Priyasri Sankaran

Project 2

1. Part I

The effects of region (A) and percent below poverty level (B) on the crime rate (Variable10/Variable5) are to be studied.

Dependent variable: crime_rate Number of observations: 440

For purposes of t his ANOVA study, percent below poverty level is to be classified into threecategories: under 6%, 6-10%, 10% or more.

(i) State the ANOVA model for this case. Also state the equivalent regression model. $Y_{iik} = \mu_{iik} + \epsilon_{iik} = \mu_{ii} + \alpha_i + \beta_i + (\alpha\beta)_{ii} + \epsilon_{iik}$

Equivalent Regression Model:

We will use dummy variables for region and poverty in a multiple regression framework.

The Region has 4 levels and the Percent below poverty has 3 levels.

The equivalent regression model is written as follows:

```
\begin{split} Y_{ijk} &= \mu... + \alpha_1 X_{ijk1} + \alpha_2 X_{ijk2} + \alpha_3 X_{ijk3} + \beta_1 X_{ijk4} \\ &+ \beta_2 X_{ijk5} + (\alpha\beta)_{11} X_{ijk1} X_{ijk4} + (\alpha\beta)_{21} X_{ijk2} X_{ijk4} + (\alpha\beta)_{31} X_{ijk3} X_{ijk4} + (\alpha\beta)_{11} X_{ijk1} X_{ijk4} + (\alpha\beta)_{21} X_{ijk2} X_{ijk4} + (\alpha\beta)_{31} X_{ijk3} X_{ijk5} + \epsilon_{ijk} + (\alpha\beta)_{12} X_{ijk2} X_{ijk4} + (\alpha\beta)_{32} X_{ijk5} + (\alpha\beta)_{32} X_{ijk5} + \epsilon_{ijk} + (\alpha\beta)_{12} X_{ijk1} X_{ijk5} + (\alpha\beta)_{22} X_{ijk2} X_{ijk5} \\ &+ (\alpha\beta)_{32} X_{ijk3} X_{ijk5} + \epsilon_{ijk} \\ &+ (\alpha\beta)_{12} X_{ijk1} X_{ijk5} + (\alpha\beta)_{22} X_{ijk2} X_{ijk5} \\ &+ (\alpha\beta)_{32} X_{ijk3} X_{ijk5} + \epsilon_{ijk} \\ &+ (\alpha\beta)_{12} X_{ijk1} X_{ijk4} + (\alpha\beta)_{21} X_{ijk2} X_{ijk4} \\ &+ (\alpha\beta)_{12} X_{ijk2} X_{ijk4} + (\alpha\beta)_{21} X_{ijk2} X_{ijk4} \\ &+ (\alpha\beta)_{12} X_{ijk1} X_{ijk4} + (\alpha\beta)_{21} X_{ijk2} X_{ijk4} \\ &+ (\alpha\beta)_{12} X_{ijk1} X_{ijk4} + (\alpha\beta)_{12} X_{ijk2} X_{ijk4} \\ &+ (\alpha\beta)_{12} X_{ijk2} X_{ijk4} + (\alpha\beta)_{12} X_{ijk2} X_{ijk4} \\ &+ (\alpha\beta)_{12} X_{ijk2} X_{ijk4} + (\alpha\beta)_{12} X_{ijk2} X_{ijk4} \\ &+ (\alpha\beta)_{12} X_{ijk2} X_{ijk4} + (\alpha\beta)_{12} X_{ijk2} X_{ijk4} \\ &+ (\alpha\beta)_{12} X_{ijk2} X_{ijk2} \\ &+ (\alpha\beta)_{12} X_{ijk2} X_{ijk3} \\ &+ (\alpha\beta)_{12} X_{ijk2} X_{ijk2} \\ &+ (\alpha\beta)_{12} X_{ijk2} X_{ij
```

(ii) Fit the regression model, and prepare aligned residual dot plots for the treatments. State your findings.

