Longitudinal Analysis for the effect of DAR-0100A

Lupe Antonio, Liner Ge

Columbia University Department of Biostatistics

SPRIS 2025

© COLUMBIA | MAILMAN SCHOOL
UNIVERSITY | of PUBLIC HEALTH

Outline

- Background
- Exploratory Data Analysis
- Main Analysis
- Sensitivity Analysis
- Conclusion

Outline

- $lue{1}$ Background
 - Cognitive deficits and DAR-0100A
 - Study design
 - Objectives
- 2 Exploratory Data Analysis
- Main Analysis
- 4 Sensitivity Analysis
 - The Rundown
 - Comparison among models fit on different data
 - Difference in treatment effects among full, complete, and missing data
- Conclusion

Cognitive deficits and DAR-0100A

Cognitive deficits are common problem among schizophrenia patients. DAR-0100A is an agonist that can stimulate dopamine-1 recepters in the brain. The goal of this study is to estimate whether DAR-0100A can improve cognitive deficits in schizophrenia patients.

Study design

A randomized clinical trial has been conducted. 47 clinically stable patients with schizophrenia has been recruited and randomized into 3 groups, high dose group, low dose group and placebo group.

For high dose group, low dose group and placebo group, 15mg DAR-0100A, 0.5mg DAR-0100A and normal saline were be administered via intravenous infusion respectively. The treatment conducted on day 1 to day 5 and day 15 to day 19 with an inpatient setting and at the end of day 19, patients were released. Patients were required to complete a battery of cognitive rating at day 0 (before treatment), day 5 (after treatment), day 19 (after treatment), and day 90.

Objectives

Primary objective

Assess whether low dose DAR-0100A or high dose DAR-0100A can improve memory (as measured by composite memory score) compared to placebo at each time point.

Secondary objective

- 1) Assess whether the treatment effect (as measured by change of composite memory score from baseline) changes over time within each group;
- 2) Assess whether the trajectory of treatment effect between time points differs between groups.

Outline

- Background
 - Cognitive deficits and DAR-0100A
 - Study design
 - Objectives
- Exploratory Data Analysis
- Main Analysis
- Sensitivity Analysis
 - The Rundown
 - Comparison among models fit on different data
 - Difference in treatment effects among full, complete, and missing data
- Conclusion

Subject characteristics by treatment group

		Treatment Group	
Variable	High dose , $N = 16^{1}$	Low dose, $N = 14^{1}$	Placebo, $N = 17^1$
Day			
0	16 (100 %)	14 (100 %)	17 (100 %)
5	15 (93.75 %)	13 (92.86 %)	17 (100 %)
19	13 (81.25 %)	9 (64.29 %)	13 (76.47 %)
90	10 (62.5 %)	10 (71.43 %)	11 (64.71 %)
Age	39.5 (23 , 54)	37.571 (21 , 49)	40.353 (20 , 54)
Gender			
Female	7 (43.75 %)	6 (42.86 %)	9 (52.94 %)
Male	9 (56.25 %)	8 (57.14 %)	8 (47.06 %)
¹ n (%); Me	an(Range)		

Figure 2.1: Summary statistics

Score over time by treatment group

Figure 2.2: Change of composite memory score over time by treatment group

Average score in missing vs. complete data

Figure 2.3: Average composite memory score over time by treatment group

LMM Model assumptions

Figure 2.4: Correlation matrix

LMM Model assumptions

Figure 2.5: Composite memory score distribution

Figure 2.6: Composite memory score Q-Q plot

Outline

- $lue{1}$ Background
 - Cognitive deficits and DAR-0100A
 - Study design
 - Objectives
- Exploratory Data Analysis
- Main Analysis
- 4 Sensitivity Analysis
 - The Rundown
 - Comparison among models fit on different data
 - Difference in treatment effects among full, complete, and missing data
- Conclusion

Linear mixed effect model

$$Y_{ij} = \beta_0 + \beta_1 \times Day_j + \beta_2 \times Group_i + \beta_3 \times Age_i + \beta_4 \times Gender_i + \beta_5 \times Day_j \times Group_i + b_{0i} + \xi_{ij}$$

- Y_{ij} denotes the composite memory score for *i*th patient at time *j*. $i = 1, 2, 3, \ldots, 47$ and j = 1, 2, 3, 4.
- Day_j denotes the time points when the composite memory score been measured, which is a categorical variable.
- $Group_i$ denotes the treatment group assigned to the *i*th patient, which is a categorical variable.
- Age_i denotes the age of the *i*th patient, which is a continuous variable.
- Gender_i denotes the gender the ith patient, which is a categorical variable.
- b_{0i} is the random intercept for the *i*th patient.

