IN THE CLAIMS:

Claims 1-58 (cancelled).

Claim 59 (presently amended): A process for the preparation of a 4,5-dihydro-5,7-lactone steroid compound, said lactone steroid being substituted with keto or dialkoxy at the 3-carbon, and comprising the moiety:

where C(5) represents the 5-carbon and C(7) represents the 7-carbon of the steroid structure of the lactone compound, the process comprising:

converting a <u>7-</u>cyano substituted steroid to the <u>corresponding</u> 7-carboxylic acid <u>substituted steroid</u>, and thereafter converting the 7-carboxylic acid <u>substituted steroid</u> to the <u>corresponding</u> 5,7-lactone <u>substituted steroid</u>.

Claim 60 (presently amended): A process as set forth in claim 59 wherein the $\frac{7\text{-carboxylic acid substituted steroid substrate}}{3\text{-keto-}\Delta\text{-}4,5\text{-}7\text{-carboxy steroid}}$, and a ketal intermediate comprising a 3-dialkoxy-5,7-lactone is formed, said 3-dialkoxy-5,7-lactone being hydrolyzed under the acidic conditions to form the 3-keto-5,7-lactone.

Claims 61-62 (cancelled).

Claim 63 (previously amended): A process for the preparation of a compound corresponding to Formula E:

wherein

-A-A- represents the group -CHR4-CHR5- or -CR4=CR5-;

 R^3 , R^4 and R^5 are independently selected from the group consisting of hydrogen, halo, hydroxy, lower alkyl, lower alkoxy, hydroxyalkyl, alkoxyalkyl, hydroxycarbonyl, cyano and aryloxy;

 R^{17} is C_1 to C_4 alkyl; and

-B-B- represents the group $-CHR^6-CHR^7-$ or an alpha- or beta-oriented group:

where R⁶ and R⁷ are independently selected from the group consisting of hydrogen, halo, lower alkoxy, acyl, hydroxyalkyl, alkoxyalkyl, hydroxycarbonyl, alkyl, alkoxycarbonyl, acyloxyalkyl and cyano and aryloxy;

the process comprising:

thermally decomposing a compound corresponding to Formula DE2 in the presence of an alkali metal halide, said compound of Formula DE2 having the structure:

DE2

wherein R^{12} is C_1 to C_4 alkyl, and -A-A-, -B-B-, R^3 and R^{17}

DE2

are as defined above.

Claim 64 (previously amended): A process for the preparation of a compound corresponding to Formula DE2:

wherein

-A-A- represents the group -CHR4-CHR5- or -CR4=CR5-;

R³, R⁴ and R⁵ are independently selected from the group consisting of hydrogen, halo, hydroxy, lower alkyl, lower alkoxy, hydroxyalkyl, alkoxyalkyl, hydroxycarbonyl, cyano and aryloxy;

 \mbox{R}^{12} and \mbox{R}^{17} are independently selected from among C_1 to C_4 alkyl; and

-B-B- represents the group $-CHR^6-CHR^7-$ or an alpha- or beta-oriented group:

where R⁶ and R⁷ are independently selected from the group consisting of hydrogen, halo, lower alkoxy, acyl, hydroxyalkyl, alkoxyalkyl, hydroxycarbonyl, alkyl, alkoxycarbonyl, acyloxyalkyl, cyano and aryloxy;

the process comprising:

condensing a compound of Formula DE1 with a dialkyl malonate in the presence of a base, said compound of Formula DE1 having the structure:

DE1

wherein -A-A-, -B-B-, R^3 and R^{17} are as defined above.

Claim 65 (currently amended): A process for the preparation of a compound corresponding to Formula DE1:

DE1

wherein

-A-A- represents the group -CHR4-CHR5- or -CR4=CR5-;

R³, R⁴ and R⁵ are independently selected from the group consisting of hydrogen, halo, hydroxy, lower alkyl, lower alkoxy, hydroxyalkyl, alkoxyalkyl, hydroxycarbonyl, cyano and aryloxy;

$$R^{17}$$
 is C_1 to C_4 alkyl; and

-B-B- represents the group $-CHR^6-CHR^7-$ or an alpha- or beta-oriented group:

where R⁶ and R⁷ are independently selected from the group consisting of hydrogen, halo, lower alkoxy, acyl, hydroxyalkyl, alkoxyalkyl, hydroxycarbonyl, alkyl, alkoxycarbonyl, acyloxyalkyl, cyano and aryloxy;

the process comprising:

reacting a compound of Formula D with a sulfonium ylide in the presence of a base, said compound of Formula D having the

structure:

wherein -A-A-, -B-B-, R^3 and R^{17} are as defined above.

Claim 66 (previously amended): A process for the preparation of a compound corresponding to Formula D:

wherein

-A-A- represents the group -CHR4-CHR5- or -CR4=CR5-;

R³, R⁴ and R⁵ are independently selected from the group consisting of hydrogen, halo, hydroxy, lower alkyl, lower alkoxy, hydroxyalkyl, alkoxyalkyl, hydroxycarbonyl, cyano and aryloxy;

 R^{17} is C_1 to C_4 alkyl; and

-B-B- represents the group $-CHR^6-CHR^7-$ or an alpha- or beta-oriented group:

where R⁶ and R⁷ are independently selected from the group consisting of hydrogen, halo, lower alkoxy, acyl, hydroxyalkyl, alkoxyalkyl, hydroxycarbonyl, alkyl, alkoxycarbonyl, acyloxyalkyl, cyano and aryloxy;

the process comprising:

hydrolysis of a compound of Formula C to the 7α -carboxylic

acid and reaction under acidic conditions with a trialkyl orthoformate, the compound of Formula C having the structure:

wherein -A-A-, -B-B- and R³ are as defined above.

Claims 67-68 (cancelled).

Claim 69 (previously amended): A process for the preparation of a compound corresponding to Formula 211:

wherein

-A-A- represents the group -CHR4-CHR5- or -CR4=CR5-;

 R^3 , R^4 and R^5 are independently selected from the group consisting of hydrogen, halo, hydroxy, lower alkyl, lower alkoxy, hydroxyalkyl, alkoxyalkyl, hydroxycarbonyl, cyano and aryloxy; and

-B-B- represents the group $-CHR^6-CHR^7-$ or an alpha- or beta-oriented group:

where R⁶ and R⁷ are independently selected from the group consisting of hydrogen, halo, lower alkoxy, acyl, hydroxyalkyl, alkoxyalkyl, hydroxycarbonyl, alkyl, alkoxycarbonyl, acyloxyalkyl, cyano and aryloxy;

 R^{80} and R^{90} are independently selected from R^8 and R^9 , respectively or R^{80} and R^{90} together form keto;

R⁸ and R⁹ are independently selected from the group consisting of hydrogen, hydroxy, halo, lower alkoxy, acyl, hydroxyalkyl, alkoxyalkyl, [hydroxycarbonyl, alkyl]

hydroxycarbonylalkyl, [alkoxycarbonyl] alkoxycarbonylalkyl,
acyloxyalkyl, cyano and aryloxy, or R⁸ and R⁹ together comprise a
carbocyclic or heterocyclic ring structure, or R⁸ or R⁹ together
with R⁶ or R⁷ comprise a carbocyclic or heterocyclic ring

the process comprising:

structure fused to the pentacyclic D ring;

oxidizing a compound of Formula 210, said compound of Formula 210 having the structure

where -A-A-, -B-B-, R^3 , R^{80} and R^{90} are as defined above.

Claim 70 (currently amended): A process as set forth in claim 69 wherein R^8 and R^9 and R^{90} together with C(17) comprise

where X represents two hydrogen atoms, oxo or =S;

 Y^1 and Y^2 together represent the oxygen bridge -O-, or

Y¹ represents hydroxy, and

 Y^2 represents hydroxy, lower alkoxy or, if X represents H_2 , also lower alkanoyloxy.

Claim 71 (currently amended): A process as set forth in claim 70

wherein R^8 and R^9 R^{80} and R^{90} together with C(17) comprise

Claim 72 (currently amended): A process for the preparation of a compound corresponding to the Formula **A211**:

wherein

-A-A- represents the group -CHR4-CHR5- or -CR4=CR5-;

 R^3 , R^4 and R^5 are independently selected from the group consisting of hydrogen, halo, hydroxy, lower alkyl, lower alkoxy, hydroxyalkyl, alkoxyalkyl, hydroxycarbonyl, cyano and aryloxy; and

-B-B- represents the group -CHR⁶-CHR⁷- or an alpha- or betaoriented group:

where R⁶ and R⁷ are independently selected from the group consisting of hydrogen, halo, lower alkoxy, acyl, hydroxyalkyl, alkoxyalkyl, hydroxycarbonyl, alkyl, alkoxycarbonyl, acyloxyalkyl, cyano and aryloxy; and

R⁸ and R⁹ are independently selected from the group consisting of hydrogen, hydroxy, halo, lower alkoxy, acyl, hydroxyalkyl, alkoxyalkyl, [hydroxycarbonyl, alkyl] hydroxycarbonylalkyl, [alkoxycarbonyl] alkoxycarbonylalkyl, acyloxyalkyl, cyano and aryloxy, or R⁸ and R⁹ together comprise a

carbocyclic or heterocyclic ring structure, or R^8 or R^9 together with R^6 or R^7 comprise a carbocyclic or heterocyclic ring structure fused to the pentacyclic D ring;

the process comprising:

reacting a 3-keto-5,7-hemiacetal intermediate of Formula A209 $\underline{\mathbf{c}}$ with a peroxide oxidizing reagent, said compound of Formula A209C corresponding to the formula:

wherein -A-A-, -B-B-, R³, R⁸ and R⁹ are as defined above.

