Méthodes régularisées pour l'analyse de données multivariées en grande dimension : théorie et applications.

Marie Perrot-Dockès

Céline Lévy-Leduc, Julien Chiquet, Laure Sansonnet

Séminaire MIAT : 10 janvier 2020

Motivation : application en immunologie

- Collaboration
 Maximilien Grandclaudon, Coline Trichot, Vassili Soumelis
- ObjectifÉtude du Dialogue entre DC et Th

Motivation : application en immunologie

- Collaboration
 Maximilien Grandclaudon, Coline Trichot, Vassili Soumelis
- ObjectifÉtude du Dialogue entre DC et Th

Modélisation statistique

- Description des données :
 - ➤ X : n × p matrice de design contenant les signaux des cellules dendritiques
 - **Y**: $n \times q$ matrice de réponses $(q \gg n)$ contenant les signaux des lymphocytes Th
- Question : Quelles variables influencent les réponses?
- Approche : Sélection de variables dans le modèle linéaire général

$$Y = XB + E$$
,

οù

- **B** : $p \times q$ matrice **parcimonieuse** des coefficients
- ightharpoonup E: n imes q matrice d'erreur avec

$$\forall i \in \llbracket 1, n
rbracket, (E_{i,1}, \ldots, E_{i,q}) \stackrel{iid}{\sim} \mathcal{N}(0, \Sigma)$$

en prenant en compte la dépendance en estimant Σ .

État de l'art : méthodes en univarié

Traiter indépendamment les q modèles univariés :

$$\mathbf{Y}_{\bullet,r} = \mathbf{X} \mathbf{B}_{\bullet,r} + \mathbf{E}_{\bullet,r}, \ \forall r \in [1,q], \tag{1}$$

où $\mathbf{A}_{\bullet,r}$ désigne la $r^{\rm e}$ colonne de \mathbf{A} .

- Maximum de vraisemblance ⇒ pas parcimonieux! Sélection de variables :
 - AIC, BIC (Akaike, 1970, Schwarz et al., 1978)
 - Tests (Mardia et al, 1980)
- Régression pénalisée Lasso (Tibshirani, 1996) :

$$\widehat{\boldsymbol{B_{\bullet,r}}}(\lambda) = \operatorname{Argmin}_{\boldsymbol{B_{\bullet,r}}} \left\{ \| \boldsymbol{Y} - \boldsymbol{X} \boldsymbol{B_{\bullet,r}} \|_2^2 + \lambda \| \boldsymbol{B_{\bullet,r}} \|_1 \right\}.$$

Zhao et Yu (2006) ont montré sous certaines conditions :

$$\mathbb{P}\left(\operatorname{sign}(\widehat{B_{\bullet,r}}(\lambda)) = \operatorname{sign}(B_{\bullet,r})\right) \to 1, \text{ lorsque } n \to \infty,$$
 où $\operatorname{sign}(x) \in \{-1,0,1\}$

État de l'art : méthodes en multivarié

Cherchent à minimiser la fonction :

$$\ell(\boldsymbol{B}, \boldsymbol{\Omega}) = \operatorname{tr}\left(\frac{1}{n}(\boldsymbol{Y} - \boldsymbol{X}\boldsymbol{B})\boldsymbol{\Omega}(\boldsymbol{Y} - \boldsymbol{X}\boldsymbol{B})^{\mathsf{T}}\right) - \log(|\boldsymbol{\Omega}|), \quad (2)$$

où
$$\Omega = \Sigma^{-1}$$

- Maximum de vraisemblance (Mardia et al, 1980)
- Régressions pénalisées
 - Rothman et al. (2010) : une méthode itérative une double pénalité, \boldsymbol{B} et Ω parcimonieuses.
 - Lee & Liu (2012) : une étude théorique à q fixé.
 - Méthodes contemporaines : Zhang et al. (2017), Molstad et al. (2018).

