Géométrie

Chapitre 1 : Topologie algébrique

Lucie Le Briquer

$1^{\rm er}$ février 2018

Table des matières

1	Dét 1.1 1.2	Quelques résultats de topologie générale	2 3
2	Gro 2.1 2.2 2.3 2.4	Définitions	5 9 9
3		Kampen 1 Produit libre	
4	Rev 4.1 4.2 4.3	Pêtements 2 Définitions 2 Relèvements 2 4.2.1 Relèvement des homotopies 2 4.2.2 Relèvement des applications 2 Classification des revêtements 2 4.3.1 Revêtements intermédiaires 2 4.3.2 Existence des revêtements intermédiaires 2	$ \begin{array}{c} 0 \\ 3 \\ 4 \\ 4 \\ 5 \end{array} $
Qι	ıelque	es références sur la topologie algébrique :	
		ansu, Groupe fondamental, revêtement assey, Algeric topology, an introduction	
Qι	ıelque	es références sur la topologie algébrique :	
	1. Pa	ansu 2	
	2. M	ilnor, Topology from the differentiable view point	
	3. G	ramain, Topologie des surfaces	

1 Détermination de l'angle

1.1 Quelques résultats de topologie générale

- Propriété 1 (recollement d'applications continues) -

X,Y deux espaces topologiques avec $X=A\cup B$ où A et B fermés. Soit $f\colon X\longrightarrow Y$ avec $f|_A,f|_B$ continues. Alors f est continue.

Preuve.

Soit F un fermé dans Y. Montrons que $f^{-1}(F)$ est fermé.

$$f^{-1}(F) = (f^{-1}(F) \cap A) \cup (f^{-1}(F) \cap B) = (f|_A)^{-1}(F) \cup (f|_B)^{-1}(F) \text{ ferm\'e}$$

 \Box

- Propriété 2 (nombre de Lebesgue d'un recouvrement) -

X compact métrique, $(U_i)_{i\in I}$ un recouvrement de X par des ouverts. Alors il existe $\varepsilon > 0$, appelé nombre de Lebesgue, tel que $\forall x \in X, \exists i$ tel que $\mathcal{B}(x,\varepsilon) \subset U_i$.

Preuve.

Par compacité, on peut extraire un sous-recouvrement fini U_1, \ldots, U_n tel que $\bigcup_{i=1}^n U_i = X$. Considérons la fonction continue sur X $x \mapsto d(x, U_i^C)$, et définissons :

$$\varphi \colon \left\{ \begin{array}{ccc} X & \longrightarrow & \mathbb{R}_+ \\ x & \longmapsto & \max_{i=1...n} d(x, U_i^C) \end{array} \right.$$

qui est continue. Or, $\forall x \; \exists i \; \text{tel que } x \in U_i$, ainsi $d(x, U_i^C) > 0$, d'où φ à valeurs dans \mathbb{R}_+^* . $\varphi \colon X \longrightarrow \mathbb{R}_+^*$ est continue sur X compact donc atteint ses bornes :

$$\inf_X \varphi = \min_X \varphi = \varepsilon > 0$$

Cet ε convient.

- **Définition 1** (topologie quotient) —

Soit X un espace topologique et \mathcal{R} une relation d'équivalence. On note $X/_{\mathcal{R}} = \{\text{classes d'équivalence pour } \mathcal{R}\}$. Notons :

$$\pi: X \longrightarrow X/_{\mathcal{R}}$$
 la projection canonique

U ouvert de $X/_{\mathcal{R}} \Leftrightarrow \pi^{-1}(U)$ ouvert de X (saturé pour \mathcal{R})

Ceci définit la topologie quotient; c'est la topologie la plus fine qui rend π continue.

- **Propriété 3** (universelle) -

Si Y est un autre espace topologique et $X \xrightarrow{f} Y$, f continue et passe au quotient pour \mathcal{R} (f constante sur les classes d'équivalence de \mathcal{R}), alors $\exists ! \bar{f} : X/_{\mathcal{R}} \longrightarrow Y$ continue telle que

$$\bar{f} \circ \pi = f$$

Exemples. $[0,1]/_{0\sim 1} \longrightarrow \mathcal{S}^1$, $f: t \mapsto e^{2i\pi t}$, \bar{f} est une bijection continue. Donc $[0,1]/_{0\sim 1}$ est homéomorphe à \mathcal{S}^1 .

Propriété 4 —

 $X \xrightarrow{f} Y$ bijection continue, X et Y compacts $\Rightarrow f^{-1}$ continue.

- Propriété 5 -

 $F \subset X$, F fermé donc compact $(f^{-1})^{-1}(F) = f(F)$ compact dans Y

Définition 2 —

X,Y espaces topologiques, $f:A\subset X\longrightarrow Y$ continue. On pose :

$$X \cup_f Y = (X \cup Y)_{x \sim f(x)}$$

Exemple. $X = Y = [0,1], A = \{0,1\}, f(0) = 0, f(1) = 1 \text{ alors } X \bigcup_f Y \xrightarrow{\sim} \mathcal{S}^1.$

1.2 Détermination de l'angle

Soit $f: I \longrightarrow S^1 =$ cercle unité de $\mathbb{R}^2 = \mathbb{C}$, I intervalle de \mathbb{R} . Soit

exp:
$$\begin{cases} \mathbb{R} & \longrightarrow & \mathcal{S}^1 \\ \theta & \longmapsto & e^{i\theta} \end{cases}$$

On cherche une fonction $\theta: I \longrightarrow \mathbb{R}$ continue telle que $f(t) = \exp \circ \theta(t) = e^{i\theta(t)}$. On se pose la question de l'existence et de l'unicité de θ .

Unicité. Si $f(t) = e^{i\theta(t)} = e^{i\theta_1(t)}$ avec θ , θ_1 continues. Alors $\theta_1(t) - \theta(t) \in 2\pi\mathbb{Z}$. Ainsi $\theta(t) - \theta_1(t) = 2k\pi$ pour un certain k entier. On a donc l'unicité à une constante près de la forme $2\pi k$.

Existence.

Remarque initiale. Si f évite 1 dans S^1 , θ est facile à construire :

$$\left\{\begin{array}{ccc}]0,2\pi[& \xrightarrow{\sim} & \mathcal{S}^1\backslash\{1\} \\ t & \longmapsto & e^{it} \end{array} \right. \text{hom\'eomorphisme}$$

Notons a son inverse. $\theta = a \circ f$ convient, $e^{i\theta = f}$. Pour k entier, on peut remplacer a par $a + 2k\pi$. De même si f évite -1:

$$\left\{\begin{array}{cc}]-\pi,\pi[& \xrightarrow{\exp} & \mathcal{S}^1\backslash\{-1\}\\ & \xrightarrow{b} & \end{array}\right.$$

Théorème 1 (relèvement) -

Soit $f: I \longrightarrow \mathcal{S}^1$ continue. $f(t_0) = e^{i\theta_0}$ alors il existe un unique relèvement, de $f, \theta: I \longrightarrow \mathbb{R}$ avec $\theta(t_0) = \theta_0$ (relèvement : θ continue et $f(t) = e^{i\theta(t)}$).

Preuve.

Existence. $I = [0,1], t_0 = 0, f(0) = e^{i\theta_0}$ i.e. $\theta(0) = \theta_0$. On pose $U = f^{-1}(S^1 \setminus \{1\})$ et $V = f^{-1}(S^1 \setminus \{-1\})$. $U \cup V$ est un recouvrement de [0,1] ainsi on peut considérer ε un nombre de Lebesgue de ce recouvrement. Pour n assez grand on a $\frac{1}{n} < \varepsilon$.

$$[0,1] = \bigcup_{i=0}^{n-1} \left[\frac{i}{n}, \frac{i+1}{n} \right]$$

Pour tout i:

$$\left[\frac{i}{n},\frac{i+1}{n}\right]\subset U \text{ ou } V$$

On va définir θ de proche en proche. Supposons que $[0, \frac{1}{n}] \subset U$, $\theta_0 \in]2k_0\pi, 2(k_0+1)\pi[$ pour un certain k_0 . On pose alors :

$$\theta|_{\left[0,\frac{1}{n}\right]} = a \circ f|_{\left[0,\frac{1}{n}\right]} + 2k_0\pi$$

On suppose $\left[\frac{1}{n}, \frac{2}{n}\right] \subset V$, $f(V) \subset \mathcal{S}^1 \setminus \{-1\}$. $\theta\left(\frac{1}{n}\right) \in]-\pi+2k_1\pi, \pi+2k_1\pi[$ avec k_1 bien déterminé. $f\left(\frac{1}{n}\right) = e^{i\theta\left(\frac{1}{n}\right)} \neq -1$. On pose alors :

$$\theta(t) = b \circ f(t) + 2k_1\pi \operatorname{sur}\left[\frac{1}{n}, \frac{2}{n}\right] \qquad \theta\left(\frac{1}{n}\right) = \text{l'ancien } \theta\left(\frac{1}{n}\right)$$

etc. On obtient finalement θ sur [0,1], continue sur $\left[\frac{i}{n},\frac{i+1}{n}\right]$ pour tout $i\Rightarrow$ continue.

