Soit $x \in \mathbb{R}_{+}^{*}$, soient (S_n) , (T_n) , (C_n) les suites réelles définies par les relations de récurrence suivantes :

(1)
$$S_0 = \frac{1}{2} \left(x - \frac{1}{x} \right)$$
 $C_0 = \frac{1}{2} \left(x + \frac{1}{x} \right)$ $C_{n+1} = \sqrt{\frac{1 + C_n}{2}}$ $S_{n+1} = \frac{S_n}{C_{n+1}}$ et $T_n = \frac{S_n}{C_n}$

- 1. On pose $\varphi = \ln x$.
 - **a)** Montrer que pour tout entier naturel n, on a $S_n = 2^n \sinh \frac{\varphi}{2^n}$ et $T_n = 2^n \th \frac{\varphi}{2^n}$.
 - **b)** En déduire que les suites (S_n) et (T_n) sont adjacentes et convergent vers $\ln x$. Donner de plus un encadrement de $\ln x$ à l'aide de S_n et T_n .
 - c) Dans le cas où x est égal à 2, donner un programme en Maple, utilisant (1) et permettant d'obtenir les valeurs S_n et T_n lorsque n est élément de l'intervalle [0,10].
- **2.** Dans cette question, on considère les suites $\left(\frac{aS_n+bT_n}{a+b}\right)_{n\in\mathbb{N}}$ où $(a,b)\in\mathbb{R}^2$ tels que $a+b\neq 0$.
 - a) Montrer que les suites (W_n) définies par $W_n = \frac{aS_n + bT_n}{a+b}$ sont convergentes vers $\ln x$ et donner un développement limité de $\ln x W_n$ à la précision $\frac{1}{16^n}$ lorsque n tend vers $+\infty$.
 - **b)** Montrer qu'il existe un choix de (a,b), un réel λ et une suite, que l'on notera u_n , tels que $u_n \ln x \sim \frac{\lambda}{16^n}$. Préciser a, b, λ et u_n .
- **3.** Dans cette question, on accélère la convergence de la suite (S_n) par la méthode de Richardson. On est ainsi conduit à construire les trois suites (x_n) , (y_n) et (z_n) vérifiant :

$$x_n = \frac{4S_{n+1} - S_n}{3}$$
 $y_n = \frac{16x_{n+1} - x_n}{15}$ $z_n = \frac{64y_{n+1} - y_n}{63}$

a) En utilisant le développement limité de shx à l'ordre 9 au voisinage de 0, montrer qu'il existe des constantes α , β , γ telles que :

$$x_n = \ln x + \frac{\alpha}{16^n} + \frac{\beta}{64^n} + \frac{\gamma}{256^n} + o\left(\frac{1}{256^n}\right)$$

puis des constantes α' , β' telles que $y_n = \ln x + \frac{\alpha'}{64^n} + \frac{\beta'}{256^n} + o\left(\frac{1}{256^n}\right)$

ainsi qu'une constante α'' telle que $z_n = \ln x + \frac{\alpha''}{256^n} + o\left(\frac{1}{256^n}\right)$.

On ne demande pas de déterminer les constantes α , β , γ , α' , β' , α'' .

b) Lorsque x est égal à 2, écrire un programme Maple donnant sous forme de tableau, lorsque n est élément de [1,4] les valeurs correspondantes des suites x_n , y_n et z_n , calculées à partir de celles de S_n .

