粒子群最適化 Particle Swarm Optimization (PSO)

- ・最適化とは
- ・最適化の難しさ
- ・最適化手法の種類
- PSOの概要
- PSOの手順

最適化問題とは

変数や目的関数,制約条件などの要素を定義した上で

目的関数の値を最大化/最小化する解を求める問題

身の回りの最適化問題

- シフトスケジュールの作成
- 時間割の作成
- 配送,送迎の経路
- タスクの割り当て

膨大な組合せの中から 最**も良い解**を探す問題

最適解

熟練度	名前	1	2	3	4	5	6	7
ベテラン	n1	Ш		ш	準		ш	田
ベテラン	n2	準		日	П	準		
中堅	n3	日	日	準	準		日	
中堅	n4	深	準	深		深	準	田
新人	n5		日		深	準		準
新人	n6	準	深	準		日	深	
新人	n7				日			深
新人	n8	深	深	準		田	深	

最適化における目的

同じ出発地と目的地でも,利用者によって 「何を最適化したいか」は異なる

- **到着時刻を最優先**する人
 - →最短時間ルートを選択
- ・ 乗り換え回数を減らしたい人
 - → 乗換が少ないルートを選択
- ・ 料金を安くしたい人
 - → 最安ルートを選択

全てを同時に最適化できるプランは…?

関数とは

- 「入力と出力を結びつけるルール全般」を**写像**という
- その中でも, 数と数を結びつける特別な写像を関数という
- 「入力1つにつき出力1つ」 = 関数のルール

目的関数の最大化/最小化

最適化問題を解くということ:

=>目的関数 f(x)の値を最大化/最小化する解 x を求める

- 目的関数 f(x) は、ある解 x がどれほど良いか、または悪いかを数値的に評価するための関数
- ある解 x は, 例えば,
 - 乗り換え問題:利用する列車やバスの組み合わせと順序
 - 設計問題: 構造物を構成する部品の大きさや重さ

最適化問題の例:遠足におけるおやつの選び方

決まりごと:

- おやつは250円まで
- リストから1つずつ選択可
- ジュースはダメ
- バナナはダメ

持っていく お菓子を選ぶ

制約条件

選べるおやつのリスト

値段:100円

価値:50

値段:70円

価値:30

値段:90円

価値:30

値段:60円

価値:40

値段:30円

価値:20

それぞれ値段と価値は異なる

決まりごとを守ったうえで、 最も価値の合計が高い<mark>組合せ</mark>は?

= 組合せ最適化問題

考え方

• 5種類のお菓子の情報を表にまとめる

	チョコ	ポッキー	ドーナッツ	ポテト	アメ
値段	100	70	90	60	30
価値	50	30	30	40	20

・ 答えの表し方

	チョコ	ポッキー	ドーナッツ	ポテト	アメ
解の例	選ぶ	選ばない	選ぶ	選ばない	選ぶ

値段の合計:220, 価値の合計:100

答えの表現方法

チョコ	ポッキー	ドーナッツ	ポテト	アメ
選ぶ	選ばない	選ぶ	選ばない	選ぶ

・ 選ぶ:1

選ばない:0

チョコ	ポッキー	ドーナッツ	ポテト	アメ
1	0	1	0	1 ~

ある解 *x*

符号化:答えを「0と1で表現」(2進数)

離散値で表現

- ・ コンピュータの内部では、データを2進数で表現する
- 2進数の1桁が1ビット
- 解 x を5ビットで表現できる

ベクトルなのでボールド(太字)

$$\boldsymbol{x} = (x_1, x_2, \cdots, x_5)$$

何通りの組合せ?

$$2^5 = 32$$

ある解の値段と価値の合計

ある解 x = (1,0,1,0,1)

	チョコ	ポッ キー	ドー ナッツ	ポテト	アメ
値段	100	70	90	60	30
解 x	1	0	1	0	1
	100	+	90	+	30

	チョコ	ポッ キー	ドー ナッツ	ポテト	アメ
価値	50	30	30	40	20
解 x	1	0	1	0	1
	50		30		20

値段の合計=220

価値の合計=100

これは最適な答え(最適解)?最適解を発見するためには?

