NuMicro® MCU MikroDenetleyici Eğitimi

M031/M480 Seviye 1 - Ders 3

Çeviren ve Anlatan: Doç. Dr. Barış GÖKÇE

Aralık 2024

Not: Bu doküman'ın telif hakkı tamamen Nuvoton'a aittir. Bu eğitim dökümanı mikrodenetleyici eğitimi kapsamında Türkçe'ye orjinalinden çevrilmiştir. Dökümanın orijinali ingilizce'dir ve oluşan çeviri hataları tamamen Dr. Barış GÖKÇE'ye aittir.

ARM Cortex®-M'e Genel Bakış

ARM Mimarisi Yol Haritası

Cortex-M İşlemci Ailesi (1/2)

Feature	Cortex-M0	Cortex-M23	Cortex-M4	
Instruction set architecture	Armv6-M	Armv8-M Baseline	Armv7-M	
instruction set architecture	Thumb, Thumb-2	Thumb, Thumb-2	Thumb, Thumb-2	
DMIPS/MHz range	0.87-1.27	0.99	1.25-1.95	
CoreMark®/MHz	2.33	2.5	3.42	
Memory Protection Unit (MPU)	No	Yes (option)	Yes (option)	
Trace (ETM or MTB)	No	MTB (option) or ETMv3 (option)	ETMv3 (option)	
DSP	No	No	Yes	
Floating point hardware	No	No	Yes (option SP)	
Systick Timer	Yes (option)	Yes (2 x)	Yes	
TrustZone for Armv8-M	No	Yes (option)	No	
Maximum # external interrupts	32	240	240	
Hardware divide	No	Yes	Yes	
Single cycle multiply	Yes (option)	Yes	Yes	
			Reference from ARM	

Cortex-M İşlemci Ailesi(2/2)

NuMicro[®] Cortex[®]-M Mimarisi

Overview

- Sistem Güç Dağıtımı
- Saat Denetleyicisi
- Bellek Haritası
- Sistem Sıfırlama
- İç İçe Vektörlü Kesme Denetleyicisi (NVIC)
- 24 bit Sistem zamanlayıcısı (SysTick)

Mimariye genel bakış

CPU

Reads, decodes and executes instructions

Memory

Stores instructions (program data)

Peripheral Functions

Connects CPU to I/O devices

Sistem Güç Dağıtımı (System Power Distribution)

M031 Sistem Güç Dağıtımı

- VDD = 1,8 ila 3,6 V: Harici Güç Kaynağı
- AVDD = 1,8 ila 3,6 V: Harici Analog Güç Kaynağı
- VDD ve AVDD için izin verilen voltaj farkı: ±50 mV

M480 Sistem Güç Dağıtımı

- VDD = 1,8 ila 3,6 V: Harici Güç Kaynağı
- AVDD = 1,8 ila 3,6 V: Harici Analog Güç Kaynağı
- VDDIO = 1,8 ila 3,6 V: Voltaj Ayarlama Arayüzü İçin

 VDD ve AVDD için izin verilen voltaj farkı: ±50 mV

M031 Güç Modları

- Uyanma kaynağı (Wake-up source)
 - WDT, I²C, Timer, UART, USCI, BOD, GPIO, USBD, and ACMP
- APIs
 - Bekleme modu (Idle mode): CLK_Idle(void)
 - Güç kapatma modu: CLK_PowerDown(void)

```
/* Enter idle mode*/
CLK_Idle();
/* Enter power down mode*/
CLK_PowerDown();
```

Power mode	CPU	Clock	RAM	Peripheral	Power Consumption
Normal run	48 MHz	All	All	All	8.5 mA
Idle	Sleep	All	All	All	3.3 mA
Power down	Deep Sleep	LIRC/LXT	All	WDT/Timer/UART/GPIO	12 uA

