HW5

October 26, 2023

0.1 CS156A Homework 5

0.2 Wilson Duan

0.2.1 Problem 1.

$$\begin{aligned} &0.008 < (0.1)^2 (1 - \frac{8+1}{N}) \\ &0.8 < 1 - \frac{9}{N} \\ &\frac{9}{N} < 0.2 \\ &45 < N \end{aligned}$$

The smallest answer choice that is greater than 45 is answer choice c) 100.

0.2.2 Problem 2.

For the feature vector $(1, x_1^2, x_2^2)$, the linear classification model is described by $\operatorname{sign}(w_0 * 1 + w_1 x_1^2 + w_2 x_2^2)$. According to the hyperbolic decision boundary, we want the model to predict -1 for very large x_1 and very negative x_1 . This means that as x_1^2 increases, we want the term inside the sign() to be more negative. Therefore, the coefficient to the term x_1^2 must be negative, so $w_1 < 0$.

We also want to predict 1 for very large x_2 and very negative x_2 . This means that as x_2^2 increases, we want the term inside the sign() to be more positive. Therefore, the coefficient to the term x_2^2 must be positive, so $w_2 > 0$.

We also know that w_0 can be adjusted to accommodate these weights, making the hyperbolic decision boundary possible. From the analysis above, the answer choice we arrive at is \mathbf{d}).

0.2.3 Problem 3.

The 4th order polynomial transform has a dimension of d=14 (we do not count the 1). The VC dimension of linear models follows the equation $d_{vc} \leq d+1=14+1=15$. Therefore, the smallest answer choice that is not smaller than d_{vc} is **c**) 15.

0.2.4 Problem 4.

$$E(u,v)=(ue^v-2ve^{-u})^2 \\$$

Using the chain rule,
$$\frac{\partial E(u,v)}{\partial u} = 2(ue^v - 2ve^{-u})(e^v + 2ve^{-u})$$

As a result, the answer is e).

0.2.5 Problem 5.

```
[1]: import math import random import numpy as np
```

```
[3]: error_threshold = 10 ** -14
  learning_rate = 0.1
  u, v = 1, 1
  error = calculate_error(u, v)
  iterations = 0
  while (error > error_threshold):
     partial_u, partial_v = partials(u, v)
     u -= partial_u * learning_rate
     v -= partial_v * learning_rate
     error = calculate_error(u, v)
     iterations += 1

print("Iterations for error to fall below threshold:", iterations)
```

Iterations for error to fall below threshold: 10

According to the code above, it takes 10 iterations for the error to fall below the 10^{-14} threshold, so the answer is **d**).

0.2.6 Problem 6.

```
[4]: u, v
```

[4]: (0.04473629039778207, 0.023958714099141746)

According to the code above, the answer choices that are closest to the u and v found above arre e) (0.045, 0.024).

0.2.7 Problem 7.

```
[5]: iterations = 15
u, v = 1, 1
for i in range(iterations):
    partial_u, _ = partials(u, v)
```

```
u -= partial_u * learning_rate
_, partial_v = partials(u, v)
v -= partial_v * learning_rate
error = calculate_error(u, v)
print("Error after 15 full iterations:", error)
```

Error after 15 full iterations: 0.13981379199615324

According to the code above, the error after 15 full iterations is roughly 0.1398, which is closest to answer choice \mathbf{a}).

0.2.8 Problem 8.

```
[20]: # Define a set of helper functions
      def random_point():
          x = random.random() * 2 - 1
          y = random.random() * 2 - 1
          return (x, y)
      def random_line():
          x1, y1 = random_point()
          x2, y2 = random_point()
          slope = (y2 - y1) / (x2 - x1)
          intercept = y1 - slope * x1
          return (slope, intercept)
      def evaluate_point(slope, intercept, x, y):
          if (slope * x + intercept > y):
              return -1
          return 1
      def create_dataset(n, slope, intercept):
          X = \Gamma
          y = []
          for i in range(n):
              a, b = random_point()
              X.append([a, b])
              y.append(evaluate_point(slope, intercept, a, b))
          return np.array(X), np.array(y)
      def cross_entropy_error(X, y, w):
          return np.mean(np.log(1 + np.exp(-y * np.dot(X, w))))
```

```
[23]: N = 100
N_test = 1000
```

```
runs = 100
learning_rate = 0.01
avg_epochs = 0
avg_error = 0
for i in range(runs):
    # generate train and test datasets
    slope, intercept = random_line()
    X_train, y_train = create_dataset(N, slope, intercept)
    train_set = list(zip(X_train, y_train))
    X_test, y_test = create_dataset(N_test, slope, intercept)
    # initialize
    w = np.zeros(3)
    epochs = 0
    # train model
    while True:
        w_prev = np.copy(w)
        # shuffle data
        random.shuffle(train_set)
        for x, y in train_set:
            x = np.insert(x, 0, 1)
            z = np.dot(w, x)
            gradient = (-y * x) / (1 + np.exp(y * z))
            w -= learning_rate * gradient
        epochs += 1
        if (np.linalg.norm(w - w_prev) < 0.01):</pre>
            break
    # test model
    X_test_modified = np.zeros((N_test, 3))
    for j in range(len(X_test)):
        X_test_modified[j] = np.insert(X_test[j], 0, 1)
    error = cross_entropy_error(X_test_modified, y_test, w)
    avg_error += error
    avg_epochs += epochs
avg_error /= runs
avg_epochs /= runs
print("Average E_out:", avg_error)
print("Average epochs to converge:", avg_epochs)
```

Average E_out: 0.10379824890640138 Average epochs to converge: 336.44 According to the code above, the average E_out is closest to answer choice d) 0.100

0.2.9 Problem 9.

According to the code above, the average epochs it takes to converge is closest to answer choice a) 350.

0.2.10 Problem 10.

When using SGD, the weights are updated point by point. When a point x is classified properly, we don't want to update the weights, and we want the error to be zero. This makes answer choices a, b, and d incorrect because they update the weights no matter the classification accuracy. When a point is misclassified, we want the error to be $-yw^Tx$ in order to simulate a PLA, so the answer is e).