Week 2

- 주의 사항: 부정행위 금지, STL 사용 금지, 인터넷 금지, 단일 연결 리 스트(Singly linked list)를 이용하여 구현할 것.
- 표준 입출력 사용을 권장 (C는 scanf / printf, C++은 cin / cout)

문제 2

자연수를 저장하는 **단일 연결 리스트**를 2개 생성하고, 다음의 순서대로 처리하는 프로그램을 작성하시오.

- 1. $N_1(1 \le N_1 \le 100)$ 개의 자연수 X_1 $(1 \le X_1 \le 10,000)$ 을 입력으로 받는 단일 연결 리스트 L_1 를 생성한다.
- 2. N_1 의 개수만큼 X_1 값을 입력 받아서 단일 연결 리스트 L_1 에 X_1 을 입력 받은 순서대로 저장한다.
- 3. $N_2(1 \le N_2 \le 100)$ 개의 자연수 X_2 $(1 \le X_2 \le 10,000)$ 을 입력으로 받는 단일 연결 리스트 L_2 를 생성한다.
- $4. N_2$ 의 개수만큼 X_2 값을 입력 받아서 단일 연결 리스트 L_2 에 X_2 를 입력 받은 순서대로 저장한다.
- 5. 두 개의 단일 연결 리스트 L_1 , L_2 를 병합하여 하나의 단일 연결 리스트 L_{merge} 로 만들어 출력한다. (단, 병합된 리스트 노드에 저장된 자연수 중 중복된 값은 없고, 항상 L_1 뒤에 L_2 가 연결되어 병합)
- 6. 병합된 단일 연결 리스트 L_{merge} 내의 노드에 저장된 특정 값 e를 찾는다. 해당 값을 제거하고 출력한다. (예를 들어, 제거하고자 하는 특정 값 e 가 6일 경우 아래 그림처럼 실행) 단, 특정 값 e는 항상 L_{merge} 내부에 존재하는 값으로 주어진다.
- 7. 마지막으로, 단일 연결 리스트 L_{merge} 내의 저장된 특정 값 k를 입력하면 해당 k값의 노드 순서를 나타내는 정수 index i (0 $\leq i$ < 100인 정수)를 출력하도록 한다. 단, 특정 값 k는 항상 L_{merge} 내부에 존재하는 값으로 주어진다.

그림 1. 제시된 문제의 예

입력

첫 번째 줄에 테스트 케이스의 수 M $(1 \le M \le 1,000)$ 이 주어진다.

두 번째 줄부터, 다음이 M번 반복된다.

- ullet 첫 번째 단일 연결 리스트 L_1 를 구성하기 위한 값의 개수 N_1 이 주어진다.
- 자연수 X_1 이 N_1 개가 차례대로 주어진다.
- 두 번째 단일 연결 리스트 L_2 를 구성하기 위한 값의 개수 N_2 가 주어진다.
- 자연수 X_2 이 N_2 개가 차례대로 주어진다.
- L_{merge} 내의 노드에 저장된 값 중 제거할 값 e 가 주어진다.
- L_{merge} 내의 노드에 저장된 값 k를 입력한다.

출력

병합된 단일 연결 리스트 L_{merae} 에 저장된 모든 값을 출력한다.

 L_{merge} 내에 특정 값 e를 제거하고, 단일 연결 리스트 L_{merge} 의 모든 값을 출력한다.

 L_{merge} 내의 저장된 값 k값을 포함하는 노드의 순서를 나타내는 정수 i를 출력한다.

예제 입출력

예제 입력	예제 출력
4	13 15 11 6 21 14 12
3	13 15 11 21 14 12
13 15 11	3
4	8 14 4 5 17 15
6 21 14 12	8 14 5 17 15
6	2
21	6 12 14 25 3 17 13 7
2	6 12 14 25 3 17 7
8 14	5
4	6 13 15 11 14 2 8
4 5 17 15	6 15 11 14 2 8
4	4
5	

5	
6 12 14 25 3	
3	
17 13 7	
13	
17	
4	
6 13 15 11	
3	
14 2 8	
13	
2	