In [1]:

```
Classifiaction problem related to Pima Indians Diabetes Database.

Authors:
-----
Group-123

Snigdha Tarua - 2019ab04171
Sanka Mahesh Sai - 2019ab04135
Aravapalli Chandra Sekhar Gupta - 2019ab04187
```

Out[1]:

'\nClassifiaction problem related to Pima Indians Diabetes Databas e.\n\nAuthors:\n-----\n\nGroup-123\n\nSnigdha Tarua - 2019ab04171 \nSanka Mahesh Sai - 2019ab04135\nAravapalli Chandra Sekhar Gupta - 2019ab04187\n\n'

Table of Contents

- 1 Attribute Information:
 - 1.1 Class Variable interpretation:
- 2 Objective:
- 3 Exploratory data analysis
 - 3.1 Understanding the split of dependent variable
 - 3.2 Pair plot
 - 3.3 Distribution Plot of all independent variables
 - 3.4 Correlation Plot
- 4 Standaradizing the data
- 5 Splitting the data
- 6 Fitting Logistic Regression
 - 6.1 Elbow plot
 - 6.2 Metrics Calculation

Pima Indians Diabetes Database

Attribute Information:

- 1. Number of times pregnant
- 2. Plasma glucose concentration a 2 hours in an oral glucose tolerance test
 - 3. Diastolic blood pressure (mm Hg)
 - 4. Triceps skin fold thickness (mm)
 - 5. 2-Hour serum insulin (mu U/ml)
 - 6. Body mass index (weight in kg/(height in m)^2)
 - 7. Diabetes pedigree function
 - 8. Age (years)
 - 9. Class variable (0 or 1)

Class Variable interpretation:

• class value 1 is interpreted as "tested positive for diabetes"

Objective:

• To perform basic analysis on the dataset and to classify based on the provided class label

- Import the data from Indian diabetes dataset (Links to an external site.) and find dataset description from here (Links to an external site.) (2 points)
- Consider all columns as independent variables and assign to variable X except the last column and consider the last column as the dependent variable and assign to variable y. Remove columns which don't help the problem statement. (1 point)
- Compute some basic statistical details like percentile, mean, standard deviation of dataset (1 point)
- Do Feature Scaling on Independent variables (2 points)
- Split the data into train and test dataset (1 point)
- Use sklearn library to train on train dataset on logistic regression and predict on test dataset (3 points)
- Compute the accuracy and confusion matrix. (2 points)

In [2]:

```
# importing required libraries
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import classification_report,confusion_matrix, accuracy_sco
re
```

In [3]:

```
pd.options.display.float_format = "{:.2f}".format
```

Import the data from Indian diabetes dataset (Links to an external site.) and find dataset description from here (Links to an external site.) (2 points)

In [4]:

```
data = pd.read_csv("https://raw.githubusercontent.com/jbrownlee/Datasets/master/
pima-indians-diabetes.data.csv", header=None)
data.head()
```

Out[4]:

	0	1	2	3	4	5	6	7	8
0	6	148	72	35	0	33.60	0.63	50	1
1	1	85	66	29	0	26.60	0.35	31	0
2	8	183	64	0	0	23.30	0.67	32	1
3	1	89	66	23	94	28.10	0.17	21	0
4	0	137	40	35	168	43.10	2.29	33	1

In [5]:

Out[5]:

	num_pregnant	plasma_conc	blood_pressure	skin_thickness	serum_insulin	bmi	diaba
0	6	148	72	35	0	33.60	
1	1	85	66	29	0	26.60	
2	8	183	64	0	0	23.30	
3	1	89	66	23	94	28.10	
4	0	137	40	35	168	43.10	

Compute some basic statistical details like percentile, mean, standard deviation of dataset

In [6]:

```
# to get a basic descreptive stat summary of the data
data.describe()
```