Claim 73 (currently amended): A process as set forth in claim 72 wherein R^8 and R^9 and R^{90} together with C(17) comprise

where X represents two hydrogen atoms, oxo or =S;

 Y^1 and Y^2 together represent the oxygen bridge -O-, or

Y¹ represents hydroxy, and

 Y^2 represents hydroxy, lower alkoxy or, if X represents H_2 , also lower alkanoyloxy.

Claim 74 (currently amended): A process as set forth in claim 73 wherein R^8 and R^9 R^{80} and R^{90} together with C(17) comprise

Claim 75 (currently amended): A process for the preparation of a

compound corresponding to the Formula A210:

A210

wherein

-A-A- represents the group -CHR4-CHR5- or -CR4=CR5-;

 R^3 , R^4 and R^5 are independently selected from the group consisting of hydrogen, halo, hydroxy, lower alkyl, lower alkoxy, hydroxyalkyl, alkoxyalkyl, hydroxycarbonyl, cyano and aryloxy; and

-B-B- represents the group $-CHR^6-CHR^7-$ or an alpha- or beta-oriented group:

where R⁶ and R⁷ are independently selected from the group consisting of hydrogen, halo, lower alkoxy, acyl, hydroxyalkyl, alkoxyalkyl, hydroxycarbonyl, alkyl, alkoxycarbonyl, acyloxyalkyl, cyano and aryloxy;

 R^{80} and R^{90} are independently selected from R^{8} and R^{9} , respectively, or R^{80} and R^{90} together form keto;

 R^8 and R^9 are independently selected from the group consisting of hydrogen, hydroxy, halo, lower alkoxy, acyl, hydroxyalkyl, alkoxyalkyl, hydroxycarbonyl, alkyl, alkoxycarbonyl, acyloxyalkyl, cyano and aryloxy, or R^8 and R^9 together comprise a carbocyclic or heterocyclic ring structure, or R^8 or R^9 together with R^6 or R^7 comprise a carbocyclic or heterocyclic ring structure fused to the pentacyclic D ring;

the process comprising:

reacting a 3-keto-5,7-hemiacetal intermediate of Formula

A209C with a peroxide oxidizing reagent, said compound of Formula A209C corresponding to the formula:

wherein -A-A-, -B-B-, R³, R⁸ and R⁹ are as defined above.

Claim 76 (currently amended): A process as set forth in claim 75 wherein \mathbb{R}^8 —and \mathbb{R}^9 \mathbb{R}^{80} and \mathbb{R}^{90} together with C(17) comprise

where X represents two hydrogen atoms, oxo or =S;

 Y^1 and Y^2 together represent the oxygen bridge -O-, or

Y¹ represents hydroxy, and

 Y^2 represents hydroxy, lower alkoxy or, if X represents H_2 , also lower alkanoyloxy.

Claim 77 (currently amended): A process as set forth in claim 76 wherein R^8 and R^9 R^{80} and R^{90} together with C(17) comprise

Claim 78 (currently amended): A process for the preparation of a compound corresponding to the Formula A209:

A209

wherein

-A-A- represents the group -CHR⁴-CHR⁵- or -CR⁴=CR⁵-;

R³, R⁴ and R⁵ are independently selected from the group consisting of hydrogen, halo, hydroxy, lower alkyl, lower alkoxy, hydroxyalkyl, alkoxyalkyl, hydroxycarbonyl, cyano and aryloxy;

-B-B- represents the group -CHR⁶-CHR⁷- or an alpha- or betaoriented group:

where R⁶ and R⁷ are independently selected from the group consisting of hydrogen, halo, lower alkoxy, acyl, hydroxyalkyl, alkoxyalkyl, hydroxycarbonyl, alkyl, alkoxycarbonyl, acyloxyalkyl, cyano and aryloxy;

 R^{80} and R^{90} are independently selected from R^8 and R^9 , respectively, or R^{80} and R^{90} together form keto;

R⁸ and R⁹ are independently selected from the group consisting of hydrogen, hydroxy, halo, lower alkoxy, acyl, hydroxyalkyl, alkoxyalkyl, [hydroxycarbonyl, alkyl] hydroxycarbonylalkyl, [alkoxycarbonyl] alkoxycarbonylalkyl, acyloxyalkyl, cyano and aryloxy, or R⁸ and R⁹ together comprise a carbocyclic or heterocyclic ring structure, or R⁸ or R⁹ together with R⁶ or R⁷ comprise a carbocyclic or heterocyclic ring structure fused to the pentacyclic D ring;

and -E-E- is selected from among:

and

where R^{21} , R^{22} and R^{23} are independently selected from among hydrogen, alkyl, halo, nitro, and cyano; and R^{24} is selected from among hydrogen and lower alkyl;

the process comprising:

hydrolyzing a compound corresponding to the Formula A208

A208

wherein -A-A-, -B-B-, -E-E-, R^3 , R^{80} and R^{90} are as defined above; R^{19} is C_1 to C_4 alkyl or the $[R^{18}O-]$ $R^{19}O-$ groups together form an O,O-oxyalkylene bridge; and R^{20} is C_1-C_4 alkyl.

