

ACM 笔记 TJU ACM

IBW.

event sponsor

tmeteorj

版本	时间	修订人
V1.0	2012.12.04	tmeteorj
V2.0	2013.11.08	tmeteori

图论1	
· · · · · · · · · · · · · · · · · · ·	
割点割边1	
树的分治1	
无向图的最大匹配2	
无向图的最大环2	
Dinic 最大流 O(V^2*E)2	
Sap 最大流 O(V*E*logF 3	
ZKW_Cost_Flow 3	
<i>平面图网络流</i> 4	
混合图的欧拉回路5	
<i>最大权闭合图</i> 6	
最大密度子图6	
最小边割集7	
二分图最小权覆盖集8	
最优比例生成树8	
曼哈顿距离生成树9	
最小限度生成树10	
次小生成树11	
树链剖分11	
生成树计数12 树中删除最少边形成 n 连通集13	
N 	
计算几何 14	
公式14	
<i>二维计算几何库15</i>	
//直线一般式转两点式15	
//直线一般式转两点式15 //直线两点式转一般式15	
//直线一般式转两点式15 //直线两点式转一般式15 //点p绕o逆时针旋转 alpha15	
//直线一般式转两点式15 //直线两点式转一般式15	
//直线一般式转两点式	
//直线两点式转一般式	
//直线一般式转两点式	
//直线两点式转一般式	
//直线两点式转一般式	

	//判线段相交 <=:不规范相交	16
	//判点在多边形内部	
	//多边形内部最长线段	
	//凸包对踵点长度	17
	//判 p1, p2 是否在 11, 12 两侧	17
	//判线段在任意多边形内,顶点按顺时针	
	或逆时针给出,与边界相交返回1	
	//求直线交点,必须存在交点,或者预	判
	断【解析几何方法】	17
	//求线段交点,必须存在交点,或者预	业
	断【平面几何方法】	
	//三角形重心	17
	//多边形重心	17
	//求多边形面积	
	//解方程 ax^2+bx+c=0	17
	//线段与圆交点	18
	//给出在任意多边形内部的一个点	
	//求在多边形外面的点到凸包的切点	
	//判断点 p 在圆 c 内	18
	//求矩形第 4 个点	18
	//判两圆关系	
	// 判例	18
	//判圆与矩形关系,矩形水平	
	//射线关于平面的反射	18
	//两圆交点(预判断不相交情况)	
	//圆外一点引圆的切线	
	//圆 c1 上,与 c2 的外切点	
	//圆 c1 上,与 c2 的内切点	19
_		
	:维计算几何库	
	//平面法向量	
		, Is
	//判定点是否在线段上,包括端点和共	线
	//判定点是否在线段上,包括端点和共	
		19
	//判断点在平面上	19 19
	//判断点在平面上//判断点在平面上//判定点是否在空间三角形上,包括边身	19 19 早,
	//判断点在平面上	19 19 早,
	//判断点在平面上//判断点在平面上//判定点是否在空间三角形上,包括边身三点共线无意义	19 19 旱, 19
	//判断点在平面上/ //判定点是否在空间三角形上,包括边身 三点共线无意义/ //判定点是否在空间三角形上,不包括	19 19 厚, 19 边
	//判断点在平面上/ //判定点是否在空间三角形上,包括边身 三点共线无意义/ //判定点是否在空间三角形上,不包括 界,三点共线无意义	19 19 1, 19 19
	//判断点在平面上//判定点是否在空间三角形上,包括边身三点共线无意义//判定点是否在空间三角形上,不包括界,三点共线无意义//判定两点在线段同侧,点在线段上返	19 19 1, 19 19
	//判断点在平面上/ //判定点是否在空间三角形上,包括边身 三点共线无意义/ //判定点是否在空间三角形上,不包括 界,三点共线无意义	19 19 19 19 19 回
	//判断点在平面上//判定点是否在空间三角形上,包括边身三点共线无意义//判定点是否在空间三角形上,不包括界,三点共线无意义/判定两点在线段同侧,点在线段上返0,不共面无意义	19 19 19 19 19 19
	//判断点在平面上	19 19 19 19 19 19 19
	//判断点在平面上//判定点是否在空间三角形上,包括边身三点共线无意义//判定点是否在空间三角形上,不包括界,三点共线无意义//判定两点在线段同侧,点在线段上返0,不共面无意义//判定两点在线段异侧,点在平面上返0	19 19 19 19 19 19
	//判断点在平面上	19 19 19 19 19 19 19 19
	//判断点在平面上	19 19 19 19 19 19 19 20
	//判断点在平面上	19 19 19 19 19 19 19 20
	//判断点在平面上	19 19 19 19 19 19 20 19 20 19 19 19 19 19 19 19 19 19 19 19 19 19
	//判断点在平面上	19 19 19 19 19 20 20 20
	//判断点在平面上	19 19 19 19 19 20 20 20
	//判断点在平面上	19 19 19 19 19 20 20 重
	//判断点在平面上	19 19 19 19 19 20 20 重
	//判断点在平面上	19 19 19 19 19 20 20 重 20
	//判断点在平面上	19 19 19 19 19 20 20 重 20 于
	//判断点在平面上	19 19 19 19 19 20 20 重 20 于 20
	//判断点在平面上	19 19 19 19 19 20 20 重 20 于 20 交
	//判断点在平面上	19 19 19 19 19 20 20 重 20 于 20 交
	//判断点在平面上	19 19 19 19 19 20 20 重 20 子 20 20
	//判断点在平面上	19 19 19 19 19 19 20 20 重 20 子 20 20 20
	//判断点在平面上	19 19 19 19 19 19 20 20 19 20 20 20 20 20 20 20 20 20 20 20 20 20
	//判断点在平面上	19 19 19 19 19 19 20 20 19 20 20 20 20 20 20 20 20 20 20 20 20 20
	//判断点在平面上	19 19 19 19 19 19 20 20 19 20 20 20 20 20 20 20 20 20 20 20 20 20
	//判断点在平面上	19 19 19 19 19 19 20 20 19 20 20 20 20 20 20 20 20 20 20 20 20 20
	//判断点在平面上	19 19 19 19 19 19 20 20 重 20 交 20 20 20 20
	//判断点在平面上	19 19 19 19 19 19 20 20 重 20 天 20 20 20 20 20 20 20 20 20 20 20 20 20
	//判断点在平面上 //判定点是否在空间三角形上,包括边界三点共线无意义	19 19 19 19 19 19 20 20 重 20 天 20 交 20 20 20 20 20 20 20 20 20 20 20 20 20
	//判断点在平面上	19 19 19 19 19 19 20 20 重 20 天 20 交 20 20 20 20 20 20 20 20 20 20 20 20 20

, , E AN DE 22		
//点线距离	20	定积分(
//点面距离		线性规划
//线线距离		多项式乘
//点线垂足		莫比乌斯
//已知四面体六边求体积 //四面体体积		莫比乌斯
三角形		表达式求
<i>二角ル</i> 凸包		模线性方
		Lucas-组台
内口含加取加足周 凸包的直径		快速组合
	22	整数的质
三维凸包		递归求等
<i>半平面交</i>		最优子区
,,一 <u>个</u> 严面最远点对		高精度
<i>网格</i>		第K个与
, , , , , , , , , , , , , , , , , , ,	24	行列式计
最小圆覆盖	24	排列P(r
单位圆覆盖最多点	25	取石子游
最小球覆盖		Nim 游戏
圆和多边形的交		<i>猜数游戏</i>
直线关于圆的反射		逆序数为
扇形的重心	28	区间最大
三角形内部点数	28	第 n 个回 权值最大
Pick 公式求面积		n
共线最多的点的个数		$\sum_{i=1}^{\infty} \gcd(i)$
N 个点最多组成正方形个数		$\sum_{i=1}^{n} 1.0 $
N 个点最多确定互不平行的直线		$\sum_{i=1}^{\infty} k\% i$
₹ <i>7</i> 2 ₹# #6 <i>0011</i> 25		
求多边形的核	30	$a^x \equiv b(\mathbf{n})$
	30 30	$a^x \equiv b(\mathbf{n})$
Chick Co. A.	30	<i>a^x</i> ≡ <i>b</i> (n************************************
数学 数论 定理与定义	30 30	`
数学 数论 定理与定义	30 30	带限制的
数学 数论 定理与定义 公式与序列 排列与组合	30 303132	带限制的
数 学 数 论	30 30 31 32 32 32	带限制的 整数拆分 第二类斯
数学 数论	30 30 31 32 32 33 33	带限制的 整数拆分。 第二类斯 数据结
数学 数论	30 303132323333	带限制的 整数拆分 第二类斯 数据结 堆
数学 数论	30 30 31 32 32 33 33 33 33	带限制的整数拆分。第二类斯 数据结。 堆
数学 数论	30 3031323233333333	带限制的整数拆分。第二类斯数据结。 维 AC 自动机
数学 数论	30 3031323333333333	带限制的整数拆分。第二类斯数据结。 在 自动机 划分树 组
数论	30 30 31 32 33 33 33 33 34 34	带限制的整数拆分。第二类斯数据结。 4
数论	30 30 31 32 33 33 33 33 34 34	带限制的分 第二类结 第二十分 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
数论	30 30 31 32 33 33 33 33 34 34 34 34 34	带限制的分 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一
数论	30 30 31 32 33 33 33 34 34 34 34 34	带限制的分 第二类结 第二十分 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
数论	30 3031323333333434343434	带聚数
数论	30 303132333333343434343434	带限制好 第二
数论	30 3031323333333434343434343434	带整 第 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
数论	30 3031323333333434343434343434	带整第一样。 一种整第一样。 一种, 一种, 一种, 一种, 一种, 一种, 一种, 一种, 一种, 一种,
数论	30 303132333333343434343434343434	带整 第 据 M M M M M M M M M M M M M M M M M M
数论	30 3031323333333434343434343434343434	带整 第一括 一一 一
数论	30 30 31 32 33 33 33 34 34 34 34 34 34 34 34 34 34 35 35	带整 第 据 A 划树树树笛笛二 KD B B B B B B B B B B B B B B B B B B
数论	30 3031323333333434343434343434343434353535	带整 第一辑 A 划树树树笛笛二KD By KMP. CHF
数论	30 3031323333333434343434343434343434353535	带整 第 据 A 划树树树笛笛二 KD Dancing E KMP L Splay L S

定积分(自适应辛普森)	20
线性规划(单纯型)	
多项式乘法 (FFT)	. 37
莫比乌斯反演(定义)	. 38
莫比乌斯反演(例程)	
表达式求值	
从心以不且	دد.
模线性方程组	
Lucas-组合数取模	
快速组合数取模	. 40
整数的质因数分解	. 40
递归求等比数列之和	
是 <i>中</i> 子反问	.40
最优子区间	
<i>高精度</i>	. 41
第K个与m互质的数	. 42
行列式计算 排列 P(n,m)最后非零位	. 42
排列P(n, m)最后非零位	. 42
取石子游戏	12
取石子游戏 Nim 游戏必胜方法数	.42
NIM 游戏业胜力法数	. 43
猜数游戏	. 43
逆序数为 m 的最小序列	. 43
区间最大权选取	. 43
第 n 个回文数	
权值最大子矩形	
火但收入↓火ル	. 44
$\sum_{i=1}^{n} \gcd(i,n)$. 44
<i>i</i> =1	
$\sum_{i=1}^{n} k\%i$. 44
$a^x \equiv b \pmod{c}$. 44
$a^x \equiv b(\bmod c) \dots$	
带限制的项链计数	. 45
	. 45
带限制的项链计数	. 45 . 45
带限制的项链计数 整数拆分的最大的最小公倍数	. 45 . 45
带限制的项链计数 整数拆分的最大的最小公倍数 第二类斯特林数奇偶性	. 45 . 45 . 46
带限制的项链计数 整数拆分的最大的最小公倍数 第二类斯特林数奇偶性	. 45 . 45 . 46
带限制的项链计数 整数拆分的最大的最小公倍数 第二类斯特林数奇偶性	. 45 . 45 . 46
带限制的项链计数 整数拆分的最大的最小公倍数 第二类斯特林数奇偶性 次据结构 维	. 45 . 46 . 46
带限制的项链计数 整数拆分的最大的最小公倍数 第二类斯特林数奇偶性 文据结构 堆	. 45 . 46 . 46 . 46
带限制的项链计数 整数拆分的最大的最小公倍数	. 45 . 46 . 46 . 46 . 47
带限制的项链计数 整数拆分的最大的最小公倍数	. 45 . 46 . 46 . 46 . 47
带限制的项链计数 整数拆分的最大的最小公倍数	. 45 . 45 . 46 . 46 . 46 . 47
带限制的项链计数 整数拆分的最大的最小公倍数	. 45 . 45 . 46 . 46 . 46 . 47
带限制的项链计数 整数拆分的最大的最小公倍数	. 45 . 45 . 46 . 46 . 47 . 47 . 47
带限制的项链计数 整数拆分的最大的最小公倍数	. 45 . 45 . 46 . 46 . 47 . 47 . 48 . 48
带限制的项链计数 整数拆分的最大的最小公倍数	. 45 . 45 . 46 . 46 . 47 . 47 . 47 . 48 . 48
带限制的项链计数 整数拆分的最大的最小公倍数	. 45 . 45 . 46 . 46 . 47 . 47 . 48 . 48 . 49
带限制的项链计数 整数拆分的最大的最小公倍数	. 45 . 46 . 46 . 46 . 47 . 47 . 48 . 48 . 49 . 50
带限制的项链计数整数拆分的最大的最小公倍数第二类斯特林数奇偶性 对语结构 维AC 自动机 划分树 树状数组(第 k 大值) 树状数组(约瑟夫环) 一一样,好数组(约瑟夫环) 一一样,好好人们(Treap) 二叉平衡树(AVL) KD 树(空间距离前 k 近点) Splay(动态数组)	. 45 . 46 . 46 . 46 . 47 . 47 . 48 . 48 . 49 . 50
带限制的项链计数 整数拆分的最大的最小公倍数	. 45 . 46 . 46 . 46 . 47 . 47 . 48 . 48 . 49 . 50
带限制的项链计数整数拆分的最大的最小公倍数第二类斯特林数奇偶性 对语结构 维AC 自动机 划分树 树状数组(第 k 大值) 树状数组(约瑟夫环) 一一样,好数组(约瑟夫环) 一一样,好好人们(Treap) 二叉平衡树(AVL) KD 树(空间距离前 k 近点) Splay(动态数组)	. 45 . 46 . 46 . 46 . 47 . 47 . 48 . 49 . 49 . 50
带限制的项链计数 整数拆分的最大的最小公倍数	. 45 . 46 . 46 . 46 . 47 . 47 . 47 . 49 . 50 . 51 . 52
带限制的项链计数 整数拆分的最大的最小公倍数	. 45 . 46 . 46 . 47 . 47 . 48 . 49 . 50 . 51 . 52 . 53
带限制的项链计数 整数拆分的最大的最小公倍数	. 45 . 46 . 46 . 47 . 47 . 48 . 49 . 50 . 51 . 52 . 53
带限制的项链计数 整数拆分的最大的最小公倍数	. 45 . 46 . 46 . 46 . 47 . 47 . 48 . 49 . 50 . 51 . 52 . 53
带限制的项链计数 整数拆分的最大的最小公倍数	. 45 . 46 . 46 . 47 . 47 . 48 . 49 . 50 . 51 . 53 . 54
带限制的项链计数 整数拆分的最大的最小公倍数	. 45 . 46 . 46 . 47 . 47 . 47 . 48 . 49 . 50 . 51 . 52 . 53 . 54

JAVA 汇总	55
DP 优化	56
前缀等于后缀的子串个数	56
最长回文子串	56
背包问题	57
基数排序	57
字符环的最小表示法	57
最小循环矩阵	57
最短非子序列长度	57
最长下降子序列长度与个数	58
最少偏序集个数	58
N 皇后问题构造方法	58
N*M 数码有解判定	59
堆排序最坏情况构造	59

/*************

/********************************/

定理

/************** 二部图中:

- 1、Konig 定理:最大匹配数等于最小覆盖数(顶点属于最小覆盖集,或与 最小覆盖集中的某个顶点直接相连)
- 2、最大独立集等于最小边覆盖数(最小路径覆盖,注意路径是否可重, 可重则还要求传递闭包)等于图的点数减去最大匹配数(点数相等时)
- 3、顶点的最大度数等于最小边染色数:

简证,二部图中没有奇环,对于欧环,可以用两种颜色不断重复来染色,所 以只要保证最大度数顶点连接的边染不同色即可.

4.最大团等于补图的最大独立集。(建边时注意将集合分为二分图)

最大流最小割定理

、网络流图中的最大流等于最小割.

平面图性质

1.欧拉公式)如果一个连通的平面图有 n 个点, m 条边和 f 个面, 那么

2.每个平面图 G 都有一个与其对偶的平面图 G*

G*中的每个点对应 G中的一个面

对于 G 中的每条边 e

e属于两个面 fl、f2,加入边(fl*, f2*)

e 只属于一个面 f, 加入回边(f*, f*) a.G 的面数等于 G*的点数, G*的点数等于 G 的面数, G 与 G*边数相

b.G*中的环对应 G中的割一一对应

利用最短路求最小割

对于一个 s-t 平面图, 我们对其进行如下改造: 1.连接 s 和 t, 得到一个附加面

2.求该图的对偶图 G*,令附加面对应的点为 s*,无界面对应的点为 t* 3.删去 s*和 t*之间的边

量就等于最短路的长度!

最少添加边问题

1. 最少添加有向边使的原图为强连通图的数量等于原图缩点后出度为 0的点数和入度为0的点数的个数的最大值

2.添加最少边使原图成为双连通图的数量等于原图缩点后度数为 1 的 点加1除以2.(无向图也要缩点)

/***********************************/

割点割边

```
memset(vis, false, sizeof(vis));
   memset(cut, false, sizeof(cut));
   memset(bridge, false, sizeof(bridge));
   dfs (root, root, 0);
bool vis[N];
int dep[N],low[N];
void dfs(int now,int fa,int deep){
    vis[now]=true;
     dep[now]=low[now]=deep;
      int tot=0;
     for(int i=head[now];i!=-1;i=edge[i].nxt){
          int to=edge[i].to;
          if (to==fa) continue;
if (vis[to])low[now] = min(low[now], dep[to]);
          else{
               dfs(to,now,deep+1);
                low[now]=min(low[now],low[to]);
if ((now==root&&tot>1)||(now!=root&&low[to]>=de
p[now]))cut[now]=true;
if (low[to]>dep[now]) bridge[i]=bridge[i^1]=true
          1
```

```
树的分治
问: 求树中所有路径长度小于 len 的点对个数
init:
   mark <-- false
   dfs (root)
bool mark[N];
int temp[N],cnt,size[N];
int n,len;
void getsize(int x,int fa) { //以x为根的子树的
结点数目
     size [x]=1;
     for(int i=head[x]; i!=-1; i=edge[i].next)
         int t=edge[i].to;
         if(mark[t]||t==fa)
             continue;
         getsize(t,x);
         size[x]+=size[t];
     }
int bestroot(int x) { //找树的重心
     getsize (x,x);
        half=size[x]>>1;
         int id=x,mmax=0;
         for (int
i=edge[i].next) {
    int t=edge[i].to;
}
                 i=head[x]; i!=-1;
              if(!mark[t]&&mmax<size[t])</pre>
                  mmax=size[id=t];
         if(mmax<=half)
             break;
         size[x]-=size[id];
         size[id] += size[x];
         x=id;
     return x;
void getdist(int now,int fa,int d) { //当前节
点到,相,的距离
     if(d>len) return;
     temp[cnt++]=d;
     for(int t, i=head[now]; i!=-1;
i=edge[i].next) {
         t=edge[i].to;
         if(!mark[t]&&t!=fa)
             getdist(t,now,d+edge[i].cost);
    }
int dfs(int now) {
     now=bestroot(now);
     mark[now]=true;
    int ret=0;
for(int t,i=head[now]; i!=-1;
i=edge[i].next) {
         t=edge[i].to;
         if(!mark[t])
              ret+=dfs(t);
     cnt=0;
     getdist(now,now,0);
     sort(temp,temp+cnt);
     for(int ll=0, rr=cnt-1; ll<rr;) {</pre>
         if(temp[ll]+temp[rr]<=len)</pre>
             ret+=rr-ll,ll++;
         else
              rr--;
     for(int t, limit, i=head[now]; i!=-1;
i=edge[i].next) {
         t=edge[i].to;
         if(mark[t])
             continue:
         cnt=0;
         limit=len-2*edge[i].cost;
         getdist(t,t,0);
         sort(temp,temp+cnt);
         for (int ll=0,rr=cnt-1; ll<rr;) {</pre>
```

```
if(temp[ll]+temp[rr]<=limit)</pre>
                    ret-=rr-11,11++;
               else
          1
     mark[now]=false;
     return ret;
无向图的最大匹配
/********************************/
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<queue>
using namespace std;
#define MAXE 250*250*2
#define MAXN 250
#define SET(a,b) memset(a,b,sizeof(a))
deque<int> 0;
//g[i][j]存放关系图: i,j是否有边,match[i]存放 i 所匹
int g[MAXN][MAXN];
bool inque[MAXN],inblossom[MAXN];
int match[MAXN],pre[MAXN],base[MAXN];
//找公共祖先
int findancestor(int u,int v) {
    bool inpath[MAXN] = {false};
     while(1) {
          u=base[u];
          inpath[u]=true;
          if(match[u] == -1) break;
u = pre[match[u]];
     while(1) {
          v=base[v];
          if(inpath[v])return v;
          v=pre[match[v]];
     }
}
//压缩花
void reset(int u,int anc) {
     while(u!=anc) {
          int v=match[u];
          inblossom[base[u]]=1;
          inblossom[base[v]]=1;
          v=pre[v]:
          if(base[v]!=anc)pre[v]=match[u];
          u=v;
                                                        1);
     }
void contract(int u,int v,int n) {
   int anc=findancestor(u,v);
     //SET(inblossom, 0);
     memset(inblossom, 0, sizeof(inblossom));
     reset(u,anc);
     reset(v,anc);
     if(base[u]!=anc)pre[u]=v;
     if(base[v]!=anc)pre[v]=u;
for(int i=1; i<=n; i++)</pre>
          if(inblossom[base[i]]) {
               base[i]=anc;
               if(!inque[i]) {
                    Q.push_back(i);
inque[i]=1;
               }
bool dfs(int S,int n) {
for(int i=0; i<=n;
i++) pre[i]=-1, inque[i]=0, base[i]=i;</pre>
     Q.clear();
     Q.push back(S);
     inque[S]=1;
     while(!Q.empty()) {
          int u=Q.front();
          Q.pop_front();
          for (int v=1; v<=n; v++) {
if (g[u][v]&&base[v]!=base[u]&&match[u]!=v) {
if (v==S|| (match[v]!=-1&&pre[match[v]]!=-1)) con
tract (u,v,n);
```

```
else if(pre[v]==-1) {
                        pre[v]=u;
if (match[v]!=-1)Q.push_back(match[v]), inque[ma
tch[v11=1;
                             while (u!=-1) {
                                 v=pre[u];
                                 int
w=match[v];
                                 match[u]=v;
                                 match[v]=u;
                                 u=w;
                             return true;
                       1
                   }
         }
     return false;
int maxmatch(int n) {
     memset (match,-1, sizeof (match));
     for(i=1; i<=n; i++) {
         if(match[i] == -1 & &dfs(i,n)) {
              res++;
     return res;
/*******************************/
               无向图的最大环
/**************/
//cost:直接路径长度; dist:间接路径长度
int mincircle() {
     int ans=inf;
     for(int k=1; k<=n; k++) {</pre>
         for (int i=1;i<k;i++) {</pre>
              for(int j=i+1;j<k;j++){</pre>
ans=min(ans,dist[i][j]+cost[i][k]+cost[k][j]);
              }
         for (int i=1; i<=n; i++) {</pre>
              for(int j=1;j<=n;j++) {</pre>
dist[i][j]=min(dist[i][j],dist[i][k]+dist[k][j
     return ans;
/******************************/
          Dinic 最大流 O(V^2*E)
int dep[N], stk[N], cur[N], pre[N];
ll Dinic(int n,int s,int t) {
     int i,j,k,top,rear,front;
     ll res,flow=0;
     while(1) {
         memset (dep, -1, sizeof (dep));
dep[stk[front=0]=s]=0;
         rear=1;
         for(; front!=rear;) {
              for(i=stk[front++],j=head[i];
j!=-1; j=edge[j].next) {
if (edge[j].cap>011&&dep[k=edge[j].y]==-1) {
          dep[k]=dep[i]+1;
                        stk[rear++]=k;
                        if(k==t) {
                             front=rear;
                            break:
                       1
                  - }
```

```
if(dep[t]==-1)
                                                      //不能有负权边,对于最终流量较大,而费用取值范围不大的
              break;
                                                      图,或者是增广路径比较短的图 (如二分图),zkw 算法都会比
          memcpy(cur,head,sizeof(head));
                                                      较快.
          for (top=0, i=s;;) {
                                                      struct ZKW_flow {
   int st, ed, ecnt, n;
   int head[MAXN];
               if(i==t) {
                   for(res=inff,k=0; k<top; k++)</pre>
{
                                                           int cap[MAXE], cost[MAXE], to[MAXE],
                         if(res>edge[stk[k]].cap)
                                                      next[MAXE];
ł
                                                           void init() {
                                                                memset(head, 0, sizeof(head));
res=edge[stk[j=k]].cap;
                                                                ecnt = 2;
                                                           void addEdge(int u, int v, int cc, int ww)
                    flow+=res;
                    for(k=0; k<top; k++) {
    edge[stk[k]].cap-=res;</pre>
                                                                cap[ecnt] = cc;
                                                                cost[ecnt] = ww;
                                                                to[ecnt] = v;
                                                                next[ecnt] = head[u];
edge[stk[k]^1].cap+=res;
                                                                head[u] = ecnt++;
                                                                cap[ecnt] = 0;
                    i=edge[stk[top=j]].x;
                                                                cost[ecnt] = -ww;
               } else {
                                                                to[ecnt] = u;
next[ecnt] = head[v];
                    for(j=cur[i]; j!=-1;
j=cur[i]=edge[j].next)
                                                                head[v] = ecnt++;
if (edge[j].cap>0&&dep[edge[j].v] ==dep[edge[j].
                                                           int dis[MAXN];
x]+1)
                                                           void SPFA() {
    for(int i = 1; i <= n; ++i) dis[i]</pre>
                             break;
                    if(j!=-1) {
                                                      = INF;
                         stk[top++]=j;
                                                                priority_queue<pair<int, int> > Q;
dis[st] = 0;
                         i=edge[j].y;
                    } else {
                                                                Q.push (make_pair(0, st));
                         if(top==0)
                                                                while(!Q.empty()) {
                             break;
                                                                     int u = Q.top().second, d =
                         dep[i] = -1;
                                                      -Q.top().first;
                         i=edge[stk[--top]].x;
                                                                     Q.pop();
                    }
                                                                     if(dis[u] != d) continue;
              }
                                                                     for(int p = head[u]; p; p = next[p])
         }
                                                                          int &v = to[p];
     return flow;
                                                                          if(cap[p] && dis[v] > d +
                                                      cost[p]) {
/******************************/
                                                                              dis[v] = d + cost[p];
           Sap 最大流 O (V*E*logF
                                                      Q.push(make_pair(-dis[v], v));
int src,sink,h[V],cur[V],num[V],n;
                                                                     }
int findpath(int x,int flow) {
     if(x==sink) return flow;
                                                                for (int i = 1; i <= n; ++i) dis[i]</pre>
                                                      = dis[ed] - dis[i];
     int f=flow;
     for(int i=head[x]; i!=-1; i=edge[i].nxt) {
         if(edge[i].cap&&h[edge[i].y]+1==h[x])
                                                           int minCost, maxFlow;
bool use[MAXN];
                                                           int add_flow(int u, int flow) {
    if(u == ed) {
d=findpath(edge[i].y,f<edge[i].cap?f:edge[i].c
ap);
                                                                     maxFlow += flow;
               edge[i].cap-=d;
edge[i^1].cap+=d;
                                                                     minCost += dis[st] * flow;
return flow;
               f-=d;
                                                                use[u] = true;
int now = flow;
for(int p = head[u]; p; p = next[p])
               if(h[src]==n||!f) return flow-f;
         }
     int minh=n;
     for(int i=head[x]=cur[x]; i!=-1;
                                                                     int &v = to[p];
i=edge[i].nxt) {
                                                                     if(cap[p] && !use[v] && dis[u] ==
                                                      dis[v] + cost[p]) {
                                                                          int tmp = add_flow(v, min(now,
if (edge[i].cap&&h[edge[i].y]+1<minh)minh=h[edg
                                                      cap[p]));
e[i].y]+1;
                                                                          cap[p] -= tmo;
                                                                          cap[p^1] += tmp;
     if(num[h[x]]-1==0)h[src]=n;
                                                                          now -= tmp;
     else h[x]=minh;
                                                                          if(!now) break;
     return flow-f;
                                                                     1
                                                                }
int Sap() {
                                                                return flow - now;
     memcpy(cur,head,sizeof(head));
     memset(h, 0, sizeof(h));
                                                           bool modify label() {
     memset (num, 0, sizeof (num));
                                                                int d = INF;
     num[0]=n;
                                                                for (int u = 1; u <= n; ++u) if (use[u])</pre>
     int ans=0;
                                                                          for(int p = head[u]; p; p =
     while(h[src]<n)ans+=findpath(src,inf);</pre>
                                                      next[p]) {
     return ans;
                                                                               int &v = to[p];
if(cap[p] && !use[v]) d
= min(d, dis[v] + cost[p] - dis[u]);
                ZKW_Cost_Flow
                                                                if(d == INF) return false;
```

/***********************************/

```
for (int i = 1; i <= n; ++i) if (use[i])</pre>
dis[i] += d;
                                                          ang=atan2((double)(po[a].y-po[b].y),(double)(p
          return true:
                                                          o[a].x-po[b].x));
                                                               1
     int min cost flow(int ss, int tt, int nn)
                                                         vector<PointAngle> in_e[MAX];//入边编号
                                                         void add_d(int a,int b,ll c) {
   edge_d[nc_d].to=b;
{
          st = ss, ed = tt, n = nn;
minCost = maxFlow = 0;
                                                               edge_d[nc_d].cost=c;
edge_d[nc_d].nxt=head_d[a];
          SPFA();
           while(true) {
                                                               head_d[a]=nc_d++;
                while(true) {
                     for(int i = 1; i \le n; ++i)
                                                          void add f(int a,int b,ll c){
                                                               edge_f[nc_f].pa=a;
edge_f[nc_f].pb=b;
use[i] = 0;
                     if(!add_flow(st, INF))
                                                               edge_f[nc_f].cost=c;
edge_f[nc_f].nxt=-1;
break:
                if(!modify_label()) break;
                                                               in_e[b].PB(PointAngle(a,b,nc_f));
                                                               nc f++;
           return minCost;
                                                          void init(){
} G;
                                                               memset(head_d,-1,sizeof(head_d));
                                                               memset (head_f,-1,sizeof(head_f));
                                                               for(int i=0; i \le MAX; i++) in_e[i].clear();
nc_d=nc_f=0;
                  平面图网络流
                                                          void work(int id){
/*************
                                                               int si=in_e[id].size();
                                                               sort(in_e[id].begin(),in_e[id].end());
#include<cstdio>
                                                               for(int i=0;i<si-1;i++) {</pre>
#include<cstring>
#include<algorithm>
#include<vector>
                                                          edge_f[in_e[id][i].e].nxt=in_e[id][i+1].e^1;
#include<cmath>
#define MP make_pair
#define PB push_back
                                                          edge_f[in_e[id][si-1].e].nxt=in_e[id][0].e^1;
#define X first
#define Y second
                                                          void make_point(int e,int id){
using namespace std;
                                                               for (i
typedef long long ll;
                                                         i=e;i!=-1&&pres[i]==-1;i=edge_f[i].nxt)
const int MAX=300005,INF=0x3f3f3f3f;
                                                                    pres[i]=id;
const ll INFC=1LL<<60;
const double eps=1e-8;</pre>
                                                          fll spfa(int src,int sink) {
   for(int i=0;i<n_d;i++)dist[i]=INFC;</pre>
int head_d[MAX],head_f[MAX],nc_d,nc_f;//最短路径
&最大流
                                                               memset(in_q,false,sizeof(in_q));
dist[src]=0;
int S_f,T_f,S_e,T_e,n_f,m_f,T_d,S_d,n_d;//流的
S,T以及与之关联的边和最短路的 S,T
                                                               front=0;
                                                               rear=1;
int pres[MAX];//每条边右方代表的最短路中的点
                                                               in_q[src]=true;
ll dist[MAX];//最短路径长度
                                                                   now,to;
bool in_q[MAX];
int LS[MAX],front,rear;
                                                               ll cost;
                                                               while(front!=rear){
struct point{
                                                                    in_q[now=LS[front++]]=false;
     int x,y;
void read(){
                                                                    if(front==MAX)front=0;
                                                                    for (int
          scanf ("%d%d", &x, &y);
                                                         i=head_d[now]; i!=-1; i=edge_d[i].nxt){
                                                                         to=edge_d[i].to;
cost=edge_d[i].cost+dist[now];
     bool operator<(const point &ne)const{
          return x<ne.x;</pre>
                                                                          if(dist[to]>cost) {
                                                                               dist[to]=cost;
     point(){}
                                                                               if(!in_q[to]){
     point(int _x,int _y){
          x = _x;
          y=_y;
                                                         in_q[LS[rear++]=to]=true;
                                                                                    if(rear==MAX) rear=0;
}po[MAX];
struct EdgeDist {
     int to, nxt;
                                                                    }
     11 cost:
} edge_d [MAX*3];
                                                               return dist[sink];
struct EdgeFlow {
     int pa,pb,nxt;
                                                          int main() {
     ll cost;
                                                               int Test,a,b;
                                                               11 c;
} edge_f[MAX*3];
struct PointAngle{
                                                               for(scanf("%d",&Test); Test; Test--) {
     double ang;
                                                                    scanf("%d%d",&n_f,&m_f);
                                                                    Scan ( sasa , an_1, an_1, ,
S_f=T_f=1;
for (int i=1; i<=n_f; i++) {
     int a.b.e:
     bool operator<(const PointAngle &ne)const{
          return ang<ne.ang;</pre>
                                                                          po[i].read();
                                                                          if(po[i]<po[S_f])S_f=i;</pre>
     PointAngle() {}
                                                                          if(po[T_f] < po[i]) T_f = i;</pre>
     PointAngle(int _a,int _b,int _e) {
                                                                    1
                                                                    init();
for(int i=0; i<m_f; i++) {</pre>
          a= a;
          b= b;
```

scanf ("%d%d%164d", &a, &b, &c);

if(a==b)continue;
add_f(a,b,c);
add_f(b,a,c);

e= e;

```
point
                                                                       for(k=0,tr=inf;k<top;++k)</pre>
L(po[S_f].x-1,po[S_f].y), R(po[T_f].x+1,po[T_f]
.y);
                                                                           if(bf[ps[k]].c<tr)
          po[0]=L;
          po[n_f+1]=R;
                                                                               tr=bf[ps[f=k]].c;
           S_e=nc_f;
          add_f(0,S_f,INFC);
          add f(S f, 0, INFC);
                                                                       for(k=0;k<top;k++)
          Te=ncf;
          add f(n_f+1,T_f,INFC);
add_f(T_f,n_f+1,INFC);
for(int i=1;i<=n_f;i+1)work(i);</pre>
                                                         bf[ps[k]].c-=tr,bf[ps[k]^1].c+=tr;
                                                                       res+=tr;i=bf[ps[top=f]].x;
          memset (pres,-1, sizeof (pres));
          make point(S_e,0);
                                                         for(i=cur[i];cur[i];i=cur[i]=bf[cur[i]].nxt)
          make point(T_e,1);
          s d=0;
          T_d=1;
                                                         if (bf[j].c&&dep[i]+1==dep[bf[j].y])
          n_d=2;
                                                                           break;
          for (int i=0;i<nc_f;i++) {
    if(pres[i]==-1) {</pre>
                                                                    if (cur[i])
                     make_point(i,n_d);
                                                                    {
                     n d++;
                                                                       ps[top++]=cur[i];
                                                                        i=bf[cur[i]].y;
          for (int i=0; i<S e; i+=2) {</pre>
                                                                    else
                                                                    {
                                                                       if(0==top)
add d(pres[i],pres[i^1],edge f[i].cost);
                                                                           break;
                                                                       dep[i]=-1; i=bf[ps[--top]].x;
add_d (pres[i^1],pres[i],edge_f[i].cost);
                                                                }
          printf("%I64d\n",spfa(S_d,T_d));
                                                            return res;
     return 0;
                                                         int main()
                                                            int num;
/******************************/
                                                            scanf("%d", &num);
                                                            while(num--)
               混合图的欧拉回路
int n,m,a,b,s,i;
                                                                scanf("%d%d",&n,&m);
#include<cstdio>
                                                                memset (d, 0, sizeof(d));
#include<cstring>
                                                                ne=2;
#include<algorithm>
                                                                memset(head, 0, size of (head));
using namespace std;
                                                                while (m--)
d[300], ne, head[300], cur[300],ps[300],dep[300];
                                                                {
                                                                    scanf("%d%d%d",&a,&b,&s);
struct enode
                                                                    if (s==1)
{
                                                                    {
   int x,y,nxt,c;
                                                                       d[a]--;
}bf[20000];
                                                                       d[b]++;
const int inf=1<<29;
                                                                    1
void add(int x,int y,int c)
                                                                    else
{
                                                                    1
   bf[ne].x=x;bf[ne].y=y;bf[ne].c=c;
                                                                       add(a,b,1);
   bf[ne].nxt=head[x];head[x]=ne++;
                                                                       d[a]--;d[b]++;
   bf[ne].x=y;bf[ne].y=x;bf[ne].c=0;
                                                                    }
   {\tt bf[ne].nxt=head[y];head[y]=ne++;}
                                                                bool flag=true;
int flow(int n, int s, int t)
                                                                int re=0;
for(i=1;i<=n;i++)</pre>
{
   int tr, res=0, i, j, k, f, r, top;
                                                                    if (d[i] < 0)</pre>
   while(1)
                                                                       if((-d[i])%2!=0)
       memset (dep, -1, sizeof (dep));
for (f=dep[ps[0]=s]=0, r=1; f!=r;)
                                                                       {
                                                                           flag=false;break;
for(i=ps[f++],j=head[i];j;j=bf[j].nxt)
                                                                           add (0, i, -d[i]/2);
              if (bf[j].c&&-1==dep[k=bf[j].y])
                                                                           re+=-d[i]/2;
                  dep[k]=dep[i]+1;ps[r++]=k;
                  if(k==t)
                                                                    else
                      f=r;break;
                                                                       if (d[i]%2!=0)
                  1
              }
                                                                           flag=false;break;
          }
                                                                        else
       if(-1==dep[t])
          break;
                                                                           add (i, n+1, d[i]/2);
       memcpy(cur,head,n*sizeof(int));
       for (i=s, top=0;;)
                                                                if(flag&&re==flow(n+2,0,n+1))
           if (i==t)
                                                                    printf("possible\n");
```

```
printf("impossible\n");
   return 0:
/*************
                 最大权闭合图
/**************/
//对于权值大于 0 的点 add (S, v, w), 对于点权小于 0 的点
add (v,T,-w), 对于原图中其它边
add(u,v,inf),add(v,u,inf)
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long LL;
const int N=6000, M=60000;
const LL inf=111<<60;</pre>
int head[N],nc;
struct edge
{
   int x,y,next;
LL cap;
} edge[M*3];
void add(int x,int y,LL cap)
   edge[nc].x=x;
   edge[nc].y=y;
edge[nc].cap=cap;
   edge[nc].next=head[x];
   head[x]=nc++;
   edge[nc].x=y;
   edge[nc].y=x;
   edge [nc].cap=0;
   edge[nc].next=head[y];
   head[y]=nc++;
int num[N],h[N],S,T,n,m;
LL findpath(int x, LL flow)
   if(x=T)
      return flow;
   LL res=flow;
   int pos=n-1;
   for (int i=head[x]; i!=-1; i=edge[i].next)
       int y=edge[i].y;
       if(h[x]==h[y]+1&&edge[i].cap>0)
       {
          LL
tp=findpath(y,min(edge[i].cap,res));
          res-=tp;
          edge[i].cap-=tp;
          edge[i^1].cap+=tp;
          if (!res||h[S]==n)
             return flow-res;
      if(edge[i].cap>0&&h[y]<pos)</pre>
          pos=h[y];
   if(res==flow)
      num[h[x]]-
       if(num[h[x]]==0)
          return flow-res;
      h[x]=pos+1;
      num[h[x]]++;
   return flow-res;
}
void Sap()
   memset(h, 0, sizeof(h));
   memset (num, 0, size of (num));
   T.T. ans=0:
   while(h[Sl!=n)
      ans+=findpath(S,inf);
   return ;
bool vis[N];
LL aa[N];
int dfs (int now.LL &val)
ł
```

```
int cnt=1;
   vis[now]=true;
   val+=aa[now];
   for (int i=head[now]; i!=-1; i=edge[i].next)
      if(!vis[edge[i].y]&&edge[i].cap>0)
         cnt+=dfs(edge[i].y,val);
   return cnt;
int main()
   while(scanf("%d%d",&n,&m)!=EOF)
      memset (head, -1, sizeof (head));
      nc=0;
      S=0; T=n+1;
      for (int i=1;i<=n;i++)</pre>
         scanf("%lld",&aa[i]);
         if (aa[i]>0)
            add(S,i,aa[i]);
         else if(aa[i]<0)</pre>
            add(i, T, -aa[i]);
      for (int. i=0.a.b:i<m:i++)
      {
         scanf ("%d%d",&a,&b);
         add(a,b,inf);
      n=T+1;
      Sap ();
      aa[S]=0;
      memset (vis, false, size of (vis));
      LL ans=0;
     nn=dfs(S,ans)-1;
printf("%d %lld\n",nn,ans);
最大密度子图
/**************
对原图中每一个点 add(S,v,U),add(v,T,U+2g-dv),U为边
的总数, dv 为点 v 的度数, g 为 2 分的估计值。对于原图其它边,
add(u,v,1),add(v,u,1).
  如果是带边权(正数)的图,则将结点的度改为它所连的边的
权值之和,最大容量上限 U 也变成了所有边权总和,原图中每条
边的容量改为该边的权值。
  如果带点权(可正可负)且带边权(正数),最大密度为点权
之和加上边权之和除以点的个数,点的度数定义仍按边权的定义
做,但是每个通向汇点的边的容量改为U+2*(g-pv)+dv,pv为
点权,U为所有点权的绝对值之和加上所有边权之和
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<algorithm>
using namespace std;
const int N=400,M=5000;
const double inf=1e10,eps=1e-6;
int head[N],nc,du[N];
struct data
{
  int x,y;
}po[M];
struct edge
   int x,y,next;
   double cap;
} edge[M*3];
void add(int x,int y,double cap)
```

