Notas del teórico

Medida e Integración - Francisco Martinez Pería 2025

Bustos Jordi

Bustos Jordi jordibustos01@gmail.com

Contenido

6	CI	ase I - 06/03	
	1.	Integral de Riemann 1.1 Desventajas de la integral de Riemann Espacios Medibles	6
12	CI	ase II - 11/03	
	2.1 2.2	La σ-álgebra de Borel	
17	CI	ase III - 13/03	
	3.1 3.2	Funciones medibles	
24	CI	ase IV - 20/03	
	4.1 4.2	Parte negativa y positiva	
30	Pa	arciales	
- -	5.1 5.2 5.3 5.4 5.5	Primer parcial - Primera fecha Primer parcial - Segunda fecha Segundo parcial - Primera fecha Segundo parcial - Segunda fecha Segundo parcial - Tercera fecha	30 30 30 30 30

Prefacio

"Considero a cada hombre como un deudor de su profesión, y ya que de ella recibe sustento y provecho, así debe procurar, mediante el estudio, servirle de ayuda y ornato."

Francis Bacon

Este libro recoge las notas tomadas durante el curso de Medida e Integración dictado por Francisco Martinez Pería en el primer cuatrimestre de 2025.

Estas notas se basan principalmente en la cursada del '99 brindada por Jorge Samur y material del libro *The elements of integration and Lebesgue Measure* de Robert G. Bartle.

Clase I - 06/03

1.1 Integral de Riemann

Sea $f:[a,b]\subseteq\mathbb{R}\to\mathbb{R}$ una función. Una partición P de [a,b] es un conjunto finito $\{x_0,x_1,\cdots,x_n\}$, con $a=x_0< x_1<\cdots< x_n=b$. A P le asignamos una norma $\|P\|=\max\{l(J_k)\}$. $J_k=[x_{k-1},x_k]$ y a cada P le podemos asignar una etiqueta, que es un vector $\xi=(\xi_1,\cdots,\xi_n)$ tal que $\xi_k\in J_k$. Una partición etiquetada es un par (P,ξ) ; y le podemos asignar su suma de Riemann: $S(P,\xi)=\sum_{k=1}^n f(\xi_k)l(J_k)$.

```
Definición 1.1. Una función f:[a,b]\to\mathbb{R} es integrable Riemann si \exists I\in\mathbb{R}:\forall\epsilon>0,\exists\delta>0:|S(P,\xi)-I|<\epsilon si (P,\xi) es tal que \|P\|\leq\delta
```

Ejercicio: Probar que si f es integrable Riemann entonces es acotada.

Si f es acotada, dada una partición P del dominio de f, para cada $i \in 1, \dots, n$. Sean $M_i = \sup\{f(x): x \in J_i\}$ y $m_i = \inf\{f(x): x \in J_i\}$. Luego definimos la suma superior y la suma inferior asociada a P como $S(f,P) = \sum_{k=1}^n M_k l(J_k)$ y $s(f,P) = \sum_{k=1}^n m_k l(J_k)$. Entonces podemos definir suma superior e inferior de Riemann como $\int_a^b f(x) \, dx = \sup\{S(f,P): P \text{ partición de } [a,b]\}$ y $\bar{\int}_a^b f(x) \, dx = \inf\{s(f,P): P \text{ partición de } [a,b]\}$.

Proposición 1.2. Dada una función $f : [a, b] \to \mathbb{R}$, f es integrable Riemann \iff es acotada y la suma superior es igual a la inferior.

Nota. f es integrable Riemann si:

- 1. f es continua.
- 2. f es continua salvo finitos puntos en los que existen los límites laterales.
- 3. f es monótona y acotada (en este caso pueden existir numerables discontinuidades).

1.1.1. Desventajas de la integral de Riemann

- Exige que la función oscile poco en intervalos pequeños.
- Hay funciones simples que no son integrables Riemann.
- No se comporta bien con respecto a la convergencia puntual.

Ejemplo. Sea $f:[0,1]\to\mathbb{R}:f(x)=\begin{cases} 1 & x\in\mathbb{Q}\\ 0 & x\in\mathbb{R}\setminus\mathbb{Q} \end{cases}$ f no es integrable Riemann.

Demostración. Llamemos $A = [0,1] \cap \mathbb{Q}$. A es numerable entonces $\exists \sigma : \mathbb{N} \to A$ biyección. Para cada $n \in \mathbb{N}$, sea $A_n = \{\sigma(1), \cdots, \sigma(n)\}$, $A_n \subset A_{n+1}$ y $\bigcup_{n=1}^{\infty} A_n = A$. Ahora para cada $n \geq 1$ consideramos: $f_n : [0,1] \to \mathbb{R}$ dada por

$$f_n(x) = \begin{cases} 1 & x \in A_n \\ 0 & x \in [0, 1] \setminus A_n \end{cases}$$
 (1.1)

 f_n es integrable Riemann (queda como ejercicio demostrarlo) ya que es continua salvo en los puntos de A_n y los límites laterales son siempre cero. Veamos ahora que $f_n \to f$. Sea $x \in [0,1]$

- $1. \ \mathrm{Si} \ x \in A \rightarrow x \in A_{n_0}, n_0 \in \mathbb{N} \rightarrow (\forall n > n_0) x \in A_n \rightarrow (\forall n > n_0) f_n(x) = 1 \rightarrow f_n(x) \rightarrow f(x) = 1.$
- $2. \ \mathrm{Si} \ x \notin A \to (\forall n \in \mathbb{N}) x \notin A_n \to (\forall n \in \mathbb{N}) f_n(x) = 0 \to f_n(x) \to f(x) = 0.$

 $f_n \to f$. Si conocieramos l(A) y $l([0,1] \setminus A)$ podríamos definir $\int f = 1 \times l(A) + 0 \times l([0,1] \setminus A)$.

