Математический анализ. 1 семестр.

Часть І

Введение. Логика. Понятие функции

1 Алгебра высказываний

Высказывание - суждение, которым можно приписать истину или ложь.

1.1 Логические операции

Импликация $A \Rightarrow B(\text{if } A \text{ then } B)$

Эквиваленция $A \Leftrightarrow B \ (A, \text{ тогда и только тогда, когда } B)$

1.2 Законы логических операций

Коммутативность

$$(A \lor B) \Leftrightarrow (B \lor A) \tag{1}$$

(2)

(4)

(6)

$$(A \wedge B) \Leftrightarrow (B \wedge A)$$

Ассоциативность

$$((A \lor B) \lor C) \Leftrightarrow (A \lor (B \lor C)) \tag{3}$$

$$((A \land B) \land C) \Leftrightarrow (A \land (B \land C))$$

Дистрибутивность

$$(A \land (B \lor C)) \Leftrightarrow ((A \land B) \lor (A \land C)) \tag{5}$$

$$(A \lor (B \land C)) \Leftrightarrow ((A \lor B) \land (A \lor C))$$

Законы поглощения

$$A \lor 1 \Leftrightarrow 1 \tag{7}$$

$$A \lor 0 \Leftrightarrow A$$
 (8)

$$A \wedge 1 \Leftarrow A \tag{9}$$

$$A \wedge 0 \Leftarrow 0 \tag{10}$$

$$A \lor A \Leftrightarrow A \Leftrightarrow A \land A \tag{11}$$
$$A \lor \overline{A} \Leftrightarrow 1 \tag{12}$$

$$A \vee \overline{A} \Leftrightarrow 1 \tag{12}$$

$$A \wedge \overline{A} \Leftarrow 0 \tag{13}$$

$$\overline{\overline{A}} \Leftrightarrow A$$
 (14)

Силлогизм

$$(A \Rightarrow B) \land (B \Rightarrow C) \Rightarrow (A \Rightarrow C) \tag{15}$$

Законы де Моргана ы

$$\overline{(A \vee B)} \Leftrightarrow (\overline{A} \wedge \overline{B}) \tag{16}$$

$$\overline{(A \wedge B)} \Leftrightarrow (\overline{A} \vee \overline{B}) \tag{17}$$

$$(A \Rightarrow B) \Leftrightarrow (\overline{A} \lor B) \tag{18}$$

$$\overline{(A \Rightarrow B)} \Leftrightarrow (A \land \overline{B}) \tag{19}$$

Закон контропозиции

$$(A \Rightarrow B) \Leftrightarrow (\overline{B} \Rightarrow \overline{A}) \tag{20}$$

1.3 Предикаты. Кванторы.

Предикат - суждения, зависящие от переменной величины и становящиеся высказыванием при определенного значения. P(x), P(x, y)- одноместный и двухместный предикат соответственно.

∀ (любой, для любого)

∃ (существует)

Понятие функции

Функция на Wikipedia

Пусть X, Y множества.

Правило, которое каждому элементу множества X ставит элемент из множества Y называется функцией, со значениями во множестве Y.

Однозначная функция ставит каждому $x \in X$ только один $y \in Y$.

Множество X - область определения функции – D(f).

Множество Y - область значений этой функции.

График функции f(x) - это множество упорядоченных пар:

 $\{(x, f(x)) : x \in X \land f(x) \in Y\}.$

2.1Образ и прообраз функции

Если $A \subset X$, то $f(A) = \{f(x) : x \in A\}$ - образ множества A, при $f: X \to Y$ Если $B \subset Y$, то $f^{-1}(A) = \{x : f(x) \in B\}$ - прообраз множества B, при $f : X \to Y$

2.2Поведение функций

Инъекция $f: X \to Y$

f - инъекция, если

 $\forall x_1, x_2 : x_1 \neq x_2 \rightarrow f(x_1) \neq f(x_2)$

Сюръекция $f: X \to Y$ - сюръекция, если

 $\forall y \in Y \exists x \in X : f(x) = y$, например $f(x) = x^3$.

Биекция $f: X \to Y$ - биекция, если она и инъективна, и сюръективна. Например, f(x) = ax + b; f(x) = tg(x) биекция на всю числовую ось $y, x \in [-\pi/2; \pi/2].$

Если существует биекция одного множества на другое, то между этими множествами можно установить взаимно-однозначные соответствия: $1 \to 1$.

2.3 Суперпозиция

Пусть, $f(x): X \to Y; g(x): Y \to Z$, тогда $\forall x \in X: g(f(x)) \in Z: X \to Z$ суперпозиция $gf: X \to Z$.

Например, пусть $f(x) = x^2$; g(x) = sin(x), тогда $gf(x) = sin(x^2)$; $fg(x) = sin^2(x)$.

Математическая индукция

Пусть есть $P(n), n \in N$, если $P(1) = 1 \land \forall ninN : P(n) = 1 \rightarrow P(n+1) = 1$, то $\forall n \in N : P(n) = 1$, где P(n) - предикат. P(1) - база индукции (проверяется)

P(n) - предположение

 $P(n) \rightarrow P(n+1)$ - шаг индукции (доказывается)

Пример Доказать: $p=1+2+3+\cdots+n=\frac{n(n+1)}{2}$ 1) В.и.: $n=1:1=\frac{1*2}{2}\to 1=1$

- 2) Пусть $\frac{n(n+1)}{2}$ верно.

 $1+2+3+\cdots+n+(n+1)=rac{n(n+1)}{2}+(n+1)=rac{(n+1)(n+2)}{2}.$ Что и т.д.

Эквивалентная формулировка мат. индукции Пусть $P(n), n \in N$ - предикат и $P(1) - 1 \land (\forall : P(k) = 1, k \le n) \rightarrow P(n+1) = 1$, тогда $P(n) = 1, n \in \mathbb{N}$.

2.5 Бином Ньютона

$$(a+b)^n = \sum_{k=0}^n c_n^k a^{n-k} b^k,$$
 где $C_n^k = \frac{n!}{k!(n-k)!}$

Часть П

Множества

3 Понятие множества

Множество является фундаментальным понятием в математике и является не определяемым. Множество есть совокупность объектов, которые составляют единое целое. Например, отрезок - множество точек от a до b: $[a,b]=\{x\in R:a\leq x\leq b\}$ $b \in B$, b есть элемент во множестве B

4 Операции над множествами

$$A \subset B$$
, если $\forall a : (a \in A) \to (a \in B)$ (21)

$$X = Y$$
если $\forall x : (x \in X \to x \in Y) \land (x \in Y \to x \in X)$ (22)

Объединение
$$A \cup B = \{x : x \in A \lor x \in B\}$$
 (23)

Пересечение
$$A \cap B = \{x : x \in A \land x \in B\}$$
 (24)

Pазность
$$X \setminus Y = \{x : x \in X \land x \notin Y\}$$
 (25)

Универсальное множество Пустое множество Ø не содержит элементов и является эквивалентом лжи в логике. U - универсальное множество (множество всех элементов в данной задаче), является эквивалентом истины.

4.1 Дополнение к множеству

$$\overline{x} = \{x \in U : (x \notin X)\} = U \setminus X \tag{26}$$

5 Законы для множеств

5.1 Поглощение

$$X \cap (X \cup Y) = X \tag{27}$$

$$X \cup (X \cap Y) = Y \tag{28}$$

$$X \cup X = X \tag{29}$$

$$X \cap X = X \tag{30}$$

(31)

5.2 Преобразование разности

$$X \setminus Y = X \cap \overline{Y} \tag{32}$$

6 Декартово умножение

Упорядоченная пара (a,b) - упорядоченная пара, пара, в которой все элементы следуют в строго определенном порядке.

6.1 Определение умножения

$$X \times Y = \{(a,b) : x \in X \land y \in Y\}$$

$$(33)$$

7 Бинарные отношения

Пусть ρ - множество отношений, X,Y - произвольные множества, тогда произвольные подмножества декартового произведения $\rho \in X \times Y$ называются бинарными отношениями между $x \in X$ и $y \in Y$.

7.1 Свойства отношений

- 1. $\forall x \in X : (x, x) \in \rho$ рефлексивность.
- 2. $\forall x, y \in X : (x, y) \in \rho \rightarrow (y, x) \in \rho$ симметричность.
- 3. $\forall x,y \in X, x \neq y: (x,y) \in \rho \rightarrow (y,x) \notin \rho$ асимметричность.
- 4. $\forall x, y, x \in X : (x, y) \in \rho \land (y, z) \in \rho \rightarrow (x, z) \in \rho$

Классы отношений К первому классу отношений (отношения эквивалентности) относятся все отношения которые удовлетворяют 1, 2 и 4 свойствам (Быть одного пола, возраста). Ко второму классу (отношения порядка) относятся все, удовлетворяющие свойствам 1, 3 и 4.

8 Мощность множества. Эквивалентные множества.

Пусть A и B - конечные множества.

Определение эквивалентности A, B эквивалентные $(A \sim B)$, если между элементами этих множеств можно установить взаимно однозначные соответствия (1-1).

 $A \sim B$ есть отношение эквивалентности на классе множеств.

- 1) Если $A \sim B$, то $B \sim A$.
- 2) Если $A \sim B \wedge B \sim C \rightarrow A \sim C$

Пример
$$A = N, B = \{2n | n \in N\} \rightarrow A \sim B$$

Понятие мощности Мощность множества есть число элементов в этом множестве: $|A| = |B| = 3 \Leftrightarrow A \sim B$

9 Счетные множества

9.1 Определение

A - счетное множество, если $A \sim N$, где N - множество натуральных чисел.

 $|N|=\omega_0=\omega$ - обозначения мощности множества N

9.2 Свойства

Теорема 1 A - счетное множество $\Leftrightarrow A = \{a_1, a_2, \dots, a_n\}$

Доказательство
$$\Rightarrow f: N \to A; a_n = f(n)$$
 $\Leftarrow A = a_1, a_2, a_3, \ldots; f(n) = a_n: N \to A$

Теорема 2 Объединение счетного числа конечных множеств счетно. Пусть $A_n, n \in N$, тогда $|\bigcup_{n=1}^{\infty} A_n| = \omega$

Доказательство
$$A_1=\{a_1^1,a_2^1,a_3^1,\dots,a_n^1\}$$
 $A_2=\{a_1^2,a_2^2,a_3^2,\dots,a_n^2\}$

 $A_3 = \{a_1^k, a_2^k, \dots, a_n^k\}$, объединив все множества, элементы этого объединения можно будет перенумеровать, следовательно объединение счетно.

Теорема 3 Объединение двух счетных множеств счетно. $|A| = |B| = \omega$, тогда $C = A \cup B \to |C| = \omega$

Следствие Объединение любого конечного числа счетных множеств счетно.

Теорема 4 Объединение счетного числа счетных множеств счетно. Пусть $\{A_n\}_{n=1}^{\infty}, \forall n: |A_n|=\omega, \text{ тогда } |\cup_{n=1}^{\infty} A_n|=\omega$

Следствие Декартово произведение двух счетных множеств счетно. Пусть $|A|=\omega; |B|=\omega,$ тогда $|A\times B|=\omega$

Теорема 5 Пусть B - бесконечное множество, $|A| = \omega$, тогда $A \cup B \sim B$.

Доказательство Пусть $C = \{c_1, c_2, \dots, c_n, \dots\} \subset B$ - счетное подмножество бесконечного множества В. $C' = \{c_1, c_3, c_5, \dot{\mathbf{j}}, C'' = \{c_2, c_4, c_6, \dots\}$. Тогда, $(B \setminus C) \cup C \sim B$; $(B \setminus C) \cup C' \sim B$, так как $C \sim C'$; $(B \setminus C) \cup C' \sim ((B \setminus C) \cup C') \cup C'' \sim B \cup C'' \sim B \cup A$.

Теорема 6 Если B - бесконечное несчетное множество, тогда $B \setminus C \sim B$, где C - счетное конечное подмножество B.

Доказательство О.П. Пусть $|B \setminus C| = \omega$, тогда $B = (B \setminus C) \cup C$, по теореме $3 |B| = \omega$, что противоречит тому, что B - бесконечное множество.

10 Разбиение на множества

Пусть $K = \{k_i\}_{i \in I}$ - семейство подмножеств (множество множеств) множества X. Тогда K - разбиение X, если:

- $\forall i: K_i \neq \emptyset$
- $\bullet \cup_{i \in I} K_i = X$
- $\exists x \in K_i \cup K_j \to K_i = K_j$

Разбиение K задает отношение эквивалентности на I.

Теорема Пусть X - множество, ρ - отношение эквивалентности на X, тогда существует разбиение K, такое, что $\rho = K_i$.

11 Действительное число

Множества чисел $N = \{1, 2, 3, 4, \dots\}$ - множество натуральных чисел.

 $Z = \{\dots, -2, -1, 0, 1, 2, \dots\}$ - множество целых чисел.

 $Q = \{\frac{m}{n} : n \in N \vee m \in Z\}$ - множество рациональных чисел.

R - множество вещественных чисел.

11.1 Определение множества действительных чисел

- Аксиоматический. Для определения множества с помощью этого подхода необходимо доказать непротиворечивость аксиом с помощью конкретной модели.
- Конкретная модель: сечение Дедекинда; фундаментальные последовательности; бесконечная десятичная дробь.

Доказать, что $\sqrt{2}$ - не рациональное число. Пусть $\sqrt{2} \in Q \to \sqrt{2} = \frac{m}{n}$ - не сокращаемая дробь. Возведем в квадрат обе части выражения: $2 = \frac{m^2}{n} \to 2n^2 = m^2 \Rightarrow m$ - четное, пусть $m = 2k, \to 2n^2 = 4k^2 \to n^2 = 2k^2$ - противоречие, дробь сокращается.

11.2 Аксиоматическое определение

Множество вещественных чисел есть объект, который удовлетворяет следующим аксиомам.

11.2.1 І Аксиомы порядка

 $\forall a,b \in R$: определены следующие аксиомы.

- 1. $\forall a, b \in R$: имеет место ровно одно из отношений: $a > b \lor a < b \lor a = b$.
- 2. $\forall a, b, c \in R : (a < b \land b < c) \Rightarrow a < c$.
- 3. Если a < b, то $\exists c \in R : a < c < b$.

11.2.2 II Аксиомы сложения

 $\forall a, b \in R$: определена сумма $(a+b) \in R$, которая удовлетворяет следующим аксиомам.

- 1. a + b = b + a.
- 2. (a+b) + c = a + (b+c).
- 3. $\exists 0 \in R : a + 0 = a$.
- 4. $\forall a \in R : \exists (-a) : a + (-a) = 0.$
- 5. $\forall a, b, c \in R, a < b : (a + c) < (b + c).$

11.2.3 III Аксиомы умножения

 $\forall a,b \in R, ab \in R$ определены следующие аксиомы.

- 1. ab = ba.
- $2. \ a(bc) = (ab)c.$
- 3. $\exists 1 \in R : \forall a \in R : a * 1 = a$.
- 4. $\forall a \in R, a \neq 0 \exists : \frac{1}{a} \in R : a \frac{1}{a} = 1.$
- 5. $\forall a, b, c \in R : (a+b)c = ac + bc$.
- 6. $\forall a, b, c \in R, (a < b) \land (c > 0) : ac < b.$

11.2.4 VI Аксиома Архимеда

 $\forall c > 0 : \exists n \in N : n > c$

11.2.5 V Аксиома

Пусть X,Y - множества, $\forall x \in X, y \in Y: x < y$, тогда $\exists c \in R: x \leq c \leq y$.

