Meta-Análisis: Teoría Estadística y Aplicaciones Prácticas en R

Briggitte Jhosselyn Vilca Chambilla.

Octubre 2025

Índice general

1.	Intr	oducci	ón al Meta-Análisis	1
	1.1.	Definic	ción y Fundamentos	1
		1.1.1.	Concepto de Meta-Análisis	1
	1.2.	Base 7	Геórica del Meta-Análisis	1
		1.2.1.	Fundamentos Estadísticos	1
		1.2.2.	Modelo de Efectos Comunes vs. Efectos Aleatorios	2
	1.3.	Tipos	de Medidas de Efecto	2
		1.3.1.	Teoría de Medidas de Efecto para Datos Continuos	2
		1.3.2.	Teoría de Medidas de Efecto para Datos Binarios	3
	1.4.	Impler	nentación en R	4
		1.4.1.	Cálculo de Medidas de Efecto	4
2.	Mod	delos E	Estadísticos en Meta-Análisis	7
	2.1.	Teoría	del Modelo de Efectos Fijos	7
		2.1.1.	Fundamentos Teóricos	7
		2.1.2.	Estimación por Mínimos Cuadrados Ponderados	7
		2.1.3.	Propiedades del Estimador	7
		2.1.4.	Intervalos de Confianza	8
	2.2.	Teoría	del Modelo de Efectos Aleatorios	8
		2.2.1.	Fundamentos Teóricos	8
		2.2.2.	Estimación de τ^2	8
		2.2.3.	Estimación del Efecto Combinado	9
		2.2.4.	Intervalos de Confianza y Pruebas de Hipótesis	9
	2.3.	Impler	mentación en R	9
		2.3.1.	Modelo de Efectos Fijos	9
		2.3.2.	Modelo de Efectos Aleatorios	10
3.	Aná	ilisis d	e Heterogeneidad	13
	3.1.	Teoría	de la Heterogeneidad	13
		3.1.1.	Concepto y Fuentes de Heterogeneidad	13
		3.1.2.	Estadístico Q de Cochran	13
		3.1.3.	Estadístico I 2	14
		3.1.4.	Tau y Tau ²	14
		3.1.5.	Intervalos de Predicción	14
	3.2.	Impler	nentación en R	15
		3.2.1.	Cálculo de Heterogeneidad	15

ÍNDICE GENERAL

4 .	\mathbf{Apl}	icacion	es con Librerías Especializadas en R	17		
	4.1.	Teoría	de los Métodos de Estimación	17		
		4.1.1.	Métodos de Estimación de τ^2	17		
		4.1.2.	Comparación de Métodos	17		
	4.2.	Usand	o el paquete meta	17		
		4.2.1.	Base Teórica del Paquete meta	17		
		4.2.2.	Meta-Análisis con el paquete meta	18		
	4.3.	Usand	o el paquete metafor	20		
		4.3.1.	Base Teórica del Paquete metafor	20		
		4.3.2.	Meta-Análisis con metafor	20		
5.	Análisis Completo y Visualización					
	5.1.	Teoría	de la Visualización en Meta-Análisis	23		
		5.1.1.	Forest Plots: Fundamentos Teóricos	23		
		5.1.2.	Funnel Plots y Sesgo de Publicación	23		
	5.2.	Análisi	is Integral en R	23		
		5.2.1.	Función Completa de Meta-Análisis	23		
6.	Con	clusiór	n y Recomendaciones	29		
	6.1.	Resum	nen de Métodos	29		
	6.2.	Recom	endaciones Prácticas	29		
	6.3	Eiemn	lo Final Integrado	30		

Introducción al Meta-Análisis

1.1. Definición y Fundamentos

1.1.1. Concepto de Meta-Análisis

Un meta-análisis es un método estadístico que permite combinar y sintetizar cuantitativamente los resultados de múltiples estudios independientes que abordan una misma pregunta de investigación.

Características principales:

- Síntesis cuantitativa de datos numéricos
- Enfoque en el tamaño del efecto (effect size)
- Análisis de consistencia de hallazgos
- Exploración de características de los estudios

1.2. Base Teórica del Meta-Análisis

1.2.1. Fundamentos Estadísticos

El meta-análisis se basa en el principio de que cada estudio proporciona una estimación del efecto verdadero θ , pero con cierto error de muestreo. El modelo general puede expresarse como:

$$Y_i = \theta_i + \varepsilon_i \tag{1.1}$$

donde:

- ullet Y_i es el efecto observado en el estudio i
- ullet θ_i es el efecto verdadero del estudio i
- ullet ε_i es el error de muestreo del estudio i

1.2.2. Modelo de Efectos Comunes vs. Efectos Aleatorios

La diferencia fundamental entre los modelos radica en el supuesto sobre θ_i :

- Modelo de efectos fijos: $\theta_i = \theta$ para todo i
- Modelo de efectos aleatorios: $\theta_i \sim N(\mu, \tau^2)$

1.3. Tipos de Medidas de Efecto

1.3.1. Teoría de Medidas de Efecto para Datos Continuos Diferencia de Medias (MD)

$$MD = \bar{X}_1 - \bar{X}_2$$

Explicación teórica: La diferencia de medias es la medida más intuitiva para datos continuos. Representa la diferencia absoluta entre las medias de dos grupos. Su varianza se calcula como:

$$Var(MD) = \frac{s_1^2}{n_1} + \frac{s_2^2}{n_2} \tag{1.2}$$

donde $s_1^2 \ {\bf y} \ s_2^2$ son las varianzas muestrales de los grupos 1 y 2 respectivamente.

Diferencia de Medias Estandarizada (SMD)

$$SMD = \frac{\bar{X}_1 - \bar{X}_2}{s_p}$$

Explicación teórica: La SMD estandariza la diferencia entre medias usando la desviación estándar combinada (s_p) , lo que permite comparar efectos entre estudios que usan diferentes escalas. La desviación estándar combinada se calcula como:

$$s_p = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}}$$
(1.3)

Existen varias versiones de SMD (Cohen's d, Hedges' g, Glass' Δ), que difieren en cómo calculan el denominador y aplican correcciones por sesgo.

Razón de Medias (MR)

$$MR = \frac{\bar{X}_1}{\bar{X}_2}$$

Explicación teórica: La razón de medias es útil cuando el efecto se expresa mejor en términos relativos. Para el análisis, generalmente se trabaja con el logaritmo de la razón:

$$\log(MR) = \log(\bar{X}_1) - \log(\bar{X}_2) \tag{1.4}$$

La varianza del log(MR) se aproxima como:

$$Var(\log(MR)) \approx \frac{s_1^2}{n_1 \bar{X}_1^2} + \frac{s_2^2}{n_2 \bar{X}_2^2}$$
 (1.5)

1.3.2. Teoría de Medidas de Efecto para Datos Binarios

Razón de Riesgos (RR)

$$RR = \frac{a/(a+b)}{c/(c+d)}$$

Explicación teórica: El RR compara la probabilidad de un evento entre dos grupos. Para el meta-análisis, se trabaja con el logaritmo del RR debido a que la distribución del RR es asimétrica, mientras que la distribución del log(RR) es aproximadamente normal.

$$\log(RR) = \log\left(\frac{a}{a+b}\right) - \log\left(\frac{c}{c+d}\right) \tag{1.6}$$

La varianza del log(RR) se calcula como:

$$Var(\log(RR)) = \frac{1}{a} - \frac{1}{a+b} + \frac{1}{c} - \frac{1}{c+d}$$
 (1.7)

Odds Ratio (OR)

$$OR = \frac{a/b}{c/d} = \frac{ad}{bc}$$

Explicación teórica: El OR representa la razón entre las odds de evento en el grupo tratamiento vs. control. Al igual que con el RR, se trabaja con el logaritmo:

$$\log(OR) = \log(a) - \log(b) - \log(c) + \log(d) \tag{1.8}$$

La varianza del log(OR) se aproxima mediante:

$$Var(\log(OR)) = \frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d}$$
 (1.9)

Esta aproximación se conoce como la fórmula de Woolf y es más precisa cuando las frecuencias esperadas son grandes.

Diferencia de Riesgos (RD)

$$RD = \frac{a}{a+b} - \frac{c}{c+d}$$

Explicación teórica: La RD representa la diferencia absoluta en riesgos entre grupos. Su varianza se calcula como:

$$Var(RD) = \frac{ab}{(a+b)^3} + \frac{cd}{(c+d)^3}$$
 (1.10)

A diferencia del RR y OR, la RD no requiere transformación logarítmica, pero puede ser menos estable estadísticamente cuando las probabilidades base son cercanas a 0 o 1.

1.4. Implementación en R

1.4.1. Cálculo de Medidas de Efecto

```
# Funci n para calcular diferencia de medias (MD)
  calculate_md <- function(mean1, mean2, sd1, sd2, n1, n2) {</pre>
     return(mean1 - mean2)
  # Funci n para calcular diferencia de medias estandarizada (SMD)
6
  calculate_smd <- function(mean1, mean2, sd1, sd2, n1, n2) {</pre>
     pooled_sd \leftarrow sqrt(((n1-1)*sd1^2 + (n2-1)*sd2^2) / (n1+n2-2))
     return((mean1 - mean2) / pooled_sd)
  }
10
11
  # Funci n para calcular riesgo relativo (RR)
  calculate_rr <- function(a, b, c, d) {</pre>
     risk_treatment <- a / (a + b)
14
     risk_control <- c / (c + d)
     return(risk_treatment / risk_control)
  }
17
18
  # Funci n para calcular odds ratio (OR)
19
  calculate_or <- function(a, b, c, d) {</pre>
20
     return((a * d) / (b * c))
  }
22
  # Funci n para calcular diferencia de riesgos (RD)
24
  calculate_rd <- function(a, b, c, d) {</pre>
25
     risk_treatment <- a / (a + b)
26
    risk_control <- c / (c + d)
     return(risk_treatment - risk_control)
28
29
30
  # Ejemplo de uso
31
  # Datos continuos
```

```
md \leftarrow calculate_md(25.3, 22.1, 4.5, 4.2, 50, 50)
   smd <- calculate_smd(25.3, 22.1, 4.5, 4.2, 50, 50)</pre>
34
35
  # Datos binarios
36
  rr <- calculate_rr(30, 70, 20, 80) # 30 eventos en 100 tratados,
37
       20 en 100 controles
   or_val <- calculate_or(30, 70, 20, 80)</pre>
   rd <- calculate_rd(30, 70, 20, 80)
39
40
   cat("MD:", round(md, 3), "\n")
41
   cat("SMD:", round(smd, 3), "\n")
   cat("RR:", round(rr, 3), "\n")
43
   cat("OR:", round(or_val, 3), "\n")
cat("RD:", round(rd, 3), "\n")
44
45
```

Listing 1.1: Cálculo de medidas de efecto en R

Modelos Estadísticos en Meta-Análisis

2.1. Teoría del Modelo de Efectos Fijos

2.1.1. Fundamentos Teóricos

El modelo de efectos fijos asume que todos los estudios estiman el mismo efecto verdadero subyacente θ . Las diferencias observadas entre estudios se atribuyen únicamente al error de muestreo.

$$Y_i = \theta + \varepsilon_i, \quad \varepsilon_i \sim N(0, v_i)$$
 (2.1)

donde v_i es la varianza del error del estudio i.

2.1.2. Estimación por Mínimos Cuadrados Ponderados

El estimador de efectos fijos se obtiene minimizando la suma ponderada de cuadrados:

$$Q = \sum_{i=1}^{k} w_i (Y_i - \hat{\theta})^2$$
 (2.2)

La solución que minimiza Q es:

$$\hat{\theta} = \frac{\sum_{i=1}^{k} w_i Y_i}{\sum_{i=1}^{k} w_i}$$
$$w_i = \frac{1}{v_i}$$

Explicación teórica: Los pesos w_i son inversamente proporcionales a la varianza de cada estudio, lo que da mayor peso a estudios más precisos (con menor varianza). Esta es la aplicación del principio de mínimos cuadrados generalizados.

2.1.3. Propiedades del Estimador

• Insesgadez: $E[\hat{\theta}] = \theta$

• Varianza mínima: Entre todos los estimadores lineales insesgados

■ Distribución: $\hat{\theta} \sim N\left(\theta, \frac{1}{\sum w_i}\right)$

2.1.4. Intervalos de Confianza

$$SE(\hat{\theta}) = \sqrt{\frac{1}{\sum_{i=1}^{k} w_i}}$$
$$IC_{95\%} = \hat{\theta} \pm z_{1-\alpha/2} \times SE(\hat{\theta})$$

donde $z_{1-\alpha/2}$ es el percentil $1-\alpha/2$ de la distribución normal estándar.

2.2. Teoría del Modelo de Efectos Aleatorios

2.2.1. Fundamentos Teóricos

El modelo de efectos aleatorios reconoce que los efectos verdaderos pueden variar entre estudios debido a diferencias en poblaciones, intervenciones, o contextos.

$$Y_i = \theta_i + \varepsilon_i \tag{2.3}$$

$$\theta_i = \mu + \delta_i, \quad \delta_i \sim N(0, \tau^2)$$
(2.4)

$$\varepsilon_i \sim N(0, v_i) \tag{2.5}$$

Combinando estas ecuaciones:

$$Y_i = \mu + \delta_i + \varepsilon_i \tag{2.6}$$

donde:

- μ : efecto promedio poblacional
- δ_i : desviación del estudio *i* del efecto promedio
- τ^2 : varianza entre estudios (heterogeneidad)
- ε_i : error de muestreo dentro del estudio

2.2.2. Estimación de τ^2

Método de DerSimonian-Laird

El método más comúnmente usado se basa en el estadístico Q de Cochran:

$$Q = \sum_{i=1}^{k} w_i (Y_i - \hat{\theta}_{FE})^2$$

$$\tau^2 = \max \left(0, \frac{Q - (k-1)}{\sum w_i - \frac{\sum w_i^2}{\sum w_i}} \right)$$

Explicación teórica: El estadístico Q sigue aproximadamente una distribución χ^2 con k-1 grados de libertad bajo la hipótesis nula de homogeneidad. Cuando Q > (k-1), indica heterogeneidad significativa, y τ^2 estima la varianza adicional entre estudios.

2.2.3. Estimación del Efecto Combinado

Con τ^2 estimado, los pesos se ajustan:

$$w_i^* = \frac{1}{v_i + \tau^2}$$

$$\hat{\mu} = \frac{\sum_{i=1}^k w_i^* Y_i}{\sum_{i=1}^k w_i^*}$$

Explicación teórica: La inclusión de τ^2 en los pesos hace que estos sean más similares entre estudios, reduciendo la influencia desproporcionada de estudios muy grandes cuando existe heterogeneidad.

2.2.4. Intervalos de Confianza y Pruebas de Hipótesis

$$SE(\hat{\mu}) = \sqrt{\frac{1}{\sum w_i^*}}$$

$$IC_{95\%} = \hat{\mu} \pm t_{k-1,1-\alpha/2} \times SE(\hat{\mu})$$

Donde $t_{k-1,1-\alpha/2}$ es el percentil de la distribución t con k-1 grados de libertad.

2.3. Implementación en R

2.3.1. Modelo de Efectos Fijos

```
# Funci n para modelo de efectos fijos
  fixed_effects_model <- function(effects, variances) {</pre>
    k <- length(effects)</pre>
       (k == 0) {
       return(NULL)
    # Calcular pesos (inversos de las varianzas)
9
     weights <- 1 / variances
10
     total_weight <- sum(weights)</pre>
     # Efecto combinado (media ponderada)
     combined_effect <- sum(weights * effects) / total_weight</pre>
14
     # Error est ndar (ra z cuadrada de la varianza del estimador)
16
     se <- sqrt(1 / total_weight)</pre>
```

```
18
     # Intervalo de confianza (distribuci n normal)
19
     ci_lower <- combined_effect - 1.96 * se</pre>
20
     ci_upper <- combined_effect + 1.96 * se</pre>
21
22
     # Pesos normalizados (para interpretaci n)
23
     normalized_weights <- weights / total_weight
24
    return(list(
26
       combined_effect = combined_effect,
27
       se = se,
       ci = c(ci_lower, ci_upper),
       weights = normalized_weights,
30
       total_weight = total_weight
31
     ))
  }
33
  # Ejemplo de uso
35
  effects \leftarrow c(0.5, 0.7, 0.3, 0.6)
36
  variances \leftarrow c(0.1, 0.08, 0.12, 0.09)
37
38
  fe_result <- fixed_effects_model(effects, variances)</pre>
39
40
  cat("=== MODELO DE EFECTOS FIJOS ===\n")
41
  cat("Efecto combinado:", round(fe_result$combined_effect, 4), "\n
42
  cat("Error est ndar:", round(fe_result$se, 4), "\n")
43
  cat("IC 95%: (", round(fe_result$ci[1], 4), ", ", round(fe_result
44
      ci[2], 4), ")\n", sep = "")
  cat("\nPesos de los estudios:\n")
45
  for (i in 1:length(fe_result$weights)) {
46
     cat(" Estudio", i, ":", round(fe_result$weights[i], 3),
47
         "(", round(fe_result$weights[i] * 100, 1), "%)\n")
48
  }
49
```

Listing 2.1: Implementación del modelo de efectos fijos en R

2.3.2. Modelo de Efectos Aleatorios

```
# Funci n para estimar tau (m todo DerSimonian-Laird)
estimate_tau_squared <- function(effects, variances) {
    k <- length(effects)

if (k < 2) {
    return(0)
}

# Primero calculamos el modelo de efectos fijos
weights_fe <- 1 / variances
weighted_mean <- sum(weights_fe * effects) / sum(weights_fe)</pre>
```

```
# Estad stico Q de Cochran
     Q <- sum(weights_fe * (effects - weighted_mean)^2)
14
     # C lculo de tau
16
     sum_weights <- sum(weights_fe)</pre>
17
     sum_squared_weights <- sum(weights_fe^2)</pre>
19
     if (Q \le (k - 1)) {
20
       tau_squared <- 0
21
     } else {
22
       numerator \leftarrow Q - (k - 1)
23
       denominator <- sum_weights - (sum_squared_weights / sum_
           weights)
       tau_squared <- numerator / denominator
25
26
27
     return(max(0, tau_squared))
28
29
30
   # Funci n para modelo de efectos aleatorios
31
   random_effects_model <- function(effects, variances) {</pre>
32
     k <- length(effects)</pre>
33
34
     if (k == 0) {
35
       return (NULL)
36
37
38
     # Estimar tau
                      (heterogeneidad entre estudios)
39
     tau_squared <- estimate_tau_squared(effects, variances)</pre>
40
41
     # Pesos ajustados (incluyen varianza entre estudios)
42
     weights_re <- 1 / (variances + tau_squared)</pre>
43
     total_weight_re <- sum(weights_re)
44
45
     # Efecto combinado
46
     combined_effect <- sum(weights_re * effects) / total_weight_re</pre>
47
48
     # Error est ndar
49
     se <- sqrt(1 / total_weight_re)</pre>
     # Intervalo de confianza
     ci_lower <- combined_effect - 1.96 * se</pre>
     ci_upper <- combined_effect + 1.96 * se</pre>
54
     # Pesos normalizados
56
     normalized_weights <- weights_re / total_weight_re</pre>
57
     return(list(
59
       combined_effect = combined_effect,
       se = se,
61
       ci = c(ci_lower, ci_upper),
```

```
weights = normalized_weights,
63
       tau_squared = tau_squared,
64
       total_weight = total_weight_re
65
    ))
66
  }
67
  # Ejemplo de uso
69
  effects <-c(0.5, 0.7, 0.3, 0.6)
70
  variances \leftarrow c(0.1, 0.08, 0.12, 0.09)
71
72
  re_result <- random_effects_model(effects, variances)</pre>
  cat("=== MODELO DE EFECTOS ALEATORIOS ===\n")
75
  cat("Tau estimado:", round(re_result$tau_squared, 4), "\n")
76
  cat("Efecto combinado:", round(re_result$combined_effect, 4), "\n
77
     ")
  cat("Error est ndar:", round(re_result$se, 4), "\n")
  cat("IC 95%: (", round(re_result$ci[1], 4), ", ", round(re_result
79
     ci[2], 4), ")\n", sep = "")
  cat("\nPesos ajustados de los estudios:\n")
80
  for (i in 1:length(re_result$weights)) {
81
     cat(" Estudio", i, ":", round(re_result$weights[i], 3),
82
         "(", round(re_result$weights[i] * 100, 1), "%)\n")
  }
84
```

Listing 2.2: Implementación del modelo de efectos aleatorios en R

Análisis de Heterogeneidad

3.1. Teoría de la Heterogeneidad

3.1.1. Concepto y Fuentes de Heterogeneidad

La heterogeneidad se refiere a la variabilidad entre los efectos verdaderos de diferentes estudios. Las fuentes pueden ser:

- Heterogeneidad clínica: Diferencias en pacientes, intervenciones, resultados
- Heterogeneidad metodológica: Diferencias en diseño, calidad, análisis
- Heterogeneidad estadística: Variabilidad más allá del azar

3.1.2. Estadístico Q de Cochran

Definición y Propiedades

$$Q = \sum_{i=1}^{k} w_i (Y_i - \hat{\theta})^2$$

Explicación teórica: El estadístico Q mide la variabilidad total observada entre estudios. Bajo la hipótesis nula de homogeneidad $(H_0: \theta_1 = \theta_2 = \cdots = \theta_k)$, Q sigue una distribución chi-cuadrado con k-1 grados de libertad:

$$Q \sim \chi_{k-1}^2 \quad \text{bajo } H_0 \tag{3.1}$$

Interpretación

- $Q \leq k-1$: Heterogeneidad no significativa
- Q > k 1: Evidencia de heterogeneidad
- Valor p: $P(\chi_{k-1}^2 > Q)$

3.1.3. Estadístico I²

Definición y Cálculo

$$I^2 = \max\left(0, \frac{Q - (k - 1)}{Q}\right) \times 100\,\%$$

Explicación teórica: I^2 representa el porcentaje de la variabilidad total que se debe a heterogeneidad más que al azar. Se interpreta como:

- 0% 25%: Baja heterogeneidad
- 25% 50%: Moderada heterogeneidad
- 50% 75%: Alta heterogeneidad
- 75% 100%: Heterogeneidad considerable

Propiedades

- Independiente del número de estudios
- Comparable entre diferentes meta-análisis
- No depende de la escala del efecto

3.1.4. Tau y Tau²

Definiciones

 τ^2 : Varianza de los efectos verdaderos entre estudios

 τ : Desviación estándar de los efectos verdaderos entre estudios

Explicación teórica: τ^2 representa la varianza del componente aleatorio δ_i en el modelo de efectos aleatorios. Es una medida absoluta de heterogeneidad, a diferencia de I^2 que es relativa.

Relación entre las Medidas

$$I^2 = \frac{\tau^2}{\tau^2 + \bar{v}} \times 100\% \tag{3.2}$$

donde \bar{v} es la varianza promedio dentro de los estudios.

3.1.5. Intervalos de Predicción

En modelos de efectos aleatorios, el intervalo de predicción estima el rango en el que se espera que esté el efecto verdadero de un estudio futuro:

$$\hat{\mu} \pm t_{k-2,0,975} \times \sqrt{\hat{\tau}^2 + \widehat{SE}(\hat{\mu})^2}$$
 (3.3)

3.2. Implementación en R

3.2.1. Cálculo de Heterogeneidad

```
# Funci n para an lisis completo de heterogeneidad
  heterogeneity_analysis <- function(effects, variances) {</pre>
     k <- length(effects)</pre>
     if (k < 2) {
5
       return(list(
6
         Q = 0,
         df = k - 1,
         p_value = 1,
9
         12 = 0,
         tau_squared = 0,
         tau = 0,
12
          interpretation = "No aplicable (k < 2)"
       ))
14
     }
     # Calcular estad stico Q de Cochran
17
     weights <- 1 / variances</pre>
18
     weighted_mean <- sum(weights * effects) / sum(weights)</pre>
19
     Q <- sum(weights * (effects - weighted_mean)^2)
20
     # Grados de libertad y valor p
22
     df <- k - 1
23
     p_value <- 1 - pchisq(Q, df)</pre>
     # Calcular I
26
     if (Q <= df) {</pre>
27
       I2 <- 0
28
     } else {
       I2 \leftarrow ((Q - df) / Q) * 100
31
32
     # Interpretar I
33
     interpret_i2 <- function(I2) {</pre>
34
       if (I2 <= 25) {
35
         return("Baja heterogeneidad")
36
       } else if (I2 <= 50) {</pre>
37
         return("Moderada heterogeneidad")
38
       } else if (I2 <= 75) {</pre>
39
         return("Alta heterogeneidad")
40
       } else {
         return("Heterogeneidad considerable")
42
43
     }
44
45
     # Calcular tau y tau
46
     tau_squared <- estimate_tau_squared(effects, variances)
47
```

```
tau <- sqrt(tau_squared)</pre>
48
49
     return(list(
       Q = Q,
       df = df
       p_value = p_value,
       I2 = I2,
54
       tau_squared = tau_squared,
       tau = tau,
56
       interpretation = interpret_i2(I2)
57
    ))
  }
59
60
  # Ejemplo de uso
61
  effects \leftarrow c(0.5, 0.7, 0.3, 0.6, 0.8, 0.4)
62
  variances \leftarrow c(0.1, 0.08, 0.12, 0.09, 0.11, 0.07)
63
64
  hetero_results <- heterogeneity_analysis(effects, variances)
65
66
  cat("=== AN LISIS DE HETEROGENEIDAD ===\n")
67
  cat("Estad stico Q:", round(hetero_results$Q, 4), "\n")
  cat("Grados de libertad:", hetero_results$df, "\n")
69
  cat("Valor p:", round(hetero_results$p_value, 4), "\n")
  cat("I :", round(hetero_results$I2, 2), "% -", hetero_results$
      interpretation, "\n")
  cat("Tau :", round(hetero_results$tau_squared, 4), "\n")
72
  cat("Tau:", round(hetero_results$tau, 4), "\n")
73
74
  # Interpretaci n adicional
75
  cat("\n=== INTERPRETACI N ===\n")
76
  if (hetero_results$p_value < 0.05) {</pre>
77
              Heterogeneidad estad sticamente significativa (p <
78
        0.05) \n")
  } else {
79
     cat("
              Heterogeneidad no significativa (p
                                                       0.05) \n")
  }
81
82
           ", round(hetero_results$I2, 1), "% de la variabilidad se
83
      debe a heterogeneidad real\n")
           La desviaci n est ndar entre estudios es", round(
  cat("
      hetero_results$tau, 3), "\n")
```

Listing 3.1: Cálculo de medidas de heterogeneidad en R

Aplicaciones con Librerías Especializadas en R

4.1. Teoría de los Métodos de Estimación

4.1.1. Métodos de Estimación de τ^2

Existen varios métodos para estimar la varianza entre estudios:

- DerSimonian-Laird (DL): Método de momentos, más común
- Restricted Maximum Likelihood (REML): Método de máxima verosimilitud
- Paule-Mandel (PM): Método basado en perfiles de verosimilitud
- Hunter-Schmidt (HS): Método de momentos no ponderado

4.1.2. Comparación de Métodos

Cuadro 4.1: Comparación de métodos de estimación de τ^2

Método	Ventajas	Limitaciones
DerSimonian- Laird	Sencillo, ampliamente usado	Puede subestimar τ^2
REML	Menos sesgado, propiedades óptimas	Computacionalmente intensivo
Paule-Mandel	Robustez, buen des- empeño	Menos conocido
Hunter-Schmidt	Sencillez	Puede sobreestimar τ^2

4.2. Usando el paquete meta

4.2.1. Base Teórica del Paquete meta

El paquete meta implementa métodos estándar para meta-análisis, incluyendo:

- Estimación de efectos fijos y aleatorios
- Cálculo de heterogeneidad
- Generación de forest plots
- Análisis de subgrupos

4.2.2. Meta-Análisis con el paquete meta

```
# Instalar y cargar el paquete meta (si es necesario)
  # install.packages("meta")
  library(meta)
  library(forestplot)
4
  # Ejemplo 1: Meta-an lisis de datos continuos
6
  meta_analysis_continuous <- function() {</pre>
    # Datos de ejemplo para diferencia de medias
    data_continuous <- data.frame(</pre>
9
       study = c("Study A", "Study B", "Study C", "Study D", "Study
          E"),
      n.e = c(50, 60, 45, 55, 65), # Tama o muestra grupo
          experimental
      mean.e = c(25.3, 26.1, 24.8, 25.9, 26.5), # Media grupo
          experimental
       sd.e = c(4.5, 4.2, 4.8, 4.1, 4.3), # DE grupo experimental
      n.c = c(50, 60, 45, 55, 65), # Tama o muestra grupo control
14
      mean.c = c(22.1, 23.2, 21.8, 22.9, 23.1), # Media grupo
          control
       sd.c = c(4.2, 4.0, 4.5, 4.3, 4.1) # DE grupo control
17
18
    # Meta-an lisis de diferencia de medias
19
    meta_cont <- metacont(</pre>
20
      n.e = n.e,
      mean.e = mean.e,
22
      sd.e = sd.e,
23
      n.c = n.c,
24
      mean.c = mean.c,
25
       sd.c = sd.c,
26
       data = data_continuous,
27
       studlab = study,
28
                           # M todo DerSimonian-Laird para tau
      method.tau = "DL",
29
       comb.fixed = TRUE,
30
       comb.random = TRUE
31
    )
32
33
    # Mostrar resultados
34
    print(summary(meta_cont))
35
36
    # Crear forest plot
37
     forest(meta_cont,
```

```
leftcols = c("studlab", "mean", "sd", "n.e", "n.c"),
39
            rightcols = c("effect", "ci"))
40
41
    return(meta_cont)
42
  }
43
  # Ejemplo 2: Meta-an lisis de datos binarios
45
  meta_analysis_binary <- function() {</pre>
46
     # Datos de ejemplo para odds ratio
47
     data_binary <- data.frame(</pre>
48
       study = c("Study 1", "Study 2", "Study 3", "Study 4", "Study
          5"),
       event.e = c(15, 20, 12, 18, 22), # Eventos grupo
50
          experimental
       n.e = c(100, 120, 80, 110, 130), # Total grupo experimental
       event.c = c(8, 12, 6, 10, 14),
                                            # Eventos grupo control
       n.c = c(100, 120, 80, 110, 130) # Total grupo control
     )
54
     # Meta-an lisis de odds ratio
56
     meta_bin <- metabin(</pre>
57
       event.e = event.e,
58
       n.e = n.e,
       event.c = event.c,
60
       n.c = n.c,
61
       data = data_binary,
62
       studlab = study,
63
       method = "Inverse",
64
       method.tau = "DL",
       sm = "OR" # Odds Ratio como medida de efecto
66
67
68
     # Mostrar resultados
69
     print(summary(meta_bin))
70
71
    # Crear forest plot
72
     forest (meta_bin,
73
            leftcols = c("studlab", "event.e", "n.e", "event.c", "n.
74
            rightcols = c("effect", "ci"))
75
    return(meta_bin)
77
  }
78
79
  # Ejecutar ejemplos
80
  cat("=== META-AN LISIS DATOS CONTINUOS ===\n")
81
  result_cont <- meta_analysis_continuous()
83
  cat("\n=== META-AN LISIS DATOS BINARIOS ===\n")
84
  result_bin <- meta_analysis_binary()
```

Listing 4.1: Meta-análisis usando el paquete meta en R

4.3. Usando el paquete metafor

4.3.1. Base Teórica del Paquete metafor

El paquete metafor ofrece funcionalidades avanzadas:

- Múltiples métodos de estimación de τ^2
- Meta-regresión
- Modelos multinivel
- Análisis de moderadores

4.3.2. Meta-Análisis con metafor

```
# Instalar y cargar el paquete metafor (si es necesario)
  # install.packages("metafor")
  library(metafor)
  # Ejemplo 1: Meta-an lisis con efectos aleatorios
  metafor_analysis <- function() {</pre>
6
    # Datos de ejemplo
    data <- data.frame(</pre>
       study = c("Study 1", "Study 2", "Study 3", "Study 4", "Study
                 "Study 6", "Study 7", "Study 8"),
      yi = c(0.45, 0.62, 0.28, 0.55, 0.38, 0.71, 0.49, 0.33),
11
         Efectos
      vi = c(0.08, 0.06, 0.12, 0.07, 0.09, 0.05, 0.08, 0.10)
         Varianzas
    )
14
    # Meta-an lisis de efectos aleatorios
    res <- rma(yi = yi, vi = vi, data = data, method = "DL")
16
17
    # Mostrar resultados detallados
18
    print(res)
19
20
    # Crear forest plot
21
    forest(res, slab = data$study,
            xlab = "Tama o del efecto",
            main = "Meta-An lisis - Modelo de Efectos Aleatorios")
24
25
    # A adir intervalo de predicci n
26
    addpoly(res, row = -1, cex = 0.8, mlab = "RE Modelo")
27
28
```

```
# Crear funnel plot para sesgo de publicaci n
29
    funnel(res, main = "Funnel Plot - Evaluaci n de sesgo")
30
31
    # Test de Egger para sesgo de publicaci n
32
    regtest (res)
33
    return (res)
35
  }
36
37
  # Ejemplo 2: Meta-regresi n
38
  meta_regression_example <- function() {</pre>
    # Datos con variable moderadora
    data_mod <- data.frame(</pre>
41
       study = c("S1", "S2", "S3", "S4", "S5", "S6", "S7", "S8"),
42
      yi = c(0.45, 0.62, 0.28, 0.55, 0.38, 0.71, 0.49, 0.33),
43
      vi = c(0.08, 0.06, 0.12, 0.07, 0.09, 0.05, 0.08, 0.10),
44
       moderator = c(2.1, 3.4, 1.8, 2.9, 2.3, 3.8, 2.7, 2.0)
45
          Variable moderadora
    )
46
47
    # Meta-regresi n
48
    res_mod <- rma(yi = yi, vi = vi, mods = ~ moderator, data =
49
        data_mod, method = "DL")
    print(res_mod)
51
    # Graficar relaci n
    plot(data_mod$moderator, data_mod$yi,
54
          xlab = "Variable moderadora",
          ylab = "Tama o del efecto",
56
          main = "Meta-Regresi n",
57
          pch = 19, col = "blue", cex = 2)
58
    # A adir l nea de regresi n
     abline(a = res_mod$b[1], b = res_mod$b[2], col = "red", lwd =
61
        2)
62
    return(res_mod)
63
64
65
  # Ejecutar ejemplos
  cat("=== META-AN LISIS CON METAFOR ===\n")
67
  result_metafor <- metafor_analysis()
68
69
  cat("\n=== META - REGRESI N ===\n")
70
  result_metareg <- meta_regression_example()</pre>
```

Listing 4.2: Meta-análisis usando el paquete metafor en R

Análisis Completo y Visualización

5.1. Teoría de la Visualización en Meta-Análisis

5.1.1. Forest Plots: Fundamentos Teóricos

Los forest plots representan gráficamente:

- Estimaciones individuales de cada estudio con sus intervalos de confianza
- El efecto combinado con su intervalo de confianza
- Los pesos de cada estudio en el análisis
- Medidas de heterogeneidad

5.1.2. Funnel Plots y Sesgo de Publicación

Los funnel plots se basan en el principio de que en ausencia de sesgo, los estudios deberían distribuirse simétricamente alrededor del efecto combinado.

$$Precisión = \frac{1}{SE(Y_i)}$$
 (5.1)

El test de Egger evalúa la asimetría mediante regresión:

$$\frac{Y_i}{SE(Y_i)} = \alpha + \beta \times \frac{1}{SE(Y_i)} + \varepsilon_i \tag{5.2}$$

Donde un intercepto α significativamente diferente de cero sugiere sesgo de publicación.

5.2. Análisis Integral en R

5.2.1. Función Completa de Meta-Análisis

```
4
     # Verificar y preparar datos
5
     if (is.data.frame(study_data)) {
6
       effects <- study_data$effect</pre>
       variances <- study_data$variance</pre>
8
       if (is.null(study_names) && "study" %in% names(study_data)) {
9
         study_names <- study_data$study</pre>
11
     } else {
       effects <- study_data$effects
13
       variances <- study_data$variances
     }
16
     if (is.null(study_names)) {
17
       study_names <- paste("Estudio", 1:length(effects))</pre>
18
     }
19
20
     k <- length(effects)</pre>
21
22
     # An lisis de heterogeneidad
     hetero_results <- heterogeneity_analysis(effects, variances)</pre>
24
25
     # Decidir modelo basado en heterogeneidad
26
     if (model_type == "auto") {
27
       if (hetero_results$12 >= 50 || hetero_results$p_value < 0.05)</pre>
28
         use_model <- "random"</pre>
29
         model_result <- random_effects_model(effects, variances)</pre>
30
       } else {
         use_model <- "fixed"</pre>
32
         model_result <- fixed_effects_model(effects, variances)</pre>
33
34
     } else if (model_type == "random") {
35
       use_model <- "random"</pre>
36
       model_result <- random_effects_model(effects, variances)</pre>
37
     } else {
38
       use_model <- "fixed"</pre>
39
       model_result <- fixed_effects_model(effects, variances)</pre>
40
     }
41
42
     # Crear plots si se solicita
43
     if (make_plots) {
44
       create_comprehensive_plots(effects, variances, study_names,
45
                                     model_result, hetero_results, use_
46
                                        model)
     }
47
48
     # Preparar resultados
49
     results <- list(
       study_data = data.frame(
         study = study_names,
```

```
effect = effects,
         variance = variances,
54
         weight_fe = fixed_effects_model(effects, variances)$weights
         weight_re = random_effects_model(effects, variances)$
56
            weights
       ),
       heterogeneity = hetero_results,
58
       model_used = use_model,
       model_results = model_result,
       recommendation = paste("Modelo recomendado:", use_model,
61
                              "(I
                                   =", round(hetero_results$I2, 1),
62
                                 "%)")
     )
63
64
     return (results)
65
66
67
  # Funci n para crear gr ficos completos
68
  create_comprehensive_plots <- function(effects, variances, study_</pre>
     names,
                                           model_result, hetero_
70
                                              results, model_type) {
     # Configurar
                        de gr ficos
                  rea
72
     par(mfrow = c(2, 2), mar = c(4, 4, 2, 1))
73
74
     # 1. Forest plot b sico
75
     ci_lower <- effects - 1.96 * sqrt(variances)</pre>
     ci_upper <- effects + 1.96 * sqrt(variances)</pre>
77
78
     plot(1, type = "n", xlim = c(min(ci_lower) - 0.1, max(ci_upper)
         + 0.1),
          ylim = c(0.5, length(effects) + 1),
80
          xlab = "Tama o del efecto", ylab = "", yaxt = "n")
82
     # A adir l nea de efecto nulo
83
     abline(v = 0, col = "gray", lty = 2)
84
85
     # A adir intervalos de confianza de estudios individuales
86
     for (i in 1:length(effects)) {
       lines(c(ci_lower[i], ci_upper[i]), c(i, i), col = "blue", lwd
88
       points(effects[i], i, pch = 19, col = "blue", cex = 1.2)
89
    }
90
91
92
     # A adir efecto combinado
     abline(v = model_result$combined_effect, col = "red", lwd = 2,
93
     lines(model_result$ci, c(length(effects) + 0.5, length(effects)
94
         + 0.5),
```

```
col = "red", lwd = 3)
95
96
     axis(2, at = 1:length(effects), labels = study_names, las = 1,
97
        cex.axis = 0.7)
     title(paste("Forest Plot - Modelo de", ifelse(model_type == "
98
        random", "Efectos Aleatorios", "Efectos Fijos")))
99
     # 2. Gr fico de pesos
100
     weights_fe <- fixed_effects_model(effects, variances)$weights
101
     weights_re <- random_effects_model(effects, variances)$weights</pre>
102
     barplot(rbind(weights_fe, weights_re), beside = TRUE,
             names.arg = study_names, las = 2, cex.names = 0.7,
             col = c("lightblue", "lightcoral"),
106
             main = "Distribuci n de Pesos",
107
             ylab = "Peso del estudio")
108
     legend("topright", legend = c("Efectos Fijos", "Efectos
        Aleatorios"),
            fill = c("lightblue", "lightcoral"), cex = 0.8)
110
     # 3. Funnel plot
     se <- sqrt(variances)</pre>
     plot(effects, 1/se, pch = 19, col = "blue",
114
          xlab = "Tama o del efecto", ylab = "Precisi n (1/SE)",
          main = "Funnel Plot")
116
     abline(v = model_result$combined_effect, col = "red", lty = 2)
117
118
     # 4. Gr fico de heterogeneidad
119
     barplot(c(hetero_results$I2, 100 - hetero_results$I2),
             names.arg = c("Heterogeneidad", "Azar"),
121
             col = c("orange", "lightgreen"),
             main = paste("I =", round(hetero_results$I2, 1), "%")
             ylab = "Porcentaje")
124
125
     # Restaurar configuraci n de gr ficos
126
     par(mfrow = c(1, 1))
127
128
129
   # Funci n para generar reporte
130
   generate_meta_report <- function(results) {</pre>
131
     cat("=== REPORTE COMPLETO DE META-AN LISIS ===\n\n")
     cat("INFORMACI N GENERAL:\n")
133
     cat("N mero de estudios:", nrow(results$study_data), "\n")
     cat("Modelo utilizado:", results$model_used, "\n")
135
     cat("Recomendaci n:", results$recommendation, "\n\n")
136
137
     cat("HETEROGENEIDAD:\n")
138
     cat("Q =", round(results$heterogeneity$Q, 3),
         "(df =", results$heterogeneity$df,
140
         ", p =", round(results$heterogeneity$p_value, 4), ")\n")
141
```

```
cat("I =", round(results$heterogeneity$I2, 1), "% -",
142
         results $ heterogeneity $ interpretation, "\n")
143
     cat("Tau =", round(results$heterogeneity$tau_squared, 4), "\n
144
        ")
     cat("Tau =", round(results$heterogeneity$tau, 4), "\n\n")
145
146
     cat("RESULTADOS DEL MODELO:\n")
147
     cat("Efecto combinado:", round(results$model_results$combined_
148
        effect, 4), "\n")
     cat("Error est ndar:", round(results$model_results$se, 4), "\n
149
        ")
     cat("IC 95%: (", round(results$model_results$ci[1], 4), ", ",
         round(resultsmodel_resultsci[2], 4), ")\n\n", sep = "")
151
     cat("DISTRIBUCI N DE PESOS:\n")
     weights_df <- data.frame(</pre>
154
       Estudio = results$study_data$study,
       Efecto = round(results$study_data$effect, 3),
156
       'Peso FE' = paste0(round(results$study_data$weight_fe * 100,
157
          1), "%"),
       'Peso RE' = paste0(round(results$study_data$weight_re * 100,
158
          1), "%")
     print(weights_df, row.names = FALSE)
   }
161
162
   # Ejemplo de uso completo
163
   # Crear datos de ejemplo
164
   example_data <- data.frame(</pre>
     study = c("A", "B", "C", "D", "E", "F", "G"),
166
     effect = c(0.45, 0.62, 0.28, 0.55, 0.38, 0.71, 0.49),
167
     variance = c(0.08, 0.06, 0.12, 0.07, 0.09, 0.05, 0.08)
168
   )
169
   # Ejecutar an lisis completo
   results <- complete_meta_analysis(example_data)
172
173
   # Generar reporte
174
   generate_meta_report(results)
175
```

Listing 5.1: Función completa para análisis de meta-análisis en R

Conclusión y Recomendaciones

6.1. Resumen de Métodos

Cuadro 6.1: Resumen de métodos de meta-análisis en R

Método	Cuándo usar	Función R
Efectos Fijos	Heterogeneidad baja $(I^2;50\%)$	<pre>metacont(), metabin()</pre>
Efectos Aleatorios	Heterogeneidad alta (I ² 50%)	rma()
Meta-Regresión	Analizar moderadores	<pre>rma(yi, vi, mods = x)</pre>
Análisis de Subgrupos	Estudios con características diferentes	update.meta()

6.2. Recomendaciones Prácticas

• Selección del modelo:

- $\bullet\,$ Usar efectos fijos cuando I²
 ${\rm i}50\,\%$ y no hay heterogeneidad significativa
- \bullet Usar efectos aleatorios cuando I² 50 % o hay heterogeneidad significativa

Paquetes recomendados:

- meta: Para análisis básicos y forest plots
- metafor: Para análisis avanzados y meta-regresión
- forestplot: Para gráficos de alta calidad

• Análisis de sensibilidad:

- Evaluar influencia de estudios individuales
- Analizar sesgo de publicación (funnel plot, test de Egger)
- Realizar análisis de subgrupos

6.3. Ejemplo Final Integrado

```
# AN LISIS COMPLETO DE META-AN LISIS EN R
  # Este script integra todas las funciones anteriores
  # 1. Cargar librer as
  required_packages <- c("meta", "metafor", "forestplot")</pre>
  for (pkg in required_packages) {
6
     if (!require(pkg, character.only = TRUE)) {
       install.packages(pkg)
       library(pkg, character.only = TRUE)
    }
  # 2. Datos de ejemplo
13
  study_data <- data.frame(</pre>
     study = c("Smith et al.", "Johnson et al.", "Williams et al.",
               "Brown et al.", "Davis et al.", "Miller et al."),
16
     effect = c(0.45, 0.62, 0.28, 0.55, 0.38, 0.71),
17
    variance = c(0.08, 0.06, 0.12, 0.07, 0.09, 0.05),
18
     sample_size = c(100, 150, 80, 120, 90, 200),
19
     quality_score = c(8, 9, 7, 8, 6, 9) # Puntuaci n de calidad
20
21
22
  # 3. An lisis completo
  final_results <- complete_meta_analysis(study_data)</pre>
24
  # 4. Reporte detallado
  generate_meta_report(final_results)
27
28
  # 5. An lisis adicional con metafor
29
  cat("\n=== AN LISIS AVANZADO CON METAFOR ===\n")
30
  metafor_result <- rma(yi = effect, vi = variance, data = study_</pre>
     data, method = "DL")
  print(metafor_result)
33
  # 6. Meta-regresi n con calidad del estudio
34
  cat("\n=== META-REGRESI N CON CALIDAD ===\n")
35
  meta_reg <- rma(yi = effect, vi = variance, mods = ~ quality_</pre>
36
     score,
                    data = study_data, method = "DL")
  print(meta_reg)
38
39
  # 7. An lisis de influencia
40
  cat("\n=== AN LISIS DE INFLUENCIA ===\n")
  influence_analysis <- influence(metafor_result)</pre>
  print(influence_analysis)
43
44
  # 8. Guardar resultados
45
  output <- list(</pre>
46
     data = study_data,
```

```
basic_analysis = final_results,
metafor_analysis = metafor_result,
meta_regression = meta_reg,
influence_analysis = influence_analysis

# Guardar en archivo RData
save(output, file = "meta_analysis_results.RData")

cat("\n=== AN LISIS COMPLETADO ===\n")
cat("Resultados guardados en 'meta_analysis_results.RData'\n")
```

Listing 6.1: Ejemplo final integrado con todos los análisis