Contents

1	Abstract	II
2	Preface	П
3	Nomenclature	3
4	Networks	4
5	The Theta Neuron Model	5
6	References	6

1 Abstract

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Quisque nisl eros, pulvinar facilisis justo mollis, auctor consequat urna. Morbi a bibendum metus. Donec scelerisque sollicitudin enim eu venenatis. Duis tincidunt laoreet ex, in pretium orci vestibulum eget.

2 Preface

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Quisque nisl eros, pulvinar facilisis justo mollis, auctor consequat urna. Morbi a bibendum metus. Donec scelerisque sollicitudin enim eu venenatis. Duis tincidunt laoreet ex, in pretium orci vestibulum eget.

3 Nomenclature

Network degree. Number of neurons in the network. NAdjacency matrix. Models which neuron i is connected to neuron j and vice-ersa. A_{ij} PNetwork degree distribution. $k, \langle k \rangle$ Node degree, average node degree Degree exponent of a scale-free network γ $\dot{\theta}, \theta$ Phase variable of the theta model $\eta_i, I(t)_i$ Excitability and input current of neuron i $g(\eta|\eta_0,\Delta)$ Excitability distribution Coupling strength $Z(t), \bar{Z}(t)$ Order parameter, discrete and continuous.

4 Networks

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Quisque nisl eros, pulvinar facilisis justo mollis, auctor consequat urna. Morbi a bibendum metus. Donec scelerisque sollicitudin enim eu venenatis. Duis tincidunt laoreet ex, in pretium orci vestibulum eget.

5 The Theta Neuron Model

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Quisque nisl eros, pulvinar facilisis justo mollis, auctor consequat urna. Morbi a bibendum metus. Donec scelerisque sollicitudin enim eu venenatis. Duis tincidunt laoreet ex, in pretium orci vestibulum eget. In [1]

6 References

[1] C. Bick, M. Goodfellow, C. Laing, and E. Martens, *Understanding the dynamics of biological* and neural oscillator networks through exact mean-field reductions: a review. Journal of *Mathematical Neuroscience* **10** no. 1, (Dec., 2020) .