

Atividade:

Para o professor

Objetivos específicos

OE1 Aprofundar a familiaridade dos alunos com a representação na reta;

OE2 Explorar a propriedade de densidade dos pontos que representam frações na reta numérica ou, equivalentemente, do conjunto das frações, ou ainda, dos números racionais positivos.

Discussões sobre o desenvolvimento da atividade

- Caso os alunos tenham dificuldades em pensar sobre as soluções das tarefas propostas, o professor pode propor e explorar tarefas análogas com números naturais, empregando, por exemplo, a primeira figura.
- O item b) visa especificamente dar continuidade à discussão sobre densidade dos números racionais na reta, que foi introduzida na lição 4. A partir da escrita de frações como $\frac{15}{12}$ e $\frac{22}{12}$ pode não ser difícil para os alunos observar os seis números $\frac{16}{12}$, $\frac{17}{12}$, $\frac{18}{12}$, $\frac{19}{12}$, $\frac{20}{12}$ e $\frac{21}{12}$. Uma estratégia para encontrar mais números é escrever, por exemplo, A e B como $\frac{30}{24}$ e $\frac{44}{24}$ e tomar $\frac{n}{24}$, com n variando entre 30 e 44 está entre A e B. A ideia é discutir com a turma que, como sempre podemos repetir esse processo, sempre podemos encontrar mais números entre A e B. Daí, pode-se retomar a discussão sobre frações equivalentes e sobre densidade, que foi ensejada nos últimos 3 exercícios da lição 4.

Atividade

Observando a reta, Miguel conseguiu determinar o tamanho do segmento azul entre os dois pontos A=3 e B=7 marcados da seguinte forma:

Miguel calculou o tamanho do segmento azul fazendo a diferença entre o tamanho do segmento vermelho e o tamanho do segmento verde. Assim, concluiu que o tamanho do segmento AB é igual a 4. Usando um raciocínio parecido, e considerando $C=\frac{5}{4}$ e $D=\frac{11}{6}$, ajude Miguel a realizar as tarefas a seguir.

- a) Escreva C e D a partir de uma mesma subdivisão da unidade (isto é, com o mesmo denominador).
- b) Determine seis frações que correspondam a pontos na reta numérica entre C e D. Discuta com seus colegas se é possível determinar mais que seis valores e, se for possível, qual seria a estratégia para fazer isso.

Realização:

NT7 OLIMPÍADA BRASILEIRA
0 3 DE MATE MÁTICA
0 3 DAS ESCOLAS PÚBLICAS

Patrocínio:

- c) Calcule o tamanho do segmento CD.
- d) Determine uma fração que, somada a $\frac{5}{4}$ dê um resultado menor que $\frac{11}{6}$. Justifique a sua resposta usando a reta.

$$\frac{5}{4} + \frac{\square}{\square} = \frac{11}{6}.$$

- e) Encontre outras três possíveis respostas para o item anterior.
- f) Determine duas frações possíveis, que quando somadas a $\frac{5}{4}$ tenham como resultado $\frac{11}{6}$. Justifique a sua resposta usando a reta.

$$\frac{5}{4} + \frac{\square}{\square} + \frac{\square}{\square} = \frac{11}{6}.$$

Solução:

- a) Por exemplo, $C = \frac{15}{12}$ e $D = \frac{22}{12}$.
- b) $\frac{16}{12}$, $\frac{17}{12}$, $\frac{18}{12}$, $\frac{19}{12}$, $\frac{20}{12}$ e $\frac{21}{12}$.

Se escrevermos as frações C e D com outro denominador comum pode ser mais fácil de observar mais que 6 frações. Por exemplo, $C=\frac{30}{24}$ e $D=\frac{44}{24}$ as frações a seguir estão entre C e D

$$\frac{31}{24}, \frac{32}{24}, \frac{33}{24}, \frac{34}{24}, \frac{35}{24}, \frac{36}{24}, \frac{37}{24},$$

$$\frac{38}{24}, \frac{39}{24}, \frac{40}{24}, \frac{41}{24}, \frac{42}{24} \in \frac{43}{24}.$$

Note que conseguimos agora 13 frações entre C e D. No entanto, se escrevermos C e D com o denominador 48 ainda podemos determinar mais valores. Note também que sempre podemos escolher um denominador maior de modo que encontremos mais valores.

c) O tamanho do segmento ${\cal CD}$ é dado por

Patrocínio: