud Applications	286
Moving Towards the Clouds	287
Infrastructure as a Service	289
Software as a Service	295
Office as a Service	298
Chat, Collaboration and Video	302
New Business Models for Media	304
New Business Models for Sharing Resources	306
Social Networking 2	310
Sharing Knowledge and Information	312
References	318
Duilding Cloud Dusinesses and Economic	210
Building Cloud Businesses and Ecosystems	319
Business Models	320
Basic Assumptions	320
Drivers of Acceptance	322
Obstacles	322
Enablers	323
Primary Cloud Infrastructure and Cloud Service Business	325
Cloud Infrastructure	325
Cloud Services	325
Secondary Markets	327
E-Commerce	327
Advertising	328
Travel and Online Booking	328
Media and Entertainment	330
Cloud Market Players	332
IT Companies	332
Internet Companies	336
Semiconductor and Electronics Manufacturers	338
Infrastructure	338
Standards and Standard Organizations	345
Open Source Software	345
Creating Innovation	349
Creative Destruction and Disruption	349
Technology, Paradigms and Ecosystems	351
The Importance of Paradigm Changes	351
Acceleration of Paradigm Changes	352
14 Major Paradigm Changes Since 1950	353
Innovation as Business	358
The Innovation Ecosystem	

xiv Contents

Founders	367
Investors	368
Regions and Hotspots	370
Silicon Valley as Unique Model for Innovation	372
Innovation's Effects	373
New Jobs	374
Quick Success or Fail	374
Innovation Accelerates Productivity	374
Delayed Effect on Economy	375
Reference	375
Security and Privacy Challenges	377
Good, Bad and Ugly	377
A Short History of Private Communication: Secret Messages	379
Machines for Encryption and Decryption	382
Going Industrial: Standard Technology	384
Building Secure Connections for the Internet	388
Creating Standards and Best Practices	395
Security Today	396
Cloud Security Threats and Typical Patterns	399
	402
Security Market	403
	403
Hackers	403
Whistleblowers	404
Cyberwarfare	
Industrial Espionage	405
Cybercrime	405
Data Theft	405
Ransomware	406
Fake Emails	407
Phishing Mails	407
CEO Fraud	408
Dark Web and Deep Web	408
The Growth of Cybercrime	409
Defense and Security Policies on Different Levels	409
Reference	410
Changes in Society and Politics	411
The Purpose of the Web and the Clouds	412
The Web as an Amplifier	413
Digitalization	414
Speed of Change	414
Quality of Life	416
Digital Social Networks	417
Privacy, Identity and Security	421

Contents xv

Trust and Borders	423
Building New Trust	423
Creating New Borders	426
The Fight for Rules and Regulations	429
Non-Profit Organizations	430
Political Initiatives	431
Reference	433
To Assess A self (TI) the second	425
Internet of Things	435
IoT in a Nutshell	435
Enablers of IoT	439
IoT Protocols and Standards	443
Cellular IoT Standards	443
Industrial IoT (IIoT) and Standards	446
Other IoT Standards and Communication Technologies	448
Cost of IoT Connectivity	451
How the IoT, Cloud and Big Data Play Together	451
IoT Reference Model	453
IoT Levels	455
IoT Security	459
IoT Reference Model Status	460
IoT Solution Samples	461
Parking Space Management	461
Precision Agriculture	462
Building and Home Automation Systems	464
Manufacturing and Industry 4.0	465
IoT in Retail Market	467
Media, Data Capture, IoT and Big Data	467
References	468
Fog Computing	471
Fog Computing in a Nutshell	471
Fog Computing Origin and Definition	471
Fog Computing Versus IoT Versus Cloud Computing	472
Fog Computing Versus Edge Computing	473
Fog Computing Infrastructure	474
IoT Mandates Transition from Cloud to Fog	474
New Applications Requiring Fog Computing	474
Fog and Cloud Polytionship	476
Fog and Cloud Relationship	476
Fog Computing System Level Approach	478
New Paradigms for Fog: Systems and Macro Endpoints	478
Fog Platform Requirements	478
Fog Computing Architecture	481
Distributed Fog Infrastructure	481

