•••

Antonios Minas Krasakis
October 04, 2021
(SIKS course in Advances in Information Retrieval)

Intro - Who am I?

3rd year PhD student @ UvA (IRLab)

Topic: Conversational Search

Previously:

- Electrical & Computer Engineering (AuTh)
- MSc Data Science (UvA)
- Data Science @ bol.com

Conversational Search & Conv. Passage retrieval

Conversational Search

Many forms of conversations & Conv. Search:

- Conversational Question Answering [1]
- Conversations with Documents
 (Document-centered assistance) [2]
- Conversational Product Search [6]
- Conversational Passage Retrieval

→ Given a conversation (ie. user-system) rank documents/passages

Characteristics:

- Information-seeking
- Open domain
- Focus on **ranking** documents/passages

(rather than ie. Question Answering)

Different types (scenarios) of conversations:

- Clarifications

Conversational Information-Seeking (CIS)

More

Clarification-based

Different types (scenarios) of conversations:

- Clarifications

Conversational Information-Seeking (CIS)

Information-seeking conversation

- More...

Different types (scenarios) of conversations:

- Clarifications

Conversational Information-Seeking (CIS)

- More...

Ranking with Information Seeking Conversations

Wizard setting:

- 1. User continuously asks (different) questions to a system
- 2. System responds with a passage

CIS task

Differences: CIS vs. ConvQA

	CIS Conv QA			
task	passage retrieval	answer selection / generation		
models	retriever	(retriever) + reader		
	open-domain open- or closed- domain			
evaluation	ranking metrics (NDCG, MRR, P,)	QA metrics (F1, EM,)		

Comparison: CIS vs. Conv QA

Competitions/Datasets for CIS

1. Trec Conversational Assistant Track (CAsT) [2019-2021] [7]

	2019	2020/21
Next question depends on:	- Previous user questions (Q ₁ , Q ₂ , , Q _{X-1})	 Previous user questions (Q₁, Q₂,, Q_{X-1}) Previous answer passages (P₁, P₂,, P_{X-1})

CAsT 2020 example

Competitions/Datasets for CIS

2. OrQuaC

synthetic data from QA pairs

 All relevant passages of a conversation come from 1 wikipedia article (dataset bias?)

Pipeline methods for CIS

- CAsT-19
 - o QuReTeC
 - o Few-shot Query Rewriting
 - An overview

- o CAsT-20
 - o h2oloo submission

Pipeline methods

Focus on query resolution/rewriting:

- Make the query (last user utterance)
 - → self-contained

-	Turn	Query
	1	who formed saosin ?
	2	when was the band founded?
	3	what was their first album?
	4	when was the album released?
		resolved: when was saosin 's first album released?

Cast-19 example

Conv. Passage Retrieval Pipeline (inference)

Query resolution / rewriting

Turn	Query
1	who formed saosin?
2	when was the band founded?
3	what was their first album?
4	when was the album released?

when was saosin 's first album released?

when was saosin 's first album released? 1st ranking stage Re-ranking

Query resolution/rewriting

Methods for query resolution:

- I. Lexical methods (text)
 - A. Query Resolution by Term Classification (QuReTeC) [8]
 - B. Few-shot generative conversational query rewriting [9]
 - C. h2oloo system (T5-based) [12]

- II. Dense methods (embedding space)
 - A. Few-shot conversational query rewriting [9]

Query Resolution by Term Classification (QuReTeC)

QuReTeC [8] approach

Key idea:

Query resolution as Term Classification (of relevant history terms)

turn #	Question	
turn ₁	who formed saosin ?	
turn ₂	when was the band founded?	
turn ₃	what was their first album?	
turn ₄	when was the album released?	
resolution	when was the album released? first saosin band	

Query resolution by QuReTeC

Query Resolution by Term Classification (QuReTeC) [8]

training approaches:

Supervision	Labels	
Full	human resolutions (CAsT & CANARD)	Question Rewriting Q1: What happened in 1983? What happened to Anna Vissi in 1983?
Weak	Distant supervision (from relevant passages)	Relevant terms are found in a relevant document

Query Resolution by Term Classification (QuReTeC) [8]

→ Good performance with combination of

human + distant supervision labels

→ Few human annotations needed

performance wrt. # of training examples

Few-shot generative conversational query rewriting

Few-shot generative conversational query rewriting [9]

Key idea:

Try to address resolution by solving correferences & omissions

- Full rewriting (instead of adding salient terms)
- > model: GPT-2

turn #	Question
turn ₁	What causes throat cancer?
turn ₂	What is the first sign of it?
turn ₃	Is it the same as esophageal cancer?
turn ₄	What's the difference in their symptoms?
resolution	What's the difference between throat cancer and esophageal cancer symptoms?

