Algebra II: Rings and Fields

MATH 340

Steven Xia

November 3, 2022

1 Beginning

- **Definition 1.1.** A **group** is a pairing of a set and a binary operation such that the operation is associative, and each element of the set has both an inverse and an identity.
- Remark 1.1.1. Considering an identity element is defined both as a left and a right identity, it can be proven that it is unique for the group.
- Remark 1.1.2. Considering the binary operation is well defined, it can be proven that the inverse is distinct for every element of the set.
- **Definition 1.1.1.** A **commutative group** is a group where the binary operation is commutative.
- **Definition 1.2.** A **ring** is a commutative group with another operation defined such that the two operations are similar to "addition" and "multiplication" of the integers. The multiplication operation must be associative and distributive.
- **Definition 1.2.1.** A **commutative ring** is a ring where multiplication is commutative.

Definition 1.2.2. We say that a ring has **unity** if there is a multiplicative identity.

Remark 1.2.1. For any ring R with additive identity 0, it can

be proven that 0a = 0 for all $a \in R$. Remark 1.2.2. Using Remark 1.2.1, it can be proven that -ab =

(-a)b=a(-b) for all $a,b\in R$.

Definition 1.2.3. For some non-zero $a, b \in R$, we say a and b are **zero divisors** if ab = 0.

Remark 1.2.3. For some non-zero $a \in R$, it can be proven that a is a left zero divisor if and only if there exists non-zero $b, c \in R$ such that $b \neq c$ and ab = ac.

Remark 1.2.4. It follows from Remark 1.2.3, that if a ring R

all $a, b, c \in R$ and $a \neq 0$. **Definition 1.2.4.** A **unit** in a ring with unity is an element which has a multiplicative inverse.

does not have any zero divisors, then $ab = ac \implies b = c$ for

Remark 1.2.5. A unit cannot be a zero-divisor.

Definition 1.3. An **integral domain** is a commutative ring with unity and no zero divisors.

Definition 1.4. A **field** is a commutative ring where every non-zero element is a unit, and the additive and multiplicative identities are not equal.

2 Developing

Definition 2.1. The **characteristic** of a ring is the lowest integer c such that $\underbrace{1+1+\cdots+1}_{}=0$.

Theorem 2.1.1. If the characteristic of a ring is composite, it must have zero divisors.

exists positive integers m, n such that c = mn and m, n < c. Consider, using the distributivity of multiplication, that $\underbrace{(1+1+\cdots+1)}_{m \text{ times}}\underbrace{(1+1+\cdots+1)}_{n \text{ times}} = 0$.

Proof. Let c be the characteristic of some ring where there

Theorem 2.1.2 (Euler's Theorem). Let R^* be the finite set of the units in a ring. For all $a \in R^*$, $a^{|R^*|} = 1$.

Proof. We have $R^* = \{r_1, \dots, r_n\} = \{ar_1, \dots, ar_n\}$ since mul-

tiplication is one-to-one. Then, $r_1 \cdots r_n = (ar_1) \cdots (ar_n) = a^n(r_1 \cdots r_n) \implies a^n = 1.$

either 0, a zero divisor, or a unit.

Proof. For an element r that is not zero or a zero divisor, we

the ring is finite, we have $r^{e_1} = r^{e_2}$ for some $e_1 < e_2$. Then, $r^{e_1} = r^{e_2} = r^{e_1}r^{e_2-e_1} \implies r^{e_2-e_1} = 1$. Therefore, $r \cdot r^{e_2-e_1-1} = 1$.

have the following set of non-zero elements $\{r, r^2, \dots\}$. Since

 $Remark\ 2.1.1.$ Theorem 2.1.3 shows every finite integral domain is a field.

Definition 2.2. A quadratic ring extension $R[\gamma]$ of some ring R is created by adding an element γ to R such that $\gamma^2 = c$ for some $c \in R$ and $\gamma \notin R$.

