# Modelli Matematici per la Biologia – Esercitazione 2 a.a. 2006-2007

Dott. Simone Zuccher

20 Aprile 2007

**Nota**. Queste pagine potrebbero contenere degli errori: chi li trova è pregato di segnalarli all'autore (zuccher@sci.univr.it).

## 1 Simulazione al calcolatore del modello logistico discreto $x_{k+1} = Ax_k(1 - x_k)$

Il modello logistico discreto descrive la legge di crescita di una popolazione "riscalata"  $x_k$  al tempo k-esimo secondo la mappa

$$x_{k+1} = Ax_k(1 - x_k). (1)$$

Si noti che, essendo la popolazione normalizzata, affinché il tutto abbia senso, deve essere  $0 \le x_k \le 1 \ \forall k \ge 0$ .

#### 1.1 Esercizio

Determinare i valori di  $A \in \mathbb{R}$  affinché la (1) abbia un effettivo significato biologico.

#### 1.1.1 Risoluzione

Siccome popolazioni negative non esistono (ovvero non esistono popolazioni in cui il numero dei morti supera quello dei vivi essendo esse estinte al momento in cui  $x_k = 0$ ), deve essere A > 0. Siccome la legge di crescita è  $x_{k+1} = f(x_k)$  con f(x) = Ax(1-x), ovvero una parabola rivolta verso il basso con vertice in V(1/2; A/4), il massimo valore che può assumere  $x_{k+1}$  è A/4, da cui la limitazione  $A/4 \le 1 \Rightarrow A \le 4$ . Pertanto,  $0 < A \le 4$ .

In alternativa, si può verificare facilmente che per A > 4 prima o poi si raggiungono valori negativi di  $x_k$  indipendentemente da dove si parte con  $x_0$ .

#### 1.2 Esercizio

Determinare i punti di equilibrio di (1) e discuterne la stabilità.

#### 1.2.1 Risoluzione

Si tratta di determinare i punti uniti della successione definita per ricorrenza  $x_{k+1} = f(x_k)$  con f(x) = Ax(1-x) e  $0 \le x_0 \le 1$ . Risolvendo x = f(x) si ottengono le soluzioni  $x = 0 \lor x = (1-1/A) \lor x = +\infty$ . Chiaramente,  $x = +\infty$  non è accettabile. Inoltre, la soluzione x = 1 - 1/A è accettabile, ovvero positiva, solo per  $1 - 1/A > 0 \Rightarrow A > 1$ . Pertanto, per  $0 \le A \le 1$  si ha una sola soluzione di equilibrio (x = 0) mentre per  $1 < A \le 4$  si hanno 2 punti di equilibrio  $(x = 0 \lor x = 1 - 1/A)$ . In figura 1 sono riportate le curve f(x) = Ax(1-x) per alcuni valori significativi del parametro A. Si noti la presenza di una o due soluzioni dipendentemente da A.



Figura 1: Grafico di f(x) = Ax(1-x) per diversi valori di A.

Per quanto riguarda la stabilità dei punti di equilibrio, si osservi che f'(x) = A - 2Ax. Pertanto f'(0) = A, quindi si ha stabilità della soluzione x = 0 solo per 0 < A < 1. Si noti che in tal caso x = 0 è l'unica soluzione possibile. Pertanto, se 0 < A < 1 la popolazione è condannata all'estinzione. Nel caso  $1 < A \le 4$ , invece, le soluzioni sono 2 e x = 0 è instabile. Questo è un fatto positivo in quanto implica che la popolazione non è destinata all'estinzione. Per quanto riguarda la stabilità dell'altro punto di equilibrio x = 1 - 1/A (che esiste solo se  $1 < A \le 4$ ), si ha f'(1 - 1/A) = 2 - A, per cui la condizione di stabilità si traduce in  $|2 - A| < 1 \Rightarrow 1 < A < 3$ . Pertanto, la soluzione x = 1 - 1/A è stabile per 1 < A < 3, instabile per  $3 \le A < 4$ . Le caratteristiche di stabilità dei punti uniti sono facilmente verificabili guardando la figura 1 e notando che |f'(1 - 1/A)| < 1 per 1 < A < 3, mentre |f'(1 - 1/A)| > 1 per  $3 < A \le 4$ .

