UNIVERSIDADE FEDERAL DE UBERLÂNDIA FEELT – FACULDADE DE ENGENHARIA ELÉTRICA ENGENHARIA DE COMPUTAÇÃO

LUCAS ALBINO MARTINS 12011ECP022 João Barboza Rodrigues 11811ECP005

REDES DE COMUNICAÇÕES II: RELATÓRIO PRÁTICO I

UBERLÂNDIA 2021

Relatório.

1. Esquemas de modulação e codificação adaptativos.

Os roteadores Wifi (IEEE 802.11)mais modernos(802.11n e 802.11ac) possuem duas bandas de transmissão (dual-band): uma(faixa de5 GHz)resulta em velocidades maiores e a outra(faixa de 2,4 GHz) em velocidades menores.Em geral, essa última atinge distâncias maiores e sofre mais interferência de aparelhos eletrônicos.

Para fins academicos foi utilizado dois aplicativos, o nPerf no qual possui um algoritmo único que permite medir de maneira precisa a taxa de bits baixadas e carregadas assim como a latência da conexão podendo então fazer o teste de velocidade de conexão da rede e o Wifi Analyzer que também possui um algoritmo único que permite obter dados do ponto de acesso como frequencia,MAC,canal e o limite de banda do canal e também e possivel ver através de grafico para mostrar a distância que o canal consegue transmitir. Conectado com um dispositivo mobile (Samsung J710ms) a uma rede Wifi (IEEE 802.11n) operando a 2.4Ghz foram feitas três medidas de velocidade utilizando o nPerf e verificado a distância do ponto acesso dessas medidas utilizando o Wifi Analyzer, também foi feito a captura dos dados do ponto de acesso da menor a maior distância.

Figura 1 - Teste de velocidade a 0m,11m e 19m.

Figura 2 - Distância de recepção do ponto de acesso.

Figura 3 - Dados do ponto de acesso.

Obtendo a partir dos dados fornecidos nas figuras 1,2 e 3 podemos observar diferentes informações:

Distância do	Download	Upload	Latência	Canal	Freq.
ponto de	(Mb/s)	(Mb/s)	(ms)		
acesso					
0m	52,09	30,52	6	CH8	2447Mhz
11m	36,57	25,76	5	CH8	2447Mhz
19m	29.19	30,36	5	CH8	2447Mhz

Tabela 1: Dados de distância do ponto de acesso.

Table 3-1 802.11n MCS 1-23 Data Rates

MCS Index	Spatial Streams	Modulation Type	Codin g rate	Data Rate (Mbit/s)			
				20 MHz Channel		40 MHz Channel	
				800 ns GI	400 ns GI	800 ns GI	400 ns GI
0	1	BPSK	1/2	6.5	7.2	13.5	15
1	1	QPSK	1/2	13	14.4	27	30
2	1	QPSK	3/4	19.5	21.7	40.5	45
3	1	16-QAM	1/2	26	28.9	54	60
4	1	16-QAM	3/4	39	43.3	81	90
5	1	64-QAM	2/3	52	57.8	108	120
6	1	64-QAM	3/4	58.5	65	121.5	135
7	1	64-QAM	5/6	65	72.2	135	150
8	2	BPSK	1/2	13	14.4	27	30
9	2	QPSK	1/2	26	28.9	54	60
10	2	QPSK	3/4	39	43.3	81	90
11	2	16-QAM	1/2	52	57.8	108	120
12	2	16-QAM	3/4	78	86.7	162	180
13	2	64-QAM	2/3	104	115.6	216	240
14	2	64-QAM	3/4	117	130	243	270
15	2	64-QAM	5/6	130	144.4	270	300

Figura 4 - Tabela Cisco 3.1

Agora comparando os dados obtidos pelas medições e informados na tabela 1 comparando com os dados da tabela 3.1 cisco vista em aula, podemos admitir que a rede está utilizando um canal de 40MHz e um intervalo de Guarda de 800ns a 400ns, fazendo uma ressalva não foram considerados outros fatores que podem afetar a velocidade, como atenuação devido paredes e outros obstáculos, interferência devido a fontes externas e interferência devido a outros aparelhos conectados na mesma rede. Com base na tabela é possível determinar transições de modulação durante as medições, utilizando diferentes MCSSs, destacando os MCSs 1,2 e 3. Podemos então afirmar a utilização dos esquemas de modulação QPSK e 16-QAM.