-

edge[ncl.x=x;

edge[nc].y=y;

head[x]=nc++;

edge [ncl.x=v;

edge[nc].y=x;

edge[nc].cap=0;

edge[nc].cap=cap;

edge[nc].next=head[x];

```
edge[nc].next=head[y];
   head[y]=nc++;
int num[N],h[N],S,T,n,m;
double findpath(int x,double flow)
   if(x==T)
       return flow:
   double res=flow;
   int pos=n-1;
   for (int i=head[x]; i!=-1; i=edge[i].next)
       int y=edge[i].y;
if(h[x]==h[y]+1&&edge[i].cap>eps)
       {
           double
tp=findpath(y,min(edge[i].cap,res));
          res-=tp;
           edge[i].cap-=tp;
           edge[i^1].cap+=tp;
           if (res<eps||h[S]==n)
              return flow-res;
       if(edge[i].cap>eps&&h[y]<pos)</pre>
           pos=h[y];
   if(abs(res-flow)<eps)
       num[h[x]]--;
       if(num[h[x]]==0)
           h[S] = n;
           return flow-res;
       h[x]=pos+1;
       num[h[x]]++;
   return flow-res;
double Sap (double x)
   memset (head, -1, size of (head));
   nc=0;
   for (int i=0; i<m; i++)</pre>
       add (po[i].x,po[i].y,1.0);
       add (po[i].y,po[i].x,1.0);
   for (int i=1;i<T;i++)</pre>
       add(S,i,(double)m);
       add(i,T,(double)m+2*x-(double)du[i]);
   double ans=0;
   memset(h,0,sizeof(h));
   memset (num, 0, sizeof (num));
while(h[S]!=n)
       ans+=findpath(S,(T-1)*m);
   return (T-1.0) *m-ans;
bool vis[N];
int dfs (int now)
{
   int cnt=1;
   vis[now]=true;
   for (int i=head[now];i!=-1;i=edge[i].next)
       if(!vis[edge[i].y]&&edge[i].cap>eps)
           cnt+=dfs(edge[i].y);
   return cnt;
    while(scanf("%d%d",&n,&m)!=EOF)
       memset (du, 0, sizeof (du));
       S=0; T=n+1; n=T+1;
       for (int i=0; i<m; i++)</pre>
           scanf("%d%d",&po[i].x,&po[i].y);
           du[po[i].x]++;du[po[i].y]++;
       if(m==0)
           printf("1\n1\n");
```

```
double ll=0,rr=(double)m,mid;
       while (rr-ll>1.0/(T-1.0)/(T-1.0))
          mid=(ll+rr)/2.0;
          double tp=Sap(mid);
          if (abs(tp)<eps)</pre>
             rr=mid;
          else
             ll=mid;
      memset (vis, false, size of (vis));
int ans=dfs(S)-1;
       if(ans==0)
       ł
          memset(vis,false,sizeof(vis));
          ans=dfs(S)-1;
       printf("%d\n",ans);
       for (int i=1;i<T;i++)</pre>
          if (vis[i])
             printf("%d\n",i);
   return 0:
最小边割集
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=600,M=125000;
const int inf=1<<29;</pre>
int n,m;
bool vis[N], combine[N];
int dist[N],path[N][N];
int mincut()
{
   int i,j,k,t,la,tp,mm,id,ans;
   ans=inf;
   memset(combine,false,sizeof(combine));
   for (i=n;i>1;i--)
       memset(dist,0,sizeof(dist));
       memset (vis, false, size of (vis));
       for (j=0; j<i; j++)</pre>
          mm=i d=-1:
          for(k=0;k<n;k++)
if (!vis[k] &&!combine[k]&&dist[k]>mm)
                 mm=dist[id=k];
          if (id==-1)
              return 0;
           if (j==i-2)
              la=id:
          vis[id]=true;
          for(t=0:t<n:t++)
              if(!vis[t]&&!combine[t])
                 dist[t]+=path[id][t];
          }
       ans=min(dist[id],ans);
       combine[id]=true;
       for (j=0; j<n;j++)</pre>
path[j][la]=path[la][j]+=path[j][id];
      }
   return ans;
int main()
   while(scanf("%d%d",&n,&m)!=EOF)
       memset(path, 0, sizeof(path));
       for (int i=0; i<m; i++)</pre>
```

continue;

```
int a,b,c;
                                                        vis[now]=true;
         scanf("%d%d%d",&a,&b,&c);
path[a][b]+=c;
                                                        for (int i=head[now]; i!=-1; i=edge[i].next)
          path[b][a]+=c;
                                                           if(!vis[edge[i].y]&&edge[i].cap>0)
                                                               dfs(edge[i].y);
      printf("%d\n",mincut());
   return 0:
                                                     int main()
                                                        while(scanf("%d%d",&n,&m)!=EOF)
/*********************************/
             二分图最小权覆盖集
                                                           memset (head,-1, sizeof (head));
nc=0:
                                                           S=0, T=2*n+1;
//如果权值累加方式为乘积,可以将权值改为 log(w),最后
                                                           for (int i=1.w;i<=n;i++)</pre>
在 exp(W)还原。最小点权覆盖集的补图为最大点权独立集
#include<cstdio>
                                                               scanf("%d",&w);
#include<cstring>
                                                               add(i+n,T,w);
#include<algorithm>
using namespace std;
const int N=300,M=5000;
                                                           for (int i=1,w;i<=n;i++)</pre>
const int inf=1<<29;
                                                               scanf ("%d",&w);
int head[N],nc;
                                                               add(S,i,w);
struct edge
                                                           for (int i=0.a.b:i<m:i++)
   int x,y,next,cap;
                                                           {
} edge[M*4];
                                                               scanf ("%d%d",&a,&b);
void add(int x,int y,int cap)
                                                               add(a,b+n,inf);
4
   edge[nc].x=x;
                                                           int nn=n;
   edge[nc].y=y;
                                                           n=T+1;
printf("%d\n",Sap());
   edge[nc].cap=cap;
   edge[nc].next=head[x];
                                                           memset (vis, false, sizeof (vis));
   head[x]=nc++;
                                                           memset(mark,false,sizeof(mark));
   edge[nc].x=v;
                                                           dfs(S);
   edge[nc].y=x;
                                                           int top=0;
   edge[nc].cap=0;
                                                           for (int i=head[S];i!=-1;i=edge[i].next)
   edge[nc].next=head[y];
   head[y]=nc++;
                                                               if (!vis[edge[i].y])
}
                                                                  top++, mark[edge[i].y]=true;
int num[N],h[N],S,T,n,m;
int findpath (int x, int flow)
                                                           for (int i=head[T];i!=-1;i=edge[i].next)
{
   if(x==T)
                                                               if (vis[edge[i].y])
      return flow;
                                                                  top++, mark[edge[i].y]=true;
   int res=flow,pos=n-1;
for(int i=head[x]; i!=-1; i=edge[i].next)
                                                           printf("%d\n",top);
                                                           for (int i=1;i<=nn;i++)</pre>
      int y=edge[i].y;
      if(h[x]==h[y]+1&&edge[i].cap>0)
                                                               if (mark[i])
                                                                  printf("%d -\n",i);
                                                               if (mark[i+nn])
tp=findpath(y,min(edge[i].cap,res));
                                                                  printf("%d +\n",i);
         res-=tp;
                                                           }
          edge[i].cap-=tp;
          edge[i^1].cap+=tp;
                                                        return 0;
          if (!res||h[S]==n)
             return flow-res;
                                                     if(edge[i].cap>0&&h[y]<pos)</pre>
                                                                    最优比例生成树
          pos=h[y];
                                                     /*********************************/
   if(res==flow)
                                                     #include<cstdio>
                                                     #include<cstring>
                                                     #include<algorithm>
      num[h[x]]--;
                                                     #include<cmath>
      if(num[h[x]]==0)
                                                     #include<cstdlib>
                                                     using namespace std;
          h[S]=n:
                                                     const double esp = 0.00001;
         return flow-res;
                                                    const int MAXN =1010;
                                                    const double DINF = 1000000000.0;
      h[x]=pos+1;
                                                     struct Point
      num[h[x]]++;
                                                     {
                                                       int x, y, z;
   return flow-res;
                                                     } points[MAXN];
                                                     int N;
int Sap ()
                                                    bool vi[MAXN];
                                                    double dist[MAXN];
   memset(h,0,sizeof(h));
                                                     int pre[MAXN];
   memset (num, 0 , size of (num));
   int ans=0:
                                                    double cal(int a,int b)
   num [0]=n;
                                                    -{
   while(h[S]!=n)
     ans+=findpath(S,inf);
                                                     sqrt((points[a].x-points[b].x)*(points[a].x-po
   return ans:
                                                     ints[b].x)+(points[a].y-points[b].y)*(points[a
                                                    ].y-points[b].y)+0.0);
bool vis[N], mark[N];
void dfs(int now)
```

```
struct point{
                                                                 int x,y,id;
bool operator<(const point &ne)const{
    return x!=ne.x?x<ne.x:y<ne.y;</pre>
   memset (vi, false, sizeof (vi));
   for (int i=2; i<=N; i++)</pre>
                                                            }po[N];
\label{dist[i]=abs(points[1].z-points[i].z)-cal(1,i) *} \\
                                                            struct BITree {
                                                                 int a[MAX],b[MAX];
       pre[i]=1;
                                                                 void init(){
                                                                      memset(a,0x3f,sizeof(a));
                                                                      memset (b,-1,sizeof (b));
   dist[1]=0;
   vi[1]=true;
   double cost=0,len=0;
for (int i=1; i<N; i++)</pre>
                                                                 void updata(int pos,int va,int vb){
                                                                      while (pos>0) {
                                                                            if(a[posl>va){
       double Min=DINF;
                                                                                 a[posl=va;
       int u;
                                                                                 b[pos]=vb;
       for (int j=2; j<=N; j++)</pre>
                                                                            pos-=lowbit(pos);
           if(!vi[j]&&Min>dist[j])
           {
                                                                      }
               Min=dist[j];
               u=j;
                                                                 int getmin(int pos){
                                                                       int id=-1,va=inf;
       vi[u]=1;
                                                                       while (pos<MAX) {</pre>
       cost+=abs(points[pre[u]].z-points[u].z);
                                                                            if(va>a[pos]){
       len+=cal(pre[u],u);
                                                                                 va=a [pos];
                                                                                 id=b[pos];
       for (int j=2; j<=N; j++)</pre>
                                                                            pos+=lowbit(pos);
val=abs(points[u].z-points[j].z)-cal(u,j)*x;
    if(!vi[j] && dist[j]>val)
                                                                       return id;
               dist[j]=val;
                                                            }BIT;
                                                                    int dist(point a,point b) {
               pre[i]=u;
                                                            inline
                                                                 return abs (a.x-b.x)+abs (a.y-b.y);
       }
                                                            int fa[N];
                                                            int Find(int x){
   return cost/len;
                                                                 if(x==fa[x])return x;
                                                                 return fa[x]=Find(fa[x]);
int main()
   while(scanf("%d",&N),N)
                                                           bool make_set(int x,int y){
                                                                 int fx=Find(x), fy=Find(y);
                                                                 if(fx==fy)return false;
fa[fx]=fa[fy]=min(fx,fy);
       for (int i=1; i<=N; i++)</pre>
scanf ("%d%d%d", &points[i].x, &points[i].y, &poin
                                                                 return true;
ts[i].z);
       double a=0,b;
                                                            int Manhatton_MST(point po[],int n,int K) {
                                                                 int a[N],b[N],m,tot=0;
for(int dir=0;dir<4;dir++){</pre>
       while (1)
                                                                      if(dir==1||dir==3) {
           b=prim(a);
           if (fabs (b-a) <esp) break;</pre>
                                                                           for(int i=0;i<n;i++){</pre>
                                                                                 swap (po[i].x,po[i].y);
                                                                            }
       printf("%.3f\n",b);
                                                                       else if(dir==2){
    for(int i=0;i<n;i++){</pre>
                                                                                po[i].x=-po[i].x;
/**************
                曼哈顿距离生成树
                                                                       sort(po,po+n);
                                                                       for (int i=0; i<n; i++) {</pre>
/******************************/
                                                                            a[i]=b[i]=po[i].y-po[i].x;
                                                                       sort(b,b+n);
给定 n 个点, 求曼哈顿最小生成树第 K 大边的长度
                                                                       m=unique(b,b+n)-b;
                                                                      BIT.init();
#include<cstdio>
                                                                       for (int i=n-1; i>=0; i--) {
#include<cstring>
#include<algorithm>
                                                           pos=lower_bound(b,b+m,a[i])-b+1,to;
using namespace std;
                                                                            to=BIT.getmin(pos);
                                                                            if(to!=-1)
N=10005, MAX=5000, M=N*8, in f=0x3f3f3f3f; inline int lowbit(int x){
                                                           edge[tot++]=Edge(po[i].id,po[to].id,dist(po[i]
     return x&(-x);
                                                            ; (([ot]og,
struct Edge{
     int x,y,cost;
                                                           BIT.updata(pos,po[i].x+po[i].y,i);
     Edge () { }
          (int _x,int _y,int _c) {
x=_x;
     Edge (int
                                                                 sort (edge, edge+tot);
           y=_y;
                                                                 for(int i=0;i<n;i++) {</pre>
                                                                      fa[i]=i;
           cost= c;
     bool operator<(const Edge &ne)const{
                                                                 for(int i=0,j=0;i<tot;i++){</pre>
           return cost<ne.cost;</pre>
                                                                      if(make_set(edge[i].x,edge[i].y)){
                                                                            j++;
if(j==K)return edge[i].cost;
}edge[M];
```

