Functions

EECS 203: Discrete Mathematics
Lecture 15

Reminder: Individual Appointments Available

Individual appointments available with faculty

As of 8 am, there are open appointment slots **today 4-5** and **tomorrow morning**

- Over the week or two
- If you want to discuss your exam, your progress in the course, or anything else in a 1-on-1 format
- See 203 Office Hour calendar for times and info
 - Look for events titled "1-1 Appointment with [...]"

- Note: a C or better in 203 is needed to count towards a CS/CE/DS major or minor
 - If you are concerned, we have resources and advice we can share. We can discuss your individual situation in a 1-1 appt.

Fall Break due date shifts

- HW 6 / Check-in 6 due FRIDAY
- HW 4 Regrades open until tonight, 11:59pm
- Exam 1 Regrades open through Sunday, 11:59pm

The "Big Picture" of 203: How does this all fit together?

Learning Objectives: Functions & Properties

After today's lecture (and this week's readings, discussion & homework), you should be able to:

- Know Technical vocab: mapping, function, domain, codomain, range, onto, one-to-one, bijection, inverse function, function composition
- Function definition
 - Identify whether there is a function satisfying a given input/output mapping
- Function properties
 - Determine the properties of a given function: onto, one-to-one, bijection
 - Find inverses of bijections
 - Prove that a given function is or isn't onto, and is or isn't one-to-one
- Operations with Functions
 - Determine whether a function has an inverse, and if so, find the inverse function.
 - Find the composite function of f with g (mapping, domain & codomain)
 - Prove properties of composite functions (next time)

Outline

- What is a function?
 - Definition, Domain, Codomain, Range
 - Recognizing (non)-functions
- Function properties
 - Onto, One-to-one
 - Proofs of properties
- Bijections and Inverses
- Function Composition

Functions

A function is a machine where:

- you can input an element from one given set (the "domain"),
- and it outputs an element from another given set (the "codomain")

- For a function f, the output of domain element a is written f(a)
- The output is **exactly one** codomain element! Never 0, never ≥ 2
- But it **is** possible that two domain elements give the same codomain element as output

Writing Functions

• Notation: $f:A \rightarrow B$

- f B
- Means that f is a function with domain A and codomain B

Two ways to write a function:

(1) Define the transformation

$$f: \mathbb{Z} \to \mathbb{N}, f(x) = x^2 + 2$$

Domain is ℤ (you can input any integer)
Codomain is ℕ (always returns a natural number)

$$f(-1) = 3$$

 $f(0) = 2$
 $f(1) = 3$
 $f(2) = 6$
...

Writing Functions

• Notation: $f:A \rightarrow B$

Means that f is a function with domain A and codomain B

Two ways to write a function:

(2) (For finite domains) explicitly give the entire input/output mapping

$$f: \{a, b, c\} \rightarrow \{1, 2, 3, 4\}$$

$$f(a) = 4$$

$$f(b) = 2$$

$$f(c) = 2$$

Lec 15: Functions & Properties

- A function f: A → B is a machine where you input an element from a given set (the "______") and it outputs an element from another given set (the "_____").
- **Key Requirements** (to be a function):
 - For every input, the function produces _____ output
 - A mapping not necessarily satisfying these requirements is a **relation**.

Range vs. Codomain

$$f: D \rightarrow C$$

- Every element of the domain maps to exactly one element of the codomain.
- It's ok if some elements of the codomain are not mapped to, or are mapped to several times.
- Range: The set of elements in the codomain that do get mapped to at least once.