Out[6]:

	num_pregnant	plasma_conc	blood_pressure	skin_thickness	serum_insulin	bmi
count	768.00	768.00	768.00	768.00	768.00	768.00
mean	3.85	120.89	69.11	20.54	79.80	31.99
std	3.37	31.97	19.36	15.95	115.24	7.88
min	0.00	0.00	0.00	0.00	0.00	0.00
25%	1.00	99.00	62.00	0.00	0.00	27.30
50%	3.00	117.00	72.00	23.00	30.50	32.00
75%	6.00	140.25	80.00	32.00	127.25	36.60
max	17.00	199.00	122.00	99.00	846.00	67.10
4						>

In [7]:

```
# checking for null values
data.isnull().sum()
Out[7]:
num pregnant
                       0
plasma conc
                       0
                       0
blood pressure
skin thickness
                       0
serum insulin
                       0
                       0
bmi
diabaties_function
                       0
has diabetes
dtype: int64
In [8]:
data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 768 entries, 0 to 767
Data columns (total 9 columns):
#
    Column
                          Non-Null Count
                                           Dtype
- - -
 0
     num pregnant
                          768 non-null
                                           int64
                          768 non-null
                                           int64
 1
     plasma conc
 2
     blood pressure
                          768 non-null
                                           int64
 3
     skin thickness
                          768 non-null
                                           int64
 4
     serum insulin
                          768 non-null
                                           int64
 5
                          768 non-null
                                           float64
 6
     diabaties_function
                          768 non-null
                                           float64
 7
                          768 non-null
     age
                                           int64
     has diabetes
                          768 non-null
                                           int64
dtypes: float64(2), int64(7)
memory usage: 54.1 KB
```

Exploratory data analysis

Understanding the split of dependent variable

```
In [9]:
```

```
data['has_diabetes'].value_counts()

Out[9]:
0    500
1    268
Name: has_diabetes, dtype: int64
```

In [10]:

```
diabetic_count = data['has_diabetes'].value_counts()[0]
non_diabetic_count = data['has_diabetes'].value_counts()[1]
```

In [11]:

```
plt.figure(figsize=(5,5))
plt.pie(x=[diabetic_count,non_diabetic_count], labels=[ 'Non Diabetic', 'Diabeti
c'], autopct='%1.0f%',pctdistance=0.6,labeldistance=1.05,textprops={'fontsize':
12},colors=['lightblue','green'])
plt.title('Number of Diabetic and Nondiabetic Patients',loc='center', fontsize=1
5)
plt.show()
```

Number of Diabetic and Nondiabetic Patients

Pair plot

Independent variables vs dependent variable

In [12]:

sns.pairplot(data,hue='has_diabetes')
plt.show()

The pairs plot builds on two basic figures, the histogram and the scatter plot. The histogram on the diagonal allows us to see the distribution of a single variable while the scatter plots on the upper and lower triangles show the relationship (or lack thereof) between two variables.

