

Spring 2021 MIS 637 WS1 - Data Analytics & Machine Learning

Coffee Beans Variants Recommendation Using Clustering

Completed By: Mihir Kadam

mkadam3@stevens.edu

Prof. M. Daneshmand

1870

Contents

- Problem Statement and Business Understanding
- Data representation
- Data Understanding
- Data Preparation
- Data Normalization
- Algorithm Used
- Software Package Used
- Determination of Number of Clusters
- Execution and Analysis
- Conclusion
- References

Problem Statement

1870

- Coffee connoisseurs are always very particular about their coffee, especially the bean that has been used.
- These connoisseurs also like to brew their own coffee every morning with the coffee bean that they have selected very particularly.

 They also spend time researching their coffee.

Clustering of different variants of Coffee beans

- By clustering different coffee bean variants together, we can use this information for targeted marketing. If a customer buys a variant, other similar variants can be recommended to them.
- In some cases, variants from completely different clusters can also be recommended if the customer is looking for a different taste.
- Since connoisseurs also like to mix-match their beans, two beans from completely different clusters can also be recommended for a blend.

			<i>f</i> x Farr																
Α	В	С	D	E	F	G	Н	- 1	J	K	L	М	N	0	P Q	R	S	T	U
	Species	Owner	Country.o	Farm.Nam	Lot.Numbe	Mill	ICO.Numb	Company	Altitude	Region	Producer	Number.o Bag	g.Weigh In.(Country H	larvest.Ye Grading	,Da Owner.1	Variety	Processing.Method	Aroma
	0 Arabica	metad plc	Ethiopia	metad plc		metad plc	2014/2015	metad agricult	1950-2200	0 guji-hamb	METAD PL	300 60 1	kg ME	ETAD Ag	2014 April 4t	h, 2 metad pl	lc	Washed / Wet	8.67
	1 Arabica	metad plc	Ethiopia	metad plc		metad plc	2014/2015	metad agricult	1950-2200	0 guji-hamb	METAD PL	300 60 1	kg ME	TAD Ag	2014 April 4t	h, 2 metad pl	lc Other	Washed / Wet	8.75
	2 Arabica	grounds fo	Guatemala	san marcos	s barrancas	"san cristo	bal cuch		1600 - 180	00 m		5	1 Spe	ecialty Co	ffee Asso May 31	st, Grounds	fc Bourbon		8.42
	3 Arabica	yidnekach	Ethiopia	yidnekache	ew dabessa	wolensu		yidnekachew o	1800-2200	0 oromia	Yidnekach	320 60 1	kg ME	TAD Ag	2014 March	26t Yidnekad	chew Dabessa	Natural / Dry	8.17
	4 Arabica	metad plc	Ethiopia	metad plc		metad plc	2014/2015	metad agricult	1950-2200	0 guji-hamb	METAD PL	300 60 1	kg ME	TAD Ag	2014 April 4t	h, 2 metad pl	lc Other	Washed / Wet	8.25
	5 Arabica	ji-ae ahn	Brazil									100 30 1	kg Spe	ecialty (2013 Septem	ber Ji-Ae Ahr	1	Natural / Dry	8.58
	6 Arabica	hugo valdi	Peru			hvc		richmond inve	stment-co	ffee depart	HVC	100 69 1	kg Spe	ecialty (2012 Septem	bei Hugo Va	ld Other	Washed / Wet	8.42
	7 Arabica	ethiopia c	Ethiopia	aolme		c.p.w.e	010/0338		1570-1700	0 oromia	Bazen Agri	300 60 1	kg Eth	niopia C	Mar-10 Septem	beı Ethiopia	Commodity Excha	inge	8.25
	8 Arabica	ethiopia c	Ethiopia	aolme		c.p.w.e	010/0338		1570-1700	0 oromiya	Bazen Agri	300 60 1	kg Eth	niopia C	Mar-10 Septem	beı Ethiopia	Commodity Excha	inge	8.67
