

"SAPIENZA" UNIVERSITÀ DI ROMA INGEGNERIA DELL'INFORMAZIONE, INFORMATICA E STATISTICA DIPARTIMENTO DI INFORMATICA

Linguaggi di Programmazione

Appunti integrati con il libro "TODO", TODO 1, Autore 2, ...

 $\begin{array}{c} Author \\ {\rm Alessio~Bandiera} \end{array}$

Indice

Informazioni e Contatti							1
1	Induzione						2
	1.1	Algebr	ore induttive				2
			Assiomi di Peano				
		1.1.2	Algebre induttive				4
	1.2	Strutt	ture dati induttive				7
		1.2.1	Liste				7
		1.2.2	Alberi binari				8
	1.3	Sintas	ssi astratta				10
		1.3.1	Definizioni				10

Informazioni e Contatti

Prerequisiti consigliati:

- Algebra
- TODO

Segnalazione errori ed eventuali migliorie:

Per segnalare eventuali errori e/o migliorie possibili, si prega di utilizzare il **sistema di Issues fornito da GitHub** all'interno della pagina della repository stessa contenente questi ed altri appunti (link fornito al di sotto), utilizzando uno dei template già forniti compilando direttamente i campi richiesti.

Gli appunti sono in continuo aggiornamento, pertanto, previa segnalazione, si prega di controllare se l'errore sia ancora presente nella versione più recente.

Licenza di distribuzione:

These documents are distributed under the **GNU Free Documentation License**, a form of copyleft intended to be used on manuals, textbooks or other types of document in order to assure everyone the effective freedom to copy and redistribute it, with or without modifications, either commercially or non-commercially.

Contatti dell'autore e ulteriori link:

• Github: https://github.com/ph04

• Email: alessio.bandiera02@gmail.com

• LinkedIn: Alessio Bandiera

1

Induzione

1.1 Algebre induttive

1.1.1 Assiomi di Peano

Definizione 1.1.1.1: Assiomi di Peano

Gli assiomi di Peano sono 5 assiomi che definiscono l'insieme \mathbb{N} , e sono i seguenti:

- $i) \ 0 \in \mathbb{N}$
- ii) $\exists \text{succ} : \mathbb{N} \to \mathbb{N}$, o equivalentemente, $\forall x \in \mathbb{N} \quad \text{succ}(x) \in \mathbb{N}$
- $iii) \ \forall x, y \in \mathbb{N} \ x \neq y \implies \operatorname{succ}(x) \neq \operatorname{succ}(y)$
- $iv) \not\exists x \in \mathbb{N} \mid \operatorname{succ}(x) = 0$
- $v) \ \forall S \subseteq \mathbb{N} \ (0 \in S \land (\forall x \in S \ \operatorname{succ}(x) \in S)) \implies S = \mathbb{N}$

Esempio 1.1.1.1 (\mathbb{N} di von Neumann). Una rappresentazione dell'insieme dei numeri naturali \mathbb{N} alternativa alla canonica

$$\mathbb{N} := \{0, 1, 2, \ldots\}$$

è stata fornita da John von Neumann. Indicando tale rappresentazione con \aleph , si ha che, per Neumann

$$\begin{aligned} 0_{\aleph} &:= \varnothing = \{\} \\ 1_{\aleph} &:= \{0_{\aleph}\} = \{\{\}\} \\ 2_{\aleph} &:= \{0_{\aleph}, 1_{\aleph}\} = \{\{\}, \{\{\}\}\} \} \\ &\vdots \end{aligned}$$

e la funzione succ_\aleph è definita come segue

$$\operatorname{succ}_{\aleph} : \aleph \to \aleph : x_{\aleph} \mapsto x_{\aleph} \cup \{x_{\aleph}\} = \{\mu_{\aleph} \in \aleph \mid |\mu_{\aleph}| \leq |x_{\aleph}|\}$$

ed in particolare $\forall x_{\aleph} \in \aleph \quad |x_{\aleph}| + 1 = |\operatorname{succ}_{\aleph}(x_{\aleph})|.$

È possibile verificare che tale rappresentazione di $\mathbb N$ soddisfa gli assiomi di Peano, in quanto

