TD N°11: FILTRES PASSIFS

EXERCICE 1 [\$] circuit RL

On étudie le circuit de la figure 1 où U_e représente un générateur idéal de tension sinusoïdale.

FIG. 1 – Circuit RL

- 1) Quelle est (sans calculs) la nature de ce filtre?
- 2) Calculer sa fonction de transfert en sortie ouverte, et l'écrire sous forme canonique. Donner l'ordre du filtre. Quelle est sa pulsation de coupure à -3 dB?
- 3) Tracer son diagramme de Bode asymptotique, puis le diagramme réel.

EXERCICE 2 [\$ \$] entrée d'un oscilloscope

L'impédance d'entrée d'un oscilloscope est caractérisée par un groupement parallèle R_0 , C_0 . On souhaite étudier un filtre RC série. La tension de sortie U_s du filtre est envoyée à l'entrée de l'oscilloscope. On donne $R = 1 \text{ k}\Omega$ ou $100 \text{ k}\Omega$, C = 10 nF, $R_0 = 1 \text{ M}\Omega$ et $C_0 = 30 \text{ p}$ F.

FIG. 2 – Étude d'un filtre RC avec un oscilloscope

- 1) Déterminer la fonction de transfert $\underline{H} = \frac{\underline{U_s}}{\underline{U_e}}$ du filtre RC seul. Quelle est sa fréquence de coupure ?
- 2) Donner la fonction de transfert de l'ensemble *RC* et oscilloscope. Comment est modifiée la fréquence de coupure du fait de la présence de l'oscilloscope ?

EXERCICE 3 [\$ 4] filtre RLC

On considère le circuit suivant, où la tension d'entrée est sinusoïdale de pulsation ω.

On donne $R = 1 \text{ k}\Omega$, $L = 1 \text{ H et } C = 0.75 \,\mu\text{F}$.

1) Déterminer qualitativement la nature du filtre.

- 2) Calculer la fonction de transfert du quadripôle. Calculer son module G et son argument ϕ .
- 3) Pour quelle pulsation ω_0 le gain est-il maximum? Calculer le gain maximum.
- 4) Tracer G et φ en fonction de ω . Conclure quant à la nature du filtre.
- 5) On permute R et C. Répondre aux mêmes questions.

EXERCICE 4 [\$ \$ filtre de Wien

FIG. 3 – Filtre de Wien

- 1) Considérons le filtre de Wien¹ de la figure 3. Calculer la fonction de transfert $\underline{H} = \underline{U}_s/\underline{U}_e$. On posera $x = \omega/\omega_0$, avec $\omega_0 = 1/RC$.
- 2) Calculer le gain G(x), et le tracer. De quel type de filtre s'agit-il?
- 3) Calculer la bande passante (en x) à -3 dB. En déduire le facteur de qualité $Q = 1/\Delta x$.
- 4) Mettre la fonction de transfert sous la forme suivante :

$$\underline{H} = \frac{\omega_2}{\omega_0} \frac{1}{\left(1 + j\frac{\omega}{\omega_2}\right) \left(1 + \frac{\omega_1}{j\omega}\right)}$$

où on calculera ω_0, ω_1 et ω_2 .

- 5) Vérifier que $\omega_0^2 = \omega_1 \omega_2$.
- 6) En remarquant que la fonction de transfert précédente est le produit de deux fonctions de transfert du premier ordre (l'une passe-bas et l'autre passe-haut), faire l'étude asymptotique du diagramme de Bode du gain. En déduire l'allure du diagramme de Bode réel du gain.

EXERCICE 5 [\$ \$ \$ filtre en cascade

Dans cet exercice, on s'intéresse à un filtre constitué de deux cellules en cascade (figure 4). L'étude s'effectue en régime sinusoïdal forcé, et la sortie du quadripôle est ouverte.

FIG. 4 – Filtre RC en cascade

- 1) Déterminer qualitativement la nature du filtre.
- 2) Calculer sa fonction de transfert.
- 3) Écrire la fonction de transfert sous la forme canonique $\frac{H_0}{1-x^2+\mathrm{j}\frac{x}{Q}}$ avec $x=\frac{\omega}{\omega_0}$. Exprimer H_0,Q et ω_0 en fonction de R et C.
- 4) Étudier le gain G(x) du filtre, et tracer sa courbe représentative.

¹Max Wien (1866-1938), physicien allemand.