Claim 79 (currently amended): A process for the preparation of a compound corresponding to Formula A205:

wherein

-A-A- represents the group -CHR4-CHR5- or -CR4=CR5-;

 R^3 , R^4 and R^5 are independently selected from the group consisting of hydrogen, halo, hydroxy, lower alkyl, lower alkoxy, hydroxyalkyl, alkoxyalkyl, hydroxycarbonyl, cyano and aryloxy;

A205

-B-B- represents the group $-CHR^6-CHR^7-$ or an alpha- or beta-oriented group:

where R⁶ and R⁷ are independently selected from the group consisting of hydrogen, halo, lower alkoxy, acyl, hydroxyalkyl, alkoxyalkyl, hydroxycarbonyl, alkyl, alkoxycarbonyl, acyloxyalkyl, cyano and aryloxy;

 R^{19} is C_1 to C_4 alkyl or the $[R^{18}O-]$ $\underline{R^{19}O-}$ groups together form an O,O-oxyalkylene bridge; and

 R^{20} is C_1-C_4 alkyl; and

wherein -E-E- is selected from among:

and

where R^{21} , R^{22} and R^{23} are independently selected from among hydrogen, alkyl, halo, nitro, and cyano; R^{24} is selected from among hydrogen and lower alkyl;

the process comprising:

reacting a compound corresponding to Formula A204 with a lower alcohol and an acid, said compound of Formula A204 having the structure:

A204

wherein -A-A-, -B-B-, -E-E-, ${\mbox{R}}^3$, and ${\mbox{R}}^{19}$ are as defined above.

Claim 80 (currently amended): A process for the preparation of a compound corresponding to Formula **A204**:

A204

wherein

-A-A- represents the group -CHR 4 -CHR 5 - or -CR 4 =CR 5 -; R 3 , R 4 and R 5 are independently selected from the group

consisting of hydrogen, halo, hydroxy, lower alkyl, lower alkoxy, hydroxyalkyl, alkoxyalkyl, hydroxycarbonyl, cyano aryloxy;

-B-B- represents the group -CHR⁶-CHR⁷- or an alpha- or betaoriented group:

where R⁶ and R⁷ are independently selected from the group consisting of hydrogen, halo, lower alkoxy, acyl, hydroxyalkyl, alkoxyalkyl, hydroxycarbonyl, alkyl, alkoxycarbonyl, acyloxyalkyl, cyano and aryloxy; and

 R^{19} is C_1 to C_4 alkyl or the $R^{19}\text{O-}$ groups together form an O_1O_2 -oxyalkylene bridge;

wherein -E-E- is selected from among:

and

where R^{21} , R^{22} and R^{23} are independently selected from among hydrogen, alkyl, halo, nitro, and cyano; and R^{24} is selected from among hydrogen and lower alkyl;

the process comprising:

hydrolyzing compound corresponding to Formula A203, said

compound of Formula A203 having the structure:

wherein -A-A-, -B-B-, -E-E- and R^3 are as defined above, and R^{18} is C_1 to C_4 alkyl or the $R^{18}\text{O-}$ groups together form an O,O-oxyalkylene bridge.

Claim 81 (currently amended): A process for the preparation of a compound corresponding to Formula A204:

A204

wherein

-A-A- represents the group -CHR4-CHR5- or -CR4=CR5-;

R³, R⁴ and R⁵ are independently selected from the group consisting of hydrogen, halo, hydroxy, lower alkyl, lower alkoxy, hydroxyalkyl, alkoxyalkyl, hydroxycarbonyl, cyano and aryloxy;

-B-B- represents the group $-CHR^6-CHR^7-$ or an alpha- or beta-oriented group:

where R⁶ and R⁷ are independently selected from the group consisting of hydrogen, halo, lower alkoxy, acyl, hydroxyalkyl, alkoxyalkyl, hydroxycarbonyl, alkyl, alkoxycarbonyl, acyloxyalkyl, cyano and aryloxy; and

 R^{19} is C_1 to C_4 alkyl or the $R^{19}\text{O-}$ groups together form an

O,O-oxyalkylene bridge; and

wherein -E-E- is selected from among:

and

where R^{18} is C_1 to C_4 alkyl or the $R^{18}O$ - groups together form an O,O-oxyalkylene bridge; R^{21} , R^{22} and R^{23} are independently selected from among hydrogen, alkyl, halo, nitro, and cyano; and R^{24} is selected from among hydrogen and lower alkyl;

the process comprising:

protecting the keto substituents of a compound corresponding to Formula A201 by reaction with alkanol under acid condition in the presence of orthoformate, said compound of Formula A201 having the structure:

wherein -A-A-, -B-B-, -E-E- and R^3 , are as defined above, thereby producing a 3-enol ether intermediate corresponding to Formula A202:

A202

wherein -A-A-, -B-B-, -E-E- and R^3 are as defined above, and R^{18} is C_1 to C_4 alkyl or the $R^{18}\text{O-}$ groups together form an O,O-

oxyalkylene bridge; and

reducing said compound of Formula A202.

