MA-110 Linear Algebra and Differential Equations

Rekha Santhanam

Department of Mathematics Indian Institute of Technology Bombay Powai, Mumbai - 76

> February 13, 2024 Lecture 17 D3

Rekha Santhanam Lecture 17 D3

Matrix Associated to a Linear Map

Example: The matrix of $S(a_0 + a_1x + a_2x^2) = a_1 + 4a_2x$, w.r.t. the bases $\mathscr{B} = \{1, x, x^2\}$ of \mathscr{P}_2 and $\mathscr{C} = \{1, x\}$ of \mathscr{P}_1 is A =

$$\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 4 \end{pmatrix} \text{ and } \boxed{A_{*1} = [S(1)]_{\mathscr{C}}, A_{*2} = [S(x)]_{\mathscr{C}}, A_{*3} = [S(x^2)]_{\mathscr{C}}.}$$

General Case: If $T: V \to W$ is linear, then the matrix of T w.r.t. the ordered bases $\mathcal{B} = \{v_1, \dots, v_n\}$ of V, and $\mathcal{C} = \{w_1, \dots, w_m\}$ of W, denoted $[T]^{\mathscr{B}}_{\mathscr{C}}$, is

$$A = ([T(v_1)]_{\mathscr{C}} \cdots [T(v_n)]_{\mathscr{C}}) \in \mathscr{M}_{m \times n}.$$

Example: Projection onto the line $x_1 = x_2$

$$P\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} \frac{x_1 + x_2}{2} \\ \frac{x_1 + x_2}{2} \end{pmatrix} \text{ has standard matrix } \begin{pmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{pmatrix}.$$

This is the matrix of P w.r.t. the standard basis.

Question: What is $[P]^{\mathscr{B}}$ where $\mathscr{B} = \{(1,1)^T, (-1,1)^T\}$?

Conclusion: The matrix of a transformation depends on the chosen basis. Some are better than others!

Eigenvalues and Eigenvectors: Motivation

• Solve the differential equation for u: du/dt = 3u.

The solution is $u(t) = c e^{3t}$, $c \in \mathbb{R}$. With initial condition u(0) = 2, the solution is $u(t) = 2e^{3t}$.

• Consider the system of linear 1st order differential equations (ODE) with constant coefficients:

$$du_1/dt = 4u_1 - 5u_2,$$
 $du_2/dt = 2u_1 - 3u_2,$

How does one find the solution?

 $\int du/dt = Au$ Write the system in matrix form

where
$$u(t) = \begin{pmatrix} u_1(t) \\ u_2(t) \end{pmatrix}$$
, $A = \begin{pmatrix} 4 & -5 \\ 2 & -3 \end{pmatrix}$.

• Assuming the solution is $u(t) = e^{\lambda t} v$, where $v = \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2$, we need to find λ and ν .

Rekha Santhanam

Eigenvalues and Eigenvectors: Definition

We have
$$u_1'=4u_1-5u_2$$
, $u_2'=2u_1-3u_2$, where $u_1(t)=e^{\lambda t}\,x$, $u_2(t)=e^{\lambda t}\,y$
$$\lambda\,e^{\lambda t}x=4e^{\lambda t}x-5e^{\lambda t}y,\\ \lambda\,e^{\lambda t}y=2e^{\lambda t}x-3e^{\lambda t}y.$$

Cancelling $e^{\lambda t}$, we get

Eigenvalue problem: Find λ and $v = (x, y)^T$ satisfying $4x - 5y = \lambda x$ $2x-3v=\lambda v$.

In the matrix form, it is $Av = \lambda v$. This equation has two unknowns, λ and v.

If there exists a λ such that $Av = \lambda v$ has a non-zero solution v, then λ is called an eigenvalue of A and all nonzero v satisfying $Av = \lambda v$ are called eigenvectors of A associated to λ .

Question: How many eignevalues can A have? How do we find them & the associated eigenvectors? Reduce the number of unknowns!

