See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/256187854

The Changing Paradigm of Air Pollution Monitoring

ARTICLE in ENVIRONMENTAL SCIENCE & TECHNOLOGY · AUGUST 2013

Impact Factor: 5.33 · DOI: 10.1021/es4022602 · Source: PubMed

CITATIONS READS
29 329

10 AUTHORS, INCLUDING:

Paul A Solomon

United States Environmental Protection Agency

SEE PROFILE

Gayle S W Hagler

United States Environmental Protection Agency

41 PUBLICATIONS 647 CITATIONS

SEE PROFILE

Johnathan Vasu Kilaru

United States Environmental Protection Agency

12 PUBLICATIONS 350 CITATIONS

SEE PROFILE

Peter Preuss

United States Environmental Protection Agency

29 PUBLICATIONS 439 CITATIONS

SEE PROFILE

The Changing Paradigm of Air Pollution Monitoring

Emily G. Snyder,*,† Timothy H. Watkins,† Paul A. Solomon,‡ Eben D. Thoma,† Ronald W. Williams,† Gayle S. W. Hagler,† David Shelow,§ David A. Hindin, Vasu J. Kilaru,† and Peter W. Preuss

^LU.S. Environmental Protection Agency, Office of Research and Development, Washington, District of Columbia, 20460, United States

istorically, approaches for monitoring air pollution generally use expensive, complex, stationary equipment, 1,2 which limits who collects data, why data are collected, and how data are accessed. This paradigm is changing with the materialization of lower-cost, easy-to-use, portable air pollution monitors (sensors) that provide high-time resolution data in near real-time. These attributes provide opportunities to enhance a range of existing air pollution monitoring capabilities and perhaps provide avenues to new air monitoring applications. Sensors tied to advances in computing and communication also provide enhanced availability and accessibility of air monitoring data. Sensor devices are currently available to monitor a range of air pollutants and new devices are continually being introduced.3 Meanwhile, the emergence of information on the high spatial variability of primary air pollutants⁴⁻¹⁰ and per capita increase in asthma or other health conditions sensitive to air pollution¹¹ motivates finer-grained and more personalized air monitoring data collection. Indeed, the attraction toward lower cost sensors is sufficiently great that, even before sensor performance has been characterized, widespread data collection and data sharing using new sensors is already occurring (http://airqualityegg.com/). However, challenges remain regarding the use of sensors and sensor data, chiefly sensor data quality and derivation of meaningful information from data sets.

■ CURRENT STATE OF SENSOR SCIENCE

The current paradigm change in air pollution monitoring is being catalyzed by recent advances in multiple areas of electrical engineering that include (1) microfabrication techniques;

(2) microelectro-mechanical system (MEMS) that can incorporate microfluidic, optical, and nanotube elements; (3) energy efficient radios and sensor circuits that have extremely low power consumption; and (4) advanced computing power suitable for handling extremely large databases (e.g., potentially many terabytes, 1012 bytes) and user-friendly data visualization. The use of sensors also are greatly increased due to the availability of wireless networks, allowing communications across widely dispersed sensor networks as well as web services (e.g., Xively, https://xively.com/) that allow for information access in near realtime across a broad spectrum of users. The combination of these advancements is helping to drive the development of small, lowercost, mass-produced sensors.

Air pollution sensors can be separated into two main categories, those that measure the concentration of gas phase species and those that measure either particulate matter (PM) mass concentrations or various properties of particles (e.g., scattering or absorption). All sensors systems consist of a few basic elements that include (1) the sensor element that responds to the species of interest and varies with the pollutant mass in a given volume of sampled air; (2) the transducer that converts the responses to electrical signals; (3) data storage capability or a link to a communication device (e.g., microradio transmitter or cell phone); and (4) a source of power (e.g., battery or energy harvesting).

Most commercially available gas sensors are based on two main principles: (1) those that depend on interactions between the sensing material (electrochemical cell or metal oxide semiconductor) and gas phase component such as nitrogen dioxide (NO₂), ozone (O₃), carbon monoxide (CO), and volatile organic compounds (VOC) and (2) those that measure absorption of light at visible (e.g., for O₃ and CO₂) or infrared wavelengths (e.g., CO₂), or by chemiluminescence (NO₂) (see examples, Tables 2 and 3). Particulate matter mass can be measured directly by changes in frequency of an oscillating sensor element¹² or indirectly based by light scattering using a proportionality constant that relates the scattered light to a defined (e.g., $<2.5 \mu m$) aerodynamic diameter [AD]) PM mass concentration.8 Light scattering and absorption by particles are important particle properties that have direct relationships to visibility and climate change. Table 1 provides a brief summary

Published: August 27, 2013

[†]U.S. Environmental Protection Agency, Office of Research and Development, Research Triangle Park, North Carolina, 27711, United States

[‡]U.S. Environmental Protection Agency, Office of Research and Development, Las Vegas, Nevada, 89119, United States

[§]U.S. Environmental Protection Agency, Office of Air and Radiation, Research Triangle Park, North Carolina, 27711, United States U.S. Environmental Protection Agency, Office of Enforcement and Compliance Assurance, Washington,

District of Columbia, 20460, United States

Table 1. Characteristics of Gas and PM Sensors (Adapted from Table S1 from Ref 3 With Permission, White R., University of California, Berkeley)