	9 Arabica	diamond e	Ethiopia	tulla coffee	e farm	tulla coffe	2014/15	diamond enter	1795-1850	0 snnp/kaff	Diamond E	50 60 1	kg ME	TAD Ag	2014 March	30t Diamond	l E Other	Natural / Dry	8.08
1	0 Arabica	mohamme	Ethiopia	fahem coff	fee plantati	on		fahem coffee	1855-195	5 oromia	Fahem Cot	300 60 1	kg ME	TAD Ag	2014 March	27t Mohamr	med Lalo	Natural / Dry	8.17
1	1 Arabica	cqi q coffe	United Sta	el filo			unknown	coffee quality	meters ab	antioquia	Alfredo De	10 1 kg	g Alm	nacafÃ(2014 March	13t CQI Q Co	off Other	Washed / Wet	8.25
1	2 Arabica	cqi q coffe	United Sta	los cedros			unknown	coffee quality	meters ab	antioquia	Jorge Walt	10 1 kg	g Alm	nacafÃ(2014 March	13t CQI Q Co	off Other	Washed / Wet	8.08
1	3 Arabica	grounds fo	United Sta	arianna far	ms				2000 ft	kona	Robert, Sh	1	1 Spe	ecialty (S	ept 2009 May 31	st, Grounds	for Health Admin		8.33
1	4 Arabica	ethiopia c	Ethiopia	aolme		c.p.w.e	010/0338		1570-1700	0 oromiya	Bazen Agri	300 60 1	kg Eth	niopia C	Mar-10 August	31s Ethiopia	Commodity Excha	inge	8.25
1	5 Arabica	cqi q coffe	United Sta	el águila			unknown	coffee quality	meters ab	antioquia	MarÃ-a Le	10 1 kg	g Alm	nacafÃ(2014 March	13t CQI Q Co	off Other	Washed / Wet	8
1	6 Arabica	grounds fo	Indonesia	toarco jaya	a				1200-1800	0 sulawesi	P.T. Toarc	1 2 kg	g,lbs Spe	ecialty (N	/lay-Augu May 31	st, Grounds	for Health Admin		8.33
1	7 Arabica	ethiopia c	Ethiopia				010/0056			yirgacheff	Green Gold	150	6 Eth	niopia C 2	009/2010 June 16	th, Ethiopia	Commodity Excha	ange	8.17
1	8 Arabica	yunnan co	China	echo coffe	YNC-06114	echo coffe	ee mill	yunnan coffee	1450	yunnan	Echo Coffe	3 60 1	kg Yur	nnan Co	2015 April 7t	h, 2 Yunnan (Co Catimor	Washed / Wet	8.42
1	9 Arabica	essenceco	Ethiopia	drima zede		drima zede	1E+08	essence coffee	1700-2000	0 gedio	LevelUp	250 60 1	kg Blo	ossom V	2014 March	25t Essence(Co Ethiopian Yirga	Natural / Dry	8.17
2	0 Arabica	cqi q coffe	United Sta	el rodeo			unknown	coffee quality	meters ab	antioquia	Nicolás R	10 1 kg	g Alm	macafÃ(2014 March	13t CQI Q Co	off Other	Washed / Wet	8
2	1 Arabica	the coffee	Costa Rica	several		cafe altura	5-562-001	the coffee sou	1300 msn	r san ramoi	SEVERAL	250 3 lb	s Spe	ecialty (2014 April 2r	d, The Coff	e Caturra	Washed / Wet	8.08
2	2 Arabica	roberto lic	Mexico	la herradur	a	la herradu	0		1320	xalapa	ROBERTO	14 1 kg	g AM	1ECAFE	2012 July 26	h, 2 ROBERTO	O Other	Washed / Wet	8.17
2	3 Arabica	cqi q coffe	United Sta	la curva			unknown	coffee quality	meters ab	antioquia	Silvia Elena	10 1 kg	g Alm	macafÃ(2014 March	13t CQI Q Co	off Other	Washed / Wet	8.25
2	4 Arabica	ji-ae ahn	Ethiopia							sidamo		100 60 1	kg Spe	ecialty (2013 Septem	bei Ji-Ae Ahr	1	Natural / Dry	8.42
2	5 Arabica	nucoffee	Brazil	fazenda ka	quend		002/1251/	nucoffee	1250m	south of r	Ralph Jung	3 60 1	kg NU	JCOFFEE	2011 Decem	oer NUCOFF	Ef Bourbon	Natural / Dry	8.5
2	6 Arabica	ethiopia c	Ethiopia				010/0056/	Sidamo		sidamo	Green Gold	150	6 Eth	niopia C 2	009/2010 June 16	th, Ethiopia	Commodity Excha	ange	7.83
2	7 Arabica	kabum tra	Uganda	chebonet (2	23) womer	kabum tra	0	kabum trading	1950	kapchorw	Kabum tra	100 60 1	ke Uea	anda Cc	2013 June 26	th. Kabum T	ra SL14	Washed / Wet	8.42

