# Topologische Flächen und Fundamentalgruppen Zusammenfassung

October 21, 2024

## Contents

| 1 | Topologische Flächen |                                       |   |
|---|----------------------|---------------------------------------|---|
|   | 1.1                  | Einführung                            | 2 |
|   | 1.2                  | Klassifikation der Kurve              | 2 |
|   | 1.3                  | Klassifizierung der kompakten Flächen | 3 |

### 1 Topologische Flächen

#### 1.1 <u>Einführung</u>

**Definition 1.1** (Mannigfaltigkeit). Sei  $n \in \mathbb{N}$ . Eine n-Mannigfaltigkeit ist ein topologischer Raum X sodass

- 1. X ist Hausdorff'sch
- 2. die Topologie besitzt eine abzählbare Basis
- 3. jeder Punkt  $x \in X$  besitzt eine Umgebung  $x \in U \subseteq X$ , die homöomorph zu einer offenen Teilmenge  $V \subseteq \mathbb{R}^n$  ist. Ein Homöomorphismus

$$\varphi: U \tilde{\to} V \subseteq \mathbb{R}^n$$

heißt Karte.

4. X ist zusammenhängend

Für n = 1 heißt X eine Kurve, für n = 2 eine Fläche.

#### 1.2 Klassifikation der Kurve

Satz 1.2. Jede Kurve ist homöomorph zu genau einer der folgenden Kurven

- 1.  $\mathbb{R}$
- 2.  $S^1$

**Beispiel 1.3.** Sei  $X = \{(x,y) \in \mathbb{C}^2 : y^2 = x^3 - x\}$ . Das wichtigste Hilfsmittel, um die Topologie von X zu verstehen, ist die Projektion

$$\pi:X\to\mathbb{C}$$

mit

$$\pi(x,y) = x$$

Für  $a \in 0, \pm 1$  hat a genau ein Urbild, ansonsten 2.

**Definition 1.4.** Eine stetige Abbildung  $\pi: Y \to X$  heißt Überlagerung, wenn jeder Punkt  $x \in X$  eine offene Umgebung  $U \subseteq X$  besitzt, sodass

$$\pi^{-1}(U) = \bigcup_{i \in I} V_i$$

$$\pi|_{V_i}:V_i\tilde{\to}U$$

ein Homö<br/>omorphismus  $\forall i.$ 

**Definition 1.5.** Sei K ein Körper,  $n \in \mathbb{N}$ . Sei

$$\mathbb{P}^{n}(K) = K^{n+1} \setminus \{(0, 0, ..., 0)\} / \sim$$

mit

$$(z_0,...,z_n) \sim (z'_0,...,z'_n)$$

genau dann, wenn

$$\exists t \in K^*: \ z_i' = tz_i$$

Beispiel 1.6.  $\mathbb{P}^1(\mathbb{C}) = \{[z_0 : z_1] \in \mathbb{C}^2 \setminus \{(0,0)\}\} \tilde{=} \mathbb{C} \cup \{\infty\} \text{ durch die Bijektion }$ 

$$[z:1] \leftarrow z$$

$$[1:0] \leftarrow \infty$$

#### 1.3 Klassifizierung der kompakten Flächen

| g | orientierbar | nicht orientierbar         |
|---|--------------|----------------------------|
| 0 | $S^2$        | $\mathbb{P}^2(\mathbb{R})$ |
| 1 | Torus        | Klein'sche Flasche         |
| 2 | Doppeltorus  | <b>:</b>                   |
| 3 | Tripeltorus  | i:                         |