Chapitre 6

Dérivation et applications

I. Nombre dérivé d'une fonction f en un nombre réel a

1) Limite en zéro d'une fonction

Soit f une fonction définie sur un intervalle contenant 0 ou bien sur un intervalle de borne 0 (de la forme a; a; a ou a; a ou a ou a; a ou a ou

Étudier la limite de f lorsque x tend vers 0, consiste à étudier les valeurs de f(x) lorsque x se rapproche de 0.

Définition:

On dit que f(x) admet pour **limite** le réel α lorsque x tend vers 0 si les nombres f(x) peuvent être aussi proches de α que l'on veut, pourvu que x soit suffisamment proche de 0.

On écrit $\lim_{x\to 0} f(x) = \alpha$, ce qui se lit : « La limite de f(x) lorsque x tend vers $x \in \mathbb{R}$ 0 est égale à $x \in \mathbb{R}$ 0. »

Exemples:

• Soit la fonction f définie sur $[-1;0[\cup]0;1]$ par $f(x)=x^2+3x+3$.

Étudions ce que deviennent les valeurs de f(x) lorsque la variable x tend vers zéro, x prend par exemple successivement les valeurs -0,1; -0,01; -0,01; ... et les valeurs 0,1; 0,01; 0,001; ...

x	-0,1	-0,01	-0,001		0,001	0,01	0,1
$f(x)=x^2+3x+3$	2,71	2,9701	2,997001	•••	3,003001	3,0301	3,31

On constate que les valeurs de f(x) se rapprochent de 3 lorsque la variable x tend vers zéro. D'où $\lim_{x\to 0} x^2 + 3x + 3 = 3$.

Dans cet exemple, la limite de f(x) lorsque x se tend vers 0 est égale à un nombre réel.

• Soit la fonction f définie sur $[-1; 0[\cup]0; 1]$ par $f(x) = \frac{1}{x^2}$.

x	-0,1	-0,01	 0,01	0,1
$f(x) = \frac{1}{x^2}$	100	10000	 10000	100

Dans ce cas, on écrit $\lim_{x \to 0} f(x) = +\infty$.

Dans cet exemple, les valeurs de f(x) deviennent de plus en plus grandes et ne sont pas bornées lorsque x tend vers 0.

• Soit la fonction f définie sur $[-1;0[\,\cup\,]0;1]$ par $f(x)=\frac{|x|}{x}$

x	-0,1	-0,01		0,01	0,1
$f(x) = \frac{ x }{x}$	-1	-1	•	1	1

Dans ce cas on dit que la limite de f(x) lorsque x tend vers 0 n'existe pas.

Dans cet exemple, les valeurs de f(x) ne se rapproche pas d'un unique réel lorsque x tend vers 0.

2) Nombre dérivé

Définition:

Soit I un intervalle contenant un nombre réel a et f une fonction définie sur I.

On dit que la **fonction** f **est dérivable en** a si la limite du rapport $\frac{f(a+h)-f(a)}{h}$ lorsque h tend

vers 0, avec a + h dans I, existe et est égale à un nombre réel ℓ .

Ce nombre ℓ est appelé **nombre dérivé de la fonction** f en a.

On le note f'(a).

On a donc:

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = \emptyset$$

Exemple:

Soit f la fonction définie sur \mathbb{R} par $f(x)=x^3$ et a=1.

Pour
$$h \neq 0$$
, on a $\frac{f(a+h)-f(a)}{h} = \frac{(1+h)^3-1^3}{h} = \frac{(1+3h+3h^2+h^3)-1}{h} = 3+3h+h^2$.

On a vu que $\lim_{h\to 0} h^2 + 3h + 3 = 3$.

Donc la fonction f est dérivable en 1 et le nombre dérivé de f en 1 vaut 3. Donc f'(1)=3.

Calculatrice:

3) <u>Interprétation graphique :</u>

Propriété:

Soit f une fonction définie sur un intervalle I, dérivable en a, nombre réel appartenant à I, et de nombre dérivé ℓ en a.

