

Chapter 5

Digital transmission through the AWGN channel

— by Prof. XIAOFENG LI SICE, UESTC

Binary

Baseband: BPAM (antipodal, unipolar), Orthogonal signaling;

Passband: BPSK, OOK or BASK, BFSK (Orthogonal)

M-ary, 1-D signaling

Baseband: MPAM

Passband: MASK

M-ary, 2-D signaling (Passband)

MPSK, QAM

5.6.3 MPSK

The signals: $s_m(t) = g_T(t) \cos\left(2\pi f_c t + \frac{2\pi m}{M}\right)$

 $=A_{mo}g_{\tau}(t)\cos 2\pi f_{o}t - A_{mo}g_{\tau}(t)\sin 2\pi f_{o}t$

The basis:
$$\psi_1(t) = \sqrt{\frac{2}{E_g}} g_T(t) \cos 2\pi f_c t$$
,

$$\psi_2(t) = -\sqrt{\frac{2}{E_g}} g_T(t) \sin 2\pi f_c t$$

A MF-ML receiver is given by,

Prob of err is computed by,

Two sync demod. that requires:

- The local cos/sin are coherent with the carriers in recv sig.
- The sampler/integrator is synchronous with the symbols in recv sig.

case the $g_T(t)$ is a rect pulse, and the MF is equivalent to an integrator.

5.6.3 MPSK

MPSK (Carrier-phs)

Unfortunately, the LO has phase ambiguities and DPSK is often employed for solution.

DPSK

Instead of absolute phase-mapping of info sym, PSK with differential phase-mapping is called DPSK.

Sym	Abs-mapping: θ	Relative mapping: $\Delta\theta$
0	0	0
	$\pi/2$	$\pi/2$
2	π	π
3	$3\pi/2$	$3\pi/2$

01

The signals:
$$s_m(t) = g_T(t) \cos\left(2\pi j\right)$$

$$= A_{mc}g_T(t) \cos 2\pi f_c t - \sqrt{\frac{1}{2}}$$

The basis:
$$\psi_1(t) = \sqrt{\frac{2}{E_g}} g_T(t) \cos 2\pi f_c t$$
,

$$\psi_2(t) = -\sqrt{\frac{2}{E_g}} g_T(t) \sin 2\pi f_c t$$

Prob of err is computed by,

Two sync demod. that requires:

- The local cos/sin are coherent with the carriers in recv sig.
- The sampler/integrator is synchronous with the symbols in recv sig.

5.6.3 MPSK

MPSK (Carrier-phs)

Unfortunately, the LO has phase ambiguities and DPSK is often employed for solution.

DPSK

Instead of absolute phase-mapping of info sym, PSK with differential phase-mapping is called DPSK.

Sym	Abs-mapping: θ	Relative mapping: $\Delta \theta$
0	0	0
1	$\pi/2$	$\pi/2$
2	π	π
3	$3\pi/2$	$3\pi/2$

The signals:
$$s_m(t) = g_T(t) \cos\left(2\pi j\right)$$

$$= A_{mc}g_T(t) \cos 2\pi f_c t - \int_0^{\infty} dt dt$$

The basis:
$$\psi_1(t) = \sqrt{\frac{2}{E_g}} g_T(t) \cos 2\pi f_c t$$
,

$$\psi_2(t) = -\sqrt{\frac{2}{E_g}} g_T(t) \sin 2\pi f_c t$$

Prob of err is computed by,

Two sync demod. that requires:

- The local cos/sin are coherent with the carriers in recv sig.
- The sampler/integrator is synchronous with the symbols in recv sig.

The signals:
$$s_m(t) = g_T(t) \cos\left(2\pi f_c t + \frac{2\pi m}{M}\right)$$

$$= A_{mc}g_{T}(t)\cos 2\pi f_{c}t - A_{ms}g_{T}(t)\sin 2\pi f_{c}t$$

The basis: $\psi_1(t)$

A MF-ML receiver is given by,

Prob of err is computed by,

Let
$$\Theta_m = 2\pi m / M$$
 be the angle. of \mathbf{s}_m .

Compute
$$\Theta_r = \arctan(r_2 / r_1)$$
.

The decision rule: select the s_m whose angle is closest to Θ_r .

