Неизоморфни графи с много сходства

Калоян Тодорков, № 81800 (СУ, ФМИ)

Задача: Докажете, че има естествено число n_0 , такова че за всяко $n > n_0$ съществуват два неизоморфни графа G_1 и G_2 , за които е вярно следното:

- Всеки от двата графа има 2n върха и n^2 ребра.
- G_1 и G_2 притежават равен брой прости пътища с дължина k за всяко цяло k от 1 до $\left|\sqrt{n}\right|$ включително.

Решение: Не се иска всички прости пътища в G_1 и G_2 да са равен брой, а само част от простите пътища — тези с дължини, ненадвишаващи $\lfloor \sqrt{n} \rfloor$. Това ни подсказва да построим G_1 и G_2 така, че да си приличат в малък мащаб, но да се различават в голям мащаб.

Първо ще нагласим графите да имат един и същ брой прости пътища, после ще се погрижим да имат n^2 ребра. Използваме това, че в условието не се изисква някой от графите да е свързан. Затова ще построим G_1 и G_2 така, че всеки от тях да има по две компоненти на свързаност, като едната от тях гарантира еднаквост на броя на ребрата, а другата компонента способства за липсата на изоморфизъм.

Ще означаваме с C_n граф с n върха и n ребра, представляващ прост цикъл. За всяко цяло число L от 1 до n-1 вкл. графът C_n съдържа точно n прости пътя с дължина L.

Ако вземем например n=3, тогава C_6 и обединението на C_3 и C_3 имат равен брой върхове (шест), броят на простите пътища с дължини до $\left\lfloor \sqrt{n} \right\rfloor = 1$ е един и същ в двата графа (шест). Така е удовлетворено второто изискване. Обаче ребрата са само шест, а не девет, т.е. първото изискване е нарушено. Налага се да поправим това построение, но именно то е идеята на решението.

 $C K_n$ ще обозначаваме пълния граф с n върха; той има n(n-1) / 2 ребра.

Графът
$$K_{2n-6}\lfloor \sqrt{n} \rfloor$$
 има $\binom{n-3}{\sqrt{n}}\binom{2n-6}{\sqrt{n}}-1$ ребра. Тъй като

$$\lim_{n\to\infty} \frac{\left(n-3\left\lfloor\sqrt{n}\right\rfloor\right)\left(2n-6\left\lfloor\sqrt{n}\right\rfloor-1\right)}{n^2-6\left\lfloor\sqrt{n}\right\rfloor} = 2 > 1,$$

то за достатъчно големи n (т.е. за $n > n_0$ при подходящо n_0) важи неравенството

$$(n-3\lfloor \sqrt{n} \rfloor)(2n-6\lfloor \sqrt{n} \rfloor-1) > n^2-6\lfloor \sqrt{n} \rfloor.$$

С други думи, за $n > n_0$ графът $K_{2n-6} \lfloor \sqrt{n} \rfloor$ има повече от $n^2 - 6 \lfloor \sqrt{n} \rfloor$ ребра.

От графа $K_{2n-6}\lfloor \sqrt{n}\rfloor$ премахваме толкова ребра (произволно избрани), че да останат точно $n^2-6\lfloor \sqrt{n}\rfloor$ ребра. Получения граф означаваме с T_n . По построение T_n има $2n-6 \lfloor \sqrt{n} \rfloor$ върха и $n^2-6 \lfloor \sqrt{n} \rfloor$ ребра.

Сега вече сме готови да поправим построението от предишната страница така, че всички изисквания да бъдат удовлетворени.

Нека графът G_1 представлява обединението на T_n , $C_3\lfloor \sqrt{n} \rfloor$ и $C_3\lfloor \sqrt{n} \rfloor$; а пък G_2 нека е обединението на T_n и $C_6\lfloor \sqrt{n} \rfloor$. Всеки от графите G_1 и G_2 има точно 2n върха и точно n^2 ребра, тоест налице е първата от двете прилики. Ще се убедим, че присъства и втората прилика — G_1 и G_2 имат равен брой прости пътища с дължина k за всяко $k \leq \lfloor \sqrt{n} \rfloor$. За целта да означим с f(G,k) броя на простите пътища с дължина k в графа G. Тогава за всяко $k \leq \lfloor \sqrt{n} \rfloor$ са изпълнени следните равенства:

$$f(G_1, k) = f(T_n, k) + 2f(C_3 \lfloor \sqrt{n} \rfloor, k) = f(T_n, k) + 2 \cdot 3 \lfloor \sqrt{n} \rfloor =$$

$$= f(T_n, k) + 6 | \sqrt{n} | = f(T_n, k) + f(C_6 | \sqrt{n} |, k) = f(G_2, k).$$

Тоест G_1 и G_2 имат равен брой прости пътища с дължина k.

И така, изпълнени са и двете изисквания, тоест налице са двете прилики между G_1 и G_2 . Налице е и желаната разлика: графите G_1 и G_2 не са изоморфни, защото се състоят от различен брой компоненти (три и две съответно).

Условието и решението на задачата са взети от тази страница в Интернет: https://math.stackexchange.com/questions/1418340/extremely-difficult-graph-theory-question (страницата съдържа и други решения).