Probability Models for Customer Lifetime Value Analysis Day 1

Peter S. Fader University of Pennsylvania

Bruce G.S. Hardie London Business School

Stockholm School of Economics June 3–4, 2024

Subscriber	lue
ected Fitness	Lifetime Va
onne	

LTV per Connected Fitness Subscriber	\$3,593
(Subscription Contribution plus content costs for past use) divided by Subscription Revenue ⁽¹⁾	59.8%
	×
Subscriber LTV months	154
	×
Monthly subscription price	\$39.00
	<u> </u>

Implied by 1 / 0.65% Average Net Monthly Connected Fitness Churn

EV 2010

Non-GAAP Estimated Subscriber Lifetime Value*

Three	Monthe	Ended

	 nree Moi			
	arch 31,	M	arch 31,	
	2002		2003	Calculation Methodology
Monthly subscription charge	\$ 19.95	\$	19.95	Standard subscription fee for three out program
Monthly churn	7.2%		5.8%	Reported churn rate
Implied subscriber lifetime (months)	13.9		17.2	Reciprocal of reported churn
Implied lifetime revenue	\$ 277	\$	343	Implied subscriber life multiplied by monthly
				subscription charge
Cost of revenues	137		185	Reported costs of revenue margin multiplied by implied
				lifetime revenue
Gross profit per subscriber	140		158	
Gross Margin	50.4%		46.1%	

https://ir.netflix.net/files/doc_news/archive/a12fabbc-a83a-45a0-ae41-7afe37ff31ab.pdf

FORRESTER®

Using The Right Metrics For The Subscription-Based Business Model

The 10 Key Subscription Business Metrics To Track And Manage For Success

by Dan Bieler November 3, 2020

Customer lifetime value (LTV) LTV measures the value of a customer over their lifetime.

Average revenue per account (ARPA); gross margin (GM); customer churn (CC)

$$LTV = \frac{(ARPA * GM)}{CC}$$

The average revenue per customer is \$120. The gross margin is 80%. The customer churn rate is 20%. The lifetime value of the customer is \$480.

		FY 2019	
iber	Monthly subscription price	\$39.00	
scr		×	_
s Sub ⁄alue	Subscriber LTV months	154	Implied by 1 / 0.65% Average Net Monthly
nes Je V		×	Connected Fitness Churn
Connected Fitness Subscriber Lifetime Value	(Subscription Contribution plus content costs for past use) divided by Subscription Revenue ⁽¹⁾	59.8%	_
necti L			. 7
Conr	LTV per Connected Fitness Subscriber	\$3,593	Ĺ
_			

What is wrong with this calculation?

Deriving the formula

Month 1 Month 2 Month 3 Month
$$t$$

$$P(\text{still a customer}) \quad 1 \quad 1-c \quad (1-c)^2 \quad (1-c)^{t-1}$$
Contribution margin $rev \times m \mid rev \times m \mid rev \times m \mid rev \times m$

$$E(CLV) = \sum_{t=1}^{\infty} rev \times m \times (1 - c)^{t-1}$$
$$= rev \times m \times \sum_{s=0}^{\infty} (1 - c)^{s}$$
$$= rev \times m \times \frac{1}{c}$$

A "correct" approach to the calculation

$$E(CLV) = \sum_{t=1}^{\infty} rev \times m \times \frac{(1-c)^{t-1}}{(1+d)^{t-1}}$$
$$= rev \times m \times \frac{1+d}{d+c}$$

Impact of the time value of money

Monthly sub \$39.00 CM ratio 59.8% Churn 0.65%

Exploring the impact of incorrect calculations

Peloton calculation:

"CLV" =
$$rev \times m \times \frac{1}{c}$$
expected lifetime, $E(L)$

"Correct" calculation:

$$E(CLV) = rev \times m \times \frac{1+d}{d+c}$$
expected discounted lifetime, $E(DL)$

How does the over-estimation vary as a function of *d* and *c*?

E(L)/E(DL) as a function of annual d and monthly c

		Annual discount rate																				
		0%	1%	2%	3%	4%	5%	6%	7%	8%	9%	10%	11%	12%	13%	14%	15%	16%	17%	18%	19%	20%
	0.5%	1.00	1.16	1.33	1.49	1.65	1.81	1.96	2.12	2.27	2.42	2.57	2.72	2.87	3.02	3.16	3.30	3.45	3.59	3.73	3.86	4.00
	1.0%	1.00	1.08	1.16	1.24	1.32	1.40	1.48	1.56	1.63	1.71	1.78	1.86	1.93	2.00	2.08	2.15	2.22	2.29	2.36	2.42	2.49
	1.5%	1.00	1.05	1.11	1.16	1.21	1.27	1.32	1.37	1.42	1.47	1.52	1.57	1.62	1.67	1.71	1.76	1.81	1.85	1.90	1.95	1.99
	2.0%	1.00	1.04	1.08	1.12	1.16	1.20	1.24	1.28	1.31	1.35	1.39	1.42	1.46	1.50	1.53	1.57	1.60	1.64	1.67	1.71	1.74
	2.5%	1.00	1.03	1.06	1.10	1.13	1.16	1.19	1.22	1.25	1.28	1.31	1.34	1.37	1.40	1.42	1.45	1.48	1.51	1.53	1.56	1.59
	3.0%	1.00	1.03	1.05	1.08	1.11	1.13	1.16	1.18	1.21	1.23	1.26	1.28	1.30	1.33	1.35	1.37	1.40	1.42	1.44	1.47	1.49
01	3.5%	1.00	1.02	1.05	1.07	1.09	1.11	1.13	1.16	1.18	1.20	1.22	1.24	1.26	1.28	1.30	1.32	1.34	1.36	1.38	1.40	1.42
rate	4.0%	1.00	1.02	1.04	1.06	1.08	1.10	1.12	1.13	1.15	1.17	1.19	1.21	1.23	1.24	1.26	1.28	1.30	1.31	1.33	1.35	1.36
Ε	4.5%	1.00	1.02	1.03	1.05	1.07	1.09	1.10	1.12	1.14	1.15	1.17	1.18	1.20	1.22	1.23	1.25	1.26	1.28	1.29	1.31	1.32
를	5.0%	1.00	1.02	1.03	1.05	1.06	1.08	1.09	1.11	1.12	1.14	1.15	1.16	1.18	1.19	1.21	1.22	1.23	1.25	1.26	1.27	1.29
nthly	5.5%	1.00	1.01	1.03	1.04	1.06	1.07	1.08	1.10	1.11	1.12	1.14	1.15	1.16	1.17	1.19	1.20	1.21	1.22	1.24	1.25	1.26
ŧ	6.0%	1.00	1.01	1.03	1.04	1.05	1.06	1.08	1.09	1.10	1.11	1.12	1.14	1.15	1.16	1.17	1.18	1.19	1.20	1.21	1.23	1.24
ĕ	6.5%	1.00	1.01	1.02	1.04	1.05	1.06	1.07	1.08	1.09	1.10	1.11	1.12	1.14	1.15	1.16	1.17	1.18	1.19	1.20	1.21	1.22
	7.0%	1.00	1.01	1.02	1.03	1.04	1.05	1.06	1.07	1.08	1.10	1.11	1.12	1.12	1.13	1.14	1.15	1.16	1.17	1.18	1.19	1.20
	7.5%	1.00	1.01	1.02	1.03	1.04	1.05	1.06	1.07	1.08	1.09	1.10	1.11	1.12	1.12	1.13	1.14	1.15	1.16	1.17	1.18	1.19
	8.0%	1.00	1.01	1.02	1.03	1.04	1.05	1.06	1.06	1.07	1.08	1.09	1.10	1.11	1.12	1.12	1.13	1.14	1.15	1.16	1.17	1.17
	8.5%	1.00	1.01	1.02	1.03	1.04	1.04	1.05	1.06	1.07	1.08	1.09	1.09	1.10	1.11	1.12	1.12	1.13	1.14	1.15	1.15	1.16
	9.0%	1.00	1.01	1.02	1.02	1.03	1.04	1.05	1.06	1.06	1.07	1.08	1.09	1.10	1.10	1.11	1.12	1.12	1.13	1.14	1.15	1.15
	9.5%	1.00	1.01	1.02	1.02	1.03	1.04	1.05	1.05	1.06	1.07	1.08	1.08	1.09	1.10	1.10	1.11	1.12	1.12	1.13	1.14	1.14
	10.0%	1.00	1.01	1.01	1.02	1.03	1.04	1.04	1.05	1.06	1.06	1.07	1.08	1.08	1.09	1.10	1.10	1.11	1.12	1.12	1.13	1.14

		FY 2019	
iber	Monthly subscription price	\$39.00	
scr		×	_
s Suk /alue	Subscriber LTV months	154	Implied by 1 / 0.65% Average Net Monthly
nes ne V		×	Connected Fitness Churn
Connected Fitness Subscriber Lifetime Value	(Subscription Contribution plus content costs for past use) divided by Subscription Revenue ⁽¹⁾	59.8%	_
nect 			. 1
Con	LTV per Connected Fitness Subscriber	\$3,593 	<u>. </u>

What else is wrong with this calculation?

