CSE 543: Homework I

Corbin Charpentier (Student ID: TODO)

Q1

We have g:[0,1] rightarrow \mathbb{R}\$ and is twice-differentiable with g(0)=g'(0)=0\$.

Q1.1

By the Fundamental Theorem of Calculus, we have:

 $\$ \begin{aligned} g'(x) &= g'(0)+\int_0^x g''(b)db \ g(x) &= g(0) + \int_0^x \left (g'(0)+\int_0^x g''(b)db \ \right)db \

\end{aligned} \$\$

Now plugging in what was given

 $\$ \begin{align} g(x) &= 0 + \int_0^1 \eft (0 + \int_0^1 \sigma(x-b) g''(b)db \right)db \ &= \int_0^1 \int_0^1 \sigma(x-b) g''(b)db \ &= \int_0^1 \sigma(x-b) g''(b)db \ \end{align} \$\$ Step \$(3)\$ gets us back to the original proposition.

Q1.2

Suppose $\left| \frac{prime}\right| \leq \sup_{0,1]\$ for some $\$ and let $\$ prime} \right| \leq \beta\$ over $\left[0,1 \right]\$ for some $\$ and let $\$ and let $\$ given. Prove that there exists a ReLU network $f(x) \right| = 1$ ^{m} a_{i} \simeq \left| \frac{i}{right}\right| with $\$ \leq \left|\ceil\frac{\\partial}{\\partial}\right|\right| and $\left| \frac{g}{\eta}\right| \leq \lim_{n\to\infty} \left| \frac{g}{\eta}\right|$

\$g'\$ is by definition \$\beta\$-Lipschitz. (Wikipedia)

By 1D Approximation theorem in the lecture notes, a 2-layer neural network \$f\$ exists with the following attributes:

The neural network as \$\left\lceil\frac{\beta}{\epsilon}\right\rceil\$ nodes

The neural network can be expressed with: $f(x)=\sum_{i=1}^{m} a_{i} \mathbb{1}_{x-x_{i} \leq 0}$

\$\left|f-g^{\prime}\right|_{\infty}\leq\epsilon\$

We let

\$x_{i} \triangleq \frac{(i-1) \epsilon}{\beta}\$

\$m \triangleq\left\lceil\frac{\beta}{\epsilon}\right\rceil\$

 $a_{i} \neq g^{\left(x_{i}\right)-g^{\left(x_{i-1}\right)}}$

Now

 $\|f-g^{\cdot}\|_{\infty} \le \|f\|_{\infty} \le \|f\|_{\infty}$

Therefore

 $\left(\frac{-g^{\rho \cdot (f-g^{\rho \cdot (f$

Which implies $f(x)=x\sum_{i=1}^{m} a_{i} \mathbb{1}_{x-x_{i} \neq 0} = \sum_{i=1}^{m} a_{i} \sinh(x-x_{i})$ for all b_{i}

Since $\frac{x}{x} = x * threshold(x)$

\$\$ \begin{aligned} \end{aligned} \$\$

Q2

Q2.1

Show that when x=0, and x=0, and x=0, and x=0, we have α , we have α .

By definition of homogeneity, we have: $g(\alpha x)=\alpha_{L} g(x)$. Plugging in \$x=0\$, we get: \$\$ \begin{aligned} &f(\alpha*0) = \alpha^{L} f(0) \ &\implies f(0) = \alpha^{L} f(0) \ &\implies 1 = \alpha^{L} \ &\implies L = \log_\alpha{1} = 0 \ & \text{where } f(0) \neq 0 \end{aligned} \$\$\$

And trivially, since \$x=0\$: \$\$ \begin{aligned} \langle s, 0\rangle= 0 \end{aligned} \$\$

Q2.2

Show for all $x \neq 0$ such that $\alpha f(x)$ exists, $\alpha f(x)$ exists, $\alpha f(x)$. Hint: You can use the following basic property about gradient: $\alpha f(x)$ him _{\delta \rightarrow 0} \frac{f(x+\delta x)-f(x)- \langle\nabla f(x), \delta x\rangle}{\delta}=0 . \$\$ Q2.3 (3 Points) Using the definition of Clarke Differential to show that for any given $\alpha f(x)$, we have \$\angle f(x)\$.

