

Time Series Forecasting-Rose

Pradeep Kumar Mishra PGP-DSBA Online

Jun_B_21

Date: 16:feb:2022

Content View

Problem Statement - 1	3
1.1 Read the data as an appropriate Time Series data and plot the data.	3
1.2 Perform appropriate Exploratory Data Analysis to understand the data and als perform decomposition.	5 5
1.3 Split the data into training and test. The test data should start in 1999.	11
1.4 Build all the exponential smoothing models on the training data and evaluate model using RMSE on the test data. Other additional models such as regression, naïve forecast models, simple average models, moving average models should also be built on the training data and check the performance on the test data using RM 13	0
1.5 Check for the stationarity of the data on which the model is being built on using appropriate statistical tests and also mention the hypothesis for the statistical tests. If the data is found to be non-stationary, take appropriate steps to make it stationary. Check the new data for stationarity and comment.	
Note: Stationarity should be checked at alpha = 0.05.	18
1.6 Build an automated version of the ARIMA/SARIMA model in which the parameter are selected using the lowest Akaike Information Criteria (AIC) on the training data and evaluate this model on the test data using RMSE.	
1.7 Build ARIMA/SARIMA models based on the cut-off points of ACF and PACF on the training data and evaluate this model on the test data using RMSE.	e 24
1.8 Build a table with all the models built along with their corresponding parameter and the respective RMSE values on the test data.	ers 26
1.9 Based on the model-building exercise, build the most optimum model(s) on the complete data and predict 12 months into the future with appropriate confidence intervals/bands.	
1.10 Comment on the model thus built and report your findings and suggest the measures that the company should be taking for future sales.	28

List of Figures :

Fig.1 Figure.	05
Fig.2 Decompose	06
Fig.3 Decompos	
Fig.4 Figure	
Fig.5 Distplot	
Fig.6 Boxplot	09
Fig.7 Boxplot	09
Fig.8 plot	10
Fig.9 Figure	13
Fig.10 Figure	13
Fig.11 Figure	14
Fig.12 Figure	15
Fig.13 Figure	15
Fig.14 Figure	16
Fig.15 Figure	17
Fig.16 Figure	17
Fig.17 Figure	18
Fig.18 Figure	19
Fig.19 Figure	20
Fig. 20 ACF	25
Fig.21 PACF	25
Fig. 22 Figure	29
Fig.23 Figure	29

List of Tables:

Table-1 Dataset Sample	03
Table-2 Dataset the data	
Table-3 Table	05
Table-4 Pivot Table	07
Table-5 Table	11
Table-6 Table	12
Table-7 Table	21
Table-08 Table	22
Table-09 Table	24
Table-10 Table	27

Problem Statement - 1

For this particular assignment, the data of different types of wine sales in the 20th century is to be analysed. Both of these data are from the same company but of different wines. As an analyst in the ABC Estate Wines, you are tasked to analyse and forecast Wine Sales in the 20th century.

Data set for the Problem: Sparkling.csv and Rose.csv

1.1 Read the data as an appropriate Time Series data and plot the data.

Sample of the dataset:

Head datasets:

	YearMonth	Rose
0	1980-01	112.0
1	1980-02	118.0
2	1980-03	129.0
3	1980-04	99.0
4	1980-05	116.0

Table-01

Tail Datasets:

	YearMonth	Rose
182	1995-03	45.0
183	1995-04	52.0
184	1995-05	28.0
185	1995-06	40.0
186	1995-07	62.0

Table-02

Types of variables and missing values in the dataset:

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 187 entries, 0 to 186
Data columns (total 2 columns):
    Column
               Non-Null Count
                               Dtype
---
     -----
 0
    YearMonth 187 non-null
                               object
 1
           185 non-null
                               float64
    Rose
dtypes: float64(1), object(1)
memory usage: 3.0+ KB
```

- From the above results we can see that there is some missing value present in the dataset.
- There are a total of 187 rows.

Note: We can see in the datasets. YearMonth variable does not format properly so first we use manual add date column.

