

Islamic University – Gaza Engineering Faculty Department of Computer Engineering ECOM 5060: Compiler Design Discussion

Chapter 3 Lexical Analysis

(Sections 3.6 and 3.7)

Eng. Eman R. Habib

April, 2014

Exercise 3.6.3: For the NFA of Fig. 3.29, indicate all the paths labeled aabb. Does the NFA accept aabb?

Figure 3.29: NFA for Exercise 3.6.3

$$0 \xrightarrow{a} 1 \xrightarrow{a} 2 \xrightarrow{b} 2 \xrightarrow{b} 3$$

$$0 \xrightarrow{a} 0 \xrightarrow{a} 0 \xrightarrow{b} 0 \xrightarrow{b} 0$$

$$0 \xrightarrow{a} 0 \xrightarrow{a} 1 \xrightarrow{b} 1 \xrightarrow{b} 1$$

$$0 \xrightarrow{a} 1 \xrightarrow{a} 2 \xrightarrow{b} 2 \xrightarrow{b} 2$$

Yes, accepted by the first path.

Exercise 3.6.4: Repeat Exercises 3.6.3 for the NFA of Fig. 3.30.

Figure 3.30: NFA for Exercise 3.6.4

$$0 \xrightarrow{a} 1 \xrightarrow{\epsilon} 0 \xrightarrow{a} 1 \xrightarrow{b} 2 \xrightarrow{b} 3$$

$$0 \xrightarrow{\epsilon} 3 \xrightarrow{a} 0 \xrightarrow{a} 1 \xrightarrow{b} 2 \xrightarrow{b} 3$$

$$0 \xrightarrow{a} 1 \xrightarrow{\epsilon} 0 \xrightarrow{a} 1 \xrightarrow{b} 2 \xrightarrow{\epsilon} 1 \xrightarrow{b} 2$$

$$0 \xrightarrow{\epsilon} 3 \xrightarrow{a} 0 \xrightarrow{a} 1 \xrightarrow{b} 2 \xrightarrow{\epsilon} 1 \xrightarrow{b} 2$$

Yes, accepted by the first or the second paths.

Exercise 3.6.5: Give the transition tables for the NFA of:

a) Exercise 3.6.3

Figure 3.29: NFA for Exercise 3.6.3

state	a	b	€
0	{0, 1}	{0}	Ø
1	{1, 2}	{1}	Ø
2	{2}	{2, 3}	{0}
3	Ø	Ø	Ø

b) Exercise 3.6.4

Figure 3.30: NFA for Exercise 3.6.4

state	a	b	€
0	{1}	Ø	{3}
1	Ø	{2}	{0}
2	Ø	{3}	{1}
3	{0}	Ø	{2}

c) Figure 3.26

Figure 3.26: NFA accepting aa*|bb*

state	a	b	€
0	Ø	Ø	{1, 3}
1	{2}	Ø	Ø
2	{2}	Ø	Ø
3	Ø	{4}	Ø
4	Ø	{4}	Ø

Exercise 3.7.1: Convert to DFA's the NFA's of: a) Fig. 3.26

```
\epsilon-closure(0) = {0, 1, 3} = A
move(A, a) = \{2\} \rightarrow \epsilon-closure(move(A, a)) = \{2\} = B
move(A, b) = \{4\} \rightarrow \epsilon-closure(move(A, b)) = \{4\} = C
move(B, a) = \{2\} \rightarrow \epsilon-closure(move(B, a)) = \{2\} = B
move(B, b) = \emptyset \rightarrow \epsilon-closure(move(B, b)) = \emptyset
move(C, a) = \emptyset \rightarrow \epsilon-closure(move(C, a)) = \emptyset
move(C, b) = \{4\} \rightarrow \epsilon-closure(move(C, b)) = \{4\} = C
```

NFA state	DFA state	a	b
{0, 1, 3}	Α	В	С
{2}	В	В	Ø
{4}	С	Ø	С

c) Fig. 3.30

 ϵ -closure(0) = {0, 1, 2, 3} = A $move(A, a) = \{0, 1\} \rightarrow \epsilon\text{-closure}(move(A, a)) = \{0, 1, 2, 3\} = A$ move(A, b) = $\{2, 3\} \rightarrow \epsilon$ -closure(move(A, b)) = $\{0, 1, 2, 3\}$ = A

NFA state	DFA state	a	b
{0, 1, 2, 3}	Α	А	Α

Exercise 3.7.3: Convert the following regular expressions to deterministic finite automata, using algorithms 3.23 and 3.20:

a) (a|b)*.

$$\epsilon$$
-closure(0) = {0, 1, 2, 4, 7} = A
move(A, a) = {3} → ϵ -closure(move(A, a)) = {1, 2, 3, 4, 6, 7} = B
move(A, b) = {5} → ϵ -closure(move(A, b)) = {1, 2, 4, 5, 6, 7} = C
move(B, a) = {3} → ϵ -closure(move(B, a)) = {1, 2, 3, 4, 6, 7} = B
move(B, b) = {5} → ϵ -closure(move(B, b)) = {1, 2, 4, 5, 6, 7} = C
move(C, a) = {3} → ϵ -closure(move(C, a)) = {1, 2, 3, 4, 6, 7} = B
move(C, b) = {5} → ϵ -closure(move(C, b)) = {1, 2, 4, 5, 6, 7} = C

NFA state	DFA state	а	b
{0, 1, 2, 4, 7}	Α	В	С
{1, 2, 3, 4, 6, 7}	В	В	С
{1, 2, 4, 5, 6, 7}	С	В	С

c) ((e|a)b*)*.

 ϵ -closure(0) = {0, 1, 2, 4, 5, 7, 8} = A $move(A, a) = {3} \rightarrow \epsilon-closure(move(A, a)) = {1, 2, 3, 4, 5, 7, 8} = B$ $move(A, b) = \{6\} \rightarrow \epsilon-closure(move(A, b)) = \{1, 2, 4, 5, 6, 7, 8\} = C$ $move(B, a) = \{3\} \rightarrow \epsilon\text{-closure}(move(B, a)) = \{1, 2, 3, 4, 5, 7, 8\} = B$ $move(B, b) = \{6\} \rightarrow \epsilon\text{-closure}(move(B, b)) = \{1, 2, 4, 5, 6, 7, 8\} = C$ move(C, a) = $\{3\} \rightarrow \epsilon$ -closure(move(C, a)) = $\{1, 2, 3, 4, 5, 7, 8\}$ = B $move(C, b) = \{6\} \rightarrow \epsilon\text{-closure}(move(C, b)) = \{1, 2, 4, 5, 6, 7, 8\} = C$

NFA state	DFA state	а	b
{0, 1, 2, 4, 5, 7, 8}	Α	В	С
{1, 2, 3, 4, 5, 7, 8}	В	В	С
{1, 2, 4, 5, 6, 7, 8}	C	В	С

Midterm Exam 2011-2012 - Problem 4:

Construct the DFA from the following NFA

