SC201 Lecture 5

Training, Validation, Testing Data

- From _____
 - Have

Big Data

- High degree polynomial learns data features _____ (not generalized features)
 - < Linear regression >

< Logistic regression >

Address Overfitting

- (2)
- 3 _____
- **4**

< Early Stopping>

< Cross Validation>

• Split data into ____ folds
and

train on ____ folds
validate on ____ folds

for i in range(K):

Dval = data_folds[i]

Dtrain = data_folds[:i]+data_folds[i+1:]

< Regularization > (______)

(_____)

- ① W愈____, 彎曲愈_____
- ③ 為了降低Total Loss,

要降低 ,也

要降低

④ W太大 → _____

W太小➡

dL_{-}		
\overline{dWi}^-	 +	

 \longrightarrow Wi = Wi -

< Weight Decay >

$$Wi = Wi - \alpha((h-y)Xi + \lambda Wi)$$

$$Wi = Wi -$$

$$Wi = \underline{\hspace{1cm}}$$

=____

Bias & Variance

Train Error	1%	15%	15%
Val Error	11%	16%	30%
	+	•	+

< fix high bias prol	olem >	
•	/	
•		
< fix high variance	problem >	
•		
•		
	(•	
[4) -	
yperparameters) ·	
	• ———	
	•	