1 Abzählungen

Es gibt nur zwei Arten von Aufgaben:

- \bullet Anzahl Aufteilungen von einer Menge N von Kugeln in eine Menge R von Fächern
- \bullet Aus einer Menge N mit n Elementen sollen alle oder k Elemente ausgewählt werden

1.1 Anzahl Aufteilungen von einer Menge N von Kugeln in eine Menge R von Fächern

N = n, R = r	beliebig	injektiv	surjektiv	bijektiv		
N unterscheidbar		$r \ge n : r^{\underline{n}}$	$n \ge r : r! S_{n,r}$	r = n : n!		
R unterscheidbar	r^n	r < n : 0	n < r : 0	$r \neq n:0$		
N nicht unterscheidbar	$ \begin{array}{ c c }\hline (r+n-1) \\ n \\ r^{\overline{n}} \end{array} $	$r \ge n : \binom{r}{n}$	$n \ge r : \binom{n-1}{r-1}$	r=n:1		
R unterscheidbar	$=\frac{r^n}{n!}$	r < n : 0	n < r : 0	$r \neq n:0$		
N unterscheidbar		$r \ge n:1$	$n \ge r : S_{n,r}$	r=n:1		
R nicht unterscheidbar	$\sum_{k=1}^{r} S_{n,k}$	r < n : 0	n < r : 0	$r \neq n : 0$		
N nicht unterscheidbar		$r \ge n:1$	$n \geq r : P_{n,r}$	r = n:1		
R nicht unterscheidbar	$\sum_{k=1}^{r} P_{n,k}$	r < n : 0	n < r : 0	$r \neq n:0$		

1.2 Aus einer Menge N mit n Elementen sollen alle oder k Elemente ausgewählt werden

2 Codierung

2.1 Allgemeines

- Linearer (n, m)-Code C
- $a \times b \text{ Matrix: } n = b \text{ und } m = a$

2.2 Wichtige Formeln

- ullet Blocklänge: n
- ullet Dimension des Unterraums C: m
- Anzahl Codewörter: $|C| = q^m$, wobei q Anzahl Elemente in C
- ullet Anzahl Wörter in Standardfeld: q^n
- Anzahl Wörter in Syndromtabelle: q^{n-m}
- Hamming Code: $n = \frac{q^{n-m} 1}{q 1}$
- Schätzen der Codedistanz (Singleton-Schranke): $d(C) \leq n-m+1$
- Fehler erkennend: (n-m+1)-1
- Fehler korrigierend: $\left\lfloor \frac{(n-m+1)-1}{2} \right\rfloor$

2.3 Codewörter sind gegeben

n und m bestimmen

```
n= Länge der Codewörter \Rightarrow n=5
00000
01101
10111
11010
m= Dimension \Rightarrow m=2
00000
01101
10111
11010
```

Hamming-Distanz/Code-Distanz/d(c)

- Hemming-Distanz ist die minimale Änderung des Gewichts
- Wird mit d(C) bezeichnet

Beispiel:

- Anzahl Einsen in Codewörter Zählen
- 0...0 wird dabei nicht beachtet

```
\begin{array}{ccc} 01101 & \rightarrow & \text{Gewicht: 3} \\ 10111 & \rightarrow & \text{Gewicht: 4} \\ 11010 & \rightarrow & \text{Gewicht: 3} \end{array}
```

- Gewicht der Codewörter vergleichen und minimalstes auswählen
- $\Rightarrow d(C) = 3$, da es minimal ist

t-fehlererkennend

t-fehlerkorrigierend

t-ausfällekorrigierend

Kanonische Generatormatrix

• Definition: Aus der Generatormatrix kann man alle möglichen Codewörter der Sprache erzeugen.

- Falls die Generatormatrix gegeben ist, lässt sich die die kanonische Generatormatrix durch das Anwenden des Gaußschen Verfahrens auf die Generatormatrix erstellen.
- Größe: $(m \times n)$
- Aufbau: $G = \begin{pmatrix} E & G' \end{pmatrix}$
 - E: Einheitsmatrix
 - -G': Linear unabhängiger Rest aus Codewörtern

$$G = \begin{pmatrix} 1 & 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 1 \end{pmatrix}$$

Kanonische Kontrollmatrix

- Definition: Erfüllt ein Wort $wort \cdot kontrollmatrix = 0$ ist es ein richtiges Codewort.
- Größe: $n \times (n-m)$
- Aufbau: $H = \begin{pmatrix} -G \\ E \end{pmatrix}$
 - E: Einheitsmatrix
 - -G: Linear unabhängiger Rest aus Codewörtern

$$H = \begin{pmatrix} -1 & -1 & -1 \\ -1 & -0 & -1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Modulo mit negativen Zahlen:

	-10	- 9	-8	-7	-6	-5	-4	-3	-2	-1	0	1	2	3	4	5	6	7	8	9
\mathbb{Z}_2									0	1	[0	1]								
\mathbb{Z}_3								0	1	2	[0	1	2]							
\mathbb{Z}_4							0	1	2	3	[0	1	2	3]						
\mathbb{Z}_5						0	1	2	3	4	[0	1	2	3	4]					
\mathbb{Z}_6					0	1	2	3	4	5	[0	1	2	3	4	5]				
\mathbb{Z}_7				0	1	2	3	4	5	6	[0	1	2	3	4	5	6]			
\mathbb{Z}_8			0	1	2	3	4	5	6	7	[0	1	2	3	4	5	6	7]		
\mathbb{Z}_9		0	1	2	3	4	5	6	7	8	[0	1	2	3	4	5	6	7	8]	
\mathbb{Z}_{10}	0	1	2	3	4	5	6	7	8	9	[0	1	2	3	4	5	6	7	8	9]

2.4 Syndromtabelle

• Definition: Identifiziert und korrigiert Fehler in Codewörter durch Vergleich mit erwarteten Werten.

• Anzahl Zeilen: q^{n-m}

 \bullet Anzahl Spalten: n

Beispiel: (7×3) -Kontrollmatrix, n = 7, m = 4

$$H = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a & S = a \cdot H \\ 0000000 & 000 \\ 1000000 & 111 \\ 00100000 & 101 \\ 00010000 & 011 \\ 00001000 & 110 \\ 00000100 & 100 \\ 0000001 & 010 \\ 0000001 & 001 \end{pmatrix}$$

- Anzahl Zeilen: $2^{7-4} = 8$
- Anzahl Spalten: 7
- Wenn über 0000001 hinaus geht egal ob 1000001, 1100000, . . .
- 1. Überprüfen ob es ein empfangenes Codewort fehlerfrei ist $(wort \cdot kontrollmatrix = 0)$
 - Empfangenes Wort: y = 1010010

$$1010010 \cdot \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = 110 \neq 0 \Rightarrow \text{Fehler im empfangenen Codewort}$$

- 2. Codewort durch Syndromtabelle korrigieren
 - Klassenanführer von 110 aus Syndromtabelle ablesen: a = 0001000
 - \bullet empfangenes Codewort Klassenan fuehrer = korrigiertes <math>Codewort

$$\begin{array}{c|cccc} y & & 1010010 \\ \hline a & - & 0001000 \\ \hline & & 1011010 \\ \end{array}$$

- korrigiertes Codewort: 1011010
- 3. Nachricht extrahieren
 - Letzte Stellen des korrigierten Codewort entfernen, um die Nachricht zu erhalten (Anzahl entfernte Stellen entspricht Länge des Syndrom).
 - Nachricht: 1011010 = 1011

2.5 Standardfeld