引言

二维联合分布全面地反映了二维随机变量(*X*,Y)的取值及其概率规律. 而单个随机变量*X*,Y也具有自己的概率分布. 那么要问:二者之间有什么关系呢?

这一节里,我们就来探求这个问题.

第二节 边缘分布

- 一、边缘分布函数概念
- 二、离散型随机变量的边缘分布律
- 三、连续型随机变量的边缘密度函数
- 四、小节

3.2.1 边缘分布函数概念

1.定义

设F(x,y)为二维随机变量(X,Y)的分布函数,而X和Y又各自是一维随机变量,也具有分布函数,分别记为 $F_X(x)$ 和 $F_Y(y)$,分别称为(X,Y)关于X和关于Y的边缘分布函数(或边际分布函数),简称为X和Y的边缘分布函数。(X,Y)的分布函数F(x,y)可唯一确定X和Y的边缘分布函数。

3.2.1 边缘分布函数概念

1.定义

$$F_X(x) = P(X \le x) = P(X \le x, Y < \infty) = \lim_{y \to +\infty} F(x, y) = F(x, \infty)$$

 $F_Y(y) = P(Y \le y) = P(X < x, Y \le y) = \lim_{x \to +\infty} F(x, y) = F(\infty, y)$

一般地,若n维随机向量 $(X_1, X_2, ..., X_n)$ 的分布函数为 $F(x_1, x_2, ..., x_n)$,则 X_i 的边缘分布函数为

$$F_{X_i}(x_i) = F(+\infty, ..., +\infty, x_i, +\infty, ..., +\infty), i = 1, 2, ..., n$$

2. 离散型随机变量的边缘分布律

设二维离散型随机变量(X,Y)的联合分布律为 $P\{X=x_i,Y=y_j\}=p_{ij},$

$$i,j=1,2,\ldots$$

$$P\{X = x_i\} = \sum_{j=1}^{\infty} P(X = x_i, Y = y_j) = \sum_{j=1}^{\infty} Pij = pi \cdot, \quad i = 1, 2, ...,$$

$$P\{Y = y_j\} = \sum_{j=1}^{\infty} P(X = x_i, Y = y_j) = \sum_{j=1}^{\infty} Pij = p \cdot j, \quad j = 1, 2, ...,$$

分别称 $pi \cdot (i = 1, 2, ...,)$ 和 $p \cdot j (j = 1, 2, ...,)$ 为关于X和关于Y的边缘分布律,简称X和Y的边缘分布律。

XY	y_1	y_2	• • •	\boldsymbol{y}_{j}	• • •	$p_i. P\{X = x_i\}$
x_1	p_{11}	p_{12}	• • •	p_{1j}	• • •	$\sum_{j} p_{1j} p_{1\bullet}$
x_2	p_{21}	p_{22}	• • •	p_{2j}	• • •	
•		•		:	P{X	$\{x = x_i\} = \sum_{i=1}^{+\infty} p_{ij}, i = 1, 2, \dots;$
x_i	p_{i1}	p_{i2}	• • •	p_{ij}	• • •	$\sum_{i} p_{ij}$
•	:	:		:		j
$p_{\centerdot j}$	$\sum_{i} p_{i1}$	$\sum_{i} p_{ii}$	2	$\sum_{i} p_{ij}$	$P\{Y = $	$\{y_j\} = \sum_{i=1}^{+\infty} p_{ij}, j = 1, 2, \cdots$

则关于X的边缘分布律为

X	x_1	x_2	•••	x_n	•••
Pi·	<i>p</i> 1 ·	<i>p</i> 2 ·	•••	pn·	•••

关于Y的边缘分布律为

Y	y_1	y_2	•••	y_n	•••
$P \cdot j$	$p \cdot 1$	$p \cdot 2$	•••	$p \cdot n$	•••

二维离散型随机变量关于X和Y的边缘分布函数分别为

$$F_X(x) = F(x, +\infty) = \sum_{x_i \le x} \sum_{j=1}^{+\infty} p_{ij},$$

$$F_Y(y) = F(+\infty, y) = \sum_{y_j \le y} \sum_{i=1}^{+\infty} p_{ij}.$$

例 设随机变量 X在 1,2,3,4 四个整数中等可能的取值,另一个随机变量 Y在 1~X 中等可能的取一整数值.试求 (X,Y)的分布律,同时求出关于 X,Y的边缘分布律.

解: $\{X=i, Y=j\}$ 的取值情况是: i=1, 2, 3, 4, j取不大于i 的正整数.

