Пример бесконечномерного пространства

C[a,b] — пространство непрерывных функций на отрезке [a,b]. В нём будут линейно независимы следующие функции: $1,\ t,\ t^2,\ \ldots,\ t^n,\ \ldots$ $\forall n.$

2.4 Подпространства

Определение

Подпространством линейного пространства \mathcal{L} называется подмножество \mathcal{N} из \mathcal{L} , замкнутое относительно законов композиции в \mathcal{L} , то есть такое что $\forall x, y \in \mathcal{N}$ и $\alpha \in \mathbb{R}(\mathbb{C})$ выполнено: $x + y \in \mathcal{N}$, $\alpha x \in \mathcal{N}$.

Теорема 12

Подпространство $\mathscr N$ линейного пространства $\mathcal L$ само будет являться линейным пространством, если действия с элементами в $\mathscr N$ введены также как в $\mathcal L$ (в этом случае говорят, действия в $\mathscr N$ индуцированы из $\mathcal L$).

Доказательство:

Действия в \mathcal{L} удовлетворяют аксиомам линейного пространства. Следовательно, действия в \mathscr{N} также удовлетворяют аксиомам линейного пространства (так как они были индуцированы из \mathcal{L}).

Проверим, что нулевой и противоположный элементы принадлежат $\mathcal N$. Действительно, рассмотрим произвольный элемент $x \in \mathcal N$. Тогда $0 \cdot x \in \mathcal N$.

/ По определению подпространства $\alpha \cdot x \in \mathcal{N}$, где $\alpha \in \mathbb{R}(\mathbb{C})$.

По теореме 3 (формула (79)): $\mathbb{O} = 0 \cdot x$, то есть $\mathbb{O} \in \mathcal{N}$.

Рассмотрим противоположный к x элемент (-x). Согласно теореме 4 (формула (82)): $-x = (-1) \cdot x$, то есть $(-x) \in \mathcal{N}$.

Определение

Тривиальным подпространством называют подпространство, состоящее

из одного нулевого элемента и подпространство, совпадающее со всем пространством $\mathcal{L}.$

Примеры подпространств:

- 1) Пусть \mathcal{L} пространство трехмерных векторов, исходящих из начала координат (0,0,0). Рассмотрим плоскость, проходящую через точку (0,0,0). Множество векторов, лежащих в этой плоскости это подпространство \mathcal{N} пространства \mathcal{L} .
- 2) Пространство P^m полиномов степени $\leq m$ является подпространством пространства P^n полиномов степени $\leq n \quad \forall m \leq n$.

Для подпространств сохраняется смысл понятия линейной зависимости векторов, базиса, размерности.

Теорема 13

Если \mathcal{N} – подпространство в \mathcal{L} , то $dim \mathcal{N} \leq dim \mathcal{L}$.

Доказательство:

Линейно независимый набор векторов в \mathscr{N} будет линейно независимым и в \mathscr{L} тоже, то есть число линейно независимых векторов в \mathscr{N} не может быть больше $dim \mathscr{L}$.

Теорема 14

Базис подпространства всегда можно дополнить до базиса всего пространства.

Доказательство:

Пусть e_1, e_2, \ldots, e_k – базис в \mathcal{N} .

Предположим также, что $\tilde{e_1}, \ \tilde{e_2}, \ \ldots, \ \tilde{e_n}$ – базис в \mathcal{L} .

Рассмотрим объединённый набор $e_1, e_2, \ldots, e_k, \tilde{e_1}, \tilde{e_2}, \ldots, \tilde{e_n}$. Ясно, что произвольный элемент $x \in \mathcal{L}$ можно представить в виде линейной комбинации элементов этого набора, то есть он полный. Но этот набор линейно зависим. Проредим его, вычеркивая из него элементы, линейно выражающиеся через предыдущие. Полученный в итоге линейно

независимый набор будет базисом в \mathcal{L} . Кроме того, он содержит набор e_1, e_2, \ldots, e_k . Этот прием носит название "прополки".