Query resolution by FSGCQR [9]

FS G CQR [9]: Training

Construct synthetic rewrite data

→ Given a search session log:

```
{query<sub>1</sub>, query<sub>2</sub>, ..., query<sub>k</sub>}
```

→ Use "QuerySimplifier" to simulate conversation (corrupt last query):

```
\{query_1, query_2, ..., query_k\} \rightarrow query_k^*
```

→ Teach rewriter to reconstruct self-contained query

{query ₁ , query ₂ ,,	query _k *}	\rightarrow query _k
---	-----------------------	----------------------------------

turn #	Session log
turn ₁	who formed saosin?
turn ₂	when was the saosin band founded?
turn ₂	when was their band founded?

QuerySimplifier (turn,→ turn,*)

FS G CQR [9]: "Conversational" Query corruption

QuerySimplifiers used:

A. **Rule-based**, from discourse phainomena:

- a. Correference (he, it, ...)
- b. Omission

B. Self-learn

a. few-shot GPT-2 corruptor from manual annotations

turn #	Question	
turn ₁	who formed saosin?	
turn ₂	when was the saosin band founded?	
turn ₂ *	when was their band founded?	

Conversational Query simulation

FS G CQR [9]: Results

Method	BLEU-2	NDCG@3	QA-ROUGE
CAsT Queries			
Original	0.659	0.304	0.231
AllenNLP Coref w/o sw	-	0.314	-
AllenNLP Coref w/ sw	0.750	0.437	0.278
Oracle	1.000	0.544	0.314
Zero-Shot Rewriter			
GPT-2 Raw	0.112	0.124	0.196
MARCO Raw	0.380	0.172	0.183
Rule-Based	0.755	0.437	0.266
Few-Shot Rewriter			
Rule-Based + CV w/o PLM	0.178	0.065	0.151
Self-Learn	0.750	0.435	0.263
CV	0.793	0.467	0.280
Rule-Based + CV	0.809	0.492	0.291
Self-Learn + CV	0.804	0.491	0.291

Performance of zero- and few-shot rewriters [9]

- zero-shot: (query corruption)
 - substantial improvement over other
 zero-shot baselines
 - close to AllenNLP correference resolution (not zero-shot)

- few-shot (query corruption + finetune)
 - \circ fine-tuning (CV) helps (+12%)
 - rule-based vs self-learn: on par
 - close to oracle (human resolutions)

Query Rewriters: A comparison (so far)

Which resolution method works best?

- Classification [QuReTeC]
 - Rewriting [FS query rewriting / others]

Query Rewriters: A comparison

OR Mathad	Recall@1000	ND	NDCG@3		ROUGE-1	
QR Method	Initial	Initial	Reranked	P	\mathbf{R}	F
Original	0.417	0.131	0.266	0.92	0.76	0.82
Transformer++ Q	0.743	0.265	0.525	0.96	0.88	0.91
Self-Learn Q	0.725	0.261	0.513	0.93	0.89	0.90
Rule-Based Q	0.717	0.248	0.487	0.94	0.89	0.91
QuReTeC Q	0.768	0.296	0.500	0.89	0.90	0.89

CAsT-19 results (from [9])

Common retrieval & rerank pipeline: **BM25 + BERT**

- @ retrieval:
 - o best rewrite: QURETEC

- @ re-ranking:
 - o best rewrite: TRANSFORMER++

What is a good resolution?

