BEST AVAILABLE COPY

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2000-112473

(43) Date of publication of application: 21.04.2000

(51)Int.CI.

G10H 1/18

(21)Application number: 10-282769

(71)Applicant: ROLAND CORP

(22)Date of filing:

05.10.1998

(72)Inventor: YAMADA YUKIHIRO

(54) SETTER OF ELECTRONIC MUSICAL INSTRUMENT

(57) Abstract:

PROBLEM TO BE SOLVED: To make it possible to maintain always good operability regardless of the degrees of skill of operation by switching the action of a second operating element to the same action when a first event occurs as when a second event occurs. SOLUTION: When the timbre switch in a split set mode turns on, the timer, which has caused the same, is stopped and a split status is turned on (S7-1 and 7-2). When an upper (lower) timbre set mode is set until it, this mode is shifted to a lower (upper) timbre set mode (S7-3). Next, when the timbre set mode after inversion is the upper timbre set mode, a split LED lights to orange color and a timbre LED corresponding to the upper timbre lights respectively, and the timbre set mode shifts to a normal set mode (S7-4, 7-5, and 7-6). On the other hand, when the timbre set mode after the inversion is the lower timbre set mode, the split LED lights green and further the timbre LED corresponding to the lower timbre lights and the timbre set mode shifts to the normal set mode (S7-8, 7-9, and 7-7).

LEGAL STATUS

[Date of request for examination]

12.09.2005

[Date of sending the examiner's decision of rejection

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-112473 (P2000-112473A)

(43)公開日 平成12年4月21日(2000.4.21)

(51) Int.Cl.⁷

識別記号

FΙ

テーマコート*(参考)

G10H 1/18

G10H 1/18

Z 5D378

審査請求 未請求 請求項の数4 OL (全 16 頁)

(21)出顧番号

特願平10-282769

(22)出願日

平成10年10月5日(1998.10.5)

(71)出願人 000116068

ローランド株式会社

大阪府大阪市北区堂島浜1丁目4番16号

(72)発明者 山田 進裕

大阪市北区堂島浜1丁目4番16号 ローラ

ンド株式会社内

(74)代理人 100094330

弁理士 山田 正紀 (外1名)

F 夕一人(参考) 5D378 KK14 KK17 SE23 TT13 TT22

XX13 XX16 XX20 XX23 XX26

XX30

(54) 【発明の名称】 電子楽器の設定装置

(57) 【要約】

【課題】本発明は、電子楽器や効果付与装置と一体的に 構成されて、例えば電子楽器や効果付与装置のモード切 替えやパラメータ設定等を行なう設定装置に関し、ユー ザの習熟度を問わずどのレベルのユーザにとっても使い 勝手のよい、かつ操作子の数が少なくて済む設定装置を 提供する。

【解決手段】第1の操作子がタイムアップするまでの所定時間操作され続けたことと、第1の操作子が操作され続けておりタイムアップ前にさらに第2の操作子が操作されたこととの双方に同じ作用を担わせる。

【特許請求の笕囲】

【請求項1】 第1の操作子、

第2の操作子、

前記第1の操作子が操作され続けている間であって該第1の操作子の操作開始後所定時間を経過する前に前記第2の操作子が操作されたという第1のイベントと、前記第1の操作子の操作開始後前記第2の操作子の操作子の操作が行なわれないまま該第1の操作子が所定時間を越えて操作され続けたという第2のイベントとのうちのいずれか一方のイベントの発生を受けて、前記第2の操作子の作用を、該第1のイベントが発生した場合と該第2のイベントが発生した場合とで同一の作用に切り替える操作子作用切替手段を備えたことを特徴とする電子楽器の設定装置。

【請求項2】 前記第2の操作子が、配列された複数の個別操作子からなるものであって、これら複数の個別操作子それぞれに対応して発光体を備え、さらに前記操作子作用切替手段による前記第2の操作子の作用の切替えに応じて、前記発光体を用いて、前記第2の操作子の作用切替え後の作用に対応した設定値を表示する表示制御手段を備えたことを特徴とする請求項1記数の電子楽器の設定装置。

【請求項3】 前記第1の操作子が所定時間以内の時間だけ操作された場合であって、その間に前記第1のイベントが発生しなかった場合に、操作ごとに第1のモードと第2のモードとに交互に切り替えるモード切替手段を備え、

前記操作子作用切替手段が、前記第2のモードにあるときには、前記一方のイベントの発生を受けて、該イベントの発生のたびに、前記第2の操作子の作用を、前記第2のモードにおける該第2の操作子の複数の作用のうちのいずれか1つの作用に交互もしくは順次に切り替えるものであることを特徴とする請求項1記試の電子楽器の設定装置。

【請求項4】 前記第1の操作子が所定時間以内の時間 だけ操作された場合に、操作ごとに所定の機能の有効、 無効を切り替える切替手段を備え、

前記操作子作用切替手段が、前記第1の操作子が操作されていない間は前記第2の操作子の作用を所定の第1のパラメータ設定用に保ち、前記一方のイベントが発生した後前記第1の操作子が操作され続けている間だけ、前記第2の操作子の作用を、前記所定の機能に関する第2のパラメータ設定用に切り替えるものであることを特徴とする請求項1記载の電子楽器の設定装置。

【発明の詳細な説明】

[0001]

【発明の風する技術分野】本発明は、電子楽器の設定装置に関する。

【0002】ここで、本発明における電子楽器には例えば以下のものが含まれる。 (演奏者の演奏指示に応じて

楽音を発生させるもの(電子ピアノ、電子オルガン、サンプラ等)、入力された、楽音信号に対して所定の効果を付与するもの(エフェクタ)、記憶された演奏情報に従って楽音を発生指示をするもの(自動演奏装置(シーケンサ))、演奏操作に従って外部の機器に対して指示を送るためのもの(演奏パッド、マスターキーボード等)、入力された楽音発生信号に応じて楽音を発生させるもの(音源)、外部から入力される楽音信号を波形として記憶し、操作者の指示に応じて再生するもの(ハードディスクレコーダ)、外部から入力される複数の楽音信号を制御して出力するもの(ミキサ等)。

[0003]

【従来の技術】従来、電子楽器や効果付与装置において、ある機能をオン、オフしたり、その機能のパラメータを変更するといった場合に、その機能をオン、オフするための操作子、その機能のパラメータを変更するモードに移行するための操作子、そのモードから抜け出して通常の状態(通常モード)に移行するための操作子が必要となる。従って、設計時に機能を増やそうとすると、機能を1つ増やすごとに、それに対応して、その機能をオン、オフする操作子と、その機能のパラメータを変更するモードに移行させるための操作子との2個の操作子が増えることとなり、コストの増大化を招き、また装置の大型化を招きやすいという問題がある。

【0004】これに対し、1つの操作子を操作する度に、機能オン→機能オフ→機能のパラメータ変更モードのように循環的に切り換えるものも知られているが、機能のオン、オフと機能のパラメータ変更モードとは本来異なる意味合いのものであるにもかかわらず、1つの操作子を同じように操作するだけでそれらを切り換えようとすると、操作上の意識の上で意味合いの異なるものどもしの区別がなされにくくなり、何回操作されたとき機能のパラメータ変更モードになり、あるいは機能オンになり、あるいは機能オフになるのかがわかりにくくなってしまうという問題がある。

【0005】また、1つの操作子の操作時間に応じて、たとえばその操作子を短時間だけ操作することによりある機能のオンとオフとを切り替え、その操作子を長時間操作し続けるとその機能のパラメータを変更するモードに移行するように構成することも考えられる。この場合は、意味合いの異なる切替えに操作時間の長短という異なる操作態様が割り当てられているため、操作とその操作の意味との対応がわかりやすいという長所があるが、操作に習熟してくるど、長時間操作し続けるということに煩らわしさを覚えるという問題がある。

[0006]

【発明が解決しようとする課題】本発明は、上記事情に 鑑み、操作子の数を減らし、かつ操作の態様とその操作 の意味との対応付けが容易であって、しかも操作の習熟 度によらず常に良好な操作性が保たれた電子楽器の設定 装置を提供することを目的とする。

[0007]

