Chapitre 1 SYSTÈMES DE FORCES : OPÉRATIONS DE BASE

1 Équivalence des vecteurs

- → 2 vecteurs égaux : même magnitude & même direction
- ◆ Équivalence ⇒ interchangeabilité
 - 2 vecteurs équivalents peuvent interchangeables sans modifier le résultat
 - Égalité ≠ Équivalence : effets différents d'une force appliquée à des points différents d'un corps
- ▶ Vecteurs représentant quantités physiques classés en 3 types :
 - Vecteurs fixes : vecteurs équivalents ont mêmes magnitude, direction & point d'application
 - Vecteurs glissants : vecteurs équivalents ont mêmes magnitude, direction & ligne d'action
 - Vecteurs libres : vecteurs équivalents ont mêmes magnitude & direction

2 Force

- ▶ Force : terme désignant une interaction mécanique entre corps
- → Peut affecter à la fois le mouvement & la déformation du corps
- ▶ Peut s'exercer :
 - Par contact : forces par contact sont distribuées sur une surface du corps
 - À distance : forces s'exerçant à distance sont distribuées sur un volume du corps
- ◆ Surface de contact souvent faible approximée par un point ⇒ force concentrée au point de contact
 - Point de contact : point d'application de la force
 - Ligne d'action d'une force concentrée : ligne passant par point d'application & parallèle à la force
- ◆ Force : vecteur fixe, peut produire
 - Tension
 - Compression
 - Aucun effet

3 Réduction du système de forces concourantes

→ Remplacement d'un système de forces concurrentes par une force unique

En composantes rectangulaires :

$$R_x = \sum F_x$$
 $R_y = \sum F_y$ $R_z = \sum F_z$

3 Réduction d'un système de forces concourantes

→ Exemple 1

Déterminer la résultante de 3 forces concourantes de la figure ci-dessous

→ Définition

Soient une force \mathbf{F} & un point O n'étant pas sur la ligne d'action de \mathbf{F} .

Soit un point A sur la ligne d'action de F & un vecteur de O à A nommé \mathbf{r}

Moment de force **F** par rapport à O, centre du moment est défini par :

$$\mathbf{M}_O = \mathbf{r} \times \mathbf{F}$$

 Interprétation géométrique Magnitude de M₀ :

$$M_O = |\mathbf{M}_O| = |\mathbf{r} \times \mathbf{F}| = rF \sin \theta$$

 θ angle entre F & r: $r \sin \theta = d$

$$M_O = Fd$$

◆ Interprétation géométrique

Direction & signe du moment d'une force :

- sens de rotation aiguilles montre : moment négatif
- sens contraire aiguilles montre : moment positif

→ Principe des moments (théorème de Varignon)

Moment d'une force par rapport à un point = somme des moments de ses composantes par rapport à ce point

$$\mathbf{M}_O = \Sigma(\mathbf{r} \times \mathbf{F}) = (\mathbf{r} \times \mathbf{F}_1) + (\mathbf{r} \times \mathbf{F}_2) + (\mathbf{r} \times \mathbf{F}_3)$$

$$\mathbf{M}_O = \mathbf{r} \times (\mathbf{F}_1 + \mathbf{F}_2 + \mathbf{F}_3) = \mathbf{r} \times \mathbf{R}$$

$$\mathbf{R} = \mathbf{F}_1 + \mathbf{F}_2 + \mathbf{F}_3$$

- → Méthodes vectorielle & scalaire
 - Méthode vectorielle :
 - Écrire **F** sous forme vectorielle
 - Choisir r & l'écrire sous forme vectorielle
 - Utiliser le déterminant r x F pour évaluer Mo

$$\mathbf{M}_{O} = \mathbf{r} \times \mathbf{F} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ x & y & z \\ F_{x} & F_{y} & F_{z} \end{vmatrix}$$

$$\mathbf{M}_O = (yF_z - zF_y)\mathbf{i} + (zF_x - xF_z)\mathbf{j} + (xF_y - yF_x)\mathbf{k}$$

- → Méthodes vectorielle & scalaire
 - Méthode scalaire :
 - Convenable lorsque le bras du moment d peut être facilement déterminé

$$M_O = Fd$$

◆ Exemple 2

Pour la figure ci-dessous, déterminer (1) moment de force F par rapport au point C, (2) la distance perpendiculaire entre C & la ligne d'action de F.

