Planowanie przedsięwzięć

Model przedsięwzięcia

- lista operacji
- relacje poprzedzania operacji
- modele operacji
- funkcja celu planowania

Relacje poprzedzania operacji $(A \rightarrow B)$

- Koniec A Start B operacja B nie może się rozpocząć przed zakończeniem A
- Koniec A Koniec B operacja B nie może się zakończyć przed zakończeniem A
- Start A Start B operacja B nie może się rozpocząć przed rozpoczęciem A
- Start A Koniec B operacja B nie może się zakończyć przed rozpoczęciem A

Modele operacji

- czasy trwania
 - deterministyczne
 - deterministyczne zależne od wielkości przydzielonego zasobu
 - niepewne
- wymagania zasobowe

Funkcje celu planowania

- minimalizacja czasu realizacji przedsięwzięcia (przy zadanych zasobach)
- minimalizacja wykorzystania zasobów (przy zadanym czasie realizacji przedsięwzięcia)

Przykład

Projekt implementacji ośmiu modułów systemu informatycznego

- lista operacji M1, M2, M3, M4, M5, M6, M7, M8 gdzie M*i*, *i*=1,...,8 oznacza operację implementacji modułu *i*
- relacje poprzedzania i czasy trwania operacji

operacja	operacje poprzedzające	czas trwania [tygodnie]
M1	_	13
M2	_	8
M3	M1	9
M4	M1	15
M5	M2	20
M6	M2, M3	3
M7	M2, M3	4
M8	M4, M6	10

Metoda ścieżki krytycznej CPM (Critical Path Method)

Model przedsięwzięcia

- relacje poprzedzania: Koniec-Start
- model operacji
 - czasy trwania: deterministyczne
 - brak ograniczeń zasobowych
- funkcja celu: minimalizacja czasu realizacji przedsięwzięcia

Schemat metody

- 1. Konstrukcja sieci przedsięwzięcia
- 2. Wyznaczenie najwcześniejszych terminów (chwil) zdarzeń i ścieżki krytycznej
 - > sortowanie topologiczne wierzchołków sieci
 - > wyliczanie najdłuższych odległości
 - >określenie najdłuższej ścieżki
- 3. Wyznaczenie najpóźniejszych terminów (chwil) zdarzeń i zapasów czasowych operacji

Sieć przedsięwzięcia

(w reprezentacji wierzchołkowej)

wierzchołki sieci: operacje

łuki sieci: relacje poprzedzania

Właściwości

• Graf acykliczny

Sieć przedsięwzięcia

(w reprezentacji łukowej)

wierzchołki sieci: zdarzenia łuki sieci: operacje

Właściwości

- Graf acykliczny
- mogą występować sztuczne (fikcyjne) łuki

Sortowanie topologiczne

Wierzchołki grafu G(V,E) są ponumerowane topologicznie, jeżeli $(i,j) \in E \Leftrightarrow num(i) < num(j)$

Algorytm sortowania (numerowania)

Założenia:

- na początku wszystkie wierzchołki są bez numeru
- $n \ge 1$
- 1. num := 1;
- 2. Znajdź wierzchołek bez numeru do którego nie dochodzi żaden łuk. Jeżeli taki wierzchołek istnieje, to przypisz mu numer *num* i idź do 3. W przeciwnym przypadku STOP w grafie jest cykl;
- 3. Jeżeli wszystkie wierzchołki są ponumerowane to STOP. W przeciwnym przypadku usuń łuki wychodzące z ponumerowanego wierzchołka, num := num + 1 i idź do 2.