double prim(double x)

```
}
     }
                                                            1
int main(){
                                                         1
      int n,K;
                                                         int solve (int src, int deg) //src 限度为 deg的最小生
     while(scanf("%d%d",&n,&K)!=EOF){
                                                         成树
          for (int i=0;i<n;i++) {</pre>
                scanf("%d%d",&po[i].x,&po[i].y);
                                                             int i, j, k, ans=0, mm;
               po[i].id=i;
                                                             for (i=1;i<n;i++)
                                                                dist[i]=inf;
                                                                vis[i]=false;
printf("%d\n", Manhatton MST (po,n,n-K));
     return 0;
                                                            memset (tree, false, size of (tree));
vis[0] = true; dist[0] = 0;
                                                             while(deg)
/********************************/
                                                                k=-1; mm=inf;
                最小限度生成树
                                                                for (i=1; i<n; i++)
/**************
                                                                4
                                                                    if (!vis[i]&&g[0][i]&&g[0][i]<mm)</pre>
#include<cstdio>
#include<cstring>
                                                                       mm=g[0][i];
#include<map>
#include<algorithm>
                                                                    }
#include<string>
using namespace std;
                                                                if(k==-1)
map<string,int> M;
const int inf=1<<29;
                                                                    break;
                                                                 fa[k]=0;
const int N=100;
                                                                maxvalue[k] = -inf;
int n;
                                                                dist[k]=0:
int dist[N], maxvalue[N], fa[N], g[N][N];
                                                                ans+=prime(k)+g[0][k];
bool vis[N],tree[N][N];
                                                                dea--;
int prime (int root)
                                                             while(deg)
   int i,j,k,a=0,mm;
   while(1)
                                                                k=-1; mm=inf;
   {
                                                                for (i=1; i<n;i++)</pre>
       k=-1; mm=inf;
       for (i=1; i<n;i++)</pre>
                                                                    if(!tree[0][i]&&g[0][i])
           if (!vis[i] &&dist[i] < mm)</pre>
                                                                       if (mm>g[0][i]-maxvalue[i])
              mm=dist[i]; k=i;
                                                                           mm=g[0][i]-maxvalue[i];
       if(k==-1)
                                                                    }
          break:
       a+=dist[k];
                                                                if(k==-1||mm>=0)
       vis[k]=true;
                                                                    break;
       if(k!=root)
                                                                ans+=mm;
                                                                tree[0][k]=tree[k][0]=true;
maxvalue[k]=max(maxvalue[fa[k]],g[fa[k]][k]);
                                                                int lon=maxvalue[k];
       tree[fa[k]][k]=tree[k][fa[k]]=true;
                                                                while (g[fa[k]][k]!=lon)
       for (i=1; i<n; i++)
                                                                    k=fa[k];
if (!vis[i]&&g[k][i]&&g[k][i]<dist[i])</pre>
                                                                tree[fa[k]][k]=tree[k][fa[k]]=false;
                                                                memset (vis, false, size of (vis));
              dist[i]=g[k][i];fa[i]=k;
                                                                dfs(0):
                                                                deq -- ;
                                                             return ans;
   return a;
}
                                                         int main()
void dfs(int root)
                                                             int m, deg;
   int i, now, top=1, stk [N*2], st=0;
                                                            n=1;
   stk[0] = root;
                                                             M.clear();
   while(st!=top)
                                                            M["Park"]=0;
scanf("%d",&m);
       now=stk[st++1;
                                                            memset(g,0,sizeof(g));
while(m--)
       vis[now]=true;
       if(st==N*2)
           st=0;
                                                                char s1[15],s2[15];
       for (i=1; i<n;i++)
                                                                int a,b,di;
scanf(" %s %s %d",s1,s2,&di);
           if (!vis[i]&&tree[now][i])
                                                                if(M.find(s1) == M.end())
                                                                    M[s1]=n++;
              fa[i]=now;
                                                                if(M.find(s2) == M.end())
              if (now==root)
                                                                    M[s2]=n++;
                  maxvalue[i]=-inf;
                                                                a=M[s1];b=M[s2];
                                                                g[a][b]=g[b][a]=di;
maxvalue[i]=max(maxvalue[now],g[now][i]);
                                                            scanf("%d", &deg);
              stk[top++]=i;
                                                            printf("Total miles
              if (top==2*N)
                                                         driven: %d\n", solve(0, deg));
                  top=0;
```

```
return 0:
/***********************************/
                    次小生成树
/*************
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
using namespace std;
const int N=1005,inf=0x3f3f3f3f;
head[N],nc,maxv[N][N],dist[N],pre[N],prd[N],n,
struct Edge {
     int from,to,cost,nxt;
bool in;
}edge[N*N];
void add(int a,int b,int c){
     edge[nc].from=a;
     edge[nc].to=b;
     edge[nc].nxt=head[a];
     edge[nc].cost=c;
     edge[nc].in=false;
     head[a]=nc++;
void init(){
     memset(prd,-1,sizeof(prd));
memset(pre,-1,sizeof(pre));
memset(head,-1,sizeof(head));
memset(maxv,-1,sizeof(maxv));
     memset(dist, 0x3f, sizeof(dist));
     nc=0:
int prime(){
     dist[1]=0;
     prd[1]=1;
      queue<int> S,T;
     for(int i=1;i<=n;i++)T.push(i);
int ans=0;</pre>
     for(int _=0;_<n;_++) {
    int id=-1,mxf=inf;</pre>
           for (int i=0, si=T.size(); i<si; i++) {</pre>
                int tmp=T.front();
                T.pop();
                if(dist[tmp]<mxf) {</pre>
                      if(id!=-1)T.push(id);
                      mxf=dist[id=tmp];
                 else{
                      T.push (tmp);
           if(id==-1)break;
           ans+=dist[id];
if (id!=1) edge[pre[id]].in=edge[pre[id]^1].in=t
rue;
           for (int i=0, si=S.size(); i<si; i++) {</pre>
                 int tmp=S.front();
                S.pop();
maxv[id][tmp]=maxv[tmp][id]=max(maxv[tmp][prd[
id]], mxf);
                S.push(tmp):
           S.push (id);
           for (int
i=head[id];i!=-1;i=edge[i].nxt){
                int
to=edge[i].to,cost=edge[i].cost;
                if(dist[to]>cost) {
                      dist[to]=cost;
                      pre[to]=i;
                      prd[to]=id;
                1
           1
     return ans;
int main(){
     //freopen("data.in","r",stdin);
     int T:
     for(scanf("%d",&T);T;T--){
           init();
```

```
scanf ("%d%d",&n,&m);
         for (int i=0,a,b,c;i<m;i++) {</pre>
             scanf ("%d%d%d", &a, &b, &c);
             add(a,b,c);
             add(b,a,c);
         int ans=prime();
         bool flag=false;
         for (int i=0; i<nc; i+=2) {</pre>
             if(edge[i].in)continue;
if (maxv[edge[i].from][edge[i].to] == edge[i].cos
                  flag=true;
                  break;
             1
         if(flag)puts("Not Unique!");
         else printf("%d\n",ans);
    return 0;
/**************/
                  树链剖分
//0 e c 将 e 边权值改为 c
//1 a b 问 a 到 b 的长度
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long 11;
const int N=50005;
struct Edge{
   int to, nxt;
   11 cost;
}edge[N*3];
int head[N],nc,n;
void AddEdge(int a,int b,ll c){
edge[nc].to=b;edge[nc].cost=c;edge[nc].nxt=
head[a];head[a]=nc++;
ll line[N*4];
void Insert(int now,int left,int right,int
pos,ll val){
   if(left==pos&&right==pos){
      line[now]=val;
      return ;
   }
mid=(left+right)>>1, lc=now<<1, rc=(now<<1)|1
   if(pos<=mid)Insert(lc,left,mid,pos,val);</pre>
   else Insert(rc,mid+1,right,pos,val);
   line[now]=line[lc]+line[rc];
11 FindSum(int now,int left,int right,int
a,int b){
   if(a>b)return 011;
   if(left==a&&right==b) {
      return line[now];
   }
   int
mid=(left+right)>>1, lc=now<<1, rc=(now<<1)|1
   if(b<=mid)return</pre>
FindSum(lc,left,mid,a,b);
   else if (a>mid) return
FindSum(rc,mid+1,right,a,b);
   else return
FindSum(lc,left,mid,a,mid)+FindSum(rc,mid+1
,right,mid+1,b);
struct STK_Heavy{//now,fa,e,dep,cost
   int now,fa,e,dep;
   11 cost;
   STK Heavy() {}
   STK_Heavy(int _n,int _f,int _e,int _d,ll
c) {
      now=_n,fa=_f,e=_e,dep=_d,cost=_c;
```

```
}Hstk[N*2];
                                                       void Init(){
struct STK Create{//now,ac,e
                                                          memset(head,-1,sizeof(head));
   int now, ac,e;
                                                          memset(line, 0, sizeof(line));
   STK Create(){}
                                                          nc=1, ID=0;
   STK_Create(int _n,int _a,int _e) {
    now=_n,ac=_a,e=_e;
                                                      void Change(int e,11 c) {
    int a=edge[e*2-1].to,b=edge[e*2].to;
                                                          if (pa[b] ==a) swap(a,b);
}Cstk[N*2];
ll cost[N];
                                                          Insert(1,0,n+1,tid[a],c);
                                                      11 Query(int a,int b){
dep[N],anc[N],pa[N],tid[N],heavy[N],size[N]
,ID;
                                                          ll ans=0;
                                                          int left,right;
bool mark[N];
void DFS Heavy(int root){
                                                          while(anc[a]!=anc[b]){
                                                              if(dep[anc[a]] < dep[anc[b]]) swap(a,b);</pre>
   int top=0;
   memset (mark, false, sizeof (mark));
                                                              left=tid[anc[a]],right=tid[a];
                                                              if(left>right) swap(left, right);
Hstk[top]=STK_Heavy(root, root, head[root], 0,
                                                              ans+=FindSum(1,0,n+1,left,right);
                                                              a=pa[anc[a]];
   while(top>=0) {
       STK_Heavy elem=Hstk[top];
                                                          left=tid[a],right=tid[b];
       if(!mark[elem.now]){
                                                          if(left>right) swap(left,right);
           mark[elem.now]=true;
                                                          return ans+FindSum(1,0,n+1,left+1,right);
           size[elem.now]=1;
           heavy[elem.now]=-1;
                                                      int main(){
           pa[elem.now]=elem.fa;
                                                          int q;
           cost[elem.now]=elem.cost;
                                                          while (scanf ("%d%d", &n, &q) !=EOF) {
           dep[elem.now]=elem.dep;
                                                              Init();
                                                              int a,b,op;
       if(elem.e==-1){
                                                              11 c;
           if(top) {
                                                              for(int i=1;i<n;i++){</pre>
              size[elem.fa]+=size[elem.now];
                                                                 scanf("%d%d%I64d",&a,&b,&c);
                                                                 AddEdge(a,b,c);
if(heavy[elem.fa] ==-1||size[heavy[elem.fa]]
                                                                 AddEdge (b,a,c);
<size[elem.now]){</pre>
                  heavy[elem.fa]=elem.now;
                                                              DFS Heavy(1);
                                                              DFS_Create(1);
                                                              for(int i=0;i<q;i++){</pre>
                                                                 scanf("%d",&op);
           top--;
           continue;
                                                                  if(op==0){
                                                                     scanf("%d%I64d",&a,&c);
       int to=edge[elem.e].to;
                                                                     Change (a,c);
       11 cc=edge[elem.e].cost;
       Hstk[top].e=edge[elem.e].nxt;
                                                                  else{
                                                                     scanf("%d%d",&a,&b);
       if (mark[to]) continue;
                                                                     printf("%I64d\n",Query(a,b));
Hstk[++top]=STK Heavy(to,elem.now,head[to],
elem.dep+1,cc);
                                                              }
   }
1
                                                          return 0:
void DFS_Create(int root){
   int top=0;
                                                      /***********************************/
                                                                         生成树计数
Cstk[0]=STK_Create(root, root, head[root]);
                                                      /*********************************/
   memset (mark, false, sizeof (mark));
   while(top>=0) {
                                                       #include <stdio.h>
       STK_Create elem=Cstk[top];
                                                       #include <vector>
       if(!mark[elem.now]){
                                                       #include <cstring>
           mark[elem.now]=true;
                                                       #include <cmath>
                                                      using namespace std;
const int MOD = 10007
           tid[elem.now]=++ID;
           anc[elem.now] = elem.ac;
                                                       int a [500] [500],g[500] [500],ni [MOD];
                                                      struct _st {
   int x,y;
Insert(1,0,n+1,ID,cost[elem.now]);
           if(heavy[elem.now]!=-1){
                                                      }loc[500];
                                                      int sqr(int x) {
   return x * x;
Cstk[++top]=STK Create(heavy[elem.now],elem
.ac,head[heavy[elem.now]]);
              continue;
                                                       int dist(int i,int j) {
           }
                                                      return (sqr(loc[i].x - loc[j].x) +
sqr(loc[i].y - loc[j].y));
       if(elem.e==-1){
           top--;
                                                      pair<int, int> vec(int x, int y) {
                                                         pair<int, int> tmp;
           continue;
                                                          tmp.first = loc[y].x - loc[x].x;
tmp.second = loc[y].y - loc[x].y;
       int to=edge[elem.el.to;
                                                          return tmp;
       11 cc=edge[elem.el.cost;
       Cstk[top].e=edge[elem.e].nxt;
                                                      int mat[500][500];
       if(mark[to])continue;
                                                      int gcd(int x,int y) {
   if (y == 0) return x;
Cstk[++top]=STK Create(to,to,head[to]);
                                                          return gcd(y,x% y);
   1
```

```
int Gauss(int n){
   for (int i = 0;i < n;i++) {
   for (int j = 0;j < n;j++)
      mat[i][j] = (mat[i][j] + MOD) % MOD;</pre>
   int col = 0, k;
   int ans = 1;
//for(int i= 0;i < n; ++i) b[i] = 111;</pre>
   for (k = 0; k < n & col < n; ++k, ++col) {
       if(mat[k][col] == 0) {
   for(int i = k + 1; i < n; ++i){</pre>
                                                                           }
                if(!(mat[i][col] == 0)){
                    for (int j = col; j < n;
++j) swap(mat[k][j], mat[i][j]);
                    ans *= -1;
                    break;
            }
                                                                            continue;
        int x = mat[k][col];
        ans *= x;
       ans %= MOD;
ans += MOD;
        ans %= MOD;
        for (int i = k + 1; i < n; ++i) {
            int y = mat[i][col];
if (x == 0 || y == 0) continue;
            int d = gcd(abs(x), abs(y)), lcm = abs(x)
* y / d);
            int tx = lcm / x, ty = lcm / y;
            for(int j = col;j < n; ++j) {
    mat[i][j] = -tx * mat[k][j] + ty *</pre>
                                                                   return 0;
mat[i][j];
                //printf("!!%dn",mat[i][j]);
                mat[i][j] %= MOD;
                mat[i][j] = (mat[i][j] + MOD) % MOD;
            ans = (ans * ni[ty]) % MOD;
ans = (ans + MOD) % MOD;
                                                                #include<cstdio>
       }
                                                                #include<cstring>
   }
                                                                #include<algorithm>
   ans %= MOD:
   ans += MOD;
                                                                int n,m;
   ans %= MOD;
   return (int) ans;
                                                                void dfs(int now)
int x,y;
int egcd(int a,int b) {
   int temp, tempx;
                                                                   if(len==0)
   if (b == 0) {
 x = 1; y = 0;
                                                                   {
       return a;
                                                                        else
   temp = eqcd(b,a % b);
   tempx = x;
                                                                        return;
   x = y;
y = tempx - a / b * y;
                                                                   if(now==root)
    return temp;
bool cmp(pair<int,int> x,pair<int,int> y) {
   if (x.first * y.second - x.second*y.first ==
0) {
        if ((x.first*y.first > 0)) return true;
        if (x.second *y.second > 0) return true;
                                                                       dfs(to);
        return false:
   return false;
int main() {
   for (int i = 1;i < MOD;i++) {</pre>
       egcd(i,MOD);
       ni[i] = (x+MOD) % MOD;
    int T;
                                                               1[k1-2);
   for (scanf("%d",&T);T;T--) {
        int n,R;
                                                                           }
        scanf ("%d%d", &n, &R);
                                                                       }
        for (int i = 0; i < n; i++) {
                                                                   }
            scanf("%d%d",&loc[i].x,&loc[i].y);
                                                                int main()
        memset(a,0,sizeof(a));
       memset(g, 0, sizeof(g));
       for (int i = 0;i < n;i++) {
  for (int j = 0;j < n;j++) {
    if (dist(i,j) > R * R || i == j)
continue;
               bool flag = true;
```

```
for (int k = 0; k < n; k++) {
                 if (i != k && j != k &&
cmp(vec(i,k), vec(k,j))) {
                     flag = false;
                     break;
              if (flag) {
                  a[i][j] = 1;
g[i][i]++;
       bool hasAns = true;
       for (int i = 0; i < n; i++) {
           if (g[i][i] == 0) hasAns = false;
       if (!hasAns && n != 1) {
   printf("-1n");
       for (int i = 0;i < n - 1;i++) {
   for (int j = 0;j < n - 1;j++) {</pre>
             mat[i][j] = g[i][j] - a[i][j];
       int ans = Gauss(n-1);
       printf("%dn",ans);
/*************
         树中删除最少边形成n连通集
/***********************************/
using namespace std;
const int inf=9999999;
int dp[155][155],tot[155],map[155][155],root;
   int to,i,j,k,len=tot[now];
       if(now==root)
          dp[now][1]=0;
          dp[now][1]=1;
       dp[now][1]=len;
       dp[now][1]=len+1;
   for (i=0;i<len;i++)</pre>
       to=map[now][i];
       for (j=m-1; j>=1; j--)
           if (dp[now][j]<inf)</pre>
              for(k=m-j;k>=1;k--)
                 if(dp[to][k]<inf)</pre>
dp[now][j+k]=min(dp[now][j+k],dp[now][j]+dp[to
   while(scanf("%d%d",&n,&m)!=EOF)
       int i,j,a,b;
memset(tot,0,sizeof(tot));
       for (i=1; i<=n; i++)
```

```
for(j=1;j<=m;j++)</pre>
                                                                                       /***************/
                     dp[i][j]=inf;
          bool head[155];
                                                                                      /**********************************/
          memset (head, true, sizeof (head));
           for (i=0; i<n-1;i++)
                                                                                                                         公式
                                                                                      /*************
                scanf("%d%d",&a,&b);
                                                                                       【三角形】:
                head[b]=false;
                                                                                      1. 半周长 P=(a+b+c)/2
                map[a][tot[a]++]=b;
                                                                                       2. 面积
          for (i=1; i<=n; i++)</pre>
                                                                                      S=aHa/2=absin(C)/2=sqrt(P(P-a)(P-b)(P-c))
                                                                                       3. 中线
                if (head[i])
                                                                                      Ma = sqrt(2(b^2+c^2)-a^2)/2 = sqrt(b^2+c^2+2bccos(
                                                                                      A))/^{2}
                     root=i;
                                                                                       4. 角平分线
                     dfs(i);
                                                                                      Ta=sqrt (bc((b+c)^2-a^2))/(b+c)=2bccos(A/2)/(b+
           int ans=inf;
                                                                                      Ha=bsin(C)=csin(B)=sqrt(b^2-((a^2+b^2-c^2)/(2a))
           for (i=1; i<=n; i++)</pre>
                                                                                      ))^2)
                                                                                          内切圆半径
                ans=min(ans,dp[i][m]);
                                                                                      r=S/P=asin(B/2)sin(C/2)/sin((B+C)/2)
          printf("%d\n",ans);
                                                                                      c) /P)
     return 0:
                                                                                                          =Ptan (A/2) tan (B/2) tan (C/2)
7. 外接圆半径
                                                                                      R=abc/(4S)=a/(2sin(A))=b/(2sin(B))=c/(2sin(C))
                 N阶完全图生成子图数量
                                                                                       【四边形】:
/*************
                                                                                      D1,D2 为对角线,M 对角线中点连线,A 为对角线夹角
                                                                                          a^2+b^2+c^2+d^2=D1^2+D2^2+4M^
S=D1D2sin(A)/2
import java.util.*;
import java.math.*;
class Main
                                                                                       (以下对圆的内接四边形)
                                                                                       3. ac+bd=D1D2
{
     static BigInteger cal (int n,int k)
                                                                                          S=sqrt((P-a)(P-b)(P-c)(P-d)),P为半周长
                                                                                       【正n边形】:
          if(n==0&&k!=0)
                                                                                      R 为外接圆半径, r 为内切圆半径
                return BigInteger.ZERO;
                                                                                      1. 中心角 A=2PI/n
           else if(k==0||n==k)
                                                                                      2. 内角 C=(n-2)PI/n
               return BigInteger.ONE;
                                                                                      3. 边长 a=2sqrt(R^2-r^2)=2Rsin(A/2)=2rtan(A/2)
          BigInteger ret=new BigInteger("1");
          for (int i=1;i<=k;i++)</pre>
                                                                                       4. 面积
                                                                                      S=nar/2=nr^2tan(A/2)=nR^2sin(A)/2=na^2/(4tan(A)/2)=na^2/(4tan(A)/2)=na^2/(4tan(A)/2)=na^2/(4tan(A)/2)=na^2/(4tan(A)/2)=na^2/(4tan(A)/2)=na^2/(4tan(A)/2)=na^2/(4tan(A)/2)=na^2/(4tan(A)/2)=na^2/(4tan(A)/2)=na^2/(4tan(A)/2)=na^2/(4tan(A)/2)=na^2/(4tan(A)/2)=na^2/(4tan(A)/2)=na^2/(4tan(A)/2)=na^2/(4tan(A)/2)=na^2/(4tan(A)/2)=na^2/(4tan(A)/2)=na^2/(4tan(A)/2)=na^2/(4tan(A)/2)=na^2/(4tan(A)/2)=na^2/(4tan(A)/2)=na^2/(4tan(A)/2)=na^2/(4tan(A)/2)=na^2/(4tan(A)/2)=na^2/(4tan(A)/2)=na^2/(4tan(A)/2)=na^2/(4tan(A)/2)=na^2/(4tan(A)/2)=na^2/(4tan(A)/2)=na^2/(4tan(A)/2)=na^2/(4tan(A)/2)=na^2/(4tan(A)/2)=na^2/(4tan(A)/2)=na^2/(4tan(A)/2)=na^2/(4tan(A)/2)=na^2/(4tan(A)/2)=na^2/(4tan(A)/2)=na^2/(4tan(A)/2)=na^2/(4tan(A)/2)=na^2/(4tan(A)/2)=na^2/(4tan(A)/2)=na^2/(4tan(A)/2)=na^2/(4tan(A)/2)=na^2/(4tan(A)/2)=na^2/(4tan(A)/2)=na^2/(4tan(A)/2)=na^2/(4tan(A)/2)=na^2/(4tan(A)/2)=na^2/(4tan(A)/2)=na^2/(4tan(A)/2)=na^2/(4tan(A)/2)=na^2/(4tan(A)/2)=na^2/(4tan(A)/2)=na^2/(4tan(A)/2)=na^2/(4tan(A)/2)=na^2/(4tan(A)/2)=na^2/(4tan(A)/2)=na^2/(4tan(A)/2)=na^2/(4tan(A)/2)=na^2/(4tan(A)/2)=na^2/(4tan(A)/2)=na^2/(4tan(A)/2)=na^2/(4tan(A)/2)=na^2/(4tan(A)/2)=na^2/(4tan(A)/2)=na^2/(4tan(A)/2)=na^2/(4tan(A)/2)=na^2/(4tan(A)/2)=na^2/(4tan(A)/2)=na^2/(4tan(A)/2)=na^2/(4tan(A)/2)=na^2/(4tan(A)/2)=na^2/(4tan(A)/2)=na^2/(4tan(A)/2)=na^2/(4tan(A)/2)=na^2/(4tan(A)/2)=na^2/(4tan(A)/2)=na^2/(4tan(A)/2)=na^2/(4tan(A)/2)=na^2/(4tan(A)/2)=na^2/(4tan(A)/2)=na^2/(4tan(A)/2)=na^2/(4tan(A)/2)=na^2/(4tan(A)/2)=na^2/(4tan(A)/2)=na^2/(4tan(A)/2)=na^2/(4tan(A)/2)=na^2/(4tan(A)/2)=na^2/(4tan(A)/2)=na^2/(4tan(A)/2)=na^2/(4tan(A)/2)=na^2/(4tan(A)/2)=na^2/(4tan(A)/2)=na^2/(4tan(A)/2)=na^2/(4tan(A)/2)=na^2/(4tan(A)/2)=na^2/(4tan(A)/2)=na^2/(4tan(A)/2)=na^2/(4tan(A)/2)=na^2/(4tan(A)/2)=na^2/(4tan(A)/2)=na^2/(4tan(A)/2)=na^2/(4tan(A)/2)=na^2/(4tan(A)/2)=na^2/(4tan(A)/2)=na^2/(4tan(A)/2)=na^2/(4tan(A)/2)=na^2/(4tan(A)/2)=na^2/(4tan(A)/2)=na^2/(4tan(A)/2)=na^2/(4tan(A)/2)=na^2/(4tan(A)/2)=na^2/(4tan(A)/2)=na^2/(4tan(A)/2)=na^2/(4tan(A)/2)=na^2/(4tan(A)/2)=na^2/(4tan(A)/2)=na^2
                                                                                      /2))
ret=ret.multiply(BigInteger.valueOf(n-i+1)).di
                                                                                       【圆】:
vide(BigInteger.valueOf(i));
                                                                                      1. 弧长 l=rA
                                                                                      2. 弦长 a=2sqrt(2hr-h^2)=2rsin(A/2)
          return ret;
                                                                                      h=r-sqrt(r^2-a^2/4)=r(1-cos(A/2))=atan(A/4)/2
     public static void main(String arg[])
                                                                                      4. 扇形面积 S1=r1/2=r^2A/2
                                                                                           弓形面积 S2=(rl-a(r-h))/2=r^2(A-sin(A))/2
           Scanner cin=new Scanner (System.in);
          BigInteger dp[]=new BigInteger[52];
                                                                                       【梼柱】:
           dp[1]=dp[2]=BigInteger.ONE;
                                                                                      1. 体积 V=Ah,A为底面积,h为高
           for (int i=3;i<=50;i++)</pre>
                                                                                      2. 侧面积 S=lp,1 为棱长,p 为直截面周长
                                                                                          全面积 T=S+2A
                dp[i]=BigInteger.ZERO;
                                                                                       【棱锥】:
                for(int j=1;j<i;j++)</pre>
                                                                                          体积 V=Ah/3,A 为底面积,h 为高
                                                                                      (以下对正棱锥)
\label{eq:dp[i]=dp[i].add(dp[j].multiply(cal(i-1,j-1).mu))} dp[i] = dp[i].add(dp[j].multiply(cal(i-1,j-1).mu))
                                                                                      2. 侧面积 S=1p/2,1为斜高,p为底面周长
ltiply(BigInteger.valueOf(2).pow((cal(i-j,2).i
                                                                                          全面积 T=S+A
ntValue()))));
                                                                                       【棱台】:
                                                                                        . 体积 V=(A1+A2+sqrt(A1A2)) h/3,A1.A2为上下底面
dp[i]=BigInteger.valueOf(2).pow(cal(i,2).intVa
                                                                                      积.h 为高
lue()).subtract(dp[i]);
                                                                                       (以下为正棱台)
                                                                                      2. 侧面积 S=(p1+p2) 1/2, p1.p2 为上下底面周长, 1为斜高
          int n;
                                                                                          全面积 T=S+A1+A2
          while (true)
                                                                                       【圆柱】:
                                                                                      1. 侧面积 S=2PIrh
                n=cin.nextInt();
                                                                                      2. 全面积 T=2PIr(h+r)
                if(n==0)
                                                                                      3. 体积 V=PIr^2h
                    break:
                else
                                                                                       【圆锥】:
                     System.out.println(dp[n]);
                                                                                      1. 母线 l=sqrt(h^2+r^2)
                                                                                      2. 侧面积 S=PIrl
     }
                                                                                      3. 全面积 T=PIr(l+r)
                                                                                          体积 V=PIr^2h/3
/**************/
                                                                                       【圆台】:
                                                                                      1. 母线 l=sqrt(h^2+(r1-r2)^2)
                       计算几何
                                                                                      2. 侧面积 S=PI(r1+r2)1
                                                                                      3. 全面积 T=PIr1(l+r1)+PIr2(l+r2)
                                                                                      4. 体积 V=PI(r1^2+r2^2+r1r2)h/3
```

```
【球】:
1. 全面积 T=4PIr^2
                                                       inline double xmult(point o,point a,point b) {
                                                            return
2. 体积 V=4PIr^3/3
                                                       (a.x-o.x)*(b.v-o.v)-(b.x-o.x)*(a.v-o.v);
【球台】:
1. 侧面积 S=2PIrh
                                                       inline double xmult(double x1, double y1, double
2. 全面积 T=PI(2rh+r1^2+r2^2)
                                                       x2,double y2) {
                                                            return x1*y2-x2*y1;
3. 体积 V=PIh(3(r1^2+r2^2)+h^2)/6
【球扇形】:
                                                       inline double dmult (point o, point a, point b) {
1. 全面积 T=PIr(2h+r0), h 为球冠高, r0为球冠底面半径
                                                            return
2. 体积 V=2PIr^2h/3
                                                       (a.x-o.x) * (b.x-o.x) + (a.y-o.y) * (b.y-o.y);
/*************
                                                       inline double dmult(point a,point b) {
                二维计算几何库
                                                            return a.x*b.x+a.y*b.y;
/***********************************/
#include<cstdlib>
                                                       inline double lenth (point a) {
#include<cmath>
                                                            return sqrt(dmult(a,a));
#include<cstdio>
#include<algorithm>
                                                       inline double dist(point a,point b){
                                                            return lenth (b-a);
#define max(a,b) (((a)>(b))?(a):(b))
#define min(a,b) (((a)>(b))?(b):(a)) #define sign(x) ((x)>eps?1:((x)<-eps?(-1):(0)))
                                                       inline double dist2 (point a, point b) {
using namespace std;
const int MAXN=1000;
const double eps=1e-8,inf=1e50 ,Pi=acos(-1.0);
                                                            return dmult(b-a,b-a);
                                                       //直线一般式转两点式
struct point {
                                                       line toline (double a, double b, double c) {
    double x,y;
point() {}
                                                            if(sign(b)==0) exit(1);
                                                            point A(0,-c/b),B(-c/a,0);
     point(double _x,double _y) {
                                                            return line(A,B);
          x = _x;
          y=_y;
                                                       //直线两点式转一般式
                                                       line2 toline2(point a, point b) {
     point operator-(const point &ne)const {
    return point(x-ne.x,y-ne.y);
                                                            double A=b.y-a.y,B=a.x-b.x,C=-B*a.y-A*a.x;
                                                            return line2(A,B,C);
     point operator+(const point ne)const {
                                                       //点p绕o逆时针旋转 alpha
          return point(x+ne.x,y+ne.y);
                                                       point rotate(point o,point p,double alpha) {
     }
                                                            point tp;
     point operator*(const double t)const{
                                                            p.x-=0.x;
          return point(x*t,y*t);
                                                            p.y-=o.y;
tp.x=p.x*cos(alpha)-p.y*sin(alpha)+o.x;
     point operator/(const double t)const{
                                                            tp.y=p.y*cos(alpha)+p.x*sin(alpha)+o.y;
          if(sign(t) == 0) exit(1);
          return point(x/t,y/t);
     }
                                                       //向量 u 的倾斜角
                                                       double angle(point u) {
    return atan2(u.y,u.x);
struct line{
     point a,b;
     line(){}
                                                       //oe与os的夹角,夹角正负满足叉积
     line (point _a,point _b) {a=_a;b=_b;}
                                                       double angle(point o,point s,point e) {
                                                            point os=s-o,oe=e-o;
struct line2 {
     double a,b,c;
     line2() {}
line2(double _a,double _b,double _c) {
                                                       bot=sqrt(dmult(os,os)*dmult(oe,oe));
                                                            double top=dmult(os,oe);
                                                            double cosfi=top/bot;
          a=_a;
b=_b;
                                                            if (cosfi >= 1.0 ) return 0;
if (cosfi <= -1.0 ) return -F</pre>
                                                                                 ) return -Pi;
          c=_c;
                                                            double fi=acos(cosfi);
     }
                                                            if(xmult(o,s,e)>0)return fi;
                                                            else return -fi;
struct circle {
     point o;
                                                       //p在1上的投影与1关系
     double r;
     circle(){}
                                                       double relation(point p,line l) {
                                                            line tl(l.a,p);
     circle(point _o,double _r){
                                                            return
          0= 0;
                                                       dmult(t1.b-1.a, 1.b-1.a)/dist2(1.a, 1.b);
          r= r;
     }
                                                       //p 在 1 上的垂足
struct rectangle{
                                                       point perpendicular(point p,line 1) {
     point a,b,c,d;
                                                            double r=relation(p,1);
     rectangle(){}
                                                            return 1.a+((1.b-1.a)*r);
     rectangle (point _a,point _b,point _c,point
d){
                                                       //求点p到线段1的最短距离,并返回线段上距该点最近的点np
                                                       double dist_p_to_seg(point p,line l,point &np)
          a= a;
          b=_b;
          c=_c;
d=_d;
                                                            double r=relation(p,l);
if(r<0) {</pre>
     1
                                                            np=l.a;
                                                                 return dist(p,l.a);
struct polygon{
     point p[MAXN];
                                                            if(r>1) {
     int n;
                                                                 np=1.b;
                                                                 return dist(p,l.b);
inline double xmult(point a, point b) {
     return a.x*b.y-a.y*b.x;
                                                            np=perpendicular(p,1);
```

```
return dist(p,np);
//求点p到直线1的最短距离
double dist_p_to_line(point p,line l) {
    return
abs(xmult(p-1.a,1.b-1.a))/dist(1.a,1.b);
//线段之间最短距离
inline double dist seg to seg(line p, line g) {
min(min(dist_p_to_seg(p.a,q),dist_p_to_seg(p.b
,q)),min(dist_p_to_seg(q.a,p),dist_p_to_seg(q.
b,p)));
1
//求矢量线段夹角的余弦
double cosine (line u, line v) {
    point pu=u.b-u.a,pv=v.b-v.a;
     return
dmult(pu,pv)/sqrt(dmult(pu,pu)*dmult(pv,pv));
//求矢量的夹角的余弦
double cosine (point a, point b) {
     return
dmult(a,b)/sqrt(dmult(a,a)*dmult(b,b));
//求线段夹角
double lsangle(line u, line v) {
    point o(0,0),a=u.b-u.a,b=v.b-v.a;
return angle(o,a,b);
//求直线斜率
double slope(line2 1) {
     if(abs(1.a) < 1e-20)
         return 0;
     if(abs(1.b) < 1e-20)
         return inf;
     return - (1.a/1.b);
//直线倾斜角[0,Pi]
       alpha(line2 l) {
double
     if(abs(1.a) < eps)
         return 0;
    if(abs(1.b) < eps)
    return Pi/2;
double k=slope(1);
if(k>0)
     return atan(k);
else
         return Pi+atan(k);
//点关于直线的对称点
point symmetry(line2 l,point p){
   point tp;
tp.x = ((1.b*1.b-1.a*1.a)*p.x-2*1.a*1.b*p.y-2*1.
a*1.c)/(1.a*1.a+1.b*1.b);
tp.y=((1.a*1.a-1.b*1.b)*p.y-2*1.a*1.b*p.x-2*1.
b*1.c)/(1.a*1.a+1.b*1.b);
   return tp;
//判多边形是否逆时针
bool is unclock (polygon pg) {
     int n=pq.n;
     pg.p[n]=pg.p[0];
     double area=0;
for(int i=0; i<n; i++)</pre>
area += xmult(pg.p[i].x,pg.p[i].y,pg.p[i+1].x,pg
.p[i+1].y);
    return area>-eps;
//改变多边形时针顺序
void to_unclock(polygon &pg) {
   for(int i=0,j=pg.n-1; i<j; i++,j--)</pre>
         swap(pg.p[i],pg.p[j]);
//判定凸多边形,顶点按顺时针或逆时针给出,允许相邻边共线
int is_convex(point p[],int n) {
     int i,s[3] = \{1,1,1\};
     for (i=0; i<n&&s[1]|s[2]; i++)</pre>
```

```
s[(sign(xmult(p[(i+1)%n],p[(i+2)%n],p[i]))+3)%
3] = 0;
     return s[1]|s[2];
//判定凸多边形, 顶占按顺时针或逆时针给出, 不允许相邻边共
int is_convex_v2(point p[],int n) {
   int i,s[3] = {1,1,1};
     for (i=0; i<n&&s[0]&&s[1]|s[2]; i++)
s[(sign(xmult(p[(i+1)%n],p[(i+2)%n],p[i]))+3)%
     return s[0]&&s[1]|s[2];
//判点在凸多边形内或多边形边上,顶点按顺时针或逆时针给出
int inside_convex(point q,point p[],int n) {
     int i,s[3] = \{1,1,1\};
     for (i=0; i<n&&s[1]|s[2]; i++)
s[(sign(xmult(p[(i+1)%n],q,p[i]))+3)%3]=0;
     return s[1]|s[2];
//判点在凸多边形内,顶点按顺时针或逆时针给出,在多边形边
上返回 0
int inside_convex2(point q,point p[],int n) {
     int i,s[3] = \{1,1,1\}
     for (i=0; i<n&&s[0]&&s[1]|s[2]; i++)
s[(sign(xmult(p[(i+1)%n],q,p[i]))+3)%3]=0;
     return s[0]&&s[1]|s[2];
//判点在线段上
inline int p_on_seg(point a,point p1,point p2)
if (fabs (xmult(a,p1,p2)) <= eps & (a.x-p1.x) * (a.x-
p2.x) <eps&&(a.y-p1.y)*(a.y-p2.y) <eps)
     return 0;
//判点在线段端点左方
inline int p_on_segvex(point s,point p) {
     return fabs(p.y-s.y) <eps&&(p.x<=s.x+eps);</pre>
//判线段相交 <=:不规范相交
inline int seg_inter(line s,line p) {
     double
minx1=min(s.a.x,s.b.x), maxx1=max(s.a.x,s.b.x);
minx2=min(p.a.x,p.b.x), maxx2=max(p.a.x,p.b.x);
     doub 1
miny1=min(s.a.v,s.b.v), maxy1=max(s.a.v,s.b.v);
miny2=min(p.a.y,p.b.y), maxy2=max(p.a.y,p.b.y);
     if((minx1>maxx2+eps)|| (minx2>maxx1+eps)||
(miny1>maxy2+eps) || (miny2>maxy1+eps))
          return 0;
          return
sign\left(xmult\left(s.a,s.b,p.a\right)\star xmult\left(s.a,s.b,p.b\right)\right) <= 0
sign(xmult(p.a,p.b,s.a)*xmult(p.a,p.b,s.b)) <= 0
//判点在多边形内部
inline int p_in_polygon(point a,point p[],int n)
     int count = 0;
     line s,ps;
     ps.a = a, ps.b = a;
     ps.b.x = inf;
for(int i = 0; i < n; i++) {
    s.a = p[i];
}</pre>
          if(i + 1 < n)s.b = p[i+1];
          else s.b = p[0];
          if (s.a.y > s.b.y) swap(s.a,s.b);
          if (p_on_seg(a,s.a,s.b)) return 2;
          if ((fabs(s.a.y-s.b.y)>eps)) {
               if (p_on_segvex(s.b,a)) count++;
else if (seg_inter(ps,s)) count++;
```

```
else if (p_on_seg(l1,p[i],p[(i+1)%n]))
          }
                                                                        t[k++]=11;
                                                                   else if (p_on_seg(12,p[i],p[(i+1)%n]))
    t[k++]=12;
     if (count%2) return 1;
     return 0:
                                                                   else if (p on seg(p[i], 11,12))
                                                                       t[k++]=p[i];
//多边形内部最长线段
                                                              for (i=0; i<k; i++)
    for (j=i+1; j<k; j++) {</pre>
point stk[MAXN];
double seg_max_len(line u,polygon &pg) {
          double ans=0.0,tmp=inf;
                                                                        tt.x=(t[i].x+t[j].x)/2;
                                                                        tt.y=(t[i].y+t[j].y)/2;
     pg.p[pg.n]=pg.p[0];
                                                                        if (!p in polygon(tt,p,n))
     int n=pg.n,top=0;
for(int i=0;i<n;i++){</pre>
                                                                              return 0;
          line v(pg.p[i],pg.p[i+1]);
                                                              return 1:
s1=sign(xmult(u.a,u.b,v.a)),s2=sign(xmult(u.a,
u.b, v.b));
                                                         //求直线交点,必须存在交点,或者预判断【解析几何方法】
          if(s1*s2<=0&&(s1!=0||s2!=0)){
                                                        point line_intersection(line u,line v) {
                                                              double al=u.b.y-u.a.y,bl=u.a.x-u.b.x;
                                                              double c1=u.b.y*(-b1)-u.b.x*a1;
stk[top++]=line intersection(u,v);
                                                              double a2=v.b.y-v.a.y,b2=v.a.x-v.b.x;
          }
                                                              double c2=v.b.y*(-b2)-v.b.x*a2;
                                                              double D=xmult(a1,b1,a2,b2);
     stk[top++]=u.a;
                                                              return
     stk[top++]=u.b;
                                                         point (xmult(b1,c1,b2,c2)/D,xmult(c1,a1,c2,a2)/
     sort (stk, stk+top);
                                                         D) ;
     top=unique(stk,stk+top)-stk;
                                                         }
     point mp,lp=stk[0];
                                                         //求线段交点,必须存在交点,或者预判断【平面几何方法】
     for(int i=1;i<top;i++) {</pre>
                                                        point line_intersection2(line u, line v) {
    point ret=u.a;
          mp=(lp+stk[i])*0.5;
          if(!p_in_polygon(mp,pg))lp=stk[i];
                                                              double
          ans=max(ans,dist2(lp,stk[i]));
                                                         t=xmult (u.a-v.a.v.b-v.a) /xmult (u.b-u.a.v.b-v.a
     return sqrt(ans);
                                                        );
                                                              t=fabs(t);
                                                              ret.x+=(u.b.x-u.a.x)*t;
double maxlenth(polygon &pg){
     double ans=0.0;
for(int i=0;i<pg.n-1;i++){</pre>
                                                              ret.y+= (u.b.y-u.a.y)*t;
                                                              return ret;
          for (int j=i+1; j<pg.n; j++) {</pre>
                                                         //三角形重心
                                                         point barycenter (point a, point b, point c) {
ans=max(ans, seg_max_len(line(pg.p[i],pg.p[j]),
                                                              return (a+b+c)/3.0;
                                                         //多边形重心
ans=max(ans, seg_max_len(line(pg.p[j],pg.p[i]),
                                                        point barycenter(point p[],int n) {
                                                              point ret,t;
double t1=0,t2;
pg));
          }
                                                              int i;
     return ans;
                                                              ret.x=ret.y=0;
                                                              for (i=1; i<n-1; i++)</pre>
//凸包对踵点长度
                                                                   if
double opposite_lenth(polygon &pg){
                                                         (fabs(t2=xmult(p[i+1],p[0],p[i]))>eps)
     double ans=inf;
                                                                        t=barycenter(p[0],p[i],p[i+1]);
     int a,b,c;
                                                                        ret.x+=t.x*t2;
                                                                        ret.y+=t.y*t2;
     pg.p[pg.n]=pg.p[0];
     for(a=0,b=1,c=2;a<pg.n;a++,b++){</pre>
                                                                        t1+=t2:
                                                              if (fabs(t1)>eps)
while (getarea(pg.p[a],pg.p[b],pg.p[c]) <getarea</pre>
                                                                   ret.x/=t1, ret.y/=t1;
(pg.p[a],pg.p[b],pg.p[(c+1)%pg.n])) c= (c+1)%pg.
                                                              return ret;
                                                         //求多边形面积
ans=min(ans,dist_p_to_line(pg.p[c],line(pg.p[a
                                                         inline double getarea(point pg[],int n) {
    double area=0;
],pg.p[b])));
                                                              pg[n]=pg[0];
     return ans;
                                                              for(int i=0; i<n; i++)</pre>
//判 p1,p2 是否在11,12两侧
                                                         area+=xmult(pg[i].x,pg[i].y,pg[i+1].x,pg[i+1].
inline int opposite_side(point p1, point p2, point
11,point 12) {
                                                              return fabs(area)/2.0;
     return
xmult(11,12,p1)*xmult(11,12,p2)<-eps;</pre>
                                                         //解方程 ax^2+bx+c=0
                                                         int equaltion(double a, double b, double c, double
//判线段在任意多边形内, 顶点按顺时针或逆时针给出,与边界
                                                         &x1,double &x2) {
相交返回1
                                                              double der=b*b-4*a*c;
int seg_in_polygon(point 11,point 12,point
                                                              switch(sign(der)) {
     int n) {
point t[MAXN],tt;
p[],int
                                                              case -1:
                                                                  return 0;
      int i,j,k=0;
                                                              case 0:
                                                                   x1=-b/(2*a);
(!p_in_polygon(11,p,n)||!p_in_polygon(12,p,n))
                                                                   return 1;
//不在内部
                                                                    1:
          return 0;
                                                                   der=sqrt (der);
     for (i=0; i<n; i++)</pre>
                                                                   x1=(-b-der)/(2*a);
          if
                                                                   x2=(-b+der)/(2*a);
(opposite_side(11,12,p[i],p[(i+1)%n])&&opposit
e_side(p[i],p[(i+1)%n],11,12))
                                                                   return 2:
               return 0;
```

```
//线段与圆交点
int line circle intersection(line u,circle
c,point &p1,point &p2) {
     double dis=lenth(u.b-u.a);
     point d=(u.b-u.a)/dis;
     point E=c.o-u.a;
     double a=dmult(E,d);
     double a2=a*a;
     double e2=dmult(E,E);
     double r2=c.r*c.r;
if((r2-e2+a2)<0){</pre>
          return 0:
     } else {
          double f=sqrt(r2 - e2 + a2);
           double t=a-f;
          int cnt=0:
          if(t>-eps&&t-dis<eps) {//去掉后面变成射线
               pl=u.a+(d*t);
                cnt++;
           t=a+f;
           if(t>-eps&&t-dis<eps) {</pre>
               p2=u.a+(d*t);
                cnt++;
          return cnt;
//给出在任意多边形内部的一个点
point a_point_in_polygon(polygon pg) {
     point v,a,b,r;
      int i,index;
     v=pg.p[0];
     index=0;
for(i=1; i<pg.n; i++)</pre>
          if(pg.p[i].y<v.y) {</pre>
                v=pg.p[i];
                index=i;
     }
     a=pg.p[(index-1+pg.n)%pg.n];
     b=pg.p[(index+1)%pg.n];
     point q;
     polygon tri;
     tri.n=3;
     tri.p[0]=a;
     tri.p[1]=v;
     tri.p[2]=b;
     double md=inf;
     int in1=index;
     bool bin=false;
     for(i=0; i<pg.n; i++) {
    if(i == index)continue;
    if(i == (index-1+pg.n) %pg.n)continue;</pre>
          if(i == (index+1)%pg.n)continue;
if (!inside_convex2(pg.p[i],tri.p,3))continue;
          bin=true:
          if(dist(v,pg.p[i]) < md) {</pre>
                q=pg.p[i];
                md=dist(v,q);
           }
     if(!bin) {
          r.x=(a.x+b.x)/2;
          r.y=(a.y+b.y)/2;
          return
     r.x=(v.x+q.x)/2;
     r.y=(v.y+q.y)/2;
     return r;
//求在多边形外面的点到凸包的切点
void p cut polygon (point p,polygon pg,point
&rp,point &lp) {
     line ep,en;
     bool blp,bln;
     rp=pg.p[0];
     lp=pg.p[0];
for(int i=1; i<pg.n; i++) {</pre>
          ep.a=pg.p[(i+pg.n-1)%pg.n];
           ep.b=pg.p[i];
          en.a=pg.p[i];
          en.b=pg.p[(i+1)%pg.n];
blp=xmult(ep.b-ep.a,p-ep.a)>=0;
```

```
bln=xmult(en.b-en.a,p-en.a)>=0;
          if(!blp&&bln) {
                if(xmult(pg.p[i]-p,rp-p)>0)
                     rp=pq.p[i];
           if(blp&&!bln)
                if(xmult(lp-p,pg.p[i]-p)>0)
                     lp=pg.p[i];
     return :
//判断点p在圆c内
bool p_in_circle(point p,circle c) {
     return c.r*c.r>dist2(p,c.o);
//求矩形第4个点
point rect4th(point a,point b,point c) {
     point d;
if(abs(dmult(a-c,b-c))<eps) {</pre>
          d=a+b-c;
     if(abs(dmult(a-b,c-b))<eps) {</pre>
          d=a+c-b;
     if(abs(dmult(c-a,b-a))<eps) {</pre>
          d=c+b-a;
     return d;
//判两圆关系
int CircleRelation(circle c1, circle c2){
     double d=lenth(c1.o-c2.o);
     if(fabs(d-c1.r-c2.r) < eps)
          return 2;//外切
     if( fabs(d-fabs(c1.r-c2.r)) < eps )
          return 4;//内切
     if( d > c1.r+c2.r )
          return 1;//相离
     if( d < fabs(c1.r-c2.r) )</pre>
          return 5;//内含
     if( fabs(c1.r-c2.r) < d && d < c1.r+c2.r)
     return 3;//相交return 0; //error!
//判圆与矩形关系,矩形水平
bool Circle_In_Rec(circle c,rectangle r) {
if( r.a.x < c.o.x && c.o.x < r.b.x && r.c.y
< c.o.y && c.o.y < r.b.y ) {</pre>
          line line1(r.a, r.b);
line line2(r.b, r.c);
          line line3(r.c, r.d);
          line line4(r.d, r.a);
if(c.r<dist_p_to_line(c.o,line1)&&c.r<dist_p_t</pre>
o_line(c.o,line2)&&c.r<dist_p_to_line(c.o,line
3)&&c.r<dist_p_to_line(c.o,line4))</pre>
                return true;
     return false;
//射线关于平面的反射
void reflect(line2 u,line2 v,line2 &1){
     double n,m;
     double tpb,tpa;
     tpb=u.b*v.b+u.a*v.a;
     tpa=v.a*u.b-u.a*v.b;
     m=(tpb*u.b+tpa*u.a)/(u.b*u.b+u.a*u.a);
     n=(tpa*u.b-tpb*u.a)/(u.b*u.b+u.a*u.a);
     if(fabs(u.a*v.b-v.a*u.b)<1e-20) {
          1.a=v.a;
          1.b=v.b;
          return;
     double xx,yy; //(xx,yy)是入射线与镜面的交点。
xx=(u.b*v.c-v.b*u.c)/(u.a*v.b-v.a*u.b);
     yy=(v.a*u.c-u.a*v.c)/(u.a*v.b-v.a*u.b);
     1.a=n;
     1.b=-m;
     1.c=m*yy-xx*n;
//两圆交点(预判断不相交情况)
   d c2point(circle c1,circle c2,point
&rp1,point &rp2) {
```

```
double a,b,r;
                                                             return point3(x-ne.x,y-ne.y,z-ne.z);
     a=c2.o.x-c1.o.x;
                                                        point3 operator+(const point3 &ne){
     b=c2.o.y-c1.o.y;
     r=(a*a+b*b+c1.r*c1.r-c2.r*c2.r)/2;
                                                             return point3(x+ne.x,y+ne.y,z+ne.z);
     if(a==0&&b!=0) {
         rp1.y=rp2.y=r/b;
                                                        point3 operator*(const double t) {
         rp1.x=sqrt(c1.r*c1.r-rp1.y*rp1.y);
                                                             return point3(x*t,y*t,z*t);
         rp2.x = -rp1.x;
     } else if(a!=0&&b==0) {
                                                   1:
         rp1.x=rp2.x=r/a;
                                                    struct line3{
         rp1.y=sqrt(c1.r*c1.r-rp1.x*rp2.x);
                                                        point3 a,b;
          rp2.y=-rp1.y;
                                                         line3(){}
     } else if(a!=0&&b!=0) {
                                                        line3(point3 _a,point3 _b) {
         double delta:
                                                             a= a;
                                                             b=_b;
delta=b*b*r*r-(a*a+b*b)*(r*r-c1.r*c1.r*a*a);
         rp1.y=(b*r+sqrt(delta))/(a*a+b*b);
                                                   struct plane3{
         rp2.y=(b*r-sqrt(delta))/(a*a+b*b);
                                                        point3 a,b,c;
         rp1.x=(r-b*rp1.y)/a;
                                                        plane3(){}
         rp2.x = (r-b*rp2.y)/a;
                                                        plane3(point3 _a,point3 _b,point3 _c){
                                                             a=_a;
b= b;
     rp1=rp1+c1.o;
     rp2=rp2+c1.o;
                                                             c=_c;
                                                        }
//圆外一点引圆的切线
void cutpoint (circle c,point sp,point &rp1,point
                                                   point3 xmult(point3 a,point3 b){
&rp2) {
                                                        return
     circle c2;
                                                    point3(a.y*b.z-a.z*b.y,a.z*b.x-a.x*b.z,a.x*b.y
     c2.o=(c.o+sp)/2.0;
                                                    -a.y*b.x);
     c2.r=lenth(c2.o-sp);
     c2point (c,c2,rp1,rp2);
                                                    double dmult(point3 a,point3 b) {
                                                        return a.x*b.x+a.y*b.y+a.z*b.z;
//圆 c1 上, 与 c2 的外切点
void c2cuto(circle c1, circle c2, point &p1,
                                                    double lenth(point3 v){
point &p2) {
                                                        return sqrt(v.x*v.x+v.y*v.y+v.z*v.z);
    double d = dist(c1.0, c2.0), dr = c1.r -
c2.r:
                                                    double dist(point3 a,point3 b) {
    double b = acos(dr / d);
                                                        return lenth(a-b);
     double a = angle(c2.o-c1.o);
double a1 = a - b, a2 = a + b;
                                                    double dist2(point3 a,point3 b){
    pl=point(cos(a1) * c1.r, sin(a1) * c1.r) +
                                                        return dmult(a-b,a-b);
    p2=point(cos(a2) * c1.r, sin(a2) * c1.r) +
                                                    //平面法向量
c1.o;
                                                    point3 pvec(plane3 s){
                                                        return xmult(s.b-s.a,s.c-s.a);
//圆 c1 上,与 c2 的内切点
void c2cuti(circle c1, circle c2, point &p1, point
                                                    //判定点是否在线段上,包括端点和共线
&p2) {
                                                    bool point_on_seg(point3 p,line3 s){
     point dr=c2.o-c1.o;
                                                        return
     dr=dr/lenth(dr);
                                                    sign(lenth(xmult(p-s.a,s.b-s.a))) == 0&& (p.x-s.a
     point a=c1.o-(dr*c1.r),b=c1.o+(dr*c1.r);
                                                    .x)*(p.x-s.b.x)<eps&&(p.y-s.a.y)*(p.y-s.b.y)<e
     point c=c2.o-(dr*c2.r), d=c2.o+(dr*c2.r);
                                                    ps&&(p.z-s.a.z)*(p.z-s.b.y)<eps;
     circle
E((a+c)/2.0, lenth(c-a)/2.0), F((b+d)/2.0, lenth(
                                                    //判断点在平面上
                                                    bool point_on_plane(point3 p,plane3 s){
     point q1,q2;
                                                        return sign(dmult(p-s.a,pvec(s))) == 0;
     c2point (E,F,q1,q2);
     point.
                                                    //判定点是否在空间三角形上,包括边界,三点共线无意义
L=line_intersection2(line(c1.o,c2.o),line(q1,q
                                                    bool point_in_triangle( point3 p, plane3 s ) {
2));
                                                        return
     circle c3((c1.o+L)/2.0,lenth(L-c1.o)/2.0);
                                                    sign(lenth(xmult(s.a-s.b,s.a-s.c))-lenth(xmult
     c2point(c1,c3,p1,p2);
                                                    (p-s.a,p-s.b))-lenth (xmult(p-s.b,p-s.c))-lenth
                                                    (xmult(p-s.c,p-s.a)))!=0;
                                                    //判定点是否在空间三角形上,不包括边界,三点共线无意义
int point_in_triangle2( point3 p, plane3 s ) {
               三维计算几何库
                                                        return
                                                    point in triangle (p,s) &&lenth(xmult(p-s.a,p-s.
/**************
                                                    b))>eps&&lenth(xmult(p-s.b,p-s.c))>eps&&lenth(
#include<cstdlib>
                                                    xmult(p-s.c,p-s.a)) > eps;
#include<cmath>
#include<cstdio>
                                                    //判定两点在线段同侧,点在线段上返回 0,不共面无意义
#include<algorithm>
                                                    bool same_side( point3 p1, point3 p2, line3 l )
#define max(a,b) (((a)>(b))?(a):(b))
#define min(a,b) (((a)>(b))?(b):(a))
                                                        return
\#define sign(x) ((x)>eps?1:((x)<-eps?(-1):(0)))
                                                   dmult(xmult(1.a-1.b,p1-1.b),xmult(1.a-1.b,p2-1
using namespace std;
                                                    .b))>eps;
const int MAXN=1000;
const double eps=1e-8,inf=1e50;
                                                    //判定两点在线段异侧,点在平面上返回 0
struct point3{
                                                    bool opposite side( point3 p1, point3 p2, line3
     double x,y,z;
     point3(){}
                                                        return
     point3(double _x,double _y,double _z){
                                                   dmult(xmult(1.a-1.b,p1-1.b),xmult(1.a-1.b,p2-1
         x= x; y= y; z= z;
                                                    .b)) <-eps;
     point3 operator-(const point3 &ne) {
```

```
//判定两点在平面同侧,点在平面上返回 0
bool same side( point3 p1, point3 p2, plane3 s)
dmult (pvec(s),p1-s.a) *dmult (pvec(s),p2-s.a) >ep
s;
1
//判定两点在平面异侧,点在平面上返回 0
bool opposite_side( point3 p1, point3 p2, plane3
dmult (pvec (s), p1-s.a)*dmult (pvec (s), p2-s.a) <-e
ps;
1
//判断直线平行
bool parallel(line3 u,line3 v){
     return
sign(lenth(xmult(u.b-u.a,v.b-v.a))) == 0;
//判定两线段相交,不包括端点和部分重合
bool seg\_seg\_inter( line3 u, line3 v ) {
    return
point_on_plane(u.a,plane3(u.b,v.a,v.b))&&oppos
ite_side(u.a,u.b,v) & copposite_side(v.a,v.b,u);
//判定线段与空间三角形相交,包括交于边界和(部分)包含
int seg_triangle_inter( line3 l, plane3 s ) {
return !same_side(1.a,1.b,s)&&!same_side(s.a,s
.b,plane3(1.a,1.b,s.c))&&!same_side(s.b,s.c,pl
ane3(1.a,1.b,s.a))&&!same_side(s.c,s.a,plane3(
1.a,1.b,s.b));
//判定线段与空间三角形相交,不包括交于边界和(部分)包含
int seg_triangle_inter2( line3 l, plane3 s ){
     return opposite_side( l.a, l.b, s ) &&
opposite_side( s.a, s.b, plane3(1.a, 1.b, s.c) ) && opposite_side( s.b, s.c, plane3(1.a, 1.b, s.a) ) && opposite_side( s.c, s.a,plane3(1.a,
1.b, s.b) );
//面面平行
bool parallel(plane3 s1,plane3 s2){
sign(lenth(xmult(pvec(s1),pvec(s2)))) == 0;
//判断直线垂直
bool vertical (line3 u, line3 v) {
     return sign(dmult(u.b-u.a,v.b-v.a)) == 0;
//面面垂直
bool vertical(plane3 s1,plane3 s2){
     return sign(dmult(pvec(s1),pvec(s2))) ==0;
//判断两直线的位置关系
int line_to_line(line3 u,line3 v){
     plane3 s1(u.a,u.b,v.a),s2(u.a,u.b,v.b);
     if(sign(lenth(xmult(pvec(s1),pvec(s2)))))
         return -1;//异面
     else if(parallel(u,v))
         return 0;//平行
     else
         return 1;//相交
//直线与平面关系
int line_to_plane(line3 u,plane3 s){
     if(sign(dmult(pvec(s), u.b-u.a)) ==0){
          if(point_on_plane(u.a,s))
              return -1;//直线在平面上
              return 0;//直线平行于平面
     else
         return 1;//线面相交
//线面求交
point3 line_plane_intersection(line3 u,plane3
s) {
     point3 ret=pvec(s),der=u.b-u.a;
     double
t=dmult(ret,s.a-u.a)/dmult(ret,u.b-u.a);
     return u.a+der*t;
//线线求交
```

```
point3 line interseciton(line3 u,line3 v){
    point3
ret=u.a.v1=xmult(u.a-v.a.v.b-v.a).v2=xmult(u.b.v.a.v.b-v.a)
-u.a,v.b-v.a);
t=lenth(v1)/lenth(v2)*(dmult(v1,v2)>0?-1:1);
     return ret+((u.b-u.a)*t);
//面面求交
line3 plane_intersection(plane3 u,plane3 v) {
    line3 ret;
ret.a=(line_to_plane(line3(v.a,v.b),u)==0)?lin
e plane intersection (line3(v.b,v.c),u):line pl
ane intersection(line3(v.a,v.b),u);
ret.b=(line_to_plane(line3(v.c,v.a),u)==0)?lin
e_plane_intersection(line3(v.b,v.c),u):line_pl
ane_intersection(line3(v.a,v.c),u);
     return ret;
//点线距离
double dist_point_to_line(point3 p,line3 u){
     return
lenth(xmult(p-u.a,u.b-u.a))/dist(u.a,u.b);
//点面距离
double dist_point_to_plane(point3 p,plane3 s){
    point3 pv=pvec(s);
     return fabs(dmult(pv,p-s.a))/lenth(pv);
//线线距离
double dist_line_to_line(line3 u,line3 v ) {
    point3 p=xmult(u.a-u.b,v.a-v.b);
return fabs(dmult(u.a-v.a,p))/lenth(p);
//点线垂足
point3 vertical_foot(point3 p,line3 u){
    double
t=dmult(p-u.a,u.b-u.a)/dist2(u.a,u.b);
     point3 ret=u.a;
     return ret+((u.b-u.a)*t);
//已知四面体六边求体积
double volume (double a, double b, double c, double
d, double e, double f) {
    double
a2=a*a,b2=b*b,c2=c*c,d2=d*d,e2=e*e,f2=f*f;
    double tr1=acos((c2+b2-f2)/(2.0*b*c));
     double tr2=acos((a2+c2-e2)/(2.0*a*c));
     double tr3=acos((a2+b2-d2)/(2.0*a*b));
     double tr4=(tr1+tr2+tr3)/2.0;
     doub le
temp=sqrt(sin(tr4)*sin(tr4-tr1)*sin(tr4-tr2)*s
in(tr4-tr3));
    return a*b*c*temp/3.0;
//四面体体积
double volume (point 3 a, point 3 b, point 3 c, point 3
     //abc. 面方向与 d 一致时为正
     return
fabs (dmult(xmult(b-a,c-a),d-a))/6.0;
/*************
                    三角形
//外心
point circumcenter(point a,point b,point c){
    line u.v:
     u.a=(a+b)*0.5;
    u.b.x=u.a.x-a.y+b.y;
     u.b.y=u.a.y+a.x-b.x;
     v.a=(a+c)*0.5;
    v.b.x=v.a.x-a.y+c.y;
     v.b.y=v.a.y+a.x-c.x;
    return line_intersection(u,v);
//内心
point incenter(point a,point b,point c) {
    line u,v;
     double m,n;
    u.a=a;
     m=atan2 (b.y-a.y,b.x-a.x);
```

```
n=atan2 (c.y-a.y,c.x-a.x);
     u.b.x=u.a.x+cos((m+n)*0.5);
u.b.y=u.a.y+sin((m+n)*0.5);
                                                        //坐标序方法
                                                        polygon convex_hull2(point p[],int n) {
     v.a=b:
                                                             polygon pg;
     m=atan2 (a.y-b.y,a.x-b.x);
                                                             int i,j,top;
     n=atan2 (c.y-b.y,c.x-b.x);
                                                             sort (p,p+n,comp_cod);
for(i=top=0; i<n; i++) {</pre>
     v.b.x=v.a.x+cos((m+n)*0.5);
     v.b.y=v.a.y+sin((m+n)*0.5);
     return line intersection(u,v);
                                                        while (top>1&&xmult(pg.p[top-2],pg.p[top-1],p[i
}
                                                        ]) <eps)
//垂心
                                                                       top--;
point perpencenter (point a point b point c) {
                                                                  pg.p[top++]=p[i];
     line u,v;
     u.a=c;
                                                             i=top;
     u.b.x=u.a.x-a.y+b.y;
                                                             for(i=n-2; i>=0; i--) {
     u.b.y=u.a.y+a.x-b.x;
     v.a=b;
                                                        while(top>j&&xmult(pg.p[top-2],pg.p[top-1],p[i
     v.b.x=v.a.x-a.y+c.y;
                                                        ]) <eps)
     v.b.y=v.a.y+a.x-c.x;
                                                                       top--;
     return line intersection(u,v);
}
                                                                  pg.p[top++]=p[i];
//重心
                                                             pg.n=top-1;
//到三角形三顶点距离的平方和最小的点
//三角形内到三边距离之积最大的点
point barycenter(point a,point b,point c) {
    return (a+b+c)/3.0;
                                                        /******************************/
                                                                       两凸包的最短距离
//费马点
                                                        //到三角形三顶点距离之和最小的点
                                                        inline double rotate_caliper (polygon &pp,polygon
point fermentpoint (point a, point b, point c) {
                                                        &aa) {
     point u,v;
                                                             int i,pn=pp.n,qn=qq.n,p,q;
     double
                                                             double tmp,ans=inf;
for(p=0,i=1; i<pn; i++)</pre>
step=fabs(a.x)+fabs(a.y)+fabs(b.x)+fabs(b.y)+f
abs(c.x)+fabs(c.y);
     int i,j,k;
     u=barycenter(a,b,c);
                                                        if (pp.p[i].y<pp.p[p].y-eps|| (sign(pp.p[i].y-pp</pre>
                                                        .p[p].y)==0&&pp.p[i].x<pp.p[p].x)) p=i;
for(q=0,i=1; i<qn; i++)
     while (step>1e-10)
          for (k=0; k<10; step/=2, k++)</pre>
               for (i=-1;i<=1;i++)
                    for (j=-1; j<=1; j++) {</pre>
                                                        if (qq.p[i].y>qq.p[q].y+eps|| (sign(qq.p[i].y-qq
                         v.x=u.x+step*i;
                                                        p[q].y = 0 (x. [p]q.pq.p[i]q.pp330==(y. [p]q.
                         v.y=u.y+step*j;
                                                             pp.p[pp.n]=pp.p[0];
                          if
                                                             qq.p[qq.n]=qq.p[0];
for(i=0; i<pn; i++) {</pre>
(dist(u,a)+dist(u,b)+dist(u,c)>dist(v,a)+dist(
v,b) +dist(v,c))
                                                        while ((tmp=xmult(qq.p[q+1],pp.p[p],pp.p[p+1]) -
                                                        xmult(qq.p[q],pp.p[p],pp.p[p+1])) <-eps)
     return u;
                                                                       q=(q+1) %qn;
                                                                  if(tmp>eps)
/**********************************/
                      凸包
                                                        ans=min(ans,dist_p_to_seg(qq.p[q],line(pp.p[p]
/********************************/
                                                        ,pp.p[p+1])));
bool comp_angle(const point a,const point b) {
                                                                  else
          tmp=sign(xmult(o,a,b));
     if(tmp>0) | (tmp==0 && dist2(o,a) < dist2(o,b)))
                                                        ans=min(ans,dist_seg_to_seg(line(pp.p[p],pp.p[
          return true;
                                                        p+1]),line(qq.p[q],qq.p[q+1])));
     else
                                                                  p=(p+1)%pn;
          return false;
                                                             return ans;
//极角序方法
polygon convex_hull(point p[],int n) {
                                                        int main() {
     polygon pg;
                                                              int pn,qn;
     int i,u=0,top;
                                                             while(scanf("%d%d",&pn,&qn)!=EOF&&pn&&qn)
     for(i=1; i<n; i++)</pre>
                                                                  polygon pp,qq;
                                                                  pp.n=pn;
if (sign(p[i].y-p[u].y) <0 | | (sign(p[i].y-p[u].y)</pre>
                                                                  qq.n=qn;
==0&&p[i].x<p[u].x))
                                                                  for (int i=0; i<pn; i++)</pre>
               u=i:
     swap (p[0],p[u]);
     o=p[0];
sort(p+1,p+n,comp_angle);
for(i=top=0; i<n; i++) {</pre>
                                                        scanf("%lf%lf",&pp.p[i].x,&pp.p[i].y);
                                                                  for (int i=0; i<qn; i++)</pre>
                                                        scanf("%lf%lf",&qq.p[i].x,&qq.p[i].y);
while(top>1&&xmult(pg.p[top-2],pg.p[top-1],p[i
                                                                  if(!is unclock(pp))
]) <eps)
                                                                       to unclock (pp);
                                                                  if(!is_unclock(qq))
          pg.p[top++]=p[i];
                                                                       to unclock (qq);
     pg.n=top;
                                                        printf("%.51f\n",min(rotate_caliper(pp,qq),rot
     return pg;
                                                        ate caliper(qq,pp)));
bool comp_cod(const point a,const point b) {
                                                             return 0;
     return
a. x < b.x | | ((sign(a.x-b.x) == 0) && a. y < b.y);
```

```
/*************
                                                                        ans=mid;
                  凸包的直径
                                                                        11=mid;
/******************************/
                                                                   } else
polygon pg;
point p[N];
                                                              printf("%.61f\n",ans);
int n;
inline int rotate_caliper() {
                                                         return 0:
     int ans=0;
     int i,j,n=pg.n;
                                                    /*************
     pg.p[n]=pg.p[0];
     for(i=0,j=1; i<n; i++) {</pre>
                                                                       三维凸包
                                                    /***********************************/
while (xmult(pg.p[i],pg.p[i+1],pg.p[j]) < xmult(p</pre>
                                                    #include<cstdio>
g.p[i],pg.p[i+1],pg.p[j+1]))
                                                    #include<cstring>
              j = (j + 1) %n;
                                                    #include<cmath>
                                                    #include<algorithm>
ans=max(ans,powerdist(pg.p[i],pg.p[j]));
                                                    using namespace std;
                                                     #define PR 1e-8
     return ans;
                                                    #define N 510
                                                    struct TPoint
int main() {
                                                    {
     while(scanf("%d",&n)!=EOF) {
                                                        double x,y,z;
         for (int i=0; i<n; i++)
     scanf ("%d%d",&p[i].x,&p[i].y);</pre>
                                                        TPoint(){}
                                                    TPoint(double _x, double _y, double _z):x(_x),y(_y),z(_z){}
         pg=convex_hull2(p,n);
         printf("%d\n",rotate caliper());
                                                       TPoint operator-(const TPoint p) {return
                                                    TPoint(x-p.x,y-p.y,z-p.z);}
    TPoint operator*(const TPoint p) {return
                                                    TPoint(y*p.z-z*p.y,z*p.x-x*p.z,x*p.y-y*p.x);}/
/叉积
                                                       double operator^(const TPoint p) {return
              凸包的最大内切圆
                                                    x*p.x+y*p.y+z*p.z;}//点积
/**************
                                                    };
                                                    struct fac//
void cut(line cur,polygon &pg) { //cur逆时针方
向为可行域
                                                        int a,b,c;//凸包一个面上的三个点的编号
    polygon tp;
                                                       bool ok;//该面是否是最终凸包中的面
     int n=pq.n;
                                                    1;
     pg.p[n]=pg.p[0];
                                                    struct T3dhull
     tp.n=0;
for(int i=0; i<n; i++) {</pre>
                                                    {
         point p=pg.p[i], q=pg.p[i+1];
                                                        int n;//初始点数
                                                        TPoint ply[N];//初始点
pp=xmult(cur.a,cur.b,p),qq=xmult(cur.a,cur.b,q
                                                        int trianglecnt;//凸包上三角形数
);
                                                        fac tri[N];//凸包三角形
         if(pp>-eps)
                                                        int vis[N][N];//点i到点j是属于哪个面
              tp.p[tp.n++]=p;
                                                        double dist (TPoint a) {return
         if(pp*qq<-eps)</pre>
                                                    sqrt(a.x*a.x+a.y*a,y+a.z*a.z);}//两点长度
double area(TPoint a,TPoint b,TPoint
tp.p[tp.n++]=line_intersection(cur,line(p,q));
                                                    c) {return dist((b-a)*(c-a));}//三角形面积*2
                                                       double volume (TPoint a, TPoint b, TPoint
     pg=tp;
                                                    c,TPoint d) {return (b-a)*(c-a)^(d-a);}//四面体有
     return;
                                                    向体积*6
line pushr(point a,point b,double r) {
                                                       double ptoplane(TPoint &p,fac &f)//正: 点在面
     double tx=b.x-a.x,ty=b.y-a.y;
                                                    同向
     double dx=-ty,dy=tx,D=sqrt(dx*dx+dy*dy);
double lx=dx*r/D,ly=dy*r/D;
                                                       {
                                                           TPoint
     return
                                                    m=ply[f.b]-ply[f.a], n=ply[f.c]-ply[f.a], t=p-pl
line (point (a.x+lx,a.y+ly), point (b.x+lx,b.y+ly)
                                                    y[f.a];
);
                                                           return (m*n)^t;
bool max_cir(polygon pg,double r) {
                                                        void deal(int p,int a,int b)
    polygon cg=pg;
     int n=pg.n;
                                                           int f=vis[a][b];
     pg.p[n]=pg.p[0];
                                                           fac add;
     for(int i=0; i<n; i++) {</pre>
                                                           if(tri[f1.ok)
         cut (pushr(pg.p[i],pg.p[i+1],r),cg);
                                                           {
         if(cg.n==0)
                                                              if((ptoplane(ply[p],tri[f]))>PR)
              return false;
                                                    dfs(p,f);
                                                              else
     return true;
                                                            add.a=b,add.b=a,add.c=p,add.ok=1;
int main() {
                                                    vis[p][b]=vis[a][p]=vis[b][a]=trianglecnt;
     int n:
                                                                 tri[trianglecnt++]=add;
     while(scanf("%d",&n)!=EOF&&n) {
         polygon pg,cg;
                                                           }
         pg.n=n;
                                                       1
         for (int i=0; i<n; i++)
                                                        void dfs(int p,int cnt)//维护凸包,如果点p在凸
                                                    包外更新凸包
scanf("%lf%lf",&pg.p[i].x,&pg.p[i].y);
                                                       {
         double ll=0,rr=1e6,mid,ans=0.0;
while(rr-ll>eps) {
                                                           tri[cnt1.ok=0;
                                                           deal(p,tri[cnt].b,tri[cnt].a);
```