Soit \mathcal{C}_f la courbe représentative de la fonction f dans un repère $(O; \vec{i}, \vec{j})$ du plan, A le point de \mathcal{C}_f d'abscisse a et M le point de \mathcal{C}_f d'abscisse a+h avec a+h appartenant à I et $h\neq 0$.

Le nombre dérivé ℓ de f en a est la limite du coefficient directeur de la droite (AM) lorsque le point M se rapproche du point A, c'est-à-dire lorsque h tend vers 0.

AYZAX=3

Démonstration:

On a A(a; f(a)) et M(a+h; f(a+h)) avec $h \neq 0$.

Le coefficient directeur de la droite
$$(AM)$$
 est donc égal à :
$$\frac{f(a+h)-f(a)}{(a+h)-a} = \frac{f(a+h)-f(a)}{h}$$

Le nombre dérivé de f en a, c'est-à-dire la limite de $\frac{f(a+h)-f(a)}{h}$ lorsque h tend vers 0, est

donc bien la limite du coefficient directeur de la droite (AM) lorsque le point M se rapproche du point A.

II. Tangente à une courbe

1) Tangente en un point à une courbe

Définition:

Soit f une fonction définie sur un intervalle I, dérivable en a, nombre réel appartenant à I. Soit \mathcal{C}_f la courbe représentative de la fonction f dans un repère $(O; \vec{i}, \vec{j})$ du plan et A le point de \mathcal{C}_f d'abscisse a.

La tangente à la courbe \mathcal{C}_f au point A est la droite passant par A et ayant comme coefficient directeur le nombre dérivé f'(a).

Exemple:

Soit f la fonction définie sur l'intervalle $\mathbb R$ par :

$$f(x)=x^3$$

 $f(x)=x^3$ Le point A d'abscisse a=1 de la courbe \mathcal{C}_f a comme coordonnées (1;1).

De plus, le nombre dérivé de f en a=1 est égal à f'(1)=3.

La tangente à la courbe \mathcal{C}_f au point A est la droite passant par A et ayant comme coefficient directeur 3.

Remarque:

Le point A(a; f(a)) est le point de contact de la tangente et de \mathcal{C}_f .

2) Équation d'une tangente à une courbe

Propriété:

Soit \mathcal{C}_f la courbe représentative d'une fonction f dans un repère $(O; \vec{i}, \vec{j})$ du plan, A un point de \mathcal{C}_f d'abscisse a et f'(a) le nombre dérivé de f en a.

Une équation de la tangente à \mathcal{C}_f en A est :

$$y = f'(a)(x-a) + f(a)$$

Démonstration :

Dans un repère, une équation d'une droite $\mathscr D$ ayant comme coefficient directeur f'(a) est : y = f'(a)x + b

avec b son ordonnée à l'origine.

Comme A(a; f(a)) appartient à \mathcal{D} , ses coordonnées vérifient l'équation de \mathcal{D} c'est-à-dire : $f(a) = f'(a) \times a + b$. On en déduit que b = f(a) - f'(a)a.

L'équation de \mathscr{D} est donc : y = f'(a)x + f(a) - f'(a)a soit y = f'(a)(x-a) + f(a).

Exemple:

Soit f la fonction définie sur l'intervalle \mathbb{R} par $f(x)=x^3$ et le point A d'abscisse a=1 de la courbe \mathcal{C}_f .

On a: a=1; $f(a)=1^3=1$; f'(a)=3.

D'où y=f'(a)(x-a)+f(a)=3(x-1)+1=3x-2.

Une équation de la tangente à la courbe \mathcal{C}_f au point A est donc y=3x-2.

III. Fonction dérivée

1) Fonction dérivée f'

Définition:

Une fonction f est dérivable sur un intervalle I lorsqu'elle est dérivable en tout nombre réel x appartenant à I.

Définition:

Soit f une fonction définie et dérivable sur un intervalle I.

La fonction définie sur I qui, à tout nombre réel x, fait correspondre le nombre dérivé de la fonction f en x est appelée fonction dérivée de f.

