Recognition System

Digital Signal & Image Management Final Project 2018/19

Agenda

- 1. Il team
- 2. Obiettivi
- 3. L'idea di implementazione
- 4. Approccio metodologico

Overview del processo

Step 1: Data acquisition

Step 2: Audionet

Step 3: Recognet

Step 4: Retrieval

- 5. Demo Live
- 6. Improvements

II Team

Presentazione del team di lavoro

Michela Sessi Mat. 777760

Davide Pecchia Mat. 793290

Alex Ceccotti Mat. 790497

Obiettivi

Task 1: riconoscere a partire da un file audio, l'identità di chi sta parlando. Oltre al riconoscimento della persona, dovrà essere riconosciuta anche la parola pronunciata.

Task 2: riconoscere l'identità di una persona a partire da una foto del volto. Il riconoscimento dovrà avvenire anche live da una webcam.

Task 3: trovare all'interno di un dataset fornito dal docente i 10 volti che somigliano di più a quello del punto precedente. I 10 risultati restituiti devono essere ordinati per similarità decrescente. In aggiunta, in base alla scelta dell'utente, saranno forniti i 10 cani a cui si assomiglia di più.

L'idea

Struttura ideale del progetto

Overview del processo

Acquisizione automatica di audio e video

Acquisition

Acquisizione automatica di audio e video

Audionet

Neural Network per la classificazione degli audio

rate per sec: 44100

coefficienti MFCC

per ogni audio:

173 x 20 time steps x features

Partizione del **Dataset**

80% Training set

20% Test set

Costruzione Rete Neurale

Recurrent Neural Network

40 celle GRU

- **batch size** = 16
- **300 epoche** di training
- 10% Validation set

metrica di valutazione finale. Accuracy.

Neural Network per la classificazione degli audio

Audionet

Neural Network per la classificazione degli audio

Validation accuracy

94,12%

Alex Animale

Alex Persona

Davide Animale

Davide Persona

Michela Animale

Michela Persona

Recognet

Neural Network per la classificazione dei volti

Neural Network per la classificazione dei volti

Brightness

https://medium.com/@vivek.yadav/improved-performance -of-deep-learning-neural-network-models-on-traffic-sig n-classification-using-6355346da2dc

~6000 obs, 3 classes

Implementazione Recognet

Neural Network per la classificazione dei volti

Partizione del Dataset ~6000 obs, 3 classes

Kimage.ImageDataGenerator

resnet50.preprocess_input

Target size: 224x224

Color mode: RGB

 \longrightarrow

Batch size: 173

ize: 173 4498

https://www.quora.com/Should-I-use-powers-of-2-when-choosing-the-size-of-a-batch-size-when-training-my-Neural-Network

75% 25%
Training set Validation set

1500

Implementazione Recognet

Neural Network per la classificazione dei volti

Recognet

Implementazione Recognet

Neural Network per la classificazione dei volti

ResNet50

176 layers

Pretrain: Imagenet Fine-Tuning dal :150

Pooling average

Layer (type)	Output	. Sha	ape		Param #	Connected to
add_43 (Add)	(None,	14,	14,	1024)	0	bn4d_branch2c[0][0] activation_129[0][0]
activation_132 (Activation)	(None,	14,	14,	1024)	0	add_43[0][0]
res4e_branch2a (Conv2D)	(None,	14,	14,	256)	262400	activation_132[0][0]
bn4e_branch2a (BatchNormalizati	(None,	14,	14,	256)	1024	res4e_branch2a[0][0]
activation_133 (Activation)	(None,	14,	14,	256)	0	bn4e_branch2a[0][0]
res4e_branch2b (Conv2D)	(None,	14,	14,	256)	590080	activation_133[0][0]
bn4e_branch2b (BatchNormalizati	(None,	14,	14,	256)	1024	res4e_branch2b[0][0]
activation_134 (Activation)	(None,	14,	14,	256)	0	bn4e_branch2b[0][0]
res4e_branch2c (Conv2D)	(None,	14,	14,	1024)	263168	activation_134[0][0]
bn4e_branch2c (BatchNormalizati	(None,	14,	14,	1024)	4096	res4e_branch2c[0][0]
add_44 (Add)	(None,	14,	14,	1024)	0	bn4e_branch2c[0][0] activation_132[0][0]

- https://medium.com/@14prakash/understanding-and-implementing-architectures-of-resnet-and-resnext-for-state-of-the-art-image-cf51669e1624
- https://towardsdatascience.com/understanding-residual-networks-9add4b664b03
- https://towardsdatascience.com/understanding-and-visualizing-resnets-442284831be8

Neural Network per la classificazione dei volti

Callbacks:

ModelCheckpoint val_loss, min

EarlyStopping val loss, patience 3

Optimizer: ADAM

- https://shaoanlu.wordpress.com/2017/05/29/sgd-all-which-one-is-the-best-optimi zer-dogs-vs-cats-tov-experiment/
- http://ruder.io/optimizing-gradient-descent/

in Dense(ReLU):

kernel_regularizer |2(0.01) 0.01= how we penalize higher parameters values

bias_regularizer l1(0.01)

4/fundamentals-deep-learning-regularization-t echniques/ https://letslearnai.com/2018/03/10/what-are-l

1-and-l2-loss-functions.html

https://www.analyticsvidhya.com/blog/2018/0

Neural Network per la classificazione dei volti

Addestramento e valutazione metriche

4 Implementazione Retrieval

Algoritmo per trovare immagini somiglianti

Retrieval

Algoritmo per trovare immagini somiglianti

Caricamento Facenet

layer	ver size-in size-out		kernel	param 9K	FLPS 115M	
conv1 220×220×3 1		110×110×64	$7 \times 7 \times 3, 2$			
pooll	110×110×64	55×55×64	$3 \times 3 \times 64, 2$	0		
morm1	55×55×64	55×55×64		0	77.00.3375	
conv2a	55×55×64	55×55×64	$1 \times 1 \times 64, 1$	4K	13M	
conv2	55×55×64	$55 \times 55 \times 192$	$3 \times 3 \times 64, 1$	111K	335M	
rnorm2	$55 \times 55 \times 192$	$55 \times 55 \times 192$		0		
pool2	55×55×192	28×28×192	$3 \times 3 \times 192, 2$	0		
conv3a	28×28×192	28×28×192	$1 \times 1 \times 192, 1$	37K	29M	
conv3	28×28×192	28×28×384	$3 \times 3 \times 192, 1$	664K	521M	
pool3	28×28×384	$14 \times 14 \times 384$	$3 \times 3 \times 384, 2$	0		
conv4a	14×14×384	$14 \times 14 \times 384$	$1 \times 1 \times 384, 1$	148K	29M	
conv4	14×14×384	$14 \times 14 \times 256$	$3 \times 3 \times 384, 1$	885K	173M	
conv5a	$14 \times 14 \times 256$	$14 \times 14 \times 256$	$1 \times 1 \times 256, 1$	66K	13M	
conv5	14×14×256	$14 \times 14 \times 256$	$3 \times 3 \times 256, 1$	590K	116M	
conv6a	$14 \times 14 \times 256$	$14 \times 14 \times 256$	$1 \times 1 \times 256, 1$	66K	13M	
conv6	14×14×256	$14 \times 14 \times 256$	$3 \times 3 \times 256, 1$	590K	116M	
pool4	14×14×256	$7 \times 7 \times 256$	3×3×256, 2	0		
concat	$7 \times 7 \times 256$	$7 \times 7 \times 256$		0		
fcl	7×7×256	$1 \times 32 \times 128$	maxout p=2	103M	103M	
fc2	$1 \times 32 \times 128$	$1 \times 32 \times 128$	maxout p=2	34M	34M	
fc7128	1×32×128	$1\times1\times128$		524K	0.5M	
L2	1×1×128	$1\times1\times128$		0		
total				140M	1.6B	

Retrieval

Algoritmo per trovare immagini somiglianti

Utilizzo Facenet

Caricamento immagini persone

- Caricamento delle immagini di persone con preprocessing che consiste in:
 - o conversione dell'immagine in bianco e nero
 - o trovare solo il volto all'interno dell'immagine
 - estrazione delle features che vengono salvate in vettori di dimensione 128
- Considerata solo un'immagine per personaggio

Caricamento immagini cani

- Caricamento delle immagini di cani con stesso preprocessing.
- Considerata solo un'immagine frontale per razza selezionata manualmente (altrimenti rilevazione anche del padrone del cane).

Dataset attori: http://vis-www.cs.umass.edu/lfw/

Dataset cani: http://vision.stanford.edu/aditya86/ImageNetDogs/

Algoritmo per trovare immagini somiglianti

Stima KDTree

- Utilizzo del pacchetto KDTree della libreria sklearn.neighbors per stimare le Gaussian Kernel Density delle immagini di persone e cani.
- Nella fase di query verranno estratti i 10 nearest neighbors (sulla kernel density) dell'immagine di input. Viene utilizzato albero per ottimizzare velocità di ricerca.

Improvements

Conclusioni e possibili sviluppi

- Aumentare le foto:
 - diverse webcam, diversi strumenti, diversi ambienti, diverse giornate.
- Aumentare gli audio:
 - diversi microfoni, diversi giorni, diversi toni, gestione del rumore.
- Capacità computazionali maggiori per la gestione dell'aumento del dataset
- Fine-tuning più avanzato delle reti

Grazie!

Digital Signal & Image Management Final Project 2018/19