Objectif : Estimation parcimonieuse de \boldsymbol{B}

Application du Lasso univarié

Dans le modèle $\mathcal{Y} = \mathcal{XB} + \mathcal{E}$ l'estimateur Lasso est :

$$\widehat{\mathcal{B}}(\lambda) = \operatorname{Argmin}_{\mathcal{B}} \left\{ \| \mathcal{Y} - \mathcal{X}\mathcal{B} \|_{2}^{2} + \lambda \| \mathcal{B} \|_{1} \right\}.$$

Vectorisation du modèle « blanchi »

$$\begin{split} \boldsymbol{Y} \boldsymbol{\Sigma}^{-1/2} &= \boldsymbol{X} \boldsymbol{B} \boldsymbol{\Sigma}^{-1/2} + \boldsymbol{E} \boldsymbol{\Sigma}^{-1/2} \\ \boldsymbol{\mathcal{Y}} &= \textit{vec}(\boldsymbol{Y} \boldsymbol{\Sigma}^{-1/2}) = \textit{vec}(\boldsymbol{X} \boldsymbol{B} \boldsymbol{\Sigma}^{-1/2}) + \textit{vec}(\boldsymbol{E} \boldsymbol{\Sigma}^{-1/2}) \\ &= ((\boldsymbol{\Sigma}^{-1/2})' \otimes \boldsymbol{X}) \textit{vec}(\boldsymbol{B}) + \textit{vec}(\boldsymbol{E} \boldsymbol{\Sigma}^{-1/2}) \\ &= \mathcal{X} \boldsymbol{\mathcal{B}} + \mathcal{E}. \end{split}$$

Nous ne connaissons pas Σ !

Mise en place : une méthode en quatre étapes

- **I** Estimation des erreurs : $\widehat{\mathbf{E}}$ Les résidus sont calculés indépendamment sur chaque colonne de \mathbf{Y}
- **2** Estimation de la matrice de covariance de $E: \widehat{\Sigma}$
 - $ightharpoonup n \gg q$: matrice de covariance empirique
 - $q \gg n$: on suppose une structure particulière
 - ▶ Toeplitz symétrique,
 - par blocs.
- f 3 « Blanchiment » : m Y $\widehat \Sigma^{-1/2} = m X m B$ $\widehat \Sigma^{-1/2} + m E$ $\widehat \Sigma^{-1/2}$
- Sélection de variables en utilisant le critère Lasso et la « stability selection »

Plan de la présentation :

- I. Estimation de matrice de covariance $(q \gg n)$
- Matrice de covariance Toeplitz
- Matrice de covariance par blocs
- II. Garanties théoriques

III. Applications

- Eco-physiologie végétale
- Immunologie
- IV. Conclusion et perspectives

Estimation de matrice de covariance en grande dimension $(q \gg n)$

- Matrice Toeplitz symétrique (une notion d'ordre dans les réponses)
 - la covariance ne dépend que de la distance entre deux réponses.

► Matrice par blocs (réponses groupées).

Cas : AR(1)

$$\forall i \in [\![1,n]\!], \ \forall t \in \mathbb{Z}, \ E_{i,t} - \phi_1 E_{i,t-1} = W_{i,t},$$
 avec $(W_{i,t})_t \sim BB(0,1), \ |\phi_1| < 1.$

$$\widehat{\boldsymbol{\Sigma}} = \frac{1}{1 - \widehat{\phi}_1^2} \left(\begin{array}{cccc} 1 & \widehat{\phi}_1 & \widehat{\phi}_1^2 & \dots & \widehat{\phi}_1^{q-1} \\ \widehat{\phi}_1 & 1 & \widehat{\phi}_1 & \dots & \widehat{\phi}_1^{q-2} \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \widehat{\phi}_1^{q-1} & \dots & \dots & \dots & 1 \end{array} \right),$$

Estimateur de
$$\phi_1$$
: $\widehat{\phi}_1 = \frac{1}{n} \sum_{i=1}^n \widehat{\phi}_1^{(i)}$,

où $\phi_1^{(i)}$ est l'estimateur de Yule-Walker de la ligne i de \boldsymbol{E}