Data Representation (Cont'd)

- The extracted data contains 44 columns, all containing different information about the coffee bean such as owner, country, company, farm name, etc.
- Some of the data is numeric while some isn't as visible in the previous slide. Therefore, data standardization will be performed. Also, normalization will be performed.
- Out of this, a few relevant attributes will be used for the clustering job.

- The data sources contains 44 attributes for 732 different coffee beans.
- Out of these 44 attributes, we select the following relevant attributes:
 - Species, Variety, Processing Method, Aroma, Flavor, Aftertaste, Acidity, Body, Balance, Uniformity, Clean Cup, Sweetness, Cupper Points, Moisture, Color, altitude mean meters.

Species	Variety	Processing	Aroma	Flavor	Aftertaste A	cidity	Body	Balance	Uniformity	Clean.Cup	Sweetness	Cupper.Po N	Noisture	Color	altitude_me	an_meters
Arabica		Washed /	8.67	8.83	8.67	8.75	8.5	8.42	10	10	10	8.75	0.12	Green	2075	
Arabica	Other	Washed /	8.75	8.67	8.5	8.58	8.42	8.42	10	10	10	8.58	0.12	Green	2075	
Arabica	Bourbon		8.42	8.5	8.42	8.42	8.33	8.42	10	10	10	9.25	0		1700	
Arabica		Natural / [8.17	8.58	8.42	8.42	8.5	8.25	10	10	10	8.67	0.11	Green	2000	
Arabica	Other	Washed /	8.25	8.5	8.25	8.5	8.42	8.33	10	10	10	8.58	0.12	Green	2075	
Arabica		Natural / [8.58	8.42	8.42	8.5	8.25	8.33	10	10	10	8.33	0.11	Bluish-G	reen	
Arabica	Other	Washed /	8.42	8.5	8.33	8.5	8.25	8.25	10	10	10	8.5	0.11	Bluish-Green		
Arabica			8.25	8.33	8.5	8.42	8.33	8.5	10	10	9.33	9	0.03		1635	
Arabica			8.67	8.67	8.58	8.42	8.33	8.42	9.33	10	9.33	8.67	0.03		1635	
Arabica	Other	Natural / [8.08	8.58	8.5	8.5	7.67	8.42	10	10	10	8.5	0.1	Green	1822.5	
Arabica		Natural / [8.17	8.67	8.25	8.5	7.75	8.17	10	10	10	8.58	0.1		1905	
Arabica	Other	Washed /	8.25	8.42	8.17	8.33	8.08	8.17	10	10	10	8.5	0		1872	
Arabica	Other	Washed /	8.08	8.67	8.33	8.42	8	8.08	10	10	10	8.33	0		1943	
Arabica			8.33	8.42	8.08	8.25	8.25	8	10	10	10	8.58	0		609.6	
Arabica			8.25	8.33	8.5	8.25	8.58	8.75	9.33	10	9.33	8.5	0.05		1635	
Arabica	Other	Washed /	' 8	8.5	8.58	8.17	8.17	8	10	10	10	8.17	0		2080	
Arabica			8.33	8.25	7.83	7.75	8.5	8.42	10	10	10	8.33	0.03		1500	
Arabica			8.17	8.33	8.25	8.33	8.42	8.33	9.33	10	9.33	8.83	0.05			
Arabica	Catimor	Washed /	8.42	8.25	8.08	8.17	7.92	8	10	10	10	8.42	0.1	Green	1450	
Arabica	Ethiopian	Natural / [8.17	8.17	8	8.17	8.08	8.33	10	10	10	8.33	0		1850	
Arabica	Other	Washed /	' 8	8.25	8.08	8.5	8.25	8	10	10	10	8.17	0	None	2019	
Arabica	Caturra	Washed /	8.08	8.25	8	8.17	8	8.33	10	10	10	8.33	0.11	Green	1300	
Arabica	Other	Washed /	8.17	8.25	8.17	8	7.83	8.17	10	10	10	8.58	0.13	Green	1320	
Arabica	Other	Washed /	8.25	8.33	8.17	8.17	7.83	8.17	10	10	10	8.17	0		2112	
Arabica		Natural / [8.42	8.17	7.92	8.17	8.33	8	10	10	10	8.08	0.11	Bluish-G	reen	
Arabica	Bourbon	Natural / [8.5	8.5	8	8	8	8	10	10	10	7.92	0.12	Green	1250	
Arabica			7.83	8.25	8.08	8.17	8.17	8.17	10	10	10	8.25	0.05			
Arabica	SL14	Washed /	8.42	8.17	8.17	8.17	7.83	7.92	10	10	10	8.17	0.12	Green	1950	
→	coffee da	ta with rel	levant attı	ri 🕕										1		