- $i) \ 0_{\aleph} := \varnothing \in \aleph;$
- $ii) \exists \operatorname{succ}_{\aleph} : \aleph \to \aleph, \text{ definita precedentemente};$
- $(iii) \ \forall x_{\aleph}, y_{\aleph} \in \aleph \quad x_{\aleph} \neq y_{\aleph} \implies |x_{\aleph}| \neq |y_{\aleph}| \implies |\operatorname{succ}_{\aleph}(x_{\aleph})| \neq |\operatorname{succ}_{\aleph}(y_{\aleph})| \implies \operatorname{succ}_{\aleph}(x_{\aleph}) \neq \operatorname{succ}_{\aleph}(y_{\aleph});$
- iv) per assurdo, sia $x_{\aleph} \in \aleph$ tale che $\operatorname{succ}_{\aleph}(x_{\aleph}) = 0_{\aleph} := \varnothing$; per definizione $\operatorname{succ}_{\aleph}(x_{\aleph}) := \{\mu_{\aleph} \in \aleph \mid |\mu_{\aleph}| \leq |x_{\aleph}|\}$, ma non esiste $\mu_{\aleph} \in \aleph$ con cardinalità minore o uguale 0, e dunque $\nexists x_{\aleph} \in \aleph \mid \operatorname{succ}_{\aleph}(x_{\aleph}) = 0_{\aleph}$;
- v) per assurdo, sia $S \subseteq \mathbb{N}$ tale che $0_{\mathbb{N}} \in S$ e $\forall x_S \in S$ succ $_{\mathbb{N}}(x_S) \in S$ ma $S \neq \mathbb{N} \iff \mathbb{N} S \neq \emptyset \implies \exists \zeta_{\mathbb{N}} \in \mathbb{N} S$, ed in particolare $\zeta_{\mathbb{N}} \neq 0_{\mathbb{N}}$; \mathbb{N} è chiuso su succ $_{\mathbb{N}}$ per il secondo assioma di Peano, e dunque $\zeta_{\mathbb{N}} \neq 0_{\mathbb{N}} \implies \exists \zeta'_{\mathbb{N}} \in \mathbb{N} \mid \text{succ}_{\mathbb{N}}(\zeta'_{\mathbb{N}}) = \zeta_{\mathbb{N}}$, e sicuramente $\zeta'_{\mathbb{N}} \notin S$, poiché altrimenti $\zeta_{\mathbb{N}} \in S$ anch'esso in quanto S è chiuso rispetto a succ $_{\mathbb{N}}$; allora, ripetendo il ragionamento analogo per l'intera catena di predecessori, S risulterebbe essere vuoto, ma ciò è impossibile poiché $0_{\mathbb{N}} \in S$ in ipotesi ξ .

Principio 1.1.1.1: Principio di Induzione

Sia P una proprietà che vale per n = 0, e dunque P(0) è vera; inoltre, per ogni $n \in \mathbb{N}$ si ha che $P(n) \implies P(n+1)$; allora, P(n) è vera per ogni $n \in \mathbb{N}$.

In simboli, utilizzando la notazione della logica formale, si ha che

$$\frac{P(0) \land (\forall n \in \mathbb{N} \quad P(n) \implies P(n+1))}{\forall n \in \mathbb{N} \quad P(n)}$$

Osservazione 1.1.1.1: Quinto assioma di Peano

Si noti che il quinto degli assiomi di Peano (Definizione 1.1.1.1) equivale al principio di induzione (Principio 1.1.1.1). Infatti, il quinto assioma afferma che qualsiasi sottoinsieme S di $\mathbb N$ avente lo 0, e caratterizzato dalla chiusura sulla funzione di successore succ, coincide con $\mathbb N$ stesso.

1.1.2 Algebre induttive

Definizione 1.1.2.1: Algebra

Una **struttura algebrica**, o più semplicemente **algebra**, consiste di un insieme *non vuoto*, talvolta chiamato **insieme sostegno** (*carrier set* o *domain*), fornito di una o più operazioni su tale insieme, quest'ultime caratterizzate da un numero finito di assiomi da soddisfare.

Se A è il carrier set, e $\gamma_1, \dots \gamma_n$ sono delle operazioni definite su A, allora con

$$(A, \gamma_1, \ldots, \gamma_n)$$

si indica l'algebra costituita da tali componenti.

Esempio 1.1.2.1 (Strutture algebriche con singola operazione). Esempi di strutture algebriche con un'operazione binaria sono i seguenti:

- semigruppi
- monoidi
- gruppi
- gruppi abeliani

Esempio 1.1.2.2 (Strutture algebriche con due operazioni). Esempi di strutture algebriche con due operazioni binarie sono i seguenti:

- semianelli
- anelli
- campi

Definizione 1.1.2.2: Insieme unità

Con **insieme unità** verrà inteso un qualsiasi insieme tale che $|\mathbb{1}| = 1$, e verrà indicato attraverso il simbolo $\mathbb{1}$.

