Soutien pour le cours de probabilités Partie III: Variables aléatoires continues.

Anna Melnykova

Ensimag

2020-2021

...previously on "Soutien pour le cours de probabilités"

Definition

Variables aléatoires réelles Toute application mesurable $X:(\Omega,\mathcal{F})\to(\mathbb{R},\mathcal{B}(\mathbb{R}))$ s'appelle variable aléatoire réelle. X est mesurable si

$$\forall B \in \mathcal{B}(\mathbb{R}) \text{ si } X \in B, \quad X^{-1}(B) \in \mathcal{F}.$$

Autrement dit, pour chaque événement $B \in \mathcal{B}(\mathbb{R})$ (i.e. X prenne une valeur dans l'intervalle B) c'est possible de quantifier la probabilité d'avoir l'événtualite ω telle que $X(\omega) \in \mathcal{B}$. Cette probabilité peut être calculé avec la fonction de répartition, qui caractérise la loi X:

$$\mathbb{P}(X \le x) = \mathbb{P}(\omega \in \Omega : X(\omega) \le x) = \mathbb{P}(\omega \in \Omega : X(\omega) \in (-\infty, x]) = F(x)$$

Anna Melnykova (Ensimag)

Soutien Proba

2020-2021 < 2 / 17 >

Rappel : Fonction de répartition

Definition

Soit X une variable aléatoire sur $(\Omega, \mathcal{F}, \mathbb{P})$. On note F_X la fonction de $\mathbb{R} \to [0,1]$ définie $\forall x \in \mathbb{R}$ par $F_X := \mathbb{P}(X \le x)$. La fonction F est appelée fonction de répartition de la variable aléatoire X.

• F_x est croissante au sense large :

$$\forall (x,y) \in \mathbb{R}^2, \quad x < y \Rightarrow F_X(x) \le F_X(y)$$

3
$$F_X$$
 est continue à droite : $\forall x \in \mathbb{R}$: $\lim_{h \to 0} F_X(x+h) = F_X(x)$

Fonction de répartition : example

- On considere une variable $S:\Omega\to\{2,3,\ldots,11,12\}$, qui modélise la somme des faces des 2 dés.
- Notons que $\forall k \in \{2, 3, ..., 11, 12\}$, $\{S = k\} = \{\omega \in \Omega : S(\omega) = k\}$.
- Notons $p_k := \mathbb{P}(S = k)$, on a $\sum_{k=2}^{12} p_k = 1$

La fonction de répartition pour la variable S est défini comme

$$F_{S}(x) = \mathbb{P}(S \le x) = \begin{cases} 0 & \text{si } x < 2, \\ \sum_{k=1}^{j} p_{k} & \text{si } 2 \le j \le x < j+1 \le 12, \\ 1 & \text{si } x \le 12. \end{cases}$$

Variable aléatoire continue

Definition

Une fonction $X:\Omega\to\mathbb{R}$ c'est une variable aléatoire continue s'il existe une fonction $f_X:\mathbb{R}\to[0,1]$ continue par morceaux vérifiant la propriété

$$\forall a < b, \quad \mathbb{P}(X \in [a, b]) = \int_a^b f_X(y) dy.$$

Cette fonction f_X est appelée **densité de probabilité** de la variable aléatoire X.

La densité de probabilité de la variable continue peut être vue comme l'analogue de la fonction de masse pour les variables discrètes.

Densité de probabilité d'une variable aléatoire continue

Soit X une variable aléatoire continue à valeurs dans \mathbb{R} et F_X sa fonction de répartition. La densité de probabilité de X, qu'on note f_X , c'est la fonction qui satisfait les conditions suivantes $\forall x \in \mathbb{R}$:

- $F_X(x) = \mathbb{P}(X \le x) = \int_{-\infty}^x f_X(y) dy$
- $f_X(x) \geq 0$,

La densité de probabilité caractérise la loi d'une variable aléatoire continue.

Densité de probabilité d'une variable aléatoire continue

Les propriétés de la densité :

- Si X est une variable aléatoire à densité, alors sa fonction de répartition $F_X(x)$ est continue et dérivable presque partout sur $\mathbb R$ et sa dérivée $F_X'(x)$ est (presque partout) égale à la densité de probabilité : $F_X'(x) = f_X(x)$
- $\mathbb{P}(a \le X \le b) = \mathbb{P}(a < X \le b) = \mathbb{P}(a \le X < b) = \mathbb{P}(a \le X < b) = \mathbb{P}(a \le X < b) = \int_a^b f_X(x) dx$
- $\mathbb{P}(X \le b) = \int_{-\infty}^{b} f_X(x) dx$ $\mathbb{P}(X \ge a) = \int_{a}^{\infty} f_X(x) dx$

L'espérance d'une variable aléatoire continue

Definition

L'espérance (ou la moyenne, ou le moment d'ordre 1) d'une variable aléatoire X à valeurs dans \mathbb{R} , de fonction de densité de probabilité f_X , et defini comme

$$\mathbb{E}[X] = \int_{-\infty}^{\infty} x f_X(x) dx$$

Remarque : notons que cette définition correspond à la définition d'espérance pour les variables discretes, si on remplace l'intégral par la somme et la densité par la masse.

