Definicja. Kolorowanie wierzchołkowe grafu G to funkcja $c:V(G)\to S$ dla pewnego zbioru S. Jeśli $\forall_{uv\in E(G)}\ c(u)\neq c(v)$, to kolorowanie nazywamy właściwym. Jeśli $|S|\leq k$, to c nazywamy k-kolorowaniem.

Definicja. Liczba chromatyczna grafu G oznaczana $\chi(G)$ to najmniejsza taka liczba k, że istnieje k-kolorowanie grafu G.

Twierdzenie. W grafie G zachodzi $\chi(G) \leq \Delta(G) + 1$.

Dowód. Przedstawimy algorytm kolorowania nazywany First-Fit. Rozważmy dowolny porządek liniowy na wierzchołkach v_1, \ldots, v_n . Kolorujemy je w kolejności tego porządku, definiujemy kolorowanie $c(v_i) = \min\{k \in \mathbb{N}_1 : k \notin c(N_G(v_i) \cap \{v_1, \ldots, v_{i-1}\})\}$. Każdy wierzchołek ma co najwyżej $\Delta(G)$ sąsiadów, więc tyle kolorów może być zajętych.

Definicja. Liczba kolorująca grafu G oznaczana $\operatorname{col}(G)$ to najmniejsza taka liczba k, że istnieje porządek liniowy v_1, \ldots, v_n na wierzchołkach G taki, że $\forall_{i \in [n]} |N_G(v_i) \cap \{v_1, \ldots, v_{i-1}\}| < k$. Zachłanny algorytm kolorujący dla takiego porządku dowodzi, że $\chi(G) \leq \operatorname{col}(G)$.

Twierdzenie. Wartość $\operatorname{col}(G)$ dla grafu G wynosi $\max \{\delta(H) : H \subseteq G\} + 1$.

Dowód. (\leq) Ustawiamy wierzchołki od końca: niech v_n będzie wierzchołkiem o minimalnym stopniu w G, v_i definiujemy jako wierzchołek o minimalnym stopniu w $G - \{v_{i+1}, \ldots, v_n\}$. Mamy $|N_G(v_i) \cap \{v_1, \ldots, v_{i-1}\}| = \delta(G - \{v_{i+1}, \ldots, v_n\}) \leq \max\{\delta(H) : H \subseteq G\}$, co kończy dowód.

(\geq) Wybierzmy $H_0 \subseteq G$ taki, że $\delta(H_0) = \max \{\delta(H) : H \subseteq G\}$. Dla każdego liniowego porządku v_1, \ldots, v_n istnieje pewien wierzchołek v_j , który jest ostatnim w tym porządku wierzchołkiem H_0 . Mamy $|N_G(v_j) \cap \{v_1, \ldots, v_{j-1}\}| \geq \delta(H_0) = \max \{\delta(H) : H \subseteq G\}$, co kończy dowód.

Twierdzenie (Brooks, 1941). Dla spójnego grafu G, który nie jest kliką ani nieparzystym cyklem, zachodzi $\chi(G) \leq \Delta(G)$.

Dowód. Załóżmy nie wprost, że teza nie zachodzi i rozważmy minimalny na liczbę wierzchołków kontrprzykład G. Oznaczmy $\Delta = \Delta(G)$. G jest Δ -regularny, bo gdyby istniał wierzchołek o mniejszym stopniu, to po usunięciu go mielibyśmy mniejszy kontrprzykład (inaczej można pokolorować mniejszy graf i usunięty wierzchołek też, bo ma odpowiednio mały stopień). Jeśli $\Delta = 1$, to $G \cong K_2$, co jest zabronione przez założenia twierdzenia. Jeśli $\Delta = 2$, to G jest parzystym cyklem (bo nieparzysty jest zabroniony przez założenia), czyli jest dwudzielny. Dalej zakładamy, że $\Delta \geq 3$. Pokażemy, że G jest Δ -kolorowalny.

Z tego, że G jest spójny i nie jest kliką wynika, że istnieją wierzchołki v_1, v_2, v_3 takie, że $v_1v_2, v_2v_3 \in E(G)$ i $v_1v_3 \notin E(g)$. Rzeczywiście, gdyby każdy wierzchołek v sąsiadował ze wszystkimi sąsiadami swoich sąsiadów, to ze spójności dla dowolnych wierzchołków v, w istnieje ścieżka $vx_1x_2...w$. x_1 jest sąsiadem v, a v jest sąsiadem v, więc v jest sąsiadem v, kontynuując indukcyjnie takie rozumowanie dochodzimy do tego, że v jest sąsiadem v. Wobec ich dowolności graf jest kliką i sprzeczność.

