

ARTIFICIAL

INTELLIGENCE

HOW TO ACTUALLY BUILD A NEURAL NETWORK FROM BLOCKS?

speaker: Jakub Czakon moderator: Piotr Migdał webinar, 6th July 2017

Competition

Answer questions

Rules:

Do it well, do it fast

Prizes:

Intel® Joule™ 570x Developer Kit.

Top News Sections ▼

News By Category -

Search Newsroom..

Chip Shot

August 16, 2016

Share this Article

MAKE AMAZING THINGS HAPPEN IN 10T AND ENTREPRENEURSHIP WITH INTEL JOULE

Today during the Intel Developer Forum (IDF) opening keynote, Intel CEO Brian Krzanich introduced the Intel® Joule™ compute module, a high-performance developer platform with support for Intel® RealSense™ depth-sensing cameras, targeted at Internet of Things (IoT) developers, entrepreneurs and established enterprises. The Intel Joule platform will be featured in the upcoming season of America's Greatest Makers.

Several Intel customers and partners are demonstrating potential applications of this technology this week at IDF, including Microsoft, Canonical and French company PivotHead, which has created augmented reality safety glasses for manufacturing environments.

The Intel Joule developer kit, a high-performance platform for Internet of Things developers, entrepreneurs and established enterprises. (Credit: Intel Corporation)

The Intel Joule platform enables people to rapidly prototype a concept and then take it into production in a fraction of the time and development cost, Intel Joule is a high performance system-on-module (SOM) in a tiny, low-power package thus making it ideal for computer vision, robotics, drones, industrial IoT, VR, AR, micro-servers and other applications that require high-end edge computing.

https://www.eff.org/ai/metrics

THE POWER OF NEURAL NETWORKS

Pretty much anything that a normal person can do in <1 sec, we can now automate with AI.

6:11 PM - 18 Oct 2016 from Osaka-shi Fukushima, Osaka

https://twitter.com/andrewyng/status/788548053745569792

WHALE RECOGNITION

- 447 individual whales
- 4.5k images
- 87% accuracy!

http://blog.kaggle.com/2016/01/29/noaa-right-whale-recognition-winners-interview-1st-place-deepsense-io/

MEDICAL-LEVEL SKIN CANCER DETECTION

http://cs.stanford.edu/people/esteva/nature/

ARTIFICIAL INTELLIGENCE: A CHANGING FRONTIER

The toughest challenge facing AI workers is to answer the question:
"What are the letters A and I?"

Douglas R. Hofstadter (1995)

CONVOLUTIONAL NEURAL NETWORKS

CONVNET EXAMPLE: VGG16

https://www.cs.toronto.edu/~frossard/post/vgg16/

CONVOLUTIONS

http://setosa.io/ev/image-kernels/

TYPICAL BUILDING BLOCKS

- convolutional layers
- activation function (tanh or ReLU)
- max pooling
- batch normalization
- dense layer
- softmax
- log-loss cost function
- optimizer

https://medium.com/towards-data-science/neural-network-architectures-156e5bad51ba

TYPICAL APPROACHES

Training from scratch

- Full control over network architecture
- Requires a lot of data and time

Fine-tuning

- Using a pre-trained network (e.g. VGG16 or ResNet) and training it a bit
- Great for detecting similar objects

Feature generation

Using a neural pre-trained network for features for other ML methods

Question 1

What is the correct order (largest to lowest) of the following neural networks in terms of the computation complexity of the forward pass?

AlexNet, VGG19, InceptionV3, ResNet152

LET'S GET PRACTICAL

Deep Learning

What society thinks I do

What my friends think I do

What other computer scientists think I do

What mathematicians think I do

What I think I do

What I actually do

SOFTWARE FOR DEEP LEARNING

Question 2

What is the correct order (first commit on GitHub) the following frameworks were created in?

