

# AMERICAN FOOTBALL BETTING



Iman Janoo, Travis Roth, Drew Blik, Evelyn Ochoa

# **AGENDA**

EXECUTIVE SUMMARY

DATA
DESCRIPTION

DATA
PREPARATION

DATA MINING SOLUTION

RESULTS & RECOMMENDATIONS

# O1 EXECUTIVE SUMMARY



# PROBLEM VS. SOLUTION





**PROBLEM** 

How do we increase the NFL better's profitability?



**SOLUTION** 

Predict the winner! (accurately)

# **OUR GOAL**



Predict the Winner



Beat the Baseline



Be Profitable





# DATA DESCRIPTION

Response variables, predictors, sample dataset, EDA

# DATA DESCRIPTION



**Response Variables + Predictors** 



Sample Dataset



**Exploratory Data Analysis** 



# RESPONSE VARIABLE AND FEATURES :::: DESCRIPTIONS

| Response | home_win         | Refers to a binary outcome where 1 indicates home team won, and 0 indicates that the home team lost or tied |    |                      |                                                                                              |  |  |  |
|----------|------------------|-------------------------------------------------------------------------------------------------------------|----|----------------------|----------------------------------------------------------------------------------------------|--|--|--|
| 1        | schedule_date    | Date of the scheduled event                                                                                 | 11 | weather_detail       | Detailed information about weather conditions during event (temperature, precipitation, etc. |  |  |  |
| 2        | schedule_season  | Sports season in which game takes place                                                                     | 12 | stadium_name         | Name of the stadium hosting the event.                                                       |  |  |  |
| 3        | schedule_week    | Specific week within the sports season                                                                      | 13 | stadium_type         | Classification of the stadium (e.g., indoor, outdoor, retractable roof).                     |  |  |  |
| 4        | schedule_playoff | Binary indicator (1 or 0) denoting if the event is part of playoffs or postseason.                          | 14 | studium_capacity     | Maximum seating capacity of the stadium.                                                     |  |  |  |
| 5        | score_home       | Points earned by the home team in the event.                                                                | 15 | stadium_latitude     | Geographical latitude coordinates of the stadium's location.                                 |  |  |  |
| 6        | score_away       | Points earned by the home team in the event.                                                                | 16 | stadium_longitude    | Geographical longitude coordinates of the stadium's location.                                |  |  |  |
| 7        | team_favorite_id | Unique identifier or code for the favored team in the event.                                                | 17 | stadium_azimuthangle | Angle representing the stadium's orientation relative to a specific direction.               |  |  |  |
| 8        | spread_favorite  | Point spread favoring the favored team in the event.                                                        | 18 | stadium_elevation    | Height or elevation above sea level of the stadium's location.                               |  |  |  |
| 9        | over_under_line  | Betting line indicating the total expected score from both teams in the event.                              | 19 | team_home            | Home team participating in the scheduled event.                                              |  |  |  |
| 10       | stadium          | Name or identifier of the stadium where the event is held                                                   | 20 | team away            | Visiting team participating in the scheduled event.                                          |  |  |  |



# SAMPLE DATASET

|     | schedule_date  | schedule season   | schedule week | schedule playoff | score home     | score_away          | team_favorite_id     | spread_favorite   | over under line | stadium        |
|-----|----------------|-------------------|---------------|------------------|----------------|---------------------|----------------------|-------------------|-----------------|----------------|
| 27  | 1/11/1970      | 1969              | Superbowl     | TRUE             | 23.0           | 7.0                 | MIN                  | -12.0             | 39              | Tulane Stadium |
| 105 | 1/16/1972      | 1971              | Superbowl     | TRUE             | 24.0           | 3.0                 | DAL                  | 6.0               | 34              | Tulane Studium |
| 483 | 1/13/1974      | 1973              | Superbowl     | TRUE             | 24.0           | 7.0                 | MIA                  | 6.5               | 33              | Rice Studium   |
| 672 | 1/12/1975      | 1974              | Superbowl     | TRUE             | 6.0            | 16.0                | PIT                  | -3.0              | 33              | Tulane Studium |
| 861 | 1/18/1976      | 1975              | Superbowl     | TRUE             | 17.0           | 21.0                | PIT                  | -7.0              | 36              | Omege Bowl     |
| _   | weather_detail | stadium_name      | stadium_type  | stadium_capacity | tadium_latitud | f stadium_longitude | stadium_azimuthungle | stadium_clevation | team_home       | team_away      |
| 727 | indoor         | Caesars Superdome |               | 76468.0          | 0 NaN          | NaN                 | NaN                  | NaN               | NO              | AT             |
| 105 | NaN            | MetLife Stadium   | NaN           | 82500.0          | 0 40.813528    | -74.074361          | 345.5                | 2.1               | NYG             | Pi             |
| 483 | NaN            | Levi's Stadium    | NaN           | 685000.0         | 0 37,40300     | -121.97000          | 330                  | 2.4               | SF              | LA             |
| 672 | NaN            | Nissan Stadium    | NaN           | 69143.0          | 0 36.166389    | -86.771389          | 334.5                | 182.9             | TEN             | JA             |
|     |                | FedEx Field       | NaN           | 79000.0          | 0 38,907778    | -76.864444          | 295                  | 15.2              | WAS             | D/             |

