Practica 1 Variable Compleja.

Cuerpo de los Números Complejos.

1. Demostrar las relaciones siguientes:

a)
$$\overline{z_1} - \overline{z_2} = \overline{z_1} - \overline{z_2}$$
; b) $\overline{z_1} \overline{z_2} = \overline{z_1} \overline{z_2}$;

c)
$$\overline{\left(\frac{z_1}{z_2}\right)} = \frac{\bar{z}_1}{\bar{z}_2}$$
; d) $\overline{z_1} + \bar{z}_2 = z_1 + z_2$.

Hallar las soluciones reales de las ecuaciones:

2.
$$(3x - i)(2 + i) + (x - iy)(1 + 2i) = 5 + 6i$$
.

3. $(x - iy)(a - ib) = i^5$, donde a, b son los números reales dados $|a| \neq |b|$.

4.
$$\frac{1}{z-i} + \frac{2+i}{1+i} = \sqrt{2}$$
, donde $z = x + iy$.

5. Presentar el número complejo $\frac{1}{(a+ib)^2} + \frac{1}{(a-ib)^2}$ en la forma algebraica.

6. Demostrar que
$$\frac{\sqrt{1+x^2}+ix}{x-i\sqrt{1+x^2}}=i$$
 (x es real).

7. Expresar
$$x$$
 y y a través de u y v , si $\frac{1}{x+iy} + \frac{1}{u+iv} =$

$$=1(x, y, u, v \text{ son los números reales}).$$

8. Hallar todos los números complejos que satisfacen la condición $z = z^2$.

9. En los problemas siguientes hallar el módulo y el valor principal del argumento de los números complejos:

a)
$$z = 4 + 3i$$
; b) $z = -2 + 2\sqrt{3}i$;

c)
$$z = -7 - i$$
; d) $z = -\cos \frac{\pi}{5} + i \sin \frac{\pi}{5}$;

e)
$$z = 4 - 3i$$
; f) $z = \cos \alpha - i \sec \alpha \left(\pi < \alpha < \frac{3}{2} \pi \right)$.

10. Expresar los siguientes números complejos en la forma trigonométrica:

(a)
$$-2$$
; b) $2i$; c) $-\sqrt{2}+i\sqrt{2}$;

d)
$$1 - \operatorname{sen} \alpha + i \cos \alpha \left(0 < \alpha < \frac{\pi}{2} \right)$$
;

e)
$$\frac{1+\cos\alpha+i\sin\alpha}{1+\cos\alpha-i\sin\alpha}\left(0<\alpha<\frac{\pi}{2}\right)$$
;

on la forma exponencial:

f)
$$-2$$
; g) i ; h) $-i$; i) $-1 - i \sqrt{3}$;

j)
$$\operatorname{sen} \alpha - i \cos \alpha \left(\frac{\pi}{2} < \alpha < \pi \right)$$
; k) $5 + 3i$.

11. Demostrar que el polinomio

$$f(x) = x^n \operatorname{sen} \alpha - \lambda^{n-1} x \operatorname{sen} n\alpha + \lambda^n \operatorname{sen} (n-1) \alpha$$
so divide en $x^2 - 2\lambda x \cos \alpha + \lambda^2$.

12. Calcular:

a)
$$\left(\frac{1+i\sqrt{3}}{1-i}\right)^{40}$$
; b) $(2-2i)^7$; c) $(\sqrt{3}-3i)^6$;

(1)
$$\left(\frac{1-i}{1+i}\right)^8$$
.

13. Demostrar que

$$\left(\frac{1+i\operatorname{tg}\alpha}{1-i\operatorname{tg}\alpha}\right)^n = \frac{1+i\operatorname{tg}n\alpha}{1-i\operatorname{tg}n\alpha}.$$

14. Demostrar que si

 $(\cos \alpha + i \sin \alpha)^n = 1$, entonces $(\cos \alpha - i \sin \alpha)^n = 1$.

15. Utilizando la fórmula de Moivre, expresar mediante las potencias sen φ y cos φ las funciones siguientes de los ángulos múltiples:

a) sen 3φ ; b) cos 3φ ; c) sen 4φ ; d) cos 4φ ; e) sen 5φ ;

f) $\cos 5\varphi$.

En los problemas siguientes hallar todos los valores de raíz:

16. a)
$$\sqrt[4]{-1}$$
; b) \sqrt{i} ; c) $\sqrt[3]{i}$; d) $\sqrt[4]{-i}$.

17. a)
$$\sqrt[4]{1}$$
; b) $\sqrt[3]{-1+i}$; c) $\sqrt{2-2\sqrt{3}i}$.

18.
$$\sqrt[5]{\sqrt{2}\left(\cos\frac{\pi}{6}+i\sin\frac{\pi}{6}\right)}$$
.

En los problemas siguientes hallar conjuntos de puntos on el plano de la variable compleja z que se determinan por las condiciones dadas:

19. a)
$$|z| \ge 2$$
; b) $\frac{1}{|z|} \ge 1$, $z \ne 0$; c) $\left| \frac{1}{z} \right| \le 2$, $z \ne 0$.

