Organização e Arquitetura de Computadores I

Aula 02 - História dos Computadores

Prof. Dr. Clodoaldo Aparecido de Moraes Lima

- Wilhelm Schickhard (1623)
 - Astrônomo e Matemático
 - Automaticamente somava, subtraia, multiplicava e dividia
- Blaise Pascal (1642)
 - Matemático
 - Primeira máquina operacional de produção em série (50 cópias)
 - Somente somava e subtraia (add and subtract)
 - Problemas operacionais e de manutenção
- Gottfried Liebniz (1673)
 - Matemático e inventor
 - Melhorou a máquina de Pascal
 - somava, subtraia, multiplicava e dividia

- Charles Babbage (1822)
 - Matemático
 - "Pai do computador moderno"
 - Queria mais precisão nos cálculos
 - Máquina de Diferenças (Difference engine)
 - Primeiro acordo científico governamental
 - Cálculo automático de tabelas matemáticas
 - Máquina Analítica (Analytic engine)
 - Realizava qualquer operação matemática
 - Cartões perfurados
 - Estrutura moderna: E/S, armazenadores, ALU
 - Adição em 1 segundo, multiplicação em 1 minuto
 - Estas máquinas sofriam de problemas mecânicos

- George Boole (1847)
 - Análise matemática da Lógica (Mathematical analysis of logic)
 - Investigou as Leis do Pensamento
- Herman Hollerith (1889)
 - Fundou Tabulating Machine Company (tornou-se a IBM)
 - Em 1880 o censo gastou 5 anos para tabular os dados (montar em forma de tabela)
 - Estimativas de tabulação (Tabulation estimates)
 - 1890: 7.5 anos
 - 1900: 10+ anos
 - A máquina de Tabulação de Hollerith reduziu as estimativas de 7,5 anos para 2 meses

- Konrad Zuse (1938)
 - Construiu o primeiro computador mecânico operacional, o Z1
 - Máquina binária (Binary machine)
 - O governo alemão não deu continuidade ao desenvolvimento
 - W.W.II já tinha começado
- Howard Aiken (1943)
 - Projetou o Harvard Mark I
 - Implementação da máquina de Babbage

Resumo Era Mecânica

- Computadores mecânicos foram projetados para reduzir o tempo requerido para os cálculos e aumentar a precisão dos resultados.
- Inconvenientes
 - A velocidade das operações era limitada pela inércia das partes móveis (gears e pulleys)
- Desajeitados, nada confiáveis e caros

- Geração 1 (1945 1958)
 - ENIAC
 - Desenvolvido para calcular tabelas de disparos de artilharia
 - Projetado por Mauchly e Echert da University of Pennsylvania
 - Considerado o primeiro computador eletrônico
 - O Colossus provavelmente é o primeiro, mas foi reconhecido recentemente.
 - máquina criada por Turing para decifrar os códigos secretos alemães.
 - Detalhes:
 - 18,000 válvulas
 - 70,000 resistores
 - 10,000 capacitores
 - 6,000 chaves
 - 30 x 50 feets
 - 140 kW de potência

IAS (Institute for Advanced Studies)

- John von Neumann e Goldstine
- A partir da ideia do ENIAC desenvolveram o conceito de programa armazenado em memória.
- Esta arquitetura é conhecida como "von Neumann architecture" e tem sido a base para o projeto de computadores desde então.
- Aspectos
 - Dados e instruções (programas) são armazenados em uma única memória de leitura e escrita.
 - Conteúdos de memória são endereçados por posição, sem considerar o conteúdo ele próprio.
 - Execução sequencial
- Este período é o início das longas disputas por patentes, direitos autorais, créditos, etc.

- Geração 2 (1958 1964)
 - Mudança tecnológica
 - Transistores
 - Linguagens de Alto Nível
 - Aritmética de Ponto Flutuante

- Geração 3 (1964 1974)
 - Surgimento do Circuito Integrado
 - Memória de Semicondutor
 - Microprogramming
 - Multiprogramming

- Geração 4 (1974 1991)
 - Large scale integration / VLSI
 - Single board computers
- Geração 5 (1991 até o presente)
 - VLSI / ULSI
 - Computer communications networks
 - Inteligência Artificial
 - Máquinas massivamente paralela