Cas : AR(1)

En pratique on a besoin de $\widehat{\Sigma}^{-1/2}$

$$\widehat{\Sigma}^{-1/2} = egin{pmatrix} \sqrt{1-\widehat{\phi}_1^2} & -\widehat{\phi}_1 & 0 & \cdots & 0 \\ 0 & 1 & -\widehat{\phi}_1 & \cdots & 0 \\ 0 & 0 & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & -\widehat{\phi}_1 \\ 0 & 0 & \cdots & 0 & 1 \end{pmatrix},$$

Estimateur de
$$\phi_1$$
: $\widehat{\phi}_1 = \frac{1}{n} \sum_{i=1}^n \widehat{\phi}_1^{(i)}$,

où $\phi_1^{(i)}$ est l'estimateur de Yule-Walker de la ligne i de ${\it E}$

Généralisation : estimateur de Σ dans le cas "Toeplitz"

 $\forall i \in [1, n]$, on modélise $(E_{i,1}, \dots, E_{i,q})$ par un processus stationnaire.

$$\widehat{\Sigma} = \begin{pmatrix} \widehat{\gamma}(0) & \widehat{\gamma}(1) & \cdots & \widehat{\gamma}(q-1) \\ \widehat{\gamma}(1) & \widehat{\gamma}(0) & \cdots & \widehat{\gamma}(q-2) \\ \vdots & & & \\ \widehat{\gamma}(q-1) & \widehat{\gamma}(q-2) & \cdots & \widehat{\gamma}(0) \end{pmatrix}.$$
 Estimateur de $\gamma(h)$: $\widehat{\gamma}(h) = \frac{1}{n} \sum_{i=1}^{n} \widehat{\gamma}_{i}(h)$,

Estimateur de
$$\gamma(h)$$
 : $\widehat{\gamma}(h) = \frac{1}{n} \sum_{i=1}^{n} \widehat{\gamma}_{i}(h)$

où $\widehat{\gamma}_i(h)$ est un estimateur de la fonction d'autocovariance du processus $(E_{i,t})_t$ au retard h.

En pratique : on obtient $\widehat{\Sigma}^{-1/2}$ à l'aide de l'inverse de Cholesky.

Choix de la modélisation

$$\widetilde{m{E}} = \widehat{m{E}}\widehat{m{\Sigma}}_q^{-1/2}$$

Sous (H0) « pour tout i dans $\{1,\ldots,n\}$, $(\widetilde{E}_{i,1},\ldots,\widetilde{E}_{i,q})$ est un bruit blanc » on a :

$$q\sum_{i=1}^n\sum_{h=1}^H\widehat{\rho}_i(h)^2\approx\chi^2(nH), \text{ lorsque } q\to\infty,$$

où $\widehat{\rho}_i(h)$ est un estimateur de la fonction d'autocovariance du processus $(\widehat{\boldsymbol{E}}_{i,t})_t$ au retard h.

Pour des réponses groupées

Estimation de matrice de covariance par blocs :

Estimation de Σ

Supposons qu'il existe

- ▶ **Z** une matrice parcimonieuse de taille $q \times k$ avec $k \ll q$
- **D** une matrice diagonale

Telles que

$$\Sigma = ZZ' + D$$
,

avec les termes diagonaux de Σ égaux à 1.

Figure – Exemples de matrices Σ générées à partir de matrices $Z._{16}$ / 44

Estimation de Σ

- Un estimateur de rang faible
 - lacktriangle Une matrice de rang faible contenant les termes extra-diagonaux de Σ
 - Approximation de cette matrice en utilisant la décomposition en valeurs singulières.
- Un estimateur parcimonieux.
 Détecter les positions des valeurs non nulles de Σ.
- ▶ Un estimateur défini positif. Transformer $\widehat{\Sigma}$ en $\widehat{\Sigma}$ une matrice définie positive (Higham, 2002).