Image and Preimage

Given a function $f: A \rightarrow B$

3 **preimages** of 2 $f^{-1}(2) = \{a, c, d\}$

a b 1 2 2 3

- For $x \in A$, the **image** of x is value of f(x)
 - ullet Because f is a function, there is exactly 1 image of a value
- For $y \in B$, a **preimage** of y is a value x where f(x) = y
 - Note there may be 0 or multiple preimages for a given y
- Sometimes rather than using a single value for an input, we use a **set** of values: $f(\{a,b,c\})$
 - This returns the **set** of output values:
 - $f({a,b,c}) = {f(a), f(b), f(c)} = {2,1,2} = {1,2}$
 - We also call $\{1,2\}$ the **image** of $\{a,b,c\}$
- We use the inverse notation for a **preimage** function (even if a function doesn't have an inverse,):
 - $f^{-1}(S) = \{x \mid f(x) \in S\}$, the set of all x that map to something in S
 - $f^{-1}(\{1,2\}) = \{x \mid f(x) \in \{1,2\}\} = \{a, b, c, d\}$

The **image** of a is 2. f(a) = 2

Example

- The **floor** function of x, written $\lfloor x \rfloor$, maps x to the largest integer smaller than or equal to x.
 - Example: [3.2] = 3, [-2.1] = -3, [5] = 5
 - Say Domain = Codomain = \mathbb{R}
 - What's the range of this function?
- a. \mathbb{R}
- b. \mathbb{R}^+
- C. \mathbb{N}
- d. \mathbb{Z}
- e, \mathbb{Z}^+

Example

- The **floor** function of x, written $\lfloor x \rfloor$, maps x to the largest integer smaller than or equal to x.
 - Example: [3.2] = 3, [-2.1] = -3, [5] = 5
 - Say Domain = Codomain = \mathbb{R}
 - What's the range of this function?
- a. \mathbb{R}
- b. \mathbb{R}^+
- C. \mathbb{N}
- d. \mathbb{Z}
- e. \mathbb{Z}^+

Outline

What is a function?

- Definition, Domain, Codomain, Range
- Recognizing (non)-functions
- Function properties
 - Onto, One-to-one
 - Proofs of properties
- Bijections and Inverses
- Function Composition

Is That A Function?

One type of problem we'll see:

- Given a description of input/output pairs, is there a function with that particular input/output mapping?
 - Every domain element paired with exactly one codomain element → yes
 - Some domain element paired with 0 or ≥ 2 codomain elements → no

Is there a function
$$f: \mathbb{Z} \to \mathbb{Z}$$
 where $f(x) = y$ iff $x = y^2$?

No: this "function" would need to have
$$f(1) = 1$$
 and $f(1) = -1$.

1. Is there a function getChild, with domain/codomain both the set of all people, and

getChild(x) = y iff y is the child of x?

A. Yes

B. No

2. Is there a function getMother, with domain/codomain both the set of all people, and

getMother(x) = y iff y is the mother of x?

A. Yes

B. No

3. Is there a function $f: \mathbb{R} \to \mathbb{R}$ with

$$f(x) = y \text{ iff } x = y^2?$$

A. Yes

B. No

4. Is there a function $f: \mathbb{R} \to \mathbb{R}$ with

$$f(x) = y \text{ iff } y = 1/x^2$$

A. Yes

1. Is there a function getChild, with domain/codomain both the set of all people, and

A. Yes

getChild(x) = y iff y is the child of x?

- Some people x have 0 children (getChild(x) no mapping)
- Some people have ≥ 2 children (getChild(x) multiply mapped)
- 2. Is there a function getMother, with domain/codomain both the set of all people, and

getMother(x) = y iff y is the mother of x?

A. Yes

B. No

B. No

3. Is there a function $f: \mathbb{R} \to \mathbb{R}$ with

$$f(x) = y \text{ iff } x = y^2?$$

A. Yes

B. No

4. Is there a function $f: \mathbb{R} \to \mathbb{R}$ with

$$f(x) = y \text{ iff } y = 1/x^2$$

A. Yes

 Is there a function getChild, with domain/codomain both the set of all people, and

getChild(x) = y iff y is the child of x?

- Some people x have 0 children (getChild(x) no mapping)
- Some people have ≥ 2 children (getChild(x) multiply mapped)
- 2. Is there a function getMother, with domain/codomain both the set of all people, and

getMother(x) = y iff y is the mother of x?

