

ME414 - Estatística para Experimentalistas

Parte 3

Medidas de Dispersão

Exemplo: Salários de professores de música

Lembram do exemplo dos salários de professores de música na Dinamarca e EUA?

A média dos salários são equivalentes. Então, para comparar, usamos uma medida de dispersão como, por exemplo, o **desvio padrão**:

$$s = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1}}$$

Dinamarca: $\bar{x} = 40.02 \text{ e } s = 3.97$

EUA: \bar{x} = 39.87 e s = 9.98

Dispersão dos Dados

Considere dois conjuntos de dados:

$$A = \{1, 2, 3\}$$
 \Longrightarrow $\overline{x}_A = 2, \quad s_A = 1$
 $B = \{101, 102, 103\}$ \Longrightarrow $\overline{x}_B = 102, \quad s_B = 1$

Ambos têm o mesmo desvio padrão.

Se compararmos as escalas de cada conjunto de dados, poderíamos dizer que o segundo conjunto tem menor dispersão.

Veja que:

- · A maior observação do conjunto A, 3, é 3 vezes maior do que a menor observação, 1.
- · Já a maior observação do conjunto \emph{B} , 103, é 2% maior do que a menor observação, 101.

Exemplo: Notas

Considere as notas de 2 provas:

Prova 1: Notas de 0 a 100 Média da turma: $\bar{x}_1 = 70$ Desvio padrão: $s_1 = 1$

Prova 2: Notas 0 a 10 Média da turma: $\bar{x}_2 = 7$ Desvio padrão: $s_2 = 1$

Neste caso, como as escalas são diferentes, não podemos tirar conclusões usando apenas o desvio padrão.

Coeficiente de Variação

Coeficiente de variação (CV): razão do desvio padrão s pela média \bar{x} , isto é

$$CV = \frac{s}{\bar{x}}.$$

Exemplo:

$$A = \{1, 2, 3\}$$
 \Longrightarrow $\overline{x}_A = 2, \quad s_A = 1$
 $B = \{101, 102, 103\}$ \Longrightarrow $\overline{x}_B = 102, \quad s_B = 1$

Nesse caso,

$$CV_A = \frac{s_A}{\overline{x}_A} = 0.5$$
 e $CV_B = \frac{s_B}{\overline{x}_B} = 0.0098.$

Coeficiente de Variação

Exemplos das notas de duas provas:

Prova 1:
$$\bar{x}_1 = 70 \text{ e } s_1 = 1$$

Prova 2:
$$\bar{x}_2 = 7 \text{ e } s_2 = 1$$

Coeficiente de Variação: é o desvio padrão escalonado pela média dos dados.

Vamos calcular os CVs para esses dois casos:

$$CV_1 = \frac{s_1}{\overline{x}_1} = 0.014$$
 e $CV_2 = \frac{s_2}{\overline{x}_2} \approx 0.14$.

$$CV_2 = \frac{s_2}{\overline{x}_2} \approx 0.14$$

Medidas de posição para descrever dispersão

Média e mediana: medidas de posição central.

Amplitude e desvio padrão: medidas de dispersão.

Há outros tipos de medida de posição para descrever a distribuição dos dados: **quartis** e **percentis**.

Quartis dividem os dados em 4 partes iguais: primeiro quartil (Q_1), segundo quartil (Q_2) e o terceiro quartil (Q_3).

O **p-ésimo percentil** é o valor tal que uma porcentagem **p** dos dados ficam abaixo dele.

Quartis

Para obter os quartis:

- 1. Ordene os dados em ordem crescente.
- 2. Encontre a mediana Q_2 .
- 3. Considere o subconjunto de dados abaixo da mediana. Q_1 é a mediana deste subconjunto de dados.

4. Considere o subconjunto de dados acima da mediana. Q_3 é a mediana deste subconjunto de dados.

Exemplo: Sódio em cereais matinais

Considere as quantidades de sódio (mg) em 20 cereais matinais:

0, 70, 125, 125, 140, 150, 170, 170, 180, **200**

200, 210, 210, 220, 220, 230, 250, 260, 290, 290

Para obter Q1, calcula-se a mediana considerando apenas as 10 primeiras observações ordenadas: 0, 70, 125, 125, 140, 150, 170, 170, 180, 200 $Q_1 = 145$

Para obter Q3, calcula-se a mediana considerando apenas as 10 últimas observações ordenadas: **200**, 210, 210, 220, 220, 230, 250, 260, 290, 290 $Q_3=225$

Simetria e Assimetria da Distribuição

Vimos na aula passada que as posições da média e mediana fornecem informação sobre o formato da distribuição.

Em geral, se a distribuição é:

- Perfeitamente simétrica: média = mediana.
- Assimétrica à direita: média > mediana.
- **Assimétrico à esquerda**: média < mediana.

