UNIVERSIDAD DE GRANADA.

ESCUELA TECNICA SUPERIOR DE INGENIERIAS INFORMATICA Y DE TELECOMUNICACIÓN.

Departamento de Arquitectura y Tecnología de Computadores.

TECNOLOGÍA Y ORGANIZACIÓN DE COMPUTADORES.

PRÁCTICA 3. ANÁLISIS Y REALIZACIÓN DE UNA UNIDAD ARITMÉTICO-LÓGICA (ALU) DE 4 BITS.

1º GRADO EN INGENIERÍA INFORMÁTICA.

PRÁCTICA 3.

ANÁLISIS Y REALIZACIÓN DE UNA UNIDAD ARITMÉTICO-LÓGICA (ALU) DE 4 BITS.

Objetivos:

 Analizar teóricamente una Unidad Aritmético-Lógica de 4 bits a partir de los esquemáticos de los circuitos que la implementa. Montar y verificar su funcionamiento en un simulador lógico.

3.1. Estudio preliminar:

Se pretende analizar, realizar y verificar, utilizando un simulador lógico, una Unidad Aritmético-Lógica (ALU) que sea capaz de operar con 2 datos A y B de 4 bits. Esta ALU proporcionará las operaciones aritméticas y lógicas indicadas en la *Figura 3.1*. Cada operación se seleccionará según el valor que tomen (1 ó 0) unas señales de control S_2 , S_1 , S_0 y un acarreo de entrada C_{in} .

Figura 3.1: Operaciones que realiza la ALU. Esquema general de entradas y salidas.

La estructura jerárquica modular mediante Logic Works de la ALU se establece en las *Figuras 3.2, 3.3 y 3.4*. Se parte de los circuitos de la *Figura 3.2(a) y 3.2(b)* que corresponden a las etapas aritmética y lógica, respectivamente. Ambas operan sobre

datos de un bit. La etapa aritmética incluye a un sumador completo de un bit (S-1bit) y la etapa lógica un multiplexor 4:1. Estos módulos se "encapsulan" dando lugar a los bloques indicados en la parte inferior de las Figura 3.2(a) y (b).

Figura 3.2. Estructura modular de cada elemento aritmético ó lógico de 1 bit.

En la *Figura 3.3* se ilustra el diseño y "encapsulado" de la Etapa ALU de un bit que integra los módulos anteriores de la *Figura 3.2*.

Figura 3.3. Estructura de la Etapa ALU de un bit.

En la *Figura 3.4* se ilustra el diseño y "encapsulado" de una ALU de 4 bits, utilizando 4 Etapas ALU de un bit, como las diseñadas en la *Figura 3.3*.

Figura 3.4. Estructura completa de la ALU para palabras de 4 bits.

3.2. Realización práctica:

- 1. Trabajo para realizar ANTES de la sesión de prácticas (debe venir preparado):
- 1.1. Analice teóricamente los esquemáticos de los circuitos y etapas de la ALU mostradas en las *Figuras 3.2, 3.3* y *3.4*. Deduzca, razonadamente, para qué combinaciones de las señales de control S₂, S₁, S₀ y valor de C_{in} se realiza cada una de las operaciones indicadas en la *Figura 3.1*. El resultado indíquelo en la columna de la *Tabla 3.1* correspondiente a "Operaciones de la ALU deducidas Teóricamente".
- 1.2. Ponga algunos ejemplos, con datos (A y B) de entrada de 4 bits, y obtenga teóricamente, para cada una de las operaciones dadas en la Figura 3.1 el resultado (dato G) que debería obtenerse.

$\begin{array}{c} SE\tilde{N}ALES \\ S_2S_1S_0C_{in} \end{array}$	Operaciones de la ALU, deducidas Teóricamente	Operaciones de la ALU deducidas Experimentalmente
0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1		
0100 0101 0110 0111		
1 0 0 0 1 0 0 1 1 0 1 0 1 0 1 1		
1 1 0 0 1 1 0 1 1 1 1 0 1 1 1 1		

Tabla 3.1

- 2. Realice en LogicWorks la ALU de la *Figura 3.4* y **el circuito de prueba de la** *Figura 3.5*. Para ello, use (de la biblioteca *Simulation IO.clf*) dos componentes HEX KEYBOARD wo/STB para generar los datos $A_3A_2A_1A_0$ y $B_3B_2B_1B_0$, un componente HEX_DISPLAY para visualizar las salidas $G_3G_2G_1G_0$, cuatro BINARY SWITCH para generar las señales $S_2S_1S_0C_{in}$, y un BINARY PROBE para visualizar la salida C_{out} y así realizar la prueba experimental del circuito.
- 3. En el Laboratorio, introduzca los ejemplos, deducidos teóricamente en el apartado (1.2), en el circuito de prueba y **deduzca experimentalmente** los valores de las señales de control S₂,S₁,S₀ y valor de C_{in} correspondiente a cada una de las operaciones indicadas en la *Figura 3.1* y **rellene la última columna** de la *Tabla 3.1*

Figura 3.5. Circuito de prueba de la ALU de 4 bits.