PHYSICS 510/3 PRACTICALS

MEASURING INSTRUMENTS

1. Metre rule

Measures length in cm to 1dp e.g. 2.0 cm, 10.2 cm, 12.7 cm etc

2. Vernier caliper.

Measures length in cm to 2dps eg 2.62cm, 6.67cm etc

3. Micrometer screw gauge

Measures length in mm eg 0.34mm, 0.67mm etc

4. Stop clock

Measures time in seconds (*s*) to **1***dp* e.g. 10.0*s* 25.5*s*, 16.0*s* 17.5*s*

5. Stop watch

Measures time in seconds (s) to **2***dps* e.g 12.43s, 20.92s, 16.73 etc

6. Protractor

Measures angles in degrees (°) to 0dps e.g. 10^{0} , 24^{0} , 29^{0} etc.

7. Ammeter

Measures current in amperes (A) to **2** *dps*

The last decimal value is 0 or an even number.
e.g 0.24A, 1.40A, 2.20A etc

8. Voltmeter

Measures p.d in volts (V) to **2** dps. The last decimal value is 0 or 5. eg 0.45V, 1.20V, 4.50V, 4.20V etc

9. Electronic beam balance.

Measures mass in grams (g) to **1** *dp or* **2** *dps*.

e.g. 45.00*g*, 158.00*g* or 40.0*g*, 34.0*g* etc

UNITS AND SYMBOLS

- > Units are stated using the right symbols.
- ➤ Abbreviation of units is not used e.g. Unit for time is, (s) NOT sec
- Units named after Scientists are written with capital letters. e.g. watts (W), joule (J) ampere (A).
- ➤ Units must be written in brackets e.g. m(kg), t(s), I(A) etc. **NOT** m/kg, t/s, I/A
- Units of derived quantities are written using Scientific notations e.g. ms⁻¹
 NOT m/s, kgm⁻³ NOT kg/m³, Ω
 NOT V/A.
- > sin, cos, tan, log do not have units.
- ➤ Values of *sin*, *cos*, *tan*, *log*, are written to 3 *dps*.

e.g.
$$sin30^{\circ} = 0.500$$

 $log2 = 0.301$ $cos30^{\circ} = 0.866$

SIGNIFICANT FIGURES

1. All non - zero digits are significant. e.g. 1,2,3,4,5,6,7,8,9
12.1 has 3sfs
2471 has 4sfs
1.2 has 2sfs

2. Zeros between non – Zero digits are

Significant e.g. 10.1 has 3sfs 102 has 3sfs 100006 has 5sfs 2007 has 4sfs

3. Zeros to the left of the first non - Zero

digits are not significant e.g.

0.12 has 2sfs 0.00006 1sfs 0.0202 has 3sfs

- 4. Zeros at the end of a number and at the right of a dp are significant
 4.0 has 2sfs
 4.000 has 4sfs
 0.040 has 2sfs
- 5. Zeros at the end of a number without a dp in measured values and given values are significant

GENERAL GUIDELINES

Float:

A float is a constant or whole number which is not measured and therefore has an infinite number of decimal places (dps) and infinite number of significant (sfs). e.g π , 2, 10, 20 etc

1. Division and multiplication with a float.

Significant figures of a measured value are to be used. e.g.

If
$$t = 14.2s$$
 and n=20 If $I = 2.46A$, then
$$T = \frac{t}{20}$$

$$= \frac{14.2 (3sfs)}{20 (float)}$$

$$= 0.71 (cal)$$

$$= 0.710s (3sfs)$$

$$= 0.406504065 (cal)$$

$$= 0.407A^{-1} (3sfs)$$

2. Addition and subtraction with a float

Decimal values of a measured value are to used.e.g. If x = 14.2cm then 10 + x is caluculated as;

$$10 + x = 10 + 14.2(1dp)$$

= 24.2 (cal)

$$= 24.2 cm (1dp)$$

3. Addition and subtraction with another measured value

Decimal places of a value with the least number of decimal places are to be used e.g. e.g. If x = 12.6cm and y = 20.24cm, then

$$x + y = 12.6(1dp) + 20.24(2dps)$$

= 32.84 (cal)
= 32.8 (1dp)

4. Division and multiplication with another measured value.

Significant figures of the value with the least number of significant figures are to be used.

e.g.

$$5.21(3sfs) \times 4.6 (2sfs) = 23.966 (cal)$$

$$= 24(2sfs)$$

$$\frac{0.0463(3sfs)}{2.8 (2sfs)} = 0.016535714(cal)$$

$$= 0.017 (2sfs)$$

RECORDING MEASUREMENTS

1. Single measurements:

(a). To be measured once.

These are recorded once outside the table of values

- mass of the metre rule
- e.m. f of the cell
- Focal length etc.
- Centre of gravity
- Room temperature

Note; take note of dictating questions e.g. recording in *metres*

(b). To be recorded three times

- Width/Breadth
- Diameter
- Thickness
- Length eg of a glass block

Take note of the degree of accuracy of the instruments used.

