

Predict Customer Responses to Marketing Campaigns

> LI LI APRIL 2022

SPRINGBOARD

DATA SCIENCE CAREER TRACK

Problem Statement & Context

- Marketing campaigns aim to encourage customers to act in some manner. The main interest lies in how customers respond to the last 6th campaign.
- This project trained five different machine learning models to best predict customer responses:
 - What are key factors based on customers' behaviors?
 - Identify what types of customers the business is trying to reach and optimize new campaigns by refining audience selection.

The effectiveness of 6 marketing campaigns

Introduction to Data

- The dataset was obtained from Kaggle's competition webpage: (2240 rows and 29 columns) https://www.kaggle.com/datasets/imakash3011/customer-personality-analysis?select=marketing_campaign.csv
- Data cleaning
 - Missing values are filled in with the statistical value (median)
 - Drop less useful columns
 - Replace the names of the columns
 - Group classes within columns
 - Generate new features

Exploratory Data Analysis (EDA)

EDA includes:

- Visualization by groups:
 - Income
 - Total expenses
 - Days enrolled
- ❖ PCA to look at the data from the most informative viewpoint

EDA – by Income

Customers with higher income & undergrad backgrounds are more active with responses to the last campaign.

EDA – by Total Expenses

Customers with '0' and '1' children are more active in the last campaign than those of '2' and '3'.

EDA – by Days Enrolled

Customers in different age groups with longer enrolled days are more active in the last campaign. Those of age 20-30 are slightly different.

PCA

- ❖ The first two components of data in the new dimension seem to account for about 50% of the variance, and the first five for over 80%.
- ❖ The red points represent the upper quartile of 'TotalExpense' and they spread across the first dimension (>0). There's also a spread of the other quartiles as well.

Data Preprocessing

Final data includes:

- One-hot encoding to convert two categorical variables 'education' & 'marital status' to binary data
 (0/1)
- Target variable 'AcceptedCmp6': the 0/1 indicators for customers who responded to a given offer or not. It is highly unbalanced between the number of responsive customers and that with have no responses.

Approach

- Five different machine learning algorithms are used to train on the data in order to build an effective classifier that can identify the active customers:
 - Non-ensemble algorithms:
 - Logistic regression
 - o KNN
 - * Ensemble Algorithms:
 - Random forest
 - Gradient boosting
 - o XGBoost
- * Each ML model conducted hyperparameter tuning and cross-validation to improve model accuracy
- Evaluation of the model performance

Hyperparameter Tuning

Logistic Regression

- \circ Grid search over to find the best regularization parameter C based *only* on the training set; Cs = [0.001, 0.1, 1, 10, 100]
- C controls the inverse of the regularization strength. A large C can lead to an overfit model, while a small one can lead to an
 underfit model.

Random Forest

- Grid search for the best number of estimators. (n_est=50)
- Max_depth (10)

KNN

Find the best number of neighbors k=2 using the elbow method

Gradient Boosting

o find the best parameters: { 'learning_rate': 0.25, 'max_depth': 2, 'max_features': 2, 'n_estimators': 20}

XGBoost

"objective":'binary:logistic', "max depth":3

Metrics for Binary Classification

- Confusion matrix
- Roc_auc score
- ❖ left: logistic regression
- right: random forest

Model Performance

The results from implementing each model are as the following:

	name	ROC_AUC
0	LogisticRegression	0.853120
1	RandomForestClassifier	0.852898
2	KNeighborsClassifier	0.808976
3	GradientBoostingClassifier	0.821229
4	XGBClassifier	0.827286

Model Selection

- Final optimized models are evaluated based on their predictions, confusion matrix, and roc_auc scores.
- ❖ Both Logistic Regression and Random forest classifiers have very strong AUC of 0.85, but the Random forest model has a higher True Positive Rate (TP/P) based on the confusion matrix. The model performance on the test set is consistent with the cross-validation results.
- The best model chosen for this dataset is the random forest classifier, which is typically fast to train, easy to tune, and less likely to overfit.

Important Features

- 'Income'
- 'Days_Enrolled'
- 'TotalExpenses'
- 'TotalAcceptedCmp5' total except the last champaign
- ❖ 'Age'

Summary

- Final optimized models are evaluated based on their predictions, confusion matrix and roc_auc scores.
- ❖ Both Logistic Regression and Random forest classifiers have very strong AUC of 0.85, but the Random forest model has a higher True Positive Rate (TP/P) based on the confusion matrix. The performance on the test set is consistent with the cross-validation results. The best model chosen is the random forest classifier, which is fast to train, easy to tune, and less likely to overfit.