Data Mining

Association Analysis

nd

Association Rule Mining

 Given a set of transactions, find rules that will predict the occurrence of an item based on the occurrences of other items in the transaction

Market-Basket transactions

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example of Association Rules

```
\begin{aligned} & \text{\{Diaper\}} \rightarrow \text{\{Beer\}}, \\ & \text{\{Milk, Bread\}} \rightarrow \text{\{Eggs,Coke\}}, \\ & \text{\{Beer, Bread\}} \rightarrow \text{\{Milk\}}, \end{aligned}
```

Implication means co-occurrence, not causality!

Definition: Frequent Itemset

Itemset

- A collection of one or more items
 - ◆ Example: {Milk, Bread, Diaper}
- k-itemset
 - An itemset that contains k items

Support count (σ)

- Frequency of occurrence of an itemset
- E.g. $\sigma(\{Milk, Bread, Diaper\}) = 2$

Support

- Fraction of transactions that contain an itemset
- E.g. s({Milk, Bread, Diaper}) = 2/5

Frequent Itemset

 An itemset whose support is greater than or equal to a minsup threshold

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Definition: Association Rule

Association Rule

- An implication expression of the form
 X → Y, where X and Y are itemsets
- Example: {Milk, Diaper} → {Beer}

Rule Evaluation Metrics

- Support (s)
 - Fraction of transactions that contain both X and Y
- Confidence (c)
 - Measures how often items in Y appear in transactions that contain X

TID	Item s
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example:

$$\{Milk, Diaper\} \Rightarrow \{Beer\}$$

$$s = \frac{\sigma(\text{Milk}, \text{Diaper}, \text{Beer})}{|T|} = \frac{2}{5} = 0.4$$

$$c = \frac{\sigma(\text{Milk}, \text{Diaper}, \text{Beer})}{\sigma(\text{Milk}, \text{Diaper})} = \frac{2}{3} = 0.67$$

Association Rule Mining Task

- Given a set of transactions T, the goal of association rule mining is to find all rules having
 - support ≥ minsup threshold
 - confidence ≥ minconf threshold
- Brute-force approach:
 - List all possible association rules
 - Compute the support and confidence for each rule
 - Prune rules that fail the minsup and minconf thresholds
 - ⇒ Computationally prohibitive!

Computational Complexity

- Given d unique items:
 - Total number of itemsets = 2d
 - Total number of possible association rules:

$$R = \sum_{k=1}^{d-1} \left[\binom{d}{k} \times \sum_{j=1}^{d-k} \binom{d-k}{j} \right]$$
$$= 3^{d} - 2^{d+1} + 1$$

If d=6, R = 602 rules

Mining Association Rules

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example of Rules:

 $\begin{cases} \text{Milk,Diaper} \rightarrow \{\text{Beer}\} \ (\text{s=}0.4,\,\text{c=}0.67) \\ \text{Milk,Beer} \rightarrow \{\text{Diaper}\} \ (\text{s=}0.4,\,\text{c=}1.0) \\ \text{Diaper,Beer} \rightarrow \{\text{Milk}\} \ (\text{s=}0.4,\,\text{c=}0.67) \\ \text{Beer} \rightarrow \{\text{Milk,Diaper}\} \ (\text{s=}0.4,\,\text{c=}0.67) \\ \text{Diaper} \rightarrow \{\text{Milk,Beer}\} \ (\text{s=}0.4,\,\text{c=}0.5) \\ \text{Milk} \rightarrow \{\text{Diaper,Beer}\} \ (\text{s=}0.4,\,\text{c=}0.5) \\ \end{cases}$

Observations:

- All the above rules are binary partitions of the same itemset: {Milk, Diaper, Beer}
- Rules originating from the same itemset have identical support but can have different confidence
- Thus, we may decouple the support and confidence requirements

Mining Association Rules

- Two-step approach:
 - 1. Frequent Itemset Generation
 - Generate all itemsets whose support ≥ minsup
 - 2. Rule Generation
 - Generate high confidence rules from each frequent itemset, where each rule is a binary partitioning of a frequent itemset
- Frequent itemset generation is still computationally expensive

Frequent Itemset Generation

- Brute-force approach:
 - Each itemset in the lattice is a candidate frequent itemset
 - Count the support of each candidate by scanning the database

- Match each transaction against every candidate
- Complexity ~ O(NMw) => Expensive since M = 2^d !!!

