ML Project Documentation

Numerical Dataset

Dataset Name: Medical Condition Prediction

Dataset size (shape): 10000 X 9

Number of classes: 9 columns

Total number of samples: 10000 samples

About dataset: This dataset provides information about various medical conditions such as Cancer, Pneumonia, and Diabetic based on demographic, lifestyle, and health-related features. It contains randomly generated user data, including multiple missing values, making it suitable for handling imbalanced classification tasks and missing data problems.

Goal: The objective of this dataset is to predict the medical condition (Cancer, Pneumonia, Diabetic) of a user based on their demographic, lifestyle, and health-related features. This dataset can be used to explore strategies for dealing with imbalanced classes and missing data in healthcare applications.

we splitted our dataset into 20% Testing & 80% Training

Used Algorithms: Multiple Linear Regression & KNN (K-Nearest Neighbor)

Comparison between the 2 algorithms performance in computing (MAE, MSE, R-squared)

using Multiple Linear Regression vs. KNN (K-Nearest Neighbor)

MSE: 0.7176912131274827 KNN Regressor - MSE: 0.4003265881147541

MAE: 0.6940574147213712 KNN Regressor - MAE: 0.6940574147213712

R Squared Score: 0.00537763228779875 KNN Regressor - R2 Score:0.4452018198833

SO it's appear that **KNN** performance is better than **Multiple Linear Regression** and more efficient (ie, R-squared is higher)

Image dataset

Dataset Name: fruits-360

Dataset size (shape): A dataset with 94110 images of 141 fruits, vegetables and nuts

Number of classes: 5

We splitted our dataset into 20% Testing & 80% Training

Used Algorithms: Logistic Regression & KNN (K-Nearest Neighbor)

Classes Worked On:

- 1. Avocado 1
- 2. Apple 6
- 3. Pepper Green 1
- 4. Lemon 1
- 5. Mango 1

Evaluation Metrics:

• Accuracy: Measures the percentage of correct predictions.

Accuracy =

Correct predictions

All predictions

- **Precision:** Measures the proportion of true positive predictions out of all positive predictions.
- **Recall:** Measures the proportion of true positive predictions out of all actual positive instances.
- F1-Score: Harmonic mean of precision and recall.
- Confusion Matrix: Displays the performance of the classifier, showing true

positives, true negatives, false positives, and false negatives.

ROC Curve and AUC:

- **ROC Curve:** A graphical representation of the classifier's ability to distinguish between classes at different thresholds.
- AUC (Area Under the Curve): Measures the classifier's performance; the higher the AUC, the better the model.

Loss Calculation:

- Log Loss: Measures the performance of the classification model where the output is a probability value between 0 and 1. It penalizes wrong predictions with a higher penalty for confident wrong predictions.
 - The log loss is calculated for both KNN and Logistic Regression models.

Hyperparameter Tuning and Loss Curves:

- Tuning KNN (k values):
- The loss curve is generated by testing KNN classifiers with different values of k (number of neighbors). The model's misclassification rate (1 accuracy) and log loss are plotted for each k value.
- Tuning Logistic Regression (max_iter values):
- The loss curve is generated by testing Logistic Regression with different values of max_iter (maximum number of iterations). The training and validation accuracy is plotted for each iteration value.

Algorithms Explained:

1. K-Nearest Neighbors (KNN):

KNN Classifier Accuracy: 0.9781491002570694								
	precision	recall	f1-score	support				
Avocado 1	1.00	1.00	1.00	157				
Apple 6	1.00	0.88	0.94	143				
Pepper Green 1	1.00	1.00	1.00	164				
Lemon 1	0.91	1.00	0.95	166				
Mango 1	1.00	1.00	1.00	148				
accuracy			0.98	778				
macro avg	0.98	0.98						
weighted avg	0.98	0.98	0.98	778				

2. Logistic Regression:

Logistic Regression Accuracy: 0.980719794344473								
	precision	recall	f1-score	support				
Avocado 1	1.00	1.00	1.00	157				
Apple 6	1.00	0.90	0.94	143				
Pepper Green 1	1.00	1.00	1.00	164				
Lemon 1	0.92	1.00	0.96	166				
Mango 1	1.00	1.00	1.00	148				
accuracy			0.98	778				
macro avg	0.98	0.98	0.98	778				
weighted avg	0.98	0.98	0.98	778				

Confusion matrix for logistic regression:

Confusion matrix for KNN:

ROC curve for logistic regression:

ROC curve for KNN:

loss of logistic regression: 0.03366540082437841

loss of KNN regression: 0.29876342345512225

```
Comparison Between Logistic Regression and KNN Classifier:
Logistic Regression Accuracy: 0.980719794344473
Logistic Regression - Precision: 0.98, Recall: 0.98, F1 Score: 0.98

KNN Classifier Accuracy: 0.9781491002570694
KNN Classifier - Precision: 0.98, Recall: 0.98, F1 Score: 0.98

Logistic Regression is the better model based on Accuracy, Precision, Recall, and F1 Score.
```