20. a)
$$|z-5i|=8$$
; b) $|z-1-i| \le 4$.

21. a)
$$1 < |z+i| < 2$$
, $\frac{\pi}{4} < \arg z < \frac{\pi}{2}$;

b)
$$2 < |z| < 3$$
, $\frac{\pi}{8} < \arg z < \frac{4}{3} \pi$.

22. a)
$$\left| \frac{z-1}{z+1} \right| \le 1$$
; b) $0 \le \text{Im } z \le 1$

23. a) $1 \le |z+2+i| \le 2$; b) |z-1| < |z-i|; c) 1 < Re z < 2.

24. |z - a| < |1 - az| (a es real, |a| < 1). 25. a) |z| > 2 + Im z; b) $|z| - \text{Re } z \le 0$.

26. $\text{Im } \bar{z}^2 < 1$.

27. $4 \le |z-1| + |z+1| \le 8$.

28. a)
$$\operatorname{Im}\left(\frac{1}{z}\right) < -\frac{1}{2}$$
; b) $\frac{1}{4} < \operatorname{Re}\left(\frac{1}{z}\right) +$

29. ¿Qué línea forma el conjunto de todos los puntos z = -2 + iy, si y obtiene valores reales cualesquiera? 30. ¿Qué línea forma el conjunto de todos los puntos z = x + 2i, si x obtiene valores reales cualesquiera?

Indicar qué líneas se determinan por las ecuaciones si-Hulentes:

11. a) Im
$$z^2 = 2$$
; b) Re $z^2 = 1$; c) Im $\left(\frac{1}{z}\right) = \frac{1}{2}$.

32. a) Re
$$\left(\frac{1}{z}\right) = 1$$
; b) Im $(z^2 - \overline{z}) = 2 - \text{Im } z$.

33.
$$z^2 + \bar{z^2} = 1$$
.

34.
$$2zz + (2+i)z + (2-i)z = 2$$
.

35. a)
$$|z-i|+|z+i|=4$$
; b) $|-z|-i|z+i|=2$.

36. a)
$$|z| - 3$$
 Im $z = 6$; b) $3|z| - \text{Re } z = 12$.

37. a)
$$|z-2| = |1-2z|$$
; b) $|z-z_1| = |z-z_2|$; c) Re $(z^2-z) = 0$; d) Re $(1+z) = |z|$.

Escribir en la forma compleja las ecuaciones de las líneas siguientes:

38. a) De los ejes de coordenadas OX y OY; b) de la recta y = x; c) de la recta y = kx + b, donde k, b son reales.

39. a) De la hipérbola equilátera $x^2 - y^2 = a^2$; b) de la circunferencia $x^2 + y^2 + 2x = 0$.

Problemas diferentes

Resolver las ecuaciones:

40. $z^3 + 3z^3 + 3z + 3 = 0$.

41. $z^4 - 4z^3 + 6z^2 - 4z - 15 = 0$.

42. Hallar el número complejo z, la representación del cual es el punto del segmento z_1z_2 que se encuentra de z_2 en dos veces más lejos que de z_1 .

43. ¿A qué vector se convierte el vector a + ib siendo especulativo su reflejo en la bisectriz del primer cuarto?

44. ¿A qué vector se convierte el vector $-\sqrt{3} + 3i$ al girarlo en el ángulo de 90°?

45. ¿A qué vector se convierte el vector $-\sqrt{3}-i$ al

girarlo en el ángulo de 120° ?

46. Hallar el ángulo en el cual es necesario girar el vector 4-3i para recibir el vector $-\frac{5}{\sqrt{2}}+\frac{5}{\sqrt{2}}i$.

47. Hallar el ángulo, en el cual es necesario girar el vector $3\sqrt{2} + i2\sqrt{2}$ para recibir el vector -5 + i.

Resolver las ecuaciones:

48. $(x+i)^n - (x-i)^n = 0$ (x es real).

49. $\cos x + i \sin x = \sin x + i \cos x$.

50. Hallar el vector, que se obtendrá al girar en 45° y duplicar el vector z = 3 + 4i.

51. El centro del cuadrado se encuentra en el punto $z_0 = 1 + i$, y uno de los vértices se encuentra en el punto $z_1 = 1 - i$. ¿En qué puntos se encuentran los demás vértices del cuadrado?

52. Sea que z_1, z_2, \ldots, z_n son las raíces de la ecuación $z^n - 1 = 0 \ (n > 1)$.

Demostrar que $z_1 + z_2 + \ldots + z_n = 0$.

Hallar las sumas siguientes:

53. a) sen $x + \text{sen } 2x + \ldots + \text{sen } nx;$

b) $\cos x + \cos 2x + \ldots + \cos nx$.

54. a) sen $x + \sin 3x + \ldots + \sin (2n - 1) x$;

b) $\cos x + \cos 3x + \ldots + \cos (2n - 1) x$.