1.2 Espacios Medibles

Dado X un conjunto arbitrario no vacío. Sea $\mathcal{P}(X)$ el conjunto de partes de X.

Definición 1.3 (σ -álgebra). Una familia \mathfrak{X} es una σ -álgebra si verifica:

- 1. $\emptyset, X \in \mathfrak{X}$.
- 2. Si $A \in X \to A^c \in \mathfrak{X}$.
- 3. Sea $(A_n)_{n\geq 1}$ es una sucesión en $\mathfrak{X}\to \bigcup_{n=1}^\infty A_n\in\mathfrak{X}.$

Si $\mathfrak X$ es una σ -álgebra de subconjuntos de $\mathfrak X$ el par $(X,\mathfrak X)$ es un espacio medible. A cada $A\in\mathfrak X$ lo llamaremos conjunto $\mathfrak X$ -medible.

Nota. Si \mathfrak{X} es una σ -álgebra de X y $A_1, \dots A_n \in \mathfrak{X}$ entonces $\bigcup_{k=1}^n A_k \in \mathfrak{X}$. Idea de la demostración: Sea $(B_m)_{m \geq 1}$ la sucesión en \mathfrak{X} definida por

$$B_{\mathfrak{m}} = \begin{cases} A_{\mathfrak{m}} & 1 \le \mathfrak{m} \le \mathfrak{n} \\ \emptyset & \mathfrak{m} > \mathfrak{n} \end{cases} \tag{1.2}$$

Nota. Si $(A_n)_{n\geq 1}$ es una sucesión de una σ -álgebra $\mathfrak X$ entonces $\bigcap_{n=1}^\infty A_n\in \mathfrak X.$

Ejemplo (σ-álgebras). Dado X cualquiera no vacío.

- 1. $\mathfrak{X} = {\emptyset, X}$ es una σ -álgebra.
- 2. $\mathfrak{X} = \mathcal{P}(X)$ es una σ -álgebra.
- 3. Sea $A \neq \emptyset \subset X$. Luego $\mathfrak{X} = \{\emptyset, A, A^c, X\}$ es una σ -álgebra.
- 4. Supongamos que X no es numerable y sea

$$\mathfrak{X} = \{ A \subseteq X : A \text{ es numerable \'o } A^{c} \text{ es numerable} \}$$
 (1.3)

es una σ -álgebra. Demostración ejercicio y además $\mathfrak{X} \neq \mathcal{P}(X)$.

Lema 1.4. Dado un conjunto X, sean $\mathfrak{X}_1, \mathfrak{X}_2$ dos σ -álgebras de X. Entonces $\mathfrak{X}_1 \cap \mathfrak{X}_2$ es una σ -álgebra de X. Más aún si $(\mathfrak{X}_i)_{i \in I}$ es una familia de σ -álgebras de X entonces $\bigcap_{i \in I} \mathfrak{X}_i$ es una σ -álgebra de X. Demostración, ejercicio.

Proposición 1.5. Dado un conjunto X, sea $A \neq \emptyset \subseteq \mathcal{P}(X) \to \exists \sigma$ -álgebra $\sigma(A)$ que verifica:

- 1. $A \subseteq \sigma(A)$.
- 2. \mathfrak{X} es σ -álgebra de X tal que $A \subseteq X \to \sigma(A) \subseteq \mathfrak{X}$.
- 3. $\sigma(A)$ es la única que verifica ambas propiedades en simultáneo.

La llamaremos σ -álgebra generada por A.

Demostración. Sea $\Delta = \{\mathcal{C} \subseteq \mathcal{P}(X) : \mathcal{C} \text{ es } \sigma\text{-\'algebra de } X \text{ y } A \subseteq \mathcal{C}\} \neq \emptyset \text{ pues } \mathcal{P}(X) \in \Delta.$ Llamemos $\mathfrak{X} = \bigcap_{\mathcal{C} \in \Delta} \mathcal{C} = \{B \in \mathcal{P}(X) : B \in \mathcal{C}(\forall \mathcal{C} \in \Delta)\}$. Veamos que \mathfrak{X} es una σ -\'algebra de X.

- 1. $\emptyset, X \in \mathcal{C}(\forall \mathcal{C} \in \Delta) \to \emptyset, X \in \mathfrak{X}$.
- 2. Sea $A \in \mathfrak{X} \to (\forall \mathcal{C} \in \Delta) A \in \mathcal{C} \to A^c \in \mathcal{C}(\forall \mathcal{C} \in \Delta) \to A^c \in \mathfrak{X}$.
- 3. Sea $(A_n)_{n>1}$ una sucesión en \mathfrak{X} el argumento es análogo a los dos anteriores.
- \therefore \mathfrak{X} es una σ -álgebra que verifica ambas condiciones. Supongamos que existe otra $\overline{\mathfrak{X}}$ σ -álgebra que verifica las dos condiciones por la propiedad uno y dos podemos deducir que $\mathfrak{X} \subseteq \overline{\mathfrak{X}}$ y $\overline{\mathfrak{X}} \subseteq \mathfrak{X}$.

Ejemplo. Consideremos $X = \mathbb{R}$ y sea $A = \{(a, b) : a, b \in \mathbb{R}, a \leq b\}$. La σ -álgebra generada por A es la σ -álgebra de Borel \mathcal{B} . A los conjuntos de \mathcal{B} los llamaremos conjuntos Borelianos. Veamos que si $\overline{A} = \{(a, +\infty) : a \in \mathbb{R}\} \to \sigma(\overline{A}) = \mathcal{B}$.