Définition 3 (degré d'une application)

Soit $f: \mathcal{S}^1 \longrightarrow \mathcal{S}^1$ continue. deg f correspond au nombre de tours de f. Par le théorème de relèvement, il existe θ continu tel que $f(e^{it}) = e^{i\theta(t)}$. On définit :

$$\deg f = \frac{\theta(2\pi) - \theta(0)}{2\pi} \quad \text{qui est entier}$$

$$e^{i\theta(2\pi)} = f(e^{2\pi i}) = f(e^{i0}) = e^{i\theta(0)}$$

Proposition 1 —

Soient $f, g: \mathcal{S}^1 \longrightarrow \mathcal{S}^1$ continues, si elles sont suffisamment proches $\deg(f) = \deg(g)$.

Preuve.

Montrons que si ||f - g|| < 2 alors deg $f = \deg g$. Soit $u \in \mathcal{S}^1$, ||f(u) - g(u)|| = 2 est impossible donc f(u) n'est jamais opposé à g(u). Soit θ un relevé de f et φ un relevé de g. On peut supposer $\theta(0)$ et $\varphi(0) \in [-\pi, \pi[$.

$$\|\theta(0) - \varphi(0)\| < \pi$$

 $\varphi(0)$ dans l'intervalle $]\theta(0)-\pi,\theta(0)+\pi[.$ On a toujours $|\theta(t)-\varphi(t)|<\pi$ pour tout t, car $|\theta(t)-\varphi(t)|=\pi$ interdit puisque $g(t)\neq -f(t)$. Ainsi :

$$|\deg f - \deg g| = \left| \frac{\theta(2\pi) - \theta(0)}{2\pi} - \frac{\varphi(2\pi) - \varphi(0)}{2\pi} \right| \le \frac{1}{2\pi} (|\theta(2\pi) - \varphi(2\pi)| + |\theta(0) - \varphi(0)|) < 1$$

2 Groupe fondamental

2.1 Définitions

- **Définition 4** (chemin) -

Soit X un espace topologique. Un chemin est une fonction $\alpha \colon [0,1] \longrightarrow X$ continue. C'est un chemin de x à y si $\alpha(0) = x$ et $\alpha(1) = y$.

- **Définition 5** (lacet) —

Un lacet est un chemin fermé i.e. $\alpha \colon [0,1] \longrightarrow \text{continue avec } \alpha(0) = \alpha(1).$

- **Définition 6** (composition des chemins) -

Si on a deux chemins α de x à y et β de y à z, on peut définir $\gamma=\alpha\beta$ un chemin de x à z qui enchaîne les deux chemins.

$$\gamma(t) = \alpha(2t) \text{ pour } t \in \left[0, \frac{1}{2}\right] \qquad \gamma(t) = \beta(2t-1) \text{ pour } t \in \left[\frac{1}{2}, 1\right]$$

- **Définition 7** (inverse d'un chemin) —

Soit α un chemin. On note α^{-1} le chemin parcouru en sens inverse i.e. $\alpha^{-1}(t) = \alpha(1-t)$.

Définition 8 (homotopie de chemin) -

 α est homotope à β (noté $\alpha \sim \beta)$ s'il existe :

$$H: [0,1] \times [0,1] \longrightarrow X$$

continue telle que:

$$H(0,t) = \alpha(t)$$
 $H(1,t) = \beta(t)$

$$H(s,0) = x \qquad H(s,1) = y$$

- Propriété 6

La relation d'homotopie est une relation d'équivalence.

Preuve.

- 1. réflexif : $\alpha \sim \alpha$
- 2. symétrique : $\alpha \sim \beta \Rightarrow \beta \sim \alpha$ en prenant H(s,t) = H(1-s,t).
- 3. transitif : si $\alpha \sim \beta$ et $\beta \sim \gamma$ (H, K). On définit :

$$L(s,t) = H(2s,t) \text{ pour } 0 \leqslant s \leqslant \frac{1}{2} \qquad L(s,t) = K(2s-1,t) \text{ pour } \frac{1}{2} \leqslant s \leqslant 1$$

On a alors la continuité sur $\left[0,\frac{1}{2}\right]\times \left[0,1\right]$ et sur $\left[\frac{1}{2},1\right]\times \left[0,1\right]$ donc sur $\left[0,1\right]\times \left[0,1\right]$.

- **Définition 9** (groupe fondamental) —

$$\pi_1(X, x) = \{\text{classes d'homotopie de lacets basés en } x\}$$

$$= \{[\gamma], \ \gamma \colon [0, 1] \longrightarrow X \text{ continue avec } \gamma(0) = \gamma(1) = x\}$$

Proposition 2 -

 $\pi_1(X,x)$ est un groupe pour la composition des lacets.

Preuve.

Soient $\alpha, \alpha', \beta, \beta'$ des lacets en x avec $\alpha \stackrel{H}{\sim} \alpha'$ et $\beta \stackrel{K}{\sim} \beta'$. Montrons que $\alpha\beta \sim \alpha\beta'$. On pose :

$$L(s,t) = H(s,2t)$$
 pour $0 \leqslant t \leqslant \frac{1}{2}$ $L(s,t) = K(s,2t-1)$ pour $\frac{1}{2} \leqslant t \leqslant 1$

L est continue sur $[0,1] \times [0,1]$. C'est bien cohérent en $\frac{1}{2}$ car cela vaut x. On a bien une loi :

$$\left\{ \begin{array}{ccc} \pi_1(X,x) \times \pi_1(X,x) & \longrightarrow & \pi_1(X,x) \\ ([\alpha],[\beta]) & \longmapsto & [\alpha\beta] \end{array} \right.$$

Élément neutre. x lacet constant en x. Montrons que $\alpha x \sim \alpha$. $\alpha x = \alpha \circ \varphi$ avec $\varphi \colon [0,1] \longrightarrow [0,1]$ continue décrit par le graphe de φ :

Ori $\varphi \sim \text{id. Posons } H(s,t) = \alpha((1-s)\varphi(t) + st) : \alpha x \stackrel{H}{\sim} \alpha.$

Inverse. $[\alpha]$ dans $\pi_1(X,x)$ a un inverse qui est $[\alpha^{-1}]$. En effet $\alpha\alpha^{-1}=\alpha\circ\varphi$ avec φ décrit par le graphe suivant:

Alors $\alpha \alpha^{-1} \stackrel{H}{\sim} x$ avec $H(x,t) = \alpha((1-s)\varphi(t))$.

Associativité. Soient α, β, γ trois lacets en x. Montrons que

$$(\alpha\beta)\gamma \sim \alpha(\beta\gamma)$$

 $(\alpha\beta)\gamma = \alpha(\beta\gamma) \circ \varphi$

 $\varphi \colon [0,1] \longrightarrow [0,1]$ continu, décrit par le graphe suivant : On pose :

$$H(s,t) = \alpha(\beta\gamma)((1-s)\varphi(t) + st)$$

Conclusion : $\pi_1(X, x)$ est un groupe pour la composition des chemins.

Remarque. Si X est connexe par arcs alors $\pi_1(x,x) \xrightarrow{\sim} \pi_1(X,y)$.

Raison:

$$\left\{ \begin{array}{ccc} \pi_1(X,x) & \longrightarrow & \pi_1(X,y) \\ [\gamma] & \longmapsto & [\alpha^{-1}\gamma\alpha] \end{array} \right.$$

est un morphisme bien défini. Si $\gamma \sim \gamma' \Rightarrow \alpha^{-1} \gamma \alpha \sim \alpha^{-1} \gamma' \alpha$ L'image de $\gamma\gamma'$ est l'image de γ enchaînée avec l'image de γ' .

$$\alpha^{-1}\gamma\alpha\alpha^{-1}\gamma'\alpha\sim\alpha^{-1}\gamma\gamma'\alpha$$

 $car \alpha \alpha^{-1} \sim x.$

Morphisme inverse.

$$\left\{ \begin{array}{ccc} \pi_1(X,y) & \longrightarrow & \pi_1(X,x) \\ [\gamma] & \longmapsto & [\alpha\gamma\alpha^{-1}] \end{array} \right.$$

C'est un inverse car la composée des 2 est $[\gamma] \mapsto [\alpha \alpha^{-1} \gamma \alpha \alpha^{-1}]$ et $\alpha \alpha^{-1} \gamma \alpha \alpha^{-1} \sim \gamma$ puisque $\alpha \alpha^{-1} \sim x$.