Gases	Strengths	Concern 1	Concern 2	Concern 3
Electrochemica	l cell (EC)			
CO, O ₃ , NOx	Low cost, low power, small, real-time; more sensitive than MOS (metal-oxide- semiconductor) sensors	Interferences: CO, VOC, NO ₂	Drift, frequent recalibration needed, 1 yr lifetime	
Metal oxide ser	niconductor (MOS)			
CO, O ₃ , NOx	Small size; stable, 1-2 yr lifetime, inexpensive	Sensitive to change of RH, T, P; cross-sensitivity	Power consumption; fragile materials	Typically less sensitive than EC
Non-dispersive	infrared absorption (4.26 µm)			
CO ₂	Compact, stable to changing RH and T	Sensitivity depends on path length	Calibration may be misinterpreted or inaccurate	Some single beam devices auto-calibrate as if background CO ₂ is 400 ppb
Ultraviolet abso	orption (254 nm)			
O ₃	Accuracy, stable to change in P	Size (not yet miniaturized)	Sensitive to changes in relative humidity	Cost
Particle Propert	ies ^a			
Light Scattering	Small, inexpensive, commercially available	Not a direct mass measurement	Does not measure ultrafine particles	
Light Absorption	Handheld well established, stable, continuous	Still relatively large and costly	Requires changing a filter	
Direct Particle Mass	Small, inexpensive, direct mass concentration; FBAR, QCM	In development stage	Likely sensitive to changes in T and RH	

^aMost particle sensors still require independent evaluation under a range of ambient and indoor environmental conditions.

of general characteristics for gas and particle sensors, whereas Tables 2 and 3 lists specifications for examples of commercially available sensors for CO, NO₂, O₃, PM mass, and particle scattering and absorption and gives specifications of a current fixed site monitor for comparison. Emerging sensors are listed for direct determination of mass concentration because commercially available sensors do not exist.

Information regarding new lower-cost sensor performance is only beginning to be available. Recent studies have demonstrated promising performance for some lower-cost ${\rm O_3}$ and ${\rm NO_2}$ sensors. However, the performance of most of the lower-cost sensors is not characterized and their long-term reliability of is unknown.

While not all monitoring objectives (e.g., National Ambient Air Quality Standards (NAAQS) compliance monitoring) can be met with current air pollution sensor technologies, some monitoring objectives can or likely will be achievable in the near future given that sensor packages with acceptable performance for a given application are being developed. 13,15 For this to occur, the data quality must be suitable for the intended application(s). A specific example of how the required data quality can vary depending on the application is easily illustrated with the pollutant CO. For automated methods used in regulatory monitoring, an accuracy of 7-21%, as estimated based on the maximum discrepancy specification outlined for the range of test concentrations in the Code of Federal Register 40 Part 53, 16 is required. However, CO monitors typically used in homes, to alert occupants at approximately the 4 h Acute Exposure Guideline Level, have accuracies ranging from $\pm 20-30\%$. It is also important to note that for many of the monitoring objectives, it is not critical to have sensors that meet uncertainty requirements of larger more robust monitors but to (1) know their uncertainty and other performance specifications, (2) be able to reference them to the more robust monitors, and (3) deploy a large number so that confidence in the measurement is improved due to many measurements rather than a few.

Examples of how sensor technologies might be used in air quality management activities include (1) supplementing routine ambient air monitoring networks, (2) expanding the conversations with communities, (3) enhancing source compliance monitoring, and (4) monitoring personal exposures. These potential application opportunities are outlined below followed by associated challenges and approaches for solutions.

■ SUPPLEMENTING ROUTINE AMBIENT AIR MONITORING NETWORKS

Ambient air monitoring networks in the U.S. currently measure air pollutants that include (1) those regulated under EPA's NAAQS (http://www.epa.gov/air/criteria.html), (2) the chemical components of fine PM (http://www.epa.gov/ttn/amtic/speciepg.html), and (3) hazardous air pollutants (HAPs; e.g., benzene, toluene, and xylene; http://www.epa.gov/ttn/atw/allabout.html). Pollutants directly emitted into the air (e.g., CO, NO, NO₂, and certain chemical components of fine and coarse PM) have much higher spatial and temporal variability as compared to secondary pollutants that are formed in air (e.g., ozone and particulate sulfate). Near sources, such as those immediately downwind of or adjacent to major roads, the concentrations of certain pollutants regulated under NAAQS (e.g., NO₂, CO), HAPs, ultrafine particles (UFPs, < 0.1 μ m), and BC concentrations can vary significantly within only tens to hundreds of meters from the roadway. $^{5-7,9,10}$

Table 2. Examples of Commercially Available Portable, Low-Cost Gas Phase Air Pollution Sensors That Report High-Time Resolution Data in near Real-Time for Several NAAQS Pollutants^a

$\underset{\text{USD}^{\mathscr{e}}}{\text{price}}$	12K 1.5K 1.5K	8–14K 12 <i>S^j</i> 2K	8-14K 5K 2K 1.2K
response time $(s)^c$	60 ≥1 <150	20 <35 <180	< 20 10 <60 <70
weight (kg)	22.2 0.43 <0.46	27.0 sensor only <0.46	12.7 0.70* <0.46 0.5
environmental limits c	5 to 45 °C 23 to 40 °C 0–40 °C, 5 to 95% RH	5 to 40 °C -20 to 50 °C, 15-90% RH 0 to 40 °C, 30 to 70% RH	1 ppb 10 to 90% RH, 5–40 °C 12.7 < 20 8–14K 0.1 ppb 0 to 50 °C 0.5 to 95% < 0.46 < 60 2K 1 ppb RH 10 ppb 0 to 40 °C, 0 to 80% RH 0.5 < 70 1.2K
precision	0.1 ppm 0.5 ppm 0.1 ppm	5% 8% 1 ppb	1 ppb 0.1 ppb 1 ppb 10 ppb
accuracy ^c	± 1% 0.5 ppm < ± 2 from 0 to 20 ppm; < ± 10% from 20 to 100 ppm	5% ± 100 ppb $$<\pm 0.01$ from 0 to 0.1 ppm; $<\pm 10\%$ from 0.1 to 0.2 ppm	 <0.6 to 200 Petter than 1% 1.5 ppb to 2.50 ppm 8-500 ppb 8 ppb 0.01 to 10 ppm ±10%
range ^{c,d}	0.3–100 ppm ^s 2–200 ppm 2–100 ppm	0.05–1 ppm ⁱ 0.2–20 ppm 0.01–200 ppm	<0.6 to 200ppb1.5 ppb to 250 ppm8-500 ppb0.01 to 10 ppm
sensor technology	IR absorption electrochemical Cell metal oxide semiconductor (MOS)	chemiluminescence electrochemical Cell MOS	UV absorption 0410–190 UV absorption MOS electrochemical Cell
${\rm analyzer}^b$	CO (8 h: 9 ppm; 1 h: 35 ppm) ^e TECO model 48C Langan DataBear, l T15d Aeroqual Series 500 ^e	NO ₂ (1 h: 100 ppb; Annual Average: 53 ppb) API, model 200EM Alphasense D-4 mini Aeroqual Series 500 ^k	O ₃ (8 h: 75 ppb) API, model 400 2B Technologies, 202; FEM EQOA-0410—190 Aeroqual Series 500L ^k OMC-1108

⁴Performance capabilities are from manufacturers' datasheets. Values after pollutant name in section headings refers to current US NAAQS (40 CRF 50) as a reference to ambient. The first row in each pollutant category (bold type) represents a typical fixed-site higher-cost monitor for comparison purposes only. Adapted from Table S2 in ref 3 with permission, White R, University of California, ^bThe first row in each section: characteristics of and performance of instruments typical fixed-site monitor, although others could have been chosen. From manufacturers' datasheets. The lower limit is estimated as LOD or 3 times the precision. Current NAAQS in the US as a reference to ambient. Price for sensor system as of May 2013. 8 User selectable from 1 to 10,000 ppm. "User selectable from 1000 to 20,000 ppm. 'User selectable from 1 to 20,000 ppm. 'User selectable from 1 to 20,000 ppm. Ost includes on the sensor component and not a complete sensor unit signal processing, storage, and/or communication; LThe Aeroqual S500 has swappable heads for different gases. Sensor weights, shown in table below, are with battery unless indicated by an *. Berkeley.

Table 3. Example of Commercially Available and Emerging Sensors for Continuous Measurements of PM Mass and Physical Properties^a

