Financial Mathematics

MATH 5870/6870¹ Fall 2021

Le Chen

lzc0090@auburn.edu

Last updated on August 15, 2021

Auburn University
Auburn AL

¹Based on Robert L. McDonald's *Derivatives Markets*. 3rd Ed. Pearson. 2013.

Chapter 3. Insurance, Collars, and Other Strategies

Chapter 3. Insurance, Collars, and Other Strategies

- § 3.1 Basic insurance strategies
- § 3.2 Put-call parity
- \S 3.3 Spreads and collars
- § 3.4 Speculating on volatility
- § 3.5 Problems

Chapter 3. Insurance, Collars, and Other Strategies

- § 3.1 Basic insurance strategies
- § 3.2 Put-call parity
- § 3.3 Spreads and collars
- § 3.4 Speculating on volatility
- § 3.5 Problems

- 1. Used to insure long positions (floors)
- 2. Used to insure short positions (caps)
- 3. Written against asset positions (selling insurance)

Covered put writing

- 1. Used to insure long positions (floors)
- 2. Used to insure short positions (caps)
- 3. Written against asset positions (selling insurance Covered call writing

- 1. Used to insure long positions (floors)
- 2. Used to insure short positions (caps)
- 3. Written against asset positions (selling insurance)

Covered call writing

Covered put writing

- 1. Used to insure long positions (floors)
- 2. Used to insure short positions (caps)
- **3.** Written against asset positions (selling insurance) Covered call writing

Covered put writing

ı

- 1. Used to insure long positions (floors)
- 2. Used to insure short positions (caps)
- 3. Written against asset positions (selling insurance)

Covered call writing

Covered put writing

1

Four positions

positions w.r.t. asset	put option	call option
long	purchased (floor)	written
short	written	purchased (cap)

Buying insurance	Selling insurance
floor = buying a put option	Covered put writing
cap = buying a call option	Covered call writing

5

We will work under the following setup

${\rm S\&S}$ index

index price today	\$1,000
6-month interest rate	2%
premium for 1000-strike 6-month call	\$93.809
premium for 1000-strike 6-month put	\$74.201

Insuring a long position – Floors

```
owning a home owning a stock index insuring the house buying a put (floor)
```

Goal: to insure against a fall in the price of the underlying asset.

7

Example 3.1-1 Under the following scenario, compute the combined profit of insuring a long position via buying a put for the following S&R index.

index price today	\$1,000
6-month interest rate	2%
premium for 1000-strike 6-month put	\$74.201
index price at expiration	\$900

Solution

$$\underbrace{\$900 - \$1,000 \times 1.02}_{} + \underbrace{\$1,000 - \$900 - \$74.201 \times 1.02}_{} = -\$95.68$$

profit on S&R inde

profit on pu

Example 3.1-1 Under the following scenario, compute the combined profit of insuring a long position via buying a put for the following S&R index.

index price today	\$1,000
6-month interest rate	2%
premium for 1000-strike 6-month put	\$74.201
index price at expiration	\$900

Solution.

$$\underbrace{\$900 - \$1,000 \times 1.02}_{\text{profit on S\&R index}} + \underbrace{\$1,000 - \$900 - \$74.201 \times 1.02}_{\text{profit on put}} = -\$95.68.$$

Insuring a short position — Caps

If we have a short position in the S&R index, we experience a loss when the index rises.

We can insure a short position by purchasing a call option (cap) to protect against a higher price of repurchasing the index.

Example 3.1-2 Under the following scenario, compute the combined profit for insuring a short position via buying a call of the following S&R index.

index price today	\$1,000
6-month interest rate	2%
premium for 1000-strike 6-month call	\$93.809
index price at expiration	\$1,100

Solution

$$$1,000 \times 1.02$$
 - $$93.809 \times 1.02$ - $$1,000$ = -\$75.685

Example 3.1-2 Under the following scenario, compute the combined profit for insuring a short position via buying a call of the following S&R index.

index price today	\$1,000
6-month interest rate	2%
premium for 1000-strike 6-month call	\$93.809
index price at expiration	\$1,100

Solution.

$$$1,000 \times 1.02$$$
 - $$93.809 \times 1.02$$ - $$1,000$ = -\$75.685. future value of short S&R index FV of premium for call exercise the call option

10

For every insurance buyer there must be an insurance seller

Strategies used to sell insurance

- Covered writing (option overwriting or selling a covered call) is writing an option when there is a corresponding long position in the underlying asset.
- Naked writing is writing an option when the writer does not have a position in the asset

For every insurance buyer there must be an insurance seller

Strategies used to sell insurance

Covered writing (option overwriting or selling a covered call) is writing an option when there is a corresponding long position in the underlying

Naked writing is writing an option when the writer does not have a

For	every	insurance	buyer	there	must	be a	an	insurance	selle

Strategies used to sell insurance

- ► Covered writing (option overwriting or selling a covered call) is writing an option when there is a corresponding long position in the underlying asset.
- Naked writing is writing an option when the writer does not have a position in the asset.

For	every	insurance	buyer	there	must	be a	an	ınsurance	selle

Strategies used to sell insurance

- ▶ Covered writing (option overwriting or selling a covered call) is writing an option when there is a corresponding long position in the underlying asset.
- ▶ Naked writing is writing an option when the writer does not have a position in the asset.

Covered call writing

Long position of the asset + Sell a call option

Covered put writing

Short position of the asset + Sell a put option

Covered call writing

Example 3.1-3 Under the following scenario, compute the combined profit for writing a covered call for S&R index.

index price today	\$1,000
6-month interest rate	2%
premium for 1000-strike 6-month call	\$93.809
index price at expiration	\$1,100

Solution

$$\underbrace{\$1,100 - \$1,000 \times 1.02}_{\$1,000 - \$1,100 + \$93.809 \times 1.02} + \underbrace{\$1,000 - \$1,100 + \$93.809 \times 1.02}_{\$1,000 - \$1,100 + \$93.809 \times 1.02} = \$75.68$$

profit on S&R index

profit on written ca

Covered call writing

Example 3.1-3 Under the following scenario, compute the combined profit for writing a covered call for S&R index.

index price today	\$1,000
6-month interest rate	2%
premium for 1000-strike 6-month call	\$93.809
index price at expiration	\$1,100

Solution.

$$\underbrace{\$1,100-\$1,000\times1.02}_{\text{profit on S\&R index}} + \underbrace{\$1,000-\$1,100+\$93.809\times1.02}_{\text{profit on written call}} = \$75.68.$$

Covered put writing

Example 3.1-4 Under the following scenario, compute the combined profit for writing a covered put for S&R index.

index price today	\$1,000
6-month interest rate	2%
premium for 1000-strike 6-month put	\$74.201
index price at expiration	\$900

Solution

$$\$1,000 \times 1.02 - \$900 + \$900 - \$1,000 + \$74.201 \times 1.02 = \$95.685$$

profit on selling S&R inde:

profit on written pu

Covered put writing

Example 3.1-4 Under the following scenario, compute the combined profit for writing a covered put for S&R index.

index price today	\$1,000
6-month interest rate	2%
premium for 1000-strike 6-month put	\$74.201
index price at expiration	\$900

Solution.

$$\underbrace{\$1,000\times 1.02 -\$900}_{\text{profit on selling S&R index}} + \underbrace{\$900 -\$1,000 +\$74.201\times 1.02}_{\text{profit on written put}} = \$95.685.$$

