2010年度(担当:佐藤)

1

$$(1) \ A = \left(\begin{array}{cc} 1 & \sqrt{3} \\ \sqrt{3} & -1 \end{array} \right)$$

- (2) $\Phi_A(t) = \det(tE_2 A) = (t+2)(t-2)$ より、A の固有値は ± 2 .
- (3) (2) の結果から、問題の 2 次方程式が $2\tilde{x}^2 2\tilde{y}^2 = 1$ となるように座標変換できる。 したがって、この 2 次曲線は双曲線.

2

(1) この行列は一意には決まらない。S の同時座標の決め方に依る。S の同次座標を

$$\begin{bmatrix} 3 \\ 6 \\ 8 \\ 1 \end{bmatrix} とすると, \ \varphi_S = \begin{pmatrix} -8 & 0 & 3 & 0 \\ 0 & -8 & 6 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & -8 \end{pmatrix}.$$

$$(2) \ \varphi_S(A) = \begin{pmatrix} \frac{5}{3} \\ \frac{4}{3} \\ 0 \end{pmatrix}, \quad \varphi_S(B) = \begin{pmatrix} \frac{1}{3} \\ -\frac{2}{3} \\ 0 \end{pmatrix}, \quad \varphi_S(C) = \begin{pmatrix} 3 \\ -\frac{2}{3} \\ 0 \end{pmatrix},$$
$$\varphi_S(D) = \begin{pmatrix} \frac{11}{9} \\ -2 \\ 0 \end{pmatrix}$$

(3) (ウ)

 $oxed{3}$ (i) P も \vec{v} も一意には決まらない。平面 π の法線ベクトルを \vec{n} とおくと,P は「第 3 列が \vec{n} と平行となるような直交行列」で, \vec{v} は「 $\vec{n}\cdot\vec{v}=2$ を満たすベクトル」であれば

よい. たとえば,
$$P = \begin{pmatrix} \frac{4}{\sqrt{42}} & -\frac{1}{\sqrt{3}} & \frac{2}{\sqrt{14}} \\ \frac{5}{\sqrt{42}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{14}} \\ -\frac{1}{\sqrt{42}} & \frac{1}{\sqrt{3}} & \frac{3}{\sqrt{14}} \end{pmatrix}$$
, $\vec{v} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$.

(ii) M_1 は (ウ) , M_2 は (ア) , M_3 は (ウ) .