Student: Phong Vo Date: 02/19/20 Instructor: Erica Yankowskas

Course: Linear Algebra I (Spring 2020)

Assignment: Section 1.4 Homework

1. Compute the product using (a) the definition where Ax is the linear combination of the columns of A using the corresponding entries in x as weights, and (b) the row-vector rule for computing Ax. If a product is undefined, explain why.

$$\begin{bmatrix} -9 & 10 \\ 5 & 1 \\ 0 & 5 \end{bmatrix} \begin{bmatrix} 8 \\ -2 \\ 9 \end{bmatrix}$$

(a) Compute the product using the definition where Ax is the linear combination of the columns of A using the corresponding entries in x as weights. If the product is undefined, explain why. Select the correct choice below and, if necessary, fill in any answer boxes to complete your choice.

○ A. Ax =

○ B. The matrix-vector Ax is not defined because the number of rows in matrix A does not match the number of entries in the vector x.

C. The matrix-vector A**x** is not defined because the number of columns in matrix A does not match the number of entries in the vector **x**.

(b) Compute the product using the row-vector rule for computing Ax. If the product is undefined, explain why. Select the correct choice below and, if necessary, fill in any answer boxes to complete your choice.

○ **A.** A**x** =

B. The matrix-vector A**x** is not defined because the row-vector rule states that the number of columns in matrix A must match the number of entries in the vector **x**.

C. The matrix-vector Ax is not defined because the row-vector rule states that the number of rows in matrix A must match the number of entries in the vector x.

2. Use the definition of Ax to write the vector equation as a matrix equation.

$$x_{1} \begin{bmatrix} 8 \\ 3 \\ 1 \\ 2 \end{bmatrix} + x_{2} \begin{bmatrix} 1 \\ 6 \\ -3 \\ -5 \end{bmatrix} + x_{3} \begin{bmatrix} 2 \\ 1 \\ -9 \\ 4 \end{bmatrix} = \begin{bmatrix} 5 \\ 1 \\ 6 \\ 7 \end{bmatrix}$$

8	1	2][x,][5]
3	6	1	$\begin{bmatrix} x_1 \\ y \end{bmatrix} \begin{bmatrix} 5 \\ 1 \end{bmatrix}$
1	-3	- 9	$ \begin{vmatrix} x_2 \\ x_3 \end{vmatrix} = \begin{vmatrix} 6 \\ 7 \end{vmatrix} $
2	- 5	4	$\begin{bmatrix} x_3 \end{bmatrix} \begin{bmatrix} 7 \end{bmatrix}$

(Type an integer or simplified fraction for each matrix element.)

3. Write the system first as a vector equation and then as a matrix equation.

$$9x_1 + x_2 - 3x_3 = 9$$
$$9x_2 + 4x_3 = 0$$

Write the system as a vector equation. Select the correct choice below and, if necessary, fill in any answer boxes to complete your choice.

- **B.** $\begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix} = \underbrace{\ }$
- $\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \underbrace{ }$

Write the system as a matrix equation. Select the correct choice below and, if necessary, fill in any answer boxes to complete your choice.

A.
$$\begin{bmatrix} 9 & 1 & -3 \\ 0 & 9 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 9 \\ 0 \end{bmatrix}$$
B.
$$\begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix} = \begin{bmatrix} x_1 & x_2 & x_3 & x_3 \end{bmatrix} = \begin{bmatrix} x_1 & x_2 & x_3 & x_$$

C. $x_1 + x_2 + x_3 =$

4. Write the system first as a vector equation and then as a matrix equation.

$$2x_1 - x_2 = 5$$

$$8x_1 + 3x_2 = 4$$

$$5x_1 - x_2 = 1$$

Write the system as a vector equation. Select the correct choice below and, if necessary, fill in any answer boxes to complete your choice.

⋘A.

B.

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} =$$

C.

$$\begin{bmatrix} x_1 & x_2 \end{bmatrix} =$$

Write the system as a matrix equation. Select the correct choice below and, if necessary, fill in any answer boxes to complete your choice.

A.
$$\begin{bmatrix} 2 & -1 \\ 8 & 3 \\ 5 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 5 \\ 4 \\ 1 \end{bmatrix}$$

○ B. X₁

C.

$$\begin{bmatrix} x_1 & x_2 \end{bmatrix} =$$

5.

