Contents

Chapter 6

Relativistische QM

Notation: Vierer-Vektoren

$$x^{\mu} = (ct, x, y, z) = (x^{0}, x^{1}, x^{2}, x^{3}) = (ct, \vec{r})$$

invariante Länge $\sqrt{x^2}$

$$x^2 = x \cdot x = x^\mu x_\mu = x^\mu g_{\mu\nu} x^\nu$$

Einsteinsche Summenkonvention: $\sum_{\mu=0}^{3}$ für jedes Paar von oberen und unteren Index Metrischer Tensor

$$g_{\mu\nu} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix}$$

$$x_{\mu} = g_{\mu\nu}x^{\nu} = (ct, -\vec{r})$$

$$x^{\mu} = g^{\mu\nu} x_{\nu} = g^{\mu\nu} x^{\nu} = g^{\nu}_{\ \nu} x^{\nu}$$

$$g^{\nu}_{\nu} = \delta^{\nu}_{\nu} = \begin{cases} 1, & \mu = \nu \\ 0 & \text{sonst} \end{cases}$$

$$= g^{\mu\rho}g_{\rho\nu} \to g^{\mu\nu} = [g_{\mu\nu}]^{-1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix}$$

Vierer-Impuls: $p^{\mu}=(\frac{E}{c},\vec{p})$ mit $E=\sqrt{(mc^2)^2+(\vec{p}c)^2}$

$$p^2 = p_{\mu}p^{\mu} = \frac{E^2}{c^2} - \vec{p}^2 = \frac{m^2c^4 + \vec{p}^2c^2}{c^2} - \vec{p}^2 = m^2c^2$$

<u>Vierer-Potential</u>: Lorenz-Transformation $x^{'\mu} = \Lambda^{\mu}_{\ \nu} x^{\nu}$

$$A^{\mu} = (\frac{\phi}{a}, \vec{A}) \qquad \rightarrow A^{'\mu}(x') = \Lambda^{\mu}_{\ \nu} A^{\nu}(x)$$

Strom: $j^\mu=(c\rho,\vec{j})$ in E und M Skalarprodukt für a^μ,b^μ : $a\cdot b=a^\mu b_\mu=a^\mu g_{\mu\nu}b^\nu=a^0b^0-\vec{a}\cdot\vec{b}$ Ableitung nach x^ν

$$\partial_{\mu} = \frac{\partial}{\partial x^{\mu}} = (\frac{1}{c} \frac{\partial}{\partial t}, \vec{\nabla})$$

ist kovarianter Vektor (Index unten) wegen: $\partial_{\mu}a \cdot x = \frac{\partial}{\partial x^{\mu}}(a_{\nu}x^{\nu}) = a_{\mu}$ Entsprechend $\partial^{\mu} = g^{\mu\nu}\partial_{\nu} = (\frac{1}{c}\frac{\partial}{\partial t}, -\vec{\nabla})$ d'Alebert Operator

$$\Box = \partial_{\mu}\partial^{\mu} = \frac{1}{c^2} \frac{\partial^2}{\partial t^2} - \vec{\nabla}^2$$

6.0.1 QM eines freien Teilchens

$$E \to i\hbar \frac{\partial}{\partial t}, \quad \vec{p} = \frac{\hbar}{i} \vec{\nabla}$$

$$p^{\mu} = (\frac{E}{c}, \vec{p}) \rightarrow (i\hbar \frac{1}{c} \frac{\partial}{\partial t}, -i\hbar \vec{\nabla}) = i\hbar \partial^{\mu}$$

Schrödinger Gl. für nicht relativistisches freies Teilchen (ohne Potential)

$$E = \frac{\vec{p}^2}{2m} \rightarrow i\hbar \frac{\partial}{\partial t} \psi = -\frac{\hbar^2 \nabla^2}{2m} \psi(\vec{x},t)$$

Relativistischer Fall

1)
$$E = \sqrt{m^2c^4 + \vec{p}^2c^2} \rightarrow \text{nichtlokaler Operator}$$

2)
$$\frac{E^2}{c^2} = m^2c^2 + \vec{p}^2 \rightarrow -\frac{\hbar^2}{c^2}\frac{\partial^2}{\partial t^2}\psi = m^2c^2\psi - \hbar^2\vec{\nabla}^2\psi$$

$$-\frac{\hbar^2}{c^2}\frac{\partial^2}{\partial t^2}\psi = m^2c^2\psi - \hbar^2\vec{\nabla}^2\psi$$

$$\Leftrightarrow 0 = m^2 c^2 \psi + \hbar^2 \left(\frac{1}{c^2} \frac{\partial^2}{\partial t^2} - \nabla^2 \right) \psi \tag{6.1}$$

$$0 = m^2 c^2 \psi + \hbar^2 \square \psi \tag{6.2}$$

Klein Gordon Gleichung:

$$\left(\Box + \left(\frac{mc}{\hbar}\right)^2\right)\psi(x) = 0$$

Anwendbar auf skalare Teilichen (Spin 0) wie π^+,π^-,π^0,K,H Lösungen der KG-Gl. durch ebene Wellen

$$\psi_p(x) = Ne^{-ip\cdot x/\hbar} = Ne^{-iEt/\hbar}e^{+i\vec{p}\cdot\vec{x}/\hbar}$$

 $mit \ p \cdot x = p^{\mu} x_{\mu} = Et - \vec{p} \cdot \vec{x}$

$$\Box \psi_p = (x) = \frac{\partial}{\partial x^\mu} \frac{\partial}{\partial x_\mu} \psi_p(x) = N(-\frac{i}{\hbar} p_\mu) (-\frac{i}{\hbar} p^\mu) e^{-ip \cdot x/\hbar} = -\frac{p^2}{\hbar^2} \psi_p$$

Klein Gordon Gleichung:

$$\Rightarrow \left(-\frac{p^2}{\hbar^2} + \frac{m^2c^2}{\hbar^2}\right)\psi_p(x) = 0$$

$$\Leftrightarrow p^2 = m^2 c^2 = \frac{E^2}{c^2} - \vec{p}^2$$

$$\rightarrow E = \pm c \sqrt{m^2 c^2 + \vec{p}^2}$$

Lösungen mit Negativer Energie und das Energiespektrum ist nach unten nicht beschränkt.

6.0.2 Wahrscheinlichkeitserhaltung

Kontin. Gl $\frac{\partial \rho}{\partial t} + \vec{\nabla} \cdot \vec{J} = 0 \Leftrightarrow \partial_{\mu} j^{\mu} = 0$ mit $j^{\mu} = (\rho c, \vec{j})$. Gibt es einen erhaltenen 4-Strom für die lösung der KG-Gleichung?

$$\psi^*(\Box + (\frac{mc}{\hbar})^2)\psi(x) - \psi(\Box + (\frac{mc}{\hbar})^2)\psi^*(x) = 0$$

$$\psi^*(\partial_\mu \partial^\mu \psi) - \psi(\partial_\mu \partial^\mu \psi^*) = 0$$

$$\partial_{\mu}(\underbrace{\psi^*\partial^{\mu}\psi - \psi\partial^{\mu}\psi^*}_{\alpha i^{\mu}}) = 0$$

$$j^{\mu} \propto (\psi^* \frac{i}{c} \frac{\alpha}{\alpha t} \psi - \psi \frac{i}{c} \frac{\alpha}{\alpha t} \psi^*, -(\psi^* \vec{\nabla} \psi - \psi \vec{\nabla} \psi^*))$$

Kandidat für Wahrscheinlichkeits Strom $\frac{2im}{\hbar}\vec{j}$ in Schrödinger Gl

$$j^{\mu} = \frac{i\hbar}{2m} (\psi^* \partial^{\mu} \psi - \psi \partial^{\mu} \psi^*)$$

$$\rightarrow j^{0} = \rho c = \frac{i\hbar}{2mc} (\psi^{*} \frac{\partial \psi}{\partial t} - \psi \frac{\partial \psi^{*}}{\partial t})$$

Anwendung auf stationäre Lösung: $\psi_E(x) = e^{-iEt/\hbar}\psi_E(\vec{x})$

$$\frac{\partial \psi_E}{\partial t} = -\frac{iE}{\hbar} \psi_E, \\ \frac{\partial \psi_E^*}{\partial t} = -\frac{iE}{\hbar} \psi_E^* \Rightarrow \rho = \frac{i\hbar}{2mc^2} |\psi_E(\vec{x})|^2 \\ \frac{-2iE}{\hbar} = \frac{E}{mc^2} |\psi_E(x)|^2$$

 $\rho < 0$ für Zustände mit E < 0

 \Rightarrow Keine mögliche Wahrscheinlichkeitsdichte. (Ok für Zustände mit positiver Energie) Interpretation: Zustände mit $E>0\Leftrightarrow$ z.B. π^+ und $E<0\Leftrightarrow$ z.B. π^- (Antiteilchen zum π^+) $\rho>0$: π^+ dominieren $\rho<0$: π^- dominieren $\rho<0$: π^- dominieren

$$j^{\mu} = |e| \frac{i\hbar}{2mc} (\psi^* \partial^{\mu} \psi - \psi \partial^{\mu} \psi^*)$$