 $\$ \frac{d z_{t}}{d w_{1}}=\sum_{\hat{z}_{t}}{d w_{1}}=\sum_{\hat{z}_{t}}{partial z_{\hat{z}_{t}}}{partial z_{\hat{z}_{t}}}

Using \$f\$'s homogeneity property (and some algebra), we manimuplate the limit as follows:

 $\$ \begin{aligned} &\lim _{\delta \rightarrow 0} \frac {f(x+\delta x)-f(x)-\langle\nabla f(x), \delta x\rangle} {\delta}=0 \

&\implies \lim _{\delta \rightarrow 0} \frac {(1+\delta)^Lf(x) - f(x) - \delta\langle\nabla f(x), x\rangle} {\delta}=0 \

&\implies \lim _{\delta \rightarrow 0} \frac $\{f(x)((1+\delta)^L - 1) - \delta \angle \angle$

&\implies \lim _{\delta \rightarrow 0} \frac {f(x)(1+\delta+\delta^2+...+\delta^L - 1) - \delta\langle\nabla f(x), x\rangle} {\delta}=0 \

&\implies \lim _{\delta \rightarrow 0} \frac $\{f(x)(\delta+\delta^2...+\delta^L) - \delta\langle\nabla f(x), x\rangle} {\delta}=0 \$

&\implies \lim _{\delta \rightarrow 0} $f(x)(1 + \beta^2...+\beta$

&\implies $f(x) * \lim_{\alpha \to \infty} (1 + \alpha)^{l-1} = \lambda f(x), x \in \mathbb{C}$

 $\pi = \lim_{x \to x} f(x) = \lim_{x \to x} f(x), x$

\end{aligned} \$\$

And indeed, it can be observed that the only value of L that satisfies L-homogeneity $(L(x)=f(x\log_{\alpha}(L))$) is \$1\$.

Q2.3

Using the definition of Clarke Differential to show that for any given $x \in \mathbb{R}^{d}$, for $s \in \mathbb{R}^{d}$.

We only need to show that $\alpha = L f(x)$ is true everywhere that $x \neq 0$ and $\alpha = L f(x)$ does not exist, since these two cases have already been proven, and because f is given to be locally $\gamma = L f(x)$ we know that f(x) exists.

Note the definition of the Clarke Differential: $\$ \partial f(x):=\operatorname{conv}\left(\left{s \in \mathbb{R}^{d}: \exists\left{x_{i}\right}{i=1}^{\infty} | text { s.t. } x{i} \rightarrow x, \nabla f\left(x_{i}\right) \right{x_{i}\right} \right{x_{i}\right} \\$

Therefore, using the proof from Q2.2, there is guaranteed to be an $s \in \mathbb{C}$ that satisfies $\$ and $\$ and

Q3

Q3.1

- 1. \$z_{1}=w_{1} / w_{2}\$
- 2. $z_{2}=\sin \left(2 \pi z_{1}\right)$
- 3. $z_{3}=\exp \left(2 w_{2}\right)$
- 4. $z_{4}=3 z_{1}-z_{3}$
- 5. $z_{5}=z_{2}+z_{4}$ \$
- 6. $z_{6}=z_{4} z_{5}$
- 7. \$y=z_6\$

Compute $\frac{df}{dw} = \frac{dz_6}{TODO}$ asdf

1. $\frac{1}{\sqrt{1}} = \frac{z_1}{\frac{1}{\sqrt{2}}}$ \$\bar{w_2} = \bar{z_1}\frac{\dz_1}{\dw_2} = -\frac{\bar{w_1}}{(\bar{w_2})^2}\$

2.
$$\frac{z_1} = \frac{z_2}{\frac{2}{dz_1}} = 2 \pi \left(2 \pi \right)\right) \right) \right) \right) (2 \pi (2 \pi \left(2 \pi \left(2$$

3.
$$\frac{dz_3}{dw_2} = \frac{z_3}{rac\{dz_3\}\{dw_2\}} = 2 \exp \left(\frac{2 w_{2}\right)$$

4.
$$\frac{z_1} = \frac{z_4}{\frac{z_4}{\frac{z_4}}} = 3\frac{z_4}$$

$$\frac{z_3} = \frac{z_4}{frac\{dz_4\}\{dz_3\}} = -\frac{z_4}$$

5.
$$\frac{z_2} = \frac{z_5}{\frac{z_5}{\frac{z_5}}}$$

$$\frac{z_4} = \frac{z_5}{frac\{dz_5\}\{dz_4\}} = \frac{z_5}$$

6.
$$\frac{z_4} = \frac{z_6}{\frac{z_5}}$$

$$\alpha_{z_5} = \beta_{z_6}\$$

7. $\frac{z_6} = \frac{y} = 1$

TODO: pseudocode? Is this sufficient?

Q3.2

We use the following formula to calculate the forward mode auto-differentiation for $\mbox{w_1$ and w_2: $$ \frac{z_{6}}{d w_{k}}=\sum_{\tau \in \mathbb{Z}_{tau}} \frac{z_{\tau}}{frac{d z_{tau}}}$

Q3.2.1

Assume we have already evaluated \$(z_1, ..., z_6)\$ identically to question Q3.1 and have the result stored in memory.

