ЛЕКЦІЯ 3

Відношення Операції над відношеннями

Композиція. Властивості композиції

Поняття відношення

Теорія відношень реалізує в математичних термінах на абстрактних множинах реальні зв'язки між реальними множинами.

Відношення між парою об'єктів називається бінарним.

Бінарне відношення використовується для того, щоб вказати вид зв'язку між парою об'єктів, розглянутих у певному порядку.

При цьому **відношення дає критерій** для **відмінності** одних упорядкованих пар від інших. Для **відповідності** такого **критерію не існує**.

У цьому відмінність відношення від відповідності.

Приклад №1. Відповідність. Розглянемо 2 множини:

$$A = \{a | a - cmy \partial e \mu m \Phi IOT\}$$
 $B = \{b | b - \mu o \mu e \mu m e \mu e \phi o \mu y\}.$

Відповідність q = (A, B, Q) визначає пари $Q \subseteq A \times B$, але не існує загальної ознаки, за якою ці пари встановлюються.

$$Q = (ab | -?)$$

Приклад №2. Відношення. Розглянемо 2 множини:

 $A = \{ батько(180см, 56 років), мати(175см, 50 років) \}$

$$B = \{ cuh(185cm, 18pokib), дочка(170cm, 17pokib) \}$$

Бінарні віднощення $R \subset A \times B$ і $S \subset A \times B$, задані предикатами

- 1. $R = \{(a,b) | "а має вищий зріст, ніж <math>b" \}$.
- 2. $S = \{(a,b) | \text{ "а старше, ніж b" } \}$

$$A \times B = \big\{ \big($$
батько,син $\big), \big($ батько, дочка $\big), \big($ мати, син $\big), \big($ мати,дочка $\big) \big\}$

$$R = \{(батько, дочка)\},$$

$$S = \{(батько, син), (батько, дочка), (мати, син), (мати, дочка)\}$$

Визначення відношення

Відношенням R множин X і Y називають довільну підмножину $X \times Y$.

Отже відношення R — це **МНОЖИНЗ**, елементами якої є упорядковані пари $(x,y) \in R$. Множина R ϵ підмножиною декартового добутку $R \subset X \times Y$

Якщо $(x,y) \in R$, то елемент відношення можна записати як xRy. Говорять, що x і y перебувають у відношенні R, або просто, що x відноситься до y.

Якщо X = Y, то відношення є підмножиною $X \times X$. Таке відношення також входить до класу **бінарних** відношень на X.

Приклад відношень

Приклад №3.

$$X=\{2,3\}, Y=\{3,4,5\}.$$
 $X\times Y=\{(2,3),(2,4),(2,5),(3,3),(3,4),(3,5)\}.$
 $R\subseteq X\times Y$ (Відношення — це відповідність, для якої задане правило)
 $R_1=\left\{(x,y)\middle| "x
 $R_2=\left\{(x,y)\middle| "x\geq y"\right\} \qquad R_2=\{(3,3)\}$
 $R_3=\left\{(x,y)\middle| "x>y"\right\} \qquad R_3=\emptyset$
 $R_4=\left\{(x,y)\middle| x+y=2n, de\ n=\overline{1,4}\right\} \qquad R_4=\left\{(2,4),(3,3),(3,5)\right\}$
Приклад N24.
 $A=\{2,3,5,7\}; B=\{24,25,26\};$
 $A\times B=\{(2,24),(2,25),(2,26),(3,24),(3,25),(3,26),(5,24),(5,25),(5,26),(7,24),(7,25),(7,26)\}$
 $R\subseteq A\times B, \ R=\left\{(a,b)\middle| "a\ \epsilon\ дільником\ b"\ \right\},$
 $R=\{(2,24),(2,26),(3,24),(5,25)\}$$

Такі неповні речення (предикати, твердження) можуть задавати критерій відношення:

- x відбувається раніше (або пізніше), ніж y, $x \prec y$
- X входить (або строго входить) в Y, $X \subseteq Y$, $X \subset Y$
- x паралельне (або перпендикулярне) до y, $x \parallel y$, $x \perp y$
- x дорівнює (або еквівалентне) $y, x = y, x \equiv y$
- x є братом y, "x брат y"
- x знаходиться у стані війни з y і т. ін.

Графік відношення подільності

При створені графіків відношень будемо позначати:

R – множина дійсних чисел;

 R^{+} – множина додатних дійсних чисел

 R^- – множина від'ємних дійсних чисел

 Z^{+} – множина цілих додатних чисел

Нехай на
$$D\subset Z^+\times Z^+ o D=\left\{\left(n,m\right)\middle| "n$$
 ділиться націло на m " $\right\}$

Графік відношення рівності

 $M \subset R \times R$

R— множина дійсних чисел

Графік відношення нерівності

 $L \subset R \times R$

R— множина дійсних чисел

$$L = \left\{ \left(x, y \right) \middle| x \le y \right\}$$

$$L = \{ (-100, -99), \dots, (-10, -9), \dots, (0, 0), \dots, (1, 2), \dots \}$$

Область визначення й множина значень

Область визначення відношення R на X і Y — це множина елементів $x \in X$ таких, що для деяких $y \in Y$ маємо $(x,y) \in R$.

Інакше кажучи, область визначення R це множина всіх перших координат упорядкованих пар з R.

Множина значень відношення R на X і Y — це множина елементів $y \in Y$ таких, що для деяких $x \in X$ маємо $(x,y) \in R$.

Інакше кажучи, множина значень R — це множина всіх других координат упорядкованих пар з R.

Приклад №5

Якщо $R = X \times Y$, то:

Область визначення – множина X

Множина значень — множина Y .

Способи задавання бінарних відношень

1. Задавання явно або предикатом

Бінарне відношення можна задати:

А. Явно, перерахувавши всі пари, які до нього входять (якщо відношення складається з скінченної кількості пар)

Б. Предикатом, вказавши загальну властивість пар, що належать цьому відношенню (згадайте способи задавання множин).

Приклад №6. Приклад явного задавання.

Нехай дана множина $X=\left\{\,p,r,s,q\,
ight\}$.

Задамо відношення $R \subseteq X \times X$ перерахуванням пар

$$R = \{ (p, p), (p, r), (p, s), (r, p), (s, r), (s, q) \}$$

Приклад №7. Приклад задавання предикатом.

Нехай дано N – множина натуральних чисел.

Задамо відношення, вказавши загальну властивість пар, що належать відношенню:

$$R_1 = \{(n,m) \in N \times N | n$$
 є дільником $m\}$

2. Задавання графом

Спосіб задавання бінарного відношення за допомогою графа.

Нехай
$$R\subset X imes X$$
 . $X=\left\{x_1,...,x_i,...,x_j,...,x_n\right\}$

- 1. Елементи множини X— точки на площині (їх називають вершинами графа).
- **2**. Точки x_i, x_j з'єднані стрілкою \to від x_i до x_j тоді й тільки тоді, коли $\left(x_i, x_j\right) \in R$.
- 3. Якщо одночасно $\left(x_i, x_j\right) \in R$ та $\left(x_j, x_i\right) \in R$ то точки x_i і x_j з'єднують двома лінями зі стрілками: \longleftrightarrow , або лінією без стрілок: —.
- **4**. Якщо $\left(x_{j}, x_{j}\right) \in R$, то в точці x_{j} зображують петлю.

Приклад №8. Приклад задавання відношення графом

На рисунку зображено можливі зображення графа бінарного відношення R:

Відношення R також задаємо перерахуванням:

$$R = \{ (p,r), (s,q), (r,p), (p,p), (s,r), (p,s) \}.$$

3. Задавання за допомогою булевих матриць

Нехай $R \subseteq X \times Y$, де

$$X = \left\{ x_1, x_2, x_3, ..., x_i, ..., x_{ {\color{blue} n}} \right\}; \ Y = \left\{ y_1, y_2, y_3, ..., y_j, ..., y_m \right\}.$$

Тоді відношення R у вигляді матриці – це таблиця з п рядками і т стовпцями.

$$|X| = n$$
, $|Y| = m$

$$|X| = n \ , |Y| = m$$
1. В нульовий стовпець (який не рахуємо) виписані елементи множини X .