reference sampler/sensor	measurement principle	manufacturer	accuracy	precision	limit of detection $(\mu g/m^3)$ or lower partide size detected (μm)	more information** weight (kg) and \sim cost (\$, when available) as of May 2013
			Direct Determinati	Direct Determination of Mass Concentration		
FDMS-TEOM 1405-F	oscillating microbalance; filter dynamics meas- urement system	Thermo Scientific	± 0.75%	$\pm 2.0 \mathrm{gg/m^3}$ (1-h avg), $\pm 1.0 \mathrm{gg/m^3}$ (24-h avg)	$0.06 \ \mu {\rm g/m^3} \ (1{ m -h} \ { m avg})^{ m c}$	Measures volatile and nonvolatile PM mass; Measurement range: up to $10^6~\mu g/m^3$, $34~kg$; $$24,600$ with PM10 inlet and PM2.5 cyclone
QCM**	impaction on piezoelectric sensors	UC Berkeley; ¹²	±0.75% ^d	<10% ^d	٥	Quartz crystal microbalance; mass size distribution
MEMS-PM**	MEMS virtual impactor with FBAR	UC Berkeley; ¹²	٦	ا	٦	Film bulk acoustic resonator; under development, sensor only
			Indirect Determination of Mass	Indirect Determination of Mass Concentration b and Physical Properties	perties	
SMPS 3936	SMPS: electrical mobility; Size distribution	TSI Inc.	size**: <3.5% conc**: ± 10% at <5 × 10 ⁴ pt/mL, ± 20% at <10 ⁷ pt/mL	۰	2.5 nm	number size distribution (e.g., SMPS 3936; size range 2.5 -10^3 nm; max conc 10^8 pt/mL; 33 kg, $\c (cost depends on model)
MiniDISC	diffusion size classifier, two electrometer stages; ultrafine particle coun- ter	Matter-Aerosol	±30%	٥,	10 nm	size range 10 to about 700 nm (modal value should be <300 nm); $\sim 10^3 - \sim 10^6$ pt/mL; 0.7 kg; \$13,600
PM SHARP, model 5030	light scattering*; mass concentration	Thermo Scientific	± 5% compared to FRM	$\pm 0.5 \mu \mathrm{g/m}^3$	Ĭ	*continuously calibrated to mass against a beta attenuation monitor; precision $(2\text{-}\sigma, 86.4 \times 10^3\text{-}s \text{ time resolution})$: Conc range 0 –1000 $\mu\text{g/m}^3$; kg c ; \$22K with PM $_1$ 0 inlet
831 Aerosol Mass Monitor	Light scattering; Mass concentration	MetOne Instru- ments	±10% to calibration aerosol	١	0.5 μm	range: 0–1,000 $\mu {\rm g/m^3};$ 0.8 kg; <\$2,000
Personal Data- RAM, model pDR-1500	Light Scattering; Mass concentration	Thermo Scientific	±5% of reading ± precision	$\pm 0.2\%$ of reading or $\pm 0.5 \mu g/$ m ³ 60-s avg	0.1 <i>µ</i> m	size range: $0.1-10~\mu m$; Conc Range: 1 to $4\times 10^5~\mu g/m^3$ Precision (2 σ); 10-s avg; 1.2 kg; \$5500 with PM2.5 and PM10 cyclones
Environmental Particle Coun- ter, model 3783	particle growth, light scattering; particle counter	TSI Inc.	± 10% at 10° pt/mL**	٦	7 nm	max conc: up to 10^6 pt/mL; size range $7-3 \times 10^3$ nm; 10 kg; $\c
Hand-held CPC, model 3007	particle growth, light scattering; ultrafine particle counter	TSI Inc.	±20% pt/mL**	٥,	10 nm	conc range up to 10^5 pt/mL; size range up to $\sim\!\!1\mu m;1.7$ kg; $\c
DC1100 Air Quality Monitor	light scattering; laser particle counter	Dylos Corp.	٥,	±15%, collocated**	0.5 μm	size ranges: Pro: >0.5 μ m, >2.5 μ m or Household: >1 μ m, >5 μ m, difference between size ranges equals reported counts; linear up to ~10 ⁶ pt/mL with <10% coincidence***, ~0.4 kg;< \$300
Aethalometer model AE22	light absorption, 880 nm used to estimate black carbon	Magee Scientific Corporation	f(uncertainty in flow rate); no standard for comparison	°I	$< 0.1 \mu g BC/m^3$, 5 Lpm, 1-h avg**	several models and specifications vary by model, 18 $\mathrm{kg} < \$26\mathrm{K}$ depending on model
microAeth model AE51	light absorption, 880 nm	AethLabs; Black Carbon	no standard for comparison	$\pm 0.1 \ \mu g \ BC/m^3 \ 60-s \ avg^{**}$	$<0.16 \mu g/m^3$, 2.5 mL/s, 60-s avg	precision at 2.5 mL/s flow rate; Range: 1–1000 μg BC/ m³ Resolution 1 ng BC/m³, 0.3 kg; \$6,000
^a Performance	capabilities are from manufa	cturers' datasheets e	except where noted with a **. Tex	xt in bold type represents a t	ypical fixed-site higher-c	^a Performance capabilities are from manufacturers' datasheets except where noted with a **. Text in bold type represents a typical fixed-site higher-cost monitor for comparison purposes only to the

"Performance capabilities are from manufacturers' datasheets except where noted with a **. Text in bold type represents a typical fixed-site higher-cost monitor for comparison purposes only to the sensors that follow in that category. Emerging sensors are not commercially available. Adapted from Table S3 in ref 3, with permission, White R., University of California, Berkeley. ^bConversion from light scattering, particle number or size distribution, requires estimates of particle density and shape factors. ^cNo data.

Figure 1. Example of a new paradigm for air monitoring — the Village Green Project system is solar-powered, suitable for public spaces, low maintenance, and wirelessly streams real-time data.

Current U.S. regulatory NAAQS requirements require use of a narrow range of monitoring technologies [Federal Reference or Federal Equivalent Methods (FRM or FEM)], 16,18 which are generally expensive to utilize in a dense monitoring network, especially when including infrastructure (electrical power, platform, security) and personnel requirements. Augmenting regulatory networks using portable, lower-cost air pollution sensors that report high-time resolution data in near real-time has the potential to provide improved estimates of the spatial and temporal variability of air pollutants; support ambient modeling, exposure, and health effects studies; and provide immediate access of information to the general public. However, current (including commercially available sensors) and emerging sensors need to be thoroughly evaluated to ensure that their performance specifications (precision, accuracy, sensitivity, interferences, etc.) meet designated monitoring objectives. Few single or multiple sensor comparisons relative to historical or reference methods have occurred to date. $^{13-15,19}$ In fact, no lower cost (e.g., < \$2 K) sensor systems are designated as FRM or FEM, although a few have been compared to FEMs and in some cases appear to be comparable for NO₂ and O₃ (±10%). Performance capabilities for commercially available sensors are provided typically by the manufacturer and a few selected sensors are listed in Tables 2 and 3 along with a FRM, FEM, or historical reference method for comparison. Sensors could be especially important for the measurement of HAPs and PM since samples are currently collected in the field over relatively long sampling times (e.g., hours to 24 h, respectively) with sample analysis in a laboratory at a later date. For these pollutants, data may not be available for up to a month or more.

Recent efforts in the U.S. to expand monitoring of NO_2 near-roads has led EPA to establish recommendations for proper use of the non-FEM commercially available "small, lightweight, and portable" NO_2 monitors. Recommendations for use of these monitors include: colocation with a FEM or another similar monitor, and rotating the location of monitors (to evaluate bias of the individual monitors).