【課題を解決するための手段】上記目的を達成する本発明の電子楽器の設定装置は、第1の操作子、第2の操作子、上記第1の操作子が操作され続けている間であってその第1の操作子の操作開始後所定時間を経過する前に上記第2の操作子が操作されたという第1のイベントと、上記第1の操作子の操作開始後上記第2の操作子の操作が行なわれないまま第1の操作子が所定時間を越えて操作され続けたという第2のイベントとのうちのいずれか一方のイベントの発生を受けて、上記第2の操作子の作用を、第1のイベントが発生した場合と第2のイベントが発生した場合とで同一の作用に切り替える操作子作用切替手段を備えたことを特徴とする。

【0008】本発明の設定装置は、第1の操作子が長時間操作されることによって第2の操作子の作用を切り替えることとし、第1の操作子を長時間操作することに代えて、その第1の操作子を操作している途中で第2の操作子を操作したことによっても第1の操作子が長時間操作されたことと同じ効果を持たせるようにしたものである。ここで第2の操作子は、第1の操作子を長時間操作することによってもその作用が切り替えられる訳であるから、もともと必要な操作子である。

【0009】本発明によれば、第1の操作子を長時間操作し続けることによって第2の操作子の作用を切り替えるという、操作の態様とその操作の意味合いとがわかり易い形で対応づけられており、しかもその設定装置に習熟してきて長時間操作しつづけるが煩らわしいというユーザ向けに、第1の操作子を操作している途中で第2の操作子を操作するという操作を用意しておくことにより、その設定装置の操作に習熟したユーザにも煩らわしさを感じさせずに済む。このように、本発明によれば、操作に習熟度によらずいずれのユーザにも使い勝手のよい操作性の高い設定装置が構成される。

【0010】ここで、上記本発明の設定装置において、上記第2の操作子が、配列された複数の個別操作子からなるものであって、これら複数の個別操作子それぞれに対応して発光体を備え、さらに操作子作用切替手段による第2の操作子の作用の切替えに応じて、それらの発光体を用いて、第2の操作子の作用切替え後の作用に対応した設定値を表示する表示制御手段を備えたものであることが好ましい。

【0011】 このような発光体および表示制御手段を備えると、第2の操作子で今から変更しようとしている設定値の現在の値が視認でき、その後の、第2の操作子による設定値の変更に直感的な指針が与えられることになる。

【0012】さらに、上記本発明の電子楽器の設定装置において、第1の操作子が所定時間以内の時間だけ操作された場合であって、その間に上記第1のイベントが発

生しなかった場合に、操作ごとに第1のモードと第2のモードとに交互に切り替えるモード切替手段を備え、操作子作用切替手段が、第2のモードにあるときには、上記一方のイベントの発生を受けて、そのイベントの発生のたびに、第2の操作子の作用を、第2のモードにおける第2の操作子に複数の作用のうちのいずれか1つの作用に交互もしくは顧次に切り替えるものであることも好ましい態様である。

【0013】第2のモードで第2の操作子に複数の作用が要求される場合に、1つの操作子(第1の操作子)のみで第2の操作子の作用を交互あるいは順次に切り換えることにより、その第2の操作子に要求される複数の作用を同一の第2の操作子を用いて満たすことができ、操作子の数の増加が押えられる。

【0014】さらに、上記本発明の電子楽器の設定装置において、第1の操作子が所定時間以内の時間だけ操作された場合に、操作ごとに所定の機能の有効、無効を切り替える切替手段を備え、操作子作用切替手段が、電子楽器の操作子が操作されていない間は第2の操作子の作用を所定の第1の作用に保ち、上記一方のイベントが発生した後第1の操作子が操作され続けている間だけ、第2の操作子の作用を、所定の機能に関する第2の作用に切り替えるものであることも好ましい形態である。

【0015】第1の操作子を操作し続けている間だけ第 2の操作子の作用を所定の機能に関する作用に切り替え ることも、ユーザにとってわかりやすい操作方法であ る。

【0016】その場合に、上記第2の操作子が、配列された複数の個別操作子からなるものであって、これら複数の個別操作子それぞれに対応して発光体を備え、さらに、操作子作用切替手段による第2の操作子の作用の切替えに応じて、それらの発光体を用いて、第2の操作子の作用切替え後の作用に対応した設定値を、その作用切替え後の作用に応じた表示態様で表示するものであることが好ましい。

【0017】このように、第2の操作子の作用切替え後の作用に応じた表示態様で表示することにより、第2の操作子で何を変更しようとしているのかが直感的に理解でき、操作性の向上に役立つことになる。

【0018】本発明の電子楽器の設定装置は、特に、楽音波形を生成する電子楽器のモードおよびパラメータを設定する設定装置として、あるいは、楽音波形を入力し入力した楽音波形に効果を付与する効果付与装置の機能およびパラメータを設定する設定装置として好適である。

[0019]

【発明の実施の形態】以下、本発明の実施形態について 説明する。

【 O O 2 O 】図 1 は、本発明の一実施形態が内包された 電子楽器の内部構成図である。 【0021】この電子楽器10には演奏操作を行なうための鍵盤11、各種のプログラムを実行するCPU12、CPU12で実行されるプログラムで参照されるデータやそのプログラムの作業領域として使用されるRAM13、各種のプログラムが格納されたROM14、設定に応じた各種の機能を実現するペダル操作子15、機能が固定されたダンパペタル16、各種の操作スイッチや表示用しEDを備えたパネル17、送られてきた楽音データに基づいて楽音を生成する音源18、その音源18で生成された楽音に効果を付与する効果付与部19が備えられており、これらの各部11~19はバス20により相互に接続されている。

【0022】効果付与部19から出力された楽音は図示しないアンプ、イコライザ等を経てスピーカ30から空間に実際の音として放出される。

【0023】この図1に示すパネル17には、スプリットスイッチ171、8個の音色スイッチ172~179、コーラススイッチ180、リバーブスイッチ181、およびファンクションスイッチ182が備えられており、それらのスイッチ171~182のそれぞれに対応して表示用の各LED271~282が配備されている。

【0024】スプリットスイッチ171は、鍵盤11のアッパ側とロアー側にそれぞれ別々の音色が割り当てられたスプリットモード(「スプリットON」と称する)と、鍵盤11の全域に同じ音色が割り当てられた通常のモード(「スプリットOFF」と称する)に切り替えるためのスイッチである。スプリットOFFにおいては、鍵盤11の全域に対し、1つの音色が割り当てられ(これをデュアルOFF)と称する)あるいはその全域に対し2つの音色が割り当てられる(これをデュアルON)と称する)。鍵盤11の全域に2つの音色が割り当てられるというのは、その鍵盤11のどの鍵を押鍵しても2つの音色の楽音が生成されることを意味している。いずれの場合にも、効果付与する。

【0025】音色スイッチ172~179には、あらか じめ各音色が対応づけられており、これらの音色スイッ チ172~179を押すと、鍵盤11を弾いたときにそ の押された音色スイッチに対応した音色の楽音が生成さ れる。この点に関しては、後で詳細に説明する。

【0026】また、コーラススイッチ180、リバーブスイッチ181は、効果付与部19において、楽音に、それぞれコーラス効果、リバーブ効果を付与するか否かを切り替えるためのスイッチである。これらのコーラススイッチ180、リバーブスイッチ181は、それぞれ、コーラス効果の態様の変更、すなわちコーラス効果のかかり具合を規定するコーラスタイプの変更や、リバーブ効果の態様の変更、すなわちバーブ効果のかかり具合を規定するリバーブタイプの変更の際にも用いられ

る。また、効果付与部17ではレゾナンス効果も付与することができる。レゾナンス効果は、ダンパペタル16を踏んだときに付与されるピアノの共鳴効果である。そのレゾナンス効果を付与するか否かを含めたレゾナンス効果の態様(レゾナンスタイプ)変更は、コーラススイッチ180とリバーブスイッチ181との双方を同時に押すことによって行なわれる。詳細は後述する。

【0027】ファンクションスイッチ182は、1つには、アッパ側とロアー側のボリウム(音量)パランスを設定するのに用いられ、1つには、ペダル操作子15の作用を定めるのに用いられる。ペダル操作子15には、ソフト・ペダル、ソステヌート・ペダル、エクスプレッション・ペダルのいずれかの機能を割り当てることができる。また、このファンクションスイッチ182は、ロアー側の音色に対してペダル操作による効果をかけるか、かけないかを切り替えたり、あるいはロアー側の音色の音程を1オクターブ単位でシフトさせたりする場合にも使用される。

