Question number	Scheme	Marks	
8 (a)	$\underset{OB}{\longrightarrow} = \underset{OA}{\longrightarrow} + \underset{AB}{\longrightarrow} = \mathbf{a} + \mathbf{b}$	B1 [1]	
(b)	$\overrightarrow{oc} = 2\mathbf{b}$	B1	
	$\underset{BC}{\rightarrow} = \underset{BO}{\rightarrow} + \underset{OC}{\rightarrow} = -(\mathbf{a} + \mathbf{b}) + 2\mathbf{b} = \mathbf{b} - \mathbf{a}$	M1A1 [3]	
(c)	$\underset{OM}{\longrightarrow} = \underset{OB}{\longrightarrow} + \underset{BM}{\longrightarrow} = \mathbf{a} + \mathbf{b} + \frac{2}{3}(\mathbf{b} - \mathbf{a}) = \frac{\mathbf{a}}{3} + \frac{5\mathbf{b}}{3} \text{ or } \frac{1}{3}(\mathbf{a} + 5\mathbf{b})$	M1A1ft [2]	
(d)	$\underset{OV}{\rightarrow} = \mu \left(\frac{a}{3} + \frac{5b}{3} \right) = \frac{\mu a}{3} + \frac{5\mu b}{3}$	M1	
	$\overrightarrow{OY} = \overrightarrow{OA} + \overrightarrow{AY} = \boldsymbol{a} + \lambda \boldsymbol{b}$	M1	
	$\Rightarrow \frac{\mu}{2} = 1$ and $\frac{5\mu}{2} = \lambda$	M1	
	Solves simultaneous equations by any method	M1	
	$\mu = 3, \lambda = 5$	A1	
	AB:BY=1:4	[5]	
	ALT		
	$\underset{BY}{\rightarrow} = \lambda \underset{AB}{\rightarrow} = \lambda \mathbf{b}$	[M1	
	$ \overrightarrow{BY} = \overrightarrow{BO} + \overrightarrow{OY} = \overrightarrow{BO} + \mu \xrightarrow{OM} = -(\boldsymbol{a} + \boldsymbol{b}) + \mu \left(\frac{1}{3}\boldsymbol{a} + \frac{5}{3}\boldsymbol{b}\right) \\ = \left(-1 + \frac{1}{3}\mu\right)\boldsymbol{a} + \left(-1 + \frac{5}{3}\mu\right)\boldsymbol{b} $	M1	
	$\Rightarrow -1 + \frac{1}{3}\mu = 0 \text{ and } \lambda = -1 + \frac{5}{3}\mu$	M1	
	$\mu = 3, \lambda = 4$	M1	
(-)	AB:BY=1:4	A1]	
(e)	$10 = \frac{1}{2}ab\sin 60^{\circ} \Rightarrow ab = \frac{40}{\sqrt{3}} \Rightarrow a = \frac{40}{b\sqrt{3}}$	M1A1	
	Area = $\frac{1}{2}a \times 5b \sin 120^{\circ} = \frac{1}{2} \times \frac{40}{b\sqrt{3}} \times 5b \sin 120^{\circ}$	dM1	
	Area = 50	A1	
	ALT	[4]	
		[M1	
	$\frac{\text{Area }OAY}{\text{Area }OAB} = \frac{\frac{1}{2} \times h \times 5}{\frac{1}{2} \times h \times 1} = \frac{5}{1}$	A1	
	Area $OAY = 5 \times Area OAB$	dM1	
	Area $OAB = 10$	A 17	
	Area = 50	A1]	
	Te		

Part	Mark	Notes
(a)	B1	
_ ` `		For a correct expression for \xrightarrow{OB} in terms of a and b
(b)	B1	For a correct expression for \xrightarrow{OC}
	M1	For a correct vector statement for \rightarrow : $\rightarrow = \rightarrow + \rightarrow BC$
		This mark can be implied by a correct (unsimplified) vector using their \rightarrow_{OB} .
		Vector statement must be suitable for substitution to find \xrightarrow{BC}
	A1	For the correct simplified \rightarrow in terms of a single a and b only.
		$\underset{BC}{\rightarrow} = \mathbf{b} - \mathbf{a}$
		If answer $\underset{RC}{\rightarrow} = \mathbf{b} - \mathbf{a}$ seen without wrong working then award B1M1A1.
(c)	M1	For a correct vector statement for \rightarrow : $\rightarrow = \rightarrow +\frac{2}{3} \rightarrow BC$
		This mark can be implied by a correct (unsimplified) vector using their \xrightarrow{OR} and
		OB.