由乘法公式得: $P\{X=i, Y=j\}=P\{Y=j \mid X=i\}P\{X=i\}=\frac{1}{i}\cdot\frac{1}{4}, i=1, 2, 3, 4, j \leq i.$

(X, Y) 的分布律为

X	1	2	3	4
1	$\frac{1}{4}$	0	0	0
2	1 8 1	$\frac{1}{8}$	0	0
3	$\frac{1}{12}$	$\frac{1}{12}$	$\frac{1}{12}$	0
4	$\frac{1}{16}$	$\frac{1}{16}$	$\frac{1}{16}$	$\frac{1}{16}$

X	1	2	3	4	$p_{i\bullet}$
1	$\frac{1}{4}$	0	0	0	$\frac{1}{4}$
2	$\frac{1}{8}$	$\frac{1}{8}$	0	0	$\frac{1}{4}$
3	$\frac{1}{12}$	$\frac{1}{12}$	$\frac{1}{12}$	0	$\frac{1}{4}$
4	1_	$\frac{1}{16}$	$\frac{1}{16}$	$\frac{1}{16}$	$\frac{1}{4}$
$p_{\bullet j}$	$\frac{16}{25}$	$\frac{13}{48}$	$\frac{7}{48}$	$\frac{3}{48}$	•

联合分布律为

X	1	2	3	4	$p_{i\bullet}$
1	$\frac{1}{4}$	0	0	0	$\frac{1}{4}$
2	$\frac{1}{8}$	$\frac{1}{8}$	0	0	$\frac{1}{4}$
3	$\frac{1}{12}$	$\frac{1}{12}$	$\frac{1}{12}$	0	$\frac{1}{4}$
4	1	1	$\frac{1}{16}$	$\frac{1}{16}$	$\frac{1}{4}$
$p_{\bullet j}$	$\frac{16}{25}$	$\frac{16}{13}$	$\frac{7}{48}$	$\frac{16}{3}$ $\frac{3}{48}$	

则关于X的边缘分布律为

X	1	2	3	4
	1	1	1	1
$p_{i\bullet}$	- 4	4	4	- 4

关于Y的边缘分布律为

Y	1	2	3	4
	25	13	7	3
$p_{\bullet j}$	48	48	48	48

注意

联合分布

边缘分布

3. 连续型随机变量的边缘密度函数

定义 设二维连续型随机变量(X,Y)具有密度函数f(x,y),其分布函数为

$$F(x,y)$$
,

$$F_X(x) = P(X \le x, Y < \infty) = \int_{-\infty}^{x} \left[\int_{-\infty}^{+\infty} f(x, y) dy \right] dx$$

$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy$$

为随机变量(X,Y)关于X的边缘密度函数(简称X的边缘密度函数).

同理可得随机变量(X,Y)关于Y的边缘密度函数 (简称Y的边缘密度函数)

$$f_Y(y) = \int_{-\infty}^{+\infty} f(x, y) dx$$

例3.2.3 设二维随机变量(X,Y)的密度函数f(x,y)为

$$f(x,y)=$$
 $\begin{cases} 1, \ 0 < x < 1, \ |y| < x, \ \mathbf{it} x X 和 Y$ 的边缘密度函数

解 X的边缘密度函数为

$$f_X(x) = \int_{-\infty}^{+\infty} f(x,y) dy = \begin{cases} \int_{-x}^{x} dy, & 0 < x < 1, \\ 0, & \text{i.e.} \end{cases} = \begin{cases} 2x, & 0 < x < 1, \\ 0, & \text{i.e.} \end{cases}$$

Y的边缘密度函数为

$$f_{Y}(y) = \int_{-\infty}^{+\infty} f(x,y) dx = \begin{cases} \int_{-y}^{1} dx, -1 < y \le 0, \\ \int_{y}^{1} dx, 0 < y < 1, \end{cases} = \begin{cases} 1 + y, -1 < y \le 0, \\ 1 - y, 0 < y < 1, \\ 0, \quad \text{其他.} \end{cases}$$

练习 设二维随机变量(X,Y)具有联合密度,

$$f(x,y)=$$
 $\begin{cases} 6, x^2 \leq y \leq x, \\ 0, \end{cases}$ 其他 **试求**X和Y的边缘密度函数 $f_X(x), f_Y(y)$

解 X的边缘密度函数为

$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy$$
$$= \begin{cases} \int_{x^2}^{x} 6 dy, 0 \le x \le 1, \\ 0, \quad \text{其他.} \end{cases}$$

$$f_X(x) = \begin{cases} 6(x - x^2, & 0 \le x \le 1, \\ 0, & \text{#d.} \end{cases}$$

练习 设二维随机变量(X,Y)具有联合密度,

$$f(x,y)=$$
 $\begin{cases} 6, x^2 \leq y \leq x, \\ 0, \end{cases}$ 其他 **试求**X和Y的边缘密度函数 $f_X(x), f_Y(y)$

