Университет ИТМО

Факультет программной инженерии и компьютерной техники

Сети ЭВМ и телекоммуникации

Учебно-исследовательская работа №2 Передача кодированных данных по каналу связи

> Лабушев Тимофей Группа Р3302

Санкт-Петербург 2019

Цель

Исследование влияния свойств канала связи на качество передачи сигналов при различных методах физического и логического кодирования, используемых в цифровых сетях передачи данных.

Задание

Для заданного исходного сообщения и заданных методов кодирования выполнить исследование качества передачи физических сигналов в зависимости от уровня шумов в канале связи, уровня рассинхронизации передатчика и приемника и уровня граничного напряжения (которое можно трактовать как уровень затухания сигнала), сравнить рассматриваемые методы кодирования, выбрать и обосновать наилучший метод для передачи исходного сообщения по реальному каналу связи.

Исходное сообщение

Сообщение: Лабу

Шестнадцатеричный код: CB E0 E1 F3

Результат исследования

Шестнадцатеричный код сообщения: CBE0E1F3			Метод кодирования						
			NRZ	RZ	AMI	M-II	4B/5B	Scramb	
Полоса пропускания идеального канала связи	Гармо ники	min	2	2	4	34	2	2	
		max	30	56	30	56	52	30	
	Частоты, МГц	min	0.3	0.3	0.6	5.3	0.3	0.3	
		max	4.7	8.8	4.7	8.8	6.5	4.7	
Минимальная полоса пропускания идеального			4.4	8.5	4.1	3.5	6.2	4.4	

канала связи, МГц									
Уровень шума		max	0.02	0.01	0.00	0.07	0.02	0.02	
Уровень рассинхронизации		max	0.05	0.11	0.02	0.05	0.11	0.06	
Уровень граничного напряжения		max	0.52	0.52	0.50	1.00	0.52	0.52	
% ошибок при max уровнях и минимальной полосе пропускания КС			1.34	1.81	0.00	0.06	3.52	3.87	
Уровень шума		cp.	0.02						
Уровень рассинхронизации		ср.	0.07						
Уровень граничного напряжения		ср.	0.60						
Полоса пропускания реального канала связи	Гармо ники	min	2	2	6	32	0	2	
		max	38	60	34	56	40	36	
	Частоты, МГц	min	0.3	0.3	0.9	5.0	0.0	0.3	
		max	5.9	9.4	5.3	8.8	5.0	5.6	
Требуемая полоса пропускания реального канала связи, МГц		5.6	9.1	4.4	3.8	5.0	5.3		

Методы 4B/5B и скремблирование были рассмотрены для потенциального кода NRZ.

Вывод

Исходя из результатов исследования, можно прийти к заключению, что лучшим методом физического кодирования является манчестерский код. Он требует наименее широкую полосу пропускания и обладает наибольшей толерантностью к уровню шума, при этом средним по сравнению с остальными методами максимальным уровнем рассинхронизации. Также при установлении максимальных уровней шума, рассинхронизации и граничного напряжения этот метод выдает минимальный процент ошибок после АМІ.

Лучшим методом логического кодирования является 4B/5B: по сравнению со скремблированием, он требует менее широкую полосу пропускания, демонстрирует меньший процент ошибок, имеет более высокий порог рассинхронизации.