11.3 Следствия из аксиом

Для множества Z действительны аксиомы I (кроме 3), II, III (кроме 4), IV.

7

Для множества Q действительны все аксиомы, кроме V.

Для множества R действительны все аксиомы.

Следствие 1 $a>b, c>d\Rightarrow a+c>b+c.$

Следствие 2 Если a > 0, то -a < 0 (Равно обратное)

Доказательство Пусть -a > 0, тогда a + (-a) > 0, но a + (-a) = 0, что противоречит неравенству.

Следствие 3 0 и 1 - единственны.

Доказательство Пусть есть 0_1 и 0_2 , тогда $0_1 = 0_1 + 0_2 = 0_2$.

Следствие 4 -a и $\frac{1}{a}$ - единственны.

Доказательство Пусть есть $(-a)_1$ и $(-a)_2$, тогда $a+(-a)_1=a+(-a)_2=0$ - по аксиоме II 4. Пусть есть a_1 и a_2 , тогда $a_1\frac{1}{a_1}=a_2\frac{1}{a_2}=1$ - по аксиоме III 4.

Разность и частное a-b=c, где c такое, что a=b+c. $\frac{a}{b}=c$, где c такое, что a=bc.

Следствие 5 a-b и $\frac{a}{b}$ - единственны

Следствие 6 1 > 0.

Следствие 7 -a = (-1)a.

Доказательство 1a + (-1)a = a(1-1) = a0 = 0.

11.4 Аксиома Архимеда и ее следствия

Аксиома А. $\forall c > 0 : \exists n \in N : n > c$.

Теорема $\forall x \in R, h \in R, h > 0: \exists k_0 \in Z: (k_0 - 1)h \le x \le k_0 h$

Доказательство Пусть есть множество $X = \{k \in Z : k > \frac{x}{h}\}$ и $k_0 = \min X$ - минимальный элемент этого множества. Тогда, если $k_0 > \frac{x}{h}$, то $k_0 - 1 \le \frac{x}{h}$.

Следствие 1 $\forall \epsilon > 0 : \exists n_0 \in N : n_0 < \frac{1}{n_0} < \epsilon.$

Доказательство Зафиксируем x=1. Если $k=\epsilon$, то $n_0=k_0$.

Доказательство Если $x < \frac{1}{n}$, так как n принадлежит множеству натуральных чисел, то x = 0 при любых n (минимальное значение дроби равно единице).

Следствие 3 $\forall a, b \in R, (a < b) : \exists r \in Q : a < r < b.$

Доказательство С3 b-a>0, тогда $\exists n_0 \in N: \frac{1}{n_0} < b-a. \exists k_0: a < k_0 \frac{1}{n_0} \land (k_0-1) \frac{1}{n_0} \leq a$ $b>\frac{1}{n_0}+a\geq \frac{k_0}{n_0}$ $a<\frac{k_0}{n_0} < b.$

Следствие 4 $\forall a, b \in R \exists \gamma \in R \setminus Q : a < \gamma < b. R \setminus Q$ - множество иррациональных чисел.

11.5 Понятие стабилизации

Пусть m_n - последовательность целых чисел. Будем говорить, что m_n стабилизируется к некоторому числу $m \in Z$, если $\exists k \in N : \forall n', n'' > k : m_{n'} = m_{n''}$. Обозначение: $m_n \rightrightarrows m$. 0, 5, 5, 5 - стабилизируется к 5. $\{a_n\}_{n=1}^{\infty}$ - последовательность вещественных чисел.

```
a_1 = \alpha_0^1, \alpha_1^1 \alpha_2^1 \dots \alpha_k^1 \dots
a_2 = \alpha_0^2, \alpha_1^2 \alpha_2^2 \dots \alpha_k^2 \dots
\vdots
a_n = \alpha_0^n, \alpha_1^n \alpha_2^n \dots \alpha_k^n \dots
```

Последовательность стабилизируется к числу $a=\gamma_0,\gamma_1\dots$, если $\forall k\in Na_k^n \rightrightarrows \gamma_k$

11.5.1 Лемма о стабилизации последовательности

Если последовательность неубывающая и ограничена сверху, то она стабилизируется к некоторому числу. Пусть $a_n \in R$, $a_n \nearrow$ и ограничена сверху числом m, тогда $a_n \rightrightarrows a \leq m$.

Из леммы следует, что если последовательность не возрастает и ограничена снизу, то она тоже стабилизируется к некоторому числу. $a \ge m$.

11.6 Конкретная модель множества действительных чисел

11.6.1 Последовательности

Определение 1 Пусть X - множество, N - множество натуральных чисел. Отображение $f: N \to X$ называется последовательностью элементов множества X. $f(n) = x_n$, где $x_n \in X$. $\{X\}_{n=1}^{\infty}$ - множество всех элементов последовательности.

Пример $1, 1, 1, 1, \dots$ - бесконечная последовательность состоящая из одного элемента. $1, 0, 1, 0, 1, \dots$ - бесконечная последовательность состоящая из двух элементов.

Определение 2 Последовательность $\{x_n\}_{n=1}^{\infty} \subset N$ называется периодической, если $\exists N_e, m_0$, что $\forall n \geq N_e : x_{n+km_0}$ где $k \in N$ - произвольное число.

Примеры
$$x_1, x_2, \dots, x_{n-1}, x_n, x_{n+1}, x_{n+2}, \underbrace{\dots}_{m_0}, x_n, x_{n+1}, x_{n+2}$$

Mножество значений элементов периодической последовательности конечно. Однако, последовательности состоящие из конечного множества элементов необязательно периодические, например, $0, 1, 0, 0, 1, 0, 0, 1, \dots$

11.6.2 Вещественное число

Десятичная дробь $a \in R = \alpha_0, \alpha_1 \alpha_2 \dots$, где $\alpha_0 \in Z, \alpha_k \in \{0, 1, \dots, 9\}$ - бесконечная десятичная дробь. $\alpha_0, 000 \dots$ - целое число в виде десятичной дроби. $\frac{m}{n}$ - рациональное число можно представить в виде десятичной дроби.

Перевод рационального числа в десятичную дробь Пусть $x = 3, 333 \cdots = 3, (3) \Rightarrow 10x = 33, (3) \Rightarrow 10x - x = 9x = 30 \Rightarrow x = \frac{30}{9} = \frac{10}{3}$. Исключение, пусть $x = 0, (9) \Rightarrow 10x = 9, (9) \Rightarrow 10x - x = 9x = 9 \Rightarrow x = 1$.

На заметку $\frac{m}{n} \in Q$ - является периодической дробью. Если $a = 0,010010001\dots$, то она является десятичной не периодической дробью - $a \in R \setminus Q$ - иррациональным числом.

11.6.3 Умножение и сложение вещественных чисел

Срезка числа $a^{(n)}$ - n-ая срезка числа a. $a^{(n)}=\alpha_0,\alpha_1\alpha_2\dots\alpha_n000\dots\in Q$ $a^{(n)}\rightrightarrows a$

Операции Рассмотрим такие $a = \alpha_0, \alpha_1 \alpha_2 \cdots > 0$ и $b = \beta_0, \beta_1 \beta_2 \cdots > 0$.

- $\bullet \ a^{(n)} + b^{(n)} \Longrightarrow a + b$
- $a^{(n)} (b^{(n)} + 10^{-1}) \Rightarrow a b$
- $\bullet \ \frac{a^{(n)}}{b^{(n)} + 10^{-1}} \Longrightarrow \frac{a}{b}$

11.6.4 Виды последовательностей

 $X = \{a_n\}_{n=1}^{\infty} \nearrow$ - не убывает, если $a_n \leq a_{n+1} \nearrow$; возрастает, если $a_n < a_{n+1}$; не возрастает, если $a_n \geq a_{n+1} \searrow$; убывает, если $a_n > a_{n+1} \searrow$.

* Если a > 0, то $a^{(n)} \nearrow$

11.6.5 Ограничение сверху

 $\{a_n\}_{n=1}^{\infty}$ ограничена сверху числом m, если $\forall n \in N : a_n \leq m$. * Если a > 0, то $a^{(n)}$ ограничена сверху числом a.

11.7 Вложенные отрезки

 $I_m = [a_n, b_n]$ - последовательность отрезков, которая называется вложенной, если $\forall n \in N : I_{n+1} < I_n$.

11.7.1 Лемма Кантора о вложенных отрезках

Предел Числовая последовательность $a_n \to 0$, при $n->\infty$ ($\lim_{n\to\infty} a_n=0$), если $\forall \epsilon>0 \exists N: \forall n>N: |a_n|<\epsilon$.

Лемма Пусть I_n - последовательность вложенных отрезков, тогда $\bigcap_{n=1}^{\infty} I_n \neq \emptyset$. При этом, если $\lim_{n \to \infty} (b_n - a_n) = 0$, то $\bigcap_{n=1}^{\infty} I_n = \{c\}$, где c некоторая точка.

Доказательство Рассмотрим последовательность левых концов $a_n \nearrow$, ограниченную сверху. Тогда, по лемме о стаб. последовательности: $a_n \rightrightarrows a$, где a - некоторое число $\Rightarrow \forall n, m \in N : a \geq a_n \land a \leq b_m$. Аналогично: последовательность $b_n \searrow$, ограниченная снизу $\Rightarrow \forall m, n \in N : b < b_m \land b \geq a_n$.

Из этого следует, что $a_n \leq a \leq b \leq b_m$. $[a;b] \subset I_n$. $\forall n \in N : [a;b] \cap_{n=1} \infty I_n$.

Замечание В формулировке теоремы отрезки нельзя заменить интервалами $(0, \frac{1}{n})$ - последовательность вложенных интервалов. Д: О.П. $x \in \cap_{n=1}^{\infty}(0, \frac{1}{n}); \ x > 0 \ \exists n_0 : \frac{1}{n_0} < x \ x \notin (0, \frac{1}{n_0}) \Rightarrow x \in \cap (\dots).$

Замечание 2 Во множестве Q лемма Кантора не имеет смысла.

Следствие Множество [0,1] - не счетно.

Пусть [0,1] - счетное множество $\Rightarrow [0;1] = \{x_1, x_2, \dots, x_3 \dots \}$.

Разделим этот отрезок на три равных отрезка. Очевидно, что x_1 - не попадает в один из этих отрезков: $x_1 \notin I_1, I_1 = [a_1, b_1] = b_1 - a_1 = \frac{1}{3}.$

Разделим I_1 на три равных отрезка, среди них есть такой I_2 , что $x_2 \notin I_2, I_2 = b_2 - a_2 = \frac{1}{3}^2$.

Пусть $\forall k \leq N$ построен отрезок $I_k : x_k \notin I_k \wedge I_k = b_k - a_k = \frac{1}{3}^k \wedge I_1 \subset I_2 \subset \cdots \subset I_k$. Разделим отрезок I_k на три равных, среди них есть такой

 $I_{k+1}: x_{n+1} \notin I_{k+1} \wedge I_k \subset I_{k+1} \wedge I_{k+1} = b_{k+1} - a_{k+1} = \frac{1}{3}^{k+1}$. И так далее...

По лемме Кантора последовательность I_k имеет не пустое пересечение. Рассмотрим $P \cap_{k=1}^{\infty} I_k, x \in [0;1]$. Предположим [0;1] занумерована, т.е. $x=x_{k_0}$, но $x_{k_0}\notin I_{k_0}$ (по построению) \Rightarrow не может принадлежать пересечению P.

11.7.2 Мощность континуума

|R| = |[a;b]| = |[0;1]| - мощность континуума - мощность всех вещественных чисел. Любой отрезок имеет мощность континуума.

Мощность объединения счетного числа множеств с мощностью континуума равно мощности континуума.

12 Границы числовых множеств

Верхние и нижние границы

Верхняя граница Множество $X \subset R$ ограничено сверху числом $M: \exists M \in R: \forall x \in X: x < M$.

Нижняя граница Множество $X \subset R$ ограничено снизу числом $m: \exists m \in R: \forall x \in X: x \geq m$.

Ограниченно множество $X \subset R$ - ограничено, если: $\exists m \in R, M \in R : \forall m \leq X \leq M$.

Доказательство $\triangleright X \neq \varnothing \exists m, M : \forall x \in X : m \leq x \leq M.$ $k = max\{|m|, |M|\}$ $m \leq X \leq M$, тогда $|x| \leq k$. $\triangleleft m = -k; M = k.$

12.2Точные границы

Точная верхняя граница Пусть X - множество ограниченное сверху, тогда $min\{M: \forall x \in X: x \leq M\} = supX$ - называется точной верхней границей.

1-ое определение: $M_x = \sup X$, если $\forall x \in X : x \leq M_x$ и $\forall M' \in R : (M' < M_x \Rightarrow \forall x_{m'} \in X(x > M'))$. 2-ое определение: $M_x = \sup X$, если $\forall x \in X : x \leq M_x$ и $\forall \epsilon > 0 : \exists x_{\epsilon} \in X(x_{\epsilon} > M_x - \epsilon)$.

Доказательство эквивалентности двух определений $\,\triangleright\,$ Пусть $M'_x=supX,$ возьмем $\,\epsilon\,>\,0,\ M'\,=\,M'_x \epsilon < M'_x$

По первому определению $\exists x_{M'} \in X : x_{M'} > M' \Rightarrow$ выполняется второе свойство из второго определения, первые свойства одинаковы. ⊲.

Пример $sup(a,b) = b; x = \{\frac{1}{n}\}_{n=1}^{\infty} \rightarrow supx = 1.$

Теорема о существовании точных границ числовых множеств Любое ограниченное сверху множество имеет точную верхнюю границу во множестве R.

Пусть $X \subset R$ и ограничено сверху. Тогда $\exists M_x \in R : M_x = supx$.

Доказательство Пусть $Y = \{M : M$ — верхняя граница множества $X\} \neq \emptyset$ $\forall x \in X, y \in Y : x \leq y$, тогда (по пятой аксиоме о действ. числах) $\exists c = M_x \in R : \forall x \in X, y \in Y : x \leq c \leq y; y = M$.

Точная нижняя граница 1-ое определение: $m_x = \inf X = \max \{ m : m$ - нижняя граница $\}$ если $\forall x \in X : m_x \leq x$ и $\forall m' \in R : (m' > m_x \Rightarrow \exists x_{m'} : x_{m'} < m').$

2-ое определение: $m_x = \inf X$, если $\forall x \in X : m_x \le x$ и $\forall \epsilon > 0 : \exists x_\epsilon : x_\epsilon < m_x + \epsilon$.

Пример
$$inf(a,b) = a; x = \{\frac{1}{n}\}_{n=1}^{\infty} \to infx = 0.$$

Замечание Во множестве рациональных чисел точные границы не определены.

13 Неравенства для абсолютных величин

Абсолютная величина
$$|x| = \begin{cases} x, & \text{если } x \geq 0, \\ -x, & \text{если } x < 0. \end{cases}$$

$$|x| < \epsilon \Leftrightarrow -\epsilon < x < \epsilon.$$

 $\forall x, y \in R : |x + y| \le |x| + |y|.$

Следствие 1 $\forall x, y \in R : ||x| - |y|| \le |x + y|$.