Data Preparation

 We prepare the data by first converting the non-numeric data into numeric. We do this by numbering the unique non-numeric data from 0 to x, where x is the number of unique records in each column

Species	Variety	Processing A	Aroma	Flavor	Aftertaste	Acidity	Body	Balance	Uniformity	Clean.Cup	Sweetness (Cupper.Po	Moisture	Color	altitude_mean_mete
Arabica		Washed /	8.67	8.83	8.67	8.75	8.5	8.42	10	10	10	8.75	0.12	Green	2075
Arabica	Other	Washed / '	8.75	8.67	8.5	8.58	8.42	8.42	10	10	10	8.58	0.12	Green	2075
Arabica	Bourbon		8.42	8.5	8.42	8.42	8.33	8.42	10	10	10	9.25	0		1700
Arabica		Natural / [8.17	8.58	8.42	8.42	8.5	8.25	10	10	10	8.67	0.11	Green	2000
Arabica	Other	Washed /	8.25	8.5	8.25	8.5	8.42	8.33	10	10	10	8.58	0.12	Green	2075
Arabica		Natural / [8.58	8.42	8.42	8.5	8.25	8.33	10	10	10	8.33	0.11	Bluish-G	reen
Arabica	Other	Washed /	8.42	8.5	8.33	8.5	8.25	8.25	10	10	10	8.5	0.11	Bluish-G	reen
Arabica			8.25	8.33	8.5	8.42	8.33	8.5	10	10	9.33	9	0.03		1635
Arabica			8.67	8.67	8.58	8.42	8.33	8.42	9.33	10	9.33	8.67	0.03		1635
Arabica	Other	Natural / [8.08	8.58	8.5	8.5	7.67	8.42	10	10	10	8.5	0.1	Green	1822.5
Arabica		Natural / [8.17	8.67	8.25	8.5	7.75	8.17	10	10	10	8.58	0.1		1905
Arabica	Other	Washed / '	8.25	8.42	8.17	8.33	8.08	8.17	10	10	10	8.5	0		1872
Arabica	Other	Washed / '	8.08	8.67	8.33	8.42	8	8.08	10	10	10	8.33	0		1943
Arabica			8.33	8.42	8.08	8.25	8.25	8	10	10	10	8.58	0		609.6
Arabica			8.25	8.33	8.5	8.25	8.58	8.75	9.33	10	9.33	8.5	0.05		1635
Arabica	Other	Washed / '	8	8.5	8.58	8.17	8.17	8	10	10	10	8.17	0		2080
Arabica			8.33	8.25	7.83	7.75	8.5	8.42	10	10	10	8.33	0.03		1500
Arabica			8.17	8.33	8.25	8.33	8.42	8.33	9.33	10	9.33	8.83	0.05		
Arabica	Catimor	Washed / '	8.42	8.25	8.08	8.17	7.92	8	10	10	10	8.42	0.1	Green	1450
Arabica	Ethiopian	Natural / [8.17	8.17	8	8.17	8.08	8.33	10	10	10	8.33	0		1850
Arabica	Other	Washed / '	8	8.25	8.08	8.5	8.25	8	10	10	10	8.17	0	None	2019
Arabica	Caturra	Washed / '	8.08	8.25	8	8.17	8	8.33	10	10	10	8.33	0.11	Green	1300
Arabica	Other	Washed /	8.17	8.25	8.17	8	7.83	8.17	10	10	10	8.58	0.13	Green	1320
Arabica	Other	Washed / '	8.25	8.33	8.17	8.17	7.83	8.17	10	10	10	8.17	0		2112
Arabica		Natural / [8.42	8.17	7.92	8.17	8.33	8	10	10	10	8.08	0.11	Bluish-G	reen
Arabica	Bourbon	Natural / [8.5	8.5	8	8	8	8	10	10	10	7.92	0.12	Green	1250
Arabica			7.83	8.25	8.08	8.17	8.17	8.17	10	10	10	8.25	0.05		
Arabica	SL14	Washed /	8.42	8.17	8.17	8.17	7.83	7.92	10	10	10	8.17	0.12	Green	1950
+	coffee da	ta with rele	vant att	ri 🕕										4	