Remarque. Pour X connexe par arcs on peut donc parler de $\pi_1(X)$.

- **Définition 10** (simple connexité) –

X est simplement connexe si X et connexe par arcs et $\pi_1(X) = \{1\}.$

Exemple. \mathbb{C} est simplement connexe. $\mathcal{S}^1, \mathbb{C}^*$ ne le sont pas.

Exemples. X convexe dans $\mathbb{R}^n \Rightarrow X$ simplement connexe.

Raison : si X est convexe $\forall x,y \in X$ alors $[x,y] \subset X$. de plus, pour γ un lacet en x, par définition $\gamma(t) \in X$ pour $t \in [0,1]$. Par convexité, $H(s,t) = (1-s)\gamma(t) + sx \in X$ pour $t \in [0,1]$. H est continue sur $[0,1] \times [0,1]$ donc $\gamma \sim x$.

- Propriété 7 -

$$\left\{ \begin{array}{ccc} \pi_1(\mathcal{S}^1, 1) & \longrightarrow & \mathbb{Z} \\ \alpha & \longmapsto & \deg \alpha \end{array} \right.$$

est un homéomorphisme. $\pi(\mathcal{S}^1, 1) \xrightarrow{\sim} \mathbb{Z}$

Preuve.

Montrons que $\alpha \stackrel{H}{\sim} \beta \Rightarrow \deg \alpha = \deg \beta$. γs est continue en s. $\gamma_{\frac{i}{n}}$ $i \in \{1, \ldots, n\}$. Pour n assez grand $\|\gamma_{\frac{i}{n}} - \gamma_{\frac{i+1}{n}}\| < 2$. D'où $\deg \alpha = \deg \gamma_0 = \deg \gamma_{\frac{1}{n}} = \ldots = \deg \gamma_1 = \deg_{\beta}$.

Surjectivité. $deg(z \mapsto z^n) = n$

Injectivité. Soit α tel que deg $\alpha = 0$. Montrons que α est homotope à une constante. α : $[0,1] \longrightarrow S^1$ avec $\alpha(0) = \alpha(1) = 1$. On considère un relèvement :

$$\alpha(t) = e^{i\theta(t)}$$

 θ est continue, $\theta(0)=0$ et on a $\deg \alpha=\frac{\theta(1)}{2\pi}$. Or $\deg \alpha=0$ donc $\theta(1)=0$. $\theta\colon [0,1]\longrightarrow \mathbb{R}$ avec $\theta(0)=\theta(1)=0$, θ est homotope à 0.

$$H(s,t) = e^{i(1-s)\theta(t)}$$

Morphisme. Montrons que $[\alpha] \mapsto \deg \alpha$ est un morphisme. Soit α , β et θ , φ leur relevé. $\theta(0) = 0$, $\theta(1) = 2\pi \deg \alpha$, $\varphi(0) = 2\pi (\deg \alpha)$, $\varphi(1) = 2\pi (\deg \alpha + \deg \beta)$

$$\frac{\varphi(1) - \varphi(0)}{2\pi} = \deg \beta$$

 $\alpha\beta$ a comme relèvement démarrant à 0 : $\theta\varphi.$ Donc :

$$\deg(\alpha\beta) = \frac{\theta\varphi(1) - \theta\varphi(0)}{2\pi} = \frac{2\pi(\deg\alpha + \deg\beta) - 0}{2\pi} = \deg\alpha + \deg\beta$$

Proposition 3 —

Soient X,Y deux espaces topologiques.

$$\begin{cases}
\pi_1(X \times Y, (x, y)) & \xrightarrow{\sim} & \pi_1(X, x) \times \pi_1(Y, y) \\
[\gamma = (\alpha, \beta)] & \longmapsto & ([\alpha], [\beta])
\end{cases}$$

Preuve. À faire en exercice.

2.2 Exemples

Exemple. $T^2 = S^1 \times S^1$. $\pi_1(S^1 \times S^1) = \mathbb{Z} \times \mathbb{Z} = \mathbb{Z}^2$.

$$\mathcal{S}^1 \times \mathcal{S}^1 = [0,1] \times [0,1]/_{(x,0) \sim (x,1) \ (0,y) \sim (1,y)}$$

$$S^1 = [0, 1]/_{0 \sim 1}$$

Exemple. S^n $n \ge 2$ la sphère unité dans \mathbb{R}^{n+1} est simplement connexe $\pi_1(S^n) = \{1\}$. Projection stéréographique π (N le pôle nord) homéomorphisme entre $S^2 \setminus \{N\}$ et \mathbb{R}^2 . Idem pour $S^n \setminus \{N\}$ et \mathbb{R}^n .

Soit γ un lacet dans $\mathcal{S}^n \setminus \{N\}$, alors $\pi(\gamma) \stackrel{H}{\sim} x$ dans \mathbb{R}^n . $\gamma^{-1} \circ H$ est une homotopie entre γ et $\pi^{-1}(x)$. Si γ chemin dans $\mathcal{S}^n \setminus \{N\}$ alors γ est homotope à un arc de cercle.

Pour γ n'évitant aucun point de \mathcal{S}^n , on pose $\gamma = \gamma_1 \dots \gamma_{n-1}$ avec $\gamma_i(t) = \gamma|_{\left[\frac{i}{n}, \frac{i+1}{n}\right]}$. Pour n assez grand, $\gamma_1 \dots \gamma_n$ évitent un point. $\gamma_i \sim \gamma_i'$ un arc de cercle. Alors $\gamma \sim \gamma_1' \dots \gamma_n'$ une réunion finie d'arcs de cercles. $\gamma \sim \gamma'$ avec γ' non surjectif, $\gamma' \sim$ constante.

2.3 Applications

Proposition 4

X espace topologique, α lacet de X (α : $[0,1] \longrightarrow X$ continue $\alpha(0) = \alpha(1)$ ou $f \colon \mathcal{S}^1 \longrightarrow X$ continue, il suffit d'identifier les extrémités $f(e^{2\pi it}) = \alpha(t)$).

 $\alpha \sim \text{cste} \iff f$ s'étend continûement en $F \colon D^2 \longrightarrow X$

Preuve.

 \Leftarrow : supposons que f s'étende continûement à $F: D^2 \longrightarrow X$, $F|_{\mathcal{S}^1} = f$. \mathcal{S}^1 est un lacet dans D^2 qui est simplement connexe, alors $\mathcal{S}^1 \stackrel{H}{\sim}$ est dans \mathcal{D}^2 . $F \circ H$ donne une homotopie entre f et une constante dans X.

 \Rightarrow : inversement si $\alpha \stackrel{H}{\sim}$ cste, alors $H(0,t) = \alpha(t), H(1,t) =$ cste, H(s,0) = H(s,1).

f est le passage au quotient de α sur $[0,1]/_{0\sim 1}$, F le passage au quotient de H sur $[0,1]\times [0,1]/_{(s,0)\sim (s,1)}$ $_{(1,t)\sim (1,t')}$, formellement :

$$F((1-s)e^{2\pi it}) = H(s,t)$$

Théorème 2 (Brouwer) -

Soit $f: D^2 \longrightarrow D^2$ continue, alors f a un point fixe.

Preuve.

Par l'absurde. Pour $x \in D^2$ on a $f(x) \neq x$. On construit la demi-droite issue 0 passant par x: elle intersecte \mathcal{S}^1 en un unique point $r(x) \in \mathcal{S}^1$. On construit ainsi $r: D^2 \longrightarrow \mathcal{S}^1$ une rétraction, r est continue et vérifie $r|_{\mathcal{S}^1} = \mathrm{id}_{\mathcal{S}^1}$.

On a vu précedemment que si $f: \mathcal{S}^1 \longrightarrow X = \mathcal{S}^1$ s'étend continûement alors \sim cste. Ici on a $r|\mathcal{S}^1 = \operatorname{id}$ qui s'étend continûement en F = r. Alors le lacet $z \mapsto z$ dans \mathcal{S}^1 est équivalent à une constante, ce qui est impossible pour une raison de degré.

- **Théorème 3** (D'alembert) —

P polynôme de degré > 0, alors il a un zéro unitaire.

