PCT

世界知的所有権機関 国 際 事 務 局 特許協力条約に基づいて公開された国際出願

(51) 国際特許分類7

C12N 15/16, C07K 14/68, 7/08, A61K 45/00, A61P 3/04, 3/10, 15/06

(11) 国際公開番号 A1

WO00/40725

(43) 国際公開日

2000年7月13日(13.07.00)

(21) 国際出願番号

PCT/JP99/07336

JP

(22) 国際出願日

1999年12月27日(27.12.99)

(30) 優先権データ

特阿平10/374454 特願平11/122688

1998年12月28日(28.12.98) 1999年4月28日(28.04.99)

特願平11/249300

1999年9月2日(02.09.99)

(71) 出願人

武田薬品工業株式会社

(TAKEDA CHEMICAL INDUSTRIES, LTD.)[JP/JP]

〒541-0045 大阪府大阪市中央区道修町四丁目1番1号 Osaka, (JP)

(72) 発明者

森 正明(MORI, Masaaki)

〒305-0821 茨城県つくば市春日1丁目7番地9

武田春日ハイツ702号 Ibaraki, (JP)

下村行生(SHIMOMURA, Yukio)

〒305-0035 茨城県つくば市松代3丁目12番地1

武田薬品松代レジデンス605号 Ibaraki, (JP)

竹河志郎(TAKEKAWA, Shiro)

〒305-0045 茨城県つくば市梅園2丁目5番地3

梅園スクエアB棟305号 Ibaraki, (JP)

周郷 司(SUGO, Tsukasa)

〒300-3261 茨城県つくば市花畑2丁目7番地26

テクノタウン筑波301号 Ibaraki, (JP)

石橋祥弘(ISHIBASHI, Yoshihiro)

〒305-0003 茨城県つくば市桜2丁目25番地! Ibaraki, (JP)

北田千恵子(KITADA, Chieko)

〒590-0073 大阪府堺市南向陽町1丁2番8号 Osaka, (JP)

鈴木伸宏(SUZUKI, Nobuhiro)

〒305-0861 茨城県つくば市大字谷田部1077番地50 Ibaraki, (JP)

(74) 代理人

弁理士 高橋秀一, 外(TAKAHASHI, Shuichi et al.) 〒532-0024 大阪府大阪市淀川区十三本町 2丁目17番85号

武田薬品工業株式会社 大阪工場内 Osaka, (JP)

(81) 指定国 AE, AL, AM, AU, AZ, BA, BB, BG, BR, BY, CA, CN, CR, CU, CZ, DM, EE, GD, GE, HR, HU, ID, IL, IN, IS, JP, KG, KR, KZ, LC, LK, LR, LT, LV, MA, MD, MG, MK, MN, MX, NO, NZ, PL, RO, RU, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UZ, VN, YU, ZA, 欧州特許 (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI 特許 (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG), ARIPO特許 (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), ユーラシ ア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM)

添付公開書類

国際調査報告書

(54)Title: SCREENING METHOD

(54)発明の名称 スクリーニング方法

(57) Abstract

A method for screening a compound or its salt capable of altering the bonding properties of MCH or its salt to SLC-1 or its salt, characterized by using MCH or its derivative or its salt and SLC-1 or its salt, etc. The above screening method is useful in screening an SLC-1 agonist which is usable as appetite (eating) stimulating agents and preventives and remedies for weak pains, atonic bleeding, before and after expulsion, uterine recovery insufficiency, caesarean section, artificial interruption of pregnancy, milk congestion, etc. and an SLC-1 antagonist which is usable as antiobestic agents (drugs), appetite (eating) regulators, and preventives and remedies for excessively strong pains, tonic uterine contraction, fetal asphyxia, rupture of uterus, cervical rupture, premature birth, Prader-Willi syndrome, etc.

(57)要約

本発明はMCHもしくはその誘導体またはその塩およびSLC-1またはその塩を用いることを特徴とするMCHまたはその塩とSLC-1またはその塩との結合性を変化させる化合物またはその塩のスクリーニング方法などを提供する。

本発明のMCHもしくはその誘導体またはその塩およびSLC-1またはその塩を用いることを特徴とするMCHまたはその塩とSLC-1またはその塩との結合性を変化させる化合物またはその塩のスクリーニング方法は、食欲(摂食)増進剤の他、微弱陣痛、弛緩出血、胎盤娩出前後、子宮復古不全、帝王切開術、人工妊娠中絶、乳汁うっ滞などの予防・治療薬などとして用いることができるSLC-1アゴニスト、抗肥満剤(薬)、食欲(摂食)調節剤などの他、過強陣痛、強直性子宮収縮、胎児仮死、子宮破裂、頚菅裂傷、早産、Prader-Willi 症候群などの予防・治療薬などとして用いることができるSLC-1アンタゴニストのスクリーニング方法として有用である。

```
PCTに基づいて公開される国際出願のパンフレット第一頁に掲載されたPCT加盟国を同定するために使用されるコード(参考情報)
                                                                             AE アラブ首長国連邦
AG アンディグア・パーブーダ
AL アルパニア
AM アルメニア
AT オーストリア
AZ アゼルバイジャン
BA ボズニア・ヘルツェゴビナ
BB バルバドス
BE バルギー
                                                                                                                   RU ロシア

SD ステンデン

スランガヴェーデン

SG ステンプヴェーア

SG ステンプヴェーア

SK ステンプラ・レント

とマネカジラ・レント
                                         DM ドミニカェニア
リア エスペインンド
EE スペインフス
FI フィテンス
GA ガボコ
                                                                        LK
LR
LS
LT
                                         LUV MC MC MC
                                                                                                                         スワジランド
チャード
トーゴー
       ベルギー
ブルギナ・ファソ
ブルガリア
 タジキスタン
トルクメニスタン
                                                                             M L
M N
M R
                                                                       ワガンタ
米国
ウズベキスタン
ヴェゴースラヴィア
ネアフリカ共和国
ジンパブエ
```

7.1

WO 00/40725 PCT/JP99/07336

明細書

スクリーニング方法

技術分野

本発明は、オーファンレセプター蛋白質であるSLC-1 (FEBS Letters 398 (1996) 253-258など) またはその塩とMCH (メラニン凝集ホルモン; Melanin Concentrating Hormone (Endocrinology, vol. 125, 1660-1665 (1989)など) もしくはその誘導体またはその塩を用いることを特徴とする抗肥満薬または食欲調製薬などのスクリーニング方法などに関する。

10

15

20

25

背景技術

ヒトゲノムから見出されたヒト型SLC-1 (FEBS Letters 398 (1996) 253-258) およびラットの脳のcDNAライプラリーから見出されたラット型SLC-1 (Biochimica et Biophysica Acta 1401 (1998) 216-220) はG蛋白質 共役型レセプターあるいは7回膜貫通型レセプターと総称されるものであり、数多くの、リガンドが不明ないわゆるオーファンG蛋白質共役型レセプター蛋白質の一種である。

これらオーファンG蛋白質共役型レセプター蛋白質のリガンドを決定する一般的な手段としては、G蛋白質共役型レセプター蛋白質の一次構造上の類似性から推定するしかなかった。しかし、多くのオーファンG蛋白質共役型レセプター蛋白質は既知のレセプターとのホモロジーが低いものが多く、実際は既知リガンドのレセプターサブタイプである場合を除いては一次構造上の類似性だけでそのリガンドを推定することは困難であった。一方、遺伝子解析から多くのオーファンG蛋白質共役型レセプターが見つかっていることから対応する未知のリガンドがまだ数多く存在していることが推定されているが、これまで実

際にオーファンG蛋白質共役型レセプターのリガンドを同定した例は数少なく、SLC-1についてもそのリガンドの存在は報告されていない。

オーファンレセプター蛋白質であるSLC-1に対するリガンドの探索と、 SLC-1およびそのリガンドを用いることを特徴とする化合物などのスクリーニング方法の確立が課題とされている。

発明の開示

15

本発明者らは、SLC-1をコードするcDNAを適当な手段で発現させた 細胞を用い、特異的な細胞刺激(シグナル伝達)活性の測定等を指標に、該レ セプター蛋白質がリガンドとして認識するポリペプチドをスクリーニングする ことに成功し、該ポリペプチドがMCH(メラニン凝集ホルモン; Melanin Concentrating Hormone) であることを見出した。

さらに、本発明者らは、該活性因子であるMCHまたはその塩と上記SLC - 1またはその塩との結合性を変化させる化合物のスクリーニングを行なうことができることを見いだした。

また、本発明のヒト型SLC-1のアミノ酸配列は、既報 (FEBS Letters 398 (1996) 253-258、WO 96/18651号) とは異なる新規な配列であることを見出した

すなわち、本発明は、

- 20 (1) メラニン凝集ホルモン(MCH)もしくはその誘導体またはその塩および SLC-1またはその塩を用いることを特徴とするMCHまたはその塩とSL C-1またはその塩との結合性を変化させる化合物またはその塩のスクリーニング方法、
- (2) MCHもしくはその誘導体またはその塩およびSLC-1またはその塩 25 を含有することを特徴とするMCHまたはその塩とSLC-1またはその塩と の結合性を変化させる化合物またはその塩のスクリーニング用キット、

- (3) 上記(1) 記載のスクリーニング方法または上記(2) 記載のスクリーニング用キットを用いて得られうる、MCHまたはその塩とSLC-1またはその塩との結合性を変化させる化合物またはその塩、
- (4)上記(3)記載の化合物またはその塩を含有してなる医薬。
- 5 (5) 抗肥満薬である上記(4) 記載の医薬、
 - (6)配列番号:11で表されるアミノ酸配列を含有するタンパク質またはその塩、
 - (7)上記(6)記載のタンパク質をコードする塩基配列を有するDNAを含有するDNA、
- 10 (8) MCHが配列番号: 2で表されるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するペプチドである上記(1)記載のスクリーニング方法または上記(2)記載のスクリーニング用キット、
 - (9) 誘導体が配列番号:2で表されるアミノ酸配列のN末端から第5番目ないし第19番目の部分配列を含有するペプチドである上記(1)記載のスクリーニング方法または上記(2)記載のスクリーニング用キット、
 - (10) 誘導体がボルトンハンター試薬により誘導されたMCHまたはボルトンハンター試薬により誘導された配列番号:2で表されるアミノ酸配列のN末端から第5番目ないし第19番目の部分配列を含有するペプチドである上記(1)記載のスクリーニング方法または上記(2)記載のスクリーニング用キッ
- 20 h.

(11) ボルトンハンター試薬により誘導されたMCHまたはボルトンハンター試薬により誘導された配列番号:2で表されるアミノ酸配列のN末端から第5番目ないし第19番目の部分配列を含有するペプチドまたはその塩、および(12)式

で表される化合物またはその塩などを提供するものである。

本発明におけるSLC-1関して、具体的には、上述の公知のSLC-1ま たはその塩などがあげられるのみならず、

(13) 配列番号:5または配列番号:11で表わされるアミノ酸配列と同一 5 もしくは実質的に同一のアミノ酸配列を含有することを特徴とするSLC-1 またはその塩、または

(14) 配列番号:5または配列番号:11で表わされるアミノ酸配列中の1 個以上30個以下、好ましくは1個以上10個以下のアミノ酸が欠失したアミ ノ酸配列、配列番号:5または配列番号:11で表わされるアミノ酸配列に1 10 個以上30個以下、好ましくは1個以上10個以下のアミノ酸が付加した(ま たは挿入された)アミノ酸配列、あるいは配列番号:5または配列番号:11 で表わされるアミノ酸配列中の1個以上30個以下、好ましくは1個以上10 個以下のアミノ酸が他のアミノ酸で置換されたアミノ酸配列を含有するタンパ ク質である上記(13)記載のSLC-1またはその塩などがあげられる。 15

また、本発明におけるMCHに関して、具体的には、上述の公知のMCHま たはその塩などがあげられるのみならず、

(15) 配列番号:2で表わされるアミノ酸配列と同一もしくは実質的に同一 のアミノ酸配列を含有することを特徴とするMCHもしくはその誘導体または その塩、または

20

(16) タンパク質が、配列番号:2で表わされるアミノ酸配列中の1個以上 10個以下、好ましくは1個以上5個以下のアミノ酸が欠失したアミノ酸配列 、配列番号:2で表わされるアミノ酸配列に1個以上10個以下、好ましくは 1個以上5個以下のアミノ酸が付加した(または挿入された)アミノ酸配列、

あるいは配列番号: 2で表わされるアミノ酸配列中の1個以上10個以下、好ましくは1個以上5個以下のアミノ酸が他のアミノ酸で置換されたアミノ酸配列を含有するペプチドである上記(15)項記載のMCHもしくはその誘導体またはその塩などがあげられる。

5

20

25

図面の簡単な説明

図 1 はラット脳から調製したHPLCフラクションについてCHO/SLC-1細胞特異的なCAMP合成抑制活性を測定した結果を示す。

図2は参考例1中のラット脳HPLCフラクション#34のcAMP合成抑制活性のプ10 ロナーゼ処理に対する挙動を示す。

図3は参考例3中のODSカラム(Develosil ODS-UG-3)で精製した画分についてCHO/SLC-1細胞に特異的なcAMP合成抑制活性を測定した結果を示す。

図4はラットSLC-1遺伝子発現CHO細胞株についてin situハイブリダイゼーションによる遺伝子発現量の比較を示す。

15 図5は種々の濃度のMCHのCHO/SLC-1細胞に対するcAMP合成抑制活性を示す。 図6は種々の濃度のMCHのCHO/SLC-1細胞に対するアラキドン酸代謝物放出活性を示す。

図 7 はMCH、MCH(2-19)、MCH(3-19)、MCH(4-19)、MCH(5-19)、MCH(6-19) およびMCH(7-19) のGTP γ Sバインディングアッセイを用いたアゴニスト活性を測定した結果を示す。

図8は非アイソトープボルトンーハンター試薬によって誘導体化されたMCH、MCH(2-19)、MCH(3-19)、MCH(4-19) およびMCH(5-19) のGTP γ Sバインディングアッセイを用いたアゴニスト活性を測定した結果を示す。

図9はポルトン-ハンター試薬を用いて作製した[1251]-標識MCH(4-19)のヒトSLC-1発現CHO細胞から調製した細胞膜画分に対する特異的結合を示す。

図10はボルトン-ハンター試薬を用いて作製した[125 I]-標識MCH(4-19)に

対するMCHの結合阻害活性を示す。

発明を実施するための最良の形態

本明細書において、「実質的に同一」とはポリペプチドなどの活性、例えば 、リガンド(MCH)と受容体(SLC-1)の結合活性、生理的な特性など が、実質的に同じことを意味する。

本発明で用いられるSLC-1またはその塩(以下、単にSLC-1と略称する場合がある)およびMCHもしくはその誘導体またはその塩(以下、単にMCHと略称する場合がある)の製造法を以下にさらに詳細に説明する。

本発明で用いられるSLC-1およびMCHとしては、ヒト、温血動物(例 10 えば、モルモット、ラット、マウス、ブタ、ヒツジ、ウシ、サルなど)および 魚類などのあらゆる組織(たとえば、下垂体、膵臓、脳、腎臓、肝臓、生殖腺 、甲状腺、胆のう、骨髄、副腎、皮膚、筋肉、肺、消化管、血管、心臓など) または細胞などに由来するポリペプチドであって、SLC-1としては、配列 番号:5または配列番号:11、MCHとしては配列番号:2で表わされるア 15 ミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するポリペプチ ドであれば如何なるものであってもよい。例えば、本発明のSCL-1として は、配列番号:5または配列番号:11で表わされるアミノ酸配列を含有する ポリペプチドなどの他に、配列番号:5または配列番号:11で表わされるア ミノ酸配列を含有するポリペプチドと実質的に同質の活性を有するポリペプチ 20 ドなどがあげられる。実質的に同質の活性としては、例えばリガンド結合活性 、シグナル伝達活性などがあげられる。実質的に同質とは、リガンド結合活性 などが性質的に同質であることを示す。したがって、リガンド結合活性の強さ などの強弱、ポリペプチドの分子量などの量的要素は異なっていてもよい。本 発明のMCHとしては、配列番号:2で表わされるアミノ酸配列を含有するポ 25 リペプチドなどの他に、配列番号:2で表わされるアミノ酸配列を含有するポ

リペプチドと実質的に同質の活性を有するポリペプチドなどがあげられる。実質的に同質の活性としては、例えばレセプター結合活性などがあげられる。実質的に同質とは、レセプター結合活性などが性質的に同質であることを示す。したがって、レセプター結合活性の強さなどの強弱、ポリペプチドの分子量などの量的要素は異なっていてもよい。

本明細書におけるSLC-1およびMCHはペプチド標記の慣例に従って左端がN末端(アミノ末端)、右端がC末端(カルボキシル末端)である。例えば、配列番号:2、配列番号:5または配列番号:11で表されるアミノ酸配列などを含有するポリペプチドはC末端が通常カルボキシル基(-C00H)またはカルボキシレート(-C00 $^-$)であるが、C末端がアミド(-C0NH $_2$)またはエステル(-C00R)であってもよい。エステルのRとしては、例えばメチル、エチル、 $^-$ プロピル、イソプロピルもしくは $^-$ プチルなどのC $_{1-6}$ アルキル基、シクロペンチル、シクロヘキシルなどのC $_{3-8}$ シクロアルキル基、フェニル、 $^-$ プチルなどのC $_{6-12}$ アリール基、ベンジル、フェネチル、ベンズヒドリルなどのフェニルーC $_{1-2}$ アルキル、もしくは $_0$ ーナフチルメチルなどの $_0$ ーナフチルなどの $_0$ ーナフチルなどの $_0$ ーナフチルスチルとして汎用されるピバロイルオキシメチル基などがあげられる。

本発明で用いられるSLC-1およびMCHの塩としては、生理学的に許容される塩基(例えばアルカリ金属など)や酸(有機酸、無機酸)との塩が用いられるが、とりわけ生理学的に許容される酸付加塩が好ましい。このような塩としては例えば無機酸(例えば、塩酸、リン酸、臭化水素酸、硫酸)との塩、あるいは有機酸(例えば、酢酸、ギ酸、プロピオン酸、フマル酸、マレイン酸、コハク酸、酒石酸、クエン酸、リンゴ酸、シュウ酸、安息香酸、メタンスルホン酸、ベンゼンスルホン酸)との塩などが用いられる。

25 本発明で用いられるSLC-1およびMCHは、公知の方法(例、FEBS Letters 398 (1996) 253-258、WO 96/18651号記載の方法) に準じた方法、即ち、ヒトや

温血動物の組織または細胞からポリペプチドを精製する方法によって製造することもできるし、後述のタンパク質(ペプチド)合成法に準じて製造することもできる。また、後述するタンパク質(ペプチド)をコードするDNAを含有する形質転換体を培養することによっても製造することができる。

- 5 ヒト、温血動物、魚類などの組織または細胞から製造する場合、ヒト、温血動物、魚類などの組織または細胞をホモジナイズした後、酸、有機溶媒などで抽出を行い、該抽出液を、塩析、透析、ゲル濾過、逆相クロマトグラフィー、イオン交換クロマトグラフィー、アフィニティークロマトグラフィーなどのクロマトグラフィーを組み合わせることにより精製単離することができる。
- 上記したように本発明で用いられるSLC-1およびMCHは、自体公知のタンパク質(ペプチド)の合成法に従って、あるいはSLC-1および/またはMCHを含有するタンパク質(ペプチド)を適当なペプチダーゼで切断することによって製造することができる。タンパク質(ペプチド)の合成法としては、例えば固相合成法、液相合成法のいずれによっても良い。すなわち、SLC-1および/またはMCHを構成し得る部分ペプチドもしくはアミノ酸と残
 - より目的のタンパク質(ペプチド)を製造することができる。公知の縮合方法 や保護基の脱離としては例えば、以下の①~⑤に記載された方法があげられる。 ① M. Bodanszky および M.A. Ondetti、ペプチド シンセシス (Peptide

余部分とを縮合させ、生成物が保護基を有する場合は保護基を脱離することに

- ② SchroederおよびLuebke、ザ ペプチド(The Peptide), Academic Press, New York (1965年)
- ③ 泉屋信夫他、ペプチド合成の基礎と実験、丸善(株) (1975年)

Synthesis). Interscience Publishers, New York (1966年)

- ④ 矢島治明 および榊原俊平、生化学実験講座 1、 タンパク質の化学IV、20525 、(1977年)
 - ⑤ 矢島治明監修、続医薬品の開発 第14巻 ペプチド合成 広川書店

また、反応後は通常の精製法、たとえば、溶媒抽出・蒸留・カラムクロマトグラフィー・液体クロマトグラフィー・再結晶などを組み合わせてタンパク質 (ペプチド)を精製単離することができる。上記方法で得られるタンパク質 (ペプチド)が遊離体である場合は、公知の方法によって適当な塩に変換することができるし、逆に塩で得られた場合は、公知の方法によって遊離体に変換することができる。

SLC-1およびMCHのアミド体は、アミド形成に適した市販のペプチド合成用樹脂を用いることができる。そのような樹脂としては例えば、クロロメチル樹脂、ヒドロキシメチル樹脂、ベンズヒドリルアミン樹脂、アミノメチル10 樹脂、4-ベンジルオキシベンジルアルコール樹脂、4-メチルベンズヒドリルアミン樹脂、PAM樹脂、4-ヒドロキシメチルメチルフェニルアセトアミドメチル樹脂、ポリアクリルアミド樹脂、4-(2',4'-ジメトキシフェニルーヒドロキシメチル)フェノキシ樹脂、4-(2',4'-ジメトキシフェニルートmocアミノエチル)フェノキシ樹脂などをあげることができる。このような樹脂を用い、α-アミノ基と側鎖官能基を適当に保護したアミノ酸を、目的とするペプチドの配列通りに、自体公知の各種縮合方法に従い、樹脂上で縮合させる。反応の最後に樹脂からタンパク質(ペプチド)を切り出すと同時に各種保護基を除去し、必要に応じて高希釈溶液中で分子内ジスルフィド結合形成反応を実施し、目的のタンパク質(ペプチド)を取得する。

20 上記した保護されたアミノ酸の縮合に関しては、タンパク質(ペプチド)合成に使用できる各種活性化試薬を用いることができるが、特に、カルボジイミド類がよい。カルボジイミド類としてはDCC、N, N'-ジイソプロピルカルボジイミド、N-エチル-N'-(3-ジメチルアミノプロピル)カルボジイミドなどがあげられる。これらによる活性化にはラセミ化抑制添加剤(例えば、HOBT、HOOBTなど)とともに保護されたアミノ酸を直接樹脂に添加するかまたは、対称酸無水物またはHOBTエステルあるいはHOOBTエステルとしてあらかじめ保護されたアミノ

酸の活性化を行ったのちに樹脂に添加することができる。保護されたアミノ酸 の活性化や樹脂との縮合に用いられる溶媒としては、タンパク質(ペプチド) 縮合反応に使用しうることが知られている溶媒から適宜選択されうる。たとえ ばN, N-ジメチルホルムアミド、N, N-ジメチルアセトアミド、N-メチ ルピロリドンなどの酸アミド類、塩化メチレン、クロロホルムなどのハロゲン 化炭化水素類、トリフルオロエタノールなどのアルコール類、ジメチルスルホ キシドなどのスルホキシド類、ピリジンなどの三級アミン類、ジオキサン、テ トラヒドロフランなどのエーテル類、アセトニトリル、プロピオニトリルなど のニトリル類、酢酸メチル、酢酸エチルなどのエステル類あるいはこれらの適 官の混合物などが用いられる。反応温度はペプチド結合形成反応に使用され得 10 ることが知られている範囲から適宜選択され、通常約−20℃~50℃の範囲 から適宜選択される。活性化されたアミノ酸誘導体は通常1. 5ないし4倍過 剰で用いられる。ニンヒドリン反応を用いたテストの結果、縮合が不十分な場 合には保護基の脱離を行うことなく縮合反応を繰り返すことにより十分な縮合 を行うことができる。反応を繰り返しても十分な縮合が得られないときには、 15 無水酢酸またはアセチルイミダゾールを用いて未反応アミノ酸をアセチル化し て、後の反応に影響を及ぼさないようにすることができる。

