確率・統計第1回イントロ

兵庫県立大学 社会情報科学部 川嶋宏彰

kawashima@sis.u-hyogo.ac.jp

本日の講義内容

- なぜ統計学を学ぶのか?
 - 統計学と機械学習
 - ・ 統計学の歴史(覚えておきたい名前)
- ・アンケート
- 「確率・統計」では何を学ぶのか?
 - この講義では確率論よりも統計学をより深く学ぶ
 - ・ 前期・統計学との差分は?
- ・Rコマンダーの使い方
 - ・ 統計解析のツールとして
 - Rを学ぶ上でも参考になる

データ分析の流れ

- ・データと目的に応じて適切な分析を行う
 - 1. 適切にデータ収集(調査,実験・試験,ロギング)
 - 2. 分析手法
 - 3. 分析結果に基づく判断(何を明らかにしたいのか?)
 - 4. 判断に基づく行動・改善

統計学と機械学習

• 統計学と機械学習はオーバラップがある

統計学

確率・統計

- 記述統計
- 推測統計
 - 仮説検定
 - カイニ乗検定
 - t検定
 - 分散分析

•

- 統計的推定
 - 点推定
 - 区間推定
- 回帰・相関分析

多变量解析

- 多変量確率分布
- 数量化I, II, ···, 類
- 重回帰分析
- ・教師あり学習
 - 回帰
 - 分類
- 教師なし学習
 - ・ クラスタリング
 - 潜在変数モデル
 - 異常検知

強化学習

人の判断・機械の判断

- 統計学は人へ判断材料を提供する(ことが多い)
 - 記述統計,推測統計(区間推定,仮説検定)
- ・機械学習は予測精度を第一目標とする(ことが多い)
 - ・ 人を介さない自動判断も範疇(例:自動運転,株の自動取引)
 - 必ずしも判断の過程が見えなくてもよい(例:顔認識,物体認識)
 - ただし説明可能性 (explainability)・解釈可能性 (interpretability)もしばしば関心事(特に今とても盛り上がっている)
 - https://towardsdatascience.com/predicting-vs-explaining-69b516f90796

統計学と機械学習

- ・同じ手法でも見るポイントが異なる(例:回帰分析)
 - 統計学:結果を予測するためにどの要因が重要か
 - ・ 機械学習:状況が多少変わっても予測精度は落ちないか
- 「統計学と機械学習は何が違うのか?」はよく質問される
 - 人によって答えは違う. そもそもどこまで「機械学習」とするか?
 - オーバラップも多い
 - いくつかの記事を見ていろいろな意見を知ることをお勧め
 - 「わかる」vs.「できる」?
 - 統計学はどこまでを保証するのか?
- とはいえ、まずは双方学んでみなければよくわからない

記述統計と推測統計

- ・ 統計には「記述統計」と「推測統計」がある
 - 記述統計 (descriptive statistics)
 - データを要約・視覚化することで理解
 - ・ 平均, 中央値, 分散, 標準偏差, 相関係数, ヒストグラム, 散布図
 - 推測統計 (inferential statistics) (推計統計)
 - ・サンプリング調査を前提(右図)
 - ・部分から全体を知る
 - 仮説が正しいかを判断する(仮説検定)
 - ・ 母集団の統計量を見積もる(推定)
 - 過去から未来を予測する

推測統計も前期「統計学」で一部学んだ

探索的か確認的か

- ・仮説検証的データ分析の前にデータをよく見ること
 - 探索的データ分析 (exploratory data analysis)
 - まずはデータの特徴をよく知る
 - 各種統計量の確認,可視化(散布図,ヒストグラム・・)などを 通じて解析対象や仮説を明確化していく
 - ・ 主に記述統計
 - ・ 確認的(検証的)データ分析 (confirmatory data analysis)
 - ・仮説を検証する
 - 推測統計(標本調査など)・記述統計