Elektronen: Spin

 \rightarrow Wellenfunktion $\psi(x)$ hat ≥ 2 Komponenten

$$\psi(x) = \begin{pmatrix} \psi_1(x) \\ \dots \\ \psi_N(x) \end{pmatrix}$$

Möglichkeit: Matrixstruktur für \hat{H}

$$i\hbar \frac{\partial}{\partial t} \psi(x) = \hat{H}\psi(x)$$

Ansatz: $i\hbar \frac{\partial}{\partial t} \psi = \hat{H} \psi$ mit $\psi(x) = \begin{pmatrix} \psi_1(x) \\ \dots \\ \psi_N(x) \end{pmatrix}$

und Wahrscheinlichkeitsdichte $\rho = \sum_{i=1}^{N} |\psi_i|^2$

$$\Rightarrow \hat{H} \propto \frac{\partial}{\partial x^i} \propto \hat{p}_i$$

Ansatz für \hat{H}

$$\hat{H} = c(\alpha_x \hat{p}_x + \alpha_y \hat{p}_y) + \beta mc^2 = c \sum_{i=1}^{3} \alpha_i \hat{p}_i + \beta mc^2$$

Ebene Wellenlösung für freie Teilchen

$$\psi(x) = e^{-px/\hbar}\psi(p)$$

 $mit p^2 = m^2 c^2$

$$\Rightarrow E\psi(p) = \left[c\sum_{i=1}^{3} \alpha_{i} p_{i} + \beta m c^{2}\right] \psi(p)$$

$$E^2\psi(p) = (m^2c^4 + \vec{p}^2c^2)\psi(p)$$

$$Ec(\vec{\alpha}\vec{p} + \beta mc)\psi(p) = c^2(\vec{\alpha}\vec{p} + \beta mc)^2\psi(p)$$

$$=c^2(\sum_{i,j=1}^3 \alpha_i \alpha_j p_i p_j + \sum_{i=1}^3 (\alpha_i \beta + \beta \alpha_i) p_i mc + \beta^2 m^2 c^2) \psi(p)$$

Koeffizienfenvergleich: $\beta^2 = 1$; Antikommutator:

$$\{\alpha_i, \beta\} = 0$$

- $\bullet \quad \beta^2 = 1$
- Antikommutator: $\overline{\{\alpha_i,\beta\}=0}$
- $i \neq j$: z.B: $p_x p_y \{\alpha_x \alpha_y + \alpha_y \alpha_x\}$; $\{\alpha_i, \alpha_j\} = 0$
- i = j: $\alpha_x^2 p_x^2 + \alpha_y^2 p_y^2 + \alpha_z^2 p_z^2 = \vec{p}^2 \Rightarrow \alpha_i^2 = 1$ $\Rightarrow \left[\{ \alpha_i, \alpha_j \} = 2\delta_{ij} \right]$
- 1) \hat{p}_i, \hat{H} hermitesch $\Rightarrow \vec{\alpha}, \beta$ hermitesch
- 2) $\alpha_i^2 = 1, \beta^2 = 1 \Rightarrow \text{Eigenwerte von } \alpha_i, \beta$

3)
$$\alpha_i \beta + \beta \alpha_i = 0 \quad |\cdot \beta|$$

$$\Rightarrow \alpha_i = -\beta \alpha_i \beta \Rightarrow Tr[\alpha_i] = -Tr[\beta \alpha_i \beta] = -Tr[\alpha_i \beta^2] = -Tr[\alpha_i]$$

- Anzahl; N - Dimension der Matrix

$$\# EW +1 = \# EW -1$$

$$\Rightarrow N \text{ gerade } (N=2,4,...)$$

 $N=2\Rightarrow 3$ Pauli Matrizen als Kandidaten benötigt: 4 Matrizen $\Rightarrow N\geq 4: N=4$ funktioniert N=4: Dirac Basis: β diagonal

$$\beta = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix} = \begin{pmatrix} \mathbb{1} & 0 \\ 0 & \mathbb{1} \end{pmatrix}$$

 α_i hermitesch + $\{\alpha_i, \beta\} = 0$

$$\alpha = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \qquad \begin{pmatrix} A & -B \\ C & -D \end{pmatrix}$$

$$A = D = 0, C = B^{\dagger}$$

$$\beta \alpha = \begin{pmatrix} A & B \\ -C & -D \end{pmatrix}$$

$$\Rightarrow \alpha_i = \begin{pmatrix} 0 & \tau_i \\ \tau_i^{\dagger} & 0 \end{pmatrix}$$

$$\{\alpha_i, \alpha_j\} = 2\delta_{ij} \Leftrightarrow \tau_i \tau_i^{\dagger} + \tau_j \tau_i^{\dagger} = 2\delta_{ij}$$

Lösung $\tau_i = \sigma_i =$ Pauli Matrizen

$$\Rightarrow \boxed{\beta = \begin{pmatrix} \mathbb{1} & 0 \\ 0 & -\mathbb{1} \end{pmatrix}; \qquad \alpha_i = \begin{pmatrix} 0 & \sigma_i \\ \sigma_i & 0 \end{pmatrix}}$$

6.1 Dirac Gleichung

$$i\hbar \frac{\partial}{\partial t} \psi(x) = c(\vec{\alpha} \cdot \frac{\hbar}{i} \vec{\nabla} + \beta mc) \psi(x) \qquad |\cdot \frac{\beta}{\hbar c}$$

Alternativ: kovariante Form

$$\Rightarrow i\beta\underbrace{\frac{i}{c}\frac{\partial}{\partial t}}_{\frac{\partial}{\partial x^0}}\psi + i\underbrace{\beta\vec{\alpha}_i}_{\gamma^i}\cdot\underbrace{\vec{\nabla}_i}_{\frac{\partial}{\partial x^i}}\psi - \frac{mc}{\hbar}\psi = 0$$

$$\Rightarrow (i\gamma^{\mu}\frac{\partial}{\partial x^{\mu}} - \frac{mc}{\hbar})\psi = 0$$

$$\gamma^0 = \beta; \, \gamma^i = \beta \alpha_i$$

$$\left[\left(i\gamma^{\mu}\partial_{\mu} - \frac{mc}{\hbar} \right) \psi = 0 \right]$$

Kovariante Form der Dirac Gleichung mit $[\{\gamma^{\mu}, \gamma^{\nu}\} = 2g^{\mu\nu}] = 2g^{\mu\nu}\mathbb{1}_4$ z.B. $\{\gamma^i, \gamma^j\} = \beta \underbrace{\alpha_I \beta}_{-\beta \alpha_i} \alpha_j + \beta \underbrace{\alpha_j \beta}_{-\beta \alpha_j} \alpha_i = -\{\alpha_i, \alpha_j\} = -2\delta_{ij}$

6.1.1 Wahrscheinlichkeitsstrom

$$i\hbar\frac{\partial\psi}{\partial t} = \frac{\hbar c}{i}\vec{\alpha}\cdot\vec{\nabla}\psi + \beta mc^2\psi$$

adjungierte Dirac Gleichung:

$$-i\hbar \frac{\partial \psi^{\dagger}}{\partial t} = \frac{\hbar c}{i} (\vec{\nabla} \psi^{\dagger}) \vec{\alpha} + \beta m c^{2} \psi^{\dagger} \qquad |\cdot \psi|$$

Differenz der beiden Gleichungen:

$$i\hbar\frac{\partial}{\partial t}(\psi^\dagger\psi) = \frac{\hbar c}{i}(\psi^\dagger\vec{\alpha}\cdot\vec{\nabla}\psi + (\vec{\nabla}\psi^\dagger)\vec{\alpha}\psi)$$

$$\Rightarrow \frac{\partial}{\partial t}(\psi^{\dagger}\psi) = -c\vec{\nabla}(\psi^{\dagger}\vec{\alpha}\psi)$$

$$\frac{\partial}{\partial t} \underbrace{(\psi^\dagger \psi)}_{\rho} + \vec{\nabla} \cdot \underbrace{(c\psi^\dagger \vec{\alpha} \psi)}_{\vec{i}}$$

$$\rho = \psi^{\dagger} \psi = \sum_{i} |\psi_{i}|^{2} \ge 0$$

 ρ ist positiv definierte Warscheinlichkeitsdichte Kovariante Form des W-Stroms

$$j^{\mu} = (c\psi^{\dagger}\psi, c\psi^{\dagger}\vec{\alpha}\psi) \tag{6.3}$$

$$= (c\psi^{\dagger}\beta\gamma^{0}\psi, c\psi^{\dagger}\beta\vec{\gamma}\psi) \tag{6.4}$$

$$= c\psi^{\dagger}\beta\gamma^{\mu}\psi = c\overline{\psi}\gamma^{\mu}\psi \tag{6.5}$$

wobei $\overline{\psi}=\psi^\dagger\beta=\psi^\dagger\gamma^0$ der Pauli adungierte Spinor ist.

