Ejercicio 4

David García Curbelo

Sea $\mathbb{F}_{32} = \mathbb{F}_2[\xi]_{\xi^5 + \xi^2 + 1}$. Cada uno de vosotros, de acuerdo a su número de DNI = 45352581 o similar, dispone de una curva elíptica sobre \mathbb{F}_{32} con una raíz x y un punto base dados en el Cuadro 6.1.

Ejercicio 1. Calcula, mediante el algoritmo de Shank o mediante el Algoritmo 9, $\log_{\mathcal{O}} \mathcal{O}$.

Teniendo el DNI=45352581, tenemos que $DNI\equiv 5\pmod{32}$, y por tanto, de acuerdo con el Cuadro 6.1, obtenemos $E=E(\xi^2+1,\xi^4+\xi^3+\xi+1)$ y el punto $Q=(\xi^3+\xi^2+\xi,\xi+1)$. Procedemos al cáclulo del logaritmo $\log_Q \mathcal{O}$ mediante el algoritmo de Shank, por lo que para ello procedemos primeramente al cálculo de las potencias de ξ en base $\xi^5+\xi^2+1$.

```
\xi^{0} = 1
\xi^{1} = \xi
\xi^{2} = \xi^{2}
\xi^{3} = \xi^{3}
\xi^{4} = \xi^{4}
\xi^{5} = \xi^{2} + 1
\xi^{6} = \xi^{3} + \xi
\xi^{7} = \xi^{4} + \xi^{2}
\xi^{8} = \xi^{3} + \xi^{2} + 1
\xi^{9} = \xi^{4} + \xi^{3} + \xi
\xi^{10} = \xi^{4} + 1
\xi^{11} = \xi^{2} + \xi + 1
\xi^{12} = \xi^{3} + \xi^{2} + \xi
\xi^{13} = \xi^{4} + \xi^{3} + \xi^{2}
\xi^{14} = \xi^{4} + \xi^{3} + \xi^{2} + 1
\xi^{15} = \xi^{4} + \xi^{3} + \xi^{2} + \xi + 1
\xi^{15} = \xi^{4} + \xi^{3} + \xi^{2} + \xi + 1
\xi^{16} = \xi^{4} + \xi^{3} + \xi^{2} + \xi + 1
\xi^{17} = \xi^{4} + \xi + 1
\xi^{19} = \xi^{2} + \xi
\xi^{20} = \xi^{3} + \xi^{2}
\xi^{21} = \xi^{4} + \xi^{3}
\xi^{22} = \xi^{3} + \xi^{2}
\xi^{21} = \xi^{4} + \xi^{3}
\xi^{22} = \xi^{4} + \xi^{3} + \xi^{2} + \xi + 1
\xi^{23} = \xi^{3} + \xi^{2} + \xi + 1
\xi^{24} = \xi^{4} + \xi^{3} + \xi^{2} + \xi + 1
\xi^{25} = \xi^{4} + \xi^{3} + 1
\xi^{26} = \xi^{4} + \xi^{2} + \xi + 1
\xi^{27} = \xi^{3} + \xi + 1
\xi^{28} = \xi^{4} + \xi^{2} + \xi
\xi^{29} = \xi^{3} + 1
\xi^{30} = \xi^{4} + \xi
```

Tenemos por tanto que $E=E(\xi^2+1,\xi^4+\xi^3+\xi+1)=E(\xi^5,\xi^{16})$ y el punto $Q=(\xi^3+\xi^2+\xi,\xi+1)=(\xi^9,\xi^{18})$. Ahora procedemos a buscar una cota para $|E|\leq q+1+\lfloor 2\sqrt{q}\rfloor=32+1+11=44$ (donde q=32). Obtenemos así que $f=\lceil 44\rceil=7$, por lo que obtenemos los siguientes puntos:

$$\begin{array}{c|cccc} 0 & 0 \\ 1 & Q \\ 2 & 2Q \\ 3 & 3Q \\ 4 & 4Q \\ 5 & 5Q \\ 6 & 6Q \\ \end{array}$$

Procedmemos a su cálculo explícito:

$$\begin{aligned} 2Q &= Q + Q = (\xi^9, \xi^{18}) + (\xi^9, \xi^{18}) \\ &\lambda = x_1 + y_1 x_1^{-1} = \xi^9 + \xi^{18} \xi^{-9} = \xi^9 + \xi^9 = 0 \\ &x_3 = \lambda^2 + \lambda + a + x_1 + x_2 = \xi^5 + \xi^9 + \xi^9 = \xi^5 \\ &y_3 = \lambda(x_1 + x_3) + x_3 + y_1 = \xi^5 + \xi^{18} = (\xi^2 + 1) + (\xi + 1) = \xi^2 + \xi = \xi^{19} \\ &2Q = (\xi^5, \xi^{19}) \\ &3Q = 2Q + Q = (\xi^5, \xi^{19}) + (\xi^9, \xi^{18}) \\ &\lambda = (y_2 + y_1)(x_2 + x_1)^{-1} = (\xi^{18} + \xi^{19})(\xi^5 + \xi^9)^{-1} = (\xi^4 + \xi^3 + \xi^2 + \xi + 1)(\xi^2 + 1)^{-1} = \xi^5 (\xi^{15})^{-1} = \xi^{-10} = \xi^{21} \\ &x_3 = \lambda^2 + \lambda + a + x_1 + x_2 = \xi^{11} + \xi^{21} + \xi^5 + \xi^5 + \xi^9 = \xi^{15} + \xi^9 = \xi^5 \\ &y_3 = \lambda(x_1 + x_3) + x_3 + y_1 = \xi^{21}(\xi^5 + \xi^5) + \xi^5 + \xi^{19} = \xi^{18} \\ &3Q = (\xi^2, \xi^{18}) \\ &4Q = 3Q + Q = (\xi^5, \xi^{18}) + (\xi^9, \xi^{18}) \\ &\lambda = (y_2 + y_1)(x_2 + x_1)^{-1} = (\xi^{18} + \xi^{18})(\xi^5 + \xi^9)^{-1} = 0 \\ &x_3 = \lambda^2 + \lambda + a + x_1 + x_2 = \xi^5 + \xi^5 + \xi^9 = \xi^9 \\ &y_3 = \lambda(x_1 + x_3) + x_3 + y_1 = \xi^9 + \xi^{18} = \xi^{25} \\ &4Q = (\xi^9, \xi^{25}) \\ &5Q = 4Q + Q = (\xi^9, \xi^{25}) + (\xi^9, \xi^{18}) \\ &\lambda = (y_2 + y_1)(x_2 + x_1)^{-1} = (\xi^{25} + \xi^{18})(\xi^9 + \xi^9)^{-1} = 0 \\ &x_3 = \lambda^2 + \lambda + a + x_1 + x_2 = \xi^5 + \xi^9 + \xi^9 = \xi^5 \\ &y_3 = \lambda(x_1 + x_3) + x_3 + y_1 = \xi^5 + \xi^9 = \xi^5 \\ &y_3 = \lambda(x_1 + x_3) + x_3 + y_1 = \xi^5 + \xi^9 = \xi^5 \\ &y_3 = \lambda(x_1 + x_3) + x_3 + y_1 = \xi^5 + \xi^9 = \xi^5 \\ &y_3 = \lambda(x_1 + x_3) + x_3 + y_1 = \xi^5 + \xi^9 = \xi^5 \\ &y_3 = \lambda(x_1 + x_3) + x_3 + y_1 = \xi^5 + \xi^9 = \xi^5 \\ &y_3 = \lambda(x_1 + x_3) + x_3 + y_1 = \xi^5 + \xi^9 + \xi^9 = \xi^5 \\ &y_3 = \lambda(x_1 + x_3) + x_3 + y_1 = \xi^5 + \xi^9 + \xi^9 + \xi^9 = \xi^5 \\ &y_3 = \lambda(x_1 + x_3) + x_3 + y_1 = \xi^9 + \xi^{18} \\ &\lambda = (y_2 + y_1)(x_2 + x_1)^{-1} = (\xi^{15} + \xi^{18})(\xi^5 + \xi^9)^{-1} = (\xi^{13})(\xi^{15})^{-1} = \xi^{-2} = \xi^{29} \\ &x_3 = \lambda^2 + \lambda + a + x_1 + x_2 = \xi^{27} + \xi^{29} + \xi^5 + \xi^5 + \xi^9 = \xi + \xi^9 = \xi^{21} \\ &y_3 = \lambda(x_1 + x_3) + x_3 + y_1 = \xi^{29}(\xi^5 + \xi^{21}) + \xi^{21} + \xi^{15} = \xi^{29}\xi^{14} + \xi^{11} = \xi^{12} + \xi^{11} = \xi^{29} \\ &6Q = (\xi^{21}, \xi^{29}) \end{aligned}$$

Los puntos calculados quedan de la siguiente forma:

0	0	(0,0)
1	Q	(ξ^9, ξ^{18})
2	2Q	(ξ^5, ξ^{19})
3	3Q	(ξ^2, ξ^{18})
4	4Q	(ξ^9, ξ^{25})
5	5Q	(ξ^5, ξ^{15})
6	6Q	(ξ^{21}, ξ^{29})
	- 46	(5)5/

Ejercicio 2. Para tu curva y tu punto base, genera un par de claves pública/privada para el protocolo ECDH.

Ejercicio 3. Cifra el mensaje $(\xi^3 + \xi^2 + 1, \xi^4 + \xi^2)$ mediante el criptosistema de Menezes-Vanstone.

Ejercicio 4. Descifra el mensaje anterior.