 $Y_{ijk} = \mu... + \alpha_1 X_{ijk1} + \alpha_2 X_{ijk2} + \alpha_3 X_{ijk3} + \beta_1 X_{ijk4} + \beta_2 X_{ijk5} + (\alpha\beta)_{11} X_{ijk1} X_{ijk4} + (\alpha\beta)_{21} X_{ijk2} X_{ijk4} + (\alpha\beta)_{31} X_{ijk3} X_{ijk4} + (\alpha\beta)_{11} X_{ijk1} X_{ijk4} + (\alpha\beta)_{21} X_{ijk2} X_{ijk4} + (\alpha\beta)_{31} X_{ijk3} X_{ijk4} + (\alpha\beta)_{12} X_{ijk1} X_{ijk5} + (\alpha\beta)_{22} X_{ijk2} X_{ijk5} + (\alpha\beta)_{32} X_{ijk3} X_{ijk5} + \epsilon_{ijk} + (\alpha\beta)_{12} X_{ijk1} X_{ijk5} + (\alpha\beta)_{22} X_{ijk2} X_{ijk5} + (\alpha\beta)_{32} X_{ijk3} X_{ijk5} + \epsilon_{ijk} + (\alpha\beta)_{12} X_{ijk1} X_{ijk5} + (\alpha\beta)_{12} X_{ijk5} + (\alpha\beta)_{12}$

By Region: the residual plot shows differences across regions. Confirms the significant main effect of the region. Each region 1 and 3 seems to have residuals concentrated closer to the center. On the other hand, the 2 and 4 are a little more variability. The difference in variability could reflect the crime rate model fits differently. We also notice the outliers. Few outliers are observed.

By Poverty: The residuals are different across poverty levels. Under 6% category appears less spread and close model fit. 6=10% shows more variability. We noticed some outliers.

Main effect: Crime rates vary significantly across the region.

Main effect: Crime rates are significantly affected by the poverty categories.

(iii) State the reduced regression model for testing for the interaction effects. Fit the reduced regression model and test whether or not interaction effects are present.

For each test, use $\alpha = 0.05$. State the alternatives and P-values.

H₀: No interactions effects $(\alpha\beta)_{ij} = 0$ H_a: Interaction effects are present $(\alpha\beta)_{ij} \neq 0$

$$F_{critical} = F_{(0.95, 6,428)} = 2.11976$$

 $F_{obs} = 1.48$

 $F_{obs} < F_{critical}$.

Decision rule: If $F_{obs} \le F_{critical}$, accept the null hyplothesis.

If $F_{obs} > F_{critical}$, reject the null hypothesis. Conclusion: $F_{obs} < F_{critical}$, we accept the null

hypothesis, and conclude that no strong evidence to reject the null hypothesis and no interaction present at 5% significant level.

P-value: P-value= 0.1848 >0.05, we accept the null hypothesis.

2)Part II

The effects of region (A), percent below poverty level (B) and percent of population 65 or older (C) on the crime rate are to be studied. For purposes of this ANOVA study, percent below poverty level is to be classified into two categories ($< 8\%, \ge 8\%$) and percent of population 65 or older is to be classified into two groups ($< 12\%, \ge 12\%$)

(i) Conduct a three-way ANOVA then do the diagnostic procedure.

Conducted a three-way ANOVA and included all possible interactions in the model. The model can be written as follows

$$Y_{ijk} = \mu_{ijk} + \epsilon_{ijk} = \mu_{...} + \alpha_i + \beta_j + \gamma_k + (\alpha\beta)_{ij} + (\alpha\gamma)_{ik} + (\beta\gamma)_{jk} + (\alpha\beta\gamma)_{ijk} + \epsilon_{ijk}$$
 Where i=1,2,3,4; j=1,2; and k=1,2;

$$X_1 = \begin{cases} 1, & \textit{if case from level 1 for factor A} \\ -1, & \textit{if case from level 4 for factor A} \\ 0, & \textit{otherwise} \end{cases}$$

$$X_2 = \begin{cases} 1, & \textit{if case from level 2 for factor A} \\ -1, & \textit{if case fom level 4 for factor A} \\ 0, & \textit{otherwise} \\ 1, & \textit{if case from level 3 for factor A} \\ X_3 = \begin{cases} 1, & \textit{if case from level 4 for factor A} \\ 0, & \textit{otherwise} \end{cases}$$

$$X_4 \!\!=\!\! \left\{ \!\! \begin{array}{l} 1, \text{ if case from level 1 for factor B(below Poverty)} \\ -1, \text{ if case from level 2 for factor B(below Poverty)} \end{array} \right.$$

$$X_5 = \begin{cases} 1, & \text{if case from level 1 for factor } C(65 \text{ or older}) \\ -1, & \text{if case from level 2 for factor } C(65 \text{ or older}) \end{cases}$$

