MINISTERUL EDUCAȚIEI ȘI CERCETĂRII AL REPUBLICII MOLDOVA

AGENŢIA NAŢIONALĂ PENTRU CURRICULUM ŞI EVALUARE

Localitatea	
Instituția de învățământ	_
Numele, prenumele elevului	

CHIMIA

PRETESTARE CICLUL LICEAL

Profil real 05 aprilie 2023 Timp alocat: 180 de minute

Rechizite și materiale permise: pix cu cerneală albastră.

Instrucțiuni pentru candidat:

- Citește cu atenție fiecare item și efectuează operațiile solicitate.
- Lucrează independent.

Îţi dorim mult succes!

Punctaj acumulat _____

Nr.		Itemii	Pur	ctaj						
1	Încercuiește l	itera A , dacă afirmația este adevărată și litera F , dacă afirmația este falsă.								
		nărul de neutroni în nucleul atomului elementului chimic situat în perioada a a, grupa a V-a, subgrupa secundară este egal cu 23.	1 L 0	1 L 0						
	2) A F Ato	mul de kripton și ionul de brom conțin același număr de electroni.	2	2						
		dul elementului chimic cu configurația electronică 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² posedă prietăți bazice mai pronunțate decât oxidul elementului cu numărul atomic 38.	3 4 5	3 4 5						
		oluția hidroxidului elementului care conține în nucleu 15 protoni, turnesolul olorează în albastru.								
		nărul de molecule ce se conțin în 11,2 <i>l</i> de azot (c.n.) este mai mic decât mărul de atomi în 12 g de carbon.								
2	termenul înc microelement Completează	ste un soi autohton de struguri de masă, rezistent la îngheț, remarcat prin delungat de păstrare, calitățile gustative și conținutul de macro și se esențiale. enunțurile propuse pentru elementele chimice care se conțin în cantități rugurii "Moldova".	L 0 1 2	L 0 1 2						
	Elementul chimic	Caracteristici	3 4 5	3 4						
	Cobalt	a) configurația electronică a atomului	6	5						
	Cobaii	b) tipul rețelei cristaline în substanța simplă	7 8	7 8						
		a) tipul legăturii chimice în substanța simplă								
	Iod	b) configurația electronică a atomului unui element chimic cu proprietățile de oxidant mai pronunțate								
	C1£	a) formula chimică a unui compus în care legătura chimică se formează la interpătrunderea norilor electronilor de tip <i>p-p</i>								
	Sulf	b) un domeniu concret de utilizare								
	D.	a) tipul legăturii chimice în compusul cu azotul								
1	Potasiu	b) configurația electronică a ionului								
3	sistemelor de	diu este un component al aditivilor anticorozivi recomandați pentru protejarea e răcire a motoarelor cu ardere internă împotriva coroziunii și depunerilor cest compus poate fi identificat conform următoarei scheme de reacție:	L 0	L 0						
	NaNO ₂	$+ K_2CrO_4 + H_2SO_4 \rightarrow Cr_2(SO_4)_3 + NaNO_3 + K_2SO_4 + H_2O$	2 3	2						
	reducătorul,	ntru acest proces: gradele de oxidare ale tuturor elementelor, oxidantul și procesele de oxidare și de reducere; determină coeficienții prin metoda etronic și egalează ecuația reacției.	4 5 6 7	4 5 6 7						

acest compus este utilizat în calitate de comp de monitorizare a mediului.	at al proceselor biochimice naturale, de aceea ponent al gazelor de calibrare pentru sistemele selectează din coloana A sistemul reactant ațiul rezervat.	L 0 1 2	1 2
A	В	3	3
1) $CH_{4(g)} + 2H_2S_{(g)} \neq CS_{2(g)} + 4H_{2(g)} - Q$	a) prezintă un sistem reactant eterogen	4	4
2) $2H_2S_{(g)} + SO_{2(g)} \neq 3S_{(s)} + 2H_2O_{g)} + Q$	b) mărirea presiunii nu influențează echilibrul chimic		
3) $H_{2(g)} + SO_{2(g)} \neq H_2S_{(g)} + O_{2(g)} + Q$	c) micșorarea temperaturii deplasează echilibrul chimic la stânga		
	d) eliminarea sulfurii de hidrogen mărește randamentul reacției directe		
tonusul muscular și capacitatea de regenerare 400 ml (c.n.) de oxid de carbon (IV) prin inje Rezolvă problema. Precipitatul, obținut la ir 300 g de soluție de sulfat de magneziu cu p reacției de descompunere. a) Calculează volumul (c.n.) oxidului de carbo	nteracțiunea excesului de carbonat de sodiu cu partea de masă a MgSO ₄ de 12%, a fost supus on (IV) obținut în urma acestor reacții. de carbon (IV) obținut va fi suficient pentru	L 0 1 2 3 4 5 6 7 8 9 10 11 12	L 0 1 2 3 4 5 6 7 8 9 10 11 12
Răspuns: a) ; b			

