

GRUPO I

1. Para que os números de cinco algarismos sejam ímpares e tenham 4 algarismo pares, todos os números devem ser pares à exceção do último. Assim, existem 4 hipóteses para selecionar o primeiro algarismo, das dezenas de milhar (nomeadamente 2, 4, 6, e 8, ficando garantido que o número é superior a 20 000), 5 hipóteses para a escolha do segundo algarismo (os anteriores e o zero), tal como para os terceiro e quarto algarismos; e também 5 hipóteses para o quinto algarismo, o das unidades (nomeadamente 1, 3, 5, 7 e 9, ficando garantido que o número é ímpar).

Assim a quantidade de números ímpares com cinco algarismos que têm quatro algarismos pares e são superiores a $20\,000$ é:

$$4 \times 5 \times 5 \times 5 \times 5 = 4 \times 5^4$$

Resposta: Opção D

2. A linha do triângulo de Pascal em que a soma dos dois primeiros elementos com os dois últimos elementos é igual a 20, como o primeiro e o último números são 1, a soma do segundo com o penúltimo é 18, sendo estes iguais entre si, e por isso iguais a $\frac{18}{2} = 9$.

Na linha do triângulo de Pascal em que o segundo elemento é 9, os elementos são da forma ${}^{9}C_{k}$, pelo que, recorrendo à calculadora, podemos verificar a composição da linha:

Assim, escolhendo, ao acaso, um elemento desta linha, a probabilidade de ele ser par é $\frac{6}{10} = \frac{3}{5}$

Resposta: Opção C

3. Como $\lim x_n = \lim \left(-\frac{1}{n}\right) = 0^-$, então:

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} f(x) = \frac{0-1}{e^{0-} - 1} = \frac{-1}{1^{-} - 1} = \frac{-1}{0^{-}} = +\infty$$

Graficamente, na figura ao lado, estão representados alguns termos de (x_n) como objetos, e alguns termos da sucessão das imagens $f(x_n)$, que tendem para $+\infty$, quando o valor de n aumenta.

Resposta: Opção D

4. O triângulo [OBC] é retângulo em B, $\overline{OB} = 1$, e [BC] é o cateto oposto ao ângulo α , temos que:

$$\operatorname{tg}\alpha = \frac{\overline{BC}}{\overline{OB}} \;\; \Leftrightarrow \;\; \operatorname{tg}\alpha = \frac{\overline{BC}}{1} \;\; \Leftrightarrow \;\; \operatorname{tg}\alpha = \overline{BC}$$

Logo, vem que:

$$A_{[OBC]} = \frac{\overline{OB} \times \overline{BC}}{2} = \frac{1 \times \operatorname{tg} \alpha}{2} = \frac{\operatorname{tg} \alpha}{2}$$

A área do setor circular de centro O,raio 1 e amplitude α (delimitado pelo arco AB) é:

$$A = \frac{\alpha \times 1^2}{2} = \frac{\alpha}{2}$$

Como a área da zona sombreada (A_S) pode ser calculada como a diferença entre as áreas do triângulo [OBC] e o setor circular de centro O e delimitado pelo arco AB, temos que:

$$A_S = A_{[OBC]} - A = \frac{\operatorname{tg}\alpha}{2} - \frac{\alpha}{2} = \frac{\operatorname{tg}\alpha - \alpha}{2}$$

Resposta: Opção B

5. Para que o gráfico de uma função tenha exatamente dois pontos de inflexão, a segunda derivada deve ter exatamente dois zeros, associados a uma mudança de sinal.

Nas opções (B) e (C) existem 4 e 3 zeros associados a uma mudança de sinal, respetivamente, ou seja, se cada um destes for o gráfico da segunda derivada, o gráfico da função associada terá, respetivamente quatro e três pontos de inflexão.

Na opção (D) existem 2 zeros, mas só um deles está associado a uma mudança de sinal, ou seja, se este for o gráfico da segunda derivada, o gráfico da função associada terá um único ponto de inflexão.

Na opção (A) existem 2 zeros, ambos associados a uma mudança de sinal, pelo que podemos concluir que este é o gráfico da segunda derivada, em que o gráfico da função associada terá exatamente dois pontos de inflexão.