5 rows × 24 columns



## **EXPLORATORY DATA ANALYSIS**

A A MARKANIA MARKANIA





# **EXPLORATORY DATA ANALYSIS**







# O3 DATA PREPARATION

Constructing, Cleaning, & Feature Engineering



# DATA CONSTRUCTION & CLEANING



**MERGING DATA SOURCES** 



HANDLING NON-NUMERIC & CATEGORICAL VARIABLES



**HANDLING MISSING VALUES** 



### **MERGING DATA SOURCES**

```
# Drop unnecessary columns from 'teams'
teams.drop(columns=['Conference', 'Division', 'ID'], inplace=True)
# Map team names to abbreviations for 'team_home'
df = pd.merge(df, teams, left on='team home', right on='Name', how='left')
df.rename(columns={'Abbreviation': 'team home abbrev'}, inplace=True)
df.drop('Name', axis=1, inplace=True)
# Map team names to abbreviations for 'team_away'
df = pd.merge(df, teams, left on='team away', right on='Name', how='left')
df.rename(columns={'Abbreviation': 'team_away_abbrev'}, inplace=True)
df.drop('Name', axis=1, inplace=True)
# Drop original team name columns ('team_home' and 'team_away')
df.drop(columns=['team_home', 'team_away'], inplace=True)
# Rename abbreviation columns to 'team_home' and 'team away'
df.rename(columns={'team_home_abbrev': 'team_home', 'team_away abbrev': 'team_away'}, inplace=True)
df.dropna(subset=['team_home', 'team_away'], how='any', inplace=True)
# Verify DataFrame after the operations
print(df.head())
```

### MERGING DATA SOURCES

```
# need to add spread column relative to home team (not relative to favorite team)
def adjust_point_spread(row):
   if row['team_home'] != row['team_favorite_id']:
        return row['spread_favorite']
   else:
        return -row['spread_favorite']
df['spread_favorite'] = df.apply(adjust_point_spread, axis=1)
```

# HANDLING NON-NUMERIC & CATEGORICAL VARIABLES

```
# Create dummy variables
#set default value in weather_detail to prevent NANs
df['weather_detail'].fillna('normal', inplace=True)

# Get dummies for categorical columns
categorical_columns = ['team_home', 'team_away', 'team_favorite_id', 'weather_detail', 'stadium_type']
dummies = pd.get_dummies(df[categorical_columns], prefix=categorical_columns)

# Concatenate the dummies with the original DataFrame
df = pd.concat([df, dummies], axis=1)

# Drop the original categorical columns if needed
df.drop(categorical_columns, axis=1, inplace=True)

df = df.dropna(subset=['over_under_line', 'weather_temperature', 'weather_wind_mph', 'weather_humidity'])
```

## HANDLING MISSING VALUES

#drop teams that no longer exist, since they had no abbreviation value in the key dictionary
df.dropna(subset=['team\_home', 'team\_away'], how='any', inplace=True)

```
def predict(dataframe, season_choice, model_choice, drop_features, target_variable):
   import pandas as pd
   from sklearn.ensemble import RandomForestClassifier
   # evaluate a model to predict game winner based on features
   # Split the data into training and testing based on the schedule_date

dataframe.dropna(axis = 0, inplace = True)
```

```
#interpolate missing values
columns_to_interpolate = ['weather_humidity', 'stadium_elevation', 'stadium_azimuthangle']
df[columns_to_interpolate] = df[columns_to_interpolate].interpolate(method='linear')
```

# FEATURE ENGINEERING



**ADJUSTING FOR SPREAD** 



**TIME SERIES COLUMNS** 



**ROLLING SEASON RECORD** 



# FEATURE ENGINEERING: ADJUSTING FOR SPREAD

```
#add home_win
df['score_diff_spread_adj'] = df['score_home'] - df['score_away'] - df['spread_favorite']
def home_win(difference):
   if difference < 0:
      return False
   else:
    return True
df['home_win_spread_adj'] = df['score_diff_spread_adj'].apply(home_win)</pre>
```

```
#add home_win
df['score_diff'] = df['score_home'] - df['score_away']
def home_win(difference):
   if difference < 0:
     return False
   else:
     return True
df['home_win'] = df['score_diff'].apply(home_win)</pre>
```

# FEATURE ENGINEERING: TIME SERIES COLUMN

```
#clean date and sort rows by date
from datetime import datetime

df['schedule_date']= pd.to_datetime(df['schedule_date'])
df.sort_values('schedule_date', inplace=True)

# Filter and keep rows where 'schedule_date' is earlier or equal to today's date
today_date = datetime.today()
data = df[df['schedule_date'] <= today_date]

# add year, month columns
df['year'] = df['schedule_date'].dt.year
df['month'] = df['schedule_date'].dt.month</pre>
```

