EE219-Lab1

October 4, 2025

1 Lab 1 Numpy CNN for inference

In this lab, you are required to fill in the blanks with your code **independently** to complete the inference process of a CNN. Note that there's a bonus at the end of this lab.

Requirements

- 1. Complete the codes independently.
- 2. Make sure your results are reproducible.
- 3. Do not change the structure of the CNN and the given codes.
- 4. Do not add additional libraries.

```
[11]: import numpy as np
```

We will define a CNN to classify CIFAR-10 images. The network provided is similar to AlexNet, and it has the following architecture:

Layer	Type	Input Shape	Output Shape	Activation
conv1	Convolutional	3x33x33	96x27x27	ReLU
pool1	Max pool	96x27x27	96x13x13	None
conv2	Convolutional	96x13x13	256x13x13	ReLU
pool2	Max pool	256x13x13	256x6x6	None
conv3	Convolutional	256x6x6	384x6x6	ReLU
conv4	Convolutional	384x6x6	384x6x6	ReLU
conv5	Convolutional	384x6x6	256x6x6	ReLU
pool3	Max pool	256x6x6	256x3x3	None
fc1	Fully-connected	2304	1024	ReLU
fc2	Fully-connected	1024	512	ReLU
fc3	Fully-connected	512	10	None

Note that pool1 and pool2 employ 3×3 pooling, whereas pool3 utilizes 2×2 pooling to align with the output shape of conv5.

Next, we will build convolution, relu, max-pooling and fully-connected layers using **numpy** respectively (only forward propagation is required for inference).

```
[12]: class ReLU():
          def __init__(self):
              self.mask = None
          def forward(self,input):
              # TODO (5 pts)
              # forward propagation for relu layer
              self.mask = (input <= 0)</pre>
              out = input.copy()
              out[self.mask] = 0
              return out
[13]: class ConvLayer:
          def __init__(self, input_channels, output_channels, kernel_size, stride,__
       →padding):
              self.input_channels = input_channels
              self.kernel_size = kernel_size
              self.stride = stride
              self.padding = padding
          def forward(self, x, weight):
              input x: (N, C, H, W) [batchsize, input channels, x height, x width]
               input w: (K, C, R, S) [output channels, input channels, w_height, __
       \hookrightarrow w_width
               output: (N, K, P, Q) [batchsize, output channels, output_height, __
       →output width]
               11 11 11
              N, C, H, W = x.shape
              K, C, R, S = weight.shape
              # TODO (5 pts)
              # complete padding operation
              if self.padding > 0:
                          padding
                                    padding
                   x_{padded} = np.pad(x,
                                   pad_width=((0, 0), (0, 0), (self.padding, self.)
       →padding), (self.padding, self.padding)),
                                   mode='constant',
                                   constant_values=0)
              else:
                   x_padded = x
              # TODO (5 pts)
              # compute output size using self.padding and self.stride
```

P =1 + int((H + 2*self.padding - R) / self.stride)

```
Q =1 + int((W + 2*self.padding - S) / self.stride)
      output = np.zeros((N, K, P, Q))
      # TODO (20 pts)
      # complete convolution operation
      for n in range(N): #
          for k in range(K): #
              for i in range(P): #
                   for j in range(Q): #
                       h_start = i * self.stride
                       h_{end} = h_{start} + R
                       w_start = j * self.stride
                       w_{end} = w_{start} + S
                             (C, R, S)
                       x_window = x_padded[n, :, h_start:h_end, w_start:w_end]
                       output[n, k, i, j] = np.sum(x_window * weight[k, :, :, :
→])
      return output
```

```
[14]: class MaxPooling2D:
          def __init__(self, pool_size=(2, 2), stride=2):
              self.pool_size = pool_size
              self.stride = stride
          def forward(self, x):
              input x: (N, C, H, W) [batchsize, input channels, x_height, x_width]
              output: (N, C, pooled_height, pooled_width)
              11 11 11
              N, C, H, W = x.shape
              # TODO (5 pts)
              # compute output size using self.pool_size and self.stride
              if isinstance(self.pool_size, tuple):
                  pool_h, pool_w = self.pool_size
              else:
                  pool_h = pool_w = self.pool_size
              pooled_height = int(1 + (H - pool_h) / self.stride)
              pooled_width = int(1 + (W - pool_w) / self.stride)
              output = np.zeros((N, C, pooled_height, pooled_width))
              # TODO (10 pts)
              # complete max-pooling operation
              for n in range(N): #
```

```
for c in range(C): #
                   for i in range(pooled_height): #
                       for j in range(pooled_width): #
                          h_start = i * self.stride
                          h_end = h_start + pool_h
                           w_start = j * self.stride
                           w_end = w_start + pool_w
                           window = x[n, c, h start:h end, w start:w end]
                           output[n, c, i, j] = np.max(window)
            return output
[15]: class fclayer():
        def __init__(self, in_features, out_features):
            self.in_features = in_features
            self.out_features = out_features
        def forward(self, x, weight):
            # TODO (10 pts)
            # complete forward propagation of fully-connected layer
            if x.ndim > 2:
                x = x.reshape(x.shape[0], -1) # batch
            assert x.shape[1] == self.in_features, f" {x.shape[1]} {self.
      →in features} "
```

```
[16]: # load trained parameters
ckpt = np.load('./model.npz')
```

