Niklas Lauffer

■ nlauffer@berkeley.edu 🏻 niklaslauffer.github.io 🖈 niklaslauffer niklaslauffer

Education

University of California, Berkeley

2021 — May 2026 (expected)

PhD in Computer Science (Artificial Intelligence)

Advised by Stuart Russell and Sanjit Seshia – NSF Fellowship – CAIF Fellowship

University of Texas at Austin

2017 - 2021

BS in Computer Science Honors and Mathematics

Dean's Honored Graduate (awarded to the top 1% of graduates) – Turing Scholars honors – 3.96/4.0 GPA

Selected Publications

Imitation Learning for Multi-Turn LM Agents via On-policy Expert Corrections - In submission ICLR 2026 N. Lauffer, X. Deng, S. Kundurthy, B. Kenstler, J. Da

Robust and Diverse Multi-Agent Learning via Rational Policy Gradient NeurIPS 2025

N. Lauffer, A. Shah, M. Carroll, S. Seshia, S. Russell, M. Dennis

Multi-Agent Risks from Advanced AI Arxiv 2025

Hammond et al.

Learning Task Decompositions for Multi-agent Teams AAMAS 2025

A. Shah*, N. Lauffer*, T. Chen*, N. Pitta*, S. Seshia

Compositional Automata Embeddings for Goal-Conditioned Reinforcement Learning NeurIPS 2024

B. Yalcinkaya*, N.Lauffer*, M. Vazquez-Chanlatte, S. Seshia

Welfare Diplomacy: Benchmarking Language Model Cooperation arxiv 2024

G. Mukobi, H. Erlebach, N. Lauffer, L. Hammond, A. Chan, J. Clifton

Automata Conditioned Reinforcement Learning with Experience Replay - Spotlight NIPS GCRL 2023

N. Lauffer*, B. Yalcinkaya*, M. Vazquez-Chanlatte, S. Seshia

Who Needs to Know? Minimal Knowledge for Optimal Coordination ICML 2023

N. Lauffer, A. Shah, M. Carroll, M. Dennis, S. Russell

No-regret Learning in Dynamic Stackelberg Games. TAC 2023

N. Lauffer, M. Ghasemi, A. Hashemi, Y. Savas, and U. Topcu.

On Expected Value Strong Controllability. **JAIR 2023**

N. Lauffer, W. Lassiter, and J. Frank.

Deterministic Finite Automata Decompositions from Examples and Demonstrations FMCAD 2022

N. Lauffer, B. Yalcinkaya, M. Vazquez-Chanlatte, A Shah, S. Seshia

Training Classifiers for Feedback Control with Safety in Mind. Automatica 2021

H. Poonawala, N. Lauffer, and U. Topcu

Reachability Games for Optimal Multi-Agent Scheduling of Tasks with Variable Durations COCOA 2020

D. Raju, N. Lauffer, U. Topcu.

Human-Understandable Explanations of Infeasibility for Resource-Constrained Scheduling Problems ICAPS XAIP 2019 N. Lauffer, and U. Topcu

Expedited Learning in MDPs with Side Information

CDC 2018 M. Ornik, J. Fu, N. Lauffer, K. W. Perera, M. Alshiekh, M. Ono, and U. Topcu

Work Experience

Center for Human-Compatible AI, Learn & Verify | UC Berkeley

2021 — Present

PhD Candidate in Artificial Intelligence

My PhD is centered around AI safety, human-AI collaboration, multiagent reinforcement learning, and LLM agents.

- Developed a framework for generalizing adversarial learning algorithms to the cooperative and general-sum setting.
- Developed novel pretraining method for learning representations of multi-step-plans, frameworks for evaluating LLM capabilities, a library for decomposing formal specifications, more efficient LLM architectures in long-context settings, and wrote the "Coordination" section of the *Multi-Agent Risks from Advanced AI* report.
- Published eight first-author papers at top venues (NeurIPS, ICML, AAMAS, JAIR, FMCAD, TAC) with more co-authored.
- On the program committed for CHAI 2024 and CHAI 2025 which was attended by over 200 researchers. Led and organized all-hands meetings, discussions, and talks for CHAI from 2023-2025. This amounts to 140+ talks from external and internal researchers.