原料アミノ酸のアミノ基の保護基としては、たとえば、Z、Boc、ターシャリーペンチルオキシカルボニル、イソボルニルオキシカルボニル、<math>4-メトキシベンジルオキシカルボニル、C1-2、Br-2、Pダマンチルオキシカルボニル、トリフルオロアセチル、フタロイル、ホルミル、2-ニトロフェニルスルフェニル、ジフェニルホスフィノチオイル、Fmocなどがあげられる。カルボキシル基の保護基としては、たとえばRとして上記した C_{1-6} アルキル基、 C_{3-8} シクロアルキル基、 C_{7-14} アラルキル基の他、2-アダマンチル、4-ニトロベンジル、4-メトキシベンジル、4-クロロベンジル、フェナシル基およびベンジルオキシカルボニルヒドラジド、ターシャリーブトキシカルボニルヒドラジド

20

25

20

、トリチルヒドラジドなどがあげられる。

セリンおよびスレオニンの水酸基は、たとえばエステル化またはエーテル化 によって保護することができる。このエステル化に適する基としては例えばア セチル基などの低級アルカノイル基、ベンゾイル基などのアロイル基、ベンジ ルオキシカルボニル基、エトキシカルボニル基などの炭素から誘導される基な どがあげられる。また、エーテル化に適する基としては、たとえばベンジル基 、テトラヒドロピラニル基、ターシャリープチル基などである。

チロシンのフェノール性水酸基の保護基としては、たとえばBzl、Cl,-Bzl、 2-二トロベンジル、Br-Z、ターシャリーブチルなどがあげられる。

ヒスチジンのイミダゾールの保護基としては、Tos、4-メトキシ-2, 3, 6-トリ 10 メチルベンゼンスルホニル、DNP、ベンジルオキシメチル、Bum、Boc、Trt、Fmoc などがあげられる。

原料のカルボキシル基の活性化されたものとしては、たとえば対応する酸無 水物、アジド、活性エステル[アルコール(たとえば、ペンタクロロフェノー ル、2, 4, 5-トリクロロフェノール、2, 4-ジニトロフェノール、シアノメチルア ルコール、パラニトロフェノール、HONB、N-ヒドロキシスクシミド、N-ヒドロ キシフタルイミド、HOBT) とのエステル] などがあげられる。原料のアミノ基 の活性化されたものとしては、たとえば対応するリン酸アミドがあげられる。

保護基の除去(脱離)方法としては、たとえばPd黒あるいはPd炭素などの触 媒の存在下での水素気流中での接触還元や、また、無水フッ化水素、メタンス ルホン酸、トリフルオロメタンスルホン酸、トリフルオロ酢酸あるいはこれら の混合液などによる酸処理や、ジイソプロピルエチルアミン、トリエチルアミ ン、ピペリジン、ピペラジンなどによる塩基処理、また液体アンモニア中ナト リウムによる還元などもあげられる。上記酸処理による脱離反応は一般に-2 0℃~40℃の温度で行われるが、酸処理においてはアニソール、フェノール 25 、チオアニソール、メタクレゾール、パラクレゾール、ジメチルスルフィド、

1,4-ブタンジチオール、1,2-エタンジチオールのようなカチオン捕捉剤の添加が有効である。また、ヒスチジンのイミダゾール保護基として用いられる2,4-ジニトロフェニル基はチオフェノール処理により除去され、トリプトファンのインドール保護基として用いられるホルミル基は上記の1,2-エタンジチオール、1,4-ブタンジチオールなどの存在下の酸処理による脱保護以外に、希水酸化ナトリウム、希アンモニアなどによるアルカリ処理によっても除去される。

原料の反応に関与すべきでない官能基の保護および保護基、ならびにその保 護基の脱離、反応に関与する官能基の活性化などは公知の基あるいは公知の手 段から適宜選択しうる。

10 SLC-1およびMCHのアミド体を得る別の方法としては、まず、カルボキシル末端アミノ酸のα-カルボキシル基をアミド化した後、アミノ基側にペプチド鎖を所望の鎖長まで延ばした後、該ペプチド鎖のN末端のα-アミノ基の保護基のみを除いたペプチドとC末端のカルボキシル基の保護基のみを除いたペプチド(またはアミノ酸)とを製造し、この両ペプチドを上記したような混合溶媒中で縮合させる。縮合反応の詳細については上記と同様である。縮合により得られた保護ペプチドを精製した後、上記方法によりすべての保護基を除去し、所望の粗タンパク質(ペプチド)を得ることができる。この粗タンパク質(ペプチド)は既知の各種精製手段を駆使して精製し、主要画分を凍結乾燥することで所望のタンパク質(ペプチド)のアミド体を得ることができる。

20 SLC-1およびMCHのエステル体を得るにはカルボキシ末端アミノ酸の α-カルボキシル基を所望のアルコール類と縮合しアミノ酸エステルとした後、タンパク質 (ペプチド)のアミド体と同様にして所望のタンパク質 (ペプチド)のエステル体を得ることができる。

本発明で用いられるMCHの誘導体としては、①MCHの部分ペプチド、② 25 MCHの構成アミノ酸が欠失したペプチド、構成アミノ酸に他のアミノ酸が付加したペプチド、構成アミノ酸が他のアミノ酸に置換されたペプチド、または

15

20

③MCH、上記①記載の部分ペプチドまたは②に記載のペプチドが標識化されたものなど、SLC-1との結合能を有するものであれば何れのものであってもよい。

MCHの部分ペプチドとして具体的には、配列番号:2で表されるアミノ酸配列のN末端から第5番目ないし第19番目の部分配列を含有するペプチドもしくはそのアミドもしくはそのエステルまたはその塩などがあげられる。より具体的には、配列番号:19、配列番号:20、配列番号:21、配列番号:2、配列番号:23または配列番号:24で表わされるアミノ酸配列を有するペプチドもしくはそのアミドもしくはそのエステルまたはその塩などがあげられる。

さらに、SLC-1を用いて後述のスクリーニングを行う場合に、特に好ま しくは配列番号:21で表されるアミノ酸配列を有するペプチドもしくはその アミドもしくはそのエステルまたはその塩が好ましく用いられる。

また、MCHの構成アミノ酸が欠失したペプチド、構成アミノ酸に他のアミノ酸が付加したペプチド、構成アミノ酸が他のアミノ酸に置換されたペプチドとしては、配列番号:2中の1または2個以上(好ましくは、 $1\sim10$ 個程度、さらに好ましくは数個(1または2個))のアミノ酸が欠失し、または、そのアミノ酸配列に1または2個以上(好ましくは、 $1\sim10$ 個程度、より好ましくは $1\sim5$ 個程度、さらに好ましくは数個(1または2個))のアミノ酸が付加し、または、そのアミノ酸配列中の1または2個以上(好ましくは、 $1\sim10$ 個程度、より好ましくは $1\sim5$ 個程度、さらに好ましくは数個(1または2個))のアミノ酸が他のアミノ酸で置換されたペプチドなどがあげられる。

該アミノ酸配列中のアミノ酸の実質的に同一な置換物としては、たとえばそのアミノ酸が属するところのクラスのうち他のアミノ酸類から選ぶことができ 25 うる。非極性(疎水性)アミノ酸としては、アラニン、ロイシン、イソロイシン、バリン、プロリン、フェニルアラニン、トリプトファン、メチオニンなど

15

があげられる。極性(中性)アミノ酸としてはグリシン、セリン、スレオニン、システイン、チロシン、アスパラギン、グルタミンなどがあげられる。陽電荷をもつ(塩基性)アミノ酸としてはアルギニン、リジン、ヒスチジンなどがあげられる。負電荷をもつ(酸性)アミノ酸としては、アスパラギン酸、グル タミン酸などがあげられる。

但し、上記する他のアミノ酸が欠失、置換する位置としては、MCHの構成アミノ酸中、Cys以外の位置であることが好ましい。

MCH、上記①記載のペプチドまたは②に記載のペプチドが標識化されたものとしては、自体公知の方法で、アイソトープラベル化されたもの、蛍光標識されたもの(例えば、フルオレセインなどによる蛍光標識)、ビオチン化されたもの、酵素標識されたものなどがあげられる。

具体的には、例えば公知の方法によって、 $\begin{bmatrix} ^3H \end{bmatrix}$ 、 $\begin{bmatrix} ^{125}I \end{bmatrix}$ 、 $\begin{bmatrix} ^{14}C \end{bmatrix}$ 、 $\begin{bmatrix} ^{35}S \end{bmatrix}$ などで標識されたMCHなどを利用することができる。特に、ボルトンーハンター試薬を用いて公知の方法で調製したMCHまたはその誘導体の標識体を利用することもできる。

該MCHまたはその誘導体の標識体の具体例としては、例えば、

(1) [125I] -[N-(3-(4-ヒドロキシ-3-ヨードフェニル)プロピオニル)-Asp']-

20 (2) [125] -[N-(3-(4-ヒドロキシ-3-ヨードフェニル)プロピオニル)-Phe2]-MCH(2-19)

(3) ['25I] -[N-(3-(4-ヒドロキシ-3-ヨードフェニル)プロピオニル)-Asp³]-

MCH(3-19)

5 (4) [1251] -[N-(3-(4-ヒドロキシ-3-ヨードフェニル)プロピオニル)-Met⁴]-

MCH (4-19)

(5) [125]] -[N-(3-(4-ヒドロキシ-3-ヨードフェニル)プロピオニル)-Leu⁵]-

10 MCH (5-19)

(6) [125 I] -[N-(3-(4-ヒドロキシ-3-ヨードフェニル)プロピオニル)-Arg⁶]-

MCH (6-19)

15

(7) [125]] -[N-(3-(4-ヒドロキシ-3-ヨードフェニル)プロピオニル)-Cys⁷]-MCH(7-19)

などがあげられる。

10

15

20

なかでも、特に ['²⁵I] -[N-(3-(4-ヒドロキシ-3-ヨードフェニル)プロピオニ5 ル)-Met⁴]-MCH(4-19)が好ましく用いられる。

MCHもしくはその誘導体の塩としては、上記のSLC-1およびMCHの塩と同様のものなどがあげられる。

本発明で用いられるSLC-1をコードするDNAとしては、配列番号:5または配列番号:11で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するタンパク質をコードする塩基配列を有するDNAを含有するDNA、本発明で用いられるMCHをコードするDNAとしては、配列番号:2で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するペプチドをコードする塩基配列を有するDNAを含有するDNAであればいかなるものであってもよい。また、ゲノムDNA、ゲノムDNAライブラリー、前記した組織・細胞由来のcDNA、前記した組織・細胞由来のcDNAライブラリー、合成DNAのいずれでもよい。ライブラリーに使用するベクターはバクテリオファージ、プラスミド、コスミド、ファージミドなどいずれであってもよい。また、前記した組織・細胞よりRNA画分を調製したものを用いて直接Reverse Transcriptase Polymerase Chain Reaction (以下、RT-PCR法と略称する)によって増幅することもできる。

より具体的には、(I)ストリンジェントな条件下で、配列番号:2、配列番号:5 または配列番号:11で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するタンパク質またはペプチドをコードする塩基配列を有するDNAを含有するDNAの有する配列とハイブリダイズするDN

本発明で用いられるSLC-1またはMCHをコードするDNAは以下の遺伝子工学的手法によっても製造することができる。

10

15

20

本発明のSLC-1またはMCHを完全にコードするDNAのクローニングの手段としては、本発明のSLC-1またはMCHの部分塩基配列を有する合成DNAプライマーを用いて自体公知のPCR法によって前記DNAライブラリー等から目的とするDNAを増幅するか、または適当なベクターに組み込んだDNAを例えばSLC-1またはMCHをコードする塩基配列の一部あるいは全領域を有するDNA断片もしくは合成DNAを用いて標識したものとのハイブリダイゼーションによって選別することができる。ハイブリダイゼーションの方法は、例えば Molecular Cloning (2nd ed.; J. Sambrook et al., Cold Spring Harbor Lab. Press, 1989) に記載の方法などに従って行われる。また、市販のライブラリーを使用する場合、添付の使用説明書に記載の方法に従って行う。

クローン化された本発明で用いられるSLC-1またはMCHをコードする DNAは目的によりそのまま、または所望により制限酵素で消化したり、リンカーを付加したりして使用することができる。該DNAはその5、末端側に翻

訳開始コドンとしてのATGを有し、また3、末端側には翻訳終止コドンとしてのTAA、TGAまたはTAGを有していてもよい。これらの翻訳開始コドンや翻訳終止コドンは、適当な合成DNAアダプターを用いて付加することもできる。

5 本発明で用いられるSLC-1またはMCHの発現ベクターは、例えば、(イ)本発明で用いられるSLC-1またはMCHをコードするDNAから目的 とするDNA断片を切り出し、(ロ)該DNA断片を適当な発現ベクター中の プロモーターの下流に連結することにより製造することができる。

ベクターとしては、大腸菌由来のプラスミド(例、pBR322, pBR3 25, pUC12, pUC13)、枯草菌由来のプラスミド(例、pUB11 0, pTP5, pC194)、酵母由来プラスミド(例、pSH19, pSH 15)、 λファージなどのバクテリオファージ、レトロウイルス, ワクシニアウイルス, バキュロウイルスなどの動物ウイルスなどが用いられる。用いられるプロモーターとしては、遺伝子の発現に用いる宿主に対応して適切なプロモーターであればいかなるものでもよい。

形質転換する際の宿主が動物細胞である場合には、SV40由来のプロモーター、レトロウイルスのプロモーター、メタロチオネインプロモーター、ヒートショックプロモーター、サイトメガロウイルスプロモーター、SR αプロモーターなどが利用できる。宿主がエシェリヒア属菌である場合は、Trpプロモ20 ーター、T7プロモーター、1acプロモーター、recAプロモーター、λPLプロモーター、1ppプロモーターなどが、宿主がバチルス属菌である場合は、SPO1プロモーター、SPO2プロモーター、penPプロモーターなど、宿主が酵母である場合は、PHO5プロモーター、PGKプロモーター、GAPプロモーター、ADH1プロモーター、GALプロモーターなどが好ましい。宿主が昆虫細胞である場合は、ポリヘドリンプロモーター、P10プロモーターなどが好ましい。

発現ベクターには、以上の他に、所望によりエンハンサー、スプライシングシグナル、ポリA付加シグナル、選択マーカー、SV40複製オリジン(以下、SV40oriと略称する場合がある)などを含有しているものを用いることができる。選択マーカーとしては、例えば、ジヒドロ葉酸還元酵素(以下、dhfrと略称する場合がある)遺伝子〔メソトレキセート(MTX)耐性〕、アンピシリン耐性遺伝子(以下、Amprと略称する場合がある)、ネオマイシン耐性遺伝子(以下、Neoと略称する場合がある、G418耐性)等があげられる。特に、CHO(dhfr)細胞を用いてDHFR遺伝子を選択マーカーとして使用する場合、チミジンを含まない培地によっても選択できる

10 .

15

また、必要に応じて、宿主に合ったシグナル配列を、ポリペプチドまたはその部分ペプチドのN端末側に付加する。宿主がエシェリヒア属菌である場合は、phoA・シグナル配列、OmpA・シグナル配列などが、宿主がバチルス属菌である場合は、αーアミラーゼ・シグナル配列、サブチリシン・シグナル配列などが、宿主が酵母である場合は、メイテイングファクターα(MFα)・シグナル配列、インベルターゼ・シグナル配列など、宿主が動物細胞である場合には、例えばインシュリン・シグナル配列、αーインターフェロン・シグナル配列、抗体分子・シグナル配列などがそれぞれ利用できる。

このようにして構築されたSLC-1またはMCHをコードするDNAを含20 有するベクターを用いて、形質転換体を製造することができる。

宿主としては、たとえばエシェリヒア属菌、バチルス属菌、酵母、昆虫また は昆虫細胞、動物細胞などが用いられる。

エシェリヒア属菌としては、エシェリヒア・コリ (Escherichia coli) K1 2・DH1 [プロシージングズ・オブ・ザ・ナショナル・アカデミー・オブ・サイエンシイズ・オブ・ザ・ユーエスエー (Proc. Natl. Acad. Sci. USA), 60巻, 160(1968)], JM103 [ヌクイレック・アシッズ・リサ

ーチ、(Nucleic Acids Research), 9巻, 309(1981)], JA221 (ジャーナル・オブ・モレキュラー・バイオロジー(Journal of Molecular Biology)), 120巻, 517(1978)], HB101 [ジャーナル・オブ・モレキュラー・バイオロジー, 41巻, 459(1969)], C600 [ジェネティックス (Genetics), 39巻, 440(1954)] などが用いられる。

バチルス属菌としては、たとえばバチルス・サチルス (Bacillus subtilis) MI114 [ジーン, 24巻, 255(1983)], 207-21 [ジャーナル・オブ・バイオケミストリー (Journal of Biochemistry), 95巻, 87(1984)] などが用いられる。

10 酵母としては、たとえばサッカロマイセス セレビシエ (Saccharomyces cerevisiae) AH22, AH22R, NA87-11A, DKD-5D, 20 B-12などが用いられる。

昆虫としては、例えばカイコの幼虫などが用いられる〔前田ら、ネイチャー (Nature), 315巻, 592(1985)〕。

E虫細胞としては、例えば、ウイルスがAcNPVの場合は、夜盗蛾の幼虫由来株化細胞(Spodoptera frugiperda cell; S f 細胞)、Trichoplusia niの中腸由来のMG 1 細胞、Trichoplusia niの卵由来のHigh Five TM細胞、Mamestra brassicae由来の細胞またはEstigmena acrea由来の細胞などが用いられる。ウイルスがBmNPVの場合は、蚕由来株化細胞(Bombyx mori N; BmN細胞)などが用いられる。該S f 細胞としては、例えば、S f 9 細胞(ATCC CRL1711)、S f 2 1 細胞〔以上、Vaughn、J.L. ら、イン・ヴィトロ(in Vitro)、13巻、2 1 3 - 2 1 7 頁(1 9 7 7 年)〕などが用いられる。

動物細胞としては、たとえばサルCOS-7細胞, Vero細胞, チャイニーズ ハムスター細胞CHO, DHFR遺伝子欠損チャイニーズハムスター細胞CH O(dhfr⁻CHO細胞), マウスし細胞, マウス3T3細胞、マウスミエロ ーマ細胞, ヒトHEK293細胞、ヒトFL細胞、293細胞、C127細胞

15

、BALB3T3細胞、Sp-2/O細胞などが用いられる。

エシェリヒア属菌を形質転換するには、たとえばプロシージングズ・オブ・ザ・ナショナル・アカデミー・オブ・サイエンジイズ・オブ・ザ・ユーエスエー (Proc. Natl. Acad. Sci. USA), 69巻, 2110(1972)やジーン (Gene), 17巻, 107(1982)などに記載の方法に従って行なわれる。 バチルス属菌を形質転換するには、たとえばモレキュラー・アンド・ジェネラル・ジェネティックス (Molecular & General Genetics), 168巻, 111(1979)などに記載の方法に従って行われる。

酵母を形質転換するには、たとえばプロシージングズ・オブ・ザ・ナショナ 10 ル・アカデミー・オブ・サイエンシイズ・オブ・ザ・ユーエスエー (Proc. Natl. Acad. Sci. USA), 75巻, 1929(1978)に記載の方法に従って行な われる。

昆虫細胞または昆虫を形質転換するには、たとえばバイオ/テクノロジー(Bio/Technology), 6巻、47-55頁(1988年)などに記載の方法に従って行なわれる。

動物細胞を形質転換するには、たとえばヴィロロジー(Virology), 52巻, 456(1973)に記載の方法に従って行なわれる。

発現ベクターの細胞への導入方法としては、例えば、リポフェクション法〔Feigner, P.L. et al. プロシージングズ・オブ・ザ・ナショナル・アカデミー・オブ・サイエンジイズ・オブ・ザ・ユーエスエー (Proceedings of The National Academy of Sciences of The United States of America), 84巻, 7413 頁(1987年)〕、リン酸カルシウム法〔Graham, F. L. and van der Eb, A. J. ヴィロロジー (Virology), 52巻, 456-467頁(1973年)〕、電気穿孔法〔Nuemann, E. et al. エンボ・ジャーナル(EMBO J.), 1巻, 8

このようにして、本発明で用いられるSLC-1またはMCHをコードする

15

20

25

DNAを含有する発現ベクターで形質転換された形質転換体が得られる。

なお、動物細胞を用いて、本発明で用いられるSLC-1またはMCHを安定に発現させる方法としては、上記の動物細胞に導入された発現ベクターが染色体に組み込まれた細胞をクローン選択によって選択する方法がある。具体的には、上記の選択マーカーを指標にして形質転換体を選択する。さらに、このように選択マーカーを用いて得られた動物細胞に対して、繰り返しクローン選択を行なうことにより本発明で用いられるSLC-1またはMCHの高発現能を有する安定な動物細胞株を得ることができる。また、dhfr遺伝子を選択マーカーとして用いた場合、MTX濃度を徐々に上げて培養し、耐性株を選択することにより、dhfr遺伝子とともに、本発明で用いられるSLC-1またはMCHをコードするDNAを細胞内で増幅させて、さらに高発現の動物細胞株を得ることもできる。

上記の形質転換体を本発明で用いられるSLC-1またはMCHをコードするDNAが発現可能な条件下で培養し、本発明で用いられるSLC-1またはMCHを生成、蓄積せしめることによって、本発明で用いられるSLC-1またはMCHを製造することができる。

宿主がエシェリヒア属菌、バチルス属菌である形質転換体を培養する際、培養に使用される培地としては液体培地が適当であり、その中には該形質転換体の生育に必要な炭素源、窒素源、無機物その他が含有せしめられる。炭素源としては、たとえばグルコース、デキストリン、可溶性澱粉、ショ糖など、窒素源としては、たとえばアンモニウム塩類、硝酸塩類、コーンスチープ・リカー、ペプトン、カゼイン、肉エキス、大豆粕、バレイショ抽出液などの無機または有機物質、無機物としてはたとえば塩化カルシウム、リン酸二水素ナトリウム、塩化マグネシウムなどがあげられる。また、酵母、ビタミン類、生長促進因子などを添加してもよい。培地のpHは約5~8が望ましい。

エシェリヒア属菌を培養する際の培地としては、例えばグルコース、カザミ

ノ酸を含むM 9 培地〔ミラー(Miller),ジャーナル・オブ・エクスペリメンツ・イン・モレキュラー・ジェネティックス(Journal of Experiments in Molecular Genetics),431-433,Cold Spring Harbor Laboratory,New York 1972〕が好ましい。ここに必要によりプロモーターを効率よく働かせるために、たとえば 3β -インドリルアクリル酸のような薬剤を加えることができる。

宿主がエシェリヒア属菌の場合、培養は通常約15~43℃で約3~24時間行い、必要により、通気や撹拌を加えることもできる。

宿主がバチルス属菌の場合、培養は通常約30~40℃で約6~24時間行 10 ない、必要により通気や撹拌を加えることもできる。

宿主が酵母である形質転換体を培養する際、培地としては、たとえばバークホールダー (Burkholder) 最小培地 (Bostian, K. L. ら、「プロシージングズ・オブ・ザ・ナショナル・アカデミー・オブ・サイエンシイズ・オブ・ザ・ユーエスエー (Proc. Natl. Acad. Sci. USA), 77巻, 4505(1980)

15 〕 や0.5%カザミノ酸を含有するSD培地 (Bitter, G. A. ら、「プロシージングズ・オブ・ザ・ナショナル・アカデミー・オブ・サイエンシイズ・オブ・ザ・ユーエスエー (Proc. Natl. Acad. Sci. USA), 81巻, 5330(1984)〕があげられる。培地のpHは約5~8に調整するのが好ましい。培養は通常約20℃~35℃で約24~72時間行い、必要に応じて通気や撹拌を加える。

宿主が昆虫細胞である形質転換体を培養する際、培地としては、Grace's Insect Medium (Grace, T. C. C., ネイチャー (Nature), 195, 788 (1962)) に非動化した 10% かりシ血清等の添加物を適宜加えたものなどが用いられる。培地のp Hは約 6. $2\sim6$. 4 に調整するのが好ましい。培養は通常約 2 7 \mathbb{C} で約 3 ~5 日間行い、必要に応じて通気や撹拌を加える。

宿主が動物細胞である形質転換体を培養する際、培地としては、たとえば約

5~20%の胎児牛血清を含むMEM培地〔サイエンス(Science), 122巻 , 501(1952)〕, DMEM培地〔ヴィロロジー(Virology), 8巻, 3 96(1959)〕, RPMI 1640培地〔ジャーナル・オブ・ザ・アメリカ ン・メディカル・アソシエーション(The Journal of The American Medical Association)199巻, 519(1967)〕, 199培地〔プロシージング・ オブ・ザ・ソサイエティ・フォー・ザ・バイオロジカル・メディスン(Proceeding of The Society for The Biological Medicine), 73巻, 1(1950)〕な どが用いられる。pHは約6~8であるのが好ましい。培養は通常約30℃~ 40℃で約15~60時間行い、必要に応じて通気や撹拌を加える。