: output = x · weight
output = np.dot(x, weight)

return output

```
[]: def lenet_inf(x,ckpt):
    # TODO (20 pts)
    # build the CNN network using classes above
    # Layer 1: conv1 - Input: 3x33x33, Output: 96x27x27
```

```
conv1 = ConvLayer(input_channels=3, output_channels=96, kernel_size=7,__
⇒stride=1, padding=0)
  conv1_out = conv1.forward(x, ckpt['conv1.weight'])
  relu1_out = ReLU().forward(conv1_out)
  # Layer 2: pool1 - Input: 96x27x27, Output: 96x13x13
  pool1 = MaxPooling2D(pool_size=3, stride=2)
  pool1_out = pool1.forward(relu1_out)
  # Layer 3: conv2 - Input: 96x13x13, Output: 256x13x13
  # kernel_size 5 3 (256, 96, 5, 5)
  conv2 = ConvLayer(input_channels=96, output_channels=256, kernel_size=5,__
⇒stride=1, padding=2) # padding=2
  conv2_out = conv2.forward(pool1_out, ckpt['conv2.weight'])
  relu2_out = ReLU().forward(conv2_out)
  # Layer 4: pool2 - Input: 256x13x13, Output: 256x6x6
  pool2 = MaxPooling2D(pool_size=3, stride=2)
  pool2_out = pool2.forward(relu2_out)
  # Layer 5: conv3 - Input: 256x6x6, Output: 384x6x6
  conv3 = ConvLayer(input_channels=256, output_channels=384, kernel_size=3,_
⇒stride=1, padding=1)
  conv3_out = conv3.forward(pool2_out, ckpt['conv3.weight'])
  relu3_out = ReLU().forward(conv3_out)
  # Layer 6: conv4 - Input: 384x6x6, Output: 384x6x6
  conv4 = ConvLayer(input_channels=384, output_channels=384, kernel_size=3,_
⇔stride=1, padding=1)
  conv4_out = conv4.forward(relu3_out, ckpt['conv4.weight'])
  relu4_out = ReLU().forward(conv4_out)
  # Layer 7: conv5 - Input: 384x6x6, Output: 256x6x6
  conv5 = ConvLayer(input_channels=384, output_channels=256, kernel_size=3,_
⇔stride=1, padding=1)
  conv5_out = conv5.forward(relu4_out, ckpt['conv5.weight'])
  relu5_out = ReLU().forward(conv5_out)
  # Layer 8: pool3 - Input: 256x6x6, Output: 256x3x3
  pool3 = MaxPooling2D(pool_size=2, stride=2)
  pool3_out = pool3.forward(relu5_out)
  # Flatten for fully connected layers
  # Input: (N, 256, 3, 3) -> Flatten to (N, 256*3*3) = (N, 2304)
  flattened = pool3_out.reshape(pool3_out.shape[0], -1)
  # Layer 9: fc1 - Input: 2304, Output: 1024
```

```
# (1024, 2304) (2304, 1024)
fc1_weight_transposed = ckpt['fc1.weight'].T #
fc1 = fclayer(in_features=2304, out_features=1024)
fc1_out = fc1.forward(flattened, fc1_weight_transposed)
#
relu6_out = ReLU().forward(fc1_out)

# Layer 10: fc2 - Input: 1024, Output: 512
fc2_weight_transposed = ckpt['fc2.weight'].T #
fc2 = fclayer(in_features=1024, out_features=512)
fc2_out = fc2.forward(relu6_out, fc2_weight_transposed)
#
relu7_out = ReLU().forward(fc2_out)

# Layer 11: fc3 - Input: 512, Output: 10
fc3_weight_transposed = ckpt['fc3.weight'].T #
fc3 = fclayer(in_features=512, out_features=10)
output = fc3.forward(relu7_out, fc3_weight_transposed)
#
return output
```

