All-Pairs Shortest Paths

Contents

- Using SSSP (single source shortest path) algorithms
- Floyd-Warshall algorithm
- Transitive closure of a directed graph

Using SSSP algorithms

 We can solve an all-pairs shortest-paths problem by running a *single-source shortest-paths algorithm* |V| *times*, once for each vertex as the source.

- Nonnegative-weight edges
 - Dijkstra's algorithm
 - The linear-array implementation $O(V \cdot V^2) = O(V^3)$.
 - The binary min-heap implementation $O(V \cdot (V \lg V + E \lg V)) = O(V^2 \lg V + V E \lg V)$

Using SSSP algorithms

Negative-weight edges

- Bellman-Ford algorithm
 - $O(V \cdot VE) = O(V^2E)$
 - $O(V^4)$ on a dense graph

Contents

- Using SSSP (single source shortest path) algorithms
- Floyd-Warshall algorithm
 - $\Theta(V^3)$ -time
- Transitive closure of a directed graph

Adjacency Matrix W

-
$$w_{ij} = w(i,j)$$

$$\begin{pmatrix} 0 & 3 & 8 & \infty & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & \infty & \infty \\ 2 & \infty & -5 & 0 & \infty \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix}$$

Shortest Distance Matrix D

$$- d_{ij} = \delta(i,j)$$

$$\begin{pmatrix}
0 & 1 & -3 & 2 & -4 \\
3 & 0 & -4 & 1 & -1 \\
7 & 4 & 0 & 5 & 3 \\
2 & -1 & -5 & 0 & -2 \\
8 & 5 & 1 & 6 & 0
\end{pmatrix}$$

Predecessor Matrix Π

- $\pi_{ij} = \text{NIL}$ if either i = j or there is not path from i to j.
- π_{ij} is the predecessor of j on some shortest path from i to j.

The following procedure prints a shortest path from i to j
due to the optimal substructure of the shortest-paths
problem.

```
PRINT-ALL-PAIRS-SHORTEST-PATH(\Pi, i, j)

1 if i == j

2 print i

3 elseif \pi_{ij} == \text{NIL}

4 print "no path from" i "to" j "exists"

5 else PRINT-ALL-PAIRS-SHORTEST-PATH(\Pi, i, \pi_{ij})

6 print j
```

Intermediate Vertex

- An intermediate vertex of a simple path $p = \langle v_1, v_2, \dots, v_l \rangle$ is any vertex of p between v_1 and v_l .

The structure of a shortest path

- Floyd-Warshall algorithm is based on the observation of the intermediate vertices, which costs $\Theta(V^3)$ time.
- Let $V = \{1, 2, \dots, n\}$.
- For any pair of vertices $i, j \in V$, consider all paths from i to j whose intermediate vertices are all drawn from $\{1, 2, \dots, k\}$, and let p be a minimum weight path from among them.

- If k is not an intermediate vertex of path p, then all intermediate vertices of p are in $\{1, 2, \dots, k-1\}$.
- If k is an intermediate vertex of path p, then we break p down into $i \stackrel{p_1}{\leadsto} k \stackrel{p_2}{\leadsto} j$.

P: all intermediate vertices in $\{1,2,...,k\}$

- A recursive solution to the all-pairs shortest-paths problem
 - Let $d_{ij}^{(k)}$ be the weight of a shortest path from vertex i to vertex j for which all intermediate vertices are in the set $\{1, 2, \dots, k\}$.
 - We have the following recurrence:

$$d_{ij}^{(k)} = \begin{cases} w_{ij} & \text{if } k = 0, \\ \min\left(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}\right) & \text{if } k \ge 1. \end{cases}$$
 (25.5)