Show the working when getting the average.

Values should be recorded in a logical way eg for thickness, t

$$t_1 = 6.67cm$$

$$t_2 = 6.67cm$$

$$t_3 = 6.67cm$$

Then;

$$t = \frac{6.67 + 6.67 + 6.67}{3}, t = 6.67cm$$

OR

$t_1(cm)$	$t_2(cm)$	$t_3(cm)$
6.67	6.67	6.67

2. Repeated measurements.

Take note of changing quantities e.g. extension, angles, current, voltage etc.

These are recorded in the main table of values

RECORDING IN THE MAIN TABLE OF RESULTS

The main table of results should be columnar Each column should have a heading with units written in brackets

Take note of units which are names of people. The table should be self-explanatory.

The main table of results has only values of changing quantities. These are categorized as;

- 1. Given values
- 2. Measured values
- 3. Calculated values

GIVEN VALUES

- ➤ These are provided in the procedures
- ➤ They are recorded in the first column

➤ They are recorded as they are provided in their order in the question.

MEASURED VALUES

- > They are determined using an instrument
- ➤ They are recorded to the degree of accuracy of the instrument.

CALCULATED VALUES

- > They are obtained using a formula
- ➤ The equations are not included in the table of values

CALCULATED VALUES

- Obtained using a formula
- Equations are not included in the table of values

FILLING TABLE OF RESULTS

A table of results should be

- (a) Columnar
- (b) Closed

A table must be filled using a pen

Examples

(a) Modal table

Given	Measured	Calculated	Division	Log, sin,
values	values	(addition or	and	cos, and
		subtraction)	multiplic	tan
			ation	
Appear are	Accuracy	dps of the	First	All values
they are	of the	number with	entry use	written to
given	instrument	smallest	sfs and	3 dps
		number of	maintain	
		dps is to be	same	
		used	dps	

Note

Uniformity in the table of values is based on dps

$R(\Omega)$	I(A)	$\frac{1}{I}(A^{-1})$
1	1.50	0.667
2	0.75	1.333
3	0.50	2.000
4	0.30	3.333
5	0.25	4.000

Largest value of I(1.50) gives the number of sfs for the first entry in $\frac{1}{I}$

$$I = 1.50 (3 sfs)$$

$$=0.667(3\,sfs)$$

$i(^0)$	x(cm)	y(cm)	<u>x</u>	sin i
			У	
10	1.0	6.6	0.15	0.174
20	1.5	6.7	0.22	0.342
30	2.4	7.0	0.34	0.500
40	3.2	7.4	0.43	0.643
50	3.8	7.6	0.50	0.766
60	4.6	8.0	0.58	0.866
	•		2 dps	χ

$$\frac{x}{y} = 0.15151515$$

= 0.22388

= 0.34286

= 0.43243

= 0.5
= 0.575
$$(4.6 \div 8.0)$$

 $(2 sfs) (2 sfs)$
 $t = \text{time for oscillations}$

l(m)	t(s)	T(s)	$T^2(s^2)$
0.900	37.0	1.85	3.42
0.800	36.0	1.80	3.24
0.700	34.5	1.73	2.99
0.600	32.0	1.60	2.56
0.500	29.5	1.48	2.19
0.400	26.0	1.30	1.69
0.300	23.0	1.15	1.32

$$T = \frac{t}{n}$$
 $T^2 = T \times T$
= $\frac{37.0 (3 sfs)}{20}$ = $1.85 (3sfs) \times 1.85 (3sfs)$
= $1.85 (3sfs)$ = $3.42 (3sfs)$

		ı			
u(cm)	v(cm	$\frac{v}{u}$	$\frac{1}{u}(cm^{-1})$	$\frac{1}{v}(cm^{-1})$	(u+v)(cm)
15.0	30.0	2.00	0.0667	0.0333	45.0
20.0	20.0	1.00	0.0500	0.0500	40.0
25.0	16.7	0.67	0.0400	0.0599	31.7
30.0	15.0	0.50	0.0300	0.0667	45.0
35.0	14.0	0.40	0.0286	0.0714	50.0
40.0	13.3	0.33	0.0250	0.0752	53.3
	1	(2dps	$\begin{pmatrix} 1 & 4dps \end{pmatrix}$	4dps	$\int 1dp$

$$\frac{v}{u} = \frac{30.0(3sfs)}{15.0(3sfs)} \qquad \frac{1}{u} = \frac{1}{40.0(3sfs)} \qquad \frac{1}{v} = \frac{1}{30.0(3sfs)}$$

$$2 \qquad = 0.0250(3sfs) = 0.0333(3sfs)$$

$$1 \qquad 0.668$$

$$0.5 \qquad 0.4$$

$$0.3325$$
Largest Quotient

Note

For any change of units, the constant is regarded a float and the rule of significant figures is followed