Пример дополнения базиса

Пусть $\mathcal{L}=V_3$ – трехмерное пространство векторов с базисом: $e_1=\vec{i},\ e_2=\vec{j},\ e_3=\vec{k}.$ Пусть \mathscr{N} – пространство векторов, лежащих в плоскости XOY с базисом: $e_1=\vec{i}+\vec{j},\ e_1=\vec{i}-\vec{j}.$

Дополним базис в \mathcal{N} до базиса в \mathcal{L} . Рассмотрим объединённый набор:

$$\vec{i} + \vec{j}, \quad \vec{i} - \vec{j}, \quad \vec{i}, \quad \vec{j}, \quad \vec{k}.$$

Согласно процедуре "прополки", из этого набора последовательно вычеркиваем \vec{i} и \vec{j} , так как:

$$\vec{i} = \frac{1}{2}(\vec{i} + \vec{j}) + \frac{1}{2}(\vec{i} - \vec{j}),$$
$$\vec{j} = \frac{1}{2}(\vec{i} + \vec{j}) - \frac{1}{2}(\vec{i} - \vec{j}).$$

Полученный набор $\vec{i} + \vec{j}$, $\vec{i} - \vec{j}$, \vec{k} будет базисом в \mathcal{L} .

Замечание

Базис подпространства, вообще говоря, нельзя выбрать из векторов базиса пространства.

Пример

Пусть $\mathcal{L} = V_2$ – двумерное пространство векторов на плоскости XOY с базисом \vec{i} , \vec{j} . Пусть \mathscr{N} – подпространство векторов на плоскости XOY, лежащих на прямой y=x с базисом $\vec{i}+\vec{j}$. Здесь базис в подпространстве \mathscr{N} нельзя выбрать из векторов \vec{i} , \vec{j} , так как ни один из них не лежит на прямой y=x.

Определение

Линейной оболочкой $V\{e_i\}_{i=1}^k$ набора векторов $\{e_i\}_{i=1}^k \in \mathcal{L}$ называется

множество всевозможных линейных комбинаций векторов $\{e_i\}$ с коэффициентами из $\mathbb{R}(\mathbb{C})$.

Теорема 15

Линейная оболочка $V\{e_i\}_{i=1}^k$ является подпространством пространства \mathcal{L} , причём $dim V\{e_i\}_{i=1}^k \leq dim \mathcal{L}$.

Доказательство:

Пусть x есть вектор из $V\{e_i\}_{i=1}^k$, то есть он является линейной комбинацией векторов $\{e_i\}_{i=1}^k$. Пусть y – вектор из $V\{e_i\}_{i=1}^k$, то есть он является линейной комбинацией векторов $\{e_i\}_{i=1}^k$.

Тогда x+y также будет линейной комбинацией векторов $\{e_i\}_{i=1}^k$, то есть $x+y\in V\{e_i\}_{i=1}^k$.

Пусть $\alpha \in \mathbb{R}(\mathbb{C})$. Тогда αx будет линейной комбинацией векторов $\{e_i\}_{i=1}^k$, то есть $\alpha x \in V\{e_i\}_{i=1}^k$. Следовательно, операции сложения векторов и умножения вектора на число не выводят из $V\{e_i\}_{i=1}^k$, то есть $V\{e_i\}_{i=1}^k$ есть подпространство пространства \mathcal{L} . Значит по теореме 13: $dim V\{e_i\}_{i=1}^k \leq dim \mathcal{L}$.

Замечание

Линейную оболочку $V\{e_i\}_{i=1}^k$ будем называть также подпространством пространства \mathcal{L} , натянутым на векторы $\{e_i\}_{i=1}^k$.

Замечание

Подпространство, натянутое на векторы $\{e_i\}_{i=1}^k$, является наименьшим подпространством, содержащим эти векторы.

Onpeделение

Пусть \mathcal{N} – подпространство в \mathcal{L} , x_0 – фиксированный вектор. Множество M всех векторов вида $x=x_0+y$, где $y\in\mathcal{N}$, называется линейным многообразием размерностью $dim\mathcal{N}$. Обозначают его символом $x_0+\mathcal{N}$.