- Not everyone has exactly 1 mother (even if you limit it to "biological")
- Nature is very rarely discrete, and there are many ways this line blurs
- 3. Is there a function $f: \mathbb{R} \to \mathbb{R}$ with

$$f(x) = y \text{ iff } x = y^2$$
?

4. Is there a function $f: \mathbb{R} \to \mathbb{R}$ with

$$f(x) = y \text{ iff } y = 1/x^2$$

B. No

A. Yes

B. No

A. Yes

B. No

A. Yes

1. Is there a function getChild, with domain/codomain both the set of all people, and

A. Yes

getChild(x) = y iff y is the child of x?

- Some people x have 0 children (getChild(x) no mapping)
- Some people have ≥ 2 children (getChild(x) multiply mapped)
- 2. Is there a function getMother, with domain/codomain both the set of all people, and

getMother(x) = y iff y is the mother of x?

- Not everyone has exactly 1 mother (even if you limit it to "biological")
- Nature is very rarely discrete, and there are many ways this line blurs
- 3. Is there a function $f: \mathbb{R} \to \mathbb{R}$ with

$$f(x) = y \text{ iff } x = y^2$$
?

- Some x have 0 real square roots (f(-1)) no mapping)
- Some x have 2 real square roots (f(4)) multiply mapped, to 2 and -2
- 4. Is there a function $f: \mathbb{R} \to \mathbb{R}$ with

$$f(x) = y \text{ iff } y = 1/x^2$$

A. Yes

B. No

A. Yes

B. No

B. No

A. Yes

1. Is there a function getChild, with domain/codomain both the set of all people, and

A. Yes

getChild(x) = y iff y is the child of x?

- Some people x have 0 children (getChild(x) no mapping)
- Some people have ≥ 2 children (getChild(x) multiply mapped)
- 2. Is there a function getMother, with domain/codomain both the set of all people, and

getMother(x) = y iff y is the mother of x?

- Not everyone has exactly 1 mother (even if you limit it to "biological")
- Nature is very rarely discrete, and there are many ways this line blurs
- 3. Is there a function $f: \mathbb{R} \to \mathbb{R}$ with

$$f(x) = y \text{ iff } x = y^2$$
?

- Some x have 0 real square roots (f(-1)) no mapping)
- Some x have 2 real square roots (f(4) multiply mapped, to 2 and -2)
- A. Yes

B. No

A. Yes

B. No

B. No

4. Is there a function $f: \mathbb{R} \to \mathbb{R}$ with

$$f(x) = y \text{ iff } y = 1/x^2$$

• x = 0 has no mapping

A. Yes

Outline

- What is a function?
 - Definition, Domain, Codomain, Range
 - Recognizing (non)-functions

- **Function properties**
 - Onto, One-to-one
 - Proofs of properties
- Bijections and Inverses
- Function Composition

Function Properties

 Every function must map each domain element to exactly one codomain element, no matter what.

 Functions that just so happen to have related properties for their codomain have special names:

"Onto" means that: all codomain points have at least one incoming arrow

"1-to-1" means that: all codomain points have at most one incoming arrow

More useful in proofs: no 2 domain points map to the same codomain point

Onto

Also called "surjective"

For a function $f: A \to B$, "f is onto" means that every codomain element has at least one domain element that maps to it.

$$\forall b \in B$$

$$\exists a \in A$$

$$f(a) = b$$

Example: Mapping of guests to rooms in a full hotel

"f is onto" means the same thing as "range(f) = codomain(f)"

Not onto:

 $range(f) = \{1,3,4\}$ $codomain(f) = \{1,2,3,4\}$ $range(f) \neq codomain(f)$

One-to-one

Also called "injective"

For a function $f: A \rightarrow B$, "f is 1-to-1" means that

no two (different) domain elements map to the same thing

$$\exists a_1, a_2 \in A, \qquad a_1 \neq a_2 \land \quad f(a_1) = f(a_2)$$

$$\equiv \ \forall a_1, a_2 \in A \ \left[\left(f(a_1) = f(a_2) \right) \rightarrow (a_1 = a_2) \right]$$
 Far better for proofs

