Национальный исследовательский университет Высшая школа экономики Факультет компьютерных наук

Отчет по домашнему заданию №4

Лексическая семантика

студент 1 курса магистратуры Зуев Кирилл Александрович

Содержание

1	Пос	становка задачи выбранного варианта (С)	2
2	Уто	очнение постановки задачи	2
3	Xap	рактеристика использованных моделей	3
	3.1	Встроенная в Gensim модель	3
	3.2	Модель с сайта, обученная на корпусе НКРЯ	3
	3.3	Модель с сайта, обученная на корпусе НКРЯ и Wikipedia	3
	3.4	Модель с сайта, обученная на корпусе Тайга	4
4	Проведённые эксперименты		4
	4.1	Поиск семантически близких слов	4
	4.2	Вычисление близости пар слов	5
5	Код	ц программы	6
6	Bri	ролы по иссленованию	7

1 Постановка задачи выбранного варианта (С)

На основе уже обученной модели **Word2Vec** (векторного представления слов) для русского языка, взятой, например, из библиотеки **Gensim** или с сайта с различными векторными моделями для РЯ, провести экспериментальное исследование семантики нескольких (5–9) выбранных слов (достаточно частотных, разных частей речи): найти семантически близкие и характеризующие слова, определить близость пар слов, а также исследовать другие операции, допускаемые моделью.

За дополнительные баллы: рассмотреть несколько разных (2–3) обученных векторных моделей и сравнить результаты в них для выбранных слов.

2 Уточнение постановки задачи

Для эксперимента я рассмотрел встроенную в **Gensim** модель (обученную на **HKPЯ**) и 3 векторные модели для РЯ с сайта:

- НКРЯ;
- НКРЯ и Wikipedia;
- Тайга.

Для исследования я выбрал 9 слов разных частей речи:

существительные:
 кот;
 одежда;
 машина;
 прилагательные:
 наречие хорошо;
 прилагательные:
 числительное мало.
 красный;
 большой;

3 Характеристика использованных моделей

3.1 Встроенная в Gensim модель

- Идентификатор: word2vec-ruscorpora-300;
- Корпус: **НКРЯ**;
- Размер корпуса: 250 млн.;
- Объём словаря: 185 тыс.;
- Размерность вектора: 300;
- Размер окна: 10.

3.2 Модель с сайта, обученная на корпусе НКРЯ

- Идентификатор: ruscorpora upos cbow 300 20 2019;
- Корпус: **НКРЯ**;
- Размер корпуса: 270 млн.;
- Объём словаря: 189 тыс.;
- Размерность вектора: 300;
- Размер окна: 20.

3.3 Модель с сайта, обученная на корпусе НКРЯ и Wikipedia

- Идентификатор: ruwikiruscorpora upos skipgram 300 2 2019;
- Корпус: **НКРЯ** и **Wikipedia**;
- Размер корпуса: 788 млн.;
- Объём словаря: 249 тыс.;
- Размерность вектора: 300;
- Размер окна: 2.

3.4 Модель с сайта, обученная на корпусе Тайга

• Идентификатор: tayga upos skipgram 300 2 2019;

• Корпус: Тайга;

• Размер корпуса: 5 млрд.;

• Объём словаря: 250 тыс.;

• Размерность вектора: 300;

• Размер окна: 2.

4 Проведённые эксперименты

4.1 Поиск семантически близких слов

Для каждого из выбранных мной слов я нашел наиболее близкие.

κοm

Для разных моделей получились примерно одинаковые результаты, с разными значениями близости получились слова: *кошка*, *котёнок*, *nёc* и др.

• морковъ

Для разных моделей получились примерно одинаковые результаты, с разными значениями близости получились слова: *капуста*, *помидор*, *картофель* и др. Но для модели, обученной на **HKPЯ**, на первых местах оказались слова *сельдерей*, *корнеплод* и *укроп*, которые ещё встречаются во встроенной в **Gensim** модель, но не встречаются в остальных.

• ботинок

Для разных моделей получились примерно одинаковые результаты, с разными значениями близости получились слова: *canor*, *туфля*, *башмак* и др.

