Segmentation par Modèle Déformable Surfacique Localement Régularisé par Spline Lissante

Jérôme Velut

Thèse de doctorat soutenue le 10 décembre 2007

Directeurs de thèse Christophe Odet, Hugues Benoit-Cattin

Plan de la présentation

- 1. Introduction Contexte & objectif
- 2. État de l'art Modèles déformables Régularisation par spline lissante
- 3. *MoDeReS-2D* Méthode et résultats
- 4. *MoDeReS-3D*Méthode et résultats

CONTRIBUTIONS

5. Conclusion
Bilan & perspectives

1. Introduction

1.1. Contexte

1.2. Objectif

Contexte

1. Introduction 4 / 45

1. Introduction

5 / 45

2. État de l'art

- 2.1. Généralités sur les modèles déformables
- 2.2. Contours actifs 2D
- 2.3. Régularisation par spline lissante
- 2.4. Modèles déformables 3D

Généralités

Modèle déformable :

- → Déformation **itérative** d'un modèle géométrique.
- → Segmentation par localisation des contours d'un objet dans une image.

Évolution d'un contour actif sur une image

La déformation dépend :

- → d'un terme d'attache aux données images
- → d'un terme de *régularisation*.

Snake

Le snake [KASS - 87] :

- → Contour actif pour la segmentation d'image
- → Déformation d'une courbe paramétrique $g(s) = (g_x(s), g_y(s))$ guidée par

la minimisation d'une énergie $E_{snake}(s) = E_{interne}(s) + E_{externe}(s)$

Déformation d'un snake :

ATTACHE AUX DONNÉES

$$g_{i}(k) = (\mathbf{A} + \mathbf{y} \cdot I)^{-1} (\mathbf{y} \cdot \mathbf{g}_{i-1}(k) - \mathbf{f}(k))$$

RÉGULARISATION

A : matrice de **rigidité** construite à partir de l'énergie interne $E_{{}_{interne}}$

 $\mathit{f}(\mathit{k})$: forces **externes**, dérivées de l'énergie externe E_{externe}

A: taille = nombre de points

Représentation **B-Spline** du contour

2. État de l'art

B-Splines & contours actifs

Représentation **B-Spline** d'un contour.

B-Snake

Le **B-Snake** : représentation du contour par une courbe B-Spline [MENET-90]

→ Moins de points

Le **B-Snake** à énergie interne implicite [BRIGGER-00] :

→ Splines cubiques = courbes à **énergie** (interne) **minimale**.

ATTACHE AUX DONNÉES

$$g_i(k) = g_{i-1}(k) - \gamma^{-1} \cdot f(k)$$

RÉGULARISATION = PAS D'ÉCHANTILLONNAGE

Régularisation RII & contours actifs

Régularisation par filtrage passe-bas **RII** [PRECIOSO-05].

- → Filtrage B-Spline lissant SB_{λ} (λ paramètre de régularisation).
- → À chaque itération = filtrage passe-bas du contour 2D.

Limitation du paramètre de régularisation pour éviter un **rétrécissement.**

+ rapidité (segmentation de séquence vidéo).

+ un seul paramètre de régularisation λ.

→ Analyse fréquentielle des contours actifs [WERUAGA-05]

Étude du filtre SB_{λ}

Filtrage B-Spline lissant

Définition d'une spline lissante [REINSCH-67]

 $\vec{g}(s)$ La courbe spline lissante $\hat{g}(s)$ minimise ϵ dans :

$$\epsilon = \sum_{k=-\infty}^{+\infty} \left(g(k) - \hat{g}(k) \right)^2 + \lambda \int_{-\infty}^{+\infty} \left(\frac{\partial^2 \hat{g}(s)}{\partial s^2} \right)^2 ds$$

ATTACHE AUX DONNÉES

RÉGULARISATION

2. État de l'art

Filtrage B-Spline lissant

Définition d'une spline lissante [REINSCH-67]

 $\vec{g}(s)$ La courbe spline lissante $\hat{g}(s)$ minimise ϵ dans :

$$\epsilon = \sum_{k=-\infty}^{+\infty} \left(g(k) - \hat{g}(k) \right)^2 + \lambda \int_{-\infty}^{+\infty} \left(\frac{\partial^2 \hat{g}(s)}{\partial s^2} \right)^2 ds$$

