Thorlabs APT Controllers Host-Controller Communications Protocol

Date: 01-June-2012

Thorlabs Confidential Page 1 of 138

Contents

Introduction	6
Generic System Control Messages	
Introduction	
MGMSG_MOD_IDENTIFY 0x0223	
MGMSG_MOD_SET_CHANENABLESTATE 0x0210	. 17
MGMSG_MOD_REQ_CHANENABLESTATE 0x0211	. 17
MGMSG_MOD_GET_CHANENABLESTATE 0x0212	. 17
MGMSG_HW_DISCONNECT 0x002H	. 19
MGMSG_HW_RESPONSE 0x0080	. 19
MGMSG_HW_START_UPDATEMSGS 0x0011	. 20
MGMSG_HW_STOP_UPDATEMSGS 0x0012	. 20
MGMSG_HW_REQ_INFO 0x05H	. 21
MGMSG_HW_GET_INFO 0x06H	. 21
MGMSG_RACK_REQ_BAYUSED 0x060	. 23
MGMSG_RACK_GET_BAYUSED 0x061	. 23
MGMSG_HUB_REQ_BAYUSED 0x065	. 24
MGMSG_HUB_GET_BAYUSED 0x066	. 24
MGMSG_RACK_REQ_STATUSBITS 0x0226	. 25
MGMSG_RACK_GET_STATUSBITS 0x0227	. 25
MGMSG_RACK_SET_DIGOUTPUTS 0x0228	. 26
MGMSG_RACK_REQ_DIGOUTPUTS 0x0229	. 26
MGMSG_RACK_GET_DIGOUTPUTS 0x0230	. 26
Motor Control Messages	. 27
Introduction	
MGMSG_MOT_SET_POSCOUNTER 0x0410	
MGMSG_MOT_REQ_POSCOUNTER 0x0411	
MGMSG_MOT_GET_POSCOUNTER 0x0412	
MGMSG MOT SET ENCCOUNTER 0x0409	
MGMSG MOT REQ ENCCOUNTER 0x040A	
MGMSG_MOT_GET_ENCCOUNTER 0x040B	
MGMSG MOT SET VELPARAMS 0x0413	
MGMSG_MOT_REQ_VELPARAMS 0x0414	
MGMSG_MOT_GET_VELPARAMS 0x0415	. 30
MGMSG MOT SET JOGPARAMS 0x0416	. 32
MGMSG_MOT_SET_JOGPARAMS 0x0416	
MGMSG_MOT_REQ_JOGPARAMS 0x0417	. 32
MGMSG_MOT_REQ_JOGPARAMS 0x0417MGMSG_MOT_GET_JOGPARAMS 0x0418	. 32 . 32
MGMSG_MOT_REQ_JOGPARAMS 0x0417 MGMSG_MOT_GET_JOGPARAMS 0x0418 MGMSG_MOT_SET_GENMOVEPARAMS 0x043A	. 32 . 32 . 34
MGMSG_MOT_REQ_JOGPARAMS 0x0417	. 32 . 32 . 34 . 34
MGMSG_MOT_REQ_JOGPARAMS 0x0417	. 32 . 32 . 34 . 34 . 34
MGMSG_MOT_REQ_JOGPARAMS 0x0417	. 32 . 34 . 34 . 34 . 35
MGMSG_MOT_REQ_JOGPARAMS 0x0417	. 32 . 34 . 34 . 34 . 35
MGMSG_MOT_REQ_JOGPARAMS 0x0417	. 32 . 34 . 34 . 34 . 35 . 35
MGMSG_MOT_REQ_JOGPARAMS 0x0417	. 32 . 34 . 34 . 35 . 35 . 35

MGMSG_MOT_SET_HOMEPARAMS 0x0440	. 3/
MGMSG_MOT_REQ_HOMEPARAMS 0x0441	. 37
MGMSG_MOT_GET_HOMEPARAMS 0x0442	
MGMSG_MOT_SET_LIMSWITCHPARAMS 0x0423	. 39
MGMSG_MOT_REQ_LIMSWITCHPARAMS 0x0424	. 39
MGMSG_MOT_GET_LIMSWITCHPARAMS 0x0425	. 39
MGMSG_MOT_MOVE_HOME 0x0443	. 41
MGMSG_MOT_MOVE_HOMED 0x0444	. 41
MGMSG_MOT_MOVE_RELATIVE 0x0448	. 42
MGMSG_MOT_MOVE_COMPLETED 0x0464	. 44
MGMSG_MOT_MOVE_ABSOLUTE 0x0453	. 45
MGMSG_MOT_MOVE_JOG 0x046A	. 47
MGMSG_MOT_MOVE_VELOCITY 0x0457	. 48
MGMSG_MOT_MOVE_STOP 0x0465	. 49
MGMSG_MOT_MOVE_STOPPED 0x0466	. 50
MGMSG_MOT_SET_DCPIDPARAMS 0x04A0	
MGMSG_MOT_REQ_DCPIDPARAMS 0x04A1	
MGMSG MOT GET DCPIDPARAMS 0x04A2	
MGMSG MOT SET AVMODES 0x04B3	
MGMSG_MOT_REQ_AVMODES 0x04B4	. 53
MGMSG_MOT_GET_AVMODES 0x04B5	
MGMSG MOT SET POTPARAMS 0x04B0	
MGMSG MOT REQ POTPARAMS 0x04B1	
MGMSG_MOT_GET_POTPARAMS 0x04B2	
MGMSG MOT SET BUTTONPARAMS 0x04B6	
MGMSG MOT REQ BUTTONPARAMS 0x04B7	
MGMSG MOT GET BUTTONPARAMS 0x04B8	
MGMSG_MOT_SET_EEPROMPARAMS 0x04B9	
MGMSG_MOT_SET_PMDPOSITIONLOOPPARAMS 0x04D7	
MGMSG_MOT_REQ_PMDPOSITIONLOOPPARAMS 0x04D8	
MGMSG MOT GET PMDPOSITIONLOOPPARAMS 0x04D9	
MGMSG MOT SET PMDMOTOROUTPUTPARAMS 0x04DA	
MGMSG MOT REQ PMDMOTOROUTPUTPARAMS 0x04DB	
MGMSG_MOT_GET_PMDMOTOROUTPUTPARAMS 0x04DC	
MGMSG MOT SET PMDTRACKSETTLEPARAMS 0x04E0	
MGMSG_MOT_REQ_PMDTRACKSETTLEPARAMS 0x04E1	
MGMSG_MOT_GET_PMDTRACKSETTLEPARAMS 0x04E1	
MGMSG_MOT_GET_PMDPROFILEMODEPARAMS 0x04E5	
MGMSG_MOT_SET_PMDCURRENTLOOPPARAMS 0x04D4	
MGMSG_MOT_REQ_PMDCURRENTLOOPPARAMS 0x04D5	
MGMSG_MOT_GET_PMDCURRENTLOOPPARAMS 0x04D6	
MGMSG_MOT_SET_PMDSETTLEDCURRENTLOOPPARAMS 0x04E9	
MGMSG_MOT_REQ_PMDSETTLEDCURRENTLOOPPARAMS 0x04EA	
MGMSG_MOT_GET_PMDSETTLEDCURRENTLOOPPARAMS 0x04EB	
MGMSG_MOT_SET_PMDSTAGEAXISPARAMS 0x04F0	
MGMSG_MOT_REQ_PMDSTAGEAXISPARAMS 0x04F1	
MGMSG_MOT_GET_PMDSTAGEAXISPARAMS 0x04F2	
MGMSG_MOT_GET_STATUSUPDATE 0x0481	
MGMSG MOT REO STATUSUPDATE 0x0/80	78

MGMSG_MOT_GET_DCSTATUSUPDATE 0x0491	
MGMSG_MOT_REQ_DCSTATUSUPDATE 0x0490	80
MGMSG_MOT_ACK_DCSTATUSUPDATE 0x0492	80
MGMSG_MOT_REQ_STATUSBITS 0x0429	81
MGMSG_MOT_GET_STATUSBITS 0x042A	81
MGMSG_MOT_SUSPEND_ENDOFMOVEMSGS 0x046B	82
MGMSG_MOT_RESUME_ENDOFMOVEMSGS 0x046C	83
Solenoid Control Messages	84
Introduction	
MGMSG_MOT_SET_SOL_OPERATINGMODE 0x04C0	85
MGMSG_MOT_REQ_SOL_OPERATINGMODE 0x04C1	85
MGMSG_MOT_GET_SOL_OPERATINGMODE 0x04C2	85
MGMSG_MOT_SET_SOL_CYCLEPARAMS 0x04C3	87
MGMSG_MOT_REQ_SOL_CYCLEPARAMS 0x04C4	87
MGMSG_MOT_GET_SOL_CYCLEPARAMS 0x04C5	87
MGMSG_MOT_SET_SOL_INTERLOCKMODE 0x04C6	89
MGMSG_MOT_REQ_SOL_INTERLOCKMODE 0x04C7	89
MGMSG MOT GET SOL INTERLOCKMODE 0x04C8	
MGMSG_MOT_SET_SOL_STATE 0x04CB	91
MGMSG_MOT_REQ_SOL_STATE 0x04CC	91
MGMSG MOT GET SOL STATE 0x04CD	
Piezo Control Messages	93
Introduction	
MGMSG_PZ_SET_POSCONTROLMODE 0x0640	
MGMSG PZ REQ POSCONTROLMODE 0x0641	
MGMSG PZ GET POSCONTROLMODE 0x0642	
MGMSG PZ SET OUTPUTVOLTS 0x0643	
MGMSG PZ REQ OUTPUTVOLTS 0x0644	
MGMSG_PZ_GET_OUTPUTVOLTS 0x0645	
MGMSG PZ SET OUTPUTPOS 0x0646	
MGMSG_PZ_REQ_OUTPUTPOS 0x0647	
MGMSG_PZ_GET_OUTPUTPOS 0x0648	
MGMSG PZ SET INPUTVOLTSSRC 0x0652	
MGMSG PZ REQ INPUTVOLTSSRC 0x0653	
MGMSG_PZ_GET_INPUTVOLTSSRC 0x0654	
MGMSG_PZ_SET_PICONSTS 0x0655	
MGMSG PZ REQ PICONSTS 0x0656	
MGMSG_PZ_GET_PICONSTS 0x0657	
MGMSG PZ REQ PZSTATUSBITS 0x065B	
MGMSG PZ GET PZSTATUSBITS 0x065C	
MGMSG_PZ_GET_PZSTATUSUPDATE 0x00661	
MGMSG PZ ACK PZSTATUSUPDATE 0x0662	
MGMSG_PZ_SET_OUTPUTLUT 0x0700	
MGMSG_PZ_REQ_OUTPUTLUT 0x0701	
MGMSG_PZ_GET_OUTPUTLUT 0x0702	
MGMSG_PZ_SET_OUTPUTLUTPARAMS 0x0703	
MGMSG_PZ_REQ_OUTPUTLUTPARAMS 0x0704	
MGMSG_PZ_GET_OUTPUTLUTPARAMS 0x0705	
MGMSG_PZ_START_LUTOUTPUT 0x0706	112

MGMSG_PZ_STOP_LUTOUTPUT 0x0707112
MGMSG_PZ_SET_EEPROMPARAMS 0x07D0113
MGMSG_PZ_SET_TPZ_DISPSETTINGS 0x07D1114
MGMSG_PZ_REQ_TPZ_DISPSETTINGS 0x07D2114
MGMSG_PZ_GET_TPZ_DISPSETTINGS 0x07D3114
MGMSG_PZ_SET_TPZ_IOSETTINGS 0x07D4115
MGMSG_PZ_REQ_TPZ_IOSETTINGS 0x07D5115
MGMSG_PZ_GET_TPZ_IOSETTINGS 0x07D6115
MGMSG_PZ_SET_ZERO 0x0658 117
MGMSG_PZ_REQ_MAXTRAVEL 0x0650118
MGMSG_PZ_GET_MAXTRAVEL 0x0651118
MGMSG_PZ_SET_IOSETTINGS 0x0670119
MGMSG_PZ_REQ_IOSETTINGS 0x0671119
MGMSG_PZ_GET_IOSETTINGS 0x0672119
MGMSG_PZ_SET_OUTPUTMAXVOLTS 0x0680121
MGMSG_PZ_REQ_OUTPUTMAXVOLTS 0x0681121
MGMSG_PZ_GET_OUTPUTMAXVOLTS 0x0682 121
MGMSG_PZ_SET_TPZ_SLEWRATES 0x0683123
MGMSG_PZ_REQ_TPZ_SLEWRATES 0x0684123
MGMSG_PZ_GET_TPZ_SLEWRATES 0x0685
MGMSG_MOT_SET_PZSTAGEPARAMDEFAULTS 0x0686125
MGMSG_PZ_SET_LUTVALUETYPE: 0x0708126
MGMSG_PZ_SET_TSG_IOSETTINGS 0x07DA127
MGMSG_PZ_REQ_TSG_IOSETTINGS 0x07DB127
MGMSG_PZ_GET_TSG_IOSETTINGS 0x07DC127
MGMSG_PZ_REQ_TSG_READING 0x07DD
MGMSG_PZ_GET_TSG_READING 0x07DE129
Message Cross Reference by Unit Part Number
Messages Applicable to BPC20x Series
Messages Applicable to BPC30x Series
Messages Applicable to TPZ001
Messages Applicable to TSG001
Messages Applicable to MPZ601
Messages Applicable to TDC001
Messages Applicable to TSC001

Thorlabs Confidential

Introduction

1. Purpose and Scope

This document describes the low-level communications protocol and commands used between the host PC and controller units within the APT family. The information contained in this document is intended to help third party system developers to write their own applications to interface to the Thorlabs range of controllers without the constraints of using a particular operating system or hardware platform. The commands described here are those which are necessary to control movement; there is an additional set of commands, used for calibration or test, which will not be detailed as these are not required for the external system developer.

2. Electrical interface

The APT family of controllers provides a USB and an RS-232 interface to communicate with the host PC. The communications protocol is identical in both cases but developers wishing to use the USB interface should be aware of the USB enumeration scheme used in the system.

2.1 USB Interface

The electrical interface within the APT controllers uses a Future Technology Devices International (FTDI), type FT232BM USB peripheral chip to communicate with the host PC. This is a USB2.0 compliant USB1.1 device. This USB interfacing chip provides a serial port interface to the embedded system (i.e. APT controller) and USB interface to the host control PC. While the overall communications protocol is independent of the transport layer (for example, Ethernet or serial communications could also be used to carry commands from the host to the controller), the initial enumeration scheme described below is specific to the USB environment.

FTDI supply device drivers and interfacing libraries (for Windows, Linux and other platforms) used to access the USB chip. Before any PC USB communication can be established with an APT controller, the client program is required to set up the necessary FTDI chip serial port settings used to communicate to the APT controller embedded system. Within the APT software itself the following FTDI library calls are made to set up the USB chip serial port for each APT USB device enumerated on the bus:-

```
// Set baud rate to 115200.
ftStatus = FT_SetBaudRate(m_hFTDevice, (ULONG)uBaudRate);

// 8 data bits, 1 stop bit, no parity
ftStatus = FT_SetDataCharacteristics(m_hFTDevice, FT_BITS_8, FT_STOP_BITS_1,
FT_PARITY_NONE);

// Pre purge dwell 50ms.
Sleep(uPrePurgeDwell);

// Purge the device.
ftStatus = FT_Purge(m_hFTDevice, FT_PURGE_RX | FT_PURGE_TX);

// Post purge dwell 50ms.
Sleep(uPostPurgeDwell);
```

Thorlabs Confidential Page 6 of 138

```
// Reset device.
ftStatus = FT_ResetDevice(m_hFTDevice);

// Set flow control to RTS/CTS.
ftStatus = FT_SetFlowControl(m_hFTDevice, FT_FLOW_RTS_CTS, 0, 0);

// Set RTS.
ftStatus = FT_SetRts(m_hFTDevice);
```

2.2 USB Device Enumeration

The APT Server PC software supplied is designed to work with a number of different types of controller. The purpose of the enumeration phase is for the host to establish what devices are present in the system and initialise the GUI accordingly. Initially this is done by enumerating the USB devices connected to the system and reading the serial number information contained in the USB device descriptor.

For the Thorlabs range of controllers, this serial number is an 8-digit decimal number. The first two digits (referred to as the prefix) describe the type of controller, while the rest of the digits make up a unique serial number. By extracting the prefix, the host can therefore establish what type of hardware is connected to the system.

In most cases, specifically with benchtop controllers, the USB serial number contains sufficient information for the host to know the exact type of hardware is connected. There is a range of other controller products where several controller cards (without their own individual USB peripheral chip) can be plugged into a motherboard and it is only the motherboard that has USB connectivity. These are generally referred to as a card slot (or bay) type of system (for example, the BSC103 controller). In these systems, a second enumeration state is carried out; however, this second state is done within the protocol framework that will be detailed in this document.

For the controller types, the USB prefixes can be the following:

USB S/N	Type of product	Thorlabs code
20xxxxxx	Legacy single channel stepper driver	BSC001
25xxxxxx	Legacy single channel mini stepper driv	er BMS001
30xxxxxx	Legacy dual channel stepper driver	BSC002
35xxxxxx	Legacy dual channel mini stepper drive	r BMS002
40xxxxxx	Single channel stepper driver	BSC101
60xxxxxx	OptoSTDriver (mini stepper driver)	OST001
63xxxxxx	OptoDCDriver (mini DC servo driver)	ODC001
70xxxxxx	Three channel card slot stepper driver	BSC103
80xxxxxx	Stepper Driver T-Cube	TST001
83xxxxxx	DC servo driver T-Cube	TDC001
73xxxxxx	Brushless DC motherboard	BBD102/BBD103
94xxxxxx	Brushless DC motor card	BBD102/BBD103

Of these listed above, currently only the BSC103 (serial number prefix 70) and the BBD10x are card slot type of controllers.

Thorlabs Confidential Page 7 of 138

2.3 RS-232 Interface

The RS-232 interface uses the 9-way D-Type male connector on the rear panel, marked 'INTERCONNECT'. Communications parameters are fixed at:

- 115200 bits/sec
- 8 data bits, 1 stop bit
- No parity
- No handshake

By nature, the RS-232 interface provides point-to-point communications, and therefore there is no device enumeration as there is with USB based communications.

3. Overview of the Communications Protocol

The communications protocol used in the Thorlabs controllers is based on the message structure that always starts with a fixed length, 6-byte *message header* which, in some cases, is followed by a variable length *data packet*. For simple commands, the 6-byte message header is sufficient to convey the entire command. For more complex commands, for example, when a set of parameters needs to be passed on, the 6 byte header is not enough and in this case the header is followed by the data packet.

The header part of the message always contains information that indicates whether or not a data packet follows the header and if so, the number of bytes that the data packet contains. In this way the receiving process is able to keep tracks of the beginning and the end of messages.

Note that in the section below describing the various byte sequences, the C-type of notation will be used for hexadecimal values (e.g. 0x55 means 55 hexadecimal) and logical operators (e.g. | means logic bitwise OR). Values that are longer than a byte follow the Intel little-endian format.

4. Description of the message header

The 6 bytes in the message header are shown below:

Byte:
Meaning if no data
packet to follow
Meaning if data packet
to follow

byte 0	byte 1	byte 2	byte 3	byte 4	byte 5
message	ID	param1	param2	dest	source
message	ID	data packet length		dest 0x80	source

The meaning of some of the fields depends on whether or not the message is followed by a data packet. This is indicated by the most significant bit in byte 4, called the destination byte, therefore the receiving process must first check if the MSB of byte 4 is set.

If this bit is not set, then the message is a header-only message and the interpretation of the bytes is as follows:

message ID: describes what the action the message requests

param1: first parameter (if the command requires a parameter, otherwise 0)

Thorlabs Confidential Page 8 of 138

param2: second parameter (if the command requires a parameter, otherwise 0)

dest: the destination module source: the source of the message

The meaning of the source and destination bytes will be detailed later. If the MSB of byte 4 is set, then the message will be followed by a data packet and the interpretation of the header is the following:

message ID: describes what the action the message requests

datapacket length: number of bytes to follow after header

Note: although this is a 2-byte long field, currently no datapacket

exceeds 255 bytes in length.

dest: | 0x80 the destination module logic OR'd with 0x80 (noted by d|)

source: the source of the data

The source and destination fields require some further explanation. In general, as the name suggests, they are used to indicate the source and destination of the message. In non-card-slot type of systems the source and destination of messages is always unambiguous, as each module appears as a separate USB node in the system. In these systems, when the host sends a message to the module, it uses the source identification byte of 0x01 (meaning host) and the destination byte of 0x50 (meaning "generic USB unit"). (In messages that the module sends back to the host, the content of the source and destination bytes is swapped.)

In card-slot (bay) type of systems, there is only one USB node for a number of sub-modules, so this simple scheme cannot be used. Instead, the host sends a message to the motherboard that the sub-modules are plugged into, with the destination field of each message indicating which *slot* the message must be routed to. Likewise, when the host receives a message from a particular sub-module, it knows from the source byte which slot is the origin of the message – see Fig below.

Thorlabs Confidential Page 9 of 138

Numerically, the following values are currently used for the source and destination bytes:

```
0x01
           Host controller (i.e control PC)
0x11
          Rack controller, motherboard in a card slot system or
           comms router board
0x21
          Bay 0 in a card slot system
0x21
0x22
          Bay 1 in a card slot system
0x23
           etc.
0x24
           etc.
0x25
          etc.
0x26
           etc.
0x2A Bay 9 in a card slot system 0x50 Generic USB hardware unit
```

In slot-type systems the host can also send messages to the motherboard that the submodules are plugged into (destination byte = 0x11). In fact, as a very first step in the communications process, the host must send a message to the motherboard to find out which slots are used in the system.

Note that although in theory this scheme would allow communication between individual sub-modules (the source of the message could be a sub-module and the destination another one), current systems do not use this option.

Thorlabs Confidential Page 10 of 138

5. General message exchange rules

The type of messages used in the communications exchange between the host and the sub-modules can be divided into 4 general categories:

(a) Host issues a command, sub-module carries out the command without acknowledgement (i.e. no response is sent back to the host).

Typically, these are commands which require no information from the sub-module, for example setting the digital outputs to a particular state.

(b) Host issues a command (message request) and the sub-module responds by sending data back to the host.

For example, the host may request the sub-module to report the state of the digital inputs.

(c) Following a command from the host, the sub-module periodically sends a message to the host without further prompting.

These messages are referred to as *status update messages*. These are typically sent automatically every 100 msec from the sub-module to the host, showing, amongst other things, the position of the stage the controller is connected to. The meters on the APT User GUI rely on these messages to show the up-to-date status of the stage.

(d) Rarely – error messages, exceptions. These are spontaneously issued by the sub-module if some error occurs. For example, if the power supply fails in the sub-module, a message is sent to the host PC to inform the user.

Apart from the last two categories (status update messages and error messages), in general the message exchanges follow the SET -> REQUEST -> GET pattern, i.e. for most commands a trio of messages are defined. The SET part of the trio is used by the host (or, sometimes in card-slot systems the motherboard) to set some parameter or other. If then the host requires some information from the sub-module, then it may send a REQUEST for this information, and the sub-module responds with the GET part of the command. Obviously, there are cases when this general scheme does not apply and some part of this message trio is not defined. For consistency, in the description of the messages this SET->REQUEST->GET scheme will be used throughout.

Note that, as the scheme suggests, this is a master-slave type of system, so sub-modules never send SET and REQUEST messages to the host and GET messages are always sent to the host as a destination.

In all messages, where a parameter is longer than a single character, the bytes are encoded in the Intel format, least significant byte first.

Thorlabs Confidential Page 11 of 138

6. Format Specifiers

format	encoding
long	4 bytes in the Intel (big-endian) format
	for example decimal 123456789 (75BCD15H) is encoded as the byte
	sequence 15H, CDH, 5BH, 07H
short	2 bytes (4 digits) in the Intel (big-endian) format
	for example decimal 12345 (3039H) is encoded as the byte sequence 39H,
	30H
word	2 bytes (4 digits) in the Intel (big-endian) format
	for example decimal 12345 (3039H) is encoded as the byte sequence 39H,
	30H
dword	4 bytes in the Intel (big-endian) format
	for example decimal 123456789 (75BCD15H) is encoded as the byte
	sequence 15H, CDH, 5BH, 07H
char	1 byte (2 digits)
char[N]	string of N characters

Thorlabs Confidential Page 12 of 138

7. Command Reference

In general, the messages used in the communication protocol can be divided into 5 main groups: generic commands, move parameter setup commands, move initiating commands, status update message related commands and error messages.

The commands listed below are a subset of all the commands available but they should enable any type of movement to be controlled. There are other commands available to perform other functions (for example for setting digital outputs) but these are not relevant for most applications that control movement. Some of these will nevertheless be listed here for completeness.

Where the same command has the SET/REQ/GET versions, the summary below only shows the SET version. The detailed description of the command lists the other versions.

Generic commands:

MGMSG_MOD_IDENTIFY	0x0223	Identify
MGMSG_HW_REQ_INFO	0x0005	Hardware information
MGMSG_MOD_SET_CHANENABLESTATE	0x0210	Enable channel

Move parameter setup commands:

MGMSG_MOT_SET_POSCOUNTER	0x0410	Set position counter
MGMSG_MOT_SET_VELPARAMS	0x0414	Set velocity parameters
MGMSG_MOT_SET_JOGPARAMS	0x0416	Set jogging parameters
MGMSG_MOT_SET_GENMOVEPARAMS	0x043A	Set general move parameters
MGMSG_MOT_SET_MOVERELPARAMS	0x0445	Set relative move parameters
MGMSG_MOT_SET_MOVEABSPARAMS	0x0450	Set absolute move parameters
MGMSG_MOT_SET_HOMEPARAMS	0x0442	Set parameters for homing

Move initiating commands:

MGMSG MOT MOVE HOME	0x0443	Initiate homing
MGMSG MOT MOVE RELATIVE	0x0448	Move relative
MGMSG_MOT_MOVE_ABSOLUTE	0x0453	Move absolute
MGMSG_MOT_MOVE_JOG	0x046A	Jog
MGMSG MOT MOVE STOP	0x0465	Stop movement

Status update message related commands:

MGMSG_HW_START_UPDATEMSGS	0x0011	Start sending update messages
MGMSG_HW_STOP_UPDATEMSGS	0x0011	Stop sending update messages
MGMSG_MOT_REQ_DCSTATUSUPDATE	0x0490	Send status update
MGMSG_MOT_REQ_STATUSBITS	0x0429	Send status bits only

Error messages:

MGMSG_HW_RESPONSE	0x0080	Short error message
MGMSG_HW_RICHRESPONSE	0x0081	Verbose error message

The following sections detail the messages used for controller operations. Note that the source and destination fields are not filled in as these vary depending on the originator and target of the message.

