Prove the following theorem (terminology is given below):

Suppose X is compact and $f: X \to \mathbb{R}$ is lower semicontinuous. Then f is bounded below on X, and there exists a point $z \in X$ satisfying $f(z) \leq f(x)$ for all $x \in X$.

Recall that in a HTS (X, \mathcal{T}) , a function $f: X \to \mathbb{R}$ is called lower semicontinuous if the following set is closed for every $p \in \mathbb{R}$:

$$f^{-1}((-\infty, p]) = \{x \in X : f(x) \le p\}.$$

(One approach uses the family of closed sets $f^{-1}((-\infty, p])$ satisfying $p > \inf f(x)$.)

Solution. We first prove that f is bounded below on X, that is, $\inf f(x) > -\infty$. For the sake of contradiction, assume the opposite, that $\inf f(x) = -\infty$. Consider $f^{-1}((-\infty, p])$ for some $p \in \mathbb{R}$. If

Supposedly, we just have $f^{-1}((-\infty,p])^c = f^{-1}((-\infty,p]^c) = f^{-1}((p,\infty))$ which is open. And maybe a union? And open covers over all of X, and can get a finite subcover.ff

Consider the family of closed sets of $f^{-1}((-\infty, p])$ satisfying $p > \inf f(x)$, call it \mathcal{F} . First, remark that each element in \mathcal{F} is nonempty, otherwise $f^{-1}(-\infty, p]$ is nonempty, thus there is no $x_0 \in X$ where $f(x_0) \in (-\infty, p]$ and so $p \leq \inf f(x)$, which we assumed not true. Secondly, by the assumption that f is lower semicontinuous, each element in \mathcal{F} is also closed. Finally, note that \mathcal{F} has the finite intersection property: let $N \in \mathbb{N}$ and F_1, \ldots, F_N are sets in \mathcal{F} , which we can write explicitly as $F_i = f^{-1}((-\infty, p_i])$ where $p_i > \inf f(x)$; denote $p_0 = \min_i \{p_i\}$. Then $F_0 = f^{-1}((-\infty, p_0]) \subseteq F_i$ for all $1 \leq i \leq N$, and since we're just minimizing over a finite number of sets, $F_0 \in \{F_1, \ldots, F_n\} \subseteq \mathcal{F}$, thus

$$\bigcap_{i=1}^{N} F_{i} = f^{-1}((-\infty, p_{o}]) = F_{0} \neq \emptyset$$

so we have the finite intersection property.

Now, since we're in a a HTS and X is compact, any collection of elements of \mathcal{F} has nonempty intersection, by the theorem proved in class (every element is a subset of X and are closed, and any finite collection has the finite intersection property). Notably, $\bigcap \mathcal{F} \neq \emptyset$. This means that there exists some $z \in X$ where $z \in \bigcap \mathcal{F}$. Then, for all $p > \inf f(x)$, we have $z \in f^{-1}((-\infty, p])$. If

Let (X,d) be a metric space, with $K \subseteq X$ a compact set. Prove that whenever \mathcal{G} is an open cover for K, there exists r < 0 with this property: for every pair of points $x, y \in K$ obeying d(x,y) < r, some open set $G \in \mathcal{G}$ contains both x and y.

Solution. Let G_1, G_2, \ldots, G_N be the finite subcover of K such that $G_i \in \mathcal{G}$ for all $i \in 1, 2, \ldots, N$ and $K \subseteq \bigcup_{1 \leq i \leq N} G_i$, which we know exists from the compactness of K. Define $I_{i,j} := G_i \cap G_j$ where $1 \leq i < j \leq N$. Note then that $I_{i,j}$ is open as well. For each $I_{i,j}$, pick some $x_{i,j} \in I_{i,j}$ if $I_{i,j} \neq \emptyset$. Then, since X is a metric space and $I_{i,j}$ is an open set, we must have that there exists some $r_{i,j} > 0$ such that $\mathbb{B}[x_{i,j}; r_{i,j}) \subseteq I_{i,j}$ (if $I_{i,j} = \emptyset$, just let $r_{i,j} = 1$). Let $r = \min_{1 \leq i < j \leq N} \{r_{i,j}\}$. Since there are only finitely many $r_{i,j}$, all of them greater than 0, we must have r > 0 as well.

