Started on	Friday, 13 October 2023, 7:42 PM
State	Finished
	Friday, 13 October 2023, 7:47 PM
Time taken	
	10.00 out of 10.00 (100 %)
Question 1	
Correct	
Mark 1.00 out of 1.00	
False alarm occurs	when
Select one:	
	ctly detects the absence of signal under \square_0
The test falsely	y detects the presence of signal under \square_0 🗸
The test falsely	y detects the absence of signal under $oldsymbol{\square}_1$
 The test correct 	ctly detects the presence of signal under $lacksquare$
Your answer is cor	
The correct answe	r is: The test falsely detects the presence of signal under \square_0
Question 2	
Correct	
Mark 1.00 out of 1.00	
Consider $\bar{\mathbf{s}} = [1$	$1 - 1 - 1]^T$ and $\sigma^2 = \frac{1}{2}$. The distribution of the test statistic $ar{f s}^Tar{f y}$ under ${\cal H}_0$ is
Select one:	
\bigcirc $\square(0,2)$	
~	
$\bigcirc \square(0,16)$	
\Box \Box $(0,4)$	
$\Box (0,8)$	
Your answer is cor	rect
The correct answe	ris: $\square(0,2)$
Question 3	
Correct	
Mark 1.00 out of 1.00	
Flag question	

Consider $\bar{\mathbf{s}} = [1 \quad 1 \quad -1]^T$, $\gamma = 1$ and $\sigma^2 = \frac{1}{2}$. The probability of false alarm for the signal detection problem described in lectures is

Select one:

- $Q\left(\frac{1}{\sqrt{2}}\right) \quad \checkmark$
- $Q\left(\frac{1}{4}\right)$
- $Q\left(\frac{1}{2}\right)$
- Q(1)

Your answer is correct.

The correct answer is: $Q\left(\frac{1}{\sqrt{2}}\right)$

Question **4**

Correct

Mark 1.00 out of 1.00

Detection occurs when

Select one:

- igcup The test correctly detects the absence of signal under igspace 0
- The test falsely detects the absence of signal under Mathcal{H 1}
- The test falsely detects the presence of signal under <a>\int_\text{mathcal{H 0}}
- The test correctly detects the presence of signal under mathcal (H 1)

~

Your answer is correct.

The correct answer is: The test correctly detects the presence of signal under Mathcal{H 1}

Question **5**

Correct

Mark 1.00 out of 1.00

Consider $\bar{\mathbf{s}} = [1 \quad -1 \quad 1]^T$ and $\sigma^2 = 2$. The distribution of the test statistic $\bar{\mathbf{s}}^T \bar{\mathbf{y}}$ under \mathcal{H}_1 is

Select one:

- $\mathcal{N}(2,16)$
- $\mathcal{N}(4,16)$

- $\mathcal{N}(4,8)$
- $\mathcal{N}(2,4)$

Your answer is correct.

The correct answer is: $\mathcal{N}(4.8)$

Question 6

Correct

Mark 1.00 out of 1.00

Consider $\bar{\mathbf{s}} = \begin{bmatrix} 1 & -1 & -1 & 1 \end{bmatrix}^T$, $\gamma = 1$ and $\sigma^2 = 2$. The probability of detection for the signal detection problem described in lectures is

Select one:

- $Q\left(-\frac{1}{2}\right)$
- $Q\left(-\frac{1}{2\sqrt{2}}\right)$
- $Q\left(\frac{1}{\sqrt{2}}\right)$
- $Q\left(-\frac{3}{2\sqrt{2}}\right) \quad \checkmark$

Your answer is correct.

The correct answer is: $Q\left(-\frac{3}{2\sqrt{2}}\right)$

Question **7**

Correct

Mark 1.00 out of 1.00

As
$$\gamma \to -\infty$$

Select one:

- $\bigcirc P_D \to 0, P_{FA} \to 0$
- $\bigcirc \quad P_D \rightarrow 0, P_{FA} \rightarrow 1$

Your answer is correct.

The correct answer is: $P_D \rightarrow 1, P_{FA} \rightarrow 1$

Question ${\bf 8}$

Correct

Mark 1.00 out of 1.00

 $\slash\hspace{-0.6em}{
ho}$ Flag question

The quantity Q(x), where $Q(\cdot)$ denotes the Gaussian Q -function, equals

Select one:

$$\int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt$$

Your answer is correct.

The correct answer is: $\int_{-\infty}^{-x} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt$

Question 9

Correct

Mark 1.00 out of 1.00

 $\ensuremath{\mathbb{P}}$ Flag question

For a Gaussian random variable $X \sim \mathcal{N}(1,4)$, the corresponding standard normal can be derived as

Select one:

$$\frac{X-3}{4}$$

$$\frac{X}{2}-2$$

$$\frac{X-2}{\sqrt{2}}$$

Your answer is correct.

The correct answer is: $\frac{X-1}{2}$

Question 10

Correct

Mark 1.00 out of 1.00

The ROC of the signal detection problem is given as

Select one:

$$Q(Q^{-1}(P_{FA}) - \sqrt{SNR})$$

$$Q\left(Q^{-1}(P_{FA}) - \sqrt{\frac{1}{SNR}}\right)$$

$$\bigcirc \quad Q(Q^{-1}(P_{FA}) - SNR)$$

$$\bigcirc Q\left(Q^{-1}(P_{FA}) - \frac{1}{SNR}\right)$$

Your answer is correct.

The correct answer is: $Q(Q^{-1}(P_{FA}) - \sqrt{SNR})$

Finish review