

Concours d'entrée 2012 – 2013

PHYSIQUE

Durée: 1H 8 juillet 2012

Exercice I : [12 pts] Étude du mouvement d'une particule

On dispose d'une glissière circulaire (C) creuse de rayon R = 50 cm située dans un plan vertical. Une particule (S), de masse m = 20 g, peut glisser sur la surface intérieure de (C). Initialement, (S) est en A, sa position d'équilibre stable. On écarte (S) de A, dans le sens positif, de l'angle $\theta_0 = 10^{\circ}$, puis on la lâche sans vitesse à la

date $t_0 = 0$. À une date t, son élongation angulaire est θ et sa vitesse angulaire est $\dot{\theta}$. Le plan horizontal passant par A est le niveau de référence de l'énergie potentielle de pesanteur.

- a) Déterminer, à la date t, l'énergie mécanique du système ((S), Terre).
- b) Établir l'équation différentielle du second ordre en θ qui décrit les oscillations de (S).
- c) En déduire la valeur de la période propre de ces oscillations.
- d) Déterminer l'équation horaire du mouvement.
- 2. En réalité, en reprenant les mêmes conditions initiales, (S) subit, à une date t, l'action d'une force de frottement $\vec{f} = -\lambda \vec{V}$, où λ est une constante positive.
 - a) Déterminer la puissance de la force de frottement à l'instant t. En déduire que

l'équation différentielle qui régit le mouvement de (S) s'écrit : $\ddot{\theta} + \frac{\lambda}{m}\dot{\theta} + \frac{g}{R}\theta = 0$.

(S)

b) La solution de cette équation différentielle est de la forme: $\theta(t) = A \exp(-\lambda t/(2m)) \cos(\omega t - \phi)$. On pose : $\delta = \theta(t+T)/\theta(t)$ où T désigne la pseudo-période. Déterminer l'expression de δ et en déduire la valeur de λ .

Exercice II: [15 pts] Pourquoi le ciel est-il bleu?

En 1904, Sir J.J Thomson propose un modèle pour l'atome d'hydrogène, dans lequel l'électron de masse m, situé en M, est élastiquement lié à son noyau fixe situé en O. L'atome est ainsi ramené à un pendule élastique (m, k), l'électron de masse m subissant l'action de la force \vec{F}_e =-k \overrightarrow{OM} où \overrightarrow{OM} =x \vec{i} et O étant sa position d'équilibre stable. L'électron est

astreint à se déplacer le long de \vec{i} . On donne : $m = 9,1 \cdot 10^{-31}$ kg ; k = 100 N/m et on néglige le poids de l'électron.

- 1- a)En négligeant les frottements, établir l'équation différentielle du mouvement de l'oscillateur.
 - b) En déduire l'expression de la pulsation propre ω_0 et celle de la période propre T_0 de cet oscillateur.
 - c) Calculer les valeurs de ω_0 et T_0 .
- 2. Une onde lumineuse, provenant du Soleil, est caractérisée par un champ électrique $\vec{E} = E_0 \cos(\omega t + \phi) \vec{i}$, ω appartenant à l'intervalle $\omega_{rouge} \le \omega \le \omega_{bleu}$ où ces deux radiations extrêmes ont dans le vide les longueurs d'onde suivantes : $\lambda_{rouge} = 0,800 \ \mu m$ et $\lambda_{bleu} = 0,400 \ \mu m$. On cherche à étudier l'action de cette onde sur l'électron d'un atome de l'atmosphère, représenté par le modèle de Thomson. L'électron subit, à la date t, la force électrique

 $\vec{F}'=-e\vec{E}=-e\ E_0\ cos(\omega t+\phi)\ \vec{i}$; et, en plus, l'action d'une force de frottement de la forme $\vec{F}=-h\ v\ \vec{i}$ où $v=\frac{dx}{dt}$.

On donne : $e = 1,6.10^{-19} \text{ C}$; $h = 10^{-20} \text{ kg/s}$.