Because for any path, all intermediate vertices are in the set $\{1, 2, \cdots, n\}$, the matrix $D^{(n)} = d^{(n)}_{ij}$ gives the final answer: $d^{(n)}_{ij} = \partial(i,j)$ for all $i, j \in V$.

```
FLOYD-WARSHALL(W)
1 \quad n = W.rows
2 \quad D^{(0)} = W
  for k = 1 to n
       let D^{(k)} = (d_{ij}^{(k)}) be a new n \times n matrix
   for i = 1 to n
              for j = 1 to n
                   d_{ii}^{(k)} = \min(d_{ii}^{(k-1)}, d_{ik}^{(k-1)} + d_{ki}^{(k-1)})
     return D^{(n)}
```

• costs $\Theta(n^3)$ time.

$$\begin{pmatrix} 0 & 3 & 8 & \infty & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & \infty & \infty \\ 2 & \infty & -5 & 0 & \infty \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix}$$

$$D^{(0)} = \begin{pmatrix} 0 & 3 & 8 & \infty & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & \infty & \infty \\ 2 & \infty & -5 & 0 & \infty \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix} \qquad D^{(1)} = \begin{pmatrix} 0 & 3 & 8 & \infty & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & \infty & \infty \\ 2 & 5 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix}$$

$$D^{(1)} = \begin{pmatrix} 0 & 3 & 8 & \infty & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & \infty & \infty \\ 2 & 5 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix}$$

$$\Pi^{(0)} = \begin{pmatrix} NIL & 1 & 1 & NIL & 1 \\ NIL & NIL & NIL & 2 & 2 \\ NIL & 3 & NIL & NIL & NIL \\ 4 & NIL & 4 & NIL & NIL \\ NIL & NIL & NIL & 5 & NIL \end{pmatrix} \Pi^{(1)} = \begin{pmatrix} NIL & 1 & 1 & NIL & 1 \\ NIL & NIL & NIL & NIL & 2 & 2 \\ NIL & 3 & NIL & NIL & NIL \\ 4 & 1 & 4 & NIL & 1 \\ NIL & NIL & NIL & 5 & NIL \end{pmatrix}$$

$$D^{(1)} = \begin{pmatrix} 0 & 3 & 8 & \infty & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & \infty & \infty \\ 2 & 5 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix} \qquad D^{(2)} = \begin{pmatrix} 0 & 3 & 8 & 4 & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & 5 & 11 \\ 2 & 5 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix}$$

$$D^{(2)} = \begin{pmatrix} 0 & 3 & 8 & 4 & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & 5 & 11 \\ 2 & 5 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix}$$

$$\Pi^{(1)} = \begin{pmatrix} NIL & 1 & 1 & NIL & 1 \\ NIL & NIL & NIL & 2 & 2 \\ NIL & 3 & NIL & NIL & NIL \\ 4 & 1 & 4 & NIL & 1 \\ NIL & NIL & NIL & 5 & NIL \end{pmatrix} \Pi^{(2)} = \begin{pmatrix} NIL & 1 & 1 & 2 & 1 \\ NIL & NIL & NIL & NIL & 2 & 2 \\ NIL & 3 & NIL & 2 & 2 \\ NIL & 3 & NIL & 2 & 2 \\ 4 & 1 & 4 & NIL & 1 \\ NIL & NIL & NIL & 5 & NIL \end{pmatrix}$$

$$D^{(2)} = \begin{pmatrix} 0 & 3 & 8 & 4 & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & 5 & 11 \\ 2 & 5 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix} \qquad D^{(3)} = \begin{pmatrix} 0 & 3 & 8 & 4 & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & 5 & 11 \\ 2 & -1 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix}$$

$$D^{(3)} = \begin{pmatrix} 0 & 3 & 8 & 4 & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & 5 & 11 \\ 2 & \boxed{-1} & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix}$$

$$\Pi^{(2)} = \begin{pmatrix} NIL & 1 & 1 & 2 & 1 \\ NIL & NIL & NIL & 2 & 2 \\ NIL & 3 & NIL & 2 & 2 \\ 4 & 1 & 4 & NIL & 1 \\ NIL & NIL & NIL & 5 & NIL \end{pmatrix} \Pi^{(3)} = \begin{pmatrix} NIL & 1 & 1 & 2 & 1 \\ NIL & NIL & NIL & NIL & 2 & 2 \\ NIL & 3 & NIL & 2 & 2 \\ 4 & 3 & 4 & NIL & 1 \\ NIL & NIL & NIL & 5 & NIL \end{pmatrix}$$

