ResolSysteme (0.1.3), version « classique »

1 Préambule sans utiliser python

2 Affichage d'une matrice, 2x2 ou 3x3 ou 4x4

On considère les matrices \$A=\AffMatrice(1,2 § 3,4)\$

```
et $B=\AffMatrice*[n](-1,1/3,4 § 1/3,4,-1 § -1,0,0)$
et $C=\AffMatrice(1,2,3,4 § 5,6,7,0 § 1,1,1,1 § 2,-3,-5,-6)$.
```

On considère les matrices
$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$
 et $B = \begin{pmatrix} -1 & 1/3 & 4 \\ 1/3 & 4 & -1 \\ -1 & 0 & 0 \end{pmatrix}$ et $C = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 0 \\ 1 & 1 & 1 & 1 \\ 2 & -3 & -5 & -6 \end{pmatrix}$.

3 Calculs avec des matrices, 2x2 ou 3x3

$$\begin{pmatrix} 1 & 2 \end{pmatrix} \times \begin{pmatrix} 3 \\ 4 \end{pmatrix} = \begin{pmatrix} 11 \end{pmatrix} \text{ et } \begin{pmatrix} 1 & 2 \end{pmatrix} \times \begin{pmatrix} 3 & 4 \\ 5 & 6 \end{pmatrix} = \begin{pmatrix} 13 & 16 \end{pmatrix}$$

$$\begin{pmatrix} -5 & 6 \\ 1 & 4 \end{pmatrix} \times \begin{pmatrix} 2 \\ 7 \end{pmatrix} = \begin{pmatrix} 32 \\ 30 \end{pmatrix} \text{ et } \begin{pmatrix} -5 & 6 \\ 1 & 4 \end{pmatrix} \times \begin{pmatrix} 2 & -4 \\ 7 & 0 \end{pmatrix} = \begin{pmatrix} 32 & 20 \\ 30 & -4 \end{pmatrix}$$

 $\$ trices(1,2,3)(4 § 5 § 6)[Aff]\$ et \$\$\ProduitMatrices(1,2,3)(1,1,1 § 2,1,5 § 0,5,-6)[Aff]\$\$\ProduitMatrices(1,1,1 § 2,1,5 § 0,5,-6)(1 § 2 § 3)[Aff]\$ et \$\$\ProduitMatrices(1,1,1 § 2,1,5 § 0,5,-6)(1,2,3 § -5,-4,2 § 3,3,10)[Aff]\$\$

$$\begin{pmatrix} 1 & 2 & 3 \end{pmatrix} \times \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix} = \begin{pmatrix} 32 \end{pmatrix} \text{ et } \begin{pmatrix} 1 & 2 & 3 \end{pmatrix} \times \begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & 5 \\ 0 & 5 & -6 \end{pmatrix} = \begin{pmatrix} 5 & 18 & -7 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & 5 \\ 0 & 5 & -6 \end{pmatrix} \times \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 6 \\ 19 \\ -8 \end{pmatrix} \text{ et } \begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & 5 \\ 0 & 5 & -6 \end{pmatrix} \times \begin{pmatrix} 1 & 2 & 3 \\ -5 & -4 & 3 \\ 3 & 3 & 10 \end{pmatrix} = \begin{pmatrix} -1 & 1 & 16 \\ 12 & 15 & 59 \\ -43 & -38 & -45 \end{pmatrix}$$

\$\CarreMatrice(-5,6 \ 1,4)[Aff]\$ \\ \$\CarreMatrice(-5,6,8 \ 1,4,-9 \ 1,-1,1)[Aff]\$

$$\begin{pmatrix} -5 & 6 \\ 1 & 4 \end{pmatrix}^2 = \begin{pmatrix} 31 & -6 \\ -1 & 22 \end{pmatrix}$$
$$\begin{pmatrix} -5 & 6 & 8 \\ 1 & 4 & -9 \\ 1 & -1 & 1 \end{pmatrix}^2 = \begin{pmatrix} 39 & -14 & -86 \\ -10 & 31 & -37 \\ -5 & 1 & 18 \end{pmatrix}$$

4 Déterminant d'une matrice, 2x2 ou 3x3

Le déterminant de $A=\Lambda (1,2 \S 3,4)$ est $\Delta (A)=\Delta (1,2 \S 3,4)$.

Le déterminant de $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ est $\det(A) = -2$.

Le déterminant de $A=\Lambda ffMatrice*(-1,0.5 § 1/2,4)$ est $\Delta ffMatrice*(-1,0.5 § 1/2,4)$.

Le déterminant de $A = \begin{pmatrix} -1 & \frac{1}{2} \\ \frac{1}{2} & 4 \end{pmatrix}$ est $\det(A) = -4,25$.

Le dét. de \$A=\begin{pNiceMatrix} -1&\frac13&4 \\ \frac13&4&-1 \\ -1&0&0 \end{pNiceMatrix}\$ est \$\$ (A) \approx \DetMatrice[dec=3] (-1,1/3,4 § 1/3,4,-1 § -1,0,0)\$.

