MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DO AMAZONAS – UFAM INSTITUTO DE CIÊNCIAS EXATAS E TECNOLOGIA – ICET CAMPUS UNIVERSITÁRIO MOYSÉS BENARRÓS ISRAEL BACHARELADO EM ENGENHARIA DE SOFTWARE

LISTA DE EXERCÍCIO COMPLETA

MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DO AMAZONAS – UFAM INSTITUTO DE CIÊNCIAS EXATAS E TECNOLOGIA – ICET CAMPUS UNIVERSITÁRIO MOYSÉS BENARRÓS ISRAEL BACHARELADO EM ENGENHARIA DE SOFTWARE

GABRIEL FONSECA FERREIRA MATRÍCULA: 21955310

LISTA DE EXERCÍCIO COMPLETA

Trabalho referente às aulas, apresentado, como requisito para obtenção de nota parcial, do segundo período do primeiro semestre de 2021 (2020/1), solicitado pelo professor Aurélio Andrade de Menezes Junior, ministrante da disciplina de Fundamentos Teóricos da Computação, no Curso de Engenharia de Software, do Instituto de Ciências Exatas e Tecnologia – ICET.

Universidade Federal do Amazonas

Fundamentos Teóricos da Computação Primeira lista de FTC Prof. Msc. Aurélio Andrade de Menezes Júnior Periodo: 01/2020

1^a Lista de Exercícios Parte 1

- 1. Construa AFDs para reconhecer as seguintes linguagens:
- a) $\{01\} * \{10\} *$
- b) $\{w \in \{0,1\} \mid w \text{ de tamanho ímpar terminadas em } 1\}.$
- c) $\{w \in \{a,b\} \mid w \text{ tem número par de ab's e ímpar de a's}\}$
- d) $\{w \in \{a,b\} \mid w \text{ tem número par de ab's} \}$
- e) $\{w \in \{0,1,2,3\} \mid w \text{ é múltiplo de } 4\}.$
- 2. Construa os seguintes AFDs para reconhecer as intersecção entre as linguagens solicitadas, todo os alfabetos são $\Sigma = \{a,b\}$:
- a) {w | w tem pelo menos três "a" e pelo menos dois "b"}.
- b) {w | w tem exatamente dois "a" e pelo menos dois "b"}.
- c) {w | w tem um número ímpar de "a" e termina com "b"}.
- d) {w | w tem tamanho par e um número ímpar de "a"}.

1ª LISTA DE EXERCÍCIOS PARTE 1

1.

Figura 1. Questão 1, letra A Fonte: Própria

Input	Result
01010110	Accept
0110	Accept
0011	Reject
01110	Reject
0110101001	Reject
01101010	Accept

Figura 2. Alguns exemplos de entradas e resultados referentes à Questão 1, letra A Fonte: Própria

Figura 3. Questão 1, letra B Fonte: Própria

Input	Result
1001	Reject
1	Accept
0	Reject
101	Accept
111	Accept
1000011	Accept

Figura 4. Alguns exemplos de entradas e resultados referentes à Questão 1, letra B Fonte: Própria

Figura 5. Questão 1, letra C Fonte: Própria

Input	Result
aaabab	Reject
ababa	Accept
aaa	Reject
aba	Reject
abbbbaaaba	Accept
baabaaba	Accept

Figura 6. Alguns exemplos de entradas e resultados referentes à Questão 1, letra C Fonte: Própria

Figura 7. Questão 1, letra D Fonte: Própria

Input	Result
aaabab	Accept
ababa	Accept
aaa	Reject
aba	Reject
abbbbaaaba	Accept
baabaaba	Accept

Figura 8. Alguns exemplos de entradas e resultados referentes à Questão 1, letra D Fonte: Própria

Figura 9. Questão 1, letra E Fonte: Própria

Input	Result
12	Accept
20	Accept
32	Accept
322010	Reject
10000	Accept
321220	Accept

Figura 10. Alguns exemplos de entradas e resultados referentes à Questão 1, letra E Fonte: Própria

Figura 11. Questão 2, letra A Fonte: Própria

Input	Result
ababa	Accept
aabbbba	Accept
abbbbbaaa	Accept
bababa	Accept
abbbaaa	Accept
abaa	Reject

Figura 12. Alguns exemplos de entradas e resultados referentes à Questão 2, letra A Fonte: Própria

Figura 13. Questão 2, letra B Fonte: Própria

Input	Result
abbbbaa	Reject
abba	Accept
aba	Reject
abbbbbbba	Accept
ababab	Reject
babbbba	Accept

Figura 14. Alguns exemplos de entradas e resultados referentes à Questão 2, letra B Fonte: Própria

Figura 15. Questão 2, letra C Fonte: Própria

Input	Result
ab	Accept
aaab	Accept
bbbab	Accept
babab	Reject
baba	Reject
bbbbab	Accept

Figura 16. Alguns exemplos de entradas e resultados referentes à Questão 2, letra C Fonte: Própria

Figura 17. Questão 2, letra D Fonte: Própria

Input	Result
ab	Accept
aaab	Accept
bbbab	Reject
babab	Reject
baba	Reject
bbbbab	Accept

Figura 18. Alguns exemplos de entradas e resultados referentes à Questão 2, letra D Fonte: Própria

Universidade Federal do Amazonas

Fundamentos Teóricos da Computação Primeira lista de FTC Prof. Msc. Aurélio Andrade de Menezes Júnior Periodo: 01/2020

1^a Lista de Exercícios Parte 2

- 1. Construa AFNs para reconhecer as seguintes linguagens:
- a) $\{w \in \{a,b\} \mid w \text{ contém a substring "aa" ou substring "bb"}\}.$
- b) $\{w \in \{a,b\} \mid w \text{ contém ambas as substring "aa" e "bb" ou nenhuma delas}\}.$
- c) $\{w \in \{a,b\} \mid \text{onde todo "a" \'e seguido por "b" ou "ab"}\}.$
- d) $\{w \in \{a,b,c\} \mid w \text{ tem tamanho } 3 \text{ e cada caractere aparece uma única vez} \}$.
- e) $\{w \in \{a,b\} \mid \text{ onde o terceiro caractere do início é "b" e o terceiro antes do final é "b"}\}.$
- 2. Construa os seguintes AFNs para reconhecer as linguagens solicitadas com o número especificado de estados, todo os alfabetos são $\Sigma = \{0,1\}$:
- a) {w | w termina em "00" com 3 estados}.
- b) A linguagem $0*1*0^+$ com 3 estados.
- c) A linguagem $1*(001^+)*$ com 3 estados.
- d) A linguagem {0} com 2 estados.
- e) A linguagem $\{\epsilon\}$ com 1 estados.