xvi Contents

Fog Architecture Network Infrastructure View	482	
Emerging Technologies Enabling Fog Computing		
Fog Computing Solution Samples		
Smart Traffic Lights (STLs) and Smart Connected Vehicles (SCVs)		
Wireless Sensor, Actuator Networks (WSANs) and Smart Buildings	485	
Smart Grid	486	
References	486	
	407	
Big Data Analytics	487	
Big Data Analytics Defined	488	
The 5 V's of Big Data	491	
Common Big Data Analytics Misconceptions	494	
Big Data Analytics Requirements	496	
Drivers of Big Data	496	
Big Data Analytics Technology Landscape	497	
Big Data in Motion	497	
Big Data at Rest	497	
NoSQL Versus SQL Databases	498	
Big Data Analytics Framework	499	
Data Source: Capture, Integration and Movement	499	
Hadoop, Relational (SQL) and Non-Relational (NoSQL) Databases	500	
Hadoop in Detail	501	
Non-Structured Data	501	
Data Stores: Big Data Management and Processing	502	
Applications Functions and Services	502	
Business View, Presentation and Consumption	502	
The Big Data Analytics Use Cases	503	
Big Data Analytics Market		
References	510	
Future Technologies of the Cloud Century	511	
The Ever-Increasing Computing Power	511	
Parallel CPUs	513	
	514	
1 6		
Constantly Expanding Infrastructure	514515	
Traffic Increase	516	
Changing Applications Means Changing Traffic Patterns	517	
Challenges for Legacy IP Networks	517	
SDN and Cloud Based Networking Services	518	
Big Data Analytics Networking Requirements	519	
Wireless Future	520	
	521	
IPv6		
The Future Internet	522	
Coverage for Several Billion Nodes	522	
Speed as Never Seen Before	522	

Contents xvii

Zettabyte Capacity	523
Balance Between Privacy and Security	525
Next Generation User Interfaces	525
Resilience and Survivability	526
New Dimensions Through IoT and Embedded Systems	527
Swarming and Collaboration	528
Storage Virtualization Future	528
Software Defined Data Center	528
Revolutionized Non-volatile Memory Design	529
Optimized Capacity Large Disk Drives	530
Why Software Defined Storage (SDS) Infrastructure	531
Server Virtualization Evolution	531
From Fiber Channel to Ethernet	532
The Single Data Center Networking Solution	532
Network Virtualization of the Next Decade	533
SDDC and Networking	534
New Demands on Hypervisors	536
SDN Controller Future	536
From Closed to Open SDN Environments	537
IoT and Fog: The Next Big Disruption?	538
From Internet Age to IoT Age	538
Self-Driving and Flying Cars	539
Enormous Economic Benefits Through IoT	540
Next Big Disruption Through IoT	541
Big Data Analytics Changing All Our Lives	542
Triumph of Open Source Tools	542
Big Data Analytics and New Market Segments	543
Predictive Analytics	543
Is Human Decision Making Still Necessary?	544
References	545
New Paradigms and Big Disruptive Things	547
Decentralize: Peer-to-Peer	548
The Bitcoin Story	550
The Technology Behind Bitcoin: How Does Blockchain Work?	552
Cryptocurrencies Replacing Banks	553
Back to Blockchain as a Basic Technology	557
First Applications	559
Distributed Ledger as Disruptive Business Model	561
Cognitive Computing and Machine Intelligence	562
Looking Back to Cybernetics and Artificial Intelligence	564
Cognitive Computing Elements	569
Convergence of Technologies	575
Cognitive Tools in the Market Today	579
Truly Intelligent Clouds	583

xviii Contents

Disruptive Future Computing Technologies	586
3-D Molecular Computing and Nanotubes	587
Molecular Computing	587
DNA Computing	588
Controlling Spin	589
Using Light for Computing	589
Quantum Computing	590
References	595
Arrival in the Cloud Century	597
Persons	603

