MATH 4210/5210 Summer 2020

Homework 5

Due Wednesday, June 24

- 1. Chapter 11, Exercise A2 (p. 115)
- 2. Chapter 11, Exercise B1 (p. 116)
- 3. Chapter 11, Exercise B3 (p. 116)
- 4. Chapter 11, Exercise D1 (p. 117)
- 5. Chapter 11, Exercise D2 (p. 117)
- 6. Chapter 12, Exercise B1 (p. 124) (Write out the elements of [x] and describe the set [x])
- 7. Chapter 12, Exercise B5 (p. 124) (Describe the set [x], in particular the set [0]; no need to describe the partition)
- 8. Chapter 12, Exercise D3 (p. 125)
- 9. List all cyclic subgroups of \mathbb{Z}_{12} , and conclude that the order of all subgroups must divide the order of \mathbb{Z}_{12} (this is an illustration of the statement/result in Chapter 11, Exercise B4).
- 10. Let f(x) = x + 1 be an element of $S_{\mathbb{R}}$. Write the elements of $\langle f \rangle$ and show that $\mathbb{Z} \cong \langle f \rangle$.
- 11. Let f(x) = x + 1 be an element of $\mathcal{F}(\mathbb{R})$ (see pp. 45-46 to recall the definition of $\mathcal{F}(\mathbb{R})$). Write the elements of $\langle f \rangle$ and show that $\mathbb{Z} \cong \langle f \rangle$.
- 12. Let $A = \begin{bmatrix} a & (b-a) \\ 0 & b \end{bmatrix}$, $a \neq 0$, $b \neq 0$, be an element of $GL_2(\mathbb{R})$.
 - (a) Compute the elements $A^2, A^3, A^{-1}, A^{-2}, A^{-3}$, and check that $AA^{-1} = I$.
 - (b) Find the general form of A^n , $n \in \mathbb{Z}$, to describe $\langle A \rangle$.
- 13. Let $f, g \in \mathcal{F}(\mathbb{R})$. Show that the following describes an equivalence relation:

$$f \sim g \iff$$
 for every $x \in \mathbb{R}$, $f(x) - g(x) = c$ for some $c \in \mathbb{R}$

14. Let X be any set, and let $f: X \to X$ be a bijective function. Show that, for $x, y \in X$, the following describes an equivalence relation: $x \sim y$ iff there exists $n \in \mathbb{Z}$ such that $f^n(x) = y$.