Operációs rendszerek BSc

5. Gyak. 2022. 03. 07.

Készítette:

Kórád György Bsc Programtervező Informatikus ZF440N 1. A system() rendszerhívással hajtson végre létező és nem létező parancsot, és vizsgálja a visszatérési érteket, magyarázza egy-egy mondattal A fordítás/futtatás után készítsen egy képernyőképet (minden parancs esetén) és illessze be a dokumentumba.

<u>Leírás:</u> A system() függvénynek átadtam egy létező UNIX parancsot, futtatva hiba nélkül lefut, a paraméterként kapott parancsot sikeresen átadja az operációs rendszernek, majd az végrehajtja.

<u>Leírás:</u> Hibásan megadott parancs esetén, a system() függvény ugyanúgy átadja a rendszernek a paraméterét, a program hiba nélkül lefut, viszont mégis hibaüzenetet kapunk vissza a rendszertől.

2. Írjon programot, amely billentyűzetről bekér Unix parancsokat és végrehajtja őket, majd kiírja a szabványos kimenetre.


```
források:bash — Konsole

[gyuri@gyuri-asusX54C források]$ gcc ZF440N2fel.c
[gyuri@gyuri-asusX54C források]$ ./a.out

Adjon meg egy UNIX parancsot!

gyuri@gyuri-asusX54C források]$ ./a.out

Adjon meg egy UNIX parancsot!

pwd

/home/gyuri/ZF440N0SGyak/ZF440N_0307/források
[gyuri@gyuri-asusX54C források]$ ./a.out

Adjon meg egy UNIX parancsot!

who

gyuri tty1 2022-03-07 16:02 (:0)
[gyuri@gyuri-asusX54C források]$ ./a.out

Adjon meg egy UNIX parancsot!

ls

a.out jk_futtatva.png kod_jo.png kod_rossz.png rk_futtatva.png ZF440N1fel.c ZF440N2fel.c
[gyuri@gyuri-asusX54C források]$ |
```

<u>Leírás:</u> A program a scanf függvény segítségével beolvas egy parancsot, majd a system() függvénnyel átadja azt az operációs rendszernek, amennyiben helyes a megadott parancs, az OS lefuttatja azt, vagy ha hibás, egy hibaüzenettel tér vissza.

3. Készítsen egy parent.c és a child.c programokat. A parent.c elindít egy gyermek processzt, ami különbözik a szülőtől. A szülő megvárja a gyermek lefutását. A gyermek szöveget ír a szabványos kimenetre (10-ször) (pl. a hallgató neve és a neptunkód)!

<u>Leírás:</u> A parent program egy ciklusba ágyazott system() függvénnyel meghívja a child programot, amely kiírja a terminálra a nevem és neptunkódom.

4. A fork() rendszerhívással hozzon létre egy gyerek processzt-t és abban hívjon meg egy exec családbeli rendszerhívást (pl. execlp).

<u>Leírás:</u> A program a fork() függvény segítségével létrehoz egy gyerek processzt nullás piddel, majd az execlp lefuttatja a paraméterként kapott parancsot. Ezután a program visszatér a szülőhöz, ami kiírja a kijelzőre a pidjét.

5. A fork() rendszerhívással hozzon létre gyerekeket, várja meg és vizsgálja a befejeződési állapotokat

```
GNU nano 6.2
                             ZF440N5fel.c
#include <stdio.h>
#include <stdlib.h>
                                         ^K Cut
             ^O Kiírás
                           ^₩ Keresés
   Kilépés
              ^R Beolvasás<mark>^\</mark>
                                         ^U Paste
```

<u>Leírás:</u> A program a stat változóban tárolja a gyerek processz visszatérési értékét, amely ha nem nulla, akkor hibaüzenetet ad vissza a felhasználónak.

6. Adott a következő ütemezési feladat, amit a FCFS, SJF és Round Robin (RR) ütemezési algoritmus használatával készítsen el (külön-külön táblázatba):

Határozza meg FCFS és SJF esetén

- a.) A befejezési időt?
- b.) A várakozási/átlagos várakozási időt?
- c.) Ábrázolja Gantt diagram segítségével az aktív/várakozó processzek futásának menetét.

II. Round Robin (RR) esetén

- a.) Ütemezze az adott időszelet (5ms) alapján az egyes processzek (befejezési és várakozási/átlagos várakozási idő) paramétereit (ms)!
- b.) A rendszerben lévő processzek végrehajtásának sorrendjét?
- c.) Ábrázolja Gantt diagram segítségével az aktív/várakozó processzek futásának menetét!"

RR: 5ms	Érkezés	CPU idő	Indulás	Befejezés	Várakozás	Várakozó processz
P1	0	3	0	3	0	P2
P2	1	8	3	8	2	P2,P3
P3	3	2	8	10	5	P2,P4
P2*	8	3	10	13	2	P4,P5
P4	9	20	13	18	4	P4,P5
P5	12	5	18	23	6	P4
P4*	18	15	23	28	5	P4
P4*	28	10	28	33	0	P4
P4*	33	5	33	38	0	-
	3 4 8 6	7 8 9	10 11 12 13	14 18 16 17	18 19 20 21 22	23 24 25 26 27 28 29 30
P1 P2						
P3						
P4						
P8						