6	Acumulatoarele alcaline pe bază de hidroxid de potasiu depășesc esențial bateriile tradiționale de zinc-carbon prin conductivitatea ionică și durata de depozitare.	L	L
	 I. Scrie ecuațiile reacțiilor de obținere a hidroxidului de potasiu conform tipului de reacție propus. a) reacție de combinare 	0 1 2 3	0 1 2 3
	b) reacție de substituție	5	5
	c) reacție de schimb	6 7 8	6 7 8
	II. Scrie ecuația reacției de interacțiune a hidroxidului de potasiu cu un oxid.		
7	Notează în spațiile libere din coloana I formulele de structură semidesfășurate ale substanțelor organice corespunzătoare, iar in coloana II completează enunțurile ce corespund acestor substanțe.	L 0	L 0
	I II	$\frac{1}{2}$	$\frac{1}{2}$
	1) Substanța aparține seriei aparține seriei 1) O proprietate fizică a acesteia: omoloage cu formula generală C _n H _{2n-6}	3 4 5	3 4 5
	2) Substanţa este 2) Denumirea unui omolog un compus carbonilic	6 7	6 7
	3) Substanța este 3) Această substanță poate fi utilizată în calitate de antigel identificată cu	8	8
	4) Substanța se conține 4) Această substanță se obține din în secreția furnicilor.		
8	I. Completează spațiile libere din tabel:		
	Formula de structură Denumirea substanței conform semidesfășurată a substanței nomenclaturii sistematice	1 L 0 1	1 L 0
	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	3 4	3 4
	2,3- dimetilbuta-1,3-dienă	5 6	5 6
	II. Încercuiește litera A, dacă afirmația este adevărată și litera F, dacă afirmația este falsă.		
	a) A F Substanța numărul <i>1</i> este un omolog al acidului pentanoic.		
	b) A F Substanța numărul 2 este un izomer al hex-1-inei.		
	c) A F Substanța numărul <i>I</i> participă la reacția de policondensare.		
	d) A F Substanța numărul 2 conține același număr de atomi de hidrogen ca și fructoza.		

Scrie ecuațiile reacțindicate de compuș propus. Pentru subst	e: but-2-enă, fenol, ciclohexan, etanal, metiletanoat, glicerol. giilor respectând condiția ca în fiecare caz reagentul să aparțină clasei i organici, iar produsul de reacție să fie una din substanțele din șirul tanțele organice utilizează formulele de structură semidesfășurate.		L 0 1 2 3 4 5 6
c) din arenă		7 8	7 8
derivat Diacetilul se forme caramelizată, sesiza concentrația diacetil	ează în procesul de fermentare a berii, conferindu-i o aromă ușor ată plăcut doar în "berea vie". Pe parcursul maturării produsului lului crește, de aceea înainte de îmbuteliere berea se ține la cald pentru de diacetil până la o valoare optimă de 0,1 mg/l.	L	L 0 1 2
compus cu masa de Densitatea vaporilor b) Argumentează pr diacetil este gata per		3 4 5	3 4 5 6 7 8
Se dă:	Rezolvare:	9 10 11 12 13	9 10 11 12 13