Three-Way ANOVA for Crime Rate

The GLM Procedure

Dependent Variable: Crime Rate

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	15	0.09004016	0.00600268	10.70	<.0001
Error	424	0.23780677	0.00056087		
Corrected Total	439	0.32784692			

R-Square	Coeff Var	Root MSE	Crime_Rate Mean
0.274641	41.34065	0.023683	0.057286

Source	DF	Type I SS	Mean Square	F Value	Pr > F
Region	3	0.05918092	0.01972697	35.17	<.0001
Poverty_Level	1	0.02613920	0.02613920	46.61	<.0001
Region*Poverty_Level	3	0.00069826	0.00023275	0.41	0.7423
Aged_Group	1	0.00093026	0.00093026	1.66	0.1985
Region*Aged_Group	3	0.00232416	0.00077472	1.38	0.2479
Poverty_L*Aged_Group	1	0.00006893	0.00006893	0.12	0.7261
Region*Povert*Aged_G	3	0.00069842	0.00023281	0.42	0.7423

Source	DF	Type III SS	Mean Square	F Value	Pr > F
Region	3	0.03231691	0.01077230	19.21	<.0001
Poverty_Level	1	0.01268295	0.01268295	22.61	<.0001
Region*Poverty_Level	3	0.00118461	0.00039487	0.70	0.5500
Aged_Group	1	0.00103372	0.00103372	1.84	0.1753
Region*Aged_Group	3	0.00290920	0.00096973	1.73	0.1603
Poverty_L*Aged_Group	1	0.00022525	0.00022525	0.40	0.5266
Region*Povert*Aged_G	3	0.00069842	0.00023281	0.42	0.7423

Diagnostic Procedure: The diagnostic procedure includes Normality of Residuals,

Homoscedasticity, and Independence. Please refer the below images.

Normality of residuals:

H₀: the residulas follow normal distribution.

H_a: the residuals ar not normal distribution

We performed Shapiro-Wilk test. Statistics W=0.852747 and the P-value = 0.0001 < 0.05. We reject the null hypothesis.

Q-Q plot: We can observe that on the Q-Q plot that the normality is violated. Especially in the tails. We also notice outliers on the data.

Histogram: However, the histogram appears approximately normal, symmetic and bell-shaped on visual observation.

<u>Homoscedasticity:</u> the residual vs fitted vlaues does not show a randomness. We see evidence of Homoscedasticity. The residual values are scatter around the zero line. As the fitted value increses, we see variability. The

Tests for Normality						
Test Statistic p Value						
Shapiro-Wilk	w	0.852747	Pr < W	<0.0001		
Kolmogorov-Smirnov	D	0.073255	Pr > D	<0.0100		
Cramer-von Mises	W-Sq	0.641873	Pr > W-Sq	<0.0050		
Anderson-Darling	A-Sq	4.346596	Pr > A-Sq	<0.0050		

Shapiro-Wilk's test P-value<0.0001. We reject the null hypothesis. The assumuption of the test does not hold. We conclude that the data does not follow a normal dictribution.

 H_0 : the variance are equal across the levels of Region

H_a: The variance are not equal across the levels of Region

Levene's Test for Equality of Variances (Region) The GLM Procedure Levene's Test for Homogeneity of Crime_Rate Variance ANOVA of Absolute Deviations from Group Means Source Sum of Squares | Mean Square F Value Pr > F3 0.00254 0.000846 2.82 0.0387 Error 436 0.1308 0.000300

The P value=0,0387<0.05, we reject the null hypothesis. We also observe that on the box plot, this indicates that the variances are not equal(homogeneity of variance is violated) across the regions.

 H_0 : The variances of crime_rate are equal across the levels of Age_Group (<12% and \geq 12%) H_a : The variances of crime_rate are not equal across the levels of Age_Group (<12% and \geq 12%)

		est for Homogeneity of Absolute Deviation					
Source	DF	DF Sum of Squares Mean Square F Value					
Aged_Group	1	0.000132	0.000132	0.41	0.5242		
Error	438	0.1421	0.000324				

The P value=0.0001 < 0.5242, we reject the null hypothesis. We also observe that on the box plot, this indicates that the variances are equal(homogeneity of variance is satisfied) across the two (<12% and $\ge12\%$)

H₀: The variance of the dependent variable are equal across the levels of Poverty_Level H_a: The variance of the dependent variable are not equal across the levels of Poverty Level