Next, we compute compute all the derivatives using the chain rule, first respect to \$w_1\$, then \$w_2\$:

When this pseudo code is actually implemented, the two snippets below will be abstracted into a common function that computes the forward auto-differnetiation.

Without further ado, compute \$\frac{dz_6}{dw_2}\$

- 1. $\frac{z_1} = \frac{dz_1}{dw_1} = \frac{1}{w_2}$
- 2. $\frac{z_2} = \sum_{\tau = 2}{\langle z_{\tau}} \ z_{\tau} \ z_{$
- 3. $\frac{z_3}{\frac{z_3}} = \sum_{\frac{1}{y}} \frac{z_{\frac{3}}{y}}{\frac{z_{\frac{1}{y}}}}{\frac{z_{\frac{1}{y}}}{\frac$
- 4. $\frac{z_4} = \sum_{\tau = \frac{z_4}{\langle z_4 \rangle}{\langle z_1 \rangle} \frac{z_1} + 0 + -\frac{z_3} = 3\left[z_1\right] + 0 + \frac{z_3} = 3\left[z_1\right] \frac{z_3}$
- 6. $\frac{z_6} = \sum_{\frac{z_6}{\frac{z_{6}}{partial z_{tau}} \frac{z_{tau}}{partial w_1} = 0 + 0 + 0 + 0 + (\frac{z_4}z_5) + (z_4)z_5) = \frac{z_4}z_5 + z_4\frac{z_5}$

Finally: $\frac{dz_6}{dw_1} = \frac{z_6}$ \$

Now compute \$\frac{dz_6}{dw_1}\$

- 1. $\frac{z_1} = \frac{dz_1}{dw_2} = \frac{w_2}{w_2^2}$
- 2. $\frac{z_2} = \sum_{\frac{z_2}{\langle z_2}}{\langle z_2}}{\langle z_2} = 0$
- 3. $\frac{z_3} = \sum_{\langle z_3\rangle}{\langle z_{3}\rangle} \ z_{\langle z_3\rangle} \ | z_{\langle z_3\rangle} \ | z_{\langle z_3\rangle} \ | z_2(z_2) \ | z_2(z_2) \ | z_3\rangle |$
- 4. $\frac{z_4} = \sum_{\frac{z_1} + 0} \frac{z_4}{\int z_{1} -\int z_{1} -\int z_{1}}$
- 5. $\frac{z_5} = \sum_{\zeta_5}{\left(z_{5}\right)} \frac{z_{5}}{\left(z_{\tau_5}\right)} = 0 + \frac{z_2} + 0 + \frac{z_4} = \frac{z_4}{2}$
- 6. $\frac{z_6} = \sum_{\frac{1}{y}} \frac{z_{\frac{1}{y}}}{\int z_{\frac{1}{y}}}$ (\bar{z_4}z_5) + (z_4\bar{z_5}) = \bar{z_4}z_5 + z_4\bar{z_5} \$

Finally: $\frac{dz_6}{dw_2} = \frac{z_6}$ \$

Q3.2.2

We'd need to compute chain of derivatives with respect to each dimension in the input vector \$w \in \mathbb{R}^d\$.

Q3.2.3

Since \$T\$ computations are required for reach input variable \$d\$, the upper bound is: \$\$O(dT)\$\$

Q4

Q4.1

Gradient Descent

Batch size: all data; Number of epochs: 10

Minibatch SGD

Batch size: 128; Number of epochs: 10

Batch size: 512; Number of epochs: 10

AdaGrad

Batch size: 128; Learning decay: 0.9; Number of epochs: 10

Batch size: 128; Learning decay: 0.09; Number of epochs: 10

Batch size: 128; Learning decay: 0.009; Number of epochs: 10

Adam

Batch size: 128; \$\beta_1\$: 0.9; \$\beta_2\$: 0.999; Number of epochs: 10

Batch size: 128; \$\beta_1\$: 0.9; \$\beta_2\$: 0.999; Number of epochs: 10

Batch size: 128; \$\beta_1\$: 0.9; \$\beta_2\$: 0.999; Number of epochs: 10

4.2

While adaptive optimization algorithms (e.g. Adam and AdaGrad) seem to converge faster, they don't seem to generalize as well as simple SGD (this is not a conclusion drawn from the tests here). However, recent research suggests might be simply a matter of hyper parameter tuning (adaptive strategies have more hyperparemeters).

Now pivoting to vanilla gradient descent vs mini-batch SGD, the principle advantage of mini-batch memory usage; it does not require the entire dataset to be in memory like VGD, which is intractible for large datasets.