【0028】各LED271~282は、それぞれが赤と緑との2色のLEDの組合せで構成されており、赤色、緑色のほか、それら双方を同時に点灯させることによりオレンジ色も表現することができる。

【0029】図2は、RAM13内部に構成されたテーブルおよびレジスタを示す図である。

【0030】図2(A)は、音色(アッパ音色)と、ロアー音色と、コーラス、リバーブ、およびレゾナンスの各タイプとの対応テーブルである。初期値としてのテーブルはROM14内に格納されており、初期化動作においてRAM13内に転送される。このRAM13内のテーブル4はその後の操作で書き替えることができる。本実施形態では、このテーブルはPiano1~Stringsの8つの音色からなるテーブルであり、それら8つの音色それぞれは、図1に示す8個の音色スイッチ172~179のそれぞれに対応づけられている。

【0031】図2(B)は、アッパ音色とロア一音色が設定されるレジスタを示している。鍵盤11を用いた実際の演奏操作に先立って、このレジスタに演奏に用いられる所定のアッパ音色が設定されるとともに所定のアッパ音色に対応するロアー音色が図2(A)のテーブルから読み出されて設定される。スプリットONのときは、ここに設定されたアッパ音色とロアー音色が鍵盤11のアッパ側とロアー側にそれぞれ割り当てられ、スプリットOFFのときは、「デュアルOFF」か「デュアルON」かに応じて、鍵盤11の全域に、それぞれアッパ音色の部分に設定された音色のみが割り当てられ、あるいはアッパ音色とロアー音色との2つの音色が割り当てられる。

【0032】この図2(B)のレジスタに設定された音色は、鍵盤11の各鍵が演奏操作される都度参照され、その音色に応じた楽音データが生成されて音源18に送

られ、音源18ではその送られてきた楽音データに含まれる音色データに応じた音色の楽音が生成される。

【0033】また図2(C)は、コーラスタイプ、リバ ーブタイプ、レゾナンスタイプが設定されるレジスタで あり、図2(A)のテーブルから、演奏に用いられる音 色(アッパ音色)に対応するコーラスタイプと、リバー ブタイプと、レゾナンスタイプがそれぞれ読み出されて ここに設定される。尚、図2(A)のテーブルからコー ラス、リバーブ、およびレゾナンスの各タイプが読み出 されると、その読み出された各タイプは直接に効果付与 部19にも設定される。したがってこの図2(C)のレ ジスタはパネル17のLEDへの表示のためのレジスタ である。表示の仕方については後述する。コーラス効 果、リバーブ効果に対しては、それらのタイプのみ先に 効果付与部20に設定され、コーラス効果を付与する (「コーラス効果ON」と称する) かコーラス効果を付 与しない(「コーラス効果OFF」と称する)か、ある いはリバーブ効果を付与する(「リバーブ効果ON」と 称する)かりパープ効果を付与しない(「リパーブ効果 OFF」と称する)は、図1に示すコーラススイッチ1 80とリバーブスイッチ181の操作により決められ

【0034】一方レゾナンス効果に関しては、レゾナンス効果をかけないことを意味するレゾナンス効果OFFを含めたレゾナンスタイプが図2(C)に示すレジスタに設定されるとともに効果付与部20にも設定され、その後は、レゾナンス効果OFF以外のレゾナンスタイプが設定された場合は、演奏操作中に図1に示すダンパペタル16踏むことによって、その設定されているレゾナンスタイプに応じたレゾナンス効果がかかることになる。

【0035】図3は、ここで説明している電子楽器が持つ各種モード間の遷移図である。

【 0 0 3 6】ノーマル設定モードは、図 1 に示す音色スイッチ 1 7 2 ~ 1 7 9 を音色設定用として用いるモードであり、このノーマル設定モードには、スプリットON、スプリットOFFの双方のモードが含まれる。

【0037】このノーマル設定モードにあるときにスプリットスイッチ171を押す(スプリットスイッチ0N)とスプリット設定モードに移行する。このスプリット設定モードでは、音色スイッチ172~179を区別せずにそれらの音色スイッチ172~179のいずれを押してもこのスプリット設定モードから抜け出してノーマル設定モードに戻すために用いられる。このスプリットスイッチを押し続けたまま、スプリットスイッチを押し始けたまま、スプリットスイッチを押し続けたまま8個の音色スイッチ172~179のラ

ちのいずれかの音色スイッチを押した時、あるいはその スプリットスイッチ自身から指を離した(スプリットス イッチOFF)ときにノーマル設定モードに戻る。

【0038】また、ノーマル設定モードにあるときにコ 一ラススイッチ180を押す(コーラススイッチON) とコーラス設定モードに移行し、そのコーラススイッチ 180を押したタイミングで起動されたタイマがタイム アップする前にそのコーラススイッチ180から指を離 す(コーラススイッチOFF)とノーマル設定モードに **戻る。このコーラス設定モードも遷移的なモードであ** り、コーラススイッチONのままタイムアップするとコ ーラスタイプ設定モードに移行する。コーラス設定モー ドでは、音色スイッチ172~179は、コーラスタイ プ設定モードに移行させるためのスイッチとして使用さ れ、コーラス設定モードにあるとき、すなわちコーラス スイッチ180を押したまま未だタイムアップされてい ない状態において音色スイッチ172~179のいずれ かを押すと、タイムアップを待たずにコーラスタイプ設 定モードに移行する。このコーラスタイプ設定モードで は、音色スイッチ172~179は、コーラスタイプを 選択するために使用される。このコーラスタイプ設定モ ードは、コーラススイッチ180がそのまま押され続け られている間だけ止まっているモードであり、コーラス スイッチ180から指を離す(コーラススイッチOF F)と、ノーマル設定モードに遷移する。

【0039】また、リバーブ設定モード、リバーブタイプ設定モードも、コーラス効果設定モード、コーラスタイプ設定モードと同様の位置付けにある。

【0040】すなわち、ノーマル設定モードにあるとき にリバーブスイッチ181を押す(リバーブスイッチ0 N)とリバーブ設定モードに移行し、そのリバーブスイ ッチ181を押したタイミングで起動されたタイマがタ イムアップする前にそのリパーブスイッチ181から手 を離す(リパーブスイッチOFF)とノーマル設定モー ドに戻る。このリバーブ設定モードも遷移的なモードで あり、リバーブスイッチONのままタイムアップすると リバーブタイプ設定モードに移行する。リバーブ設定モ ードでは、音色スイッチ172~179は、リバーブタ イプ設定モードに移行させるためのスイッチとして使用 され、リバーブ設定モードにあるとき、すなわちリバー ブスイッチ181を押したまま未だタイムアップされて いない状態において音色スイッチ172~179のいず れかを押すとタイムアップを待たずにリバーブタイプ設 定モードに移行する。このリバーブタイプ設定モードで は、音色スイッチ172~179は、リバーブタイプを 選択するために使用される。このリバーブタイプ設定モ ードは、リバープスイッチ181がそのまま押され続け られている間だけ止まっているモードであり、リパーブ スイッチ181から指を離す(リパープスイッチOF F)と、ノーマル設定モードに遷移する。

【0041】また、ノーマル設定モードにあるときに、コーラススイッチ180とリパープスイッチ181との双方を同時にONするとレゾナンスタイプ設定モードに移行する。このレゾナンスタイプ設定モードでは、音色スイッチ172~179はレゾナンスタイプを選択するために使用される。

【0042】このレゾナンスタイプ設定モードはコーラススイッチ180とリバーブスイッチ181との双方のスイッチがON状態を続けている間だけ止まるモードであり、コーラススイッチ180あるいはリバーブスイッチ181の一方のスイッチがOFFとなった時点でノーマル設定モードに遷移する。

【0043】以上の説明を踏まえ、以下、図1のCPU 12で実行されるプログラムのフローチャートについて 説明する。

【0044】図4は、スプリットスイッチ171が押されたことを受けて起動されるスプリットスイッチONルーチンのフローチャートである。

【0045】スプリットスイッチ171が押されると、 先ずタイマが起動される(ステップ4_1)。このタイマは、スプリットスイッチ171が押された状態のまま 所定時間(例えば2秒間)を経過したときにタイムアップするタイマである。

【0046】次に、ステップ4_2において、スプリットONの状態にあるか否かが判定される。スプリットONのときは、スプリットステータスをOFFとし(ステップ4_3)、スプリット設定モードに移行して(ステップ4_8)、このルーチンを抜ける。