10 特にCHO(dhfr⁻)細胞およびdhfr遺伝子を選択マーカーとして用いる場合には、チミジンをほとんど含まない透析ウシ胎児血清を含むDMEM培地を用いるのが好ましい。

上記培養物から本発明で用いられるSLC-1またはMCHを分離精製するには、例えば下記の方法により行なうことができる。

15 本発明で用いられるSLC-1またはMCHを培養菌体あるいは細胞から抽出するに際しては、培養後、公知の方法で菌体あるいは細胞を集め、これを適当な緩衝液に懸濁し、超音波、リゾチームおよび/または凍結融解などによって菌体あるいは細胞を破壊したのち、遠心分離やろ過により本発明で用いられるSLC-1またはMCHの粗抽出液を得る方法などが適宜用い得る。緩衝液の中に尿素や塩酸グアニジンなどのタンパク変性剤や、トリトンX-100(登録商標。以下、TMと省略することがある。)などの界面活性剤が含まれていてもよい。

培養液中に本発明で用いられるSLC-1またはMCHが分泌される場合には、培養終了後、自体公知の方法で菌体あるいは細胞と上清とを分離し、上清を集める。

このようにして得られた培養上清、あるいは抽出液中に含まれる本発明で用・

いられるSLC-1またはMCHの精製は、自体公知の分離・精製法を適切に 組み合わせて行なうことができる。これらの公知の分離、精製法としては、塩 析や溶媒沈澱法などの溶解度を利用する方法、透析法、限外ろ過法、ゲルろ過 法、およびSDS-ポリアクリルアミドゲル電気泳動法などの主として分子量 の差を利用する方法、イオン交換クロマトグラフィーなどの荷電の差を利用す る方法、アフィニティークロマトグラフィーなどの特異的親和性を利用する方 法、逆相高速液体クロマトグラフィーなどの疎水性の差を利用する方法、等電 点電気泳動法やクロマトフォーカシングなどの等電点の差を利用する方法など が用いられる。

かくして得られる本発明で用いられるSLC-1またはMCHが遊離体で得られた場合には、自体公知の方法あるいはそれに準じる方法によって塩に変換することができ、逆に塩で得られた場合には自体公知の方法あるいはそれに準じる方法により、遊離体または他の塩に変換することができる。

なお、組換え体が産生する本発明で用いられるSLC-1またはMCHを、

15 精製前または精製後に適当な蛋白修飾酵素を作用させることにより、任意に修飾を加えたり、タンパク質(ペプチド)を部分的に除去することもできる。蛋白修飾酵素としては、例えば、トリプシン、キモトリプシン、アルギニルエンドペプチダーゼ、プロテインキナーゼ、グリコシダーゼなどが用いられる。またN末端アミノ酸を欠失させるためには、エドマン(Edman)試薬(フェニルイソ チオシアネート)を用いた公知のエドマン法を用いることが可能である。

かくして生成する本発明で用いられるSLC-1またはMCHの存在は特異 抗体を用いたエンザイムイムノアッセイなどにより測定することができる。

(2) MCHもしくはその誘導体またはその塩およびSLC-1またはその塩を用いることを特徴とするMCHまたはその塩とSLC-1またはその塩との 結合性を変化させる化合物またはその塩のスクリーニング方法またはMCHも しくはその標識体またはその塩およびSLC-1またはその塩を用いることを

特徴とするMCHまたはその塩とSLC-1またはその塩との結合性を変化させる化合物またはその塩のスクリーニング用キット(以下、本発明のスクリーニング方法、本発明のスクリーニング用キットと略記する)について以下に詳述する。

5 SLC-1またはその塩を用いるか、または組換え型SLC-1の発現系を構築し、該発現系を用いたMCHもしくはその誘導体またはその塩との結合アッセイ系(リガンド・レセプターアッセイ系)を用いることによって、MCHまたはその塩とSLC-1またはその塩との結合性を変化させる化合物(例えば、ペプチド、蛋白質、非ペプチド性化合物、合成化合物、発酵生産物など)またはその塩をスクリーニングすることができる。

このような化合物には、SLC-1を介して細胞刺激活性(例えば、アラキドン酸遊離、アセチルコリン遊離、細胞内Ca²⁺遊離、細胞内cAMP生成、細胞内cGMP生成、イノシトールリン酸産生、細胞膜電位変動、細胞内蛋白質のリン酸化、c-fosの活性化、pHの低下などを促進する活性または抑制する活性など)を有する化合物(即ちSLC-1アゴニスト)と該細胞刺激活性を有しない化合物(即ちSLC-1アンタゴニスト)などが含まれる。「MCHまたはその塩とSLC-1またはその塩との結合性を変化させる」とは、MCHまたはその塩とSLC-1またはその塩との結合を阻害する場合とリガンドとの結合を促進する場合の両方を包含するものである。

20 すなわち、本発明は、(i) SLC-1またはその塩に、MCHもしくはその誘導体またはその塩を接触させた場合と(ii) 上記したSLC-1またはその塩に、MCHもしくはその誘導体またはその塩および試験化合物を接触させた場合との比較を行なうことを特徴とするMCHまたはその塩とSLC-1またはその塩との結合性を変化させる化合物またはその塩のスクリーニング方法を提供する。

本発明のスクリーニング方法においては、(i)上記したSLC-1または

その塩に、MCHもしくはその誘導体またはその塩を接触させた場合と(ii) 上記したSLC-1またはその塩に、MCHもしくはその誘導体またはその塩 および試験化合物を接触させた場合における、例えば該SLC-1またはその 塩に対するリガンドの結合量、細胞刺激活性などを測定して、比較する。

5 本発明のスクリーニング方法は具体的には、

25

①標識したMCHもしくはその誘導体またはその塩(「MCHの誘導体またはその塩」として、上記の「MCH等が標識化されたものまたはその塩」を用いる場合には、更に標識する必要はない。以下同じ。)を、上記したSLC-1またはその塩に接触させた場合と、標識したMCHもしくはその誘導体またはその塩および試験化合物をSLC-1またはその塩に接触させた場合における、標識したMCHもしくはその誘導体またはその塩の該SLC-1またはその塩に対する結合量を測定し、比較することを特徴とするMCHまたはその塩とSLC-1またはその塩との結合性を変化させる化合物またはその塩のスクリーニング方法、

②標識したMCHもしくはその誘導体またはその塩を、 SLC-1を含有する 細胞または該細胞の膜画分に接触させた場合と、標識したMCHもしくはその 誘導体またはその塩および試験化合物をSLC-1を含有する細胞または該細胞の膜画分に接触させた場合における、標識したMCHもしくはその誘導体またはその塩の該細胞または該膜画分に対する結合量を測定し、比較することを 特徴とするMCHまたはその塩とSLC-1との結合性を変化させる化合物またはその塩のスクリーニング方法、

③標識したMCHもしくはその誘導体またはその塩を、 SLC-1をコードするDNAを含有する形質転換体を培養することによって細胞膜上に発現したSLC-1に接触させた場合と、標識したMCHもしくはその誘導体またはその塩および試験化合物をSLC-1をコードするDNAを含有する形質転換体を培養することによって細胞膜上に発現したSLC-1に接触させた場合におけ

る、標識したMCHもしくはその誘導体またはその塩のSLC-1に対する結合量を測定し、比較することを特徴とするMCHまたはその塩とSLC-1との結合性を変化させる化合物またはその塩のスクリーニング方法、

④SLC-1を活性化する化合物(例えば、MCHもしくはその誘導体またはその塩)をSLC-1を含有する細胞に接触させた場合と、 SLC-1を活性化する化合物および試験化合物をSLC-1を含有する細胞に接触させた場合における、 SLC-1を介した細胞刺激活性(例えば、アラキドン酸遊離、アセチルコリン遊離、細胞内 Ca²⁺遊離、細胞内 CAMP生成、細胞内 CGMP生成、イノシトールリン酸産生、細胞膜電位変動、細胞内蛋白質のリン酸化、

- 10 c-fosの活性化、pHの低下などを促進する活性または抑制する活性など)を測定し、比較することを特徴とするMCHまたはその塩とSLC-1との結合性を変化させる化合物またはその塩のスクリーニング方法、および
 - ⑤SLC-1を活性化する化合物(例えば、MCHもしくはその誘導体またはその塩など)をSLC-1をコードするDNAを含有する形質転換体を培養することによって細胞膜上に発現したSLC-1に接触させた場合と、SLC-1を活性化する化合物および試験化合物を、SLC-1をコードするDNAを含有する形質転換体を培養することによって細胞膜上に発現したSLC-1に接触させた場合における、SLC-1を介する細胞刺激活性(例えば、アラキドン酸遊離、アセチルコリン遊離、細胞内Ca²⁺遊離、細胞内cAMP生成、
- 20 細胞内 c G M P 生成、イノシトールリン酸産生、細胞膜電位変動、細胞内蛋白質のリン酸化、c f o s の活性化、p H の低下などを促進する活性または抑制する活性など)を測定し、比較することを特徴とするM C H またはその塩と S L C 1 との結合性を変化させる化合物またはその塩のスクリーニング方法などである。
- 25 本発明のスクリーニング方法の具体的な説明を以下にする。 まず、本発明のスクリーニング方法に用いるSLC-1としては、上記のS

LC-1を含有するものであれば何れのものであってもよいが、ヒト、温血動物、魚類などの臓器の膜画分などが好適である。しかし、特にヒト由来の臓器は入手が極めて困難なことから、スクリーニングに用いられるものとしては、組換え体を用いて大量発現させたSLC-1などが適している。特にヒト型SLC-1については、既報(FEBS Letters 398 (1996) 253-258など)のアミノ酸配列で表されるSLC-1に比べ、配列番号:11で表されるアミノ酸配列を含有するSLC-1を用いることにより、感度のよいスクリーニングが可能となる。

SLC-1を製造するには、前述の方法などが用いられる。

10 本発明のスクリーニング方法において、SLC-1を含有する細胞あるいは 該細胞膜画分などを用いる場合、後述の調製法に従えばよい。

SLC-1を含有する細胞を用いる場合、該細胞をグルタルアルデヒド、ホルマリンなどで固定化してもよい。固定化方法はそれ自体公知の方法に従って行うことができる。

15 SLC-1を含有する細胞としては、 SLC-1を発現した宿主細胞をいうが、該宿主細胞としては、前述の大腸菌、枯草菌、酵母、昆虫細胞、動物細胞などがあげられる。

膜画分としては、細胞を破砕した後、それ自体公知の方法で得られる細胞膜が多く含まれる画分のことをいう。細胞の破砕方法としては、Potter-Elvehjem 型ホモジナイザーで細胞を押し潰す方法、ワーリングブレンダーやポリトロン (Kinematica社製) による破砕、超音波による破砕、フレンチプレスなどで加圧しながら細胞を細いノズルから噴出させることによる破砕などがあげられる。細胞膜の分画には、分画遠心分離法や密度勾配遠心分離法などの遠心力による分画法が主として用いられる。例えば、細胞破砕液を低速(500rpm~3000rpm)で通常30分~2時間遠心し、得速(15000rpm~30000rpm)で通常30分~2時間遠心し、得

られる沈澱を膜画分とする。該膜画分中には、発現したSLC-1と細胞由来 のリン脂質や膜蛋白質などの膜成分が多く含まれる。

該SLC-1を含有する細胞や膜画分中のSLC-1の量は、1細胞当たり $10^3\sim10^8$ 分子であるのが好ましく、 $10^5\sim10^7$ 分子であるのが好適である。なお、発現量が多いほど膜画分当たりのリガンド結合活性(比活性)が高くなり、高感度なスクリーニング系の構築が可能になるばかりでなく、同一ロットで大量の試料を測定できるようになる。

MCHまたはその塩とSLC-1との結合性を変化させる化合物をスクリーニングする前記の①~③を実施するためには、適当なSLC-1画分と、標識したリガンドまたはリガンド活性を有する化合物(MCHもしくはその誘導体)が用いられる。SLC-1画分としては、天然型のSLC-1画分か、またはそれと同等の活性を有する組換え型SLC-1画分などが望ましい。ここで、同等の活性とは、同等のリガンド結合活性などを示す。標識したリガンドまたはリガンド活性を有する化合物としては、標識したリガンドまたはリガンド 活性を有する化合物(MCHまたはその誘導体)などが用いられる。例えば〔H〕、〔125 I〕、〔14 C〕、〔35 S〕などで標識されたリガンド(MCHまたはその誘導体)などを利用することができる。特に、ボルトンーハンター試薬を用いて公知の方法で調製したMCHの誘導体の標識体を利用することもできる。

20 MCH誘導体の標識体の具体例としては、例えば、上記の(1)~(7)で 表される化合物などがあげられる。

具体的には、MCHまたはその塩とSLC-1との結合性を変化させる化合物のスクリーニングを行うには、まずSLC-1を含有する細胞または細胞の膜画分を、スクリーニングに適したバッファーに懸濁することによりレセプター標品を調製する。バッファーには、 $pH4\sim10$ (望ましくは $pH6\sim8$)のリン酸バッファー、トリスー塩酸バッファーなどのリガンドとレセプターと

WO 00/40725

の結合を阻害しないバッファーであればいずれでもよい。また、非特異的結合 を低減させる目的で、CHAPS、Tween-80[™] (花王-アトラス社) 、ジギトニン、デオキシコレートなどの界面活性剤をバッファーに加えること もできる。さらに、プロテアーゼによるSLC-1やMCHもしくはその誘導 体の分解を抑える目的でPMSF、ロイペプチン、E-64 (ペプチド研究所 製)、ペプスタチンなどのプロテアーゼ阻害剤を添加することもできる。0.0 1ml~10mlの該レセプター溶液に、一定量(5000cpm~5000 0.0 c pm) の標識したMCHもしくはその誘導体を添加し、同時に 1.0^{-4} ~ $10^{-1}\mu$ Mの試験化合物を共存させる。非特異的結合量(NSB)を知るため に大過剰の未標識のMCHもしくはその誘導体を加えた反応チューブも用意す 10 る。反応は0℃から50℃、望ましくは4℃から37℃で20分から24時間 、望ましくは30分から3時間行う。反応後、ガラス繊維濾紙等で濾過し、適 量の同バッファーで洗浄した後、ガラス繊維濾紙に残存する放射活性を液体シ ンチレーションカウンターまたは γ - カウンターで計測する。拮抗する物質が ない場合のカウント(B_o) から非特異的結合量(NSB) を引いたカウント(15 B_0 -NSB) を100%とした時、特異的結合量(B-NSB) が例えば50 %以下になる試験化合物を拮抗阻害能力のある候補物質として選択することが できる。

また、SLC-1とMCHもしくはその誘導体との結合を測定する方法とし て、BIAcore(アマシャムファルマシアバイオテク社製)を用いること 20 もできる。この方法では、MCHもしくはその誘導体を装置に添付のプロトコ ルに従ったアミノカップリング法によってセンサーチップに固定し、SLC-1を含有する細胞またはSLC-1をコードするDNAを含有する形質変換体 から精製したSLC-1またはSLC-1を含む膜画分、あるいは精製したS LC-1またはSLC-1を含む膜画分および試験化合物を含むリン酸バッフ 25 ァーまたはトリスバッファーなどの緩衝液をセンサーチップ上を毎分2-20

μlの流量で通過させる。 センサーチップ上のMCHもしくはその誘導体とSLC-1とが結合することによって生じる表面プラズモン共鳴の変化を共存する試験化合物が変化させることを観察することによってSLC-1とMCHとの結合を変化させる化合物のスクリーニングを行なうことができる。この方法は、SLC-1をセンサーチップに固定し、MCHもしくはその誘導体またはMCHもしくはその誘導体および試験化合物を含むリン酸バッファーまたはトリスバッファーなどの緩衝液をセンサーチップ上を通過させる方法を用いても同様に測定することができる。試験化合物としては、上記と同様のものなどがあげられる。

MCHまたはその塩とSLC-1またはその塩との結合性を変化させる化合 10 物をスクリーニングする前記の④~⑤の方法を実施するためには、 SLC-1 を介する細胞刺激活性(例えば、アラキドン酸遊離、アセチルコリン遊離、細 胞内Ca² 遊離、細胞内cAMP生成、細胞内cGMP生成、イノシトールリ ン酸産生、細胞膜電位変動、細胞内蛋白質のリン酸化、c-fosの活性化、 p Hの低下などを促進する活性または抑制する活性など)を公知の方法または 15 市販の測定用キットを用いて測定することができる。具体的には、まず、 SL C-1を含有する細胞をマルチウェルプレート等に培養する。スクリーニング を行うにあたっては前もって新鮮な培地あるいは細胞に毒性を示さない適当な バッファーに交換し、試験化合物などを添加して一定時間インキュベートした 後、細胞を抽出あるいは上清液を回収して、生成した産物をそれぞれの方法に 20 従って定量する。細胞刺激活性の指標とする物質(例えば、アラキドン酸など)の牛成が、細胞が含有する分解酵素によって検定困難な場合は、該分解酵素 に対する阻害剤を添加してアッセイを行なってもよい。また、 c A M P 産生抑 制などの活性については、フォルスコリンなどで細胞の基礎的産生量を増大さ せておいた細胞に対する産生抑制作用として検出することができる。 25

細胞刺激活性を測定してスクリーニングを行なうには、適当なSLC-1を

発現した細胞が必要である。本発明のSLC-1を発現した細胞としては、前述の組換え型SLC-1発現細胞株などが望ましい。形質転換体であるSLC-1発現細胞は安定発現株でも一過性発現株でも構わない。また、動物細胞の種類は上記と同様のものが用いられる。

5 試験化合物としては、例えばペプチド、タンパク、非ペプチド性化合物、合成化合物、発酵生産物、細胞抽出液、植物抽出液、動物組織抽出液などがあげられる。

上記のリガンド・レセプターアッセイ系について、さらに具体的に記載する と以下のようなアッセイ系が用いられる。

(1) 受容体発現細胞が受容体アゴニストによって刺激されると細胞内のGタ 10 ンパクが活性化されてGTPが結合する。この現象は受容体発現細胞の膜画分 においても観察される。通常、GTPは加水分解されてGDPへと変化するが 、このとき反応液中に $\mathsf{GTP} \gamma \mathsf{S}$ を添加しておくと $\mathsf{GTP} \gamma \mathsf{S}$ は GTP と同様 にGタンパクに結合するが、加水分解されずにGタンパクを含む細胞膜に結合 した状態が維持される。標識したGTPィSを用いると細胞膜に残存した放射 15 活性を測定することによって受容体アゴニストの受容体発現細胞刺激活性を測 定することができる。この反応を利用してMCHもしくはその誘導体のSLC -1発現細胞に対する刺激活性を測定することができる。この方法は、前記④ ~⑤のようにSLC-1を含む細胞を用いるものではなく、①~③のようにS LC-1を含む膜画分を用いるアッセイ法であるが、④~⑤のように細胞刺激 20 活性を測定するものであり、本測定法においてSLC-1膜画分へのGTP 7 S結合促進活性を示す物質はアゴニストである。具体的には、後述の実施例9 、実施例16およびそれらに準じた方法により行われる。ここにおいて、MC Hもしくはその誘導体あるいはMCHもしくはその誘導体および試験化合物を 添加し、MCHもしくはその誘導体の単独投与に比べてSLC-1細胞膜画分 へのGTPィS結合促進活性に変化が生じることを観察することによってMC

HとSLC-1との結合性を変化させる化合物をスクリーニングすることができる。このとき、MCHもしくはその誘導体によるSLC-1細胞膜画分へのGTP γ S結合促進活性を抑制する活性を示す化合物を拮抗阻害能力のある候補物質として選択することができる。一方、試験化合物のみを投与し、SLC-1細胞膜画分へのGTP γ S結合促進活性を観察することによりアゴニストのスクリーニングを行なうこともできる。

スクリーニング法の一例についてより具体的に以下に述べる。後述の実施例 9または実施例16に述べた方法によって調製したヒトまたはラットSLC-1を含む細胞膜画分を、膜希釈緩衝液(50 mM Tris, 5 mM MgCl, 150 mM NaCl, 1 μM GDP, 0.1% BSA pH 7.4) で希釈する。希釈率は、受容体の発現量により 10 異なる。これをFalcon2053にO. 2mlずつ分注し、MCHもしくはその誘導体ある いはMCHもしくはその誘導体および試験化合物を加え、さらに終濃度200 pM となるように[35S]GTPγSを加える。25℃で1時間保温した後、氷冷した洗浄用緩 衝液 (50 mM Tris, 5 mM MgCl, 150 mM NaCl, 0.1% BSA, 0.05% CHAPS pH 7.4 1.5ml)を加えて、ガラス繊維ろ紙GF/Fでろ過する。65℃、30分保温して乾燥後 15 、液体シンチレーションカウンターでろ紙上に残った膜画分に結合した[35S]GTP γSの放射活性を測定する。MCHもしくはその誘導体のみを加えた実験区の放 射活性を100%、MCHもしくはその誘導体を加えなかった実験区の放射活性を 0%とし、MCHもしくはその誘導体によるGTP r S 結合促進活性に対する試 験化合物の影響を算出する。GTPィS結合促進活性が例えば50%以下にな 20 る試験化合物を拮抗阻害能力のある候補物質として選択することができる。

- (2) SLC-1発現細胞はMCH刺激によって細胞内cAMP量が減少する。この反応を利用してMCHのSLC-1発現細胞に対する刺激活性を測定することができる。
- 25 SLC-1を発現させた種々の動物細胞のcAMP産生量はマウス、ラット、ウサギ、ヤギ、ウシなどを免疫して得られた抗cAMP抗体と125I標識cAMP(ともに市

15

20

25

販品)を使用することによってRIAあるいは抗cAMP抗体と標識cAMPとを組み合わせた他のEIA系でも測定することができる。また抗cAMP抗体をprotein Aあるいは抗cAMP抗体産生に用いた動物のIgGなどに対する抗体などを使用して固定したシンチラントを含むビーズと¹²⁵I標識cAMPとを使用するSPA法による定量も可能である(アマシャムファルマシアバイオテク製のキットを使用する)。

cAMP産生抑制のアッセイは、具体的には後述の実施例14およびそれに準じた方法により行われる。この系において、フォルスコリンまたはcalcitoninなど細胞内cAMP量を増加させるようなリガンドなどによって細胞内cAMP量を上昇させ、MCHもしくはその誘導体またはMCHもしくはその誘導体および試験化合物を添加することによってMCHもしくはその誘導体の単独投与による細胞内cAMP量の抑制が変化することを観察し、MCHとSLC-1の結合を変化させる化合物のスクリーニングを行なうことができる。このとき、MCHもしくはその誘導体によるSLC-1発現細胞のcAMP産生抑制活性を阻害する活性を示す化合物を拮抗阻害能力のある候補物質として選択することができる。一方、試験化合物のみを添加してcAMP産生抑制活性を調べることによりアゴニスト活性を示す化合物のスクリーニングを行なうことができる。

スクリーニング法をより具体的に以下に記載する。CHO/SLC-1細胞を24穴プレートに 5×10^4 cell/wellで播種し、48時間培養する。細胞を0.2mM 3-4ソブチルーメチルキサンチンと0.05% BSAと20mM HEPESを含むハンクスバッファー (pH7.4)で洗浄する(以下、0.2mM 3-4ソブチルーメチルキサンチンと0.05% BSAと20mM HEPESを含むハンクスバッファー (pH7.4)を、反応用バッファーと呼ぶ)。その後0.5mlの反応用バッファーを加えて3.0分間培養器で保温する。反応用バッファーを除き、新たに0.25mlの反応用バッファーを細胞に加えた後、2 μ Mフォルスコリンを含む0.25mlの反応用バッファーに1 nMのM C H もしくはその誘導体あるいは1 nMのM C H もしくはその誘導体および試験化合物を添加したものを細胞に加え、3.7℃で2.4分間反応させる。 100μ 1の208過塩素酸を加

えて反応を停止させ、次に氷上で1時間置くことにより細胞内cAMPを抽出する。抽出液中のcAMP量は、cAMP EIAキット(アマシャムファルマシアバイオテク)を用いて測定する。フォルスコリン刺激によって産生されたcAMP量を100%とし、1 nMのMCHもしくはその誘導体の添加によって抑制されたcAMP量を0%として、MCHもしくはその誘導体によるcAMP産生抑制活性に対する試験化合物の影響を算出する。MCHもしくはその誘導体の活性を阻害してcAMP産生活性が例えば50%以上になる試験化合物を拮抗阻害能力のある候補物質として選択することができる。

cAMP産生促進活性を測定するには、フォルスコリンを添加せずにCHO/SLC-1細10 胞に試験化合物を添加して産生されたcAMPを上記の方法で定量する。

(3) CRE (cAMP response element)を含むDNAを、ピッカジーン ベイシックベクターまたはピッカジーン エンハンサーベクター (東洋インキ製造 (株))のルシフェラーゼ遺伝子上流のマルチクローニングサイトに挿入し、これをCREーレポーター遺伝子ベクターとする。 CREーレポーター遺伝子ベクター をトランスフェクションした細胞において、 cAMP上昇を伴う刺激は、 CREを介したルシフェラーゼ遺伝子発現とそれに引き続くルシフェラーゼタンパク質の産生を誘導する。つまり、ルシフェラーゼ活性を測定することにより、 CREーレポーター遺伝子ベクター導入細胞内のcAMP量の変動を検出することができる。 CREーレポーター遺伝子ベクターをSLC-1発現細胞にトランスフェクションした細胞を利用してMCHとSLC-1の結合を変化させる化合物のスクリーニングを行なうことができる。具体的なスクリーニング法を以下に記す。

CRE - レポーター遺伝子導入 S L C - 1 発現細胞を24穴プレートに5 x 10³ cell/wellで播種し、48時間培養する。細胞を0.2mM 3 - イソブチルーメチルキサンチンと0.05% BSAと20mM HEPESを含むハンクスバッファー(pH7.4)で洗浄する (以下、0.2mM 3 - イソブチルーメチルキサンチンと0.05% BSAと20mM HEPESを含むハンクスバッファー(pH7.4)を、反応用バッファーと呼ぶ)。その

15

20

25

後0.5mlの反応用バッファーを加えて30分間培養器で保温する。反応用バッフ ァーを除き、新たに0.25mlの反応用バッファーを細胞に加えた後、1 nMのMC Hもしくはその誘導体あるいは1 nMのMCHもしくはその誘導体および試験化 合物と2μMフォルスコリンを含む0.25mlの反応用バッファーを細胞に加え、3 7℃で24分間反応させる。細胞をピッカジーン用細胞溶解剤(東洋インキ製 造(株))で溶かし、溶解液に発光基質(東洋インキ製造(株))を添加する 。ルシフェラーゼによる発光は、ルミノメーター、液体シンチレーションカウ ンターまたはトップカウンターにより測定する。 MCHとSLC-1の結合を 変化させる化合物の影響はルシフェラーゼによる発光量をMCHもしくはその 誘導体を単独で投与した場合と比較することによって測定することができる。 このとき、MCHもしくはその誘導体の投与によりフォルスコリン刺激による 発光量の増加が抑制されるが、この抑制を回復させる化合物を拮抗阻害能力の ある候補物質として選択することができる。一方、試験化合物のみを投与し、 フォルスコリン刺激によって上昇した発光量のMCHもしくはその誘導体と同 様な抑制を観察することによりアゴニストのスクリーニングを行なうこともで きる。

レポーター遺伝子として、ルシフェラーゼ以外に例えばアルカリフォスファターゼ、クロラムフェニコール アセチルトランスフェラーゼあるいは β ーガラクトシダーゼを用いることもできる。これらのレポーター遺伝子の遺伝子産物の酵素活性は以下のように市販の測定キットを用いて容易に測定することができる。アルカリフォスファターゼ活性は、例えば和光純薬製Lumi-Phos 530によって、クロラムフェニコール アセチルトランスフェラーゼ(chloramphenicol acetyltransferase)活性は、例えば和光純薬製FAST CAT chrolamphenicol Acetyltransferase Assay KiTによって、 β -ガラクトシダーゼ活性は、例えば和光純薬製Aurora Gal-XEによって測定することができる。

(4) SLC-1発現細胞はMCH刺激の結果アラキドン酸代謝物を細胞外に

放出する。あらかじめ、放射活性を有するアラキドン酸を細胞に取り込ませておくことによって、この活性を細胞外に放出された放射活性を測定することによって測定することができる。測定は、後述の実施例 6 およびそれに準じた方法により行われる。このとき、MCHもしくはその誘導体あるいはMCHもしくはその誘導体および試験化合物を添加して、MCHもしくはその誘導体のアラキドン酸代謝物放出活性に対する影響を調べることにより、MCHとSLCー1の結合に影響を与える化合物のスクリーニングを行なうことができる。このとき、MCHもしくはその誘導体によるアラキドン酸代謝物放出活性を阻害する化合物を拮抗阻害能力のある候補物質として選択することができる。また、試験化合物のみを添加し、SLC-1発現細胞のアラキドン酸代謝物放出活性を後述の実施例 6 に準じた方法で調べることによりアゴニスト活性を示す化合物のスクリーニングを行なうこともできる。MCHとSLC-1の結合に影響を与える化合物のスクリーニング法より具体的に以下に述べる。

10

CHO/SLC-1細胞を24穴プレートに5 x 10' cell/wellで播種し、24時間培養後、 「³H]アラキドン酸を0.25 μCi/wellとなるよう添加する。[³H]アラキドン酸添加 15 16時間後、細胞を0.05% BSAと20mM HEPESを含むハンクスバッファー(pH7.4)で 洗浄し、各wellに0.05% BSAと20mM HEPESを含むハンクスバッファー(pH7.4)に 溶解した終濃度10 nMのMCHもしくはその誘導体あるいは10 nMのMCHもし くはその誘導体および試験化合物を含むバッファー500 μ1を添加する。以降、 0.05% BSAと20mM HEPESを含むハンクスバッファー(pH7.4)を反応用バッファー 20 と呼ぶ。37℃で60分間インキュベートした後に、反応液400 µ1をシンチレータ ーに加え、反応液中に遊離した[³H]アラキドン酸代謝物の量をシンチレーション カウンターにより測定する。MCHもしくはその誘導体の非添加反応バッファ ーによる培地中の[³H]アラキドン酸代謝物の量を0%とし、10 nMのMCHもしく はその誘導体を添加したときの培地中の[3H]アラキドン酸代謝物の量を100%と 25 して試験化合物のMCHもしくはその誘導体とSLC-1の結合に対する影響

15

20

25

を算出する。アラキドン酸代謝物産生活性が例えば50%以下になる試験化合物を拮抗阻害能力のある候補物質として選択することができる。

(5) SLC-1発現細胞をMCHによって刺激することによって細胞内のCa 濃度が上昇する。これを利用することによってMCHとSLC-1の結合に対 する試験化合物の影響を調べることができる。

SLC-1発現細胞を、滅菌した顕微鏡用カバーグラス上に播き、2日後、 培養液を4 mM Fura-2 AM (同仁化学研究所) を縣濁したHBSSに置換し、室温で2 時間30分おく。HBSSで洗浄した後、キュベットにカバーグラスをセットし、蛍 光測定器で、MCHもしくはその誘導体あるいはMCHもしくはその誘導体お よび試験化合物を加えたときの励起波長340nm及び380nmでの505nmの蛍光強度 の比の上昇を測定する。このとき、MCHもしくはその誘導体を単独で投与し たときに比べて試験化合物の添加によって生じる蛍光強度の変化を測定するこ とによりMCHとSLC-1の結合に対して影響を与える化合物のスクリーニ ングを行なうことができる。また、以下のようにFLIPR(モレキュラーデバイス 社製)を使うこともできる。すなわち、細胞縣濁液にFluo-3 AM(同仁化学研究 所製)を添加し、細胞に取り込ませた後、上清を遠心により数度洗浄後、96 穴プレートに細胞を播く。FLIPR装置にセットし、Fura-2の場合と同様にMCH もしくはその誘導体あるいはMCHもしくはその誘導体および試験化合物を加 え、MCHもしくはその誘導体を単独で投与したときに比べて試験化合物の添 加によって観測される蛍光強度が変化することを測定することにより、MCH もしくはその誘導体とSLC-1の結合に対して影響を与える化合物のスクリ ーニングを行なうことができる。これらにおいて、MCHもしくはその誘導体 による蛍光強度の上昇を抑制する化合物を拮抗阻害能力のある候補物質として 選択することができる。一方、試験化合物のみの添加による蛍光強度の上昇を 観察することによってアゴニストのスクリーニングを行なうこともできる。

SLC-1発現細胞にaequorinなどのように細胞内Caイオンの上昇によって

発光するようなタンパク質の遺伝子を共発現させておき、細胞内Caイオン濃度 の上昇によってaequorinがCa結合型となり発光することを利用して、MCHも しくはその誘導体あるいはMCHもしくはその誘導体および試験化合物を加え 、MCHもしくはその誘導体を単独で投与したときに比べて試験化合物の添加 によって観測される発光強度が変化することを測定することにより、MCHと SLC-1の結合に対して影響を与える化合物のスクリーニングを行なうこと ができる。方法は、蛍光物質を取り込ませないこと以外は上記と同様である。 (6) 受容体を発現する細胞に受容体アゴニストを添加すると、細胞内イノシ トール三リン酸濃度が上昇することが知られている。MCHによって生じるS LC-1細胞におけるこの反応を観察することによりMCHとSLC-1の結 10 合に影響を与える化合物のスクリーニングを行なうことができる。24穴プレ ートに播いて1日目の細胞にmyo-[2-3H]inositol (2.5マイクロCi/well)を添加 した培地中で1日培養した細胞を、よく洗浄後、MCHもしくはその誘導体あ るいはMCHもしくはその誘導体および試験化合物を添加した後、10%過塩素酸 を加え反応を止める。1.5 M KOH, 60mM HEPES溶液で中和し、0.5ml のAG1x8樹 15 脂 (Bio-Rad)を詰めたカラムに通し、5mM Na₂BO₃ 60mM HCOONH₄で洗浄した後、 1 M HCOONH, 0.1M HCOOHで溶出した放射活性を液体シンチレーションカウンタ ーで測定する。MCHもしくはその誘導体の非添加反応バッファーによる培地 中の放射活性を0%とし、MCHもしくはその誘導体を添加したときのたときの 培地中の放射活性を100%として試験化合物のMCHもしくはその誘導体とSL 20 C-1の結合に対する影響を算出する。イノシトール三リン酸産生活性が例え ば50%以下になる試験化合物を拮抗阻害能力のある候補物質として選択する ことができる。一方、試験化合物のみの添加によるイノシトール三リン酸産生 上昇を観察することによってアゴニストのスクリーニングを行なうこともでき 25 る。

(7) TRE (TPA response element) を含むDNAを、ピッカジーン ペイシッ

クベクターまたはピッカジーン エンハンサーベクター(東洋インキ製造(株))のルシフェラーゼ遺伝子上流のマルチクローニングサイトに挿入し、これをTRE-レポーター遺伝子ベクターとする。TRE-レポーター遺伝子ベクターをトランスフェクションした細胞において、細胞内Ca上昇を伴う刺激は、TREを介したルシフェラーゼ遺伝子発現とそれに引き続くルシフェラーゼタンパク質の産生を誘導する。つまり、ルシフェラーゼ活性を測定することにより、TRE-レポーター遺伝子ベクター導入細胞内のカルシウム量の変動を検出することができる。TRE-レポーター遺伝子ベクターをSLC-1発現細胞にトランスフェクションした細胞を利用したMCHとSLC-1の結合を変化させる化合物の具体的なスクリーニング法を以下に記す。

TRE-レポーター遺伝子導入SLC-1発現細胞を24穴プレートに 5×10^3 cell/wellで播種し、48時間培養する。細胞を0.05% BSAと20mM HEPESを含むハ ンクスバッファー(pH7.4)で洗浄した後、10 nMのMCHもしくはその誘導体あ るいは10 nMのMCHもしくはその誘導体および試験化合物を添加し、37℃で 60分間反応させる。細胞をピッカジーン用細胞溶解剤(東洋インキ製造(株 15)) で溶かし、溶解液に発光基質(東洋インキ製造(株)) を添加する。ルシ フェラーゼによる発光は、ルミノメーター、液体シンチレーションカウンター またはトップカウンターにより測定する。 MCHもしくはその誘導体とSLC - 1の結合を変化させる化合物の影響は、ルシフェラーゼによる発光量をMC Hもしくはその誘導体を単独で投与した場合と比較することによって測定する 20 ことができる。このとき、MCHもしくはその誘導体の投与により細胞内Caの 上昇によって発光量が増加するが、この増加を抑制する化合物を拮抗阻害能力 のある候補物質として選択することができる。一方、試験化合物のみを投与し 、MCHもしくはその誘導体と同様な発光量の増加を観察することによりアゴ ニストのスクリーニングを行なうこともできる。 25

レポーター遺伝子として、ルシフェラーゼ以外に例えばアルカリフォスファ

15

20

25

ターゼ、クロラムフェニコール アセチルトランスフェラーゼあるいは β ーガラクトシダーゼを用いることもできる。これらのレポーター遺伝子の遺伝子産物の酵素活性は以下のように市販の測定キットを用いて容易に測定することができる。アルカリフォスファターゼ活性は、例えば和光純薬製Lumi-Phos 530によって、クロラムフェニコール アセチルトランスフェラーゼ(chloramphenicol acetyltransferase)活性は、例えば和光純薬製FAST CAT chrolamphenicol Acetyltransferase Assay Kitによって、 β ーガラクトシダーゼ活性は、例えば和光純薬製Aurora Gal-XEによって測定することができる。

(8) MCHに応答したSLC-1発現細胞はMAP kinase活性化によって増殖が観察される。この増殖をMAP kinase活性、チミジン取り込み、細胞数測定 (MTTなど)によって測定することができる。これを利用してMCHもしくはその誘導体とSLC-1の結合を変化させる化合物のスクリーニングを行なうことができる。

MAP kinase活性は、MCHもしくはその誘導体あるいはMCHもしくはその誘導体および試験化合物を細胞に添加した後、細胞溶解液から抗MAP kinase抗体を用いた免疫沈降によってMAP kinase分画を得た後、例えば和光純薬製MAP Kinase Assay Kitと γ -[32 P]-ATPを使用して容易に測定できる。チミジン取り込み活性は、SLC-1発現細胞を播き、MCHもしくはその誘導体あるいはMCHもしくはその誘導体および試験化合物を添加した後、[methyl- 3 H]-チミジンを加え、その後、細胞内に取り込まれた標識チミジンの放射活性を細胞を溶解して液体シンチレーションカウンターで計数することによって測定することができる

SLC-1発現細胞の増殖は、発現細胞を播き、MCHもしくはその誘導体あるいはMCHもしくはその誘導体および試験化合物を添加した後にMTT (3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide) を添加し、細胞内に取り込まれてMTTが変化したMTTホルマザンを塩酸酸性としたイソ

プロパノールで細胞を溶解した後、570 nmの吸収を測定することによっても測定できる。

MCHとSLC-1の結合を変化させる化合物の、標識チミジン取り込み活性を利用した具体的なスクリーニング法を以下に記す。

- SLC-1発現細胞を24穴プレートにウェル当たり5000個まき一日間 5 培養する。次に血清を含まない培地で2日間培養し、細胞を飢餓状態にする。 MCHもしくはその誘導体あるいはMCHもしくはその誘導体および試験化合 物を細胞に添加して24時間培養した後、[methyl-3H]-チミジンをウェル当たり 0.015MBq添加し6時間培養する。細胞をPBSで洗った後、メタノー ルを添加して10分間放置する。次に5%トリクロロ酢酸を添加して15分間 10 放置後、固定された細胞を蒸留水で4回洗う。0.3N水酸化ナトリウム溶液 で細胞を溶解し、溶解液中の放射活性を液体シンチレーションカウンターで測 定する。MCHとSLC-1の結合を変化させる化合物の影響は、チミジン取 り込みによる放射活性の上昇をMCHもしくはその誘導体を単独で投与した場 合と比較することによって測定することができる。このとき、MCHもしくは 15 その誘導体の投与による放射活性の増加を抑制する化合物を拮抗阻害能力のあ る候補物質として選択することができる。一方、試験化合物のみを投与し、M CHもしくはその誘導体と同様な放射活性の増加を観察することによりアゴニ ストのスクリーニングを行なうこともできる。
- 20 (9) SLC-1発現細胞にMCHを添加すると、K channelが活性化し、細胞内にあるKイオンが、細胞外に流出する。 Kイオンと同族元素であるRbイオンは、Kイオンと区別無くK channelを通って細胞外に流出するので、細胞に標識Rb([86Rb])を添加して取り込ませておいた後、MCHの刺激によって流出する[86Rb]の流れを測定することでMCHの作用を測定できる。MCHとSLC-1の結合を変化させる化合物の、[86Rb]流出活性を利用した具体的なスクリーニング法を以下に記す。

24穴にまいて2日後のSLC-1発現細胞を1mCi/ml の⁸⁶RbClを含む培地中で2時間保温する。培地をよく洗浄し、外液中の⁸⁶RbClを完全に除く。MC Hもしくはその誘導体あるいはMCHもしくはその誘導体および試験化合物を細胞に添加して30分後の外液を回収し、アカウンターで放射活性を測定する。MCHもしくはその誘導体とSLC-1の結合を変化させる化合物の影響は、[86Rb]流出による放射活性の上昇をMCHもしくはその誘導体を単独で投与した場合と比較することによって測定することができる。このとき、MCHもしくはその誘導体の投与による放射活性の上昇を抑制する化合物を拮抗阻害能力のある候補物質として選択することができる。一方、試験化合物のみを投与し、MCHもしくはその誘導体と同様な放射活性の上昇を観察することによりアゴニストのスクリーニングを行なうこともできる。

(10) SLC-1発現細胞がMCHに反応して変化する細胞外のpH(acidification rate)をCytosensor装置(モレキュラーデバイス社)を使用して測定することによって、MCHの活性を測定することができる。Cytosensor装置を利用した、細胞外pH変化の測定をすることによるMCHとSLC-1の結合を変化させる化合物の具体的なスクリーニング法を以下に記す。

SLC-1発現細胞をCytosensor装置用のカプセル内で終夜培養し、装置のチャンバーにセットして細胞外pHが安定するまで約2時間0.1% BSAを含むRPMI1640培地(モレキュラーデバイス社製)を灌流させる。pHが安定した後、MCHもしくはその誘導体あるいはMCHもしくはその誘導体および試験化合物を含む培地を細胞上に灌流させることによって生じる培地のH変化を測定する。MCHとSLC-1の結合を変化させる化合物の影響は、SLC-1発現細胞の細胞外pH変化をMCHもしくはその誘導体を単独で投与した場合と比較することによって測定することができる。このとき、MCHもしくはその誘導体の投与による細胞外pH変化を抑制する化合物を拮抗阻害能力の

25

ある候補物質として選択することができる。一方、試験化合物のみを投与し、MCHもしくはその誘導体と同様な細胞外pH変化を観察することによりアゴニストのスクリーニングを行なうこともできる。

(11) 酵母 (Saccharomyces cerevisiae) のhaploid α-mating Type (MAT α) の性フェロモン受容体STe2はG蛋白Gpa1とカップルしており、性フェロモンα-mating factorに応答してMAP kinaseを活性化し、以下、Far1 (cell-cycle arrest) および転写活性化因子Ste12が活性化される。Ste12は接合に関与するFUS1を含む種々の蛋白の発現を誘導する。一方、制御因子Sst2は以上の過程に抑制的に機能する。この系において、受容体遺伝子を導入した酵母を作製し、

10 受容体アゴニスト刺激によって酵母細胞内のシグナル伝達系を活性化し、その 結果生じる増殖などの指標を用いた、受容体アゴニストと受容体との反応の測 定系の試みが行なわれている (Pausch, M. H., Trends in Biotechnology, vol. 15, pp. 487-494 (1997))。このような受容体遺伝子導入酵母の系を利用して MCHおよびSLC-1の結合を変化させる化合物のスクリーニングを行なう 15 ことができる。

MATα酵母のSte2およびGpalをコードする遺伝子を除去し、代わりにSLC-1遺伝子およびGpal-Gai2融合蛋白をコードする遺伝子を導入する。Farをコードする遺伝子を除去してcell-cycle arrestが生じないようにし、また、Sstをコードする遺伝子を除去することによってMCHに対する応答の感度を向上させておく。さらに、FUS1にヒスチジン生合成遺伝子HIS3をつなげたFUS1-HIS3遺伝子を導入する。以上の遺伝子組換え操作は例えば、Priceら(Price, L. A. et al., Molecular and Cellular Biology, vol. 15, pp. 6188-6195 (1995))の報告に記載の方法において、ソマトスタチン受容体タイプ2(SSTR2)遺伝子をSLC-1に置き換えて実施することによって容易に行なうことができる。こうして構築された形質変換酵母はSLC-1のリガンドであるMCHに高感度で反応し、その結果MAPキナーゼの活性化が起きてヒスチジン生合成酵素が合成

されるようになって、ヒスチジン欠乏培地で生育可能になる。これを利用して、ヒスチジン欠乏培地での酵母の生育を指標としてMCHによるSLC-1発現酵母の応答を観察することができる。以下にMCHおよびSLC-1の結合を変化させる化合物のスクリーニング法を述べる。

- 上記のようにして作製された形質変換酵母を完全合成培地の液体培地で終夜 5 培養し、2 x 10⁴ cell/mlの濃度でヒスチジンを除去した溶解寒天培地に加え、9 x 9 cmの角形シャーレに播く。寒天が固化した後、MCHもしくはその誘導体 あるいはMCHもしくはその誘導体および試験化合物をしみこませた滅菌濾紙 を寒天表面におき、30℃で3日間培養する。MCHもしくはその誘導体とSL 10 C-1の結合を変化させる化合物の影響は、濾紙の周囲の酵母の生育をMCH もしくはその誘導体を単独で投与した場合と比較することによって測定するこ とができる。このとき、MCHもしくはその誘導体の投与による酵母の生育を 抑制する化合物を拮抗阻害能力のある候補物質として選択することができる。 一方、試験化合物のみを投与し、MCHもしくはその誘導体と同様な酵母の生 育を観察することによりアゴニストのスクリーニングを行なうこともできる。 15 また、あらかじめ、寒天培地に MCHもしくはその誘導体を添加しておいて滅 菌濾紙に試験化合物のみをしみこませて培養し、シャーレ全面での酵母の生育 が濾紙の周囲で影響を受けることを観察することによってもMCHとSLC-1の結合を変化させる化合物の影響を調べることができる。
- 20 (12) SLC-1遺伝子RNAをアフリカツメガエル卵母細胞に注入し、MCHによって刺激すると細胞内Caイオン濃度が上昇して、calcium-activated chloride currentが生じる。これを膜電位の変化としてとらえることが出来る (Kイオン濃度勾配に変化がある場合も同様)。MCHによって生じるSLC-1導入アフリカツメガエル卵母細胞におけるこの反応を観察することによりMCHとSLC-1の結合に影響を与える化合物のスクリーニングを行なうこと ができる。

氷冷して動けなくなった雌のアフリカツメガエルから取り出した、卵母細胞 塊を、MBS液(88mM NaCl、1mM KCl、0.41mM CaCl。 0.33mM Ca(NO₃)。 0.82mM MgSO₄, 2.4mM NaHCO₃, 10mM HEPES, pH7.4) に溶かしたコラーゲナーゼ(0.5mg/ml) で卵塊がほぐれるまで19℃、1-6時間、 150rpmで処理する。外液をMBS液に 置換することで3度洗浄し、マイクロマニピュレーターでpoly(A)+ SLC-1 cRNA (50ng/50nl)をマイクロインジェクションする。SLC-1 mRNAは、組織や細 胞から調製しても、プラスミドからin vitroで転写してもよい。これをMBS液中 で20℃で3日培養する。これをRinger液を流しているvoltage clamp装置のく ばみに置き、電位固定用ガラス微小電極、電位測定用ガラス微小電極を細胞内 に刺入し、(-)極は、細胞外に置く。電位が安定したら、MCHもしくはその誘 導体またはMCHもしくはその誘導体および試験化合物を含むRinger液を流し て電位変化を記録する。MCHとSLC-1の結合を変化させる化合物の影響 は、SLC-1導入アフリカツメガエル卵母細胞の細胞膜電位変化をMCHも しくはその誘導体を単独で投与した場合と比較することによって測定すること ができる。このとき、MCHもしくはその誘導体の投与による細胞膜電位変化 を抑制する化合物を拮抗阻害能力のある候補物質として選択することができる 。一方、試験化合物のみを投与し、MCHもしくはその誘導体と同様な細胞膜 電位変化を観察することによりアゴニストのスクリーニングを行なうこともで きる。

