

This is to certify that the following application annexed hereto is a true copy from the records of the Korean Intellectual Property Office.

출 원 번 호: 10-2002-0049010

Application Number

출 원 년 월 일 : 2002년 08월 19일 Date of Application AUG 19, 2002 PRIORITY DOCUMENT
SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH
RULE 17.1(a) OR (b)

출 원 인: 엘지이노텍 주식회사 Applicant(s) LG INNOTEC CO., LTD.

2003 년 08 월 19 일

투 허 청

COMMISSIONER同國

Ŷ*

【서지사항】

【서류명】 특허출원서

【권리구분】 특허

【수신처】 특허청장

【참조번호】 0003

【제출일자】 2002.08.19

【국제특허분류】 H01L

【발명의 명칭】 질화물 반도체 및 그 제조방법

【발명의 영문명칭】 Nitride semiconductor and fabrication method for thereof

【출원인】

【명칭】 엘지이노텍 주식회사

【출원인코드】 1-1998-000285-5

【대리인】

【성명】 허용록

[대리인코드] 9-1998-000616-9

【포괄위임등록번호】 2002-038994-0

【발명자】

【성명의 국문표기】 이석헌

【성명의 영문표기】LEE,Suk Hun【주민등록번호】690427-1951815

【우편번호】 506-302

【주소】 광주광역시 광산구 월계동 라인 7차 APT 706동 502호

· 【국적】 KR

【심사청구】 청구

【취지】 특허법 제42조의 규정에 의한 출원, 특허법 제60조의 규정에 의

한 출원심사 를 청구합니다. 대리인

허용록 (인)

【수수료】

【기본출원료】 16 면 29,000 원

 【가산출원료】
 0
 면
 0
 원

 【우선권주장료】
 0
 건
 0
 원

【심사청구료】 14 항 557,000 원

【합계】 586,000 원

【첨부서류】 1. 요약서·명세서(도면)_1통

【요약서】

[요약]

본 발명에 따른 질화물 반도체는, 기판과; 상기 기판 위에 형성된 GaN계 완충층 박막; 및 상기 GaN계 완충충 박막 위에 형성된 GaN계 단결정 막;을 포함한다.

여기서 본 발명에 의하면, 상기 GaN계 완충층 박막은 $Al_yIn_xGa_{1-x,y}N/In_\chi Ga_{1-x}N/GaN$ 의 3 중 구조로 적층 형성되거나, $In_xGa_{1-x}N/GaN$ 의 이중 구조로 적층 형성되거나, $In_xGa_{1-x}N/GaN$ 의 초격자 구조로 형성된다.

또한, 본 발명에 따른 질화물 반도체의 제조방법은, 기판 위에 GaN계 완충충 박막을 성장시키는 단계; 및 상기 성장된 GaN계 완충충 박막 위에 GaN계 단결정 막을 성장시키는 단계; 를 포함한다.

또한 본 발명에 의하면, 상기 GaN계 완충충 박막을 성장시킴에 있어, MOCVD 장비를 이용하여 500~800℃ 사이에서 성장시키며, 그 성장 두께는 50~800Å으로 하며, H₂ 및 N₂ 캐리어 가스를 공급하면서 TMGa, TMIn, TMAl 소스원을 유입시키고, 동시에 NH₃ 가스를 유입시켜 성장시키며, 상기 TMGa, TMIn, TMAl 소스원의 유량은 5~300μmol/min이며, 성장 압력은 100~700 torr사이로 한다.

【대표도】

도 1

【명세서】

【발명의 명칭】

질화물 반도체 및 그 제조방법{Nitride semiconductor and fabrication method for thereof}

【도면의 간단한 설명】

도 1은 본 발명에 따른 질화물 반도체의 제조방법에 의하여 형성된 질화물 반도체의 제 1 실시 예의 구성을 개략적으로 나타낸 단면도.

도 2는 본 발명에 따른 질화물 반도체의 제조방법에 의하여 형성된 질화물 반도체의 제 2 실시 예의 구성을 개략적으로 나타낸 단면도.

