Struktura a architektura počítačů

Katedra číslicového návrhu Fakulta informačních technologií České vysoké učení technické

© Hana Kubátová, 2021

Zobrazení dat v číslicovém počítači

BI-SAP, březen 2021

Obsah

- Poziční číselné soustavy a převody
 - Dvojková soustava, převod do desítkové
 - Šestnáctková soustava, převod do dvojkové
- Aritmetika (1)
 - Sčítání, odčítání
 - Násobení
- Řádová mřížka
- Zobrazení čísel se znaménkem (tedy i záporných)

Čerpáno z podkladů pro předmět z FELu Tomáše Brabce, Miroslava Skrbka, úpravy pro BI-SAP Hana Kubátová Pluháček, A., "Projektování logiky počítačů," skripta, Praha, ČVUT, 2000, ISBN 80-01-02145-9

Poziční číselné soustavy

- Určeny bází (základem) $z, z \in N, z \ge 2$
- Soustava s bází z … z-adická
- Nejčastěji používané soustavy:

<i>z</i> = 2	dvojková (binární)
<i>z</i> = 10	desítková (dekadická)
<i>z</i> = 16	šestnáctková (hexadecimální)

Zápis čísla v z-adické soustavě

$$A_z = \left(a_{n} \ a_{n-1} \dots a_1 \ a_0 \ , \underbrace{a_{-1} \ a_{-2} \dots a_{-m}}_{zlomkov\'{a}\ {\it c\'{a}}}\right)_z, \ n,m \in N$$

 a_i ... z-adická cifra (číslice) na pozici i

 a_i ... hodnota číslice a_i , $0 \le a_i < z$

i ... řád číslice (řádové místo, pozice), určuje její váhu $v_i = z^i$

n ... nejvyšší řád s nenulovou číslicí

-m ... nejnižší řád s nenulovou číslicí

Hodnota čísla A_{τ} :

$$A = v(A_z) = \sum_{-m}^{n} a_i \cdot v_i = \sum_{-m}^{n} a_i \cdot z^i$$

Dvojková soustava

 Základ (báze) soustavy z = 2 ⇒ zápis čísla tvořen posloupností 0 a 1

Příklad

Toto je ekvivalentní zápis čísla A v desítkové soustavě.

Určení hodnoty čísla ≈ převod do desítkové soust., tj.
 Dvojková → Desítková

Desítková → Dvojková (celá část)

Postupným dělením celé části číslem 2 (tj. základem dvojkové soustavy)

Př. Převeďte číslo 57₁₀ do dvojkové soustavy.

$$57_{10} \approx A_{2}$$

$$A_{2} = 111001_{2}$$

$$= \begin{cases}
57 : 2 = 28 & zbytek & 1 \dots a_{0} \\
28 : 2 = 14 & zbytek & 0 \\
14 : 2 = 7 & zbytek & 0 \\
7 : 2 = 3 & zbytek & 1 \\
3 : 2 = 1 & zbytek & 1 \\
1 : 2 = 0 & zbytek & 1 \dots a_{5}
\end{cases}$$

Pozn. Zápis čísla odpovídá posloupnosti zbytků brané v opačném pořadí.

Desítková Dvojková (zlomková část)

 Postupným násobením zlomkové části číslem 2 (tj. základem dvojkové soustavy)

Př. Převeďte číslo 0,65625₁₀ do dvojkové soustavy.

$$0,65625_{10} \approx A_{2}$$

$$A_{2} = 0,10101_{2}$$

$$0,65625 \cdot 2 = 1$$

$$0,625 \cdot 2 = 1$$

$$0,625 \cdot 2 = 1$$

$$0,25 \cdot 2 = 0$$

$$0,5 \cdot 2 = 1$$

$$0,625 \cdot 2 = 1$$

$$0,75 \cdot 2 = 1$$

Příklady:

$$\rightarrow$$
 209,75₁₀

$$\rightarrow$$
 127₁₀

nebylo by lepší převést 1000 0000, ??? .. 128 - 1 = 127

???? ..
$$128 - 1 = 127$$

147,15625₁₀

 \rightarrow 1001 0011,0010 12

1345,125₁₀ 5.

