Transcranial random noise stimulation enhances retention performance after training of a complex cognitive task.

Caroline Hamery¹, Quentin Chenot¹, Evelyne Lepron¹, Pierre Besson², Xavier De Boissezon^{3,4}, Stéphane Perrey² & Sébastien Scannella¹

¹ ISAE-SUPAERO, Université de Toulouse, Toulouse, France

² EuroMov Digital Health in Motion, Université de Toulouse, INSERM, Toulouse, France

³ Toulouse Neuroimaging Center (ToNIC), Université de Toulouse, INSERM, Toulouse, France

⁴ Department of Physical Medicine and Rehabilitation, University Hospital of Toulouse, Toulouse, France

² EuroMov Digital Health in Motion, Univ Montpellier, IMT Mines Ales, Montpellier, France

Introduction & Objectives

rDLPFC right Dorsolateral Prefrontal Cortex

IMPLICATED IN

complex task management 1

OBJECTIVES

- → To assess effect of tRNS over behavioral performance in complex task training
- → Based on Snowball et al. (2013)²

HYPOTHESIS

Better long-term and retention performances for the stimulated group compared to sham.

Methods

Total Score Sum of 4 Sub-Scores

Fortress

Flight

Bonus

Mine

The Space Fortress Game³

40 Healthy Participants

randomly assigned

STIM

SHAM

Each participant performed 11 game sessions (GS) over 7 consecutive days and 2 GS 10 days later.

1 Game Session:

2 * 10" Space Fortress

20" Stimulation (STIM or SHAM)

Baseline

Day 1 GS1

Training 1

Day 2 GS3 GS2

Training 2

Day 3 GS5 GS4

Training 3

Day 4 GS6 GS7

Day 5 GS8 GS9

Short-Term

Long-Term

Day 15 GS10 GS11

Retention

Results

No Group effect on Short Term nor on Long Term Δ Scores

Group effect on Retention △ Score

STIM > SHAM

Take home message

CONCLUSION

Stimulation of the rDLPFC

MAY NOT INDUCE

MAY LEAD TO

Faster Learning
Global progress of performance

Better consolidation effects of what has been learned

Stimulation of a specific target may not have a macroscopic effect⁴

PERSPECTIVES

- → Further study on light aircraft pilots
- → tRNS during ecological behavioral task : flight and multitasking
- → Further evidence of a possible consolidation effect of focal tRNS over complex task management

REFERENCES

¹Kaller, C. P., Rahm, B., Spreer, J., Weiller, C. & Unterrainer, J. M. Dissociable contributions of left and right dorsolateral prefrontal cortex in planning. Cereb. Cortex 21, 307–317 (2011).

²Snowball, A. et al. Long-term enhancement of brain function and cognition using cognitive training and brain stimulation. Curr. Biol. 23, 987–992 (2013).

³Mané, A. & Donchin, E. The space fortress game. Acta Physiol. (Oxf) 71, 17–22 (1989).

⁴Hebb, D.O. (2002). The Organization of Behavior: A Neuropsychological Theory (1st ed.). Psychology Press.

⁵Fertonani, A. & Miniussi, C. Transcranial electrical stimulation: What we know and do not know about mechanisms. Neuroscientist 23, 109–123 (2017).