도 3은 본 발명에 따른 질화물 반도체의 제조방법에 의하여 형성된 질화물 반도체의 제 3 실시 예의 구성을 개략적으로 나타낸 단면도.

도 4는 본 발명에 따른 질화물 반도체의 제조방법에 의하여 제조된 LED 소자를 개략적으로 나타낸 단면도.

【발명의 상세한 설명】

【발명의 목적】

【발명이 속하는 기술분야 및 그 분야의 종래기술】

본 발명은 질화물 반도체에 관한 것으로서, 특히 기판 위에 성장되는 GaN계 단결정 박막과 기판의 열팽창 계수 및 격자상수의 차이에서 발생되는 결정결함을 줄이고 GaN계 질화물 반도체의 결정성을 향상시킴으로써, 성능을 향상시키고 신뢰성을 확보할 수 있는 질화물 반도체및 그 제조방법에 관한 것이다.

- © 일반적으로 GaN계 질화물 반도체는 그 응용 분야에 있어서 청색/녹색 LED의 광소자 및 MESFET, HEMT 등의 고속 스위칭, 고출력 소자인 전자소자에 응용되고 있다. 특히 청색/녹색 LED 소자는 이미 양산화가 진행된 상태이며 전세계적인 매출은 지수함수적으로 증가되고 있는 상황이다.
- 이와 같은 GaN계 질화물 반도체는 주로 사파이어 및 SiC 기판 위에서 성장된다. 그리고, 저온의 성장 온도에서 사파이어 기판 또는 SiC 기판 위에 Al_xGa_{1-x}N의 다결정 박막을 완충충 (buffer layer)으로 성장시키고, 이후 고온에서 상기 완충충 위에 양질의 GaN 계 단결정 박막을 성장시키는 방법을 통하여 GaN계 질화물 반도체가 제조되고 있다.
- ◈ 한편, GaN계 질화물 반도체의 성능을 향상시키고, 신뢰성을 보다 확보하기 위하여, 현재 새로운 완충층에 대한 모색 및 GaN계 질화물 반도체의 제조방법에 대한 연구가 활발하게 진행 되고 있는 실정이다.

【발명이 이루고자 하는 기술적 과제】

- 본 발명은, 기판 위에 성장되는 GaN계 단결정 박막과 기판의 열팽창 계수 및 격자상수의 차이에서 발생되는 결정결함을 줄이고 GaN계 질화물 반도체의 결정성을 향상시킴으로써, 성능을 향상시키고 신뢰성을 확보할 수 있는 질화물 반도체 및 그 제조방법을 제공함에 그 목적이 있다.
- <10> 또한 본 발명은, 이와 같은 질화물 반도체의 제조방법을 통하여 성능을 향상시키고 신뢰성을 확보할 수 있는 질화물 반도체 발광소자를 제공함에 다른 목적이 있다.

【발명의 구성 및 작용】

<11> 상기의 목적을 달성하기 위하여 본 발명에 따른 질화물 반도체는,

- :12> 기판과;
- :13> 상기 기판 위에 형성된 복수 개의 GaN계 완충충 박막; 및
- 14> 상기 GaN계 완충충 박막 위에 형성된 GaN계 단결정 막; 을 포함하는 점에 그 특징이 있다.
- <15> 여기서 본 발명에 의하면, 상기 GaN계 완충층 박막은 AlyInxGa1-x,yN/In xGa1-xN/GaN의 3
 중 구조(여기서, 0 ≤x ≤1, 0 ≤y ≤1)로 적층 형성된 점에 그 특징이 있다.
- 또한 본 발명에 의하면, 상기 GaN계 완충충 박막은 In_xGa_{1-x}N/GaN의 이중 구조로 적층 형성된 점에 그 특징이 있다.
- <17> 또한 본 발명에 의하면, 상기 GaN계 완충층 박막은 In_xGa_{1-x}N/GaN의 초격자 구조로 형성 된 점에 그 특징이 있다.
- <18> 또한, 상기의 목적을 달성하기 위하여 본 발명에 따른 질화물 반도체의 제조방법은,
- <19> 기판 위에 복수 개의 GaN계 완충층 박막을 성장시키는 단계; 및
- <20> 상기 성장된 GaN계 완충층 박막 위에 GaN계 단결정 막을 성장시키는 단계; 를 포함하는 점에 그 특징이 있다.
- <21> 여기서 본 발명에 의하면, 상기 GaN계 완충층 박막은 AlyInxGa1-x,yN/In xGa1-xN/GaN의 3
 중 구조로 적층 형성된 점에 그 특징이 있다.
- 또한 본 발명에 의하면, 상기 GaN계 완충층 박막은 In_xGa_{1-x}N/GaN의 2중 구조로 적층 형성된 점에 그 특징이 있다.
- 또한 본 발명에 의하면, 상기 GaN계 완충충 박막은 In_xGa_{1-x}N/GaN의 초격자 구조로 형성 된 점에 그 특징이 있다.