Now consider any $x, y \in K$ such that d(x, y) < r. Consider $\mathbb{B}[x; r)$. By our distance condition, we have $y \in [x; r)$. It is sufficient to show now that there exists some $G \in \mathcal{G}$ such that $\mathbb{B}[x; r) \subseteq G$. Since $\{G_i\}_{1 \le i \le N}$ is a covering of all of K, there exists some $G_x \in \{G_i\}_{1 \le i \le N}$ such that $x \in G_x$. If $\mathbb{B}[x; r) \subseteq G_x$, we are done. For the sake of contradiction, assume then that $\mathbb{B}[x; r) \not\subseteq G_x$. hmm it's not this, it's either in G_x , or in G'_x ... consider the G_i for which x is in?

I don't even have that $\mathbb{B}[x;r) \subseteq K$. Hmm, so we don't want to lose y, because we'll always have $x \in \partial K$ (since K is closed) violate our condition with the ball. If

So let $x \in G_x$ and $y \in G_y$. We claim that either $x \in G_y$ or $y \in G_x$ (this is trivial if $G_x = G_y$, so we now assume that $G_x \neq G_y$). For the sake of contradiction, assume this is false: $x, y \notin G_x \cap G_y$. Then by construction, for some $x_{x,y} \in G_x \cap G_y$, $x,y \notin \mathbb{B}[x_{x,y},r)$. Then $d(x_{x,y},x) > r$ and $d(x_{x,y},y) > r$. We hav $d(x,y) \leq d(x_{x,y},x) + d(x_{x,y},y)$. Hmm... the thing on the right is bounded below by 2r, and the thing on the left is bounded above by r. We want to use this inequality in a different way I think, like $d(x_{x,y},x) < d(x,y)$ and $d(x_{x,y},y) < d(x,y)$ somehow. Maybe something to do with them being in the same G_i ?

So we have $d(x_{x,y}, x) < d(x,y) + d(x_{x,y}, y)$. But $d(x_{x,y}, y) < d(x,y) + d(x_{x,y}, x)$, thus $d(x_{x,y}, x) < 2d(x,y) + d(x_{x,y}, x) \implies 0 < 2d(x,y)$ trivially. If So the claim I want to make is that the intersection between two open sets in a metric space is closer to each other than they are to each other.

Hmm, we might need to define r in terms of points that are not in the same G_i , but are close to each other. Think of a square donut that his a tiny slit that doesn't touch, and an open cover of two sets that intersect on the non-slit side.

So it seems the problem is when I fix the slit, I get a problem with the intersection. When I fix the intersection, I get a problem with the slit. I will think about this later.

So Tighe said to do a proof by contradiction.

Define the set-valued "projection" mapping $p_1: \mathcal{P}(\mathbb{R}^2) \to \mathcal{P}(\mathbb{R})$ by

$$p_1(S) = \{x_1 \in \mathbb{R} : (x_1, x_2) \in S \text{ for some } x_2\}, \qquad S \subseteq \mathbb{R}^2$$

- (a). If S is bounded, must $p_1(S)$ be bounded? (Why or why not?)
- (b). If S is closed, must $p_1(S)$ be closed? (Why or why not?)
- (c). If S is compact, must $p_1(S)$ be compact? (Why or why not?)
- (a). Solution. It must. If S is bounded, then by definition, there exists $x \in S$ and R > 0 such that $S \subseteq \mathbb{B}[x; R)$. Using the standard metric on \mathbb{R}^2 (namely $d(x,y) = \sqrt{(y_1 x_1)^2 + (y_2 x_2)^2}$), this means for any $y \in S$, we have d(x,y) < r, or $\sqrt{(y_1 x_1)^2 + (y_2 x_2)^2} < R$. Consider $x_1 = p_1(x)$. Then for any $y_1 \in p_1(S)$ (using the standard metric on \mathbb{R} , d(x,y) = |y x|), we have

$$d(x_1, y_1) = |y_1 - x_1| = \sqrt{(y_1 - x_1)^2} \le \sqrt{(y_1 - x_1)^2 + (y' - x_2)^2} < R$$

where $y' \in p^{-1}(y_1)$, and so the last inequality follows from the boundedness of S. Thus, $p_1(S) \subseteq \mathbb{B}[x_1; R)$, so $p_1(S)$ is bounded.

