

A Fast and Accurate Dependency Parser using Neural Networks

2025-03-24

Proceedings of EMNLP 2014

Danqi Chen, Christopher D. Manning

Content

- ☐ Introduction
- ☐ Related Work
- □ Transition-based Dependency Parsing
- □ Goal
- □ Neural Network Based Parser
- Experiments
- □ Conclusion

Introduction

- What is Dependency Parsing?
 - The task of analyzing the syntactic dependency structure of a given input sentence

Introduction

Why is dependency parsing needed?

A model needs to understand sentence structure to be able to interpret language correctly

Scientists count whales from space

Scientists count whales from space

Related Work

- □ Dynamic programming
 - \blacksquare Clever algorithm with complexity $O(n^3)$
- ☐ Graph algorithms
 - Create a Minimum Spanning Tree for a sentence
- □ Constraint Satisfaction
 - Edges are eliminated that don't satisfy hard constraints
- □ Transition-based parsing
 - Greedy choice of attachments guided by good machine learning classifiers

- □ Predict a transition sequence
 - Initial configuration → some terminal configuration
 - Based on indicator features extracted from the configuration
 - Derive a target dependency parse tree

Transition	Stack	Buffer	A
	[ROOT]	[He has good control .]	Ø
SHIFT	[ROOT He]	[has good control .]	20
SHIFT	[ROOT He has]	[good control .]	
LEFT-ARC(nsubj)	[ROOT has]	[good control .]	$A \cup \text{nsubj(has,He)}$
SHIFT	[ROOT has good]	[control .]	1503
SHIFT	[ROOT has good control]	[.]	
LEFT-ARC (amod)	[ROOT has control]	[.]	$A \cup amod(control,good)$
RIGHT-ARC(dobj)	[ROOT has]	[.]	$A \cup dobj(has,control)$
RIGHT-ARC(root)	[ROOT]		$A \cup \text{root}(\text{ROOT},\text{has})$

☐ Arc-standard system

- Configuration c = (s, b, A), s: stack, b: buffer, A: a ser of dependency arcs
- Initial configuration

$$\square$$
 $s = [ROOT], b = [w_1, ..., w_n], A = \emptyset$

Terminal configuration

$$\Box$$
 $s = [ROOT], b = \emptyset$

Transition	Stack	Buffer	A
	[ROOT]	[He has good control .]	Ø
SHIFT	[ROOT He]	[has good control .]	70
SHIFT	[ROOT He has]	[good control .]	
LEFT-ARC(nsubj)	[ROOT has]	[good control .]	$A \cup \text{nsubj(has,He)}$
SHIFT	[ROOT has good]	[control .]	1200
SHIFT	[ROOT has good control]	[.]	
LEFT-ARC (amod)	[ROOT has control]	[.]	$A \cup \text{amod(control,good)}$
RIGHT-ARC(dobj)	[ROOT has]	[.]	$A \cup dobj(has,control)$
	•••		
RIGHT-ARC(root)	[ROOT]		$A \cup \text{root}(ROOT,has)$

- ☐ Three types of transitions
 - LEFT-ARC(l): Add an arc $s_1 \rightarrow s_2$ with label l and removes s_2 from the stack
 - RIGHT-ARC(l): Add an arc $s_2 \rightarrow s_1$ with label l and removes s_1 from the stack
 - SHIFT : Move b_1 from the buffer to the stack

Indicator features

lacksquare Conjunction of 1 \sim 3 elements from the stack/buffer using their words, POS tags or arc labels

Single-word features (9)

 $s_1.w; s_1.t; s_1.wt; s_2.w; s_2.t;$ $s_2.wt; b_1.w; b_1.t; b_1.wt$

Word-pair features (8)

 $s_1.wt \circ s_2.wt; s_1.wt \circ s_2.w; s_1.wts_2.t;$ $s_1.w \circ s_2.wt; s_1.t \circ s_2.wt; s_1.w \circ s_2.w$ $s_1.t \circ s_2.t; s_1.t \circ b_1.t$