Preuve.

$$P(z) = z^{n} + a_{n-1}z^{n-1} + \ldots + a_0$$

n > 0. Par l'absurde si P n'a pas de zéro, posons :

$$f_R(z) = \frac{P(Rz)}{|P(Rz)|}$$

 $f_R \colon D^2 \longrightarrow \mathcal{S}^1$ est continue. Prenons z dans \mathcal{S}^1 . On a :

$$P(Rz) = (Rz)^n \left(1 + O\left(\frac{1}{R}\right)\right)$$
 et $|P(Rz)| = R^n \left(1 + O\left(\frac{1}{R}\right)\right)$

Ainsi:

$$f_R(z) = \frac{P(Rz)}{|P(Rz)|} = z^n + O\left(\frac{1}{R}\right)$$

Pour R suffisamment grand, f_R est proche de $z \mapsto z^n$ ainsi deg $f_R|_{\mathcal{S}^1} = n$, ce qui est impossible car $f_R|_{\mathcal{S}^1}$ s'étend continûement à $D^2 \longrightarrow \mathcal{S}^1$.

2.4 Invariance

- **Définition 11** (naturalité) —

 $f\colon X\longrightarrow Y$ continue, X,Y espaces topologiques, f induit :

$$f_* : \left\{ \begin{array}{ccc} \pi_1(X,x) & \longrightarrow & \pi_1(Y,f(x)) \\ [\gamma] & \mapsto & [f \circ \gamma] \end{array} \right.$$

bien définie :

$$\gamma \stackrel{H}{\sim} \gamma' \Rightarrow f \circ \gamma \stackrel{f \circ H}{\sim} f \circ \gamma'$$

morphisme : $f \circ (\gamma \gamma') = (f \circ \gamma)(f \circ \gamma')$

Remarque. (conséquence) si X et Y sont connexes par arcs $X \approx Y$ homéomorphe $\Rightarrow \pi_1(X) \approx \pi_1(Y)$ isomorphe. En effet :

$$X \xrightarrow[\varphi^{-1}]{} Y \qquad \pi_1(X,x) \xrightarrow[\varphi^{-1}]{} \pi_1(Y,\varphi(x))$$

$$\xrightarrow[\varphi^{-1}]{} \pi_1(Y,\varphi(x))$$

Définition 12 (homotopie d'applications) —

Soient $f,g\colon X\longrightarrow Y$ continues, X et Y des espaces topologiques. $f\sim g$ homotopie s'il existe $H\colon [0,1]\times X\longrightarrow Y$ continue telle que :

$$H(0,x) = f(x) \qquad H(1,x) = g(x)$$

C'est une relation d'équivalence.

- **Définition 13** (type d'homotopie) -

X et Y ont le même type d'homotopie s'il existe $f\colon X\longrightarrow Y$ et $g\colon Y\longrightarrow X$ continues telles que $g\circ f\colon X\longrightarrow X, \ g\circ f\sim \operatorname{id}_X$ et $f\circ g\colon Y\longrightarrow Y, \ f\circ g\sim \operatorname{id}_Y$.

- Proposition 5 ——

Si X, Y sont connexes par arcs, de même type d'homotopie alors :

$$\pi_1(X) \approx \pi_1(Y)$$
 (isomorphisme)

Preuve.

Soient $f: X \longrightarrow Y$ et $g: Y \longrightarrow X$ issues de la définition précédente. On définit :

$$f_* : \pi_1(X, x) \longrightarrow \pi_1(Y, f(x))$$
 $g_* : \pi_1(Y, g(f(x)) = x') \longrightarrow \pi_1(X, x)$

$$(g \circ f)_* \colon \left\{ \begin{array}{ccc} \pi_1(X,x) & \longrightarrow & \pi_1(X,x') \\ [\gamma] & \longmapsto & [g \circ f \circ \gamma] \end{array} \right.$$
 est un isomorphisme

 $g \circ f \stackrel{H}{\sim} \mathrm{id}_X$

 $H(s,x)=\alpha(s),$ où $\alpha\colon [0,1]\longrightarrow X$ est un chemin tel que $\alpha(0)=g\circ f(x)=x'$ et $\alpha(1)=x.$ Montrons que $g\circ f\circ \gamma\sim \alpha\gamma\alpha^{-1},$ ce sera alors terminé puisque $[\gamma]\mapsto [\alpha\gamma\alpha^{-1}]$ est un isomorphisme. Explicitons cette homotopie sous une forme de famille à 1 paramètre de lacets. $x_s=\alpha(s)=H(s,x),\ \gamma_s=H(s,\gamma)$ lacet en $x.\ \alpha_s$ correspond à la position de α entre x' et $x_s,\ \alpha_s(t)=\alpha(st).$ On définit alors $K(s,.)=\alpha_s\gamma_s\alpha_s^{-1}$ qui et une homotopie entre $g\circ f\circ \gamma$ et $\alpha\gamma\alpha^{-1}.$

Définition 14 (contractile) —

X est contractile s'il a le type d'homotopie d'un point.

Exemple. Un convexe est contractile.

Remarque. N'importe quel espace contractile est simplement connexe.

Propriété 8

Si X et X' ont le même type d'homotopie alors $X \times Y$ et $X' \times Y$ ont le même type d'homotopie.

- **Définition 15** (rétraction par déformation) -

 $Y\subset X$ des espaces topologiques. X se retracte par déformation sur Y si :

- il existe $r: X \longrightarrow Y$ une rétraction (continue et $r|_Y = \mathrm{id}_Y$)
- $\bullet \ j \circ r \underset{H}{\sim} \mathrm{id}_X \ \mathrm{où} \ j \colon \left\{ \begin{array}{ccc} Y & \longrightarrow & X \\ y & \longmapsto & y \end{array} \right.$
- \bullet L'homotopie est en plus parmi les applications qui valent id_Y sur Y

$$H: [0,1] \times X \longrightarrow X$$
 $H|_{[0,1] \times Y} = id_Y$

Remarque. Le troisième point ne fait pas forcément partie de la définition.

Remarque. Si X se rétracte par déformation sur Y, alors X et Y ont même type d'homotopie. En effet, $X \xrightarrow{r} Y$ et $Y \xrightarrow{j} X$ sont continues, et on a $j \circ r \sim \operatorname{id}_X$ et $r \circ j = \operatorname{id}_Y$.

Exemple. Par exemple, \mathbb{C}^* se rétracte sur \mathcal{S}^1 par $z \mapsto \frac{z}{|z|} = r(z)$. Et H l'homotopie entre $j \circ r$ et $\mathrm{id}_{\mathbb{C}^*}$ est :

$$H(s,z) = \left((1-s)\frac{1}{|z|} + s \right) z$$

Remarque. (conséquence de l'exemple) $\pi_1(\mathbb{C}\setminus\{0\}) = \mathbb{Z}$

Exemples.

- 1. $\mathbb{R}^{n+1}\setminus\{0\}$ se rétracte par déformation sur \mathcal{S}^n . $\pi_1(\mathbb{R}^{n+1}\setminus\{0\})=\{1\}$ pour $n\geqslant 2$.
- 2. $\mathbb{C}\setminus\{-1,1\}$ se rétracte par déformation.

Sur $2S^1 \cup [-2i, 2i]$. On note A_1 le demi-cercle privé de -1, A_2 celui privé de 1. Posons $A_1 \xrightarrow[r_1]{} \partial A_1$ la projection radiale à partir de -1, $r_2 \colon A_2 \xrightarrow[r_2]{} \partial A_2$ celle à partir de -1.

 $j_1 \circ r_1 \overset{H_1}{\sim} \operatorname{id}_{A_1}$ (parmi les applications = $\operatorname{id}_{\partial A_1}$), $j_2 \circ r_2 \overset{H_2}{\sim} \operatorname{id}_{A_2}$ (parmi les applications = $\operatorname{id}_{\partial A_2}$), $j_3 \circ r_3 \overset{H_3}{\sim} \operatorname{id}_{A_3}$ (parmi les applications = $\operatorname{id}_{\partial A_3}$),

$$r = r_1|_{A_1} = r_2|_{A_2} = r_3|_{A_3}$$

est continue et = $id_{2S^1 \cup [-2i,2i]}$.

$$H = H_1|_{A_1} = H_2|_{A_2} = H_3|_{A_3}$$

3. $T^2 = S^1 \times S^1$. $T^2 \setminus \{(1,0)\}$ se rétracte sur le bord du carré.

On identifie les bords a puis b.

correspond à un bouquet de deux cercles.

Définition 16 (graphe connexe) —

Un graphe connexe Γ est un compact connexe avec un nombre fini de points spécifiés S, l'ensemble des sommets.

$$\Gamma \backslash S = \bigsqcup_{\text{finie}} \text{arêtes } a \quad (\sim_{\text{hom\'eo}}]0,1[)$$

 ∂a est un point ou deux points dans S.

- Propriété 9 -

 Γ a le même type d'homotopie qu'un bouquet de cercles.

Idée.