6.1.2 Elektromagnetische Wechselwirkung

externe \vec{E}, \vec{B} Fleder $\vec{B} = \vec{\nabla} \times \vec{A}, \vec{E} = -\vec{\nabla}\phi - \frac{\partial \vec{A}}{\partial t}$

$$\rightarrow A^{\mu} = (\frac{\phi}{c}, \vec{A})$$

minimale Subsittution:

$$p^{\mu} \rightarrow p^{\mu} - eA^{\mu}$$
 $QM \rightarrow i\hbar\partial^{\mu} - eA^{\mu} = i\hbar(\partial^{\mu} + \frac{ie}{\hbar}A^{\mu}) = i\hbar D^{\mu}$

Komponenten der Kovarianten Ableitung D^{μ}

$$i\hbar D^{\mu} = (i\hbar \frac{1}{c} \frac{\partial}{\partial t} - \frac{e}{c} \phi, \frac{\hbar}{i} \vec{\nabla} - e\vec{A})$$

$$=(\frac{i}{c}(c\hbar\frac{\partial}{\partial t}-e\phi),\frac{\hbar}{i}\vec{\nabla}-e\vec{A})$$

j Ersetze in freier Dirac-Gl
 ∂

$$\boxed{i\hbar \frac{\partial}{\partial t} \psi(x) = c\vec{\alpha} (\frac{\hbar}{i} \vec{\nabla} - e\vec{A})\psi + \beta mc^2 \psi + e\phi\psi}$$

oder

$$(i\gamma^{\mu}D_{\mu} - \frac{mc}{\hbar})\psi = 0$$

beschreibt WW eines Elektrons der Ladung e mit dem elektromagnetischen Feld. Notation: $\vec{\alpha}\vec{p}\psi=\frac{\hbar}{i}\vec{\alpha}\vec{\nabla}\psi$

mit
$$A = 1...4 \ [\vec{\alpha}\vec{p}\psi]_A = \sum_{j=1}^3 \sum_{B=1}^4 \alpha_{jAB} \frac{\hbar}{i} \nabla_i \psi_B(\vec{x}, t) = \begin{bmatrix} 0 & \vec{\sigma}\vec{p} \\ \vec{\sigma}\vec{p} & 0 \end{bmatrix} \begin{pmatrix} \psi_1 \\ \psi_2 \\ \psi_3 \\ \psi_4 \end{pmatrix} \end{bmatrix}_A$$

Nichtrel. Grenzfall: $E = mc^2 + E_S$ Ansatz:

$$\psi(\vec{x},t) = e^{i\frac{mc^2}{\hbar}t} \begin{pmatrix} \phi(\vec{x},t) \\ \chi(\vec{t}) \end{pmatrix} = e^{i\frac{mc^2}{\hbar}t} e^{i\frac{E_S}{\hbar}t} \begin{pmatrix} \phi_E(\vec{x},t) \\ \chi_E(\vec{t}) \end{pmatrix}$$

$$\begin{split} & \Rightarrow i\hbar \begin{pmatrix} \dot{\phi} \\ \dot{\chi} \end{pmatrix} + mc^2 \begin{pmatrix} \phi \\ \chi \end{pmatrix} = c \begin{pmatrix} \vec{\sigma}\vec{p}i\vec{\chi} \\ \vec{\sigma}\vec{p}i\phi \end{pmatrix} + mc^2 \begin{pmatrix} \phi \\ -\chi \end{pmatrix} + e\phi \begin{pmatrix} \phi \\ \chi \end{pmatrix} \\ \\ & \text{mit } \vec{\pi} = \vec{p} - e\vec{A} = \frac{\hbar}{i}\vec{\nabla} - e\vec{A} = \frac{\hbar}{i}\vec{D} \\ \\ & \Rightarrow \chi : 2mc^2\chi + i\hbar\dot{\chi} - e\phi\chi = c\vec{\sigma}\vec{\pi}\phi \\ \\ & \Rightarrow i\hbar\dot{\phi} = c\vec{\sigma}\vec{\pi}\chi + e\Phi\phi \end{split}$$

$$\chi \approx \frac{1}{2mc^2} c \vec{\sigma} \vec{\pi} \phi \approx \frac{mv}{2mc} \phi = \frac{1}{2} \frac{v}{c} \phi$$

 $(\chi = \frac{1}{2mc^2 + E_S - V} c \vec{\sigma} \vec{\pi} \phi) \chi$ ist kleine Komponente des Dirac Spinors. Einsetzen von χ :

$$i\hbar\frac{\partial\phi}{\partial t} = \frac{c^2(\vec{\sigma}\vec{\pi})^2}{2mc^2}\phi + V\phi \qquad (V=e\Phi)$$

Berechnung von $(\vec{\sigma}\vec{\pi})^2 = -\hbar^2 \underbrace{\sigma_i \sigma_j}_{\frac{1}{2}[\sigma_i,\sigma_j] + \frac{1}{2}\{\sigma_i,\sigma_j\}} D_i D_j \text{ mit } [\sigma_i,\sigma_j] = i\hbar^2 \epsilon_{ijk} \sigma_k \text{ und } \sigma_{ij}$

$$(\vec{\sigma}\vec{\pi})^2 = \vec{\pi}^2 - i\hbar^2 \epsilon_{ijk} \sigma_k \underbrace{D_i D_j}_{\frac{1}{2}[D_i, D_j]}$$

$$[D_i, D_j] = [\nabla_i - \frac{i}{\hbar} e A_i, \nabla_j - \frac{i}{\hbar} e A_j] = -\frac{i}{\hbar} e \underbrace{(\nabla_i A_j)}_{\vec{\nabla} \times \vec{A}} \underbrace{-(\nabla_j A_i)}_{\vec{\nabla} \times \vec{A}}$$

$$\Rightarrow (\vec{\sigma}\vec{\pi})^2 = \vec{\pi}^2 - \frac{1}{2}\hbar e\vec{\sigma}(\vec{\nabla} \times \vec{A})2 = \vec{\pi}^2 - 2e\vec{S}\vec{B} \qquad (\vec{S} = \frac{\hbar}{2}\vec{\sigma}$$

$$\rightarrow i\hbar \frac{\partial \phi}{\partial t} = \frac{\pi^2}{2m}\phi - \frac{e}{2m}2\vec{S}\vec{B}\phi + V\phi$$

$$i\hbar\frac{\partial\phi}{\partial t} = \frac{(\vec{p}-e\vec{A})^2}{2m}\phi - \frac{e}{2m}2\vec{S}\vec{B}\phi + V\phi \qquad \text{Pauli Gleichung}$$

Schwaches homogenes B-Feld: $\vec{A} = \frac{1}{2}\vec{B} \times \vec{r}$

$$\frac{(\vec{p}-e\vec{A})^2}{2m}\approx\frac{\vec{p}^2}{2m}-\frac{e}{2m}\vec{B}\vec{L}$$

$$\Rightarrow i\hbar\frac{\partial\phi}{\partial t} = \frac{\vec{p}^2}{2m}\phi - \frac{e}{2m}\vec{B}(\vec{L} + 2\vec{S})\phi + V\phi$$

Magnetisches Moment des Elektrons: $\vec{\mu}=\frac{e}{2m}(\vec{L}+2\vec{S})~g=2$ für geladenes Dirac-Fermion

6.1.3 Relativistische Korrekturen

Energieeigenzustände: $\begin{pmatrix} \phi \\ \chi \end{pmatrix} (\vec{x}, t) = e^{-E_s t/\hbar} \begin{pmatrix} \phi \\ \chi \end{pmatrix} (\vec{x}, t)$

$$(2mc^2 + E_S - V)\chi = c\vec{\sigma}\vec{\pi}\phi$$

$$E_S\phi = c\vec{\sigma}\vec{\pi}\chi + V\phi$$

$$\Rightarrow \chi = \frac{1}{2mc^2 + E_S - V} c\vec{\sigma}\vec{\pi}\phi \tag{6.6}$$

$$= \frac{1}{2mc} \frac{1}{1 + \frac{E_S - V}{2mc^2}} \vec{\sigma} \vec{\pi} \phi \tag{6.7}$$

$$\approx \frac{1}{2mc} (1 - \frac{E_S - V}{2mc^2} + ...) \vec{\sigma} \vec{\pi} \phi$$
 (6.8)

$$(E_S - V)\vec{\sigma}\vec{\pi}\phi = \vec{\sigma}\vec{\pi}(E_S - V)\phi + \vec{\sigma}\underbrace{[E_S - V, \vec{\pi}]}_{[\vec{\pi}, V] = \frac{\hbar}{i}(\vec{\nabla}V)}\phi$$

Einsetzen in $E_S \phi = \dots$

$$(E_S - V)\phi = \frac{(\vec{\sigma}\vec{\pi})^2}{2m}\phi - \frac{\vec{\sigma}\vec{\pi}}{4m^2c^2}\left(\frac{(\vec{\sigma}\vec{\pi})^3}{2m} + \vec{\sigma}\frac{\hbar}{i}(\vec{\nabla}V)\right)\phi$$