Resposta: Opção A

6. Como a reta de equação y=2x-5 é assíntota do gráfico de f e $D_f=\mathbb{R}^+,$ sabemos que:

$$\lim_{x \to +\infty} \frac{f(x)}{x} = 2$$

Assim, vem que:

$$\lim_{x \to +\infty} \frac{6x-1}{f(x)} = \lim_{x \to +\infty} \frac{\frac{6x-1}{x}}{\frac{f(x)}{x}} = \frac{\lim_{x \to +\infty} \frac{6x-1}{x}}{\lim_{x \to +\infty} \frac{f(x)}{x}} = \frac{\lim_{x \to +\infty} \left(\frac{6x}{x} - \frac{1}{x}\right)}{2} = \frac{6-0}{2} = 3$$

Resposta: Opção C

- 7. Como a reta r é perpendicular ao plano α , o vetor diretor da reta e o vetor normal do plano são colineares. Assim, qualquer vetor diretor da reta r tem que ser colinear com o vetor $\vec{u} = (1, -1, -2)$ Analisando as condições que definem cada uma das retas, nomeadamente os vetores diretores, temos:
 - A reta definida pela condição da opção (A), que pode ser escrita como $\frac{x-2}{1} = \frac{z+1}{1} \land y = 0$, com o objetivo de evidenciar as coordenadas do vetor diretor, que é $\overrightarrow{u_A} = (1,0,1)$ e que não é colinear com o vetor normal do plano α
 - A reta definida pela condição da opção (B), que pode ser escrita como $\frac{x-5}{-1} = \frac{y+3}{1} = \frac{z+3}{2}$, com o objetivo de evidenciar as coordenadas do vetor diretor, que é $\overrightarrow{u_B} = (-1,1,2)$ e que é colinear com o vetor normal do plano α , porque $\overrightarrow{u_B} = -\overrightarrow{u}$
 - A reta definida pela condição da opção (C), que evidencia as coordenadas do vetor diretor, que é $\overrightarrow{u_C} = (2,3,0)$ e não é colinear com o vetor normal do plano α
 - A reta definida pela condição da opção (D), que pode ser escrita como $\frac{x-2}{1} = \frac{y+0}{-1} = \frac{z-3}{1}$, com o objetivo de evidenciar as coordenadas do vetor diretor, que é $\overrightarrow{u_D} = (1, -1, 1)$ e que não é colinear com o vetor normal do plano α

Assim, a reta definida pela condição (B) é a única perpendicular ao plano α e contém o ponto A(2,0,3), e se substituirmos as coordenadas do ponto na condição obtemos uma proposição verdadeira:

$$-2+5=0+3=\frac{3+3}{2} \iff 3=3=3$$

Resposta: Opção B

8. A operação "multiplicar por i"corresponde a "fazer uma rotação de centro em O e amplitude $\frac{\pi}{2}$ radianos", pelo que a imagem geométrica de iw está no primeiro quadrante a igual distância da origem do que a imagem geométrica de w

A operação "multiplicar por 2" corresponde a "fazer duplicar a distância à origem, mantendo o argumento do número complexo", pelo que $2iw=z_1$

Finalmente, a imagem geométrica de um número complexo, e do seu simétrico correspondem a rotações de centro em O e amplitude π radianos, pelo que $-2iw=z_4$

Resposta: Opção D

GRUPO II

1.

1.1. Simplificando a expressão de z_1 vem:

$$z_1 = \frac{1-i}{2i} - i^{-1} = \frac{1-i}{2i} - \frac{1}{i} = \frac{1-i}{2i} - \frac{2}{2i} = \frac{1-i-2}{2i} = \frac{-1-i}{2i} = \frac{(-1-i)i}{(2i)i} = \frac{-i-i^2}{2i^2} = \frac{-i-(-1)}{2(-1)} = \frac{-i+1}{-2} = \frac{i-1}{2} = \frac{-1+i}{2} = -\frac{1}{2} + \frac{1}{2}i$$

•
$$\rho = \left| -\frac{1}{2} + \frac{1}{2}i \right| = \sqrt{\left(-\frac{1}{2}\right)^2 + \left(\frac{1}{2}\right)^2} = \sqrt{\frac{1}{4} + \frac{1}{4}} = \sqrt{\frac{2}{4}} = \frac{\sqrt{2}}{2}$$

