- a) Es sei $d: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$; $(x, y) \to |x y|^{1/2}$. Zeigen Sie: (\mathbb{R}, d) ist ein metrischer Raum.
- b) Es sei $m \ge 1$ eine natürliche Zahl, $E \subseteq \mathbb{R}^m$ eine beschränkte offene Menge und $u: \overline{E} \to \mathbb{R}$ eine stetige und in E zweimal stetig differenzierbare Funktion. Zeigen Sie: Falls $\sum_{j=1}^m \frac{\partial^2}{\partial x_j^2} u(x) > 0 \text{ für alle } x \in E, \text{ so existiert ein a } \in \partial E \text{ derart, dass}$ $u(a) = \max\{u(x): x \in \overline{E}\}.$

Zu a)

 $d: \mathbb{R} \times \mathbb{R} \to \mathbb{R}; (x, y) \to |x - y|^{1/2}$ macht (\mathbb{R} , d) zu einem metrischen Raum, denn

Für $x,y \in \mathbb{R}$ ist $|x-y| \ge 0$, also $\sqrt{|x-y|} \in [0; \infty[$ wohldefiniert und |x-y| = 0 genau dann wenn x = y, also ist auch d(x, y) = 0 genau dann wenn x = y gilt.

Für alle
$$x,y \in \mathbb{R}$$
 ist $d(x,y) = \sqrt{|x-y|} = \sqrt{|y-x|} = d(y,x)$.

Für $x,y,z \in \mathbb{R}$ gilt nach der Dreiecksungleichung für den Betrag:

$$(d(x,z))^2 = |x-y| \le |x-y| + |y-z| \le |x-y| + |y-z| + 2\sqrt{|x-y|}\sqrt{|y-z|} = (\sqrt{|x-y|} + \sqrt{|y-z|})^2 = (d(x,y) + d(y,z))^2$$
 und aus der Monotonie der Wurzel folgt $d(x,z) \le d(x,y) + d(y,z)$.

Zub)

Voraussetzung: $\sum_{i=1}^{m} \partial_i^2 u(x) > 0$ für alle $x \in E$.

Da E beschränkt ist, ist der Abschluss \bar{E} eine beschränkte, abgeschlossene Teilmenge von \mathbb{R}^m , also kompakt. Deshalb nimmt die stetige reellwertige Funktion u auf \bar{E} ein Maximum an. Sei nun $a := (a_1, ..., a_m) \in \bar{E}$ ein Maximum von u.

Angenommen $a \in E$, so erfüllt a als lokales Maximum grad u(a) = 0. Da E offen ist, gibt es ein r > 0 mit $\{y \in \mathbb{R}^m : \|y - a\| < r\} \subseteq E$ und weil a lokales Maximum von u ist, haben die Funktionen $f_j :]a_j - r; a_j + r[\to \mathbb{R} ; t \to u(a_1, ..., a_{j-1}, t, a_{j+1}, ..., a_m)$ bei a_j ein lokales Maximum. Deshalb ist $f_j'(a_j) = 0$ und $f_j''(a_j) = \partial_j^2 u(a) \le 0$ (da $f_j''(a_j) > 0$ ein lokales Minimum implizieren würde). Insgesamt ist dann $\sum_{j=1}^m \partial_j^2 u(a) \le 0$ im Widerspruch zur Voraussetzung.

Somit gilt $a \notin E$. Da aber $a \in \overline{E}$ gilt, muss also $a \in \partial E = \overline{E} \setminus E$ (da E offen) gelten.