2. В нульовий рядок (який не рахуємо) $x_1 = 1 = 0 = 0 = 0$ $x_2 = 0 = 1 = 0 = 0 = 0$ $x_3 = 1 = 0 = 0 = 0 = 0$ виписані елементи множини X .

3. На перетині рядка елемента \boldsymbol{x}_i й стовпця елемента \boldsymbol{y}_j записують 1, якщо пари $\left(\left.x_{i},y_{\,i}\right.\right)\in R$, і 0 — якщо $\left(\left.x_{i},y_{\,i}\right.\right)
ot\in R$.

Таку таблицю називають булевою матрицею відношення

Приклад №9. Задавання відношення матрицею

Нехай дано множини $X = \{p,q,r,s\}$ і $Y = \{a,b,c,d\}$.

Розглянемо відношення $R_{\rm l}$ і $R_{\rm 2}$, які задані перерахуванням та булевими матрицями :

0

S

$$R_{2} \subset X \times Y \colon R_{2} = \left\{ \left(p, a \right), \left(s, b \right), \left(r, d \right), \left(q, d \right), \left(r, a \right) \right\}$$

$$R_{2} = \left\{ \left(p, a \right), \left(s, b \right), \left(r, d \right), \left(q, d \right), \left(r, a \right) \right\}$$

$$R_{2} = \left\{ \left(p, a \right), \left(s, b \right), \left(r, d \right), \left(q, d \right), \left(r, a \right) \right\}$$

$$R_{2} = \left\{ \left(p, a \right), \left(s, b \right), \left(r, d \right), \left(q, d \right), \left(r, a \right) \right\}$$

$$R_{2} = \left\{ \left(p, a \right), \left(s, b \right), \left(r, d \right), \left(q, d \right), \left(r, a \right) \right\}$$

$$R_{2} = \left\{ \left(p, a \right), \left(s, b \right), \left(r, d \right), \left(q, d \right), \left(r, a \right) \right\}$$

$$R_{2} = \left\{ \left(p, a \right), \left(s, b \right), \left(r, d \right), \left(q, d \right), \left(r, a \right) \right\}$$

$$R_{2} = \left\{ \left(p, a \right), \left(s, b \right), \left(r, d \right), \left(q, d \right), \left(r, a \right) \right\}$$

$$R_{2} = \left\{ \left(p, a \right), \left(s, b \right), \left(r, d \right), \left(q, d \right), \left(r, a \right) \right\}$$

$$R_{3} = \left\{ \left(p, a \right), \left(s, b \right), \left(r, d \right), \left(q, d \right), \left(r, a \right) \right\}$$

Зріз (перетин) відношення R через елемент

 Hexa й $R\subseteq X imes Y$, де

$$X = \left\{ x_1, x_2, x_3, ..., x_i, ..., x_n \right\}; \ Y = \left\{ y_1, y_2, y_3, ..., y_j, ..., y_m \right\}.$$

R - довільне бінарне відношення між елементами множин X і Y. Розглянемо довільний елемент x_i множини X

Означення. Множину тих елементів, з якими елемент x_i перебуває у відношенні R, називають зрізом (перетином) відношення R через елемент x_i і позначають $R(x_i)$.

Якщо бінарне відношення R представлене за допомогою графа, то $R(x_i)$ складається з тих вершин множини Y, у які з вершини x_i йде стрілка.

Якщо бінарне відношення R представлене матрицею, то $R(x_i)$ складається з тих вершин множини Y, для яких у рядку x_i стоїть 1.

Зріз в ідношення через елемент — це множина, яка може містити кілька елементів, один елемент і жодного елемента (бути порожньою).

Приклад Nº10. Задавання зрізу відношення R через елемент x_i

Нехай дані множини $X = \{x_1, x_2, x_3, x_4\}$ і $Y = \{y_1, y_2, y_3, y_4, y_5, y_6\}$ та відношення $R \subset X \times Y$, яке задане графом.

Зріз відношення R через елемент x_1 :

Зріз відношення R через x_2 :

$$R(x_2) = \{\varnothing\}$$

Зріз відношення R через x_3 :

$$R(x_3) = \{y_3\}$$

Зріз відношення R через x_4 :

$$R(x_4) = \{y_1, y_4\}$$

Операції над відношеннями

Оскільки бінарні відношення представляють множини (пар), то до них застосовні поняття <u>рівності</u>, <u>включення</u>, а також операції <u>об'єднання</u>, <u>перетину</u>, <u>різниці</u> і <u>доповнення</u>.

