Introduction to R code for "De-biased lasso for stratified Cox models with applications to the national kidney transplant data"

by Lu Xia, Bin Nan and Yi Li

This folder contains the following R/Rcpp files:

- strat_cox_Clib.cpp contains main functions in Rcpp that calculate the quantities related to the negative log of stratified partial likelihood and solve for the lasso estimator and its cross-validation.
- strat_cox_Rlib.R contains an auxiliary function that is called iteratively for solving the lasso problem in strat_cox_Clib.cpp.
- simulated_example.R provides a simulated example that uses the proposed de-biased lasso method for drawing inferences for stratified Cox models.

1 Library of key functions

The Rcpp file strat_cox_Clib.cpp contains the key functions that calculate the quantities related to the negative log of stratified partial likelihood and solve for the lasso estimator and its cross-validation. The functions following "// [[Rcpp::export]]" are exported to R that can be directly called in R.

- all_neg_loglik_cpp_ext calculates the negative log stratified partial likelihood $\ell(\beta)$; it can be used in the cross-validation for the tuning parameter γ without the burden to also compute $\dot{\ell}(\beta)$, $\ddot{\ell}(\beta)$ and $\hat{\Sigma}$.
- all_neg_loglik_function_cpp_ext calculates the quantities related to the negative log stratified partial likelihood: $\ell(\beta)$, $\dot{\ell}(\beta)$, $\dot{\ell}(\beta)$ and $\hat{\Sigma}$.
- lasso_stratCox_cpp_ext solves the lasso estimator for some specified tuning parameter λ and returns a column vector as the solution.
- cv_lasso_stratCox_cpp implements cross-validation for the lasso estimator and automatically selects the optimal tuning parameter; it returns a list object containing the final lasso estimator (beta_opt), the λ sequence (lambda_seq) and the selected λ (lambda_opt), cross-validated values (cv_value), $\ell(\widehat{\beta})$ (neg_loglik), $\dot{\ell}(\widehat{\beta})$ (neg_dloglik), $\ddot{\ell}(\widehat{\beta})$ (neg_dloglik) and the matrix $\widehat{\Sigma}$ (score_sq).

Before running the code, please make sure the required R packages (see those included in the R code) have been installed.

2 Simulated examples

simulated_example.R consists of seven parts and has been clearly annotated. The corresponding parts can be located as below.

- Simulation scenarios (Line 28–Line 65): four scenarios with different (K, n_k, p) combinations are considered as stated in the main article; this example highlights Scenario 1 due to its shortest running time and other scenarios may take considerably longer running time.
- The remaining setup that is common across scenarios (Line 68–Line 100): true regression parameters, baseline hazards and covariance matrix for covariates X.
- Data generation (Line 102-Line 131): covariates X, observed survival time time, event indicator delta and stratum index number strata_idx.
- Lasso estimator (Line 133-Line 162): the lasso estimator can be retrieved as beta_glmnet.
- Cross-validation for the tuning parameter γ in the proposed de-biased lasso approach, DBL-QP, as shown in Algorithm 1 (Line 169-Line 257): the sequence of tuning parameters for γ can be retrieved using multiplier_seq*sqrt(log(p)/total_n) and the cross-validated values using all_cvpl2.
- Implementation of the de-biased lasso estimator and inference with the selected tuning parameter γ (Line 259–293): the final DBL-QP estimator can be retrieved from b_hat_new, as well as its model-based standard error se_new and p-values pval_new.
- Other estimators in comparison (Line 296–Line 318): maximum stratified partial likelihood estimator and oracle estimator.

For simulation results, since the simulation for the four scenarios described in Section 4 would take extremely long time to finish on a desktop machine, the code was originally run as multiple array jobs on a cluster. Hence, the simulation results cannot be entirely reproduced on a desktop machine within reasonable time limit.

Interested readers may try one replication in one of the four scenarios described in Section 4. Running time for one replication varies a lot by scenario and CPU. Scenario 1, the simplest case among the four, usually takes < 1 minute to finish one replication. The other three scenarios may take a few hours.