Instituto Superior de Engenharia de Coimbra DEPARTAMENTO DE FÍSICA E MATEMÁTICA

ÁLGEBRA LINEAR

Engenharia Electrotécnica

25 de Janeiro de 2016 Duração: 2h

1. Considere o sistema
$$AX=B$$
 onde $A=\begin{bmatrix} 1 & 1 & 1 \\ 1 & m & 2 \\ m & 1 & 0 \end{bmatrix}$, $B=\begin{bmatrix} 1 \\ m \\ 1 \end{bmatrix}$ e $m\in\mathbb{R}$.

- [1.5 val.] (a) Discuta o sistema AX = B em função do parâmetro m.
 - (b) No que se segue considere m=2.
- $[1.5 \, val.]$ (i) Calcule a inversa de A.
 - (ii) Determine a solução do sistema AX = B recorrendo
- [1.0 val.] (I) ao método de eliminação de Gauss;
- $[1.0 \, val.]$ (II) à regra de Cramer;
- $[1.0 \, val.]$ (III) à matriz inversa de A.
 - 2. Sejam A e B matrizes invertíveis de ordem 3.
- $[1.0 \, val.]$ (a) Indique, justificando, a característica da matriz A.
- [1.0 val.] (b) Comente a seguinte afirmação: "O determinante da matriz B é zero."
- [1.0 val.] (c) Calcule o determinante da matriz $2AB^{T}A^{-1}B^{-1}$.
 - 3. Consider em R^3 os vectores u = (0,1,1), v = (1,0,1), w = (0,2,3) e t = (1,0,0).
- [1.5 val.] (a) Justifique, sem cálculos, que os vectores dados são linearmente dependentes.
- [1.0 val.] (b) Verifique se o vector w é combinação linear dos vectores $u \in v$.
- [1.0 val.] (c) Tendo em conta a alínea anterior, determine uma base de \mathbb{R}^3 que contenha os vectores u e v.
- [1.5 val.] (d) Caracterize o espaço gerado pelos vectores u e v e determine as coordenadas do vector (1, 2, 3) na base $\{u, v\}$.
 - 4. Considere a matriz $A = \begin{bmatrix} 0 & 5 & -1 \\ 0 & 2 & 0 \\ 2 & 3 & 3 \end{bmatrix}$.
- $[1.0 \, val.]$ (a) Determine os valores próprios da matriz A.
- [1.0 val.] (b) Analise o resultado da alínea anterior, recorrendo ao traço e ao determinante.
- $[2.0\,val.]$ (c) Verifique, justificando, se a matriz A é diagonalizável.
- [1.0 val.] (d) Recorrendo ao teorema de Cayley-Hamilton, determine $A^3 5A^2 + 9A 4I$.
- [1.0 val.] (e) Justifique que a matriz A é invertível e, recorrendo ao teorema de Cayley-Hamilton, determine uma expressão para A^{-1} em função da matriz A.

1. (a) Recorrendo à matriz ampliada do sistema AX = B, tem-se

$$[A|B] = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & m & 2 & m \\ m & 1 & 0 & 1 \end{bmatrix} \xrightarrow{L_2 = L_2 - L_1} \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & m - 1 & 1 & m - 1 \\ 0 & 1 - m & -m & 1 - m \end{bmatrix}$$

$$\xrightarrow{L_3 = L_3 + L_2} \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & m - 1 & 1 & 1 & m - 1 \\ 0 & 0 & 1 - m & 0 \end{bmatrix}$$

pelo que podem ocorrer os seguintes casos:

- se $m \neq 1$, então $car(A) = car(A|B) = 3 = n^0$ de incógnitas e portanto o sistema é possível e determinado;
- se m=1, então a matriz final tem a forma

$$\left[\begin{array}{ccc|c}
1 & 1 & 1 & 1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]$$

pelo que car(A) = car(A|B) = 2, mas é inferior ao número de incógnitas e portanto o sistema é possível e indeterminado, de grau 1 e tendo z como variável livre.