【0047】ここで、スプリットステータスは、スプリットスイッチ171から指が離されたとき、すなわち後述する図5に示すスプリットスイッチOFFルーチンにおいて参照される作業上のフラグであり、スプリットモードを実際に設定したり解除したりするためのフラグではない。また、スプリット設定モードに移行するという状態もそのモードに対応したフラグがオンされることを意味する。さらには、ステップ4_2におけるスプリットONか否かの判定もスプリットON、OFFを示すフラグを判定することにより行なわれる。

【0048】ステップ4_2においてスプリットONではないと判定されると、ステップ4_4に進み、スプリットステータスをONとし、さらにステップ4_5においてスプリットスイッチ171に対応するスプリットしED271をオレンジに点灯し、さらにステップ4_6において音色スイッチ172~179それぞれに対応する音色LED272~279のうち、アッパ音色に対応したLEDを点灯し、さらに、ステップ4_7においてアッパ音色設定モードが設定され、ステップ4_8においてスプリット設定モードに移行する。

【0049】ここで、図2(B)に示すレジスタには、 例えば初期値としての、あるいは以前の操作により設定 されたアッパ音色とロアー音色が設定されており、前述 したように各音色は各音色スイッチに対応しており、ス テップ4__6では、図2 (B) に示すレジスタに格納さ れているアッパ音色に対応する音色スイッチにさらに対 応する音色LEDが点灯する。ここで、ステップ4_2 では、スプリットON, OFFが判定されており、ステ ップ4_6に進むのはステップ4_2でスプリットOF Fと判定された場合であり、スプリットOFFとは、前 述したように、図2(B)のアッパ音色と同一の音色が 鍵盤11の全域に割り当てられているモードであり、し たがってステップ4_6に進んだ段階ではアッパ音色し EDはもともと点灯している。このステップ4_6は、 アッパ音色LEDをあらためて点灯するステップではな く、それまでスプリットOFFでデュアルON(図2) (B) のレジスタに格納されているアッパ音色とロアー 音色との双方が鍵盤11の全域に割り当てられているモ ード)の状態にあったときに、ロアー音色に対応するし EDを消灯し、アッパ音色に対応するLEDのみ点灯さ

【0050】また、ステップ4_5においてはスプリットLED271がオレンジ点灯する旨説明したが、ステップ4_2でスプリットONか否かが判定されており、ステップ4_5に進むのはスプリットOFFであった場合である。すなわち、スプリットONのときはスプリットLEDはもともとオレンジ色で点灯しており、したがってこのスプリットスイッチONルーチンが実行されるとそれまでスプリットONであったかスプリットOFFであったかに拘らずスプリットLED271が点灯することになる。

せた状態とすることを意味している。

【0051】さらに、ステップ4_7ではアッパ音色設定モードが設定されるが、これは図3のモード遷移図には直接的にはあらわれていないモードであり、音色スイッチ171~179を音色設定のために使用するモードであるという意味においてノーマル設定モードに属する。ただしここでは、このスプリットスイッチONルーチンにてアッパ音色設定モードが設定されている。

【0052】図5は、スプリットスイッチ171から指 が離されたことを受けて起動されるスプリットスイッチ OFFルーチンのフローチャートである。

【 O O S 3 】 このスプリットスイッチOFFルーチンが 起動されると、先ず図4のスプリットスイッチONルー チンステップ4_1で起動されたタイマが停止される (ステップ5_1)。ただし、後述するように、他のルーチンによりタイマが既に停止されている場合もある。 【 O O S 4 】次に、スプリットステータスのON、OF Fが判定される(ステップ5_2)。このスプリットステータスは、図4のステップ4_3、4_4で設定される。あるいは後述するルーチンにおいても設定される場合がある。

【0055】スプリットステータスOFFのときは、ス

テップ5_3に進み、スプリットOFF、すなわち、鍵盤11の全域に実際に同一の音色が割り当てられたモード)に移行し、スプリットLED271が消灯され(ステップ5_4)、ロア一音色がアッパ音色に割り当てられ(ステップ5_5)、アッパ音色B定モードとなり(ステップ5_6)、アッパ音色LEDが点灯され(ステップ5_7)、ノーマル設定モードに移行する(ステップ5_8)。

【0056】ここで、ステップ5_5では、図2(B)に示すレジスタにロア一音色として設定されている音色が、図2(A)に示すテーブルの、図2(B)にアッパ音色として設定されている音色の欄に、ロア一音色として設定される。すなわち、ここでは、図2(A)に示すテーブルの、音色(アッパ音色)とロア一音色との対応関係が変更される。

【0057】また、ステップ5_6でアッパ音色設定モードとなる旨説明したが、スプリットOFFのときは、図2(B)のレジスタにアッパ音色として設定された音色が鍵盤の全域に対割り当てられるため、アッパ音色という用語は馴染まないものの、ここでは便宜上アッパ音色設定モードと称しているのである。ステップ5_6のアッパ音色LEDについても同様である。

【0058】ステップ5_2においてスプリットステータスONと判定されるとステップ5_8に進み、スプリットON、すなわち、鍵盤11のアッパ側、ロアー側それぞれに、図2(B)に示すレジスタのアッパ音色、ロアー音色それぞれが割り当てられた状態となる。

【0059】さらにステップ5_9では、RAM13内 の、図2(A)に示すテーブルが参照され、図2(B) のレジスタのアッパ音色と同一の音色の欄のロア一音色 が読み出されて、図2(B)のレジスタのロア一音色の 部分に格納される。このステップ5_9が必要である理 由は以下の通りである。それまでは、スプリットOF F、すなわち鍵盤11の全域に同一の音色が割り当てら れていた状態にあり、スプリットOFFかつデュアルO Nの場合、音色スイッチ171~179のうちのいずれ かを押して音色を切り替えると、それに対応する音色が 図2(B)のレジスタに直接に格納され、したがってス テップ5_8でスプリットONの状態に移行した段階で は、図2(B)のレジスタにおいてアッパ音色に対応し ないロア一音色が設定されている可能性がある。そこ で、ステップ5 9において、図2(B)のレジスタに アッパ音色に対するロア一音色を格納するのである。

【0060】ステップ5_9の後は、ステップ5_7に 進み、ノーマル設定モードに移行する。

【0061】図4のスプリットスイッチONルーチンと 図5のスプリットスイッチOFFルーチンを参照する と、タイマがタイムアップしない短かい時間だけスプリ ットスイッチ171が押されると、押されるたびにスプ リットONとスプリットOFFに交互に移行することが わかる。

【0062】図6は、スプリットタイムアップルーチンのフローチャートである。このスプリットタイムアップルーチンは、図4のスプリットスイッチONルーチンのステップ4_1で起動されたタイマがタイムアップしたときに起動されるルーチンである。スプリットスイッチONのあとスプリットスイッチをOFFすると図5のスプリットスイッチOFFルーチンが起動されてそのステップ5_1でタイマが停止されるため、この図6に示すスプリットタイムアップルーチンは、スプリットスイッチONにより図4に示すスプリットスイッチONルーチンが実行され、そのスプリットスイッチONが続いたままの状態でタイムアップしたときに実行されることになる。

【0063】タイマのタイムアップによりこの図6に示すスプリットタイムアップルーチンが起動されると、先ず、その起動の原因となったタイマが停止され(ステップ6_1)、それまでのスプリットON、OFFにかかわらずスプリットステータスがONとなり(ステップ6_2)、それまでアッパ音色設定モードにあったときはロアー音色設定モードに移行し、あるいはそれまでロアー音色設定モードにあったときはアッパ音色設定モードに移行する(ステップ6_3)。アッパ音色設定モード、ロアー音色設定モードにおける動作については後述する。

【0064】ステップ6_4では、ステップ6_3で反転した後の音色設定モードがアッパ音色設定モードであるかロアー音色設定モードであるかが判定され、アッパ音色設定モードのときは、ステップ6_5に進み、アッパ音色設定モードあることをあらわすためにスプリットLED271がオレンジ点灯され、さらに図2(B)のレジスタに設定されているアッパ音色に対応する音色LEDが点灯し(ステップ6_6)、ノーマル設定モードに移行する(ステップ6_7)。