EXPANDING THE CONVERSATION WITH COMMUNITIES AND CITIZENS

Lower-cost and easy-to-use air pollution sensors provide citizens and communities with opportunities to monitor the local air quality that can directly impact their daily lives (see for example, www.citi-sense.eu). As they gather this information, they become more educated and informed about air quality in their community, which allows them to become more conversant on potential air quality issues and better positions them to develop community-based strategies to reduce air pollution exposures to protect their health. This is part of a growing concept referred to as citizen science: "...engage the public in making observations and collecting and recording data".21 While the concept of citizen science is not new, 22 the movement has been growing due to the Internet and the use of hand-held devices such as cell phones with cameras. 23,24 Citizen science activities take advantage of community-based participatory monitoring and "crowd sourcing" where many individuals voluntarily collect large amounts of data that is compiled and analyzed. For example, the Citizen Weather Observer Program collects weather data from personal weather stations, purchased by citizens across the U.S., and reports this data in real time to NOAA's Meteorological Assimilation Data Ingest System (http://www.wxqa.com/index.html). Already assembled personal weather stations are available for around 100 dollars (http://www.acurite.com/all.html).

Participatory monitoring is already occurring with air pollution sensors where they are being used in artistic demonstrations (http://f-l-o-a-t.com/), to stream data collected in a lower-cost sensor station location to a Web site (http://airqualityegg.com/), and to support crowd-sourced measurements while walking in an urban setting(http://aircasting.org/). While current data viewable on the web from many of these systems is suspect (e.g., large negative readings) or qualitative in nature, these activities demonstrate the interest and potential for citizen scientists to increase air monitoring data collection. Participatory monitoring is also occurring on the community scale in Durham, North Carolina where EPA,

Figure 2. Relative data quality requirements, deployment density, and cost by application.

under its Village Green project,²⁵ has deployed relatively low cost sensor technologies, that are self-powered with wireless data communication, in a platform designed for public settings (Figure 1).

■ ENHANCING SOURCE COMPLIANCE MONITORING

Air pollution sensors can be used for compliance monitoring of sources, both at the source location, and at the facility fence line as well as helping industries monitor emissions, reduce product loss, and enhance worker safety.²⁶ Specifically, as the performance of sensors improves and their costs drop, inplant sensor networks should be able to detect and mitigate fugitive emissions (leaks) within facilities. This concept has been proposed for use in natural gas pipeline monitoring and in other oil and gas production and transportation facilities.2 Sensors also might be placed on existing mobile platforms, which are associated with facility operations and driven directly adjacent to sources. As these platforms move, data are collected and transmitted to plant operators providing near real-time surveillance opportunities to identify leaks. In-plant, fence line, and mobile platforms all provide opportunities for industry to reduce emissions, overall operating costs, and enhance worker safety.

■ MONITORING PERSONAL EXPOSURES

Personal exposure to air pollution is a critical link between ambient air pollution and human health effects. However, estimating personal exposures and attributing exposure to sources presents significant challenges because of the spatial and temporal variability of pollutants and difficulty in estimating the time individuals spend in different types of microenvironments (e.g., commuting in traffic, cooking indoors). The 2012 National Academy of Sciences (NAS) report Exposure Science in the 21st Century: A Vision and Strategy identifies ubiquitous sensors as one of the technologies that will likely substantially enhance exposure science and provide more accurate and comprehensive personal exposure data. A more complete understanding of personal exposure to air pollution will

support the development and implementation of air quality management policies. For example, improving estimates of personal exposure may enhance environmental epidemiology studies (which often rely on limited ambient air monitoring data as inputs) that contribute to the scientific basis for NAAQS.²⁸

Additionally, when air pollution sensors are coupled with physiological sensors and location (GPS), a stronger connection can be made between a person's exposure environment and health indicators (e.g., heart rate, blood oxygen levels) and this has been demonstrated in research studies.^{29–31} The connection between pollutant exposure and personal health indicators may allow healthcare providers to track these paired measurements and improve air pollution related diagnoses and treatment of medical conditions on a more individualized basis. The exposure biology program at the National Institute of Environmental Health and Sciences (NIEHS) is making an effort to better understand this connection by developing tools to connect more precise measures of personal exposure to markers of biological response.³²

■ CHALLENGES

The above discussion describes the current landscape for air pollution sensors and a likely range of opportunities for the application of sensors from enhancing our national air monitoring networks to community and individual monitoring as well as how sensors might be applied within and around sources to identify and mitigate emissions from industrial sources. However, there remain a number of across-the-board technical and practical challenges associated with this emerging area of science including development of robust sensors that produce high quality data, rigorous evaluations of sensors, integration of data from multiple sensors of different quality obtained through multiple sources (e.g., government and citizen), and visualization and use of sensor data by the public and by agencies responsible for protecting human health.

Data quality is a key issue since data of poor or unknown quality is less useful than no data since it can lead to wrong decisions. Figure 2 illustrates relative data quality required for the potential applications outlined above. Work conducted at EPA indicates that many commercially available sensors have not been challenged rigorously under ambient conditions, including both typical concentrations and environmental factors. Furthermore, even if sensors are well characterized, performance criteria have not been developed in the U.S., regardless of the anticipated sensor use, outside of the FEM criteria. However, using the FEM criteria, which requires data of high quality for purposes of monitoring compliance with the NAAQS (40 CFR Part 53), would likely be too restrictive for many sensor applications.