Levene's Test for Equality of Variances (Poverty Level)

The GLM Procedure

Levene's Test for Homogeneity of Crime_Rate Variance ANOVA of Absolute Deviations from Group Means							
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F		
Poverty_Level	1	0.00574	0.00574	19.72	<.0001		
Error	438	0.1274	0.000291				

The P value=0.0001<0.05, we reject the null hypothesis. We also observe that on the box plot, this indicates that the variances are not equal(homogeneity of variance is violated) across the two Poverty Levels(<8% and≥8%)

(ii) Prepare AB interaction plots of the estimated treatment means. Does it appear that any factor effects are present?

Interaction: Interaction plots display the relationship between Region vs Poverty Level on Crime Rate. The interaction plot lines are not parallel. This indicates an interaction effect between Region and Poverty level on crime rate. We also observe that as the poverty level goes up the crime rate is increasing and goes down after 3.0 Region. The difference in crime rates between the two poverty levels varies depending on the region, further supporting the presence of an interaction effect.

Main effect: Region and poverty level likely to have individual effects on the crime rate.

(iii) Test for three-factor interactions and for AB, AC and BC interactions. For each test, use = :025 and state the alternatives, reduced regression model and P-values.

un woden. 1 ijk	μι	јк + Сіјк	$\mu \dots + \alpha_1 \cdot p$	j' /K'	(<u>up)ij </u>	$\frac{(\alpha\gamma)_{ik}+(\beta\gamma)_{jk}+(\alpha\beta\gamma)_{ijk}+\epsilon_{ijk}}{ }$		
Source	DF	Type III SS	Mean Square	F Value	Pr > F	ANOVA for Main Effects and Interaction Terms		
Region	3	0.03231691	0.01077230	19.21	<.0001	The GLM Procedure		
Poverty_Level	1	0.01268295	0.01268295	22.61	<.0001	Dependent Variable: Crime_Rate		
Aged_Group	1	0.00103372	0.00103372	1.84	0.1753	Source DF Sum of Squares Mean Square F Value Pr > F Model 15 0.09004016 0.00600268 10.70 <.0001		
Region*Poverty_Level	3	0.00118461	0.00039487	0.70	0.5500	Error 424 0.23780677 0.00056087		
Region*Aged_Group	3	0.00290920	0.00096973	1.73	0.1603			
Poverty_L*Aged_Group	1	0.00022525	0.00022525	0.40	0.5266	R-Square Coeff Var Root MSE Crime_Rate Mean 0.274641 41.34065 0.023683 0.057286		
Region*Povert*Aged_G	3	0.00069842	0.00023281	0.42	0.7423	0.274641 41.34065 0.023683 0.057286		
Three-factor			P-Value					
nteractions:Reg	ion	*Poverty	Level*A	ged C	Froup			
H ₀ : There is no th		•				$F_{obs} = 0.42$		
Crime Rate						$F_{\text{critical}(0.25,3,427)}=3.14699 > 0.42$, accept		
H _a : There is a thre	ee-f	actor inte	raction eff	fect on		the null hypothesis.		
Crime Rate						The P-value=0.7423>0.025. Accept		
_						the null hypothesis. The three-factor		
						interaction effect is not significant.		
Two-Factor Inte	rac	tions				P-Value		
Region * Poverty	Le	evel				$F_{obs} = 0.70$		
H ₀ :The interaction	_		egion and			$F_{\text{critical}().025,3,424)} = 3.1467 > F_{\text{obs}} = 0.42,$		
Poverty Level ha			_	on		accept the null hypothesis.		
Crime Rate			The P-value=0.55>0.025. Accept the					
Ha: The interaction between Region and			null hypothesis. The three-factor					
Poverty Level has a significant effect on Crime Rate			interaction effect is not significant.					
Region * Aged Group			$F_{obs} = 1.73,$					
H ₀ :The interaction		-	egion and	Aged	Group	$F_{\text{critical}().025,1,424)} = 3.1467 > F_{\text{obs}} = 1.73$		
has no significant			-	-	*	accept the null hypothesis.		

