Homework #07

Fall 2021 A. Stepanov

(due Friday, October 22, by 5:00 p.m. CDT)

No credit will be given without supporting work.

- After a homework assignment is posted on Compass2g, the weak-minded lazy Chegg enthusiasts flock to Chegg according to a Poisson process with the average rate of 1.5 weak-minded lazy Chegg enthusiasts per minute.

 (The pudding-brain lazy CourseHero worshipers show similar behavior.)
- a) Find the probability that at most two weak-minded lazy Chegg enthusiasts would show up on Chegg during the first minute after the homework assignment is posted on Compass2g.
- b) Find the probability that exactly seven weak-minded lazy Chegg enthusiasts would show up on Chegg during the first five minutes after the homework assignment is posted on Compass2g.
- c) Find the probability that the seventh weak-minded lazy Chegg enthusiast would show up on Chegg during the fifth minute after the homework assignment is posted on Compass2g.
- d) Construct a 90% prediction interval for the time when the seventh weak-minded lazy Chegg enthusiast would show up on Chegg.

That is, find a and b such that $P(a < T_7 < b) = 0.90.$

7. Let $\psi > 0$ and let X_1, X_2, \dots, X_n be a random sample from a probability distribution with probability density function

$$f(x; \psi) = \frac{\psi}{2\psi} \cdot (2-x)^{\psi-1}, \quad 0 < x < 2,$$
 zero otherwise.

- a) (i) Obtain a method of moments estimator of ψ , $\tilde{\psi}$.
 - (ii) Suppose n = 3, and $x_1 = 0.62$, $x_2 = 1.54$, $x_3 = 1.86$. Find a method of moments estimate of ψ .
 - The ind E(X). It will depend on ψ , so it will be a function of ψ , say, E(X) = $h(\psi)$.
 - ② Replace E(X) with \overline{X} , so $\overline{X} = h(\psi)$.
 - 3 Solve $\overline{X} = h(\psi)$ for ψ . Add a tilde.
- b) (i) Obtain the maximum likelihood estimator of ψ , $\hat{\psi}$.
 - (ii) Suppose n = 3, and $x_1 = 0.62$, $x_2 = 1.54$, $x_3 = 1.86$. Find the maximum likelihood estimate of ψ .

That is, find $\hat{\psi} = \arg \max L(\psi) = \arg \max \ln L(\psi)$, where $L(\psi) = \prod_{i=1}^{n} f(x_i; \psi)$.

- ① Multiply: $L(\psi) = f(x_1; \psi) \cdot f(x_2; \psi) \cdot \dots \cdot f(x_n; \psi)$.
- ② Simplify. "Hint": $a^b \cdot a^c = a^{b+c}$, $a^c \cdot b^c = (a \cdot b)^c$, $(a^b)^c = a^{b \cdot c}$.
- 3 Take ln. "Hint": $\ln(a \cdot b) = \ln a + \ln b$, $\ln(a^b) = b \cdot \ln a$.
- Take the derivative with respect to ψ .
- \bigcirc Set equal to zero. Solve for ψ . Add a hat.
- c) Show that $W = -\ln\left(1 \frac{X}{2}\right)$ follows a Gamma distribution.

What are the parameters α and θ for this Gamma distribution? *No credit will be given without proper justification.*

Let $\xi > 0$ and let X_1, X_2, \dots, X_n be a random sample from a probability distribution with probability density function

$$f(x;\xi) = \frac{1}{2} \xi^4 x^{11} e^{-\xi x^3}, \quad x > 0,$$
 zero elsewhere.

- Obtain the maximum likelihood estimator $\hat{\xi}$ of ξ . a)
 - Suppose n = 5, $x_1 = 0.3$, $x_2 = 0.6$, $x_3 = 1.2$, $x_4 = 1.3$, $x_5 = 1.8$ Obtain the maximum likelihood estimate of ξ .

That is, find
$$\hat{\xi} = \arg \max L(\xi) = \arg \max \ln L(\xi)$$
, where $L(\xi) = \prod_{i=1}^{n} f(x_i; \xi)$.

- Multiply: $L(\xi) = f(x_1; \xi) \cdot f(x_2; \xi) \cdot \dots \cdot f(x_n; \xi)$. (1)
- Simplify. "Hint": $a^b \cdot a^c = a^{b+c}$, $a^c \cdot b^c = (a \cdot b)^c$, $(a^b)^c = a^{b \cdot c}$.

 Take ln. "Hint": $\ln(a \cdot b) = \ln a + \ln b$, $\ln(a^b) = b \cdot \ln a$.
- Take the derivative with respect to ξ. 410 4)
- Set equal to zero. Solve for ξ . Add a hat.
- Show that $W = X^3$ follows a Gamma distribution.

What are the parameters α and θ for this Gamma distribution?

No credit will be given without proper justification.

"Hint":
$$f_{\mathbf{W}}(w) = f_{\mathbf{X}}(g^{-1}(w)) \left| \frac{dx}{dw} \right|$$
.

Using CourseHero is cheatir Using Chegg is cheating