1ª LISTA DE EXERCÍCIOS PARTE 2

1.

Figura 1. Questão 1, letra A Fonte: Própria

Input	Result
aa	Accept
bb	Accept
abb	Accept
bba	Accept
ab	Reject
ba	Reject

Figura 2. Alguns exemplos de entradas e resultados referentes à Questão 1, letra A Fonte: Própria

Figura 3. Questão 1, letra B Fonte: Própria

Input	Result
aab	Reject
bbaa	Accept
abab	Accept
ab	Accept
bba	Reject
aabbbaabb	Accept

Figura 4. Alguns exemplos de entradas e resultados referentes à Questão 1, letra B Fonte: Própria

Figura 5. Questão 1, letra C Fonte: Própria

Input	Result
aab	Accept
ab	Accept
aaab	Reject
bbaab	Accept
bab	Accept
bbbbaab	Accept

Figura 6. Alguns exemplos de entradas e resultados referentes à Questão 1, letra C Fonte: Própria

Figura 7. Questão 1, letra D Fonte: Própria

Input	Result	
abc	Accept	
aab	Reject	
bcc	Reject	
bab	Reject	
bca	Accept	
cba	Accept	

Figura 8. Alguns exemplos de entradas e resultados referentes à Questão 1, letra D Fonte: Própria

Figura 9. Questão 1, letra E Fonte: Própria

Input	Result	
aabbbba	Accept	
aba	Reject	
bbb	Accept	
babab	Accept	
bbabb	Reject	
aabbb	Accept	

Figura 10. Alguns exemplos de entradas e resultados referentes à Questão 1, letra E Fonte: Própria

Figura 11. Questão 2, letra A Fonte: Própria

Input	Result	
110	Reject	
000	Accept	
100	Accept	
111000111100	Accept	
1010	Reject	
0100	Accept	

Figura 12. Alguns exemplos de entradas e resultados referentes à Questão 2, letra A Fonte: Própria

Figura 13. Questão 2, letra B Fonte: Própria

Input	Result	
0	Accept	
01	Reject	
000	Accept	
10	Accept	
110	Accept	
010	Accept	

Figura 14. Alguns exemplos de entradas e resultados referentes à Questão 2, letra B Fonte: Própria

Figura 15. Questão 2, letra C Fonte: Própria

Input	Result	
00	Reject	
1	Accept	
10	Reject	
1001	Accept	
001	Accept	
010	Reject	

Figura 16. Alguns exemplos de entradas e resultados referentes à Questão 2, letra C Fonte: Própria

Figura 17. Questão 2, letra D Fonte: Própria

Input	Result	
0	Accept	
00	Accept	
000	Accept	
0000	Accept	
00000	Accept	
000000	Accept	

Figura 18. Alguns exemplos de entradas e resultados referentes à Questão 2, letra D Fonte: Própria

Figura 19. Questão 2, letra E Fonte: Própria

Input	Result	
	Accept	
a	Reject	
1	Reject	
0	Reject	
	Accept	
11	Reject	

Figura 20. Alguns exemplos de entradas e resultados referentes à Questão 2, letra E Fonte: Própria

Universidade Federal do Amazonas

Fundamentos Teóricos da Computação Primeira lista de FTC Prof. Msc. Aurélio Andrade de Menezes Júnior Periodo: 01/2020

1^a Lista de Exercícios Parte 3

- 1. Sejam os seguintes autômatos finito não-determinísticos a seguir, para cada um deles faça o que se pede:
- a) Construa a tabela da função de transição δ para M.
- b) Desenhe o AFD equivalente.

1ª LISTA DE EXERCÍCIOS PARTE 3

1.

AUTÔMATO 1

a)

Figura 1. Autômato 1 (estado inicial) Fonte: Questão 1

	λ	a	b	С
→Q0	{Q0, Q2}	{Q0}	{Q2, Q1}	{Q1}
*Q1	Ø	Ø	Ø	{Q1}
*Q2	Ø	Ø	{Q2, Q1}	ø

Tabela 1. Tabela inicial do autômato 1 Fonte: Própria

Passo 1: Adicionar um estado vazio $\not O$

Passo 2: Tratar cada estado individual como um conjunto unitário

Passo 3: Para cada novo conjunto de valores, criar uma nova linha na tabela

	λ	a	b	С
ø	ø	Ø	ø	ø
→{Q0}	{Q0, Q2}	{Q0}	{Q2, Q1}	{Q1}
*{Q1}	Ø	Ø	Ø	{Q1}
*{Q2}	ø	Ø	{Q2, Q1}	Ø
{Q0, Q2}	{Q0, Q2}	{Q0, Q2}	{Q2, Q1}	{Q1}
{Q2, Q1}	Ø	Ø	{Q2, Q1}	{Q1}

Tabela 2. Resultado dos passos 1, 2, 3 e 4 (autômato 1) Fonte: Própria

Passo 5: Como $\{Q1\}$ e $\{Q2\}$ são estados de aceitação, logo todos os estados com $\{Q1\}$ ou $\{Q2\}$ serão de aceitação

	λ	a	b	c
ø	Ø	Ø	Ø	Ø
→{Q0}	{Q0, Q2}	{Q0}	{Q2, Q1}	{Q1}
*{Q1}	Ø	Ø	Ø	{Q1}
*{Q2}	Ø	Ø	{Q2, Q1}	Ø
*{Q0, Q2}	{Q0, Q2}	{Q0, Q2}	{Q2, Q1}	{Q1}
*{Q2, Q1}	Ø	Ø	{Q2, Q1}	{Q1}

Tabela 3. Resultado do passo 5 (autômato 1) Fonte: Própria

Passo 6: Remover a coluna de transição vazia

	a	b	c
Ø	ø	Ø	Ø
→{Q0}	{Q0}	{Q2, Q1}	{Q1}
*{Q1}	Ø	Ø	{Q1}
*{Q2}	ø	{Q2, Q1}	Ø
*{Q0, Q2}	{Q0, Q2}	{Q2, Q1}	{Q1}
*{Q2, Q1}	Ø	{Q2, Q1}	{Q1}

Tabela 4. Resultado do passo 6 (autômato 1) Fonte: Própria

Passo 7: Remover os estados inacessíveis

	a	b	С	remover
Ø	Ø	Ø	Ø	remover
→{Q0}	{Q0}	{Q2, Q1}	{Q1}	remover
*{Q1}	Ø	ø	{Q1}	
*{Q2}	ø	{Q2, Q1}	ø	
*{Q0, Q2}	{Q0, Q2}	{Q2, Q1}	{Q1}	
*{Q2, Q1}	Ø	{Q2, Q1}	{Q1}	

