## Présentation stage

Clément Legrand

July 2, 2018

# Capacitated Vehicle Routing Problem

#### **Notations**

Instance I : n clients et 1 dépôt

Solution Sol: k tournées

La demande  $d_i$  du client i, une capacité C

#### Règles

- $\forall i > 0 \in I$ ,  $\exists ! R_j \in Sol, i \in R_j$ ;
- Chaque tournée doit partir et s'arrêter au dépôt;
- $\forall R_j \in Sol, \sum_{i \in R_j} d_i \leq C$ .

### Objectif

Déterminer Sol tel que:

$$Sol = argmin_{Sol} \sum_{R_i \in Sol} \sum_{i=0}^{|R_i|-1} dist(R_j[i], R_j[i+1]) = argmin_{Sol} cost(Sol)$$

## Exemple

#### Instance A-n37-k06:



Représentation instance



Meilleure solution connue

### Objectif

Intégrer de la connaissance lors du calcul d'une solution

#### Idée

Prédire les arêtes optimales en apprenant à partir de solutions initiales de bonne qualité

#### Problèmes

- Comment construire une solution initiale de bonne qualité ?
- Quelle heuristique utiliser ?
- Comment extraire la connaissance ?
- Comment intégrer la connaissance dans l'heuristique ?

# Algorithme Clarke & Wright (CW)

 $CW^1 \rightarrow Algorithme glouton.$ 

### Définition saving

Calcul du saving de i et j avec:

$$s(i,j) = c_{i0} + c_{0j} - \lambda c_{ij} + \mu |c_{i0} - c_{0j}| + \nu \frac{d_i + d_j}{\overline{d}}$$

 $(\lambda, \mu, \nu)$  sont des paramètres à déterminer

#### **Fonctionnement**

Tant que  $\max_{(i,j)} s(i,j) > 0$ :

- $(i,j) \leftarrow argmax_{(i,j)}s(i,j)$ ;
- Les tournées qui contiennent i et j sont fusionnées (si possible);
- $s(i,j) \leftarrow 0$ .

<sup>&</sup>lt;sup>1</sup>IK. Altinel and T. Öncan, A new enhancement of the Clarke and Wright savings heuristic for the capacitated vehicle routing problem (2005) > 3 = 3

# Exécution pour $(\lambda, \mu, \nu) = (1, 1, 1)$



# Choix de $(\lambda, \mu, \nu)$ ?







(1.9, 0.1, 1.5), cost = 1106

$$(0.0, 1.0, 1.5), cost = 2191$$

#### Bilan

Difficile de prévoir l'influence des paramètres

## Heuristique Arnold & Sörensen

```
Sol \leftarrow CW(\lambda, \mu, \nu)
   NewSol ← Sol
   while Pas d'améliorations depuis 3 min do
        Calcul de la pire arête
4
        NewSol \leftarrow EiectionChain_{BI-O}
5
        NewSol \leftarrow LinKernighan_{BI-O}
6
        NewSol \leftarrow CrossExchange_{BI-O}
7
        NewSol \leftarrow LinKernighan_{BI-O}
8
        if cost(NewSol) < cost(Sol) then
q
              Sol \leftarrow NewSol
10
```

11 return Sol

### Pire arête

#### Pire arête

La pire arête du graphe est l'arête (i,j) qui maximise la fonction:

$$b(i,j) = \frac{\left[\gamma_w w(i,j) + \gamma_c c(i,j)\right] \left[\frac{d(i,j)}{\max_{k,l} d(k,l)}\right]^{\frac{\gamma_d}{2}}}{1 + p(i,j)}$$



# Opérateurs locaux

#### Ejection-chain

Déplacer / clients sur des tournées.

#### Cross-exchange

Échanger deux séquences de clients entre deux tournées.



Figure 2: Illustration of the ejection chain with two relocations.



Figure 1: Illustration of the CROSS-exchange with sequences of two customers.

## Opérateurs locaux

### Lin-Kernighan

- Utilisé en général pour TSP;
- Optimisation intra-tournée (chaque tournée est améliorée indépendamment des autres).





