RWorksheet_montealto#4a

Pierre Vincent S. Montealto Jr.

2024-10-14

1. The table below shows the data about shoe size and height. Create a data frame.

		aı a :		a 1
##		ShoeSize	_	
##	1	6.50	66.0	F
##	2	9.00	68.0	F
##	3	8.50	64.5	F
##	4	8.50	65.0	F
##	5	10.50	70.0	M
##	6	7.00	64.0	F
##	7	9.50	70.0	F
##	8	9.00	71.0	F
##	9	13.00	72.0	M
##	10	7.50	64.0	F
##	11	10.50	74.5	M
##	12	8.50	67.0	F
##	13	12.00	71.0	M
##	14	10.50	71.0	M
##	15	13.00	77.0	M
##	16	11.15	72.0	M
##	17	8.50	59.0	F
##	18	5.00	62.0	F
##	19	10.00	72.0	M
##	20	6.50	66.0	F
##	21	7.50	64.0	F
##	22	8.50	67.0	M
##	23	10.50	73.0	M
##	24	8.50	69.0	F
##	25	10.50	72.0	M
##	26	11.00	70.0	M
##	27	9.00	69.0	М
##	28	13.00	70.0	М

- a. Describe the data.
- -It includes shoe size, height, and gender.
 - b. Create a subset by males and females with their corresponding shoe size and height. What its result? Show the R scripts.

```
MaleSubset <- subset(ShoeHeightdf, Gender == "M")</pre>
FemaleSubset <- subset(ShoeHeightdf, Gender == "F")
MaleSubset
##
      ShoeSize Height Gender
## 5
          10.50
                  70.0
                   72.0
## 9
          13.00
                              Μ
## 11
          10.50
                   74.5
                              М
## 13
          12.00
                   71.0
                              М
  14
          10.50
                   71.0
##
                              М
          13.00
                   77.0
##
  15
                              Μ
## 16
          11.15
                   72.0
                              М
## 19
          10.00
                   72.0
                              М
## 22
           8.50
                   67.0
                              Μ
## 23
          10.50
                   73.0
                              М
## 25
          10.50
                   72.0
                              М
## 26
          11.00
                   70.0
                              Μ
## 27
           9.00
                   69.0
                              М
## 28
          13.00
                   70.0
                              М
FemaleSubset
```

```
##
      ShoeSize Height Gender
## 1
            6.5
                   66.0
## 2
                               F
            9.0
                   68.0
## 3
            8.5
                   64.5
                               F
## 4
            8.5
                   65.0
                               F
## 6
            7.0
                               F
                   64.0
## 7
                               F
            9.5
                   70.0
## 8
            9.0
                   71.0
                               F
## 10
            7.5
                   64.0
                               F
## 12
            8.5
                   67.0
                               F
                               F
## 17
            8.5
                   59.0
                               F
## 18
            5.0
                   62.0
                               F
            6.5
## 20
                   66.0
                               F
## 21
            7.5
                   64.0
                               F
## 24
            8.5
                   69.0
```

c. Find the mean of shoe size and height of the respondents. Write the R scripts and its result.

```
meanShoeSize <- mean(ShoeHeightdf$ShoeSize)
meanHeight <- mean(ShoeHeightdf$Height)
print(paste("Mean Shoe Size:", meanShoeSize))</pre>
```

```
## [1] "Mean Shoe Size: 9.39821428571429"
print(paste("Mean Height:", meanHeight))
```

```
## [1] "Mean Height: 68.5714285714286"
```

d.Is there a relationship between shoe size and height? Why?

- -Yes, there is a strong positive relationship between shoe size and height, with a correlation coefficient of approximately 0.82, indicating that taller individuals tend to have larger shoe sizes.
 - 2. Construct character vector months to a factor with factor() and assign the result to factor_months_vector. Print out factor_months_vector and assert that R prints out the factor levels below the actual values.

```
vect_months <- c("March", "April", "January", "November", "January", "September", "October", "September</pre>
factor_months_vector <- factor(vect_months)</pre>
factor_months_vector
    [1] March
                               January
                                          November
                                                                September October
                    April
                                                     January
##
    [8] September November
                               August
                                          January
                                                     November
                                                                November
                                                                           February
## [15] May
                    August
                               July
                                          December
                                                     August
                                                                August
                                                                           September
## [22] November February
                               April
## 11 Levels: April August December February January July March May ... September
  3. Then check the summary() of the months vector and factor months vector. | Inter- pret the results
     of both vectors. Are they both equally useful in this case?
SummaryM <- summary(vect_months)</pre>
SummaryF <- summary(factor_months_vector)</pre>
SummaryM
##
                               Mode
      Length
                  Class
##
           24 character character
SummaryF
       April
##
                          December
                                     February
                                                                July
                                                                          March
                 August
                                                  January
                                                                                       May
##
            2
                                             2
                                                        3
                                                                   1
                                                                              1
                                                                                         1
##
    November
                October September
##
            5
  4. Create a vector and factor for the table below.
Direction <- c("East", "West", "North")</pre>
Frequency \leftarrow c(1, 4, 3)
directiondf <- data.frame(Direction, Frequency)</pre>
direction_order <- factor(Direction, levels = c("East", "West", "North"))</pre>
directiondf
##
     Direction Frequency
## 1
           East
                         1
## 2
                         4
           West
                         3
## 3
          North
direction order
## [1] East West North
## Levels: East West North
  5. Enter the data below in Excel with file name = import_march.csv
  a. Import the excel file into the Environment Pane using read.table() function. Write the code.
TableReader <- read.table("import_march.csv", header=TRUE, sep=",")</pre>
TableReader
     Students Strategy.1 Strategy.2 Strategy.3 X X.1
##
## 1
          Male
                                    10
                                                 8 NA
                                                        NA
                         8
## 2
                         4
                                     8
                                                 6 NA NA
## 3
                         0
                                     6
                                                 4 NA NA
## 4
                        14
                                     4
                                                15 NA
       Female
                                                        NA
                                     2
## 5
                        10
                                                12 NA NA
## 6
                         6
                                     0
                                                 9 NA NA
```

b. View the dataset. Write the R scripts and its result.

print(TableReader)

##		Students	Strategy.1	Strategy.2	Strategy.3	Х	X.1
##	1	Male	8	10	8	NA	NA
##	2		4	8	6	NA	NA
##	3		0	6	4	NA	NA
##	4	Female	14	4	15	NA	NA
##	5		10	2	12	NA	NA
##	6		6	0	9	NA	NA