OpenBrain

${\sf OpenBrain}$

April 22, 2016

Overview

Current Work Session Organization

OpenBrain

We currently have three sets of separate meetings throughout the week.

- Algorithms Meeting Tuesday Evenings talk strictly about the different pieces of the OpenBrain model.
- Reading group Friday Afternoons First hour spent on presenting the paper to the group; Second hour spent on discussing what elements could be incorporated into the OpenBrain model.
- 3 Software Meeting Monday afternoons. Discuss implementation details and write code.
 - 1 These have unfortunately been infrequent

Theory: Important Concerns

OpenBrain

- Intelligence definition and measurement
 - UIM incompatable:

$$\Upsilon(\pi) = \sum_{\mu \in E} 2^{-K(\mu)} \mathbb{E}\left(\sum_{i=1}^{\infty} r_i\right)$$
 (1)

requires meaningful "timesteps", π_{O} runs asynchronously!

- Mathematical framework for asynchronicity.
 - How do we talk about representation theory for agent on different timeline.
- 3 Conwayian learning rules for emergent intelligence
 - **1** Especially stressing the need to keep emergent rules simple.

Theory: A Rigorous Mathematical Framework

OpenBrain

How do we account for asynchronousity? Ignore it!

Definition. A **neuron** $n \in N$ is defined by

- \blacksquare a voltage $V_n(t)$
- \blacksquare a decay time τ_n
- lacktriangle a refactory period ho_n
- \blacksquare a voltaic threshold θ_n

Definition. A connection $c \in C$ is a tuple $(n_i, n_j, w_{ij}) \in N \times N \times \mathbb{R}$ where n_i is the anterior neuron, n_j is the posterior neuron, and w_{ij} is the standard synaptic weight.

Theory: A Rigorous Mathematical Framework

OpenBrain

Definition. A neuron n is said to **fire** if it is not in its refractory period and $V_n(t_k) = V_n[k] > \theta_n$. Then for all $m \in P_n$,

$$V_m[k+1] +_= w_{nm}\sigma(V_n[k]);$$

that is, voltage is propagated to the posterior neurons.

Immediately after neuron n fires, it enters a **refractory period** until time $t_k + \rho_n$, or iteration $k + \frac{\rho_n}{\Lambda_t}$.

Figure: A neuron n firing into its posterior neurons, $P_n = \{m_1, \dots, m_8\}$

Theory: Continuous Time Universal Intelligence

OpenBrain

- Theoretical problems evaluating our agent.
- UIM defines an environment, μ , as a probability measure on sequences of actions and perceptions. Typically

$$o_1 r_1 a_1 o_2 r_2 a_2 \dots o_n r_n a_n$$
 (2)

where r_i are rewards!

- What does it mean to have a reward at time step k when $\Delta t \rightarrow 0$? $r_i \rightarrow 0$:(
- Actions become sparse as $\Delta t \rightarrow 0$.

$$a_1\emptyset \ldots \emptyset a_{100000}\emptyset \ldots \emptyset a_{2500605}\ldots$$
 (3)

Theory: Continuous Time Universal Intelligence

OpenBrain

Figure: The diagram of sub-observation neural interaction for π_Q .

Solution: Subobservations

- Actions determine what it means to be an observation.
- A visualization of asyncronous neural activity.
- More details in our paper at github.

Theory: Other progress!

- 1 Hutter's AIXI
- Biological parallels:
 - Synaptogenesis
 - 2 Asynchronicity important
 - 3 Refractory periods
- 3 Sparse Distributed Representation
- 4 LSTM Models: Rewards associated with actions taken in the world.
- In the process of writing paper to be presented at NIPS (2017) conference.

Theory: Goals

- **1** Develop a strong representation theory for the algorithm.
 - What class of functions can OpenBrain approximate?
- 2 Figuring out how to measure learning quantitatively
- 3 Expanding framework to include specialized neurons to more closely mimic biology
 - Wide variety of applications to all sorts of problems if specificity can be cracked.
 - 2 Cracking neuron specificity and learning \rightarrow solution to general AI problem as $t \rightarrow \infty$.

Software: Overview

 ${\sf OpenBrain}$

The pieces of the OpenBrain software project

- 1 Brain
- 2 Environment
- **3** Visualization

Progress

 ${\sf OpenBrain}$

- Design Doc Mostly Complete
- Prototyping Framework
 - 1 Make sure that we can input learning rules
 - 2 Return empirical measurements to gauge usefulness of learning rules.
- 3 Migrate to IDE
 - 1 More efficient build process
 - 2 Code completion is nice

OpenBrain

DEMO!!

Software: Obstacles

- Determining how to scale across many different computers
 - 1 How to scale program
 - 2 Designing for scale
- Saving state
- **3** Maintaining inheritence patterns for neuron structures.
- 4 Erlang is hard to learn

References

OpenBrain

Yaniv Taigman et. al. (2014)

DeepFace: Closing the Gap to Human-Level Performance in Face Verification

Facebook Al Research

Michael Nielsen (2014)

Neural Networks and Deep Learning

http://neuralnetworksanddeeplearning.com/

OpenBrain

The End