Spezialfall:

- V = V(r) sphärisch symmetrisch $\Rightarrow \vec{\nabla} V = \vec{r} \frac{1}{r} \frac{dV}{dr}$
- $\vec{A} = 0 \Rightarrow \vec{\pi} = \vec{p} = \frac{\hbar}{i} \vec{\nabla} \Rightarrow (\vec{\sigma} \vec{\pi})^2 = \vec{p}^2$

$$\Rightarrow E_S \phi = (\frac{\vec{p}^2}{2m} - \frac{p^4}{8m^3c^2} + V)\phi - \frac{\hbar}{i} \frac{1}{4m^2c^2} \underbrace{\sigma_i \sigma_j}_{i\epsilon_{ijk} \pi_k + \sigma_{ij}} p_i r_j \frac{1}{r} \frac{dV}{dr} \phi$$

$$E_S\phi = (\frac{\vec{p}^2}{2m} - \frac{p^4}{8m^3c^2} + V)\phi - \hbar \frac{1}{4m^2c^2} \vec{\sigma}(\vec{r} \times \vec{p}) \frac{1}{r} \frac{dV}{dr} \phi + \frac{\hbar^2}{4m^2c^2} \left((\nabla^2 V) + \underbrace{(\vec{\nabla}) \cdot \vec{\nabla}}_{\text{nicht selbst adjungert}} \right) \phi$$

Interpretation:

• $-\frac{p^4}{8m^3c^2}$ relativistischer Beitrag zur kin. Energie $E = \sqrt{(mc^2)^2 + p^2c^2} = mc^2\sqrt{1 + \frac{p^2}{(mc)^2}} = mc^2(1 + \frac{1}{2}\frac{p^2}{m^2c^2} - \frac{1}{8}\frac{p^4}{m^4c^4} + ...) = mc^2 - \frac{p^2}{2m} - \frac{1}{8}\frac{p^4}{m^3c^2}$

•
$$\hbar \frac{1}{4m^2c^2} \vec{\sigma}(\vec{r} \times \vec{p}) \frac{1}{r} \frac{dV}{dr} \phi = \frac{1}{2m^2c^2} \frac{1}{r} \frac{dV}{dr} \vec{L} \vec{S} \phi = H_{LS}$$
 Korrekte Spin-Bahn Kopplung, incluive Thomas Präzessionsfaktor $\frac{1}{2}$

6.1.4 Dirac Gleichung und Pauli Gl incl. relativistische Korrekturen

$$i\hbar \frac{\partial \phi}{\partial t} H_{\phi} \phi$$

mit

$$H_{\phi} = \frac{\bar{p}^2}{2m} + V + H_r + H_{LS} + \tilde{H}_D$$

$$H_r = -\frac{1}{8m} \left(\frac{\vec{p}^2}{2m}\right)^2$$

$$H_{LC} = \frac{1}{2m^2c^2} \frac{1}{\gamma} \frac{dV}{d\gamma} \vec{L} \cdot \vec{S}$$

$$\tilde{H}_D = \frac{\hbar^2}{4m^2c^2}((\nabla^2 V) + (\vec{\nabla} V) \cdot \vec{\nabla})$$

 $\cdot \vec{\nabla}$) nicht hermitesch

Problem: Warhscheinlichkeits-Dichte ist

$$\rho = \frac{j^0}{c} = \overline{\psi}\gamma^0 psi = \psi^{\dagger}\psi = \sum_{i=1} |\psi_i|^2 \tag{6.9}$$

$$= |\phi|^2 + |\chi|^2 \tag{6.10}$$

$$= |\phi|^2 + |\frac{\vec{\sigma} \cdot \vec{p}}{2mc}\phi|^2 \tag{6.11}$$

$$= |\phi|^2 + \phi^{\dagger} \frac{\vec{p}^2}{4m^2c^2} \phi \qquad \approx |\underbrace{(1 + \frac{\vec{p}^2}{8m^2c^2})\phi}|^2$$
 (6.12)

Übergang zu

$$\phi = \Omega \phi = (1 + \frac{\vec{p}^2}{8m^2c^2} + ...)\phi$$

Foldy-Wouthuysen Transformation. (Details: Bjorken-Drell relativ. QM)

Ersetze $E_S \phi = H_{\phi} \phi$ durch $E_S \phi = \Omega E_S \phi = \Omega H_{\phi} \Omega^{-1} \Omega \phi$

$$H = \left(1 + \frac{\vec{p}^2}{8m^2c^2}\right)H_\phi\left(1 - \frac{\vec{p}^2}{8m^2c^2}\right) \tag{6.13}$$

$$= H_{\phi} + \left[\frac{\vec{p}^2}{2m^2c^2}, H_{\phi}\right] + \dots$$

$$= H_{\phi} + \left[\frac{\vec{p}^2}{2m^2c^2}, V\right] + \dots$$
(6.14)

$$\text{NR: } [\frac{\vec{p}^2}{2m^2c^2}, V] = -\frac{\hbar^2}{8m^2c^2} \underbrace{\left[\nabla_i \nabla_i, V\right]}_{\nabla_i \underbrace{\left[\nabla_i, V\right]} + \underbrace{\left[\nabla_i, V\right]}_{\left(\nabla \cdot V\right)} \nabla_i} = [(\nabla^2 V) + 2(\nabla, V)\nabla_i]$$

6.2 Hamilton Op. für Pauli Gl mit rel. Korrekturen

$$H = \frac{\vec{p}^2}{2m} + V + H_r + H_{LS} + H_D$$

mit Darwin-Term $H_D = \frac{h^2}{8m^2c^2}(\nabla^2 V)$

6.2.1 Korrekturen zum Wasserstoff spektrum

$$E_n^{(0)} = -\frac{e^2}{4\pi\epsilon_0} \frac{1}{2a_0 n^2}$$

$$\Delta E_n^{(1)} = \alpha^2 E_n^{(0)} \frac{1}{n} \left(\frac{1}{j + \frac{1}{2}} - \frac{3}{4n} \right)$$

Aufspaltung von $2p_{\frac{1}{2}}$ $2p_{\frac{3}{2}}$ gleiche Energie für $2s_{\frac{1}{2}}$ $2p_{\frac{1}{2}}$

6.2.2 Ebene Wellen als Lösungen der freien Dirac Gl

$$\left(i\gamma^{\mu}\partial_{\mu} - \frac{mc}{\hbar}\right)\psi(x) = 0$$

Ebene Welle als Ansatz $\psi = e^{-px/\hbar}w(p)$ mit w(p)-Spinor im Impulsraum

$$i\gamma^{\mu} \frac{\partial}{\partial x^{\mu}} \phi(x) = i\gamma^{\mu} \left(-\frac{ip_{\mu}}{\hbar}\right) \psi(x)$$

$$= \frac{1}{\hbar} \gamma^{\mu} p_{\mu} \psi(x) = \frac{mc}{\hbar} \psi(x)$$

$$(6.15)$$

Notation: $\gamma^{\mu}p_{\mu} = \not a$

$$(\not p - mc)w(p) = 0$$

6.2.2.1 Spezialfall: Teilchen in Ruhe

$$p^{\mu}=(\frac{E}{c},\vec{0})$$

$$\rightarrow \not\!p = \frac{E}{c} \gamma^0 = \frac{E}{c} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$

$$\Rightarrow \begin{pmatrix} \frac{E}{c} - mc & 0 & 0 & 0\\ 0 & \frac{E}{c} - m & 0 & 0\\ 0 & 0 & -\frac{E}{c} - mc & 0\\ 0 & 0 & 0 & -\frac{E}{c} - mc \end{pmatrix} w(\vec{p}) = 0$$

4 Lösungen zu 2EW

$$E = +mc^{2}: w_{1}(0) = \begin{pmatrix} 1\\0\\0\\0 \end{pmatrix}, w_{2}(0) = \begin{pmatrix} 0\\1\\0\\0 \end{pmatrix},$$

$$E = -mc^{2}: w_{3}(0) = \begin{pmatrix} 0\\0\\1\\0 \end{pmatrix}, w_{4}(0) = \begin{pmatrix} 0\\0\\0\\1 \end{pmatrix}$$

 \Rightarrow Lösungen mit negativer Energie \rightarrow Existenz von Positronen.