RESUME NIKLAS LAUFFER

Scale AI | Reasoning and Agents Team

Research Scientist Intern in LLM Agents

Interned on the Reasoning and Agents team, researching how to improve LM agent training for long-horizon, multi-turn tasks.

- Developed a novel training scheme for multi-turn LM agents that combats the issue of covariate shift.
- Improved the state-of-the-art 7B LM agent performance on SWE-bench from 12% \rightarrow 20% and 32B from 36% \rightarrow 40%.
- A full conference paper is under review at ICLR.

Autonomous Systems Group | UT Austin

2017 - 2021

Summer 2025

Student Researcher in Autonomous Systems

Advised by Ufuk Topcu in the Institute for Computational Engineering and Science. As part of the Autonomous Systems Group, I developed formal and empirical approaches to decision making (MDPs, planning, RL) and control for autonomous systems.

- Published 5+ papers at top venues (CDC, ICAPS, COCOA, ACC, Automatica, Scientific Reports).
- Developed the first no-regret algorithm for learning in dynamic Stackelberg games resulting in a first-author publication at TAC.
- Built quadcopter flight software in C/C++, reinforcement learning visualization tools and a neural controlled UAV in Python.

NASA Ames Research Center

Research Intern in Planning and Scheduling

Summer 2019 and 2020

Interned at NASA Ames Research Center in the Automated Planning and Scheduling group under Dr. Jeremy Frank.

- Project resulted in a first-author journal publication at JAIR.
- Formulated the theory behind rescheduling policies for Expected Value Probabilisitic Simple Temporal Networks (EvPSTNs).
- Implemented dynamic rescheduling simulations for EvPSTNs to evaluate the effectiveness of different rescheduling policies.

Academic Service

Organizer CHAI Workshop 2024-2025, CHAI Internship 2023-2025, CHAI All-hands 2023-2025, PSBAI NSF Workshop 2022.

Reviewer NeurIPS 2025, ICML 2025, RLC 2025, TAC 2024, ACC 2024, AAAI 2024, CAIF Grant Making 2024-2025

Advising Darius Muglich, Rupali Bhati, Mariana Meireles, Sandy Tanwisuth, Martín Soto, Thomas Chen, Nikhil Pitta

Teaching CS188: Artificial Intelligence (2022), CS370: Homotopy Type Theory (2020)

Honors.

2024 Cooperative AI Foundation Fellowship: Fellowship to support research in Cooperative AI

2023 NSF Graduate Research Fellowship: Awarded to high-potential PhD students early in their career

2022 Hertz Fellowship Finalist: One of 42 finalists selected from over 750 applicants

2021 University of Texas Dean's Honored Graduate - highest honor awarded to 1% of graduating students

2021 Turing Scholars (Computer Science Honors) - less than 7% of students are admitted

2021 **Dean's Scholars (Math Honors)** - less than 1.5% of students are admitted

2021 Turing Scholars' Best Undergraduate Thesis Award Finalist

Invited Talks

Aug 2023 | University of Maryland MARL Group: Who Needs to Know? Minimal Knowledge for Optimal Coordination

Aug 2023 | Berkeley Multi-agent Learning Seminar: Who Needs to Know? Minimal Knowledge for Optimal Coordination

Aug 2023 MIT Algorithmic Alignment Group: Who Needs to Know? Minimal Knowledge for Optimal Coordination

Jul 2023 | ICML 2023: Who Needs to Know? Minimal Knowledge for Optimal Coordination

Jun 2023 CHAI Workshop 2023: Who Needs to Know? Minimal Knowledge for Optimal Coordination

Dec 2022 • Nissan Alliance Innovation Lab: Learning DFA Decompositions from Examples and Demonstrations.

Oct 2022 FMCAD 2022: Learning DFA Decompositions from Examples and Demonstrations.

Technical Skills

Languages (Advanced) Python, C, C++, Java, Bash, LaTeX

Languages (Basic) MATLAB, R, Haskell, z/OS Assembly, HTML, CSS

Libraries (Python) Jax, Pytorch, NumPy, SciPy, Scikit-Learn, Gym, Matplotlib, Seaborn, DGL, ROS, Gurobi, Z3

Foreign Languages German (Fluent Reading, Fluent Speaking, Fluent Listening, Intermediate Writing)