A Book of Abstract Algebra (2nd Edition)

Chapter 16, Problem 2EP

Bookmark

Show all steps: ON

ON

Problem

Let G be an abelian group of order $p^k m$, where p^k and m are relatively prime (that is, p^k and m have no common factors except ± 1). (REMARK: If two integers j and k are relatively prime, then there are integers s and t such that sj + tk = 1. This is proved on page 220.)

Let G_pk be the subgroup of G consisting of all elements whose order divides p^k . Let Gm be the subgroup of G consisting of all elements whose order divides ra. Prove:

For every $x \in G$, there are $y \in G_p k$ and $z \in G_m$ such that x = yz.

Step-by-step solution

Step 1 of 3

Assume that G is an abelian group of order $p^k m$, where p^k and m are relatively prime. Suppose that G_{p^k} be the subgroup of G consisting of all elements whose order divides p^k . Let G_m be the subgroup of G consisting of all elements whose order divides m.

Objective is to prove that for any $x \in G$, there are $y \in G_{n^k}$ and $z \in G_m$ such that x = yz.

Comment

Step 2 of 3

Since p^k and m are relatively prime, so by the definition there exist integers s ant t such that $sp^k + tm = 1$.

Let $y = x^{sp^k}$, $z = x^{tm}$. Substitute these values in right side of x = yz and get,

$$yz = x^{sp^k} \cdot x^{tm}$$
$$= x^{sp^k + tm}$$
$$= x^1$$

Comment			
		Step 3 of 3	
Hence, $x =$	z for some $x \in G$, where	$y \in G_{p^k}$ and $z \in G_m$	
Comment			
Comment			