Lemme 1

Soit a une arête à deux sommets de Γ . Notons $\Gamma' = \Gamma/a_{\sim pt}$. Γ' est un graphe connexe et Γ et Γ' ont le même type d'homotopie.

Remarque. Alors par récurrence on obtient un graphe connexe à un seul sommet \sim bouquet de cercles.

Inversement $\pi' \colon \Gamma' \longrightarrow \Gamma$: on recolle entre eux les démarrages d'arêtes provenant de p, idem pour q.

3 Van Kampen

X espace topologique connexe par arcs. $X = U_1 \cup U_2$ avec U_1, U_2 deux ouverts connexes par arcs $\neq \emptyset$ tels que $U_0 = U_1 \cap U_2$ soit connexe par arcs $\neq \emptyset$.

On va chercher à déterminer $\pi_1(X)$ en fonction de $G_i = \pi_1(U_i)$.

- Propriété 10 -

 $\pi_1(X)$ est engendré par G_1 et G_2 .

Remarque. On a $U_k \xrightarrow[i_k]{} X$

$$\left\{ \begin{array}{ccc} G_1 & \stackrel{i_1^*}{\longrightarrow} & \pi_1(X) \\ [\gamma] & \longmapsto & [\gamma] \end{array} \right. \quad \left\{ \begin{array}{ccc} G_2 & \stackrel{i_2^*}{\longrightarrow} & \pi_1(X) \\ [\gamma] & \longmapsto & [\gamma] \end{array} \right.$$

L'énoncé veut donc dire que $i_1^*(G_1)$ et $i_2^*(G_2)$ engendrent $\pi_1(X)$.

Contre-exemple. Le cercle en considérant U_1 et U_2 les deux demi-cercles.

Preuve.

Soit x_0 dans U_0 et γ un lacet dans X basé en x_0 . $X = U_1 \cup U_2$. $\gamma \colon [0,1] \longrightarrow X$ est continue et $\gamma(0) = \gamma(1) = x_0$. $\gamma^{-1}(U_1), \gamma^{-1}(U_2)$ est un recouvrement par des ouverts de [0,1]. Nombre de Lebesgue \to pour n assez grand :

$$\gamma\left(\left[\frac{i}{n},\frac{i+1}{n}\right]\right)\subset U_1 \text{ ou } U_2$$

On peut donc écrire $\gamma = \gamma_1 \gamma_2 \dots \gamma_n$ avec $\gamma_i \subset U_1$ ou U_2 .

Considérons un chemin α_i dans U_0 de x_0 à $\gamma\left(\frac{i}{n}\right)$ lorsque $\gamma\left(\frac{i}{n}\right)$ appartient à U_0 (correspond à un changement de U_1/U_2 ou U_2/U_1), sinon on le considère dans U_k tel que $\gamma\left(\frac{i}{n}\right) \in U_k$. Alors:

$$\gamma = \gamma_1 \dots \gamma_n \sim \underbrace{\left(\gamma_1 \alpha_1^{-1}\right)}_{\text{lacet en } x_0 \text{ dans } G_1 \text{lacet en } x_0 \text{ dans } G_2} \underbrace{\left(\dots \alpha_{n-1} \gamma_n\right)}_{\text{lacet en } x_0}$$

Remarque. (cas particulier)

 $X = U_1 \cup U_2$ avec U_1 et U_2 simplement connexes. Alors X est simplement connexe.

Produit libre

Soit $X = U_1 \cup U_2$, $U_1 \cap U_2 = U_0$, tout connexe par arcs. Soit $G_i = \pi_1(U_i)$. Définissons le produit libre de G_1 et G_2 .

- **Définition 17** (mot) -

 $g_1 \cdot g_2 \cdot \ldots \cdot g_k$ est un mot de longueur k avec les $g_i \in G_1$ ou G_2 . Le mot de longueur 0 est le mot vide.

- **Définition 18** (mot réduit) -

À partir d'un mot on lui applique les règles suivantes :

- 1. $g_i \cdot g_{i+1} \longrightarrow g_i g_{i+1}$ si g_i et g_{i+1} sont dans le même groupe.
- 2. si g_i est l'élement neutre de G_1 ou G_2 , on le supprime.

Exemple. $G_1 = \mathbb{Z}_a = \{a^n, n \in \mathbb{Z}\}, G_2 = \mathbb{Z}_b = \{b^n, n \in \mathbb{Z}\}, \text{ considérons le mot } :$

$$a^{2} \cdot b^{3} \cdot a \cdot a^{-1} \cdot a^{5} \cdot b \cdot b^{-1} = \dots = a^{2} \cdot b^{3} \cdot a^{5}$$

Définition 19 (produit libre) —

Le produit libre de G_1 et G_2 est noté $G_1 \ast G_2$ et est définit par :

$$G_1 * G_2 = \{ \text{mots réduits à lettres dans } G_1, G_2 \}$$

Il est muni de la loi de concaténation (puis réduction) :

$$m, m'$$
 réduits $\longmapsto m \cdot m' \longmapsto$ réduction

L'élément neutre est le mot vide. Et l'inverse d'un mot $g_1 \cdot \ldots \cdot g_k$ est $g_k^{-1} \cdot \ldots \cdot g_1^{-1}$.

Exemple.

$$\mathbb{Z}_a * \mathbb{Z}_b = \{1, a^n, b^n, a^{n_1} \cdot b^{n_2}, b^{n_1} \cdot a^{n_2}, a^{n_1} \cdot b^{n_2} \cdot a^{n_3}, \ldots \}$$

avec les n_i dans $\mathbb{Z}\setminus\{0\}$. $\mathbb{Z}_a*\mathbb{Z}_b$ correspond aux mônomes de Laurent non cummutatifs en deux variables.

$$\mathbb{Z}_a \times \mathbb{Z}_b = \{a^{n_1}b^{n_2}, \ n_1, n_2 \in \mathbb{Z}\}$$

correspond aux monômes de Laurent commutatifs en deux variables.

Propriété 11 (universelle de $G_1 * G_2$) ——

Si on a deux morphismes $G_1 \xrightarrow{f_1} H$ et $G_2 \xrightarrow{f_2} H$, alors il existe un unique morphisme de $G_1 * G_2$ dans H vérifiant :

Application. $\pi_1(X)$ est engendré par $\pi_1(U_1) = G_1$ et $\pi_2(U_2) = G_2$, traduction :

Définition 20 (somme amalgamée de G_1, G_2 sur $G_1 * G_2$) —

Notons $G_0 = G_1 * G_2$. La somme amalgamée de G_1, G_2 sur G_0 est définie par :

$$G_0 \xrightarrow{j_1} G_1 \quad G_0 \xrightarrow{j_2} G_2$$
 morphismes

$$G_1 *_{G_0} G_2 = G_1 * G_2/N$$

où N est le sous-groupe distingué engendré par $(j_1(g)) \cdot (j_2(g))^{-1}$ dans $G_1 * G_2$.

Exemple. $\mathbb{Z} *_{\mathbb{Z}} \{1\} \simeq \mathbb{Z}/_{2\mathbb{Z}}, \, \mathbb{Z} *_{\mathbb{Z}} \mathbb{Z} \simeq \mathbb{Z} * (\mathbb{Z}/_{2\mathbb{Z}})$

- **Définition 21** (groupe libre à g générateurs) -

 $\mathbb{Z}*\mathbb{Z}=F_2$ est le groupe libre à deux générateurs, $\mathbb{Z}\times\mathbb{Z}$ est le groupe abélien libre à deux générateurs. $\mathbb{Z}*\mathbb{Z}*\ldots*\mathbb{Z}=F_g$ (g fois) est le groupe libre à g générateurs.

Remarque. (générateurs et relations)

$$\langle a_1, \ldots, a_k \mid r_1, \ldots r_l = \mathbb{Z}_{a_1} * \ldots * \mathbb{Z}_{a_k} / N$$

 r_1, \ldots, r_l sont des mots en a_1, \ldots, a_k , et N est le sous-groupe distingué engendré par r_1, \ldots, r_l .