Ha: The interaction between Region and Aged Group	The P-value=0.1603>0.025. Accept
has a significant effect on Crime Rate	the null hypothesis. The three-factor
	interaction effect is not significant.
Poverty Level * Aged Group	$F_{obs} = 0.40$
H ₀ :The interaction between Poverty_Level and	$F_{\text{critical().025,3,424)}} = 5.0597 > F_{\text{obs}} = 0.40,$
Aged_Group has no significant effect on Crime_Rate	accept the null hypothesis.
Ha: The interaction between Poverty_Level and	The P-value=0.5266>0.025. Accept
Aged_Group has a significant effect on Crime_Rate	the null hypothesis. The three-factor
	interaction effect is not significant.
Reduced Regression Models	
$Y_{ijk} = \mu_{ijk} + \epsilon_{ijk} = \mu_{} + \alpha_i + \beta_j + \gamma_k + (\alpha\beta)_{ij} + \beta_i + \alpha_i + \beta_j + \gamma_k + \alpha_i + \beta_i + \beta$	$-(\alpha\gamma)_{ik}+(\beta\gamma)_{jk}+\epsilon_{ijk}$
Region*Poverty_Level	$F_{\rm obs} = 0.60$
H_0 : All $(\alpha\beta)_{ij} = 0$	P-Value= 0.6137>0.025. We accept
H_0 : All $(\alpha\beta)_{ij}\neq 0$	the null hypothesis and conclude that
	the no interaction effect, not
	significant.
Region*Aged_Group	$F_{obs} = 1.41$
H_0 : All $(\alpha \gamma)_{ik} = 0$	P-Value= 0.2379>0.025. We accept
H_0 : All $(\alpha \gamma)_{ik} \neq 0$	the null hypothesis and conclude that
	the no interaction effect, not
	significant.
Poverty_Level*Aged_Group	$F_{obs} = 0.12$
H_0 : All $(\beta \gamma)_{jk} = 0$	P-Value= 0.7255>0.025. We accept
H ₀ : All $(\beta \gamma)_{jk} \neq 0$	the null hypothesis and conclude that
	the no interaction effect, not
	significant.

(iv) Test for A, B, C main effects. For each test, use $\alpha = 0.025$ and state the alternatives, reduced regression model and P-values.

 $\begin{aligned} Y_{ijkm}^{C} &= \mu... + \alpha_i + \beta_j + \gamma_k + \varepsilon_{ijkm} \\ \text{Reduced Regression Model:} \end{aligned}$

 $Y_{ijk} = \mu ... + \epsilon_{ijk}$

Testing Main Effects for Region, Poverty Level, and Aged Group The GLM Procedure Dependent Variable: Crime_Rate F Value Source DF Sum of Squares Pr > F Mean Square Model 5 0.08605161 0.01721032 30.89 <.0001 434 0.24179531 0.00055713 439 0.32784692 Corrected Total R-Square Coeff Var Root MSE 41.20284 0.023604 Source Type I SS Mean Square F Value Region 3 0.05918092 0.01972697 35.41 <.0001 0.02613920 0.02613920 46.92 <.0001 Poverty_Level 0.00073149 0.2525 Aged_Group 0.00073149 1.31 Source Type III SS Mean Square F Value $Pr \ge F$ 0.03841764 <.0001 Region 0.01280588 22.99 0.02325998 <.0001 Poverty_Level 0.02325998 41.75 Aged_Group 0.00073149 0.2525 0.00073149 1.31

Region (A)	$F_{obs} = 22.99, F_{Critical(0.025,1,424)} = 5.0597 F_{obs}$
H_0 : All α_i = 0;	=22.99> F _{Critical} = 5.0597
H_0 : not all $\alpha_i = 0$	P-value = $0.0001 < 0.025$, we reject the null
	hypothesis and conclude that region has
	significant effect on crime_rate.
Poverty_Level (B)	$F_{\text{obs}} = 41.75, F_{\text{Critical}(0.025,1,424)} = 5.0597 F_{\text{obs}}$
H_0 : All $\beta_i = 0$	=41.75> F _{Critical})= 5.0597
H_0 : not all $\beta_i = 0$	P-value = $0.0001 < 0.025$, we reject the null
,	hypothesis and conclude that region has
	significant effect on crime_rate.
Aged_Group (C)	$F_{\text{obs}} = 1.31, F_{\text{Critical}(0.025,1,424)} = 5.0597$
H_0 : All $\gamma_k = 0$	$F_{obs} = 1.31 < F_{Critical} = 5.0597.$
H_0 : Not all $\gamma_k = 0$	P-value = 0.2525 > 0.025 , we accept the null
·	hypothesis and conclude that region is does
	not significantly affect crime_rate.