Для двох бінарних відношень R і S визначимо такі операції:

Включення $R \subset S$ розуміють таким чином, що будь-яка впорядкована пара елементів, яка належить відношенню R, належить і відношенню S.

Визначення. Нехай дано множини $X = \{x_i\}_{i=1}^n$, $Y = \{y_i\}_{i=1}^m$ та відношення $R \subset X \times Y$, $S \subseteq X \times Y$. Тоді відношення R строго включене у відношення S, $R \subset S$, якщо кожний елемент (x_i, y_j) , $i = \overline{1, n}$, $y_j = \overline{1, m}$, який належить R одночасно належить відношенню S. Але не всі елементи $(x_i, y_j) \in S$ належать відношенню R.

Приклад №11. Приклад включення.

Дано множини: $X = \{1, 2, 3\}, Y = \{a, b, c\}$

Нехай існують відношення на даних множинах:

$$R \subset X \times Y$$
, $S = X \times Y$,

Задамо відношення R та S перерахуванням:

$$S = \{(1,a),(1,b),(1,c),(2,a),(2,b),(2,c),(3,a),(3,b),(3,c)\},\$$

$$R = \{(1,a),(2,a),(3,a)\},\$$

Розглянемо елементи відношення R.

Ми можемо стверджувати, що $R \subset S$ оскільки

	•
$(1,a) \in R \land (1,a) \in S,$	$(1,b) \notin R \land (1,b) \in S$
$(2,a) \in R \land (2,a) \in S,$	$(1,c) \notin R \land (1,c) \in S$
$(3,a) \in R \land (3,a) \in S$	• • • • • • • • • • • • •
	$(3,c) \notin R \land (3,c) \in S$

Рівність відношень

Рівність R = S означає, що відношення R і S складаються з тих самих упорядкованих пар.

Визначення.

Нехай дано множини $X = \{x_i\}_{i=1}^n$, $Y = \{y_i\}_{i=1}^m$ та відношення:

$$R \subset X \times Y$$
, $S \subset X \times Y$.

Тоді відношення R дорівнює відношенню S , тобто R=S , якщо

1.
$$\forall (x_i, y_j) \rightarrow (x_i, y_j) \in R \land (x_i, y_j) \in S$$

2.
$$|R| = |S|$$

Приклад №12. Приклад рівності.

$$X = \{1,2,3\}, Y = \{a,b,c\}, R \subset X \times Y, S \subset X \times Y,$$
 $S = \{(1,a),(2,a),(3,a)\},$ $R = \{(1,a),(2,a),(3,a)\},$ $R = S$ оскільки $(1,a) \in R \land (1,a) \in S, (2,a) \in R \land (2,a) \in S,$ $(3,a) \in R \land (3,a) \in S,$ а також $|R| = |S|.$

Приклад №13. Приклад рівності.

$$X = \{Iван, Bасиль, Петро\}, Y = \{Mарія, Оксана, Світлана\}$$
 $|R| = |S|, R \subset X \times Y, S \subset X \times Y$
 $S = \{(Iван, Mарія), (Петро, Оксана), (Василь, Світлана)\},$
 $S = ((a,b)|$ вік а + вік b ≤ 50)
 $R = \{(Iван, Mарія), (Петро, Оксана), (Василь, Світлана)\}.$
 $R = ((a,b)|a i b -$ студенти $)$
Тоді $R = S$

Об'єднання відношень

Об'єднання $R \cup S$ відношень R і S складається з упорядкованих пар, що належать хоча б одному із цих відношень.

Визначення

Нехай дано множини $X = \{x_i\}_{i=1}^n$, $Y = \{y_i\}_{i=1}^m$ та відношення:

$$R \subset X \times Y$$
, $S \subset X \times Y$.