統計学の歴史

- ・記述統計から推測統計へ
 - ~18世紀:統計の誕生
 - 国家 (Staat) の実態をとらえるための統計
 - ・今日の国勢調査などに対応
 - ・ ラプラス(数学者): 古典確率論の成立
 - ・19世紀:記述統計の成立
 - ・ <u>ガウス</u>による誤差や正規分布の研究 → 社会科学へも影響
 - <u>「近代統計学の父」 ケトレー</u>: 社会物理学
 「平均人」の概念・身体的データ (Body Mass Index: BMI)
 - ゴルトン (ダーウィンの従弟):進化論 → 生物統計 / 相関や回帰
 - <u>カール・ピアソン</u>:生物統計から数理統計学 / 記述統計を大成

統計学の歴史

- ・記述統計から推測統計へ
 - ・20世紀:推測統計の成立
 - <u>ゴセット</u>:ビールの醸造の研究からStudent's *t*分布を発見
 - <u>フィッシャー</u>:推測統計学の確立,農事試験場の実験計画研究
 - <u>ネイマン</u> / <u>エゴン・ピアソン</u>:推測統計学の確立
 - 信頼区間・仮説検定などの理論的体系を構築
 - (ベイズ統計:主観的な確率)
 - ・ 21世紀:あらゆる分野で活用
 - 経済・物理・疫学・生物・インターネット・マーケティング
 - コンピュータの利用

本日の講義内容

- なぜ統計学を学ぶのか?
 - 統計学と機械学習
 - ・ 統計学の歴史(覚えておきたい名前)
- ・アンケート
- 「確率・統計」では何を学ぶのか?
 - この講義では確率論よりも統計学をより深く学ぶ
 - ・前期・統計学との差分は?
- ・Rコマンダーの使い方
 - ・ 統計解析のツールとして
 - Rを学ぶ上でも参考になる

一部抜粋し講義で使用予定(個人情報を入れないように)

https://forms.gle/WSJhaEUmvZdUMrJM8

本日の講義内容

- なぜ統計学を学ぶのか?
 - ・ 統計学と機械学習
 - ・ 統計学の歴史(覚えておきたい名前)
- ・アンケート
- 「確率・統計」では何を学ぶのか?
 - この講義では確率論よりも統計学をより深く学ぶ
 - ・前期・統計学との差分は?
- Rコマンダーの使い方
 - ・ 統計解析のツールとして
 - Rを学ぶ上でも参考になる

データの種類

- ・データは質的データと量的データに分けられる
 - 量的データ:数値を値としてとる
 - 連続尺度:時間, 50kg, 5mmHg, 30歳

(間隔尺度や比例尺度など)

• 質的データ:記号を値としてとる

各行が各個人のデータ

- 名義尺度(例)血液型,投与有無,性別 ■■■
- ・順序尺度(例)サイズ {S, M, L}

_ Census income データセットより

H 1 1 /3 /	_	N	ılı.	ılı.	ılı.	ılı.	ılı	N	ılı.	
年齢	学歴	教育年数	結婚	職業	家族関係	人種	性別	週の労働時間	母国	収入\$
42	Bachelors	13	Married-civ-spouse	Exec-managerial	Husband	White	Male	40	United-States	>50K
37	Some-college	10	Married-civ-spouse	Exec-managerial	Husband	Black	Male	80	United-States	>50K
30	Bachelors	13	Married-civ-spouse	Prof-specialty	Husband	Asian-Pac-Islander	Male	40	India	>50K
23	Bachelors	13	Never-married	Adm-clerical	Own-child	White	Female	30	United-States	<=50K
32	Assoc-acdm	12	Never-married	Sales	Not-in-family	Black	Male	50	United-States	<=50K
40	Assoc-voc	11	Married-civ-spouse	Craft-repair	Husband	Asian-Pac-Islander	Male	40	?	>50K
34	7th-8th	4	Married-civ-spouse	Transport-moving	Husband	Amer-Indian-Eskimo	Male	45	Mexico	<=50K
25	HS-grad	9	Never-married	Farming-fishing	Own-child	White	Male	35	United-States	<=50K

統計学における要因と結果

- 要因と結果の関係を知りたい(予測につながる)
 - →判断・意思決定の材料

連続尺度

名義尺度

順序尺度

- ・新薬は血圧に対して効果があるか?
 - 要因:{新薬のむ or 新薬のまない}→結果:血圧が?mmHg下がった
- ・ 精密検査にまわす必要はあるか?
 - 要因:空腹時血糖值? mg/dl, 食後血糖值? mg/dl
 - → 結果: {検査必要 or 検査不要}
- ・お客さんに商品Aを薦めると購買行動につながるか?
 - ・ 要因: { 男性 or 女性 }, 年齢パナ, {過者に購入あり or 過去に購入なし} → 結果: {商品Aを購入する or 商品Aを購入しない}