- a) Montrer que l'équation différentielle en x est de la forme : $\ddot{x} + B\dot{x} + \omega_0^2 x = -D\cos(\omega t + \phi)$.
- b) Déterminer les expressions des constantes positives B et D et calculer la valeur de B.
- c) Calculer la valeur de ω_{rouge} et celle de ω_{bleu} .
- 3. La solution de cette équation différentielle, en régime permanent, est de la forme $x = A \cos(\omega t)$. En donnant à ωt deux valeurs particulières, déterminer l'expression de A en fonction de ω .
- 4. En donnant à ω les valeurs limites considérées, montrer que l'expression de A peut être réduite à : A $\approx \frac{e.E_0}{m(\omega_0^2 \omega^2)}$
- 5. Sachant que l'électron émet, dans toutes les directions, un rayonnement électromagnétique dont la puissance moyenne est proportionnelle au carré de l'amplitude de son accélération,
 - a) Donner l'expression de la puissance moyenne P_{moy} en fonction de e, m, E_0 , ω et ω_0 .
 - b) En comparant les deux puissances moyennes Prouge et Pbleu, expliquer alors pourquoi le ciel est bleu.

Exercice III: [15 pts] Datation par le couple Rubidium-Strontium

Certaines roches granitiques, lors de leur cristallisation, ont emprisonné une quantité de rubidium $^{87}_{37}$ Rb, un isotope radioactif de rubidium, de constante radioactive $\lambda = 1,42 \times 10^{-11}$ an⁻¹, et une autre quantité de strontium formée des isotopes stables ($^{87}_{38}$ Sr) et ($^{86}_{38}$ Sr). Un noyau $^{87}_{37}$ Rb se désintègre en un noyau $^{87}_{38}$ Sr.

- 1. Donner, en le justifiant, le type de la désintégration d'un noyau ⁸⁷₃₇Rb.
- 2. Calculer la demi-vie radioactive $t_{1/2} = T$ de l'échantillon de rubidium 87.
- 3. $N(_{37}^{87}Rb)$ et $N_0(_{37}^{87}Rb)$ sont respectivement le nombre d'atomes de rubidium présents à l'instant actuel t et celui des atomes qui étaient présents à l'instant $t_0 = 0$, instant de formation de la roche. Montrer que le nombre $N^*(_{38}^{87}Sr)$ d'atomes de strontium formés dès l'instant t_0 jusqu'à l'instant t a pour expression : $N^*(_{38}^{87}Sr) = N(_{37}^{87}Rb)$ ($e^{\lambda t} 1$).
- 4. $N_0(^{87}_{38}Sr)$ est le nombre initial de noyaux de strontium 87 présents dans l'échantillon. Donner l'expression $N(^{87}_{38}Sr)$ du nombre total de ces noyaux présents dans l'échantillon à l'instant actuel t en fonction de $N(^{87}_{37}Rb)$, $N_0(^{87}_{38}Sr)$, λ et t.
- 5. En mesurant expérimentalement les rapports $u = \frac{N\binom{87}{37}Rb}{N\binom{86}{38}Sr}$ et $v = \frac{N\binom{87}{38}Sr}{N\binom{86}{38}Sr}$ dans les

minéraux de deux roches granitiques différentes (granite A, granite B), on obtient les deux graphiques suivants.

- b) Montrer que l'on peut écrire : v = a u + b, en posant : $a = (e^{\lambda t} 1)$
- c) i) Déterminer la valeur de a pour chacune des deux roches granitiques.
- ii) En déduire l'âge approximatif de chacune des deux roches.
- d) Pourquoi n'a-t-on pas utilisé le carbone 14 de demi-vie 5730 ans pour dater cette roche ?

Exercice IV: [18 pts] Charge d'un condensateur et mouvement d'une tige

Le circuit de la figure ci-contre est formé de deux rails de Laplace reliés à un générateur idéal de f.é.m. E=6 V, un condensateur (C) de capacité C=0,1 F et un conducteur ohmique de résistance R=5 Ω . Les rails, horizontaux et distants de $\ell=10$ cm, baignent dans un champ magnétique vertical ascendant et d'intensité B=1,0 T. Une tige métallique MN, de masse m=0,10 kg, peut se déplacer sans frottement sur les rails tout en restant perpendiculaire à ces rails. Les deux rails et la tige sont de résistances négligeables.

À la date $t_0 = 0$, (C) étant déchargé, on ferme K. À une date t, le circuit est parcouru par un courant d'intensité i, (C) porte la charge q et présente à ses bornes une tension $u_{MA} = u_C$. MN, repérée par son abscisse x et subissant l'action de

la force de Laplace \vec{F} , possède une vitesse \vec{V} de mesure algébrique $V = \frac{dx}{dt}$. Le circuit est ainsi orienté dans le sens de i.