Definizione 1.1.2.3: Algebra induttiva

Sia A un insieme, e siano $\gamma_1, \ldots, \gamma_n$ funzioni definite su A di arbitraria arietà; allora, $(A, \gamma_1, \ldots, \gamma_n)$ è definita **algebra induttiva** se si verificano le seguenti:

- i) $\gamma_1, \ldots, \gamma_n$ sono iniettive
- ii) $\forall i, j \in [1, n] \mid i \neq j \quad \text{im}(\gamma_i) \cap \text{im}(\gamma_j) = \emptyset$, ovvero, le immagini dei costruttori sono a due a due disgiunte
- iii) $\forall S \subseteq A \quad (\forall i \in [1, n], a_1, \dots a_k \in S, k \in \mathbb{N} \quad \gamma_i(a_1, \dots, a_k) \in S) \implies S = A, \text{ o}$ equivalentemente, in A non devono essere contenute algebre induttive.

Le funzioni $\gamma_1, \ldots, \gamma_n$ prendono il nome di **costruttori dell'algebra**.

Osservazione 1.1.2.1: Terzo assioma delle algebre induttive

Si noti che nel terzo assioma della Definizione 1.1.2.3 anche $S = \emptyset$ è un valido sottoinsieme di A, ma poiché non esistono $a_1, \ldots, a_k \in \emptyset$, in esso ogni qualificazione è vera a vuoto. Di conseguenza, nel momento in cui si ammette $S = \emptyset$ nel terzo assioma, l'algebra risulta essere non induttiva necessariamente (a meno dell'algebra vuota).

Di conseguenza, questo terzo assioma forza la necessità della presenza di un costruttore unitario all'interno di ogni algebra induttiva, in modo da non poter ammettere $S = \emptyset$, poiché l'algebra deve essere chiusa su ognuno dei suoi costruttori.

Esempio 1.1.2.3 (Numeri naturali). $(\mathbb{N}, +)$ non è un algebra induttiva, poiché esistono $x_1, x_2, x_3, x_4 \in \mathbb{N}$ con $x_1 \neq x_3$ e $x_2 \neq x_4$ tali che $x_1 + x_2 = x_3 + x_4$; ad esempio, 2 + 3 = 5 = 1 + 4, e $2 \neq 1$, $3 \neq 4$.

Esempio 1.1.2.4 (Algebra di Boole). Dato l'insieme $B = \{\text{true}, \text{false}\}$, e la funzione \neg definita come segue

$$\neg: B \to B: x \mapsto \begin{cases} \text{false } x = \text{true} \\ \text{true } x = \text{false} \end{cases}$$

è possibile dimostrare che l'algebra (B, \neg) non è induttiva; infatti, nonostante \neg sia iniettiva, e la seconda proprietà della Definizione 1.1.2.3 sia vera a vuoto, (B, \neg) non presenta costruttore unitario, e dunque non può costituire un'algebra induttiva (si noti l'Osservazione 1.1.2.1).

Esempio 1.1.2.5 (Algebre induttive). Sia zero la funzione definita come segue

zero :
$$\mathbb{1} \to \mathbb{N} : x \mapsto 0$$

e si prenda in esame l'algebra (N, succ, zero); allora si ha che

- i) succ e zero sono iniettive, poiché
 - succ è iniettiva per il terzo assioma di Peano (Definizione 1.1.1.1)

- $\forall x,y \in \mathbb{1} \quad \text{zero}(x) = \text{zero}(y) \implies x = y$ poiché $x,y \in \mathbb{1} \implies x = y$ in quanto $|\mathbb{1}| = 1$
- ii) im(succ) \cap im(zero) = $(\mathbb{N} \{0\}) \cap \{0\} = \emptyset$
- iii) TODO

Definizione 1.1.2.4: Omomorfismo

Un **omomorfismo** è una funzione, tra due algebre dello stesso tipo, tale da preservarne le strutture.

