- 1. This exercise determines the splitting field K for the polynomial $f(x) = x^6 2x^3 2$ over \mathbb{Q} .
 - (a) Prove that f(x) is irreducible over \mathbb{Q} with roots the three cube roots of $1 \pm \sqrt{3}$.
 - (b) Prove that K contains the field $\mathbb{Q}(\sqrt{-3})$ of 3^{rd} roots of unity and contains $\mathbb{Q}(\sqrt{3})$, hence contains the biquadratic field $F = \mathbb{Q}(i, \sqrt{3})$. Take the product of two of the roots in (a) to prove that K contains $\sqrt[3]{2}$ and conclude that K is an extension of the field $L = \mathbb{Q}(\sqrt[3]{2}, i, \sqrt{3})$.
 - (c) Prove that $[L:\mathbb{Q}]=12$ and that K is obtained from L by adjoining the cube root of an element in L, so that $[K:\mathbb{Q}]=12$ or 36.
 - (d) Prove that if $[K:\mathbb{Q}] = 12$ then $K = \mathbb{Q}(\sqrt[3]{2}, i, \sqrt{3})$ and that $Gal(K/\mathbb{Q})$ is isomorphic to the direct product of the cyclic group of order 2 and S_3 . Prove that if $[K:\mathbb{Q}] = 12$ then there is a unique real cubic subfield in K, namely $\mathbb{Q}(\sqrt[3]{2})$.
 - (e) Take the quotient of the two real roots in (a) to show that $\sqrt[3]{2+\sqrt{3}}$ and $\sqrt[3]{2-\sqrt{3}}$ (real roots) are both elements of K. Show that $\alpha = \sqrt[3]{2+\sqrt{3}} + \sqrt[3]{2-\sqrt{3}}$ is a real root of the irreducible cubic equation $x^3 3x 4$ whose discriminant is -2^23^4 . Conclude that the Galois closure of $\mathbb{Q}(\alpha)$ contains $\mathbb{Q}(i)$ so in particular $\mathbb{Q}(\alpha) \neq \mathbb{Q}(\sqrt[3]{2})$.
 - (f) Conclude from (e) that $G = \operatorname{Gal}(K/\mathbb{Q})$ is of order 36. Determine all the elements of G explicitly and in particular show that G is isomorphic to $S_3 \times S_3$.
 - (g) Let $F = \mathbb{Q}(i, \sqrt{3})$, so K is Galois over F. Draw the lattice of all fields L with $F \subseteq L \subseteq K$, and draw the corresponding lattice of subgroups in Gal(K/F) (which is a *subgroup* of $Gal(K/\mathbb{Q})$ —what is its isomorphism type?)
- 2. Prove that the Galois group over \mathbb{Q} of $x^6 4x^3 + 1$ is isomorphic to the dihedral group of order 12. [Observe that the two real roots are inverses of each other.]
- 3. Let k be the field with 4 elements, t a transcendental over k, $F = k(t^4 + t)$ and K = k(t).
 - (a) Show that [K:F]=4. [You may quote results from previous homeworks.]
 - (b) Show that K is separable over F.
 - (c) Show that K is Galois over F.
 - (d) Describe the lattice of subgroups of the Galois group and the corresponding lattice of subfields of K, giving each subfield in the form k(r), for some rational function r.
- 4. Let K be a subfield of $\mathbb C$ maximal with respect to the property " $\sqrt{2} \notin K$." You may assume such a field K exists (it is easy to prove by Zorn's Lemma).
 - (a) Show that \mathbb{C} is algebraic over K.
 - (b) Prove that every finite extension of K in \mathbb{C} is Galois with Galois group a cyclic 2-group.
 - (c) Deduce that $[\mathbb{C}:K]$ is countable (and not finite).