Abbreviations

10Base2

1024502	To Meps Buseauta 200 meter
10Base5	10 Mbps Baseband 500 meter
10BaseT	10 Mbps Baseband Twisted Pair
3G	Third generation of wireless mobile telecommunications
	technology
3GPP	3rd Generation Partnership Project
4G	Fourth generation of mobile telecommunications standard
5G	Fifth generation of wireless mobile telecommunications
	technology
AAL	ATM Adaptation Layer
ACE	Automatic Computing Engine
ACI	Application Centric Infrastructure
ADSL	Asymmetric Digital Subscriber Line
ALE	Address Lifetime Expectations
ALU	Arithmetic Logical Unit
AMD	Advanced Micro Devices
ANSI	American National Standards Institute
AOE	ATA over Ethernet
API	Application Program Interface
APIC	Application Centric Infrastructure Controller
ARP	Address Resolution Protocol
ARPA	Advanced Research Projects Agency
ARPA IPTO	Advanced Research Projects Agency Information Processing
	Techniques Office
ARPANET	Advanced Research Projects Agency Network
AS	Autonomous System
ASCII	American Standard Code for Information Interchange
ASIC	Application Specific Integrated Circuit
ATA	Advanced Technology Attachment

10 Mbps Baseband 200 meter

xx Abbreviations

ATM Asynchronous Transfer Mode
ATM Automated Teller Machine
AWS Amazon Web Services
BCF Big Cloud Fabric

BGP Border Gateway Protocol

B-ISDN Broadband Integrated Services Digital Network

BLE Bluetooth Low Energy
BNC Bayonett Neill Concelman
BUS Broadcaste and Unknown Server

CAD Computer Aided Design
CAF C++ Actor Framework
CBR Committed Bit Rate

CCITT Comité Consultatif International Téléphonique et Télégraphique

CD Compact Disk

CDMI Cloud Data Management Interface
CDPI Control to Data Plane Interface
CEP Complex Event Processing
CHS Cylinders Heads and Sectors
CIDR Classless Inter Domain Routing
CISC Complex Instruction Set Computing

CLI Command Line Interface

COBOL Common Business Oriented Language

COM Component Object Model

CORBA Common Object Request Broker Architecture

COTS Commercial Off The Shelf
CPS Cyber Physical System
CPU Central Processing Unit
CRC Cyclic Redundancy Check

CRM Customer Relationship Management

CRT Cathode Ray Tube

CRUD Create, Read, Update, Delete

CSMA/CD Carrier Sense Multiple Access with Collision Detection

CSNET Computer Science Network

DARPA Defense Advanced Research Projects Agency

DBMS Data Base Management System

DC Data Center

DCOM Distributed Component Object Model

DDS Data Distribution Service
DEC Digital Equipment Corporation

DHCP Dynamic Host Configuration Protocol

DHCPv6 Dynamic Host Configuration Protocol Version 6

DIX Digital Intel Xerox
DNS Domain Name System
DOD Department of Defense

Abbreviations xxi

DoS Denial of Service

DQDB Distributed Queue Dual Bus
DRAM Dynamic Random Access Memory

DSL Digital Subscriber Loop DVD Digital Versatile Disc

EBCDIC Extended Binary Coded Decimal Interchange Code

EC-GSM-IoT Extended Coverage GSM for IoT

EGPRS Enhanced General Packet Radio Service

ELAN Emulated LAN

ERP Enterprise Resource Planning ESCON Enterprise System Connection ESG Enterprise Study Group

ESX Elastic Sky X FC Fiber Channel

FCOE Fiber Channel Over Ethernet
FDDI Fiber Distributed Data Interface
FIB Forwarding Information Base

