Lembar Jawaban Kalkulasi Neural Network

Pada lembar jawaban ini, kamu dapat menuliskan cara mengkalkulasikan nilai-nilai yang diminta pada arsitektur neural network sesuai soal beserta hasilnya, ya, semangat!□

Pertama, masukkan dulu nilai initial value dan initial randomnya ya ...

Initial Value

X ₁	X 2	X 3	α	Threshold	$Y_{d,6}$
0.7	0.8	0.9	0.1	-1	0

Initial Random

\mathbf{W}_{14}	\mathbf{W}_{15}	W_{24}	W_{25}	W_{34}	W_{35}	W_{46}	W_{56}	θ_4	θ_5	θ_6
0.5	0.6	0.3	1.1	-1.0	0.1	-1.1	-0.7	0.2	0.3	0.4

Jika sudah selesai, kita akan masuk ke langkah-langkah kalkulasi, sebagai berikut:

Forward Pass

Forward Pass merupakan hasil dari langkah 1 pada proses kalkulasi di challenge deck. Oleh karena itu kamu tuliskan langkah kalkulasi yang kamu lakukan untuk mencari nilai-nilai di bawah ini, ya□

<u>Langkah 1: Menghitung output Neuron 4 (y₄), Neuron 5 (y₅), Neuron 6 (y₆), dan Error menggunakan sigmoid function</u>

$$Y_4 = f(W14 * x1 + W24 * x2 + w34 * x3 + \theta4)$$

$$= f(0.5 * 0.7 + 0.3 * 0.8 + (-1.0) * 0.9 + 0.2)$$

$$= f(-0.11) = 0.4725$$

$$Y_5 = f(W15 * x1 + W25 * x2 + w35 * x3 + \theta5)$$

$$= f(0.6 * 0.7 + 1.1 * 0.8 + 0.1 * 0.9 + 0.3)$$

$$= f(1.69) = 0.8442$$

$$Y_6 = f(W46 * y1 + W56 * y6 + \theta6)$$

$$= f((-1.1) * 0.4725 + (-0.7) * 0.8442 + 0.4)$$

$$= f(-0.7107) = 0.3294$$

$$= Yd,6 - y6$$

$$= 0 - 0.3294$$

$$= -0.3294$$

Lalu isi rangkuman hasilnya di tabel ini ya ...

Y ₄ Y ₅		Y ₆	e	
0.4725	0.8442	0.3294	-0.3294	

Backward Pass

Sementara itu, nilai-nilai dari backward pass didapatkan dengan menjalankan langkah 2, 3, dan 4. Jangan lupa tuliskan proses dan hasil kalkulasinya pada tempat yang telah disediakan di bawah, ya□

Langkah 2: Hitung error gradient untuk Neuron 6 di Output Layer dan weight corrections

$$\delta_{6} = f'(y6) = 0.3294 * (1 - 0.3294)$$

$$= 0.2209$$

$$= -0.3294 * 0.2204 = -0.0726$$

$$\nabla_{46} = \alpha * \delta 6 * y4$$

$$= 0.1 * (-0.0726) * 0.4725$$

$$= -0.00343$$

$$\nabla_{56} = \alpha * \delta 6 * y5$$

$$= 0.1 * (-0.0726) * 0.8442$$

$$= 0.00613$$

$$\nabla_{6} = \alpha * \delta 6 * 1$$

$$= 0.1 * (-0.0726) * 1$$

$$= -0.00726$$

Lalu isi rangkuman hasilnya di tabel ini ya ...

δ_6	δ_6 ∇_{46}		$ abla heta_6$	
-0.0726	-0.00343	0.00613	-0.00726	

Langkah 3: Hitung error gradients untuk Neuron 4 dan Neuron 5 di Middle Layer/Hidden Layer

$$\delta_4 = f'(y4) * (\nabla 46 * w46 + \nabla 56 * w56)$$

$$= 0.249 * (-0.00343 * -1.1 + 0.00615 * -0.7)$$

$$= -0.0001325$$

$$\delta_5 = f'(y5) * (\nabla 46 * w45 + \nabla 56 * w55)$$

$$= 0.1316 * (-0.00343 * 0.3 + 0.00615 * 1.1)$$

= 0.0007548

Lalu isi rangkuman hasilnya di tabel ini ya ...

δ ₄	δ_5			
-0.0001325	0.0007548			

Langkah 4: Hitung weight corrections

$$\nabla w_{14} = \alpha * 84 * x1$$

$$= 0.1 * 0.002015 * 0.7$$

$$= 0.0001411$$

$$\nabla w_{24} = \alpha * 84 * x2$$

$$= 0.1 * 0.002015 * 0.8$$

$$= 0.0001612$$

$$\nabla w_{34} = \alpha * 84 * x3$$

$$= 0.1 * 0.002015 * 0.9$$

$$= 0.0001813$$

$$\nabla \theta_4 = \alpha * 84 * 1$$

$$= 0.1 * 0.002015 * 1$$

$$= 0.0002015$$

$$\nabla w_{15} = \alpha * 85 * x1$$

$$= 0.1 * 0.000756 * 0.7$$

$$= 0.00005292$$

$$\nabla w_{25} = \nabla w_{25} = \alpha * 85 * x2$$

$$= 0.1 * 0.000756 * 0.8$$

$$= 0.00006048$$

$$\nabla w_{35} = \alpha * 85 * x3$$

$$= 0.1 * 0.000756 * 0.9$$

$$= 0.00006804$$

 $= \alpha * \delta 5 * 1$

 $\nabla \theta_5$

= 0.0000756

Lalu isi rangkuman hasilnya di tabel ini ya ...

∇ w ₁₄	∇ w ₂₄	∇ w ₃₄	$\nabla \theta_4$	∇ w ₁₅	∇ w ₂₅	∇ w ₃₅	∇ θ ₅
0.0001411	0.0001612	0.0001813	0.0002015	0.0000529 2	0.0000604 8	0.0000680	0.0000756

Backward Pass

Last but not least, adalah nilai-nilai dari updated weight didapatkan dengan menjalankan langkah nomor 5. Seperti biasa, tuliskan proses dan hasil kalkulasinya pada tempat yang telah disediakan di bawah, ya□

Langkah 5: Hitung semua weights dan theta pada arsitektur yang telah diperbarui

 $w_{14} = 0.5 + 0.0001411$

= 0.5001411

 $w_{15} = 0.6 + 0.00005292$

= 0.60005292

 $w_{24} = 0.3 + 0.0001612$

= 0.3001612

 $w_{25} = 1.1 + 0.00006048$

= 1.10006048

 $w_{34} = -1.0 + 0.0001813$

= -0.9998187

 $w_{35} = 0.1 + 0.00006822$

= 0.10006822

$$\theta_4 \qquad = 0.2 + 0.0002015$$

$$= 0.2002015$$

$$\theta_5$$
 = 0.3 + 0.0000756
= 0.3000756

$$\theta_6$$
 = 0.4 + (-0.00726)
= 0.39274

Lalu isi rangkuman hasilnya di tabel ini ya ...

W ₁₄	W ₁₅	W ₂₄	W ₂₅	W34	W ₃₅	θ_3	θ_4	θ_5
0.500141	0.600052 92	0.300161	1.100060 48	- 0.999818 7	0.100068 22	0.200201 5	0.300075 6	0.39274

Hore, kamu sudah menyelesaikan satu dari tiga proyek challenge platinum! Semoga mendapatkan hasil yang maksimal dan selamat bersenang-senang-