(12)特許協力条約に基づいて公開された国際出願

(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2003年9月18日 (18.09.2003)

PCT

(10) 国際公開番号 WO 03/076626 A1

(TSUKAYA, Yuichi) [JP/JP]; 〒444-0874 愛知県 岡崎市

竜美南2-4-1 竜美が丘公務員宿舎3-41 Aichi (JP). キム キョンテ (KIM,Gyung-Tae) [KR/KR]; 604-714 釜山広

域市 砂下区下端2洞840番地 東亜大学校 生命資源

0021 東京都 新宿区 歌舞伎町2-41-12 岡埜ビルフ階

(74) 代理人: 下田昭, 外(SHIMODA,Akira et al.); 〒160-

(51) 国際特許分類7: C12N 15/29, 15/09, 9/02, A01H 1/00

(21) 国際出願番号:

PCT/JP03/02755

(22) 国際出願日:

2003年3月7日(07.03.2003)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ:

特願2002-67063 特願2002-248910

2002年3月12日(12.03.2002) JP 2002年8月28日(28.08.2002)

(81) 指定国 (国内): CN, US.

(84) 指定国 (広域): ヨーロッパ特許 (CH, DE, FR, GB, NL).

(71) 出願人 (米国を除く全ての指定国について): 科学技術 振興事業団 (JAPAN SCIENCE AND TECHNOLOGY CORPORATION) [JP/JP]; 〒332-0012 埼玉県 川口市

本町4-1-8 Saitama (JP).

(72) 発明者; および

(75) 発明者/出願人 (米国についてのみ): 塚谷 裕一

添付公開書類:

国際調査報告書

Tokyo (JP).

科学部内 Pusan (KR).

補正書

2文字コード及び他の略語については、定期発行される 各PCTガゼットの巻頭に掲載されている「コードと略語 のガイダンスノート」を参照。

(54) Title: GENE PARTICIPATING IN THE SYNTHESIS OF BRASSINOSTEROID

(54) 発明の名称: ブラシノステロイド合成に関与する遺伝子

(57) Abstract: Concerning brassinosteroid which is a plant hormone widely occurring in plants and showing physiological effects such as cell extension or cell division at an extremely low concentration, the most important synthase protein controlling the final step of its synthesis and the nucleic acid molecule encoding the same still remain unknown. An already known gene ROT3 (=CYP90C1, 51- to 1625-positions in SEQ ID NO:3, ACCESSION No. AB008097) is subjected to a homology research and thus a base sequence showing a 51% homology thereto is found out. As the results of examinations on this sequence, it is found out that this sequence is a novel gene (CYP90D1, SEQ ID NO:1) controlling the synthesis step of brassinosteroid having physiological effects of regulating plant size, etc. It is also found out that this gene CYP90D1 controls together with the above gene ROT3 (=CYP90C1) the final step of the synthesis of brassinosteroid.

(57) 要約: ブラシノステロイドは、植物界に広く分布し、極低濃度で細胞伸張や細胞分裂などの生理作用を示す植物ホルモンであるが、その合成の最終的な合成ステップを司る最も重要な合成酵素蛋白質とそれをコードする核 酸分子については不明であった。 既に見出していた遺伝子ROT3 (= CYP90C1、配列番号3の51~1625位、 ACCESSIONNo.AB008097)について相同性検索を行い、51%相同の塩基配列を見出し、この配列を検討した結果、 この配列が、植物体のサイズの制御など生理作用を有するブラシノステロイドの合成ステップを司る因子をコー ドする新規な遺伝子 (CYP90D1、配列番号1) であり、更に、発明者らは、この遺伝子CYP90D1が遺伝子ROT3 (=CYP90C1)と共同してブラシノステロイドの最終合成ステップを司っているということを見出した。

明細書

ブラシノステロイド合成に関与する遺伝子

5 技術分野

この発明は、プラシノステロイド合成に関与する遺伝子に関し、より詳細には、遺伝子 ROT3 (= CYP90C1、配列番号3の51~1625位)と共同してプラシノステロイドの最終合成ステップを司る新規な遺伝子(CYP90D1、配列番号1)に関する。

10

15

20

25

従来技術

ブラシノステロイドは、植物界に広く分布し、極低濃度で細胞伸張や細胞分裂 などの生理作用を示す植物ホルモンであり、40種以上の類縁体の総称である。

植物におけるブラシノステロイドの作用は極めて強く、さまざまな農業適応用の価値の高さが指摘され、関連特許も多数公開されている(例:特開平5-222090、特開平6-98648、特開平6-340689、特開平8-59408、特開平8-81310、特開平8-113503、特開平9-97など)。

ブラシノステロイドの生合成に関する研究も精力的に行われており、その合成 経路についても解明が進んでおり(例えば、細胞工学別冊 植物細胞工学シリー ズ10「植物ホルモンのシグナル伝達」p180-189 秀潤社(1998.8)藤岡ら「ブ ラシノステロイドの生合成と情報伝達」)、ブラシノステロイドの植物体内での合 成系はシトクロム P450 型蛋白質が司ることが示されている。

発明者らは、既にシロイヌナズナにおいて、シトクロム P450 ファミリーに属する ROTUNDIFOLIA3 (ROT3) 遺伝子を特定し (Gene & Development 12:2381-2391 (1998))、このROT3の発現を制御することにより葉や花の形状を変化させることができることを示した(Proc. Natl. Acad. Sci. USA vol. 96, pp. 9433-9437 (1999))。

発明が解決しようとする課題

上記のように、ブラシノステロイドの合成に関与するシトクロム p450 型タンパク質をコードする核酸分子等が特定されているが(特表 2000-508524)、これまで知られていた合成系の核酸分子の働きは、ブラシノステロイド合成系の比較的初期段階を司るものであったため、その作用を器官特異的にあるいは量的に調節できるような形で利用することは困難であった。更に、ブラシノステロイドの合成の最終的な合成ステップを司る最も重要な合成酵素蛋白質とそれをコードする核酸分子については不明であった。ここで最終的ステップとは casterone からブラシノイド(brassinoide、下記化学式)を合成するステップである(ブラシノステロイドの全合成系については第1図に示す。)。

10

15

20

25

5

課題を解決するための手段と発明の実施の形態

本発明者らは、既に見出していた遺伝子 ROT3 (= CYP90C1、配列番号3の5 1~1625位、ACCESSION No.AB008097) について相同性検索を行い、51% 相同の塩基配列を見出し、この配列を検討した結果、この配列が、植物体のサイズの制御など生理作用を有するブラシノステロイドの合成ステップを司る因子をコードする新規な遺伝子 (CYP90D1、配列番号1) であることを見出した。更に、発明者らは、この遺伝子 CYP90D1 が遺伝子 ROT3 (= CYP90C1) と共同してプラシノステロイドの最終合成ステップを司っているということを見出し、本発明を完成させるに至った。