Un estimateur de faible rang

Passage de Σ à Γ

- $ightharpoonup rang(\Sigma) = q$, $rang(\Gamma) = k \ll q$
- **En pratique** Σ est inconnu. Γ est telle que

$$\widetilde{\boldsymbol{\Gamma}}_{i,j} = \left\{ \begin{array}{ll} \boldsymbol{R}_{i,j+1} & \forall 1 \leq i \leq j \leq q-1 \\ \widetilde{\boldsymbol{\Gamma}}_{j,i} & \forall 1 \leq j < i \leq q-1 \end{array} \right.,$$

- où R est la matrice de corrélation empirique.
- $\widetilde{\Gamma}^{(r)}$: une approximation de rang r de $\widetilde{\Gamma}$ (SVD). il faut choisir r!

Choix de r en pratique

- ► Critère de Cattell (Cattell, 1966)
- Méthode de permutation PA (Horn, 1965).

Figure – Choix de r en pratique q = 500 et n = 30, k = 5

Expériences numériques la méthode PA à tendance à sous évaluer k lorsque n est faible.

Sélection des valeurs non nulles

- $oxed{1}$ Critère Lasso sur les valeurs de $\widetilde{\Gamma}^{(r)}$
- 2 Ré-estimation des valeurs non nulles
- \Rightarrow Ceci revient à mettre un seuil sur les valeurs de $\widetilde{\Gamma}^{(r)}$:

$$\widehat{\Gamma}_{i,j}(\lambda) = \begin{cases} \widetilde{\Gamma}_{j,i}^{(r)}, & \text{si } |\widetilde{\Gamma}_{j,i}^{(r)}| > \frac{\lambda}{2} \\ 0, & \text{sinon} \end{cases}$$

En pratique : Comment choisir λ ?

- lacksquare Le critère du coude calculé sur l'erreur $\|\widehat{m{\Gamma}}(\lambda) \widetilde{m{\Gamma}}\|_{m{ extit{F}}}$
- ▶ Bickel & Levina 2008 : fondé sur la " cross-validation "

Un estimateur défini positif

Précupérer un estimateur de $\Sigma \Rightarrow$ on remet les 1 sur la diagonale.

$$\widetilde{\Sigma}_{i,j} = \left\{ egin{array}{ll} \widehat{\Gamma}_{i,j-1}^{(r)} & ext{si } 1 \leq i < j \leq q \\ 1 & ext{si } 1 \leq i = j \leq q \\ \widetilde{\Sigma}_{j,i} & ext{si } 1 \leq j < i \leq q \end{array}
ight.$$

Assurer sa positivité (Higham 2002) :

$$\widehat{\boldsymbol{\Sigma}} = \operatorname{Argmin}_{R} \|\widetilde{\boldsymbol{\Sigma}} - R\|_{F},$$

où R est une matrice de corrélation.

En pratique

On veut utiliser notre méthode de sélection de variable!

- \Rightarrow II nous faut un estimateur de $\Sigma^{-1/2}$
 - $ightharpoonup \widehat{\Sigma}$ est symétrique donc il existe $oldsymbol{U}$ orthogonale et $oldsymbol{D}$ diagonale telles que

$$\widehat{\Sigma} = UDU'$$
.

En pratique on propose l'estimateur

$$\widehat{\Sigma}^{-1/2} = \mathbf{U} \mathbf{D}_t^{-1/2} \mathbf{U}',$$

οù

$$D_t^{-1/2}{}_{i,i} = \left\{ egin{array}{ll} rac{1}{\sqrt{D_{i,i}}} & ext{si } D_{i,i} \geq t \\ 0 & ext{sinon.} \end{array}
ight.$$

Comparaison avec des méthodes existantes : $\Sigma^{-1/2}$

Figure – Comparaison de la norme de Frobenius $\|\widehat{\Sigma}^{-1/2}\Sigma\widehat{\Sigma}^{-1/2} - \operatorname{Id}\|_{\mathcal{F}}$ dans le cas **Extra-Diagonal-Equal** pour n=30 et q=100.

