Robotics I

June 10, 2022

Exercise 1

Consider the spatial 3R robot in Fig. 1.

Figure 1: A spatial 3R robot.

- Assign a set of frames to this robot according to the Denavit-Hartenberg (D-H) convention and provide the associated table of parameters. Keep the origins O_0 and O_3 and the axes x_0 and x_3 as shown in the figure, respectively in frame RF_0 and frame RF_3 . Indicate also the signs taken by the joint variables q_i , i = 1, 2, 3, in the robot configuration shown in Fig. 1.
- Compute the direct kinematics for the position $p = p_3$ of the end effector, i.e., the point O_3 .
- Draw accurately the primary workspace of this robot.
- Provide the 3×3 Jacobian matrix J(q) of the robot in

$$v = \dot{p} = J(q)\dot{q}$$

and determine all the kinematic singularities, each with the associated rank of J(q).

• In a singularity q_s where rank $J(q_s) = 1$, find an admissible end-effector velocity $v_s \in \mathbb{R}^3$ and a joint velocity $\dot{q}_s \in \mathbb{R}^3$ such that $J(q_s)\dot{q}_s = v_s \neq 0$. Is such \dot{q}_s unique for a given admissible end-effector velocity v_s ?

Exercise 2

A planar RP robot is commanded at the acceleration level. Its end-effector position is given by

$$\boldsymbol{p} = \boldsymbol{f}(\boldsymbol{q}) = \begin{pmatrix} q_2 \cos q_1 \\ q_2 \sin q_1 \end{pmatrix}. \tag{1}$$

If the robot is in a generic nonsingular configuration q and with non-zero velocities for both joints, determine the explicit expression of a command \ddot{q} such that the end-effector acceleration is instantaneously $\ddot{p} = 0$. Is this command unique?

Exercise 3

Consider again the same RP robot of Exercise #2. Suppose that the generalized forces $\tau \in \mathbb{R}^2$ that the robot actuators can provide at the two joints are bounded componentwise as

$$|\tau_1| \le \tau_{max,1} = 10 [\text{Nm}], \qquad |\tau_2| \le \tau_{max,2} = 5 [\text{N}].$$

In the configuration $\mathbf{q} = (\pi/3, 1.5)$ [rad,m], find the set of feasible Cartesian forces $\mathbf{F} = (F_x, F_y) \in \mathbb{R}^2$ (expressed in [N]) which can applied to the end effector and that the robot can sustain while in static equilibrium.

Exercise 4

The end-effector of a 2R planar robot with unitary link lengths has to track a linear path with constant speed $v_d = 0.5$ [m/s] between $\mathbf{P}_1 = (1, 0.5)$ and $\mathbf{P}_2 = (1, 1.5)$ [m]. However, at the initial time t = 0, the end effector is positioned in $\mathbf{P}_0 = (0.5, 0.5)$ [m]. The robot is commanded by a joint velocity \dot{q} that is limited componentwise as

$$|\dot{q}_1| \le V_{max,1} = 3 \,[\text{rad/s}], \qquad |\dot{q}_2| \le V_{max,2} = 2 \,[\text{rad/s}].$$

Design a kinematic control law that is able to achieve the fastest exponential convergence to zero of the trajectory tracking error, uniformly in all Cartesian directions, while being still feasible in terms of robot commands at time t=0 for the given task. Provide some discussion on where/how fast the return to the original trajectory will be achieved.

[180 minutes, open books]