Quantitative Stability of the Pushforward Operation by an Optimal Transport Map

Alex Delalande

Joint work with Guillaume Carlier and Quentin Mérigot

November 2023

Problem statement

Let $\phi: \mathbb{R}^d \to \mathbb{R} \cup \{\infty\}$ be a *fixed*, proper and continuous convex function.

Let $\rho, \tilde{\rho} \in \mathcal{P}_2(\mathbb{R}^d)$ and $\gamma, \tilde{\gamma} \in \mathcal{P}_2(\mathbb{R}^d \times \mathbb{R}^d)$ such that

$$\begin{cases} (p_1)_{\#}\gamma = \rho, \\ \operatorname{spt}(\gamma) \subset \partial \phi, \end{cases} \begin{cases} (p_1)_{\#}\tilde{\gamma} = \tilde{\rho}, \\ \operatorname{spt}(\tilde{\gamma}) \subset \partial \phi. \end{cases}$$

Under what conditions on $\phi, \rho, \tilde{\rho}$ and for which C, α do we have

$$W_2((p_2)_{\#}\gamma,(p_2)_{\#}\tilde{\gamma}) \leq CW_2(\rho,\tilde{\rho})^{\alpha}$$
?

Remark: whenever ϕ is differentiable ρ — and $\tilde{\rho}$ —a.e.,

$$\gamma = (\mathrm{id}, \nabla \phi)_{\#} \rho, \quad \tilde{\gamma} = (\mathrm{id}, \nabla \phi)_{\#} \tilde{\rho},$$

$$W_2((p_2)_{\#} \gamma, (p_2)_{\#} \tilde{\gamma}) = W_2((\nabla \phi)_{\#} \rho, (\nabla \phi)_{\#} \tilde{\rho})$$

2/10

Problem statement

Let $\phi: \mathbb{R}^d \to \mathbb{R} \cup \{\infty\}$ be a *fixed*, proper and continuous convex function.

Let $\rho, \tilde{\rho} \in \mathcal{P}_2(\mathbb{R}^d)$ and $\gamma, \tilde{\gamma} \in \mathcal{P}_2(\mathbb{R}^d \times \mathbb{R}^d)$ such that

$$\begin{cases} (p_1)_{\#}\gamma = \rho, \\ \operatorname{spt}(\gamma) \subset \partial \phi, \end{cases} \begin{cases} (p_1)_{\#}\tilde{\gamma} = \tilde{\rho}, \\ \operatorname{spt}(\tilde{\gamma}) \subset \partial \phi. \end{cases}$$

Under what conditions on $\phi, \rho, \tilde{\rho}$ and for which C, α do we have

$$W_2((p_2)_{\#}\gamma,(p_2)_{\#}\tilde{\gamma}) \leq CW_2(\rho,\tilde{\rho})^{\alpha}$$
?

Remark: whenever ϕ is differentiable $\rho-$ and $\tilde{\rho}-$ a.e.,

$$\gamma = (\mathrm{id}, \nabla \phi)_{\#} \rho, \quad \tilde{\gamma} = (\mathrm{id}, \nabla \phi)_{\#} \tilde{\rho},$$

$$W_{2}((p_{2})_{\#} \gamma, (p_{2})_{\#} \tilde{\gamma}) = W_{2}((\nabla \phi)_{\#} \rho, (\nabla \phi)_{\#} \tilde{\rho}).$$

Motivations

1. Resolution of Kantorovich dual:

$$\min_{\psi} \underbrace{\langle \psi^* | \rho \rangle}_{:=K(\psi)} + \langle \psi | \mu \rangle.$$

Gradient of
$$K$$
: $\nabla K(\psi) = -(\nabla \psi^*)_{\#} \rho$.

2. Barycenters in *Linearized OT*:

$$\mathrm{Bar}_{\rho}((\mu_{i})_{1\leq i\leq N}) = \left(\frac{1}{N}\sum_{i}\nabla\phi_{\rho\to\mu_{i}}\right)_{\#}\rho.$$

3. Generative modelling with an ICNN ϕ_{θ}

$$\min_{\theta} \mathcal{L}(\theta) \approx \mathrm{W}_2((\nabla \phi_{\theta})_{\#} \rho, \mu)$$

Motivations

1. Resolution of Kantorovich dual:

$$\min_{\psi} \underbrace{\langle \psi^* | \rho \rangle}_{:=K(\psi)} + \langle \psi | \mu \rangle.$$

Gradient of
$$K$$
: $\nabla K(\psi) = -(\nabla \psi^*)_{\#} \rho$.

