& Some applications in Summarization

Yufeng Lv

Word Embedding

Map the word into "semantic" space as a point

Word Embedding

LSTM

- Semantics are context sensitive
- Avoids gradient disappearance through gate

Seq2Seq

- Composed of two RNNs
- Can be used in Machine translation, summarization, Q&A and dialogue systems

Seq2Seq

Fixed length context vector

Attention

Pay attention to related word

Problem

The animal didn't cross the street because it was too tired.

The animal didn't cross the street because it was too narrow.

- The animal didn't cross the street because it?
- •it? was too tired.

Self-Attention

Self-Attention Calculate

Compare with Normal Attention

- Q is decoder's hidden state
- K is encoder's output
- V is encoder's output

Multi-Heads

Transformer

Transformer

One layer Encoder and Decoder

Position Embedding

Contextual Word Embedding

Problems

- Word Embedding without context information
- Lack of supervised data

Solutions

- Unsupervised learning
- Contextual Word Embedding

ELMo

ELMo's Problem

Problems

Not suitable for a specific task

Solutions

- Fine-tuning depends on the task
- Use Transformer replace RNN/LSTM

OpenAl GPT

GPT's Problem

Problems

- Unidirectional
- Pre-training and Fine-tuning not matched

Solutions

- Masked LM
- NSP Multi-task Learning

Masked LM

 Random mask 15% words, and use BERT to predict

Fine-Tuning

Simple Fine-Tuning for Summarization

Figure 1: The overview architecture of the BERTSUM model.

Hierarchical Document Representations

Two-stage refined method

References

http://arxiv.org/abs/1706.03762. Accessed April 23, 2019.

2. Devlin J, Chang M-W, Lee K, Toutanova K. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. arXiv:181004805 [cs]. October 2018. http://arxiv.org/abs/1810.04805. Accessed April 23, 2019.

3. Peters ME, Neumann M, Iyyer M, et al. Deep contextualized word representations.

1. Vaswani A, Shazeer N, Parmar N, et al. Attention Is All You Need. arXiv:170603762 [cs]. June 2017.

- arXiv:180205365 [cs]. February 2018. http://arxiv.org/abs/1802.05365. Accessed April 23, 2019.

 4. Liu Y. Fine-tune BERT for Extractive Summarization. arXiv:190310318 [cs]. March 2019. http://arxiv.org/abs/1903.10318. Accessed April 8, 2019.

 5. Chang M-W, Toutanova K, Lee K, Devlin J. Language Model Pre-training for Hierarchical Document
- Representations. arXiv:190109128 [cs]. January 2019. http://arxiv.org/abs/1901.09128. Accessed April 8, 2019.
- 6. Radford A, Wu J, Child R, Luan D, Amodei D, Sutskever I. Language Models are Unsupervised Multitask Learners. :24.

 8. Zhang H, Gong Y, Yan Y, et al. Pretraining-Based Natural Language Generation for Text Summarization. arXiv:190209243 [cs]. February 2019. http://arxiv.org/abs/1902.09243. Accessed April 8, 2019.