p. .

Neuroscience PhD Student, Stanford University | <u>alex.h.willia@gmail.com</u> | <u>http://alexhwilliams.info</u>

EDUCATION

Stanford University. Stanford, CA

2015-present

PhD in Neuroscience (in progress). Advisor: Surya Ganguli

Coursework:

Probabilistic Graphical Models (CS 228)

Distributed Algorithms and Optimization (CME 323)

University of California, San Diego. La Jolla, CA

2014-2015

Neurosciences Graduate Program. Advisor: Terrence Sejnowski

(transferred to Stanford after one year)

Coursework:

Neurosciences graduate survey courses (Molecular, Systems, Cognitive, Neuroanatomy)

Dynamical Systems, Control Theory, Convex Optimization (MAE 280A, MAE 280B, ECE 273)

Bowdoin College. Brunswick, ME

2008-2012

Bachelor of Arts in Neuroscience - Minor in Computer Science

GPA 3.956

Honors: Summa cum Laude (top 2% of class), honors thesis in neuroscience

<u>Awards:</u> Sumner Increase Kimball Prize (most outstanding undergraduate research in the natural sciences); Sarah and James Bowdoin Scholar all semesters (top 20% of class); James Bowdoin Cup (top GPA of varsity athletes)

Coursework:

Experimental Biology (Neurophysiology, Molecular Neurobiology)

Applied Mathematics (Probability and Statistics, Differential Equations, Linear Algebra)

Computer Science (Data Structures, Computer Architectures)

OTHER RESEARCH POSITIONS

Sandia National Laboratories. Livermore, CA

June-Sept 2016

Visiting Researcher. Advisor: Tamara Kolda

Dimensionality reduction of trial-structured neural data by tensor decompositions

Brandeis University. Waltham, MA

2012-2014

Research Technician. Advisor: Eve Marder

Computational modeling of homeostatic plasticity and modulation of neural circuits

NATIONAL LEVEL AWARDS AND FELLOWSHIPS

Department of Energy Computational Science Graduate Fellowship (DOE CSGF)	Sept 2014 – present
"Best Performer" – DREAM8 Challenge, Whole-cell Parameter Estimation	Oct 2013
"Most Creative Method" – DREAM8 Challenge, Whole-cell Parameter Estimation	Aug 2013
Brain Corporation Prize (awarded by popular vote to an article on www.scholarpedia.org)	July 2013
Phi Beta Kappa Inductee (alpha chapter of Maine)	Oct 2011
Barry S. Goldwater Scholarship (national-level selection process)	Mar 2011
Beckman Scholar Award (national-level award, institutional selection)	2011 – 2012
Goldwater Honorable Mention (national-level selection process)	Mar 2010

ORIGINAL RESEARCH PUBLICATIONS

Williams AH, O'Donnell C, Sejnowski T, O'Leary T (*in press*). Dendritic trafficking faces physiologically critical speed-precision tradeoffs. *eLife*. (Biorxiv preprint doi: 10.1101/037374)

Dickinson PS, Kurland SC, Qu X, Parker BO, Sreekrishnan A, Kwiatkowski MA, **Williams AH**, Ysasi AB, Christie AE (2015). Distinct or shared actions of peptide family isoforms: II. Multiple pyrokinins exert similar effects in the lobster stomatogastric nervous system. *J Exp Biol*.

Karr JR, **Williams AH**, Zucker JD, Raue A, Steiert B, Timmer J, Kreutz C, DREAM8 Parameter Estimation Challenge Consortium, Wilkinson S, Allgood BA, Bot BM, Hoff BR, Kellen MR, Covert MW, Stolovitzky GA, Meyer P (2015). Summary of the DREAM8 parameter estimation challenge: Toward parameter identification for whole-cell models. *PLoS Computational Biology*. 11(5): e1004096.

Neuroscience PhD Student, Stanford University | <u>alex.h.willia@gmail.com</u> | <u>http://alexhwilliams.info</u>

- O'Leary T, **Williams AH**, Franci A, Marder E (2014). Cell types, network homeostasis and pathological compensation from a biologically plausible ion channel expression model. *Neuron*. 82(4):809-21.
- Caplan JS, **Williams AH**, Marder E (2014). Many parameter sets in a multicompartment model oscillator are robust to temperature perturbations. *J Neurosci*. 34(14):4963-75.
- **Williams AH**, Calkins A, O'Leary T, Symonds R, Marder E, Dickinson PS (2013). The neuromuscular transform of the lobster cardiac system explains the opposing effects of a neuromodulator on muscle output. *J Neurosci*. 33(42): 16565-75.
- O'Leary T, **Williams AH**, Caplan J, Marder E (2013). Correlations in ion channel expression emerge from homeostatic tuning rules. *Proc Natl Acad Sci.* 110(28):E2645-54
- **Williams AH**, Kwiatkowski MA, Mortimer AL, Marder E, Zeeman ML, Dickinson PS (2013). Animal-to-animal variability in the phasing of the crustacean cardiac motor pattern: an experimental and computational analysis. *J Neurophysiol.* 109: 2451-65.

REVIEW PUBLICATIONS AND BOOK CHAPTERS

- **Williams AH**, Hamood AW, Marder E (2014). Neuromodulation in Small Networks. *Encyclopedia of Computational Neuroscience*.
- Williams AH, O'Leary T, Marder E (2013). Homeostatic Regulation of Neuronal Excitability. Scholarpedia, 8(1): 1656.