- 1-a) Donner le sens de \vec{F} et son module F en fonction de l'intensité i.
 - b) Montrer que l'expression de la tension aux bornes M et N de la tige s'écrit $\mathbf{u}_{NM} = + \mathbf{B}\ell\mathbf{V}$.
- 2-a) Par application de la deuxième loi de Newton, montrer que $V = k u_C$, et déterminer la constante positive k.
 - b) Établir, par application de la loi d'additivité des tensions, l'équation différentielle:

$$E = RC \frac{du_C}{dt} + \left(\frac{B^2 \ell^2 C + m}{m}\right) u_C$$

- 3-a) La solution de cette équation est de la forme $u_C = a b \cdot e^{-t/\tau}$. Déterminer les valeurs des constantes a, b et τ .
 - b) En déduire les expressions, en fonction du temps t, de V et i.
 - c) Déterminer x en fonction du temps t sachant que, à la date $t_0 = 0$, $x_0 = 0$.
 - d) i) Déterminer la date t₁ à laquelle le régime permanent est pratiquement atteint.
 - ii) Déterminer la charge Q de (C), l'abscisse x₁ de MN et la nature du mouvement de la tige à partir de t₁.

Concours d'entrée 2012 – 2013

Solution de PHYSIQUE

Durée: 1H 8 JUILLET 2012

Exercice I:

1) a)
$$E_m(t) = \frac{1}{2} I \theta'^2 + mgh = \frac{1}{2} mR^2 \theta'^2 + mgR(1 - cos\theta)$$

b) les forces de frottement sont negligables \Rightarrow $E_m(t) =$ constante

$$\Rightarrow \frac{dM.E}{dt} = 0$$

\Rightarrow mR^2\theta'\theta'' + mgR(\theta'\sin\theta) = 0; \theta' \neq 0 \Rightarrow R\theta'' + g\sin\theta = 0

Pour
$$\theta$$
 faible, $\sin \theta \approx \theta$ (en rad) $\Rightarrow \theta'' + \frac{g}{R}\theta = 0$

c) L'équation différentielle est de la forme: $\theta'' + \omega_0^2 \theta = 0 \Rightarrow \omega_0^2 = \frac{g}{R}$

$$\Rightarrow T_0 = 2\pi \sqrt{\frac{R}{g}} = 2\pi \sqrt{\frac{0.5}{10}} = 1.41 \text{ s} \quad \boxed{1}$$

d) L'équation horaire du movement: $\theta = \theta_m cos(\omega_0 t + \phi)$

et
$$\theta' = -\omega_0 \theta_m \sin(\omega_0 t + \varphi)$$

Pour
$$t = 0$$
: $\theta = -\theta_m cos(\phi) = \theta_0$;

et
$$\theta' = -\omega_0 \theta_m \sin(\phi) = 0 \Rightarrow \phi = 0$$
 ou $\pi(rad)$

Pour
$$\varphi = \pi \Rightarrow \theta_m = -\theta_0$$
;

Et pour
$$\varphi = 0 \Rightarrow \theta_m = \theta_0 \Rightarrow \varphi = \pi$$
 est rejetée $\Rightarrow \theta = \theta_0 \cos(\omega_0 t)$

2) a)
$$P = \vec{f} \cdot \vec{v} = -\lambda \vec{v}^2 = -\lambda v^2 = -\lambda R^2 \theta'^2$$

L'équation différentielle décrivant le mouvement de (S) est donnée par:

$$\frac{dE_{_{m}}}{dt} = P \Longrightarrow mR^{2}\theta^{\prime}\theta^{\prime\prime} + mgR(\theta^{\prime}sin\theta) = - \lambda \ R^{2}\theta^{\prime2}$$

$$\Rightarrow mR^2\theta'\theta'' + \lambda R^2\theta'^2 + mgR(\theta'\sin\theta) = 0.$$

$$\Rightarrow R\theta'\theta'' + \frac{\lambda}{m}R\theta' + g(\theta'\theta) = 0 \Rightarrow \theta'' + \frac{\lambda}{m}\theta' + \frac{g}{R}\theta = 0$$

$$\textbf{b) le coefficient } \delta = \frac{\theta(t+T)}{\theta(t)} \Rightarrow \delta = \frac{A \ e^{\frac{-\lambda(t+T)}{2 \ m}} \cos[\omega(t+T) - \phi]}{A \ e^{\frac{-\lambda t}{2 \ m}} \cos[\omega t - \phi]}$$

$$\Rightarrow \delta = \frac{e^{\frac{-\lambda(t+T)}{2m}}}{e^{\frac{-\lambda t}{2m}}} = e^{\frac{-\lambda T}{2m}} ; \delta = constant \ \forall \ t.$$

$$\Rightarrow \delta = \frac{6.3}{10} = 0.63$$

$$\Rightarrow \ell n(\delta) = -0.462 = -\frac{\lambda T}{2m}$$

$$\Rightarrow \lambda = \frac{0.462 \times 2m}{T} = 0.013 \text{ kg/s}$$

Exercice II:

1) a) pas frottement, conservation de l'énergie mécanique:

$$\frac{1}{2} mv^2 + \frac{1}{2} kx^2 = constante$$

Dérivons les deux membres par rapport au temps: mx'x'' + kx'x = 0; $x' \neq 0$.

$$\Rightarrow$$
 x" + $\frac{k}{m}$ x = 0, est l'équation

b) La forme générale de l'équation différentielle est: $x'' + \omega_0^2 x = 0$,

Avec ω_0 la pulsation propre:

Avec
$$\omega_0$$
 la pulsation propre:
$$\omega_0 = \sqrt{\frac{k}{m}} \ \text{ et la période propre } T_0 \colon T_0 = 2\pi \sqrt{\frac{m}{k}} \ .$$

c) la valeur de ω_0 : $\omega_0 = \sqrt{\frac{100}{9.1 \times 10^{-31}}} = 1,048 \times 10^{16} \text{ rad/s}$

et
$$T_0 = 5,994 \times 10^{-16} \text{ s.}$$

2) a) Selon la deuxième loi de Newton:
$$\sum \vec{F} = \frac{d\vec{P}}{dt} = m \frac{d\vec{v}}{dt} = m x'' i$$

$$m \ x'' \ \dot{i} = -h \ x' \ \dot{i} - kx \ \dot{i} + \vec{F}' = -hx' \ \dot{i} - kx \ \dot{i} - e \ E_0 \cos(\omega t + \phi) \ \dot{i}$$

$$x'' + \frac{h}{m}x' + \frac{k}{m} x = -\frac{eE_0}{m} \cos(\omega t + \phi);$$

$$x'' + B x' + \omega_0^2 x = -D \cos(\omega t + \varphi) \operatorname{avec}: \omega_0^2 = \frac{k}{m}.$$

b)
$$B = \frac{h}{m}$$
 et $D(\frac{eE_0}{m})$. $B = \frac{10^{-20}}{9.1 \times 10^{-31}} = 1.10 \cdot 10^{10} \text{ s}^{-1}$.

c)
$$\omega = \frac{1/2}{\lambda} \frac{2\pi c}{\lambda} \Rightarrow \omega_{\text{rouge}} = \frac{2\pi \times 3 \times 10^8}{0.8 \times 10^{-6}} = 2.36 \times 10^{15} \text{ rad/s}$$

et
$$\omega_{\text{bleu}} = \frac{2\pi \times 3 \times 10^8}{0.4 \times 10^{-6}} = 4,71 \times 10^{15} \text{ rad/s}$$

3) $x'=-A\omega\sin(\omega t)$ et $x''=-A\omega^2\cos(\omega t)$. En remplaçant chaque grandeur par son expression dans l'équation différentielle équation, on obtient:

$$-A\omega^{2}\cos(\omega t) - B A\omega\sin(\omega t) + \omega_{0}^{2}A\cos(\omega t) = -\frac{eE_{0}}{m}\cos(\omega t + \varphi)$$

$$-A\omega^{2}\cos(\omega t) - B A\omega\sin(\omega t) + \omega_{0}^{2}A\cos(\omega t) = -D \cos(\omega t + \varphi)$$
Pour $\omega t = 0 \Rightarrow -A\omega^{2} + \omega_{0}^{2}A = -D \cos(\varphi)$

Pour
$$\omega t = \frac{\pi}{2} \Rightarrow -BA\omega = -D\cos(\frac{\pi}{2} + \phi) = D\sin(\phi)$$

$$D^{2}\cos^{2}(\phi) + D^{2}\sin^{2}(\phi) = D^{2} = A^{2}[(\omega^{2} - \omega_{0}^{2})^{2} + B^{2}\omega^{2}]^{2}$$

$$A = \frac{D}{\sqrt{B^2 \omega^2 + (\omega^2 - \omega_0^2)^2}}$$
 (1)