Formalmente, siano $(A, \mu_1, \ldots, \mu_n)$ e $(B, \delta_1, \ldots, \delta_n)$ due algebre tali che ogni funzione μ_i abbia la stessa arietà e lo stesso numero di parametri esterni (denotati con k) di δ_i , pari rispettivamente ad η_i ed a ν_i , per qualche $i \in [1, n]$; allora, una funzione $f: A \to B$ è detta essere un **omomorfismo** tra le due algebre, se e solo se

$$\forall a_1, \dots, a_{\eta_1} \quad f(\mu_1(a_1, \dots, a_{\eta_n}), k_1, \dots, k_{\nu_1}) = \delta_1(f(a_1), \dots, f(a_{\eta_1}), k_1, \dots, k_{\nu_1})$$

$$\vdots$$

$$\forall a_1, \dots, a_{\eta_n} \quad f(\mu_n(a_1, \dots, a_{\eta_n}), k_1, \dots, k_{\nu_n}) = \delta_n(f(a_1), \dots, f(a_{\eta_n}), k_1, \dots, k_{\nu_n})$$

Esempio 1.1.2.6 (Omomorfismi). Si considerino i gruppi $(\mathbb{R}, +)$ e $(\mathbb{R}_{>0}, \cdot)$, e sia f definita come segue:

$$f: \mathbb{R} \to \mathbb{R}_{>0}: x \mapsto e^x$$

allora, si ha che

$$\forall x, y \in \mathbb{R}$$
 $f(x) \cdot f(y) = e^x \cdot e^y = e^{x+y} = f(x+y)$

dunque f è un omomorfismo di gruppi.

Definizione 1.1.2.5: Isomorfismo

Un **isomorfismo** è un omomorfismo biettivo.

Esempio 1.1.2.7 (Isomorfismi). Si consideri l'omomorfismo dell'Esempio 1.1.2.6; si noti che

$$\forall x, y \in \mathbb{R} \mid x \neq \mathbb{R} \quad e^x \neq e^y \implies f(x) \neq f(y)$$

e dunque f è iniettiva; inoltre

$$\forall y \in \mathbb{R}_{>0} \quad \exists x \in \mathbb{R} \mid f(x) = e^x = y \iff y = \ln(x)$$

e dunque f è suriettiva. Allora, f è biettiva, e poiché è un omomorfismo, risulta essere un isomorfismo.

1.2 Strutture dati induttive

1.2.1 Liste

Definizione 1.2.1.1: Liste

Una **lista** è una collezione ordinata di elementi, e l'insieme delle liste di lunghezza finita viene denotato con List<T>, dove T è il tipo degli elementi che le liste contengono, ed il simobolo T verrà identificato con l'insieme di tutti gli oggetti aventi tipo T.

Dati $a_1, \ldots, a_n \in T$, una lista $l \in List<T>$ contenente tali elementi può essere rappresentata come segue:

$$[a_1,\ldots,a_n]$$

Definizione 1.2.1.2: Algebra delle liste finite

L'algebra delle liste finite è definita come segue:

dove i costruttori sono i seguenti:

empty :
$$\mathbb{1} \to \text{List} < T > : x \mapsto []$$

cons : List $< T > \times T \to \text{List} < T > : ([a_1, \dots, a_n], x) \mapsto [a_1, \dots, a_n, x]$

Proposizione 1.2.1.1: Liste finite induttive

L'algebra delle liste finite è induttiva.

Dimostrazione. Si noti che:

- empty ha dominio in 1, e poiché questo contiene un solo elemento, empty è necessariamente iniettiva;
- $\forall l, l' \in \texttt{List} < \texttt{T} >, x, x' \in \texttt{T} \quad \cos(l, x) = \cos(l', x') \implies \begin{cases} l = l' \\ x = x' \end{cases}$ altrimenti l ed l' avrebbero avuto lunghezze diverse, oppure avrebbero contenuto diversi elementi;
- im (empty) \cap im (cons) = \emptyset , poiché solo empty può restituire [], in quanto cons restituisce sempre una lista contenente almeno l'elemento fornito in input;
- sia $S \subseteq \texttt{List}<\mathsf{T}>$ tale da essere chiuso rispetto a cons, e contenente la lista vuota; per assurdo, sia $\texttt{List}<\mathsf{T}>-S \neq \varnothing \implies \exists l \in \texttt{List}<\mathsf{T}>-S$, ma $\texttt{List}<\mathsf{T}>$ è chiuso rispetto a cons, ed in particolare $\exists x \in \mathsf{T}, l' \in \texttt{List}<\mathsf{T}> |\cos(l',x) = l$, ma poichè $l \notin S$, allora necessariamente $l' \notin S$, poiché S è chiuso rispetto a cons, e quindi $l' \in S \implies l \in S$, ma l è stato scelto in $\texttt{List}<\mathsf{T}>-S$; ripetendo tale ragionamento induttivamente, si ottiene che S è vuoto, ma questo è impossibile poiché $[] \in \texttt{List}<\mathsf{T}>$ in ipotesi $\{ \}$.