La fonction dérivée de f est notée f'

Exemples:

Pour la fonction f définie sur \mathbb{R} par f(x)=k, (k fixé)

pour tout
$$x \in \mathbb{R}$$
 et $h \neq 0$: $\frac{f(x+h)-f(x)}{h} = \frac{k-k}{h} = 0$

Ainsi on a
$$(k)': x \mapsto f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} 0 = 0$$

• Pour la fonction f définie sur \mathbb{R} par f(x)=x.

pour tout
$$x \in \mathbb{R}$$
 et $h \neq 0$: $\frac{(x+h)-x}{h} = \frac{h}{h} = 1$

Ainsi on a
$$(x)': x \mapsto f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} 1 = 1$$

• Pour la fonction f définie sur \mathbb{R} par $f(x)=x^2$

pour tout
$$x \in \mathbb{R}$$
 et $h \neq 0$: $\frac{(x+h)^2 - x^2}{h} = \frac{x^2 + 2xh + h^2 - x^2}{h} = 2x + h$

Ainsi on a
$$(x^2)': x \mapsto f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} 2x + h = 2x$$

• Pour la fonction
$$f$$
 définie sur $[0; +\infty[$ par $f(x) = \sqrt{x}$, pour tout $x \in [0; +\infty[$ et $h \neq 0$:
$$\frac{\sqrt{x+h} - \sqrt{x}}{h} = \frac{\sqrt{x+h} - \sqrt{x}}{h} \times \frac{\sqrt{x+h} + \sqrt{x}}{\sqrt{x+h} + \sqrt{x}} = \frac{x+h-x}{h(\sqrt{x+h} + \sqrt{x})}$$

$$\frac{f(x+h)-f(x)}{h} = \frac{1}{\sqrt{x+h}+\sqrt{x}} \text{ de plus } \lim_{h\to 0} \sqrt{x+h} = \sqrt{x}$$

Ainsi, pour
$$x \in \]0; +\infty[\ : (\sqrt{x})': x \longmapsto f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{1}{\sqrt{x+h} + \sqrt{x}} = \frac{1}{2\sqrt{x}}$$

• Pour la fonction f définie sur \mathbb{R}^* par $f(x) = \frac{1}{x}$,

pour tout
$$x \in \mathbb{R}^*$$
 et $h \neq 0$: $\frac{\frac{1}{(x+h)} - \frac{1}{x}}{h} = \frac{\frac{x - (x+h)}{x(x+h)}}{h} = \frac{-h}{x(x+h)} \times \frac{1}{h} = -\frac{1}{x(x+h)}$

Ainsi on a
$$(x)': x \mapsto f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} -\frac{1}{x(x+h)} = -\frac{1}{x^2}$$

2) <u>Dérivées et opérations</u>

Dérivée d'une somme de fonctions

Théorème:

La somme u+v de deux fonctions dérivables sur un intervalle I est une fonction dérivable sur I et : (u+v)'=u'+v'

Démonstration:

Soit f(x)=(u+v)(x)=u(x)+v(x) avec u et v dérivables sur I.

Pour tout
$$x \in I$$
, $\frac{f(x+h)-f(x)}{h} = \frac{(u+v)(x+h)-(u+v)(x)}{h} = \frac{u(x+h)+v(x+h)-u(x)-v(x)}{h}$

Done:
$$\frac{f(x+h)-f(x)}{h} = \frac{u(x+h)-u(x)}{h} + \frac{v(x+h)-v(x)}{h}$$

Et u et v étant dérivables sur I:

$$\lim_{h \to 0} \frac{u(x+h) - u(x)}{h} = u'(x) \text{ et } \lim_{h \to 0} \frac{v(x+h) - v(x)}{h} = v'(x)$$

ainsi
$$(u+v)'(x) = f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = u'(x) + v'(x)$$

Exemple:

La fonction f définie sur \mathbb{R} par $f(x)=x^2+x$ est la somme de deux fonctions u et v définies par $u(x)=x^2$ et v(x)=x

Or u et v sont dérivables sur \mathbb{R} et u'(x)=2x et v'(x)=1

Donc pour tout $x \in \mathbb{R}$, f'(x) = 2x + 1.

