Auflösen von Mehrdeutigkeiten in kontextfreien Grammatiken

Lennart Protte

17.05.2024

Mehrdeutige Grammatik

Grammatik

$$G(N,T,P,S)$$

$$N=\{E\}$$

$$T=\{+,*,\mathbf{num}\}$$

$$S=\{E\}$$

$$P=\{$$

$$E\to E+E|E*E|\mathbf{num}$$

$$\}$$

Definition[Vasudevan and Tratt, 2013]

Eine Grammatik ist mehrdeutig, wenn sie mehrere Ableitungen für ein Wort zulässt.

Ableitungen

$$\begin{split} E &\rightarrow E + E \\ &\rightarrow E + E * E \\ &\rightarrow \mathsf{num} + E * E \\ &\rightarrow \mathsf{num} + \mathsf{num} * E \\ &\rightarrow \mathsf{num} + \mathsf{num} * \mathsf{num} \end{split}$$

$$\begin{split} E &\rightarrow E + E \\ &\rightarrow \mathsf{num} + E \\ &\rightarrow \mathsf{num} + E * E \\ &\rightarrow \mathsf{num} + \mathsf{num} * E \\ &\rightarrow \mathsf{num} + \mathsf{num} * \mathsf{num} \end{split}$$

Definition der Chomsky-Normalform

Definition[Watrous, 2020]

Eine kontextfreie Grammatik ist in der Chomsky-Normalform, wenn jede Produktionsregel eine der folgenden Formen hat:

$$A \to BC$$

$$A \to a$$

$$S \to \varepsilon$$

Hierbei sind $A, B, C \in N$, $S \in$ Startsymbol und $a \in T$. Für B und C gilt $B, C \neq S$.

Chonsky Normal Form Beispiel

CFG

$$G(N,T,P,S)$$

$$N=\{E\}$$

$$T=\{+,*,\mathbf{num}\}$$

$$S=\{E\}$$

$$P=\{$$

$$E\to E+E|E*E|\mathbf{num}$$

$$\}$$

CNF

$$G'(N, T, P, S)$$
 $N = \{S, E, H_0, H_1, H_2, H_3\}$
 $T = \{+, *, \mathbf{num}\}$
 $S = \{S\}$
 $P = \{$
 $S \to H_0 E | H_1 E | \mathbf{num}$
 $E \to H_0 E | H_1 E | \mathbf{num}$
 $H_0 \to E H_2$
 $H_1 \to E H_3$
 $H_2 \to +$
 $H_3 \to *$
 $\}$

Baum von $G^{'}$

Beispielhafter AST von $G^{'}$

Bewerkung[Watrous, 2020]

Jeder, aus einer CNF erzeugter Baum, ist ein Binärbaum.

Lösen von Mehrdeutigkeiten bei Operatoren

Probleme der Chomsky Normal Form

- Keine Aussage über die Mehrdeutigkeit einer Grammatik
- Für komplexe Sprachen werden viele Produktionen benötigt

Methode zur Beseitigung von Mehrdeutigkeiten

- Durch Operatorvorrang und Operatorassoziativität können alle Mehrdeutigkeiten beseitigt werden
- Die Grammatik kann weiterhin kontextfrei bleiben

Definition von Mustern

Definition[Vasudevan and Tratt, 2013]

Gegeben ist das Tupel $(S, \alpha \circ \beta, \gamma)$ mit:

S = Das Startsymbol der Produktion

 $\alpha \circ \beta$ = zwei Nichtterminale aus G mit \circ als Operator

 γ = Die Ableitung

Ob α oder β abgeleitet wird,

wird durch ein • vor dem jeweiligen Nichtterminal gekennzeichnet.

Beispiel

So kann $E\Rightarrow E+E\Rightarrow \mathbf{num}+E\Rightarrow \mathbf{num}+\mathbf{num}$ durch $(E,\bullet E+E,\mathbf{num})$ und $(E,E+\bullet E,\mathbf{num})$ beschrieben werden.