Demostración. • Dado $\alpha \in \mathbb{R}$, $(\alpha, +\infty) = \bigcup_{n \geq 1} (\alpha, \alpha + n) \in \mathcal{B} \to \overline{A} \subseteq \mathcal{B}$. Luego $\sigma(\overline{A}) \subseteq \mathcal{B}$. Por ser $\sigma(\overline{A})$ la mínima σ -álgebra que contiene a \overline{A} .

■ Dado $a, b \in \mathbb{R}$, a < b. Sabemos que $(a, b] = (a, +\infty) \cap (b, +\infty)^c \in \sigma(\overline{A})$. Luego $(a, b) = \bigcup_{n \ge 1} (a, b - \frac{1}{n}] \in \sigma(\overline{A})$. Por lo que $A \subset \sigma(\overline{A})$. $B = \sigma(A) \subset \sigma(\overline{A})$. Por ser $\sigma(A)$ la mínima σ -álgebra que contiene a A.

Ejercicio demostrar que la σ -álgebra de Borel está generada también por las siguientes familias:

- 1. $\{(a, b] : a, b \in \mathbb{R}, a < b\}$.
- 2. $\{[a, b) : a, b \in \mathbb{R}, a < b\}$.
- 3. $\{[a, b] : a, b \in \mathbb{R}, a < b\}$.
- 4. $\{[\mathfrak{a}, +\infty) : \mathfrak{a} \in \mathbb{R}\}.$
- 5. $\{(-\infty, \alpha) : \alpha \in \mathbb{R}\}.$

10 • Espacios Medibles

6.
$$\{(-\infty, \alpha] : \alpha \in \mathbb{R}\}.$$

Luego, se puede ver que $\{\mathfrak{a}\}=\bigcap_{\mathfrak{n}\geq 1}[\mathfrak{a},\mathfrak{a}-\frac{1}{\mathfrak{n}})\in\mathcal{B}.$

Clase II - 11/03

2.1 La σ-álgebra de Borel

A \mathbb{R}^n lo pensamos dotado de la distancia euclídea. Si $\mathbf{x}=(x_1,\cdots,x_n)$ e $\mathbf{y}=(y_1,\cdots,y_n)$ son dos puntos de \mathbb{R}^n , la distancia entre ellos es

$$d(x,y) = ||x - y|| = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$
 (2.1)

Consideramos la topología usual de \mathbb{R}^n notada τ^n al conjunto de todos los abiertos de \mathbb{R}^n

Definición 2.1. Dados $a=(a_1,\cdots,a_n),\ b=(b_1,\cdots,b_n)\in\mathbb{R}^n$ con $a_i< b_i(\forall i=1,\cdots,n)$ Definimos el intervalo abierto (a,b) como

$$(a,b) = \prod_{i=1}^{n} (a_i, b_i) = \{x = (x_1, \dots, x_n) \in \mathbb{R}^n : a_i < x_i < b_i, (\forall i = 1, \dots, n)\}$$
 (2.2)

Definición 2.2. Dados $x=(x_1,\cdots,x_n)$ y $\varepsilon>0$ el ε -cubo centrado en x es el conjunto definido por

$$C(x,\varepsilon) = \prod_{i=1}^{n} (x - \frac{\varepsilon}{2}, x + \frac{\varepsilon}{2})$$
 (2.3)

Proposición 2.3. Sea $V \subseteq \mathbb{R}^n$ abierto e $y \in C(x, \varepsilon)$ entonces

- 1. $(\forall x \in V)(\exists \epsilon > 0)C(x, \epsilon) \subseteq V$.
- 2. $x \in C(y, \varepsilon)$.
- 3. $C(x, \varepsilon) \subseteq C(y, 2\varepsilon)$.

Definición 2.4. La σ -álgebra de Borel de \mathbb{R}^n es la σ -álgebra generada por

$$\mathcal{A} = \{ (a, b) : a, b \in \mathbb{R}^n : a_i < b_i, i = 1, \dots, n \}$$
 (2.4)

Lo notamos \mathcal{B}^n .

Queremos ver que efectivamente $\tau_n \subseteq \mathcal{B}^n$. Consideremos la clase $\beta_n = \{C(q, \frac{1}{m}) : q \in \mathbb{Q}^n, m \in \mathbb{N}\}$. β_n es numerable pues el conjunto de índices que enumera a β_n es

$$\underbrace{\mathbb{Q}^n \times \cdots \times \mathbb{Q}^n}_{n \ \mathrm{veces}} \times \mathbb{N}$$

que es numerable.

Proposición 2.5. Dado un abierto no vacío $V\subseteq\mathbb{R}^n$ existe una familia $\mathcal{A}_V\subseteq\mathcal{B}_n$ tal que $V=\bigcup_{B\in\mathcal{A}_V}B$.

Demostración. Sabemos que \mathbb{Q}^n es denso en \mathbb{R}^n . Como V es abierto y no vacío entonces $V\cap \mathbb{Q}^n \neq \emptyset$. Luego $B(x,\epsilon)\subseteq V$ y $B(x,\epsilon)\cap \mathbb{Q}^n \neq \emptyset$. Por lo tanto $B(x,\epsilon)\subset V\cap \mathbb{Q}^n$. Para cada $q\in V\cap \mathbb{Q}^n$ defino $m_q=\min\{m\in \mathbb{N}: C(q,\frac{1}{m})\}\subseteq V$. Llamemos $\mathcal{A}_V=\{C(q,\frac{1}{m_q}): q\in V\cap \mathbb{Q}^n\}$ la cual es una familia numerable. Veamos que $\bigcup_{q\in V\cap \mathbb{Q}^n} C(q,\frac{1}{m_q})=V$.

