# **COMP201 – Software Engineering I Lecture 30 – Project Management**

Lecturer: Dr. T. Carroll

Email: Thomas.Carroll2@Liverpool.ac.uk

Office: G.14

See Vital for all notes

### **Project Management**

Organising, planning and scheduling software projects

#### **Objectives**

- To introduce software project management and to describe its distinctive characteristics
- To discuss project planning and the planning process
- To show how graphical schedule representations are used by project management
- To discuss the notion of risks and the risk management process

## **Topics Covered**

- Management activities
- Project planning
- Project scheduling
- Risk management

### **Software Project Management**

- Concerned with activities involved in ensuring that software is delivered on time and on schedule and in accordance with the requirements of the organisations developing and procuring the software
- Project management is needed because software development is always subject to budget and schedule constraints that are set by the organisation developing the software

#### **Software Management Distinctions**

- The product is **intangible**
- Software engineering is not recognized as an engineering discipline with the same status as mechanical, electrical engineering, etc.
- The software development process is not standardised
- Many software projects are 'one-off' projects

#### **Management Activities**

- Proposal writing
- Project planning and scheduling
- Project costing
- Project monitoring and reviews
- Personnel selection and evaluation
- Report writing and presentations

#### **Management Commonalities**

- These activities are not peculiar to software management
- Many techniques of engineering project management are equally applicable to software project management
- Technically complex engineering systems tend to suffer from the same problems as software systems

## **Project Staffing**

- May not be possible to appoint the ideal people to work on a project
  - Project budget may not allow for the use of highly-paid staff
  - Staff with the appropriate experience may not be available
  - An organisation may wish to develop employee skills on a software project
- Managers have to work within these constraints especially when (as is currently the case) there is an international shortage of skilled IT staff

### **Project Planning**

- Probably the most time-consuming project management activity
- Continuous activity from initial concept through to system delivery.
- Plans must be regularly revised as new information becomes available
- Various different types of plan may be developed to support the main project plan

# **Types of Project Plan**

| Plan                           | <b>Des cription</b>                                                                         |  |  |
|--------------------------------|---------------------------------------------------------------------------------------------|--|--|
| Quality plan                   | Describes the quality procedures and standards that will be used in a project.              |  |  |
| Validation plan                | Describes the approach, resources and schedule used for system validation.                  |  |  |
| Configuration man agement plan | Describes the configuration management procedures and structures to be used.                |  |  |
| Maintenan ce plan              | Predicts the maintenance requirements of the system, maintenance costs and effort required. |  |  |
| Staff development plan.        | Describes how the skills and experience of the project team members will be developed.      |  |  |

#### **Project Plan Structure**

- Introduction
- Project organisation
- Risk analysis
- Hardware and software resource requirements
- Work breakdown
- Project schedule
- Monitoring and reporting mechanisms

#### **Activity Organization**

- Activities in a project should be organised to produce tangible outputs for management to judge progress
- Milestones are the end-point of a process activity
- **Deliverables** are project results delivered to customers
- The waterfall process allows for the straightforward definition of progress milestones

#### Milestones in the Requirements Engineering Process



### **Project Scheduling**

- Split project into tasks
- Estimate time and resources required for each task
- Organize tasks concurrently to make optimal use of workforce
- Minimize task dependencies to avoid delays
- Effectiveness is dependent on project managers intuition and experience

# **Scheduling Problems**

- Estimating the difficulty of problems is hard to do
  - Therefore, estimating cost of developing a solution is hard
- Productivity is not proportional to the number of people working on a task
- Adding people to a late project can make it even later because of communication overheads
- The unexpected always happens.
- Always allow for contingency in planning

#### **Bar Charts and Activity Networks**

- Graphical notations used to illustrate the project schedule
- Show project breakdown into tasks.
  - Tasks should not be too small (1 week / 2weeks)
- Activity charts show task dependencies and the critical path
- Bar charts show schedule against calendar time

# **Task Durations and Dependencies**

| Task | Duration (days) | Dependencies |  |
|------|-----------------|--------------|--|
| T1   | 8               |              |  |
| T2   | 15              |              |  |
| Т3   | 15              | T1(M1)       |  |
| T4   | 10              |              |  |
| T5   | 10              | T2,T4 (M2)   |  |
| Т6   | 5               | T1,T2 (M3)   |  |
| T7   | 20              | T1 (M1)      |  |
| Т8   | 25              | T4 (M5)      |  |
| Т9   | 15              | T3,T6 (M4)   |  |
| T10  | 15              | T5,T7 (M7)   |  |
| T11  | 7               | T9(M6)       |  |
| T12  | 10              | T11(M8)      |  |

#### **Activity Network**



# **Activity Timeline**



#### **Staff Allocation**



#### **Pert charts**

- Define for each task:
  - Dependencies
  - Early start
    - Earliest time the task can start (given its dependencies)
  - Early end
    - Earliest time the task can end (given its dependencies)
  - Late start
    - Latest time the task can start without delaying the deadline
  - Late end
    - Latest time the project can end without delaying the deadline
  - Slack
    - Amount task can be delayed without delaying the project
    - Slack = 0 task is CRITICAL

