Part 2. Roots of Equations Chapter 5. Bracketing Methods

Lecture 4

Graphical Methods5.1

Homeyra Pourmohammadali

Roots of Equations

Open Methods

Bracketing Methods

Graphical Methods

Bisection Method

Fixed-Point Iteration

Newton-Raphson Method

> Secant Method

Equations Can Be:

Algebraic Equations

Expressed in from of ith order polynomial

Transcendental Equations

Equations that are not algebraic (e.g trigonometric, exponential, logarithmic function)

Explicit

Unknown dependent variable on left side of equation, known values on right side

$$v = \frac{gm}{c} \left(1 - e^{-ct/m} \right)$$

Implicit

Unknown variable cannot be isolated on left side of equation

• Bracketing vs Open Method

Bracketing Method Open Method

Graphical Methods

Main Fact:

Pros and Cons of Graphical Methods

Convenient to graph functions using math software, i.e. Matlab, Maple, etc.

Graphical methods can predict number of roots, approximate location of roots (starting point for analysis)

Graphical Methods Rules of Thumb for Roots Prediction

1.

2.

3. Exceptions

EXAMPLE Find all non-zero, positive roots of $tan(x) = -\frac{x}{2}$

Next Session:

Bracketing and Open Methods