【0065】一方、ステップ6_4においてステップ6 _3で反転した後の音色設定モードがロアー音色設定モードであるときはステップ6_8に進み、ロアー音色設定モードであることをあらわすためにスプリットLEDが緑点灯され、さらに図2(B)のレジスタに設定されているロアー音色に対応する音色LEDが点灯し(ステップ6_9)、ノーマル設定モードに移行する(ステップ6_7)。

【0066】図4~図6のルーチンを合わせて参照すると、スプリットOFFの状態でスプリットスイッチをタイムアップするまで押し続けて指を離すとスプリットONが設定されるとともにロアー音色設定モードとなり、再度スプリットスイッチをタイムアップするまで押し続けて指を離すとスプリットONの状態に止まるとともに今度はアッパ音色設定モードに移行し、さらにもう一度スプリットスイッチをタイムアップするまで押し続けて

指を離すとスプリットONの状態のまま今度はロア一音 色設定モードに移行する。すなわち、スプリットスイッ チ171は、タイムアップするまで押し続ける操作を繰 り返すことにより、スプリットONの状態にとどまった まま、アッパ音色設定モードとロアー音色設定モードが 交互に設定されることになる。

【0067】図7は、スプリット設定モードで音色スイッチが押されたときに実行されるルーチンのフローチャートである。

【0068】スプリット設定モードには、図4に示すスプリットスイッチONルーチンのステップ4_8で移行する。また、図5に示すスプリットスイッチOFFルーチンのステップ5_7ではスプリット設定モードを抜けてノーマル設定モードに移行する(図3参照)。また図6に示すスプリットタイムアップルーチンのステップ6_7でも、スプリット設定モードを抜けてノーマル設定モードに移行する。すなわち、スプリット設定モードは、スプリットスイッチが押されたままの状態であって、かつタイムアップする前の状態を意味する。そのスプリット設定モードにあるときに音色スイッチが押されると、図7に示すルーチンが起動される。

【0069】この図7に示すルーチンの各ステップ7_ 1~7_9は、図6に示すタイムアップルーチンの6_ 1~6 9とそれぞれ同一である。

【0070】すなわち、スプリットスイッチを押して、押し続けたままタイムアップを待たずに音色スイッチ 171~179のうちのいずれかの音色スイッチを押すと、スプリットスイッチを押してタイムアップするまで押し続けた場合と同一の作用を成すこととなる。これにより、タイムアップするまで待つのがじれったい場合は音色スイッチを押すことによって次の操作に進むことができることになる。

【0071】図7の各ステップについての説明は、図6の説明と重複するため割愛する。

【0072】図8は、ノーマル設定モード、すなわち、音色スイッチ171~179を音色設定のために使用するモードであって、かつ、スプリットON、すなわち鍵盤11のアッパ側とロアー側とに別々の音色が割り当てられたモードにおいて、音色スイッチが押されたときに起動されるルーチンのフローチャートである。

【0073】ここでは、先ずアッパ音色設定モードにあるかロアー音色設定モードにあるかが判定され、アッパ音色設定モードにあるときは、操作された音色スイッチに対応する音色が、図2(B)に示すレジスタにアッパ音色として設定される(ステップ8_2)。さらに、図2(A)のテーブルの同じ欄のコーラス、リバーブ、レソナンスの各タイプが読み出されてそれらの各タイプが図2(C)に示すレジスタに設定されるとともに、効果付与部19にも設定される(ステップ8_3)。さらにステップ8_4において対応するアッパ音色LEDが点

灯する。

LEDが点灯する。

【0074】一方、ステップ8_1においてロアー音色 設定モードにあると判定されると、ステップ8_5に進み、操作された音色スイッチに対応する音色が、図2 (B)に示すレジスタにロアー音色として設定される。 【0075】さらにステップ8_4に進み、ロアー音色

【0076】図9は、ノーマル設定モード、すなわち、音色スイッチ171~179を音色設定のために使用するモードであって、かつ、スプリットOFF、すなわち鍵盤11の全域に同一の音色が割り当てられたモードにおいて、音色スイッチが押されたときに起動されるルーチンのフローチャートである。

【0077】ここでは、先ず他の音色スイッチが押された状態にあるか否かが判定される(ステップ9__1)。このルーチンでは、8個の音色スイッチ171~179のうちのいずれか1つの音色スイッチが押される場合と、いずれか2つの音色スイッチが同時に押される場合とが想定されており、ステップ9__1は、それらを区別するステップである。

【0078】ある音色スイッチが1つだけ押された状態 のときはステップ9__1を経由してステップ9__2に進 み、デュアルOFFとなる。このデュアルOFFは、デ ュアルON,OFFをあらわすフラグをデュアルOFF をあらわす側にセットすることを意味し、デュアルOF Fのときは図2(B)に示すレジスタに設定されている 2つの音色のうちのアッパ音色のみが有効な情報とな る。ステップ9__3では、今操作された音色スイッチに 対応する音色が図2(B)のレジスタのアッパ音色の部 分に設定される。ただし、このアッパ音色は鍵盤11の 全域に割り当てられる音色である。ステップ9_4で は、アッパ音色LEDが点灯し、ステップ9_10に進 んで、図2(A)のテーブルから、設定されたアッパ音 色に対応する欄のコーラス、リバーブ、レゾナンスの各 タイプが読み出されて図2(C)に示すレジスタに設定 されるとともに、効果付与部19にも設定される。

【0079】次に2つの音色スイッチを同時に押した場合について説明する。

【0080】2つの音色スイッチを押した場合において、一瞬でも早く押された方の音色スイッチの操作に起因して、上述の、音色スイッチ1つのみ押された場合と同じ処理が実行されるが、それに続いて2つ目の音色スイッチが押されることにより、その1つ目の音色スイッチの操作に起因した処理は単に無駄に実行されたにとどまり、特に悪影響を及ぼすことはない。

【0081】ステップ9_1において他の音色スイッチが押されていると判定されるとステップ9_5に進んでデュアルONとなり、ステップ9_6に進んで、押された2つの音色スイッチに対応する2つの音色が前回押された2つの音色スイッチに対応する2つの音色(図2

(B)に示すレジスタに設定されている2つの音色)と同一であるか否かが判定される。それら2つの音色のうちの一方の音色でも違っているときは、押された2つの音色スイッチのうちの右側に配列された音色スイッチに対応する音色が、図2(B)に示すレジスタのアッパ音色の部分に設定され、押された2つの音色スイッチのうちの左側に配列された音色スイッチに対応する音色が、図2(B)に示すレジスタのロア一音色の部分に設定された2つの音色の双方が鍵盤11の全域に割り当てられ、鍵盤11のどの鍵を操作しても2つの音色の楽音が生成される。

【0082】一方、ステップ9_6において、今回の2 つの音色が前回の2つの音色と同じである旨判定される と、図2(B)のレジスタに設定されている2つの音色 の格納領域が交替される。すなわち、その図2(B)の レジスタの、それまでアッパ音色の部分に設定されてい た音色はロアー音色の部分に設定され、それとともに、 それまでロアー音色の部分に設定されていた音色はアッ パ音色の部分に設定される。ここではデュアルONであ って、図2(B)のアッパ音色の部分に設定されている 音色もロア一音色の部分に設定されている音色も、いず れも鍵盤11の全域に割り当てられるが、前述したよう に、この電子楽器は、ロア一音色の部分に設定されてい る音色のみオクターブ単位で音程をシフトさせたり、ロ ア一音色に対してペダル操作による効果を付与するかし ないかを切り替えることができるとともに、アッパ音色 に対応する効果が付与されるように構成されており、デ ュアルONのときの2つの音色のうちのいずれの音色に ついてこのような効果を付与する、あるいは付与しな い、あるいはいずれの音色に対応する効果を付与するか という操作を行なうかにより、アッパ音色とロア一音色 を入れ替える必要が生じる場合があり、ステップ9__ 6, 9_8は、そのための処理を行なうステップであ

【0083】ステップ9_9では、設定された2つの音色に対応する2つの音色LEDが点灯され、ステップ9_10に進み、アッパ音色として設定された音色に対応するコーラス、リバーブ、レゾナンスの各タイプが図2(A)に示すテーブルから読み出されて、図2(C)に示すレジスタと図1に示す効果付与部19に設定される。図2(A)のテーブルに示すように、コーラス、リバーブ、レゾナンスの各タイプは、アッパ音色とロアー音色とのペアに対し1つずつのみ設定されているため、ステップ9_10では、アッパ音色の方を採用し、そのアッパ音色に対応する各タイプを設定することにしているのである。

