CERTIFICATE

This is to certify that the project entitled "Strengthening User Authentication Using Keystroke Dynamics" is a bonafide work of Akshat Shah (60004120089), Hitarth Shah (60004120094), Parth Shah (60004120101) submitted to the University of Mumbai in partial fulfillment of the requirement for the award of the degree of B.E. in Computer Engineering

Prof. Chetashri Bhadane Internal Guide

Dr. Narendra M. Shekokar Head of Department Dr. Hari Vasudevan Principal

Project Report Approval for B.E.

This project report entitled "Strengthening User Authentication Using Keystrok
Dynamics" by Akshat Shah (60004120089), Hitarth Shah (60004120094),
Parth Shah (60004120101) is approved for the degree of B.E. in Computer
Engineering.

	Examiners
	1
	2
Date:	
Place:	

Declaration

We declare that this written submission represents our ideas in our own words and where others' ideas or words have been included, we have adequately cited and referenced the original sources. We also declare that we have adhered to all principles of academic honesty and integrity and have not misrepresented or fabricated or falsified any idea/data/fact/source in our submission. We understand that any violation of the above will be cause for disciplinary action by the Institute and can also evoke penal action from the sources which have thus not been properly cited or from whom proper permission has not been taken when needed.

Akshat Shah-60004120089
Hitarth Shah-60004120094
Parth Shah-60004120101

Date:

ABSTRACT

Keystroke Dynamics has been heavily researched over many years. Despite the large activity there are very few real world implementations using Keystroke Dynamics as an authentication mechanism. The fact that smart phones regularly store private, sensitive and classified information makes it very important that we can confidently identify their users. Traditionally, this has been achieved through password authentication systems. However, these systems are far from perfect. For instance, if a password becomes compromised, it is no longer adequate for authenticating its rightful owner. In the hope of improving this, keystroke dynamics provide a second level of security in identifying its rightful users. Keystroke dynamics is a relatively new method of biometrics and provides a comparatively inexpensive and unobtrusive method of strengthening the user authentication process. It does not require any additional hardware as it uses the existing keyboard to measure keystroke dynamics. The term keystroke dynamics is used to describe an individual's typing pattern, latencies, key depress duration and keystroke pressure. This pattern is fairly unique to each individual.

The common models used to identify keystroke dynamics are statistics-based methods, machine learning algorithm, distance methods however adding more features make these models more complex and are difficult to comprehend. The proposed system aims to utilize a neural network specifically a back propagation network which is initially trained against user inputs during the enrolment phase. During the testing phase, it uses the training data to classify a user as legitimate or fake.

Contents

Chapter	Contents	Page
		No.
1	INTRODUCTION	1-4
	1.1 Description	1
	1.2 Problem Formulation	1
	1.3 Motivation	2
	1.4 Proposed Solution	3
	1.5 Scope of the project	4
2	REVIEW OF LITERATURE	5-6
3	SYSTEM ANALYSIS	7-10
	3.1 Functional Requirements	7
	3.2 Non Functional Requirements	7
	3.3 User Requirements	8
	3.4 Specific Requirements	9
	3.5 Use-Case Diagrams and description	10
4	ANALYSIS MODELING	11-15
	4.1 E-R Diagram	11
	4.2 Activity Diagrams	12
	4.3 Functional Modeling	14
	4.4 TimeLine Chart	15
5	DESIGN	16-20
	5.1 Architectural Design	16
	5.2 Architectural Flow	17
	5.3 User Interface Design	20
6	IMPLEMENTATION	21-30
	6.1 Algorithms/Methods Used	21
	6.2 Feature Extraction	24
	6.3 Training	26
7	TESTING	31-33
	7.1 Test Cases	31
	7.2 Bottom-Up Integration Testing	32
8	RESULTS AND DISCUSSIONS	34
9	CONCLUSION AND FUTURE SCOPE	37
References		38
Appendix		39
Acknowledgement		40

List of Figures

Fig. No.	Figure Caption	Page No.
1.4.1	Keystroke Dynamics	3
3.5.1	Use Case Diagram	10
4.1.1	E-R Diagram	11
4.2.1	Activity Diagram: Training Phase	12
4.2.2	Activity Diagram: Testing Phase	13
4.3.1	Data flow Diagram	14
4.4.1	Timeline Chart	15
5.1.1	Architectural Design	16
5.1.2	Architectural Flow: Training	18
5.1.3	Architectural Flow: Testing	19
5.2.1	User Interface- Password Module	20
5.2.2	User Interface- Training and Testing Module	20
6.1.1	Error Back Propagation Training	21
7.2.1	Flow of Testing	33
8.1	X-Coordinate Graph	34
8.2	Y-Coordinate Graph	34
8.3	Digraph Time Graph	35
8.4	Trigraph Time Graph	35
8.5	Press Time Graph	35
8.6	Flight Time Graph	35
8.7	Size Graph	36
8.8	Pressure Graph	36

List of Tables

Table No.	Table Title	Page No.
7.1.1	Test Cases	31