- 24> 또한 본 발명에 의하면, 상기 GaN계 완충층 박막을 성장시킴에 있어, MOCVD 장비를 이용하여 500~800℃ 사이에서 성장시키며, 그 성장 두께는 50~800Å으로 하며, H₂ 및 N₂ 캐리어 가스를 공급하면서 TMGa, TMIn, TMAI 소스원을 유입시키고, 동시에 NH₃ 가스를 유입시켜 성장시키는 점에 그 특징이 있다.
- '25> 또한 본 발명에 의하면, 상기 GaN계 완충충 박막을 성장시킴에 있어, 상기 TMGa, TMIn,

 TMA1 소스원의 유량은 5~300μmol/min이며, 성장 압력은 100~700 torr인 점에 그 특징이 있다.
- 또한, 상기의 다른 목적을 달성하기 위하여 본 발명에 따른 질화물 반도체 발광소자는,
- <27> 기판과;
- <28> 상기 기판 위에 형성된 GaN계 완충층 박막과;
- <29> 상기 GaN계 완충층 박막 위에 형성된 n-GaN 막의 제 1 전극층과;
- <30> 상기 제 1 전극층 위에 형성된 다중양자우물 구조의 활성충; 및
- <31> 상기 활성층 위에 형성된 p-GaN 막의 제 2 전극층; 을 포함하는 점에 그 특징이 있다.
- <32> 여기서 본 발명에 의하면, 상기 GaN계 완충충 박막은 AlyInxGa1-x,yN/In xGa1-xN/GaN의 3
 중 구조(여기서, 0 ≤x ≤1, 0 ≤y ≤1)로 적충 형성된 점에 그 특징이 있다.
- <33> 또한 본 발명에 의하면, 상기 GaN계 완충충 박막은 In_xGa_{1-x}N/GaN의 2중 구조로 적충 형성된 점에 그 특징이 있다.
- <34> 또한 본 발명에 의하면, 상기 GaN계 완충충 박막은 In_xGa_{1-x}N/GaN의 초격자 구조로 형성 된 점에 그 특징이 있다.

Ú,

이와 같은 본 발명에 의하면, 기판 위에 성장되는 GaN계 단결정 박막과 기판의 열팽창계수 및 격자상수의 차이에서 발생되는 결정결함을 줄이고 GaN계 질화물 반도체의 결정성을 향상시킴으로써, 성능을 향상시키고 신뢰성을 확보할 수 있는 장점이 있다.

