Esercizio 1. Una delle soluzioni dell'equazione $2(1-i)z^2 + 8 = -i - 3(1-2i)z$ è

$$(A)$$
 $-i$.

(C)
$$-1$$

Bisogna controllare quale dei quattro numeri risolve l'equazione: per $z=\pm 1$ questa

$$z = 1$$
 $\Rightarrow 2 - 2i - 8 = -i + (3 - 6i) \iff -6 - i = 3 - 6i$
 $z = -1$ $\Rightarrow 2 - 2i - 8 = -i - (3 - 6i) \iff -6 - i = -3 + 6i$.

e nessuno dei due casi dà una uguaglianza vera. Per $z=\pm {\rm i}\,$ abbiamo

$$z = i$$
 $\Rightarrow 6 + 2i = -i - 3(i + 2) \iff 6 + 2i = -6 - 4i$
 $z = -i$ $\Rightarrow 6 + 2i = -i + 3(i + 2) \iff 6 + 2i = 6 + 2i$.

perciò la soluzione cercata è z=-i. Esercizio 2. La successione $\left(\frac{n^n+3n!}{2+n^n}\right)^{n^n/n!}$ tende a

(A)
$$e^3$$
.

(B)
$$e^{-2}$$
.

Dato che la quantità fra parentesi tende a 1 e l'esponente a $+\infty$, possiamo scrivere la successione in forma esponenziale:

$$\left(\frac{n^n + 3n!}{2 + n^n}\right)^{n^n/n!} = \left(1 + \frac{3n! - 2}{2 + n^n}\right)^{n^n/n!} = \exp\left[\frac{n^n}{n!}\log\left(1 + \frac{3n! - 2}{2 + n^n}\right)\right].$$

A questo punto studiamo l'esponente

$$\frac{n^n}{n!}\log\left(1+\frac{3n!-2}{2+n^n}\right) = \frac{\log\left(1+\frac{3n!-2}{2+n^n}\right)}{\frac{3n!-2}{2+n^n}} \cdot \frac{3n!-2}{2+n^n} \frac{n^n}{n!} \to 3 ,$$

pertanto la successione tende a e . Esercizio 3. Se $f(x) = \begin{cases} 2x - \sin x & \sec x < 0 \\ 0 & \sec x = 0 \\ 1 - e^{-x} & \sec x > 0 \end{cases}$

(A)
$$f'(0) = 1$$
.

(C)
$$f'(0) = 0$$

(B)
$$f'(0) = -1$$

(C)
$$f'(0) = 0$$
.
(D) f non è derivabile per $x = 0$.

Applichiamo un corollario del Teorema di de l'Hôpital: intanto

$$\lim_{x\to 0^-} f(x) = \lim_{x\to 0^-} (2x - \sin x) = 0 = f(0) = \lim_{x\to 0^+} (1-\mathrm{\,e}^{-x}) = \lim_{x\to 0^+} f(x) \; ,$$

dunque f è continua, poi

$$\lim_{x \to 0^{-}} f'(x) = \lim_{x \to 0^{-}} (2 - \cos x) = 1 \quad \Rightarrow \quad f'_{-}(0) = 1$$

$$\lim_{x \to 0^+} f'(x) = \lim_{x \to 0^+} e^{-x} = 1 \quad \Rightarrow \quad f'_+(0) = 1$$

dunque f è derivabile in x = 0 con derivata 1.

Esercizio 4. A una corsa partecipano 10 cavalli, e vengono premiati i primi tre classificati. Qual è la probabilità che vengano premiati i cavalli numero 4, 5 e 8?

(A) 1/120.

(B) 1/720.

(D) $\begin{pmatrix} 3 \\ 10 \end{pmatrix}$

I casi possibili sono i sottoinsiemi fatti scegliendo tre dei 10 cavalli, che sono $C_{10,3}$ $\binom{10}{3} = 10 \cdot 9 \cdot 8/3 \cdot 2 \cdot 1 = 120$, e i casi favorevoli solo uno (quello in cui il sottoinsieme scelto è $\{4, 5, 8\}$), pertanto la probabilità è 1/120.

Esercizio 5. Sia S l'insieme delle soluzioni della disequazione $\sqrt{x^2-2x-8} < 4$. Allora:

(A) $]-4,-2] \subset S$.

(B) $[-2, 4] \subset S$.

La disequazione equivale a

$$\begin{cases} x^2 - 2x - 8 \ge 0 \\ x^2 - 2x - 8 < 16 \end{cases} \iff \begin{cases} x \le -2 \ \mathbf{o} \ x \ge 4 \\ -4 < x < 6 \end{cases} \iff [-4 < x \le -2 \ \mathbf{o} \ 4 \le x < 6] \ ,$$

pertanto $S =]-4,-2] \cup [4,6[$.

Esercizio 6. Al variare dell' esponente reale α , la serie $\sum_{n} n^{\alpha^2 - \alpha - 5} \left(1 - \cos \frac{1}{n}\right)$ risulta

- (A) convergente se e solo se $-2 < \alpha < 3$. (B) convergente se e solo se $-1 < \alpha < 2$. (C) convergente se e solo se $\frac{-1 \sqrt{17}}{2} < \alpha < \frac{-1 + \sqrt{17}}{2}$.
- (D) divergente per ogni $\alpha > 0$.

Dato che $0 \le 1 - \cos(1/n) = 1/2n^2 + o(1/n^2)$, applicando il criterio del confronto asintotico la serie ha lo stesso carattere di

$$\sum_{n} n^{\alpha^{2} - \alpha - 5} \cdot \frac{1}{n^{2}} = \sum_{n} \frac{1}{n^{-\alpha^{2} + \alpha + 7}} ,$$

una serie armonica generalizzata che converge se e solo se

$$-\alpha^2 + \alpha + 7 > 1 \iff \alpha^2 - \alpha - 6 < 0 \iff -2 < \alpha < 3$$
.

Esercizio 7. L'integrale definito $\int_0^{\pi^2/16} \cos \sqrt{x} \, dx$ vale:

(A)
$$\left(\frac{\pi}{4} + 1\right)\sqrt{2} - 2$$
.
(B) $\frac{\sqrt{2}}{2}$.
(C) $\left(\frac{\pi}{4} - 1\right)\sqrt{2} + 2$.
(D) $\cos 0 - \cos \frac{\pi}{4}$.

(B)
$$\frac{\sqrt{2}}{2}$$
. (D) $\cos 0 - \cos \frac{\pi}{4}$

Integriamo con la sostituzione $\sqrt{x} = t$ ossia $x = t^2$, cui corrisponde il cambiamento dei differenziali $dx=2t\,dt$, e l'integrale diventa

$$\int_0^{\pi^2/16} \cos \sqrt{x} \, dx = \int_0^{\pi/4} 2t \cos t \, dt = \left[2t \sin t \right]_0^{\pi/4} - \int_0^{\pi/4} 2 \sin t \, dt$$
$$= \frac{\pi\sqrt{2}}{4} - \left[-2 \cos t \right]_0^{\pi/4} = \frac{\pi\sqrt{2}}{4} + \sqrt{2} - 2 .$$