

Automated model generation and simplification for district heating and cooling networks

Use Case

- Where are we using DHC network simulations?
 - **■** Large research center in Germany
 - 102 substations
 - **■** 37 km network length
 - Heating and cooling
 - Very meshed network topology

Workflow description

Data Python Modelica **GIS Data Model Generation Simulation Model OpenStreetMap Simplification Graph Data** uesgraphs uesmodels ■ 3D City Database Graph based interaction Simulation **■** Nodes **■** Simplification **■** Dymola **Edges ■** Parametrization **■** Pipe description

Model Description - Substation

AixLib Substation

■ Heat demand flow control

≡ Fixed return temperature

■ Open-loop

Model simplification – topology reduction

Original graph properties:

■ Number of nodes: 2986

■ Number of edges: 3001

■ Simplified graph properties:

■ Number of nodes: 252

■ Number of edges: 267

Merged parameters:

- **Edgelength**
- Diameters
- **■** Insulation

Model simplification – topology reduction

Model simplification – Pipe model reduction

- Pipe model simplification:
 - Replacement of plug-flow pipes with static pipes
 - Investigation of the pipe length and flow velocity on the temperature propagation
 - 59 pipes got replaced with shorter then 20m (260 pipes in original model)

Results - KPIs

- Simplification results on simulation statistics
 - **■** High decrease of simulation time
 - Pipe replacement reduces the components for 2 per pipe
 - **■** Decrease of state events
 - Slight difference in overall heat supply

Results	Plug-flow Model	Reduced Model
Simulation Time	32.5 h	17.8 h
Number of Components	15475	15357
Number of state events	13551	10162
Overall heat supplied	82.7 GWh	82.6 GWh

Results - Comparision

- Return temperature difference at supply
 - **■** Fluctuating behavior between
 - +/-0.2 K

Results - Comparision

- Average flow temperature difference at all substations
 - A few substations show a higher average deviation
 - **■** The majority of deviations are between -1 K and 0

Summary and Next Steps

- Presentation of a two step simplification approach for district heating and cooling networks
 - Topology reduction leads to a complexity reduction while merging all necessary thermal and hydraulic information
 - Pipe model reduction leads to a reduction of the simulation model complexity
 - = Significant reduction of simulation time
 - = Good accordance to plug flow modelling approach
- Modelica is capable of large scale district heating and cooling network simulations and provides a platform for the investigation of advanced control strategies

- Next steps:
 - Improving the overall system by a closed-loop integration
 - Detailed comparison to measurement data
 - Analyzation of numeric impact

mmans@eonerc.rwth-aachen.de

Mathieustraße 10

52074 Aachen, Germany

Supported by:

Federal Ministry for Economic Affairs and Energy

on the basis of a decision by the German Bundestag

EBC | Institute for Energy Efficient Buildings and Indoor Climate