Тоді відношення Z є об'єднанням відношень R і S, тобто $Z=R\cup S$, якщо

$$\forall (x_i, y_j) \in Z \rightarrow (x_i, y_j) \in R \lor (x_i, y_j) \in S$$

Приклад №14. Приклад об'єднання.

$$X = \{1, 2, 3\}, Y = \{a, b, c\}, R \subset X \times Y, S \subset X \times Y,$$

 $S = \{(1, a), (1, b), (1, c)\},$
 $R = \{(1, a), (2, a), (3, a)\},$
 $R \cup S = \{(1, a), (1, b), (1, c), (2, a), (3, a)\}$

Приклад №15. Приклад об'єднання.

```
X = \{Iван, Bасиль, Петро\}, Y = \{Mарія, Оксана, Світлана\}
S = \{(Iван, Mарія), (Петро, Оксана)\},
R = \{(Iван, Mарія), (Bасиль, Світлана)\}.
Тоді
R \cup S = \{(Iван, Mарія), (Петро, Оксана), (Bасиль, Світлана)\}
```

Перетин відношень

Перетин $R \cap S$ відношень R і S є новим відношенням, що складається з упорядкованих пар , які належать одночасно обом відношенням.

Визначення

Нехай дано множини $X = \left\{x_i\right\}_{i=1}^n$, $Y = \left\{y_i\right\}_{i=1}^m$ та відношення:

$$R \subset X \times Y$$
, $S \subset X \times Y$.

Тоді відношення Z є перетином відношень R і S, тобто $Z=R\cap S$, якщо

$$\forall (x_i, y_j) \in Z \rightarrow (x_i, y_j) \in R \land (x_i, y_j) \in S$$

Приклад №16. Приклади перетину.

$$X = \{1, 2, 3\}, Y = \{a, b, c\}, R \subset X \times Y, S \subset X \times Y,$$

 $S = \{(1, a), (1, b), (1, c)\},$
 $R = \{(1, a), (2, a), (3, a)\},$
 $R \cap S = \{(1, a)\}$

Приклад №17.

$$X = \{Iван, Bасиль, Петро\}, Y = \{Mарія, Оксана, Світлана\}$$
 $R \subset X \times Y, S \subset X \times Y$
 $S = \{(Iван, Mарія), (Петро, Оксана), (Василь, Світлана)\},$
 $R = \{(Iван, Mарія), (Василь, Світлана)\}.$
Тоді $R \cap S = \{(Iван, Mарія), (Василь, Світлана)\}$

Різниця відношень

Різниця R-S відношень R і S є множиною впорядкованих пар, що належать відношенню R і не належать відношенню S.

Визначення

Нехай дано множини $X = \left\{x_i\right\}_{i=1}^n$, $Y = \left\{y_i\right\}_{i=1}^m$ та відношення:

$$R \subset X \times Y$$
, $S \subset X \times Y$.

Тоді відношення Z є різницею відношень R і S, тобто Z=R-S, якщо

$$\forall (x_i, y_j) \in Z \rightarrow (x_i, y_j) \in R \land (x_i, y_j) \notin S$$

Приклад №18. Приклад різниці.

$$X = \{1, 2, 3\}, Y = \{a, b, c\}, R \subset X \times Y, S \subset X \times Y,$$

 $S = \{(1, a), (1, b), (1, c)\},$
 $R = \{(1, a), (2, a), (3, a)\},$
 $Z = R - S = \{(2, a), (3, a)\}$

Приклад №19. Приклад різниці.

$$X = \{Iван, Bасиль, Петро\}, Y = \{Mарія, Оксана, Світлана\}$$
 $R \subset X \times Y, S \subset X \times Y$
 $S = \{(Iван, Mарія), (Bасиль, Світлана)\},$
 $R = \{(Iван, Mарія), (Петро, Оксана), (Bасиль, Світлана)\}.$
Тоді $Z = R - S = \{(Петро, Оксана)\}$

Доповнення відношення

Доповнення. Якщо R — бінарне відношення між елементами множин X і Y, то його **доповненням** \overline{R} (відносно $X \times Y$) називають різницю $(X \times Y) - R$

Визначення

Нехай дано множини $X = \{x_i\}_{i=1}^n$, $Y = \{y_i\}_{i=1}^m$ та відношення:

$$R \subset X \times Y$$
.