# FEATURE ENGINEERING: ROLLING SEASON RECORD

```
# Calculate cumulative wins for home team
df['team_home_rolling_wins'] = df.groupby(['team_home', 'schedule_season'])['home_win'].cumsum() - df['home_win']
# Calculate cumulative wins for away team
df['team_away_rolling_wins'] = df.groupby(['team_away', 'schedule_season'])['home_win'].apply(lambda x: x[::-1].cumsum()[::-1]) - df['home_win']
# Replace NaN values (resulting from the first game of each team) with 0
df['team_home_rolling_wins'].fillna(0, inplace=True)
df['team_away_rolling_wins'].fillna(0, inplace=True)
#drop teams that no longer exist, since they had no abbreviation value in the key dictionary
df.dropna(subset=['team_home', 'team_away'], how='any', inplace=True)
```



| START SEASON | TRAINING SET | TESTING SET |
|--------------|--------------|-------------|
| 1980         | 1979         | 1980        |
| 1990         | 1979-1989    | 1990        |
| 2022         | 1979-2021    | 2022        |



```
def predict(dataframe, season choice, model choice, drop features, target variable):
  import pandas as pd
  from sklearn.ensemble import RandomForestClassifier
  # evaluate a model to predict game winner based on features
  # Split the data into training and testing based on the schedule date
  dataframe.dropna(axis = 0, inplace = True)
  train data = dataframe[dataframe['schedule season'] < season choice]</pre>
  test data = dataframe[dataframe['schedule season'] == season choice]
  # Feature selection
  X train = train data.drop(drop features, axis=1) # drop target variable and others
  v train = train data[target variable]
  X test = test data.drop(drop features, axis=1) # drop target variable and others
  y test = test data[target variable]
  # creating the model
  model = model choice.fit(X train, y train)
  X train['y pred'] = model.predict(X train)
  X test['y pred'] = model.predict(X test)
```

```
def backtest(data,model,drop features,target,start season= 1980,step=1):
  all seasons = \{ \}
  for i in range(start season, 2023, step):
   if data[data['schedule season']==i].shape[0] != 0:
      season = predict(data,i,model,drop_features,target)
      all seasons.update({i: season})
 as df = pd.DataFrame(all seasons)
 as df = as df.transpose()
 as df.columns = ['season choice','rows train','rows test','cm train','cm
  #calculate cumulatives
 as df['base profit cum'] = as df['baseline profit test'].cumsum()
 as_df['model_profit_cum'] = as_df['test_profit'].cumsum()
 return as df
```

|      | season_choice | rows_train | rows_test |
|------|---------------|------------|-----------|
| 2016 | 2016          | 3106       | 203       |
| 2017 | 2017          | 3309       | 232       |
| 2018 | 2018          | 3541       | 233       |
| 2019 | 2019          | 3774       | 67        |
| 2020 | 2020          | 3841       | 98        |
| 2021 | 2021          | 3939       | 133       |
| 2022 | 2022          | 4072       | 98        |

# 04 DATAMINING SOLUTION



## **HOW BETTING WORKS**



### **ODDS DETERMINE PAYOUT**

Score:

Home: 15 vs Away: 10

Spread: +6 (favoring home)

### **NOT ADJUSTED**

Home wins! 15 > 10

### **SPREAD ADJUSTED**

Away wins! 15 < 10+6





# RANDOM FORESTS CLASSIFIER

**BASE MODEL** 

MINIMUM SAMPLES

Reduced min\_sample\_leaf to 10 due to small dataset

CLASS WEIGHTS

Tried favoring false negatives over false positives



# LOGISTIC REGRESSIONN

### **MAXIMUM ITERATIONS**

Increased max\_iter=1000 to get closer to convergence

### **SOLVER**

Set solver='newton-cholesky' to handle many categorical features

# 05

# RESULTS & RECOMMENDATIONS



# MODEL PERFORMANCE - NORMAL

| METRIC                    | BASELINE | RANDOM<br>FOREST | LOGISTIC<br>REGRESSION |
|---------------------------|----------|------------------|------------------------|
| ACCURACY (%)              | 60       | 61               | 58                     |
| YEARLY PROFIT<br>(\$)     | 1,282    | 1,530            | 1,081                  |
| CUMULATIVE<br>PROFIT (\$) | 42,330   | 50,500           | 35,680                 |

MANNAN MANANAN MANANAN MANNAN MANNAN

# FEATURE IMPORTANCE: RANDOM FORESTS



# **MODEL PERFORMANCE - NORMAL**



# MODEL PERFORMANCE-SPREAD ADJ.

| METRIC                    | BASELINE | RANDOM<br>FOREST | LOGISTIC<br>REGRESSION |
|---------------------------|----------|------------------|------------------------|
| ACCURACY (%)              | 54       | 52               | 53                     |
| YEARLY PROFIT<br>(\$)     | 113      | -202             | -191                   |
| CUMULATIVE<br>PROFIT (\$) | 3,760    | -6,690           | -6,310                 |

Marine Ma

# **MODEL PERFORMANCE - SPREAD ADJ.**



# WHAT WE LEARNED







Historic betting odds are extremely valuable

Bookies have advanced models to generate odds

Nuanced team performance and composition data could improve model

# THANK YOU!