 \rightarrow 101 0100 0001,001,

Přesnost, zobrazitelnost

$$0,1_{10} \rightarrow 0,000 \ 11 \ 00 \ 11 \ 00 \ \dots$$

$$0,1.2 = 0,2$$

$$0,2.2 = 0,4$$

$$0,4.2 = 0,8$$

$$0.8.2 = 1.6$$

$$0,6.2 = 1,2$$

$$0,2.2 = 0,4$$

$$0,4.2 = 0,8$$

$$0.8.2 = 1.6$$

$$0,6.2 = 1,2$$

. . . .

Mocniny dvou

n	2 ⁿ	Dec.
0	2 ⁰	1
1	2 ¹	2
2	2 ²	4
3	2 ³	8
4	2 ⁴	16
5	2 ⁵	32
6	2 ⁶	64
7	2 ⁷	128

n	2 ⁿ	Dec.
8	2 ⁸	256
9	2 ⁹	512
10	2 ¹⁰	1 024
11	211	2 048
12	2 ¹²	4 096
13	2 ¹³	8 192
14	214	16 384
15	2 ¹⁵	32 768
16	2 ¹⁶	65 536

n	2 ⁿ	Dec.
20	2 ²⁰	1 M
30	2 ³⁰	1 G
32	2 ³²	4 G
40	240	1 T
-1	2-1	0,5
-2	2 -2	0,25
-3	2-3	0,125
-4	2-4	0,0625

Toto je důležité!

Šestnáctková soustava

Zápis čísla tvořen ciframi 0..9 a A..F

Hex.	Dec.	Bin.
0	0	0000
1	1	0001
2	2	0010
3	3	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111

Hex.	Dec.	Bin.
8	8	1000
9	9	1001
Α	10	1010
В	11	1011
С	12	1100
D	13	1101
Е	14	1110
F	15	1111

Toto se hodí znát zpaměti!

Dvojková ←→ Šestnáctková

- Jsou to příbuzné soustavy, tj. z_{16} = 16 = 2^4 = z_2^4
- \Rightarrow Jedna cifra v z_{16} odpovídá čtyřem cifrám v z_2
 - \Rightarrow Mezi zápisy v soustavách z_{16} a z_2 je pouze formální rozdíl.

Př. Převeďte čísla mezi příbuznými soustavami:

0111 0011 0100,0000 0101 0001₂

Příklady

$$1\ 0110\ 1011,0101\ 11_2$$
 \rightarrow $16B,5C_{16}$

- 1. $111\ 0101\ 1101\ 0100_2 \rightarrow 75D4_{16}$
- 2. $0,0011\ 0101\ 1100\ 1_2 \rightarrow 0,35C8_{16}$
- 3. $12A5F,1_{16} \rightarrow 1001010101011111,0001_{2}$
- 4. $F563D,8_{16} \rightarrow 1111\ 0101\ 0110\ 0011\ 1101,1_2$
- 5. $0.98736_{16} \rightarrow 0.10011000011100110110_{2}$

Sčítání ve dvojkové soustavě

 Základem je součet dvou 1-ciferných čísel

+	0	1
0	0	1
1	1	1 0

Přenos do vyššího řádu. —

Př. Sečtěte čísla 0101₂ a 1110₂.

0 1 0 1
+ 1 1 1 0 Přenos z řádu i se sčítá s

$$\frac{1}{1}0^{1}0^{0}1^{0}1$$
 ciframi v řádu (i+1).

Pozn. Součtem dvou N-ciferných čísel může vzniknout (N+1)-ciferné číslo.

