•				_	_	
U.S.N.						

BMS College of Engineering, Bangalore-560019

(Autonomous Institute, Affiliated to VTU, Belgaum)

December 2016 Semester End Main Examinations

Course: Elements of Electronics Engineering
Course Code: 14EC1ICEEE

Duration: 3 hrs
Max Marks: 100

Date: 21.12.2016

Instructions: Answer any Five full questions choosing one from each unit

UNIT 1

1	a	Explain the principle of operation of PNP transistor with necessary equations .	6
	b	Define Q point. Explain how the position of Q point determines the maximum collector emitter voltage swing.	8
	c	Design a voltage divider bias circuit to have a Q point at $(5V,5mA)$, when the supply is 15V.Use a transisitor with $h_{fe} = 100$.	6
		OR	
2	a	Draw the N-channel JFET and explain its operation with the help of its characteristics in detail.	8
	b	List and explain the differences between BJT and FET	4
	c	With a neat circuit diagram, explain the operation of E-MOSFET	4
	d	Calculate the transconducatance of JFET having the following parameters. $I_{Dss}=12mA$, $V_p=-4V$, at bias points 1) $V_{GS}=0V$ 2) $V_{GS}=-1.5V$ UNIT 2	4
3	a	Explain the operation of BJT as a linear amplifier.	6
	b	Compare various characteristics of CE, CB and CC amplifiers.	6
	c	Explain DC and AC analysis of CE Amplifier`	8

4 a		Explain the concept of feedback and Obtain the expression for the gain of a closed			
		loop system. List the various negative feedback topologies.			
	b	Explain the frequency response of BJT amplifier.	5		
	c	Calculate the gain, input and output impedances of a voltage series feedback	5		
		amplifier having A=-400, Ri=1.5k Ω , R _{o=} 100 k Ω and β =-0.0667			
		UNIT 3			
5	a	With a neat block diagram, explain working of an OP-Amp.	5		
	b	State Barkhausen Criterion for sustained Oscillations and With the neat circuit	10		
		diagram and relevant expressions, explain the operation of RC phase shift oscillator.			
	c	Explain the operation of a OP-AMP as a differentiater and derive the expression for output voltage.	5		
		UNIT 4			
6	a	Realize all basic gates using NOR gate.	4		
	b	Convert the following: i) $(0.625)_8 = (?)_{10}$ ii) $(9B2)_{H=}(?)_{10}$ iii) $(35.45)_{10} = (?)_8$ iv) $(8A9.B4)_H = (?)_2$	8		
	c	Subtract the following using 2's complement method, i) (11010) ₂ from (11101) ₂	5		
	d	ii) Subtract (11101) ₂ from (11010) ₂ Explain PSWR in a microprocessor.	3		
7		UNIT 5	_		
7	a	Explain the principle of working of LED.	5		
	b	Draw and explain block diagram of communication system	8		
	c	Explain the principle of RADAR with block diagram.	7		
		ale ale ale ale ale ale ale			
