

UM61M256 Series

32K X 8, 3.3V I/O High Speed CMOS SRAM

Features

- Single +5V power supply
- Access times: 12/15 ns (max.)
- Current: Operating: 150mA (max.)
 - Standby: 12mA (max.)
 Full static operation, no clock or refresh
- Full static operation, no clock or refreshing required

- 3.3V I/O compatible
- All inputs and outputs directly TTL compatible
- Common I/O using three-state output
- Data retention voltage: 3V (min.)
- Available in 28-pin SOJ and SKINNY DIP packages

General Description

The UM61M256 is a high-speed, low-power 262,144-bit static random access memory organized as 32,768 words by 8 bits and operates on a single 5V power supply. It is built using UMC's high performance CMOS process.

Inputs and three-state outputs are TTL compatible and allow for direct interfacing with common system bus structures.

Special designed output circuitry allows for easy interfacing with a 5V or 3.3V system bus and is ideal for mixed voltage systems.

Minimum standby power is drawn by this device when CE is at a high level, independent of the other input levels. Data retention is guaranteed at a power supply voltage of as low as 3V.

Pin Configuration

Block Diagram

Pin Description

Pin No.	Symbol	Description
1-10, 21, 23-26	A0 - A14	Address Input
27	WE	Write Enable
22	ŌĒ	Output Enable
20	CE	Chip Enable
11-13, 15-19	I/O1 - I/O8	Data Input/Output
28	vcc	PowerSupply(+5V)
14	GND	Ground

Absolute Maximum Ratings*

VCC to GND0.5V to +7.0V
IN, IN/OUT Volt to GND0.5V to VCC +0.5V
Operating Temperature, Topr 0°C to +70°C
Storage Temperature, Tstg55°Cto +125°C
Temperature under Bias, Tbias10°C to +85°C
Power Dissipation, Pt

Recommended DC Operating Conditions

(TA = 0°C to + 70°C)

Symbol	Parameter	Min.	Тур.	Max.	Unit
vcc	Supply Voltage	4.75	5.0	5.25	٧
GND	Ground	0	0	0	٧
Vін	Input High Voltage	2.2	3.5	VCC + 0.5	V
VIL	Input Low (1) Voltage	-0.5	0	+0.8	٧
CL	Output Load	•	-	30	pF

*Comments

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only. Functional operation of this device at these or any other conditions above those indicated in the operational sections of this specification is not implied and exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC Electrical Characteristics $(TA = 0 \,^{\circ}\text{C to} + 70 \,^{\circ}\text{C}, VCC = 5V \pm 5\%, GND = 0V)$

Sumbal		UM61M256-12/15			Conditions	
Symbol	Parameter	Min.	Max.	Unit	Conditions	Note
	Input Leakage Current	-	2	μА	Vin = GND to VCC	
Iro	Output Leakage Current	date of the state	2	μА	CE = ViH or OE = ViH Vi/o = GND to VCC	
Icc1	Dynamic Operating Current	_	150	mA	CE = VIL, II/O = 0mA	1, 2
ISB		-	30	mA	CE = VIH	
ISB1	Standby Power Supply Current	_	12	mA	CE ≥ VCC - 0.2V Vin ≥ VCC - 0.2V or Vin ≤ 0.2V	

DC Electrical Characteristics (continued)

Sumbal	Parameter	UM61M256-12/15		Unit	Conditions	Note
Symbol	Faranteter	Min.	Max.	Offic	Conditions	Note
Vol	Output Low Voltage	-	0.4	v	IOL = 8 mA	
Vон	Output High Voltage	2.4	3.3	٧	Iон = -4 mA	

Note: 1. VIL = -3.0V for pulses of less than 20 ns.

2. ICC1 is dependent on output loading, cycle rates, and Read/Write patterns.

Truth Table

Mode	CE	ŌĒ	WE	I/O Operation	Supply Current
Standby	н	x	x	High Z	ISB, ISB1
Output Disable	L	Н	Н	High Z	Icc, Icc1
Read	L	L	н	Dout	Icc, Icc1
Write	L	Х	L	Din	Icc, Icc1

Note: X: H or L

Capacitance (TA = 25°C, f = 1.0 MHz)

Symbol	Parameter	Min.	Max.	Unit	Conditions
Cin*	Input Capacitance		10	pF	VIN = OV
Ci/o*	Input/Output Capacitance		10	pF	VI/O = 0V

^{*} These parameters are sampled and not 100% tested.

