

ALGA — Agrupamento IV (ECT, EET, EI)

Teste 2

9	de	ianeiro	de 2017	— Duração:	1h30

Valores

ome					N.° Mec				
urso			N	.° Folhas sup	lementares _				
Questão	1	2	3	4	5	total			
Cotação	45	15	40	50	50	200			
Classif.									
1. Esta questâ	io é constituída po	or 5 alíneas de es	colha múltipla.						
Atribuem	0 pontos p	or cada resposta o or cada resposta o or cada resposta o	em branco e		E\C\C\O\0\000000000000000000000000000000	2 3 4 5 18 27 36 45 15 24 33 12 21 09			
Cada alíne	a tem uma só opç	ão correta que de	ve assinalar com	uma × no	correspondente.				
	idera a matriz A = Os valores próprio O espaço nulo de A	s de A são -1 e	-3.		$-\lambda)^2(3-\lambda)=0.$				
					< (1 0 2) (0 1	0) >			
O conjunto dos vetores próprios de A associados ao valor próprio $3 \notin (1,0,2), (0,1,0) >$. O sistema $(A - I_3)X = 0_{\mathbb{R}^3}$ é possível e indeterminado.									
	Sistema ($A-I_3$	$A = 0_{\mathbb{R}^3}$ e poss	iver e indetermin	ado.					
(b) Em \mathbb{R}^3 a equação $x^2 - 2y^2 - 2z^2 + 2yz = -1$ define um hiperbolóide de uma folha. um hiperbolóide de duas folhas. um cilindro elíptico.									
(c) A ma	o conjunto vazio. A matriz $A = \begin{bmatrix} 1 & 0 \\ 2 & 1 \\ -1 & -2 \end{bmatrix}$ é a matriz representativa da aplicação linear $\phi : \mathbb{R}^2 \to \mathbb{R}^3$ relativamente às bas								
\Box ϕ									
(d) Consi		torial real $S = \{($	$(x,y,z)\in\mathbb{R}^3:3x$	(z - 4y + z = 0)	e o vetor $X = (1$,1,1). A projeçã			
	$\operatorname{proj}_S X = (3, -4)$ $\operatorname{proj}_S X = 1.$, 1).							
p	$\operatorname{proj}_S X = 0.$								
	idera a matriz A_m se ϕ é sobrejetiva,			\mathbb{R}^m definida por	$\phi(X) = AX.$				
	Se ϕ é injetiva, dir	$n(ker(\phi)) = n.$							
S	Se $m=n,\phi$ é um	isomorfismo.							
	Se $n < m$, $dim(ir)$								
	,	11/							

(a) $S = \{(x, y, z) \in \mathbb{R}^3 : 9x + y + 2017z = 2027\}$ é subespaço vetorial real? S N Po	orquê?						
uma base de S é							
(b) $S=\{(x-y,2y,y+z):x,y,z\in\mathbb{R}\}$ é subespaço vetorial real? $\boxed{\mathbb{S}}$ $\boxed{\mathbb{N}}$ Porquê?							
uma base de S é							
3. Consider os vetores $X_1=(1,1,1), X_2=(-1,1,0)$ e $X_3=(-1,0,1)$ de \mathbb{R}^3 .							
(a) Verifica se os vetores são linearmente independentes.							
(b) Determina a projecção ortogonal do vetor X_3 sobre o subespaço $< X_2 >$.							
(c) Determina, se possível, uma base ortonormada de $\langle X_2, X_3 \rangle$.							

2. Quais dos seguintes conjuntos são subespaços vetoriais de \mathbb{R}^3 ? Rodeia a resposta correcta e explica a tua resposta.

Sempre que possível indica uma base e a dimensão de S.

4. Considera a matriz A=	$=\begin{bmatrix} 1\\1\\1 \end{bmatrix}$	1 1 1	1 1 1	com equação característica $\lambda^2(3-\lambda)=0$ e valores próprios 0 e 3.
--------------------------	--	-------------	-------------	---

(a) Indica o conjunto de vetores próprios associados ao valor próprio 3:

(b) Indica o subespaço próprio associado ao valor próprio 0:

(c) Justifica que a matriz A é diagonalizável.

(d) Indica matrizes P e D, P diagonalizante de A e D diagonal, tais que $P^{-1}AP=D$.

(e) A matriz A é ortogonalmente diagonalizável? Justifica a tua resposta e, em caso afirmativo, indica uma matriz ortogonal Q que diagonaliza A e tal que $Q^TAQ=D$, sendo D a matriz indicada na alínea anterior.

5. Considera a matriz $C = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$	0 1	1 0	$\begin{bmatrix} 0 \\ 1 \end{bmatrix}$	e a transformação linear $\phi:\mathbb{R}^4 \to \mathbb{R}^2$ dada por $\phi(X)=CX$ para todo o
$X \in \mathbb{R}^4$.			_	

(a) Determina a imagem de ϕ , $\operatorname{im}(\phi)$, e uma sua base.

- (b) ϕ é sobrejetiva? Justifica.
- (c) Determina o núcleo de ϕ , $\ker(\phi)$, e uma sua base.

- (d) ϕ é injetiva? Justifica.
- (e) Encontra a matriz G representativa da transformação ϕ relativamente às bases $\mathbb{S}=\big((1,1,1,1),(0,1,1,1),(0,0,1,1),(0,0,0,1)\big)$ e \mathcal{C} , canónica de \mathbb{R}^2 .