PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:

G01N 15/14

(11) International Publication Number:

WO 96/12173

(43) International Publication Date:

25 April 1996 (25.04.96)

(21) International Application Number:

PCT/US95/14624

A1

US

(22) International Filing Date:

13 October 1995 (13.10.95)

(30) Priority Data:

08/323,358

14 October 1994 (14.10.94)

·

(74) Agent: SANTANGELO, Luke; Santangelo Law Offices, P.C.,

315 West Oak Street #701, Fort Collins, CO 80521 (US).

(60) Parent Application or Grant

(63) Related by Continuation

US Filed on 08/323,358 (CON) 14 October 1994 (14.10.94)

(71) Applicant (for all designated States except US): UNIVERSITY OF WASHINGTON [US/US]; Suite 200, 1107 N.E. 45th Street, Seattle, WA 98105 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): VAN DEN ENGH, Ger [NL/US]; University of Washington, Dept. of Molecular Biotechnology, Box 357730, Seattle, WA 98195 (US). ESPOSITO, Richard, J. [US/US]; University of Washington, Dept. of Molecular Biotechnology, Box 357730, Seattle, WA 98195 (US).

(81) Designated States: AL, AM, AT, AT (Utility model), AU, BB, BG, BR, BY, CA, CH, CN, CZ, CZ (Utility model), DE, DE (Utility model), DK, DK (Utility model), EE, ES, FI, FI (Utility model), GB, GE, HU, IS, JP, KE, KG, KP, KR, KZ, LK, LR, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SK (Utility model), TJ, TM, TT, UA, UG, US, UZ, VN, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG), ARIPO patent (KE, MW, SD, SZ, UG).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: SYSTEM FOR SENSING DROPLET FORMATION TIME DELAY IN A FLOW CYTOMETER

(57) Abstract

A droplet flow cytometer system which includes a system to optimize the droplet formation time delay based on conditions actually experienced includes an automatic droplet sample (73) which rapidly moves a plurality of containers (75) stepwise through the droplet stream while simultaneously adjusting the droplet time delay. Through the system sampling of an actual substance to be processed can be used to minimize the effect of the substances variations or the determination of which time delay is optimal. Analysis such as cell counting and the like may be conducted manually or automatically and input to a time delay adjustement which may then act with analysis equipement to revise the time delay estimate actually applied during processing. The automatic sample (73) can be controlled through a microprocessor and approriate programming to bracket an inital droplet formation time delay estimate. When maximization counts through volume, weight, or other types of analysis exists in the containers, the increment may then be reduced for a more accurate ultimate setting. This may be accomplished while actually processing the sample without interruption.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

					No documber . do
AT	Austria	· GB	United Kingdom	MIR	Mauritania
AU	Australia	GE	Georgia	MW	Malawi
BB	Barbacios	GN	Guinea	NE	Niger
BE	Belgium	GR	Greece	NL	Netherlands
BF	Burkina Faso	HU	Hungary	NO	Norway
BG	Bulgaria	IE	Ireland	NZ	New Zealand
BJ	Benin	П	Italy .	PL	Poland
BR	Brazil	JP	Japan	PT	Portugal
BY	Belarus	KE	Kenya	RO	Romania
CA	Canada	KG	Kyrgystan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic	SD	Sudan
CG	Congo		of Korea	SE	Sweden
CH	Switzerland	KR	Republic of Korea	SI	Slovenia
CI	Côte d'Ivoire	KZ	Kazakhstan	SK	Slovakia
CM	Cameroon	Ц	Liechtenstein	SN	Senegal
CN	China	LK	Sri Lanka	TD	Chad
cs	Czechoslovakia	LU	Luxembourg	TG	Togo
CZ	Czech Republic	LV	Latvia	ŤJ	Tajikistan
DE	Germany	MC	Monaco	TT	Trinidad and Tobago
DK	Denmark	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	US	United States of America
FI	Finland	ML	Mali	UZ	Uzbekistan
FR	Prance	MN	Mongolia	VN	Vict Nam
GA.	Gahon				

SYSTEM FOR SENSING DROPLET FORMATION TIME DELAY IN A FLOW CYTOMETER

I. TECHNICAL FIELD

This invention relates to droplet flow cytometers such as are used to sort and analyze substances in both clinical and research applications. Specifically, the invention relates to components for such devices which control the differential charging of the droplets for deflection to sort them in the presence of an electrostatic field.

5

10

15

20

25

30

35

Droplet flow cytometers have been in clinical and research use for many years. Basically, the systems act to position small amounts of a substance within a sheath fluid. hydrodynamic focusing and laminar flow, the substance is split into individual cells and the like and is surrounded by the sheath fluid. This sheath fluid may be oscillated and allowed to exit a nozzle in a jet so as to regularly form droplets Since the actual through the action of surface tension. formation of the droplets takes some time after the sheath fluid exits the nozzle, the application of charge to individual droplets must be delayed from the actual time the substance exits the nozzle. This delay must be actually controlled so that when the droplets fall they may be deflected in an electrostatic Thus, in order to differentially charge individual field. droplets, very precise and uniform conditions are desirable within the jet. Unfortunately, variations exist. Thus, accurate not only properly ascertaining processing requires appropriate time delay in the first place, but also periodically adapting to the changes practically experienced.