- <36> 이하, 첨부된 도면을 참조하여 본 발명에 따른 실시 예를 상세히 설명한다.
- <37> 도 1은 본 발명에 따른 질화물 반도체의 제조방법에 의하여 형성된 질화물 반도체의 제 1 실시 예의 구성을 개략적으로 나타낸 단면도이다.
- 도 1을 참조하여 설명하면, 본 발명에 따른 질화물 반도체는 기판(예컨대, 사파이어 기판 또는 SiC 기판)과, 상기 기판 위에 형성된 AlyInxGa1-x,yN/In xGa1-xN/GaN의 3중 구조(여기서, 0 ≤x ≤1, 0 ≤y ≤1)의 완충충(buffer layer)을 구비하고 있으며, 또한 상기 완충충 위에 인듐(Indium) 도핑된 GaN 박막층 및 실리콘(Silicon)이 도핑된 n-GaN 전극층을 성장시킨 단결정층을 구비한다. 이때, 도 1의 (a) 및 (b)에 나타낸 바와 같이, 상기 GaN계 완충층 위에 적충 형성되는 단결정층은 In-doped GaN이 성장된 후에 Undoped GaN이 성장될 수도 있으며,
 Undoped GaN이 성장된 후에 In-doped GaN이 성장될 수도 있다.
- ○39> 그리고, 본 발명에 따른 질화물 반도체의 GaN계 완충층 박막은 MOCVD 장비를 이용하여 500~800℃ 사이에서 성장시키며, 그 완충층의 두께는 50~800Å으로 하고, H₂ 및 N₂ 캐리어 가 스를 공급하면서 TMGa, TMIn, TMAl 소스원을 유입시키고, 동시에 고순도(>99.9995) NH₃ 가스를 유입시켜 성장시킨다. 이때, 상기 TMGa, TMIn, TMAl 소스원의 유량은 5~300 μ mol/min이고, 성 장 압력은 100~700 torr로 한다.
- 상기 완충층의 구조는 기판과의 열팽창계수와 격자상수의 차이에서 발생되는 스트레스
 (stress)를 AlyGa_{1-y}N 및 In_xGa_{1-x}N 결합에서 효과적으로 상쇄시켜 상층에 있는 GaN 완충층 위

로 성장되는 GaN 시드(seed) 성장 및 융합 과정을 도우며, 기판과 완충충과의 계면에서 형성되는 디스로케이션(dislocation)과 같은 결정결함을 최소화시켜 양질의 GaN계 질화물 반도체를 얻을 수 있게 된다.

- □ 그리고, 본 발명에 따른 질화물 반도체의 GaN계 단결정 막은 MOCVD 장비를 이용하여 900~1100℃에서 TMGa, TMIn 소스원을 공급시켜 성장시키며, 도핑 원으로는 SiH₄ 가스를 이용한다. 여기서, n-GaN 층은 질화물 반도체 발광소자 제조시에 전극층으로 사용되며, 이때 n-GaN 전극층은 캐리어 농도가 1 ⋈0¹⁸/cm 이상이 되도록 한다. 또한, 상기 TMGa, TMIn 소스원을 유입시킴에 있어, 100~700 torr의 압력에서 0.1~700 μ mo1/min으로 공급시키도록 한다.
- 한편, 도 2는 본 발명에 따른 질화물 반도체의 제조방법에 의하여 형성된 질화물 반도체의 제 2 실시 예의 구성을 개략적으로 나타낸 단면도이다.
- 도 2를 참조하여 설명하면, 본 발명에 따른 질화물 반도체는 기판(예컨대, 사파이어 기판 또는 SiC 기판)과, 상기 기판 위에 In_xGa_{1-x}N/GaN의 2중 구조(여기서, 0 ≤x ≤1)로 적층형 성된 완충층을 구비하며, 또한 상기 완충충 구조 위에 인듐이 도핑된 GaN와 실리콘이 도핑된 전극층이 교대로 성장된 단결정층을 구비한다.
- 이는 도 1에 나타낸 GaN계 완충충의 구조와 같이, GaN계 완충충 위로 성장되는 GaN 시드 (seed) 성장 및 융합 과정을 도우며, 기판과 완충충과의 계면에서 형성되는 디스로케이션 (dislocation)과 같은 결정결함을 최소화시켜 양질의 GaN계 질화물 반도체를 얻을 수 있게 된다.

이때, 도 2의 (a) 및 (b)에 나타낸 바와 같이, 상기 GaN계 완충층 위에 적충 형성되는 단결정층은 In-doped GaN이 성장된 후에 Undoped GaN이 성장될 수도 있으며, Undoped GaN이 성장된 후에 In-doped GaN이 성장될 수도 있다.