Tutte le caratteristiche di  $(x_k)$  sopra menzionare sono verificabili graficamente utilizzando il file logistic.m per GNU Octave di seguito riportato. Esso richiede come input A (costante positiva), N (numero di iterazioni – quindi nel caso  $k \to +\infty$  si deve scegliere N opportunamente elevato) e il valore iniziale  $x_0$  (chiamato s(1) in logistic.m). Si noti che introducendo A < 0 ne viene preso il valore assoluto e che deve essere  $0 \le x_0 \le 1$  altrimenti viene generato un numero casuale tra 0 e 1.

Si noti che logistic.m stampa gli ultimi 8 valori della successione  $(x_k)$  al fine di verificare eventuali periodicità.

```
% Name:
            logistic.m
% Author:
            Simone Zuccher
% Created: 16 Apr 2007
% Purpose: Compute x(k+1) = A*x(k)*(1-x(k))
% Input:
            A, number of total iterations and x(1)
% Output:
            Plot of x(k) versus k and x(k+1) versus x(k)
% Modified:
% Clear all variables
clear
% Change format to long exponential
format long e
% Input the paramter A
A=input('Input A>0 (parameter of x(k+1)=A*x(k)*(1-x(k))): ');
if(A<0)
  A=abs(A);
endif
% Input the number of total iterations
m=input('Input N (number of iterations): ');
% Input the initial value. If negative, it will be a random number
s(1)=input('Input 0 \le s(1) \le 1 (if < 0 or > 1 then random): ');
% Set s(1) random if out of range
if((s(1)>1) || (s(1)<0))
  s(1)=rand(1);
endif
% Display value of s(1)
disp(s(1));
% Assign x and y needed for 2nd plot
x(1)=s(1);
y(1)=0.0;
% Loop on all points
```

```
for n=1:1:m-1
             = A*s(n)*(1 - s(n));
  s(n+1)
  disp(s(n+1));
  x(2*n)
            = s(n);
  y(2*n)
             = s(n+1);
  x(2*n+1)
             = s(n+1);
             = s(n+1);
  y(2*n+1)
end
% Plots s(n) versus n
gset auto
gset key left Left reverse
plot(s,'+-g;s(n);');
% Wait for keypressed
disp('Please press a key to continue...');
pause();
% Plot f(x), x and path
t=linspace(0,1,500);
plot(t,A*t.*(1-t),'-g;A*x*(1-x);',t,t,'-b;x;',x,y,'+-');
disp('Last 8 points:');
disp(s(m-7:m)');
```

#### 1.3 Esercizio

Si analizzi numericamente cosa succede per  $A=3+\epsilon$  e si verifichi che per  $\epsilon$  abbastanza piccolo si ottengono soluzioni periodiche.

### 1.3.1 Risoluzione

Si facciano alcune prove con logistic.m scegliendo opportunamente i parametri.

#### 1.4 Esercizio

Studiare il comportamento di (1) per  $3 < A \le 4$ .

#### 1.4.1 Risoluzione

Come visto in precedenza, in questo intervallo di valori la soluzione x=1-1/A è instabile. Tuttavia, esistono soluzioni stabili per la mappa  $x_{k+1}=f^2(x_k)$ , dove  $f^2(x)=f(f(x))=A^2x(1-x)(Ax^2-Ax+1)=-A^3x^4+2A^3x^3-A^3x^2-A^2x^2+A^2x$  è l'iterata seconda della funzione f(x)=Ax(1-x) (lo studente diligente verifichi i passaggi analitici). Dire che l'iterata seconda ha punti di equilibrio stabili equivale a dire che se  $x_-$  e  $x_+$  sono le due soluzioni, allora partendo da  $x_0=x_+$  si avrà  $x_{2k}=f(x_+) \ \forall k \in \mathbb{N}$  e  $x_{2k+1}=x_1=f(x_+) \ \forall k \in \mathbb{N}$ .

Si noti che la mappa  $x_{k+1} = f^2(x_k)$  ha significato fintanto che  $x_k \in [0,1] \ \forall k \in \mathbb{N}$ , pertanto è necessario richiedere  $0 \le f^2(x) \le 1$ . Siccome  $f^2(x)$  è nulla in x = 0 e x = 1, i massimi possono essere identificati con i comuni criteri dell'analisi (studio del segno della derivata prima). In questo modo, si ottengono i due massimi in  $x = \frac{A \pm \sqrt{A^2 - 2A}}{2A}$ , dove la funzione iterata seconda  $f^2(x)$  vale  $\max[f^2(x)] = A/4$ . Dovendo essere  $0 \le \max[f^2(x)] \le 1$ , si trova  $0 < A \le 4$ , che è soddisfatta in quanto  $3 < A \le 4$ .

