NANDAN SESHADRI

Mechanical engineer at University of California San Diego

nandansesh2011@gmail.com

in linkedin.com/in/nandan20

DESIGN AND FABRICATION OF A WAVE DRIFTER (UCSD) - March'24

What?

 Designed and fabricated a wave drifter to measure ocean currents in a team of 5.

How?

- Used Fusion 360 to design electronics enclosure and used FDM printer to 3D print parts.
- The design is made of PVC pipe and drain plugs with a Surlyn foam used to keep it afloat.
- Used Arduino Mega, IMU and GPS to track the position of the drifter when deployed in the ocean.

Results

 The design was proved robust when a teammate swam the drifter out past the surf zone and returned an hour later with everything fully intact.

HAPTIC BOXING GLOVE (UCSD) - March'23

What?

 Design and fabricated a boxing glove simulator that provides haptic feedback when interacting with the virtual environment in a team of 3.

How?

- Used SolidWorks to design the components of device and 3D printed parts on a FDM printer.
- Used Arduino Mega and motors with encoder to control the position of device in real-time.
- Processing was used to render and display a boxing glove and punching bag.

Results

 The final product works successfully and rendered gloves works perfectly when tested on 12 different users with various fist sizes.

DESIGN OPTIMIZATION OF GEAR PUMP (REXROTH BOSCH) - January'22

What?

 Optimize the design of a gear pump to reduce the material to make the pump cost effective and lightweight to reduce annual production cost.

How?

- Used PTC Creo to design 3 different pump housing prototypes pump and assemble it pump housing with various parts of the pump and applied GD&T.
- Used FEA to understand various fracture points of the pump.
- Tested the prototypes on a test bench for 100 hours to obtain the optimal design.

Results

 Implemented **DFM** principles to reduce overall part production cost by **\$1.2M** annually.

NANDAN SESHADRI

Mechanical engineer at University of California San Diego

nandansesh2011@gmail.com

in linkedin.com/in/nandan20

(858) 250-9047

What?

- Design the vanes for a low-cost spiral water turbine to generate power for household applications in a team of 4.
- Simulated various flow velocities to understand the behavior of the vanes.

How?

- Designed the vanes on Solidworks.
- ANSYS Fluent was to simulate the blades at various flow velocities.

Results

• The final design blade design was simulated at 15m/s, 20m/s, and 25m/s to visualize flow.

STATIC TEST PAD FOR ROCKET MOTOR (STAR) - December'20

What?

 Designed a Rocket Motor Static Test Pad for testing and acquiring the required data for the performance analysis of the high-powered rocket motors.

How?

- Designed the components of the test pad on **SolidWorks**.
- Used FEA on SolidWorks to realize the maximum load the test pad can handle.

Results

- The test pad can handle up to 150N which displays a good strength to weight ratio when simulated at various loads.
- The design is ergonomically good enough to transported and reused at ease.