ECE 5018	Physics of VLSI Devices		L	T	P	J	C
			3	0	0	0	3
Pre-requisite	None	Syllabus version					
						V	.1.1

Course Objectives:

The course is aimed to

- 1. Expound the fundamentals of intrinsic, extrinsic semiconductors with carrier concentration, modeling and physics of various carrier current transport mechanisms
- 2. Introduce detailed physics and modeling of PN Junction, MOS capacitors, and MOSFETs
- 3. Review and discuss in detail the short channel effects and the issues of UDSM transistors

Expected Course Outcome:

At the end of the course the student will be able to

- 1. Design extrinsic semiconductors with specific carrier concentrations and, understand the band structure and diagrams of semiconductors.
- 2. Calculateand model the carrier transport mechanism in semiconductors.
- 3. Model PN- junctions of given specifications
- 4. Model MOS capacitors
- 5. Model MOSFETs and model the MOSFETs
- 6. Mitigate the short channel effects and design UDSM transistors

Student Learning Outcomes (SLO): 1,5,17

Module:1 | **Semiconductor Physics**

5 hours

Energy bands in solids - Intrinsic and Extrinsic semiconductors - Direct and Indirect bandgap - Density of states - Fermi distribution -Free carrier densities - Boltzmann statistics - Thermal equilibrium.

Module:2 | Carrier Transport in Semiconductors

4 hours

Current flow mechanisms: Drift current, Diffusion current - Mobility of carriers - Current density equations - Continuity equation.

Module:3 P-N Junctions

5 hours

Thermal equilibrium physics - Energy band diagrams - Space charge layers - Poisson equation - Electric fields and Potentials - p-n junction under applied bias - Static current-voltage characteristics of p-n junctions - Breakdown mechanisms.

Module:4 | **MOS Capacitor**

8 hours

Accumulation - Depletion - Strong inversion - Threshold voltage - Contact potential - Gate work function - Oxide and Interface charges - Body effect - C-V characteristics of MOS

Module:5 MOSFETs and Compact Models

8 hours

Drain current - Saturation voltage - Sub-threshold conduction - Effect of gate and drain voltage on carrier mobility - Compact models for MOSFET and their implementation in SPICE: Level 1, 2 and 3 - MOS model parameters in SPICE.

Module:6	Scaling and Short Chan	nel Effects			6 hours		
Effect of	scaling - Channel length	modulation - Pur	ch-through	- Hot carrier	degradation -		
MOSFET 1	oreakdown - Drain-induced	barrier lowering.					
Module:7	UDSM Transistor Design	n Issues			7 hours		
	x - Effect of high-k and lo unneling effects - Different						
Module:8	Contemporary issues:				2 hours		
Total Lect	ure hours:				45 hours		
Text Book	(s)				l.		
	S. Streetman and S. Banerje th Edition, 2014.	e, Solid State Elec	ctronic Dev	ices, Pearson E	ducation, U.S,		
	olinge and C. A. Colinge hers, US, 2017.	, Physics of Sen	niconductor	Devices, Kluv	wer Academic		
Reference	Books						
1. Y.P. T	sividis and Colin McAndrey	w, Operation and I	Modelling of	of the MOS Trai	nsistor, Oxford		
Unive	rsity Press, US, Third Editio	n, 2011.					
2. M K	Achutan and K N Bhatt,	Fundamental of	Semicondo	uctor Devices,	McGraw Hill		
Educa	tion, US, 2017.						
Mode of E	valuation: CAT / Assignmen	nt / Quiz / FAT					
Recommended by Board of Studies 05-10-2017							
Approved by Academic Council No. 47 05-10-2017							