Násobení ve dvojkové soustavě

 Základem je součin dvou 1-ciferných čísel

Více-ciferné násobení se převádí na sčítání

Př. Vynásobte čísla 1110₂ a 101₂.

$$\begin{array}{c|ccccc}
 & 1110 \\
 \times & 101 \\
\hline
 & 1110 \\
 + & 0000 \\
 + & 1110 \\
\hline
 & 1000110
\end{array}$$
... 1×(1110)
... 1×(1110)

Pozn. Součinem N- a M-ciferného čísla může vzniknout (N+M)-ciferné číslo.

Řádová mřížka

 Řádová mřížka určuje formát zobrazitelných čísel na počítači (tj. definuje nejvyšší řád n a nejnižší řád -m)

- Základní vlastnosti:
 - Délka ř.m. //l) počet řádů obsažených v ř.m.
 - \circ **Jednotka/ř.m.** (ε) nejmenší číslo zobrazitelné v ř.m. (*nezáporné!*)
 - \circ **Modul f.m.** (M) nejmenší číslo, které již v ř.m. zobrazitelné není

$$M = 10000_2$$
, $\varepsilon = 1$

 $M = 10,000_2, \varepsilon = 0,001$

Vlastnosti ř.m.

Určete vlastnosti následujících řádových mřížek (z = 2):

obecně, tj. v závislosti na *n* a –*m*:

$$l = n + m + 1$$
, $M = z^{n+1}$, $\varepsilon = z^{-m}$

c)

Odečítání ve dvojkové soustavě

 Odčítání ≈ přičítání opačného čísla, vždy v rámci řádové mřížky, tedy modulu M:

Př. Určete rozdíl čísel $10_{10} - 6_{10}$ (ve dvojkové soustavě).

7-4=3....7+(16-4)....7+12/m₁₆=19/m₁₆=3

Úloha: Odečtěte ve dvojkové soustavě.

 Převeďte čísla do dvojkové soustavy (je-li to nutné) a spočítejte jejich rozdíl.

1.
$$6_{10} - 10_{10} = 11 \ 100_2$$

2.
$$7_{10} - 7_{10} = 0_2$$

3.
$$1001_2 - 0110_2 = 0.0011_2$$

4.
$$F1_{16} - 3_{16} = 0.1110.1110_2$$

odečtení 10 je totéž jako přičtení 22? 22 + 6 = 28 ... ale má to být -4

Problémy:

velikost řádové mřížky, určení a zobrazení správného výsledku, jestliže používáme jen nezáporná čísla ... jak zobrazíme ta záporná?

Záleží na použitém kódu pro zobrazení čísel se znaménkem a velikosti řádové mřížky, tzn. modulu.

Sčítání a odčítání:

Příklady:

 $M=10000_2$ tzn.: zobrazíme 16 čísel, 0 až 15

 $(12+7)_{10} ... 1100 + 0111 = 10011 ... 3_{10}$ nebo 19_{10} ?

 $(12-7)_{10} ...1100 - 0111 = 1100 + 1000 + 1 = 10101 ...5_{10}$ nebo 21_{10} ?

1 přenos

Odčítání pro nezáporná čísla

pozorování na příkladu M=1000, $\varepsilon=1$:

$$B=101 \ \overline{B}=010$$
 $B + \overline{B} = 111 = 1000 - 1 = M - 1$
 $-B = \overline{B} + 1 - M$
 $A - B = A + \overline{B} + 1 + M$

Abychom dostali správný výsledek, musíme mít možnost odečíst modul. Musí vyjít přenos!!