Tabellen für Ordnung und Assoziativität

Aus der Ordnung $\alpha_1 > \alpha_2$ ergibt sich:

>	$E ::= E\alpha_2 E$
$E := E\alpha_1 E$	$(E, \bullet E\alpha_1 E, E\alpha_2 E)$
	$(E, E\alpha_1 \bullet E, E\alpha_2 E)$

[Vasudevan and Tratt, 2013]

Aus α_1, α_2 sind links assoziativ folgt:

links	$E ::= E\alpha_1 E$	$E ::= E\alpha_2 E$
$E ::= E\alpha_1 E$	$(E, E\alpha_1 \bullet E, E\alpha_1 E)$	$(E, E\alpha_1 \bullet E, E\alpha_2 E)$
$E ::= E\alpha_2 E$	$(E, E\alpha_2 \bullet E, E\alpha_1 E)$	$(E, E\alpha_2 \bullet E, E\alpha_2 E)$

[Vasudevan and Tratt, 2013]

Definition der Grammatik:

$$E := E * E (links) > E + E(links) | \mathbf{num}|$$

Operator	Vorrang	Assoziativität
*	2	links assoziativ
+	1	links assoziativ

Beispiel

So wird 2+3*4 gemäß der definierten Assoziativität und der Vorrangsregeln eindeutig als 2+(3*4) ausgewertet, was korrekt ist.

Muster zur Beseitigung der Mehrdeutigkeit

$$(E, E * \bullet E, E * E)$$

$$(E, \bullet E * E, E + E)$$

$$(E, E + \bullet E, E * E)$$

$$(E, \bullet E + E, E + E)$$

Nach der Erstellung von neuen Nichtterminalen

$$G(N,T,P,S) \\ N = \{E,E_1,E_2,E_3,E_4\} \\ T = \{+,*,\mathbf{num}\} \\ S = \{E\} \\ P = \{ \\ E \to E_1*E_2|E_3+E_4|\mathbf{num} \} \\ \}$$

Nach der Erstellung von neuen Produktionsregeln

$$G(N,T,P,S)$$
 $N = \{E,E_1,E_2,E_3,E_4\}$
 $T = \{+,*,\mathbf{num}\}$
 $S = \{E\}$
 $P = \{E,E_1,E_2,E_3,E_4|\mathbf{num}\}$
 $E_1 \to E_1 * E_2 |E_3 + E_4|\mathbf{num}\}$
 $E_2 \to E_3 + E_4|\mathbf{num}\}$
 $E_3 \to E_1 * E_2|\mathbf{num}\}$

Beispiel aufgelöster Produktionsregel

Für beispielsweise E + E + E gibt es nur noch eine Möglichkeit:

$$E \to E_3 + E_4$$
$$\to E_3 + E_3 + E_4$$

Das Muster $(E, \bullet E + E, E + E)$ verhindert die Alternative.

Nach dem Prüfen von verschachtelten Fällen

```
G(N,T,P,S)
N = \{E, E_1, E_2, E_3, E_4, E_5\}
T = \{+, *, num\}
S = \{E\}
P = \{
E \to E_1 * E_2 | E_3 + E_4 |num
E_1 \rightarrow E_1 * E_5 | \mathbf{num}
E_2 \rightarrow E_3 + E_4 | \mathbf{num} |
E_3 \rightarrow E_5 * E_2 | \mathbf{num} |
E_4 \rightarrow E_3 + E_4 | \mathbf{num}
E_5 \rightarrow \mathsf{num}
```

Bemerkung

- Die Vorrangs und Assoziativitätsregeln sind in der Produktion umgesetzt.
- Die Grammatik ist nun eindeutig.
- Die Grammatik ist frei von Zyklen

Quellen

[Vasudevan and Tratt, 2013] Vasudevan, N. and Tratt, L. (2013).

Detecting ambiguity in programming language grammars.

In Erwig, M., Paige, R. F., and Van Wyk, E., editors, *Software Language Engineering*, pages 157–176, Cham. Springer International Publishing.

[Watrous, 2020] Watrous, J. (2020).

Parse trees, ambiguity, and chomsky normal form.

https://cs.uwaterloo.ca/ watrous/ToC-notes/ToC-notes.08.pdf.

[Online; accessed 17-April-2024].