Le dét. de $A = \begin{pmatrix} -1 & \frac{1}{3} & 4\\ \frac{1}{3} & 4 & -1\\ -1 & 0 & 0 \end{pmatrix}$ est $\det(A) \approx 16{,}333.$

5 Inverse d'une matrice, 2x2 ou 3x3

L'inverse de $A=\left[pNiceMatrix] 1\&2 \ 3\&4 \end{pNiceMatrix}$ est $A^{-1}=MatriceInverse<=\limits=2pt>(1,2 § 3,4)$.$

L'inverse de $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ est $A^{-1} = \begin{pmatrix} -2 & 1 \\ \frac{3}{2} & \frac{-1}{2} \end{pmatrix}$.

L'inverse de $A=\left[\frac{9NiceMatrix} 1&2 \ 3&4 \end{pNiceMatrix} est $A^{-1}=MatriceInverse*<cell-space-limits=2pt>(1,2 § 3,4)$.$

L'inverse de $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ est $A^{-1} = \begin{pmatrix} -2 & 1 \\ \frac{3}{2} & -\frac{1}{2} \end{pmatrix}$.

L'inverse de $A=\left[d\right]$ 1&2 \\ 3&4 \end{pNiceMatrix} est \$A^{-1}=\mathrm{Inverse}[d]<cell-space-limits=2pt>(1,2 § 3,4)\$.

L'inverse de $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ est $A^{-1} = \begin{pmatrix} -2 & 1 \\ \frac{3}{2} & \frac{-1}{2} \end{pmatrix}$.

L'inverse de \$A=\begin{pNiceMatrix} 1&2&3\\4&5&6\\7&8&8 \end{pNiceMatrix}\$ est \$A^{-1}=\mathrm{Inverse}, 2,3 § 4,5,6 § 7,8,8)\$.

2

L'inverse de $A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 8 \end{pmatrix}$ est $A^{-1} = \begin{pmatrix} \frac{-8}{3} & \frac{8}{3} & -1 \\ \frac{10}{3} & \frac{-13}{3} & 2 \\ -1 & 2 & -1 \end{pmatrix}$.

L'inverse de $A=\left[n\right] 1\&2\&3\4\&5\&6\7\&8\&8 \end{pNiceMatrix} est $A^{-1}=MatriceInverse[n]<cell-space-limits=2pt>(1,2,3 § 4,5,6 § 7,8,8)$.$

L'inverse de
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 8 \end{pmatrix}$$
 est $A^{-1} = \begin{pmatrix} -8/3 & 8/3 & -1 \\ 10/3 & -13/3 & 2 \\ -1 & 2 & -1 \end{pmatrix}$.

Résolution d'un système, 2x2 ou 3x3

La solution de $\simeq -9x-8y=-8,3x-6y=-7$ est $\rightarrow -7$ left\lbrace \SolutionSysteme(-9,-8 \ 3,-6)(-8,-7) \right\rbrace\$.

La solution de
$$\begin{cases} -9x - 8y = -8 \\ 3x - 6y = -7 \end{cases} \text{ est } S = \left\{ \left(\frac{-4}{39}; \frac{29}{26} \right) \right\}.$$

La solution de
$$\begin{cases} -9x - 8y = -8 \\ 3x - 6y = -7 \end{cases}$$
 est $\mathcal{S} = \left\{ \left(-\frac{4}{39}; \frac{29}{26} \right) \right\}.$

La solution de $\systeme\{x+y+z=-1,3x+2y-z=6,-x-y+2z=-5\}$ est $\mathcal{S}=% \left(1,1,1 \ 3,2,-1 \ -1,-1,2\right)(-1,6,-5) \right)$

La solution de
$$\begin{cases} x + y + z = -1 \\ 3x + 2y - z = 6 \text{ est } S = \{(2; -1; -2)\}. \\ -x - y + 2z = -5 \end{cases}$$

La solution de x+y+z=-1,3x+2y-z=6,-x-y+2z=-5 est donnée par x=% \SolutionSysteme(1,1,1 § 3,2,-1 § -1,-1,2)(-1,6,-5)[Matrice]\$.

La solution de
$$\begin{cases} x+y+z=-1\\ 3x+2y-z=6\\ -x-y+2z=-5 \end{cases}$$
 est donnée par $X=\begin{pmatrix} 2\\ -1\\ -2 \end{pmatrix}$

La solution de
$$\begin{cases} 3x + y - 2z = -1 \\ 2x - y + z = 4 & \text{est } \mathcal{S} = \left\{ \left(\frac{1}{2}; \frac{-7}{2}; \frac{-1}{2}\right) \right\}. \\ x - y - 2z = 5 \end{cases}$$

La solution de
$$\begin{cases} 3x + y - 2z = -1 \\ 2x - y + z = 4 \\ x - y - 2z = 5 \end{cases}$$
 est $\mathcal{S} = \left\{ \begin{pmatrix} \frac{1}{2}; -\frac{7}{2}; -\frac{1}{2} \end{pmatrix} \right\}$.