• $\operatorname{tg} \theta = \frac{-\frac{1}{2}}{\underline{1}} = -1$; como $\operatorname{sen} \theta > 0$ e $\cos \theta < 0$, θ é um ângulo do 2º quadrante, logo $\theta = \pi - \frac{\pi}{4} = \frac{3\pi}{3} - \frac{\pi}{4} = \frac{3\pi}{4}$

$$\text{Logo } z_1 = \frac{\sqrt{2}}{2} \operatorname{cis} \frac{3\pi}{4}$$

 $\label{eq:2.1} \mbox{Logo}\;z_1=\frac{\sqrt{2}}{2}\mbox{cis}\,\frac{3\pi}{4}$ E assim, pela fórmula de Moivre para a potenciação

$$(z_1)^4 = \left(\frac{\sqrt{2}}{2}\operatorname{cis}\frac{3\pi}{4}\right)^4 = \left(\frac{\sqrt{2}}{2}\right)^4\operatorname{cis}\left(4\times\frac{3\pi}{4}\right) = \frac{(\sqrt{2})^4}{2^4}\operatorname{cis}(3\pi) = \frac{4}{16}\operatorname{cis}(3\pi) = \frac{1}{4}\operatorname{cis}\pi$$

Como $\overline{z_2} = \overline{\operatorname{cis}\left(-\frac{\pi}{4}\right)} = \operatorname{cis}\left(-\left(-\frac{\pi}{4}\right)\right) = \operatorname{cis}\frac{\pi}{4}$, fazendo o produto na f.t., vem:

$$(z_1)^4 \times \overline{z_2} = \left(\frac{1}{4}\operatorname{cis}\pi\right) \times \left(\operatorname{cis}\frac{\pi}{4}\right) = \left(\frac{1}{4} \times 1\right)\operatorname{cis}\left(\pi + \frac{\pi}{4}\right)$$

Como $\arg((z_1)^4 \times \overline{z_2})$ é da forma $\frac{\pi}{4} + k\pi$, $k \in \mathbb{Z}$, a imagem geométrica de $(z_1)^4 \times \overline{z_2}$ pertence à bissetriz dos quadrantes ímpares.

1.2. Como sen $(2\alpha) = 2 \operatorname{sen} \alpha \cos \alpha$, sen $\alpha = \cos \left(\frac{\pi}{2} - \alpha\right)$ e $\cos \alpha = \operatorname{sen} \left(\frac{\pi}{2} - \alpha\right)$ vem que

$$w = \operatorname{sen}(2\alpha) + 2i\cos^2\alpha = 2\operatorname{sen}\alpha\cos\alpha + 2i\cos^2\alpha = 2\cos\alpha(\operatorname{sen}\alpha + i\cos\alpha) =$$

$$=2\cos\alpha\left(\cos\left(\frac{\pi}{2}-\alpha\right)+i\sin\left(\frac{\pi}{2}-\alpha\right)\right)=2\cos\alpha\left(\,\mathrm{cis}\,\left(\frac{\pi}{2}-\alpha\right)\right)$$

Como $\cos \alpha > 0$, porque $\alpha \in \left]0, \frac{\pi}{2}\right[$, a f.t. do número complexo $w \notin w = 2\cos\alpha\left(\operatorname{cis}\left(\frac{\pi}{2} - \alpha\right)\right)$, em que $|w| = 2\cos\alpha$

2.1. Considerando a experiência aleatória que consiste em escolher, ao acaso, um aluno nesta turma, e os acontecimentos:

 $R:\ll O$ aluno ser rapariga»

D:«O aluno está inscrito no desporto escolar»

Temos que
$$P(\overline{R}) = 0.6$$
; $P(D) = 0.8$ e $P(\overline{D}|\overline{R}) = 0.2$

Assim, organizando os dados numa tabela obtemos:

•
$$P(R) = 1 - P(\overline{R}) = 1 - 0.6 = 0.4$$

•
$$P(\overline{D}) = 1 - P(D) = 1 - 0.8 = 0.2$$

•
$$P(\overline{D} \cap \overline{R}) = P(\overline{R}) \times P(\overline{D}|\overline{R}) = 0.6 \times 0.2 = 0.12$$