Claim 82 (currently amended): A process for the preparation of a compound corresponding to the formula A203:

wherein

-A-A- represents the group -CHR4-CHR5- or -CR4=CR5-;

R³, R⁴ and R⁵ are independently selected from the group consisting of hydrogen, halo, hydroxy, lower alkyl, lower alkoxy, hydroxyalkyl, alkoxyalkyl, hydroxycarbonyl, cyano and aryloxy;

-B-B- represents the group $-CHR^6-CHR^7-$ or an alpha- or beta-oriented group:

where R⁶ and R⁷ are independently selected from the group consisting of hydrogen, halo, lower alkoxy, acyl, hydroxyalkyl, alkoxyalkyl, hydroxycarbonyl, alkyl, alkoxycarbonyl, acyloxyalkyl, cyano and aryloxy; and

wherein -E-E- is selected from among:

and

where R^{18} is C_1 to C_4 alkyl or the $R^{18}O$ - groups at C-17 together form an O,O-oxyalkylene bridge; R^{21} , R^{22} and R^{23} are independently selected from among hydrogen, alkyl, halo, nitro, and cyano; and R^{24} is selected from among hydrogen and lower alkyl;

the process comprising:

reducing a compound corresponding to Formula A202:

wherein -A-A-, -B-B-, -E-E-, \mathbb{R}^3 , and \mathbb{R}^{18} are as defined above.

Claims 83-92 (cancelled).

Claim 93 (previously amended): A process for the formation of an epoxy compound comprising contacting a substrate compound having

an olefinic double bond with a peroxide compound in the presence of a peroxide activator, wherein said peroxide activator is chlorodifluoroacetamide or corresponds to a compound having to the formula

wherein

 \mathbb{R}^p is selected from the group consisting of alkenyl, alkynyl and $-(\mathbb{C}X^4X^5)_2$ -;

 X^1 , X^2 , X^3 , X^4 and X^5 are independently selected from among halo, hydrogen, alkyl, haloalkyl and cyano and cyanoalkyl; and provided that at least one of X^4 and X^5 is halo.

Claim 94 (previously amended): A process as set forth in claim 93 wherein and at least two of X^1 , X^2 and X^3 are halo or perhaloalkyl.

Claim 95 (previously amended): A process as set forth in claim 93 wherein all of X^1 , X^2 , X^3 , X^4 and X^5 are halo or perhaloalkyl.

Claims 96-97. (cancelled)

Claim 98 (previously amended): A process as set forth in claim 93 wherein said peroxide activator is selected from the group consisting of chlorodifluoroacetamide and heptafluorobutyramide.

Claim 99 (previously amended): A process as set forth in claim 93 wherein said substrate compound corresponds to the Formula:

wherein

-A-A- represents the group -CHR4-CHR5- or -CR4=CR5-;

R³, R⁴ and R⁵ are independently selected from the group consisting of hydrogen, halo, hydroxy, lower alkyl, lower alkoxy, hydroxyalkyl, alkoxyalkyl, hydroxy carbonyl, cyano and aryloxy;

R¹ represents an alpha-oriented lower alkoxycarbonyl or hydroxycarbonyl radical;

-B-B- represents the group $-CHR^6-CHR^7-$ or an alpha- or beta-oriented group:

where R⁶ and R⁷ are independently selected from the group consisting of hydrogen, halo, lower alkoxy, acyl, hydroxyalkyl, alkoxyalkyl, hydroxycarbonyl, alkyl, alkoxycarbonyl, acyloxyalkyl, cyano and aryloxy; and

R⁸ and R⁹ are independently selected from the group consisting of hydrogen, hydroxy, halo, lower alkoxy, acyl, hydroxyalkyl, alkoxyalkyl, [hydroxycarbonyl, alkyl]

hydroxycarbonylalkyl, [alkoxycarbonyl] alkoxycarbonylalkyl, acyloxyalkyl, cyano and aryloxy, or R⁸ and R⁹ together comprise a carbocyclic or heterocyclic ring structure, or R⁸ or R⁹ together with R⁶ or R⁷ comprise a carbocyclic or heterocyclic ring structure fused to the pentacyclic D ring.

Claim 100 (previously amended): A process as set forth in claim 93 wherein said substrate compound is selected from the group consisting of:

and a product of the epoxidation reaction is selected from the group consisting of:

Claim 101 (previously amended): A process as set forth in claim 93 wherein said substrate compound is selected from the group consisting of:

and a product of the epoxidation reaction is selected from the group consisting of:

Claim 102-140 (cancelled).

