Exercise 8

Démontrer que la fonction f définie sur R par $f(x) = -15x^4 + 80x^3 + 150x^2 - 3511$ admet un maximum.

$$f'(x) = -15 \times 4 \times^3 + 80 \times 3 \times^2 + 150 \times 2 \times =$$

$$= -60 \times^3 + 240 \times^2 + 300 \times =$$

$$= 60 \times (-x^2 + 4x + 5)$$

Signe de
$$-x^2 + 4x + 5$$
: $a = -1$ $b = 4$ $c = 5$

$$\Delta = 4^{2} - 4 \times (-1) \times 5 = 16 + 20 = 36$$

$$\chi_{1} = \frac{-4 - 6}{-2} = 5 \qquad \chi_{2} = \frac{-4 + 6}{-2} = -1$$

×	-00	- 1	0	اِ	5	+00
60 ×		_	\$		+	
$-x^2+4x+5$	-	ф	+	(þ	_
£'	+	0	ф	+ (>	
f		P(-1)	?(o) '	J7 ^t	(5)	

f(-1) = -3456 f(0) = -3511 f(s) = 064

La foction f admet deux maximum locale en x=-1 et x=5, la fonction admet un minimum locale en x=0. Le maximum de f est 864 attent pour x=5. Donc la fonction f admet un maximum sur R.