Commercially available sensors are lacking for PM and hazardous air pollutants. Specifically, there are no commercially available direct-reading PM mass sensors although they are under development¹² and surrogates for PM mass exist based on light scattering.³³ Additionally, a complete lack of commercially available chemical speciation PM sensors, with the exception of a hand-held device that measures light absorption on sample collected on a filter, which is a relative surrogate for black carbon.³⁴ Few sensors are available for detecting specific HAPs and those that exist have often not been tested rigorously with complex mixtures of similar HAPs. While data storage has become more accessible, data governance (assessing, managing, using, improving, monitoring, and maintenance), processing, and visualization are major challenges that still require considerable effort.³⁵ As a part of the management and use of these data, the descriptive information associated with the collected data, called metadata, are also required but frequently not collected.

Communicating how air pollution measurements taken using sensors relate to health impacts is a significant challenge for sensor applications where the general public collects data. Air pollution health impacts result from both the level and duration of exposure, therefore national standards and chemical health benchmarks reflect both of these aspects of exposure. The level of the concentration recorded by an air pollution sensor at a specific point in time may be above or below a standard or health benchmark, but it may not reflect the duration of exposure related to that standard or benchmark (e.g., a standard that is based on daily or annual average exposures). As a result, communication, outreach, and educational materials are needed to provide guidance on how to place the sensor measurement in the appropriate context related to national standards and health benchmarks.

OPPORTUNITIES FOR SOLUTIONS: A CHANGING ROLE FOR GOVERNMENT

To overcome data quality, data interpretation, and communication challenges, Federal, state, and local air quality agencies (including public health organizations) must provide guidance and advice on sensor use and data interpretation. The EPA is working to facilitate, communicate, and promote the responsible use of air pollution sensor data. This will help ensure air quality agencies, public health organizations, communities, and individuals may effectively take advantage of this new source of air quality data.

Toward that end, EPA has conducted a series of workshops^{36,37} and has developed a draft roadmap³⁸ to share EPA's early thinking about how best to support the development and use of new monitoring technologies. This roadmap summarizes findings from literature reviews and identifies recommendations and gaps to be addressed organized around three areas: (1) technology development, testing and integration, (2) technol-

ogy demonstration, outreach, and communication strategies, and (3) IT infrastructure and new data streams.

The recommendations/gaps are beyond what EPA can address alone, but the roadmap provides a framework from which EPA plans to engage other agencies and organizations in collaborative activities. For example, EPA is planning to work with public health organizations at the federal and state level to expand on health messages associated with exposure to air pollution as currently done under its AirNOW program.³⁹ The Agency is also evaluating lower-cost sensors for criteria pollutants (NO2, ozone, PM, and VOCs) in collaboration with sensor developers 15 and federal and state partners and is developing data visualization methods, to support its Geospatial Measurements of Air Pollution Program, that could potentially be used to visualize mobile sensor data. 40 Other goals include: expanding the role of air pollution sensors in citizen science and working with regulated industries to facilitate the adoption of sensor technologies within facilities, at the fence line, and through mobile platforms that can help identify and mitigate emissions.

Advances in air pollution sensors are also part of EPA's new E-Enterprise for the Environment Initiative. This is a joint initiative among State agencies and EPA to improve environmental outcomes and dramatically enhance service to the regulated community and public. This is achieved by maximizing the use of advanced monitoring and information technologies, optimizing operations, and increasing public transparency. High quality mobile air pollution sensors coupled with Internet technology will greatly expand the amount of information that EPA, states, industry, and the public will have to understand, reduce, and prevent air pollution. In addition, sensor technologies may also reduce the cost of compliance for regulated community. E-Enterprise will provide the infrastructure for accessing and sharing this information among all parties and for integrating this information with other relevant information, such as official air quality monitoring data, individual compliance data, and other data, such as the Toxic Releases Inventory.

The driver behind these efforts is that the use of these sensors can potentially lead to better protection of public health and the environment by providing communities with better data on pollution in their neighborhoods, helping regulated entities better manage their facilities, and reducing the costs of air pollution monitoring for public agencies, regulated entities and researchers. The changing paradigm for air pollution monitoring comes at an opportune time when Federal, State, and local air quality management organizations are working to maintain existing monitoring programs and meet new monitoring challenges while facing resource constraints. While this changing paradigm presents Federal, State, and local air quality and public health organizations with new challenges, these organizations should embrace this change because along with these challenges comes tremendous opportunities to improve air quality management and public health activities in the U.S.

AUTHOR INFORMATION

Corresponding Author

*(E.G.S.) 919-541-1006; e-mail: snyder.emily@epa.gov.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This article has been reviewed in accordance with U.S. Environmental Protection Agency policy and approved for publication. Mention of trade names or commercial products does not constitute endorsement, certification, or recommendation for use.

