

Vorlesung Computational Intelligence:

Teil 3: Künstliche Neuronale Netze

Multi-Layer-Perceptron-Netze (MLP-Netze), Radial-Basis-Funktions-Netze (RBF-Netze),

Ralf Mikut, Wilfried Jakob, Markus Reischl

Karlsruher Institut für Technologie, Institut für Automation und angewandte Informatik E-Mail: ralf.mikut@kit.edu, wilfried.jakob@kit.edu

jeden Donnerstag 14:00-15:30 Uhr, Nusselt-Hörsaal

Gliederung

3	Künstliche Neuronale Netze
3.1	Vom Biologischen zum Künstlichen Neuronalen Netz
3.2	Struktur
3.3	Lernverfahren
3.4	Multi-Layer-Perceptron-Netze (MLP-Netze)
3.5	Radial-Basis-Funktions-Netze (RBF-Netze)
3.6	Kohonen-Karten
3.7	Deep Learning & Convolutional Neural Networks
3.8	Kommentare

Multi-Layer-Perceptron-Netze (MLP-Netze)

Das MLP-Netz ist dadurch gekennzeichnet, dass

- die Neuronen in mehreren Schichten (Ebenen) angeordnet sind
- Feedforward-Netz
- Bestimmung des Zustands: gewichtete Summe mit Absolutterm
- Aktivierungsfunktion f
 ür verdeckte Schicht meist Tansig- oder Sigmoid-Funktion

Veranschaulichung (Beispiel mit V=4 Schichten):

Hierbei handelt es sich um eine Erweiterung des klassischen Perceptrons (besteht nur aus einem einzigen Neuron). Das MLP-Netz ist ein statisches Netz.

Schichten von MLPs (1)

Neuronen der Eingabeschicht (Schicht v = 1):

- verteilen die Eingangswerte auf die Neuronen der ersten verdeckten Schicht
- jedes Neuron hat deshalb nur einen Eingang, dieser Eingang ist auch Eingang des Netzes
- meist lineare Aktivierungsfunktionen

Neuronen der verdeckten Schichten (v = 2...V-1) und der Ausgabeschicht (v=V):

- Eingang eines jeden Neurons ist in der Regel mit allen Neuronen der Vorgängerschicht verbunden
- zusätzlicher Eingang mit Wert Eins (Gewicht w_{i0})
- Zustand z_i des Neurons berechnet sich aus der mit w_{ij} gewichteten Summe der Ausgänge der Neuronen der vorherigen (v-1). Schicht:

$$z_i^{(v)} = w_{i0}^{(v)} + \sum_j w_{ij}^{(v)} y_j^{(v-1)}$$

Schichten von MLPs (2)

 Ausgang des Neurons berechnet sich aus Aktivierungsfunktion für den Zustand z

$$y_i^{(v)} = f_i^{(v)}(z_i^{(v)})$$

- Ausgabeschicht: f meist linear
- Ausgang der Neuronen der Ausgabeschicht = Ausgang des Netzes
 - für Regressionsaufgaben häufig ein Ausgang
 - für Klassifikationsaufgaben meist mehrere Ausgänge (z.B. 3 Klassen o.k., Fehler Typ A, Fehler Typ B) jeweils als ein Neuron kodieren (einfacheres Lernen), Details siehe Vorlesung "Datenanalyse für Ingenieure" im Sommersemester
- Struktur:
 - Anzahl der Schichten V
 - Anzahl der Neuronen in den Schichten
 - Typ der Aktivierungsfunktion
- Parameter:
 - Gewichte der Verbindungen

Einfaches MLP-Beispiel

- 1 Eingang x₁, 1 Ausgang y₁,
 1 verdeckte Schicht (V=3)
- lineare Aktivierungsfunktionen f für Eingangs- und Ausgangsneuron
- tansig-Aktivierungsfunktion in verdeckter Schicht
- zusätzliche Schwellwerte in verdeckter Schicht und am Ausgangsneuron

CI NEURO_B6 | R. Mikut | IAI

Wirkung der einzelnen Parameter (3 Neuronen)

- w₁₁⁽²⁾ Gewicht zwischen Neuron Eingabeschicht und Neuron verdeckte Schicht (oben links)
- w₁₁⁽³⁾ Gewicht zwischen Neuron verdeckter Schicht und Neuron Ausgabeschicht (oben rechts)
- w₁₀⁽²⁾ Absolut-Term
 Neuron verdeckte Schicht
 (unten links)
- w₁₀⁽³⁾ Absolut-Term
 Neuron Ausgabeschicht
 (unten rechts)
- Änderung je ein Parameter zwischen 0 und 1, alle anderen Parameter sind 1