Distribution Plot of all independent variables

In [13]:

```
plt.figure(figsize=(15,15))
plt.subplot(4,2,1)
sns.distplot(data['num pregnant'], color='green')
mean = data['num pregnant'].mean()
median = data['num pregnant'].median()
mode = data['num pregnant'].mode()[0]
plt.axvline(mean, color='r', linestyle='--')
plt.axvline(median, color='g', linestyle='-')
plt.axvline(mode, color='b', linestyle='-')
plt.legend({'Mean':mean,'Median':median,'Mode':mode})
plt.ylabel('Frequency', fontsize=12)
plt.subplot(4,2,2)
sns.distplot(data['plasma conc'], color='blue')
mean = data['plasma conc'].mean()
median = data['plasma conc'].median()
mode = data['plasma conc'].mode()[0]
plt.axvline(mean, color='r', linestyle='--')
plt.axvline(median, color='g', linestyle='-')
plt.axvline(mode, color='b', linestyle='-')
plt.legend({'Mean':mean,'Median':median,'Mode':mode})
plt.ylabel('Frequency', fontsize=12)
plt.subplot(4,2,3)
sns.distplot(data['blood pressure'], color='orange')
mean = data['blood pressure'].mean()
median = data['blood pressure'].median()
mode = data['blood pressure'].mode()[0]
plt.axvline(mean, color='r', linestyle='--')
plt.axvline(median, color='g', linestyle='-')
plt.axvline(mode, color='b', linestyle='-')
plt.legend({'Mean':mean,'Median':median,'Mode':mode})
plt.ylabel('Frequency', fontsize=12)
plt.subplot(4,2,4)
sns.distplot(data['skin thickness'], color='cyan')
mean = data['skin_thickness'].mean()
median = data['skin_thickness'].median()
mode = data['skin thickness'].mode()[0]
plt.axvline(mean, color='r', linestyle='--')
plt.axvline(median, color='g', linestyle='-')
plt.axvline(mode, color='b', linestyle='-')
plt.legend({'Mean':mean,'Median':median,'Mode':mode})
plt.ylabel('Frequency', fontsize=12)
plt.subplot(4,2,5)
sns.distplot(data['serum insulin'])
mean = data['serum_insulin'].mean()
median = data['serum insulin'].median()
mode = data['serum_insulin'].mode()[0]
plt.axvline(mean, color='r', linestyle='--')
plt.axvline(median, color='g', linestyle='-')
plt.axvline(mode, color='b', linestyle='-')
plt.legend({'Mean':mean,'Median':median,'Mode':mode})
plt.ylabel('Frequency', fontsize=12)
plt.subplot(4,2,6)
sns.distplot(data['bmi'], color='violet')
```

```
mean = data['bmi'].mean()
median = data['bmi'].median()
mode = data['bmi'].mode()[0]
plt.axvline(mean, color='r', linestyle='--')
plt.axvline(median, color='g', linestyle='-')
plt.axvline(mode, color='b', linestyle='-')
plt.legend({'Mean':mean,'Median':median,'Mode':mode})
plt.ylabel('Frequency', fontsize=12)
plt.subplot(4,2,7)
sns.distplot(data['diabaties function'], color='forestgreen')
mean = data['diabaties function'].mean()
median = data['diabaties function'].median()
mode = data['diabaties function'].mode()[0]
plt.axvline(mean, color='r', linestyle='--')
plt.axvline(median, color='g', linestyle='-')
plt.axvline(mode, color='b', linestyle='-')
plt.legend({'Mean':mean,'Median':median,'Mode':mode})
plt.ylabel('Frequency', fontsize=12)
plt.subplot(4,2,8)
sns.distplot(data['age'], color='royalblue')
mean = data['age'].mean()
median = data['age'].median()
mode = data['age'].mode()[0]
plt.axvline(mean, color='r', linestyle='--')
plt.axvline(median, color='q', linestyle='-')
plt.axvline(mode, color='b', linestyle='-')
plt.legend({'Mean':mean,'Median':median,'Mode':mode})
plt.ylabel('Frequency', fontsize=12)
plt.show()
```


Correlation Plot

In [14]:

```
plt.figure(figsize=(10,10))
corrMatrix = data.corr()
sns.heatmap(corrMatrix, annot=True)
plt.show()
```


Remove columns which don't help the problem statement.

From the correlation plot, we removed the columns that are **less than 0.15** correlated with the **has_diabetes** column. The columns that to be removed are **blood_pressure**, **skin_thickness** and **serum_insulin**

In [15]:

```
# dropping blood_pressure and skin_thickness columns

data = data.drop(['blood_pressure','skin_thickness','serum_insulin'],axis=1)
```

Standaradizing the data

In [16]:

```
data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 768 entries, 0 to 767
Data columns (total 6 columns):
                         Non-Null Count
#
    Column
                                         Dtype
0
   num pregnant
                         768 non-null
                                          int64
1
    plasma conc
                         768 non-null
                                          int64
2
                         768 non-null
                                          float64
    diabaties_function 768 non-null
3
                                          float64
4
     age
                         768 non-null
                                          int64
     has_diabetes
5
                         768 non-null
                                          int64
dtypes: float64(2), int64(4)
memory usage: 36.1 KB
```

Do Feature Scaling on Independent variables

In [17]:

```
ss = StandardScaler()
ss.fit(data.drop(['has_diabetes'], axis=1))
scaled=ss.transform(data.drop(['has_diabetes'], axis=1))
scaled_data=pd.DataFrame(data=scaled, columns=data.columns[:-1])
scaled_data
```