Quartis e Assimetria

Os quartis também fornecem informação sobre o formato da distribuição.

A mediana Q_2 é 14.

A distância entre Q_1 e Q_2 é 3, enquanto que a distância entre Q_2 e Q_3 é 4, indicando que a distribuição é assimétrica à direita.

Quartis e simetria da distribuição

Para uma distribuição simétrica ou aproximadamente simétrica:

$$\cdot Q_2 - x_{(1)} \approx x_{(n)} - Q_2$$

$$Q_2 - Q_1 \approx Q_3 - Q_2$$

$$\cdot Q_1 - x_{(1)} \approx x_{(n)} - Q_3$$

· distâncias entre a mediana e Q_1 , Q_3 menores do que as distâncias entre os extremos e Q_1 , Q_3 .

Exemplo: Pesos de alunas de Educação Física

Veja as medidas resumo dos pesos (em libras) de 64 alunas de Educação Física: $\bar{x}=133,\,Q_1=119,\,Q_2=131.5,\,\mathrm{e}\,Q_3=144.$

Como interpretar os quartis?

- · 25% das alunas pesa até 119 libras.
- · 25% das alunas pesa mais do que 144 libras.
- 75% das alunas pesa até 144 libras.

Você acredita que a distribuição seja simétrica?

$$Q_2 - Q_1 \approx Q_3 - Q_2$$
 (?)
 $Q_2 - Q_1 = Q_3 - Q_2$
 $Q_{131.5-119=12.5}$ $Q_{144-131.5=12.5}$

Intervalo Interquartílico

A vantagem do uso de quartis sobre o desvio padrão ou a amplitude, é que os quartis são mais resistentes a dados extremos, ou seja, são mais **robustos**.

Intervalo interquartílico (IQ) = $Q_3 - Q_1$

Representa 50% dos dados localizados na parte central da distribuição.

Esquema dos 5 números e Boxplot

Esquema dos 5 números

Notação:

 $x_{(1)}$: mínimo

 $x_{(k)}$: k-ésima observação

depois de ordenar os dados

 $x_{(n)}$: máximo

Lembrando que a fórmula da mediana (Q_2) é dada por:

$$Q_2 = \begin{cases} x_{\left(\frac{n+1}{2}\right)}, & \text{se } n \text{ \'e impar} \\ \frac{x_{\left(\frac{n}{2}\right)} + x_{\left(\frac{n}{2} + 1\right)}}{2}, & \text{se } n \text{ \'e par} \end{cases}$$

Dados discrepantes (Outliers)

Importante: examinar os dados para verificar se há observações discrepantes.

- Média e desvio padrão são muito afetados por observações discrepantes.
- Após detectar a observação discrepante, verificar se não é um erro de digitação ou um caso especial da sua amostra.
- Com poucos dados, podemos detectar um dados discrepante facilmente, apenas observando a sequência ordenada.
- Podemos usar o IQ como um critério mais geral de detecção de dados discrepantes.

Dados discrepantes (Outliers)

Como regra geral, dizemos que uma observação é um potencial *outlier* se está:

- · abaixo de $Q_1 1.5 \times IQ$ ou
- · acima de $Q_3 + 1.5 \times IQ$.

Dizemos *potencial outlier*, pois se a distribuição tem cauda longa, algumas observações irão cair no critério, apesar de não serem *outliers*.

Boxplot

Boxplot: representação gráfica do esquema dos 5 números.

Esse gráfico permite resumir visualmente importante características dos dados (posição, dispersão, assimetria) e identificar a presença de *outliers*.

ATENÇÃO: Prestem atenção no que são os limites inferior e superior!!!

Boxplot

Voltando no exemplo das quantidades de sódio (mg) em 20 cereais matinais:

0, 70, 125, 125, 140, 150, 170, 170, 180, 200,

200, 210, 210, 220, 220, 230, 250, 260, 290, 290

Já calculamos anteriormente: $Q_2 = 200$, $Q_1 = 145$ e $Q_3 = 225$. Esses valores podem ser representados pelo boxplot a seguir:

Exemplo: Sódio em cereais matinais

Regra para detectar *outliers*:

$$IQ = Q_3 - Q_1 = 225 - 145 = 80$$

 $Q_1 - 1.5 \times IQ = 25$ e $Q_3 + 1.5 \times IQ = 345$

Então, possíveis *outliers* são observações menores que 25 ou maiores que 345.

Limites Superior e Inferior: as linhas pontilhadas denotam o mínimo/máximo dos dados que estão na região entre 25 e 345.

Limite superior: a observação máxima dos dados, 290, está no intervalo, então a linha superior vai até 290.