本発明では、生理活性を実際に示すプラシノステロイド合成系を、これら ROT3 (= CYP90C1) 及び CYP90D1 により制御することを可能とする点で、従来法とは一線を画す。

即ち、単独の ROT3 (= CYP90C1)を植物体全体で発現させると葉及び花器官でのみ効果を発揮し、しかも縦軸方向のみに効果を及ぼすことが判明している。

25

花器官とは葉が変形したものであり、遺伝子による形態制御の形態に共通性がある。

しかし、ROT3 (= CYP90C1)をCYP90D1 と組みあわせると、植物体全体に作用する。これら ROT3 (= CYP90C1)及びCYP90D1 の核酸分子及びこれのコードするタンパク質を人為的に操作することで、花や葉の形状を意図したとおりに同時に変形させることも、また植物体の背丈や葉の形状をほとんど変えることなく、花の形状のみを変えることもできる。

即ち、本発明は、(A)(1)又は(2)の塩基配列から成る遺伝子である。

- (1) 配列番号1の塩基配列
- 10 (2) 下記いずれかのタンパク質をコードする塩基配列
 - (a) 配列番号2のアミノ酸配列から成るタンパク質
 - (b) 配列番号2のアミノ酸配列において1若しくは数個のアミノ酸が欠失、 置換若しくは付加されたアミノ酸配列から成り、かつその発現によりブラシノス テロイドの合成を促すタンパク質
- 15 本発明は更に、(B)(1)又は(2)の塩基配列及び(3)又は(4)の塩基 配列を有するポリヌクレオチドである。
 - (1) 配列番号1の塩基配列
 - (2) 下記いずれかのタンパク質をコードする塩基配列
 - (a) 配列番号2のアミノ酸配列から成るタンパク質
- 20 (b) 配列番号2のアミノ酸配列において1若しくは数個のアミノ酸が欠失、 置換若しくは付加されたアミノ酸配列から成り、かつその発現によりプラシノス テロイドの合成を促すタンパク質
 - (3) 配列番号3の51~1625位の塩基配列
 - (4) 下記いずれかのタンパク質をコードする塩基配列
 - (c)配列番号4のアミノ酸配列から成るタンパク質
 - (d) 配列番号4のアミノ酸配列において1若しくは数個のアミノ酸が欠失、 置換若しくは付加されたアミノ酸配列から成り、かつその発現によりプラシノス テロイドの合成を促すタンパク質

また本発明は、i)プロモーター及び上記(A)の遺伝子を有し、該遺伝子が該

25

プロモーターに対して順方向に連結されているポリヌクレオチド、ii)プロモーター及び上記(A)の遺伝子又はその部分配列を有し、該遺伝子又は該部分配列が該プロモーターに対して逆方向に連結されているポリヌクレオチド、iii)プロモーター及び上記(B)のポリヌクレオチドを有し、該塩基配列のいずれもが該プロモーターに対して順方向に連結されているポリヌクレオチド、又は iv)プロモーター及び上記(B)のポリヌクレオチド又はそれらの部分配列を有し、該塩基配列の少なくとも一方又はそれらの部分配列の少なくとも一方が該プロモーターに対して逆方向に連結されているポリヌクレオチドである。

ここで用いるプロモーターとしては、詳細は後述するが、カリフラワーモザイ 10 クウィルスの 35S プロモーター・熱ショックプロモーター・化学物質誘導性プロモーター等が挙げられる。またプロモータ及び上記遺伝子の結合方法に特に制限は無く、通常の遺伝子工学的手法に従って適宜行うことができる。

更に本発明は、上記のいずれかの遺伝子又はポリヌクレオチドを含有するプラスミドであり、上記のいずれかの遺伝子又はポリヌクレオチドにより形質転換された植物である。

更に、本発明は、このポリヌクレオチドを含有するプラスミドである。ここで 用いるプラスミドとして、TiプラスミドのpBI-121プラスミド等のバイナリーベクターが挙げられる。

また、本発明の適用できる植物は、種子植物全般である。

20 このような植物を形質転換するには、通常の遺伝子工学的手法を用いて、本発明の遺伝子を上記プラスミドに挿入し、上記植物を形質転換することができる。

また、本発明は、上記(A)の遺伝子又は上記(B)のポリヌクレオチドにより植物を形質転換し、該遺伝子又は該ポリヌクレオチドを発現させるか又はその発現を抑制することにより、該植物の形態を変化させる方法であり、更に、上記のいずれかの遺伝子又はポリヌクレオチドにより形質転換された植物に前記プロモーターに応じた刺激を与えることにより、該植物の形態を変化させる方法であり、これらのいずれかの方法で形態が変化した植物である。

本発明は、また、以下(a)又は(b)のタンパク質である。

(a) 配列番号2のアミノ酸配列から成るタンパク質

25

(b) 配列番号2のアミノ酸配列において1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列から成り、かつその発現によりプラシノステロイドの合成を促すタンパク質

更に、本発明は、このタンパク質及び(c)又は(d)のタンパク質から成る タンパク質の混合物又は複合物である。

- (c) 配列番号4のアミノ酸配列から成るタンパク質
- (d)配列番号4のアミノ酸配列において1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列から成り、かつその発現によりプラシノステロイドの合成を促すタンパク質
- 10 CYP90D1 及び ROT3 (= CYP90C1) の核酸分子及びこれのコードするタンパク 質は、以下のような操作により、人為的に操作することができる。
 - (1)人為的に操作可能なプロモータに CYP90D1 (配列番号1)及び ROT3 (= CYP90C1、配列番号3の51~1625位)の核酸分子を結合させたものを、適宜Tiプラスミド等の公知手段を用いて、植物に導入し、外的刺激をプロモータに与え、これら遺伝子の発現をコントロールする。ここで使用できるプロモーターの例として以下のものが挙げられる。
 - ・35S プロモータ (構成的に発現できる。)
 - 熱ショックプロモータ (温度依存的に発現できる。)
- Dex 誘導性プロモータ (デキサメタゾンを投与することで発現をコントロー20 ルできる。)
 - ・ペチュニア CHS-A プロモータ (花弁の着色する性質の植物においては花弁 特異的発現、シロイヌナズナなどでは花弁特異的発現をしないが、糖を投与する ことで茎葉で発現できる。)

等が挙げられるが、その他、植物の分野で公知の使用可能なプロモータを用いて もよい。

(2) ROT3 あるいは CYP90D1 の機能を抑える方法:

アンチセンスRNA法 (本来の向きと正反対に遺伝子領域を読むように改変した遺伝子を導入する方法) やRNA i 法 (遺伝子領域の一部を正逆タンデムにつないだものをつくり、これをまとめて読むように改変した遺伝子を導入する方法)

により、特定の遺伝子の機能を抑えることができる。本発明において、この方法により遺伝子発現を抑えることができる。いずれの場合も、標的となる遺伝子配列 (CYP90D1 (配列番号1)及びROT3 (= CYP90C1、配列番号3の51~1625位))が分かっているため、ねらい打ちができる。

5 (3)組み合わせる方法:

古典遺伝学的に、それぞれ遺伝子(CYP90D1(配列番号 1)及び ROT3(= CYP90C1、配列番号 3 の 5 1 ~ 1 6 2 5 位))の改変株を作っておき、それらの間で掛け合わせによって作る方法と、直接遺伝子導入をまとめて行なう方法とが可能です。

10 (4)前駆体発酵方法:

15

プラシノステロイド合成系のうち、これまで知られてきた遺伝子の少なくとも一部の遺伝子では、酵母菌で発現させたときに、実際に酵素活性を示した、という成功例がある。このような方法により、*ROT3 及び CYP90D1 の*組み合わせ、又はそれぞれを酵母菌など真核細胞で発現させておいて、そこに前駆体を与えることでカスタステロンあるいはブラシノライド(最終産物で、かつ活性物質)を人工合成する。

図面の簡単な説明

第1図は、ブラシノステロイドの全合成系を示す。

第2図は、シロイズナズナの野生株(Ws-2)(No.1)、製造例1の株(ROT3の機能抑制)(No.2)、及び製造例2で作製した株(ROT3及びCYP90D1の機能抑制)(No.3及び4)を同条件で栽培した葉の形状を示す。No.3は効果がやや弱い株、No.4は効果が強く出た株である。

第3図は、ROT3 及び CYO90D1 の機能不全の株にブラシノステロイド合成系中 11体及びブラシノライドを投与した後の葉の形状を示す。 Control:何も 投与しない、6-D-CT:6-Deoxocathasteroneを投与(以下同じ。)、6 -D-TE:6-Deoxoteasterone、6-D-3DT:3-Dehydro-6deoxoteasterone、6-D-TY:6-Deoxotyphasterol、6-D-CS: 6-Deoxocastasterone、CT:Cathasterone、TE:Teasterone、3DT:

3-Dehydroteasterone, TY: Typhasterol, CS: Castasterone, BL: Brassinolide

発明の効果

10

15

20

5 従来の、植物に顕著な生理作用を有するステロイド化合物の合成ステップ制御 に関する発明は、いくつか実用面で問題点を有していた。

即ち、従来解明されていたブラシノステロイド合成系の制御因子は、合成系の早期ステップに関するものであったため、例えばその合成系をトランスジェニック植物において強発現させると、植物体全体が徒長し、大型化する。これは特殊な用途以外には、実際には利用価値がなかった。逆にその合成系をトランスジェニック植物系を使ってストップさせると、植物体全体が著しく小型化し、これも特殊な用途以外には、実際には利用価値がなかった。即ち、従来法によって植物体全体が変化してしまうこと、しかもその変化が価値の低いものであることが問題である。実際に応用的に利用価値のあるトランスジェニック植物とは、例えば花井園芸上では花だけが大きい、あるいは葉のみが小さいものであり、蔬菜改良についていえば、葉のみが大きい、といったものである。そのためには、従来法に関しては、特殊な発現調節システム等を組み合わせないかぎり解決が困難であった。しかし、本発明の示すように、ROT3 (= CYP90C1)と CYP90D1 を共同して用いることにより、特定の器官のみ特定の方向(特に、縦方向)へのサイズの制御や植物体全体のサイズの制御も可能になった。

また、本発明において、ROT3 (= CYP90C1)及び CYP90D1 が共同して最終ステップを支配していることを解明した。そのため、ブラシノステロイドの化学合成系として利用した様々な工業的利用が可能になる。

25 以下、実施例により本発明を例証するが、これらは本発明を制限することを意 図したものではない。

製造例1

ROT3の機能抑制には、ROT3遺伝子の機能欠損型変異体rot3-1(Tsuge et al.

Development 122: 1589-1600 (1996)に報告した株)を用いた。これを常 法により無菌は種の後、23 度恒明条件で培養した。

製造例2

5 一方、ROT3 及び CYP90D1 の両方の機能抑制には、まず ROT3homolog (CYP90D1)を特異的に増幅するプライマーセット

ROT3h-cDNA-for:5'-GTTAAAACACTAATGGACAC-3'(配列番号5)

ROT3h-cDNA-rev:5'-TGATTTATATTCTTTTGATCC-3'(配列番号6)

により CYP90D1 の cDNA (配列番号1) をシロイヌナズナから単離した。一方、

10 汎用ベクターpBI121 にハイグロマイシン耐性遺伝子を選択マーカーを加え、更にその中の GUS タンパクコード領域を取り除き、そこに前述の CYP90D1 (配列番号1) のクローンを、本来と逆向きに Cauliflower mosaic Virus 35S プロモーターで読まれるように組み込んだ。これをアグロバクター (C58C1 Rifresistant)に導入し、常法に従い培養懸濁液を用いて、in planta 法によりシロイヌナズナ rot3-1 変異体に導入した。その形質転換体をハイグロマイシンで選抜の上、自家受粉により導入遺伝子がホモに入っている個体を作出した。常

法により無菌は種の後、23度恒明条件で培養した。

実施例1

20 シロイズナズナの野生株 (W s - 2)、製造例 1 の株 (ROT3 の機能抑制) 及び 製造例 2 で作製した株 (ROT3 及び CYP90D1 の機能抑制) を同条件で栽培した葉 の形状を第 2 図に示す。

ROT3 (第2図-2) の機能抑制したものは、野生株 (第2図-1) と比べ葉が 縦方向にのみ縮まっているのに対し、ROT3 及び CYP90D1 の両方の機能抑制した もの (第2図-3及び4) は、これらに比べ顕著に葉が縮まっている。即ち、ROT3 と CYP90D1 とは共同してブラシノステロイドの合成を司る遺伝子であることが 分かる。

<u>実施例2</u>

25

15

20

製造例2で作製した ROT3 及び CYO90D1 の機能不全の株を、種子から無菌培 養した。培地は 2%(w/v)のスクロース入り MS 培地(0.2% ゲルライトで固化) を使い、常法により無菌は種の後、23度恒明条件で培養した。