Out[17]:

	num_pregnant	plasma_conc	bmi	diabaties_function	age
0	0.64	0.85	0.20	0.47	1.43
1	-0.84	-1.12	-0.68	-0.37	-0.19
2	1.23	1.94	-1.10	0.60	-0.11
3	-0.84	-1.00	-0.49	-0.92	-1.04
4	-1.14	0.50	1.41	5.48	-0.02
763	1.83	-0.62	0.12	-0.91	2.53
764	-0.55	0.03	0.61	-0.40	-0.53
765	0.34	0.00	-0.74	-0.69	-0.28
766	-0.84	0.16	-0.24	-0.37	1.17
767	-0.84	-0.87	-0.20	-0.47	-0.87

768 rows × 5 columns

Splitting the data

Consider all columns as independent variables and assign to variable X except the last column and consider the last column as the dependent variable and assign to variable y.

```
In [18]:
```

```
X= scaled_data
y= data['has_diabetes']
```

Split the data into train and test dataset

```
In [19]:
```

```
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_
state=0)
```

Fitting Logistic Regression

Use sklearn library to train on train dataset on logistic regression and predict on test dataset.

```
In [20]:
```

```
clf = LogisticRegression(random_state=0).fit(X_train, y_train)
```

```
In [21]:
```

```
y_pred = clf.predict(X_test)
y_pred_prob = clf.predict_proba(X_test)
```

In [22]:

```
clf.score(X_train, y_train)
```

Out[22]:

0.7746741154562383

In [23]:

```
clf = LogisticRegression().fit(X_train, y_train)
y_pred_prob = clf.predict_proba(X_test)
y_pred_prob = list(pd.DataFrame(y_pred_prob)[1])
```

Elbow plot

In [24]:

```
error_rate=[]
thresh_values = [0.3,0.4,0.5,0.6,0.7]
for threshold in thresh_values:
    y_pred = [1 if x > threshold else 0 for x in y_pred_prob]
    error_rate.append(np.mean(y_pred!=y_test))
print(error_rate)
plt.figure(figsize=(9,6))
plt.plot(thresh_values, error_rate,color='royalblue', marker='o', linewidth=2, markersize=12, markerfacecolor='deeppink', markeredgecolor='deeppink')
plt.xlabel('Probability Threshold', fontsize=12)
plt.ylabel('Error Rate', fontsize=12)
plt.title('Error Rate Versus Probability Threshold', fontsize=15)
plt.show()
```

[0.2554112554112554, 0.24242424242424243, 0.22510822510822512, 0.212 121212121213, 0.242424242424243]

Optimal Thresold is 0.55 from above graph so considering that to evaluate our model.

```
In [25]:

y_pred = [1 if x > 0.60 else 0 for x in y_pred_prob]
```

Compute the accuracy and confusion matrix.

Metrics Calculation

In [26]:

```
from sklearn.metrics import accuracy_score, fl_score,recall_score, precision_sco
re, classification_report, confusion_matrix
```

In [27]:

Accuracy: 0.7878787878787878 F1 score: 0.7693073432203867 Recall: 0.78787878787878 Precision: 0.7883436042763108

clasification report:

	precision	recall	f1-score	support
0 1	0.79 0.79	0.94 0.46	0.86 0.58	157 74
accuracy macro avg weighted avg	0.79 0.79	0.70 0.79	0.79 0.72 0.77	231 231 231

confussion matrix: [[148 9] [40 34]]

True Negatives : 144
False Negatives : 40
False Positives : 9
True Positives : 34

In [33]:

```
confusion_matrix_data = pd.DataFrame(confusion_matrix(y_test, y_pred), range(2),
range(2))
plt.figure(figsize=(10,7))
sns.set(font_scale=1.4) # for label size
sns.heatmap(confusion_matrix_data, annot=True, annot_kws={"size": 16},fmt='g') #
font size
plt.show()
```


We have tried to answer all the asked questions and highlighted them in blue where we have answered.