ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ (МОДЕЛИ СЛУЧАЙНЫХ ПРОЦЕССОВ)

СОДЕРЖАНИЕ

1. 1	Понятие случайного процесса	4
	1.1. Случайные процессы с дискретными состояниями	4
	1.2. Понятие марковского случайного процесса	5
2.	Параметры и характеристики марковского случайного	
	процесса	5
	2.1. Параметры марковского случайного процесса	5
	2.2. Характеристики марковского случайного процесса	7
3. I	Методы расчета марковских моделей	7
	3.1. Эргодическое свойство случайных процессов	7
	3.2. Марковские процессы с дискретным временем	8
	3.3. Марковские процессы с непрерывным временем	
4. I	Примеры марковских моделей	
	4.1. Модель "гибели и размножения"	
	4.2. Одноканальная СМО с однородным потоком заявок и	
	накопителем ограниченной емкости	11
	4.3. Одноканальная СМО с неоднородным потоком заявок	
	4.4. Многоканальная СМО с однородным потоком заявок	
	4.5. Замкнутая экспоненциальная СеМО	
	THE COMMITTEE STATE STAT	

ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ (МОДЕЛИ СЛУЧАЙНЫХ ПРОЦЕССОВ)

При изучении сложных систем со стохастическим характером функционирования полезной математической моделью является *случайный процесс*, который развивается в зависимости от ряда случайных факторов.

Большинство моделей дискретных систем со стохастическим характером функционирования строится на основе моделей массового обслуживания, процессы в которых являются случайным и, в основном, *марковскими* или некоторым образом связанные с марковскими процессами. Поэтому для решения многих задач теории массового обслуживания используется математический аппарат **теории марковских процессов**.

1. Понятие случайного процесса

Основными для случайных процессов являются понятия *состояния* и *перехода* из одного состояния в другое.

Случайный процесс находится в некотором *состоянии*, если он полностью описывается значениями переменных, которые задают это состояние.

Процесс совершает *переход* из одного состояния в другое, если описывающие ее переменные изменяются от значений, задающих одно состояние, на значения, которые определяют другое состояние.

Случайный процесс состоит в том, что с течением времени процесс переходит из одного состояния в другое, заранее не известное состояние.

Если множество состояний, в которых может находиться процесс *счетное*, т.е. все возможные состояния могут быть пронумерованы, то соответствующий процесс называется *случайным процессом с дискретными состояниями*. При этом число возможных состояний системы может быть *конечным* или *бесконечным*. Чаще всего эти состояния определяются таким образом, чтобы каждое возможное состояние могло бы быть обозначено порядковым номером, например: E_1 , E_2 , ..., E_i , Для случайного процесса с дискретными состояниями характерен скачкообразный переход из одного состояния в другое.

Если же множество состояний не может быть пронумеровано, то имеем *случайный процесс с непрерывными состояниями*, для которого характерен плавный переход из состояния в состояние. Например, процесс изменения температуры некоторого объекта может рассматриваться как случайный процесс с непрерывными состояниями.

Поскольку модели массового обслуживания относятся к классу дискретных систем, то в дальнейшем будут рассматриваться только случайные процессы с дискретными состояниями.

При описании дискретных систем в терминах случайных процессов одним из основных этапов является этап *кодирования состояний*, заключающийся в определении состава переменных и их значений, используемых для описания состояний. Состав переменных в значительной мере определяется назначением разрабатываемой модели, зависящим от целей моделирования.

1.1. Случайные процессы с дискретными состояниями

Предположим, что система может находиться в одном из состояний \mathbf{E}_1 , \mathbf{E}_2 , ... (часто состояния обозначаются номерами 1, 2,...). Пусть состояние системы меняется скачкообразно в зависимости от некоторого параметра t, причем переход из состояния в состояние является случайным. Будем называть параметр t - временем и считать, что t пробегает либо целые, либо действительные числа. Обозначим через Z(t) случайный процесс, описывающий состояние системы в момент времени t.

Случайный процесс Z(t) называется случайным процессом с дискретным временем, если переходы из состояния в состояние возможны только в строго определенные заранее фиксированные моменты времени, которые можно пронумеровать: t_1, t_2, \ldots .

Если промежуток времени между переходами из состояния в состояние является случайным и переход возможен в любой заранее не известный момент времени t, то процесс называется случайным процессом с непрерывным временем.

Процесс с дискретным временем имеет место либо когда структура системы такова, что ее состояния могут изменяться только в заранее определенные моменты времени, либо когда предполагается, что для описания процесса достаточно знать состояние системы в отдельные моменты времени. Тогда эти моменты можно пронумеровать и говорить о состоянии \mathbf{E}_i в момент t_k .

Процессы с дискретным временем называются **стохастическими последовательностями** или **случайными цепями**.

Случайные процессы с дискретными состояниями могут изображаться в виде **графа переходов** (состояний), в котором вершины соответствуют состояниям, а ориентированные дуги - переходам из одного состояния в другое.

Состояния \mathbf{E}_i могут быть:

- **невозвратными**, если процесс после какого-то числа переходов непременно покидает их;
- поглощающими, если случайный процесс, достигнув этих состояний прекращается.

Случайный процесс называется *транзитивным*, если из любого состояния можно перейти за то или иное число шагов в любое другое состояние и вернуться в исходное.

1.2. Понятие марковского случайного процесса

Случайный процесс называется *марковским*, если вероятность любого состояния в будущем зависит только от ее состояния в настоящем и не зависит от того, когда и каким образом процесс оказался в этом состоянии.

Описывающий поведение системы процесс Z(t) называется **цепью Маркова**.

Для того, чтобы случайный процесс с непрерывным временем был *марковским*, необходимо, чтобы интервалы времени между соседними переходами из состояния в состояние были распределены по экспоненциальному закону.

2. Параметры и характеристики марковского случайного процесса

2.1. Параметры марковского случайного процесса

Для описания марковского случайного процесса используется следующая совокупность параметров:

- перечень состояний $E_1, ..., E_n$, в которых может находиться система;
- **матрица вероятностей переходов Q** для процессов *с дискретным временем* или **матрица интенсивностей переходов G** для процессов *с непрерывным временем*;
- начальные вероятности $p_1(0),...,p_n(0)$.

Для определения перечня состояний случайного процесса необходимо корректно решить задачу кодирования состояний, которое зависит от смысла, вкладываемого в понятие «состояние» для каждой конкретной системы.

Для случайных процессов с дискретным временем изменения состояний происходит только в определенные моменты времени $t_1, t_2, ..., t_k, ...$. Переходы между состояниями описываются *вероятностями переходов*. Если непосредственный переход из одного состояния в другое невозможен, то вероятность, соответствующая данному переходу, равна нулю. Обозначим через q_{ij} условную вероятность того, что в момент времени t_{k+1} случайный процесс находится в состоянии \mathbf{E}_i при условии, что в момент t_k процесс находился в состоянии \mathbf{E}_i . Если переход из состояния \mathbf{E}_i в \mathbf{E}_j зависит только от этих двух состояний, т.е. условная вероятность q_{ij} не изменяется при дополнительной информации о поведении процесса до момента t_k , получим цепь Маркова.

Цепь Маркова называется *однородной*, если вероятности переходов не зависят от момента времени t_k , и *неоднородной*, если вероятности переходов являются функциями t_k , т.е. $q_{ij}=q_{ij}(k)$.

Вероятности переходов задаются в виде квадратной *матрицы вероятностей* **переходов** $\mathbf{Q} = [q_{ii} \mid i, j = \overline{1, n}]$, элементы которой удовлетворяют условиям:

$$0 \le q_{ij} \le 1;$$
 $\sum_{i=1}^{n} q_{ij} = 1$ $(i, j = \overline{1, n}).$ (1)

Матрица, элементы которой удовлетворяют указанным условиям, называется *стохастической*.

Для случайных процессов с непрерывным временем время между переходами из одного состояния в другое случайно. Это означает, что вероятность перехода из одного состояния в другое не может быть задана, поскольку вероятность такого перехода точно в момент времени t равна нулю. Вместо вероятностей переходов для процессов с непрерывным временем вводится параметр, называемый *интенсивностью перехода*.

Интенсивность перехода g_{ij} из состояния \mathbf{E}_i в состояние \mathbf{E}_j определяется как предел отношения вероятности перехода $P_{ij}(\Delta t)$ системы за промежуток времени Δt из \mathbf{E}_i в \mathbf{E}_j к длине этого промежутка:

$$g_{ij} = \lim_{\Delta t \to 0} \frac{P_{ij}(\Delta t)}{\Delta t} \quad (i, j = \overline{1, n}; i \neq j).$$

Отсюда следует, что вероятность перехода за бесконечно малый промежуток времени Δt равна: $g_{ij}\Delta t$ ($i \neq j$). Вероятность двух и более переходов за время Δt имеет порядок (Δt)² и выше и предполагается бесконечно малой величиной.

Если интенсивности переходов постоянны и не зависят от времени t, т.е. от того, в какой момент начинается промежуток Δt , то марковский процесс называется **однородным**. Если интенсивности g_{ij} представляют собой функции времени t, процесс называется **неоднородным**.

Интенсивности переходов задаются в виде квадратной матрицы **G**, называемой *матрицей интенсивностей переходов*, диагональные элементы которой определяются из условия

$$\sum_{j=1}^{n} g_{ij} = 0 \quad (i = \overline{1, n}),$$

откуда

$$g_{ii} = -\sum_{\substack{j=1\\j\neq i}}^{n} g_{ij} \quad (i, j = \overline{1, n}).$$
 (2)

Матрица, сумма элементов строк которой равна нулю, называется *дифференциальной*.

Начальные вероятности $p_1(0), \ldots, p_n(0)$, где $p_i(0)$ - вероятность того, что в момент времени t=0 система находится в состоянии \mathbf{E}_i $(i=1,\ldots n)$, задают состояние системы в начальный момент времени.

2.2. Характеристики марковского случайного процесса

Изучение случайных процессов заключается в определении вероятностей того, что в момент времени t система находится в том или ином состоянии. Совокупность таких вероятностей, описывающих состояния системы в различные моменты времени, дают достаточно полную информацию о протекающем в системе случайном процессе.

Рассмотрим систему с конечным числом состояний, которая может находиться в состояниях $\mathbf{E}_1, \ldots, \mathbf{E}_n$. Обозначим через $p_i(t)$ вероятность того, что в момент времени t система находится в состоянии \mathbf{E}_i : $p_i(t) = \Pr\{Z(t) = E_i\}$.

В любой момент времени t система может находиться в одном из n возможных состояний, т.е. для любого момента времени t выполняется условие:

$$\sum_{i=1}^{n} p_i(t) = 1, \tag{3}$$

которое называется нормировочным.

Совокупность вероятностей $p_i(t)$ может быть представлена вектором с числом координат, равным числу возможных состояний системы:

$$P(t) = \{p_1(t), ..., p_n(t)\},\$$

причем

$$0 \le p_i(t) \le 1; \quad \sum_{i=1}^n p_i(t) = 1. \tag{4}$$

Вектор, обладающий свойствами (4), называется стохастическим.

Стохастический вектор называется *вектором состояний*, если его компоненты представляют собой вероятности состояний системы.

3. Методы расчета марковских моделей

3.1. Эргодическое свойство случайных процессов

Если по истечении достаточно большого промежутка времени вероятности состояний стремятся к предельным значениям p_1, \ldots, p_n , не зависящим от начальных вероятностей $p_1(0), \ldots, p_n(0)$ и от самого промежутка времени, то говорят, что случайный процесс обладает *эргодическим свойством*. Таким образом, для процессов, обладающих эргодическим свойством,

$$\lim_{t \to \infty} P(t) = P(\infty) = P. \tag{5}$$

Здесь P - вектор состояний системы: $P = (p_1, ..., p_n)$, где p_i - вероятность того, что система находится в состоянии \mathbf{E}_i (i=1,...,n).

Очевидно, что для предельных вероятностей p_i должно выполняться нормировочное условие (4.4).

Случайный процесс обладает эргодическим свойством, если матрица вероятностей (интенсивностей) переходов не является периодической или разложимой.

Матрица является **разложимой**, если она может быть приведена к одному из следующих видов:

1)
$$\begin{bmatrix} A & 0 \\ 0 & D \end{bmatrix}$$
; 2) $\begin{bmatrix} A & 0 \\ C & D \end{bmatrix}$; 3) $\begin{bmatrix} A & B \\ 0 & D \end{bmatrix}$,

где А, В, С, D- ненулевые квадратные подматрицы; 0 – нулевая квадратная подматрица.

В первом случае состояния, соответствующие подмножествам **A** и **D**, называются **замкнутыми**, так как система, находясь в каком-либо состоянии одного из этих подмножеств, никогда не сможет перейти в какое-либо состояние другого подмножества. Состояния, соответствующие подмножеству **D** во втором случае и подмножеству **A** в третьем случае, называются **невозвратными**, поскольку после того, как процесс покинет эти состояния, невозможен обратный переход в эти состояния из состояний, соответствующих другим подмножествам.

Матрица является периодической, если она может быть приведена к виду:

$$\begin{bmatrix} 0 & B \\ C & 0 \end{bmatrix}$$

Случайный процесс в этом случае будет по очереди переходить из состояний, соответствующих ${\bf B}$, в состояния, соответствующие ${\bf C}$.

Таким образом, в системе, описываемой марковским случайным процессом, при $t \to \infty$ устанавливается некоторый предельный режим, состоящий в том, что вероятность нахождения системы в том или ином состоянии не зависит от времени. В этом случае говорят, что система работает в установившемся или стационарном режиме. Если вероятности состояний зависят от времени, то имеем нестационарный режим.

3.2. Марковские процессы с дискретным временем

Для однородного марковского процесса с дискретным временем вероятности состояний на момент времени t_k определяются из системы линейных алгебраических уравнений:

$$p_i(k) = \sum_{j=1}^n p_j(k-1) q_{ji} \quad (i = 1, ..., n; k = 1, 2, ...).$$
(6)

Если рассматриваемая система обладает эргодическим свойством, то согласно (5) вероятности состояний $p_i(k)$ стремятся к предельным значениям p_i , не зависящим от начальных вероятностей $p_i(0)$. С учетом (6) и (5) вероятности состояний для стационарного режима определяются из системы уравнений:

$$p_{i} = \sum_{j=1}^{n} p_{j} q_{ji} \quad (i = 1, ..., n)$$
(7)

с нормировочным условием

профессор Т.И.Алиев

$$\sum_{i=1}^{n} p_i = 1. {8}$$

Уравнения (7) с условием (8) образуют систему линейных алгебраических уравнений, которая обладает единственным решением, если P – эргодическая матрица.

3.3. Марковские процессы с непрерывным временем

Для однородного марковского процесса с непрерывным временем вероятности состояний на произвольный момент времени t определяются из системы дифференциальных уравнений:

$$\frac{dp_i(t)}{dt} = \sum_{i=1}^{n} p_j(t) g_{ji} \quad (i = \overline{1, n}; \ t > 0)$$
(9)

с учетом начальных условий $p_1(0),...,p_n(0)$.

Для систем обладающих эргодическим свойством, имеет место стационарный режим, для которого, согласно (6), вероятности состояний p_1, \ldots, p_n при $t \to \infty$ не зависят от начальных вероятностей и текущего момента времени t и система дифференциальных уравнений (9) преобразуется для стационарного режима в систему линейных алгебраических уравнений:

$$\sum_{i=1}^{n} p_{j}(t) g_{ji} = 0 \quad (i = \overline{1, n}),$$
(10)

которая совместно с нормировочным условием (8) образует систему, обладающую единственным решением.

Т.И.Алиев

профессор

4. Примеры марковских моделей

4.1. Модель "гибели и размножения"

Схема «гибели и размножения» часто встречается в разнообразных практических задачах. Своим названием эти процессы обязаны биологической задаче об изменении численности популяции и распространении эпидемий, которая формулируется следующим образом.

Рассмотрим развитие некоторой популяции, особи которой могут умирать и рождаться. Положим. что при наличии i особей в популяции рождение новых особей происходит с интенсивностью λ_i и с интенсивностью μ_i - особи умирают. Пусть в любой момент времени может происходить рождение или гибель только одной особи, и интервалы времени между двумя моментами рождения и гибели распределены по экспоненциальному закону с параметрами соответственно λ_i и μ_i . Тогда процесс "гибели и размножения" может быть представлен марковским случайным процессом с непрерывным временем, в котором состояние \mathbf{E}_i соответствует наличию i особей в популяции (i=0, 1, ...), причем число состояний может быть бесконечным (рис.1,а) или конечным (рис.1,б). Отметим, что состояние \mathbf{E}_0 соответствует вырождению популяции.

Таким образом, марковский процесс называется «процессом гибели и размножения», если ее граф состояний имеет вид цепочки состояний, в которой каждое состояние (кроме крайних) связано с двумя соседними состояниями, а крайние состояния \mathbf{E}_0 и \mathbf{E}_n (в случае конечного числа состояний) или только нулевое состояние \mathbf{E}_0 (в случае бесконечного числа состояний) — только с одним соседним состоянием.

4.2. Одноканальная СМО с однородным потоком заявок и накопителем ограниченной емкости

$$\lambda r = 3$$
 μ

Описание СМО.

Система одноканальная, так как содержит один обслуживающий прибор.

Поток заявок однородный, то есть в систему поступает один класс заявок.

Накопитель *ограниченной* емкости содержит три места для заявок, ожидающих обслуживания.

Дисциплина буферизации – c *потерями*: заявка, поступившая в систему и заставшая накопитель заполненным, теряется.

Дисциплина обслуживания – в порядке поступления (FIFO).

Пусть в качестве исходных данных для СМО заданы λ - интенсивность поступления и μ – интенсивность обслуживания. Предположим, что в СМО поступает простейший поток заявок, длительность обслуживания которых распределена по экспоненциальному закону. В случае накопителя с ограниченной емкостью в СМО всегда будет существовать стационарный режим, так как не может быть бесконечных очередей.

Расчет характеристик СМО.

В качестве параметра, описывающего состояние марковского процесса, будем рассматривать количество заявок k, находящихся в СМО (на обслуживании в приборе и в накопителе). Тогда система может находиться в следующих пяти состояниях:

 E_0 : k = 0 - в системе нет ни одной заявки;

 E_1 : k = 1 - в системе находится 1 заявка (на обслуживании в приборе);

 ${\bf E}_2$: $k=2-{\bf B}$ системе находятся 2 заявки (одна — на обслуживании в приборе и вторая ожидает в накопителе);

 E_3 : k = 3 - в системе находятся 3 заявки (одна — на обслуживании в приборе и две — в накопителе);

 E_4 : k = 4 - в системе находятся 4 заявки (одна – на обслуживании в приборе и три – в накопителе).

Построим граф переходов. В один и тот же момент времени может происходить только одно событие: или поступление заявки, или завершение ее обслуживания.

Графу переходов соответствует матрица интенсивностей переходов:

			1	2	3	4
	0	$-\lambda$	λ	0	0	0
G -	1	μ	$-(\lambda + \mu)$ μ	λ	0	0
0 -	2	0	μ	$-(\lambda + \mu)$	λ	0
	3	0	0	μ	$-(\lambda + \mu)$	λ
	4	0	0	0	μ	$-\mu$

Составим систему уравнений для определения стационарных вероятностей:

$$\begin{cases} \lambda p_0 = \mu p_1 \\ (\lambda + \mu) p_1 = \lambda p_0 + \mu p_2 \\ (\lambda + \mu) p_2 = \lambda p_1 + \mu p_3 \\ (\lambda + \mu) p_3 = \lambda p_2 + \mu p_4 \\ \mu p_4 = \lambda p_3 \\ p_0 + p_1 + p_2 + p_3 + p_4 = 1 \end{cases}$$

Определим характеристики СМО:

- а) нагрузка: $y = \lambda / \mu = \lambda b$;
- б) загрузка: $\rho = p_1 + p_2 + p_3 + p_4$;
- в) коэффициент простоя системы: $\eta = 1 \rho$;
- г) среднее число заявок в очереди: $l = p_2 + 2p_3 + 3p_3 + 3p_4;$
- д) среднее число заявок в системе: $m = p_1 + 2p_2 + 3p_3 + 4p_4 = l + \rho$;
- e) вероятность потери заявок: $\pi = p_4$;
- ж) производительность системы (интенсивность непотерянных заявок): $\lambda' = \lambda(1-\pi)$;
- з) интенсивность потерянных заявок: $\lambda^{"}=\lambda\,\pi$;
- и) среднее время ожидания заявок: $w = l/\lambda$;
- к) среднее время пребывания заявок: $u = m/\lambda' = w + b$.

4.3. Одноканальная СМО с неоднородным потоком заявок

Раздельные накопители ограниченной емкости. Дисциплина обслуживания с относительными приоритетами

Описание СМО.

Система одноканальная – один обслуживающий прибор.

Поток заявок неоднородный – два класса заявок.

Емкости накопителей у первого и второго классов *ограниченные* – по одному месту для ожидания заявок каждого класса. Накопители *раздельные*.

Дисциплина буферизации – c *потерями*: заявка, поступившая в систему и заставшая накопитель заполненным, теряется.

Дисциплина обслуживания – с относительными приоритетами (ДО ОП).

Пусть в качестве исходных данных для СМО заданы λ_1 , λ_2 - интенсивности поступления и μ_1 , μ_2 — интенсивности обслуживания заявок соответствующих классов. Предположим, что в СМО поступают простейшие потоки заявок, длительности обслуживания которых распределены по экспоненциальному закону. В случае с ограниченной емкостью накопителя в СМО всегда будет существовать стационарный режим, так как не может быть бесконечных очередей. Обслуживание заявок производится в соответствии с дисциплиной обслуживания с относительными приоритетами.

Расчет характеристик СМО.

Для описания состояний марковского процесса будем использовать распределение заявок между прибором и накопителями.

Закодируем состояния следующим образом: $\{\Pi/II, I2\}$, где $\Pi = \{0, 1, 2\}$ – состояние обслуживающего прибора, задаваемое классом заявки, находящейся на обслуживании («0» – прибор свободен; «1» или «2» – на обслуживании в приборе находится заявка класса 1 или 2 соответственно); II, $I2 = \{0, 1\}$ – состояние накопителя 1 и 2 соответственно («0» – означает отсутствие заявки в накопителе, «1» и «2» –означает наличие одной заявки в накопителе соответствующего класса).

При выбранном способе кодирования система может находиться в следующих состояниях:

 E_0 : $\{0/0, 0\}$ – в системе (в приборе и накопителях) нет ни одной заявки;

 E_1 : $\{1/0, 0\}$ – на обслуживании в приборе находится заявка класса 1;

 E_2 : $\{2/0, 0\}$ – на обслуживании в приборе находится заявка класса 2;

 E_3 : {1/1, 0} — на обслуживании в приборе находится заявка класса 1 и одна заявка класса 1 ожидает обслуживания в первом накопителе;

 E_4 : $\{1/0, 1\}$ — на обслуживании в приборе находится заявка класса 1 и одна заявка класса 2 ожидает обслуживания соответственно во втором накопителе;

 E_5 : $\{2/1, 0\}$ — на обслуживании в приборе находится заявка класса 2 и одна заявка класса 1 ожидает обслуживания в первом накопителе;

 E_6 : {2/0, 1} — на обслуживании в приборе находится заявка класса 2 и одна заявка класса 2 ожидает обслуживания во втором накопителе;

 E_7 : $\{1/1, 1\}$ — на обслуживании в приборе находится заявка класса 1 и по одной заявке каждого класса ожидают обслуживания в соответствующих накопителях;

 E_8 : $\{2/1, 1\}$ — на обслуживании в приборе находится заявка класса 2 и по одной заявке каждого класса ожидают обслуживания в соответствующих накопителях.

Построим граф переходов, полагая, что в каждый момент времени может произойти только одно событие (или поступление заявки какого-либо класса, или завершение обслуживания заявки, находящейся в приборе), поскольку вероятность появления двух и более событий в один и тот же момент времени равна нулю.

По графу составляется матрица интенсивностей переходов:

		0	1	2	3	4	5	6	7	8
	0	S_0	λ_{l}	λ_2	0	0	0	0	0	0
		μ_1	S_1	0	λ_{l}	λ_2	0	0	0	0
	2	μ_2	0	S_2	0	0	λ_{l}	λ_2	0	0
G -	3	0	μ_1	0	S_3	0	0	0	λ_2	0
U -	4	0	0	μ_1	0	S_4	0	0	λ_{l}	0
			μ_2							
	6	0	0	μ_2	0	0	0	S_6	0	λ_{l}
	7	0	0	0	0	μ_{l}	0	0	S_7	0
	8	0	0	0	0	μ_2	0	0	0	S_8

Здесь:

$$S_0 = -(\lambda_1 + \lambda_2); \hspace{1cm} S_1 = -(\lambda_1 + \lambda_2 + \mu_1); \hspace{1cm} S_2 = -(\lambda_1 + \lambda_2 + \mu_2);$$

$$S_3 = -(\lambda_2 + \mu_1);$$
 $S_4 = -(\lambda_1 + \mu_1);$ $S_5 = -(\lambda_2 + \mu_2);$ $S_6 = -(\lambda_1 + \mu_2);$ $S_7 = -\mu_1;$ $S_8 = -\mu_2.$

Составим систему уравнений для определения стационарных вероятностей:

$$\begin{cases} (\lambda_{1} + \lambda_{2}) p_{0} = \mu_{1} p_{1} + \mu_{2} p_{2} \\ (\lambda_{1} + \lambda_{2} + \mu_{1}) p_{1} = \lambda_{1} p_{0} + \mu_{1} p_{3} + \mu_{2} p_{5} \\ (\lambda_{1} + \lambda_{2} + \mu_{2}) p_{2} = \lambda_{2} p_{0} + \mu_{1} p_{4} + \mu_{2} p_{6} \\ (\lambda_{2} + \mu_{1}) p_{3} = \lambda_{1} p_{1} \\ (\lambda_{1} + \mu_{1}) p_{4} = \lambda_{2} p_{1} + \mu_{1} p_{7} + \mu_{2} p_{8} \\ (\lambda_{2} + \mu_{2}) p_{5} = \lambda_{1} p_{2} \\ (\lambda_{1} + \mu_{2}) p_{6} = \lambda_{2} p_{2} \\ \mu_{1} p_{7} = \lambda_{2} p_{8} + \lambda_{1} p_{4} \\ \mu_{2} p_{8} = \lambda_{2} p_{5} + \lambda_{1} p_{6} \\ p_{0} + p_{1} + p_{2} + p_{3} + p_{4} + p_{5} + p_{6} + p_{7} + p_{8} = 1 \end{cases}$$

Определим характеристики СМО:

а) нагрузка:

$$y_1 = \lambda_1 / \mu_1 = \lambda_1 b_1; \quad y_2 = \lambda_2 / \mu_2 = \lambda_2 b_2;$$

$$y = y_1 + y_2$$
;

б) загрузка:

$$\rho_1 = p_1 + p_3 + p_4 + p_7; \quad \rho_2 = p_2 + p_5 + p_6 + \rho_8;$$

$$R = \rho_1 + \rho_2;$$

в) коэффициент простоя системы:

$$\eta_1 = 1 - \rho_1; \quad \eta_2 = 1 - \rho_2;$$

$$\eta = \eta_1 + \eta_2 - 1 = 1 - R;$$

г) среднее число заявок в очереди:

$$l_1 = p_3 + p_5 + p_7 + p_8;$$
 $l_2 = p_4 + p_6 + p_7 + p_8;$

$$l = l_1 + l_2;$$

д) среднее число заявок в системе:

$$m_1 = p_1 + 2p_3 + p_4 + p_5 + 2p_7 + p_8 = l_1 + \rho_1;$$

$$m_2 = p_2 + p_4 + p_5 + 2p_6 + p_7 + 2p_8 = l_2 + \rho_2;$$

$$m = m_1 + m_2 = l + R;$$

е) вероятность потери заявок:

$$\pi_1 = p_3 + p_5 + p_7 + p_8;$$
 $\pi_2 = p_4 + p_6 + p_7 + p_8;$ $\pi = (\lambda_1 \pi_1 + \lambda_2 \pi_2) / \lambda,$

где
$$\lambda = \lambda_1 + \lambda_2$$
.

ж) производительность системы (интенсивность непотерянных заявок):

$$\lambda_{1}^{'} = \lambda_{1}(1 - \pi_{1}); \quad \lambda_{2}^{'} = \lambda_{2}(1 - \pi_{2});$$

$$\lambda' = \lambda'_1 + \lambda'_2 = \lambda(1 - \pi);$$

з) интенсивность потерянных заявок:

$$\lambda_1^{"} = \lambda_1 \pi_1; \quad \lambda_2^{"} = \lambda_2 \pi_2;$$

$$\lambda^{"}=\lambda_{1}^{"}+\lambda_{2}^{"}=\lambda\pi;$$

и) среднее время ожидания заявок:

$$w_1 = l_1 / \lambda_1'; \quad w_2 = l_2 / \lambda_2';$$

$$w = (\lambda_1' w_1 + \lambda_2' w_2) / \lambda' = l / \lambda';$$

к) среднее время пребывания заявок:

$$u_1 = m_1 / \lambda_1' = w_1 + b;$$
 $u_2 = m_2 / \lambda_2' = w_2 + b;$

$$u = (\lambda_1' u_1 + \lambda_2' u_2) / \lambda' = m / \lambda' = w + b.$$

4.4. Многоканальная СМО с однородным потоком заявок

Общий накопитель ограниченной емкости

Описание СМО

Многоканальная (двухканальная) – два обслуживающих прибора.

Поток заявок однородный – один класс заявок.

Емкость общего накопителя ограниченная – одно место для ожидания.

Дисциплина буферизации – c *потерями*: заявка, поступившая в систему и заставшая накопитель заполненным, теряется.

Дисциплина обслуживания – в порядке поступления (FIFO).

Пусть в качестве исходных данных для СМО заданы λ - интенсивность поступления и μ — интенсивность обслуживания в каждом из приборов. Приборы *одинаковы* по интенсивности обслуживания, и заявка может быть обслужена каждым из приборов c равной вероятностью. Предположим, что в СМО поступает простейший поток заявок, длительность обслуживания которых распределена по экспоненциальному закону. В случае с ограниченной емкостью накопителя в СМО всегда будет существовать стационарный режим, так как не может быть бесконечных очередей.

Расчет характеристик СМО

В качестве параметра, описывающего состояние марковского процесса, будем рассматривать количество заявок k, находящихся в СМО (на обслуживании в приборе и в накопителе). Тогда система может находиться в следующих состояниях:

 E_0 : k = 0 - в системе нет ни одной заявки;

 E_1 : k = 1 - в системе находится 1 заявка (на обслуживании в одном из приборов);

 E_2 : k = 2 - в системе находятся 2 заявки (на обслуживании в обоих приборах);

 E_3 : k = 3 - в системе находятся 3 заявки (две – на обслуживании в приборах и одна – в накопителе)

Построим граф переходов. В один и тот же момент времени может происходить только одно событие: или поступление заявки, или завершение ее обслуживания.

По графу составляется матрица интенсивностей переходов:

	0	1	2	3
$\overline{0}$	$-\lambda$	λ	0	0
G = 1 2 3	μ	$-(\lambda + \mu)$	λ	0
2	0	2μ	$-(\lambda+2\mu)$	λ
3	0	0	2μ	-2μ

Составим систему уравнений для определения стационарных вероятностей:

$$\begin{cases} \lambda p_0 = \mu p_1 \\ (\lambda + \mu) p_1 = \lambda p_0 + 2\mu p_2 \\ (\lambda + 2\mu) p_2 = \lambda p_1 + 2\mu p_3 \\ 2\mu p_3 = \lambda p_2 \\ p_0 + p_1 + p_2 + p_3 = 1 \end{cases}$$

Определим характеристики СМО:

 $v = \lambda / \mu = \lambda b$; а) нагрузка:

 $\rho = (p_1 + 2p_2 + 2p_3)/2$; б) загрузка:

в) среднее число работающих приборов: $k'=2\rho$;

г) коэффициент простоя системы: $\eta = 1 - \rho$;

 $l = p_3$; д) среднее число заявок в очереди:

е) среднее число заявок в системе: $m = p_1 + 2p_2 + 3p_3 = l + k'$;

ж) вероятность потери заявок. $\pi = p_3$;

з) производительность системы (интенсивность непотерянных заявок): $\lambda' = \lambda(1-\pi)$;

 $\lambda'' = \lambda \pi$: и) интенсивность потерянных заявок:

к) среднее время ожидания заявок: $w = l / \lambda'$;

л) среднее время пребывания заявок: $w = l / \lambda \; ;$ $u = m / \lambda = w + b \; .$

Раздельные накопители ограниченной емкости

Описание СМО

Многоканальная (двухканальная) – два обслуживающих прибора.

Поток заявок однородный – один класс заявок.

Емкость накопителя перед прибором Π_1 *ограниченная* — одно место для ожидания, перед прибором Π_2 накопитель отсутствует (емкость равна 0).

Пусть в качестве исходных данных для СМО заданы λ - интенсивность поступления и μ — интенсивность обслуживания в каждом из приборов. Приборы *одинаковы* по интенсивности обслуживания, но заявка может быть обслужена прибором Π_1 с вероятностью q, а прибором Π_2 с вероятностью (1-q). Предположим, что в СМО поступает простейший поток заявок, длительность обслуживания которых распределена по экспоненциальному закону. В случае с ограниченной емкостью накопителя в СМО всегда будет существовать стационарный режим, так как не может быть бесконечных очередей.

Расчет характеристик СМО

Под состоянием марковского процесса будем понимать распределение заявок по различным приборам. Закодируем состояния следующим образом: (Π_1 , Π_2), где $\Pi_1 = \{0, 1, 2\}$ – количество заявок, находящихся в прибое Π_1 и его накопителе; $\Pi_2 = \{0, 1\}$ – количество заявок, находящихся в прибое Π_2 .

При выбранном способе кодирования система может находиться в следующих состояниях:

 E_0 : (0, 0) – в системе нет ни одной заявки;

 E_1 : (1, 0) – в приборе Π_1 обслуживается заявка, а прибор Π_2 простаивает;

E₂: (0, 1) – в приборе Π_2 обслуживается заявка, а прибор Π_1 простаивает;

 E_3 : (2, 0) – в приборе Π_1 обслуживается заявка и одна заявка ожидает в накопителе, прибор Π_2 простаивает;

 ${\bf E}_4$: $(1,\,1)$ – в системе находятся две заявки, которые обслуживаются в приборах Π_1 и Π_2 ;

 E_5 : (2, 1) — в системе находятся три заявки, две из которых обслуживаются в приборах Π_1 и Π_2 , а третья заявка ожидает в накопителе.

Построим граф переходов. В один и тот же момент времени может происходить только одно событие: или поступление заявки, или завершение ее обслуживания.

По графу составляется матрица интенсивностей переходов:

СП6ГУ ИТМО.	rachedna	RT
CHOLY WHING.	Kaweoba	DI

У ИТМО, кас	федра В	Τ			профессор	Т.И.Алиев
	0	1	2	3	4	5
$\overline{0}$	$-\lambda$	λq	$\lambda(1-q)$	0	0	0
1	μ	$-(\lambda + \mu)$	0	λq	$\lambda(1-q)$	0
G = 2	μ	0	$-(\lambda q + \mu)$	0	λq	0
3	0	μ	0	$-(\lambda - \lambda q + \mu)$	0	$\lambda(1-q)$
4	0	μ	μ	0	$-(\lambda q + 2\mu)$	λq
5	0	0	0	μ	μ	-2μ

Составим систему уравнений для определения стационарных вероятностей:

$$\begin{cases} \lambda p_0 = \mu p_1 + \mu p_2 \\ (\lambda + \mu) p_1 = \lambda q p_0 + \mu p_3 + \mu p_4 \\ (\lambda q + \mu) p_2 = \lambda (1 - q) p_0 + \mu p_4 \\ (\lambda - \lambda q + \mu) p_3 = \lambda q p_1 + \mu p_5 \\ (\lambda q + 2\mu) p_4 = \lambda (1 - q) p_1 + \lambda q p_2 + \mu p_5 \\ 2\mu p_5 = \lambda (1 - q) p_3 + \lambda q p_4 \\ p_0 + p_1 + p_2 + p_3 + p_4 + p_5 = 1 \end{cases}$$

Определим характеристики СМО:

а) нагрузка:

$$y_1 = \lambda q / \mu = \lambda q b;$$
 $y_2 = \lambda (1 - q) / \mu = \lambda (1 - q) b;$

$$y = y_1 + y_2 = \lambda / \mu = \lambda b;$$

б) загрузка:

$$\rho_1 = p_1 + p_3 + p_4 + p_5; \quad \rho_2 = p_2 + p_4 + p_5;$$

$$\rho = (\rho_1 + \rho_2)/2;$$

в) коэффициент простоя системы:

$$\eta_1 = 1 - \rho_1; \quad \eta_2 = 1 - \rho_2;$$

$$\eta = (\eta_1 + \eta_2)/2 = 1 - \rho;$$

г) среднее число заявок в очереди:

$$l_1 = p_3 + p_5; \quad l_2 = 0;$$

$$l = l_1 + l_2;$$

д) среднее число заявок в системе:

$$m_1 = p_1 + 2p_3 + p_4 + 2p_5 = l_1 + \rho_1;$$
 $m_2 = p_2 + p_4 + p_5 = l_2 + \rho_2;$ $m = m_1 + m_2 = l + 2\rho;$

е) вероятность потери заявок:

$$\pi_1 = p_3 + p_5; \quad \pi_2 = p_2 + p_4 + p_5;$$

$$\pi = q\pi_1 + (1-q)\pi_2;$$

ж) производительность системы (интенсивность непотерянных заявок):

$$\lambda'_1 = \lambda q (1 - \pi_1); \quad \lambda'_2 = \lambda (1 - q) (1 - \pi_2);$$

$$\lambda' = \lambda'_1 + \lambda'_2 = \lambda(1 - \pi);$$

з) интенсивность потерянных заявок:

$$\lambda_1^{"} = \lambda q \pi_1; \quad \lambda_2^{"} = \lambda (1-q)\pi_2;$$

$$\lambda^{"} = \lambda_{1}^{"} + \lambda_{2}^{"} = \lambda \pi;$$

и) среднее время ожидания заявок:

$$w_1 = l_1 / \lambda_1'; \quad w_2 = l_2 / \lambda_2';$$

$$w = (\lambda_1' w_1 + \lambda_2' w_2) / \lambda' = l / \lambda';$$

к) среднее время пребывания заявок:

$$u_1 = m_1 / \lambda_1' = w_1 + b;$$
 $u_2 = m_2 / \lambda_2' = w_2 + b;$

$$u = (\lambda_1' u_1 + \lambda_2' u_2) / \lambda' = m / \lambda' = w + b.$$

4.5. Замкнутая экспоненциальная СеМО

Описание СеМО

Сеть массового обслуживания (СеМО) – двухузловая.

Количество приборов в узлах: узел 1 – одноканальный, узел 2 – многоканальный с двумя обслуживающими приборами (*двухканальный*).

Поток заявок однородный.

В СеМО постоянно циркулирует М=3 заявки.

