DES535 Ubiquitous Computing

Dr. Pragma Kar
Assistant Professor
Department of Human-Centered Design

Ambient & Context-Aware Computing

Module III

Types of Sensors for Context Sensing

- Physical sensors refer sensors that can capture any physical world belonging data (e.g., GPS: location, accelerometer: activity etc.).
- Virtual sensors imply a source from software applications and/or services, and a semantic data obtained through cognitive inference (e.g., location info by manually entered place pinpoint through social network services or computation power of devices etc.).
- Logical sensors define combination of physical and virtual sensors with additional information obtained through various sources by user interactions (e.g., databases, log files etc.).

Hierarchy of Context Representation

Architecture of Context-aware Systems

Ö. Yürür, C. H. Liu, Z. Sheng, V. C. M. Leung, W. Moreno and K. K. Leung, "Context-Awareness for Mobile Sensing: A Survey and Future 5 Directions," in IEEE Communications Surveys & Tutorials, vol. 18, no. 1, pp. 68-93, Firstquarter 2016, doi: 10.1109/COMST.2014.2381246.

Case Study 1

CHI 2018 Best Paper Award

Wall++: Room-Scale Interactive and Context-Aware Sensing

Yang Zhang^{1,2} Chouchang (Jack) Yang¹ Scott E. Hudson^{1,2} Chris Harrison^{1,2} Alanson Sample¹

1 Disney Research Pittsburgh 4720 Forbes Ave, Suite 110, Pittsburgh, PA 15213

2 Carnegie Mellon University 5000 Forbes Avenue, Pittsburgh, PA 15213

Capacitive Sensing: The pioneers (SmartSkin)

- The sensor consists of grid-shaped transmitter and receiver electrodes (copper wires).
- The vertical wires are transmitter electrodes, and the horizontal wires are receiver electrodes.
- When one of the transmitters is excited by a wave signal (of typically several hundred kilohertz), the receiver receives this wave signal because each crossing point (transmitter/receiver pairs) acts as a (very weak) capacitor.

Capacitive Sensing: The pioneers (SmartSkin)

- When a conductive and grounded object (finger) approaches a crossing point, it capacitively couples to the electrodes, and drains the wave signal.
- As a result, the received signal amplitude becomes weak.

Capacitive Sensing: Smartscreens

Typical diamond pattern of a mutual-capacitance touch sensor. Approaching fingers couple to the lines and cause a drop in capacitance between them.

Watch this video : https://www.youtube.com/watch?v=IdWXT391FJE

Image Source: https://siplab.org/projects/TouchPose

Capacitive Sensing: Other Applications

Phase 1: Paint and Backing Materials

- carbon
- water-based nickel acrylic-based nickel
- silver

Phase 2: Application Method and Number of Coats

- brush
- spray
- roller

Phase 3 & 4: Topcoat, Traces & Insulation: Latex overcoat, copper traces with vinyl stickers

Phase 5 & 6: Electrode pattern and optimization

projected an electric field as far as possible, so as to provide the largest interactive volume, while also
 offering sufficient resolution to enable fine-grained interactions

Phase 7: Antenna for Electromagnetic Signals (Environment Sensing)

Results of Wall ++: Pose Estimation

Results of Wall ++ : Tracking distance error at three test locations

Derived Idea

Can we build Smart Papers with Capacitive sensing capabilities? If so, can you develop a conceptual model?

Activity 2: Time bound activity on Capacitive Sensing

Develop a simple mobile application that displays your touch points on its screen.

Hint: Use canvas element in MIT App Inventor