Thorlabs Confidential Page 13 of 138

7.1 Scaling Factors

To convert between the position and encoder counters in the stage being driven, and real world units, e.g. mm, the system uses certain conversion factors. These conversion factors differ depending on the stage being driven and the controller being used.

MLS203 and BBDxxx

Position: 1 mm equals 20,000 PMD units

Velocity: 1 mm / sec equals 134218 PMD units

Acceleration: 1 mm / sec² equals 13.7439 PMD units.

Jerk: 1 mm / sec³ equals 92.2337 PMD "jerk" units

Please see the examples in each command description for details on using these conversion factors.

Thorlabs Confidential Page 14 of 138

Generic System Control Messages

Introduction

The messages described here are either system control messages, or else generic messages which apply to several or all controller types. Please see the list of controller specific commands for details on applicability to a specific controller type.

Thorlabs Confidential Page 15 of 138

MGMSG_MOD_IDENTIFY

0x0223

Function: Instruct hardware unit to identify itself (by flashing its front panel

LEDs).

Command structure (6 bytes):

0	1	2	2 3 4				
header only							
23	02	22 02 00 00					

Example: Identify controller #1 (i.e. bay 0 of the TDC001 controller) by flashing

its front panel LED.

TX 23, 02, 00, 00, 21, 01

Thorlabs Confidential Page 16 of 138

MGMSG_MOD_SET_CHANENABLESTATE MGMSG_MOD_REQ_CHANENABLESTATE MGMSG_MOD_GET_CHANENABLESTATE 0x0210 0x0211 0x0212

Function

Sent to enable or disable the specified drive channel.

SET:

Command structure (6 bytes):

0	1	2	3	4	5			
		hea	header only					
10	02	Chan	Enable	d	S			
		Ident	State					

Channel Idents

0x01 channel 1 0x02 channel 2

Enable States

0x01 enable channel 0x02 disable channel

For single channel controllers such as the BBD10X, TDC001, the Chan Ident byte is always set to CHAN1.

Note: Although the BBD102 is in fact a 2-channel controller, 'channel' in this sense means "motor output channel within this module". Electrically, the BBD102 is a bay system, with two bays, each of them being a single channel controller, so only one channel can be addressed. There are controllers in the Thorlabs product range which indeed have multiple output channels (for example the MST601 module) for which the channel ident is used to address a particular channel.

Example: Enable the motor channel in bay 2

TX 10, 02, 01, 01, 22, 01

REQ:

Command structure (6 bytes):

0	1	2	3	4	5
		head	ler only		
11	02	Chan	0	d	S
		Ident			

As above, for single channel controllers such as the BBD10X, TDC001, the Chan Ident byte is always set to CHAN1.

Thorlabs Confidential Page 17 of 138

GET: Response structure (6 bytes):

0	1	2	3	4	5	
hea	der only					
12	02	Chan	Enable	d	S	
		Ident	State			

The meaning of the parameter bytes "Chan Ident" and "Enable State" is the same as for the SET version of the commands.

Thorlabs Confidential Page 18 of 138

MGMSG_HW_DISCONNECT

0x002H

Function: Sent by the hardware unit or host when either wants to disconnect

from the Ethernet/USB bus.

REQ:

Command structure (6 bytes):

0	1	2	3	4	5		
header only							
02	00	00	00	d	S		

Example: Disconnect the BBD103 from the USB bus

TX 02, 00, 00, 00, 11, 00

MGMSG_HW_RESPONSE

0x0080

Function: Sent by the hardware unit if it encounters a fault, failure or warning

condition. In normal operation the HW_Response message will not be fired. It is good programming practice to handle this message in

case hardware problems occur.

REQ:

Command structure (6 bytes):

0	1	2	2 3 4				
header only							
80	00	00	00	d	S		

Example: The BBD103 unit has encountered an over current condition

TX 80, 00, 00, 00, 01, 11

Thorlabs Confidential Page 19 of 138

MGMSG_HW_START_UPDATEMSGS

0x0011

Function:

Sent to start status updates from the embedded controller. Status update messages contain information about the position and status of the controller (for example limit switch status, motion indication, etc). The messages will be sent by the controller periodically until it receives a STOP STATUS UPDATE MESSAGES command. In applications where spontaneous messages (i.e. messages which are not received as a response to a specific command) must be avoided the same information can also be obtained by using the relevant GET_STATUTSUPDATES function.

Command structure (6 bytes):

0	1	2	3	4	5
		head	der only		
11	00	Update Rate	Unused	d	S

The first data byte can be used to specify the update rate with which status updates are received from the controller. However, the parameter is ignored for the BBD101/102/103 controllers and the update rate is fixed at 10 regardless of the parameter sent.

REQUEST: N/A

MGMSG_HW_STOP_UPDATEMSGS

0x0012

Function:

Sent to stop status updates from the controller – usually called by a client application when it is shutting down, to instruct the controller to turn off status updates to prevent USB buffer overflows on the PC.

SET: Command structure (6 bytes):

0	1	2	3	4	5	
header only						
12	00	00	00	d	S	

REQUEST: N/A GET: N/A

Thorlabs Confidential Page 20 of 138

MGMSG_HW_REQ_INFO MGMSG_HW_GET_INFO 0x05H 0x06H

Function: Sent to request hardware information from the controller.

REQ:

Command structure (6 bytes):

0	1	4	5				
header only							
05	00	00	00	d	S		

Example: Request hardware info from controller #1

TX 05, 00, 00, 00, 11, 01

GET:

Response structure (90 bytes):

6 byte header followed by 84 byte (0x54) data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
		hed	ader							do	ata				
06	00	54	00	d	S	<-	-Serial N	Numbe	er >		<	Model	Number	·>	
16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
		•	'				d	ata							
<mo< td=""><td>odel></td><td><type< td=""><td><u>;</u>></td><td></td><td><softv< td=""><td>ware></td><td>></td><td><</td><td></td><td>Note</td><td>es</td><td></td><td>></td><td></td><td></td></softv<></td></type<></td></mo<>	odel>	<type< td=""><td><u>;</u>></td><td></td><td><softv< td=""><td>ware></td><td>></td><td><</td><td></td><td>Note</td><td>es</td><td></td><td>></td><td></td><td></td></softv<></td></type<>	<u>;</u> >		<softv< td=""><td>ware></td><td>></td><td><</td><td></td><td>Note</td><td>es</td><td></td><td>></td><td></td><td></td></softv<>	ware>	>	<		Note	es		>		
١	No	"			Versi	ion >									
		1						ı							
32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47
							d	ata							
<						Notes					>				
48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63
							d	ata							
		<						Notes					>		
64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79
							di	ata							
		<						Notes					>		
80	81	82	83	84		8	6 8	87	88	89					
					data										
	<		N	ntes			>		<-nch	S>					

Thorlabs Confidential Page 21 of 138

Data structure:

field	description	format
serial number	unique 8-digit serial number	long
model	alphanumeric model number	char[8]
number		
type	hardware type:	word
	45 = multi-channel controller motherboard	
	44 = brushless DC controller	
software	software version	byte[4]
version	byte[20] = minor revision number	
	byte[21] = interim revision number	
	byte[22] = major revision number	
	byte[23] = unused	
notes	arbitrary alphanumeric information string	char[64]
nchs	number of channels	word

Example: Returned hardware info from controller #1

RX 06, 00, 54, 00, 81, 22, 89, 53, 9A, 05, 49, 4F, 4E, 30, 30, 31, 20, 00, 2C, 00, 02, 01, 39, 00, 42, 72, 75, 73, 68, 6C, 65, 73, 73, 20, 44, 43, 20, 4D, 6F, 74, 6F, 72, 20, 49, 4F, 4E, 20, 44, 72, 69, 76, 65, 00, 00..., 11, 00, 01, 00, 00, 00, 01, 00

Header: 06, 00, 54, 00, 81, 22: Get Info, 54H (84) byte data packet,

Motor Channel 2.

Serial Number: 89, 53, 9A, 05: 94000009

Model Number: 49, 4F, 4E, 30, 30, 31, 20, 00: ION001 Type: 2C, 00: 44 – Brushless DC Controller Card

Software Version: 02, 01, 39, 00: 3735810 (ION embedded code

version)

Notes: 42, 72, 75, 73, 68, 6C, 65, 73, 73, 20, 44, 43, 20, 4D, 6F, 74, 6F, 72, 20, 49, 4F, 4E, 20, 44, 72, 69, 76, 65, 00...: BRUSHLESS DC

MOTOR ION DRIVE.....

No Chan: 01, 00: 1 active channel

Thorlabs Confidential Page 22 of 138

MGMSG_RACK_REQ_BAYUSED MGMSG_RACK_GET_BAYUSED

0x060 0x061

Function: Sent to determine whether the specified bay in the controller is

occupied.

REQ:

Command structure (6 bytes):

0	1	2	3	4	5
		header	only		
60	00	Bay	00	d	S
		Bay Ident			

Bay Idents

0x01 Bay 1 0x02 Bay 2 to 0x09 Bay 10

Example: Is controller bay #1 (i.e. bay 0) occupied

TX 06, 00, 00, 00, 11, 01

GET:

Command structure (6 bytes):

0 1 2	3	4	5							
header only										
61 00 Bay Ident	Bay State	d	S							

Bay Idents

0x01 Bay 1 0x02 Bay 2 to 0x09 Bay 10

Bay States

0x01 Bay Occupied 0x02 Bay Empty (Unused)

Example: Controller bay #1 (i.e. bay 0) is occupied

RX 06, 00, 00, 01, 11, 01

Thorlabs Confidential Page 23 of 138

MGMSG_HUB_REQ_BAYUSED MGMSG_HUB_GET_BAYUSED 0x065 0x066

Function: Sent to determine which bay a specific T-Cube is fitted.

REQ:

Command structure (6 bytes):

0	0 1 2 3				5						
header only											
65	00	00	00	d	S						

TX 65, 00, 00, 00, 50, 01

GET:

Command structure (6 bytes):

0	1	2	3	4	5						
	header only										
66	00	Bay	00	d	S						
		Bay Ident									

Bay Idents

-0x01 T-Cube being standalone, i.e. off the hub.

0x00 T-Cube on hub, but bay unknown

0x01 Bay 1 0x02 Bay 2 to 0x06 Bay 6

Example: Which hub bay is the T-Cube unit fitted

TX 66, 00, 06, 00, 01, 50

Thorlabs Confidential Page 24 of 138

MGMSG_RACK_REQ_STATUSBITS MGMSG_RACK_GET_STATUSBITS

0x0226 0x0227

This method is applicable only to the MMR modular rack, and 2- and 3-channel card slot type controllers such as the BSC103 and BPC202.

Function:

The USER IO connector on the rear panel of these units exposes a number of digital inputs. This function returns a number of status flags pertaining to the status of the inputs on the rack modules, or the motherboard of the controller unit hosting the single channel controller card.

These flags are returned in a single 32 bit integer parameter and can provide additional useful status information for client application development. The individual bits (flags) of the 32 bit integer value are described below.

REQUEST:

Command structure (6 bytes):

	0	1	2	3	4	5			
	header only								
Ī	28	02	Status	00	d	S			
			Bits						

GET:

Response structure (10 bytes)

6 byte header followed by 4 byte data packet as follows:

0	1	2	3	4	5	7	8	9	10
	header						Do	ıta	
27	02	04	00	d	S	StatusBits			

Data Structure:

field	description	format
StatusBits	The status bits for the associated controller channel. The meaning of the individual bits (flags) of the 32 bit integer value will depend on the controller and are described in the following table.	dword

Hex Value	Bit Number	Description
0x0000001	1	Digital output 1 state (1 - logic high, 0 - logic low).
0x00000002	2	Digital output 2 state (1 - logic high, 0 - logic low).
0x00000004	3	Digital output 3 state (1 - logic high, 0 - logic low).
0x00000008	4	Digital output 4 state (1 - logic high, 0 - logic low).

Example: With destination being 0x11 (motherboard – see Introduction) and bay being bay 1, slot 2 (0x22)

TX 27, 02, 04, 00, 01, 22, 00, 00, 00, 00

Header: 27, 02, 04, 00, 01, 22: GetStatusBits, 04 byte data packet, bay 1 slot 2.

Thorlabs Confidential Page 25 of 138

MGMSG_RACK_SET_DIGOUTPUTS MGMSG_RACK_REQ_DIGOUTPUTS MGMSG_RACK_GET_DIGOUTPUTS 0x0228 0x0229 0x0230

This method is applicable only to the MMR rack modules, and 2- and 3-channel card slot type controllers such as the BSC103 and BPC202.

Function:

The USER IO connector on the rear panel of these units exposes a number of digital outputs. These functions set and return the status of the outputs on the rack modules, or the motherboard of the controller unit hosting the single channel controller card.

These flags are returned in a single 32 bit integer parameter and can provide additional useful status information for client application development. The individual bits (flags) of the 32 bit integer value

are described below.

SET:

Data structure (6 bytes)

0	1	2	3	4	5						
	header only										
28	02	Dig OP	00	d	S						

Hex Value	Bit Number	Description
0x0000001	1	Digital input 1 state (1 - logic high, 0 - logic low).
0x00000002	2	Digital input 2 state (1 - logic high, 0 - logic low).
0x00000004	3	Digital input 3 state (1 - logic high, 0 - logic low).
0x00000008	4	Digital input 4 state (1 - logic high, 0 - logic low).

Example: With destination being 0x11 (motherboard – see Introduction) and bay being bay 1, slot 2 (0x22), set Digital output 1 high

TX 28, 02, 01, 22, 11, 01,

Header: 28, 02, 01, 22, 11, 01: SetDigOutputs, 01 OP1 High, bay 1 slot 2, d=motherboard, s=PC.

REQUEST:

Command structure (6 bytes):

0	1	2	3	4	5						
	header only										
29	02	00	00	d	S						

GET:

Response structure (6 bytes)

0	1	4	5								
	header only										
30	02	00	00	d	S						

See SET above for structure

Thorlabs Confidential Page 26 of 138

Motor Control Messages

Introduction

The 'Motor' messages provide the functionality required for a client application to control one or more of the Thorlabs series of motor controller units. This range of motor controllers covers DC servo and stepper drivers in a variety of formats including compact Cube type controllers, benchtop units and 19" rack based modular drivers. Note for ease of description, the TSC001 T-Cube Solenoid Controller is considered here as a motor controller. The list of controllers covered by the motor messages includes:

BSC001 – 1 Channel Benchtop Stepper Driver

BSC002 – 2 Channel Benchtop Stepper Driver

BMS001 – 1 Channel Benchtop Low Power Stepper Driver

BMS002 – 2 Channel Benchtop Low Power Stepper Driver

MST601 – 2 Channel Modular Stepper Driver

BSC101 – 1 Channel Benchtop Stepper Driver (2006 onwards)

BSC102 – 2 Channel Benchtop Stepper Driver (2006 onwards)

BSC103 – 3 Channel Benchtop Stepper Driver (2006 onwards)

BBD101 - 1 Channel Benchtop Brushless DC Motor Driver

BBD102 – 2 Channel Benchtop Brushless DC Motor Driver

BBD103 - 3 Channel Benchtop Brushless DC Motor Driver

BBD201 - 1 Channel Benchtop Brushless DC Motor Driver

BBD202 – 2 Channel Benchtop Brushless DC Motor Driver

BBD203 – 3 Channel Benchtop Brushless DC Motor Driver

OST001 – 1 Channel Cube Stepper Driver

ODC001 - 1 Channel Cube DC Servo Driver

TST001 - 1 Channel T-Cube Stepper Driver

TDC001 - 1 Channel T-Cube DC Servo Driver

TSC001 - 1 Channel T-Cube Solenoid Driver

The motor messages can be used to perform activities such as homing stages, absolute and relative moves, changing velocity profile settings and operation of the solenoid state (TSC001 T-Cube). With a few exceptions, these messages are generic and apply equally to both single and dual channel units.

Where applicable, the target channel is identified in the Chan Ident parameter and on single channel units, this must be set to CHAN1_ID. On dual channel units, this can be set to CHAN1_ID, CHAN2_ID or CHANBOTH_ID as required.

For details on the operation of the motor controller, and information on the principles of operation, refer to the handbook supplied with the unit.

Thorlabs Confidential Page 27 of 138

MGMSG_MOT_SET_POSCOUNTER MGMSG_MOT_REQ_POSCOUNTER MGMSG_MOT_GET_POSCOUNTER 0x0410 0x0411 0x0412

Function:

Used to set the 'live' position count in the controller. In general, this command is not normally used for the brushless DC controller family. Instead, the stage is homed immediately after power-up (at this stage the position is unknown as the stage is free to move when the power is off); and after the homing process is completed the position counter is automatically updated to show the actual position. From this point onwards the position counter always shows the actual absolute position.

SET:

Command structure (12 bytes)

6 byte header followed by 6 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11
	header							L	Data		
10	04	06	00	d	S	Chan Ident Position					

Data Structure:

field	description	format
Chan Ident	The channel being addressed	word
Position	The new value of the position counter as a 32-bit signed	long
	integer, encoded in the Intel format. The scaling between real	
	time values and this parameter is detailed in section 7.1.	

Example: MLS203 and BBD102: Set the position counter for channel 2 to 10.0 mm

TX 10, 04, 06, 00, A2, 01, 01, 00, 04, 0D, 03, 00

Header: 10, 04, 06, 00, A2, 01: SetPosCounter, 06 byte data packet, Channel 2.

Chan Ident: 01, 00: Channel 1 (always set to 1 for TDC001)

Position: 04, 0D, 03, 00: Set Counter to 10 mm (10 x 20,000)

REQUEST:

Command structure (6 bytes):

0	1	2	3	4	5			
header only								
11	04	Chan	00	d	S			
		Ident						

GET:

Response structure (12 bytes)

6 byte header followed by 6 byte data packet as follows:

				1			1				
0	1	2	3	4	5	6	7	8	9	10	11
	header					Data					
12	04	06	00	dl	S	Chan	Ident		Po	sition	

For structure see SET message above.

Thorlabs Confidential Page 28 of 138

MGMSG_MOT_SET_ENCCOUNTER MGMSG_MOT_REQ_ENCCOUNTER MGMSG_MOT_GET_ENCCOUNTER 0x0409 0x040A 0x040B

Function:

Used to set the encoder count in the controller. In general, this command is not normally used for the brushless DC controller family. Instead, the stage is homed immediately after power-up (at this stage the position is unknown as the stage is free to move when the power is off); and after the homing process is completed the position counter is automatically updated to show the actual position. From this point onwards the position counter always

shows the actual absolute position.

SET:

Command structure (12 bytes)

6 byte header followed by 6 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11
	header							L	Data		
09	04	06	00	d	S	Chan	Ident		Encod	ler Count	

Data Structure:

field	description	format
Chan Ident	The channel being addressed	word
Encoder	The new value of the encoder counter as a 32-bit signed	long
Count	integer, encoded in the Intel format. The scaling between real	
	time values and this parameter is detailed in section 7.1.	

Example: MLS203 and BBD102: Set the encoder counter for channel 2 to 10.0 mm

TX 09, 04, 06, 00, A2, 01, 01, 00, 04, 0D, 03, 00

Header: 09, 04, 06, 00, A2, 01: SetEncCounter, 06 byte data packet, Channel 2.

Chan Ident: 01, 00: Channel 1 (always set to 1 for TDC001)

Position: 04, 0D, 03, 00: Set Counter to 10 mm (10 x 20,000)

REQUEST:

Command structure (6 bytes):

0	1	2	3	4	5			
header only								
11	04	Chan	00	d	S			
		Ident						

GET:

Response structure (12 bytes)

6 byte header followed by 6 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11
	header							L	Data		
OB	04	06	00	d	S	Chan	Ident		Encod	ler Count	

For structure see SET message above.

Thorlabs Confidential Page 29 of 138

Issue 3

MGMSG_MOT_SET_VELPARAMS MGMSG_MOT_REQ_VELPARAMS MGMSG_MOT_GET_VELPARAMS 0x0413 0x0414 0x0415

Function: Used to set the trapezoidal velocity parameters for the specified

motor channel, in encoder counts/sec for velocity or encoder

counts/sec/sec for acceleration.

For stepper controllers the position steps are in micro-steps and for

DC servo controller in encoder counts.

SET:

Command structure (20 bytes)

6 byte header followed by 14 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11
		h	eader						Data		
13	04	0E	00	d	S	Cha	n Ident		Min	Velocity	

12	13	14	15	16	17	18	19
			Do	ıta			
	Accele	ration			Max V	elocity	

Data Structure:

field	description	format
Chan Ident	The channel being addressed	word
Minimum	The minimum (start) velocity in encoder counts/sec	long
(Start) Vel	Currently, this 4 byte value is always zero	
Acceleration	The acceleration in encoder counts /sec/sec.	long
	4 byte unsigned long value. The scaling between real time	
	values and this parameter is detailed in section 7.1.	
Maximum Vel	The maximum (final) velocity in encoder counts /sec.	long
	4 byte unsigned long value. The scaling between real time	
	values and this parameter is detailed in section 7.1.	

Example: MLS203 and BBD102: Set the trapezoidal velocity parameters for chan 2 as

follows:

Min Vel: zero

Acceleration: 10 mm/sec/sec

Max Vel: 99 mm/sec

TX 13, 04, 0E, 00, A2, 01, 01, 00, 00, 00, 00, 00, B0, 35, 00, 00, CD, CC, CC, 00

Header: 13, 04, 0E, 00, A2, 01: Set Vel Params, 0EH (14) byte data packet, Channel 2.

Chan Ident: 01, 00: Channel 1 (always set to 1 for TDC001)

Min Vel: 00, 00, 00, 00: Set min velocity to zero

Accel: 89, 00, 00, 00: Set acceleration to 10 mm/sec/sec (13.744 x 10) Max Vel: 9E, CO, CA, 00: Set max velocity to 99 mm/sec (134218 x 99)

Thorlabs Confidential Page 30 of 138

REQUEST:

Command structure (6 bytes):

0	1	2	3	4	5				
header only									
14	04 Chan 00 d s								
		Ident							

GET:

Response structure (20 bytes)

6 byte header followed by 14 byte data packet as follows:

	_	5	4	5	6	7	8	9	10	11
	he	ader			Data					
15 (04 OE	00	d	S	Chan	Chan Ident Min Velocity				
						<u> </u>				

12	13	14	15	16	17	18	19
				Data			
	Accele	ration			Max \	Velocity	

For structure see SET message above.

Thorlabs Confidential Page 31 of 138

MGMSG_MOT_SET_JOGPARAMS MGMSG_MOT_REQ_JOGPARAMS MGMSG_MOT_GET_JOGPARAMS 0x0416 0x0417 0x0418

Function:

Used to set the velocity jog parameters for the specified motor channel, in position steps/sec for velocity or position steps/sec/sec for acceleration.

SET:

Command structure (28 bytes)

6 byte header followed by 22 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11
		he	ader				Data				
16	04	16	00	d	S	Chan	Ident	Jog N	Лode	Jog St	ep Size
12	13	14	15	5 16	5 1	7 18	3 19	20	21		
					Data						
Jog S	Step Size		Jog N	Min Velo	city		Jog Ad	celeratio	n		

22	23	24	25	26	27				
Data									
Jog N	vlax Vel	ocity	St	ор Мос	le				

Data Structure:

field	description	format
Chan Ident	The channel being addressed	word
Jog Mode	This 2 byte value can be 1 for continuous jogging or 2 for single step jogging. In continuous jogging mode the movement continues for as long as the jogging trigger (the jogging button on the GUI or an external signal) is being active. In single step mode triggering jogging initiates a single move whose step size is defined as the next parameter (see below).	word
Jog Step Size	The jog step size in encoder counts. The scaling between real time values and this parameter is detailed in section 7.1.	long
Jog Min Velocity	The minimum (start) velocity in encoder counts /sec. Currently, this 4 byte value is always zero.	long
Jog Acceleration	The acceleration in encoder counts /sec/sec The scaling between real time values and this parameter is detailed in section 7.1.	long
Jog Max Velocity	The maximum (final) velocity in encoder counts /sec. The scaling between real time values and this parameter is detailed in section 7.1.	long
Jog Stop Mode	The stop mode. This 16 bit word can be 1 for immediate (abrupt) stop or 2 for profiled stop (with controlled deceleration).	word

Thorlabs Confidential Page 32 of 138

Example: MLS203 and BBD102: Set the jog parameters for channel 2 as follows:

Jog Mode: Continuous Jog Step Size:0.05 mm Jog Min Vel: Zero

Jog Accel: 10 mm/sec/sec Jog Max Vel: 99 mm/sec Jog Stop Mode: Profiled

TX 16, 04, 16, 00, A2, 01, 01, 00, 01, 00, E8, 03, 00, 00, 00, 00, 00, 00, B0,35, 00, 00, CD, CC, CC, 00, 02, 00

Header: 16, 04, 16, 00, A2, 01: Set Jog Params, 16H (28) byte data packet, Channel 2.

Chan Ident: 01, 00: Channel 1 (always set to 1 for TDC001)

Jog Mode: 01,00,: Set jog mode to 'continuous'

Jog Step Size: E8, 03, 00, 00: Set jog step size to 0.05 mm (1,000 encoder counts).