- Should it be **human-readable**?
- human resolution =? oracle
- Rouge-**Precision** vs. Rouge-**Recall** ?
- Depends on pipeline component
 - ie. Retrieval vs. Reranker
 - ie. **BERT vs. T5**

Such issues affect robustness of pipeline systems

h2oloo trec-cast participation

h2oloo (Waterloo) system [12]

Key ideas:

- 1. use more advanced models
 - a. T5 (rewriter + re-ranker)
 - b. **Hybrid Dense + Sparse** retriever
- Incorporating previous answer passages: Sentence Extraction
 - long input causes performance degradation (language models)
 - b. Time **efficiency**

Conv. Passage Retrieval Pipeline (inference)

h2oloo[12]: Handling previous answers

Extraction method	Canonical answer representation in query					
Naive	Concatenate all previous answers					
Type-a	Concatenate all extracted sentences					
Type-b	Concatenate last extracted sentence					
Recursive	Concatenate previous query reformulations + last extracted sentence					

Query reformulation methods & lengths

h2oloo[12]: Experimental results

Query reformulation		Retrieval (dense+sparse)			Re-ranking (T5-3B)	
Model(T5)	Inference	R@1000	MAP	NDCG@3	MAP	NDCG@3
-	_	0.840	0.324	0.463	0.459	0.613
base	Query-only	0.668	0.225	0.343	0.330	0.452
base	Type-b	0.661	0.216	0.337	-	-
base	Recursive	0.684	0.220	0.328		-
large	Query-only	0.696	$0.\overline{2}38$	0.360		
large	Type-a	0.708	0.239	0.364	-	-
large	Type-b	0.697	0.238	0.358	0.345	0.480
large	Recursive	0.724	0.250	0.367	0.363	0.494

Experimental results

- @ retrieval:
 - Reformulation roughly matters with T5-LARGE
- @ re-ranking:
 - o T5-BASE + QUERY-ONLY: quite good already
 - \circ **[**T5 BASE \rightarrow T5 LARGE**]** + **[**QUERY-ONLY \rightarrow TYPE-B**]**: +5%

h2oloo[12]: Experimental results

Query reformulation		Retrieval (dense+sparse)			Re-ranking (T5-3B)	
Query reformulation		Retrieval (delise+spaise)			Re-failking (13-3B)	
Model(T5)	Inference	R@1000	MAP	NDCG@3	MAP	NDCG@3
-	14	0.840	0.324	0.463	0.459	0.613
base	Query-only	0.668	0.225	0.343	0.330	0.452
base	Type-b	0.661	0.216	0.337	-	-
base	Recursive	0.684	0.220	0.328	-	-
large	Query-only	0.696	0.238	0.360		
large	Type-a	0.708	0.239	0.364	-	-
large	Type-b	0.697	0.238	0.358	0.345	0.480
large	Recursive	0.724	0.250	0.367	0.363	0.494

Experimental results

- model **size** matters
- sentence extraction ?

- @ retrieval:
 - Reformulation roughly matters with T5-LARGE
- @ re-ranking:
 - o T5-BASE + QUERY-ONLY: quite good already

Neural methods for CIS

Few-shot Conversational Dense Passage Retrieval [11]

First e2e Dense Retrieval architecture for Conv Passage retrieval:

Query resolution + retrieval: directly on the dense space

backbone ranker: ANCE

Inference (FS Conv DPR [11])

F.S. Conv.DPR [11]: Resolution in dense space

To resolve the query in the dense space:

Teacher-student network that "pushes" the representation of the conversation to be close to the resolved query

Training (FS Conv DPR $[\,11\,]\,)$

→ Teacher: produces "ideal" embedding (based on resolution)

→ Teacher: pre-trained **ANCE ranker**

→ Student: produces embedding from conversation

 \rightarrow Knowledge Distillation loss L_{KD} :

Teaching the student to **produce** "good embeddings" from conversation

\rightarrow Ranking loss L_{Rank} :

Further fine-tuning of ranker in this task (Negative log likelihood)

Which loss is more important?

- L_{Rank}
- L_{KD}

Ranking vs. Knowledge Distillation losses

Method	CAsT 2019		OR-QuAC		
Method	NDCG@3	W/T/L	MRR@5	W/T/L	
First Stage Retrieval Only					
ConvDR (Zero-Shot)	0.202	13/30/57	0.568	24/61/16	
ConvDR (KD)	0.466	38/39/24	0.519	19/63/18	
ConvDR (Rank)	0.084	3/19/78	0.588	29/52/19	
ConvDR (Multi-Task)	0.157	12/19/69	0.616	30/56/14	

Ablation study ([11])