Доказательство
$$|x| = |(x+y) - y| \le |x+y| + |-y|$$
 $|x| - |y| \le |x+y| \Leftrightarrow |y| - |x| \le |x+y|.$

Следствие 2 $\forall a_k \ in R: |\sum_{k=1}^n a_k| \leq |\sum_{k=1}^n |a_k|$. Доказывается по индукции.

Часть III

Числовые последовательности

14 Предел

14.1 Определения предела

Предел Число a называют пределом последовательности X_n ($a = \lim_{n \to \infty} X_n$), если

$$\forall \epsilon > 0 \exists N_{\epsilon} \in N : \forall n \in N : (n > N_{\epsilon} \Rightarrow |X_n - a| < \epsilon).$$

$$X_n \in (a - \epsilon; a + \epsilon) = O_{\epsilon}(a); \epsilon$$
 - окрестность точки a .

Последовательность, имеющая конечный предел, называется сходящейся.

Определение'
$$a = \lim_{n \to \infty} X_n$$
, если $\exists k > 0 : \forall \epsilon > 0 \exists N_{\epsilon} \in R : \forall n \in N (n > N_{\epsilon} \Rightarrow |X_n - a| < k\epsilon)$

Определение" $a = \lim_{n \to \infty} X_n$, если $\forall 0 < \epsilon < \epsilon_0 \exists N_\epsilon \in R : \forall n \in N(n > N_\epsilon \Rightarrow |X_n - a| < \epsilon)$.

14.2Теорема об эквивалентности определений

Теорема Все определения предела эквиваленты между собой.

Доказательство TODO Дописать

15 Свойства сходящихся последовательностей

Ограниченность сходящейся последовательности

Теорема 1 Сходящаяся последовательность ограничена, т.е. $\exists k > 0 : \forall n \in N : |X_n| \le k$.

Доказательство Пусть $a=\lim_{n\to\infty}X_n$ $\epsilon=1\exists N_1\in N: \forall n>N_1|X_n-a|<1$ $a - 1 < X_n < a + 1$ $|X_n| < max\{|a+1|, |a-1|\}; k = max\{|x_1|, |x_2| \dots |x_n|, |a+1|, |a-1|\}.$ $n \in N; |X_n| \le k.$ Обратная теорема неверна. Пусть $X_n = (-1)^n$ $|X_n| \leq 1$ - ограниченная последовательность, но не имеет предела.

Единственность предела

Теорема 2 Предел сходящейся последовательности единственен.

Доказательство Пусть есть $a = \lim_{n \to \infty} X_n, b = \lim_{n \to \infty} X_n$ и, без ограничения общности, будем считать, что a < b.

Рассмотрим $\epsilon > 0$ Рассмотрим $\epsilon > 0$ $\exists N_{\epsilon}^{a} \forall n > N_{\epsilon}^{a} | X_{n} - a | < \epsilon,$ $\exists N_{\epsilon}^{b} \forall n > N_{\epsilon}^{b} | X_{n} - b | < \epsilon.$ Пусть $\epsilon = \frac{b-a}{2} > 0$. (Больше нуля по предположению, что a < b) $|X_{n} - a| < \frac{b-a}{2} \Rightarrow X_{n} < a + \frac{b-a}{2},$ $|X_{n} - b| < \frac{b-a}{2} \Rightarrow X_{n} > b - \frac{b-a}{2}.$ $\forall n > \max\{N_{\frac{b-a}{2}}^{a}, N_{\frac{b-a}{2}}^{b}\}$

 $X_n < \frac{a+b}{2}; X_n > \frac{a+b}{2}$ - противоречие.

Теорема о конечном числе элементов

Теорема 3 Конечное число элементов последовательности не влияет на сходимость или расходимость этой последовательности.

Свойство выполняется с некоторого номера: $\exists N_0 \in N : \forall n > N_0 : P(X_n)$.

Сохранение знака сходящейся последовательности 15.4

Теорема 4 Пусть $a = \lim_{n \to \infty} X_n$ и $a \neq 0 \Rightarrow \exists N_0 : \forall n > N_0 : |X_n| > \frac{|a|}{2}$, более того, если a > 0, то $X_n > \frac{a}{2}$; если a<0, to $X_n<\frac{a}{2}$.

Доказательство $\epsilon = \frac{|a|}{2} > 0$. $\exists N_0 \forall n > N_0 |X_n - a| < \frac{|a|}{2}$, т.е. $-\frac{|a|}{2} < X_n < \frac{|a|}{2}$.

1)
$$a > 0 : X_n > \frac{a}{2}, |X_n| > \frac{|a|}{2}$$

2)
$$a < 0 : xn < \frac{a}{2} < 0, |X_n| > \frac{|a|}{2}$$

$$\lim_{n \to \infty} X_n = 0$$

$$X_n = \frac{1}{n}$$

$$Y_n = -\frac{1}{n}$$

$$C_n = \frac{(-1)^n}{n}$$

$$X_n = \frac{1}{2}$$

$$Y_n = -\frac{1}{\pi}$$

$$C_n = \frac{\binom{n}{(-1)^n}}{n}.$$

15.5Переход предела в неравенство

Теорема 5 Пусть
$$a = \lim_{n \to \infty} X_n$$
 и $b = \lim_{n \to \infty} Y_n$, $\exists N_0 : \forall n > N_0 : (X_n \le Y_n)$, тогда $a \le b$

Доказательство Пусть a > b. Рассмотрим $\epsilon = \frac{a-b}{2}$

$$\exists N_{\epsilon}^a : \forall n > N_{\epsilon}^a(X_n > \frac{a+b}{2})$$

$$\exists N_{\epsilon}^{b} : \forall n > N_{\epsilon}^{b}(Y_{n} < \frac{a+b}{2})$$

$$n > \max\{N_{\epsilon}^a, N_{\epsilon}^a, N_0\}$$

$$\exists N_\epsilon^a : \forall n > N_\epsilon^a (X_n > \frac{a+b}{2}), \\ \exists N_\epsilon^b : \forall n > N_\epsilon^b (Y_n < \frac{a+b}{2}). \\ n > \max\{N_\epsilon^a, N_\epsilon^a, N_0\} \\ Y_n < \frac{a+b}{2} < X_n, X_n \leq Y_n$$
 - противоречие.

Лемма о двух милиционерах

Теорема 6 Пусть
$$\lim_{n\to\infty}X_n=\lim_{n\to\infty}Y_n=a$$
 и $X_n\leq Z_n\leq Y_n,$ тогда $\lim_{n\to\infty}Z_n=a.$

Доказательство Положим $\epsilon>0$. $\exists N_\epsilon^X \forall n>N_\epsilon^X |X_n-a|<\epsilon\Rightarrow a\epsilon< X_n$. $\exists N_\epsilon^Y \forall n>N_\epsilon^Y |Y_n-a|<\epsilon\Rightarrow Y_n< a+\epsilon$. $N_\epsilon^Z=\max\{N_\epsilon^X,N_\epsilon^Y\}$ $a-\epsilon< X_n\leq Z_n\leq Y_n<\epsilon+a$. $\forall n>N_\epsilon^Z |Z_n-a|<\epsilon$, t.e. $\lim_{n\to\infty} Z_n=a$.

$$\exists N_{\epsilon}^{Y} \forall n > N_{\epsilon}^{Y} |Y_n - a| < \epsilon \Rightarrow Y_n < a + \epsilon.$$

$$N_{\epsilon}^{Z} = max\{N_{\epsilon}^{X}, N_{\epsilon}^{Y}\}$$

$$a - \epsilon < X_n \le Z_n \le Y_n < \epsilon + a$$

$$\forall n > N_{\epsilon}^{Z}|Z_{n} = I_{n} < \epsilon + a.$$

15.7Абсолютное значение предела

Теорема 7 Если $X_n \to_{n\to\infty} a$, то $\lim_{n\to\infty} |X_n| = |a|$.

Положим $\epsilon > 0$. $\exists N_{\epsilon} \forall n \in N ||X_n| - |a|| \leq |X_n - a| < \epsilon$. Доказательство

Замечание Обратная теорема верна при a = 0.

Пусть $a \neq 0$. $X_n = (-1)^n a = -a, a, -a, a \dots$ - последовательность не имеет предела. $|X_n| = |a| \Rightarrow \lim_{n \to \infty} |X_n| = |a|.$

16 Бесконечно малые и бесконечно большие последовательности

Б.м. последовательность Последовательность $\{\alpha_n\}_{n=1}^{\infty}$ называется бесконечно малой, если $\lim_{n\to\infty}\alpha_n=0$, т.е. $\forall \epsilon > 0 \exists N_{\epsilon} : \forall n \in N(n > N_{\epsilon} \Rightarrow |\alpha_n| < \epsilon).$

Б.б. последовательность Последовательность $\{A_n\}_{n=1}^{\infty}$ называется бесконечно большой, если $\lim_{n\to\infty}A_n=\infty$, т.е. $\forall E > 0 \exists N_E \forall n \in N(n > N_E \Rightarrow |A_n| > E).$ $O_E(\infty) = (-\infty, -E) \cup (E, \infty).$

 $+\infty \text{ if } -\infty \quad \lim_{n\to\infty} a_n = +\infty : \forall E > 0 \exists N_E : \forall n \in N(n > N_E \Rightarrow a_n > E). \ O_E(+\infty) = (E; +\infty).$ $\lim_{n \to \infty} a_n = -\infty : \forall \epsilon > 0 \exists N_{\epsilon} : \forall n \in N (n > N_{\epsilon} \Rightarrow a_n < -\epsilon).$

16.1Связь между бесконечно малыми и бесконечно большими последовательностями

Теорема 1 Пусть $\lim_{n\to\infty} \alpha_n = 0$ и $\forall n\alpha_n \neq 0$, тогда $a_n = \frac{1}{\alpha_n}$ - бесконечно большая последовательность. Пусть $\lim_{n\to\infty}a_n=\infty$, тогда $\alpha_n=\frac{1}{a_n}$ - бесконечно малая последовательность.

Замечание ко второй части теоремы. Если $\lim_{n \to \infty} a_n = \infty$, то, начиная с некоторого номера, все ее элементы не будут равны нулю.

Доказательство 1) Пусть α_n - б.м. последовательность. Положим E>0. $\epsilon=\frac{1}{E}>0$ $\exists N_{\epsilon}: \forall n\in N: (n>N_{\epsilon}\Rightarrow |\alpha_n|<\epsilon).$ $|A_n|=\frac{1}{|\alpha_n|}>\frac{1}{\epsilon}=E.$ 2) Пусть $A_n \neq 0$ - б.б. последовательность, $\alpha_n = \frac{1}{A_n}$ - б.м. послед. Положим $\epsilon > 0$. $E = \frac{1}{\epsilon} > 0$ $\exists N_E \forall n \in N |A_n| > E$. $|\alpha_n| = \frac{1}{|A_n|} < \frac{1}{E}$.

Арифметические свойства б.м. последовательностей

Теорема 2 Пусть α_n и β_n - б.м. п., тогда $\gamma=\alpha_n+\beta_n$ - б.м. п. и $y=a\alpha_n$, где $a\in R$ - б.м. п.

Замечание Линейная комбинация б.м. последовательностей является б.м. последовательностью. $a\alpha_n + b\beta_n$ - б.м. п.

Доказательство (+) Положим $\epsilon > 0$. $N_{\frac{\epsilon}{2}}^{\alpha} : \forall n > N_{\frac{\epsilon}{2}}^{\alpha} : |\alpha_n| < \frac{\epsilon}{2}$.

 $\exists N_{\frac{\epsilon}{2}}^{\beta} : \forall (n > N_{\frac{\epsilon}{2}}^{\beta} : |\beta_n| < \frac{\epsilon}{2}$

Если $N = \max\{N^{\alpha}_{\frac{\epsilon}{2}}, N^{\beta}_{\frac{\epsilon}{2}}\}$, то неравенство (в определениях выше) выполняется одновременно.

 $|\gamma_n| = |\alpha_n + \beta_n| \le |\alpha_n| + |\beta_n| < \epsilon.$ (*) Положим $\epsilon > 0, a \ne 0, \frac{\epsilon}{|a|} > 0. \exists N_{\frac{\epsilon}{|a|}} : \forall n > N_{\frac{\epsilon}{|a|}} : |\alpha_n| < \frac{\epsilon}{|a|} \Rightarrow |a\alpha_n| < \epsilon.$

16.3

Теорема 3 Пусть $\{a_n\}_{n=1}^{\infty} = \sup \{\alpha_n\}_{n=1}^{\infty}$ - б.м. п. Тогда $\alpha_n a_n$ - б.м. п.

Доказательство $\{a_n\}_{n=1}^{\infty}$; - ограничена, т.е. $\exists a>0: \forall n\in N|a_n|\leq a. \ 0\leq |a_n\alpha_n|\leq a|\alpha_n|$. По лемме о двух милиционерах $|a_n\alpha_n|$ - б.м. п.

Связь между б.м. п. и сходящимися последовательностями

Теорема 4 Для того, чтобы последовательность $a_n = \{a_n\}_{n=1}^{\infty}$ сходилась в $a = \lim_{n \to \infty} a_n$, необходимо и достаточно, чтобы $\exists \{\alpha_n\}_{n=1}^{\infty}$ - б.м. п. $a_n = a + \alpha_n$.

Доказательство $\triangleright \alpha_n = a_n - a$, надо показать, что α_n - б.м. п. Положим $\epsilon > 0 \; \exists N_{\epsilon} \forall n \in N(n > N_{\epsilon} \Rightarrow |\alpha_n| = |a_n - a| < \epsilon).$ $\lhd a_n = a + \alpha_n$ - сходится. $|a_n - a| = \alpha_n < \epsilon$.

Арифметические свойства пределов

Теорема 5 Пусть есть такие последовательности: $\{a_n\}_{n=1}^{\infty}, \{b_n\}_{n=1}^{\infty}$. $\lim_{n\to\infty} a_n = a, \lim_{n\to\infty} b_n = b$. Тогда

$$\lim_{n \to \infty} a_n + b_n = a + b \tag{34}$$

$$\lim_{n \to \infty} k a_n = k n \tag{35}$$

$$\lim_{n \to \infty} k a_n = k n \tag{35}$$

$$\lim_{n \to \infty} a_n b_n = ab \tag{36}$$

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{a}{b} \tag{37}$$

Комментарий к последнему свойству: Если $b \neq 0$, то, по закону о сохранении знака, начиная с некоторого номера, все элементы b_n неравны нулю.

Доказательство 1) $a_n = a + \alpha_n$ - α_n - б.м. п.; $b_n = b + \beta_n$ - β_n - б.м. п., но тогда $a_n + b_n = (a + b) + (\alpha_n + \beta_n)$, где в первой группе выражение является числом, а во второй - б.м. последовательностью.

- 3) $a_n b_n = (a + \alpha_n)(b + \beta_n) = ab + (a\beta_n + b\alpha_n + \alpha_n\beta_n)$, выражение, где первое слагаемое число, а второе б.м. последовательность.
 - 4) $\exists N \forall n > N: |b_n| = \frac{|b|}{2}$ по закону о сохр. знака.

 $|\frac{a_n}{b_n} - \frac{a}{b}| = |\frac{a_n b - ab_n}{b_n b}| < \frac{2}{b^2} |a_n b - ab_n|$ $0 \le |\frac{a_n}{b_n} - \frac{a}{b}| < \frac{2}{b^2} |a_n b - ab_n|$. Правая часть неравенства стремиться к нулю $(a_n b \to ab, ab_n \to ab)$ и левая часть так же стремится к нулю.