Jog Min Vel: 00, 00, 00, 00: Set min jog velocity to zero

Jog Accel: 89, 00, 00, 00: Set acceleration to 10 mm/sec/sec (13.744 x 10) Jog Max Vel: 9E, CO, CA, OO: Set max velocity to 99 mm/sec (134218 x 99)

Jog Stop Mode: 02, 00: Set jog stop mode to 'Profiled Stop'.

REQUEST:

Command structure (6 bytes):

0	1	2	3	4	5
		head	ler only		
17	04	Chan	00	d	S
		Ident			

GET:

0

Response structure (28 bytes)

6 byte header followed by 22 byte data packet as follows:

	header									Data	
18	04	16	00	d	S		Chan Ident		Jog Mode		Jog Step Size
											_
12	13	14	15	5	16	17	18	19	20	21	
					Data	1					
Jog S	Step Size		Jog Min Velocity					Jog Ac	celeratio	n	

6

9

10

11

22	23	24	25	26	27				
	Data								
Jog N	Max Vel	ocity	St	ор Мос	le				

For structure see SET message above.

Thorlabs Confidential Page 33 of 138

MGMSG_MOT_SET_GENMOVEPARAMS MGMSG_MOT_REQ_GENMOVEPARAMS MGMSG_MOT_GET_GENMOVEPARAMS 0x043A 0x043B 0x043C

Function:

Used to set the general move parameters for the specified motor channel. At this time this refers specifically to the backlash settings.

SET:

Command structure (12 bytes)

6 byte header followed by 6 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11
	header							Da	ıta		
3A	04	06	00	d	S	Chan Ident Backlash Distance					

Data Structure:

field	description	format
Chan Ident	The channel being addressed	word
Backlash	The value of the backlash distance as a 4 byte signed	long
Distance	integer, which specifies the relative distance in position	
	counts. The scaling between real time values and this	
	parameter is detailed in section 7.1.	

Example: MLS203 and BBD102: Set the backlash distance for chan 2 to 1 mm:

TX 3A, 04, 06, 00, A2, 01, 01, 00, 20, 4E, 00, 00,

Header: 3A, 04, 06, 00, A2, 01: SetGenMoveParams, 06 byte data packet, Channel 2.

Chan Ident: 01, 00: Channel 1 (always set to 1 for TDC001)

Backlash Dist: 20, 4E, 00, 00: Set backlash distance to 1 mm (20,000 encoder counts).

REQUEST:

Command structure (6 bytes):

0	1	2	3	4	5
		head	ler only		
3B	04	Chan Ident	00	d	S

GET:

Response structure (12 bytes)

6 byte header followed by 6 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11	
	header						Data					
3C	04	06	00	d	S	Chan Ident Backlash Distance						

For structure see SET message above.

Thorlabs Confidential Page 34 of 138

MGMSG_MOT_SET_MOVERELPARAMS MGMSG_MOT_REQ_MOVERELPARAMS MGMSG_MOT_GET_MOVERELPARAMS 0x0445 0x0446 0x0447

Function:

Used to set the relative move parameters for the specified motor channel. The only significant parameter at this time is the relative move distance itself. This gets stored by the controller and is used the next time a relative move is initiated.

SET:

Command structure (12 bytes)

6 byte header followed by 6 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11
		hea	ıder			Data					
45	04	06	00	d	S	Chan Ident Relative Distance					

Data Structure:

field	description	format
Chan Ident	The channel being addressed	word
Relative	The distance to move. This is a 4 byte signed integer that	long
Distance	specifies the relative distance in position encoder counts.	
	The scaling between real time values and this parameter is	
	detailed in section 7.1.	

Example: MLS203 and BBD102: Set the relative move distance for chan 2 to 10 mm:

TX 45, 04, 06, 00, A2, 01, 01, 00, 40, 0D, 03, 00,

Header: 45, 04, 06, 00, A2, 01: SetMoveRelParams, 06 byte data packet, Channel 2.

Chan Ident: 01, 00: Channel 1 (always set to 1 for TDC001)

Rel Dist: 40, 0D, 03, 00: Set relative move distance to 10 mm (10 x 20,000 encoder counts).

REQUEST:

Command structure (6 bytes):

0	1	2	3	4	5				
header only									
46	04	Chan	00	d	S				
46	04	Chan Ident	00	d	S				

GET:

Response structure (12 bytes)

6 byte header followed by 6 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11
	header							Do	ıta		
47	47 04 06 00 d s					Chan	Ident		Relative	Distance	

For structure see SET message above.

Thorlabs Confidential Page 35 of 138

MGMSG_MOT_SET_MOVEABSPARAMS MGMSG_MOT_REQ_MOVEABSPARAMS MGMSG_MOT_GET_MOVEABSPARAMS 0x0450 0x0451 0x0452

Function:

Used to set the absolute move parameters for the specified motor channel. The only significant parameter at this time is the absolute move position itself. This gets stored by the controller and is used the next time an absolute move is initiated.

SET:

Command structure (12 bytes)

6 byte header followed by 6 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11	
	header							Data				
50	50 04 06 00 d s						Ident		Absolute	Position		

Data Structure:

field	description	format
Chan Ident	The channel being addressed	word
Absolute	The absolute position to move. This is a 4 byte signed	long
Position	integer that specifies the absolute position in position	
	encoder counts. The scaling between real time values and	
	this parameter is detailed in section 7.1.	

Example: MLS203 and BBD102: Set the absolute move position for chan 2 to 10 mm:

TX 50, 04, 06, 00, A2, 01, 01, 00, 40, 0D, 03, 00,

Header: 50, 04, 06, 00, A2, 01: SetMoveAbsParams, 06 byte data packet, Channel 2.

Chan Ident: 01, 00: Channel 1 (always set to 1 for TDC001)

Abs Pos: 40, 0D, 03, 00: Set absolute move position to 10 mm (200,000 encoder counts).

REQUEST:

Command structure (6 bytes):

0	1	2	3	4	5					
	header only									
51	04	Chan Ident	00	d	S					

GET:

Response structure (12 bytes)

6 byte header followed by 6 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11
header							Da	ıta			
52	04	06	00	d	S	Chan Ident Absolute Position					

For structure see SET message above.

Thorlabs Confidential Page 36 of 138

Issue 3

MGMSG_MOT_SET_HOMEPARAMS MGMSG_MOT_REQ_HOMEPARAMS MGMSG_MOT_GET_HOMEPARAMS 0x0440 0x0441 0x0442

Function:

Used to set the home parameters for the specified motor channel. These parameters are stage specific and for the MLS203 stage implementation the only parameter that can be changed is the homing velocity.

SET:

Command structure (20 bytes)

6 byte header followed by 14 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11
	header						Data				
40	04	0E	00	d	S	Chan Ident Home Dir Limi		Limit S	Switch		

12	13	14	15	16	17	18	19			
Data										
	Home \	/elocity	•		Offset D	istance				

Data Structure:

field	description	format
Chan Ident	The channel being addressed	word
Home Direction	Ignored in this implementation. Homing direction is always positive.	word
Limit Switch	Ignored in this implementation. The limit switches are not used for homing.	word
Home Velocity	The homing velocity. A 4 byte unsigned long value. The scaling between real time values and this parameter is detailed in section 7.1.	long
Offset Distance	Not used in this implementation.	long

Thorlabs Confidential Page 37 of 138

Example: MLS203 and BBD102: Set the home parameters for chan 2 as follows:

Home Direction: Not used (always positive).

Limit Switch: Not used Home Vel: 24 mm/sec Offset Dist: Not used.

Header: 40, 04, 0E, 00, A2, 01: SetHomeParams, 14 byte data packet, Channel 2.

Chan Ident: 01, 00: Channel 1 (always set to 1 for TDC001)

Home Direction: 00, 00: Not Applicable Limit Switch: 00, 00: Not Applicable

Home Velocity: 33, 33, 33, 00: 24 mm/sec (3355443/134218)

Offset Distance: 00, 00, 00, 00: Not used

REQUEST:

Command structure (6 bytes):

0	1	2	3	4	5
		head	ler only		
41	04	Chan	00	d	S
		Ident			

GET:

Response structure (20 bytes)

6 byte header followed by 14 byte data packet as follows:

-												
	0	1	2	3	4	5	6	7	8	9	10	11
	header								Do	ita		
	42	04	0E	00	d	S	Chan	Ident	Hom	e Dir	Limit 9	witch
									_			
	12	13	14	15	16	17	18	19				

12	13	14	15	16	17	18	19				
	Data										
Home Velocity Offset Distance											

For structure see SET message above.

Thorlabs Confidential Page 38 of 138

MGMSG_MOT_SET_LIMSWITCHPARAMS MGMSG_MOT_REQ_LIMSWITCHPARAMS MGMSG_MOT_GET_LIMSWITCHPARAMS 0x0423 0x0424 0x0425

These functions are not applicable to BBD10x units

Function: Used to set the limit switch parameters for the specified motor

channel.

SET:

Command structure (22 bytes)

6 byte header followed by 16 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11
		hea	ıder		Data						
23	04	10	00	d	S	Chan	Ident	CW Ha	rdlimit	CCW H	lardlimit
12	13	14	15	16	17	18	19	20	21		
	Data										
	CW Soft Limit CCW Soft							Limit	Mode		

Data Structure:

field	description	format
Chan Ident	The channel being addressed	word
CW Hard	The operation of the Clockwise hardware limit switch when	word
Limit	contact is made.	
	0x01 Ignore switch or switch not present.	
	0x02 Switch makes on contact.	
	0x03 Switch breaks on contact.	
	0x04 Switch makes on contact - only used for homes (e.g.	
	limit switched rotation stages).	
	0x05 Switch breaks on contact - only used for homes (e.g.	
	limit switched rotations stages).	
	0x06 For PMD based brushless servo controllers only -	
	uses index mark for homing.	
	Note. Set upper bit to swap CW and CCW limit switches in	
	code. Both CWHardLimit and CCWHardLimit structure	
	members will have the upper bit set when limit switches	
	have been physically swapped.	
	0x80 // bitwise OR'd with one of the settings above.	
CCW Hard	The operation of the Counter Clockwise hardware limit	word
Limit	switch when contact is made.	
CW Soft Limit	Clockwise software limit in position steps. A 32 bit unsigned	long
	long value, the scaling factor between real time values and	
	this parameter is 1 mm is equivalent to 134218. For	
	example, to set the clockwise software limit switch to 100	
	mm, send a value of 13421800.	
CCW Soft	Counter Clockwise software limit in position steps (scaling	long
Limit	as for CW limit).	
Software	Software limit switch mode	word

Thorlabs Confidential Page 39 of 138

Limit Mode	0x01	Ignore Limit	
	0x02	Stop Immediate at Limit	
	0x03	Profiled Stop at limit	
	0x80	Rotation Stage Limit (bitwise OR'd with one of the	
	setting	gs above)	

Example: Set the limit switch parameters for chan 2 as follows:

CW Hard Limit – switch makes. CCW Hard Limit - switch makes CW Soft Limit – set to 100 mm CCW Soft Limit - .set to 0 mm Software Limit Mode – Profiled Stop

TX 23, 04, 10, 00, A2, 01, 01, 00, 02, 00, 02, 00, E8. CC, CC, 00, 00, 00, 00, 00, 03, 00

Header: 23, 04, 10, 00, A2, 01: SetLimSwitchParams, 16 byte data packet, Channel 2.

Chan Ident: 01, 00: Channel 1 (always set to 1 for TDC001)

CW Hard Limit: 02, 00: Switch Makes CCW Hard Limit: 02, 00: Switch Makes

CW Soft Limit: E8, CC, CC, 00: 100 mm (13421800/134218)

CCW Soft Limit: 00, 00, 00, 00: 0 mm

Soft Limit Mode: 03, 00: Profiled Stop at Limit

REQUEST:

Command structure (6 bytes):

0	1	2	3	4	5						
	header only										
24	04	Chan	00	d	S						
		Ident									

GET:

Response structure (20 bytes)

6 byte header followed by 16 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11	
	header							Data				
25	04	10	00	d	S	Chan Ident CW Hardlimit CCW Hardlim					lardlimit	
12	13	14	15	16	17	18	19	20	21			
	Do	ıta										
	CW Soft Limit CCW So							Limit	Mode			
]		

For structure see SET message above.

Thorlabs Confidential Page 40 of 138

Issue 3

MGMSG_MOT_MOVE_HOME MGMSG_MOT_MOVE_HOMED

0x0443 0x0444

Function: Sent to start a home move sequence on the specified motor channel

(in accordance with the home parameters above).

TX structure (6 bytes):

0	1	2	3	4	5
		head	ler only		
43	04	Chan Ident	0x	d	S

Example: Home the motor channel in bay 2

TX 43, 04, 01, 00, 22, 01

HOMED:

Function: No response on initial message, but upon completion of home

sequence controller sends a "homing completed" message:

RX structure (6 bytes):

0	1	2	3	4	5
		head	ler only		
44	04	Chan	0x	d	S
		Ident			

Example: The motor channel in bay 2 has been homed

RX 44, 04, 01, 00, 01, 22

Thorlabs Confidential Page 41 of 138

MGMSG_MOT_MOVE_RELATIVE

0x0448

Function:

This command can be used to start a relative move on the specified motor channel (using the relative move distance parameter above). There are two versions of this command: a shorter (6-byte header only) version and a longer (6 byte header plus 6 data bytes) version. When the first one is used, the relative distance parameter used for the move will be the parameter sent proviously by a

the move will be the parameter sent previously by a

MGMSG_MOT_SET_MOVERELPARAMS command. If the longer version of the command is used, the relative distance is encoded in

the data packet that follows the header.

Short version:

TX structure (6 bytes):

0	1	2	3	4	5
header only					
48	04	Chan	0x	d	S
		Ident			

Example: Move the motor associated with channel 2 by 10 mm. (10 mm was previously set in the MGMSG_ MOT_SET_MOVERELPARAMS method).

TX 48, 04, 01, 00, 22, 01

Long version:

The alternative way of using this command is by appending the relative move params structure (MOT_SET_MOVERELPARAMS) to this message header.

Command structure (12 bytes)

6 byte header followed by 6 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11
		hea	ıder			Data					
48	04	06	00	d	S	Chan	Ident	Relative Distance			

Data Structure:

field	description	format
Chan Ident	The channel being addressed	Word
Relative	The distance to move. This is a 4 byte signed integer that	Long
Distance	specifies the relative distance in position encoder counts. In	
	the BBD10X series controllers the encoder resolution is	
	20,000 counts per mm, therefore to set a relative move	
	distance of 1 mm, set this parameter to 20,000 (twenty	
	thousand).	

Thorlabs Confidential Page 42 of 138

Example: Move the motor associated with chan 2 by 10 mm:

TX 48, 04, 06, 00, A2, 01, 01, 00, 40, 0D, 03, 00,

Header: 45, 04, 06, 00, A2, 01: MoveRelative, 06 byte data packet, Channel 2.

Chan Ident: 01, 00: Channel 1 (always set to 1 for TDC001)

Rel Dist: 40, 0D, 03, 00: Set absolute move distance to 10 mm (200,000 encoder counts).

Upon completion of the relative move the controller sends a Move Completed message as described following.

Thorlabs Confidential Page 43 of 138

MGMSG_MOT_MOVE_COMPLETED

0x0464

Function: No response on initial message, but upon completion of the relative

or absolute move sequence, the controller sends a "move

completed" message:

RX structure (20 bytes):

0	1	2	3	4	5
header only					
64	04	Chan	0x	d	S
		Ident			

Followed by a 14-byte data packet described by the same status structures (i.e. MOTSTATUS and MOTDCSTATUS) described in the STATUS UPDATES section that follows.

Thorlabs Confidential Page 44 of 138

MGMSG_MOT_MOVE_ABSOLUTE

0x0453

Function:

Used to start an absolute move on the specified motor channel (using the absolute move position parameter above). As previously described in the "MOVE RELATIVE" command, there are two versions of this command: a shorter (6-byte header only) version and a longer (6 byte header plus 6 data bytes) version. When the first one is used, the absolute move position parameter used for the move will be the parameter sent previously by a

MGMSG_MOT_SET_MOVEABSPARAMS command. If the longer version of the command is used, the absolute position is encoded in

the data packet that follows the header.

Short version:

TX structure (6 bytes):

0	1	2	3	4	5
		head	ler only		
53	04	Chan	0x	d	S
		Ident			

Example: Move the motor associated with channel 2 to 10 mm. (10 mm was previously set in the MGMSG_ MOT_SET_MOVEABSPARAMS method).

TX 53, 04, 01, 00, 22, 01

Long version:

The alternative way of using this command by appending the absolute move params structure (MOTABSMOVEPARAMS) to this message header.

Command structure (12 bytes)

6 byte header followed by 6 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11
		hea	ıder				Data				
53	04	06	00	d	S	Chan	Ident	Absolute Distance			

Data Structure:

field	description	format
Chan Ident	The channel being addressed	Word
Absolute	The distance to move. This is a 4 byte signed integer that	Long
Distance	specifies the absolute distance in position encoder counts.	
	In the BBD10X series controllers the encoder resolution is	
	20,000 counts per mm, therefore to set an absolute move	
	distance of 100 mm, set this parameter to 2,000,000 (two	
	million).	

Thorlabs Confidential Page 45 of 138

Example: Move the motor associated with chan 2 to 10 mm:

TX 53, 04, 06, 00, A2, 01, 01, 00, 40, 0D, 03, 00,

Header: 45, 04, 06, 00, A2, 01: MoveAbsolute, 06 byte data packet, Channel 2.

Chan Ident: 01, 00: Channel 1 (always set to 1 for TDC001)

Abs Dist: 40, 0D, 03, 00: Set the absolute move distance to 10 mm (200,000 encoder counts).

Upon completion of the absolute move the controller sends a Move Completed message as previously described.

Thorlabs Confidential Page 46 of 138

MGMSG_MOT_MOVE_JOG

0x046A

Function: Sent to start a jog move on the specified motor channel.

TX structure (6 bytes):

0	1	2	3	4	5		
	header only						
6A	04	Chan	Direction	d	S		
		Ident					

Data Structure:

field	description	format
Chan Ident	The channel being addressed	word
Direction	The direction to Jog. Set this byte to 0x01 to jog forward, or to 0x02 to jog in the reverse direction.	word

Upon completion of the jog move the controller sends a Move Completed message as previously described.

Thorlabs Confidential Page 47 of 138

MGMSG_MOT_MOVE_VELOCITY

0x0457

Function: This command can be used to start a move on the specified motor

channel.

When this method is called, the motor will move continuously in the

specified direction, using the velocity parameters set in the

MGMSG_MOT_SET_MOVEVELPARAMS command until either a stop command (either StopImmediate or StopProfiled) is called, or a limit

switch is reached.

TX structure (6 bytes):

0	1	2	3	4	5
header only					
57	04	Chan	Direction	d	S
		Ident			

Data Structure:

field	description	format
Chan Ident	The channel being addressed	word
Direction	The direction to Jog. Set this byte to 0x01 to move forward, or to 0x02 to move in the reverse direction.	word

Upon completion of the move the controller sends a Move Completed message as previously described.

Example: Move the motor associated with channel 2 forwards.

TX 57, 04, 01, 01, 22, 01

Thorlabs Confidential Page 48 of 138

MGMSG_MOT_MOVE_STOP

0x0465

Function: Sent to stop any type of motor move (relative, absolute, homing or

move at velocity) on the specified motor channel.

TX structure (6 bytes):

0	1	2	3	4	5			
header only								
65	04	Chan	Stop	d	S			
		Ident	Mode					

Data Structure:

field	description	format
Chan Ident	The channel being addressed	word
Stop Mode	The stop mode defines either an immediate (abrupt) or profiles tops. Set this byte to 0x01 to stop immediately, or to	word
	0x02 to stop in a controller (profiled) manner.	

Upon completion of the stop move the controller sends a Move Stopped message as described following

Thorlabs Confidential Page 49 of 138

MGMSG_MOT_MOVE_STOPPED

0x0466

Function: No response on initial message, but upon completion of the stop

move, the controller sends a "move stopped" message:

RX structure (20 bytes):

0	1	2	3	4	5				
	header only								
66	04	0E	0x	d	S				

Followed by a 14-byte data packet described by the same status structures (i.e. MOTSTATUS and MOTDCSTATUS) described in the STATUS UPDATES section that follows.

Thorlabs Confidential Page 50 of 138

MGMSG_MOT_SET_DCPIDPARAMS MGMSG_MOT_REQ_DCPIDPARAMS MGMSG_MOT_GET_DCPIDPARAMS 0x04A0 0x04A1 0x04A2

Function:

Used to set the position control loop parameters for the specified motor channel.

The motion processor within the controller uses a position control loop to determine the motor command output. The purpose of the position loop is to match the actual motor position and the

demanded position. This is achieved by comparing the demanded position with the actual position to create a position error, which is then passed through a digital PID-type filter. The filtered value is the motor command output.

NOTE. These settings apply to LM628/629 based servo controllers (only TDC001 at this time). Refer to data sheet for National Semiconductor LM628/LM629 for further details on setting these PID related parameters.

SET: Command structure (26 bytes)

6 byte header followed by 20 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11	
	header							Data				
A0	04	14	00	d	S	Chan	Ident	Proportional				
12	13	14	15	16	17	18	19	20	21	22	23	
	Data											
	Integral Differe					ential Integral Limit						

24	25				
Data					
FilterControl					

Data Structure:

field	description	format
Chan Ident	The channel being addressed	word
Proportional	The proportional gain. Together with the Integral and	long
	Differential, these terms determine the system response	
	characteristics and accept values in the range 0 to 32767.	
Integral	The integral gain. Together with the Proportional and	long
	Differential, these terms determine the system response	
	characteristics and accept values in the range 0 to 32767.	
Differential	The differential gain. Together with the Proportional and	long
	Integral, these terms determine the system response	
	characteristics and accept values in the range 0 to 32767.	
Integral Limit	The Integral Limit parameter is used to cap the value of the	long
	Integrator to prevent runaway of the integral sum at the	
	output. It accepts values in the range 0 to 32767. If set to 0	
	then the integration term in the PID loop is ignored.	
FilterControl	Identifies which of the above parameters are applied by	word

Thorlabs Confidential Page 51 of 138

setting the corresponding bi	t to '1'. By default, all
parameters are applied, and	this parameter is set to OF
(1111).	

Example: Set the PID parameters for TDC001 as follows:

Proportional: 65 Integral: 175 Differential: 600 Integral Limit: 20,000

FilCon: 15

TX A0, 04, 14, 00, D0, 01, 01, 00, 41, 00, AF, 00, 58, 02, 20, 4E, 00, 00, 0F, 00

Header: A0, 04, 14, 00, D0, 01: Set_DCPIDParams, 20 byte data packet, Generic USB Device.

Chan Ident: 01, 00: Channel 1 (always set to 1 for TDC001) Proportional: 41, 00,: Set the proportional term to 65

Integral: AF, 00,: Set the integral term to 175

Differential: 58, 02,: Set the differential term to 600

Integral Limit: 20, 4E, 00, 00,: Set the integral limit to 20,000

FilterControl: 0F, 00: Set all terms to active.

REQUEST:

Command structure (6 bytes):

0	1	2	3	4	5			
header only								
A0	04	Chan	00	d	S			
		Ident						

GET:

6 byte header followed by 20 byte data packet as follows:

header							Data				
A0	04	14	00	d	S	Chan Ident		Proportional			
12	13	14	15	16	17	18	19	20	21	22	23
	Data										
Integral Diffe					rential Integral Limit						

24	25				
Data					
FilterControl					

For structure see Set message above.

Thorlabs Confidential Page 52 of 138

Issue 3

MGMSG_MOT_SET_AVMODES MGMSG_MOT_REQ_AVMODES MGMSG_MOT_GET_AVMODES 0x04B3 0x04B4 0x04B5

Function:

The LED on the control keypad can be configured to indicate certain

driver states.

All modes are enabled by default. However, it is recognised that in a

light sensitive environment, stray light from the LED could be undesirable. Therefore it is possible to enable selectively, one or all

of the LED indicator modes described below by setting the

appropriate value in the Mode Bits parameter.

SET:

Command structure (10 bytes)

6 byte header followed by 4 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9
		he	ader		Data				
В3	04	04	00	d	S	Chan	Chan Ident ModeBi		Bits

Data Structure:

field	description	format
Chan Ident	The channel being addressed	word
ModeBits	The mode of operation for the LED is set according to the hex value entered in the mode bits. 1 LEDMODE_IDENT: The LED will flash when the 'Ident' message is sent. 2 LEDMODE_LIMITSWITCH: The LED will flash when the motor reaches a forward or reverse limit switch. 8 LEDMODE_MOVING: The LED is lit when the motor is moving.	word

Example: Set the LED to flash when the IDENT message is sent, and also when the motor is moving.

TX B3, 04, 04, 00, D0, 01, 01, 00, 09, 00,

Header: B3, 04, 04, 00, D0, 01: SetAVModes, 04 byte data packet, Generic USB Device.

Chan Ident: 01, 00: Channel 1 (always set to 1 for TDC001)

ModeBits: 09, 00 (i.e. 1 + 8)

Similarly, if the ModeBits parameter is set to '11' (1 + 2 + 8) all modes will be enabled.

REQUEST:

Command structure (6 bytes):

Thorlabs Confidential Page 53 of 138

0	1	2	3	4	5					
	header only									
11	04	Chan	00	d	S					
		Ident								

GET:

Response structure (10 bytes)

6 byte header followed by 4 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9
		he	ader			Data			
B5	04	04	00	d	S	Chan Ident		Mode	Bits

For structure see SET message above.

Thorlabs Confidential

MGMSG_MOT_SET_POTPARAMS MGMSG_MOT_REQ_POTPARAMS MGMSG_MOT_GET_POTPARAMS 0x04B0 0x04B1 0x04B2

Function:

The potentiometer slider on the control panel panel is sprung, such that when released it returns to it's central position. In this central position the motor is stationary. As the slider is moved away from the center, the motor begins to move; the speed of this movement increases as the slider deflection is increased. Bidirectional control of motor moves is possible by moving the slider in both directions. The speed of the motor increases by discrete amounts rather than continuously, as a function of slider deflection. These speed settings are defined by 4 pairs of parameters. Each pair specifies a pot deflection value (in the range 0 to 127) together with an associated velocity (set in encoder counts/sec) to be applied at or beyond that deflection. As each successive deflection is reached by moving the pot slider, the next velocity value is applied. These settings are applicable in either direction of pot deflection, i.e. 4 possible velocity settings in the forward or reverse motion directions. **Note**. The scaling factor between encoder counts and mm/sec depends on the specific stage/actuator being driven.

