ARQUITECTURA DE COMPUTADORES

CONTENIDO PROGRAMATICO

Ing Marlon Moreno Rincon

PRESENTACIÓN

Arquitectura de Computadores es una asignatura relevante de la línea formativa del Ingeniero de Sistemas y Computación, debido a que le permite identificar la computación desde la perspectiva del hardware. De esta manera, el estudiante que da inicio a esta asignatura, ha tenido un amplio recorrido formativo en el desarrollo de software, razón que estima la necesidad de conocer los procesos subyacentes a la ejecución lógica del código, a fin que la máquina opere dentro de los límites especificados por el ingeniero.

JUSTIFICACIÓN.

Para un óptimo aprovechamiento del computador por parte de los ingenieros de sistemas es primordial que el estudiante comprenda cabalmente la distribución física de los componentes del PC y el funcionamiento interno del mismo; de esta manera podrá cumplir con los objetivos trazados referentes al diseño y mantenimiento de sistemas de información.

El ingeniero de Sistemas y Computación debe identificar al computador como un "sistema", con los conceptos propios de la teoría general de sistemas, y a partir de ello identificar la lógica funcional con la que se alcanza la interacción con el usuario final.

COMPETENCIAS.

- El estudiante identifica los diferentes elementos que constituyen un computador, desde la perspectiva conceptual y funcional.
- El estudiante es capaz de identificar procesos y relacionarlos con la ejecución de instrucciones y la secuencia de activación de elementos propios de la organización del computador.
- El estudiante compara tecnologías basadas en la organización del computador e infiere sus características y vigencia.
- El estudiante identifica los criterios fundamentales para definir la arquitectura de un computador.
- El estudiante es capaz de diseñar un <u>sistema</u> computacional en virtud de los elementos constitutivos y las funciones a soportar.

EVALUACIÓN.

- Evaluación colectiva: Talleres 10% y exposiciones 10 %
- Evaluación individual:
 - Dos Parciales: 50 %
 - Proyecto: 30 %

1. Introducción.

- I. ¿Qué es la arquitectura de computadores?.
- II. Historia y Evolución de los computadores.
- III. El Concepto de Von Neumann y Harvard.

2. PROCESADOR.

- I. Instrucciones.
- II. Funcionamiento.
- III. Estructura lógica.
- IV. RISC y CISC.

3. Microprocesador.

- I. Introducción al microprocesador.
- II. Arquitectura del microprocesador.
- III. Tipos de buses.
- IV. Decodificación de las instrucciones.
- V. Ciclo de búsqueda.
- VI. Ejecución de las instrucciones
- VII. Buses.
- VIII. Direccionamiento.
- IX. Temporización.
- X. Interrupciones. Acceso directo a memoria.

4.Instrucciones.

- I.Tipos de Instrucciones.
- II.Repertorio de Instrucciones.
- III.Propiedades.
- IV.Formato de Instrucción.

5. Ensamblador.

- I. Memoria y alamacenamiento.
- II. Direccionamiento.
- III. Instrucciones de movimiento.
- IV. Evaluación de expresiones.
- V. Condicionales.
- VI. Interacciones.
- VII. Saltos y modos de direccionamiento.

7. Modos de Direccionamiento.

- I. Directo, Indirecto.
- II. Relativo a PC.
- III. Inmediato.
- IV. Pseudo-directo.
- V. Implícito.

8. Buses de Comunicación.

- I. Seriales.
- II. Paralelos.
- III. PCI.
- 9. Paralelismo y Multiprocesamiento.

10.Lenguajes de programación.

- I. Compilación.
- II. Generación de código intermedio.
- III. Generación de código.
- 11. Interfaces I/O.
- 12. Sistemas operativos.
- 13. Modelo de arquitecturas de cómputo.
 - I. Clásicas.
 - II. Segmentadas.
 - III. De multiprocesamiento.