2. Barycenters in *Linearized OT*:

$$\mathrm{Bar}_{\rho}((\mu_i)_{1\leq i\leq N}) = \left(\frac{1}{N}\sum_i \nabla \phi_{\rho\to\mu_i}\right)_{\#} \rho.$$

3. Generative modelling with an *ICNN* $\phi_{ heta}$

$$\min_{\theta} \mathcal{L}(\theta) \approx W_2((\nabla \phi_{\theta})_{\#} \rho, \mu)$$

Motivations

1. Resolution of Kantorovich dual:

$$\min_{\psi} \underbrace{\langle \psi^* | \rho \rangle}_{:= \mathsf{K}(\psi)} + \langle \psi | \mu \rangle.$$

Gradient of
$$K$$
: $\nabla K(\psi) = -(\nabla \psi^*)_{\#} \rho$.

2. Barycenters in *Linearized OT*:

$$\operatorname{Bar}_{\rho}((\mu_i)_{1 \leq i \leq N}) = \left(\frac{1}{N} \sum_{i} \nabla \phi_{\rho \to \mu_i}\right)_{\#} \rho.$$

3. Generative modelling with an *ICNN* ϕ_{θ} :

$$\min_{\theta} \mathcal{L}(\theta) \approx W_2((\nabla \phi_{\theta})_{\#} \rho, \mu).$$

A positive result

Proposition:

Let $\alpha \in (0,1)$ and let $\phi \in \mathcal{C}^{1,\alpha}(\mathbb{R}^d)$ convex. Then for any $\rho, \tilde{\rho} \in \mathcal{P}_2(\mathbb{R}^d)$,

$$W_2((\nabla \phi)_{\#}\rho, (\nabla \phi)_{\#}\tilde{\rho}) \leq \|\nabla \phi\|_{\mathcal{C}^{0,\alpha}} W_2(\rho, \tilde{\rho})^{\alpha}.$$

Negative results

▶ No assumption on $\rho, \tilde{\rho}$:

$$\mathrm{W}_2((p_2)_\#\gamma,(p_2)_\#\tilde{\gamma})=2$$
 while $\mathrm{W}_2(\rho,\tilde{\rho})=0$.

Negative results

▶ Assume ρ is absolutely continuous and $\rho \leq M < +\infty$:

$$W_2((p_2)_{\#}\gamma,(p_2)_{\#}\gamma^{\varepsilon}) \sim W_2(\rho,\rho^{\varepsilon})^{1/3}.$$

Assumptions:

- ▶ Let R > 0 and let $\Omega = B(0, R) \subset \mathbb{R}^d$.
- ▶ Let $\phi: \Omega \to \mathbb{R}$ convex and *R*-Lipschitz continuous.
- ▶ Let $M \in (0, +\infty)$.

Theorem:

- ► For any $\rho \in \mathcal{P}_{a.c.}(\Omega)$ s.t. $\rho \leq M$,
- ► For any $\tilde{\rho} \in \mathcal{P}(\Omega)$ and $\tilde{\gamma} \in \mathcal{P}(\Omega \times \Omega)$ s.t. $(p_1)_{\#}\tilde{\gamma} = \tilde{\rho}$ and $\operatorname{spt}(\tilde{\gamma}) \subset \partial \phi$

$$W_2((\nabla \phi)_{\#}\rho,(p_2)_{\#}\widetilde{\gamma}) \leq C(d,M,R)W_2(\rho,\widetilde{\rho})^{1/3},$$

where $\mathcal{C}(d,M,R) \sim d^2 2^{8(d+1)} (1+eta_d) (1+M) (1+R)^{4+\epsilon_d}$

Assumptions:

- ▶ Let R > 0 and let $\Omega = B(0, R) \subset \mathbb{R}^d$.
- ▶ Let $\phi: \Omega \to \mathbb{R}$ convex and R-Lipschitz continuous.
- ▶ Let $M \in (0, +\infty)$.

Theorem:

- ► For any $\rho \in \mathcal{P}_{a.c.}(\Omega)$ s.t. $\rho \leq M$,
- For any $\tilde{\rho} \in \mathcal{P}(\Omega)$ and $\tilde{\gamma} \in \mathcal{P}(\Omega \times \Omega)$ s.t. $(p_1)_{\#}\tilde{\gamma} = \tilde{\rho}$ and $\operatorname{spt}(\tilde{\gamma}) \subset \partial \phi$,

$$\mathrm{W}_2((\nabla \phi)_\# \rho, (p_2)_\# \tilde{\gamma}) \leq \mathcal{C}(d, M, R) \mathrm{W}_2(\rho, \tilde{\rho})^{1/3},$$

where $C(d, M, R) \sim d^2 2^{8(d+1)} (1 + \beta_d) (1 + M) (1 + R)^{4+d}$.

