Introduction to Robotic Manipulation

Session 2

Todays Agenda

- Announcements
- Review of last session
- Deriving the Contact Jacobian
- Coulomb Friction and Friction Cone
- Finger Jacobians and Forward Kinematics
- Grasping and the Grasp Matrix

Announcements

- Assignment 1 will be out this Friday
- Lecture are actively being uploaded see website
- Video lectures find zoom recordings on Canvas!

Review of last session – Config and States

Review of last session -- Frames

Review of last session – Forces and Wrenches

Deriving the Contact Jacobian

Deriving the Contact Jacobian - Normal

Deriving the Contact Jacobian - Tangent

$$\begin{aligned}
\omega_{\varepsilon} &= J_{\varepsilon} d\varepsilon & \varepsilon \perp n \\
n &= \begin{bmatrix} n_{\eta} \\ -n_{\eta} \end{bmatrix} \rightarrow \varepsilon &= \begin{bmatrix} n_{\eta} \\ -n_{\eta} \end{bmatrix} \\
\omega_{\varepsilon} &= \begin{bmatrix} n_{\eta} \\ -n_{\eta} \end{bmatrix} \rightarrow \text{account for linear} \\
&= \begin{bmatrix} n_{\eta} \\ -n_{\eta} \end{bmatrix} \rightarrow \text{account for retation} \\
&= \begin{bmatrix} n_{\eta} \\ -n_{\eta} \end{bmatrix} \rightarrow \text{account for retation} \\
&= \begin{bmatrix} n_{\eta} \\ -n_{\eta} \end{bmatrix} \rightarrow \text{account for retation} \\
&= \begin{bmatrix} n_{\eta} \\ -n_{\eta} \end{bmatrix} \rightarrow \text{account for retation} \\
&= \begin{bmatrix} n_{\eta} \\ -n_{\eta} \end{bmatrix} \rightarrow \text{account for retation} \\
&= \begin{bmatrix} n_{\eta} \\ -n_{\eta} \end{bmatrix} \rightarrow \text{account for retation} \\
&= \begin{bmatrix} n_{\eta} \\ -n_{\eta} \end{bmatrix} \rightarrow \text{account for retation} \\
&= \begin{bmatrix} n_{\eta} \\ -n_{\eta} \end{bmatrix} \rightarrow \text{account for retation} \\
&= \begin{bmatrix} n_{\eta} \\ -n_{\eta} \end{bmatrix} \rightarrow \text{account for retation} \\
&= \begin{bmatrix} n_{\eta} \\ -n_{\eta} \end{bmatrix} \rightarrow \text{account for retation} \\
&= \begin{bmatrix} n_{\eta} \\ -n_{\eta} \end{bmatrix} \rightarrow \text{account for retation} \\
&= \begin{bmatrix} n_{\eta} \\ -n_{\eta} \end{bmatrix} \rightarrow \text{account for retation} \\
&= \begin{bmatrix} n_{\eta} \\ -n_{\eta} \end{bmatrix} \rightarrow \text{account for retation} \\
&= \begin{bmatrix} n_{\eta} \\ -n_{\eta} \end{bmatrix} \rightarrow \text{account for retation} \\
&= \begin{bmatrix} n_{\eta} \\ -n_{\eta} \end{bmatrix} \rightarrow \text{account for retation} \\
&= \begin{bmatrix} n_{\eta} \\ -n_{\eta} \end{bmatrix} \rightarrow \text{account for retation} \\
&= \begin{bmatrix} n_{\eta} \\ -n_{\eta} \end{bmatrix} \rightarrow \text{account for retation} \\
&= \begin{bmatrix} n_{\eta} \\ -n_{\eta} \end{bmatrix} \rightarrow \text{account for retation} \\
&= \begin{bmatrix} n_{\eta} \\ -n_{\eta} \end{bmatrix} \rightarrow \text{account for retation} \\
&= \begin{bmatrix} n_{\eta} \\ -n_{\eta} \end{bmatrix} \rightarrow \text{account for retation} \\
&= \begin{bmatrix} n_{\eta} \\ -n_{\eta} \end{bmatrix} \rightarrow \text{account for retation} \\
&= \begin{bmatrix} n_{\eta} \\ -n_{\eta} \end{bmatrix} \rightarrow \text{account for retation} \\
&= \begin{bmatrix} n_{\eta} \\ -n_{\eta} \end{bmatrix} \rightarrow \text{account for retation} \\
&= \begin{bmatrix} n_{\eta} \\ -n_{\eta} \end{bmatrix} \rightarrow \text{account for retation} \\
&= \begin{bmatrix} n_{\eta} \\ -n_{\eta} \end{bmatrix} \rightarrow \text{account for retation} \\
&= \begin{bmatrix} n_{\eta} \\ -n_{\eta} \end{bmatrix} \rightarrow \text{account for retation} \\
&= \begin{bmatrix} n_{\eta} \\ -n_{\eta} \end{bmatrix} \rightarrow \text{account for retation} \\
&= \begin{bmatrix} n_{\eta} \\ -n_{\eta} \end{bmatrix} \rightarrow \text{account for retation} \\
&= \begin{bmatrix} n_{\eta} \\ -n_{\eta} \end{bmatrix} \rightarrow \text{account for retation} \\
&= \begin{bmatrix} n_{\eta} \\ -n_{\eta} \end{bmatrix} \rightarrow \text{account for retation} \\
&= \begin{bmatrix} n_{\eta} \\ -n_{\eta} \end{bmatrix} \rightarrow \text{account for retation} \\
&= \begin{bmatrix} n_{\eta} \\ -n_{\eta} \end{bmatrix} \rightarrow \text{account for retation} \\
&= \begin{bmatrix} n_{\eta} \\ -n_{\eta} \end{bmatrix} \rightarrow \text{account for retation} \\
&= \begin{bmatrix} n_{\eta} \\ -n_{\eta} \end{bmatrix} \rightarrow \text{account for retation} \\
&= \begin{bmatrix} n_{\eta} \\ -n_{\eta} \end{bmatrix} \rightarrow \text{account for retation} \\
&= \begin{bmatrix} n_{\eta} \\ -n_{\eta} \end{bmatrix} \rightarrow \text{account for retation} \\
&= \begin{bmatrix} n_{\eta} \\ -n_{\eta} \end{bmatrix} \rightarrow \text{account for retation} \\
&= \begin{bmatrix} n_{\eta} \\ -n_{\eta} \end{bmatrix} \rightarrow \text{account for retation} \\
&= \begin{bmatrix} n_$$