6.2.3 Lösung für Impuls ungleich 0

- 1) Matrixgl. pw = mcw lösen
- 2) Lorenztransormation von Inertialsystem IS (Teilchen in Ruhe) in IS' $(\vec{p} \neq 0)$

6.2.4 Lorentz Transformation

 $x'=\Lambda x$ mit $x^{'\mu}=\Lambda^{\mu}_{\ \nu}x^{\nu}$ Bsp: Boost in z-Richtung: $z'=\gamma(z-vt),\,t'=\gamma(t-\frac{v}{c^2}z),\,x'=x,\,y'=y$ LT erhält relativ. Länge

$$x'x' = g_{\mu\nu}x^{'\mu}x^{'\nu} = \underbrace{\Lambda^{\mu}_{\rho}\Lambda^{\nu}_{\sigma}g_{\mu\nu}}_{g_{\rho\sigma}}x^{\rho}x^{\sigma} = x \cdot c = x^{\rho}x^{\sigma}g_{\sigma\rho}$$

Def. Eigenschaft einer LT

$$\Lambda^{\rho}_{\mu}\Lambda^{\mu}_{\sigma} = g^{\rho}_{\sigma} = \delta^{\rho}_{\sigma}$$

oder
$$(\Lambda^{-1})^{\rho}_{\mu} = \Lambda^{\rho}_{\mu}$$

 $\Rightarrow det\Lambda = \pm 1$ (verallgemeinerung von orthogonalen Transf)

6.2.4.1 infinitesimale LT

Mit $w^{\rho}_{\ \mu}$ infinitesimal

$$\Lambda^{\rho}_{\ \mu} = g^{\rho}_{\ \mu} + w^{\rho}_{\ \mu}$$

$$\Lambda_{\mu}^{\rho} \Lambda_{\sigma}^{\mu} = (g_{\mu}^{\ \rho} + w_{\mu}^{\ \rho})(g_{\sigma}^{\mu} + w_{\rho}^{\mu})
g_{\sigma}^{\rho} = g_{\sigma}^{\rho} + \underbrace{w_{\sigma}^{\ \rho} + w_{\sigma}^{\rho}}_{-0} + \dots$$
(6.18)

$$\rightarrow w_{\sigma\rho} + w_{\rho\sigma} = 0, \begin{pmatrix} 0 & w_{01} & w_{02} & w_{03} \\ -w_{01} & 0 & w_{12} & w_{13} \\ & & 0 & w_{23} \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

6 reelle freie Parameter \Rightarrow 6 Generatoren \vec{J} (Drehungen) 3 w_{ij} \vec{K} (Boosts) 3 w_{oi}

Kovarianz der Dirac Gleichung 6.2.5

inertialsystem:

IS
$$x^{\mu} \qquad x^{'\mu} = \Lambda^{\mu}_{\nu} x^{\nu} \\ (i\gamma^{\mu} \frac{\partial}{\partial x^{\mu}} - \frac{mc}{\hbar})\psi(x) = 0 \quad (i\gamma^{\mu} \frac{\partial}{\partial x'^{\mu}} - \frac{mc}{\hbar})\psi'(x) = 0$$
 Zu zeigen: Es gibt zu jeder LT Λ eine lineare Abbildung $S(\Lambda)$ der Spinoren: $\psi'(x') = S(\Lambda)\psi(\Lambda^{-1}x^{1})$

Die Menge $\{S(\Lambda)\}$ bilden Darstellung der Lorenzgruppe

$$S(\Lambda_1 \Lambda_2) = S(\Lambda_1) S(\Lambda_2) \Rightarrow S(\mathbb{1}) = \mathbb{1}, \quad S(\Lambda^{-1}) = (S(\Lambda))^{-1}$$

$$\psi(x) = S(\Lambda^{-1})\psi'(x')$$

$$S(\Lambda_1)(i\gamma^{\mu}\frac{\partial}{\partial x^{\mu}} - \frac{mc}{\hbar})S(\Lambda^{-1})\psi'(x') = 0$$

$$\Leftrightarrow iS(\Lambda_1)\gamma^{\mu}S(\Lambda^{-1})\underbrace{\frac{\partial}{\partial x^{\mu}}}_{\Lambda^{\nu_{\mu}}\frac{\partial}{\partial x^{\prime \nu}}} - \frac{mc}{\hbar})\psi'(x') = 0$$

$$x^{'\nu} = \Lambda^{\nu}_{\ \rho} x^{\rho}$$

$$\frac{\partial}{\partial x^{\mu}} = \underbrace{\frac{\partial x^{'\nu}}{\partial x^{\mu}}}_{\Lambda x^{\nu}} \underbrace{\frac{\partial}{\partial x^{'\nu}}}_{\Lambda x^{\nu}}$$

ist äquivalent zur Dirac Gl in IS'

$$S(\Lambda)\gamma^{\mu}S(\Lambda^{-1})\Lambda^{\nu}_{\ \mu} = \gamma^{\nu}$$

$$\Leftrightarrow \boxed{\Lambda^{\nu}_{\ \mu}\gamma^{\mu} = S(\Lambda^{-1})\gamma^{\nu}S(\Lambda^{-1})} *$$

Betrachte infinitesimalen Fall:

$$\Lambda^{\nu}_{\ \mu} = g^{\nu}_{\ \mu} + \omega^{\nu}_{\ \mu}$$

$$S(\Lambda) = \mathbb{1} - \frac{i}{4} \sigma_{\alpha\beta} \omega^{\alpha\beta}$$

mit 4x4 Matrizen $\sigma_{\alpha\beta} = -\sigma_{\beta\alpha}$ (6 Matrizen)

$$S(\Lambda^{-1}) = 1 - \frac{i}{4} \sigma_{\alpha\beta} w^{\alpha\beta}$$

Einsetzen in *: Term linear in $\omega^{\mu\nu}$ gilt für alle $\omega^{\alpha\beta} = -\omega^{\beta\alpha}$

$$\underbrace{\omega^{\nu}_{\mu}\gamma^{\mu}}_{\omega^{\alpha\beta}\frac{1}{2}(g^{\nu}_{\alpha}\gamma_{\beta}-g^{\nu}_{\beta}\gamma_{\alpha})} = -\frac{i}{4}\omega^{\alpha\beta}(\gamma^{\nu}\sigma_{\alpha\beta}-\sigma_{\alpha\beta}\alpha^{\nu})$$

$$\Rightarrow \boxed{ [\gamma^{\nu}, \sigma_{\alpha\beta}] = 2i(g^{\nu}_{\alpha}\gamma_{\beta} - g^{\nu}_{\beta}\gamma_{\alpha}) }$$

Lösung fir $\sigma_{\alpha\beta} = \frac{i}{2} [\gamma_{\alpha}, \gamma_{\beta}]$ Bew:

$$\frac{2}{i}[\gamma^{\nu}, \sigma_{\alpha\beta} = \gamma^{\nu}(\gamma_{\alpha}\gamma_{\beta} - \gamma_{\beta}\gamma_{\alpha}) - (\gamma_{\alpha}\gamma_{\beta} - \gamma_{\beta}\gamma_{\alpha})\gamma^{\nu}] + \gamma_{\alpha}\gamma^{\nu}\gamma_{\beta} - \gamma_{\beta}\gamma^{\nu}\gamma_{\alpha} - \gamma_{\alpha}\gamma^{\nu}\gamma_{\beta} + \gamma_{\beta}\gamma^{\nu}\gamma_{\alpha}$$
(6.19)

$$= 2 \cdot 2g^{\nu}_{\alpha}\gamma_{\beta} - 2 \cdot 2g^{\nu}_{\beta}\gamma_{\alpha} \tag{6.20}$$

$$= \frac{2}{i} 2i(g^{\nu}_{\alpha}\gamma_{\beta} - g^{\nu}_{\beta}\gamma_{\alpha}) \tag{6.21}$$

 $\Rightarrow \sigma_{\alpha\beta}$ sind Generatoren für Spinordastellung der LG

$$S(g+\omega) = 1 + \frac{1}{8} [\gamma_{\nu}, \gamma_{\nu}] \omega^{\mu\nu}$$

$$\Rightarrow S(\Lambda) = e^{-\frac{i}{4}\sigma_{\mu\nu}\omega^{\mu\nu}}$$

mit $\omega^{\mu\nu}$ endlich

Frage: Ist $j^{\mu} = c\overline{\psi}\gamma^{\mu}\psi$ mit $\overline{\psi} = \psi^{\dagger}\gamma^{0}$ ein 4-Vektor?

