Geoffrey Parker - grp352 HW 25: 4.36 - 4.42 M328K April 26th, 2012

4.36 Theorem. Let p be a prime and let a be an integer such that $1 \le a < p$. Then there exists a unique natural number b less than p such that $ab \equiv 1 \pmod{p}$.

Proof. Let p be a prime and let a be an integer such that $1 \le a < p$. Then by theorem $4.13 \ S = \{a, 2a, \ldots, pa\}$ is a complete residue system modulo p. So by definition of complete residue systems, one, being an integer, is congruent modulo p to exactly one element of S, call it t. So t = ab where $b \le p$ is a natural number. However $ap \equiv 0 \pmod{p}$ so b cannot be p. Therefore there exists a unique natural number b less than p such that $ab \equiv 1 \pmod{p}$.

4.37 Exercise. Let p be a prime. Show that the natural numbers 1 and p-1 are their own inverses modulo p.

Solution.

 $1 \cdot 1 = 1$ and $1 \equiv 1 \pmod{p}$. $(p-1)(p-1) = p^2 - 2p + 1$. And since $p^2 \equiv 0 \pmod{p}$ and $2p \equiv 0 \pmod{p}$, we know $p^2 - 2p + 1 \equiv 1 \pmod{p}$.

4.38 Theorem. Let p be a prime and let a and b be integers such that 1 < a, b < p-1 and $ab \equiv 1 \pmod{p}$. Then $a \neq b$.

Proof. Let p be a prime and let a and b be integers such that 1 < a, b < p-1 and $ab \equiv 1 \pmod{p}$. Assume by way of contradiction that a = b. Then $aa \equiv 1 \pmod{p}$ and $p \mid aa - 1$ or equivalently $p \mid (a+1)(a-1)$. So by theorem 2.27 $p \mid a+1$ or $p \mid a-1$. However, since 1 < a < p-1 both of these are natural numbers less than p, so p cannot divide either. Therefore we have a contradiction and have shown that $a \neq b$.

4.39 Exercise. Find all pairs of numbers a and b in $\{2, 3, ..., 11\}$ such that $ab \equiv 1 \pmod{13}$.

Solution. 2, 7; 3, 9; 4, 10; 5, 8; 6, 11

4.40 Theorem. If p is a prime larger than 2, then $2 \cdot 3 \cdot 4 \cdot \ldots \cdot (p-2) \equiv 1 \pmod{p}$.

Proof. Let p be a prime larger than 2. Let S be the set of numbers $\{2, 3, 4, \ldots, (p-2)\}$. Note that each element of S is coprime with p. By theorem 4.36 each element a of S has some natural number b < p such that $ab \equiv 1 \pmod{p}$. But b cannot be 1 because that would imply that $p \mid a-1$. And if b=p-1 then $p \mid ap-a$, and since $p \mid ap$ then by theorem 1.1 $p \mid a$. Since 1 < a < p-1, neither of these can be true, so b must be an element of the set S. And by theorem 4.38 $a \neq b$. So we can break the set S into n distinct a, b pairs where $ab \equiv 1 \pmod{p}$ and |S| = 2n. Then $2 \cdot 3 \cdot 4 \cdot \ldots \cdot (p-2) \equiv 1 \pmod{p}$ can be rewritten as $a_1b_1a_2b_2\ldots a_nb_n$. Since each of these pairs is congruent modulo p to one, the entire product is congruent modulo p to one. Therefore $2 \cdot 3 \cdot 4 \cdot \ldots \cdot (p-2) \equiv 1 \pmod{p}$.

4.41 Theorem (Wilson's Theorem). If p is a prime, then $(p-1)! \equiv -1 \pmod{p}$.

Proof. Let p be prime. Note that $(p-1)! = 1(2 \cdot 3 \cdot \ldots \cdot p - 2)(p-1)$. By theorem 4.40 $(2 \cdot 3 \cdot \ldots \cdot p - 2) \equiv 1 \pmod{p}$. So $(p-1)! \equiv p-1 \pmod{p}$. And because $p \mid p$, also $p \mid p-1-(-1)$, so by the definition of congruence $p-1 \equiv -1 \pmod{p}$. Therefore by theorem 1.11 $(p-1)! \equiv -1 \pmod{p}$.

4.42 Theorem (Converse of Wilson's Theorem). If n is a natural number such that $(n-1)! \equiv -1 \pmod{n}$, then n is prime.

Proof. Let n be a natural number with $(n-1)! \equiv -1 \pmod{n}$. Because $p \mid p$, also $p \mid p-1-(-1)$, so by the definition of congruence $n-1 \equiv -1 \pmod{n}$ and $(n-1)! \equiv n-1 \pmod{n}$. And by 2.32 (n-1,n)=1, so by theorem 4.3 ((n-1)!,n)=1. Assume by way of contradiction that n is composite. Then by definition of comosite there exist natural numbers a and b where 1 < a, b < n and n=ab. So $a \mid n$. However, by the definition of factorial $a \mid (n-1)!$. So a must divide ((n-1)!,n), which means that this gcd cannot be 1. Therefore we have a contradiction, so n must be prime.