

1991

PERFORMANCE REPORT  
DRINKING WATER ORGANICS  
SECTION

MAY 1992



Environment  
Environnement  
Ontario



1991

PERFORMANCE REPORT

DRINKING WATER ORGANICS SECTION

Report Prepared By:

Eva Duchoslav (ed.)  
Drinking Water Organics Section  
Laboratory Services Branch  
Ontario Ministry of the Environment

FEBRUARY 1992



PRINTED ON  
RECYCLED PAPER  
IMPRIME SUR  
DU PAPIER RECYCLE

Cette publication technique  
n'est disponible qu'en anglais.

Copyright: Queen's Printer for Ontario, 1992  
This publication may be reproduced for non-commercial purposes  
with appropriate attribution.

PIBS 1933E



The editor wishes to thank all Drinking Water Organics Section staff who helped to realize this report by providing experimental data and valuable comments.



*Performance Summary, 1991*  
*Drinking Water Organics Section*

**TABLE OF CONTENTS**

|                                                                                                                                                         |       |    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----|
| Introduction                                                                                                                                            | ..... | 1  |
| The Determination of Trihalomethanes in Water by Purge-and-Trap / Gas Chromatography ( OPTM-E3237A.1 )                                                  | ..... | 3  |
| The Determination of Purgeable Organic Compounds in Potable and Surface Waters by P&T/GC/FID and ECD ( OPOV-E3144A.1 )                                  | ..... | 9  |
| The Determination of Organochlorine Pesticides, Poly-chlorinated Biphenyls and Other Chlorinated Organic Compounds in Water by GC-ECD ( OWOC-E3120A.1 ) | ..... | 39 |
| The Determination of Chlorophenols and Phenoxyacid Herbicides in Water by Solid Phase Extraction and GC-ECD ( OWCP-B-E3119A.1 )                         | ..... | 47 |
| The Determination of Organophosphorous Pesticides in Water by GC-TSD ( PWAOP-E3224A.1 )                                                                 | ..... | 52 |
| The Determination of Polynuclear Aromatic Hydrocarbons in Surface Water, Drinking Water and Groundwater by HPLC ( HPLC/L-E3086A.1 )                     | ..... | 57 |
| The Determination of Carbamates in Water by HPLC ( PWACAR-E3185A.1 )                                                                                    | ..... | 62 |
| The Determination of Triazine Herbicides in Water by GC-TSD ( OWTRI-E3121A.1 )                                                                          | ..... | 67 |
| The Determination of Phenyl Ureas in Water by High Performance Liquid Chromatography ( PWAUH-E3230A.1 )                                                 | ..... | 72 |
| The Determination of Polychlorinated Dibenzo-p-dioxins and Poly-chlorinated Dibenzofurans in Ambient Air ( PAAFD-E3123A.1 )                             | ..... | 74 |
| The Determination of Polychlorinated Dibenzo-p-dioxins and Poly-chlorinated Dibenzofurans in Fish Tissue ( PFAFD-E3135A.1 )                             | ..... | 82 |
| The Determination of Polychlorinated Dibenzo-p-dioxins and Poly-chlorinated Dibenzofurans in Soil and Sediment ( PSAFD-E3152A.1 )                       | ..... | 90 |



## **INTRODUCTION**

This document represents the first publication of an annual summary of the performance of routine approved analytical methods within the laboratories of Drinking Water Organics Section.

The Drinking Water Organics Section is responsible for both qualitative and quantitative analyses of drinking, surface, river and lake waters for a wide array of organic chemicals, such as chlorinated benzenes, herbicides, pesticides, polynuclear aromatic hydrocarbons, extractable organics and purgeable organics at the part-per-trillion or part-per-billion level. In addition, analyses provided by the Section include ultra-trace quantitative analyses of environmental matrices for polychlorinated dibenzodioxins and polychlorinated dibenzofurans, most notably 2,3,7,8-tetrachlorodibenzo-p-dioxin. Also, DWO Section supports various Ministry's programs by providing characterization of unknown organic contaminants by mass spectrometry.

The major objective of the DWO Section's quality assurance program is to produce data of known quality, appropriate for a particular purpose. The quality control program is designed to detect any anomalies in the quality of the analytical results and to provide the basis for an immediate corrective action.

Within the DWO Section, the most common quality control tasks include the analyses of quality control samples, such as method blanks, fortified method blanks, samples fortified with surrogates, check calibration solutions and reference materials, and the interpretation of the resulting data. For each analytical method, the actual quality control procedures are described in detail in section 6.2 of the corresponding official method text.

This Performance Summary Report is based on the results of selected quality control samples acquired between January and December, 1991. In this report, each abstract of the analytical method is accompanied by corresponding performance charts and summary tables. Performance charts contained indicate the mean and the 99%-confidence limits for the variable presented.



**METHOD CODE :** OPTM-E3237A.1

**METHOD TITLE:** The Determination of Trihalomethanes in Water by Purge-and-Trap/Gas Chromatography

**LABORATORY :** Priority Pollutants Unit

**SUPERVISOR :** O.W. Berg

**SAMPLE TYPE :** surface water, groundwater, finished drinking water

#### **PRINCIPLE OF THE METHOD :**

Trihalomethanes are purged from an aqueous sample onto an adsorption trap, and subsequently, thermally desorbed onto a gas chromatographic capillary column. After separation, the organics are identified and quantified by Hall electrolytic conductivity detector.

| <b>PARAMETERS MEASURED :</b> | <b>LIS TEST CODE :</b> | <b>W ( µg/L )</b> | <b>T ( µg/L )</b> |
|------------------------------|------------------------|-------------------|-------------------|
| Chloroform                   | X1005J                 | 0.5               | 5.0               |
| Bromodichloromethane         | X1010J                 | 0.2               | 2.0               |
| Dibromochloromethane         | X1011J                 | 0.2               | 2.0               |
| Bromoform                    | X1015J                 | 0.2               | 2.0               |
| Total THM's                  | X2TTHM                 | 0.5               | 5.0               |

#### **REPORTING FORMAT :**

Results are reported in parts per billion (µg/L) rounded off to the closest increment of W and up to maximum of three significant figures.

#### **QUALITY CONTROL :**

The routine quality control samples are designed to verify absence of potential contamination (method blanks) and to monitor validity of calibration (calibration solutions) and the agreement with the established method precision and accuracy (laboratory replicate samples, reference material).

The results for the analysis of calibration solution and the analysis of reference material have their control limits statistically derived.

**REMARKS :** In addition to the intra-laboratory method control, the performance of the method was examined through performance audit samples program organized by LSB Quality Management Office.

List of Performance Charts : Chloroform ( recovery from fortified blank )  
Bromodichloromethane ( recovery from fortified blank )  
Dibromochloromethane ( recovery from fortified blank )  
Bromoform ( recovery from fortified blank )

|                              |                       |
|------------------------------|-----------------------|
| List of Performance Tables : | Method Blanks Summary |
|                              | Chloroform            |
|                              | Bromodichloromethane  |
|                              | Dibromochloromethane  |
|                              | Bromoform             |

## Method Blanks Summary

January 1991 - December 1991

| Analyte              | Number of Observations | Average Concentration ( µg/L ) | Standard Deviation ( µg/L ) |
|----------------------|------------------------|--------------------------------|-----------------------------|
| chloroform           | 106                    | 0.05                           | 0.23                        |
| bromodichloromethane | 106                    | 0                              | 0                           |
| dibromochloromethane | 106                    | 0                              | 0                           |
| bromoform            | 106                    | 0                              | 0                           |
| THM's - total        | 106                    | 0.05                           | 0.23                        |



Performance Summary Table

January - December 1991

|                                    |             |
|------------------------------------|-------------|
| Analyte                            | chloroform  |
| True Concentration                 | 20 µg/L     |
| Number of Observations             | 91          |
| Within-run Rel. Standard Deviation | 4% ( n=13 ) |
| Between-run Standard Deviation     | 10%         |
| Accuracy (% of expected)           | 107%        |



Performance Summary Table

January - December 1991

|                                    |                      |
|------------------------------------|----------------------|
| Analyte                            | bromodichloromethane |
| True Concentration                 | 20 µg/L              |
| Number of Observations             | 91                   |
| Within-run Rel. Standard Deviation | 5% ( n=13 )          |
| Between-run Standard Deviation     | 7%                   |
| Accuracy (% of expected)           | 102%                 |

DIBROMOCHLOROMETHANE  
recovery from fortified blank



Performance Summary Table

January - December 1991

|                                    |                      |
|------------------------------------|----------------------|
| Analyte                            | dibromochloromethane |
| True Concentration                 | 20 µg/L              |
| Number of Observations             | 91                   |
| Within-run Rel. Standard Deviation | 5% ( n=13 )          |
| Between-run Standard Deviation     | 8%                   |
| Accuracy (% of expected)           | 103%                 |



Performance Summary Table

January - December 1991

| Analyte                            | bromoform   |
|------------------------------------|-------------|
| True Concentration                 | 10 µg/L     |
| Number of Observations             | 91          |
| Within-run Rel. Standard Deviation | 6% ( n=13 ) |
| Between-run Standard Deviation     | 11%         |
| Accuracy (% of expected)           | 108%        |

**METHOD CODE :** OPOV-E3144A.1  
**METHOD TITLE:** The Determination of Purgeable Organic Compounds in Potable and Surface Waters by GC-FID and ECD  
**LABORATORY :** Priority Pollutants Unit  
**SUPERVISOR :** O.W. Berg  
**SAMPLE TYPE :** surface water, groundwater, finished drinking water

**PRINCIPLE OF THE METHOD :**

This method involves purge-and-trap gas chromatographic analysis with simultaneous flame ionization and electron capture detection. The volatile organic compounds are purged from aqueous phase onto a Tenax trap by a stream of helium gas. The compounds are then thermally desorbed and cryofocused onto one-metre piece of deactivated fused silica transfer line using liquid nitrogen as the coolant. The cold trap is then rapidly heated by an electric current and the compounds are swept into the chromatographic column.

The chromatogram resulting from the FID is used for quantification, while the ECD chromatogram is used mainly for confirmation.

| <b>PARAMETERS MEASURED :</b> | <b>LIS TEST CODE :</b> | <b>W ( µg/L )</b> | <b>T ( µg/L )</b> |
|------------------------------|------------------------|-------------------|-------------------|
| 1,1-dichloroethene           | X1001P                 | 0.1               | 1.0               |
| dichloromethane              | X1002P                 | 0.5               | 5.0               |
| t-1,2-dichloroethene         | X1003P                 | 0.1               | 1.0               |
| 1,1-dichloroethane           | X1004P                 | 0.1               | 1.0               |
| chloroform                   | X1005P                 | 0.1               | 1.0               |
| 1,1,1-trichloroethane        | X1006P                 | 0.02              | 0.2               |
| 1,2-dichloroethane           | X1007P                 | 0.1               | 1.0               |
| carbon tetrachloride         | X1008P                 | 0.2               | 2.0               |
| benzene                      | B2001P                 | 0.05              | 0.5               |
| 1,2-dichloropropane          | X1009P                 | 0.1               | 1.0               |
| trichloroethylene            | X1010P                 | 0.1               | 1.0               |
| bromodichloromethane         | X1011P                 | 0.1               | 1.0               |
| toluene                      | B2002P                 | 0.05              | 0.5               |
| 1,2-dibromoethane            | X2EDB                  | 0.1               | 1.0               |
| 1,1,2-trichloroethane        | X1012P                 | 0.1               | 1.0               |
| dibromochloromethane         | X1013P                 | 0.1               | 1.0               |
| tetrachloroethene            | X1014P                 | 0.05              | 0.5               |
| chlorobenzene                | X2001P                 | 0.05              | 0.5               |
| ethylbenzene                 | B2003P                 | 0.05              | 0.5               |
| m-xylene                     | B2005P                 | 0.1               | 1.0               |
| p-xylene                     | B2004P                 | 0.1               | 1.0               |

(parameters measured continued)

|                           |        |      |     |
|---------------------------|--------|------|-----|
| bromoform                 | X1015P | 0.2  | 2.0 |
| styrene                   | B2008P | 0.05 | 0.5 |
| o-xylene                  | B2006P | 0.05 | 0.5 |
| 1,1,2,2-tetrachloroethane | X1016  | 0.2  | 2.0 |
| 1,4-dichlorobenzene       | X2002P | 0.1  | 1.0 |
| 1,3-dichlorobenzene       | X2003P | 0.1  | 1.0 |
| 1,2-dichlorobenzene       | X2004P | 0.1  | 1.0 |
| total trihalomethanes     | X2TTHM | 0.5  | 5.0 |

#### **REPORTING FORMAT :**

Results are reported in parts per billion ( $\mu\text{g/L}$ ) rounded off to the closest increment of W and up to maximum of three significant figures.

#### **QUALITY CONTROL :**

The routine quality control operations monitor absence of potential interferences (method blanks) and consistency with the predetermined method performance (fortified method blanks).

**REMARKS :** This analytical method was modified in September 1991. The detection system was replaced with dual capillary gas chromatography with dual flame ionization detectors.

In addition to the intra-laboratory method control, the performance of the method was examined through performance audit samples program organized by LSB QM Office.

List of Performance Charts : all analytes described as parameters measured (recoveries from fortified blanks )

List of Performance Tables : Method Blanks Summary  
all analytes described as parameters measured

Method Blanks Summary

January 1991 - December 1991

| Analyte                   | Number of Observations | Average Concentration ( µg/L ) | Standard Deviation ( µg/L ) |
|---------------------------|------------------------|--------------------------------|-----------------------------|
| 1,1-dichloroethene        | 205                    | 0                              | 0                           |
| dichloromethane           | 205                    | 0.40                           | 0.93                        |
| t-1,2-dichloroethene      | 205                    | 0                              | 0                           |
| 1,1-dichloroethane        | 205                    | 0                              | 0                           |
| chloroform                | 205                    | 0.0007                         | 0.0074                      |
| 1,1,1-trichloroethane     | 205                    | 0                              | 0                           |
| 1,2-dichloroethane        | 205                    | 0                              | 0                           |
| carbon tetrachloride      | 205                    | 0                              | 0                           |
| benzene                   | 205                    | 0.0038                         | 0.0053                      |
| 1,2-dichloropropane       | 205                    | 0                              | 0                           |
| trichloroethene           | 205                    | 0.0004                         | 0.0063                      |
| bromodichloromethane      | 205                    | 0.0001                         | 0.0010                      |
| toluene                   | 205                    | 0.0078                         | 0.0075                      |
| 1,2-dibromoethane         | 205                    | 0                              | 0                           |
| 1,1,2-trichloroethane     | 205                    | 0                              | 0                           |
| dibromochloromethane      | 205                    | 0                              | 0                           |
| tetrachloroethene         | 205                    | 0                              | 0                           |
| chlorobenzene             | 205                    | 0                              | 0                           |
| ethylbenzene              | 205                    | 0.0004                         | 0.0025                      |
| m-xylene / p-xylene       | 205                    | 0.0027                         | 0.0050                      |
| bromoform                 | 205                    | 0                              | 0                           |
| styrene                   | 205                    | 0.0027                         | 0.0066                      |
| o-xylene                  | 205                    | 0.0008                         | 0.0027                      |
| 1,1,2,2-tetrachloroethane | 205                    | 0.001                          | 0.018                       |
| 1,4-dichlorobenzene       | 205                    | 0.006                          | 0.012                       |
| 1,3-dichlorobenzene       | 205                    | 0.004                          | 0.011                       |
| 1,2-dichlorobenzene       | 205                    | 0.005                          | 0.013                       |
| total trihalomethanes     | 205                    | 0.0009                         | 0.0074                      |