# Heuristique utilisée $(H_c)$

```
1 Sol \leftarrow CW(\lambda, \mu, \nu)
   NewSol ← Sol
   while La dernière amélioration date de moins de n/3 min do
        Calcul de la pire arête
 4
        NewSol \leftarrow EjectionChain_{FI-RD}
 5
        NewSol \leftarrow LinKernighan_{BI-O}
 6
        NewSol \leftarrow CrossExchange_{FI-RD}
 7
        NewSol \leftarrow LinKernighan_{BI-O}
 8
        if cost(NewSol) < cost(Sol) then
 9
             Sol \leftarrow NewSol
10
        if Pas d'améliorations depuis n/2 itérations then
11
              NewSol \leftarrow Sol
12
```

13 return Sol

## Validation

|        | A-n37-k06 |      |      | A-n65-k09 |      |      | P-n101-k04 |      |      |
|--------|-----------|------|------|-----------|------|------|------------|------|------|
| Ajout  | Best      | Mean | Time | Best      | Mean | Time | Best       | Mean | Time |
| Rien   | 950       | 957  | 195  | 1197      | 1215 | 395  | 722        | 736  | 783  |
| Divers | 950       | 969  | 200  | 1200      | 1230 | 350  | 698        | 706  | 1500 |

### Conclusion

Diversification plus intéressante pour des grandes instances

# Exemples









### Protocole

#### Questions

- Combien de solutions dans l'échantillon ?
- Combien de solutions pour apprendre ?
- Comment choisir les arêtes à conserver ?

### Protocole

#### Combien de solutions dans l'échantillon ?

- Considérer tous les  $(\lambda, \mu, \nu)$ ;
- Tirer  $N(\lambda, \mu, \nu)$  aléatoirement;

### Quelles solutions pour apprendre?

- x% des meilleures solutions : quantité privilégiée (Quan<sub>x</sub>);
- Solutions avec coût inférieur à  $c_{min} + (c_{max} c_{min}) \frac{x}{100}$ : qualité privilégiée (Qual<sub>x</sub>);

#### Comment choisir les arêtes à conserver ?

Pour chaque arête (i,j), on incrémente la valeur de MAT[i][j];

- Conserver  $(i,j) \Leftrightarrow MAT[i][j] > seuil$  (Seuil);
- Conserver les rg premières arêtes dans la matrice (Rang).

Instance A-n37-k06

|      |       |        | Quan <sub>10</sub> | Qual <sub>10</sub> |      |           |            |
|------|-------|--------|--------------------|--------------------|------|-----------|------------|
|      | Seuil | Arêtes | Correctes          | Proportion         | Rang | Correctes | Proportion |
| 50   |       |        |                    |                    |      |           |            |
|      |       |        |                    |                    |      |           |            |
| 100  |       |        |                    |                    |      |           |            |
|      |       |        |                    |                    |      |           |            |
| 500  |       |        |                    |                    |      |           |            |
|      |       |        |                    |                    |      |           |            |
| 8000 |       |        |                    |                    |      |           |            |
|      |       |        |                    |                    |      |           |            |

Instance A-n65-k09

|      |       |        | Quan <sub>10</sub> | Qual <sub>10</sub> |      |           |            |
|------|-------|--------|--------------------|--------------------|------|-----------|------------|
|      | Seuil | Arêtes | Correctes          | Proportion         | Rang | Correctes | Proportion |
| 50   |       |        |                    |                    |      |           |            |
|      |       |        |                    |                    |      |           |            |
| 100  |       |        |                    |                    |      |           |            |
|      |       |        |                    |                    |      |           |            |
| 500  |       |        |                    |                    |      |           |            |
|      |       |        |                    |                    |      |           |            |
| 8000 |       |        |                    |                    |      |           |            |
|      |       |        |                    |                    |      |           |            |

Instance P-n101-k04

|      |       |        | Quan <sub>10</sub> | Qual <sub>10</sub> |      |           |            |
|------|-------|--------|--------------------|--------------------|------|-----------|------------|
|      | Seuil | Arêtes | Correctes          | Proportion         | Rang | Correctes | Proportion |
| 50   |       |        |                    |                    |      |           |            |
|      |       |        |                    |                    |      |           |            |
| 100  |       |        |                    |                    |      |           |            |
|      |       |        |                    |                    |      |           |            |
| 500  |       |        |                    |                    |      |           |            |
|      |       |        |                    |                    |      |           |            |
| 8000 |       |        |                    |                    |      |           |            |
|      |       |        |                    |                    |      |           |            |

# Description

### Conclusion

Ajouter de la diversification dans l'apprentissage