Exemple. $Z^2 = \langle a, b \mid [a, b] \rangle = \langle a, b \mid aba^{-1}b^{-1} \rangle = \mathbb{Z}_a * \mathbb{Z}_b/_N \ (\bar{a}\bar{b} = \bar{b}\bar{a} \text{ dans le quotient})$

Théorème 4 (Van Kampen) —

 $X = U_1 \cup U_2$, $U_0 = U_1 \cap U_2$, U_0, U_1, U_2 ouverts connexes par arcs non vides. Soit $G_i = \pi_1(U_i)$. Alors:

$$\pi_1(X) \simeq G_1 *_{G_0} G_2$$

 $j_1: U_0 \hookrightarrow U_1, j_2: U_0 \hookrightarrow U_2.$

$$i(j_1^*(g)(j_2^*(g))^{-1}) = 1$$

i est induit par i_1^* et i_2^* , $i_k : U_k \hookrightarrow X$.

$$i_1^* j_1^* (g) (i_2^* j_2^* (g))^{-1} = (i_1 j_1)^* (g) ((i_2 j_2)^* (g))^{-1} = 1$$

ker $i \subset N$: en effet soit g dans $G_1 * G_2$ tel que i(g) = 1. $i(g) = \gamma$ lacet en $x_0 \gamma \overset{H}{\sim} x_0$. $i(g) = \gamma$ lacet en $x_0 \gamma \overset{H}{\sim} x_0$. On considère la décomposition de γ en succession de lacets dans U_1 ou dans U_2 puis on étend cette décomposition à l'homotopie.

$$H \colon [0,1] \times [0,1] \longrightarrow X$$

 $H^{-1}(U_1), H^{-1}(U_2)$ est alors un recouvrement de $[0,1] \times [0,1]$. On considère le nombre de Lebregue assocé à ce recouvrement. Alors pour n entier assez grand :

$$H\left(\left[\frac{i}{n}, \frac{i+1}{n}\right] \times \left[\frac{j}{n}, \frac{j+1}{n}\right]\right) \in U_1 \text{ ou } U_2$$

$$(\gamma_1 \alpha_1^{-1})(\alpha_1 \gamma_2 \alpha_2^{-1})(\alpha_2 \gamma_3 \alpha_3^{-1})(\alpha_3 \gamma_4)$$

$$G_1 \qquad G_2 \qquad G_1 \qquad G_2$$

$$(\gamma_1' \alpha_1'^{-1})(\alpha_1' \gamma_2' {\alpha_2'}^{-1})(\alpha_2' \gamma_3' {\alpha_3'}^{-1})(\alpha_3' \gamma_4')$$

$$G_1 \qquad G_2 \qquad G_3 \qquad G_4$$

Lemme 2

Ces deux éléments de $G_1 * G_2$ sont identiques dans $G_1 * G_2/_N$

Preuve. (du Théorème 4à partir du lemme)

De proche en proche. γ vu dans $G_1 * G_2$ se projette sur le neutre dans $G_1 * G_2/_N$ d'où γ vu dans $G_1 * G_2$ est dans N.

Preuve. (du Lemme 2)

$$\gamma \sim (\gamma_1 \alpha^{-1})(\alpha \gamma_2) \qquad \gamma \sim (\gamma_1' {\alpha'}^{-1})(\alpha' \gamma_2')$$

ne diffèrent que de N. $\alpha, \alpha', \beta \in U_0$, $\delta = \alpha' \beta^{-1} \alpha^{-1}$ est un lacet dans U_0 . $\gamma_1 \alpha^{-1} \sim \gamma'_1 \beta^{-1} \alpha^{-1}$ grâce à H. Et $\alpha \gamma_2 \sim \alpha \beta \gamma'_2$ grâce à H. $(\gamma_1 \alpha^{-1})(\alpha \gamma_2)(\alpha \gamma_2) \sim (\gamma'_1 \beta^{-1} \alpha^{-1})(\alpha \beta \gamma'_2)$ égale dans $G_1 * G_2$.

$$\sim (\gamma_1' {\alpha'}^{-1} {\alpha' \beta}^{-1} {\alpha}^{-1}) (\alpha \beta (\alpha')^{-1} {\alpha' \gamma_2'})$$

$$= \underset{G_1 * G_2}{=} (\gamma_1' {\alpha'}^{-1}) (j_1^*(\delta)) (j_2^*(\delta))^{-1} (\alpha' \gamma_2')$$

$$= (\gamma_1' {\alpha'}^{-1}) (j_1^*(\delta) j_2^*(\delta)^{-1}) (\alpha' \gamma_2')$$

$$= (\gamma_1' {\alpha'}^{-1}) (\alpha' \gamma_2') \mod N$$

Exemples.

1. Bouquet de deux cercles :

 U_1 et U_2 se rétractent par déformation sur le cercle, U_0 se rétracte par déformation sur un point.

Donc:

$$\pi_1(X) = \pi_1(\text{cercle}) *_{\pi_1(.)} \pi_1(\text{cercle})$$

= $\mathbb{Z} * \mathbb{Z} = F_2$

où $\pi_1(.)$ est le groupe trivial.

On a de même : $\pi(\operatorname{cercle} \cup [-i, i]) = F_2$ et $\pi_1(\mathcal{C} \setminus \{\pm 1\}) = F_2$

- 2. Si X est un bouquet de g cercles on a $\pi(X) = F_g = \mathbb{Z} * ... * \mathbb{Z}$ (g fois).
- 3. Si Γ est un graphe connexe (compact), on a $\pi(\Gamma)=F_g$ pour un g donné.
- 4. $\pi_1(T^2) = \mathbb{Z}^2$ à partir de Van Kampen.

$$T^2 = T^2 \setminus \{p\} \cup (\text{voisinage de } p)$$

$$\pi_1(T^2 \setminus \{p\}) = \mathbb{Z}_a * \mathbb{Z}_b$$

on prend comme voisinage V le carré ouvert, comme il est simplement connexe, $\pi_1(\text{carré ouvert}) = \{1\}$. $T^2 \setminus \{p\} \cup V$ correspond à un carré ouvert privé de 0. Or :

$$\pi_1(\operatorname{carr\'e} \operatorname{ouvert} \setminus \{0\}) = \mathbb{Z}_c$$

Ainsi:

$$\pi_1(T^2) = (\mathbb{Z}_a \times \mathbb{Z}_b) * 1/N$$

où N est engendré par [a, b], ainsi :

$$\pi_1(T^2) = \langle a, b \mid aba^{-1}b^{-1} \rangle = \mathbb{Z}^2$$

5. Surface de genre 2 (bouquet de deux tores noté S_2). On note U_1 le premier tore + une partie de l'interface, U_2 le second.

$$U_1 \simeq T^2 \setminus \{ \text{pt} \}$$
 $U_2 \simeq T^2 \setminus \{ \text{pt} \}$

Donc $\pi_1(U_1) = \mathbb{Z}_a * \mathbb{Z}_b$ et $\pi_1(U_2) = \mathbb{Z}_c * \mathbb{Z}_d$. U_0 est un cylindre.

$$\left\{ \begin{array}{lll} \mathbb{Z}_e & \longrightarrow & \mathbb{Z}_a * \mathbb{Z}_b \\ e & \longmapsto & aba^{-1}b^{-1} \end{array} \right. \quad \left\{ \begin{array}{lll} \mathbb{Z}_e & \longrightarrow & \mathbb{Z}_c * \mathbb{Z}_d \\ e & \longmapsto & cdc^{-1}d^{-1} \end{array} \right.$$

$$\pi_1(S_2) = \mathbb{Z}_a * \mathbb{Z}_b * \mathbb{Z}_c * \mathbb{Z}_d / N$$

$$= \langle a, b, c, d \mid aba^{-1}b^{-1}dcd^{-1}c^{-1} \rangle$$

$$= \langle a, b, c, d \mid aba^{-1}b^{-1}cdc^{-1}d^{-1} \rangle$$

$$= \langle a, b, c, d \mid [a, b][c, d] \rangle$$

6. $P^2(\mathbb{R}) = \{\text{droites linéaires dans } \mathbb{R}^3\} = S^2/_{x \sim -x} \text{ donne la topologie sur } P^2(\mathbb{R})$. Chaque classe a un représentant dans S^{2+} , la demi-sphère supérieure fermée. Donc :

$$P^2(\mathbb{R}) = S^{2+}/_{x \sim -x, \ x \in \text{\'equateur ou} \ \partial S^{2+}} = D^2/_{x \sim -x, \ x \in \partial D^2}$$

où D^2 est le disque fermé.

$$P^{2}(\mathbb{R}) = (P^{2}(\mathbb{R}) \setminus \{p\}) \cup \underbrace{\left(\text{disque ferm\'e} \setminus \{0\}\right)}_{U_{1}} \cup \underbrace{\left(\text{disque ouvert}\right)}_{U_{2}}$$

On a $\pi_1(U_2) = \{1\}$. Et $U_0 = \text{disque ouvert}\setminus\{0\}, \ \pi_1(U_0) = \mathbb{Z}_c$. Que vaut $\pi_1(U_1)$? Comme :

$$S^{1}/_{x \sim -x} = S^{1+}/_{x \sim -x, \ x \in \text{bord}} = S^{1}$$

 U_1 se rétracte par déformation sur un cercle. $\pi_1(U_1) = \mathbb{Z}_a$.

$$\left\{ \begin{array}{ccc} \pi_1(U_0) & \longrightarrow & \pi_1(U_1) \\ c & \longmapsto & a^2 \end{array} \right.$$

Conclusion:

$$\pi_1(P^2(\mathbb{R})) = \mathbb{Z}_a/_N = \mathbb{Z}/_{2\mathbb{Z}}$$

 $(N \text{ engendr\'e par } a^2)$

4 Revêtements

Revêtement : formalisme des propriétés de $\mathbb{R} \xrightarrow{\exp} \mathcal{S}^1$ utile pour définir une détermination de l'angle, et du degré.

