Exercices simples

Les données traitées dans les programmes sont saisies au clavier.

Exercice 1

Écrire un programme qui calcule la valeur absolue de la différence de deux nombres.

Exercice 2

Écrire un programme qui dit si un entier est pair ou pas.

Exercice 3

Écrire un programme qui calcule le maximum de deux nombres.

Exercice 4

Écrire un programme qui calcule le maximum de trois nombres.

Exercice 5

Écrire un programme qui échange les valeurs de deux variables.

Exercice 6

Ecrire programme qui calcule le double d'un entier.

Exercice 7

Écrire un programme qui calcule le prix TTC.

Exercice 8

Écrire un programme qui calcule périmètre d'un cercle de rayon R ainsi que son aire.

Exercice 9

Trouvez ce que fait l'algorithme suivant grâce à un exemple en le programmant.

```
debut
    lire(a, b)
    a = b-a
    b = b-a
    a = a+b
    afficher (a, b)

Fin
```

Exercice 10. Trouvez ce que fait le programme suivant grâce à un exemple en le programmant.

BOUCLES

Exercice 11

Écrire un programme qui affiche la table de multiplication par 9.

Exercice 12

Écrire un programme qui calcule la somme des n premiers nombres (on utilisera une boucle). Écrire une variante qui calcule la somme des n premiers nombres pairs.

Exercice 13

Écrire un programme qui calcule X puissance n, avec n entier relatif. On traitera tous les cas particuliers.

Exercice 14

Ecrire un programme pour déterminer si un nombre est premier.

Rappel: un nombre premier n'a pas de diviseurs.

Exercice 15

Ecrire un programme qui permet de calculer factorielle N (N!).

Rappels: 0! = 1, N! = 1*2*3*...*N

Exercice 16

On désire calculer le terme d'ordre n de la suite suivante définie par :

S(0)=1, S(n)=2*S(n-1)+1

Écrire un programme qui permet de calculer S(n).

Exercice 17

Ecrire un programme qui permet de calculer le développement limité de sin x.

 $\sin(x) = x - x^3/3! + x^5/5! - x^7/7!$ etc.

La condition d'arrêt du calcul sera que le terme xn/n! soit plus petit qu'une constante EPSILON donnée. (Epsilon est la plus petite valeur possible pour un réel).

Exercice 18

Ecrire un algorithme qui demande un nombre compris entre 13 et 49, jusqu'à ce que la réponse convienne. En cas de réponse supérieure à 49, on affichera un message: « trop petit!», et inversement, « trop grand! » si le nombre est inférieur à 13.