```
DatetimeIndex(['1980-01-31', '1980-02-29', '1980-03-31', '1980-04-30', '1980-05-31', '1980-06-30', '1980-07-31', '1980-08-31', '1980-09-30', '1980-10-31', ...

'1994-10-31', '1994-11-30', '1994-12-31', '1995-01-31', '1995-02-28', '1995-03-31', '1995-04-30', '1995-05-31', '1995-06-30', '1995-07-31'],

dtype='datetime64[ns]', length=187, freq='M')
```

Final datasets:

Rose

Tim	ie	St	ar	n	n
	_	•	•	•	~

1980-01-31	112
1980-02-29	118
1980-03-31	129
1980-04-30	99
1980-05-31	116

Table-03

Figure - 01

1.2 Perform appropriate Exploratory Data Analysis to understand the data and also perform decomposition.

Decompose the datasets:

Model = additive :

Figure-02

Model= multiplicative:

Figure-03

Remarks:

- We can see that the trend is downward.
- For the seasonality, not sure if there is multiplicative or additive seasonality we will see in other graphs.

Pivot Table:

Time_Stamp	1	2	3	4	5	6	7	8	9	10	11	12
Time_Stamp												
1980	112.0	118.0	129.0	99.0	116.0	168.0	118.0	129.0	205.0	147.0	150.0	267.0
1981	126.0	129.0	124.0	97.0	102.0	127.0	222.0	214.0	118.0	141.0	154.0	226.0
1982	89.0	77.0	82.0	97.0	127.0	121.0	117.0	117.0	106.0	112.0	134.0	169.0
1983	75.0	108.0	115.0	85.0	101.0	108.0	109.0	124.0	105.0	95.0	135.0	164.0
1984	88.0	85.0	112.0	87.0	91.0	87.0	87.0	142.0	95.0	108.0	139.0	159.0
1985	61.0	82.0	124.0	93.0	108.0	75.0	87.0	103.0	90.0	108.0	123.0	129.0
1986	57.0	65.0	67.0	71.0	76.0	67.0	110.0	118.0	99.0	85.0	107.0	141.0
1987	58.0	65.0	70.0	86.0	93.0	74.0	87.0	73.0	101.0	100.0	96.0	157.0
1988	63.0	115.0	70.0	66.0	67.0	83.0	79.0	77.0	102.0	116.0	100.0	135.0
1989	71.0	60.0	89.0	74.0	73.0	91.0	86.0	74.0	87.0	87.0	109.0	137.0
1990	43.0	69.0	73.0	77.0	69.0	76.0	78.0	70.0	83.0	65.0	110.0	132.0
1991	54.0	55.0	66.0	65.0	60.0	65.0	96.0	55.0	71.0	63.0	74.0	106.0
1992	34.0	47.0	56.0	53.0	53.0	55.0	67.0	52.0	46.0	51.0	58.0	91.0
1993	33.0	40.0	46.0	45.0	41.0	55.0	57.0	54.0	46.0	52.0	48.0	77.0
1994	30.0	35.0	42.0	48.0	44.0	45.0	46.0	46.0	46.0	51.0	63.0	84.0
1995	30.0	39.0	45.0	52.0	28.0	40.0	62.0	NaN	NaN	NaN	NaN	NaN

Table- 4

Figure-04

Note: By seeing the above graph we can see that some lines are crossing each other so we can say there is no additive seasonality.

Note: There are some missing values so we imputed using backfill.

Check the residual and normality:

For the multiplicative:

Residual = 0.9994553586957378

ShapiroResult(statistic=0.9488479495048523, pvalue=5.949785190750845e-06)

C:\Users\Pradeep Mishra\anaconda3\lib\site-packages\seaborn\distributions.py:2557: FutureWarning: `distplot` is a dep recated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-le vel function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Figure-05

Remarks: for the multiplicative seasonality error mean = 1 and data should be normally distributed.

Note:

- P value is less than 0.05 so null hypothesis is rejected. Residual not normally distributed.
- Residual mean =1 both conditions are not valid so we can say that seasonality is not multiplicative.

Bxplot for yearly: To check trends:

Figure-06

Note:

looks downward trends.

Boxplot for Month : To check seasonality

Figure- 07

Note: datasets have no seasonality.

Month plot:

Figure-08

Note: Some month patterns look similar and some of the patterns look different.

So by this pattern we can not justify that data have seasonality.

1.3 Split the data into training and test. The test data should start in 1999.

First few rows of Training Data

Rose

Time_Stamp	
1980-01-31	112
1980-02-29	118
1980-03-31	129
1980-04-30	99
1980-05-31	116

Last few rows of Training Data

Rose

Time_Stamp

1990-08-31	70
1990-09-30	83
1990-10-31	65
1990-11-30	110
1990-12-31	132

First few rows of Test Data

First few rows of Test Data

Rose

Time_Stamp	
1991-01-31	54
1991-02-28	55
1991-03-31	66
1991-04-30	65
1991-05-31	60

Last few rows of Test Data

Rose

Time_Stamp

1995-03-31	45
1995-04-30	52
1995-05-31	28
1995-06-30	40
1995-07-31	62

Table-06

Figure-09

1.4 Build all the exponential smoothing models on the training data and evaluate the model using RMSE on the test data. Other additional models such as regression, naïve forecast models, simple average models, moving average models should also be built on the training data and check the performance on the test data using RMSE.

Linear Regression

Figure-10

Test RMSE

RegressionOnTime 15.262509

naïve forecast models:

Figure-11

For Naive forecast on the Test Data, RMSE is 79.699

simple average models:

Figure-12 For Simple Average forecast on the Test Data, RMSE is 53.440

Moving Average:

Figure-13

