Лекция 1

10 сентября 2024

1 Общие определения

Определение 1

Бинарным отношением в множестве E называется всякое подмножество $B\subseteq E\times E$.

Определение 2

Бинарное отношение \Re называется отношением эквивалентности в множестве E, если \Re

- 1. рефлексивно $(\forall a \in E \ (a, a) \in \Re)$.
- 2. симметрично $((a,b) \in \Re \implies (b,a) \in \Re)$.
- 3. транзитивно $((a,b) \in \Re \land (b,c) \in \Re \implies (a,c) \in \Re)$.

Замечание: вместо $(a,b) \in \Re$ в зависимости от типа множества E могут писать $a \sim b$ или a = b.

Определение 3

Бинарное отношение Ω называется отношением порядка в множестве E, если Ω

- 1. рефлексивно $(\forall a \in E \ (a, a) \in \Omega)$.
- 2. антисимметрично $((a,b) \in \Omega \land (b,a) \in \Omega \implies a=b)$.
- 3. транзитивно $((a,b) \in \Omega \land (b,c) \in \Omega \implies (a,c) \in \Omega)$.

 $\underline{\text{Замечание 1}}$: говорят, что отношение Ω упорядочивает E.

<u>Замечание 2</u>: запись $(a,b) \in \Omega$ эквивалентна записи $a \leq b$.

Замечание 3: если $\forall a,b \in E$ выполняется $\begin{bmatrix} (a,b) \in \Omega \\ (b,a) \in \Omega \end{bmatrix}$, то говорят, что множество E вполне упорядочено.

Определение 4

Внутренней бинарной операцией на E называют отображение $f: E \times E \to E$.

Определение 5

Множество E, снаряженное внутренней бинарной операцией \circ , называется группой, если

- 1. операция \circ ассоциотивна $(a \circ (b \circ c) = (a \circ b) \circ c)$.
- 2. существует нейтральный элемент ($\exists e \in E : \forall a \in E \ e \circ a = a$).
- 3. для каждого элемента существует симметричный ему элемент $(\forall a \in E \ \exists \overline{a} \in E : a \circ \overline{a} = e)$.

<u>Замечание 1</u>: если операция \circ коммутативна ($\forall a, b \in E \ a \circ b = b \circ a$), то группу называют коммутативной или абелевой.

<u>Замечание 2</u>: если операция \circ – это сложение, то группу называют аддитивной; если умножение, то мультипликативной.

2 Аксиомы действительных чисел

Определение 6

Множество $\mathbb R$ любой природы называется полем действительных чисел, если для его элементов выполнен следующий комплекс условий:

- 1. Аксиомы сложения.
 - 1_+ Определена внутренняя бинарная операция $+: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$.
 - 2_+ Операция + ассоциотивна $\forall a,b,c \in \mathbb{R} \ (a+b)+c=a+(b+c).$
 - 3_+ Существует 0 (нейтральный элемент) ($\exists 0 \in \mathbb{R} : \forall a \in \mathbb{R} \ 0 + a = a + 0 = a$).
 - 4_+ Для каждого элемента существует противоположный ему элемент $(\forall a \in \mathbb{R} \ \exists (-a) \in \mathbb{R} : a + (-a) = (-a) + a = 0).$
 - 5_+ Операция + коммутативна $(\forall a, b \in \mathbb{R} \ a + b = b + a)$.
- 2. Аксиомы умножения.
 - 1. Определена внутренняя бинарная операция $\cdot: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$.
 - 2. Операция ассоциотивна $\forall a, b, c \in \mathbb{R} \ (a \cdot b) \cdot c = a \cdot (b \cdot c)$.
 - 3. Существует 1 (нейтральный элемент) ($\exists 1 \in \mathbb{R} : \forall a \in \mathbb{R} \ 1 \cdot a = a \cdot 1 = a$).
 - 4. Для каждого элемента существует противоположный ему элемент ($\forall a \in \mathbb{R} \ \exists a^{-1} \in \mathbb{R} : a \cdot a^{-1} = a^{-1} \cdot a = 1$).
 - 5. Операция коммутативна ($\forall a,b \in \mathbb{R} \ a \cdot b = b \cdot a$).
- 3. Операция умножения дистрибутивна относительно операции сложения $(\forall a, b, c \in \mathbb{R} \ a \cdot (b + c) = a \cdot b + a \cdot c)$.
- 4. Аксиомы порядка.
 - 1_{\leq} Между элементами $\mathbb R$ есть отношение порядка \leq , то есть $\forall x,y\in\mathbb R$ либо выполнено $x\leq y$, либо нет.
 - $2 \le \forall x \in \mathbb{R} \ x \le x.$
 - $3 < (x \le y) \land (y \le x) \implies y = x.$
 - $4 \le (x \le y) \land (y \le z) \implies x \le z.$
 - $5 \le \forall x, y \in \mathbb{R} \implies \begin{bmatrix} x \le y \\ y \le x \end{bmatrix}$
- 5. Связь сложения и порядка: если $x, y, z \in \mathbb{R}$ и $x \leq y$, то $x + z \leq y + z$.
- 6. Свзяь умножения и порядка: если $x, y \in \mathbb{R}$ и $x \ge 0 \land y \ge 0$, то $x \cdot y \ge 0$.
- 7. Аксиома полноты: если X и Y непустые подмножества \mathbb{R} , причем $\forall x \in X, \ \forall y \in Y \ x \leq y,$ то $\exists c \in \mathbb{R} : x \leq c \leq y.$

2

<u>Замечание 1</u>: всякое множество, удовлетворяющее аксиомам (1), (3), 1., 2., 3., 4., называется телом. Если дополнительно выполнена аксиома 5., то множество называется числовым полем. <u>Замечание 2</u>: если для некоторого множества выполняются аксиомы 1_{\leq} , 2_{\leq} , 3_{\leq} , то говорят, что это множество частично упорядочено. Если дополнительно выполнена аксиома 4_{\leq} , то говорят, что множество вполне упорядочено.

3 Полезная литература

- Ильин-Позняк "Основы математического анализа"
- Зорич "Математический анализ"
- Фихтенгольц "Математический анализ"
- Демидович "Сборник задач и упражнений по математическому анализу"
- Бутузов, Медведев, Крутитская, Шишкин "Математический анализ в вопросах и задачах"