->全ての組合せ(32通り)を調べてみる

Brute-force search (力まかせ探索)

おやつ選択の目的関数

- おやつ選択の目的は、
 - 「できるだけ価値が高くなるようにおやつを選ぶこと」
- この「価値の合計」を計算する式が目的関数

$$f(\mathbf{x}) = \sum_{i=1}^{n} v_i x_i$$

解
$$x = (1, 0, 1, 1, 0)$$

価値 $v = (50, 30, 30, 40, 20)$

値段の制約がなければ・・・ すべて選べば価値は最大

価値の合計を最大化したいが、値段の合計は上限(250円)以内にしなければならない(制約条件を満たす必要がある)

$$\sum_{i=1}^{n} w_i x_i \le W$$
 値段 $\mathbf{w} = (100, 70, 90, 60, 30)$ 予算 $W = 250$

=> **制約あり**なら、選び方に工夫が必要(**問題の難しさ**)

おやつ選択問題の32個の答えの分布

探索する範囲(解空間)

5個なら32通り、では、50個なら何通り?

$$2^5 = 32$$

$$2^{10} = 1024$$

•

$$2^{50} = ?$$

$$y = 2^x \text{ object } ?$$

https://www.geogebra.org/

最適化問題の難しさ

組合せが多すぎて、全部試すのは無理!

課題

「全部試さないで、いい答えをどうやって探すか?」

• 解決策

- 最適化アルゴリズム(賢い探索方法)を使う
- ・ 良さそうな解候補を少しずつ改良して、最適解に近づく

最適化アルゴリズムの2つのタイプ

1. 数理最適化(解析的•厳密解)

- 数式を使って理論的に最適解を導く方法
- 特徴:
 - 条件が単純なときに有効(線形計画法など)
 - 微分・方程式で解ける場合が多い
 - 例:線形計画法,ラグランジュ乗数法

2. メタヒューリスティック(探索的・近似解)

- 自然界や経験則をヒントにした探索方法
- 特徴:
 - 複雑な問題にも使える
 - 厳密解でなくても「良い解」を見つけられる
 - 例:遺伝的アルゴリズム(GA), 粒子群最適化(PSO), 差分進化(DE)

AIの技術

人工知能学会 AIマップより

人工知能 とは「様々な技術の複合体の総称」

メタヒューリスティック手法

- **進化計算**:生物の進化(自然選択や突然変異)を模倣した最適化手法の総称
- 遺伝的アルゴリズム(GA):進化計算の代表例で、遺伝子の交叉や突然変異を使って解を改良する手法
- **群知能**:動物の群れの協調行動をモデルにした最適化手法(例: PSO, ACO)

粒子群最適化 Particle Swarm Optimization (PSO)

PSO(粒子群最適化)

- 1995年に提案された群知能ベースの最適化アルゴリズム
- **鳥の群れや魚の群れの社会的**行動をモデル化
- **複数の「粒**子」が情報を共有しながら協調して最適解を探索

PSOが対象とする問題の領域

連続関数最適化問題(Continuous Optimization)

複数の連続変数を持つ関数の中で、 最も小さい値を与える入力を見つける

$$\min_{\mathbf{x}\in\Omega\subseteq R^n}f(\mathbf{x})$$

ただし、変数 x は実数の制約内で動くものとする

- 目的関数: f(x)(連続的に評価可能)
- 制約領域: Ω (例: 範囲制約 $(l_i \leq x_i \leq u_i)$

n は次元数, Rは実数

PSOの特徴 (1/2)

- 解集団を用いた<mark>多点探索</mark>,解候補を実数値ベクトルで表す
- 探索過程は確率的(乱数パラメータを含む)
- 集団内では粒子(個体)間にインタラクションがある
- 複数の粒子が存在して一定の性能を示す

PSOの特徴 (2/2)

- いくつかの制御パラメータが存在
 - 粒子数 N
 - 慣性係数 w
 - 認知パラメータ *c*₁
 - 社会パラメータ c₂
- 制御パラメータの値により、探索性能は大きく左右される
- 対象とする問題の性質により、適するパラメータは異なる

解探索のイメージ

関数の最小値(最大値)を探す=砂漠で最も石油が出る場所を探す

- 一回掘るとその場所の埋蔵量(良さ)が分かる
 - 掘ってみないとわからない!関数の形状は不明
- 何度も掘れば大体の埋蔵量が把握できるが、その分コストが掛かる
- なるべく少ない回数 (コスト) で、最も埋蔵量が多い場所を見つけるには?