【0084】図10は、ノーマル設定モードにおいて、 コーラススイッチ180が押されたときに起動されるコ ーラススイッチ0Nルーチンのフローチャートである。

【0085】尚、図10から、以下順次説明する図14 までは、コーラス効果に関するルーチンであるが、ここ で説明している電子楽器は、リバーブ効果に関する同様 なルーチンも動作するように構成されている。すなわ ち、リバーブ効果に関しても、図10~図14のそれぞ れに一対一に対応する各ルーチンが存在する。ただし、 リパーブ効果に関するルーチンは、操作されるスイッチ がコーラススイッチ180であるかリバープスイッチ1 81であるかの相違、およびコーラス効果に関するルー チンであるかリバーブ効果に関するルーチンであるかの 相違を除き、ルーチンの組み立て方は全く同一であり、 コーラス効果に関するルーチンとリバーブ効果に関する ルーチンとの双方について説明を行なうと単に重複説明 となるだけであるので、ここでは代表的にコーラス効果 に関する図10~図14の説明を行なうこととし、リバ ーブ効果に関するフローチャートの図示および説明は割 愛する。

【0086】図10に示すコーラススイッチONルーチンでは、先ずステップ10_1において、リバーブ設定モードにあるか否かが判定される。この図10に示すコーラススイッチONルーチンのステップ10_6においてコーラス設定モードが設定されるのと同様に、リバーブスイッチが押されると、リバーブ設定モードが設定モードが設定モードがおり、リバーブスイッチOFFレーチンのステップ11_5においてコーラス設定モードからノーマル設定モードに移行するのと同じく、リバーブスイッチをOFFするとリバーブ設定モードからノーマル設定モードに移行する。すなわち、図10のステップ10_1は、コーラススイッチ180が押されたときにリバーブスイッチ181が押された状態にあるか不い、換貫すればコーラススイッチ180とリバーブスイッチ181が同時に押されたか否かを判定するステップである。

【0087】コーラススイッチ180とリバーブスイッチ181とが同時に押された場合については、先のフローチャートまで説明した後にもう一度この図10に戻って説明することとし、ここでは、コーラススイッチ180のみ押されるものとする。

【0088】その場合は、ステップ10_1を経由してステップ10_2に進み、タイマが起動され、コーラスステータスが反転され(ステップ10_3)、コーラス効果がONされ(ステップ10_4)、コーラススイッチ180に対応するコーラスLED280がオレンジ点灯され(ステップ10_5)、コーラス設定モードに移行する(ステップ10_6)。

【0089】ここで、ステップ10__2におけるタイマは、コーラススイッチ180が所定時間を越えて押され続けられているか否かを判定するためのものである。

【0090】またステップ10_3のコーラスステータスは、作業上のフラグであって、図11に示すコーラス

スイッチOFFルーチンで判定するためのものであり、 このコーラスステータスのON, OFFによりコーラス 効果が直接にON, OFFされるものではない。

【0091】ステップ10_4におけるコーラス効果ONは、効果付与部19に対してコーラス効果を付与するよう指示することを意味している。どのようなコーラス効果を付与するかをあらわすコーラスタイプは効果付与部19に既に設定されている。

【0092】図11はコーラススイッチ180から指が 離されたときに起動されるコーラススイッチOFFルー チンのフローチャートである。

【0093】ここでは、先ず、図10に示すコーラスス イッチONルーチンのステップ10__2で起動されたタ イマが停止され (ステップ11_1)、次いでコーラス ステータスのON、OFFが判定される(ステップ11 __2)。コーラスステータスOFFのときは、ステップ 11_3に進んで、効果付与部19に対しコーラス効果 の付与を停止するよう指示が出され、さらにコーラスト ED280が消灯され(ステップ11 4)、図10の コーラススイッチONルーチンのステップ10_6で設 定されたコーラス設定モードからノーマル設定モードに 戻り(ステップ11__5)、さらに、音色LEDの表示 が、音色選択状態の表示、すなわちコーラススイッチ1 80が押される前の段階の音色の表示に戻される (ステ ップ11_6)。これは、例えば後述する図12のステ ップ12 5等において、音色LEDが異なる状態で表 示されている場合があるから、それを元に戻すためであ

【0094】一方、ステップ11_2においてコーラスステータスONであると判定されるとステップ11_7に進み、効果付与部19にコーラス効果ONの指令が送られ、コーラスLED28Oがオレンジ点灯され(ステップ11_8)、ノーマル設定モードに移行され(ステップ11_5)、音色LEDが元の設定音色の表示に戻される(ステップ11_6)。

【0095】図10のステップ10_1~10_6と、図11とを合わせて参照すると、コーラススイッチ180をタイムアップするよりも短かい時間だけ押すと、一回押すごとにコーラス効果が交互にON、OFFされることがわかる。

【0096】図12は、図10のコーラススイッチONルーチンのステップ10_2で起動されたタイマがタイムアップしたことを受けて動作するコーラスタイムアップルーチンのフローチャートである。コーラススイッチ180から指が離されると図11のコーラススイッチOFFルーチンが動作しそのステップ11_1でタイマが停止されるため、図12に示すコーラスタイムアップルーチンは、コーラススイッチ180が押されその押された状態のままタイムアップした時に動作するルーチンである。

【0097】ここでは、先ずタイマが停止され(ステップ12_1)、コーラスステータスONとなり(ステップ12_2)、コーラスタイプ設定モードに移行し(ステップ12_3、図3参照)、コーラスタイプ設定モードにあることを示すためにコーラスLED280がオレンジで点滅し(ステップ12_4)、音色LEDが左端から現在設定されているコーラスタイプに対応するものまでがオレンジで点滅する(ステップ12_5)。これにより、現在設定されているコーラスタイプが直感的に把握できる。

【0098】図13は、コーラス設定モードにおいていずれかの音色スイッチが押されてきたときに起動されるルーチンのフローチャートである。

【0099】コーラススイッチ180が押されると図10に示すコーラススイッチONルーチンが起動されてそのステップ10_6でコーラス設定モードが設定され、コーラススイッチ180から指が離されたとき(図11、ステップ11_5)、あるいはタイムアップしたとき(図12、ステップ12_3)はいずれもコーラス設定モードから抜けることになる。したがってこの図13に示すルーチンは、コーラススイッチ180が押されたままの状態にあり、かつタイムアップ前の状態にあるときに、音色スイッチが押されると起動されるルーチンである。

【0100】このルーチンの各ステップ13_1~13 _5は、それぞれ、図12に示す各ステップ12_1~ 12_5と同一である。すなわちこれは、コーラススイッチを押してタイムアップを待つことなく音色スイッチを押すと、タイムアップしたときと同一の作用を成すことを意味している。この機能は前述したスプリットスイッチ171の場合と同じ機能であり、タイムアップまで待つのがじれったいユーザに対し、早々に次の操作に進む道を開くものである。

【0101】図14は、コーラスタイプ設定モードにおいて音色スイッチが押されたときに起動されるルーチンのフローチャートである。

【0102】コーラスタイプ設定モードは、コーラススイッチ180を押し続けてタイムアップしたとき(図12、ステップ12_3)、あるいはタイムアップ前に音色スイッチを押したとき(図13、ステップ13_3)に設定されるモードである。コーラススイッチ180から指を離すとノーマル設定モードに遷移してしまう(図11、ステップ11_5)ため、コーラスタイプ設定モードを保つにはコーラススイッチ180を押し続けている必要がある。

【0103】このような、コーラスタイプ設定モード、すなわちタイムアップ時間を越えてコーラススイッチ180を押し続けたままの状態において、あるいはコーラススイッチ180を押し続けたまま途中で一度音色スイッチを押しその後もコーラススイッチ180をさらに押

し続けたままの状態において、音色スイッチが押されると、図14に示すルーチンが起動され、操作された音色スイッチに対応したコーラスタイプが図2(C)に示すレジスタおよび効果付与部19に設定され(ステップ14—1)、さらに、図2(A)に示すテーブル中の、図2(B)に示すレジスタのアッパ音色の部分に設定されている音色と同じ音色の欄のコーラスタイプが、その操作された音色スイッチに対応したコーラスタイプに書き換えられ(ステップ14—2)、さらに音色LEDのチに対応する音色LEDまでがオレンジで点滅する(ステップ14—3)。これによりコーラスタイプが変更される。