Example: Mapping of students to seats in a [possibly non-full] classroom

Onto, One-to-one, Bijections, Inverse Functions

Given a function $f: A \rightarrow B$

• f is **onto** iff

• f has an inverse f^{-1} iff f is _____

$$f^{-1}(b) = a \leftrightarrow f(\underline{\hspace{1cm}}) = \underline{\hspace{1cm}}$$

Onto, One-to-one, Bijections, Inverse Fund Handout

Given a function $f: A \rightarrow B$

$$\forall b \in B, \exists a \in A \ [f(a) = b]$$

• f is **one-to-one** iff

$$\forall a_1, a_2 \in A \ [(f(a_1) = f(a_2)) \to (a_1 = a_2)]$$

• f is a bijection iff

• f^{-1} exists iff

$$A \longrightarrow B$$

$$a \longrightarrow b$$

$$c \longrightarrow a$$

$$b \longrightarrow a$$

$$c \longrightarrow a$$

$$c \longrightarrow a$$

$$c \longrightarrow a$$

$$c \longrightarrow a$$

Exercise: One-to-one and Onto

1. For each of f, g, and h: is it a function? If so, which properties does it have?

- 2. Draw a function that is
 - a) Onto and one-to-one

b) Neither onto nor one-to-one

Exercise: One-to-one and Onto

Which of these are functions? If functions, which are 1-to-1? Which are onto?

Exercise: One-to-one and Onto

Which of these are functions? If functions, which are 1-to-1? Which are onto?

Function Yes Onto Not 1-to-1: f(b) = f(c) = 1

Not a function
$$f(c)$$
 undefined

Function
Not onto: nothing maps to 3
Yes 1-to-1

• Let $f: \mathbb{R} \to \mathbb{R}$ such that f(x) = 2x + 4.

Which describes the function f?

- A. Both one-to-one and onto
- B. Onto but not one-to-one
- C. Not onto, but one-to-one
- D. Neither onto nor one-to-one

• Let $f: \mathbb{R} \to \mathbb{R}$ such that f(x) = 2x + 4.

Which describes the function f?

- A. Both one-to-one and onto
- B. Onto but not one-to-one
- C. Not onto, but one-to-one
- D. Neither onto nor one-to-one

• Let $f: \mathbb{Z} \to \mathbb{Z}$ such that f(x) = 2x + 4.

Which describes the function f?

- A. Both one-to-one and onto
- B. Onto but not one-to-one
- C. Not onto, but one-to-one
- D. Neither onto nor one-to-one

• Let $f: \mathbb{Z} \to \mathbb{Z}$ such that f(x) = 2x + 4.

Which describes the function f?

- A. Both one-to-one and onto
- B. Onto but not one-to-one

(nothing maps to 1, 3, 5...)

- C. Not onto, but one-to-one
- D. Neither onto nor one-to-one

...but how could we **prove** these properties?

Outline

- What is a function?
 - Definition, Domain, Codomain, Range
 - Recognizing (non)-functions
- Function properties

- Onto, One-to-one
- Proofs of properties
- Bijections and Inverses
- Function Composition

Proof: f(x) is one-to-one

Let $f: \mathbb{R} \to \mathbb{R}$, f(x) = 2x + 4.

Prove: *f* is one-to-one.

Goal: Prove logical expression

Onto, One-to-one, Bijections, Inverse Fund Handout

Given a function $f: A \rightarrow B$

• f is **onto** iff

$$\forall b \in B, \exists a \in A \ [f(a) = b]$$

• f is one-to-one iff

$$\forall a_1, a_2 \in A \ [(f(a_1) = f(a_2)) \to (a_1 = a_2)]$$

• f is a bijection iff

•
$$f^{-1}$$
 exists iff

$$f^{-1}(b) = a \leftrightarrow f() =$$

Proof: f(x) is one-to-one

Let $f: \mathbb{R} \to \mathbb{R}$, f(x) = 2x + 4.

