Algorithm 3 Adaptive τ scheduler

// We omit the client's index k in the notation.

Input: Scaling factor of previous round is $\tau^{(t-1)}$, performance from the previous round $p^{(t-1)}$, performance from the current round $p^{(t)}$, update patience *patience*, update direction s, number of consecutive improved rounds r_{good} , number of consecutive deteriorated rounds r_{bad} , multiplicative factor ρ_{τ} , minimum scaling factor τ_{min} , and maximum scaling factor τ_{max}

Output: Scaling factor of current round $\tau^{(t)}$

```
1: if p^{(t)} \ge p^{(t-1)} then
          r_{good} \leftarrow r_{good} + 1
          r_{bad} \leftarrow 0
 4: else
          r_{bad} \leftarrow r_{bad} + 1
          r_{good} \leftarrow 0
 7: end if
 8: if r_{good} > patience then
          \tau'^{(t)} \leftarrow \rho_{\tau}^{s} \cdot \tau^{(t-1)}
          r_{good} \leftarrow 0
11: else if r_{bad} > patience then
          s \leftarrow (-1) \cdot s
          \tau'^{(t)} \leftarrow \rho_{\tau}^{s} \cdot \tau^{(t-1)}
13:
          r_{bad} \leftarrow 0
14:
15: else
      \tau'^{(t)} \leftarrow \tau^{(t-1)}
17: end if
                       	au_{min} if 	au'^{(t)} \le 	au_{min}, 	au'^{(t)} if 	au_{min} < 	au'^{(t)} \le 	au_{max},
                                    if \tau'^{(t)} > \tau_{max}.
```