Remark 2.2.1. Elements in $R[\gamma]$ are denoted $a + \gamma b$ for $a, b \in R$. This means elements in $R[\gamma]$ can be seen as elements in $R \times R$.

Theorem 2.2.1. The norm $map^1N : R[\gamma] \to R$ is defined as $N(a + \gamma b) = a^2 - cb^2$ and has the property that $N(a + \gamma b)$ is a

unit in R if and only if $a + \gamma b$ is a unit in $R[\gamma]$.

 $^{^1\}mathrm{We}$ have not yet formally defined a $norm\ map.$

Proof. We see that $N(a+\gamma b)^{-1}$ exists if and only if $N(a+\gamma b)$ is a unit. Then, $(a+\gamma b)(a-\gamma b)=N(a+\gamma b)$ so $(a+\gamma b)\left[(a-\gamma b)N(a+\gamma b)^{-1}\right]=1$.

Remark 2.2.2. Theorem 2.2.1 shows the quadratic ring extension of any field or integral domain maintains that status.

Definition 2.3. An element in an integral domain is called **irreducible** if it cannot be written as a product of two non-units.

Definition 2.4. Elements a, b in an integral domain R are called **associates** if there exists a unit $u \in R$ such that a = ub.

Definition 2.5. An integral domain has **unique factorization** if every element can be written as a product of irreducibles which are unique up to order and associates.

Theorem 2.5.1. A ring R has unique factorization if all irreducible elements are prime.

ducible elements are prime. $Proof. \text{ Let } x = a_1 \cdots a_n = b_1 \cdots b_m. \text{ Since } a_1 \text{ is prime, we know}$

that it divides one of b_i . Without loss of generality, let $b_1 = ca_1$.

However, since b_1 is irreducible and $a_1 \neq 1$, we have c = 1. Then, we can repeat this process on $a_2 \cdots a_n = b_2 \cdots b_m$.

Definition 2.6. A **polynomial ring** R[x] of some ring R is created by using polynomials of the variable x using coefficients from R.

Remark 2.6.1. For some field F, Euclidean division works on F[x] because all non-zero coefficients are units. It then follows that irreducible elements are prime, so unique factorization exists in F[x].

Theorem 2.6.1 (Fundamental Theorem of Algebra). The only irreducible polynomials in $\mathbb{C}[x]$ are linear.

Remark 2.6.2. It follows from Theorem 2.6.1 that the only irreducible polynomials in $\mathbb{R}[x]$ are linear or quadratic. This can be proven using $\mathbb{R}[x] \subset \mathbb{C}[x]$ and that multiplying some linear $f(x) \in \mathbb{C}[x]$ with its conjugate results in some $F(x) \in \mathbb{R}[x]$ with $\deg(F(x)) = 2$.

Definition 2.7. A subset I of ring R is called an **ideal** if for all $a, b \in I$ and $r \in R$, $a + b, -a, ra, ar \in I$.

Definition 2.8. For a commutative ring R and $a \in R$, a **principal ideal** generated by a is defined as $aR = \{ar : r \in R\}$. For some $a, b \in R$, we can also generate $(a, b)R = \{xa + yb : x, y \in R\}$.

Remark 2.8.1. For $a \in R$ with integral domain R, aR = 1R = R if and only if a is a unit.

Remark 2.8.2. For $a, b \in R$, $b \mid a \implies bR \subseteq aR$. Furthermore, aR = bR if and only if a and b are associates.

Remark 2.8.3. For $a, b \in R$, if a is irreducible and $b \mid a$, then $aR \subseteq bR \subseteq R$ so either aR = bR or bR = R. Therefore, aR is

not properly contained in any other principal ideal. Also, if a is not irreducible, then $aR \subset bR \subset R$.