Given A and b to the right, write the augmented matrix for the linear system that corresponds to the matrix equation Ax = b. Then solve the system and write the solution as a vector.

$$A = \begin{bmatrix} 1 & 3 & -2 \\ 1 & 5 & 2 \\ 4 & 2 & 4 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} -8 \\ 10 \\ -26 \end{bmatrix}$$

Write the augmented matrix for the linear system that corresponds to the matrix equation Ax = b. Select the correct choice below and fill in any answer boxes within your choice.

	1	3	-2	- 8	
A.	1	5	2) B .	10	
	4	2	4	- 26	

Solve the system and write the solution as a vector. Select the correct choice below and fill in any answer boxes within your choice.

 Given A and **b** to the right, write the augmented matrix for the linear system that corresponds to the matrix equation Ax = b. Then solve the system and write the solution as a vector.

$$A = \begin{bmatrix} 1 & 6 & -7 \\ -4 & -2 & 6 \\ 2 & 3 & 3 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} -14 \\ 56 \\ -4 \end{bmatrix}$$

Write the augmented matrix for the linear system that corresponds to the matrix equation $A\mathbf{x} = \mathbf{b}$. Select the correct choice below and fill in any answer boxes within your choice.

Solve the system and write the solution as a vector. Select the correct choice below and fill in any answer boxes within your choice.

○ A. x=

7. Let
$$A = \begin{bmatrix} 1 & -2 & -1 \\ -3 & 3 & 0 \\ 2 & -1 & 1 \end{bmatrix}$$
 and $\mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$. Show that the equation $A\mathbf{x} = \mathbf{b}$ does not have a solution for all possible \mathbf{b} , and

describe the set of all **b** for which Ax = b does have a solution.

How can it be shown that the equation $A\mathbf{x} = \mathbf{b}$ does not have a solution for all possible \mathbf{b} ? Choose the correct answer below.

- A. Row reduce the augmented matrix [A b] to demonstrate that [A b] has a pivot position in every row.
- C. Row reduce the matrix A to demonstrate that A has a pivot position in every row.
- \bigcirc **D.** Find a vector **x** for which A**x** = **b** is the zero vector.
- E. Find a vector b for which the solution to Ax = b is the zero vector.

Describe the set of all **b** for which Ax = b does have a solution.

$$0 = b_1 + b_2 + b_3$$

(Type an expression using b₁, b₂, and b₃ as the variables and 1 as the coefficient of b₃.)

8. Let $\mathbf{v}_1 = \begin{bmatrix} 0 \\ 0 \\ -5 \end{bmatrix}$, $\mathbf{v}_2 = \begin{bmatrix} 0 \\ -3 \\ 10 \end{bmatrix}$, and $\mathbf{v}_3 = \begin{bmatrix} 5 \\ -2 \\ -15 \end{bmatrix}$. Does $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ span \mathbb{R}^3 ? Why or why not?

Choose the correct answer below.

- igcirc Yes. Any vector in \mathbb{R}^3 except the zero vector can be written as a linear combination of these three vectors.
- B. No. When the given vectors are written as the columns of a matrix A, A has a pivot position in only two rows.
- $igcup {f C}$. No. The set of given vectors spans a plane in $\Bbb R^3$. Any of the three vectors can be written as a linear combination of the other two.
- **D.** Yes. When the given vectors are written as the columns of a matrix A, A has a pivot position in every row.