SET:Command structure (32 bytes)
6 byte header followed by 26 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11
	header							Data			
В0	04	1A	00	d	S	Chan Ident ZeroWnd			Vel1		
12	13	14	15	16	17	18	19	20	21	22	23
					Do	ıta					
Ve	el1	Wr	nd1		Ve	el2		Wnd2		Vel3	
24	25	26	27	20	20	20	24				

24	25	26	27	28	29	30	31			
	Data									
Ve	el3	Wr	ıd3		Ve	14				

Data Structure:

field	description	format
Chan Ident	The channel being addressed	word
ZeroWnd	The deflection from the mid position (in ADC counts 0 to 127) before motion can start	word
Vel1	The velocity (in encoder counts /sec) to move when between Wnd0 and PotDef1	long
Wnd1	The deflection from the mid position (in ADC counts, Wnd0 to 127) to apply Vel1	word
Vel2	The velocity (in encoder counts /sec) to move when between PotDef1 and PotDef2	long
Wnd2	The deflection from the mid position (in ADC counts, PotDef1 to 127) to apply Vel2	word

Thorlabs Confidential Page 55 of 138

Vel3	The velocity (in encoder counts/sec) to move when between	long
	PotDef2 and PotDef3	
Wnd3	The deflection from the mid position (in ADC counts PotDef2	word
	to 127) to apply Vel3	
Vel4	The velocity (in encoder counts /sec) to move when beyond	long
	PotDef3	

Example: For the Z8 series motors, there are 512 encoder counts per revolution of the motor. The output shaft of the motor goes into a 67:1 planetary gear head. This requires the motor to rotate 67 times to rotate the 1.0 mm pitch lead screw one revolution. The end result is the lead screw advances by 1.0 mm.

Therefore, a 1 mm linear displacement of the actuator is given by

512 x 67 = 34,304 encoder counts

whereas the linear displacement of the lead screw per encoder count is given by

1.0 mm / 34,304 counts = 2.9 x 10-5 mm (29 nm).

Typical parameters settings Hex (decimal)

ZeroWnd - 14 (20)

Vel1 – 66, 0D,00,00 (3430)

Wnd1 - 32 (50)

Vel2 - CC, 1A, 00, 00 (6860)

Wnd2 - 50 (80)

Vel3 – 32, 28, 00, 00 (10290)

Wnd3 - 64 (100)

Vel4 – 00, 43, 00, 00 (17152)

Using the parameters above, no motion will start until the pot has been deflected to 20 (approx 1/6 full scale deflection), when the motor will start to move at 0.1mm/sec. At a deflection of 50 (approx 2/5 full scale deflection) the motor velocity will increase to 0.2mm/sec, and at 80, velocity will increase to 0.3 mm/sec. When the pot is deflected to 100 and beyond, the velocity will be 0.5 mm/sec.

Note. It is acceptable to set velocities equal to each other to reduce the number of speeds, however this is not allowed for the deflection settings, whereby the Wnd3 Pot Deflection value must be greater than Wnd2 Pot Deflection value.

TX B0, 04, 1A, 00, D0, 01, 01, 00, 01, 00, E8, 03, 00, 00, 00, 00, 00, 00, B0,35, 00, 00, CD, CC, CC, 00, 02, 00

Header: B0, 04, 1A, 00, D0, 01: Set Pot Params, 1AH (26) byte data packet, Generic USB

Device.

Chan Ident: 01, 00: Channel 1 (always set to 1 for TDC001)

Wnd0: 14 (20 ADC Counts)

Vel1: 66, 0D,00,00 (3430 Encoder Counts/sec = 0.1 mm/sec)

PotDef1: 32 (50 ADC Counts)

Vel2: CC, 1A, 00, 00 (6860 Encoder Counts/sec = 0.2 mm/sec)

PotDef2: 50 (80 ADC Counts)

Vel3: 32, 28, 00, 00 (10290 Encoder Counts/sec = 0.3 mm/sec)

PotDef3: 64 (100 ADC Counts)

Vel4: 00, 43, 00, 00 (17152 Encoder Counts/sec = 0.5 mm/sec)

REQUEST:

Command structure (6 bytes):

0	1	2	2 3 4		5					
	header only									
17	04	Chan	00	d	S					
		Ident								

GET:

Response structure (28 bytes)

6 byte header followed by 22 byte data packet as follows:

1	2	3	4	5	6	7	8	9	10	11
header					Data					
04	1A	00	d	S	Chan	Ident	Zero	Wnd	Ve	el1
13	14	15	16	17	18	19	20	21	22	23
				Do	ıta					
el1	Wr	nd1		Ve	el2		Wr	ıd2	Ve	el3
	13	13 14	header 04 1A 00 13 14 15	header 04 1A 00 d 13 14 15 16	header 04 1A 00 d s 13 14 15 16 17 Do	header 04 1A 00 d s Chan 13 14 15 16 17 18 Data	header 04 1A 00 d s Chan Ident 13 14 15 16 17 18 19 Data	header Do 04 1A 00 d s Chan Ident Zero 13 14 15 16 17 18 19 20 Data	header Data 04 1A 00 d s Chan Ident ZeroWnd 13 14 15 16 17 18 19 20 21 Data	header Data 04 1A 00 d s Chan Ident ZeroWnd Ve 13 14 15 16 17 18 19 20 21 22 Data

24	25	26	27	28	29	30	31			
	Data									
Ve	el3	Wr	nd3	Vel4						

For structure see SET message above.

Thorlabs Confidential Page 57 of 138

MGMSG_MOT_SET_BUTTONPARAMS MGMSG_MOT_REQ_BUTTONPARAMS MGMSG_MOT_GET_BUTTONPARAMS 0x04B6 0x04B7 0x04B8

Function:

The control keypad can be used either to jog the motor, or to perform moves to absolute positions. This function is used to set the front panel button functionality.

SET:

Command structure (22 bytes)

6 byte header followed by 16 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11	
		hed	ader					ata				
В6	04	0E	00	d	S	Chan Ident Mode				Position1		
12	13	14	15	16	17	18	19	20	21			
	Data											
Posit	ion1		Posit	ion2		Time	Out	Not U	Jsed			

Data Structure:

field	description	format
Chan Ident	The channel being addressed	word
Mode	The buttons on the keypad can be used either to jog the	word
	motor (jog mode), or to perform moves to absolute	
	positions (go to position mode).	
	If set to 0x01, the buttons are used to jog the motor. Once	
	set to this mode, the move parameters for the buttons are	
	taken from the 'Jog' parameters set via the 'Move/Jogs'	
	settings tab or the SetJogParams methods.	
	If set to 0x02, each button can be programmed with a	
	different position value (as set in the Position 1 and Position	
	2 parameters), such that the controller will move the motor	
	to that position when the specific button is pressed.	
Position1	The position (in encoder counts) to which the motor will	long
	move when the top button is pressed.	
	This parameter is applicable only if 'Go to Position is	
	selected in the 'Mode' parameter.	
Position2	The position (in encoder counts) to which the motor will	long
	move when the bottom button is pressed.	
	This parameter is applicable only if 'Go to Position is	
	selected in the 'Mode' parameter.	
TimeOut	A 'Home' move or can be performed by pressing and	word
	holding both buttons. Furthermore, the present position can	
	be entered into the Position 1 or Position 2 parameter by	
	holding down the associated button. The Time Out	
	parameter specifies the time in ms that the button(s) must	
	be depressed.	
Not Used	This function is independent of the 'Mode' setting.	word
Not Used		word

Thorlabs Confidential Page 58 of 138

10

11

Position1

Example: Set the button parameters for TDC001 as follows:

Mode: Go To Position Position1: 0.5 mm Position2: 1.2 mm TimeOut: 2 secs

TX B6, 04, 10, 00, D0, 01, 01, 00, 02, 00, C0, 12, 00, 00, 00, 00, 00, 00, 00, 00

Header: B6, 04, 10, 00, D0, 01: SetButtonParams, 10H (16) byte data packet, Generic USB

Device

Chan Ident: 01, 00: Channel 1 (always set to 1 for TDC001)

Mode: 02, 00 (i.e. Go to position)

Position1: 00, 43, 00, 00 (17152 Encoder Counts = 0.5 mm)
Position2: CC, A0, 00, 00 (41164 encoder counts = 1.2 mm):

TimeOut: D0, 07: (2 seconds)

REQUEST:

Command structure (6 bytes):

0	1	2	2 3 4						
header only									
DB	04	Chan	00	d	S				
		Ident							

GET:

Response structure (20 bytes)

6 byte header followed by 16 byte data packet as follows:

		hea	ider		Data					
B6	04	0E	00	d	S	Chan	Chan Ident		/lode	
12	13	14	15	16	17	18	19	20	21	
Data										
Position1 Position2							TimeOut Not Used		Used	

For structure see SET message above.

Thorlabs Confidential Page 59 of 138

MGMSG_MOT_SET_EEPROMPARAMS

0x04B9

Function: Used to save the parameter settings for the specified message.

These settings may have been altered either through the various method calls or through user interaction with the GUI (specifically, by clicking on the 'Settings' button found in the lower right hand

corner of the user interface).

SET:

Command structure (10 bytes)

6 byte header followed by 4 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9
		hea		Do	ıta				
B9	04	04	00	d	S	Chan Ident		Ms	gID

Data Structure:

field	description	format			
Chan Ident	han Ident The channel being addressed				
MsgID	The message ID of the message containing the parameters to be saved.	word			

Example:

TX B9, 04, 04, 00, D0, 01, 01, 00, B6, 04,

Header: B9, O4, O4, O0, D0, O1: Set_EEPROMPARAMS, O4 byte data packet, Generic USB

Device.

Chan Ident: 01, 00: Channel 1

MsgID: Save parameters specified by message 04B6 (SetButtonParams).

Thorlabs Confidential Page 60 of 138

MGMSG_MOT_SET_PMDPOSITIONLOOPPARAMS 0x04D7
MGMSG_MOT_REQ_PMDPOSITIONLOOPPARAMS 0x04D8
MGMSG_MOT_GET_PMDPOSITIONLOOPPARAMS 0x04D9

Function: Used to set the position control loop parameters for the specified

motor channel.

The motion processors within the BBD series controllers use a position control loop to determine the motor command output. The purpose of the position loop is to match the actual motor position and the demanded position. This is achieved by comparing the demanded position with the actual encoder position to create a position error, which is then passed through a digital PID-type filter.

The filtered value is the motor command output.

SET:Command structure (34 bytes)
6 byte header followed by 28 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11
		hed	ıder			Data					
D7	04	1C	00	d	S	Chan	Ident	Кр	Pos	Integral	
12	13	14	15	16	17	18	19	20	21	22	23
					Do	rta					
	ILin	Pos		Differ	ential	KdTin	nePos	Kou	tPos	Kvff	Pos
						•				•	
24	25	26	27	28	29	30	31	32	33		
Data											
KaffPos PosErrLim					N,	/A	N,	/A			

Data Structure:

field	description	format
Chan Ident	The channel being addressed	word
Proportional	The proportional gain. Together with the Integral and	word
	Differential, these terms determine the system response	
	characteristics and accept values in the range 0 to 32767.	
Integral	The integral gain. Together with the Proportional and	word
	Differential, these terms determine the system response	
	characteristics and accept values in the range 0 to 32767.	
Integral Limit	The Integral Limit parameter is used to cap the value of the	dword
	Integrator to prevent runaway of the integral sum at the	
	output. It accepts values in the range 0 to 7FFFFFFF. If set to	
	0 then the integration term in the PID loop is ignored.	
Differential	The differential gain. Together with the Proportional and	word
	Integral, these terms determine the system response	
	characteristics and accept values in the range 0 to 32767.	
KdTimePos	Under normal circumstances, the derivative term of the PID	word
	loop is recalculated at every servo cycle. However, it may be	
	desirable to reduce the sampling rate to a lower value, in	
	order to increase stability or simplify tuning. The KdTimePos	
	parameter is used to set the sampling rate. For example, if	

Thorlabs Confidential Page 61 of 138

	set to 10, the derivative term is calculated every 10 servo	
	cycles. The value is set in cycles, in the range 1 to 32767.	
KoutPos	The KoutPos parameter is a scaling factor applied to the	word
	output of the PID loop. It accepts values in the range 0 to	
	65535, where 0 is 0% and 65535 is 100%.	
KvffPos	The KvffPos and KaffPos parameters are velocity and	word
KaffPos	acceleration feed-forward terms that are added to the	word
	output of the PID filter to assist in tuning the motor drive	
	signal. They accept values in the range 0 to 32767.	
PosErrLim	Under certain circumstances, the actual encoder position	dword
	may differ from the demanded position by an excessive	
	amount. Such a large position error is often indicative of a	
	potentially dangerous condition such as motor failure,	
	encoder failure or excessive mechanical friction. To warn of,	
	and guard against this condition, a maximum position error	
	can be set in the PosErrLim parameter, in the range 0 to	
	7FFFFFF. The actual position error is continuously	
	compared against the limit entered, and if exceeded, the	
	Motion Error bit (bit 15) of the Status Register is set and the	
	associated axis is stopped.	
Not Used		word
Not Used		word

Example: Set the PID parameters for chan 2 as follows:

Proportional: 65 Integral: 175

Integral Limit: 80,000 Differential: 600 KdTimePos: 5 KoutPos: 5% KvffPos: 0 KaffPos: 1000 PosErrLim: 65535

TX D7, 04, 1C, 00, A2, 01, 01, 00, 41, 00, AF, 00, 80, 38, 01, 00, 58, 02, 05, 00, CD, 0C, 00, 00, E8, 03, FF, FF, 00, 00, 00, 00

Header: D7, 04, 1C, 00, A2, 01: Set_PMDPositionLoopParams, 28 byte data packet, Channel 2.

Chan Ident: 01, 00: Channel 1 (always set to 1 for TDC001) Proportional: 41, 00,: Set the proportional term to 65

Integral: AF, 00,: Set the integral term to 175

Integral Limit: 80, 38, 01, 00,: Set the integral limit to 80,000

Differential: 58, 02,: Set the differential term to 600 *KdTimePos*: 05, 00,: Set the sampling rate to 5 cycles

KoutPos: CD, OC,: Set the output scaling factor to 5% (i.e. 3277) KvffPos: 00, 00,: Set the velocity feed forward value to zero KaffPos: E8, 03,: Set the acceleration feed forward value to 1000 PosErrLim: FF, FF, 00, 00,: Set the position error limit to 65535.

Thorlabs Confidential Page 62 of 138

REQUEST:

Command structure (6 bytes):

0	1	2	2 3		5					
	header only									
D8	04	Chan	00	d	S					
		Ident								

GET:

Response structure (34 bytes)

6 byte header followed by 28 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11
		hed	ıder		Data						
D9	04	1C	00	d	S	Chan	Ident	Кр	Pos	Integral	
12	13	14	15	16	17	18	19	20	21	22	23
					Do	ıta					
	ILin	Pos		Differ	ential	KdTin	nePos	Kou	tPos	Kvff	Pos
24	25	26	27	28	29	30	31	32	33		
Data											
KaffPos PosErrLim						N,	/A	N,	/A		

For structure see SET message above.

Thorlabs Confidential Page 63 of 138

MGMSG_MOT_SET_PMDMOTOROUTPUTPARAMS MGMSG_MOT_REQ_PMDMOTOROUTPUTPARAMS MGMSG_MOT_GET_PMDMOTOROUTPUTPARAMS 0x04DA 0x04DB 0x04DC

Function: Used to se

Used to set certain limits that can be applied to the motor drive

signal. The individual limits are described below.

SET:

Command structure (20 bytes)

6 byte header followed by 14 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11
		hea	der			Data					
DA	04	0E	00	d	S	Chan Ident		Cont Cur	rent Lim	Energ	y Limit

12	13	14	15	16	17	18	19				
	Data										
Moto	r Limit	Moto	r Bias	Not	Used	Not Used					

Data Structure:

field	description	format
Chan Ident	The channel being addressed	word
ContCurrentLim	The system incorporates a current 'foldback' facility,	word
	whereby the continuous current level can be capped. The	
	continuous current limit is set in the ContCurrentLim	
	parameter, which accepts values as a percentage of	
	maximum peak current, in the range 0 to 32767 (0 to	
	100%), which is the default maximum level set at the	
	factory (this maximum value cannot be altered).	
EnergyLim	When the current output of the drive exceeds the limit set	word
	in the ContCurrentLim parameter, accumulation of the	
	excess current energy begins. The EnergyLim parameter	
	specifies a limit for this accumulated energy, as a	
	percentage of the factory set default maximum, in the	
	range 0 to 32767 (0 to 100%). When the accumulated	
	energy exceeds the value specified in the EnergyLim	
	parameter, a 'current foldback' condition is said to exist,	
	and the commanded current is limited to the value	
	specified in the ContCurrentLim parameter. When this	
	occurs, the Current Foldback status bit (bit 25) is set in the	
	Status Register. When the accumulated energy above the	
	ContCurrentLim value falls to 0, the limit is removed and	
	the status bit is cleared.	
MotorLim	The MotorLim parameter sets a limit for the motor drive	word
	signal and accepts values in the range 0 to 32767 (100%). If	
	the system produces a value greater than the limit set, the	
	motor command takes the limiting value. For example, if	
	MotorLim is set to 30000 (91.6%), then signals greater	
	than 30000 will be output as 30000 and values less than	
	-30000 will be output as -30000.	
MotorBias	When an axis is subject to a constant external force in one	word

Thorlabs Confidential Page 64 of 138

	direction (such as a vertical axis pulled downwards by gravity) the servo filter can compensate by adding a constant DC bias to the output. This bias is set in the MotorBias parameter, which accepts values in the range -32767 to 32768. The default value is 0. Once set, the motor bias is applied while the position loop is enabled.	
Not Used		word
Not Used		word

Example: Set the motor output parameters for chan 2 as follows:

Continuous Current: 20%

Energy Limit: 14% Motor Limit: 100% Motor Bias: zero

TX DA, 04, 0E, 00, A2, 01, 01, 00, 99, 19, C0, 12, 00, 00, 00, 00, 00, 00, 00, 00

Header: DA, O4, OE, O0, A2, O1: Set MotorOutputParams, OEH (14) byte data packet, Channel

2.

Chan Ident: 01, 00: Channel 1 (always set to 1 for TDC001)

Cont Current Limit:

Energy Limit: 99, 19: Set the energy limit to 14% Motor Limit: C0, 12: Set the motor limit to 100% Motor Bias: 00, 00: Set the motor bias to zero

REQUEST:

Command structure (6 bytes):

0	1	2	3	4	5			
header only								
DB	04	Chan	00	d	S			
		Ident						

GET:

Response structure (20 bytes)

6 byte header followed by 14 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11		
	header							Data					
DC	04	0E	00	d	S	Chan Ident		Cont Cur	rent Lim	Energ	y Limit		

12	13	14	15	16	17	18	19			
	Data									
Motor	r Limit	Moto	lotor Bias Not Used Not U							

For structure see SET message above.

Thorlabs Confidential Page 65 of 138

MGMSG_MOT_SET_PMDTRACKSETTLEPARAMS 0x04E0
MGMSG_MOT_REQ_PMDTRACKSETTLEPARAMS 0x04E1
MGMSG_MOT_GET_PMDTRACKSETTLEPARAMS 0x04E2

Function:

Moves are generated by an internal profile generator, and are based on either a trapezoidal or S-curve trajectory. A move is considered complete when the profile generator has completed the calculated move and the axis has 'settled' at the demanded position. This command contains parameters which specify when the system is settled.

Further Information

The system incorporates a monitoring function, which continuously indicates whether or not the axis has 'settled'. The 'Settled' indicator is bit 14 in the Status Register and is set when the associated axis is settled. Note that the status bit is controlled by the processor, and cannot be set or cleared manually.

The axis is considered to be 'settled' when the following conditions are met:

- * the axis is at rest (i.e. not performing a move),
- * the error between the demanded position and the actual motor position is less than or equal to a specified number of encoder counts (0 to 65535) set in the *SettleWnd* parameter (Settle Window),
- * the above two conditions have been met for a specified number of cycles (settle time, 1 cycle = $102.4 \mu s$), set in the *SettleTime* parameter (range 0 to 32767).

The above settings are particularly important when performing a sequence of moves. If the PID parameters are set such that the settle window cannot be reached, the first move in the sequence will never complete, and the sequence will stall. The settle window and settle time values should be specified carefully, based on the required positional accuracy of the application. If positional accuracy is not a major concern, the settle time should be set to '0'. In this case, a move will complete when the motion calculated by the profile generator is completed, irrespective of the actual position attained, and the settle parameters described above will be ignored.

The processor also provides a 'tracking window', which is used to monitor servo performance outside the context of motion error. The tracking window is a programmable position error limit within which the axis must remain, but unlike the position error limit set in the SetDCPositionLoopParams method, the axis is not stopped if it moves outside the specified tracking window. This function is useful for processes that rely on the motor's correct tracking of a set trajectory within a specific range. The tracking window may also be used as an early warning for performance problems that do not yet qualify as motion error.

The size of the tracking window (i.e. the maximum allowable position error while remaining within the tracking window) is specified in the *TrackWnd* parameter, in the range 0 to 65535. If the position error of the axis exceeds this value, the Tracking Indicator status bit (bit 13) is

Thorlabs Confidential Page 66 of 138

set to 0 in the Status Register. When the position error returns to within the window boundary, the status bit is set to 1.

SET:

Command structure (18 bytes)

6 byte header followed by 12 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11
		hea	ıder		Data						
EO	04	0C	00	d	S	Chan Ident Time S				Settle W	/indow

12	13	14	15	16	17					
	Data									
Track V	Vindow	Not Used Not Used								

Data Structure:

field	description	format
Chan Ident	The channel being addressed	word
Time	The time that the associated axis must be settled before the 'Settled' status bit is set. The time is set in cycles, in the range 0 to 32767 , 1 cycle = $102.4 \mu s$.	word
Settle Window	The position error is defined as the error between the demanded position and the actual motor position. This parameter specifies the number of encoder counts (in the range 0 to 65535) that the position error must be less than or equal to, before the axis is considered 'settled'.	word
Track Window	The maximum allowable position error (in the range 0 to 65535) whilst tracking .	word
Not Used		word
Not Used		word

Example: Set the track and settle parameters for chan 2 as follows:

Settle Time: 20% Settle Window: 14% Track Window: 100%

s

TX E0, 04, 0C, 00, A2, 01, 01, 00, 00, 00, 14, 00, 00, 00, 00, 00, 00, 00, 00, 00

Header: E0, 04, 0C, 00, A2, 01: Set MotorOutputParams, 0CH (12) byte data packet, Channel

Chan Ident: 01, 00: Channel 1 (always set to 1 for TDC001)

Time: 00, 00: Set the Settle time to zero

Settle Window: 14, 00: Set the settle window to 20 encoder counts

Track Window: 00, 00: Set the track window to zero

Thorlabs Confidential Page 67 of 138

REQUEST:

Command structure (6 bytes):

0	1	2	3	4	5					
	header only									
E1	04	Chan	00	d	S					
		Ident								

GET:

Response structure (18 bytes)

6 byte header followed by 12 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11
		hed	ıder			Data					
E2	04	OC	00	d	S	Chan Ident Time			ne	Settle W	/indow

12	13	14	15	16 17						
	Data									
Track V	Vindow	Not Used Not Used								

For structure see SET message above.

Thorlabs Confidential Page 68 of 138

MGMSG_MOT_SET_PMDPROFILEMODEPARAMS 0x04E3
MGMSG_MOT_REQ_PMDPROFILEMODEPARAMS 0x04E4
MGMSG_MOT_GET_PMDPROFILEMODEPARAMS 0x04E5

Function:

The system incorporates a trajectory generator, which performs calculations to determine the instantaneous position, velocity and acceleration of each axis at any given moment. During a motion profile, these values will change continuously. Once the move is complete, these parameters will then remain unchanged until the next move begins.

The specific move profile created by the system depends on several factors, such as the profile mode and profile parameters presently selected, and other conditions such as whether a motion stop has been requested. This method is used to set the profile mode to either 'Trapezoidal' or 'S-curve'.

SET:Command structure (18 bytes)
6 byte header followed by 12 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11
		hed	ıder					Do	ata		
E3	04	0C	00	d	S	Chan Ident Mode Jerk				rk	
						_					
12	13	14	15	16	17						
		Do	rta								
Je	rk	Not	Used	Not	Used						

Data Structure:

field	description	format
Chan Ident	The channel being addressed	word
Mode	The move profile to be used:	word
	Trapezoidal: 0	
	S-Curve: 2	
	The Trapezoidal profile is a standard, symmetrical	
	acceleration/deceleration motion curve, in which the start	
	velocity is always zero.	
	The S-curve profile is a trapezoidal curve with an additional	
	'Jerk' parameter, which limits the rate of change of	
	acceleration and smooths out the contours of the motion	
	profile. In this profile mode, the acceleration increases	
	gradually from 0 to the specified acceleration value, then	
	decreases at the same rate until it reaches 0 again at the	
	specified velocity. The same sequence in reverse brings the	
	axis to a stop at the programmed destination position.	
Jerk	The Jerk value is specified in mm/s ³ in the Jerk parameter,	dword
	and accepts values in the range 0 to 4294967295. It is used	
	to specify the maximum rate of change in acceleration in a	
	single cycle of the basic trapezoidal curve. 1.0 mm/s ³ is	
	equal to 92.2337 jerk units.	
Not Used		word
Not Used		word

Thorlabs Confidential Page 69 of 138

Example: Set the profile mode parameters for chan 2 as follows:

Profile Mode: S-curve Jerk: 10,000 mm³

TX E3, 04, 0C, 00, A2, 01, 01, 00, 02, 00, E1, 12, 0E, 00, 00, 00, 00, 00,

Header: E3, O4, OC, O0, A2, O1: Set ProfileModeParams, OCH (12) byte data packet, Channel

2.