Prove: *f* is one-to-one.

Goal: Prove logical expression

"For all $a_1, a_2 \in \mathbb{R}$, if $f(a_1) = f(a_2)$, then $a_1 = a_2$."

Proof: f(x) is one-to-one

Let $f: \mathbb{R} \to \mathbb{R}$, f(x) = 2x + 4.

Prove: *f* is one-to-one.

Geal: Prove logical expression "For all $a_1, a_2 \in \mathbb{R}$ if $f(a_1) = f(a_2)$, then $a_1 = a_2$."

- Let a_1 , a_2 be arbitrary real numbers.
- Assume that $f(a_1) = f(a_2)$.

• So $a_1 = a_2$.

Proof: f(x) is one-to-one

Let
$$f: \mathbb{R} \to \mathbb{R}$$
, $f(x) = 2x + 4$.

Prove: f is one-to-one.

Goal: Prove logical expression "For all $a_1, a_2 \in \mathbb{R}$, if $f(a_1) = f(a_2)$, then $a_1 = a_2$."

- Let a_1 , a_2 be arbitrary real numbers.
- Assume that $f(a_1) = f(a_2)$. $2a_1 + 4 = 2a_2 + 4$. $2a_1 = 2a_2$ $a_1 = a_2$
- So $a_1 = a_2$.
- Thus, *f* is one-to-one.

Let
$$f: \mathbb{R} \to \mathbb{R}$$
, $f(x) = 2x + 4$. **Prove:** f is onto.

Goal: Prove expression

Let $f: \mathbb{R} \to \mathbb{R}$, f(x) = 2x + 4. **Prove:** f is onto.

Goal: Prove expression

"For all $b \in \mathbb{R}$, there exists $a \in \mathbb{R}$ such that f(a) = b."

Let
$$f: \mathbb{R} \to \mathbb{R}$$
, $f(x) = 2x + 4$. **Prove:** f is onto.

Goal: Prove expression "For all $b \in \mathbb{R}$, there exists $a \in \mathbb{R}$ such that f(a) = b."

• Let *b* be an arbitrary real number.

Let
$$f: \mathbb{R} \to \mathbb{R}$$
, $f(x) = 2x + 4$. **Prove:** f is onto.

Goal: Prove expression

"For all $b \in \mathbb{R}$, there exists $a \in \mathbb{R}$ such that f(a) = b."

- Let *b* be an arbitrary real number.
- Consider $a = \cdots$

To prove "there exists," we should name **some** particular value for a (possibly depending on b).

But which value? We need to think more about **why** the proposition is true before continuing.

Let
$$f: \mathbb{R} \to \mathbb{R}$$
, $f(x) = 2x + 4$. **Prove:** f is onto.

Goal: Prove expression

"For all $b \in \mathbb{R}$, there exists $a \in \mathbb{R}$ such that f(a) = b."

- Let b be an arbitrary real number.
- Consider $a = \cdots$
- (on hold)

This side work is **not part of your proof**, and (if comfortable) you could jump straight to the choice $a = \frac{b}{2} - 2$. But be careful!

Side work: Which choice of *x* maps to a given *y*?

$$f(a) = b$$

$$2a + 4 = b$$

$$2a = b - 4$$

$$a = \frac{b}{2} - 2$$

Let
$$f: \mathbb{R} \to \mathbb{R}$$
, $f(x) = 2x + 4$.
Prove: f is onto.

Goal: Prove expression

"For all $b \in \mathbb{R}$, there exists $a \in \mathbb{R}$ such that f(a) = b."

- Let b be an arbitrary real number.
- Consider $a = \frac{b}{2} 2$ (a quotient/difference of real numbers is real)

Side work: Which choice of a maps to a given b?

$$f(a) = b$$

$$2a + 4 = b$$

$$2a = b - 4$$

$$a = \frac{b}{2} - 2$$

Let
$$f: \mathbb{R} \to \mathbb{R}$$
, $f(x) = 2x + 4$.
Prove: f is onto.