- \blacksquare \subseteq es trivial.
- ⊇ Dado $x \in V$, $\exists m \in \mathbb{N} : C(x, \frac{1}{m}) \subseteq V$. Consideremos $C(x, \frac{1}{2m}) \subseteq C(x, \frac{1}{m}) \subseteq V$ que es un abierto no vacío. Resulta que $C(x, \frac{1}{2m}) \cap \mathbb{Q}^n \neq \emptyset$. Sea $q \in C(x, \frac{1}{2m}) \subseteq V \cap \mathbb{Q}^n$. Entonces $x \in C(q, \frac{1}{2m})$, en particular $m_q \leq 2m$, pues como $x \in C(q, \frac{1}{2m})$ implica que $C(q, \frac{1}{2m}) \subseteq C(x, \frac{2}{2m}) \subseteq V$. Por lo tanto $x \in C(q, \frac{1}{2m}) \subseteq C(q, \frac{1}{m_q})$ ∴ $x \in \bigcup_{q \in \mathcal{A}_V} C(q, \frac{1}{m_q}) = \bigcup_{B \in \mathcal{A}_V} B$.

Corolario 2.6. La σ -álgebra de Borel de \mathbb{R}^n coincide con la $\sigma(\tau_n)$. En particular:

- ullet Todo abierto de \mathbb{R}^n es un conjunto Boreliano.
- \bullet Todo conjunto cerrado de \mathbb{R}^n es un Boreliano por ser complemento de un abierto.
- Por último, todo subconjunto numerable de \mathbb{R}^n es un Boreliano. (Dado $x \in \mathbb{R}^n, \{x\} = \bigcap_{n>1} C(x, \frac{1}{n})$).

Proposición 2.7. Dado un espacio medible (X, \mathfrak{X}) y sea $X_0 \subseteq \mathfrak{X}$, entonces

- 1. $\mathfrak{X}_0 = \{A \subseteq X_0 : A = E \cap X_0 \text{ para algún } E \in \mathfrak{X}\}\$ es σ -álgebra de X_0 . En particular, si $X_0 \in \mathfrak{X} \to \mathfrak{X}_0 = \{A \subseteq X_0 : A \in \mathfrak{X}\}\$, la demostración queda como ejercicio.
- 2. Si \mathcal{A} es una familia en partes de X tal que $\mathfrak{X} = \sigma(\mathcal{A})$ entonces $\mathfrak{X}_0 = \sigma(\mathcal{A}_0)$ donde $\mathcal{A}_0 = \{A_0 \subseteq X_0 : A_0 = A \cap X_0 \text{ para algún } A \in \mathcal{A}\}.$

Demostración. Veamos primero que $\mathcal{A}_0 \subseteq \mathfrak{X}_0$. Si $A_0 \in \mathcal{A}_0 \to \exists A \in \mathcal{A} : A_0 = \mathcal{A} \cap X_0$. Como $A \in \mathcal{A} \subseteq \sigma(\mathcal{A}) = \mathfrak{X}$ resulta que $A_0 = A \cap X_0 \in \mathfrak{X}_0$. Entonces $\mathcal{A}_0 \subseteq \mathfrak{X}_0$. Por lo tanto $\sigma(\mathcal{A}_0) \subseteq \mathfrak{X}_0$.

Ahora veamos que $\mathfrak{X}_0 \subseteq \sigma(\mathcal{A}_0)$. Consideramos la clase $\mathcal{G} = \{ E \subseteq X : E \cap X_0 \in \sigma(\mathcal{A}_0) \}$ y veamos que $\mathfrak{X} \subseteq \mathcal{G}$. Alcanza con probar que $\mathcal{A} \subseteq \mathcal{G}$. Pues si $A \in \mathcal{A}$, $A \cap X_0 \in \mathcal{A}_0 \subseteq \sigma(\mathcal{A}_0) \to A \in \mathcal{G}$. Si probamos que G es una G-álgebra, tendríamos que G es G y

Ejemplo. Si $\beta \in B_n$ entonces la σ -álgebra de Borel de β , $B_n(\beta) = \{A \subseteq \beta : A \in B_n\}$ está generado por la familia de conjuntos de la forma $(a,b) \cap \beta$ para $a,b \in \mathbb{R}^n$ con $a_i < b_i (\forall i = 1, \dots, n)$.

2.2 Recta real extendida

Definición 2.8 (Recta real extendida). Definimos $\overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty, +\infty\}$. Con las siguientes convenciones:

- 1. Dado $r \in \mathbb{R}$ tenemos que $-\infty < r < +\infty$.
- 2. $^{+}_{-}\infty + ^{+}_{-}\infty = ^{+}_{-}\infty$ y $^{+}_{-}\infty + ^{-}_{+}\infty$ no está definido.
- 3. $_{-\infty}^{+} \cdot _{-\infty}^{+} = +\infty$ y $_{-\infty}^{+} \cdot _{+\infty}^{-} = -\infty$ Si $r \in \mathbb{R}$ entonces $r \cdot +\infty = +\infty$ si r > 0 y $r \cdot +\infty = -\infty$. si r < 0.
- 4. $0 \cdot +\infty = 0 = +\infty \cdot 0$.
- 5. Tampoco definimos cocientes entre infinitos o de la forma $\frac{r}{+\infty}$.

Nota. El producto no va a ser continuo en la recta real extendida. Si $a_n = +\infty \cdot \frac{1}{n} (\forall n \in \mathbb{N})$ entonces $\lim_{n \to +\infty} a_n = +\infty$. Pero $+\infty \cdot \lim_{n \to +\infty} \frac{1}{n} = +\infty \cdot 0 = 0$.

Notemos que si $A \subseteq \overline{\mathbb{R}} \to \inf(A) \in \overline{\mathbb{R}}$ y $\sup(A) \in \overline{\mathbb{R}}$.

Dada una sucesión $(x_n)_{n\in\mathbb{N}}\subseteq\mathbb{R}$, sea $\emptyset\neq L=\{x\in\overline{\mathbb{R}}:\exists x_{n_k}\to x\}\subseteq\overline{\mathbb{R}}$.

