SOZ BY keenplify (WEEK 1-10)

https://www.youtube.com/channel/UCJFpwSSupQut6trEhoBy SA

In which way do electric fields interact? A: like charges repel A repulsive force exists between which two particles? A: Two electrons Which two particles are attracted to each other? A: A proton and an electron Electric Field strength depends on what? A: charge and distance How is the electric force between two charges affected when both of the charges are cut in half? A: decreases four times Electric charges exert which kind of force? A: a field force In a neutral atom, there are more of which charge? A: there are equal amounts of both charges Electric field lines are ______ to the electric field vector at any point. A: tangent According to Coulomb's Law, the amount of electric force depends on which two things? A: the charge on each of the two particles and the distance between them In an atom, what are the negative charges called and where are they found? A: electrons are found outside the nucleus The electric flux Φ through a surface_____ A: is the amount of electric field piercing the surface The area vector for a flat surface A: is perpendicular to the surface and has a magnitude equal to the area of the surface. A point particle with charge q is placed inside a cube but not at its center. The electric flux through any one side of the cube_

A: is q/6ε0
A charge is sitting outside a closed surface. The net flux is A: zero because it passes through two surfaces
Which quantity and unit are correctly paired? A: electric field strength and N/C
When is the flux on a surface zero? A: When it is parallel to an electric field
A cylindrical wastepaper basket with a 0.15-m radius opening is in a uniform electric field of 300 N/C, perpendicular to the opening. The total flux sides and bottom is A: 21 N \times m2m2/C
The flux of the electric field (24 N/C)i + (30 N/C)j + (16 N/C)k through a 2.0 m ₂ m ₂ portion of the yz plane is A: 48 N \times m ₂ m ₂ /C
Electric potential as distance increases. A: Decreases
The direction of electric field lines shows the A: direction of the force on a test positive charge.
Electric field lines between two oppositely charged parallel metal plates will be A: straight lines, evenly spaced
As a proton moves in the direction the electric field lines A: it is moving from high potential to low potential and losing electric potential energy.
If two negative charges are held close together and then released, the charges willA: accelerate away from each other
is stored energy. A: Potential Energy
The energy that is stored in a capacitor is in the form of A: the electric field between its plates.

If two balloons have the same charge, what will happen if you place them close to each other?
A: They will push each other away.
Electric potential and electric potential energy are NOT the same. A: True
Two parallel plates are oppositely charged. The right plate is negative and the left plate is positive. In which direction does the electric field point? A: to the right
During discharging a capacitor through a A: the current in the circuit decreases exponentially with time
How is the capacitance (C) of a parallel-plate capacitor affected by the charge on the plates? A: C is vanished when there are plates
How is the capacitance of a parallel-plate capacitor affected by the potential difference across the capacitor? A: C depend on the potential difference across the capacitor
The energy stored in the capacitor can be find by using this equation EXCEPT A: $1/2RC^2$
How is the capacitance of a parallel-plate capacitor affected by the area of each plate? A: C is inversely proportional to the area A of each plate
When capacitors is arrange in series (3 capacitors), the equivalent capacitance C is A: $C=QV_1+QV_2+QV_3$

When capacitors in parallel (3 capacitors), the equivalent capacitance is A: $C=C_1+C_2+C_3$
How is the capacitance of a parallel-plate capacitor affected by filling the space between the plates with an insulator? A: C stable when the space between the plates is filled with an insulator, $\epsilon r > 1$
How is the capacitance of a parallel-plate capacitor affected by the distance between the plates?
A: C is partially proportional to the area A of each plate
During charging a capacitor through a A: the current in the circuit decreases exponentially with time
How do you calculate resistance? A: Divide voltage by current
What are the units for resistance? A: Ohms (Ω)
What is the resistance if the voltage is 10V and the current is 2A? A: 5 Ω
How do you measure potential difference in a circuit? A: Voltmeter
Resistance is measured in A: ohms.
What is the resistance if the current is 2A and the voltage is 10V? A: 5 $\boldsymbol{\Omega}$
What is the definition of electrical current? A: The rate of flow of charge

What electrical component measures current? A: Ammeter
If the length of a wire increases, the resistance A: increases
Which resistor will prevent the most current flow? A: 1000 ohms
Resistivity is defined as A: the resistance of a unit cross-sectional area per unit length of the material
The two types of current are A: All of the above
A resistor of 50hm is connected in series with two other resistors that is connected in parrallel, each has 30hm resistance. Calculate the effective resistance for this combination or resistors. A: 6.50hm
A resistor of 50hm is connected in series with two other resistors that is connected in parallel, each has 30hm resistance. Calculate the effective resistance for this combination of resistors. A: 6.50hm
If current flow in a bulb is 1.5A. What is the charge flow in 5 minutes? A: 4.5x10exp-2 C
Which equation defines Ohm's Law? A: V=IR
What is the effective resistance for two resistors that each has 15ohm resistance and they are connected in parallel?

A: 7.5ohm

1 ampere of current is defined as A: one coulomb of charge passing through the surface area in one second
Current is measured in A: amps
Define electric current A: the total charge, Q flowing through the area per unit time, t.
State Ohm's Law as A: the potential difference across a metallic conductor is proportional to the current flowing through it if its temperature is constant.
When Magnets push away from each other they A: Repel
Which statement is true? A: All Magnets have a North and South Pole
Where is the force of attraction the strongest on a magnet? A: at the poles
All metals stick to magnets. A: False
Most rocks are magnetic. A: False
A north pole and a south pole will attract. A: True

What will happen when these magnets are brought close together? A: They will repel each other

What happens when two north poles of a magnet are placed together? A: they repel

The South end of a Magnet will

A: Repel to the South end of another Magnet

What subject is attracted to a magnet? A: Iron