ELEC4010N Final Project

HUANG, Jiajun (20694015)

WU, Yongjin (20564741)

Project 1: Semi-Supervised Learning

Semi-Supervised Classification

Semi-Supervised learning

Why we need semi-supervised learning?

- Limited labelled data
- Accuracy improvement with lower cost
- Reduce labelling effort
- Down-to-earth application

Cross Pseudo Supervision (CPS)

Dataset

- Lesion dataset used in Assignment 2 (benign or malignant)
- 900 training images
- 379 testing images

Baseline

- ResNet-50 classification network
- 270 labelled training images
- 90 validation images
- 379 testing images

Implementation of our project

- ResNet-50 classification network trained by CPS method
- 270 labelled training images
- 540 unlabelled training images
- 90 validation images
- 379 testing imagess

Cross Pseudo Supervision (CPS)

Results

	Trial 1	Trial 2	Trial 3	Trial 4
Baseline AUC	0.7549	0.7475	0.7913	0.7790
CPS AUC	0.7824	0.7507	0.8137	0.7835
Baseline ACC	0.7916	0.7968	0.8259	0.8074
CPS ACC	0.8259	0.8153	0.8443	0.8127

Project 2: Domain Generalization

On SCGM (spinal cord gray matter segmentation)

Task

- DG: several different but related domains are given. How to learn a model that can generalize to an unseen test domain?
- Image: MRI from 4 hospitals
- Label: Spinal Cord (SC) & Grey Matter (GM)
- Train & Val 3 hospitals. Test 1 left hospital

Baseline

- Model: 2-D U-Net with ResNet50 as encoder.
- Loss: Dice loss (averaged between 2 labels)

Baseline Result

Cannot generalize to an unseen domain well.

FACT

In Fourier Transformation:

 phase - high-level semantics
 amplitude - low-level statistics

A Fourier-Based Framework for Domain Generalization (thecvf.com)

FACT Result

FACT Result

 With augmented data, FACT model has better generalization ability.