Tabela 5. Resultado parcial do passo 7 (autômato 1) Fonte: Própria

Como $\{Q0\}$ era um estado inicial e foi removido, logo passa para o estado $\{Q0,Q2\}$ ser o inicial por ele conter o $\{Q0\}$

	a	b	c	remover
*{Q1}	Ø	Ø	{Q1}	
*{Q2}	Ø	{Q2, Q1}	Ø	remover
→*{Q0, Q2}	{Q0, Q2}	{Q2, Q1}	{Q1}	
*{Q2, Q1}	Ø	{Q2, Q1}	{Q1}	

Tabela 6. Resultado do passo 7 (autômato 1) Fonte: Própria

Após todos os passos, o resultado é mostrado

	a	b	c
*{Q1}	Ø	Ø	{Q1}
\rightarrow *{Q0, Q2}	{Q0, Q2}	{Q2, Q1}	{Q1}
*{Q2, Q1}	Ø	{Q2, Q1}	{Q1}

Tabela 7. Tabela de transformação final (autômato 1) Fonte: Própria

Figura 2. AFD equivalente ao autômato 1 de acordo com a tabela 7 Fonte: Própria

Figura 3. Autômato 2 (estado inicial) Fonte: Questão 1

	a	b
→ Q0	{Q1, Q2}	Ø
Q1	{Q1}	{Q3}
Q2	{Q3}	Ø
*Q3	Ø	{Q2}

Tabela 8. Tabela inicial do autômato 2 Fonte: Própria

Passo 1: Adicionar um estado vazio \emptyset

Passo 2: Tratar cada estado individual como um conjunto unitário

Passo 3: Para cada novo conjunto de valores, criar uma nova linha na tabela

	a	b
Ø	Ø	Ø
→{Q0}	{Q1, Q2}	Ø
{Q1}	{Q1}	{Q3}
{Q2}	{Q3}	Ø
*{Q3}	Ø	{Q2}
{Q1, Q2}	{Q1, Q3}	{Q3}

Tabela 9. Resultado dos passos 1, 2, 3 e 4 (autômato 2)

Fonte: Própria

Faremos novamente os passos 3 e 4 pois surgiram novos conjuntos de valores

	a	b
Ø	Ø	Ø
→{Q0}	{Q1, Q2}	Ø
{Q1}	{Q1}	{Q3}
{Q2}	{Q3}	Ø
*{Q3}	Ø	{Q2}
{Q1, Q2}	{Q1, Q3}	{Q3}
{Q1, Q3}	{Q1}	{Q3, Q2}

Tabela 10. Resultado dos passos 3 e 4 (autômato 2)

Fonte: Própria

Faremos novamente os passos 3 e 4 pois surgiram novos conjuntos de valores

	a	b
Ø	Ø	Ø
→{Q0}	{Q1, Q2}	Ø
{Q1}	{Q1}	{Q3}
{Q2}	{Q3}	Ø
*{Q3}	Ø	{Q2}
{Q1, Q2}	{Q1, Q3}	{Q3}
{Q1, Q3}	{Q1}	{Q3, Q2}
{Q3, Q2}	{Q3}	{Q2}

Tabela 11. Resultado dos passos 3 e 4 (autômato 2)

Fonte: Própria

Passo 5: Como $\{Q3\}$ é um estado de aceitação, logo todos os estados com $\{Q3\}$ serão de aceitação

	a	b
Ø	Ø	Ø
→{Q0}	{Q1, Q2}	Ø
{Q1}	{Q1}	{Q3}
{Q2}	{Q3}	Ø
*{Q3}	Ø	{Q2}
{Q1, Q2}	{Q1, Q3}	{Q3}
*{Q1, Q3}	{Q1}	{Q3, Q2}
*{Q3, Q2}	{Q3}	{Q2}

Tabela 12. Resultado do passo 5 (autômato 2) Fonte: Própria

Passo 6: Remover os estados inacessíveis

	a	b	remover
Ø	Ø	Ø	remover
→{Q0}	{Q1, Q2}	Ø	
{Q1}	{Q1}	{Q3}	
{Q2}	{Q3}	Ø	
*{Q3}	ø	{Q2}	
{Q1, Q2}	{Q1, Q3}	{Q3}	
*{Q1, Q3}	{Q1}	{Q3, Q2}	
*{Q3, Q2}	{Q3}	{Q2}	

Tabela 13. Resultado do passo 6 (autômato 2) Fonte: Própria

	a	b
→{Q0}	{Q1, Q2}	Ø
{Q1}	{Q1}	{Q3}
{Q2}	{Q3}	Ø
*{Q3}	Ø	{Q2}
{Q1, Q2}	{Q1, Q3}	{Q3}
*{Q1, Q3}	{Q1}	{Q3, Q2}
*{Q3, Q2}	{Q3}	{Q2}

Tabela 14. Tabela de transformação final (autômato 2) Fonte: Própria

b)

Figura 4. AFD equivalente ao autômato 2 de acordo com a tabela 14 Fonte: Própria

Figura 5. Autômato 3 (estado inicial) Fonte: Questão 1

	a	b
→ *Q0	{Q2}	{Q0, Q1}
Q1	{Q2}	{Q1}
*Q2	{Q1}	{Q0}

Tabela 15. Tabela inicial do autômato 3 Fonte: Própria

Passo 1: Adicionar um estado vazio Ø

Passo 2: Tratar cada estado individual como um conjunto unitário

Passo 3: Para cada novo conjunto de valores, criar uma nova linha na tabela

	a	b
Ø	ø	Ø
→ *{Q0}	{Q2}	{Q0, Q1}
{Q1}	{Q2}	{Q1}
*{Q2}	{Q1}	{Q0}
{Q0, Q1}	{Q2}	{Q0, Q1}

Tabela 16. Resultado dos passos 1, 2, 3 e 4 (autômato 3)

Fonte: Própria

Passo 5: Como $\{Q0\}$ e $\{Q2\}$ são estados de aceitação, logo todos os estados com $\{Q0\}$ ou $\{Q2\}$ serão de aceitação

	a	b
Ø	Ø	Ø
→ *{Q0}	{Q2}	{Q0, Q1}
{Q1}	{Q2}	{Q1}
*{Q2}	{Q1}	{Q0}
*{Q0, Q1}	{Q2}	{Q0, Q1}

Tabela 17. Resultado do passo 5 (autômato 3)

