import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
df=pd.read\_csv('\_/content/drive/MyDrive/Dataset\_ML/Mall\_Customers.csv')
df

| ₽ |     | CustomerID | Genre  | Age | Annual<br>Income<br>(k\$) | Spending<br>Score (1-100) |
|---|-----|------------|--------|-----|---------------------------|---------------------------|
|   | 0   | 1          | Male   | 19  | 15                        | 39                        |
|   | 1   | 2          | Male   | 21  | 15                        | 81                        |
|   | 2   | 3          | Female | 20  | 16                        | 6                         |
|   | 3   | 4          | Female | 23  | 16                        | 77                        |
|   | 4   | 5          | Female | 31  | 17                        | 40                        |
|   |     |            |        |     |                           |                           |
|   | 195 | 196        | Female | 35  | 120                       | 79                        |
|   | 196 | 197        | Female | 45  | 126                       | 28                        |
|   | 197 | 198        | Male   | 32  | 126                       | 74                        |
|   | 198 | 199        | Male   | 32  | 137                       | 18                        |
|   | 199 | 200        | Male   | 30  | 137                       | 83                        |

df.head()

|   | CustomerID | Genre  | Age | Annual<br>Income (k\$) | Spending Score<br>(1-100) |
|---|------------|--------|-----|------------------------|---------------------------|
| 0 | 1          | Male   | 19  | 15                     | 39                        |
| 1 | 2          | Male   | 21  | 15                     | 81                        |
| 2 | 3          | Female | 20  | 16                     | 6                         |
| 3 | 4          | Female | 23  | 16                     | 77                        |
| 4 | 5          | Female | 31  | 17                     | 40                        |

df.tail()

|     | CustomerID | Genre  | Age | Annual Income (k\$) | Spending Score (1-100) |
|-----|------------|--------|-----|---------------------|------------------------|
| 195 | 196        | Female | 35  | 120                 | 79                     |
| 196 | 197        | Female | 45  | 126                 | 28                     |
| 197 | 198        | Male   | 32  | 126                 | 74                     |
| 198 | 199        | Male   | 32  | 137                 | 18                     |
| 199 | 200        | Male   | 30  | 137                 | 83                     |

```
df.columns
```

## df.isna().sum()

CustomerID 0
Genre 0
Age 0
Annual Income (k\$) 0
Spending Score (1-100) 0

dtype: int64

x=df.iloc[:,[3,4]]

| Annual Inc         | ome (k\$) | Spending Score (1-100) |
|--------------------|-----------|------------------------|
| 0                  | 15        | 39                     |
| 1                  | 15        | 81                     |
| 2                  | 16        | 6                      |
| 3                  | 16        | 77                     |
| 4                  | 17        | 40                     |
|                    |           |                        |
| 195                | 120       | 79                     |
| 196                | 126       | 28                     |
| 197                | 126       | 74                     |
| 198                | 137       | 18                     |
| 199                | 137       | 83                     |
| 200 rows × 2 colum | nns       |                        |

```
#Number of clusters
from sklearn.cluster import KMeans
WCSS=[] #Varience
for i in range(1,11): #cluster
  kmeans=KMeans(n_clusters=i,init='k-means++',random_state=42)
  kmeans.fit(x)
  WCSS.append(kmeans.inertia_)
WCSS
```

```
/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The
   warnings.warn(
/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The
   warnings.warn(
/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The
   warnings.warn(
/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The
   warnings.warn(
/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The
```

```
warnings.warn(
/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The
  warnings.warn(
/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The
  warnings.warn(
/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The
 warnings.warn(
/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The
 warnings.warn(
/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The
 warnings.warn(
[269981.28,
 181363.59595959593,
 106348.37306211122,
 73679.78903948836,
44448.4554479337,
 37233.814510710006,
 30259.65720728547,
 25011.839349156588,
 21862.092672182895,
 19672.072849014323]
```

```
#ploting the cluster-varience graph
plt.plot(range(1,11),WCSS)
plt.xlabel('No.of Clusters',color='g')
plt.ylabel('Varience',color='r')
plt.title('Clusters-Varience Graph',color='blue')
```

Text(0.5, 1.0, 'Clusters-Varience Graph')



```
#Number of Clusters is 5
kmeans=KMeans(n_clusters=5,init='k-means++',random_state=42)
kmeans.fit(x)
```

```
y_pred=kmeans.predict(x)
y_pred
            /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The
                 warnings.warn(
            array([2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3,
                              2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 0,
                              0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 1, 4, 0, 4, 1, 4, 1, 4,
                             0, 4, 1, 4, 1, 4, 1, 4, 1, 4, 0, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4,
                              1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4,
                              1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4,
                              1, 4], dtype=int32)
x['cluster']=y_pred
Х
            <ipython-input-11-84aa8cab0bce>:1: SettingWithCopyWarning:
            A value is trying to be set on a copy of a slice from a DataFrame.
            Try using .loc[row_indexer,col_indexer] = value instead
            See the caveats in the documentation: <a href="https://pandas.pydata.org/pandas-docs/stable/user_gui">https://pandas.pydata.org/pandas-docs/stable/user_gui</a>
                 x['cluster']=y_pred
                          Annual Income (k$) Spending Score (1-100) cluster
                                                                                                                                                                11
                 0
                                                                  15
                                                                                                                              39
                                                                                                                                                      2
                 1
                                                                  15
                                                                                                                             81
                                                                                                                                                      3
                 2
                                                                                                                                                      2
                                                                  16
                                                                                                                                6
                 3
                                                                                                                                                      3
                                                                  16
                                                                                                                             77
                 4
                                                                                                                                                      2
                                                                  17
                                                                                                                             40
                ...
                                                                                                                               ...
               195
                                                                120
                                                                                                                             79
                                                                                                                                                      4
               196
                                                                126
                                                                                                                             28
                                                                                                                                                      1
              197
                                                                126
                                                                                                                             74
                                                                                                                                                      4
              198
                                                                137
                                                                                                                              18
                                                                                                                                                      1
              199
                                                                137
                                                                                                                             83
                                                                                                                                                      4
            200 rows × 3 columns
z=x.iloc[:,:-1]
y=x.iloc[:,-1]
У
            0
                              2
                              3
```

```
196   1
197   4
198   1
199   4
Name: cluster, Length: 200, dtype: int32
```