```
For 2 point Moving Average Model forecast on the Training Data, RMSE is 11.529
For 4 point Moving Average Model forecast on the Training Data, RMSE is 14.449
For 6 point Moving Average Model forecast on the Training Data, RMSE is 14.560
For 9 point Moving Average Model forecast on the Training Data, RMSE is 14.725
For 12 point Moving Average Model forecast on the Training Data, RMSE is 15.234
```

Simple exponential smoothing:

Figure-14

For Alpha =0.098 Simple Exponential Smoothing Model forecast on the Test Data, RMSE is 36.776

Figure-15

Alpha=0.1,SimpleExponentialSmoothing RMSE = 36.807579

Double exponential smoothing:

Figure - 16

Alpha=0.1,Beta=0.1,DoubleExponentialSmoothing

36.902316

Triple exponential smoothing:

Alpha=0.1,Beta=0.2,Gamma=0.2,TripleExponentialSmoothing 9.633969

1.5 Check for the stationarity of the data on which the model is being built on using appropriate statistical tests and also mention the hypothesis for the statistical test. If the data is found to be non-stationary, take appropriate steps to make it stationary. Check the new data for stationarity and comment.

Note: Stationarity should be checked at alpha = 0.05.

Figure - 18

Results	of	Dickey	y-Fuller	Test:
---------	----	--------	----------	-------

Total Charles	1 077440
Test Statistic	-1.877440
p-value	0.342747
#Lags Used	13.000000
Number of Observations Used	173.000000
Critical Value (1%)	-3.468726
Critical Value (5%)	-2.878396
Critical Value (10%)	-2.575756
dtype: float64	

Note:

We see that at a 5% significant level the Time Series is non-stationary.

Let us take a difference of order 1 and check whether the Time Series is stationary or not.

Figure - 19

Results of Dickey-Fuller Test:

Test Statistic	-8.044614e+00
p-value	1.808550e-12
#Lags Used	1.200000e+01
Number of Observations Used	1.730000e+02
Critical Value (1%)	-3.468726e+00
Critical Value (5%)	-2.878396e+00
Critical Value (10%)	-2.575756e+00
dtype: float64	

Note:

After differencing We see that at $\alpha = 0.05$ the Time Series is indeed stationary.

1.6 Build an automated version of the ARIMA/SARIMA model in which the parameters are selected using the lowest Akaike Information Criteria (AIC) on the training data and evaluate this model on the test data using RMSE.

ARIMA:

AIC Values : In Ascending order

	param	AIC
15	(3, 0, 3)	1290.913289
6	(1, 0, 2)	1292.053213
10	(2, 0, 2)	1292.248056
7	(1, 0, 3)	1292.929011
9	(2, 0, 1)	1292.937195
13	(3, 0, 1)	1293.883000
14	(3, 0, 2)	1294.247915
11	(2, 0, 3)	1294.248232