Будем рассматривать в \mathbb{R}^3 радиус-векторы (векторы с началом (0,0,0)). Пусть \mathcal{N} – плоскость, проходящая через (0,0,0).

Тогда концы векторов из линейного многообразия $x_0 + \mathcal{N}$ будут лежать на плоскости, параллельной плоскости \mathcal{N} и смещённой на вектор x_0 .

Определение

Пусть $dim \mathcal{L} = n$. Тогда одномерное линейное многообразие называется прямой, (n-1)-мерное – гиперплоскостью. Все остальные k-мерные линейные многообразия называются k-мерными плоскостями.

Теорема 16

Множество M всех решений неоднородной системы образуют линейное многообразие в $\mathbb{R}^n(\mathbb{C}^n)$.

$$M = y + \mathcal{N},\tag{92}$$

где y — некоторое решение неоднородной системы, ${\mathscr N}$ — пространство решений соответствующей однородной системы.

Доказательство:

Пусть M – множество решений неоднородной системы:

$$a_{i1}x_1 + a_{i2}x_2 + \dots + a_{in}x_n = b_i, \quad i = 1, 2, \dots, m.$$
 (93)

Пусть
$$x = (x_1, \ldots, x_n) \in M, y = (y_1, \ldots, y_n) \in M.$$

Рассмотрим $x - y = (x_1 - y_1, \dots, x_n - y_n)$. Подставим его в уравнение (93):

$$a_{i1}(x_1 - y_1) + \dots + a_{in}(x_n - y_n) = (a_{i1}x_1 + a_{i2}x_2 + \dots + a_{in}x_n) - (a_{i1}y_1 + a_{i2}y_2 + \dots + a_{in}y_n) = b_i - b_i = 0, \quad i = 1, 2, \dots, m.$$

Значит разность решений неоднородной системы есть решение соответ-

ствующей однородной системы:

$$a_{i1}x_1 + a_{i2}x_2 + \dots + a_{in}x_n = 0, \quad i = 1, 2, \dots, m.$$
 (94)

Обозначим за \mathcal{N} множество решений однородной системы (94). Оно является линейным пространством (было доказано в примере 6 линейных пространств, параграф 2.2). Правила действий в \mathcal{N} такие же как в $\mathbb{R}^n(\mathbb{C}^n)$. Следовательно, \mathcal{N} является подпространством $\mathbb{R}^n(\mathbb{C}^n)$.

Итак, мы доказали, что если $x,y\in M$, то $x-y\in \mathcal{N}$. Пусть x – произвольное решение неоднородной системы (93), y – некоторое фиксированное решение системы (93). Тогда x-y – решение однородной системы (94), то есть $z=x-y\in \mathcal{N}$. Следовательно, любое решение $x\in M$ представимо в виде x=y+z, где $z\in \mathcal{N}$. Это означает, что $M\subset y+\mathcal{N}$.

Докажем обратное включение. Пусть $y \in M, x \in \mathcal{N}$. Рассмотрим y + x. Подставим его в уравнение (93):

$$a_{i1}(x_1 + y_1) + \dots + a_{in}(x_n + y_n) = (a_{i1}x_1 + a_{i2}x_2 + \dots + a_{in}x_n) + (a_{i1}y_1 + a_{i2}y_2 + \dots + a_{in}y_n) = 0 + b_i, \quad i = 1, 2, \dots, m.$$

Значит y+x удовлетворяет неоднородной системе: $y+x\in M$. Следовательно, $y+\mathcal{N}\subset M$. Итак, мы получили:

$$\left. \begin{array}{l} y + \mathcal{N} \subset M \\ y + \mathcal{N} \supset M \end{array} \right\} \Rightarrow M = y + \mathcal{N}.$$

Альтернативная формулировка теоремы 16

Общее решение линейной неоднородной системы (93) есть сумма общего решения соответствующей линейной однородной системы (94) и частного решения неоднородной системы (93).

Определение

Семейство решений однородной системы линейных уравнений, являющееся базисом в пространстве всех его решений, называется фундаментальной системой решений.