Frequent Itemset Generation Strategies

- Reduce the number of candidates (M)
 - Complete search: M=2^d
 - Use pruning techniques to reduce M
- Reduce the number of transactions (N)
 - Reduce size of N as the size of itemset increases
 - Used by DHP and vertical-based mining algorithms
- Reduce the number of comparisons (NM)
 - Use efficient data structures to store the candidates or transactions
 - No need to match every candidate against every transaction

Reducing Number of Candidates

- Apriori principle:
 - If an itemset is frequent, then all of its subsets must also be frequent
- Apriori principle holds due to the following property of the support measure:

$$\forall X, Y : (X \subseteq Y) \Rightarrow s(X) \ge s(Y)$$

- Support of an itemset never exceeds the support of its subsets
- This is known as the anti-monotone property of support

TID	Item s
1	Bread, Milk
2	Beer, Bread, Diaper, Eggs
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Bread, Coke, Diaper, Milk

Items (1-itemsets)

Item	Count
Bread	4
Coke	2
Milk	4
Beer	3
Diaper	4
Eggs	1

Minimum Support = 3

If every subset is considered, ${}^6C_1 + {}^6C_2 + {}^6C_3$ 6 + 15 + 20 = 41With support-based pruning, 6 + 6 + 4 = 16

Illustrating Apriori Principle

TID	Items
1	Bread, Milk
2	Beer, Bread, Diaper, Eggs
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Bread, Coke, Diaper, Milk

Items (1-itemsets)

Item	Count
Bread	4
Coke	2
Milk	4
Beer	3
Diaper	4
Eggs	1

Minimum Support = 3

If every subset is considered,

$${}^6C_1 + {}^6C_2 + {}^6C_3$$

 $6 + 15 + 20 = 41$
With support-based pruning,
 $6 + 6 + 4 = 16$

Illustrating Apriori Principle

Item	Count
Bread	4
Coke	2
Milk	4
Beer	3
Diaper	4
Faas	1

Items (1-itemsets)

| Itemset | {Bread, Milk} | {Bread, Beer } | {Bread, Diaper} | {Beer, Milk} | {Diaper, Milk} | {Beer, Diaper} Pairs (2-itemsets)

(No need to generate candidates involving Coke or Eggs)

Minimum Support = 3

If every subset is considered, ${}^6C_1 + {}^6C_2 + {}^6C_3$ 6 + 15 + 20 = 41With support-based pruning, 6 + 6 + 4 = 16

Illustrating Apriori Principle

Item	Count
Bread	4
Coke	2
Milk	4
Beer	3
Diaper	4
Eggs	1

Items (1-itemsets)

Itemset	Count
{Bread, Milk}	3
{Beer, Bread}	2
{Bread,Diaper}	3
{Beer,Milk}	2
{Diaper,Milk}	3
{Beer,Diaper}	3

Pairs (2-itemsets)

(No need to generate candidates involving Coke or Eggs)

Minimum Support = 3

If every subset is considered,

$${}^6C_1 + {}^6C_2 + {}^6C_3$$

 $6 + 15 + 20 = 41$
With support-based pruning,
 $6 + 6 + 4 = 16$

Illustrating Apriori Principle

Items (1-itemsets)

Pairs (2-itemsets)

(No need to generate candidates involving Coke or Eggs)

Minimum Support = 3

emset

Triplets (3-itemsets)

Items (1-itemsets)

	Itemset	Count
	{Bread, Milk}	3
	{Bread,Beer}	2
	{Bread,Diaper}	3
	{Milk,Beer}	2
	{Milk,Diaper}	3
_	{Beer Diaper}	3

Pairs (2-itemsets)

(No need to generate candidates involving Coke or Eggs)

Minimum Support = 3

Triplets (3-itemsets)

Apriori Algorithm

- F_k: frequent k-itemsets
- L_k: candidate k-itemsets
- Algorithm
 - Let k=1
 - Generate F₁ = {frequent 1-itemsets}
 - Repeat until F_k is empty
 - ◆ Candidate Generation: Generate L_{k+1} from F_k
 - Candidate Pruning: Prune candidate itemsets in L_{k+1} containing subsets of length k that are infrequent
 - ◆ Support Counting: Count the support of each candidate in L_{k+1} by scanning the DB
 - ◆ Candidate Elimination: Eliminate candidates in L_{k+1} that are infrequent, leaving only those that are frequent => F_{k+1}

Figure 6.8. Generating and pruning candidate k-itemsets by merging pairs of frequent (k-1)-itemsets.