AC Characteristics $(TA = 0 \,{}^{\circ}C \text{ to } + 70 \,{}^{\circ}C, VCC = 5V \pm 5\%)$

		UM61M256-1		UM61M	256-15	
Symbol	Parameter	Min.	Max.	Min.	Max.	Unit
Read Cycle		-				
t RC	Read Cycle Time	12	_	15	_	ns
t 🗚	Address Access Time	_	12		15	ns
t ACE	Chip Enable Access Time	-	12	-	15	ns
t OE	Output Enable to Output Valid		7	_	9	ns
t CLZ	Chip Enable to Output in Low Z	2	-	3	-	ns
t OLZ	Output Enable to Output in Low Z	2	_	2	-	ns
t CHZ	Chip Disable to Output in High Z	0	7	0	8	ns
t	Output Disable to Output in High Z	2	6	2	7	ns
t	Output Hold from Address Change	2		3	_	ns
Write Cycle						
twc	Write Cycle Time	12	-	15	_	ns
tcw	Chip Enable to End of Write	10	-	12	_	ns
t AS	Address Setup Time of Write	0	-	0	_	ns
t AW	Address Valid to End of Write	10	-	12	_	ns
t WP	Write Pulse Width	8	-	10	_	ns
t wr	Write Recovery Time	0		0	-	ns

High Speed SR AAI

AC Characteristics (continued)

Symbol	Parameter	UM61M	256-12	UM61M	11-9	
Symbol	Farameter	Min.	Max.	Min.	Max.	Unit
t WHZ	Write to Output in High Z	0	7	0	8	ns
t DW	Data to Write Time Overlap	8	_	10	-	ns
t DH	Data Hold from Write Time	0	_	0	-	ns
tow	Output Active from End of Write	5	_	5		ns

Notes: tchz, tohz and twhz are defined as the time at which the outputs achieve the open circuit condition and are not referred to output voltage levels.

Timing Waveforms

Read Cycle 1 (1)

Read Cycle 2 (1, 2, 4)

Timing Waveforms (continued)

Read Cycle 3 (1, 3, 4)

- Notes: 1. WE is high for Read Cycle.
 - 2. Device is continuously enabled, $\overline{CE} = V_{IL}$
 - 3. Address valid prior to or coincident with $\overline{\text{CE}}$ transition low.
 - 4. OE = VIL.
 - 5. Transition is measured ±500mV from steady state. This parameter is sampled and not 100% tested.

Write Cycle 1 (6) (Write Enable Controlled)

Timing Waveforms (continued)

Write Cycle 2 (6) (Chip Enable Controlled)

Notes: 1. tas is measured from the address valid to the beginning of Write.

- 2. A Write occurs during the overlap (twp) of a low CE and a low WE.
- 3. twn is measured from the earliest of CE or WE going high to the end of the Write cycle.
- 4. If the CE low transition occurs simultaneously with the WE low transition or after the WE transition, outputs remain in a high impedance state.
- 5. tcw is measured from the later of CE going low to the end of Write.
- 6. OE is continuously low (OE = VIL).
- 7. Transition is measured ±500mV from steady state. This parameter is sampled and not 100% tested.

AC Test Conditions

Input Pulse Levels	0V to 3.0V
Input Rise and Fall Time	5 ns
Input and Output Timing Reference Levels	1.5V
Output Load	See Fig. 1, 2

Figure 1. Output Load

Figure 2. Output Load for tcLz, toLz, tcHz, toHz, twHz, and tow

Data Retention Characteristics

 $(TA = 0 ^{\circ}C \text{ to } 70 ^{\circ}C)$

Symbol	Parameter	Min.	Мах.	Unit	Conditions
VDR	VCC for Data Retention	3.0	5.5	V	CE ≥ VCC - 0.2V
ICCDR	Data Retention Current	~	12	mA	VCC = 3.0V, CE ≥ VCC - 0.2V VIN ≥ VCC - 0.2V or VIN ≤ 0.2V
t CDR	Chip Disable to Data Retention Time	0	-	ns	See Retention Waveform
t R	Operation Recovery Time	t * RC	-	ns	- See Retention Waveform

^{*} t RC = Read Cycle Time

Low VCC Data Retention Waveform

Ordering Information

Part No.	Access Time (ns)	Operating Current Max. (mA)	Standby Current Max. (mA)	Package
UM61M256K-12	12	150	12	28L SKINNY
UM61M256S-12	12	150	. 12	28L SOJ
UM61M256K-15	15	150	12	28L SKINNY
UM61M256S-15	15	150	12	28L \$OJ