2.5 Линейное нормированное пространство

Определение

Линейное пространство \mathcal{L} называется нормированным, если любому его элементу x поставлено в соответствие вещественное число, называемое нормой и обозначаемое ||x||, причем выполнено:

- 1) $||x|| \ge 0$, причем ||x|| = 0 только при x = 0;
- 2) $||x + y|| \le ||x|| + ||y||, x, y \in \mathcal{L};$
- 3) $\|\alpha x\| = |\alpha| \cdot \|x\| \quad \forall \alpha \in \mathbb{R}(\mathbb{C}).$

Линейное нормированное пространство становится метрическим, если ввести в нем расстояние $\rho(x,y) = \|x-y\|$.

Справедливость аксиом метрического пространства вытекает из свойств 1–3 нормы. Например, проверим свойство 2 (симметрия).

$$\rho(y,x) = \|y - x\| = \|(-1) \cdot (x - y)\| = |-1| \cdot \|x - y\| = \rho(x,y).$$

Примеры введения норм

- 1) Множество вещественных чисел становится нормированным пространством, если положить ||x|| = |x|.
- 2) В пространстве \mathbb{R}^n с элементами $x = (\xi_1, \dots, \xi_n)$ можно положить

$$||x||_2 = \sqrt{\sum_{k=1}^n |\xi_k|^2}.$$

В этом же пространстве можно ввести норму по-другому:

$$||x||_1 = \sum_{k=1}^n |\xi_k|$$
 или $||x||_\infty = \max_{1 \le k \le n} |\xi_k|$.

Аксиомы нормы выполняются.

Замечание

При $n = \infty$ соответствующие нормы называются ℓ^2 (евклидова норма), ℓ^1 , ℓ^∞ (здесь вместо тах в определении следует написать sup).

3) Норма в C[a,b] – пространстве всех непрерывных функций на [a,b]:

$$||f|| = \max_{a \le t \le b} |f(t)|.$$

Пример необычной геометрии в линейном нормированном пространстве

Пусть в двумерном линейном пространстве (на плоскости) норма введена следующим образом:

$$||f||_1 = |x| + |y|,$$
 где $f = (x, y).$ (95)

Единичным кругом в нем служит квадрат следующей геометрии:

$$|x| + |y| = 1 \Leftrightarrow \pm x \pm y = 1.$$

Рис. 3: Единичный круг в пространстве с нормой $||f||_1 = |x| + |y|$

Рис. 4: Проекция точки P на подпространство

В обычном двумерном евклидовом пространстве, если заданы проходящая через начало координат прямая l и не лежащая на ней точка P, найдется единственная точка \widetilde{P} на l такая, что расстояние $P\widetilde{P}$ минимально. \widetilde{P} называется проекцией точки P на подпространство.

Выберем подпространство M следующим образом:

$$M = \{(x, y) : x = y\}.$$

Найдем проекцию точки P(1,0) на подпространство M. Найдем расстояние между точкой P(1,0) и произвольной точкой $\widetilde{P}(x,x) \in M$, где $x \in \mathbb{R}$:

$$\|P-\widetilde{P}\|=|1-x|+|x|,$$
 при $0\leq x\leq 1$:
$$\|P-\widetilde{P}\|=1-x+x=1,$$
 $x>1$:
$$\|P-\widetilde{P}\|=x-1+x=2x-1>1,$$
 $x<0$:
$$\|P-\widetilde{P}\|=1-x-x=1-2x>1.$$

Мы получили, что минимальное расстояние между точками P и \widetilde{P} равно 1, но достигается оно не в одной точке, а на целом отрезке при $0 \le x \le 1$. Таким образом, проекция точки P в данном пространстве уже не будет единственной, а значит и вводить её нет смысла.

2.6 Евклидово пространство

Определение

Комплексное линейное пространство E называется **евклидовым**, если любым двум его элементам f,g поставлено в соответствие комплексное число, называемое скалярным произведением и обозначаемое (f,g), причем выполнено:

- 1) $(f,g) = \overline{(g,f)}$ симметричность;
- 2) (f+g,h)=(f,h)+(g,h) дистрибутивность скалярного произведения относительно сложения векторов;
- 3) $(\alpha f, g) = \alpha(f, g), \ \alpha \in \mathbb{C}$ вынесение числового множителя;
- 4) $(f, f) \ge 0$ неотрицательность скалярного произведения.

