Black Hole Information Paradox

Amplitudes 2022 Gong Show

Taro Valentin Brown

Center for Quantum Mathematics and Physics (QMAP), Davis

July 27, 2022

CHY Recap

 We have already seen how Cachazo, He, and Yuan found how to construct d-dimensional scattering amplitudes from

$$A(1,...,n) = \int d\Omega_{\mathsf{CHY}} \, \mathcal{I}_L \times \mathcal{I}_R$$
 (1)

with measure $d\Omega_{\text{CHY}} = z_{rs}^2 z_{st}^2 z_{tr}^2 \prod_{\substack{i=1 \ i \neq r,s,t}} dz_i \, \delta(S_i)$.

• S_i 's are the scattering equations

$$S_i(z) \equiv \sum_{\substack{j=1\\j\neq i}} \frac{2k_i \cdot k_j}{z_i - z_j} = 0, \quad i = 1, ..., n.$$
 (2)

 Left and right integrands depend on specific theory, but ofte contain a Pfaffian.

CHY

Massive particles

Can be expanded to include massive particles.

$$E_i(z) \equiv \sum_{\substack{j=1\\i \neq j}} \frac{2k_i \cdot k_j + 2\Delta_{ij}}{z_{ij}} = 0, \quad i = 1, ..., n,$$
(3)

with

$$\Delta_{ij} = \Delta_{ji}, \quad \sum_{\substack{i=1\\i \neq j}}^{n} \Delta_{ij} = m_j^2. \tag{4}$$

CHY

Massive particles

- Two particles $m_1 = m_n = m$.
- Sufficient to consider $\Delta_{1n} = \Delta_{n1} = m^2$.
- ullet If Pfaffian is reduced by 1 and n

$$\mathsf{Pf}'_{\mathsf{massive}}\Psi_{1n} = \mathsf{Pf}'_{\mathsf{massless}}\Psi_{1n}. \tag{5}$$

Color/kinematics duality

Introduction

 Using double copy in the DDM-basis leads to expansion of CHY Pfaffian

$$Pf'(\Psi_{1n}) = \sum_{\beta \in S_{n-2}} N(1, \beta, n) PT(1, \beta, n),$$
 (6)

ullet 1 and n can be massive due to the reduction of the Pfaffian.

Color/kinematics duality

Increasing tree algorithm

- Increasing tree algorithm to calculate numerators.
- Need the following quantities for spin one

$$f_i \equiv f_i^{\mu\nu} = p_i^{\mu} \epsilon_i^{\nu} - p_i^{\nu} \epsilon_i^{\mu}, \tag{7}$$

$$B_{s=1}(1,\rho,n) = \epsilon_1 \cdot f_{\rho(b_1)} \cdot f_{\rho(b_2)} \cdots f_{\rho(b_{|\mathsf{B}|})} \cdot \epsilon_n. \tag{8}$$

Rules are most easily shown from example

Color/kinematics duality

Increasing tree algorithm

Diagrams contributing to three-point numerator

(9)

The numerator is

$$N_{\{2\}}(1^1, 2^1, 3^1) = -(\epsilon_1 \cdot \epsilon_3)(\epsilon_2 \cdot k_1) + (\epsilon_1 \cdot f_2 \cdot \epsilon_3)$$
 (10)