20 この系において、反応を変化量を増大して測定しやすいように各種のGタンパク質遺伝子のpoly(A)+RNAを導入することもできる。またaequorinのようなCa存在下で発光を生じるようなタンパクの遺伝子のpoly(A)+RNAを共インジェクションすることにより膜電位変化ではなく発光を観察してこの反応を測定することもできる。

25 MCHまたはその塩とSLC-1またはその塩との結合性を変化させる化合物またはその塩のスクリーニング用キットは、 SLC-1またはその塩、 S

LC-1を含有する細胞、あるいはSLC-1を含有する細胞の膜画分、およびMCHもしくはその誘導体またはその塩を含有するものである。

本発明のスクリーニング用キットの例としては、次のものがあげられる。

1. スクリーニング用試薬

5 ①測定用緩衝液および洗浄用緩衝液

Hanks' Balanced Salt Solution (ギブコ社製) に、0.05%のウシ血清アルブミン (シグマ社製) を加えたもの。

孔径 0.45 μmのフィルターで濾過滅菌し、4℃で保存するか、あるいは用時調製しても良い。

10 ②SLC-1標品

SLC-1を発現させたCHO細胞を、12穴プレートに 5×10^5 個/穴で継代し、37 \mathbb{C} 、5 % \mathbb{CO}_2 、95 % a i r \mathbb{C} 2 日間培養したもの。

③標識リガンド

³H)、〔¹²⁵ I 〕、〔¹⁴ C 〕、〔³⁵ S 〕などで標識したMCH。

- 15 適当な溶媒または緩衝液に溶解したものを $4 \, \mathbb{C}$ あるいは $-20 \, \mathbb{C}$ にて保存し、用時に測定用緩衝液にて $1 \, \mu \, \mathbb{M}$ に希釈する。
 - ④リガンド標準液

MCHを0.1%ウシ血清アルプミン(シグマ社製)を含むPBSで1mMとなるように溶解し、-20℃で保存する。

- 20 2. 測定法
 - ①12穴組織培養用プレートにて培養したSLC-1を発現させた細胞を、測定用緩衝液1mlで2回洗浄した後、490μlの測定用緩衝液を各穴に加える。
- ② 10^{-3} ~ 10^{-10} Mの試験化合物溶液を 5μ 1加えた後、標識したMCHを25 5μ 1加え、室温にて1時間反応させる。非特異的結合量を知るためには試験化合物のかわりに 10^{-3} Mのリガンド(MCH)を 5μ 1加えておく。

③反応液を除去し、1m1の洗浄用緩衝液で3回洗浄する。細胞に結合した標識リガンド (MCH) を0.2N NaOH-1%SDSで溶解し、<math>4m1の液体シンチレーターA (和光純薬製) と混合する。

④液体シンチレーションカウンター(ベックマン社製)を用いて放射活性を測定し、Percent Maximum Binding (PMB)を次の式〔数1〕で求める。

〔数1〕

25

 $PMB = [(B-NSB) / (B_0-NSB)] \times 100$

PMB: Percent Maximum Binding

B:検体を加えた時の値

10 NSB: Non-specific Binding (非特異的結合量)

B₀ :最大結合量

本発明のスクリーニング方法またはスクリーニング用キットを用いて得られる化合物またはその塩は、MCHまたはその塩とSLC-1またはその塩との結合を変化させる(結合を阻害あるいは促進する)化合物であり、具体的には SLC-1を介して細胞刺激活性を有する化合物またはその塩(いわゆるSLC-1アゴニスト)、あるいは該刺激活性を有しない化合物(いわゆるSLC-1アンタゴニスト)である。該化合物としては、ペプチド、タンパク、非ペプチド性化合物、合成化合物、発酵生産物などがあげられ、これら化合物は新規な化合物であってもよいし、公知の化合物であってもよい。

- 20 上記SLC-1アゴニストであるかアンタゴニストであるかの具体的な評価 方法は以下の(i)または(ii)に従えばよい。
 - (i) 前記① \sim ③のスクリーニング方法で示されるパインディング・アッセイを行い、MCHまたはその塩とSLC-1またはその塩との結合性を変化させる(特に、結合を阻害する)化合物を得た後、該化合物が上記したSLC-1を介する細胞刺激活性を有しているか否かを測定する。細胞刺激活性を有する化合物またはその塩はSLC-1アゴニストであり、該活性を有しない化合物

25

またはその塩はSLC-1アンタゴニストである。

- (ii) (a)試験化合物をSLC-1を含有する細胞に接触させ、上記SLC-1を介した細胞刺激活性を測定する。細胞刺激活性を有する化合物またはその塩はSLC-1アゴニストである。
- 5 (b) SLC-1を活性化する化合物(例えば、本発明のポリペプチドまたはSLC-1アゴニストなど)をSLC-1を含有する細胞に接触させた場合と、SLC-1を活性化する化合物および試験化合物をSLC-1を含有する細胞に接触させた場合における、SLC-1を介した細胞刺激活性を測定し、比較する。SLC-1を活性化する化合物による細胞刺激活性を減少させ得る化合物またはその塩はSLC-1アンタゴニストである。

該SLC-1アゴニストは、SLC-1に対するMCHまたはその塩が有する生理活性と同様の作用を有しているので、MCHまたはその塩と同様に安全で低毒性な医薬として有用である。

逆に、SLC-1アンタゴニストは、 SLC-1に対するMCHまたはその 15 塩が有する生理活性を抑制することができるので、該レセプター活性を抑制する安全で低毒性な医薬として有用である。

MCHまたはその塩は食欲(摂食)増進作用およびオキシトシン分泌促進作用などに関与していることから、食欲(摂食)増進剤またはオキシトシン分泌促進剤などとして用いることができるため、上記のスクリーニング方法またはスクリーニング用キットを用いて得られる化合物のうち、SLC-1アゴニストは食欲(摂食)増進剤として用いることができる他、微弱陣痛、弛緩出血、胎盤娩出前後、子宮復古不全、帝王切開術、人工妊娠中絶、乳汁うっ滞、神経性食欲不振症などの食欲不振およびそれに伴う貧血、低蛋白症などの予防・治療薬などとして用いることができ、SLC-1アンタゴニストは抗肥満剤(薬)、食欲(摂食)調節剤などとして用いることができる他、過強陣痛、強直性子宮収縮、胎児仮死、子宮破裂、頚管裂傷、早産、Prader-Willi症候群、糖尿病お

15

25

よびその合併症(糖尿病性腎症、糖尿病性網膜症、糖尿病性神経障害など)、 高血圧、高脂血症、冠状動脈硬化症、痛風、呼吸器疾患(Pickwick症候群、睡 眠時無呼吸症候群)、脂肪肝、不妊症、変形性骨関節症など(特に抗肥満剤(薬)、食欲(摂食)調節剤など)の予防・治療薬などとして用いることができ る。

上記のスクリーニング方法またはスクリーニング用キットを用いて得られる 化合物の塩としては、例えば、薬学的に許容可能な塩などが用いられる。例えば、無機塩基との塩、有機塩基との塩、無機酸との塩、有機酸との塩、塩基性 または酸性アミノ酸との塩などがあげられる。

10 無機塩基との塩の好適な例としては、例えばナトリウム塩、カリウム塩などのアルカリ金属塩、カルシウム塩、マグネシウム塩などのアルカリ土類金属塩、ならびにアルミニウム塩、アンモニウム塩などがあげられる。

有機塩基との塩の好適な例としては、例えばトリメチルアミン、トリエチルアミン、ピリジン、ピコリン、2,6-ルチジン、エタノールアミン、ジエタノールアミン、トリエタノールアミン、シクロヘキシルアミン、ジシクロヘキシルアミン、N,N'-ジベンジルエチレンジアミンなどとの塩などがあげられる。

無機酸との塩の好適な例としては、例えば塩酸、臭化水素酸、硫酸、リン酸などとの塩があげられる。

20 有機酸との塩の好適な例としては、例えばギ酸、酢酸、プロピオン酸、フマル酸、シュウ酸、酒石酸、マレイン酸、クエン酸、コハク酸、リンゴ酸、メタンスルホン酸、ベンゼンスルホン酸、安息香酸などとの塩があげられる。

塩基性アミノ酸との塩の好適な例としては、例えばアルギニン、リジン、オルチニンなどとの塩があげられ、酸性アミノ酸との好適な例としては、例えばアスパラギン酸、グルタミン酸などとの塩があげられる。

本発明のスクリーニング方法またはスクリーニング用キットを用いて得られ

15

る化合物またはその塩を上述の医薬として使用する場合、上記の本発明のポリペプチドを医薬として実施する場合と同様にして実施することができる。

本発明のスクリーニング方法またはスクリーニング用キットを用いて得られる化合物またはその塩を上述の医薬として使用する場合、常套手段に従って実施することができる。例えば、必要に応じて糖衣や腸溶性被膜を施した錠剤、カプセル剤、エリキシル剤、マイクロカプセル剤などとして経口的に、あるいは水もしくはそれ以外の薬学的に許容し得る液との無菌性溶液、または懸濁液剤などの注射剤の形で非経口的に使用できる。例えば、該化合物またはその塩を生理学的に認められる担体、香味剤、賦形剤、ベヒクル、防腐剤、安定剤、結合剤などとともに一般に認められた単位用量形態で混和することによって製造することができる。これら製剤における有効成分量は指示された範囲の適当な用量が得られるようにするものである。

錠剤、カプセル剤などに混和することができる添加剤としては、例えばゼラチン、コーンスターチ、トラガントガム、アラビアゴムのような結合剤、結晶性セルロースのような賦形剤、コーンスターチ、ゼラチン、アルギン酸などのような膨化剤、ステアリン酸マグネシウムのような潤滑剤、ショ糖、乳糖またはサッカリンのような甘味剤、ペパーミント、アカモノ油またはチェリーのような香味剤などが用いられる。調剤単位形態がカプセルである場合には、前記タイプの材料にさらに油脂のような液状担体を含有することができる。注射のための無菌組成物は注射用水のようなベヒクル中の活性物質、胡麻油、椰子油などのような天然産出植物油などを溶解または懸濁させるなどの通常の製剤実施にしたがって処方することができる。

注射用の水性液としては、例えば、生理食塩水、ブドウ糖やその他の補助薬 を含む等張液 (例えば、D-ソルビトール、D-マンニトール、塩化ナトリウムなど) などがあげられ、適当な溶解補助剤、たとえばアルコール (たとえば エタノール)、ポリアルコール (たとえばプロピレングリコール、ポリエチレ

20

ングリコール)、非イオン性界面活性剤(たとえばポリソルベート80 (™) 、HCO-50) などと併用してもよい。油性液としてはゴマ油、大豆油などがあげられ、溶解補助剤として安息香酸ベンジル、ベンジルアルコールなどと併用してもよい。

また、緩衝剤(例えば、リン酸塩緩衝液、酢酸ナトリウム緩衝液)、無痛化剤(例えば、塩化ペンザルコニウム、塩酸プロカインなど)、安定剤(例えば、ヒト血清アルブミン、ポリエチレングリコールなど)、保存剤(例えば、ベンジルアルコール、フェノールなど)、酸化防止剤などと配合してもよい。調製された注射液は通常、適当なアンプルに充填される。

10 このようにして得られる製剤は安全で低毒性であるので、例えばヒトや哺乳動物 (例えば、マウス、ラット、モルモット、ウサギ、ヒツジ、ブタ、ウシ、ネコ、イヌ、サル、チンパンジーなど) に対して投与することができる。

本発明のスクリーニング方法またはスクリーニング用キットを用いて得られる化合物またはその塩の投与量は、症状などにより差異はあるが、経口投与の場合、一般的に成人(体重60kgとして)においては、一日につき約0.1から1000mg、好ましくは約1.0から300mg、より好ましくは約3.0から50mgである。非経口的に投与する場合は、その1回投与量は投与対象、対象臓器、症状、投与方法などによっても異なるが、たとえば注射剤の形では成人の肥満症患者(体重60kgとして)への投与においては、SLCアンタゴニストを一日につき約0.01から30mg程度、好ましくは約0.1から20mg程度、より好ましくは約0.1から10mg程度を静脈注射により投与するのが好都合である。他の動物の場合も、60kg当たりに換算した量を投与することができる。

本明細書および図面において、塩基やアミノ酸などを略号で表示する場合、
25 IUPAC-IUB Commission on Biochemical Nomenclature による略号あるいは当該分野における慣用略号に基づくものであり、その例を下記する。ま

たアミノ酸に関し光学異性体があり得る場合は、特に明示しなければL体を示すものとする。

DNA : デオキシリボ核酸

MA . JANZ JANAR

c DNA : 相補的デオキシリボ核酸

5 A : アデニン

T:チミン

G: グアニン

C:シトシン

Y: チミンまたはシトシン

10 N: チミン、シトシン、アデニンまたはグアニン

R: アデニンまたはグアニン

M : シトシンまたはアデニン

W: チミンまたはアデニン

S: シトシンまたはグアニン

15 RNA : リポ核酸

mRNA :メッセンジャーリボ核酸

dATP : デオキシアデノシン三リン酸

dTTP: デオキシチミジン三リン酸

dGTP : デオキシグアノシン三リン酸

20 d C T P : デオキシシチジン三リン酸

ATP : アデノシン三リン酸

EDTA:エチレンジアミン四酢酸

SDS : ドデシル硫酸ナトリウム

TFA: トリフルオロ酢酸

25 EIA : エンザイムイムノアッセイ

GlyまたはG:グリシン

AlaまたはA:アラニン

ValまたはV:バリン

LeuまたはL:ロイシン

IleまたはI:イソロイシン

5 SerまたはS :セリン

ThrまたはT:スレオニン

CysまたはC:システイン

MetまたはM :メチオニン

GluまたはE :グルタミン酸

10 AspまたはD:アスパラギン酸

LysまたはK:リジン

ArgまたはR:アルギニン

His またはH: ヒスチジン

PheまたはF:フェニルアラニン

15 TyrまたはY:チロシン

TrpまたはW:トリプトファン

ProまたはP :プロリン

AsnまたはN:アスパラギン

GlnまたはQ:グルタミン

20 pGlu :ピ

: ピログルタミン酸

Мe

:メチル基

Εt

:エチル基

Вu

: ブチル基

Ρh

:フェニル基

25 T C

: チアゾリジン-4(R)-カルボキサミド基

Bom

: ベンジルオキシメチル

NMP

: Nーメチルピロリドン

PAM

: フェニルアセトアミドメチル

また、本明細書中で繁用される置換基、保護基および試薬を下記の記号で表 記する。

Tos 5

: p - トルエンスルフォニル

HONB

: N-ヒドロキシ-5-ノルボルネン-2, 3-ジカル

ポキシイミド

Bzl

: ベンジル

Z

: ベンジルオキシカルボニル

Br-Z10

: 2 - プロモベンジルオキシカルボニル

C1-Z

: 2 – クロルベンジルオキシカルボニル

Вос

: tープチルオキシカルボニル

HOBt : 1-ヒドロキシベンズトリアゾール

DCC

: N、N'-ジシクロヘキシルカルポジイミド

TFA 15

: トリフルオロ酢酸

Fmoc

: N-9-フルオレニルメトキシカルボニル

DNP

: ジニトロフェニル

Bum

: ターシャリープトキシメチル

Trt

: トリチル

BSA 20

:ウシ血清アルプミン

CHAPS

:3-[(3-コラミドプロピル)ジメチルアンモニオ]

-1-プロパンスルホナート

PMSF

: フェニルメチルスルホニルフルオリド

E 6 4

: (L-3-trans-カルボキオキシラン-2-カルボニ

ル) L-ロイシル-アグマチン

GDP

: グアノシン-5'-二リン酸

 $MEM\alpha$: SITVALLED TO THE STATE OF THE STA

Fura-2AM : 1-[6-アミノ-2-(5-カルボキシ-2-オキサゾリル)-5-ペンプフラニロキシ]-2-(2-アミノ-5メチルフェノキシ)-エタン-N, N, N', N'-四酢酸ペンタアセトキシメチルエステル

5 HBSS : ハンクス平衡塩液

Fluo-3AM: 1-[2-アミノ-5-(2, 7-ジクロロ-6-ヒドロキシ-3-オキシ-9-キサンテニル) フェノキシ]-2-(2-アミノ-5-メチルフェノキシ) エタン-N, N, N', N'-四酢酸ペンタアセトキシメチルエステル

HEPES : 2-[4-(2-ヒドロキシエチル) -1-ピペラジニ

10 ル]エタンスルホン酸

MeBzl : 4-メチルベンジル

NMP: N-メチルピロリドン

本願明細書の配列表の配列番号は、以下の配列を示す。

〔配列番号:1〕

15 ラット脳から精製されたSLC-1に対するリガンドペプチドのN末端アミノ酸配列 解析の結果から得られたアミノ酸配列を示す。

〔配列番号:2〕

ラットMCHとして同定されたラット脳から精製されたSLC-1に対するリガンドペプチドのアミノ酸配列を示す。

20 〔配列番号: 3〕

ラットSLC-1をコードするcDNAのスクリーニングに使用した合成DNAを示す。

〔配列番号:4〕

ラットSLC-1をコードするcDNAのスクリーニングに使用した合成DNAを示す。

〔配列番号:5〕

25 ラットSLC-1の全アミノ酸配列を示す。

〔配列番号:6〕

5'側にSal I認識配列が付加され、また3'側にSpe I認識配列が付加されたラット SLC-1cDNAの全塩基配列を示す。

〔配列番号:7〕

ラットSLC-1発現CHO細胞の各クローンにおけるSLC-1mRNAの発現量を測定する ために使用したリポプローブ (riboprobe) を示す。

[配列番号:8]

ヒトSLC-1をコードするcDNAを取得するために使用した合成DNAを示す。

〔配列番号:9〕

ヒトSLC-1をコードするcDNAを2本鎖にするために使用したプライマーを示す。

10 〔配列番号:10〕

ヒトSLC-1をコードするcDNA全塩基配列を示す。

[配列番号:11]

ヒトSLC-1の全アミノ酸配列を示す。

〔配列番号:12〕

15 ヒトSLC-1(S)をコードするcDNAのスクリーニングに使用した合成DNAを示す。

[配列番号:13]

ヒトSLC-1(S)をコードするcDNAのスクリーニングに使用した合成DNAを示す。

[配列番号:14]

ヒトSLC-1(L)をコードするcDNAのスクリーニングに使用した合成DNAを示す。

20 〔配列番号:15〕

ヒトSLC-1(L)をコードするcDNAのスクリーニングに使用した合成DNAを示す。

〔配列番号:16〕

5'側にSal I認識配列が付加され、また3'側にSpe I認識配列が付加されたヒトSLC-1(S) cDNAの全塩基配列を示す。

25 〔配列番号:17〕

5'側にSal I認識配列が付加され、また3'側にSpe I認識配列が付加されたヒト

SLC-1(L) cDNAの全塩基配列を示す。

[配列番号:18]

ヒトSLC-1(S) 発現CHO細胞およびヒトSLC-1(L) 発現CHO細胞の各クローンにお けるSLC-1mRNAの発現量を測定するために使用したリボプローブ (riboprobe)

5 を示す。

[配列番号:19]

Des-Asp!-MCH (MCH(2-19))のアミノ酸配列を示す。

[配列番号:20]

Des-[Asp', Phe2]-MCH (MCH(3-19))のアミノ酸配列を示す。

10 〔配列番号:21〕

Des-[Asp¹, Phe², Asp³]-MCH (MCH(4-19))のアミノ酸配列を示す。

[配列番号:22]

Des-[Asp', Phe², Asp³, Met⁴]-MCH (MCH(5-19))のアミノ酸配列を示す。

[配列番号:23]

15 Des-[Asp¹, Phe², Asp³, Met⁴, Leu⁵]-MCH (MCH(6-19))のアミノ酸配列を示す。

[配列番号:24]

Des-[Asp¹, Phe², Asp³, Met⁴, Leu⁵, Arg⁶]-MCH (MCH(7-19))のアミノ酸配列を示す。

実施例 8 で得られた配列番号: 11で表される塩基配列をコードするDNAを含むプラスミドによる形質転換体 Escherichia coli DHIOB/phSLCIL8は、1999年2月1日から通商産業省工業技術院生命工学工業技術研究所(NIBH)に寄託番号FERM BP-6632として、1999年1月21日から財団法人・発酵研究所(IFO)に寄託番号IFO 16254として寄託されている。

25

実施例

15

20

. 25

以下に実施例および参考例を示して、本発明をより詳細に説明するが、これらは本発明の範囲を限定するものではない。

参考例 1 ラット脳抽出物に含まれ、CHO/SLC-1細胞のcAMP合成を特異的に抑制する活性の検出

ラット脳抽出物の高速液体クロマトグラフィー(HPLC)フラクションを以下 に述べる方法で調製した。チャールズリバー(株)より購入した、100匹の ウィスターラット(雄、8週令)から脳を取り出し、直ぐに沸騰した蒸留水0.81 に投じて10分間煮沸した。煮沸後、直ちに氷冷し、48 mlの酢酸を加えて終濃度 1.0 Mとし、ポリトロン (20,000 rpm、6分間) を用いて破砕した。破砕液を遠 心 (8,000 rpm、30分) して上清を取り、沈殿には1.0 M酢酸0.8 lを加えて再度 ポリトロンによって破砕し、遠心(8,000 rpm、30分)して上清を取った。沈殿 には1.0 M酢酸0.8 lを加えて再度ポリトロンによって破砕し一晩攪拌した後、 遠心 (8,000 rpm、30分) して上清を得た。上清に2倍量の冷アセトンを4℃で ゆっくり滴下した後、1回目の遠心によって得た上清については一晩攪拌し、 2回目の遠心によって得た上清については4時間攪拌した。アセトンを加えた 抽出液は遠心(8,000 rpm、30分)して沈殿を除き、得られた上清からエバポレ ーターによって減圧下にアセトンを溜去した。アセトンを除いた抽出液に等量 のジエチルエーテルを加え、分液ロートを使って脂質を含むエーテル層を分離 して水層を回収した。エーテル脱脂した抽出液はエバポレーターによって減圧 化に濃縮してエーテルを完全に除去した。濃縮液をガラス繊維濾紙(アドバン テック、DP70 (90 mmφ)) で濾過し、濾液をガラス製カラム (20mmφ x 240 mm)に充填したC18 (ワイエムシー、YMCgel ODS-AM 120-S50) カラムに添加した 。カラムを1.0 M酢酸300 mlで洗浄後、0.1%トリフルオロ酢酸を含む60%アセ トニトリル300 mlで溶出した。溶出液を減圧化に濃縮して溶媒を溜去した後、 濃縮液を凍結乾燥した。凍結乾燥品約0.24gを5m1のDMS0に溶解し、次に1.0 M

酢酸45mlを加えてラット脳抽出標品とした。ラット脳抽出標品を1.0 M酢酸で平衡化したSP-Sephadex C-25カラム(アマシャムファルマシアバイオテク、ゲル体積:100ml)に添加し、1.0 M酢酸50mlで洗浄した後、2.0Mピリジン100ml溶出画分と2.0Mピリジン・酢酸100ml溶出画分を順次得た。2.0Mピリジン・酢酸溶出液を減圧化に濃縮して溶媒を溜去した後、濃縮液を凍結乾燥した。凍結乾燥品約100mgを10 mlの0.1%トリフルオロ酢酸を含む10%アセトニトリルに溶解し、C18カラム(トーソー、TSKgel ODS-80T_s(21.5 φ x 300 mm))を用いた10%から60%の0.1%トリフルオロ酢酸を含むアセトニトリルの濃度勾配溶出法によるHPLCにかけた。各分画を減圧化に濃縮・乾固し、残渣を0.2 mlのジメチルスルフオキシド(DMSO)で溶解した。

実施例4で作製したCHO/SLC-1細胞およびmock CHO細胞を24穴プレートに5 x 10⁴ cell/wellで播種し、48時間培養した。細胞を0.2mM 3-イソブチルーメチ ルキサンチンと0.05% BSAと20mM HEPESを含むハンクスバッファー(pH7.4)で洗 浄した(以下、0.2mM 3-イソブチルーメチルキサンチンと0.05% BSAと20mM HEPESを含むハンクスバッファー(pH7.4)を、反応用バッファーと呼ぶ)。その 15 後0.5mlの反応用バッファーを加えて30分間培養器で保温した。反応用バッフ ァーを除き、新たに0.25mlの反応用バッファーを細胞に加えた後、HPLCフ ラクションと2μMフォルスコリンを含む0.25mlの反応用バッファーを細胞に加 え、37℃で24分間反応させた。100μlの20%過塩素酸を加えて反応を停止さ せ、次に氷上で1時間置くことにより細胞内cAMPを抽出した。抽出液中のcAMP 20 量は、 cAMP EIAキット(アマシャムファルマシアバイオテク)を用いて測定し た。その結果、分画番号33,34,35にCHO/SLC-1細胞特異的なcAMP合成抑制活性が 検出された(図1)。図1中、 cAMP合成抑制活性は、フォルスコリンを含む反 応用バッファーを添加したときの細胞内cAMP量から反応用バッファーを添加し たときの細胞内cAMP量を減じた量を100%として、HPLCフラクション(各フラク ションをDMSOで100倍希釈した溶液を1 μ1添加した)を加えたときの細 胞内cAMP量から反応用バッファーを添加したときの細胞内cAMP量を減じた量を %として表わした。