•
$$P(R \cap \overline{D}) = P(\overline{D}) - P(\overline{D} \cap \overline{R}) = 0.2 - 0.12 = 0.08$$

•
$$P(R \cap D) = P(R) - P(R \cap \overline{D}) = 0.4 - 0.08 = 0.32$$

	R	\overline{R}	
D	0,32		0,8
\overline{D}	0,08	0,12	0,2
	0,4	0,6	1

Assim, calculando a probabilidade de um aluno dessa turma, escolhido ao acaso, ser rapariga, sabendo que está inscrito no desporto escolar e, escrevendo o resultado na forma de fração irredutível, temos:

$$P(R|D) = \frac{P(R \cap D)}{P(D)} = \frac{0.32}{0.8} = \frac{2}{5}$$

2.2. Recorrendo à Regra de LaPlace para determinar a probabilidade, o número de casos possíveis é o número de grupos que podemos formar com 3 alunos escolhidos de entre os 25, como a ordem é irrelevante, corresponde a $^{25}C_3$

Como a turma tem 25 alunos, e 80% estão inscritos no desporto escolar, o número de inscritos é de $25\times0.8=20$

Para determinar o número de casos favoráveis, ou seja, o número de grupos em que, pelo menos, 2 alunos (dos 3) estão inscritos no desporto escolar, calculamos a soma do número de grupos relativos a duas situações distintas

- todos (os 3) estão inscritos no desporto escolar, o que corresponde a selecionar 3 de entre os 20 inscritos (sem considerar relevante a ordenação), ou seja $^{20}C_3$
- exatamente 2 (dos 3) estão inscritos no desporto escolar e o outro aluno não, que corresponde a selecionar 2 alunos do conjunto dos 20 inscritos e 1 dos 5 não inscritos, ou seja $^{20}C_2 \times 5$

Assim, calculando a probabilidade de serem escolhidos, pelo menos, dois alunos que estão inscritos no desporto escolar, e arredondando o resultado às centésimas, temos

$$\frac{^{20}C_3 + ^{20}C_2 \times 5}{^{25}C_3} \approx 0.91$$

3. Como A e \overline{A} são acontecimentos equiprováveis, temos que $P(A)=P\left(\overline{A}\right)$ Como $P(A)=1-P\left(\overline{A}\right)$ vem que

$$P(A) = 1 - P(A) \Leftrightarrow P(A) + P(A) = 1 \Leftrightarrow 2P(A) = 1 \Leftrightarrow P(A) = \frac{1}{2}$$

Como A e B são acontecimentos independentes, temos que:

$$P(A \cap B) = P(A) \times P(B)$$

Assim, vem que:

$$2P(A \cup B) = 2\left(P(A) + P(B) - P(A \cap B)\right)$$

$$= 2P(A) + 2P(B) - 2P(A \cap B)$$

$$= 2P(A) + 2P(B) - 2 \times P(A) \times P(B)$$

$$= 2 \times \frac{1}{2} + 2P(B) - 2 \times \frac{1}{2} \times P(B)$$

$$= 1 + 2P(B) - 1 \times P(B)$$

$$= 1 + P(B)$$
Teorema: $P(X \cup Y) = P(X) + P(Y) - P(X \cap Y)$
Hipótese: $P(A \cap B) = P(A) \times P(B)$
Hipótese: $P(A \cap B) = P(A) \times P(B)$

Logo, se $P(A) = P(\overline{A})$ e $P(A \cap B) = P(A) \times P(B)$, então $2P(A \cup B) = 1 + P(B)$ q.e.d.

4. Recorrendo às equações da reta AD podemos determinar as coordenadas dos pontos A e D, substituindo, para cada um dos pontos, as coordenadas nulas:

Assim, calculando as coordenadas do ponto D, como x = 0, vem:

$$\frac{0-3}{3} = -\frac{z}{5} \Leftrightarrow -1 = -\frac{z}{5} \Leftrightarrow 5 = z$$

Ou seja, temos que D(0,0,5)

Procedendo da mesma forma com o ponto A, como z=0, vem:

$$\frac{x-3}{3} = -\frac{0}{5} \iff \frac{x-3}{3} = 0 \iff x-3 = 0 \iff x = 3$$

Ou seja, temos que A(3,0,0)

