

2024.09.24

目录 CONTENTS

1 Background

2 DBStorm Framework

3 Experiments

Part 1

Background

Background

· 冲突图(Conflict Graph)来表示数据库事务之间的并发冲突

	Conflict graph				
$Txn t_1$	read(x)	ww	write(x)	commit	t_1
$Txn t_2$	wri	te(x) commit			(t_2) ww

Figure 1: Example of the Conflict Graph

- 不同的异常对应特定的冲突环模式(Conflict Cycle Pattern)
- 现有的研究未能有效生成用于测试隔离级别的多样化负载,难以全面覆盖

Anomaly	Conflict Cycle Pattern	Likely to Occur In
Write-Skew	A cycle contains at least two consecutive rw conflicts	Read Committed, Repeatable Read,
Lost-Update	A cycle contains one rw conflict consecutive with one ww conflict	Read Committed, Repeatable Read
Read-Skew	A cycle contains one rw conflict consecutive with one wr conflict	Read Committed, Repeatable Read
Dirty-Read	A cycle contains at least one wr conflict but without rw conflict	Read Uncommitted
Dirty-Write	A cycle contains ww conflict only	Read Uncommitted

C1: Black-box Testing: internal Isolation Level(IL) code is inaccessible Generate a workload with a large number of conflict graphs.

C2: Effective Testing: redundant or ineffective workloads

A lightweight data state mirroring method: precise record access and efficiently generate dissimilar conflict graphs

C3: Anomaly-sensitive Testing : customize workloads to trigger **specific anomalies**An implantation-based approach that orchestrates conflict record accesses

高效地生成精准且能够检测不同异常的workloads

Part 2

DBStorm Framework

DBStorm Framework

Figure 2: DBStorm Framework

- ① Preparing a DB instance: SQLancer/DT²
- ② Generating SQL Operations: Mirror the Data State and Instantiate Access Parameters
- ③ Grouping SQL Operations as Transactions: Conflict Graph Isomorphism Mapping
- ① Customizing Non-serializable Anomalies: An implantation-based approach and a pivot based transaction scheduling policy.

Operation Generation

Challenge: ensure that each operation actually accesses its expected records

Mirroring the Data State

a distribution-guided method for mirroring and manipulating the fk/nk attributes.

R1-Insert: the data to be inserted is sampled from the data distribution function;

R2-Delete: the data to be deleted is randomly selected from the database;

R3-Update: performed by a deletion and then an insertion on the same record.

a partition-based method for mirroring and manipulating the pk attributes.

Static keys;

Dynamic keys $\langle L, \lambda \rangle$, $L \in \{ \text{ free, read, write} \}$, $\lambda \in \{0,1\}$;

Instantiating Access Parameters:

Item-read/write with pk

pk dynamic & $\lambda = 0$, insert; $\lambda = 1$, select update, delete; Static: update fk/nk

Predicate-read with fk/nk

 $pred \leftarrow instantiate \ aps \ by \ sampling from \ the \ mirrored \ attribute;$

Transaction Generation

Challenge: 生成足够多样化的冲突图, 图的相似度通过Graph Edit Distance衡量

C1: 事务中的操作数量

Randomly select a transaction from the shrinking group and merge its operation into a growing group transaction.

C2: 事务读写操作比例

Randomly select a write operation and mutate it as a read operation.

history-independent & monotonically

Hybrid Editing Method: considers both C1's and C2's editing distances.

(a) Separate Editing Method

Anomaly Customization

An implantation-based approach

- ① 确定冲突环的模式 ϕ 和长度 L,相邻两个操作(op2i 和 op2i+1)需要访问相同的记录,并且至 少有一个是写操作
- ②启动一个长事务(pivot事务)并注入操作op0
- ③将队列中的操作植入其他事务
- ④完成冲突环的构造

```
\{op0(R1), op1(W1), op2(R2), op3(W2), op4(R3), op5(W3)\}
T1(pivot)
T2
op0-R1
op1-W1
op2-R2
op3-W2
op4-R3
```


Anomaly Customization

An implantation-based approach

- ① 确定冲突环的模式 φ 和长度 L
- ②启动一个长事务(pivot事务)并植入操作op0
- ③将队列中的操作植入其他事务
- ④完成冲突环的构造

Part 3

Experiments

IL-related Code Coverage

Baseline: [SQLsmith, Squirrel, SSQLancer, TQS] [TPC-C, SmallBank, YCSB]

[Jepsen、DT2、Troc]

A higher code coverage implies a higher likelihood of detecting bugs

Access Ratio α and Distribution Fitness β

Figure 6: Code Coverage Comparison

Figure 7: Access Ratio α and Distribution Fitness β

Effective Testing

Diversity of Conflict Graphs.

TQS: Embedding-based

3× higher than TQS in graph generation throughput and remains linear scalable

 $2 \times$ higher than TQS in generating non-isomorphic graphs

Figure 8: The Throughput of Diverse Graph Generation

Figure 9: The Accuracy of Non-isomorphic Graph Generation

Anomaly-Sensitive Testing

Disable CC: DBStorm can form long conflict cycles and generate a wide variety of anomalies.

Enable CC: DBStorm can trigger more prevention actions than that of other tools

Figure 10: Anomaly Formation Comparison

Figure 11: Anomaly Prevention Action Comparison

Table 2: Bug Comparison

Total/Confirmed/Fixed	DBStorm	TxCheck	Jepsen	\mathbf{DT}^2
Isolation	20/12/6	7/6/0	22/21/13	4/2/1
Non-isolation	13/12/10	49/46/18	33/33/20	12/10/0
Total/Confirmed/Fixed	Troc	SQLsmith	SQLancer	Squirrel
Isolation	5/5/1	0/0/0	0/0/0	0/0/0
Non-isolation	7/7/0	248/236/183	449/445/415	63/63/52