1 AULA 1 [Aplicação das Integrais]

1.1 Áreas entre Curvas

Sejam f e g funções contínuas com $f(x) \ge g(x)$ para todo $x \in [a,b]$. O ojetivo é determinar a área entre essas duas curvas no intervalo correspondente.

Considere uma partição $a=x_0 < x_1 < x_2 < \cdots < x_n = b$ do intervalo [a,b]. Em cada subintervalo $[x_{i-1},x_i]$ consideramos o i-ésimo retângulo R_i de base $\Delta x_i = x_i - x_{i-1}$ e altura $[f(c_i) - g(c_i)]$, $c_i \in [x_{i-1},x_i]$. A área desse retângulo é:

$$A(R_i) = [f(c_i) - g(c_i)] \cdot \Delta x_i$$

A soma das áreas dos n retângulos, $\sum_{i=1}^{n} A(R_i) = \sum_{i=1}^{n} [f(c_i) - g(c_i)] \cdot \Delta x_i$

é uma aproximação da área compreendida entre as curvas de f e g. Como f e g são funções contínuas, a medida que o comprimento de cada subintervalo tende a zero, ou seja, o número de retângulos tende ao infinito, essa soma tende a integral $\int_a^b (f(x) - g(x)) dx$. Sendo assim, damos a seguinte definição:

Definição 1. Sejam f e g funções contínuas com $f(x) \ge g(x)$ para todo $x \in [a,b]$. A área entre as curvas $y_1 = f(x)$ e $y_2 = g(x)$ de a até b é dada pela integral Área $= \int_a^b [f(x) - g(x)] dx$.

Exemplo 1. Calcule a área compreendida entre as curvas $y = x^2$ e $y = -x^2 + 4x$

Primeiro obteremos os limites de integração que são os ponto de interseção das duas curvas. Assim, igualando as equações $f(x)=-x^2+4x$ com $g(x)=x^2$, temos

$$x^2 = -x^2 + 4x$$

$$\rightarrow 2x^2 - 4x = 0$$

$$\rightarrow x = 0$$
 ou $x = 2$.

Logo,

$$\text{área} = \int_{a}^{b} (f(x) - g(x)) dx = \int_{0}^{2} (-x^{2} + 4x - x^{2}) dx
 = \int_{0}^{2} (-2x^{2} + 4x) dx
 = \left(\frac{-2x^{3}}{3} + 2x^{2}\right)_{x=0}^{x=2}
 = \left(\frac{-2 \cdot 2^{3}}{3} + 2 \cdot 2^{2} - 0\right)
 = \frac{-16}{3} + 8
 = \frac{8}{3} \text{u. a.}$$

Exemplo 2. Encontre a área compreendida entre o eixo Ox e as curvas x + y = 2 e $y = x^2$ no intervalo [0,2].

SOLUÇÃO:

Esboçando a figura percebemos que é melhor integrar em relação à variável *y*!

POR QUÊ?

Observe que a região de interesse está compreendida entre as curvas $x=\sqrt{y}$ e x=2-y, com $0\leq y\leq 1$.

Dessa forma, teremos f(y) = 2 - y e $g(y) = \sqrt{y}$ Portanto,

área =
$$\int_{a}^{b} (f(y) - g(y)) dy$$
 = $\int_{0}^{1} (2 - y - \sqrt{y}) dy$
 = $\left[2y - \frac{y^{2}}{2} - \frac{2}{3}y^{\frac{3}{2}} \right]_{y=0}^{y=1}$
 = $\frac{5}{6}$ u. a.

Exemplo 3. Encontre a área compreendida entre as curvas $y = -x^2 + 3x$ e $y = 2x^3 - x^2 - 5x$.

SOLUÇÃO:

Esboçando a região percebemos que devemos dividir a região em duas partes!

POR QUÊ?

Igualando as duas equações obteremos os limites de integração.

$$2x^3 - x^2 - 5x = -x^2 + 3x \longrightarrow 2x^3 - 8x = 0 \longrightarrow 2x(x^2 - 4) = 0.$$

Assim, $x = 0$ ou $x = -2$ ou $x = 2$.

Observe que no intervalo [-2,0] a função superior (que está por "cima") será $f(x)=2x^3-x^2-5x$ e a função inferior será $g(x)=-x^2+3x$. Já no intervalo [0,2] essas funções invertem os papéis.

Portanto,

área =
$$\int_{a}^{b} (f(x) - g(x))dy$$

= $\int_{-2}^{0} (2x^3 - x^2 - 5x - (-x^2 + 3x))dx + \int_{0}^{2} (-x^2 + 3x - (2x^3 - x^2 - 5x))dx$
= $\int_{-2}^{0} 2x^3 - 8x \ dx + \int_{0}^{2} 8x - 2x^3 \ dx$
= $\left[\frac{x^4}{2} - 4x^2\right]_{x=-2}^{x=0} + \left[4x^2 - \frac{x^4}{2}\right]_{x=0}^{x=2}$
= $8 + 8 = 16u$. a.

Abaixo você encontrará duas sugestões de exercícios. Faça-os como treinamento! Neste primeiro momento, o esboço da região foi fornecido para facilitar o desenvolvimento da resolução da questão, mas é importante que você certifique de que está correto! Mesmo porque em todos exercícios caberá a você a determinação da região!

Exercício 1. Encontre a área compreendida entre as curvas $y = x^3$ e $y = 3x^2 - 4$ SOLUÇÃO:

Exercício 2. Encontre a área compreendida entre as curvas y = x, $e y = x^2 e y = 1$.

SOLUÇÃO:

