CS4384: Automata Theory Homework Assignment 2

Matthew McMillian mgm160130@utdallas.edu

September 20, 2018

1. Let $L = \{ 0^i 1^j 0^k \mid k > i + j \}$. Use the pumping lemma to show that L is not regular.

Assume L is regular and let p be it's pumping length. Define S such that $S = 0^p 1^p 0^{2p+1}$, such that |S| > p and that $S \in L$. Let S = xyz be a partitioning satisfying $|xy| \le p$, and |y| > 0. Since we know |y| > 0, we know that y contains only zeros. Since y contains some number of zeros equal to |y| = k for some $k \in (0,p]$, we can conclude that xy contains 0^{p-k} zeros. Let i = 2 such that $S' = xy^iz = xy^2z = xyyz = 0^{p-k}0^k0^k1^p0^{2p+1}$. Simplifying we obtain $0^{p+k}1^p0^{2p+1}$. This contradicts the pumping lemma, since we have come up with a string S' with pumping length p that is NOT in the language L since k < i + j for S'. Thus, this language is not regular.

2. Let $L = \{ w \mid w \in \{0,1\}^* \text{ } w \text{ is not a palindrome } \}$. Use the pumping lemma to show that L is not regular.

By closure properties of regular languages, if L is regular then \overline{L} is also regular. Take for consideration the compliment of L, such that $\overline{L} = \{ w \mid w \in \{0,1\}^* \ w \text{ is a palindrome } \}$. Assume \overline{L} is regular and let p be it's pumping length. Define S such that $S = 0^p 1^p 0^p$, such that |S| > p and that $S \in \overline{L}$. Let S = xyz be a partitioning satisfying $|xy| \leq p$, and |y| > 0. Since we know |y| > 0, we know that y contains only zeros. Since y contains some number of zeros equal to |y| = k for some $k \in (0,p]$, we can conclude that xy contains 0^{p-k} zeros. Let i = 2 such that $S' = xy^iz = xy^2z = xyyz = 0^{p-k}0^k0^k1^p0^p$. Simplifying we obtain $0^{p+k}1^p0^p$. This contradicts the pumping lemma, since we have come up with a string S' with pumping length p that is NOT in the language \overline{L} since S' is not a palindrome because k is strictly greater than zero. Thus since \overline{L} is not regular, the language L is not regular.

3. Let L = { $0^m1^n \mid m \neq n$ }. Use closure properties of regular languages to prove that L is not regular.

By closure properties of regular languages, if L is regular then \overline{L} is also regular. Take for consideration the compliment of L, such that $\overline{L} = \{ 0^m 1^n \mid m = n \}$. Define S such that $S = 0^p 1^p$, such that |S| > p and that $S \in \overline{L}$. Assume \overline{L} is regular and let p be its pumping length. Let S = xyz be a partitioning satisfying $|xy| \le p$, and |y| > 0. Since we know |y| > 0, we know that y contains only zeros. Since y contains some number of zeros equal to |y| = k for some $k \in (0,p]$, we can conclude that xy contains 0^{p-k} zeros. Let i = 2 such that $S' = xy^iz = xy^2z = xyyz = 0^{p-k}0^k0^k1^p$. Simplifying we obtain $0^{p+k}1^p$. This contradicts the pumping lemma, since we have come up with a string S' with pumping length p that is NOT in the language \overline{L} since $m \ne n$ since k is greater than zero. Thus since \overline{L} is not regular, the language L is not regular.

4. Let $\Sigma = \{0, 1, +, =\}$. Let ADD = $\{x = y + z \mid x, y, z \text{ are binary integers, and x is the sum of y and z}. Use the pumping lemma to prove ADD is not regular.$

Assume ADD is regular and let p be its pumping length. Define S such that $S = 1^{p+1} = 10^p + 1^p$, such that |S| > p and that $S \in L$. Let S = xyz be a partitioning satisfying $|xy| \le p$, and |y| > 0. Since we know |y| > 0, we know that y contains only ones. Since y contains some number of ones equal to |y| = k for some $k \in (0,p]$, we can conclude that xy contains 1^{p-k} ones. Let i = 0 such that $S' = xy^iz = xy^0z = xz = 1^{p+1-k} = 10^p + 1^p$. This contradicts the pumping lemma, since we have come up with a string S' with pumping length p that is NOT in the language L since k is greater than 0; S' will never be true. Thus, we can conclude that ADD is not regular.

5. Let $L = \{ 1^k y \mid y \in \{0,1\}^* \text{ and y contains at least k 1s for k } \geq 1 \}$. Use the pumping lemma to prove L is not regular.

Assume L is regular and let p be its pumping length. Define S such that $S = 1^p 1^p$, such that |S| > p and that $S \in L$. Let S = xyz be a partitioning satisfying $|xy| \le p$, and |y| > 0. Since we know |y| > 0, we know that y contains only ones. Since y contains some number of ones equal to |y| = k for some $k \in (0,p]$, we can conclude that xy contains 1^{p-k} ones. Let i = 2 such that $S' = xy^iz = xy^2z = xyyz = 1^{p-k}1^k1^k1^p$. Simplifying we obtain $1^{p+k}1^p$. This contradicts the pumping lemma, since we have come up with a string S' with pumping length p that is NOT in the language L since y does not have at least 'k' ones. Thus, this language is not regular.