Диференціювання функції комплексної змінної

доц. І.В. Орловський

1. Диференційовність функції комплексної змінної

Нехай однозначна функція w=f(z) означена в деякому околі точки $z_0.$

Означення 1

 Φ ункцію f називають диференційовною в точці z_0 , якщо існу ϵ скінченна границя

$$\lim_{\Delta z \to 0} \frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z} = \lim_{\Delta z \to 0} \frac{\Delta f(z_0)}{\Delta z},\tag{1}$$

яку називають похідною функції f(z) у точці z_0 і позначають $f'(z_0)$.

Ч рівності (1) Δz будь-яким чином прямує до нуля, тобто точка $z_0+\Delta z$ може наближатись до точки z_0 за будьяким з нескінченної кількості напрямів.

Диференційовність функції w=f(z) у точці z_0 означає, що її приріст можна зобразити у вигляді

$$\Delta f(z_0) = f(z_0 + \Delta z) - f(z_0) = f'(z_0)\Delta z + \alpha \cdot \Delta z,$$

де
$$\lim_{\Delta z \to 0} \frac{\alpha}{\Delta z} = 0.$$

3 диференційовності функції f(z) в деякій точці z_0 випливає її неперервність в цій точці.

Означення 2

Функцію називають <mark>диференційовною в області,</mark> якщо вона диференційовна в кожній точці цієї області.

3 означення похідної і властивостей границь випливає, що для функцій комплексної змінної зберігаються основні правила диференціювання функцій

②
$$(f(z) \cdot g(z))' = f'(z) \cdot g(z) + f(z)g'(z);$$

$$f'(z) = \frac{1}{(f^{-1}(w))'}$$
, $(f^{-1}(w) \neq 0)$, де $z = f^{-1}(w)$ ϵ функцією, оберненою до $w = f(z)$.

2. Умови Коші — Рімана

Вимога диференційовності функції f(z)=u(x,y)+iv(x,y) у точці z=x+iy накладає певні умови на дійсну та уявну частини цієї функції в околі точки (x,y).

Теорема 1

Функція

$$w = f(z) = u(x, y) + iv(x, y)$$

диференційовна в точці z = x + iy, тоді й лише тоді, коли функції u(x,y) та v(x,y):

- $oldsymbol{0}$ диференційовні в точці (x, y);
- 🥑 справджують умови

$$\begin{cases}
\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}; \\
\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}.
\end{cases} (2)$$

Рівності (2) називають умовами Коші — Рімана (Ейлера — д'Аламбера).

Доведення

Доведемо необхідність. Нехай функція f(z) диференційовна в точці z. Тоді границя

$$f'(z) = \lim_{\Delta z \to 0} \frac{f(z + \Delta z) - f(z)}{\Delta z}$$

не залежить від шляху прямування $z+\Delta z$ до z. Оберемо два наступних шляхи:

- $oldsymbol{0} z + \Delta z o z$ уздовж прямої, паралельної дійсній осі;
- 2 $z+\Delta z
 ightarrow z$ уздовж прямої, паралельної уявній осі.

У 1-му випадку $\Delta y=0$, $\Delta z=\Delta x+i\Delta y=\Delta x o 0$. Тоді

$$f'(z) = \lim_{\Delta x \to 0} \frac{u(x + \Delta x, y) + iv(x + \Delta x, y) - u(x, y) - iv(x, y)}{\Delta x} =$$

$$= \lim_{\Delta x \to 0} \frac{u(x + \Delta x, y) - u(x, y)}{\Delta x} + i \lim_{\Delta x \to 0} \frac{v(x + \Delta x, y) - v(x, y)}{\Delta x},$$

звідки отримуємо, що $f'(z)=rac{\partial u}{\partial x}+irac{\partial v}{\partial x}.$

Для 2-го випадку $\Delta x=0$, $\Delta z=\Delta x+i\Delta y=i\Delta y o 0$. Тоді

$$f'(z) = \lim_{\Delta y \to 0} \frac{u(x, y + \Delta y) + iv(x, y + \Delta y) - u(x, y) - iv(x, y)}{i\Delta y} =$$

$$= \lim_{\Delta y \to 0} \frac{u(x, y + \Delta y) - u(x, y)}{i\Delta y} + i\lim_{\Delta y \to 0} \frac{v(x, y + \Delta y) - v(x, y)}{i\Delta y},$$

звідки
$$f'(z) = \frac{\partial v}{\partial y} - i \frac{\partial u}{\partial y}.$$

Прирівнюючи вирази для f'(z), будемо мати

$$\frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x} = \frac{\partial v}{\partial y} - i \frac{\partial u}{\partial y} \quad \Leftrightarrow \quad \frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \ \frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y}.$$

Достатність залишимо без доведення.