Niech $P=v_1v_2v_3\ldots v_k$ będzie najdłuższą ścieżką zaczynającą się od wcześniej zdefiniowanych wierzchołków v_1,v_2,v_3 . Wszyscy sąsiedzi v_k na niej leżą, bo inaczej można by ją wydłużyć. Najpierw rozważmy przypadek, w którym ta ścieżka zawiera wszystkie wierzchołki w grafie. Niech $j=\max\{i\in[k]:v_2v_i\in E(G)\}$. Z $\Delta\geq 3$ jest $j\geq 4$. Kolorujemy wierzchołki algorytmem First-Fit w następującej kolejności:

- v_1, v_3 dostają ten sam kolor
- v_4, \ldots, v_{j-1} , każdy ma niepokolorowanego sąsiada (następny na ścieżce), więc używamy co najwyżej Δ kolorów
- v_k, \ldots, v_i , niepokolorowanym sąsiadem jest poprzedni na ścieżce, dla v_i jest v_2
- \bullet v_2 ma pokolorowanych wszystkich sąsiadów, ale v_1, v_3 są tego samego koloru

Mamy więc kolorowanie co najwyżej Δ kolorami.

Teraz załóżmy, że $V(P) \subsetneq V(G)$. Niech $j = \min\{i \in [k] : v_i v_k \in E(G)\}$ (mamy $j \geq 1$, definicja dobra, bo każdy sąsiad v_k jest na ścieżce) oraz $\ell = \max\{i \in \{j, \ldots, k\} : \exists_{u \in V(G) \setminus \{v_j, \ldots, v_k\}} \ uv_i \in E(G)\}$ (definicja dobra, bo jeśli j = 1, to istnieje wierzchołek poza ścieżką, a graf jest spójny, dla pozostałych j istnieje krawędź $v_j v_{j-1}$; $\ell < k$ z definicji j)

Niech $C = v_j \dots v_k v_j$ będzie cyklem. Kolorujemy $V(G) \setminus V(C)$ – możemy, bo G minimalnym kontrprzykładem. Następnie kolorujemy First-Fitem:

- $v_{\ell+1}$ na ten sam kolor, co u
- $v_{\ell+2} \dots v_k v_j \dots v_\ell$ (jeśli $\ell+1=k$, to po prostu zaczynamy od v_j), każdy ma niepokolorowanego sąsiada (następny na cyklu), v_ℓ ma u i $v_{\ell+1}$ tego samego koloru

Mamy więc kolorowanie co najwyżej Δ kolorami, co ostatecznie kończy dowód.

Definicja. Liczba klikowa grafu G oznaczana $\omega(G)$ to maksymalny rozmiar kliki w G. Zachodzi $\omega(G) \leq \chi(G)$, bo kliki nie da się pokolorować mniejszą ilością kolorów niż jej wielkość.

Twierdzenie (konstrukcja Zykova). Niech rodzina grafów $\{G_n\}_{n\geq 1}$ będzie zadana w następujący sposób: G_1 jest jednowierzchołkowym grafem, G_{i+1} definiujemy rekurencyjnie: bierzemy wszystkie grafy G_1, \ldots, G_i i kładziemy obok siebie, dla każdego ciągu wierzchołków $(v_1, \ldots, v_i) \in G_1 \times \ldots \times G_i$ tworzymy nowy wierzchołek z krawędziami do dokładnie tych wierzchołków. W tak zadanej rodzinie zachodzi $\forall_n \ \omega(G_n) = 2, \chi(G_n) \geq n$.

