Partiel - Mercredi 19 octobre 2022.

dur'ee: 2h00.

Les documents, calculatrices, téléphones et ordinateurs portables sont interdits.

La qualité de la rédaction sera prise en compte dans la notation.

Le barème est donné à titre indicatif.

Exercice 1.

- 1. Rappeler la définition d'une tribu.
- 2. On considère l'univers $\Omega = \{1, 2, 3, 4, 5\}$ et la collection de parties $\mathcal{C} = \{\{1, 2, 3\}, \{3, 4, 5\}\}$. Donner $\sigma(\mathcal{C})$ (indication : cette tribu a 8 éléments!).
- 3. Donner la définition d'une variable aléatoire réelle.
- 4. Soit $X: \Omega \to \{0,1\}$ la fonction qui a $\omega \in \Omega$ associe 0 si ω est paire et 1 si ω est impair. Cette fonction est elle une variable aléatoire réelle quand on munit l'univers Ω de la tribu $\sigma(\mathcal{C})$?
- 5. Donner la définition d'une mesure de probabilité.
- 6. On considère une mesure de probabilité P sur $(\Omega, \sigma(\mathcal{C}))$ telle que P $(\{1, 2, 3\})$ = P $(\{3, 4, 5\})$ = 1/2. Décrire complètement P en précisant la probabilité de chaque événement de $\sigma(\mathcal{C})$.

Correction.

- 1. Question de cours.
- 2. On vérifie facilement que $\sigma(\mathcal{C}) \supset \mathcal{F} = \{\emptyset, \Omega, \{3\}, \{1, 2\}, \{4, 5\}, \{1, 2, 3\}, \{3, 4, 5\}, \{1, 2, 4, 5\}\}$. de plus \mathcal{F} est une tribu et contient \mathcal{C} donc $\mathcal{F} \supset \sigma(\mathcal{C})$.
- 3. Question de cours.
- 4. On a $\{X=0\}=\{2,4\}\notin\sigma(\mathcal{C})$. Donc X n'est pas une variable aléatoire.
- 5. Question de cours.
- 6. On vérifie que $P(\{3\}) = P(\{1,2,3\} \cap \{3,4,5\}) = P(\{1,2,3\}) + P(\{3,4,5\}) P(\{1,2,3\} \cup \{3,4,5\}) = 0$. On en déduit par sigma additivité la probabilité de tous les autres évènements :

$$P(\emptyset) = 0$$
 $P(\Omega) = 1$ $P(\{1,2\}) = 1/2$ $P(\{4,5\}) = 1/2$ $P(\{1,2,4,5\}) = 1$

Exercice 2. On considère un marcheur évoluant sur la droite des entiers \mathbb{Z} . Il part de 0 et à chaque pas avance ou recule de 1. On fixe dans un premier temps un entier $n \geq 1$ (qu'il faut penser grand!) et on regarde uniquement les 2n premiers pas. Tous les chemins ont même probabilité. On définit l'univers

$$\Omega = \{-1, +1\}^{2n}.$$

- 1. Proposer une tribu \mathcal{F} et une probabilité P pour former l'espace de probabilité (Ω, \mathcal{F}, P) correspondant à cette *marche aléatoire*. Calculer le cardinal de Ω .
- 2. À tout $\omega = (\omega_i)_{1 \leq i \leq 2n} \in \Omega$, on peut associer la trajectoire du marcheur $(S_k(\omega))_{0 \leq k \leq 2n}$ définie par $S_0(\omega) = 0$ et pour tout temps $1 \leq k \leq 2n$

$$S_k(\omega) = \sum_{i=1}^k \omega_i.$$

Dessiner les trajectoires associées à $(1, \dots, 1)$ et $(1, -1, 1, -1, \dots, 1, -1)$ (on pourra interpoler linéairement entre les points du graphe pour rendre le dessin plus facile). Pour tout $0 \le k \le 2n$, préciser l'image de la variable aléatoire S_k (on prêtera bien attention à la question de la parité).

- 3. Donner la loi de S_1 ainsi que sa fonction de répartition.
- 4. Pour tout $b \in \{-n, \dots, n\}$, montrer que

$$|\{S_{2n} = 2b\}| = \binom{2n}{n+b},$$

et en déduire $P(S_{2n} = 2b)$.

5. Écrire mathématiquement l'événement

 $A_{2n} =$ "Le marcheur est en 0 au temps 2n".

Donner la probabilité de cet évènement puis, à l'aide de la formule de Stirling

$$n! \underset{+\infty}{\sim} \left(\frac{n}{e}\right)^n \sqrt{2\pi n},$$

en déduire un équivalent de $P(A_{2n})$ en $+\infty$.

Correction.

- 1. Comme $|\Omega| < +\infty$ on considère la tribu $\mathcal{F} = \mathcal{P}(\Omega)$. Comme tous les chemins ont même probabilité on considère la probabilité uniforme que l'on note P. On rappelle que pour tout $A \subset \Omega$, $P(A) = |A|/|\Omega|$. Par ailleurs $|\Omega| = 2^{2n}$.
- 2. La trajectoire associée à $(1, \dots, 1)$ et la droite de pente 1 qui monte de (0,0) à (2n,2n). Celle associée à $(1,-1,1,-1,\dots,1,-1)$ est la trajectoire en "zigzag" qui s'appuie sur l'axe des abscisses. Pour tout $0 \le k \le 2n$, $Im(S_k) = \{-k,\dots,k\} \cap 2\mathbb{Z}$ si k est paire, c'est-à-dire tous les entiers pairs de $\{-k,\dots,k\}$. Si k est impaire on obtient $Im(S_k) = \{-k,\dots,k\} \cap 2\mathbb{Z} + 1$ c'est-à-dire tous les entiers impairs de $\{-k,\dots,k\}$.
- 3. En particulier $Im(S_1) = \{-1, 1\}$. Comme $|\{S_1 = -1\}| = |\{S_1 = 1\}|$ (par symétrie) et $\Omega = \{S_1 = -1\} \cup \{S_1 = 1\}$ (et que ces deux évènement sont disjoints) on obtient