参考例2 ラット脳抽出物中のラットSLC-1発現CHO細胞に対して特異的にcAMP 合成抑制活性示す活性物質のプロナーゼによる失活

参考例1でCHO/SLC-1細胞に対するcAMP合成抑制活性を示したHPLC分画34を 蛋白分解酵素であるプロナーゼ(Sigma, protease Type XIV (P5147))で処理 し、活性物質が蛋白性であるかを調べた。

上記ラット脳抽出物HPLC分画(# 34)2μ1を0.2 M酢酸アンモニウム100 μ1に加え、これにプロナーゼ3 μgを添加して37℃で2時間インキュベートした後、沸騰水中で10分間加熱してプロナーゼを失活させた。これにBSA 0.05mgおよびCHAPS 0.05 mgを含む蒸留水2 mlを加えてから凍結乾燥した。プロナーゼそのものあるいは加熱および凍結乾燥の影響を調べるため、プロナーゼのみ、HPLC分画のみおよびプロナーゼのみを加熱処理した後にHPLC分画を加えたものについても同様に処理して凍結乾燥した。凍結乾燥した各試料を2μMフォルスコリンを含む反応用バッファー溶解し、参考例1に示す方法によってCHO/SLC-1細胞に添加してcAMP合成抑制活性を測定した。結果を図2に示した。ラット脳抽出物中のCHO/SLC-1細胞に対するcAMP合成抑制活性を示す活性物質はプロナーゼによって完全に失活したことからこの物質が蛋白もしくはペプチドであることが示された。

参考例3 ラット脳からのラットSLC-1/CHO細胞に対して特異的にcAMP合成抑制活性を示す活性物質の精製

CHO/SLC-1細胞に対して特異的にcAMP合成抑制活性を示す活性物質をラット 25 脳から精製した代表例を以下に具体的に述べる。

参考例1で活性を認めた分画33を以下のように精製した。活性分画を減圧下

に濃縮して溶媒を除いた後、凍結乾燥した。これを10%アセトニトリルを含む10 mM 半酸アンモニウム(pH 5. 25)5mlに溶解し、陽イオン交換カラム(トーソー、TSKgel CM-2SW (4.6 mm φ x 150 mm))に添加した後、10%アセトニトリルを含む10 mMから500 mMの半酸アンモニウム(pH 5. 25)の濃度勾配によって活性物質を溶出した。活性は半酸アンモニウム320 mM付近に回収された。活性分画2mlに0.1%トリフルオロ酢酸を含む10%アセトニトリル2.5mlを加え、ジフェニルカラム(セパレーショングループ、Vydac 219-TP54)に添加した後、0.1%トリフルオロ酢酸を含む27.5%から42.5%のアセトニトリルの濃度勾配によって溶出した。活性はアセトニトリル31.3%付近に出現した。活性分画0.96mlに0.1%トリフルオロ酢酸を含む10%アセトニトリル4.4mlを加え、0DSカラム(野村化学、Develosil 0DS-UG-3)に添加した後、0.1%トリフルオロ酢酸を含む27.5%から42.5%のアセトニトリルの濃度勾配によって溶出した。溶出液はピーク毎に手動で分取した。活性はアセトニトリル36.8%付近(フラクションNo. 16)に単一ピークとして出現した。(図3)。

15

20

25

10

5

参考例4 ラット脳から精製されたラットSLC-1発現CHO細胞に対して特異的に cAMP合成抑制活性を示す活性物質のラットMCHとしての同定

参考例3で精製されたラットSLC-1発現CHO細胞に対して特異的にcAMP合成抑制活性を示す活性物質の構造解析を行なった。本活性物質は参考例2に示すように蛋白またはペプチドであることが推定されていたので、活性ピークを含む溶出液を用いてベックマン社LF3400 Protein Sequencerによるアミノ末端アミノ酸配列分析を行なった。分析の結果、配列番号:1に示す配列が得られた。7残基目と16残基目には配列分析の反応中にCys残基から生成したdehydroalanineのPTH誘導体が検出され、Cysであると決定された。この配列はラットメラニン凝集ホルモン(melanin-concentrating hormone, MCH)のN末端から16残基までのアミノ酸配列に一致した。そこで本活性物質をJEOL HX110によ

る質量分析計によって測定したところラットMCHの分子量とほぼ一致するm/2 2387.3にシグナルが観察されたことから、活性物質の推定アミノ酸配列としてラットMCHの配列(配列番号:2)が決定された。なお、参考例3で得られた活性分画34および35についても生成を行なって活性物質を得たが、いずれの活性もラットMCHであることが確認された。さらに、ペニンスラ社から購入したラットMCHはラットSLC-1発現細胞に対し、実施例5に述べる方法で行なったcAMP産生抑制活性のアッセイにおいて用量依存的に抑制活性を示し、本活性物質がラットMCHであることが確認された。

10 実施例1 ラット脳由来cDNAを用いたPCR法によるラットSLC-1 受容体cDNAの 増幅

ラット脳由来poly (A) 'RNA (クローンテック社) を鋳型とし、ランダムプラ イマーを用いて逆転写反応を行なった。逆転写反応は、タカラRNA PCR ver. 2 キットの試薬を使用した。次にこの逆転写生成物を鋳型として用い、配列番号 :3および4の合成DNAプライマーを用いてPCR法による増幅を行なった。合成 15 DNAプライマーは受容体蛋白に翻訳される領域の遺伝子が増幅されるように構 築したが、その際に遺伝子の5'側に制限酵素Sal Iの認識する塩基配列が付加さ れ、また3'側に制限酵素Spe Iの認識する塩基配列が付加されるように、5'側お よび3'側にそれぞれの制限酵素の認識配列を付加した。反応液の組成は、cDNA 鋳型5 μ l、合成DNAプライマー各0.4 μ M、0.25 mM dNTPs、pfu(ストラタジー 20 ン社) DNAポリメラーゼ0.5 μlおよび酵素に付属のバッファーで、総反応量は $50~\mu$ lとした。増幅のためのサイクルはサーマルサイクラー(パーキンエルマ ー社)を用い、94℃・60秒の加熱の後、94℃・60秒、60℃・30秒、72℃・150秒 のサイクルを35回繰り返し、最後に72℃で10分間反応させた。 増幅産物の確認は 、0.8%アガロースゲル電気泳動の後、エチジウムブロマイド染色によって行な った。

実施例2 PCR産物のプラスミドベクターへのサブクローニングおよび挿入 cDNA部分の塩基配列の解読による増幅cDNA配列の確認

実施例1で行なったPCR後の反応産物は0.8%の低融点アガロースゲルを用 いて分離し、バンドの部分をカミソリで切り出した後、細片化、フェノール抽 出、フェノール・クロロホルム抽出、エタノール沈殿を行なってDNAを回収した 。PCR-Script™ Amp SK(†)クローニングキット(ストラタジーン社)の処方に従 い、回収したDNAをプラスミドベクターpCR-Script Amp SK(†)へサブクローニン グした。これをエシェリヒア コリ (Escherichia coli) XL-1 Blue (ストラタ ジーン) に導入して形質転換した後、cDNA挿入断片を持つクローンをアンピシ 10 リンおよびX-galを含むLB寒天培地中で選択し、白色を呈するクローンのみを滅 菌したつま楊枝を用いて分離し、形質転換体E. coli XL-1 Blue/ラットSLC-1を 得た。個々のクローンをアンピシリンを含むLB培地で一晩培養し、QIA prep8 mini prep(キアゲン社)を用いてプラスミドDNAを調製した。調製したDNAの一 部を用いて制限酵素Sal IおよびSpe Iによる切断を行ない、挿入されている受 15 容体cDNA断片の大きさを確認した。塩基配列の決定のための反応はDyeDeoxy Terminator Cycle Sequence Kit (パーキンエルマー社) を用いて行ない、蛍光 式自動シーケンサーを用いて解読した。得られた3クローンの配列を解析し全て の配列が報告されているラットSLC-1タンパク質(配列番号:5)をコードする cDNA配列 (Lakaye, B. et al. Biochim. Biophys. Acta, Vol. 1401, pp. 216-220 20 (1998), accession No. AF08650) の5側にSal I認識配列が付加し、3個にSpe I 認識配列が付加した遺伝子配列と一致することを確認した(配列番号:6)。

実施例3 ラットSLC-1発現CHO細胞の作製

25 実施例2で配列が確認されたラット脳由来のSLC-1の全長アミノ酸配列をコードし、5'側にSal I認識配列が付加し、また3'側にSpe I認識配列を付加した遺

伝子が導入されたプラスミドによって形質転換されたE. coliのクローンより Plasmid Midi Kit (キアゲン社)を用いてプラスミドを調製し、制限酵素Sal I およびSpe Iで切断してインサート部分を切り出した。インサートDNAは電気泳動後、アガロースゲルからカミソリで切り出し、次に細片化、フェノール抽出、フェノール・クロロホルム抽出、エタノール沈殿を行なって回収した。このインサートDNAをSal IおよびSpe Iで切断した動物細胞発現用ベクタープラスミドpAKKO-111H (Hinuma, S. et al. Biochim. Biophys. Acta, Vol. 1219, pp. 251-259 (1994)記載のpAKKO1.11Hと同一のベクタープラスミド)に加え、T4ライゲース (宝酒造)を用いてライゲーションを行ない、蛋白発現用プラスミドpAKKO-SLC-1を構築した。

pAKKO- SLC-1で形質転換したE. coli DH5 (トーヨーボー)を培養後、Plasmid Midi Kit (キアゲン社)を用いてpAKKO- SLC-1のプラスミドDNAを調製した。これをCellPhect Transfection Kit (アマシャムファルマシアバイオテク社)を用い添付のプロトコルに従ってCHO dhfr⁻細胞に導入した。10 μ gのDNAをリン酸カルシウムとの共沈懸濁液とし、24時間前に5 x 10^5 または1 x 10^5 個のCHO dhfr⁻細胞を播種した10 cmシャーレに添加した。10%ウシ胎児血清を含むMEM α 培地で1日間培養した後、継代し、選択培地である10%透析ウシ胎児血清を含む核酸不含MEM α 培地で培養した。選択培地中で増殖してくるSLC-1発現CHO細胞である形質転換細胞のコロニー56クローンを選択した。

20

25

10

実施例4 全長ラットSLC-1レセプター蛋白質mRNAの発現量の高いCHO/SLC-1細胞株の選択

実施例3で樹立されたCHO/SLC-1株56クローンの全長ラットSLC-1レセプター 蛋白質mRNAの発現量をCytostar T Plate (アマシャムファルマシアバイオテク 社)を用い、添付のプロトコルに従って以下のように測定した。CHO/SLC-1株 の各クローンをCytostar T Plateの各wellに2.5 x 10⁴個ずつ播種して24時間培

養した後、10%ホルマリンによって細胞を固定した。各wellに0.25% Triton X-100を添加して細胞の透過性をあげた後、35Sラベルした配列番号:7の riboprobeを加えてハイブリダイズさせた。20 mg/mlのRNaseAを各wellに加えて 遊離のriboprobeを消化し、プレートをよく洗浄した後、ハイブリダイズした riboprobeの放射活性をTopcounterで測定した。放射活性の高い株がmRNA発現量 が高い。mRNA発現量の高い3クローン ($\sharp 3$, 6および44) を以下の実験に用いたが 、特にクローン番号44を主に用いた(図 4)。

実施例5 MCHによるラットSLC-1発現CHO細胞に対するcAMP合成抑制活性

合成MCH (ペニンスラ社)を種々の濃度に希釈し、ラットSLC-1発現CHO細胞に 10 対するcAMP合成抑制活性を以下に示す方法で測定した。実施例4で選択した CHO/SLC-1細胞を24穴プレートに5 x 104 cell/wellで播種し、48時間培養した。 細胞を0.2mM 3-イソブチル-メチルキサンチンと0.05% BSAと20mM HEPESを 含むハンクスバッファー(pH7.4)で洗浄した(以下、0.2mM 3-イソブチルー メチルキサンチンと0.05% BSAと20mM HEPESを含むハンクスバッファー(pH7.4) 15 を、反応用バッファーと呼ぶ)。その後0.5mlの反応用バッファーを加えて30 分間培養器で保温した。反応用バッファーを除き、新たに0.25mlの反応用バッ ファーを細胞に加えた後、種々の量のMCHと2μMフォルスコリンを含む0.25mlの 反応用バッファーを細胞に加え、37℃で24分間反応させた。100μ1の20%過塩素 酸を加えて反応を停止させ、次に氷上で1時間置くことにより細胞内cAMPを抽 20 出した。抽出液中のcAMP量は、cAMP EIAキット(アマシャムファルマシアバイ オテク)を用いて測定した。その結果、MCHはO. 1nMの濃度で明らかに細胞内cAMP 量を低下させ、さらにペプチド濃度を増やすと容量依存的に細胞内cAMP量は減 少した(図5)。図中、 cAMP合成抑制活性は、フォルスコリンを含む反応用バ ッファーを添加したときの細胞内cAMP量から反応用バッファーを添加したとき 25 の細胞内cAMP量を減じた量を100%として、MCHを加えたときの細胞内cAMP量か ら反応用バッファーを添加したときの細胞内cAMP量を減じた量を%として表わした。

実施例 6 MCHがラットSLC-1発現CHO細胞に対して惹起するアラキドン酸代謝 物放出活性

種々の濃度の合成MCH (ペニンスラ社) が示すラットSLC-1発現CHO細胞に対す るアラキドン酸代謝物放出活性を以下の方法により測定した。実施例4で選択 したCHO/SLC-1細胞を24穴プレートに5 x 10 cell/wellで播種し、24時間培養後 、[³H]アラキドン酸を0.25 μCi/wellとなるよう添加した。[³H]アラキドン酸添 加16時間後、細胞を0.05% BSAと20mM HEPESを含むハンクスバッファー(pH7.4) 10 で洗浄し、各wellに0.05% BSAと20mM HEPESを含むハンクスバッファー(pH7.4) に溶解した種々の濃度の合成ラットMCH500 μ lを添加した。以降、0.05% BSA と20mM HEPESを含むハンクスバッファー(pH7.4)を反応バッファーと呼ぶ。37℃ で60分間インキュベートした後に、反応液400 μ1をシンチレーターに加え、反 応液中に遊離した[*H]アラキドン酸代謝物の量をシンチレーションカウンター 15 により測定した。合成ラットMCH3nM濃度で明らかなアラキドン酸代謝物放出が 起こり、さらにペプチド濃度を増やすと容量依存的にアラキドン酸代謝物が培 地中に放出された(図6)。図中、アラキドン酸代謝物放出活性は、合成ラッ トMCH非添加反応バッファーによる培地中の[°H]アラキドン酸代謝物の量を10 0%としたときの、合成ラットMCH添加反応バッファーによる培地中の[³H]アラ 20 キドン酸代謝物の量の相対値で示した。

実施例7 ヒトSLC-1 cDNAを含むプラスミドの単離

ヒト胎児脳由来cDNA library (SUPERSCRIPT™ cDNA Library;GIBCOBRL社)を、 25 Genetrapper cDNA positive selection system (GIBCOBRL社)のマニュアルに従って、ファージ F1 エンドヌクレアーゼを用いて、DNAにnickを入れた後、エ シェリヒア コリ エキソヌクレアーゼ IIIで消化することにより、1本鎖ヒト 胎児脳由来cDNA libraryを調製した。

Kolakowski Jr. ら (Kolakowski Jr., et al (1996) FEBS Lett. Vol. 398, pp. 253-258) の報告に基づいて作製した配列番号:8の合成オリゴヌクレオチド (accession No. U71092の1434-1451に相当)の3'末端にbiotin-14-dCTPをTerminal Deoxynucleotidyl Transferaseを用いて付加し、biotin化オリゴヌクレオチドを調製した。反応液の組成、反応時間はマニュアルに従った。

1本鎖ヒト胎児脳由来cDNA library 4μgを95℃で1分保温した後、氷上で急冷し、biotin化オリゴヌクレオチド20 ngを加え、37℃で1時間、添付ハイブリダイゼーションバッファーでハイブリダイズした。ストレプトアビジンビーズを加え、MAGNA-SEP Magnetic Particle Separator (GIBCOBRL社)を用いて、biotin化オリゴヌクレオチドにハイブリダイズした1本鎖ヒト胎児脳由来cDNAを単離し、Kolakowski Jr. らの報告 (Kolakowski Jr. et al (1996) FEBS Lett. Vol. 398. pp. 253-258) に基づいて作製した配列番号: 9の合成オリゴヌクレオチド(accession No. U71092の1011-1028に相当) 50ngをプライマーにしてマニュアルに従って相補鎖を合成し、2本鎖プラスミドとした。

実施例8 単離したヒトSLC-1 cDNAを含むプラスミドの塩基配列の決定

実施例7で得られたプラスミドをELECTROMAX™DH10B™Cellsにエレクトロポレ - ション法で導入して形質転換した後、cDNA挿入断片を持つクローンをアンピ シリン及びX-galを含むLB寒天培地中で選択し、白色を呈するクローンのみを滅 菌したつま楊枝でつついて分離し、形質転換体E. coli. DH10B/hSLC-1を得た。 個々のクローンをアンピシリンを含むLB培地で一晩培養し、QIA prep8 mini prep (キアゲン社)を用いてプラスミドDNAを精製した。塩基配列決定のための反応 は、DyeDeoxy Terminator Cycle Sequence Kit (パーキンエルマー社)を用い て行ない、蛍光式自動シーケンサーを用いて解読した。その結果、配列番号: 10に示す配列が得られた。ここに得られた塩基配列がコードするアミノ酸配列(配列番号:11)は、Lakayeらの報告(Lakaye, B. et al. (1998) Biochem. Biophys. Acta, vol. 1401, pp. 216-220)において、ヒトSLC-1の配列を含むヒト染色体DNA配列(accession number: 286090)をもとにしてラットSLC-1から類推された配列として推定されていたヒトSLC-1アミノ酸配列とは異なっており、推定配列のさらに69及び64アミノ酸上流に開始コドンであるATGがmRNA上で存在することを示している。この配列をコードするDNAを含むプラスミドによる形質転換体Escherichia coli DH10B/phSLC1L8をIFOおよびNIBHに寄託した。

10

20

25

実施例9 MCHが誘起する、ラットSLC-1発現CHO細胞膜画分へのGTP γ S 結合 活性の測定

MCHのラットSLC-1発現CHO細胞膜画分に対する [35 S]-Guanosine 5 -($^{\gamma}$ -thio) triphosphateの結合促進活性を以下の方法により測定した。最初に膜画分の調製法を記載する。 1×10^8 個のCHO/SLC-1細胞に10mlのホモジネートバッファー (10mM NaHCO $_3$, 5mM EDTA, 0.5mM PMSF, 1μ g/ml pepstatin, 4μ g/ml E64, 20μ g/ml leupeptin)添加し、ポリトロン (12,000 rpm、1分間) を用いて破砕した。細胞破砕液を遠心 (1,000 g, 15分間) して上清を得た。次にこの上清を超遠心分離 (Beckman Type 30ローター、30,000 rpm、1時間) し、得られた沈殿物をラットSLC-1発現CHO細胞膜画分とした。

GTP γ S結合活性の測定は以下の通りである。ラットSLC-1発現CHO細胞膜画分を膜希釈緩衝液(50mMトリス塩酸緩衝液(pH 7. 4)、5mM MgCl₂、150mM NaCl、 1μ M GDP)で希釈して、タンパク質濃度30 mg/mlのアッセイ用細胞膜画分溶液をつくる。アッセイ用膜画分溶液200 μ lに、51. 5nM濃度の[35 S]-Guanosine 5'-(γ -thio) triphosphate(NEN社)を 2μ lと種々の濃度のMCH(ペニンスラ社)を 2μ l添加し、この混合液を25℃で一時間保温した。混合液をフィルター濾過し、

さらにフィルターを洗浄用バッファー(50mトリス塩酸緩衝液 (pH 7.4), 5mMgCl₂, 1mM EDTA, 0.1% BSA)1.5mlで2回洗浄した後、フィルターの放射活性を液体シンチレーションカウンターで測定した。MCHは、用量依存的に、膜画分に結合する [35 S]-Guanosine 5'-(γ -thio) triphosphate量を増大させた。また、約0.5m濃度のMCHは、最大結合の50%の結合を誘起した。

実施例10 ヒト胎児脳由来cDNAを用いたPCR法によるヒトSLC-1cDNAの増幅 ジーントラップ法によりクローニングされたヒトSLC-IDNA配列を含むプ ラスミドを鋳型とし、配列番号:12および13の合成DNAプライマーと配列番 号:14および15の合成DNAプライマーを用いてPCR法による増幅をそれぞれ 行なった。前者の増幅DNAをヒトSLC-1(S)と、後者の増幅DNAをヒトSLC-1(L)と命名した。合成DNAプライマーは受容体蛋白に翻訳される領域の遺伝子が 増幅されるように構築したが、その際に遺伝子の5'側に制限酵素Sal Iの認識す る塩基配列が付加され、また3'側に制限酵素Spe Iの認識する塩基配列が付加さ れるように、5'側および3'側にそれぞれの制限酵素の認識配列を付加した。ヒト SLC-1(S)増幅の反応液の組成は、ヒトSLC-1DNA配列を含むプラスミド鋳型5 μ l、合成DNAプライマー各0.4 μ M、0.2 μ M、0.2 μ M dNTPs、 μ PfuDNAポリメラーゼ0.5 μ P および酵素に付属のバッファーで、総反応量は50 μ1とした。増幅のためのサ イクルはサーマルサイクラー (パーキンエルマー社) を用い、94℃・60秒の加 熱の後、94℃・60秒、57℃・60秒、72℃・150秒のサイクルを25回繰り返し、最 20 後に72℃・10分保温した。また、ヒトSLC-1(L)増幅の反応液の組成は、ヒトSLC-1 DNA配列を含むプラスミド鋳型5 μ l、合成DNAプライマー各 0.4μ M、0.2 mM dNTPs、 $pfuDNAポリメラーゼ0.5 <math>\mu$ lおよび酵素に付属のバッファーで、総反応 量は $50~\mu$ lとした。増幅のためのサイクルはサーマルサイクラー(パーキンエ ルマー社)を用い、94℃・60秒の加熱の後、94℃・60秒、60℃・60秒、72℃・ 25 3分のサイクルを25回繰り返し、最後に72℃・10分保温した。増幅産物の確認

は、0.8%アガロースゲル電気泳動の後、エチジウムプロマイド染色によって行 なった。

実施例11 PCR産物のプラスミドベクターへのサブクローニングおよび挿入 cDNA部分の塩基配列の解読による増幅cDNA配列の確認

5 実施例10で行なったPCR後の反応産物は0.8%の低融点アガロースゲルを 用いて分離し、バンドの部分をカミソリで切り出した後、細片化、フェノール 抽出、フェノール・クロロホルム抽出、エタノール沈殿を行なってDNAを回収し た。PCR-Script™ Amp SK(†)クローニングキット(ストラタジーン社)の処方に 従い、回収したDNAをプラスミドベクターpCR-Script Amp SK(†)ヘサブクローニ 10 ングした。これをエシェリヒア コリ (Escherichia coli) DH5 lpha competent cell (トーヨーボー)に導入して形質転換した後、cDNA挿入断片を持つクローンを アンピシリンおよびX-galを含むLB寒天培地中で選択し、白色を呈するクローン のみを滅菌したつま楊枝を用いて分離し、ヒトSLC-1 (S)の形質転換体E. coli DH5 α/hSLC-1(S)とヒトSLC-1 (L)の形質転換体E. coli DH5 α/hSLC-1(L)を得た 15 。個々のクローンをアンピシリンを含むLB培地で一晩培養し、QIA prep8 mini prep(キアゲン社)を用いてプラスミドDNAを調製した。調製したDNAの一部を 用いて制限酵素Sal IおよびSpe Iによる切断を行ない、挿入されている受容体 cDNA断片の大きさを確認した。塩基配列の決定のための反応はDyeDeoxy Terminator Cycle Sequence Kit (パーキンエルマー社) を用いて行ない、蛍光 20 式自動シーケンサーを用いて解読した。得られたクローンの配列は、ヒトSLC-1 遺伝子を鋳型として配列番号:12および13の合成DNAプライマーで増幅され るべきDNA配列(配列番号:16)およびヒトSLC-1遺伝子を鋳型として配列 番号:14および15の合成DNAプライマーで増幅されるべきDNA配列(配列 番号:17) にそれぞれ一致した。

