01 TRIBHUVAN UNIVERSITY INSTITUTE OF ENGINEERING

Examination Control Division 2069 Chaitra

Exam.	Regular		
Level	BE	Full Marks	80
Programme	All (Except B.Arch)	Pass Marks	32 ·
Year / Part	I/I	Time	3 hrs.

Subject: - Engineering Mathematics I (SH401)

- ✓ Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt <u>All</u> questions.
- ✓ <u>All</u> questions carry equal marks.
- ✓ Assume suitable data if necessary.

1. If
$$y = \log (x + \sqrt{(a^2 + x^2)})$$
 show that $(a^2 + x^2)y_{n+2} + (2n+1)xy_{n+1} + n^2y_n = 0$

- 2. State and prove Lagrange's Mean Value theorem.
- 3. If $x \to 0$ $\frac{a \sin x \sin 2x}{\tan^3 x}$ is finite, find the value of a and the limit.
- 4 Find asymptotes of $(x^2-y^2)^2 2(x^2+y^2) + x-1 = 0$
- 5. Find the radius of curvature at any point (x,y) for the curve $x^{2/3}+y^{2/3}=a^{2/3}$
- 6. Prove that $\int_0^\infty \frac{\sin bx}{x} dx = \frac{\pi}{2} (b > 0)$
- 7. Use Beta and Gamma function to evaluate $\int_0^{2a} x^5 \sqrt{2ax x^2} dx$
- 8. Evaluate $\int_0^\infty \frac{e^{-x} \sin bx}{x} dx$ by using the rule of differentiation under the sign of integration.
- 9. Find the volume of the solid formed by the revolution of the cardiod $r = a (1+\cos\theta)$ about initial line.

OR

Find the area bounded by the curve $x^2y = a^2$ (a-y) and the x-axies

- 10. Solve the differential equation $\frac{dy}{dx} = \frac{y}{x} + \tan \frac{y}{x}$
- 11. Solve the differential equation $x \frac{dy}{dx} + y \log y = xye^x$
- 12 Solve the differential equation $\frac{d^2y}{dx^2} + 2\frac{dy}{dx} = e^x + e^{-x}$
- 13. Solve $y = px \sqrt{m^2 + p^2}$ where $p = \frac{dy}{dx}$

OR

A resistance of 100 ohms, an inductance of 0.5 henry are connected in series with a battery of 20 volts. Find the current in the circuit as a function of time.

- 14. Solve that locus of a point which moves in such a way that the differences of it distance from two fixed point is constant is Hyperbola.
- 15. Find the equation of ellipse of the form $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ where a>b
- 16. Describe and sketch the graph of the equation $r = \frac{4 \sec \theta}{2 \sec \theta 1}$