Claim 141 (previously amended): A compound corresponding to Formula D:

wherein

-A-A- represents the group $-CHR^4-CHR^5-$ or $-CR^4=CR^5-$;

 R^3 , R^4 and R^5 are independently selected from the group consisting of hydrogen, halo, hydroxy, lower alkyl, lower alkoxy, hydroxyalkyl, alkoxyalkyl, hydroxycarbonyl, cyano and aryloxy;

 R^{17} is C_1 to C_4 alkyl; and

-B-B- represents the group $-CHR^6-CHR^7-$ or an alpha- or beta-oriented group:

where R⁶ and R⁷ are independently selected from the group consisting of hydrogen, halo, lower alkoxy, acyl, hydroxyalkyl, alkoxyalkyl, hydroxycarbonyl, alkyl, alkoxycarbonyl, acyloxyalkyl, cyano and aryloxy.

Claim 142 (previously amended): A compound corresponding to Formula E:

wherein

-A-A- represents the group -CHR4-CHR5- or -CR4=CR5-;

 R^3 , R^4 and R^5 are independently selected from the group consisting of hydrogen, halo, hydroxy, lower alkyl, lower alkoxy, hydroxyalkyl, alkoxyalkyl, hydroxycarbonyl, cyano and aryloxy;

 R^{17} is C_1 to C_4 alkyl; and

-B-B- represents the group $-CHR^6-CHR^7-$ or an alpha- or beta-oriented group:

where R⁶ and R⁷ are independently selected from the group consisting of hydrogen, halo, lower alkoxy, acyl, hydroxyalkyl, alkoxyalkyl, hydroxycarbonyl, alkyl, alkoxycarbonyl, acyloxyalkyl, cyano and aryloxy.

Claim 143 (previously amended): A compound corresponding to Formula F:

wherein

-A-A- represents the group -CHR4-CHR5- or -CR4=CR5-;

R³, R⁴ and R⁵ are independently selected from the group consisting of hydrogen, halo, hydroxy, lower alkyl, lower alkoxy, hydroxyalkyl, alkoxyalkyl, hydroxycarbonyl, cyano and aryloxy; and

-B-B- represents the group $-CHR^6-CHR^7-$ or an alpha- or beta-oriented group:

where R⁶ and R⁷ are independently selected from the group consisting of hydrogen, halo, lower alkoxy, acyl, hydroxyalkyl, alkoxyalkyl, hydroxycarbonyl, alkyl, alkoxycarbonyl, acyloxyalkyl, cyano and aryloxy.

Claim 144 (currently amended): A compound corresponding to

Formula A211:

wherein

-A-A- represents the group -CHR4-CHR5- or -CR4=CR5-;

R³, R⁴ and R⁵ are independently selected from the group consisting of hydrogen, halo, hydroxy, lower alkyl, lower alkoxy, hydroxyalkyl, alkoxyalkyl, hydroxycarbonyl, cyano and aryloxy; and

A211

-B-B- represents the group $-CHR^6-CHR^7-$ or an alpha- or beta-oriented group:

where R⁶ and R⁷ are independently selected from the group consisting of hydrogen, halo, lower alkoxy, acyl, hydroxyalkyl, alkoxyalkyl, hydroxycarbonyl, alkyl, alkoxycarbonyl, acyloxyalkyl, cyano and aryloxy;

 $\rm R^{80}$ and $\rm R^{90}$ are independently selected from $\rm R^{8}$ and $\rm R^{9},$ respectively or $\rm R^{80}$ and $\rm R^{90}$ together form keto; and

R⁸ and R⁹ are independently selected from the group consisting of hydrogen, hydroxy, halo, lower alkoxy, acyl, hydroxyalkyl, alkoxyalkyl, [hydroxycarbonyl, alkyl]

<u>hydroxycarbonylalkyl</u>, [alkoxycarbonyl] <u>alkoxycarbonylalkyl</u>, acyloxyalkyl, cyano and aryloxy, or R^8 and R^9 together comprise a carbocyclic or heterocyclic ring structure, or R^8 or R^9 together with R^6 or R^7 comprise a carbocyclic or heterocyclic ring structure fused to the pentacyclic D ring.

Claim 145 (currently amended): A compound corresponding to Formula ${\tt A2}10:$

wherein

-A-A- represents the group -CHR4-CHR5- or -CR4=CR5-;

 R^3 , R^4 and R^5 are independently selected from the group consisting of hydrogen, halo, hydroxy, lower alkyl, lower alkoxy, hydroxyalkyl, alkoxyalkyl, hydroxycarbonyl, cyano and aryloxy; and

210

-B-B- represents the group $-CHR^6-CHR^7-$ or an alpha- or beta-oriented group:

where R⁶ and R⁷ are independently selected from the group consisting of hydrogen, halo, lower alkoxy, acyl, hydroxyalkyl, alkoxyalkyl, hydroxycarbonyl, alkyl, alkoxycarbonyl, acyloxyalkyl, cyano and aryloxy;

 $\rm R^{80}$ and $\rm R^{90}$ are independently selected from $\rm R^{8}$ and $\rm R^{9},$ respectively, or $\rm R^{80}$ and $\rm R^{90}$ together form keto; and

R⁸ and R⁹ are independently selected from the group consisting of hydrogen, hydroxy, halo, lower alkoxy, acyl, hydroxyalkyl, alkoxyalkyl, [hydroxycarbonyl, alkyl] hydroxycarbonylalkyl, [alkoxycarbonyl] alkoxycarbonylalkyl, acyloxyalkyl, cyano and aryloxy, or R⁸ and R⁹ together comprise a carbocyclic or heterocyclic ring structure, or R⁸ or R⁹ together with R⁶ or R⁷ comprise a carbocyclic or heterocyclic ring structure fused to the pentacyclic D ring.