- → **CAsT 19:** Fine-tuning w/o knowledge distillation fails
 - ◆ Few-shot setting
- → OR-QuAC: Ranking loss is useful
 - ♦ why?
 - # training data?
 - dataset bias: all relevant passages from Wikipedia article

F.S. Conv.DPR [11]: Initial retrieval results

Ranker	MRR	NDCG @ 3
QuReTeC + BM25	-	0.17
FS Conv QR + BM25	-	0.15
FS Conv DPR	0.50	0.34
Human queries + BM25	0.45	0.30
Human queries + ANCE	0.59	0.42

Cast-20: First-stage Ranking Results

→ largely outperforms other query rewriting methods when BM25 is the ranker

→ w.r.t. **oracles** (human resolutions):

◆ +15% wrt. BM25

◆ -20% wrt. **ANCE** oracle

F.S. Conv.DPR [11]: Re-ranking results

Ranker	MRR	NDCG @ 3		
QuReTeC + BERT	$\mathbf{H}_0(q_k, a)$	$\mathbf{H}_0(q_k, d) = \mathrm{BERT}([\mathrm{C}$		
h2oloo (T5-based)	0.62	0.49 _{Re}		
FS Conv QR + BERT	-	0.34		
FS Conv DPR + BERT	0.54	0.39		
Human queries + BM25 + BERT	0.63	0.47		
Human queries + ANCE + BERT	0.66	0.48		

→ After **re-ranking**, improvements fade away

ANCE 1st stage ranking vs $CLS] \circ q_1 \circ \dots [SEP] \circ q_k \circ [SEP] \circ d \circ [SEP])$, reranking

→ Waterloo's T5-based pipeline outperforms all approaches, even human!

→ What's a fair evaluation?

Cast-20: Re-ranking Results

Conclusions

- Discussed various methods for Conv Passage Retrieval
 - lexical vs. neural

- Evaluation varies on various ranking components
 - what's a **fair comparison**?

- Open problems:
 - Handling previous answers / long context
 - Robustness to pipeline changes
 - Training in **few-shot** setting?
 - other types of conversations?

References

- [1] Reddy, S., Chen, D., & Manning, C. D. (2019). Coqa: A conversational question answering challenge. Transactions of the Association for Computational Linguistics, 7, 249-266.
- [2] ter Hoeve, M., Sim, R., Nouri, E., Fourney, A., de Rijke, M., & White, R. W. (2020, March). Conversations with documents: An exploration of document-centered assistance. In Proceedings of the 2020 Conference on Human Information Interaction and Retrieval (pp. 43-52).
- [3] Aliannejadi, Mohammad, et al. "Asking clarifying questions in open-domain information-seeking conversations." Proceedings of the 42nd international acm sigir conference on research and development in information retrieval. 2019.
- [4] Krasakis, Antonios Minas, et al. "Analysing the effect of clarifying questions on document ranking in conversational search." Proceedings of the 2020 ACM SIGIR on International Conference on Theory of Information Retrieval. 2020.

References

- [5] Hashemi, Helia, Hamed Zamani, and W. Bruce Croft. "Guided transformer: Leveraging multiple external sources for representation learning in conversational search." Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. 2020.
- [6] Zhang, Yongfeng, et al. "Towards conversational search and recommendation: System ask, user respond." Proceedings of the 27th acm international conference on information and knowledge management. 2018.
- [7] Dalton, Jeffrey, Chenyan Xiong, and Jamie Callan. "TREC CAsT 2019: The conversational assistance track overview." arXiv preprint arXiv:2003.13624 (2020).
- [8] Voskarides, Nikos, et al. "Query resolution for conversational search with limited supervision." Proceedings of the 43rd International ACM SIGIR conference on research and development in Information Retrieval. 2020.

References

- [9] Yu, Shi, et al. "Few-shot generative conversational query rewriting." Proceedings of the 43rd International ACM SIGIR conference on research and development in Information Retrieval. 2020.
- [10] Vakulenko, Svitlana, et al. "A comparison of question rewriting methods for conversational passage retrieval." arXiv preprint arXiv:2101.07382 (2021).
- [11] Yu, Shi, et al. "Few-Shot Conversational Dense Retrieval." arXiv preprint arXiv:2105.04166 (2021).
- [12] Lin, Sheng-Chieh, Jheng-Hong Yang, and Jimmy Lin. "TREC 2020 Notebook: CAsT Track."