Detern	ermine whether each statement below is true or false. Justify each answer.				
a. The	equation $A\mathbf{x} = \mathbf{b}$ is referred to as a vector equation. Choose the correct answer below.				
ℰ A.	False. The equation $A\mathbf{x} = \mathbf{b}$ is referred to as a matrix equation because A is a matrix.				
○ В.	True. The equation $A\mathbf{x} = \mathbf{b}$ is referred to as a vector equation because it consists of scalars multiplied by vectors.				
O C.	True. The equation $A\mathbf{x} = \mathbf{b}$ is referred to as a vector equation because A is constructed from column vectors.				
O D.	False. The equation $A\mathbf{x} = \mathbf{b}$ is referred to as a linear equation because \mathbf{b} is a linear combination of vectors.				
	ector b is a linear combination of the columns of a matrix A if and only if the equation $A\mathbf{x} = \mathbf{b}$ has at least one n. Choose the correct answer below.				
○ A.	False. If the matrix A is the identity matrix, then the equation $A\mathbf{x} = \mathbf{b}$ has at least one solution, but \mathbf{b} is not a linear combination of the columns of A.				
○ В.	True. The equation $A\mathbf{x} = \mathbf{b}$ is unrelated to whether the vector \mathbf{b} is a linear combination of the columns of a matrix A.				
ℰ C.	True. The equation $A\mathbf{x} = \mathbf{b}$ has the same solution set as the equation $\mathbf{x}_1 \mathbf{a}_1 + \mathbf{x}_2 \mathbf{a}_2 + \cdots + \mathbf{x}_n \mathbf{a}_n = \mathbf{b}$.				
O D.	False. If the equation $A\mathbf{x} = \mathbf{b}$ has infinitely many solutions, then the vector \mathbf{b} cannot be a linear combination of the columns of A.				
c. The	equation $A\mathbf{x} = \mathbf{b}$ is consistent if the augmented matrix $\begin{bmatrix} A & \mathbf{b} \end{bmatrix}$ has a pivot position in every row. Choose the correct				
answe	r below.				
O A.	True. If the augmented matrix $\begin{bmatrix} A & \mathbf{b} \end{bmatrix}$ has a pivot position in every row, then the equation				
○ P	$Ax = b$ has a solution for each b in \mathbb{R}^m .				
О В.	False. The augmented matrix $\begin{bmatrix} A & \mathbf{b} \end{bmatrix}$ cannot have a pivot position in every row because it has more columns than rows.				
ℰ C.	False. If the augmented matrix $\begin{bmatrix} A & \mathbf{b} \end{bmatrix}$ has a pivot position in every row, the equation equation $A\mathbf{x} = \mathbf{b}$ may or may not be consistent. One pivot position may be in the column representing \mathbf{b} .				
O D.	True. The pivot positions in the augmented matrix $\begin{bmatrix} A & \mathbf{b} \end{bmatrix}$ always occur in the columns that represent A.				
d. The	first entry in the product $A\mathbf{x}$ is a sum of products. Choose the correct answer below.				
○ A.	False. The first entry in $A\mathbf{x}$ is the product of x_1 and the column \mathbf{a}_1 .				
○ В.	False. The first entry in $A\mathbf{x}$ is the sum of the corresponding entries in \mathbf{x} and the first entry in each column of A.				
ℰ C.	True. The first entry in $A\mathbf{x}$ is the sum of the products of corresponding entries in \mathbf{x} and the first entry in each column of A .				
O D.	True. The first entry in $A\mathbf{x}$ is the sum of the products of corresponding entries in \mathbf{x} and the first column of A.				
	e columns of an m×n matrix A span \mathbb{R}^m , then the equation $A\mathbf{x} = \mathbf{b}$ is consistent for each \mathbf{b} in \mathbb{R}^m . Choose the answer below.				
O A.	True. Since the columns of A span \mathbb{R}^m , the augmented matrix $[A \ \mathbf{b}]$ has a pivot position in				

	every row.
○ B.	False. Since the columns of A span \mathbb{R}^m , the matrix A has a pivot position in exactly m – 1
	rows. True. If the columns of A span \mathbb{R}^m , then the equation $A\mathbf{x} = \mathbf{b}$ has a solution for each \mathbf{b} in \mathbb{R}^m .
O D.	False. If the columns of A span \mathbb{R}^m , then the equation $A\mathbf{x} = \mathbf{b}$ is inconsistent for each \mathbf{b} in \mathbb{R}^m .
	is an m×n matrix and if the equation $A\mathbf{x} = \mathbf{b}$ is inconsistent for some \mathbf{b} in \mathbb{R}^m , then A cannot have a pivot position in ow. Choose the correct answer below.
A.	False. Since the equation $A\mathbf{x} = \mathbf{b}$ has a solution for each \mathbf{b} in \mathbb{R}^m , the equation $A\mathbf{x} = \mathbf{b}$ is consistent for each \mathbf{b} in \mathbb{R}^m .
∛ B.	True. If A is an m×n matrix and if the equation $A\mathbf{x} = \mathbf{b}$ is inconsistent for some \mathbf{b} in \mathbb{R}^m , then the equation $A\mathbf{x} = \mathbf{b}$ has no solution for some \mathbf{b} in \mathbb{R}^m .
○ C.	False. If A is an m×n matrix and if the equation $A\mathbf{x} = \mathbf{b}$ is inconsistent for some \mathbf{b} in \mathbb{R}^m , then the equation $A\mathbf{x} = \mathbf{b}$ has a solution for each \mathbf{b} in \mathbb{R}^m .
O D.	True. If A is an m×n matrix and if the equation $A\mathbf{x} = \mathbf{b}$ is inconsistent for some \mathbf{b} in \mathbb{R}^m , then the columns of A span \mathbb{R}^m .