17 Подпоследовательности

 $x_1, x_2, \dots x_n, \dots = \{x_n\}_{n=1}^{\infty}$. Зададим возрастающую последовательность номеров: $n_1 < n_2 < n_3 < \dots < n_k < n_{k+1}$ Тогда $\{x_{nk}\}_{nk=1}^{\infty} = x_{n1}, x_{n2}, \dots, x_{nk}, \dots$ - подпоследовательность.

Определение Последовательность x_{nk} называется подпоследовательностью $\{x_n\}_{n=1}^{\infty}$

Теорема Больцано — Вейерштрасса 17.1

Теорема 1 Из любой ограниченной последовательности можно выделить сходящуюся подпоследовательность.

Доказательство Пусть $\{x_n\}_{n=1}^{\infty}$ - ограничена и все ее числа заключены в отрезок ab. Разделим отрезок abпополам. δ_1 самый правый отрезок их двух, которой содержит бесконечное число элементов последовательности. $|\delta_1| = \frac{b-a}{2}$

Разделим отрезок δ_1 пополам. δ_2 - самый правый из этих отрезков, содержащий бесконечное число элементов. Будем так продолжать до бесконечности.

На каком-то k-ом шаге найдется такое $n_k > n_{k-1}$, причем $x_{nk} \in \delta_k$ содержит бесконечное число элементов. $|\delta_k| = \frac{b-a}{2^l} \to 0, k \to \infty.$

 $\exists a': \cap_{k=1}^{\infty} \delta_k = \{a'\}.$ Пусть $\delta_k = [a_k, b_k], a_k \nearrow, b_k \searrow$, кроме того: $a_k \le x_{nk} \le b_k$.

```
\exists \epsilon > 0: \forall N_{\epsilon}: \forall n > N: (b_k - a_k) < \epsilon. \ a_k \leq a' \leq b_k, a' = \sup\{a_k\} = \inf\{b_k\} \forall n > N_{\epsilon}: 0 < b_k - a' \leq b_k - a_k < \epsilon, 0 < a' - a_l \leq b_k - a_k < \epsilon. По лемме о двух милиционерах: из того, что a_k \to a' и b_k \to a', следует \{x_{nk}\}_{k=1}^{\infty} \to a'.
```

Теорема 2 Если последовательность неограниченная, то из нее можно выделить последовательность сходящуюся к бесконечности. Если последовательность ограничена снизу, то $\exists \lim_{k \to \infty} x_{nk} = -\infty$. Если последовательность ограничена сверху, то $\exists \lim_{k \to \infty} x_{nk} = +\infty$

```
Доказательство Пусть \{x_n\}_{n=1}^{\infty} не ограниченная последовательность, тогда \forall m>0 \exists N_m: |x_n|>M. Зафиксируем \epsilon_1=1. \exists n_1: |x_{n1}>1 \epsilon_2=2. \exists n_2>n_1: |x_{n2}|>2 \vdots \epsilon_k=k. \exists n_k>n_{k-1}: |x_{nk}|>k. \vdots От сюда следует, что x_{nk} - подпоследовательность x_n, такая, что |x_{nk}|>k и |x_{nk}|\to\infty, при x\to\infty.
```

17.2 Частичные пределы

Вернемся к теореме Б-В(1). $a' = \lim_{k \to \infty} x_{nk}$, где a' - частичный предел последовательности x_n .

Если $\{x_n\}_{n=1}^{\infty}$ - ограничена, то $A' = \{a'\}$ - множество частичных пределов x_n ограничено.

Наибольший из частичных пределов - верхний предел, обозначается как: $\overline{\lim}_{n\to\infty} x_n$. Наименьший из частичных пределов - нижний предел, обозначается как: $\underline{\lim}_{n\to\infty} x_n$. Очевидно, что верхний предел меньше чем нижний предел, но, если последовательность сходится, то эти пределы равны!

Лемма 1 Число a' - частичный предел последовательности $\{x_n\}_{n=1}^{\infty}$ тогда и только тогда, когда $O_{\epsilon}(a')$ содержит бесконечно много элементов последовательности: $|\{n: a'-\epsilon < x_n < a'+\epsilon\}| = \omega$.

```
Доказательство 
ightharpoonup \exists \{x_{nk}\}_{k=1}^{\infty} - подпоследовательность x_n: x_{nk} \to a'. \lhd \epsilon_1 = 1: x_n \in (a'-1, a'+1) \epsilon_2 = \frac{1}{2}: n_2 > n1, x_{n2} \in (a'-\frac{1}{2}, a'+\frac{1}{2}) \Rightarrow n_k > n_k-1 \Rightarrow x_{nk} > a'-\frac{1}{k} и x_{nk} < a'+\frac{1}{k}. По лемме о двух милиционерах, так как 1 \pm \frac{1}{k} \to a', то и x_{nk} \to a'.
```

Следствие Число b' не является частичным пределом тогда и только тогда, когда $\exists \epsilon_0 > 0 : |\{n : x_n \in O_{\epsilon_0}(b')\} < \omega$

Теорема 3 Ограниченная последовательность всегда имеет верхний и нижний предел.

Доказательство Пусть $\{x_n\}_{n=1}^{\infty}$ - ограничена (Множество частичных пределов $A' \neq \emptyset$ - ограничено $\Rightarrow M = \text{su}$ и $m = \inf A'$.)

Покажем от противного, что $M \in A'$, то есть M является частичным прелом x_n . Пусть $M \notin A' \forall \epsilon > 0 | O_{\epsilon}(M) \cap A' | = \omega$. $a' \in O_{\epsilon}(M \cap A')$ $\epsilon_1 = \min\{a' - M + \epsilon, M - a'\}$

 $O_{\epsilon_1}(a')\subset O_{\epsilon}(M), O_{\epsilon_1}(a')$ содержит бесконечное число элементов $\Rightarrow M\in A'$. Что и т.д.

18 Критерий Коши сходимости числовой последовательности

Последовательность $\{x_n\}_{n=1}^{\infty}$ называется фундаментальной последовательностью (последовательностью Коши), если $\forall \epsilon > 0 \exists N_{\epsilon} : \forall n, m \in N(m > N_{\epsilon} \land n > N_{\epsilon} \Rightarrow |x_n - x_m| < \epsilon)$

Эквивалентное определение $\ \ \forall \epsilon > 0 \exists N_\epsilon, \forall n \in N, p \in N: (n,m > N_\epsilon \Rightarrow p(x_n,x_m) < \epsilon)$

18.1 Лемма об ограниченности

Фундаментальная последовательность ограничена.

Доказательство Пусть $\{x_n\}_{n=1}^{\infty}$ - последовательность Коши. рассмотрим число $\epsilon = 1$. $\exists N_{\epsilon} : \forall n, p \in N(N > N_{\epsilon} \Rightarrow x_n) < 1$. Зафиксируем число $n_1 > N_{\epsilon}$. Тогда $x_{n_1} - 1 < x_{n+p} < 1 + x_{n_1}$.

Пусть $m = max\{|x_1|, |x_2|, \dots, |x_{n_1}|, |x_{n_1+1}|\}$, тогда $\forall n \in N(|x_n| \le m)$. Это значит, что последовательность ограничена.

18.2 Теорема (критерий сходимости)

Для того чтобы $\{x_n\}_{n=1}^{\infty}$ сходилась, необходимо и достаточно, чтобы последовательность $\{x_n\}_{n=1}^{\infty}$ была последовательностью Коши.

Доказательство $\triangleright a = \lim_{n \to \infty} x_n$, возьмем $\epsilon > 0$. $\exists N_{\epsilon} : \forall n \in N(n > N_{\epsilon} \Rightarrow |x_n - a| < \frac{\epsilon}{2})$, рассмотрим $m, n > N_{\epsilon}$, $|x_m - x_n| = |(x_m - a) + (a - x_n)| \le |x_m - a| + |x_n - a| < \epsilon$ - по неравенству треугольника. $\exists x_n \in \mathbb{R}^m$ - последовательность Коши, ограниченная (по лемме). Так как она ограничена,

 \lhd Рассмотрим $\{x_n\}_{n=1}^{\infty}$ - последовательность Коши, ограниченная (по лемме). Так как она ограничена, по теореме Больцано — Вейерштрасса существует $\{x_{nk}\}_{nk=1}^{\infty}$ которая сходится к числу a. Покажем, что вся последовательность сходится к a. $\forall \epsilon > 0$: $\exists K_{\epsilon} : \forall n_k (n_k > K_{\epsilon} \Rightarrow |X_{nk} - a| < \frac{\epsilon}{2})$. В силу фундаментальности последовательности, $\forall \epsilon > 0 : \exists N_{\epsilon} : n, m > \epsilon : |x_n - x_m| < \frac{\epsilon}{2}$. А это и означает, что последовательность $\{x_n\}_{n=1}^{\infty}$ сходится к a.

$$|x_n - a| = |x_n - x_{nk} + x_{nk} - a| \le |x_n - x_{nk}| + |x_{nk} - a|. \ x_{nk} = \max\{N_{\epsilon}, K_{\epsilon}\} \Rightarrow |x_n - a| < \epsilon$$

18.3 Отрицание фундаментальности

 $\{x_n\}_{n=1}^\infty$ не является последовательностью Коши. Это значит: $\exists \epsilon_0>0: \forall N_{\epsilon_0}\exists n>N_{\epsilon_0}, p\in N: |x_{n+p}-x_n|>=\epsilon_0$

Пример $\{x_n\}_{n=1}^{\infty}=1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}$, покажем, что она не является последовательностью Коши. $x_1=1, x_2=1+\frac{1}{2}, x_3=1+\frac{1}{2}+\frac{1}{3}$ - с каждым слагаемым слагаемое уменьшается. Рассмотрим $x_{n+p}-x_n=1+\frac{1}{2}+\cdots+\frac{1}{n}+\frac{1}{n+1}+\cdots+\frac{1}{n+p}-(1+\frac{1}{2}+\cdots+\frac{1}{n})=\frac{1}{n+1}+\cdots+\frac{1}{n+p}\geq \frac{1}{n+p}+\cdots+\frac{1}{n+p}=\frac{1}{np}$.

19 Топология множества R

19.1 Окрестность точки

Пусть $\epsilon > 0$. $O_{\epsilon}(a) = (a - \epsilon; a + \epsilon)$ - ϵ -окрестность точки а. $O_{\epsilon}^{\vee}(a) = O_{\epsilon}(a) \setminus \{a\}$ - выколотая ϵ -окрестность точки а. Для R > 0: $O_{R}(\infty) = (-\infty, -R) \cup (R, +\infty)$. $O_{R}(+\infty) = (R, +\infty)$. $O_{R}(-\infty) = (-\infty, -R)$

19.2 Предельная точка

- **Опр. 1** Точка a является предельной точкой множества A, если любая выколотая окрестность пересекается c A: $\forall \epsilon > 0 \exists x_{\epsilon} \in A \setminus \{a\} : |x_{\epsilon} - a| < \epsilon$, T.e. $x \in A \cap O_{\epsilon}^{\vee}(a)$
- **Опр. 2** Точка a является предельной точкой множества A, если в любой ϵ -окрестности этой точки лежит бесконечно много элементов из множества $A: \forall \epsilon > 0 |A \cap O_{\epsilon}(a)| \geq \omega$.
- **Опр. 3** Точка a является предельной точкой множества A, если

$$\exists \{a_n\}_{n=1}^{\infty} \subset A \setminus \{a\} : \forall n \neq m (a_n \neq a_m \land \lim_{n \to \infty} a_n = a)$$

A' - множество всех предельных точек.

19.3 Теорема об эквивалентности определений

Теорема Опр. 1, Опр. 2, Опр. 3 эквивалентны между собой.

Доказательство 1) Опр. $3 \Rightarrow \text{Опр. } 2 \Rightarrow \text{Опр. } 1$ - очевидно.

2) Докажем, что Опр. $1 \Rightarrow$ Опр. 2.

Пусть $\epsilon_1 = 1$. $\exists x_1 \in A \setminus \{a\} : |x_1 - a| < 1$.

Пусть $\epsilon_2 = \min\{\frac{1}{2}; |x_1 - a|\} > 0. \ \exists x_2 \in A \setminus \{a\} : |x_2 - a| < \epsilon_2. \ \text{При этом } x_2 \neq x_1!$

Пусть $\epsilon_3 = \min\{\frac{1}{3}; |x_2 - a|\} > 0$. $\exists x_3 \in A \setminus \{a\} : |x_3 - a| < \epsilon_3$. При этом $x_3 \neq x_2 \neq x_1$! Пусть $\epsilon_n = \min\{\frac{1}{n}; |x_{n-1} - a|\} > 0$. $\exists x_n \in A \setminus \{a\} : |x_n - a| < \epsilon_n$. При этом $x_n \neq x_{n-1}$!

Из построения следует: $|x_n - a| < \epsilon_n \le \frac{1}{n} \Rightarrow \lim_{n \to \infty} x_n = a$. Т.е. мы доказали, что Опр. $1 \Rightarrow$ Опр. $3 \Rightarrow$ Опр. 2, тогда верно, что Опр. $1 \Rightarrow$ Опр. 2. Что и т.д.

19.4 Теорема Больцано - Вейерштрасса для бесконечных множеств

Любое ограниченное бесконечное множество имеет предельную точку.

Доказательство Пусть A - бесконечное ограниченное множество. Рассмотрим $x_1 \in A$; $x_2 \in A \setminus \{x_1\}$ - беск.; $x_3 \in A \setminus \{x_1, x_2\}$ - беск.

Результат построения: множество $\{x_n\}_{n=1}^{\infty} \subset A$ - ограничено, причем $x_n \neq x_m$ (элементы множество попарно различны). $\Rightarrow \exists \{x_{nk}\}_{nk=1}^{\infty}$ - п/п $x_n: x_{n_k} \xrightarrow{} a'a \in A'$, т.к. любая окрестность точки a содержит все элементы π/π с некоторого k, следовательно содержит бесконечное число элементов множества A.

19.5Внутренняя точка множества

- Опр. 1 Точка $x \in A$ называется *внутренней точкой* множества A, если она лежит в этом множестве с некоторой своей окрестностью : $\exists O_{\epsilon}(x) \subset A$.
- **Опр. 2** A^o множество всех внутренних точке (внутренность множества) множества $A:A^o=int(A)$.

Примеры # Рассмотрим
$$(a,b), b > a.$$
 $x \in (a,b), \epsilon = \min\{b-x,x-a\} > 0.$ $O_{\epsilon}(x) = (x-\epsilon,x+\epsilon) \subset (a,b)$ $a \le x-\epsilon \le b \Rightarrow x \in int(a,b) = (a,b).$ # $int[a,b] = (a,b)$ # $int(Q) = \emptyset$

Если $|A| \leq \omega$, то $int(A) = \varnothing$.

19.6 Изолированная точка

Изолированной точкой называется такая точка $x: x \neq X'$, т.е. $\exists O \epsilon(x_0): X \cap O_{\epsilon} x_0 = \{x_0\}$.

19.7 Открытые множества

Опр. 1 Множество U называют открытым множеством, если все его точки являются внутренними точками.

Примеры $\#(a,b), R, \varnothing$ - открытые. #[a,b] - не открытое.

