

HINT:

Find
$$\int e^x \sin x \, dx$$

Solution Take e^x as the first function and $\sin x$ as second function. Then, integrating by parts, we have

$$\mathbf{I} = \int e^x \sin x \, dx = e^x (-\cos x) + \int e^x \cos x \, dx$$

$$= -e^x \cos x + \mathbf{I}_1 \text{ (say)} \qquad \dots \text{ (1)}$$
Taking e^x and $\cos x$ as the first and second functions, respectively, in \mathbf{I}_1 , we get

$$I_1 = e^x \sin x - \int e^x \sin x \, dx$$

Substituting the value of
$$I_1$$
 in (1), we get
$$I = -e^x \cos x + e^x \sin x - I \text{ or } 2I = e^x (\sin x - \cos x)$$

Hence,

$$I = \int e^x \sin x \, dx = \frac{e^x}{2} (\sin x - \cos x) + C$$

Alternatively, above integral can also be determined by taking $\sin x$ as the first function and e^x the second function.