Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

What is claimed is:

- 1.-23. Canceled.
- 24. (Currently Amended) A method for separating a mixture of biomolecules, comprising:
 - (1) contacting a composition comprising a buffer and an effective amount of a poly(M₁-g-M₂), or a salt thereof, wherein:
 - (a) $poly(M_1-g-M_2)$ is comprised of a first backbone polymer, $poly(M_1)$, formed from a monomer unit each M_1 [[has]] having the formula (I):

$$\begin{array}{c|c}
R_1 & R_3 \\
\hline
R_2 & C \\
\hline
R_1 & R_5 \\
\hline
R_2 & R_5
\end{array}$$

wherein each A₁ is independently O, S or NX₁;

each of R_1 , R_2 , R_3 and R_4 is independently H, C_1 – C_{20} alkyl, C_4 – C_{12} cycloalkyl, C_5 – C_{12} aryl, C_4 – C_{12} heteroaryl, -(C_1 – C_{20} alkyl)(C_5 – C_{12} aryl) or -(C_5 – C_{12} aryl)(C_1 – C_{20} alkyl);

each R_5 is independently C_1 – C_{20} alkyl, C_1 – C_{20} heteroalkyl, C_4 – C_{12} cycloalkyl, C_4 – C_{12} heterocycloalkyl, C_5 – C_{12} aryl, C_4 – C_{12} heteroaryl, -(C_1 – C_{20} alkyl)(C_4 – C_{12} cycloalkyl), -(C_4 – C_{12} cycloalkyl)(C_1 – C_{20} heteroalkyl), -(C_1 – C_{20} alkyl)(C_4 – C_{12} heterocycloalkyl), -(C_4 – C_{12} heterocycloalkyl)(C_1 – C_{20} alkyl), -(C_1 – C_2 0 heteroalkyl)(C_4 – C_{12} heterocycloalkyl), -(C_4 – C_{12} heterocycloalkyl)(C_5 – C_{12} aryl), -(C_5 – C_{12} aryl)(C_1 – C_2 0 alkyl), -(C_1 – C_2 0 heteroalkyl)(C_5 – C_1 2 aryl), -(C_5 – C_1 2 aryl)(C_1 – C_2 0 alkyl)(C_4 – C_1 2 heteroaryl), -(C_4 – C_1 2 heteroaryl)(C_1 – C_2 0 alkyl), -(C_1 – C_2 0 heteroalkyl)(C_1 – C_2 0 alkyl), -(C_1 – C_2 0 heteroalkyl)(C_1 – C_2 0 alkyl), -(C_1 – C_2 0 heteroalkyl)(C_1 – C_2 0 alkyl), -(C_1 – C_2 0 heteroalkyl)(C_1 – C_2 0 alkyl), -(C_1 – C_2 0 heteroalkyl)(C_1 – C_2 0 alkyl), -(C_1 – C_2 0 heteroalkyl)(C_1 – C_2 0 alkyl), -(C_1 – C_2 0 heteroalkyl)(C_1 – C_2 0 alkyl), -(C_1 – C_2 0 alkyl), -(C_1 – C_2 0 heteroalkyl)(C_1 – C_2 0 alkyl), -(C_1 – C_2 0 alkyl), -(C_1 – C_2 0 heteroalkyl)(C_1 – C_2 0 alkyl), -(C_1 – C_2 0 alkyl), -(C_1 – C_2 0 heteroalkyl)(C_1 – C_2 0 alkyl), -(C_1 – C_2 0 alkyl), -(C_1 – C_2 0 heteroalkyl)(C_1 – C_2 0 alkyl), -(C_1 – C_2 0 alkyl), -(C_1 – C_2 0 heteroalkyl)(C_1 – C_2 0 alkyl), -(C_1 – C_2 0 heteroalkyl), -(C_1 – C_2 0 alkyl), -(

each X_1 is independently H, C_1 - C_{20} alkyl, C_4 - C_{12} cycloalkyl, C_5 - C_{12} aryl, C_4 - C_{12} heteroaryl, -(C_1 - C_{20} alkyl)(C_5 - C_{12} aryl), -(C_5 - C_{12} aryl)(C_1 - C_{20} alkyl), -(C_1 - C_4 alkyl) $_q$ NH $_2$, -(C_1 - C_4 alkyl) $_q$ NHCOH or -(C_1 - C_4 alkyl) $_q$ NHCOCH $_3$, where each q is 0 or 1;

