MATA22 Booklet 1 Notes

Definitions:

1. If n is a positive integer, then the Euclidean n – space, denoted by Rⁿ, is the collection of all n – tuples of real numbers.

There are 2 kinds of n – tuples in Rⁿ:

- 1. $(a_1, a_2, \dots a_n)$ denotes a point in \mathbb{R}^n .
- 2. [a₁, a₂, ... a_n] denotes a vector in Rⁿ.
- 2. The zero vector in Rⁿ is denoted by **0** and is a vector with all of its entries consisting of 0s only.
- 3. A scalar only has magnitude. It does not have direction.
- 4. A vector has both magnitude and direction.
- 5. 2 vectors are parallel if they are both non zero and they can be written as a non zero multiple of each other.

E.g. [1, 2, 3] and [2, 4, 6] are parallel because [1, 2, 3] =
$$\left(\frac{1}{2}\right)$$
[2, 4, 6].

- 6. Given the vectors $\mathbf{v_1}$, $\mathbf{v_2}$, ... $\mathbf{v_n}$ in R^n and the scalars s_1 , s_2 , ... s_n in R, the linear combination of those vectors with those scalars is $s_1\mathbf{v_1} + s_2\mathbf{v_2} + ... s_n\mathbf{v_n}$.
- 7. The set of all linear combinations of $v_1, v_2, \dots v_n$ is called the span of $v_1, v_2, \dots v_n$ and is denoted as $sp(v_1, v_2, \dots v_n)$.
- 8. A vector is in standard position if it starts at the origin. If a vector does not start at the origin, then that vector has been translated (moved).
- 9. Two vectors are equal iff all of their entries are equal.

I.e.
$$\mathbf{v} = \mathbf{w}$$
 iff $v_i = w_i$ for all $i = 1, 2, ... n$

E.g. [1, 2, 3] = [1, 2, 3] because all of their entries are equal.

10. The magnitude or norm of a vector, \mathbf{v} , is denoted by $||\mathbf{v}||$.

$$||\mathbf{v}|| = \sqrt{(V_1)^2 + \dots + (V_n)^2}$$

E.g. Let
$$\mathbf{v} = [1, 2, 3] ||\mathbf{v}|| = \sqrt{1^2 + 2^2 + 3^2} = \sqrt{14}$$

- 11. A unit vector is a vector with a magnitude of 1. It is equal to $\frac{\mathbf{v}}{||\mathbf{v}||}$.
- 12. The dot product of 2 vectors, \mathbf{v} and \mathbf{w} is defined by $\mathbf{v} * \mathbf{w} = (||\mathbf{v}||)(||\mathbf{w}||)(\cos(\Theta))$ where Θ is the angle between the vectors.

Let
$$\mathbf{v} = [v_1, v_2, ..., v_n]$$
.
Let $\mathbf{w} = [w_1, w_2, ..., w_n]$.
 $\mathbf{v} * \mathbf{w} = (v_1)(w_1) + (v_2)(w_2) + ... + (v_n)(w_n)$
E.g.
Let $\mathbf{v} = [1, 2, 3]$.
Let $\mathbf{w} = [2, 3, 4]$.
 $\mathbf{v} * \mathbf{w} = (1)(2) + (2)(3) + (3)(4)$
 $= 20$

13.
$$\Theta = \cos^{-1}(\frac{v*w}{(||v||)(||w||)})$$

14. Two vectors are perpendicular if their dot product equals to 0.

15.
$$\mathbf{v} * \mathbf{v} = (||\mathbf{v}||)^2$$

16. The orthogonal projection of b onto a is denoted by $Proj_a{}^b$.

$$\mathsf{Proj_a}^{\mathbf{b}} = (\frac{a * \mathbf{b}}{||\mathbf{a}||^2}) \mathbf{a}$$

E.g.

Find the orthogonal projection of [1, 2, 4] onto [3, 5, 2].

$$Proj_{v}^{w} = \left(\frac{[1,2,4]*[3,5,2]}{||[3,5,2]||^{2}}\right)[3,5,2]$$
$$= \left(\frac{21}{38}\right)[3,5,2]$$

17. w is the vector component of b onto a.

$$\mathbf{w} = \mathbf{b} - \text{Proj}_{\mathbf{a}^{\mathbf{b}}}$$

Vector Math:

Let
$$\mathbf{v} = [v_1, v_2, ..., v_n]$$
.
Let $\mathbf{w} = [w_1, w_2, ..., w_n]$.
Let r be a scalar.

1. Vector Addition:

$$\mathbf{V} + \mathbf{W} = [V_1, V_2, ..., V_n] + [W_1, W_2, ..., W_n]$$

= $[V_1 + W_1, V_2 + W_2, ..., V_n + W_n]$

2. Vector Subtraction:

$$\mathbf{V} - \mathbf{W} = [V_1, V_2, ..., V_n] - [W_1, W_2, ..., W_n]$$

= $[V_1 - W_1, V_2 - W_2, ..., V_n - W_n]$

3. Scalar Multiplication:

$$r(\mathbf{v}) = r([v_1, v_2, ..., v_n])$$

= $[rv_1, rv_2, ..., rv_n])$

Theorem:

Let
$$\mathbf{v} = [v_1, v_2, ..., v_n]$$
.
Let $\mathbf{w} = [w_1, w_2, ..., w_n]$.
Let $\mathbf{u} = [u_1, u_2, ..., u_n]$.
Let r and s be scalars.

1.
$$v + (u + w) = (v + u) + w$$

2.
$$v + u = u + v$$

3.
$$0 + v = v$$

4.
$$r(v + u) = rv + ru$$

5.
$$(r+s)v = rv + sv$$

6.
$$r(s\mathbf{v}) = (rs)\mathbf{v}$$

7.
$$1v = v$$

8.
$$||\mathbf{v}|| \ge 0$$
 and $||\mathbf{v}|| = 0$ iff $\mathbf{v} = \mathbf{0}$

9.
$$||r\mathbf{v}|| = (|r|)(||\mathbf{v}||)$$

10.
$$||\mathbf{v} + \mathbf{w}|| \le ||\mathbf{v}|| + ||\mathbf{w}||$$
 (Triangle Inequality)

$$11.\mathbf{v}^*\mathbf{w} = \mathbf{w}^*\mathbf{v}$$

$$12.\mathbf{u}^*(\mathbf{v} + \mathbf{w}) = \mathbf{u}^*\mathbf{w} + \mathbf{u}^*\mathbf{v}$$

$$13.r(\mathbf{u}^*\mathbf{w}) = r\mathbf{u} + r\mathbf{w}$$

$$14.|\textbf{u*w}| \leq (||\textbf{u}||)(||\textbf{w}||) \text{ (Cauchy - Schwartz Inequality)}$$