习题课材料(四)

注: 带 ♡ 号的习题有一定的难度、比较耗时, 请量力为之.

记号: 如不加说明,我们只考虑实矩阵。对于矩阵 A, 它的四个基本子空间是列空间 C(A), 零空间 N(A), 行空间 $C(A^T)$ 和 A^T 的零空间 $N(A^T)$ 。

空间的基。这里,r,n,b,q,k,p 为各不相同的实数。

习题
$$2.$$
 $A = \begin{bmatrix} I & F \\ 0 & 0 \end{bmatrix}, B = \begin{bmatrix} I & G \\ 0 & 0 \end{bmatrix}$ 都是 $m \times n$ 矩阵,且具有相同的四个子空间。证明 $F = G$ 。

习题 3. 给定 $V,W \subset \mathbb{R}^n$ 。若 $\dim V + \dim W > n$,则存在 $x \neq 0$ 且 $x \in V \cap W$ 。

习题 4. A 是 10 阶方阵, $A^2 = 0$ 。证明: rank(A) ≤ 5 。

习题 5. 设 $(1,0,0,0,0)^T$, $(0,1,1,0,0)^T$ 和 $(0,1,1,1,0)^T$ 构成了 N(A) 的一组基,而 A 为五阶方阵,求 $\operatorname{rref}(A)$ 。是否可求出 C(A), $C(A^T)$ 和 $N(A^T)$ 的一组基?

习题 6. 1. 设 A 是一个 $m \times n$ 的实矩阵, 证明 $N(A^TA) = N(A)$ 。

- 2. A 如上。证明 $C(A^TA) = C(A^T)$ 。
- 3. 证明 A^TA 可逆当且仅当 A 为列满秩矩阵。
- 4. 如果 A 是一个 $m \times n$ 的复矩阵,上述命题是否成立?

习题 7. 设 V 为向量空间, a_1, \ldots, a_n 为 V 中线性无关的向量,证明当且仅当 n 为奇数时, $a_1 + a_2, a_2 + a_3, \ldots, a_{n-1} + a_n, a_n + a_1$ 线性无关。

习题 8. (Steinitz 替换定理) a_1, \ldots, a_r 线性无关, 可用 b_1, \ldots, b_s 线性表示, 则

- 1. $r \leq s$;
- 2. 可以选择 b_1,\ldots,b_s 中的 r 个向量换成 a_1,\ldots,a_r , 得到的新的向量组与 b_1,\ldots,b_s 等价。

习题 9. 设 A 是 n 阶方阵且 $f(x) = a_0 + a_1x + \cdots + a_nx^n$ 为 \mathbb{R} 上一多项式,则定义 $f(A) = a_0I_n + a_1A + \cdots + a_nA^n$ 。已知多项式 f 满足 f(0) = 0,证明对任意方阵 A, $\operatorname{rank} f(A) \leq \operatorname{rank}(A)$ 。

习题 10. 证明: $\operatorname{rank}\begin{bmatrix} A & b \\ b^T & 0 \end{bmatrix} = \operatorname{rank}(A)$ 是 Ax = b 有解的充分不必要条件。

习题 11 (♡). 证明: 反对称矩阵的秩是偶数。

习题 12 (♡). 设 A 是可逆实反对称矩阵, $b ∈ \mathbb{R}^n$ 。证明下列等式成立。

1.
$$\operatorname{rank}(A + bb^T) = n_{\circ}$$

2. rank
$$\begin{bmatrix} A & b \\ b^T & 0 \end{bmatrix} = n_{\circ}$$