 $\begin{array}{l} \text{\textbf{Definición 2.9.}} \ \operatorname{l\acute{i}m} \sup_{n \to \infty} x_n = \sup(L) \ y \ \operatorname{l\acute{i}m} \inf_{n \to \infty} x_n = \inf(L). \\ \operatorname{Adem\'{a}s, \ si \ para \ cada} \ n \in \mathbb{N} \ \operatorname{definimos} \ \alpha_m = \sup\{x_n : n \ge m\} \ \operatorname{la \ sucesi\'{o}n} \ \alpha_m \ \operatorname{es \ decreciente} \\ y \ \operatorname{l\acute{i}m} \sup_{n \to \infty} x_n = \inf\{\alpha_m\} = \inf_{m \ge n} (\sup_{n \ge m} \{x_n\}). \\ \operatorname{An\'{a}logamente} \ \operatorname{l\acute{i}m} \inf_{n \to \infty} x_n = \sup\{\alpha_m\} = \sup_{m \ge n} (\inf_{n \ge m} \{x_n\}). \end{array}$

Proposición 2.10. Propiedades de límite superior e inferior:

- $\limsup_{n\to\infty} (-x_n) = -\liminf_{n\to\infty} x_n$
- $\liminf_{n\to\infty} (-x_n) = -\limsup_{n\to\infty} x_n$

Nota. Si $(x_n)_{n\in\mathbb{N}}$ es una sucesión en \mathbb{R} y $x\in\overline{\mathbb{R}}, x_n\to x\iff \limsup x_n=\liminf x_n=x.$

Veamos como extender \mathcal{B} a $\overline{\mathbb{R}}$.

Definición 2.11 (Borel extendida). Para cada $E \in \mathcal{B}$, sean $E_1 = E \cup \{+\infty\}$, $E_2 = E \cup \{-\infty\}$ y $E_3 = E \cup \{+\infty, -\infty\}$. Consideremos $\overline{\mathcal{B}} = \{E_1, E_2, E_3, E : E \in \mathcal{B}\} = \sigma(\{(\alpha, +\infty] : \alpha \in \mathbb{R}\})$. Probar que $\overline{\mathcal{B}}$ es σ -álgebra de $\overline{\mathbb{R}}$ se deja como ejercicio. Se la llama la σ -álgebra de Borel extendida.

Clase III - 13/03

3.1 Funciones medibles

Proposición 3.1. Sea $f: \mathbb{R}^n \to \mathbb{R}$, f es continua si $f^{-1}(V)$ es abierto de \mathbb{R}^n ($\forall V$ abierto en τ_1).

En lo que sigue vamos a considerar un espacio medible fijo de la forma (X, \mathfrak{X}) . Notación: Dada una función $f: X \to \mathbb{R}$ para cada $\alpha \in \mathbb{R}$ definimos:

$$\{f > \alpha\} := \{x \in X : f(x) > \alpha\} = f^{-1}((\alpha, +\infty))$$
(3.1)

Definición 3.2 (Función medible). Una función $f: X \to \mathbb{R}$ es \mathfrak{X} -medible (σ -medible) si $\{f > \alpha\} \in \mathfrak{X} \quad (\forall \alpha \in \mathbb{R}).$

Lema 3.3. Dada $f: X \to \mathbb{R}$ una función, son equivalentes:

1. f es \mathfrak{X} -medible.

2. $\{f \geq \alpha\} \in \mathfrak{X} \quad (\forall \alpha \in \mathbb{R}).$

3. $\{f \leq \alpha\} \in \mathfrak{X} \quad (\forall \alpha \in \mathbb{R}).$

4. $\{f < \alpha\} \in \mathfrak{X} \quad (\forall \alpha \in \mathbb{R}).$

Demostración. Sea $\alpha, \gamma \in \mathbb{R}$.

• (1) \iff (3): $\{f \le \alpha\} = \{f > \alpha\}^c \in \mathfrak{X}$.

■ (2) ⇔ (4) Análogo.

■ (1) \iff (2): Supongamos que f es \mathfrak{X} -medible. Dado $\alpha \in \mathbb{R}$ quiero ver que $\{f \geq \alpha\} \in \mathfrak{X}$.

$$x \in \{f \ge \alpha\} \iff f(x) \ge \alpha > \alpha - \frac{1}{n} \quad (\forall n \in \mathbb{N})$$
 (3.2)

$$x \in \{f > \alpha - \frac{1}{n}\} \quad (\forall n \in \mathbb{N}) \to \{f \ge \alpha\} = \bigcap_{n \ge 1} \{f > \alpha - \frac{1}{n}\} \in \mathfrak{X} \qquad (3.3)$$

Para la vuelta supongamos que vale (2). Quiero ver que $\{f>\gamma\}\in\mathfrak{X}.$ Notemos que

$$\{f > \gamma\} = \bigcup_{n \ge 1} \{f \ge \gamma + \frac{1}{n}\} \tag{3.4}$$

$$x \in \{f > \gamma\} \iff f(x) > \gamma \iff \exists n_x \in \mathbb{N} : f(x) > \gamma + \frac{1}{n_x}$$
 (3.5)

Luego $\bigcup_{n\geq 1} \{f \geq \gamma + \frac{1}{n}\} \in \mathfrak{X}.$

Ejemplo. Toda función constante es medible. $f: X \to \mathbb{R} : f(x) = c \quad (\forall x \in X)$.