Chan Ident: 01, 00: Channel 1 (always set to 1 for TDC001) Profile Mode: 02, 00: Set the profile mode to S-Curve

Jerk: E1, 12,0E, 00: Set the jerk value to 10,000 mm/sec³ (i.e. 922337)

REQUEST:

Command structure (6 bytes):

0	1	2	3	4	5					
	header only									
E4	04	Chan	00	d	S					
		Ident								

GET:

Response structure (18 bytes)

6 byte header followed by 12 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11
header						Data					
E5	04	0C	00	d	S	Chan Ident		Mode		Jerk	
12	13	14	15	16	17						
		Do	rta								
Je	Jerk Not Used Not U										

For structure see SET message above.

Thorlabs Confidential Page 70 of 138

MGMSG_MOT_SET_PMDCURRENTLOOPPARAMS 0x04D4
MGMSG_MOT_REQ_PMDCURRENTLOOPPARAMS 0x04D5
MGMSG_MOT_GET_PMDCURRENTLOOPPARAMS 0x04D6

Function: Used to set the current control loop parameters for the specified

motor channel.

The motion processors within the BBD series controllers use digital current control as a technique to control the current through each phase winding of the motors. In this way, response times are improved and motor efficiency is increased. This is achieved by comparing the required (demanded) current with the actual current to create a current error, which is then passed through a digital PI-type filter. The filtered current value is used to develop an output voltage for each motor coil.

This method sets various constants and limits for the current

feedback loop.

SET:Command structure (24 bytes)
6 byte header followed by 18 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11
header						Data					
D4	04	12	00	d	S	Chan Ident F			ase	KpCurrent	
12	13	14	15	16	17	18	19	20	21	22	23
	Data										
KiCurrent		ILimC	urrent	Dead	Band	Kff		Not Used		Not Used	

Data Structure:

field	description	format
Chan Ident	The channel being addressed	word
Phase	The current phase to set:	word
	PHASEA 0	
	PHASEB 1	
	PHASEA AND B 2	
KpCurrent	The proportional gain. Together with the KiCurrent this term	word
	determines the system response characteristics and accept	
	values in the range 0 to 32767.	
KiCurrent	The integral gain. Together with the KpCurrent this term	word
	determines the system response characteristics and accept	
	values in the range 0 to 32767.	
ILimCurrent	The ILimCurrent parameter is used to cap the value of the	word
	Integrator to prevent runaway of the integral sum at the	
	output. It accepts values in the range 0 to 32767. If set to 0	
	then the integration term in the PID loop is ignored.	
IDeadBand	The IDeadBand parameter allows an integral dead band to	word
	be set, such that when the error is within this dead band,	
	the integral action stops, and the move is completed using	
	the proportional term only. It accepts values in the range 0	

Thorlabs Confidential Page 71 of 138

	to 32767.	
Kff	The Kff parameter is a feed-forward term that is added to	word
	the output of the PID filter to assist in tuning the motor	
	drive signal. It accepts values in the range 0 to 32767.	
Not Used		word
Not Used		word

Example: Set the limit switch parameters for chan 2 as follows:

> Phase: A and B KpCurrent: 35 KiCurrent: 80 ILimCurrent: 32,767 DeadBand: 50

Kff: 0

TX D4, 04, 12, 00, A2, 01, 01, 00, 02, 00, 23, 00, 50, 00, FF, 7F, 32, 00, 00, 00, 00, 00, 00, 00,

Header: D4, O4, 12, O0, A2, O1: Set_PMDCurrentLoopParams, 18 byte data packet, Channel

Chan Ident: 01, 00: Channel 1 (always set to 1 for TDC001)

Phase: 02, 00: Set Phase A and Phase B

KpCurrent: 23, 00,: Set the proportional term to 35 KiCurrent: 50, 00,: Set the integral term to 80 *ILimCurrent*: FF, 7F,: Set the integral limit to 32767 IDeadBand: 32, 00,: Set the deadband to 50

Kff: 00, 00: Set the feed forward value to zero

REQUEST:

Command structure (6 bytes):

0	1	2	3	4	5				
header only									
D8	04	Chan	00	d	S				
		Ident							

GET:

Command structure (24 bytes)

6 byte header followed by 18 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11	
	header						Data					
D6	04	12	00	d	S	Chan Ident Phase KpCur			rrent			
12	13	14	15	16	17	18	19	20	21	22	23	
	Data											
KiCurrent		ILimC	urrent	Dead	Band			Not Used		Not Used		

For structure see SET message above.

Thorlabs Confidential Page 72 of 138 MGMSG_MOT_SET_PMDSETTLEDCURRENTLOOPPARAMS 0x04E9
MGMSG_MOT_REQ_PMDSETTLEDCURRENTLOOPPARAMS 0x04EA
MGMSG_MOT_GET_PMDSETTLEDCURRENTLOOPPARAMS 0x04EB

Function: These commands assist in maintaining stable operation and

reducing noise at the demanded position. They allow the system to be tuned such that errors caused by external vibration and manual handling (e.g. loading of samples) are minimized, and are applicable only when the stage is settled, i.e. the Axis Settled status bit (bit 14)

is set.

SET:

Command structure (24 bytes)

6 byte header followed by 18 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11	
	header						Data					
E9	04	12	00	d	S	Chan	Chan Ident Phase KpSet			ttled		
12	13	14	15	16	17	18	19	20	21	22	23	
	Data											
KiSe	KiSettled ILimSettled Dead		DeadB	andSet	KffSe	ettled	Not Used		Not Used			

Data Structure:

field	description	format
Chan Ident	The channel being addressed	word
Phase	The current phase to set:	word
	PHASEA 0	
	PHASEB 1	
	PHASEA AND B 2	
KpSettled	The proportional gain. Together with the KiSettled this	word
	term determines the system response characteristics and	
	accept values in the range 0 to 32767.	
KiSettled	The integral gain. Together with the KpSettled this term	word
	determines the system response characteristics and	
	accept values in the range 0 to 32767.	
ILimSettled	The ILimSettled parameter is used to cap the value of the	word
	Integrator to prevent runaway of the integral sum at the	
	output. It accepts values in the range 0 to 32767. If set to	
	0 then the integration term in the PID loop is ignored.	
IDeadBandSettled	The IDeadBandSettled parameter allows an integral dead	word
	band to be set, such that when the error is within this	
	dead band, the integral action stops, and the move is	
	completed using the proportional term only. It accepts	
	values in the range 0 to 32767.	
KffSettled	The KffSettled parameter is a feed-forward term that is	word
	added to the output of the PID filter to assist in tuning	
	the motor drive signal. It accepts values in the range 0 to	
	32767.	
Not Used		word
Not Used		word

Thorlabs Confidential Page 73 of 138

Example: Set the limit switch parameters for chan 2 as follows:

Phase: A and B KpSettled: 0 KiSettled: 40 ILimSettled: 30,

ILimSettled: 30,000 DeadBandSettled: 50 KffSettled:500

TX E9, 04, 12, 00, A2, 01, 01, 00, 02, 00, 00, 00, 28, 00, 30, 75, 32, 00, F4, 01, 00, 00, 00, 00,

Header: D4, O4, 12, O0, A2, O1: Set_PMDSettledCurrentLoopParams, 18 byte data packet,

Channel 2.

Chan Ident: 01, 00: Channel 1 (always set to 1 for TDC001)

Phase: 02, 00: Set Phase A and Phase B

KpCurrent: 00, 00,: Set the proportional term to zero

KiCurrent: 28, 00,: Set the integral term to 40 *ILimCurrent*: 30, 75,: Set the integral limit to 30,000

IDeadBand: 32, 00,: Set the deadband to 50 Kff: F4, 01: Set the feed forward value to 500

REQUEST:

Command structure (6 bytes):

0	1	2	3	4	5					
header only										
D8	04	Chan	00	d	S					
		Ident								

GET:

Command structure (24 bytes)

6 byte header followed by 18 byte data packet as follows:

1	2	3	4	5	6	7	8	9	10	11	
header						Data					
04	12	00	d	S	Chan	Ident	Phase		KpSettled		
13	14	15	16	17	18	19	20	21	22	23	
Data											
ttled	ILimS	ettled	DeadB	andSet	KffSettled		Not Used		Not Used		
	13	13 14	header 04 12 00 13 14 15	header 04 12 00 d 13 14 15 16	header 04 12 00 d s 13 14 15 16 17 Do	header 04 12 00 d s Chan 13 14 15 16 17 18 Data	header 04 12 00 d s Chan Ident 13 14 15 16 17 18 19 Data	header Do 04 12 00 d s Chan Ident Phase 13 14 15 16 17 18 19 20 Data	header Data 04 12 00 d s Chan Ident Phase 13 14 15 16 17 18 19 20 21 Data	header Data 04 12 00 d s Chan Ident Phase KpSe 13 14 15 16 17 18 19 20 21 22 Data	

For structure see SET message above.

Thorlabs Confidential Page 74 of 138

MGMSG_MOT_SET_PMDSTAGEAXISPARAMS MGMSG MOT REQ PMDSTAGEAXISPARAMS MGMSG_MOT_GET_PMDSTAGEAXISPARAMS

0x04F0 0x04F1 0x04F2

Function:

The REQ and GET commands are used to obtain various parameters pertaining to the particular stage being driven. Most of these parameters are inherent in the design of the stage and cannot be altered. The SET command can only be used to increase the

Minimum position value and decrease the Maximum position value,

thereby reducing the overall travel of the stage.

SET:

Command structure (80 bytes)

6 byte header followed by 74 byte data packet – see Get for structure

REQUEST:

Command structure (6 bytes):

0	1	2	3	4	5							
	header only											
F1	04	Chan	00	d	S							
		Ident										

GET:

Command structure (80 bytes)

6 byte header followed by 74 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11
		hed	ıder					Do	ata		
F2	04	12	00	d	S	Cha	n ID	Stag	ge ID	Axi	s ID
12	13	14	15	16	17	18	19	20	21	22	23
					Do	rta					
					Part N	o/Axis					
24	25	26	27	28	29	30	31	32	33	34	35
Data											
	Part N	o/Axis			Serial N	lumber			Counts	per Unit	
											'
36	37	38	39	40	41	42	43	44	45	46	47
					Do	rta					
	Min	Pos		Max Pos					Max	Accn	
48	49	50	51	52	53	54	55	56	57	58	59
					Do	rta					
	Max	Dec			Max	(Vel		Rese	erved	Rese	rved
											'
60	61	62	63	64	65	66	67	68	69	70	71
					Do	nta					
Rese	Reserved Reserved			Reserved				Rese	erved		
72	73	74	75	76	77	78	79				
Data											
Reserved				Reserved							

Thorlabs Confidential Page 75 of 138

Data Structure:

field	description	format
Stage ID	This 2 byte parameter identifies the stage and axis:	word
	00, 10 - MLS203_X_AXIS	
	00, 11 - MLS203_Y_AXIS	
AxisID	Not used for the BBD series controllers	word
PartNoAxis	A 16 byte character string used to identify the stage type	char
	and axis being driven.	
SerialNum	The Serial number of the stage	dword
CntsPerUnit	The number of encoder counts per real world unit (either	dword
	mm or degrees).	
MinPos	The minimum position of the stage, typically zero	long
MaxPos	The maximum position of the stage in encoder counts	long
MaxAccn	The maximum acceleration of the stage in encoder counts	long
	per cycle per cycle	
MaxDec	The maximum deceleration of the stage in encoder counts	long
	per cycle per cycle	
MaxVel	The maximum velocity of the stage in encoder counts per	long
	cycle.	
Reserved		word
Reserved		dword

Example: Get the stage and axis parameters for chan 2:

Header: F2, 04, 4A, 00, A2, 01: Get_PMDStageAxisParams, 74 byte data packet, Channel 2.

Chan Ident: 01, 00: Channel 1 (always set to 1 for TDC001)

Stage ID: 11, 00: MLS203 Y Axis

Axis ID: 00, 00,: Not used

PartNo Axis: 4D, 4C, 53, 32, 30, 33, 20, 59, 20, 41, 78, 69, 73, 00, 00, 00,:

MLS203 Y AXIS SerialNum: 81, 96, 98, 00

CntsPerUnit 20, 4E, 00, 00: the encoder counts per unit is set to 20000 MinPos: 00, 00, 00, 00: the feed minimum position is set to zero MaxPos: 60, E3, 16, 00: the maximum position is set to 1500000 MaxAccn: 60, 6B, 00, 00: the maximum acceleration is set to 27488 MaxDec: 60, 6B, 00, 00: the maximum deceleration is set to 27488 MaxVel: 9A, 99, 99, 01: the maximum velocity is set to 26843546

Thorlabs Confidential Page 76 of 138

MGMSG_MOT_GET_STATUSUPDATE

0x0481

Function: This message is returned when a status update is requested for the

specified motor channel. This request can be used instead of

enabling regular updates as described above.

GET:

Status update messages are received with the following format:-

Response structure (20 bytes)

Thorlabs APT Controllers

6 byte header followed by 14 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11
header						Data					
81	04	0E	00	d	S	Chan Ident Position					
12	13	14	15	16	17	18	19				
Data											
	EncCount Statu										

Data Structure:

field	description	format
Chan Ident	The channel being addressed is always P_MOD_CHAN1	word
	(0x01) encoded as a 16-bit word (0x01 0x00)	
Position	The position encoder count. In the APT Stepper Motor	long
	controllers the encoder resolution is 25,600 counts per mm,	
	therefore a position change of 1 mm would be seen as this	
	parameter changing by 25,600. The LONG variable is a 32 bit	
	value, encoded in the data stream in the Intel format.	
EncCount	For use with encoded stages only.	long
Status Bits	The meaning of individual bits in this 32-bit variable is	dword
	described in the bit mask table below (1 = active, 0 =	
	inactive).	

bit mask	meaning
0x0000001	forward (CW) hardware limit switch is active
0x00000002	reverse (CCW) hardware limit switch is active
0x00000004	forward (CW) software limit switch is active
80000000x0	reverse (CCW) software limit switch is active
0x00000010	in motion, moving forward (CW)
0x00000020	in motion, moving reverse (CCW)
0x00000040	in motion, jogging forward (CW)
0x00000080	in motion, jogging reverse (CCW)
0x00000100	motor connected
0x00000200	in motion, homing
0x00000400	homed (homing has been completed)
0x00001000	interlock state (1 = enabled)

Thorlabs Confidential Page 77 of 138 This is not full list of all the bits but the remaining bits reflect information about the state of the hardware that in most cases does not affect motion.

MGMSG_MOT_REQ_STATUSUPDATE

0x0480

Function: Used to request a status update for the specified motor channel.

This request can be used instead of enabling regular updates as

described above.

REQUEST:

Command structure (6 bytes):

0	1	2	3	4	5							
	header only											
90	04	Chan	00	d	S							
		Ident										

GET:

See previous details on MGMSG MOT GET STATUSUPDATE 0x0481.

Thorlabs Confidential Page 78 of 138

MGMSG_MOT_GET_DCSTATUSUPDATE

0x0491

Function: This message is returned when a status update is requested for the

specified motor channel. This request can be used instead of

enabling regular updates as described above.

GET:

Status update messages are received with the following format:-

Response structure (20 bytes)

6 byte header followed by 14 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11
		hea	ıder			Data					
91	04	0E	00	d	S	Chan Ident Position					
12	13	14	15	16	17	18	19				
			Do								
Velo	ocity	Rese	rved		Statu	s Bits					

Data Structure:

field	description	format
Chan Ident	The channel being addressed is always P_MOD_CHAN1	word
	(0x01) encoded as a 16-bit word (0x01 0x00)	
Position	The position encoder count. In the BBD10X series	long
	controllers the encoder resolution is 20,000 counts per mm,	
	therefore a position change of 1 mm would be seen as this	
	parameter changing by 20,000 (twenty thousand). The	
	LONG variable is a 32 bit value, encoded in the data stream	
	in the Intel format, so for example a position of 1 million	
	encoder counts (equivalent to 50 mm) would be sent as	
	byte stream 0x40, 0x42, 0x0F, 0x00 since 1 million is	
	hexadecimal 0xF4240.	
Velocity	The actual velocity. Scaling is 204.8 per mm/sec, so a real-	word
	life measured speed of 100 mm/sec is read as 205. Again,	
	the two-byte data stream will be encoded in the Intel	
	format.	
Reserved	Currently Not Used	Word
Status Bits	The meaning of individual bits in this 32-bit variable is	dword
	described in the bit mask table below	

bit mask meaning 0x00000001 forward hardware limit switch is active 0x00000002 reverse hardware limit switch is active 0x00000010 in motion, moving forward 0x00000020 in motion, moving reverse 0x00000040 in motion, jogging forward 0x00000080 in motion, jogging reverse 0x00000200 in motion, homing

Thorlabs Confidential Page 79 of 138

0x00000400 homed (homing has been completed)

0x00001000 tracking 0x00002000 settled

0x00004000 motion error (excessive position error)

0x01000000 motor current limit reached

0x80000000 channel is enabled

This is not full list of all the bits but the remaining bits reflect information about the state of the hardware that in most cases does not affect motion.

MGMSG MOT REQ DCSTATUSUPDATE

0x0490

Function: Used to request a status update for the specified motor channel.

This request can be used instead of enabling regular updates as

described above.

REQUEST:

Command structure (6 bytes):

0	1	2	3	4	5			
	header only							
90	04	Chan Ident	00	d	S			

GET:

See previous details on MGMSG MOT GET DCSTATUSUPDATE 0x0491.

MGMSG_MOT_ACK_DCSTATUSUPDATE

0x0492

Only Applicable If Using USB COMMS. Does not apply to RS-232 COMMS

Function: If using the USB port, this message called "server alive" must be sent

by the server to the controller at least once a second or the

controller will stop responding after ~50 commands.

The controller keeps track of the number of "status update" type of messages (e.g.move complete message) and it if has sent 50 of these without the server sending a "server alive" message, it will

stop sending any more "status update" messages.

This function is used by the controller to check that the PC/Server

has not crashed or switched off. There is no response.

Structure (6 bytes):

I	0	1	2	3	4	5		
	header only							
	62	06	00	00	d	S		

TX 92, 04, 00, 00, 21, 01

Thorlabs Confidential Page 80 of 138

MGMSG_MOT_REQ_STATUSBITS
MGMSG_MOT_GET_STATUSBITS

0x0429 0x042A

Function: Used to request a "cut down" version of the status update message,

only containing the status bits, without data about position and

velocity.

SET: N/A

REQUEST:

Command structure (6 bytes):

0	1	2	3	4	5			
	header only							
29	04	Chan	00	d	S			
		Ident						

GET:

Response structure (12 bytes)

6 byte header followed by 6 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11
	header							Do	ıta		
2A	04	06	00	d	S	Chan	Ident	Status Bits			

Data Structure:

field	description	format
Chan Ident	The channel being addressed	Word
Status Bits	The status bits are assigned exactly as described in the section detailing the MGMSG_MOT_GET_DCSTATUSUPDATE command.	DWord

Thorlabs Confidential Page 81 of 138

MGMSG_MOT_SUSPEND_ENDOFMOVEMSGS

0x046B

Function:

Sent to disable all unsolicited end of move messages and error messages returned by the controller, i.e.

MGMSG_MOT_MOVE_STOPPED MGMSG_MOT_MOVE_COMPLETED MGMSG_MOT_MOVE_HOMED

The command also disables the error messages that the controller sends when an error conditions is detected:

MGMSG_HW_RESPONSE MGMSG_HW_RICHRESPONSE

This is useful in single threaded custom client applications that are not configured to accept unsolicited messages from the controller at any time.

Command structure (6 bytes):

0	1	2	3	4	5		
header only							
6B	04	00	00	d	S		

Thorlabs Confidential Page 82 of 138

MGMSG_MOT_RESUME_ENDOFMOVEMSGS

0x046C

Function: Sent to resume all unsolicited end of move messages and error

messages returned by the controller, i.e.

MGMSG_MOT_MOVE_STOPPED MGMSG_MOT_MOVE_COMPLETED MGMSG_MOT_MOVE_HOMED

The command also disables the error messages that the controller

sends when an error conditions is detected:

MGMSG_HW_RESPONSE MGMSG_HW_RICHRESPONSE

This is the default state when the controller is powered up.

Command structure (6 bytes):

0	1	2	3	4	5		
header only							
6C	04	00	00	d	S		

Thorlabs Confidential Page 83 of 138

Solenoid Control Messages

Introduction

The APT Solenoid drive uses the Motor server control instance control its functionality. The messages listed here provide the extra functionality required for a client application to control one or more of the Thorlabs series of TSC001 T-Cube solenoid driver units.

Thorlabs Confidential Page 84 of 138

MGMSG_MOT_SET_SOL_OPERATINGMODE MGMSG_MOT_REQ_SOL_OPERATINGMODE MGMSG_MOT_GET_SOL_OPERATINGMODE 0x04C0 0x04C1 0x04C2

Function: This message sets the operating mode of the solenoid driver.

SET:

Command structure (6 bytes):

0	1	2	3	4	5			
	header only							
CO	04		Mode	d	S			
		Ident						

Data Structure:

field	description	format
Chan Ident	The channel being addressed	char
Operating	The operating mode of the unit as a 4 bit integer:	char
Mode	0x01 SOLENOID_MANUAL - In this mode, operation of the	
	solenoid is via the front panel 'Enable' button, or by the	
	'Output' buttons on the GUI panel.	
	0x02 SOLENOID_SINGLE - In this mode, the solenoid will	
	open and close each time the front panel 'Enable' button is	
	pressed, or the 'Output ON' button on the GUI panel is	
	clicked. The ON and OFF times are specified by calling the	
	MGMSG MOT SET SOL CYCLEPARAMS message.	
	0x03 SOLENOID_AUTO - In this mode, the solenoid will open	
	and close continuously after the front panel 'Enable' button	
	is pressed, or the 'Output ON' button on the GUI panel is	
	clicked. The ON and OFF times, and the number of cycles	
	performed, are specified by calling the	
	MGMSG MOT SET SOL CYCLEPARAMS message.	
	0x04 SOLENOID_TRIGGER - In Triggered mode, a rising edge	
	on rear panel TRIG IN BNC input will start execution of the	
	parameters programmed on the unit (On Time, Off Time,	
	Num Cycles - see MGMSG MOT SET SOL CYCLEPARAMS	
	message.). The unit must be primed (i.e. the ENABLE button	
	pressed and the ENABLED LED lit) before the unit can	
	respond to the external trigger.	

Example: Set the control mode to 'Single'.

TX C0, 04, 01, 02, 50, 01

C0,04 SET_SOL_OPERATINGMODE

01, Channel 1

02, Set mode to 'Single'

50, destination Generic USB device

01, Source PC

Thorlabs Confidential Page 85 of 138

REQ:

Command structure (6 bytes):

0	1	2	3	4	5		
header only							
C1	04	Chan	00	d	S		
		Ident					

Example: Request the control mode

TX C1, 04, 01, 00, 50, 01

GET:

Response structure (6 bytes):

0	1	2	3	4	5			
hea	header only							
C2	04	Chan	Mode	d	S			
		Ident						

Example: Get the control mode currently set.

RX C2, 04, 01, 01, 01, 50

MGMSG_MOT_SET_SOL_CYCLEPARAMS MGMSG_MOT_REQ_SOL_CYCLEPARAMS MGMSG_MOT_GET_SOL_CYCLEPARAMS 0x04C3 0x04C4 0x04C5

Function: Used to set the cycle parameters that are applicable when the

solenoid controller is operating in one of the non-manual modes.

SET:

Command structure (20 bytes)

OffTime

6 byte header followed by 14 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11
	header					Data					
C3	04	0E	00	d	S	Chai	n Ident		Oı	nTime	
12	13	14	15	16	17	18	19				
Data											

NumCycles

Data Structure:

field	description	format
Chan Ident	The channel being addressed	word
OnTime	The time which the solenoid is activated	long
	(100ms to 10,000s in 250 μs steps)	
OffTime	The time which the solenoid is a de-activated	long
	(100ms to 10,000s in 250 μs steps)	
NumCycles	If the unit is operating in 'Auto' mode, the number of	long
	Open/Close cycles to perform. (0 to 1,000,000) is specified	
	in the NumCycles parameter. If set to '0' the unit cycles	
	indefinitely. If the unit is not operating in 'Auto' mode, the	
	NumCycles parameter is ignored.	

Example: Set the cycle parameters parameters for chan 1 as follows:

OnTime: 1000ms OffTime: 1000ms NumCycles: 20

TX C3, 04, 0E, 00, D0, 01, 01, 00, A0, 0F, 00, 00, A0, 0F, 00, 00, 14, 00, 00, 00

Header: C3, O4, OE, O0, D0, O1: Set Cycle Params, D0H (14) byte data packet, Generic USB

Device.

Chan Ident: 01, 00: Channel 1 (always set to 1 for TSC001)

OnTime: A0, OF, 00, 00: Set on time to 1000 ms (i.e. $4000 \times 250 \mu s$) OffTime: A0, OF, 00, 00: Set off time to 1000 ms (i.e. $4000 \times 250 \mu s$)

NumCycles: 14, 00, 00, 00: Set number of cycles to 20

Thorlabs Confidential Page 87 of 138

REQUEST:

Command structure (6 bytes):

0	1	2	3	4	5			
	header only							
C4	04	Chan	00	d	S			
		Ident						

GET:

Response structure (20 bytes)

6 byte header followed by 14 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11
	header						Data				
C5	04	0E	00	d	S	Chan Ident OnTime					

12	13	14	15	16	17	18	19
			Do	ıta			
	OffT	ime			Num	Cycles	

For structure see SET message above.

