

Árbol

Considerá un **árbol** con N **vértices** numerados de 0 a N-1. El vértice 0 es llamado la **raíz**. Cada vértice, excepto la raíz, tiene un único **padre**. Para cada i, ($1 \le i < N$), el padre del vértice i es el vértice P[i], con P[i] < i. Además, asumimos que P[0] = -1.

Para cada vértice i ($0 \le i < N$), el **subárbol** de i es el conjunto conformado por los siguientes vértices:

- *i*, y
- cualquier vértice cuyo padre sea i, y
- cualquier vértice tal que el padre de su padre sea i, y
- cualquier vértice tal que el padre del padre de su padre sea i, y
- así sucesivamente.

La figura mostrada a continuación muestra un ejemplo de un árbol con N=6 vértices. Cada flecha conecta un vértice a su padre, excepto para la raíz que no tiene padre. El subárbol del vértice 2 está conformado por los vértices 2,3,4 y 5. El subárbol del vértice 0 está conformado por todos los 0 vértices del árbol y el subárbol del vértice 0 está conformado solamente por el vértice 0.

A cada vértice se le asigna un **peso** entero no negativo. Denotamos el peso del vértice i $(0 \le i < N)$ como W[i].

Tu tarea es escribir un programa que responda Q preguntas, cada una especificada por un par de enteros positivos (L,R). La respuesta a la pregunta se debe calcular como sigue.

Considerá asignar un entero, llamado **coeficiente**, a cada vértice del árbol. Tal asignación se describe con una secuencia $C[0],\ldots,C[N-1]$, donde C[i] ($0\leq i < N$) es el coeficiente asignado al vértice i. Llamemos a esta secuencia una **secuencia de coeficientes**. Notá que los elementos de la secuencia de coeficientes pueden ser negativos, 0, o positivos.

Dada una pregunta (L,R), decimos que una secuencia de coeficientes $C[0],\ldots,C[N-1]$ es válida para esa pregunta, si para cada vértice i ($0 \le i < N$), se cumple la siguiente condición: la suma de los coeficientes de los vértices en el subárbol del vértice i no es menor que L y no es mayor que R.

Para una secuencia de coeficientes $C[0], \ldots, C[N-1]$, el **costo** de un vértice i es $|C[i]| \cdot W[i]$, Donde |C[i]| denota el valor absoluto de C[i]. Finalmente, el **costo total** es la suma de los costos de todos los vértices. Tu tarea es calcular, para cada pregunta, El **costo mínimo total** que se puede obtener por alguna secuencia válida de coeficientes.

Se puede demostrar que para cualquier pregunta, existe al menos una secuencia de coeficientes válida.

Detalles de Implementación

Tenés que implementar las siguientes dos funciones:

```
void init(std::vector<int> P, std::vector<int> W)
```

- P, W: arreglos de enteros de longitud N especificando los padres y los pesos.
- Este procedimiento es llamado exactamente una vez al comienzo de la interacción entre el evaluador y su programa en cada caso de prueba.

```
long long query(int L, int R)
```

- L, R: enteros describiendo una pregunta.
- ullet Este procedimiento se llama Q veces después de la invocación de init en cada caso de prueba.
- Este procedimiento debe devolver la respuesta a la pregunta dada.

Restricciones

- $\bullet \quad 1 \leq N \leq 200\,000$
- 1 < Q < 100000
- P[0] = -1
- $0 \le P[i] < i$ para cada i tal que $1 \le i < N$
- $0 \le W[i] \le 1\,000\,000$ para cada i tal que $0 \le i < N$
- $1 \le L \le R \le 1\,000\,000$ en cada pregunta

Subtareas

Subtarea	Puntaje	Restricciones Adicionales	
1	10	$Q \leq 10$; $W[P[i]] \leq W[i]$ para cada i tal que $1 \leq i < N$	
2	13	$Q \leq$ 10; $N \leq$ 2 000	
3	18	$Q \leq$ 10; $N \leq$ 60 000	
4	7	$W[i] = 1$ para cada i tal que $0 \leq i < N$	
5	11	$W[i] \leq 1$ para cada i tal que $0 \leq i < N$	
6	22	L=1	
7	19	Sin restricciones adicionales.	

Ejemplo

Considerá la siguiente llamada:

El árbol consiste de 3 vértices, la raíz y 2 hijos. Todos los vértices tienen peso 1.

En esta pregunta L=R=1, Lo cual significa que la suma de los coeficientes en cada subárbol debe ser igual a 1. Considerá la secuencia de coeficientes [-1,1,1]. El árbol y sus coeficientes correspondientes (en rectángulos sombreados) se ilustran a continuación.

Para cada vértice i ($0 \le i < 3$), la suma de los coeficientes de todos los vértices en el subárbol i es igual a 1. Por lo tanto, esta secuencia de coeficientes es válida. El costo total se calcula como sigue:

Vértice	Peso	Coeficiente	Costo
0	1	-1	$ -1 \cdot 1=1$
1	1	1	1 ·1 = 1
2	1	1	$ 1 \cdot 1 = 1$

Por lo tanto el costo total es 3. Esta es la única secuencia de coeficientes válida, por lo tanto esta llamada debe devolver 3.

```
query(1, 2)
```

El costo mínimo total para esta pregunta es 2, Y se obtiene con la secuencia de coeficientes [0,1,1].

Evaluador Local

Formato de Entrada:

```
N
P[1] P[2] ... P[N-1]
W[0] W[1] ... W[N-2] W[N-1]
Q
L[0] R[0]
L[1] R[1]
...
L[Q-1] R[Q-1]
```

donde L[j] y R[j] (para $0 \le j < Q$) son los argumentos en la llamada j-ésima a query. Notá que la segunda línea de la entrada contiene **solamente** N-1 **enteros**, pues el evaluador local no lee el valor de P[0].

Formato de salida:

```
A[0]
A[1]
...
A[Q-1]
```

donde A[j] (para $0 \le j < Q$) es el valor devuelto por la llamada j-ésima a la función query.