Execute the cifar10_extraction.py script to obtain the CIFAR-10 dataset.

```
[18]: # you may need to install PIL package if not installed # e.g. 'pip install pillow' %run cifar10_extraction.py
```

Files already downloaded and verified
Train set done, 50000 images
Test set done, 10000 images
Dataset saved to /home/ubuntu/data/CIFAR10/datasets

```
[19]: # you may need to install some packages if not installed
# e.g. 'conda install imageio' for imageio.v2, 'pip install pillow' for PIL

import imageio.v2 as imageio
import os
import random
from PIL import Image

# in this lab we will only infer 1 random picture from CIFAR-10 datasets to_____
save running time

test_folder = '/home/ubuntu/data/CIFAR10/datasets/test'
image_files = [f for f in os.listdir(test_folder) if f.endswith('.png') and f.
startswith('test_')]
```

```
random_image_file = random.choice(image_files)
image_path = os.path.join(test_folder, random_image_file)
input_image = imageio.imread(image_path)
# TODO (3 pts)
# resize the image to 33x33x3 to fit the input of the network
# Hint: use 'PIL' package, e.g. Image.fromarray()
pil image = Image.fromarray(input image)
resized_image = np.array(pil_image.resize((33, 33), Image.Resampling.LANCZOS))
# TODO (3 pts)
# normalize the pixels into [0,1] to maintain consistency with the training
 ⇔process
# models learn patterns based on the specific input distribution they were
 →trained on
# this scaling ensures input features operate within the range the model's _{\sqcup}
⇔architecture and parameters were optimized for
image = resized_image.astype(np.float32) / 255.0
# TODO (4 pts)
# alter the size of the pixel matrix from (33,33,3) to (1,3,33,33) to fit,
⇔convolution layer
image = image.transpose(2, 0, 1) # (33,33,3) (3,33,33)
image = np.expand_dims(image, axis=0) # batch : (1,3,33,33)
# Verify output
print(f"Using test image: {image_path}")
print(f"Processed image shape: {image.shape}") # should show (1, 3, 33, 33)
```

Using test image: /home/ubuntu/data/CIFAR10/datasets/test/test_4077.png Processed image shape: (1, 3, 33, 33)

```
# inference using lenet_inf created above
# npz
print("Available keys in model.npz:", ckpt.files)
# npz
ckpt_dict = {}
for key in ckpt.files:
    ckpt_dict[key] = ckpt[key]
    print(f"{key}: shape = {ckpt[key].shape}")
output = lenet_inf(image, ckpt_dict)
label = np.argmax(output, axis=1)[0]
import matplotlib.pyplot as plt
# visualize the picture to be classified
print(f"Predicted label: {label} ({classes[label]})")
print(f"Ground truth: {ground_truth} ({classes[ground_truth]})")
plt.imshow(input_image)
plt.axis('off')
plt.show()
Available keys in model.npz: ['conv1.weight', 'conv2.weight', 'conv3.weight',
'conv4.weight', 'conv5.weight', 'fc1.weight', 'fc2.weight', 'fc3.weight']
conv1.weight: shape = (96, 3, 7, 7)
conv2.weight: shape = (256, 96, 5, 5)
conv3.weight: shape = (384, 256, 3, 3)
conv4.weight: shape = (384, 384, 3, 3)
conv5.weight: shape = (256, 384, 3, 3)
fc1.weight: shape = (1024, 2304)
fc2.weight: shape = (512, 1024)
fc3.weight: shape = (10, 512)
Predicted label: 6 (frog)
Ground truth: 3 (cat)
```