Dérivée d'un produit de fonctions

Théorème:

Le produit uv de deux fonctions dérivables sur un intervalle I est une fonction dérivable sur I et : (uv)'=u'v+uv'

Démonstration:

Soit $f(x)=(uv)(x)=u(x)\times v(x)$ avec u et v dérivables sur I.

Pour tout
$$x \in I$$
,
$$\frac{f(x+h)-f(x)}{h} = \frac{(uv)(x+h)-(uv)(x)}{h} = \frac{[u(x+h)\times v(x+h)]-[u(x)\times v(x)]}{h}$$

Done:
$$\frac{f(x+h)-f(x)}{h} = \frac{u(x+h)\times v(x+h)-u(x)\times v(x+h)+u(x)\times v(x+h)-u(x)\times v(x)}{h}$$

$$\frac{f(x+h)-f(x)}{h} = \frac{u(x+h)-u(x)}{h} \times v(x+h) + \frac{v(x+h)-v(x)}{h} \times u(x)$$

Et u et v étant dérivables sur I:

$$\lim_{h \to 0} \frac{u(x+h) - u(x)}{h} = u'(x) \text{ et } \lim_{h \to 0} \frac{v(x+h) - v(x)}{h} = v'(x) \text{ de plus } \lim_{h \to 0} v(x+h) = v(x) \text{ ainsi}$$

$$(uv)'(x) = f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = u'(x)v(x) + v'(x)u(x)$$

Exemple:

La fonction f définie sur $[0; +\infty[$ par $f(x)=x\sqrt{x}$ est le produit des deux fonctions u et v définies par : u(x)=x et $v(x)=\sqrt{x}$.

Or u et v sont dérivables sur $]0;+\infty[$ et on a vu que : u'(x)=1 et $v'(x)=\frac{1}{2\sqrt{x}}$.

Donc, pour tout x > 0, $f'(x) = \sqrt{x} + x \times \frac{1}{2\sqrt{x}} = \frac{3}{2}\sqrt{x}$.

Cas particulier:

Soit *u* une fonction dérivable sur un intervalle *I* et *k* un nombre réel.

La dérivée de *ku* est *k* fois la dérivée de *u*.

Si k est une constante : $(ku)'(x) = k \times u'(x)$

Exemple : dérivée d'une fonction polynôme

La fonction trinôme définie par : $f(x)=2x^2+8x+3$

En utilisant les règles de calculs des dérivées on obtient :

 $f'(x) = 2 \times 2x + 8 \times 1 + 0 = 4x + 8$

Dérivée d'un quotient de fonctions

Théorème:

u et v sont deux fonctions dérivables sur un intervalle I.

De plus, pour tout x de I, $v(x) \neq 0$

Le quotient $\frac{u}{v}$ est une fonction dérivable sur *I*, et :

$$\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$$

Démonstration :

Soit $f(x) = \frac{u(x)}{v(x)} = \frac{u(x)}{v(x)}$ avec u et v dérivables sur I et $v(x) \neq 0$ pour tout $x \in I$

$$\frac{f(x+h)-f(x)}{h} = \frac{\frac{(u)(x+h)-(\frac{u}{v})(x)}{h}}{h} = \frac{\frac{u(x+h)}{v(x+h)} - \frac{u(x)}{v(x)}}{h} = \frac{\frac{u(x+h)\times v(x)-u(x)\times v(x+h)}{v(x+h)\times v(x)}}{h}$$

$$\frac{f(x+h)-f(x)}{h} = \frac{\frac{v(x+h)-v(x)\times v(x)+u(x)\times v(x)-u(x)\times v(x+h)}{v(x+h)\times v(x)}}{h}$$

$$\frac{f(x+h)-f(x)}{h} = \left[\frac{u(x+h)-u(x)}{h}\times v(x) - \frac{v(x+h)-v(x)}{h}\times u(x)\right] \times \frac{1}{v(x+h)\times v(x)}$$