ATTACHE AUX DONNÉES

RÉGULARISATION

Filtrage **B-Spline lissant** SB_{λ} [UNSER-93.1]

- \red Détermination des points de contrôle lissés $\hat{c}(k)$ par filtrage numérique.
- \bullet Détermination des points $\hat{g}(k)$ à partir des $\hat{c}(k)$.

$$\overbrace{g(k) - S_{\lambda}}^{\lambda f} \rightarrow \widehat{c}(k) - B \rightarrow \widehat{g}(k)$$

$$SB_{\lambda}(z) = S_{\lambda}(z) \cdot B(z)$$

Caractéristiques de SB₁(z)

Fonction de transfert

$$SB_{\lambda}(z) = S_{\lambda}(z) \cdot B(z) = \frac{z^{-1} + 4 + z}{z^{-1} + 4 + z + 6 \lambda (z^{2} - 4z + 6 - 4z^{-1} + z^{-2})}$$

→ Filtre passe-bas RII du 4ème ordre

Réponse fréquentielle :

La fréquence de coupure varie avec λ

Filtrage B-Spline lissant

$$g(k) - \underbrace{SB_{\lambda}}^{\lambda} \longrightarrow \hat{g}(k)$$

2. État de l'art

Filtrage de courbes paramétriques

Filtrage d'une courbe paramétrique
$$g(k) = (g_x(k), g_y(k))$$
:

2. État de l'art

14 / 45

Modèles déformables 3D

Segmentation de volume par une surface

Maillages discrets

Représentation des surfaces par un ensemble discret de points. *(triangulation, simplexe,...)*

Régularisation

=

filtrage **RIF**

=

impact sur la complexité

Surfaces paramétriques

Ajout d'une dimension dans la représentation du modèle :

$$g(u,v) = (g_x(u,v), g_y(u,v), g_z(u,v))$$

- → Introduction de points singuliers.
- → Impose un maillage quadrangulaire (produit tensoriel).

2. État de l'art

3. MoDeReS-2D : un contour actif régularisé par spline lissante

- 3.1. Proposition
- 3.2. Algorithme
- 3.3 Régularisation locale
- 3.4. Résultats
- 3.5. Bilan

Première proposition : le MoDeReS

[publié dans JASP-07]

Nouvelle interprétation de la **régularisation** d'un processus de déformation

$$\hat{g}_{i}(k) = g_{i}(k) * sb_{\lambda}(k)$$
 $g_{i+1}(k) = g_{i}(k) - \gamma^{-1} \cdot f_{i}(k)$

RÉGULARISATION

DÉFORMATION

$$\hat{g}_{i+1}(k) = (g_i(k) - \gamma^{-1} \cdot f_i(k)) * sb_{\lambda}$$

ATTACHE AUX DONNÉES
RÉGULARISATION

$$\widehat{g}_{i+1} = \widehat{g}_i(k) - \gamma^{-1} \cdot \widehat{f}_i(k)$$

- → La régularisation est un filtrage B-Spline lissant des forces externes.
- → Le contour paramétrique n'est pas lissé à chaque itération.

3. MoDeReS 2D 18 / 45

Algorithme de déformation

Illustration des étapes impliquées dans une itération du processus :

3. MoDeReS 2D 19 / 45

Pourquoi un rééchantillonnage ?

Rééchantillonnage : maîtrise de la régularisation en tout point du contour actif

→ Filtre numérique = hypothèse d'échantillonnage uniforme

Conséquence d'un échantillonnage non-uniforme sur le filtrage pour un λ constant.

Maîtrise de la régularisation = **régularisation variante** le long du contour.

3. MoDeReS 2D 20 / 45

Mise en oeuvre de la régularisation locale

Méthode : attribuer une valeur de λ à chaque point k selon la régularisation voulue.

Filtre RII (Implantation récursive)

$$\hat{g}(k) = a_{k} \cdot g(k) + b_{k} \cdot (\hat{g}(k-1) + \hat{g}(k+1)) + c_{k} \cdot (\hat{g}(k-2) + \hat{g}(k+2))$$

- \rightarrow Coefficients a_k , b_k et c_k dépendants de λ varient en fonction de k
- → Variation locale de la fréquence de coupure
- → Régularisation locale

3. MoDeReS 2D 21 / 45

Résultats de segmentations par MoDeReS-2D

Image IRM

Image synthétique

Image IRM

Régularisation globale

Régularisation locale

3. MoDeReS 2D 22 / 45

Segmentation d'une image synthétique avec une régularisation globale

Effet de la régularisation sur la distance entre le contour idéal et le contour segmenté.