여하 그리고, 이와 같은 구조를 갖는 질화물 반도체는 도 1을 참조하여 설명된 질화물 반도체의 제조방법과 유사한 과정을 통하여 성장되므로, 여기서는 그 제조방법에 대한 설명은 생략하기로 한다.

한편, 도 3은 본 발명에 따른 질화물 반도체의 제조방법에 의하여 형성된 질화물 반도체의 제 3 실시 예의 구성을 개략적으로 나타낸 단면도이다.

도 3을 참조하여 설명하면, 본 발명에 따른 질화물 반도체는 기판(예컨대, 사파이어 기판 또는 SiC 기판)과, 상기 기판 위에 성장된 In_xGa_{1-x}N/GaN의 초격자 (superlattice) 구조(여기서, 0 ≤x ≤1)를 갖는 완충충을 구비하며, 또한 인듐이 도핑된 단결정 GaN 박막충과 실리콘이 도핑된 GaN 전극충을 성장된 단결정층을 구비한다.

상기 완충층은 In_xGa_{1-x}N/GaN 층의 두께를 각각 30Å 미만으로 하여 교대로 성장시키는 방법으로써, 격자상수 및 열팽창계수의 차이에 의하여 발생되는 계면 결함을 감소시켜 양질의 질화물 반도체 소자를 얻을 수 있게 된다.

이때, 도 3의 (a) 및 (b)에 나타낸 바와 같이, 상기 GaN계 완충충 위에 적충 형성되는 단결정충은 In-doped GaN이 성장된 후에 Undoped GaN이 성장될 수도 있으며, Undoped GaN이 성 장된 후에 In-doped GaN이 성장될 수도 있다.

51> 그리고, 이와 같은 구조를 갖는 질화물 반도체는 도 1을 참조하여 설명된 질화물 반도체의 제조방법과 유사한 과정을 통하여 성장되므로, 여기서는 그 제조방법에 대한 설명은 생략하기로 한다.

한편, 도 4는 본 발명에 따른 질화물 반도체의 제조방법에 의하여 제조된 LED 소자를 개략적으로 나타낸 단면도이다.

도 4를 참조하여 설명하면, 본 발명에 따른 질화물 반도체 발광소자는 앞서 제시된 적충 구조의 GaN계 완충층을 이용하여 성장된 LED 소자의 단면 구조를 나타낸 것으로서, GaN계 완 충층 위에 성장된 인듐이 도핑된 GaN 층과 실리콘이 도핑된 n-GaN 층을 제 1 전극층으로 하고, 상기 전극층 위에 원하는 파장 대역을 조절할 수 있는 In_xGa_{1-x}N/GaN 다중우물구조(MQW: Multi-Quantum Well)의 활성층을 성장시키고, Mg 원자가 도핑된 p-GaN 층을 제 2 전극층으로 구비한다.

【발명의 효과】

이상의 설명에서와 같이 본 발명에 따른 질화물 반도체 및 그 제조방법에 의하면, 기판위에 성장되는 GaN계 단결정 박막과 기판의 열팽창 계수 및 격자상수의 차이에서 발생되는 결정 함을 줄이고 GaN계 질화물 반도체의 결정성을 향상시킴으로써, 성능을 향상시키고 신뢰성을 확보할 수 있는 장점이 있다.

【특허청구범위】

【청구항 1】

기판과;

상기 기판 위에 형성된 복수 개의 GaN계 완충충 박막; 및

상기 GaN계 완충층 박막 위에 형성된 GaN계 단결정 막;을 포함하는 것을 특징으로 하는 질화물 반도체.

【청구항 2】

제 1항에 있어서,

상기 GaN계 완충층 박막은 $Al_yIn_xGa_{1-x}$, yN/In_xGa_{1-x} N/GaN의 3중 구조(여기서, $0 \le x \le 1$, $0 \le y \le 1$)로 적충 형성된 것을 특징으로 하는 질화물 반도체.