Candidate Generation: $F_{k-1} \times F_{k-1}$ Method

- Merge two frequent (k-1)-itemsets if their first (k-2) items are identical
- F₃ = {ABC,ABD,ABE,ACD,BCD,BDE,CDE}
 - Merge(<u>AB</u>C, <u>AB</u>D) = <u>AB</u>CD
 - Merge($\underline{\mathbf{AB}}$ C, $\underline{\mathbf{AB}}$ E) = $\underline{\mathbf{AB}}$ CE
 - Merge($\underline{\mathbf{AB}}$ D, $\underline{\mathbf{AB}}$ E) = $\underline{\mathbf{AB}}$ DE
 - Do not merge(<u>ABD</u>,<u>ACD</u>) because they share only prefix of length 1 instead of length 2

Candidate Pruning

- Let F₃ = {ABC,ABD,ABE,ACD,BCD,BDE,CDE} be the set of frequent 3-itemsets
- L₄ = {ABCD,ABCE,ABDE} is the set of candidate
 4-itemsets generated (from previous slide)
- Candidate pruning
 - Prune ABCE because ACE and BCE are infrequent
 - Prune ABDE because ADE is infrequent
- After candidate pruning: L₄ = {ABCD}

Alternate $F_{k-1} \times F_{k-1}$ Method

- Merge two frequent (k-1)-itemsets if the last (k-2) items of the first one is identical to the first (k-2) items of the second.
- F₃ = {ABC,ABD,ABE,ACD,BCD,BDE,CDE}
 - Merge(ABC, BCD) = ABCD
 - Merge(ABD, BDE) = ABDE
 - Merge(A<u>CD</u>, <u>CD</u>E) = A<u>CD</u>E
 - Merge(B \overline{CD} , $\overline{CD}E$) = B $\overline{CD}E$

Candidate Pruning for Alternate $F_{k-1} \times F_{k-1}$ Method

- Let F₃ = {ABC,ABD,ABE,ACD,BCD,BDE,CDE} be the set of frequent 3-itemsets
- L₄ = {ABCD,ABDE,ACDE,BCDE} is the set of candidate 4-itemsets generated (from previous slide)
- Candidate pruning
 - Prune ABDE because ADE is infrequent
 - Prune ACDE because ACE and ADE are infrequent
 - Prune BCDE because BCE
- After candidate pruning: L₄ = {ABCD}

Support Counting of Candidate Itemsets

- Scan the database of transactions to determine the support of each candidate itemset
 - Must match every candidate itemset against every transaction, which is an expensive operation

TID	Items
1	Bread, Milk
2	Beer, Bread, Diaper, Eggs
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Bread, Coke, Diaper, Milk

Support Counting of Candidate Itemsets

- To reduce number of comparisons, store the candidate itemsets in a hash structure
 - Instead of matching each transaction against every candidate, match it against candidates contained in the hashed buckets

Support Counting: An Example

Suppose you have 15 candidate itemsets of length 3:

{1 4 5}, {1 2 4}, {4 5 7}, {1 2 5}, {4 5 8}, {1 5 9}, {1 3 6}, {2 3 4}, {5 6 7}, {3 4 5}, {3 5 6}, {3 5 7}, {6 8 9}, {3 6 7}, {3 6 8}

How many of these itemsets are supported by transaction (1,2,3,5,6)?

Support Counting Using a Hash Tree

Suppose you have 15 candidate itemsets of length 3:

{1 4 5}, {1 2 4}, {4 5 7}, {1 2 5}, {4 5 8}, {1 5 9}, {1 3 6}, {2 3 4}, {5 6 7}, {3 4 5}, {3 5 6}, {3 5 7}, {6 8 9}, {3 6 7}, {3 6 8}

You need:

- · Hash function
- Max leaf size: max number of itemsets stored in a leaf node (if number of candidate itemsets exceeds max leaf size, split the node)

Rule Generation

- Given a frequent itemset L, find all non-empty subsets f ⊂ L such that f → L – f satisfies the minimum confidence requirement
 - If {A,B,C,D} is a frequent itemset, candidate rules:

• If |L| = k, then there are $2^k - 2$ candidate association rules (ignoring $L \rightarrow \emptyset$ and $\emptyset \rightarrow L$)

