Strong Types and the Lascar group

Hyoyoon Lee

Yonsei University

January 14th, 2021

References

Byunghan Kim, 'Simplicity Theory', Oxford University Press, 2014.

Martin Ziegler, 'Introduction to the Lascar group', *Tits Buildings and the Model Theory of Groups*, Cambridge University Press, 2002, 279-298.

Daniel Lascar and Anand Pillay, 'Hyperimaginaries and automorphism groups', *J. of Symbolic Logic* 66 (2001) 127-143.

Preliminaries: Monster Model

Fix a first order language \mathcal{L} , complete theory T.

Definition

A set of \mathcal{L} -formulas is called a **(complete) type** if it is a maximal consistent set of \mathcal{L} -formulas.

We fix a huge model ${\mathcal M}$ of ${\mathcal T}$ which satisfies :

- **1** Any 'small' set or tuple of elements we mention are in \mathcal{M} .
- 2 Any (consistent) type is realized in \mathcal{M} .
- 3 Any partial isomorphism into itself ${\mathcal M}$ is extended to an automorphism.
- 4 Any small model M of T can be regarded as an elementary substructure of \mathcal{M} ($M \prec \mathcal{M}$).

Strong Types

Let a, b be any small tuples of elements.

Definition

- 1 $a \equiv b$: a and b have the same **type** iff for any \mathcal{L} -formula $\varphi(x)$, $a \models \varphi(x)$ iff $b \models \varphi(x)$.
- 2 $a \equiv^{s} b$: a and b have the same (Shelah)-strong type iff for any definable equivalence relation E having finitely many classes, E(a,b) holds.
- 3 $a \equiv^{KP} b$: a and b have the same **KP-type** iff for any bounded type-definable equivalence relation E, E(a, b) holds.
- 4 $a \equiv^{L} b$: a and b have the same **Lascar type** iff for any bounded (automorphism-)invariant equivalence relation E, E(a,b) holds.

$$\equiv$$
 $<$ \equiv ^{KP} $<$ \equiv ^L, where $<$ means 'is coarser than'.

Interpretation in terms of automorphisms

Proposition

The following are equivalent :

- 1 $a \equiv b$: a and b have the same **type**.
- **2** For any \mathcal{L} -formula $\varphi(x)$, $a \models \varphi(x)$ iff $b \models \varphi(x)$.
- **3** There is $f \in Aut(\mathcal{M})$ such that f(a) = b.

Interpretation in terms of automorphisms

Proposition

The following are equivalent:

- 1 $a \equiv^{s} b$: a and b have the same (Shelah)-strong type.
- 2 For any definable equivalence relation E having finitely many classes, E(a,b) holds.
- 3 There is $f \in Aut(\mathcal{M})$ such that f pointwise fixes $acl^{eq}(\emptyset)$ and f(a) = b.

 $(acl^{eq}(\emptyset) = the set of definable equivalence classes whose number of automorphic images is finite.)$

Interpretation in terms of automorphisms

Proposition

The following are equivalent :

- 1 $a \equiv^{KP} b$: a and b have the same **KP-type**.
- **2** For any bounded type-definable equivalence relation E, E(a,b) holds.
- 3 There is $f \in Aut(\mathcal{M})$ such that f pointwise fixes $bdd(\emptyset)$ and f(a) = b.

 $(bdd(\emptyset) = the set of type-definable equivalence classes whose number of automorphic images is bounded.)$

Indiscernible sequences and Lascar strong automorphisms

For the Lascar type, there are more interesting characterizations. Before stating them, we need some definitions.

Definition

Let I be any linearly ordered set. A sequence $(a_i : i \in I)$ is called an **indiscernible sequence** if $a_{i_0} \cdots a_{i_n} \equiv a_{j_0} \cdots a_{j_n}$ for any $i_0 < \cdots < i_n, j_0 < \cdots < j_n \in I$.

Definition

 $\operatorname{Autf}(\mathcal{M})$ is the subgroup of $\operatorname{Aut}(\mathcal{M})$ generated by $\{f \in \operatorname{Aut}(\mathcal{M}) : f \text{ pointwise fixes some small model } M \models T\}$.

Characterization of Lascar types

Theorem

The following are equivalent :

- 1 $a \equiv^{\mathsf{L}} b$: a and b have the same **Lascar type**.
- **2** For any bounded invariant equivalence relation E, E(a,b) holds.
- **3** There is $f \in Autf(\mathcal{M})$ such that f(a) = b.
- 4 There are $c_0, \dots c_n$ with $c_0 = a, c_n = b$ such that for each $0 \le k \le n-1$, there is an indiscernible sequence I_k such that $c_k, c_{k+1} \in I_k$.

The Lascar group: Group

Definition

 $Gal_L(T) = Aut(\mathcal{M}) / Autf(\mathcal{M})$ is the **Lascar group** of T.

Remark

The Lascar group does not depend on the choice of a monster model up to isomorphism.

The Lascar group: Topology

Definition

Let A be any small subset of \mathcal{M} . $S(A) = \{\text{complete types over } A\}$.

Equip topology given by basic open sets of the form $[\varphi(x)] = \{ p \in S(A) : \varphi(x) \in p \}.$

Proposition

S(A) is a Stone space. i.e. compact totally separated space.

The Lascar group: Topology

Let M be any small model.

Definition

$$S_M(M) = \{ \operatorname{tp}(f(M)/M) : f \in \operatorname{Aut}(\mathcal{M}) \} \subseteq S(M).$$

Equip $S_M(M)$ with subspace topology.

Define $\nu: S_M(M) \to \operatorname{Gal}_L(T)$ by $\nu(\operatorname{tp}(f(M)/M)) = f \cdot \operatorname{Autf}(\mathcal{M})$.

 ν is well-defined and we give quotient topology on $Gal_L(T)$.

Proposition

The topology of $Gal_L(T)$ does not depend on the choice of a small model M.

Theorem

 $Gal_L(T)$ is a quasi-compact topological group.

Two subgroups of $Gal_L(T)$

Let $Gal_L^0(T)$ be the connected component of $Gal_L(T)$ containing {id}.

Remark

Being a topological group, $\overline{\{id\}}$ and $Gal_L^0(T)$ are both closed normal subgroups of $Gal_L(T)$.

Interpretation in terms of orbit equivalence relation

Definition

Let $\pi: \operatorname{Aut}(\mathcal{M}) \to \operatorname{Gal}_{\mathsf{L}}(\mathcal{M})$ be the projection map and H a subgroup of $\operatorname{Gal}_{\mathsf{L}}(T)$. Define an **orbit equivalence relation** \equiv^H by $a \equiv^H b$ iff there is $f \in \pi^{-1}(H)$ such that f(a) = b.

Theorem

 \equiv^H is type-definable iff H is closed in $Gal_L(T)$.

Theorem

For any small tuples $a, b \in \mathcal{M}$,

- 1 $a \equiv b$ iff $a \equiv^{\operatorname{Gal}_{L}(T)} b$,
- 2 $a \equiv^{s} b$ iff $a \equiv^{\operatorname{Gal}^{0}(T)} b$,
- 3 $a \equiv^{KP} b \text{ iff } a \equiv^{\overline{\{id\}}} b$,
- 4 $a \equiv^{\mathsf{L}} b$ iff $a \equiv^{\{id\}} b$.