L'espérance d'une variable aléatoire continue : propriétés

 L'espérance est un opérateur linéare. Soient X et Y deux variables aléatoires

$$\forall a, b \in \mathbb{R} \quad \mathbb{E}[aX + bY] = a\mathbb{E}[X] + b\mathbb{E}[Y]$$

• Théorème de transfert. Soient X une v.a. de densité de probabilité f_X , et $g:\Omega\to\mathbb{R}$ une fonction continue. Si $\int_{-\infty}^\infty |g(x)|f_X(x)dx$ converge, alors g(X) est une variable aléatoire continue dont l'espérance vaut

$$\mathbb{E}\left[g(X)\right] = \int_{-\infty}^{\infty} g(x) f_X(x) dx$$

Par exemple, pour $g(X) = X^2$ on a

$$\mathbb{E}\left[g(X)\right] = \int_{-\infty}^{\infty} X^2 f_X(x) dx$$

Anna Melnykova (Ensimag)

Soutien Proba

2020-2021 <

Exercices

Soit X une variable continue avec la densité de probabilité donnée par

$$f_X(x) = ce^{-x} \mathbb{1}_{x \ge 0}, \quad c = const.$$

- Trouver la constante c.
- Trouver $F_X(x)$
- Trouver $\mathbb{E}[X]$
- Calculer $\mathbb{P}(1 < X < 3)$

Exemple : densité de la loi uniforme

Considerons une variable U qui suit la loi uniforme, c'est-à-dire

$$\forall 0 \leq a \leq b \leq 1$$
, $\mathbb{P}\left(U \in [a,b)\right) = b - a$

- Quelle est la fonction de densité de *U*?
- Calculer l'espérance de U et U^2 (en utilisant la densité).
- On considere deux variables uniformes U et V sur l'intervalle [0,1]. On définit la variable W de la manière suivante : si U < 1/4, W = V, sinon $W = \sqrt{V}$. Trouver l'esperance de la variable aléatoire W^2 .

Variance

Definition

La variance d'une variable aléatoire X est définie comme la moyenne des carrés des écarts à la moyenne de X :

$$Var[X] = \mathbb{E}\left[(X - \mathbb{E}[X])^2\right]$$

- ② $Var[X] = \mathbb{E}[X^2] (\mathbb{E}[X])^2$ (Exercice : prouver!)
- 3 $Var[aX + b] = Var[aX] = a^2 Var[X]$ (Exercice : prouver!)

Propriétés de la variance et de l'espérance

Soient X_1, \ldots, X_n , n variables aléatoires (même pas independantes). On a

$$\mathbb{E}\left[\sum_{i=1}^{n} X_{i}\right] = \sum_{i=1}^{n} \mathbb{E}\left[X_{i}\right]$$

$$Var\left(\sum_{k=1}^{n} X_{k}\right) = \sum_{k=1}^{n} Var(X_{k}) + \sum_{k \neq l} Cov(X_{k}, X_{l}),$$

ou
$$Cov[X, Y] = \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])].$$

Moyenne empirique

Si X_1, \ldots, X_n sont indépendantes et identiquement distribuées (iid), on défini la moyenne empirique comme :

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

Exercice : calculer l'espérance et la variance de \bar{X} !

Loi uniforme continue

Pour la loi uniforme continue $X \sim \mathcal{U}_{[}a,b]$, la probabilité que X soit dans un intervalle $[a_1,b_1] \in [a,b]$ est égale à la probabilité que X soit dans n'importe quel autre intervalle $[a_2,b_2] \in [a,b]$ si $b_1-a_1=b_2-a_2$. Si $X \sim \mathcal{U}_{[}a,b]$

- $f_X(x) = \frac{1}{b-a} \mathbb{1}_{x \in [a,b]}$
- $\bullet F_X(x) = \tfrac{x-a}{b-a} \mathbb{1}_{x \in [a,b]}$
- $\bullet \ \mathbb{E}[X] = \frac{a+b}{2}$
- $Var[X] = \frac{(b-a)^2}{12}$

Loi exponentielle

Loi exponentielle $\mathcal{E}(\lambda)$ modélise la durée de vie d'un phénomène sans mémoire, ou sans usure, ou sans vieillisement. Sa densité de probabilité est donnée comme

$$f_X(x) = \lambda e^{-\lambda x}, \quad x \ge 0, \lambda > 0.$$

On peut montrer que :

- $F_X(x) = 1 e^{-\lambda x}$, si $x \ge 0$ et 0 sinon.
- $\mathbb{E}[X] = \frac{1}{\lambda}$
- $Var[X] = \frac{1}{\lambda^2}$

Exercice: montrer!

Loi normale

On note $X \sim \mathcal{N}(\mu, \sigma^2)$ si sa densité de probabilité est définie par

$$f_X(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2\sigma^2}(x-\mu)^2}, \quad x \in \mathbb{R}$$

L'espérance et la variance sont données par

- $\mathbb{E}[X] = \mu$
- $Var[X] = \sigma^2$

