Løsningsforslag til Skriftlig Eksamen DM527 Matematiske redskaber i datalogi

Tirsdag, den 22. januar 2008.

Opgave 1 (20 %)

- a) Falsk. Lad $A = \{0, 1, 2, ...\}$, og $B = \{..., -2, -1, 0\}$. Da vil $A \cap B = \{0\}$.
- b) Falsk. Da $A \neq \emptyset$ findes der et element $a \in A$. Da $R = \emptyset$, vil $(a, a) \notin R$. R er derfor ikke refleksiv og dermed heller ikke en ækvivalensrelation.
- c) Sandt. Da $A \subseteq B$ findes der en mængde C, så $B = A \cup C$ og $A \cap C = \emptyset$. Dermed fås $|B| = |A| + |C| \ge |A|$.
- d) Falsk. Modeksempel $A=\{0\}$, $B=\{1\}$. Da vil $|A|\leq |B|$, men $A\not\subseteq B$.

Opgave 2 (25 %)

Dette vises per induktion.

Basis: n = 0. Vi har 1 + 0x = 1 og $(1 + x)^0 = 1$. Dermed ok.

Induktionshypotese: Antag at for et $n \in \mathbb{N}_0$ da er $1 + nx \le (1 + x)^n$.

Induktionsskridt: Vi viser, at sætningen er sand for n + 1 givet induktionshypotensen for $n \ge 0$. Dette gøres ved at starte på højresiden:

$$(1+x)^{n+1} = (1+x)^n (1+x) \stackrel{hyp}{\geq} (1+nx)(1+x) = 1+nx+x+nx^2 = 1+(n+1)x+nx^2 \geq 1+(n+1)x.$$

Opgave 3 (20 %)

- a) Dette bevises i flere små dele
 - (a) R er refleksiv, idet for et vilkårligt $a \in \mathbb{Z}$ vil $a + a \equiv 2a \equiv 0 \pmod{2}$.
 - (b) R er symmetrisk, idet for vilkårlige $a, b \in \mathbb{Z}$ har vi $a + b \equiv b + a \pmod{2}$.
 - (c) R er transitiv, idet med $a,b,c \in \mathbb{Z}$ fås ud fra aRb og bRc, dvs. $a+b \equiv 0 \pmod 2$ og $b+c \equiv 0 \pmod 2$, og sætning 3.4.5, at $a+b+b+c \equiv a+2b+c \equiv a+c \equiv 0 \pmod 2$. Dermed aRc.

Dermed fås at R er en ækvivalensrelation.

- b) Falsk. R er ikke antisymmetrisk. Fx. har vi 0R2 og 2R0, men ikke 0 = 2.
- c) For et $x \mod xR3$, har vi $x + 3 \equiv 2$, dvs. $x \equiv 1 \pmod{2}$ og dermed $[3]_R = \{2i + 1 | i \in \mathbb{Z}\}.$

Opgave 4 (15 %)

- a) Antag at for i og j med $i, j \in \{0, 1, ..., n-1\}$ giver ai + b og aj + b samme rest ved division med n, dvs. $ai + b \equiv aj + b \pmod{n}$ og dermed $ai \equiv aj \pmod{n}$. Da a er relativt primisk med n, fås (jvf. sætning 3.7.2) at $i \equiv j \pmod{n}$ og dermed i = j.
- b) f er injektiv: f(x) = f(y), hviss $ax \equiv ay \pmod{n}$ da a og n er relativt primiske fås $x \equiv y \pmod{n}$. Idet $x, y \in \mathbb{Z}_n$ fås x = y og f er dermed injektiv.
 - Idet f er en injektiv funktion på en endelig mængde \mathbb{Z}_n , vil billedmængden $|f(\mathbb{Z}_n)|$ have samme størrelse som grundmængden $|\mathbb{Z}_n|$ og f er surjektiv og dermed bijektiv.