5	(1, 0, 1)	1294.510585
12	(3, 0, 0)	1296.776953

Table-07

Dep. Variabl	le:		Rose No.	Observations	S:	132			
Model:		ARIMA(2, 1	, 3) Log	Likelihood		-631.347			
Date:	h	led , 16 Feb	2022 AIC			1274.695			
Time:		11:3	5:56 BIC			1291.946			
Sample:		01-31-	1980 HQI	C		1281.705			
		- 12-31-	1990						
Covariance 1	Гуре:		opg						
=========		========	========			========			
	coef	std err	Z	P> z	[0.025	0.975]			
ar.L1	-1.6781	0.084	-20.035	0.000	-1.842	-1.514			
ar.L2	-0.7289	0.084	-8.703	0.000	-0.893	-0.565			
ma.L1	1.0450	0.685	1.527	0.127	-0.297	2.387			
ma.L2	-0.7716	0.137	-5.636	0.000	-1.040	-0.503			
ma.L3	-0.9046	0.622	-1.455	0.146	-2.123	0.314			
sigma2	858.3595	576.845	1.488	0.137	-272.237	1988.956			
Ljung-Box (I	 1) (0):	=======	0.02	Jarque-Bera	======= a (JB):	:	==== 4.45		
Prob(Q):	/ (€/:		0.88	Prob(JB):	(00)		0.00		
Heteroskedas	sticity (H)	•	0.40	Skew:			0.71		
		•	0.00	Kurtosis:			4.57		
=========	Prob(H) (two-sided): 0.00 Kurtosis: 4.57								

Note: All lags are not significant. We can expect the result not to be good.

RMSE of Test data: ARIMA(2,1,3) 36.79705233275287

SARIMA:

AIC Values : In Ascending order

	param	seasonal	AIC
606	(4, 1, 4)	(1, 1, 1, 6)	1300.083427
32	(0, 1, 1)	(1, 1, 2, 6)	1303.285643
157	(1, 1, 1)	(1, 1, 2, 6)	1303.900592
115	(0, 1, 4)	(3, 1, 0, 6)	1307.399805
457	(3, 1, 3)	(1, 1, 2, 6)	1307.807674

Table-08

SARIMAX Results								
Dep. Varia				,	 Observation 	ns:	132	
Model:	SAR	IMAX(4, 1,			g Likelihood		-520.116	
Date:			Tue, 15 Fe	b 2022 AI	C		1062.232	
Time:			23	:35:00 BI	C		1092.330	
Sample:				0 HQ	IC		1074.447	
				- 132				
Covariance	Type:			opg				
=======		=======	=======	========	========			
	coef	std err	Z	P> z	[0.025	0.975]		
ar.L1	-0.7041	0.121	-5.821	0.000	-0.941	-0.467		
ar.L2	-0.8000	0.102	-7.849	0.000	-1.000	-0.600		
ar.L3	-0.6397	0.100	-6.421	0.000	-0.835	-0.444		
ar.L4	-0.0555	0.087	-0.639	0.523	-0.226	0.115		
ma.L1	0.0217	199.186	0.000	1.000	-390.377	390.420		
ma.L2	8.261e-08	997.038	8.29e-11	1.000	-1954.159	1954.159		
ma.L3	-0.0217	190.887	-0.000	1.000	-374.153	374.110		
ma.L4	-1.0000	1027.440	-0.001	0.999	-2014.744	2012.744		
ar.S.L6	-0.9062	0.025	-36.972	0.000	-0.954	-0.858		
ma.S.L6	0.3741	0.099	3.766	0.000	0.179	0.569		
sigma2	477.7764	4.91e+05	0.001	0.999	-9.62e+05	9.63e+05		
Ljung-Box	(11) (0):		0.30	Jarque-Ber			8.48	
Prob(Q):	(LI) (Q).		0.58	Prob(JB):	a (36).		0.01	
	lasticity (H)		0.39	Skew:			0.23	
	wo-sided):	•	0.00	Kurtosis:			4.26	

RMSE of test data:

SARIMA(4,1,4)(1,1,1,6) 17.145498

	param	seasonal	AIC