	1.40	their \rightarrow .
	A1ft	For the correct simplified using their \xrightarrow{OM} in terms of a single a and b only.
		$\underset{OM}{\longrightarrow} = \frac{a}{3} + \frac{5b}{3} \text{ or } \frac{1}{3}(a+5b)$
		UM 3 3 3
(d)	M1	M1 for one correct statement of route for \rightarrow
	M1	M1 for second correct statement of route for $\rightarrow OY$
		OY
		$\frac{1}{OY} = \mu \frac{1}{OM}$ (or any other variable in place of μ)
		$\frac{\partial}{\partial y} = \left(\frac{\partial}{\partial A} + \frac{\partial}{\partial Y}\right) = \mathbf{a} + \lambda \mathbf{b}$ (or any other variable in place of λ , provided this is
		different to their μ).
	M1	Allow use of their vectors from earlier parts of the question. For equating their coefficients of a and b to obtain two equations.
	1411	Mark intent – one must be correct, condone slips in second.
	M1	Solving their simultaneous equations by any method.
		Only the value for their λ is required for this mark.
	A1	For $AB: BY = 1:4$
ALT – us	se of $\underset{BY}{\rightarrow}$ r	oute, use also for $\underset{AY}{\rightarrow}$ route
	M1	M1 for one correct statement of route for \rightarrow
	M1	M1 for second correct statement of route for \rightarrow
		BY
		$\underset{BY}{\longrightarrow} = \lambda \underset{AB}{\longrightarrow} = \lambda \mathbf{b} \text{ (or any other variable in place of } \lambda)$
		$\begin{vmatrix} BY & AB \\ \overrightarrow{BY} & \overrightarrow{BO} & +\overrightarrow{OY} & \overrightarrow{BO} + \mu \overrightarrow{OM} & = -(\boldsymbol{a} + \mathbf{b}) + \mu \left(\frac{1}{3}\mathbf{a} + \frac{5}{3}\mathbf{b}\right) \end{vmatrix}$
		$\begin{vmatrix} BY & BO & OY & BO \end{vmatrix} = \left(-1 + \frac{1}{3}\mu\right)\mathbf{a} + \left(-1 + \frac{5}{3}\mu\right)\mathbf{b} \text{ (or any other variable in place of } \mu$
		provided this is different to their λ). Allow use of their vectors from earlier parts of the question.
	M1	For equating their coefficients of a and b to obtain two equations.
		Mark intent – one must be correct, condone slips in second.
	M1	Solving their simultaneous equations by any method.
		Only the value for their λ is required for this mark.
	A1	For $AB: BY = 1:4$

(e)	M1	For use of the correct formula for area of a triangle with 60° and correct value	
		of sin 60°	
		$10 = \frac{1}{2}ab \sin 60^{\circ} = ab \times \frac{\sqrt{3}}{4}$	
	A1	For correct expression for ab or a	
		$ab = \frac{40}{\sqrt{3}} \text{ or } a = \frac{40}{b\sqrt{3}}$	
	dM1	For use of the correct formula for area of a triangle with 120° and attempt to	
		substitute for ab or a.	
		Area = $\frac{1}{2}a \times '5'b \sin 120^\circ = \frac{1}{2} \times '\frac{40}{b\sqrt{3}}' \times '5'b \sin 120^\circ$	
		or	
		Area = $\frac{1}{2}a \times '5'b \sin 120^\circ = \frac{1}{2} \times ab \times '5' \sin 120^\circ = \frac{1}{2} \times '\frac{40}{\sqrt{3}}' \times '5' \sin 120^\circ$	
		Dependent on the first M awarded.	
		Allow use of their λ from part (d).	
	A1	For the correct area	
		Area = 50	
ALT – use of ratios of areas			
	M1	For use of their ratio AB: BY to write an equation linking area OAY and area	
		OAB	
		$\frac{\text{Area }OAY}{\text{Area }OAB} = \frac{\frac{1}{2} \times h \times (1 + 4')}{\frac{1}{2} \times h \times 1} = \frac{5'}{1}$	
		Area $OAB = \frac{1}{2} \times h \times 1 = 1$	
	A1	For correct relationship between area <i>OAY</i> and area <i>OAB</i>	
	dM1	For a correct method to find the area of <i>OAB</i>	
		Dependent on first M mark being awarded.	
	A1	For the correct area	
		Area = 50	