→ Définition

Moment de force F par rapport à l'axe AB est la composante orthogonale de M_o le long de l'axe AB, où O est un point sur AB

$$M_{AB} = M_O \cos \alpha$$

lpha angle entre M_o & λ

Étant donné : $M_O \cos \alpha = M_O \cdot \lambda$

$$M_{AB} = \mathbf{M}_O \cdot \lambda = \mathbf{r} \times \mathbf{F} \cdot \lambda$$

 \emph{M}_{AB} : moment de force F par rapport à l'axe AB

 M_o : moment de F par rapport à O, O étant un point sur AB

 λ : vecteur unité dirigé de A vers B

 \boldsymbol{r} : vecteur position de O à n'importe quel point sur la ligne d'action de F

◆ Définition

 λ détermine le sens positif de M_{AB} par la règle de la main droite

Moment de F par rapport à l'axe AB comme vecteur

$$\mathbf{M}_{AB} = M_{AB} \lambda = (\mathbf{r} \times \mathbf{F} \cdot \lambda) \lambda$$

→ Définition

Composantes rectangulaires de M_o

$$M_x = \mathbf{M}_O \cdot \mathbf{i}$$
 $M_y = \mathbf{M}_O \cdot \mathbf{j}$ $M_z = \mathbf{M}_O \cdot \mathbf{k}$

Composantes rectangulaires du moment d'une force par rapport à l'origine O sont égales aux moments de la force par rapport aux coordonnées des axes.

$$\mathbf{M}_O = M_x \mathbf{i} + M_y \mathbf{j} + M_z \mathbf{k}$$

◆ Définition

Cas spécial : axe du moment perpendiculaire à F

$$M_O = M_{AB}$$

◆ Interprétation géométrique

Cas spécial : axe du moment perpendiculaire à F

$$M_{AB} = \mathbf{r} \times \mathbf{F} \cdot \lambda = \mathbf{r} \times (\mathbf{F}_1 + \mathbf{F}_2) \cdot \lambda$$

= $\mathbf{r} \times \mathbf{F}_1 \cdot \lambda + \mathbf{r} \times \mathbf{F}_2 \cdot \lambda$

Comme $r \times F_1$ perpendiculaire à λ , $r \times F_1 \cdot \lambda = 0$

$$M_{AB} = \mathbf{r} \times \mathbf{F}_2 \cdot \boldsymbol{\lambda}$$

Avec $r \times F_2 \cdot \lambda = F_2 d$ (d : distance perpendiculaire de O à la ligne d'action de F_2

$$M_{AB} = F_2 d$$

◆ Interprétation géométrique

Caractéristiques physiques d'un moment de force par rapport à un axe :

- Force parallèle à l'axe du moment n'a de moment par rapport à cet axe
- Si ligne d'action de force intercepte l'axe du moment,
 la force n'a pas de moment par rapport à l'axe
- Moment d'une force proportionnelle à ses composantes ; c'est-à-dire perpendiculaire à l'axe du moment & bras du moment de cette composante
- Sens du moment est la directions dans laquelle la force tend à faire roter le corps

→ Méthodes vectorielle & scalaire

Méthode vectorielle :

$$M_{AB} = \begin{vmatrix} x & y & z \\ F_x & F_y & F_z \\ \lambda_x & \lambda_y & \lambda_z \end{vmatrix}$$

Méthode scalaire :

$$M_{AB} = F_2 d$$

◆ Exemple 3

Pour la figure ci-dessous, (1) calculer les moments M_x , M_y , et M_z de F par la méthode scalaire ; et (2) le moment de F par rapport à O par la méthode vectorielle & vérifier que $M_o = M_x i + M_y j + M_z k$.

◆ Exemple 4

Pour la figure ci-dessous, (1) calculer le moment de ${\bf F}$ par rapport à l'axe CE ; et (2) exprimer le moment trouvé en (1) sous forme vectorielle.

→ Moment d'un couple

▶ Résolution des couples

Moment d'un couple ${\bf C}$ par rapport à un axe AB avec ${\bf \lambda}$ vecteur unité dans la direction de l'axe :

$$M_{AB} = \mathbf{C} \cdot \boldsymbol{\lambda}$$

◆ Exemple 5

Pour le couple montré ci-dessous, calculer (1) le vecteur couple correspondant ; et (2) le moment du couple par rapport à l'axe GH.

◆ Exemple 6

Une section d'un système de tuyaux est actionnée par 3 couple. Déterminer la magnitude du couple résultant C^R & sa direction cosinus sachant que $C_1=50~\rm N.\,m,~C_2=90~\rm N.\,m$ & $C_3=140~\rm N.\,m$

6 Changement de ligne d'action d'une force

Étapes pour transférer un couple

- Introduire 2 forces égales 7 opposées de magnitude **F** au point A qui sont parallèles à la force originale en B
- Identifier les 2 forces formant un couple de magnitude $\mathbf{C}^T = \mathbf{F}\mathbf{d}$, où \mathbf{d} : distance entre les lignes d'action des forces à A & B. Troisième force & \mathbf{C}^T constituent le système de force-couple

C^T est le couple de transfert.

Couple de transfert est égal au moment de force originale (agissant en B) concernant le transfert en A

6 Changement de ligne d'action d'une force

En terminologie vectorielle, ligne d'action de ${\bf F}$ peut être changée en une ligne parallèle à condition d'introduire le transfert de couple.

 ${f r}$: vecteur du point de transfert A au point d'application B de la force originale Prendre note qu'un couple est un vecteur libre pouvant être placé n'importe où.

6 Changement de ligne d'action d'une force

◆ Exemple 7

Pour la pièce d'une machine ci-dessous, remplacer la charge de 150 kN s'exerçant en A par (1) un système de force-couple équivalent par une force agissant en B; et (2) deux forces horizontales, une agissant en B et une autre agissant en C.

