Math Foundations

2018年10月31日

- 1. 数字与进制:
 - 10 进制与 2 进制,以及其他进制; Numerical System; Decimal; Binary;
 - 计算机为什么要用 2 进制;
 - 进制在计算机科学上的应用;
- 2. 数字的类型:
 - Categorical & Numerical
- 3. 通用的数学符号:
 - ∃
 - ∀
 - s.t
 - ::
 - .:.
 - argmax()
- 4. 数学分析:
 - 加法与乘法, 求和符号 $\sum_{i=1}^{n}$, 连乘符号 $\prod_{i=1}^{n}$;
 - 加法与乘法是计算机模型中最简单直接也是最有效的建模方法;
 - 导数与偏导 $\frac{dy}{dx}$ 与 $\frac{\partial y}{\partial x}$;
 - 导数与偏导在计算机中的应用;
 - 牛顿迭代法
 - 优化
 - 极限 $\lim_{x\to 0} \frac{\sin x}{x}$
 - 导数与梯度的意义 ∇;
 - 可导与可微 f'(x);
 - 微分与积分;
 - 多项式 (polynomial) 与 NP 问题, x^n ;
 - 几种常见函数的特性(对数函数,指数函数,Sigmoid);
 - tfidf
 - sigmoid 与概率;

- 常见函数的特性建模;
- 5. 数学优化:
 - 凸函数
 - 凸优化的定于
 - 机器学习与凸优化的关系
- 6. 线性代数:
 - 从少量未知数到多个未知数;
 - 线性相关与线性无关;
 - 动态变化过程的建模;
 - 投影;
 - 特征值, SVD

7. 逻辑:

- 集合与集合操作
- 与或非, 亦或关系
- 与或非与计算机及基本线路的关系
- 逻辑等价性

8. 概率论:

- 计算机科学的应用: 估计运行时间, 估计数据采样, 估计准确度
- 概率的起源
- 概率的贝叶斯方法
- 概率的计算
- 大数定律与正太分布
- 期望、方差
- Standarization and Normalization
- 概率分数

9. 图论

- 图论研究的问题;
- 树,图与计算机科学的关系;
- 对于问题的建模

10. 动态规划

- 从图论到动态规划;
- 动态规划的理论基础;
- 动态规划的应用;
- Bellmean 方程与强化学习;