In establishing an appropriate droplet formation time delay estimate, two approaches seem to have been taken. The first is to utilize the theoretical predictions. While this approach represents an excellent first approximation, it has the significant shortcoming of not allowing for the variations which inherently exist in an operational system. Some adjustment remains necessary in order to adapt the theoretically predicted

time delay to the actual time delay existing in a given system during a given run.

II. BACKGROUND ART

5

10

15

20

25

30

A second approach which appears to have been taken is that mentioned in related U.S. Patents No. 4317520, 4318480, 4318481, Although not the inventive 4318482, 4318483, and 4325483. subject of each of the references, each explains that those skilled in the art had set the time delay by utilizing a test The time delay was then manually sample which was sorted. adjusted until the expected number of target cells was achieved. Obviously, this approach does not take into consideration variations which exist when actually processing. Not only does it require interruption of the processing procedure, but it also ignores the fact that merely changing the substance from a test sample to an actual specimen can introduce changes (such as temperature changes, particulates, bubbles, and the like) which can significantly affect the delay time actually experienced for the formation of the droplets. It also requires manual intervention and thus makes the processing operation less automatic, more personnel intensive, and more susceptible to error.

As a result of the limitations which have appeared to exist in the prior efforts to ascertain a charging time delay, those skilled in the art have apparently been directed away from the aspect of properly setting the time delay and have instead pursued systems which are designed to control the uniformity of the jets so as to cause drop formation to occur at one location without any variation. This type of approach is demonstrated in the five related patents cited earlier as well as two other patents, related U.S. Patents No. 4487320 and 4691829. As each of the references demonstrate, the approach those skilled in the art have generally taken is not to more accurately ascertain the appropriate time delay but rather to make that time delay as constant as possible. Thus, each of the references disclose

5

10

15

20

25

30

35

feedback systems or monitoring systems which are designed to sense the location-not the time-at which droplet formation The system can then utilize that information as a feedback into the system to adjust that location to eliminate variations. While this type of approach may work well in some applications, it has a number of limitations. Significantly, these can include a failure to assure optimum drop delay timing in the first place. They also can be limited by the fact that the feedback systems themselves may act to move conditions within the flow cytometer away from optimum. As those skilled in the art readily understand, there are specific physical relationships which must exist for the flow cytometer to operate in an optimum The conditions should be set based upon the temperatures, pressures, frequencies, nozzle sizing, and the like Any movement away from the correct for a given system. relationships can negatively impact the resolution of the device. Thus, approaches which tend to apply corrections to counter the variations which may exist as a result of true conditions can represent an undesirable approach to solving the problem.

As mentioned, there has been a long felt and unsatisfied need for a device which not only automatically determines the optimum time delay for differential charging but also permits this time delay to be automatically ascertained during the actual processing of a substance. As the present invention shows, such a system is indeed possible and, in fact, can be implemented using arts and elements which have long been available. extent, apparently, solutions such as those of the present invention have not been achieved because those skilled in the art seem to have been directed away from the technical direction pursued in the present invention. This may have been the result of the fact that those skilled in the art did not truly appreciate the nature of the problem. It may also have been the result of the fact that those skilled in the art were misled by some of the presumptions and assumptions with respect to the types of systems which were appropriate for consideration. Although substantial attempts had been made at controlling a

constant location for the formation of the drop, to some extent this may have only indicated that those skilled in the art failed to truly understand that the problem was not controlling the location but rather adapting to conditions as they may vary. The present invention shows that such an approach can be taken and that adapting to conditions actually experienced can be practically achieved. Until the present invention, a practical system which allowed for automatic determination of the exact time delay actually existing in the first place under true processing conditions was not available. Similarly, a practical system which has the ability to automatically ascertain the time delay and adapt to it during processing was not previously available.

5

10

15

20

25

30

III. DISCLOSURE OF THE INVENTION

The invention involves a variety of different designs which may be adapted depending upon the particular application In a basic form, the system can involve components integrated with a traditional droplet flow cytometer so as to allow intermittent sampling during the processing operation. This sampling may be achieved automatically and may then be utilized in order to allow maximization of the substance processing through either manual or automatic adjustment of the charge delay timing. Through the use of an automatic sampler with a stepper motor and a movable platter, sample containers can be automatically positioned in the droplet free fall area. each successive container is moved into place, a different time Thus, through either manual delay can be input to the system. or automatic analysis of the separate containers, the affect of each of these time delays can be ascertained so that the optimum time delay can be set or reset.