FICON Fiber Connection

FLOPS Floating Point Operations Per Second FPGA Field Programmable Gate Array

FTP File Transfer Protocol FTTH Fiber To The Home

GC&CS Government Code and Cypher School

GE General Electric
GFC Generic Flow Control

GFLOPS Giga Floating Point Operations per Second

GIG Global Information Grid

GMO Genetecally Modified Organism

GMR Giant Magneto Resistive

GNSS Global Navigation Satellite System

GNU GNU's not Unixe
GPL General Public License
GPRS General Packet Radio Service
GPS Global Positioning System
GRE Generic Route Encapsulation

GSM Global System for Mobile Communications

GSMA Global System Mobile Association

GUI Graphical User Interface HA High Availability

HC Hop Count

HCC Homebrew Computer Club HDFS Hadoop Distributed File System

HEC Header Error Correction HMI Human Machine Interface xxii Abbreviations

HPC High Performance Computing

HRMS Human Resource Management System HSM Hierarchical Storage Management

HSPA High Speed Packet Access
HTTP Hyper Text Transfer Protocol
IaaS Infrastructure as a Service
IBM International Business Machines

IC Incubation Committee

ICMPv6 Internet Control Message Protocol Version 6

IDC International Data Corporation

IEEE Institute of Electrical and Electronics Engineers

IETF Internet Engineering Task Force IGP Interior Gateway Protocol IIoT Industrial Internet of Things Intel VT Intel Virtualization Technology

IoE Internet of Everything
IoT Internet of Things

IOTC Internet of Things Consortium IoTSF IoT Security Foundation

IoTWF Internet of Things World Forum

IP Internet Protocol
IPng IP Next Generation

IPU Instruction Processing Unit IPv4 Internet Protocol Version 4

IPv6 IP Version 6

iscsi Internet Small Computer System Interface ISDN Integrated Services Digital Network

ISIS Intermediate System to Intermediate System

ISM Industrial Scientific and Medical ISO International Standards Organization

ISP Internet Service Provider IT Information Technology

ITS Intelligent Transportation System
ITU International Telecommunication Union

ITU-T Telecommunication Standardization Sector of the International

Telecommunications Union

IXP Internet Exchange Point
KVM Kernel Virtual Machine
LAN Local Area Network
LANE LAN Emulation

LBA Logical Block Addressing LCD Liquid Crystal Display

LDAP Lightweight Directory Access Protocol

LEC LAN Emulation Client

Abbreviations xxiii

LECS LAN Emulation Client Server

LED Light Emitting Diode
LES LAN Emulation Server
LPWA Low-Power Wide Area
LTE Long Term Evolution

LTE-M Long Term Evolution for Machines

LTE-MTC LTE optimized for advanced Machine Type Communications

LUN Logical Unit Numbers
M2M Machine to Machine
MAC Media Access Control
MAN Metropolitan Area Network

MAP Manufacturing Automation Protocol

MAU Medium Access Unit
MHS Message Handling System

MI6 Military Intelligence, Department 6
MIPS Millions Instructions Per Second
MIT Massachusetts Institute of Technology

MMU Memory Management Unit

MP3 MPEG-1 and/or MPEG-2 Audio Layer III

MPLS Multi Protocol Label Switching
MQTT Message Queue Telemetry Transport
MRAM Magnetic Random Access Memory
MTU Maximum Transmission Unit

NAP Network Access Point NAS Network Attached Storage

NASA National Aeronautic And Space Administration

NAT Network Address Translation

NBI North Bound Interface NB-IoT Narrow Band IoT

NCP Network Control Program
 NCR National Cash Register
 NDP Neighbor Discovery Protocol
 NFC Near Field Communication
 NFV Network Function Virtualization

NIC Network Interface Card

NLRI Network Layer Reachability Information

NNI Network Network Interface

NoSQL Non Relational Structured Query Language

NSAP Network Service Access Point

NSCI National Strategic Computing Initiative

NSF National Science Foundation

NSFNet National Science Foundation Network
NSX VMware NSX Network Virtualization
NVP Network Virtualization Platform

xxiv Abbreviations

OAM Operations Administration Maintenance

OCP Open Compute Project

ODL OpenDaylight

OEM Original Equipment Manufacturer
OMG Object Management Group
ONF Open Networking Foundation
ONIE Open Network Install Environment

