Chapitre 2 – Orthogonalité

Dans tout le chapitre, E désigne un espace préhilbertien (réel ou complexe) de dimension quelconque, dont on notera \langle , \rangle le produit scalaire et $\| \cdot \|$ la norme associée.

I) Vecteurs orthogonaux

1) Orthogonalité de 2 vecteurs

<u>Définition</u>: Soient $x, y \in E$. On dit que x et y sont <u>orthogonaux</u> si $\langle x, y \rangle = 0$. On note alors $x \perp y$.

Remarque : Le seul vecteur orthogonal à tous les éléments de E est 0_E .

Remarque : Si $x \perp y$, alors $\forall \lambda \in \mathbb{K}, x \perp \lambda y$

Exemple: Dans \mathbb{R}^2 muni du produit scalaire usuel, soit $x=(a,b)\in\mathbb{R}^2$ alors y=(-b,a) vérifie

$$x \perp y \operatorname{car} \langle x, y \rangle = -ab + ab = 0$$

Dans $E = \mathcal{C}([0; 2\pi]; \mathbb{C})$ munie du produit scalaire usuel, considérons $f : x \mapsto i$, $g : x \mapsto \sin x$

Alors
$$\langle f, g \rangle = \int_0^{2\pi} \overline{f(x)} g(x) dx = [i \times \cos x]_0^{2\pi} = 0$$
, donc $f \perp g$.

Attention: la notion d'orthogonalité dépend du p.s. utilisé.

Propriété: Identité de Pythagore

1) Soient E un espace préhilbertien réel et $x, y \in E$. On a :

$$x \perp y \iff ||x + y||^2 = ||x||^2 + ||y||^2$$

2) Soient E un espace préhilbertien complexe et $x, y \in E$. On a :

$$x \perp y \Longrightarrow ||x + y||^2 = ||x||^2 + ||y||^2$$

<u>Démonstration</u>: ★

- 1) On sait que $||x + y||^2 = \langle x + y, x + y \rangle = ||x||^2 + 2\langle x, y \rangle + ||y||^2$ Ainsi $||x + y||^2 = ||x||^2 + ||y||^2 \Leftrightarrow 2\langle x, y \rangle = 0 \Leftrightarrow x \perp y$
- 2) On sait que $||x+y||^2 = \langle x+y, x+y \rangle = ||x||^2 + 2Re(\langle x,y \rangle)$ Ainsi $\langle x,y \rangle = 0 \Rightarrow Re(\langle x,y \rangle) = 0 \Rightarrow ||x+y||^2 = ||x||^2 + ||y||^2$

Attention : la réciproque est fausse dans le cas E préhilbertien complexe.

II) Familles orthogonales

<u>Définition</u>: On dit qu'une famille d'éléments $(e_i)_{i \in I} \in E$ est orthogonale si tous ses éléments sont orthogonaux 2 à 2 ie si :

$$\forall i, j \in I, i \neq j \Longrightarrow \langle e_i, e_j \rangle = 0$$

On dit que la famille $(e_i)_{i \in I}$ est <u>orthonormée</u> si elle est orthogonale et que tous ses éléments ont pour norme 1, ce qui est équivalent à :

$$\forall (i,j) \in I^2, \langle e_i, e_j \rangle = \begin{cases} 0 \text{ si } i \neq j \\ 1 \text{ si } i = j \end{cases} = \delta_{i,j} \text{ (symbole de Kronecker)}$$

<u>Propriété</u>: Toute famille <u>orthogonale</u> ne comportant pas le vecteur nul est libre. En particulier, une famille <u>orthonormée</u> est libre.