Accordingly, it is an object of the invention to provide an automatic design for more accurate initial setting of the drop formation time delay estimate. In keeping with this object it is the goal to ascertain an accurate initial setting in a

repeatable and automatic fashion. A goal is thus to eliminate human error in some phases of the process. A goal is also to adapt an initial time delay setting to respond to variations and conditions as may be actually experienced. Similarly, a goal is to avoid undue reliance on theoretical predictions and instead to establish conditions based upon actual conditions.

5

10

15

20

25

30

Another object of the invention is to allow for a system which can be used during processing without a substantial interruption of that processing. Thus a goal is to provide a system which operates rapidly with minimum need for operator involvement. Obviously, a completely automatic system is a goal as well, however, a goal is also to avoid unnecessary complication and expense. Thus, a goal is to provide a system which may be adapted and utilized in fully automatic or some combination of automatic and manual modes.

Yet another object of the invention is to avoid settings in the system which are suboptimal. In keeping with this object, a goal is to avoid theoretical predictions and to instead rely upon conditions actually experienced to the extent possible. Similarly, a goal is to set the system based solely upon conditions experienced with no reliance upon other factors which may or may not exist. In order to achieve the most optimal setting while utilizing an actual substance run, a goal is to quickly accomplish sampling over a variety of delays so that actual variations in the substance are minimized or eliminated.

Naturally, further objects of the invention are disclosed throughout other areas of the specification and claims.

IV. BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is a schematic view of the system which senses droplet formation time delay according to the present invention.

Figure 2 is a block diagram of a circuit design which can

be used to control the automatic sampling functions.

5

10

15

20

25

V. BEST MODE FOR CARRYING OUT THE INVENTION

The present invention involves different techniques which may be implemented in a variety of ways. As mentioned, these implementations may be adapted as appropriate to specific applications and may involve a combination of manual and Figure 1 shows a droplet flow cytometer automatic features. which has an automatic droplet sampler (73) integrated into it. As those skilled in the art well understand, the droplet flow cytometer includes a nozzle system (42). Nozzle system (42) includes nozzle container (2) which establishes nozzle volume Nozzle volume (3) has introduced within it a flow of a sheath fluid from sheath reservoir (5) through sheath fluid port (4). Some substance to be analyzed can then be introduced within the sheath fluid inside nozzle volume (3) from substance reservoir (8) through substance introduction port (9).

In order to form regular droplets, an oscillator (10) may be adapted to cause oscillations which cause pressure waves within or actual movement of the sheath fluid. Oscillator (10) may be controlled by alternating voltage source (22) so that the oscillations may be accurately controlled. In this fashion, the sheath fluid responds to oscillator (10). The sheath fluid, can then substance entrained with its together hydrodynamically focused so that single cells and the like may be emitted from nozzle exit (6) into free fall area (7) below. By allowing the sheath fluid to exit from nozzle volume (3), jet (12) is created. This jet occurs within free fall area (7) where it may be analyzed or further processed.

As a result of oscillations within the sheath fluid, jet (12) is regularly varied so that through the action of surface tension, droplets (13) are formed from the sheath fluid. Each of the droplets (13) may be differentially characterized through

PCT/US95/14624 WO 96/12173

an analysis of them or jet (12) prior to droplet formation to assess whether they contain a particular item or type of substance. This may involve analyzing individual cells or cell fragments. Often this is accomplished through analysis of jet (12) by a same substance property sensor (62).

5

10

15

20

25

30

As may be appreciated from figure 1, droplets (13) do not immediately form at nozzle exit (6). Some delay occurs based upon the time it takes surface tension to act to cause droplets This droplet formation time delay can vary for actual processing conditions as mentioned earlier.

Importantly, many droplet flow cytometers act to sense a specific property of the substance being analyzed. occur within free fall area (7). As shown in figure 1, substance property sensor (62) may be positioned so that it senses emissions occurring from the substance within jet (12). signals sensed by substance property sensor (62) may be utilized by analysis equipment (15) in a host of different ways depending upon the particular substance or application involved. natural emissions may be utilized for analysis, it is frequently common to cause fluorescence of the substance and then to analyze This may be created by stimulating the emissions. these substance after it exits from nozzle container (2) through some type of substance stimulation source such as a laser. This laser may then cause the substance to fluoresce. The fluorescence emissions may then be sensed by substance property sensor (62). Naturally, in keeping with the broad nature of the invention, it should be understood that substance property sensor (62), and indeed the property being sensed, should not be limited to only fluorescence emissions. All that is necessary is that some distinguishing feature be determined in order to allow discrimination between droplets

(13).