Goal: Prove expression

"For all $b \in \mathbb{R}$, there exists $a \in \mathbb{R}$ such that f(a) = b."

- Let b be an arbitrary real number.
- Consider $a = \frac{b}{2} 2$ (a quotient/difference of real numbers is real)
 - Note that a is a real number, and thus in the domain of f
- So 2a = b 4
- So 2a + 4 = b
- So f(a) = b. Done!

Prove or Disprove: f(x) is onto

Let $f: \mathbb{Z} \to \mathbb{Z}$, $f(x) = x^3 + 1$. **Prove or Disprove (circle one):** f is onto.

We will try to prove the expression:

66

Prove or Disprove: f(x) is onto

Let
$$f: \mathbb{Z} \to \mathbb{Z}$$
, $f(x) = x^3 + 1$.

Prove or Disprove: *f* is onto.

What do you think? Should we prove or disprove?

Possible side work:

"Onto" = every codomain element is mapped to. Let's try a few values:

•
$$f(-1) = (-1)^3 + 1 = 0$$

•
$$f(0) = 0^3 + 1 = 1$$

•
$$f(1) = 1^3 + 1 = 2$$

•
$$f(2) = 2^3 + 1 = 9$$

•
$$f(3) = 3^3 + 1 = 28$$

• ...

Nothing will map to these values

Probably disprove

Reminder: this is not a (dis)proof! Just building intuition on whether to prove/disprove.

Disprove: f(x) is onto

Let
$$f: \mathbb{Z} \to \mathbb{Z}$$
, $f(x) = x^3 + 1$.

Disprove: f is onto.

Reminder: onto means

" $\forall b \in \mathbb{Z}, \exists a \in \mathbb{Z} \text{ such that } f(a) = b.$ "

So (DeMorgan): not onto means

" $\exists b \in \mathbb{Z}$ such that $\forall a \in \mathbb{Z}$, we have $f(a) \neq b$."

Prove **there exists** by naming a specific value for b. Our previous side work suggested that b=3 is a good choice for b...

Disprove: f(x) is onto

Let $f: \mathbb{Z} \to \mathbb{Z}$, $f(x) = x^3 + 1$. **Disprove:** f is onto.

So (DeMorgan): not onto means " $\exists b \in \mathbb{Z}$ such that $\forall a \in \mathbb{Z}$, we have $f(a) \neq b$."

- Consider b=3.
- Let *a* be an arbitrary integer.
- Now what? How do we prove $f(a) \neq b$?
- Hint: it's usually much easier to work with an **equality**...

Disprove: f(x) is onto

Let
$$f: \mathbb{Z} \to \mathbb{Z}$$
, $f(x) = x^3 + 1$. **Disprove:** f is onto.

So (DeMorgan): not onto means " $\exists y \in \mathbb{Z}$ such that $\forall x \in \mathbb{Z}$, we have $f(x) \neq y$."

- Consider b = 3.
- Let *a* be an arbitrary integer.
- Seeking contradiction, assume that f(a) = b.
- So $a^3 + 1 = 3$
- So $a^3 = 2$
- So $a = 2^{\frac{1}{3}}$
- This contradicts that $a \in \mathbb{Z}$ (since $2^{\frac{1}{3}}$ is not an integer), which completes the contradiction. So $f(a) \neq b$.
- In other words the only a that solves f(a) = 3 is **not in the domain of** f. Therefore, f is not onto.

Outline

- What is a function?
 - Definition, Domain, Codomain, Range
 - Recognizing (non)-functions
- Function properties
 - Onto, One-to-one
 - Proofs of properties

- **Bijections and Inverses**
- Function Composition

Bijections

For a function $f: A \rightarrow B$, "f is a bijection" means:

- f is both onto (surjective) and 1-to-1 (injective)
- Equivalently, every codomain element $b \in B$ has **exactly** one domain element $a \in A$ that maps to it.
- Confusingly, some resources (like the textbook) sometimes call a bijection a *one*to-one correspondence.
- We will try to only say "bijection" but be careful if you come across this phrase in the wild!

bijection

Bijections are important mainly because they have two special properties:

- Bijections have "inverses" covered next
 - If there exists a bijection $f: A \to B$, then |A| = |B|. much more on this in the third part of the course!