if(max cir(pg,mid)) {

deal(p,tri[cnt].c,tri[cnt].b);

mid=(rr+11)/2.0;

```
deal(p,tri[cnt].a,tri[cnt].c);
                                                             for (int i=0;i<trianglecnt;i++)</pre>
                                                      ret+=area(ply[tri[i].a],ply[tri[i].b],ply[tri[
   bool same(int s,int e)//判断两个面是否为同一面
                                                      i].c]);
                                                             return ret/2.0;
      TPoint
a=ply[tri[s].a],b=ply[tri[s].b],c=ply[tri[s].c
                                                         double volume()/体积
                                                         {
fabs(volume(a,b,c,ply[tri[e].a]))<PR</pre>
                                                             TPoint p(0,0,0);
                                                            double ret=0;
for(int i=0;i<trianglecnt;i++)</pre>
&&fabs(volume(a,b,c,ply[tri[e].b])) <PR
&&fabs(volume(a,b,c,ply[tri[e].c])) <PR;
                                                      ret+=volume(p,ply[tri[i].a],ply[tri[i].b],ply[
                                                      tri[i].c]);
                                                            return fabs(ret/6);
   void construct () //构建凸包
      int i,j;
                                                         int facetri() {return trianglecnt;}//表面三角
      trianglecnt=0;
                                                      形数
       if(n<4) return ;</pre>
                                                         int facepolygon()//表面多边形数
      bool tmp=true;
                                                         {
       for(i=1; i<n;i++) //前两点不共点
                                                             int ans=0, i, i, k;
                                                             for (i=0; i<trianglecnt; i++)</pre>
          if ((dist(ply[0]-ply[i]))>PR)
                                                                for(j=0,k=1;j<i;j++)</pre>
             swap(ply[1],ply[i]); tmp=false;
break;
                                                                   if(same(i,j)) {k=0;break;}
      if(tmp) return;
                                                             1
      tmp=true;
                                                             return ans;
       for(i=2;i<n;i++)//前三点不共线
                                                      }hull;
if((dist((ply[0]-ply[1])*(ply[1]-ply[i])))>PR)
                                                      int main()
                                                         while(~scanf("%d",&hull.n))
             swap(ply[2],ply[i]); tmp=false;
break;
                                                             int i;
                                                             for (i=0; i<hull.n;i++)</pre>
       if(tmp) return ;
                                                      scanf ("%lf%lf%lf",&hull.ply[i].x,&hull.ply[i].
      tmp=true;
       for(i=3;i<n;i++)//前四点不共面
                                                      y, &hull.ply[i].z);
                                                            hull.construct();
                                                             printf("%.31f\n",hull.area());
if (fabs ((ply[0]-ply[1])*(ply[1]-ply[2])^(ply[0
                                                         return 0;
]-plv[i]))>PR)
          -{
             swap(ply[3],ply[i]); tmp=false;
break;
                                                      /*******************************/
          1
                                                                         半平面交
      if(tmp) return ;
                                                      /*******************************/
      fac add;
                                                      #include<cstdlib>
      for(i=0;i<4;i++)//构建初始四面体
                                                      #include<cmath>
                                                      struct line{
                                                           point a,b;
add. a=(i+1)%4, add. b=(i+2)%4, add. c=(i+3)%4, add.
                                                           double ang;
ok=1;
                                                           line(){}
          if((ptoplane(ply[i],add))>0)
                                                           line (point _a,point
swap (add.b,add.c);
                                                       b) {a=_a;b=_b;ang=atan2(b.y-a.y,b.x-a.x);}
                                                      }L[MAXN];
vis[add.a][add.b]=vis[add.b][add.c]=vis[add.c]
                                                      bool comp(line u, line v){
[add.a] = trianglecnt;
                                                           return
          tri[trianglecnt++]=add;
                                                      u.ang<v.ang||(sign(u.ang-v.ang)==0&&xmult(u.a,
                                                      u.b,v.a)>eps);
      for(i=4; i<n; i++) // 构建更新凸包
                                                      bool onleft(line& s,point& p) {
          for(j=0;j<trianglecnt;j++)</pre>
                                                        return xmult(s.b-s.a, p-s.a)>eps;
                                                      polygon HalfPlane Intersection(int n) {
if(tri[j].ok&&(ptoplane(ply[i],tri[j]))>PR)
             -{
                                                           sort(L, L+n,comp); // 接极角排序
                 dfs(i,j); break;
                                                           int first, last;
             1
                                                           vector<point> p(n);
                                                                                      // p[i]为q[i]和
          }
                                                      q[i+1]的交点
                                                                                      // 双端队列
                                                           vector<line> q(n);
       int cnt=trianglecnt;
                                                                               // 结果
                                                           polygon ans;
      trianglecnt=0;
                                                           ans.n=0;
      for (i=0; i<cnt;i++)</pre>
                                                           q[first=last=0] = L[0]; // 双端队列初始化为
                                                      只有一个半平面 L[0]
          if (tri[i].ok)
              tri[trianglecnt++]=tri[i];
                                                           for(int i = 1; i < n; i++) {
    while(first < last && !onleft(L[i],</pre>
                                                      p[last-1])) last--;
                                                                while (first < last && !onleft(L[i],
   double area()//表面积
                                                      p[first])) first++;
                                                                q[++last] = L[i];
      double ret=0;
```

```
if(fabs(xmult(q[last].b-q[last].a,
                                                         int i,ret=0;
                                                         for (i=0; i<n;i++)</pre>
q[last-1].b-q[last-1].a)) < eps) { // 两向量平
                                                            ret +=p[(i+1)%n].y*(p[i].x-p[(i+2)%n].x);
行且同向, 取内侧的一个
                                                         return (abs(ret)-grid_onedge(n,p))/2+1;
              last--;
              if(onleft(q[last], L[i].a))
                                                      /********************************/
q[last] = L[i];
                                                                        两圆交面积
         if(first < last) p[last-1] =</pre>
                                                      /******************************/
line intersection(q[last-1], q[last]);
                                                      double area_cir_to_cir(circle a,circle b) {
    double d=dist(a.o,b.o),r1=a.r,r2=b.r,r;
     while(first < last && !onleft(q[first],</pre>
p[last-1])) last--; // 删除无用平面
                                                           if (r1+r2<=d) {
    if(last - first <= 1) return ans; // 空
                                                               return 0.0;
                                                           } else if (fabs(r1-r2)>=d) {
                                                               r=min(r1,r2);
    p[last] =line intersection(g[last],
                                                               return Pi*r*r;
q[first]); // 计算首尾两个半平面的交点
                                                           } else {
    for(int i = first; i <= last; i++)</pre>
                                                               double a1=(r1*r1+d*d-r2*r2)/(2*r1*d);
ans.p[ans.n++]=p[i];
                                                               double a2=(r2*r2+d*d-r1*r1)/(2*r2*d);
    return ans;
                                                               a1=2*acos(a1);
                                                               a2=2*acos(a2);
int main(){
                                                               return
     int n,num;
                                                      (r1*r1*(a1-sin(a1))+r2*r2*(a2-sin(a2)))*0.5;
     while(scanf("%d",&n)!=EOF) {
         num=0;
double sx,sy,ex,ey;
          for (int i=0; i<n; i++) {</pre>
                                                      /*****************************/
                                                                        最小圆覆盖
scanf("%lf%lf%lf%lf",&sx,&sy,&ex,&ey);
                                                      struct triangle {
L[num++]=line(point(sx,sy),point(ex,ey));
                                                           point t[3];
         double big=1e4;
                                                      circle c;
                                                     point p[N];
                                                             triangleArea(triangle t) {
L[num++]=line(point(0,0),point(big,0));
                                                           point p1, p2;
                                                           p1 = t.t[1] - t.t[0];

p2 = t.t[2] - t.t[0];
L[num++]=line(point(big,0),point(big,big));
                                                           return fabs(p1.x * p2.y - p1.y * p2.x)*0.5;
L[num++]=line(point(big,big),point(0,big));
                                                      circle circumcircleOfTriangle(triangle t) {
                                                           circle tmp;
L[num++]=line(point(0,big),point(0,0));
                                                           double a, b, c, c1, c2;
                                                          double xA, yA, xB, yB, xC, yC;
a = dist(t.t[0], t.t[1]);
printf("%.11f\n",getarea(HalfPlane_Intersectio
n(num)));
                                                           b = dist(t.t[1], t.t[2]);
                                                           c = dist(t.t[2], t.t[0]);
                                                           tmp.r = a * b * c / triangleArea(t) / 4;
     return 0;
                                                           tmp.o=circumcenter(t.t[0],t.t[1],t.t[2]);
                                                           return tmp;
/************
                平面最远点对
                                                      circle MinCircle2(int tce, triangle ce) {
/*******************************/
                                                           circle tmp;
                                                           if(tce == 0) tmp.r = -2;
inline double rotate_caliper() {
                                                           else if(tce == 1) {
    tmp.o = ce.t[0];
    double ans=0;
     int i,j,n=pq.n;
                                                               tmp.r = 0;
     pg.p[n]=pg.p[0];
                                                           } else if(tce == 2) {
     for(i=0,j=1; i<n; i++) {</pre>
                                                               tmp.r = dist(ce.t[0], ce.t[1]) / 2;
                                                           tmp.o.x = (ce.t[0].x + ce.t[1].x) / 2;
tmp.o.y = (ce.t[0].y + ce.t[1].y) / 2;
} else if(tce == 3) tmp =
while (xmult(pg.p[i],pg.p[i+1],pg.p[j]) < xmult(p</pre>
g.p[i],pg.p[i+1],pg.p[j+1]))
              j = (j + 1) %n;
                                                      circumcircleOfTriangle(ce);
         ans=max(ans,dist2(pq.p[i],pq.p[j]));
                                                           return tmp;
     return sqrt(ans);
                                                      void MinCircle(int t, int tce, triangle ce) {
                                                          int i, j;
point tmp;
/*************
                                                           c = MinCircle2(tce, ce);
                                                           if(tce == 3) return;
for(i = 1; i <= t; i++) {</pre>
                     网格
                                                               if(dist(p[i], c.o) > c.r) {
    ce.t[tce] = a[i];
    MinCircle(i - 1, tce + 1, ce);
/*******************************/
#define abs(x) ((x) > 0?(x) := (x))
struct point{int x,y;};
                                                                    tmp = p[i];
int gcd(int a,int b) {return b?gcd(b,a%b):a;}
                                                                    for(j = i; j >= 2; j--) {
    a[j] = p[j - 1];
//多边形上的网格点个数
int grid onedge(int n,point* p){
   int i, ret=0;
                                                                    p[1] = tmp;
   for (i=0;i<n;i++)</pre>
ret+=gcd(abs(p[i].x-p[(i+1)%n].x),abs(p[i].y-p
[(i+1)%n].v));
                                                     circle work(int n) {
  return ret;
                                                           triangle ce;
                                                           int i;
//多边形内的网格点个数
                                                           MinCircle(n,0,ce);
int grid inside(int n,point* p){
```

```
case 1 : res=outer[0]; break;
          return c;
                                                                                                                    case 2
                                                                                                        res.x=(outer[0].x+outer[1].x)/2;
/********************************/
                                                                                                                                   res.y=(outer[0].y+outer[1].y)/2;
res.z=(outer[0].z+outer[1].z)/2;
                            单位圆覆盖最多点
                                                                                                                                   radius=dist(res,outer[0]);
/*************
                                                                                                                                   break:
point find_centre(point p1, point p2) {
    point p3, mid, centre;
                                                                                                                    case 3 :
                                                                                                                                   for ( i=0; i<2; ++i ) {
           double b, c, ang;
          p3.x = p2.x - p1.x;

p3.y = p2.y - p1.y;
                                                                                                        q[i].x=outer[i+1].x-outer[0].x;
         mid.x = (p1.x + p2.x) / 2;

mid.y = (p1.y + p2.y) / 2;
                                                                                                        q[i].y=outer[i+1].y-outer[0].y;
          b = dist2(p1, mid);
c = sqrt(1 - b);
                                                                                                        g[i].z=outer[i+1].z-outer[0].z;
         if(fabs(p3.y) < eps) { //垂线的斜角 90 度 centre.x = mid.x;
                                                                                                                                   for ( i=0; i<2; ++i )
                                                                                                                                         for ( j=0; j<2; ++j )
                   centre.y = mid.y + c;
                                                                                                                                              m[i][j]=dot(q[i],q[j])*2;
          } else {
                                                                                                                                   for ( i=0; i<2; ++i )
                   ang = atan(-p3.x / p3.y);
                                                                                                        sol[i]=dot(q[i],q[i]);
                   centre.x = mid.x + c * cos(ang);
centre.y = mid.y + c * sin(ang);
                                                                                                        (fabs (det=m[0][0]*m[1][1]-m[0][1]*m[1][0]) <
                                                                                                        eps ) return ;
          return centre;
int main() {
                                                                                                        L[0] = (sol[0] *m[1][1] - sol[1] *m[0][1])/det;
          int n, ans, tmpans, i, j, k;
         point p[305], centre; double tmp;
                                                                                                        L[1] = (sol[1] *m[0][0] - sol[0] *m[1][0])/det;
          while(scanf("%d", &n) && n) {
    for(i = 0; i < n; i++)</pre>
                                                                                                        res.x=outer[0].x+q[0].x*L[0]+q[1].x*L[1];
                            scanf("%lf%lf", &p[i].x,
                                                                                                       res.y=outer[0].y+q[0].y*L[0]+q[1].y*L[1];
&p[i].y);
                  res.z=outer[0].z+q[0].z*L[0]+q[1].z*L[1];
                                                                                                                                   radius=dist(res,outer[0]);
                                                                                                                                   break;
                                                                                                                    case 4:
continue;
                                                                                                                                   for ( i=0; i<3; ++i ) {
                                      tmpans = 0;
centre = find_centre(p[i],
                                                                                                        q[i].x=outer[i+1].x-outer[0].x;
p[j]);
                                      for(k = 0; k < n; k++) {
    tmp = dist2(centre,</pre>
                                                                                                        q[i].y=outer[i+1].y-outer[0].y;
p[k]);
                                                                                                        q[i].z=outer[i+1].z-outer[0].z;
                                               if(tmp <= 1.000001)
                                                                                                                                        sol[i]=dot(q[i],q[i]);
tmpans++;
                                                                                                                                   for ( i=0; i<3; ++i)
                                      if(ans < tmpans) ans =</pre>
                                                                                                       for ( j=0; j<3; ++j)
m[i][j]=dot(q[i],q[j])*2;</pre>
tmpans;
                  printf("%d\n", ans);
                                                                                                        \label{eq:detemment} \det = m \, [\, 0\, ] \, [\, 0\, ] \, *m \, [\, 1\, ] \, [\, 1\, ] \, *m \, [\, 2\, ] \, [\, 2\, ] \, *m \, [\, 0\, ] \, [\, 1\, ] \, *m \, [\, 1\, ] \, [\, 2\, ] \, *m \, [\, 0\, ] \, [\, 1\, ] \, *m \, [\, 1\, ] \, [\, 2\, ] \, *m \, [\, 0\, ] \, [\, 1\, ] \, *m \, [\, 1\, ] \, [\, 2\, ] \, *m \, [\, 0\, ] \, [\, 1\, ] \, *m \, [\, 1\, ] \, [\, 2\, ] \, *m \, [\, 0\, ] \, [\, 1\, ] \, *m \, [\, 1\, ] \, [\, 2\, ] \, *m \, [\, 1\, ] \, [\, 1\, ] \, *m \, [\, 1\, ] \, [\, 1\, ] \, *m \, [\, 1\, ] \, [\, 1\, ] \, *m \, [\, 1\, ] \, [\, 1\, ] \, *m \, [\, 1\, ] \, [\, 1\, ] \, *m \, [\, 1\, ] \, [\, 1\, ] \, *m \, [\, 1\, ] \, [\, 1\, ] \, *m \, [\, 1\, ] \, [\, 1\, ] \, *m \, [\, 1\, ] \, [\, 1\, ] \, *m \, [\, 1\, ] \, [\, 1\, ] \, *m \, [\, 1\, ] \, [\, 1\, ] \, *m \, [\, 1\, ] \, [\, 1\, ] \, *m \, [\, 1\, ] \, [\, 1\, ] \, *m \, [\, 1\, ] \, [\, 1\, ] \, *m \, [\, 1\, ] \, [\, 1\, ] \, *m \, [\, 1\, ] \, [\, 1\, ] \, *m \, [\, 1\, ] \, [\, 1\, ] \, *m \, [\, 1\, ] \, [\, 1\, ] \, *m \, [\, 1\, ] \, [\, 1\, ] \, *m \, [\, 1\, ] \, [\, 1\, ] \, *m \, [\, 1\, ] \, [\, 1\, ] \, *m \, [\, 1\, ] \, [\, 1\, ] \, *m \, [\, 1\, ] \, [\, 1\, ] \, *m \, [\, 1\, ] \, [\, 1\, ] \, *m \, [\, 1\, ] \, [\, 1\, ] \, *m \, [\, 1\, ] \, [\, 1\, ] \, *m \, [\, 1\, ] \, [\, 1\, ] \, *m \, [\, 1\, ] \, [\, 1\, ] \, *m \, [\, 1\, ] \, [\, 1\, ] \, *m \, [\, 1\, ] \, [\, 1\, ] \, *m \, [\, 1\, ] \, [\, 1\, ] \, *m \, [\, 1\, ] \, [\, 1\, ] \, *m \, [\, 1\, ] \, [\, 1\, ] \, *m \, [\, 1\, ] \, [\, 1\, ] \, *m \, [\, 1\, ] \, [\, 1\, ] \, *m \, [\, 1\, ] \, [\, 1\, ] \, *m \, [\, 1\, ] \, [\, 1\, ] \, *m \, [\, 1\, ] \, [\, 1\, ] \, *m \, [\, 1\, ] \, [\, 1\, ] \, *m \, [\, 1\, ] \, [\, 1\, ] \, *m \, [\, 1\, ] \, [\, 1\, ] \, *m \, [\, 1\, ] \, [\, 1\, ] \, *m \, [\, 1\, ] \, [\, 1\, ] \, *m \, [\, 1\, ] \, [\, 1\, ] \, *m \, [\, 1\, ] \, [\, 1\, ] \, *m \, [\, 1\, ] \, [\, 1\, ] \, *m \, [\, 1\, ] \, [\, 1\, ] \, *m \, [\, 1\, ] \, [\, 1\, ] \, *m \, [\, 1\, ] \, [\, 1\, ] \, *m \, [\, 1\, ] \, [\, 1\, ] \, *m \, [\, 1\, ] \, [\, 1\, ] \, *m \, [\, 1\, ] \, [\, 1\, ] \, *m \, [\, 1\, ] \, [\, 1\, ] \, *m \, [\, 1\, ] \, [\, 1\, ] \, *m \, [\, 1\, ] \, [\, 1\, ] \, *m \, [\, 1\, ] \, [\, 1\, ] \, *m \, [\, 1\, ] \, [\, 1\, ] \, *m \, [\, 1\, ] \, [\, 1\, ] \, *m \, [\, 1\, ] \, [\, 1\, ] \, *m \, [\, 1\, ] \, [\, 1\, ] \, *m \, [\, 1\, ] \, [\, 1\, ] \, *m \, [\, 1\, ] \, [\, 1\, ] \, *m \, [\, 1\, ] \, [\, 1\, ] \, *m \, [\, 1\, ] \, [\, 1\, ] \, *m \, [\, 1\, ] \, [\, 1\, ] \, *m \, [\, 1\, ] \, [\, 1\, ] \, *m \, [\, 1\, ] \, [\, 1\, ] \, *m \, [\, 1\, ] \, [\, 1\,
                                                                                                        <sup>2</sup>] [0] +m [0] [2] *m [2] [1] *m[1] [0] -m[0] [2] *m[1] [1] <sup>1</sup>
          return 0;
                                                                                                        m[2][0]-m[0][1]*m[1][0]*m[2][2]-m[0][0]*m[1][2
                                                                                                       ]*m[2][1];
                                                                                                                                   if ( fabs( det ) <eps ) return;</pre>
/********************************/
                                   最小球覆盖
                                                                                                                                   for ( j=0; j<3; ++j ) {
/********************************/
                                                                                                                                        for ( i=0; i<3; ++i )
                                                                                                       m[i][j]=sol[i];
#include<stdio.h>
                                                                                                                                          L[i] = (m[0][0] * m[1][1] * m[2][2]
#include<math.h>
                                                                                                        + m[0][1]*m[1][2]*m[2][0]
#include<memory>
                                                                                                                                                   + m[0][2]*m[2][1]*m[1][0]
#include<stdlib.h>
                                                                                                        - \ m[0][2]*m[1][1]*m[2][0]
using namespace std;
                                                                                                                                                    - m[0][1]*m[1][0]*m[2][2]
                                                                                                       - m[0][0]*m[1][2]*m[2][1]
) / det;
const double eps = 1e-10;
struct point_type { double x, y, z; };
int npoint, nouter;
point_type point [1000], outer[4], res;
                                                                                                                                        for ( i=0; i<3; ++i )</pre>
                                                                                                       m[i][j]=dot(q[i],q[j])*2;
double radius, tmp;
inline double dist (point_type p1 , point_type p2)
                                                                                                                                    res=outer[0];
                                                                                                                                   for ( i=0; i<3; ++i ) {
double dx=p1.x-p2.x, dy=p1.y-p2.y,dz=p1.z-p2.z;
return ( dx*dx + dy*dy + dz*dz );
                                                                                                                                        res.x+=q[i].x*L[i];
                                                                                                                                         res.y+=q[i].y*L[i];
                                                                                                                                        res.z+=q[i].z*L[i];
inline double dot(point_type p1 , point_type p2)
ł
                                                                                                                           radius=dist(res,outer[0]);
return p1.x*p2.x + p1.y*p2.y + p1.z*p2.z;
                                                                                                                    1
 void ball()
                                                                                                        void minball(int n)
      point_type q[3];
                                                                                                          ball();
      double m[3][3],sol[3],L[3],det; int i,j;
                                                                                                          if ( nouter <4 )
      res.x=res.y=res.z=-1000;
                                                                                                                   for ( int i=0; i<n; ++i )</pre>
      radius=0;
                                                                                                                       if( dist(res,point[i]) -radius>eps)
      switch ( nouter )
            {
                                                                                                                                 outer[nouter]=point[i];
```

```
++nouter;
                                                                         res = R * R * theta / 2;
             minball(i);
                                                                    } else {
                                                                         double _theta = 2 *
              --nouter:
             if(i>0)
                                                     acos (height / R);
                                                                         res = R * R * (theta - _theta)
                                                      / 2 + R * R * sin(_theta) / 2;
               point_type Tt = point[i]
               memmove(&point[1], &point[0] ,
sizeof ( point_type )*i );
             } else {
    if (!ina && inb) swap(a,b);
                                                               double height =
                                                      fabs(area_triangle(center,a,b)) / dist(a,b);
                                                               double temp = dmult(a,center,b);
double theta = acos(dmult(center,a,b)
int main()
ł
 int i:
                                                      / dist(center,a) /
while(scanf("%d", &npoint)!=EOF, npoint)
                                                     dist(center,b)),theta1,theta2;
                                                               if (fabs(temp) < eps) {</pre>
                                                                    double _theta = acos(height / R);
res += R * height / 2 *
    for (i=0; i<npoint;i++)</pre>
scanf("%lf%lf%lf",&point[i].x,&point[i].y,&poi
                                                      sin(_theta);
                                                                    res += R * R / 2 * (theta - theta);
nt[i].z);
    nouter=0;
                                                                } else {
    minball(npoint);
printf("%.81f\n",sqrt(radius)+eps);
                                                                    theta1 = asin(height / R);
theta2 = asin(height /
                                                      dist(a,center));
                                                                    if (temp > 0) {
return 0:
                                                      res += dist(center,a) * R /
2 * sin(PI - theta1 - theta2);
/**************
                                                                        res += R * R / 2 * (theta
               圆和多边形的交
                                                      + theta1 + theta2 - PI);
/********************************/
                                                                    } else {
                                                                         res += dist(center,a) * R /
//顶点标号从1开始
                                                      2 * sin(theta2 - theta1);
struct state type {
                                                                         res += R * R / 2 * (theta
    double angle;
                                                      - theta2 + theta1);
    double CoverArea;
                                                               }
point p[M];
point center;
                                                           if (flag < 0) return -res;</pre>
int n;
                                                           else return res;
double R;
inline double area_triangle(point &a,point
                                                      double Cover() {
&b,point &c) {
                                                           int i;
    return (b.x - a.x) * (c.y - a.y) - (c.x
                                                           double res = 0;
for (i=1; i<=n; i++)</pre>
- a.x) * (b.y - a.y);
                                                               res += ShadomOnCircle(p[i],p[i + 1]);
void init() {
     int i;
     double temp,sum;
                                                      int main() {
     for (i=2; i<n; i++) {
    temp = area_triangle(p[1],p[i],p[i +</pre>
                                                           double ans;
                                                           while (read_data()) {
1]);
                                                                init();
                                                                ans = Cover();
                                                               printf("%.21f\n",ans);
     if (sum < 0) reverse (p + 1, p + n + 1);
    p[n + 1] = p[1];
                                                           return 0:
inline bool inCircle(point &s) {
     return dist(center,s) <= R;</pre>
                                                      /**************
bool SameSide(point a,point b) {
   if (dist(a,center) > dist(b,center))
                                                                    直线关于圆的反射
                                                      /**********************************/
swap(a,b);
    return dmult(a,b,center) < eps;</pre>
                                                      #include <iostream>
                                                      #include <cmath>
                                                      using namespace std;
double ShadomOnCircle(point a,point b) {
                                                      #define INF 999999999
    double flag = area_triangle(center,a,b),res
                                                      const double eps = 1e-6;
= 0;
                                                      int up;
typedef struct TPoint
     if (fabs(flag) < eps) return 0;</pre>
     bool ina = inCircle(a),inb = inCircle(b);
                                                         double x:
     if (ina && inb) {
                                                         double y;
          res = fabs(area_triangle(center,a,b))
                                                      }TPoint;
                                                      typedef struct TCircle
    } else if (!ina && !inb) {
         if (SameSide(a,b)) {
                                                         TPoint center;
               double theta =
                                                         double r;
acos(dmult(center,a,b) / dist(center,a) /
                                                      }TCircle;
dist(center,b));
                                                      typedef struct TLine
              res = R * R * theta / 2;
          } else {
                                                         //直线标准式中的系数
               double height =
                                                         double a, b, c;
fabs(area_triangle(center,a,b)) / dist(a,b);
                                                     lTLine:
               double theta
                                                      void SloveLine (TLine &line, TPoint start, TPoint
acos(dmult(center,a,b) / dist(center,a) /
                                                     dir)
dist(center,b));
               if (height >= R) {
                                                         //根据直线上一点和直线的方向求直线的方程
```

```
if(dir.x == 0){
        line.a = 1;
line.b = 0;
                                                                   else if(d < 0) return false;</pre>
                                                                   else {
                                                                      p1.x = (-x1front + sqrt(d)) / 2 / x2front;
p1.y = (-c - a * p1.x) / b;
p2.x = (-x1front - sqrt(d)) / 2 / x2front;
p2.y = (-c - a * p2.x) / b;
        line.c = start.x;
        double k = dir.y / dir.x;
                                                                       k1 = samedir(dir, start, p1);
        line.a = k:
        line.b = -1;
                                                                       k2 = samedir(dir, start, p2);
        line.c = start.y - k * start.x;
                                                                       if(k1 == false && k2 == false) return false;
                                                                       if(k1 == true && k2 == true) {
                                                                           double dis1 = distanc(p1, start);
TLine lineFromSegment(TPoint p1, TPoint p2)
                                                                           double dis2 = distanc(p2, start);
                                                                           if(dis1 < dis2) point = p1;</pre>
                                                                           else point = p2;
    //线段所在直线,返回直线方程的三个系统
   TLine tmp;
                                                                           return true;
    tmp.a = p2.y - p1.y;
                                                                       else if(k1 == true) point = p1;
else point = p2;
    tmp.b = p1.x - p2.x;
    tmp.c = p2.x * p1.y - p1.x * p2.y;
                                                                       return true;
   return tmp;
                                                                   }
TPoint symmetricalPointofLine (TPoint p, TLine L)
                                                               void Reflect (int &num, TCircle circle[], TPoint
                                                               start, TPoint dir, int n)
    //p 点关于直线 L 的对称点
   TPoint p2;
                                                                   //反复反射
    double d:
    d = L.a * L.a + L.b * L.b;
   p2.x = (L.b * L.b * p.x - L.a * L.a * p.x - 2 * L.a * L.b * p.y - 2 * L.a * L.c) /
                                                                   TLine line;
                                                                   TPoint interpoint, newstart;
                                                                   int u;
   p2.y = (L.a * L.a * p.y - L.b * L.b * p.y - 2 * L.a * L.b * p.x - 2 * L.b * L.c) /
                                                                   SloveLine (line, start, dir);
                                                                   int tag = 0;
                                                                   double mindis = INF;
d;
                                                                   for(i = 1;i <= n;i++) {
   if(i!=up && Intersected(interpoint, line,</pre>
   return p2;
                                                               circle, start, dir, i)){
          double dis = distanc(start,
double distanc (TPoint p1, TPoint p2)
                                                               interpoint);
    //计算平面上两个点之间的距离
                                                                           if (dis < mindis){</pre>
return sqrt((p1.x - p2.x) * (p1.x - p2.x) + (p1.y
- p2.y) * (p1.y - p2.y));
                                                                               tag = 1;
                                                                               11 = i:
                                                                               mindis = dis;
bool samedir (TPoint dir, TPoint start, TPoint
                                                                               newstart = interpoint;
point)
                                                                       }
    //判断方向
   TPoint tmp;
                                                                   if(tag == 0){
    tmp.x = point.x - start.x;
                                                                       cout << "inf" << endl;</pre>
    tmp.y = point.y - start.y;
    if(tmp.x != 0 && dir.x != 0){
        if(tmp.x / dir.x > 0) return true;
                                                                   else {
        else return false;
                                                                      if(num == 10) {
   cout << "..." << endl;</pre>
    if(tmp.y != 0 && dir.y != 0){
   if(tmp.y / dir.y > 0) return true;
   else return false;
                                                                          return ;
                                                                       cout << u << " ";
                                                                       num++;
                                                                       //新的方向
                                                                       TLine line1;
bool Intersected (TPoint &point, TLine line, const
                                                                       TPoint p;
TCircle circle[],
                                                                       line1 = lineFromSegment (newstart,
                TPoint start, TPoint dir, int
                                                               circle[u].center);
which)
                                                                       if(fabs(line1.a * start.x + line1.b *
                                                               start.y +line1.c) <= eps) {
    dir.x = -dir.x;
    dir.y = -dir.y;</pre>
    //如果圆与直线有(有效交点)交点就存放在变量 point 中
    double a = line.a, b = line.b, c = line.c;
    double x0 = circle[which].center.x, y0 =
circle[which].center.y;
    double r = circle[which].r;
                                                                           p = symmetricalPointofLine(start,
    //有交点, 求交点
                                                               linel);//start的对称点
    double x2 front = b * b + a * a;
                                                                           dir.x = p.x - newstart.x;
    double x1front = -2 * x0 * b * b + 2 * a * b
                                                                           dir.y = p.y - newstart.y;
* y0 + 2 * a * c;
   double front = x0 * x0 * b * b + y0 * y0 * b
                                                                       start = newstart;
   + c * c + 2 * c * y0 * b - b * b * r * r;
double d = x1front * x1front - 4 * x2front *
                                                                       up = u;
                                                                       Reflect(num, circle, start, dir, n);
front;
   TPoint p1, p2;
    bool k1, k2;
                                                               int main()
    if(fabs(d) < eps){</pre>
       //x2front 不可能等于零
                                                                   //freopen("fzu_1035.in", "r", stdin);
//freopen("fzu_1035.out", "w", stdout);
      point.x = -x1front / x2front / 2;
point.y = (-c - a * point.x) / b;
                                                                   int n, i, j, \overline{num}, test = 1;
       //判断方向
                                                                   TCircle circle[30];
       if(samedir(dir, start, point)) return true;
                                                                   TPoint start, dir;
while(cin >> n && n){
       else return false;
```

```
for (i = 1; i <= n; i++) {</pre>
                                                            cnt=0:
                                                            for (j=0,k=0;j<qn;j++)</pre>
          cin >> circle[i].center.x >>
circle[i].center.y >> circle[i].r;
                                                                while (q[k].a-q[j].a<pi)
      cin >> start.x >> start.y >> dir.x >> dir.y;
                                                                   cnt++, k++;
      cout << "Scene " << test++ << endl;
                                                                s[i][q[j].id]=n-cnt-1;
      num = 0;
                                                                idx[i][q[j].id]=j;
      up = -1;
                                                                cnt--;
      Reflect(num, circle, start, dir, n);
      cout << endl;
                                                            - }
                                                        1
   return 0:
                                                     inline long long X (pt a,pt b,pt c)//叉积 a->b
/******************************/
                                                         long long x1=b.x-a.x;
                 扇形的重心
                                                         long long y1=b.y-a.y;
long long x2=c.x-a.x;
                                                         long long y2=c.y-a.y;
//Xc = 2*R*sinA/3/A
                                                         return x1*y2-x2*y1;
//A 为圆心角的一半
#include <stdio.h>
#include <math.h>
                                                     inline int getnum (int a, int b, int c) //保证 a->c
int main()
                                                     在 a->b 的逆时针方向
   double r, angle;
                                                         if (X(p[a],p[b],p[c])<0) swap(b,c);</pre>
   while(scanf("%lf%lf", &r, &angle) != EOF) {
                                                         int res=idx[a][c]-idx[a][b]-1;//减 1 表示减
      angle /= 2;
      printf("%.61f\n", 2 * r * sin(angle) / 3 /
angle);
                                                         return res>=0?res:res+n-1;//考虑 a->c 和
                                                     a->b 在 x 轴两侧
   return 0;
                                                     inline int find (int a, int b, int c)
/*************
                                                     {
                                                         int ret=0:
               三角形内部点数
                                                        if (X(p[a],p[b],p[c])<0) swap(b,c);</pre>
/**************
s[i][j]代表直线 ij 的右方的点数(不包括 ij)
                                                     ret+=getnum(a,b,c)+getnum(b,c,a)+getnum(c,a
idx[i][j]代表从 i 到 x 轴正方向至 i 到 j 的向量的扇形
                                                     ,b);
区域的点数(不包括 ij)
                                                        ret+=s[a][b]+s[b][c]+s[c][a];
                                                         ret-=2*(n-3);
struct pt
                                                         return ret:
   long long x,y;
   int id;
                                                     /**************
}p[size];
                                                                    Pick 公式求面积
struct angle
                                                     /*************
   double a;
                                                     //A = b / 2 + i -1 其中 b 与 i 分別表示在边界上及内
   int id;
                                                     部的格子占う个動
   angle(){}
                                                     int triangleArea(point p1, point p2, point p3)
   angle (double ang, int idd)
                                                     {
                                                          int k = p1.x * p2.y + p2.x * p3.y + p3.x
       a=ang,id=idd;
                                                                    - p2.x * p1.y - p3.x * p2.y - p1.x
                                                     * p3.y;
   friend bool operator < (angle a,angle b)</pre>
                                                          if(k < 0) return -k;
else return k;</pre>
   {
       return a.a<b.a;
                                                     line2 lineFromSegment(point p1, point p2) {
}q[size];
                                                          line2 tmp;
inline double calang (pt a,pt b)//a->b,并且保
                                                          tmp.a = p2.y - p1.y;
tmp.b = p1.x - p2.x;
tmp.c = p2.x * p1.y - p1.x * p2.y;
return tmp;
证平行于 x 轴正方向的角度为最小
{
   double res=atan2((b.y-a.y)*1.,b.x-a.x);
   res+=res<0?2*pi:0;
                                                     int Count(point p1, point p2) {
   return res;
                                                          int i, sum = 0, y;
line2 l1 = lineFromSegment(p1, p2);
int s[size][size],idx[size][size];
                                                          if(l1.b == 0) return abs(p2.y - p1.y) + 1;
if(l1.x > p2.x) swap(p1.x, p2.x);
for(i = p1.x; i <= p2.x; i++) {
    y = -l1.c - l1.a * i;</pre>
void init ()
-
   int i,j,k,cnt,qn;
   for (i=0;i<n;i++)</pre>
                                                              if(y % 11.b == 0) sum++;
       an=0:
                                                          return sum;
       for (j=0;j<n;j++)</pre>
          if (i!=i)
                                                     int main() {
                                                     point p1, p2, p3;

while(scanf("%d%d%d%d%d%d", &p1.x, &p1.y,

&p2.x, &p2.y, &p3.x, &p3.y) != EOF) {

    if(p1.x == 0 && p1.y == 0 && p2.x ==
q[qn++]=angle(calang(p[i],p[j]),p[j].id);
       sort(q,q+qn);
       for (j=0;j<qn;j++)</pre>
                                                     0 && p2.y == 0 && p3.x == 0 && p3.y == 0) break;
                                                               int
                                                                   A = triangleArea(p1, p2, p3);
           q[j+qn]=q[j];
                                                               int b = 0;
           q[j+qn].a+=2*pi;
                                                               int i:
```

```
b = Count(p1, p2) + Count(p1, p3) +
                                                                        if(hash[hash[i].next].cnt == n) return
Count (p3, p2) -3;

i = (A - b) / 2 + 1;
                                                                        else if(hash[hash[i].next].cnt > n)
          printf("%d\n", i);
                                                            break:
                                                                        i = hash[i].next;
                                                                  hash[hashl].cnt = n;
hash[hashl].next = hash[i].next;
/*******************************/
                                                                  hash[i].next = hashl;
               共线最多的点的个数
                                                                  hashl++;
                                                                  return 0;
struct Line {
                                                            int Hash2(int n) {
   int i = n % PRIME;
     int a, b; double k;
                                                                   while(hash[i].next != -1) {
     bool end;
                                                                       if(hash[hash[i].next].cnt == n) return
} line[N*N];
int n, ncount;
                                                                       else if(hash[hash[i].next].cnt > n)
bool operator <(const Line &a, const Line &b)
                                                             return 0;
                                                                       i = hash[i].next;
      if (abs(a.k - b.k) > eps && !a.end && !b.end)
      return a.k < b.k;
if (a.end != b.end)</pre>
                                                                  return 0;
          return a.end < b.end;</pre>
                                                             int check(double ax, double ay, int &x, int &y)
      if (a.a != b.a)
    return a.a < b.a;</pre>
                                                                   int a0 = (int)ax;
      return a.b < b.b;
                                                                  int a0 = (int)ay;

int a0 = (int)ay;

int a0 = 0, a0 = 0;

if a0 = ax < eps) {
double getk(point &a, point &b) {
    return (b.y - a.y) * 1.0 / (b.x - a.x);
                                                                       tag1 = 1;
                                                                  x = a0;

} else if(fabs(a0 + 1 - ax) < eps) {
int main() {
    while (~scanf("%d", &n)) {
                                                                       tag1 = 1;
                                                                       x = a0 + 1;
         ncount = 0;

for (int i = 0; i < n; i++)
                                                                   if(fabs(b0 - ay) < eps) {</pre>
                scanf("%d%d", &po[i].x,
                                                                       tag2 = 1;
y = b0;
&po[i].y);
           for (int i = 0; i < n - 1; i++)
                                                                   } else if(fabs(b0 + 1 - ay) < eps) {</pre>
                 for (int j = i + 1; j < n; j++)
                                                                       y = b0 + 1;
                                                                        tag2 = 1;
                      line[ncount].a = i;
line[ncount].b = j;
                                                                  if(tag1 == 1 && tag2 == 1) return 1;
                      if (po[i].x == po[j].x)
                                                                  else return 0;
                            line[ncount].end =
true;
                                                             int squares(point p1, point p2, point &p3, point
                      else {
    line[ncount].end =
                                                                  double a = (double)p2.x - p1.x;
                                                                  double b = (double)p2.y - p1.y;
double midx = ((double)p1.x + p2.x) / 2;
false;
                           line[ncount].k =
                                                                  double midy = ((double)p1.y + p2.y) / 2;
double tmp = a * a + b * b;
getk(po[i], po[j]);
                                                                  double x1 = \operatorname{sqrt}(b * b) / 2; double y1;
                      ncount++;
           sort(line, line + ncount);
                                                                  if(fabs(b) < eps) y1 = sqrt(a * a + b *
           int start = 0;
int ans = 0;
for (int i = 1; i < ncount; i++) {</pre>
                                                            b) / 2:
                                                                  else y1 = -a * x1 / b;
                                                                  x1 += midx;
y1 += midy;
if (!(line[i].end &&
line[start].end) || ((!line[i].end
&& !line[start].end) && (line[i].k -
line[start].k) < eps)) || line[i].a !=</pre>
                                                                  if(check(x1, y1, p3.x, p3.y) == 0) return
                                                            0;
                                                                  x1 = 2 * midx - x1;
line[start].a) {
                                                                  y1 = 2 * midy - y1;
                                                                  if(check(x1, y1, p4.x, p4.y) == 0) return
                      start = i;
                      continue:
                                                            0;
                                                                   return 1:
                 if (i - start > ans) {
                      ans = i - start;
                                                             int main() {
                                                                  int i, j, cnt;
                                                                  while(scanf("%d", &n) != EOF && n) {
    for(i = 0; i < PRIME; i++) hash[i].next</pre>
           printf("%d\n", ans + 2);
      1
                                                            = -1;
     return 0;
                                                                        hashl = PRIME;
                                                                        int x1, y1, x2, y2;
for (i = 0; i < n; i++) {
/*************
                                                                             scanf("%d%d", &p[i].x, &p[i].y);
Hash((p[i].x + 100000) * 100000
           N个点最多组成正方形个数
                                                            + p[i].y + 100000);
/******************************/
int n;
                                                                        cnt = 0;
struct HASH {
                                                                        for (i = 0; i < n; i++) {
    for (j = i + 1; j < n; j++) {
        point a, b;</pre>
     int cnt;
int next;
} hash[50000];
                                                                                   if(squares(p[i], p[j], a, b)
int hashl;
                                                            == 0) continue;
int Hash(int n) {
                                                                                   if(Hash2((a.x + 100000) *
     int i = n % PRIME;
while(hash[i].next != -1) {
                                                            100000 + a.y + 100000) == 0) continue;
```

```
if(Hash2((b.x + 100000)) *
1000000 + b.y + 1000000) == 0) continue;
                 cnt++;
        printf("%d\n", cnt / 2);
    return 0:
N个点最多确定互不平行的直线
/****************
double FindSlewRate(point p1, point p2) {
    point p;
    p.x = p2.x - p1.x;

p.y = p2.y - p1.y;
    return atan2(p.y , p.x);
int main() {
    int n, rt;
    point p[205];
    double rate[40005];
    while(scanf("%d", &n) != EOF) {
   for(int i = 0; i < n; i++)</pre>
            scanf("%lf%lf",
&p[i].x ,&p[i].y);
        for (int i = 0; i < n; i++)
    for (int j = i + 1; j < n; j++)</pre>
                rate[rt++] =
FindSlewRate(p[i], p[j]);
        sort(rate, rate+rt);
        int ans = 1;
for(int i = 1; i < rt; i++)</pre>
            if(rate[i] > rate[i - 1]) ans++;
        printf("%d\n", ans);
    return 0;
}
/********************************/
               求多边形的核
void cut(line cur,polygon &pg) { //cur逆时针方
向为可行域
    polygon tp;
    int n=pq.n;
    pg.p[n]=pg.p[0];
    tp.n=0;
for(int i=0; i<n; i++) {
        point p=pg.p[i], q=pg.p[i+1];
         double
pp=xmult(cur.a,cur.b,p),qq=xmult(cur.a,cur.b,q
        if(pp>-eps)
             tp.p[tp.n++]=p;
        if(pp*qq<-eps)</pre>
tp.p[tp.n++]=line_intersection(cur,line(p,q));
    pg=tp;
void polygon_core(polygon pg,polygon &cg) {
    if(!is_unclock(pg))
        to_unclock(pg);
    cg=pg;
    int n=pg.n;
    pg.p[n]=pg.p[0];
           i=0; i < n; i++) {
        cut(line(pg.p[i],pg.p[i+1]),cg);
        if(cg.n==0)
             return;
/*************/
/*************
/******************************/
```

