The Classical Theorems of Vector Analysis

Theorem 1 (Divergence Theorem). If **F** is a C^1 vector field defined on a neighborhood of the compact n-manifold with boundary $V \subset \mathbb{R}^n$, then

$$\int_{V} \operatorname{div} \mathbf{F} = \int_{\partial V} \mathbf{F} \cdot \mathbf{N} \ dA,$$

where N and dA are the outer normal and surface area form of the positively-oriented boundary ∂V .

The integral $\int_{\partial V} \mathbf{F} \cdot \mathbf{N} \ dA$ is sometimes called the **flux** of the vector field **F** across the surface ∂V .

Theorem 2. Let D be an oriented compact 2-manifold with boundary in \mathbb{R}^3 , and let \mathbf{N} and \mathbf{T} be the unit normal and unit tangent vector fields, on D and ∂D , respectively. If \mathbf{F} is a C^1 vector field on an open set containing D, then

$$\int_{D} (\operatorname{curl} \mathbf{F}) \cdot \mathbf{N} dA = \int_{\partial D} \mathbf{F} \cdot \mathbf{T} \ ds.$$