Coefficients

Table 3.1: Coefficients estimated by LMM with unconstructed correlation.

Value	Std.Error	P-value
0.8960	0.6204	0.1518
-0.0951	0.1410	0.5014
-0.2330	0.1581	0.1436
-0.1495	0.1688	0.3778
-0.0917	0.3423	0.7901
-0.1881	0.3276	0.5689
-0.0515	0.2120	0.8084
0.1749	0.2437	0.4745
0.2543	0.2468	0.3050
0.3860	0.2040	0.2215
0.6547	0.2240	0.0042
0.2993	0.2433	0.2215
	0.8960 -0.0951 -0.2330 -0.1495 -0.0917 -0.1881 -0.0515 0.1749 0.2543 0.3860 0.6547	0.8960

Primary objective:

Compare treatment effect between group

Definition 3.1

We define the **treatment effect** at time point j as change of memory score from baseline to time point j.

(Noted that by definition, there won't be treatment effect on day 0.)

Example 1 (Treatment effect for placebo group at day 5)

$$Y_{ij} = \beta_0 + \beta_1 \times \frac{\textbf{D}ay_j}{\textbf{D}ay_j} + \beta_2 \times Group_i + \beta_3 \times Age_i + \beta_4 \times Gender_i + \beta_5 \times \frac{\textbf{D}ay_j}{\textbf{D}ay_j} \times Group_i + b_{0i} + \xi_{ij}$$

Treatment effect at day 5 for group A: β_1^{d5}

Hypothesis testing

To determine whether there is treatment effect of placebo at the day 5, we test $H_0: \beta_1^{d5} = 0$ vs. $H_1: \beta_1^{d5} \neq 0$.

Table 3.2: Treatment effects of placebo group at each time point

Time point	Time point Parameter		P-value	
Day 5	eta_1^{d5}	-0.0951	0.5014	
Day 19	$eta_1^{ar{d}19}$	-0.2330	0.1436	
Day 90	eta_1^{d90}	-0.1495	0.3778	

Table 3.3: Treatment effects of low dose group at each time point

Time point	Parameter	Value	P-value
Day 5	$\beta_1^{d5} + \beta_5^{d5 \times B} \\ \beta_1^{d19} + \beta_5^{d19 \times B}$	-0.1466	0.3541
Day 19	$\beta_1^{d19} + \beta_5^{d19 \times B}$	-0.0581	0.8741
Day 90	$\beta_1^{d90} + \beta_5^{d90 \times B}$	0.1049	0.7840

Table 3.4: Treatment effects of high dose group at each time point

Time point	Parameter	Value	P-value
Day 5	$\beta_1^{d5} + \beta_5^{d5 \times C}$	0.2909	0.0484
Day 19	$\beta_1^{d19} + \beta_5^{d19} \times C$	0.4217	0.2333
Day 90	$\beta_1^{d90} + \beta_5^{d90 \times C}$	0.1498	0.6938

Results

Result 3.1

The treatment effect (0.2909, 95%CI: 0-0.58) of 15mg DAR-0010A on improving memory on day 5 is significantly different from 0 at a significant level of 0.05.

Difference in treatment effect between groups

Example 2 (Difference in treatment effect between low dose and placebo at group day 5)

$$Y_{ij} = \beta_0 + \beta_1 \times Day_j + \beta_2 \times Group_i + \beta_3 \times Age_i + \beta_4 \times Gender_i + \beta_5 \times Day_j \times Group_i + b_{0i} + \xi_{ij}$$

Treatment effect at day 5 for group A: β_1^{d5}

$$Y_{ij} = \beta_0 + \beta_1 \times \frac{Day_j}{Day_j} + \beta_2 \times \frac{Group_i}{Foundar} + \beta_3 \times Age_i + \beta_4 \times Gender_i + \beta_5 \times \frac{Day_j}{Day_j} \times \frac{Group_i}{Foundar} + b_{0i} + \xi_{ij}$$

Treatment effect at day 5 for group B: $\beta_1^{d5} + \beta_5^{d5 \times B}$ The difference in effect between group B and group A at day 5: $\beta_5^{d5 \times B}$

Results

Hypothesis testing

To determine whether the treatment effect is different between group B and group A at day 5, we test $H_0: \beta_5^{d5 \times B} = 0$ vs. $H_1: \beta_5^{d5 \times B} \neq 0$.

