## **SPRAWOZDANIE**

## Symulacja działania sterownika dla robota dwuosiowego typu SCARA w środowisku Matlab/Simulink.

| Data     | 16.10.2018                                          |
|----------|-----------------------------------------------------|
| grupa    | Wtorek 12:45                                        |
| zespół 1 | Michał Krzyszczuk<br>Szymon Kuczaty<br>Łukasz Leśny |



Trajektoria końcówki łańcucha kinematycznego podczas realizacji polecenia rysowania koła, przy użyciu regulatora typu P.



Rysowanie elipsy z użyciem regulatora P



Rysowanie okręgu z niezerowymi parametrami I regulatora PI



Użycie złych nastaw PID skutkujące wyjściem ramienia poza obsługiwany zakres, w rzeczywistości uszkodzeniem sprzętu.



Brak wycinka okręgu spowodowana fizycznym ograniczeniem obrotu.



porównanie linii prostej rysowanej za pomocą regulatora FUZZY ( z dołu) i P ( z góry)



porównanie FUZZY i P dla rysowania elipsy, lepszy wynik uzyskał regulator P



rysowanie elipsy regulatorem FUZZY blisko położeń granicznych

## WNIOSKI

W większości przypadków regulator PID, a właściwie jego wersja P, działały lepiej niż regulator FUZZY - miały mniejsze oscylacje i odchylenia.

Robot nie może rysować ciągłych okręgów, których środek jest w miejscu mocowania ramienia robota - spowodowane jest to fizycznym ograniczeniem obrotu ramienia o max 360 stopni

Należy pamiętać o ograniczeniach robota żeby nie ustawiać dla niego punktów nieosiągalnych