(b). Solution. This is not true. We provide the counter-example $S = \{(2^{-n}, 2^n) \in \mathbb{R}^2 : n \in \mathbb{N}\}.$

We first prove that S is closed. Note that $S'=\emptyset$. To see this, for the sake of contradiction, let $s\in S'$. Then for some sequence s_n of distinct elements of S, we have $\lim_{n\to\infty}s_n=s$ (by the proposition proven in class). Unraveling the definition of the limit, this means that for any $\varepsilon>0$, there exists some $N\in\mathbb{N}$ where $\forall n\geq N$, we have $d(s,s_n)<\varepsilon$. For the sake of contradiction, assume that this is true; then let $\varepsilon=\frac{1}{2}$, which gives us some N where $d(s,s_n)<\frac{1}{2}$ when $n\geq N$. But note that for any $s_n,s_{n+1}\in S$, since $s_n\neq s_{n+1}$, we have that $d(s_n,s_{n+1})>2$ (by construction, since $2\leq 2^{n+1}-2^n=y_{s_{n+1}}-y_{s_{n+1}}=\sqrt{(y_{s_{n+1}}-y_{s_{n+1}})^2}\leq \sqrt{(y_{s_{n+1}}-y_{s_{n+1}})^2+(x_{s_{n+1}}-x_{s_{n+1}})^2}=d(s_n,s_n+1)$). Thus $2\leq d(s_{n+1},s_n)\leq d(s,s_n)+d(s,s_{n+1})\leq \frac{1}{2}+d(s,s_{n+1})$ $\Longrightarrow \frac{3}{2}< d(s,s_{n+1})$. But this contradicts our assumption, since $n+1>n\geq N$, but $d(s,s_{n+1})>\frac{3}{2}>\frac{1}{2}=\varepsilon$. Thus, there are no limit points of S, so $S'=\emptyset$.

Now recall the theorem proven in class, $\overline{S} = S \cup S'$. Since $S' = \emptyset$, this leaves us $\overline{S} = S$. But recall that this is true only if S is closed.

We now prove that $p_1(S)$ is not closed. Note that $p_1(S) = \{2^{-n} : n \in \mathbb{N}\}$. See that $0 \in p_1(S)'$ but $0 \notin p_1(S)$. The second of these is obvious, $0 < 2^{-n}$ for all $n \in \mathbb{N}$. To see that 0 is a limit point, we have $\lim_{n \to \infty} 2^{-n} = 0$ (obviously, we are in \mathbb{R}), and $2^{-n} \in p_1(S)$ are distinct points, thus $0 \in p_1(S)'$ (by our proposition in metric spaces). Thus, $p_1(S) \neq p_1(S) \cup p_1(S)' = p_1(S)$. But this is true only if $p_1(S)$ is not closed. Hence, S is closed but $p_1(S)$ is not closed.

(c). Solution. It must. Assume that S is compact. Consider an open cover \mathcal{G} of $p_1(S)$. ff

Recall the set ℓ^2 from HW07 Q3, and the standard "unit vectors" $\hat{\mathbf{e}}_p = (0,0,\ldots,0,1,0,\ldots)$, where the only nonzero entry in $\hat{\mathbf{e}}_p$ occurs in component p. For any x in ℓ^2 and subset $V \subseteq \ell^2$, write

$$\Omega(x; V) = \{ y \in \ell^2 \colon -1 < \langle v, y - x \rangle < 1, \forall v \in V \}.$$

Then define a collection \mathcal{T} of subsets of ℓ^2 by saying $G \in \mathcal{T}$ if and only if every point $x \in G$ has the property that $x \in \Omega(x; V) \subseteq G$ for some finite set $V \subseteq \ell^2$.

- (a). Prove that $\Omega(x; V) \in \mathcal{T}$ for every finite set $V \subseteq \ell^2$ and point $x \in \ell^2$.
- (b). Prove that (ℓ^2, \mathcal{T}) is a Hausdorff Topological Space.
- (c). Let $S = \{\hat{\mathbf{e}}_p : p \in \mathbb{N}\}$. Prove that $0 \in S'$. (Here 0 denotes $(0,0,\ldots)$, the "origin in ℓ^2 .) Note: This fact proves that \mathcal{T} is different from the metric topology on ℓ^2 .
- (d). Prove that every G in T has the property: for every x in G, there exists r > 0 such that

$$G \supseteq \mathbb{B}[x;r) = \{ y \in \ell^2 \colon ||y - x|| < r \}.$$

This fact proves that every set considered "open" in \mathcal{T} is also open in the metric topology on ℓ^2 . This explains why \mathcal{T} gets called "the weak topology" and the metric topology is also called "the strong topology."