4) Pour les deux radiations extrêmes $\omega < \omega_0$, aussi $B^2 \omega^2 << (\omega_0^2 - \omega^2)$

$$\Rightarrow A \approx \frac{D}{(\omega_0^2 - \omega^2)}; \text{ Ainsi } A \approx \frac{eE_0}{m(\omega_0^2 - \omega^2)}.$$

5) a) L'amplitude de l'accélération est :

$$(A_{acc})^2 = [\omega^2 A]^2 \approx \left(\frac{\omega^2 e E_0}{m(\omega_0^2 - \omega^2)}\right)^2. \tag{1/2}$$

Ainsi la puissance moyenne
$$P_{moy} \approx cte \times \left(\frac{\omega^2 e E_0}{m(\omega_0^2 - \omega^2)}\right)^2$$

b) Ainsi:
$$P_{\text{bleu}} \approx \text{cte} \times \left(\frac{\omega_{\text{blue}}^2 e E_0}{m(\omega_0^2 - \omega_{\text{blue}}^2)} \right)^2$$

$$P_{\text{rouge}} \approx \text{cte} \times \left(\frac{\omega_{\text{red}}^2 e E_0}{m(\omega_0^2 - \omega_{\text{red}}^2)}\right)^2$$

$$\Rightarrow \frac{P_{\text{blue}}}{P_{\text{red}}} \cong \left[\frac{\omega_{\text{blue}}^2 (\omega_0^2 - \omega_{\text{red}}^2)}{\omega_{\text{red}}^2 (\omega_0^2 - \omega_{\text{blue}}^2)} \right]^2 = 22.7 \stackrel{1/2}{\Rightarrow} \text{le ciel est bleu.}$$

Exercice III:

1)
$${}^{87}_{37}\text{Rb} \longrightarrow {}^{87}_{38}\text{Sr} + {}^{a}_{z}p \Rightarrow a = 0; z = -1 \Rightarrow {}^{a}_{z}p = {}^{0}_{-1}e$$
, l'émission est β .

2)
$$T = \frac{\ln 2}{\lambda} = \frac{0.693}{1.42 \times 10^{-11}} = 4.88 \times 10^{10}$$
 années

3) On sait que $N({}^{87}_{37}Rb) = N_0({}^{87}_{37}Rb)e^{-\lambda t} \Rightarrow N_0({}^{87}_{37}Rb) = N({}^{87}_{37}Rb)e^{\lambda t}$

Nombre de Rb désintégré = nombre de Sr formé (1/2

$$\Rightarrow N^*({}_{38}^{87}Sr) = N_0({}_{37}^{87}Rb) - N({}_{37}^{87}Rb)$$

$$= N({}_{37}^{87}Rb)e^{\lambda t} - N({}_{37}^{87}Rb)$$

$$\Rightarrow$$
 N*(${}^{87}_{38}$ Sr) = N(${}^{87}_{37}$ Rb)(e ^{λt} - 1)

4)
$$N({}^{87}_{38}Sr) = N*({}^{87}_{38}Sr) + N_0({}^{87}_{38}Sr)$$

= $N({}^{87}_{37}Rb)(e^{\lambda t} - 1) + N_0({}^{87}_{38}Sr)$

5) a) Puisque l'isotope ${}^{86}_{38}$ Sr est stable et son nombre ne change pas au cours du temps.

$$\mathbf{b}) \; \frac{N(^{87}_{38}\mathrm{Sr})}{N(^{86}_{38}\mathrm{Sr})} = \frac{N(^{87}_{37}\mathrm{Rb})(e^{\lambda t} - 1)}{N(^{86}_{38}\mathrm{Sr})} + \frac{N_0(^{87}_{38}\mathrm{Sr})}{N(^{86}_{38}\mathrm{Sr})} \qquad \boxed{1} \; \boxed{\frac{1}{2}}$$

Ainsi
$$v = au + b \Rightarrow a = (e^{\lambda t} - 1)$$
 et $b = \frac{N_0 \binom{87}{38} Sr}{N\binom{86}{38} Sr}$

c) i) Pour le granite A :
$$a_A = \frac{(0.85 - 0.715)}{(17 - 0)} = 7.94 \times 10^{-3}.$$

