Categorization with k-nearest-neighbors

CISC 3225 Spring 2024 DSFS 12

Machine learning crash course

- Definition: Creating and using models that are learned from data.
 - Sometimes called *predictive modeling* or *data mining* in different contexts
- Models can predict various outcomes from new data
 - Is an email spam or not?
 - Is a credit card transaction fraudulent?
 - Which advertisement is a shopper most likely to click on?
 - Which football team is going to win the Superbowl?
- Goal: Use existing data to make predictions about previously unseen data

Machine learning crash course

Two basic tasks:

- 1. Classification: Apply a label to data
 - a. Spam detection
 - b. Predict penguin species from physical characteristics
 - c. Sentiment analysis: Is an article positive or negative?
- 2. **Regression**: Predict a continuous value from data
 - a. Predict a movie rating (1-10) from its summary
 - b. Predict someone's age from a photo of their face
 - c. Predict tomorrow's temperature from a week of weather data

Machine learning crash course

Two basic approaches:

- Supervised learning: We have data labeled with the correct answer
- 2. **Unsupervised learning**: The data is unlabeled

We will look at examples of both today.

Classic ML problem: Irises

Available in GitHub: https://github.com/CUNY-CISC-3225/datasets/tree/main/iris

Measurements taken from three species of iris:

Irises

This is a supervised problem!

		Observa	Label			
,						
	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species	
0	6.9	3.1	5.1	2.3	Iris-virginica	Our data
1	6.2	2.2	4.5	1.5	Iris-versicolor	o di data
2	6.9	3.1	5.4	2.1	Iris-virginica	
3	5.4	3.9	1.3	0.4	Iris-setosa	
4	5.1	3.5	1.4	0.2	Iris-setosa	

...

Assumption: Points that are close to one another are similar.

We have:

- A dataset of labeled points
- One unlabeled point

$$d(\mathbf{p}, \mathbf{q}) = \sqrt{(p_x - q_x)^2 + (p_y - q_y)^2}$$

Assumption: Points that are close to one another are similar.

We have:

- A dataset of labeled points
- One unlabeled point

$$d(\mathbf{p}, \mathbf{q}) = \sqrt{(p_x - q_x)^2 + (p_y - q_y)^2}$$

Assumption: Points that are close to one another are similar.

We have:

- A dataset of labeled points
- One unlabeled point

$$d(\mathbf{p}, \mathbf{q}) = \sqrt{(p_x - q_x)^2 + (p_y - q_y)^2}$$

Assumption: Points that are close to one another are similar.

We have:

- A dataset of labeled points
- One unlabeled point

$$d(\mathbf{p}, \mathbf{q}) = \sqrt{(p_x - q_x)^2 + (p_y - q_y)^2}$$

Assumption: Points that are close to one another are similar.

We have:

- A dataset of labeled points
- One unlabeled point

k is important:

- **Too small**: Outliers or other misplaced points may exert too much influence over the prediction.
- Too big: Points not in a local area will exert too much influence over the prediction
- Good starting point: k=3 or k=5.

$$d(\mathbf{p}, \mathbf{q}) = \sqrt{(p_x - q_x)^2 + (p_y - q_y)^2}$$

$$k = 100$$

Label = orange

$$d(\mathbf{p,\,q}) = \sqrt{\sum_{i=1}^n (q_i - p_i)^2}$$

Sum of the squared

Sum of the squared difference of each column

Our data

	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species	Ui	Jnknown	Iris	
0	6.9	3.1	5.1	2.3	Iris-virginica	d			
1	6.2	2.2	4.5	1.5	Iris-versicolor	SepalLengthCm Sep	palWidthCm	PetalLengthCm	PetalWidthCm
2	6.9	3.1	5.4	2.1	Iris-virginica	0 5.5	2.3	4.0	1.3
3	5.4	3.9	1.3	0.4	Iris-setosa				
4	5.1	3.5	1.4	0.2	Iris-setosa				

- 1. Compute the distance between the new iris and all our data
- 2. Sort the distances in ascending order
- 3. Determine which species occurs most frequently in the top k

Question: How good is the *k*-nearest-neighbor algorithm at predicting iris species?

i.e., can we trust its predictions?

Let's find out.

Model

Training set

	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
0	6.9	3.1	5.1	2.3	Iris-virginica
1	6.2	2.2	4.5	1.5	Iris-versicolo
2	6.9	3.1	5.4	2.1	Iris-virginica
3	5.4	3.9	1.3	0.4	Iris-setosa
4	5.1	3.5	1.4	0.2	Iris-setosa

Model

	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm
0	5.5	2.3	4.0	1.3
1	6.9	3.2	5.7	2.3
2	4.6	3.2	1.4	0.2

Separate the validation set observations from its labels

species
ris-versicolor
Iris-virginica
Iris-setosa

Training set

Model

knn Algorithm

		separtengthum	Sepaiwidinch	Petallengthum	Petaiwidthcm
Validation	0	5.5	2.3	4.0	1.3
set	1	6.9	3.2	5.7	2.3
	2	4.6	3.2	1.4	0.2

Canally dthCm

Accuracy: 2/3

Predictions:

Iris-versicolor 🗸

Iris-virginica 🗸

Iris-versicolor (3)

Species Iris-versicolor

Iris-virginica

Iris-setosa