As those involved with droplet flow cytometers for sorting applications well understand, droplets (13) created may then be

5

10

15

20

25

30

35

characterized by components including sorting equipment (16). As shown, sorting equipment (16) creates an electrostatic field so that charged droplets are deflected whereas uncharged droplets are not. The differential charging of one droplet as opposed to another may be achieved through the interconnection of analysis equipment (15) with electrode (72). Since analysis equipment (15) can obtain its information from substance property sensor (62), electrode (72) can be responsive to substance property Electrode (72) may be positioned within nozzle sensor (62). volume (3) so as to cause a charge on the sheath fluid. the sheath fluid is responsive to electrode (72). The charge may be transmitted to the end of jet (12) so that at the instant when a droplet is formed, that droplet may be charged. Electrode (72) may then be quickly neutralized so that the next droplet formed In this fashion when droplets (13) does not contain a charge. equipment individual (16)some sorting through droplets-namely those which do or do not contain the desired substance as determined by analysis equipment (15)—will be deflected. The deflected droplet can thus be collected in sample collection container (82) whereas the undeflected droplets can pass to drain on receptacle (81). The appropriate timing of the charging of jet (12) through action of electrode (72) requires the accurate utilization of a droplet formation time delay estimate such as the amount of time it takes for the droplet to form after substance property sensor (62) and analysis equipment (15) have actually determined whether or not a particular location in jet (12) contains the desired substance.

As shown in figure 1, the preferred embodiment includes automatic droplet sampler (73). This may be configured so as to act to sample the droplets sorted by sorting equipment (16). Naturally, a host of different designs are intended to be included within the meaning of term "automatic droplet sampler" ranging from devices as those shown which physically sample to those which simply involve sensors or the like. In the presently preferred embodiment physical sampling is utilized with manual testing. Thus, as shown automatic droplet sampler (73) has a

plurality of collection areas or containers (75) situated on or supported by movable platter (74). Through moving movable platter (74), different containers (75) may be sequentially positioned in free fall area (7) and thus may gather droplets. Importantly, movable platter (74) may be responsive to stepper (76) so that the various containers (75) may be separately and incrementally positioned in free fall area (7). Thus, throughout one single sampling event, a number of different samples may be taken.

5

10

15

20

25

30

35

By including a droplet formation time delay adjustment (80) in a fashion which is coordinated with automatic droplet sampler (73), optimization of the time delay can be achieved. This may be achieved by creating some automatic substance maximization means—essentially, any component, software, or circuitry which automatically provides information to allow maximization of the substance sorted. This substance maximization means may include increment control (77), a device which acts to automatically adjust the various time delays actually applied by analysis equipment (15) in controlling electrode (72). Through increment control (77), the time delay applied by analysis equipment (15) to electrode (72) may be varied in incremental amount as each different container (75) is positioned within free fall area (7). Thus, each container (75) can represent a different time delay These results can then be used to achieve an optimum (or more optimum) drop formation time delay estimate.

In an automated configuration, some type of cell counter (79) ranging from a scale for weight determination, to a height measurement for volume determination, to any other type of sensing device) may be included. This cell counter (79) may yield information which allows time delay adjustment (80) to alter the actual time delay used during processing. In this fashion, different time delay amounts may be applied and tested automatically (if such complexity is warranted) to see which yields the maximum count. To accomplish this, it can be seen that the delay adjustment (80) is connected so that movable

platter (74) and it are responsive to each other or at least coordinated with each other. Thus, automatic droplet sampler (73) and the time delay adjustment are also coordinated. The one which does yield the maximum count can then be utilized to adjust the droplet formation time delay estimate utilized by analysis equipment (15) and thus more optimally set the device.

5

10

15

20

25

30

35

As may be easily appreciated, different configurations are possible using the basic teachings of the invention. With sampler (73), not only droplet to respect configurations be achieved but also even the configuration such as that involving movable platter (74) and stepper (76) may be These range from manually controlled in different ways. controlled sampling, to an interconnection with some type of operator control, to a fully automatic control. configuration, automatic droplet sampler (73) may be configured to intermittently sample the substance actually processed while accomplishing the analysis of that substance. Thus, even though some substance may be removed by automatic droplet sampler (73) when it utilizes separate containers (as opposed to merely a sensor), the analysis is considered uninterrupted since no changes in the substance or flows are made as a result of the sampling step. Similarly, repetitive testing can occur through the use of more than one container (75) on movable platter (74). These repetitive tests can then be used to adjust the droplet formation time delay estimate without interrupting the analysis Naturally, this sampling could occur only or processing step. at an initialization routine or may regularly occur throughout processing.

Similarly, a variety of different configurations with respect to the control of the time delay are possible. Again, it may be set manually or automatically. In the preferred embodiment an initial setting may be manually achieved. When sampling is desired, this sampling may be triggered. This may cause the initial droplet formation delay estimate to be reduced by some amount to establish a lower droplet formation time delay

5

10

15

20

25

30

35

estimate. This amount may be a multiple of an incremental amount initially established through incremental control (77). In the preferred embodiment, this is automatically achieved by reducing the initial drop formation time delay estimate by an integer multiple of the initially set incremental amount which is half the number of sample container (75) provided. In so doing, the initial drop formation time delay estimate is bracketed. positioning the first container (75) so as to gather droplets (13) for a set amount of time, stepper (76) may be operated to Simultaneously, time delay move to the next container (75). adjustment (80) can then increment the lower droplet formation time delay estimate so established. Successive integer multiples of the incremental amount may then be added to the lower limit droplet formation time delay estimate for each successive container (75). This repetitive adding of increased multiples can step the time delay through a sequence which allows for sampling corresponding to a variety of different time delay estimates. Thus, time delay adjustment (80) is coordinated with automatic droplet sampler (73) to assess the effect of different time delays by sampling droplets which have been subjected to different differential charging times. By using a plurality of containers (75) and altering the droplet formation time delay estimate and then again sampling the droplets, the effect at different times can be practically ascertained for any given system.

