MITH 212 - Real Analysis New Lect 1c
Continuity of a Function
Definition:
Let f be a function of a real
variable a defined on the
fudidean space E. Then f is
는 사용에 하다는 사이를 보고 있다면 보다 하다 하는 것이다. 그런 그리고 있는 사람들은 사용하다 보고 있다면 보다 하다.
Said to be continuous at the
20 ED CE if given EX
there is a number $\delta(E) > D$
Such that
1f(x) -f(xe) < E
$ f(x) - f(x_0) \le \varepsilon$ Whenever $ x - x_0 \le \varepsilon$
$ f(x) - f(x_0) \le \varepsilon$ When ever $ x - x_0 \le \varepsilon$ In other words a function
$ f(x) - f(x_0) \le \varepsilon$ Whenever $ x - x_0 \le \varepsilon$
$ f(x) - f(x_0) \le \varepsilon$ When ever $ x - x_0 \le \varepsilon$ In other words a function

34 14th June 2024 likal distribution of the first from the Commence of the form of the commence whenever Lisa the limit of for This implies that 1500- L1 < E => - E < f(x)-L < E => L-E < fas < L+ E $= \lambda f(x) \in \{L - \varepsilon, L + \varepsilon\}$