# QC Functions User Manual

# Chen Chun-Yu

# February 6, 2017

# Contents

| 1 | Introduction                                 | 2           |  |  |
|---|----------------------------------------------|-------------|--|--|
| 2 | Prerequest                                   | 2           |  |  |
| 3 | Caution                                      |             |  |  |
| 4 | QC Functions           4.1 Per-individual QC | 2<br>2<br>3 |  |  |
| 5 | Example 5.1 Per-individual QC 5.2 Per-SNP QC | 4<br>4<br>5 |  |  |

#### 1 Introduction

This manual shows you how to use the quality control functions and give an example for demonstration.

### 2 Prerequest

To make the functions run successfully, please ensure you have installed PLINK in previous. After you installed PLINK, please copy it from defult folder and paste it to /usr/local/bin.

\$ cp ~/Bin/plink /usr/local/bin

#### 3 Caution

Do not modify any content arbitrarily of ouput files generated from PLINK!

### 4 QC Functions

### 4.1 Per-individual QC

- sex\_check(input.name, output.name)
  Place the name of your PLINK binary files(BED/BIM/FAM) at "input.name" argument, and give
  the output name at "output.name" argument. After the analysis, you will get a plot("sex\_distribution.pdf")
  which shows the distribution of individual's sex and a "output.name\_sex\_problem.list" file which
  records individuals with discordant sex information. Defult homozygosity rates of identifying
  individual as male is above 0.8, and recognizing as female is below 0.2.
- missing\_het\_ind(input.name, pop.list, output.name)
  You still need to give input and ouput names for the analysis. You also need to give a list of individuals with their populations at "pop.list" argument, the example format shows below:

| 1 | TDC13  | Paiwan |
|---|--------|--------|
| 2 | TDC117 | Amis   |
| 3 | TDC18  | Bunun  |
| 4 | TDC129 | Amis   |
| 5 | TDC49  | Amis   |
| 6 | TDC497 | Puyuma |

You will get a plot("imiss-vs-het.pdf") which shows the distribution of missingness and heterozygosity scores and a "output.name\_miss\_het\_problem.list" file which records individuals do not pass criteria. Default cuttoffs of genotype failure rates are equal or larger than 0.03 and heterozygosity rates deviate more or less 3 s.d. from the mean.

#### • IBD(input.name, output.name)

You still need to give input and ouput names for the analysis. After the analysis, you will get a plot("IBD.pdf") which shows the propotion of the different IBD between pairs of individuals. You will also get a "output.name\_ibd\_problem.list" that records the individuals do not pass the criterion. Default value of IBD we intend to remove is higher than 0.1875.

• ind\_qc\_rm(input.name, output.name)
After you finish the steps of per-individual QC, you can use ind\_qc\_rm function to output the

list("output.name\_fail\_ind\_qc.txt") which contains all the problem lists that are generated by previous QC steps. You can use following PLINK command to remove the individuals easily:

plink --bfile your.PLINK.bfile --remove output.name\_fail\_ind\_QC.txt --make-bed -out output.name

#### 4.2 Per-SNP QC

- missing\_snp(input.name, output.name)
  You still need to give input and ouput names for the analysis. You will get a plot("snpmiss\_plot.pdf")
  which shows the distribution of missing genotype rate and a threshold for extreme genotype failure
  rate. Default missing genotype rate threshold is equal to 0.03.
- hwe\_test(input.name, output.name)
  You still need to give input and ouput names for the analysis. You will get a plot("hwe\_p\_value.pdf")
  which shows the distribution of Hardy-Weinberg Equilibrium test's p-value and a threshold for
  extreme high p-value. Default extreme p-value threshold is equal to 0.00001.

Two per-SNP QC steps show above are aim to show the distribution of missing genotype rate and Hardy-Weinberg Equilibrium test's p-value. If you want to further exclude those SNPs, please use following PLINK commands:

plink --bfile your.PLINK.bfile --maf 0.01 --geno 0.03 --hwe 0.00001 --make-bed --out output.name

# 5 Example

Here we give you an example of applying the functions we have illustrated. The example data is consists of 96 individuals and about 2.5 millions of SNPs.

### 5.1 Per-individual QC



(a) Distribution of individual's sex.



Figure 1: Three analysis in per-individual QC.

## 5.2 Per-SNP QC



Figure 2: Two analysis in per-SNP QC.

# References

- [1] Anderson CA, Pettersson FH, Clarke GM, Cardon LR, Morris AP, Zondervan KT. Data quality control in genetic case-control association studies. *Nature protocols.* 2010;5(9):1564-1573. doi:10.1038/nprot.2010.116.
- [2] Purcell S, Neale B, Todd-Brown K, et al. PLINK: A Tool Set for Whole-Genome Association and Population-Based Linkage Analyses. *American Journal of Human Genetics*. 2007;81(3):559-575.