Label each bond in the following compounds as ionic or covalent.

a. F₂

b. LiBr c. CH₃CH₃

Drawing Lewis structures

1 Arrange the atoms with H's on the periphery.	2 Count valence electrons.	3 Add single bonds.	4 Complete octets with multiple bonds and lone pairs.
H H H C C O H	2 C's x 4 e ⁻ = 8 4 H's x 1 e ⁻ = 4 1 O x 6 e ⁻ = 6 total e ⁻ = 18	H H H C C C O I H 12 e used.	H H I I H C C = 0 I H Add one double bond and two lone pairs to complete O and C octets.

Draw an acceptable Lewis structure for each compound, assuming the atoms are connected as arranged.

a. HCN $\,$ H $\,$ C $\,$ N $\,$ b. $\,$ C $_3H_4$ $\,$ H $\,$ C $\,$ C $\,$ H

Н

Н

2 Subtract the number of electrons owned by each atom from the group number to give the formal charge.

C:
$$4e^{-} - 4e^{-} = 0$$

$$H: 1e^{-} - 1e^{-} = 0$$

$$0:6e^{-}-5e^{-}=+1$$

- A and B are resonance structures.
- The position of one electron pair (in red) is different.

- C and D are isomers.
- The position of a H atom (in red) is different.

Classify each pair of compounds as isomers or resonance structures.

a.
$$\vec{:}\vec{N}=C=\vec{O}$$
: and $\vec{:}C\equiv\vec{N}-\vec{O}$: b. \vec{H}

Problem 1.14 Use curved arrow notation to show how the first resonance structure can be converted to the second.

a.
$$H \xrightarrow{C} C CH_3$$
 $H \xrightarrow{C} CH_3$ $H \xrightarrow{C} CH$

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

Problem 1.34 Rank the labeled bonds in santalbic acid, a fatty acid obtained from the seeds of the sandalwood tree used in cosmetics, in order of increasing bond length.

Converting structures

HO

$$CH_3$$
 H

 CH_3 C

 CH_3 H

 CH_3 C

 CH_3 H

 CH_3 C

 CH_3 H

 CH_3 C

 CH_3 C

Convert each molecule to a skeletal structure.

a. (CH₃)₂CHCH₂CH₂CH(CH₃)₂

c. $CH_3(CH_2)_2C(CH_3)_2CH(CH_3)CH(CH_3)CH(Br)CH_3$

b. CH₃CH(Cl)CH(OH)CH₃

limonene (oil of lemon)