理想的な解探索

大域的な探索から、局所的な探索へシフトする探索

- 探索序盤は十分な多様性を保持し、網羅的に広い範囲を探索
- 探索終盤は集団を収束させ、優良な解周辺を集中的に探索

PSOが適用可能な問題

決定変数の上下限制約のみを有する最適化問題

minimize f(x)subject to $L_i \le x_i \le U_i$, i = 1, ..., D

Sphere function (D = 2)

- $x = (x_1, ..., x_D)$ は D 次元決定変数ベクトル
- f(x) は目的関数
- L_i , U_i はそれぞれ, D 個の決定変数 x_i の下限値, 上限値
- 全ての上下限制約を満足する領域: 探索空間

探索する関数の性質が分からなくても (目的関数が不連続関数、微分不可能関数であっても)

探索点(粒子)に対し、良さの評価値(関数値)を得ることができれば適用可能

PSOの処理手順

1. 初期化

- \triangleright 粒子群 $P=(x_1,x_2,\cdots,x_N)$ を定義, N は粒子数
- \triangleright 各粒子 i の位置 x_i はランダムに生成

2. 評価

> 各粒子 i の位置 x_i を目的関数 (適応度関数)に入力し、良さ (適応度) $f(x_i)$ を計算

3. 最良位置の記録

- ▶ pbest: 粒子ごとに「これまでで一番良かった位置」
- ▶ gbest:集団全体で「一番良かった位置」

4. 更新処理

- ➤ 速度更新: 粒子の進む方向を計算(pbestとgbestを参考にする)
- ▶ 位置更新:新しい位置に粒子を移動

5. 終了判定

- ▶ 最大ステップ数に達したら終了
- ▶ そうでなければステップを進めて再び評価へ(2へもどる)

6. 結果出力

▶ 最終的な gbest を解として出力

初期化時の処理:粒子群の生成

各粒子 (i) の持つ情報 $(i = 1, \dots, N)$:

N は粒子数 D は問題の次元数

各粒子 *i* について,

- 位置 x_i と速度 v_i を、あらかじめ決めた範囲内でランダムに決定
- 適応度 f(x_i)を計算
- 自身の最良位置 pbest_i は x_i のコピーとする
- 自身の最良位置の適応度 $f(\mathbf{pbest}_i)$ も $f(\mathbf{x}_i)$ のコピーとする

 $f(pbest_i)$ のうち最良のものを、群れ全体の最良位置 gbest とする

PSOの疑似コード

Algorithm of PSO

•初期個体の生成

for g = 1 to G_{max} do

for i = 1 to N do

- ・速度と位置の更新
- ・ 粒子の評価
- •p(g)best の更新

end for

end for

粒子のループ

ステップの ループ

各ステップの処理

4. 個体の情報を更新

4. *gbest* の更新もチェック

PSOの処理手順

粒子の位置の更新 1/2

t ステップでの, 粒子i のj 次元の成分の更新

- rand_{1ij}と rand_{2ij}: 各粒子の<u>次元毎</u>に生成される[0,1]の一様乱数
- ω , c_1 , c_2 は慣性係数, 認知パラメータ, 社会パラメータ

ω(小文字のオメガ)は プログラムだと**W**

粒子の位置の更新 2/2

randの解探索への影響

$$v_{ij}^{t+1} = \omega v_{ij}^t + c_1 rand_{1ij} (x_{ij}^* - x_{ij}^t) + c_2 rand_{2ij} (x_{Gj}^* - x_{ij}^t)$$

粒子群の安定・不安定

メタヒューリスティクスと応用, 相吉&安田, 電気学会, 2007, (82Pより)