Linear Time Series Analysis and Its Applications - Part 2

Contents

1	Intr	oduction: Different Types of Non-Stationary Models	1
	1.1	Random walk	1
	1.2	Random walk with drift	2
	1.3	Deterministic trend	2
	1.4	Random walk with drift and deterministic trend	2
2 How to convert a nonstationary series to a stationary time series?		2	
	2.1	Difference stationary	2
	2.2	Trend stationary process	3
	2.3	Unit root tests	3

1 Introduction: Different Types of Non-Stationary Models

1.1 Random walk

$$Y_t = Y_{t-1} + \epsilon_t$$

1.1.1 Random walk process: Mean

$$E(Y_t) = E(Y_{t-1} + \epsilon_t)$$

• non-mean-reverting process: move away from the mean either in a positive or negative direction.

1.1.2 Random walk process: Variance

• the variance evolves over time and goes to infinity as time goes to infinity;

1.1.3 Simulation

1.2 Random walk with drift

1.2.1 Simulation

1.3 Deterministic trend

1.3.1 Simulation

```
library(forecast)
t <- 1:20
y <- 5 + 10*t + rnorm(20)
y <- as.ts(y)
autoplot(y)+ggtitle("Deterministic trend process")</pre>
```


1.4 Random walk with drift and deterministic trend

2 How to convert a nonstationary series to a stationary time series?

2.1 Difference stationary

A random walk with or without a drift can be transformed to a stationary process by differencing (subtracting Y_{t-1} from Y_t , taking the difference $Y_t - Y_{t-1}$).

Let, X_t be the difference series of a random walk process. Then,

19 April 2020 **2**

$$X_t = Y_t - Y_{t-1} = \epsilon_t.$$

We can see X_t is equal to a white noise process.

Similarly, the difference series of a random walk with drift process is

$$X_t = Y_t - Y_{t-1} = \alpha + \epsilon_t,$$

where α is a constant. Further for

2.2 Trend stationary process

2.3 Unit root tests

19 April 2020 **3**