Three-word feaures (8)

 $s_2.t \circ s_1.t \circ b_1.t; s_2.t \circ s_1.t \circ lc_1(s_1).t; \\ s_2.t \circ s_1.t \circ rc_1(s_1).t; s_2.t \circ s_1.t \circ lc_1(s_2).t; \\ s_2.t \circ s_1.t \circ rc_1(s_2).t; s_2.t \circ s_1.w \circ rc_1(s_2).t; \\ s_2.t \circ s_1.w \circ lc_1(s_1).t; s_2.t \circ s_1.w \circ b_1.t$

- ☐ The problems of Indicator features
 - Sparsity

Features	UAS
All features in Table 1	88.0
single-word & word-pair features	82.7
only single-word features	76.9
excluding all lexicalized features	81.5

- Incompleteness
 - ☐ Not include the conjunction of every useful word combination
- Expensive feature computation
 - ☐ More than 95% of the time is consumed by feature computation during the parsing process

Goal

- □ Propose a novel way of learning a neural network classifier for use in a greedy, transition-based dependency parser
 - Show the usefulness of dense representations
 - Develop a neural network architecture that gives good accuracy and speed
 - Introduce a novel activation function

- ☐ Word, POS, Arc label Embeddings
 - Represent each word as a d-dimensional vector
 - Similar words are expected to have close vectors
 - \square Use pre-trained word embeddings to initialize E^w
 - lacktriangle Map POS tags and arc labels to a d-dimensional vector space
 - \square Use random initialization within (-0.01, 0.01) for E^t and E^l
 - Exhibit many semantical similarities like words

□ Word, POS, Arc label Embeddings

- \blacksquare Represent each word as a d-dimensional vector
 - $\hfill \square$ Similar words are expected to have close vectors
 - \square Use pre-trained word embeddings to initialize E^w
- lacksquare Map POS tags and arc labels to a d-dimensional vector space
 - \square Use random initialization within (-0.01,0.01) for E^t and E^l
 - ☐ Exhibit many semantical similarities like words

Choose a set of elements, i. e., S^w , S^t , S^l

Feature Template

- STACK과 BUFFER의 top 3 단어 (6개) S_1 , S_2 , S_3 , b_1 , b_2 , b_3 [over, quick, ROOT, the, lazy, dog]
- STACK top 1, 2 단어의 1st and 2nd left and right child 단어 (8개) $lc_1(s_1), rc_1(s_1), lc_2(s_1), rc_2(s_1)$ $lc_1(s_2), rc_1(s_2), lc_2(s_2), rc_2(s_2)$ [Null, Null, Null, Null] [fox, jumping, is, and]
- STACK top 1, 2 단어의 (left of left) and (right of right) child 단어 (4개) $lc_1(lc_1(s_1)), rc_1(rc_1(s_1)), lc_1(lc_1(s_2)), rc_1(rc_1(s_2))$ [Null, Null] [the, Null]
- 선택된 word feature에 해당하는 POS Tag (18개) [IN(전치사), JJ(형용사), ROOT, DT(한정사), ···, Null, DT(한정사), Null]

STACK과 BUFFER의 6개 단어를 제외하고 선택된 word에 달린 arc-label (12개) [Null, Null, ···, nsubj(주어), conj(접속사), cop(연결사), cc(등위), ···, Null]

- Build a standard neural network with one hidden layer
 - Add $x^w = \left[e_{w_1}^w; e_{w_2}^w; \dots e_{w_{n_w}}^w \right], x^t, x^l$ to the input layer

- Build a standard neural network with one hidden layer
 - Map the input layer to a hidden layer through a cube activation function

- Build a standard neural network with one hidden layer
 - Model multi-class probabilities $p = softmax(W_2h)$, where $W_2 \in R^{|\mathcal{T}| \times d_h}$