Пусть в качестве исходных данных для СеМО заданы:

- $-\mu_1$ и μ_2 интенсивности обслуживания заявок в узлах 1 и 2 соответственно, причем длительности обслуживания заявок распределены по экспоненциальному закону;
 - приборы в узле 2 идентичны по интенсивности обслуживания;
- заявка после обслуживания в узле 1 с вероятностью p_{12} переходит в узел 2 и с вероятностью $p_{10}=1-p_{12}$ возвращается в этот же узел 1;
- дуга, выходящая из узла 1 и входящая обратно в этот же узел, рассматривается как внешняя по отношению к CeMO, и на ней выбирается нулевая точка «0».

В замкнутой СеМО всегда существует стационарный режим, так как число заявок в сети ограничено и не может быть бесконечных очередей.

Расчет характеристик СМО

Под состоянием марковского процесса будем понимать распределение заявок по узлам СеМО. Закодируем состояния следующим образом: $(\mathbf{M_1, M_2})$, где $\mathbf{M_1} = \{0, 1, 2, 3\}$ – количество заявок, находящихся в узле 1 и $\mathbf{M_2} = \{0, 1, 2, 3\}$ – количество заявок, находящихся в узле 2, причем суммарное число заявок в обоих узлах должно быть равно 3.

профессор Т.И.Алиев

При выбранном способе кодирования система может находиться в следующих состояниях:

 E_0 : (3, 0) — все три заявки находятся в узле 1, причем одна заявка находятся на обслуживании в приборе и две заявки ожидают в накопителе;

 E_1 : (2, 1) — две заявки находятся в узле 1 (одна на обслуживании в приборе и одна в накопителе) и одна — на обслуживании в одном из приборов узла 2;

 E_2 : (1, 2) – одна заявка находится на обслуживании в узле 1 и две – в узле 2 (на обслуживании в обоих приборах);

 E_3 : (0, 3) – все три заявки находятся в узле 2, причем две заявки находятся на обслуживании в обоих приборах узла 2 и одна заявка ожидает в накопителе.

Построим граф переходов. В один и тот же момент времени может происходить только одно из двух событий: завершение обслуживания заявки в первом или во втором узле CeMO.

По графу составляется матрица интенсивностей переходов:

		E_0	E_1	E_2	E_3
	E_0	$-p_{12}\mu_{1}$	$p_{12}\mu_{1}$	0	0
G=	E_1	μ_2	$-(p_{12}\mu_1 + \mu_2)$	$p_{12}\mu_1$	0
	E_2	0	$2\mu_2$	$-(p_{12}\mu_1+2\mu_2)$	$p_{12}\mu_{1}$
	E_3	0	0	$2\mu_2$	$-2\mu_2$

Составим систему уравнений для определения стационарных вероятностей:

$$\begin{cases} p_{12}\mu_1p_0 = \mu_2p_1\\ (p_{12}\mu_1 + \mu_2)p_1 = p_{12}\mu_1p_0 + 2\mu_2p_2\\ (p_{12}\mu_1 + 2\mu_2)p_2 = p_{12}\mu_1p_1 + 2\mu_2p_3\\ 2\mu_2p_3 = p_{12}\mu_1p_2\\ p_0 + p_1 + p_2 + p_3 = 1 \end{cases}$$

Определим характеристики СеМО, разбив их на две группы:

1) узловые характеристики:

а) загрузка узлов:

$$\rho_1 = p_0 + p_1 + p_2; \quad \rho_2 = p_1 + p_2 + p_3;$$

б) коэффициенты простоя узлов:

$$\eta_1 = 1 - \rho_1; \quad \eta_2 = 1 - \rho_2;$$

в) среднее число заявок в очередях перед узлами:

$$l_1 = 2p_0 + 1p_1; \quad l_2 = p_3;$$

г) среднее число заявок в узлах СеМО:

$$m_1 = 3p_0 + 2p_1 + p_2;$$
 $m_2 = p_1 + 2p_2 + 3p_3;$

д) среднее время ожидания заявок в узлах СеМО:

$$w_1 = \frac{l_1}{\alpha_1 \lambda_0}; \quad w_2 = \frac{l_2}{\alpha_2 \lambda_0};$$

где α_1 и α_2 - коэффициенты передачи соответственно узла 1 и узла 2; λ_0 - производительность замкнутой СеМО, рассчитываемая как сетевая характеристика (см. ниже);

е) среднее время пребывания заявок в узлах СеМО:

$$u_1 = \frac{l_1}{\alpha_1 \lambda_0}; \quad u_2 = \frac{l_2}{\alpha_2 \lambda_0};$$

ж) нагрузка в узлах сети:

$$y_1 = \alpha_1 \lambda_0 b_1; \quad y_2 = \alpha_2 \lambda_0 b_2;$$

2) сетевые характеристики:

а) производительность замкнутой СеМО:

$$\lambda_0 = \frac{\rho_1}{\alpha_1 b_1} = \frac{2\rho_2}{\alpha_2 b_2};$$

где α_1 и α_2 - коэффициенты передачи соответственно узла 1 и узла 2;

б) среднее число параллельно работающих *узлов* сети, определяемое как суммарная *загрузка* всех узлов CeMO:

$$R = \rho_1 + \rho_2;$$

в) среднее число параллельно работающих *приборов* во всех узлах сети, определяемое как суммарная *нагрузка* всех узлов CeMO:

$$Y = y_1 + y_2;$$

г) суммарное число заявок во всех очередях СеМО:

$$L = l_1 + l_2;$$

д) суммарное (полное) время ожидания заявок в СеМО:

$$W = \alpha_1 w_1 + \alpha_2 w_2;$$

е) время пребывания заявок в СеМО:

$$U = \alpha_1 u_1 + \alpha_2 u_2;$$

Суммарное число заявок, циркулирующих в СеМО, рассчитываемое как $M=m_1+m_2$, должно совпадать с заданным числом заявок в замкнутой сети: M=3 .