Bonus: Calculate the number of computations and parameters. Visualize your results directly in the outputs of your codes.

```
[]: import matplotlib.pyplot as plt
     import numpy as np
     def visualize_model_analysis(results, total_params, total_flops):
         11 11 11
         11 11 11
         plt.figure(figsize=(15, 10))
         # 1. Parameters by Layer
         plt.subplot(2, 2, 1)
         layer_names = [r['layer'] for r in results if r['params'] > 0]
         layer_params = [r['params'] for r in results if r['params'] > 0]
         colors = plt.cm.Set3(np.linspace(0, 1, len(layer_names)))
         bars = plt.bar(layer_names, [p/1e6 for p in layer_params], color=colors)
         plt.title('Parameters by Layer (Millions)', fontsize=14, fontweight='bold')
         plt.xlabel('Layers')
         plt.ylabel('Parameters (M)')
         plt.xticks(rotation=45)
         plt.grid(axis='y', alpha=0.3)
```

```
# Add value labels on bars
  for bar, value in zip(bars, layer_params):
      plt.text(bar.get_x() + bar.get_width()/2, bar.get_height(),
                f'{value/1e6:.1f}M', ha='center', va='bottom', fontsize=8)
  # 2. FLOPs by Layer
  plt.subplot(2, 2, 2)
  layer_names_flops = [r['layer'] for r in results]
  layer_flops = [r['flops'] for r in results]
  colors_flops = plt.cm.Set3(np.linspace(0, 1, len(layer_names_flops)))
  bars = plt.bar(layer_names_flops, np.array(layer_flops)/1e6,__
⇔color=colors_flops)
  plt.title('FLOPs by Layer (Millions)', fontsize=14, fontweight='bold')
  plt.xlabel('Layers')
  plt.ylabel('FLOPs (M)')
  plt.xticks(rotation=45)
  plt.grid(axis='y', alpha=0.3)
  # 3. Parameter Distribution Pie Chart
  plt.subplot(2, 2, 3)
  conv_params = sum(r['params'] for r in results if 'conv' in r['layer'])
  fc_params = sum(r['params'] for r in results if 'fc' in r['layer'])
  sizes = [conv_params, fc_params]
  labels = [f'Conv Layers\n{conv_params/1e6:.1f}M', f'FC Layers\n{fc_params/
→1e6:.1f}M']
  colors = ['#ff9999', '#66b3ff']
  plt.pie(sizes, labels=labels, colors=colors, autopct='%1.1f%%',__
⇔startangle=90)
  plt.title('Parameter Distribution', fontsize=14, fontweight='bold')
  # 4. FLOPs Distribution Pie Chart
  plt.subplot(2, 2, 4)
  conv_flops = sum(r['flops'] for r in results if 'conv' in r['layer'])
  pool_flops = sum(r['flops'] for r in results if 'pool' in r['layer'])
  fc_flops = sum(r['flops'] for r in results if 'fc' in r['layer'])
  sizes = [conv_flops, pool_flops, fc_flops]
  labels = \lceil
      f'Conv Layers\n{conv_flops/1e9:.2f}G',
      f'Pool Layers\n{pool_flops/1e9:.2f}G',
      f'FC Layers\n{fc_flops/1e9:.2f}G'
  colors = ['#ff9999', '#99ff99', '#66b3ff']
```

```
plt.pie(sizes, labels=labels, colors=colors, autopct='%1.1f%%', __
 ⇔startangle=90)
   plt.title('FLOPs Distribution', fontsize=14, fontweight='bold')
   plt.tight_layout()
   plt.show()
print("MODEL COMPLEXITY ANALYSIS")
print("=" * 50)
print(f"Total Parameters: {total_params:,} ({total_params/1e6:.2f} Million)")
print(f"Total FLOPs: {total_flops:,} ({total_flops/1e9:.2f} GFLOPs)")
print(f"FLOPs per image: {total_flops/1e9:.2f} GFLOPs")
print("=" * 50)
visualize_model_analysis(results, total_params, total_flops)
print("\nDETAILED ANALYSIS REPORT")
print("=" * 50)
conv_layers = [r for r in results if 'conv' in r['layer']]
fc_layers = [r for r in results if 'fc' in r['layer']]
print(f"\nConvolutional Layers Analysis:")
for layer in conv_layers:
   params_m = layer['params'] / 1e6
   print(f" {layer['layer']}: {layer['params']:,} params ({params_m:.2f}M)")
print(f"\nFully Connected Layers Analysis:")
for layer in fc_layers:
   params m = layer['params'] / 1e6
   print(f" {layer['layer']}: {layer['params']:,} params ({params_m:.2f}M)")
print(f"\nEfficiency Analysis:")
print(f" FLOPs per parameter: {total_flops/total_params:.1f} FLOPs/param")
print(f" Model size (32-bit float): {total_params * 4 / 1e6:.2f} MB")
print(f"\nMemory Usage Analysis:")
print(f" Feature maps memory (approx): ~{(96*27*27 + 256*13*13 + 384*6*6*3 +
 →256*3*3) * 4 / 1e6:.2f} MB")
print(f" Weights memory: {total_params * 4 / 1e6:.2f} MB")
print(f" Total memory (inference): ~{(total_params * 4 / 1e6) + 10:.2f} MB") _
```

```
print(f"\nComparison with Classic Models (approximate):")
print(f" LeNet-5: ~60K parameters, ~0.001 GFLOPs")
print(f" AlexNet: ~60M parameters, ~0.7 GFLOPs")
print(f" VGG-16: ~138M parameters, ~16 GFLOPs")
print(f" ResNet-18: ~11M parameters, ~1.8 GFLOPs")
print(f" This Model: ~{total_params/1e6:.1f}M parameters, ~{total_flops/1e9:.
 ⇒2f} GFLOPs")
print(f"\nModel Characteristics:")
           Moderate size: {total_params/1e6:.1f}M parameters")
print(f"
           Efficient: {total_flops/1e9:.2f} GFLOPs per image")
print(f"
print(f"
           Balanced: Good FLOPs/parameter ratio ({total_flops/total_params:.
 →1f})")
print(f"
           Suitable for: Real-time inference on modern hardware")
print(f"\nPerformance Estimation (on modern GPU):")
print(f" Theoretical throughput: ~{1000/(total_flops/1e9/5):.0f} FPS (assuming_
 →5 TFLOPs GPU)")
print(f" Batch processing (32 images): ~{32*1000/(total_flops/1e9/5):.0f} FPS")
print(f"\nDETAILED LAYER BREAKDOWN")
print("=" * 80)
print(f"{'Layer':<10} {'Input Shape':<15} {'Output Shape':<15} {'Params':<12} ∪
→{'FLOPs':<15} {'Params %':<10}")
print("-" * 80)
for r in results:
   input_str = f"{r['input_shape']}"
   output str = f"{r['output shape']}"
   params_str = f"{r['params']:,}"
   flops str = f"{r['flops']:,}"
   params_pct = f"{(r['params']/total_params*100):.1f}%"
   print(f"{r['layer']:<10} {input_str:<15} {output_str:<15} {params_str:<12}
 print("-" * 80)
```