(b) poly(M₁-g-M₂) is comprised of a second pendent polymer, poly (M₂), grafted to poly(M₁) through a carbon-carbon bond, wherein the pendent polymer is comprised of a monomer unit each-M₂ [[has]] having the formula (II):

$$\begin{array}{c|c} R_6 & R_8 \\ \hline \\ R_7 & C \\ \hline \\ R_2 & C \\ \hline \\ R_9 & R_{10} \end{array}$$

wherein each A₂ is independently O, S or NX₂;

each of R_6 , R_7 , R_8 and R_9 is independently H, C_1 - C_{20} alkyl, C_4 - C_{12} cycloalkyl, C_5 - C_{12} aryl, C_4 - C_{12} heteroaryl, -(C_1 - C_{20} alkyl)(C_5 - C_{12} aryl) or -(C_5 - C_{12} aryl)(C_1 - C_{20} alkyl);

each R_{10} is independently H, C_1 – C_{20} alkyl, C_1 – C_{20} heteroalkyl, C_4 – C_{12} cycloalkyl, C_4 – C_{12} aryl, C_4 – C_{12} aryl, C_4 – C_{12} heteroaryl, $-(C_1$ – C_{20} alkyl)(C_4 – C_{12} cycloalkyl), $-(C_4$ – C_{12} cycloalkyl), $-(C_4$ – C_{12} cycloalkyl)(C_1 – C_{20} alkyl)(C_1 – C_{20} heteroalkyl)(C_4 – C_{12} cycloalkyl), $-(C_4$ – C_{12} cycloalkyl)(C_1 – C_{20} alkyl)(C_4 – C_{12} heterocycloalkyl), $-(C_4$ – C_{12} heterocycloalkyl)(C_1 – C_{20} alkyl), $-(C_1$ – C_{20} heteroalkyl)(C_4 – C_{12} heterocycloalkyl), $-(C_4$ – C_{12} heterocycloalkyl)(C_5 – C_{12} aryl), $-(C_5$ – C_{12} aryl)(C_1 – C_{20} alkyl), $-(C_1$ – C_2 0 alkyl)(C_5 – C_1 2 aryl), $-(C_5$ – C_1 2 aryl)(C_1 – C_2 0 alkyl), $-(C_1$ – C_2 0 heteroalkyl), $-(C_1$ – C_2 0 alkyl), $-(C_1$ – C_2 0 heteroalkyl), $-(C_1$ – C_2 0 alkyl), $-(C_1$ – C_2 0 heteroalkyl), $-(C_1$ – C_2 0 alkyl), $-(C_1$ – C_2 0 heteroalkyl), $-(C_1$ – C_2 0 alkyl), $-(C_1$ – C_2 0 heteroalkyl), $-(C_1$ – C_2 0 alkyl), $-(C_1$ – C_2 0 heteroalkyl), $-(C_1$ – C_2 0 alkyl), $-(C_1$ – C_2 0 heteroalkyl), $-(C_1$ – C_2 0 alkyl), $-(C_1$ – C_2 0 heteroalkyl), $-(C_1$ – C_2 0 alkyl), $-(C_1$ – C_2 0 alkyl), $-(C_1$ – C_2 0 heteroalkyl), $-(C_1$ – C_2 0 alkyl), $-(C_1$ – C_2 0 alkyl), $-(C_1$ – C_2 0 heteroalkyl), $-(C_1$ – C_2 0 alkyl), $-(C_1$ – C_2 0 alkyl), $-(C_1$ – C_2 0 heteroalkyl), $-(C_1$ – C_2 0 alkyl), $-(C_1$ – C_2 0 heteroalkyl), $-(C_1$ – C_2 0 alkyl), $-(C_1$ – C_2 0 alkyl), $-(C_1$ – C_2 0 heteroalkyl), $-(C_1$ – C_2 0 alkyl), $-(C_1$ – C_2 0 heteroalkyl), $-(C_1$ – C_2 0 alkyl), $-(C_1$ – C_2 0 alkyl), -

each X_2 is independently H, C_1 - C_{20} alkyl, C_4 - C_{12} cycloalkyl, C_5 - C_{12} aryl, C_4 - C_{12} heteroaryl, -(C_1 - C_{20} alkyl)(C_5 - C_{12} aryl), -(C_5 - C_{12} aryl)(C_1 - C_{20} alkyl), -(C_1 - C_4 alkyl) $_q$ NH $_2$, -(C_1 - C_4 alkyl) $_q$ NHCOH or -(C_1 - C_4 alkyl) $_q$ NHCOCH $_3$, where each q is 0 or 1;

- (c) provided that at least one M₄ is different from at least one M₂;
- with a mixture comprising a biomolecule; and
- (2) applying an electric field to the composition in an amount sufficient to facilitate the separation of a biomolecule from the mixture.
- 25. (Original) The method of claim 24, wherein the separation is performed within a capillary tube and two or more biomolecules are polynucleotides.

