

Swiss Institute of Bioinformatics

Introduction to RNA-Seq: Mapping & Aligning

Wandrille Duchemin

Image credit: wikipedia user Rgocs

Sailfish (Patro et al. 2014), See also Kallisto (Bray et al. 2016)

Resource intensive!

Image credit: wikipedia user Rgocs

Sailfish (Patro et al. 2014), See also Kallisto (Bray et al. 2016)

Aligning & mapping sequencing reads

Whole genome re-sequencing Prokaryote RNAseq

Aligner

- BWA (Li and Durbin 2009)
- Bowtie (Langemead et al. 2009)

Transcriptome sequencing (RNA-seq)

Aligner

- Tophat (Trapenell et al. 2009, Kim et al. 2013)
- STAR (Dobin et al. 2013)

Alignment using STAR

Phase 1:

mapping using "Maximum Mappable Prefix"

Map again

Fig. 1. Schematic representation of the Maximum Mappable Prefix search in the STAR algorithm for detecting (a) splice junctions, (b) mismatches and (c) tails

Phase 2: "stitching"

Мар

(a)

Benchmarking of RNAseq aligners

	Correctly mapped 200 bases	>=150 bases correctly mapped	Unmapped		positive ctions	False positive junctions	
				Number	Sensitivity	Number	FDR
Aligner	1	2	4	5	6	7	8
STAR	81.3%	95.0%	4.82%	148,487	92.7%	409	0.3%
TopHat2	82.6%	83.7%	6.70%	135,006	84.3%	1,228	0.9%

Dobin & Gingeras 2013

STAR : 20x faster

Tophat2: 6x less memory (can be run on recent laptop)

Benchmarking of RNAseq aligners

	Correctly mapped 200 bases	>=150 bases correctly mapped	Unmapped		positive ctions	False positive junctions	
				Number	Sensitivity	Number	FDR
Aligner	1	2	4	5	5 6		8
STAR	81.3%	95.0%	4.82%	148,487	92.7%	409	0.3%
TopHat2	82.6%	83.7%	6.70%	135,006	84.3%	1,228	0.9%

Dobin & Gingeras 2013

STAR : 20x faster

Tophat2: 6x less memory (can be run on recent laptop)

Reference index preparation

Different for each software!

Needs a suitable reference genome

- sequence
- annotation

https://www.ensembl.org/info/data/ftp/index.html

https://hgdownload.soe.ucsc.edu/downloads.html

Genome annotation files

Text file describing genomic features

- Gene, CDS, exon, intron, ...
- Chromosome, start, end, strand, attributes, ...

Most common format: gtf / gff3

http://www.ensembl.org/info/website/upload/gff.html

MT	RefSeq	gene	2751	3707	+		gene_id "ENSMUSG00000064341";
MT	RefSeq	transcript	2751	3707	+		gene_id "ENSMUSG00000064341";
MT	RefSeq	exon	2751	3707	+		gene_id "ENSMUSG00000064341";
MT	RefSeq	CDS	2751	3704	+	0	gene_id "ENSMUSG00000064341";
MT	RefSeq	start_codon	2751	2753	+	0	gene_id "ENSMUSG00000064341";
MT	RefSeq	stop_codon	3705	3707	+	0	gene_id "ENSMUSG00000064341";

Most mapper produce SAM files

https://samtools.github.io/hts-specs/SAMv1.pdf

Each line contain mapping information about a single read

Most mapper produce SAM files

https://samtools.github.io/hts-specs/SAMv1.pdf

Bit		Description				
1	0x1	template having multiple segments in sequencing				
2	0x2	each segment properly aligned according to the aligner				
4	0x4	segment unmapped				
8	0x8	next segment in the template unmapped				
16	0x10	SEQ being reverse complemented				
32	0x20	SEQ of the next segment in the template being reverse complemented				
64	0x40	the first segment in the template				
128	0x80	the last segment in the template				
256	0x100	secondary alignment				
512	0x200	not passing quality controls				
1024	0x400	PCR or optical duplicate				
2048	0x800	supplementary alignment				

Example, flag 83 = 64+16+2+1 means it's first read (0x40) of pair-end reads (0x1) and it's mapped on minus strand (0x10) and both reads mapped (0x2).

Most mapper produce SAM files

https://samtools.github.io/hts-specs/SAMv1.pdf

- Big files: ideally compress in BAM file
- Can be sorted and indexed for easy access by post-processing software
- multiQC can grab interesting information from a folder containing SAM/BAM files

 (as well as the other files created by the mapping software)

After mapping: counting

Pseudoaligner: transcript-level expression quantification

Aligner: we need to subsequently estimate expression from mapped reads

Counting: fundamental problems

Overlapping genes

stranded sequencing
OR
discard reads / count both ?

Multi-mapping reads

- discard reads?
- count both?

Counting: gene-level counters

HTSeq

Counting: gene-level counters

HTSeq

FeatureCount

+ options for fractional counts

Counting: gene-level counters

HTSeq

FeatureCount+ options forfractional counts

STAR

Counting: transcript-level counter

RSEM, cufflink, salmon, stringtie, ...

Practical

Thank you

Counting: transcript-level counter

RSEM, cufflink, salmon, stringtie, ...