1,1-DICHLOROETHENE  
recovery from fortified blank



Performance Summary Table

January - December 1991

|                                    |                      |
|------------------------------------|----------------------|
| Analyte                            | 1,1-dichloroethene   |
| True Concentration                 | 1.77 µg/L, 3.68 µg/L |
| Number of Observations             | 118                  |
| Within-run Rel. Standard Deviation | 2.2% ( n=4 )         |
| Between-run Standard Deviation     | 5.2%                 |
| Accuracy (% of expected)           | 101%                 |



Performance Summary Table

January - December 1991

|                                    |                      |
|------------------------------------|----------------------|
| Analyte                            | dichloromethane      |
| True Concentration                 | 1.95 µg/L, 3.68 µg/L |
| Number of Observations             | 117                  |
| Within-run Rel. Standard Deviation | 1% ( n=4)            |
| Between-run Standard Deviation     | 12%                  |
| Accuracy (% of expected)           | 111%                 |



Performance Summary Table

January - December 1991

|                                    |                      |
|------------------------------------|----------------------|
| Analyte                            | t-1,2-dichloroethene |
| True Concentration                 | 1.88 µg/L, 3.68 µg/L |
| Number of Observations             | 118                  |
| Within-run Rel. Standard Deviation | 1.3% ( n=4 )         |
| Between-run Standard Deviation     | 3.4%                 |
| Accuracy (% of expected)           | 100%                 |

1,1-DICHLOROETHANE  
recovery from fortified blank



Performance Summary Table

January - December 1991

|                                    |                      |
|------------------------------------|----------------------|
| Analyte                            | 1,1-dichloroethane   |
| True Concentration                 | 1.84 µg/L, 3.68 µg/L |
| Number of Observations             | 107                  |
| Within-run Rel. Standard Deviation | 1.1% ( n=4 )         |
| Between-run Standard Deviation     | 4.0%                 |
| Accuracy (% of expected)           | 101%                 |



Performance Summary Table

January - December 1991

|                                    |                      |
|------------------------------------|----------------------|
| Analyte                            | chloroform           |
| True Concentration                 | 1.77 µg/L, 3.68 µg/L |
| Number of Observations             | 118                  |
| Within-run Rel. Standard Deviation | 1.2% ( n=4 )         |
| Between-run Standard Deviation     | 3.6%                 |
| Accuracy (% of expected)           | 100%                 |

1,1,1-TRICHLOROETHANE  
recovery from fortified blank



Performance Summary Table

January - December 1991

|                                    |                       |
|------------------------------------|-----------------------|
| Analyte                            | 1,1,1-trichloroethane |
| True Concentration                 | 1.89 µg/L, 3.68 µg/L  |
| Number of Observations             | 118                   |
| Within-run Rel. Standard Deviation | 1.2% ( n=4 )          |
| Between-run Standard Deviation     | 3.7%                  |
| Accuracy (% of expected)           | 98.6%                 |



Performance Summary Table

January - December 1991

|                                    |                      |
|------------------------------------|----------------------|
| Analyte                            | tetrachloromethane   |
| True Concentration                 | 1.94 µg/L, 3.68 µg/L |
| Number of Observations             | 118                  |
| Within-run Rel. Standard Deviation | 1.7% ( n=4 )         |
| Between-run Standard Deviation     | 5.2%                 |
| Accuracy (% of expected)           | 102.2%               |



Performance Summary Table

January - December 1991

|                                    |                      |
|------------------------------------|----------------------|
| Analyte                            | benzene              |
| True Concentration                 | 1.90 µg/L, 3.68 µg/L |
| Number of Observations             | 118                  |
| Within-run Rel. Standard Deviation | 1.3% ( n=4 )         |
| Between-run Standard Deviation     | 3.4%                 |
| Accuracy (% of expected)           | 99%                  |

1,2-DICHLOROETHANE  
recovery from fortified blank



Performance Summary Table

January - December 1991

|                                    |                      |
|------------------------------------|----------------------|
| Analyte                            | 1,2-dichloroethane   |
| True Concentration                 | 1.88 µg/L, 3.68 µg/L |
| Number of Observations             | 117                  |
| Within-run Rel. Standard Deviation | 1.0% ( n=4 )         |
| Between-run Standard Deviation     | 5.8%                 |
| Accuracy (% of expected)           | 101.5%               |

TRICHLOROETHENE  
recovery from fortified blank



Performance Summary Table

January - December 1991

| Analyte                            | trichloroethene      |
|------------------------------------|----------------------|
| True Concentration                 | 1.92 µg/L, 3.68 µg/L |
| Number of Observations             | 118                  |
| Within-run Rel. Standard Deviation | 1.1% ( n=4 )         |
| Between-run Standard Deviation     | 3.9%                 |
| Accuracy (% of expected)           | 100%                 |

1,2-DICHLOROPROPANE  
recovery from fortified blank



Performance Summary Table

January - December 1991

|                                    |                      |
|------------------------------------|----------------------|
| Analyte                            | 1,2-dichloropropane  |
| True Concentration                 | 1.87 µg/L, 3.68 µg/L |
| Number of Observations             | 118                  |
| Within-run Rel. Standard Deviation | 0.9% ( n=4 )         |
| Between-run Standard Deviation     | 3.7%                 |
| Accuracy (% of expected)           | 99%                  |

BROMODICHLOROMETHANE  
recovery from fortified blank



Performance Summary Table

January - December 1991

|                                    |                      |
|------------------------------------|----------------------|
| Analyte                            | bromodichloromethane |
| True Concentration                 | 1.70 µg/L, 5.52 µg/L |
| Number of Observations             | 118                  |
| Within-run Rel. Standard Deviation | 1.1% ( n=4 )         |
| Between-run Standard Deviation     | 7.4%                 |
| Accuracy (% of expected)           | 110%                 |



Performance Summary Table

January - December 1991

|                                    |                      |
|------------------------------------|----------------------|
| Analyte                            | toluene              |
| True Concentration                 | 1.90 µg/L, 3.68 µg/L |
| Number of Observations             | 118                  |
| Within-run Rel. Standard Deviation | 1.5% ( n=4 )         |
| Between-run Standard Deviation     | 3.5%                 |
| Accuracy (% of expected)           | 101%                 |

1,1,2-TRICHLOROETHANE  
recovery from fortified blank



Performance Summary Table

January - December 1991

|                                    |                       |
|------------------------------------|-----------------------|
| Analyte                            | 1,1,2-trichloroethane |
| True Concentration                 | 2.01 µg/L, 3.68 µg/L  |
| Number of Observations             | 118                   |
| Within-run Rel. Standard Deviation | 1.1% ( n=4 )          |
| Between-run Standard Deviation     | 4.2%                  |
| Accuracy (% of expected)           | 103%                  |



Performance Summary Table

January - December 1991

|                                    |                      |
|------------------------------------|----------------------|
| Analyte                            | tetrachloroethene    |
| True Concentration                 | 1.74 µg/L, 3.68 µg/L |
| Number of Observations             | 118                  |
| Within-run Rel. Standard Deviation | 1.7% ( n=4 )         |
| Between-run Standard Deviation     | 5.4%                 |
| Accuracy (% of expected)           | 107%                 |

DIBROMOCHLOROMETHANE  
recovery from fortified blank



Performance Summary Table

January - December 1991

|                                    |                      |
|------------------------------------|----------------------|
| Analyte                            | dibromochloromethane |
| True Concentration                 | 1.90 µg/L, 6.44 µg/L |
| Number of Observations             | 118                  |
| Within-run Rel. Standard Deviation | 1.9% ( n=4 )         |
| Between-run Standard Deviation     | 8.2%                 |
| Accuracy (% of expected)           | 100.1%               |

1,2-DIBROMOETHANE  
recovery from fortified blank



Performance Summary Table

January - December 1991

|                                    |                      |
|------------------------------------|----------------------|
| Analyte                            | 1,2-dibromoethane    |
| True Concentration                 | 1.85 µg/L, 5.52 µg/L |
| Number of Observations             | 118                  |
| Within-run Rel. Standard Deviation | 1.1% ( n=4 )         |
| Between-run Standard Deviation     | 6.8%                 |
| Accuracy (% of expected)           | 102%                 |

CHLOROBENZENE  
recovery from fortified blank



Performance Summary Table

January - December 1991

|                                    |                     |
|------------------------------------|---------------------|
| Analyte                            | chlorobenzene       |
| True Concentration                 | 1.86 µg/L, 4.6 µg/L |
| Number of Observations             | 118                 |
| Within-run Rel. Standard Deviation | 1.2% ( n=4 )        |
| Between-run Standard Deviation     | 3.3%                |
| Accuracy (% of expected)           | 100.4%              |

ETHYLBENZENE  
recovery from fortified blank



Performance Summary Table

January - December 1991

|                                    |                      |
|------------------------------------|----------------------|
| Analyte                            | ethylbenzene         |
| True Concentration                 | 1.87 µg/L, 3.68 µg/L |
| Number of Observations             | 118                  |
| Within-run Rel. Standard Deviation | 1.2% ( n=4 )         |
| Between-run Standard Deviation     | 3.0%                 |
| Accuracy (% of expected)           | 101%                 |

M/P-XYLENE  
recovery from fortified blank



Performance Summary Table

January - December 1991

|                                    |                      |
|------------------------------------|----------------------|
| Analyte                            | m/p-xylene           |
| True Concentration                 | 1.94 µg/L, 3.68 µg/L |
| Number of Observations             | 117                  |
| Within-run Rel. Standard Deviation | 1.3% ( n=4 )         |
| Between-run Standard Deviation     | 2.9%                 |
| Accuracy (% of expected)           | 101%                 |



Performance Summary Table

January - December 1991

| Analyte                            | o-xylene             |
|------------------------------------|----------------------|
| True Concentration                 | 1.91 µg/L, 3.68 µg/L |
| Number of Observations             | 118                  |
| Within-run Rel. Standard Deviation | 1.5% ( n=4 )         |
| Between-run Standard Deviation     | 3.1%                 |
| Accuracy (% of expected)           | 98%                  |



Performance Summary Table

January - December 1991

|                                    |                      |
|------------------------------------|----------------------|
| Analyte                            | styrene              |
| True Concentration                 | 1.88 µg/L, 3.68 µg/L |
| Number of Observations             | 117                  |
| Within-run Rel. Standard Deviation | 1.8% ( n=4 )         |
| Between-run Standard Deviation     | 3.3%                 |
| Accuracy (% of expected)           | 101%                 |



Performance Summary Table

January - December 1991

|                                    |                      |
|------------------------------------|----------------------|
| Analyte                            | bromoform            |
| True Concentration                 | 2.04 µg/L, 7.36 µg/L |
| Number of Observations             | 118                  |
| Within-run Rel. Standard Deviation | 4.8% ( n=4 )         |
| Between-run Standard Deviation     | 4.9%                 |
| Accuracy (% of expected)           | 97%                  |

1,1,2,2-TETRACHLOROETHANE  
recovery from fortified blank



Performance Summary Table

January - December 1991

|                                    |                           |
|------------------------------------|---------------------------|
| Analyte                            | 1,1,2,2-tetrachloroethane |
| True Concentration                 | 1.93 µg/L, 5.52 µg/L      |
| Number of Observations             | 118                       |
| Within-run Rel. Standard Deviation | 2.6% ( n=4 )              |
| Between-run Standard Deviation     | 7.0%                      |
| Accuracy (% of expected)           | 99.5%                     |



Performance Summary Table

January - December 1991

|                                    |                      |
|------------------------------------|----------------------|
| Analyte                            | 1,3-dichlorobenzene  |
| True Concentration                 | 1.86 µg/L, 5.52 µg/L |
| Number of Observations             | 118                  |
| Within-run Rel. Standard Deviation | 1.0% ( n=4 )         |
| Between-run Standard Deviation     | 4.4%                 |
| Accuracy (% of expected)           | 100%                 |

1,4-DICHLOROBENZENE  
recovery from fortified blank



Performance Summary Table

January - December 1991

|                                    |                      |
|------------------------------------|----------------------|
| Analyte                            | 1,4-dichlorobenzene  |
| True Concentration                 | 1.59 µg/L, 5.52 µg/L |
| Number of Observations             | 118                  |
| Within-run Rel. Standard Deviation | 1.0% ( n=4 )         |
| Between-run Standard Deviation     | 4.5%                 |
| Accuracy (% of expected)           | 103%                 |

1,2-DICHLOROBENZENE  
recovery from fortified blank



Performance Summary Table

January - December 1991

|                                    |                      |
|------------------------------------|----------------------|
| Analyte                            | 1,2-dichlorobenzene  |
| True Concentration                 | 1.88 µg/L, 5.52 µg/L |
| Number of Observations             | 118                  |
| Within-run Rel. Standard Deviation | 0.9% ( n=4 )         |
| Between-run Standard Deviation     | 3.9%                 |
| Accuracy (% of expected)           | 99.3%                |

**METHOD CODE :** OWOC-E3120A.1  
**METHOD TITLE:** The Determination of Organochlorine Pesticides, Polychlorinated Biphenyls and Other Chlorinated Organic Compounds in Water by GC-ECD  
**LABORATORY :** Organic Water Unit  
**SUPERVISOR :** C.D. Hall  
**SAMPLE TYPE :** surface water, groundwater, finished drinking water

**PRINCIPLE OF THE METHOD :**

Samples are extracted with solvent; the extract is dried, concentrated, cleaned-up on Florisil, and reconcentrated prior to analysis by dual column capillary gas chromatography with dual electron capture detection.

| <b>PARAMETERS MEASURED :</b>   | <b>LIS TEST CODE :</b> | <b>W ( ng/L )</b> | <b>T ( ng/L )</b> |
|--------------------------------|------------------------|-------------------|-------------------|
| hexachloroethane               | X2HCE                  | 1                 | 10                |
| 1,3,5-trichlorobenzene         | X2135                  | 5                 | 50                |
| 1,2,4-trichlorobenzene         | X2124                  | 5                 | 50                |
| 1,2,3-trichlorobenzene         | X2123                  | 5                 | 50                |
| hexachlorobutadiene            | X1HCBD                 | 1                 | 10                |
| 2,4,5-trichlorotoluene         | X2T245                 | 5                 | 50                |
| 2,3,6-trichlorotoluene         | X2T236                 | 5                 | 50                |
| 1,2,3,5-tetrachlorobenzene     | X21235                 | 1                 | 10                |
| 1,2,4,5-tetrachlorobenzene     | X21245                 | 1                 | 10                |
| 1,2,3,4-tetrachlorobenzene     | X21234                 | 1                 | 10                |
| $\alpha$ ,2,6-trichlorotoluene | X2T26A                 | 5                 | 50                |
| pentachlorobenzene             | X2PNCB                 | 1                 | 10                |
| hexachlorocyclopentadiene      | X1HCCP                 | 5                 | 50                |
| hexachlorobenzene              | X2HCB                  | 1                 | 10                |
| heptachlor                     | P1HEPT                 | 1                 | 10                |
| aldrin                         | P1ALDR                 | 1                 | 10                |
| p,p'-DDE                       | P1PPDE                 | 1                 | 10                |
| $\alpha$ -BHC                  | P1BHCA                 | 1                 | 10                |
| $\beta$ -BHC                   | P1BHCB                 | 1                 | 10                |
| $\gamma$ -BHC                  | P1BHCG                 | 1                 | 10                |
| $\alpha$ -chlordane            | P1CHLA                 | 2                 | 20                |
| $\gamma$ -chlordane            | P1CHLG                 | 2                 | 20                |
| oxychlordane                   | P1OCHL                 | 2                 | 20                |
| $\alpha$ , $\rho$ '-DDT        | P1OPDT                 | 5                 | 50                |
| p,p'-DDD                       | P1PPDD                 | 5                 | 50                |
| p,p'-DDT                       | P1PPDT                 | 5                 | 50                |
| methoxychlor                   | P1DMDT                 | 5                 | 50                |

( parameters measured continued )

|                           |        |     |       |
|---------------------------|--------|-----|-------|
| heptachlor epoxide        | P1HEPE | 1   | 10    |
| endosulfan I              | P1END1 | 2   | 20    |
| dieldrin                  | P1DIEL | 2   | 20    |
| endrin                    | P1ENDR | 5   | 50    |
| endosulfan II             | P1END2 | 5   | 50    |
| endosulfan cyclic sulfate | P1ENDS | 5   | 50    |
| mirex                     | P1MIRX | 5   | 50    |
| total PCB's               | P1PCBT | 20  | 200   |
| octachlorostyrene         | X2OCST | 1   | 10    |
| toxaphene                 | P1TOX  | 500 | 5 000 |

#### REPORTING FORMAT :

Results are reported in parts per trillion ( ng/L ) rounded off to the closest increment of W and up to maximum of two significant figures.