- 26. (Original) The method of claim 25, wherein the separation has a crossover of at least 400 base pairs.
- 27. Canceled.
- 28. (Previously presented) The method of claim 24, wherein the composition further comprises a sieve polymer.
- 29. (Previously presented) The method of claim 28, wherein the sieve polymer is poly(acrylamide).
- 30. Canceled.
- 31. (Previously presented) The method of claim 24, wherein the poly(M₁-g-M₂) or a salt thereof has a weight-average molecular weight of from about 150,000 Daltons to about 20 MDaltons.
- 32. (Previously presented) The method of claim 31, wherein the composition further comprises a sieve polymer or a salt thereof having a weight-average molecular weight of from about 100,000 Daltons to about 5 MDaltons.
- 33. (Previously presented) The method of claim 32, wherein the sieve polymer is substantially linear poly(acrylamide).
- 34. (Previously presented) The method of claim 24, wherein the buffer is an aqueous buffer.
- 35. (Previously presented) The method of claim 34, wherein the composition has a pH of from about 5 to about 11.
- 36. (Previously presented) The method of claim 34, wherein the composition has a pH of from about 7 to about 10.
- 37. (Previously presented) The method of claim 35, wherein the composition further comprises formamide, urea, pyrrolidone, *N*-methyl pyrrolidone or a mixture thereof.
- 38. (Previously presented) The method of claim 35, wherein the composition further comprises urea.
- 39. (Previously presented) The method of claim 35, wherein the composition further comprises formamide.
- 40. (Previously presented) The method of claim 24, wherein M_1 is N,N-dimethylacrylamide and M_2 is acrylamide.
- 41. (Previously presented) The method of claim 25, wherein M_1 is N,N-dimethylacrylamide and M_2 is acrylamide.
- 42. (Previously presented) The method of claim 26, wherein M_1 is N,N-dimethylacrylamide and M_2 is acrylamide.

- 43. (Previously presented) The method of claim 28, wherein M_1 is N,N-dimethylacrylamide and M_2 is acrylamide.
- 44. (Previously presented) The method of claim 29, wherein M₁ is *N,N*-dimethylacrylamide and M₂ is acrylamide.
- 45. (Previously presented) The method of claim 31, wherein M₁ is *N,N*-dimethylacrylamide and M₂ is acrylamide.
- 46. (Previously presented) The method of claim 32, wherein M_1 is N,N-dimethylacrylamide and M_2 is acrylamide.
- 47. (Previously presented) The method of claim 33, wherein M_1 is N,N-dimethylacrylamide and M_2 is acrylamide.
- 48. (Previously presented) The method of claim 34, wherein M₁ is *N,N*-dimethylacrylamide and M₂ is acrylamide.
- 49. (Previously presented) The method of claim 35, wherein M_1 is N,N-dimethylacrylamide and M_2 is acrylamide.
- 50. (Previously presented) The method of claim 36, wherein M_1 is N,N-dimethylacrylamide and M_2 is acrylamide.
- 51. (Previously presented) The method of claim 37, wherein M_1 is N,N-dimethylacrylamide and M_2 is acrylamide.
- 52. (Previously presented The method of claim 24, wherein the sum of the weight of all M_2 units present in the poly(M_1 -g- M_2) or a salt thereof divided by the sum of the weight of all M_1 units present in the poly(M_1 -g- M_2) or a salt thereof is at least about 0.1.
- 53. (Previously presented) The method of claim 31, , wherein the sum of the weight of all M_2 units present in the poly(M_1 -g- M_2) or a salt thereof divided by the sum of the weight of all M_1 units present in the poly(M_1 -g- M_2) or a salt thereof is at least about 0.1.
- 54. (New) The method of claim 1, wherein the second pendent polymer, $poly(M_2)$, is grafted to $poly(M_1)$ through R_3 , R_5 , or R_4 , if R_4 is not H.