Bijections Have Inverses

Bijections f have "inverse functions," written f^{-1} .

- For $f: A \to B$, the inverse is $f^{-1}: B \to A$ where f(a) = b if and only if $f^{-1}(b) = a$
- (In a dots-and-arrows diagram) just reverse the direction of the arrows

Bijection $f: \{a, b, c\} \to \{1, 2, 3\}$

Inverse f^{-1} : $\{1,2,3\} \to \{a,b,c\}$

Bijections Have Inverses

Bijections f have "inverse functions," written f^{-1} .

- For $f: A \to B$, the inverse is $f^{-1}: B \to A$ where f(a) = b if and only if $f^{-1}(b) = a$
- (In a dots-and-arrows diagram) just reverse the direction of the arrows

Non-Bijection $f: \{a, b, c\} \rightarrow \{1,2,3\}$

c 3

Not a function

Onto, One-to-one, Bijections, Inverse Fund Handout

Given a function $f: A \rightarrow B$

• f is **onto** iff

$$\forall b \in B, \exists a \in A \ [f(a) = b]$$

• f is one-to-one iff

$$\forall a_1, a_2 \in A \ [(f(a_1) = f(a_2)) \to (a_1 = a_2)]$$

• f is a **bijection** iff

•
$$f^{-1}$$
 exists iff

$$f^{-1}(b) = a \leftrightarrow f() =$$

Onto, One-to-one, Bijections, Inverse Fund Handout

Given a function $f: A \rightarrow B$

• f is **onto** iff

$$\forall b \in B, \exists a \in A \ [f(a) = b]$$

• f is **one-to-one** iff

$$\forall a_1, a_2 \in A \ [(f(a_1) = f(a_2)) \to (a_1 = a_2)]$$

• f is a **bijection** iff

it's onto and 1-1

• f^{-1} exists iff f is a bijection

$$f^{-1}(b) = a \leftrightarrow f(a) = b$$

Inverses and Composition

Which of these exist?

1.
$$f^{-1}$$

2.
$$g^{-1}$$

Inverses and Composition

Which of these exist?

- 1. f^{-1} NO (f is not a bijection)
- 2. g^{-1} YES (g is a bijection)

Let
$$f: \mathbb{R} \to \mathbb{R}$$
, $f(x) = 9 - 3x$. What is f^{-1} ?

(f is indeed a bijection, so f^{-1} exists, although we won't prove this part here)

Let
$$f: \mathbb{R} \to \mathbb{R}$$
, $f(x) = 9 - 3x$. What is f^{-1} ?

(f is indeed a bijection, so f^{-1} exists, although we won't prove this part here)

We are looking for the function f^{-1} : $\mathbb{R} \to \mathbb{R}$ where, for x, y:

- Given that f(x) = 9 3x = y,
- We can find $f^{-1}(y) = x$.

Starting point: we have 9 - 3x = y.

Let
$$f: \mathbb{R} \to \mathbb{R}$$
, $f(x) = 9 - 3x$. What is f^{-1} ?

(f is indeed a bijection, so f^{-1} exists, although we won't prove this part here)

We are looking for the function f^{-1} : $\mathbb{R} \to \mathbb{R}$ where, for x, y:

- Given that f(x) = 9 3x = y,
- We can find $f^{-1}(y) = x$.

Starting point: we have 9 - 3x = y.

Ending point: so [something depending on y] = x

Let
$$f: \mathbb{R} \to \mathbb{R}$$
, $f(x) = 9 - 3x$. What is f^{-1} ?

(f is indeed a bijection, so f^{-1} exists, although we won't prove this part here)

We are looking for the function f^{-1} : $\mathbb{R} \to \mathbb{R}$ where, for x, y:

- Given that f(x) = 9 3x = y,
- We can find $f^{-1}(y) = x$.

