Algebra 2R, list 3.

Homework : any 3 problems from the list. An item counts as a separate problem. ≤ 1 item from each problem.

- 1. Let K be a field .
 - a) Prove that the field extension $L \supset K$ is transcendental, where L = K(X) is the field of rational functions in varriable X over K.
 - b) Let $M = L[\sqrt{X}]$ be an algebraic extension of the field L by an element $Y = \sqrt{X}$ such that $Y^2 X = 0$ in the field M. Prove that M i L are isomorphic over K.
- 2. Let K be a field.
 - a) Let $g \in K(X) \setminus K$. Prove that X is algebraic over the field K(g). In particular $[K(X):K(g)] < \infty$. What is the degree of this extension?
 - b) For g as in (c) prove that K(g) is somorphic with K(X), over K.
- 3. Let v_1, \ldots, v_n be vertices of a regular n-gon inscribed in a circle on the plane \mathbb{R}^2 with equation $x^2 + y^2 = 1$. What is the linear dimension over \mathbb{Q} of the system of vectors v_1, \ldots, v_n ?
- 4. Assume that $K \supset F(p)$ is a finite field extension of F(p). Assume that $a \in K$ is a primitive root of 1 of degree m. Let n be the smallest natural number > 0 such that $m \mid p^n 1$.
 - (a) Prove that n equals the degree of a over F(p).
 - (b) Prove that $n \mid \varphi(m)$. Give an example where $n < \varphi(m)$.
- 5. (a) Prove that $j(F_m(X))$ need not be irreducible over F(p). $(j: \mathbb{Z} \to \mathbb{Z}_p)$ is the quotient map. Hint: use the previous problem)
 - (b) Prove that if $k, l \in N^+$ are co-prime, then $k \mid l^{\varphi(k)} 1$. (hint: consider the ring \mathbb{Z}_k)
- 6. Find the minimal polynomials over $\mathbb Q$ for the following numbers:
 - (a) $\sqrt{2} + \sqrt{3}$, (b) $1 + \sqrt{5} \sqrt{3}$, (c) $1 + \sqrt[3]{17}$.
- 7. Prove (using Liouville Lemma) that the number

$$\sum_{n=1}^{\infty} \frac{1}{2^{n!}}$$

is transcendental. (the real numbers, whose transcendence follows from Liouville Lemma, are called Liouville numbers)

- 8. Assume that $M \supset K$ is an algebraic field extension and L_1, L_2 are intermediate fields (that is: $K \subset L_1, L_2 \subset M$). As usual, $L_1[L_2] = L_2[L_1]$ denotes the subring of M generated by $L_1 \cup L_2$. Prove that
 - (a) $L_1[L_2]$ is a subfield of M (denoted by L_1L_2),
 - (b) $[L_1L_2:K] \leq [L_1:K] \cdot [L_2:K]$
 - (c)* Assume $L_1 \cap L_2 = K$. Do we have equality in (b) then?