Et u et v étant dérivables sur I :

$$\lim_{h \to 0} \frac{u(x+h) - u(x)}{h} = u'(x) \text{ et } \lim_{h \to 0} \frac{v(x+h) - v(x)}{h} = v'(x) \text{ de plus } \lim_{h \to 0} v(x+h) = v(x)$$

ainsi puisque $v(x) \neq 0$ pour tout $x \in I$.

$$\left(\frac{u}{v}\right)'(x) = f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \frac{u'(x)v(x) - v'(x)u(x)}{v^2(x)}$$

Exemple:

La fonction f définie sur $]-\infty;1[\,\cup\,]1;+\infty[\,$ par $f(x)=\frac{x}{x-1}$ est le quotient des fonctions u et v

définies par : u(x)=x et v(x)=x-1

v ne s'annule pas sur chacun des intervalles $]-\infty;1[$ et $]1;+\infty[$ et u et v sont dérivables sur ces

intervalles: u'(x)=1 et v'(x)=1.

Donc f est dérivable sur $]-\infty;1[\,\cup\,]1;+\infty[$ et $f'(x)=\frac{1\times(x-1)-x\times1}{(x-1)^2}$

Ainsi pour tout $x \in]-\infty;1[\cup]1;+\infty[, f'(x)=\frac{-1}{(x-1)^2}]$

Cas particulier:

 \overline{v} est une fonction dérivable sur un intervalle I telle que, pour tout $x \in I$, $v(x) \neq 0$.

Alors la fonction $\frac{1}{v}$ est dérivable sur I et : $\left(\frac{1}{v}\right)' = \frac{-v'}{v^2}$.

Exemple:

La fonction f définie sur \mathbb{R} par $f(x) = \frac{1}{x^2 + 1}$ est l'inverse de la fonction v définie par $v(x) = x^2 + 1$ ($v(x) \neq 0$ pour tout réel x).

Or pour tout réel x, v'(x) = 2x. Donc $f'(x) = \frac{-2x}{(x^2+1)^2}$.

3) <u>Dérivées usuelles</u>

À partir des règles de calcul sur les fonctions dérivées établies on peut dresser un tableau des dérivées usuelles à connaître.

fonction f	Ensemble de définition $\operatorname{de} f$	Ensemble de dérivabilité de <i>f</i>	fonction dérivée f'
f(x) = k (k constante)	IR	IR	f'(x)=0
f(x)=x	IR	IR	f'(x)=1
$f(x)=x^2$	IR	IR	f'(x)=2x
$f(x) = x^n $ $(n \in \mathbb{N}^*)$	IR	IR	$f'(x) = n \times x^{n-1}$
$f(x) = \frac{1}{x}$	IR*	IR*	$f'(x) = -\frac{1}{x^2}$
$f(x) = \frac{1}{x^2}$	IR*	IR*	$f'(x) = -\frac{2}{x^3}$
$f(x) = \frac{1}{x^n}$ $(n \in \mathbb{N}^*)$	IR*	IR*	$f'(x) = -\frac{n}{x^{n+1}}$
$f(x) = \sqrt{x}$	[0;+∞[]0;+∞[$f'(x) = \frac{1}{2\sqrt{x}}$

IV. Fonction dérivée et étude de fonction

1) Interprétation graphique

Dire que f est dérivable sur I signifie que, pour tout réel x de I, la courbe C_f , représentant la fonction f, admet une seule tangente, de coefficient directeur :

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

2) Sens de variation

Théorème:

Soit f une fonction dérivable sur un intervalle I.

- Si la fonction f est **croissante** sur I, alors la dérivée est **positive** sur I.
- Si la fonction f est **décroissante** sur I, alors la dérivée est **négative** sur I.
- Si la fonction f est constante sur I, alors la dérivée est nulle sur I.

Démonstration :

On considère un réel h>0 et tel que $x+h \in I$.