Table 3.5: Difference in treatment effect between treatment and placebo group at each time point

	Low Dose Group High		High Dos	se Group
Time Point	Estimate	P-value	Estimate	P-value
Day 5	-0.0515	0.8084	0.3860	0.0612
Day 19	0.1749	0.4745	0.6547	0.0043
Day 90	0.2544	0.3051	0.2993	0.2215

Results

Result 3.2

The treatment effect of 15mg DAR-0010A on improving memory is significantly higher (effect size: 0.3860, 90%CI: 0.05 - 0.72) than the effect of placebo at day 5 with a significant level of 0.1.

The power to detect a standard effect size of 1.89 with a sample size of 17 subjects in placebo group and 15 subjects in high dose group at a significant level of 0.1 is 100%.

Result 3.3

The treatment effect of 15mg DAR-0010A on improving memory is significantly higher (effect size: 0.6547, 95%CI: 0.22 - 1.09) than the effect of placebo at day 19 with a significant level of 0.05.

The power to detect a standard effect size of 2.92 with a sample size of 13 subjects in placebo group and 13 subjects in high dose group at a significant level of 0.05 is 100%.

Secondary objective 1) Change of treatment effect over time within group

Example 3 (Change of treatment effect from day 5 to day 19 within placebo group)

$$Y_{ij} = \beta_0 + \beta_1 \times Day_j + \beta_2 \times Group_i + \beta_3 \times Age_i + \beta_4 \times Gender_i + \beta_5 \times Day_j \times Group_i + b_{0i} + \xi_{ij}$$

Treatment effect at day 5 for group A: β_1^{d5}

$$Y_{ij} = \beta_0 + \beta_1 \times \frac{Day_j}{} + \beta_2 \times Group_i + \beta_3 \times Age_i + \beta_4 \times Gender_i$$

+ $\beta_5 \times \frac{Day_j}{} \times Group_i + b_{0i} + \xi_{ij}$

Treatment effect at day 19 for group A: β_1^{d19} The change of treatment effect from day 5 to day 19 for group A: $\beta_1^{d19} - \beta_1^{d5}$

Hypothesis testing

To determine whether there is a change of treatment effect from day 5 to day 19 for placebo group, we test $H_0: \beta_1^{d19} - \beta_1^{d5} = 0$ vs. $H_1: \beta_1^{d19} - \beta_1^{d5} \neq 0$.

Change	Parameter	Value	P-value
Day 19 - Day 5	$\beta_1^{d19} - \beta_1^{d5}$	-0.1379	0.2974
Day 90 - Day 5	$\beta_1^{d90} - \beta_1^{d5}$	-0.0544	0.6995
Day 90 - Day 19	$\beta_1^{\bar{d}90} - \beta_1^{\bar{d}19}$	0.0835	0.6622

Table 3.7: Treatment effects change over time within low dose group

Change	Parameter	Value	P-value
Day 19 - Day 5	$\beta_1^{d19} + \beta_5^{d19 \times B} - (\beta_1^{d5} + \beta_5^{d5 \times B})$	0.0886	0.5740
Day 90 - Day 5	$\beta_1^{d90} + \beta_5^{d90 \times B} - (\beta_1^{d5} + \beta_5^{d5 \times B})$	0.2515	0.1018
Day 90 - Day 19	$\beta_1^{d90} + \beta_5^{d90 \times B} - (\beta_1^{d19} + \beta_5^{d19 \times B})$	0.1630	0.4541

Table 3.8: Treatment effects change over time within high dose group

Change	Parameter	Value	P-value
Day 19 - Day 5	$\beta_1^{d19} + \beta_5^{d19 \times C} - (\beta_1^{d5} + \beta_5^{d5 \times C})$	0.1308	0.3269
Day 90 - Day 5	$\beta_1^{d90} + \beta_5^{d90 \times C} - (\beta_1^{d5} + \beta_5^{d5 \times C})$	-0.1411	0.3393
Day 90 - Day 19	$\beta_1^{d90} + \beta_5^{d90 \times C} - (\beta_1^{d19} + \beta_5^{d19 \times C})$	-0.2719	0.1561

Secondary objective 2) Difference in trajectory between groups

Example 4 (Difference in the trajectories from day 5 to day 19 between low dose group and placebo group)

$$Y_{ij} = \beta_0 + \beta_1 \times Day_j + \beta_2 \times Group_i + \beta_3 \times Age_i + \beta_4 \times Gender_i + \beta_5 \times Day_j \times Group_i + b_{0i} + \xi_{ij}$$

Trajectory from day 5 to day 19 for group A: $\beta_1^{d19} - \beta_1^{d5}$

$$Y_{ij} = \beta_0 + \beta_1 \times \frac{Day_j}{} + \beta_2 \times \frac{Group_i}{} + \beta_3 \times Age_i + \beta_4 \times Gender_i$$