Тоді відношення \overline{R} є доповненням відношення R, якщо

$$\forall (x_i, y_j) \in \overline{R} \rightarrow (x_i, y_j) \in (X \times Y) - R$$

Приклад №20. Приклад доповнення

$$X = \{1,2,3\}, Y = \{a,b,c\}, R \subset X \times Y,$$

$$X \times Y = \{(1,a),(1,b),(1,c),(2,a),(2,b),(2,c),(3,a),(3,b),(3,c)\},$$

$$R = \{(1,a),(2,a),(3,a)\}$$

$$\overline{R} = \{(1,b),(1,c),(2,b),(2,c),(3,b),(3,c)\},$$

Приклад №21. Приклад доповнення

$$X = \{Iван, Bасиль\}, Y = \{Mарія, Оксана\}$$
 $X \times Y = \{(Iван, Mарія), (Iван, Оксана), (Bасиль, Mарія), (Bасиль, Oксана)\}$
 $R = \{(Iван, Mарія), (Bасиль, Mарія)\},$
 $\overline{R} = \{(Iван, Oксана), (Bасиль, Oксана)\}.$

Операція об'єднання довільних сімейств відношень

Нехай $\left\{R_i\right\}_{i\in I}$ – сімейство відношень, яке утворює

множину відношень, де I — додатне натуральне число.

Тоді відношення Z є об'єднанням сімейства $\left\{R_i\right\}_{i\in I}$,

якщо $Z = \bigcup_{i \in I} R_i$, тобто відношення Z складається з

упорядкованих пар, які належать хоча б одному з відношень R_i .

Приклад №22. Об'єднання сімейств відношень

$$X = \{a,b,c\}, Y = \{k,l,m\},\$$

$$X \times Y = \{(a,k),(a,l),(a,m),(b,k),(b,l),(b,m),(c,k),(c,m),(c,l)\}$$

$$R_{1} = \{(a,k),(c,l),(a,m)\}, R_{2} = \{(a,m),(b,k),(c,k)\}$$

$$R_{3} = \{(a,m),(c,k),(c,l)\}$$

$$Z = \bigcup_{i=1}^{3} R_{i} = \{(a,k),(c,l),(a,m),(b,k),(c,k)\}$$

Операція перетину довільних сімейств відношень Перетин сімейства $\left(R_i\right)_{i\in I}$ — це відношення $Z=\bigcap_{i\in I}R_i$,

що складається з упорядкованих пар, які належать одночасно усім відношенням R_i .

Приклад №23. Перетин сімейств відношень

$$X = \{a,b,c\}, Y = \{k,l,m\},\$$

$$X \times Y = \{(a,k),(a,l),(a,m),(b,k),(b,l),(b,m),(c,k),(c,m),(c,l)\}$$

$$R_1 = \{(a,k),(c,l),(a,m)\}, R_2 = \{(a,m),(b,k),(c,k)\}$$

$$R_3 = \{(a,m),(c,k),(c,l)\}$$

$$Z = \bigcap_{i=1}^{3} R_i = \left\{ \left(a, m \right) \right\}$$

Додаткові операції

Для відношень задають деякі додаткові операції, які пов'язані з їх специфічною структурою, яка проявляється в тому, що всі елементи відношень є упорядкованими парами. Розглянемо дві такі операції.

1. Обернене відношення

Якщо в кожній упорядкованій парі, яка належить відношенню R, поміняти місцями перший і другий компонент, то одержимо нове відношення, яке називають **оберненим** до відношення R і позначають через R^{-1} .

Приклад №24. Для відношення *R*

$$R = \{ (p,r), (s,q), (r,p), (p,p), (s,r), (p,s) \}$$

обернене відношення R^{-1} має вигляд:

$$R^{-1} = \{ (r, p), (q, s), (p, r), (p, p), (r, s), (s, p) \}$$

Представлення R^{-1} графом, матрицею та предикатом

Граф. Граф відношення R^{-1} одержують із графа відношення R шляхом переорієнтації всіх стрілок.