As may be appreciated and in keeping with one of the goals of the invention, this entire processing step, can be achieved rapidly. Thus, the alteration of the droplet formation time delay estimates and the movement of container (75) may be accomplished automatically in times as short as a second or less. Since it is unlikely that the substance varies in such a short time frame, maximization of the count can be achieved with sufficient confidence to reset the droplet formation delay estimate utilized by analysis equipment (15). This aids in permitting the actual processing substance to replace a need for a separate test substance.

PCT/US95/14624 WO 96/12173

5

35

In general, it is also possible to utilize the system to establish an appropriate time delay with increasing accuracies. In a situation in which a maximum is identified as existing within a range of time delays tested in any sampling event-that is, a single run of movable platter (74) achieving a number of different samples—an increasing degree of accuracy can then be automatically applied. To do this, increment control (77) may be operated to create a reduced incremental amount and the entire process may be reinitiated (manually or automatically) utilizing the revised drop delay formation time estimate as the starting 10 point. When this occurs, the range of drop delay time estimates tested can be reduced so that a revised lower limit droplet formation time delay estimate is used. This revised lower limit droplet formation time delay estimate may then have added to it increasing integer multiples of the reduced incremental amount 15 as each sample container is repositioned in free fall area (7). Further, in any sampling conducted, it should be understood that not only integer multiples are possible but also noninteger multiples. Also, values may be based upon expected performance or may simply allow for more accuracy near the center of the 20 range tested. Using the reduced incremental amount, the entire process can be reinstituted to more accurately establish the appropriate droplet formation time delay estimate. instances in which no maximum is identified in a particular run, the trend may be analyzed so as to allow a further adjustment 25 (including an increase in the incremental amount, if desired) and the processing can either occur at either the top or bottom of the time delay estimate range tested or at some other value. This may continue until a maximum is identified. alone represents an improvement over the prior art in that even 30 the initial setting of the first droplet formation time delay estimate can be accomplished automatically without any need for prior knowledge of the system.

As mentioned earlier, a variety of different configurations are possible. This may include hardware or software embodiments. As shown in figure 2, a combination of hardware and software

connections are preferred. Through such an arrangement, software can be written and provided to a microprocessor so that specific control may be easily achieved. Since the basic operation can be easily understood these subroutines and the like can be easily achieved by those skilled in the art. To further explain the hardware arrangement used in the preferred embodiment (which combines manual and automatic features), figure 2 shows one possible configuration of components to serve as automatic droplet sampler (73).

5

10

15

20

25

30

As shown in figure 2, this circuitry is a microprocessor based system. As could be easily understood, through several types of inputs the microprocessor can be controlled by the operator to select a particular mode of operation as well as to store information for use when the automatic sampling is commenced. Further, the user can configure switches to serve as data inputs to this system. These switches may be front panel switches on a flow cytometer that allow the user to input a selected program or to select the property or condition that controls the stepper motor. To facilitate these varied functions, as shown in Figure 2 some of the inputs may be fed to the microprocessor by using a programmable logic device (PLD) while others may be buffered to the microprocessor.

In the preferred embodiment an 8031 family microprocessor is used. For this type of device some of the inputs can be configured to serve as the microprocessor's counter. Specifically, one port (such as Port 3) of the microprocessor may be used to allow the user to configure some of the data inputs as either external interrupts or timer/counter inputs. These can thus act to vary the time delay increment amount. Further, the microprocessor based system may utilize either an internal or an external memory for program storage. Due to the type of design selected, an external ROM memory is used in the design shown.

To control the sampling event, the microprocessor is configured or programmed to process the input data and to output

control signals to the data bus, as shown in Figure 2. These control signals can be latched so that they can be used as output control signals. These control signals can act to operate one or more stepper motors. (The second stepper motor shown in figure 2 is not used in this embodiment.) As mentioned, the stepper can position a movable platter to sequentially different positions while simultaneously adjusting a time delay control. Thus containers on the movable platter can be positioned to catch droplets from the flow cytometer which correspond to different time delay values.

10

15

20

25

30

To adjust the automatic droplet sampler elements, the number of time delay settings that the user selects may be input. Alternatively, the microprocessor programming may be configured to make this determination. In operation the microprocessor can act to step the stepper motor (and, consequently, the movable platter or other element) through an equivalent number of positions. This allows the platter containers to gather samples at each successive time delay setting for an optimum time delay setting to be determined.

