KAN-CCMVV2424U Causal Data Science for Business Decision Making 2021/2022

Learning objectives

At the end of the course, students should be able to:

- Understand the crucial role of causal knowledge for data-augmented decision-making in strategic management
- Have a precise understanding of what it means to say "correlation doesn't imply causation"
- Critically reflect on the shortcomings of current correlation-based approaches to machine learning and AI for business analytics
- Discuss the conceptual ideas behind various causal data science tools and algorithms
- Understand the importance of management theory for causal inference in business intelligence
- Carry out state-of-the-art causal data analyses by themselves

Examination

Exam ECTS 7.5

Examination form Home assignment – written product

Individual or group exam Individual exam

Assignment type Report

Duration 2 weeks to prepare
Examiner One internal examiner
Exam period 12/6/2021 – 12/20/2021

Aids Open book: all written, electronic, and software aids Make-up exam/re-exam Same examination form as the ordinary exam

Course Content

Most managerial decision problems require answers to questions such as "what happens if?", "what is the effect of X on Y?", or "was it X that caused Y to go up?" In other words, practical business decision-making requires knowledge about cause-and-effect. While standard tools in machine learning and Al are designed for efficient pattern detection in high-dimensional settings, they are not able to distinguish causal relationships from simple correlations in the data. That means, most commonly used approaches to machine learning fall short in addressing pressing questions in business analytics and strategic management. This creates an important mismatch between the answers that these algorithms can provide and the problems that managers and strategists would like to solve. Which is why, in recent years, several leading companies from the tech sector and elsewhere (among them: Facebook, Google, Uber, Spotify, Zalando and McKinsey) have started to heavily invest into their causal data science capabilities.

This course will provide an introduction into the topic of causal inference in machine learning and AI, with a focus on applications to practically relevant, data-driven business cases. The course is meant to be conceptual rather than technical, in order to bridge the gap between data science and management strategy, for better evidence-based decision-making. A variety of hands-on examples will be discussed that allow students to apply their newly obtained knowledge and carry out state-of-the-art causal analyses by themselves. The course will thereby loosely follow the structure of "The Book of Why" by Judea Pearl and Dana Mackenzie, which has ushered a new era of causal thinking in data science and machine learning upon its publication in 2018. In particular, students will be put into the position to detect sources of confounding influence factors that threaten valid causal conclusions, understand the problem of selective measurement in data collection, and extrapolate causal knowledge across different business contexts. By developing an overarching framework for causal data science, the course will also cover several standard tools for causal inference, which are often used in empirical research in business and economics (such as difference-in-differences, instrumental variables, regression discontinuity designs, A/B testing and experiments, etc.). Thus, while not a research methods course as such, this elective will nonetheless be highly relevant for students who plan to conduct a quantitative data analysis as part of their master thesis project.

Teaching methods

The course consists of in-class lectures, guest lectures by practitioners from the tech sector, and handson tutorials in which students will learn how to carry out their own causal data analyses. In these practical sessions, state-of-the-art software for causal analysis will be used (www.causalfusion.net, no coding experience required). The course will incorporate (non-graded) problem sets, which can be done either individually or in groups, and which will prepare students for the written take-home exam. No specific prior knowledge is required. However, basic concepts in statistics (conditional means, variances, hypothesis testing, regression) will be useful and therefore repeated at the beginning of the course. In-class lectures will feature case studies and guest speakers to demonstrate the practical relevance of the covered material.

Course coordinator

Dr. Paul Hünermund Copenhagen Business School Department of Strategy and Innovation Email: phu.si@cbs.dk

Office hours

Office hours are by appointment. Please contact the course coordinator via email.

Course Program

Introduction to the Course		
Introduction to the Course		
Causal knowledge for business decision-making		
Ladder of causation		
Syllabus		
 Introduction – Pearl, J., and D. Mackenzie (2018). The Book of Why. Basic Books, New York. 		
 Google controversy, NYT: https://www.nytimes.com/2019/03/04/technology/google-gender-pay-gap.html 		
 Morris, J. Israeli data: How can efficacy vs. severe disease be strong when 60% of 		
hospitalized are vaccinated? https://www.covid-datascience.com/post/israeli-data-how-can-efficacy-vs-severe-disease-be-strong-when-60-of-hospitalized-are-vaccinated		
Chapter 1 – Pearl, J., M. Glymour, and N. Jewell (2016). Causal Inference in Statistics		
- A Primer. Wiley: New Jersey, USA.		

Week 36 Graphical Causal Models I		
Topics:	Directed acyclic graphs	
	D-separation & testable implications	
	Interventions in structural causal models	
	Backdoor criterion	
Required reading:	Chapter 1 – The Book of Why	
	Sections 1 & 2 in Hünermund, P., and E. Bareinboim (2021). Causal Inference and	
	Data Fusion in Econometrics. https://arxiv.org/abs/1912.09104	
Additional references:	Chapter 2 – Pearl, J., M. Glymour, and N. Jewell (2016). Causal Inference in Statistics	
	- A Primer. Wiley: New Jersey, USA.	