3. Part III

This time assuming a mixed effects model with mixed factors A and C (< 12%, 12%) and a random factor B (1: under 4%, 2: 4-8%, 3: 8-12%). Derive a suitable model and conduct the suitable tests.

Fixed and Random Factors:Factor A(Region) and Factor C(Aged_group_2) are fixed factors and the Factor B(Proverty_Group) as the random factor.

$$Y_{ijkm} = \mu.. + \alpha_i + \beta_j + (ab)_{ij} + \epsilon_{ijkm} \text{ where } \stackrel{\epsilon_{ijk}}{\sim} N(0, \sigma^2)$$

Full Model:

Full model-mixed effect

Fit Statistics	
-2 Res Log Likelihood	-1875.84
AIC (smaller is better)	-1871.84
AICC (smaller is better)	-1871.81
BIC (smaller is better)	-1873.07
CAIC (smaller is better)	-1871.07
HQIC (smaller is better)	-1874.54
Generalized Chi-Square	0.21
Gener. Chi-Square / DF	0.00

Type III	Tests of Fi	xed Effects	5	
Effect	Num DF	Den DF	F Value	Pr > F
Aged_Group	1	410	0.17	0.6829
Poverty_Group	3	410	13.81	<.0001
Aged_Grou*Poverty_Gr	3	410	0.08	0.9723
Region	3	410	6.82	0.0002
Aged_Group*Region	3	410	0.64	0.5926
Poverty_Group*Region	9	410	2.23	0.0194
Aged G*Povert*Region	7	410	0.37	0.9198

Reduced Model:

Fit Statistics			
-2 Res Log Likelihood	-1937.78		
AIC (smaller is better)	-1933.78		
AICC (smaller is better)	-1933.75		
BIC (smaller is better)	-1935.00		
CAIC (smaller is better)	-1933.00		
HQIC (smaller is better)	-1936.47		
Generalized Chi-Square	0.21		
Gener. Chi-Square / DF	0.00		

Type III Tests of Fixed Effects				
Effect	Num DF	Den DF	F Value	Pr > F
Aged_Group	1	420	0.47	0.4954
Poverty_Group	3	420	11.74	<.0001
Region	3	420	7.81	<.0001
Aged_Grou*Poverty_Gr	3	420	0.38	0.7670
Poverty Group*Region	9	420	2.39	0.0120

Chi-Square

Type III Tests of Fixed Effects				
Effect Num DF Den DF F Value Pr > F				
Region	3	430.7	17.47	<.0001
Aged_Group_2	1	431.1	0.65	0.4201
Region*Aged_Group_2	3	429.6	1.05	0.3710

Tests of Covariance Parameters Based on the Restricted Likelihood					
Label	DF	-2 Res Log Like	ChiSq	Pr > ChiSq	Note
No G-side effects	1	-1944.41	51.19	<.0001	MI

Fit Statistics		
-2 Res Log Likelihood	-1995.61	
AIC (smaller is better)	-1991.61	
AICC (smaller is better)	-1991.58	
BIC (smaller is better)	-1992.83	
CAIC (smaller is better)	-1990.83	
HQIC (smaller is better)	-1994.30	
Generalized Chi-Square	0.23	
Gener. Chi-Square / DF	0.00	

Final model Decision: After perfoming a thorough analysis, we observed that the Poverty_Group has a high F-value and a small P-value, we conclude that it plays a significant role. The next high F-value is the Region, we can't drop that either. We decide to drop the Age_Group which has a smallest F-value with high P-value. Please refer the full model result in the table. Our Final model has the Region as fixed effect(C). Random effect as Poverty_Group(B).

Random effect:

Covariance Parameter estimates: AIC =-1995.61, BIC=-1992,83

Poverty Group variance=0.000179, Residual Variance=0.000524

Likelihood Ratio Test for Random Effects:

Chi-square=60.12, P-value<0.0001<0.05: Significant

Interpretation: Variance due to poverty group is significant, which indicates that the random effects captures meaning full variability in crime rate.

Fixed effect:Region (A) remains in the model. We will exclude Aged_group(C) is excluded due to lack of significance.

Random Effects: Poverty_Group(B) is retained as a significant source of variability.

The Reduced model has the lower AIC and BIC value. That will be the best model.