<u>Démonstration</u>: **★**

Une famille ne comportant aucun élément est par définition libre. Soit $n \in \mathbb{N}^*$, soit $(e_1, ..., e_n)$ une famille orthogonale d'éléments de E tq $\forall i \in [\![1,n]\!], e_i \neq 0_E$. Soient $\lambda_1, ... \lambda_n \in \mathbb{K}^n$ tq $\sum_{k=1}^n \lambda_k e_k = 0_E$

D'une part
$$\langle e_i, \sum_{k=1}^n \lambda_k e_k \rangle = \langle e_i, 0_E \rangle$$

D'autre part, par linéarité à droite de
$$\langle , \rangle$$
, $\langle e_j, \sum_{k=1}^n \lambda_k e_k \rangle = \sum_{k=1}^n \lambda_k \underbrace{\langle e_j, e_k \rangle}_{0 \text{ si } k \neq j} = \lambda_j \|e_j\|^2$

Ainsi,
$$\lambda_j \|e_j\|^2 = 0$$
, d'où $\lambda_j = 0$ car $\|e_j\| \neq 0$ car $e_j \neq 0_E$

Ainsi
$$(e_1, ..., e_n)$$
.

Ce résultat s'étend à une famille infinie. En effet, une famille infinie est libre si et seulement si toutes ses sous-familles finies sont libres.

De plus, si $(e_i)_{i \in I}$ est une famille orthonormée d'éléments de E, alors $(e_i)_{i \in I}$ est orthogonale et $\forall i \in I$, $||e_i|| = 1 \neq 0$ donc $e_i \neq 0_E$

3) Base orthonormée et calculs dans une telle base

<u>Définition</u>: Soit E un espace préhilbertien ou hermitien. On appelle base orthonormée de E toute famille de vecteurs de E qui est à la fois orthonormée et une base de E.

<u>Propriété</u>: Soient E un espace euclidien ou hermitien et $\mathcal{B}=(e_1,\ldots,e_n)$ une base orthonormée de E. Soit $x\in E$. Les coordonnées x_1,\ldots,x_n dans la base \mathcal{B} sont données par $\forall k\in [\![1,n]\!], x_k=\langle e_k,x\rangle$.

De sorte que
$$x = \sum_{k=1}^{n} \underbrace{\langle e_k, x \rangle}_{\in \mathbb{K}} e_k$$

<u>Propriété</u>: Soient E un espace euclidien ou hermitien et $\mathcal{B}=(e_1,\ldots,e_n)$ une base orthonormée de E Soient $x,y\in E$ de coordonnées respectives x_1,\ldots,x_n et $y_1,\ldots y_n$ dans la base E. Alors

$$\langle x, y \rangle = \sum_{k=1}^{n} \overline{x_k} y_k = {}^t \overline{X} Y \text{ et } ||x||^2 = \langle x, x \rangle = \sum_{k=1}^{n} |x_k|^2 = {}^t \overline{X} X$$

Où
$$X = Mat_{\mathcal{B}}(x) = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$
 et $Y = Mat_{\mathcal{B}}(y) = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$

4) Procédé d'orthonormalisation et de Gram-Schmidt

<u>Théorème</u>: Soit E un espace préhilbertien réel ou complexe. Pour toute famille <u>libre</u> $(u_1, ..., u_n)$ d'éléments de E, il existe une famille <u>orthonormée</u> $(e_1, ..., e_n)$ tq

$$\forall k \in [\![1,n]\!], Vect\{u_1,\ldots,u_n\} = Vect\{e_1,\ldots,e_n\}$$

Remarque : Pour construire ce genre de famille, on pose $v_1=u_1$, $e_1=\frac{v_1}{\|e_1\|}$ puis

$$\forall k \in [1, n-1], v_{k+1} = u_{k+1} - \sum_{j=1}^{n} \langle e_j, u_{k+1} \rangle e_j \text{ et } e_{k+1} = \frac{v_{k+1}}{\|v_{k+1}\|}$$

Exemple : Dans \mathbb{R}^3 muni de son p.s. usuel considérons la famille $\mathcal{F}=(u_1,u_2,u_3)$ où

$$u_1 = (0,1,1), u_2 = (1,0,1), u_3 = (1,1,0)$$

Notons \mathcal{B}_c la base canonique de \mathbb{R}^3

$$\det(\mathcal{F}) = \begin{vmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{vmatrix} = 2 \neq 0$$

Donc \mathcal{F} est libre (c'est même une base de \mathbb{R}^3) donc on peut lui appliquer le procédé d'orthormalisation de Gram-Schmidt.