Если
$$(f, f) = 0$$
, то $f = 0$.

Примеры

1) В пространстве \mathbb{R}^3 скалярное произведение вводится по правилу:

$$(\vec{a}, \vec{b}) = a_x b_x + a_y b_y + a_z b_z. \tag{96}$$

2) В пространстве C[a,b] можно ввести скалярное произведение так:

$$(f,g) = \int_{a}^{b} f(t)\overline{g(t)}dt. \tag{97}$$

Свойства скалярного произведения

1) Неравенство Коши-Буняковского-Шварца:

$$|(f,g)|^2 \le (f,f)(g,g).$$
 (98)

Эквивалентная формулировка:

$$|(f,g)| \le ||f|| ||g||. \tag{99}$$

Доказательство:

1 случай.

Вещественное евклидово пространство, то есть $(f,g) \in \mathbb{R}$, $\alpha \in \mathbb{R}$, допустимо умножение только на вещественное число. По аксиоме 4 из определения евклидова пространства имеем:

$$(f + \alpha g, f + \alpha g) \ge 0 \quad \forall \alpha \in \mathbb{R},$$

$$(f, f) + (f, \alpha g) + (\alpha g, f) + \alpha^{2}(g, g) \ge 0.$$

$$(f, \alpha g) = \overline{(\alpha g, f)} = \overline{\alpha(g, f)} = \overline{\alpha}(f, g) = /\alpha \in \mathbb{R}/ = \alpha(f, g).$$

$$(\alpha g, f) = \alpha(g, f) = \alpha \overline{(f, g)} = /(f, g) \in \mathbb{R}/ = \alpha(f, g).$$

$$(f, f) + 2\alpha(f, g) + \alpha^{2}(g, g) \ge 0, \quad \forall \alpha.$$

Квадратный трехчлен будет неотрицательным при любом α , если выполнены следующие условия:

$$\left\{\begin{array}{l} (g,g)\geq 0 \ (\text{по аксиоме }4)\\ D\leq 0 \end{array}\right. \Leftrightarrow 4(f,g)^2-4(f,f)(g,g)\leq 0 \Leftrightarrow \\ \Leftrightarrow |(f,g)|^2\leq (f,f)(g,g).$$

2 случай.

Комплексное евклидово пространство, то есть $(f,g) \in \mathbb{C}, \alpha \in \mathbb{C}$. Пусть $(f,g) = |(f,g)|e^{i\varphi}, \ \alpha = |\alpha|e^{i\theta}$.

$$(f + \alpha g, f + \alpha g) \ge 0, \quad \forall f, g \in E, \quad \forall \alpha \in \mathbb{C},$$

$$(f, f) + \alpha(g, f) + \overline{\alpha}(f, g) + \alpha \overline{\alpha}(g, g) \ge 0.$$

Учитывая, что: $(g, f) = |(f, g)|e^{-i\varphi}$, $\overline{\alpha} = |\alpha|e^{-i\theta}$:

$$(f,f) + |\alpha|e^{i\theta} \cdot |(f,g)|e^{-i\varphi} + |\alpha|e^{-i\theta} \cdot |(f,g)|e^{i\varphi} + |\alpha|^2(g,g) \ge 0,$$

$$(f,f) + |\alpha| \cdot |(f,g)| \cdot \underbrace{(e^{i\theta - i\varphi} + e^{-i\theta + i\varphi})}_{=2\cos(\theta - \varphi)} + |\alpha|^2(g,g) \ge 0 \quad \forall \ \alpha, f, g.$$

$$\begin{cases} (g,g) \ge 0 \text{ (выполнено)} \\ D \le 0 \end{cases} \Leftrightarrow$$

$$\Leftrightarrow |(f,g)|^2 \cdot 4\cos^2(\theta - \varphi) - 4(g,g)(f,f) \le 0. \tag{100}$$