Но для модели, обученной на **НКРЯ**, на третьем месте оказалось слово *полу- ботинок*, которое в целом довольно странное и не встречается ещё только во встроенной в **Gensim** модели.

• красный

Для разных моделей получились различные похожие слова, обозначающие либо близкие с красным (алый, оранжевый и малиновый), либо другие цвета (синий, белый и зелёный).

• большой

Для всех моделей получились примерно одинаковые результаты, с разными значениями близости получились слова: огромный, громадный, небольшой и др.

• $u\partial mu$

Для всех моделей самым близким оказалось слово *пойти*. Также в большинстве моделей встречаются слова *шагать*, *бежать* и *ехать*.

• говорить

Для разных моделей получились примерно одинаковые результаты, с разными значениями близости получились слова: *сказать*, *рассуждать*, *толковать* и др.

мало

Для моделей с сайта получились примерно одинаковые результаты, с разными значениями близости получились слова: *много*, *больше*, *мало* и др. А для встроенной в **Gensim** модели наиболее схожими оказались слова: *мало*, *менее*, *немного* и др.

• xopowo

Для разных моделей получились примерно одинаковые результаты, с разными значениями близости получились слова: *плохо*, *отлично*, *прекрасно* и др.

4.2 Вычисление близости пар слов

Из рассматриваемых слов я составил всевозможные пары и посчитал их близость для модели, встроенной в **Gensim**. Затем я отсортировал их по значению полученной близости и вывел 10 наиболее похожих. Для этих 10 пар я также посчитал близость для моделей с сайта.

- 1. делать и говорить: 0.420 (**HKPЯ**: 0.329, **HKPЯ** и **Wikipedia**: 0.474, **Тайга**: 0.273);
- 2. говорить и хорошо: 0.373 (**НКРЯ**: 0.120, **НКРЯ** и **Wikipedia**: 0.394, **Тайга**: 0.215);
- 3. мало и хорошо: 0.360 (**HKPЯ**: 0.214, **HKPЯ** и **Wikipedia**: 0.326, **Taŭra**: 0.183);
- 4. большой и мало: 0.333 (**НКРЯ**: 0.294, **НКРЯ** и **Wikipedia**: 0.386, **Тайга**: 0.218);
- 5. кот и ботинок: 0.326 (**HKPЯ**: 0.232, **HKPЯ** и **Wikipedia**: 0.352, **Taŭra**: 0.247);
- 6. делать и хорошо: 0.301 (НКРЯ: 0.081, НКРЯ и Wikipedia: 0.298, Тайга: 0.135);
- 7. красный и большой: 0.280 (**НКРЯ**: 0.182, **НКРЯ** и **Wikipedia**: 0.330, **Тайга**: 0.215);
- 8. большой и хорошо: 0.241 (**НКРЯ**: 0.218, **НКРЯ** и **Wikipedia**: 0.277, **Тайга**: 0.118);
- 9. кот и говорить: 0.239 (**НКРЯ**: -0.088, **НКРЯ** и **Wikipedia**: 0.261, **Тайга**: 0.126);
- 10. большой и говорить: 0.231 (**HKPЯ**: -0.036, **HKPЯ** и **Wikipedia**: 0.315, **Тайга**: 0.110).

5 Код программы

Реализация программы для исследования встроенной в **Gensim** модели находится в приложенных файлах **HW4.pdf** и **HW4.ipynb**.

6 Выводы по исследованию

При поиске семантически близких для выбранного набора слов (достаточно частотных) в большинстве случаев с разными значениями близости выдавались примерно одинаковые результаты. В паре случаев для части моделей результаты отличались. Думаю, это связано с тем, что использовались разные корпусы разных объёмов и к тому же разные размеры окон. В целом на результат данного эксперимента это влияло не так сильно.

При вычислении близости пар выбранных слов результаты получились довольно разные. В первую очередь, это связано с тем, что все слова по смыслу отличаются друг от друга, а, во-вторых, значение близости очень зависит от параметров рассматриваемой модели и корпусе, на котором она обучена. Но для нескольких пар различия получились не очень большими, значит, они действительно в части случаев употребляются в одном и том же контексте или похожи по смыслу.