REFERENCES

- (1) Chow, J. C. Measurement methods to determine compliance with ambient air quality standards for suspended particles. *J. Air Waste Manage. Assoc.* **1995**, 45 (5), 320–82.
- (2) Fehsenfeld, F. C.; Hastie, D. H.; Chow, J. C.; Solomon, P., Particulate matter science for policy makers: A NARSTO assessment. In *Particulate Matter Science for Policy Makers: A NARSTO Assessment*; McMurry, P. H., Shepherd, M. F., Vickery, J. S., Eds.; Cambridge University Press: New York, NY, 2004.
- (3) White, R. M.; Paprotny, I.; Doering, F.; Cascio, W.; Solomon, P.; Gundel, L. Sensors and 'apps' for community-based atmospheric monitoring. *Em: Air Waste Manage. Assoc. Magazine for Environmental Managers* **2012**, *5*, 36–40.
- (4) Solomon, P. A.; Hopke, P. K.; Froines, J.; Scheffe, R. Key scientific findings and policy- and health-relevant insights from the U.S. Environmental Protection Agency's Particulate Matter Supersites Program and Related Studies: An Integration and Synthesis of Results. *J. Air Waste Manage. Assoc.* **2008**, *58* (13 Suppl), S3–92.
- (5) Baldauf, R.; Thoma, E.; Hays, M.; Shores, R.; Kinsey, J.; Gullett, B.; Kimbrough, S.; Isakov, V.; Long, T.; Snow, R.; Khlystov, A.; Weinstein, J.; Chen, F.; Seila, R.; Olson, D.; Gilmour, I.; Cho, S.; Watkins, N.; Rowley, P.; Bang, J. Traffic and meteorological impacts on near-road air quality: summary of methods and trends from the Raleigh Near-Road Study. *J. Air Waste Manage. Assoc.* 2008, 58 (7), 865–878.
- (6) Clements, A. L.; Jia, Y.; Denbleyker, A.; McDonald-Buller, E.; Fraser, M. P.; Allen, D. T.; Collins, D. R.; Michel, E.; Pudota, J.; Sullivan, D.; Zhu, Y. Air pollutant concentrations near three texas roadways, Part II: Chemical characterization and transformation of pollutants. *Atmos. Environ.* **2009**, *43* (30), 4523–4534.
- (7) Olson, D. A.; Hammond, D. M.; Seila, R. L.; Burke, J. M.; Norris, G. A. Spatial gradients and source apportionment of volatile organic compounds near roadways. *Atmos. Environ.* **2009**, 43 (35), 5647–5653.
- (8) Seinfeld, J. H.; Pandis, S. N. Atmospheric Chemistry and Physics from AirPollution to Climate Change; John Wiley and Sons: New York, NY, 1998.
- (9) Sioutas, C.; Delfino, R. J.; Singh, M. Exposure assessment for atmospheric ultrafine particles (UFPs) and implications in epidemiologic research. *Environ. Health Perspect.* **2005**, *113* (8), 947–55.
- (10) Venkatram, A. I., V.; Seila, R.; Baldauf, R. Modeling the impacts of traffic emissions on air toxics concentrations near roadways. *Atmos. Environ.* **2009**, *43* (20), 3191–3199.
- (11) Solomon, P. A.; Costantini, M.; Grahame, T. J.; Gerlofs-Nijland, M. E.; Cassee, F.; Russell, A. G.; Brook, J. R.; Hopke, P. K.; Hidy, G.; Phalen, R. F.; Saldiva, P.; Ebelt Sarnat, S.; Balmes, J. R.; Tager, I. B.; Özkaynak, H.; Vedal, S. Wierman, S. S. G.; Costa, D. L. Air pollution and health: Bridging the gap from sources to health outcomes conference summary. In *Air Quality, Atmosphere and Health*; Springer: Netherlands, 2012; Vol. 5(1), pp 9–62.
- (12) Paprotny, I., Doering, F., Solomon, P. A., White, R. M., Gundel L. Microfabricated air-microfluidic sensor for personal monitoring of airborne particulate matter: design, fabrication, and experimental results. *Sens. Actuators, A*, http://dx.doi.org/10.1016/j.sna.2012.12. 026, Published Online January 18, 2013, http://www.sciencedirect.com/science/article/pii/S0924424712007637 (accessed April 15, 2013).
- (13) Gerboles, M.; Buzica, D. Evaluation of Micro-Sensors to Monitor Ozone in Ambient Air, Technical Report for the Joint Research Centre, Institute for Environment and Sustainability, Transport and Air Quality Unit: Ispra, Italy, 2009.