Retention rate:

The ratio of the number of customers retained to the number of customers at risk.

The complement of retention is attrition or churn.

At the cohort level, we (almost) always observe increasing retention rates.

Renewal rates at regional magazines vary; generally 30% of subscribers renew at the end of their original subscription, but that figure jumps to 50% for second-time renewals and all the way to 75% for longtime readers.

Fielding, Michael (2005), "Get Circulation Going: DM Redesign Increases Renewal Rates for Magazines," Marketing News, September 1, 9–10.

New subscribers are actually more likely to cancel their subscriptions than older subscribers, and therefore, an increase in subscriber age helps overall reductions in churn.

Netflix (10-K for the fiscal year ended December 31, 2005)

Vodafone Germany: Quarterly Annualized Churn Rate

Source: Vodafone Germany "Vodafone Analyst & Investor Day" presentation (2004-09-27)

I am happy to report that 41% of new members who joined in 2011 renewed their membership in 2012, and that ION has an overall retention of 78%.

ION Newsletter, Winter 2011-2012.

Assume a firm acquires 100,000 customers each period, with each cohort being identical in its retention pattern. We observe this firm for 20 periods.

											Peri	od									
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
	PO1	100,000	74,000	57,700	47,255	40,356	35,617	32,203	29,613	27,545	25,815	24,312	22,970	21,745	20,612	19,554	18,560	17,622	16,735	15,895	15,098
- 1	P02		100,000	74,000	57,700	47,255	40,356	35,617	32,203	29,613	27,545	25,815	24,312	22,970	21,745	20,612	19,554	18,560	17,622	16,735	15,895
	P03			100,000	74,000	57,700	47,255	40,356	35,617	32,203	29,613	27,545	25,815	24,312	22,970	21,745	20,612	19,554	18,560	17,622	16,735
	P04				100,000	74,000	57,700	47,255	40,356	35,617	32,203	29,613	27,545	25,815	24,312	22,970	21,745	20,612	19,554	18,560	17,622
	P05					100,000	74,000	57,700	47,255	40,356	35,617	32,203	29,613	27,545	25,815	24,312	22,970	21,745	20,612	19,554	18,560
	P06						100,000	74,000	57,700	47,255	40,356	35,617	32,203	29,613	27,545	25,815	24,312	22,970	21,745	20,612	19,554
	P07							100,000	74,000	57,700	47,255	40,356	35,617	32,203	29,613	27,545	25,815	24,312	22,970	21,745	20,612
	P08								100,000	74,000	57,700	47,255	40,356	35,617	32,203	29,613	27,545	25,815	24,312	22,970	21,745
ا ب	P09									100,000	74,000	57,700	47,255	40,356	35,617	32,203	29,613	27,545	25,815	24,312	22,970
	P10										100,000	74,000	57,700	47,255	40,356	35,617	32,203	29,613	27,545	25,815	24,312
3 1	P11											100,000	74,000	57,700	47,255	40,356	35,617	32,203	29,613	27,545	25,815
	P12												100,000	74,000	57,700	47,255	40,356	35,617	32,203	29,613	27,545
	P13													100,000	74,000	57,700	47,255	40,356	35,617	32,203	29,613
	P14														100,000	74,000	57,700	47,255	40,356	35,617	32,203
	P15															100,000	74,000	57,700	47,255	40,356	35,617
	P16																100,000	74,000	57,700	47,255	40,356
	P17																	100,000	74,000	57,700	47,255
	P18																		100,000	74,000	57,700
	P19																			100,000	74,000
	P20																				100,000
To	otal	100,000	174,000	231,700	278,955	319,311	354,928	387,131	416,744	444,289	470,104	494,416	517,386	539,131	559,743	579,297	597,857	615,479	632,214	648,109	663,207

Number of customers: Total and by cohort

Size of customer base (by cohort)

From number of customers ...

											Peri	od									
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
	P01	100,000	74,000	57,700	47,255	40,356	35,617	32,203	29,613	27,545	25,815	24,312	22,970	21,745	20,612	19,554	18,560	17,622	16,735	15,895	15,098
	P02		100,000	74,000	57,700	47,255	40,356	35,617	32,203	29,613	27,545	25,815	24,312	22,970	21,745	20,612	19,554	18,560	17,622	16,735	15,895
	P03			100,000	74,000	57,700	47,255	40,356	35,617	32,203	29,613	27,545	25,815	24,312	22,970	21,745	20,612	19,554	18,560	17,622	16,735
	P04				100,000	74,000	57,700	47,255	40,356	35,617	32,203	29,613	27,545	25,815	24,312	22,970	21,745	20,612	19,554	18,560	17,622
	P05					100,000	74,000	57,700	47,255	40,356	35,617	32,203	29,613	27,545	25,815	24,312	22,970	21,745	20,612	19,554	18,560
	P06						100,000	74,000	57,700	47,255	40,356	35,617	32,203	29,613	27,545	25,815	24,312	22,970	21,745	20,612	19,554
	P07							100,000	74,000	57,700	47,255	40,356	35,617	32,203	29,613	27,545	25,815	24,312	22,970	21,745	20,612
	P08								100,000	74,000	57,700	47,255	40,356	35,617	32,203	29,613	27,545	25,815	24,312	22,970	21,745
	P09									100,000	74,000	57,700	47,255	40,356	35,617	32,203	29,613	27,545	25,815	24,312	22,970
Cohort	P10										100,000	74,000	57,700	47,255	40,356	35,617	32,203	29,613	27,545	25,815	24,312
5	P11											100,000	74,000	57,700	47,255	40,356	35,617	32,203	29,613	27,545	25,815
-	P12												100,000	74,000	57,700	47,255	40,356	35,617	32,203	29,613	27,545
	P13													100,000	74,000	57,700	47,255	40,356	35,617	32,203	29,613
	P14														100,000	74,000	57,700	47,255	40,356	35,617	32,203
	P15															100,000	74,000	57,700	47,255	40,356	35,617
	P16																100,000	74,000	57,700	47,255	40,356
	P17																	100,000	74,000	57,700	47,255
	P18																		100,000	74,000	57,700
	P19																			100,000	74,000
	P20																				100,000
	Total	100,000	174,000	231,700	278,955	319,311	354,928	387,131	416,744	444,289	470,104	494,416	517,386	539,131	559,743	579,297	597,857	615,479	632,214	648,109	663,207

... to retention rates

											Period									
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
	P01	0.740	0.780	0.819	0.854	0.883	0.904	0.920	0.930	0.937	0.942	0.945	0.947	0.948	0.949	0.949	0.949	0.950	0.950	0.950
	P02		0.740	0.780	0.819	0.854	0.883	0.904	0.920	0.930	0.937	0.942	0.945	0.947	0.948	0.949	0.949	0.949	0.950	0.950
	P03			0.740	0.780	0.819	0.854	0.883	0.904	0.920	0.930	0.937	0.942	0.945	0.947	0.948	0.949	0.949	0.949	0.950
	P04				0.740	0.780	0.819	0.854	0.883	0.904	0.920	0.930	0.937	0.942	0.945	0.947	0.948	0.949	0.949	0.949
	P05					0.740	0.780	0.819	0.854	0.883	0.904	0.920	0.930	0.937	0.942	0.945	0.947	0.948	0.949	0.949
	P06						0.740	0.780	0.819	0.854	0.883	0.904	0.920	0.930	0.937	0.942	0.945	0.947	0.948	0.949
	P07							0.740	0.780	0.819	0.854	0.883	0.904	0.920	0.930	0.937	0.942	0.945	0.947	0.948
	P08								0.740	0.780	0.819	0.854	0.883	0.904	0.920	0.930	0.937	0.942	0.945	0.947
t	P09									0.740	0.780	0.819	0.854	0.883	0.904	0.920	0.930	0.937	0.942	0.945
Cohort	P10										0.740	0.780	0.819	0.854	0.883	0.904	0.920	0.930	0.937	0.942
0	P11											0.740	0.780	0.819	0.854	0.883	0.904	0.920	0.930	0.937
	P12												0.740	0.780	0.819	0.854	0.883	0.904	0.920	0.930
	P13													0.740	0.780	0.819	0.854	0.883	0.904	0.920
	P14														0.740	0.780	0.819	0.854	0.883	0.904
	P15															0.740	0.780	0.819	0.854	0.883
	P16																0.740	0.780	0.819	0.854
	P17																	0.740	0.780	0.819
	P18																		0.740	0.780
	P19																			0.740
	Total	0.740	0.757	0.772	0.786	0.798	0.809	0.818	0.826	0.833	0.839	0.844	0.849	0.853	0.856	0.859	0.862	0.865	0.867	0.869

Retention rates: Aggregate and by cohort

Why do cohort-level retention rates increase over time?

Individual-level time dynamics

- increasing loyalty as the customer gains more experience with the firm
- increasing switching costs with the passage of time

vs.

A sorting effect in a heterogeneous population

The role of heterogeneity

Suppose we acquire a cohort of 100,000 customers.

Each customer belongs to one of two underlying (and *unobservable*) segments:

- Segment 1 comprises 60% of the customers, each with a time-invariant retention probability of 0.60.
- Segment 2 comprises 40% of the customers, each with a time-invariant retention probability of 0.95.

The role of heterogeneity

	# Custo	mers still	alive	Retention rate					
Period	Seg 1	Seg 2	Total	Seg 1	Seg 2	Total			
1	60,000	40,000	100,000						
2	36,000	38,000	74,000	0.600	0.950	0.740			
3	21,600	36,100	57,700	0.600	0.950	0.780			
4	12,960	34,295	47,255	0.600	0.950	0.819			
5	7,776	32,580	40,356	0.600	0.950	0.854			
6	4,666	30,951	35,617	0.600	0.950	0.883			
7	2,799	29,404	32,203	0.600	0.950	0.904			
8	1,680	27,933	29,613	0.600	0.950	0.920			
9	1,008	26,537	27,545	0.600	0.950	0.930			
10	605	25,210	25,815	0.600	0.950	0.937			

Motivating problem

1000 customers are acquired at the beginning of Year 1 with the following pattern of renewals:

ID	Year 1	Year 2	Year 3	Year 4	Year 5
0001	1	1	0	0	0
0002	1	0	0	0	0
0003	1	1	1	0	0
0004	1	1	0	0	0
0005	1	1	1	1	1
0006	1	0	0	0	0
:		:		:	
0998	1	0	0	0	0
0999	1	1	1	0	0
1000	1	0	0	0	0
1000		U	U	U	U
	1000	631	468	382	326

Motivating problem

Assume:

- Each contract is annual, starting on January 1 and expiring at 11:59pm on December 31
- An average contribution margin of \$100/year, which is "booked" at the beginning of the contract period
- A 10% discount rate

Motivating problem

- Q1 Assuming our current prospect pool has the same characteristics as that from which these customers were acquired, what is the expected value of a new customer (ignoring any customer acquisition costs)?
- Q2 We note that 326 of the original cohort of 1000 customers are still with the firm in Year 5. What is the expected residual value of this group of customers at the end of Year 5?

Expected value of a new customer

ı	Year 1	Year 2	Year 3	Year 4	Year 5
P(still a customer)	1.000	0.631	0.468	0.382	0.326
Contribution margin	\$100	\$100	\$100	\$100	\$100
Discount	1	$\frac{1}{1.1}$	$\frac{1}{(1.1)^2}$	$\frac{1}{(1.1)^3}$	$\frac{1}{(1.1)^4}$

$$$100 + $100 \times \frac{0.631}{1.1} + $100 \times \frac{0.468}{(1.1)^2}$$

$$+ $100 \times \frac{0.382}{(1.1)^3} + $100 \times \frac{0.326}{(1.1)^4} = $247$$

Expected value of a new customer

Problem:

- We are ignoring any contribution margin the customer could possibly generate after Year 5.
- To get a true sense of (expected) customer lifetime value, we need to know the probability that the individual is still a customer in year 6, year 7, and so on.

Notation and Terminology

The *survivor function* S(t) is the proportion of the cohort that continue as a customer beyond t.

$$S(0) = ?$$

$$S(1) = ?$$

$$S(2) = ?$$

Notation and terminology

The *retention rate* is the ratio of customers retained to the number at risk.

$$r(1) = ?$$

$$r(2) = ?$$

For survivor function
$$S(t)$$
, $r(t) = \frac{S(t)}{S(t-1)}$.

Modelling objective

We want to derive a mathematical expression for S(t), which can then be used to generate the desired forecasts.

Model development (I)

At the end of each contract period, a customer makes their renewal decision by tossing a coin: $H \rightarrow \text{renew}$, $T \rightarrow \text{don't}$ renew

Length of relationship					
1 period	Т				
2 periods	Н	Τ			
3 periods	Н	Н	Т		

$$P(t \text{ periods}) = \begin{cases} P(\mathsf{T}) & t = 1\\ P(\mathsf{H}) \times P(t-1 \text{ periods}) & t = 2,3,\dots \end{cases}$$

Model development (I)

- i) $P(H) = 1 \theta$ is constant and unobserved.
- ii) All customers have the same "churn probability" θ .

	Α	В	С	D	E	F
1	theta	0.200				
2						
3						
4	Year	t	# Cust.	# Lost	P("die")	S(t)
5	1	0	1000			1.0000
6	2	1	631	369	0.2000	0.8000
7	3	2	468	163	0.1600	0.6400
8	4	3	382	86	0.1280	0.5120
9	5	4	326	56	0.1024	0.4096
10						
11	E6	=B1				
12	E7	=E6*(1-\$B	\$1)			
13	F6	=F5-E6				

Model development (I)

More formally:

- Let the random variable T denote the duration of the customer's relationship with the firm.
- We assume that the random variable T is distributed geometric with parameter θ :

$$P(T = t | \theta) = \theta(1 - \theta)^{t-1}, \quad t = 1, 2, 3, ...$$

 $S(t | \theta) = P(T > t | \theta)$
 $= (1 - \theta)^t, \quad t = 0, 1, 2, 3, ...$

Estimating model parameters

Assuming

- i) the observed data were generated according to the "coin flipping" story of contract renewal, and
- ii) we know $P(T) = \theta$,

the probability of the observed pattern of renewals is:

$$\begin{split} [P(T=1\,|\,\theta)]^{369} [P(T=2\,|\,\theta)]^{163} [P(T=3\,|\,\theta)]^{86} \\ &\times [P(T=4\,|\,\theta)]^{56} [S(t\,|\,\theta)]^{326} \\ &= [\theta]^{369} [\theta(1-\theta)]^{163} [\theta(1-\theta)^2]^{86} \\ &\times [\theta(1-\theta)^3]^{56} [(1-\theta)^4]^{326} \end{split}$$

Suppose we have two candidate coins:

Coin A:
$$\theta = 0.2$$

Coin B:
$$\theta = 0.5$$

Which coin is more likely to have generated the observed pattern of renewals across this set of 1000 customers?

$$θ$$
 $P(\text{data} | θ)$ $\ln [P(\text{data} | θ)]$
 0.2 6.00×10^{-647} -1488.0
 0.5 1.40×10^{-747} -1719.7

We estimate the model parameters using the method of *maximum likelihood*:

- The likelihood function is defined as the probability of observing the data for a given set of the (unknown) model parameters.
- It is computed using the model and is viewed as a function of the model parameters:

$$L(parameters | data) = p(data | parameters).$$

- For a given dataset, the maximum likelihood estimates of the model parameters are those values that maximize $L(\cdot)$.
- It is typically more convenient to use the natural logarithm of the likelihood function — the log-likelihood function.

The log-likelihood function is given by:

$$LL(\theta \mid \text{data}) = 369 \times \ln[P(T = 1 \mid \theta)] + \\ 163 \times \ln[P(T = 2 \mid \theta)] + \\ 86 \times \ln[P(T = 3 \mid \theta)] + \\ 56 \times \ln[P(T = 4 \mid \theta)] + \\ 326 \times \ln[S(4 \mid \theta)]$$

The maximum value of the log-likelihood function is LL = -1451.2, which occurs at $\hat{\theta} = 0.272$.