Week 37	Software Exercise (online, self-paced)		
Topics:	Introduction to <u>causalfusion.net</u>		
Required reading:	Chapter 2 – The Book of Why		
Additional references:	-		

Week 38	Graphical Causal Models II
Topics:	Matching and Regression
•	Front-door criterion
	Causal discovery
Required reading:	Chapter 3 – The Book of Why
	Sections 3.1–3.2 in Hünermund & Bareinboim (2021)
Additional references:	 Chapter 3 – Pearl, J., M. Glymour, and N. Jewell (2016). Causal Inference in Statistics – A Primer. Wiley: New Jersey, USA.
	• Pearl, J. (1995). Causal diagrams for empirical research. <i>Biometrika</i> , 82(4), 669–710
	Neal, B. The PC Algorithm for Causal Discovery.
	https://www.youtube.com/watch?v=o2A61bJ0UCw

Week 40	Experiments		
Topics:	Randomized control trials		
'	A/B testing in business		
	Difference-in-differences		
Required reading:	Chapter 4 – The Book of Why		

		•	Kohavi, R., and S. Thomke (2017). The Surprising Power of Online Experiments. Harvard Business Review. https://hbr.org/2017/09/the-surprising-power-of-online-experiments Bojinov, I., G. Saint-Jacques, and M. Tingley (2020). Avoid the Pitfalls of A/B Testing. Harvard Business Review. https://hbr.org/2020/03/avoid-the-pitfalls-of-a-b-testing
Additional refe	erences:	•	Chapter 9 – Cunningham, S. (2021). Causal Inference: The Mixtape. Yale University Press: New Haven, USA. Available here: https://mixtape.scunning.com

Week 41	Surrogate Experiments		
Topics:	 Z-identification Instrumental variables Regression discontinuity designs 		
Required reading:	 Chapter 5 – The Book of Why Section 3.4 in Hünermund & Bareinboim (2021) Flammer, C. and P. Bansal (2017). Does a long-term orientation create value? Evidence from a regression discontinuity. Strategic Management Journal, 38(9): 1827–47 		
Additional references:	Chapters 6 & 7 – Cunningham, S. (2021). Causal Inference: The Mixtape. Yale University Press: New Haven, USA. Available here: https://mixtape.scunning.com		

Week 42	Application of Causal Inference in Business (online, self-paced)	
Topics:	"In defense of curve fitting: how experimentation-driven and ML-enabled causal inference drives impact at Lyft" – Keynote address at CDSM20 by Sean J. Taylor (Rideshare Labs, Lyft) https://causalscience.netlify.app/programme/keynote-videos	
Required reading:	Chapter 6 – The Book of Why Hünermund, P., J. Kaminski, and C. Schmitt (2021). Causal Machine Learning and Business Decision Making. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3867326	
Additional references:	Doupe, P (Zalando SE). How to Push Causal Inference in Industry? https://causalscience.org/blog/how-to-push-causal-inference-in-industry	

Week 44	Causal Artificial Intelligence
Topics:	Do-calculus
· '	Identification algorithms
	Data fusion paradigm
Required reading:	Chapter 7 – The Book of Why
'	Section 3.3 in Hünermund & Bareinboim (2021)
	Hünermund, P. What is Causal Data Fusion? https://causalscience.org/blog/what-is-causal-data-fusion
Additional references:	Salazar, D. Causality: Testing Identifiability.

Week 45	Sample Selection Bias		
Topics:	Selection diagrams		
'	Recovering from selection bias in causal diagrams		
	Selection propensity score		
	Heckman selection model		
Required reading:	Chapter 8 – The Book of Why		
	Section 4 in Hünermund & Bareinboim (2021)		
Additional references:	Knox, D., W. Lowe, and J. Mummolo (2020). Administrative Records Mask Racially Biased Policing. <i>American Political Science Review</i> , 114(3): 619–637		
	Angrist, J. (1997). Conditional independence in sample selection models. <i>Economics Letters</i> , 54, 103–112.		
	Heckman, J. (1979). Sample Selection Bias as a Specification Error. <i>Econometrica</i> , 47, 153–161		

Week 47	Counterfactuals
Topics:	Potential outcomes framework
·	Ignorability
	Mediation and causal mechanisms
	Fairness in algorithmic decision-making
Required reading:	Chapter 9 – The Book of Why
	Satell, G. and Y. Abdel-Magied (2020). Al Fairness Isn't Just an Ethical Issue. Harvard Business Review. https://hbr.org/2020/10/ai-fairness-isnt-just-an-ethical-issue
Additional references:	Holland, P. (1986). Statistics and Causal Inference. <i>Journal of the American Statistical Association</i> . 81: 945–960.
	Chapter 4 – Pearl, J., M. Glymour, and N. Jewell (2016). Causal Inference in Statistics – A Primer. Wiley: New Jersey, USA.

•	Zhang, J. and E. Bareinboim (2017). Fairness in Decision-Making – The Causal
	Explanation Formula. <i>Technical Report R-30-L</i> . Causal Al Lab, Purdue University.
	https://causalai.net/r30.pdf

Week 48	External Validity
Topics:	External validity
' '	The transportability problem
	Meta-transportability
Required reading:	Chapter 10 – The Book of Why
	Section 5 in Hünermund & Bareinboim (2021)
Additional references:	Townsend, J. (Microsoft). A/B Testing and Covid-19: Data-Driven Decisions in Times of Uncertainty. https://www.microsoft.com/en-us/research/group/experimentation-platform-exp/articles/a-b-testing-and-covid-19-data-driven-decisions-in-times-of-uncertainty/