To accomplish the task of stepping the system through the various time delay settings, the microprocessor loads a counter with the number of steps appropriate to the distance between the containers. Then the time delay settings can be gated to an oscillator (labelled "Astable" in Figure 2). The oscillator can be configured to provide a constant time period for each container on the movable platter to be positioned to catch droplets from the flow cytometer. By keeping this time period constant for each step by the stepper motor, the number of droplets caught by each container can be more easily compared.

Finally, the microprocessor based system can communicate with an external computer through a traditional interface. This interface (often referred to as a GPIO interface) can be interrupt driven. On receiving an interrupt from the external computer, the microprocessor can then acknowledge the interrupt

and input data from the external computer that was latched by the GPIO interface.

Importantly, it should be understood that the configuration shown in figure 2 is only one of a great variety of designs possible. Thus, none of the arrangements suggested should be considered to limit the scope of designs intended to fall within the scope of this invention. While only one preferred design is used at present, alternative processors, analog circuitry, and very different programming are all intended to be encompassed. The design shown is simply presented to facilitate an understanding of the invention, not to limit it.

5

10

15

20

25

The foregoing discussion and the claims which follow describe the preferred embodiment of the present invention. Particularly with respect to the claims, it should be understood that changes may be made without departing from its essence. In this regard, it is intended that such changes would still fall within the scope of this patent. It simply is not practical to describe and claim all possible revisions which may To the extent such revisions utilize the essence accomplished. of the invention, each should naturally be understood to fall within the breadth of protection encompassed by this patent. This is particularly true for the present invention since its concepts are relatively basic and fundamental in nature and may be broadly applied in a variety of ways depending upon the type of application or system involved, the degree of automation desired, or a variety of other factors.

VI. CLAIMS

We claim:

			·
	1 .		A method of droplet flow cytometry which senses
			droplet formation time delay comprising the steps of:
5		a.	establishing a nozzle volume;
		b.	introducing a flow of sheath fluid into said nozzle
			volume;
		c.	introducing a flow of a substance within said sheath
			fluid in said nozzle volume;
LO -		d.	establishing an oscillation to which said sheath fluid
			is responsive;
		e.	allowing said sheath fluid to exit from said nozzle
			volume;
		f.	forming a plurality of droplets from said sheath fluid
15			after allowing said sheath fluid to exit from said
			nozzle volume;
,		g.	analyzing a property of said substance;
		h.	creating a droplet formation time delay estimate;
		i.	differentially charging some individual droplets based
20			upon the step of analyzing a property of said
			substance and said droplet formation time delay
			estimate; intermittently sampling said droplets while
		j٠	
			accomplishing the step of analyzing a property of said
25		_	substance; and
		k.	adjusting said droplet formation time delay estimate based upon the step of intermittently sampling said
	•		droplets.
	_		A method of droplet flow cytometry which senses
	2		droplet formation time delay as described in claim 1
30			wherein said droplets sampled contain said substance
	•		and further comprising the steps of:
			ascertaining a time delay amount which yields a

maximum count of said substance; and

b. adjusting said droplet formation time delay estimate to said time delay amount which yields a maximum count of said substance.

A method of droplet flow cytometry which senses droplet formation time delay as described in claim 2 wherein the step of intermittently sampling said droplets while accomplishing the step of analyzing a property of said substance comprises the step of repetitively testing droplets which have been subjected to said step of differentially charging.

A method of droplet flow cytometry which senses droplet formation time delay as described in claim 3 wherein the step of repetitively testing droplets which have been subjected to said step of differentially charging comprises the steps of:

a. sampling said droplets a first time;

15

6

30

- altering said droplet formation time delay estimate;
 and then
- c. sampling said droplets a second time.
- A method of droplet flow cytometry which senses droplet formation time delay as described in claim 5 wherein the steps of sampling said droplets, altering said droplet formation time delay estimate, and again sampling said droplets are each accomplished automatically.
 - A method of droplet flow cytometry which senses droplet formation time delay as described in claim 5 wherein the step of altering said droplet formation time delay estimate comprises the step of establishing a incremental amount by which to change said droplet formation time delay estimate.
 - 7 A method of droplet flow cytometry which senses

PCT/US95/14624 WO 96/12173

5	a. b.	droplet formation time delay as described in claim 6 wherein the step of altering said droplet formation time delay estimate further comprises the steps of: reducing said droplet formation time delay estimate by a multiple of said incremental amount to establish a lower limit droplet formation time delay estimate; and then repetitively adding increased multiples of said incremental amount to said lower limit droplet formation time delay estimate.
	8	A method of droplet flow cytometry which senses droplet formation time delay as described in claim 7 wherein the step of altering said droplet formation time delay estimate further comprises the steps of:
15	b.	change said droplet formation time delay estimate;
20	c.	delay estimate; and then repetitively adding increased multiples of said reduced incremental amount to said revised limit droplet formation time delay estimate.
	9	A droplet flow cytometer system which senses droplet
25	a	formation time delay comprising: a nozzle container establishing a nozzle volume and having a nozzle exit;
	b c	. a sheath fluid port located within said nozzle volume;
30	đ	responsive;
	е	. a free fall area below said nozzle exit and within

which said droplet forms;