Dunque, l'algebra delle liste finite risulta essere induttiva.

Osservazione 1.2.1.1: Algebra delle liste infinite

Se all'algebra delle liste finite venissero aggiunte anche le liste infinite, l'algebra risultante non sarebbe induttiva, in quanto conterrebbe l'algebra delle liste finite, la quale è induttiva per la Proposizione 1.2.1.1, e verrebbe dunque contraddetto il terzo assioma della Definizione 1.1.2.3.

Osservazione 1.2.1.2: Concatenazione di liste finite

È possibile estendere l'algebra delle liste finite per supportare l'operazione di concatenazione tra liste, come segue:

$$\text{concat}: \texttt{List} < \texttt{T} > \times \texttt{List} < \texttt{T} > \to \texttt{List} < \texttt{T} > : (l, l') \mapsto \left\{ \begin{array}{l} l' & l = \texttt{[]} \\ \cos(x, \operatorname{concat}(t, l')) & \exists x \in \texttt{T}, t \in \texttt{List} < \texttt{T} > \mid l = \cos(t, x) \end{array} \right.$$

1.2.2 Alberi binari

Definizione 1.2.2.1: Albero binario

Un albero binario è una struttura dati che è possibile rappresentare graficamente come segue:

Il primo nodo, poiché non è figlio di nessuno, è detto **radice**, e poiché l'albero è *binario*, ogni nodo ha 0 — nel qual caso è definito **foglia** — oppure 2 figli. L'insieme degli alberi binari viene denotato con B-tree.

Definizione 1.2.2.2: Algebra degli alberi binari finiti

L'algebra degli alberi binari finiti è definita come segue:

dove i costruttori sono i seguenti:

$$leaf: 1 \rightarrow B-tree: x \mapsto \circ$$

$$\text{branch}: \texttt{B-tree} \times \texttt{B-tree} \to \texttt{B-tree}: (b,b') \mapsto \qquad \begin{matrix} \circ \\ b \end{matrix} \qquad \qquad \begin{matrix} b \end{matrix}$$

Proposizione 1.2.2.1: Alberi binari finiti induttivi

L'algebra degli alberi binari finiti è induttiva.

Dimostrazione. Omessa.

Osservazione 1.2.2.1: Algebra degli alberi binari infiniti

Analogamente all'Osservazione 1.2.1.1, l'algebra degli alberi binari finiti ed infiniti non è induttiva.

Osservazione 1.2.2.2: Nodi di un albero binario finito

È possibile estendere l'algebra degli alberi binari finiti per supportare l'operazione per contare i nodi di un albero, come segue:

$$\operatorname{nodes} : \mathtt{B-tree} \to \mathbb{N} : b \mapsto \left\{ \begin{array}{ll} 1 & b = \circ \\ 1 + \operatorname{nodes}(t) + \operatorname{nodes}(t') & \exists t, t' \in \mathtt{B-tree} \mid b = \operatorname{branch}(t, t') \end{array} \right.$$

Osservazione 1.2.2.3: Foglie di un albero binario finito

È possibile estendere l'algebra degli alberi binari finiti per supportare l'operazione per contare le foglie di un albero, come segue:

$$\text{leaves}: \texttt{B-tree} \to \mathbb{N}: b \mapsto \left\{ \begin{array}{ll} 1 & b = \texttt{o} \\ \text{leaves}(t) + \text{leaves}(t') & \exists t, t' \in \texttt{B-tree} \mid b = \text{branch}(t, t') \end{array} \right.$$

Teorema 1.2.2.1: Relazione tra foglie e nodi

Ogni albero binario finito, avente n foglie, ha 2n-1 nodi.

Dimostrazione. La seguente dimostrazione procede per induzione strutturale, dunque effettuando l'induzione sulla morfologia della struttura dati, e non sul numero n di foglie.

Caso base. Il caso base è costituito dunque da \circ , l'albero ottenuto attraverso il costruttore unitario leaf, ed infatti si ha che

$$leaves(\circ) = 1 \implies 2 \cdot 1 - 1 = 1$$

e \circ ha esattamente 1 nodo.