一方、ブラシノステロイド合成系中間体(6-D-CT:6-Deoxocathasterone, 6-D-TE:6-Deoxoteasterone, 6-D-3DT:3-Dehydro-6-deoxoteasterone, 6-D-TY: 6-Deoxotyphasterol, 6-D-C S : 6-Deoxocastasterone, C T : Cathasterone, T E : Teasterone, 3DT: 3-Dehydroteasterone, TY: Typhasterol, CS: Castasterone) 及びブラシノライド (BL) (BLは和光純薬より購入(富士 化学工業製)、その他のプラシノステロイドは理研・藤岡昭三博士及び上越教育 10 大・高津戸秀博士より分与された。)のそれぞれの水溶液(濃度 $0.1 \mu M/1$) を用意した。

これらの水溶液に上記植物 (ROT3 及び CYO90D1 の機能不全の株) が水没する ようにして、ゆっくりと振盪培養した。葉柄の処理の場合は、植物を無菌的に取 り出し、メスにより葉柄を切り出して、同様の処理を行った。それらの葉の写真 を第3図に示す。

第3図より、ROT3 及び CYO90D1 の両遺伝子の機能欠失体に対し、ブラシノス テロイド各誘導中間体は効果を示さないが、最終生産物であるプラシノライド(B L) を与えたものは葉が大きく、顕著な効果を示した。即ち、ブラシノステロイ ドの合成ステップの最終生成物であるプラシノライドの合成をROT3 と CYP90D1 とが共同で支配していることがわかる。

実施例3

シロイヌナズナの野生株 (Ws-2)、製造例1で作製した株 (ROT3 の機能抑 制、rot3-1 と rot3-5) 及び製造例3で作製した株 (ROT3 及び CYP90D1 の機 25 能抑制、rot3/CYP90D1) における各プラシノステロイドの量を測定した。この 量は、植物体のロゼット時期に地上部を刈り取り、凍結乾燥の後、HPLC及び GC-MSを用いて測定した。その結果を表1に示す。

	ng/g						
	Ws-2	rot3-1	rot3-5	rot3/CYP90D1			
6-Deoxoteasterone	0.05	0.19	0.11	0.26			
3-Deoxotyphasterol	2.30	3.49	4.30	0.38			
6-Deoxocastasterone	2.60	1.88	4.00	0.034			
Teasterone	-	0.004	0.02				
Typhasterol	0.27	0.38	0.46	0.014			
Castasterone	0.28	0.31	0.50	0.020			
Brassinolide	0.20	0.04	0.06	- ·			

注:表中(-) で示したところは、測定限界(0.001ng/g)以下であったことを示す。

ROT3 を抑制したものは (rot3-1 及び rot3-5)、ブラシノライドの生成を顕著に抑制し、その結果それ以前のプラシノステロイド (特に、Castasterone) の生成量が上昇していることがわかる。しかし、ROT3 の抑制によりブラシノライドの生成を完全に止めるに至っていない。即ち、rot3 はそれのみではプラシノライドの生成を完全に制御しているわけではないことも同時に示されている。

一方、ROT3 及び CYP90D1 の機能抑制したものについては、ブラシノステロイドの合成系のなかでブラシノライド (brassinolide) の量が極端に減少しており、ROT3 及び CYP90D1 の両者の機能を抑制すると、castasterone からブラシノライド (brassinolide) への合成が完全に抑制されることがわかる。即ち、ROT3 と CYP90D1 とが共存することによって初めてブラシノライドの生成を完全に制御していることが示されている。

10

5

請求の範囲

- 1. (1) 又は(2) の塩基配列から成る遺伝子。
- (1)配列番号1の塩基配列
- 5 (2) 下記いずれかのタンパク質をコードする塩基配列
 - (a) 配列番号2のアミノ酸配列から成るタンパク質
 - (b)配列番号2のアミノ酸配列において1若しくは数個のアミノ酸が欠失、 置換若しくは付加されたアミノ酸配列から成り、かつその発現によりプラシノス テロイドの合成を促すタンパク質
- 10 2. (1) 又は(2) の塩基配列及び(3) 又は(4) の塩基配列を有するポリヌクレオチド。
 - (1)配列番号1の塩基配列
 - (2) 下記いずれかのタンパク質をコードする塩基配列
 - (a) 配列番号2のアミノ酸配列から成るタンパク質
- 15 (b)配列番号2のアミノ酸配列において1若しくは数個のアミノ酸が欠失、 置換若しくは付加されたアミノ酸配列から成り、かつその発現によりプラシノス テロイドの合成を促すタンパク質
 - (3)配列番号3の51~1625位の塩基配列
 - (4) 下記いずれかのタンパク質をコードする塩基配列
- 20 (c)配列番号4のアミノ酸配列から成るタンパク質
 - (d)配列番号4のアミノ酸配列において1若しくは数個のアミノ酸が欠失、 置換若しくは付加されたアミノ酸配列から成り、かつその発現によりプラシノス テロイドの合成を促すタンパク質
- 3. プロモーター及び請求項1に記載の遺伝子を有し、該遺伝子が該プロモー 25 ターに対して順方向に連結されているポリヌクレオチド。
 - 4. プロモーター及び請求項1に記載の遺伝子又はその部分配列を有し、該遺伝子又は該部分配列が該プロモーターに対して逆方向に連結されているポリヌクレオチド。
 - 5. プロモーター及び請求項2に記載のポリヌクレオチドを有し、該塩基配列

のいずれもが該プロモーターに対して順方向に連結されているポリヌクレオチド。

- 6. プロモーター及び請求項2に記載のポリヌクレオチド又はそれらの部分配列を有し、該塩基配列の少なくとも一方又はそれらの部分配列の少なくとも一方 が該プロモーターに対して逆方向に連結されているポリヌクレオチド。
- 5 7. 請求項1~6のいずれか一項に記載の遺伝子又はポリヌクレオチドを含有 するプラスミド。
 - 8. 請求項1~6のいずれか一項に記載の遺伝子又はポリヌクレオチドにより 形質転換された植物。
- 9. 請求項1に記載の遺伝子又は請求項2に記載のポリヌクレオチドにより植 10 物を形質転換し、該遺伝子又は該ポリヌクレオチドを発現させるか又はその発現 を抑制することにより、該植物の形態を変化させる方法。
 - 10. 請求項3~6のいずれか一項に記載の遺伝子又はポリヌクレオチドにより形質転換された植物に前記プロモーターに応じた刺激を与えることにより、該植物の形態を変化させる方法。
- 15 11. 請求項9又は10に記載の方法で形態が変化した植物。
 - 12. 以下(a)又は(b)のタンパク質。
 - (a) 配列番号2のアミノ酸配列から成るタンパク質
 - (b) 配列番号2のアミノ酸配列において1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列から成り、かつその発現によりプラシノステ
- 20 ロイドの合成を促すタンパク質
 - 13. 請求項12に記載のタンパク質及び(c)又は(d)のタンパク質から 成るタンパク質の混合物又は複合物。
 - (c) 配列番号4のアミノ酸配列から成るタンパク質
- (d) 配列番号4のアミノ酸配列において1若しくは数個のアミノ酸が欠失、置 25 換若しくは付加されたアミノ酸配列から成り、かつその発現によりブラシノステロイドの合成を促すタンパク質