Najwcześniejsze terminy zdarzeń

Oznaczenia:

V – zbiór wierzchołków sieci przedsięwzięcia (posortowanych topologicznie)

$$n = |V|$$

E – zbiór łuków (operacji)

 p_{ij} – czas trwania operacji $(i, j) \in E$

 s_i – najwcześniejszy możliwy termin wystąpienia zdarzenia $i \in V$ (wszystkie poprzedzające operacje muszą być zakończone)

Aby operacje poprzedzające "zdążyły" się wykonać musi zachodzić

$$s_i + p_{ij} \le s_j$$
 dla każdej operacji $(i, j) \in E$

Wnioski

- s_i = długość najdłuższej ścieżki z wierzchołka 1 do i
- minimalny czas realizacji przedsięwzięcia określa s_n czyli najdłuższa ścieżka z wierzchołka 1 do n (ścieżka krytyczna).
- dla wszystkich operacji (i, j) na ścieżce krytycznej zachodzi

$$s_i + p_{ij} = s_j$$

Wyznaczanie najwcześniejszych terminów zdarzeń

(znajdowanie najdłuższej ścieżki w grafie posortowanym topologicznie – złożoność O(|E|))

$$s_1 := 0;$$

for $j := 2$ to n do
$$s_j := \max_{i:(i,j) \in E} \{s_i + p_{ij}\}$$

Wyznaczanie minimalnego czasu realizacji przedsięwzięcia

- $T = s_n$ (najdłuższa ścieżka od wierzchołka 1 do n)
- Model programowania liniowego

$$\min T = t_n$$

przy ograniczeniach

$$t_i + p_{ij} \le t_j$$
 $(i, j) \in E$
 $t_i \ge 0$ $i \in V$

gdzie t_i – zmienna określająca termin zdarzenia $i \in V$ Na ścieżce krytycznej $t_i = s_i$ (w szczególności $t_n = s_n$)

Najpóźniejsze terminy zdarzeń

Oznaczenia:

 l_i – najpóźniejszy dopuszczalny termin zdarzenia $i \in V$ (przy założeniu, że przedsięwzięcie jest realizowane w najkrótszym możliwym czasie tzn., $l_n = s_n$)

Aby operacje następne "zdążyły" się wykonać bez wydłużania terminu realizacji przedsięwzięcia $l_n = s_n$ musi zachodzić

$$l_i + p_{ij} \le l_j$$
 dla każdej operacji $(i, j) \in E$

Wnioski

- $l_i = s_n$ (długość najdłuższej ścieżki z i do n)
- $l_i \ge s_i$ dla każdego wierzchołka $i \in V$
- ullet dla wszystkich operacji (i,j) na ścieżce krytycznej zachodzi

$$l_i + p_{ij} = l_j$$

• dla wszystkich wierzchołków i na ścieżce krytycznej zachodzi $l_i = s_i$

Wyznaczanie najpóźniejszych terminów zdarzeń

$$l_n := s_n;$$
for $i := n - 1$ to 1

$$l_i := \min_{j:(i,j) \in E} \{l_j - p_{ij}\}$$

Przykład

Terminy zdarzeń

i (nr wierzchołka - zdarzenia)

	1	2	3	4	5	6
S_i	0	13	8	22	28	38
l_i	0	13	18	25	28	38

 s_i – termin najwcześniejszy możliwy

 l_i – termin najpóźniejszy dopuszczalny

Najwcześniejsze i najpóźniejsze terminy rozpoczęcia i zakończenia operacji

- Najwcześniejszy możliwy termin rozpoczęcia operacji (i, j) $NWR(i, j) = s_i$
- Najwcześniejszy możliwy termin zakończenia operacji (i, j) $NWZ(i, j) = s_i + p_{ij}$
- Najpóźniejszy dopuszczalny termin rozpoczęcia operacji (i, j) $NPR(i, j) = l_j - p_{ij}$
- Najpóźniejszy dopuszczalny termin zakończenia operacji (i, j) $NPZ(i, j) = l_i$

Terminy rozpoczęcia i zakończenia operacji

operacja	M1	M2	M3	M4	M5	M6	M7	M8
NWR	0	0	13	13	8	22	22	28
NWZ	13	8	22	28	28	25	26	38
NPR	0	10	16	13	18	25	34	28
NPZ	13	18	25	28	38	28	38	38