Relevant attributes with numeric and non-numeric data

Data Preparation (Cont'd)

After successful transformation, the data looks like this:

Relevant attributes with only numeric data

Data Normalization

- For the algorithm to work effectively and get accurate results, we normalize the data.
- Since the values of attributes range from a maximum of 2 in one column, to a maximum of 190164 in another, we normalize the data to bring the range down to 0 to 1.
- We normalize using the following formula:

$$X_{\text{normalized}} = \frac{(x - x_{\text{min}})}{(x_{\text{max}} - x_{\text{min}})}$$
[1]

- Here, X is the value in the cell which we are normalizing.
- Xmin and Xmax are minimum and maximum values in the selected column, respectively.
- The data looks like following after normalization:

Data Normalization (Cont'd)

	·	< 🗸	$f_{\!\scriptscriptstyle X}$ Spec	cies_n											
A	В	С	D	Е	F	G	Н			K	L	М	N	0	Р
Species_n	Variety_n	Processing	Aroma_n	Flavor_n	Aftertaste	Acidity_n	Body_n	Balance_n	Uniformity	Clean.Cup	Sweetness	Cupper.Po	Moisture_	Color_n	Altitude_n
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0.609844	0.763614	0.77904	0.630252	0.615758	0.611888	0.6	0	0.133	0.602564	0	0	0
0	0	0	0.759904	0.783416	0.77904	0.729892	0.626667	0.708625	0.6	0.133	0.6	0.611888	0	0	0
0	0	0	0.780312	0.783416	0.77904	0.7503	0.636364	0.719114	0.667	0.267	0.6	0.631702	0	0	0
0	0	0	0.780312	0.794554	0.77904	0.780312	0.767273	0.719114	0.667	0.267	0.667	0.699301	0	0	0
0	0.038462	0	0.80072	0.804455	0.789141	0.80072	0.778182	0.719114	0.667	0.533	0.742	0.719114	0	0	0
0	0.038462	0	0.810324	0.804455	0.799242	0.80072	0.787879	0.737762	0.733	0.533	0.742	0.719114	0	0	0
0	0.038462	0	0.810324	0.804455	0.799242	0.80072	0.808485	0.757576	0.8	0.6	0.742	0.728438	0	0	0
0	0.038462	0	0.819928	0.804455	0.799242	0.810324	0.808485	0.757576	0.8	0.6	0.75	0.737762	0	0	0
0	0.038462	0	0.819928	0.814356	0.799242	0.810324	0.818182	0.7669	0.8	0.6	0.758	0.737762	0	0	0
0	0.038462	0	0.819928	0.814356	0.810606	0.819928	0.818182	0.7669	0.8	0.6	0.758	0.748252	0	0	
0	0.038462	0	0.819928	0.814356	0.810606	0.819928	0.818182	0.777389	0.8	0.6	0.758	0.748252	0	0	
