Università di Urbino

Corso: Algoritmi e Strutture Dati

Test di autovalutazione

Laurea Informatica Applicata

Docente: Valerio Freschi **Sez:** 5-6

Domande a risposta chiusa

_	Ogni domanda	hэ	ocattamente	una	colo	ricpocto	corrotta
•	Odni domanda	na	esattamente	una	sola	risposta	corretta.

Puntegg	

- per ogni risposta corretta: +1 punti;
- per ogni risposta non data (o per più di una risposta): 0 punti;
- per ogni risposta errata: −0.5 *punti*.

1.	Un algoritmo di visita di una lista viene eseguito su una lista contenente 26 elementi. Il numero di passi
	base che deve eseguire l'algoritmo (nel caso pessimo) è (approssimativamente) pari a:

- O 10.
- $\sqrt{64}$.
- \bigcirc 6.
- \bigcirc 6².
- 2. Quale delle seguenti proprietà definiscono correttamente una coda?
 - $\sqrt{}$ Criterio di funzionamento: FIFO; complessità algoritmo di inserimento: O(1); complessità algoritmo di rimozione: O(1).
 - O Criterio di funzionamento: LIFO; complessità algoritmo di inserimento: O(1); complessità algoritmo di rimozione: O(1).
 - Oriterio di funzionamento: FIFO; complessità algoritmo di inserimento: O(1); complessità algoritmo di rimozione: O(n).
 - Oriterio di funzionamento: LIFO; complessità algoritmo di inserimento: O(n); complessità algoritmo di rimozione: O(n).
- 3. La seguente dichiarazione in linguaggio C quale tipo di struttura dati definisce?

- O Una lista doppiamente collegata.
- √ Una lista singolarmente collegata.
- Un array dinamico.
- O Una lista circolare.

4. Quale è l'ordine di visita dell'albero di Figura 1 secondo l'algoritmo di vista in ordine simmetrico?

Figura 1:

- $\sqrt{6,10,11,4,21,7,3}$.
- \bigcirc 4,10,6,11,7,21,3.
- \bigcirc 6,11,10,4,21,3,7.
- 6,11,21,3,10,7,4.
- 5. Sia data la seguente sequenza di valori interi inserita (secondo l'ordine da sinistra verso destra) in un albero binario di ricerca: [12,21,7,9,16,25,4]. Quale sequenza descrive correttamente l'ordine di visita dell'albero secondo l'algoritmo di vista in ordine anticipato?
 - \bigcirc 4,9,16,25,7,21,12.
 - 12,7,9,4,21,25,16.
 - $\sqrt{12,7,4,9,21,16,25}$.
 - \bigcirc 12.7,21,4,9,16,25.
- 6. Sia data la seguente sequenza di valori interi inserita (secondo l'ordine da sinistra verso destra) in un albero binario di ricerca: [12,21,7,9,16,25,4]. Quale sequenza descrive correttamente l'ordine di visita dell'albero secondo l'algoritmo di vista in ordine posticipato?
 - 4,7,9,12,16,21,25.
 - \bigcirc 4,7,12,9,21,16,25.
 - \bigcirc 4,9,16,25,7,21,12.
 - $\sqrt{4,9,7,16,25,21,12}$.
- 7. Sia data la seguente sequenza di valori interi inserita (secondo l'ordine da sinistra verso destra) in un albero binario di ricerca: [12,21,7,9,16,25,4]. Dove avviene l'inserimento corretto del nuovo valore 23?
 - Ocome figlio destro dell'elemento contenente il valore 4.
 - $\sqrt{\,}$ Come figlio sinistro dell'elemento contenente il valore 25.
 - O Come figlio sinistro dell'elemento contenente il valore 4.
 - Ocome figlio destro dell'elemento contenente il valore 25.
- 8. Sia data la seguente sequenza di valori interi inserita (secondo l'ordine da sinistra verso destra) in un albero binario di ricerca: [12,21,7,9,16,25,4]. Dove avviene l'inserimento corretto del nuovo valore 11?
 - O Come figlio destro dell'elemento contenente il valore 4.
 - Ocome figlio sinistro dell'elemento contenente il valore 4.
 - $\sqrt{}$ Come figlio destro dell'elemento contenente il valore 9.

Come figlio destro dell'elemento contenente il valore 25.
9. Qual è la complessità dell'algoritmo di rimozione di un elemento in un albero binario di ricerca?
\bigcirc $O(1)$ (caso ottimo), $O(n)$ (caso medio), $O(n)$ (caso pessimo).
$\sqrt{O(1)}$ (caso ottimo), $O(\log n)$ (caso medio), $O(n)$ (caso pessimo).
\bigcirc $O(1)$ (caso ottimo), $O(n)$ (caso medio), $O(n^2)$ (caso pessimo).
\bigcirc $O(1)$ (caso ottimo), $O(logn)$ (caso medio), $O(logn)$ (caso pessimo).
10. Qual è la complessità dell'algoritmo di inserimento di un elemento in un albero binario di ricerca?
\bigcirc $O(1)$ (caso ottimo), $O(n)$ (caso medio), $O(n)$ (caso pessimo).
\bigcirc $O(1)$ (caso ottimo), $O(n)$ (caso medio), $O(n^2)$ (caso pessimo).
\bigcirc $O(1)$ (caso ottimo), $O(logn)$ (caso medio), $O(logn)$ (caso pessimo).
$\sqrt{O(1)}$ (caso ottimo), $O(\log n)$ (caso medio), $O(n)$ (caso pessimo).