	Α	В	С	D	E	F	G
1	theta	0.200					
2	LL	-1487.98					
3							
4	Year	t	# Cust.	# Lost	P("die")	S(t)	
5	1	0	1000			1.0000	
6	2	1	631	369	0.2000	0.8000	-593.88
7	3	2	468	163	0.1600	0.6400	-298.71
8	4	3	382	86	0.1280	0.5120	-176.79
9	5	4	326	56	0.1024	0.4096	-127.62
10							-290.98
11	G6	=D6*LN(E6)				
12	G10	=C9*LN(F9)				
13	B2	=SUM(G6:0	G10)				

Model performance

	Α	В	С	D	E	F	G
1	theta	0.272					
2	LL	-1451.16					
3							
4	Year	t	# Cust.	# Lost	P("die")	S(t)	
5	1	0	1000			1.0000	
6	2	1	631	369	0.2717	0.7283	-480.88
7	3	2	468	163	0.1979	0.5305	-264.09
8	4	3	382	86	0.1441	0.3864	-166.60
9	5	4	326	56	0.1050	0.2814	-126.23
10	6	5			0.0764	0.2050	-413.36
11	7	6			0.0557	0.1493	
12	8	7			0.0406	0.1087	
13	9	8			0.0295	0.0792	
14	10	9			0.0215	0.0577	
15	11	10			0.0157	0.0420	
16	12	11			0.0114	0.0306	
17	13	12			0.0083	0.0223	

Model performance

Model development (II)

Consider the following story of customer behavior:

- i) At the end of each period, an individual renews his contract with (constant and unobserved) probability 1θ .
- ii) "Churn probabilities" vary across customers.

Since we don't know any given customer's true value of θ , we treat it as a realization of a random variable (Θ) .

We need to specify a probability distribution that captures how θ varies across customers (by giving us the probability of each possible value of θ).

Model development (II)

Segment	Θ	$P(\Theta = \theta_i)$
1	θ_1	π_1
2	θ_2	π_2

For a randomly chosen customer,

$$\begin{split} P(T=t) &= P(T=t \mid \Theta = \theta_1) P(\Theta = \theta_1) \\ &+ P(T=t \mid \Theta = \theta_2) P(\Theta = \theta_2) \\ &= \theta_1 (1 - \theta_1)^{t-1} \pi_1 + \theta_2 (1 - \theta_2)^{t-1} \pi_2 \\ S(t) &= S(t \mid \Theta = \theta_1) P(\Theta = \theta_1) + S(t \mid \Theta = \theta_2) P(\Theta = \theta_2) \\ &= (1 - \theta_1)^t \pi_1 + (1 - \theta_2)^t \pi_2 \end{split}$$

Assuming

- i) the observed data were generated according to the heterogeneous "coin flipping" story of contract renewal, and
- ii) we know θ_1 , θ_2 and π_1 ,

the probability of the observed pattern of renewals is:

$$[P(T = 1 \mid \theta_1, \theta_2, \pi_1)]^{369} [P(T = 2 \mid \theta_1, \theta_2, \pi_1)]^{163} [P(T = 3 \mid \theta_1, \theta_2, \pi_1)]^{86} \times [P(T = 4 \mid \theta_1, \theta_2, \pi_1)]^{56} [S(4 \mid \theta_1, \theta_2, \pi_1)]^{326}$$

The log-likelihood function is given by:

$$LL(\theta_{1}, \theta_{2}, \pi_{1} \mid \text{data}) = 369 \times \ln[P(T = 1 \mid \theta_{1}, \theta_{2}, \pi_{1})] + \\ 163 \times \ln[P(T = 2 \mid \theta_{1}, \theta_{2}, \pi_{1})] + \\ 86 \times \ln[P(T = 3 \mid \theta_{1}, \theta_{2}, \pi_{1})] + \\ 56 \times \ln[P(T = 4 \mid \theta_{1}, \theta_{2}, \pi_{1})] + \\ 326 \times \ln[S(4 \mid \theta_{1}, \theta_{2}, \pi_{1})]$$

The maximum value of the log-likelihood function is LL = -1401.4, which occurs at $\hat{\theta}_1 = 0.118$, $\hat{\theta}_2 = 0.648$ and $\hat{\pi}_1 = 0.526$.

	Α	В	С	D	Е	F	G	Н	1
1	theta_1	0.200							
2	theta_2	0.500							
3	pi_1	0.500							
4	pi_2	0.500							
5	LL	-1433.91							
6						P("die")			
7	Year	t	# Cust.	# Lost	seg 1	seg 2	total	S(t)	
8	1	0	1000					1.0000	
9	2	1	631	369	0.2000	0.5000	0.3500	0.6500	-387.38
10	3	2	468	163	0.1600	0.2500	0.2050	0.4450	-258.31
11	4	3	382	86	0.1280	0.1250	0.1265	0.3185	-177.81
12	5	4	326	56	0.1024	0.0625	0.0825	0.2361	-139.75
13									-470.65
14	B4	=1-B3							
15	G9	=E9*\$B\$3+	F9*\$B\$4						

A Solver aside

https://www.solver.com/standard-excel-solver-grg-nonlinear-solver-stopping-conditions

Implied distribution of Θ

Model performance

What if we use all the data?

	Α	В	С	D	Е	F	G	Н	I
1	theta_1	0.067							
2	theta_2	0.551							
3	pi_1	0.395							
4	pi_2	0.605							
5	LL	-1932.32							
6						P("die")			
7	Year	t	# Cust.	# Lost	seg 1	seg 2	total	S(t)	
8	1	0	1000					1.0000	
9	2	1	631	369	0.0672	0.5512	0.3599	0.6401	-377.07
10	3	2	468	163	0.0627	0.2474	0.1744	0.4657	-284.69
11	4	3	382	86	0.0584	0.1110	0.0902	0.3755	-206.85
12	5	4	326	56	0.0545	0.0498	0.0517	0.3238	-165.91
13	6	5	289	37	0.0509	0.0224	0.0336	0.2902	-125.53
14	7	6	262	27	0.0474	0.0100	0.0248	0.2653	-99.80
15	8	7	241	21	0.0443	0.0045	0.0202	0.2451	-81.93
16	9	8	223	18	0.0413	0.0020	0.0175	0.2276	-72.78
17	10	9	207	16	0.0385	0.0009	0.0158	0.2118	-66.40
18	11	10	194	13	0.0359	0.0004	0.0144	0.1974	-55.09
19	12	11	183	11	0.0335	0.0002	0.0134	0.1840	-47.47
20	13	12	173	10	0.0313	0.0001	0.0124	0.1716	-43.90
21									-304.90

What if we use all the data?

Implied distributions of Θ

Our inferences about the distribution of Θ are sensitive to the length of the calibration period \longrightarrow not a "good" model

Accommodating heterogeneity in θ

Rather than trying three (or more) segments, we move from a *discrete* distribution for Θ to a *continuous* distribution (an infinite number of segments).

The distribution of churn probabilities is captured by a continuous function $g(\theta)$ defined over (0,1):

Accommodating heterogeneity in θ

Just as the heights of the bars in our discrete distribution sum to one, so the area under the curve equals one.

For a randomly chosen customer, we go from

$$P(T=t) = \sum_{i=1}^{I} P(T=t \mid \theta_i) \pi_i$$

to

$$P(T=t) = \int_0^1 P(T=t \mid \theta) g(\theta) d\theta$$

The beta distribution

The beta distribution is a flexible (and mathematically convenient) two-parameter distribution bounded between 0 and 1:

$$g(\theta \mid \gamma, \delta) = \frac{\theta^{\gamma - 1} (1 - \theta)^{\delta - 1}}{B(\gamma, \delta)},$$

where $\gamma, \delta > 0$ and $B(\gamma, \delta)$ is the beta function.

The mean and variance of the beta distribution are

$$E(\Theta) = \frac{\gamma}{\gamma + \delta}$$
$$var(\Theta) = \frac{\gamma \delta}{(\gamma + \delta)^2 (\gamma + \delta + 1)}$$

Illustrative beta distributions

Five general shapes of the beta distribution

The beta function

The beta function $B(\gamma, \delta)$ is defined by the integral

$$B(\gamma,\delta) = \int_0^1 t^{\gamma-1} (1-t)^{\delta-1} dt, \ \gamma,\delta > 0,$$

and can be expressed in terms of gamma functions:

$$B(\gamma, \delta) = \frac{\Gamma(\gamma)\Gamma(\delta)}{\Gamma(\gamma + \delta)}$$
.

The gamma function $\Gamma(\gamma)$ is a generalized factorial, which has the recursive property $\Gamma(\gamma+1)=\gamma\Gamma(\gamma)$.

Since $\Gamma(0) = 1$, $\Gamma(n) = (n-1)!$ for positive integer n.

Model development (III)

Consider the following story of customer behavior:

- i) At the end of each period, an individual renews their contract with (constant and unobserved) probability 1θ .
 - → the duration of the customer's relationship with the firm is characterized by the geometric distribution.
- ii) Heterogeneity in θ is characterized by the beta distribution.