0	0.038462	0	0.819928	0.814356	0.820707	0.819928	0.827879	0.777389	0.8	0.667	0.758	0.748252	0	0	
0	0.038462	0	0.819928	0.825495	0.820707	0.819928	0.827879	0.777389	0.8	0.667	0.758	0.757576	0	0	0.009099
0	0.038462	0	0.830732	0.825495	0.820707	0.819928	0.827879	0.786713	0.8	0.667	0.767	0.757576	0	0	0.011433
0	0.038462	0	0.830732	0.825495	0.820707	0.819928	0.827879	0.786713	0.8	0.667	0.767	0.757576	0	0	0.023098
0	0.038462	0	0.830732	0.835396	0.830808	0.830732	0.838788	0.786713	0.8	0.667	0.775	0.757576	0	0	0.025432
0	0.038462	0.25	0.830732	0.835396	0.830808	0.830732	0.838788	0.786713	0.8	0.667	0.775	0.7669	0	0	0.028931
0	0.038462	0.25	0.830732	0.835396	0.830808	0.830732	0.838788	0.786713	0.8	0.733	0.775	0.7669	0	0	0.034764
0	0.038462	0.25	0.830732	0.835396	0.830808	0.830732	0.838788	0.796037	0.8	0.733	0.775	0.7669	0	0	0.034764
0	0.076923	0.25	0.830732	0.835396	0.830808	0.830732	0.838788	0.796037	0.8	0.733	0.775	0.7669	0	0	0.036604
0	0.076923	0.25	0.830732	0.835396	0.842172	0.830732	0.838788	0.796037	0.8	0.8	0.775	0.7669	0	0	0.036604
0	0.076923	0.25	0.830732	0.845297	0.842172	0.830732	0.848485	0.796037	0.867	0.8	0.775	0.777389	0	0	0.036604
0	0.076923	0.25	0.840336	0.845297	0.842172	0.830732	0.848485	0.796037	0.867	0.8	0.783	0.777389	0	0	0.038264
0	0.076923	0.25	0.840336	0.845297	0.842172	0.840336	0.848485	0.796037	0.867	0.8	0.783	0.777389	0	0	0.038964
0	0.076923	0.25	0.840336	0.845297	0.842172	0.840336	0.848485	0.796037	0.867	0.8	0.792	0.777389	0	0	0.040597
0	0.076923	0.25	0.840336	0.845297	0.842172	0.840336	0.848485	0.796037	0.867	0.8	0.792	0.777389	0	0	0.041764
0	0.076923	0.25	0.840336	0.845297	0.842172	0.840336	0.848485	0.796037	0.867	0.8	0.8	0.777389	0	0	0.04293
(coffee dat	ta with all	data norn	na 🕂									:	1	

- As it is visible, all data is now in numeric and ranges from 0 to 1.
- Missing values are dealt with by weka (the software package to be used).
- The only outliers present were in the altitude column. The values were 190164 meters, 110000 meters, and 11000 meters (before normalization). We delete these values since the altitude of the highest peak in the world (Mt. Everest) is 8848.9 meters.
- At this point, our data is ready for the clustering job.

