TABLE 6.2.1 Elementary Laplace Transforms

$f(t) = \mathcal{L}^{-1}\{F(s)\}$	$F(s) = \mathcal{L}\{f(t)\}\$	Notes
1.1	$\frac{1}{s}$, $s > 0$	Sec. 6.1; Ex. 4
$2. e^{at}$	$\frac{1}{s-a}$, $s>a$	Sec. 6.1; Ex. 5
3. t^n ; $n = \text{positive integer}$	$\frac{n!}{s^{n+1}}, \qquad s > 0$	Sec. 6.1; Prob. 27
$4. t^p, p > -1$	$\frac{\Gamma(p+1)}{s^{p+1}}, \qquad s > 0$	Sec. 6.1; Prob. 27
5. sin at	$\frac{a}{s^2 + a^2}, \qquad s > 0$	Sec. 6.1; Ex. 6
6. cos at	$\frac{s}{s^2+a^2}, \qquad s>0$	Sec. 6.1; Prob. 6
7. sinh <i>at</i>	$\frac{a}{s^2 - a^2}, \qquad s > a $	Sec. 6.1; Prob. 8
8. cosh at	$\frac{s}{s^2 - a^2}, \qquad s > a $	Sec. 6.1; Prob. 7
9. $e^{at} \sin bt$	$\frac{b}{(s-a)^2+b^2}, \qquad s>a$	Sec. 6.1; Prob. 13
$10. e^{at} \cos bt$	$\frac{s-a}{(s-a)^2+b^2}, \qquad s>a$	Sec. 6.1; Prob. 14
11. $t^n e^{at}$, $n = positive integer$	$\frac{n!}{(s-a)^{n+1}}, \qquad s>a$	Sec. 6.1; Prob. 18
12. $u_c(t)$	$\frac{e^{-cs}}{s}, \qquad s > 0$	Sec. 6.3
$13. u_c(t) f(t-c)$	$e^{-cs}F(s)$	Sec. 6.3
$14. e^{ct} f(t)$	F(s-c)	Sec. 6.3
15. $f(ct)$	$\frac{1}{c}F\left(\frac{s}{c}\right), \qquad c > 0$	Sec. 6.3; Prob. 19
$16. \int_0^t f(t-\tau)g(\tau) d\tau$	F(s)G(s)	Sec. 6.6
17. $\delta(t-c)$	e^{-cs}	Sec. 6.5
18. $f^{(n)}(t)$	$s^n F(s) - s^{n-1} f(0) - \cdots - f^{(n-1)}(0)$	Sec. 6.2
$19. \left(-t\right)^n f(t)$	$F^{(n)}(s)$	Sec. 6.2; Prob. 28

$f(t), t \geq 0$	$\mathbf{F}(\mathbf{s})$	ROC
1. $\delta(t)$	1	All s
2. <i>u</i> (<i>t</i>)	$\frac{1}{s}$	Re(s) > 0
3. <i>t</i>	$\frac{1}{s^2}$	Re(s) > 0
4. <i>t</i> ⁿ	$\frac{n!}{s^{n+1}}$	Re(s) > 0
5. e^{-at}	$\frac{1}{s+a}$	Re(s) > -a
6. te^{-at}	$\frac{1}{(s+a)^2}$	Re(s) > -a
7. $t^n e^{-at}$	$\frac{n!}{(s+a)^{n+1}}$	Re(s) > -a
8. sin <i>bt</i>	$\frac{b}{s^2+b^2}$	Re(s) > 0
9. $\cos bt$	$\frac{s}{s^2+b^2}$	Re(s) > 0
10. $e^{-at} \sin bt$	$\frac{b}{(s+a)^2+b^2}$	Re(s) > -a
11. $e^{-at}\cos bt$	$\frac{s+a}{(s+a)^2+b^2}$	Re(s) > -a
12. <i>t</i> sin <i>bt</i>	$\frac{2bs}{(s^2+b^2)^2}$	Re(s) > 0
13. <i>t</i> cos <i>bt</i>	$\frac{s^2 - b^2}{(s^2 + b^2)^2}$	Re(s) > 0