Ipotesi induttiva. Un albero binario finito, avente n foglie, ha 2n-1 nodi.

Passo induttivo. Sia $b \in B$ -tree tale che esistano $t, t' \in B$ -tree tali che branch(t, t') = b, e siano

$$\begin{cases} leaves(t) = n \\ leaves(t') = n' \end{cases}$$

Si noti che, per ipotesi induttiva, si ha che

$$\begin{cases} nodes(t) = 2n - 1\\ nodes(t') = 2n' - 1 \end{cases}$$

ed inoltre, poiché b = branch(t, t'), b ha la forma seguente

dunque, per definizione di leaves si ha che

$$leaves(b) = leaves(t) + leaves(t') = n + n'$$

e, dalla morfologia di b, segue che

$$nodes(b) = nodes(t) + notes(t') + 1 = 2n - 1 + 2n' - 1 + 1 = 2(n + n') - 1$$

ed è quindi verificata la tesi, poiché

$$leaves(b) = n + n' \implies nodes(b) = 2(n + n') - 1$$

1.3 Sintassi astratta

1.3.1 Definizioni

Definizione 1.3.1.1: Grammatica

Una **grammatica** è un insieme di regole che definiscono come manipolare un insieme di stringhe, agendo su elementi sintattici detti **termini**.

Definizione 1.3.1.2: Forma di Backus-Naur (BNF)

La **forma di Backus-Naur** (*Backus-Naur Form*) è una notazione utilizzata per descrivere la sintassi di grammatiche, ed è definita come segue:

dove

- <symbol> è una variabile non terminale, ovvero, può essere sostituita con regole definite dalla grammatica (le regole possono dunque essere utilizzate ricorsivamente);
- il simbolo ::= indica che ciò che è posto alla sua sinistra deve essere sostituito con ciò che è alla sua destra;
- _expression_ è un espressione che verrà usata per rimpiazzare le variabili non terminali attraverso le regole definite dalla grammatica.

Esempio 1.3.1.1 (Grammatica Exp). Sia Exp la seguente grammatica:

$$M, N ::= 0 \mid 1 \mid \dots \mid M + N \mid M * N$$

essa definisce le regole per utilizzare i numeri in \mathbb{N} , ammettendo inoltre le operazioni sintattiche di + e *.

Definizione 1.3.1.3: Linguaggio di una grammatica

Sia G una grammatica; allora, il **linguaggio di** G è l'insieme delle stringhe che è possibile costruire attraverso le regole dettate da G.

Esempio 1.3.1.2 (Linguaggio di Exp). Sia Exp la grammatica definita nell'Esempio 1.3.1.1; in essa, prendendo ad esempio le stringhe "4" e "23", si può ottenere la stringa

$$+("4","23") = "4 + 23"$$

dove la polish notation — alla sinistra dell'uguale — e la forma sintattica canonica — alla sua destra — verranno utilizzate intercambiabilmente, poiché puro syntactic sugar.

Osservazione 1.3.1.1: Valutazione di Exp

Si prenda in considerazione la grammatica Exp dell'Esempio 1.3.1.1; su di essa, è possibile definire ricorsivamente una funzione eval, in grado di valutare le stringhe che tale grammatica può produrre, come segue:

$$\operatorname{eval}(0) = 0$$

$$\operatorname{eval}(1) = 1$$

$$\vdots$$

$$\operatorname{eval}(M + N) = \operatorname{eval}(M) + \operatorname{eval}(N)$$

$$\operatorname{eval}(M * N) = \operatorname{eval}(M) * \operatorname{eval}(N)$$

Osservazione 1.3.1.2: Ambiguità di Exp

Si prenda in considerazione la grammatica Exp dell'Esempio 1.3.1.1; si noti che tale grammatica è ambigua, poichè ad esempio

$$+("5", *("6", "7")) = "5 + 6 * 7" = *(+("5", "6"), "7")$$

e da ciò segue anche che im $(+) \cap \text{im} (*) \neq \emptyset$.

Osservazione 1.3.1.3: Disambiguazione di Exp

Si noti che l'ambiguità trattata nell'Osservazione 1.3.1.2 non permetterebbe di poter definire la funzione eval, descritta nell'Osservazione 1.3.1.1. Dunque, per risolvere tale ambiguità, a meno di parentesi (che *non* sono definite all'interno della grammatica) o dell'esplicitazione della composizione di funzioni utilizzata, verrà sottointesa la normale precedenza degli operatori aritmetica durante la valutazione delle stringhe.