#### QUALITY CONTROL :

The routine quality control operations monitor validity of calibration ( calibration check solution ), absence of potential interferences ( method blanks ), overall method performance ( fortified method blanks ).

For selected target compounds, control charts summarizing the response factors used to calibrate instruments and the recoveries from fortified method blanks are maintained.

**REMARKS :** In addition to the intra-laboratory method control, the performance of the method was examined through performance audit samples program organized by LSB Quality Management Office.

List of Performance Charts : Hexachlorobenzene ( recovery from fortified blank )  
1,3,5-Trichlorobenzene ( recovery from fortified blank )  
Hexachlorobutadiene ( recovery from fortified blank )  
Mirex ( recovery from fortified blank )  
Total PCB ( recovery from fortified blank )

List of Performance Tables : Method Blanks Summary  
Hexachlorobenzene  
1,3,5-Trichlorobenzene  
Hexachlorobutadiene  
Mirex  
Total PCB

Method Blanks Summary

January 1991 - December 1991

| Analyte                        | Number of Observations | Average Concentration (ng/L) | Standard Deviation (ng/L) |
|--------------------------------|------------------------|------------------------------|---------------------------|
| hexachloroethane               | 136                    | 1.5                          | 3.6                       |
| 1,3,5-trichlorobenzene         | 136                    | 0                            | 0                         |
| 1,2,4-trichlorobenzene         | 136                    | 0                            | 0                         |
| 1,2,3-trichlorobenzene         | 136                    | 0                            | 0                         |
| hexachlorobutadiene            | 136                    | 0.04                         | 0.25                      |
| 2,4,5-trichlorotoluene         | 136                    | 0.1                          | 1.1                       |
| 2,3,6-trichlorotoluene         | 136                    | 0                            | 0                         |
| 1,2,3,5-tetrachlorobenzene     | 136                    | 0                            | .0                        |
| 1,2,4,5-tetrachlorobenzene     | 136                    | 0.04                         | 0.051                     |
| 1,2,3,4-tetrachlorobenzene     | 136                    | 0.05                         | 0.60                      |
| $\alpha$ ,2,6-trichlorotoluene | 136                    | 0                            | 0                         |
| pentachlorobenzene             | 136                    | 0                            | 0                         |
| hexachlorocyclopentadiene      | 136                    | 0.7                          | 3.0                       |
| hexachlorobenzene              | 136                    | 0                            | 0                         |
| heptachlor                     | 136                    | 0                            | 0                         |
| aldrin                         | 136                    | 0                            | 0                         |
| p,p'-DDE                       | 136                    | 0.007                        | 0.085                     |
| $\alpha$ -BHC                  | 136                    | 0.39                         | 0.74                      |
| $\beta$ -BHC                   | 136                    | 0.02                         | 0.26                      |
| $\gamma$ -BHC                  | 136                    | 0.007                        | 0.085                     |
| $\alpha$ -chlordane            | 136                    | 0                            | 0                         |
| $\gamma$ -chlordane            | 136                    | 0                            | 0                         |
| oxychlordane                   | 136                    | 0                            | 0                         |
| $\alpha$ , $\rho$ '-DDT        | 136                    | 0                            | 0                         |
| p,p'-DDD                       | 136                    | 0                            | 0                         |
| p,p'-DDT                       | 136                    | 0                            | 0                         |
| methoxychlor                   | 136                    | 0                            | 0                         |
| heptachlor epoxide             | 136                    | 0                            | 0                         |
| endosulfan I                   | 136                    | 0                            | 0                         |
| dieldrin                       | 136                    | 0                            | 0                         |
| endosulfan II                  | 136                    | 0                            | 0                         |
| endosulfan cyclic sulfate      | 136                    | 0.03                         | 0.34                      |
| mirex                          | 136                    | 0                            | 0                         |
| total PCB's                    | 136                    | 1                            | 13                        |
| octachlorostyrene              | 136                    | 0                            | 0                         |
| toxaphene                      | 136                    | 0                            | 0                         |



Performance Summary Table

January - December 1991

|                                |                   |
|--------------------------------|-------------------|
| Analyte                        | hexachlorobenzene |
| True Concentration             | 10 ng/L; 20 ng/L  |
| Number of Observations         | 109               |
| Within-run Standard Deviation  | not available     |
| Between-run Standard Deviation | 24%               |
| Accuracy (% of expected)       | 102%              |

1,3,5-TRICHLOROBENZENE  
recovery from fortified blank



Performance Summary Table

January - December 1991

|                                |                        |
|--------------------------------|------------------------|
| Analyte                        | 1,3,5-trichlorobenzene |
| True Concentration             | 10 ng/L; 20 ng/L       |
| Number of Observations         | 109                    |
| Within-run Standard Deviation  | not available          |
| Between-run Standard Deviation | 28%                    |
| Accuracy (% of expected)       | 94%                    |

HEXACHLOROBUTADIENE  
recovery from fortified blank



Performance Summary Table

January - December 1991

|                                |                     |
|--------------------------------|---------------------|
| Analyte                        | hexachlorobutadiene |
| True Concentration             | 10 ng/L; 20 ng/L    |
| Number of Observations         | 108                 |
| Within-run Standard Deviation  | not available       |
| Between-run Standard Deviation | 30%                 |
| Accuracy (% of expected)       | 82%                 |



Performance Summary Table

January - December 1991

|                                |                   |
|--------------------------------|-------------------|
| Analyte                        | mirex             |
| True Concentration             | 50 ng/L; 100 ng/L |
| Number of Observations         | 105               |
| Within-run Standard Deviation  | not available     |
| Between-run Standard Deviation | 22%               |
| Accuracy (% of expected)       | 98%               |

TOTAL PCB (1254/1260)  
recovery from fortified blank



Performance Summary Table

January - December 1991

|                                |                        |
|--------------------------------|------------------------|
| Analyte                        | total PCB ( 1254/1260) |
| True Concentration             | 200 ng/L               |
| Number of Observations         | 8                      |
| Within-run Standard Deviation  | not available          |
| Between-run Standard Deviation | 24%                    |
| Accuracy (% of expected)       | 107%                   |

**METHOD CODE :** OWCP-B-E3119A.1

**METHOD TITLE:** The Determination of Chlorophenols and Phenoxyacid Herbicides in Water by Using Solid Phase Extraction and GC-ECD

**LABORATORY :** Organic Water Unit

**SUPERVISOR :** C.D. Hall

**SAMPLE TYPE :** surface water, groundwater, finished drinking water

**PRINCIPLE OF THE METHOD :**

The aqueous sample is aspirated through C-18 bonded porous silica cartridge. The cartridge is eluted with a small volume of solvent. The eluate is methylated and the 2,4-D type herbicides and chlorophenols are determined as the corresponding methyl esters and ethers by dual capillary gas chromatography with electron capture detection.

| <b>PARAMETERS MEASURED :</b>      | <b>LIS TEST CODE :</b> | <b>W ( ng/L )</b> | <b>T ( ng/L )</b> |
|-----------------------------------|------------------------|-------------------|-------------------|
| 2,4,6-trichlorophenol             | X3246                  | 20                | 200               |
| 2,4,5-trichlorophenol             | X3245                  | 100               | 1 000             |
| 2,3,4-trichlorophenol             | X3234                  | 100               | 1 000             |
| 2,3,5,6-tetrachlorophenol         | X32356                 | 10                | 100               |
| 2,3,4,5-tetrachlorophenol         | X32345                 | 20                | 200               |
| pentachlorophenol                 | X3PCPH                 | 10                | 100               |
| Dicamba                           | P3DICA                 | 50                | 500               |
| 2,4-dichlorophenoxypropanoic acid | P324DP                 | 100               | 1 000             |
| 2,4-dichlorophenoxyacetic acid    | P324D                  | 100               | 1 000             |
| Silvex                            | P3SILV                 | 20                | 200               |
| 2,4,5-trichlorophenoxyacetic acid | P3245T                 | 50                | 500               |
| 2,4-dichlorophenoxybutyric acid   | P324DB                 | 200               | 2 000             |
| Picloram                          | P3PICL                 | 100               | 1 000             |

**REPORTING FORMAT :**

Results are reported in parts per trillion (ng/L) rounded off to the closest increment of W and up to maximum of two significant figures.

**QUALITY CONTROL :**

Quality control samples included in the run format are method blanks, fortified method blanks and calibration check solution.

For selected target compounds, control charts summarizing the response factors used to calibrate instruments and the recoveries from fortified method blanks are maintained.

**REMARKS :** In addition to the intra-laboratory method control, the performance of the method was examined through performance audit samples program organized by LSB Quality Management Office.

List of Performance Charts : 2,4,6-Trichlorophenol ( recovery from fortified blank )  
2,4-Dichlorophenoxyacetic Acid ( recovery from fortified blank )  
Silvex ( recovery from fortified blank )

List of Performance Tables : Method Blanks Summary  
2,4,6-Trichlorophenol  
2,4-Dichlorophenoxyacetic Acid  
Silvex

Method Blanks Summary

January 1991 - December 1991

| Analyte                           | Number of Observations | Average Concentration ( ng/L ) | Standard Deviation ( ng/L ) |
|-----------------------------------|------------------------|--------------------------------|-----------------------------|
| 2,4,6-trichlorophenol             | 24                     | 0                              | 0                           |
| 2,4,5-trichlorophenol             | 24                     | 0                              | 0                           |
| 2,3,4-trichlorophenol             | 24                     | 0                              | 0                           |
| 2,3,5,6-tetrachlorophenol         | 24                     | 0                              | 0                           |
| 2,3,4,5-tetrachlorophenol         | 24                     | 0                              | 0                           |
| pentachlorophenol                 | 24                     | 6                              | 42                          |
| Dicamba                           | 24                     | 0                              | 0                           |
| 2,4-dichlorophenoxypropanoic acid | 24                     | 0                              | 0                           |
| 2,4-dichlorophenoxyacetic acid    | 24                     | 0                              | 0                           |
| Silvex                            | 24                     | 0                              | 0                           |
| 2,4,5-trichlorophenoxyacetic acid | 24                     | 0                              | 0                           |
| 2,4-dichlorophenoxybutyric acid   | 24                     | 0                              | 0                           |
| Picloram                          | 24                     | 0                              | 0                           |

2,4,6-TRICHLOROPHENOL  
recovery from fortified blank



Performance Summary Table

January - December 1991

|                                |                       |
|--------------------------------|-----------------------|
| Analyte                        | 2,4,6-trichlorophenol |
| True Concentration             | 100 ng/L              |
| Number of Observations         | 48                    |
| Within-run Standard Deviation  | not available         |
| Between-run Standard Deviation | 17%                   |
| Accuracy (% of expected)       | 98%                   |



Performance Summary Table

January - December 1991

|                                |                                        |
|--------------------------------|----------------------------------------|
| Analyte                        | 2,4-D (2,4-dichlorophenoxyacetic acid) |
| True Concentration             | 750 ng/L                               |
| Number of Observations         | 40                                     |
| Within-run Standard Deviation  | not available                          |
| Between-run Standard Deviation | 20%                                    |
| Accuracy (% of expected)       | 105%                                   |

SILVEX  
recovery from fortified blank



Performance Summary Table

January - December 1991

|                                |               |
|--------------------------------|---------------|
| Analyte                        | Silvex        |
| True Concentration             | 150 ng/L      |
| Number of Observations         | 48            |
| Within-run Standard Deviation  | not available |
| Between-run Standard Deviation | 16%           |
| Accuracy (% of expected)       | 102%          |

**METHOD CODE :** PWAOP-E32224A.1

**METHOD TITLE:** The Determination of Organophosphorous Pesticides in Drinking Water by GC-TSD

**LABORATORY :** Organic Water Unit

**SUPERVISOR :** C.D. Hall

**SAMPLE TYPE :** surface water, groundwater, finished drinking water

**PRINCIPLE OF THE METHOD :**

Samples are solvent-extracted; water is removed from extract and extract is evaporated to dryness. The reconstituted extract is examined by dual capillary gas chromatography with a thermionic specific detector.

| <b>PARAMETERS MEASURED :</b> | <b>LIS TEST CODE :</b> | <b>W ( ng/L )</b> | <b>T ( ng/L )</b> |
|------------------------------|------------------------|-------------------|-------------------|
| methyl trithion              | P4MTRI                 | 200               | 2 000             |
| dichlorvos                   | P4DICH                 | 20                | 200               |
| mevinphos                    | P4MEVI                 | 20                | 200               |
| phorate ( thimet )           | P4PHOR                 | 20                | 200               |
| diazinon                     | P4DIAZ                 | 20                | 200               |
| ronnel                       | P4RONN                 | 20                | 200               |
| chlorpyriphos ( dursban )    | P4DURS                 | 20                | 200               |
| reldan                       | P4RELD                 | 20                | 200               |
| malathion                    | P4MALA                 | 20                | 200               |
| parathion                    | P4PARA                 | 20                | 200               |
| methyl parathion             | P4MPAR                 | 20                | 200               |
| ethion                       | P4ETHI                 | 20                | 200               |

**REPORTING FORMAT :**

Results are reported in parts per trillion (ng/L) rounded off to the closest increment of W and up to maximum of two significant figures.

**QUALITY CONTROL :**

The routine quality control operations monitor validity of calibration ( calibration check solution ), absence of potential interferences ( method blanks ), overall method performance ( fortified method blanks ).

For selected target compounds, control charts summarizing the response factors used to calibrate instruments and the recoveries from fortified method blanks are maintained.

**REMARKS :** During the period starting January 1991 and ending December 1991, a total of 24 method blanks was prepared and tested by the method. For these 24 analyses, no observable responses of any of the target analytes were encountered.

In addition to the intra-laboratory method control, the performance of the method was examined through performance audit samples program organized by LSB Quality Management Office.