解 Y的边缘密度函数为

$$f_{Y}(y) = \int_{-\infty}^{+\infty} f(x, y) dx$$

$$= \begin{cases} \int_{y}^{\sqrt{y}} 6 dx & 0 \le y \le 1, \\ 0, & \text{ i.e.} \end{cases}$$

$$f_Y(y) = \begin{cases} 6(\sqrt{y} - y), & 0 \le y \le 1, \\ 0, & \text{#th.} \end{cases}$$

$$0 \le y \le 1$$

例3.2.4 设(X,Y)~N(μ_1 , μ_2 , σ_1^2 , σ_2^2 ,ρ),即(X,Y)具有概率密度,

$$f(x,y) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} \exp\{-\frac{1}{2(1-\rho^2)} \left[\frac{(x-\mu_1)^2}{\sigma_1^2}\right] - 2\rho \frac{(x-\mu_1)(y-\mu_2)}{\sigma_1\sigma_2} + \frac{(y-\mu_2)^2}{\sigma_2^2} \right]\}$$

$$-\infty < x < +\infty, -\infty < y < +\infty$$

试求X和Y的边缘密度函数 $f_X(x)$, $f_Y(y)$.

解:由于

$$\frac{(y-\mu_2)^2}{\sigma_2^2} - 2\rho \frac{(x-\mu_1)(y-\mu_2)}{\sigma_1\sigma_2} = \left[\frac{y-\mu_2}{\sigma_2} - \rho \frac{x-\mu_1}{\sigma_1}\right]^2 - \rho^2 \frac{(x-\mu_1)^2}{\sigma_1^2}$$

$$f_{X}(x) = \frac{1}{2\pi\sigma_{1}\sigma_{2}\sqrt{1-\rho^{2}}} e^{\frac{-1}{2(1-\rho^{2})}\left[\frac{(x-\mu_{1})^{2}}{\sigma_{1}^{2}} - \rho^{2}\frac{(x-\mu_{1})^{2}}{\sigma^{2}}\right]} \frac{1}{\sigma_{1}^{2}}$$

$$\cdot \int_{-\infty}^{+\infty} e^{\frac{-1}{2(1-\rho^{2})}\left[\frac{y-\mu_{2}}{\sigma_{2}} - \rho\frac{x-\mu_{1}}{\sigma_{1}}\right]^{2}} dy$$

$$\Leftrightarrow : t = \frac{1}{\sqrt{1-\rho^{2}}} \left(\frac{y-\mu_{2}}{\sigma_{2}} - \rho\frac{x-\mu_{1}}{\sigma_{1}}\right) \quad \emptyset : dt = \frac{1}{\sigma_{2}\sqrt{1-\rho^{2}}} dy$$

$$f_{X}(x) = \frac{1}{2\pi\sigma_{1}} e^{\frac{-(x-\mu_{1})^{2}}{2\sigma_{1}^{2}}} \int_{-\infty}^{+\infty} e^{\frac{-t^{2}}{2}} dt$$

$$= \frac{1}{\sqrt{2\pi}\sigma_{1}} e^{\frac{-(x-\mu_{1})^{2}}{2\sigma_{1}^{2}}}, \quad -\infty < x < +\infty \quad X \sim N(\mu_{1}, \sigma_{1}^{2})$$

同理
$$f_Y(y) = \frac{1}{\sqrt{2\pi\sigma_2}} e^{-\frac{(y-\mu_2)^2}{2\sigma_2^2}}, -\infty < y < +\infty$$
Y~N(μ_2,σ_2^2).

即X的边缘分布是正态分布,且 $X\sim N(\mu_1,\sigma_1^2)$,Y的边缘分布也是正态分布, $Y\sim N(\mu_2,\sigma_2^2)$.

说明二维正态分布的两个边缘分布都是一维正态分布,且不依赖参数 ρ . 对于给定的参数 μ_1 , μ_2 , $\sigma_1{}^2$, $\sigma_2{}^2$, 不同的参数 ρ 对应不同的二维正态分布,但边缘分布一样,说明边缘分布一般确定不了联合分布。

联合分布 边缘分布

1. 与一维情形相对照,介绍了二维随机变量的边缘分布.

$$F_X(x) = P(X \le x) = P(X \le x, Y < \infty) = \lim_{y \to +\infty} F(x, y) = F(x, \infty)$$

$$F_Y(y) = P(Y \le y) = P(X < x, Y \le y) = \lim_{x \to +\infty} F(x, y) = F(\infty, y)$$

2. 请注意联合分布和边缘分布的关系:

由联合分布可以确定边缘分布;

但由边缘分布一般不能确定联合分布.