The signals:
$$s_m(t) = g_T(t) \cos\left(2\pi f_c t + \frac{2\pi m}{M}\right)$$

= $A_{mc}g_T(t) \cos 2\pi f_c t - A_{ms}g_T(t) \sin 2\pi f_c t$

The basis: $\psi_1(t)$

Prob of err is computed by,

$$P_{e} = 1 - \frac{1}{M} \sum_{k=1}^{M} \int_{R_{k}} f(\mathbf{r} | \mathbf{s}_{k}) d\mathbf{r} = 1 - \int_{R_{0}} f(\mathbf{r} | \mathbf{s}_{0}) d\mathbf{r}$$
$$= 1 - \int_{-\pi/M}^{+\pi/M} f(\theta_{r} | \mathbf{s}_{0}) d\theta_{r}$$

For simple cases of M=2 or 4, BPSK and QPSK

$$P_e = Q\left(\sqrt{\frac{2E_b}{N_0}}\right)$$

MPSK (Carrier-phs)

Svm

Gray

0 :0:0 0

0 0 0 1

0 0 1 1

0 1 1 1

0 1 0 1

0 1 0 0

1 1 0 0

1 1 0 1

Natural

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1 1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Reflection

The signals:
$$s_m(t) = g_T(t) \cos\left(2\pi f_c t + \frac{2t}{T}\right)$$

The basis: $\psi_1(t)$

The equivalent bit error probability,

In M-ary systems, an error is an incorrect symbol which may cause more than 1 bit errors.

Gray code is a special designed bitmapping code which make two adjacent symbols differ in only one bit. When there is an error, a sym is naturally mistaken by an adjacent sym with very high prob. So, with Gray code, an error causes only one bit error and,

$$P_b \sim = P_e / log_2 M$$

In general, we do not have a simple form of the Pe, however a good approximation of Pe for many case is given by,

$$\approx 2Q \left(\sqrt{2 \frac{E_s}{N_0} \sin^2 \frac{\pi}{M}} \right) = 2Q \left(\sqrt{2 \log_2 M \frac{E_b}{N_0} \sin^2 \frac{\pi}{M}} \right)$$

Binary

Baseband: BPAM (antipodal, unipolar), Orthogonal signaling;

Passband: BPSK, OOK or BASK, BFSK (Orthogonal)

M-ary, 1-D signaling

Baseband: MPAM

Passband: MASK

M-ary, 2-D signaling (Passband)

MPSK, QAM

QAM (Amp/phs)

The signals:
$$s_m(t) = \frac{g_T(t)\cos\left(2\pi f_c t + \frac{2\pi m}{M}\right)}{2\pi f_c t + \frac{2\pi m}{M}}$$

= $A_{mc}g_T(t)\cos 2\pi f_c t - A_{ms}g_T(t)\sin 2\pi f_c t$

The basis: $\psi_1(t) = \sqrt{\frac{2}{E_o}} g_T(t) \cos 2\pi f_c t$,

$$\psi_2(t) = -\sqrt{\frac{2}{E_g}} g_T(t) \sin 2\pi f_c t$$

A MF-ML receiver is given by,

Prob of err is computed by,

The signals:
$$s_m(t) = \frac{g_T(t)\cos\left(2\pi f_c t + \frac{2\pi m}{M}\right)}{2\pi f_c t + \frac{2\pi m}{M}}$$

= $A_{mc}g_T(t)\cos 2\pi f_c t - A_{ms}g_T(t)\sin 2\pi f_c t$

The basis:
$$\psi_1(t) = \sqrt{\frac{2}{E_g}} g_T(t) \cos 2\pi f_c t$$
,

$$\psi_2(t) = -\sqrt{\frac{2}{E_g}} g_T(t) \sin 2\pi f_c t$$

Prob of err is computed by,

The P_e of QAM depends on its specific constellation. The distance between pairs of points and the average energy are two key paras.

Rectangular QAM constellations have distinct advantages of being equivalent to 2 PAMs. Though not the best, it is only slightly poorer than the best, so it is frequently used in practical.

$$P_{M_QAM} \approx 2P_{\sqrt{M}_PAM} = 2\left(1 - \frac{1}{\sqrt{M}}\right)Q\left(\sqrt{\frac{3E_{av}}{(M-1)N_0}}\right)$$

Binary

Baseband: BPAM (antipodal, unipolar), Orthogonal signaling;

Passband: BPSK, OOK or BASK, BFSK (Orthogonal)

M-ary, 1-D signaling

Baseband: MPAM

Passband: MASK

M-ary, 2-D signaling (Passband)

MPSK, QAM

M-ary, M-D signaling (Passband)

MFSK

The signals: $S_m(t) = A\cos[2\pi(f_0 + m \times \Delta f)t]$

A MF-ML receiver is given by,

The receiver consists of a demod. of M correlation-branches and a detector with MaxCorr rule.

See block diag of Fig 5.46 on p302.

Prob of err is computed by,

$$P_{e} = \dots = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \left\{ 1 - \left[1 - Q(x) \right]^{M-1} \right\} e^{-\frac{\left(x - \sqrt{2}E_{s}/N_{0}} \right)^{2}}{2} dx$$

In contrast to QAM and PSK, the P_b of MFSK decreases as M increases.

Note that MFSK is M-dimensional while QAM and PSK are 2-dimensional.