Dowód. Przeprowadzimy dowód indukcyjny. Baza jest oczywista. Gdyby G_{i+1} miał trójkąt, to musiałby on zawierać wierzchołki z różnych mniejszych grafów lub nowododane wierzchołki, ale w obu tych grupach nie ma krawędzi pomiędzy wierzchołkami. Niech ϕ będzie kolorowaniem G_{i+1} . Dla każdego $j \in [i-1]$ kopia grafu G_{j+1} zawiera o jeden kolor więcej niż kopia G_j , a więc z każdej kolejnej z tych kopii można wziąć wierzchołek z niewziętym wcześniej kolorem, uzyskując ciąg (v_1, \ldots, v_i) wierzchołków, każdy w innym kolorze. Zatem do pokolorowania nowoutworzonego wierzchołka sąsiadującego z tym zbiorem wierzchołków potrzebny jest nowy kolor, co daje $\chi(G_{i+1}) \geq i+1$.

Twierdzenie (konstrukcja Tutte'a). Niech rodzina grafów $\{G_n\}_{n\geq 1}$ będzie zadana w następujący sposób: G_1 jest jednowierzchołkowym grafem, G_{i+1} definiujemy rekurencyjnie: bierzemy zbiór wierzchołków I o |I|=i(k-1)+1, gdzie $k=|V(G_i)|$. Dla każdego $X\subset I:|X|=k$ dodajemy nad I graf $G_X\cong G_i$ i pewne skojarzenie doskonałe łączące G_X z X. W tak zadanej rodzinie zachodzi \forall_n $\omega(G_n)=2, \chi(G_n)\geq n$.

Dowód. Przeprowadzimy dowód indukcyjny. Baza jest oczywista. Gdyby G_{i+1} miał trójkąt, to musiały by być w nim 2 wierzchołki z I lub 2 z grafów G_X – one jednak są niepołączone. Załóżmy, że ϕ jest i-kolorowaniem G_{i+1} . Z zasady szufladkowej istnieje zbiór k wierzchołków X o jednym kolorze, jego graf G_X jest pokolorowany bez tego koloru, więc i-1 kolorami, co daje sprzeczność z definicją G_X . Zatem $\chi(G_{i+1}) \geq i+1$.

Twierdzenie (grafy przesunięciowe; Erdős-Hajnal). Niech rodzina grafów $\{G_n\}_{n\geq 2}$ będzie zadana w następujący sposób: $V(G_n)=\{(i,j):1\leq i< j\leq n\},\,(ij)(k\ell)\in E(G_n)\iff j=k\vee i=\ell$ (przedziały o końcach w liczbach naturalnych, które są takie, że jeden się zaczyna, a drugi kończy). W tak zadanej rodzinie zachodzi $\forall_n\ \omega(G_n)=2,\chi(G_n)\geq \lceil\log n\rceil$.

Dowód. Dla połączonych krawędzią $(i,j), (k,\ell)$ załóżmy bez straty ogólności, że j=k. Wtedy jeśli $(d,t)(i,j)\in G_n$, to albo t=i, albo d=j=k, i w obu przypadkach nie ma krawędzi $(d,t)(k,\ell)$. Zatem G_n nie ma trójkątów. Weźmy kolorowanie $\phi:V(G_n)\to [k]$ i dla każdego $i\in [n]$ zdefiniujmy zbiory $x_i=\{\phi(ij):j\in \{i+1,\ldots,n\}\}$. Mamy $i\neq j\Longrightarrow x_i\neq x_j$, bo jeśli $\phi(ij)=\alpha$, to x_j nie może zawierać koloru α (poprawność kolorowania), a x_i go zawiera. Zatem $n\leq 2^k$, czyli $k\geq \lceil\log n\rceil$.

Twierdzenie (uogólnione grafy przesunięciowe; Erdős-Hajnal). Niech rodzina grafów $\{G_n, k\}_{n,k \geq 2}$ będzie zadana w następujący sposób: $V(G_n) = \binom{[n]}{k}$, dwie k-krotki $\{x_1 < \ldots < x_k\}$, $\{y_1 < \ldots < y_k\}$ są połączone krawędzią, jeśli $x_2 = y_1, \ldots, x_k = y_{k-1}$ lub $y_2 = x_1, \ldots, y_k = x_{k-1}$ (przesunięcie o jeden element). W tak zadanej rodzinie zachodzi $\forall_n \ \omega(G_{n,k}) = 2, \chi(G_{n,k}) \geq \left\lceil \log^k n \right\rceil$.

