

DeepLENS: Deep Learning for Entity Summarization

Qingxia Liu, Gong Cheng, and Yuzhong Qu

National Key Laboratory for Novel Software Technology, Nanjing University, China

Entity Summarization (ES)

- RDF Graph: T
 - triple t∈T: <subj, pred, obj>
- Entity Description: Desc(e)
 - Desc(e) = $\{t \in T: \text{subj}(t) = e \text{ or obj}(t) = e\}$
 - triple t∈Desc(e): <e, property, value>
- Entity Summarization: S(e, k)
 - S⊆Desc(e), |S|≤k

Un-Supervised Methods^[1]

- RELIN
- DIVERSUM
- FACES
- FACES-E
- CD
- LinkSUM
- BAFREC
- KAFCA
- MPSUM
- ...

[1] Liu, Q., Cheng, G., Gunaratna, K., Qu, Y.: Entity summarization: state of the art and future challenges. CoRR abs/1910.08252 (2019)

Un-Supervised Methods^[1]

- RELIN
- DIVERSUM
- FACES
- FACES-E
- CD
- LinkSUM
- BAFREC
- KAFCA
- MPSUM
- ...

Can deep learning summarize better?

[1] Liu, Q., Cheng, G., Gunaratna, K., Qu, Y.: Entity summarization: state of the art and future challenges. CoRR abs/1910.08252 (2019)

Un-Supervised Methods

- RELIN
- DIVERSUM
- FACES
- FACES-E
- CD
- LinkSUM
- BAFREC
- KAFCA
- MPSUM
- **...**

Supervised Methods

- ESA^[12]
 - graph embedding (TransE), BiLSTM

	DBpedia		${f Linked MDB}$		$_{ m ALL}$	
	k=5	k=10	k=5	k=10	k=5	k=10
RELIN [4]	0.242	0.455	0.203	0.258	0.231	0.399
DIVERSUM [13]	0.249	0.507	0.207	0.358	0.237	0.464
CD [12]	0.287	0.517	0.211	0.328	0.252	0.455
FACES-E [7]	0.280	0.485	0.313	0.393	0.289	0.461
FACES [8]	0.270	0.428	0.169	0.263	0.241	0.381
LinkSUM [14]	0.274	0.479	0.140	0.279	0.236	0.421
ESA	0.310	0.525	0.320	0.403	0.312	0.491

Table 1: Comparison of F-measure on ESBM benchmark v1.1

[12] Wei, D., Liu, Y., Zhu, F., Zang, L., Zhou, W., Han, J., Hu, S.: ESA: Entity summarization with attention. In: EYRE 2019. pp. 40-44 (2019)

Un-Supervised Methods

- RELIN
- DIVERSUM
- FACES
- FACES-E
- CD
- LinkSUM
- BAFREC
- KAFCA
- MPSUM
- ...

Supervised Methods

- ESA^[12]
 - graph embedding (TransE), BiLSTM

	DBpedia		${f Linked MDB}$		$_{ m ALL}$	
	k=5	k=10	k=5	k=10	k=5	k=10
RELIN [4]	0.242	0.455	0.203	0.258	0.231	0.399
DIVERSUM [13]	0.249	0.507	0.207	0.358	0.237	0.464
CD [12]	0.287	0.517	0.211	0.328	0.252	0.455
FACES-E [7]	0.280	0.485	0.313	0.393	0.289	0.461
FACES [8]	0.270	0.428	0.169	0.263	0.241	0.381
LinkSUM [14]	0.274	0.479	0.140	0.279	0.236	0.421
ESA	0.310	0.525	0.320	0.403	0.312	0.491

Table 1: Comparison of F-measure on ESBM benchmark v1.1

small improvement

+7% compared with unsupervised FACES-E

[12] Wei, D., Liu, Y., Zhu, F., Zang, L., Zhou, W., Han, J., Hu, S.: ESA: Entity summarization with attention. In: EYRE 2019. pp. 40-44 (2019)

