Rassemblement d'agents mobiles

Éloi Perdereau

24 avril 2014

1 Cas

Les cas symétriques sont omis.

1.1 0 ou 1 voisins

1.2 2 voisins

1.3 3 voisins

1.4 4 voisins

1.5 5 voisins et plus

Pour énumérer les cas avec 5 et 6 robots voisins, il suffit de prendre le complémentaire des cas avec respectivement 3 et 2 robots voisins. Aucun de ces cas n'entraine un mouvement de la part du robot concerné.

1.6 Extension

Tel quels, les cas 6 et 13 peuvent conduire à une déconnexion de l'espace. Pour y remédier, il faut que chaque robot mémorise son entourage d'une ronde sur l'autre (il ne retient que son entourage précédent.) Puis, si à la ronde précédente, il était dans le cas 6 ou 13, il faut qu'il vérifie si au moins une des cases suivante contient un robot : à droite, en bas et en bas à droite. Si ce n'est pas le cas, il revient à sa position précédente. Les cas symétriques sont définis de façon analogues.

Après avoir réglé ces cas de déconnexions, un autre problème survient avec les cas 5 et 6. Il se peut que l'espace alterne entre deux états ce qui rend le rassemblement impossible. Le problème vient du fait que des robots disposés en quinconce soient de nouveau en quinconce à la ronde suivante (avec des positions inversés.) Et ainsi, revenir à la position qu'ils occupaient deux rondes plus tôt. Pour y remédier, on va de nouveau utiliser l'entourage de la ronde précédente : Si à la ronde précédente, un robot était dans le cas 5 ou 6, et qu'il est désormais dans le cas opposé, alors il ne bouge pas pour cette ronde.

1.7 Formalisation

Algorithme 1:

```
finish \leftarrow False;
ok \leftarrow True;
k \leftarrow 0:
while not finish do
    N_k \leftarrow get\ neighbors();
    if k\%4 = 0 then
        if N_k is case 1.2.4 or 1.3.5 then
            move to (i, j-1);
            get neighbors();
            if (i, j-2) or (i+1, j-2) is not empty then
             ok \leftarrow False;
            end
        end
    else if k\%4 = 1 then
        if N_{k-1} is case 1.2.4 or 1.3.5 then
           move to (i, j + 1);
        \quad \text{end} \quad
    else if k\%4 = 2 then
        if N_k is case 1.1.1 or
        (N_k \text{ is case } 1.1.2 \text{ or } 1.1.3 \text{ and } N_{k-2} = rotate180(N_k)) \text{ or }
        (N_k \text{ is case } 1.3.2 \text{ and } N_{k-2} = rotate 90(N_k)) \text{ then}
            finish \leftarrow True;
        else if ok = True then
         move according to N_k;
        end
        ok \leftarrow True;
    else
        if (N_{k-1} \text{ is case } 1.2.4 \text{ or } 1.3.5) and ((i, j+1), (i-1, j), (i-1, j+1) \text{ are all empty}) then
         move to (i-1,j);
        end
    end
    k \leftarrow k + 1;
end
```

1.8 Correctness

We define the bounding box BB(t) of the robots as the smallest enclosing rectangle (oriented with the grid's axes) which contains all robots at step t.

Lemma 1.1. When following the algorithm described above, the bounding box of the robots is monotonically non-inflating, i.e., $BB(t+1) \subseteq BB(t)$ for all t.

Lemma 1.2. If there is exactly one robot in the topmost row of the bounding box, then it moves down after at most a constant number of steps.

2 Calcul du temps de rassemblement dans le cas d'un bloc (draft)

2.1 Cas paire

Bloc de taille n par n avec $n \geq 3$. On ne considère que un côté (les trois autres sont similaires) R: le plus petit rectangle englobant tous les robots

Première étape De bloc à disque

Les deux cases prises par les robots sur les bords du côtés se libèrent à chaque ronde. Donc à chaque ronde, le nombre de robots sur le côté diminue de 2. Le temps pour qu'il ne reste plus que 4 robots est

$$\frac{n-4}{2}$$

Deuxième étape Effondrement du disque (ou du cercle)

Le côté ne contient plus que 4 robots adjacents. Donc au bout de deux étapes, il s'effondre. On se rend compte que tant que $n \geq 3$, après chaque effondrement, le côté contient de nouveau 4 robots adjacents. Donc, pour que l'espace devienne un bloc de taille 2 par 2 (cas terminal), il faut que chaque côté "descendent" de n/2-1, soit un nombre d'étapes de

$$(\frac{n}{2}-1)*2$$

Puis il faut une dernière ronde pour que les robots se rendent compte qu'ils ont terminés.

Totaux Le temps total T pour que un bloc se rassemble est donc :

$$T = (\frac{n}{2} - 1) * 2 + \frac{n - 4}{2} + 1$$
$$T = n + \frac{n}{2} - 3$$

2.2 Cas impaire

Le cas impaire est assez similaire : On utilise des côtés qui ont 3 robots adjacents, et "descendent" en deux étapes.

Première étape

$$\frac{n-3}{2}$$

Deuxième étape

$$(\frac{n-1}{2})*2$$

Pas de ronde en plus après la deuxième étape.

2.3 Cas général (paire et impaire)

$$n + \left\lceil \frac{n}{2} \right\rceil - 3$$

Formule vérifiée pour des blocs de côtés de taille 3 à 50 de côtés de taille 3 à 100.

2.4 Généralisation aux rectangles

On considère des rectangles de taille m par n avec $m \leq n$.

$$\left\lceil \frac{n-4}{2} \right\rceil + 2 * \left\lfloor \frac{m}{2} \right\rfloor - 2 si \ m \ pair + 1 si \ m \ ou \ n \ pair$$

2.5 Généralisation aux carrés (blocs vides)

Tout ce qui a été dis sur les blocs peut s'appliquer (et a été vérifié) aux carrés et aux rectangles. On peut associer les robots qui forment le contour du bloc aux robots qui forment le cercle. Puis, on se rend compte que à chaque étape, les robots correspondant deux à deux prendront la même décision.