M480 Güç Modları

Power mode	CPU	Clock	RAM	Peripheral	Analog	Power consumption
Run (192MHz)	ON	All	All	All	All	34 mA
Idle	Sleep	All	All	All	All	10.32 mA
Fast wakeup Power Down	Deep Sleep	LIRC/LXT	All	RTC/WDT/Timer/ UART/GPIO	OPA/ACMP	0.49 mA
Power down	Deep Sleep	LIRC/LXT	All	RTC/WDT/Timer/ UART/GPIO	OPA/ACMP	0.37 mA
Low-leakage Power Down	Deep Sleep	LIRC/LXT	All	RTC/WDT/Timer/ UART/GPIO	OPA/ACMP	0.14 mA
Standby Power Down 0	Power off	LIRC/LXT	32K	RTC /GPIO	X	0.04 mA
Standby Power Down 1	Power off	LIRC/LXT	X	RTC /GPIO	X	0.03 mA
Deep Power Down	Power off	LIRC	Χ	RTC /GPIO	X	0.95 uA

^{*}User must turn on LIRC before entering SPD0/1 mode.

Saat Denetleyicileri (Clock Controller)

M031 Saat (Clock) Diyagramı

M031 Saat (Clock) Diyagramı

Başlatma Sistemi Saat Akışı

Başlangıç (Initial Clock) Saat Fonksiyonları

```
◆ CLK_EnableXtalRC()
void CLK EnableXtalRC ( uint32 t u32ClkMask )
Enable clock source.
Parameters
      [in] u32ClkMask is clock source mask. Including :

    CLK PWRCTL HXTEN Msk

    CLK PWRCTL LXTEN Msk

    CLK PWRCTL HIRCEN Msk

    CLK PWRCTL LIRCEN Msk

Returns
     None
```

```
◆ CLK_SetCoreClock()
```

uint32 t CLK SetCoreClock (uint32 t u32Hclk)

Set HCLK frequency.

Parameters

[in] u32Hclk is HCLK frequency. The range of u32Hclk is 25.5MHz ~ 48MHz.

Returns

HCLK frequency

```
/* Enable HXT clock (external XTAL 12MHz) */
CLK_EnableXtalRC(CLK_PWRCTL_HXTEN_Msk);
/* Set core clock */
CLK SetCoreClock(FREQ 48MHZ);
```


Modül Saat Fonksiyonlarını Set Etme

```
◆ CLK_SetModuleClock()
```

This function set selected module clock source and module clock divider.

Parameters

[in] u32Moduleldx is module index.

[in] u32ClkSrc is module clock source.

[in] u32ClkDiv is module clock divider.

Returns

None

◆ CLK_EnableModuleClock()

void CLK_EnableModuleClock (uint32_t u32ModuleIdx)

This function enable module clock.

Parameters

[in] u32Moduleldx is module index. Including:

- PDMA_MODULE
- ISP_MODULE
- EBI_MODULE
- HDIV MODULE
- CRC MODULE
- WDT MODULE
- WWDT MODULE
- TMR0 MODULE
- TMR1_MODULE

```
/* Set module clock */
CLK_SetModuleClock(UARTO_MODULE, CLK_CLKSEL1_UARTOSEL_HXT, CLK_CLKDIVO_UARTO(1));
/* Enable module clock */
CLK_EnableModuleClock(UARTO_MODULE);
```

API - SYS_Init()

```
/* Korunan kayıtları kilidini aç (Unlock protected registers) */
   SYS UnlockReg();
   /* HXT saatini etkinleştir (Enable HXT clock) (external XTAL 12MHz) */
   CLK EnableXtalRC(CLK PWRCTL HXTEN Msk);
   /* HXT saatinin hazır olmasını bekleyin */
   CLK_WaitClockReady(CLK_STATUS_HXTSTB_Msk);
   /* Çekirdek saatini PLL'den PLL_CLOCK olarak Set Edin Set core clock as PLL_CLOCK from
PLL */
   CLK SetCoreClock(FREQ 48MHZ);
   /* PCLK0/PCLK1'i HCLK/2'ye ayarlayın (Set PCLK0/PCLK1 to HCLK/2) */
   CLK->PCLKDIV = (CLK_PCLKDIV_APB0DIV_DIV2 | CLK_PCLKDIV_APB1DIV_DIV2);
   /* Modül saatini etkinleştir (Enable module clock) */
   CLK EnableModuleClock(UART0 MODULE);
   /* Modül saatini Set Edin, Set module clock */
   CLK SetModuleClock(UARTO MODULE, CLK CLKSEL1 UARTOSEL HXT, CLK CLKDIVO UARTO(1));
   /* Lock protected registers */
   SYS LockReg();
```