Demostración. Dado $\alpha \in \mathbb{R}$. Tenemos que

$$\{f > \alpha\} = \begin{cases} \emptyset & \alpha \ge c \\ X & \alpha < c \end{cases} \tag{3.6}$$

$$\chi_{\mathsf{E}}(\mathsf{x}) = \begin{cases} 1 & \mathsf{x} \in \mathsf{E} \\ 0 & \mathsf{x} \notin \mathsf{E} \end{cases} \tag{3.7}$$

Demostración. Consideremos E = [0, 1]. Dado $\alpha \in \mathbb{R}$. Tenemos que

$$\{\chi_{E} > \alpha\} = \begin{cases} \emptyset & \alpha \ge 1 \\ E & 0 \le \alpha < 1 \\ X & \alpha < 0 \end{cases}$$
 (3.8)

Luego χ_E es medible \iff $E \in \mathfrak{X}$.

Ejemplo. Si $X = \mathbb{R}^n$, $\mathfrak{X} = \mathcal{B} \to \text{toda función continua es medible con respecto a la <math>\sigma$ -álgebra de Borel.

Ejemplo. $X = \mathbb{R}, \mathfrak{X} = \mathcal{B}_n$ y $f : \mathbb{R} \to \mathbb{R}$ es monótona (creciente) entonces es \mathcal{B} -medible.

Ejercicio: $f: X \to \mathbb{R}$ es \mathfrak{X} -medible $\iff f^{-1}(B) \in \mathfrak{X} \quad (\forall B \in \mathcal{B}).$

Lema 3.4. Sean $f, g: X \to \mathbb{R}$ funciones medibles, $c \in \mathbb{R}$ entonces $c \cdot f$, f^2 , f + g, |f|, $f \cdot g$, son \mathfrak{X} -medibles. $f^2 = f(x) \cdot f(x)$.

Demostración. Veamos que f^2 es \mathfrak{X} -medible. Dado $\alpha \in \mathbb{R}$ quiero ver que

$$\{f^2 > \alpha\} \in \mathfrak{X} \tag{3.9}$$

Si $\alpha < 0 \rightarrow \{f^2 > \alpha\} = X$.

Si $\alpha \geq 0 \rightarrow$

$$\{f^2 > \alpha\} = \{x \in X : f(x) \cdot f(x) > \sqrt{\alpha} \cdot \sqrt{\alpha}\}$$
(3.10)

$$\{f > \sqrt{\alpha}\} \cup \{f > \sqrt{\alpha}\} \in \mathfrak{X}$$
 (3.11)

 \therefore f² es \mathfrak{X} -medible.

Veamos ahora que f+g es \mathfrak{X} -medible. Dado $\alpha\in\mathbb{R}$ quiero ver que

$$\{f + g > \alpha\} \in \mathfrak{X} \tag{3.12}$$

Para $x \in X$ tenemos que:

$$(f+g)(x)>\alpha\iff f(x)+g(x)>\alpha\iff f(x)>r\wedge g(x)>\alpha-r \text{ para algún } r\in\mathbb{Q}$$
 (3.13)

Entonces $\{f+g>\alpha\}=\bigcup_{r\in\mathbb{Q}}(\{f>r\}\cap\{g>\alpha-r\})\in\mathfrak{X}$ por ser unión numerable $\therefore f+g$ es \mathfrak{X} -medible.

Por último veamos que f \cdot g es \mathfrak{X} -medible. Dado $\alpha\in\mathbb{R}$ quiero ver que

$$\{f \cdot g > \alpha\} \in \mathfrak{X} \tag{3.14}$$

Sabemos que:

$$(f+g)^2$$
 es \mathfrak{X} -medible $\to f^2 + 2 \cdot f \cdot g + g^2$ es \mathfrak{X} -medible (3.15)

$$f \cdot g = \frac{1}{2} ((f+g)^2 - f^2 - g^2) \text{ es } \mathfrak{X}\text{-medible}$$
 (3.16)

3.2 Funciones medibles en la recta extendida

Definición 3.5. Dada $f: X \to \overline{R}$ diremos que f es \mathfrak{X} -medible si

$$f^{-1}((\alpha, +\infty]) = f^{-1}((\alpha, +\infty)) \cup f^{-1}(\{+\infty\}) = \{f > \alpha\} \in \mathfrak{X} \quad (\forall \alpha \in \mathbb{R})$$
 (3.17)

A la clase de las funciones (a valores en la recta extendida) \mathfrak{X} -medibles la denotaremos por $M(X,\mathfrak{X})$.

Nota. Si $f: X \to \mathbb{R} \to f \in M(X, \mathfrak{X})$.

Nota. Si

$$f \in M(X, \mathfrak{X}) \to \{f = +\infty\} = f^{-1}(\{+\infty\}) = \bigcap_{n \ge 1} \{f > n\} \in \mathfrak{X}$$
 (3.18)

Además,

$$\{f = -\infty\} = f^{-1}(\{-\infty\}) = \bigcap_{n \ge 1} \{f < -n\} \in \mathfrak{X}$$
 (3.19)

Lema 3.6. Dada una función $f: X \to \overline{\mathbb{R}}$ consideremos $A_f = \{f = +\infty\}, B_f = \{f = -\infty\}$ y

$$\hat{f} = \begin{cases} f & x \in X \setminus (A_f \cup B) \\ 0 & x \in A_f \\ 0 & x \in B_f \end{cases}$$
 (3.20)

 $\rightarrow f \in M(X, \mathfrak{X}) \iff A_f, B_f \in \mathfrak{X} \text{ y } \hat{f} \text{ es } \mathfrak{X}\text{-medible}.$

Demostración. Supongamos primero que $f \in M(X, \mathfrak{X})$. Dado $\alpha \in \mathbb{R}$, ya vimos que $A_f, B_f \in \mathfrak{X}$. Veamos que \hat{f} es \mathfrak{X} -medible.