Assim, podemos como o ponto B e o ponto A têm a mesma abcissa, vem que B(3, -3,0) Para calcular a ordenada do ponto C vamos usar o Teorema de Pitágoras:

$$\left\|\overrightarrow{CD}\right\|^2 = \left\|\overrightarrow{OC}\right\|^2 + \left\|\overrightarrow{OD}\right\|^2 \Leftrightarrow 41 = \left\|\overrightarrow{OC}\right\|^2 + 5^2 \Leftrightarrow 41 - 25 = \left\|\overrightarrow{OC}\right\|^2 \Leftrightarrow 16 = \left\|\overrightarrow{OC}\right\|^2 \underset{\left\|\overrightarrow{OC}\right\| > 0}{\Leftrightarrow} 4 = \left\|\overrightarrow{OC}\right\|$$

Logo temos que C(0, -4,0)

Como conhecemos as coordenadas dos pontos B, C e D, vamos determinar as coordenadas de dois vetores, não colineares, do plano BCD:

$$\overrightarrow{CD} = D - C = (0.0.5) - (0.0.4.0) = (0.4.5)$$

$$\overrightarrow{CB} = B - C = (3, -3, 0) - (0, -4, 0) = (3, 1, 0)$$

Podemos agora determinar as coordenadas de um vetor perpendicular aos dois vetores do plano $(\vec{u} = (a,b,c))$, que é um vetor normal do plano BCD:

$$\begin{cases} (a,b,c).(0,4,5) = 0 \\ (a,b,c).(3,1,0) = 0 \end{cases} \Leftrightarrow \begin{cases} 4b + 5c = 0 \\ 3a + b = 0 \end{cases} \Leftrightarrow \begin{cases} c = -\frac{4b}{5} \\ a = -\frac{b}{3} \end{cases}$$

Assim temos que qualquer vetor normal ao plano que contém a face [BCD] é da forma

$$\vec{u} = \left(-\frac{b}{3}, b, -\frac{4b}{5}\right), b \in \mathbb{R} \setminus \{0\}$$

Ou seja, concretizando um valor para b, por exemplo, b=1, vem $\vec{u}=\left(-\frac{1}{3},1,-\frac{4}{5}\right)$

5.1. Para que a função seja contínua em x=2, temos que garantir que $f(2)=\lim_{x\to 2}f(x)$

•
$$f(2) = 2e^{2-2} = 2e^0 = 2 \times 1 = 2$$

•
$$\lim_{x \to 2^{-}} f(x) = \lim_{x \to 2^{-}} (xe^{x-2}) = 2e^{2^{-}-2} = 2e^{0^{-}} = 2 \times 1 = 2$$

•
$$\lim_{x \to 2^+} f(x) = \lim_{x \to 2^+} \left(\frac{\sec(2-x)}{x^2 + x - 6} + k \right) = \lim_{x \to 2^+} \left(\frac{\sec(2-x)}{x^2 + x - 6} \right) + \lim_{x \to 2^+} k = \lim_{x \to 2^+} \left(\frac{\sec(2-x)}{x^2 + x - 6} \right) + \lim_{x \to 2^+} k = \lim_{x \to 2^+} \left(\frac{\sec(2-x)}{x^2 + x - 6} \right) + \lim_{x \to 2^+} k = \lim_{x \to 2^+} \left(\frac{\sec(2-x)}{x^2 + x - 6} \right) + \lim_{x \to 2^+} k = \lim_{x \to 2^+} \left(\frac{\sec(2-x)}{x^2 + x - 6} \right) + \lim_{x \to 2^+} k = \lim_{x \to 2^+} \left(\frac{\sec(2-x)}{x^2 + x - 6} \right) + \lim_{x \to 2^+} k = \lim_{x \to 2^+} \left(\frac{\sec(2-x)}{x^2 + x - 6} \right) + \lim_{x \to 2^+} k = \lim_{x \to 2^+} \left(\frac{\sec(2-x)}{x^2 + x - 6} \right) + \lim_{x \to 2^+} k = \lim_{x \to 2^+} \left(\frac{\sec(2-x)}{x^2 + x - 6} \right) + \lim_{x \to 2^+} k = \lim_{x \to 2^+} \left(\frac{\sec(2-x)}{x^2 + x - 6} \right) + \lim_{x \to 2^+} k = \lim_{x \to 2^+} \left(\frac{\sec(2-x)}{x^2 + x - 6} \right) + \lim_{x \to 2^+} k = \lim_{x \to 2^+} \left(\frac{\sec(2-x)}{x^2 + x - 6} \right) + \lim_{x \to 2^+} \left(\frac{\sec(2-x)}{x^2 + x - 6}$$