#### **Pert charts**



#### **Risk Management**

- Identifying risks and planning to minimise their effect on a project.
- A risk is a probability that some adverse circumstance will occur.
  - Project risks affect schedule or resources
  - Product risks affect the quality or performance of the software being developed
  - Business risks affect the organisation developing or procuring the software

#### **The Risk Management Process**

- Risk identification
  - Identify project, product and business risks
- Risk analysis
  - Assess the likelihood and consequences of these risks
- Risk planning
  - Draw up plans to avoid or minimise the effects of the risk
- Risk monitoring
  - Monitor the risks throughout the project

#### **Risk Identification**

- Technology risks
- People risks
- Organisational risks
- Requirements risks
- Estimation risks

# Risks and Risk Types

| Risk type      | Possible risks                                              |
|----------------|-------------------------------------------------------------|
| Technology     | The database used in the system cannot process as           |
|                | many transactions per second as expected.                   |
|                | Software components which should be reused contain          |
|                | defects which limit their functionality.                    |
| People         | It is impossible to recruit staff with the skills required. |
|                | Key staff are ill and unavailable at critical times.        |
|                | Required training for staff is not available.               |
| Organisational | The organisation is restructured so that different          |
|                | management are responsible for the project.                 |
|                | Organisational financial problems force reductions in the   |
|                | project budget.                                             |
| Tools          | The code generated by CASE tools is inefficient.            |
|                | CASE tools cannot be integrated.                            |
| Requirements   | Changes to requirements which require major design          |
|                | rework are proposed.                                        |
|                | Customers fail to understand the impact of requirements     |
|                | changes.                                                    |
| Estimation     | The time required to develop the software is                |
|                | underestimated.                                             |
|                | The rate of defect repair is underestimated.                |
|                | The size of the software is underestimated.                 |

### **Risk Analysis**

- Assess probability and <u>seriousness</u> of each risk
- Probability may be very low, low, moderate, high or very high
- Risk effects might be catastrophic, serious, tolerable or insignificant

# **Risk Analysis**

| Risk                                                                                           | Probability | Effects       |
|------------------------------------------------------------------------------------------------|-------------|---------------|
| Organisational financial problems force reductions in the project budget.                      | Low         | Catastrophic  |
| It is impossible to recruit staff with the skills required for the project.                    | High        | Catastrophic  |
| Key staff are ill at critical times in the project.                                            | Moderate    | Serious       |
| Software components which should be reused contain defects which limit their functionality.    | Moderate    | Serious       |
| Changes to requirements which require major design rework are proposed.                        | Moderate    | Serious       |
| The organisation is restructured so that different management are responsible for the project. | High        | Serious       |
| The database used in the system cannot process as many transactions per second as expected.    | Moderate    | Serious       |
| The time required to develop the software is underestimated.                                   | High        | Serious       |
| CASE tools cannot be integrated.                                                               | High        | Tolerable     |
| Customers fail to understand the impact of requirements changes.                               | Moderate    | Tolerable     |
| Required training for staff is not available.                                                  | Moderate    | Tolerable     |
| The rate of defect repair is underestimated.                                                   | Moderate    | Tolerable     |
| The size of the software is underestimated.                                                    | High        | Tolerable     |
| The code generated by CASE tools is inefficient.                                               | Moderate    | Insignificant |

### **Risk Planning**

- Consider each risk and develop a strategy to manage that risk
- Avoidance strategies
  - The probability that the risk will arise is reduced
- Minimisation strategies
  - The impact of the risk on the project or product will be reduced
- Contingency plans
  - If the risk arises, contingency plans are plans to deal with that risk

## **Risk Factors**

| Risk type      | Potential indicators                                         |
|----------------|--------------------------------------------------------------|
| Technology     | Late delivery of hardware or support software, many reported |
|                | technology problems                                          |
| People         | Poor staff morale, poor relationships amongst team member,   |
|                | job availability                                             |
| Organisational | organisational gossip, lack of action by senior management   |
| Tools          | reluctance by team members to use tools, complaints about    |
|                | CASE tools, demands for higher-powered workstations          |
| Requirements   | many requirements change requests, customer complaints       |
| Estimation     | failure to meet agreed schedule, failure to clear reported   |
|                | defects                                                      |

## **Project management Tools**

- The **best** tools are online
  - Easy to access anywhere
  - Don't require you to set up any software
- Example: Zoho
  - Free
  - Online
  - Powerful
  - Task handling
  - Gannt charts
  - Milestones
  - Free for <10 Meg storage</li>

#### **Lecture Key Points**

- Good project management is essential for project success
- The intangible nature of software causes problems for management
- Managers have diverse roles but their most significant activities are planning, estimating and scheduling
- Planning and estimating are iterative processes which continue throughout the course of a project

#### **Lecture Key Points**

- A project milestone is a predictable state where some formal report of progress is presented to management.
- Risks may be project risks, product risks or business risks
- Risk management is concerned with identifying risks which may affect the project and planning to ensure that these risks do not develop into major threats

**COMP201 - Lecture 30** 3<sup>4</sup>