BIỀU DIỄN TRI THỰC BÀI TẬP 3 NHÓM 7

June 12th, 2021

Câu a. Xác định nguồn tri thức

- Xác định tri thức cần thu thập: Nhóm tiến hành thu thập các tri thức liên quan đến nội dung "Tìm đường đi ngắn nhất"
- Tri thức được thu thập từ Kenneth H. Rosen. 2018. Discrete mathematics and its applications. Boston: McGraw-Hill
- Tri thức thu thập được và phân loại tri thức được trình bày trong bảng dưới đây:

Phân mục	Yếu tố tri thức	Nội dung	Keyphrase gốc	Keyphrase liên quan	Phân loại	Ví dụ
Định nghĩa đồ thị	Đồ thị	Một cấu trúc rời rạc gồm các đỉnh (Vertices: V) và các cạnh (Edges: E) nối các đỉnh đó ký hiệu: G = (V, E)	Đồ thị, Đồ thị vô hướng Đỉnh, Cạnh	Đồ thị đơn, Đồ thị đa, Đồ thị đầy đủ, Đồ thị con, Đồ thị vô hướng, Đồ thị có hướng, Đồ thị có trọng số	Khái niệm/Định nghĩa	
	Đồ thị đơn	Đồ thị mà giữa hai đỉnh u, v của V có nhiều nhất là 1 cạnh trong E nối từ u tới v	Đồ thị đơn	Đồ thị	Khái niệm/Định nghĩa	
	Đồ thị đa	Đồ thị mà giữa hai đỉnh u, v của V có thể có nhiều hơn 1 cạnh trong E nối từ u tới v	Đồ thị đa	Đồ thị	Khái niệm/Định nghĩa	
	Đồ thị vô hướng	Đồ thị có các cạnh trong E là không định hướng, tức là cạnh nối hai đỉnh u, v bất kỳ cũng là cạnh nối hai đỉnh v, u. Hay nói cách khác, tập E gồm các cặp (u, v) không tính thứ tự. (u, v)≡(v, u)	Đồ thị vô hướng	Đồ thị	Khái niệm/Định nghĩa	

	Đồ thị có hướng	Đồ thị có các cạnh trong E có định hướng hay cho E gồm các cặp (u, v) có tính thứ tự: (u, v) ≠ (v, u). Trong đó: cạnh được gọi là các cung. Đồ thị vô hướng cũng có thể coi là đồ thị có hướng nếu như ta coi cạnh nối hai đỉnh u, v bất kỳ tương đương với hai cung (u, v) và (v, u).	Đồ thị có hướng	Đồ thị	Khái niệm/Định nghĩa	
	Đồ thị có trọng số	Định nghĩa: Đồ thị mà mỗi cạnh của nó được gán cho tương ứng với một số (nguyên hoặc thực) được gọi là đồ thị có trọng số. Ví dụ: Đồ thị có trọng số thể hiện độ dài quãng đường giữa các thành phố.	Đồ thị có trọng số	Đồ thị	Khái niệm/Định nghĩa	10 3 7 6 6 6 2 3 7 5 6 5 8 2 3 4 5 6 7
Yếu tố của đồ thị	Đỉnh kề nhau/ cạnh liên thuộc (incident)	Cho u,v là 2 đỉnh liền kề của đồ thị, nếu với e ∈ E và e = (u, v), trong đó cạnh e gọi là liên thuộc (incident) với đỉnh u và đỉnh v.	Đỉnh kề nhau, cạnh liên thuộc	Đồ thị, đỉnh, cạnh	Khái niệm/Định nghĩa	

Bậc của đỉnh (degree)	Với một đỉnh v trong đồ thị, ta Định nghĩa bậc (degree) của v, ký hiệu deg(v) là số cạnh liên thuộc với v. Dễ thấy rằng trên Đồ thị đơn thì số cạnh liên thuộc với v cũng là số đỉnh kề với v. Định lý 1: Cho đồ thị vô hướng: $G = (V, E)$, m cạnh thì: $ \sum_{v \in V} deg(v) = 2m $ Định lý 2: Tổng tất cả các bán bậc ra của các đỉnh bằng tổng tất cả các bán bậc vào và bằng m : $ \sum_{v \in V} deg^-(v) = \sum_{v \in V} deg^+(v) = m $	Bậc của đỉnh (degree), đỉnh,	Đồ thị, đỉnh	Khái niệm/Định nghĩa	
Độ dài đường đi	Trong đồ thị có trọng số, độ dài đường đi được tính bằng tổng trọng số của các cạnh đi qua	Đường đi, Đồ thị có trọng số	Đồ thị	Khái niệm/Định nghĩa	v^{1} v^{2} e^{6} v^{4} e^{6} v^{4} e^{5} v^{6} v^{6} v^{7} v^{7} v^{8} v^{7} v^{8} v^{8} v^{6} v^{7} v^{8} v^{8

	Ma trận trọng số	Giả sử đồ thị G = (V, E) có n đỉnh. Ta sẽ dựng ma trận vuông C kích thước n x n. • Nếu (u, v) ∈ E thì C[u, v] = trọng số của cạnh (u, v) • Nếu (u, v) ∉ E thì tùy theo trường hợp cụ thể, C[u, v] được gán một giá trị nào đó để có thể nhận biết được (u, v) không phải là cạnh (Chẳng hạn có thể gán bằng +∞, hay bằng 0, bằng -∞ v.v) • Quy ước c[v, v] = 0 với mọi đỉnh v.	Đồ thị có trọng số	Đồ thị, Đường đi	Khái niệm/Định nghĩa	v1 v2 v3 v4 v5 v6 v1 v2 v3 v4 v5 v6 v1 v2 v3 v4 v5 v6 v1 v2 v3 v4 v5 v6 v2 3 0 6 6 ∞ ∞ v3 7 6 0 ∞ 3 ∞ v4 ∞ 6 ∞ 0 8 5 v5 ∞ ∞ 3 8 0 9 v6 ∞ ∞ 5 9 0
Bài toán đường đi	Thuật toán Dijkstra	Cho G=(V,E) là một đồ thị có cạnh không âm. Xét hai đỉnh a, b bất kì thuộc V, tìm đường đi từ đỉnh a tới đỉnh b có khoảng cách là nhỏ nhất.	Đường đi, Dijkstra	Đồ thị có trọng số	Thuật toán	Input: đồ thị G không có trọng số âm. Đỉnh xuất phát là s. Trong đó D là ma trận trọng số của đồ thị. Output: đường đi ngắn nhất từ s đến các đỉnh còn lại. Tiến trình: Bước 1 Khởi tạo T=V và p(s)=0. Với mọi đỉnh i khác s, đặt p(i) = inf và đánh dấu đỉnh i là (inf, -). Bước 2 Tìm i thuộc T sao cho p(i) = min{p(j), j thuộc T}. Cập nhật T = T \ {i}. Nếu T rỗng thì qua Bước 4, ngược lại qua Bước 3.

			Bước 3 Với đỉnh i thu được từ Bước 2, xét các đỉnh kề với i (có cạnh/cung nối với i). Với mỗi đỉnh j kề với đỉnh i xét p(j) = min{p(j), p(i)+Dij}, nếu p(j) được chọn bằng p(i)+Dij thì đánh dấu j là (p(j), i). Lưu ý Dij là giá trị của phần tử (i,j) trong ma trận trọng số. Quay lại B2. Bước 4: Xuất kết quả ra màn hình.
--	--	--	--