3. MoDeReS 2D 23 / 45

Segmentation d'une image réelle avec une régularisation globale

IRM de l'articulation fémoro-tibiale d'un cobaye

Forces externes différentes

Forces externes identiques

3. MoDeReS 2D 24 / 45

Segmentation d'une image synthétique avec une régularisation locale

Régularisation locale

Intégration d'a priori

Segmentation d'une image réelle avec une régularisation locale

Image originale

3. MoDeReS 2D

26 / 45

Bilan des contributions 2D

3. MoDeReS 2D 27 / 45

4. MoDeReS-3D : modèle déformable surfacique pour la segmentation de volumes

- 4.1. Des contours aux surfaces
- 4.2. Filtrage de maillages paramétriques
- 4.3. Application au MoDeReS
- 4.4. Résultats
- 4.5. Bilan

Des contours aux surfaces

Objectif

- → conserver en 3D les avantages d'une régularisation par filtrage RII B-Spline lissant des forces externes.
- → Le contour paramétrique g(s) devient une surface paramétrique $g(u,v) = (g_x(u,v), g_y(u,v), g_z(u,v))$

Comment implanter récursivement un filtre RII sur une surface paramétrique?

Comment gérer sur une surface la **non-uniformité** de **l'échantillonnage** ?

4. MoDeReS 3D

Filtrage B-Spline lissant d'une surface paramétrique

Filtre bidimensionnel des 3 composantes de la surface par filtrage B-Spline lissant 1D successif des directions k et l.

[publié dans ICIP-06]

Implantation récursive du filtrage 1D

maillage de valence 4 partout (maillage quadrangulaire)

4. MoDeReS 3D 30 / 45

Extension des signaux

Initialisation du filtrage 1D récursif?

Signal 1D périodique

- → courbe 2D fermée
- → tore 3D

Signal 1D non périodique « avec bord »

- → courbe 2D ouverte [BRIGGER-00]
- → plan limité 3D
- → extension miroir

Signal 1D non périodique « sans bord »

→ apparition de points singuliers (ex: les pôles d'une sphère).

4. MoDeReS 3D 31 / 45

Traitement des points singuliers

Cas de la sphère :

→ Genre 0 sans bord => valence 4 partout sauf aux pôles

Comment définir les voisins d'un pôle pour le filtrage ?

Méthode : choix du méridien le **plus colinéaire** avec la direction de filtrage

4. MoDeReS 3D 32 / 45

Uniformité de l'échantillonnage

Pour des valeurs $\lambda = \mu$ constantes, l'effet du filtrage n'est pas homogène sur la surface

4. MoDeReS 3D 33 / 45

Adaptation de la fréquence de coupure à l'échantillonnage

Motivations:

- **Non-uniforme** = effets de filtrage **différents** pour une même valeur de λ .
- → Échantillonnage **uniforme** difficile / impossible à obtenir.

Solution : profiter du filtrage variant avec λ_k pour adapter la fréquence de coupure localement selon l'échantillonnage.

Point de vue global:

- $ightharpoonup^{\ }\Lambda$: paramètre de régularisation **globale**
- → F_c : fréquence de coupure en m^{-1}

$$F_c = r_g(\Lambda)$$

 $f_c = \frac{F_c}{f_c}$

Point de vue local:

- $\rightarrow \lambda_k$: paramètre **local** du filtre.
- $\rightarrow f_{ck}$: fréquence de coupure **locale**.
- → f_{ek} : fréquence d'échantillonnage locale. $\lambda_k = r_a^{-1}(f_{ck})$

$$f_{e_k}^{-1} = \frac{1}{2} ||g_k, g_{k-1}|| + \frac{1}{2} ||g_k, g_{k+1}||$$

$$\lambda_{k} = r_{g}^{-1}(r_{g}(\Lambda) \cdot f_{e_{k}}^{-1})$$

→ Filtrage (régularisation) indépendant de l'échantillonnage

Filtrage indépendant de l'échantillonnage

 $\lambda = \mu$ variant Λ constant

Méthode de segmentation par MoDeReS-3D

Processus de déformation

$$\hat{g}_{i+1}(k,l) = \hat{g}_i(k,l) - \gamma^{-1} \cdot \hat{f}_i(k,l)$$
 REGULARISATION ATTACHE AUX DONNEES

REGULARISATION

 f_i , champ vectoriel des forces externes régularisées.