5

10

25

30

f. a substance property sensor responsive to said free fall area;

- g. an electrode to which said sheath fluid is responsive and which is responsive to said substance property sensor; and
- h. an automatic substance maximization means to which said electrode is responsive.
- 10 A droplet flow cytometer system which senses droplet formation time delay as described in claim 9 wherein said substance maximization means comprises:
 - a. an automatic droplet sampler which samples said droplets; and
 - b. a cell counter which is responsive to said automatic droplet sampler.
- 15 11 A droplet flow cytometer system which senses droplet formation time delay as described in claim 10 wherein said substance maximization means further comprises a time delay adjustment which is coordinated with said automatic droplet sampler.
- 20 12 A droplet flow cytometer system which senses droplet formation time delay comprising:
 - a nozzle container establishing a nozzle volume and having a nozzle exit;
 - b. a sheath fluid port located within said nozzle volume;
 - c. a substance introduction port located within said nozzle volume;
 - d. an oscillator to which said sheath fluid is responsive;
 - e. a free fall area below said nozzle exit and within which said droplet forms;
 - f. a substance property sensor responsive to said free fall area;
 - g. an electrode to which said sheath fluid is responsive and which is responsive to said substance property

sensor; and

h. an automatic droplet sampler which intermittently samples said droplets.

- A droplet flow cytometer system which senses droplet formation time delay as described in claim 12 and further comprising a droplet formation time delay adjustment which is coordinated with said automatic droplet sampler.
- A droplet flow cytometer system which senses droplet formation time delay as described in claim 12, 13, or 11 wherein said automatic droplet sampler comprises:
 - a. a movable platter positioned so at to move into said free fall area; and
 - b. a plurality of containers on said movable platter.
- A droplet flow cytometer system which senses droplet formation time delay as described in claim 14 wherein said automatic droplet sampler further comprises a stepper wherein said movable platter is responsive to said stepper.
- 20 16 A droplet flow cytometer system which senses droplet formation time delay as described in claim 14 wherein said droplet formation time delay adjustment is coordinated with said movable platter.
- A droplet flow cytometer system which senses droplet formation time delay as described in claim 16 wherein said automatic droplet sampler further comprises an increment control to which said droplet formation time delay adjustment and said movable platter are responsive.
- 30 18 A droplet flow cytometer system which senses droplet

formation time delay as described in claim 17 wherein said increment control is adjustable.

PCT/US95/14624

Fig. 1

INTERNATIONAL SEARCH REPORT

Interaction Application No PCT/US 95/14624

	·				
ł	SIFICATION OF SUBJECT MATTER				
G 01 N 15/14					
6					
	to International Patent Classification (IPC) or to both national class SEARCHED	issification and IPC			
	documentation searched (classification system followed by classifi	cation symbols)			
	01 N	•			
Documenta	tuon searched other than minimum documentation to the extent th	at such documents are included in the fields	scarched		
Electronic o	data base consulted during the international search (name of data	base and, where practical, search terms used)		
C DOCU	AFATTE CONVENTION TO THE OWNER OF THE OWNER.				
Category *	MENTS CONSIDERED TO BE RELEVANT				
Category	Citation of document, with indication, where appropriate, of the	: Felevant passages	Relevant to claim No.		
A	US, A, 5 199 576		1		
	(M.A. CORIO) 06 Apri (06.04.93),	I 1993	j		
	abstract; fig. 1; cl	aims.			
A	US, A, 5 144 224	4 3	1		
	(L.E. LARSEN) 01 Sep 1992 (01.09.92),	tember			
	abstract; fig. 1,2.				
A	US, A, 4 981 580	1001	1-18		
	(R.E. AUER) 01 Janua (01.01.91),	ry 1991			
	abstract; column 1,				
	lines 5-30; column 2	•			
	lines 35-63; claims; fig. 1,2.				
	11y. 1,2.				
A	US, A, 4 691 829		1-18		
	·				
X Furth	her documents are listed in the communition of box C.	Patent family members are listed	in annex.		
* Special call	regories of cited documents :	T later document published after the inte	emational filing date		
'A' docume	ent defining the general state of the art which is not ered to be of particular relevance	or priority date and not in conflict wi cited to understand the principle or th	th the application but		
"E" earlier o	document but published on or after the international	invention "X" document of particular relevance; the	daimed.invention		
.r. qocnius gijing q	ent which may throw doubts on priority claim(s) or	cannot be considered novel or cannot involve an inventive step when the do	be considered to		
Giation	is cited to establish the publication date of another or other special reason (as specified)	'Y' document of particular relevance; the cannot be considered to involve an in	claimed invention		
O' docume other m	ent referring to an oral disclosure, use, exhibition or means	document is combined with one or m ments, such combination being obvior	ore other such docu-		
P documer	nt published prior to the international filing date but an the priority date claimed	in the art. *& document member of the same patent			
	actual completion of the international search	Date of mailing of the international se			
	08 March 1996				
		2 7. 03. 96	•		
Name and m	nailing address of the ISA	Authorized officer			
	European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk				
	Tel. (+31-70) 340-2040, Tx. 31 651 epo nl. Fax: (+31-70) 340-3016	ERBER e.h.			