Příklad:

 $M=10000_2...(12-7)_{10}...1100-0111...1100+1000+1=10101...5_{10}$

Zobrazení čísel se znaménkem

(tedy kladných i záporných)

- Standardní polyadické soustavy ⇒ pouze nezáporná čísla
- Zobrazení záporných čísel ⇒ číselné kódy
 - popisují transformaci z omezené množiny celých čísel do omezené množiny nezáporných čísel
- Nejpoužívanější číselné kódy:
 - přímý (znaménko a absolutní hodnota sign-magnitude)
 - aditivní (s posunutou nulou biased)
 - doplňkový (pro dvojkovou soustavu 2's complement)
 - o (inverzní)

Doplňkový kód

Definice:

$$\mathbf{D}(X) = \begin{cases} X, & \text{je-li } X >= 0 \\ M + X, & \text{je-li } X < 0 \end{cases}$$

Příklad – napsat všechna 3 bitová čísla (M = 1000, ε = 1, l = 3)

X	D(X)		
0	0	0	0
1	0	0	1
2	0	1	0
3	0	1	1
-4	1	0	0
-3	1	0	1
-2	1	1	0
-1	1	1	1

Znaménko je určeno prvním bitem zleva, ale tento bit je organickou součástí obrazu !!!

Př. Obrazy čísel +5 a –5 (
$$z = 2$$
, $M = 10000_2$, 16_{10}).

nejvyšší bit představuje znaménko
$$\mathcal{D}(5) = 5_{10} = 101_2 + 101_2 \xrightarrow{0} 0 1 0 1$$

$$\mathcal{D}(-5) = 16_{10} + (-5_{10}) = 11_{10} = 1011_2$$

 $-101_2 \xrightarrow{\mathcal{D}} 1 0 1 1$

Algoritmus určení obrazu záporného čísla (ve dvojkové soustavě):

- 1. Zapíšeme číslo X_2 do řádové mřížky.
- 2. Invertujeme všechny bity.

3. Přičteme jedničku.

Lze rychleji:

Zprava opisuj 0 až do první 1, tu také opiš. Další bity invertuj.

- ... 1. zápis v ř.m.
- ... 2. inverze bitů
- ... 3. přičtení jedničky

...
$$\mathcal{D}(-5_{10})$$

Doplňkový kód - pokračování

• Obraz záporného čísla X je doplňkem jeho hodnoty do modulu M řádové mřížky

Příklady:

$$M = 10,000_{10}, \ \varepsilon = 0,001$$
:
(1)0 + 0,05 = 0,050
pro - 0,05: 10 - 0,05 = 9,95

$$M = 10,000_2$$
, $\varepsilon = 0,001$:
 $10,000$
 $\frac{-0,110}{+1,010}$

Sčítání a odčítání v doplňkovém kódu

Příklady:

M=10000₂ tzn. zobrazíme 16 čísel, ale nyní v rozsahu -8 až 7

$$(7-4)_{10} ... 7+(-4) ... 0111 + 1100 = 10011 ... 3_{10}$$
 nebo 19_{10} ?

$$(4 + 7)_{10} ... 0100 + 0111 = 0100 + 0111 = 1011 ... 1_{10}$$
 nebo -5₁₀?

V podstatě jen sčítáme

Ale co teď s přenosem a jak poznáme, že výsledek je správně?

Mějme M = 10000 a vyzkoušejme všechny možnosti součtů:

 $M = 1\,0000_2, \, \varepsilon = 1$

Snadný převod na opačné číslo: Zprava opisuj nuly až do první jedničky, tu opiš a další bity invertuj.

viz příklad ze 3. přednášky

Mějme M = 10000 a vyzkoušejme všechny možnosti součtů:

lze zobrazit: celá čísla od – 8 (*M*-8 = 8 ... 1000) do 7 (0111)

 $M = 10000_2$, $\varepsilon = 1$

1. sčítáme malá kladná: 3+4=7

Mějme M = 10000 a vyzkoušejme všechny možnosti součtů:

lze zobrazit: celá čísla od – 8 (*M*-8 = 8 ... 1000) do 7 (0111)

 $M = 1\,0000_2, \, \varepsilon = 1$

- 1. sčítáme malá kladná: 3+4=7
- 2. sčítáme větší kladná: 5 + 4 = 9

(správný výsledek je mimo mřížku)

