LCD Interfacing

Introduction

- LCD is finding widespread use replacing LEDs
 - The declining prices of LCD
 - The ability to display numbers, characters, and graphics
 - Incorporation of a refreshing controller into the LCD, thereby relieving the CPU of the task of refreshing the LCD
 - Ease of programming for characters and graphics

LCD Pin Description

Pin Descriptions for LCD

Pin	Symbol	I/O	Descriptions	
1	VSS		Ground	
2	VCC		+5V power supply	
3	VEE		Power supply to contr	ol contrast
4	RS	I	RS=0 to select comma RS=1 to select data re	
5	R/W	I	R/W=0 for write, R/W=1 for read	used by the
6	Е	I/O	Enable	LCD to latch
7	DB0	I/O	The 8-bit data bus	information
8	DB1	I/O	The 8-bit data bus	presented to
9	DB2	I/O	The 8-bit data bus	its data bus
10	DB3	I/O	The 8-bit data bus	
11	DB4	I/O	The 8-bit data bus	
12	DB5	I/O	The 8-bit data bus	
13	DB6	I/O	The 8-bit data bus	
14	DB7	I/O	The 8-bit data bus	

- Send displayed information or instruction command codes to the LCD
- Read the contents of the LCD's internal registers

LCD Command codes

LCD Command Codes

Code (Hex)	Command to LCD Instruction Register
1	Clear display screen
2	Return home
4	Decrement cursor (shift cursor to left)
6	Increment cursor (shift cursor to right)
5	Shift display right
7	Shift display left
8	Display off, cursor off
Α	Display off, cursor on
С	Display on, cursor off
Е	Display on, cursor blinking
F	Display on, cursor blinking
10	Shift cursor position to left
14	Shift cursor position to right
18	Shift the entire display to the left
1C	Shift the entire display to the right
80	Force cursor to beginning to 1st line
C0	Force cursor to beginning to 2nd line
38	2 lines and 5x7 matrix

Sending Data/ Commands to LCDs with a Time Delay

```
To send any of the commands to the LCD, make pin RS=0. For data,
make RS=1. Then send a high-to-low pulse to the E pin to enable the
internal latch of the LCD. This is shown in the code below.
; calls a time delay before sending next data/command
;P1.0-P1.7 are connected to LCD data pins D0-D7
;P2.0 is connected to RS pin of LCD
;P2.1 is connected to R/W pin of LCD
; P2.2 is connected to E pin of LCD
        ORG
              OH
        MOV A, #38H ; INIT. LCD 2 LINES, 5X7 MATRIX
        ACALL COMNWRT ; call command subroutine
        ACALL DELAY ; give LCD some time
        MOV A, #OEH ; display on, cursor on
        ACALL COMNWRT ; call command subroutine
        ACALL DELAY ; give LCD some time
        MOV A, #01 ; clear LCD
        ACALL COMNWRT ; call command subroutine
        ACALL DELAY ; give LCD some time
        MOV A, #06H ; shift cursor right
        ACALL COMNWRT : call command subroutine
        ACALL DELAY ; give LCD some time
        MOV A, #84H ; cursor at line 1, pos. 4
        ACALL COMNWRT ; call command subroutine
        ACALL DELAY ; give LCD some time
```