(b) Quando
$$m=2$$
 tem-se $A=\left[\begin{array}{ccc} 1 & 1 & 1 \\ 1 & 2 & 2 \\ 2 & 1 & 0 \end{array}\right]$ e $B=\left[\begin{array}{ccc} 1 \\ 2 \\ 1 \end{array}\right]$

(i) A matriz inversa de A é uma matriz X de dimensão 3×3 tal que $AX = I_3$, onde I_3 representa a matriz identidade de ordem três. Recorrendo ao algoritmo de Gauss-Jordan, tem-se

$$[A|I] = \begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 2 & 2 & 0 & 1 & 0 \\ 2 & 1 & 0 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{L_2 = L_2 - L_1} \begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & -1 & 1 & 0 \\ 0 & -1 & -2 & -2 & 0 & 1 \end{bmatrix}$$

$$\xrightarrow{L_3 = L_3 - 2L_1} \begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & -1 & 1 & 0 \\ 0 & 1 & 1 & -1 & 1 & 0 \\ 0 & 0 & -1 & -3 & 1 & 1 \end{bmatrix} \xrightarrow{L_2 = L_2 + L_3} \begin{bmatrix} 1 & 1 & 0 & -2 & 1 & 1 \\ 0 & 1 & 0 & -4 & 2 & 1 \\ 0 & 0 & -1 & -3 & 1 & 1 \end{bmatrix}$$

$$\xrightarrow{L_1 = L_1 - L_2} \begin{bmatrix} 1 & 0 & 0 & 2 & -1 & 0 \\ 0 & 1 & 0 & -4 & 2 & 1 \\ 0 & 0 & 1 & 3 & -1 & -1 \end{bmatrix}$$

$$\xrightarrow{L_3 = -L_3} \begin{bmatrix} 1 & 0 & 0 & 2 & -1 & 0 \\ 0 & 1 & 0 & -4 & 2 & 1 \\ 0 & 0 & 1 & 3 & -1 & -1 \end{bmatrix}$$

pelo que a inversa de A é dada por $X \equiv A^{-1} = \begin{bmatrix} 2 & -1 & 0 \\ -4 & 2 & 1 \\ 3 & -1 & -1 \end{bmatrix}$

- (ii) Começamos por notar que o sistema é possível e determinado, atendendo à caracterização apresentada na alínea (a).
 - (I) Recorrendo ao método de eliminação de Gauss, tem-se

$$[A|B] = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 2 & 2 \\ 2 & 1 & 0 & 1 \end{bmatrix} \xrightarrow{L_2 = L_2 - L_1} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & -1 & -2 & -1 \end{bmatrix}$$

$$\xrightarrow{L_3 = L_3 - 2L_1} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & -1 & 0 \end{bmatrix} \Leftrightarrow \begin{cases} x + y + z & = 1 \\ y + z & = 1 \\ -z & = 0 \end{cases} \Leftrightarrow \begin{cases} x = 0 \\ y = 1 \\ z = 0 \end{cases}$$

$$|A| = \begin{vmatrix} 1 & 1 & 1 \\ 1 & 2 & 2 \\ 2 & 1 & 0 \end{vmatrix} = +2 \begin{vmatrix} 1 & 1 \\ 2 & 2 \end{vmatrix} - \begin{vmatrix} 1 & 1 \\ 1 & 2 \end{vmatrix} = 2(2-2) - (2-1) = -1.$$

é não nulo e portanto podemos usar a regra de Cramer. Este facto também já estava garantido pela alínea (a), pois sendo A uma matriz quadrada de característica máxima, então tem determinante diferente de zero. Assim,

$$x = \frac{\begin{vmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \\ 1 & 1 & 0 \end{vmatrix}}{|A|} = \frac{0}{-1} = 0$$

е

$$y = \frac{\begin{vmatrix} 1 & 1 & 1 \\ 1 & 2 & 2 \\ 2 & 1 & 0 \end{vmatrix}}{|A|} = \frac{-1}{-1} = 1$$

e ainda

$$z = \frac{\begin{vmatrix} 1 & 1 & 1 \\ 1 & 2 & 2 \\ 2 & 1 & 1 \end{vmatrix}}{|A|} = \frac{0}{-1} = 0$$

Note-se que nos cálculos de x e de z as matriz tem duas colunas iguais, pelo que os respectivos determinantes são nulos.

(III) Se recorrermos à matriz inversa de A, já calculada na alínea (b)(i), tem-se

$$AX = B \iff \underbrace{A^{-1}A}_{=I}X = A^{-1}B \iff X = A^{-1}B = \begin{bmatrix} 2 & -1 & 0 \\ -4 & 2 & 1 \\ 3 & -1 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

Note-se que
$$X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$
.