Mějme M = 10000 a vyzkoušejme všechny možnosti součtů:

lze zobrazit: celá čísla od – 8 (*M*-8 = 8 ... 1000) do 7 (0111)

- 1. sčítáme malá kladná: 3+4=7
- sčítáme větší kladná: 5 + 4 = 9
 (správný výsledek je mimo mřížku)

a) 3 + (-2) = 1, b) 3 + (-8) = -5

-2 ... 16–2 =14 ... 1110 -8 ... 1000

3. kladné + záporné:

0011 + 0100 přenosy: 0 0 0 0 (+) 0111 7₁₀

0101 + 0100 přenosy: 0 1 0 0 (-) 1001 -7₁₀ ??

 $M = 1\,0000_2$, $\varepsilon = 1$

```
0011
+ 1000
přenosy: 0 0 0 0
(-) 1011 ... -5<sub>10</sub>
```

Mějme M = 10000 a vyzkoušejme všechny možnosti součtů:

lze zobrazit: celá čísla od – 8 (*M*-8 = 8 ... 1000) do 7 (0111)

- 1. sčítáme malá kladná: 3+4=7
- 2. sčítáme větší kladná: 5 + 4 = 9 (správný výsledek je mimo mřížku)

a) 3 + (-2) = 1, b) 3 + (-8) = -5

-2 ... 16–2 =14 ... 1110 -8 ... 1000

- 0011 1 1 + 0100 přenosy: 0 0 0 0 (+) 0111 7₁₀
 - 0011 3a + 1110 přenosy: 1 1 1 0 (+) 0001 1₁₀

- $M = 1 \ 0000_2, \ \varepsilon = 1$
- 0101 + 0100 přenosy: 0 1 0 0 (-) 1001 -7₁₀ ??
- 0011 + 1000 přenosy: 0 0 0 0 (-) 1011 ... -5₁₀

4. sčítáme "malá" záporná:

3. kladné + záporné:

Mějme M = 10000 a vyzkoušejme všechny možnosti součtů:

- 1. sčítáme malá kladná: 3+4=7
- 2. sčítáme větší kladná: 5 + 4 = 9(správný výsledek je mimo mřížku)

a) 3 + (-2) = 1, b) 3 + (-8) = -5

-2 ... 16–2 =14 ... 1110 -8 ... 1000

- 0011 + 0100 přenosy: 0 0 0 0 (+) 0111 7₁₀
 - 0011 3a + 1110 přenosy: 1 1 1 0 (+) 0001 1₁₀

- $M = 1 0000_2$, $\varepsilon = 1$
- 0101 + 0100 přenosy: 0 1 0 0 (-) 1001 -7₁₀ 35

3b

0011 + 1000 přenosy: 0000 (-) 1011 ... -5₁₀

4. sčítáme "malá" záporná:

3. kladné + záporné:

- 5. sčítáme "větší" záporná -3 ... 16-3 =13 ... 1101 -8 ... 1000
- 1101 + 1111 přenosy: 1111 (-) 1100 -4₁₀

Sčítání a odčítání

		D(A) + D(B)	D(A+B)
1	$A \ge 0 B \ge 0$	A + B	A + B
	A ≥ 0 B < 0)	A . D . M	$\int A + B$
2	$A < 0 B \ge 0$	A + B + M	A+B+M
3	A < 0 B < 0	A+B+M+M	A + B + M

$$D(A + B) = \begin{cases} D(A) + D(B) \\ D(A) + D(B) - M \end{cases}$$

Sečtou se obrazy a ignoruje se přenos!!!

Odčítání = přičtení opačného čísla

→ detekce nesprávného výsledku stejná jako u sčítání
přeplnění/přeteční/overflow

Přeplnění

Přeplnění (overflow) není přenos (carry) !!!!!