11 Removerele alcaline funcționează pe baza unui mecanism de extracție chi	mică a	
pigmenților din piele. Preparatele cu un pH = 10 se recomandă pentru îndep		L
machiajului permanent, iar pentru îndepărtarea tatuajelor corporale sunt necesare re		0
mai alcaline.		1
Rezolvă problema. Pentru prepararea unei soluții cu volumul de 4 <i>l</i> s-au utilizat 11	2 ml de 2	2
soluție de hidroxid de potasiu cu densitatea de 1 g/ml și cu partea de masă a KOH d		3
a) Calculează pH-ul soluției preparate.	4	4
b) Argumentează dacă removerul cu aceeași valoare a pH-ului poate fi eficient pent		5
înlăturarea unui tatuaj corporal.		
Se dă: Rezolvare:	6	6
nezotvare.	7	7
	8	8
	9	9
		10
	<u>11</u>	11
12 Se propun soluțiile următoarelor substanțe:		
hidroxid de bariu, acetat de plumb (II), carbonat de sodiu,	L	L
clorură de amoniu, acid sulfuric.		0
	 	1
Utilizând <u>doar</u> soluțiile substanțelor din șirul dat, un elev/o elevă a realizat două		$\frac{1}{2}$
analitice cu un singur reactiv de identificare (din același șir), obținând semnale a	3	3
diferite.	 	
I. Completează spațiile libere din tabel conform cerințelor indicate.	4	4
Formula substanței Formula reactivului Semnalul analitic	5	5
identificate de identificare	6	6
	7	7
1)	8	8
	9	9
2)	10	10
	_	
II. Scrie, în corespundere cu datele din tabel, ecuația unei reacții de identificare în	n formă	
II. Scrie, în corespundere cu datele din tabel, ecuația unei reacții de identificare în moleculară, ionică completă și redusă.	n formă	
moleculară, ionică completă și redusă.		
	n formă (EM)	
moleculară, ionică completă și redusă.		

SISTEMUL PERIODIC AL ELEMENTELOR CHIMICE

	I II				III		IV		V		VI		VII			v	TIII			
1	1 H	Hidrogen 1,0079													2 He 4	Heliu ,0026				
	3	Litiu	4	Beriliu	5 Bor		6 Carbon		7	7 Azot		8 Oxigen		Fluor 10 Neon						
2	Li	6,941	Be	9,01218	В	10,81	C	12,011	N	14,0067	O	15,9994	F	18,9984	Ne	20,179				
	11	Sodiu		lagneziu	13	Aluminiu	14	Siliciu	15	Fosfor	16	Sulf	17	Clor	18	Argon				
3	Na	22,98977	Mg	24,305	Al	26,98154	Si	28,0855	P	30,97376	\mathbf{S}	32,06	Cl	35,453	Ar 3	39,948				
	19	Potasiu	20	Calciu	21	Scandiu	22	Titan	23	Vanadiu	24	Crom	25	Mangar	n 26	Fier	27	Cobalt	28	Nichel
١.,	K	39,0983	Ca	40,08	44,95	559 Sc	47,88	8 Ti	50,	9415 V	51,9	96 Cr	54,93	38 Mn	55,84	7 Fe	58,933	32 Co	58,69	Ni
4	29	Cupru	30	Zinc	31	Galiu	32	Germaniu	33	Arsen	34	Seleniu	35	Bron	1 36 K	ripton				
	6	3,546 Cu	65,38	Zn	Ga	69,72	Ge	72,59	As	S 74,9216	Se	78,96	Br	79,904	Kr	83,80				
	37	Rubidiu	38	Stronţiu	39	Ytriu	40	Zirconiu	41	Niobiu	42	Molibden	43	Tehneţiu			45	Rodiu	46	Paladiu
_	Rb	85,4678	Sr	87,62		88,9059 Y	91,2	2 Zr	92,	9064 Nb	95,9	4 Mo	[98]	Tc	101,07	7 Ru	102,905	55 Rh	106,4	2 Pd
5	47	Argint	48	Cadmiu	49	Indiu	50	Staniu	51	Stibiu	52	Telur	53	Iod	54 X	enon				
	107,8	68 Ag	112,41	Cd	In	114,82	Sn	118,69	St	121,75	Te	127,60	I	126,9045	Xe 1:	31,29				
	55	Ceziu	56	Bariu	57*	Lantan	72	Hafniu	73	Tantal	74	Volfram	75	Reniu		Osmiu	77	Iridiu	78	Platina
	Cs	132,9054	Ba	137,33	138,9	9055 La	178,4	49 Hf	180),948 Ta	183	3,85 W	186,	207 Re	190,2	Os	192,22	Ir	195,0	8 Pt
6	79	Aur	80	Mercur	81	Taliu	82	Plumb	83	Bismut	84	Poloniu	85	Astatiniu	86 R	adon				
	196,9	665 Au	200,59	Hg Hg	Tl	204,383	Pb	207,2	Bi	208,9804	Po	[209]	At	[210]	Rn	[222]				
	87		88		89**		104		105		106		107		108		109		110	
7	_	Franciu	_	Radiu	Acti		Ruth	erfordium		bnium	Sea	oorgium	Boh	rium 	Hassi		Meitne			tadtium
	Fr	[223]	Ra	Ra 226,0254		227,0278 Ac		Rf	[[262] Db	[263	S_{0}	[262]] Bh	[267,1	[267,13] Hs		4] Mt	[281] Ds
									*La	ntanide										
58 C		9 Pr	60 No		Pm	62 Sm	63		4 G			66 Dy	67	Но	68 Er	69	Tm			1 Lu
Ceriu		raseodim	Neodin			Samariu	Euro		dolin			Disprosiu		lmiu	Erbiu		ıliu	Yterbi		Lutețiu
140,12	: 1	40,9077	144,24	[145]	150,36	151	,90 I	57,25)4	162,50	164,	9304	167,26	168,	9342	173,04		174.967
									~~F	Actinide										