Fonte: Própria

Passo 6: Remover os estados inacessíveis

	a	b	remover
Ø	Ø	Ø	remover
$\rightarrow *{Q0}$	{Q2}	{Q0, Q1}	
{Q1}	{Q2}	{Q1}	
*{Q2}	{Q1}	{Q0}	
*{Q0, Q1}	{Q2}	{Q0, Q1}	

Tabela 18. Resultado do passo 6 (autômato 3)

Fonte: Própria

Após todos os passos, o resultado é mostrado

	a	b
$\rightarrow *{Q0}$	{Q2}	{Q0, Q1}
{Q1}	{Q2}	{Q1}
*{Q2}	{Q1}	{Q0}
*{Q0, Q1}	{Q2}	{Q0, Q1}

Tabela 19. Tabela de transformação final (autômato 3)

Fonte: Própria

Figura 6. AFD equivalente ao autômato 3 de acordo com a tabela 19 Fonte: Própria

Figura 7. Autômato 4 (estado inicial) Fonte: Questão 1

	λ	a	b
→ Q0	{Q0, Q1}	{Q1}	{Q2, Q3}
*Q1	Ø	Ø	{Q1, Q3}
Q2	{Q2, Q3}	{Q3, Q0, Q1}	{Q2, Q3}
Q3	Ø	{Q3, Q0, Q1}	{Q2, Q3}

Tabela 20. Tabela inicial do autômato 4 Fonte: Própria

Passo 1: Adicionar um estado vazio Ø

Passo 2: Tratar cada estado individual como um conjunto unitário

Passo 3: Para cada novo conjunto de valores, criar uma nova linha na tabela

	λ	a	b
Ø	Ø	Ø	Ø
→{Q0}	{Q0, Q1}	{Q1}	{Q2, Q3}
*{Q1}	Ø	Ø	{Q1, Q3}
{Q2}	{Q2, Q3}	{Q3, Q0, Q1}	{Q2, Q3}
{Q3}	Ø	{Q3, Q0, Q1}	{Q2, Q3}
{Q0, Q1}	{Q0, Q1}	{Q1}	{Q2, Q3, Q1}
{Q2, Q3}	{Q2, Q3}	{Q3, Q0, Q1}	{Q2, Q3}
{Q1, Q3}	Ø	{Q3, Q0, Q1}	{Q2, Q3, Q1}
{Q3, Q0, Q1}	{Q0, Q1}	{Q3, Q0, Q1}	{Q2, Q3, Q1}

Tabela 21. Resultado dos passos 1, 2, 3 e 4 (autômato 4) Fonte: Própria

Faremos novamente os passos 3 e 4 pois surgiram novos conjuntos de valores

	λ	a	b
Ø	Ø	Ø	Ø
→{Q0}	{Q0, Q1}	{Q1}	{Q2, Q3}
*{Q1}	Ø	Ø	{Q1, Q3}
{Q2}	{Q2, Q3}	{Q3, Q0, Q1}	{Q2, Q3}
{Q3}	Ø	{Q3, Q0, Q1}	{Q2, Q3}
{Q0, Q1}	{Q0, Q1}	{Q1}	{Q2, Q3, Q1}
{Q2, Q3}	{Q2, Q3}	{Q3, Q0, Q1}	{Q2, Q3}
{Q1, Q3}	Ø	{Q3, Q0, Q1}	{Q2, Q3, Q1}
{Q3, Q0, Q1}	{Q0, Q1}	{Q3, Q0, Q1}	{Q2, Q3, Q1}
{Q2, Q3, Q1}	{Q2, Q3}	{Q3, Q0, Q1}	{Q2, Q3, Q1}

Tabela 22. Resultado dos passos 3 e 4 (autômato 4)

Fonte: Própria

Passo 5: Como $\{Q1\}$ é um estado de aceitação, logo todos os estados com $\{Q1\}$ serão de aceitação

	λ	a	b
Ø	ø	ø	ø
→{Q0}	{Q0, Q1}	{Q1}	{Q2, Q3}
*{Q1}	Ø	Ø	{Q1, Q3}
{Q2}	{Q2, Q3}	{Q3, Q0, Q1}	{Q2, Q3}
{Q3}	Ø	{Q3, Q0, Q1}	{Q2, Q3}
*{Q0, Q1}	{Q0, Q1}	{Q1}	{Q2, Q3, Q1}
{Q2, Q3}	{Q2, Q3}	{Q3, Q0, Q1}	{Q2, Q3}
*{Q1, Q3}	Ø	{Q3, Q0, Q1}	{Q2, Q3, Q1}
*{Q3, Q0, Q1}	{Q0, Q1}	{Q3, Q0, Q1}	{Q2, Q3, Q1}
*{Q2, Q3, Q1}	{Q2, Q3}	{Q3, Q0, Q1}	{Q2, Q3, Q1}

Tabela 23. Resultado do passo 5 (autômato 4) Fonte: Própria

Passo 6: Remover a coluna de transição vazia

	a	b
Ø	Ø	Ø
→{Q0}	{Q1}	{Q2, Q3}
*{Q1}	Ø	{Q1, Q3}
{Q2}	{Q3, Q0, Q1}	{Q2, Q3}
{Q3}	$\{Q3, Q0, Q1\}$	{Q2, Q3}
*{Q0, Q1}	{Q1}	{Q2, Q3, Q1}
{Q2, Q3}	{Q3, Q0, Q1}	{Q2, Q3}
*{Q1, Q3}	$\{Q3, Q0, Q1\}$	{Q2, Q3, Q1}
*{Q3, Q0, Q1}	{Q3, Q0, Q1}	{Q2, Q3, Q1}
*{Q2, Q3, Q1}	{Q3, Q0, Q1}	{Q2, Q3, Q1}

Tabela 24. Resultado do passo 6 (autômato 4) Fonte: Própria

Passo 6: Remover os estados inacessíveis

	a	b	remover
ø	Ø	ø	remover
→{Q0}	{Q1}	{Q2, Q3}	remover
*{Q1}	Ø	{Q1, Q3}	
{Q2}	{Q3, Q0, Q1}	{Q2, Q3}	
{Q3}	{Q3, Q0, Q1}	{Q2, Q3}	
*{Q0, Q1}	{Q1}	{Q2, Q3, Q1}	
{Q2, Q3}	{Q3, Q0, Q1}	{Q2, Q3}	
*{Q1, Q3}	{Q3, Q0, Q1}	{Q2, Q3, Q1}	
*{Q3, Q0, Q1}	{Q3, Q0, Q1}	{Q2, Q3, Q1}	
*{Q2, Q3, Q1}	{Q3, Q0, Q1}	{Q2, Q3, Q1}	