Rule Generation

 In general, confidence does not have an antimonotone property

$$c(ABC \rightarrow D)$$
 can be larger or smaller than $c(AB \rightarrow D)$

- But confidence of rules generated from the same itemset has an anti-monotone property
 - E.g., Suppose {A,B,C,D} is a frequent 4-itemset:

$$c(ABC \rightarrow D) \ge c(AB \rightarrow CD) \ge c(A \rightarrow BCD)$$

 Confidence is anti-monotone w.r.t. number of items on the RHS of the rule

Association Analysis: Basic Concepts and Algorithms

Algorithms and Complexity

Factors Affecting Complexity of Apriori

- Choice of minimum support threshold
 - lowering support threshold results in more frequent itemsets
 - this may increase number of candidates and max length of frequent itemsets
- Dimensionality (number of items) of the data set
 - more space is needed to store support count of each item
 - if number of frequent items also increases, both computation and I/O costs may also increase
- Size of database
 - since Apriori makes multiple passes, run time of algorithm may increase with number of transactions
- Average transaction width
 - transaction width increases with denser data sets
 - This may increase max length of frequent itemsets and traversals of hash tree (number of subsets in a transaction increases with its width)

Compact Representation of Frequent Itemsets

 Some itemsets are redundant because they have identical support as their supersets

- Number of frequent itemsets = $3 \times \sum_{k=1}^{10} {10 \choose k}$
- Need a compact representation

Closed Itemset

- An itemset X is closed if none of its immediate supersets has the same support as the itemset X.
- X is not closed if at least one of its immediate supersets has support count as X.

TID	Items
1	{A,B}
2	$\{B,C,D\}$
3	$\{A,B,C,D\}$
4	{A,B,D}
5	{A,B,C,D}

Itemset	Support
{A}	4
{B}	5
{C}	3
{D}	4
{A,B}	4
{A,C}	2
{A,D}	3
{B,C}	3
{B,D}	4
{C,D}	3

Itemset	Support
{A,B,C}	2
$\{A,B,D\}$	3
$\{A,C,D\}$	2
{B,C,D}	2
$\{A,B,C,D\}$	2

D A 1 1 2 1 1 1 1 1 1 1	1 1 1 1 1 0 0	1 1 1 1 0 0	1 1 1 1 1 0	1 1 1 1	1 1 1 1	1 1 1 1	1 1 1	1 1	A10 1 1	0	B2	B3	0	B5		B7	R8	B9	B10	C1	C2	C3	C4	C5	C6		C8	C9
3 1 1 1 5 1 6 0 7 0	1 1 1 0 0 0 0	1 1 0 0	1	1 1 1	1	1	1	-	1	-				0	Ω	Ω	0	0	0	0	0	0	0	0	0	0		
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 0 0 0 0	1 1 0 0	1	1	1	-				0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5 1 6 0 7 0 8 0	1 0 0 0 0	0 0	1	1	-		1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7 0	0 0	0 0	0			1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3 0	0			0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
			0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
, ,		0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
0 0		0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
1 0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1
2 0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1
3 C		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1
5 0		Ö	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1

Maximal vs Closed Itemsets

Example question

 Given the following transaction data sets (dark cells indicate presence of an item in a transaction) and a support threshold of 20%, answer the following questions

- a. What is the number of frequent itemsets for each dataset? Which dataset will produce the most number of frequent itemsets?
- b. Which dataset will produce the longest frequent itemset?
- c. Which dataset will produce frequent itemsets with highest maximum support?
- d. Which dataset will produce frequent itemsets containing items with widely varying support levels (i.e., itemsets containing items with mixed support, ranging from 20% to more than 70%)?
- e. What is the number of maximal frequent itemsets for each dataset? Which dataset will produce the most number of maximal frequent itemsets?
- f. What is the number of closed frequent itemsets for each dataset? Which dataset will produce the most number of closed frequent itemsets?

Pattern Evaluation

- Association rule algorithms can produce large number of rules
- Interestingness measures can be used to prune/rank the patterns
 - In the original formulation, support & confidence are the only measures used

Computing Interestingness Measure

 Given X → Y or {X,Y}, information needed to compute interestingness can be obtained from a contingency table

Contingency table

	Y	Y	
Х	f ₁₁	f ₁₀	f ₁₊
X	f ₀₁	f ₀₀	f _{o+}
	f+1	f+0	N

 f_{11} : support of X and Y f_{10} : support of X and Y f_{01} : support of \overline{X} and \overline{Y} f_{01} : support of \overline{X} and \overline{Y}

Used to define various measures

 support, confidence, Gini, entropy, etc.

Drawback of Confidence

Custo mers	Tea	Coffee	
C1	0	1	
C2	1	0	
C3	1	1	
C4	1	0	

	Coffee	Coffee	
Tea	15	5	20
Tea	75	5	80
	90	10	100

Association Rule: Tea → Coffee

Confidence \approx P(Coffee|Tea) = 15/20 = 0.75

Confidence > 50%, meaning people who drink tea are more likely to drink coffee than not drink coffee

So rule seems reasonable

Drawback of Confidence

	Coffee	Coffee	
Tea	15	5	20
Tea	75	5	80
	90	10	100

Association Rule: Tea → Coffee

Confidence= P(Coffee|Tea) = 15/20 = 0.75

but P(Coffee) = 0.9, which means knowing that a person drinks tea reduces the probability that the person drinks coffee!