 $\lambda = \mu = 7$

 $(\lambda = \mu = 130)$

Intérêt du filtrage variant

Segmentation d'un volume synthétique

2 initialisations sphériques différentes

$$\Lambda = 100$$

Distance de Hausdorff entre maillage déformable **final** (fil de fer) et la surface **idéale** (porteuse des couleurs).

Distance surface segmentée / surface idéale identique

→ Robustesse à l'initialisation

4. MoDeReS 3D 37 / 45

Résultats

Segmentation **3D** de structures :

- → cylindriques
- → planaires
- → sphériques

Ventricules latéraux

4. MoDeReS 3D 38 / 45

Bilan des contributions 3D

4. MoDeReS 3D 39 / 45

5. Bilan & perspectives

5.1. Récapitulatif des contributions

5.2. Perspectives

Perspectives

Comment obtenir un maillage quadrangulaire pour n'importe quelle surface ?

- → Remaillage [DONG-05, ALLIEZ-06...]
- → Traitement de points-selle

Quel sens peut-on donner à une fréquence sur une surface ?

→ Analyse spectrale des maillages [TAUBIN-95, ZHANG-07]

Amélioration du MoDeReS

- → Maitrise régularisation / échantillonnage / fréquence de coupure
 - → Multirésolution
- → Adaptabilité / intégration d'a priori
 - Méthodes automatiques de choix des λ locaux

5. Bilan & perspectives

Perspectives

Applications

- → Imagerie quantitative post-doc Xian Du
- → Suivi d'objets dans des séquences
 - → Imagerie 3D dynamique

→ ...

Perspectives

Applications

- → Imagerie quantitative post-doc Xian Du
- → Suivi d'objets dans des séquences → Imagerie 3D dynamique

MERCI

5. Conclusion & perspectives :: perspectives

BIBLIOGRAPHIE

[UNSER - 93.1] M. Unser, A. Aldroubi, and M. Eden, "B-spline signal processing. Part I. Theory," *IEEE Transactions on Signal Processing*, vol. 41, pp. 821-833, 1993.

[UNSER - 93.2] M. Unser, A. Aldroubi, and M. Eden, "B-spline signal processing. Part II. Efficient design and applications," *IEEE Transactions on Signal Processing*, vol. 41, pp. 834-848, 1993.

[REINSCH - 67] C. H. Reinsch, "Smoothing by Spline Functions," *Numerisch Mathematik*, vol. 10, pp. 177-183, 1967.

[MONTAGNAT - 01] J. Montagnat, H. Delingette, and N. Ayache, "A Review of Deformable Surfaces: Topology, Geometry and Deformation," *Image and Vision Computing.*, vol. 19, pp. 1023-1040, 2001.

[KASS - 87] M. Kass, A. Witkin, and D. Terzopoulos, "Snakes: Active Contour Models," presented at Proceedings - First International Conference on Computer Vision., London, Engl, 1987.

[BRIGGER - 00] P. Brigger, J. Hoeg, and M. Unser, "B-spline snakes: a flexible tool for parametric contour detection," *IEEE Transactions on Image Processing*, vol. 9, pp. 1484-1496, 2000.

[CHEN - 05] X. Chen and E. K. Teoh, "3D object segmentation using B-Surface," *Image and Vision Computing*, vol. 23, pp. 1237-1249, 2005.

BIBLIOGRAPHIE

[LACHAUD - 03] J.-O. Lachaud and B. Taton, "Deformable model with adaptive mesh and automated topology changes," presented at 3-D Digital Imaging and Modeling, 2003. 3DIM 2003. Proceedings. Fourth International Conference on, 2003.

[COHEN - 90] L. D. Cohen and I. Cohen, "A Finite Element Method Applied To New Active Contour Models and 3D Reconstruction From Cross Sections," INRIA, Rocquencourt, Robotique, Image et Vision 1245, 1990.