+ $\beta_5 \times \frac{Day_j}{} \times \frac{Group_i}{} + b_{0i} + \xi_{ij}$

Trajectory from day 5 to day 19 for group B:

$$\beta_1^{d19} + \beta_5^{d19 \times B} - (\beta_1^{d5} + \beta_5^{d5 \times B})$$

The difference in the trajectories from day 5 to day 19 between low dose group and placebo group: $\beta_5^{d19\times B}-\beta_5^{d5\times B}$

Difference in trajectory between groups

Hypothesis testing

To determine whether there is difference in trajectory from day 5 to day 19 between low dose group and placebo group, we test

$$H_0: \beta_5^{d19 \times B} - \beta_5^{d5 \times B} = 0 \text{ vs. } H_1: \beta_5^{d19 \times B} - \beta_5^{d5 \times B} \neq 0.$$

Table 3.9: Difference in trajectories between low dose group and placebo group

Trajectory	Parameter	Value	P-value	
Day 5 to Day 19	$\beta_5^{d19\times B} - \beta_5^{d5\times B}$	0.2265	0.2710	
Day 5 to Day 90	$\beta_5^{d90\times B} - \beta_5^{d5\times B}$	0.3059	0.1423	
Day 19 to Day 90	$\beta_5^{d90\times B} - \beta_5^{d19\times B}$	0.0794	0.7840	

Difference in trajectory between groups

Table 3.10: Difference in trajectories between high dose group and placebo group

Trajectory	Parameter	Value	P-value
Day 5 to Day 19 Day 5 to Day 90 Day 19 to Day 90	$\beta_5^{d19 \times C} - \beta_5^{d5 \times C}$ $\beta_5^{d90 \times C} - \beta_5^{d5 \times C}$ $\beta_5^{d90 \times C} - \beta_5^{d19 \times C}$	0.2687 -0.0867 -0.3554	0.1527 0.6709 0.1892

Outline

- Background
 - Cognitive deficits and DAR-0100A
 - Study design
 - Objectives
- Exploratory Data Analysis
- Main Analysis
- 4 Sensitivity Analysis
 - The Rundown
 - Comparison among models fit on different data
 - Difference in treatment effects among full, complete, and missing data
- Conclusion

Sensitivity Analysis

The Linear Mixed Effect Model with random intercept

$$Y_{ij} = \beta_0 + \beta_1 \times Day_j + \beta_2 \times Group_i + \beta_3 \times Age_i + \beta_4 \times Gender_i$$

+ $\beta_5 \times Day_j \times Group_i + b_{0i} + e_{ij}$

was fit on the following datasets:

- Original data
- Complete data; subjects with all 4 days reported
- Missing data; subjects with at least 1 day not reported

Coefficient comparison among models/data

	1	Main Model		C	omplete Data		If Any Missing		
Predictors	Estimates	CI	p	Estimates	CI	p	Estimates	CI	p
(Intercept)	0.90	-0.33 - 2.13	0.152	-0.21	-2.16 – 1.74	0.831	1.42	-0.28 - 3.12	0.099
day [5]	-0.10	-0.37 - 0.18	0.501	-0.21	-0.60 - 0.17	0.277	0.01	-0.44 - 0.46	0.973
day [19]	-0.23	-0.55 - 0.08	0.144	-0.35	-0.71 - 0.02	0.062	-0.24	-0.88 - 0.40	0.453
day [90]	-0.15	-0.48 - 0.19	0.378	-0.23	-0.66 - 0.21	0.296	0.09	-0.62 - 0.80	0.797
Age	-0.02	-0.05 - 0.01	0.165	-0.00	-0.05 - 0.05	0.962	-0.03	-0.07 - 0.01	0.162
Gender [M]	0.02	-0.51 – 0.55	0.952	0.21	-0.54 - 0.97	0.566	-0.19	-1.03 - 0.65	0.647
Treatment Group [B]	-0.09	-0.78 - 0.60	0.790	0.05	-0.95 – 1.05	0.919	-0.05	-1.13 – 1.02	0.919
Treatment Group [C]	-0.19	-0.85 - 0.47	0.569	-0.06	-0.98 - 0.86	0.898	-0.27	-1.33 - 0.80	0.605
day [5] \times Treatment Group [B]	-0.05	-0.47 – 0.37	0.808	0.10	-0.47 – 0.66	0.731	-0.25	-0.92 – 0.43	0.467
day [19] × Treatment Group [B]	0.17	-0.31 – 0.66	0.475	0.35	-0.19 – 0.88	0.202	-0.10	-1.15 – 0.95	0.851
day [90] × Treatment Group [B]	0.25	-0.24 – 0.74	0.305	0.30	-0.33 – 0.94	0.346	0.38	-0.64 – 1.40	0.456
day [5] \times Treatment Group [C]	0.39	-0.02 – 0.79	0.061	0.39	-0.14 – 0.92	0.147	0.38	-0.30 – 1.06	0.260
day [19] × Treatment Group [C]	0.65	0.21 – 1.10	0.004	0.65	0.14 – 1.15	0.013	0.88	-0.07 – 1.82	0.06
day [90] × Treatment Group [C]	0.30	-0.18 – 0.78	0.221	0.26	-0.34 – 0.86	0.385	0.78	-0.56 – 2.12	0.245

