TECHNIQUES & MÉTHODES S01

NB: cette fiche reprend les techniques nécessaires minimales; elle ne constitue donc pas un objectif, mais un prérequis!

CALCULS DANS R

■■■ Calculer une somme ou un produit fini

Je sais calculer des sommes et produits finis

- ▶ à l'aide d'un récurrence;
- ▶ à l'aide d'un changement d'indice, ou d'un télescopage
- ▶ en utilisant l'identité géométrique ou la formule du binôme de Newton (pour une somme)

■ ■ ■ Changements d'indice

Je sais calculer la somme $\sum_{i=0}^{q-p} x_{p+i}$ à l'aide du changement d'indice k=p+i,

- 1 je pose k = p + i
- $\boxed{2}$ je remplace i par k-p dans la somme;
- 3 je détermine les bornes pour k: lorsque i varie de 0 à q-p, k varie de p à q.

Exercice 1: Soit $0 \le p \le n$. Montrez que $\prod_{k=0}^{p-1} \frac{n-k}{p-k} = \binom{n}{p}$. Réponse : on effectue le chgt d'indice j=n-k au numérateur et $\ell=p-k$ au

$$\text{dénominateur}: \prod_{k=0}^{p-1} \frac{n-k}{p-k} = \frac{\prod_{k=0}^{p-1} (n-k)}{\prod\limits_{k=0}^{p-1} (p-k)} = \frac{\prod\limits_{j=n-p+1}^{n} j}{\prod\limits_{j=1}^{p} \ell} = \frac{n!}{p!(n-p)!}$$

■■■ Manipuler des inégalités

Encadrer une somme

Pour majorer (resp. minorer, encadrer) la somme $\sum_{k=0}^{n} x_k$,

- $\boxed{1}$ je considère $k \in \{0, \dots, n\}$, je majore (resp. minore, encadre) x_k . Ainsi, Pour tout $k \in \{0, \dots, n\}$, $x_k \leq M_k$.
- $\boxed{2}$ puis j'ajoute terme à terme toutes ces majorations $\sum_{k=0}^{n} x_k \leq \sum_{k=0}^{n} M_k$.

Exercice 2: Montrez que pour tout entier naturel non nul $n \in \mathbb{N}^{\star}$, $\frac{1}{n} \leq \sum_{k=0}^{n} \frac{1}{n^2 + k} \leq \frac{n+1}{n^2}$. $r \neq ponse$: Soit $k \in \{0, 1, 2, \dots, n\}$.

De l'encadrement $0 \le k \le n$, je tire $\frac{1}{n^2 + n} \le \frac{1}{n^2 + k} \le \frac{1}{n^2}$. En sommant terme à terme ces n + 1 encadrements, il vient $\sum_{k=0}^{n} \frac{1}{n^2 + n} \le \sum_{k=0}^{n} \frac{1}{n^2 + k} \le \sum_{k=0}^{n} \frac{1}{n^2}$, soit $\frac{1}{n} \le \sum_{k=0}^{n} \frac{1}{n^2 + k} \le \frac{n+1}{n^2}$.

Calculer une partie entière

Pour calculer une partie entière, on revient souvent à la définition en encadrant le réel x entre deux entiers consécutifs. Pour prouver que |x| = n, j'établis l'encadrement $n \le x < n+1$.

Majorer ou minorer la valeur absolue d'une somme

J'utilise l'inégalité triangulaire kivabien.

ÉQUATIONS DANS R

■■■ Résoudre une équation polynomiale

Pour une équation de degré inférieur ou égal à 2, les formules du cours s'appliquent. Pour les équations de degré supérieur ou égal à 3, je cherche à abaisser le degré de l'équation au moyen

- ▶ d'une factorisation (racine évidente, identité remarquable)
- ▶ d'un changement d'inconnue

