Exercice 1 (Questions de cours.)

Donner l'énoncé ainsi que la démonstration des résultats suivants.

- 1. Donner le lemme de décomposition des novaux.
- 2. Que peut-on dire au sujet du spectre et de la trigonalisation d'une matrice nilpotente?
- 3. Que peut-on dire au sujet de la diagonalisation d'une matrice nilpotente?

Exercice 2 (Exercice préparé.)

Soit

$$A = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 0 & 0 & 3 \end{pmatrix}.$$

Déterminer les sous-espaces vectoriels de \mathbb{R}^3 stables par A.

Exercice 3

Soit K un corps et E un K-espace vectoriel de dimension finie n. Soit $u \in \mathcal{L}(E)$ un endomorphisme de E tel que rg u=1.

- 1. Donner une condition nécessaire et suffisante pour que u soit diagonalisable.
- 2. Si u n'est pas diagonalisable, prouver que $u^2 = 0$.

Exercice 4

Soit a_1, \ldots, a_{n-1} et b_1, \ldots, b_{n-1} des nombres réels, avec $n \ge 3$, et soit

$$A = \begin{pmatrix} 0 & \cdots & 0 & b_1 \\ \vdots & & \vdots & \vdots \\ 0 & \cdots & 0 & b_{n-1} \\ a_1 & \cdots & a_{n-1} & 0 \end{pmatrix} \in M_n(\mathbb{R}).$$

- 1. Prouver que rg A < 2.
- 2. Dans le cas où rg $A \leq 1$, prouver que A est diagonalisable si et seulement si A=0.
- 3. Dans le cas rg A=2, trouver une condition nécessaire et suffisante pour que A soit diagonalisable. Indication : on s'intéressera à la trace de A et A^2 .

Exercice 5

Soit K un corps et E un K-espace vectoriel de dimension finie. Soit $f, g \in \mathcal{L}(E)$ deux endomorphismes qui commutent : $f \circ g = q \circ f$.

1. Prouver que tout sous-espace propre de f est stable par q.

- 2. Soit F un sous-espace vectoriel de E stable par q. Prouver que si q est diagonalisable, alors $g_{|F|}$, la restriction de g à F, est diagonalisable.
- 3. Prouver que si f et g sont diagonalisables, alors ils sont diagonalisables dans une même base.

Exercice 6

Soit E un \mathbb{R} -espace vectoriel de dimension finie et $f \in \mathcal{L}(E)$ un endomorphisme. On suppose que f est inversible. Prouver que f^{-1} est un polynôme en f.

Exercice 7

Soit K un corps et $n \in \mathbb{N}^*$ un entier. Soit $A \in M_n(\mathbb{K})$ une matrice et

$$B = \begin{pmatrix} A & A \\ 0 & A \end{pmatrix} \in M_{2n}(\mathbb{K})$$

une matrice par blocs.

- 1. Soit $P \in \mathbb{K}[X]$ un polynôme. Prouver que $P(B) = \begin{pmatrix} P(A) & AP'(A) \\ 0 & P(A) \end{pmatrix}$.
- 2. En déduire une condition nécessaire et suffisante sur A pour que B soit diagonalisable.

Exercice 8

Soit $m \in \mathbb{R}$ un nombre réel et

$$A = \begin{pmatrix} 1 & 0 & 1 \\ -1 & 2 & 1 \\ 2 - m & m - 2 & m \end{pmatrix} \in M_3(\mathbb{R}).$$

- 1. Quels sont les valeurs propres de A?
- 2. Pour quelles valeurs de m la matrice A est-elle diagonalisable?
- 3. Calculer A^k pour tout $k \in \mathbb{N}$ dans le cas où m = 2.

Exercice 9

EXERCICE 9
Soit
$$A = \begin{pmatrix} a_1 & a_2 & \cdots & a_n \\ a_n & a_1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & a_2 \\ a_2 & \cdots & a_n & a_1 \end{pmatrix}$$
 et $J = \begin{pmatrix} 0 & 1 & (0) \\ \vdots & \ddots & \ddots & \\ 0 & & \ddots & 1 \\ 1 & 0 & \cdots & 0 \end{pmatrix}$ dans $M_n(\mathbb{C})$.

1. Soit $B \in M_n(\mathbb{C})$ une matrice diagonalisable, prouver que pour tout Q

- 1. Soit $B \in M_n(\mathbb{C})$ une matrice diagonalisable, prouver que pour tout $Q \in \mathbb{C}[X]$, Q(B) est diagonalisable.
- 2. En exprimant A comme un polynôme en J, diagonaliser la matrice A.
- 3. Application: n = 4 et $(a_1, a_2, a_3, a_4) = (1, 2, 3, 4)$.