Model development (III)

For a randomly chosen individual,

$$P(T = t \mid \gamma, \delta) = \int_0^1 P(T = t \mid \theta) g(\theta \mid \gamma, \delta) d\theta$$
$$= \frac{B(\gamma + 1, \delta + t - 1)}{B(\gamma, \delta)}$$
$$S(t \mid \gamma, \delta) = \int_0^1 S(t \mid \theta) g(\theta \mid \gamma, \delta) d\theta$$
$$= \frac{B(\gamma, \delta + t)}{B(\gamma, \delta)}$$

We call this *continuous mixture* model the beta-geometric (BG) distribution.

Model development (III)

We can compute BG probabilities using the following forward-recursion formula from P(T = 1):

$$P(T=t \mid \gamma, \delta) = \begin{cases} \frac{\gamma}{\gamma + \delta} & t = 1\\ \\ \frac{\delta + t - 2}{\gamma + \delta + t - 1} \times P(T=t-1) & t = 2, 3, \dots \end{cases}$$

Assuming

- i) the observed data were generated according to the heterogeneous "coin flipping" story of contract renewal, and
- ii) we know γ and δ ,

the probability of the observed pattern of renewals is:

$$[P(T=1 \mid \gamma, \delta)]^{369} [P(T=2 \mid \gamma, \delta)]^{163} [P(T=3 \mid \gamma, \delta)]^{86} \times [P(T=4 \mid \gamma, \delta)]^{56} [S(4 \mid \gamma, \delta)]^{326}$$

The log-likelihood function is given by:

$$LL(\gamma, \delta \mid \text{data}) = 369 \times \ln[P(T = 1 \mid \gamma, \delta)] + \\ 163 \times \ln[P(T = 2 \mid \gamma, \delta)] + \\ 86 \times \ln[P(T = 3 \mid \gamma, \delta)] + \\ 56 \times \ln[P(T = 4 \mid \gamma, \delta)] + \\ 326 \times \ln[S(4 \mid \gamma, \delta)]$$

The maximum value of the log-likelihood function is LL = -1401.6, which occurs at $\hat{\gamma} = 0.764$ and $\hat{\delta} = 1.296$.

Surface plot of BG log-likelihood function

Contour plot of BG log-likelihood function

	Α	В	С	D	E	F	G
1	gamma	1.000					
2	delta	1.000					
3	LL	-1453.97					
4							
5	Year	t	# Cust.	# Lost	P("die")	S(t)	
6	1	0	1000			1.0000	
7	2	1	631	369	0.5000	0.5000	-255.77
8	3	2	468	163	0.1667	0.3333	-292.06
9	4	3	382	86	0.0833	0.2500	-213.70
10	5	4	326	56	0.0500	0.2000	-167.76
11							-524.68
12	E7	=B1/(B1+B	2)				
13	E8	=(\$B\$2+B8	-2)/(\$B\$1+	\$B\$2+B8-1)	*E7		

Estimated distribution of churn probabilities

 $E(\Theta) = 0.371 \longrightarrow \text{expect } 1000 \times (1 - 0.371) = 629 \text{ customers to renew at the end of Year 1.}$

 $E(\Theta)=0.250 \longrightarrow \text{expect } 629 \times (1-0.250) = 472 \text{ customers to renew at the end of Year 2}.$

 $E(\Theta)=0.188 \longrightarrow \text{expect } 472 \times (1-0.188) = 383 \text{ customers to renew at the end of Year 3}.$

 $E(\Theta)=0.151\longrightarrow \text{expect } 383\times (1-0.151)=325 \text{ customers to renew at the end of Year 4}.$

Model performance

	Α	В	С	D	E	F	G
1	gamma	0.764					
2	delta	1.296					
3	LL	-1401.56					
4							
5	Year	t	# Cust.	# Lost	P("die")	S(t)	
6	1	0	1000			1.0000	
7	2	1	631	369	0.3708	0.6292	-366.08
8	3	2	468	163	0.1571	0.4721	-301.74
9	4	3	382	86	0.0888	0.3833	-208.22
10	5	4	326	56	0.0579	0.3255	-159.59
11	6	5			0.0410	0.2845	-365.93
12	7	6			0.0308	0.2537	
13	8	7			0.0240	0.2296	
14	9	8			0.0194	0.2103	
15	10	9			0.0160	0.1943	
16	11	10			0.0134	0.1809	
17	12	11			0.0115	0.1694	
18	13	12			0.0099	0.1595	

Survival curve projection

Comparing survival curves

Implied retention rates

Recall that

$$r(t) = \frac{S(t)}{S(t-1)}, t = 1, 2, 3, \dots$$

Given the expression for the BG survivor function,

$$r(t \mid \gamma, \delta) = \frac{\delta + t - 1}{\gamma + \delta + t - 1}.$$

An increasing function of time, even though the individual-level retention probability is constant. (A sorting effect in a heterogeneous population.)

Projecting retention rates

An alternative recursion

The relationship between r(t) and S(t) implies that, given knowledge of r(t), we can compute S(t) using the *forward recursion*:

$$S(t) = \begin{cases} 1 & \text{if } t = 0 \\ r(t) \times S(t-1) & \text{if } t = 1, 2, 3, \dots \end{cases}$$

We can compute the BG survivor function using the following forward recursion formula from S(0):

$$S(t \mid \gamma, \delta) = \begin{cases} 1 & \text{if } t = 0 \\ \frac{\delta + t - 1}{\gamma + \delta + t - 1} \times S(t - 1) & \text{if } t = 1, 2, 3, \dots \end{cases}$$

What if we use all the data?

	Α	В	С	D	E	F	G
1	gamma	0.697	0.764	mean	0.374	0.371	
2	delta	1.169	1.296	var	0.082	0.076	
3	LL	-1931.49					
4							
5	Year	t	# Cust.	# Lost	P("die")	P("die") S(t)	
6	1	0	1000			1.0000	
7	2	1	631	369	0.3737	0.6263	-363.24
8	3	2	468	163	0.1524	0.4739	-306.66
9	4	3	382	86	0.0855	0.3885	-211.51
10	5	4	326	56	0.0557	0.3328	-161.75
11	6	5	289	37	0.0396	0.2932	-119.51
12	7	6	262	27	0.0298	0.2634	-94.87
13	8	7	241	21	0.0234	0.2401	-78.90
14	9	8	223	18	0.0189	0.2212	-71.45
15	10	9	207	16	0.0156	0.2056	-66.53
16	11	10	194	13	0.0132	0.1924	-56.26
17	12	11	183	11	0.0113	0.1811	-49.31
18	13	12	173	10	0.0098	0.1713	-46.24
19							-305.27

What if we use all the data?

Concepts and tools introduced

- Modelling single-event discrete-time duration data.
- Capturing unobserved heterogeneity using discrete (finite) and continuous distributions.
- The beta-geometric (BG) distribution as a robust model of contract renewal behavior.
- The method of maximum likelihood as a means of estimating model parameters.
- Using the BG model to forecast survival and retention.

Further reading

Fader, Peter S. and Bruce G.S. Hardie (2007), "How to Project Customer Retention," *Journal of Interactive Marketing*, **21** (Winter), 76–90.

Fader, Peter S. and Bruce G.S. Hardie (2007), "How Not to Project Customer Retention." http://brucehardie.com/notes/016/

Fader, Peter S. and Bruce G.S. Hardie (2014), "A Spreadsheet-Literate Non-Statistician's Guide to the Beta-Geometric Model." http://brucehardie.com/notes/032/

Lee, Ka Lok, Peter S. Fader, and Bruce G.S. Hardie (2007), "How to Project Patient Persistency," *FORESIGHT*, Issue 8, Fall, 31–35.

Potter, R.G. and M. P. Parker (1964), "Predicting the Time Required to Conceive," *Population Studies*, **18** (July), 99–116.

PMLR Proceedings of Machine Learning Research

Volume 146: Survival Prediction - Algorithms, Challenges and Applications, 22-24 March 2021, Stanford University, Palo Alto (CA), USA

Beta Survival Models

David Hubbard Benoit Rostykus Yves Raimond DHUBBARD@NETFLIX.COM BROSTYKUS@NETFLIX.COM YRAIMOND@NETFLIX.COM

TONY I @SPOTIFY COM

"This model [...] was also studied by Fader and Hardie (2007). We find that in practice this model fits the discrete decision data quite well, and that it allows for accurate projections of future decision points."

Break for lab (part 1)

Back to the motivating problem

- Q1 Assuming our current prospect pool has the same characteristics as that from which these customers were acquired, what is the expected value of a new customer (ignoring any customer acquisition costs)?
- Q2 We note that 326 of the original cohort of 1000 customers are still with the firm in Year 5. What is the expected residual value of this group of customers at the end of Year 5?

Expected value of a new customer

Expected value of a new customer

We can write our calculation of the expected value of a new customer (over a five-year period) as

$$$100 \times \sum_{t=0}^{4} \frac{S(t)}{(1.1)^t}$$

If we wish to compute the expected *lifetime* value of a new customer, we need to compute

$$E(CLV) = \$100 \times \sum_{t=0}^{\infty} \frac{S(t)}{(1.1)^t}$$

We use the BG model to project S(t) out to infinity.

Expected value of a new customer

	Α	В	С	D	Е	F	
1	gamma	0.764			E(CLV)	\$362.11	
2	delta	1.296					
3	d	0.1					
4	CM	\$100					
5							
6	Year	t	P("die")	S(t)		disc.	
7	1	0		1.0000		1.0000	
8	2	1	0.3708	0.6292		0.9091	
9	3	2	0.1571	0.4721		0.8264	
10	4	3	0.0888	0.3833		0.7513	
205	199	198	0.0001	0.0201		0.0000	
206	200	199	0.0001	0.0200		0.0000	
207							
208	F7	=1/(1+\$B\$3	3)^B7				
209	F1	=B4*SUMP	RODUCT(D	7:D206,F7:I	F206)		

Expected residual value of the cohort

Standing at the end of Year 5, what is the expected residual lifetime value of a customer?

$$E(RLV) = \$100 \times \sum_{t=5}^{\infty} \frac{S(t \mid T > 4)}{(1.1)^{t-5}}$$

Expected residual value of the cohort

By definition, for $t = 4, 5, 6, \ldots$,

$$S(t | T > 4) = P(T > t | T > 4)$$

$$= \frac{P(T > t \cap T > 4)}{P(T > 4)}$$

$$= \frac{P(T > t)}{P(T > 4)}$$

$$= \frac{S(t)}{S(4)}$$

Expected residual value of the cohort

	Α	В	С	D	Е	F	G
-			· ·	U			
1	gamma	0.764				E(RLV)	\$568.38
2	delta	1.296					
3	d	0.1					
4	CM	\$100					
5						Given 4 r	enewals
6	Year	t	P("die")	S(t)		S(t T>4)	disc.
7	1	0		1.0000			
8	2	1	0.3708	0.6292			
9	3	2	0.1571	0.4721			
10	4	3	0.0888	0.3833			
11	5	4	0.0579	0.3255			
12	6	5	0.0410	0.2845		0.8740	1.0000
13	7	6	0.0308	0.2537		0.7794	0.9091
205	199	198	0.0001	0.0201		0.0616	0.0000
206	200	199	0.0001	0.0200		0.0614	0.0000
207							
208	F12	=D12/\$D\$1	1				
209	G12	=1/(1+\$B\$3	3)^(B12-5)				

 \implies expected residual value of the group of customers at the end of Year 5 is $326 \times $568 = $185,168$.

E(RLV) as a function of customer tenure

	Α	В	С	D	E	F	G	Н	- 1	J	K	L	М	N	0
1	gamma	0.764				E(RLV)	\$288.33	E(RLV)	\$394.07	E(RLV)	\$467.66	E(RLV)	\$523.63	E(RLV)	\$568.38
2	delta	1.296													
3	d	0.1													
4	CM	\$100													
5						0 ren	ewals	1 ren	ewal	2 ren	ewals	3 ren	ewals	4 ren	ewals
6	Year	t	P("die")	S(t)		S(t T>0)	disc.	S(t T>1)	disc.	S(t T>2)	disc.	S(t T>3)	disc.	S(t T>4)	disc.
7	1	0		1.0000											
8	2	1	0.3708	0.6292		0.6292	1.0000								
9	3	2	0.1571	0.4721		0.4721	0.9091	0.7504	1.0000						
10	4	3	0.0888	0.3833		0.3833	0.8264	0.6092	0.9091	0.8119	1.0000				
11	5	4	0.0579	0.3255		0.3255	0.7513	0.5173	0.8264	0.6893	0.9091	0.8491	1.0000		
12	6	5	0.0410	0.2845		0.2845	0.6830	0.4521	0.7513	0.6025	0.8264	0.7421	0.9091	0.8740	1.0000
13	7	6	0.0308	0.2537		0.2537	0.6209	0.4032	0.6830	0.5373	0.7513	0.6618	0.8264	0.7794	0.9091
205	199	198	0.0001	0.0201		0.0201	0.0000	0.0319	0.0000	0.0425	0.0000	0.0523	0.0000	0.0616	0.0000
206	200	199	0.0001	0.0200		0.0200	0.0000	0.0318	0.0000	0.0423	0.0000	0.0521	0.0000	0.0614	0.0000

Reflecting on the value of a new customer

What is the *realized* value of a customer as a function of their tenure?

\$100
\$100 +
$$\frac{$100}{1.1}$$
 = \$190.91
\$100 + $\frac{$100}{1.1}$ + $\frac{$100}{(1.1)^2}$ = \$273.55
\$100 + $\frac{$100}{1.1}$ + $\frac{$100}{(1.1)^2}$ + $\frac{$100}{(1.1)^3}$ = \$348.69
\$100 + $\frac{$100}{1.1}$ + $\frac{$100}{(1.1)^2}$ + $\frac{$100}{(1.1)^3}$ + $\frac{$100}{(1.1)^4}$ = \$416.99

No one is worth $E(CLV)! \longrightarrow \text{distribution of CLV (Fader and Hardie 2017)}$.

Distribution of CLV

Break for lab (part 2)

Generalizing Q1

$$E(CLV) = \sum_{t=0}^{\infty} \frac{v(t) S(t)}{(1+d)^t}$$

If we assume
$$v(t) = \bar{v} \ \forall t, E(CLV) = \bar{v} \underbrace{\sum_{t=0}^{\infty} \frac{S(t)}{(1+d)^t}}_{}$$

expected discounted lifetime, E(DL)

Generalizing Q2

expected discounted residual lifetime, E(DRL)

Computing E(DL)

Standing at time 0 (i.e., before the customer is acquired),

$$E[DL(d) \mid \theta] = \sum_{t=0}^{\infty} \frac{S(t \mid \theta)}{(1+d)^t}$$
$$= \frac{1+d}{d+\theta}.$$

But θ is unobserved ...

Computing E(DL)

Integrating over the distribution of θ :

$$E[DL(d) \mid \gamma, \delta] = \int_0^1 E[DL(d) \mid \theta] g(\theta \mid \gamma, \delta) d\theta$$

$$= \int_0^1 \left(\frac{1+d}{d+\theta}\right) \frac{\theta^{\gamma-1} (1-\theta)^{\delta-1}}{B(\gamma, \delta)} d\theta$$

$$= \frac{1+d}{B(\gamma, \delta)} \int_0^1 \theta^{\gamma-1} (1-\theta)^{\delta-1} (d+\theta)^{-1} d\theta$$

Mathematical Diversion

The Gaussian hypergeometric function is the series

$$_{2}F_{1}(a,b;c;z) = \frac{\Gamma(c)}{\Gamma(a)\Gamma(b)} \sum_{j=0}^{\infty} \frac{\Gamma(a+j)\Gamma(b+j)}{\Gamma(c+j)} \frac{z^{j}}{j!}.$$

The series converges for |z| < 1 and is divergent for |z| > 1. If |z| = 1, the series converges for c - a - b > 0.

Euler's integral representation of the function is

$$_{2}F_{1}(a,b;c;z)=\frac{1}{B(b,c-b)}\int_{0}^{1}t^{b-1}(1-t)^{c-b-1}(1-zt)^{-a}dt$$

where c > b > 0.

