Problem 1: Compute Volume

Find the volume of the following regions:

 $\begin{array}{rcl}
SSS & 1. & \text{all} & = & SS & h(x,y) \cdot \text{al} A \cdot \\
P & & DR & projection & \text{sr} R \\
x + y + z = 0; & \text{onto.} & xy-place
\end{array}$ The region bounded by $z = x^2 + y^2$ and z = 4;

R

The region bounded by $x^2 + y^2 = 1$ and z = 0, x + y + z = 0;

- 3. The region in the first octant bounded by $x^2 + y^2 + z^2 = 1$.

 4. The region bounded by $x^2 + y^2 + z^2 = 2$ and z = 1.
- 5. The region bounded by $2x^2 + 2y^2 + z^2 = 3$ and $z = x^2 + y^2$.

Problem 2: Compute the Area

- 1. The region bounded by $r = 1 2\sin\theta$.
- 2. The region bounded by $(x-1)^2 + y^2 = 1$ in the first quadrant.

1. $\Rightarrow o \in \theta \in \frac{\pi}{b}$ $\int_{0}^{\pi} \int_{0}^{1-2sh0} r \cdot drd\theta + \int_{5}^{2\pi} \int_{0}^{1-2sh0} r \cdot drd\theta$

projection to my-plane is x2+y2 = 4. $\int_{0}^{2\pi} \int_{0}^{2} \int_{r^{2}}^{\tau} r \cdot dz \, dr \, d\theta.$ $\int_{0}^{\infty} h(x,y) dA = \iint_{0}^{\infty} \frac{4 - (x^{2} + y^{2})}{4 - (x^{2} + y^{2})} dA$ $= \int_{0}^{\infty} \int_{0}^{\infty} \frac{x^{2} + y^{2}}{4 - (x^{2} + y^{2})} dx dy$ $= \int_{0}^{\infty} \int_{0}^{\infty} \frac{4 - (x^{2} + y^{2})}{4 - (x^{2} + y^{2})} dx dy$ $= \int_{0}^{\infty} \int_{0}^{\infty} (4 - x^{2}) dx dx$ $= \int_{0}^{\infty} \int_{0}^{\infty} (4 - x^{2}) dx dx$ $= \int_{0}^{\infty} \int_{0}^{\infty} (4 - x^{2}) dx dx$ 2. J² J² J ρ²sinφ. df dφ dO 3. $\frac{si\phi}{\cos\phi}d\phi = \frac{-d\cos\phi}{\cos\phi}$

4.
$$\frac{\sin \phi}{\cos^{2}\phi} d\phi = \frac{-d\cos\phi}{\cos^{2}\phi}$$

$$\frac{\cos^{2}\phi}{\cos^{2}\phi} d\phi = \frac{-d\cos\phi}{\cos^{2}\phi}$$

?.659=1

5.
$$2x^{2}+2y^{2}+2^{2}=3$$
 ellipsoid.
 $z=x^{2}+y^{2}$ = paraboloid.

$$2x^{2} + 2y^{2} + (x^{2} + y^{2})^{2} = 3$$

$$2x^{2} + 2y^{2} + (x^{2} + y^{2})^{2} = 3$$

$$t^{2} + 2t - 3 = 0$$

 $(t-1)(t+3) = 0$
 $t=x^{2}+y^{2}=1$

Use cylinder coordinates: $\int_{2\pi}^{2\pi} \int_{3-2\gamma^2}^{1} r \cdot dz dr dt dt$

Problem 3: Center of Mass

For the following region D, determine the center of mass.

- 1. Problem 1. 5, with density function $\mu(x, y, z) = (x^2 + y^2)^{1/2}$.
- 2. Problem 1. 3, with density function $\mu(x, y, z) = x$.
- 3. Compute the moment of inertia for Problem 1.5 with respect to z-axis.

$$m = \int_{0}^{2\pi} \int_{0}^{\sqrt{3-2\gamma^{2}}} \mu \quad r \cdot dedrd\theta$$

$$= \int_{0}^{2\pi} \int_{0}^{1} \int_{0}^{\sqrt{3-2\gamma^{2}}} r^{2} \cdot dedrd\theta$$

$$= \int_{0}^{2\pi} \int_{0}^{1} \left(r^{2} \cdot \sqrt{3-2\gamma^{2}} - r^{4} \cdot\right) dr d\theta$$

$$= 2\pi \cdot \left[\int_{0}^{1} \left(r^{2} \cdot \sqrt{3-2\gamma^{2}} - r^{4} \cdot\right) dr d\theta$$

$$= 2\pi \cdot \left[\int_{0}^{1} \left(r^{2} \cdot \sqrt{3-2\gamma^{2}} - r^{4} \cdot\right) dr d\theta$$

$$= 2\pi \cdot \left[\int_{0}^{1} \left(r^{2} \cdot \sqrt{3-2\gamma^{2}} - r^{4} \cdot\right) dr d\theta$$

$$= 2\pi \cdot \left[\int_{0}^{1} \left(r^{2} \cdot \sqrt{3-2\gamma^{2}} - r^{4} \cdot\right) dr d\theta$$