Cm

Curiu

[247]

Am 96

Americiu

[243]

97 **Bk**

Berkeliu

[247]

Cf

californiu

[251]

99

Es

Einsteiniu

[252]

98

100 **Fm**

Fermiu

[257]

101

[258]

102

Nobeliu

[255]

Md

Mendeleviu

103

Lawrenciu

[260]

Lr

 \mathbf{U}

93

Np

Neptuniu 237,0482 **Pu** 95

Plutoniu

[244]

92

Uraniu

238,0389

Th

Protactiniu

231,0359

Toriu

232,0381

	H ⁺	NH ₄ ⁺	Li ⁺	Na ⁺	K ⁺	Ba ²⁺	Ca ²⁺	Mg ²⁺	A1 ³⁺	Cr ³⁺	Zn ²⁺	Mn ²⁺	Fe ²⁺	Fe ³⁺	Pb ²⁺	Cu ²⁺	Ag ⁺
OH -		S↑	S	S	S	S	P	I	I	I	I	I	I	I	I	I	-
F -	S	S	P	S	S	P	I	I	P	I	S	S	I	I	I	S	S
C1 -	S	S	S	S	S	S	S	S	S	S	S	S	S	S	P	S	I
Br -	S	S	S	S	S	S	S	S	S	S	S	S	S	S	P	S	I
Ι-	S	S	S	S	S	S	S	S	S	S	S	S	S	-	I	-	I
S^{2-}	S↑	S	S	S	S	S	S	S	-	-	I	I	I	-	I	I	I
SO ₃ ² -	S↑	S	S	S	S	I	I	I	-	-	I	-	I	-	I	I	I
SO ₄ ²⁻	S	S	S	S	S	I	P	S	S	S	S	S	S	S	I	S	P
CO ₃ ²⁻	S↑	S	S	S	S	I	I	I	-	-	I	I	I	-	I	-	I
SiO ₃ ²⁻	I	-	S	S	S	I	I	I	-	-	I	I	I	-	I	-	-
NO ₃ -	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S
PO ₄ ³⁻	S	S	I	S	S	I	I	I	I	I	I	I	I	I	I	I	I
CH ₃ COO-	S	S	S	S	S	S	S	S	S	-	S	S	S	-	S	S	S

Notă: S – substanță solubilă, I – insolubilă, P – puțin solubilă; «-» substanța nu există sau se descompune în apă; \uparrow - substanța se degajă sub formă de gaz sau se descompune cu degajare de gaz

SERIA ELECTRONEGATIVITĂŢII

													-						
F	0	N	Cl	Br	I	S	C	Se	P	H	As	В	Si	Al	Mg	Ca	Li	Na	K
4,0	3,5	3,07	3,0	2,8	2,5	2,5	2,5	2,4	2,1	2,1	2,0	2,0	1,8	1,5	1,2	1,04	1,0	0,9	0,8

SERIA TENSIUNII METALELOR

Li K Ba Ca Na Mg Al Mn Zn Cr Fe Ni Sn Pb (H) Cu Hg Ag Pt Au