$i(^0)$	<i>r</i> (°)	x(cm)	sin i	cosr	xcos r (cm)
10	8	1.0	0.174	0.990	1.0
20	12	1.4	0.342	0.978	1.4
30	18	2.2	0.500	0.951	2.1
40	25	3.1	0.643	0.906	2.8
50	29	3.5	0.766	0.875	3.1
60	32	4.2	0.866	0.848	3.6
	Largest product				

$$x \cos r = 0.99$$

1.3692

2.0922

3.0625

 $3.5616 (4.2(2sfs) \times 0.848(3sfs)$

= 3.6 (2sfs)

PLOTTING GRAPHS

(a) Title

- Clearly written at the **top** of the graph in one line
- Units **should not** be included in the title
- Example
- \triangleright A graph of V against I
- \triangleright A graph of T^2 against L

(b) Axes

- Drawn perpendicular to each other with arrows
- Axes must be clearly labeled with quantities with units

(c) Scale

• Scale must be uniform

- It should be at least 50% of the graph paper provided
- Should be suitable and convenient

A convenient scale is a multiple or a sub multiple of 1, 2, 2.5 and 5

e.g.

100, 200, 250, 500

10, 20, 25, 50

1, 2, 2.5, 5

0.1, 0.2, 0.25, 0.5

0.01, 0.02, 0.025, 0.05

0.001, 0.002, 0.0025, 0.005

Obtain the scale of one small division on each axis

(d) Starting values

- A graph should have starting values on all axes
- Starting values should be multiples of the scale used on that axis
- Using a calculator (press 0 then press = then press + button then scale) then continuously press = until a value just less than the smallest value in the column is obtained

(e) Intercept

- Is a value of a quantity for which another quantity is zero
- For a vertical intercept, the horizontal axis must start from zero
- For a horizontal intercept, the vertical axis must start from zero
- Written to same dps as on the axis

(f) Plotting

• While plotting we use the number of small divisions.

(g)Line of best fit

- Moves in the trend of plotted points
- Passes in most of the plotted points leaving almost equal number of points on either side if any

(h) Slope

• Draw a right angled triangle which covers all plotted points on the graph.

Don't use dotted lines

- Values are read and transferred directly from the axes
- Units of the slope are derived from the axes
- E.g.

 \triangleright A graph of T^2 against m

Units of the slope = $\frac{units \ of \ T^2 \ (s^2)}{units \ of \ m \ (kg)}$

$$= s^2 k g^{-1}$$
 (But not $k g^{-1} s^2$)

(i) Calculations

• We follow rules of *dps* and *sfs* in all calculation

Exercises

Instructions

Complete the following tables and plot the corresponding graphs

1.

Let t = time for 20 oscillations

0.100 44.5 0.200 43.0 0.300 41.0 0.400 39.0 0.500 36.5	h(m)	t(s)
0.300 41.0 0.400 39.0	0.100	44.5
0.400 39.0	0.200	43.0
	0.300	41.0
0.500 36.5	0.400	39.0
	0.500	36.5
0.600 34.5	0.600	34.5

- (a) Complete the table including values of T and T^2
- (b) Plot a graph of T^2 against l

l(cm)	V(V)
10.0	1.40
20.0	1.25
30.0	1.10
40.0	1.00
50.0	0.90
60.0	0.85
70.0	0.75
80.0	0.70

(a) Plot a graph of V against l (b) Find the intercept V_0

on the V – axis

2.

l(m)	t(s)
0.900	37.0
0.800	36.0
0.700	34.5
0.600	32.0
0.500	29.5
0.400	26.0
0.300	23.0

t = time for 20 oscilations

(a) Complete the table including values of T and T^2

(b) Plot a graph of T^2 against h

(c) Find the slope, *S* of the graph

(d) Calculate the value of acceleration due to gravity, *g*,

from
$$g = -\frac{4\pi^2}{S}$$

 $(take \pi = 3.14)$

3.

<i>i</i> (⁰)	x(cm)	y(cm)
10	1.0	6.6
20	1.5	6.7
30	2.4	7.0
40	3.2	7.4
50	3.8	7.6
60	4.6	8.0

- (a) Complete the table including values of $\frac{x}{y}$ and $\sin i$, $\cos i$
- (b) Plot a graph of $\sin i$ against of $\frac{x}{y}$
- (c) Find the slope, n of the graph
- (a) Complete the table including values of $\frac{1}{I}$, $\frac{V}{I}$ and IV

(b) Plot a graph of
$$\frac{1}{I}$$
 against $\frac{V}{I}$

4.

4.	
<i>i</i> (⁰)	$r(^0)$
17	27
23	39
28	48
32	57
36	69
41	77

(a) Plot a graph of cos^2i against sin^2r

(b) Determine the slope S of the graph

(c) Calculate *n* from the expression

$$n = \left(-\frac{1}{S}\right)^{\frac{1}{2}}$$

x(m)	I(A)	V(V)
0.200	0.64	1.65
0.300	0.56	1.90
0.400	0.44	2.05
0.500	0.34	2.10
0.600	0.26	2.25