Thème 1 : Notions de probabilités

Expériences aléatoires et modèles probabilistes

Axiomatique de Kolmogorov : l'ensemble Ω de tous les résultats possibles d'une expérience spécifiée par un protocole expérimental donné est appelé univers. On dira aussi que Ω est l'espace des états ou espaces des possibles de l'expérience aléatoire.

Espace probabilisable : un espace probabilisable est un couple (Ω, T) , où Ω est un ensemble et T une tribu de Ω , càd un ensemble de parties de Ω vérifiant les propriétés suivantes :

- $-\!\!\!-\Omega \in T$
- Si $A \in T$, alors $\bar{A} \in T$ où \bar{A} est le complémentaire de A dans Ω
- Si $(A_n)_{n\in\mathbb{N}^*}$ est une suite d'éléments de T, alors $\bigcup_{n=1}^{\infty}A_n\in T$

Les éléments de T sont appelés événements. En particulier, pour tout $\omega \in \Omega$, le singleton $\{\omega\}$ est appelé événement élémentaire.

Un **espace probabilisé** est un triplet (Ω, T, \mathbb{P}) où (Ω, T) est un espace probabilisable et \mathbb{P} une mesure de probabilité sur T, càd une application de T dans [0,1], telle que :

- $\mathbb{P}(\Omega) = 1$ [Condition de normalisation]
- Soit $(A_n)_{n\in\mathbb{N}^*}$ une suite d'événements disjoints 2

à 2,
$$\mathbb{P}(\bigcup_{n=1}^{\infty} A_n) = \sum_{n=1}^{\infty} \mathbb{P}(A_n)$$
 [σ -additivité]