Chirag Jain and Harshvardhan Agrawal

GAUSSIAN ELIMINATION USING OPENMP

```
Pseudocode:-
GAUSS ELIMINATE(U, A, num_elements)
int i, j, k;
for i := 0 to n - 1 do
        for j := 0 to n - 1 do
U[i*num elements+j]= U[i*num elements+j]
for k := 0 to n - 1 do
        for j := k + 1 to n - 1 do
       A[k, j] := A[k, j]/A[k, k]; /* Division step. */
        end for
       y[k] := b[k]/A[k, k];
        A[k, k] := 1;
        Parallel Region{
        for i := k + 1 to n - 1 do
                for j := k + 1 to n - 1 do
                A[i, j] := A[i, j] - A[i, k] \times A[k, j]; /* Elimination step. */
                end for
        b[i] := b[i] - A[i, k] \times y[k];
        A[i, k] := 0;
        end for
end for
```

}

Description:-

- 1.All the elements of the A matrix is first copied to the U matrix
- 2.Each row is taken one at a time and all the elements of a row are divided by the diagonal element corresponding to the row provided its value is not 0.
- 3. The parallel region starts here.
- 4. All the elements of the subsequent rows are then subtracted by the current row value multiplied by a constant which corresponds to the value of the elements below the diagonal element which is now taken to be 1.
- 5. The parallel region end here.

Note:- It is also possible to parallelize the division of the elements of the rows but it was observed to have a drop in the overall speedup and so was not taken into consideration.

Overall Speedup:-

No of threads	Matrix size	Serial cpu time	new cpu time	speedup
	1024			
2		0.47	0.26	1.807692
4		0.52	0.2	2.6
8		0.54	0.12	4.5
16		0.53	0.1	5.3
	2048			
2		4.61	2.1	2.195238
4		4.6	1.11	4.144144
8		4.47	0.69	6.478261
16		4.99	0.52	9.596154
	4096			
2		43.47	24.93	1.743682
4		50.39	18.26	2.759584
8		41.06	10.99	3.736124
16		41.02	10.25	4.001951
	8192			
2		494.36	235.29	2.101067
4		559.25	144.9	3.859558
8		408.89	91.51	4.468255
16		471.29	103.38	4.558812