FIT1047 Tutorial 8

Topics and goals

- Network layers and protocols, learn about addresses at various layers
- Application layer HTTP
- Familiarise yourself with some of the networking tools

Instructions

The tasks are supposed to be done in groups of two or three students.

Task 0: Basic knowledge

Briefly explain the following terms:

- 1. Bit rate, bandwidth
- 2. Latency
- 3. Networks layers, PDU, encapsulation

Task 1: "Browsing" the web

In this exercise, you will directly "talk" to a web server, without using a web browser. We will use a **telnet** program, which can establish a connection to a server and then send and receive textual data over that connection.

Figure 1 shows a screen shot of the PuTTY telnet client, which is installed on the Monash lab computers. The screenshot shows you how to set it up for this exercise: check the host name, port, connection type and "close window on exit".

When you click "Open", a black window will appear in which you can enter commands that are sent to the web server at www.csse.monash.edu. Your task is to request a particular page, which is at /~guidot/ on that server.

Note: If you are using Mac OS or Linux on your own machine, open a terminal window and type telnet www.csse.monash.edu 80 instead.

Figure 1: The PuTTY telnet client

1. The most basic form of request (defined in an older version of HTTP) looks like this:

GET /~guidot/

Try entering this request and have a look at the result.

2. The version of HTTP currently in use is 1.1. A request in this version must be composed of a GET line (ending in HTTP/1.1 to specify the newer protocol version), followed by a Host: line that identifies the host that the request is sent to (in this case it should be www.csse.monash.edu), followed by an empty line. Try out this type of request as well. What difference do you notice?

Task 2: Packet sniffing

A packet analyser (sometimes also called "packet sniffer") is a program that can log all packets that are received and transmitted over a network interface. We will be using Wireshark, a very popular open-source tool for packet analysis. You can download it on your own computer from www.wireshark.org, or use the version installed on the Monash lab computers.

This week, we will analyse a sequence of packets captured on Guido's network at home. You can download the log file that Wireshark produced from the FIT1047 Moodle site (week 7). The file is called Wireshark_http_example.pcap. The diagram in Figure 2 explains how Guido's computer is connected to the Monash web server.

- 1. Start Wireshark and load the capture file (see Fig. 3). After opening the file, the main window should look like the one in Fig. 4.
- 2. Select "frame" number 6 (as in Fig. 4). This frame shows a request sent from Guido's home computer to the web server at www.csse.monash.edu, requesting his homepage
- 3. Familiarise yourself with the three main sections (panes) of the Wireshark window:
 - The packet list pane displays a summary of each packet captured. When you click on a packet here, the other two panes are updated with the details for that packet.
 - The packet details pane below shows information about the selected packet.
 - The packet bytes pane displays the raw data for the selected packet. It highlights the data for the field that is selected in the packet details pane.

Navigate between the panes and explore the relationships between the displayed pieces of information.

4. Click on frame 6.

Figure 2: The network where the traffic was captured

Figure 3: Wireshark File menu

Figure 4: Wireshark main window

- a) How long is it in bytes?
- b) Which application layer protocol does it use?
- 5. There are five lines in the packet details pane for frame 6, each of which can be expanded by clicking on the "+" symbol.
 - a) Can you identify what they stand for?
 - b) Which protocols are being used?
 - c) What are the names of the PDUs for each protocol?
 - d) Recall that each protocol layer encapsulates the message from the layer above and adds a header. What are the sizes of the headers for each PDU used in frame 6?