	Submission must be in pairs, unless otherwise authorized. Submit by 28/2/2024 This notebook contains all the questions. You should follow the instructions below. Solutions for both theoretical and practical parts should be written in this notebook Moodle submission You should submit three files:
	 IPYNB notebook: All the wet and dry parts, including code, graphs, discussion, etc. PDF file: Export the notebook to PDF. Make sure that all the cells are visible. Pickle file: As requested in Q2.a All files should be in the following format: "HW1_ID1_ID2.file"
	Question 1 I. Softmax Derivative (10pt) Derive the gradients of the softmax function and demonstrate how the expression can be reformulated solely by using the softmax function, i.e., in some expression where
	only $softmax(x)$, but not x , is present). Recall that the softmax function is defined as follows: $softmax(x)_i = \frac{e^{x_i}}{\sum_{j=1}^N e^{x_j}}$ I. Softmax Derivative - Answer: $\frac{d_{x_i}(f(x))}{d_{x_i}(f(x))} = \frac{g(x)f'(x) - f(x)g'(x)}{g(x)}$
	we will use the quotient rule: $\setminus \frac{d}{dx}\left(\frac{f(x)}{g(x)}\right) = \frac{g(x)f'(x) - f(x)g'(x)}{(g(x))^2}$ such that: $f(x) = e^{x_i} \setminus g(x) = \sum_{j=1}^N e^{x_j} > \frac{d}{dx_k}g(x) = e^{x_k}$ Split into 2 cases: $1. \ i = k: \setminus \frac{d}{dx_i}f(x) = e^{x_i} \setminus \frac{d}{dx_i}f(x) = e^{x_i} \setminus \frac{d}{dx_i}f(x) = e^{x_i} + \frac{d}{dx_i}f(x) = $
	$egin{aligned} rac{\partial \mathrm{softmax}(x)_i}{\partial x_k} &= rac{e^{x_i} \sum_{j=1}^N e^{x_j} - e^{x_k} e^{x_i}}{\left(\sum_{j=1}^N e^{x_j} ight)^2} \ & rac{e^{x_i}}{\sum_{j=1}^N e^{x_j}} \cdot \left[rac{\sum_{j=1}^N e^{x_j} - e^{x_k}}{\sum_{j=1}^N e^{x_j}} ight] \ & rac{e^{x_i}}{\sum_{j=1}^N e^{x_j}} \cdot \left[1 - rac{e^{x_k}}{\sum_{j=1}^N e^{x_j}} ight] \end{aligned}$
	$egin{align} \left(\sum_{j=1}^N e^{x_j} ight) \ &= rac{-e^{x_k}e^{x_i}}{\left(\sum_{j=1}^N e^{x_j} ight)^2} \ &rac{e^{x_i}}{\sum_{j=1}^N e^{x_j}} \cdot \left[rac{-e^{x_k}}{\sum_{j=1}^N e^{x_j}} ight] \ & ext{by definition of softmax:} \end{aligned}$
	Hence: $\frac{\partial \mathrm{softmax}(x)_i \cdot \mathrm{softmax}(x)_i}{\partial x_k} = \begin{cases} \mathrm{softmax}(x)_i \cdot (1 - \mathrm{softmax}(x)_i) & \text{if } i = k \\ -\mathrm{softmax}(x)_i \cdot \mathrm{softmax}(x)_k & \text{if } i \neq k \end{cases}$ II. Cross-Entropy Gradient (10pt) Derive the gradient of cross-entropy loss with regard to the inputs of a softmax function. i.e., find the gradients with respect to the softmax input vector θ , when the prediction is denoted by $\hat{y} = softmax(\theta)$. Remember the cross entropy function is:
	$CE(y,\hat{y}) = -\sum_i y_i log(\hat{y}_i)$ where y is the one-hot label vector, and \hat{y} is the predicted probability vector for all classes. II. Cross-Entropy Gradient - Answer $\frac{\partial \mathrm{CE}(y,\hat{y})}{\partial \theta} = -\sum_i y_i \cdot \frac{\partial \log(\hat{y}_i)}{\partial \theta}$