List of Performance Charts : Dichlorvos ( recovery from fortified blank )  
Diazinon ( recovery from fortified blank )  
Ethion ( recovery from fortified blank )

List of Performance Tables : **Dichlorvos**  
**Diazinon**  
**Ethion**



Performance Summary Table

January - December 1991

| Analyte                        | Dichlorvos    |
|--------------------------------|---------------|
| True Concentration             | 100 ng/L      |
| Number of Observations         | 12            |
| Within-run Standard Deviation  | not available |
| Between-run Standard Deviation | 33%           |
| Accuracy (% of expected)       | 81%           |



Performance Summary Table

January - December 1991

|                                |               |
|--------------------------------|---------------|
| Analyte                        | Diazinon      |
| True Concentration             | 100 ng/L      |
| Number of Observations         | 13            |
| Within-run Standard Deviation  | not available |
| Between-run Standard Deviation | 23%           |
| Accuracy (% of expected)       | 122%          |



Performance Summary Table

January - December 1991

| Analyte                        | Ethion        |
|--------------------------------|---------------|
| True Concentration             | 200 ng/L      |
| Number of Observations         | 13            |
| Within-run Standard Deviation  | not available |
| Between-run Standard Deviation | 39%           |
| Accuracy (% of expected)       | 141%          |

**METHOD CODE :** HPLC/L-E3086A.1

**METHOD TITLE:** The Determination of Polynuclear Aromatic Hydrocarbons in Surface Water, Drinking Water and Groundwater by HPLC

**LABORATORY :** Organic Water Unit

**SUPERVISOR :** C.D. Hall

**SAMPLE TYPE :** surface water, groundwater, drinking water

**PRINCIPLE OF THE METHOD :**

Sample is solvent-extracted; the extract is dried and evaporated to dryness. The reconstituted extract is examined by high performance liquid chromatography equipped with fluorescence detector.

| <b>PARAMETERS MEASURED :</b> | <b>LIS TEST CODE :</b> | <b>W ( ng/L )</b> | <b>T ( ng/L )</b> |
|------------------------------|------------------------|-------------------|-------------------|
| phenanthrene                 | B3001X                 | 10                | 100               |
| anthracene                   | B3002X                 | 1                 | 10                |
| fluoranthene                 | B3003X                 | 20                | 200               |
| pyrene                       | B3004X                 | 20                | 200               |
| benzo(a)anthracene           | B3005X                 | 20                | 200               |
| chrysene                     | B3006X                 | 50                | 500               |
| dimethylbenz(a)anthracene    | B3007X                 | 5                 | 50                |
| benzo(e)pyrene               | B3008X                 | 50                | 500               |
| benzo(b)fluoranthene         | B3010X                 | 10                | 100               |
| perylene                     | B3011X                 | 10                | 100               |
| benzo(k)fluoranthene         | B3012X                 | 1                 | 10                |
| benzo(a)pyrene               | B3013X                 | 5                 | 50                |
| benzo(g,h,i)perylene         | B3014X                 | 20                | 200               |
| dibenzo(a,h)anthracene       | B3015X                 | 10                | 100               |
| indeno(1,2,3-c,d)pyrene      | B3016X                 | 20                | 200               |
| benzo(b)chrysene             | B3017X                 | 2                 | 20                |
| coronene                     | B3019X                 | 10                | 100               |

**REPORTING FORMAT :**

Results are reported in parts per trillion (ng/L) rounded off to the closest increment of W and up to maximum of two significant figures.

## **QUALITY CONTROL :**

The routine quality control operations monitor validity of calibration ( calibration check solution ), absence of potential interferences ( method blanks ), overall method performance ( fortified method blanks ).

For selected target compounds, control charts summarizing the response factors used to calibrate instruments and the recoveries from fortified method blanks are maintained.

**REMARKS :** During the period starting January 1991 and ending December 1991, a total of 91 method blanks was prepared and tested by the method. For these 91 analyses, no observable responses of any of the target analytes were encountered.

In addition to the intra-laboratory method control, the performance of the method was examined through performance audit samples program organized by LSB Quality Management Office.

List of Performance Charts : Phenanthrene ( recovery from fortified blank )  
Benzo(b)fluoranthene / Perylene ( recovery from fortified blank )  
Benzo(a)pyrene ( recovery from fortified blank )

List of Performance Tables : Phenanthrene  
Benzo(b)fluoranthene / Perylene  
Benzo(a)pyrene

PHENANTHRENE  
recovery from fortified blank



Performance Summary Table

January - December 1991

|                                |               |
|--------------------------------|---------------|
| Analyte                        | phenanthrene  |
| True Concentration             | 50 ng/L       |
| Number of Observations         | 81            |
| Within-run Standard Deviation  | not available |
| Between-run Standard Deviation | 18%           |
| Accuracy (% of expected)       | 78%           |

BENZO(b)FLUORANTHENE / PERYLENE  
recovery from fortified blank



Performance Summary Table

January - December 1991

|                                |                               |
|--------------------------------|-------------------------------|
| Analyte                        | benzo(b)fluoranthene/perylene |
| True Concentration             | 44 ng/L; 40 ng/L              |
| Number of Observations         | 81                            |
| Within-run Standard Deviation  | not available                 |
| Between-run Standard Deviation | 13%                           |
| Accuracy (% of expected)       | 90%                           |

BENZO(a)PYRENE  
recovery from fortified blank



Performance Summary Table

January - December 1991

|                                |                 |
|--------------------------------|-----------------|
| Analyte                        | benzo(a)pyrene  |
| True Concentration             | 24 ng/L; 20ng/L |
| Number of Observations         | 80              |
| Within-run Standard Deviation  | not available   |
| Between-run Standard Deviation | 30%             |
| Accuracy (% of expected)       | 68%             |

**METHOD CODE :** PWACAR-E3158A.1

**METHOD TITLE:** The Determination of Carbamates in Water by HPLC

**LABORATORY :** Organic Water Unit

**SUPERVISOR :** C.D. Hall

**SAMPLE TYPE :** surface water, groundwater, drinking water

**PRINCIPLE OF THE METHOD :**

Sample is solvent-extracted; the extract is dried and evaporated to dryness. The reconstituted extract is examined by high performance liquid chromatography, using a variable wavelength ultraviolet detector.

| <b>PARAMETERS MEASURED :</b>       | <b>LIS TEST CODE :</b> | <b>W ( ng/L )</b> | <b>T ( ng/L )</b> |
|------------------------------------|------------------------|-------------------|-------------------|
| carbofuran                         | P6CARB                 | 2 000             | 20 000            |
| carbaryl                           | P6SEVN                 | 200               | 2 000             |
| butylate                           | P6SUTN                 | 2.000             | 20 000            |
| propoxur                           | P6PROP                 | 2 000             | 20 000            |
| isopropyl-3-chlorophenyl carbamate | P6CIPC                 | 2 000             | 20 000            |
| isopropyl phenyl carbamate         | P6IPC                  | 2 000             | 20 000            |
| bux                                | P6BUX                  | 200               | 2 000             |
| diallate                           | P6DIAL                 | 2 000             | 20 000            |
| eptam                              | P6EPTM                 | 2 000             | 20 000            |

**REPORTING FORMAT :**

Results are reported in parts per trillion (ng/L) rounded off to the closest increment of W up to maximum of two significant figures.

**QUALITY CONTROL :**

The routine quality control operations monitor validity of calibration ( calibration check solution ), absence of potential interferences ( method blanks ), overall method performance ( fortified method blanks ).

Control charts summarizing the response factors used to calibrate instruments and the recoveries from fortified method blanks are maintained for selected target compounds.

**REMARKS :** During the period starting January 1991 and ending December 1991, a total of 16 method blanks was prepared and tested by the method. For these 16 analyses, no observable responses of any of the target analytes were encountered.

In addition to the intra-laboratory method control, the performance of the method was examined through performance audit samples program organized by LSB Quality Management Office.

List of Performance Charts : Carbaryl ( recovery from fortified blank )  
Isopropyl-3-chlorophenyl Carbamate ( recovery from fortified blank )  
Butylate ( recovery from fortified blank )

List of Performance Tables : Carbaryl  
Isopropyl-3-chlorophenyl Carbamate  
Butylate



Performance Summary Table

January - December 1991

|                                |               |
|--------------------------------|---------------|
| Analyte                        | carbaryl      |
| True Concentration             | 10 000 ng/L   |
| Number of Observations         | 15            |
| Within-run Standard Deviation  | not available |
| Between-run Standard Deviation | 11%           |
| Accuracy (% of expected)       | 97%           |

ISOPROPYL-3-CHLOROPHENYL CARBAMATE  
recovery from fortified blank



Performance Summary Table

January - December 1991

|                                |                                           |
|--------------------------------|-------------------------------------------|
| Analyte                        | CIPC (isopropyl-3-chlorophenyl carbamate) |
| True Concentration             | 5 000 ng/L                                |
| Number of Observations         | 15                                        |
| Within-run Standard Deviation  | not available                             |
| Between-run Standard Deviation | 11%                                       |
| Accuracy (% of expected)       | 92%                                       |



Performance Summary Table

January - December 1991

|                                |                  |
|--------------------------------|------------------|
| Analyte                        | butylate (Sutan) |
| True Concentration             | 5 000 ng/L       |
| Number of Observations         | 15               |
| Within-run Standard Deviation  | not available    |
| Between-run Standard Deviation | 31%              |
| Accuracy (% of expected)       | 79%              |

**METHOD CODE :** OWTRI-E3121A.1  
**METHOD TITLE:** The Determination of Triazine Herbicides in Water by GC-TSD  
  
**LABORATORY :** Organic Water  
**SUPERVISOR :** C.D. Hall  
  
**SAMPLE TYPE :** surface water, groundwater, finished drinking water

**PRINCIPLE OF THE METHOD :**

Samples are extracted with solvent, the extract is dried and then evaporated to dryness. The reconstituted extract is examined by gas chromatography using a thermionic specific detector.

| <b>PARAMETERS MEASURED :</b> | <b>LIS TEST CODE :</b> | <b>W ( ng/L )</b> | <b>T ( ng/L )</b> |
|------------------------------|------------------------|-------------------|-------------------|
| prometone                    | P2PROM                 | 50                | 500               |
| atraton                      | P2ATRO                 | 50                | 500               |
| propazine                    | P2PROP                 | 50                | 500               |
| atrazine                     | P2ATRA                 | 50                | 500               |
| prometryne                   | P2PROY                 | 50                | 500               |
| simazine                     | P2SIM                  | 50                | 500               |
| ametryne                     | P2AMET                 | 50                | 500               |
| sencor                       | P2SENC                 | 100               | 1 000             |
| bladex                       | P2BLAD                 | 100               | 1 000             |
| metolachlor                  | P0MET                  | 500               | 5 000             |
| alachlor                     | P0LASS                 | 500               | 5 000             |

**REPORTING FORMAT :**

Results are reported in parts per trillion (ng/L) rounded off to the closest increment of W up to maximum of two significant figures.

**QUALITY CONTROL :**

The routine quality control operations monitor validity of calibration ( calibration check solution ), absence of potential interferences ( method blanks ), overall method performance ( fortified method blanks ).

Control charts summarizing the response factors used to calibrate instruments and the recoveries from fortified method blanks are maintained for selected target compounds.

**REMARKS :** In addition to the intra-laboratory method control, the performance of the method was examined through performance audit samples program organized by LSB Quality Management Office.

List of Performance Charts : Atrazine ( recovery from fortified blank )  
Bladex ( recovery from fortified blank )  
Metolachlor ( recovery from fortified blank )

List of Performance Tables : Method Blanks Summary  
Atrazine  
Bladex  
Metolachlor

Method Blanks Summary

January 1991 - December 1991

| Analyte     | Number of Observations | Average Concentration ( ng/L ) | Standard Deviation ( ng/L ) |
|-------------|------------------------|--------------------------------|-----------------------------|
| prometone   | 84                     | 0                              | 0                           |
| atraton     | 84                     | 0                              | 0                           |
| propazine   | 84                     | 0                              | 0                           |
| atrazine    | 84                     | 25                             | 51                          |
| prometryne  | 84                     | 0                              | 0                           |
| simazine    | 84                     | 0                              | 0                           |
| ametryne    | 84                     | 0                              | 0                           |
| sencor      | 84                     | 0                              | 0                           |
| bladex      | 84                     | 0                              | 0                           |
| metolachlor | 84                     | 0                              | 0                           |
| alachlor    | 84                     | 0                              | 0                           |

The trace levels of atrazine were found in method blanks prepared from tap water. In June 1991, Nanopure™ water started to be used for method blanks. No observable concentrations of atrazine were found in any of the total of 38 Nanopure™ water method blanks which were prepared and analyzed in the period starting June 1991 and ending December 1991.

ATRAZINE  
recovery from fortified blank



Performance Summary Table

January - December 1991

|                                |               |
|--------------------------------|---------------|
| Analyte                        | atrazine      |
| True Concentration             | 200 ng/L      |
| Number of Observations         | 41            |
| Within-run Standard Deviation  | not available |
| Between-run Standard Deviation | 21%           |
| Accuracy (% of expected)       | 122%          |



Performance Summary Table

January - December 1991

|                                |               |
|--------------------------------|---------------|
| Analyte                        | bladex        |
| True Concentration             | 200 ng/L      |
| Number of Observations         | 44            |
| Within-run Standard Deviation  | not available |
| Between-run Standard Deviation | 18%           |
| Accuracy (% of expected)       | 118%          |

METOLACHLOR  
recovery from fortified blank



Performance Summary Table

January - December 1991

|                                |               |
|--------------------------------|---------------|
| Analyte                        | metolachlor   |
| True Concentration             | 1 000 ng/L    |
| Number of Observations         | 41            |
| Within-run Standard Deviation  | not available |
| Between-run Standard Deviation | 19%           |
| Accuracy (% of expected)       | 106%          |

**METHOD CODE :** PWAUH-E3230A.1

**METHOD TITLE:** The Determination of Phenyl Ureas in Water by High Performance Liquid Chromatography

**LABORATORY :** Organic Water Unit

**SUPERVISOR :** C.D. Hall

**SAMPLE TYPE :** surface water, groundwater, finished drinking water

**PRINCIPLE OF THE METHOD :**

Samples are extracted with an organic solvent; the extract is filtered through granular anhydrous sodium sulphate to remove water and evaporated to dryness by rotary evaporator. The reconstituted extract is examined by high performance liquid chromatography using a variable wavelength ultraviolet detector.

| <b>PARAMETERS MEASURED :</b> | <b>LIS TEST CODE :</b> | <b>W ( ng/L )</b> | <b>T ( ng/L )</b> |
|------------------------------|------------------------|-------------------|-------------------|
| linuron                      | P5LINU                 | 2 000             | 20 000            |
| monuron                      | P5MONU                 | 2 000             | 20 000            |
| diuron                       | P5DIUR                 | 2 000             | 20 000            |
| chlortoluron                 | P5CTOL                 | 2 000             | 20 000            |
| fluometuron                  | P5FMET                 | 2 000             | 20 000            |
| monolinuron                  | P5MLIN                 | 2 000             | 20 000            |
| chlorbromuron                | P5CBRO                 | 2 000             | 20 000            |
| metoxuron                    | P5METX                 | 2 000             | 20 000            |
| siduron                      | P5SID                  | 2 000             | 20 000            |
| difenoxuron                  | P5DIF                  | 2 000             | 20 000            |
| neburon                      | P5NEB                  | 2 000             | 20 000            |
| paratan                      | P5PATO                 | 2 000             | 20 000            |

**REPORTING FORMAT :**

Results are reported in parts per trillion (ng/L) rounded off to the closest increment of 100 ng/L and up to maximum of two significant figures.