Thorlabs Confidential Page 88 of 138

MGMSG_MOT_SET_SOL_INTERLOCKMODE MGMSG_MOT_REQ_SOL_INTERLOCKMODE MGMSG_MOT_GET_SOL_INTERLOCKMODE 0x04C6 0x04C7 0x04C8

Function:

The solenoid unit features a hardware interlock jackplug. This message specifies whether the solenoid driver requires the hardware interlock to be fitted before it can operate.

SET:

Command structure (6 bytes):

0	1	2	3	4	5		
header only							
C6	04	Chan	Mode	d	S		
		Ident					

Data Structure:

field	description	format
Chan Ident	The channel being addressed	char
Interlock	The operating mode of the unit as a 4 bit integer:	char
Mode	0x01 SOLENOID_ENABLED – The hardware interlock must	
	be fitted before the unit can be operated.	
	0x02 SOLENOID_DISABLED – The hardware interlock is not	
	required.	

Example: Set the interlock mode to 'Enabled'.

TX C6, 04, 01, 01, 50, 01

C0,06 SET_SOL_INTERLOCKMODE

01, Channel 1

01, Set mode to 'Enabled'

50, destination Generic USB device

01, Source PC

Thorlabs Confidential Page 89 of 138

REQ:

Command structure (6 bytes):

0	1	2	3	4	5		
header only							
C7	04	Chan	00	d	S		
		Ident					

Example: Request the control mode

TX C7, 04, 01, 00, 50, 01

GET:

Response structure (6 bytes):

0	1	2	3	4	5			
hea	header only							
C8	04	Chan	Mode	d	S			
		Ident						

Example: Get the control mode currently set.

RX C8, 04, 01, 01, 01, 50

Thorlabs Confidential

Issue 3

MGMSG_MOT_SET_SOL_STATE MGMSG_MOT_REQ_SOL_STATE MGMSG_MOT_GET_SOL_STATE 0x04CB 0x04CC 0x04CD

Function: This message sets the output state of the solenoid unit, and

overrides any existing settings.

SET:

Command structure (6 bytes):

0	1	1 2 3		4	5			
	header only							
СВ	04	Chan Ident	State	d	S			

Data Structure:

field	description	format
Chan Ident	The channel being addressed	char
Interlock	The operating mode of the unit as a 4 bit integer:	char
Mode	0x01 SOLENOID_ON – The solenoid is active.	
	0x02 SOLENOID_OFF – The solenoid is de-activated.	

Example: Set the solenoid to 'ON'.

TX CB, 04, 01, 01, 50, 01

CB,06 SET_SOL_STATE

01, Channel 1

01, Set state to 'ON'

50, destination Generic USB device

01, Source PC

Thorlabs Confidential Page 91 of 138

REQ:

Command structure (6 bytes):

0	1	2	3	4	5		
header only							
CC	04	Chan	00	d	S		
		Ident					

Example: Request the control mode

TX CC, 04, 01, 00, 50, 01

GET:

Response structure (6 bytes):

0	1	2	3	4	5
header only					
CD	04	Chan	Mode	d	S
		Ident			

Example: Get the control mode currently set.

RX CD, 04, 01, 01, 01, 50

Piezo Control Messages

Introduction

The 'Piezo' control messages provide the functionality required for a client application to control one or more of the Thorlabs series of piezo controller units. This range of controllers covers both open and closed loop piezo control in a variety of formats including compact Cube type controllers, benchtop units and 19" rack based modular drivers. **Note.** For ease of description, the TSG001 T-Cube Strain Gauge reader is considered here as a piezo controller. The list of controllers covered by the piezo messages includes:-

BPC001 – 1 Channel Benchtop Piezo Driver

BPC002 - 2 Channel Benchtop Piezo Driver

MPZ601 - 2 Channel Modular Piezo Driver

BPC101 – 1 Channel Benchtop Piezo Driver (2006 onwards)

BPC102 – 2 Channel Benchtop Piezo Driver (2006 onwards)

BPC103 – 3 Channel Benchtop Piezo Driver (2006 onwards)

BPC201 – 1 Channel Benchtop Piezo Driver (2007 onwards)

BPC202 – 2 Channel Benchtop Piezo Driver (2007 onwards)

BPC203 – 3 Channel Benchtop Piezo Driver (2007 onwards)

BPC301 – 1 Channel Benchtop Piezo Driver (2011 onwards)

TPZ001 – 1 Channel T-Cube Piezo Driver

TSG001 – 1 Channel T-Cube Strain Gauge Reader

The piezo messages can be used to perform activities such as selecting output voltages, reading the strain gauge position feedback, operating open and closed loop modes and enabling force sensing mode. With a few exceptions, these messages are generic and apply equally to both single and dual channel units.

Where applicable, the target channel is identified in the IChanID parameter and on single channel units, this must be set to CHAN1_ID. On dual channel units, this can be set to CHAN1_ID, CHAN2_ID or CHANBOTH_ID as required.

For details on the operation of the Piezo Controller, and information on the principles of operation, refer to the handbook supplied with the unit.

Thorlabs Confidential Page 93 of 138

MGMSG_PZ_SET_POSCONTROLMODE MGMSG_PZ_REQ_POSCONTROLMODE MGMSG_PZ_GET_POSCONTROLMODE 0x0640 0x0641 0x0642

Function:

When in closed-loop mode, position is maintained by a feedback signal from the piezo actuator. This is only possible when using actuators equipped with position sensing.

This method sets the control loop status The Control Mode is specified in the Mode parameter as follows:

0x01 Open Loop (no feedback)

0x02 Closed Loop (feedback employed)

0x03 Open Loop Smooth0x04 Closed Loop Smooth

If set to Open Loop Smooth or Closed Loop Smooth is selected, the feedback status is the same as above however the transition from open to closed loop (or vise versa) is achieved over a longer period in order to minimize voltage transients (spikes).

SET:

Command structure (6 bytes):

0	1	2	3	4	5	
header only						
40	06	Chan	Mode	d	S	
		Ident				

Example:

Set the control mode to closed loop.

TX 40, 06, 01, 02, 50, 01

REQ:

Command structure (6 bytes):

0	1	2	3	4	5	
header only						
41	06	Chan	00	d	S	
		Ident				

Example:

Request the control mode

TX 41, 06, 01, 00, 50, 01

Thorlabs Confidential Page 94 of 138

GET: Response structure (6 bytes):

0	1	2	3	4	5
header only					
42	06	Chan	Mode	d	S
		Ident			

Example: Get the control mode currently set.

RX 42, 06, 01, 02, 01, 50

Thorlabs Confidential

MGMSG_PZ_SET_OUTPUTVOLTS MGMSG_PZ_REQ_OUTPUTVOLTS MGMSG_PZ_GET_OUTPUTVOLTS 0x0643 0x0644 0x0645

Function:

Used to set the output voltage applied to the piezo actuator. This command is applicable only in Open Loop mode. If called when in Closed Loop mode it is ignored.

SET:

Command structure (10 bytes)

6 byte header followed by 4 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	
	header						Data			
43	06	04	00	d	S	Chan Ident Voltage		age		

Data Structure:

field	description	format
Chan Ident	The channel being addressed	word
Voltage	The output voltage applied to the piezo when operating in open loop mode. The voltage is set in the range -32768 to 32767 (-7FFF to 7FFF) to which corresponds to -100% to 100% of the maximum output voltage as set using the TPZ_IOSETTINGS command.	short

Example: Set the drive voltage to 70V

TX 43, 06, 04, 00, D0, 01, 01, 00, 77, 77,

Header: 43, 06, 04, 00, D0, 01: SetPZOutputVolts, 04 byte data packet, Generic USB Device.

Chan Ident: 01, 00: Channel 1

Voltage: 77, 77: corresponds to 70 V (30583) for a max 75 V unit

REQUEST:

Command structure (6 bytes):

0	1	2	3	4	5				
	header only								
44	6	Chan	00	d	S				
		Ident							

GET:

Response structure (10 bytes)

6 byte header followed by 4 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9
header						Data			
45	06	04	00	d	S	Chan Ident Voltage		age	

For structure see SET message above.

Thorlabs Confidential Page 96 of 138

MGMSG_PZ_SET_OUTPUTPOS MGMSG_PZ_REQ_OUTPUTPOS MGMSG_PZ_GET_OUTPUTPOS 0x0646 0x0647 0x0648

Function:

Used to set the output position of piezo actuator. This command is applicable only in Closed Loop mode. If called when in Open Loop mode it is ignored. The position of the actuator is relative to the datum set for the arrangement using the ZeroPosition method.

SET:

Command structure (10 bytes)

6 byte header followed by 4 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9
	header						Data		
46	06	04	00	d	S	Chan Ident PositionSW			onSW

Data Structure:

field	description	format
Chan Ident	The channel being addressed	word
PositionSW	The output position of the piezo relative to the zero position. The voltage is set in the range 0 to 32767 (0 to 7FFF) which corresponds to 0 to 100% of the maximum piezo extension.	word

Example: Set the drive position to 15 μ m (when total travel = 100 μ m).

TX 46, 06, 04, 00, D0, 01, 01, 00, 66, 26,

Header: 43, 06, 04, 00, D0, 01: SetPZOutputPos, 04 byte data packet, Generic USB Device.

Chan Ident: 01, 00: Channel 1

Voltage: 33, 13: corresponds to 15 μm for a max 100 μm unit

REQUEST:

Command structure (6 bytes):

0	1	2	3	4	5				
	header only								
47	06	Chan Ident	00	d	S				

GET:

Response structure (10 bytes)

6 byte header followed by 4 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	
	header						Data			
48	06	04	00	d	S	Chan Ident PositionSW			onSW	

For structure see SET message above.

Thorlabs Confidential Page 97 of 138

MGMSG_PZ_SET_INPUTVOLTSSRC MGMSG_PZ_REQ_INPUTVOLTSSRC MGMSG_PZ_GET_INPUTVOLTSSRC 0x0652 0x0653 0x0654

Function: Used to set the input source(s) which controls the output from the

HV amplifier circuit (i.e. the drive to the piezo actuators).

SET:

Command structure (10 bytes)

6 byte header followed by 4 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9
	header							rta	
52	06	04	00	d	S	Chan	Ident	Positi	onSW

Data Structure:

field	description	format
Chan Ident	The channel being addressed	word
VoltSrc	The following values are entered into the VoltSrc parameter to select the various analog sources. Ox00 Software Only: Unit responds only to software inputs and the HV amp output is that set using the SetVoltOutput method or via the GUI panel. Ox01 External Signal: Unit sums the differential signal on the rear panel EXT IN (+) and EXT IN (-)connectors with the voltage set using the SetVoltOutput method Ox02 Potentiometer: The HV amp output is controlled by a potentiometer input (either on the control panel, or connected to the rear panel User I/O D-type connector) summed with the voltage set using the SetVoltOutput method. The values can be 'bitwise ord' to sum the software source with either or both of the other source options.	word

Example: Set the input source to software and potentiometer.

TX 52, 06, 04, 00, D0, 01, 01, 00, 02, 00,

Header: 52, 06, 04, 00, D0, 01: SetVoltsSrc, 04 byte data packet, Generic USB Device.

Chan Ident: 01, 00: Channel 1

VoltSrc: 02, 00: selects software and potentiometer inputs

REQUEST:

Command structure (6 bytes):

0	1	2	3	4	5
		head	ler only		
53	06	Chan	00	d	S
		Ident			

Thorlabs Confidential Page 98 of 138

GET:

Response structure (10 bytes)

6 byte header followed by 4 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9
	header							rta	
54	06	04	00	d	S	Chan	Ident	Volt	sSrc

For structure see SET message above.

Thorlabs Confidential Page 99 of 138

MGMSG_PZ_SET_PICONSTS MGMSG_PZ_REQ_PICONSTS MGMSG_PZ_GET_PICONSTS 0x0655 0x0656 0x0657

Function:

Used to set the proportional and integration feedback loop

constants. These parameters determine the response characteristics

when operating in closed loop mode.

The processors within the controller compare the required (demanded) position with the actual position to create an error, which is then passed through a digital PI-type filter. The filtered value is used to develop an output voltage to drive the piezo.

SET:

Command structure (12 bytes)

6 byte header followed by 6 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11
	header							Da	ıta		
55	06	06	00	d	S	Chan	Ident	Prop(Const	IntC	onst

Data Structure:

field	description	format
Chan Ident	The channel being addressed	word
PropConst	The value of the proportional term in the range 0 to 255.	word
IntConst	The value of the Integral term.in the range 0 to 255	word

Example: Set the PI constants for a TPZ001 unit.

TX 55, 06, 06, 00, D0, 01, 01, 00, 64, 00, 0F, 00

Header: 55, 06, 05, 00, D0, 01: SetPIConsts, 06 byte data packet, Generic USB Device.

Chan Ident: 01, 00: Channel 1

PropConst: 64, 00: sets the proportional constant to 100

IntConst: OF, OO: sets the integral constant to 15

REQUEST:

Command structure (6 bytes):

0	1	2	3	4	5
		head	ler only		
56	06	Chan	00	d	S
		Ident			

GET:

Response structure (12 bytes)

6 byte header followed by 6 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11
header							Da	ıta			
57	06	06	00	d	S	Chan	Ident	Prop	Const	IntC	onst

For structure see SET message above.

Thorlabs Confidential Page 100 of 138

MGMSG_PZ_REQ_PZSTATUSBITS MGMSG_PZ_GET_PZSTATUSBITS 0x065B 0x065C

Function:

Returns a number of status flags pertaining to the operation of the piezo controller channel specified in the Chan Ident parameter. These flags are returned in a single 32 bit integer parameter and can provide additional useful status information for client application development. The individual bits (flags) of the 32 bit integer value are described in the following tables.

REQUEST:

Command structure (6 bytes):

	0	1	2	3	4	5
			head	ler only		
ſ	5B	06	Chan	00	d	S
			Ident			

GET:

Response structure (12 bytes)

6 byte header followed by 6 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11
	header							Da	ıta		
5C	06	06	00	d	S	Chan	Ident		Statu	ısBits	

Data Structure:

field	description	format
Chan Ident	The channel being addressed	word
StatusBits	The status bits for the associated controller channel. The meaning of the individual bits (flags) of the 32 bit integer value will depend on the controller and are described in the following tables.	dword

TPZ001 controller

Hex Value	Bit Number	Description
0x0000001	1	Piezo actuator connected (1 - connected, 0 - not connected).
	2 to 4	For Future Use
0x0000010	5	Piezo channel has been zero'd (1 - zero'd, 0 not zero'd).
0x00000020	6	Piezo channel is zeroing (1 - zeroing, 0 - not zeroing).
0x00000040	7 to 8	For Future Use
0x00000100	9	Strain gauge feedback connected (1 - connected, 0 - not
		connected).
	10	For Future Use
0x00000400	11	Position control mode (1 - closed loop, 0 - open loop).
	12 to 20	For Future Use

Thorlabs Confidential Page 101 of 138

BPC series controllers

Hex Value	Bit Number	Description
0x0000001	1	Piezo actuator connected (1 - connected, 0 - not connected).
	2 to 4	For Future Use
0x0000010	5	Piezo channel has been zero'd (1 - zero'd, 0 not zero'd).
0x00000020	6	Piezo channel is zeroing (1 - zeroing, 0 - not zeroing).
0x00000040	7 to 8	For Future Use
0x00000100	9	Strain gauge feedback connected (1 - connected, 0 - not
		connected).
	10	For Future Use
0x00000400	11	Position control mode (1 - closed loop, 0 - open loop).
	12	For Future Use
Note . Bits 13, 14 a	and 15 are applic	able only to BPC30x series controllers.
0x00001000	13	Hardware set to 75 V max output voltage
0x00002000	14	Hardware set to 100 V max output voltage
0x00004000	15	Hardware set to 150 V max output voltage
	16 to 20	For Future Use
Note. Bits 21 to 28	3 (Digital Input S	tates) are only applicable if the associated digital input is fitted to
your controller – s	see the relevant	handbook for more details
0x00100000	21	Digital input 1 state (1 - logic high, 0 - logic low).
0x00200000	22	Digital input 2 state (1 - logic high, 0 - logic low).
0x00400000	23	Digital input 3 state (1 - logic high, 0 - logic low).
0x00800000	24	Digital input 4 state (1 - logic high, 0 - logic low).
0x01000000	25	Digital input 5 state (1 - logic high, 0 - logic low).
0x02000000	26	Digital input 6 state (1 - logic high, 0 - logic low).
0x04000000	27	Digital input 7 state (1 - logic high, 0 - logic low).
0x0800000	28	Digital input 8 state (1 - logic high, 0 - logic low).
	29	For Future Use
0x20000000	30	Active (1 – indicates unit is active, 0 – not active)
0x40000000	31	For Future Use
0x80000000	32	Channel enabled (1 – enabled, 0- disabled)

Thorlabs Confidential Page 102 of 138

MGMSG_PZ_GET_PZSTATUSUPDATE

0x0661

Function: This function is used in applications where spontaneous status

messages (i.e. messages sent using the START_STATUSUPDATES

command) must be avoided.

Status update messages contain information about the position and status of the controller (for example position and O/P voltage). The messages will be sent by the controller each time the function is

called.

GET:

Status update messages are received with the following format:-

Response structure (16 bytes)

6 byte header followed by 10 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11
		hea	ıder					ıta			
91	04	0E	00	d	S	Chan	Ident	OPVo	ltage	Posi	tion

12	13	14	15
	Statu	s Bits	

Data Structure:

field	description	format
Chan Ident	The channel being addressed is always P_MOD_CHAN1	word
	(0x01) encoded as a 16-bit word (0x01 0x00)	
OPVoltage	The output voltage applied to the piezo. The voltage is	short
	returned in the range -32768 to 32767 (-7FFF to 7FFF) which	
	corresponds to -100% to 100% of the maximum output	
	voltage as set using the TPZ_IOSETTINGS command.	
Position	The position of the piezo. The position is returned in the	short
	range 0 to 32767 (0 to 7FFF) which corresponds to 0 to	
	100% of the maximum position.	
Status Bits	The meaning of the individual bits (flags) of the 32 bit	dword
	integer value will depend on the controller and are	
	described in the following tables.	

TPZ001 controller

Hex Value	Bit Number	Description
0x00000001	1	Piezo actuator connected (1 - connected, 0 - not connected).
	2 to 4	For Future Use
0x00000010	5	Piezo channel has been zero'd (1 - zero'd, 0 not zero'd).
0x00000020	6	Piezo channel is zeroing (1 - zeroing, 0 - not zeroing).
0x00000040	7 to 8	For Future Use
0x00000100	9	Strain gauge feedback connected (1 - connected, 0 - not
		connected).
	10	For Future Use
0x00000400	11	Position control mode (1 - closed loop, 0 - open loop).
	12 to 20	For Future Use

Thorlabs Confidential Page 103 of 138

BPC series controllers

Hex Value	Bit Number	Description
0x0000001	1	Piezo actuator connected (1 - connected, 0 - not connected).
	2 to 4	For Future Use
0x0000010	5	Piezo channel has been zero'd (1 - zero'd, 0 not zero'd).
0x00000020	6	Piezo channel is zeroing (1 - zeroing, 0 - not zeroing).
0x00000040	7 to 8	For Future Use
0x00000100	9	Strain gauge feedback connected (1 - connected, 0 - not
		connected).
	10	For Future Use
0x00000400	11	Position control mode (1 - closed loop, 0 - open loop).
	12 to 20	For Future Use
Note. Bits 21 to 2	8 (Digital Input S	States) are only applicable if the associated digital input is fitted to
your controller –	see the relevant	handbook for more details
0x00100000	21	Digital input 1 state (1 - logic high, 0 - logic low).
0x00200000	22	Digital input 2 state (1 - logic high, 0 - logic low).
0x00400000	23	Digital input 3 state (1 - logic high, 0 - logic low).
0x00800000	24	Digital input 4 state (1 - logic high, 0 - logic low).
0x01000000	25	Digital input 5 state (1 - logic high, 0 - logic low).
0x02000000	26	Digital input 6 state (1 - logic high, 0 - logic low).
0x04000000	27	Digital input 7 state (1 - logic high, 0 - logic low).
0x0800000	28	Digital input 8 state (1 - logic high, 0 - logic low).
	29	For Future Use
0x20000000	30	Active (1 – indicates unit is active, 0 – not active)
0x40000000	31	For Future Use
0x80000000	32	Channel enabled (1 – enabled, 0- disabled)

Thorlabs Confidential Page 104 of 138

MGMSG_PZ_ACK_PZSTATUSUPDATE

0x0662

Only Applicable If Using USB COMMS. Does not apply to RS-232 COMMS

Function: If using the USB port, this message called "server alive" must be sent

by the server to the controller at least once a second or the

controller will stop responding after ~50 commands.

The controller keeps track of the number of "status update" type of messages (e.g.move complete message) and it if has sent 50 of these without the server sending a "server alive" message, it will

stop sending any more "status update" messages.

This function is used by the controller to check that the PC/Server

has not crashed or switched off. There is no response.

Structure (6 bytes):

0	1	2	3	4	5	
header only						
62	06	00	00	d	S	

TX 62, 06, 00, 00, 50, 01

Thorlabs Confidential Page 105 of 138

MGMSG_PZ_SET_OUTPUTLUT MGMSG_PZ_REQ_OUTPUTLUT MGMSG_PZ_GET_OUTPUTLUT 0x0700 0x0701 0x0702

Function:

It is possible to use the controller in an arbitrary Waveform Generator Mode (WGM). Rather than the unit outputting an adjustable but static voltage or position, the WGM allows the user to define a voltage or position sequence to be output, either periodically or a fixed number of times, with a selectable interval between adjacent samples.

This waveform generation function is particularly useful for operations such as scanning over a particular area, or in any other application that requires a predefined movement sequence. The waveform is stored as values in an array, with a maximum of 8000 samples per channel. The samples can have the meaning of voltage or position; if open loop operation is specified when the samples are output, then their meaning is voltage and vice versa, if the channel is set to closed loop operation, the samples are interpreted as position values. If the waveform to be output requires less than 8000 samples, it is sufficient to download the desired number of samples.

This function is used to load the LUT array with the required output waveform. The applicable channel is specified by the Chan Ident parameter

If only a sub set of the array is being used (as specified by the cyclelength parameter of the SetOutputLUTParams function), then only the first cyclelength values need to be set. In this manner, any arbitrary voltage waveform can be programmed into the LUT. Note. The LUT values are output by the system at a maximum bandwidth of 7KHz, e.g.500 LUT values will take approximately 71 ms to be clocked out and the full 8000 LUT values will take approximately 1.14 secs.

SET: Command structure (12 bytes)

6 byte header followed by 6 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11
		hea	ıder			Data					
00	07	06	00	d	S	Chan	Ident	Inc	lex	Out	put

Data Structure:

field	description	format
Chan Ident	The channel being addressed	word
Index	The position in the array of the value to be set (0 to 7999 for BPC, 0 to 512 for TPZ).	word
Output	The voltage value to be set. Values are set in the range - 32768 to 32767 which corresponds to -100% to 100% of the max HV output (piezo drive voltage).	short

Thorlabs Confidential Page 106 of 138

Example: Set output LUT value of 10V (for 150V piezo) in array position 2.

TX 00, 07, 06, 00, D0, 01, 01, 00, 02, 00, 88, 08

Header: 00, 07, 06, 00, D0, 01: SETOUTPUTLUT, 06 byte data packet, Generic USB Device.

Chan Ident: 01, 00: Channel 1

Index: 02, 00: sets the value of array position 2

IntConst: 88, 08: sets the value to 10V. (i.e. 150/10=15, 32767/15=2184, 2184=0888H)

REQUEST:

Command structure (6 bytes):

(0	1	2	3	4	5
			head	ler only		
C	1	07	Chan	00	d	S
			Ident			

GET:

Response structure (12 bytes)

6 byte header followed by 6 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11
		hea	ıder			Data					
02	07	06	00	d	S	Chan	Ident	Inc	lex	Out	put

For structure see SET message above.

Thorlabs Confidential Page 107 of 138

MGMSG_PZ_SET_OUTPUTLUTPARAMS MGMSG_PZ_REQ_OUTPUTLUTPARAMS MGMSG_PZ_GET_OUTPUTLUTPARAMS 0x0703 0x0704 0x0705

Function:

It is possible to use the controller in an arbitrary Waveform Generator Mode (WGM). Rather than the unit outputting an adjustable but static voltage or position, the WGM allows the user to define a voltage or position sequence to be output, either periodically or a fixed number of times, with a selectable interval between adjacent samples.

This waveform generation function is particularly useful for operations such as scanning over a particular area, or in any other application that requires a predefined movement sequence. This function is used to set parameters which control the output of

the LUT array.

SET:Command structure (36 bytes)
6 byte header followed by 30 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11
		hed	ıder		Data						
03	07	1E	00	d	S	Chan	Ident	Mo	ode	Cyclel	ength.
12	13	14	15	16	17	18	19	20	21	22	23
					Do	ata					
	Num	Cycles			Delay	/Time			PreCyc	cleRest	
24	25	26	27	28	29	30	31	32	33	34	35
					Da	ata					
	PostCy	cleRest	•	OPTri	gStart	OPTrigWidth TrigRepCy			pCycle		

Data Structure:

field	description	format
Chan Ident	The channel being addressed	word
Mode	Specifies the output mode of the LUT waveform as follows. Values can be 'bitwise or'd together as required. 0x01 - OUTPUTLUT_CONTINUOUS – The waveform is output continuously (i.e. until a StopOPLUT command is received). 0x02 - OUTPUTLUT_FIXED – A fixed number of waveform cycles are output (as specified in the NumCycles parameter).	word
	The following values are not applicable to the TPZ001 unit because it has no triggering functionality. 0x04 - OUTPUTLUT_OUTPUTTRIG — Enables Output Triggering. With OP Triggering enabled, the system can be configured to generate one or more hardware trigger pulses during a LUT (waveform) cycle output, as specified in the OPTrigStart parameter below.	