 \Rightarrow Note that P(Coffee|Tea) = 75/80 = 0.9375

Measure for Association Rules

- So, what kind of rules do we really want?
 - Confidence(X → Y) should be sufficiently high
 - ◆ To ensure that people who buy X will more likely buy Y than not buy Y
 - Confidence($X \rightarrow Y$) > support(Y)
 - ◆ Otherwise, rule will be misleading because having item X actually reduces the chance of having item Y in the same transaction
 - Is there any measure that capture this constraint?
 - Answer: Yes. There are many of them.

Statistical Independence

 The criterion confidence(X → Y) = support(Y)

is equivalent to:

- P(Y|X) = P(Y)
- $P(X,Y) = P(X) \times P(Y)$

If $P(X,Y) > P(X) \times P(Y) : X \& Y$ are positively correlated

If $P(X,Y) < P(X) \times P(Y) : X \& Y$ are negatively correlated

Measures that take into account statistical dependence

$$Lift = \frac{P(Y \mid X)}{P(Y)}$$

$$Interest = \frac{P(X,Y)}{P(X)P(Y)}$$

$$PS = P(X,Y) - P(X)P(Y)$$

$$\phi - coefficient = \frac{P(X,Y) - P(X)P(Y)}{\sqrt{P(X)[1 - P(X)]P(Y)[1 - P(Y)]}}$$

Example: Lift/Interest

	Coffee	Coffee	
Tea	15	5	20
Tea	75	5	80
	90	10	100

Association Rule: Tea → Coffee

Confidence= P(Coffee|Tea) = 0.75

but P(Coffee) = 0.9

 \Rightarrow Lift = 0.75/0.9= 0.8333 (< 1, therefore is negatively associated)

So, is it enough to use confidence/lift for pruning?

Lift or Interest

	Y	Y	
Х	10	0	10
X	0	90	90
	10	90	100

	Y	Ÿ	
Х	90	0	90
X	0	10	10
	90	10	100

$$Lift = \frac{0.1}{(0.1)(0.1)} = 10$$

$$Lift = \frac{0.1}{(0.1)(0.1)} = 10 \qquad \qquad Lift = \frac{0.9}{(0.9)(0.9)} = 1.11$$

Statistical independence:

If
$$P(X,Y)=P(X)P(Y) \Rightarrow Lift = 1$$

			·
	#	Measure	Formula
	1	φ-coefficient	$\frac{P(A,B)-P(A)P(B)}{\sqrt{P(A)P(B)(1-P(A))(1-P(B))}}$
	2	Goodman-Kruskal's (λ)	$\frac{\sum_{j \max_{k} P(A_{j}, B_{k}) + \sum_{k} \max_{j} P(A_{j}, B_{k}) - \max_{j} P(A_{j}) - \max_{k} P(B_{k})}{2 - \max_{j} P(A_{j}) - \max_{k} P(B_{k})}$
	3	Odds ratio (α)	$\frac{P(A,B)P(\overline{A},\overline{B})}{P(A,B)P(A,B)}$
	4	Yule's Q	$\frac{P(A,B)P(\overline{AB})-P(A,\overline{B})P(\overline{A},B)}{P(A,B)P(\overline{AB})+P(A,\overline{B})P(\overline{A},B)} = \frac{\alpha-1}{\alpha+1}$
There are lots of	5	Yule's Y	$\frac{\sqrt{P(A,B)P(\overline{AB})} - \sqrt{P(A,B)P(\overline{A},B)}}{\sqrt{P(A,B)P(\overline{AB})} + \sqrt{P(A,\overline{B})P(\overline{A},B)}} = \frac{\sqrt{\alpha} - 1}{\sqrt{\alpha} + 1}$
measures proposed in the literature	6	Kappa (κ)	$\frac{P(A,B)+P(\overline{A},\overline{B})-P(A)P(B)-P(\overline{A})P(\overline{B})}{1-P(A)P(B)-P(\overline{A})P(\overline{B})}$
III the illerature	7	Mutual Information (M)	$\frac{\sum_{i} \sum_{j} P(A_i, B_j) \log \frac{P(A_i, B_j)}{P(A_j)P(B_j)}}{\min(-\sum_{i} P(A_i) \log P(A_i) - \sum_{j} P(B_j) \log P(B_j))}$
	8	J-Measure (J)	$\max\left(P(A,B)\log(\frac{P(B A)}{P(B)}) + P(A\overline{B})\log(\frac{P(\overline{B} A)}{P(\overline{B})}),\right)$
			$P(A,B)\log(\frac{P(A B)}{P(A)}) + P(\overline{A}B)\log(\frac{P(\overline{A} B)}{P(A)})$
	9	Gini index (G)	$ \max \left(P(A)[P(B A)^2 + P(\overline{B} A)^2] + P(\overline{A})[P(B \overline{A})^2 + P(\overline{B} \overline{A})^2] $
			$-P(B)^3-P(\overline{B})^3,$
			$ P(B)[P(A B)^{2} + P(\overline{A} B)^{2}] + P(\overline{B})[P(A \overline{B})^{2} + P(\overline{A} \overline{B})^{2}] $ $-P(A)^{2} - P(\overline{A})^{2} $
	10	Support (s)	P(A,B)
	11	Confidence (c)	$\max(P(B A), P(A B))$
	12	Laplace (L)	$\max\left(rac{NP(A,B)+1}{NP(A)+2},rac{NP(A,B)+1}{NP(B)+2} ight)$
	13	Conviction (V)	$\max\left(\frac{P(A)P(\overline{B})}{P(A\overline{B})}, \frac{P(B)P(\overline{A})}{P(B\overline{A})}\right)$
	14	Interest (I)	$\frac{P(A,B)}{P(A)P(B)}$
	15	cosine (IS)	$\frac{P(A,B)}{\sqrt{P(A)P(B)}}$
	16	Piatetsky-Shapiro's (PS)	P(A,B) - P(A)P(B)
	17	Certainty factor (F)	$\max\left(\frac{P(B A)-P(B)}{1-P(B)},\frac{P(A B)-P(A)}{1-P(A)}\right)$
	18	Added Value (AV)	$\max(P(B A) - P(B), P(A B) - P(A))$
	19	Collective strength (S)	$\frac{P(A,B)+P(\overline{AB})}{P(A)P(B)+P(\overline{A})P(\overline{B})} \times \frac{1-P(A)P(B)-P(\overline{A})P(\overline{B})}{1-P(A,B)-P(\overline{AB})}$
	20	Jaccard (ζ)	$\frac{P(A,B)}{P(A)+P(B)-P(A,B)}$
	21	Klosgen (K)	$\sqrt{P(A,B)}\max(P(B A) - P(B), P(A B) - P(A))$

Comparing Different Measures																					
				4.0			_		_		E	xam	ple	f ₁₁	1	f ₁₀	f ₀₁	foo	0		
				10	ex (an	nple	es	ot			E1		812	3	83	424	137	0		
				CO	ntii	nae	nc	v ta	abl	es:		E2		833	0	2	622	104	6		
				00	1161	19	J110	, y	יוטג	UU.		E3		948	1	94	127	298	8		
												E4		395	4 3	080	5	296	51		
												E5		288	6 1	363	1320	443	31		
												E6		150	0 2	000	500	600	00		
												E7		400		000	1000		-		
Dar	lein	~~	of o	ant	in a	-n-	ta	مام	_			E8		400		000	2000	200			
Ran		_			_		-	DIE	S			E9		172	_	121	5	115			
usin	ıg v	ario	ous	me	asu	ires						E10)	61	2	483	4	745	2		
#	φ	λ	α	Q	Y	κ	M	J	G	s	c	L	V	Ī	IS	PS	F	AV	S	ζ	F
E1	1	1	3	3	3	1	2	2	1	3	5	5	4	6	2	2	4	6	1	2	5
E2	2	2	1	1	1	2	1	3	2	2	1	1	1	8	3	5	1	8	2	3	1
E3	3	3	4	4	4	3	3	8	7	1	4	4	6	10	1	8	6	10	3	1	1
E4 E5	4 5	7	2 8	2 8	2 8	5 4	4 7	1 5	3	6 7	2 9	9	2 9	4 3	4	1 3	2 9	3 ⊿	4 5	5	1
E6	6 6	6	8	7	7	7	6	4	6	9	8	8	7	2	6 8	6	7	2	7	6 8	3
E7	7	5	9	9	9	6	8	6	5	4	7	7	8	5	5	4	8	5	6	4	1
E8	8	9	10	10	10	8	10	10	8	4	10	10	10	9	7	7	10	9	8	7	9
E9	9	9	5	5	5	9	9	7	9	8	3	3	3	7	9	9	3	7	9	9	;
E10	10	8	6	6	6	10	5	9	10	10	6	6	5		10	10	5	1	10	10	}

Property under Variable Permutation

Does M(A,B) = M(B,A)?