**QUALITY CONTROL :**

The routine quality control operations monitor validity of calibration ( calibration check solution ), absence of potential interferences ( method blanks ), overall method performance ( fortified method blanks ).

**REMARKS :** During the period starting January 1991 and ending December 1991, a total of 3 method blanks was prepared and tested by the method. For these 3 analyses, no observable responses of any of the target analytes were encountered.

Since this method is not used on regular basis ( less than 50 samples are analyzed per year ), no control charts are maintained.

List of Performance Charts : not applicable

List of Performance Tables : Recoveries of Target Analytes from Fortified Method Blanks

Performance Summary Table

Recoveries of PWAUH Target Analytes from Fortified Method Blanks

| Analyte       | concentration<br>( ng/L ) | number<br>of obs. | accuracy<br>( % of expected ) | standard<br>deviation (%) |
|---------------|---------------------------|-------------------|-------------------------------|---------------------------|
| metoxuron     | 5 000                     | 3                 | 89%                           | 7                         |
| monuron       | 5 000                     | 3                 | 91%                           | 2                         |
| chlortoluron  | 5 000                     | 3                 | 102%                          | 10                        |
| fluometuron   | 5 000                     | 3                 | 105%                          | 12                        |
| diuron        | 5 000                     | 3                 | 106%                          | 10                        |
| monolinuron   | 5 000                     | 3                 | 101%                          | 10                        |
| difenoxuron   | 5 000                     | 3                 | 101%                          | 12                        |
| metobromuron  | 5 000                     | 3                 | 104%                          | 7                         |
| siduron       | 5 000                     | 3                 | 96%                           | 12                        |
| linuron       | 5 000                     | 3                 | 104%                          | 10                        |
| chlorbromuron | 5 000                     | 3                 | 105%                          | 10                        |
| neburon       | 5 000                     | 3                 | 100%                          | 11                        |

**METHOD CODE :** PAAFD-E3123A.1

**METHOD TITLE:** The Determination of Polychlorinated Dibenzo-p-dioxins (PCDD) and Polychlorinated Dibenzofurans (PCDF) in Ambient Air

**LABORATORY :** Dioxin Unit

**SUPERVISOR :** E. Reiner

**SAMPLE TYPE :** ambient air

**PRINCIPLE OF THE METHOD :**

Samples are collected using a MOE-modified high-volume air sampler with a polyurethane foam (PUF) plug and Teflon-coated glass fiber filter paper. PCDDs and PCDFs are extracted from the PUF and filter paper using a Soxhlet extraction apparatus and toluene. The concentrated extract is processed through a multi-stage chromatographic cleanup procedure to remove the bulk of the sample matrix and potential chemical interferences. After cleanup, the extract is evaporated to dryness.

The reconstituted extract is examined by gas chromatography - triple quadrupole tandem mass spectrometry (GC-MS-MS) or gas chromatography - high resolution mass spectrometry (GC-HRMS).

**PARAMETERS MEASURED :**

total tetrachlorinated dibenzo-p-dioxins ( TCDD )  
total pentachlorinated dibenzo-p-dioxins ( PCDD )  
total hexachlorinated dibenzo-p-dioxins ( HxCDD )  
total heptachlorinated dibenzo-p-dioxins ( HpCDD )  
total octachlorinated dibenzo-p-dioxins ( OCDD )  
total tetrachlorinated dibenzofurans ( TCDF )  
total pentachlorinated dibenzofurans ( PCDF )  
total hexachlorinated dibenzofurans ( HxCDF )  
total heptachlorinated dibenzofurans ( HpCDF )  
total octachlorinated dibenzofurans ( OCDF )

2,3,7,8-tetrachlorodibenzo-p-dioxin  
1,2,3,7,8-pentachlorodibenzo-p-dioxin  
three 2,3,7,8-substituted hexachlorodibenzo-p-dioxins  
1,2,3,4,6,7,8-heptachlorodibenzo-p-dioxin  
1,2,4,6,7,8,9-octachlorodibenzo-p-dioxin  
2,3,7,8-tetrachlorodibenzofuran  
2,3,4,7,8-pentachlorodibenzofuran  
1,2,3,7,8-pentachlorodibenzofuran  
four 2,3,7,8-substituted hexachlorodibenzofurans

( parameters measured continued )

1,2,3,4,6,7,8-heptachlorodibenzofuran  
1,2,3,4,7,8,9-heptachlorodibenzofuran  
1,2,3,4,6,7,8,9-octachlorodibenzofuran

#### REPORTING FORMAT :

Results are reported as pg/m<sup>3</sup> rounded off to 2 significant figures. The minimum reported levels are sample and analyte specific \* and range from 0.001 pg/m<sup>3</sup> to 0.01 pg/m<sup>3</sup>.

#### QUALITY CONTROL :

The routine quality control operations monitor validity of calibration and consistency in injection volume ( injection standard ), absence of potential contamination ( blanks ) and recovery of target analytes ( internal standard ).

Prior to extraction, each sample is spiked with solution containing isotopically labelled dioxin standards. The recoveries of these isotopically labelled analytes ( at least one per each congener group ) are monitored. The range for acceptable recoveries is (25-150)%. For the recoveries outside this range, results are reported uncorrected for internal standard recovery.

**REMARKS :** The performance of the method was examined through CCME Interlaboratory Study PCDD/PCDF in Ambient Air.

Two types of performance limits are displayed on the performance charts. One set was statistically derived from 1991 data set; while the other set is adopted from U.S. EPA method 1613.

List of Performance Charts :     <sup>13</sup>C<sub>12</sub>-Tetrachlorodibenzo-p-dioxin ( recovery of internal standard )  
                                          <sup>13</sup>C<sub>12</sub>-Pentachlorodibenzo-p-dioxin ( recovery of internal standard )  
                                          <sup>13</sup>C<sub>12</sub>-Hexachlorodibenzo-p-dioxin ( recovery of internal standard )  
                                          <sup>13</sup>C<sub>12</sub>-Heptachlorodibenzo-p-dioxin ( recovery of internal standard )  
                                          <sup>13</sup>C<sub>12</sub>-Octachlorodibenzo-p-dioxin ( recovery of internal standard )

List of Performance Tables :     Method Blanks Summary  
                                          <sup>13</sup>C<sub>12</sub>-2,3,7,8-Tetrachlorodibenzo-p-dioxin  
                                          <sup>13</sup>C<sub>12</sub>-1,2,3,7,8-Pentachlorodibenzo-p-dioxin  
                                          <sup>13</sup>C<sub>12</sub>-1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin  
                                          <sup>13</sup>C<sub>12</sub>-1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin  
                                          <sup>13</sup>C<sub>12</sub>-Octachlorodibenzo-p-dioxin

\* The minimum reported levels correspond to the amount of analyte that would give most-abundant ion response five times higher than corresponding instrumental noise.

Method Blanks Summary

January 1991 - December 1991

| Analyte     | Number of Observations | Average Concentration ( $\times 10^{-3}$ pg/m $^3$ ) | Standard Deviation ( $\times 10^{-3}$ pg/m $^3$ ) |
|-------------|------------------------|------------------------------------------------------|---------------------------------------------------|
| total TCDD  | 9                      | 0                                                    | 0                                                 |
| total PCDD  | 9                      | 0                                                    | 0                                                 |
| total HxCDD | 9                      | 0.9                                                  | 2.5                                               |
| total HpCDD | 9                      | 0                                                    | 0                                                 |
| total OCDD  | 9                      | 7.4                                                  | 8.8                                               |
| total TCDF  | 9                      | 0                                                    | 0                                                 |
| total PCDF  | 9                      | 0                                                    | 0                                                 |
| total HxCDF | 9                      | 0                                                    | 0                                                 |
| total HpCDF | 9                      | 0                                                    | 0                                                 |
| total OCDF  | 9                      | 0                                                    | 0                                                 |

13-C-12-TETRACHLORODIBENZO-P-DIOXIN  
recovery from ambient air samples



Performance Summary Table

January - December 1991

|                                    |                                                           |
|------------------------------------|-----------------------------------------------------------|
| Analyte ( Internal Standard )      | $^{13}\text{C}_{12}$ -2,3,7,8-tetrachlorodibenzo-p-dioxin |
| True Concentration                 | 1 pg/m <sup>3</sup>                                       |
| Number of Observations             | 50                                                        |
| Within-run Rel. Standard Deviation | 9% ( n=7 )                                                |
| Between-run Standard Deviation     | 26%                                                       |
| Accuracy (% of expected)           | 71%                                                       |

\* true concentration relates to the original sample volume of 3 000 m<sup>3</sup>; see official text of the method for the details on spiking procedure

13-C-12-PENTACHLORODIBENZO-P-DIOXIN  
recovery from ambient air samples



Performance Summary Table

January - December 1991

|                                    |                                                             |
|------------------------------------|-------------------------------------------------------------|
| Analyte (Internal Standard)        | $^{13}\text{C}_{12}$ -1,2,3,7,8-pentachlorodibenzo-p-dioxin |
| True Concentration                 | 1 pg/m <sup>3</sup>                                         |
| Number of Observations             | 50                                                          |
| Within-run Rel. Standard Deviation | 19% ( n=7 )                                                 |
| Between-run Standard Deviation     | 28%                                                         |
| Accuracy (% of expected)           | 77%                                                         |

\* true concentration relates to the original sample volume of 3 000 m<sup>3</sup>; see official text of the method for the details on spiking procedure

13-C-12-HEXACHLORODIBENZO-P-DIOXIN  
recovery from ambient air samples



Performance Summary Table

January - December 1991

|                                    |                                                              |
|------------------------------------|--------------------------------------------------------------|
| Analyte (Internal Standard)        | $^{13}\text{C}_{12}$ -1,2,3,6,7,8-hexachlorodibenzo-p-dioxin |
| True Concentration                 | 1 pg/m <sup>3</sup> *                                        |
| Number of Observations             | 50                                                           |
| Within-run Rel. Standard Deviation | 9% ( n=7 )                                                   |
| Between-run Standard Deviation     | 23%                                                          |
| Accuracy (% of expected)           | 81%                                                          |

\* true concentration relates to the original sample volume of 3 000 m<sup>3</sup>; see official text of the method for the details on spiking procedure

13-C-12-HEPTACHLORODIBENZO-P-DIOXIN  
recovery from ambient air samples



Performance Summary Table

January - December 1991

|                                    |                                                                 |
|------------------------------------|-----------------------------------------------------------------|
| Analyte (Internal Standard)        | $^{13}\text{C}_{12}$ -1,2,3,4,6,7,8-heptachlorodibenzo-p-dioxin |
| True Concentration                 | 4 pg/m <sup>3</sup>                                             |
| Number of Observations             | 50                                                              |
| Within-run Rel. Standard Deviation | 10% ( n=7 )                                                     |
| Between-run Standard Deviation     | 28%                                                             |
| Accuracy (% of expected)           | 80%                                                             |

\* true concentration relates to the original sample volume of 3 000 m<sup>3</sup>; see official text of the method for the details on spiking procedure

13-C-12-OCTACHLORODIBENZO-P-DIOXIN  
recovery from ambient air samples



Performance Summary Table

January - December 1991

|                                    |                                                  |
|------------------------------------|--------------------------------------------------|
| Analyte (Internal Standard)        | $^{13}\text{C}_{12}$ -octachlorodibenzo-p-dioxin |
| True Concentration                 | 3 pg/m <sup>3</sup>                              |
| Number of Observations             | 50                                               |
| Within-run Rel. Standard Deviation | 18% ( n=7 )                                      |
| Between-run Standard Deviation     | 48%                                              |
| Accuracy (% of expected)           | 100%                                             |

\* true concentration relates to the original sample volume of 3 000 m<sup>3</sup>; see official text of the method for the details on spiking procedure

**METHOD CODE :** PFAFD-E3135A.1

**METHOD TITLE:** The Determination of Polychlorinated Dibenzo-p-dioxins and Polychlorinated Dibenzofurans in Fish Tissue

**LABORATORY :** Dioxin Unit

**SUPERVISOR :** E. Reiner

**SAMPLE TYPE :** fish tissue and other biological tissue ( clams, shrimps )

**PRINCIPLE OF THE METHOD :**

Sample is homogenized by mechanical grinding. A homogeneous portion to be analyzed is fortified with isotopically labelled internal standard and is digested overnight with concentrated hydrochloric acid. The resulting solution is extracted with hexane and the extract is passed through a column containing anhydrous sodium sulphate and sulphuric acid-silica packing.

The extract is concentrated and subsequently fractionated using high performance liquid chromatography (HPLC). The reconstituted final extract is analyzed by gas chromatography - mass spectrometry or gas chromatography - triple quadrupole tandem mass spectrometry or gas chromatography - high resolution mass spectrometry.

**PARAMETERS MEASURED :**

total tetrachlorinated dibenzo-p-dioxins ( TCDD )  
total pentachlorinated dibenzo-p-dioxins ( PCDD )  
total hexachlorinated dibenzo-p-dioxins ( HxCDD )  
total heptachlorinated dibenzo-p-dioxins ( HpCDD )  
total octachlorinated dibenzo-p-dioxins ( OCDD )  
total tetrachlorinated dibenzofurans ( TCDF )  
total pentachlorinated dibenzofurans ( PCDF )  
total hexachlorinated dibenzofurans ( HxCDF )  
total heptachlorinated dibenzofurans ( HpCDF )  
total octachlorinated dibenzofurans ( OCDF )

2,3,7,8-tetrachlorodibenzo-p-dioxin  
1,2,3,7,8-pentachlorodibenzo-p-dioxin  
three 2,3,7,8-substituted hexachlorodibenzo-p-dioxins  
1,2,3,4,6,7,8-heptachlorodibenzo-p-dioxin  
1,2,4,6,7,8,9-octachlorodibenzo-p-dioxin  
2,3,7,8-tetrachlorodibenzofuran  
2,3,4,7,8-pentachlorodibenzofuran  
1,2,3,7,8-pentachlorodibenzofuran  
four 2,3,7,8-substituted hexachlorodibenzofurans  
1,2,3,4,6,7,8-heptachlorodibenzofuran

( parameters measured continued )

1,2,3,4,7,8,9-heptachlorodibenzofuran  
1,2,3,4,6,7,8,9-octachlorodibenzofuran

#### REPORTING FORMAT :

Results are reported as ppt ( picograms of CDD/CDF per gram of wet fish tissue ) rounded off to 2 significant figures. The minimum reported levels are sample and analyte specific and range from 1 pg/g to 10 pg/g.

#### QUALITY CONTROL :

The routine quality control operations monitor validity of calibration and consistency in injection volume ( injection standard ), absence of potential contamination ( blanks ) and recovery of target analytes ( internal standard ).

Prior to extraction, each sample is spiked with solution containing isotopically labelled dioxin standards. The recoveries of these isotopically labelled analytes ( at least one per each congener group ) are monitored. The range for acceptable recoveries is (25-150)%. For the recoveries outside this range, the results are reported uncorrected for internal standard recovery.

**REMARKS :** Two types of performance limits are displayed on the performance charts. One set was statistically derived from 1991 data set; while the other set is adopted from U.S. EPA method 1613.