WORKSHOPS & SUMMER COURSES

Junior Scientist Workshop on Theoretical Neuroscience (Participant).

September 2016

Janelia Research Campus. Ashburn, VA. Organized by: Shaul Druckmann, Ann Hermundstad
Research Presentation: A Speed-Precision Tradeoff for Trafficking in Dendrites
Tutorial Presentation: Matrix and Tensor Decompositions of High-Dimensional Neural Data

Methods in Computational Neuroscience Course (Student).

August 2013

Woods Hole Oceanographic Institute. Woods Hole, MA. Organizers: Michale Fee, Mark Goldman

POSTERS & PRESENTATIONS

- Williams AH, O'Donnell C, Sejnowski T, Marder E, O'Leary T (2015). Control of spatially patterned gene expression in dendrites [Poster]. 2015 Society for Neuroscience Conference, Chicago, Illinois.
- Williams AH, O'Donnell C, Sejnowski T, Marder E, O'Leary T (2015). Control of spatially patterned gene expression in dendrites [Poster]. HHMI Meeting, Asburn, VA.
- **Williams AH**, O'Leary T, Marder E (2014). Homeostatic conductance regulation in multicompartment conductance-based model neurons [Poster]. 2014 Society for Neuroscience Conference, Washington, D.C.
- **Williams AH**, Zucker J (2013). Parameter fitting as statistical inference: an outsider's perspective [Invited Talk, DREAM8 "Best Performer" award]. 2013 RECOMB/ISCB conference. Toronto, Canada.
- Williams AH, Caplan J, Marder E (2013). Temperature Compensation in a pacemaker model [Poster]. 2013 Society for Neuroscience Conference. San Diego, California.
- O'Leary T, **Williams AH**, Caplan J, Marder E (2013). Correlations in ion channel expression emerge from homeostatic regulation mechanisms [Poster]. 2013 Society for Neuroscience Conference. San Diego, California
- Symonds RM, Williams AH, Calkins AM, Dickinson PS (2013). Predicting muscle output from neural input: An assessment of the neuromuscular transform in the crustacean cardiac system [Poster]. 2013 Society for Neuroscience Conference. San Diego, California
- Franci A, O'Leary T, Drion G, **Williams AH**, Marder E, Sepulchre R (2013). Homeostatic principles are consistent with sensitivity analysis of neuronal rhythmicity [Poster]. *2013 Society for Neuroscience Conference*. San Diego, California.
- O'Leary T, **Williams AH**, Caplan J, Marder E (2013). How conductance distributions are shaped by activity-dependent regulation rules [Poster]. *Twenty-Second Annual Computational Neuroscience Meeting (CNS 2013)*. Paris, France.
- Williams AH, Mortimer AL, Zeeman ML, Marder E, Dickinson PS (2012). The source and consequences of animal-to-animal variability in the phasing of a motor pattern: a theoretical and experimental investigation of the crustacean cardiac ganglion [Poster]. 2012 Society for Neuroscience Conference. New Orleans, Louisiana.

Neuroscience PhD Student, Stanford University | <u>alex.h.willia@gmail.com</u> | <u>http://alexhwilliams.info</u>

- Dickinson, PS, Calkins, A, **Williams AH**, Symonds R (2012). Interactions of cycle frequency, burst duration, and neuropeptide modulators in determining contraction amplitude of the *Homarus americanus* heart [Poster]. 2012 *Society for Neuroscience Conference*. New Orleans, Louisiana.
- **Williams AH**, Mortimer AL, Zeeman ML, Dickinson PS (2012). Network-to-network variability in the relative timing of neuron firing in the cardiac ganglion of *Homarus americanus* [Poster]. *Maine Biological and Medical Sciences Symposium*. Bar Harbor, Maine.
- Calkins A, Williams AH and Dickinson PS (2012). The effect of cycle frequency and duration on the contraction amplitude and frequency of the *Homarus americanus* heart [Poster]. *Maine Biological and Medical Sciences Symposium*. Bar Harbor, Maine.
- Williams AH (2011). How excitatory chemical synapses modulate rhythmic neuronal oscillations in heterogenous two-cell networks [Oral presentation]. *Dynamic Neural Networks: The Stomatogastric System (Satellite Event at 2011 Society for Neuroscience Conference)*. Washington D.C.
- **Williams AH**, Zeeman ML, Berkman JM, Dickinson PS (2011). Circuit dynamics and network properties of the crustacean cardiac ganglion [Poster]. 2011 Society for Neuroscience Conference. Washington D.C.
- Dickinson PS, Syed AH, **Williams AH**, Ysasi AB, Wiwatpanit T, Calkins AM, Sreekrishnan A, Magno JL, Matsuuchi MM, Berkow SW, Christie AE (2011). Distribution of pyrokinin-like peptides in the lobster, *Homarus americanus* [Poster] 2011 Society for Neuroscience Conference. Washington D.C.

Open-Source Code (primary author and maintainer)

PyNeuron-Toolbox.

github.com/ahwillia/PyNeuron-Toolbox

A Python library that augments NEURON (<u>neuron.yale.edu/</u>) simulations. Provides functions to an API to download morphology files from <u>neuromorpho.org</u>, generate plots and animations of reconstructed neural morphologies, and other convenience functions.

NonNegLeastSquares.jl

https://github.com/ahwillia/NonNegLeastSquares.jl

High-performance active-set methods for non-negative least squares problems.

Einsum.jl

https://github.com/ahwillia/Einsum.il

A flexible metaprogramming tool to specify nested nested loop computations with Einstein summation notation