Design Parameters

Design the schematic of a Low Power 2-stage Operational Transconductance Amplifier (OTA) with RC compensation in GPDK 45nm technology (differential input, single ended output) to meet the following specifications:

- DC gain ≥ 48 dB
- Unity gain frequency ≥ 70 MHz
- Output voltage swing ≥ 0.6 Vpk-pk
- Slew rate ≥ 60 V/µs
- Phase Margin ≥ 60°
- Input referred spot noise (at 10 MHz) ≤ 80 nV/√Hz
- Input referred spot noise (at 0.1 MHz) ≤ 90 nV/√Hz
- Input Common mode voltage = 0.6 V
- Output load capacitance = 1 pF (From analogLib)
- VDD = 1.2 V
- Power consumption ≤ 0.25 mW

2 Hand calculations

(1) Phase Matthin =
$$90 - tan^{-1} \left(\frac{4a}{dao} \right)$$

Siver us

 $8M \ge 60^{\circ}$
 $54 \ge 70MMZ$
 $\Rightarrow 1MD = 70\sqrt{3} = 121.24 MHZ$
 $foro = \frac{3mc}{2\pi CL} \Rightarrow 9mc^{\circ} = 2\pi \times 121.24 M = 762MS$

(2) $9mc = \frac{2 \cos s}{N + 3 \cos c} = \frac{2 \cos s}{\cos 2} = 10 \cos c = 114.3 M = 10 \cos c$

(3) $Toss = I_{ss}(1 + \frac{CL}{Ce}) = I_{ss} + (SR)CL$
 $= I_{ss}(1 + \frac{CL}{Ce}) = I_{ss} + (SR)CL$
 $= I_{ss} + Go = I_{ss} = SN \cdot 3MA$

(4) $SR = \frac{T_{ss}}{Cc} \Rightarrow Cc = \frac{T_{sc}}{SR} = 0.90 \text{ s} \text{ pf}$

(5) $R_2 = \frac{1}{3mc} C1 + \frac{CL}{Ce} = 2.76 \text{ k/L}$

(6) $2\pi 4u = \frac{gm}{Ce} \Rightarrow 9mc = 2\pi 4u \cdot cc = 3.98 \text{ M/L}$

$$\frac{2}{398} = \frac{398^2}{54.3 \times 286} = 10.2$$

(9)
$$\left(\frac{\omega}{L}\right)_{7} = \frac{9m_{1}^{2}}{2 \log s \ln w} = \frac{762^{2}}{2 \times 114.3 \times 130.3} = 20$$

$$\frac{(12)}{(12)}6 = \frac{9m6}{2 \text{ Ke Foss}} = \frac{762^2}{2 \times 32 \times 114.3} = 79.4 \text{ Seconds}$$

if duedeed y 1= 298 x762 54.3 × 114.3 × 2 × 260 ÷ 1= 0,307 SO IN+ > 0,585 x 45° = 0,307 x Ln => Ln = 90 nm 0141 X42 6 = 0+301× Fb = 60 mm not of 0.694 x300 = 0.307 x Lnot=4 Lnot= 680mm

3 DC Operating point

3.1 Testbench

Figure 1: DC Testbench

3.2 Schematic with operating points

Figure 2: Schematic with DC operating points

4 Stability Analysis

4.1 Testbench

Figure 3: Stability Analysis Testbench

4.2 Stability plots

Figure 4: Stability plots

4.3 Stability Summary

Figure 5: Stability Summary

5 AC analysis: Differential Gain

5.1 Testbench

Figure 6: Differential Mode Testbench

5.2 Gain and Phase Plots

Figure 7: Closed loop gain and phase

5.3 Input Referred Offset

Figure 8: Input referred offset

5.4 DC operating points

Figure 9: Schematic with DC operating points

6 AC analysis: Common mode gain

6.1 Testbench

Figure 10: Common Mode Testbench

6.2 Common Mode Gain

Figure 11: Common mode gain

7 Transient analysis: Sinusoidal input

7.1 Testbench

Figure 12: Testbench for voltage swing analysis

7.2 Voltage Swing

Figure 13: Voltage Swing

8 Transient analysis: Step input

8.1 Testbench

Figure 14: Testbench for slew rate analysis

8.2 Slew Rate

Figure 15: Slew rate

9 Noise analysis

9.1 Testbench

Figure 16: Testbench for noise analysis

9.2 Input Referred Noise

Figure 17: Input referred noise

9.3 Noise Summary

Figure 18: Noise summary

10 Summary of Results obtained

Tabulate all the OTA Specifications achieved by your design from Q2 to Q8 in typical corner as shown below: [Typical corner: TT, 27°C]

Q.No	Parameters	Value (Unit)
2	Power Consumption	0.19 mW
3	DC gain	49.20 dB
	f-3dB	213.141 kHz
	Unity Gain frequency	74.458 kHz
	Phase margin	109.93°
4	Closed Loop Gain	1
	f-3dB	51.63 MHz
	Input referred offset (DC analysis)	-8.203 mV
5	Common-mode gain	0.02
	CMRR	25
6	Output Swing (Vpk-pk)	0.681Vp-p
7	Slew rate	68.45 V/us
	Settling Time (1% accuracy)	11.7 ns
8	Input referred spot noise (at 1 MHz)	28.8175 nV/√Hz
	Input referred spot noise (at 10 MHz)	14.65 nV/√Hz
	Total summarized Noise	0.000185
	Total input referred Noise	0.000323

Figure 19: Results Summary