Algorithm

- We will be using K-means for the clustering job.
- K-means clustering is a method of vector quantization, that aims to partition n observations into k clusters in which each observation belongs to the cluster with the nearest mean (cluster centers or cluster centroid), serving as a prototype of the cluster. [2]
- Every data point is allocated to a cluster depending upon the distance of that data point to the cluster centers.
- This distance is calculated using Euclidean distance.
- Each data point is allocated to a cluster where the distance from the cluster center and the data point is smallest.
- The algorithm runs through several iterations until the items in the clusters don't move upon successive iterations.
- After successful execution, we have n number of clusters, where n is a predefined number and all the items in the cluster have similar properties.

1870

Software Package (Weka)

- We use weka for the clustering job.
- Weka is tried and tested open-source machine learning software that can be accessed through a graphical user interface.
- Weka can be used to build machine learning pipelines, train classifiers, and most importantly, cluster data and run evaluations without having to write a single line of code.

[3]

Software Package (Weka)

We load the .csv file into weka and get the following window:

1870

Software Package (Weka)

We can visualize the distribution of the data as follows:

Before running the algorithm, we the following settings for clustering.

1870

Determination of Number of Clusters

- Determining the optimal number of clusters in a data set is a fundamental issue in partitioning clustering, such as k-means clustering, which requires the user to specify the number of clusters k to be generated.
- There is no definite answer to this question. However, there are several methods that try to optimize the number of clusters required. We will be using elbow method.
- The steps involved in elbow method are:
 - Compute clustering for different values of k. For instance, by varying k from 1 to 15 clusters.
 - For each k, calculate the total cluster sum of square error (SSE).
 - Plot the curve of SSE according to the number of clusters k.
 - The location of a bend (knee) in the plot is generally considered as an indicator of the appropriate number of clusters.

[4]

• Therefore, we run the algorithm 15 times, varying the number of clusters from 1 to 15. We noted the SSE each time and gather the following data:

Γ		U	C
Number of clusters		SSE	
	1	358.6648061	
	2	189.2773032	
	3	101.7620872	
	4	92.71709252	
	5	84.88316876	
	6	73.54978109	
	7	73.33017989	
	8	53.01940614	
	9	46.9141936	
	10	46.85524908	
	11	46.84815676	
	12	46.70121649	
	13	45.02477203	
	14	45.00221376	
	15	40.11590983	

Determination of Number of Clusters

We plot the data using Tableau. [5]

Determination of Number of Clusters

- As we can see, there isn't a significant drop in SSE after 6 number of clusters.
- Therefore, we keep the number of clusters to 6 for our clustering instance.

The result of clustering for k=6

_,						
Flavor_n	0.9164	0.8096	0.9183	0.9281	0.9236	0.932
Aftertaste_n	0.9183	0.8058	0.918	0.931	0.9255	0.936
Acidity_n	0.8915	0.7981	0.8908	0.9019	0.8969	0.90
Body_n	0.8978	0.7975	0.8987	0.9083	0.8994	0.91:
Balance_n	0.8604	0.758	0.8625	0.8705		0.875
Uniformity_n	0.9829	0.7918	1	1	1	- 1
Clean.Cup_n	0.9801	0.68	1	1	1	- 1
Sweetness_n	0.9831	0.738	1	1	1	- 1
Cupper.Points_n	0.8562	0.733	0.8552	0.8689	0.8648	0.874
Moisture_n	0.5775	0	0.6471	0.6773	0.6471	0.685
Color_n	0.871	0	1	0.9954	1	
Altitude n	0.2987	0.0543	0.2879	0.3283	0.299	0.331
— Time taken to build m						
— Time taken to build m === Model and evaluat						
Time taken to build m						
Time taken to build m === Model and evaluat Clustered Instances						
Time taken to build m === Model and evaluat Clustered Instances 0 40 (5%)						
Time taken to build m === Model and evaluat Clustered Instances 0 40 (5%) 1 50 (7%)						
Time taken to build m === Model and evaluat Clustered Instances 0 40 (5%) 1 50 (7%) 2 290 (40%)						
Time taken to build m === Model and evaluat Clustered Instances 0						
Time taken to build m === Model and evaluat Clustered Instances 0						
Time taken to build m === Model and evaluat Clustered Instances 0						
Time taken to build m === Model and evaluat Clustered Instances 0						/ •
Time taken to build m === Model and evaluat Clustered Instances 0						<i>)</i> »