Tabela 25. Resultado parcial do passo 7 (autômato 4) Fonte: Própria

Como $\{Q0\}$ era um estado inicial e foi removido, logo passa para o estado $\{Q0,Q1\}$ ser o inicial por ele conter o $\{Q0\}$

	a	b	remover
*{Q1}	Ø	{Q1, Q3}	
{Q2}	{Q3, Q0, Q1}	{Q2, Q3}	remover
{Q3}	{Q3, Q0, Q1}	{Q2, Q3}	remover
\rightarrow *{Q0, Q1}	{Q1}	{Q2, Q3, Q1}	
{Q2, Q3}	{Q3, Q0, Q1}	{Q2, Q3}	remover
*{Q1, Q3}	{Q3, Q0, Q1}	{Q2, Q3, Q1}	
*{Q3, Q0, Q1}	{Q3, Q0, Q1}	{Q2, Q3, Q1}	
*{Q2, Q3, Q1}	{Q3, Q0, Q1}	{Q2, Q3, Q1}	

Tabela 26. Resultado do passo 7 (autômato 4) Fonte: Própria

Após todos os passos, o resultado é mostrado

	a	b
*{Q1}	Ø	{Q1, Q3}
→*{Q0, Q1}	{Q1}	{Q2, Q3, Q1}
*{Q1, Q3}	{Q3, Q0, Q1}	{Q2, Q3, Q1}
*{Q3, Q0, Q1}	{Q3, Q0, Q1}	{Q2, Q3, Q1}
*{Q2, Q3, Q1}	{Q3, Q0, Q1}	{Q2, Q3, Q1}

Tabela 27. Tabela de transformação final (autômato 4) Fonte: Própria

Figura 8. AFD equivalente ao autômato 4 de acordo com a tabela 27 Fonte: Própria

Universidade Federal do Amazonas

Fundamentos Teóricos da Computação Primeira lista de FTC Prof. Msc. Aurélio Andrade de Menezes Júnior Periodo: 01/2020

1^a Lista de Exercícios Parte 4

- 1. Converta as seguintes expressões regulares em AFNs.
- a) $a(abb)^* \cup b$
- b) $a^+ \cup (ab)^+$
- c) $(a \cup b^+) a^+ b^+$
- d) a(ba) * b
- e) $(\varepsilon \cup a) b$
- 2. Converta os seguintes autômatos em expressões regulares.

a)

b)

1ª LISTA DE EXERCÍCIOS PARTE 4

1.

a)

a(abb)*+b

Passo 1: a

Figura 1. Passo 1: a Fonte: Própria

Passo 2: b

Figura 2. Passo 2: b Fonte: Própria

Passo 3: abb

Figura 3. Passo 3: abb Fonte: Própria

Figura 4. Passo 4: (abb)* Fonte: Própria

Passo 5: a(abb)*

Figura 5. Passo 5: a(abb)* Fonte: Própria

Passo 6: a(abb)*+b

Figura 6. Passo 6: a(abb)*+b Fonte: Própria

Figura 7. Resultado final do AFN de acordo com a expressão regular a(abb)*+b Fonte: Própria

$$a^+ + (ab)^+$$

Passo 1: a

Figura 8. Passo 1: a Fonte: Própria

Passo 2: a+

Figura 9. Passo 2: a⁺ Fonte: Própria

Passo 3: b

Figura 10. Passo 3: b Fonte: Própria

Figura 11. Passo 4: ab Fonte: Própria

Passo 5: (ab)+

Figura 12. Passo 5: (ab)⁺ Fonte: Própria

Passo 6: a⁺ + (ab)⁺

Figura 13. Passo 6: a⁺ + (ab)⁺ Fonte: Própria

Figura 14. Resultado final do AFN de acordo com a expressão regular a⁺ + (ab)⁺ Fonte: Própria

$$(a + b^+) a^+ b^+$$

Passo 1: a

Figura 15. Passo 1: a Fonte: Própria

Passo 2: b

Figura 16. Passo 2: b Fonte: Própria

Passo 3: b⁺

Figura 17. Passo 3: b⁺ Fonte: Própria

Figura 18. Passo 4: $(a + b^+)$ Fonte: Própria

Passo 5: a⁺

Figura 19. Passo 5: a⁺ Fonte: Própria

Passo 6: $(a + b^+) a^+ b^+$

Figura 20. Passo 6: $(a + b^+) a^+ b^+$ Fonte: Própria

Passo 7: $(a + b^+) a^+ b^+$ final

Figura 21. Resultado final do AFN de acordo com a expressão regular $(a+b^+)$ a^+ b^+ Fonte: Própria

a(ba)*b

Passo 1: a

Figura 22. Passo 1: a Fonte: Própria

Passo 2: b

Figura 23. Passo 2: b Fonte: Própria

Passo 3: ba

Figura 24. Passo 3: ba Fonte: Própria

Figura 25. Passo 4: (ba)* Fonte: Própria

Passo 5: a(ba)*b

Figura 26. Passo 5: a(ba)*b Fonte: Própria

Passo 6: a(ba)*b final

Figura 27. Resultado final do AFN de acordo com a expressão regular a(ba)*b Fonte: Própria

 $(\varepsilon + a) b$

Passo 1: ε

Figura 28. Passo 1: ε Fonte: Própria

Passo 2: a

Figura 29. Passo 2: a Fonte: Própria

Passo 3: $(\varepsilon + a)$

Figura 30. Passo 3: $(\epsilon + a)$ Fonte: Própria

Figura 31. Passo 4: b Fonte: Própria

Passo 5: $(\varepsilon + a)$ b

Figura 32. Passo 5: $(\epsilon + a)$ b Fonte: Própria

Passo 6: $(\epsilon + a)$ b final

Figura 33. Resultado final do AFN de acordo com a expressão regular $(\epsilon+a)$ b Fonte: Própria

a)

Primeiramente se transforma o AFD em um AFNG

Figura 34. Autômato 1 Fonte: Questão 2

Passo 1: Acrescentar um estado inicial, criar transições ε para o estado inicial

Figura 35. Passo 1 Fonte: Própria

Passo 2: Acrescentar um estado de aceitação, criar transições ϵ dos estados de aceitação antigo para ele

Figura 36. Passo 2 Fonte: Própria

Assim foi feito a primeira parte, resultando em um AFNG como mostra a Figura 36. Os passos seguintes são para transformar o AFNG em ER.

Seja k, o número de estados do AFNG, construiremos um AFNG 1 com k-1 estados a partir de AFNG, escolher um estado q_r e excluir da máquina, substituir o rótulo da nova transição pela composição dos rótulos das transições antigas vinculadas ao estado excluído.