Erweiterung um 2. Neuron in verdeckter Schicht

$$y_{1}^{(3)} \xrightarrow{y_{1}^{(3)}} y_{2}^{(2)} = f_{2}^{(2)}(z_{2}^{(2)}) = \left(\frac{2}{1 + e^{-2(w_{21}^{(2)}y_{1}^{(1)} + w_{20}^{(2)})}} - 1\right)$$

$$\hat{y}_{1} = y_{1}^{(3)} = f_{1}^{(3)}(z_{1}^{(3)})$$

$$= w_{11}^{(3)}y_{1}^{(2)} + w_{10}^{(3)} + w_{12}^{(3)}y_{2}^{(2)}$$

$$= w_{11}^{(3)} \left(\frac{2}{1 + e^{-2(w_{21}^{(2)}x_{1} + w_{10}^{(2)})}} - 1\right) + w_{10}^{(3)}$$

$$+ w_{12}^{(3)} \left(\frac{2}{1 + e^{-2(w_{21}^{(2)}x_{1} + w_{20}^{(2)})}} - 1\right)$$

CI NEURO_B8 | R. Mikut | IAI

Wirkung der einzelnen Parameter (4 Neuronen)

- w₂₁⁽²⁾ Gewicht zwischen Neuron Eingabeschicht und
 Neuron verdeckte Schicht (oben links)
- w₁₂⁽³⁾ Gewicht zwischen
 Neuron verdeckter Schicht und Neuron Ausgabeschicht (oben rechts)
- $w_{20}^{(2)}$ Absolut-Term 2. Neuron verdeckte Schicht (unten links)
- Standard:

$$W_{21}^{(2)} = 1,$$

 $W_{12}^{(3)} = 1,$
 $W_{20}^{(2)} = -3,$

Änderung:

$$W_{21}^{(2)} = 0...1,$$

 $W_{12}^{(3)} = 0...1,$
 $W_{20}^{(2)} = -2...-3$

Jedes Neuron hat globale Wirkung!!!

Hausaufgabe (5 Neuronen)

Erweitern Sie das Netz um ein 3. Neuron in verdeckter Schicht!

Fragen:

- 1. Welche Parameter kommen dazu?
- 2. Welche Terme kommen dazu?
- 3. Ermöglicht die Erweiterung den Aufbau anderer Funktionen?
- 4. Unter welchen Voraussetzungen beeinflusst das 3. Neuron den Ausgang nicht?

Bestimmung der Parameter (1)

- Alle Gewichte werden in einen Vektor w_{MLP} geschrieben
- Gütekriterium: Summe der quadratischen Fehler minimieren (entspricht der Euklidischen Distanz d_{Euk} zwischen Ausgangsgrößen im Lerndatensatz und den Ausgangsgrößen des Netzes, überwachtes Lernen)

$$Q = (d_{Euk}(\mathbf{y}, \hat{\mathbf{y}}))^2 = \sum_{n=1}^{N} (y[n] - \hat{y}[n])^2 = (\mathbf{y} - \hat{\mathbf{y}})^T \cdot (\mathbf{y} - \hat{\mathbf{y}})$$

- Ausgangsgrößen des Netzes hängen in komplizierter Form von den Parametern ab, siehe vorherige Beispiele
- deswegen existiert keine geschlossene Lösung
- rekursives Verfahren:

$$\mathbf{w}_{MLP}[k+1] = \mathbf{w}_{MLP}[k] - \rho[k]\mathbf{W}_{rek}[k] \frac{\partial Q}{\partial \mathbf{w}_{MLP}}|_{\mathbf{w}_{MLP}[k]}, \rho \in [0,1]$$

- Startlösung meist zufällig
- **W**_{rek} ist Wichtungsmatrix, im einfachsten Fall Einheitsmatrix

Bestimmung der Parameter (2)

