CS 461 - Computer Graphics

Viewing & Clipping

Amal Dev Parakkat

2D Viewing Pipeline

- ► The coordinates in which individual objects (models) are created are called model (or object) coordinates.
- When several objects are assembled into a scene, they are described by world coordinates.
- After transformation into the coordinate system of the camera (viewer) they become viewing coordinates.
- ► Their projection onto a common plane (window) yields device-independent normalized coordinates.
- After mapping those normalized coordinates to a specific device, we get device coordinates.

Window to Viewport

- Window A world-coordinate area selected for display
- Clipping window the part of two dimensional scene to be displayed
- Viewport window where data from clipping window will be displayed

Window to Viewport mapping

- $\blacktriangleright (x_w, y_w) \longrightarrow (x_v, y_v)$
- Normalized point on window = $\left(\frac{x_w x_{wmin}}{x_{wmax} x_{wmin}}, \frac{y_w y_{wmin}}{y_{wmax} y_{wmin}}\right)$
- Normalized point on viewport = $(\frac{x_v x_{vmin}}{x_{vmax} x_{vmin}}, \frac{y_v y_{vmin}}{y_{vmax} y_{vmin}})$
- $\sum_{\substack{X_w X_{wmin} \\ Xwmax X_{wmin}}} = \frac{x_v x_{vmin}}{x_{vmax} x_{vmin}}, \frac{y_w y_{wmin}}{y_{wmax} y_{wmin}} = \frac{y_v y_{vmin}}{y_{vmax} y_{vmin}}$
- $> s_X = \frac{x_{vmax} x_{vmin}}{x_{wmax} x_{wmin}}, s_y = \frac{y_{vmax} y_{vmin}}{y_{wmax} y_{wmin}}$

Clipping

- ► Clipping algorithms:
 - ▶ Point clipping
 - ► Line clipping
 - Polygon clipping

Point clipping

Line Clipping

- ► Cohen-Sutherland Line Clipping
- ► Nicholl-Lee-Nicholl Line Clipping

Cohen-Sutherland Line Clipping - idea

Т	В	R	L
1001	10	1010	
0001	0000		0010
0101	0100		0110

Cohen-Sutherland Line Clipping - procedure

- Find the properties
- ► Using OR and AND operations
- Procedure

Nicholl-Lee-Nicholl Line Clipping

► Three configurations

► Procedure:

Polygon Clipping

- ► Sutherland-Hodgman Polygon Clipping
- ► Weiler-Atherton Polygon Clipping

Sutherland-Hodgman Polygon Clipping - procedure

- ▶ Case 1 vertex B is added to the output list
- Case 2 − vertex B' is added to the output (edge AB is clipped to AB')
- ► Case 3 no vertex added (segment AB clipped out)
- ➤ Case 4 vertices A' and B are added to the output (edge AB is clipped to A'B)

- ▶ With respect to line 1-2
- ightharpoonup Output= ϕ

- ► With respect to line 1-2
- ► Output=qB

- ► With respect to line 1-2
- ► Line segment BC Case 1
- ► Output=qBC

- ► With respect to line 1-2
- ▶ Line segment CD → Case 1
- ► Output=qBCD

- ► With respect to line 1-2
- ▶ Line segment DE → Case 1
- ► Output=qBCDE

- ► With respect to line 1-2
- ► Line segment EA \longrightarrow Case 2
- Output=qBCDEp

- ► Similarly we will do for 2-3, 3-4, and 4-1
- Output = qBrstuvwp

Sutherland-Hodgman Polygon Clipping - limitation

- ▶ Concave polygons
- Concave clipping polygon

Weiler-Atherton Polygon Clipping

Α	1
р	2
В	3
q	4
r	S
D	r
S	q
Ε	р

Weiler-Atherton Polygon Clipping

Next class

► Time: Sep 21st 9-10

► Topic: Curves