26	(0, 1, 2)	(2, 0, 2, 12)	887.937509
53	(1, 1, 2)	(2, 0, 2, 12)	889.903048
80	(2, 1, 2)	(2, 0, 2, 12)	890.668798
69	(2, 1, 1)	(2, 0, 0, 12)	896.518161
78	(2, 1, 2)	(2, 0, 0, 12)	897.346444

Table-09

SARIMAX Results

ΤΜΔ Χ (0 1 2)x(2 0 2			:	132 -436.969
					887.938
	-				906.448
	23.				895.437
		•	,10		033.137
		opg			
				0.975]	
189.943	-0.004	0.996	-373.124	371.439	
29.841	-0.005	0.996	-58.645	58.330	
0.079	4.375	0.000	0.191	0.502	
0.076	3.996	0.000	0.154	0.451	
0.133	0.577	0.564	-0.184	0.337	
0.146	-0.498	0.618	-0.358	0.213	
		0.996	-9.33e+04	9.38e+04	
=======		======= Jarque-Be	ra (JB):	=======	2.33
	0.75	Prob(JB):			0.31
:	0.88	Skew:			0.37
	0.70	Kurtosis:			3.03
	std err 189.943 29.841 0.079 0.076 0.133 0.146 4.77e+04	Tue, 15 Feb 23: std err z 189.943 -0.004 29.841 -0.005 0.079 4.375 0.076 3.996 0.133 0.577 0.146 -0.498 4.77e+04 0.005 0.10 0.75 : 0.88	IMAX(0, 1, 2)x(2, 0, 2, 12) Lo Tue, 15 Feb 2022 AI 23:40:22 BI 0 HQ - 132 opg std err z P> z 189.943 -0.004 0.996 29.841 -0.005 0.996 0.079 4.375 0.000 0.076 3.996 0.000 0.133 0.577 0.564 0.146 -0.498 0.618 4.77e+04 0.005 0.996 4.77e+04 0.005 0.996 0.10 Jarque-Be 0.75 Prob(JB): 0.88 Skew:	IMAX(0, 1, 2)x(2, 0, 2, 12) Log Likelihood Tue, 15 Feb 2022 AIC 23:40:22 BIC 0 HQIC - 132 opg std err z P> z [0.025 189.943 -0.004 0.996 -373.124 29.841 -0.005 0.996 -58.645 0.079 4.375 0.000 0.191 0.076 3.996 0.000 0.154 0.133 0.577 0.564 -0.184 0.146 -0.498 0.618 -0.358 4.77e+04 0.005 0.996 -9.33e+04	Tue, 15 Feb 2022 AIC

RMSE of test data:

SARIMA(0,1,2)(2,0,2,12) 26.907439

1.7 Build ARIMA/SARIMA models based on the cut-off points of ACF and PACF on the training data and evaluate this model on the test data using RMSE.

Figure - 20

Figure-21

SARIMAX Results

=======							
Dep. Varia	able:	Ro	se No.	Observations	:	132	
Model:		ARIMA(1, 1,	 Log 	Likelihood		-656.675	
Date:	Tue	e, 15 Feb 20	22 AIC			1317.350	
Time:		23:48:	33 BIC			1323.101	
Sample:		01-31-19	980 HQIC			1319.687	
		- 12-31-19	90				
Covariance	e Type:	O	pg				
========	=========		 :=======	========	========		
	coef	std err	Z	P> z	[0.025	0.975]	
ar.L1	-0.3555	0.067	-5.274	0.000	-0.488	-0.223	
sigma2	1321.6677	125.729	10.512	0.000	1075.243	1568.092	
Ljung-Box	 (1) (0):	========	2.56	Jarque-Bera	(JB):	 1	==== 9 . 96
Prob(Q):	() (€).		0.11	Prob(JB):	(32).	_	0.00
, ,,	dasticity (H):		0.32	Skew:			0.34
	two-sided):		0.00	Kurtosis:			4.79

RMSE of test data:

ARIMA(1,1,0) 74.025930

SARIMAX Results

========	========				=========		
Dep. Varia	ble:			y No. (Observations:		132