Claim 146 (currently amended): A compound corresponding to Formula A209:

wherein

-A-A- represents the group -CHR4-CHR5- or -CR4=CR5-;

R³, R⁴ and R⁵ are independently selected from the group consisting of hydrogen, halo, hydroxy, lower alkyl, lower alkoxy, hydroxyalkyl, alkoxyalkyl, hydroxycarbonyl, cyano and aryloxy; and

-B-B- represents the group -CHR⁶-CHR⁷- or an alpha- or betaoriented group:

where R⁶ and R⁷ are independently selected from the group consisting of hydrogen, halo, lower alkoxy, acyl, hydroxyalkyl, alkoxyalkyl, hydroxycarbonyl, alkyl, alkoxycarbonyl, acyloxyalkyl, cyano and aryloxy;

 R^{80} and R^{90} are independently selected from R^{8} and R^{9} , respectively, or R^{80} and R^{90} together form keto;

R⁸ and R⁹ are independently selected from the group consisting of hydrogen, hydroxy, halo, lower alkoxy, acyl, hydroxyalkyl, alkoxyalkyl, [hydroxycarbonyl, alkyl]

hydroxycarbonylalkyl, [alkoxycarbonyl] alkoxycarbonylalkyl, acyloxyalkyl, cyano and aryloxy, or R⁸ and R⁹ together comprise a carbocyclic or heterocyclic ring structure, or R⁸ or R⁹ together with R⁶ or R⁷ comprise a carbocyclic or heterocyclic ring

structure fused to the pentacyclic D ring; and -E-E- is selected from among:

and

where R^{21} , R^{22} and R^{23} are independently selected from among hydrogen, alkyl, halo, nitro, and cyano; and

R²⁴ is selected from among hydrogen and lower alkyl.

Claim 147 (currently amended): A compound corresponding to Formula A208:

wherein

-A-A- represents the group -CHR 4 -CHR 5 - or -CR 4 =CR 5 -; R 3 , R 4 and R 5 are independently selected from the group consisting of hydrogen, halo, hydroxy, lower alkyl, lower alkoxy,

hydroxyalkyl, alkoxyalkyl, hydroxycarbonyl, cyano and aryloxy;

-B-B- represents the group -CHR⁶-CHR⁷- or an alpha- or betaoriented group:

where R⁶ and R⁷ are independently selected from the group consisting of hydrogen, halo, lower alkoxy, acyl, hydroxyalkyl, alkoxyalkyl, hydroxycarbonyl, alkyl, alkoxycarbonyl, acyloxyalkyl, cyano and aryloxy; and

 R^{20} is C_1-C_4 alkyl; and

-E-E- is selected from among:

and

where R^{19} is C_1 to C_4 alkyl or the $R^{18}\text{O-}$ groups together form an O,O-oxyalkylene bridge;

 R^{21} , R^{22} and R^{23} are independently selected from among hydrogen, alkyl, halo, nitro, and cyano; and

R²⁴ is selected from among hydrogen and lower alkyl.

Claim 148 (currently amended): A compound corresponding to

A207

Formula A207:

wherein

-A-A- represents the group -CHR4-CHR5- or -CR4=CR5-;

R³, R⁴ and R⁵ are independently selected from the group consisting of hydrogen, halo, hydroxy, lower alkyl, lower alkoxy, hydroxyalkyl, alkoxyalkyl, hydroxycarbonyl, cyano and aryloxy;

-B-B- represents the group $-CHR^6-CHR^7-$ or an alpha- or beta-oriented group:

where R⁶ and R⁷ are independently selected from the group consisting of hydrogen, halo, lower alkoxy, acyl, hydroxyalkyl, alkoxyalkyl, hydroxycarbonyl, alkyl, alkoxycarbonyl, acyloxyalkyl, cyano and aryloxy; and

 R^{20} is C_1-C_4 alkyl; and

-E-E- is selected from among:

and

where R^{19} is C_1 to C_4 alkyl or the $R^{18}\text{O-}$ groups together form an O,O-oxyalkylene bridge;

 R^{21} , R^{22} and R^{23} are independently selected from among hydrogen, alkyl, halo, nitro, and cyano;

 R^{24} is selected from among hydrogen and lower alkyl; and R^{25} is C_1 to C_4 alkyl.