List of Performance Charts :       $^{13}\text{C}_{12}$ -Tetrachlorodibenzo-p-dioxin ( recovery of internal standard )  
 $^{13}\text{C}_{12}$ -Pentachlorodibenzo-p-dioxin ( recovery of internal standard )  
 $^{13}\text{C}_{12}$ -Hexachlorodibenzo-p-dioxin ( recovery of internal standard )  
 $^{13}\text{C}_{12}$ -Heptachlorodibenzo-p-dioxin ( recovery of internal standard )  
 $^{13}\text{C}_{12}$ -Octachlorodibenzo-p-dioxin ( recovery of internal standard )

List of Performance Tables :      Method Blanks Summary  
 $^{13}\text{C}_{12}$ -2,3,7,8-Tetrachlorodibenzo-p-dioxin  
 $^{13}\text{C}_{12}$ -1,2,3,7,8-Pentachlorodibenzo-p-dioxin  
 $^{13}\text{C}_{12}$ -1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin  
 $^{13}\text{C}_{12}$ -1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin  
 $^{13}\text{C}_{12}$ -Octachlorodibenzo-p-dioxin

---

The minimum reported levels correspond to the amount of analyte that would give most-abundant ion response five times higher than corresponding instrumental noise.

Method Blanks Summary

January 1991 - December 1991

| Analyte     | Number of Observations | Average Concentration ( pg/g ) | Standard Deviation ( pg/g ) |
|-------------|------------------------|--------------------------------|-----------------------------|
| total TCDD  | 6                      | 0.33                           | 0.47                        |
| total PCDD  | 6                      | 0.17                           | 0.37                        |
| total HxCDD | 6                      | 0                              | 0                           |
| total HpCDD | 6                      | 0.17                           | 0.37                        |
| total OCDD  | 6                      | 0.33                           | 0.47                        |
| total TCDF  | 6                      | 0.17                           | 0.37                        |
| total PCDF  | 6                      | 0.17                           | 0.37                        |
| total HxCDF | 6                      | 0                              | 0                           |
| total HpCDF | 6                      | 0                              | 0                           |
| total OCDF  | 6                      | 0.17                           | 0.37                        |

13-C-12-TETRACHLORODIBENZO-P-DIOXIN  
recovery from fish/biota samples



Performance Summary Table

January - December 1991

|                                    |                                                           |
|------------------------------------|-----------------------------------------------------------|
| Analyte (Internal Standard)        | $^{13}\text{C}_{12}$ -2,3,7,8-tetrachlorodibenzo-p-dioxin |
| True Concentration                 | 200 pg/g                                                  |
| Number of Observations             | 60                                                        |
| Within-run Rel. Standard Deviation | not available                                             |
| Between-run Standard Deviation     | 19%                                                       |
| Accuracy (% of expected)           | 43%                                                       |

13-C-12-PENTACHLORODIBENZO-P-DIOXIN  
recovery from fish/biota samples



Performance Summary Table

January - December 1991

|                                    |                                                             |
|------------------------------------|-------------------------------------------------------------|
| Analyte (Internal Standard)        | $^{13}\text{C}_{12}$ -1,2,3,7,8-pentachlorodibenzo-p-dioxin |
| True Concentration                 | 200 pg/g                                                    |
| Number of Observations             | 60                                                          |
| Within-run Rel. Standard Deviation | not available                                               |
| Between-run Standard Deviation     | 15%                                                         |
| Accuracy (% of expected)           | 61%                                                         |

13-C-12-HEXACHLORODIBENZO-P-DIOXIN  
recovery from fish/biota samples



Performance Summary Table

January - December 1991

|                                    |                                                              |
|------------------------------------|--------------------------------------------------------------|
| Analyte (Internal Standard)        | $^{13}\text{C}_{12}$ -1,2,3,6,7,8-hexachlorodibenzo-p-dioxin |
| True Concentration                 | 170 pg/g                                                     |
| Number of Observations             | 60                                                           |
| Within-run Rel. Standard Deviation | not available                                                |
| Between-run Standard Deviation     | 20%                                                          |
| Accuracy (% of expected)           | 59%                                                          |



Performance Summary Table

January - December 1991

|                                    |                                                                 |
|------------------------------------|-----------------------------------------------------------------|
| Analyte (Internal Standard)        | $^{13}\text{C}_{12}$ -1,2,3,4,6,7,8-heptachlorodibenzo-p-dioxin |
| True Concentration                 | 600 pg/g                                                        |
| Number of Observations             | 60                                                              |
| Within-run Rel. Standard Deviation | not available                                                   |
| Between-run Standard Deviation     | 14%                                                             |
| Accuracy (% of expected)           | 56%                                                             |

13-C-12-OCTACHLORODIBENZO-P-DIOXIN  
recovery from fish/biota samples



Performance Summary Table

January - December 1991

|                                    |                                                  |
|------------------------------------|--------------------------------------------------|
| Analyte (Internal Standard)        | $^{13}\text{C}_{12}$ -octachlorodibenzo-p-dioxin |
| True Concentration                 | 400 pg/g                                         |
| Number of Observations             | 60                                               |
| Within-run Rel. Standard Deviation | not available                                    |
| Between-run Standard Deviation     | 22%                                              |
| Accuracy (% of expected)           | 56%                                              |

**METHOD CODE :** PSAFD-E3152A.1

**METHOD TITLE:** The Determination of Polychlorinated Dibenzo-p-dioxins (PCDD) and Polychlorinated Dibenzofurans (PCDF) in Soil and Sediment

**LABORATORY :** Dioxin Unit

**SUPERVISOR :** E. Reiner

**SAMPLE TYPE :** soil and sediment

**PRINCIPLE OF THE METHOD :**

Samples are dried, ground and homogenized. PCDD and PCDF are extracted from soil/sediment using a Soxhlet extraction apparatus and toluene. The concentrated extract is processed through a multi-stage chromatographic cleanup procedure to remove bulk of the sample matrix and potential chemical interferences.

The reconstituted final extract is analyzed by gas chromatography - mass spectrometry or gas chromatography - triple quadrupole tandem mass spectrometry or gas chromatography - high resolution mass spectrometry.

**PARAMETERS MEASURED :**

total tetrachlorinated dibenzo-p-dioxins ( TCDD )  
total pentachlorinated dibenzo-p-dioxins ( PCDD )  
total hexachlorinated dibenzo-p-dioxins ( HxCDD )  
total heptachlorinated dibenzo-p-dioxins ( HpCDD )  
total octachlorinated dibenzo-p-dioxins ( OCDD )  
total tetrachlorinated dibenzofurans ( TCDF )  
total pentachlorinated dibenzofurans ( PCDF )  
total hexachlorinated dibenzofurans ( HxCDF )  
total heptachlorinated dibenzofurans ( HpCDF )  
total octachlorinated dibenzofurans ( OCDF )

2,3,7,8-tetrachlorodibenzo-p-dioxin

1,2,3,7,8-pentachlorodibenzo-p-dioxin

three 2,3,7,8-substituted hexachlorodibenzo-p-dioxins

1,2,3,4,6,7,8-heptachlorodibenzo-p-dioxin

1,2,4,6,7,8,9-octachlorodibenzo-p-dioxin

2,3,7,8-tetrachlorodibenzofuran

2,3,4,7,8-pentachlorodibenzofuran

1,2,3,7,8-pentachlorodibenzofuran

four 2,3,7,8-substituted hexachlorodibenzofurans

1,2,3,4,6,7,8-heptachlorodibenzofuran

1,2,3,4,7,8,9-heptachlorodibenzofuran

1,2,3,4,6,7,8,9-octachlorodibenzofuran

## REPORTING FORMAT :

Results are reported as ppt ( picograms of CDD/CDF per gram of soil ) rounded off to 2 significant figures. The minimum reported levels are sample and analyte specific \* and range from 1 pg/g to 10 pg/g.

## QUALITY CONTROL :

The routine quality control operations monitor validity of calibration and consistency in injection volume ( injection standard ), absence of potential contamination ( blanks ) and recovery of target analytes ( internal standard ).

Prior to extraction, each sample is spiked with solution containing isotopically labelled dioxin standards. The recoveries of these isotopically labelled analytes ( at least one per each congener group ) are monitored. The range for acceptable recoveries is (25-150)%. For the recoveries outside this range, the results are reported uncorrected for internal standard recovery.

**REMARKS :** Two types of performance limits are displayed on the performance charts. One set was statistically derived from 1991 data set; while the other set is adopted from U.S. EPA method 1613.

List of Performance Charts :       $^{13}\text{C}_{12}$ -Tetrachlorodibenzo-p-dioxin ( recovery of internal standard )  
                                         $^{13}\text{C}_{12}$ -Pentachlorodibenzo-p-dioxin ( recovery of internal standard )  
                                         $^{13}\text{C}_{12}$ -Hexachlorodibenzo-p-dioxin ( recovery of internal standard )  
                                         $^{13}\text{C}_{12}$ -Heptachlorodibenzo-p-dioxin ( recovery of internal standard )  
                                         $^{13}\text{C}_{12}$ -Octachlorodibenzo-p-dioxin ( recovery of internal standard )

List of Performance Tables :      Method Blanks Summary  
                                         $^{13}\text{C}_{12}$ -2,3,7,8-Tetrachlorodibenzo-p-dioxin  
                                         $^{13}\text{C}_{12}$ -1,2,3,7,8-Pentachlorodibenzo-p-dioxin  
                                         $^{13}\text{C}_{12}$ -1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin  
                                         $^{13}\text{C}_{12}$ -1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin  
                                         $^{13}\text{C}_{12}$ -Octachlorodibenzo-p-dioxin

---

\* The minimum reported levels correspond to the amount of analyte that would give most-abundant ion response five times higher than corresponding instrumental noise.

Method Blanks Summary

January 1991 - December 1991

| Analyte     | Number of Observations | Average Concentration ( pg/g ) | Standard Deviation ( pg/g ) |
|-------------|------------------------|--------------------------------|-----------------------------|
| total TCDD  | 22                     | 0                              | 0                           |
| total PCDD  | 22                     | 0.27                           | 0.69                        |
| total HxCDD | 22                     | 0.27                           | 1.3                         |
| total HpCDD | 22                     | 0.09                           | 0.42                        |
| total OCDD  | 22                     | 0.36                           | 0.48                        |
| total TCDF  | 22                     | 0.05                           | 0.21                        |
| total PCDF  | 22                     | 0.05                           | 0.21                        |
| total HxCDF | 22                     | 0.14                           | 0.34                        |
| total HpCDF | 22                     | 0.27                           | 0.54                        |
| total OCDF  | 22                     | 0.18                           | 0.39                        |

13-C-12-TETRACHLORODIBENZO-P-DIOXIN  
recovery from soil/sediment samples



Performance Summary Table

January - December 1991

|                                    |                                                           |
|------------------------------------|-----------------------------------------------------------|
| Analyte (Internal Standard)        | $^{13}\text{C}_{12}$ -2,3,7,8-tetrachlorodibenzo-p-dioxin |
| True Concentration                 | 400 pg/g                                                  |
| Number of Observations             | 92                                                        |
| Within-run Rel. Standard Deviation | 17% ( n=7 )                                               |
| Between-run Standard Deviation     | 39%                                                       |
| Accuracy (% of expected)           | 106%                                                      |

13-C-12-PENTACHLORODIBENZO-P-DIOXIN  
recovery from soil/sediment samples



Performance Summary Table

January - December 1991

|                                    |                                                             |
|------------------------------------|-------------------------------------------------------------|
| Analyte (Internal Standard)        | $^{13}\text{C}_{12}$ -1,2,3,7,8-pentachlorodibenzo-p-dioxin |
| True Concentration                 | 400 pg/g                                                    |
| Number of Observations             | 92                                                          |
| Within-run Rel. Standard Deviation | 11% ( n=7 )                                                 |
| Between-run Standard Deviation     | 25%                                                         |
| Accuracy (% of expected)           | 85%                                                         |

13-C-12-HEXACHLORODIBENZO-P-DIOXIN  
recovery from soil/sediment samples



Performance Summary Table

January - December 1991

|                                    |                                                              |
|------------------------------------|--------------------------------------------------------------|
| Analyte (Internal Standard)        | $^{13}\text{C}_{12}$ -1,2,3,6,7,8-hexachlorodibenzo-p-dioxin |
| True Concentration                 | 350 pg/g                                                     |
| Number of Observations             | 92                                                           |
| Within-run Rel. Standard Deviation | 3% ( n=7 )                                                   |
| Between-run Standard Deviation     | 18%                                                          |
| Accuracy (% of expected)           | 72%                                                          |

13-C-12-HEPTACHLORODIBENZO-P-DIOXIN  
recovery from soil/sediment samples



Performance Summary Table

January - December 1991

|                                    |                                                                 |
|------------------------------------|-----------------------------------------------------------------|
| Analyte (Internal Standard)        | $^{13}\text{C}_{12}$ -1,2,3,4,6,7,8-heptachlorodibenzo-p-dioxin |
| True Concentration                 | 1 200 pg/g                                                      |
| Number of Observations             | 92                                                              |
| Within-run Rel. Standard Deviation | 17% ( n=7 )                                                     |
| Between-run Standard Deviation     | 17%                                                             |
| Accuracy (% of expected)           | 57%                                                             |

13-C-12-OCTACHLORODIBENZO-P-DIOXIN  
recovery from soil/sediment samples



Performance Summary Table

January - December 1991

|                                    |                                                  |
|------------------------------------|--------------------------------------------------|
| Analyte (Internal Standard)        | $^{13}\text{C}_{12}$ -octachlorodibenzo-p-dioxin |
| True Concentration                 | 800 pg/g                                         |
| Number of Observations             | 92                                               |
| Within-run Rel. Standard Deviation | 6% ( n=7 )                                       |
| Between-run Standard Deviation     | 22%                                              |
| Accuracy (% of expected)           | 59%                                              |

**METHOD CODE :** PWAFD-E3163A.1

**METHOD TITLE:** The Determination of Polychlorinated Dibenzo-p-dioxins and Polychlorinated Dibenzofurans in Drinking Water by GC-MS

**LABORATORY :** Dioxin Unit

**SUPERVISOR :** E. Reiner

**SAMPLE TYPE :** raw or finished drinking water

**PRINCIPLE OF THE METHOD :**

Target analyte(s) are extracted from samples with an organic solvent. The extract is then cleaned of potential chemical interferences by two-stage column chromatography. Cleaned extract is evaporated to dryness. After reconstitution, the extract is examined by gas chromatography - mass spectrometry.

If the extract contains chemical interferences that prevent the quantification of target analytes, it is further fractionated using high performance liquid chromatography and then re-analyzed by GC-MS.

**PARAMETERS MEASURED :**

total tetrachlorinated dibenzo-p-dioxins  
total pentachlorinated dibenzo-p-dioxins  
total hexachlorinated dibenzo-p-dioxins  
total heptachlorinated dibenzo-p-dioxins  
total octachlorinated dibenzo-p-dioxins  
total tetrachlorinated dibenzofurans  
total pentachlorinated dibenzofurans  
total hexachlorinated dibenzofurans  
total heptachlorinated dibenzofurans  
total octachlorinated dibenzofurans

2,3,7,8-tetrachlorodibenzo-p-dioxin  
1,2,3,7,8-pentachlorodibenzo-p-dioxin  
three 2,3,7,8-substituted hexachlorodibenzo-p-dioxins  
1,2,3,4,6,7,8-heptachlorodibenzo-p-dioxin  
1,2,4,6,7,8,9-octachlorodibenzo-p-dioxin  
2,3,7,8-tetrachlorodibenzofuran  
2,3,4,7,8-pentachlorodibenzofuran  
1,2,3,7,8-pentachlorodibenzofuran  
four 2,3,7,8-substituted hexachlorodibenzofurans  
1,2,3,4,6,7,8-heptachlorodibenzofuran  
1,2,3,4,7,8-heptachlorodibenzofuran  
1,2,3,4,6,7,8,9-octachlorodibenzofuran

## REPORTING FORMAT :

Results are reported in parts per quadrillion ( pg/L ) rounded off to 2 significant figures. The minimum reported levels are sample and analyte specific \* and range from 1 ppq to 5 ppq.