Plan

- I. Estimation de matrice de covariance $(q \gg n)$
- Matrice de covariance Toeplitz
- Matrice de covariance par blocs

II. Garanties théoriques

- III. Applications
- Eco-physiologie végétale
- Immunologie
- IV. Conclusion et perspectives

Notre méthode de sélection de variables

Rappel

- ▶ objectif : un estimateur parcimonieux de *B*

Vectorisation du modèle « blanchi »

$$egin{aligned} m{Y}\widehat{m{\Sigma}}^{-1/2} &= m{X}m{B}\widehat{m{\Sigma}}^{-1/2} + m{E}\widehat{m{\Sigma}}^{-1/2} \ &m{\mathcal{Y}} = vec(m{Y}\widehat{m{\Sigma}}^{-1/2}) = vec(m{X}m{B}\widehat{m{\Sigma}}^{-1/2}) + vec(m{E}\widehat{m{\Sigma}}^{-1/2}) \ &= ((\widehat{m{\Sigma}}^{-1/2})' \otimes m{X})vec(m{B}) + vec(m{E}\widehat{m{\Sigma}}^{-1/2}) \ &= m{\mathcal{X}}m{\mathcal{B}} + m{\mathcal{E}}. \end{aligned}$$

Application du Lasso univarié

$$\widehat{\mathcal{B}}(\lambda) = \operatorname{Argmin}_{\mathcal{B}} \left\{ \| \mathcal{Y} - \mathcal{X}\mathcal{B} \|_{2}^{2} + \lambda \| \mathcal{B} \|_{1} \right\}.$$

Contribution : Consistance en signe dans le cas multivarié

Théorème (Perrot-Dockès et al, 2018)

Supposons qu'il existe M_1 , M_2 , M_3 et M_4 , M_5 telles que

- $\|(m{X}^{\intercal}m{X})/n\|_{\infty} \leq M_1$, $\lambda_{\min}((m{X}^{\intercal}m{X})/n) \geq M_2$
- $ightharpoonup \lambda_{\max}(\Sigma^{-1}) \leq M_3$, $\lambda_{\min}(\Sigma^{-1}) \geq M_4$
- ightharpoonup Conditions d'irreprésentabilité sur $\mathcal X$ construit avec Σ .
- ll existe $c_1,\ c_2$ telles que $0 < c_1 + c_2 < \frac{1}{2}$ qui satisfont
 - $ightharpoonup s = O_{\mathbb{P}}(q^{c_1})$ où s est le cardinal du support J de \mathcal{B} ,
 - $\qquad \qquad q^{c_2} \min_{j \in J} |\mathcal{B}_j| \geq M_3.$
- $||\Sigma^{-1} \widehat{\Sigma}^{-1}||_{\infty} = \mathcal{O}_{\mathbb{P}}((nq)^{-1/2}), \ \rho(\Sigma \widehat{\Sigma}) = \mathcal{O}_{\mathbb{P}}((nq)^{-1/2})$

Alors, pour tout λ tel que $\frac{\lambda}{\sqrt{n}} \to \infty$ et $\frac{\lambda}{n} = o\left(q^{-(c_1+c_2)}\right)$, lorsque $n \to \infty$ où $q = q_n = o\left(n^{\frac{1}{2(c_1+c_2)}}\right) = o(n^k)$ si $c_1 + c_2 = \frac{1}{2k}$, on a

$$\mathbb{P}\left(\operatorname{sign}(\widehat{\mathcal{B}}(\lambda)) = \operatorname{sign}(\mathcal{B})\right) \to 1$$
, lorsque $n \to \infty$.