Estes passos serão feitos até resultar em uma ER.

Passo 3: Eliminar o estado Q0 e substituir pela ER equivalente

Figura 37. Passo 3 Fonte: Própria

Passo 4: Eliminar o estado Q1 e substituir pela ER equivalente

Figura 38. Passo 4 Fonte: Própria

Assim o AFD, foi transformado em um AFNG que por sua vez foi transformado em uma ER.

Primeiramente se transforma o AFD em um AFNG

Figura 39. Autômato 2 Fonte: Questão 2

Passo 1: Acrescentar um estado inicial, criar transições ε para o estado inicial

Figura 40. Passo 1 Fonte: Própria

Passo 2: Acrescentar um estado de aceitação, criar transições ε dos estados de aceitação antigo para ele

Figura 41. Passo 2 Fonte: Própria

Assim foi feito a primeira parte, resultando em um AFNG como mostra a Figura 41. Os passos seguintes são para transformar o AFNG em ER.

Seja k, o número de estados do AFNG, construiremos um AFNG 1 com k-1 estados a partir de AFNG, escolher um estado q_r e excluir da máquina, substituir o rótulo da nova transição pela composição dos rótulos das transições antigas vinculadas ao estado excluído.

Estes passos serão feitos até resultar em uma ER.

Passo 3: Para transições com múltiplos valores, criar uma transição com rótulo de união

Figura 42. Passo 3 Fonte: Própria

Passo 4: Eliminar o estado Q1 e substituir pela ER equivalente

Figura 43. Passo 4 Fonte: Própria

Passo 5: Eliminar o estado Q2 e substituir pela ER equivalente

Figura 44. Passo 5 Fonte: Própria

Passo 6: Eliminar o estado Q0 e substituir pela ER equivalente

Figura 45. Passo 6 Fonte: Própria

Assim o AFD, foi transformado em um AFNG que por sua vez foi transformado em uma ER.

SOUTH THE TOTAL TO THE TOTAL THE TOT

Universidade Federal do Amazonas

Fundamentos Teóricos da Computação Primeira lista de FTC Prof. Msc. Aurélio Andrade de Menezes Júnior Periodo: 01/2020

1^a Lista de Exercícios Parte 5

- 1) Com base na gramática G1 = $({X}, {0,1}, {X \rightarrow 01 \mid 0X1}, X)$, mostre uma árvore de derivação para a palavra **000111**.
- **2)** Com base na gramática $G_2 = (\{E, N\}, \{+, x, 0, 1\}, P_2, E)$, onde P_2 é o conjunto dado abaixo, mostre uma derivação e uma árvore de derivação para a palavra **000111**.

$$P_2$$
:
$$E \rightarrow N$$

$$| E+E$$

$$| E\times E$$

$$N \rightarrow 0$$

$$| 1$$

$$| 0N$$

$$| 1N$$

3) Considere a gramática G₃ definida abaixo. Diga se ela gera as palavras abaixo. Construa uma derivação e uma árvore de derivação para as palavras que a gramática puder gerar. Se não puder gerar justifique a resposta.

$$\mathbf{G}_3$$
:
$$S \to aSa$$

$$\mid bSb$$

$$\mid T$$

$$T \to a$$

$$\mid b$$

$$\mid \epsilon$$

- **a)** e
- **b)** ab
- c) aba
- d) baa
- e) babab

1ª LISTA DE EXERCÍCIOS PARTE 5

1.

$$G_1 = (\{X\},\,\{0,\!1\},\,\{X \to 01 \mid 0X1\},\,X)$$

 $X \rightarrow 01$

 $X \rightarrow 0X1$

000111

Derivação:

X

=> 0X1

=> 00X11

=> 000111

Transformando na árvore de derivação:

Figura 1. Questão 1 - Árvore de Derivação Fonte: Própria

$$G_2 = (\{E, N\}, \{+, x, 0, 1\}, P_2, E)$$

000111

P₂:

Figura 2. P₂ Fonte: Questão 2

Derivação:

Е

=> N

=> 0N

=>00N

=>000N

=> 0001N

=> 00011N

=> 000111

Transformando na árvore de derivação:

Figura 3. Questão 2 - Árvore de Derivação Fonte: Própria

a) E

S

=> T

3 <=

Transformando na árvore de derivação:

Figura 4. Questão 3A Fonte: Própria

b) ab

S

 \Rightarrow T

=> a

Erro

Essa palavra não pode ser gerada por essa gramática pois nenhuma das regras abrange um "a" e depois um "b".

c) aba

S

=> aSa

=> aTa

=> aba

Transformando na árvore de derivação:

Figura 5. Questão 3C Fonte: Própria

d) baa

S

=>T

=> b

Erro

Essa palavra não pode ser gerada por essa gramática pois nenhuma das regras abrange um "b" e depois um "a" seguido de outro "a".

e) babab

S

=> bSb

=> baSab

=> baTab

=> babab

Transformando na árvore de derivação:

Figura 6. Questão 3E Fonte: Própria

SSANCE FEDERAL OO RAHAMAN SANCE SANC

Universidade Federal do Amazonas

Fundamentos Teóricos da Computação Primeira lista de FTC Prof. Msc. Aurélio Andrade de Menezes Júnior Periodo: 01/2020

1^a Lista de Exercícios Parte 6

- 1) Projete um AP para aceitar cada uma das linguagens a seguir (por estado final ou por pilha vazia, o que for mais conveniente):
 - a) $\{0^{N}1^{N} | N \ge 1\}$
- b) O conjunto de todas as cadeias de 0s e 1s tais que nenhum prefixo tenha mais 1s do que 0s.
 - c) o conjunto de todas as cadeias de 0s e 1s com um numero igual de 0s e 1s.
 - d) Um AP que reconhece a linguagem {wcw^r | w ϵ {0,1}*}.
 - e) AP que reconhece a linguagem $\{0^n1^m 0^{n+m} \mid n \ge 0, m \ge 0\}$.
 - f) Um AP que reconhece a linguagem $\{ww^r \mid w \in \{0,1\}^*\}$.
 - g) Um AP que reconhece a linguagem $\{a^ib^jc^k \mid i, j, k \ge 0 \text{ e i=j ou i=k}\}$.
- 2) Em cada item, diga qual é a linguagem gerada pela GLC. S é o símbolo inicial em todos os itens abaixo.
 - a) S \rightarrow 0|5|N5|N0

$$N \rightarrow 1|2|3|...|9|NN|N0$$

- b) S \rightarrow 0S1|1S0|01|10
- c) S → aBca|aca

$$B \rightarrow b|bB$$

d) $S \rightarrow 0A|1B$

 $A \rightarrow 0A|0$

 $B \rightarrow 1B|1$

- 3. Defina o que é uma Gramática Livre de Contexto.
- 4. Exemplifique a definição construindo uma gramática que gere a linguagem

$$L(G) = \{ 0^n 1^{2n} 0^m \}, n, m \ge 0$$

- 3. Sobre as Linguagens Livres de Contexto responda:
- a) Qual a importância do seu estudo
- b) Exemplifique suas aplicações (tanto para os autômatos quanto as gramáticas).
- c) Faça um quadro comparativo com as Linguagens Regulares, destacando as principais características, semelhanças e diferenças.