[PRECIOSO - 05] F. Precioso, M. Barlaud, T. Blu, and M. Unser, "Robust real-time segmentation of images and videos using a smooth-spline snake-based algorithm," *IEEE Transactions on Image Processing*, vol. 14, pp. 910-924, 2005.

[VELUT - 06.1] J. Velut, H. Benoit-Cattin, and C. Odet, "Locally Regularized Snake Through Smoothing B-Spline Filtering," presented at EUSIPCO, Firenze, 2006.

[VELUT - 06.2] J. Velut, H. Benoit-Cattin, and C. Odet, "Segmentation by Smoothing B-Spline Active Surface," presented at ICIP, Atlanta GA, 2006.

[DONG - 05] S. Dong, S. Kircher, and M. Garland, "Harmonic functions for quadrilateral remeshing of arbitrary manifolds," *Computer Aided Geometric Design*, vol. 22, pp. 392-423, 2005.

[TAUBIN - 95] G. Taubin, "A signal Processing Approach to Fair Surface Design," presented at SIGGRAPH, 1995.

[ZHANG – 07] Hao Zhang, Oliver van Kaick, and Ramsay Dyer, "Spectral Methods for Mesh Processing and Analysis," Proc. of Eurographics 2007 State of the Art Report, pp. 1-22.

2. État de l'art :: les modèles déformables :: surfaces actives

→ Maillage triangulaire

→ Maillage simplexe

→ Surface paramétrique B-Spline [CHEN-05]

2. État de l'art :: les modèles déformables :: surfaces actives

→ Maillage triangulaire

→ Maillage simplexe

→ Surface paramétrique B-Spline [CHEN-05]

4. MoDeReS-3D :: filtrage variant de maillages quadrangulaires

Segmentation de volume – Intérêt de la régularisation variante

- → Distance de Hausdorff entre maillage déformable final et la surface idéale.
- → La régularisation interdit la détection des bosses, sauf quand les pôles sont dans cette zone.

51 / 45

5. Conclusion & perspectives :: perspectives

Obtention d'un maillage carré presque partout à partir d'une triangulation [DONG - 05] :

1.1. Contexte

IMAGERIE BIOMÉDICALE

Suivi longitudinal de pathologies

Grands volumes de données

Segmentation rapide

1. Introduction

53 / 45

[WERUAGA - 05] : Formulation du processus de déformation d'un contour actif dans le domaine fréquentiel

- → Analyse basée sur la mise en oeuvre par éléments finis du *snake* de Kass (équation de mouvement de Lagrange),
- → Mise en évidence du caractère convolutif de la régularisation.

$$g_i(k) = h(k) * (b \cdot g_{i-1}(k) + c \cdot g_{i-2}(k) + f_i(k))$$

- \bullet h(k) est un filtre passe-bas dont la fréquence de coupure dépend des paramètres d'élasticité et de rigidité de l'énergie interne,
- \Rightarrow *b* et *c* sont des constantes issues des paramètres d'élasticité et de rigidité de l'énergie interne.

Le contour g(k) est convolué à chaque itération par un filtre passe-bas, d'où le phénomène de rétrécissement.

Snake

Déformation d'un snake (écriture vectorielle):

ATTACHE AUX DONNÉES

$$g_{i}(k) = (A + \gamma \cdot I)^{-1} (\gamma \cdot g_{i-1}(k) - f(k))$$

RÉGULARISATION

f(k): forces externes, dérivées de l'énergie externe

A : matrice de rigidité construite à partir de l'énergie interne $E_{{}_{\it interne}}$

Snake

Le *snake* [KASS - 87] :

- → Contour actif pour la segmentation d'image
- → Déformation d'une courbe paramétrique $g(s) = (g_x(s), g_y(s))$ guidée par la minimisation d'une énergie $E_{snake}(s) = E_{interne}(s) + E_{externe}(s)$

Guide le contour actif vers les caractéristiques de l'image

$$E_{externe}(s) = \left| \nabla \left(G_{\sigma} * I(g(s)) \right|^{2} \right|$$

ATTACHE AUX DONNÉES

$$E_{interne} = \alpha(s) \left| \frac{dg(s)}{ds} \right|^{2} + \beta(s) \left| \frac{d^{2}g(s)}{ds^{2}} \right|^{2}$$

RÉGULARISATION

Pénalisation des fortes extensions et fortes courbures de g(s)

2.2. Contours actifs 2D

B-Spline

Représentation **B-Spline** d'un contour.