$\overline{\sf John\ von\ Neumann/Alan\ Turing}$ - overview

- Conceito de Programa Armazenado
- Memória Principal armazena instruções e dados
- ALU opera em dados binários
- Unidade de Controle interpreta e executa programas da memória
- Equipamentos de Entrada e Saída operados pela unidade de controle
- Desenvolvido em Princeton Institute for Advanced Studies
 IAS
- Finalizado em 1952

Estrutura da Máquina von Neumann

Estrutura do IAS

IAS - detalhes

- 1000 x 40 bit words
 - Binary number
 - 2 × 20 bit instructions
- Set of registers (storage in CPU)
 - Memory Buffer Register
 - Memory Address Register
 - Instruction Register
 - Instruction Buffer Register
 - Program Counter
 - Accumulator
 - Multiplier Quotient

Estrutura do IAS

M(X) = contents of memory location whose address is X(i;j) = bits i through j

Estrutura do IAS

		Symbolic	
Instruction Type	Opcode	Representation	Description
Data transfer	00001010	LOAD MQ	Transfer contents of register MQ to the accumulator AC
	00001001	LOAD MQ,M(X)	Transfer contents of memory location X to MQ
	00100001	STOR M(X)	Transfer contents of accumulator to memory location X
	00000001	LOAD M(X)	Transfer M(X) to the accumulator
	00000010	LOAD -M(X)	Transfer -M(X) to the accumulator
	00000011	LOAD M(X)	Transfer absolute value of M(X) to the accumulator
	00000100	LOAD - M(X)	Transfer - M(X) to the accumulator
Unconditional branch	00001101	JUMP M(X,0:19)	Take next instruction from left half of M(X)
	00001110	JUMP M(X,20:39)	Take next instruction from right half of M(X)
Conditional branch	00001111	JUMP+ M(X,0:19)	If number in the accumulator is nonnegative, take next instruction from left half of M(X)
	00010000	JUMP+ M(X,20:39)	If number in the accumulator is nonnegative, take next instruction from right half of M(X)
Arithmetic	00000101	ADD M(X)	Add M(X) to AC; put the result in AC
	00000111	ADD M(X)	Add M(X) to AC; put the result in AC
	00000110	SUB M(X)	Subtract M(X) from AC; put the result in AC
	00001000	SUB M(X)	Subtract IM(X)I from AC; put the remainder in AC
	00001011	MUL M(X)	Multiply M(X) by MQ; put most significant bits of result in AC, put least significant bits in MQ
	00001100	DIV M(X)	Divide AC by M(X); put the quotient in MQ and the remainder in AC
	00010100	LSH	Multiply accumulator by 2, i.e., shift left one bit position
	00010101	RSH	Divide accumulator by 2, i.e., shift right one position
	00010010	STOR M(X,8:19)	Replace left address field at M(X) by 12

Exemplo Ilustrativo

Mudança Tecnológica: Transistores

- Substituiu as válvulas
- Menor
- Mais barato
- Menor dissipação de calor
- Dispositivos de estado sólido
- Fabricado com o material silício (Sand)
- Desenvolvido em 1947 no Bell Labs
- William Shockley et al.

Mudança Tecnológica: Microelectrônica

- Literalmente "small
- Um computador é feito de portas lógicas (gates), células de memória (memory cells) e interconexões
- Isto pode ser feito em semicondutor
- ex. silicon wafer

Resumo: gerações de computadores

- Válvulas 1946 1957
- Transistor 1958 1964
- Small scale integration 1965 on
 - Up to 100 devices on a chip
- Medium scale integration to 1971
 - 100 3,000 devices on a chip
- Large scale integration 1971 1977
 - 3,000 100,000 devices on a chip
- Very large scale integration 1978 até a presente data
 - 100,000 1,000,000,000 devices on a chip
- Ultra large scale integration
 - Over 1,000,000,000 devices on a chip

Moore's Law

- Gordon Moore co fundador da Intel
- A lei de Moore está relacionada com o aumento da densidade de componentes em um chip.
- Previsões de Moore:
 - Número de transistores dobra num período de 18 meses
 - Custo de um chip permanecerá o mesmo
- Densidades maiores de integração significa caminhos elétricos menores, resultando em maior desempenho
- Tamanho menores resulta em aumento de flexibilidade
- Redução das necessidades por potência elétrica e refrigeração.
- Um número menor de interconexões aumenta a confiabilidade

Crescimento na quantidade de transistores na CPU

Balanço do Desempenho

- Aumento da velocidade do processador.
- Aumento da capacidade de memória.
- Velocidade da memória fica para trás da velocidade do processador.

DRAM and Processor Characteristics