数论

/**************/

1.
$$(a^n,b^n)=(a,b)^n$$

(an,bn) = n(a,b)

$$ad \equiv bd \pmod{md}$$
$$\Rightarrow a \equiv b \pmod{m}$$

$$x \equiv a \pmod{m_1}$$

 $x \equiv a \pmod{m_2}$
的全部解为 $x \equiv a \pmod{m_1, m_2}$

$$\{n_1, n_2, ..., n_k\} = \{m_1, m_2, ..., m_k\}$$

且 $\forall i \rightarrow n_i \mid m_i$
则 同 余 式 组 $x \equiv b_i \pmod{n_i}$ 与
 $x \equiv b_i \pmod{m_i}$
有相 同解 $x \equiv x_0 \pmod{n_1, n_2, ..., n_k}$

- 6. $|a|b,a|c \Rightarrow a|(b,c)$
- 7. $a \equiv b \pmod{m} \Rightarrow (a,b) = (b,m)$
- 8. p是质数 $\Rightarrow \varphi(p^l) = p^{l-1}(p-1)$

9.
$$a = \prod_{i=1}^k p_i^{\alpha_i} \Longrightarrow \varphi(a) = \prod_{i=1}^k p_i^{\alpha_i - 1} (p_i - 1)$$

10.
$$p$$
是质数,则 $\sum_{i=0}^{n} \varphi(p^{i}) = p^{n}$

11.
$$n > 2 \Rightarrow \varphi(n) \equiv 0 \pmod{2}$$

$$(a,b) = 1 \Rightarrow \varphi(a,b) = \varphi(a)\varphi(b)$$

n>1时,不大于n且与n互质的所有正整数之和为 $\frac{1}{2}\varphi(n)n$

13.
$$p$$
是质数,则 $(a+b)^p \equiv a^p + b^p \pmod{p}$

(a,b) = 1且存在最小的h使得 $a^h \equiv 1 \pmod{b}$ $\Rightarrow h \mid \varphi(b)$

$$n$$
是质数 $\Leftrightarrow \varphi(n) | (n-1), (n+1) | \sigma(n)$

$$\sigma(n) = \sum_{d|n} d$$

$$\begin{bmatrix} a \end{bmatrix} + \begin{bmatrix} a + \frac{1}{n} \end{bmatrix} + \dots + \begin{bmatrix} a + \frac{n-1}{n} \end{bmatrix}$$
$$= \lfloor na \rfloor$$

$$\sum_{k=1}^{n} \left\lfloor \frac{k}{2} \right\rfloor = \left\lfloor \frac{n^2}{4} \right\rfloor$$

$$20. \quad \left[\sum_{k=1}^{n} \left\lfloor \frac{k}{3} \right\rfloor = \left\lfloor \frac{n(n-1)}{6} \right\rfloor \right]$$

$$\sum_{t|n} t = n^{\frac{d(n)}{2}}$$
$$d(n)$$
为n的因子个数

$$22. \quad n = \sum_{d|n} \varphi(d)$$

$$(p,q) = 1 且 p 、 q 为 奇 正 整 数$$

$$\sum_{0 < l < \frac{q}{2}} \left\lfloor \frac{p}{q} l \right\rfloor + \sum_{0 < k < \frac{p}{2}} \left\lfloor \frac{q}{p} k \right\rfloor$$

不定方程: ax + by = c其中c >= lcm(a,b), 那么 24. 如果方程有解,则 方程必定有非负整数解

定理与定义

/************* 费马定理

如果 a,p 互质, 则有 $a^{p-1} \equiv 1 \pmod{p}$

威尔森定理:

p是质数,则 $(p-1)! \equiv -1 \pmod{p}$

1. 如果 \mathbf{a} , \mathbf{p} 互质,则有 $a^{\phi(p)} \equiv \mathbf{1} \pmod{p}$,如果不互质,那

 $2. X^{n} \equiv X^{n\%\varphi(m)+\varphi(m)} \pmod{m} (X \geq \varphi(m))$

设 p 是正整数, a 是整数, 若 a 模 p 的阶等于 $\phi(p)$,则称 a 为模 p 的

如果 p 为质数, 且 a是 p 的原根,则 a'i mod p 两两不同(0<i<p,1<a<p),

p 的原根个数等于 φ (p-1)

求分数的最小公倍数

- 约分。
- 求分子的最小公倍数和分母的最大公约数。
- 最小公倍数除以最大公约数即为所求。

鸽巢原理的运用

- 给定 m 个整数 $a_i, a_2, a_3, \cdots a_m$ 存在整数 k 和 l , $0 \le k < l \le m$,使得 a_{k+1}+a_{k+2}+···+a₁能被 m 整除。
- 令 m 与 n 为互素的正整数,并令 a 和 b 为两整数,且0≤a≤m-1 以及 $0 \le b \le n-1$ 。于是存在一个正整数x,使得x除以m的余数 为a,且除以n的余数为b。
- 每个由 n^2+1 个实数构成的序列 $a_1,a_2,...,a_{n^2+1}$ 或者含有长度为 n+1 的递增子序列,或者含有长度为 n+1 的递减子序列。

Burning side 定理

设G是X的一个置换群,C是X的一个着色集并且使得对于G中的任意 f 与 C 中的任意 c ,f*c 属于 C ,则 C 中不等价的着色数 N (G,C) 为

$$N(G,C) = \frac{1}{|G|} \sum_{f \in G} |C(f)|$$

换言之,C中不等价的着色数等于使着色通过G中的置换保持不变的着 色的平均数。

Polya 定理

若可用 \mathbf{n} 种颜色,对于一个置换 $\mathbf{a}_{\mathbf{j}}$,设它的循环数为 $\mathbf{c}(\mathbf{a}_{\mathbf{j}})$,则在此置 换下不变的着色方案数为mc

$$L = \frac{1}{|G|} (m^{c(g_1)} + m^{c(g_2)} + \dots + m^{c(g_s)})$$

旋转:

若转过 k 个珠子,则循环节数(c(ak))为 gcd(k,n)。

(循环节数为r的置换数为 $\phi(n/r)$)

- 1、若总数为奇,则共有循环节数为(n+1)/2的置换 n 个
- 2、若总数为偶,则有循环节数为n/2的置换n/2个,循环节数为n/2+1 的置换 n/2 个

乘法逆元

当我们要求(a/b) mod p 的值,且 a 很大,无法直接求得 a/b 的值时, 我们就要用到乘法逆元。

我们可以通过求b关于p的乘法逆元k,将a乘上k再模p,即(a*k) mod p。其结果与(a/b) mod p 等价。

格雷码:

相邻两位数二进制位只相差1位		
十进制数	自然二进制数	格雷码
0	0000	0000
1	0001	0001
2	0010	0011
3	0011	0010
4	0100	0110
5	0101	0111
6	0110	0101
7	0111	0100
8	1000	1100
9	1001	1101
10	1010	1111
11	1011	1110
12	1100	1010
13	1101	1011
14	1110	1001

1111 15 1000

二进制转格雷码:从最右边一位起,依次将每一位与左边一位异或 (XOR),作为对应格雷码该位的值,最左边一位不变(相当于左边是

格雷码转二进制:从左边第二位起,将每位与左边一位解码后的值异 或,作为该位解码后的值(最左边一位依然不变)。

积性函数

在数论中的积性函数:对于正整数 n的一个函数 f(n), 当中 f(1)=1 且 当 a,b 互质, f(ab)=f(a)f(b), 在数论上就称它为积性函数。若某函数 f(n) 符合 f(1)=1,且就算 a,b 不互质,f(ab)=f(a)f(b),则称它为完全积性函 数。

例如: $\varphi(n)$ - 欧拉函数, 计算与 n 互质的正整数之数目 $\mu(n)$ —莫比乌斯函数,关于非平方数的质因子数目 $\gcd(n,k)$ —最大公因子,当k 固定的情况 d(n) -n 的正因子数目 σ (n) -n 的所有正因子之和

偏序集:

傑.

链上任意两个元素都可以比较

反链:

反链上任意两个元素都不可以比较

Dilworth 定理:

 \diamondsuit (X, \leq) 是一个有限偏序集,并 \diamondsuit r 是链的最大的大小,则 X 可

以被划分成r个但不能再少的反链

同理,令 m 是反链的最大的大小,则 X 可以被划分成 m 个但不能再少 的链

生成排列

1. 牛成全排列

由一个排列 p[1]p[2]...p[n]生成下一个排列的算法: a) i=max{j|p[j-1]<p[j]}=2,3,...,n

b) $j=\max\{k|p[i-1] < p[k]\}, k=1,2,...,n$

c) p[i-1]与 p[j]互换

d) p[i],p[i+1],...,p[n]逆转,即变成 p[n],p[n-1],...,p[i],其它的不变

生成字典序 r-组合

字典序 r-组合即从{1,2...n}中选出 r 个元素,使得只要 i <j,则 ai <aj。 已知一个字典序 r-组合,它的下一个字典序 r-组合求法:

A) 确定最大的整数 k 使得 $ak+1 \leftarrow n$ 且 ak+1 不是 a1,a2..ar 中的元素。

下一序列为 a1 ...a[k-1],ak+1,ak+2..ak+r-k+1;

/*************

公式与序列

/********************************/ N 条直线最多将平面分割成的区域数: Ln=1+Sn//Sn 为首项为1, 公差

为1的等差数列前 n 项和 汉诺塔移动步数=2^n-1:

递归式:

公式一: T(1)=1, T(n)=T(n-1)+n, 则T(n)为n(n+1)/2 公式二: T(1)=1, T(n)=T(n/2)+1, 则T(n)约为1gN 公式三: T(1)=0, T(n)=T(n/2)+n, 则T(n)约为2n 公式四: T(1)=0, T(n)=2T(n/2)+n, 则T(n)约为nlgN 公式五: T(1)=1, T(n)=2T(n/2)+1, 则T(n)约为2n

欧拉常数 γ = 0.57721566490153286060651209

调和级数 S=1+1/2+1/3+.....Sn=ln(n)+γ

斐波那契数列: (1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}

卡特兰数: h(n)=h(n-1)*(4*n-2)/(n+1)=C(2n,n)/(n+1) (n=1,2,3,...) 应用

- 将 n+2 边形沿弦切割成 n 个三角形的不同切 1) 割数
- n+1个数相乘,给每两个元素加上括号的不同方 2) 法数
- n 个节点的不同形状的二叉树数
- $\mathbf{M} \mathbf{n} * \mathbf{n}$ 方格的左上角移动到右下角不穿过对角 线路径数

斯特林公式:

$$n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$

$$P(A | B) = \frac{P(B | A) * P(A)}{P(B)}$$

贝尔数: B (n+1) =Sum (0,n) *C (n, k) *B (k); 应用 { 1) n 元集合的划分种数。 法雷级数: 分母小于n的真分数的个数在加上0,1 f[0]=0; f[1]=3;f[n]=f[n-1]+phi[n]*2;第二类斯特林数: S(n,n) = 1, S(n,0) = 0; S(n,k) = S(n-1,k-1) + kS(n-1,k)应用 n 元集合划分为k 个子集(非空) n 个有标号的小球放入 k 个无标号的盒子中 第二类斯特林数的奇偶性:

$$\begin{Bmatrix} n \\ k \end{Bmatrix} \equiv \binom{z}{w} \pmod{2}, z = n - \left\lceil \frac{k+1}{2} \right\rceil, w = \left\lfloor \frac{k-1}{2} \right\rfloor$$

杨式图表:

杨式图表是一个矩阵, 它满足条件:

如果格子[i,j]没有元素,则[i+1,j]也一定没有元素

如果格子[i, j]有元素 a[i, j],则[i+1, j]要么没有元素, 要么 a[i+1, j] > a[i,

Y[n]代表 n 个数所组成的杨式图表的个数

公式:

Y[1]=1;Y[2]=2;

Y[n]=Y[n-1]+(n-1)*Y[n-2];(n>2)

整数划分:

将整数 n 分成 k 份, 且每份不能为空, 任意两种分法不能相同

1) 不考虑顺序

for(int p=1; p <= n; p++)

for(int i=p; i<=n;i++)

for(int j=k; j>=1 ;j--) dp[i][j] += dp[i-p][j-1];

cout << dp[n][k] << endl;

2) 考虑顺序

dp[i][j] += dp[i-k][j-1]; (k=1..i)

3) 若分解出来的每个数均有一个上限 m

dp[i][j] += dp[i-k][j-1]; (k=1..m)

错位排列:

d[1]=0,d[2]=1;

d[n]=(n-1)*(d[n-1]+d[n-2]);n的约数的个数

若 n 满足
$$n = \prod_{i=1}^{m} a_i^{n_i}$$
 , 则 n 的约数的个数为 $\prod_{i=1}^{m} (n_i + 1)$

约数的个数: ∏(1+pi)

约数的和: Σ (a i ^ (pi +1) -1) / (a i -1)

求和公式:

$$\sum k^2 = \frac{n(n+1)(2n+1)}{6}$$

$$\sum k^3 = \frac{n^2 (n+1)^2}{4}$$

$$\sum (2k-1)^2 = \frac{n(4n^2-1)}{3}$$

$$\sum (2k-1)^3 = n^2 (2n^2 - 1)$$

$$\sum k^4 = \frac{n(n+1)(2n+1)(3n^2+3n-1)}{30}$$

$$\sum k^5 = \frac{n^2 (n+1)^2 (2n^2 + 2n - 1)}{12}$$

$$\sum k(k+1) = \frac{n(n+1)(n+2)}{3}$$

$$\sum k(k+1)(k+2) = \frac{n(n+1)(n+2)(n+3)}{4}$$

$$\sum k(k+1)(k+2)(k+3) = \frac{n(n+1)(n+2)(n+3)(n+4)}{5}$$

/**********************************/

排列与组合

/**********************************/

1、 错位排列

$$n! \left(1 - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} + \dots \pm \frac{1}{n!}\right)$$

f(n) = (n-1)*(f(n-1)+f(n-2))

循环排列

- n 个不同元素集合的循环r 排列 $\underline{P(n,r)}$
- S 是重复数为 $n_1, n_2 n_k$ 的多重集, $n_1 = 1$,令

$$n = \sum_{i=2}^k n_i$$
,则 S 的循环排列数 $\dfrac{n!}{n_2! n_3! n_k!}$

多重集的排列 (元素重数有限)

S是一个含k个元素的多重集,每个元素重数为nl,n2...nk,

则 S 的排列数为
$$\frac{n!}{n_1!n_2!....n_k!}$$

集合划分

A) n 个元素的集合划分为 k 个有标号子集且子集 i 含有 ni 个元素:

$$\frac{n!}{n_1!n_2!\dots n_k!}$$

B) n 个元素的集合划分为k 个无标号子集且第 i 个子集含有 ni 个元素:

$$\frac{n!}{k!n_1!n_2!\dots n_k!}$$

多重集的组合 (元素重数无限)

S 是一个含 k 个元素的多重集,则 S 的 r 组合数为

$$C(r+k-1,r) = C(r+k-1,k-1)$$

PS: 当元素个数有限时,可以当做无限来做,再利用容斥原理减 去不符合要求的即可

6.
$$C(2n,n) = \sum_{k=0}^{n} C(n,k)^{2}$$

$$\sum C(n,k) = C(n+1,m-1)$$

$$\sum_{0 \le k \le m} C(n,k) = C(n+1,m+1)$$

C(n,k) =

9

⁷,
$$C(0,k-1) + C(1,k-1) + ... + C(n-1,k-1)$$

8.
$$\sum_{a \le k \le n-b} C(k, a) * C(n - k, b) = C(n + 1, a + 1)$$

•					
	序号	n 个球	r 个盒	允许	方案数
			子	空盒	
	1	不同	不同	允许	rîn
	2	不同	不同	不 允	r!S(n,r)
				许	
	3	不同	相同	允许	Sum(S(n, k)), k=1r
	4	不同	相同	不 允	S (n, r)
				许	
	5	相同	不同	允许	C (n+r-1,n)
	6	相同	不同	不 允	C (n-1,r-1)
				许	
	7	相同	相同	允许	Sum (Pk (n)), k=1r
	8	相同	相同	不 允	Pr (n)
				许	

Pr(n)代表将 n 非空划分成 r 份的种数

10.
$$\operatorname{Syst}(C(\frac{n}{n_1, n_2 ... n_t}) = \frac{n!}{n_1! n_2! ... n_t!}$$

(x1+x2+…xt) n 展开式系数, n1+n2+..nt=n

/*************/

数学常用库

```
/***********************************/
//筛素数
bool notp[mr];
int pr[N],pn;
void getpri() {
     pn=0;
      memset (notp, 0, sizeof(notp));
      for(int i=2; i<mr; i++) {
    if(!notp[i]) {</pre>
                 pr[pn++]=i;
           for (int j=0; j<pn && i*pr[j]<mr; j++)</pre>
                 int k=i*pr[j];
                 notp[k]=1;
                 if(i%pr[j]==0) {
      }
//筛欧拉函数
int phi[mr];
void getphi() {
      pn=0;
      phi[1]=1;
      memset(notp,0,sizeof(notp));
for(int i=2; i<mr; i++) {</pre>
           if(!notp[i]) {
                 pr[pn++]=i;
                 phi[i]=i-1;
           for (int j=0; j<pn && i*pr[j]<mr; j++)</pre>
                 int k=i*pr[j];
                 notp [k]=1;
                 if(i%pr[j]==0) {
                       phi[k]=phi[i]*pr[j];
                       break;
                   else {
                      phi[k]=phi[i]*(pr[j]-1);
           }
      }
//筛约数个数、最小素数次数
int divnum[mr];
char e[mr];
void getdivnum() {
      memset (notp, 0, sizeof(notp));
      for(int i=2; i<mr; i++) {</pre>
           if(!notp[i]) {
                 pr[pn++]=i;
                 e[i]=1;
                 divnum[i]=2;
            for (int j=0; j<pn && i*pr[j]<mr; j++)</pre>
                 int k=i*pr[j];
                 notp [k] = 1;
                 if(i%pr[j]==0) {
\label{eq:divnum} \mbox{divnum[k]=divnum[i]/(e[i]+1)*(e[i]+2);}
                       e[k] = e[i] + 1;
                       break;
                 } else {
divnum[k] = divnum[i] * divnum[pr[j]];
                      e[k] = 1;
           }
      }
//筛莫比乌斯函数
int miu[mr];
void getmiu() {
     pn=0;
     miu[1]=1;
      memset (notp, 0, sizeof(notp));
      for(int i=2; i<mr; i++) {</pre>
           if(!notp[i]) {
                 pr[pn++]=i;
                 miu[i]=-1;
```

```
for (int j=0; j<pn && i*pr[j]<mr; j++)</pre>
                 int k=i*pr[i];
                 \min[k] = (i%pr[j])?-\min[i]:0;
                 notp[k]=1;
                 if(i%pr[j] == 0) {
                     break;
           }
     }
//欧几里得
inline int gcd(int a,int b) {
      int tp;
      while(b) {
           tp=a;
           a=b ;
           b=tp%b;
     return a;
//扩展欧几里得
int Egcd (int a, int b, int &x, int &y) {
      if (b==0){
           x=1, y=0;
           return a;
      int d, tp;
      d = Egcd (b, a%b, x, y);
     tp = x;

x = y;

y = tp - a/b*y;
      return d;
//乘法逆元,【确保有逆元】
int inv(int a) {
    if(a == 1) return
      return mul((MOD - MOD/ a),inv(MOD % a));
//最小公倍数
inline int lcm(int a,int b) {
     return a/gcd(a,b)*b;
//数位统计,[1,con]区间内数字出现次数
void cac(ll con,ll cnt[],ll t) {
     //如果从0开始,则在一开始便需要加上特判,
if (con==0) cnt[0]++;
      if(con<=0)return;</pre>
      ll x,y,n=con/10;
      ll i,j;
x=con/10,y=con%10;
      for(i=0; i<=y; i++) cnt[i]=cnt[i]+t;
for(; x!=0; x/=10) cnt[x%10]+=(y+1)*t;
for(i=0; i<10; i++) cnt[i]+=n*t;</pre>
      cnt[0]-=t;
      cac(n-1,cnt,t*10);
//防高精度乘法
11 mulmod(11 a, 11 b, 11 mod){
    a = a%mod, b = b%mod;
    11 re = 0;
      while(b){
          if (b&1) re = (re + a)%mod;
           a = (a << 1) %mod;
           b >>= 1;
      return re;
//快速幂取模
11 fastmod(ll a,int n,int m){
      ll re=1;
      for(;n;n>>=1,a=mulmod(a,a,m)){
           if(n&1)re=mulmod(re,a,m);
      return re:
//米勒拉宾伪素数测试
bool miller_rabin(int n,int s) {
    if(n=2)return true;
      else if(n%2==0)return false;
      for(int i = 1; i <= s; ++i){
   int a = rand()%(n-2)+2;</pre>
           if(fastmod(a, n-1, n)!=1) return false;
     return true:
```

