This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

- 1. (Currently Amended) An electro-optical light modulation element comprising
 - a substrate or a plurality of substrates,
 - an electrode arrangement,
 - an element or a plurality of elements for polarisation of the light and
 - a mesogenic modulation medium, wherein
 - the light modulation element is operated at the temperature at which the modulation medium in the unaddressed state is in an optically isotropic phase and
 - the mesogenic modulation medium comprises a chiral component, component (A), which consists of one or more chiral compounds, at least one of which has an HTP of 30 µm⁻¹ or more, and
 - the mesogenic modulation medium comprises an achiral component, component
 (B), which consists of one or more achiral compounds,
 - the mesogenic modulation medium is operated at the temperature at which the light modulation element has a blue phase or
 - the mesogenic modulation medium is operated at the temperature at which the light modulation element is in the isotropic phase, wherein
 - the relative temperature dependence (dV*₁₀/dT) of the characteristic voltage for 10% relative contrast (V₁₀) of the modulation medium is 30%/degree or less at a temperature of 2° above the characteristic temperature (T_{char.}) in the range of +/-1° around this temperature.
- 2. (Previously Presented) The electro-optical light modulation element according to Claim 1, wherein
 - the electrode arrangement is able to generate an electric field having a significant component parallel to the surface of the mesogenic modulation medium.
- 3. (Previously Presented) The electro-optical light modulation element according to Claim 1, wherein
 - the mesogenic modulation medium has a blue phase.

4.- 6. (Cancelled)

- 7. (Previously Presented) The electro-optical light modulation element according to Claim 1, wherein
 - the relative temperature dependence (dV*₁₀/dT) is 23%/degree or less.
- 8. (Currently Amended) An The electro-optical light modulation element according to Claim 1, wherein comprising
 - a substrate or a plurality of substrates,
 - an electrode arrangement,
 - an element or a plurality of elements for polarisation of the light and
 - a mesogenic modulation medium, wherein
 - the light modulation element is operated at the temperature at which the modulation medium in the unaddressed state is in an optically isotropic phase and
 - the mesogenic modulation medium comprises a chiral component, component
 (A), which consists of one or more chiral compounds, at least one of which has an HTP of 30 µm⁻¹ or more, and
 - the mesogenic modulation medium comprises an achiral component, component
 (B), which consists of one or more achiral compounds,
 - the mesogenic modulation medium is operated at the temperature at which the light modulation element has a blue phase or
 - the mesogenic modulation medium is operated at the temperature at which the light modulation element is in the isotropic phase

and a

- the characteristic voltage for 10% relative contrast (V₁₀) at a temperature of 2° above the characteristic temperature (T_{char.}) of the modulation medium in cells is 80 V₋ preferably 60 V or less.
- 9. (Previously Presented) The electro-optical light modulation element according to Claim 1, wherein
 - the mesogenic modulation medium comprises a chiral component, component (A), which consists of two or more chiral compounds.
- 10. (Currently Amended)

 An The electro-optical light modulation element according to Claim 9, wherein comprising

3 MERCK-3016

- a substrate or a plurality of substrates,
- an electrode arrangement.
 - an element or a plurality of elements for polarisation of the light and
- a mesogenic modulation medium, wherein
- the light modulation element is operated at the temperature at which the modulation medium in the unaddressed state is in an optically isotropic phase and
- the mesogenic modulation medium comprises a chiral component, component (A), which consists of two or more chiral compounds, at least one of which has an HTP of 30 μm⁻¹ or more, and
- the mesogenic modulation medium comprises an achiral component, component
 (B), which consists of one or more achiral compounds,
- the mesogenic modulation medium is operated at the temperature at which the light modulation element has a blue phase or
- the mesogenic modulation medium is operated at the temperature at which the light modulation element is in the isotropic phase,

and

 all the chiral compounds of component (A) have the same sign of the HTP at 20°C in the reference mixture.