Неравенство (100) выполнено для каждых θ, φ . В частности, оно выполнено при $\theta = \varphi$:

$$|(f,g)|^2 \cdot 4 - 4(g,g)(f,f) \le 0 \Leftrightarrow |(f,g)|^2 \le (f,f)(g,g).$$

2) Равенство в неравенстве Коши-Буняковского-Шварца

$$|(f,g)|^2 \le (f,f)(g,g).$$

достигается тогда и только тогда, когда векторы f и g пропорциональны: $g=\alpha f,\ \alpha\in\mathbb{C}.$

Доказательство:

Достаточность.

Простой подстановкой нетрудно убедиться, что если $g=\alpha f,\ \alpha\in\mathbb{C},$ то

равенство достигается: $|(f,g)|^2 = (f,f)(g,g)$.

Необходимость.

Покажем, что если векторы f и g непропорциональны, то равенство не может быть достигнуто. Рассмотрим вектор $h = g - \frac{(g,f)}{(f,f)}f$. Скалярно домножим обе части равенства на f и получим:

$$(g,f) - \frac{(g,f)}{(f,f)}(f,f) = (h,f) \iff 0 = (h,f), \text{ то есть } h \perp f.$$

Итак, $g=\alpha f+h$, где $\alpha=\frac{(g,f)}{(f,f)}$, причем $h\perp f$. Преобразуем обе части неравенства Коши-Буняковского-Шварца.

$$|(f,g)|^2 = |(f,\alpha f + h)|^2 = |\overline{\alpha}(f,f) + \underbrace{(f,h)}_{=0}|^2 = |\overline{\alpha}|^2 |(f,f)^2| = |\alpha|^2 ||f||^4.$$

С другой стороны,

$$||f||^{2}||g||^{2} = ||f||^{2}(g,g) = ||f||^{2}(\alpha f + h, \alpha f + h) =$$

$$= ||f||^{2} \Big(|\alpha|^{2} ||f||^{2} + \alpha \underbrace{(f,h)}_{=0} + \overline{\alpha} \underbrace{(h,f)}_{=0} + ||h||^{2} \Big) =$$

$$= |\alpha|^{2} ||f||^{4} + \underbrace{||f||^{2}}_{>0} \underbrace{||h||^{2}}_{>0} > |\alpha|^{2} ||f||^{4}.$$

Следовательно, $|(f,g)|^2 < \|f\|^2 \|g\|^2$, то есть равенство в неравенстве Коши-Буняковского-Шварца не достигается в случае когда векторы f и g непропорциональны.

3) Всякое евклидово пространство является нормированным с нормой $||f|| = \sqrt{(f,f)}$ (то есть норму можно ввести таким образом).

Доказательство:

Проверим аксиомы линейного нормированного пространства. Аксиомы 1 и 3 очевидны, проверим аксиому 2 (неравенство треугольника):

$$||f+g|| = \sqrt{(f+g,f+g)} = \sqrt{(f,f) + (f,g) + (g,f) + (g,g)} =$$

$$= /(f,g) + (g,f) = 2\text{Re}(f,g) / = \sqrt{(f,f) + 2\text{Re}(f,g) + (g,g)}.$$

Используя неравенство Коши-Буняковского:

$$\operatorname{Re}(f,g) \le |(f,g)| \le \sqrt{(f,f)} \cdot \sqrt{(g,g)},$$

$$\sqrt{(f,f) + 2\operatorname{Re}(f,g) + (g,g)} \le \sqrt{(f,f) + 2\sqrt{(f,f)}\sqrt{(g,g)} + (g,g)} =$$

$$= \sqrt{\left(\sqrt{(f,f)} + \sqrt{(g,g)}\right)^2} = \sqrt{(f,f)} + \sqrt{(g,g)} = ||f|| + ||g||.$$

Замечание

Из доказательства видно, что равенство в неравенстве треугольника $\|f+g\|=\|f\|+\|g\|$ достигается тогда же, когда и в неравенстве Коши-Буняковского-Шварца, то есть в случае пропорциональности векторов f и $g:\ g=\alpha f.$