Model:		MAX(1, 1, 0)	κ(0, 1, 0,	•	Likelihood		-672.458
Date:			, 15 Feb 2	, .			1348.917
Time:		•	23:54	1:52 BIC			1354.557
Sample:				0 HQIC			1351,208
			_	132			
Covariance	Type:			opg			
=======	=========				========		
	coef	std err	Z	P> z	[0.025	0.975]	
ar.L1	-0.3453	0.083	-4.175	0.000	-0.507	-0.183	
		308.165			2401.590		
Ljung-Box	(L1) (Q):		1.53	Jarque-Bera	а (ЈВ):	20	7.71
Prob(0):	, , , , ,		0.22	Prob(JB):	` ,	(0.00
Heterosked	asticity (H):		0.30	Skew:		-(0.07
Prob(H) (t	, , ,		0.00	Kurtosis:		!	5.00
	========						====

RMSE of test data:

SARIMA(1,1,0)(0,1,0,6) 334.497445

1.8 Build a table with all the models built along with their corresponding parameters and the respective RMSE values on the test data.

	Test RMSE
Alpha=0.1,Beta=0.2,Gamma=0.2,TripleExponentialSmoothing	9.633969
2pointTrailingMovingAverage	11.529409
4pointTrailingMovingAverage	14.448930
6pointTrailingMovingAverage	14.560046
9pointTrailingMovingAverage	14.724503
12pointTrailingMovingAverage	15.234402
RegressionOnTime	15.262509
SARIMA(4,1,4)(1,1,1,6)	17.145498
Alpha=0.065, Beta=0.0519, Gamma=3.879136202038614e-06, Triple Exponential Smoothing	20.995338
SARIMA(0,1,2)(2,0,2,12)	26.907439
Alpha=0.098,SimpleExponentialSmoothing	36.775774
ARIMA(2,1,3)	36.797052
Alpha=0.1,SimpleExponentialSmoothing	36.807579
Alpha=0.1,Beta=0.1,DoubleExponentialSmoothing	36.902316
SimpleAverageModel	53.440426
ARIMA(1,1,0)	74.025930
NaiveModel	79.699093
SARIMA(1,1,0)(0,1,0,6)	334.497445

Table - 10

Note: We can say that the triple exponential(alpha=0.1, Beta=0.2, gamma=0.2) gives least RMSE.

1.9 Based on the model-building exercise, build the most optimum model(s) on the complete data and predict 12 months into the future with appropriate confidence intervals/bands.

Figure - 22

RMSE of the Full Model 17.40194318433039

	lower_CI	prediction	upper_ci
1995-08-31	13.514598	47.695360	81.876121
1995-09-30	14.103116	48.283878	82.464639
1995-10-31	16.087505	50.268267	84.449028
1995-11-30	24.256156	58.436918	92.617679
1995-12-31	47.893523	82.074285	116.255046

Table-10

Figure - 23

1.10 Comment on the model thus built and report your findings and suggest the measures that the company should be taking for future sales.

- As we see in the decomposing the datasets trend is going downward so we need to look up seriously why this is happening and try to make sales in an upward trend.
- In December, sales are high.
- need to run promotional marketing campaigns or evaluate if we need to tie up with an alternate agency. It will increase sales.