Filtrage B-Spline

Filtrage B-Spline [UNSER-93]

$$g(k) \longrightarrow B^{-1} \longrightarrow c(k)$$
Indirect

$$c(k) \longrightarrow B \longrightarrow g(k)$$
Direct

Lien entre points du contour g(k) et points de contrôle c(k).

Le **B-Snake** : représentation du contour par une courbe B-Spline [MENET-90].

- → Intégration des propriétés de continuité des B-Splines
- → Calculs sur un ensemble réduit de points : la matrice de rigidité en est d'autant plus petite.
- → Les points traités sont les points de contrôle B-Splines : peu intuitif.

Le **B-Snake** à énergie interne implicite [BRIGGER - 00] :

- → Splines cubiques = courbes à énergie (interne) minimale.
- → Échantillonnage = paramètre de régularisation.
- → Filtrage B-Spline = interaction avec les points du contour.

Déformation d'un *B-Snake* à énergie interne implicite :

ATTACHE AUX DONNÉES

$$g_i(k) = g_{i-1}(k) - \gamma^{-1} \cdot f(k)$$

RÉGULARISATION = échantillonnage variable

4. MoDeReS-3D :: des contours aux surfaces

Objectif : conserver une régularisation par filtrage RII B-Spline lissant des forces externes.

- → Rapide
- → Sens physique (fréquence de coupure)

Comment « diriger » le filtre sur le maillage ?

Quels types de maillages pourra t-on utiliser pour représenter la surface, et sous quelles conditions le filtre pourra fonctionner?

Comment gérer la non-uniformité de l'échantillonnage ?

Régularisation locale : Lien entre λ et la fréquence de coupure (relative à la fréquence d'échantillonnage) [VELUT-JASP07]

$$\lambda = r_g^{-1}(f_c) = \frac{(-1 + \sqrt{2}) \cdot (\cos(2\pi f_c) + 2)}{12 \cdot (\cos(2\pi f_c) - 1)^2}$$

1. Introduction :: contexte

Segmentation : processus de partition d'une image

- → Mise en évidence d'objet d'intérêt par contour ou région
- → Automatisation de mesures pour une imagerie quantitative

IRM de l'abdomen

Détection des contours

Localisation de l'aorte par un snakuscule [THEVENAZ-06]

1. Introduction :: contexte

Modèle déformable surfacique : représentation de l'objet d'intérêt par son enveloppe (frontière intérieur / extérieur).

Rendu volumique

Rendu surfacique

IRM fémur / tibia de cobaye

3. MoDeReS-2D :: résultats

3. MoDeReS-2D :: régularisation locale

Filtrage B-Spline lissant d'une surface paramétrique

Filtre bidimensionnel des 3 composantes de la surface par filtrage B-Spline lissant 1D successif des directions k et l.

Modèles déformables représentés par des maillages surfaciques :

- → Maillage triangulaire [DELINGETTE-92]
 - → Régularisation équivalente à un filtrage RIF de la surface.
 - → Impact sur la complexité.

- → Maillage **simplexe** [MONTAGNAT-98, DELINGETTE-99]
 - → Topologie simple / dual d'une triangulation. Tous les points possèdent 3 voisins.
 - → Définition de forces en un point en fonction de son voisinage (filtrage type RIF).

- → Surface paramétrique **B-Spline** [CHEN-05]
 - → Reprend les avantages d'une représentation B-Spline (énergie interne implicite, peu de points de contrôle).
 - → Impose un maillage quadrangulaire (produit tensoriel).
 - → Ne résout pas le problème des points singuliers.

Segmentation de structures planaires

Segmentation du fémur et du tibia (IRM de cobaye - ANIMAGE)

Segmentation du plateau tibial et de l'épiphyse distale (ANIMAGE)

4. MoDeReS 3D 67 / 45

Résultats

Segmentation de l'aorte (ANGIO IRM)

4. MoDeReS 3D 68 / 45

Application : aide à la sélection

70 / 45