How to Solve the Zebra Problem

M.R.C. van Dongen

Delivered 15 June 2001. Re-designed 12 October 2002.

Problem Formulation

There are five houses of different colours, inhabited by different nationals, with different pets, drinks, and sports.

Furthermore, there are the following 14 additional constraints which I have changed for the occasion:

- 1. The Englishman lives in the red house.
- 2. The Spaniard owns a dog.
- 3. The man in the green house drinks coffee.
- 4. The Irishman drinks tea.
- 5. The green house is to the right of the ivory house.

- 6. The Go player owns snails.
- 7. The man in the yellow house plays cricket.
- 8. The guy in the house int he middle drinks milk.
- 9. The Nigerian lives in the first house.¹
- 10. The judo player lives next to the man who has a fox.
- 11. The cricketer lives next to the man who has a horse.
- 12. The poker player drinks orange juice.
- 13. The Japanese plays polo.

 $^{^{1}}$ Originally, this was "at the end" but this would make the problem too easy.

Some History

According to folklore, the Zebra Problem was designed by the English logician Charles Lutwidge Dodgson (a.k.a. Lewis Carroll. Born: 27 Jan 1832, Died: 14 Jan 1898).

Some History

According to folklore, the Zebra Problem was designed by the English logician Charles Lutwidge Dodgson (a.k.a. Lewis Carroll. Born: 27 Jan 1832, Died: 14 Jan 1898). I don't have a reference. If you do, then please let me know.

Modeling the Problem

We can model the problem as a CSP. We number the houses (left to right) from 1 to 5. We then assign houses to things and we reduce the problem to the following:

- The number assigned to the person who drinks Guinness is the same as the number assigned to Guinness;
- The number assigned to the person who owns the zebra is the same as the number assigned to the zebra.

nationalities Englishman = A_1 , Spaniard = A_2 , Irishman = A_3 , Nigerian = A_4 , Japanese = A_5 .

plays go = B_1 , cricket = B_2 , judo = B_3 , poker = B_4 , polo = B_5 .

drinks coffee $= C_1$, tea $= C_2$, milk $= C_3$, orange juice $= C_4$, Guinness $= C_5$,

pets $dog = D_1$, $snails = D_2$, $fox = D_3$, $horse = D_4$, $zebra = D_5$.

colours red = E_1 , green = E_2 , ivory = E_3 , yellow = E_4 , blue = E_5 .

If X is a letter then $X_i \neq X_j \iff i \neq j$. Furthermore, we have:

- 1. The Englishman (A_1) lives in the red (E_1) house: $A_1 = E_1$.
- 2. The Spaniard (A_2) owns a dog (D_1) : $A_2 = D_1$.
- 3. The man in the green (E_2) house drinks coffee (C_1) : $E_2 = C_1$.
- 4. The Irishman (A_3) drinks tea (C_2) : $A_3 = C_2$.
- 5. The green (E_2) house is to the right of the ivory (E_3) house: $E_2-E_3=1$.
- 6. The Go (B_1) player owns snails (D_2) : $B_1 = D_2$.
- 7. The man in the yellow (E_4) house plays cricket (B_2) : $E_4 = B_2$.

- 8. The guy in the house in the middle drinks milk (C_3) : $C_3 = 3$.
- 9. The Nigerian (A_4) lives in the first house: $A_4 = 1$.
- 10. The Judo (B_3) player lives next to the man who has a fox (D_3) : $|B_3 D_3| = 1$.
- 11. The cricketer (B_2) lives next to the man who has a horse (D_4) : $|B_2 D_4| = 1$.
- 12. The poker (B_4) player drinks orange juice (C_4) : $B_4 = C_4$.
- 13. The Japanese (A_5) plays polo (B_5) : $A_5 = B_5$.
- 14. The Nigerian (A_4) lives next to the blue (E_5) house: $|A_4-E_5|=1$.

Initial CSP.

Because of the unary constraints (Rules 8 and 9) A_4 must be 1 and C_3 must be 3.

We can remove the red values.

The resulting CSP is called Node-Consistent.

Some Values have no Support.

Let's mark them for removal and colour them red.

If we propagate the consequences of removing the red values, more values will lose support.

Remove

and Propagate.

More Propagation.

More Values will lose Support.

More Propagation. . .

We have reached a Fix-point

The resulting CSP is called Arc-consistent.

E_4 's domain contains 1.

The domains of the other E_i do not contain 1.

E_4 must be 1.

After Assignment $E_4 = 1$ and Arc-Consistency.

C_5 's domain contains 1.

The domains of the other C_i do not contain 1.

C_5 must be 1.

After Assignment $C_5 = 1$ and Arc-Consistency.

Start MAC-Search (Maintain Arc-Consistency).

Select C_1 as Current Variable.

After Assignment $C_1 = 4$ and Arc-Consistency.

Select B_1 as Current Variable.

After Assignment $B_1 = 3$ and Arc-Consistency.

All domains are empty. We must backtrack on B_1 .

Next Assignment to B_1 .

After Assignment $B_1 = 4$ and Arc-Consistency.

We must backtrack on C_1 .

Next Assignment to C_1 .

After Assignment $C_1 = 5$ and Arc-Consistency.

Select B_4 as Current Variable.

After Assignment $B_4 = 2$ and Arc-Consistency.

Backtrack on B_4 .

Next Assignment to B_4 .

After Assignment $B_4 = 4$ and Arc-Consistency.

All domains are singletons.

All constraints are satisfied.

We have solved the problem.

$D_5 = 5$ (the zebra).

$D_5 = 5$ (the zebra). $A_5 = 5$ (the Japanese).

$D_5 = 5$ (the zebra). $A_5 = 5$ (the Japanese). Therefore, the Japanese owns the zebra.

To some this may have come as a complete surprise.

$C_5 = 1$ (Guinness).

$C_5 = 1$ (Guinness). $A_4 = 1$ (the Nigerian).

$C_5 = 1$ (Guinness). $A_4 = 1$ (the Nigerian). Therefore, the Nigerian drinks Guinness.

Given that Lagos has a large Guinness brewery, this should not have come as a complete surprise.

