Prof. Dorirley Rodrigo Alves

Modelo Análise 1^a Análise -Parâmetros da

Referência Dúvidas?!

Programação Linear Análise de Sensibilidade

Prof. Dorirley Rodrigo Alves dorirley@pucminas.br

Pontifícia Universidade Católica de Minas Gerais - PUC Minas Instituto de Ciências Exatas e Informática - ICEI Otimização de Sistemas

Prof. Dorirley Rodrigo Alves

Introdução

Modelo Análise

1^a Análise -Parâmetros d F.O

Referência Dúvidas?!

Referência Dúvidas?! Observe o modelo matemático e suas respectivas soluções utilizando o Método Gráfico e o Método Simplex

 $FO \mapsto \max z = 4x_1 + 5x_2$

Sujeito a: R_1 : $x_1 + 2x_2 + x_3 = 21$

 $R_2: \quad 3x_1+x_2+ \quad x_4=18$

 $x_1; x_2; x_3; x_4 \ge 0$

Tabela Inicial				
	ML	<i>x</i> ₁	<i>x</i> ₂	
f(x)	0	4	5	
<i>X</i> 3	21	1	2	
<i>X</i> 4	18	3	1	

Tabela Final				
	ML	<i>X</i> 3	<i>X</i> ₄	
f(x)	-57	-11/5	-3/5	
<i>x</i> ₂	9	3/5	-1/5	
<i>x</i> ₁	3	-1/5	2/5	

Prof. Dorirley Rodrigo Alves

Introduçã Modelo Análise

1^a Análise -Parâmetros da F.O

Referência Dúvidas?!

Análise de Sensibilidade

Há, inicialmente, algumas análises a serem realizadas para uma melhor tomada de decisão.

- Análise dos parâmetros da Função Objetivo;
- Analise dos coeficientes das restrições. Ou seja, alterar o valor das variáveis não básicas (VNB);
- 3 Análise dos limites das disponibilidades.

Prof. Dorirley Rodrigo Alves

Introduçã Modelo Análise

1^a Análise -Parâmetros da F.O

Referência Dúvidas?!

Analisando os parâmetros da Função Objetivo

Prof. Dorirley Rodrigo Alves

Modelo Análise 1a Análise -Parâmetros da

F O

Se a reta $\mathbb Z$ for girada no sentido horário ou anti-horário sobre o vértice que representa o Ponto Ótimo, esse ponto permanecerá enquanto $\mathbb Z$ estiver entre as faixas das Restrições 1 e 2.

De um modo geral, a expressão da F.O pode ser representada da seguinte forma:

$$\max z = c_1 x_1 + c_2 x_2$$
 Coeficiente angular $(\alpha) = \frac{c_1}{c_2}$

Matematicamente, temos:

Declividade da Rs₁

Declividade da FO

Declividade da Rso

$$x_1 + 2x_2 = 21$$
 $\alpha = \frac{1}{2}$ $\leq \frac{4}{5}$ \leq

$$3x_1 + x_2 = 18$$
 $\alpha = 3$

Significa que para sabermos quais alterações podemos realizar na FO, a razão entre c_1/c_2 deve estar sobre esse intervalo.

Prof. Dorirley Rodrigo Alves

Modelo Análise 1^a Análise -Parâmetros da

Referência

F O

primeiro exemplo

Suponha que no cenário de exemplo ($z=4x_1+5x_2$) houve uma modificação nos lucros dos itens que compõem a função objetivo, alterando seus valores para ($z=7x_1+8x_2$). A condição continuaria sendo atendida?

$$\max z = 7x_1 + 8x_2$$
 Coeficiente angular $(\alpha) = \frac{7}{8}$

Matematicamente, temos:

Declividade da Rs₁

Declividade da FO

Declividade da Rs₂

$$\alpha = 0,5$$

$$\leq \frac{7}{8} = 0,875 \leq$$

$$\alpha = 3$$

Portanto, as alterações ainda seriam válidas e o valor final de z passaria a ser z=7(3)+8(9) \therefore z=93

Referência Dúvidas?!

segundo exemplo

Lembrando que $(z=4x_1+5x_2)$, quais possíveis variações em c_2 que manteriam a solução básica do modelo original? Obs.: os demais parâmetros permanecem os mesmo.

Substituindo $c_1^0=4$ (valor original de c_1) na condição

$$0,5 \le \frac{c_1}{c_2} = \frac{4}{5} = 0,8 \le 3$$

tem-se que:

$$\begin{cases}
0.5 \times c_2 \le 4 \Rightarrow c_2 \le 8 \\
3 \times c_2 \ge 4 \Rightarrow c_2 \ge 1.33
\end{cases} \tag{1}$$

$$1,33 \le c_2 \le 8$$

Portanto, enquanto c_2 atender o intervalo especificado, a solução básica ótima do modelo original ($x_1=3$ e $x_2=9$), permanecerá inalterada.

Prof. Dorirley Rodrigo Alves

Modelo Análise

1^a Análise -Parâmetros da F.O

Referência Dúvidas?!

terceiro exemplo

Lembrando que $(z=4x_1+5x_2)$, quais possíveis variações em c_1 que manteriam a solução básica do modelo original? Obs.: os demais parâmetros permanecem os mesmo.

Substituindo $c_2^0 = 5$ (valor original de c_2) na condição

$$0,5 \le \frac{c_1}{c_2} = \frac{4}{5} = 0,8 \le 3$$

tem-se que:

$$0,5\times5\leq c_1\leq3\times5\Rightarrow2,5\leq c_1\leq15$$

$$2,5 \le c_1 \le 15$$

Portanto, enquanto c_1 atender o intervalo especificado, a solução básica ótima do modelo original ($x_1=3$ e $x_2=9$), permanecerá inalterada.

Prof. Dorirley Rodrigo Alves

Modelo Análise 1^a Análise -

Referências

Dúvidae2L

A. Author. *Handbook of Everything*.

Some Press, 1990.

Prof. Dorirley Rodrigo Alves

Modelo Análise 1^a Análise -

Parâmetros o F.O

Dúvidas?!

Alguém com dúvida?!