Свойства открытых множеств Семейство всех открытых множеств удовлетворяет следующим свойствам:

- 1. R и \varnothing открытые множества.
- 2. Объедение любого числа открытых множеств открыто: если $\{U_{\alpha}\}_{{\alpha}\in A},\ U_{\alpha}$ открыто, тогда $\cup_{{\alpha}\in A}U_{\alpha}$ открыто.
- 3. Пересечение любого числа открытых множеств открыто: если $\{U_k\}_{k=1}^{\infty}, U_k$ открыто, тогда $\cap_{k=1}^n U_k$ открыто.

Доказательство 1) Докажем, что \varnothing - открытое множество. U - открытое $\Leftrightarrow \forall x(x \in U \Rightarrow \exists O_{\epsilon}(x) \subset U)$. Возьмем $\varnothing = U$, тогда $\forall x(x \in \varnothing(=false) \Rightarrow \dots) = true \Rightarrow \varnothing$ - открытое множество.

2) Пусть $\{U_{\alpha}\}_{{\alpha}\in A}$ - открытое множество.

Если $x \in \bigcup_{\alpha \in A} U_{\alpha} \; \exists \alpha_x : x \in U_{\alpha_x}$ - открытое, то $\exists O_{\epsilon}(x) \subset U_{\alpha_x} \Rightarrow O_{\epsilon}(x) \subset \bigcup_{\alpha \in A} U_{\alpha}$.

3) Достаточно доказать для двух множеств и распространить по индукции.

Пусть U_1, U_2 - открытые множества, если $x \in U_1 \cap U_2 \neq \emptyset$.

 $\exists O_{\epsilon_1}(x) \subset U_1$ и $\exists O_{\epsilon_2}(x) \subset U_2$;

положим $\epsilon = \min\{\tilde{\epsilon_1}, \tilde{\epsilon_2}\} > 0$, тогда $O_{\epsilon}(x) \subset U_1 \cap U_2$. Что и т.д.

19.8 Замкнутые множества

Множество $f \subset R$ называется замкнутым, если его дополнение $(R \setminus f)$ открыто.

Свойства замкнутых множеств

- $1. \varnothing, R$ замкнуты.
- 2. Если f_{α} замкнуто, то $\cap_{\alpha \in A} f_{\alpha}$ замкнуто.
- 3. Если f_1,\dots,f_n замкнутые множества, то $\cup_{k=1} n f_k$ замкнуто.

Доказательство

- 1. $R \setminus (\bigcup_{\alpha \in A^r} A_\alpha) = \bigcup_{\alpha \in A^r} R \setminus A_\alpha$. Аналогично с \cap пересечением.
- 2. $R \setminus (\cap_{\alpha \in A^r}) = \cup_{\alpha \in A^r} (R \setminus f_{\alpha})$. Если дополнение ко множеству открыто, то множество замкнуто.
- 3. $R \setminus (f_1 \cup f_2) = (R \setminus f_1) \cap (R \setminus f_2)$. Так как множества в пересечении открытые, то объединение $f_1 \cup f_2$ замкнуто.

Примеры $\# \{a\}$ - замкнуто. (Любое конечное множество всегда является замкнутым!)

 $\# \varnothing; [a,b] = R \setminus ((-\infty;a) \cup (b,+\infty))$ - замкнутые множества.

#(a,b) - не является замкнутым множеством.

Пример, когда 3 свойство не верно для бесконечных объединений: $\forall k \in N \exists f_k = [0, 1 - \frac{1}{k+1}]$. Так как эта последовательность стремиться к единице, но не достигает ее, объедение всех множеств по k равно [0,1) такого вида множества не являются замкнутыми, и не являются открытыми0

19.9 Теорема о замкнутости множества

Теорема Множество замкнуто тогда и только тогда, когда содержит все свои предельные точки.

Доказательство $\triangleright f$ - замкнуто. Доказать, что f содержит все предельные точки.

Положим $x_n \in f : x_n \to x_0 \in f'$, где f' - множество предельных точек f. О.П. пусть $x_0 \notin f \Rightarrow x_0 \in R \setminus f$, но $R \setminus -$ открыто $\Rightarrow \exists O_{\epsilon_0}(x_0) \subset R \setminus f$. Фиксируем $\epsilon > 0$. $\exists N_{\epsilon_0} \forall n > N_{\epsilon_0} x_n \in O_{\epsilon_0}(x_0) \subset R \setminus f \Rightarrow x_n \in R \setminus f$ противоречие.

 $\lhd f$ содержит все предельные точки. Доказать, что f - замкнуто.

Пусть $f' \notin \emptyset$, т.е. множество предельных точек не постое. Рассмотрим $U = R \setminus f, x_0 \in U$. О.П. Положим $x_0 \notin U' \Rightarrow \forall \epsilon > 0 O_{\epsilon}(x_0) \nsubseteq U \Rightarrow O_{\epsilon}(x_0) \cap f \neq \varnothing.$ $\epsilon_n = \frac{1}{n} O_{\frac{1}{n}}(x_0) \cap f \ni x_n$, т.е. $|x_n - x_0| < \frac{1}{n} \to 0 \Rightarrow x_n \to x_0, x_n \in f \Rightarrow x_n \in f' \Rightarrow x_0 \in f$ - противоречие.

Теорема $(A')' \subset A$.

Доказательство Пусть $x_0 \in (A')'$. Фиксируем $\epsilon > 0$. $O_{\epsilon}(x_0)$ содержит бесконечно много элементов A'. Пусть $y \in A' \cap O_{\epsilon}(x_0)$. Фиксируем $\epsilon_1 = min\{|x_0 - y|; \epsilon - |x_0 - y|\} > 0$. $O_{\epsilon_1}(y) \subset O_{\epsilon}(x_0)$, т.е. $O_{\epsilon_1}(y)$ содержит бесконечно много элементов из множества $A \Rightarrow x_0 \in A'$.

Примеры $\# A = \{\frac{1}{n}\}_{n=1}^{\infty}, A' = \{0\}, (A')' = \varnothing.$ # Q' = R, (Q')' = R' = R.

Важное наблюдение: $((A')')' \subset (A')' \subset A' \subset A$.

20 Замыкание множеств

Замыканием множества A называют такое $\overline{A} = A \cup A'$.

Примеры $\# A = \{\frac{1}{n}\}_{n=1}^{\infty}, \overline{A} = \{\frac{1}{n}\}_{n=1}^{\infty} \cup \{0\}.$

$$\# \overline{(a,b)} = [a,b].$$

$$\# \overline{N} = N.$$

$$\# \overline{Q} = R.$$

Свойства оператора замыкания

- 1. \overline{A} замкнутое множество.
- $2. \overline{\overline{A}} = \overline{A}$
- 3. $A \subset B \Rightarrow \overline{A} = \overline{B}$.
- 4. $\overline{A \cup B} = \overline{A} \cup \overline{B}$.
- 5. $\overline{A \cap B} \subset \overline{A} \cap \overline{B}$.

Доказательство свойств

- 1. $A \cup A'$ содержит все свои предельные точки, а значит замкнуто.
- 2. $\overline{\overline{A}} = (A \cup A') \cup (A \cup A')' = A \cup A' = \overline{A}$.
- 3. $A \subset B \Rightarrow A' \subset B' \Rightarrow \overline{A} \subset \overline{B}$.
- $4. \ x \in \overline{A \cup B} \Rightarrow (x \in (A \cup B) \lor x \in (A \cup B)') \Rightarrow ((x \in A \lor x \in B) \lor (x \in A' \lor x \in B')) \Rightarrow x \in \overline{A} \cup \overline{B}.$
- 5. $x \in \overline{A \cap B} \Rightarrow x \in A \cap B \lor x \in (A \cap B)' \Rightarrow x \in (A \cap B) \lor (x \in A' \land x \in B) \Rightarrow ((x \in A) \lor (x \in A')) \land ((x \in B) \lor x \in B') \Rightarrow x \in \overline{A} \cap \overline{B}.$

Следствие 1 Если f замкнуто и $A \subset f$, то $\overline{A} \subset f$.

Примеры $\# A = Q \cap [0,1], B = [0,1] \setminus A. \overline{A} = [0,1], \overline{B} = [0,1]. \overline{A} = \overline{B} \Rightarrow A \cap B = \varnothing.$ $\# A = (a,b), B = (b,c). A \cap B = \varnothing, \overline{A} \cap \overline{B} = \varnothing. \overline{A} = [a,b], \overline{B} = [b,c]. \overline{A} \cap \overline{B} = \{b\}.$

21 Непрерывность функции на отрезке

Пусть f(x) - функция, определенная на множестве X - $x \in X$, а $x_0 \in X'$ - предельная точка. f(x) называют непрерывной в точке x_0 , если $\exists \lim_{x \to x_0} f(x) = f(x_0)$, т.е. функция имеет предел в этой точке.

В изолированных точках $(x_0 \neq X')$ функция непрерывна по определению.

Функция f(x) - непрерывна слева, если $\exists \lim_{x+0\to x_0} f(x) = f(x_0)$, непрерывна справа, если $\exists \lim_{x-0\to x_0} f(x) = f(x_0)$.

21.1 Первая теорема Вейерштрасса

Функция, которая непрерывна на отрезке, все время ограничена на данном отрезке.

Доказательство Требуется доказать, что $\exists k > 0 \forall x \in [a,b] : |f(x)| \le k$.

От противного, пусть $\exists k > 0 \exists x_k \in [a, b] : |f(x)| > k$.

Положим $k = n \in N$. $x_n \in [a, b] : |f(x_n)| > n$.

Если $a \le x_n < b$, то $\exists x_{n_k} \to \alpha \in [a, b]$.

f(x) - непрерывна в точке α , т.е. $\exists \lim_{n \to \infty} f(x) = f(\alpha) \in R$.

 $|f(x_{n_k})| > n_k$, где $n_k \to \infty \Rightarrow f(x_{n_k}) \overset{x \to \alpha}{\to} \infty$.

Контр-пример Теорема не верна на интервале (a,b). Функция $f(x) = \frac{1}{x-a}$ непрерывна на интервале, но не ограничена.

21.2 Вторая теорема Вейерштрасса

Функция непрерывная на отрезке достигает своего наибольшего и наименьшего значения на этом отрезке.

Доказательство По первой теореме Вейерштрасса функция $f(x), x \in [a, b]$ имеет точную верхнюю и нижнюю границы. Пусть $M = \sup f(x)$, а $m = \inf f(x)$. Требуется доказать, что $\exists x_m : f(x_m) = M$ и $\exists x_M : f(x_M) = m$.

Зафиксируем последовательность $\epsilon_n = \frac{1}{n}$. По определению $\sup f(x): f(x_n) > M - \frac{1}{n} \Rightarrow$ можно выделить подпоследовательность $x_{n_k} \to x_M \in [a,b]$. $M - \frac{1}{n} < f(x_{n_k}) \leq M$. Левая часть и правая часть сходиться к M, следовательно, по лемме о двух милиционерах, $f(x_{n_k}) \to M$. С другой стороны, в силу непрерывности, $f(x_{n_k}) \to f(x_M)$. В силу единственности предела $f(x_M) = M$.

Аналогично доказывается второй случай.

Теорема не верна на интервале (a,b). Функция f(x)=x, у которой $\sup f(x)=b$, но не достигается на интервале (a,b), и inf f(x)=a - аналогично не достигается на интервале (a,b).

21.3 Третья теорема Вейерштрасса

Пусть f(x) является непрерывной функцией на отрезке [a,b] и на концах отрезка принимает значения разных знаков, тогда $\exists c \in [a, b] : f(c) = 0.$

Доказательство Без ограничения общности будем считать, что f(a) < 0, а f(b) > 0.

Разделим отрезок [a,b] пополам. Если $f(\frac{a+b}{2})=0$, то теорема доказана. Иначе значит, что функция принимает значения разных знаков на концах одного из отрезков [a,d] и [d,b], где d - середина [a,b].

Поделим этот отрезок пополам. На каком-то k — шаге будет получен отрезок $[a_k, b_k]$, на котором $f(a_k) < 0$, $f(b_k)$. Если $f(\frac{a_k+b_k}{2})=0$, то теорема доказана.

Если процесс не заканчивается на k, то результатом построения будет последовательность вложенных отрезков $[a_n, b_n]$, причем $|[a_n, b_n]| = \frac{b-a}{2^n} \to 0 \Rightarrow \exists c \in [a, b] : \bigcap_{n=0}^{\infty} [a_n, b_n] = \{0\}$, где $a_n \to c$, $b_n \to c \Rightarrow f(a_n) \to c$, $f(b_n) \to c$.

Ho $f(a_n) < 0 \Rightarrow f(c) \le 0$, а $f(b_n) > 0 \Rightarrow f(c) \ge c$, из этого следует, что f(c) = 0. Что и требовалось доказать.

21.4 Следствия из теорем

Теорема о промежуточных значениях

Формулировка? Доказательство?

Контр-пример Функция $f(x) = \begin{cases} \frac{x}{|x|}, & x \neq 0 \\ 1, & x = 0 \end{cases}$ принимает значения разных знаков, но не в одной точке не равна нулю.

21.4.2 Образ отрезка

 $f^{-1}([a,b]) = [m,M]$ - образ отрезка.

Доказательство Рассмотрим $\beta \in (m, M)$, и функцию $g(x) = f(x) - \beta$.

- 1. В точке $x_m \ g(x_m) < 0$
- 2. В точке $x_M \ q(x_M) > 0$

из этого следует, что $\exists c \in (x_m, x_M) \in [a, b] : g(c) = 0 \Rightarrow f(c) = \beta$, причем отрезок [a, b] может быть и наоборот.

22 Непрерывность обратной функции

22.1 Обратная функция

Пусть есть функция $f(x), x \in X \subset R, f(x) = Y.$ f(X) = Y - образ функции.

 $\forall y \in Y \exists ! x \in X : f(x) = y. \ y \mapsto x$ - правило по которому каждому y из области значений функции ставиться xиз области определения называется обратной функцией: $f^{-1}(x)$

Если f(x) строго монотонная $\Rightarrow f(x)$ - биекция и $\exists f^{-1}(y)$.

22.2Непрерывность

Функция f(x) не убывает и непрерывна на промежутке [a,b] или (a,b). В этом случае [f(a),f(b)] - множество значений функции. (A,B)=(f(a),f(b)), т.е. $x \to a$ справа, и $x \to b$ слева. $f(a)=\lim_{x\to 0\to a}f(x)$ и $f(b)=\lim_{x\to 0\to b}f(x)$.

Пусть f(x) без ограничения общности не убывает и непрерывна на (a,b). Если (A,B)=(f(a),f(b), то функция $f^{-1}(y) \in (A, B)$ и непрерывна.

Доказательство Рассмотрим $y_0 \in (A, B)$ и $x_0 = f^{-1}(y_0) \in (a, b)$. Зафиксируем $\epsilon > 0$ м $x_0 \pm \epsilon \in (a, b)$. $y_0 \in (f(x_0 - \epsilon); f(x_0 + \epsilon)) \subset (A, B).$

Положим $\delta_{\epsilon} = \min\{y_0 - f(x_0 - \epsilon), f(x_0 + \epsilon) - y_0\}.$ $x_0 \in (f^{-1}(y_0 - \delta_{\epsilon}), f^{-1}(y_0 + \delta_{\epsilon})) \subset (x_0 - \epsilon, x_0 + \epsilon).$

23 Непрерывность элементарных функций

23.1Показательная функция

Функция вида a^x , где a - некоторая константа, называется *показательной*. Функция a^n , где $n \in N$, определяется как произведение n-раз a само на себя.