補正書の請求の範囲

補正書の請求の範囲 [2003年6月10日(10.06.03) 国際事務局受理:出願当初の請求の範囲7—10及び13は補正された;出願当初の請求の範囲1,3,4及び12は取り下げられた;他の請求の範囲は変更なし。(2頁)]

1. (削除)

5

- 2. (1) 又は(2) の塩基配列及び(3) 又は(4) の塩基配列を有するポ リヌクレオチド。
 - (1) 配列番号1の塩基配列
 - (2) 下記いずれかのタンパク質をコードする塩基配列
 - (a) 配列番号2のアミノ酸配列から成るタンパク質
 - (b) 配列番号2のアミノ酸配列において1若しくは数個のアミノ酸が欠失、
- 10 置換若しくは付加されたアミノ酸配列から成り、かつその発現によりブラシノス テロイドの合成を促すタンパク質
 - (3)配列番号3の51~1625位の塩基配列
 - (4) 下記いずれかのタンパク質をコードする塩基配列
 - (c) 配列番号4のアミノ酸配列から成るタンパク質
- 15 (d)配列番号4のアミノ酸配列において1若しくは数個のアミノ酸が欠失、 置換若しくは付加されたアミノ酸配列から成り、かつその発現によりプラシノス テロイドの合成を促すタンパク質
 - 3. (削除)
 - 4. (削除)
- 20 5. プロモーター及び請求項2に記載のポリヌクレオチドを有し、該塩基配列 のいずれもが該プロモーターに対して順方向に連結されているポリヌクレオチド。
 - 6. プロモーター及び請求項2に記載のポリヌクレオチド又はそれらの部分配列を有し、該塩基配列の少なくとも一方又はそれらの部分配列の少なくとも一方 が該プロモーターに対して逆方向に連結されているポリヌクレオチド。
- 25 7. (補正後) 請求項2、5又は6に記載の遺伝子又はポリヌクレオチドを含有するプラスミド。
 - 8. (補正後) 請求項2、5又は6に記載の遺伝子又はポリヌクレオチドにより 形質転換された植物。
 - 9. (補正後) 請求項2に記載のポリヌクレオチドにより植物を形質転換し、該

遺伝子又は該ポリヌクレオチドを発現させるか又はその発現を抑制することにより、該植物の形態を変化させる方法。

- 10. (補正後) 請求項5又は6に記載の遺伝子又はポリヌクレオチドにより形質転換された植物に前記プロモーターに応じた刺激を与えることにより、該植物の形態を変化させる方法。
- 11. 請求項9又は10に記載の方法で形態が変化した植物。
- 12. (削除)
- 13. (補正後) (a) 又は(b) のタンパク質及び(c) 又は(d) のタンパク質から成るタンパク質の混合物又は複合物。
- 10 (a) 配列番号2のアミノ酸配列から成るタンパク質
 - (b) 配列番号2のアミノ酸配列において1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列から成り、かつその発現によりプラシノステロイドの合成を促すタンパク質
 - (c) 配列番号4のアミノ酸配列から成るタンパク質
- 15 (d) 配列番号4のアミノ酸配列において1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列から成り、かつその発現によりプラシノステロイドの合成を促すタンパク質

第1図

2/2

第2図

第3図

1/8

SEQUENCE LISTING

<110> Japan Science and Technology Corporation

〈120〉プラシノステロイド合成に関与する遺伝子

<130> FS03-311PCT

<160> 6

<210> 1

<211> 1473

<212> DNA

<213> Arabidopsis thaliana

⟨400⟩ 1

60	catcgtcatc	tctttatcat	tccttcttct	tttgttcttc	cttcttcact	atggacactt
120	taatgatcat	agaaaaaaact	ccagcttcaa	cagatcatcc	tcaacggtct	ttcaacaaga
180	atggcccgtc	gaagcttggg	tttccacacg	cggaccaaag	cccagagtca	catgttacat
240	gagtttcatg	accgtcctga	gcttactcag	cgtctcttct	ccatcgagtt	atcggtgaaa
300	aacggcgacg	atatttttgg	tttaagtcgc	tgggagagtg	gtctcatgta	gacaagcgtc
360	gacagctttc	agagcgactc	gccgttttac	agtgaacaga	cggatgctga	atcgtgtcga
420	acttcttatc	aatcgtcgat	ctaatgggaa	ggtaagggag	acccaaaaac	gtgccgtttt
480	gtcgccactt	ctttcttaaa	ttagtcggtt	gttccatgga	tacatagacg	aacgggagtt
540	ggatctatgg	cggaatccat	aagtttttgt	agacatgcac	aaatcgttag	ctcaaagctc
600	caaagtactt	ctgttgcatt	gtctccaaga	cctccaagac	aacctgtgct	tccgaggacc
660	gagagagttt	aagagctaaa	gaagatttag	agagaaagga	tgataagtgt	gccaaggcat
720	gcaactccat	tccctggaac	ccaattaact	catgtcatta	tatcaggact	gaaaatttca
780	agaaggcaaa	aaagaatcat	aagcaagttg	gaatatggtg	aagctaagaa	agatetetee
840	tgtggatgtg	caaaggatgt	gatgttattg	ggaggaagat	caaagaacaa	attaggaaaa
900	tatgatcgac	ttgctaacaa	cacaatttga	acatttaact	actcaagtga	ttgcttaagg
960	caaattcctc	cccttgccgt	gtcctcatta	ttctgtccct	ctggccacga	atgatgatcc
1020	aagtttgaag	tgaagctgaa	acgaaaaaca	caatctccta	ctgctgccct	tctgattctc
1080	aacacaaaag	cgttaccttt	gactacttgt	atattggaat	gagagccact	gaattgacag
1140	aaaggcgatg	gagtgatgag	gttataattg	aatgggaaat	agacactgag	gtgattacag