Transformation von $\overline{\psi}$:

$$\psi'(x')^{\dagger} = (S(\Lambda)\psi(x))^{\dagger} = \psi^{\dagger}(x)S^{\dagger}(\Lambda) = \psi^{\dagger}(x)e^{+\frac{i}{4}\sigma_{\mu\nu}^{\dagger}\omega^{\mu\nu}}$$

$$\sigma_{\alpha\beta}^{\dagger} = \frac{i}{2} [\gamma_{\alpha}, \gamma_{\beta}]^{\dagger} = -\frac{i}{2} [\gamma_{\beta}^{\dagger}, \gamma_{\alpha}^{\dagger}] = \frac{i}{2} [\gamma_{\alpha}^{\dagger}, \gamma_{\beta}^{\dagger}]$$

$$\gamma_0^\dagger = \gamma_0 = \gamma^0 \gamma_0 \gamma^0$$

$$\vec{\gamma}^{\dagger} = (\beta \vec{\alpha})^{\dagger} = \vec{\alpha}\beta = \beta \underbrace{(\beta \vec{\alpha})}_{\vec{\gamma}} \beta = \gamma^{0} \vec{\gamma} \gamma^{0}$$

Durch eine Gleichung zusammenfassen:

$$(\gamma^{\mu})^{\dagger} = \gamma^0 \gamma^{\mu} \gamma^0$$

$$\sigma_{\alpha\beta}^{\dagger} = \frac{i}{2} [\gamma^0 \gamma_{\alpha} \gamma^0, \gamma^0 \gamma_{\beta} \gamma^0] = \gamma^0 \sigma_{\alpha\beta} \gamma^0$$

wegen $\gamma^0 = 1$

$$\Rightarrow S^{\dagger}(\Lambda) = e^{\gamma^0 A \gamma^0} \tag{6.22}$$

$$=\sum_{n=0}^{\infty} \frac{1}{n!} (\underbrace{\gamma^0 A \gamma^0}_{\gamma^0 A^n \gamma^0})^n \tag{6.23}$$

$$= \gamma^0 A \gamma^0 \tag{6.24}$$

$$= \gamma^{0} e^{+\frac{i}{4} \sigma_{\mu\nu}^{\dagger} \omega^{\mu\nu}} \gamma^{0}$$

$$= \gamma^{0} S(\Lambda)^{-1} \gamma^{0}$$
(6.25)
(6.26)

$$= \gamma^0 S(\Lambda)^{-1} \gamma^0 \tag{6.26}$$

mit $A = \frac{i}{4}\sigma_{\alpha\beta}\omega^{\alpha\beta}$

$$\boxed{S^{\dagger}(\Lambda) = \gamma^0 S(\Lambda^{-1}) \gamma^0}$$

$$\overline{\psi}'(x') = (\overline{\psi}'(x'))^{\dagger} \gamma^0 = \psi^{\dagger}(x) \psi^0 \psi^0 \S^{\dagger}(\Lambda) \gamma^0 = \overline{\psi}(x) \overbrace{\gamma^0 S^{\dagger}(\Lambda) \gamma^0}^{S(\Lambda^{-1})}$$
 LT von $j^{\mu} c \overline{\psi}(x) \gamma^{\mu} \psi(x)$

$$j^{\mu'}(x') = c\overline{\psi}'(x')\gamma^{\mu}\psi'(x') = c\overline{\psi}(x)\underbrace{S(\Lambda^{-1})\gamma^{\mu}S(\Lambda)}_{\Lambda^{\mu}_{c}\gamma^{c}}\psi(x) \tag{6.27}$$

$$= \Lambda^{\mu}_{\alpha}(c\overline{\psi}'(x')\gamma^{\alpha}\psi(x)) = \Lambda^{\mu}_{\alpha}j^{\alpha}(x) \tag{6.28}$$

 $\Rightarrow j^{\mu}(x)$ ist 4-Vektorfeld

$$j^{\mu} = (c\rho, \vec{j})$$

Kontinuitätsgleichung $\frac{1}{c}\frac{\partial(c\rho)}{\partial t} + \vec{\nabla}\vec{j} = 0 \Leftrightarrow \partial_{\mu}j^{\mu} = 0$ Andere Bilineare: z.B.

$$\rho(x) = \overline{\psi}(x)\psi(x) \to \psi'(x') = \overline{\psi}'(x')\psi'(x') = \overline{\psi}'(x')\infty\psi'(x') = \overline{\psi}'(x')S(\Lambda^{-1}S(\Lambda)\psi'(x')) = \overline{\psi}(x)\psi(x) = \rho(x)$$

 $\Rightarrow \rho(x)$ ist ein Skalares Feld

Allgemeiner Fall: $\overline{\psi}(x)\Gamma\psi(x)$ mit Γ 4x4 Matrix

16 unabhängige Fermion-Bilineare 6.3

Gute Basis der Γ :

$$\Gamma_S = \mathbb{1}, \quad \Gamma^{\nu}_{\mu} = \gamma_{\mu}, \quad \Gamma^{T}_{\mu\nu} = \sigma_{\mu\nu}$$

$$\Gamma_p = i \gamma^0 \gamma^1 \gamma^2 \gamma^3 = \gamma^5 = \gamma_5, \quad \Gamma^A_{\ \mu} = \gamma_\mu \gamma_5$$

$$\overline{\psi}(x) = \Gamma \psi(x)$$

 Γ große Gamma Matrizen, 16 lin. unabh. 4x4-Matrizen

$$T^{\mu\nu} = \overline{\psi}(x)\sigma^{\mu\nu}\psi(x)$$

$$T^{'\mu\nu} = \overline{\psi}(x) \underbrace{S^{-1}(\Lambda)\frac{i}{2}[\gamma^{\mu},\gamma^{\nu}]S(\Lambda)}_{\Lambda^{\mu}_{\rho}\gamma^{\rho}} \psi(x)$$

$$= \frac{i}{2} \underbrace{\left[S^{-1}(\Lambda)\gamma^{\mu}S(\Lambda),S^{-1}(\Lambda)\gamma^{\nu}S(\Lambda)\right]}_{\Lambda^{\nu}_{\sigma}\gamma^{\sigma}} \psi(x)$$
(6.29)

$$= \Lambda^{\mu}_{\ \rho} \gamma^{\rho} \Lambda^{\nu}_{\ \sigma} \gamma^{\sigma} \overline{\psi} \sigma^{\rho\sigma} \psi \tag{6.30}$$

$$= \Lambda^{\mu}_{\ \rho} \gamma^{\rho} \Lambda^{\nu}_{\ \sigma} \gamma^{\sigma} T^{\rho\sigma} \tag{6.31}$$

 \rightarrow Trasformiert sich wie ein Tensor

Was ist mit
$$\gamma_5$$
 - Termen? verwende $\gamma_5\gamma^\mu=-i\gamma^2\gamma^0\gamma^1\gamma^3\gamma^\mu=-\gamma^\mu\gamma_5$ z.B. $\gamma_5\gamma^2=-i\gamma^0\gamma^1\gamma^2\gamma^3\gamma^2=-i\gamma^2\gamma^0\gamma^1\gamma^3=-\gamma^2\gamma_5$

$$\Rightarrow \{\gamma_5, \gamma^{\mu}\} = 0$$

$$\Rightarrow [\gamma_5, \sigma^{\mu\nu}] = 0 \Rightarrow [\gamma_5, S(\Lambda)] = 0$$

$$\overline{\psi}(x)\gamma_5\psi(x) \equiv Skalar$$

$$\overline{\psi}\gamma^{\mu}\psi(x) \equiv Vektor$$

Pseudo-/Axial wegen Paritätstransformation (spezielle Lorenztrasformation)

$$x' = \Lambda x$$
 $x = (ct, \vec{x}) = x^{\mu}$ $x' = (ct, -\vec{x}) = x_{\mu}$

$$\Lambda^{\mu}_{\ \nu} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix} = g^{\mu\nu}$$

Transformation von Spinoren: brauchen 4x4 Matrix P

$$P^{-1}\gamma P = \Lambda^{\mu}_{\ \nu}\gamma^{\nu} = \gamma_{\nu}$$

Bei Spinoren:

$$\psi'(x') = P\psi(x) = \gamma^0 \psi(x)$$

$$\overline{\psi}'(x') = \overline{\psi}(x)P^{-1} = \overline{\psi}(x)\gamma^0$$

$$\Rightarrow P^{-1}\gamma_5 P = \gamma^0 \gamma_5 \gamma^0 = -\gamma^0 \gamma^0 \gamma_5 = -\gamma_5$$

 $\Rightarrow \overline{\psi}(x)\gamma_5\psi(x)$ ist ungerade und Permutation.

Anwendung: Paritätsverletzung in der schwachen Wechselwirkung. \Rightarrow z.B. μ^- -Zerfall

$$\mu^{-}(P.) \rightarrow \nu_{\mu}(P_i) + e^{-}(k_1) + \vec{\nu}_e(k_2)$$

$$T = \frac{G_F}{\sqrt{2}} \underbrace{\overline{\psi}(P_2) \gamma^{\mu} (1 - \gamma_5) \psi(P_1)}_{J^{\text{myon}}} \underbrace{\overline{\psi}(k_1) \gamma_{\mu} (1 - \gamma_5) \psi(k_2)}_{J^{\text{elektron}}}$$

 $J^{\mathrm{myon}} \cdot J^{\mathrm{elektron}} = \text{Lorenz-Skalar?} \to \text{Parit\"{a}t:}$

$$T \to T' = \frac{G_F}{\sqrt{2}}\overline{\psi}(P_2)\underbrace{P^{-1}\gamma^{\mu}(1-\gamma_5)}_{\gamma^{\mu}(1+\gamma_5)}P\psi(P_1)\overline{\psi}(k_1)\underbrace{P^{-1}\gamma^{\mu}(1-\gamma_5)}_{\gamma_{\mu}(1+\gamma_5)}P\psi(k_2) \neq T$$