整数拆分

连分数

连分数[
$$a_1, a_2, \dots, a_k$$
] = $\frac{p_k}{q_k}$
 $p_1 = a_1, q_1 = 1$
 $p_2 = a_1 * a_2 + 1, q_2 = a_2$
⇒
 $p_k = a_k * p_{k-1} + p_{k-2}$
 $q_k = a_k * q_{k-1} + q_{k-2}$

2、

对于连分数[
$$a_1, a_2, \dots, a_k$$
],
$$k \ge 2 \Rightarrow p_k * q_{k-1} - p_{k-1} * q_k = (-1)^k$$

$$k \ge 3 \Rightarrow p_k * q_{k-2} - p_{k-2} * q_k = (-1)^{k-1} a_k$$
3、
$$\frac{p_1}{n} < \frac{p_3}{n} < \frac{p_5}{n} < \dots [a_1, a_2, \dots]$$

$$\begin{vmatrix} \frac{p_1}{q_1} < \frac{p_3}{q_3} < \frac{p_5}{q_5} < \dots & [a_1, a_2, \dots] \\ < \dots & \frac{p_6}{q_6} < \frac{p_4}{q_4} < \frac{p_2}{q_2} \end{vmatrix}$$

*/************************************/

伯努利数

1,

伯努利数:
$$B_n = \sum_{j=0}^n \frac{(-1)^k}{k+1} \sum_{j=0}^k (-1)^{k-j} C(k,j) j^n$$
伯努利多项式:
$$B_n(x) = \sum_{k=0}^n C(n,k) B_k x^{n-k}$$

$$n \ge 1$$
时
$$B_n(x+1) - B_n(x) = n x^{n-1}$$

$$\sum_{k=1}^m k^n = \frac{1}{n} (B_{n+1}(m+1) - B_{n+1})$$

 $\begin{aligned} k &\geq 1 \text{FT} \\ B_{2k+1} &= 0 \\ B_0 &= 1, B_1 = -\frac{1}{2}, B_2 = \frac{1}{6}, B_4 = -\frac{1}{30} \\ B_6 &= \frac{1}{42}, B_8 = -\frac{1}{30}, B_{10} = \frac{5}{66} \\ B_{12} &= -\frac{691}{2730}, B_{14} = \frac{7}{6}, B_{16} = -\frac{3617}{510} \\ B_{18} &= \frac{43867}{798}, B_{20} = -\frac{174611}{330} \end{aligned}$

/*******************************/ 伯努利公式求幂方和


```
struct data{
      data(){}
                 _a,int _b) {a=_a,b=_b;}
      data (int
      void updata() {
               d=gcd(abs(a),abs(b));
           a/=d,b/=d;
}B[30];
int C[30][30];
void Init(){
      B[0] = data(1,1);
      B[1] = data(-1,2);
      B[2] = data(1, 6);
      B[4] = data(-1,30);
      B[6] =data(1,42);
      B[8] = data(-1,30);
      B[10]=data(5,66);
      B[12]=data(-691,2730);
      B[14]=data(7,6);
      B[16]=data(-3617,510);
B[18]=data(43867,798);
B[20]=data(-174611,330);
      for(int i=3;i<=21;i+=2)B[i]=data(0,1);</pre>
      C[0][0]=1;
      for(int i=1;i<=21;i++) {</pre>
           C[i][0]=C[i][i]=1;
           for (int j=1;j<i;j++){
    C[i][j]=C[i-1][j]+C[i-1][j-1];</pre>
data ans[30];
data mult(int cc,data x){
      int d=gcd(cc,x.b);
      cc/=d, x.b/=d;
      return data(cc*x.a,x.b);
```

```
data sub(data x,data y){
     data z(x.a*y.b-x.b*y.a,x.b*y.b);
z.updata();
data add(data x,int t){
     data z(x.a+x.b*t,x.b);
     z.updata();
     return z;
int main(){
     while(scanf("%d",&n)!=EOF){
          for (int i=0; i<=n; i++) {</pre>
                ans[i]=mult(C[n+1][i],B[i]);
           ans [n+1] = data(0,1);
          int m=1;
for (int i=0; i<=n; i++) {</pre>
                m=lcm (m,ans[i].b);
           ans[1]=add(ans[1],(n+1));
          printf("%d",m*(n+1));
for(int i=0;i<=n+1;i++){
                ans[i].a=m/ans[i].b*ans[i].a;
printf(" %d",ans[i].a);
          printf("\n");
     return 0;
/**************
```

差分序列

/*************/

 $\Diamond h_0, h_1...h_n...$ 为一数列 定义 $\Delta h_0, \Delta h_1...\Delta h_n$ 为新的序列并满足 $\Delta h_n = h_{n+1} - h_n$ 为原数列的一阶差分序列 同理,满足 $\Delta^p h_n = \Delta^{p-1} h_{n+1} - \Delta^{p-1} h_n$ 为序列的 p阶差分序列

2、 $h_n = a_p n^p + a_{p-1} n^{p-1} + \dots a_0$ 则对所有 $n \ge 0$, $\Delta^{p+1} h_n = 0$

差分序列的第0条对角线等于 $c_0, c_1...c_p, 0,0,0...$ 的序列的一般项满足 $h_n = c_0 \binom{n}{0} + c_1 \binom{n}{1} + ...c_p \binom{n}{p}$

4、

```
序列h_0, h_1...h_n...有一差分表,
第0条对角线
等于c_0, c_1, c_2, \ldots, c_p, 0, 0, \ldots
差分序列求幂方和
import java.util.*;
import java.io.*;
import java.math.BigInteger;
public class Main
   static BigInteger c[]=new BigInteger[105];
   static BigInteger h[][]=new
BigInteger[105][105];
   static BigInteger cal[]=new
BigInteger[105];
   static void Init(BigInteger n,int p){
      cal[0]=BigInteger.ONE;
      for(int i=1;i<=p;i++){</pre>
cal[i]=cal[i-1].multiply(n).divide(BigInteg
er.valueOf(i));
        n=n.subtract(BigInteger.ONE);
   public static void main(String[] args)
      Scanner cin = new Scanner(System.in);
      int T=cin.nextInt();
      while(T>0) {
         BigInteger
n=cin.nextBigInteger(),ans=BigInteger.ZERO;
         int m=cin.nextInt();
         Init(n.add(BigInteger.ONE),m+1);
         for(int i=0;i<=m;i++){</pre>
h[0][i]=BigInteger.valueOf(i).pow(m);
         c[0]=h[0][0];
         for(int i=1;i<=m;i++){</pre>
            for(int j=0;j<=m-i;j++){</pre>
h[i][j]=h[i-1][j+1].subtract(h[i-1][j]);
            c[i]=h[i][0];
         for(int i=1;i<=m+1;i++){</pre>
ans=ans.add(c[i-1].multiply(cal[i]));
         System.out.println(ans);
      }
/******************************/
            定积分(龙贝格)
/******************************/
double Function(double x) {
    return pow(x,3.0/2.0);
double Romberg(double a, double b) {
    double h,T[MAXN][MAXN],fz,t;
    int k,1,m,n,i,j;
    h=b-a;
```

```
T[0][0]=h*(Function(b)+Function(a))/2;
     for(l=1; 1<100; 1++) {
         n=1<< (1-1);
         h=h/2:
          for (k=0; k<n; k++) {
              t=a+(2*k+1)*h;
              fz=fz+Function(t);
          T[0][1] = (T[0][1-1])/2+h*fz;
          for (m=1; m<=1; m++) {</pre>
T[m][1-m] = (pow (4, m) *T[m-1][1-m+1]-T[m-1][1-m])
/(pow(4,m)-1);
          if(fabs(T[1][0]-T[1-1][0]) <=eps)</pre>
              break:
     return T[1][0];
/*************
           定积分(自适应辛普森)
/**************
double function (double x) {
     return x;
double simpson (double 1 , double r ) {
     return (function (1) + 4 * function ((1 +
r) / 2.0 ) + function (r )) * (r - 1) / 6.0;
double simpson (double 1 , double r , double
   , double eps) {
  double m = (1 + r) / 2.0;
     double L = simpson (1 , m) , R = simpson
(m , r);
if (fabs (L + R - all) <= 15 * eps) return
L + R + (L + R - all) / 15;
return simpson (l , m , L , eps / 2.0)
+ simpson (m , r , R , eps / 2.0);</pre>
double simpson (double 1 , double r , double
eps) {
     return simpson (1 , r , simpson (1 , r) ,
eps);
/******************************/
             线性规划(单纯型)
/******************************/
#include<cstring>
#include<cstdio
#include<algorithm>
using namespace std;
const int N=305;
const double INF=1e50;
class DanChun {
    下标从1开始
   sum(A[i,j]*X[j]) \le A[i][Num_X+Num_C+1];
   X[i] >= 0
   max(min) sum(C[i]X[i])
public:
    double
                 C[N1://目标函数
                 A[N][N];//系数矩阵,最后一列是常数
     double
                 TestNum[N]; // 检验数,第一个数是最
     double
大(或最小)检验数的坐标
                 TheTa[N]://theta
     double
     double
                 CB[N1:/
     int
                 XB[N1; //
                 X[N];//解
     double
                 Num_X;//变量个数
     int
     int
                 Num C;//方程(约束条件)个数
             MaxMin;//求的是最大值还是最小值?
     int
0:max; 1:min
     void Init(){
         memset (CB, 0, sizeof (CB));
     void Read() {
         scanf ("%d%d", &Num X, &Num C);
          scanf ("%d", &MaxMin);
          int BL=Num X+Num C;
```

```
for (int k=1; k<=Num X;</pre>
char op;
for(int j=1; j<=Num_X; j++)
scanf("%lf",&A[i][j]);</pre>
                scanf (" %c", &op);
                A[i][0] = (op==' < ')?0:1;
                A[i][Num_X+i]=1;
scanf("%lf", &A[i][BL+1]);
                XB[i]=Num X+i;
          }
     void GetTestNum() {
          int h=-1;//记录最大检验数的坐标
          for (int i=1; i<=Num_X+Num_C; i++) {</pre>
double temp=0;
for(int j=1; j<=Num_C; j++)
temp+=(CB[j]*A[j][i]);</pre>
                double ta=C[i]-temp;
                TestNum[i]=ta;
                if(h==-1||TestNum[h]<ta)h=i;</pre>
          TestNum[0]=h;
     bool Check() {
          if(MaxMin==0)
               for(int i=1; i<=Num_X+Num_C; i++)</pre>
{
                     if(TestNum[i]>0) return true;
               }
           } else {
                for(int i=1; i<=Num_X+Num_C; i++)</pre>
{
                     if(TestNum[i]<0) return true;</pre>
          return false;
     void Set_X() {
          The Ta [0] = INF;
          int j = TestNum[0] , i;//确定换位的坐
标
          for (int k=1; k<=Num_C; k++) {</pre>
                if(A[k][ (int) TestNum[0] ] != 0)
{
                     TheTa[k]
A[k][(int)(Num_X+Num_C+1)] /
A[k][ (int) (TestNum[0]) ];
                     if((TheTa[0] > TheTa[k]) &&
TheTa[k] > 0) {
                           The Ta [0] = The Ta [k];
               }
          1
           i = kk;
           CB[i]=C[j];
          XB[i]=j;
for(int x=1; x<=Num_C; x++) {</pre>
               if(x!=i) {
    double chushu = (-A[x][j]) /
(A[i][i]);
                     for(int y=1;
y<=Num_C+Num_X+1; y++) {
                          A[x][y] +=
A[i][v]*chushu;
                else if(x==i) {
                     double chushu = A[i][j];
for(int y=1;
y \le Num_C + Num_X + 1; y + +)  {
                          A[x][y] /= chushu;
          }
     void Set_Ans(){
          for (int i=1; i<=Num C;
i++) X [XB[i]] = A [i] [Num X+Num C+1];
     void Show_Ans(){
          Set_Ans();
```

```
i++) printf("X[%d]=%.21f\n",i,X[i]);
     double Get Val() {
          Set Ans();
           double ans=0;
          for (int
i=1; i \le Num_X; i++) ans+=X[i]*C[i];
          return ans;
}XXGH;
int main() {
     XXGH.Init();
     XXGH . Read () ;
     XXGH.GetTestNum();
     while(XXGH.Check()) {
          XXGH.Set_X();
          XXGH.GetTestNum();
     XXGH.Show_Ans();
printf("%.21f\n", XXGH.Get_Val());
     return 0;
/******************************/
               多项式乘法(FFT)
/*******************************/
double cof1[MAX], cof2[MAX];
int n, k, permutation[MAX];
struct complex {
    double r, v;
     complex operator + (complex& obj) {
          complex temp;
temp.r = r + obj.r;
temp.v = v + obj.v;
          return temp;
     complex operator - (complex& obj) {
          complex temp;
          temp.r = r - obj.r;
temp.v= v - obj.v;
          return temp;
     complex operator * ( complex& obj) {
          complex temp;
          temp.r = r*obj.r - v*obj.v;
temp.v = r*obj.v + v*obj.r;
          return temp;
} p1[MAX], p2[MAX], omiga[MAX], result1[MAX],
result2[MAX];
void caculate_permutation(int s, int interval,
int w, int next) {
     if(interval==n) {
          permutation[w] = s;
          return ;
     caculate_permutation(s,interval*2, w,
next/2);
     caculate_permutation(s+interval,
interval*2, w+next, next/2);
void fft(complex transform[], complex p[]) {
     int i, j, l, num, m;
complex temp1, temp2;
     for(i=0; i < n; i++) transform[i] =
p[ permutation[i] ] ;
     num = 1, m = n;
for(i=1; i<=k; i++) {
          for(j=0; j<n; j+=num*2)
for(l=0; l<num; l++) {
                     temp2 =
omiga[m*l]*transform[j+l+num];
                     temp1 = transform[j+1];
                     transform[j+1] = temp1 +
temp2;
                     transform[j+l+num] = temp1 -
temp2;
          num\star=2, m/=2;
     1
void polynomial by (int n1, int n2) {
     int i;
     double angle;
     k = 0, n = 1;
     while(n<n1+n2-1)k++,n*=2;
```

for (int i=1; i<=Num X;</pre>

```
for(i=0; i<n1; i++)p1[i].r = cof1[i],</pre>
p1[i].v = 0;
     while(i \le n)p1[i].r = p1[i].v = 0,
                                       i++;
     for(i=0; i<n2; i++)p2[i].r = cof2[i],
p2[i].v
     while(i<n)p2[i].r = p2[i].v = 0, i++;
     caculate_permutation(0,1,0,n/2);
     angle = Pi/n;
fft(result1,p1);
     fft(result2,p2);
for(i=0; i<n; i++)result1[i] =
result1[i]*result2[i];</pre>
     for(i=0; i<n; i++) omiga[i].v = -omiga[i].v;
     fft(result2, result1);
     for(i=0; i<n; i++) result2[i].r/=n;</pre>
     while(i&&fabs(result2[i].r) <EPS) i--;
     while(i \ge 0) cof1[i] = result2[i].r, i--;
```

莫比乌斯反演(定义)

有偏序集 (G, \leq) ,同时,存在函数:

$$F:G \to R$$

 $H:G \to R$

且俩足:

$$H(K) = \sum_{L \le K} F(L)$$

则有:

$$F(K) = \sum_{L \le K} H(L) \mu(L, K)$$

其中, $\mu(L,K)$ 为莫比乌斯函数。

举例

1、 对于集合上由包含关系导出的偏序集的莫比乌斯函数为: $\left(-1\right)^{|K| - |L|}$

2、 对于整数上由正处关系导出的偏序集的莫比乌斯函数

为:
$$\begin{cases} \mu(d,n) = \mu(n/d) = \\ 1 & \exists n/d = 1 \text{时} \\ (-1)^r & \exists n/d \& r \land r = r \end{cases}$$

$$\frac{1}{0} \quad \frac{1}{2} \quad \frac{1}{2$$

3、 对于线性有序集导出的偏序集的莫比乌斯函数为:

$$\mu(k,l) = \begin{cases} 1 & l=k \\ -1 & l=k+1 \\ 0 & 其他 \end{cases}$$

```
g(d) = \sum_{k=1,2,3...} f(d*k)
f(d) = \sum_{k=1,2,3...} g(d*k)\mu(k)
\sum_{d \in P} f(d) = \sum_{n=1,2,3...} g(n) \sum_{d \mid n \& \& d \in P} \mu(n/d)
P为题目对d的约束,
重定义sum(\mu(n)),可以在
O(n \log n) 筛出sum(\mu(n))
```

```
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<ctime>
using namespace std;
typedef long long ll;
const int inf=0x3f3f3f3f;
const int mr=1000005;
int smiu[mr],pr[mr],miu[mr],pn;
bool notp[mr];
void getmiu()
     pn=0;
     miu[1]=1;
     memset (notp, 0, sizeof(notp));
for(int i=2; i<mr; i++) {</pre>
          if(!notp[i]) {
                pr[pn++]=i;
                miu[i]=-1;
           for (int j=0; j<pn && i*pr[j]<mr; j++)</pre>
                int k=i*pr[j];
                \min[k]=(i%pr[j])?-\min[i]:0;
                notp[k]=1;
                if(i%pr[j]==0) break;
          }
     smiu[0]=0;
     for(int i=1;i<mr;i++)</pre>
          smiu[i]=smiu[i-1]+miu[i];
void getmiuPime() {//计算gcd(x,y)=Prime 时专用,
重定义 miu 以及 smiu, 计算时调用 work (a,b)
     memset(cnt_p,0,sizeof(cnt_p));
     memset(cnt_p2,0,sizeof(cnt_p2));
     smiu[0]=smiu[1]=0;
for(int i=2; i<N; i++) {</pre>
          if(!cnt_p[i])
                pr[pn++]=i;
                cnt_p[i]=1;
           for (int j=0; j<pn && i*pr[j]<N; j++)</pre>
{
                int k=i*pr[j];
                \verb"cnt_p[k]=cnt_p[i]+1";
cnt_p2[k]=cnt_p2[i]+(i%pr[j]==0);
                if(i%pr[j]==0) {
                     break:
           int t:
          if(cnt_p2[i]>1) t=0;
           else
if(cnt_p2[i]==1)t=((cnt_p[i]-1)&1)?-1:1;
t=((cnt_p[i]-1)&1)?-cnt_p[i]:cnt_p[i];
          smiu[i]=smiu[i-1]+t;
ll work(int a,int b){//计算<[1..a],[1..b]>中,
acd=1的个数
```

```
char comp(char a, char b) {
     //当 a==b 时, ans=Sum(phi[1..a])*2-1;
                                                         int i,j;
for(i=0; i<7; i++)</pre>
     int n=min(a,b),d1,d2,n1,n2,nn;
     ll ans=0;
                                                              if(a==op[i])
     for(int i=1,nn;i<=n;i=nn+1) {</pre>
                                                                  break;
         d1=a/i,d2=b/i;
                                                          for(j=0; j<7; j++)</pre>
         n1=a/d1, n2=b/d2;
                                                              if(b==op[j])
         nn=min(n1, n2);
                                                                  break:
         ans+=(11)d1*d2*(smiu[nn]-smiu[i-1]);
                                                         return cp[i][j];
     return ans;
                                                     int cac(char s[]) {
1
                                                          top_char=top_int=0;
ll work(int a,int b,int c){//计算
                                                         st_char[top_char++]='\0';
<[1..a],[1..b],[1..c]>中, gcd=1的个数
                                                         int i=0, v, a, b;
char ch;
n=min (min (a,b),c),d1,d2,d3,n1,n2,n3,nn;
                                                         bool flag=true;
     11 ans=0;
for(int i=1;i<=n;i=nn+1){</pre>
         d1=a/i,d2=b/i,d3=c/i;
                                                    while (s[i] !=' \0' | |st_char[top_char-1] !=' \0') {
         n1=a/d1, n2=b/d2, n3=c/d3;
                                                              if(s[i]==' '||s[i]=='\t') {
         nn=min (min (n1,n2),n3);
                                                                   i++:
                                                                   continue;
                                                              } else if(isdigit(s[i])) {
   v=0;
ans+=(11) d1*d2*d3*(smiu[nn]-smiu[i-1]);
                                                                   while(isdigit(s[i])) {
     return ans:
                                                                         v=v*10+s[i]-'0
                                                                        i++:
ll lookfor(int a,int b,int d){//计算
<[1.a],[1.b]>中, gcd=d的个数
if(a=0||b==0||d==0)return 0;
                                                                   st_int[top_int++]=v;
                                                              } else {
     return work(a/d,b/d);
                                                     switch(comp(st_char[top_char-1],s[i])) {
ll lookfor(int a,int b,int c,int d){//计算
                                                                   case
<[1..a],[1..b],[1..c]>中, gcd=d 的个数
if(a=0||b==0||c==0||d==0)return 0;
                                                                        st_char[top_char++]=s[i++];
                                                                        break;
     return work(a/d,b/d,c/d);
                                                                   case '=':
                                                                        top char--;
ll solve(int a,int b,int c){//计算x,y,z方向各有为a,b,c个点的长方体从一个项点看能够看到的整点数
                                                                        i++;
                                                                        break;
     a--,b--,c--;
                                                                        ch=st char[--top char];
     return
                                                                        b=st_int[--top_int];
a=st_int[--top_int];
3+work(a,b,c)+work(a,c)+work(a,b)+work(b,c);
int main() {
                                                                        v=cal(a,ch,b);
     int n;
                                                                        st_int[top_int++]=v;
     getmiu();
                                                                        break;
     scanf("%d",&n);
                                                                   }
     while(scanf("%d",&n)!=EOF){
                                                              }
         printf("%11d\n", solve(n+1, n+1, n+1));
                                                          return st_int[0];
     return 0;
                                                     /*******************************/
                                                                     模线性方程组
                 表达式求值
                                                     /*******************************/
/******************************/
                                                     //x=B[i](mod M[i]), 不要求 M 互质
char op[8] = {'+','-','*','/','(',')','\0'};
                                                     ll solve(ll B[], ll M[], int num) {
char cp[7][7]= {
                                                          int i;
     flag = false;
                                                         11 m1 = M[0], m2, b1 = B[0], b2, bb, d,
                                                     t, k, x, y;
                                                          for (i = 1; i < num; i++) {
    m2 = M[i], b2 = B[i];
     bb = b2 - b1;

d = Egcd (m1, m2, x, y);
                                                              if (bb % d) {
char st char[N];
                                                                   flag = true;
int st_int[N],top_char,top_int;
                                                                   break;
int cal(int a, char op, int b) {
     switch(op) {
                                                              k = bb / d * x;
     case '+':
                                                              t = m2 / d;
if (t < 0) t = -t;
         return a+b;
                                                              k = (k % t + t) % t;
b1 = b1 + m1*k;
m1 = m1 / d * m2;
         break;
         return a-b;
         break;
                                                         if (flag)
         return a*b;
                                                              return -1;
         break;
                                                          return b1;
         return a/b;
                                                    break;
                                                                   Lucas-组合数取模
     default:
         while (1) puts("You Will Output Limit
                                                     /*****************************/
Exceeded\n");
                                                     //mod必须是质数
                                                    const int mod=10007;
```

```
int a[mod];
                                                 11 tot[100], num[100], top;
void init() {
    int i:
                                                 void solve(ll n) {
    a[0]=1;
                                                     srand(time(0));
    for(i=1; i < mod; i++)</pre>
                                                     top=0;
        a[i] = (a[i-1]*i) % mod;
                                                     if (miller rabin(n,6)) {
int choose(int n,int m) {
                                                          num[0]=n;
    if(m>n) return 0;
                                                          tot[0]=1;
    else if(n==m)return 1;
                                                          top=1;
     int nn=a[n], mm=(a[m] *a[n-m]) %mod;
                                                         return;
    int d=gcd(nn,mm);
    nn/=d;
                                                     findFactor(n,107);
for(int i=0; i<=fac_top; i++) {</pre>
    mm/=d:
     int x,y;
    Egcd (mm, mod, x, y);
                                                          if (n%factor[i]==0) {
    x=(x+mod) %mod;
                                                              num[top]=factor[i];
    return (x*nn) %mod;
                                                              tot[top]=0;
                                                              while(n%factor[i]==0) {
/*******************************/
                                                                  tot[top]++;
              快速组合数取模
                                                                  n/=factor[i];
top++;
                                                         }
mod不一定是质数
                                                     }
init:
getpri()
**/
                                                 /**************
ll count(ll n,ll prime) {
                                                             递归求等比数列之和
    ll ret=0;
    while(n/prime) {
                                                 /***********************************/
        ret += n/prime;
                                                 long long sum(long long p,long long n) //递归二
        n/=prime;
                                                 分求 (1 + p + p^2 + p^3 +...+ p^n) % mod
    return ret;
                                                    //奇数二分式 (1 + p + p^2 +...+ p^(n/2)) * (1 +
                                                p^(n/2+1))
11 choose(ll n,ll m) {
                                                                       //偶数二分式 (1 + p + p^2
                                                   if(n==0)
    11 ans=1,cnt;
                                                 +...+ p^{(n/2-1)} * (1+p^{(n/2+1)}) + p^{(n/2)}
    for(int i=0; i<pn&&pr[i]<=n; i++) {</pre>
                                                       return 1;
                                                    if(n%2) //n 为奇数,
cnt=count(n,pr[i])-count(m,pr[i])-count(n-m,pr
                                                      return
                                                 (sum(p,n/2)*(1+power(p,n/2+1)))*mod;
         ans=ans*fastMod(pr[i],cnt)%mod;
                                                           //n 为偶数
         if(ans==0)break:
                                                      return
                                                 (sum(p,n/2-1)*(1+power(p,n/2+1))+power(p,n/2))
                                                 %mod;
/**********************************/
             整数的质因数分解
                                                                 最优子区间
/********************************/
                                                 /******************************/
ll factor [100], fac top = -1;
11 pollard_rho(11 n, int c) {
    11 x, y, d, i = 1, k = 2;
                                                 //给定长为 n 的数组, 求一个区间使得该区间的平均值最大, 要
                                                 求区间长度至少为m
                                                 11 cow[N],dp[N],num[N],sum[N];
int main() {
    x = rand()%(n-1)+1;
    y = x;
                                                     int n,m,i;
    while(true) {
                                                     ll ans,len; scanf("%d%d",&n,&m);
        i++;
         x = (mulmod(x,x,n) + c) % n;
                                                     sum[0]=0;
                                                     for(i=1; i<=n; i++) {
         d = gcd(y-x, n);
                                                         scanf("%lld",cow+i);
         if(1 < d && d < n)
                                                          sum[i]=sum[i-1]+cow[i];
             return d;
         if ( y == x)
                                                     dp[m]=sum[m];
             return n;
                                                     num[m]=m;
         if(i == k) {
                                                     ans=dp[m];
             y = x;
                                                     for(i=m+1; i<=n; i++)</pre>
             k <<= 1;
                                                         dp[i]=dp[i-1]+cow[i];
num[i]=num[i-1]+1;
                                                          if(dp[i]*m<(sum[i]-sum[i-m])*num[i])</pre>
1
                                                 {
void findFactor(ll n,int k) {
                                                              dp[i] = sum[i] - sum[i-m];
    if (n==1) return;
                                                              num[i]=m;
    if (miller rabin(n, 6)) {
        factor[++fac top] = n;
                                                          if(ans*num[i]<dp[i]*len) {</pre>
                                                              ans=dp[i];
         return:
                                                              len=num[i];
    11 p = n;
    while(p >= n)
                                                     printf("%lld\n",ans/len);
        p = pollard rho(p,k--);
                                                     return 0:
    findFactor(p,k);
                                                 /******************************/
    findFactor(n/p,k);
```

高精度

```
const int MAXL = 10000;
struct BigNum {
      int num[MAXL];
int len;
int Comp(BigNum a, BigNum b) {
             i;
      if(a.len != b.len) return (a.len > b.len) ?
BigNum IntToBigNum(int a) {
      BigNum c;
       c.len =0;
       int i=0;
       while(a>0) {
           c.num[i] = a % 10;
            a=a/10;
       c.len=i;
       return c;
          Add(BigNum a, BigNum b) { //a+b
      BigNum c;
       int i, len;
len = (a.len > b.len) ? a.len : b.len;
       memset(c.num, 0, sizeof(c.num));
for(i = 0; i < len; i++) {</pre>
            c.num[i] += (a.num[i]+b.num[i]);
if(c.num[i] >= 10) {
    c.num[i+1]++;
                   c.num[i] -= 10;
       if(c.num[len]) len++;
       c.len = len;
return c;
BigNum Sub (BigNum &a, BigNum &b) {//a-b
       BigNum c;
       int i, len;
len = (a.len > b.len) ? a.len : b.len;
      ren = (a.len > b.len) ? a.len : b.;
memset(c.num, 0, sizeof(c.num));
for(i = 0; i < len; i++) {
    c.num[i] += (a.num[i]-b.num[i]);
    if(c.num[i] < 0) {
        c.num[i] += 10;
        c.num[i+1]--;
}</pre>
       while(c.num[len-1] == 0 \&\& len > 1) len--;
       if(c.num[len]) len++;
       c.len = len;
return c;
BigNum Mull(BigNum a, int b) { //a*b
       BigNum c;
       int i, len;
len = a.len;
       memset(c.num, 0, sizeof(c.num));
       if(b == 0) {
           c.len = 1;
return c;
      for(i = 0; i < len; i++) {
    c.num[i] += (a.num[i]*b);
    if(c.num[i] >= 10) {
        c.num[i+1] = c.num[i]/10;
}
                  c.num[i] %= 10;
            }
       while(c.num[len] > 0) {
    c.num[len+1] = c.num[len]/10;
            c.num[len++] %= 10;
      c.len = len;
return c;
BigNum Mul2(BigNum a, BigNum b) { //a*b
int i, j, len = 0;
BigNum c;
```

```
memset(c.num, 0, sizeof(c.num));
      for(i = 0; i < a.len; i++)
    for(j = 0; j < b.len; j++) {</pre>
                 c.num[i+j] +=
(a.num[i]*b.num[j]);
                if(c.num[i+j] >= 10) {
    c.num[i+j+1] +=
c. num [i+j]/10;
                       c.num[i+j] %= 10;
      len = a.len+b.len;
      while(c.num[len-1] == 0 \&\& len > 1) len--;
      if(c.num[len]) len++;
      c.len = len;
return c;
//高精度除以低精度,除的结果为c, 余数为f
void Div1 (BigNum &a, int &b, BigNum &c, int &f)
           i, len = a.len;
      memset(c.num, 0, sizeof(c.num));
      f = 0;
      for(i = a.len-1; i >= 0; i--) {
    f = f*10+a.num[i];
            c.num[i] = f/b;
            f %= b;
      while(len > 1 && c.num[len-1] == 0) len--;
      c.len = len;
void Mul10(BigNum &a) { //a*10
      int i, len = a.len;
for(i = len+1; i >= 1; i--)
    a.num[i] = a.num[i-1];
      a.num[i] = 0;
      len++;
      //if a == 0
      while(len > 1 && a.num[len-1] == 0) len--;
//高精度除以高精度,除的结果为 c,余数为 f
void Div2(BigNum &a, BigNum &b, BigNum &c, BigNum
&f) {
      int i, len = a.len;
memset(c.num, 0, sizeof(c.num));
memset(f.num, 0, sizeof(f.num));
      f.len = \frac{1}{i};
for(i = len-1; i >= \frac{0}{i}; i--) {
           Mul10(f);
f.num[0] = a.num[i];
            while (Comp(f, b) >= 0) {
f = Sub(f, b);
                 c.num[i]++;
           }
      while(len > 1 && c.num[len-1] == 0)
      c.len = len;
void print(BigNum &a) {
      int i;
for(i = a.len-1; i >= 0; i--)
           printf("%d", a.num[i]);
      puts ("");
//将字符串转为大数存在 BigNum 结构体里面
BigNum ToNum(char *s) {
   int i, j;
      BigNum a;
a.len = strlen(s);
      for(i = 0, j = a.len-1; s[i] != '\0'; i++,
           a.num[i] = s[j]-'0';
      return a;
void Init(BigNum &a, char *s, int &tag) {
    memset(a.num, 0, sizeof(a.num));
    int i = 0, j = strlen(s);
    if(s[0] == '-') {
           j--;
            i++;
           tag*= -1;
      a.len = j;
for(; s[i] != '\0'; i++, j--)
           a.num[j-1] = s[i]-'0';
```

```
第K个与m互质的数
/******************************/
int p[1000000],pn;
void solve(int m) {
    p[0]=1;
     for(int i=2; i<m; i++)</pre>
         if(gcd(i,m)==1)
              p[pn++]=i;
     return;
int main() {
     while(scanf("%d%d",&m,&k)!=EOF) {
          solve (m):
printf("%lld\n",(ll)p[(k-1)%pn]+(k-1)/pn*m);
行列式计算
/**********************************/
int mat[500][500];
int Gauss(int n) {
     int x,y;
for (int i = 1; i < MOD; i++) {</pre>
          Egcd(i,MOD,x,y);
         ni[i] = (x+MOD) % MOD;
     for (int i = 0; i < n; i++) {
          for (int j = 0; j < n; j++)</pre>
              mat[i][j] = (mat[i][j] + MOD) %
MOD;
     int col = 0, k;
     int
        ans = 1;
     for(k = 0; k < n && col < n; ++k, ++col)</pre>
          if(mat[k][col] == 0) {
   for(int i = k + 1; i < n; ++i)</pre>
{
                   if(!(mat[i][col] == 0)) {
                        for (int j = col; j < n;
++j) swap(mat[k][j], mat[i][j]);
                        ans *= -1;
                        break;
              }
          int x = mat[k][col];
          ans
              *= x;
          ans %= MOD:
                 MOD;
          ans +=
          ans
                  MOD;
          for (int i = k + 1; i < n; ++i) {
  int y = mat[i][col];
  if(x == 0 || y == 0) continue;
  int d = gcd(abs(x), abs(y)), lcm =</pre>
abs(x * y / d);
              int tx = lcm / x,ty = lcm / y;
for(int j = col; j < n; ++j) {
                   mat[i][j] = -tx * mat[k][j]
+ ty * mat[i][j];
                   mat[i][j] %= MOD;
mat[i][j] = (mat[i][j] +
MOD) % MOD;
               ans = (ans * ni[ty]) % MOD;
              ans = (ans + MOD) % MOD;
          1
     ans %= MOD;
     ans += MOD;
     ans %= MOD:
     return ans:
/*************
          排列 P(n,m)最后非零位
```

int getnum(int n,int p) {

int sum=0, val=p;

/**************

```
while(n/val&&val>0) {
         sum=sum+(n/val);
         val=val*p;
     return sum;
int getx(int n,int p) {
     int i,j,sum=0;
     for(i=n; i; i>>=1) //将2,4,6,8,10...变为
        for(j=i; j; j/=5) { //将
5,10,15,25,30.....变为1,2,3,4,5.
             sum = sum + j/10 + (j%10 >= p);
     return sum;
int num[10];
int po[4][4]=
{6,2,4,8,1,3,9,7,1,7,9,3,1,9,1,9};
int main() {
     int n,m;
     while(~scanf("%d%d",&n,&m)) {
         m=n -m :
         num [2] = getnum (n, 2) - getnum (m, 2);
         num [5] =getnum (n, 5) -getnum (m, 5);
            ans;
         if(num[5]>num[2]) {
             printf("5\n");
             continue;
         } else if(num[5]==num[2]) {
             ans=1;
         } else {
             ans=po[0] [(num[2]-num[5])%4];
         num [3] =getx (n,3) -getx (m,3);
         num [7] =getx (n,7) -getx (m,7);
         num[9] = getx(n,9) - getx(m,9);
         ans=ans*po[1][num[3]%4]%10;
         ans=ans*po[2][num[7]%4]%10;
ans=ans*po[3][num[9]%4]%10;
         printf("%d\n",ans);
     return 0;
/**********************************/
                 取石子游戏
/***********************************/
1、 N 堆石子,每次选择一堆取走若干个,必胜态为
    n_1 \wedge n_2 \dots \wedge n_N \neq 0
2、 N 堆石子,每次选择一堆取走最多 m个,必胜态为
    [n_1\%(m+1)]^{n_2}(m+1)]....^{n_N}(m+1) \neq 0
    N 堆石子,每次选择最多 k 堆取走若干个,必胜态,对每一位分
    别相加,然后再%(k+1),不全为0。
   2 堆石子,每次选择一堆取走任意个或者选择两堆取走相同个,
    必败态为(a,b),其中\Theta*(b-a)下取整等于a,\Theta为黄金分割比
    \sqrt{5} + 1
   Anti-nim 游戏
    [定义]
    (1)桌子上有 N 堆石子,游戏者轮流取石子。
    (2)每次只能从一堆中取出任意数目的石子,但不能不取。
    (3)取走最后一个石子者败。
    [结论]
    先手必胜当且仅当:
    (1)所有堆的石子数都为1 且游戏的 SG 值为0;
    (2)有些堆的石子数大于1 且游戏的 SG 值不为0。
    [定理] (SJ 定理)
        对于任意一个 Anti-SG 游戏,如果我们规定当局面中所
    有的单一游戏的SG值为0时,游戏结束,则先手必胜当且仅当:
     (1) 游戏的SG 函数不为0 且游戏中某个单一游戏的SG 函数大
    于1;(2)游戏的SG函数为0且游戏中没有单一游戏的SG函数
    大于1。
   Every-nim 游戏
    [定义]
        Every-SG 游戏规定,对于还没有结束的单一游戏,游戏
```

者必须对该游戏进行一步决策;