$$D^{(3)} = \begin{pmatrix} 0 & 3 & 8 & 4 & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & 5 & 11 \\ 2 & -1 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix}$$

$$D^{(4)} = \begin{pmatrix} 0 & 3 & (-1) & 4 & -4 \\ 3 & 0 & (-4) & 1 & (-1) \\ 7 & 4 & 0 & 5 & 3 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & 5 & 1 & 6 & 0 \end{pmatrix}$$

$$\Pi^{(3)} = \begin{pmatrix} NIL & 1 & 1 & 2 & 1 \\ NIL & NIL & NIL & 2 & 2 \\ NIL & 3 & NIL & 2 & 2 \\ 4 & 3 & 4 & NIL & 1 \\ NIL & NIL & NIL & 5 & NIL \end{pmatrix}$$

$$\Pi^{(4)} = \begin{pmatrix} NIL & 1 & 4 & 2 & 1 \\ 4 & NIL & 4 & 2 & 1 \\ 4 & 3 & NIL & 2 & 1 \\ 4 & 3 & 4 & NIL & 1 \\ 4 & 3 & 4 & 5 & NIL \end{pmatrix}$$

$$D^{(4)} = \begin{pmatrix} 0 & 3 & -1 & 4 & -4 \\ 3 & 0 & -4 & 1 & -1 \\ 7 & 4 & 0 & 5 & 3 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & 5 & 1 & 6 & 0 \end{pmatrix}$$

$$D^{(5)} = \begin{pmatrix} 0 & 1 & -3 & 2 & -4 \\ 3 & 0 & -4 & 1 & -1 \\ 7 & 4 & 0 & 5 & 3 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & 5 & 1 & 6 & 0 \end{pmatrix}$$

$$\Pi^{(4)} = \begin{pmatrix} NIL & 1 & 4 & 2 & 1 \\ 4 & NIL & 4 & 2 & 1 \\ 4 & 3 & NIL & 2 & 1 \\ 4 & 3 & 4 & NIL & 1 \\ 4 & 3 & 4 & 5 & NIL \end{pmatrix}$$

$$\Pi^{(5)} = \begin{pmatrix} NIL & 3 & 4 & 5 & 1 \\ 4 & NIL & 4 & 2 & 1 \\ 4 & 3 & NIL & 2 & 1 \\ 4 & 3 & 4 & NIL & 1 \\ 4 & 3 & 4 & 5 & NIL \end{pmatrix}$$

Constructing A Shortest Path

- Let Π_{ij}^k be the predecessor of vertex j on a shortest path from vertex i with all intermediate vertices in $\{1, 2, \dots, k\}$.

$$\Pi_{ij}^{(0)} = \begin{cases} \text{NIL} & \text{if } i = j \text{ or } w_{ij} = \infty, \\ i & \text{if } i \neq j \text{ and } w_{ij} < \infty. \end{cases}$$

$$\Pi_{ij}^{(k)} = \begin{cases} \Pi_{ij}^{(k-1)} & \text{if } d_{ij}^{(k-1)} \le d_{ik}^{(k-1)} + d_{kj}^{(k-1)}, \\ \Pi_{kj}^{(k-1)} & \text{if } d_{ij}^{(k-1)} > d_{ik}^{(k-1)} + d_{kj}^{(k-1)}. \end{cases}$$

Transitive Closure of Graph

- Given a directed graph G = (V,E) with vertex set $V = \{1, 2, \cdots, n\}$.
- The transitive closure of G is defined as the graph $G^* = (V, E^*)$, where $E^* = \{(i, j) : \text{there is a path from vertex } i \text{ to vertex } j \text{ in } G\}$.