

TMA4230 Functional

Analysis

Spring 2017

Norwegian University of Science and Technology Department of Mathematical Sciences

Exercise set 3

1 Show that the space of converging sequences c is isomorphic to the space of sequences converging to zero, c_0 .

Hint: Let T be the mapping $T: c \to c_0$ defined by

$$T(a_1, a_2, ...) = (-a, a_1 - a, a_2 - a, ...),$$

where $a = \lim_{n} a_n$. Show that T is bijective, determine its inverse, and prove that these maps are linear and continuous.

- 2 Show that the space of continuous linear functionals on ℓ^1 is isometrically isomorphic to ℓ^{∞} .
- $\boxed{\mathbf{3}}$ Let X be a normed space. Show the following assertions:
 - a) For $\varphi \in X^*$ the kernel of φ is a closed hyperplane, i.e. a closed subspace of codimension 1. (Note even more is true, which is not part of the problem: A linear functional on X is continuous if and only if $\ker \varphi$ is closed. Hence $\ker \varphi$ is either closed or dense in X.)
 - b) Suppose $\varphi, \eta \in X^*$ satisfy $\ker \varphi = \ker \eta$. Then $\varphi = c\eta$ for some constant c.
 - c) Given a hyperplane M in X. Then there exists a $\varphi \in X^*$ such that $M = \ker \varphi$.