机器学习时代下的城市交通行为分析

Tao Feng (冯 涛)

Professor, Advanced Science and Engineering, Hiroshima University, Japan Department of the Built Environment, TU/e

October 28, 2021

Tao Feng

Professor

Urban and Data Science

Graduate School of Advanced Science
and Engineering

Hiroshima University

Japan

taofeng@hiroshima-u.ac.jp

Guest Professor

Urban Planning and Transportation

Department of the Built Environment

Eindhoven University of Technology

The Netherlands

t.feng@tue.nl

Research interests

- ✓ Urban planning
- ✓ Smart mobility
- ✓ Travel behaviour
- ✓ Transport network analysis
- ✓ Data driven technology
- ✓ Mobility in built environment
- ✓ Spatial planning
- ✓ Urban environment analysis
- ✓ Decision making in smart energy
- ✓ Big data & machine learning for urban research

https://research.tue.nl/en/persons/tao-feng

^{*}Website of Hiroshima University is under construction.

Contents

Our research

Travel behavior analysis

Mobility decision

Data mining & Al

Research topics

Data imputation & mining GPS辅助居民出行调查

Machine learning algorithms

(Bayesian belief network, support vector machine, decision table, logistic regression, neural networks)

- Feng, T. & Timmermans, H.J.P. (2013) Transportation mode recognition using GPS and accelerometer data. Transportation Research Part C: Emerging Technologies, 37, 118-130.
- Feng, T. & Timmermans, H.J.P. (2016) Comparison of advanced imputation algorithms for detection of transportation mode and activity episode using GPS data. Transportation Planning and Technology, 39, 2, 180-194.
- Feng, T. & Timmermans, H.J.P. (2015) Detecting activity type from GPS traces using spatial and temporal information. European Journal of Transport and Infrastructure Research, 15, 4, 662-674.
- Feng, T. & Timmermans, H.J.P. (2015) Enhanced imputation of GPS traces forcing full or partial consistency in activity-travel sequences: Comparison of algorithms. Transportation Research Record, 2430, 20-27.
- Feng, T. & Timmermans, H.J.P. (2013) Map matching of GPS data with Bayesian belief networks. Journal of the Eastern Asia Society for Transportation Studies, 10, 100-112.
- Yao, B. & Feng, T. (2018) Machine learning in automotive industry. Advances in Mechanical Engineering, 10, 10, 1-2.

Data imputation & mining GPS辅助居民出行调查

Big data research

Ridership and the built environment (smart card data and land use data)

Open Data (OSM, GTFS, POI, Metro-bike sharing for land use, buildings, the last mile travel public transport, Metro smart card road network, etc.) Shared bike Mobike **Big Data** ICT (Smart card, shared bike, call record data, social Cycling data **Analytical models** media data (Twitter, GPS data from smart phones Flickr), transaction data, **GPS Taxi data** Weather data Sensor taxi, smartphone GPS data) Data (weather) Flickr, Twitter data

^{*} For the relevant publications of each component, please refer to our website.

Mobility decisionRoute choice as an example

Route choice using SP data

Dane, G., Feng, T., Luub, F. & Arentze, T. (2019) Route Choice Decisions of E-bike Users: Analysis of GPS Tracking Data in the Netherlands, Geospatial Technologies for Local and Regional Development, 109-124, DOI:10.1007/978-3-030-14745-7_7

Feng, T., Arentze, T. & Timmermans, H.J.P. (2013) Capturing preference heterogeneity of truck drivers' route choice behavior with context effects using a latent class model. *European Journal of Transport and Infrastructure Research*. 13, 4, 259-273.

Mobility decisionRoute choice as an example

Route choice using neural network

Input Hidden Output Layer Layer Layer

Attribute variables

congestion level, road category, pricing, travel time, urban area, etc.

Context variables

time of day, length, size of truck, person-related variables, etc.

Table 4 Result of relative importance of variables					
Groups	Variables	Importance			
Attribute variables	Congestion	4.49			
	Road category	12.43			
	Pricing	11.07			
	Bonus	16.71			
	Passing through urban area	13.78			
	Having restaurant facility	6.12			
Context variables	Normal travel time difference	6.67			
	Time of day	3.74			
	Size of truck	8.43			
	Distance to destination	6.44			
	Time since rest	4.96			
	Time window	5.16			

$$RI_i = \frac{C_i}{\sum_{i=1}^{M} C_i}$$

Feng, T., Arentze, T. & Timmermans, H.J.P. (2011) Assessing the relative importance of input variables for route choice modeling: a neural network approach. Journal of the Eastern Asia Society for Transportation Studies, 9, 341-353.