Claim 149 (currently amended): A compound corresponding to Formula A206:

<u>A</u>206

wherein

-A-A- represents the group -CHR4-CHR5- or -CR4=CR5-;

 R^3 , R^4 and R^5 are independently selected from the group consisting of hydrogen, halo, hydroxy, lower alkyl, lower alkoxy, hydroxyalkyl, alkoxyalkyl, hydroxycarbonyl, cyano and aryloxy;

-B-B- represents the group $-CHR^6-CHR^7-$ or an alpha- or beta-oriented group:

where R^6 and R^7 are independently selected from the group

consisting of hydrogen, halo, lower alkoxy, acyl, hydroxyalkyl, alkoxyalkyl, hydroxycarbonyl, alkyl, alkoxycarbonyl, acyloxyalkyl, cyano and aryloxy;

 R^{20} is C_1-C_4 alkyl; and

-E-E- is selected from among:

and

where R^{19} is C_1 to C_4 alkyl or the $R^{18}\text{O-}$ groups together form an 0,0-oxyalkylene bridge;

 R^{21} , R^{22} and R^{23} are independently selected from among hydrogen, alkyl, halo, nitro, and cyano;

 ${\ensuremath{\text{R}}}^{24}$ is selected from among hydrogen and lower alkyl.

Claim 150 (currently amended): A compound corresponding to Formula A205:

A205

wherein

-A-A- represents the group -CHR4-CHR5- or -CR4=CR5-;

 R^3 , R^4 and R^5 are independently selected from the group consisting of hydrogen, halo, hydroxy, lower alkyl, lower alkoxy, hydroxyalkyl, alkoxyalkyl, hydroxycarbonyl, cyano and aryloxy;

-B-B- represents the group $-CHR^6-CHR^7-$ or an alpha- or beta-oriented group:

where R⁶ and R⁷ are independently selected from the group consisting of hydrogen, halo, lower alkoxy, acyl, hydroxyalkyl, alkoxyalkyl, hydroxycarbonyl, alkyl, alkoxycarbonyl, acyloxyalkyl, cyano and aryloxy; and

 \mathbf{R}^{19} -and \mathbf{R}^{20} is are independently selected from C_1 - C_4 alkyl; and

-E-E- is selected from among:

and

where R^{19} is C_1 to C_4 alkyl or the $[R^{18}O-]$ $R^{19}O-$ groups together form an $O_1O-oxyalkylene$ bridge;

 R^{21} , R^{22} and R^{23} are independently selected from among hydrogen, alkyl, halo, nitro, and cyano;

R²⁴ is selected from among hydrogen and lower alkyl.

Claim 151 (currently amended): A compound corresponding to Formula A204:

wherein

-A-A- represents the group -CHR4-CHR5- or -CR4=CR5-;

 R^3 , R^4 and R^5 are independently selected from the group consisting of hydrogen, halo, hydroxy, lower alkyl, lower alkoxy, hydroxyalkyl, alkoxyalkyl, hydroxycarbonyl, cyano and aryloxy;

-B-B- represents the group $-CHR^6-CHR^7-$ or an alpha- or beta-oriented group:

where R⁶ and R⁷ are independently selected from the group consisting of hydrogen, halo, lower alkoxy, acyl, hydroxyalkyl, alkoxyalkyl, hydroxycarbonyl, alkyl, alkoxycarbonyl,

acyloxyalkyl, cyano and aryloxy; and
 -E-E- is selected from among:

and

where $[R^{18}]$ $\underline{R^{19}}$ is C_1 to C_4 alkyl or the $[R^{18}O-]$ $\underline{R^{19}O-}$ groups together form an O,O-oxyalkylene bridge;

 R^{21} , R^{22} and R^{23} are independently selected from among hydrogen, alkyl, halo, nitro, and cyano;

 ${\ensuremath{\mathsf{R}}}^{24}$ is selected from among hydrogen and lower alkyl.

Claim 152 (currently amended): A compound corresponding to Formula A203:

wherein

-A-A- represents the group -CHR 4 -CHR 5 - or -CR 4 =CR 5 -; R 3 , R 4 and R 5 are independently selected from the group

consisting of hydrogen, halo, hydroxy, lower alkyl, lower alkoxy, hydroxyalkyl, alkoxyalkyl, hydroxycarbonyl, cyano and aryloxy;

-B-B- represents the group $-CHR^6-CHR^7-$ or an alpha- or beta-oriented group:

where R⁶ and R⁷ are independently selected from the group consisting of hydrogen, halo, lower alkoxy, acyl, hydroxyalkyl, alkoxyalkyl, hydroxycarbonyl, alkyl, alkoxycarbonyl, acyloxyalkyl, cyano and aryloxy; and

-E-E- is selected from among:

and

where R^{18} is C_1 to C_4 alkyl or the $R^{18}\text{O-}$ groups at C-17 together form an O,O-oxyalkylene bridge;

 R^{21} , R^{22} and R^{23} are independently selected from among hydrogen, alkyl, halo, nitro, and cyano;

R²⁴ is selected from among hydrogen and lower alkyl.