Lecture 15: Bagging, Random Forests

Reading: Sections 9.2, 15.2, 15.3

GU4241/GR5241 Statistical Machine Learning

Linxi Liu Mar 23, 2018

Ensembles

A randomly chosen hyperplane classifier has an expected error of 0.5 (i.e. 50%).

Ensembles

A randomly chosen hyperplane classifier has an expected error of 0.5 (i.e. 50%).

Ensembles

A *randomly* chosen hyperplane classifier has an *expected* error of 0.5 (i.e. 50%).

- Many random hyperplanes combined by majority vote: Still 0.5.
- A single classifier slightly better than random: $0.5 + \varepsilon$.
- ▶ What if we use *m* such classifiers and take a majority vote?

Voting

Decision by majority vote

- ightharpoonup m individuals (or classifiers) take a vote. m is an odd number.
- ▶ They decide between two choices; one is correct, one is wrong.
- After everyone has voted, a decision is made by simple majority.

Note: For two-class classifiers f_1, \ldots, f_m (with output ± 1):

majority vote
$$= \operatorname{sgn}\left(\sum_{j=1}^{m} f_j\right)$$

Assumptions

Before we discuss ensembles, we try to convince ourselves that voting can be beneficial. We make some simplifying assumptions:

- ▶ Each individual makes the right choice with probability $p \in [0,1]$.
- ► The votes are *independent*, i.e. stochastically independent when regarded as random outcomes.

Does the Majority Make the Right Choice?

Condorcet's rule

If the individual votes are independent, the answer is

$$\Pr\{ \text{ majority makes correct decision } \} = \sum_{j=\frac{m+1}{2}}^m \frac{m!}{j!(m-j)!} p^j (1-p)^{m-j}$$

This formula is known as Condorcet's jury theorem.

Probability as function of the number of votes

Ensemble Methods

Terminology

- ► An **ensemble method** makes a prediction by combining the predictions of many classifiers into a single vote.
- ► The individual classifiers are usually required to perform only slightly better than random. For two classes, this means slightly more than 50% of the data are classified correctly. Such a classifier is called a weak learner

Strategy

- ► We have seen above that if the weak learners are random and independent, the prediction accuracy of the majority vote will increase with the number of weak learners.

 因为数据集的是一样的,所以每一个weak learner之间都不可避免的存在比较大的相关性
- ► Since the weak learners all have to be trained on the training data, producing random, independent weak learners is difficult.
- ▶ Different ensemble methods (e.g. Boosting, Bagging, etc) use different strategies to train and combine weak learners that behave relatively independently.

Methods We Will Discuss

Boosting

- ► After training each weak learner, data is modified using weights.
- Deterministic algorithm.

Bagging

Each weak learner is trained on a random subset of the data.

Random forests

- Bagging with decision trees as weak learners.
- ▶ Uses an additional step to remove dimensions in \mathbb{R}^d that carry little information.

Bagging = Bootstrap Aggregation

- Replicate the dataset by sampling with replacement.
- ▶ We apply a learning method to each bootstrap replicate, to produce predictions $\hat{f}^{(1)}, \dots, \hat{f}^{(B)}$.
- ▶ In Chapter 5, we were interested in the variability of these predictions:

$$SE(\hat{f}(x)) \approx SD(\hat{f}^{(1)}(x), \dots, \hat{f}^{(B)}(x)).$$

Now, we will use the average of these predictions as an estimator with reduced variance:

$$\hat{f}^{\mathsf{bag}}(x) = \frac{1}{B} \sum_{b=1}^{B} \hat{f}^{(b)}(x)$$

Bagging decision trees

- Replicate the dataset by sampling with replacement.
- ► Fit a decision tree to each bootstrap replicate (growing the tree, and pruning).
- ▶ Regression: To make a prediction for an input point x, average the predictions of all the trees:

$$\hat{f}^{\mathsf{bag}}(x) = \frac{1}{B} \sum_{b=1}^{B} \hat{f}^{(b)}(x)$$

▶ Classification: To make a prediction for an input point x_0 , take the majority vote from the set of predictions:

$$\hat{y}_0^{(1)}, \dots, \hat{y}_0^{(B)}.$$

Example: Bagging decision trees

- ► Two classes, each with Gaussian distribution in \mathbb{R}^5 .
- Note the variance between bootstrapped trees.

Bagging decision trees

- ▶ **Disadvantage:** Every time we fit a decision tree to a Bootstrap sample, we get a different tree T^b .
 - \rightarrow Loss of interpretability

variable importance

- For each predictor, add up the total amount by which the RSS (or Gini index) decreases every time we use the predictor in T^b .
- Average this total over each Boostrap estimate T^1, \ldots, T^B .

How Often Do We See Each Sample in Bootstrap?

Sample $\{\mathbf{x}_1, \dots, \mathbf{x}_n\}$, bootstrap resamples $\mathcal{B}_1, \dots, \mathcal{B}_B$.

In how many sets does a given x_i occur?

Probability for \mathbf{x}_i not to occur in n draws:

$$\Pr\{\mathbf{x}_i \notin \mathcal{B}_b\} = (1 - \frac{1}{n})^n$$

For large n:

$$\lim_{n \to \infty} \left(1 - \frac{1}{n} \right)^n = \frac{1}{e} \approx 0.3679$$

- Asymptotically, any \mathbf{x}_i will appear in $\sim 63\%$ of the bootstrap resamples.
- Multiple occurrences possible.

How often is x_i expected to occur?

The *expected* number of occurrences of each \mathbf{x}_i is B.

Out-of-bag (OOB) error

- ➤ To estimate the test error of a bagging estimate, we could use cross-validation.
- ► Each time we draw a Bootstrap sample, we only use 63% of the observations.
- ▶ Idea: use the rest of the observations as a test set.
- OOB error:
 - For each sample x_i , find the prediction \hat{y}_i^b for all bootstrap samples b which do not contain x_i . There should be around 0.37B of them. Average these predictions to obtain \hat{y}_i^{oob} .
 - Compute the error $(y_i \hat{y}_i^{\text{oob}})^2$.
 - Average the errors over all observations i = 1, ..., n.
- ▶ For B large, OOB error is virtually equivalent to LOOCV.

Out-of-bag (OOB) error

The test error decreases as we increase ${\cal B}$ (dashed line is the error for a plain decision tree).

Random Forests

Bagging has a problem:

ightarrow The trees produced by different Bootstrap samples can be very similar.

Random Forests:

- ► We fit a decision tree to different Bootstrap samples.
- When growing the tree, we select a random sample of m < p predictors to consider in each step.
- ► This will lead to very different (or "uncorrelated") trees from each sample.
- Finally, average the prediction of each tree.

Random Forests vs. Bagging

Random Forests, choosing m

The optimal m is usually around \sqrt{p} , but this can be used as a tuning parameter.