CIS 575. Introduction to Algorithm Analysis Material for January 22, 2024

Reasoning About Big O

©2020 Torben Amtoft

The topic of this note in covered in *Cormen's Section 3.2*.

1 Rules for Big O

We shall now study some of the properties of the Big O relation.

1.1 Order Relation

It is easy to verify that Big O induces what mathematicians call a "preorder" in that it is

Reflexive $f \in O(f)$ for all f

Transitive if $f \in O(g)$ and $g \in O(h)$ then $f \in O(h)$.

Big-O "respects" the degree of a polynomial, in that

$$n^p \in O(n^q)$$
 if and only if $p \le q$

This property, which we shall use very frequently, might have caused us to *conjecture* that the preorder is *total* in that for given f, g, either $f \in O(g)$ or $g \in O(f)$ (or both). But that conjecture is *false*, as demonstrated by a simple counterexample involving a (rather contrived) function g that oscillates between 1 and n^2 : f(n) = n, $g(n) = n^{1+\sin(n\frac{\pi}{2})}$.

1.2 Algebraic Rules

Assume that $f_1 \in O(g_1)$ and $f_2 \in O(g_2)$. Then

- $f_1 \cdot f_2 \in O(g_1 \cdot g_2)$
- $\bullet \ f_1+f_2\in O(\max(g_1,g_2))$

The second property justifies that we can analyze the various phases of an algorithm separately, and then get the final answer as the *maximum* of the intermediate results. For example: if initialization takes time in O(n) and processing takes time in $O(n^2)$ and wrapping up takes time in O(n), then the running time is in $O(n^2)$.

To illustrate how to reason about big O, let us prove the second property. Our assumptions are that there exists $c_1, c_2 > 0$, and $n_1, n_2 \ge 0$, such that

$$f_1(n) \le c_1 g_1(n)$$
 for all $n \ge n_1$
 $f_2(n) \le c_2 g_2(n)$ for all $n \ge n_2$

With $\mathbf{n_0} = \max(\mathbf{n_1}, \mathbf{n_2})$, and with $g = \max(g_1, g_2)$, for $n \geq n_0$ we may now calculate

$$f_1(n) + f_2(n) \leq c_1 g_1(n) + c_2 g_2(n)$$

$$\leq c_1 g(n) + c_2 g(n)$$

$$= (\mathbf{c_1} + \mathbf{c_2}) g(n)$$

which does indeed establish $f_1 + f_2 \in O(g)$.

1.3 Limit Property

A sufficient condition for $f \in O(g)$ is that there exists c with $0 \le c < \infty$ such that

$$\lim_{n\to\infty} \frac{f(n)}{g(n)} = c$$

For if that's the case, we know from calculus that there exists n_0 such that for $n \ge n_0$,

$$\frac{f(n)}{g(n)} \le c + 1$$

and hence $f(n) \leq (c+1)g(n)$.

From this result it is immediate to verify for example that for any non-negative a, and any b and c, we have $an^2 + bn + c \in O(n^2)$.

But the existence of a limit is not a necessary condition. To see this, let

$$f(n) = 2^{\lfloor \lg n \rfloor}$$

where \lg denotes the binary logarithm (where for example $\lg 8 = 3$), and where $\lfloor x \rfloor$ denotes the floor of x (where for example $\lfloor 4.62 \rfloor = 4$.)

Then we have $f(n) \in O(n)$ (since $f(n) \leq 2^{\lg n} = n$) but the sequence

$$\frac{f(n)}{n}$$

does not have any limit (it fluctuates between $\frac{1}{2}$ and 1).

_