# ✓ 4.3.7 Menu Tree / Circuit Diagram

## ✓ ► 1 – Menu Tree

The **Menu Tree** shows the hierarchy of options and actions the user can perform in the Mobile App UI.

#### Suggested Menu Tree Structure





#### **Explanation to Add in Documentation**

- The **Menu Tree** shows the user navigation flow in the EcoSweep Mobile App.
- Users can connect to the EcoSweep robot, select operation modes, control movement and robotic arm manually, view sensor data, and configure settings.
- In **Manual Mode**, users have fine-grained control of movement and arm position.
- **Semi-Automatic Mode** allows the user to start predefined cleaning processes and view real-time sensor data.
- Future expansion includes fully **Automatic Mode** based on AI.

## **✓** ▶ 2 – Circuit Diagram

#### Overview of Circuit Design (Text Data)

The circuit diagram shows the electrical connections between EcoSweep's main hardware components.

### ▶ ✓ Main Components in Circuit:

| Component    | Connection                      | Description                      |
|--------------|---------------------------------|----------------------------------|
| LiPo Battery | Powers Motor Drivers & Arduino  | Supplies high current for motors |
|              | Mega                            |                                  |
| LM2596       | Steps down voltage for sensors, | Ensures stable voltage for low-  |
| Buck         | microcontrollers                | power devices                    |
| Converter    |                                 |                                  |

| Arduino      | Central microcontroller for sensor | Receives commands from         |
|--------------|------------------------------------|--------------------------------|
| Mega 2560    | reading and actuator control       | Raspberry Pi                   |
| Raspberry Pi | Central processing hub; connected  | Handles command parsing and    |
| 4            | to Arduino Mega via USB            | Bluetooth communication        |
| BTS7960      | Connected to Arduino Mega digital  | Controls DC tire motors        |
| Motor Driver | pins                               |                                |
| PCA9685      | Connected to Arduino Mega via I2C  | Controls up to 16 servo motors |
| Servo Driver | (SDA/SCL)                          |                                |
| Ultrasonic   | Connected to Arduino Mega digital  | Distance sensing for obstacle  |
| Sensors      | pins                               | detection                      |
| IR Sensors   | Connected to Arduino Mega digital  | Edge detection / Line tracking |
|              | pins                               |                                |
| NEO-6M       | Connected to Arduino Mega via      | Provides GPS coordinates       |
| GPS Module   | Serial                             |                                |
| MPU6050      | Connected to Arduino Mega via I2C  | Provides accelerometer and     |
| IMU          |                                    | gyroscope data                 |
| HMC5883L     | Connected to Arduino Mega via I2C  | Provides orientation data      |
| Compass      |                                    |                                |

#### ► ✓ Example Textual Circuit Flow

```
[LiPo Battery (11.1V)]

↓

[BTS7960 Motor Driver] ↔ [DC Tire Motors]

↓

[Arduino Mega 2560]

↓

[PCA9685 Servo Driver] → [Servo Motors (Arm)]

↓

[Ultrasonic Sensors, IR Sensors, GPS, IMU, Compass] → [Arduino Mega]

↓

[LM2596 Buck Converter] → Supplies 5V to Arduino Mega, Sensors,

PCA9685

↑

[Raspberry Pi 4] ↔ USB Serial ↔ Arduino Mega

[Mobile App (Bluetooth SPP)] ↔ [Bluetooth Module] ↔ [Raspberry Pi 4]
```

### **☑** Explanation to Add in Documentation

- Power is supplied primarily by a **LiPo battery**, powering high-consumption components like motors and motor drivers.
- The **LM2596 buck converter** regulates voltage for stable operation of sensors and microcontrollers.
- The **Arduino Mega 2560** acts as the hardware controller, reading sensors and controlling motors and servos via drivers (BTS7960 and PCA9685).
- **Raspberry Pi 4** acts as the higher-level communication controller, receiving Bluetooth commands and forwarding them to Arduino Mega.
- The full system works together to enable user control, autonomous movement, and environment sensing.

# **☑** Summary of Data to Add in Documentation

- ▶ Menu Tree (as shown in the structured tree above).
- ► Circuit Flow Text (shown above).
- Explanation about power flow, data flow, and component interaction.