Матриця. Відношення R задане за допомогою булевої матриці перетворюємо у відношення R^{-1} міняючи місцями рядки і стовпці.(ТРАНСПОНУВАННЯ)

Предикат. Нехай $R \subseteq X \times Y$ є відношенням на $X \times Y$. Тоді відношення R^{-1} на $Y \times X$ визначають у такий спосіб:

$$R^{-1} = \{(y,x) | (x,y) \in R\}.$$

Інакше кажучи, $\left(y,x\right)\in R^{-1}$ тоді й тільки тоді, коли $\left(x,y\right)\in R$ або, що рівнозначно, $yR^{-1}x$ тоді й тільки тоді, коли xRy.

Відношення R^{-1} називають **оберненим відношенням** до даного відношення R.

Приклад №25. Задавання перерахуванням

Нехай
$$R = \{(1,r),(1,s),(3,s)\}$$
,

тоді
$$R^{-1} = \{(r,1),(s,1),(s,3)\}.$$

Приклад №26. Задавання предикатом

Нехай $R = \{(a,b) | b$ є чоловіком $a\}$, тоді $R^{-1} = \{(b,a) | a$ є дружиною $b\}$

Приклад №27. Випадок рефлексивних відношень

Нехай

$$R = \{(a,b) | b \in \text{родичем } a\}, \text{ тоді } R = R^{-1}$$

Нехай

$$R$$
 — відношення $\left\{ \left(a,b
ight) \middle| a^2 + b^2 = 4
ight\}$, тоді також $R^{-1} = R$.

Теорема про двічі обернене відношення.

Обернене відношення від оберненого відношення дорівнює прямому відношенню, тобто $\left(R^{-1}\right)^{-1}=R$.

Доведення.

Нехай існують дві множини: X та Y.

На декартовому добутку цих множин задано відношення $R\subset X\times Y$.

Припустимо, що $(x,y) \in \left(R^{-1}\right)^{-1}$. Тоді у відповідності з означенням оберненого відношення $(y,x) \in R^{-1}$.

Знову застосуємо означення оберненого відношення: $\left(x,y\right)\in R$.

Отже
$$(x,y) \in (R^{-1})^{-1} \Leftrightarrow (x,y) \in R$$

Композиція відношень (множення відношень)

Розглянемо 3 множини: X, Y та Z Нехай $R\subseteq X\times Y$ — відношення на $X\times Y$, а $S\subseteq Y\times Z$ — відношення на $Y\times Z$.

Композицією відношень S і R називають відношення $T\subseteq X\times Z$,

визначене в такий спосіб:

$$T=\{ig(x,zig)ig|$$
 існує такий елемент $y\in Y$, що $ig(x,yig)\in R$ і $ig(y,zig)\in S$ }.

Цю множину позначають $T=R\circ S$.

Приклад №28

Нехай
$$X=\left\{1,2,3\right\},\, {\color{red} Y}=\left\{{\color{blue} a,b}\right\}$$
 і $Z=\left\{\alpha,\beta,\lambda,\mu\right\}.$

Також задані відношення

$$R\subset X\times Y$$
 ta $S\subset Y\times Z$

$$R = \{ig(1, rac{a}{a}ig), ig(2, rac{b}{a}ig), ig(3, rac{b}{a}ig)\},$$
 $S = \{ig(rac{a}{a}, lphaig), ig(rac{b}{a}, \lambdaig), ig(rac{b}{a}, \lambdaig), ig(p, \lambdaig)$

з
$$(1,a)\in R$$
 і $(a,\alpha)\in S$ випливає, що $(1,\alpha)\in R\circ S$, з $(1,a)\in R$ і $(a,\beta)\in S$ випливає, що $(1,\beta)\in R\circ S$,

.

з
$$\left(3,b\right)\in R$$
 і $\left(b,\mu\right)\in S$ випливає, що $\left(3,\mu\right)\in R\circ S$.

Властивості композиції відношень

Розглянемо композиції відношень за умови, що X,Y і Z — множини і якщо

$$R\subseteq X imes Y$$
 , $S\subseteq Y imes Z$ і $T\subseteq Z imes D$ тоді

Асоціативність:
$$R \circ (S \circ T) = (R \circ S) \circ T$$
.

Обернена композиція: $(R \circ S)^{-1} = S^{-1} \circ R^{-1}$