	$\begin{aligned} & \text{chain rule:} \\ &= -\sum_{i} y_{i} \cdot \frac{\partial \log(\hat{y}_{i})}{\partial \hat{y}_{i}} \cdot \frac{\partial \hat{y}_{i}}{\partial \theta} \\ &= -\sum_{i} y_{i} \cdot \frac{1}{\hat{y}_{i}} \cdot \frac{\partial \hat{y}_{i}}{\partial \theta} \\ &= -\sum_{i} \frac{y_{i}}{\hat{y}_{i}} \cdot \frac{\partial \hat{y}_{i}}{\partial \theta} \end{aligned}$
	such that: $\frac{\partial \hat{y}_i}{\partial \theta}$ is the softmax derivative we previously found: $\frac{\partial \hat{y}_i}{\partial \theta} = \begin{cases} \hat{y}_i \cdot (1 - \hat{y}_i) & \text{if } i = k \\ -\hat{y}_i \cdot \hat{y}_k & \text{if } i \neq k \end{cases}$ $\frac{\partial \text{CE}(y, \hat{y})}{\partial \theta} = -\sum_{i=k} \frac{y_i}{\hat{y}_i} \cdot \hat{y}_i \cdot (1 - \hat{y}_i) - \sum_{i \neq k} \frac{y_i}{\hat{y}_i} \cdot (-\hat{y}_i \cdot \hat{y}_k)$ $= -y_k \cdot (1 - \hat{y}_k) + \sum_{i \neq k} y_i \cdot \hat{y}_k$
	$egin{align} &= -y_k + y_k \cdot \hat{y}_k + \sum_{i eq k} y_i \cdot \hat{y}_k \ &= -y_k + \sum_i y_i \cdot \hat{y}_k \ &= -y_k + \hat{y}_k \cdot \sum_i y_i \ &\sum_i y_i \ &\sum_i y_i = 1, \mathrm{y} \ \mathrm{is} \ \mathrm{one ext{-}hot} \ \mathrm{vector} \ \end{array}$
	Hence: $\frac{\partial \mathrm{CE}(y,\hat{y})}{\partial \theta} = \hat{y}_k - y_k$ Question 2 I. Derivative Of Activation Functions (10pt)
	Indented block The following cell contains an implementation of some activation functions. Implement the corresponding derivatives. import torch def sigmoid(x): return 1 / (1 + torch.exp(-x))
In [2]:	<pre>def tanh(x): return torch.div(torch.exp(x) - torch.exp(-x), torch.exp(x) + torch.exp(-x)) def softmax(x): exp_x = torch.exp(x.T - torch.max(x, dim=-1).values).T # Subtracting max(x) for return exp_x / exp_x.sum(dim=-1, keepdim=True) def d_sigmoid(x):</pre>
	<pre># x: sigmoid output return x * (1 - x) def d_tanh(x): # x: tanh output return 1 - x * x def d_softmax(x): # x: softmax output #return x * (1 - x) n = x.size(-1) softmax_matrix = x.unsqueeze(-1) * (torch.eye(n) - x.unsqueeze(-2)) return softmax matrix.sum(dim=-1)</pre>
	II. Train a Fully Connected network on MNIST (30pt) In the following exercise, you will create a classifier for the MNIST dataset. You should write your own training and evaluation code and meet the following constraints: • You are only allowed to use torch tensor manipulations.
	 You are NOT allowed to use: Auto-differentiation - backward() Built-in loss functions Built-in activations Built-in optimization Built-in layers (torch.nn) Auto-differentiation - backward() The required classifier class is defined.
	 You should implement the backward pass of the model. Train the model and plot the model's accuracy and loss (both on train and test sets) as a function of the epochs. You should save the model's weights and biases. Change the student_ids to yours. In this section, you must use the "set_seed" function with the given seed and sigmoid as an activation function.