Symmetric measures:

• support, lift, collective strength, cosine, Jaccard, etc

Asymmetric measures:

• confidence, conviction, Laplace, J-measure, etc

Property under Row/Column Scaling

Grade-Gender Example (Mosteller, 1968):

	Female	Male	
High	2	3	5
Low	1	4	5
	3	7	10

	Female	Male	
High	4	30	34
Low	2	40	42
	6	70	76
		I	

10x

2x

Mosteller:

Underlying association should be independent of the relative number of male and female students in the samples

Example: ϕ -Coefficient

 φ-coefficient is analogous to correlation coefficient for continuous variables

	Υ	Y	
Х	60	10	70
X	10	20	30
	70	30	100

	Υ	Y	
Х	20	10	30
X	10	60	70
	30	70	100

$$\phi = \frac{0.6 - 0.7 \times 0.7}{\sqrt{0.7 \times 0.3 \times 0.7 \times 0.3}} \qquad \phi = \frac{0.2 - 0.3 \times 0.3}{\sqrt{0.7 \times 0.3 \times 0.7 \times 0.3}}$$
$$= 0.5238 \qquad = 0.5238$$

$$\phi = \frac{0.2 - 0.3 \times 0.3}{\sqrt{0.7 \times 0.3 \times 0.7 \times 0.3}}$$
$$= 0.5238$$

φ Coefficient is the same for both tables

Property under Null Addition

	В	$\overline{\mathbf{B}}$			В	$\overline{\mathbf{B}}$
A	p	q		A	р	q
$\overline{\mathbf{A}}$	r	S	Į v	$\overline{\mathbf{A}}$	r	s + k

Invariant measures:

support, cosine, Jaccard, etc

Non-invariant measures:

• correlation, Gini, mutual information, odds ratio, etc

Different Measures have Different Properties

Symbol	Measure	Inversion	Null Addition	Scaling
φ	ϕ -coefficient	Yes	No	No
α	odds ratio	Yes	No	Yes
κ	Cohen's	Yes	No	No
I	Interest	No	No	No
IS	Cosine	No	Yes	No
PS	Piatetsky-Shapiro's	Yes	No	No
S	Collective strength	Yes	No	No
ζ	Jaccard	No	Yes	No
h	All-confidence	No	No	No
s	Support	No	No	No

Simpson's Paradox

Buy	Buy Ex		
HDTV	Yes	No	
Yes	99	81	180
No	54	66	120
	153	147	300

$$c(\{HDTV = Yes\} \rightarrow \{Exercise Machine = Yes\}) = 99/180 = 55\%$$

 $c(\{HDTV = No\} \rightarrow \{Exercise Machine = Yes\}) = 54/120 = 45\%$

=> Customers who buy HDTV are more likely to buy exercise machines

Simpson's Paradox

Customer	Buy	Buy Exercise Machine		Total
Group	HDTV	Yes	No	Ī
College Students	Yes	1	9	10
	No	4	30	34
Working Adult	Yes	98	72	170
	No	50	36	86

College students:

$$c(\{HDTV = Yes\} \rightarrow \{Exercise Machine = Yes\}) = 1/10 = 10\%$$

 $c(\{HDTV = No\} \rightarrow \{Exercise Machine = Yes\}) = 4/34 = 11.8\%$

Working adults:

```
c(\{HDTV = Yes\} \rightarrow \{Exercise Machine = Yes\}) = 98/170 = 57.7\%

c(\{HDTV = No\} \rightarrow \{Exercise Machine = Yes\}) = 50/86 = 58.1\%
```

Simpson's Paradox

- Observed relationship in data may be influenced by the presence of other confounding factors (hidden variables)
 - Hidden variables may cause the observed relationship to disappear or reverse its direction!
- Proper stratification is needed to avoid generating spurious patterns

Effect of Support Distribution

- Difficult to set the appropriate minsup threshold
 - If minsup is too high, we could miss itemsets involving interesting rare items (e.g., {caviar, vodka})
 - If minsup is too low, it is computationally expensive and the number of itemsets is very large

Cross-Support Patterns

A cross-support pattern involves items with varying degree of support

• Example: {caviar,milk}

How to avoid such patterns?