Приміром, функція $w=ar{z}=x-iy$ не диференційовна в жодній точці, оскільки

$$\frac{\partial u}{\partial x} = 1 \neq \frac{\partial v}{\partial y} = -1.$$

3 доведення теореми й умов Коші-Рімана випливають формули обчислення похідної диференційовної функції f'(z):

$$f'(z) = \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x}, \quad f'(z) = \frac{\partial v}{\partial y} - i \frac{\partial u}{\partial y}, \quad f'(z) = \frac{\partial u}{\partial x} - i \frac{\partial u}{\partial y}, \quad f'(z) = \frac{\partial v}{\partial y} + i \frac{\partial v}{\partial x}.$$

Можна довести, що функції

$$w = e^z$$
, $w = z^n$ $(n \in \mathbb{N})$,
 $w = \sin z$, $w = \cos z$, $w = \operatorname{tg} z$, $w = \operatorname{ctg} z$,
 $w = \operatorname{sh} z$, $w = \operatorname{ch} z$, $w = \operatorname{th} z$

диференційовні в будь-якій точці комплексної площини, у якій вони означені. Приміром, доведемо диференційвність функції $w=e^z.$

$$u(x,y) = \text{Re } e^z = e^x \cos y; \quad v(x,y) = \text{Im } e^z = e^x \sin y.$$

$$u'_x = e^x \cos y; \qquad v'_x = e^x \sin y;$$

$$u'_y = -e^x \sin y; \qquad v'_y = e^x \cos y.$$

$$(e^z)' = e^x \cos y + ie^x \sin y = e^x (\cos y + i \sin y) = e^{x+iy} = e^z.$$

3. Аналітичність функції

Означення 3

Функцію w=f(z) називають аналітичною в точці z, якщо вона диференційовна як у самій точці z, так і в деякому її околі.

Означення 4

Функцію w = f(z), диференційовну в кожній точці деякої області D, називають аналітичною функцією в цій області.

Необхідною умовою аналітичності функції f(z)=u+iv в точці є виконання умов Коші-Рімана для функцій u та v.

Означення 5

Точку $z_0,\ y$ якій функція f(z) аналітична, називають правильною точкою функції.

Означення б

Якщо ж функція f(z) аналітична в деякому проколеному околі точки z_0 і не аналітична в самій точці z_0 або не означена в ній, то z_0 називають особливою точкою функції f(z).

4. Гармонічні функції. Відновлення аналітичної функції

Означення 7

Функцію $\varphi(x,y)$ називають гармонічною в області D, якщо вона має в цій області неперервні частинні похідні до 2-го порядку включно і задовольняє в цій області рівнянню Лапласа

$$\Delta \varphi = 0 \quad \Leftrightarrow \quad \frac{\partial^2 \varphi}{\partial x^2} + \frac{\partial^2 \varphi}{\partial y^2} = 0.$$

Нехай функція w=f(z)=u(x,y)+iv(x,y) аналітична в області D, причому функції u(x,y) та v(x,y) мають неперервні частинні похідні до 2-го порядку включно. Оскільки в області D виконано умови Коші — Рімана

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}; \ \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$$

то, диференціюючи першу з цих рівностей за змінною x, а другу — за змінною y, дістаємо

$$\frac{\partial^2 u}{\partial x^2} = \frac{\partial^2 v}{\partial x \partial y}; \quad \frac{\partial^2 u}{\partial y^2} = -\frac{\partial^2 v}{\partial y \partial x}.$$

Звідси, враховуючи рівність $v_{xy}^{\prime\prime}=v_{yx}^{\prime\prime}$ матимемо співвідношення

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0.$$

Таке саме рівняння можна одержати і для функції v(x,y):

$$\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} = 0.$$

Якщо функція f(z)=u+iv аналітична в деякій області D, то її дійсна частина u(x,y) та уявна частина v(x,y) є гармонічними функціями у відповідній області площини Oxy.

Теорема 2 (про відновлення аналітичної функції)

Будь-яка гармонічна в однозв'язній області D функція ϵ дійсною (уявною) частиною деякої аналітичної в цій області функції.

Література

- [1] Ряди. Функції комплексної змінної. Операційне числення. Конспект лекцій / Уклад.: В.О. Гайдей, Л.Б. Федорова, І.В. Алєксєєва, О.О. Диховичний. К: НТУУ «КПІ», 2013. 108 с.
- [2] Дубовик В.П., Юрик І.І. *Вища математика*, К.: Вища школа, 1998.
- [3] Письменный Д.Т. Конспект лекций по высшей математике, 2 часть. М.: Рольф, 2000.