in [3]:	<pre>import torch import torchvision from torch.utils.data import DataLoader import os import matplotlib.pyplot as plt import seaborn as sns; sns.set() # Constants SEED = 42 EPOCHS = 16</pre>
	<pre>BATCH_SIZE = 32 NUM_OF_CLASSES = 10 # Setting seed def set_seed(seed): torch.manual_seed(seed) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False os.environ["PYTHONHASHSEED"] = str(seed) # Transformation for the data transform = torchvision.transforms.Compose([torchvision.transforms.ToTensor(),</pre>
	<pre># Cross-Entropy loss implementation def one_hot(y, num_of_classes=10): hot = torch.zeros((y.size()[0], num_of_classes)) hot[torch.arange(y.size()[0]), y] = 1 return hot def cross_entropy(y, y_hat): return -torch.sum(one_hot(y) * torch.log(y_hat)) / y.size()[0] C:\Users\USER\anaconda3\lib\site-packages\scipy\initpy:138: UserWarning: A Numl version >=1.16.5 and <1.23.0 is required for this version of SciPy (detected version 1.24.3)</pre>
In [4]:	version $>=1.16.5$ and $<1.23.0$ is required for this version of SciPy (detected version
	<pre># activation function self.activation_func = activiation_func # weights self.W1 = torch.randn(self.input_size, self.hidden_size1) self.b1 = torch.zeros(self.hidden_size1) self.W2 = torch.randn(self.hidden_size1, self.output_size) self.b2 = torch.zeros(self.output_size) self.lr = lr</pre>
	<pre>def forward(self, x): # added self to z1,h1,z2 - to use in backward function self.z1 = torch.matmul(x, self.W1) + self.b1 self.h1 = self.activation_func(self.z1) self.z2 = torch.matmul(self.h1, self.W2) + self.b2 y_hat = softmax(self.z2) return y_hat def backward(self, x, y, y_hat): batch_size = y.size(0) #dloss_dyhat = (1/batch_size)* (y_hat-y)</pre>
	<pre>dloss_dz2 = (1/batch_size)* (y_hat-y) dloss_dw2 = torch.matmul(torch.t(self.h1), dloss_dz2) dloss_db2 = torch.matmul(torch.t(dloss_dz2), torch.ones(batch_size)) dloss_dh1 = torch.matmul(dloss_dz2, torch.t(self.W2)) dloss_dz1 = dloss_dh1 * d_sigmoid(self.h1) dloss_dw1 = torch.matmul(torch.t(x), dloss_dz1) dloss_db1 = torch.matmul(torch.t(dloss_dz1), torch.ones(batch_size)) self.W2 = self.W2 - self.lr * dloss_dw2 self.b2 = self.b2 - self.lr * dloss_db2</pre>
in [6]:	<pre>self.W1 = self.W1 - self.lr * dloss_dw1 self.b1 = self.b1 - self.lr * dloss_db1 set_seed(SEED) model = FullyConnectedNetwork(784, 10, 128, sigmoid, lr=0.01)</pre>
in []: in []: in []:	
	<pre>train_loss = [] train_accuracy = [] test_loss = [] test_accuracy = [] for epoch in range(EPOCHS): # Training epoch_train_loss = 0.0 correct_train_predictions = 0 total_train_samples = 0 for (inputs, labels) in train dataloader:</pre>
	<pre>y_hat = model.forward(inputs) model.backward(inputs, one_hot(labels), y_hat) epoch_train_loss += cross_entropy(labels, y_hat).item() _, predicted_labels = torch.max(y_hat, 1) correct_train_predictions += (predicted_labels == labels).sum().item() total_train_samples += labels.size(0) train_accuracy.append(correct_train_predictions / total_train_samples) train_loss.append(epoch_train_loss / len(train_dataloader))</pre>
	<pre># Testing epoch_test_loss = 0.0 correct_test_predictions = 0 total_test_samples = 0 with torch.no_grad(): for (test_inputs, test_labels) in test_dataloader: test_y_hat = model.forward(test_inputs) epoch_test_loss += cross_entropy(test_labels, test_y_hat).item() _, predicted_labels = torch.max(test_y_hat, 1) correct_test_predictions += (predicted_labels == test_labels).sum().item</pre>
in [8]:	<pre>total_test_samples += test_labels.size(0) test_accuracy.append(correct_test_predictions / total_test_samples) test_loss.append(epoch_test_loss / len(test_dataloader)) # Print or log the results if needed #print(f"Epoch {epoch + 1}/{EPOCHS} - Train Loss: {train_loss[-1]}, Train Accur # Plot the accuracy and loss as a function of the epochs plt.figure(figsize=(12, 6)) plt.subplot(1, 2, 1) plt.plot(range(1, EPOCHS + 1), train loss, label='Train Loss')</pre>
	<pre>plt.plot(range(1, EPOCHS + 1), test_loss, label='Test Loss') plt.title('Training and Test Loss Over Epochs') plt.xlabel('Epochs') plt.ylabel('Loss') plt.legend() plt.subplot(1, 2, 2) plt.plot(range(1, EPOCHS + 1), train_accuracy, label='Train Accuracy') plt.plot(range(1, EPOCHS + 1), test_accuracy, label='Test Accuracy') plt.title('Training and Test Accuracy Over Epochs') plt.xlabel('Epochs') plt.ylabel('Accuracy')</pre>
out[8]:	<pre>cmatplotlib.legend.Legend at 0x14f1dace1f0></pre>
	2.0 1.5 1.0 0.5
in [9]:	2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 students_ids = "318862323_206418642" torch.save({"W1": model.W1, "W2": model.W2, "b1": model.b1, "b2": model.b2}, f"HW1_ b) Train the model with various learning rates (at least 3).
n [10]:	 Plot the model's accuracy and loss (both on train and test sets) as a function of the epochs. Discuss the differences in training with different learning rates. Support your answer with plots.