- 2. (a) Sendo A uma matriz invertível de ordem 3, então tem característica (máxima) 3.
 - (b) Sendo B uma matriz quadrada invertível, então tem determinante não nulo, pelo que a afirmação é falsa.
 - (c) Atendendo a que A e B são matrizes de ordem 3 invertíveis e recorrendo às propriedades dos determinantes, tem-se

$$\begin{split} |2A\,B^TA^{-1}B^{-1}| &= 2^3|A||B^T||A^{-1}||B^{-1}| \quad , \text{ porque } \det(\lambda A) = \lambda^n \det(A) \\ &= 2^3|A|\,|B|\,\frac{1}{|A|}\,\frac{1}{|B|} \qquad , \text{ porque } \det(B^T) = \det(B) \text{ e } \det(A^{-1}) = \frac{1}{\det(A)} \\ &= 2^3|A|\,\frac{1}{|A|}\,|B|\,\frac{1}{|B|} \qquad , \text{ porque } ab = ba \text{ (comutatividade de números, não de matrizes!)} \\ &= 8 \, . \end{split}$$

3. (a) O espaço vectorial \mathbb{R}^3 tem dimensão 3, pelo que qualquer conjunto com mais do que três vectores, de \mathbb{R}^3 , é um conjunto linearmente dependente. Como $\{u,\,v,\,w,\,t\}$ é um conjunto de quatro vectores de \mathbb{R}^3 então é linearmente dependente.

(b) O vector w é combinação linear dos vectores u e v se existirem escalares α e β tais que

$$(0,2,3) = \alpha \underbrace{(0,1,1)}_{n} + \beta \underbrace{(1,0,1)}_{n}$$

Como

$$(0,2,3) = \alpha(0,1,1) + \beta(1,0,1)$$

$$\Leftrightarrow (0,2,3) = (\beta,\alpha,\alpha+\beta)$$

$$\Leftrightarrow \begin{cases} \beta = 0 \\ \alpha = 2 \\ \alpha + \beta = 3 \end{cases} \Leftrightarrow \begin{cases} \beta = 0 \\ \alpha = 2 \\ 2 = 3 \text{ impossível!} \end{cases}$$

então não existem escalares nas condições pretendidas, pelo que o vector $\,w\,$ não é combinação linear dos vectores $\,u\,$ e $\,v\,$.

- (c) Os vectores u e v são linearmente independentes, porque não são múltiplos. Uma vez que, pela alínea anterior, o vector w não é combinação linear dos vectores u e v então os vectores u, v e w também são linearmente independentes. Como \mathbb{R}^3 é um espaço de dimensão três, então qualquer conjunto de três vectores de \mathbb{R}^3 que sejam linearmente independentes é também gerador do próprio espaço e portanto constitui uma base do mesmo. Logo $\{u,v,w\}$ é uma base de \mathbb{R}^3 .
- (d) O espaço gerado pelos vectores u e v é dado por

$$\langle u, v \rangle = \{(x, y, z) \in \mathbb{R}^3 : (x, y, z) = \alpha u + \beta v, \ \alpha, \beta \in \mathbb{R} \},$$

pelo que

$$(x,y,z) = \alpha(0,1,1) + \beta(1,0,1)$$

$$\Leftrightarrow (x,y,z) = (\beta,\alpha,\alpha+\beta)$$

$$\Leftrightarrow \begin{cases} \beta = x \\ \alpha = y \\ \alpha + \beta = z \end{cases} \Leftrightarrow \begin{bmatrix} 0 & 1 & x \\ 1 & 0 & y \\ 1 & 1 & z \end{bmatrix} \xrightarrow{L_1 \leftrightarrow L_2} \begin{bmatrix} 1 & 0 & y \\ 0 & 1 & x \\ 1 & 1 & z \end{bmatrix} \xrightarrow{L_3 = L_3 - L_1} \begin{bmatrix} 1 & 0 & y \\ 0 & 1 & x \\ 0 & 1 & z - y \end{bmatrix}$$

$$\xrightarrow{L_3 = L_3 - L_2} \begin{bmatrix} 1 & 0 & y \\ 0 & 1 & x \\ 0 & 0 & z - y - x \end{bmatrix} \Leftrightarrow \begin{cases} \alpha = y \\ \beta = x \\ 0 = z - y - x \end{cases}.$$

O sistema anterior só é possível se z - y - x = 0, pelo que

$$< u, v > = \{(x, y, z) \in \mathbb{R}^3 : z = x + y\}.$$

Notemos agora que o vector (1,2,3) pertence ao espaço < u,v>, pois 3=1+2. Além disso, tendo em conta o sistema anterior $(\alpha=y=2, \beta=x=1)$, tem-se

$$(1,2,3) = 2u + 1v$$
.