1ª LISTA DE EXERCÍCIOS PARTE 6

1.

a)

Figura 1. Questão 1, letra A Fonte: Própria

Input	Result
01	Accept
001	Reject
0011	Accept
00111	Reject
0101	Reject
000111	Accept

Figura 2. Alguns exemplos de entradas e resultados com base no AP da Questão 1 letra A Fonte: Própria

Figura 3. Questão 1, letra B Fonte: Própria

Input	Result
10000	Reject
01010	Accept
000110	Accept
010100111	Reject
01110000	Reject
00001001	Accept

Figura 4. Alguns exemplos de entradas e resultados com base no AP da Questão 1 letra B Fonte: Própria

Figura 5. Questão 1, letra C Fonte: Própria

Input	Result
001101	Accept
010101	Accept
11100100	Accept
10	Accept
011100	Accept
0001	Reject

Figura 6. Alguns exemplos de entradas e resultados com base no AP da Questão 1 letra C Fonte: Própria

Figura 7. Questão 1, letra D Fonte: Própria

Input	Result
01011C11010	Accept
10C10	Reject
10C01	Accept
1001	Reject
110C0111	Reject
110011	Reject

Figura 8. Alguns exemplos de entradas e resultados com base no AP da Questão 1 letra D Fonte: Própria

Figura 9. Questão 1, letra E Fonte: Própria

Input	Result
0100	Accept
0011100	Reject
	Accept
01000	Reject
00	Accept
0110	Reject

Figura 10. Alguns exemplos de entradas e resultados com base no AP da Questão 1 letra E Fonte: Própria

Figura 11. Questão 1, letra F Fonte: Própria

Input	Result
1001	Accept
00100	Reject
0101	Reject
00111100	Accept
01011010	Accept
001010	Reject

Figura 12. Alguns exemplos de entradas e resultados com base no AP da Questão 1 letra F Fonte: Própria

Figura 13. Questão 1, letra G Fonte: Própria

Input	Result
abc	Accept
aaabccc	Accept
abbbbc	Accept
aabbccccc	Accept
abaaac	Reject
abbcc	Reject

Figura 14. Alguns exemplos de entradas e resultados com base no AP da Questão 1 letra G Fonte: Própria

2.

a)

$$S \rightarrow 0 \mid 5 \mid N5 \mid N0$$

$$N \rightarrow 1 \mid 2 \mid 3 \mid ... \mid 9 \mid NN \mid N0$$

 $L(G) = \{ w \mid w = \text{todo número múltiplo de 5 incluindo o 0} \}$

b)

$$S \rightarrow 0S1 \mid 1S0 \mid 01 \mid 10$$

 $L(G) = \{ w \in \{0,1\} \mid w \text{ possui os extremos, até o centro, opostos, por exemplo: se o primeiro for 1 o último tem que ser 0, se o segundo for 0 o penúltimo tem que ser 1 até chegar ao centro \}$

Outra solução que encontrei foi:

 $L(G) = \{ w \in \{0,1\} \mid w \text{ tem tamanho par e a mesma quantidade de 0s e 1s e que se lida} \\$ de trás pra frente trocando os 0s por 1s e vice versa terá que resultar na entrada original \}

$$S \rightarrow aBca \mid aca$$

 $B \rightarrow b \mid bB$

$$L(G) = \{ab^n ca \mid n \ge 0\}$$

d)

$$S \to 0A \mid 1B$$
 $A \to 0A \mid 0$ $B \to 1B \mid 1$ $L(G) = \{(0^n + 1^m) \mid n, m \ge 2\}$

3.

As Gramáticas Livres de Contexto (GLC) são gramáticas onde as regras de produção são definidas de forma mais livre do que nas gramáticas regulares. A GLC é um tipo mais complexo de geradores de linguagem, as quais materializam um completo entendimento do procedimento de construção das palavras pertencentes à linguagem. Elas reconhecem todas as linguagens regulares e mais outras. A GLC é aplicada em compiladores e conversores de documentos.

4.

$$L(G) = \{\ 0^n 1^{2n} 0^m \ |\ n, m \ge 0\}$$

$$S \rightarrow \lambda \mid AB$$

$$A \rightarrow 0A11 \mid \lambda$$

$$B \rightarrow 0B \mid \lambda$$

5.

a)

O estudo das Linguagens Livres de Contexto tem uma fundamental importância para a ciência da computação, pois aborda um conjunto mais amplo de linguagens e tem grande importância dentro do estudo das Linguagens Formais, pois através delas pode ser descrita a maior parte das construções sintáticas das linguagens de programação. Com ela podemos tratar questões como as dos parênteses balanceados construções de blocos e estruturas, entre outras

formalidades de linguagens de computação conhecidas. Seu estudo é fundamental para o desenvolvimento de compiladores, pois a partir destas são desenvolvidos os analisadores sintáticos, parte de um compilador.

b)

A aplicação dessas linguagens para os autômatos é usada em autômatos de pilha que se trata de um reconhecedor da linguagem, que consiste basicamente em um autômato que utiliza uma pilha, que serve como memória adicional. E aplicando a sua gramática, se tornam tão importantes porque podem descrever estruturas recursivas o que as tornam necessárias para uma variedade de aplicações, como por exemplo, a formação de um analisador sintático, componente de um compilador.

c)

LINGUAGENS LIVRES DE CONTEXTO	LINGUAGENS REGULARES	
DIFERENÇAS		
Possuem regras gerais	Possuem regras restritas	
Pode expressar linguagens livres de contexto e também as regulares	Expressa apenas as linguagens regulares	
Ao expressar em um autômato pode contar com o auxílio de uma memória para determinar a frequência de um elemento	Não conta com ajuda de memória	
SEMELHANÇAS		
Podem expressar linguagens finitas	Podem expressar linguagens finitas	
São fechadas em determinadas operações	São fechadas em determinadas operações	