Deriving the Contact Jacobian

Force/Velocity Dual of Jacobian

Coulomb Friction Definition

• Contraste viscour laws $m\ddot{x} + b\dot{x} + kx = u$ viscour dissipation term

Coulomb Friction for Point Mass

the frictional free transmitted between the object and the surface must lie with the friction cone

If I < M for
To coefficient of friction
mathematical countraint on the
magnetidue of tangential free

| fe | ≤ μ h fe = μ h

Coulomb Friction for Point Mass

Coulomb Friction for Extended Body

Friction Wrench Cone

Friction Wrench Cone

Properties:

- It's still a cone
- It's not symmetric w.r.t. linear force plane
- Characterizes the set of all possible forces the frictional interaction can apply to the object
- On the boundary = contact is sliding

Composite Friction Wrench Cone

· Next, ignore C1

JC2 -> orely to FC

etc2

A add the Contribution from

Composite Friction Wrench Cone

Composite Friction Wrench Cone

Properties:

- It's still a cone
- Characterizes the set of all possible forces the frictional interaction can apply to the object
- On the boundary = contact is sliding

Finger Jacobians

Finger Jacobians – Upper Finger

Finger Jacobians – Lower Finger

Finger Jacobians – Total

Finger Jacobians – Total (Intuition)

Finger Jacobians – Dual Force/Velocity

