Short Report – Backend, Aerodynamic Angles, and Test Observations

Luis Felipe Gutierrez Juan Camilo Buitrago

a) Backend: matrices, ecuaciones, cálculos y módulos

Convenciones y marcos. Tierra (T): sistema inercial (X_T, Y_T, Z_T) . Cuerpo (B): fijo a la aeronave (X_B, Y_B, Z_B) con convención estándar. Ala (W): marco wing-fixed usado para validación.

Cinemática de rotación. Se emplean rotaciones activas en orden Z–Y–X (yaw–pitch–roll). Para ángulos $(\phi, \theta, \psi) = \text{(roll, pitch, yaw)}$:

$$R_x(\phi) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \phi & -\sin \phi \\ 0 & \sin \phi & \cos \phi \end{bmatrix}, \qquad R_y(\theta) = \begin{bmatrix} \cos \theta & 0 & \sin \theta \\ 0 & 1 & 0 \\ -\sin \theta & 0 & \cos \theta \end{bmatrix},$$
$$R_z(\psi) = \begin{bmatrix} \cos \psi & -\sin \psi & 0 \\ \sin \psi & \cos \psi & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

La matriz total Cuerpo \rightarrow Tierra es

$$R_{BT} = R_z(\psi) R_y(\theta) R_x(\phi), \qquad R_{TB} = R_{BT}^{\top}.$$

Transformación de velocidades. Las entradas $V_{\text{avión}}$ y V_{viento} pueden estar en T o B. Se expresan en B y luego se proyectan en T: $v_T = R_{BT}v_B$. La velocidad relativa del flujo es:

$$V_{\rm rel} = V_{\rm viento} + V_{\rm avión}$$
.

Ángulos aerodinámicos. Con $V_{\text{rel}} = [u, v, w]^T$ en B:

$$\alpha = \arctan\left(\frac{w}{u}\right),$$

$$\beta = -\arcsin\left(\frac{v}{\|V_{\text{rel}}\|}\right),$$

$$\gamma = \theta - \alpha.$$

Módulos y utilidades. Se emplea Numpy para álgebra y Plotly para visualización 3D. El bloque Wing \leftrightarrow Body usa $R_{BW}(\alpha, \beta) = R_y(\alpha)R_z(-\beta)$ y $R_{WB} = R_z(\beta)R_y(-\alpha)$. Las flechas de p, q, r tienen longitud constante para resaltar dirección y signo.

b) Cómputo de los ángulos aerodinámicos

- 1. Normalizar las entradas en Cuerpo (B).
- 2. Construir la velocidad relativa: $V_{\text{rel},B} = V_{\text{viento},B} + V_{\text{avión},B}$.
- 3. Descomponer: $u = V_x, v = V_y, w = V_z, ||V_{\text{rel}}|| = \sqrt{u^2 + v^2 + w^2}$.
- 4. Calcular: $\alpha = \arctan 2(w, u), \beta = -\arcsin(v/||V_{rel}||), \gamma = \theta \alpha$.
- 5. Se usan funciones robustas (atan2, normas euclidianas) para evitar errores numéricos; $R^{-1} = R^{\top}$ asegura consistencia.

c) Observaciones clave de los casos de prueba

Caso base del script. $\psi = 0^{\circ}$, $\theta = 15^{\circ}$, $\phi = 0^{\circ}$; $V_{\text{avión},B} = [360, 0, 0]$ kt; $V_{\text{viento},B} = [20, 0, 20]$ kt. Se obtiene $V_{\text{rel},B} = [380, 0, 20]$ kt, $||V_{\text{rel}}|| \approx 380.53$ kt. Ángulos: $\alpha \approx 3.01^{\circ}$, $\beta \approx 0.00^{\circ}$, $\gamma \approx 12.0^{\circ}$. Interpretación: la racha con w > 0 incrementa α y reduce γ .

Robustez y visualización. El uso de atan2 y arcsin evita ambigüedades. La ortogonalidad de R mantiene la consistencia. Las flechas de p, q, r muestran solo dirección y signo.

Sensibilidades. β es sensible a valores pequeños de v; se usa un umbral. Cambios en θ afectan γ y no β .

Validación $B \leftrightarrow W$. Las funciones wingbody reproducen los vectores originales tras la reconversión, confirmando la consistencia geométrica.

Conclusión. El backend implementa correctamente la cinemática $B \leftrightarrow T$, construye $V_{\rm rel}$ en Cuerpo y calcula (α, β, γ) con definiciones estándar robustas. Los casos muestran resultados coherentes y útiles para análisis didáctico.