Genetic algorithms ft. Prisoners' dilemma

MAS Mandate 3

Intent of this mandate

To showcase something we found interesting and to correlate those concepts through simulations covering concepts discussed in class.

Prisoners' dilemma

Prisoners' dilemma

```
# Score matrix represented as (agent,
antagonist)

SCORE MATRIX = {
    ('C', 'C'): (5, 5),
    ('C', 'D'): (0, 10),
    ('D', 'C'): (10, 0),
    ('D', 'D'): (3, 3)
}
```

Designation	Description	
ALLC	Strategy always plays cooperation	
ALLD	Strategy always plays defection	
RAND	Strategy has a 50% probability to play cooperation	
	or defection	
GRIM	It starts with cooperation, but after the first defection	
l!	of its opponent continues with defection	
TFT	It starts with cooperation and then it copies the	
	moves of the opponent	
TFTT	As TFT but defects after two consecutive defections	
STFT	As TFT but starts with defection	
TTFT	As TFT but for each defection retaliates with two	
	defections	
Pavlov	Action results are divided into 2 groups, positive	
/	actions are T and R and negative actions are P and	
1	S - if the result of previous action belonged to the	
1	first group, action is repeated and if the result was	
1	in the second group, then the action was changed,	
	it is also called win-stay, lose shift	

Genetic (algorithms

The genetic algorithm is a method for solving both constrained and unconstrained optimization problems that is based on natural selection, the process that drives biological evolution. The genetic algorithm repeatedly modifies a population of individual solutions.

Key elements of a genetic algorithm

- Genetic representation of a solution
- A function to generate new solutions
- Fitness function
- Selection function
- Crossover function
- Mutation function

Game theory and genetic algorithms

Hassan, et al.

We found that Game Theory is tightly related to

Evolutionary Algorithms, especially Genetic Algorithm.

Genetic Algorithm was mainly utilized for

finding an absolute optimal strategy by virtually

applying a game against a known strategy.

Code review + Results

Hyperparameters

N_EPISODES = 20_000

POPULATION_SIZE = 250

GENE_SIZE = 100

K = 25

 $P_{\underline{}}$ MUTATION = 0.25

P CROSSOVER = 0.75

References

- Introduction to PD: https://www.lesswrong.com/posts/QdXrkWoK2Pp6XhNuQ/introduction-to-prisoners-dilemma
- IPD strategies: https://www.semanticscholar.org/paper/A-review-of-iterated-prisoner%2 7s-dilemma-strategies-Jurisic-Kermek/e4334e8b798416bb58e335226d 9f55779aeb33a3
- MAS slides: https://drive.google.com/file/d/1Xx8W2iKCDkJddiQnIOEze_17xXd7e4T q/view
- Introduction to genetic algorithms: https://in.mathworks.com/help/gads/what-is-the-genetic-algorithm.html
- Hassan, et al. https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=5561648
- Genetic algorithms in Python:
 https://machinelearningmastery.com/simple-genetic-algorithm-from-scr
 atch-in-python/
- Kai codes YT: https://www.youtube.com/watch?v=XP8R0yzAbdo

Thank you!

~ IMT2019525 VIJAY JAISANKAR

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, infographics & images by **Freepik**