AI25BTECH11003 - Bhavesh Gaikwad

Question: For which values of p does the pair of equations given below have a unique solution.

$$4x + py + 8 = 0$$

 $2x + 2y + 2 = 0$

Solution:

Given:

$$4x + py + 8 = 0 \tag{0.1}$$

1

$$2x + 2y + 2 = 0 ag{0.2}$$

Standard Form: Ax = b where:

Coefficient Matrix: $\mathbf{A} = \begin{pmatrix} 4 & p \\ 2 & 2 \end{pmatrix}$

Constant Vector: $\mathbf{b} = \begin{pmatrix} -8 \\ -2 \end{pmatrix}$

Augmented Matrix: $[\mathbf{A}|\mathbf{b}] = \begin{pmatrix} 4 & p & -8 \\ 2 & 2 & -2 \end{pmatrix}$

For Unique Solution:

Unique Solution: $rank(\mathbf{A}) = rank([\mathbf{A}|\mathbf{b}]) = n$ (number of variables)

For our system: n = 2 variables

Finding rank(A) - Rank of Coefficient Matrix

Initial Matrix A:

$$\mathbf{A} = \begin{pmatrix} 4 & p \\ 2 & 2 \end{pmatrix} \tag{0.3}$$

Row Operations on A:

$$R_2 \to R_2 - \frac{1}{2}R_1$$
 (0.4)

Row Echelon Form of A:

$$\begin{pmatrix} 4 & p \\ 0 & 2 - \frac{p}{2} \end{pmatrix} \tag{0.5}$$

Rank Analysis:

Case 1: If $2 - \frac{p}{2} \neq 0$ (i.e., $p \neq 4$)

Both rows are non-zero and linearly independent \Rightarrow rank(**A**) = 2

Case 2: If
$$2 - \frac{p}{2} = 0$$
 (i.e., $p = 4$)
Second row is zero, only first row is non-zero $\Rightarrow \operatorname{rank}(\mathbf{A}) = 1$

Finding rank([A|b]) - Rank of Augmented Matrix Initial Augmented Matrix:

$$\begin{pmatrix} 4 & p & -8 \\ 2 & 2 & -2 \end{pmatrix} \tag{0.6}$$

Row Operation on [A|b]:

$$R_2 \to R_2 - \frac{1}{2}R_1 \tag{0.7}$$

Row Echelon Form of Augmented Matrix:

$$\begin{pmatrix} 4 & p & -8 \\ 0 & 2 - \frac{p}{2} & 2 \end{pmatrix} \tag{0.8}$$

Rank Analysis:

Case 1: If $p \neq 4$:

 \Rightarrow rank([**A**|**b**]) = 2

Case 2: If p = 4: $\Rightarrow \operatorname{rank}([\mathbf{A}|\mathbf{b}]) = 2$

Comparing Ranks and Providing Solution Type

Value of p	rank(A)	rank([A b])	Comparison	Solution Type
<i>p</i> ≠ 4	2	2	$rank(\mathbf{A}) = rank([\mathbf{A} \mathbf{b}]) = 2$	UNIQUE
p = 4	1	2	$rank(\mathbf{A}) < rank([\mathbf{A} \mathbf{b}])$	NO SOLUTION

$$\therefore$$
 For p $\in \mathbb{R} - \{4\}$, the pair of equations has an Unique Solution. (0.9)

