

SPACE HACKATHON

Team Name: Team Neuronaventador

Name of College/University: Karunya Institute of Technology And Sciences

(Deemed to be University)

Problem Statement: Feature Extraction from RS HR data using AIML

Team Details: 1) Ashwala Ravi Teja 2) Manoha Noble

3) Jefi Ryan 4) Ishan Chaskar

PROBLEM STATEMENT

Explain your understanding on Problem Statement:

Our project aims to extract distinct features like Farm Pond, Check Dam, etc., from high-resolution satellite data, leveraging AI/ML techniques. The objective is a multi-label classification model capable of confidently identifying multiple features in a scene and providing accurate bounding boxes/masks. Utilizing Bhuvan data, and open source resources we manually label it to train the model, ensuring precise feature recognition.

Brief Idea Of The Project:

- Our project aims to develop a robust system using Al and machine learning to accurately identify landscape features in high-resolution satellite imagery.
 - We focus on creating labeled datasets, training a classification model, and implementing automated identification for efficient analysis.
- The system includes a user-friendly interface allowing easy upload of TIFF files.
- The website processes uploaded images and returns fully labeled images, enhancing user accessibility and expediting feature identification.

Novelties:

- Extracting vegetation indices as an indicator for ecosystem health.
- Dynamic dashboard for insights discovery.
- Automated Reporting: Implement automated reporting functionalities that generate regular reports summarizing ecosystem health trends,
- During floods and emergencies, real-time satellite AI identifies critical infrastructure like dams and treatment plants, enabling swift and targeted disaster response.

Detailed Proposal:

Impact: Revolutionize agriculture, infrastructure, urban planning.

Challenges: Balancing accuracy and real-time efficiency, potentially requiring further optimization for specific aerial imagery tasks.

Approach: Leveraging YOLO-NAS's neural architecture search to automatically design an efficient and accurate object detection model.

Data: High-resolution Sentinel-2, EuroSAT, Google Earth, Bhuvan Portal imagery, prepped for quality.

Model: YOLO-NAS architecture fine-tuned specifically for the target objects and tasks in aerial imagery.

Output: Precise bounding boxes and labels with color coding for clear visualization and analysis.

Improvement: Continuous analysis & refinement for optimal accuracy.

So	luti	on A	\ppr	oach:
----	------	------	-------------	-------

□ Dataset Annotation: Detect & localize farm ponds, check dams, etc. from satellite imagery. □ Feature engineering: Convert TIFs to images, manually label features, split into training/validation/test sets. While training the model, leverage GDAL for geospatial data processing and QGIS for interactive visualization and feature					
labeling.					
☐ Train the model: Utilize YOLO-NAS for multi-label classification with high-resolution imagery.					
 □ Evaluate & compare: Measure performance with IoU, MAP, F1 scores, and consider class weightages. □ Optimize & improve: Increase labeled data, fine-tune hyperparameters, explore model ensembles. □ Deploy & present: Develop a web portal for user interaction, visualize predictions, and integrate with existing tools. 					
Advantages of YOLO-NAS MODEL In this work:					
□ Improved accuracy and efficiency. □ Customization for diverse features. □ Scalability and generalization.					

Tools and Devices used:

- Software: PyTorch, Torch Vision, Super Gradients, GDAL, Docker, Neptune.
- Hardware: NVIDIA GeForce RTX 3050 GPU processor.
- Project workspace: VSCode, Anaconda, Jupyter Notebooks.
- **□** Version Control: Github, CI/CD.
- AnnotationTool:Roboflow,lab elbox

Technologies Used:

- ☐ Remote Sensing
 Technologies Satellite
 Imagery and GIS Tools
 QGIS,GDAL.
- ML & Al Technologies: YOLO-NAS Model.
- ☐ User Interface
 Technologies: Flask,
 React Js, Tailwind CSS

Preliminary Results on Trained Model

Classes Trained

Results

mAP	Precision	Recall F	1-score
98.1%	96.6%	94.4%	95.1%

References:

☐ Multi-Scale Object Detection in Aerial Images https://arxiv.org/abs/2102.12219

☐ Sentinel-2 Image Classification for Land Cover and Land Use Mapping https://arxiv.org/abs/1508.00092