a. Evei below.	y matrix equation $A\mathbf{x} = \mathbf{b}$ corresponds to a vector equation with the same solution set. Choose the correct answer
	False. The matrix equation $A\mathbf{x} = \mathbf{b}$ does not correspond to a vector equation with the same solution set.
○ В.	False. The matrix equation $A\mathbf{x} = \mathbf{b}$ only corresponds to an inconsistent system of vector equations.
ℰ C.	True. The matrix equation $A\mathbf{x} = \mathbf{b}$ is simply another notation for the vector equation $\mathbf{x}_1 \mathbf{a}_1 + \mathbf{x}_2 \mathbf{a}_2 + \cdots + \mathbf{x}_n \mathbf{a}_n = \mathbf{b}$, where $\mathbf{a}_1,, \mathbf{a}_n$ are the columns of A.
) D.	True. The matrix equation $A\mathbf{x} = \mathbf{b}$ is simply another notation for the vector equation $\mathbf{x}_1 \mathbf{a}_1 + \mathbf{x}_2 \mathbf{a}_2 + \cdot \cdot \cdot + \mathbf{x}_n \mathbf{a}_n = \mathbf{b}$, where $\mathbf{a}_1,, \mathbf{a}_n$ are the rows of A.
b. If the	e equation $A\mathbf{x} = \mathbf{b}$ is consistent, then \mathbf{b} is in the set spanned by the columns of A. Choose the correct answer
(A.	False. b is only included in the set spanned by the columns of A if $Ax = b$ is inconsistent.
○ В.	False. $A\mathbf{x} = \mathbf{b}$ is only consistent if the values of \mathbf{b} are nonzero.
∛ C.	True. The equation $A\mathbf{x} = \mathbf{b}$ has a nonempty solution set if and only if \mathbf{b} is a linear combination of the columns of A.
O D.	True. The equation $A\mathbf{x} = \mathbf{b}$ has a solution set if and only if A has a pivot position in every row.
	linear combination of vectors can always be written in the form $A\mathbf{x}$ for a suitable matrix A and vector \mathbf{x} . Choose the answer below.
ℰ A.	True. The matrix A is the matrix of coefficients of the system of vectors.
() В.	True. A \mathbf{x} can be written as a linear combination of vectors because any two vectors can be combined by addition.
) C.	False. A and ${\bf x}$ cannot be written as a linear combination because the matrices do not have the same dimensions.
) D.	False. A and \mathbf{x} can only be written as a linear combination of vectors if and only if in $A\mathbf{x} = \mathbf{b}$, \mathbf{b} is nonzero.
	e coefficient matrix A has a pivot position in every row, then the equation $A\mathbf{x} = \mathbf{b}$ is inconsistent. Choose the correct below.
) A.	False. If a coefficient matrix A has a pivot position in every row, then the equation $A\mathbf{x} = \mathbf{b}$ may or may not be consistent.
() В.	True. A pivot position in every row of a matrix indicates an inconsistent system of equations because the augmented column will always be zeros.
ℰ C.	False. If A has a pivot position in every row, the echelon form of the augmented matrix could not have a row such as $[0\ 0\ 0\ 1]$, and $A\mathbf{x} = \mathbf{b}$ must be consistent.
O D.	True. If A has a pivot position in every row, then the augmented matrix must have a row of all zeros, indicating an inconsistent system of equations.
e. The	solution set of a linear system whose augmented matrix is $\begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_3 & \mathbf{b} \end{bmatrix}$ is the same as the solution set of
A x = b ,	if $A = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_3 \end{bmatrix}$. Choose the correct answer below.
ℰ A.	True. If A is an m×n matrix with columns $\begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \cdots & \mathbf{a}_n \end{bmatrix}$, and b is a vector in \mathbb{R}^m , the
	matrix equation $A\mathbf{x} = \mathbf{b}$ has the same solution set as the system of linear equations whose

10. Determine whether each of statements a through f below are true or false. Justify each answer.

- B. augmented matrix is $\begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \cdots & \mathbf{a}_n & \mathbf{b} \end{bmatrix}$.