W 0 00/0/0020	
2/8	
aaagatgttg aaataaaagg atatgtgata ccaaaaggat ggtgtttctt ggcctatctc	1200
agatcagttc atcttgatga agcttattat gagtctccgt acaaatttaa tccctggaga	1260
tggcaagaaa gggacatgaa cacgagtagt ttcagtcctt ttggaggtgg tcagagattg	1320
tgccctggtc tcgatttggc tcgtcttgaa acttcagttt ttcttcacca tcttgtcact	1380
cgcttcagat ggatagcaga agaagacaca atcataaact tcccaacggt gcatatgaag	1440
aacaaattac ccatttggat caaaagaata taa	1473
<210> 2	
<211> 490	
<212> PRT	
<213> Arabidopsis thaliana	
<400> 2	
Met Asp Thr Ser Ser Ser Leu Leu Phe Phe Ser Phe Phe Phe Ile	
1 5 10 15	
Ile Ile Val Ile Phe Asn Lys Ile Asn Gly Leu Arg Ser Ser Pro Ala	
20 25 30	
Ser Lys Lys Leu Asn Asp His His Val Thr Ser Gln Ser His Gly	
35 40 45	
Pro Lys Phe Pro His Gly Ser Leu Gly Trp Pro Val Ile Gly Glu Thr	
50 55 60	
The Glu Phe Val Ser Ser Ala Tyr Ser Asp Arg Pro Glu Ser Phe Met	

lle Glu Phe Val Ser Ser Ala Tyr Ser Asp Arg Pro Glu Ser Phe Met

65 70 75 80

Asp Lys Arg Arg Leu Met Tyr Gly Arg Val Phe Lys Ser His Ile Phe 85 90 95

Gly Thr Ala Thr Ile Val Ser Thr Asp Ala Glu Val Asn Arg Ala Val
100 105 110

Leu Gln Ser Asp Ser Thr Ala Phe Val Pro Phe Tyr Pro Lys Thr Val

Arg Glu Leu Met Gly Lys Ser Ser Ile Leu Leu Ile Asn Gly Ser Leu

130 135 140

3/8

His	Arg	Arg	Phe	His	Gly	Leu	Val	Gly	Ser	Phe	Leu	Lys	Ser	Pro	Leu
145					150					155					160
Leu	Lys	Ala	G1n	Ile	Val	Arg	Asp	Met	His	Lys	Phe	Leu	Ser	Glu	Ser
				165					170					175	
Met	Asp	Leu	Trp	Ser	Glu	Asp	Gln	Pro	Val	Leu	Leu	Gln	Asp	Val	Ser
			180					185					190		
Lys	Thr	Val	Ala	Phe	Lys	Val	Leu	Ala	Lys	Ala	Leu	Ile	Ser	Va1	Glu
		195					200					205			
Lys	G1y	Glu	Asp	Leu	Glu	Glu	Leu	Lys	Arg	Glu	Phe	Glu	Asn	Phe	Ile
	210					215					220				
Ser	Gly	Leu	Met	Ser	Leu	Pro	Ile	Asn	Phe	Pro	Gly	Thr	G1n	Leu	His
225					230					235			•		240
Arg	Ser	Leu	Gln	Ala	Lys	Lys	Asn	Met	Va1	Lys	Gln	Val	G1u	Arg	Ile
				245					250					255	
Ile	Glu	Gly	Lys	Ile	Arg	Lys	Thr	Lys	Asn	Lys	Glu	Glu	Asp	Asp	Val
			260					265					270		
Ile	Ala	Lys	Asp	Val	Val	Asp	Val	Leu	Leu	Lys	Asp	Ser	Ser	G1u	His
		275					280					285			
Leu	Thr	His	Asn	Leu	Ile	Ala	Asn	Asn	Met	Ile	Asp	Met	Met	Ile	Pro
	290					295					300				
Gly	His	Asp	Ser	Val	Pro	Va1	Leu	Ile	Thr	Leu	Ala	Val	Lys	Phe	Leu
305					310					315					320
Ser	Asp	Ser	Pro	Ala	Ala	Leu	Asn	Leu	Leu	Thr	Lys	Asn	Met	Lys	Leu
				325					330					335	
Lys	Ser	Leu	Lys	G1u	Leu	Thr	G1y	Glu	Pro	Leu	Tyr	Trp	Asn	Asp	Tyr
			340					345					350		
Leu	Ser	Leu	Pro	Leu	Thr	Gln	Lys	Val	Ile	Thr	Glu	Thr	Leu	Arg	Met
		355					360					365			
G1y	Asn	Val	Ile	Ile	Gly	Va1	Met	Arg	Lys	Ala	Met	Lys	Asp	Val	Glu

PCT/JP03/02755 WO 03/076626

4/8 380 375 370 Ile Lys Gly Tyr Val Ile Pro Lys Gly Trp Cys Phe Leu Ala Tyr Leu 390 385 Arg Ser Val His Leu Asp Glu Ala Tyr Tyr Glu Ser Pro Tyr Lys Phe 410 415 405 Asn Pro Trp Arg Trp Gln Glu Arg Asp Met Asn Thr Ser Ser Phe Ser 430 420 425 Pro Phe Gly Gly Gln Arg Leu Cys Pro Gly Leu Asp Leu Ala Arg

440 445 435

Leu Glu Thr Ser Val Phe Leu His His Leu Val Thr Arg Phe Arg Trp 450 455 460

Ile Ala Glu Glu Asp Thr Ile Ile Asn Phe Pro Thr Val His Met Lys 480 470 475 465

Asn Lys Leu Pro Ile Trp Ile Lys Arg Ile

490 485

<210> 3

⟨211⟩ 1934

<212> DNA

<213> Arabidopsis thaliana

<400> 3

tgtgcttagg catatagtta ttcccaagaa accggtttaa ctgtttacgt atgcaacctc 60 120 cggcaagcgc aggacttttc cggtcgccgg aaaatctccc ttggccttat aattacatgg attatttggt cgctggtttc ttggttttga cggccggaat acttctccgt ccatggctct 180 240 ggtttcgtct acgaaactcg aaaacgaaag atggagatga agaagaagat aatgaggaga 300 agaagaaggg aatgatteea aaeggaaget taggetggee ggtgategga gaaaceetaa 360 actteatege ttgtggttat tettetegge etgttaeett catggacaaa egaaagtett 420 tatacgggaa agtgttcaaa acgaacataa tagggacacc aatcataata tcaaccgatg 480 cagaggtgaa taaagtggtg ctccaaaacc atgggaacac atttgtccct gcatacccta 540 aatcaattac ggaactactt ggagaaaact ctattctcag catcaatgga cctcatcaaa