Quiero ver que $\{\hat{f} > \alpha\} \in \mathfrak{X}$. Si $\alpha \geq 0$ entonces

$$\{\hat{\mathsf{f}} > \alpha\} = \{\mathsf{f} > \alpha\} - \mathsf{A}_{\mathsf{f}} = \{\mathsf{f} > \alpha\} \cap \mathsf{A}_{\mathsf{f}}^{\mathsf{C}} \in \mathfrak{X} \tag{3.21}$$

Si $\alpha < 0$ entonces

$$\{\hat{f} < \alpha\} = \{f > \alpha\} \cup \{\hat{f} = 0\} = \{f > \alpha\} \cup (A_f \cup B_f) = \{f > \alpha\} \cup B_f \in \mathfrak{X} \tag{3.22}$$

Luego $\hat{f} \in \mathfrak{X}$. Supongamos ahora que $A_f, B_f \in \mathfrak{X}$ y \hat{f} es \mathfrak{X} -medible. Dado $\alpha \in \mathbb{R}$ tenemos que

$$\{f > \alpha\} = \{\hat{f} > \alpha\} \cup A_f \in \mathfrak{X} \tag{3.23}$$

Si $\alpha < 0$ entonces

$$\{f > \alpha\} = \{\hat{f} < \alpha\} \setminus B_f = \{\hat{f} < \alpha\} \cap B_f^c \in \mathfrak{X}$$
 (3.24)

Corolario 3.7. Si $f, g \in M(X, \mathfrak{X})$ y $c \in \mathbb{R}$. Las funciones $c \cdot f$, f^2 , |f|, $f \cdot g \in M(X, \mathfrak{X})$.

Nota. Dados $f, g \in M(X, \mathfrak{X})$ consideremos los conjuntos

•
$$E_1 = \{f = +\infty\} \cap \{g = -\infty\} \in \mathfrak{X}.$$

•
$$E_2 = \{f = -\infty\} \cap \{g = +\infty\} \in \mathfrak{X}.$$

Notemos que no está definida la suma f+g en $E_1 \cup E_2$. Definimos

$$f + g = \begin{cases} f + g & x \in X \setminus (E_1 \cup E_2) \\ 0 & x \in E_1 \cup E_2 \end{cases}$$
 (3.25)

La demostración de que $f+g\in M(X,\mathfrak{X})$ se deja como ejercicio.

Lema 3.8. Dada una sucesión de funciones $(f_n)_{n\geq 1}$ en $M(X,\mathfrak{X})$ sean f,f^*,F,F^* definidas por:

$$f(x) = \inf_{n \ge 1} f_n(x) \quad f^*(x) = \liminf_{n \to \infty} f_n(x) \tag{3.26}$$

$$F(x) = \sup_{n \ge 1} f_n(x) \quad F^*(x) = \limsup_{n \to \infty} f_n(x)$$
 (3.27)

Entonces $f, f^*, F, F^* \in M(X, \mathfrak{X})$.

Demostración. Dado $\alpha \in \mathbb{R}$ tenemos que

$$\{F > \alpha\} = \bigcup_{n > 1} \{f_n > \alpha\} \in \mathfrak{X} \tag{3.28}$$

$$\{f > \alpha\} = \bigcap_{n \ge 1} \{f_n > \alpha\} \in \mathfrak{X} \tag{3.29}$$

Veamos $F^* \in M(X, \mathfrak{X})$. Para cada $n \in \mathbb{N}$ defino $h_n = \sup_{m \geq n} f_m \in \mathfrak{X}$. Por ser subsucesión de funciones medibles. Luego

$$F^* = \inf_{n \ge 1} (\sup_{m \ge n} f_m) \in \mathfrak{X}$$
 (3.30)

Análogamente para f*.

Corolario 3.9. Dada $(f_n)_{n\geq 1}: f_n\in M(X,\mathfrak{X}) \ (\forall n\in\mathbb{N})$. Supongamos que la sucesión converge puntualmente a f entonces $f\in M(X,\mathfrak{X})$.

Demostración. Notemos que $f = \lim \inf f_n = \lim \sup f_n$ y aplicamos el lema anterior.

Clase IV - 20/03

4.1 Parte negativa y positiva

Definición 4.1 (Función truncada). Dada una función $f \in M(X,\mathfrak{X})$, para cada $n \geq 1$ definimos la función truncada a [-n,n] como la $f_n:X\to\mathbb{R}$ dada por

$$f_n(x) = \begin{cases} f(x) & \text{si } f(x) \in [-n, n] \\ n & \text{si } f(x) > n \\ -n & \text{si } f(x) < -n \end{cases}$$

Que converge puntualmente a f.

Notemos que f_n es medible para todo $n \ge 1$. Pues

$$\{f_n > \alpha\} = \begin{cases} X & \text{si } \alpha \le -n \\ \{f < \alpha\} & \text{si } \alpha \in [-n, n] \\ \emptyset & \text{si } \alpha \ge n \end{cases}$$

Veamos una forma alternativa de probar el teorema de la clase anterior. Si $f,g \in M(X,\mathfrak{X})$ entonces $f+g:X\to\mathbb{R}\in M(X,\mathfrak{X})$

Para cada $n \geq 1$ consideramos las funciones truncadas $f_n, g_n : X \to \mathbb{R}$. Tenemos que $f_n + g_n : X \to \mathbb{R}$ es \mathfrak{X} -medible. Queremos ver que la convergencia es puntual $\forall x \in X$.

Si $x \in E_1 = \{f = +\infty, g = -\infty\}$. Para cada $n \ge 1$, $f_n(x) = n$ y $g_n(x) = -n$ entonces $(f_n + g_n)(x) = f_n(x) + g_n(x) = 0$ ($\forall n$). Luego $(f_n + g_n)(x) \to 0 = f(x)$ si $x \in E_1$. Para $x \in E_2$ el desarollo es análogo.