Thorlabs Confidential Page 108 of 138

	T	
	0x08 - OUTPUTLUT_INPUTTRIG –Enables Input Triggering.	
	With INPUTTRIG set to 'False', the waveform generator will	
	start as soon as it receives a StartOPLUT command. If	
	however, INPUTTRIG is set to 'True, waveform generation	
	will only start if a software command is received AND the	
	trigger input is in its active state. In most cases, the trigger	
	input will be used to synchroize waveform generation to an	
	external event. In this case, the StartOPLUT command can	
	be viewed as a command to "arm" the waveform generator	
	and the waveform will start as soon as the input becomes	
	active.	
	The trigger input can be used to trigger a single channel or	
	multiple channels. In this latter case ensure that input	
	triggering is enabled on all the desired channes. Using the	
	trigger input for multiple channels is particularly useful to	
	synchronize all channels to the same event.	
	0x10 - OUTPUTLUT_OUTPUTTRIG_SENSE_HI – determines	
	the voltage sense and edge of the O/P trigger. If this bit is	
	set, the units responds to a rising edge (OV to 5V) trigger. If	
	not set it responds to a falling edge (5V to 6V).	
	0x20 - OUTPUTLUT_INPUTTRIG_SENSE_HI – determines	
	the voltage sense and edge of the I/P trigger. If this bit is	
	set, the units responds to a rising edge (OV to 5V) trigger. If	
	not set it responds to a falling edge (5V to 0V).	
	0x40 - OUTPUTLUT_LUTGATED – If set to '1' the trigger acts	
	as a gate, if set to '0' acts as trigger.	
	0x80 - OUTPUTLUT_OUTPUTTRIG_REPEAT - This	
	parameter is a flag which determines if repeated O/P	
	triggering is enabled. If set, the output trigger is repeated	
	by the interval set in the TrigRepeatCycle parameter. This is	
	useful for multiple triggering during a single voltage O/P	
	sweep.	
CycleLength	Specifies how many samples will be output in each cycle of	word
	the waveform. It can be set in the range 0 to 7999 for BPC	
	and MPZ units, and 0 to 512 for TPZ units. It must be less	
	than or equal to the total number of samples that were	
	loaded. (To set the LUT array values for a particular	
	channel, see the SetOutputLUT function).	
NumCycles	Specifies the number of cycles (1 to 2147483648) to be	long
	output when the Mode parameter is set to fixed. If Mode is	
	set to Continuous, the NumCycles parameter is ignored. In	
	both cases, the waveform is not output until a StartOPLUT	
	command is received.	
DelayTime	Specifies the delay (in sample intervals) that the system	long
	waits after setting each LUT output value. By default, the	
	time the system takes to output LUT values (sampling	
	interval) is set at the maximum bandwidth possible,	
	i.e. 7KHz (0.14 ms) for MPZ models, 1kHz*1.0 ms) for BPC	
	and 4 kHz (0.25 ms) for TPZ units.	
	The DelayTime parameter specifies the time interval	
	between neighbouring samples, i.e. for how long the	

Thorlabs Confidential Page 109 of 138

	sample will remain at its present value. To increase the time between samples, set the DelayTime parameter to the required additional delay (1 to 2147483648 sample intervals). In this way, the user can stretch or shrink the waveform without affecting its overall shape.	
PreCycleRest	In some applications, during waveform generation the first and the last samples may need to be handled differently from the rest of the waveform. For example, in a positioning system it may be necessary to start the movement by staying at a certain position for a specified length of time, then perform a movement, then remain at the last position for another specified length of time. This is the purpose of PreCycleRest and PostCycleRest parameters, i.e. they specify the length of time that the first and last samples are output for, independently of the DelayTime parameter. The PreCycleRest parameter allows a delay time to be set before the system starts to clock out the LUT values. The delay can be set between 0 and 2147483648 sample intervals. The system then outputs the first value in the LUT until the PreCycleRest time has expired.	long
PostCycleRest	In a similar way to PreCycleRest, the PostCycleRest parameter specifies the delay imposed by the system after a LUT table has been output. The delay can be set between 0 and 2147483648 sample intervals. The system then outputs the last value in the cycle until the PostCycleRest time has expired.	long
OPTrigStart	Output triggering is enabled by setting the value 0x04 in the MODE parameter. With Op Triggering enabled, the system can be configured to generate one or more hardware trigger pulses during a LUT (waveform) cycle output. The OPTrigStart parameter specifies the LUT value (position in the LUT array) at which to initiate an output trigger. In this way, it is possible to synchronize an output trigger with the output of a particular voltage value. Values are set in the range 1 to 8000 but must also be less than the CycleLength parameter.	word
OPTrigWidth	sets the width of the output trigger. Values are entered in 1ms increments for BPC20x models.	long
TrigRepeatCycle	specifies the repeat interval between O/P triggers when OUTPUTTRIG_REPEAT is set to True. This parameter is specified in the number of LUT values between triggers (0 to 7999 for MPZ and BPC units, 0 to 512 for TPZ units). If this value is greater than the ICycleLength parameter (set in the SetOPLUTParams method) then by definition, a repeated trigger will not occur during a single waveform cycle output.	word

Thorlabs Confidential Page 110 of 138

Example: Set output LUT parameters as follows:

Channel: 1

Mode: OUTPUTLUT continuous

CycleLength: 40 NumCycles: 20 DelayTime: 10 PreCycleRest: 10 PostCycleRest: 10 OPTrigStart: 0 OPTrigWidth: 1 TrigRepeatCycle: 100

0A, 00, 00, 00, 00, 00, 01, 00, 00, 00, 64, 00

Header: 03, 07, 06, 00, D0, 01: SETOUTPUTLUTPARAMS, 30 byte data packet, Generic USB

Device. *Channel*: 1

Mode: OUTPUTLUT continuous

CycleLength: 00, 28 NumCycles: 00, 00, 00, 14 DelayTime: 00, 00, 00, 0A PreCycleRest: 00, 00, 00, 0A PostCycleRest: 00, 00, 00, 0A

OPTrigStart: 00, 00

OPTrigWidth: 00, 00, 00, 01 *TrigRepeatCycle*: 00, 64

REQUEST:

Command structure (6 bytes):

0	1	2	3	4	5
		head	ler only		
04	07	Chan Ident	00	d	S

GET:

Response structure (36 bytes)

6 byte header followed by 30 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11
		hea	ıder					Da	ıta		
03	07	1E	00	d	S	Chan	Ident	Mo	ode	Cyclel	ength
,											
12	13	14	15	16	17	18	19	20	21	22	23
					Do	ıta					
	Num(Cycles			Delay	/Time			PreCyc	cleRest	
24	25	26	27	28	29	30	31	32	33	34	35
	D						•		•		
PostCycleRest OPTrigSta				gStart		OPTrig	Width		TrigRe	pCycle	

For structure see SET message above.

Thorlabs Confidential Page 111 of 138

MGMSG_PZ_START_LUTOUTPUT

0x0706

Function:

This function is used to start the voltage waveform (LUT) outputs. Note. If the IPTrig flag of the SetOPLUTTrigParams function is set to false, this method initiates the waveform immediately. If the IPTrig flag is set to true, then this method 'arms' the system, in readiness for receipt of an input trigger.

TX structure (6 bytes):

0	1	2	3	4	5
		head	ler only		
06	07	Chan	00	d	S
		Ident			

MGMSG_PZ_STOP_LUTOUTPUT

0x0707

Function: This function is used to stop the voltage waveform (LUT) outputs.

TX structure (6 bytes):

0	1	2	3	4	5
		head	ler only		
07	07	Chan Ident	00	d	S

Thorlabs Confidential Page 112 of 138

MGMSG_PZ_SET_EEPROMPARAMS

0x07D0

Function: Used to save the parameter settings for the specified message.

These settings may have been altered either through the various method calls or through user interaction with the GUI (specifically, by clicking on the 'Settings' button found in the lower right hand

corner of the user interface).

SET:

Command structure (10 bytes)

6 byte header followed by 4 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9
	header						Do	ıta	
D0	07	04	00	d	S	Chan Ident MsgID			gID

Data Structure:

field	description	format
Chan Ident	The channel being addressed	word
MsgID	The message ID of the message containing the parameters to be saved.	word

Example:

TX D0, 07, 04, 00, D0, 01, 01, 00, 03, 07,

Header: DO, O7, O4, O0, DO, O1: Set_EEPROMPARAMS, O4 byte data packet, Generic USB

Device.

Chan Ident: 01, 00: Channel 1

MsgID: Save parameters specified by message 0703 (SetOutputLUTParams).

Thorlabs Confidential Page 113 of 138

MGMSG_PZ_SET_TPZ_DISPSETTINGS MGMSG_PZ_REQ_TPZ_DISPSETTINGS MGMSG_PZ_GET_TPZ_DISPSETTINGS 0x07D1 0x07D2 0x07D3

Function:

Used to set the intensity of the LED display on the front of the TPZ

unit.

SET:

Command structure (8 bytes)

6 byte header followed by 2 byte data packet as follows:

0	1	2	3	4	5	6	7
		hed	ıder			Do	ıta
D1	07	02	00	d	S	Displn	tensity

Data Structure:

field	description	format
DispIntensity	The intensity is set as a value from 0 (Off) to 255 (brightest).	word

Example: Set the input source to software and potentiometer.

TX D1, 07, 02, 00, D0, 01, 64, 00,

Header: D1, 07, 02, 00, D0, 01: Set_DISPSETTINGS, 02 byte data packet, Generic USB Device. *DispIntensity: 64, 00*: Sets the display brightness to 100 (40%)

REQ:

Command structure (6 bytes):

0	1	2	3	4	5	
		head	der only			
D2	07	01	00	d	S	

Example: Request the display intensity

TX D2, 07, 01, 00, 50, 01

GET:

Command structure (8 bytes)

6 byte header followed by 2 byte data packet as follows:

0	1	2	3	4	5	6	7
	header						
D3	07	02	00	d	S	Displn	tensity

See SET for data structure.

Thorlabs Confidential Page 114 of 138

MGMSG_PZ_SET_TPZ_IOSETTINGS MGMSG_PZ_REQ_TPZ_IOSETTINGS MGMSG_PZ_GET_TPZ_IOSETTINGS

0x07D4 0x07D5 0x07D6

Function:

This function is used to set various I/O settings as described below. The settings can be saved (persisted) to the EEPROM by calling the MGMSG_PZ_SET_EEPROMPARAMS function.

SET:

Command structure (16 bytes)

6 byte header followed by 10 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11
		hed	ıder			Data					
D4	07	0E	00	d	S	Chan	Ident	Voltag	eLimit	HubAr	alogIP

12	13	14	15
	Da	ıta	
Futur	e Use	Futur	e Use

Data Structure:

field	description	format
Chan Ident	The channel being addressed is always P_MOD_CHAN1	word
	(0x01) encoded as a 16-bit word (0x01 0x00)	
VoltageLimit	The piezo actuator connected to the T-Cube has a specific	word
	maximum operating voltage range. This parameter sets	
	the maximum output to the value specified as follows:	
	0x01 VOLTAGELIMIT_75V 75V limit	
	0x02 VOLTAGELIMIT_100V 100V limit	
	0x03 VOLTAGELIMIT_150V 150V limit	
HubAnalogInput	When the T-Cube Piezo Driver unit is used in conjunction	word
	with the T-Cube Strain Gauge Reader (TSG001) on the T-	
	Cube Controller Hub (TCH001), a feedback signal can be	
	passed from the Strain Gauge Reader to the Piezo unit.	
	High precision closed loop operation is then possible using	
	our complete range of feedback-equipped piezo actuators.	
	This parameter is used to select the way in which the	
	feedback signal is routed to the Piezo unit as follows:	
	0x01 HUB_ANALOGUEIN_A the feedback	
	signals run through all T-Cube bays.	
	0x02 HUB_ANALOGUEIN_B the feedback	
	signals run between adjacent pairs of T-Cube bays	
	(i.e. 1&2, 3&4, 5&6). This setting is useful when	
	several pairs of Strain Gauge/Piezo Driver cubes	
	are being used on the same hub.	
	0x03 EXTSIG_SMA the feedback signals run	
	through the rear panel SMA connectors.	

Thorlabs Confidential Page 115 of 138

REQ:

Command structure (6 bytes):

0	1	2	3	4	5			
header only								
D5 07 01 00 d s								

GET:

Response structure (16 bytes)

6 byte header followed by 10 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11
		hea	ıder			Data					
D4	07	0E	00	d	S	Chan	Ident	Voltag	eLimit	HubAr	alogIP

12	13	14	15				
	Data						
Futur	e Use	Futui	re Us				

See SET message for structure.

Thorlabs Confidential Page 116 of 138

MGMSG_PZ_SET_ZERO

0x0658

Function:

This function applies a voltage of zero volts to the actuator associated with the channel specified by the IChanID parameter, and then reads the position. This reading is then taken to be the zero reference for all subsequent position readings. This routine is typically called during the initialisation or re-initialisation of the piezo arrangement.

TX structure (6 bytes):

0	1	2	3	4	5			
header only								
58	06	Chan	00	d	S			
		Ident						

Thorlabs Confidential Page 117 of 138

MGMSG_PZ_REQ_MAXTRAVEL MGMSG_PZ_GET_MAXTRAVEL 0x0650 0x0651

Function:

In the case of actuators with built in position sensing, the Piezoelectric Control Unit can detect the range of travel of the actuator since this information is programmed in the electronic circuit inside the actuator. This function retrieves the maximum travel for the piezo actuator associated with the channel specified by the Chan Ident parameter, and returns a value (in microns) in the

Travel parameter.

REQ:

Command structure (6 bytes):

0	1	2	3	4	5
		head	ler only		
50	06	01	00	d	S

Example: Request the max travel of the actuator associated with Channel 1,

bay 2 (0x22)

TX 50, 06, 01, 00, 22, 01

GET:

Response structure (10 bytes)

6 byte header followed by 4 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9
	header						Do	ıta	
51	06	04	00	d	S	Chan ID Travel		vel	

Data Structure:

field	description	format
Chan Ident	The channel being addressed.	word
Travel	The max travel of the actuator associated with the specified channel in the range 0 to 65535 (0 to FFFF). The travel is read from a calibration resistor and is returned in real world units, steps of 100nm.	

Example: Set the input source to software and potentiometer.

TX 51, 06, 04, 00, 01, A2, 01, 00, C8, 00

Header: 51, 06, 04, 00, A2, 01: Get_Max Travel, 04 byte data packet, d=A2 (i.e. 22 ORed with

80), s=01 (PC). Channel 1: 01, 00:

Travel: 00C8 (200 i.e. 20 µm)

Thorlabs Confidential Page 118 of 138

MGMSG_PZ_SET_IOSETTINGS MGMSG_PZ_REQ_IOSETTINGS MGMSG_PZ_GET_IOSETTINGS 0x0670 0x0671 0x0672

Function:

This function is used to set various I/O settings as described below. The settings can be saved (persisted) to the EEPROM by calling the MGMSG_PZ_SET_EEPROMPARAMS function.

SET:

Command structure (16 bytes)

6 byte header followed by 10 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11
		hea	ıder					D	ata		
70	06	0E	00	d	S	Chan	Ident	AmpCu	rrentLim	Amp	LPFilter

12	13	14	15				
	Data						
Feedb	ackSig	BNCTrig	ORLVOut				

Data Structure:

field	description	format
Chan Ident	The channel being addressed is always P_MOD_CHAN1	word
	(0x01) encoded as a 16-bit word (0x01 0x00)	
AmpCurrentLim	This parameter sets the maximum current output for the	word
	HV amplifier circuit as follows:	
	CURRENTLIMIT_100MA 0x00	
	CURRENTLIMIT_250MA 0x01	
	CURRENTLIMIT_500MA 0x02	
AmpLPFilter	This parameter sets the value of the hardware low pass	word
	filter applied to the HV amplifier output channels. It can	
	be used to improve stability and reduce noise on the HV	
	outputs. It is not channel specific and the Chan Ident	
	parameter is ignored for this particular setting. Values are	
	set as follows:	
	OUTPUTLPFILTER_10HZ 0x00	
	OUTPUTLPFILTER_100HZ 0x01	
	OUTPUTLPFILTER_5KHZ 0x02	
	OUTPUTLPFILTER_NONE 0x03	
FeedbackSig	For future use. The feedback signal type is locked at AC	
	(strain gauge) and cannot be changed at this time.	
BNCTrigORLVOut	The Control IO BNC connectors on the rear panel are dual	
	function. When set to Low Voltage (LV) outputs they	
	mirror the voltage on the Piezo drive HV connectors and	
	can be connected to an oscilloscope for monitoring	
	purposes. When set to Trigger mode they provide the	
	trigger input and output connections. This function is	
	used to set the mode of the rear panel BNC connectors as	
	follows:	
	BNCMODE_TRIG Trigger Output 0x0000	
	BNCMODE_LVOUT LV Output 0xFFFF	

Thorlabs Confidential Page 119 of 138

REQ:

Command structure (6 bytes):

0	1	2	3	4	5				
	header only								
71	06	d	S						

GET:

Response structure (16 bytes)

6 byte header followed by 10 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11
	header							D	ata		
72	06	0E	00	d	S	Chan Ident AmpCurrentLim AmpL		LPFilter			

12	12 13		15			
Data						
Feedb	ackSig	BNCTrig	ORLVOut			

See SET message for structure.

Thorlabs Confidential Page 120 of 138

MGMSG_PZ_SET_OUTPUTMAXVOLTS MGMSG_PZ_REQ_OUTPUTMAXVOLTS MGMSG_PZ_GET_OUTPUTMAXVOLTS 0x0680 0x0681 0x0682

Function:

The piezo actuator connected to the unit has a specific maximum operating voltage range: 75, 100 or 150 V. This function sets the maximum voltage for the piezo actuator associated with the specified channel.

SET:

Command structure (12 bytes)

6 byte header followed by 6 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11
	header							Da	ıta		
80	06	0C	00	d	S	Chan Ident Voltage Flags			ıgs		

Data Structure:

field	description	format
Chan Ident	The channel being addressed.	word
Voltage	This parameter sets the maximum output to the value	word
	specified, in 1/10 volt steps between 0 and 1500 (i.e. 0 to	
	150 V).	
Flags	These flags tell the APT server certain parameters relating	word
	to the stage and controller combination. They are not	
	relevant to the SET command and are only used in the	
	GET_OUTPUTMAXVOLTS message	

Note. When the SET_OUTPUTMAXVOLTS message is sent, a GET_OUTPUTMAXVOLTS message is automatically returned. This is to inform the server that the max output voltage has changed. Similarly, a GET_MAXTRAVEL message is also returned to tell the server the new max travel value.

Example: Set the max output voltage to 100V.

TX 80, 06, 06, 00, D0, 01, 01, 00, E8, 03, 08, 00

Header: 80, 06, 06, 00, D0, 01: Set_OutputMaxVolts, 06 byte data packet, d=D0 (i.e. 50 ORed

with 80 i.e. generic USB device), s=01 (PC).

Channel 1: 01, 00:

Voltage: 03E8 (1000 i.e. 100V)

Flags: N/A

REQ:

Command structure (6 bytes):

0	1	2	3	4	5				
header only									
81	06	01	00	d	S				

Thorlabs Confidential Page 121 of 138

GET:

Response structure (12 bytes)

6 byte header followed by 6 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11
	header					Data					
82	06	06	00	d	S	Chan Ident Voltage Flag		igs			

Data Structure:

field	description	format
Chan Ident	The channel being addressed.	word
Voltage	This parameter sets the maximum output to the value	word
	specified,either 750, 1000 or 1500 (i.e. 75, 100 or 150 V).	
Flags	These flags tell the APT server certain parameters relating	word
	to the stage and controller combination.	
	The meaning of the individual bits (flags) of the 16 bit	
	integer value is as follows:	
	0x01 For Future Use	
	0x02 VOLTAGELIMIT_75V 75V limit	
	0x04 VOLTAGELIMIT_100V 100V limit	
	0x05 VOLTAGELIMIT_150V 150V limit	

Example: Set the max output voltage to 100V.

TX 82, 06, 06, 00, D0, 01, 01, 00, E8, 03, 08, 00

Header: 80, 06, 06, 00, D0, 01: Get_MaxOutputVolts, 06 byte data packet, d=D0 (i.e. 50

ORed with 80 i.e. generic USB device), s=01 (PC).

Channel 1: 01, 00:

Voltage: 03E8 (1000 i.e. 100V) Flags: 08, 00: 150 V max voltage

Thorlabs Confidential Page 122 of 138

MGMSG_PZ_SET_TPZ_SLEWRATES MGMSG_PZ_REQ_TPZ_SLEWRATES MGMSG_PZ_GET_TPZ_SLEWRATES 0x0683 0x0684 0x0685

Function:

When stages with delicate internal mechanisms are being driven, it is possible that sudden large changes to the drive voltage could cause damage. This function is used to limit the rate of change of the drive voltage. Different limits may be set for open loop and closed loop operating modes.

Note. The controller is loaded at the factory with default values suitable for driving legacy piezo stages. For newer generation stages, the slew rate is read in automatically. Consequently, these parameters should not require adjustment under normal operating

conditions.

SET:

6 byte header followed by 6 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11
	header							Do	ıta		
83	06	06	00	d	S			SlewC	losed		

Data Structure:

field	description	format
Chan Ident	The channel being addressed.	word
SlewOpen	This parameter sets the maximum slew rate when operating in open loop mode. Values are set in the range 0 to 32767, where 0 disables the limit, and 1 is the slowest rate. Values are calculated in V/ms as follows: Slew Rate = Value x Max Voltage (i.e. 75, 100 or 150 V) 19000	word
SlewClosed	This parameter sets the maximum slew rate when operating in closed loop mode.	word
	Values are calculated as above	

Example: Set the open and closed max slew rates to 10V/ms for a 150V piezo.

TX 83, 06, 06, 00, D0, 01, 01, 00, F2, 04, F2, 04

Header: 80, 06, 06, 00, D0, 01: Set_SlewRates, 06 byte data packet, d=D0 (i.e. 50 ORed with

80 i.e. generic USB device), s=01 (PC).

Channel 1: 01, 00:

SlewOpen: F2, 04 (10V/ms i.e. 1266 x 150 / 19000)

SlewClosed: F2, 04

Thorlabs Confidential Page 123 of 138

REQ:

Command structure (6 bytes):

0	1	2	3	4	5				
header only									
84 06 01 00 d									

GET:

Response structure (12 bytes)

6 byte header followed by 6 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11
	header						Data				
85	06	06	00	d	S	Chan	Ident	SlewOpen SlewClo		losed	

See SET message for structure.

MGMSG_MOT_SET_PZSTAGEPARAMDEFAULTS

0x0686

Function:

If the system has become unstable, possibly due to multiple changes to parameter values, this message can be sent to the controller in order to reset parameters to the default values stored in the EEPROM.

TX structure (6 bytes):

0	1	2	3	4	5					
header only										
58	06	Chan	00	d	S					
		Ident								

Thorlabs Confidential Page 125 of 138

MGMSG_PZ_SET_LUTVALUETYPE:

0x0708

Function:

It is possible to use the controller in an arbitrary Waveform Generator Mode (WGM). Rather than the unit outputting an adjustable but static voltage or position, the WGM allows the user to define a voltage or position sequence to be output, either periodically or a fixed number of times, with a selectable interval between adjacent samples. This waveform generation function is particularly useful for operations such as scanning over a particular area, or in any other application that requires a predefined movement sequence.

The waveform is stored as values in an array, with a maximum of 8000 samples per channel. The samples can have the meaning of voltage or position; if open loop operation is specified when the samples are output, then their meaning is voltage and vice versa, if the channel is set to closed loop operation, the samples are interpreted as position values. If the waveform to be output requires less than 8000 samples, it is sufficient to download the desired number of samples.

This message specifies whether the samples output from the LUT are voltage or position values.

TX structure (6 bytes):

0	1	2	3	4	5					
header only										
08	07	LUTType	00	d	S					

Data Structure:

Data Stractare.		
field	description	format
LUTType	The LUT value type:	char
	0x01 LUT values are Voltage	
	0x02 LUT values are position	

Example: Set the LUT value type to Volts.

TX, 08,07,01,00,50,01

Notes on using this message.

This method must be called BEFORE the LUT values are downloaded.

The LUT values are scaled to either voltage or position while the LUT is being downloaded. If the value type needs to be changed during operation (e.g. the system was in open loop with volts type selected, but now needs to change to closed loop with position type) the message must be called again, and the LUT values downloaded again.

Thorlabs Confidential Page 126 of 138

MGMSG_PZ_SET_TSG_IOSETTINGS MGMSG_PZ_REQ_TSG_IOSETTINGS MGMSG_PZ_GET_TSG_IOSETTINGS 0x07DA 0x07DB 0x07DC

Function:

When the T-Cube Strain Gauge Reader is used in conjunction with the T-Cube Piezo Driver unit (TPZ001) on the T-Cube Controller Hub (TCH001), a feedback signal can be passed from the Strain Gauge Reader to the Piezo unit. High precision closed loop operation is then possible using our complete range of feedback-equipped piezo actuators.

This method is used to select the way in which the feedback signal is

routed back to the Piezo unit.

SET:

Command structure (20 bytes)

6 byte header followed by 14 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11		
header							Data						
DA	07	0E	00	d	S	Chan Ident		Chan Ident		HubAr	nalogOP	Displ	ayMode
12	13	14	15	16	17	18	19						

12	13	14	15	16	17	18	19					
	Data											
	ForceCalib Future Use Future Use											

Data Structure:

field	description	format
Chan Ident	The channel being addressed is always (e.g. 0x01)	word
	encoded as a 16-bit word (0x01 0x00)	
HubAnalogueOutput	When the T-Cube Strain Gauge Reader is used in	word
	conjunction with the T-Cube Piezo Driver unit (TPZ001)	
	on the T-Cube Controller Hub (TCH001), a feedback	
	signal can be passed from the Strain Gauge Reader to	
	the Piezo unit. High precision closed loop operation is	
	then possible using our complete range of feedback-	
	equipped piezo actuators.	
	This message is used to select the way in which the	
	feedback signal is routed back to the Piezo unit	
	If set to 0x01 HUB_ANALOGUEOUT_1, the feedback	
	signals run through all T-Cube bays.	
	If set to 0x02 HUB_ANALOGUEOUT_2,the feedback	
	signals run between adjacent pairs of T-Cube bays (i.e.	
	1&2, 3&4, 5&6). This setting is useful when several	
	pairs of Strain Gauge/Piezo Driver cubes are being	
	used on the same hub.	