PCT/JP03/02755

aaaggcttca	cacgctcatt	ggcgcgttcc	tcagatctcc	tcacctcaaa	gaccggatca	600
ctcgagacat	tgaggcctcg	gttgttctca	ctttggcgtc	ttgggctcaa	cttccattgg	660
ttcatgttca	ggatgagatc	aaaaagatga	cgtttgagat	attagtaaaa	gtgttgatga	720
gcacatctcc	tggtgaagat	atgaacattc	tcaaacttga	gttcgaagaa	ttcatcaaag	780
gtttgatttg	tatcccaatc	aaattccctg	gcactagact	ctacaaatcc	ttaaaggcga	840
aagagaggtt	aataaagatg	gtaaaaaagg	ttgtggagga	gagacaagtg	gcgatgacaa	900
cgacgtctcc	ggcaaatgac	gtggtggacg	tacttctaag	agacggtggt	gattcagaga	960
agcaatctca	accgtcagat	ttcgtcagcg	gaaagatcgt	agagatgatg	atacccggag	1020
aggaaacaat	gccaacggcg	atgaccttgg	ctgtcaaatt	cttaagtgac	aaccccgtcg	1080
ctctagccaa	actcgtggag	gagaatatgg	agatgaagag	gcgtaaattg	gaattgggag	1140
aagaatacaa	gtggaccgat	tatatgtctc	tctcttttac	tcaaaatgtg	ataaacgaaa	1200
cgcttagaat	ggctaacatt	attaacgggg	tgtggaggaa	agctctcaag	gatgtagaaa	1260
ttaaaggtta	cttaataccg	aaaggatggt	gtgtattggc	atcattcata	tcggttcaca	1320
tggatgaaga	catttatgat	aatccctatc	aattcgatcc	gtggagatgg	gacagaatta	1380
atggatcggc	aaacagcagt	atttgcttca	caccetttgg	tggtgggcaa	aggetatgte	1440
ctggtttaga	gctgtcgaag	ctcgaaatat	ccatctttct	tcaccacctt	gtaacccggt	1500
acagttggac	ggctgaggaa	gacgagatag	tgtcatttcc	gactgtgaag	atgaagcgga	1560
ggctcccgat	ccgagtggct	actgtagatg	atagtgcttc	tccgatctca	cttgaagatc	1620
attaatagat	catttcaaag	aacaaaactg	tttgtgcaaa	gaggaagcag	agaagtaaac	1680
aaatgatctt	attaacaaat	agtagagaag	agaagcaaac	aagattggtg	ggtaagacag	1740
aaagaacnaa	acgtacagct	agtgatggct	caaagatgag	agattctaat	tataattttt	1800
tttgtttgtc	atgtcaaatt	ataagcgttg	gttaggttgt	ccctttctct	tttatttatc	1860
gtaccaaacg	caagttgaga	tatgattcca	tatatatgga	tgatagatat	gtatattaat	1920
atatagcggc	cggg					1934

<210> 4

<211> 524

<212> PRT

<213> Arabidopsis thaliana

<400> 4

6/8

Met	Gln	Pro	Pro	Ala	Ser	Ala	Gly	Leu	Phe	Arg	Ser	Pro	Glu	Asn	Leu
1				5					10					15	
Pro	Trp	Pro	Tyr	Asn	Tyr	Met	Asp	Tyr	Leu	Val	Ala	Gly	Phe	Leu	Val
			20					25					30		
Leu	Thr	Ala	G1y	Ile	Leu	Leu	Arg	Pro	Trp	Leu	Trp	Phe	Arg	Leu	Arg
		35					40					45			
Asn	Ser	Lys	Thr	Lys	Asp	G1y	Asp	Glu	Glu	Glu	Asp	Asn	Glu	Glu	Lys
	50					55					60				
Lys	Lys	Gly	Met	Ile	Pro	Asn	G1y	Ser	Leu	Gly	Trp	Pro	Val	Ile	Gly
65					70					75					80
Glu	Thr	Leu	Asn	Phe	Ile	Ala	Cys	G1y	Tyr	Ser	Ser	Arg	Pro	Va1	Thr
				85					90					95	
Phe	Met	Asp	Lys	Arg	Lys	Ser	Leu	Tyr	Gly	Lys	Val	Phe	Lys	Thr	Asn
			100					105					110		
Ile	Ile	G1y	Thr	Pro	Ile	Ile	Ile	Ser	Thr	Asp	Ala	Glu	Val	Asn	Lys
		115					120					125			
Val	Val	Leu	G1n	Asn	His	G1y	Asn	Thr	Phe	Val	Pro	Ala	Tyr	Pro	Lys
	130					135					140				
Ser	Ile	Thr	Glu	Leu	Leu	G1y	Glu	Asn	Ser	Ile	Leu	Ser	Ile	Asn	G1y
145					150					155					160
Pro	His	Gln	Lys	Arg	Leu	His	Thr	Leu	Ile	Gly	Ala	Phe	Leu	Arg	Ser
				165					170					175	
Pro	His	Leu	Lys	Asp	Arg	Ile	Thr	Arg	Asp	Ile	G1u	Ala	Ser	Va1	Val
			180					185					190		
Leu	Thr	Leu	Ala	Ser	Trp	Ala	Gln	Leu	Pro	Leu	Val	His	Val	Gln	Asp
		195					200					205			
Glu	Ile	Lys	Lys	Met	Thr	Phe	Glu	Ile	Leu	Val	Lys	Val	Leu	Met	Ser
	210					215					220				
Thr	Ser	Pro	G ₁ y	Glu	Asp	Met	Asn	Ile	Leu	Lys	Leu	G1u	Phe	G1u	G1u