Harmonogram (wykres Gantta)

przy najwcześniejszych terminach realizacji operacji

przy najpóźniejszych terminach realizacji operacji

Zapasy (luzy) czasowe operacji

 Zapas (luz) całkowity – maksymalne opóźnienie operacji nie powodujące opóźnienia przedsięwzięcia

$$ZC(i, j) = l_j - s_i - p_{ij}$$

$$ZC(i, j) = NPR(i, j) - NWR(i, j) = NPZ(i, j) - NWZ(i, j)$$

 Zapas (luz) swobodny – maksymalne opóźnienie operacji nie wpływające na czas rozpoczęcia następnych operacji

$$ZS(i, j) = \min \{s_i - s_i - p_{ij}\}$$

Zapasy

operacja	M1	M2	M3	M4	M5	M6	M7	M8
ZC	0	10	3	0	10	3	12	0
ZS	0	0	0	0	10	3	12	0

Na ścieżce krytycznej zapasy zerowe

Ograniczenia zasobowe

Przykład – przydział zasobów odnawialnych

Każda z operacji M1, M2, ..., M8 wymaga pracy dwóch informatyków.

Harmonogram i zużycie zasobów przy najwcześniejszych terminach rozpoczynania operacji

Kryteria planowania

• minimalizacja liczby zatrudnianych pracowników (przy zadanym czasie realizacji przedsięwzięcia)

czas realizacji	38-44	45-81	≥ 82
pracownicy	6	4	2

• minimalizacja czasu realizacji przedsięwzięcia (przy zadanej liczbie pracowników)

pracownicy	< 2	2-3	4-5	≥6
czas realizacji		82	45	38

analiza dwukryterialna
 rozwiązania niezdominowane (Pareto-optymalne)

czas realizacji	38	45	82
pracownicy	6	4	2

Ograniczenia zasobowe

Przydział zasobów zużywalnych

Czas wykonania poszczególnych operacji można skrócić jeżeli przydzieli się jej pewną ilość zasobu (np. środków pieniężnych)

Założenia

- p_{ij}^{max} nominalny (maksymalny) czas trwania operacji (i, j) bez przydziału zasobu
- k_{ij} koszt skrócenia czasu wykonywania operacji (i, j) o jednostkę czasu (współczynnik zużycia zasobu)
- p_{ij}^{min} minimalny czas trwania operacji, którego nie można dalej skrócić poprzez przydział zasobu

Minimalizacja czasu trwania przedsięwzięcia przy zadanej (ograniczonej) wielkości zasobu

Z – wielkość zasobu (ilość dostępnych środków)

Podejścia

- skracanie czasu trwania przedsięwzięcia poprzez przydział kolejnych jednostek zasobu do najmniej "kosztownych" operacji na ścieżce krytycznej
- model Programowania Liniowego

$$\min T = t_n$$
przy ograniczeniach

$$t_{i} + p_{ij} \leq t_{j} \qquad (i, j) \in E$$

$$p_{ij} = p_{ij}^{max} - (1/k_{ij}) z_{ij} \qquad (i, j) \in E$$

$$\sum_{(i,j)\in E} z_{ij} \leq Z$$

$$t_{i} \geq 0 \qquad i \in V$$

$$p_{ij} \geq p_{ij}^{min} \qquad (i, j) \in E$$

$$z_{ij} \geq 0 \qquad (i, j) \in E$$

Zmienne decyzyjne:

 t_i – termin zdarzenia $i \in V$

 p_{ij} – czas trwania operacji po ewentualnym skróceniu z_{ij} – wielkość zasobu przydzielona do operacji (i, j)

Minimalizacja zużycia zasobu przy zadanym maksymalnym czasie trwania przedsięwzięcia

T – maksymalny dopuszczalny czas trwania przedsięwzięcia

• model Programowania Liniowego

 $\min Z$

przy ograniczeniach

$$t_{i} + p_{ij} \leq t_{j} \qquad (i, j) \in E$$

$$t_{n} \leq T$$

$$p_{ij} = p_{ij}^{max} - (1/k_{ij}) z_{ij} \qquad (i, j) \in E$$

$$\sum_{(i,j)\in E} z_{ij} = Z$$

$$t_{i} \geq 0 \qquad i \in V$$

$$p_{ij} \geq p_{ij}^{min} \qquad (i, j) \in E$$

$$z_{ij} \geq 0 \qquad (i, j) \in E$$

Zmienne decyzyjne: t_i , p_{ij} , z_{ij} , Z