Thorlabs Confidential Page 127 of 138

Display Mode	The LED display window on the front of the unit (and the display on the GUI panel) can be set to display the strain gauge signal as a position (microns), a voltage (Volts) or as a force (Newtons). This parameter sets the display mode as follows If set to 0x01 DISPUNITS_POSITION, the display shows the strain gauge signal as a position in microns. If set to 0x02 DISPUNITS_VOLTAGE, the display shows the strain gauge signal as a voltage. If set to 0x03 DISPUNITS_FORCE, the display shows the strain gauge signal as a force	word
ForceCalib	If using a force sensor with the TSG001 unit, the Force Sensor has a specific maximum operating force. This parameter sets the force calibration factor in steps of 0.001 N between 1 and 1000. The default setting for this parameter is H7530 (30,000), to be compatible with our FSC102 force sensor, which is specified to read forces up to 30N.	word

Example: Set the IO settings as follows.

TX DA, 07, 0E, 00, D0, 01, 01, 00, 01, 00, 02, 00, 30, 75, 00, 00, 00, 00, 00

Header: DA, 07, 0E, 00, D0, 01: Set_TSG_IOSettings, 14 byte data packet, d=D0 (i.e. 50 ORed

with 80 i.e. generic USB device), s=01 (PC).

Channel 1: 01, 00:

HubAnalogueOutput: 01, 00 (Hub Analogue Output A)

Display Mode: 02, 00 (Display Voltage

Force Calibration: 30, 75 30,000 x 0.001 = 30 N

REQ:

Command structure (6 bytes):

0	1	2	3	4	5					
header only										
DB	07	01	00	d	S					

GET:

Response structure (16 bytes)

6 byte header followed by 10 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11
	header					Data					
DC	07	0E	00	d	S	Chan	Ident	HubAr	nalogOP	Displ	ayMode
12	13	14	15	16	17	18 19					
	Data										
	ForceCalib Future Use						e Use				

See SET message for structure.

Thorlabs Confidential Page 128 of 138

MGMSG_PZ_REQ_TSG_READING MGMSG_PZ_GET_TSG_READING 0x07DD 0x07DE

Function:

This message returns the current reading of the strain gauge The units applicable are dependent on the current operating mode (set using the DisplayMode parameter of the <u>SET_TSG_IOSETTINGS</u> message.

REQUEST:

Command structure (6 bytes):

0	1	2	3	4	5						
	header only										
DD	07	Chan	00	d	S						
		Ident									

GET:

Response structure (12 bytes)

6 byte header followed by 6 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11	
	header						Data					
DE	07	06	00	d	S	Chan	Ident	StatusBits				

Data Structure:

field	description	format
Chan Ident	The channel being addressed	word
Reading	The current reading of the strain gauge unit. If the unit is operating in Position mode, then the returned value is a position in microns. If the unit is in Voltage mode, then the returned reading is a Voltage. If the controller is in 'Force Sensing Mode' then the parameter returns a force value in Newtons. Values are returned in the range -32767 to 32768, which corresponds to -100% to 100% of the maximum output as described by the Get PZStatusUpdate message. The returned data values are sampled at 500Hz. This is particularly useful in touch probe or force sensing applications where rapid polling of the force reading is important.	short
Smoothed		word

Example: Get the readings for channel 1.

RX DE, 07, 06, 00, D0, 00, 01, 00, 52, 00, 50, 00,

Header: DE, 07, 06, 00, D0, 00: Get_TSG_Readings, 6 byte data packet, d=D0 (i.e. 50 ORed

with 80 i.e. generic USB device), s=01 (PC).

Channel 1: 01, 00 Reading: 52, 00 (i.e. 82) Smoothed: 52, 00

Thorlabs Confidential Page 129 of 138

Message Cross Reference by Unit Part Number

This section lists the messages applicable to each controller part number

Thorlabs Confidential Page 130 of 138

Messages Applicable to BPC20x Series

MGMSG MOD IDENTIFY	0x0223	16
MGMSG MOD SET CHANENABLESTATE	0x0210	17
MGMSG MOD REQ CHANENABLESTATE	0x0211	17
MGMSG_MOD_GET_CHANENABLESTATE	0x0212	17
MGMSG HW DISCONNECT	0x002H	19
MGMSG_HW_RESPONSE	0x0080	19
MGMSG HW START UPDATEMSGS	0x0011	20
MGMSG_HW_STOP_UPDATEMSGS	0x0012	20
MGMSG HW REQ INFO	0x005H	21
MGMSG_HW_GET_INFO	0x006H	21
MGMSG RACK REQ BAYUSED	0x0060	23
MGMSG RACK GET BAYUSED	0x0061	23
MGMSG_RACK_REQ_STATUSBITS	0x0226	25
MGMSG RACK GET STATUSBITS	0x0227	25
MGMSG RACK SET DIGOUTPUTS	0x0228	26
MGMSG RACK REQ DIGOUTPUTS	0x0229	26
MGMSG_RACK_GET_DIGOUTPUTS	0x0230	26
MGMSG PZ SET POSCONTROLMODE	0x0640	94
MGMSG PZ REQ POSCONTROLMODE	0x0641	94
MGMSG PZ GET POSCONTROLMODE	0x0642	94
MGMSG PZ SET OUTPUTVOLTS	0x0643	96
MGMSG_PZ_REQ_OUTPUTVOLTS	0x0644	96
MGMSG PZ GET OUTPUTVOLTS	0x0645	96
MGMSG_PZ_SET_OUTPUTPOS	0x0646	97
MGMSG PZ REQ OUTPUTPOS	0x0647	97
MGMSG PZ GET OUTPUTPOS	0x0648	97
MGMSG_PZ_SET_INPUTVOLTSSRC	0x0652	98
MGMSG PZ REQ INPUTVOLTSSRC	0x0653	98
MGMSG_PZ_GET_INPUTVOLTSSRC	0x0654	98
MGMSG PZ SET PICONSTS	0x0655	100
MGMSG_PZ_REQ_PICONSTS	0x0656	100
MGMSG PZ GET PICONSTS	0x0657	100
MGMSG PZ REQ PZSTATUSBITS	0x065B	101
MGMSG_PZ_GET_PZSTATUSBITS	0x065C	101
MGMSG PZ GET PZSTATUSUPDATE	0x0661	103
MGMSG_PZ_SET_OUTPUTLUT	0x0700	106
MGMSG PZ REQ OUTPUTLUT	0x0701	106
MGMSG PZ GET OUTPUTLUT	0x0702	106
MGMSG PZ SET OUTPUTLUTPARAMS	0x0703	108
MGMSG PZ REQ OUTPUTLUTPARAMS	0x0704	108
MGMSG_PZ_GET_OUTPUTLUTPARAMS	0x0705	108
MGMSG PZ START LUTOUTPUT	0x0706	112
MGMSG_PZ_STOP_LUTOUTPUT	0x0707	112
MGMSG PZ SET ZERO	0x0658	117
MGMSG PZ REQ MAXTRAVEL	0x0650	118
MGMSG PZ GET MAXTRAVEL	0x0651	118
MGMSG PZ SET OUTPUTMAXVOLTS	0x0680	121
MGMSG_PZ_REQ_OUTPUTMAXVOLTS	0x0681	121
MGMSG PZ GET OUTPUTMAXVOLTS	0x0682	121

Thorlabs Confidential Page 131 of 138

Messages Applicable to BPC30x Series

MGMSG MOD IDENTIFY	0x0223	16
MGMSG MOD SET CHANENABLESTATE	0x0210	17
MGMSG MOD REQ CHANENABLESTATE	0x0211	17
MGMSG_MOD_GET_CHANENABLESTATE	0x0212	17
MGMSG HW DISCONNECT	0x002H	19
MGMSG_HW_RESPONSE	0x0080	19
MGMSG HW START UPDATEMSGS	0x0011	20
MGMSG HW STOP UPDATEMSGS	0x0012	20
MGMSG HW REQ INFO	0x005H	21
MGMSG_HW_GET_INFO	0x006H	21
MGMSG RACK REQ BAYUSED	0x0060	23
MGMSG RACK GET BAYUSED	0x0061	23
MGMSG_RACK_REQ_STATUSBITS	0x0226	25
MGMSG RACK GET STATUSBITS	0x0227	25
MGMSG RACK SET DIGOUTPUTS	0x0228	26
MGMSG RACK REQ DIGOUTPUTS	0x0229	26
MGMSG_RACK_GET_DIGOUTPUTS	0x0230	26
MGMSG PZ SET POSCONTROLMODE	0x0640	94
MGMSG PZ REQ POSCONTROLMODE	0x0641	94
MGMSG PZ GET POSCONTROLMODE	0x0642	94
MGMSG PZ SET OUTPUTVOLTS	0x0643	96
MGMSG_PZ_REQ_OUTPUTVOLTS	0x0644	96
MGMSG PZ GET OUTPUTVOLTS	0x0645	96
MGMSG_PZ_SET_OUTPUTPOS	0x0646	97
MGMSG PZ REQ OUTPUTPOS	0x0647	97
MGMSG PZ GET OUTPUTPOS	0x0648	97
MGMSG PZ SET INPUTVOLTSSRC	0x0652	98
MGMSG PZ REQ INPUTVOLTSSRC	0x0653	98
MGMSG PZ GET INPUTVOLTSSRC	0x0654	98
MGMSG PZ SET PICONSTS	0x0655	100
MGMSG PZ REQ PICONSTS	0x0656	100
MGMSG PZ GET PICONSTS	0x0657	100
MGMSG PZ REQ PZSTATUSBITS	0x065B	101
MGMSG PZ GET PZSTATUSBITS	0x065C	101
MGMSG PZ GET PZSTATUSUPDATE	0x0661	103
MGMSG_PZ_ACK_PZSTATUSUPDATE	0x0662	105
MGMSG PZ SET OUTPUTLUT	0x0700	106
MGMSG PZ REQ OUTPUTLUT	0x0701	106
MGMSG PZ GET OUTPUTLUT	0x0702	106
MGMSG PZ SET OUTPUTLUTPARAMS	0x0703	108
MGMSG PZ REQ OUTPUTLUTPARAMS	0x0704	108
MGMSG PZ GET OUTPUTLUTPARAMS	0x0705	108
MGMSG_PZ_START_LUTOUTPUT	0x0706	112
MGMSG PZ STOP LUTOUTPUT	0x0707	112
MGMSG PZ SET ZERO	0x0658	117
MGMSG PZ SET OUTPUTMAXVOLTS	0x0680	121
MGMSG PZ REQ OUTPUTMAXVOLTS	0x0681	121
MGMSG_PZ_GET_OUTPUTMAXVOLTS	0x0682	121
MGMSG PZ SET SLEWRATES	0x0683	123
MGMSG PZ REQ SLEWRATES	0x0684	123
MGMSG PZ GET SLEWRATES	0x0685	123
MGMSG MOT SET PZSTAGEPARAMDEFAULTS	0x0686	125

Thorlabs Confidential Page 132 of 138

Messages Applicable to TPZ001

MGMSG MOD IDENTIFY	0x0223	16
MGMSG MOD SET CHANENABLESTATE	0x0210	17
MGMSG MOD REQ CHANENABLESTATE	0x0211	17
MGMSG_MOD_GET_CHANENABLESTATE	0x0212	17
MGMSG HW DISCONNECT	0x002H	19
MGMSG_HW_RESPONSE	0x0080	19
MGMSG HW START UPDATEMSGS	0x0011	20
MGMSG_HW_STOP_UPDATEMSGS	0x0012	20
MGMSG HW REQ INFO	0x005H	21
MGMSG_HW_GET_INFO	0x006H	21
MGMSG PZ SET POSCONTROLMODE	0x0640	94
MGMSG PZ REQ POSCONTROLMODE	0x0641	94
MGMSG_PZ_GET_POSCONTROLMODE	0x0642	94
MGMSG PZ SET OUTPUTVOLTS	0x0643	96
MGMSG PZ REQ OUTPUTVOLTS	0x0644	96
MGMSG PZ GET OUTPUTVOLTS	0x0645	96
MGMSG_PZ_SET_OUTPUTPOS	0x0646	97
MGMSG PZ REQ OUTPUTPOS	0x0647	97
MGMSG PZ GET OUTPUTPOS	0x0648	97
MGMSG PZ SET INPUTVOLTSSRC	0x0652	98
MGMSG PZ REQ INPUTVOLTSSRC	0x0653	98
MGMSG_PZ_GET_INPUTVOLTSSRC	0x0654	98
MGMSG PZ SET PICONSTS	0x0655	100
MGMSG_PZ_REQ_PICONSTS	0x0656	100
MGMSG PZ GET PICONSTS	0x0657	100
MGMSG PZ GET PZSTATUSUPDATE	0x0661	103
MGMSG_PZ_SET_OUTPUTLUT	0x0700	106
MGMSG PZ REQ OUTPUTLUT	0x0701	106
MGMSG_PZ_GET_OUTPUTLUT	0x0702	106
MGMSG PZ SET OUTPUTLUTPARAMS	0x0703	108
MGMSG_PZ_REQ_OUTPUTLUTPARAMS	0x0704	108
MGMSG PZ GET OUTPUTLUTPARAMS	0x0705	108
MGMSG PZ START LUTOUTPUT	0x0706	112
MGMSG_PZ_STOP_LUTOUTPUT	0x0707	112
MGMSG PZ SET EEPROMPARAMS:	0x07D0	113
MGMSG_PZ_SET_TPZ_DISPSETTINGS:	0x07D1	114
MGMSG PZ REQ TPZ DISPSETTINGS:	0x07D2	114
MGMSG PZ GET TPZ DISPSETTINGS;	0x07D3	114
MGMSG PZ SET TPZ IOSETTINGS:	0x07D4	115
MGMSG PZ REQ TPZ IOSETTINGS:	0x07D5	115
MGMSG_PZ_GET_TPZ_IOSETTINGS;	0x07D6	115

Thorlabs Confidential Page 133 of 138

Messages Applicable to TSG001

MGMSG MOD IDENTIFY	0x0223
MGMSG MOD SET CHANENABLESTATE	0x0210
MGMSG MOD REQ CHANENABLESTATE	0x0211
MGMSG_MOD_GET_CHANENABLESTATE	0x0212
MGMSG HW DISCONNECT	0x002H
MGMSG_HW_RESPONSE	0x0080
MGMSG HW START UPDATEMSGS	0x0011
MGMSG_HW_STOP_UPDATEMSGS	0x0012
MGMSG HW REQ INFO	0x005H
MGMSG_HW_GET_INFO	0x006H
MGMSG HUB REQ BAYUSED	0x0065
MGMSG HUB GET BAYUSED	0x0066
MGMSG_PZ_GET_PZSTATUSUPDATE	0x0661
MGMSG PZ ACK PZSTATUSUPDATE	0x0662
MGMSG PZ SET EEPROMPARAMS:	0x07D0
MGMSG PZ SET TPZ DISPSETTINGS:	0x07D1
MGMSG_PZ_REQ_TPZ_DISPSETTINGS:	0x07D2
MGMSG PZ GET TPZ DISPSETTINGS;	0x07D3
MGMSG PZ SET ZERO	0x0658
MGMSG PZ REQ MAXTRAVEL	0x0650
MGMSG PZ GET MAXTRAVEL	0x0651
MGMSG PZ SET TSG IOSETTINGS	0x07DA
MGMSG PZ REQ TSG IOSETTINGS	0x07DB
MGMSG_PZ_GET_TSG_IOSETTINGS	0x07DC
MGMSG PZ REQ TSG READING	0x07DD
MGMSG PZ GET TSG READING	0x07DE

Thorlabs Confidential Page 134 of 138

Messages Applicable to MPZ601

MGMSG MOD IDENTIFY	0x0223	16
MGMSG MOD SET CHANENABLESTATE	0x0210	17
MGMSG MOD REQ CHANENABLESTATE	0x0211	17
MGMSG MOD GET CHANENABLESTATE	0x0212	17
MGMSG HW RESPONSE	0x0080	19
MGMSG HW START UPDATEMSGS	0x0011	20
MGMSG HW STOP UPDATEMSGS	0x0012	20
MGMSG HW REQ INFO	0x005H	21
MGMSG HW GET INFO	0x006H	21
MGMSG RACK REQ BAYUSED	0x0060	23
MGMSG RACK GET BAYUSED	0x0061	23
MGMSG RACK SET DIGOUTPUTS	0x0228	26
MGMSG RACK REQ DIGOUTPUTS	0x0229	26
MGMSG RACK GET DIGOUTPUTS	0x0230	26
MGMSG PZ SET POSCONTROLMODE	0x0640	94
MGMSG PZ REQ POSCONTROLMODE	0x0641	94
MGMSG PZ GET POSCONTROLMODE	0x0642	94
MGMSG PZ SET OUTPUTVOLTS	0x0643	96
MGMSG PZ REQ OUTPUTVOLTS	0x0644	96
MGMSG PZ GET OUTPUTVOLTS	0x0645	96
MGMSG PZ SET OUTPUTPOS	0x0646	97
MGMSG PZ REQ OUTPUTPOS	0x0647	97
MGMSG PZ GET OUTPUTPOS	0x0648	97
MGMSG PZ SET INPUTVOLTSSRC	0x0652	98
MGMSG PZ REQ INPUTVOLTSSRC	0x0653	98
MGMSG PZ GET INPUTVOLTSSRC	0x0654	98
MGMSG PZ SET PICONSTS	0x0655	100
MGMSG PZ REQ PICONSTS	0x0656	100
MGMSG PZ GET PICONSTS	0x0657	100
MGMSG PZ REQ PZSTATUSBITS	0x065B	101
MGMSG PZ GET PZSTATUSBITS	0x065C	101
MGMSG PZ GET PZSTATUSUPDATE	0x0661	103
MGMSG PZ ACK PZSTATUSUPDATE	0x0662	105
MGMSG PZ SET OUTPUTLUT	0x0700	106
MGMSG PZ REQ OUTPUTLUT	0x0701	106
MGMSG PZ GET OUTPUTLUT	0x0702	106
MGMSG PZ SET OUTPUTLUTPARAMS	0x0703	108
MGMSG PZ REQ OUTPUTLUTPARAMS	0x0704	108
MGMSG PZ GET OUTPUTLUTPARAMS	0x0705	108
MGMSG PZ START LUTOUTPUT	0x0706	112
MGMSG PZ STOP LUTOUTPUT	0x0707	112
MGMSG PZ SET ZERO	0x0658	117
MGMSG PZ REQ MAXTRAVEL	0x0650	118
MGMSG PZ GET MAXTRAVEL	0x0651	118
MGMSG PZ SET IOSETTINGS:	0x0670	119
MGMSG PZ REQ IOSETTINGS:	0x0671	119
MGMSG PZ GET IOSETTINGS:	0x0672	119
MGMSG PZ SET LUTVALUETYPE:	0x0708	126
	2.10700	

Thorlabs Confidential Page 135 of 138

Messages Applicable to TDC001

MGMSG MOD IDENTIFY	0x0223	16
MGMSG MOD SET CHANENABLESTATE	0x0210	17
MGMSG MOD REQ CHANENABLESTATE	0x0211	17
MGMSG MOD GET CHANENABLESTATE	0x0212	17
MGMSG HW RESPONSE	0x0080	19
MGMSG HW START UPDATEMSGS	0x0011	20
MGMSG HW STOP UPDATEMSGS	0x0012	20
MGMSG_HW_REQ_INFO	0x005H	21
MGMSG HW GET INFO	0x006H	21
MGMSG_MOT_SET_POSCOUNTER	0x0410	28
MGMSG MOT REQ POSCOUNTER	0x0411	28
MGMSG MOT GET POSCOUNTER	0x0412	28
MGMSG_MOT_SET_ENCCOUNTER	0x0409	29
MGMSG MOT REQ ENCCOUNTER	0x040A	29
MGMSG MOT GET ENCCOUNTER	0x040B	29
MGMSG MOT SET VELPARAMS	0x0413	30
MGMSG_MOT_REQ_VELPARAMS	0x0414	30
MGMSG MOT GET VELPARAMS	0x0415	30
MGMSG MOT SET JOGPARAMS	0x0416	32
MGMSG MOT REQ JOGPARAMS	0x0417	32
MGMSG MOT GET JOGPARAMS	0x0418	32
MGMSG_MOT_SET_GENMOVEPARAMS	0x043A	34
MGMSG MOT REQ GENMOVEPARAMS	0x043B	34
MGMSG_MOT_GET_GENMOVEPARAMS	0x043C	34
MGMSG MOT SET MOVERELPARAMS	0x0445	35
MGMSG MOT REQ MOVERELPARAMS	0x0446	35
MGMSG_MOT_GET_MOVERELPARAMS	0x0447	35
MGMSG MOT SET MOVEABSPARAMS	0x0450	36
MGMSG_MOT_REQ_MOVEABSPARAMS	0x0451	36
MGMSG MOT GET MOVEABSPARAMS	0x0452	36
MGMSG_MOT_SET_HOMEPARAMS	0x0440	37
MGMSG MOT REQ HOMEPARAMS	0x0441	37
MGMSG MOT GET HOMEPARAMS	0x0442	37
MGMSG_MOT_SET_LIMSWITCHPARAMS	0x0423	39
MGMSG MOT REQ LIMSWITCHPARAMS	0x0424	39
MGMSG_MOT_GET_LIMSWITCHPARAMS	0x0425	39
MGMSG MOT MOVE HOME	0x0443	41
MGMSG MOT MOVE HOMED	0x0444	41
MGMSG MOT MOVE RELATIVE	0x0448	42
MGMSG MOT MOVE COMPLETED	0x0464	44
MGMSG_MOT_MOVE_ABSOLUTE	0x0453	45
MGMSG MOT MOVE JOG	0x046A	47
MGMSG_MOT_MOVE_VELOCITY	0x0457	48
MGMSG MOT MOVE STOPPED	0x0465	49
MGMSG MOT MOVE STOPPED	0x0466	50
MGMSG MOT SET DCPIDPARAMS	0x04A0	51
MGMSG MOT REQ DCPIDPARAMS	0x04A1	51 51
MGMSG_MOT_GET_DCPIDPARAMS	0x04A2	51
MGMSG MOT SET AVMODES	0x04B3	53 53
MGMSG_MOT_REQ_AVMODES	0x04B4	53 52
MGMSG MOT SET POTRADAMS	0x04B5	53 55
MGMSG MOT SET POTPARAMS	0x04B0 0x04B1	55 55
MGMSG MOT REQ POTPARAMS		55 55
MGMSG MOT SET PUTTONDARAMS	0x04B2	
MGMSG_MOT_SET_BUTTONPARAMS	0x04B6	58

Thorlabs Confidential Page 136 of 138

MGMSG MOT REQ BUTTONPARAMS 0x04B7	58
MGMSG MOT GET BUTTONPARAMS 0x04B8	58
MGMSG MOT REQ DCSTATUSUPDATE 0x0490	80
MGMSG MOT ACK DCSTATUSUPDATE 0x0492	80
MGMSG MOT REQ STATUSBITS 0x0429	81
MGMSG MOT GET STATUSBITS 0x042A	81
MGMSG_MOT_SUSPEND_ENDOFMOVEMSGS 0x046B	82
MGMSG MOT RESUME ENDOFMOVEMSGS 0x046C	83

Host-Controller Communications Protocol

Issue 3

Thorlabs APT Controllers

Thorlabs Confidential Page 137 of 138

Messages Applicable to TSC001

MGMSG	MOD IDENTIFY	0x0223	16
MGMSG	MOD SET CHANENABLESTATE	0x0210	17
MGMSG	MOD REQ CHANENABLESTATE	0x0211	17
MGMSG	MOD_GET_CHANENABLESTATE	0x0212	17
MGMSG	HW RESPONSE	0x0080	19
MGMSG_	HW_START_UPDATEMSGS	0x0011	20
MGMSG	HW STOP UPDATEMSGS	0x0012	20
MGMSG_	HW_REQ_INFO	0x005H	21
MGMSG	HW GET INFO	0x006H	21
MGMSG_	HUB_REQ_BAYUSED	0x0065	24
MGMSG	HUB GET BAYUSED	0x0066	24
MGMSG	MOT MOVE COMPLETED	0x0464	44
MGMSG_	MOT_MOVE_ABSOLUTE	0x0453	45
MGMSG	MOT MOVE STOP	0x0465	49
MGMSG	MOT SET AVMODES	0x04B3	53
MGMSG	MOT REQ AVMODES	0x04B4	53
MGMSG_	MOT_GET_AVMODES	0x04B5	53
MGMSG	MOT SET BUTTONPARAMS	0x04B6	58
MGMSG	MOT REQ BUTTONPARAMS	0x04B7	58
MGMSG	MOT GET BUTTONPARAMS	0x04B8	58
MGMSG	MOT SET EEPROMPARAMS:	0x04B9	60
MGMSG_	MOT_GET_STATUSUPDATE	0x0481	77
MGMSG	MOT SET SOL OPERATINGMODE	0x04C0	85
MGMSG_	MOT_REQ_SOL_OPERATINGMODE	0x04C1	85
MGMSG	MOT GET SOL OPERATINGMODE	0x04C2	85
MGMSG	MOT SET SOL CYCLEPARAMS	0x04C3	87
MGMSG	MOT_REQ_SOL_CYCLEPARAMS	0x04C4	87
MGMSG	MOT GET SOL CYCLEPARAMS	0x04C5	87
MGMSG_	MOT SET SOL INTERLOCKMODE	0x04C6	89
MGMSG	MOT REQ SOL INTERLOCKMODE	0x04C7	89
MGMSG	MOT_GET_SOL_INTERLOCKMODE	0x04C8	89
MGMSG	MOT SET SOL STATE	0x04CB	91
MGMSG	MOT REQ SOL STATE	0x04CC	91
MGMSG	MOT GET SOL STATE	0x04CD	91

Thorlabs Confidential Page 138 of 138