• The final cluster centroids were:

Final cluster centroids:

		Cluster#					
Attribute	Full Data	0	1	2	3	4	5
	(731.0)	(40.0)	(50.0)	(290.0)	(39.0)	(191.0)	(121.0)
=======================================	========						=======
Species_n	0.0356	0	0	0.0172	0	0	0.1736
Variety_n	0.3759	0.0529	0.4915	0.0829	0.7475	0.9658	0.0861
Processing.Method_n	0.8119	0.1437	1	0.9681	1	1	0.2231
Aroma_n	0.8969	0.8011	0.8988	0.9066	0.9004	0.911	0.8808
Flavor_n	0.9164	0.8096	0.9183	0.9281	0.9236	0.9329	0.8945
Aftertaste_n	0.9183	0.8058	0.918	0.931	0.9255	0.9361	0.8946
Acidity_n	0.8915	0.7981	0.8908	0.9019	0.8969	0.905	0.8747
Body_n	0.8978	0.7975	0.8987	0.9083	0.8994	0.911	0.8841
Balance_n	0.8604	0.758	0.8625	0.8705	0.8648	0.8752	0.8446
Uniformity_n	0.9829	0.7918	1	1	1	1	0.9657
Clean.Cup_n	0.9801	0.68	1	1	1	1	0.9856
Sweetness_n	0.9831	0.738	1	1	1	1	0.9845
Cupper.Points_n	0.8562	0.733	0.8552	0.8689	0.8648	0.8749	0.8346
Moisture_n	0.5775	0	0.6471	0.6773	0.6471	0.6852	0.3082
Color_n	0.871	0	1	0.9954	1	1	0.562
Altitude_n	0.2987	0.0543	0.2879	0.3283	0.299	0.3316	0.2613

- Centers of the clusters can be used to characterize the clusters.
- These properties are the predominant properties of the coffee beans in a given cluster.
- For example:
 - We can interpret from the clustering result that a coffee bean that is high in Aroma, flavor, aftertaste, acidity, and grows at a higher altitude belongs to cluster 5.
 - Now, if any customer has bought a coffee bean in the past from this cluster and liked it, we can recommend them a different coffee bean from the same cluster and be confident that the customer will like this recommendation too.
 - This is how targeted marketing works these days.
 - This clustering recommendation can be implemented in online websites as well as local coffee shops. The customer gets recommendations on the website online or if they to a local coffee shop regularly, the barista at the coffee shop can access the customers past purchases and recommend a coffee bean accordingly by looking at the other coffee beans in the cluster.

Conclusion

- In this task, we have successfully collected data, understood it, prepared it, normalized it and removed the anomalies.
- We have determined the optimal number of clusters and clustered the data accordingly.
- Upon successful clustering, we get 6 clusters with 6 centroids. These centroids
 characterize the clusters and all the coffee beans in these clusters have properties like the
 coffee bean which is the centroid.
- The same method can be used in various other domains such as movie recommendation, snacks recommendation, clothing recommendation, electronics recommendation, etc.
- Clustering is very powerful because it can be used with the customers data for targeted personalized marketing.
- Clustering is used in most online websites such as amazon, Netflix, spotify, google, hulu, steam etc. to make personalized recommendations.
- These recommendations in-turn generate revenue.
- Therefore, a lot of money is invested by these giants on these unsupervised machine learning algorithms to make sure they're always on the top of their competition.

Data source: https://www.kaggle.com/volpatto/coffee-quality-database-from-cqi?select=merged_data_cleaned.csv

- [1] https://www.youtube.com/watch?v=rpM3YW_hSaM
- [2] https://en.wikipedia.org/wiki/K-means clustering
- [3] https://www.cs.waikato.ac.nz/ml/weka/
- [4] https://www.datanovia.com/en/lessons/determining-the-optimal-number-of-clusters-3-must-know-methods/#gap-statistic-method
- [5] https://public.tableau.com/en-us/s/