Sending Data/ Commands to LCDs with a Time Delay

```
MOV A, #'N' ; display letter N
       ACALL DATAWRT ; call display subroutine
       ACALL DELAY
                     ; give LCD some time
       MOV A, #'O' ; display letter O
       ACALL DATAWRT ; call display subroutine
       SJMP AGAIN
                     ;stav here
AGATN:
                     ; send command to LCD
COMNWRT:
       MOV P1,A
                     ; copy reg A to port 1
       CLR P2.0
                     :RS=0 for command
       CLR P2.1
                    ;R/W=0 for write
       SETB P2.2
                    ;E=1 for high pulse
       ACALL DELAY ; give LCD some time
             P2.2
                     ;E=0 for H-to-L pulse
       CLR
       RET
DATAWRT:
                     :write data to LCD
       MOV P1,A
                     ; copy reg A to port 1
       SETB P2.0
                     :RS=1 for data
       CLR P2.1
                    ;R/W=0 for write
       SETB P2.2
                    ;E=1 for high pulse
       ACALL DELAY
                    ; give LCD some time
             P2.2
                    ;E=0 for H-to-L pulse
       CLR
       RET
DELAY:
       MOV R3, #50 ;50 or higher for fast CPUs
       MOV R4, \#255 ; R4 = 255
HERE2:
       DJNZ R4, HERE ; stay until R4 becomes 0
HERE:
            R3, HERE2
       DJNZ
       RET
       END
```

```
; Check busy flag before sending data, command to LCD
;pl=data pin
; P2.0 connected to RS pin
;P2.1 connected to R/W pin
;P2.2 connected to E pin
    ORG OH
    MOV A, #38H ; init. LCD 2 lines ,5x7 matrix
    ACALL COMMAND ; issue command
    MOV A, #OEH ; LCD on, cursor on
    ACALL COMMAND ; issue command
    MOV A, #01H ; clear LCD command
    ACALL COMMAND ; issue command
    MOV A, #06H ; shift cursor right
    ACALL COMMAND ; issue command
    MOV A, #86H ; cursor: line 1, pos. 6
    ACALL COMMAND ; command subroutine
    MOV A, #'N'
                     ; display letter N
    ACALL DATA DISPLAY
    MOV A, #'O' ; display letter O
    ACALL DATA DISPLAY
HERE:SJMP HERE ;STAY HERE
```

```
COMMAND:
                        ; is LCD ready?
     ACALL READY
          P1,A
                       :issue command code
     MOV
     CLR P2.0
                       ;RS=0 for command
     CLR P2.1
                       :R/W=0 to write to LCD
     SETB P2.2
                       ;E=1 for H-to-L pulse
          P2.2
     CLR
                        ;E=0,latch in
     RET
DATA DISPLAY:
     ACALL READY
                       ; is LCD ready?
     MOV
           P1.A
                        ; issue data
     SETB P2.0
                        :RS=1 for data
           P2.1
                        :R/W =0 to write to LCD
     CLR
     SETB P2.2
                        ;E=1 for H-to-L pulse
                        ·F-0 latch in
           P2.2
     CLR
                  To read the command register, we make R/W=1,
     RET
READY:
                  RS=0, and a H-to-L pulse for the E pin.
           P1.7
     SETB
           P2.0
     CLR
                        ;RS=0 access command reg
     SETB
           P2.1
                        ; R/W=1 read command reg
; read command reg and check busy flag
          P2.2
                       ;E=1 for H-to-L pulse
BACK: SETB
           P2.2
                       ;E=0 H-to-L pulse
     CLR
           P1.7, BACK ; stay until busy flag=0
     JB
     RET
                   If bit 7 (busy flag) is high, the LCD is busy
     END
                    and no information should be issued to it.
```

LCD Timing for Read

Note: Read requires an L-to-H pulse for the E pin

LCD Datasheet and Addressing

One can put data at any location in the LCD and the following shows address locations and how they are accessed

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	1	Α	Α	Α	Α	Α	Α	Α

The upper address range can go as high as 0100111 for the 40-character-wide LCD, which corresponds to locations 0 to 39

- AAAAAAA=000_0000 to 010_0111 for line1
- AAAAAAA=100_0000 to 110_0111 for line2

LCD Addressing for the LCDs of 40×2 size

	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
Line1 (min)	1	8	0	0	0	0	0	0
Line1 (max)	1	0	1	0	0	1	1	1
Line2 (min)	1	1	0	0	0	0	0	0
Line2 (max)	1	\rightarrow_1	1	0	0	1	1	1