Starting point: we have 9 - 3x = y.

• So
$$9 - y = 3x$$

• So
$$3 - \frac{y}{3} = x$$

$$f^{-1}(y) = 3 - \frac{y}{3}$$

Outline

- What is a function?
 - Definition, Domain, Codomain, Range
 - Recognizing (non)-functions
- Function properties
 - Onto, One-to-one
 - Proofs of properties
- Bijections and Inverses

Function Composition

Two functions f, g can be **composed** into a third function when the codomain of f is the domain of g.

Composed function written $g \circ f$

$$(g \circ f)(k) = g(f(k))$$

Two functions f, g can be **composed** into a third function when the codomain of f is the domain of g.

Composed function written $g \circ f$

$$(g \circ f)(k) = g(f(k))$$

$$(g \circ f)(a) = ?$$

Two functions f, g can be **composed** into a third function when the codomain of f is the domain of g.

Composed function written $g \circ f$

$$(g \circ f)(k) = g(f(k))$$

$$(g \circ f)(a) = g(f(a))$$
$$= g(2)$$

Two functions f, g can be **composed** into a third function when the codomain of f is the domain of g.

Composed function written $g \circ f$

$$(g \circ f)(k) = g(f(k))$$

$$(g \circ f)(a) = g(f(a))$$
$$= g(2)$$
$$= z$$

Two functions f, g can be **composed** into a third function when the codomain of f is the domain of g.

Composed function written $g \circ f$

$$(g \circ f)(k) = g(f(k))$$

$$(g \circ f)(a) = z$$

 $(g \circ f)(b) = z$

Two functions f, g can be **composed** into a third function when the codomain of f is the domain of g.

Composed function written $g \circ f$

$$(g \circ f)(k) = g(f(k))$$

$$(g \circ f)(a) = z$$
$$(g \circ f)(b) = z$$
$$(g \circ f)(c) = y$$

Two functions f, g can be **composed** into a third function when the codomain of f is the domain of g.

Composed function written $g \circ f$

Definition:

$$(g \circ f)(k) = g(f(k))$$

$$(g \circ f)(a) = z$$
$$(g \circ f)(b) = z$$
$$(g \circ f)(c) = y$$

Note: we can also compose $g \circ f$ when $codom(f) \subseteq dom(g)$. (The "extra" domain elements of g won't affect $g \circ f$.)

Inverses and Composition

Which of these exist?

1.
$$f^{-1}$$

2.
$$g^{-1}$$

Inverses and Composition

Which of these exist?

- 1. f^{-1} NO (f is not a bijection)
- 2. g^{-1} YES (g is a bijection)
- 3. $f \circ g NO(codom(g))$ not subset of dom(f)
- 4. $g \circ f YES(codom(f) \subseteq dom(g))$

Exercise

$$f: \mathbb{R} \to \mathbb{R}, f(x) = 2x + 3$$

 $g: \mathbb{R} \to \mathbb{R}, g(x) = 3x + 1$
What is $(f \circ g)(x)$?

Reminder: $(f \circ g)(x)$ is defined as f(g(x)).

Exercise

$$f: \mathbb{R} \to \mathbb{R}, f(x) = 2x + 3$$

 $g: \mathbb{R} \to \mathbb{R}, g(x) = 3x + 1$
What is $(f \circ g)(x)$?

Reminder: $(f \circ g)(x)$ is defined as f(g(x)).

$$f(g(x)) = f(3x + 1)$$

= 2(3x + 1) + 3
= 6x + 5

Caution:

Order matters! $(f \circ g)(x)$ is not the same as $(g \circ f)(x)$

Here,
$$(g \circ f)(x) = g(2x + 3) = 3(2x + 3) + 1 = 6x + 7$$

Wrapup

- We'll revisit functions throughout this course
- The properties of **onto**, **one-to-one**, and **invertibility** are important in:
 - Counting (later this term)
 - Hashing, Cryptography, Error-correcting codes, Computational Geometry, ...