Temas de Álgebra

prova de avaliação — 21 de janeiro de 2022 — 21 de jan
--

A duração da prova é de duas horas e trinta minutos.

- 1. Considere a curva elíptica E definida por $y^2 = x^3 + 3084x + 109841$ sobre \mathbb{Z}_{191123} e $P = ((123483:23340:1)) \in E$. Considere a chave pública Elgamal (E,P,Q) com Q = rP = (130256:107534:1), para algum r. Cifre a mensagem mens=112 (não se esqueça que em primeiro lugar tem que converter mens num ponto da curva elíptica P em E).
- 2. Considere o primo p=874537. Defina uma curva elíptica E sobre os inteiros módulo p. Usando parâmetros à sua escolha, use o sistema Menezes-Vanstone para cifrar mens=(501, 1112) na curva elíptica E. Conhecendo a chave privada, decifre o que cifrou.
- 3. Factorize, usando o método de Lenstra, o número n=28321, usando a curva elíptica $E: y^2=x^3+17622x+10185$ sobre \mathbb{Z}_n , e $P=(18640:5420:1)\in E$, tomando o parâmetro B=100.
- 4. Seja $n \geq 3$ um natural ímpar com k factores primos p_1, \ldots, p_k distintos e tal que $n = \prod_i p_i$. Mostre que existem, módulo n, exactamente 2^k raizes quadradas de 1.

- 5. Usando transformações de Householder ou rotações de Givens, construa uma base ortonormada do espaço das colunas de A, com $A=\begin{bmatrix} 4 & -3 & 4 \\ 2 & -14 & -3 \\ -2 & 14 & 0 \\ 1 & -7 & 15 \end{bmatrix}$.
- 6. Sejam \mathcal{X} e \mathcal{Y} subespaços de \mathbb{R}^3 com bases $B_{\mathcal{X}} = \{(1,1,1),(1,2,2)\}$ e $B_{\mathcal{Y}} = \{(1,2,3)\}$.
 - (a) Mostre que \mathcal{X} e \mathcal{Y} são complementares.
 - (b) Calcule o projector P sobre \mathcal{X} ao longo de \mathcal{Y} , assim como o seu projector complementar Q.
 - (c) Determine a projecção de v = (2, -1, 1) sobre \mathcal{Y} ao longo de \mathcal{X} .