	<pre>learning_rates = [0.01, 0.1, 1] train_losses = [] train_accuracies = [] test_losses = [] test_accuracies = [] for lr in learning_rates: train_loss = [] train_accuracy = [] test_loss = [] test_loss = []</pre>
	<pre>set_seed(SEED) model = FullyConnectedNetwork(784, 10, 128, sigmoid, lr=lr) for epoch in range(EPOCHS): # Training epoch_train_loss = 0.0 correct train predictions = 0</pre>
	<pre>for (inputs, labels) in train_dataloader: y_hat = model.forward(inputs) model.backward(inputs, one_hot(labels), y_hat) epoch_train_loss += cross_entropy(labels, y_hat).item() _, predicted_labels = torch.max(y_hat, 1) correct_train_predictions += (predicted_labels == labels).sum().item() total_train_samples += labels.size(0) train_accuracy.append(correct_train_predictions / total_train_samples)</pre>
	<pre>train_loss.append(epoch_train_loss / len(train_dataloader)) # Testing epoch_test_loss = 0.0 correct_test_predictions = 0 total_test_samples = 0 with torch.no_grad(): for (test_inputs, test_labels) in test_dataloader: test_y_hat = model.forward(test_inputs) epoch_test_loss += cross_entropy(test_labels, test_y_hat).item()</pre>
	, predicted_labels = torch.max(test_y_hat, 1)
	train_accuracies.append(train_accuracy) test_losses.append(test_loss) test_accuracies.append(test_accuracy) plot of the accuracies and the losses of the train and test sets as a function of epoch:
n [11]:	<pre>plt.figure(figsize=(15, 6)) epochs_range = range(1, EPOCHS + 1) # training loss plt.subplot(1, 2, 1) for i, lr in enumerate(learning_rates): plt.plot(epochs_range, train_losses[i], label=f'Train (lr={lr})') plt.title('Training Loss for Different Learning Rates') plt.xlabel('Epochs')</pre>
	<pre>plt.ylabel('Loss') plt.legend() plt.subplot(1, 2, 2) for i, lr in enumerate(learning_rates): plt.plot(epochs_range, train_accuracies[i], label=f'Train (lr={lr})') plt.title('Training Accuracy for Different Learning Rates') plt.xlabel('Epochs') plt.ylabel('Accuracy') plt.legend()</pre>
	Training Loss for Different Learning Rates Training Accuracy for Different Learning Rates Train (Ir=0.01) Train (Ir=0.1) Train (Ir=1) 0.9 0.8
	20 1.5 1.0 0.6 0.5 0.0 0.5 0.4 0.6 0.5 0.4 0.6 0.5 0.7 Train (Ir=0.0 Train (Ir=0.1 Train (Ir=0.1 Train (Ir=0.1 Train (Ir=0.1 Train (Ir=0.1 Train (Ir=0.1)
n [12]:	<pre>plt.figure(figsize=(15, 6)) # training loss plt.subplot(1, 2, 1) for i, lr in enumerate(learning_rates): plt.plot(epochs_range, test_losses[i], label=f'Test (lr={lr})') plt.title('Test Loss for Different Learning Rates') plt.xlabel('Epochs') plt.ylabel('Loss') plt.legend()</pre>
	<pre>plt.subplot(1, 2, 2) for i, lr in enumerate(learning_rates): plt.plot(epochs_range, test_accuracies[i], label=f'Test (lr={lr})') plt.title('Test Accuracy for Different Learning Rates') plt.xlabel('Epochs') plt.ylabel('Accuracy') plt.legend()</pre>
	Test Loss for Different Learning Rates Test Accuracy for Different Learning Rates 1.75 1.50 1.50 0.80 0.80 0.80 0.75
	0.75 0.50 0.25 0.60 0.25 0.60 0.55 0.60 0.55 0.60 0.55 0.60 0.55 0.60 0.55 0.60 0.55 0.60 0.55 0.60 0.55 0.60 0.55 0.60 0.55 0.60 0.55 0.60 0.55 0.60 0.55 0.60 0.60
	as we can see, as we can see in the plot above, when we use larger learning rate, we get better results - higher accuracy and lower loss. That is, because our train set is too small, so if we will use a small learning rate, the model parameters are updated very slowly, and we will have to run a lot of epoch in order to reach a good solution. A bigger learning rate will help us update the model better. Question 3
	 I. Implement and Train a CNN (30pt) You are a data scientist at a supermarket. Your manager asked you to write a new image classifiaction algorithem for the self checkout cashiers. The images are of products from your grocery store (dataset files are attched in the Moodle). Your code and meet the following constraints: Your classifier must be CNN based
	 You are not allowed to use any pre-trained model In order to satisfy your boss you have to reach 65% accuracy on the test set. You will get a bonus for your salary (and 10 points to your grade) if your model's number of paramters is less than 100K. You can reutilize code from the tutorials.