Hafıza Haritası (Memory Map)

M031 Sistem Hafıza Haritası (Memory Map)

0x0030 000B	Reserved
_	User Configuration (12 B)
0x0030_0000	Reserved
0x0020_01FF	Security Protection Memory (512 B SPROM)
0x0020_0000 0x0010 1FFF	Reserved
_	Loader Program Memory (8 KB LDROM)
0x0010_0000	Reserved
0x0001_FFFF	Application Program Memory (128 KB APROM)
0x0000 0000	

M480 Sistem Hafıza Haritası (Memory Map)

0x0080_7FFF 0x0080 0000	Boot Loader (32 KB)
0.0000_0000	Reserved
0x0031_0BFF	OTP (3 KB)
0x0031_0000	<u> </u>
	Reserved
0x0030_2FFF	Key Protection ROM (8 KB KPROM)
0x0030_1000	Rey i rotection Rolli (o Rolli Rolli)
_	Reserved
0x0030_000F	
0x0030_0000	User Configuration (16 B)
0,0000 0555	Reserved
0x0020_0FFF	
0x0020_0000	Security Protection Memory (4 KB SPROM)
	Reserved
0x0010_0FFF	Landau Dua sua va Massa ana /A VD LDDONA)
0x0010 0000	Loader Program Memory (4 KB LDROM)
	Reserved
0x0007_FFFF	
0x0000_0000	Application Program Memory (512 KB APROM)

Sistem Reset

Sistem Reset

Sistem Reset

Donanimsal (Hardware) Reset

- The Power-On Reset
- nRESET pin Reset
- Watchdog Time Out Reset
- Low Voltage Detected Reset
- Brown-Out-Detected Reset
- CPU Lock up Reset

Yazılımsal (Software) Reset

- CPU_RST
 - Just only reset CPU & flash controller
 - SYS_UnlockReg(); SYS_ResetCPU();
- MCU_RST
 - To reset the whole chip
 - SYS_UnlockReg(); NVIC_SystemReset();
- CHIP_RST
 - To reset the whole chip like "Power-on reset"
 - SYS_UnlockReg(); SYS_ResetChip();

"RSTSTS" register identify chip's reset source from last operation

nRESET Reset

 nRESET reset, asenkron reset giriş pini olan ve sistemi herhangi bir anda resetlemek için kullanılabilen nRESET pinini düşüğe çekerek reset sinyali üretmek anlamına gelir.

Power-on Reset (POR)

 Güç açılırken sıfırlama (POR), kararlı bir sistem sıfırlama sinyali oluşturmak için kullanılır ve MCU'nun beklenmedik davranışlarını önlemek için güç açıldığında sistemin sıfırlanmasını zorlar.

Low Voltage Reset(LVR)

Düşük Voltaj Sıfırlama (LVR) fonksiyonu sistem çalışması sırasında
 AV_{DD}'yi algılar. AV_{DD} voltajı V_{LVR}'den düşük olduğunda, çip sıfırlanacaktır.

De-glitch Time
Without de-glitch
4 system clock
8 system clock
16 system clock
32 system clock
64 system clock
128 system clock
256 system clock

Brown-out Detector Reset (BOD)

 Brown-out Dedektörü Sıfırlama (BOD), güç kaynağı voltajında önemli bir düşüş olan brown-out durumunda çipin sıfırlanmasını sağlar.

BODDGSEL	De-glitch Time
000	Sampled by RC10K clock
001	4 system clock
010	8 system clock
011	16 system clock
100	32 system clock
101	64 system clock
110	128 system clock
111	256 system clock

Watchdog Timer Reset (WDT)

- Çoğu endüstriyel uygulamada sistem güvenilirliği çok önemlidir. MCU'yu arıza durumundan otomatik olarak kurtarmak, sistem güvenilirliğini artırmanın bir yoludur.
- Watchdog zamanlayıcısı (WDT), sistemin düzgün çalışıp çalışmadığını kontrol etmek için yaygın olarak kullanılır. MCU çökerse veya kontrolden çıkarsa, watchdog zaman aşımına neden olabilir.