Keras, Theano, Caffe, MXnet, Torch

KERAS: HIGH-LEVEL FRAMEWORK

new	contrib	utors from 2017-02-11 to 2017-04-12
#1:	131	tensorflow/tensorflow
#2:	63	fchollet/keras
#3:	51	pytorch/pytorch
#4:	49	dmlc/mxnet
#5:	18	Theano/Theano
#6:	11	BVLC/caffe
#7:	11	Microsoft/CNTK
#8:	9	tflearn/tflearn
#9:	9	pfnet/chainer
#10:	8	torch/torch7

LIVE DEMONSTRATION

```
In [18]: model = Sequential()
         model.add(Conv2D(16, (3, 3), activation='relu',
                           input shape=(resolution, resolution, 1)))
         model.add(MaxPool2D())
         model.add(Conv2D(32, (3, 3), activation='relu'))
         model.add(MaxPool2D())
         model.add(Flatten())
         model.add(Dense(classes, activation='softmax'))
         model.compile(loss='categorical crossentropy',
                       optimizer='adam',
                       metrics=['accuracy'])
```


Question 3

Who is the owner of the following avatar on GitHub?

INTEL DEEP LEARNING SDK

Machine Learning: Your Path to Deeper Insight

Driving increasing innovation and competitive advantage across industries

strategy provides the foundation for success using AI

Solutions

for reference across industries

Tools/Platforms

to accelerate deployment

Optimized Frameworks

to simplify development

Libraries/Languages

featuring optimized building blocks

Hardware Technology

portfolio that is broad and crosscompatible

Intel® Math Kernel Library and Intel® MKL-DNN for Deep Learning Framework Optimization

Intel® MKL	Intel® MKL-DNN
DNN primitives + wide variety of other math functions	DNN primitives
C DNN APIs	C/C++ DNN APIs
Binary distribution	Open source DNN code*
Free community license. Premium support available as part of Parallel Studio XE	Apache 2.0 license
Broad usage DNN primitives; not specific to individual frameworks	Multiple variants of DNN primitives as required for framework integrations
Quarterly update releases	Rapid development ahead of Intel MKL releases

* GEMM matrix multiply building blocks are binary

CLOSING REMARKS

INSPIRATION: CAN I HUG THAT?

Go for it! Hug it out. With a score of 0.695779, we're somewhat sure.

Don't hug that. Please. With a score of 0.778686, we're pretty sure.

https://www.reddit.com/r/MachineLearning/comments/4casci/can i hug that i trained a classifier to tell you/

PIGEONS RECOGNIZING CANCER TISSUE

http://www.sciencemag.org/news/2015/11/pigeons-spot-cancer-well-human-experts

WHERE TO LEARN MORE?

Tutorial

Intel Nervana Al Academy
 https://software.intel.com/en-us/ai/academy

A course in image processing

 CS231n: Convolutional Neural Networks for Visual Recognition http://cs231n.github.io/

An easy introductory blog post

Learning Deep Learning with Keras
 http://p.migdal.pl/2017/04/30/teaching-deep-learning.html

STUDENT DEVELOPER PROGRAM

INTEL SUPPORT

FIND MORE KNOWLEDGE

Intel Nervana Al Academy https://software.intel.com/en-us/ai/academy

BUILD YOUR OWN PROJECT

Devmash - Find and follow world-class developers, share your own projects and collaborate with others https://devmesh.intel.com/

FIND EVEN MORE SUPPORT FOR YOUR ML IDEAS

- Interested graduate students can apply to become a student ambassadors https://software.intel.com/en-us/experts/ambassadors/apply
- Any & All interested students can join Intel-sponsored University Clubs

https://software.intel.com/en-us/experts/ambassadors/club-sponsorship

That's all folks, thank you!

DEEP LEARNING (VS 'SHALLOW' ML)

PROS

- By far the best method for image classification and segmentation
- Great progress in natural language processing
- Easy to base on a pre-trained model

CONS

- Require a lot of data
- Training takes a lot of time
- Tweaking architecture and parameters is difficult
- For many business applications tree-based techniques are better (e.g. Random Forest and XGBoost)

MORE DATA FOR MORE COMPLEX MODELS

https://github.com/szilard/benchm-ml/tree/master/x1-data-higgs

see also: https://github.com/szilard/benchm-ml

PERFORMANCE

CPU

- Suitable for small neural network models
- Check out Intel-optimized TensorFlow! (Intel Deep Learning SDK)

GPU

- Speed up networks a lot
- Expensive to buy, but convenient to rent (\$0.5-2/h) at AWS

TPU?

Architecture optimized for neural networks