Eigenvalues and Eigenvectors: Solving $Ax = \lambda x$

- Rewrite $Av = \lambda v$ as $(A \lambda I)v = 0$.
- λ is an eigenvalue of A

 \Leftrightarrow there is a nonzero ν in the nullspace of $A - \lambda I$

$$\Leftrightarrow N(A-\lambda I) \neq 0$$
, i.e., dim $(N(A-\lambda I)) \geq 1$,

 $\Leftrightarrow A - \lambda I$ is not invertible

$$\Leftrightarrow \det(A - \lambda I) = 0.$$

- $\det(A \lambda I)$ is a polynomial in the variable λ of degree n. Hence it has at most n roots \Rightarrow A has atmost n eigenvalues.
- $det(A \lambda I)$ is called the characteristic polynomial of A.
- If λ is an eigenvalue of A, then the nullspace of $A \lambda I$ is called the eigenspace of A associated to eigenvalue λ .

Question: When is 0 an eigenvalue of A? What are the corresponding eigenvectors?

Eigenvalues and Eigenvectors: Example

To summarise: An eigenvalue of A is a root (in \mathbb{R}) of its characteristic polynomial. Any non-zero vector in the corresponding eigenspace is an associated eigenvector.

Recall: The ODE system we want to solve is

$$u_1' = 4u_1 - 5u_2,$$
 $u_2' = 2u_1 - 3u_2,$

The solutions are $u_1(t) = e^{\lambda t} x$, $u_2(t) = e^{\lambda t} y$, where $(x, y)^T$ is a solution of:

$$\begin{pmatrix} 4 & -5 \\ 2 & -3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \lambda \begin{pmatrix} x \\ y \end{pmatrix} \qquad (Av = \lambda v)$$

The characteristic polynomial of A is $det(A - \lambda I)$

$$=\det\begin{pmatrix}4-\lambda & -5\\2 & -3-\lambda\end{pmatrix}=(4-\lambda)(-3-\lambda)+10=\lambda^2-\lambda-2=(\lambda+1)(\lambda-2)$$

The eigenvalues of A are $\left(\lambda_1 = -1, \lambda_2 = 2.\right)$

Eigenvalues and Eigenvectors: Example

Eigenvectors v_1 and v_2 associated to $\lambda_1 = -1$ and $\lambda_2 = 2$ respectively are in: $N(A-\lambda_1 I) = N(A+I)$, and $N(A-\lambda_2 I) = N(A-2I)$.

Solving
$$(A+I)v = 0$$
, i.e., $\begin{pmatrix} 5 & -5 \\ 2 & -2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = 0$, we get $N(A+I) = -1$

 $\left\{ \begin{pmatrix} y \\ v \end{pmatrix} \mid y \in \mathbb{R} \right\}$ and hence $v_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ is an eigenvector associated to $\lambda_1 = -1$.

Similarly, solving
$$(A-2I)v=0$$
 gives $N(A-2I)=\left\{\begin{pmatrix} \frac{5y}{2}\\ y\end{pmatrix}\mid y\in\mathbb{R}\right\}$. In particular, $v_2=\begin{pmatrix} 5\\ 2\end{pmatrix}$ is an eigenvector associated to $\lambda_2=2$.

Thus, the system du/dt = Au has two special solutions $e^{-t}v_1$ and $e^{2t}v_2$.

Reading Slide - Complete Solution to ODE

Note: When two functions satisfy du/dt = Au, then so do their linear combinations.

Complete solution: $u(t) = c_1 e^{-t} v_1 + c_2 e^{2t} v_2$, i.e.,

$$\begin{pmatrix} u_1(t) \\ u_2(t) \end{pmatrix} = c_1 e^{-t} \begin{pmatrix} 1 \\ 1 \end{pmatrix} + c_2 e^{2t} \begin{pmatrix} 5 \\ 2 \end{pmatrix}.$$

i.e.
$$u_1(t) = c_1 e^{-t} + 5c_2 e^{2t}$$
, $u_2(t) = c_1 e^{-t} + 2c_2 e^{2t}$.

If we put initial conditions (IC) $u_1(0) = 8$ and $u_2(0) = 5$, then

$$c_1 + 5c_2 = 8$$
, $c_1 + 2c_2 = 5 \Rightarrow c_1 = 3$, $c_2 = 1$.