Přeplnění ... podle bloku sčítačky pro nejvyšší řád

а	b	р	q	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Přeplnění ... podle bloku sčítačky pro nejvyšší řád

a	b	р	q	S
0	0	0	0	0
	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Odčítání

Příklad pro 3 bitová nezáporná čísla (opakování):

$$B=101 \ \overline{B}=010$$
 $B + \overline{B} = 111 = 1000 - 1 = M - 1$
 $-B = \overline{B} + 1 - M$
 $A - B = A + \overline{B} + 1 - M$

Ale v doplňkovém kódu:

$$A - B = A + (-B)$$

 $D(B) + D(-B) = B + (-B) + M = M$
 $D(-B) = M - D(B)$

Správný výsledek = musím mít možnost odečíst modul, Musí vyjít přenos !!

$$\mathcal{D}(-B) = \overline{\mathcal{D}(B)} + 1$$

$$A - B = \mathbf{p}(A) + \mathbf{p}(B) + 1$$

detekce přeplnění je stejná jako u sčítání

Doplňkový kód pro desítkovou soustavu

10's complement

Příklad: 3 místná desítková čísla:

$$M = 1000_{10}$$

znaménko je určeno první číslicí

$$D(X) + D(-X) = 1000 = 999 + 1$$

$$D(-X) = 999 - D(X) + 1$$

označme:
$$\overline{a} = 9 - a$$

$$D(X) = 499 \Rightarrow D(-X) = \overline{499} + 1$$

$$D(-X) = 500 + 1 = 501$$

Přímý kód

- Nejvyšší řád ř.m. představuje znaménko, zbytek ř.m. je absolutní hodnota
- Znaménko je reprezentováno číslicí:

+/- absolutní hodnota

• Znázornění zobrazení:

Příklady – přímý kód

M = 1000 ... tzn. 3bitová čísla

X	P(X)		
+0	0	0	0
+1	0	0	1
+2	0	1	0
+3	0	1	1
-0	1	0	0
-1	1	0	1
-2	1	1	0
-3	1	1	1

$$-25_{10} \xrightarrow{P} 1 0 2 5 +101_{2} \xrightarrow{P} 0 1 0 1$$

$$+0.05_{10} \xrightarrow{P} 0 0 5 0 -0.11_{2} \xrightarrow{P} 1 1 1 0$$

$$-0.11_2 \xrightarrow{\varrho} 1 1 1 0$$

Sčítání a odčítání

- Pracujeme zvlášť se znaménkem a absolutní hodnotou
- Absolutní hodnota je nezáporné číslo

Příklad pro 3 bitová nezáporná čísla, viz opět:

$$B=101 \ \overline{B}=010$$
 $B + \overline{B} = 111 = 1000 - 1 = M - 1$
 $-B = \overline{B} + 1 - M$

$$A - B = A + \overline{B} + 1 - M$$

Algoritmus sčítání a odčítání

- A + B, A B, výsledek ulož do A
- kdeA ~ (zA, aA),B ~ (zB, aB)
- z znaménko,a absolutní hodnota

Realizace je složitější než pro doplňkový kód (jiná detekce nesprávného výsledku pro sčítání a odčítání + následná úprava → proto se používá doplňkový kód

Aditivní kód

- Též označovaný jako "kód s posunutou nulou"
- Formální definice: $\mathcal{A}(X) = X + K$ pro $-K \le X < M K$
- K: vhodná konstanta, často se volí:

$$K = \frac{1}{2} M$$

Příklady – aditivní kód

$$-25_{10} \xrightarrow{\mathcal{A}} 4 9 7 5$$

$$+101_{2} \xrightarrow{\mathcal{A}} 1 1 0 1$$

$$+0.05_{10} \xrightarrow{\mathcal{A}} 1 0 5 0$$

$$-0.11_{2} \xrightarrow{\mathcal{A}} 0 0 1 0$$

Převod aditivní ↔ doplňkový Přičtení aditivní konstanty (+ K)

A(5): 1101 + K: 1000 **D(5)**: 0101 +K: 1101