$$= 2\pi \cdot \left[\int_{0}^{1} \left(r^{2} \cdot \sqrt{3-2\gamma^{2}} - r^{4} \cdot\right) d\theta$$

$$= 2\pi \cdot \left[\int_{0}^{1} \left(r^{2} \cdot \sqrt{3-2\gamma^{2}} - r^{4} \cdot\right) d\theta$$

$$= 2\pi \cdot \left[\int_{0}^{1} \left(r^{2} \cdot \sqrt{3-2\gamma^{2}} - r^{4} \cdot\right) d\theta$$

$$= 2\pi \cdot \left[\int_{0}^{1} \left(r^{2} \cdot \sqrt{3-2\gamma^{2}} - r^{4} \cdot\right) d\theta$$

$$= 2\pi \cdot \left[\int_{0}^{1} \left(r^{2} \cdot \sqrt{3-2\gamma^{2}} - r^{4} \cdot\right) d\theta$$

$$= 2\pi \cdot \left[\int_{0}^{1} \left(r^{2} \cdot \sqrt{3-2\gamma^{2}} - r^{4} \cdot\right) d\theta$$

$$= 2\pi \cdot \left[\int_{0}^{1} \left(r^{2} \cdot \sqrt{3-2\gamma^{2}} - r^{4} \cdot\right) d\theta$$

$$= 2\pi \cdot \left[\int_{0}^{1} \left(r^{2} \cdot \sqrt{3-2\gamma^{2}} - r^{4} \cdot\right) d\theta$$

$$= 2\pi \cdot \left[\int_{0}^{1} \left(r^{2} \cdot \sqrt{3-2\gamma^{2}} - r^{4} \cdot\right) d\theta$$

$$= 2\pi \cdot \left[\int_{0}^{1} \left(r^{2} \cdot \sqrt{3-2\gamma^{2}} - r^{4} \cdot\right) d\theta$$

$$= 2\pi \cdot \left[\int_{0}^{1} \left(r^{2} \cdot \sqrt{3-2\gamma^{2}} - r^{4} \cdot\right) d\theta$$

$$= 2\pi \cdot \left[\int_{0}^{1} \left(r^{2} \cdot \sqrt{3-2\gamma^{2}} - r^{4} \cdot\right) d\theta$$

$$= 2\pi \cdot \left[\int_{0}^{1} \left(r^{2} \cdot \sqrt{3-2\gamma^{2}} - r^{4} \cdot\right) d\theta$$

$$= 2\pi \cdot \left[\int_{0}^{1} \left(r^{2} \cdot \sqrt{3-2\gamma^{2}} - r^{4} \cdot\right) d\theta$$

$$= 2\pi \cdot \left[\int_{0}^{1} \left(r^{2} \cdot \sqrt{3-2\gamma^{2}} - r^{4} \cdot\right) d\theta$$

$$= 2\pi \cdot \left[\int_{0}^{1} \left(r^{2} \cdot \sqrt{3-2\gamma^{2}} - r^{4} \cdot\right) d\theta$$

$$= 2\pi \cdot \left[\int_{0}^{1} \left(r^{2} \cdot \sqrt{3-2\gamma^{2}} - r^{4} \cdot\right) d\theta$$

$$= 2\pi \cdot \left[\int_{0}^{1} \left(r^{2} \cdot \sqrt{3-2\gamma^{2}} - r^{4} \cdot\right) d\theta$$

$$= 2\pi \cdot \left[\int_{0}^{1} \left(r^{2} \cdot \sqrt{3-2\gamma^{2}} - r^{4} \cdot\right) d\theta$$

$$= 2\pi \cdot \left[\int_{0}^{1} \left(r^{2} \cdot \sqrt{3-2\gamma^{2}} - r^{4} \cdot\right) d\theta$$

$$= 2\pi \cdot \left[\int_{0}^{1} \left(r^{2} \cdot \sqrt{3-2\gamma^{2}} - r^{4} \cdot\right) d\theta$$

$$= 2\pi \cdot \left[\int_{0}^{1} \left(r^{2} \cdot \sqrt{3-2\gamma^{2}} - r^{4} \cdot\right) d\theta$$

$$= 2\pi \cdot \left[\int_{0}^{1} \left(r^{2} \cdot \sqrt{3-2\gamma^{2}} - r^{4} \cdot\right) d\theta$$

$$= 2\pi \cdot \left[\int_{0}^{1} \left(r^{2} \cdot \sqrt{3-2\gamma^{2}} - r^{4} \cdot\right) d\theta$$

$$= 2\pi \cdot \left[\int_{0}^{1} \left(r^{2} \cdot \sqrt{3-2\gamma^{2}} - r^{4} \cdot\right) d\theta$$

$$= 2\pi \cdot \left[\int_{0}^{1} \left(r^{2} \cdot \sqrt{3-2\gamma^{2}} - r^{4} \cdot\right) d\theta$$

$$= 2\pi \cdot \left[\int_{0}^{1} \left(r^{2} \cdot \sqrt{3-2\gamma^{2}} - r^{4} \cdot\right) d\theta$$

$$= 2\pi \cdot \left[\int_{0}^{1} \left(r^{2} \cdot \sqrt{3-2\gamma^{2}} - r^{4} \cdot\right) d\theta$$