Exercice 3: Résoudre dans **R** l'équation $x^3 - 9x + \frac{20}{x} = 0$. x = 0 $\Rightarrow \begin{cases} x \neq 0 \\ x^3 - 9x + \frac{20}{x} = 0 \end{cases} \Leftrightarrow \begin{cases} x \neq 0 \\ x^4 - 9x^2 + 20 = 0 \end{cases} \Leftrightarrow \begin{cases} x \neq 0 \\ x^4 - 9x^2 + 20 = 0 \end{cases} \Leftrightarrow \begin{cases} x \neq 0 \\ x^4 - 9x^2 + 20 = 0 \end{cases} \Leftrightarrow \begin{cases} x \neq 0, X = x^2 \\ X^2 - 9X + 20 = 0 \end{cases} \Leftrightarrow \begin{cases} x \neq 0, X = x^2 \\ X = 4 \text{ OU } X = 5 \end{cases} \Leftrightarrow \begin{cases} x \neq 0, x = x^2 \\ X = 4 \text{ OU } X = 5 \end{cases} \Leftrightarrow \begin{cases} x \neq 0, x = x^2 \\ X = 4 \text{ OU } X = 5 \end{cases} \Leftrightarrow \begin{cases} x \neq 0, x = x^2 \\ X = 4 \text{ OU } X = 5 \end{cases} \Leftrightarrow \begin{cases} x \neq 0, x = x^2 \\ X = 4 \text{ OU } X = 5 \end{cases} \Leftrightarrow \begin{cases} x \neq 0, x = x^2 \\ X = 4 \text{ OU } X = 5 \end{cases} \Leftrightarrow \begin{cases} x \neq 0, x = x^2 \\ X = 4 \text{ OU } X = 5 \end{cases} \Leftrightarrow \begin{cases} x \neq 0, x = x^2 \\ X = 4 \text{ OU } X = 5 \end{cases} \Leftrightarrow \begin{cases} x \neq 0, x = x^2 \\ X = 4 \text{ OU } X = 5 \end{cases} \Leftrightarrow \begin{cases} x \neq 0, x = x^2 \\ X = 4 \text{ OU } X = 5 \end{cases} \Leftrightarrow \begin{cases} x \neq 0, x = x^2 \\ X = 4 \text{ OU } X = 5 \end{cases} \Leftrightarrow \begin{cases} x \neq 0, x = x^2 \\ X = 4 \text{ OU } X = 5 \end{cases} \Leftrightarrow \begin{cases} x \neq 0, x = x^2 \\ X = 4 \text{ OU } X = 5 \end{cases} \Leftrightarrow \begin{cases} x \neq 0, x = x^2 \\ X = 4 \text{ OU } X = 5 \end{cases} \Leftrightarrow \begin{cases} x \neq 0, x = x^2 \\ X = 4 \text{ OU } X = 5 \end{cases} \Leftrightarrow \begin{cases} x \neq 0, x = x^2 \\ X = 4 \text{ OU } X = 5 \end{cases} \Leftrightarrow \begin{cases} x \neq 0, x = x^2 \\ X = 4 \text{ OU } X = 5 \end{cases} \Leftrightarrow \begin{cases} x \neq 0, x = x^2 \\ X = 4 \text{ OU } X = 5 \end{cases} \Leftrightarrow \begin{cases} x \neq 0, x = x^2 \\ X = 4 \text{ OU } X = 5 \end{cases} \Leftrightarrow \begin{cases} x \neq 0, x = x^2 \\ X = 4 \text{ OU } X = 5 \end{cases} \Leftrightarrow \begin{cases} x \neq 0, x = x^2 \\ X = 4 \text{ OU } X = 5 \end{cases} \Leftrightarrow \begin{cases} x \neq 0, x = x^2 \\ X = 4 \text{ OU } X = 5 \end{cases} \Leftrightarrow \begin{cases} x \neq 0, x = x^2 \\ X = 4 \text{ OU } X = 5 \end{cases} \Leftrightarrow \begin{cases} x \neq 0, x = x^2 \\ X = 4 \text{ OU } X = 5 \end{cases} \Leftrightarrow \begin{cases} x \neq 0, x = x^2 \\ X = 4 \text{ OU } X = 5 \end{cases} \Leftrightarrow \begin{cases} x \neq 0, x = x^2 \\ X = 4 \text{ OU } X = 5 \end{cases} \Leftrightarrow \begin{cases} x \neq 0, x = x^2 \\ X = 4 \text{ OU } X = 5 \end{cases} \Leftrightarrow \begin{cases} x \neq 0, x = x^2 \\ X = 4 \text{ OU } X = 5 \end{cases} \Leftrightarrow \begin{cases} x \neq 0, x = x^2 \\ X = 4 \text{ OU } X = 5 \end{cases} \Leftrightarrow \begin{cases} x \neq 0, x = x^2 \\ X = 4 \text{ OU } X = 5 \end{cases} \Leftrightarrow \begin{cases} x \neq 0, x = x^2 \\ X = 4 \text{ OU } X = 5 \end{cases} \Leftrightarrow \begin{cases} x \neq 0, x = x^2 \\ X = 4 \text{ OU } X = 5 \end{cases} \Leftrightarrow \begin{cases} x \neq 0, x = x^2 \\ X = 4 \text{ OU } X = 5 \end{cases} \Leftrightarrow \begin{cases} x \neq 0, x = x^2 \\ X = 4 \text{ OU } X = 5 \end{cases} \Leftrightarrow \begin{cases} x \neq 0, x = x^2 \\ X = 4 \text{ OU } X = 5 \end{cases} \Leftrightarrow \begin{cases} x \neq 0, x = x^2 \\ X = 4 \text{ OU } X = 5 \end{cases} \Leftrightarrow \begin{cases} x \neq 0, x = x^2 \\ X = 4 \text{ OU } X = 5 \end{cases} \Leftrightarrow \begin{cases} x \neq 0, x = x^2 \\ X = 4 \text{ OU } X = 5 \end{cases} \Leftrightarrow \begin{cases} x \neq 0, x = x^2 \\ X = 4 \text{ OU } X = 5 \end{cases} \Leftrightarrow \begin{cases} x \neq 0, x = x^2 \\ X = 4 \text{ OU } X = 5 \end{cases} \Leftrightarrow \begin{cases} x \neq 0, x = x^2 \\ X = 4 \text{ OU } X = 5 \end{cases} \Leftrightarrow \begin{cases} x \neq 0, x = x^2 \\ X$

■■■ Résoudre un système d'équations linéaires

Je mets en œuvre la méthode d'élimination de Gauss.