 True. The linear system whose augmented matrix is $\begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_3 & \mathbf{b} \end{bmatrix}$ will have the same solution set as $A\mathbf{x} = \mathbf{b}$ if and only if \mathbf{b} is nonzero.
- **C.** False. If A is an m×n matrix with columns $\begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \cdots & \mathbf{a}_n \end{bmatrix}$, then **b** cannot be found in \mathbb{R}^m , and the system is inconsistent.
- **D.** False. The solution set of a linear system whose augmented matrix is $\begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_3 & \mathbf{b} \end{bmatrix}$ is the same as the solution set of $A\mathbf{x} = \mathbf{b}$ if and only if \mathbf{x} has the same number of rows as A.

f. If A is an m×n matrix whose columns do not span \mathbb{R}^m , then the equation $A\mathbf{x} = \mathbf{b}$ is consistent for every \mathbf{b} in \mathbb{R}^m . Choose the correct answer below.

- \bigcirc **A.** True. If $A\mathbf{x} = \mathbf{b}$ is consistent, then the rows of A must span \mathbb{R}^m .
- \bigcirc **B.** True. If the columns of A do not span \mathbb{R}^m , **b** may or may not span \mathbb{R}^m .
- \bigcirc **C.** False. If the columns of A do not span \mathbb{R}^m , $A\mathbf{x} = \mathbf{b}$ cannot be consistent.
- False. If the columns of A do not span \mathbb{R}^m , then A does not have a pivot position in every row, and row reducing $\begin{bmatrix} A & \mathbf{b} \end{bmatrix}$ could result in a row of the form $\begin{bmatrix} 0 & 0 & \bullet & \bullet & 0 & \mathbf{c} \end{bmatrix}$, where c is a nonzero real number.

11. Let
$$\mathbf{u} = \begin{bmatrix} -2 \\ -6 \\ -4 \end{bmatrix}$$
, $\mathbf{v} = \begin{bmatrix} -4 \\ 6 \\ -2 \end{bmatrix}$, and $\mathbf{w} = \begin{bmatrix} 30 \\ -18 \\ 24 \end{bmatrix}$. It can be shown that $-3\mathbf{u} - 6\mathbf{v} - \mathbf{w} = 0$. Use this fact (and no row

operations) to find x_1 and x_2 that satisfy the equation $\begin{bmatrix} -2 & -4 \\ -6 & 6 \\ -4 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 30 \\ -18 \\ 24 \end{bmatrix}.$

$$x_1 = -3$$

 $x_2 = -6$

(Simplify your answers.)

2.	Could a set of three vectors in \mathbb{R}^4 span all of \mathbb{R}^4 ? Explain. What about n vectors in \mathbb{R}^m when n is less than m? Could a set of three vectors in \mathbb{R}^4 span all of \mathbb{R}^4 ? Explain. Choose the correct answer below.						
		○ B.	No. There is no way for any number of vectors in \mathbb{R}^4 to span all of \mathbb{R}^4 .				
	ℰ C.	No. The matrix A whose columns are the three vectors has four rows. To have a pivot i row, A would have to have at least four columns (one for each pivot.)	in each	1			
	O D.	Yes. A set of n vectors in \mathbb{R}^m can span \mathbb{R}^m when n < m. There is a sufficient number of in the matrix A formed by the vectors to have enough pivot points to show that the vectors apan \mathbb{R}^m .					
	Could a set of n vectors in \mathbb{R}^m span all of \mathbb{R}^m when n is less than m? Explain. Choose the correct answer below.						
	O A.	No. Without knowing values of n and m, there is no way to determine if n vectors in \mathbb{R}^n span all of \mathbb{R}^m .	ⁿ will				
	○ В.	Yes. A set of n vectors in \mathbb{R}^m can span \mathbb{R}^m if n < m. There is a sufficient number of row the matrix A formed by the vectors to have enough pivot points to show that the vectors \mathbb{R}^m .					
	○ C .	Yes. Any number of vectors in \mathbb{R}^m will span all of \mathbb{R}^m .					
	ℰ D.	No. The matrix A whose columns are the n vectors has m rows. To have a pivot in each A would have to have at least m columns (one for each pivot.)	h row,				
3.	Detern	mine if the columns of the matrix to the right span \mathbb{R}^4 .	11 -7 -7 2	-5 5 9 -2	4 -5 -6 9	2 3 8 -9	6 -4 -7 11]
	Choos	se the correct answer below.					

 ${\color{red} igstar}^{4}$. The columns of the matrix span ${\color{blue} \mathbb{R}}^{4}$.

 \bigcirc **B.** The columns of the matrix do not span $\mathbb{R}^4.$