20

実施例12 ヒトSLC-1(S)発現CHO細胞およびヒトSLC-1(L)発現CHO細胞の作製実施例11で配列が確認されたヒトSLC-1(S)と、ヒトSLC-1(L)が導入されたプラスミドによって形質転換されたE. coliのクローンよりPlasmid Midi Kit (キアゲン社)を用いてプラスミドを調製し、制限酵素Sal IおよびSpe Iで切断してインサート部分を切り出した。インサートDNAは電気泳動後、アガロースゲルからカミソリで切り出し、次に細片化、フェノール抽出、フェノール・クロロホルム抽出、エタノール沈殿を行なって回収した。このインサートDNAをSal IおよびSpe Iで切断した動物細胞発現用ベクタープラスミドpAKKO-111H(Hinuma, S. et al. Biochim Biophys. Acta, Vol. 1219, pp. 251-259 (1994)記載のpAKKO1.11Hと同一のベクタープラスミド)に加え、T4ライゲース(宝酒造)を用いてライゲーションを行ない、蛋白発現用プラスミドpAKKO-hSLC-1(S)とpAKKO-hSLC-1(L)を構築した。

pAKKO-hSLC-1 (S) およびpAKKO-hSLC-1 (L) で形質転換したE coli DH5 α (トーヨーボー)を培養後、Plasmid Midi Kit (キアゲン社)を用いて<math>pAKKO-hSLC-1 (S) とpAKKO-hSLC-1 (L) のプラスミドDNAを調製した。これをCellPhect Transfection Kit (アマシャムファルマシアバイオテク社)を用い添付のプロトコルに従って CHO <math>dhfr 細胞に導入した。 $10~\mu$ gのDNAをリン酸カルシウムとの共沈懸濁液とし、24時間前に $5~x~10^6$ または $1~x~10^6$ 個のCHO~dhfr 細胞を播種した10~cmシャーレに添加した。10%ウシ胎児血清を含む $MEM~\alpha$ 培地で1日間培養した後、継代し、選択培地である10%透析ウシ胎児血清を含む核酸不含 $MEM~\alpha$ 培地で培養した。選択培地で増殖してくるヒトSLC-1 (S) 遺伝子導入CHO細胞である形質転換細胞のコロニー56クローンおよび、ヒトSLC-1 (L) 遺伝子導入CHO細胞である形質転換細胞のコロニーCO100円の一ンを選択した。

25 実施例 1 3 ヒトSLC-1(S)およびヒトSLC-1(L) mRNAの発現量の高い遺伝子導入 細胞株の選択

実施例12で樹立されたCHO/hSLC-1(S)株56クローンおよびCHO/hSLC-1(L)株61クローンのmRNAの発現量をCytostar T Plate (アマシャムファルマシアバイオテク社)を用い、添付のプロトコルに従って以下のように測定した。CHO/hSLC-1(S)株およびCHO/hSLC-1(L)株の各クローンをCytostar T Plateの各wellに2.5 x 10⁴個ずつ播種して24時間培養した後、10%ホルマリンによって細胞を固定した。各wellに0.25% Triton X-100を添加して細胞の透過性をあげた後、³⁵Sラベルした配列番号:18のriboprobeを加えてハイブリダイズさせた。20 mg/mlのRNaseAを各wellに加えて遊離のriboprobeを消化し、プレートをよく洗浄した後、ハイブリダイズしたriboprobeの放射活性をTopcounterで測定した。放射活性の高い株がmRNA発現量が高い。

実施例14 MCHによるヒトSLC-1発現CHO細胞に対するcAMP合成抑制活性

合成MCH(ペニンスラ社)を種々の濃度に希釈し、ヒトSLC-1発現CHO細胞に対 するcAMP合成抑制活性を以下に示す方法で測定した。実施例13で選択したヒ トSLC-1発現CHO細胞であるCHO/hSLC-1(S)株あるいはCHO/hSLC-1(L)株を24穴プ 15 レートに5 x 10⁴ cell/wellで播種し、48時間培養した。細胞を0.2mM 3-イソ プチルーメチルキサンチンと0.05% BSAと20mM HEPESを含むハンクスバッファ - (pH7.4) で洗浄した (以下、0.2mM 3-イソブチル-メチルキサンチンと 0.05% BSAと20mM HEPESを含むハンクスバッファー(pH7.4)を、反応用バッファ ーと呼ぶ)。その後0.5mlの反応用バッファーを加えて30分間培養器で保温し 20 た。反応用バッファーを除き、新たに0.25mlの反応用バッファーを細胞に加え た後、種々の量のMCHと2μMフォルスコリンを含む0.25mlの反応用バッファーを 細胞に加え、37℃で24分間反応させた。100μlの20%過塩素酸を加えて反応 を停止させ、次に氷上で1時間置くことにより細胞内cAMPを抽出した。抽出液 中のcAMP量は、cAMP EIAキット(アマシャムファルマシアバイオテク)を用い 25 て測定した。その結果、MCHは用量依存的にヒトSLC-1発現細胞の細胞内cAMP 量を低下させた。

実施例15 MCHがヒトSLC-1発現CHO細胞に対して惹起するアラキドン酸代謝物放出活性

種々の濃度の合成MCH(ペニンスラ社)が示すヒトSLC-1発現CHO細胞に対するアラキドン酸代謝物放出活性を以下の方法により測定した。実施例13で選択したヒトSLC-1発現CHO細胞であるCHO/hSLC-1(S)株あるいはCHO/hSLC-1(L)株を24穴プレートに5 x 10⁴ cell/wellで播種し、24時間培養後、[³H]アラキドン酸を0.25 μCi/wellとなるよう添加した。[³H]アラキドン酸添加16時間後、細胞を0.05% BSAと20mM HEPESを含むハンクスバッファー(pH7.4)で洗浄し、各wellに0.05% BSAと20mM HEPESを含むハンクスバッファー(pH7.4)に溶解した種々の濃度の合成MCH500 μlを添加した。37℃で60分間インキュベートした後に、反応液400 μlをシンチレーターに加え、反応液中に遊離した[³H]アラキドン酸代謝物の量をシンチレーションカウンターにより測定した。その結果、合成MCHは容量依存的にヒトSLC-1発現細胞に対してアラキドン酸代謝物放出活性を示した。

実験例16 ヒトSLC-1発現CHO細胞膜画分を用いたGTP γ S結合活性の測定 ヒトSLC-1発現CHO細胞膜画分を以下の方法により調製した。5 mM EDTA(エチ レンジアミン四酢酸)を添加したリン酸緩衝生理食塩水 (pH 7.4) にヒトSLC-1 発現CHO細胞(Ix10⁸個)を浮遊させ、遠心した。細胞のペレットにホモジネートバッファー(10 mM NaHCO₃、5 mM EDTA、pH 7.5)を10 ml加え、ポリトロンホモジナイザーを用いてホモジネートした。400×gで15分間遠心して得られた上清をさらに100,000×gで1時間遠心し、膜画分の沈澱物を得た。この沈澱物を2 mlの アッセイバッファー[50 mM Tris-HCl(pH 7.5)、1 mM EDTA、0.1% BSA(ウシ血清アルブミン)、10 mM MgCl₂、100 mM NaCl、1mM GDP (グアノシン5'-二リン酸

)、0.25~mM PMSF (フェニルメチルスルホニルフルオライド)、 $1\mu\,\text{g/ml}$ ペプスタチン、 $20~\mu\,\text{g/ml}$ ロイペプチン、 $10~\mu\,\text{g/ml}$ フォスフォラミドン] に懸濁し、 $100,000\times\text{g}$ で1時間遠心した。沈澱物として回収された膜画分を再び20~mlのアッセイバッファーに懸濁し、分注後 -80° Cで保存し、使用の都度解凍して用いた。

GTP γ S結合活性の測定は以下の通り実施した。ポリプロピレン製の96穴プレートに、アッセイバッファーで希釈したヒトSLC-1発現CHO細胞膜画分173 μ l を分注した後、種々の濃度のMCH (Bachem社製) を溶解したDMSO溶液2 μ l、および [35S]-Guanosine 5'-(γ-thio) triphosphate (第一化学薬品 社製) 25 μ l を同時 に添加した (細胞膜終濃度: 20 μ g/ml、[35S]-Guanosine 5'-(γ-thio) triphosphate終濃度: 0.33nM)。この反応液を25℃で1時間、攪拌しながら反応させた後、グラスフィルター(GF-C)を用いて吸引ろ過し、さらに洗浄液 (50mM Tris-HCl緩衝液 pH7.5) 300 μ l で3回洗浄した。グラスフィルターに液体シンチレーターを50 μ l 添加し、残った放射活性を液体シンチレーションカウンターで測定した。

MCHは、用量依存的に、ヒトSLC-1発現CH0細胞膜画分に結合する [35 S]-Guanosine 5'(γ -thio) triphosphate量を増大させた。また、MCHのヒトSLC-1発現CH0細胞膜画分に対する ED_{50} 値は $0.2\,$ nMであった。

実施例17 手動エドマン分解によるMCH(2-19)、MCH(3-19)、MCH(4-19)、MCH(5-19)、MCH(6-19)およびMCH(7-19)(配列番号:19-24)の調製 MCH 0.1 mg (シグマ社)を30μ1の50%ピリジンに溶解し、1μ1のフェニルイソチオシアネート(和光純薬)を加えて窒素置換した後、45℃に保温した。10分おきに攪拌して1時間を経過したところで保温を止め、窒素気流下で乾固した。20μ1のエタノールに再度溶解し、窒素気流下、次いで減圧下で溶媒を溜去して乾固した。反応生成物であるフェニルチオカルバモイル誘導体を20μ1のトリ

フルオロ酢酸 (和光純菜) によって溶解し、窒素置換して45℃で20分間保温することによりペプチドのアミノ末端アミノ酸をアニリノチアゾリノン誘導体として切断した。窒素気流でトリフルオロ酢酸を除いた後、30μ1の水および100μ1の酢酸n-ブチルを加え、酢酸n-ブチルにより過剰な試薬およびアニリノチアゾリノン誘導体を抽出して除去した。酢酸n-ブチルによる抽出は3回繰り返した。アミノ末端が1残基短縮されたMCH(2-19)を含む水相を窒素気流下、次いで減圧下で乾固した。

この分解過程を1回のみ行なうことにより、アミノ末端の1残基のみが欠失したMCH(2-19)を得た。同様な分解過程を2回、3回、4回、5回あるいは6回繰り返すことにより、1残基ずつN末端のアミノ基が短縮されたMCH(3-19)、MCH(4-19)、MCH(5-19)、MCH(6-19)およびMCH(7-19)を得た。

上記の分解反応によって得られたMCH(2-19)、MCH(3-19)、MCH(4-19)、MCH(5-19)、MCH(6-19)およびMCH(7-19)を次のように精製した後、質量分析およびアミノ酸分析によって構造の確認を行なった。以下にMCH(4-19)について詳細に述べるが、他の誘導体についてもほぼ同様の操作を行なった。得られたMCH(2-19)、MCH(3-19)、MCH(4-19)、MCH(5-19)、MCH(6-19)およびMCH(7-19)の分析値を表1に示した。

表 1 MCH(2-19)、MCH(3-19)、MCH(4-19)、MCH(5-19)、MCH(6-19) およびMCH(7-19) の質量分析値およびアミノ酸分析値

	T	
構造	質量(M+H')	アミノ酸分析値(残基数)
	測定値(理論値	
)	
	組成式	
MCH (2-19)	(2272. 1)	D 1. 90 (1), E 2. 28 (1), P 1. 32 (1), G 2. 33
	$C_{101}H_{156}N_{29}O_{23}S_4$	(1), V 1.76 (2), C n. d. (1), M 0.46 (2),
		L 2. 0 (2), Y 0. 50 (1), F 0. 93 (1), R 1. 98
		(3)
MCH (3-19)	(2125. 0)	D 1. 01 (1), E 1. 05 (1), P 1. 25 (1), G 1. 02
	$C_{92}H_{147}N_{28}O_{22}S_4$	(1), V 1.9 (2), C 0.30 (1), M 1.37 (2),
		L 2. 0 (2), Y 0. 20 (1), R 2. 94 (3)
MCH (4-19)	(2010. 0)	E 1. 04 (1), P 1. 12 (1), G 1. 02 (1), V 1. 88
	C ₈₈ H ₁₄₂ N ₂₇ O ₁₉ S ₄	(2), C 0.34 (1), M 1.42 (2), L 2.0 (2),
		Y 0. 23 (1), R 2. 93 (3)
MCH (5-19)	(1878. 9)	E 1.51 (1), P 0.69 (1), G 2.16 (1), V 1.27
	$C_{83}H_{133}N_{26}O_{18}S_3$	(2), C n. d. (1), M 0.38 (1), L 2.0 (2),
		Y 0. 18 (1), R 1. 80 (3)
MCH (6-19)	(1765. 9)	E 0. 69 (1), P 0. 79 (1), G 0. 70 (1), V 1. 21
	C ₇₇ H ₁₂₂ N ₂₅ O ₁₇ S ₃	(2), C 0.15 (1), M 0.50 (1), L 1.0 (1),
	1	Y 0. 20 (1), R 1. 84 (3)
MCH (7-19)	1609. 2 (1608. 8)	E 0. 90 (1), P 0. 62 (1), G 1. 03 (1), V 1. 05
	$C_{71}H_{110}N_{21}O_{16}S_3$	(2), C 0.07 (1), M 0.33 (1), L 1.0 (1),
		Y 0. 15 (1), R 1. 04 (2)
		J

MCH (4-19) を以下のようにHPLCで精製した。Spheri-5 RP-18逆相高速液体クロマトグラフィー用カラム(ブラウンリー社、2.1 mm x 30 mm)にあらかじめA液(0.1%トリフルオロ酢酸)を流速300 μ l/minで流し、25℃にて平衡化した。反応産物は270 μ l の 0.1%トリフルオロ酢酸に溶解し、1回50 μ l をカラムに打ち込んだ後、流速300 μ l/minを保ちながら、30分間かけてB液(0.1%トリフルオロ酢酸/70%アセトニトリル)濃度を70%まで上昇させた。溶出液を210 nmの吸光度でモニターし、ピークを手動で分取した。MCH (4-19) は17.1分に溶出した。1つの試験管に集めたMCH (4-19) を濃縮乾固し、100 μ l のDMS0に溶解した。

10 質量分析は日本電子JMS-HX110でLSIMS法にて行なった。即ち、プローブチップ上で1μ1の3-ニトロベンジルアルコールとグリセロールが3:2からなるマトリクスと、1μ1のサンプルとを混合し、イオン源に導入した。15 kVに加速されたセシウムイオンを照射し、生成した正二次イオンを10 kVに加速して検出器に導いた。

Tミノ酸分析のための加水分解は、サンプル5μlをガラス管にとって減圧乾固し反応バイアルに入れ、その底部に6N共沸塩酸(ピアス社、Sequenal Grade) 200μlを入れ、ウォーターズ社Pico-Tagワークステーションを用いてウォーターズ社の推奨する方法に従って脱気後、110℃、24時間保温して行なった。

反応バイアル中の塩酸を真空ポンプにより減圧下除去した後、150 μ 1 の 20 ml 20 塩酸で試料を希釈し、分析バイアルに注入してアミノ酸分析装置にセットし、100 μ 1 を分析に供した。アミノ酸分析は日立L-8500高速アミノ酸分析計を用いて、オルトフタルアルデヒド試薬(和光純薬)を誘導体化反応に用いた蛍光分析法にて分析した。蛍光分析用緩衝液の調製法、反応液の調製法、分析条件は、L-8500アミノ酸分析計取り扱い説明書の記載に従った。ロイシンを基準としたときの測定値のモル比は表 1 に示したとおりである。

なお、MCHあるいはMCH(2-19)、MCH(3-19)、MCH(4-19)およびMCH(5-19)は実施

例24から実施例28に記載した固相合成法によっても調製することができる。

実施例18 MCH、MCH(2-19)、MCH(3-19)、MCH(4-19) およびMCH(5-19) の非アイ ソトープボルトン-ハンター試薬による誘導体化

MCHおよび実施例17で得られたMCH(2-19)、MCH(3-19)、MCH(4-19)、MCH(5-19) およびMCH(6-19)の非アイソトープボルトンーハンター試薬による誘導体化を行なった。MCH(4-19)の誘導体化を例にして以下に述べる。

ジメチルホルムアミド50μlに溶解したMCH(4-19) 1 nmolに非アイソトープボルトン-ハンター試薬である3-(4-ヒドロキシ-3-ヨードフェニル)プロピオン酸N-スクシンイミジル (和光純薬) 100 nmolおよびN, N-ジイソプロピルエチルアミン (和光純薬) 100 nmolを加えて37℃で4時間反応させた。

反応混合物に0.1%トリフルオロ酢酸を含む10%アセトニトリル450μlを加えてHPLCにより精製した。クロマトグラフィーの条件は以下のとおりである。カラムはWakosil-II 5C18HG (4.6 x 150 mm)で流速は毎分1.0 mlとした。溶出は 0.1%トリフルオロ酢酸を含むアセトニトリル水を用い、アセトニトリル濃度を2分間10%に保持した後、5分間で20%まで上昇させ、その後20分間に50%まで上昇させて行なった。MCH(4-19)の非アイソトープボルトンーハンター試薬による誘導体である[N-(3-(4-ヒドロキシ-3-ヨードフェニル)プロピオニル)-Met⁴]-MCH(4-19)は22.9分に溶出され、手動によって分取した。MCHあるいはMCH(2-19) 、MCH(3-19)、MCH(5-19)およびMCH(6-19)についてもほぼ同様の操作によってN末端アミノ酸のアミノ基に3-(4-ヒドロキシ-3-ヨードフェニル)プロピオニル基を導入して誘導体化し、HPLCによって分取した。これらの誘導体を実施例17に記載した方法と同様にして酸加水分解した後、アミノ酸分析を行なった。結果を表2に示した。

表 2 誘導体化MCH(2-19)、MCH(3-19)、MCH(4-19)、MCH(5-19) およびMCH(6-19) のアミノ酸分析値

構造	アミノ酸分析値(残基数)
誘導体化	D 1.01 (1), E 1.05 (1), P 0.86 (1), G 1.09
MCH(2-19)	(1), V 1.69 (2), C n. d. (1), M 1.01 (2), L
	2.0 (2), Y 0.27 (1), F 0.90 (1), R 2.59 (3)
誘導体化	D 1.20 (1), E 1.58 (1), P 1.12 (1), G 2.07
MCH(3-19)	(1), V 1.60 (2), C n. d. (1), M 0.94 (2), L
,	2.0 (2), Y 0.19 (1), R 2.24 (3)
誘導体化	E 1.09 (1), P 1.46 (1), G 1.09 (1), V 1.83
MCH(4-19)	(2), C n. d. (1), M 1.14 (2), L 2.0 (2), Y 0.27
	(1), R 2.78 (3)
誘導体化	E 1.10 (1), P 0.90 (1), G 1.34 (1), V 1.55
MCH(5-19)	(2), C n. d. (1), M 0.32 (1), L 2.0 (2), Y 0.32
	(1), R 2.28 (3)

10

15

実施例19 ラジオアイソトープ標識MCH(4-19)の作製

実施例17で調製したMCHのN末端アミノ酸3残基欠失体であるMCH(4-19)を、ボルトンーハンター法でラジオアイソトープ標識した。チューブの中でベンゼンに溶解している['¹²⁵I]-ボルトンーハンター試薬 (3-(4-ヒドロキシ-3-ヨードフェニル)プロピオン酸N-スクシンイミジル) 9.25 MBq (0.11 nmol) (NENライフサイエンスプロダクツ社、81.4 TBq/mmol) に乾燥窒素ガスを吹き付けて、ベンゼンを溜去した。このチューブに、18μ1の50 mMリン酸緩衝液 (pH 7.5) と1.5μ1のジメチルスルフオキシドに溶解した2.3 nmolのMCH(4-19)と0.5μ1のジメチルスルフオキシドを添加し、よく混合した。混合液を37℃で2時間保温した後、ボルトンーハンター試薬によるMCH(4-19)の放射化誘導体である['¹²⁵I]-[N-(3-(4-ヒドロキシ-3-ヨードフェニル)プロピオニル)-Met']-MCH(4-19) (構造式は上記(4)に記載)を逆相HPLCにより分取した。['¹²⁵I]-[N-(3-(4-ヒドロキシ-3-ヨードフェニル)プロピオニル)-Met']-MCH(4-19)は、0DSカラム(トーソー、

ODS-80TM (4.6 mm x 150 mm)) からアセトニトリル濃度43.6%付近に溶出した。 同様にして[125I]-ボルトンーハンター試薬を用いることによってN末端アミノ酸のアミノ基に[125I]-3-(4-ヒドロキシ-3-ヨードフェニル)プロピオニル基を導入してMCH、MCH(2-19)、MCH(3-19)、MCH(5-19)、MCH(6-19)およびMCH(7-19) のラジオアイソトープ誘導体(上記(1)~(3)、(5)~(7))を調製することができる。

実施例20 放射ヨード標識MCH、MCH(2-19)、MCH(3-19)、MCH(4-19)、MCH(5-19)、MCH(6-19) およびMCH(7-19) の作製

10 アイソトープ標識MCH、MCH(2-19)、MCH(3-19)、MCH(4-19)、MCH(5-19)、MCH(6-19)およびMCH(7-19)は以下のようにアミノ酸配列中のTyr¹³を放射ヨード化して作製することもできる。MCH(4-19)について例示するが、同様の方法によってMCH、MCH(2-19)、MCH(3-19)、MCH(5-19)、MCH(6-19)およびMCH(7-19)の放射ヨード化体を作製することができる。

MCH(4-19) 5μgを25μlの0.4 M酢酸ナトリウム (pH 5.6) に溶解し、これに 200 ngのラクトパーオキシダーゼ (和光純薬製) を加えた後、1 mCiの[¹²⁵I]-ヨ ウ化ナトリウム (アマシャムファルマシアバイオテク社) および200 ngの過酸 化水素 (10μl) を加える。室温で10分間静置した後、さらに200 ngの過酸化水素 (10μl) を加えて10分間静置する。これをTSKgel ODS-80T_sカラム (4.6 mm x 25 cm、トーソー) を用いたHPLCによって精製し、[¹²⁵I]-標識MCH(4-19)を得る

実施例 2 1 MCH、MCH(2-19)、MCH(3-19)、MCH(4-19)、MCH(5-19)、MCH(6-19) およびMCH(7-19) のGTP γ Sバインディングアッセイを用いたアゴニスト活性の 測定

ラットSLC-1発現CHO細胞膜画分は以下の方法により調製した。5 mM EDTA (エ

チレンジアミン四酢酸)を添加したリン酸緩衝生理食塩水(pH 7.4)にラット SLC-1発現CHO細胞(1x10⁸個)を浮遊させ、遠心した。細胞のペレットにホモジネートバッファー(10 mM NaHCO₃、5 mM EDTA、pH 7.5)を10 ml加え、ポリトロンホモジナイザーを用いてホモジネートした。400×gで15分間遠心して得られた上清をさらに100,000×gで1時間遠心し、膜画分の沈澱物を得た。この沈澱物を2 mlのアッセイバッファー(50 mM Tris-HCl (pH 7.5)、1 mM EDTA、0.1% BSA(ウシ血清アルブミン)、10 mM MgCl₂、100 mM NaCl、1 μ M GDP(グアノシン5'-ニリン酸)、0.25 mM PMSF(フェニルメチルスルホニルフルオライド)、1 μg/ml ペプスタチン、20 μg/ml ロイペプチン、10 μg/ml フォスフォラミドン)に懸濁し、100,000×gで1時間遠心した。沈澱物として回収された膜画分を再び20 mlのアッセイ バッファーに懸濁し、分注後 -80℃で保存し、使用の都度解凍して用いた。

