Tutorial # 🗪 05

Transistor Biasing:

- 1. For the given circuit in Fig.1,
 - a) Draw the load line,
 - b) Calculate $I_{C(sat.)}$,
 - c) Calculate $V_{\text{CE(cutoff)}}$,
 - d) What happens to the load line if (i) V_{cc} enhanced to 25V, (ii) R_{C} increased to 4.7k Ω and (iii) R_{B} reduced to 500 k Ω . In each of these cases, other parameters of the circuit remain the same.
 - e) For $\beta_{DC} = 200$, determine V_C .
 - f) If β_{DC} varies between 25 to 300 then determine $V_{C(max)}$ and $V_{C(min)}$.
 - g) Determine whether the transistor is saturated for each of these changes: (*i*) R_B =33 k Ω , β_{DC} = 100. (*ii*) V_{BB} =5V, β_{DC} = 200, (*iii*) R_C =10 k Ω , β_{DC} = 50 and (*iv*) V_{CC} =10V, β_{DC} = 100.

- 2. For the given circuit in Fig.2,
 - a) Determine V_C and V_E .
 - b) If $R_E = 3.6 \text{ k}\Omega$ then determine V_{CE} .
 - c) If $V_{CC} = 15$ V then determine V_C .
 - d) If the bae supply voltage $V_{\rm BB}$ decreases by 10%, what happens to the base current, collector current, and collector voltage?
- 3. For a given voltage-divider bias circuit in Fig.3
 - a) Is the voltage divider stiff?
 - b) Determine the operating point Q on the load line.
 - c) What will happen to this Q-point when β_{DC} varies between 50-300?
 - d) What will happen to this Q-point when R_E is doubled?
- 4. For the circuit shown in Fig.3, determine the resistor values (i.e., R_1 , R_2 , R_E and R_C) to meet these specifications: $V_{CC} = 10V$; V_{CE} @ midpoint, $I_C = 10$ mA and $\beta_{DC} = 100$ -300.
- 5. Analyse the circuit in Fig.4 to locate the Q-point on the load-line.

- 6. Analyse the given emitter-feedback circuit in Fig.5. How does the operating point change when β_{DC} varies from 100 to 300?
- 7. Analyse the given collector-feedback circuit in Fig.6. How does the operating point change when β_{DC} varies from 100 to 300? Compare the results of Ques 5 and 6 and suggest which circuit gives better stability of Q-point?
- 8. Analyse the circuit in Fig.7 and locate the Q-point on the load-line.