Dowód. Biorąc dwie k-krotki połączone krawędzią widzimy, że żaden inny sąsiad jednej nie może być sąsiadem drugiej, zatem nie ma trójkątów. Dowód drugiej własności przeprowadzimy indukcyjnie, bazą są standardowe grafy przesunięciowe. Niech $\phi:V(G_{n,k})\to [r]$ będzie poprawnym kolorowaniem. Dla każdej (k-1)-krotki $x_1<\ldots< x_{k-1}\in {[n]\choose k-1}$ definiujemy zbiór $\phi'(x_1\ldots x_{k-1})=\{\phi(x_1,\ldots,x_{k-1},x_k):x_k\in\{x_{k-1}+1,\ldots,n\}\}.$ Pokażemy, że ϕ' jest poprawnym kolorowaniem $G_{n,k-1}$. Weźmy dowolne (k-1)-krotki połączone krawędzią $\{a_1<\ldots< a_{k-1}\}$ i $\{a_2<\ldots< a_k\}$. Mamy $\phi(a_1,\ldots,a_k)\in \phi'(a_1,\ldots,a_{k-1})$ i $\phi(a_1,\ldots,a_k)\notin \phi'(a_2,\ldots,a_k)$, bo inaczej dwa sąsiadujące wierzchołki byłyby tak samo pokolorowane. Mamy zatem $2^r\geq \chi(G_{n,k-1})\geq \lceil\log^{k-1}n\rceil$, czyli $r\geq \lceil\log^k n\rceil$.

Definicja. Graf G nazywamy doskonałym, jeśli $\forall_{H \subset_{\text{ind}} G} \omega(H) = \chi(H)$.

Definicja. Graf G nazywamy przedziałowym, jeśli istnieje funkcja $f:V(G)\mapsto I$, gdzie I jest pewną rodziną przedziałów w $\mathbb R$ oraz spełnione jest $\forall_{u,v\in V(G)}\ uv\in E(G)\iff f(u)\cap f(v)\neq\emptyset$ (krawędź oznacza przecinanie).

Twierdzenie. Grafy przedziałowe są doskonałe.

Dowód. Dla grafu przedziałowego G każdy graf $H\subseteq_{\mathrm{ind}} G$ też jest przedziałowy. Wystarczy więc pokazać $\omega(G)=\chi(G)$. Ustawmy przedziały w kolejności rosnących lewych krańców i kolorujmy First-Fit. Jeśli dla pewnego przedziału $\omega(G)$ kolorów będzie zajętych, to mamy $\omega(G)$ przedziałów zawierających lewy kraniec aktualnie rozważanego przedziału i jeszcze ten przedział, czyli $(\omega(G)+1)$ -klikę. Sprzeczność.

Definicja. Graf G nazywamy grafem porównywalności, jeśli istnieje poset P taki, że $uv \in E(G) \iff \{u,v\}$ jest łańcuchem w P (krawędź oznacza porównywalność). Analogicznie definiujemy graf nieporównywalności – wtedy krawędź oznacza, że elementy są nieporównywalne.

Twierdzenie. Grafy porównywalności i nieporównywalności są doskonałe.

Dowód. W grafie porównywalności klika odpowiada łańcuchowi, a kolorowanie pokryciu antyłańcuchami. Twierdzenie dualne do twierdzenia Dilwortha mówi, że największa długość łańcucha ($\omega(G)$) jest równa najmniejszemu pokryciu antyłańcuchami ($\chi(G)$). W grafie nieporównywalności analogiczną własność daje twierdzenie Dilwortha.

Twierdzenie (Lovász, 1972; Weak Perfect Graph Conjecture). Niech G będzie grafem. G jest doskonały.

Twierdzenie (Robertson-Seymour-Thomas-Chudnovsky, 2002; Strong Perfect Graph Conjecture). Graf G jest doskonały wtedy i tylko wtedy, gdy G ani \overline{G} nie zawierają nieparzystego cyklu jako podgrafu indukowanego.

Definicja. Dla grafów G, H mówimy, że G jest H-wolny, jeśli nie zawiera H jako podgrafu indukowanego.

Definicja. Kografy to grafy zdefiniowane w następujący sposób: pojedynczy wierzchołek jest kografem, jeśli G_1, G_2 to kografy, to $G_1 \sqcup G_2$ (grafy połączone w jeden bez krawędzi pomiędzy) i $G_1 \bowtie G_2$ (dwa grafy z dodanymi wszystkimi krawędziami pomiędzy nimi) są kografami i nic innego nie jest kografem.