Our Idea

- Deisgn a novel Deep Learning based approach to Entity Summarization:
 DeepLENS
 - Entity summary presented as short **text**: textual semantics
 - Entity description as a triple set: permutation invariant

	ESA	DeepLENS
Triple Encoding	Graph Embedding	Word Embedding
Triple Set Encoding	Sequence Model	Aggregation-based Model

- DeepLENS
 - Triple Encoding
 - Entity Description Encoding
 - Triple Scoring

DeepLENS

- Triple Encoding
- Entity Description Encoding
- Triple Scoring

textual semantics of triple

$$t = [\text{Embedding}(\text{prop}(t)); \text{ Embedding}(\text{val}(t))]$$

 $h = \text{MLP}_{\mathbf{C}}(t)$

DeepLENS

- Triple Encoding
- Entity Description Encoding
- Triple Scoring

permutation invariant representation

$$g_i = \text{MLP}_D(t_i)$$

$$a_i = \frac{\exp(\cos(h, g_i))}{\sum_j \exp(\cos(h, g_j))}$$

$$d = \sum_{i=1}^n a_i g_i$$

DeepLENS

- Triple Encoding
- Entity Description Encoding
- Triple Scoring

context-based salience score

$$score(t|Desc(e)) = MLP_S([h; d])$$

Evaluation

- Dataset: ESBM v1.2^[8]
 - DBpedia, LinkedMDB
- Metric: F1
- Participating Methods
 - Unsupervised Methods
 - RELIN, DIVERSUM, FACES, FACES-E, CD, LinkSUM, BAFREC, KAFCA, MPSUM
 - Supervised Methods
 - ESA (state of the art)
 - DeepLENS (our method)
 - Oracle Method
 - ORACLE (best possible performance on ESBM)
 - » Summary consisting of k triples that most frequently appear in ground-truth summaries

[8] Liu, Q., Cheng, G., Gunaratna, K., Qu, Y.: ESBM: An entity summarization benchmark. In: ESWC 2020 (2020)

Overall Result

Results

- supervised > unsupervised
- DeepLENS > all baselines
- ORACLE > DeepLENS
 - suggesting room for improvement

Table 1. Average F1 over all the test entities. Significant and insignificant differences (p < 0.01) between DeepLENS and each baseline are indicated by \blacktriangle and \circ , respectively.

	DBp	edia	Linked	MDB
	k = 5	k = 10	k = 5	k = 10
RELIN [2]	0.242	0.455	0.203	0.258
DIVERSUM 9	0.249	0.507	0.207	0.358
FACES 3	0.270	0.428	0.169	0.263
FACES-E 4	0.280	0.488	0.313	0.393
CD [13]	0.283	0.513	0.217	0.331
LinkSUM [10]	0.287	0.486	0.140	0.279
BAFREC 6	0.335	0.503	0.360	0.402
KAFCA 5	0.314	0.509	0.244	0.397
MPSUM [11]	0.314	0.512	0.272	0.423
ESA [12]	0.331	0.532	0.350	0.416
DeepLENS	0.404	0.575	0.469	0.489
ORACLE	0.595	0.713	0.619	0.678

Conclusion

- Presented a simple yet effective deep learning model for ES.
 - textual semantics
 - permutation invariance
- Achieved new state-of-the-art results on the ESBM benchmark.
- ES can be effectively solved with properly designed deep learning models.

- Future Work
 - ontological semantics
 - structural semantics

Main Conference Papers

Entity Summarization with User Feedback

Qingxia Liu, Yue Chen, Gong Cheng, Evgeny Kharlamov, Junyou Li and Yuzhong Qu

- Session 3: Extraction and Recommendation 2
- Thursday, June 4, 10:20-10:40

■ ESBM: An Entity Summarization Benchmark

Qingxia Liu, Gong Cheng, Kalpa Gunaratna and Yuzhong Qu

- Session 9: Benchmarking
- Thursday, June 4, 11:50-12:10

Thank you!

Questions?