4.1 Définitions

– **Définition 22** (revêtement) —

Soit $p: E \longrightarrow B$ continue surjective. E, B espaces topologiques. (E, B, p) est un revêtement si B est recouvert par des ouverts U tel que $p^{-1}(U) = \bigsqcup V_i$ avec V_i ouverts et $p_i \colon V_i \xrightarrow{\sim} U$ homéomorphisme.

p projection, E espace total, B base, U ouverts de trivialisation du revêtement.

- **Définition 23** (fibre) —

Pour un revêtement (E, B, p), la fibre en un point b est notée F_b et est définie par $F_b = ^{-1}(b)$ qui est un espace discret.

- **Définition 24** (section locale du revêtement) —

Une section locale du revêtement est $s: U \longrightarrow E$ continue telle que $p \circ s = \mathrm{id}_U$.

Exemple. $E = \mathbb{R} \xrightarrow{p=\exp} \mathcal{S}^1 = B.$ (E, B, p) est un revêtement. $U = \mathcal{S}^1 \setminus \{1\}, U' = \mathcal{S}^1 \setminus \{-1\}, p^{-1}(U) = \mathbb{R} \setminus (2\pi\mathbb{Z}).$

Remarque. (revêtement trivial) $E = B \times F$, F espace discret.

- Propriété 12

Si $p: E \longrightarrow B$ est un revêtement et $C \subset B$ alors $p: E|_C = p^{-1}(C) \longrightarrow C$ est un revêtement.

Remarque. $p: E \longrightarrow B$ revêtement. U ouvert de trivialisation de ce revêtement.

- Propriété 13 –

Si $E \xrightarrow{p} B$ et $E' \xrightarrow{p'} B'$ sont deux revêtements alors :

$$E\times E'\xrightarrow{\ (p,p')\ } B\times B'$$
 est un revêtement

Exemple. On a par exemple $\mathbb{R} \xrightarrow{\exp} \mathcal{S}^1$ qui est un revêtement, alors $\mathbb{R} \times \mathbb{R} \xrightarrow{\exp, \exp} \mathcal{S}^1 \times \mathcal{S}^1 = T^2$ est un revêtement.

- **Définition 25** (degré) -

Le degré d'un revêtement est le nombre de points dans la fibre.

Exemples.

$$\left\{ \begin{array}{ccc} \mathcal{S}^1 & \longrightarrow & \mathcal{S}^1 \\ z & \longmapsto & z^n \end{array} \right. \ \text{revêtement de degré} \ n$$

 $\exp \colon \mathbb{C} \longrightarrow \mathbb{C}^*$ est un revêtement de degré infini.

$$\left\{ \begin{array}{ccc} \mathbb{C} & \longrightarrow & \mathbb{C}^* \\ z & \longmapsto & z^n \end{array} \right. \ \text{revêtement de degré} \ n$$

Proposition 6 —

E compact, $p\colon E\longrightarrow B$ continue, surjective, homéomorphisme local alors $p\colon E\longrightarrow B$ révêtement.

Preuve.

Nous allons chercher à construire des U_i de trivialisation. Soit $b \in B$, $b \in U$? Tout d'abord, remarquons que $p^{-1}(b)$ est discrète. Donc si on a $e_i \in p^{-1}(b)$, il existe un voisinage de e_i ne contenant que e_i dans $p^{-1}(b)$. $p^{-1}(b)$ est de plus compacte, donc finie.

$$p^{-1}(b) = \{e_1, \dots, e_n\}$$

Considérons W_i voisinage de e_i tel que $p \colon W_i \xrightarrow{\sim} p(W_i)$ soit un homéomorphisme. Considérons $U' = \bigcap_{i=1}^n p(W_i)$ voisinage de b et posons $W'_i = p^{-1}(U') \cap W_i$. On a $W'_i \xrightarrow{\sim} U'$. Il reste un problème pour conclure, on est pas sûr que :

$$p^{-1}(U') \subset \bigcup_{i=1}^{n} W_i'$$

On a:

$$p\left(E - \bigcup_{i=1}^{n} W_i'\right)$$
 compact dans B évitant b

$$B - p\left(E - \bigcup_{i=1}^{n} W_i'\right) = U$$
 ouvert contenant b

On a $U\subset U'$. Si $c\in U,$ c=p(f) alors $f\in \bigcup_{i=1}^n W_i'$. Donc $p^{-1}(U)\subset \bigcup_{i=1}^n W_i',$ ainsi $U\subset U'$.

Exemple. $S^2 \xrightarrow{p} \mathcal{P}^2(\mathbb{R}) = S^2/_{x \sim -x}$ est un revêtement.

Proposition 7

E espace localement compact. G groupe agissant sur E par homéomorphismes. G agit proprement et librement. $p\colon E\longrightarrow {}_G\backslash E$ est un revêtement.

Remarque. Une action de groupe est :

$$\left\{ \begin{array}{ccc} G \times E & \longrightarrow & E \\ (g,x) & \longmapsto & g \cdot x \end{array} \right.$$

 $g' \cdot (g \cdot x) = (g'g) \cdot x$, $e \cdot x = x$. On peut aussi le voir comme :

un morphisme
$$\left\{ \begin{array}{ccc} G & \longrightarrow & \mathrm{Bij}(E,E) \\ g & \longmapsto & (x \mapsto g \cdot x) \end{array} \right.$$

Ici, une action par homéomorphismes est :

$$\begin{cases}
G & \longrightarrow & \text{Hom\'eo}(E, E) \\
g & \longmapsto & (x \mapsto g \cdot x)
\end{cases}$$

On note aussi l'orbite de $x: G \cdot x = \{g \cdot x, g \in G\}$. Et le stabilisateur $\operatorname{Stab}_x = \{g \in G \mid g \cdot x = x\}$. On dit alors qu'une action est libre si $\forall x$, $\operatorname{Stab}_x = \{e\}$.

On dit qu'elle agit proprement si elle "bouge les compacts" i.e. si pour K compact $\subset E$ on a :

$$\{g \mid gK \cap K \neq \emptyset\}$$
 est fini

Preuve.

On veut montrer que $\forall x \in E$, il existe V voisinage de x tel que $\{gV \mid g \in G\}$ sont disjoints. Dans $g\mathbb{E}$ en posant p(V) = U, U est un voisinage de p(x).

$$p^{-1}(U) = \bigsqcup_{g \in G} gV \quad p \colon gV \xrightarrow{\sim} U$$

On sait déjà que les $g \cdot x$ sont distincts (action libre). Soit W voisinage compact de x.

$$\{g \mid gW \cap W \neq \emptyset\}$$
 est fini $= \{e = g_0, g_1, \dots, d_n\}$

On diminue $W. x, g_1 x, \ldots, g_n x$ distincts, on considère U_0, U_1, \ldots, U_n des voisinages de x respectifs, respectivement inclus dans $W, g_1 W, \ldots, g_n W$.

$$V = U_0 \cap g_1^{-1}U_1 \cap g_2^{-1}U_2 \cap \ldots \cap g_n^{-1}U_n$$

 g_1V, \ldots, g_nV sont disjoints de V. Et gV est disjoint de V si $g \neq g_0, g_1, \ldots, g_n$. Bilan. $\forall g \neq e, gV \cap V = \emptyset \implies gV \cap hV = \emptyset \ g \neq h \ \text{car}$:

$$h^{-1}(gV \cap hV) = \underbrace{h^{-1}g}_{\neq e} V \cap V = \emptyset$$

Exemple. \mathbb{R} , \mathbb{Z} agit sur \mathbb{R} par translations.

$$\mathbb{R} \xrightarrow[x \mapsto e^{2\pi i x}]{\text{revêtement}} \mathbb{R}/\mathbb{Z} \simeq [0, 1]/_{0 \sim 1} \simeq \mathcal{S}^1$$

 \mathbb{R}^2 , \mathbb{Z}^2 agit sur \mathbb{R}^2 par translations.

$$\mathbb{R}^2 \xrightarrow{\text{revêtement}} \mathbb{R}^2/\mathbb{Z}^2 \simeq [0,1] \times [0,1]/(x,0) \sim (x,1), (0,y) \sim (1,y) \simeq T^2$$

22

4.2 Relèvements

On a un $E \xrightarrow{p} B$ un revêtement et $f: X \longrightarrow B$ continue. X topologique.