$$=\frac{\operatorname{sen}\left(2-2^{-}\right)}{(2^{-})^{2}+2^{-}-6}+k=\frac{0}{0}+k\ (\operatorname{indeterminação}) \qquad \ \, \underset{\text{e se }x\to 2^{+}, \text{ então }y\to 0^{+}}{(\operatorname{fazendo }y=x-2, \text{ temos }x=y+2\text{ e }-y=2-x;}\\ =\lim_{y\to 0^{+}}\left(\frac{\operatorname{sen}\left(-y\right)}{(y+2)^{2}+y+2-6}\right)+k=\lim_{y\to 0^{+}}\left(\frac{\operatorname{sen}\left(-y\right)}{y^{2}+4y+4+y-4}\right)+k=\lim_{y\to 0^{+}}\left(\frac{\operatorname{sen}\left(-y\right)}{y^{2}+5y}\right)+k=\\ =\lim_{y\to 0^{+}}\left(\frac{-\operatorname{sen}y}{y(y+5)}\right)+k=\lim_{y\to 0^{+}}\left(\frac{\operatorname{sen}y}{y}\times\frac{-1}{y+5}\right)+k=\lim_{y\to 0^{+}}\frac{\operatorname{sen}y}{y}\times\lim_{y\to 0^{+}}\frac{-1}{y+5}+k=\\ =1\times\frac{-1}{0^{+}+5}+k=-\frac{1}{5}+k$$

Como se pretende que a função seja contínua em x=2, e verificámos que $f(2)=\lim_{x\to 2^-}f(x)$, podemos determinar o valor de k garantindo que $f(2) = \lim_{x \to 2^+} f(x)$

$$f(2) = \lim_{x \to 2^+} f(x) \quad \Leftrightarrow \quad 2 = -\frac{1}{5} + k \quad \Leftrightarrow \quad 2 + \frac{1}{5} = k \quad \Leftrightarrow \quad \frac{10}{5} + \frac{1}{5} = k \quad \Leftrightarrow \quad \frac{11}{5} = k$$

5.2. Como $D_f =]-\infty,e[$, se existir uma assíntota horizontal, $\lim_{x\to -\infty} f(x)$ é constante.

Assim, calculando o limite temos:
$$\lim_{x\to -\infty} f(x) = \lim_{x\to -\infty} (xe^{x-2}) = -\infty \times xe^{-\infty-2} = -\infty \times 0 \text{ (indeterminação)}$$
 (Seja $y=-x$, temos que se $x\to -\infty$, então $y\to +\infty$)

$$\begin{split} \lim_{x \to -\infty} & f(x) = \lim_{y \to +\infty} (-ye^{-y-2}) = \lim_{y \to +\infty} (-y \times e^{-y} \times e^{-2}) = \lim_{y \to +\infty} \left(-y \times \frac{1}{e^y} \times e^{-2} \right) = \\ & = \lim_{y \to +\infty} \left(-\frac{y}{e^y} \right) \times \lim_{y \to +\infty} e^{-2} = -\lim_{y \to +\infty} \frac{y}{e^y} \times e^{-2} = -e^{-2} \lim_{y \to +\infty} \frac{y}{e^y} = -e^{-2} \lim_{y \to +\infty} \left(\frac{1}{\frac{e^y}{y}} \right) = \\ & = -e^{-2} \times \frac{1}{\lim_{y \to +\infty} \frac{e^y}{y}} = -e^{-2} \times \frac{1}{+\infty} = -e^{-2} \times 0 = 0 \end{split}$$

Logo, como $\lim_{x\to -\infty} f(x) = 0$ e $D_f =]-\infty,e[$, podemos concluir que a única assíntota horizontal do gráfico de f é a reta de equação y=0

