ELBA-1.0

Symbol	BRAHMS units	LAMMPS units	Other units
σ_{CC},σ_{PP}	$0.52\mathrm{nm}$	$5.2\mathrm{\AA}$	
σ_{GG},σ_{EE}	$0.46\mathrm{nm}$	$4.6\mathrm{\AA}$	
σ_{AA},σ_{TT}	$0.45\mathrm{nm}$	$4.5\mathrm{\AA}$	
σ_{WW}	$0.30\mathrm{nm}$	$3.0\mathrm{\AA}$	
$\epsilon_{CC},\epsilon_{PP}$	$6.0\mathrm{kJ/mol}$	$1.434\mathrm{kcal/mol}$	
$\epsilon_{GG},\epsilon_{EE}$	$4.0\mathrm{kJ/mol}$	$0.956\mathrm{kcal/mol}$	
$\epsilon_{AA},\epsilon_{TT}$	$3.5\mathrm{kJ/mol}$	$0.837\mathrm{kcal/mol}$	
ϵ_{WW}	$1 \mathrm{kJ/mol}$	$0.239\mathrm{kcal/mol}$	
ϵ_{WW}^{tot}	$1.95 \epsilon_{WW}$	$0.466\mathrm{kcal/mol}$	
ϵ_{WP}	$1.8\sqrt{\epsilon_{WW}\epsilon_{PP}}$	$1.054\mathrm{kcal/mol}$	
ϵ_{WG}	$1.2\sqrt{\epsilon_{WW}\epsilon_{GG}}$	$0.574\mathrm{kcal/mol}$	
ϵ_{WE}	$1.6\sqrt{\epsilon_{WW}\epsilon_{EE}}$	$0.765\mathrm{kcal/mol}$	
ϵ_{AW}	$1.5\sqrt{\epsilon_{AA}\epsilon_{WW}}$	$0.671\mathrm{kcal/mol}$	
ϵ_{AP}	$2.5\sqrt{\epsilon_{AA}\epsilon_{PP}}$	$2.738\mathrm{kcal/mol}$	
ϵ_{AG}	$1.5\sqrt{\epsilon_{AA}\epsilon_{GG}}$	$1.341\mathrm{kcal/mol}$	
ϵ_{AE}	$2.5\sqrt{\epsilon_{AA}\epsilon_{EE}}$	$2.236\mathrm{kcal/mol}$	
Q_C,Q_A	$+0.7\mathrm{e}$	$+0.7\mathrm{e}$	$1.12 \times 10^{-19} \mathrm{C}$
Q_P	$-0.7{ m e}$	$-0.7\mathrm{e}$	$-1.12 \times 10^{-19} \mathrm{C}$
μ_G	$1.6\mathrm{D}$	$0.333\mathrm{e\AA}$	
μ_E	$2\mathrm{D}$	$0.416\mathrm{e\AA}$	
μ_W	$2.3\mathrm{D}$	$0.479\mathrm{e\AA}$	
k	$1260 \mathrm{kJ/(molnm^2)}$	$3.011 \mathrm{kcal/(mol\AA^2)}$	
w	$30\mathrm{kJ/mol}$	$2*3.585 \mathrm{kcal/mol}$	
c	$10\mathrm{kJ/mol}$	$2*1.195 \mathrm{kcal/mol}$	
$\alpha_{0_{CPG}}, \alpha_{0_{APG}}$	115°	115°	$2.01\mathrm{rad}$
$\alpha_{0_{PGE}}$	160°	160°	$2.79\mathrm{rad}$
$\alpha_{0_{GET}}, \alpha_{0_{ETT}}, \alpha_{0_{TTT}}^{saturated}$	180°	180°	$3.14\mathrm{rad}$
$\alpha_{0_{GET}}, \alpha_{0_{ETT}}, \alpha_{0_{TTT}}^{saturated}$ $\alpha_{0_{TTT}}^{cis-unsaturated}$	120°	120°	$2.09\mathrm{rad}$
m_C, m_P	90 amu	$90\mathrm{g/mol}$	$14.9 \times 10^{-23} \mathrm{g}$
m_G, m_E	$62\mathrm{amu}$	$62\mathrm{g/mol}$	$10.3 \times 10^{-23} \mathrm{g}$
m_T, m_A	42 amu	$42\mathrm{g/mol}$	$7.0 \times 10^{-23} \mathrm{g}$
m_W	40 amu	$40\mathrm{g/mol}$	$6.6 \times 10^{-23} \mathrm{g}$
$I_{G,E}$	$10\mathrm{amu}\mathrm{nm}^2$		$1000\mathrm{amu\AA^2}$
I_W	$1\mathrm{amu}\mathrm{nm}^2$		$100\mathrm{amu\AA^2}$

Subscripts C, A, P, G, E, T and W stand for the site types choline, amine, phosphate, glycerol, ester, tail and water, respectively. Lennard-Jones cross-terms are calculated by the standard Lorentz-Berthelot rule except for increased ϵ terms representing hydrogen bonding; in particular, ϵ_{WP} , ϵ_{WG} , ϵ_{WE} , ϵ_{AW} , ϵ_{AP} , ϵ_{AG} , ϵ_{AE} are set as reported in the table. Charges and dipoles are identified by Q and μ ; cross terms are obtained via standard electrostatic formulae. Nonbonded interactions between bonded pairs are zero (in technical jargon: 1-2 LJ and Coul interactions are excluded). The rigidity of the Hooke harmonic potential is identified by k; reference lengths are set to $0.9 \, \sigma_{ij}$. The rigidity of the angle potential is identified by w. The rigidity of the orientation-restraining potential is c. Masses and principal moments of inertia are identified by m and I, respectively.