Key ingredient

Covering number of near-singular sets of convex functions

$$\Sigma_{\eta,\alpha} := \{ x \in \Omega \mid \operatorname{diam}(\partial \phi(B(x,\eta)) \ge \alpha \}.$$

Theorem: For all $\alpha, \eta > 0$,

$$\mathcal{N}(\Sigma_{\eta,\alpha},\eta) \lesssim \frac{d^2 R^{d-1}}{\alpha \eta^{d-1}}.$$

In particular,

$$\int_{\Omega} \operatorname{diam}(\partial \phi(B(x,\eta)))^{2} dx \leq C(d,R)\eta,$$

where $C(d,R)\sim 2^{3d}d^2\beta_dR^{d+1}$

Remark: also entails that $\dim_{\mathcal{H}}(\Sigma_{0,\alpha}) \leq d-1$ and

$$\mathcal{H}^{d-1}(\Sigma_{0,\alpha}) \leq C(d) \frac{\operatorname{Lip}(\phi)R^{d-1}}{\alpha}$$

Key ingredient

Covering number of near-singular sets of convex functions

$$\Sigma_{\eta,\alpha} := \{ x \in \Omega \mid \operatorname{diam}(\partial \phi(B(x,\eta)) \ge \alpha \}.$$

Theorem: For all $\alpha, \eta > 0$,

$$\mathcal{N}(\Sigma_{\eta,\alpha},\eta)\lesssim rac{d^2R^{d-1}}{\alpha\eta^{d-1}}.$$

In particular,

$$\int_{\Omega} \operatorname{diam}(\partial \phi(B(x,\eta)))^{2} dx \leq C(d,R)\eta,$$

where $C(d,R) \sim 2^{3d} d^2 \beta_d R^{d+1}$.

Remark: also entails that $\dim_{\mathcal{H}}(\Sigma_{0,\alpha}) \leq d-1$ and

$$\mathcal{H}^{d-1}(\Sigma_{0,\alpha}) \leq C(d) \frac{\operatorname{Lip}(\phi)R^{d-1}}{\alpha}$$

Key ingredient

Covering number of near-singular sets of convex functions

$$\Sigma_{\eta,\alpha} := \{ x \in \Omega \mid \operatorname{diam}(\partial \phi(B(x,\eta)) \ge \alpha \}.$$

Theorem: For all $\alpha, \eta > 0$,

$$\mathcal{N}(\Sigma_{\eta,\alpha},\eta)\lesssim rac{d^2R^{d-1}}{\alpha\eta^{d-1}}.$$

In particular,

$$\int_{\Omega} \operatorname{diam}(\partial \phi(B(x,\eta)))^{2} dx \leq C(d,R)\eta,$$

where $C(d,R) \sim 2^{3d} d^2 \beta_d R^{d+1}$.

Remark: also entails that $\dim_{\mathcal{H}}(\Sigma_{0,\alpha}) \leq d-1$ and

$$\mathcal{H}^{d-1}(\Sigma_{0,\alpha}) \leq C(d) \frac{\operatorname{Lip}(\phi) R^{d-1}}{\alpha}.$$

Comparison

On the singularities of convex functions

Theorem (Alberti, Ambrosio, Cannarsa, 1992): Let $k \in \{1, ..., d\}$. The set

$$\Sigma^k := \{ x \in \Omega \mid \dim_{\mathcal{H}}(\partial \phi(x)) \ge k \}$$

is countably \mathcal{H}^{d-k} -rectifiable. It satisfies

$$\int_{\Sigma^k} \mathcal{H}^k(\partial \phi(x)) d\mathcal{H}^{d-k}(x) \leq C(d) (\mathrm{Lip}(\phi) + 2R)^d.$$

This yields

$$\mathcal{H}^{d-1}(\Sigma_{0,\alpha}) \le C(d) \frac{(\operatorname{Lip}(\phi) + 2R)^d}{\alpha}$$

Comparison

On the singularities of convex functions

Theorem (Alberti, Ambrosio, Cannarsa, 1992):

Let $k \in \{1, \ldots, d\}$. The set

$$\Sigma^k := \{ x \in \Omega \mid \dim_{\mathcal{H}}(\partial \phi(x)) \ge k \}$$

is countably \mathcal{H}^{d-k} -rectifiable. It satisfies

$$\int_{\Sigma^k} \mathcal{H}^k(\partial \phi(x)) d\mathcal{H}^{d-k}(x) \leq C(d) (\mathrm{Lip}(\phi) + 2R)^d.$$

This yields

$$\mathcal{H}^{d-1}(\Sigma_{0,\alpha}) \leq C(d) \frac{(\operatorname{Lip}(\phi) + 2R)^d}{\alpha}.$$

General setting

Assumptions:

- ▶ Let R > 0 and let $\Omega = B(0, R) \subset \mathbb{R}^d$.
- Let $p \ge 2$ and $c(x,y) = \|x y\|^p$. Let $\varphi \in \mathcal{C}(\Omega)$ satisfying $\varphi = (\varphi^c)^{\bar{c}}$. Denote

$$T_{\varphi}: \mathbf{x} \mapsto \mathbf{x} - (\nabla \|\cdot\|^{p})^{-1}(\nabla \varphi(\mathbf{x})).$$

Let $M \in (0, +\infty)$.