□ Training

- Generate training examples $\{(c_i, t_i)\}_{i=1}^m$ from the training sentences
- Use a "shortest stack" oracle which always prefers LEFT $-ARC_l$ over SHIFT
- Minimize the cross-entropy loss

$$\Box L(\theta) = -\sum_{i} \log p_{t_i} + \frac{\lambda}{2} ||\theta||^2$$

$$\Box \theta = \{W_1^w, W_1^t, W_1^l, b_1, W_2, E^w, E^t, E^l\}$$

□ Parsing

- Pick the transition with the highest score
- \blacksquare $t = argmax_{t \text{ is feasible}} W_2(t, \cdot) h(c)$
- $c \rightarrow t(c)$

- □ Pre-computation trick
 - Pre-compute matrix multiplications for most top frequent 10,000 words
 - Pre-compute matrix computations for all positions and all POS tags and arc labels
 - \rightarrow Increases the speed of our parser 8 \sim 10 times

□ Datasets

Dataset	#Train	#Dev	#Test	#words (N_w)	$\#POS(N_t)$	#labels (N_l)	projective (%)
PTB: CD	39,832	1,700	2,416	44,352	45	17	99.4
PTB: SD	39,832	1,700	2,416	44,389	45	45	99.9
СТВ	16,091	803	1,910	34,577	35	12	100.0

Table 3: Data Statistics. "Projective" is the percentage of projective trees on the training set.

☐ Outperform other parsing methods

Parser	Dev		Test		Speed
raisei	UAS	LAS	UAS	LAS	(sent/s)
standard	89.9	88.7	89.7	88.3	51
eager	90.3	89.2	89.9	88.6	63
Malt:sp	90.0	88.8	89.9	88.5	560
Malt:eager	90.1	88.9	90.1	88.7	535
MSTParser	92.1	90.8	92.0	90.5	12
Our parser	92.2	91.0	92.0	90.7	1013

Table 4: Accuracy and parsing speed on PTB + CoNLL dependencies.

Ромови	Dev		Test		Speed
Parser	UAS	LAS	UAS	LAS	(sent/s)
standard	90.2	87.8	89.4	87.3	26
eager	89.8	87.4	89.6	87.4	34
Malt:sp	89.8	87.2	89.3	86.9	469
Malt:eager	89.6	86.9	89.4	86.8	448
MSTParser	91.4	88.1	90.7	87.6	10
Our parser	92.0	89.7	91.8	89.6	654

Table 5: Accuracy and parsing speed on PTB + Stanford dependencies.

Danaan	Dev		Test		Speed
Parser	UAS	LAS	UAS	LAS	(sent/s)
standard	82.4	80.9	82.7	81.2	72
eager	81.1	79.7	80.3	78.7	80
Malt:sp	82.4	80.5	82.4	80.6	420
Malt:eager	81.2	79.3	80.2	78.4	393
MSTParser	84.0	82.1	83.0	81.2	6
Our parser	84.0	82.4	83.9	82.4	936

Table 6: Accuracy and parsing speed on CTB.

□ Effects of different parser components

Figure 4: Effects of different parser components. Left: comparison of different activation functions. Middle: comparison of pre-trained word vectors and random initialization. Right: effects of POS and label embeddings.

□ t-SNE visualization of POS and label embeddings

Embeddings effectively exhibit the similarities between POS tags or arc labels.

Figure 6: Three sampled features. In each feature, each row denotes a dimension of embeddings and each column denotes a chosen element, e.g., $s_1.t$ or $lc(s_1).w$, and the parameters are divided into 3 zones, corresponding to $W_1^w(k,:)$ (left), $W_1^t(k,:)$ (middle) and $W_1^l(k,:)$ (right). White and black dots denote the most positive weights and most negative weights respectively.

Conclusion

- □ Dependency Parsing
 - Make model understand sentence structure to be able to interpret language correctly
- □ Transition-based Dependency Parsing
 - Sparse, Incomplete, Expensive feature extraction
- □ Neural Network Based Parsing
 - Word, POS, Arc label Embeddings
 - Use a cube activation function
- Experiments
 - Outperform other parsing methods
 - Encode the semantic regularities