Motivation

- Purpose is to build a functional relationship (model) between dependent variable(s) and independent variable(s)
- Example
 - Business: What is the effect of price on sales? (Can be used to fix the selling price of an item)
 - Engineering: Can we infer difficult to measure properties of a product from other easily measured variables? (mechanical strength of a polymer from temperature, viscosity or other process variables) – also known as a soft sensor

Regression - Basics

- One of the widely used statistical techniques
- Dependent variables also known as *Response* variable, Regressand, Predicted variable, output variable denoted as variable/s y
- Independent variable also known as *Predictor* variable, Regressor, Exploratory variable, input variable denoted as variable/s x

Regression types

- Classification of Regression Analysis
 - Univariate vs Multivariate
 - *Univariate*: One dependent and one independent variable
 - *Multivariate*: Multiple independent and multiple dependent variables
 - Linear vs Nonlinear
 - Linear: Relationship is linear between dependent and independent variables
 - Nonlinear: Relationship is nonlinear between dependent and independent variables
 - Simple vs Multiple
 - Simple: One dependent and one independent variable (SISO)
 - Multiple: One dependent and many independent variables (MISO)

21

Regression analysis

• Is there a relationship between these variables?

• Is the relationship linear and how strong is the relationship?

How accurately can we estimate the relationship?

How good is the model for prediction purposes?

Data Analytics 22

Regression methods

Linear regression methods

- Simple linear regression
- Multiple linear regression
- Ridge regression
- Principal component regression
- Lasso
- Partial least squares

Nonlinear regression methods

- Polynomial regression
- Spline regression
- Neural networks

Regression Process (Iterative)

24

Ordinary Least Squares (OLS)

- Fourteen observations obtained on time taken in minutes for service calls and number of units repaired
- Objective is to find relationship between these variables (useful for judging service agent performance)

Ordinary Least Squares (OLS)

Linear model between y_i and x_i , $i = 1, ..., \eta$

$$y_i = \beta_0 + \beta_1 \, x_i + \epsilon_i$$

Error in only dependent variable and no error in independent variable:

$$\epsilon_i = y_i - \beta_0 - \beta_1 \, x_i$$

The sum of squares of errors (SSE)

$$\sum_{i} \epsilon_i^2 = \sum_{i} (y_i - \beta_0 - \beta_1 x_i)^2$$

Units

OLS: Testing Goodness of Fit

- □ Prediction using the regression equation: $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$
- ☐ Coefficient of determination R² is a measure of variability in output variable explained by input variable

$$R^2 = 1 - \frac{\sum (y_i - \hat{y}_i)^2}{\sum (y_i - \bar{y})^2}$$
 Variability explained by $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$ Total variability in y

- R² values: Between 0 and 1
 - ➤ Values close to 0 indicates poor fit
 - ➤ Values close to 1 indicates a good fit (However, should not be used as sole criterion to judge that a linear model is adequate)
- Adjusted \bar{R}^2 $\bar{R}^2 = 1 \frac{\sum (y_i \hat{y}_i)^2 / (n p 1)}{\sum (y_i \bar{y})^2 / (n 1)}$

Data Analytics 27

OLS: Example using R

```
Call:
lm(formula = Minutes ~ Units)
Residuals:
   Min
            1Q Median
                                   Max
-9.2318 -3.3415 -0.7143 4.7769 7.8033
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
                         3.355
(Intercept)
              4.162
                                  1.24
                                          0.239
             15.509
                         0.505
                                 30.71 8.92e-13 ***
Units
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 5.392 on 12 degrees of freedom
Multiple R-squared: 0.9874, Adjusted R-squared: 0.9864
F-statistic: 943.2 on 1 and 12 DF, p-value: 8.916e-13
```


