10^a Lista de Exercícios

Ygor Tavela Alves 10687642

5.2.20)

Seja $A \in \mathbb{C}^{n \times n}$ uma matriz triangular em blocos:

$$A = \begin{bmatrix} A_{11} & A_{12} \\ 0 & A_{22} \end{bmatrix}$$

onde $A_{11} \in \mathbb{C}^{j \times j}$ e $A_{22} \in \mathbb{C}^{k \times k}$ com j+k=n

a) Tomando λ como autovalor de A_{11} e com autovetor v, então, $A_{11}v=\lambda v$. Desta forma, podemos tomar w=0 com $w\in\mathbb{C}^k$, de tal forma que:

$$\begin{bmatrix} A_{11} & A_{12} \\ 0 & A_{22} \end{bmatrix} \begin{bmatrix} v \\ w \end{bmatrix} = \begin{bmatrix} A_{11}v \\ 0 \end{bmatrix} = \begin{bmatrix} \lambda v \\ 0 \end{bmatrix} = \lambda \begin{bmatrix} v \\ 0 \end{bmatrix}$$

b) Tomando λ como autovalor de A_{22} e com autovetor associado w, então, $A_{22}w = \lambda w$. Supondo que λ não é também um autovalor de A_{11} assim $\lambda I - A_{11} \neq 0$.

$$\begin{bmatrix} A_{11} & A_{12} \\ 0 & A_{22} \end{bmatrix} \begin{bmatrix} v \\ w \end{bmatrix} = \begin{bmatrix} A_{11}v + A_{12}w \\ A_{22}w \end{bmatrix} = \begin{bmatrix} A_{11}v + A_{12}w \\ \lambda w \end{bmatrix}$$

Queremos que haja um $v\in\mathbb{C}^j$ tal que $\begin{bmatrix}v\\w\end{bmatrix}$ seja um autovetor de A associado a um autovalor λ . Portanto, temos que,

$$A_{11}v + A_{12}w = \lambda v \Rightarrow A_{11}v + A_{12}w = \lambda Iv \Rightarrow (\lambda I - A_{11})v = A_{12}w$$

Como $\lambda I - A_{11} \neq 0$:

$$v = (\lambda I - A_{11})^{-1} \cdot A_{12} w$$

Isto é, v é um autovetor único para A cujo autovalor é λ .

c) Seja λ um autovalor de A associado ao autovetor $\begin{bmatrix} v \\ w \end{bmatrix}$, ou seja, $A \begin{bmatrix} v \\ w \end{bmatrix} = \lambda \begin{bmatrix} v \\ w \end{bmatrix}$. Podemos considerar dois casos em que w=0 ou $w\neq 0$ para mostrar que w é um autovetor de A_{22} associado ao autovalor λ ou v é um autovetor de A_{11} associado ao autovalor λ .

• w = 0: $A \begin{bmatrix} v \\ 0 \end{bmatrix} = \begin{bmatrix} A_{11}v \\ 0 \end{bmatrix} = \begin{bmatrix} \lambda v \\ 0 \end{bmatrix} = \lambda \begin{bmatrix} v \\ 0 \end{bmatrix}$, isto é, v é um autovetor de A_{11} associado ao autovalor λ .

•
$$w \neq 0$$
: $A \begin{bmatrix} v \\ w \end{bmatrix} = \begin{bmatrix} A_{11}v + A_{12}w \\ A_{22}w \end{bmatrix} = \begin{bmatrix} \lambda v \\ \lambda w \end{bmatrix} = \lambda \begin{bmatrix} v \\ w \end{bmatrix}$, isto é, w é um autovetor de A_{22} associado ao autovalor λ .

d)

 $\Rightarrow)$ Pelo item c),sendo λ um autovalor de A, então λ é autovalor de A_{11} ou $A_{22}.$

 \Leftarrow) Pelos itens a) e b), sendo λ um autovalor de A_{11} ou A_{22} , então λ é autovalor de A.

5.3.7)

a)

j	σ_j	q_j^T
1	9	[1.000000, -0.111111]
2	7.888889	[1.000000, -0.267606]
3	7.732394	[1.000000, -0.293260]
4	7.706740	[1.000000, -0.297566]
5	7.702434	[1.000000, -0.298291]
6	7.701709	[1.000000, -0.298413]
7	7.701587	[1.000000, -0.298434]
8	7.701566	[1.000000, -0.298437]
9	7.701563	[1.000000, -0.298438]
10	7.701562	[1.000000, -0.298438]
11	7.701562	[1.000000, -0.298438]

b)

j	$ q_{j+1} - v / q_j - v $
0	0.144271
1	0.164591
2	0.167922
3	0.168480
4	0.168572
5	0.168572
6	0.168480
7	0.167922
8	0.164591
9	0.144271
10	0

A equação característica será dada por $\lambda^2-9\lambda+10=0$, cujas raízes serão dadas por, $\lambda_1=\frac{9+\sqrt{41}}{2}$ e $\lambda_2=\frac{9-\sqrt{41}}{2}$. Desta forma,

$$|\lambda_2/\lambda_1| = 0.168594$$

Portanto, é claro que tanto a razão de convergência prática obtida pelo método da potência quanto a razão teórica se concordam entre si, em virtude do baixo erro relativo entre a taxa de convergência prática calculada e a teórica.