 β -Zerfall: sehr ähnlich, jedoch Koeffizienten c_{μ}, c_{λ} für Nukleonen

6.4 Bedeutung der omega Parameter

$$S(\Lambda) = e^{-\frac{1}{4}(\omega^{12}\sigma_{12} + \omega^{22}\sigma_{21})} = e^{-\frac{i}{2}\omega^{12}\sigma_{12}}$$

$$\frac{1}{2}\sigma_{12} = \frac{1}{2}\frac{i}{2}[\gamma_1, \gamma_2] = \frac{i}{4}\underbrace{\begin{bmatrix} \begin{pmatrix} 0 & -\sigma_1 \\ \sigma_1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & -\sigma_2 \\ \sigma_2 & 0 \end{pmatrix} \end{bmatrix}}_{=\begin{pmatrix} -[\sigma_1, \sigma_2] & 0 \\ 0 & -[\sigma_1, \sigma_2] \end{pmatrix}}_{=\begin{pmatrix} -[\sigma_1, \sigma_2] & 0 \\ 0 & -[\sigma_1, \sigma_2] \end{pmatrix}}$$

mit $\gamma_5 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ allgemeiner:

$$\frac{1}{2}\sum_{k} = \frac{S_k}{\hbar} = \frac{1}{4}\epsilon^{ijk}\sigma_{ij} = \frac{1}{2}\gamma_5\alpha_k$$

 ω_1 und ω_3 sind EZ von S_z zu $+\frac{\hbar}{2}$; ω_2 und ω_4 sind EZ von S_z zu $-\frac{\hbar}{2}$; Jetzt boost in Bezugssystem mit Geschwindigkeit \vec{v} Dazu

$$\omega^{\mu\nu} = \begin{pmatrix} 0 & +n_1 & +n_2 & +n_3 \\ -n_1 & 0 & 0 & 0 \\ -n_2 & 0 & 0 & 0 \\ -n_3 & 0 & 0 & 0 \end{pmatrix} \vec{n}^2 = 1$$

$$S(\Lambda) = e^{-\frac{i}{4}\omega^{\mu\nu}\sigma_{\mu\nu}} = e^{-\frac{i}{2}\sum_{j}\omega^{0j}\sigma_{0j}} = e^{-\frac{1}{2}\omega\vec{n}\vec{\alpha}}$$

mit
$$\sum_{j} \omega^{0j} \sigma_{0j} = \omega \vec{n} \frac{i}{2} \underbrace{[\beta, -\beta \vec{\alpha}]}_{-2\vec{\alpha}}$$

Verschiebung von $\omega^{\mu\nu}$ und \vec{v}

$$\Lambda^{\mu}_{\nu}: \qquad \Lambda = \lim_{N \to \infty} (g + \frac{\omega}{N})^{N} = exp \left\{ \omega \underbrace{\begin{pmatrix} 0 & +n_{1} & +n_{2} & +n_{3} \\ -n_{1} & 0 & 0 & 0 \\ -n_{2} & 0 & 0 & 0 \\ -n_{3} & 0 & 0 & 0 \end{pmatrix}}_{I} \right\}$$

Spezialfall $n_1 = 1, n_2 = n_3 = 0$

$$\Lambda = e^{\omega I} = \cosh(I\omega) + \sinh(I\omega) = \begin{pmatrix} \cosh\omega & -\sinh\omega & 0 & 0\\ -\sinh\omega & \cosh\omega & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{pmatrix}$$

vergleiche $x^{'\nu} = \Lambda^{\nu}_{\ \mu} x^{\mu}$

$$x^{0'} = cosh\omega(x^0 - tanh\omega x') = \gamma(ct - \frac{v}{2}x)$$

$$x^{"} = cosh\omega(x' - tanh\omega x^{0}) = \gamma(x - \frac{v}{2}ct)$$

$$\Rightarrow tanh\omega = \frac{v}{c} = \frac{|\vec{p}|^2}{E}$$

$$cosh\omega = \gamma = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}} = \frac{E}{m^2}$$

 \Rightarrow Allgemeiner Fall $\vec{n}=\hat{v};\;tanh\omega=\frac{v}{c}$ Rapidität = $\frac{1}{2}ln\frac{E+|\vec{p}|c}{E-|\vec{p}|c}=\frac{1}{2}ln\frac{1+tanh\omega}{1-tanh\omega}=\frac{1}{2}ln\frac{cosh\omega+sinh\omega}{cosh\omega-sinh\omega}=\frac{1}{2}ln\frac{e^{\omega}}{e^{-\omega}}=\omega$

6.4.1 Ebene-Wellen-Lösung zu allg. Impuls

$$(i\not\partial - \frac{mc}{\hbar})\psi(x) = 0$$

Lösung mit $\psi(x) = e^{-i\frac{px}{\hbar}}\omega(\vec{p})$ \vec{p} in Ruhe

$$E = +cm^2 \qquad \omega_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \qquad \omega_2(0) = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}$$

$$E = -cm^2 \qquad \omega_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \qquad \omega_4(0) = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}$$

Besser für Teilchenwellenfunktionen immer E > 0, d.h.

$$p^{\mu} = (\frac{E}{2}, \vec{p}) = (+\sqrt{m^2c^2 + \vec{p}^2}, \vec{p})$$

Lsg pos. Energie $\psi(x)=e^{-i\frac{px}{\hbar}}\omega_i(\vec{p})$ mit i=1,2 Lsg neg. Energie $\psi(x)=e^{+i\frac{px}{\hbar}}\omega_i(\vec{p})$ mit i=3,4

$$\Rightarrow (\not p - mc)\omega_i(\vec{p}) = 0 \qquad i = 1, 2$$

$$\Rightarrow (\not p + mc)\omega_i(\vec{p}) = 0 \qquad i = 3, 4$$

Jetzt $\omega_i(\vec{p})$ durch boost von $\omega_i(0)$ entlang der \vec{p} - Richtung: ungestricheltes System = Ruhesystem des Teilchens gesticheltes System = Teilchen bewegt sich in \vec{p} -Richtung \Rightarrow boosst in $-\vec{p}$ -Richtung im Teilchen in Bewegung zu setzen

$$\Rightarrow \omega_{\nu}(\vec{p}) = S(\Lambda)\omega_{\nu}(0) = e^{\frac{1}{2}\omega\hat{p}\vec{\alpha}}\omega_{\nu}(0)$$

Diese $\omega_{\nu}(\vec{p})$ ist der Spinor der Elektornen mit Impuls \vec{p} und Spin in Ruhesystem in $\pm z$ -Richtung beschreibt

$$\hat{p}\vec{\alpha} = \begin{pmatrix} 0 & \hat{p}\vec{\sigma} \\ \hat{p}\vec{\sigma} & 0 \end{pmatrix}$$

$$(\hat{p}\vec{\alpha})^2 = \begin{pmatrix} (\hat{p}\vec{\sigma})^2 & 0\\ 0 & (\hat{p}\vec{\sigma})^2 \end{pmatrix} = \begin{pmatrix} \mathbb{1}_2 & 0\\ 0 & \mathbb{1}_2 \end{pmatrix}$$

$$\Rightarrow e^{\frac{1}{2}\omega\hat{p}\vec{\alpha}} = \cosh\frac{\omega}{2}\mathbb{1} + \sinh(\frac{\omega}{2})(\hat{p}\vec{\alpha})$$

$$\cosh\frac{\omega}{2} = \sqrt{\frac{1+cosh\omega}{2}} = \sqrt{\frac{1+E/mc^2}{2}} = \sqrt{\frac{E+mc^2}{2mc^2}}$$

$$sinh\frac{\omega}{2} = \sqrt{cosh^2\frac{\omega}{2} - 1} = \sqrt{\frac{E - mc^2}{2mc^2}} = \sqrt{\frac{E + mc^2}{2mc^2}\frac{(E - mc^2)(E + mc^2)}{(E + mc^2)}} = \sqrt{\frac{E + mc^2}{2mc^2}}\frac{|\vec{p}|c}{E + mc^2}$$

$$S(\Lambda) = e^{\frac{1}{2}\omega\hat{p}\vec{\alpha}} = \cosh\frac{\omega}{2}(\mathbb{1} + \frac{c\hat{p}\vec{\alpha}}{E + mc^2})$$
(6.32)

$$= \sqrt{\frac{E + mc^2}{2mc^2}} \begin{pmatrix} 1 & 0 & \frac{cp_+}{E + mc^2} & \frac{cp_-}{E + mc^2} \\ 0 & 1 & \frac{cp_+}{E - mc^2} & \frac{cp_+}{cp_+} \\ \frac{cp_z}{E + mc^2} & \frac{c(p_x - ip_y)}{E + mc^2} & 1 & 1 \\ \frac{c(p_x + ip_y)}{E + mc^2} & -\frac{cp_z}{E + mc^2} & 0 & 1 \end{pmatrix}$$

$$(6.33)$$

$$= (\omega_1(\vec{p}), \omega_2(\vec{p}), \omega_3(\vec{p}), \omega_4(\vec{p})) \tag{6.34}$$