I punti uniti di  $f^2(x)$  sono  $x=0,\ x=1-1/A,\ x_+=\frac{A+1+\sqrt{A^2-2A-3}}{2A}$  e  $x_-=\frac{A+1-\sqrt{A^2-2A-3}}{2A}$ . Gli ultimi due esistono solo per  $A\geq 3$  e, in tal caso, è comunque assicurato che tutti i punti uniti si trovino nell'intervallo [0,1] (si verifichi per

esercizio). In figura 2 sono riportate  $f^2(x)$  e f(x) al variare di A. Si noti che il punto



Figura 2: Grafico di  $f^2(x) = -A^3x^4 + 2A^3x^3 - A^3x^2 - A^2x^2 + A^2x$  e f(x) = Ax(1-x) per diversi valori di A.

unito compreso tra  $x_+$  e  $x_-$  è il punto unito x = 1 - 1/A di f(x).

Ai fini della stabilità occorre conoscere la derivata prima di  $f^2(x)$  che vale  $d[f^2(x)]/dx = g(x) = -4A^3x^3 + 6A^3x^2 - 2A^3x - 2A^2x + A^2$ . Essendo  $g(0) = A^2$ , il punto unito x = 0 è instabile per A > 1 (lo si sapeva già). In x = 1 - 1/A si ottiene  $g(1 - 1/A) = (A - 2)^2$ , per cui questo punto unito è stabile per |A - 2| < 1, ovvero 1 < A < 3 (si ricordi che per 0 < A < 1 questo punto unito non esiste), conclusione già nota dall'analisi precedente. Per i nuovi punti uniti, si ottiene  $g(x_+) = g(x_-) = -(A^2 - 2A - 4)$ , ovvero essi hanno

la stessa tangente, e affinchè siano stabili deve essere  $|-(A^2-2A-4)|<1\Rightarrow 3< A<1+\sqrt{6}\approx 3.45$ . Le caratteristiche di stabilità dei punti uniti sono facilmente verificabili guardando la figura 2 e notando che  $|f'(x_+)=f'(x_-)|<1$  per  $3< A<1+\sqrt{6}$ , mentre  $|f'(x_+)=f'(x_-)|>1$  per  $1+\sqrt{6}< A\leq 4$ .

Il comportamento per  $1 + \sqrt{6} < A \le 4$ , chiaramente, non può più essere descritto utilizzando l'iterata seconda, ma si deve ricorrere all'iterata terza (fintanto che essa ammette punti di equilibrio stabili), quindi all'iterata quarta e così via. Per 3.45 < A < 3.54 (si ricordi che questi valori sono approssimativi),  $x_k$  oscilla tra 4 valori, mentre per A leggermente superiore a 3.54 la soluzione oscilla tra 8 valori stabili, quindi 16, 32 etc. Questo fenomeno passa sotto il nome di period-doubling cascade. Si osserva che questi raddoppi del periodo si susseguono sempre più velocemente e per  $A \approx 3.57$  si raggiunge una condizione in cui  $x_k$  assume tutti valori diversi con l'impossibilità di riconoscere delle oscillazioni periodiche. Inoltre, piccole variazioni iniziali portano a stati finali completamente diversi (sensibilità alle condizioni iniziali). In altre parole, si è raggiunto il caos. In figura 3 è riportato l'andamento dei valori della logistic map  $x_{k+1} = Ax_k(1 - x_k)$  al variare del parametro A.



Figura 3: Diagramma delle biforcazioni della logistic map al variare del parametro A.

Si osservi (figura 3) che per molti valori di A > 3.57 il comportamento è caotico, ma per valori isolati di A si nota un comportamento periodico. Queste sono regioni di stabilità delle soluzioni periodiche. Facendo uno zoom in 3.8 < A < 3.9, vedi figura 4,

si nota una di queste regioni intorno ad  $A \approx 3.83$ , dove dapprima ci sono 3 soluzioni stabili, quindi 6, 12, etc. In altri regioni di stabilità  $x_k$  oscilla tra 5 soluzioni.



Figura 4: Zoom del diagramma delle biforcazioni della logistic map al variare del parametro A. Si noti la presenza di una regione con soluzioni periodiche per  $A \approx 3.83$ .