Twierdzenie. Graf G jest kografem wtedy i tylko wtedy, gdy jest P_4 -wolny.

Dowód. (\Longrightarrow) Indukcja po konstrukcji kografów. Baza działa, jeśli G_1, G_2 są kografami P_4 -wolnymi, to $G_1 \sqcup G_2$ jest P_4 -wolny i $G_1 \bowtie G_2$ też (P_4 musi mieć wierzchołki z obu grafów G_1, G_2 , ale wierzchołki z różnych grafów są połączone, więc nie może istnieć indukowane P_4).

(\iff) Rozważamy P_4 -wolny graf G. Jeśli G jest kilką, to jest kografem (można dokładać kolejne wierzchołki do pojedynczego operacją \bowtie). Jeśli G nie jest spójny, to można rozważyć jego spójne składowe osobno i potem je złączyć operacją \sqcup . Dalej zakładamy, że G jest spójny i nie jest kliką.

Zbiór wierzchołków X jest separatorem G, jeśli G-X nie jest spójny. G nie jest kliką, a więc ma separator (istnieją 2 wierzchołki bez krawędzi, można usunąć pozostałe). Niech X będzie minimalnym separatorem. Pokażemy, że $G \cong G[X] \bowtie (G-X)$. Wtedy te grafy będą P_4 -wolne, więc indukcyjnie będą kografami i G będzie kografem.

Załóżmy nie wprost, że dla pewnych $x \in X$ i $v \in V(G-X)$ nie ma krawędzi xv w G. Separator X jest minimalny, więc istnieją wierzchołki u,t takie, że uxt jest ścieżką w G (gdyby X nie zawierał x, to graf byłby spójny) i u jest w tej samej spójnej składowej G-X, co v. Na ścieżce $v \leadsto u$ niech d będzie pierwszym takim wierzchołkiem, że $dx \notin E(G)$ i następny wierzchołek na tej ścieżce k ma krawędź do x. Teraz dkxt jest indukowanym P_4 , co daje sprzeczność. Zatem między każdym wierzchołkiem G[X] i G-X istnieje krawędź i kończymy dowód.

Twierdzenie. Każdy kograf jest doskonały.

Dowód. Indukcja po konstrukcji kografów. Dla $G=G_1\sqcup G_2$ jest $\omega(G)=\max\{\omega(G_1,G_2)\}$ i $\chi(G)=\max\{\chi(G_1),\chi(G_2)\}$, a dla $G=G_1\bowtie G_2$ jest $\omega(G)=\omega(G_1)+\omega(G_2)$ i $\chi(G)=\chi(G_1)+\chi(G_2)$

Definicja. Klasę grafów \mathcal{C} nazywamy χ -ograniczoną, jeśli istnieje funkcja f taka, że $\forall_{G \in \mathcal{C}} \chi(G) \leq f(\omega(G))$.

Twierdzenie (Gyárfás, 1987). Dla każdego $t \in \mathbb{N}_1$ klasa grafów P_t -wolnych jest χ -ograniczona.

Dowód. Ustalmy $t \in \mathbb{N}_3$ (dla t = 1 graf nie ma wierzchołków, dla t = 2 graf nie ma krawędzi) i rozważmy P_t -wolny graf G. Przeprowadzimy indukcję po $\omega(G)$ – pokażemy, że $f(\omega) = (t-1)^{\omega-1}$ działa. Dla $\omega(G) = 1$ jest $\chi(G) = 1$. Niech $\omega = \omega(G) \geq 2$. Zauważmy, że dla dowolnego wierzchołka v jest $\omega(G[N_G(v)]) \leq \omega - 1$, bo gdyby istniała większa klika, to można dołączyć wierzchołek v, tworząc klikę większą od ω . Zatem z indukcji jest $\chi(G[N_G(v)]) \leq f(\omega - 1)$.