Пусть $r = \frac{p}{a} > 0$, причем $r \in Q$, тогда $a^r = (a^{\frac{1}{q}})^p$. Если r = 0, то $a^0 = 1$. Если a < 0, то $a^r = \frac{1}{a^{-r}}$.

Свойства

1.
$$r_1 < r_2 \land a > 1 \Rightarrow a^{r_1} < a^{r_2}, a < 0 \Rightarrow a^{r_1} > a^{r_2}$$

$$2. (a^{r_1})^{r_2} = a^{r_1 r_2}$$

3.
$$a^{r_1}a^{r_2} = a^{r_1+r_2}$$

4.
$$\frac{a^{r_1}}{a^{r_2}} = a^{r_1 - r_2}$$

Лемма 1

$$\lim_{n \to \infty} \sqrt[n]{a} = 1 \tag{38}$$

Лемма 2 $\forall \epsilon > 0 \exists \delta_{\epsilon} > 0 : \forall h \in Q(|h| < \delta_{\epsilon} \Rightarrow |a^h - 1| < \epsilon)$, т.е.

$$\lim_{h \to 0} a^h = 1 \tag{39}$$

Доказательство Зафиксируем $\epsilon > 0$, без ограничения общности будем считать. что a > 0.

$$\exists n_1 \in N : |a^{\frac{1}{n_1}} - 1| < \epsilon$$
$$\exists n_2 \in N : |a^{\frac{1}{n_2}} - 1| < \epsilon$$

Пусть $\delta_{\epsilon} = \min\{\frac{1}{n_1}, \frac{1}{n_2}\}$, тогда, если взять $|h| < \delta_{\epsilon}$, то будет выполняться следующее неравенство:

$$1 - \epsilon < a^{\frac{1}{n_2}} < a^n < a^{\frac{1}{n_1}} < 1 + \epsilon$$

Что и т.д.

Лемма 3 Пусть $\{r_n\}_{n=0}^{\infty} \to x \in R, r_n \in Q$, тогда $\exists \lim_{n \to \infty} r_n$, который не зависит от выбора последовательности r_n .

Доказательство По условию $r_n \to x$, т.е. выполняется критерий Коши.

Зафиксируем $\epsilon > 0$. $\exists \delta_{\epsilon} \forall h \in Q(|h| < \delta_{\epsilon} \Rightarrow |a^h - 1| < k\epsilon)$, где k - некоторая константа. Критерий Коши для нашей последовательности: $\exists N_{\epsilon} \forall n, m \in N(n, m > N \Rightarrow |r_n < r_m| < \epsilon)$.

Рассмотрим модуль разности: $|a^{r_n} - a^{r_m}| = |a^{r_m}|a^{r_n-r_m} - 1| < Ak\epsilon$, где $a^{r_m} \le A$ - некоторое число (ограничивающее последовательность), а k некоторая константа. Если взять $k = \frac{1}{A}$, то $Ak\epsilon = \epsilon$, из чего следует, что для a^{r_m} выполняется критерий Коши, а значит она сходиться.

23.1.1 Вещественный аргумент

 $a^x \rightleftharpoons \lim_{n \to \infty} a^{r_n}$, где r_n - последовательность рациональных чисел и $r_n \to x$.

Для показательной функции от вещественного аргумента сохраняются все свойства, определенные для функции от натурального аргумента.

23.1.2 Непрерывность

 Φ ункция a^x непрерывна на всей числовой оси.

Доказательство Будем рассматривать разность функций $|a^x - a^y| = a^|a^{x-y} - 1|$. Фиксируем $\epsilon > 0$.

 $\exists \delta_{\epsilon} \forall h \in R(|h| < \delta_{\epsilon} \Rightarrow |a^h - 1| < k\epsilon)$, где k-некоторая константа. Фиксируем δ_{ϵ} , из определения предела следует два неравенства:

$$0 < h_1 < \delta_{\epsilon}$$
$$\delta_{\epsilon} < h_1 < 0$$

, где $h_1, h_2 \in R$. Без ограничения общности будем считать, что a > 1, тогда если $h \in R : |h| < \min\{h_1, h_2\}$, то $h_2 < h < h_1$. Т.е., по аналогии с доказательством второй леммы, будет выполняться следующее неравенство:

$$1 - k\epsilon < a^{h_2} < a^h < a^{h_1} < 1 + k\epsilon$$

, из него следует, что $|a^h - 1| < k\epsilon$.

Зафиксируем $y: k=\frac{1}{a^y},$ и $x:|x-y|<\delta_\epsilon,$ тогда $a^y|a^{x-y}|<\epsilon.$

23.2 Непрерывность логарифмической функции

Если a>0 и $a\neq 1$, то $\log_a x$ - логарифмическая функция, обратная показательной. Является непрерывной, по теорема о непрерывности обратных функций.

Свойства

- 1. $\log ab = \log a + \log b$
- 2. $p \log a = \log a^p$

23.3 Непрерывность степенной функции

Степенная функция x^k , где $k \in R, x > 0$. $x^k = e^{k \ln x} \Rightarrow x^k$ - непрерывная функция.

23.4 Непрерывность тригонометрических функций

Функции: $\sin x, \cos x, \tan x, \cot x$ - непрерывны на всей своей области определения.

Обратные функции: arcsin, arccos, arcctg, arctg - непрерывны по теореме о непрерывности обратных функций.

$$\sinh = \frac{e^x - e^{-x}}{2}, \cosh = \frac{e^x + e^{-x}}{2}.$$

23.5 Элементарная функция

Функцию, которая может быть получена применением конечного числа операций: $+, -, *, /, \circ$ к простейшим функциям (показательные, степенные, логарифмические, тригонометрические), называют элементарной функцией

Теорема Все элементарные функции непрерывны на всей своей области определения.

24 Замечательные пределы

$$\lim_{x \to 0} (1+x)^{\frac{1}{x}} = e \tag{40}$$

Доказательство Рассмотрим последовательность $x_n = -\frac{1}{n}$. $\lim_{n \to \infty} (1+x_n)^{\frac{1}{x_n}} = \lim_{n \to \infty} (\frac{n-1}{n})^{-n} = \lim_{n \to \infty} (\frac{n}{n-1})^n = \lim_{n \to \infty} (\frac{1}{n-1})^{n-1} = \lim_{$

 $1)^{n-1}(\frac{1}{n-1}+1)=e$. Пусть $x_n\to +0$, то $p_n=[\frac{1}{x_n}]\to +\infty$. Положим $\epsilon>0$, тогда $\exists N \forall n>N \ |(1+\frac{1}{n})n-e|<\epsilon$. Фиксируем $n_0>N$, тогда $\exists M:n>M[\frac{1}{x_n}]>n_0$.

$$|(1+\frac{1}{p_n})^{p_n}-e| \le \epsilon \Rightarrow (1+\frac{1}{\left[\frac{1}{x_n}\right]+1})^{\left[\frac{1}{x_n}\right]} \le (1+x_n)^{\frac{1}{x_n}} \le (1+\frac{1}{\left[\frac{1}{x_n}\right]})^{\left[\frac{1}{x_n}\right]+1} \Rightarrow (1+\frac{1}{\left[\frac{1}{x_n}\right]})^{\left[\frac{1}{x_n}\right]} \to e.$$

Возьмем $x_n \to -0$, тогда $\lim_{n \to \infty} (1+x_n)^{\frac{1}{x_n}} \to e$ доказывается аналогично.

Так как каждая из подпоследовательностей сходиться к e, то вся последовательность сходиться к e.

$$\lim_{x \to 0} \frac{(1+2)^{\alpha} - 1}{x} \tag{41}$$

25 Сравнение бесконечно малых и бесконечно больших пределов

Ограничение функции по сравнению с другой функцией Пусть функции f(x) и g(x), заданы в некоторой $O^v_{\epsilon}(x)$. Говорят, что функция f(x) ограничена по сравнению с g(x) и пишут f(x) = O(g(x)), где $x \to x_0$, если $\exists k : \exists O_{\delta}(x_0) : \forall x \in O^v_{\delta}(x_0) \; (|f(x)| \le k|g(x)|$.

Примеры

1. $f(x) = \sin \frac{1}{x}, g(x) = 1$. Очевидно, что $|f(x)| \le |g(x)|$, т.е. f(x) : O(g(x)), при $x \to 0$.

Функции одного порядка Говорят, что $f(x) \asymp g(x)$ одного порядка, если $\exists \lim_{x \to x_0} \frac{f(x)}{g(x)}$. Обратно неверно.

Определение f(x) = o(g(x)), при $x \to x_0$, если $\exists \alpha(x)$ - б.м. в точке x_0 по сравнению с $g(x) : f(x) = \alpha(x)g(x)$.

Пример

- 1. $x^2 = o(x)$, при $x \to 0$.
- 2. $1 \cos x = o(x)$.
- 3. $1 \cos x = o(x^2)$.

Если $g(x) \neq 0, x \in O^{\vee}(x_0)$, то $f(x) = o(g(x)) \Leftrightarrow \lim_{x \to x_0} \frac{f(x)}{g(x)} = 0$.

Доказательство $\triangleright f = \alpha g$

$$\frac{f}{g} = \alpha \to 0$$

$$f = \alpha q$$

Эквивалентность функций Функции f(x) и g(x) называются эквивалентными (при $x \to x_0$), если f(x) = h(x) *q(x), где $h(x) \to 1$.

Утверждение 1 Если $g(x) \neq 0, x \in O^{\vee}(f(x)), \text{ то } f(x) \sim g(x) \Leftrightarrow \lim x \to x_0 \frac{f(x)}{g(x)} = 1.$

Утверждение 2 $f(x) \sim g(x)$ (при $x \to x_0$) $\Leftrightarrow f(x) - g(x) = o(g(x)) = o(f(x))$.

Доказательство $\rhd f \sim g, f = hg,$ где $h(x) \to 1, x \to x_0.$ Рассмотрим разность f(x) - g(x) = (h-1)g = o(g(x)). $\lhd f - g = \alpha g \ f = (\alpha + 1)g \sim g.$

25.1 Таблица эквивалентности

$$x \sim \sin x \sim \operatorname{tg} x \sim e^x - 1 \sim \frac{(a^x - 1)}{\ln a} \sim (1 + x) \sim \ln a \log_a(1 + x) \sim \operatorname{polynom}(x)$$
(42)

25.2Теорема

При вычислении пределов произведения (частного), входящие в выражение в качестве сомножителя можно заменять на эквивалентные.

Пусть $f \sim f_1, g \sim g_1$, при $x \to x_0$, тогда $\lim_{x \to x_0} \frac{f}{g} \lim x \to x_0 \frac{f_1}{g} = \lim x \to x_0 \frac{f}{g_1} = \lim x \to x_0 \frac{f_1}{g_1}$.

Доказательство Будем считать, что функции f(x), g(x) отличны от нуля. Рассмотрим $\frac{f(x)}{g(x)} = \frac{f(x)g_1(x)}{g_1(x)g(x)}$, где $\frac{g_1(x)}{g(x)} \to 1$.

Если функция входит в качестве суммы или разности заменять на эквивалентные нельзя.

26 Классификация точек разрыва

Пусть есть функция $f(x), x \in O_r(x)$, если $\exists \lim_{x \to x_0 = 0} f(x) = f(x-0)$ и $\exists \lim_{x \to x_0 = 0} f(x) = f(x+0)$, то f(x) непрерывна в точке $x_0 \Leftrightarrow \exists f(x-0) = f(x+0) = f(x_0)$.

26.1Точки разрыва I рода

Точка x_0 называется точкой разрыва первого рода (устранимый разрыв), если хотя бы один из односторонних пределов функции в этой точке не равен значению функции в этой точке: $f(x-0) \neq f(x_0) \lor f(x+0) \neq f(x_0)$. Например, функция f(x) = |sign(x)|.

Если односторонние пределы не равны, то такой разрыв называют скачком.

Утверждение Монотонная функция имеет точки разрыва только первого рода (скачок), что следует из теоремы о пределе монотонный функции.

26.2 Точка разрыва II рода

Точка x_0 называется точкой разрыва второго рода, если хотя бы один из пределов этой функции не существует. Например, функция $f(x)=\begin{cases} \frac{1}{x}, & x\neq 0\\ 0, & x=0 \end{cases}$ терпит разрыв второго рода в точке $x_0=0.$ Функция

 $f(x) = \begin{cases} 1, & x \in Q \\ 0, & x \in R \setminus Q \end{cases}$ не имеет пределов (любая ее точка является точкой разрыва второго рода)

27 Равномерная непрерывность функции

Пусть есть функция $f(x), x \in X$.

Определение Функция f(x) равномерно непрерывна на множестве X, если $\forall \epsilon > 0 \exists \delta_{\epsilon} > 0 : \forall x', x'' \in X(|x' - x''|)$ $|x''| < \delta_{\epsilon} \Rightarrow |f(x') - f(x'')| < \epsilon$.

Утверждение Если f(x) равномерно непрерывная на множестве X, то f(x) непрерывная на множестве X. Обратное не верно.

Пример Докажем, что функция $f(x) = \sin(x), x \in (0, 1)$ непрерывна, но не является равномерно непрерывной.

Построим отрицание для формулировки равномерно непрерывной функции: Доказательство

$$\exists \epsilon_0 \forall \delta \exists x'_{\delta}, x''_{\delta} : (|x'_{\delta} - x''_{\delta}| < \delta \land |(f(x'_{\delta}) - f(x''_{\delta})| \ge \epsilon_0)$$

Пусть $\sin(\frac{1}{x'_n})=1$, и $\sin(\frac{1}{x''_n})=-1$. Тогда $x'_n=\frac{1}{def+2\pi n}\Rightarrow x'_n\to 0$, а $x''_n=-\frac{1}{def+2\pi n}\Rightarrow x''_n\to 0$. Зафиксируем $\epsilon_0=2$ и возьмем произвольное $\delta>0$. Так как разность стремиться последовательностей x'_n и x_n'' стремиться к нулю, то $\exists (|x_n' - x_n''| < \delta)$ в этому случае $(f(x_n') - f(x_n'')) \ge 2$. Что и т.д.

27.1 Лемма

Функция f(x) равномерно непрерывна на $X \Leftrightarrow \forall x_n', x_n'' \in X : (|x_n' - x_n''| \to 0 \Rightarrow |f(x_n') - f(x_n'')| \to 0).$

Доказательство ⊳ Доказательство условия очевидно.

 \triangleleft Доказательство достаточности от противного. Пусть f(x) не является равномерно непрерывной, то есть:

$$\exists \epsilon_0 \forall \delta = \frac{1}{n} \exists x_n', x_n'' : (|x_n' - x_n''| < \frac{1}{n} \land |(f(x_n') - f(x_n'')| \ge \epsilon_0)$$

 $\frac{1}{n'}-\frac{1}{n''} o 0$, тогда как $f(x'_n)-f(x''_n) o 0$ - противоречие

27.2 Свойства функций равномерно непрерывных на интервале

27.2.1 Теорема о непрерывности на конечном интервале

Теорема Пусть функция f(x) равномерно непрерывна на конечном интервале (a,b), тогда функция имеет предел справа в точке a и предел слева в точке b.