2. 802.11 CSMA/CA

Com relação às animações interativas 801.11 CSMA/CA sem/com terminais escondidos:

 a) 802.11 CSMA/CA com terminais ocultos: o ponto de acesso é capaz de escutar todas as estações móveis, enquanto cada estação móvel consegue escutar o ponto de acesso, mas não escuta outras estações móveis. A Figura 5 ilustra esse cenário, onde a região preenchida é a área de cobertura do ponto de acesso e as áreas hachuradas representam o raio de alcance das estações móveis. Conforme ilustrado, as estações móveis não são capazes de detectar umas as outras.

Figura 5 - 802.11 CSMA/CA com terminais ocultos.

b) 802.11 CSMA/CA com terminais ocultos: o ponto de acesso é capaz de escutar todas as estações móveis, enquanto as estações móveis, por sua vez, são capazes de identificar umas as outras. A Figura 6 ilustra tal cenário.

Figura 6 - 802.11 CSMA/CA sem terminais ocultos.

Simulações:

802.11 CSMA/CA com terminais escondidos

Figura 7 – Simulação 802.11 CSMA/CA sem terminais escondidos.

802.11 CSMA/CA sem terminais escondidos

Figura 8 – Simulação 802.11 CSMA/CA com terminais escondidos.

Analisando a simulação do 802.11 CSMA/CA com terminais ocultos apresentado na Figura 7, que inicialmente o Medium free para todas as três estações móveis. A primeira estação a transmitir foi a Station 1. Observa-se o Medium busy e a transmissão do RTS para a primeira estação. Logo em seguida um espaço vazio que representa um SIFS, ou seja, o intervalo entre quadros para que a interface sem fio processe o quadro RTS recebido e possa responder com o quadro CTS, instante no qual o meio encontra-se ocupado. Assim, a Station 1 é capaz de enviar o quadro de dados, representado por Data Frame e após mais um SIFS, o AP envia um ACK. Enquanto ocorre esse procedimento, há a atualização do NAV das outras duas estações, pois o meio estava ocupado com a transmissão de Station 1. Após essa transmissão novamente aparece um Medium free para os três canais, observa-se que a Station 3 foi a primeira a transmistir, o que pode também ser observado pelo Backoff menor em relação à Station 2. Então a contagem para ambas as estações, mas a Station 3 foi a primeira a transmitir. Contudo, as Station 3 e 2 também transmitiram devido ao problema de terminais ocultos, pois as estações não se escutam. Nesse caso não houve colisão, de forma que as Stations 3 e 2 transmitiram, a Station 1 atualizou seu NAV.

Já analisando a simulação do 802.11 CSMA/CA sem terminais ocultos na Figura 8, observa-se que as estações transmitem isoladamente, no caso as estações móveis não enviam RTS ao mesmo tempo, reduzindo a chance de colisões. Cada estação tem conhecimento do momento oportuno de transmissão, não havendo confusão no envio de RTS e recebimento de CTS e ACK após a transmissão de quadro de dados.

Referências Bibliográficas

- Medição da Velocidade do Wi-fi por aplicativo. Disponível em: https:// https://www.nperf.com/pt/ Acesso em 15/08/2021.
- 2. Cisco Enterprise Mobility 8.5 Design Guide. Disponível em: https://www.cisco.com/c/en/us/td/docs/wireless/controller/8-5/Enterprise-Mobility-8-5-Design-Guide/Enterprise_Mobility_8-5_Deployment_Guide.html. Acesso em 15/08/2021.
- 3. 802.11 CSMA/CA WITH Hidden Terminals. Disponível em: https://media.pearsoncmg.com/aw/ecs_kurose_compnetwork_7/cw/content/interactiveanimations/csma-ca-with-hidden/index.html. Acesso em 15/08/2021.
- 4. 802.11 CSMA/CA WITHOUT Hidden Terminals. Disponível em: https://media.pearsoncmg.com/aw/ecs_kurose_compnetwork_7/cw/content/interactiveanimations/csma-ca-without-hidden/index.html. Acesso em: 15/08/2021.
- CSMA/CA com o mecanismo RTS/CT. Disponível em: https://www.gta.ufrj.br/grad/00_2/ieee/CSMARTS.htm