A Measure of Cross Support

• Given an itemset, $X = \{x_1, x_2, ..., x_d\}$, with d items, we can define a measure of cross support,r, for the itemset

$$r(X) = \frac{\min\{s(x_1), s(x_2), \dots, s(x_d)\}}{\max\{s(x_1), s(x_2), \dots, s(x_d)\}}$$

where $s(x_i)$ is the support of item x_i

- Can use r(X) to prune cross support patterns, but not to avoid them

Confidence and Cross-Support Patterns

Observation:

conf(caviar→milk) is very high
but
conf(milk→caviar) is very low

Therefore,

min(conf(caviar→milk), conf(milk→caviar)) is also very low

H-Confidence

- To avoid patterns whose items have very different support, define a new evaluation measure for itemsets
 - Known as h-confidence or all-confidence
- Specifically, given an itemset $X = \{x_1, x_2, ..., x_d\}$
 - h-confidence is the minimum confidence of any association rule formed from itemset X
 - hconf(X) = min(conf($X_1 \rightarrow X_2$)), where $X_1, X_2 \subset X, X_1 \cap X_2 = \emptyset, X_1 \cup X_2 = X$ For example: $X_1 = \{x_1, x_2\}, X_2 = \{x_3, ..., x_d\}$

H-Confidence ...

- But, given an itemset $X = \{x_1, x_2, ..., x_d\}$
 - What is the lowest confidence rule you can obtain from X?
 - Recall conf($X_1 \rightarrow X_2$) = $s(X_1 \cup X_2)$ / support(X_1)
 - The numerator is fixed: $s(X_1 \cup X_2) = s(X)$
 - Thus, to find the lowest confidence rule, we need to find the X₁ with highest support
 - Consider only rules where X₁ is a single item, i.e.,

$$\{x_1\} \to X - \{x_1\}, \{x_2\} \to X - \{x_2\}, \dots, \text{ or } \{x_d\} \to X - \{x_d\}$$

$$hconf(X) = min\left\{\frac{s(X)}{s(x_1)}, \frac{s(X)}{s(x_2)}, \dots, \frac{s(X)}{s(x_d)}\right\}$$

$$= \frac{s(X)}{\max\{s(x_1), s(x_2), \dots, s(x_d)\}}$$

Cross Support and H-confidence

By the anti-montone property of support

$$s(X) \le \min\{s(x_1), s(x_2), \dots, s(x_d)\}$$

 Therefore, we can derive a relationship between the h-confidence and cross support of an itemset

$$\begin{aligned} \text{hconf}(X) &= \frac{s(X)}{\max\{s(x_1), \ s(x_2), \ \dots, \ s(x_d)\}} \\ &\leq \frac{\min\{s(x_1), s(x_2), \dots, s(x_d)\}}{\max\{s(x_1), s(x_2), \dots, s(x_d)\}} \\ &= r(X) \end{aligned}$$

Thus, $hconf(X) \le r(X)$

Cross Support and H-confidence ...

- Since, $hconf(X) \le r(X)$, we can eliminate cross support patterns by finding patterns with h-confidence $< h_c$, a user set threshold
- Notice that

$$0 \le \operatorname{hconf}(X) \le r(X) \le 1$$

- Any itemset satisfying a given h-confidence threshold, h_c, is called a hyperclique
- H-confidence can be used instead of or in conjunction with support

Properties of Hypercliques

- Hypercliques are itemsets, but not necessarily frequent itemsets
 - Good for finding low support patterns
- H-confidence is anti-monotone
- Can define closed and maximal hypercliques in terms of h-confidence
 - A hyperclique X is closed if none of its immediate supersets has the same h-confidence as X
 - A hyperclique X is maximal if $hconf(X) \le h_c$ and none of its immediate supersets, Y, have $hconf(Y) \le h_c$

Properties of Hypercliques ...

- Hypercliques have the high-affinity property
 - Think of the individual items as sparse binary vectors
 - h-confidence gives us information about their pairwise Jaccard and cosine similarity
 - Assume x₁ and x₂ are any two items in an itemset X
 - Jaccard $(x_1, x_2) \ge h \operatorname{conf}(X)/2$
 - $\cos(x_1, x_2) \ge \text{hconf}(X)$
 - Hypercliques that have a high h-confidence consist of very similar items as measured by Jaccard and cosine
- The items in a hyperclique cannot have widely different support
 - Allows for more efficient pruning

Example Applications of Hypercliques

- Hypercliques are used to find strongly coherent groups of items
 - Words that occur together in documents
 - Proteins in a protein interaction network

In the figure at the right, a gene ontology hierarchy for biological process shows that the identified proteins in the hyperclique (PRE2, ..., SCL1) perform the same function and are involved in the same biological process