INTERNATIONAL SEARCH REPORT

International Application No PCT/US 95/14624

		TS CONSIDERED TO BE RELEVANT	Relevant to claim No.
ategory *	Citation of docum	ent, with indication, where appropriate, of the relevant passages	
		(R.E. AUER) 08 September 1987 (08.09.87), abstract; fig. 1,9; column 1, line 54 - column 2, line 36; claims (cited in the application).	
A	US,	A, 4 538 733 (M.A. HOFFMANN) 03 September 1985 (03.09.85), the whole document (cited in the application).	1-18
A	US,	A, 4 515 274 (J.D. HOLLINGER) 07 May 1985 (07.05.85), the whole document.	1-18
A		A, 4 361 400 (J.W. GRAY) 30 November 1982 (30.11.82), abstract; column 1, line 10 - column 2, line 15; claims; fig. 1.	1-18
A	US,	A, 4 325 483 (I. LOMBARDO) 20 April 1982 (20.04.82), abstract; column 2, lines 35-47; column 7, lines 8-68; claims; fig. 1a,1b (cited in the application).	1-18
A	US,	A, 4 318 483 (I. LOMBARDO) 09 March 1982 (09.03.82), the whole document (cited in the application).	1-18
A	us,	A, 4 318 481 (I. LOMBARDO) 09 March 1982 (09.03.82), the whole document (cited in the application).	1-18
A	us,	A, 4 318 480 (I. LOMBARDO) 09 March 1982 (09.03.82), abstract; column 7, lines 5-68; claims; fig. 1	1-18

INTERNATIONAL SEARCH REPORT

International Application No

		PCT/US 95/14624
	DOCUMENTS CONSIDERED TO BE RELEVANT	
ategory *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	(cited in the application). US, A, 4 317 520 (I. LOMBARDO) 02 March 1982 (02.03.82), abstract; column 1, lines 40-51; claims; fig. 1a, 1b (cited in the application).	1-18

ANHANG

ANNEX

ANNEXE

zum internationalen Recherchen-bericht über die internationale Patentanmeldung Nr.

to the International Search Report to the International Patent Application No.

au rapport de recherche inter-national relatif à la demande de brevet international n°

PCT/US 95/14624 SAE 122574

In diesem Anhang sind die Mitglieder der Patentfamilien der im obenge- members relating to the patent documents angeführten Patentdokumente angegeben. Diese Angaben dienen nur zur Unterrichtung und erfolgen ohne Sewähr.

This Annex lists the patent family members relating to the patent documents cited in the above-mentioned international search report. The Office is in no way liable for these particulars which are given merely for the purpose of information.

La presente annexe indique les membres de la famille de brevets relatifs aux documents de brevets cités dans le rapport de recherche international visée ci-dessus. Les reseignements fournis sont donnés à titre indicatif et n'engagent pas la responsibilité de l'Office.

			de i unice.		
angeführte Patent in seu Document	erchenbericht is Patentdokument document cited inch report de brevet cité pport de recherche	Batus der Veröffentlichung Publication date Bate de publication	Mitglied(er) der Patentfamilie Patent family member(s) Membre(s) de la famille de brevets	Batum der Veröffentlichung Publication date Date de publication	
US A	5199576	06-04-93	CA AA 2107458 EP A1 578763 EP A4 578763 JP T2 6507244 WO A1 9217268	06-10-92 19-01-94 10-08-94 11-08-94 15-10-92	
US A	5144224	01-09-92	keine – none –		
US A	4981580	01-01-91	AU A1 57200/90 CA A1 132141628 DE C0 69024333328 EF A1 422333288 EFP A1 45033438 EFP B1 35086456 JP B4 9013368	29-11-90 30-01-94 25-01-96 24-04-91 033-162-95 122-09-95 120-01-90	
US A	4691829	08-09-67	US A 4487320	11-12-84	
US A	4538733	03-09-65	keine – nohe –	rien	
US A	4515274	07-05-65	keine – none –	rien	
US A	4361400	30-11-62	ķeine - none -	rien	-
US A	4325483	20-04-82	keine – none –	rien	
US A	4316483	09-03-82	keine – none –	rien	
US A	4318481	09-03-82	keine - none -	rien	
US A	4318480	09-03- B 2	CDEFFFILLE AAAA CDEFFFILLE AAAA CDA AAA CDA AAA CDA AAA CDA AAA CDA AAAA CDA AAAA CDA AAAA CDA AAAAAAAAAA	0201-0-1-0-1-0-1-0-1-0-1-0-1-0-1-0-1-0-1	
US A	4317520	02-03-82	keine – none –	rien	