6.1. Começamos por determinar a expressão da derivada da função g:

$$g'(x) = \left(\frac{1+\ln x}{x^2}\right)' = \frac{(1+\ln x)'(x^2) - (1+\ln x)(x^2)'}{(x^2)^2} = \frac{\left(0+\frac{x'}{x}\right)(x^2) - (1+\ln x) \times 2x}{x^4} = \frac{\frac{1}{x} \times x^2 - 2x(1+\ln x)}{x^4} = \frac{\frac{x^2}{x} - 2x - 2x\ln x}{x^4} = \frac{x - 2x - 2x\ln x}{x^4} = \frac{-x - 2x\ln x}{x^4} = \frac{x(-1-2\ln x)}{x(x^3)} = \frac{-1-2\ln x}{x^3}$$

Calculando os zeros da derivada, no domínio da função (\mathbb{R}^+) , vem:

$$\frac{-1 - 2\ln x}{x^3} = 0 \Leftrightarrow -1 - 2\ln x = 0 \land \underbrace{x^3 \neq 0}_{\text{PV}, x > 0} \Leftrightarrow -2\ln x = 1 \Leftrightarrow \ln x = -\frac{1}{2} \Leftrightarrow x = e^{-\frac{1}{2}}$$

Estudando a variação do sinal da derivada e relacionando com a monotonia da função, vem:

x	0		$e^{-\frac{1}{2}}$	+∞
g'	n.d.	+	0	_
g	n.d.	<i>→</i>	Máx	\rightarrow

Assim, como g é crescente no intervalo $\left]0,e^{-\frac{1}{2}}\right]$ e decrescente no intervalo $\left[e^{-\frac{1}{2}},+\infty\right[$ podemos concluir que o único valor de x, para o qual a função g tem um extremo relativo, é $x=e^{-\frac{1}{2}}$ que é um maximizante da função.

6.2. Visualizando na calculadora gráfica o gráfico da função g, numa janela coerente com o domínio da função, (reproduzido na figura ao lado) e usando a função da calculadora para determinar valores aproximados dos zeros de uma função, obtemos um valor aproximado (às centésimas) da abcissa do ponto A, $x_A \approx 0.37$, que é também o comprimento do segmento [OA] que podemos tomar como a base do triângulo [OAB]

Como sabemos que o ponto B está sobre uma reta que passa na origem e tem declive negativo, é um ponto do 4° quadrante, com abcissa menor que a abcissa do ponto A, e cuja distância ao eixo das abcissas, ou seja, a abcissa do ponto B é um valor de x tal que |g(x)| é a medida da altura relativa à base [OA], do triângulo [OAB]

Desta forma, como a área do triângulo é 1, procuramos um valor de x tal que

$$\frac{|g(x)| \times x_A}{2} = 1 \implies |g(x)| \approx \frac{2}{0.37} \iff |g(x)| \approx 5.41$$

Assim, como o ponto B tem ordenada negativa, traçamos também a reta y=-5,41, também reproduzida na figura anterior, e recorremos à função da calculadora para determinar valores aproximados (às centésimas) das coordenadas do ponto de interseção dos gráficos de duas funções para determinar a abcissa do ponto B, ou seja $x_B \approx 0,26$

Assim, para que a área do triângulo [OAB] seja 1, as abcissas dos pontos A e B, com arredondamento às centésimas, são, respetivamente $x_A \approx 0.37$ e $x_B \approx 0.26$

7. A afirmação (I) é falsa. Como a reta de equação x=0 é uma assíntota vertical do gráfico de f, a função não é contínua para x=0, logo não é contínua no intervalo [-3,5], pelo que não estão verificadas as condições de aplicação do Teorema de Bolzano.

A afirmação (II) é falsa. Como $\lim_{x\to -\infty} \left(f(x)-2x\right)=0$ podemos afirmar que a reta de equação y=2x+0 é uma assíntota do gráfico da função f, quando $x\to -\infty$. Assim, quando $x\to -\infty$ o gráfico de f tem uma assíntota que não é horizontal.

A afirmação (III) é verdadeira. O $\lim_{h\to 0} \frac{f(x+h)-f(x)}{h}$ é a derivada de f. Como a derivada existe e é positiva em $\mathbb{R}\setminus\{0\}$, podemos afirmar que f é crescente em $]-\infty,0]$ e também em $[0,+\infty[$, o que permite confirmar a veracidade desta afirmação.