Computing E(DL)

Letting $s = 1 - \theta$,

$$\int_0^1 \theta^{\gamma - 1} (1 - \theta)^{\delta - 1} (d + \theta)^{-1} d\theta = \int_0^1 s^{\delta - 1} (1 - s)^{\gamma - 1} (1 + d - s)^{-1} ds$$
$$= \frac{1}{1 + d} \int_0^1 s^{\delta - 1} (1 - s)^{\gamma - 1} (1 - \frac{1}{1 + d} s)^{-1} ds$$

which, letting a = 1, $b = \delta$ and $c = \gamma + \delta$,

$$=\frac{B(\gamma,\delta)}{1+d}{}_2F_1(1,\delta;\gamma+\delta;\frac{1}{1+d})$$

Therefore, $E[DL(d) | \gamma, \delta] = {}_{2}F_{1}(1, \delta; \gamma + \delta; \frac{1}{1+d}).$

An alternative derivation

Assuming lifetimes are distributed BG,

$$E[DL(d) \mid \gamma, \delta] = \sum_{t=0}^{\infty} \frac{S(t \mid \gamma, \delta)}{(1+d)^t}$$

$$= \sum_{t=0}^{\infty} \frac{B(\gamma, \delta+t)}{B(\gamma, \delta)} \left(\frac{1}{1+d}\right)^t$$

$$= \frac{\Gamma(\gamma+\delta)}{\Gamma(\delta)} \sum_{t=0}^{\infty} \frac{\Gamma(\delta+t)}{\Gamma(\gamma+\delta+t)} \left(\frac{1}{1+d}\right)^t$$

$$= \frac{\Gamma(\gamma+\delta)}{\Gamma(\delta)} \sum_{t=0}^{\infty} \frac{\Gamma(t+1)\Gamma(\delta+t)}{\Gamma(\gamma+\delta+t)} \frac{1}{t!} \left(\frac{1}{1+d}\right)^t$$

$$= {}_{2}F_{1}\left(1, \delta; \gamma+\delta; \frac{1}{1+d}\right).$$

Computing E(DRL)

Standing at the end of period n, just prior to the point in time at which the customer makes their contract renewal decision,

$$E[DRL(d) \mid \theta, \text{ active in } n] = \sum_{t=n}^{\infty} \frac{S(t \mid T > n-1; \theta)}{(1+d)^{t-n}}$$
$$= \frac{(1-\theta)(1+d)}{d+\theta}.$$

But θ is unobserved

Bayes' theorem

The *prior distribution* $g(\theta)$ captures the possible values θ can take on, prior to collecting any information about the specific individual.

The *posterior distribution* $g(\theta \mid \text{data})$ is the conditional distribution of θ , given the observed data. It represents our updated opinion about the possible values θ can take on, now that we have some information about the specific individual.

According to Bayes' theorem:

$$g(\theta \mid \text{data}) = \frac{f(\text{data} \mid \theta)g(\theta)}{\int f(\text{data} \mid \theta)g(\theta) d\theta}$$

Computing E(DRL)

By Bayes' Theorem, the posterior distribution of θ is

$$g(\theta \mid \gamma, \delta, \text{ active in } n) = \frac{S(n-1 \mid \theta)g(\theta \mid \gamma, \delta)}{S(n-1 \mid \gamma, \delta)}$$
$$= \frac{\theta^{\gamma-1}(1-\theta)^{\delta+n-2}}{B(\gamma, \delta+n-1)},$$

which is a beta distribution with parameters γ and $\delta + n - 1$.

Distributions of churn probabilities

Distributions of churn probabilities

Computing E(DRL)

Integrating over the posterior distribution of θ :

$$E[DRL(d) \mid \gamma, \delta, \text{ active in } n]$$

$$= \int_0^1 \left\{ E[DRL(d) \mid \theta, \text{ active in } n] \right.$$

$$\times g(\theta \mid \gamma, \delta, \text{ active in } n) \right\} d\theta$$

$$= \int_0^1 \frac{(1-\theta)(1+d)}{d+\theta} \frac{\theta^{\gamma-1}(1-\theta)^{\delta+n-2}}{B(\gamma, \delta+n-1)} d\theta$$

$$= \frac{1+d}{B(\gamma, \delta+n-1)} \int_0^1 \theta^{\gamma-1}(1-\theta)^{\delta+n-1} (d+\theta)^{-1} d\theta$$

$$= \left(\frac{\delta+n-1}{\gamma+\delta+n-1} \right) {}_2F_1(1, \delta+n; \gamma+\delta+n; \frac{1}{1+d})$$

An alternative derivation

Assuming lifetimes are distributed BG,

$$E[DRL(d) \mid \gamma, \delta, \text{active in } n]$$

$$= \sum_{t=n}^{\infty} \frac{S(t \mid T > n-1; \gamma, \delta)}{(1+d)^{t-n}}$$

$$= \sum_{t=n}^{\infty} \frac{S(t \mid \gamma, \delta)}{S(n-1 \mid \gamma, \delta)} \left(\frac{1}{1+d}\right)^{t-n}$$

$$= \sum_{t=n}^{\infty} \frac{B(\gamma, \delta+t)}{B(\gamma, \delta+n-1)} \left(\frac{1}{1+d}\right)^{t-n}$$

$$= \left(\frac{\delta+n-1}{\gamma+\delta+n-1}\right) {}_{2}F_{1}(1, \delta+n; \gamma+\delta+n; \frac{1}{1+d})$$

Further reading

Fader, Peter S. and Bruce G. S. Hardie (2010), "Customer-Base Valuation in a Contractual Setting: The Perils of Ignoring Heterogeneity," *Marketing Science*, **29** (January–February), 85–93. http://brucehardie.com/papers/022/

Fader, Peter S. and Bruce G.S. Hardie (2017), "Exploring the Distribution of Customer Lifetime Value (in Contractual Settings)."

http://brucehardie.com/notes/035/

Fader, Peter S. and Bruce G.S. Hardie (2018), "The Mean and Variance of Customer Lifetime Value in Contractual Settings." http://brucehardie.com/notes/036/

Summary

- How to compute CLV in contractual settings
 - Recognising the need to project customer survival beyond the observed data
 - Understanding the distinction between the value of a new versus existing customer
- How to use a probability model to forecast customer survival
- Understanding the phenomenon of retention-rate dynamics

Beyond the basic BG model

A second dataset

	Α	В	С	D	E	F	G
1	gamma	1.281					
2	delta	7.790					
3	LL	-1225.13					
4							
5	Year	t	# Cust.	# Lost	P("die")	S(t)	
6	1	0	1000			1.0000	
7	2	1	869	131	0.1412	0.8588	-256.43
8	3	2	743	126	0.1092	0.7496	-279.00
9	4	3	653	90	0.0867	0.6628	-220.05
10	5	4	593	60	0.0703	0.5925	-159.27
11							-310.38

Model performance

What assumptions have we made?

- ✓ Heterogeneity
- **X** Duration dependence
- **X** Covariates
- X Contagion

Adding duration dependence

We use Nakagawa and Osaki's (1975) discrete Weibull (dW) distribution:

$$S(t | \theta, c) = (1 - \theta)^{t^c}, c > 0.$$

Simple, mathematically convenient, and flexible; the best analogue of the (continuous) Weibull distribution.

- When c > 1, we have *positive duration dependence* \Longrightarrow the churn probability increases over time (retention probability decreases over time).
- When c < 1, we have *negative duration dependence* \Longrightarrow the churn probability decreases over time.

The beta-discrete-Weibull (BdW) model

Assuming heterogeneity in θ is distributed beta,

$$S(t \mid \gamma, \delta, c) = \int_0^1 S(t \mid \theta, c) g(\theta \mid \gamma, \delta) d\theta$$

$$= \int_0^1 (1 - \theta)^{t^c} \frac{\theta^{\gamma - 1} (1 - \theta)^{\delta - 1}}{B(\gamma, \delta)} d\theta$$

$$= \frac{1}{B(\gamma, \delta)} \int_0^1 \theta^{\gamma - 1} (1 - \theta)^{\delta + t^c - 1} d\theta$$

$$= \frac{B(\gamma, \delta + t^c)}{B(\gamma, \delta)}.$$

Numerical evaluation of the beta function

Not all computing environments have a beta function (or even a gamma function). Recall that the beta function $B(\gamma, \delta)$ can be expressed in terms of gamma functions:

$$B(\gamma, \delta) = \frac{\Gamma(\gamma)\Gamma(\delta)}{\Gamma(\gamma + \delta)}.$$

Most computing environments have a function that evaluates $\ln (\Gamma(\cdot))$. In Excel, we have gammaln.

Therefore,

$$\Gamma(\gamma) = \exp(\operatorname{gammaln}(\gamma))$$
 $B(\gamma, \delta) = \exp(\operatorname{gammaln}(\gamma) + \operatorname{gammaln}(\delta) - \operatorname{gammaln}(\gamma + \delta))$

Estimating model parameters

	Α	В	С	D	E	F	G	
1	gamma	0.259	B(gamma, delta)		3.210			
2	delta	1.722						
3	С	1.585						
4	LL	-1222.75						
5								
6	Year	t	# Cust.	# Lost	P("die")	BdW		
7	1	0	1000			1.0000		
8	2	1	869	131	0.1309	0.8691	-266.41	
9	3	2	743	126	0.1272	0.7419	-259.79	
10	4	3	653	90	0.0871	0.6548	-219.62	
11	5	4	593	60	0.0618	0.5929	-166.98	
12							-309.94	
13								
14	E1	=EXP(GAMMALN(B1)+GAMMALN(B2)-						
15		GAMMALN	GAMMALN(B1+B2))					
16	F7	=EXP(GAM	=EXP(GAMMALN(\$B\$1)+GAMMALN(\$B\$2+B7^\$B\$3)-					
17		GAMMALN	GAMMALN(\$B\$1+\$B\$2+B7^\$B\$3))/\$E\$1					
18	E8	=F7-F8						

Model performance

Further reading

Fader, Peter S., Bruce G. S. Hardie, Yuzhou Liu, Joseph Davin, and Thomas Steenburgh (2018), ""How to Project Customer Retention" Revisited: The Role of Duration Dependence," *Journal of Interactive Marketing*, **43** (August), 1–16.