Existe-t-il \tilde{f} continue de $X \longrightarrow E$ telle que $p \circ \tilde{f} = f$?

On cherche une sélection continue dans $p^{-1}(f(x))$.

Unicité. Oui si X est connexe et qu'on a des "points bases".

f(x) = b, p(e) = b, on doit avoir $\tilde{f}(x) = e$. Montrons que \tilde{f} est unique dans ses conditions. Soient \tilde{f} , \tilde{f}' deux relevés de f.

$$\{x \mid \tilde{f}(x) = \tilde{f}'(x)\} = (\tilde{f} = \tilde{f}') \neq \emptyset$$

En effet, grâce aux points de bases $\tilde{f}(x) = \tilde{f}'(x) = e$. C'est aussi un fermé par séparation \Rightarrow c'est donc tout X par connexité.

Soit y tel que $\tilde{f}(y) = \tilde{f}'(y)$. Soit V un voisinage de $\tilde{f}(y) = \tilde{f}'(y)$. Par continuité de \tilde{f} et \tilde{f}' , il existe W voisinage de Y tel que $\tilde{f}(W) \subset V$ et $\tilde{f}'(W) \subset V$. Soit $z \in W$, a-t-on $\tilde{f}(z) = \tilde{f}'(z)$? Oui car $p\tilde{f}(z) = f(z) = p\tilde{f}'(z)$ et $p|_V$ est injectif.

Preuve.

Nous avons déjà montré l'unicité. Montrons l'existence. Soit (U_i) un recouvrement d'ouverts de trivialisation de B, $(\alpha^{-1}(U_i))$ est un recouvrement d'ouverts de [0,1] qui est compact. Considérons le nombre de Lebesgue de ce recouvrement, pour n assez grand on a :

$$\alpha\left(\left[\frac{i}{n}, \frac{i+1}{n}\right]\right) \subset U_i$$
 ouvert de trivialisation

On définit alors $\tilde{\alpha}$ de proche en proche.

4.2.1 Relèvement des homotopies

4.2.2 Relèvement des applications

4.3 Classification des revêtements

- Proposition 9

$$\left\{ \begin{array}{ccc} \operatorname{Aut}(\tilde{B}) & \xrightarrow{\sim} & \pi_1(B,b) \\ f & \longleftarrow & \gamma \end{array} \right. \text{ bijection, isomorphisme}$$

où f est l'unique fonction telle que $f(\tilde{b}) = \tilde{b} \cdot \gamma$.

Preuve.

Compatibilité des deux actions : $f(\tilde{b}\cdot\gamma)=f(\tilde{b})\cdot\gamma.$ En effet :

$$\begin{array}{c}
f(\tilde{b}) \cdot \gamma \\
\tilde{b} \\
f(\tilde{b})
\end{array}
\qquad \begin{array}{c}
f \circ \tilde{\gamma} \\
\tilde{\gamma}
\end{array}$$

$$f(\tilde{b} \cdot \gamma) = f(\tilde{\gamma}(1)) = f \circ \tilde{\gamma}(1)$$

Or, $f \circ \tilde{\gamma}$ relève γ , donc $\tilde{p} \circ f \circ \tilde{\gamma} = \tilde{p} \circ \tilde{\gamma} = \gamma$. $f \circ \tilde{\gamma}(0) = f(\tilde{\gamma}(0)) = f(\tilde{\gamma}(0)) = f(\tilde{b})$. Morphisme:

$$\underbrace{\phi(\gamma\gamma')}_g = \underbrace{\phi(\gamma)\phi(\gamma')}_{f}$$

$$\begin{split} g(\tilde{b}) &= \tilde{b} \cdot \gamma \gamma' = (\tilde{b} \cdot \gamma) \cdot \gamma' = f(\tilde{b}) \cdot \gamma' \\ &= f(\tilde{b} \cdot \gamma') \quad \text{par compatibilit\'e} \\ &= f(f'(\tilde{b})) = f \circ f'(\tilde{b}) \end{split}$$

 $\Rightarrow g = f \circ f'$ car on a une action libre.

Exemple. $\mathbb{R} \xrightarrow{p} \mathbb{R}/\mathbb{Z} \simeq \mathcal{S}^1$. Revêtement universel de \mathcal{S}^1 .

$$\operatorname{Aut}(\mathbb{R} \xrightarrow{p} \mathbb{R}/\mathbb{Z}) = \{x \mapsto x + n, \ n \in \mathbb{Z}\}\$$

 $\mapsto x + n$ \mathbb{R} \mathbb{R}/\mathbb{Z}

 $\mathbb{R}^2 \longrightarrow \mathbb{R}^2/\mathbb{Z}^2$ automorphismes de \mathbb{Z}^2 .

Remarque. $_{\operatorname{Aut}(\tilde{B})}\backslash \tilde{B}=B$

4.3.1 Revêtements intermédiaires

Remarque.

$$\Leftrightarrow p_*(\pi_1(E, e)) = p'_*(\pi_1(E', e'))$$

$$\Rightarrow$$
: $p' \circ f = p$, $p'_* \circ f_* = p_*$

$$\Rightarrow : p' \circ f = p, \, p'_* \circ f_* = p_*.$$

$$p'_*(\pi_1(E', e')) \supset p_*(\pi_1(E, e))$$

en considérant f^{-1} .

$$p'_*(\pi_1(E',e')) = p_*(\pi_1(E,e))$$

 \Leftarrow : on fabrique f, relever p à travers le revêtement p' est possible car $p_*(\pi_1(E,e)) \subset p'_*(\pi_1(E',e'))$.

 $f(e) \in {p'}^{-1}(b) \Leftrightarrow p_*(\pi_1(E,e))$ est conjugué à $p'_*(\pi_1(E',e'))$. Considérons le cas où l'on a un unique revêtement $E, e \xrightarrow{p} B, b$. Le lien entre $\pi_1(E, e)$ et $\pi_1(E, e')$ est :

$$\begin{cases}
\pi_1(E, e) & \stackrel{\sim}{\longrightarrow} & \pi_1(E, e') \\
\beta & \longmapsto & \alpha^{-1}\beta\alpha
\end{cases}$$

$$p_*(\pi_1(E, e')) = (p \circ \alpha)^{-1} p_*(\pi_1(E, e)) (p \circ \alpha) = \gamma^{-1} p_*(\pi_1(E, e)) \gamma$$

En général on a γ dans $\pi_1(B, b)$

$$\gamma^{-1}p_*(\pi_1(E,e))\gamma = p_*(\pi_1(E,e\cdot\gamma))$$

Conséquence. $E, e \xrightarrow{p} B, b$

 $\operatorname{Aut}(E)$ agit transitivement sur $p^{-1}(b) \Leftrightarrow p_*(\pi_1(E,e))$ est distingué dans $\pi_1(B,b)$

Définition 26 -

On appelle un tel revêtement un revêtement galoisien.

4.3.2 Existence des revêtements intermédiaires

 $H \subset \pi_1(B, b)$. On cherche à créer E tel que $p_*(\pi_1(E, e)) = H$. On suppose que \tilde{B} existe (revêtement universel), on va construire E comme quotient de \tilde{B} .

- Proposition 10 ---

 $_H\backslash \tilde{B}, [\tilde{b}] \stackrel{p}{\longrightarrow} B, b$ un revêtement de B et $p_*\pi_1(_H\backslash \tilde{B}, [\tilde{b}]) = H.$ Alors :

$$H \subset \pi_1(B,b) \simeq \operatorname{Aut}(\tilde{B})$$

Preuve.

Cons'equence. Si B,b est connexe et localement connexe par arcs et possède un revêtement universel alors :

$$\left\{ \begin{array}{ccc} \{E \overset{p}{\longrightarrow} B \text{ revêtement connexe}\}/_{\text{à isomph près}} & \overset{\sim}{\underset{\text{bij}}{\longrightarrow}} & \{H \subset \pi_1(B,b)\}/_{\text{à conj près}} \\ E & \longmapsto & p_*(\pi_1(E,e)), \ e \in p^{-1}(b) \end{array} \right.$$

Exemple. $B = \mathcal{S}^1$, $\pi_1(B) = \mathbb{Z}$. $n\mathbb{Z}$ pour n entier, on a la liste de revêtement n > 0 $\mathcal{S}^1 \longrightarrow \mathcal{S}^1$ $z \mapsto z^n$.