Every-SG 游戏的其他规则与普通 SG 游戏相同

对于Every-SG 游戏先手必胜当且仅当单一游戏中最大 step为奇数。(对于SG 值为0 的点,我们需要知道最快几步能 将游戏带入终止状态,对于SG 值不为0的点,我们需要知道最

```
慢几步游戏会被带入终止状态, 我们用函数来表示这个值。
                                                                  j=mid;
else
                                                                      i=mid+1
                                u为终止状态
                                                             m=m-c[j-1];
         \max(step(v))+1 SG(u)>0^v为u后继^SG(v)
                                                              k=n-j+1+m;
step(u) =
                                                              if(j!=n)
         \min(step(v)) + 1
                             SG(u)=0^v为u后继
                                                                  printf("1");
                                                              for(i=2; i<=n-j; i++)</pre>
/***************
                                                                  printf(" %d",i);
                                                              if(j!=n)
           Nim 游戏必胜方法数
                                                                 printf(" %d",k);
/******************************/
                                                                  printf("%d",k);
int a[1005];
                                                              for(i=n; i>n-j; i--) {
int main() {
    int n,i,res,cnt;
                                                                  if(i!=k)
                                                                     printf(" %d",i);
    while(scanf("%d",&n)&&n) {
         res=0;
         for (i=0; i<n; i++) {
    scanf("%d",a+i);
                                                              printf("\n");
                                                         }
             res^=a[i];
                                                if(res==0) {
             printf("%d\n",0);
                                                              区间最大权选取
             continue;
                                                /******************************/
         for (cnt=i=0; i<n; i++) {
                                                //每个区间有权值,选取最多不重合区间使得权值最大
            if((a[i]^res)<a[i])//异或优先级最
                                                struct point {
低,注意加括号
                                                     int x,y,c;
                                                     bool operator<(const point next)const {</pre>
                                                        if(y!=next.y)
    return y<next.y;</pre>
        printf("%d\n",cnt);
    return 0:
                                                             return x<next.x;
} po[1005];
                                                int dp[1005];
                 猜数游戏
                                                int main() {
int n,m,r,i,j,k,ans=0;
                                                    scanf("%d%d%d",&n,&m,&r);//每个区间必须至少相
//给定可以猜的次数以及可以超出数的次数,求数范围的最大
                                                距っ
值, 使得存在必胜态
                                                     for(i=1; i<=m; i++) {</pre>
int dp[35][35];
int main() {
    int i,j,k;
                                                scanf ("%d%d%d", &po[i].x, &po[i].y, &po[i].c);
    memset (dp,0,sizeof(dp));
    for(i=1; i<=30; i++)</pre>
                                                     sort (po+1, po+m+1);
    dp[i][0]=i;
for(i=1; i<=30; i++) {</pre>
                                                     for(i=1; i<=m; i++) {
    dp[i]=po[i].c;</pre>
        for (j=1; j<=30; j++) {</pre>
                                                     ans=dp[1];
                                                     for(i=2; i<=m; i++) {
dp[j][i]=dp[j-1][i-1]+dp[j-1][i]+1;
                                                         for (j=1; j<i; j++) {
    if (po[i].x>=po[j].y+r)
    k=0;
    while(scanf("%d%d",&i,&j)) {
                                                dp[i]=max(dp[i],dp[j]+po[i].c);
         if(i==0&&j==0)
            break;
                                                         ans=max(ans,dp[i]);
                                                     printf("%d\n",ans);
                                                     return 0;
printf("Case %d: %d\n",++k,dp[i][j]);
    return 0;
                                                /**************
/**************
                                                               第n个回文数
          逆序数为 m 的最小序列
                                                //从1开始
                                                11 dp[100] = {0,9,9,90};
11 sum[100] = {0,9,18,108};
.
11 c[50005];
int main() {
    int i,j,mid,k,n,m;
                                                11 po[100] = \{1,10,100,1000\};
    c[0] = c[1] = 0;
                                                int cac(ll x) {
    for(i=2; i<=50000; i++)
                                                     int i:
                                                     for(i=1; sum[i] < x; i++);</pre>
        c[i]=c[i-1]+i-1;
                                                     return i;
    while(scanf("%d%d",&n,&m)) {
   if(n==-1&&m==-1)
                                                void solve(ll k) {
            break;
                                                    if(k<1011) {
    printf("%d\n",(int)k);</pre>
         if(m==0) {
             for(i=1; i<n; i++)</pre>
             printf("%d ",i);
printf("%d\n",n);
                                                         return:
                                                     } else if(k<=1811) {
                                                         printf("%d%d\n",(int)k-9,(int)k-9);
             continue;
         } else {
             for(i=2,j=n; i<j;) {
    mid=(i+j)>>1;
                                                     int i.len.ll.stack[100].top=0;
```

if(c[mid]>=m)

```
11=len=cac(k);
                                                                           \sum_{i=1}^{n} \gcd(i,n)
     k=k-sum[ll-1]-1;
top=ll=(ll+1)/2;
     stack[0]=(k/po[ll-1])+1;
k=k-po[ll-1]*(stack[0]-1);
                                                        /**************
     while(k) {
                                                        init.
                                                        getpri()
**/
          stack[--11]=k%10;
          k/=10;
                                                        ll work(ll n) {
     while(11>1)
                                                             ll ans=1,x=n;
          stack[--11]=0;
                                                             for(int i=0,cnt; i<pn&&pr[i]*pr[i]<=x; i++)</pre>
     if(len&1) {
          for (i=0; i<top; i++)
    printf("%d",stack[i]);</pre>
                                                                  if(x%pr[i]==0) {
                                                                       cnt=0;
          for (i=top-2; i>=0; i--)
    printf("%d", stack[i]);
                                                                        while (x%pr[i]==0) {
                                                                             x/=pr[i];
          printf("\n");
                                                                             cnt++;
     } else {
          for (i=0; i<top; i++)</pre>
          printf("%d",stack[i]);
for(i=top-1; i>=0; i--)
    printf("%d",stack[i]);
                                                        ans*= (cnt*fastmod(pr[i], cnt-1, mod)*(pr[i]-1)+f
                                                        astmod(pr[i],cnt,mod));
          printf("\n");
                                                                  }
                                                             }
int main() {
                                                                  ans *=2 *x -1;
     int i;
     for(i=4; i<20; i++) {
                                                             returna ans;
          if(i&1)
               dp[i]=dp[i-1]*10;
               dp[i]=dp[i-1];
                                                        /*************
          sum[i]=dp[i]+sum[i-1];
          po[i]=po[i-1]*10;
     11 n;
                                                        while(scanf("%lld",&n)!=EOF&&n) {
          solve(n);
                                                        ll work(ll n,ll k) {
                                                             11 ans=0,d,next,low,high;
                                                             if(n>k) {
                                                                  ans=(n-k)*k;
/******************************/
                                                                  n=k ;
                权值最大子矩形
                                                             d=k/n;
/**********************************/
                                                             while(n>1) {
                                                                  next=k/(d+1);
int n,m,left[1002],s[1002],right[1002];
                                                                  if(n==next) {
int getmax() {
   int i,j,tmax=0;
                                                                       ans+=k%n;
     left[0]=0;
                                                                       d=k/n;
     right[m+1]=0;
                                                                       continue;
     for(i=1; i<=m; i++) {</pre>
          if(s[i]==0) continue;
                                                                  low=k%n;
                                                                  high=k%(next+1);
          while(s[j]>=s[i])j=left[j];
                                                                  ans+= (low+high) * (n-next)/2;
          left[i]=j;
                                                                  d++:
                                                                  n=next;
     for(i=m; i>=1; i--) {
    if(s[i]==0) continue;
                                                             return ans;
          j=i+1;
          while(s[j]>=s[i])j=right[j];
                                                        right[i]=j;
                                                                         a^x \equiv b \pmod{c}
     for(i=1: i <=m:
i++) tmax=max(tmax,s[i]*(right[i]-left[i]-1));
                                                        /***********
     return tmax;
                                                        typedef struct num {
int main() {
                                                             int ii, value;
     int T:
                                                        } num;
     for(scanf("%d",&T); T; T--) {
                                                        num Num[nmax];
          int i,j,k,t,tmax=-inf;
                                                        bool cmp (num a, num b) {
                                                             return a.value<b.value;
          scanf ("%d%d", &n, &m);
          memset(s,0,sizeof(s));
          for (i=1; i<=n; i++) {</pre>
                                                        //ax=b (mod n)
               for(j=1; j<=m; j++) {</pre>
                                                        int inval(int a, int b, int n) {
                     char ch;
                                                             LL res,x,y;
                     scanf(" %c", &ch);
if(ch=='F')s[j]++;
                                                             Egcd(a, n,x,y);
res = (LL) x;
res = res * b;
                     else s[j]=0;
                                                             res = (res % n + n) % n;
                tmax=max(tmax,getmax());
                                                             return (int) res;
          1
          printf("%d\n",tmax);
                                                        int bfindNum(int key, int n) {
   int left, right, mid;
                                                             left = 0, right = n;
while (left <= right) {
    mid = (left + right) >> 1;
    if (Num[mid].value == key)
     return 0;
/*******************************/
```

```
return Num[mid].ii;
          else if (Num[mid].value > key)
               right = mid - 1;
                                                                 1
          else
                                                             return c:
               left = mid + 1;
                                                        void divn() {
     return -1:
                                                             int nn=n;
                                                             top=0;
void baby_step_giant_step(int a, int b, int c)
                                                             int lim=(int)sqrt((double(nn)))+1;
                                                             for(int i=0; pr[i]<=lim; i++) {
    if(nn%pr[i]==0) {</pre>
     int i, j, te, d, cd, aa, ttemp;
LL temp, tem;
if (b >= c) {
    puts("No solution");
                                                                       fac[top]=pr[i];
                                                                       num[top]=0;
                                                                       while (nn%pr[i]==0)
          return:
                                                                            num[top]++,nn/=pr[i];
                                                                       top++;
     for (i = 0, temp = 1 % c, tem = temp; i
< nnum; i++, temp = temp * a % c) {
   if (temp == b) {</pre>
                                                             if(nn>1)
               printf("%d\n", i);
                                                                  fac[top] = nn, num[top++]=1;
               return;
          }
                                                        int phi(int x) {
                                                             int i, res=x;
     cd = 0;
                                                             for (i=0; pr[i]<(int) sqrt((double)x)+1;
     while ((d = gcd(a, c)) != 1) {
   if (b % d) {
                                                                  if(x%pr[i]==0) {
               puts("No solution");
                                                                       res=res/pr[i]*(pr[i]-1);
                                                                       while (x%pr[i]==0) x/=pr[i];
               return;
          }
                                                             if(x>1) res=res/x*(x-1);
          cd++;
          c /= d, b /= d;
tem = tem * a / d % c;
                                                             return res;
                                                        void solve(int r) {
     te = (int) (sqrt(c * 1.0) + 0.5);
                                                             int res=phi(n/r);
for (i = 0, temp = 1 % c; i <= te; i++, temp = temp * a % c) {
    Num[i].ii = i;
                                                             MAT mt;
                                                             mt.init();
                                                             for(int i=1; i<=m; i++)
    mt.bas[i][i]=1;</pre>
          Num[i].value = (int) temp;
                                                             for(int i=1,tp=r; tp; i++,tp>>=1)
                                                                  if(tp&1) mt=mul(mt, mat[i]);
     sort(Num, Num+te+1, cmp);
     for (i = 0; i <= te; i++, tem = tem * aa %
                                                             for(int i=1; i<=m; i++) {</pre>
                                                                  ans+=mt.bas[i][i]*res;
          ttemp = inval(tem, b, c);
                                                                  if(ans>=mod)ans%=mod;
          if (j != −1) {
                                                        void dfs(int id,int sum) {
                    printf("%d\n", i * te + j +
                                                             if(id==top) {
cd);
                                                                 solve (sum);
                    return;
                                                                  return;
               }
                                                             } else {
                                                                  dfs(id+1,sum);
          }
                                                                  for (int ct=0; ct<num[id]; ct++)</pre>
     puts ("No solution");
                                                                      dfs(id+1,sum=sum*fac[id]);
                                                             }
void solve(int a, int b, int c) {
                                                       1
                                                       void init() {
    for(int i=2; i<50; i++)</pre>
     baby_step_giant_step(a, b, c);
                                                                  mat[i]=mul(mat[i-1], mat[i-1]);
/**********************************/
                                                        int main() {
                                                             getpri();
               带限制的项链计数
                                                             for(scanf("%d",&T); T; T--) {
//m种珠子凑成长度为 n的项链,不考虑对称,有 k 对珠子不能
                                                                  scanf ("%d%d%d",&n,&m,&k);
                                                                  ans=0;
                                                                  for (int i=1; i<=m; i++)
    for(int j=1; j<=m; j++)</pre>
const LL mod=9973;
int fac[102], num[102];
int top,n,m;
                                                                          mat[1].bas[i][j]=1;
                                                                  for (int a,b,i=0; i<k; i+
    scanf("%d%d",&a,&b);</pre>
T.T. ans:
struct MAT {
    LL bas[13][13];
     void init() {
                                                       mat[1].bas[a][b]=mat[1].bas[b][a]=0;
          memset (bas, 0, sizeof(bas));
                                                                  init();
} mat[50];
                                                                  divn();
MAT mul(MAT a, MAT b) {
                                                                  dfs (0,1);
     MAT c;
                                                                  printf("%d\n",ans*getni()%mod);
     c.init();
     for(int i=1; i<=m; i++)
    for(int k=1; k<=m; k++) {</pre>
                                                             return 0:
               if(a.bas[i][k]) {
                                                        /*************
                    for(int j=1; j<=m; j++) {</pre>
                                                                整数拆分的最大的最小公倍数
c.bas[i][j]+=a.bas[i][k]*b.bas[k][j];
                                                        /******************************/
                         if(c.bas[i][j]>=mod)
                                                        double lod[500][N];
                               c.bas[i][j]%=mod;
```