MODEL COMPLEXITY ANALYSIS

Total Parameters: 6,615,338 (6.62 Million)
Total FLOPs: 457,211,552 (0.46 GFLOPs)
FLOPs per image: 0.46 GFLOPs

DETAILED ANALYSIS REPORT

Convolutional Layers Analysis:

conv1: 14,112 params (0.01M) conv2: 614,400 params (0.61M) conv3: 884,736 params (0.88M) conv4: 1,327,104 params (1.33M) conv5: 884,736 params (0.88M)

Fully Connected Layers Analysis:

fc1: 2,360,320 params (2.36M) fc2: 524,800 params (0.52M) fc3: 5,130 params (0.01M)

Efficiency Analysis:

FLOPs per parameter: 69.1 FLOPs/param Model size (32-bit float): 26.46 MB

Memory Usage Analysis:

Feature maps memory (approx): ~0.63 MB

Weights memory: 26.46 MB

Total memory (inference): ~36.46 MB

Comparison with Classic Models (approximate):

LeNet-5: ~60K parameters, ~0.001 GFLOPs AlexNet: ~60M parameters, ~0.7 GFLOPs VGG-16: ~138M parameters, ~16 GFLOPs ResNet-18: ~11M parameters, ~1.8 GFLOPs This Model: ~6.6M parameters, ~0.46 GFLOPs

Model Characteristics:

Moderate size: 6.6M parameters Efficient: 0.46 GFLOPs per image

Balanced: Good FLOPs/parameter ratio (69.1)

Suitable for: Real-time inference on modern hardware

Performance Estimation (on modern GPU):

Theoretical throughput: ~10936 FPS (assuming 5 TFLOPs GPU)

Batch processing (32 images): ~349947 FPS

DETAILED LAYER BREAKDOWN

Layer	Input Shape	Output Shape	Params	FLOPs	Params %
conv1 pool1 conv2 pool2 conv3 conv4 conv5 pool3	(3, 33, 33)	(96, 27, 27)	14,112	20,575,296	0.2%
	(96, 27, 27)	(96, 13, 13)	0	146,016	0.0%
	(96, 13, 13)	(256, 13, 13)	614,400	207,667,200	9.3%
	(256, 13, 13)	(256, 6, 6)	0	82,944	0.0%
	(256, 6, 6)	(384, 6, 6)	884,736	63,700,992	13.4%
	(384, 6, 6)	(384, 6, 6)	1,327,104	95,551,488	20.1%
	(384, 6, 6)	(256, 6, 6)	884,736	63,700,992	13.4%
	(256, 6, 6)	(256, 6, 6)	0	9,216	0.0%
fc1	(2304,)	(1024,)	2,360,320	4,718,592	35.7%
fc2	(1024,)	(512,)	524,800	1,048,576	7.9%
fc3	(512,)	(10,)	5,130	10,240	0.1%

Write down your answer below.