On pose
$$v_1 = u_1$$
, alors $||v_1||^2 = \langle v_1, v_1 \rangle = 2$, on pose $e_1 = \frac{v_1}{||v_1||} = \frac{1}{\sqrt{2}}(0.1.1)$

Puis on pose
$$v_2 = u_2 - \langle e_1, u_2 \rangle e_1 = (1,0,1) - \left(\frac{1}{\sqrt{2}}(0,1,1), (1,0,1)\right) \frac{1}{\sqrt{2}}(0,1,1) = \frac{1}{2}(2,-1,1)$$

Alors
$$||v_2|| = \left\|\frac{1}{2}(2, -1, 1)\right\| = \frac{1}{2}||2, -1, 1|| = \frac{\sqrt{6}}{2}$$
. Ainsi on pose $e_2 = \frac{v_2}{||v_2||} = \frac{1}{\sqrt{6}}(2, -1, 1)$

Enfin on pose
$$v_3 = u_3 - \langle e_1, u_3 \rangle e_1 - \langle e_2, u_3 \rangle e_2 = \frac{1}{6}(4, 4, -4) = \frac{2}{3}(1, 1, -1)$$

De plus,
$$||v_3|| = \frac{2}{\sqrt{3}}$$
, et on pose $e_3 = \frac{v_3}{||v_3||} = \frac{1}{\sqrt{3}}(1,1,-1)$

Corollaire: Tout espace euclidien ou hermitien admet une base orthonormée.

<u>Corollaire</u>: Toute famille <u>orthonormée</u> d'un espace E euclidien ou hermitien peut être complétée en une base orthonormée de E.

III) Sous-espaces vectoriels orthogonaux

1) Orthogonal d'une partie

<u>Définition</u>: soit $A \subset E$. On appelle orthogonal de A l'ensemble noté A^{\perp} , constitué des éléments de E orthogonaux à tous les éléments de A, ie

$$A^{\perp} = \{ x \in E \mid \forall \alpha \in A, \langle \alpha, x \rangle = 0 \}$$

Exemples

<u>Propriété</u>: Soit $A \subset E$, alors A^{\perp} est un sev de E.

<u>Propriété</u> : Soit A, B ⊂ E

- (1) On a $A \subset (A^{\perp})^{\perp}$
- (2) Si $A \subset B$, alors $B^{\perp} \subset A^{\perp}$
- (3) $A^{\perp} = (Vect(A))^{\perp}$

<u>Propriété</u>: Soit $F = Vect(e_i)_{i \in I}$ un sev de E. Alors $F^{\perp} = \{x \in E \mid \forall i \in I, \langle x, e_i \rangle = 0\}$

<u>Démonstration</u>: \circledast Soit $x \in F^{\perp}$, alors $\forall y \in F, \langle x, y \rangle = 0$. Or $\forall i \in I, e_i \in F$, donc $\langle x, e_i \rangle = 0$ Ainsi $F^{\perp} \subset \{x \in E \mid \forall i \in I, \langle x, e_i \rangle = 0\}$ Réciproquement, soit $x \in E$ tel que $\forall i \in I, \langle x, e_i \rangle = 0$. Soit $y \in F = Vect(e_i)_{i \in I}$ Donc $\exists n \in \mathbb{N}^*, \exists \lambda_1, \dots, \lambda_n \in \mathbb{K}$ et $\exists i_1, \dots, i_n \in I$ tq $y = \sum_{k=1}^n \lambda_k e_{i_k}$ D'où $\langle x, y \rangle = \sum_{k=1}^n \lambda_k \underbrace{\langle x, e_{i_k} \rangle}_{=0} = 0$

Donc $x \in F^{\perp}$ d'où l'inégalité voulue.

<u>Définition</u>: Soient F, G 2 sev de E. On dit que F et G sont <u>orthogonaux</u> si $\forall x \in F$, $\forall y \in G$, $\langle x, y \rangle = 0$

3) Supplémentaires orthogonaux d'un sev de dimension finie

<u>Théorème</u>: Soit F un sev de E avec F de dimension <u>finie</u>. Alors $E = F \oplus F^{\perp}$. On appelle F^{\perp} le supplémentaire orthogonal de F dans E.

En particulier, si E est euclidien ou hermitien, alors pour tout sev F de E,

$$E = F \oplus F^{\perp}$$