• Hauptproblem: Berechnung des Gradienten

$$\frac{\partial Q}{\partial \mathbf{w}_{MLP}}|_{\mathbf{w}_{MLP}[k]}$$

- Zwei Lösungswege:
 - kleine Änderungen an w_{ij} durchführen, neues Q und Gradient ausrechnen (numerisch extrem aufwändig, jedes Mal komplette Netzberechnung)
 - Gradient geschlossen berechnen (eleganter!), dazu muss Q nach jedem (!)
 Gewicht abgeleitet werden
 - Bei vielen Netzen (z.B. MLP) ist Ausnutzung der Feedforward- und Schichtenstruktur möglich
 - Fehler wird rückwärts von Ausgabeschicht ausgehend nach vorn verteilt
 - daher der Name "Backpropagation-Verfahren"

- Auch noch zu klären: Berechnung der Rekursion und der Gradienten
 - separat für jedes Datentupel oder
 - für alle Datentupel (Batch-Verfahren)

Bestimmung der Parameter (3)

Geschlossene Berechnung des Gradienten (MLP, 4 Neuronen, Auszüge):

$$\hat{y} = w_{11}^{(3)} \left(\frac{2}{1 + \exp\left(-2\left(w_{11}^{(2)}y_1^{(1)} + w_{10}^{(2)}\right)\right)} - 1 \right) + w_{10}^{(3)}$$

$$+ w_{12}^{(3)} \left(\frac{2}{1 + \exp\left(-2\left(w_{21}^{(2)}y_1^{(1)} + w_{20}^{(2)}\right)\right)} - 1 \right)$$

$$Q = \sum_{n=1}^{N} (y[n] - \hat{y}[n])^2$$

$$\frac{\partial Q}{\partial w_{10}^{(3)}} = 2 \sum_{n=1}^{N} (y[n] - \hat{y}[n])$$

$$\frac{\partial Q}{\partial w_{11}^{(3)}} = 2 \sum_{n=1}^{N} (y[n] - \hat{y}[n]) \left(\frac{2}{1 + \exp\left(-2\left(w_{11}^{(2)}y_1^{(1)}[n] + w_{10}^{(2)}\right)\right)} - 1 \right)$$

Bestimmung der Parameter (4)

- Gradient kann für alle Schichten rückwärts und symbolisch berechnet werden
- Formeln in Computerprogrammen hinterlegt
- Zwischenergebnisse müssen abgespeichert werden
- Rolle von W_{rek} in (ρ[k]: Parameter)

$$\mathbf{w}_{MLP}[k+1] = \mathbf{w}_{MLP}[k] - \rho[k]\mathbf{W}_{rek}[k] \frac{\partial Q}{\partial \mathbf{w}_{MLP}}|_{\mathbf{w}_{MLP}[k]}, \rho \in [0,1]$$

- Gradientenabstieg (manchmal auch als Backpropagation bezeichnet) $\mathbf{W}_{rek}[k] = \mathbf{I}$
- Levenberg-Marquardt-Verfahren:

$$\mathbf{W}_{rek}[k] = (\mathbf{\hat{H}} + \alpha[k] \cdot \mathbf{I})^{-1}, \ \alpha[k] - \text{Wichtungsfaktor}$$

 α = 0: Newton-Verfahren

Hesse-Matrix **H**: Matrix der partiellen zweiten Ableitungen des Bewertungsmaßes nach den Parametern mit Elementen $H_{ij} = \partial^2 Q/(\partial w_{MLP,i} \cdot \partial w_{MLP,j})$

Kommentare

- Verfahren zur Bestimmung der Parameter:
 - garantieren keine optimale Lösung, alle genannten Verfahren können in lokalen Minima der Gütefunktion stagnieren
 - Gradientenabstieg konvergiert oft extrem langsam
 - Levenberg-Marquardt-Verfahren konvergiert viel schneller, erfordert aber die aufwändige Berechnung der Hesse-Matrix (u.U. Laufzeit- oder Speicherprobleme im Computer, insbesondere bei großen Netzen)
 - Backpropagation wird oft auch als Synonym für Gradientenabstieg benutzt
- Struktursuche:
 - oft Heuristiken
 - mit extrem einfachen Netzen beginnen (eine verdeckte Schicht, 2-3 Neuronen) und langsam steigern
 - zu komplizierte Strukturen führen zu Overfitting (siehe Ubung)
 - Validierung mit unbekannten Testdaten oder Validierungsverfahren (siehe Vorlesung "Datenanalyse für Ingenieure" im Sommersemester)

Durchblick- und Stufenlabyrinthe [Pychynski09,10]

Datensammlung zum Durchflussverhalten von Durchblick- und Stufenlabyrinthen:

Komplexes System mit 21 Einflussparametern

Datensatz mit 15.297 Datentupeln aus 15 Quellen

[Pychynski09] Pychynski, T.: Anwendung von Data Mining Methoden zur Analyse von Turbomaschinenkomponenten am Beispiel des Durchflussverhaltens von Labyrinthdichtungen. *Karlsruher Institut für Technologie (KIT)*, **2009**

[Pychynski10] Pychynski, T.; Blesinger, G.; Mikut, R.; Dullenkopf, K. & Bauer., H.-J.: Modelling the Labyrinth Seal Discharge Coefficient Using Data Mining Methods. *Proc., ASME TURBO EXPO; Glasgow,* **2010**

CI NEURO_B16 | R. Mikut | IAI

Hinweise

- Ein Ausgangsneuron: Durchflussbeiwert C_d (dimensionsloser Leckagestrom)
- Strukturentscheidungen:
 - MLP mit einer verdeckten Schicht, Zahl Neuronen in dieser Schicht schrittweise steigern (1...30)
 - Eingangsgrößen u.U. vorher kombinieren (Verhältnisse wie s/t) und als neue Eingangsgrößen verwenden
 - nicht mit allen 21 Merkmalen als Eingangsgrößen des Netzes arbeiten
 - konsequente Merkmalsauswahl durch Durchprobieren von Netzstrukturen, beginnend mit einem Eingang, gute Ergebnisse ab 4 Merkmalen ("Wrapper-Verfahren", siehe "Datenanalyse für Ingenieure" im Sommersemester)
- Gibt es irgendwelche Fallen?
 Daten z.T. auf Papier, schlechte Datenqualität (Abdeckung Merkmalsraum, nicht gemessene Merkmale)

Lösung [Pychynski09,10]

- Regressionsmodelle mit Polynomen und Künstlichen Neuronalen Netzen (MLP mit 30 Neuronen in der verdeckten Schicht)
- Polynome ab Grad 2 o.k., Neuronale Netze besser
- Bewertung mit
 Korrelationskoeffizienten
 zwischen Cd und Schätzung von
 Cd für jedes Modell, je nach
 Modell zwischen 0.95 0.99
- ACHTUNG! Modellgüte nur in der Nähe von existierenden Datentupeln gut, Probleme in schlecht abgedeckten Bereichen

Gliederung

3	Künstliche Neuronale Netze
3.1	Vom Biologischen zum Künstlichen Neuronalen Netz
3.2	Struktur
3.3	Lernverfahren
3.4	Multi-Layer-Perceptron-Netze (MLP-Netze)
3.5	Radial-Basis-Funktions-Netze (RBF-Netze)
3.6	Kohonen-Karten
3.7	Deep Learning & Convolutional Neural Networks
3.8	Kommentare

Radial-Basis-Funktions-Netze (RBF-Netze)

- Idee aus mathematischer Interpolations-/Approximationstheorie
- gegeben:
 - N Datentupel mit
 - bekannten Eingangsgrößen x[n], n=1,...,N, x ist s-dimensional, und
 - bekannten Ausgangsgrößen y[n], n=1,...,N
 - gesucht: Funktion y = f(x), die diese Punkte verbindet
 - Interpolation: Funktion läuft GENAU DURCH diese Punkte
 - Approximation/Regression:
 Funktion läuft IN DER NÄHE dieser Punkte weil
 - auf y Störungen liegen (Regression) oder
 - der funktionelle Zusammenhang anders ist (Approximation) oder
 - sowohl Störungen als auch andere funktionelle Zusammenhänge vorliegen (Approgression)
- Eine Lösungstechnik wählt f(.) als Linearkombination von radialsymmetrischen Basisfunktionen

RBF-Netze

Eigenschaften:

- Neuronen in drei Schichten:
 - Eingabeschicht,
 - nur eine Schicht mit RBF-Neuronen,
 - Ausgabeschicht
- Verbindungen zwischen den Neuronen vorwärts gerichtet (Feedforward-Netz)
- Funktionen zur Bestimmung des Zustands der RBF-Neuronen sind Gaußfunktionen:

$$z(\mathbf{x}, \mathbf{w}) = e^{-\frac{1}{2\sigma^2} \cdot (\mathbf{x} - \mathbf{w})^T (\mathbf{x} - \mathbf{w})}$$
$$= e^{-w_0 \cdot (\mathbf{x} - \mathbf{w})^T (\mathbf{x} - \mathbf{w})}$$

Struktur von RBF-Netzen

Verdeckte Schicht (RBF-Schicht):