Un cas simple où les conditions sont vérifiées

- **X** telle que $X^TX = \nu I$ (ex : matrice d'ANOVA à 1 facteur équilibré)
- $ightharpoonup \forall i \in [1, n] \ E_i \text{ processus } AR(1)$

$$egin{aligned} orall i \in \{1,\ldots,n\}, \ orall t \in \mathbb{Z}, \ extbf{\emph{E}}_{i,t} - \phi_1 extbf{\emph{E}}_{i,t-1} = W_{i,t}, \ ext{avec} \ (W_{i,t})_t \sim BB(0,1), \ |\phi_1| < 1. \end{aligned}$$

Dans ce cas:

ightharpoonup si on estime ϕ_1 comme

$$\widehat{\phi}_1 = \frac{\sum_{i=1}^n \sum_{\ell=2}^q \widehat{E}_{i,\ell} \widehat{E}_{i,\ell-1}}{\sum_{i=1}^n \sum_{\ell=1}^{q-1} \widehat{E}_{i,\ell}^2},$$

▶ si $j \in J$, j + p ou j - p n'est pas dans J (pour (IC)) alors, les conditions du théorème sont vérifiées!

Expériences numériques : retrouver le support

Étude : Fréquence des cas où

$$\exists \lambda, \operatorname{sign}(\widehat{B}(\lambda)) = \operatorname{sign}(B)$$

- Données :

 - X matrice d'ANOVA à 1 facteur à 2 modalités équilibré
 - $\forall i \in [1, n] \ E_i$ processus AR(1)
 - ▶ Dans le théorème on veut $q = q_n = o(n^k)$, ici k = 2

Expériences numériques : au-delà des hypothèses

Étude : Fréquence des cas où

$$\exists \lambda, \operatorname{sign}(\widehat{B}(\lambda)) = \operatorname{sign}(B)$$

- Données :
 - q = 1000
 - **X** matrice d'ANOVA à 1 facteur à 2 modalités déséquilibré

$$r = \frac{\text{taille groupe 1}}{\text{taille totale}}$$

- $\forall i \in [1, n] \ E_i \text{ processus } AR(1)$
- ► Rappel $q = q_n = o\left(n^{\frac{1}{2(c_1+c_2)}}\right) = o(n^k)$, ici k = 2

whitened-lasso

oracle

Expériences numériques : au-delà des hypothèses

Étude : Fréquence des cas où

$$\exists \lambda, \operatorname{sign}(\widehat{B}(\lambda)) = \operatorname{sign}(B)$$

- Données :

 - ▶ X matrice d'ANOVA à 1 facteur à 2 modalités équilibré
 - $\forall i \in [1, n] \ E_i \text{ processus } AR(p)$
 - ► Rappel $q = q_n = o\left(n^{\frac{1}{2(c_1+c_2)}}\right) = o(n^k)$, ici k = 2

En pratique il faut choisir λ

- **1** Estimation des erreurs : \hat{E}
- **2** Estimation de la matrice de covariance de $\boldsymbol{\mathcal{E}}:\widehat{\boldsymbol{\Sigma}}$
- f 3 « Blanchiment » : m Y $\widehat{m \Sigma}^{-1/2} = m X m B$ $\widehat{m \Sigma}^{-1/2} + m E$ $\widehat{m \Sigma}^{-1/2}$
- Sélection de variables en utilisant le critère Lasso et la « stability selection »
 - Validation croisée pour sélectionner λ_{CV}
 - N tirage de taille n/2 : soit F_i la fréquence où chaque variable i est sélectionnée
 - ightharpoonup on garde les variable i telles que F_i > seuil

Plan

- I. Estimation de matrice de covariance $(q \gg n)$
- Matrice de covariance Toeplitz
- Matrice de covariance par blocs
- II. Garanties théoriques

III. Applications

- Eco-physiologie végétale
- Immunologie
- IV. Conclusion et perspectives

Application en écophysiologie végétale

Étude de l'impact de la température de production sur la qualité des graines

Froid: Standard: Chaud: 14-16 °C 18-22 °C 25-28 °C

- CollaborationGwendal Cueff, Loic Rajjou
- ObjectifRecherche de biomarqueurs
- Données
 - **X**: 9 × 3 gammes de températures
 - Y: 9 × 199 accumulations des métabolites
- ► En pratique
 - Covariance Toeplitz symétrique
 - ► Seuil de « stability selection » 0.93

Estimation de \boldsymbol{B} Effet de la température sur la qualité des graines

Figure – Estimation des coefficients $B_{i,j}$ pour les métabolites sélectionnés avec un seuil égal à 0.93.