11. - 12. (Cancelled)

- 13. (Currently Amended) An The electro-optical light modulation element according to Claim 1, wherein
 - a substrate or a plurality of substrates,
 - an electrode arrangement,
 - an element or a plurality of elements for polarisation of the light and
 - a mesogenic modulation medium, wherein
 - the light modulation element is operated at the temperature at which the modulation medium in the unaddressed state is in an optically isotropic phase and
 - the mesogenic modulation medium comprises a chiral component, component (A), which consists of one or more chiral compounds, at least one of which has an HTP of 30 μm⁻¹ or more, and
 - the mesogenic modulation medium comprises an achiral component, component (B), which consists of one or more achiral compounds,
 - the mesogenic modulation medium is operated at the temperature at which the

- light modulation element has a blue phase or
- the mesogenic modulation medium is operated at the temperature at which the light modulation element is in the isotropic phase

and either

- the dielectric susceptibility (ε_{av}) of the modulation medium at a temperature of 4 degrees above the conversion temperature from the blue phase or from the cholesteric phase into the isotropic phase is 40 or more, or preferably 55 or more.
- the optical anisotropy at a temperature of 4 degrees below the transition temperature from the cholesteric phase into the isotropic phase is 0.050 or more.
- 14. (Currently Amended) The electro-optical light modulation element of Claim +, wherein
 - the optical anisotropy at a temperature of 4 degrees below the transition temperature from the cholesteric phase into the isotropic phase is 0.050 or more, preferably 0.080 or more.
- 15. (Previously Presented) An electro-optical display containing one or more light modulation elements according to Claim 1.
- 16. (Previously Presented) The electro-optical display according to Claim 15, wherein the display is addressed by means of an active matrix.
- 17. (Previously Presented) An electro-optical display system containing one or more electro-optical displays according to Claim 15.
- 18. (Previously Presented) The electro-optical display system according to Claim 17, which is a television screen, computer monitor or as both.

19. - 20. Cancelled)

21. (Previously Presented) A method for the display of video signals or of digital signals or information, comprising transmitting video signals or digital signals to a display according to Claim 15.

5

22. (Cancelled)

- 23. (Currently Amended) A mesogenic modulation medium which comprises
 - (a) a chiral component, component (A), which consists of one or more chiral compounds at least one of which has an HTP of 30 μm⁻¹ or more, and
 - (b) optionally an achiral component, component (B), which consists of one or more achiral compounds.
 - the mesogenic modulation medium is operated at the temperature at which the light modulation element has a blue phase or
 - the mesogenic modulation medium is operated at the temperature at which the light modulation element is in the isotropic phase, wherein
 - the relative temperature dependence (dV*₁₀/dT) of the characteristic voltage for 10% relative contrast (V₁₀) of the modulation medium is 30%/degree or less at a temperature of 2° above the characteristic temperature (T_{char}) in the range of +/-1° around this temperature.

24. - 26. (Cancelled)

- 27. (Previously Presented) A medium according to Claim 23, having a characteristic temperature in the range from 0°C to 60°C.
- **28.** (Currently Amended) A medium according to Claim 32, wherein the blue phase has a temperature range of <u>at least</u> 5 degrees or more than 5 degrees.
- 29. (Currently Amended) A medium according to Claim 28, wherein the blue phase has a temperature range of at least 10 degrees-or-more than 10 degrees.
- 30. (Previously Presented) The electro-optical light modulation element according to Claim 1, wherein component (A) consists of one or more chiral components at least one of which has an HTP of $50 \ \mu m^{-1}$ or more.
- 31. (Previously Presented) The electro-optical light modulation element according to Claim 1, wherein component (A) consists of one or more chiral components at least one of which has an HTP of 90 μm^{-1} or more.
- 32. (Currently Amended) A medium according to Claim 23, having a blue phase, with a characteristic temperature in the range from -20°C° 0°C°-or below to 80°C-or-above.