【청구항 3】

제 1항에 있어서,

상기 GaN계 완충층 박막은 $In_xGa_{1-x}N/GaN$ 의 2중 구조(여기서, $0 \le x \le 1$)로 적충 형성된 것을 특징으로 하는 질화물 반도체.

【청구항 4】

제 1항에 있어서,

상기 GaN계 완충층 박막은 $In_xGa_{1-x}N/GaN$ 의 초격자 구조(여기서, $0 \le x \le 1)$ 로 형성된 것을 특징으로 하는 질화물 반도체.

【청구항 5】

기판과;

상기 기판 위에 형성된 GaN계 완충층 박막과;

상기 GaN계 완충충 박막 위에 형성된 n-GaN 막의 제 1 전극충과;

상기 제 1 전극층 위에 형성된 다중양자우물 구조의 활성층; 및

상기 활성층 위에 형성된 p-GaN 막의 제 2 전극층; 을 포함하는 것을 특징으로 하는 질화물 반도체 발광소자.

【청구항 6】

제 5항에 있어서,

상기 GaN계 완충층 박막은 $Al_yIn_xGa_{1-x}$, VIn_xGa_{1-x} 이 SF 구조(여기서, SF 이 SF 이 SF 작용 형성된 것을 특징으로 하는 질화물 반도체 발광소자.

【청구항 7】

제 5항에 있어서,

상기 GaN계 완충충 박막은 $In_xGa_{1-x}N/GaN$ 의 2중 구조(여기서, 0 ≤x ≤1)로 적충 형성된 것을 특징으로 하는 질화물 반도체 발광소자.

【청구항 8】

제 5항에 있어서,

상기 GaN계 완충층 박막은 $In_xGa_{1-x}N/GaN$ 의 초격자 구조(여기서, $0 \le x \le 1)$ 로 형성된 것을 특징으로 하는 질화물 반도체 발광소자.

【청구항 9】

기판 위에 GaN계 완충충 박막을 성장시키는 단계; 및

상기 성장된 GaN계 완충충 박막 위에 GaN계 단결정 막을 성장시키는 단계; 를 포함하는 것을 특징으로 하는 질화물 반도체의 제조방법.

【청구항 10】

제 9항에 있어서,

상기 GaN계 완충층 박막은 $Al_yIn_xGa_{1-x,y}N/In_xGa_{1-x}N/GaN$ 의 3중 구조(여기서, $0 \le x \le 1$, $0 \le y \le 1$)로 적층 형성된 것을 특징으로 하는 질화물 반도체의 제조방법.

【청구항 11】

제 9항에 있어서,

상기 GaN계 완충충 박막은 $In_xGa_{1-x}N/GaN$ 의 2중 구조(여기서, $0 \le x \le 1$)로 적충 형성된 것을 특징으로 하는 질화물 반도체의 제조방법.

【청구항 12】

제 9항에 있어서,

상기 GaN계 완충층 박막은 $In_xGa_{1-x}N/GaN$ 의 초격자 구조(여기서, $0 \le x \le 1)$ 로 형성된 것을 특징으로 하는 질화물 반도체의 제조방법.

【청구항 13】

제 9항에 있어서,

상기 GaN계 완충충 박막을 성장시킴에 있어, MOCVD 장비를 이용하여 500~800℃ 사이에서 성장시키며, 그 성장 두께는 50~800Å으로 하며, H₂ 및 N₂ 캐리어 가스를 공급하면서 TMGa,

TMIn, TMAl 소스원을 유입시키고, 동시에 NH₃ 가스를 유입시켜 성장시키는 것을 특징으로 하는 질화물 반도체의 제조방법.

【청구항 14】

제 13항에 있어서,

상기 GaN계 완충충 박막을 성장시킴에 있어, 상기 TMGa, TMIn, TMA1 소스원의 유량은 5~300 µ mol/min이며, 성장 압력은 100~700 torr인 것을 특징으로 하는 질화물 반도체의 제조방법.

【도면】

[도 1]

[도 2]

[도 3]

[도 4]

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ OTHER.

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.