Hence the solution of the original ODE system with the given IC is

$$u_1(t) = 3e^{-t} + 5e^{2t}, \quad u_2(t) = 3e^{-t} + 2e^{2t}.$$

Finding Eigenvalues: Examples

In some cases it is easy to find the eigenvalues.

Example:
$$A = \begin{pmatrix} 3 & 0 \\ 0 & 2 \end{pmatrix}$$
 is diagonal. Characteristic polynomial $(3-\lambda)(2-\lambda)$.

Eigenvalues: $\lambda_1 = 3$, $\lambda_2 = 2$.

Eigenvectors: $(A-3I)v_1 = 0 \Rightarrow Av_1 = 3v_1$.

Can take $v_1 = e_1$

Similarly, an eigenvector associated to λ_2 is $v_2 = e_2$

Further, \mathbb{R}^2 has a basis consisting of eigenvectors of A: $\{e_1, e_2\}$.

Special case: If A is a diagonal matrix with diagonal entries $\lambda_1, \dots, \lambda_n$, then

Eigenvalues: $\lambda_1, \dots, \lambda_n$

Eigenvectors: e_1, \dots, e_n , which form a basis for \mathbb{R}^n .

Rekha Santhanam Lecture 17 D3

Finding Eigenvalues: Examples

Example: Projection onto the line x = y: $P = \begin{pmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{pmatrix}$. $v_1 = \begin{pmatrix} 1 & 1 \end{pmatrix}^T$ projects onto itself $\Rightarrow \lambda_1 = 1$ with eigenvector v_1 . $v_2 = \begin{pmatrix} 1 & -1 \end{pmatrix}^T \mapsto 0$

Question: Do a collection of eigenvectors always form a basis of \mathbb{R}^n ?

 $\Rightarrow \lambda_2 = 0$ with eigenvector v_2 . Further, $\{v_1, v_2\}$ is a basis of \mathbb{R}^2 .

A: No! Example: For $c \in \mathbb{R}$, let $A = \begin{pmatrix} c & 1 \\ 0 & c \end{pmatrix}$.

Characteristic Polynomial: $det(A - \lambda I) = (c - \lambda)^2$.

Eigenvalues: $\lambda = c$.

Eigenvectors: $(A-I)v = 0 \Rightarrow v = (1\ 0)^T$

Question: Is it unique? Eigenspace of A is 1 dimensional \Rightarrow \mathbb{R}^2 has no basis of eigenvectors of A.

Think: What is the advantage of a basis of eigenvectors?

Rekha Santhanam Lecture 17 D3

Similarity and Eigenvalues

Defn. The $n \times n$ matrices A and B are similar, if there exists an invertible matrix P such that $P^{-1}AP = B$.

Observe: If
$$B = P^{-1}AP$$
, then (i) $det(A) = det(B)$, and (ii) $B^n = P^{-1}A^nP$ for each n .

Theorem: If A and B are similar, then they have the same characteristic polynomial. In particular, they have the same eigenvalues, det(A) = det(B)and Trace(A) = Trace(B).

Proof. Given:
$$B = P^{-1}AP$$
. prove: $\det(A - \lambda I) = \det(B - \lambda I)$. **Note:** It is enough to prove that $A - \lambda I$ and $B - \lambda I$ are similar! Indeed, $B - \lambda I = P^{-1}AP - \lambda P^{-1}P$
$$= P^{-1}(A - \lambda I)P.$$

Ques: Why care?

Write $det(A - \lambda I) = (\lambda_1 - \lambda) \cdots (\lambda_n - \lambda)$. Compare constant coeff.: $\det(A) = \lambda_1 \cdots \lambda_n = \det(B)$; Compare coeff. of λ^{n-1} : Sum of diagonal entries $= a_{11} + \cdots + a_{nn} = \text{Trace of } A = \lambda_1 + \ldots + \lambda_n = \text{Trace of } B.$ Ques: How are eigenvalues of A and B related?

П