Le figure 3 e 4 sono state ottenute utilizzando il programma logisticplot.m per il quale è necessario anche population.m. I listati sono qui di seguito riportati.

```
% Name:
            logisticplot.m
% Author:
            Simone Zuccher
% Created:
            17 Apr 2007
% Purpose:
            Plot last p_max iterations of the logistic map
%
            x(k+1) = A*x(k)*(1-x(k))
            computed up to t_max for A_min < A < A_max with x_0 = .1
            A, number of total iterations and x(1)
% Input:
% Output:
            Plot of bifuration diagram
% Modified:
% Clear all variables
clear
% Change format to long exponential
format long e
```

```
% Set A_min and A_max and number of A-values
A_{\min} = 2.8;
A_{max} = 4.0;
n = 1000;
% Set maximum number of iterations (we need to stop sooner or later...)
t_max = 1000;
% Set how many iterations from the last are shown for each value of A
p_max = 100;
% Set the initial point (arbitrary)
x0 = 0.1;
\% Create vector of A and matrix for final plot
A = linspace(A_min, A_max, n);
pop = zeros(p_max, n);
% Compute the population for each value of A
for k = 1:n
  x = population(A(k), x0, t_max);
  % Retain only the last p_max iterations
  pop(:, k) = x(t_max-p_max+1:t_max);
end
% Set no key
gset nokey;
% Set the title on x
gset xlabel 'A';
% Set the range of x
gset xrange[2.8:4]
% Generate the plot
plot(A, pop, 'b.');
% Name:
            population.m
% Author:
            Simone Zuccher
% Created: 17 Apr 2007
% Purpose: Compute the logistic map
            x(k+1) = A*x(k)*(1-x(k))
%
            computed up to n given A and x_0
% Input:
            A, , x_0 and number of total iterations n
% Output:
            Array of x values
% Modified:
function x = population(A, x0, n)
  x = zeros(n, 1);
  x(1) = x0;
```

```
for k = 1:n-1
 x(k + 1) = A * x(k) * (1 - x(k));
end
```

#### 1.5 Esercizio

Utilizzando logistic.m, verificare i seguenti asserti (alcuni dei quali sono stati dimostrati precedentemente in modo analitico).

- 1. Per A > 4 e indipendentemente dal dato iniziale  $x_0$  esiste  $k \in \mathbb{N}$  tale che  $x_k < 0$ .
- 2. Per  $0 < A \le 1$  il solo punto di equilibrio è x = 0 e risulta stabile.
- 3. Per 1 < A < 3 esistono due soluzioni di equilibrio, di cui una è x = 0 ed è instabile e l'altra è x = 1 1/A ed è stabile.
- 4. Per A=3 entrambi i punti di equilibrio sono instabili. Cosa succede partendo da  $x_0=2/3$ ?
- 5. Si fissino  $x_0$  ed N (possibilmente molto elevato, 5000). Si discutano i risultati ottenuti per  $A \in \{3.39, 3.40, 3.41, 3.42, 3.43, 3.44, 3.45, 3.46\}.$
- 6. Si trovi il valore di A preciso alla quinta cifra significativa che provoca il secondo raddoppio del periodo.
- 7. Si fissino  $x_0 = 0.1$  ed N = 1000 e si discutano i risultati ottenuti per  $A \in \{3.6, 4.0\}$ .
- 8. Fissati  $x_0$  ed N, discutere i risultati per  $A \approx 3.83$  e  $A \approx 3.845$ .

#### 1.5.1 Risoluzione

- 1. Si fissi  $A = 4 + \epsilon$  (per esempio A = 4.001) e il dato iniziale (per esempio  $x_0 = 0.1$ ) e si facciano diverse prove al variare di N. Se A cresce,  $x_k < 0$  viene raggiunto prima o dopo?
- 2. Fare diverse prove al variare di  $A \in ]0,1[$  e  $x_0 \in ]0,1[$ .
- 3. Scegliere diversi valori di  $A \in ]1,3[$  e  $x_0 \in ]0,1[$ , verificando che si converge sempre al numero 1-1/A.
- 4. Facile.
- 5. Si dovrebbero vedere la successione oscillare prima tra 2 valori e poi tra 4.
- 6. Per A=3.4121 si notano 4 valori diversi, per A=3.4120 solo 2. Quindi A=3.4121.
- 7. Per A = 3.6 si nota una regione limitata visitata dalla soluzione, per A = 4.0 praticamente  $x_k$  assume tutti i valori possibili.
- 8. Si dovrebbero ottenere rispettivamente una soluzione periodica di periodo 3 e una di periodo 6.