n [13]:	 Train the model and plot the model's accuracy and loss (both on train and validation sets) as a function of the epochs. Report the test set accurecy. Discus the progress you made and describe your final model. import torch import torch.nn as nn from torchvision import transforms from torch.utils.data import TensorDataset, DataLoader from PIL import Image import pandas as pd import matplotlib.pyplot as plt
n [14]:	<pre># Hyper parameters num_epochs = 30 batch_size = 150 learning_rate = 0.0005 target_size = (264, 264) # Define the CNN model class CNN(nn.Module): definit(self): super(CNN, self)init() self.layer1 = nn.Sequential(</pre>
	<pre>nn.Conv2d(3, 21, kernel_size=3, padding=1), # 3- channels (RGB), 21- t nn.BatchNorm2d(21), # input channels are the output channels from prev nn.ReLU(), nn.MaxPool2d(4)) # lower dimension times 4 (64, 64) self.layer2 = nn.Sequential(nn.Conv2d(21, 42, kernel_size=3, padding=1), nn.BatchNorm2d(42), nn.ReLU(), nn.MaxPool2d(4)) # lower dimension times 4 (16, 16) self.layer3 = nn.Sequential(nn.Conv2d(42, 84, kernel_size=3, padding=1), nn.BatchNorm2d(84), nn.ReLU(), nn.MaxPool2d(4)) # lower dimension times 4 (4, 4) self.fc = nn.Linear(4 * 4 * 84, 43) # 43 labels self.dropout = nn.Dropout(p=0.5) self.logsoftmax = nn.LogSoftmax(dim=1) def forward(self, x): out = self.layer1(x) out = self.layer2(out) out = self.layer3(out)</pre>
n [15]:	<pre>out = self.layer3(out) out = out.view(out.size(0), -1) out = self.dropout(out) out = self.fc(out) return self.logsoftmax(out) # build model, define loss and optimizer cnn = CNN() if torch.cuda.is_available(): cnn = cnn.cuda()</pre>
	<pre># Loss and Optimizer weight_decay = (5e-5) criterion = nn.NLLLoss() optimizer = torch.optim.Adam(cnn.parameters(), lr=learning_rate, weight_decay=1e-2) print('number of parameters: ', sum(param.numel() for param in cnn.parameters())) # Image Preprocessing transform = transforms.Compose([transforms.Resize(target_size), transforms.ToTensor(), transforms.Normalize((0.4914, 0.4822, 0.4465),</pre>
	<pre>transforms.Normalize((0.4914, 0.4822, 0.4465),</pre>
n [16]:	<pre>transforms.Normalize(mean=mean, std=std),]) # Load class labels from CSV classes = pd.read_csv("GroceryStoreDataset\classes.csv") number of parameters: 98533 def int_to_str_label(classes, pred_int_lst): pred_str_lst = [] for pred_int in pred_int_lst: pred_str = classes[classes['Coarse Class ID (int)'] == pred_int]['Coarse Class Class ID (int)']</pre>
ı [17]:	-
n [18]:	
n [19]:	
n [20]:	<pre># Create train & test data_loaders: train_dataset, train_dataloader = create_dataloader(train_images, train_labels) test_dataset, test_dataloader = create_dataloader(test_images, test_labels) val_dataset, val_dataloader = create_dataloader(val_images, val_labels) # Create empty lists to store the accuracy and loss values for the train and validatain_losses = [] train_accuracies = [] val_losses = [] val_accuracies = []</pre>
	<pre># Training loop for CNN model max_accuracy_val = 0 for epoch in range(num_epochs): # Train the model cnn.train() # Set the model to training mode total_loss_train = 0 total_correct_train = 0 total train = 0</pre>