Доказательство Для доказательство будем использовать критерий Коши. Пусть есть последовательность $x_n \to a$ и $x_n > a$, положим две подпоследовательности $x_n' = x_n$ и $x_n'' = x_n + m$, где m-фиксировано.

Зафиксируем произвольное $\epsilon > 0$. Так как f(x) равномерно непрерывна, то возьмем $\delta_{\epsilon} : \forall x', x'' \in X(|x' - x''| < \delta \Rightarrow |f(x') - f(x'')| < \epsilon$.

Рассмотрим $x' - ax' < \delta_{\epsilon}$, $x'' - a < x'' < \delta_{\epsilon}$, $(x' - x'') < \delta$, тогда $(f(x') - f(x'') < \epsilon)$, что удовлетворяет критерию Коши, значит функция имеет предел в точке a.

27.2.2 Теорема Кантора о функциях непрерывных на отрезке

Теорема Функция непрерывная на отрезке равномерно непрерывна на этом отрезке.

Доказательство От противного. Пусть f(x) не является равномерно непрерывной на отрезке, то есть $\exists x'_n, x''_n : |x'_n - x''_n| \to 0 \Rightarrow |f(x'_n) - f(x''_n)| \ge \epsilon_0$.

Положим x'_n - последовательность элементов отрезка $[a,b] \Rightarrow \exists x'_{n_k} \to x_0 \in [a,b]$ и $\exists x''_{n_k} \to x_0 \in [a,b]$. Тогда, если $y_n = x'_{n_1}, x''_{n_1}, x'_{n_2}, x''_{n_2}, \cdots \to x_0$, то $f(y_n)$ не имеет предела, потому то разность между соседними элементами $y_n \geq \epsilon_0$, с другой стороны f(x) непрерывна по условию, поэтому $f(x) \to x_0$ - противоречие.

Следствие Для того, чтобы непрерывная на конечном интервале функция была равномерно непрерывной, необходимо и достаточно, чтобы ее можно было продлить по непрерывности на концах интервала.

Часть IV

Дифферинцируемость

28 Производная

Производная является функцией. Пусть $f(x), x \in O_r(x_0)$, тогда $\Delta(f) = f(x) - f(x_0)$ - приращение функции в точке $x_0, \Delta(x) = x - x_0$ - приращение аргумента в точке x_0 . Если \exists конечный $\lim_{x \to x_0} \frac{\Delta(f)}{\Delta(x)}$, то функция f(x) имеет производную в точке x_0 .

Утверждение Если функция f(x) имеет производную в точке x_0 , то f(x) непрерывна в этой точке. Обратное не верно: #f(x) = |x| - непрерывна в точке 0, но не имеет в ней производную. $\#f(x) = \begin{cases} x^2, & x \in Q \\ 0, & x \in R \setminus Q \end{cases}$ (если $x \neq 0$, то функция терпит разрыв 2-ого рода в любой точке, за исключением нуля). Покажем, что в точке 0функция дифференцируема: $\frac{f(x)-f(0)}{x-0} = \frac{f(x)}{x}$, где $|f(x)| \le x^2$, поэтому $\frac{f(x)}{x} \le \frac{x^2}{|x|} = x \Rightarrow f'(x) = 0$.

29 Дифферинцируемость функций в точке

Определение Функция f(x) называется дифференцируемой в точке x_0 , если $\frac{f(x)-f(x_0)}{x-x_0}$, можно представить в виде: $A(x-x_0)+o(x-x_0)$, где $o(x-x_0)=\alpha(x)(x-x_0)$ - бесконечно малое $(\alpha(x)\to 0)$, при $x\to x_0$). Дифференцируемая функция обязательно будет непрерывной.

Линейная часть приращения $(A(x-x_0))$ называется дифференциалом функции f(x) в точке x_0 и обозначается через df(x).

f(x) дифференцируема в точке x_0 того и только тогда, когда $\exists f'(x_0)$, при этом $A = f'(x_0)$.

Доказательство \triangleright

$$\frac{f(x) - f(x_0)}{x - x_0} = \frac{A(x - x_0)}{x - x_0} + \frac{\alpha(x)(x - x_0)}{x - x_0}$$
$$\frac{f(x) - f(x_0)}{x - x_0} = A + \alpha(x)$$

Левая часть стремиться к $f'(x_0)$, которая существует и равна A при $x \to x_0$.

$$\triangleleft$$
 Дано $\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = f'(x_0)$

Дифференциал функции

$$df = f'(x_0)(x - x_0)$$

, где $(x - x_0) = dx$, то есть:

$$df = f'(x_0)dx (43)$$

29.1Таблица производных

$$(x^n) = nx^{n-1} (44)$$

Рассмотрим
$$f(x)=x^n$$
, где $n\in N$.
$$f'(x_0)=\lim_{x\to x_0}\frac{x^n-x_0^n}{x-x_0}=\lim\frac{x-x_0)(x^{n-1}+x^{n-2}x_0+\dots x_0^{n-1})}{x-x_0}=n*x_0^{n-1}$$

$$(\sin(x)) = \cos(x) \tag{45}$$

Рассмотрим
$$f(x) = \sin(x)$$
, $f'(x_0) = \lim_{x \to x_0} \frac{\sin(x) - \sin(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{2\sin\frac{x - x_0}{2}\cos x + x_0 2}{x - x_0} = \cos x_0$

$$(\cos(x))' = -\sin(x) \tag{46}$$

Рассмотрим $f(x) = \cos(x)$, производная рассматривается аналогично $\sin(x)$.

$$(a^x)' = a^x \ln a \tag{47}$$

$$(e^x)' = e^x \tag{48}$$

Рассмотрим $f(x) = a^x$, $f'(x_0) = \lim_{x \to x_0} \frac{a^x - a^{x_0}}{x - x_0} = \lim_{x \to x_0} \frac{a^{x_0}(a^{x - x_0} - 1)}{x - x_0} = a^{x_0} \ln a$

30 Арифметические свойства производных

Теорема Пусть функции $u(x), v(x), x \in O_r(x_0)$ и имеют производные в этой точке: $u'(x_0), v'(x_0)$, тогда

$$(u(x_0) + v(x_0)) = u'(x_0) + v'(x_0)$$
(49)

$$(u(x_0)v(x_0))' = u'(x_0)v(x_0) + u(x_0)v'(x_0)$$
(50)

$$\left(\frac{u(x_0)}{v(x_0)}\right)' = \frac{u'(x_0)v(x_0) - u(x_0)v'(x_0)}{u(x)} \quad u(x_0) \neq 0 \tag{51}$$

$$(C)' = 0 (52)$$

Доказательство Первое равенство следует из арифметических свойств пределов. Второе равенство. $(u(x_0)v(x_0))'=\lim_{x\to x_0}\frac{u(x)v(x)-u(x_0)v(x_0)}{x-x_0}=\lim_{x\to x_0}\frac{u(x)-u(x_0)}{x-x-0}v(x)+\lim_{x\to x_0}\frac{v(x)-v(x_0)}{x-x_0}u(x_0)=u'(x_0)v(x_0)+\lim_{x\to x_0}\frac{u(x)v(x)-u(x_0)v(x_0)}{x-x_0}=\lim_{x\to x_0}\frac{u(x)-u(x_0)}{x-x_0}v(x)+\lim_{x\to x_0}\frac{v(x)-v(x_0)}{x-x_0}u(x_0)=u'(x_0)v(x_0)+\lim_{x\to x_0}\frac{u(x)v(x)-u(x_0)v(x_0)}{x-x_0}=\lim_{x\to x_0}\frac{u(x)-u(x_0)}{x-x_0}v(x)+\lim_{x\to x_0}\frac{v(x)-v(x_0)}{x-x_0}=u'(x_0)v(x_0)+\lim_{x\to x_0}\frac{v(x)-v(x_0)}{x-x_0}=u'(x_0)v(x_0)$ $u(x_0)v'(x_0).$

Разность производных.
$$(\frac{1}{v(x_0)})' = \lim_{x \to x_0} \frac{\frac{1}{x} - \frac{1}{x_0}}{x - x_0} = \lim_{x \to x_0} = \frac{-v'(x_0)}{v^2 x_0}.$$
 $(\frac{u(x_0)}{v(x_0)})' = (u(x_0)\frac{1}{v(x_0)})' = u'(x_0)\frac{1}{v(x_0)} - \frac{v'(x_0)u(x_0)}{v^2(x_0)} = \frac{u'(x_0)v(x_0) - u(x_0)v'(x_0)}{u(x)}.$

Следствие (ku)' = ku', так как k' = 0

31Производные некоторых функций

31.1 Производная сложной функции

Теорема Пусть функция $f(x), x \in O_r(x_0)$, функция $F(y), y \in O_r(y)$, $y_0 = f(x_0)$, тогда $g(x) = f(F(x_0))$ дифференцируема в точке x_0 и $G'(x_0) = f'(x_0)F(y_0)$.

Доказательство $G'(x_0) = \lim_{x \to x_0} \frac{G(x) - G(x_0)}{x - x_0}$, домножим и разделим это выражение на $f(x) - f(x_0)$, $\frac{(G(x) - G(x_0))(f(x) - f(x_0))}{(x - x_0)(f(x) - f(x_0))} = \frac{(f(F(x)) - f(F(x_0)))(f(x) - f(x_0))}{(x - x_0)(f(x) - f(x_0))} = f'(x_0)F'(x_0)$.

31.2 Производная обратной функции

Теорема Пусть функция $f(x), x \in O_r(x_0), f'(x_0) \neq 0$, тогда $(f^{-1})'(y_0) = \frac{1}{f'(x_0)}$, где $y_0 = f(x_0)$.

Производная от показательно-степенной функции 31.3

$$(f^{g(x)}(x))' = (e^{g \ln f})' = e^{g \ln f}(g \ln f)' = f^g(g' \ln f) + g\frac{f'}{f}.$$

32 Теоремы о среднем

Пусть есть функция $f(x), x \in [a, b]$ и $f'(x), x \in (a, b)$.

Локальный максимум Пусть функция $f(x), x \in O_r(x_0)$. Точка x_0 называется локальным максимумом функции, если $\exists O_\delta(x_0) \forall x \in O_\delta^\vee(x_0) f(x) \leq f(x_0)$.

32.1 Теорема Ферма

Пусть функция $f(x), x \in O(x_0)$ и в точке x_0 имеет производную и x_0 - точка локального экстремума функции f(x). Тогда $f'(x_0) = 0$.

Доказательство Без ограничения общности, пусть x_0 - точка локального максимума функции f(x). Рассмотрим производную слева и производную справа этой функции:

$$f'_{-}(x_0) = \lim_{x \to x_0 - 0} \frac{f(x) - f(x_0)}{x - x_0} \ge 0$$
$$f'_{+}(x_0) = \lim_{x \to x_0 + 0} \frac{f(x) - f(x_0)}{x - x_0} \le 0$$

Очевидно, что дроби в обеих строках стремятся к нулю (так как их знаменатели равны нулю), поэтому пределы равны нулю. Числитель у первой меньше нуля (так как стремление к x_0 - локальному максимуму слева), а у второй больше нуля, так как идет стремление к локальному максимом справа. Числитель же всегда меньше либо равен нулю.

В итоге:

$$f'_{-}(x_0) = f'_{+}(x_0) = f'(x_0) = 0 (53)$$

Замечание 1 Обратная теорема ферма не имеет смысла. К примеру, пусть $f(x) = x^3$, положим $x_0 = 0$, тогда $f'(x) = 3x^2 = 0$, однако точка x_0 не является точкой локального экстремума этой функции.

Замечание 2 Наличие в локальном экстремуме производной не обязательно. Например, функция f(x) = |x|, имеет минимальное значение в точке $x_0 = 0$, однако не имеет производной в ней.

32.2 Теорема Ролля

Пусть для функции f(x) выполняются следующие условия:

- 1. Функция определена и непрерывна на [a,b]
- 2. Функция дифференцируема на (a,b)
- 3. f(a) = f(b)

Тогда $\exists c \in [a, b] : f'(c) = 0,$

В геометрическом смысле, теорема утверждает, что если ординаты обоих концов гладкой кривой равны, то на кривой найдется точка, в которой касательная к кривой параллельна оси абсцисс.

Доказательство Так как f(x) непрерывна, то $\exists x_m, x_M \in [a,b] : f(x_m) - minimum, f(x_M) - maximum$. Очевидно, что $f(x_m) \ge f(x_M)$.

Если $f(x_m) = f(x_M)$, то значит f(x) константа, тогда производная этой функции обращается в ноль в любой точеке из [a, b].

Если $f(x_m) < f(x_M)$. Пусть $x_m \in (a,b)$ или $x_M \in (a,b)$, тогда точка, которая лежит в интервале (a,b)является точкой экстремума, т.е., по теореме Ферма, $f(x_m) = 0$ или $f(x_M) = 0$.

Замечание 1 Нельзя отказаться от непрерывности на отрезке.

Замечание 2 Нельзя отказаться от дифференцируемости на отрезке.

32.3 Теорема Лагранжа (формула конечных приращений)

Пусть для функции f(x) выполняются следующие условия:

- 1. Функция определена и непрерывна на [a, b]
- 2. Функция дифференцируема на (a, b)

Тогда
$$\exists c \in (a,b) : f'(c) = \frac{f(b) - f(a)}{b - a}$$

Тогда $\exists c \in (a,b): f'(c) = \frac{f(b)-f(a)}{b-a}$ В геометрическом смысле это означает, что на отрезке [a,b] найдется точка c в которой касательная параллельна хорде, проходящей через точки, соответствующие концам отрезка.

Доказательство Рассмотрим функцию $g(x) = f(x) - f(a) - \frac{f(b) - f(a)}{b - a}(x - a)$, удовлетворяющую первому и второму условию. $g(a) = 0 = g(b) \Rightarrow$ удовлетворяет 3-ему условию теоремы Ролля. Тогда, $\exists c \in (a,b)g'(c) = f'(c) - \frac{f(b) - f(a)}{b - a} = 0 \Rightarrow f'(c) = \frac{f(b) - f(a)}{b - a}$.

Формула конечных приращений Лагранжа

$$\exists \xi \in (a,b) : f(b) - f(a) = f'(\xi)(b-a) \tag{54}$$

32.4 Теорема Коши

Пусть для функций f(x) и g(x) выполняются следующие условия:

- 1. $x \in [a, b]$
- 2. Обе функции дифференцируемы на (a,b)
- 3. q(x) не обращается в ноль на (a,b).
- 4. $g'(x) \neq 0$ и $f'(x) \neq 0$

Тогда $\exists c \in (a,b): \frac{f(b)-f(a)}{q(b)-q(a)} = \frac{f'(c)}{q'(c)}$. А если выполняется 4-ое условие, то g'(c)(f(b)-f(a)) = f'(c)(g(b)-g(a)).

Доказательство Рассмотрим функцию f(x) = (f(b) - f(a))g(x) - (g(b) - g(a)f(x)), где f(a) = f(b)g(a) - g(b)f(a), а f(b) = f(b)g(a) - f(a)g(b), так как $f(a) = f(b) \Rightarrow \exists c \in (a,b) : f(c) = 0$. f'(c) = (f(b) - f(a))g'(c) - (g(b) - g(a))f'(c) = 0. Что и т.д.