La température de production sur les glucosinolates

La température modifie le métabolisme des glucosinolates qui

- ▶ luttent contre les ravageurs,
- sont antifongiques et antioxydants.
 - ⇒ modification de la qualité biochimique et physiologique des graines.

35 / 44

Application en immunologie

- Collaboration
 Maximilien Grandclaudon, Coline Trichot, Vassili Soumelis
- ObjectifÉtude du Dialogue entre DC et Th

État de l'art

Figure - Les différents profils Th

État de l'art

Figure - Les différents profils Th

Notre approche

Données

► X : 428 × 36 signaux des DC

Y: 428 × 18 signaux des Th

En pratique

- Covariance empirique
- ► Seuil de « stability selection » 0.65

On retrouve les profils Th!

Figure – Coefficients de la modélisation des signaux des lymphocytes Th par les signaux des cellules dendritiques avec un seuil de 0.65.

Hypothèses biologiques : 346 potentielles associations!

Exemples d'expériences

Un récepteur particulier

Directement au lymphocytes Th

Validation: 41/56 des hypothèses testées biologiquement!

Conclusion

Les apports de cette présentation

- ▶ Un estimateur parcimonieux des coefficients :
 - Résultats théoriques : consistance en signe,
 - Simulations numériques.
- Des estimateurs de matrice de covariance
 - Dépendance de processus stationnaire
 - Résultats théoriques : vérification des hypothèses,
 - Études par simulations numériques,
 - Par blocs
 - Études par simulations numériques
- Applications :
 - à un problème d'écophysiologie végétale (métabolomique ciblée)
 - à un problème immunologique validation de nombreuses associations importantes

Perspectives

Pour aller plus loin

- Vers d'autres cas vérifiant les conditions de consistance en signe de notre estimateur :
 - le cas des ARMA(p, q) (Haddad, 2004),
 - les matrices de covariance par blocs diagonaux.
- Adaptation d'autres matrice de design
 - ► En pratique : R package VariSel qui permet de
 - regrouper des coefficients (group-lasso),
 - fusionner des coefficients (fused-lasso).
 - **En théorie** : adaptation au cas multivarié du
 - group-lasso (Bach, 2008),
 - fused-lasso (Rinaldo et al., 2009).
 - Application
 - Prendre en compte le type de cellule dendritique dans le dialogue avec les lymphocytes Th
- Développer des tests pour trouver la meilleure modélisation de la dépendance

43 / 44

Merci!

Productions scientifique

Article publiés

- Journal of Multivariate Analysis M. Perrot-Dockès, C. Lévy-Leduc, L. Sansonnet, J. Chiquet, "Variable selection in multivariate linear models with high-dimensional covariance matrix estimation", 166:78 – 97, 2018.
- Statistical Applications in Genetics and Molecular Biology M. Perrot-Dockès, C. Lévy-Leduc, J. Chiquet, L. Sansonnet, M. Brégère, M.-P. Étienne, S. Robin, G. Genta-Jouve "A variable selection approach in the multivariate linear model: An application to LC-MS metabolomics data" 17(5), 2018.
- Cell M. Grandclaudon*, M. Perrot-Dockès*, C. Trichot,* O. Mostafa-Abouzid, W. Abou-Jaoudé, F. Berger, P. Hupé, D. Thieffry, L. Sansonnet, J. Chiquet, C. Lévy-Leduc, V. Soumelis A quantitative multivariate model of human dendritic cell-T helper cell communication. , 2019
 - * : ces auteurs ont contribué de manière égale à cette publication

Article soumis

M. Perrot-Dockès, C. Lévy-Leduc "Estimation of large block structured covariance matrices : Application to "multi-omic" approaches to study seed quality"

Chapitre de livre (à paraître prochainement)

Willey M. Perrot-Dockès, C. Lévy-Leduc "Estimation of large block structured covariance matrices: Application to "multi-omic" approaches to study seed quality"

Package R

- MultiVarSel disponible sur le CRAN.
- BlockCov disponible sur le CRAN.
- VariSel disponible sur github.