ONL Open Network Linux

OPC Open Platform Communication

OPEX Operating Expense
OS Operating System

OSI Open Systems Interconnection
OSS Operational Support System
OT Operations Technology
OVF Open Virtualization Format

P2P Peer to Peer

PAC Programmable Automation Controller

PC Personal Computer
PCM Phase Change Memory

PDH Plesiochronous Digital Hierarchy

PDU Protocol Data Unit

PFE Packet Forwarding Engine PGP Pretty Good Privacy

PLC Programmable Logic Controller
PLS Physical Layer Signalling

PMA Physical Layer Signalling
PMA Physical Medium Attachment

PNNI Private Network to Network Interface PSTN Public Switched Telephone Network

PT Payload Type

PVC Permanent Virtual Circuit

QoS Quality of Service

QuAIL Quantum Artificial Intelligence Laboratory of NASA

RAID Redundant Array of Independent Disks

RAM Random Access Memory RCA Radio Corporation of America

RDBMS Relational Data Base Management System

REST Representational State Transfer

RFC Request for Comments

RFID Radio Frequency IDentification RIB Routing Information Base

RISC Reduced Instruction Set Computing

ROM Read Only Memory

RSA Rivest, Shamir and Adleman Encryption

SAN Storage Area Network

Abbreviations xxv

SAP Systems, Applications, Products

SCADA Supervisory Control and Data Acquisition

SCV Smart Connected Vehicle

SD Secure Digital

SDDC Software Defined Data Center
SDH Synchronous Digital Hierarchy
SDK Software Development Kit
SDN Software Defined Networking
SDS Software Defined Storage
SIMD Single Instruction Multiple Data

SLA Service Level Agreement

SLAAC Stateless Address Auto Configuration

SMTP Simple Mail Transfer Protocol SNA Systems Network Architecture

SNIA Storage Networking Industry Association SNMP Simple Network Management Protocol

SOAP Simple Object Access Protocol SONET Synchronous Optical Network SQL Structured Query Langage

SSH Secure Shell

SSL Secure Sockets Layer
STL Smart Traffic Light
STP Spanning Tree Protocol
STS Supranet Transaction Server
STSL Smart Traffic Light System

STT-RAM Spin Transfer Torque Random Access Memory

SVC Switched Virtual Circuit
TCP Transmission Control Protocol

TCP/IP Transmission Control Protocol/Internet Protocol

TEPS Traversed Edges Per Second

TOR Top Of Rack

TRILL Transparent Interconnection of Lots of Links

TSN Time Sensitive Networking

TTL Time To Live

UCLA University of California Los Angeles

UDP User Datagram Protocol
UML User Mode Linux
UNI User Network Interface

UNIX Family of multitasking, muktiuser computer operating systems

USENIX The Advanced Computing Systems Association

UTF-8 UCS (Universal Character Set) Transformation Format

UUCP Unix-to-Unix-Protocol VBR Variable Bit Rate xxvi Abbreviations

VC Virtual Circuit

VCI Virtual Circuit Identifier VDS vSphere Distributed Switch

VDSL Very High Bit Rate Digital Subscriber Line

VLAN Virtual LAN VM Virtual Machine

VMM Virtual Machine Monitor VNI Visual Networking Index

VP Virtual Path

VPI Virtual Path Identifier
VPN Virtual Private Network
VSS vSphere Standard Switch
W3C World Wide Web Consortium

WAN Wide Area Network

WiFi Trademark of the WiFi Alliance for wireless local area networking

WLAN Wireless LAN

WPAN Wireless Personal Area Network

WPS Word Processing System

WSAN Wireless Sensor and Actuator Network XEN Linux Foundation Collaboration Projects

Xerox PARC Xerox Palo Alto Research Center XML Extended Markup Language