CPU Kilitlenmesi Sıfırlama (Lockup Reset)

 CPU, işlemcinin yerleşik sistem durumu koruma donanımını etkinleştirmek için kurtarılamaz bir istisna olayı nedeniyle kilitlendi.

 CPU, donanım hatası işleyicisinde donanım hatası ürettikten sonra kilitleme durumuna girer. Ve ardından CPU Kilitleme Sıfırlama işlevi çipin sıfırlanmasına neden olur.

• Çip hata ayıklama moduna girdiğinde, CPU kilitleme sıfırlaması yok sayılır.

Çevrebirimi Sıfırlama (Peripheral IP Reset)

- Her çevre biriminin bir sıfırlama kaydı (reset register) vardır
- "SYS_IPRSTO~SYS_IPRST2" kaydı çevre birimi asenkron sıfırlama sinyalini tanımlamıştır
- API: SYS_ResetModule(uint32_t u32ModuleIndex)

```
/* Reset selected module */
SYS_ResetModule(TMR0_RST);
```


İç içe Vektörlü Kesme Denetleyicisi

(Nested Vectored Interrupt Controller)

NuMicro NVIC (İç İçe Vektörlü Kesme Denetleyicisi)

- NVIC (İç İçe Vektörlü kesme Denetleyicisi)
 - Cortex-M işlemcisinin entegre bir parçasıdır
 - Kesme sinyallerinin Seviye ve darbe algılamasını destekler.
 - NMI (Maskelenemeyen Kesme) girişini destekler
 - "Kuyruk Zincirleme" ve "Geç Varış"ı destekler
 - M0: Her biri 4 öncelik seviyesine sahip 32 harici kesme girişi
 - M4: Her biri 16 öncelik seviyesine sahip 240 harici kesme girişi

NVIC (İç İçe Vektörlü Kesme Denetleyicisi)

Kuyruk zincirleme

 Yığın Pop'unu atla ve yeni kesmeyi hemen servis et. (Skip the stack Pop and services the new interrupt immediately).

Interrupt Chaining (kesme Zincirleme) Nedir?

Bir kesme servis rutini (ISR) içinde başka bir kesmeyi tetikleme işlemidir. Yani, bir kesme işlenirken, bu ISR içinde daha düşük öncelikli bir başka kesmeyi etkinleştirerek, ardışık bir kesme zinciri oluşturulur.

NVIC Önceliği (priority)

- NVIC_EnableIRQ(IRQn_Type IRQn)
 - Enable External Interrupt

```
/* Enable interrupt */
NVIC_EnableIRQ(GPIO_PAPB_IRQn);
```

- NVIC_SetPriority(IRQn_Type IRQn, uint32_t priority)
 - Set Interrupt Priority
 - Priority can be M0: 0~3, M4: 0~15

```
/* Enable HXT clock (external XTAL 12MHz) */
NVIC_SetPriority(GPIO_PAPB_IRQn, 1)
```


IRQ Fonksiyon Adı

Sistem Zamanlayıcısı (system timer) - SysTick

• A 24-bit azalan (decrementing), sıfıra sarma (wrap-on-zero) sayma.

```
◆ CLK_SysTickDelay()

__STATIC_INLINE void CLK_SysTickDelay ( uint32_t us )

This function execute delay function.

Parameters

[in] us Delay time. The Max value is 2^24 / CPU Clock(MHz). Ex: 50MHz => 335544us, 48MHz => 349525us, 28MHz => 699050us ...

Returns

None
```

```
/* Delay 10 ms */
CLK_SysTickDelay(10000);
```


Joy of innovation

NUVOTON

Thank You Danke Merci ありがとう Gracias Kiitos 감사합니다 धन्यबाद ك اركش הדות