Theorem:

- For any $\rho \in \mathcal{P}_{a.c.}(\Omega)$ s.t. $\rho \leq M$,
- ▶ For any $\tilde{\rho} \in \mathcal{P}(\Omega)$ and $\tilde{\gamma} \in \mathcal{P}(\Omega \times \Omega)$ s.t. $(p_1)_{\#}\tilde{\gamma} = \tilde{\rho}$ and $\operatorname{spt}(\tilde{\gamma}) \subset \partial^c \varphi$,
- For any $q \in (p-1,\infty)$ and $r \in (1,\infty]$

$$W_q((T_\varphi)_{\#}\rho,(p_2)_{\#}\tilde{\gamma}) \leq C(d,q,p,M,R)W_r(\rho,\tilde{\rho})^{\frac{r}{q(r+1)}},$$

where $C(d,q,p,M,R) \sim 2^{8(d+1)} p^3 \left(\frac{q}{q-p+1}\right)^{1/q} d^2 (1+\beta_d) (1+M_p) (1+R)^{2+p+d}$.

Thank you for your attention!

General setting

Assumptions:

- ▶ Let R > 0 and let $\Omega = B(0, R) \subset \mathbb{R}^d$.
- Let $p \ge 2$ and $c(x,y) = ||x-y||^p$. Let $\varphi \in \mathcal{C}(\Omega)$ satisfying $\varphi = (\varphi^c)^{\bar{c}}$. Denote

$$T_{\varphi}: x \mapsto x - (\nabla \|\cdot\|^p)^{-1} (\nabla \varphi(x)).$$

Let $M \in (0, +\infty)$.

Theorem:

- ▶ For any $\rho \in \mathcal{P}_{a.c.}(\Omega)$ s.t. $\rho \leq M$,
- ▶ For any $\tilde{\rho} \in \mathcal{P}(\Omega)$ and $\tilde{\gamma} \in \mathcal{P}(\Omega \times \Omega)$ s.t. $(p_1)_{\#}\tilde{\gamma} = \tilde{\rho}$ and $\operatorname{spt}(\tilde{\gamma}) \subset \partial^c \varphi$,
- ▶ For any $q \in (p-1, \infty)$ and $r \in (1, \infty]$

$$W_{q}((T_{\varphi})_{\#}\rho,(p_{2})_{\#}\tilde{\gamma}) \leq C(d,q,p,M,R)W_{r}(\rho,\tilde{\rho})^{\frac{r}{q(r+1)}},$$

where $C(d,q,p,M,R) \sim 2^{8(d+1)} p^3 \left(\frac{q}{q-p+1}\right)^{1/q} d^2 (1+\beta_d) (1+M_\rho) (1+R)^{2+p+d}$

Thank you for your attention!

General setting

Assumptions:

- ▶ Let R > 0 and let $\Omega = B(0, R) \subset \mathbb{R}^d$.
- Let $p \geq 2$ and $c(x,y) = ||x-y||^p$. Let $\varphi \in \mathcal{C}(\Omega)$ satisfying $\varphi = (\varphi^c)^{\bar{c}}$. Denote

$$T_{\varphi}: x \mapsto x - (\nabla \|\cdot\|^p)^{-1}(\nabla \varphi(x)).$$

Let $M \in (0, +\infty)$.

Theorem:

- ▶ For any $\rho \in \mathcal{P}_{a.c.}(\Omega)$ s.t. $\rho \leq M$,
- ▶ For any $\tilde{\rho} \in \mathcal{P}(\Omega)$ and $\tilde{\gamma} \in \mathcal{P}(\Omega \times \Omega)$ s.t. $(p_1)_{\#}\tilde{\gamma} = \tilde{\rho}$ and $\operatorname{spt}(\tilde{\gamma}) \subset \partial^c \varphi$,
- ▶ For any $q \in (p-1, \infty)$ and $r \in (1, \infty]$

$$W_{q}((T_{\varphi})_{\#}\rho,(p_{2})_{\#}\tilde{\gamma}) \leq C(d,q,p,M,R)W_{r}(\rho,\tilde{\rho})^{\frac{r}{q(r+1)}},$$

where $C(d,q,p,M,R) \sim 2^{8(d+1)} p^3 \left(\frac{q}{q-p+1}\right)^{1/q} d^2 (1+\beta_d) (1+M_\rho) (1+R)^{2+p+d}$.

Thank you for your attention!