Regular Languages

 Recall that a language that is recognized by a DFA (or NFA, or RegExp) is called a regular language

Closure Properties

- If L₁ and L₂ are regular languages, then the following are also regular languages:
 - \bullet $L_1 \cup L_2$
 - \bullet $L_1 \cap L_2$
 - $\Sigma^* L_I$ (the complement, \overline{L}_I)
 - $L_1 \circ L_2$ (concatenation)

Closure Properties

- If L₁ and L₂ are regular languages, then the following are also regular languages:
 - \bullet $L_1 \cup L_2$
 - \bullet L₁ \cap L₂
 - $\Sigma^* L_I$ (the complement, \overline{L}_I)
 - $L_1 \circ L_2$ (concatenation)

How would you go about proving these?

Constructing DFAs for \cup and \cap

- Suppose we have DFAs D₁ and D₂ for regular languages R₁ and R₂
- Construct DFAs for the languages $R_1 \cup R_2$ and $R_1 \cap R_2$
- General idea: Construct a new DFA with states that are labeled with the Cartesian product of the states from D₁ and D₂
- Transitions now define where we would go next in both D₁ and D₂ for a given character
- Final states: For \cup , $<q_k$, $q_j>$ is a final state if either q_k or q_j are final; for \cap , $<q_k$, $q_j>$ is final if both are final

In-Class Exercise

- Construct DFAs for $R_1 \cup R_2$ and $R_1 \cap R_2$ where:
- R_1 = strings in $\{a, b\}^*$ that contain 1 mod 2 b's
- R_2 = strings in $\{a, b\}^*$ that end with ab

Non-Regular Languages

- There are some languages that are not regular
- Example: $\{a^n b^n \mid n \in N\}$
- Try creating an NFA for this language to intuitively see why it is not regular (we will show how to prove it next time)

Quick Quiz: True or False?

- If R is a regular language, then R \cup {aⁿbⁿ} must be non-regular
- If R is a regular language, then R \cap {aⁿbⁿ} must be non-regular
- If F is a finite language, then it must be regular
- If B is an infinite language, then it must be non-regular
- If N is a non-regular language, then N must be non-regular
- If N_1 and N_2 are non-regular languages, then $N_1 \cup N_2$ must be non-regular
- If N_1 and N_2 are non-regular languages, then $N_1 \cap N_2$ must be non-regular