Pour le granite B:
$$a_B = \frac{(0.85 - 0.715)}{(29 - 0)} = 4.65 \times 10^{-3}$$

ii) pour A : $e^{\lambda tA} - 1 = \ln (7.94 \times 10^{-3}) \Rightarrow e^{\lambda tA} = 1 + 7.94 \times 10^{-3}$

$$\Rightarrow$$
 e ^{λ tA} = 1,00794 \Rightarrow t_A = 5,57×10⁸ années 1

pour B: $e^{\lambda tB} - 1 = \ell n \ (4,65 \times 10^{-3}) \Rightarrow e^{\lambda tB} = 1 + 4,65 \times 10^{-3}$ (1)

$$\Rightarrow e^{\lambda tB} = 1{,}00465 \Rightarrow t_B = 3{,}27{\times}10^8 \text{ ann\'ees}$$

d) Le carbone 14 (comme tout autre isotope) sert à dater les échantillons dont l'âge ne dépasse pas 10 T. D'où pour le carbone 14 au maximum 57000 ans.

Exercice IV:

- 1) a) La force \vec{F} est horizontale, se dirige vers la droite (Règle des trois doigts de la main droite) et de module $F = iB\ell$.
 - **b)** Le flux magnétique à travers le circuit est :

$$\varphi = \vec{B} \cdot \vec{S} = \vec{B} \cdot \vec{n} S = B \ell x ;$$

$$\varphi = \vec{B} \cdot \vec{S} = \vec{B} \cdot \vec{n} S = B \ell x ;$$
La f.é.m. induit e : e = $-\frac{d\varphi}{dt} = -B\ell \frac{dx}{dt} = -B\ell V$

La tension aux bornes M et N de la tige s'écrit alors :

 $\mathbf{u}_{NM} = -\mathbf{e} = \mathbf{B}\ell\mathbf{V}$. car i sort du point M; donc le pôle positif du générateur équivalent est relié à M.

2) a) Par application de la deuxième loi de Newton : $\vec{F} + m\vec{g} + \vec{R}_N = \frac{d\vec{P}}{dt} = m\frac{d\vec{V}}{dt}$; après projection suivant le sens du mouvement,

on trouve:
$$F = iB\ell = m\frac{dV}{dt}$$
;

on trouve:
$$F = iB\ell = m\frac{dV}{dt}$$
;
$$i = C\frac{du_C}{dt} \Rightarrow m\frac{dV}{dt} = B\ell C\frac{du_C}{dt} \Rightarrow mV = B\ell C \ u_C + cte$$

À
$$t = 0$$
, $V = 0$ et $u_C = 0 \Rightarrow$ cte $= 0$, ainsi: $V = \frac{B\ell C}{m} u_C$.

b) Par application de la loi d'additivité des tensions, on obtient :

$$u_{ND} = u_{NM} + u_{MA} + u_{AD} \Longrightarrow E = Ri + B\ell V + u_C;$$

$$\Rightarrow E = RC \frac{du_C}{dt} + \frac{B^2 \ell^2 C}{m} u_C + u_C$$

$$\Rightarrow E=RC\frac{du_{c}}{dt}+(\frac{B^{2}\ell^{2}C+m}{m})u_{c}$$

3) a) À
$$t_0 = 0$$
, $u_C = 0 \Rightarrow a = b$ et $u_c = a - a$ $e^{\frac{-t}{\tau}}$; $\frac{du_C}{dt} = \frac{a}{\tau}$ $e^{\frac{-t}{\tau}}$

$$\Rightarrow E = RC \frac{a}{\tau} e^{\frac{-t}{\tau}} + \frac{B^2 \ell^2 C + m}{m} a - \frac{B^2 \ell^2 C + m}{m} a e^{\frac{-t}{\tau}}$$

$$\Rightarrow a = \frac{mE}{B^2 \ell^2 C + m} = \frac{0,10 \times 6}{1^2 \times (0,10)^2 \times 0,1 + 0,10} = 5,94 \text{ V}$$
et $\tau = \frac{mRC}{B^2 \ell^2 C + m} = 0,495 \text{ s}$
Ainsi: $u_C = 5,94[1 - e^{-2,02t}]$

- d) i) Le régime permanent est atteint pour : $t_1 = 5\tau = 5{\times}0{,}495 = 2{,}475~\mathrm{s}$
 - ii) La charge Q du condensateur: $Q = Cu_C = 0.1 \times 5.94 = 0.594 C$ L'abscisse x_1 de la tige: $x_1 = 0.594 \times 2.475 + 0.297[e^{-5} 1] = 1.47 0.297 = 1.17 m.$

À partir de la date t_1 le mouvement est rectiligne uniforme, car V devient constante.