4) Угол между векторами

Определение

Углом между двумя векторами евклидова пространства называется число $\varphi \in [0,\pi]$, для которого выполнено:

$$\cos \varphi = \frac{(x,y)}{\|x\| \cdot \|y\|}, \quad \text{где } \|x\| \neq 0, \ \|y\| \neq 0.$$
 (101)

Определение корректно. Такое φ найдется, поскольку по неравенству Коши-Буняковского (формула (98)) выполнено:

$$\frac{|(x,y)|}{\|x\|\cdot\|y\|} \le 1, \quad \text{где } \|x\| \ne 0, \ \|y\| \ne 0. \tag{102}$$

Onpeделение

Элементы x, y называются ортогональными, если (x, y) = 0 (то есть угол между векторами равен $\frac{\pi}{2}$). Нулевой вектор по определению отогонален любому вектору.

Замечание

В пространстве \mathbb{R}^3 введенный угол совпадает с обычным углом между векторами, а ортогональность тождественна перпендикулярности векторов.

Ортонормированный базис

Определение

Система векторов e_1, e_2, \ldots, e_n называется ортогональной, если $(e_i, e_j) = 0$ при $i \neq j$. И ортонормированной, если:

$$(e_i, e_j) = \begin{cases} 0, & i \neq j, \\ 1, & i = j. \end{cases}$$
 (103)

Теорема 17

Ортонормированная система векторов линейно независима.

Доказательство:

Пусть e_1, e_2, \ldots, e_n — ортонормированная система, а также пусть

$$\alpha_1 e_1 + \alpha_2 e_2 + \ldots + \alpha_n e_n = \mathbb{O}. \tag{104}$$

Докажем, что $\alpha_1 = \alpha_2 = \ldots = \alpha_n = 0$, что и означает линейную независимость векторов. Домножим равенство (104) скалярно на e_i . В силу свойства ортонормированности (103) получим: $\alpha_i(e_i, e_i) = \alpha_i = 0$, $\forall i$.

Теорема 18

В n-мерном евклидовом пространстве существует ортонормированный базис.

Доказательство:

Докажем методом математической индукции по размерности пространства n.

1) База индукции. n = 1.

В одномерном пространстве ортонональность базисных векторов не имеет смысла. Для построения ортонормированного базиса достаточно взять любой ненулевой вектор и отнормировать его. Пусть $f \neq \mathbb{O}$. Тогда $e = \frac{f}{||f||}$ – ортонормированный базис.

2) Переход $n \to n+1$.

Пусть в любом n-мерном пространстве существует ортонормированный базис. Докажем, что ортонормированный базис существует в любом (n+1)-мерном пространстве. Рассмотрим некоторое евклидово (n+1)-мерное пространство и базис в нем: f_1, \ldots, f_{n+1} . Линейная оболочка $V\{f_i\}_{i=1}^n$ – это n-мерное пространство. По индукционному предположению в нем существует ортонормированный базис из n векторов, e_1, e_2, \ldots, e_n . Построим еще один единичный вектор e_{n+1} , отогональный всем e_i . Для этого рассмотрим вектор

$$\tilde{f}_{n+1} = f_{n+1} - \alpha_1 e_1 - \dots - \alpha_n e_n.$$
 (105)

Коэффициенты $\alpha_1, \ldots, \alpha_n$ выберем так, чтобы вектор \tilde{f}_{n+1} был ортогонален ко всем e_1, e_2, \ldots, e_n :

$$(\tilde{f}_{n+1}, e_i) = 0 \quad \forall i. \tag{106}$$

Подставим сюда \tilde{f}_{n+1} из формулы (105).

Тогда в силу ортонормированности e_1, e_2, \ldots, e_n получим:

$$(f_{n+1}, e_i) - \alpha_i = 0 \quad \forall i \implies \alpha_i = (f_{n+1}, e_i), \quad \forall i = 1, \dots, n.$$
 (107)

Вектор e_{n+1} выберем следующим образом:

$$e_{n+1} = \frac{\tilde{f}_{n+1}}{\|\tilde{f}_{n+1}\|}. (108)$$

Тогда $||e_{n+1}|| = 1$ и $(e_{n+1}, e_i) = 0$ $\forall i = 1, \ldots, n$.

