LINEAR REGRESSION

Review

WHAT WILL YOU LEARN/REVIEW

- Reviewing the basic idea behind linear regression
- Learning how to measure predictive quality with Mean Square Error (\(MSE\)).
- Calculating optimal OLS regression parameters using tidymodels
- Distinguish between unfitted and fitted models
- How to interpret the OLS regression parameters and their significance
- Using metrics to evaluate prediction quality on the testing

LOADING THE LIBRARIES AND THE DATA

► Code

	Price	Sqft	Bedrooms	Condition
1	523633.4	2040	4	3
2	530960.7	2120	4	3
3	523466.8	2130	4	4
4	759747.7	3330	4	3
5	546377.8	2440	4	3
6	186536.6	900	3	4

SPLITTING IN TRAINING AND TESTING DATA:

```
1 set.seed(Seed)
2 Split7030=initial_split(DataHouses,prop=0.7, strata = Price)
3 DataTrain=training(Split7030)
4 DataTest=testing(Split7030)
```

HOW MUCH IS A HOUSE WORTH IN KING COUNTY?

A house with average properties should be predicted with an average price!

▶ Code

The mean square footage of a house in King county is: 2044.319

▶ Code

The mean price of a house in King county is: 497414.9

PREDICTING THE PRICE OF AN AVERAGE SIZED HOUSE AS THE AVERAGE OF ALL HOUSE PRICES

HOW TO MEASURE PREDICTION QUALITY WITH THE MEAN SQUARED ERROR (MSE)

Note, when the data are given (i.e., (x_i) and (y_i) are given), the (MSE) depends only on the choice of (β_1) and (β_2)

INCLUDING SQFT AS DETERMINAT OF PRICE

PREPARING THE DATA

Blueprint for the data:

1 RecipeHouses=recipe(Price~Sqft, data=DataTrain)

CHOOSING THE MODEL BLUEPRINT

Blueprint for the model:

```
1 ModelDesignOLS=linear_reg() |>
2          set_engine("lm") |>
3          set_mode("regression")
```

HOW DOES THE UNFITTED MODEL LOOKS LIKE?

\[\underbrace{Price}_y=\underbrace{\beta_1}_m \underbrace{Sqft}_x + \underbrace{\beta_0}_b \]

USING A WORKFLOW TO FIT THE MODEL TO THE DATA (FINDING THE OPTIMAL \(\BETA_1\) AND \(\BETA_2\) VALUES

\[\underbrace{Price}_y=\underbrace{\beta_1}_m \underbrace{Sqft}_x + \underbrace{\beta_0}_b \]

```
1 WFModelHouses=workflow() |>
2         add_recipe(RecipeHouses) |>
3         add_model(ModelDesignOLS) |>
4         fit(DataTrain)
```

UNFITTED MODEL VS FITTED WORKFLOW MODEL

INTERPRETATION AND SIGNIFICANCE

```
{.smaller}
```

Unfitted Model: \[\underbrace{Price}_y=\underbrace{\beta_1}_m
\underbrace{Sqft}_x + \underbrace{\beta_0}_b \]

▶ Code

Fitted Model: \[\underbrace{Price}_y=\underbrace{238}_m \cdot\underbrace{Sqft}_x + \underbrace{6584}_b \]

Predict the price for a house with 1,000 sqft and send it to me in a private chat!

https://ai.lange-analytics.com/

HOW DOES THE FITTED MODEL THAT CONSIDERS SQFT IMPROVES THE PREDICTION COMPARED TO A SIMPLE AVERAGE

EVALUATING PREDICTIVE QUALITY WITH THE TESTING DATASET

- 1 DataTestWithPred=augment(WFModelHouses, new_data=DataTest)
 2 metrics(DataTestWithPred, truth=Price, estimate=.pred)

PROJECT: ANALYSIS WITH ALL VARIABLES