Mobility decision

Transportation mode choice with improved rule sets

• Discrete choice models vs. data mining approach

	CARM	CARIG	СВА	DT	MNL
C ₁	92.4	82.8	77.3	76.0	73.3
C ₂	93.4	99.4	90.2	92.8	79.9
C ₃	92.5	96.1	85.3	86.2	75.3
C_4	88.5	72.6	67.9	61.2	63.2
C ₅	87.8	90.1	77.1	78.4	77.6
Avg.	91.1	88.7	80.6	77.6	74.3

Zhang, J., Feng, T., Timmermans, H.J.P. & Lin, Z. Improved Imputation of Rule Sets in Class Association Rule Modeling: Application to Transportation Mode Choice. Transportation. (forthcoming)

Mobility decision

Housing, job and transportation

$$U_{nit} = V_{nit} + \varepsilon_{nit}$$

Choice modeling

Status quo:

$$U_{n1t} = \beta_{1o} + \sum_{k=1}^{K} \left(\bar{\beta}_k + \sigma_k + \sum_{m=1}^{M} \theta_{km} z_{nm} \right) x_{n1kt} + \lambda_1 Q_{n1} + \varepsilon_{n1t}$$

Move house:

$$U_{n2t} = \beta_{2o} + \sum_{k=1}^{K} \left(\bar{\beta}_k + \sigma_k + \sum_{m=1}^{M} \theta_{km} z_{nm} \right) x_{n2kt} + \lambda_2 Q_{n2} + \varepsilon_{n2t}$$

•••

$$U_{n6t} = \beta_{6o} + \sum_{k=1}^{K} \left(\bar{\beta}_k + \sigma_k + \sum_{m=1}^{M} \theta_{km} z_{nm} \right) x_{n6kt} + \lambda_2 Q_{n2} + \varepsilon_{n6t}$$

•••

Change job:

$$U_{n7t} = \beta_{7o} + \sum_{k=1}^{K} \left(\bar{\beta}_k + \sigma_k + \sum_{m=1}^{M} \theta_{km} z_{nm} \right) x_{n7kt} + \lambda_3 Q_{n3} + \varepsilon_{n7t}$$

•••

$$U_{n11t} = \beta_{11o} + \sum_{k=1}^{K} \left(\bar{\beta}_k + \sigma_k + \sum_{m=1}^{M} \theta_{km} z_{nm} \right) x_{n11kt} + \lambda_3 Q_{n3} + \varepsilon_{n11t}$$

Data mining

Guo, J., Feng, T., Timmermans, H. (2020) Temporal interdependencies in mobility decisions over the life course: a household-level analysis using dynamic Bayesian networks. Journal of Transport Geography. 10.1016/j.jtrangeo.2019.102589

Guo, J., Feng, T. & Timmermans, H. (2020) Modeling co-dependent choice of workplace, residence and commuting mode using an error component mixed logit model. Transportation. 47, 2, 911-933.

Synergy between choice modeling & Al Choice theory + machine learning

感谢大家的倾听!

欢迎有意攻读博士或交流交换的同学来广岛大学! 也欢迎到TU Eindhoven!

Contact: taofeng@hiroshima-u.ac.jp, t.feng@tue.nl

欢迎大家来广岛大学深入交流、访问与合作!

冯涛(Tao Feng)

Professor, Urban and Data Science

Graduate School of Advanced Science and Engineering, Hiroshima University, Japan 広島大学先進理工系科学研究科 理工学融合プログラム 開発科学分野

https://www.tue.nl/en/research/researchers/tao-feng http://idecdt.hiroshima-u.ac.jp/research-fields/

张 峻屹 Professor, Mobilities and Urban Policy Lab モビリティ・都市政策研究室

藤原章正 Professor, Transportation Engineering Lab 交通工学研究室 冯 涛
Professor, Urban and Data Science Lab
城市与数据科学研究室