Пусть f(x) определена и дифференцируема на (a,b), и $\forall x \in [a,b] f'(x) \ge 0$, тогда функция f(x)Следствие 1 возрастает.

Доказательство Пусть $\forall x_1, x_2 \in (a, b) : (x_1 < x_2)(f(x_1) \le f(x_2))$ (т.е. функция возрастает). Рассмотрим $f(x), x \in [x_1, x_2]$. Согласно форме о конечных приращениях Лагранжа $\exists \xi \in (x_1, x_2) : f(x_2) - f(x_1) = f'(\xi)(x_2 - x_1)$, где $f'(\xi) \ge 0$ и $(x_2 - x_1) > 0$, следовательно $f(x_2) \ge f(x_1)$.

Следствие 2 Пусть f(x) определена и дифференцируема на множестве X (промежутке, интервале, полуинтервале) и $\exists k > 0 : \forall x \in X | f'(x) | \leq k$. Тогда f(x) равномерно непрерывна на множестве X.

Доказательство Зафиксируем $\epsilon > 0$. Без ограничения общности, пусть x' > x'', тогда, по теореме Лагранжа, $\exists \xi \in (x'', x') : |x' - x''| < \delta \epsilon$.

Рассмотрим модуль разности функции в этих точках: $|f(x') - f(x'')| = |f'(\xi(x' - x''))| < k\delta_{\epsilon} = \epsilon$ и пусть $\delta_{\epsilon} = \frac{\epsilon}{k}$.

Следствие 3 Производная имеет точки разрыва только второго рода.

Рассмотрим нечетную функцию $f(x) = \begin{cases} x^2 \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$. В точке $x_0 \neq 0$ производная функции существует.

Проверим точку $x_0=0$ по определению производной: $f'(0)=\lim_{x\to 0}\frac{f(x)}{x}=\lim_{x\to 0}x-\sin\frac{1}{x}=0$ (б.м. вычесть ограниченную величину). $f'(x)=2x\sin\frac{1}{x}-x^2(\cos\frac{1}{x})\frac{1}{x^2}=2x\sin\frac{1}{x}-\cos\frac{1}{x}$, где $\cos\frac{1}{x}$ не имеет предела, следовательно вся сумма не имеет предела, а значит производной не существует. В точке $x_0=0$ разрыв второго рода.

33 Производная высшего порядка

Рассмотрим функцию $f(x), x \in (a, b)$ и $\forall x \in (a, b) \exists f'(x)$.

 $f''(x) = (f'(x))' \dots f^{(n)}(x) = (f^{(n-1)}(x))'$ Будем считать, что $f^{(0)}(x) = f(x)$. Для того, чтобы существовала n-ая производная, обязательно надо, что бы существовали все производные в плоть до n-1-ой. Если существует n-ая производная в точке, то n-1-ая производная определена в окрестности этой точки, а n-2-ая производная непрерывна в этой окрестности.

Рассмотрим $f(x) = x^k$, ее n-ая производная $f^{(n)} = (k(k-1)x^{k-2})' \dots <$ - Дома дописать, если $k \in N$ и $k \in R$. Функцию которая имеет n-ую производную на (a,b) называют n-раз дифференцируемой на (a,b). Функцию которая имеет производную любого порядка на (a,b) называют b-сконечно b-фреренцируемой на (a,b).

33.1 Формула Лейбница для производной

Пусть функции u(x), v(x) n раз дифференцируемы на (a, b). Тогда имеет место равенство:

$$(u(x)v(x))^{(n)} = u^{(n)}v^{(0)} + nu^{(n-1)}v' + \frac{n(n-1)}{2}u^{(n-2)}v'' + \dots + nu'v^{(n-2)} + u^{(0)}v^{(n)} = \sum_{k=0}^{n} C_n^k u^{(n-k)}v(k)$$
 (55)

Доказательство аналогично доказательству формулы бинома Ньютона (по мат. индукции).

34 Дифференциал высшего порядка

Дифференциал первого порядка:

$$df = f'dx(dx = t - x df(x, \delta x)) = f(x)(\delta x)$$

Зафиксируем δx . δf - функция от переменного x, которая определена на (a,b), тогда дифференциал второго порядка определяется следующим образом:

$$d(df) = d^2f = d(d(f)) = d(f'dx) = dx(f''dx) = f''dx^2$$
(56)

Дифференциал *n*-ого порядка определяется так:

$$d^{n}f = d(d^{(n-1)}f) = f^{(n)}dx^{n}$$
(57)

34.1 Формула Лейбница для дифференциалов

Предположение из теоремы 1 (формула Лейбница для производной)

$$d^{n}(uv) = \left(\sum_{k=0}^{n} C_{n}^{k} u^{n-k} v^{k}\right) dx^{n} = \sum_{k=0}^{n} C_{n}^{k} u^{(n-k)} dx^{n-k} v^{k} dx^{k} = \sum_{k=0}^{n} C_{n}^{k} d^{n-k} u d^{k} v$$
(58)

34.2 Инвариантность дифференциала первого порядка

 $f(x), x \in (a, b)$, где x-независимая переменная. $x(t), t \in (\alpha, \beta)$, где t. Тогда f(x(t)), где есть зависимая переменная.

Инвариантность формы первого дифференциала - df одинаков при x зависимом и независимом.

Доказательство Пусть x независимая переменная, тогда df = f'dx Пусть x - зависимая переменная, тогда df = f'(x)x'(t)dt = f'dx, так как x'(t)dt = dx.

34.3 Инвариантность дифференциала п-ого порядка

В первом случае x независимый: $d^2f = f''dx^2$. Во втором случае x зависимый: x = x(t), $d^2f = d(df) = d(f'dx) = df'dx + f'd(dx) = f''dx^2 + f'd^2x$ Второй дифференциал не инвариантен относительной замены переменной.

Рассмотрим дифференциал третьего порядка: $d^3f = d(d^2f) = df(f'dx^2 + f'd^2x) = df''dx^2 + f''d(dx^2) + df'd^2x + f''d(d^2x) = f'''dx^3 + 2f''d^2xdx + f''dxd^2xdx + f''d^3x$. Тогда получается, старшие дифференциалы не инвариантны относительно замены переменной!

35 Формула Тейлора

35.1 Special for многочлен

Пусть $Q(x) = Q_n(x) = q_0 + q_1x + q_2x^2 + \dots + q_nx^n$ - многочлен степени n. Пусть x = x - a + a, тогда $Q_n(x) = q_0 + q_1(x - a) + q_2(x - a)^2 + \dots + q_n(x - a)^n$. Раскрыв скобки, можно получить многочлен следующего вида:

$$Q_n(x) = \beta_0 + \beta_1(x - a) + \beta_2(x - a)^2 + \dots + \beta_n(x - a)^n$$

Тогда,

$$Q'(x) = \beta_1 + 2\beta_2(x-a) + \dots n\beta_n(x-a)^{n-1}$$

$$Q''(x) = 2\beta_2 + 6\beta_3(x-a) + \dots + n(n-a)\beta_n(x-a)^{n-2}$$

$$\vdots$$

$$Q^k(x) = k!\beta + \dots + n(n-1)(n-k+1)(x-a)^{n-k}\beta_n$$

Если подставить в k-ую производную x=a, то $\beta_0=Q(a),\ \beta_1=Q'(a),\ \beta_2=\frac{Q''(a)}{2},\ \beta_k=\frac{Q^{(k)}(a)}{k!}$ - коэффициенты β найдены через производные.

Получаем искомую формулу:

$$Q(x) = \sum_{k=0}^{n} \frac{Q^{(k)}(a)}{k!} (x-a)^{k}$$
(59)

35.2 Special for функция

Будем рассматривать функцию f(x), которая n-раз дифференцируема в O(a). Сопоставим f(x) многочлен Q_{n-1}

$$(x) = \sum_{k=0}^{n-1} \frac{f^{(k)}(a)}{k!} (x-a)^k = f(0) + \frac{f'(0)}{1!} (x-a) + \dots + \frac{f^{(n-1)}}{(n-1)!} (x-a)^{n-1}$$

$$(60)$$

- многочлен Тейлора функции f.

Для всех $0 \le k \le n-1$ имеет место равенство:

$$Q_{n-1}^{(k)}(a) = f^{(k)}(a) \tag{61}$$

Многочлен удовлетворяющий такому уравнению, обязательно будет иметь вид 59

В окрестности точки a значения производной функции приблизительно равны со значениями многочлена Тейлора для этой функции.

Формула Тейлора:

$$f(x) = Q_{n-1}(x) + R_n(x)$$
(62)

Где $R_n(x)$ является остаточным членом формулы Тейлора, который может быть записан в форме Лагранжа:

$$R_n(x) = \frac{f^{(n)}(\xi)}{n!} (x - a)^n \tag{63}$$

Без ограничения общности $\xi \in (a, x)$. Так же $\xi = a + \theta(x - a)$, где $0 < \xi < 1$, тогда остаточный член может быть записан в таком виде (форма Лагранжа?):

$$R_n(x) = \frac{f^{(n)}(a + \theta(x - a))(x - a)^n}{n!}$$
(64)

Форма Коши:

$$R_n(x) = \frac{(x-a)^n (1-\theta)^{n-1}}{n!} \tag{65}$$

35.3 Формула Тейлора с остаточным членом в форме Лагранжа, Коши

Пусть f(x) n-1 раз дифференцируема на отрезке [a,x], имеет n-ую производную на интервале (a,x). Тогда остаточный член в формуле Тейлора может быть записан в форме Лагранжа или в форме Коши.

Доказательство Рассмотрим функцию $f(x) = Q_{n-1}(x) + R_n(x)$. Хотим найти свободный член в виде $R_n = (x-a)^p H$, тогда $f(x) = f(a) + \frac{f'(a)}{1!}(x-a)^1 + \dots + \frac{f^{(k)}}{k!}(x-a)^k + \frac{f^{(n-1)(a)}}{(n-1)!}(x-a)^{(n-1)} + (x-a)^p H$

Зафиксируем x, и u=a. Будем рассматривать функцию $\phi(x)=f(u)+\frac{f'(a)}{1!}(x-u)^1+\cdots+\frac{f^{(k)}(u)}{k!}(x-u)^k+\cdots+\frac{f^{(n-1)(u)}}{(n-1)!}(x-u)^(n-1)+(x-u)^pH$

Зафиксируем: $\phi(a) = f(x)$ и $\phi(x) = f(x)$, т.е. концах промежутка (a,x) функция ϕ и f принимают одинаковые значения. Значит, по теореме Лагранжа, $\exists \xi = \theta(x-a) \in (0,x): \phi'(\xi) = 0$ Найдем производную

 $\phi'(x)=f'(u)+f''(u)(x-u)-f'(u)+\frac{f'''(u)}{2!}(x-u)^2-f''(u)(x-u)+\cdots+\frac{f^{(n)}(u)}{(n-1)!}(x-u)^{n-1}-\frac{f^{(n-1)}(u)}{n-2}(x-u)^{n-2}-p(x-u)^{p-1}H(x)=.$ Тогда, $\phi'(\xi)=\frac{f^{(n)}(\xi)}{(n-1)!}(x-\xi)^{n-1}-p(x-\xi)^{p-1}H(x)=0.$ Получаем формулу для H(x):

$$H(x) = \frac{f^{(n)}(\xi)(x-\xi)^n}{p(n-1)!(x-\xi)^{p-1}}$$

Для R(x):

$$R_n(x) = (x - \xi)^p H(x) \tag{66}$$

35.4 Формула Тейлора с остаточным членов в Форме Пеана

Пусть функция f(x) удовлетворяет условиям предыдущей теоремы и $f^{(n)}(x)$ непрерывна в точке a. Тогда $f(x) = Q_n(x) + o((x-a)^n)$.

Доказательство Перепишем функцию с остаточным членом в форме Лагранжа $f(x) = Q_{n-1}(x) + \frac{f^{(n)}(\xi)}{n!}(x-a)^n$ Заметим, что $\alpha(x) = f^{(n)}(\xi) - f^{(n)}(a)$ стремиться к нулю. Тогда получается, что $Q_{n-1}(x) + \frac{f^{(n)}(\xi)}{n!}(x-a)^n = Q_{n-1}(x) + \frac{f^{(n)}(a)}{n!}(x-a)^n + \frac{\alpha(x)}{n!}(x-a)^n = Q_n(x) + o((x-a)^n)$.

35.5 Формула Маклорена

Формула Тейлора при a=0 называется формулой Маклорена

$$f(x) = f(0) + \frac{f'(0)}{1!}x + \frac{f''(0)}{2!}x^2 + \dots + \frac{f^{(n)}(0)}{n!}x^n + o(x^n)$$
(67)

Лемма Пусть функция f(x) дифференцируема и является четной, тогда f'(x) - нечетная. Аналогично , производная нечетной функции, есть четная функция.

Доказательство Рассмотрим $f(x) = f(-x) \Rightarrow f'(x) = -f'(-x)$, что означает f'(x) нечетная функция.

Примеры # $f(x) = e^x$. Разложение для этой функции по формуле Маклорена: $e^x = 1 + x + \frac{x^2}{2} + \frac{x^3}{3!} + \cdots + \frac{x^n}{n!} + o(x^n)$.

f(x) = sin(x) - нечетная функция. Значит четные производные у нее есть четные функции, а нечетные производные есть функции нечетные. $sin''(0) = sin''''(0) = \cdots = 0$, т.е. в формуле Тейлора не будет слагаемых с четными производными. f'(0) = 1; f'''(0) = -1 Тогда, $\sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \cdots + (-1)^k \frac{x^{2k+1}}{(2k+1)!} + o(x^{2k+2})$. <- Дома: $f(x) = \cos(c)$

36 Расширение неопределенности. Правило Лопиталя.

Пусть есть две функции f(x) и g(x), $x \in O_r(a)$. $f(x) = \alpha_p(x-a)^p + o((x-a)^p)$, $g(x) = \beta_q(x-a)^q + o((x-a)^q)$, где $p, q \ge 1$

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \begin{cases} 0, & p > q \\ \frac{\alpha_p}{\beta_q}, & p = q \\ \infty, & p < q \end{cases}$$

Правило Лопиталя для неопределенности вида $\frac{0}{0}$

Пусть

1. f(x), g(x) определены и дифференцируемы в $O(a) \subset \{a\}$, где $a \in R$, или $a = \pm \infty$, или $a = \infty$.

2.
$$\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = 0$$

3.
$$g(x) \neq 0$$
 и $g'(x) \neq 0$ в $O(a) \subset \{a\}$

Тогда, если $\exists \lim_{x \to a} \frac{f'(x)}{g'(x)} = A$, то $\exists \lim_{x \to a} \frac{f(x)}{g(x)} = A$.

Доказательство (1 способ) Пусть $a \in R$, f(a) = g(a) = 0, тогда $\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f(x) - f(a)}{g(x) - g(a)} = \lim_{x \to a} \frac{f'(\xi_x)}{g'(\xi_x)}$, где f(x), g(x) удовлетворяет теореме Коши на (a, x), т.е. $\exists \xi_x \in (a, x) : \xi_x \to a$, при $x \to a$. Пусть $a = \infty$, $u = \frac{1}{x}$, $F(u) = f(\frac{1}{x})$, $G(u) = g(\frac{1}{x})$, тогда F(u), G(u) удовлетворяет всем условиям теоремы в

 $O^{\vee}(0)$