Pour tout réel x de I, x+h>x:

• Si f est croissante sur I, alors $f(x+h) \ge f(x)$; donc $\frac{f(x+h) - f(x)}{h}$ est positif et alors la dérivée sera positive.

De même, si h < 0, on démontrerait que $\frac{f(x+h)-f(x)}{h}$ reste positif.

• Si f est décroissante sur I, alors $f(x+h) \le f(x)$; donc $\frac{f(x+h)-f(x)}{h}$ est négatif et alors la dérivée sera négative.

De même, si h < 0 , on démontrerait que $\frac{f(x+h)-f(x)}{h}$ reste négatif.

Théorème réciproque (admis) :

Soit f une fonction dérivable sur un intervalle I.

- Si la dérivée est **positive** sur I, alors la fonction f est **croissante** sur I.
- Si la dérivée est **négative** sur I, alors la fonction f est **décroissante** sur I.
- Si la dérivée est **nulle** en toute valeur de I, alors la fonction f est **constante** sur I.

Remarque:

L'étude du signe de la dérivée permet donc de donner le sens de variation d'une fonction.

Exemple:

Pour la fonction f définie sur \mathbb{R} par $f(x)=x^2$, nous avons vu que f'(x)=2x, on a donc:

x	$-\infty$		0		+∞
$\int f'(x) = 2x$		_	0	+	
$f(x) = x^2$	+∞		0	A	+∞

Remarque:

Pour étudier les variations d'une fonction f, il n'est pas systématiquement nécessaire de déterminer la fonction dérivée f ' et d'en étudier le signe.

Par exemple, soit g définie sur $]2;+\infty[$ par $g(x)=\frac{1}{x^3-8}$.

On sait que la fonction $x \mapsto x^3$ est croissante sur $]2;+\infty[$ donc g est décroissante sur $]2;+\infty[$.

3) Extremum

Théorème:

Soit f une fonction dérivable sur un intervalle ouvert I et a un nombre réel appartenant à I. Si la dérivée s'annule en **changeant de signe** en a, la fonction admet un extremum en a.

f'(x)	<i>a</i> - 0 +	$\frac{x}{f'(x)}$	+ 0 -
f(x)	minimum	f(x)	maximum
	C _f f'(x)<0		C _f f'(x)>0

Remarques:

• L'hypothèse du changement de signe est nécessaire. La fonction $x \mapsto x^3$ n'admet pas d'extremum sur \mathbb{R} , pourtant elle a une dérivée qui s'annule en x=0 (mais la dérivée ne change pas de signe).

• Pour l'intervalle I, l'hypothèse qu'il soit ouvert permet d'éviter que le nombre réel *a* soit une de ses extrémités. Si tel est le cas, l'étude des variations permet de conclure. Par exemple, dans la situation ci-contre où *f* admet un maximum en *a*.

Cas particulier:

Propriété :

Soit f la fonction définie sur \mathbb{R} par $f(x)=ax^2+bx+c$ avec a,b et c des nombres réels et $a \neq 0$. Cette fonction f admet en $x=\frac{-b}{2a}$ un minimum si a>0 et un maximum si a<0.

Démonstration :

Soit f la fonction définie sur \mathbb{R} par $f(x)=ax^2+bx+c$ avec a,b et c des nombres réels et $a\neq 0$. La dérivée de la fonction f est donnée par f'(x)=2ax+b et $f'(x)=0 \Leftrightarrow x=-\frac{b}{2a}$.

• Cas
$$a > 0$$

 $f'(x) > 0 \Leftrightarrow x > -\frac{b}{2a}$

Le tableau de variations de f est donc :

x		$-\frac{b}{2a}$		+∞
f'(x)	_	0	+	
f(x)			1	

Donc f admet un minimum en $x = -\frac{b}{2a}$

• Cas
$$a < 0$$

 $f'(x) > 0 \Leftrightarrow x < -\frac{b}{2a}$

Le tableau de variations de f est donc :

x	$-\infty$		$-\frac{b}{2a}$		+∞
f'(x)		+	0	_	
f(x)		1			

Donc f admet un maximum en $x = -\frac{b}{2a}$