$$1 = P(S_1 = -1) + P(S_1 = -1) = 2P(S_1 = -1).$$

On én déduit que $P(S_1 = -1) = P(S_1 = 1) = 1/2$. La fonction de répartition de S_1 est donc la fonction F qui vérifie F(u) = 0 si u < -1, F(u) = 1/2 si $-1 \le u < 1$ et F(u) = 1 si $u \ge 1$.

4. Pour tout $\omega \in \Omega$, on note $N(\omega)$ le nombre de 1 dans ω i.e. $N(\omega) = |\{1 \le i \le 2n, \ \omega_i = 1\}|$. On déduit que $S_{2n}(\omega) = N(\omega) - (2n - N(\omega)) = 2N(\omega) - 2n$. On en déduit que pour tout $b \in \{-n, \dots, n\}$,

$$|\{S_{2n} = 2b\}| = \{N = n + b\}.$$

L'évènement $\{N=n+b\}$ est facile à dénombrer puisqu'il s'agit de choisir une partie à n+b éléments dans un ensemble à 2n éléments et on obtient donc $|\{N=n+b\}|=\binom{2n}{n+b}$. Finalement $P(S_{2n}=2b)=\binom{2n}{n+b}/2^{2n}$.

5. On a

$$A_{2n}$$
 = "Le marcheur est en 0 au temps $2n$ " = $\{S_{2n} = 0\}$.

D'après la question précédente, en prenant b=0, $P(S_{2n}=0)=\binom{2n}{n}/2^{2n}=\frac{(2n)!}{(n!)^22^{2n}}$. D'après la formule de Stirling et après simplification :

$$P(S_{2n} = 0) \underset{+\infty}{\sim} \frac{1}{\sqrt{\pi n}}.$$

Exercice 3. On considère un espace mesurable (Ω, \mathcal{F}) (i.e. Ω est un univers et \mathcal{F} une tribu sur Ω) et une fonction $m: \mathcal{F} \to [0, 1]$ qui vérifie

i. pour tout $A, B \in \mathcal{F}$ tels que $A \cap B = \emptyset$,

$$m(A \cup B) = m(A) + m(B);$$

ii. pour toute suite croissante $(A_n)_{n\geq 1}$ d'évènements dans \mathcal{F} ,

$$m(\cup_{n\geq 1}A_n)=\lim_{n\geq 1}m(A_n).$$

iii. $m(\Omega) = 1$.

1. Montrer que pour toute famille **finie** $(A_n)_{1 \leq n \leq N}$ d'évènements deux-à-deux disjoints

$$m(\bigcup_{1 \le n \le N} A_n) = \sum_{1 \le n \le N} m(A_n).$$

2. On considère maintenant une famille **dénombrable** $(A_n)_{n\geq 1}$ d'évènements deuxà-deux disjoints. Introduire une famille **dénombrable et croissante pour l'inclusion** $(B_n)_{n\geq 1}$ d'évènements telle que

$$\bigcup_{n>1} A_n = \bigcup_{n>1} B_n.$$

3. Montrer que m est une probabilité.

Correction.

1. On procède par récurrence sur le cardinal N de la famille. La proposition est vraie pour N=2 d'après i. On suppose qu'elle est vraie pour un certain $N\geq 2$. On considère alors une famille **finie** $(A_n)_{1\leq n\leq N+1}$ d'évènements deux-à-deux disjoints et on définit $E_1=A_{N+1}$ et $E_2=\bigcup_{n\leq N}A_n$. Clairement $E_1\cap E_2=\emptyset$ donc d'après i.

$$m(\bigcup_{n \le N+1} A_n) = m(E_1 \cup E_2) = m(E_1) + m(E_2).$$

Or $m(E_2) = m(\bigcup_{1 \le n \le N} A_n) \stackrel{HR_N}{=} \sum_{n=1}^N m(A_n)$. On en déduit que la proposition est vraie également pour une famille de cardinal N+1.

2. On considère maintenant une famille dénombrable $(A_n)_{n\geq 1}$ d'évènements deux-àdeux disjoints. On définit pour tout $N\geq 1$ l'évènement

$$B_N = \bigcup_{1 \le n \le N} A_n.$$

Clairement $(B_N)_{N>1}$ est une suite croissante pour l'inclusion et vérifie

$$\bigcup_{n>1} A_n = \bigcup_{n>1} \uparrow B_n.$$

3. D'après iii, on a déjà $m(\Omega) = 1$. Il nous faut donc seulement vérifier la sigma additivité. On considère donc une famille dénombrable $(A_n)_{n\geq 1}$ d'évènements deux-à-deux disjoints et d'après la question précédente

$$m(\bigcup_{n>1} A_n) = m(\bigcup_{n>1} \uparrow B_n).$$

En utilisant la propriété ii. on obtient

$$m(\bigcup_{n\geq 1}\uparrow B_n)=\lim_{N\to+\infty}m(B_N),$$

et d'après la question 1., $m(B_N) = \sum_{n=1}^N m(A_n)$. Finalement

$$m(\bigcup_{n\geq 1} A_n) = \lim_{N\to+\infty} \sum_{n=1}^N m(A_n) = \sum_{n=1}^{+\infty} m(A_n).$$