from sklearn.model\_selection import train\_test\_split
z\_train,z\_test,y\_train,y\_test=train\_test\_split(z,y,test\_size=.30,random\_state=42)
z\_train

|     | Annual Income (k\$) | Spending Score (1-100) |
|-----|---------------------|------------------------|
| 169 | 87                  | 63                     |
| 97  | 60                  | 50                     |
| 31  | 30                  | 73                     |
| 12  | 20                  | 15                     |
| 35  | 33                  | 81                     |
|     |                     |                        |
| 106 | 63                  | 50                     |
| 14  | 20                  | 13                     |
| 92  | 60                  | 49                     |
| 179 | 93                  | 90                     |
| 102 | 62                  | 59                     |
|     |                     |                        |

140 rows × 2 columns

z\_test

| 124 | 10  | 29 |
|-----|-----|----|
| 16  | 21  | 35 |
| 148 | 78  | 22 |
| 93  | 60  | 40 |
| 65  | 48  | 59 |
| 60  | 46  | 56 |
| 84  | 54  | 57 |
| 67  | 48  | 48 |
| 125 | 70  | 77 |
| 132 | 72  | 34 |
| 9   | 19  | 72 |
| 18  | 23  | 29 |
| 55  | 43  | 41 |
| 75  | 54  | 54 |
| 150 | 78  | 17 |
| 104 | 62  | 56 |
| 135 | 73  | 88 |
| 137 | 73  | 73 |
| 164 | 85  | 26 |
| 76  | 54  | 53 |
| 79  | 54  | 42 |
| 197 | 126 | 74 |
| 38  | 37  | 26 |
| 24  | 28  | 14 |
| 122 | 69  | 58 |
| 195 | 120 | 79 |
| 29  | 29  | 87 |
| 19  | 23  | 98 |
| 143 | 76  | 87 |
| 86  | 57  | 58 |
| 114 | 65  | 48 |
| 173 | 87  | 92 |
| 5   | 17  | 76 |
| 126 | 71  | 35 |
| 117 | 65  | 59 |
| 73  | 50  | 56 |
|     |     |    |

```
      140
      75
      5

      98
      61
      42

      172
      87
      10

      96
      60
      47
```

```
y_train
     169
            4
            0
     97
     31
            3
     12
            2
     35
            3
     106
            0
     14
            2
     92
            0
     179
            4
     102
            0
     Name: cluster, Length: 140, dtype: int32
```

```
y_test
     158
            1
            1
     128
     115
            0
            0
     69
     170
            1
     174
            1
     45
            3
     66
            0
     182
            1
     165
            4
     78
            0
     186
            1
     177
            4
     56
            0
     152
            1
     82
            0
     68
            0
     124
            1
     16
            2
     148
            1
     93
            0
     65
            0
```

```
125
     132
     9
            3
     18
            2
     55
            0
     75
            0
     150
            1
     104
            0
     135
            4
     137
            4
     164
            1
     76
            0
     79
            0
     197
            4
     38
            2
     24
            2
     122
            0
     195
            4
     29
            3
     19
            3
     143
            4
     86
            0
     114
            0
     173
            4
     5
            3
     126
     117
            0
     73
            0
     140
            1
     98
            a
     172
            1
     96
     Name: cluster, dtype: int32
from sklearn.tree import DecisionTreeRegressor
der=DecisionTreeRegressor()
der.fit(z_train,y_train)
y_pred=der.predict(z_test)
y_pred
     array([0., 3., 2., 1., 1., 0., 0., 1., 1., 3., 0., 1., 4., 0., 1., 4., 0.,
            1., 0., 0., 1., 2., 1., 0., 0., 0., 0., 0., 4., 1., 3., 2., 0., 0.,
            1., 0., 4., 4., 1., 0., 0., 4., 2., 2., 0., 4., 3., 3., 4., 0., 0.,
            4., 3., 1., 0., 0., 1., 0., 1., 0.])
from sklearn.metrics import mean_absolute_error
print('MAE is',mean_absolute_error(y_test,y_pred))
     MAE is 0.0333333333333333333
from sklearn.metrics import mean_absolute_percentage_error
print('"ERROR percentage is',mean_absolute_percentage_error(y_test,y_pred))
from sklearn.metrics import mean_squared_error
z=mean_squared_error(y_test,y_pred)
     0.03333333333333333
```