Jaganathan, Srihari and Ka Lok Lee (2019), "Simple Probability Models for Predicting Aggregate or Sparse Data: An Empirical Analysis of Projecting Patient Persistency," Journal of the Pharmaceutical Management Science Association, Spring, Article 1. http://www.pmsa.net/jpmsa-vol07-article01

[R Package] "foretell: Projecting Customer Retention Based on Fader and Hardie Probability Models." https://CRAN.R-project.org/package=foretell

From discrete to continuous time

We have considered settings where the discrete contract period is annual.

In other settings, we have a quarterly contract period. Or a monthly contract. Or a weekly contract. Or the customer can cancel at any point in time with "immediate" effect.

At some level, we stop treating time as discrete and view it as continuous.

From discrete to continuous time

As we go from flipping the coin every year, to every month, to every week, to every day, to every hour, ...

BG
$$\longrightarrow$$
 gamma mixture of exponentials Pareto Type II

$$S(t \mid r, \alpha) = \left(\frac{\alpha}{\alpha + t}\right)^r$$

BdW \longrightarrow gamma mixture of Weibulls (Generalized) Burr Type XII

$$S(t \mid r, \alpha, c) = \left(\frac{\alpha}{\alpha + t^{c}}\right)^{r}$$

From discrete to continuous time

The fit and associated forecasts of the Pareto Type II are exactly the same as those of the BG. However, we tend to favor a discrete-time model given ease of story telling.

Adding time-varying covariate effects

Discrete time:

Fader, Peter S. and Bruce G.S. Hardie (2020), "Incorporating Time-Varying Covariates in a Simple Mixture Model for Discrete-Time Duration Data."

https://brucehardie.com/notes/037/

Continuous time:

Fader, Peter S., Bruce G.S. Hardie, and Robert Zeithammer (2003), "Forecasting New Product Trial in a Controlled Test Market Environment," *Journal of Forecasting*, **22** (August), 391–410.

Schweidel, David A., Peter S. Fader, and Eric T. Bradlow (2008), "Understanding Service Retention Within and Across Cohorts Using Limited Information," *Journal of Marketing*, **72** (January), 82–94.

But when do we really want to include the effects of covariates?

Raw data:

ID	Year 1	Year 2	Year 3	Year 4	Year 5
0001	1	1	0	0	0
0002	1	0	0	0	0
0003	1	1	1	0	0
:		:		:	
0999	1	1	1	0	0
1000	1	0	0	0	0
	1000	631	468	382	326

Standard summary (single cohort):

$$\begin{array}{cccc} \text{Calendar Time} \rightarrow \\ \hline n_1 & n_2 & n_3 & \dots & n_I \end{array}$$

Standard summary (multiple cohorts):

Cohort	(Calendar Time $ ightarrow$						
1	n_{11}	n_{12}	n_{13}		n_{1I}			
2		n_{22}	n_{23}		n_{2I}			
3			n_{33}		n_{3I}			
÷				٠	÷			
I					n_{II}			
	$n_{.1}$	n _{.2}	n _{.3}		$n_{.I}$			

Cohort	Calendar Time $ ightarrow$
$1 - n_{11}$	n_{1I}
$2 n_2$	n_{2I}
:	:
I-1	$n_{I-1,I-1}$ $n_{I-1,I}$
1	n_{II}

Cohort Calendar Time \rightarrow					
n_{11}					
	n_{22}				
		n	I-1.I-1		
			,-	n_{II}	
$n_{.1}$	$n_{.2}$		$n_{.I-1}$	$n_{.I}$	
		n ₂₂	n ₂₂	n_{22} $n_{I-1,I-1}$	

Cohort		Cal	endar	Time –	>
1					n_{1I}
2					n_{2I}
:					
					:
I-1					$n_{I-1,I}$
1					n_{II}
	$n_{.1}$	$n_{.2}$		$n_{.I-1}$	$n_{.I}$

Cohort	Calendar Time	\rightarrow
1	n_{1I-1}	n_{1I}
2	n_{2I-1}	n_{2I}
I-1	$n_{I-1,I-1}$	$n_{I-1,I}$
I	,	n_{II}

Fader, Peter S. and Bruce G.S. Hardie (2007), "Fitting the sBG Model to Multi-Cohort Data." http://brucehardie.com/notes/017/

Netflix (10Q/10K Data)

Year	Qtr	Begin	Add	Subtract	End
1999	4	NA	NA	NA	NA
2000	1	NA	NA	NA	NA
2000	2	NA	NA	NA	NA
2000	3	NA	NA	NA	NA
2000	4	NA	NA	NA	NA
2001	1	NA	NA	NA	NA
2001	2	NA	88	NA	308
2001	3	308	107	NA	334
2001	4	334	NA	NA	456
2002	1	456	312	165	603
2002	2	603	236	169	670
1	1			1	1
2009	1	9390	2413	1493	10310
2009	2	10310	1936	1647	10599
2009	3	10599	2180	1670	11109
2009	4	11109	2803	1644	12268
2010	1	12268	3492	1793	13967
2010	2	13967	3059	2025	15001
2010	3	15001	4101	2169	16933
2010	4	16933	5649	2572	20010
2011	1	20010	6299	3512	22797
2011	2	22797	5315	3518	24594
2011	3	24594	4714	5519	23789
2011	4	23789	NA	NA	24395
2012	1	24395	NA	NA	26074
2012	2	26074	NA	NA	26494
2012	3	26494	NA	NA	27507
2012	4	27507	NA	NA	29368
2013	1	29368	NA	NA	31396
2013	2	31396	NA	NA	32029
2013	3	32029	NA	NA	33314
2013	4	33314	NA	NA	35642
2014	1	35642	NA	NA	37896

Daniel M. McCarthy, Peter S. Fader, & Bruce G.S. Hardie

Valuing Subscription-Based Businesses Using Publicly Disclosed Customer Data

The growth of subscription-based commerce has changed the types of data that firms report to external shareholders. More than ever, companies are discussing and disclosing information on the number of customers acquired and lost, customer lifetime value, and other data. This has fueled an increasing interest in linking the value of a firm's customers to the overall value of the firm, with the term 'customer-based corporate valuation' being used to describe such efforts. Although several researchers in the fields of marketing and accounting have explored this idea, their underlying models of customer acquisition and retention do not adequately reflect the empirical realities associated with these behaviors, and the associated valuation models do not meet the standards of finance professionals. The atmost develop a framework for valuing subscription-based firms that addresses both issues, and they apply it to data from DISH Network and Sirius XM Holdinss.

Keywords: customer lifetime value, customer equity, shareholder value, valuation

© 2017, American Marketing Association ISSN: 0022-2429 (print) 1547-7185 (electronic) Journal of Marketing Vol. 81 (January 2017), 17–35 DOI: 10.1509/im.15.0519

Looking ahead to tomorrow

ID	Year 1	Year 2	Year 3	Year 4	Year 5
0001	1	1	0	0	0
0002	1	0	0	0	0
0003	1	1	1	0	0
0004	1	1	0	0	0
0005	1	1	1	1	1
0006	1	0	0	0	0
:		:		:	
0998	1	0	0	0	0
0999	1	1	1	0	0
1000	1	0	0	0	0
	1000	631	468	382	326

ID	1995	1996	1997	1998	1999	2000	2001
100001	1	0	0	0	0	0	0
100002	1	0	0	0	0	0	0
100003	1	0	0	0	0	0	0
100004	1	0	1	0	1	1	1
100005	1	0	1	1	1	0	1
100006	1	1	1	1	0	1	0
100007	1	1	0	1	0	1	0
100008	1	1	1	1	1	1	1
100009	1	1	1	1	1	1	0
100010	1	0	0	0	0	0	0
:		:		:		:	
111102	1	1	1	1	1	1	1
111103	1	0	1	1	0	1	1
111104	1	0	0	0	0	0	0
	11104	5652	4674	4019	3552	3555	3163