Theorem 2.8.1. If an element $a \in R$ cannot be written as a

finite product of irreducibles, then R has an infinite ascending

chain of principal ideals. Proof. Assume that a cannot be written as a finite product of irreducibles. Then, $a=r_1a_1=r_1r_2a_2=\ldots$ for non-units r_i,a_i

and reducible a_i . This implies $aR \subset a_1R \subset a_2R \subset \cdots$. \square Remark 2.8.4. This tells us that every element in \mathbb{N} has a factorization into irreducibles since every proper divisor is "smaller" so there cannot be an infinite chain.

Definition 2.9. An integral domain R is a **principal ideal** domain if every ideal in R is a principal ideal.

Proof. If $I = \{0\}$, then $I = 0\mathbb{Z}$. Therefore, we prove with

Proposition 2.9.1. The ring \mathbb{Z} is a principal ideal domain.

 $I \neq \{0\}$. Then, there exists a positive element in I. Let a be the the least positive element in I and we claim that $I = a\mathbb{Z}$.

Let $b \in I$ be some other element in I. Then we have b = qa + r for $0 \le r < a$. This also means b - qa = r so $r \in I$. However, by the minimality of a, this implies r = 0 so b is a multiple of a and $b \in a\mathbb{Z}$.

Corollary 2.9.1. For field F, F[x] is a principal ideal domain. Theorem 2.9.1. For a principal ideal domain, every ascending

Theorem 2.9.1. For a principal ideal domain, every ascending chain of ideals stabilizes.

Proof. Let $I_1 \subseteq I_2 \subseteq \cdots$ be an ascending chain of ideals in a principal ideal domain R. Then, $\bigcup_{i=1}^{\infty} I_i$ is a principal ideal aR. For some j, $a \in I_j$ so $aR = I_j = I_{j+1} = \cdots$.

Definition 2.10. Let I, J be ideals of R. Then, I + J is the smallest ideal which contains both I and J. Therefore, $I + J = \{a + b : a \in I \text{ and } b \in J\}$.

Remark 2.10.1. Since \mathbb{Z} is a principal ideal domain, $a\mathbb{Z} + b\mathbb{Z} = I$

 $d\mathbb{Z}$. Then, $d\mathbb{Z} = \{xa + yb : x, y \in \mathbb{Z}\}$. Therefore, $d = \gcd(a, b)$ since it is the least positive element (by proof of Theorem 2.9.1). **Definition 2.11.** An ideal I of ring R is a **prime ideal** if

 $ab \in I$ implies $a \in I$ or $b \in I$ for all $a, b \in R$.

Remark 2.11.1. An element $p \in R$ is prime if and only if pR is prime.

Remark 2.11.2. Not all prime ideals are principal (eg. $(x, y) \subset \mathbb{Q}[x, y]$).

Definition 2.12. An ideal I in ring R is called **maximal** if for any ideal $J \subseteq R$ where $I \subseteq J \subseteq R$, it follows that I = J or J = R.

 $Remark\ 2.12.1.$ In a principal ideal domain, the principal ideal generated by an irreducible element is maximal.

Theorem 2.12.1. In an integral domain, maximal ideals are prime.

Proof. Let I be a maximal ideal of ring R with $bc \in I$ and

 $b \notin I$. Then, we have $I \subsetneq I + bR \subseteq R$ so, by the maximality of I, I + bR = R. This also means that $1 \in I + bR$ so 1 = a + br for $a \in I$ and $r \in R$. Multiplying through by c, this gives us $c = ac + bcr \in I$ since $a, bc \in I$.

Remark 2.12.2. For a principal ideal domain R, this gives us that $a \in R$ is irreducible implies aR is maximal implies aR is

prime implies a is prime. Therefore, by Theorem 2.5.1, every principal ideal domain has unique factorization.

Definition 2.13. A ring is a unique factorization domain if

every non-zero non-unit can be written uniquely as a product of irreducible elements, up to order and associates. Duplicate of Definition 2.5; don't ask why.

Remark 2.13.1. Unique factorization domains exist which are not principal ideal domains. For example, $\mathbb{Z}[x]$ with $2\mathbb{Z}[x] + x\mathbb{Z}[x]$.