2021年4月2日

Smoothness Assumption

- Assumption: "similar" x has the same \hat{y}
- · More precisely:
 - · x is not uniform.
 - If x^1 and x^2 are close in a high density region, \hat{y}^1 and \hat{y}^2 are the same.

connected by a high density path

Cluster and then Label

Deep auto-encoding then cluster

Graph-based Approach

• How to know x^1 and x^2 are close in a high density region (connected by a high density path)

Represented the data points as a *graph*

Graph representation is nature sometimes.

E.g. Hyperlink of webpages, citation of papers

相连的表示一类, 不相连即使离的近也不好使

Graph-based Approach The image is from the tutorial - Graph Construction

slides of Amarnag Subramanya and Partha Pratim Talukdar

- Define the similarity $s(x^i, x^j)$ between x^i and x^j
- · Add edge:
 - K Nearest Neighbor
 - e-Neighborhood

需要数据足够多:

• Define the smoothness of the labels on the graph

左面比较smooth,三角形都是1,爪是0 定量描述他有多smooth

• Define the smoothness of the labels on the graph

$$S = \frac{1}{2} \sum_{i,j} w_{i,j} (y^i - y^j)^2$$