111 0 00 2010 102

1.
$$\psi(x) = N \propto \exp\left(-\frac{1}{2} dx^2\right)$$
, $d > 0$

a) This is first-excited state for hormonic oscillator, so
$$E_2\alpha = 3\hbar\omega$$
; $\omega = \frac{m\omega}{\hbar}$

So that
$$N = \left(\frac{m\omega}{\pi\hbar}\right)^{1/4} \frac{2}{\sqrt{2^{1}\cdot 1!}} \left(\frac{1}{\sqrt{2^{n}n!}} + \text{for } n^{2n} \text{ stake}\right)$$

$$\langle \hat{x}^2 \rangle = \frac{1}{2} \frac{\hbar}{m \omega} (2n+1)$$
 (general case)

so for our
$$\psi(\alpha)$$
; $\langle x^2 \rangle = \frac{3}{2} \frac{1}{m\omega}$

b)
$$\langle \hat{p} \rangle = 0$$
 since $\Psi(\infty)$ is odd so $\Psi'(\infty)$ is even so the function integrated for $\langle \hat{p} \rangle$ will be odd $\Rightarrow \langle \hat{p} \rangle = 0$

$$\langle \hat{p} \rangle = \frac{\hbar m \omega}{2} (2n+1)$$
 (general case)

$$\Rightarrow$$
 $\langle \hat{p}^2 \rangle = \frac{3}{2} \hbar m \omega$ for our $\psi(\alpha)$

Comments: i) for harmonic oscillator, expectations

are best computed in energy

eigen-basis and not a or p-space

ii) note that
$$\langle \hat{x}^2 \rangle = \frac{1}{2} \frac{\hbar}{m\omega} (2n+1) - (1)$$

while $\langle \hat{p}^2 \rangle = \frac{1}{2} \hbar m \omega (2n+1)$ is obtained

hy:
$$m \rightarrow \frac{1}{m\omega}$$
, $\omega \rightarrow \omega$, this is general recipe $\infty \rightarrow p$

to go from or space to p-space

Only
$$Y(x) = S(x-x')$$
 are position eigenstate only complex exponentials are momentum eigenstate

d)
$$V(\infty) = 0$$

 $\Rightarrow H = \frac{p^2}{2m}$
 $\Rightarrow \langle H \rangle = \frac{\langle p^2 \rangle}{2m} = \frac{\hbar m \omega}{2 \cdot 2m} (2n+1) = \frac{\hbar \omega}{2} (n+\frac{1}{2})$

$$\Rightarrow \frac{1}{2m} \frac{3^2}{2\pi^2} \psi + \nabla \psi = E \psi$$

$$\Rightarrow -\frac{1}{7} \left[-3 \sqrt{x} e^{-x^2/2} + \sqrt{x^2} e^{-x^2/2} \right] + \sqrt{(x)} x e^{-x^2/2} = Exe^{-x^2/2}$$

$$\frac{3\pi^2\alpha}{2m} - \frac{\pi^2\alpha^2\alpha^2}{2m} + V(\alpha) = E$$
given $V(0) = 0$

$$\Rightarrow F = \frac{3h^2}{2m} , N(x) = \frac{h^2}{2m} x^2 x^2$$

if we put
$$d = m \omega A f$$
 as damed m q),
 $\tilde{E} = \frac{3}{2} f \omega$, $V(x) \frac{1}{2} m \omega^2 x^2$