- Parameter w_{ij} kennzeichnen den "Mittelpunkt" der RB-Funktion (vgl. Mittelwert Normalverteilung)
- Parameter σ (als Teil von w₀) definiert
 Breite der Funktion
 (vgl. Streuung der Normalverteilung)
- lineare Aktivierungsfunktion f(z) = z
- für jedes Neuron der RBF-Schicht gilt

$$y_i^{(2)} = e^{-s_i^{(2)}} = \exp\left(-w_{i0}^{(2)} \sum_j (x_j - w_{ij}^{(2)})^2\right)$$

mit
$$w_{i0}^{(2)} = \frac{1}{2\sigma^2}$$

(σ meist für alle Neuronen gleich, bei Bedarf auch spezifisch für jedes Neuron $\sigma_{i}^{(2)}$)

Veranschaulichung Verhalten mit 2 Neuronen

$$y = w_{11}^{(3)} \exp\left(-w_{10}^{(2)}(x - w_{11}^{(2)})^2\right) + w_{12}^{(3)} \exp\left(-w_{20}^{(2)}(x - w_{21}^{(2)})^2\right)$$

Ein Neuron in der Eingabeschicht, ein Neuron in der Ausgabeschicht

Parameter:

- $w_{11}^{(2)} = 1$ Veränderung 1..2
- $w_{21}^{(2)} = 2.5$ Veränderung 2.5..3.5
- $w_{11}^{(3)} = 2$ Veränderung 2..3
- $w_{12}^{(3)} = 3$ Veränderung 3..4
- $w_{10}^{(2)} = 1$ Veränderung 1...2
- $w_{20}^{(2)} = 1$, Veränderung 1...2

Wirkung der Parameter

Auswirkung der Veränderungen:

- $w_{11}^{(2)}$ Gewicht zwischen Neuron Eingabeschicht und 1. RBF-Neuron (oben links)
- $w_{21}^{(2)}$ Gewicht zwischen Neuron Eingabeschicht und 2. RBF-Neuron (oben rechts)
- $w_{10}^{(2)}$ Skalierung Einzugsbereich 1.RBF Neuron (mitte links)
- $w_{20}^{(2)}$ Skalierung Einzugsbereich 2.RBF Neuron (mitte rechts)
- w₁₁⁽³⁾ Gewicht zwischen
 1. RBF- Neuron und Neuron Ausgabeschicht (unten links)
- $w_{12}^{(3)}$ Gewicht zwischen 2. RBF-Neuron und Neuron Ausgabeschicht (unten rechts)

CI NEURO_C24 | R Mikut | IAI

Lernen von RBF-Netzen

- Lernen der optimalen Gewichte zum Ausgangsneuron w_{1i}⁽³⁾
 - mit linearer Aktivierungsfunktion am Ausgangsneuron ergibt sich parameterlineares Schätzproblem
 - kann mit Methode der kleinsten Fehlerquadrate (engl. Least Square) optimal bestimmt werden
- Platzierung der RBF-Neuronen w_{ii}⁽²⁾
 - nichtlineares Problem
 - mehrere Algorithmen:
 - schrittweise Erhöhung der Anzahl der RBF-Neuronen (z.B. MATLAB-Funktion "newrb.m")
 - Platzierung eines neuen Neurons am Datentupel mit dem größten Fehler
 - 2. Lernen der optimalen Gewichte zum Ausgangsneuron für RBF-Netz
 - 3. Abbruch, wenn Zielgütewerte erreicht, sonst Fortsetzen mit 1.
 - Platzierung auf regelmäßigem Gitter
 - Clusterverfahren (Vorlesung "Datenanalyse für Ingenieure" im Sommersemester)

Kommentare zum Verhalten von RBF-Netzen

Ergebnis:

- Jedes RBF-Neuron der 2. Schicht wird um so stärker angeregt (f(s) = 0 ... 1),
 je ähnlicher die Eingangswerte x dem jeweiligen Parametervektor w sind.
- Verbindungen zwischen RBF-Schicht und Ausgabeschicht wie bei MLP
- ⇒ Die Verbindung zwischen dem RBF-Neuron, dessen Parametervektor w dem Eingangsvektor x am n\u00e4chsten ist, und dem Ausgangsneuron bestimmt ma\u00dfgeblich den Ausgangswert des Netzes!
- ⇒ Jedes Neuron hat nur lokale Wirkung!!!