HW10 第 16 题混沌与分形

王启骅 PB20020580

2022年11月27日

1 题目

 $x_{n+1} = \lambda \sin(\pi x_n)$ 为迭代方程进行迭代:

- (1) 画出系统状态随参数 λ 的变化图,要求在图中体现出定值状态、倍周期分叉和混沌状态;
- (2) 列出各个倍周期分叉处的 λ 值, 求相应的 Feigenbaum 常数。

2 算法原理

根据方程 $x_{n+1} = \lambda \sin(\pi x_n)$ 进行迭代,这里为了保证精度与程序运行速度,迭代 5000 次后认为已经达到稳定值,之后输出 100 个迭代结果值作为稳定解。之后将迭代结果数组输出到 txt 文件,用 python 文件 pic_chaos.py 读取进行绘图。

3 结果

图 1: $\lambda \in [-10, 10]$ 迭代结果

首先为了观察迭代结果的整体趋势, 首先选取 $\lambda \in [-10,10]$, 以 $\Delta = 0.01$ 作为 λ 每次变化的步长。得到如图1

接下来进一步采取更小的区间,首先是 $\lambda \in [0,2], \Delta = 0.0001$ 下进一步细化的结果如图2

图 2: $\lambda \in [0,2]$ 迭代结果

接下来是 $\lambda \in [-2\ 0], \Delta = 0.0001$ 下进一步细化的结果如图3

图 3: $\lambda \in [-2\ 0]$ 迭代结果

从图中的结果可以明显的看到有在 $\lambda \in [0.6, 0.9]$ 的范围内,有分形出现,将图片各个区域放大后可以看到明显的自

相似性,当 λ 进一步增大时,出现混沌,并且会偶尔出现周期窗口。同样对于 $\lambda < 0$ 的区域,也有分形的出现,但是由于 λ 时负值,导致分形具有一定的不规律性,可以由图看出存在分形数减少的曲线断开的情况。

3.1 Feigenbaum 常数的计算

根据方程

$$\delta = \frac{\lambda_m - \lambda_{m-1}}{\lambda_{m+1} - \lambda_m} = 4.669201 \tag{1}$$

$$\alpha = \frac{d_m}{d_{m+1}} = 2.502908 \tag{2}$$

在计算 δ 时根据 ϵ 作为判据,当发现 λ 对应的迭代结果数列中两个数的差的绝对值大于 ϵ 时,认为两个数已经偏离,产生新的分形,从而记录新的分叉的 λ 值。

然后计算 α 值,这里采用 x=0.5 作为水平线,取该直线与每一个分形线的交点 (根据盘踞 ϵ 判断交点位置),并取该交点与竖直方向同一 λ 值对应的最接近的点作为同一主枝下的分支,计算得到距离 d_i ,然后求得每一次分形的 α 。

δ 的计算结果输出为如下表格1

表 1: δ 值计算结果

分叉	λ	$\delta = \frac{\lambda_m - \lambda_{m-1}}{\lambda_{m+1} - \lambda_m}$
1->2	0.7194825	4 400=50=
2->4 $4->8$	0.8330773 0.8585427	$4.4607507 \\ 4.6137150$
8->16	0.8640622	4.6366767
16 -> 32 32 -> 64	0.8652526 0.8655098	4.6283048

计算 α 值如表2

表 2: α 值计算结果

分叉	λ	$\alpha = \frac{d_m}{d_{m+1}}$
2	0.2777321	2.5907248
4	0.1072025	2.5214412
8	0.0425163	2.5066954
16	0.0169611	2.5040370
32	0.0067735	2.5041799
64	0.0027049	

对比标准结果可见较为接近,存在的误差可能是由于 λ 取值离散,且离散点下需要通过一定的有限标准 ϵ 来判断相交情况,导致本身 λ 变化较小的情况下,所要求的较高的精确度,产生的误差。

4 结论

本次实验计算得到了分形混沌的图样,模拟验证了分形的自相似性,并寻找了分形处的 λ 值,计算了 Feigenbaum 常数与标准值进行了对比。