7/8

225					230					235					240
Phe	Ile	Lys	G1y	Leu	Ile	Cys	Ile	Pro	Ile	Lys	Phe	Pro	Gly	Thr	Arg
				245					250					255	
Leu	Tyr	Lys	Ser	Leu	Lys	Ala	Lys	Glu	Arg	Leu	Ile	Lys	Met	Val	Lys
			260					265					270		
Lys	Val	Val	Glu	Glu	Arg	Gln	Val	Ala	Met	Thr	Thr	Thr	Ser	Pro	Ala
		275					280					285			
Asn	Asp	Val	Val	Asp	Val	Leu	Leu	Arg	Asp	G1y	G1y	Asp	Ser	Glu	Lys
	290					295					300				
Gln	Ser	Gln	Pro	Ser	Asp	Phe	Va1	Ser	G1y	Lys	Ile	Val	Glu	Met	Met
305					310					315					320
Ile	Pro	G1y	Glu	Glu	Thr	Met	Pro	Thr	Ala	Met	Thr	Leu	Ala	Val	Lys
				325					330					335	
Phe	Leu	Ser	Asp	Asn	Pro	Val	Ala	Leu	Ala	Lys	Leu	Val	G1u	Glu	Asn
			340					345					350		
Met	G1u	Met	Lys	Arg	Arg	Lys	Leu	Glu	Leu	G1y	G1u	Glu	Tyr	Lys	Trp
		355					360					365			
Thr	Asp	Tyr	Met	Ser	Leu	Ser	Phe	Thr	Gln	Asn	Val	Ile	Asn	Glu	Thr
	370					375					380				
Leu	Arg	Met	Ala	Asn	Ile	Ile	Asn	Gly	Val	Trp	Arg	Lys	Ala	Leu	Lys
385					390				;	395					400
Asp	Val	Glu	Ile	Lys	Gly	Tyr	Leu	Ile	Pro	Lys	Gly	Trp	Cys	Val	Leu
				405					410					415	
Ala	Ser	Phe	Ile	Ser	Val	His	Met	Asp	Glu	Asp	Ile	Tyr	Asp	Asn	Pro
			420					425					430		
Tyr	Gln	Phe	Asp	Pro	Trp	Arg	Trp	Asp	Arg	Ile	Asn	Gly	Ser	Ala	Asn
		435					440					445			
Ser	Ser	Ile	Cys	Phe	Thr	Pro	Phe	Gly	Gly	Gly	Gln	Arg	Leu	Cys	Pro
	450					455					460				

8/8

Gly Leu Glu Leu Ser Lys Leu Glu Ile Ser Ile Phe Leu His His Leu

465 470 475 480

Val Thr Arg Tyr Ser Trp Thr Ala Glu Glu Asp Glu Ile Val Ser Phe

485 490 495

Pro Thr Val Lys Met Lys Arg Arg Leu Pro Ile Arg Val Ala Thr Val

500 505 510

Asp Asp Ser Ala Ser Pro Ile Ser Leu Glu Asp His

515 520

<210> 5

<211> 20

<212> DNA

<213> Artificial sequence

<400> 5

gttaaaacac taatggacac

<210> 6

<211> 21

<212> DNA

<213> Artificial sequence

<400> 6

tgatttatat tcttttgatc c

20

21

INTERNATIONAL SEARCH REPORT

International application No. PCT/JP03/02755

A. CLASS	IFICATION OF SUBJECT MATTER C1 ⁷ C12N15/29, C12N15/09, C12N	9/02, A01H1/00							
According to	According to International Patent Classification (IPC) or to both national classification and IPC								
	SEARCHED								
Int.	Minimum documentation searched (classification system followed by classification symbols) Int.Cl ⁷ C12N15/29, C12N15/09, C12N9/02, A01H1/00								
	Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched								
BIOS	Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) BIOSIS(DIALOG), WPI(DIALOG), JSTPLUS FILE(JOIS), SwissProt/PIR/Genbank/EMBL/DDBJ/GeneSeq								
C. DOCU	MENTS CONSIDERED TO BE RELEVANT								
Category*	Citation of document, with indication, where app		Relevant to claim No.						
X Y	1 2 7 12								
Y	KIM G. et al., Changes in the shapes of leaves and flowers upon overexpression of cytochrome P450 in Arabidopsis., Proc.Natl.Acad.Sci.USA, 1999, Vol.96, pages 9433 to 9437								
Furth	er documents are listed in the continuation of Box C.	See patent family annex.							
* Special "A" docum conside "E" earlier date "L" docum cited to special "O" docum means "P" docum	Special categories of cited documents: 'A" document defining the general state of the art which is not considered to be of particular relevance 'E" earlier document but published on or after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document of particular relevance; the claimed invention cannot be special reason (as specified) 'O" document referring to an oral disclosure, use, exhibition or other means "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is taken alone document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art								
18 A	April, 2003 (18.04.03)	06 May, 2003 (06.0	5.03)						
	Name and mailing address of the ISA/ Japanese Patent Office Authorized officer								
Facsimile N	fo.	Telephone No. BEST AVA	AN ARIE COE						

A. 発明の属する分野の分類(国際特許分類(IPC)) Int. Cl ⁷ Cl2N15/29, Cl2N15/09, Cl2N9/02, A01H1/00								
B. 調査を行った分野 調査を行った最小限資料(国際特許分類(IPC)) Int. Cl ⁷ Cl2N15/29, Cl2N15/09, Cl2N9/02, A01H1/00								
最小限資料以外の資料で調査を行った分野に含まれるもの								
国際調査で使用した電子データベース(データベースの名称、調査に使用した用語) BIOSIS (DIALOG), WPI (DIALOG), JSTPLUSファイル(JOIS) SwissProt/PIR/Genbank/EMBL/DDBJ/GeneSeq								
	ると認められる文献							
引用文献の カテゴリー*	 引用文献名 及び一部の箇所が関連すると	ときは、その関連する箇所の表示	関連する 関連する 諸求の範囲の番号					
<u>X</u> Y	Database GenBank Accession No. AB066286, 20 Jul 2001, SHIMADA Y. et al., "Arabidopsis thaliana mRNA for CYP90D, complete cds. SHIMADA Y. et al., "Arabidopsis thaliana mRNA for CYP90D,							
Y	KIM G. et al., Changes in the sha upon overexpression of cytochrome Proc. Natl. Acad. Sci. USA 1999, Vol.	P450 in Arabidopsis.,	8-11					
区 C欄の続き	きにも文献が列挙されている。	□ パテントファミリーに関する別	紙を参照。					
「A」特に関う 「E」国際にの 「E」国際を 以後先権 「L」優先若献 で 「O」口頭に	* 引用文献のカテゴリー の日の後に公表された文献 「A」特に関連のある文献ではなく、一般的技術水準を示す 「T」国際出願日又は優先日後に公表された文献であって							
国際調査を完了	国際調査を完了した日 18.04.03 国際調査報告の発送日 06.05.03							
日本国	D名称及びあて先 国特許庁(ISA/JP) 郵便番号100-8915 那千代田区霞が関三丁目4番3号	特許庁審査官(権限のある職員) 鈴木 恵理子 印 電話番号 03-3581-1101						

围	際	翻	杏	報	告

C (続き). 引用文献の	関連すると認められる文献	関連する
カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	請求の範囲の番号
A	KIM G. et al. The ROTUNDIFOLIA3 gene of Arabidopsis thaliana encodes a new member of the cytochrome P-450 family that is required for the regulated polar elongation of leaf cells., Genes & Development 1998, Vol. 12, p. 2381-2391	2-13
İ		
	·	