Załóżmy, że G jest spójny (inaczej wystarczy rozważyć jego składową świadczącą o $\chi(G)$) i nie wprost $\chi(G) > f(\omega)$. Ustalmy wierzchołek $v_1 \in G$. W grafie $G - N_G[v_1]$ istnieje spójna składowa G_2 taka, że $\chi(G_2) > f(\omega) - (1 + f(\omega - 1))$, bo inaczej można pokolorować $N_G(v)$ na $f(\omega - 1)$ kolorów z indukcji, v_1 dać nowy kolor, a resztę grafu pokolorować taką ilością innych kolorów, że razem będzie ich co najwyżej $f(\omega)$. Zauważmy, że $f(\omega) - (1 + f(\omega - 1)) \ge 0$, zatem G_2 jest niepusta. Ze spójności G istnieje taki wierzchołek $v_2 \in N_G(v_1)$, że jego sąsiedztwo w G_2 jest niepuste. Możemy wtedy powtórzyć poprzedni krok – wziąć składową $G_2 - N_{G_2}(v_2)$ oznaczoną G_3 taką, że $\chi(G_3) > f(\omega) - (1 + 2f(\omega - 1))$ (tym razem nie odejmujemy kolejnej jedynki, bo v_2 już jest pokolorowane).

Indukcyjnie powtarzamy ten krok, tworząc w końcu wierzchołek v_{t-2} oraz składową G_{t-2} taką, że $\chi(G_{t-2}) > f(\omega) - (1 + (t-3)f(\omega-1))$, co jest dodatnie, więc jest ona niepusta. Teraz w $G_{t-2} - N_{G_{t-2}}(v_{t-2})$ istnieje składowa G_{t-1} taka, że $\chi(G_{t-1}) > f(\omega) - (1 + (t-2)f(\omega-1)) \ge 0$, z czego wynika, że jest niepusta. Ze spójności mamy wierzchołek $v_t \in G_{t-1}$, który sąsiaduje z pewnym $v_{t-1} \in N_{G_{t-2}}(v_{t-2})$. Jednak $v_1v_2 \dots v_{t-1}v_t$

jest indukowaną ścieżką długości t (indukowaną, bo po ustaleniu następnika wierzchołka rozważamy dalej graf bez jego sąsiedztwa). To daje nam sprzeczność, więc ostatecznie nie może być $\chi(G) > f(\omega)$.

Twierdzenie (Asplund-Grünbaum, 1960). Grafy przecięć prostokątów o bokach równoległych do osi układu współrzędnych są χ -ograniczone.

Dowód. Pokażemy, że $\chi(G) \leq \omega(G) \cdot (4\omega(G) - 3)$. Dla dowodu zauważmy, że krawędzie można podzielić na dwa typy: krzyżowe (w przecięciu nie zawiera się żaden narożnik) i narożnikowe (jest zawarty co najmniej jeden narożnik).

Niech G_1 i G_2 będą grafami na wierzchołkach G które mają odpowiednio tylko krzyżowe i tylko narożnikowe krawędzie z G. Mamy $\chi(G) \leq \chi(G_1)\chi(G_2)$, bo kolorowanie produktowe jest poprawne na obu typach krawędzi.

Zorientujmy krawędzie G_1 tak, że krawędź jest w stronę prostokąta węższego na osi x. Takie zorientowanie jest przechodnie (prostokąt węższy na x musi na osi y rozciągać się poniżej i powyżej prostokąta szerszego, więc musi zawierać w sobie fagment przecięcia z tym jeszcze szerszym), a więc G_1 jest grafem porównywalności i jest doskonały. Mamy więc $\chi(G_1) = \omega(G_1) \leq \omega(G)$.

W G_2 każdy narożnik jest uwikłany w co najwyżej $\omega(G_2)-1$ krawędzi, bo prostokąty zawierające go tną się parami niepusto, a więc tworzą klikę. Jeśli G zawiera n wierzchołków, to $E(G_2) \geq \frac{4n(\omega(G_2)-1)}{2} = 2n(\omega(G_2)-1)$ bo każda krawędź jest związana z co najmniej dwoma wierzchołkami (w różnych prostokątach). Zatem $d(G_2) \leq 4(\omega(G_2)-1)$. Każdy podgraf G_2 również jest grafem narożnikowych przecięć prostokątów, a więc zachodzi w nim ta sama nierówność. Średni stopień ogranicza stopień minimalny, więc mamy $\operatorname{col}(G_2) \leq 4\omega(G_2)-3 \leq 4\omega(G)-3$. Ostatecznie $\chi(G) \leq \chi(G_1)\chi(G_2) \leq \omega(G) \cdot (4\omega(G)-3)$.