INDERJEET SINGH

Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, MO, USA

Tel: +1 (314) 728 2640 Email: inderjeet.singh@wustl.edu, Website: https://inder-math.github.io/

EDUCATION

Ph.D., Washington University in St. Louis , St. Louis, USA Environmental Engineering, mentor: Professor Randall V. Martin	2019-2025
Ph.D., Dalhousie University, Halifax, Canada Atmospheric science, mentor: Professor Randall V. Martin	2018-2019
M. Tech., Indian Institute of Technology Kharagpur, Kharagpur, India Earth System Science and Technology, mentor: Professor ANV Satyanarayana	2016
B.Tech., Punjab Technical University, Jalandhar, India	2012
Mechanical Engineering	

PROFESSIONAL EXPERIENCE

Research Assistant	2016-2018
with Professor ANV Satyanarayana at IIT Kharagpur, India	
Lecturer	2012-2014

Rayat-Bahra Institute of Engineering and Biotechnology, Mohali, Punjab

RESEARCH INTEREST

- Air quality modelling
- Radiative Transfer and Remote Sensing
- Atmospheric Turbulence

My research interest involves the development of analytical and physics-based approaches to understand the physical and chemical processes affecting the atmospheric composition. My research focuses primarily on the efficient representation of aerosols in the chemical transport model GEOS-Chem. This includes an accurate representation of mineral dust morphology, and vertical distribution of smoke during the wildfire events.

SCHOLARSHIPS AND AWARDS

AGU Outstanding Student Presentation Award (OSPA)	2024
Ministry of Human Resource Department (MHRD)	2014
Central Scientific and Industrial Research (CSIR) Scholarship	2014 (Declined)

SKILL

- Technical Model: GEOS-Chem, UNL-VRTM, LibRadtran
- **Programming:** Fortran, Python, and MATLAB
- Language: English, Punjabi, Hindi

PUBLICATIONS

- 5. **Inderjeet Singh,** Randall V. Martin. Evaluation of mass scattering efficiency from SPARTAN network against GEOS-Chem chemical transport model. (In preparation)
- 4. **Singh, I.**, Martin, R. V., van Donkelaar, A., Li, C., Zhang, Y., Zhu, H., Zhang, D., & Lyapustin, A. (2025). Effects of Fire Plume Height on the Geophysical Estimation of Surface Fine Particulate Matter from Satellite Aerosol Optical Depth during North American Wildfires. *ACS ES&T Air*. (link)
- 3. **Singh, I.**, Martin, R. V., Bindle, L., Chatterjee, D., Li, C., Oxford, C., et al. (2024). Effect of dust morphology on aerosol optics in the GEOS-chem chemical transport model, on UV-vis trace gas retrievals, and on surface area available for reactive uptake. Journal of Advances in Modeling Earth Systems, 16, e2023MS003746. (link)
- 2. Zhu, H., Martin, R. V., van Donkelaar, A., Hammer, M. S., Li, C., Meng, J., Oxford, C. R., Liu, X., Li, Y., Zhang, D., **Singh, I.**, and Lyapustin, A.: Importance of aerosol composition and aerosol vertical profiles in global spatial variation in the relationship between PM2.5 and aerosol optical depth, Atmos. Chem. Phys., 24, 11565–11584, 2024. (link)
- Zhu, H., Martin, R. V., Croft, B., Zhai, S., Li, C., Bindle, L., Pierce, J. R., Chang, R. Y.-W., Anderson, B. E., Ziemba, L. D., Hair, J. W., Ferrare, R. A., Hostetler, C. A., Singh, I., Chatterjee, D., Jimenez, J. L., Campuzano-Jost, P., Nault, B. A., Dibb, J. E., Schwarz, J. S., and Weinheimer, A.: Parameterization of size of organic and secondary inorganic aerosol for efficient representation of global aerosol optical properties, Atmos. Chem. Phys., 23, 5023–5042, 2023. (link)

PRESENTATION

- 4. Effects of fire plume height on geophysical estimation of surface PM_{2.5} from satellite AOD during extreme wildfire events of 2020 over North America, AGU conference, Washington DC, December 2024 (Poster)
- 3. Effects of fire plume height on geophysical estimation of surface PM_{2.5} from satellite AOD during extreme wildfire events of 2018 over North America, 11th International GEOS-Chem meeting, St. Louis, June 2024 (Poster)
- 2. Effects of dust non-sphericity on atmospheric modelling, 10th International GEOS-Chem meeting, St. Louis, June 2022 (Poster)
- 1. Effects of dust non-sphericity on atmospheric modelling, AGU conference, New Orleans, December 2021 (Poster)

TEACHING

Transport Phenomena in EECE (EECE 501)	Washington University	Teaching Assistant	Spring, 2020
Thermodynamics II in EECE (EECE 204)	Washington University	Teaching Assistant	Fall, 2020