- (14) Sonoma Technology Inc., Characterization of Low-Cost NO₂ Sensors Draft Technical Report for U.S. Environmental Protection Agency. [Online] **2010**, http://airqualityegg.wikispaces.com/file/view/NO2+Sensors+Report.pdf (accessed July 1, 2013).
- (15) Williams, R. L., R.; Beaver, M.; Kronmiller, K.; Garvey, S.; Zaouak, O. *The Air Sensors Evaluation Project.* Presented at Air Sensors 2013 Data Quality and Applications Air Sensors Evaluation Session [On-line], Research Triangle Park, NC, March 20, 2013; Air Sensors 2013. https://sites.google.com/site/airsensors2013/final-materials (accessed April 29, 2013).
- (16) Ambient Air Monitoring Reference and Equivalent Methods. Code of Federal Regulations Part 53, Title 40, 2010.
- (17) Kidde Carbon Monoxide Alarms. http://www.kidde.com/ProductCatalog/Pages/CarbonMonoxideAlarms.aspx (accessed July 10, 2013).
- (18) Hall, E. S.; Beaver, M. R.; Long, R. W.; Vanderpool, R. W. EPA's reference and equivalent methods research program: Supporting NAAQS implementation through research, development, and analysis. *EM Air Waste Manage. Assoc.* **2012**, *5*, 8–12.
- (19) Zaouak, O.; Aubert, B.; Castang, J. Cost-efficient Miniature Sensors for Network Continuous Monitoring of Diffuse Pollution at the Low ppbv Level. Presented at Air Sensors 2013 Data Quality and Applications Air Sensors Evaluation Session [On-line], Research Triangle Park, NC, March 19, 2013; Air Sensors 2013. https://sites.google.com/site/airsensors2013/final-materials (accessed April 29, 2013).
- (20) U.S. Environmental Protection Agency Near-Road NO_2 Monitoring Technical Assistance Document; Technical Report by Office of Air Quality and Planning Standards: Research Triangle Park, NC, June 2012.
- (21) Washington Sea Grant. Citizen Science. http://wsg.washington.edu/citizenscience (accessed July 09, 2013).
- (22) Audubon Society Christmas Bird Count Website. http://birds.audubon.org/christmas-bird-count (accessed April 14, 2013).
- (23) Project Noah Website. http://www.projectnoah.org/ (accessed April 14, 2013).
- (24) Audubon and Cornell Lab of Ornithology eBird Website. http://ebird.org/content/ebird/about (accessed April 14, 2013).
- (25) Hagler, G. S. W.; Williams, R. EPA's Village Green Project. Presented at Air Sensors 2013 Data Quality and Applications Session IV[On-line], Research Triangle Park, NC, March 20, 2013; Air Sensors 2013. https://sites.google.com/site/airsensors2013/final-materials (accessed April 29, 2013).
- (26) Hindin, D.; Nicholas, D. Next Generation Compliance. Presented at National Environmental Enforcement Information [Online], Virtual-Meeting, July 26, 2012; 2012 National Environmental Enforcement Information vMeeting http://www.epa.gov/compliance/data/systems/icis/vmeeting/vmeeting6a-panel.pdf (accessed July 12, 2013).
- (27) Wan, J.; Yu, Y.; Wu, Y.; Feng, R.; Yu, N. Hierarchical leak detection and localization method in natural gas pipeline monitoring sensor networks. *Sensors* **2012**, *12* (1), 189–214.
- (28) National Academy of Science. Exposure Science in the 21st Century: A Vision and a Strategy; Technical Report by National Research Council: Washington, DC, 2012.
- (29) Brook, R. D.; Shin, H. H.; Bard, R. L.; Burnett, R. T.; Vette, A.; Croghan, C.; Thornburg, J.; Rodes, C.; Williams, R. Exploration of the rapid effects of personal fine particulate matter exposure on arterial hemodynamics and vascular function during the same day. *Environ. Health Perspect.* 2011, 119 (5), 688–94.
- (30) Brook, R. D.; Shin, H. H.; Bard, R. L.; Burnett, R. T.; Vette, A.; Croghan, C.; Williams, R. Can personal exposures to higher nighttime and early-morning temperatures increase blood pressure? *J. Clin. Hypertens.* **2011**, *13* (12), 881–8.
- (31) He, F.; Shaffer, M. L.; Li, X.; Rodriguez-Colon, S.; Wolbrette, D. L.; Williams, R.; Cascio, W. E.; Liao, D. Individual-level PM_{2.5} exposure and the time course of impaired heart rate variability: The APACR study. *J. Exposure Sci. Environ. Epidemiol* **2011**, *21* (1), 65–73.

- (32) U.S. Department of Health and Human Services National Institute of Environmental Health Sciences (NIEHS) Exposure Biology Program Website. http://www.niehs.nih.gov/research/supported/dert/cris/programs/exposure/index.cfm (accessed April 14, 2013).
- (33) Northcross, A. L.; Edwards, R. J.; Johnson, M. A.; Wang, Z. M.; Zhu, K.; Allen, T.; Smith, K. R. A low-cost particle counter as a realtime fine-particle mass monitor. *Environ. Sci.: Processes Impacts* **2013**, *15*, 433.
- (34) Ferrero, L.; Mocnik, G.; Ferrini, B. S.; Perrone, M. G.; Sangiorgi, G.; Bolzacchini, E. Vertical profiles of aerosol absorption coefficient from micro-aethalometer data and mie calculation over milan. *Sci. Total Environ.* **2011**, *409* (14), 2824–2837.
- (35) Subramanian, K. Does Your Organization Face Data Obesity Problem? *Cloud Ave*, 2012. http://www.cloudave.com/19193/does-your-organization-face-data-obesity-problem/ (accessed April 15, 2013).
- (36) U.S. Environmental Protection Agency, Presentations from the Apps and Sensors for Air Pollution (ASAP) I Workshop. Research Triangle Park, NC, March 19–21, 2012; Citizen Air http://citizenair.net/index.php. (accessed July 1, 2013).
- (37) U.S. Environmental Protection Agency, Air Sensors 2013: Data Quality & Applications [On-line], Research Triangle Park, NC, March 19–20, 2013; Air Sensors 2013. https://sites.google.com/site/airsensors2013/home (accessed July 11, 2013).
- (38) U.S. Environmental Protection Agency, Office of Research and Development, DRAFT Roadmap for Next Generation Air Monitoring, 2013. http://epa.gov/research/airscience/docs/roadmap-20130308.pdf (accessed July 2 2013).
- (39) U.S. Environmental Protection Agency AirNOW Website. http://airnow.gov/ (accessed April 14, 2013).
- (40) Hagler, G.; Freeman, M. Real-Time Geospatial (RETIGO) Data Viewer: A web-based tool for data exploration. Presented at Air Sensors 2013: Data Quality & Applications. Research Triangle Park, NC, March 19, 2013; Air Sensors 2013. https://sites.google.com/site/airsensors2013/final-materials (accessed April 29, 2013).