Limite inferior: a observação mínima dos dados, 0, está fora do intervalo (outlier=0). Desconsiderando o outlier, o valor mínimo dos dados é 70, que está no intervalo. Portanto, a linha inferior vai até 70.

Construção de um *Boxplot*

Assista ao vídeo da Khan Academy sobre como criar um boxplot:

https://youtu.be/OanEVzmBD8Y

Vejam e pratiquem com o tutorial:

Como resumir dados quantitativos

https://pt.khanacademy.org/math/ap-statistics/summarizing-quantitative-data-ap/stats-box-whisker-plots

Exemplo: Taxa de desemprego na UE em 2003

País	Taxa	País	Taxa
Bélgica	8.3	Luxemburgo	3.9
Dinamarca	6.0	Irlanda	4.6
Alemanha	9.2	Itália	8.5
Grécia	9.3	Finlândia	8.9
Espanha	11.2	Áustria	4.5
França	9.5	Suécia	6
Portugal	6.7	Reino Unido	4.8
Holanda	4.4		

Responda:

- 1. Qual a amplitude dos dados?
- 2. Encontre os valores da mediana e de Q_1 e Q_3 ?
- 3. Desenhe um boxplot.

Exemplo: Taxa de desemprego na UE em 2003

Ordenando os dados:

Amplitude: 11.2 - 3.9 = 7.3

Mediana = 6.7

$$Q_1$$
 = 4.6 e Q_3 = 9.2

$$IQ = Q_3 - Q_1 = 4.6$$

$$Q_1 - 1.5 \times IQ = -2.3$$

$$Q_3 + 1.5 \times IQ = 16.1$$

O mínimo e o máximo pertencem ao intervalo (-2.3, 16.1), portanto as linhas pontilhadas terminam no máximo (11.2) e no mínimo (3.9).

Exemplo: População dos estados brasileiros

A tabela abaixo apresenta a população (em 1000 habitantes) dos 26 estados brasileiros e o Distrito Federal.

	_						
RR	325	MS	2079	PB	3444	PR	9564
\mathbf{AP}	478	MT	2505	GO	5004	RS	10188
\mathbf{AC}	558	RN	2777	SC	5357	BA	13071
TO	1158	AM	2813	MA	5652	RJ	14392
RO	1380	AL	2823	PA	6193	MG	17892
\mathbf{SE}	1785	PI	2844	\mathbf{CE}	7431	SP	37033
DF	2052	ES	3098	PE	7919		

Temos 27 estados (n é ímpar).

Portanto, a mediana é

$$x_{\left(\frac{n+1}{2}\right)} = x_{\left(\frac{27+1}{2}\right)} = x_{(14)} = 3098$$
 (ES).

A metade inferior dos dados: 13 observações.

A mediana deste subconjunto é $Q_1=x_{(7)}=2052$ (DF).

A metade superior dos dados: 13 observações.

A mediana deste subconjunto é $Q_3=x_{(21)}=7919$ (PE).

$$IQ = Q_3 - Q_1 = 7919 - 2052 = 5867$$

Exemplo: População dos estados brasileiros

População (em 1000 habitantes):

RR	325	MS	2079	PR	3444	PR	9564
AP	478	MT	2505	GO	5004	RS	10188
AC	558	RN		SC		BA	13071
TO	1158	AM	2813		5652	RJ	14392
RO	1380	AL	2823	PA	6193	MG	17892
\mathbf{SE}	1785	PI	2844	$^{\mathrm{CE}}$	7431	SP	37033
DF	2052	ES	3098	$^{\mathrm{PE}}$	7919		

$$Q_1 - 1.5 \times IQ = -6748.5$$

$$Q_3 + 1.5 \times IQ = 16720$$

Temos outliers?

Boxplot da população

Exemplo: Sódio em cereais matinais

Boxplot x Histograma

Boxplot não substitui o histograma e vice-versa.

Por exemplo, se a distribuição é bimodal, não observamos isso pelo *boxplot*.

Exemplo: QI

Para os dados dos Ql's das 32 crianças, vamos calcular as medidas resumo, fazer o *boxplot* e histograma.

```
## Min. 1st Qu. Median Mean 3rd Qu. Max. ## 98.0 105.5 114.5 115.2 123.5 141.0
```


Exemplo: SleepStudy

Vamos obter as medidas resumo e fazer o boxplot da variável AverageSleep do SleepStudy.

```
## Min. 1st Qu. Median Mean 3rd Qu. Max. ## 4.950 7.430 8.000 7.966 8.590 10.620
```

Boxplot do Tempo Médio de Sono

Agradecimentos

Slides produzidos pelos professores:

- · Benilton Carvalho
- Larissa Matos
- Samara Kiihl
- · Tatiana Benaglia

https://xkcd.com/539/