様々なデータ分析手法

- ・データや分析目的に合わせ適切なデータ分析手法を選ぶ
 - ・ データの種類,サイズ,収集条件などを考慮

		要因・条件(説明変数)			
		量的	質的 📶 💵		
結果(目	量的	(散布図) 回帰分析 ニューラルネット サポートベクター回帰	(箱ひげ図) t検定 分散分析 数量化I類(回帰分析+ダミー変数) 回帰木		
(目的変数)	質 的 ■ ■	ロジスティック回帰分析 判別分析 ニューラルネット サポートベクターマシン ナイーブベイズ分類器	(クロス表,分割表) カイ二乗検定 フィッシャーの正確検定 数量化II類(判別分析+ダミー変数) 決定木		

新薬は血圧に対して効果があるか?

要因:{新薬のむ or 新薬のまない}

■■名義尺度 ・毎日が○mmUc下がった

→ 結果: 血圧が OmmHg下がった

🛂 連続尺度

平均に違いはあるのか?

- ・2つのグループの平均に差があるか調べる
 - ・ (例) 食○ログによればラーメンA店は平均3.1点,B店は平均3.3点
 - ・兵子さんは「ラーメン激戦区の老舗A店も,○○系ブームに押されB店より評価が落ちている」と結論づけたがこれは正しいのか? (ラーメン店A, Bを評価した人は全員同程度の基準を持つと仮定)

A店 (38評価)

評価 ID	点数			
1	2			
1 2 3 4	3			
3	1			
4	2			
•••	•••			
38	3			

平均 3.1

B店 (41評価)

評価 ID	点数
1	3
2	2
2 3 4	5
4	4
•••	•••
41	4

平均3.3

仮説検定 (t検定)

出口調査と得票率

- ・出口調査から得票率の信頼区間を推定する(区間推定)
 - ・ 候補者A, Bの選挙で、出口調査ではAが63票、Bが37票であった
 - Aの最終的な得票率はどの範囲で見積もればよいか?

出口調査データ

対象者ID	投票先
1	В
2	В
3	Α
4	В
•••	•••
100	Α

隼	딁	·表
不		コン

候補A	候補B	計
63	37	100

母比率の区間推定 ○%信頼区間 (上の例は99%)

分布に偽りはないか?

- 適合度検定で想定と異なる分布を見分ける
 - ・ (例) 子供会のくじ屋に「1等: 10%, 2等: 30%, 外れ: 60%」の看板
 - ・ 神太君は1万円つぎ込んで100回くじを引きログを取った
 - ・ 神太君は文句を言ったが,くじ屋のおじさんには偶然といわれた
 - 再度文句を言うべきか?それとも偶然なのか?

整形済みログデータ

試行	0 (外れ), 1, 2
1	0
2	2
3	0
4	1
•••	•••
100	0

集計表

1等	2等	外れ	計
2	20	78	100

適合度検定 (カイニ乗検定)

ウェブのA/Bテスト

- ・A/Bテストでどちらのデザインがよいかを調べる
 - ・ WebサービスやWeb広告のデザイン
 - ・メニュー配置,色,広告の画像・・・の最適化 (optimization)
 - ・ ユーザ訪問時に出すデザインを変える →どちらがクリック率が高いか?

整形済みログデータ

ユーザ番号	A or B	クリック?
1	Α	1
2	В	0
•••	•••	•••
1000	В	1

クロス集計表(分割表)

	No	Yes
Α	495	5
В	490	10

仮説検定 (母比率の検定, カイニ乗検定)

「確率・統計」の範囲(シラバスより)

- 1. 確率・統計の概要
- 2. データの要約
- 3. 確率と確率分布
- 4. 確率論と統計学
- 5. 大数の法則と中心極限定理
- 6. 母平均の検定と推定
- 7. 分散分析
- 8. 中間テストとこれまでのまとめ

- 9. データ収集と実験計画
- 10. 母比率の検定と推定
- 11. カイ二乗検定
- 12. サンプルサイズと検定
- 13. 相関と回帰
- 14. 回帰分析
- 15. まとめと発展的話題
- 16. 評価(到達度の確認)

平均の検定?