Comparaison courbe ROC

Comparaison dans le cas "classification"

Conditions d'irreprésentabilité

$$|(\mathcal{X}^{\top}\mathcal{X})_{J^c,J}\{(\mathcal{X}^{\top}\mathcal{X})_{J,J}\}^{-1}\operatorname{sign}(\mathcal{B}_{\mathrm{J}})| \leq 1 - \eta,$$

où l'inégalité est vrai pour tous les éléments. Notons que :

$$(\mathcal{X}^{\top}\mathcal{X})_{J,J} = \{((\mathbf{\Sigma}^{-1/2})^{\top} \otimes \mathbf{X}\}^{\top}((\mathbf{\Sigma}^{-1/2})^{\top} \otimes \mathbf{X}))_{J,J}$$
$$= (\mathbf{\Sigma}^{-1/2}(\mathbf{\Sigma}-1/2)^{\top} \otimes \mathbf{X}^{\top}\mathbf{X})_{J,J}$$
$$= (\mathbf{\Sigma}^{-1} \otimes \mathbf{X}^{\top}\mathbf{X})_{J,J}.$$

Donc:
$$S = \mathcal{X}^{\top} \mathcal{X} = \Sigma^{-1} \otimes X^{\top} X$$
.
 $\|S_{J^c,J}(S_{J,J})^{-1} \operatorname{sign}(\mathcal{B}_J)\|_{\infty} \leq 1 - \eta$,

Simulations numériques : choix de r

Figure – Choix de r en pratique (k = 5)

Sélection de variable : Comment choisir λ

- Découper le jeux de données en 10 sous-groupes Soit G^v les données privées du v^e sous-groupe
- 2 Pour tout \mathcal{G}^{ν} ,
 - validation croisée pour sélectionner λ_{CV}.
 - ▶ Stability selection au niveau λ_{CV} avec N réplications $\rightarrow N_i^{\nu}$ le nombre de fois ou la variable i est sélectionnée dans \mathcal{G}^{ν}
- **3** Garder les variables i telle que $F_i = \sum_{v=1}^{10} N_i^v / (10 \times N) > \text{seuil}$

Sélection de variable : choix du seuil en pratique

Figure – Influence du nombre de réplications N et du seuil.

État de l'art : les modèles à facteurs

Qu'est ce qu'un modèle à facteurs?

$$\boldsymbol{E}_i = f_i \boldsymbol{Z}_f^\intercal + \boldsymbol{U}_i, \forall i \in \llbracket 1, n
bracket$$

οù

- \triangleright \mathbf{E}_i est la ligne i de \mathbf{E} ,
- $ightharpoonup Z_f^{\mathsf{T}}$ est une matrice $k \times q$,
- $ightharpoonup f_i$ est un vecteur iid de taille k.
- **U**_i est un vecteur d'erreur de taille q (indep de f_i).

Sous cette hypothèse d'indépendance on a :

$$\boldsymbol{\Sigma} = \boldsymbol{Z}_f^{\intercal} \mathrm{Cov}(f) \boldsymbol{Z}_f^{\intercal} + \boldsymbol{\Sigma}_u,$$

- Gérer les modèles à facteurs
 - ▶ Blum et al. (2016) : un estimateur parcimonieux de \boldsymbol{B}_f donc de Σ lorsque $\forall i \in [\![1,n]\!], \; (f_{i,1},\ldots,f_{i,k}) \stackrel{iid}{\sim} \mathcal{N}(0,\boldsymbol{I}).$
 - ▶ Hosseini & Lee (2016) : un estimateur parcimonieux de Ω à l'aide de modèle à facteur.