GT4IReval: An R package to Measure the Reliability of an Information Retrieval Test Collection with Generalizability Theory

Julián Urbano University Carlos III of Madrid urbano.julian@gmail.com

August 7, 2013

Abstract

 $\mathtt{GT4IReval}^1$ is a package for the statistical software R to measure the reliability of an Information Retrieval test collection. It allows users to estimate reliability using Generalizability Theory and map those estimates onto well-known indicators such as Kendall τ correlation or sensitivity. For background information and details, the reader is referred to [1].

1 Loading GT4IReval and Data

The GT4IReval package can be loaded into R simply by copy-pasting the code inside the gt4ireval.R file directly into the command prompt. Alternatively, it can be loaded using the source function.

```
> source("path/to/file/gt4ireval.R")
```

GT4IReval needs initial evaluation data to run a G-study and the corresponding D-study. These data need to be in a standard data.frame, where columns correspond to systems and rows correspond to queries. For this manual, let us use data from the TREC-3 Ad Hoc track².

```
> ah3 <- read.table("adhoc3.txt")
> head(ah3)
    sys1    sys2    sys3    sys4    sys5    sys6    sys7   ...
1  0.2830  0.5163  0.4810  0.5737  0.5184  0.4945  0.5013   ...
2  0.0168  0.5442  0.3987  0.2964  0.6115  0.2354  0.1689   ...
3  0.0746  0.2769  0.3002  0.2459  0.3803  0.0738  0.0182   ...
4  0.1828  0.6622  0.6164  0.4291  0.6556  0.3529  0.3331   ...
5  0.0181  0.3670  0.3762  0.1095  0.2465  0.1027  0.0303   ...
6  0.0019  0.6752  0.6435  0.1294  0.5291  0.2087  0.2191   ...
```

If your data is transposed (i.e. columns correspond to queries and rows correspond to systems), you can get the correct format with the t function.

```
> ah3 <- t(ah3)
```

2 G-Study

To run a G-study with the initial data we have, we simply call the g.study function.

¹For the latest version of the package and this document, please visit http://julian-urbano.info.

²For general information on how to read data in R, the reader is referred to the R Data Import/Export manual, accessible from http://cran.r-project.org/manuals.html.

> g.study(ah3)

Summary of G-Study

	Systems	Queries	${\tt Interaction}$	
Variance	0.0071668	0.022642	0.01092	
<pre>Variance(%)</pre>	17.596	55.593	26.811	
Mean Sq.	0.36926	0.91661	0.01092	
Sample size	40	50	2000	

Additionally, we can tell the function to ignore the systems with lowest average effectiveness scores by setting the drop parameter. For instance, we can ignore the bottom 25% of systems.

Summary of G-Study

	Systems	Queries	Interaction	
Variance	0.0028117	0.028093	0.010152	
<pre>Variance(%)</pre>	6.8482	68.425	24.727	
Mean Sq.	0.15074	0.85296	0.010152	
Sample size	30	50	1500	

The summary shows the estimated variance components: variance due to the system effect $\hat{\sigma}_s^2 = 0.0028117$, due to the query effect $\hat{\sigma}_q^2 = 0.028093$, and due to the system-query interaction effect $\hat{\sigma}_e^2 = 0.010152$. The second row shows the same values but as a fraction of the total variance. The third row shows the estimated Mean Squares for each component, and finally the sample size in each case. In our example, we have 30 systems and 50 queries as initial data.

3 D-Study

The results from the G-study above can now be used to run a D-study. First, let us estimate the stability of the current collection with 50 queries.

> d.study(ah3.g)

Summary of D-Study

Call:

queries = 50
stability = 0.95
alpha = 0.025

Stability:

Phi			Erho2			
Upper	Lower	Expected	Upper	Lower	Expected	Queries
0.88039	0.66141	0.78613	0.96287	0.89311	0.93265	50

Required number of queries:

Phi			Erho2			
	T	F		T		G+-1:1::
Upper	Lower	Expected	Upper	Lower	Expected	Stability
487	130	259	114	37	69	0.95

The summary first shows how the d.study function was called. In particular, it tells us that the target number of queries is $n_q'=50$ (set by default from the G-study initial data), the target stability is $\pi=0.95$ (set by default), and the confidence level is $\alpha=0.025$ (set by default). Next are the estimated stability scores; the relative stability with 50 queries is $\mathrm{E}\hat{\rho}^2=0.93265$ with a 95% confidence interval of [0.89311, 0.96287], and the absolute stability is $\hat{\Phi}=0.78613$ with a 95% confidence interval of [0.66141, 0.88039]. Regarding the required number of queries to reach the target stability, the estimate is $\hat{n}_q'=69$ with a 95% confidence interval of [37, 114] to reach $\mathrm{E}\rho^2=\pi$, and $\hat{n}_q'=259$ with a 95% confidence interval of [130, 487] to reach $\Phi=\pi$.

The d.study function can be called with multiple values for n'_q , π and α to study trends. For instance, we can indicate several query set sizes by setting the queries parameter.

```
> d.study(ah3.g, queries = seq(20,200,20))
```

Summary of D-Study

Call:

queries = 20 40 60 80 100 120 140 160 180 200
stability = 0.95
 alpha = 0.025

Stability:

Phi		Erho2			·
Lower Upper	Expected	Upper	Lower	Expected	Queries
0.43864 0.74647	0.5952	0.91208	0.76971	0.84707	20
0.6098 0.85483	0.74624	0.95402	0.86987	0.91721	40
0.70097 0.8983	0.81519	0.96887	0.90931	0.94324	60
0.75761 0.92174	0.85468	0.97647	0.93041	0.95682	80
0.79621 0.93639	0.88026	0.98109	0.94354	0.96515	100
0.8242 0.94643	0.89819	0.98419	0.9525	0.97079	120
0.84543 0.95373	0.91144	0.98642	0.95901	0.97486	140
0.86209 0.95927	0.92165	0.98809	0.96395	0.97793	160
0.8755 0.96363	0.92974	0.9894	0.96783	0.98033	180
0.88654 0.96715	0.93632	0.99045	0.97095	0.98227	200

Required number of queries:

Lower	Expected	Stability
37	69	0.95
		Expe

The output above shows the estimated stability scores, with confidence intervals, for various query set sizes. For example, we have $E\hat{\rho}^2 = 0.96515$ with 100 queries, and $\hat{\Phi} \in [0.88654, 0.96715]$ with 95% confidence when having 200 queries. Similarly, we may indicate several target stability scores by setting the stability parameter.

```
> d.study(ah3.g, stability = c(0.8, 0.85, 0.9, 0.95, 0.97, 0.99))
```

Summary of D-Study

Call:

queries = 50
stability = 0.8 0.85 0.9 0.95 0.97 0.99
alpha = 0.025

Stability:

Phi			Erho2			
Upper	Lower	Expected	Upper	Lower	Expected	Queries
0.88039	0.66141	0.78613	0.96287	0.89311	0.93265	50

Required number of queries:

_			EI 1102			PIII
Stability	Expected	Lower	Upper	Expected	Lower	Upper
0.8	15	8	24	55	28	103
0.85	21	11	34	78	39	146
0.9	33	18	54	123	62	231
0.95	69	37	114	259	130	487
0.97	117	63	194	440	220	828
0.99	358	191	593	1347	673	2534

Erhan

Dhi

The output above shows that the estimated number of queries to reach $E\rho^2 = 0.97$ is 117, while 123 are required to reach $\Phi = 0.9$. Finally, we can also indicate several confidence levels for the computation of confidence intervals by setting the alpha parameter³.

> d.study(ah3.g, alpha = c(0.005, 0.025, 0.05))

Summary of D-Study

Call:

queries = 50 stability = 0.95

alpha = 0.005 0.025 0.05

Stability:

Phi			Erho2			
Upper	Lower	Expected	Upper	Lower	Expected	Alpha
0.9023	0.61466	0.78613	0.96967	0.87737	0.93265	0.005
0.88039	0.66141	0.78613	0.96287	0.89311	0.93265	0.025
0.86796	0.68417	0.78613	0.95901	0.90062	0.93265	0.05

Required number of queries:

PIII			ETHOZ			
Upper	Lower	Expected	Upper	Lower	Expected	Alpha
596	103	259	133	30	69	0.005
487	130	259	114	37	69	0.025
439	145	259	105	41	69	0.05

 $^{^3}$ Recall that $100(1-2\alpha)\%$ intervals are computed, so for an 80% confidence interval we set $\alpha=0.1$.

Figure 1: Sample plots showing estimated $E\rho^2$ scores (left) and τ coefficients (right) as a function of the number of queries n'_q .

The summary above shows that with 50 queries a 99% confidence interval for $E\rho^2$ is [0.87737, 0.96967], and a 90% confidence interval on the number of queries to reach $\Phi = 0.95$ is [145, 439].

4 Using the Returned Objects

Both g.study and d.study return objects with all results from the analysis so they can be used in subsequent computations. In fact, the ah3.g object above contains all the G-study results, and it is provided to the d.study function. The full list of available data in both objects can be obtained with the names function.

```
> ah3.g <- g.study(ah3, drop = 0.25)
> names(ah3.g)
[1] "n.s"
                    "var.s" "var.q" "var.e" "em.s" "em.q" "em.e"
           "n.q"
> ah3.g$var.s
[1] 0.002811699
> ah3.d <- d.study(ah3.g, queries = seq(10,200,5), stability = seq(0.5,1,.05))
> names(ah3.d)
 [1] "Erho2"
                     "Phi"
                                     "n.q_Erho2"
                                                     "n.q_Phi"
                                                                     "Erho2.lwr"
 [6] "Erho2.upr"
                     "Phi.lwr"
                                     "Phi.upr"
                                                     "n.q_Erho2.lwr" "n.q_Erho2.upr"
[11] "n.q_Phi.lwr"
                     "n.q_Phi.upr"
                                     "call"
> ah3.d$Erho2
 [1] 0.7347152 0.8059872 0.8470730 0.8737985 0.8925725 0.9064841 0.9172057 0.9257218
 [9] 0.9326493 0.9383949 0.9432373 0.9473739 0.9509485 0.9540684 0.9568151 0.9592519
[17] 0.9614284 0.9633841 0.9651511 0.9667554 0.9682185 0.9695583 0.9707896 0.9719252
[25] 0.9729758 0.9739507 0.9748576 0.9757035 0.9764944 0.9772354 0.9779311 0.9785855
[33] 0.9792022 0.9797844 0.9803349 0.9808562 0.9813506 0.9818201 0.9822666
> ah3.d$n.q_Phi.lwr
                     60 77 103 146 231 487 Inf
 [1] 26 32 39 48
> ah3.d$n.q_Phi.upr
      7 9 11 13
                    16 21 28 39 62 130 Inf
```

With all these data we can for instance plot the estimated $E\hat{\rho}^2$ score, with a 95% confidence interval, as a function of the number of queries in the collection (see Figure 1-left).

```
> plot(ah3.d$call$queries, ah3.d$Erho2, xaxs="i", ylim=c(0.75,1), lwd=2, type="l",
+ xlab="Number of queries", ylab="Relative stability")
> lines(ah3.d$call$queries, ah3.d$Erho2.lwr) # lower confidence end
> lines(ah3.d$call$queries, ah3.d$Erho2.upr) # upper confidence end
> grid()
```

5 Mapping G-Theory onto Data-based Indicators

Finally, the gt2data function can be used to map stability indicators from Generalizability Theory onto well-known indicators such as Kendall τ correlation or sensitivity.

```
> gt2data(Erho2 = 0.95, Phi = 0.8)
```

Estimated indicators

```
Erho2 Tau TauAP Power Min. Confl. Maj. Confl. Abs. Sens.

0.95 0.86412 0.81507 0.7826 0.010117 0.00037896 0.0097988

Phi Rel. Sens. RMSE

0.8 0.12389 0.0051271
```

The summary above shows that the estimated rank correlation at $E\rho^2 = 0.95$ is $\hat{\tau} = 0.86412$, and that the relative sensitivity at $\Phi = 0.8$ is estimated as $\hat{\delta}_r = 12.389\%$. In order to map the stability of a certain D-study, we can simply use the returned d.study object.

```
> ah3.d <- d.study(ah3.g, queries = seq(10,100,10))
```

0.063667 0.00095472

Estimated indicators

Erho2	Tau	TauAP	Power	Min. Confl.	Maj. Confl.	Abs. Sens.
0.73472 0.84707 0.89257 0.91721 0.93265 0.94324 0.95095 0.95682 0.96143	0.6234 0.72355 0.78186 0.81993 0.84672 0.86658 0.88188 0.89405	0.51601 0.63568 0.70855 0.75732 0.79218 0.81832 0.83863 0.85487	0.45241 0.58093 0.66165 0.71661 0.75633 0.78634 0.8098 0.82863	0.056171 0.032684 0.021922 0.015974 0.012289 0.0098238 0.0080808 0.0067955	0.00052902 0.00036035 0.00025777 0.00019152	0.055058 0.031916 0.021348 0.015521 0.011919 0.0095132 0.0078147 0.0065638
0.96515 Phi	0.90394 Rel. Sens.	0.86814 RMSE	0.84407	0.0058161	0.00014665	0.0056117
0.42369 0.5952 0.68804 0.74624 0.78613 0.81519 0.8373 0.85468 0.86871	0.48914 0.30929 0.22057 0.16873 0.13514 0.11182 0.094779 0.081855 0.071753					

Similarly, we can use the returned gt2data object in subsequent computations. For instance, we can plot the estimated $\hat{\tau}$ correlation as a function of the query set size (see Figure 1-right).

References

0.88026

[1] Urbano, J., Marrero, M., and Martín, D. On the Measurement of Test Collection Reliability. In *International ACM SIGIR Conference on Research and Development in Information Retrieval* (2013), pp. 393–402.

> gt2data(Erho2 = ah3.d\$Erho2, Phi = ah3.d\$Phi)