Алгебра

- П Докажите, что если $a^2 + b^2 + c^2 = ab + bc + ca$, то a = b = c.
- [2] Даны квадратные трёхчлены $f_1(x) = x^2 + 2a_1x + b_1$, $f_2(x) = x^2 + 2a_2x + b_2$, $f_3(x) = x^2 + 2a_3x + b_3$, причем $a_1a_2a_3 = b_1b_2b_3 > 1$. Докажите, что хотя бы один из этих трёхчленов имеет два корня.
- $\boxed{3}$ Даны квадратные трехчлены $f_1(x), f_2(x), \ldots, f_{100}(x)$ с одинаковыми коэффициентами при x^2 , одинаковыми коэффициентами при x, но различными свободными членами. У каждого из этих трехчленов есть по два корня. У каждого трехчлена $f_i(x)$ выбрали один корень и обозначили его через x_i . Какие значения может принимать выражение $f_2(x_1) + f_3(x_2) + \ldots + f_{100}(x_{99}) + f_1(x_{100})$?
- 4 Многочлен P(x) дает остаток 5 при делении на (x-2) и остаток 7 при делении на (x-3). Какой остаток P(x) дает при делении на x^2-5x+6 ?
- 5 Пусть

$$P(x) = (2x^2 - 2x + 1)^{17} (3x^2 - 3x + 1)^{17}.$$

Найдите

- а) сумму коэффициентов многочлена P(x);
- б) знакопеременную сумму коэффициентов многочлена P(x);
- в) сумму коэффициентов при четных степенях многочлена P(x);
- Γ) сумму коэффициентов при нечетных степенях многочлена P(x).
- [6] Петя сложил 100 последовательных степеней двойки, начиная с некоторой, а Вася сложил некоторое количество последовательных натуральных чисел, начиная с 1. Могли ли они получить один и тот же результат?
- [7] Числа a,b,c,d таковы, что a+b=c+d и $a^2+b^2=c^2+d^2$. Докажите, что $a^3+b^3=c^3+d^3$.
- 8 Про различные числа x, y, z известно, что выполняются равенства $x^3 3x = y^3 3y = z^3 3z$. Чему может равняться значение выражения $x^2 + y^2 + z^2$?
- [9] Даны различные действительные числа a, b, c. Докажите, что хотя бы два из уравнений (x-a)(x-b) = x-c, (x-b)(x-c) = x-a, (x-c)(x-a) = x-b имеют решение.
- 10 Пусть P(x) произвольный многочлен с целыми коэффициентами, причём известно, что многочлены P(x) и P(P(P(x))) имеют общий вещественный корень. Докажите, что эти многочлены имеют общий целый корень.
- 11 Докажите, что если $P(x^8)$ делится на x-1, то $P(x^8)$ делится на x^4+1 .