## QUALITY CONTROL :

The routine quality control operations monitor validity of calibration and consistency in injection volume ( injection standard ), absence of potential contamination ( blanks ) and recovery of target analytes ( internal standard ).

Prior to extraction, each sample is spiked with solution containing isotopically labelled dioxin standards. The recoveries of these isotopically labelled analytes ( at least one per each congener group ) are monitored. The range for acceptable recoveries is (25-150)%. For the recoveries outside this range, the relevant results are reported uncorrected for internal standard recovery.

**REMARKS :** During the period starting January 1991 and ending December 1991, a total of ten method blanks was prepared and tested by the method. For these 10 analyses, no observable responses of any of the target analytes were encountered.

Two types of performance limits are displayed on the performance charts. One set was statistically derived from 1991 data set; while the other set is adopted from U.S. EPA method 1613.

List of Performance Charts :      $^{13}\text{C}_{12}$ -Tetrachlorodibenzo-p-dioxin ( recovery of internal standard )  
                                       $^{13}\text{C}_{12}$ -Pentachlorodibenzo-p-dioxin ( recovery of internal standard )  
                                       $^{13}\text{C}_{12}$ -Hexachlorodibenzo-p-dioxin ( recovery of internal standard )  
                                       $^{13}\text{C}_{12}$ -Heptachlorodibenzo-p-dioxin ( recovery of internal standard )  
                                       $^{13}\text{C}_{12}$ -Octachlorodibenzo-p-dioxin ( recovery of internal standard )

List of Performance Tables :      $^{13}\text{C}_{12}$ -2,3,7,8-Tetrachlorodibenzo-p-dioxin  
                                       $^{13}\text{C}_{12}$ -1,2,3,7,8-Pentachlorodibenzo-p-dioxin  
                                       $^{13}\text{C}_{12}$ -1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin  
                                       $^{13}\text{C}_{12}$ -1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin  
                                       $^{13}\text{C}_{12}$ -Octachlorodibenzo-p-dioxin

---

\* The minimum reported levels correspond to the amount of analyte that would give most-abundant ion response five times higher than corresponding instrumental noise.

13-C-12-TETRACHLORODIBENZO-P-DIOXIN  
recovery from WTP samples



Performance Summary Table

January - December 1991

|                                    |                                                           |
|------------------------------------|-----------------------------------------------------------|
| Analyte (Internal Standard)        | $^{13}\text{C}_{12}$ -2,3,7,8-tetrachlorodibenzo-p-dioxin |
| True Concentration                 | 1 ng/L                                                    |
| Number of Observations             | 117                                                       |
| Within-run Rel. Standard Deviation | not available                                             |
| Between-run Standard Deviation     | 16%                                                       |
| Accuracy (% of expected)           | 57%                                                       |

13-C-12-PENTACHLORODIBENZO-P-DIOXIN  
recovery from WTP samples



Performance Summary Table

January - December 1991

|                                    |                                                             |
|------------------------------------|-------------------------------------------------------------|
| Analyte (Internal Standard)        | $^{13}\text{C}_{12}$ -1,2,3,7,8-pentachlorodibenzo-p-dioxin |
| True Concentration                 | 1 ng/L                                                      |
| Number of Observations             | 117                                                         |
| Within-run Rel. Standard Deviation | not available                                               |
| Between-run Standard Deviation     | 17%                                                         |
| Accuracy (% of expected)           | 72%                                                         |

13-C-12-HEXACHLORODIBENZO-P-DIOXIN  
recovery from WTP samples



Performance Summary Table

January - December 1991

|                                    |                                                              |
|------------------------------------|--------------------------------------------------------------|
| Analyte (Internal Standard)        | $^{13}\text{C}_{12}$ -1,2,3,6,7,8-hexachlorodibenzo-p-dioxin |
| True Concentration                 | 0.8 ng/L                                                     |
| Number of Observations             | 117                                                          |
| Within-run Rel. Standard Deviation | not available                                                |
| Between-run Standard Deviation     | 21%                                                          |
| Accuracy (% of expected)           | 76%                                                          |

13-C-12-HEPTACHLORODIBENZO-P-DIOXIN  
recovery from WTP samples



Performance Summary Table

January - December 1991

|                                    |                                                                 |
|------------------------------------|-----------------------------------------------------------------|
| Analyte (Internal Standard)        | $^{13}\text{C}_{12}$ -1,2,3,4,6,7,8-heptachlorodibenzo-p-dioxin |
| True Concentration                 | 3 ng/L                                                          |
| Number of Observations             | 117                                                             |
| Within-run Rel. Standard Deviation | not available                                                   |
| Between-run Standard Deviation     | 22%                                                             |
| Accuracy (% of expected)           | 73%                                                             |

13-C-12-OCTACHLORODIBENZO-P-DIOXIN  
recovery from WTP samples



Performance Summary Table

January - December 1991

|                                    |                                                  |
|------------------------------------|--------------------------------------------------|
| Analyte (Internal Standard)        | $^{13}\text{C}_{12}$ -octachlorodibenzo-p-dioxin |
| True Concentration                 | 2 ng/L                                           |
| Number of Observations             | 117                                              |
| Within-run Rel. Standard Deviation | not available                                    |
| Between-run Standard Deviation     | 21%                                              |
| Accuracy (% of expected)           | 69%                                              |

**METHOD CODE :** PWAFD-E3164A.1

**METHOD TITLE:** The Determination of Polychlorinated Dibenzo-p-dioxins and Polychlorinated Dibenzofurans in Groundwater and Aqueous Effluent by GC-MS

**LABORATORY :** Dioxin Unit

**SUPERVISOR :** E. Reiner

**SAMPLE TYPE :** groundwater, aqueous industrial or municipal effluent

**PRINCIPLE OF THE METHOD :**

Sample is filtered to remove visible particulates; the aqueous and particulate portions are processed separately. Polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans are extracted from each portion; Soxhlet apparatus is used for filtered particulate portion extraction. Both extracts are dried, concentrated and cleaned up using two-stage chromatographic columns. After clean-up, extracts are evaporated to dryness. The reconstituted extracts are examined by gas chromatography - mass spectrometry.

**PARAMETERS MEASURED :**

total tetrachlorinated dibenzo-p-dioxins ( TCDD )  
total pentachlorinated dibenzo-p-dioxins ( PCDD )  
total hexachlorinated dibenzo-p-dioxins ( HxCDD )  
total heptachlorinated dibenzo-p-dioxins ( HpCDD )  
total octachlorinated dibenzo-p-dioxins ( OCDD )  
total tetrachlorinated dibenzofurans ( TCDF )  
total pentachlorinated dibenzofurans ( PCDF )  
total hexachlorinated dibenzofurans ( HxCDF )  
total heptachlorinated dibenzofurans ( HpCDF )  
total octachlorinated dibenzofurans ( OCDF )

2,3,7,8-tetrachlorodibenzo-p-dioxin  
1,2,3,7,8-pentachlorodibenzo-p-dioxin  
three 2,3,7,8-substituted hexachlorodibenzo-p-dioxins  
1,2,3,4,6,7,8-heptachlorodibenzo-p-dioxin  
1,2,4,6,7,8,9-octachlorodibenzo-p-dioxin  
2,3,7,8-tetrachlorodibenzofuran  
2,3,4,7,8-pentachlorodibenzofuran  
1,2,3,7,8-pentachlorodibenzofuran  
four 2,3,7,8-substituted hexachlorodibenzofurans  
1,2,3,4,6,7,8-heptachlorodibenzofuran  
1,2,3,4,7,8,9-heptachlorodibenzofuran  
1,2,3,4,6,7,8,9-octachlorodibenzofuran

## REPORTING FORMAT :

Results are reported in parts per quadrillion ( pg/L ) rounded off to 2 significant figures. The minimum reported levels are sample and analyte specific \* and range from 5 ppq to 10 ppq.

## QUALITY CONTROL :

The routine quality control operations monitor validity of calibration and consistency in injection volume ( injection standard ), absence of potential contamination ( blanks ) and recovery of target analytes ( internal standard ).

Prior to extraction, each sample is spiked with solution containing isotopically labelled dioxin standards. The recoveries of these isotopically labelled analytes ( at least one per each congener group ) are monitored. The range for acceptable recoveries is (25-150)%. For the recoveries outside this range, the results are reported not corrected for recovery of internal standard.

**REMARKS :** Two types of performance limits are displayed on the performance charts. One set was statistically derived from 1991 data set; while the other set is adopted from U.S. EPA method 1613.

List of Performance Charts :       $^{13}\text{C}_{12}$ -Tetrachlorodibenzo-p-dioxin ( recovery of internal standard )  
 $^{13}\text{C}_{12}$ -Pentachlorodibenzo-p-dioxin ( recovery of internal standard )  
 $^{13}\text{C}_{12}$ -Hexachlorodibenzo-p-dioxin ( recovery of internal standard )  
 $^{13}\text{C}_{12}$ -Heptachlorodibenzo-p-dioxin ( recovery of internal standard )  
 $^{13}\text{C}_{12}$ -Octachlorodibenzo-p-dioxin ( recovery of internal standard )

List of Performance Tables :      Method Blanks Summary  
 $^{13}\text{C}_{12}$ -2,3,7,8-Tetrachlorodibenzo-p-dioxin  
 $^{13}\text{C}_{12}$ -1,2,3,7,8-Pentachlorodibenzo-p-dioxin  
 $^{13}\text{C}_{12}$ -1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin  
 $^{13}\text{C}_{12}$ -1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin  
 $^{13}\text{C}_{12}$ -Octachlorodibenzo-p-dioxin

---

\* The minimum reported levels correspond to the amount of analyte that would give most-abundant ion response five times higher than corresponding instrumental noise.

Method Blanks Summary

January 1991 - December 1991

| Analyte     | Number of Observations | Average Concentration ( pg/L ) | Standard Deviation ( pg/L ) |
|-------------|------------------------|--------------------------------|-----------------------------|
| total TCDD  | 23                     | 0                              | 0                           |
| total PCDD  | 23                     | 0.05                           | 0.21                        |
| total HxCDD | 23                     | 0.18                           | 0.65                        |
| total HpCDD | 23                     | 0                              | 0                           |
| total OCDD  | 23                     | 0.18                           | 0.83                        |
| total TCDF  | 23                     | 0                              | 0                           |
| total PCDF  | 23                     | 0                              | 0                           |
| total HxCDF | 23                     | 0.05                           | 0.21                        |
| total HpCDF | 23                     | 0.05                           | 0.21                        |
| total OCDF  | 23                     | 0                              | 0                           |

13-C-12-TETRACHLORODIBENZO-P-DIOXIN  
recovery from effluent samples



Performance Summary Table

January - December 1991

|                                    |                                                           |
|------------------------------------|-----------------------------------------------------------|
| Analyte (Internal Standard)        | $^{13}\text{C}_{12}$ -2,3,7,8-tetrachlorodibenzo-p-dioxin |
| True Concentration                 | 350 pg/L                                                  |
| Number of Observations             | 46                                                        |
| Within-run Rel. Standard Deviation | not available                                             |
| Between-run Standard Deviation     | 36%                                                       |
| Accuracy (% of expected)           | 94%                                                       |

13-C-12-PENTACHLORODIBENZO-P-DIOXIN  
recovery from effluent samples



Performance Summary Table

January - December 1991

|                                    |                                                             |
|------------------------------------|-------------------------------------------------------------|
| Analyte (Internal Standard)        | $^{13}\text{C}_{12}$ -1,2,3,7,8-pentachlorodibenzo-p-dioxin |
| True Concentration                 | 350 pg/L                                                    |
| Number of Observations             | 46                                                          |
| Within-run Rel. Standard Deviation | not available                                               |
| Between-run Standard Deviation     | 31%                                                         |
| Accuracy (% of expected)           | 102%                                                        |

13-C-12-HEXACHLORODIBENZO-P-DIOXIN  
recovery from effluent samples



Performance Summary Table

January - December 1991

|                                    |                                                              |
|------------------------------------|--------------------------------------------------------------|
| Analyte (Internal Standard)        | $^{13}\text{C}_{12}$ -1,2,3,6,7,8-hexachlorodibenzo-p-dioxin |
| True Concentration                 | 300 pg/L                                                     |
| Number of Observations             | 46                                                           |
| Within-run Rel. Standard Deviation | not available                                                |
| Between-run Standard Deviation     | 23%                                                          |
| Accuracy (% of expected)           | 80%                                                          |

13-C-12-HEPTACHLORODIBENZO-P-DIOXIN  
recovery from effluent samples



Performance Summary Table

January - December 1991

|                                    |                                           |
|------------------------------------|-------------------------------------------|
| Analyte (Internal Standard)        | 1,2,3,4,6,7,8-heptachlorodibenzo-p-dioxin |
| True Concentration                 | 1 000 pg/L                                |
| Number of Observations             | 46                                        |
| Within-run Rel. Standard Deviation | not available                             |
| Between-run Standard Deviation     | 25%                                       |
| Accuracy (% of expected)           | 77%                                       |

13-C-12-OCTACHLORODIBENZO-P-DIOXIN  
recovery from effluent samples



Performance Summary Table

January - December 1991

|                                    |                                                  |
|------------------------------------|--------------------------------------------------|
| Analyte (Internal Standard)        | $^{13}\text{C}_{12}$ -octachlorodibenzo-p-dioxin |
| True Concentration                 | 600 pg/L                                         |
| Number of Observations             | 46                                               |
| Within-run Rel. Standard Deviation | not available                                    |
| Between-run Standard Deviation     | 26%                                              |
| Accuracy (% of expected)           | 66%                                              |

**METHOD CODE :** NDMA-E3291A.1  
**METHOD TITLE:** The Determination of N-Nitrosodimethylamine (NDMA) in Drinking Water and in Aqueous Samples by Gas Chromatography / High Resolution Mass Spectrometry (GC/HRMS)  
**LABORATORY :** Mass Spectrometry Unit  
**SUPERVISOR :** V. Taguchi  
**SAMPLE TYPE :** drinking water, aqueous samples

**PRINCIPLE OF THE METHOD :**

Samples which contain particulate matter are filtered prior to analytical processing.

Sample pH is adjusted to 12 to keep the acidic components in the aqueous phase and the resulting solution is serially extracted with dichloromethane. The dichloromethane extract is washed with a sulphuric acid solution to remove basic components from the organic phase. After being filtered through granular anhydrous sodium sulphate to remove water the extract is concentrated by rotary evaporator and a nitrogen evaporating unit.

The final extract containing the remaining neutral components is analyzed by GC/HRMS. NDMA is quantified by an isotope dilution method.

| PARAMETERS MEASURED :  | LIS TEST CODE : | MDL ( $\mu\text{g/L}$ ) |
|------------------------|-----------------|-------------------------|
| N-Nitrosodimethylamine | MSOBNO (NDMA)   | 0.005                   |

**REPORTING FORMAT :**

Results are reported in  $\mu\text{g/L}$  rounded off to two significant figures. The lowest reported value is  $5 \times 10^3 \mu\text{g/L}$ .

**QUALITY CONTROL :**

The routine quality control operations monitor validity of calibration ( repetitive analysis of calibration standard ), size of potential positive bias ( method blanks ) and maintenance of required instrument sensitivity.