Universidade Federal do Amazonas

Fundamentos Teóricos da Computação Primeira lista de FTC Prof. Msc. Aurélio Andrade de Menezes Júnior Periodo: 01/2020

1^a Lista de Exercícios Parte 7

- 1) O que são os problemas Indecidíveis. Explique o Problema da Parada na teoria da computabilidade. (Problema para pesquisa).
- 2. Construa Máquinas de Turing (MT) que reconheçam as seguintes linguagens
- a) $L = \{0^n1^n \mid n > = 1\}$
- b) L={ $w#w | w \hat{I} \{0,1\}^*$ }
- c) L = { $a^nb^nc^n | n >= 0$ }
- d) L = Cadeias com o mesmo número de a's e b's
- 3) Construa uma MT, com o alfabeto {a,b}, para cada um dos casos abaixo:
- a) Mova a entrada um espaço em branco (B) para a direita. Configuração de entrada q₀BwB resulta em q₁BBwB.
- b) Concatena o reverso da entrada com a entrada. Configuração de entrada q₀BwB resulta em q₁Bww⋅B.
- c) Insira um espaço em branco (B) entre os caracteres da entrada. Configuração de entrada q₀BabaB resulta em q₁BaBbBaB.
- d) Apague os b's da entrada. Configuração de entrada qoBabaabbaB resulta em qoBaaaaB.

1ª LISTA DE EXERCÍCIOS PARTE 7

1.

O problema indecidível é um tipo de problema na qual não se pode montar um algoritmo que sempre tenha uma resposta direta (sim ou não), ou seja, ele pode não responder ou responder errado. Em linhas gerais, é um problema em que a linguagem não é um conjunto recursivo.

O problema da parada, resumidamente em uma situação seria: dado a descrição de uma máquina de Turing M e uma entrada w, quando iniciado na configuração inicial Q_0 w, ela efetua uma computação que para? Em outras palavras, decidir se um programa é um algoritmo, ou seja, um programa que acaba. Se o número de dados é finito, o problema consiste em verificar para todos os dados. Caso contrário, é impossível provar que ele para, para qualquer dado do conjunto de dados possíveis. Usando uma maneira abreviada de falar do problema, perguntamos se M aplicada a w, ou simplesmente (M, w), para ou não para.

a)

Figura 1. MT da questão 2, letra A Fonte: Própria

Input	Result
01	Accept
001	Reject
00111	Reject
0011	Accept
0101	Reject
000	Reject

Figura 2. Alguns exemplos de entradas e resultados referentes à MT da questão 2, letra A Fonte: Própria

Figura 3. MT da questão 2, letra B Fonte: Própria

Input	Result
#	Accept
01#01	Accept
100#001	Reject
1010	Reject
0101#01011	Reject
#0101	Reject

Figura 4. Alguns exemplos de entradas e resultados referentes à MT da questão 2, letra B Fonte: Própria

Figura 5. MT da questão 2, letra C Fonte: Própria

Input	Result
abc	Accept
	Accept
aabbcc	Accept
abbcc	Reject
bbccaa	Reject
aacc	Reject

Figura 6. Alguns exemplos de entradas e resultados referentes à MT da questão 2, letra C Fonte: Própria

Figura 7. MT da questão 2, letra D Fonte: Própria

Input	Result
	Accept
abbbaa	Accept
abab	Accept
bbaaa	Reject
aabab	Reject
bbaa	Accept

Figura 8. Alguns exemplos de entradas e resultados referentes à MT da questão 2, letra D Fonte: Própria

a)

Figura 9. MT da questão 3, letra A Fonte: Própria

Nesta questão optei por usar a configuração de entrada Q_0 wB que resulta em Q_0 BwB, onde inicialmente o Q_0 aponta para a entrada w, e ao final, após mover a entrada um espaço em branco (B) para a direita, apontar para um B e após ele a entrada w.

Figura 10. Exemplo inicial 1 referente à MT da questão 3, letra A Fonte: Própria

Figura 11. Exemplo final 1 referente à MT da questão 3, letra A Fonte: Própria

Figura 12. Exemplo inicial 2 referente à MT da questão 3, letra A Fonte: Própria

Figura 13. Exemplo final 2 referente à MT da questão 3, letra A Fonte: Própria

Figura 14. MT da questão 3, letra B Fonte: Própria

Nesta questão optei por usar a configuração de entrada Q_0 wB que resulta em Q_0 BwB, onde inicialmente o Q_0 aponta para a entrada w, e ao final, após concatenar com o reverso da entrada com a entrada, apontar para um B e após ele a entrada w concatenada com w^r.

Figura 15. Exemplo inicial 1 referente à MT da questão 3, letra B Fonte: Própria

Figura 16. Exemplo final 1 referente à MT da questão 3, letra B Fonte: Própria

Figura 17. Exemplo inicial 2 referente à MT da questão 3, letra B Fonte: Própria

Figura 18. Exemplo final 2 referente à MT da questão 3, letra B Fonte: Própria

Figura 19. MT da questão 3, letra C Fonte: Própria

Nesta questão optei por usar a configuração de entrada Q_0 wB que resulta em Q_0 BwB, onde inicialmente o Q_0 aponta para a entrada w como por exemplo <u>aba</u>, e ao final, após inserir um espaço em branco entre os caracteres, apontar para um B e após ele a entrada w final como por exemplo <u>aBbBaB</u>.

Figura 20. Exemplo inicial 1 referente à MT da questão 3, letra C Fonte: Própria

Figura 21. Exemplo final 1 referente à MT da questão 3, letra C Fonte: Própria

Figura 22. Exemplo inicial 2 referente à MT da questão 3, letra C Fonte: Própria

Figura 23. Exemplo final 2 referente à MT da questão 3, letra C Fonte: Própria

Figura 24. MT da questão 3, letra D Fonte: Própria

Ao final deixei a MT maior, caso não dê para enxergar.

Nesta questão optei por usar a configuração de entrada Q_0 wB que resulta em Q_0 BwB, onde inicialmente o Q_0 aponta para a entrada w como por exemplo <u>abaabba</u>, e ao final, após apagar os caracteres bs da entrada, apontar para um B e após ele a entrada w final como por exemplo <u>aaaa</u>.

Figura 25. Exemplo inicial 1 referente à MT da questão 3, letra D Fonte: Própria

Figura 26. Exemplo final 1 referente à MT da questão 3, letra D Fonte: Própria

Figura 27. Exemplo inicial 2 referente à MT da questão 3, letra D Fonte: Própria

Figura 28. Exemplo final 2 referente à MT da questão 3, letra D Fonte: Própria

Figura 29. MT da questão 3, letra D (maior) Fonte: Própria