Introduction to Vectors

Rameez Adil

January 4, 2025

Contents

1	\mathbf{Intr}	ro to vectors	1
	1.1	Linear combinations	1
	1.2	2-Dimensional Vectors	1
		1.2.1 Special linear combinations	2

1 Intro to vectors

$$cv + dw = c \begin{bmatrix} 1 \\ 1 \end{bmatrix} + d \begin{bmatrix} 2 \\ 3 \end{bmatrix} = \begin{bmatrix} c + 2d \\ c + 3d \end{bmatrix}$$
 (1.0)

1.1 Linear combinations

• A linear combination of c = 1 & d = 1 for the equation 1 will produce the following output:

$$v + w = \begin{bmatrix} 1\\1 \end{bmatrix} + \begin{bmatrix} 2\\3 \end{bmatrix} = \begin{bmatrix} 3\\4 \end{bmatrix} \tag{1.1}$$

ullet : a linear combination is the addition of vectors and multiplying their scalars

1.2 2-Dimensional Vectors

Column Vector
$$v = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$$
 (1.2.0)

- A column vector has 2 seperate numbers v_1 and v_2 which produces a 2-dimensional vector v
- Although v_1 and v_2 cannot be added, we can add other vectors together

Vector Addition
$$v = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$$
 and $w = \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}$ add to $v + w = \begin{bmatrix} v_1 + w_1 \\ v_2 + w_2 \end{bmatrix}$ (1.2.1)

- Subtraction follows the same idea, such that v-w is v_1-w_1 and v_2-w_2
- Scalar multiplication can be represented as:

Scalar Multiplication
$$2v = \begin{bmatrix} 2v_1 \\ 2v_2 \end{bmatrix} = v + v \text{ and } -v = \begin{bmatrix} -v_1 \\ -v_2 \end{bmatrix}$$
 (1.2.2)

- ullet In the above equation, 2 is the scalar, c, of the vector v
- The sum of -v and v is the zero vector, 0 and has components 0 and 0

Thus, the sum of cv and wd is the linear combination, cv + dw.

1.2.1 Special linear combinations

There are 4 special linear combinations, sum, difference, zero and a scalar multiple cv:

- 1v + 1w = sum of vectors
- 1v 1w = difference in vectors
- $0v 0w = zero\ vector$
- cv 0w = vector cv in the direction of v

Figure 1: Vector addition and difference

Vector addition and difference is visually represented above, and it highlights its relationship.

- When calculating v + w, we place the start of the w vector at the end of v to arrive at the vector (3,4)
- We may also place the start of v at the end of w and arrive at the same vector of (3,4)
 - : linear combination w + v is the same as v + w
- However, v-w is calculated such that it is v+(-w), and the vector w is inverted
 - We then treat it as addition, adding the vector -w from the head of vector v
 - Or adding vector v to the head of -w
- To summarise, vector addition/difference places the tail of the consequent vector to the head of the preceding vector