4. (a) Os valores próprios de A são dados por

$$|A - \lambda I| = 0 \iff \begin{vmatrix} -\lambda & 5 & -1 \\ 0 & 2 - \lambda & 0 \\ 2 & 3 & 3 - \lambda \end{vmatrix} = 0 \Leftrightarrow (2 - \lambda) \begin{vmatrix} -\lambda & -1 \\ 2 & 3 - \lambda \end{vmatrix} = 0$$

$$\Leftrightarrow (2 - \lambda) (-\lambda(3 - \lambda) + 2) = 0$$

$$\Leftrightarrow (2 - \lambda)(\lambda^2 - 3\lambda + 2) = 0$$

$$\Leftrightarrow 2 - \lambda = 0 \lor \lambda = \frac{3 \pm \sqrt{9 - 8}}{2}$$

$$\Leftrightarrow \lambda = 2 \lor \lambda = \frac{3 + 1}{2} = 2 \lor \lambda = \frac{3 - 1}{2} = 1.$$
multiplicidade dois

- (b) Sabe-se que $tr(A) = \sum v.p.$ e $det(A) = \prod v.p.$. Ora,
 - tr(A) = 0 + 2 + 3 = 5 (soma dos valores da diagonal de A)
 - $\sum v.p. = 2 + 2 + 1 = 5 \checkmark$,

pelo que a primeira propriedade está verificada. Relativamente à segunda, tem-se

•
$$det(A) = \begin{vmatrix} 0 & 5 & -1 \\ 0 & 2 & 0 \\ 2 & 3 & 3 \end{vmatrix} = 2 \begin{vmatrix} 0 & -1 \\ 2 & 3 \end{vmatrix} = 2(0+2) = 4$$

- $\prod v.p. = 2 \times 2 \times 1 = 4 \checkmark$.
- (c) Para verificar se a matriz A é diagonalizável precisamos de determinar os espaços próprios de A e verificar se a dimensão de cada espaço coincide com a multiplicidade do valor próprio que lhe está associado. Comecemos pelo espaço próprio associado ao valor próprio $\lambda=2$, por se o único valor próprio não simples. Como $E(\lambda=2)=\{X\in\mathbb{R}^3: (A-2I)X=0\}$, então

$$[A - 2I|0] = \begin{bmatrix} -2 & 5 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ 2 & 3 & 1 & 0 \end{bmatrix} \xrightarrow{L_3 = L_3 + L_1} \begin{bmatrix} -2 & 5 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 8 & 0 & 0 \end{bmatrix}$$

$$\Leftrightarrow \begin{cases} -2x + 5y - z = 0 \\ z \in \mathbb{R} \\ 8y = 0 \end{cases} \Leftrightarrow \begin{cases} x = -\frac{1}{2}z \\ z \in \mathbb{R} \\ y = 0 \end{cases}$$

e portanto

$$E(\lambda=2) = \left\{ (x,y,z) \in \mathbb{R}^3: \ y=0, \ x=-\frac{1}{2} \, z, \ z \in \mathbb{R} \right\} = \left\{ \left(-\frac{1}{2} \, z, \ 0, \ z\right): \ z \in \mathbb{R} \right\} = \left\langle \left(-\frac{1}{2}, \ 0, \ 1\right) \right\rangle$$

pelo que o espaço $E(\lambda=2)$ só tem dimensão um, enquanto o valor próprio $\lambda=2$ tem multiplicidade dois. Então a matriz A não é diagonalizável.

(d) De acordo com o teorema de Cayley-Hamilton tem-se p(A)=0 onde $p(\lambda)$ é o polinómio característico da matriz A. Da alínea (a) sabemos que

$$p(\lambda) = (2 - \lambda)(\lambda^2 - 3\lambda + 2) = -\lambda^3 + 5\lambda^2 - 8\lambda + 4$$

pelo que do teorema de Cayley-Hamilton tem-se

$$-A^3 + 5A^2 - 8A + 4I = 0$$
.

Então

$$A^{3} - 5A^{2} + 9A - 4I = A^{3} - 5A^{2} + 8A + A - 4I$$

$$= A^{3} - 5A^{2} + 8A - 4I + A$$

$$= -(\underbrace{-A^{3} + 5A^{2} - 8A + 4I}_{=0}) + A$$

$$= A$$

(e) Na alínea (b) verificámos que $det(A) \neq 0$, pelo que a matriz A é invertível. Pelo teorema de Cayley-Hamilton tem-se agora

$$-A^{3} + 5A^{2} - 8A + 4I = 0 \Leftrightarrow 4I = A^{3} - 5A^{2} + 8A$$
$$\Leftrightarrow 4I = A(A^{2} - 5A + 8I)$$
$$\Leftrightarrow I = A\underbrace{\frac{1}{4}(A^{2} - 5A + 8I)}_{A^{-1}},$$

pelo que a inversa de A é dada por $A^{-1} = \frac{1}{4}(A^2 - 5A + 8I)$.