**REMARKS :** The performance of the method was examined through performance audit samples program and MOE Interlaboratory Study # 91-2. Both programs were organized by LSB Quality Management Office.

List of Performance Charts : N-Nitrosodimethylamine ( recovery from performance audit samples )  
N-Nitrosodimethylamine ( results for method blanks )

List of Performance Tables : N-Nitrosodimethylamine ( intralaboratory and interlaboratory performance summary )



Performance Summary Table

January - December 1991

performance audit samples MSU reproducibility study

| Analyte                            | N-nitrosodimethylamine |         |
|------------------------------------|------------------------|---------|
| True Concentration                 | (0.075 - 0.100) µg/L   | 69 µg/L |
| Number of Observations             | 12                     | 10      |
| Within-run Rel. Standard Deviation | not available          | 7.5%    |
| Between-run Standard Deviation     | 18%                    | 19%     |
| Accuracy (% of expected)           | 118%                   | 156%    |

Inter-laboratory Comparisons

MOE Inter-laboratory study # 91-2

|                         |            |            |
|-------------------------|------------|------------|
| Number of Participants  | 13         | 13         |
| Number of Samples       | 2          | 2          |
| Design Value            | 0.302 µg/L | 0.588 µg/L |
| Inter-laboratory Mean   | 0.423 µg/L | 0.682 µg/L |
| Inter-laboratory R.S.D. | 20%        | 22%        |
| Intra-laboratory Mean   | 0.300 µg/L | 0.640 µg/L |
| Intra-laboratory R.S.D. | 0%         | 8%         |

N-NITROSODIMETHYLAMINE  
results from method blanks



Method Blanks Summary

August - December 1991

| Analyte                | N-nitrosodimethylamine              |
|------------------------|-------------------------------------|
| Number of Observations | 92                                  |
| Mean Concentration     | $0.76 \times 10^{-3} \mu\text{g/L}$ |
| Standard Deviation     | $0.67 \times 10^{-3} \mu\text{g/L}$ |

**METHOD CODE :** SMY-E3186A.1  
**METHOD TITLE:** The Determination of Extractable Organics in Drinking Water, Aqueous Samples, Soil and Sediment by Gas Chromatography / Mass Spectrometry (GC/MS)  
**LABORATORY :** Mass Spectrometry Unit  
**SUPERVISOR :** V. Taguchi  
**SAMPLE TYPE :** drinking water, aqueous samples, soil, sediment

**PRINCIPLE OF THE METHOD :**

The method involves extraction of the organic components from their respective matrices with an organic solvent and analysis of the concentrated extract by gas chromatography / full scan mass spectrometry.

Drinking water and aqueous samples are initially adjusted to pH 12. The base/neutral components are serially extracted with dichloromethane. The remaining aqueous fraction is then adjusted to pH 2 and the acidic components are serially extracted with dichloromethane. The extracts are filtered through anhydrous sodium sulphate to remove water and then concentrated by rotary evaporator and a nitrogen evaporating unit. The final extracts are analyzed by GC/FS-MS.

Soil and sediment samples are extracted with toluene in a Soxhlet/Dean-Stark apparatus. The concentrated extracts are analyzed by GC/FS-MS.

The extractable organics are reported according to their compound names and compound classes. The concentrations of the components are approximate and are calculated relative to the internal standard.

**PARAMETERS MEASURED :**

extractable organics analyzable by GC/MS

**LIS TEST CODE :**

PBEXT

**REPORTING FORMAT :**

The extractable organics are reported according to their compound names, CAS registry numbers and compound classes . The concentrations of all components are approximate and are reported in µg/L ( resp. ng/g for soil and sediment samples ) to one significant figure with the prefix "A-". The minimum reported concentrations (calculated relatively to the internal standard ) depend on sample matrix and range from 0.1 µg/L to 1 µg/L.

**QUALITY CONTROL :**

The routine quality control operations monitor presence of potential interferences in the method blanks, relative extraction efficiencies ( surrogates ), instrumental performance ( MS tuning characteristics / autotune /, reference standard solution analysis ).

The ratio of d<sub>6</sub>-NDMA to the internal standard d<sub>10</sub>-phenanthrene is used to monitor extraction efficiencies (recoveries) of a polar compound relative to a non-polar compound and is also an indicator for chromatographic performance.

**REMARKS :** The performance of the method was periodically examined through performance audit samples program administered by LSB Quality Management Office.

List of Performance Tables : Performance Audit Samples Summary

Performance Audit Samples Summary, January - December 1991

| analyte                         | number of tests | concentration range ( $\mu\text{g/L}$ ) | analyte identified [percent of tests] | recovery within (10-200)% (% of identified) |
|---------------------------------|-----------------|-----------------------------------------|---------------------------------------|---------------------------------------------|
| bis(2-chloroethyl) ether        | 20              | 3.0 - 6.0                               | 20 [100%]                             | 100 %                                       |
| 1,3-dichlorobenzene             | 20              | 3.0 - 6.0                               | 20 [100%]                             | 100 %                                       |
| 1,2-dichlorobenzene             | 20              | 3.0 - 6.0                               | 20 [100%]                             | 100 %                                       |
| N-nitroso-di-n-propylamine      | 20              | 3.0 - 6.0                               | 19 [95%]                              | 95 %                                        |
| isophorone                      | 20              | 3.0 - 6.0                               | 16 [80%]                              | 100 %                                       |
| bis(2-chloroethoxy)methane      | 20              | 3.0 - 6.0                               | 20 [100%]                             | 100 %                                       |
| 1,2,4-trichlorobenzene          | 20              | 3.0 - 6.0                               | 20 [100%]                             | 95 %                                        |
| hexachlorobutadiene             | 20              | 3.0 - 6.0                               | 18 [90%]                              | 100 %                                       |
| 2-chloronaphthalene             | 20              | 3.0 - 6.0                               | 18 [90%]                              | 100 %                                       |
| 2,6-dinitrotoluene              | 20              | 3.0 - 6.0                               | 18 [90%]                              | 100 %                                       |
| 2,4-dinitrotoluene              | 20              | 3.0 - 6.0                               | 20 [100%]                             | 100 %                                       |
| diethyl phthalate               | 20              | 3.0 - 6.0                               | 20 [100%]                             | 100 %                                       |
| hexachlorobenzene               | 20              | 3.0 - 6.0                               | 20 [100%]                             | 100 %                                       |
| phenanthrene                    | 20              | 3.0 - 6.0                               | 20 [100%]                             | 100 %                                       |
| dibutyl phthalate               | 20              | 3.0 - 6.0                               | 17 [85%]                              | 100 %                                       |
| pyrene                          | 20              | 3.0 - 6.0                               | 19 [95%]                              | 100 %                                       |
| benzo(a)anthracene              | 18              | 3.0 - 6.0                               | 15 [83%]                              | 100 %                                       |
| dioctyl phthalate               | 20              | 3.0 - 6.0                               | 16 [80%]                              | 89 %                                        |
| benzo(k)fluoranthene            | 20              | 3.0 - 6.0                               | 16 [80%]                              | 89 %                                        |
| base/neutral extractables total | 378             |                                         | 352 [93%]                             | 98 %                                        |
| phenol                          | 20              | 1.9 - 4.0                               | 19 [95%]                              | 90 %                                        |
| 2-chlorophenol                  | 20              | 2.5 - 5.5                               | 20 [100%]                             | 90 %                                        |
| 2,4,6-trichlorophenol           | 20              | 1.5 - 3.2                               | 20 [100%]                             | 95 %                                        |
| p-chloro-m-cresol               | 20              | 2.5 - 5.0                               | 19 [95%]                              | 95 %                                        |
| 2-nitrophenol                   | 20              | 2.0 - 4.0                               | 15 [75%]                              | 100 %                                       |
| 2,4-dichlorophenol              | 20              | 2.3 - 4.7                               | 19 [95%]                              | 100 %                                       |
| 4-nitrophenol                   | 20              | 0.5 - 1.0                               | 4 [20%]                               | 75 %                                        |
| 2,4-dimethylphenol              | 20              | 3.5 - 7.7                               | 14 [70%]                              | 93 %                                        |
| pentachlorophenol               | 20              | 3.0 - 6.0                               | 13 [65%]                              | 92 %                                        |
| acidic extractables total       | 180             |                                         | 143 [79%]                             | 94 %                                        |

**METHOD CODE :** SMY-E3189A.1

**METHOD TITLE:** The Determination of Volatile Organics in Drinking Water and Aqueous Samples by Purge-and-Trap Gas Chromatography / Mass Spectrometry (P&T/GC/MS)

**LABORATORY :** Mass Spectrometry Unit

**SUPERVISOR :** V. Taguchi

**SAMPLE TYPE :** drinking water, aqueous samples

**PRINCIPLE OF THE METHOD :**

The volatile organics are purged from the matrix with helium gas, isolated onto multi-layered trap(s) and then thermally desorbed and analyzed by gas chromatography / full scan mass spectrometry.

The volatile organics are reported according to their compound names and compound classes. The concentrations of the components are approximate and are calculated relative to the internal standard.

**PARAMETERS MEASURED :**

volatile organics analyzable by P&T/GC/MS

**LIS TEST CODE :**

PBVOL

**REPORTING FORMAT :**

The volatile organics are reported according to their compound names, CAS registry numbers and compound classes \*. The concentrations of all components are approximate and are reported to one significant figure with the prefix "A-". The minimum reported concentrations (calculated relatively to the internal standard) depend on sample matrix and range from 0.1 µg/L to 1 µg/L.

**QUALITY CONTROL :**

The routine quality control operations monitor the presence of potential interferences (blanks), relative purging efficiencies (surrogates), instrumental performance (MS tuning characteristics / autotune /, reference standard solution analysis).

---

\* Clement, R.E.; Taguchi, V.Y.; Techniques for the Gas Chromatography - Mass Spectrometry Identification of Organic Compounds in Effluents; Environment Ontario, July 1989

The ratio of d<sub>4</sub>-1,2-dichloroethane to the internal standard is used to monitor relative purging efficiencies (recoveries) and is also an indicator for the relative response factors of the components. For MISA samples, 1,3-dichlorobutane is used as an internal standard, for all other samples, the internal standard is d<sub>10</sub>-ethylbenzene.

**REMARKS :** The performance of the method was periodically examined through performance audit samples program administered by LSB Quality Management Office.

List of Performance Tables : Performance Audit Samples Summary

Performance Audit Samples Summary, January - December 1991

| analyte                 | number of tests | concentration range ( $\mu\text{g/L}$ ) | analyte identified [percent of tests] | recovery within (50-150)% (% of identified) |
|-------------------------|-----------------|-----------------------------------------|---------------------------------------|---------------------------------------------|
| 1,2-dichloroethane      | 9               | 0.9 - 2.0                               | 9 [100%]                              | 100 %                                       |
| chloroform              | 9               | 6.5 - 15.0                              | 9 [100%]                              | 89 %                                        |
| 1,1,1-trichloroethane   | 9               | 0.6 - 1.4                               | 9 [100%]                              | 89 %                                        |
| trichloroethylene       | 9               | 0.4 - 1.0                               | 9 [100%]                              | 100 %                                       |
| carbon tetrachloride    | 9               | 1.3 - 3.0                               | 9 [100%]                              | 100 %                                       |
| tetrachloroethylene     | 9               | 0.8 - 1.7                               | 9 [100%]                              | 100 %                                       |
| bromodichloromethane    | 9               | 0.4 - 1.0                               | 9 [100%]                              | 100 %                                       |
| dibromochloromethane    | 9               | 1.0 - 2.4                               | 9 [100%]                              | 100 %                                       |
| bromoform               | 9               | 1.5 - 3.3                               | 9 [100%]                              | 100 %                                       |
| o-xylene                | 9               | 0.9 - 2.0                               | 9 [100%]                              | 100 %                                       |
| m&p-xylene              | 9               | 1.7 - 3.7                               | 9 [100%]                              | 100 %                                       |
| 1,2-dichlorobenzene     | 9               | 0.9 - 2.1                               | 9 [100%]                              | 100 %                                       |
| 1,3-dichlorobenzene     | 9               | 0.9 - 2.0                               | 9 [100%]                              | 100 %                                       |
| 1,4-dichlorobenzene     | 9               | 0.9 - 2.0                               | 9 [100%]                              | 100 %                                       |
| 1,2-dibromoethane       | 9               | 0.9 - 2.0                               | 9 [100%]                              | 100 %                                       |
| volatile organics total | 135             |                                         | 135 [100%]                            | 98.5 %                                      |



## **GLOSSARY OF TERMS**

|                            |                                                                                                                                                                                                                                                                               |
|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| accuracy                   | proximity to the true value expressed as average percent recovery or average percent of expected                                                                                                                                                                              |
| average (mean)             | sum of the measurements divided by the number of measurements                                                                                                                                                                                                                 |
| between-run experiment     | samples are prepared by different technicians, and the instrumental analyses take place under different calibrations of the analytical system                                                                                                                                 |
| between-run r.s.d.         | measure of reproducibility of a method                                                                                                                                                                                                                                        |
| calibration solution       | solution containing target analyte(s) for a particular method at concentration(s) that will produce response(s) falling within the linear range of the instrument. This solution is used to calibrate the instrument response with respect to the analyte concentration.      |
| calibration check solution | solution which has composition similar to the calibration solution and which is prepared independently of calibration solution. It is used to check performance of the instrument, especially the validity of current calibration.                                            |
| fortified method blank     | synthetic sample prepared by adding known quantities of target analytes of the method to the interference-free matrix                                                                                                                                                         |
| internal standard          | known amount of a compound, that is assumed to have identical chemical and physical properties with the analyte(s) of interest, is added to the sample prior to sample processing. The recovery of this compound from the sample is used for correction of the final results. |
| MDL                        | method detection limit. MDL marks the concentration level above which one can conclude that a measured result indicates the presence of analyte in the sample with a specified confidence (99%).                                                                              |
| method code                | Analytical Methods Catalogue Code used within Ontario Ministry of the Environment                                                                                                                                                                                             |
| percent recovery           | ratio of the concentration obtained by the experiment to the theoretical concentration, multiplied by one hundred                                                                                                                                                             |
| performance charts         | graphical presentation of the individual results of the analyses of fortified method blanks or internal standards. The x-axis on the chart represents the date, the y-axis outlines percent recovery. The average and 99% confidence limits are displayed as well.            |

|                                               |                                                                                                                                                                                                                                                                     |
|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| relative standard deviation                   | measure of spread of a population. The square root of the squared sum of the measurements minus the sum of squared measurements, divided by the number of measurements minus one.                                                                                   |
| T value                                       | level below which analytical results represent trace values; additional data are needed for valid interpretation ( see Code of Practice for Environmental Laboratories, September 1989, Ontario Ministry of the Environment )                                       |
| upper and lower 99% confidence limit, UL (LL) | $UL (LL) = X + (-) t \times s$<br>X,s represent the average and the standard deviation of the replicate measurement;<br>$t_{(n-1,\alpha=0.01)}$ is the Student's t-value appropriate for a 99% confidence level and the given number of degrees of freedom <u>n</u> |
| within-run experiment                         | samples are prepared and analyzed by a single technician, and the instrumental analyses take place within one calibration of the analytical system                                                                                                                  |
| within-run r. s. d.                           | measure of repeatability of a method                                                                                                                                                                                                                                |
| W value                                       | minimum reported level ( see Code of Practice for Environmental Laboratories, September 1989, Ontario Ministry of the Environment )                                                                                                                                 |