- (e). Prove that the following set is closed in the weak topology of ℓ^2 : $\mathbb{B}[0;1] = \{y \in \ell^2 : ||y|| \le 1\}$.
- (a). Solution. Let $x' \in \Omega(x; V)$. Want to show there exists a finite set $V' \subseteq \ell^2$ such that $\Omega(x'; V') \subseteq \Omega(x, V)$. Then $-1 < \langle v, x' x \rangle < 1$ for all $v \in V$. This is equivalent to

$$-1 < \sum_{n=1}^{\infty} v_n(x'_n - x_n) < 1$$

for all $v \in V$. ff

(b). Solution. We have that $\emptyset \in \mathcal{T}$, since there does not exist $x \in \emptyset$ so it satisfies our condition to be in \mathcal{T} vacuously. We also have $\ell^2 \in \mathcal{T}$, since $\Omega(x; V)$ is composed of elements of ℓ^2 , and so for any $x \in \ell^2$, $\Omega(x; V) \subseteq \ell^2$.

Now consider $\mathcal{G} \subseteq \mathcal{T}$. Consider an arbitrary element $x \in \bigcup \mathcal{G}$. Then for some $G \in \mathcal{G}$, we have $x \in G$. Then $\Omega(x; V) \subseteq G \subseteq \bigcup \mathcal{G}$ for some finite set $V \subseteq \ell^2$ since $G \in \mathcal{T}$, so $\bigcup \mathcal{G} \in \mathcal{T}$ as well.

Now consider $U_1, \ldots, U_N \in \mathcal{T}$ where $N \in \mathbb{N}$. Consider an arbitrary element $x \in \bigcap_i^N U_i$. Then for all $1 \leq i \leq N, x \in U_i$. Then by definition of each U_i being in \mathcal{T} , we have that there exists a finite set $V_i \subseteq \ell^2$ such that $\Omega(x; V_i) \subseteq U_i$. ff

Finally, let $x, y \in \ell^2$ such that $x \neq y$. If this one doesn't look bad, we use part (a)

(c). Solution. Let $U \in \mathcal{N}(0)$ be an arbitrary open set, ie. $U \in \mathcal{T}$ such that $0 \in U$. We want to show that $(U \setminus \{0\}) \cap S \neq \emptyset$; since $0 \notin S$ anyway, we just need to show $U \cap S \neq \emptyset$.

Since $0 \in U$, there exists a finite set $V \subseteq \ell^2$ such that $\Omega(0;V) \subseteq U$. If $V = \emptyset$, then $\Omega(0;V) = \ell^3$ since $-1 < \langle v, y - x \rangle < 1$ is now vacuously true for all $y \in \ell^2$; then $\Omega(0;V) \cap S$ since $\hat{\mathbf{e}}_1 \in \ell^2 \cap S$, and since $\Omega(0;V) \subseteq U$, $U \cap S \neq \emptyset$. So now assume V is not empty. Denote the elements of V as v^i where $1 \leq i \leq k$. Then since $v^i \in \ell^2$, we must have that $\lim_n (v^i_n)^2 = 0$ (crude divergence test). Then there exists some N_i where $(v^i_{N_i})^2 < 1$ by the definition of convergence. Let $N = \min_i \{N_i\}$. Then $-1 < v^i_N < 1$ as well. See

$$\langle v^i, \hat{\mathbf{e}}_N \rangle = \sum_{n=1}^{\infty} v_n^i (\hat{\mathbf{e}}_N)_n = v_N^i$$

Thus $\hat{\mathbf{e}}_N \in \Omega(0, V)$ since $-1 < \langle v, \hat{\mathbf{e}}_N - 0 \rangle = v_N < 1$ for all $v \in V$. Thus, $\hat{\mathbf{e}}_N \in \Omega(0, V) \subseteq U$. Since $\hat{\mathbf{e}}_N \in S$, thus shows that $S \cap U \neq \emptyset$, so we are done since U was arbitrary (this works for any open $U \in \mathcal{N}(0)$).

- (d). Solution. ff
- (e). Solution. ff

Recap of what still needs to be done:

- Wrapping up Q1: bounded case and end of attaining minimum
- All of Q2 (with contradiction)
- 3(b) (closed implies closed)
- 4(a), 4(b) with the second two conditions for HTS, 4(d), 4(e)