

SmartMed: Smarter Care with RFID

ENGINEER 2PX3 - Communications & Social Impact (Winter 2025)

Group 96

Sammy Abbas (abbass50), Shiv Patel (pates302), Rushil Saha (sahar7), Luke

Smith-Dwyer (smithdwl)

Date Submitted: April 1, 2025

Table of contents

We are a team of engineering students focused on:

- . **Creating** practical solutions to everyday healthcare challenges
- 2. **Improving** current infrastructures to boost efficiency
- 3. **Enhancing** the quality of care for patients and hospital staff
- 4. **Designing** systems that bridge the gap between healthcare and technology
- 5. **Driving** innovation and real-world impact through learning

The Team

Shiv Patel Comp II

Rushil Saha Tron II

Sammy Abbas Comp Mgmt II

Luke Smith-Dwyer Civil II

Ryan Wang Tron II

2

Background

Background

- Hospitals face significant challenges in patient triage, tracking, and workflow efficiency, leading to delayed treatment, overcrowding, and inefficient resource allocation.
- Current systems rely heavily on manual processes and fragmented data management, making real-time prioritization difficult and increasing the risk of human error.

Context

Reduce operating cost by automating procedures & Using reusable RFID WristBands.

Information Gathering & Distribution:

Ensures that critical patient information is accurate, up-to-date, and easily accessible by staff

SmartMed WristBand

Radio-Frequency Identification

Problems to Address

Inefficient Patient Tracking & Prioritization

Manual processes make it difficult to accurately track patient status, leading to delays in care.

Slow Triage

Without an automated system, non-urgent patients may remain in the queue longer than necessary, adding to congestion.

Manual Systems

Increased Stress

Doctors and nurses must constantly juggle patient prioritization manually, adding pressure to an already high-stress environment.

Opportunities to Address

1. RFID technology can automate and streamline patient tracking

 RFID-enabled wristbands provide real-time data on patient movement, reducing reliance on manual record-keeping.

2. Reducing human errors and improving treatment response time

 Automated tracking ensures that critical patients receive timely care by minimizing miscommunication.

3. Dynamic patient queue updates ensure critical patients are prioritized

 Real-time data allows staff to adjust patient priority levels based on changing conditions, improving triage efficiency.

Prototype Overview

- Automated system to enhance triage efficiency.
- Web-based dashboard for real-time patient status monitoring.

Prototype Overview

Link to prototype: https://shiv-sp.github.io/2px3sprint3/

How It Works?

- Patients receive color-coded RFID wristbands based on priority.
- Linked to medical records via RFID readers.

Real-Time Patient Flow Management:

- RFID scanners track patient movement within hospital zones.
- Alerts ensure no patient is overlooked.

Dynamic Queue Updates:

- Staff can update priority based on worsening conditions.
- Helps optimize doctor-patient distribution and hospiresources.

Why SmartMed?

- Tailored for Healthcare Other RFID tech companies focus on asset management. Our system is built specifically for hospitals, addressing industry-specific challenges.
- +
- Limited Adoption in Canada RFID in Canadian healthcare is underutilized
 [1]; we aim for widespread implementation in hospitals.
- **Data Security First** Tackles privacy concerns and compliance issues uniques to healthcare.
- Scalable Expands into a comprehensive hospital management ecosystem beyond patient tracking.

Navigating Constraints

 Integration - Proven tech but faces privacy & data access hurdles in Canada [2] [3]. Needs API access & standardized health care to reach full potential.

- Feasible Within Five Years Phased rollout ensures quick implementation.
- **Security & Compliance** A core value of our project, using state-of-the-art encryption to protect patient data. RFID contains no private information.
- Cost-Effectiveness RFID tags cost as little as \$0.20 to print [4]. The system aims to reduce admin workload and improve overall efficiency, leading to long-term savings

Achieving Goals

Our product seeks to improve hospitals struggling with patient information inefficiencies and to relieve the strain on doctors and nurses caused by burdening administrative workload.

SmartMed RFID achieves our goals by:

- ✓ Being Cost-Effective Low hardware and maintenance costs; reduces administrative labour expenses.
- ✓ Improving Efficiency Prevents bottlenecks by improving patient flow.
- Reducing Staff Workload Less time spent on admin tasks, more time for patient care.

Critical Path & Duration of Tasks

Phase 1: Planning & Research

 Conduct research, feasibility studies, define the project scope, gather requirements, and meet with stakeholders

 Develop system architecture, and draft and finalize UI/UX

Phase 3: Development

 Build the core system, integrate the key features, and develop the database

Phase 4: Testing & Integration

 Perform system testing, security checks, and integrate all components

Phase 5: Deployment & Optimization

 Launch the system for simulations, monitor performance and feedback, and refine for stability for final launch

Critical Path & Duration of Tasks

[SAMPLE] Project Timeline/Gantt (

 PROJECTITILE
 SmartMed
 COMPANY NAME
 2PX3Technologies

 PROJECT MANAGER
 Group 96
 DATE
 1/1/26

		-													
PHASE		DETAILS		Q1			Q2			Q3			Q4		
			JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	
	PROJECT WEEK:	Enter the date of the first Monday of each month>	5 12 19 26	2 9 16 23	2 9 16 23 30	6 13 20 72	4 11 18 25 1	8 15 22 29	6 13 20 27	3 10 17 24 31	7 14 21 28	5 12 19 26	2 9 16 23 30	7 14 21 2	28
	Planning & Research	Define system requirements (RFID types, hospital needs) Conduct feasibility study, hospital/stakeholder interviews Research and finalize technology stack (RFID specifics, database type)													
	Design & Prototyping	- Design RFID wirstband application - Plan RFID scanner placements in hospitals - Draft database schemes and medical records access/inkage - Create UVLX for hospitals databand - Otder RFID wirstbands, scanners, and microcontroller - Develop initial RFID scanner prototype and lest reading ranges													FINIS
	Development	- Develop patient database system - Create hospital dashboard - Build RFID scanner communication system - Integrate patient priority logic (red/yellow/green triage system)													
4	Testing & Integration	- Conduct initial integration testing (hardware & software) - Test RFID patient tracking accuracy (real-time data collection) - Conduct security and privacy testing (encryption) - Debug any issues													
5	Deployment & Optimization	- Deploy System in a test/simulated environment or smaller clinics - Train hospital and necessary staff & collect feedback - Full system deployment & final review													

Credits: This presentation template was created by <u>Slidesgo</u>, and includes icons by <u>Flaticon</u>, and infographics & images by <u>Freepik</u>

References

- [1] Accessed: Apr. 01, 2025. [Online]. Available: https://www.impinj.com/library/customer-stories/north-york-general-hospital-improves-operation
- [2] "High-tech tracking heading for hospitals," CBC News, Jan. 23, 2008. Accessed: Apr. 01, 2025. [Online]. Available: https://www.cbc.ca/news/science/high-tech-tracking-heading-for-hospitals-1.758413

- [3] "Unlocking the power of health data," Competition Bureau Canada. Accessed: Apr. 01, 2025. [Online]. Available: https://competition-bureau.canada.ca/en/unlocking-power-health-data
- [4] "The Cost of An RFID System: An Estimated Budgeting Breakdown," RMS Omega. Accessed: Apr. 01, 2025. [Online]. Available: https://rmsomega.com/the-cost-of-an-rfid-system/