Key Points

Key Points

- At $\alpha=0.05$, the interaction term is no longer significant, but is significant at $\alpha=0.1$.
- The confidence intervals for the coefficients among all models overlap.

Hypothesis testing

To determine whether there is treatment effect of placebo at the day 5, we test $H_0: \beta_1^{d5} = 0$ vs. $H_1: \beta_1^{d5} \neq 0$.

Table 4.1: Treatment effects of placebo group at each time point

Time point	Parameter	Value	P-value	C.Value	C.P-value
Day 5	β_1^{d5}	-0.0951	0.5014	-0.2122	0.2768
Day 19	eta_1^{d19}	-0.2330	0.1436	-0.3476	0.0623*
Day 90	β_1^{d90}	-0.1495	0.3778	-0.2290	0.2959

^{*}At $\alpha=0.10$ level, becomes significant. Suggest there is a treatment effect of placebo at Day 19 in the complete data.

Treatment effect of high dose group

Table 4.2: Treatment effects of high dose group at each time point

Time point	Parameter	Value	P-value	C.Value	C.P-value
Day 5	$\beta_1^{d5} + \beta_5^{d5 \times C}$	0.2909	0.0484	0.1778	0.3296
Day 19		0.4217	0.2333	0.2985	0.4611
Day 90	$\beta_1^{d90} + \beta_5^{d90 \times C}$	0.1498	0.6938	0.0321	0.9467

M.Value	M.P-value
0.3892	0.1160
0.6383	0.3719
0.8697	0.3289

Table 4.3: Difference in treatment effect between high dose and placebo group at each time point

	Fu	II	Comp	olete
Time Point	Estimate	P-value	Estimate	P-value
Day 5	0.3860	0.0612	0.3899	0.1474
Day 19	0.6547	0.0043	0.6461	0.0127
Day 90	0.2993	0.2215	0.2611	0.3852

Missing				
Estimate	P-value			
0.3815	0.2597			
0.8781	0.0670			
0.7793	0.2448			

Table 4.4: Treatment effects change over time within low dose group

Change	Parameter	Value	P-value
Day 19 - Day 5	$\beta_1^{d19} + \beta_5^{d19 \times B} - (\beta_1^{d5} + \beta_5^{d5 \times B})$	0.0886	
Day 90 - Day 5	$\beta_1^{d90} + \beta_5^{d90 \times B} - (\beta_1^{d5} + \beta_5^{d5 \times B})$	0.2515	0.1018
Day 90 - Day 19	$\beta_1^{d\bar{9}0} + \beta_5^{d\bar{9}0 \times B} - (\beta_1^{d\bar{1}9} + \beta_5^{d\bar{1}9 \times B})$	0.1630	0.4541

M.Value	M.P-value
-0.1001	0.7316
0.7045	0.0080
0.8046	0.0400

At $\alpha=0.05$ level, differences in treatment effects among Day 90 and 5 and Day 90 and 19 are significant in missing data.

Outline

- $lue{1}$ Background
 - Cognitive deficits and DAR-0100A
 - Study design
 - Objectives
- Exploratory Data Analysis
- Main Analysis
- 4 Sensitivity Analysis
 - The Rundown
 - Comparison among models fit on different data
 - Difference in treatment effects among full, complete, and missing data
- Conclusion

Discussions

- Things to consider regarding study design:
 - Choice of low dose drug level (0.5mg) vs high dose drug level (15mg)
 - Subjects with incomplete data have higher memory scores; why?
- Missingness seems to affect treatment effects.
 - Some treatment effects were not significant in the full model, but significant in sub-datasets.
- Interestingly, some treatment effects are not significant in subset datasets, but become significant in full data; could be due to sample size.
- Further work can be done to impute missing data in order to use full data.
- Potential reasons why treatment effects were significant:
 - Drug or dose level is ineffective.
 - Composite memory test does not capture the effect well.

Thank you!