Таким образом, векторы $e_1, e_2, \ldots, e_{n+1}$ образуют ортонормированную систему. По теореме 17 она линейно независима. Она полная, так как в ней (n+1) вектор. Следовательно, это ортонормированный базис.

Замечание

Рассмотренная в доказательстве процедура построения ортонормированного базиса называется ортогонализацией по Граму-Шмидту.

Пусть есть базис f_1, \ldots, f_n . Ортогонализуем его.

$$e_{1} = \frac{f_{1}}{||f_{1}||} = ||f_{1}||^{-1} \cdot f_{1},$$

$$e_{2} = (f_{2} - (f_{2}, e_{1})e_{1}) \cdot ||f_{2} - (f_{2}, e_{1})e_{1}||^{-1},$$

$$e_{3} = (f_{3} - (f_{3}, e_{1})e_{1} - (f_{3}, e_{2})e_{2})||(f_{3} - (f_{3}, e_{1})e_{1} - (f_{3}, e_{2})e_{2})||^{-1},$$

И так далее.

Пример

Пусть на плоскости задан базис $f_1=2\vec{i}, f_2=3\vec{i}+4\vec{j}$. Ортогонализуем его.

$$e_1 = ||2\vec{i}||^{-1} \cdot 2\vec{i} = \vec{i},$$

$$e_2 = \frac{3\vec{i} + 4\vec{j} - (3\vec{i} + 4\vec{j}, \vec{i})\vec{i}}{||3\vec{i} + 4\vec{j} - (3\vec{i} + 4\vec{j}, \vec{i})\vec{i}||} = \frac{3\vec{i} + 4\vec{j} - 3\vec{i}}{||4\vec{j}||} = \frac{4\vec{j}}{4} = \vec{j}.$$

Вычисление координат вектора в ортонормированном базисе

Пусть e_1, e_2, \ldots, e_n – ортонормированный базис в евклидовом пространстве E.

Тогда $\forall x \in E: \quad x = \xi_1 e_1 + \xi_2 e_2 + \ldots + \xi_n e_n$. Умножая это равенство на e_i , в силу ортонормированности базиса получим:

$$(x, e_i) = \xi_i, \quad i = 1, \ldots, n,$$

то есть координата вектора в ортонормированном пространстве находится по правилу:

$$\xi_i = (x, e_i). \tag{109}$$

3. Операторы

3.1 Линейный оператор. Матрица линейного оператора

Определение

Пусть \mathcal{L}_1 и \mathcal{L}_2 – линейные пространства. Если задан закон, в соответствии с которым любому элементу $x \in \mathcal{L}_1$ ставится в соответствие элемент $y \in \mathcal{L}_2$, то говорят, что задан оператор \hat{A} , действующий из \mathcal{L}_1 в \mathcal{L}_2 и пишут: $y = \hat{A}x$

Замечание

Здесь и в дальнейшем будем использовать следующие обозначения. Операторы будем обозначать буквами "со шляпкой": \hat{A} , \hat{B} , \hat{C} и так далее, а их матрицы – соответствующими обычными буквами: A,B,C и.т.д.

Onpedenenue

Оператор \hat{A} : $\mathcal{L}_1 \to \mathcal{L}_2$ называется линейным, если выполнено:

1)
$$\hat{A}(x_1 + x_2) = \hat{A}x_1 + \hat{A}x_2 \quad \forall x_1, x_2 \in \mathcal{L}_1$$

2)
$$\hat{A}(\alpha x) = \alpha \hat{A}x \quad \forall x \in \mathcal{L}_1, \quad \forall \alpha \in \mathbb{R}(\mathbb{C}).$$

Onpeделение

Линейный оператор, действующий из \mathcal{L}_1 в \mathcal{L}_2 называется гомоморфизмом. Если $\mathcal{L}_1 = \mathcal{L}_2$, то линейный оператор называется эндоморфизмом.