int dp[500][N],n,mod;

```
inline int mul(int a,int b) {
                                                   void down(int a[],int i,int n) {
    ll c=(ll)a*b;
                                                        int t=a[i],u=i*2;
                                                        while(u+1<=n) {
    if(c>=mod)return c%mod;
                                                             u=a [u] <a [u+1] ?u:u+1;
    return c:
                                                             if(t<=a[u])
int main()
                                                                 break;
    getpri();
                                                             a[i]=a[u];
     while(scanf("%d%d",&n,&mod)!=EOF) {
                                                             i=u;
                                                            u=i*2;
         for (int i=0; i<=n; i++) {</pre>
              dp[0][i]=1;
              lod[0][i]=0.0;
                                                        a[i]=t;
         int ans=1;
                                                   for (int i=0, p=pr[i]; i<pn&&p<=n;</pre>
                                                                     AC 自动机
p=pr[++i1) {
              for(int j=0; j<=n; j++) {
    lod[i+1][j]=lod[i][j];</pre>
                                                   /******************************/
                                                   #define maxchar 26
                   dp[i+1][j]=dp[i][j];
                                                   #define MAX 1000001
                                                   struct Node {
              for(int j=p; j<=n; j++) {
     double</pre>
                                                        int next[maxchar],fall,f;
                                                        void init() {
mxf=-1, tmp,lp=log((double)p);
                                                            memset(&next,-1,sizeof(next));
                   int pt=1;
for(int pk=p,k=1; pk<=j;</pre>
                                                             f = 0;
pk*=p,k++) {
                                                   } node[MAX];
                       \label{tmp=lod[i][j-pk]+k*lp;} $$ tmp=lod[i][j-pk]+k*lp;
                       if(tmp>mxf) {
                                                   void preprocess() {
                            mxf=tmp;
                                                        node[NT=0].init();
                            pt=pk;
                                                        node[0].fall = -1;
                                                   void insert(char a[]) {
                   if(mxf>lod[i+1][j]) {
                                                         int father, index, i;
                       lod[i+1][j]=mxf;
                                                        father = 0;
                                                        for(i=0; a[i]; i++) {
                                                             int x = a[i]-'a';
index = node[father].next[x];
dp[i+1][j]=mul(dp[i][j-pt],pt);
                                                             if(index==-1) {
              ans=dp[i+1][n];
                                                                 ++NT;
                                                                 node[NT].init();
         printf("%d\n",ans);
                                                                 node[father].next[x] = NT;
index = NT;
                                                             father = index;
/*************/
                                                        node[father].f++;
           第二类斯特林数奇偶性
                                                   void KMP() {
/**************
                                                        int i,father,index;
                                                        queue<int>q;
int Find(int x) {
     int ans=0;
                                                        q.push(0);
     for(int i=2; x>=i; i<<=1) ans+=x/i;</pre>
                                                        while(!q.empty()) {
    return ans;
                                                             int t = q.front();
                                                             q.pop();
int main() {
                                                             for (i=0; i<maxchar; i++) {</pre>
                                                                 index = node[t].next[i];
    int T;
                                                                 if(index!=-1) {
    father = node[t].fall;
     for(scanf("%d",&T); T; T--) {
         int n,k,z,w;
         scanf ("%d%d",&n,&k);
         z=n-(k+2)/2;
                                                   while (father!=-1&&node[father].next[i]==-1) {
         w=(k-1)/2;
                                                                           father =
                                                   node[father].fall;
if (Find (z) -Find (w) -Find (z-w) >0) puts ("0");
         else puts("1");
                                                                      if(father!=-1) {
                                                                           node[index].fall =
    return 0:
                                                   node[father].next[i];
                                                                      } else {
                                                                           node[index].fall = 0;
/**************/
                                                                      q.push(index);
              数据结构
                                                                 }
                                                            }
                                                        1
/**************/
                                                   int find(char a[]) {
/***********************************/
                                                        int i,father,index,ct = 0;
                                                        father = 0;
                      堆
                                                        for(i=0; a[i];) {
   int x = a[i]-'a';
   index = node[father].next[x];
void up(int a[],int i) {
                                                             if(index!=-1) {
     int t=a[i];
     while(i>1&&t<a[i/2]) {</pre>
                                                                 if(node[index].f) {
                                                                      ct+=node[index].f;
         a[i]=a[i/2];
         i/=2;
                                                                      node[index].f = 0;
                                                                  father = index;
    a[i]=t;
                                                             } else {
```

```
k = k - cnt;
                                                               cnt = r - l + 1 - cnt; // cnt表示
while (father !=-1&& node [father] .next [x] ==-1) {
                                                     [ 1, r ]有多少个分到右边
                   father = node[father].fall;
                   if(node[father].f) {
                                                               int lnew = mid + 1 + off;
                                                               int rnew = lnew + cnt - 1;
return query( mid + 1, R, lnew, rnew,
                        ct+=node[father].f;
                        node[father].f = 0;
                                                     k, v + 1);
               if(father==-1) {
                                                     int main() {
                   father = 0;
                                                          int n, m, l, r, k,i;
                                                          while(scanf("%d%d",&n,&m)!=-1) {
   for( i = 1; i <= n; i++ ) {
      scanf("%d",&tree[0][i]);
      sorted[i] = tree[0][i];</pre>
         }
     return ct;
                                                               sort( sorted + 1, sorted + n + 1);
                                                               build_tree( 1, n, 0 );
                                                               for ( i = 0; i < m; i++ ) {
    scanf ("%d%d%d",&l,&r,&k);
/*************
                    划分树
                                                                    printf("%d\n",query( 1, n, 1, r,
/********************************/
                                                     k, 0 );
      int maxn = 100020;
int Left[20][maxn], sorted[maxn],
tree[20][maxn];
                                                          return 0;
//left[i][j]表示第 i 层前 j 个数中有几个被分到左子树中
                                                     /**************
//sorted 表示排好序的
//tree[i][j]记录第 i 层第 j 个元素 void build_tree( int L, int R, int v ) {
                                                                 树状数组(第k大值)
                                                     /*************
     int i;
     int mid = ( L + R ) /2;
     if( L == R ) return;
int m = sorted[mid];
                                                     对所有 v,add(v,1)
**/
     int same = mid - L + 1;// same表示和m =
sorted[mid] 相等且分到左边的
                                                     int find_k(int k) {
                                                              ans=0, cnt=0;
     for( i = L; i <= R; i++ )
                                                          for(int i=19; i>=0; i--) {
         if( tree[v][i] < m ) same--;</pre>
     int lpos = L;
int rpos = mid+1;
                                                               ans+=(1<<i);
                                                               if(ans>N||cnt+ar[ans]>=k) {
     int ss = 0;
for( i = L; i <= R; i++ ) {
                                                                   ans-=(1<<i);
                                                               } else {
         if( i == L ) Left[v][i] = 0;
                                                                   cnt+=ar[ans];
          else Left[v][i] = Left[v][i-1];
if( tree[v][i] < m ) {
    tree[v+1][lpos++] = tree[v][i];</pre>
                                                          return ans+1;
              Left[v][i]++;
          } else if( tree[v][i] > m ) {
                                                     tree[v+1][rpos++] = tree[v][i];
                                                                 树状数组(区域维护)
          } else {
    if( ss < same ) {</pre>
                                                     /**************
                   tree[v+1][lpos++] =
                                                     //一维区间维护:区间加减,区间求和
tree[v][i];
                                                     ll a[N],d[N],d2[N];
                   Left[v][i]++;
                                                     11 sum(11 *ar, int i) {
     11 s=0;
                   ss++;
              } else tree[v+1][rpos++] =
                                                          for(;i>0;s+=ar[i],i-=lowbit(i));
tree[v][i];
                                                          return s;
                                                     void add(ll *ar,int i,ll v){
     build_tree( L, mid, v + 1 );
                                                          for(;i<N; ar[i] +=v,i+=lowbit(i));</pre>
     build_tree( mid + 1, R, v + 1 );
                                                     ll query(int l,int r){
int query( int L, int R, int 1, int r, int k,
int v ) {
   int mid = ( L + R ) /2
                                                     a[r]-a[l-1]+(r+1)*sum(d,r)-sum(d2,r)-l*sum(d,l)
                                                     -1) + sum (d2, 1-1);
     if( l == r ) return tree[v][l];
     int off;
                   // off表示 [ L, 1-1 ]有多少个
                                                     int main(){
分到左边
                                                          int n,m;
                    // cnt 表示 [ 1, r ]有多少个分
                                                          while(scanf("%d%d",&n,&m)!=EOF) {
     int cnt;
到左边
                                                               memset(d, 0, sizeof(d));
     if( l == L ) {
                                                               memset (d2, 0, sizeof(d2));
         off = 0;
cnt = Left[v][r];
                                                               a[0]=0;
for (int i=1;i<=n;i++) {</pre>
                                                                   scanf("%lld",a+i);
     } else {
         off = Left[v][1-1];
                                                                   a[i] += a[i-1];
         cnt = Left[v][r] - Left[v][l-1];
                                                               char op;
                                                               int l,r;
     if( cnt >= k ) { //有多于 k个分到左边,显然去
                                                               1.1 c;
左儿子区间找第 k 个
                                                               for (int i=0; i<m; i++) {</pre>
         int lnew = L + off;
                                                                   scanf(" %c", &op);
if(op=='C'){
          int rnew = lnew + cnt - 1;
         return query( L, mid, lnew, rnew, k,
                                                                         scanf("%d%d%lld",&l,&r,&c);
v + 1);
                                                                         add(d,1,c);
     } else {
                                                                         add(d,r+1,-c);
         off = 1 - L - off;
                                    // off表示
                                                                        add(d2,1,c*1);
[L, 1-1]有多少个分到右边
                                                                         add(d2,r+1,-c*(r+1));
```

```
else{
                       scanf("%d%d",&1,&r);
printf("%lld\n",query(1,r));
      return 0:
//二维区域维护:区域加减,区域求和
int d[N][N],d1[N][N],d2[N][N],d3[N][N];
int qs(int ar[][N], int x, int y) {
      int s=0;
      for(;x>0;x-=lowbit(x)){
           for (int j=y; j>0; j-=lowbit(j)) {
                 s+=ar[x][j];
      return s;
int ga(int ar[][N],int x,int y,int v){
     for(;x<N;x+=lowbit(x)) {
    for(int j=y;j<N;j+=lowbit(j)) {
        ar[x][j]+=v;
    }</pre>
      }
int sum(int x,int y) {
s(d2,x,y)+gs(d3,x,y);
int sum(int x1,int y1,int x2,int y2){
sum(x2,y2)-sum(x2,y1-1)-sum(x1-1,y2)+sum(x1-1,
v1-1);
int add(int x1,int y1,int x2,int y2,int v){
     ga(d,x1,y1,v);
      ga(d,x2+1,y1,-v);
      ga(d,x1,y2+1,-v);
ga(d,x2+1,y2+1,v);
      ga(d1,x1,y1,v*x1);
      ga(d1,x2+1,y1,-v*(x2+1));
      ga(d1,x1,y2+1,-v*x1);
      ga(d1, x2+1, y2+1, v*(x2+1));
     ga(d2,x1,y1,v*y1);
     ga(d2,x2+1,y1,-v*y1);
ga(d2,x1,y2+1,-v*(y2+1));
      ga(d2,x2+1,y2+1,v*(y2+1));
     ga(d3,x1,y1,v*x1*y1);
ga(d3,x2+1,y1,-v*(x2+1)*y1);
ga(d3,x1,y2+1,-v*x1*(y2+1));
ga(d3,x2+1,y2+1,v*(x2+1)*(y2+1));
      char op[2];
int row,col,x1,x2,y1,y2,v;
while(scanf("%s",op)!=EOF){
           switch(op[0]){
                 case
                       scanf("%d%d",&row,&col);
                       memset(d, 0, sizeof(d));
                       memset(d1,0,sizeof(d1));
                       memset(d2,0,sizeof(d2));
memset(d3,0,sizeof(d3));
                       break;
                 case
scanf ("%d%d%d%d%d",&x1,&y1,&x2,&y2,&v);
                       add(x1,y1,x2,y2,v);
                      break:
                 case
scanf ("%d%d%d%d", &x1,&y1, &x2,&y2);
printf("%d\n", sum (x1,y1,x2,y2));
           }
```

```
return 0:
/********************************/
          树状数组(约瑟夫环)
/***********
树状数组实现,每个人有标号,从第 k个人开始,报到 to[i]的
人出列,主为上一个出列的人的编号。
int main() {
    int m,k;
    while(scanf("%d%d",&n,&k)!=EOF) {
        memset(ar, 0, size of (ar));
        int tp,i,cur,nn=n;
        for (i=1; i<=n; i++)</pre>
            scanf("d",&to[i]);
            add(i,1);
        while (--nn) {
            tp=find k(cur);
            cur=cur+to[tp];
            if(to[tp]>0)
                cur--;
            cur= (cur%nn+nn) %nn;
            if(cur==0)
                cur=nn;
            add(tp,-1);
        tp=find_k(1);
        printf("%d\n",tp);
    return 0;
笛卡尔树(Treap)
/******************************/
//笛卡尔树储存 pair<key, value>类型,只看 key值满足二
叉搜索树条件,只看 value 满足堆的条件
struct Treap_Node
  Treap_Node *left,*right; //节点的左右子树的指针
   int value,pri; //节点的值和优先级
  Treap_Node()
     left=NULL;
     right=NULL;
  void Treap_Left_Rotate(Treap_Node *&a) //左旋
节点指针一定要传递引用
  {
     Treap_Node *b=a->right;
     a->right=b->left;
     b->left=a;
     a=b:
  void Treap_Right_Rotate(Treap_Node *&a) //右
旋 节点指针一定要传递引用
     Treap_Node *b=a->left;
a->left=b->right;
     b->right=a;
     a=b;
  void Treap_Insert(Treap_Node *&P,int
value,int pri) //节点指针一定要传递引用
     if (!P) //找到位置,建立节点
        P=new Treap_Node();
        P->value=value;
        P->pri=pri;//生成随机的修正值
     else if (value <= P->value)
         Treap Insert (P->left, value, pri);
        if ((P->left->pri)<(P->pri))
           Treap Right Rotate(P);//左子节点修
正值小于当前节点修正值,右旋当前节点
```

```
else
                                                                  node[0].init();
                                                                  node[0].p=-1;
       {
          Treap_Insert(P->right,value,pri);
if((P->right->pri)<(P->pri))
                                                                  stk[0]=0;
                                                                  top=cnt=1;
                                                                  for (int i=0;i<n;i++,cnt++) {</pre>
              Treap_Left_Rotate(P);//右子节点修正
                                                                      node[cnt].init(po[i].v,po[i].p);
值小于当前节点修正值, 左旋当前节点
                                                       while (node[stk[top-1]].p>node[cnt].p) top--;
   void Treap Delete(Treap_Node *&P,int value)
                                                                       int fa=stk[top-1];
//节点指针要传递引用
                                                                      node[cnt].lc=node[fa].rc;
                                                                      node[fa].rc=cnt;
   {
                                                                      node[cnt].rc=-1;
       if (value==P->value) //找到要删除的节点 对其
                                                                       stk[top++]=cnt;
删除
                                                                  root=node[0].rc;
          if (!P->right||!P->left) //情况一, 该节
点可以直接被删除
                                                             return 0;
              Treap_Node *t=P;
              if (!P->right)
                                                       /*************
                 P=P->left; //用左子节点代替它
                                                                      二叉平衡树(AVL)
                 P=P->right; //用右子节点代替它
                                                       /*******************************/
              delete t; //删除该节点
                                                       typedef struct Node* Tree;
                                                       typedef struct Node* Node_t;
typedef int Type;
          else //情况二
                                                       struct Node
              if((P->left->pri)<(P->right->pri))
//左子节点修正值较小,右旋
                                                          Node_t left;
              {
                                                          Node_t right;
                                                           int height;
                  Treap_Right_Rotate(P);
                 Treap_Delete(P->right, value);
                                                           Type data;
                                                           Node (Type x)
              else //左子节点修正值较小,左旋
                                                              data=x:
                                                              left=NULL;
                 Treap_Left_Rotate(P);
                 Treap_Delete(P->left,value);
                                                              right=NULL;
                                                        int Height (Node_t node)
       else if (value < P->value)
                                                           if(node!=NULL)
          Treap_Delete(P->left,value); //在左子
                                                              return node->height;
树查找要删除的节点
       else
                                                              return 0;
          Treap_Delete(P->right, value); //在右子
树查找要删除的节点
                                                       Node_t RightRotate(Node t a)
                                                          Node_t b = a \rightarrow left;
/*************
                                                           a \rightarrow left = b \rightarrow right;
                                                           b \rightarrow right = a;
             笛卡尔树_2(Treap)
                                                           a \rightarrow height = max(Height(a \rightarrow left),
/***********************************/
                                                       Height(a->right))+1;
b->height = max(Height(b->left),
//不带删除
                                                       Height(b->right))+1;
struct data{
                                                          return b;
     int v,p;
     data(){}
                                                       Node_t LeftRotate(Node_t a)
     data(int _v,int _p){
    v= v;
                                                          Node t b = a->right;
          p= p;
                                                           a \rightarrow right = b \rightarrow left;
                                                           b->left = a;
}po[N];
                                                           a->height = max(Height(a->left),
bool comp(data a,data b){

return a.v<b.v;
                                                       Height(a->right))+1;
                                                          b->height = max(Height(b->left),
                                                       Height(b->right))+1;
struct Node{
                                                          return b;
     int lc,rc;
     int v,p;
void init(){
                                                       Node_t LeftRightRotate(Node_t a)
          lc=rc=-1:
                                                           a->left = LeftRotate(a->left);
     void init(int _v,int _p){
                                                           return RightRotate(a);
                                                       Node t RightLeftRotate (Node t a)
          p= p;
          lc=rc=-1;
                                                           a->right = RightRotate(a->right);
                                                           return LeftRotate(a);
}node[N];
int stk[N], top, cnt, root;
                                                       Node t Insert(Type x, Tree t)
int main(){
     int T,n,cas=0;
                                                           if(t == NULL)
     for(scanf("%d",&T);T;T--){
    scanf("%d",&n);
    for(int i=0;i<n;i++){</pre>
                                                              t = new Node(x);
               scanf("%d%d",&po[i].v,&po[i].p);
                                                           else if(x < t->data)
          sort(po,po+n,comp);
                                                              t\rightarrow left = Insert(x,t\rightarrow left);
```

```
if(Height(t->left) -Height(t->right) == 2)
                                                                if(t->right)
                                                                   Rotate(x, t->right);
          if (x<(t->left->data))
                                                            1
          -{
                                                            else
              t = RightRotate(t);
                                                                Delete(x, t->left);
           else
                                                                if(t->left)
                                                                   Rotate(x, t->left);
              t = LeftRightRotate(t);
                                                            if(t)
                                                               Rotate(x, t);
   else
                                                        Tree root;
                                                         t\rightarrow right = Insert(x, t\rightarrow right);
                                                                  KD 树 (空间距离前 k 近点)
       if(Height(t->right) - Height(t->left) ==
                                                         /********************************/
                                                         //查找空间中距离某点最近的前 k 个点
          if(x > t->right->data)
                                                         const int inf = 1000000000;
                                                         const int maxn = 100000+10;
              t = LeftRotate(t);
                                                         const ll ll_inf = 111<<60;</pre>
          }
                                                         const int maxD = 6;
          else
                                                         const int maxK = 20;
                                                         int m;
              t = RightLeftRotate(t);
                                                         struct point{
   int x[maxD];
       }
                                                             point(){}
                                                             void read() {
    for (int i=0;i<m;++i)</pre>
t->height=max(Height(t->left), Height(t->right)
                                                                   scanf("%d",&x[i]);
                                                             }
   return t;
                                                         vector<point> a;
void Rotate(Type x,Tree &t)
                                                         int t[maxn][maxD];
                                                         int divX[maxn];
   if(Height(t->left)-Height(t->right) == 2)
                                                         int n, now, K;
       if(x<(t->left->data))
                                                         bool cmp(point a, point b) {
       {
                                                             return a.x[now] < b.x[now];</pre>
          t = RightRotate(t);
       else
                                                         void buildTree(int left, int right, point a[]) {
                                                             if (left >= right) return;
int mid = (left + right) >> 1;
          t = LeftRightRotate(t);
                                                             int minx[maxD], maxx[maxD];
                                                             for (int i=0;i<m;++i) {</pre>
   else if (Height (t->right) - Height(t->left) ==
                                                                minx[i]=inf;
2)
                                                                 maxx[i] = -inf;
       if(x > t->right->data)
                                                             for (int i = left; i < right; i++)</pre>
       {
                                                                 for (int j=0;j<m;++j){</pre>
          t = LeftRotate(t);
                                                                    minx[j]=min(minx[j],a[i].x[j]);
                                                                    \max[j] = \max(\max[j], a[i].x[j]);
       else
       {
                                                             now=0;
          t = RightLeftRotate(t):
                                                             for (int i=1;i<m;++i)</pre>
                                                                if (maxx[i]-minx[i]>maxx[now]-minx[now])
                                                             divX[mid]=now;
Node_t Delete(Type x, Tree &t)
                                                             nth_element(a + left, a + mid, a + right, cmp);
   if(t == NULL) return NULL;
                                                             for (int i=0;i<m;++i) t[mid][i]=a[mid].x[i];</pre>
   if(t->data == x)
                                                             if (left + 1 == right) return;
       if(t->right == NULL)
                                                             buildTree(left, mid, a);
buildTree(mid + 1, right, a);
          Node_t temp = t;
t = t->left;
          delete temp;
                                                         long long closestDist[maxK];
                                                         int closestNode[maxK][maxD];
       else
                                                         void update(ll d,int pt[]) {
    for (int i=1;i<=K;++i)</pre>
          Node t head = t->right;
          while (head->left)
                                                                if (closestDist[i]>d){
                                                                    for (int j=K;j>i;--j) {
              head=head->left;
                                                                        closestDist[j]=closestDist[j-1];
                                                                        for (int k=0; k < m;++k)
          t->data=head->data; //just copy data
          t->right=Delete(t->data, t->right);
                                                        closestNode[j][k]=closestNode[j-1][k];
t->height=max(Height(t->left), Height(t->right)
                                                                    closestDist[i]=d;
                                                                    for (int k=0; k \le m; ++k)
                                                                       closestNode[i][k]=pt[k];
       return t:
                                                                    return:
   else if(t->data<x)</pre>
       Delete(x,t->right);
```

```
void findD(int left, int right, const point& p) {
                                                                Splay_Tree() {
    if (left >= right) return;
                                                                     Init();
    int mid = (left + right) >> 1;
    ll dx[maxD];
                                                                void Init() { //Splay初始化由于区间操作需要把
    11 d=0;
                                                          将要操作区间旋转到一棵子树上, 所以需要额外声明两节点
    for (int i=0; i < m; ++i) {
                                                                     scnt=0;
       dx[i]=p.x[i]-t[mid][i];
                                                                     root=nstack+scnt++;
       d+=dx[i]*dx[i];
                                                                     root->Init(-inf);
                                                                     root->ch[1]=nstack+scnt++;
    //注意能否查自己,d(距离)能否等于0
                                                                     root->ch[1]->Init(inf);
    update(d,t[mid]);
                                                                inline int Getsize(Node &x) { //取得 x 子树
    if (left + 1 == right) return;
11 delta = dx[divX[mid]];
                                                          大小,主要是解决 x=NULL 的情况
                                                                     return x?x->size:0;
    11 delta2 = delta*delta;
    int l1=left,r1=mid;
                                                                void Pushdown (Node &x) { //将x标记下移
    int 12=mid+1,r2=right;
                                                                     if(!x)return;
    if (delta>0){
                                                                     if(x->lazy) {
        swap (11,12);
                                                                               w=x->lazy;
        swap (r1,r2);
                                                                           x->value+=w;
                                                                          if(x->ch[0])
    findD(l1, r1, p);
if (delta2 < closestDist[K])</pre>
                                                                                x->ch[0]->lazy+=w;
x->ch[0]->Min+=w;
        findD(12, r2, p);
                                                                           if(x->ch[1]) {
    x->ch[1]->lazy+=w;
 void findNearestNeighbour(int n, const point& p)
                                                                                x->ch[1]->Min+=w;
    for (int i=1;i<=K;++i)</pre>
                                                                          x\rightarrow lazy=0;
        closestDist[i] = ll_inf;
    findD(0, n, p);
                                                                     if(x->rev) {
                                                                          Node t=x->ch[0];
x->ch[0]=x->ch[1];
 void print(){
                                                                           x->ch[1]=t;
    print(/,
printf("the closest %d points are:\n",K);
for (int i=1;i<=K;++i){</pre>
                                                                           x->rev=false;
                                                                           if(x->ch[0])
        for (int j=0;j<m-1;++j)
  printf("%d ",closestNode[i][j]);
printf("%d\n",closestNode[i][m-1]);</pre>
                                                                               x->ch[0]->rev^=1;
                                                                          if(x->ch[1])
                                                                               x->ch[1]->rev^=1;
    }
                                                                     }
 1
                                                                }
                                                                void Updata(Node &x) { //更新 x 结点信息 if(!x)return;
 int main(){
    while (scanf("%d%d",&n,&m) == 2) {
                                                                     x->size=1;
        a.clear();
                                                                     x->Min=x->value;
        point P;
                                                                     if(x->ch[0]) {
        for (int i=0;i<n;++i){</pre>
           P.read();
            a.push back (P);
                                                          x->Min=min(x->Min,x->ch[0]->Min);
                                                                          x->size+=x->ch[0]->size;
        vector<point> b(a):
        buildTree(0,n,&b[0]);
                                                                     if(x->ch[1]) {
        int q;
                                                          x->\min_{x\to\infty}(x->\min_{x\to\infty}(x->\min_{x\to\infty}(1)->\min_{x\to\infty}(x->\min_{x\to\infty}(x->)))
        scanf("%d",&q);
                                                                          x->size+=x->ch[1]->size;
        while (q--){
           P.read();
            scanf("%d",&K);
                                                                }
            findNearestNeighbour(n,P);
                                                                void Rotate(Node &x, int d) { // 旋转操作,
           print();
                                                          d=0 表示左旋, d=1 表示右旋
        }
                                                                     Node y=x->pre;
                                                                     Pushdown (v);
                                                                     Pushdown (x);
    return 0:
                                                                     //pushdown(x->ch[d]);
                                                                     y->ch[!d]=x->ch[d];
if (x->ch[d]!=NULL) x->ch[d]->pre=y;
                 Splay(动态数组)
                                                                     x->pre = y->pre;
if (y->pre!=NULL) {
/*******************************/
                                                          if (y->pre->ch[0]==y)
y->pre->ch[0]=x;
typedef struct Splay_Node * Node;
struct Splay_Node {
                                                                          else y->pre->ch[1]=x;
     Node pre,ch[2];
     int value, lazy, Min, size; //结点价值, lazy标记,
                                                                     x\rightarrow ch[d]=y, y\rightarrow pre=x;
子树最小值,子树大小
                                                                     Updata(y);
     bool rev;//是否旋转
void Init(int _value) {
                                                                     if (y == root)//因为是指针,所以 root可
                                                          能被转下去了
          pre=ch[0]=ch[1]=NULL;
                                                                          root = x;
          Min=value= value;
          lazy=0;
                                                                void Splay(Node &x, Node &f) { // Splay 操
          size=1;
                                                          作,表示把结点x 转到结点f
          rev=false;
                                                                     for (Pushdown(x); x!=f;) {
     1
                                                                           if(x->pre==f)
                                                                                if(f\rightarrow ch[0]==x)Rotate(x,1);
struct Splay_Tree {
                                                                                else Rotate(x,0);
     Splay_Node nstack[MAXN];
                                                                                break;
     int scnt;
Node root;
                                                                           } else {
                                                                                Node y=x->pre,z=y->pre;
```

```
if(z\rightarrow ch[0]==y)
                        if
(y-ch[0]==x)Rotate(y,1),Rotate(x,1); // 一字形
Rotate(x,0),Rotate(x,1); // 之字形旋转
if(y->ch[1]==x)Rotate(y,0),Rotate(x,0); // 一字
形旋转
                   else Rotate (x, 1), Rotate (x,
0); // 之字形旋转
                   if(z==f)//转了之后, x 就到了原来
z的位置,如果z就是要到的地方,就可以退出了
              Updata(x);
         Updata(x);
    void Select(int k, Node &f) { //把第k个
结点转到f位置
         int tmp;
         Node t:
         for (t=root;;) {
              Pushdown(t);
              tmp=Getsize(t->ch[0]); // 得到 t 左
子树的大小
if (k = tmp + 1) break; // 得出 t 即为查找结点,退出循环
              if (k <= tmp) // 第 k 个结点在 t 左
边, 向左走
                   t = t->ch[0];
              else // 否则在右边,而且在右子树中,这
个结点不再是第 k
                   k = tmp+1, t=t->ch[1];
         Pushdown (t.):
         Splay(t, f); // 执行旋转
     }
     void Insert(int pos, int value) { //插入 value
到 pos 位置之后
         Select(pos+1,root);
         Select(pos+2,root->ch[1]);
         Node t=nstack+scnt++, x=root->ch[1];
         Pushdown (root);
         Pushdown (x);
          t->Init(value);
         t->ch[1]=x;
         x->pre=t;
         root->ch[1]=t;
         t->pre=root;
         Splay(x,root);
    void Add(int a,int b,int d) {//区间[a,b]
加上。
         Select (a, root);
          Select(b+2,root->ch[1]);
         Node x=root->ch[1]->ch[0];
         Pushdown (x);
         Updata(x);
         x->Min+=d:
         x\rightarrow lazy+=d;
         Splay(x,root);
     }
     void Reverse(int a,int b) {//区间[a,b]翻转
          Select(a,root);
         Select (b+2, root->ch[1]);
          root->ch[1]->ch[0]->rev^=1;
         Node x=root->ch[1]->ch[0];
         Splay(x,root);
     }
     void Revolve(int a,int b,int t) {//区间[a,b]
循环移位t次
         Node p1,p2;
         Select (a, root);
         Select(b+2,root->ch[1]);
         Select (b+1-t, root->ch [1]->ch [0]);
         p1=root->ch[1]->ch[0];
         Pushdown (p1);
p2=p1->ch[1];
         p1->ch[1]=NULL;
         Select (a+1, root->ch[1]->ch[0]);
         p1=root->ch[1]->ch[0];
         Pushdown (p1);
```

```
p1->ch[0]=p2;
         p2->pre=p1;
         Splay(p2,root);
    1
    int Getmin(int a,int b) {//得到区间[a,b]最
小值
         Select(a,root);
         Select(b+2,root->ch[1]);
         Node x=root->ch[1];
         Pushdown (x);
         x=x->ch[0];
         Pushdown (x);
         Updata(x):
         return x->Min;
    void Erase(int pos) {//删除第pos 个元素
Select(pos,root);
         Select (pos+2, root->ch[1]);
         Pushdown (root ->ch[1]);
         root->ch[1]->ch[0]=NULL;
         Node x=root->ch[1];
         Splay(x,root);
     void Cut(int a,int b,int c) {//剪切区间[a,b],
然后贴在新生成序列的c位置后面
         Select (a, root);
         Select(b+2,root->ch[1]);
         Node x=root->ch[1],y;
         Pushdown (root);
         Pushdown (x);
         y=x->ch[0];
         y->pre=0;
         x - > ch[0] = 0;
         Select(c+1, root);
         Select(c+2,root->ch[1]);
         x=root->ch[1];
         Pushdown (root);
         Pushdown (x);
         x->ch[0]=y;
         y->pre=x;
         Splay(y,root);
    void Print(){//输出序列
         bool first=true;
         Node lc,rc,now=root;
         while (now) {
              Pushdown(now):
              lc=now->ch[0];
              rc=now->ch[1];
              if(lc&&!(lc->fg)) {
                   now=lc;
              else if(!(now->fg)){
                   now->fg=true;
                   if(checkend(now->value)) {
                       continue;
                   if(!first)putchar(' ');
                   else first=false;
                   printf("%d", now->value);
              else if(rc&&!(rc->fg)){
                   now=rc;
              else {
                   now=now->pre;
         printf("\n");
    1
Splay Tree S;
/*************
           Dancing links(精确覆盖)
/*************
cnt, L[NUM], R[NUM], S[NUM], D[NUM], U[NUM], C[NUM],
O[NUM], H[NUM], X[NUM];
   NUM:最大结点数
   U,D,L,R: 上下左右结点
   C: 列的头指针位置
   O: 储存答案
   X: 与 O配合代表第几行 (X[O[i]]])
```

```
U[cnt]=c;
   通过 link (r,c) 加点, dfs (0) 运算, 行列从 1开始算
                                                         D[c]=cnt;
                                                         if(H[r]<0)
void remove(const int &c)
                                                            H[r]=L[cnt]=R[cnt]=cnt;
   L[R[c]]=L[c];
                                                         {
   R[L[c]]=R[c];
                                                             R[cnt] = R[H[r]];
   //如果这里直接返回就是求可重叠覆盖
                                                             L[R[H[r]]]=cnt;
   for (int i=D[c];i!=c;i=D[i])
                                                            L[cnt]=H[r];
                                                            R[H[r]]=cnt;
       for (int j=R[i];j!=i;j=R[j])
      {
          U[D[j]]=U[j];
                                                      D[U[i]] = D[i];
          --S[C[j]];
                                                                         块状链表
                                                      /**********************************/
   }
}
                                                      int bs,top;
void resume(const int &c)
                                                      struct Block
                                                      {
   L[R[c]]=c;
                                                         int size,next;
   R[L[c]]=c;
                                                         char s[3000];
   //如果这里直接返回就是求可重叠覆盖
                                                         void push_back(char ch)
   for (int i=U[c];i!=c;i=U[i])
                                                             s[size++]=ch;
       for (int j=L[i]; j!=i; j=L[j])
                                                         void insert(int pos,char ch)
          ++S[C[j]];
          U[D[j]]=j;
                                                             for (int i=size++;i>pos;i--)
          D[U[j]]=;;
                                                                s[i]=s[i-1];
                                                            s[pos]=ch;
                                                      }block[3000];
bool dfs(const int &k)
                                                      void update(int x)
   if(!R[0])
                                                         if(block[x].size<bs*2)</pre>
                                                            return;
      return true;
                                                         ++top;
                                                          int i,j,k=block[x].size;
   int s(inf),c;
for(int t=R[0];t!=0;t=R[t])
                                                         for (i=bs, j=0;i<k;i++, j++)</pre>
                                                            block[top].s[j] = block[x].s[i];
                                                         block[top].size=i;
       if(S[t]<s)
                                                         block[x].size=bs;
                                                         block[top].next=block[x].next;
          s=S[t];
                                                         block[x].next=top;
          c=t;
                                                      int main()
                                                      {
   remove(c);
                                                         char s[maxn];
   for (int i=D[c];i!=c;i=D[i])
                                                         gets(s);
                                                          int len=strlen(s),m;
      O[k]=i;
                                                         scanf("%d",&m);
      for (int j=R[i]; j!=i; j=R[j])
                                                         bs=sqrt((double)(len+m))+1;
                                                         top=0;
          remove(C[j]);
                                                         block[0].size=0;
                                                         for (int i=0; i<len; i++)</pre>
      if(dfs(k+1))
                                                             if(block[top].size==bs)
          return true;
                                                                block[top].next=top+1;
       for (int j=L[i]; j!=i; j=L[j])
                                                                block[++top].size=0;
          resume(C[j]);
                                                            block[top].push_back(s[i]);
                                                         block[top].next=-1;
while(m--)
   resume (c);
                                                             char op, ch;
void build(int r,int c)
                                                            int pos,k;
scanf(" %c",&op);
if(op=='Q')
   for (int i=0;i<=c;i++)</pre>
                                                             -{
      U[i]=D[i]=i;
                                                                scanf("%d",&pos);
      L[i+1]=i;
      R[i]=i+1;
                                                                while (pos>block[k].size)
      S[i]=0;
      C[i]=i;
                                                      pos-=block[k].size,k=block[k].next;
                                                                printf("%c\n",block[k].s[pos-1]);
   R[cnt=c]=0;
   while(r)
                                                             else
      H[r--]=-1;
                                                             {
                                                                scanf(" %c %d",&ch,&pos);
void link(int r,int c)
                                                                k=0;
   ++S[C[++cnt]=c];
                                                      while (block[k].next!=-1&&pos>block[k].size)
   X[cnt]=r;
                                                      pos-=block[k].size,k=block[k].next;
   D[cntl=D[cl:
   U[D[c]]=cnt;
```

```
4. <cctype>
block[k].insert(min(pos-1,block[k].size+1),ch)
                                                 isdigit()/isupper()/islower是否数字/大写/小写
                                                 ispunct () 是否标点符号
         update(k);
                                                 isalpha() 是否字母
                                                 isgraph()是否是可打印字符
                                                      _element(begin,mid,end)/nth_element(begin
   return 0;
                                                 ,mid,end,comp)
                                                 将序列[begin, end)从mid处断开,使得mid左边的都比mid
/*************
                                                 小,右边都比mid大(或 comp函数左边均为 true,右边均为
                   KMP
/***********************************/
                                                  sscanf(s, "%d.%d", &a, &b)
                                                 将字符串s当输入设备读入数据。
int kmp(char* st1, char* st2)
                                                   sprintf(s,"%d.%d",a,b);
                                                 将字符串s当输出设备输出数据。
    int len1.len2;
    len1=strlen(st1), len2=strlen(st2);
                                                 int i,j=0, t=next[0]=-1;
                                                                    操作
    while (j<len2)
                                                /**************/
        if (t<0 || st2[j]==st2[t])</pre>
                                                 二维指针声明
next[++j]=++t;
                                                 int **ps;
        else t=next[t];
                                                 ps=(int **)new int *[si];
                                                 for(i=0;i<si;i++)</pre>
    for (i=j=0; i<len1 && j<len2; )</pre>
                                                   ps[i]=new int[si];
                                                 将最右侧 0 位改为 1 位: x | (x+1)
         if (j<0 || st1[i]==st2[j]) i++,j++;</pre>
                                                 二进制补码运算公式:
        else j=next[j];
                                                       ~ (x-y|y-x)
                                                        x-y|y-x
(x-y)^((x^y)&((x-y)^x))
(x|~y)&((x^y)|~(y-x))
                                                 x!=y:
    return i-j;
                                                 x< v:
                                                 x<=v:
void extendkmp(char* st1,char* st2)
                                                        (~x&y)|((~x|y)&(x-y))//无符号x,y比较
                                                 x< y:
    int len1,len2;
                                                 x<=y:
                                                         (~x|y)&((x^y)|~(y-x))//无符号x,y比较
    len1=strlen(st1), len2=strlen(st2);
                                                 不使用第三方交换 x,y:
     int i,j,k,len,L;
                                                 x ^= y ; y ^= x ; x ^= y ;
                                                 双值交换: //常规编码为x = (x==a) ? b :a ;
    while (st2[j+1]==st2[j] && j+1<len2) j++;</pre>
                                                 x = a^b;
    next[1]=j, k=1;
for (i=2; i<len2; i++)</pre>
                                                 下舍入到 2 的 k 次方的倍数:
                                                 x & ((-1)<<k)
                                                 上舍入:
         len=k+next[k], L=next[i-k];
                                                 t = (1 << k) -1 ; x = (x+t) &~t ;
         if (len>L+i) next[i]=L;
                                                 位计数,统计1位的数量:
         else
                                                 int pop (unsigned x)
             j=len-i>0 ? len-i :
             while (st2[i+j]==st2[j] &&
                                                 x = x-((x>>1)&0x5555555);
                                                x = (x & 0x & 333333333) + ((x >> 2) & 0x & 333333333) ;
i+j<len2) j++;
                                                 x = (x+(x>>4)) & 0x0f0f0f0f ;
             next[i]=j, k=i;
                                                 x = x + (x >> 8);
                                                 x = x + (x>>16);
    j=0;
                                                 return x & 0x0000003f ;
    while (st1[j]==st2[j] && j<len1 && j<len2)</pre>
                                                 位反转:
    ext[0]=j, k=0;
                                                 unsigned rev (unsigned x)
    for (i=1; i<len1; i++)</pre>
                                                x = (x & 0x555555555) << 1 | (x>>1) & 0x555555555;

x = (x & 0x333333333) << 2 | (x>>2) & 0x333333333;
         len=k+ext[k], L=next[i-k];
if (len>L+i) ext[i]=L;
                                                 x = (x & 0x0f0f0f0f) << 4 | (x>>4) & 0x0f0f0f0f0f;
         else
                                                 x = (x << 24) | ((x & 0xff 00) << 8) | ((x >> 8) & 0xff 00)
                                                 (x>>24) ;
             j=len-i>0 ? len-i : 0;
                                                 return x ;
while (st1[i+j]==st2[j] &&
i+j<len1 && j<len2) j++;</pre>
                                                 找出最左0字节的位置:
             ext[i]=j, k=i;
                                                 int zbytel ( unsigned x )
         }
    }
                                                 static cahr table[16] = { 4,3,2,2,1,1,1,1,0,0,0,0,0,
                                                 0,0,0,0 } ;
                                                unsigned y
/*************/
                                                 y = \sim (y | x | 0x7f7f7f7f);
                                                 return table[y*0x00204081 >> 28] ;//乘法可用移位和
                                                 加完成
                                                 找出最右1字节的位置:
/**************
                                                 int lowbit (int x)
return x&(-x);
             C++库(不常用)
重载优先队列比较级:
1.rotate(begin, mid, end)
循环移位,将 mid至 end 之前的所有数据循环移到前面。
                                                   bool operator() (int a, int b)
      permutation(begin, end)
得到原序列的下一序列,如果没有下一序列,则返回空指针
 .set<T>
lower bound(val) :返回 set 中大于等于 val 的位置
upper bound(val):返回 set 中大于 val 的位置
                                                priority queue<int, vector<int>, comp> Q;
```

```
/*C++扩栈*/#pragma comment(linker,
                                                   // 这里0指一位数字, #指除0以外的数字(如果是0,则不显
"/STACK:102400000,102400000")
                                                   示), 四金五入
inline int rd(){//输入外挂
                                                   DecimalFormat fd = new DecimalFormat("#.00#");
        num=0,neg=0;char in;
                                                   DecimalFormat gd = new DecimalFormat("0.000");
     while(((in=getchar()) > '9' || in<'0') &&</pre>
                                                   System.out.println("x =" + fd.format(x));
System.out.println("x =" + gd.format(x));
in!='-');
     if(in=='-') neg=true;
     else num=in-'0';
                                                   3. 字符串处理
                                                   java 中字符串 String 是不可以修改的,要修改只能转换为字
while (in=getchar(), in>='0'&&in<='9')num=num*10
                                                   符数组
+in-
                                                   例程.
     return (neg?-1:1) * num;
                                                   import java.io.*;
                                                   import java.math.*;
import java.util.*;
/******************************/
                                                   import java.text.*;
                                                   public class Main
         关于 G++与 C++的输入输出
/*************
                                                   public static void main(String[] args)
                                                   {
                                                   int i;
G++用 putchar 与 puts 更快,
                                                   Scanner cin = new Scanner (new
putchar(ch) 相当于 printf("%c", ch)。
                                                   BufferedInputStream(System.in));
           相当于 printf ("%s\n",str)。
puts(str)
                                                   String st = "abcdefg"
                                                   System.out.println(st.charAt(0)); // st.charAt(i)
C++用 printf () 更快
                                                   就相当于 st[i].
浮点数:
                                                   char [] ch;
                                                   ch = st.toCharArray(); // 字符串转换为字符数组.
G++读入数据时用%lf,输出时用%f。
                                                   for (i = 0; i < ch.length; i++) ch[i] += 1;
C++读入与输出都用%lf。
                                                   System.out.println(ch); // 输入为"bcdefgh"
关于 scanf ():
                                                   if (st.startsWith("a")) // 如果字符串以'0'开头.
%*[] : 跳过[]里面的东西
*[^c]: 读入字符串直到遇到字母 c, 但是不读入 c
                                                   st = st.substring(1); // 则从第 1 位开始 copy (开头为
%[a-z]: 读入字符串,直到没遇到 a-z中的字符为止
                                                   第0位).
/*********************************/
                                                   http://hi.baidu.com/lewutian
                  JAVA 汇总
输入:
格式为: Scanner cin = new Scanner (new
BufferedInputStream(System.in));
                                                   BigInteger和BigDecimal可以说是acmer选择java的首
例程:
                                                   要原因。
import java.io.*;
                                                   函数: add, subtract, divide, mod, compareTo等, 其
import java.math.*;
import java.util.*;
                                                   中加减乘除模都要求是 BigInteger(BigDecimal)和
                                                   BigInteger (BigDecimal) 之间的运算,所以需要把
import java.text.*;
                                                   int(double)类型转换为BigInteger(BigDecimal), 用函
public class Main
                                                   数 BigInteger.valueOf().
public static void main(String[] args)
                                                   例程:
                                                   import java.io.*;
Scanner cin = new Scanner (new
                                                   import java.math.*;
BufferedInputStream(System.in));
                                                   import java.util.*;
int a; double b; BigInteger c; String st;
                                                   import java.text.*;
a = cin.nextInt(); b = cin.nextDouble(); c =
                                                   public class Main
cin.nextBigInteger(); d = cin.nextLine(); // 每
种类型都有相应的输入函数.
                                                   public static void main(String[] args)
                                                   Scanner cin = new Scanner (new
                                                   BufferedInputStream(System.in));
                                                   int a = 123, b = 456, c = 7890;
2. 输出
                                                   BigInteger x, y, z, ans;
函数: System.out.print(); System.out.println();
                                                   x = BigInteger.valueOf(a); y =
System.out.printf();
System.out.print(); // cout << ...;</pre>
                                                   BigInteger.valueOf(b); z =
                                                   BigInteger.valueOf(c);
System.out.println(); // cout << ... << endl;
                                                   ans = x.add(y); System.out.println(ans);
System.out.printf(); // 与C中的printf用法类似.
                                                   ans = z.divide(y); System.out.println(ans);
例程:
                                                   ans = x.mod(z); System.out.println(ans);
import java.io.*;
                                                   if (ans.compareTo(x) == 0)
import java.math.*;
                                                   System.out.println("1");
import java.util.*;
import java.text.*;
public class Main
                                                   5. 讲制转换
public static void main(String[] args)
                                                   java 很强大的一个功能。
                                                   函数:
Scanner cin = new Scanner (new
                                                   String st = Integer.toString(num, base); // 把 num
BufferedInputStream (System.in));
                                                   当做 10 进制的数转成 base 进制的 st (base <= 35).
int a; double b;
a = 12345; b = 1.234567;
                                                   int num = Integer.parseInt(st, base); // 把st当
System.out.println(a + " " + b);
                                                   做 base 进制,转成 10 进制的 int (parseInt 有两个参数,第
System.out.printf("%d %10.5f\n", a, b); // 输入 b
                                                   一个为要转的字符串,第二个为说明是什么进制).
为字宽为10, 右对齐, 保留小数点后5位, 四舍五入.
                                                   BigInter m = new BigInteger(st, base); // st 是字
                                                   符串, base 是 st 的进制.
规格化的输出:
                                                   6. 排序
函数.
```

```
q[++r]=i;
函数: Arrays.sort();至于怎么排序结构体,像 C++里写个
                                                               }
cmp 的方法,在 java 还不太清楚,希望有人指点下~~
                                                         1
例程:
                                                         //斜率优化 DP
import java.io.*;
                                                         //dp[i]=min(dp[k]+b[k]*a[i])
import java.math.*;
import java.util.*;
import java.text.*;
                                                         //k<j时,用j取代k需要满足
                                                         // dp[j]+b[j]*a[i]<=dp[k]+b[k]*a[i]
//<=>(dp[j]-dp[k])/(b[j]-b[k])>=-a[i]
public class Main
                                                         ll dp[N],a[N],b[N];
public static void main(String[] args)
                                                         bool CompTwo(int j,int k,ll sum) { //k<j 时,
                                                         用决策j取代k的合理性
Scanner cin = new Scanner (new
                                                               return
BufferedInputStream(System.in));
                                                          (double)(dp[j]-dp[k])/(double)(b[j]-b[k])>=sum
int n = cin.nextInt();
int a[] = new int [n];
for (int i = 0; i < n; i++) a[i] = cin.nextInt();</pre>
                                                         bool CompThree(int i,int j,int k) { //i<j<k
Arrays.sort(a);
                                                         时,k是否比;更优
for (int i = 0; i < n; i++) System.out.print(a[i]
+ " ");</pre>
                                                               return
                                                           (\texttt{double}) (\texttt{dp[j]-dp[i]}) / (\texttt{double}) (\texttt{b[j]-b[i]}) <= (\texttt{do}) 
                                                         uble) (dp[k]-dp[j])/(double)(b[k]-b[j]);
                                                         int ls[N], front, rear;
HashMap<K, V> hash=new HashMap<K, V>;
                                                         int main() {
Iterator<K,V> it=hash.entrySet().iterator();
                                                                  n;
while (it.hasnext())
                                                               while(scanf("%d",&n)!=EOF) {
                                                                    for (int i=1; i<=n; i++)
scanf ("%164d",&a[i]);
Map.Entry entry=(Map.Entry)it.next();
Object val = entry.getValue();
Object key = entry.getKey();
                                                                    for (int i=1; i<=n; i++)
    scanf ("%164d", &b[i]);</pre>
                                                                    memset (dp, 0, sizeof (dp));
/*********************************/
                                                                    front=rear=0;
                                                                    dp[1]=0;
                                                                    ls[rear++]=1;
for (int i=2; i<=n; i++) {</pre>
//四边形不等式优化
//对于任意的a <= b <= c <= d 都满足 cost[a][c] + cost[b][d] <= cost[a][d] + cost[b][c]
                                                         while (rear-front>1&&CompTwo (ls[front+1], ls[fro
                                                         nt],-a[i]))front++;
                                                                         int k=ls[front];
第一类: dp[i][j] = min(dp[i][k] + dp[k + 1][j]
                                                                         \label{eq:dp[i]=dp[k]+b[k]*a[i];} dp[i] = dp[k] + b[k] * a[i];
+ cost[i][j]);
第二类: dp[i][j] = min(dp[i][j - 1] + cost[k +
1][i]);//i 个人分成 j组
                                                         while (rear-front>1&&CompThree(ls[rear-2],ls[re
int main () {
                                                         ar-1],i))rear--;
                                                                         ls[rear++]=i;
     int n,m,i,j,k,ca=0
                                                                    printf("%I64d\n",dp[n]);
memset(dp,127,sizeof(dp));
     for (i=1; i<=n; i++)</pre>
                                                               return 0:
           dp[i][1]=sum[1][i];
           s[i][1]=1;
                                                         /**********************************/
     for (j=2; j<=m; j++) {</pre>
                                                                     前缀等于后缀的子串个数
          s[n+1][j]=n;
for (i=n; i>=j; i--) {
                                                         /**************
                for (k=s[i][j-1]; k<=s[i+1][j];</pre>
                                                         int next[400005];
                                                         char s[400005];
                                                         void dfs(int j) {
(dp[i][j]>dp[k][j-1]+sum[k+1][i]) {
                                                              if(j==0)
                                                                   return
                                                               dfs(next[j]);
dp[i][j]=dp[k][j-1]+sum[k+1][i];
                                                               printf("%d ",j);
                          s[i][i]=k;
                                                         int main() {
                                                               s[0]='\0';
     1
                                                               while(scanf(" %s",s)!=EOF) {
                                                                   getnext();//KMP
                                                                    int i,len=strlen(s);
int y (int j1,int j2) {
                                                                    dfs (next[len]);
                                                                   printf("%d\n",len);
s[0]='\0';
(dp[j2]-dp[j1]+sqr(sum[j2])-sqr(sum[j1]));
int x (int j1,int j2) {
     return 2*(sum[j2]-sum[j1]);
                                                         /******************************/
int main () {
                                                                           最长回文子串
     dp[0]=0;
     q[0]=l=r=0;
                                                         /*********************************/
     for (i=1; i<=n; i++) {</pre>
                                                         char s[maxn];
          while
                                                         char st[maxn];
(1 \le 6) (q[1], q[1+1]) \le sum[i] *x (q[1], q[1+1]))
                                                         int p[maxn];
                                                         void manacher(int n) {
                                                               int mx=0,id;
dp[i]=dp[q[l]]+m+sqr(sum[i]-sum[q[l]]);
                                                               for (int i=1; i<n; i++) {</pre>
           while
                                                                    if (mx>i) p[i]=min(p[2*id-i],mx-i);
else p[i]=1;
(1 < r & & y (q[r], i) *x (q[r-1], q[r]) <= y (q[r-1], q[r])
*x(q[r],i))
                                                                   for (; st[i+p[i]]==st[i-p[i]];
                                                         p[i]++) ;
```

```
if (p[i]+i>mx) {
             mx=p[i]+i;
             id=i;
         1
int main() {
    while (scanf("%s",s)!=EOF) {
         st[0]='$';
         st[1]='#';
         int len=strlen(s);
         for (int i=0; i<len; i++) {
    st[2*i+2]=s[i];</pre>
             st[2*i+3]='#';
                                                 1
         1
         st[2*len+2]='\0';
         int n=strlen(st);
         manacher(n);
         int ans=0;
         for (int i=1; i<n; i++)
    if (p[i]-1>ans) ans=p[i]-1;
         printf("%d\n",ans);
    return 0;
/*******************************/
                                                 串就是字典序最小的。
                  背包问题
//每件物品只能使用一次
void onezeropack(int v,int c) {
    int j;
for(j=val; j>=v; j--) {
         f[j]=max(f[j-v]+c,f[j]);
                                                           }
}
//每件物品可以无限使用
void completepack(int v,int c) {
    int j;
for(j=v; j<=val; j++) {</pre>
        f[j]=max(f[j-v]+c,f[j]);
//每件物品有限次使用
void multiplepack(int v,int c,int num) {
    if(c*num>=val) {
                                                  int next[100005];
        completepack(v,c);
                                                 int main() {
         return;
    }
     int k=1;
    while(k<num) {
         onezeropack(k*v,k*c);
         num=num-k;
         k=k *2:
    onezeropack(num*v,num*c);
基数排序
/******************************/
const int N=1000;
int maxbit(int data[],int n) { //辅助函数,求最
    int d=1,p=10;
for(int i=0; i<n; i++) {
         while (data[i]>=p) {
                                                               }
             p*=10;
             d++;
        }
    return d:
void radixsort(int data[],int n) {
    int d=maxbit(data,n);
    int tmp[N],count[10];
                                                               1
    int radix=1,k,i,j;
    for(i=1; i<=d; i++) {
        for (j=0; j<10; j++) {
    count[j]=0;
                                                      return 0;
         for (j=0; j<n; j++)</pre>
                                                 /******************************/
             k=(data[j]/radix)%10;
```

count[k]++;

```
for (j=1; j<10; j++) {
    count[j]+=count[j-1];
for(j=n-1; j>=0; j--) {
    k=(data[j]/radix)%10;
    count[kl--;
    tmp[count[k]]=data[j];
for (j=0; j<n; j++) {
    data[j]=tmp[j];
radix*=10;
```

/******************************/

字符环的最小表示法

/**************

说把一个长为 len 的字符串围成一个圈, 然后从任意一个字 符作为起点顺时针转,都会产生一个新的长为 len字符串,现在 要求所有的可以产生的字符串中字典序最小的那个。下面这个函 数就是解决这个问题的,返回值即为从原串中这个位置起产生的

```
int MinimumRepresentation(char *s, int 1) {
     int i = 0, j = 1, k = 0, t;
while (i < 1 && j < 1 && k < 1) {
          t = s[(i + k)%1] - s[(j + k)%1];
if (!t) ++ k;
           else {
               if (t > 0) i = i + k + 1;
else j = j + k + 1;
if (i == j) ++j;
                k = 0;
     return min(i,j);
/**************
```

最小循环矩阵

/******************************/

```
//字符矩阵的最小子矩阵使得其他都由这子矩阵循环而来
char row[100005][80],col[80][100005];
     int r,c,i,j,rr,cc;
while(scanf("%d %d ",&r,&c)!=EOF) {
          for(i=0; i<r; i++) {
    for(j=0; j<c; j++) {
                     row[i][j]=getchar();
                     col[j][i]=row[i][j];
               getchar();
               row[i][c]='\0';
          rr=cc=1;
          for (i=0; i<r; i++) {</pre>
               getnext (row[i]);//KMP
                if(next[c] == 0) rr=c;
                else rr=lcm(rr,c-1-next[c-1]);
               if(rr>=c) {
                    rr=c;
                     break;
          for (i=0; i<c; i++) {
    getnext (col[i]);//KMP</pre>
                if (next[r]==0) cc=r;
                else cc=lcm(cc,r-1-next[r-1]);
               if(cc>=r) {
                     cc=r;
                     break:
          printf("%d\n",rr*cc);
```

最短非子序列长度

```
if(a.x!=b.x)return a.x<b.x;</pre>
/***********************************/
                                                            else return b.y<a.y;//如果相等时也可重叠则交换
int main() {
                                                       b.y,a.y
     int n,k,i; while(scanf("%d%d",&n,&k)!=EOF) {
                                                       }
                                                       int dp[20005],ans;//dp递减
          int t,a[101000],cnt=1;
for(i=0; i<n; i++)
    scanf("%d",&a[i]);</pre>
                                                       int main() {
                                                            int num;
                                                            for(scanf("%d",&num); num; num--) {
          bool mark[10100];
                                                                  int i,n,ll,rr,mid;
          memset (mark,false,sizeof(mark));
                                                                  scanf("%d",&n);
          for (i=0, t=k; i<n; i++) {
    if(!mark[a[i]]) {</pre>
                                                                  for (i=0; i<n; i++)</pre>
                                                                      scanf("%d%d",&po[i].x,&po[i].y);
                    if(t==0) {
                                                                  sort(po,po+n,comp);
                                                                 dp[ans=1]=po[0].y;
for(i=1; i<n; i++) {</pre>
                         t=k;
                         cnt ++;
                                                                       11=1;
                                                                       rr=ans;
memset(mark, false, size of (mark));
                                                                       while(ll<rr) {</pre>
                    } else
                                                                            mid=(ll+rr)/2;
                         mark[a[i]]=true;
                                                                            if(dp[mid]>=po[i].y)//相等则
               }
                                                       改为>
                                                                                ll=mid+1;
          printf("%d\n",cnt);
                                                                                 rr=mid:
     return 0:
                                                                       if(dp[rr]>=po[i].y)//相等则改为>
/*********************************/
                                                                            dp[++ans]=po[i].y;
          最长下降子序列长度与个数
                                                                            dp[rr]=po[i].y;
/*******************************/
int maxnum[5005],maxlen[5005],a[5005];
                                                                 printf("%d\n",ans);
int main() {
     int n;
                                                             return 0;
     while(scanf("%d",&n)!=EOF) {
          int i,j,k;
                                                       /*******************************/
          for (i=1; i<=n; i++) {
               scanf("%d",&a[i]);
                                                                     N皇后问题构造方法
               maxnum[i]=0;
                                                       maxlen[i]=1;
          for (i=1; i<=n; i++) {
    for (j=1; j<i; j++) {</pre>
                                                        一、当n mod 6 != 2 或 n mod 6 != 3时:
                    if(a[j]>a[i]) {
                                                                                                  (n 为偶
                                                        [2,4,6,8,\ldots,n],[1,3,5,7,\ldots,n-1]
                                                       数)
maxlen[i]=max(maxlen[j]+1,maxlen[i]);
                                                        [2,4,6,8,...,n-1],[1,3,5,7,...,n]
                                                                                                  (n 为奇
               1
                                                       数)
          for (i=1; i<=n; i++)</pre>
                                                        二、当n mod 6 == 2 或 n mod 6 == 3 时
               if(maxlen[i]==1)
          maxnum[i]=1;
for (i=1; i<=n; i++) {
   for (j=i-1; j>=1;
                                                        (当 n 为偶数, k=n/2; 当 n 为奇数, k=(n-1)/2)
                                 j--) {
                                                       [k, k+2, k+4, ..., n], [2,4, ..., k-2], [k+3, k+5, ..., n]
                    if(a[j]>a[i]) {
                                                                                   (k 为偶数, n 为偶数)
                                                       -1],[1,3,5,...,k+1]
if (maxlen[j]+1==maxlen[i]) {
                                                        \hbox{\tt [k,k+2,k+4,\ldots,n-1],[2,4,\ldots,k-2],[k+3,k+5,\ldots}
                                                        ,n-2],[1,3,5,...,k+1],[n]
                                                                                      (k 为偶数,n 为奇数)
maxnum[i]+=maxnum[j];
                                                        [k, k+2, k+4, ..., n-1], [1,3,5, ..., k-2], [k+3, ..., n
                    } else if(a[j]==a[i]) {
                                                                                   (k 为奇数,n 为偶数)
                                                       [1,[2,4,...,k+1]]
                         if(maxlen[i]==1)
                              maxnum[i]=0;
                                                       [k,k+2,k+4,...,n-2], [1,3,5,...,k-2], [k+3,...,n
                                                       -1],[2,4,...,k+1],[n ] (k为奇数,n为奇数)*/
               }
                                                       void work(int n) {
          int mmax=0,ans=0;
          for (i=1; i<=n; i++)</pre>
                                                             if(n%6!=2&&n%6!=3) {
               mmax=max(mmax,maxlen[i]);
                                                                 for (i=2; i<=n; i+=2) printf("%d ",i);
for (i=1; i<n-1; i+=2) printf("%d ",i);
printf("%d\n",i);</pre>
          for (i=1; i<=n; i++)
               if(mmax==maxlen[i])
                   ans+=maxnum[i];
                                                             } else {
          printf("%d %d\n",mmax,ans);
                                                                 k=n>>1;
                                                                  if(k&1) {
                                                                       if(n&1) {
                                                                            for(i=k; i<n;</pre>
/******************************/
                                                       i+=2)printf("%d ",i);
                                                                            for(i=1; i<k;</pre>
                最少偏序集个数
                                                       i+=2)printf("%d ",i);
/*******************************/
                                                                            for(i=k+3; i<n;</pre>
                                                       i+=2)printf("%d ",i);
//满足xi<xj&&yi<yj的点可合成一个集合,求最少集合个数
                                                                            for(i=2; i<=k+1;
struct data {
                                                       i+=2) printf("%d ",i);
int x,y;
}po[20005];
                                                                           printf("%d\n",n);
                                                                      } else {
bool comp(const data &a,const data &b) {
```

```
for(i=k; i<n;</pre>
i+=2) printf("%d ",i);
                  for(i=1; i<k;</pre>
i+=2) printf("%d ",i);
                  for(i=k+3; i<=n;</pre>
i+=2) printf("%d ",i);
                  for(i=2; i<k+1;
i+=2) printf("%d ",i);
                 printf("%d\n",i);
             }
         } else {
             if(n&1) {
                  for(i=k; i<=n;</pre>
i+=2) printf("%d ",i);
                  for(i=2; i<k;</pre>
i+=2) printf("%d ",i);
                  for(i=k+3; i<n;</pre>
i+=2) printf("%d ",i);
                  for(i=1; i<=k+1;</pre>
i+=2)printf("%d ",i);
                  printf("%d\n",n);
             } else {
                  for(i=k; i<=n;</pre>
i+=2) printf("%d ",i);
                  for(i=2; i<k;</pre>
i+=2) printf("%d ",i);
                  for(i=k+3; i<n;</pre>
i+=2) printf("%d ",i);
                  for(i=1; i<k+1;</pre>
i+=2) printf("%d ",i);
                  printf("%d\n",i);
        }
    }
}
N*M 数码有解判定
首先将矩阵存入 n*m 的一维数组, 求去掉 0 以后的逆序数。
1.左右移动一次不改变逆序数奇偶性,
2.上下移动一次时:
(1) 如果列数为奇数,逆序数奇偶性不变
(2) 如果列数为偶数,逆序数奇偶性改变一次,此时要统计始态
和终态 0 的行数差的绝对值, 若为偶数则始态和终态逆序数奇偶
性相同, 否则相反
int a[N];
int main() {
    int n,m;
    while(scanf("%d%d",&n,&m),n||m) {
         int x,y,t,s=0,nu=0;
for(int i=1; i<=n; i++)
             for(int j=1; j<=m; j++) {
    scanf("%d",&t);</pre>
                  if(t==0)x=i,y=j;
                  else a[nu++]=t;
         memset(ar,0,sizeof(ar));//树状数组
         for (int i=nu-1; i>=0; i--) {
    s+=sum(a[i]-1);
             add(a[i],1);
         if(m&1)
             if(s&1) puts("NO");
         else puts("YES");
else if(((n-x)^s)&1) puts("NO");
         else
                          puts ("YES");
    return 0;
/*************/
            堆排序最坏情况构造
int a[50005],n;
void up(int i) {
    int t=a[i];
while(i>1&&t>a[i/2]) {
         a[i]=a[i/2];
         i/=2;
    a[i]=t;
```