MCH、MCH(2-19)、MCH(3-19)、MCH(4-19)、MCH(5-19)、MCH(6-19) およびMCH(7-19) のアゴニスト活性の測定は以下の通り実施した。ポリプロピレン製の96穴プレートに、アッセイバッファーで希釈したラットSLC-1発現CHの細胞膜画分173μlを分注した後、DMSO溶液で種々の濃度に希釈したMCH、MCH(2-19)、MCH(3-19)、MCH(4-19)、MCH(5-19)、MCH(6-19) およびMCH(7-19) 溶液を2μl、および[35S]-guanosine 5'-(γ-thio) triphosphate (第一化学薬品社製)を25μlを同時に添加した (細胞膜終濃度:20μg/ml、[35S]-guanosine 5'-(γ-thio) triphosphate 終濃度:0.33 nM)。この反応液を25℃で1時間、攪拌しながら反応させた後、グラスフィルター (GF-C)を用いて吸引ろ過し、さらに洗浄液(50 mM Tris-HCl 緩衝液 pH7.5)300μlで3回洗浄した。グラスフィルターに液体シンチレーターを50μl添加し、残った放射活性を液体シンチレーションカウンターで測定した

25 MCH(6-19)およびMCH(7-19)のアゴニスト活性がMCHと比較して、それぞれ10倍 および200倍程度低下していたのに対し、MCH(2-19)、MCH(3-19)、MCH(4-19)お

よびMCH(5-19)はMCHとほぼ同等のアゴニスト活性を示した(図7)。

実施例22 非アイソトープボルトンーハンター試薬によって誘導体化された MCH、MCH(2-19)、MCH(3-19)、MCH(4-19)およびMCH(5-19)のGTP γ Sバインディングアッセイを用いたアゴニスト活性の測定

誘導体化されたMCH、MCH(2-19)、MCH(3-19)、MCH(4-19) およびMCH(5-19) はMCH

10 と同様に用量依存的にヒトSLC-1発現CHO細胞膜画分に結合する[3⁵S]-guanosine

5'-(γ-thio) triphosphate量を増大させ、非アイソトープボルトンーハンター試薬によって誘導体化された各種MCHがアゴニスト活性を有することを確認した
(図8)。図中、BH-MCH、BH-MCH(2-19)、BH-MCH(3-19)、BH-MCH(4-19) および

BH-MCH(5-19) はそれぞれ非アイソトープボルトンーハンター試薬によって誘導

4 体化されたMCH、MCH(2-19)、MCH(3-19)、MCH(4-19) およびMCH(5-19) を示す。

実施例23 ボルトン-ハンター試薬を用いて作製した[125I]-標識MCH(4-19)を用いた受容体結合実験

実施例19でボルトン-ハンター試薬を用いて作製した[125]-標識MCH(4-19)
20 (構造式は上記(4)に記載)およびヒトSLC-1発現CHO細胞から調製した細胞 膜画分を用いて受容体結合実験を行なった。

ヒトSLC-1発現CHO細胞から実施例16に従って調製した細胞膜画分を、アッセイ用バッファー(25 mM Tris-HCl、1 mM EDTA(エチレンジアミン四酢酸)、0.1 % BSA(ウシ血清アルブミン)、0.25 mM PMSF(フェニルメチルスルホニルフルオライド)、 1μ g/ml ペプスタチン、 20μ g/ml ロイペプチン、 10μ g/ml フォスフォラミドン、pH 7.5)で各種濃度に希釈後、96穴のプレートに 173μ l ず

つ分注した。最大結合量 (TB) を測定するために、2μlのDMSOと、100 pMの[125I]-標識MCH(4-19) 25 μ l を、また、非特異的結合 (NSB) を測定するために、100 μ M MCHのDMSO溶液2μlと、100 pMの[125]-標識MCH(4-19) 25μlを、膜画分溶液 に添加した。25 ℃で60分間反応させた後、ポリエチレンイミン処理したワット マングラスフィルター(GF-C)を用いて反応液を吸引ろ過した。ろ過後、γ-カ ウンターを用いてろ紙上に残った[¹²⁵I]-標識MCH(4-19)の放射活性を測定した。 図9に示すように、膜画分の濃度に依存した[125]-標識MCH(4-19)の特異的な結 合 (SB) が認められた。

また、膜画分濃度を2.5μg/mlに設定して、阻害率(%) からMCHの50%阻 害濃度 (IC_{so}値) を算出したところ、IC_{so}値は0.2 nMであった (図10)。 10

ラットSLC-1発現CHO細胞から調製した膜画分と[1251]-標識MCH(4-19)を用い て同様の結合実験を行なうことができる。

実施例24 MCH (Asp-Phe-Asp-Met-Leu-Arg-Cys-Met-Leu-Gly-Arg-Val-Tyr-15 Arg-Pro-Cys-Trp-Gln-Val)の製造

市販Boc-Val-OCH,-PAM樹脂(0.77 mmol/g resin)0.5 mmol分をペプチド合成 機ABI 430Aの反応曹に入れ、Boc-strategy (NMP-HOBt)ペプチド合成方法で Boc-Gln, Boc-Trp (CHO), Boc-Cys (MeBzl), Boc-Pro, Boc-Arg (Tos), Boc-Tyr (Br-Z), Boc-Val, Boc-Arg (Tos), Boc-Gly, Boc-Leu, Boc-Met, Boc-Cys (MeBzl), Boc-Arg (Tos), Boc-Leu, Boc-Met, Boc-Asp (OcHex), Boc-Phe, Boc-Asp(OcHex)を順に導入し目的の保護ペプチド樹脂を得る。この樹脂0.6 gを p-クレゾール2 g、1,4-ブタンジチオール1.2 mlと共に無水弗化水素10 ml中、0 ℃・60分撹袢した後、弗化水素を減圧留去し、残留物へジエチルエーテルを加 え沈殿を濾過する。 この沈殿に50%酢酸水を加え抽出し、不溶部分を除き、抽 25 出液を十分に濃縮後、50%酢酸水で充填したセファデックス(商品名)G-25カラ ム (2.0 x 80 cm) に付し、同溶媒で展開、主要画分を集めLiChroprep (商品名) RP-18を充填した逆相クロマトカラム (2.6 x 60 cm)に付け0.1% TFA水200 ml で洗浄、0.1% TFA水300 mlと0.1% TFA含有40%アセトニトリル水300 mlを用いた線型勾配溶出を行ない、主要画分を集め濃縮する。此れを約4 mlの酢酸に溶解し、蒸留水で240 mlに希釈の後、アンモニア水を用いpH 7.5に調整し、緩やかに空気を吹込み攪拌する。 反応をHPLCで追跡し、SH体ペプチドのピークがすべてSS体に変化した事を確認後、酢酸を加え溶液のpHを3に調整し、 上記LiChroprep (商品名) RP-18カラムに吸着する。 カラムを0.1% TFA水200 ml で洗浄後、0.1% TFA水300 mlと0.1% TFA含有50%アセトニトリル水300 mlを用いた線型勾配溶出を行ない、主要画分を集め、凍結乾燥し目的とするペプチドを得る。

質量分析による(M+H)⁺ 2387.3 (理論値 2387.9)

HPLC溶出時間: 20.9分

カラム条件

10

25

カラム: Wakosil-II 5C18HG (4.6 x 150 mm)

15 溶離液: A液-0.1% TFA含有10%アセトニトリル水、B液-0.1%TFA含有60%アセトニトリル水を用い、A/B: 20/80~80/20へ直線型濃度勾配溶出(20分)

流速:1.0 ml/分

実施例25 Des-Asp'-MCH (MCH(2-19), Phe-Asp-Met-Leu-Arg-Cys-Met-Leu-20 Gly-Arg-Val-Tyr-Arg-Pro-Cys-Trp-Gln-Val)の製造

市販Boc-Val-OCH₂-PAM樹脂 (0.77 mmol/g resin) 0.5 mmol分をペプチド合成機ABI 430Aの反応曹に入れ、Boc-strategy (NMP-HOBt)ペプチド合成方法でBoc-Gln, Boc-Trp(CHO). Boc-Cys(MeBzl), Boc-Pro, Boc-Arg(Tos), Boc-Tyr(Br-Z), Boc-Val, Boc-Arg(Tos), Boc-Gly, Boc-Leu, Boc-Met, Boc-Cys(MeBzl), Boc-Arg(Tos), Boc-Leu, Boc-Met, Boc-Met, Boc-Pheを順に導入し目的の保護ペプチド樹脂を得る。この樹脂を実施例24と同様に脱保

護、環化、精製を行い目的のペプチドを得る。

質量分析による(M+H)⁺ 2272.3 (理論値 2272.1)

HPLC溶出時間: 20.6分

カラム条件

5 カラム: Wakosil-II 5C18HG (4.6 x 150 mm)

溶離液: A液-0.1% TFA含有10%アセトニトリル水、B液-0.1%TFA含有60%アセト

ニトリル水を用い、A/B : 20/80~80/20へ直線型濃度勾配溶出 (20分)

流速:1.0 ml/分

10 実施例26 Des-[Asp', Phe²]-MCH (MCH(3-19), Asp-Met-Leu-Arg-Cys-Met-Leu-Gly-Arg-Val-Tyr-Arg-Pro-Cys-Trp-Gln-Val)の製造

市販Boc-Val-OCH₂-PAM樹脂 (0.77 mmol/g resin) 0.5 mmol分をペプチド合成機ABI 430Aの反応曹に入れ、Boc-strategy (NMP-HOBt)ペプチド合成方法でBoc-Gln, Boc-Trp(CHO), Boc-Cys(MeBzl), Boc-Pro, Boc-Arg(Tos), Boc-Tyr(Br-Z), Boc-Val, Boc-Arg(Tos), Boc-Gly, Boc-Leu, Boc-Met, Boc-Cys(MeBzl), Boc-Arg(Tos), Boc-Leu, Boc-Met, Boc-Met, Boc-Met, Boc-Arg(Tos)を順に導入し目的の保護ペプチド樹脂を得る。この樹脂を実施例24と同様に脱保護、環化、精製を行い目的のペプチドを得る。

質量分析による(M+H)+ 2124.8 (理論値 2125.0)

20 HPLC溶出時間: 19.2分

カラム条件

カラム: Wakosil-II 5C18HG (4.6 x 150 mm)

溶離液:A液-0.1% TFA含有10%アセトニトリル水、B液-0.1%TFA含有60%アセト

ニトリル水を用い、A/B : 20/80~80/20へ直線型濃度勾配溶出(20分)

25 流速:1.0 ml/分

実施例27 Des-[Asp', Phe², Asp³]-MCH (MCH(4-19), Met-Leu-Arg-Cys-Met-Leu-Gly-Arg-Val-Tyr-Arg-Pro-Cys-Trp-Gln-Val)の製造

市販Boc-Val-OCH₂-PAM樹脂 (0.77 mmol/g resin) 0.5 mmol分をペプチド合成機ABI 430Aの反応曹に入れ、Boc-strategy (NMP-HOBt)ペプチド合成方法でBoc-Gln, Boc-Trp(CHO), Boc-Cys(MeBzl), Boc-Pro, Boc-Arg(Tos), Boc-Tyr(Br-Z), Boc-Val, Boc-Arg(Tos), Boc-Gly, Boc-Leu, Boc-Met, Boc-Cys(MeBzl), Boc-Arg(Tos), Boc-Leu, Boc-Met を順に導入し目的の保護ペプチド樹脂を得る。この樹脂を実施例24と同様に脱保護、環化、精製を行い目的のペプチドを得る。

10 質量分析による(M+H)⁺ 2009.9 (理論値 2010.0)

HPLC溶出時間: 17.9分

カラム条件

カラム: Wakosil-II 5C18HG (4.6 x 150 mm)

溶離液: A液-0.1% TFA含有10%アセトニトリル水、B液-0.1%TFA含有60%アセト

15 ニトリル水を用い、A/B: 20/80~80/20へ直線型濃度勾配溶出(20分)

流速:1.0 ml/分

実施例28 Des-[Asp', Phe², Asp³, Met⁴]-MCH (MCH(5-19), Leu-Arg-Cys-Met-Leu-Gly-Arg-Val-Tyr-Arg-Pro-Cys-Trp-Gln-Val-OH)の製造

市販Boc-Val-OCH₂-PAM樹脂 (0.77 mmol/g resin) 0.5 mmol分をペプチド合成機ABI 430Aの反応曹に入れ、Boc-strategy (NMP-HOBt)ペプチド合成方法でBoc-Gln, Boc-Trp(CHO), Boc-Cys(MeBzl), Boc-Pro, Boc-Arg(Tos), Boc-Tyr(Br-Z), Boc-Val, Boc-Arg(Tos), Boc-Gly, Boc-Leu, Boc-Met, Boc-Cys(MeBzl), Boc-Arg(Tos), Boc-Leuを順に導入し目的の保護ペプチド樹脂を得る。この樹脂を実施例24と同様に脱保護、環化、精製を行い目的のペプチドを得る。

質量分析による(M+H) + 1878.9 (理論値 1878.9)

HPLC溶出時間: 17.4分

カラム条件

カラム: Wakosil-II 5C18HG (4.6 x 150 mm)

5 溶離液:A液-0.1% TFA含有10%アセトニトリル水、B液-0.1%TFA含有60%アセト

ニトリル水を用い、A/B : 20/80~80/20へ直線型濃度勾配溶出(20分)

流速:1.0 ml/分

(配列表フリーテキスト)

10 配列番号:1

配列に関する他の情報:第7番目および第16番目の2つのCys残基は分子内ジスルフィド結合を形成している。

配列番号:2

配列に関する他の情報:第7番目および第16番目の2つのCys残基は分子内ジ

15 スルフィド結合を形成している。

配列番号:19

配列に関する他の情報:第6番目および第15番目の2つのCys残基は分子内ジ スルフィド結合を形成している。

配列番号:20

20 配列に関する他の情報:第5番目および第14番目の2つのCys残基は分子内ジ スルフィド結合を形成している。

配列番号:21

配列に関する他の情報:第4番目および第13番目の2つのCys残基は分子内ジスルフィド結合を形成している。

25 配列番号: 22

配列に関する他の情報:第3番目および第12番目の2つのCys残基は分子内ジ

スルフィド結合を形成している。

配列番号:23

配列に関する他の情報:第2番目および第11番目の2つのCys残基は分子内ジスルフィド結合を形成している。

5 配列番号: 24

配列に関する他の情報:第1番目および第10番目の2つのCys残基は分子内ジスルフィド結合を形成している。

産業上の利用可能性

10 本発明のMCHもしくはその誘導体またはその塩およびSLC-1またはその塩を用いることを特徴とするMCHもしくはその誘導体またはその塩とSLC-1またはその塩との結合性を変化させる化合物またはその塩のスクリーニング方法は、食欲(摂食)増進剤の他、微弱陣痛、弛緩出血、胎盤娩出前後、子宮復古不全、帝王切開術、人工妊娠中絶、乳汁うっ滞などの予防・治療薬などとして用いることができるSLC-1アゴニスト、抗肥満剤(薬)、食欲(摂食)調節剤などの他、過強陣痛、強直性子宮収縮、胎児仮死、子宮破裂、頚管裂傷、早産、Prader-Willi症候群などの予防・治療薬などとして用いることができるSLC-1アンタゴニストのスクリーニング方法として有用である。

20

請求の範囲

- 1. メラニン凝集ホルモン(MCH) もしくはその誘導体またはその塩およびS LC-1またはその塩を用いることを特徴とするMCHまたはその塩とSLC -1またはその塩との結合性を変化させる化合物またはその塩のスクリーニン 5 グ方法。
 - 2. MCHもしくはその誘導体またはその塩およびSLC-1またはその塩を含有することを特徴とするMCHまたはその塩とSLC-1またはその塩との 結合性を変化させる化合物またはその塩のスクリーニング用キット。
- 3. 請求項1記載のスクリーニング方法または請求項2記載のスクリーニング 10 用キットを用いて得られうる、MCHまたはその塩とSLC-1またはその塩 との結合性を変化させる化合物またはその塩。
 - 4. 請求項3記載の化合物またはその塩を含有してなる医薬。
 - 5. 抗肥満薬である請求項4記載の医薬。
 - 6. 配列番号:11で表されるアミノ酸配列を含有するタンパク質またはその 塩。
 - 7. 請求項6記載のタンパク質をコードする塩基配列を有するDNAを含有するDNA。
 - 8. MCHが配列番号: 2で表されるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するペプチドである請求項1記載のスクリーニング方法または請求項2記載のスクリーニング用キット。
 - 9. 誘導体が配列番号:2で表されるアミノ酸配列のN末端から第5番目ない し第19番目の配列を含有するペプチドである請求項1記載のスクリーニング 方法または請求項2記載のスクリーニング用キット。
- 10. 誘導体がポルトンハンター試薬により誘導されたMCHまたはポルトン 25 ハンター試薬により誘導された配列番号:2で表されるアミノ酸配列のN末端 から第5番目ないし第19番目の配列を含有するペプチドである請求項1記載

のスクリーニング方法または請求項2記載のスクリーニング用キット。

11. ポルトンハンター試薬により誘導されたMCHもしくはボルトンハンター試薬により誘導された配列番号:2で表されるアミノ酸配列のN末端から第5番目ないし第19番目の配列を含有するペプチドまたはその塩。

5 12. 式

で表される化合物またはその塩。

WO 00/40725 PCT/JP99/07336

2/10

3/10

WO 00/40725 PCT/JP99/07336

6/10

WO 00/40725 PCT/JP99/07336

10/10 図 1 0

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP99/07336

A. CLASSIFICATION OF SUBJECT MATTER Int.Cl ² Cl2N 15/16, C07K 14/68, C07K7/08, A61K 45/00, A61P 3/04, A61P 3/10, A61P15/06				
According to	According to International Patent Classification (IPC) or to both national classification and IPC			
	SSEARCHED			
Int.	Minimum documentation searched (classification system followed by classification symbols) Int.Cl ⁷ Cl2N 15/16, C07K 14/68, C07K7/08, A61K 45/00, A61P 3/04, A61P 3/A61P15/06			
	ion searched other than minimum documentation to the			
Electronic d BIOS	ata base consulted during the international search (nam IS (DIALOG), WPI (DIALOG), SWWISSP:	e of data base and, where practicable, sea rot/Geneseq	rch terms used)	
C. DOCU	MENTS CONSIDERED TO BE RELEVANT			
Category*	Citation of document, with indication, where ap		Relevant to claim No.	
PX	Yukiko Shimomura, et al. "Isolation and Identification of Melanin-Concentrating Hormone as the Endogenous Ligand of the SLC-1 Receptor", Biochemical and Biophysical Research Communications (Aug.1999), Vol.261, No.3, p.622-626			
PX PA	WO, 99/28492, Al (Smithkline Be 10 June, 1999 (10.06.99) (Fam	1-11 12		
Α	EP, 848060, A2 (Smithkline Beec 17 June, 1998 (17.06.98) & JP, 10-262687, A & CA, 22241	1-10		
A	Bernard Lakaye, et al. "Cloning encoding for the SLC-1 G protein- the presence of an intron in the Biochimica et Biophys Acta (Feb p.216-220	coupled receptor reveals e gene",	1-10	
A	Lee F.Kolalowski, et al. "Characterization of a human gerelated to genes incoding somatostatin reseptors", FEBS Letters(1996), Vol.398, p.253-258		1-10	
Further	documents are listed in the continuation of Box C.	See patent family annex.		
* Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance earlier document but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is		"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone		
cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later		"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art document member of the same patent family		
than the priority date claimed Date of the actual completion of the international search 04 April, 2000 (04.04.00)		Date of mailing of the international search report 18 April, 2000 (18.04.00)		
Name and mailing address of the ISA/ Japanese Patent Office		Authorized officer		
Facsimile No.		Telephone No.		

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP99/07336

			2 3 3 7 0 7 3 3 0
C (Continua	tion). DOCUMENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where appropriate, of the relevant passa	Relevant to claim No.	
A	WO, 96/18651, Al (Smithkline Beecham Co.), 20 June, 1996 (20.06.96) & US, 6008012, A & EP, 871669, Al & JP, 10-511936, A		1-10
A X	J.L.NAHON, et al. "The Rar Melanin-Concentrationg Ho Messenger Ribonucleic Acid Encodes Multiple Puta Neuropeptides Coexpressed in the Dorsola Hypothalamus", Endocrinology (1989), Vol.125, p.2056-2065	tive teral	1-10,12 11
A X	J. M. VAUGHAN, et al. "Characterization of Melanin-Concentrating Hormone from Rat Hypothala Endocrinology (1989), Vol.125, No.3, p.1660-1665	mus",	1-10,12 11
A X	Robert C., et al. "Nucleotide Sequence and Tissue-Specific Expression of the Rat Me Concentrating Hormone Gene", DNA and CELL BIOLOGY (1 Vol.9, No.9, p.637-645	elanin .990),	1-10,12 11
A X	Christophe Bereton, et al. "Isolation and Characteriz of the Human Melanin-Concentrating Hormone Gen Variant Gene", Molecular Brain Research (1993), Vo No.4, p.297-310	e and	1-10,12 11
·	·		
:			

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

国際調査報告

A. 発明の属する分野の分類(国際特許分類(IPC))

Int. Cl' C12N 15/16, C07K 14/68, C07K7/08, A61K 45/00, A61P 3/04, A61P 3/10, A61P15/06

B. 調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int. Cl' C12N 15/16, C07K 14/68, C07K7/08, A61K 45/00, A61P 3/04, A61P 3/10, A61P15/06

最小限資料以外の資料で調査を行った分野に含まれるもの

国際調査で使用した電子データベース (データベースの名称、調査に使用した用語)

BIOSIS (DIALOG), WPI (DIALOG), SWwissProt/Geneseq

C. 関連する 引用文献の カテゴリー*	ると認められる文献 引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
PX	Yukiko Shimomura, et al. "Isolation and Identification of Melanin-Concentrating Hormone as the Endogenous Ligand of the SLC-1 Receptor", Biochemical and Biophysical Research Communications (Aug. 1999), Vol. 261, No. 3, p. 622-626	1-12
PX PA	WO, 99/28492, A1 (Smithkline Beecham Co.) 10.6月.1999(10.06.99) (ファミリーなし)	1-11 12
A	EP,848060,A2(Smithkline Beecham Co.) 17.6月.1998(17.06.98) & JP,10-262687,A & CA,2224131,A	1-10

x C欄の続きにも文献が列挙されている。

□ パテントファミリーに関する別紙を参照。

- * 引用文献のカテゴリー
- 「A」特に関連のある文献ではなく、一般的技術水準を示す もの
- 「E」国際出願日前の出願または特許であるが、国際出願日 以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用する 文献(理由を付す)
- 「O」口頭による開示、使用、展示等に営及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

- の日の後に公表された文献
- 「T」 国際出願日又は優先日後に公表された文献であって ・て出願と矛盾するものではなく、発明の原理又は理 論の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

国際出願番号 PCT/JP99/07336

囯	应	313	本	해	告

C(続き).	関連すると認められる文献	
引用文献の カテゴリー*	引用文献名 及び一部の簡所が関連するときは、その関連する簡所の表示	関連する 請求の範囲の番号
A	Bernard Lakaye, et al. "Cloning of the rat brain cDNA encoding for the SLC-1 G protein-coupled receptor reveals the presence of an intron in the gene", Biochimica et Biophys Acta(Feb. 1998), Vol. 1401, No. 2, p. 216-220	1-10
A	Lee F. Kolalowski, et al. "Characterization of a human gene related to genes incoding somatostatin reseptors", FEBS Letters (1996), Vol. 398, p. 253-258	1-10
A .	WO,96/18651,A1(Smithkline Beecham Co.) 20.6月.1996(20.06.96) & US,6008012,A & & EP,871669,A1 & JP,10-511936,A	1-10
A X	J.L. NAHON, et al. "The Rar Melanin-Concentrationg Hormone Messenger Ribonucleic Acid Encodes Multiple Putative Neuropeptides Coexpressed in the Dorsolateral Hypothalamus", Endocrinology(1989), Vol. 125, No. 4, p. 2056-2065	1-10, 12
A X	J.M. VAUGHAN, et al. "Characterization of Melanin-Concentrating Hormone from Rat Hypothalamus", Endocrinology (1989), Vol. 125, No. 3, p. 1660-1665	1-10, 12 11
A X	Robert C., et al. "Nucleotide Sequence and Tissue-Specific Expression of the Rat Melanin Concentrating Hormone Gene", DNA and CELL BIOLOGY(1990), Vol. 9, No. 9, p. 637-645	1-10, 12 11
A X	Christophe Bereton, et al. "Isolation and Characterization of the Human Melanin-Concentrating Hormone Gene and Variant Gene", Molecular Brain Research (1993), Vol. 18, No. 4, p. 297-310	1-10, 12 11
		<u> </u>