DM2

à rendre pour le

Exercice 1. On cherche à résoudre l'équation (E) suivante, d'inconnue réelle x:

$$\left\lfloor \sqrt{x} \right\rfloor = \left\lfloor \frac{x}{2} \right\rfloor$$

- 1. Donner le dmaine de définition de l'équation (E).
- 2. Ecrire un programme python qui demande à l'utilisateur un flottant x et qui renvoie True si le réel ets solution de dl'équation (E) et False sinon.
- 3. Montrer que toute solution x de (E) est solution du système (S) suivant :

$$\left\{ \begin{array}{ccc} \sqrt{x} & < & \frac{x}{2} + 1 \\ \frac{x}{2} - 1 & < & \sqrt{x} \end{array} \right.$$

- 4. Résoudre le système (S).
- 5. Soit $\alpha = 2(2 + \sqrt{3})$ Calculer la partie entière de α .
- 6. Pour tout $k \in [0, 7]$ déterminer si les réels de l'intervalle [k, k+1[sont solutions de (E).
- 7. Conclure.

Exercice 2. On cherche les racines réelles du polynôme $P(x) = x^3 - 6x - 9$.

- 1. Donner en fonciton du paramètre x réel, le nombre de solutions réelles de l'équation $x = y + \frac{2}{y}$ d'inconnue $y \in \mathbb{R}^*$.
- 2. Soit $x \in \mathbb{R}$ vérifiant $|x| \geq 2\sqrt{2}$. Montrer en posant le changement de variable $x = y + \frac{2}{y}$ que :

$$P(x) = 0 \Longleftrightarrow y^6 - 9y^3 + 8 = 0$$

- 3. Résoudre l'équation $z^2 9z + 8 = 0$ d'inconnue $z \in \mathbb{R}$.
- 4. En déduire une racine du polynôme P.
- 5. Donner toutes les racines réelles du polynôme P.