- ・前期・統計学より
 - ある工場では毎日500gの製品を多数製造している.
 - 50個を無作為に抽出して重さを量ったところ,平均495gであった.
 - このことから,この工場の製品の重さの<u>平均値は500gではない</u>と判 断してよいだろうか.
 - ・この工場の製品の重さは標準偏差16gの正規分布に従うと仮定し、有 意水準5%で仮説検定を行え.
- ・前期は「母分散が既知の場合の,1群の母平均の検定」まで

「確率・統計」の範囲(シラバスより)

-前期の内容中心--

- 1. 確率・統計の概要
- 2. データの要約
- 3. 確率と確率分布
- 4. 確率論と統計学
- 5. 大数の法則と中心極限定理
- 6. 母平均の検定と推定
- 7. 分散分析
- 8. 中間テストとこれまでのまとめ

前期・統計学の内容を含みつつ,様々な推測統計を紹介

「統計検定®2級」相当の内容

- 9. データ収集と実験計画
- 10. 母比率の検定と推定
- 11. カイニ乗検定
- 12. サンプルサイズと検定
- 13. 相関と回帰
- 14. 回帰分析
- 15. まとめと発展的話題
- 16. 評価(到達度の確認)

レポート・中間テスト60% 定期試験40%を基準

前期・統計学との差分

- ・前期・統計学の内容を含みつつ,様々な推測統計を紹介
 - ・ 2群の平均や比率の差の検定(2標本検定),3群以上の場合も扱う
 - ・ 標本サイズが小さいとき
 - ・ 標本平均の検定で「母分散が未知」の場合も扱う
 - ・ 相関の検定,回帰係数の検定,重回帰,ロジスティック回帰も含む

本日の講義内容

- なぜ統計学を学ぶのか?
 - 統計学と機械学習
 - ・ 統計学の歴史(覚えておきたい名前)
- ・アンケート
- 「確率・統計」では何を学ぶのか?
 - この講義では確率論よりも統計学をより深く学ぶ
 - ・前期・統計学との差分は?
- ・Rコマンダーの使い方
 - ・ 統計解析のツールとして
 - Rを学ぶ上でも参考になる

Rコマンダー

- ・プログラミング言語「R」の機能をプログラミング無しで使 うことのできる統計解析ツール
 - ・実行時に「R」のスクリプトも出力されるため,「R」のプログラミングを学ぶ上でも参考になる
 - 出力されたスクリプトを変更して実行することもできる

さっそくRコマンダーを使ってみよう

- ・R, R Studio, Rコマンダー
 - R (R Console)
 - ・Rのスクリプトを使うための基本ツール
 - ・ 単体でもRが使えるがRstudioだとより使いやすい
 - RStudio
 - ・Rの統合開発環境 (IDE). R Console, エディタや履歴, ファイルエクスプローラなど, さまざまな支援ツールが統合されている
 - ・Rコマンダーは,Rの一つの「パッケージ」でRがインストールされて いる必要あり
- Rもしくは RStudio のコンソールで以下を実行すると起動 > library(Rcmdr)

Rstudioの画面

Rコマンダーの起動

正規分布を表示してみよう

・分布 > 連続分布 > 正規分布 > 正規分布を描く

テキスト

- 教科書
 - 東大出版会,基礎統計学I 統計学入門
 - ・多くの先生がこれで学んだ標準的教科書
 - 手元にぜひ置いておきたい一冊
 - この講義で扱わない箇所も多い
- 参考書
 - 逸見功,BLUE BACKS 統計ソフト「R」超入門
 - ・ Rコマンダーの解説書

MOOCなど

- Massive Open Online Courses (MOOCs)
 - Coursera, edX など有名大学のコースを動画で受講
- gacco … JMOOC(日本版MOOC)のひとつ
 - 統計学Ⅱ

https://lms.gacco.org/courses/course-v1:gacco+ga047+2020_10/about

- ・カーン・アカデミー (Khan Academy)
 - 日本語版はコンテンツ少ないので英語版お勧め YouTube で khan academy statistics など検索