【0104】この時、片手はコーラススイッチ180を押し続けているためもう一方の手で鍵盤11を操作すると、その操作された鍵に対応する音高の楽音が、設定されている音色で、かつ設定されているコーラスタイプのコーラス効果が付与されて(図10に示すコーラス効果のリーチンのステップ10_4でコーラス効果のトとなっている)、出力される。この楽音を聞くこうにとより、設定されたコーラスタイプが楽音にどのように反映されているかを確かめることができる。尚、コーラススイッチ180から指を離した後であってもコーラスタイプでは不満足のとき別の音色スイッチを押すことによってコーラスタイプを直ちに変更することができる。

【0105】次に、図10に戻り、コーラススイッチ180とリバーブスイッチ181との双方が同時に押された場合について説明する。

【0106】図10は、コーラススイッチ180が押されたときに起動されるルーチンであり、したがってここではリバーブスイッチ181が僅かながらも先に押され、続いてコーラススイッチ180が押されたものとする。尚、これとは逆にコーラススイッチ180の方がリバーブスイッチ181よりも僅かでも先に押された場合は、この図10に示すルーチンではなく、リバーブ効果に関する、この図10とペアのルーチンが、以下に説明する処理と同じ処理を担当することになる。

【0107】先ずステップ10_1において、リバーブ設定モードにあるか否か、即ちリパーブスイッチ181が押され、かつまだリバーブタイプ設定モードに移行する前の状態にあるか否かが判定される。ここでは、リバーブスイッチ181の方が僅かに早く押され、続いてコーラススイッチ180が押された場合の説明であり、したがって、ステップ10_1ではリバーブ設定モードにあると判定され、ステップ10_7に進む。

【0108】ステップ10<u></u>7ではタイマが停止される。このタイマは、僅かに先に押されたリバーブスイッ

チ181の操作に対応して、この図10に示すルーチンとペアのリバーブ用のルーチンが起動され、そのルーチン中のステップ10_2に対応するステップで起動されたタイマである。

【0109】次いでステップ10_8ではコーラス効果とリバーブ効果の付与を双方とも停止するように効果付与部19に指令が出される。その理由については後述する。

【 0 1 1 0 】ステップ 1 0 __ 9では、リバーブステータスが反転される。これは、リバーブスイッチ 1 8 1が僅かに先に押されたことによりこの図 1 0 のルーチンとペアのリバーブ用のルーチンが動作し、そのルーチン中の、ステップ 1 0 __ 3 に対応するステップにおいてリバーブステータスが一度反転されており、ステップ 1 0 __ 9では、この一度反転されたリバーブステータスの反転をキャンセルする意味でリバーブステータスを再度反転しているのである。

【0111】ステップ10_10ではレゾナンスタイプ 設定モードが設定され、ステップ10_11ではレゾナ ンスタイプ設定モードにあることを示すためにコーラス LED280とリバーブLED281との双方のLED からオレンジに点滅する。

【0112】図15は、図10のステップ10_10、あるいは図10に示すルーチンとペアの、リバーブ用のルーチンの、ステップ10_10に相当するステップで設定されたレゾナンスタイプ設定モードにあるときに音色スイッチが押されたことを受けて起動されるルーチンのフローチャートである。

【0113】コーラススイッチ180とリバーブスイッチ181とのうちのいずれか一方でも指を離すとレゾナンスタイプ設定モードから抜けてしまうため、ここでは、それら2つのスイッチ180、181を押し続けたまま、音色スイッチが押されることになる。

【0114】レゾナンスタイプ設定モードにおいて音色 スイッチが操作された結果、図15に示すルーチンが起 動されると、その操作された音色スイッチに対応したレ ゾナンスタイプが図2(C)に示すレジスタおよび効果 付与部19に設定され(ステップ15_1)、さらに、 図2(A)に示すテーブル中の、図2(B)に示すレジ スタのアッパ音色の部分に設定されている音色と同じ音 色の欄のレゾナンスタイプが、その操作された音色スイ ッチに対応したレゾナンスタイプに書き換えられ(ステ ップ15_2)、さらに音色LEDのうちの左端の音色 LEDから、その操作された音色スイッチに対応する音 色LEDまでがオレンジで点滅する(ステップ15_ 3)。このようにしてレゾナンスタイプが変更される。 【0115】このとき、片手ではコーラススイッチ18 Oおよびリパープスイッチ181を押し続けているため もう一方の手で鍵盤11を操作すると、その操作された 鍵に対応する音高の楽音が、設定されている音色で、か

つ、ダンパペダル16を踏むことにより、設定されているレゾナンスタイプのレゾナンス効果が付与されて、出力される。この楽音を聞くことにより、設定されたレゾナンスタイプが楽音にどのように反映されているかを確かめることができる。このとき、図10のコーラススイッチONルーチンのステップ10_8において、あるいはそれに対応するリバーブ効果用のルーチンの、ステップ10_8に相当するステップにおいてレゾナンス効果以外の他の効果、すなわちコーラス効果とリバーブ効果がOFFに設定されているため、純粋にレゾナンス効果のみが付与された楽音を聞くことができる。

【0116】レゾナンスタイプ設定モードにあるとき (コーラススイッチ180とリバーブスイッチ181と の双方が押されたままの状態にあるとき)において、コ ーラススイッチ180から指が離されると、図11に示 すコーラススイッチOFFルーチンが起動され、コーラ スステータスがONのとき、すなわちレゾナンスタイプ 設定モードに移行する前のノーマル設定モードにあった ときにコーラス効果ONであったときは、ステップ11 _7においてコーラス効果ONとなる。リバーブスイッ チ181から指が離されたときも同様であり、この図1 1に示すルーチンとペアのリバーブ用のルーチンが起動 されて、レゾナンスタイプ設定モードに移行する前のノ ーマル設定モードにあったときにリバーブ効果がONで あったときはリバーブ効果ONに戻される。このよう に、レゾナンスタイプ設定モードに移行する際には、図 10のステップ10_8 (あるいは図10のルーチンに 対応するリバーブ用のルーチンの、ステップ10_8に 相当するステップ) においてコーラス効果とリバーブ効 果との双方が一旦OFFとなるものの、コーラススイッ チ180およびリバープスイッチ181から指を離すと コーラス効果のON、OFFおよびリバーブ効果のO N、OFFは元の状態に戻ることになる。したがって、 特に変更がない限りは、それらのON、OFFを再設定 する必要はない。

【0117】尚、上述した実施形態においては、スプリットスイッチを押したままの状態でタイムアップしたとき(図6)と、タイムアップ前に音色スイッチを押した場合(図7)とで全く同一の処理を行なう旨説明したが、その場合、タイムアップ前に押される音色スイッチであっても、タイムアップと同じたが、音色スイッチである。そこで、これを改め、どの音色スイッチが押された場合であっても、タイムアップと同じ作用を生じさせるという作用はであるであっている。 さらに押された音色スイッチに、図8まは付る音色スイッチと同じ作用、すなわち、そのときの音色設定するという作用も同時に担わせてもよい。

【0118】また、これと同様に、上述した実施形態で

は、コーラススイッチを押したままタイムアップした場合と、タイムアップ前に音色スイッチを押した場合とで全く同一の作用のみ担わせているが、折角音色スイッチが押されたのだから、タイムアップと同じ作用を生じさせることのほか、その押された音色スイッチに応じたコーラスタイプを設定してもよい。リバーブの場合も同様である。

【0119】さらに、上述の実施形態の場合、スプリットスイッチをタイムアップするまで押し続ける(あるいは途中で音色スイッチを押す)という操作を繰り返したとき、アッパ音色設定モードとロアー音色設定モードとに交互に切り替えたが、例えば足鍵盤を持つ電子楽器においては、アッパ音色設定モードとロアー音色設定モードとさらに足鍵盤の音色を設定するモードとに循環的に切り替えるようにしてもよい。

