۱- با استفاده از روابط مربوط به معکوس کننده شبه nMOS رابطه زیر که به عنوان تقریبی برای رفتار مقاومتی ترانزیستور استفاده می شود را بدست آورید $R_{eq} = \frac{2.5}{\mu_{n} C_{ox}(W/L)_{1}(V_{DD} - V_{tn})}$

- ۲- یک تراشه دیجیتال با تکنولوژی ۶۰ نانومتر و $V_{DD}=2^V$ و فرکانس ۹۰۰ مگاهرتز کار می کند. همین تراشه پس از ساخت مجدد با تکنولوژی ۴۰ نانومتر و $V_{DD}=1.5^V$ و فرکانس ۱۶۰۰ مگاهرتز کار می کند. اگر در هردو حالت نسبت توان استاتیک به دینامیک برابر بوده و توان های کل نیز یکسان باشد نسبت ظرفیت خازنی در دو تکنولوژی چقدر است؟
- $_{9}V_{IH}$ $_{9}V_{TH}$ $_{9}V_{IL}$ $_{9}V_{OH}$ شامل $_{7}V_{OH}$ شامل $_{9}V_{OH}$ را رسم کرده و به ازای نقاط مختلف منحنی $_{9}V_{OH}$ شامل $_{9}V_{OH}$ وضعیت عملکرد هر یک از ترانزیستور ها را در قالب یک جدول تعیین کنید

در مدار شکل روبرو ولتاژ نقطه Vout در مدار شکل روبرو ولتاژ نقطه $V_{\rm DD}=100~(uA/V^2),~\mu_n C_{\rm OX}=250~(uA/V^2)$ $V_{\rm DD}=1.5^{\rm V}~V_{\rm tp}=-0.5^{\rm V},~V_{\rm tn}=0.5^{\rm V}$ ،

۵- یک گیت CMOS با تکنولوژی ۲۲ نانومتر را به دو شکل مختلف طراحی کنید که تابع زیر را پیاده سازی کند و سپس مزایا و معایب احتمالی دو طرح مختلف خود را فقط نام ببرید. (ابعاد قابل قبول را محاسبه کنید).

$$Y = (X_1 X_2 + \overline{X_4}) X_2 X_4 X_6 (X_3 + X_4 + X_5)$$

- ۶- مدار منطقی مربوط به تابع XNOR را با استفاده از منطق ترانزیستور عبور، منطق کاملا تفاضلی رسم
 کنید.
 - ۷- خانواده منطقی CPL و DPL را در دو سطر معرفی کرده مزایا و معایب هریک را فقط نام ببرید.

۸- در شکل مقابل تغییرات احتمالی ولتاژ خروجی در اثر مسئله اشتراک بار خروجی را بر حسب پارامترهای نشان داده شده در شکل بدست آورید.

۹- برای مدار روبرو V_{OL} و V_{OL} را بدست آورید. $V_{dd}=1^V,\ |Vtp|=|Vtn|=0.2^V,\ k_n'=2k_p'$

۱۰- تابع منطقی مدار شکل مقابل را بدست آورده بگویید نقش ترانزیستور M1 چه می تواند باشد؟

۱۱- تابع منطقی هریک از مدارات زیر را بدست آورده بگویید کدام خانواده منطقی است؟

شكل ب

شکل ج