 $mit p_{\pm} = p_x \pm i p_y$

6.5 Der Diracsee

Grundzustand:

E > 0 unbesetzt

E < 0 alle besetzt \Rightarrow Pauli Prinzip verbietet Übergänge von $E > 0 \rightarrow E < 0$

Elektron: Zustand mit $E > mc^2$, Ladung -|e|, Spin S_z

Loch: es fehlt Elektron mit ${\cal E}<0$

Gegenüber Grundzustandd: Energieerhöhung um $-E = +\sqrt{m^2c^4 + (\vec{p}c)^2}$

Ladung +|e| Spin $-S_z$

 \rightarrow Positronen mit positiver Ladung E > 0

Lösungen der Dirac Gl: $E = p^0 = +\sqrt{m^2c^4 + (\vec{p}c^2)}$

pos. Energie: $\psi(x) = e^{-ipx/\hbar} w_r(\vec{p})$ mit r = 1, 2

neg. Energie: $\psi(x) = e^{+ipx/\hbar} w_r(\vec{p})$ mit r = 3, 4

Die $w_r(\vec{p})$ erfüllen

$$(\not p - mc)w_r(\vec p) = 0$$
 für $r = 1, 2$

$$(\not p + mc)w_r(\vec p) = 0$$
 für $r = 3, 4$

u und v Spinoren

Ruhesystem des e^{\pm} . $\bar{p}^{\mu} = (mc, \vec{0})$ 4 Impuls

$$\overline{S}^{\mu} = (0, \vec{S})(\vec{s}^2 = 1 \ \vec{S} \ \text{Quant. achse}$$

Boost in IS in dem
$$p^0=+\sqrt{(mc^2)^2+(\vec{p}c)^2}$$
 : $\Lambda^{\mu}_{\ \nu}$

$$p^{\mu} = \Lambda^{\mu}_{\ \nu} \overline{p}^{\nu}, \qquad s^{\nu} = \Lambda^{\mu}_{\ \nu} \overline{s}^{\nu}$$

$$\Rightarrow p^2 = m^2 c^2, \quad p \cdot s = \overline{p} \cdot \overline{s} = 0, \quad s^2 = -1$$

$$\begin{array}{ll} e^-: & \psi(x) = e^{-ipx/\hbar}u(p,\pm s) \\ e^+: & \psi(x) = e^{+ipx/\hbar}v(p,\pm s) \end{array}$$

$$e^+: \psi(x) = e^{+ipx/\hbar}v(p,\pm s)$$

Für $\vec{S} = \hat{z}$:

Elektron:

$$w_1(\vec{p}) = u(p, +s)$$

$$w_2(\vec{p}) = u(p, -s)$$

Positron:

$$w_3(\vec{p}) = v(p, -s)$$

$$w_4(\vec{p}) = v(p, +s)$$

Normierung der $u, v \in \epsilon, \epsilon' = \pm 1$

$$\overline{u}(p,\epsilon s)u(p,\epsilon' s) \quad ^{L.I.}=\overline{u}(\overline{p},\epsilon \overline{s})u(\overline{p},\epsilon' \overline{s})=w_{r(\epsilon)}^{+}(\vec{0})\gamma^{0}w_{r'(\epsilon')}(0)=\delta_{\epsilon\epsilon'}$$

$$\overline{u}(p, \epsilon s)v(p, \epsilon' s) = 0$$

$$\overline{v}(p, \epsilon s)v(p, \epsilon' s) = -\delta_{\epsilon' \epsilon} \qquad \text{wegen} \gamma^0 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$

Vollständigkeit

Jeder Spinor kann als Linearkombination von u(p,s), u(p-s), v(p,s), v(p,-s) geschrieben werden.

$$\Rightarrow \sum_{\epsilon'} u_A(p,\epsilon's) \overline{u}_B(p,\epsilon's) = \left(\frac{\not p + mc}{2mc}\right)_{AB} = (\Lambda_+(p))_{AB}$$

Bew: Angewendet auf u, v Spinoren, geben beide Matrizen gleiches Ergebnis

$$\frac{p\!\!\!/+mc}{2mc}u(p,\epsilon s)=\frac{p\!\!\!/-mc+2mc}{2mc}u(p,\epsilon s)=u(p,\epsilon s)$$

$$\frac{p + mc}{2mc}v(p, \epsilon s) = 0$$

Andererseits

$$\sum_{\epsilon'} u(p,\epsilon's) \underbrace{\overline{u}(p,\epsilon s) u(p,\epsilon s)}_{\delta_{\epsilon'\epsilon}} = u(p,\epsilon s)$$

$$\sum_{\epsilon} u(p, \epsilon' s) \underbrace{\overline{u}(p, \epsilon' s) v(p, \epsilon s)}_{=0} = 0$$

Analog für v Spinoren

$$\sum_{\epsilon'} u_A(p, \epsilon' s) \overline{u}_B(p, \epsilon' s) = \left(\frac{p - mc}{2mc}\right)_{AB}$$

$$\mathrm{denn} \ \textstyle \sum_{\epsilon'} v(p,\epsilon's) \underbrace{\overline{v}(p,\epsilon's)v(p,\epsilon s)}_{-\delta_{\epsilon'\epsilon}} = -v(p,\epsilon s)$$

$$\left(\frac{\overbrace{p}^{-mc}-mc}{2mc}\right)v(p,\epsilon s) = -v(p,\epsilon s)$$

 $\Lambda_{+}(p)$ ist Projektor auf Zustände pos. Energie e^{-}

$$\Lambda_-(p)$$
ist Projektor auf Zustände neg. Energie e^+ Beweis: z.Z: $\Lambda_\pm^2=\Lambda_\mp, \quad \Lambda_+\Lambda_-=0, \quad \Lambda_++\Lambda_-=\mathbb{1}$ mit $p\!\!/^2=p^2$

$$\Lambda_{\pm} = \frac{mc \pm \cancel{p}}{2mc} \Rightarrow \Lambda_{\pm}^2 = \frac{m^2c^2 \pm 2mc\cancel{p} + p^2}{(2mc)^2} = 2mc\frac{mc \pm \cancel{p}}{(2mc)^2} = \Lambda_{\pm}$$

$$\Lambda_{+}\Lambda_{-} = \frac{mc + p}{2mc} \frac{mc - p}{2mc} = \frac{(mc)^{2} - p^{2}}{(2mc)^{2}} = 0$$

$$\Lambda_{+} + \Lambda_{-} == \frac{mc + \cancel{p} + mc - \cancel{p}}{2mc} = \mathbb{1}$$

6.6 Ladungskonjugation

Dirac Gl. sollte auch für Positronen als Teilchen, Elektronen als Antiteilchen existieren. (mit Spinor ψ_C)

$$(i\hbar \partial \underbrace{+eA}_{-q_e+A} -mc)\psi_C(x) = 0$$

(e;0 = Ladungsvorzeichen e^-)

Ges. Beziehung zur Dirac Gl. für e^-

$$i\hbar\partial - eA - mc)\psi(x) = 0$$

$$\Rightarrow [-(i\hbar\partial_{\mu} + eA_{\mu})\gamma^{*\mu} - mc]\psi^{*}(x) = 0 \qquad |\cdot C\gamma^{0}|$$

Transformation mit Matrix $C\gamma^0$

$$\Rightarrow [(i\hbar\partial_{\mu} + eA_{\mu})(-C\gamma^{0}\gamma^{*\mu}((\gamma^{0})^{-1} - mc]C\gamma^{0}\psi^{*}(x) = 0$$

gesucht
$$C$$
 mit $C\gamma^0\gamma^{*\mu}(C\gamma^0)^{-1}=-\gamma^\mu$! Dann ist $\psi_C(x)=C\gamma^0\psi^*(x)=C(\gamma^0)^T(\psi^\dagger)^T=C(\psi^\dagger\gamma^0)^T=C\overline{\psi}^T(x)$ die Matrix $C=i\gamma^2\gamma^0$ tut's!

$$\Rightarrow C\gamma^0 = i\gamma^2\gamma^0\gamma^0 = i\gamma^2 = (C\gamma^0)^{-1}, \qquad (\gamma^2)^2 = -1, \quad (i\gamma^2)^2 = +1$$

$$C\gamma^{0}(\gamma^{\mu})^{*}(C\gamma^{0})^{-1} = i\gamma^{2}\gamma^{*\mu}i\gamma^{2} = -\gamma^{2}\gamma^{\mu*}\gamma^{2} = \begin{cases} \mu = 2: & -\gamma^{2}(-\gamma^{2})\gamma^{2} = -\gamma^{2} \\ \text{sonst} & -\gamma^{2}\underbrace{\gamma^{\mu}\gamma^{2}}_{-\gamma^{2}\gamma^{\mu}} = -\gamma^{\mu} \end{cases}$$

Es gilt auch

$$C\overline{u}^T(p,s) = v(p,s) \cdot e^{i\alpha}$$

$$C\overline{v}^T(p,s) = u(p,s) \cdot e^{i\alpha'}$$