【0120】さらに、上述した実施形態においては、レ ゾナンスタイプの設定の際にレゾナンス以外の効果(リ バーブ効果とコーラス効果)がかからないようにしてい る。一方、リパーブタイプやコーラスタイプの設定の際 にはダンパーペダルを踏み込むことによって基本的には レゾナンスも付与できるような仕様になっている。上述 の実施形態がこのようになっている理由は、1つには、 レゾナンス効果はリバーブ効果やコーラス効果に比べて 聴感上効果が分かり難く、レゾナンスタイプを設定して いる時に、リバーブ効果やコーラス効果が付与されてい るとレゾナンスタイプの設定が困難であり、このためレ ゾナンスタイプの設定の際にはリバーブ効果およびコー ラス効果が楽音にかからないようにしていることにあ る。逆にリバーブタイプやコーラスタイプの設定は、た とえレゾナンス効果が付与されていても聴感上の効果を 容易に認識することができるので、リバーブタイプやコ **一ラスタイプの設定の時にレゾナンス効果を付与しない** ようにはなっていない。またもう1つの理由としては、 リバーブタイプやコーラスタイプの設定をする場合には ダンパーペダルが操作されることはないので、通常の操 作をしている限りレゾナンス効果は付与されないし、ま たレゾナンス効果をも付与したい場合はダンパーペダル を踏めばよいといった多彩な操作に応えるためである。 【0121】しかし、このようなものに限定されること なく、コーラスタイプ或はリバーブタイプの設定の際に はレゾナンスタイプの設定の時と同様に他に付与されて いる効果を強制的にかからないようにしてもよい。ま た、上述の実施形態と同様にある効果(レゾナンス効 果)のタイプの設定の際に他のある効果がかかっている と、設定中の効果が他のある効果にかき消されてしまっ て設定がやりにくいような場合、その設定をやりにくく している効果のみ、効果がかからないようにしてもよ い。この場合は相性の悪い効果の組み合わせ(ある効果 を設定している時に同時に付与されているとその効果の 設定がわかりにくいもの)を予め記憶しておき、ある効

果を設定をする際にそこに記憶された組み合わせに基づいて他の効果をセットするようにしてもよい。

【O122】また、上述の実施形態では、リバーブスイッチON状態の時にコーラス効果のタイプを設定する場合には、楽音には、コーラス効果だけでなくリバーブ効果も付与されるようになっている。また、コーラススイッチON状態の時にリバーブ効果だけでなくコーラス効果も付与されるようになっている。しかしながらこれに限定されることなく、リバーブスイッチON状態の時にコーラス効果のタイプを設定する場合には、楽音にコーラス効果だけが付与されるようにし、またコーラススイッチON状態の時にリバーブ効果のタイプを設定する場合には、楽音信号にリバーブ効果だけが付与されるようにしてもよい。

【0123】なお、上述の実施形態は本体に音源装置を内蔵している電子楽器の例であるが、本発明は、そのようなものに限定されることなく、外部から入力される楽音信号に対して複数の効果を付与する効果付与装置にも適用することができる。

【O124】また、上述の実施形態の変形例として、楽音に複数の効果が付与されている状態で、ある効果のタイプを設定するモードに移行した場合には、タイプ設定中の効果(上述の実施形態ではレゾナンス効果)と同じ系列(同じグループ)の効果(上述の実施形態ではリバーブ効果)がかからないようにする方法もある。

【0125】同じ系列(グループ)は次のようにグループ分けされる。

【0126】(1) 音色を変えるもの

イコライザ、エンハンサ

(2) 音を歪ませるもの

オーバードライブ、ディストーション

(3) 音をゆらすもの

フェイザ、オートワウ、フランジャ、トレモロ、オート パン

(4) レベルを変えるもの

コンプレッサ、リミッタ

(5) 音を広げるもの

ステレオ・コーラス、トレモロ・コーラス

(6) 音を響かせるもの

ディレイ、リバーブ、レゾナンス

(7) 音程を変えるもの

ピッチシフタ

レゾナンスタイプを設定する場合にレゾナンス及びリバーブの両方の効果が楽音に付与されていると、どちらも「音を響かせる」という系列のものなので、レゾナンス効果が現在どのくらい楽音に付与されていて、どのくらいの設定にしたらよいのかが聴感上非常に分かり難いので、リバーブ効果を楽音に付与しないようにする。

【0127】同様な例をもう1つ挙げてると、仮に楽音

にイコライザとエンハンサとディストーションが付与されるようになっているとする。そこでイコライザの設定をする際にはイコライザとディストーションのみを楽音に効果として付与し、エンハンサを付与しないようにする。

【0128】さらに、本発明における効果とは、上述の実施形態において説明してきたコーラス効果やリバーブ効果のように、音源から出力された楽音に対して与える効果(コーラス効果、リバーブ効果、レゾナンス効果の他に、変形例の説明の際に前述した多数の効果などを含む)のはもちろんのこと、音源内部で効果の付与された楽音を生成する場合も含まれる。例えばピッチが微妙に異なる2つの楽音を加算して楽音を生成する場合であるとか(この場合コーラス効果に似た効果が現れる)、エンベロープのアタックタイムを制御して楽音の音色に効果を与える場合も含まれる。

【0129】従って、本発明にいう効果は、聴感上の効果であれば全て含まれるものである。

【0130】なお本発明の上記の実施形態において、各 効果はそれぞれ1つづつしか設定(タイプの設定)でき ないが、これに代えて、複数の効果を同時に選択して各 効果におけるタイプの変更やその他の態様を変更し得る ようにしてもよい。効果の態様を変更している時に、選 択されている効果以外の効果がONになっている場合 は、選択した効果の設定の邪魔になる効果をOFFする か、選択されている効果以外の効果を全てOFFするよ うにする。例えば本発明の上述の実施形態においては効 果に関する操作子はリバーブスイッチとコーラススイッ チの2つしかなく、リパーブスイッチとコーラススイッ チが同時にONされた時にレゾナンスの設定をするよう になっているが、リバーブスイッチとコーラススイッチ に加えてディストーションの効果をON/OFFするデ ィストーションスイッチがあるとして、リバーブスイッ チとコーラススイッチが同時にONされた時には、リバ ーブとコーラスのタイプをどちらも変更可能なモードに なるようにし、その場合にはディストーションとレゾナ ンスの効果は付与されないようにする。

[0131]

【発明の効果】以上説明したように、本発明によれば、 ユーザの習熟度を問わず、どのレベルのユーザにとって も使い勝手のよい、かつ操作子の数が少なくて済む電子 楽器の設定装置が実現する。

【図面の簡単な説明】

【図1】本発明の一実施形態が内包された電子楽器の内部構成図である。

【図2】RAMの内部に構成されたテーブルおよびレジスタを示す図である。

【図3】本実施形態における各種モード間の遷移図である。

【図4】スプリットスイッチONルーチンのフローチャートである。

【図5】スプリットスイッチOFFルーチンのフローチャートである。

【図6】スプリットタイムアップルーチンのフローチャートである。

【図7】スプリット設定モードで音色スイッチが押されたときに実行されるルーチンのフローチャートである。

【図8】ノーマル設定モードであって、かつ、スプリットONにおいて音色スイッチが押されたときに起動されるルーチンのフローチャートである。

【図9】ノーマル設定モードであって、かつ、スプリットOFFにおいて、音色スイッチが押されたときに起動されるルーチンのフローチャートである。

【図10】コーラススイッチONルーチンのフローチャートである。

【図11】コーラススイッチOFFルーチンのフローチャートである。

【図12】コーラスタイムアップルーチンのフローチャートである。

【図13】コーラスタイプ設定モードにおいていずれかの音色スイッチが押されてきたときに起動されるルーチンのフローチャートである。

【図14】コーラスタイプ設定モードにおいて音色スイ

ッチが押されたときに起動されるルーチンのフローチャートである。

【図15】レゾナンスタイプの設定モードにあるときに 音色スイッチが押されたことを受けて起動されるルーチ ンのフローチャートである。

【符号の説明】

- 10 電子楽器
- 11 鍵盤
- 12 CPU
- 13 RAM
- 14 ROM
- 15 ペダル操作子
- 16 ダンパペタル
- 17 パネル
- 18 音源
- 19 効果付与部
- 20 パス
- 30 スピーカ
- 171 スプリットスイッチ
- 172, …, 179 音色スイッチ
- 181 リバーブスイッチ
- 182 ファンクションスイッチ
- 271~282 LED

【図1】

【図2】

アッパ育名 ロアー省色

(C) コーラスタイプ リパープタイプ レゾナンスタイプ