Si $x \in (E_1 \cup E_2)^c$ entonces

- 1. $f(x)g(x) \in \mathbb{R}$.
- 2. $f(x) \in \mathbb{R} \ y \ g(x) = +-\infty$.
- 3. $f(x) = +-\infty y g(x) \in \mathbb{R}$.
- 4. $f(x) = g(x) = +-\infty$.

 $\mathrm{Luego}\ (f_n+g_n)(x)\to (f+g)(x)\quad \forall x\in (E_1\cup E_2)^c.\ \mathrm{Pues}\ f_n(x)\to f(x)\ y\ g_n(x)\to g(x).$

Definición 4.2. Dada una función $f:X\to\overline{\mathbb{R}}$ definimos la parte positiva $f^+:X\to\overline{\mathbb{R}}$ y la parte negativa $f^-:X\to\overline{\mathbb{R}}$ como

$$f^{+}(x) = \begin{cases} f(x) & \text{si } f(x) \ge 0 \\ 0 & \text{si } f(x) < 0 \end{cases}$$

$$f^{-}(x) = \begin{cases} -f(x) & \text{si } f(x) \le 0\\ 0 & \text{si } f(x) > 0 \end{cases}$$

Nota. $f = f^+ - f^- y |f| = f^+ + f^-$.

Nota. Si (X,\mathfrak{X}) es un espacio medible $f\in M(X,\mathfrak{X})\iff f^+,\,f^-\in M^+(X,\mathfrak{X})=\{f\in M(X,\mathfrak{X}):f\geq 0\}$ Notemos que $f^+=\sup(\{f,0\})$ y $f^-=\sup(\{-f,0\})$. Utilizando el teorema anterior vemos que si $f^+,\,f^-\in M(X,\mathfrak{X})$ entonces $f=f^++(-f^-)\in M(X,\mathfrak{X})$.

Nota. Si $B_f = \{f = +\infty\},\$

$$f^+ = \chi_{B^c_f} \cdot \frac{1}{2} \cdot (f + |f|)$$

$$f^- = \chi_{A_f^c} \cdot \frac{1}{2} \cdot (|f| - f)$$

Veamos el siguiente teorema.

Si $f \in M^+(X, \mathfrak{X})$ entonces $\exists (\varphi_n)_{n \geq 1} \in M^+(X, \mathfrak{X})$ tal que

- $1. \ \varphi_n \leq \varphi_{n+1} \quad \forall n \geq 1.$
- $2. \ f(x) = \lim_{n \to \infty} \varphi_n(x) \quad \forall x \in X.$
- 3. Para cada $n \geq 1$ se tiene que $\varphi_n: X \to \mathbb{R}$ toma una cantidad finita de valores.

Luego fijado el $n \in \mathbb{N}$ tenemos los intervalos

$$[0,\frac{1}{2}),[\frac{1}{2^{n}},\frac{2}{2^{n}}),\cdots,[\frac{2^{n-1}}{2^{n}},\frac{2^{n}}{2^{n}}),[\frac{2^{n}}{2^{n}},\frac{2^{n}+1}{2^{n}}),\cdots,[\frac{n\cdot 2^{n}-1}{2^{n}},\frac{n\cdot 2^{n}}{2^{n}}),[n,+\infty]$$

Para cada $k=0,\cdots,n\cdot 2^n-1$ definimos el conjunto

$$\begin{split} E_{k,n} &= f^{-1}([\frac{k}{2^n}, \frac{k+1}{2^n})) \in \mathfrak{X} \\ &= \{x \in X : \frac{k}{2^n} \le f(x) < \frac{k+1}{2^n}\} \end{split}$$

Sea

$$E_{n\cdot 2^n,n} = f^{-1}([n,+\infty]) = \{x \in X : f(x) \ge n\} \in \mathfrak{X}$$

Notemos que $E_{k,n} \in \mathfrak{X} \ \forall k, \ \bigcup_{k=0}^{n\cdot 2^n} E_{k,n} = f^{-1}([0,+\infty]) = X$ son disjuntos dos a dos. Luego definimos $\varphi_n(x) = \sum_{k=0}^{n\cdot 2^n} \frac{k}{2^n} \cdot \chi_{E_{n,k}} = \frac{k}{2^n}$ si $x \in E_{k,n}$, cada x pertenece a un único $E_{k,n}$ por construcción. Entonces $\varphi_n \in M^+(X,\mathfrak{X})$.

Veamos que $\phi_n \leq \phi_{n+1}$, dado $x \in X$ supongamos que f(x) < n entonces $\exists ! k = 0, \cdots, n \cdot 2^n - 1 : x \in E_{k,n}$ (pues en el nivel n, son disjuntos). Queda como ejercicio probar que $E_{k,n} = E_{2k,n+1} \cup E_{2k+1,n+1}$.

Luego

$$\varphi_n(x) = \frac{k}{2^n}$$

$$\varphi_{n+1}(x) = \begin{cases} \frac{2k}{2^{n+1}} = \frac{k}{2^n} & \text{si } x \in E_{2k,n+1} \\ \frac{2k+1}{2^{n+1}} = \frac{k}{2^n} + \frac{1}{2^{n+1}} & \text{si } x \in E_{2k+1,n+1} \end{cases}$$

 $\therefore \varphi_n(x) \leq \varphi_{n+1}(x).$

Por otro lado si $f(x) > n \to x \in E_{n \cdot 2^n, n}$ entonces $\phi_n(x) = n$.

Como ahora descomponemos $[n,+\infty]$ en $[n,n+1]\cup[n+1,+\infty]$ para φ_{n+1} lo tenemos como

$$\bigcup_{k=0}^{2^{n+1}-1} [\frac{n \cdot 2^{n+1} + k}{2^{n+1}}, \frac{n \cdot 2^{n+1+k+1}}{2^{n+1}}) \cup [n+1, +\infty]$$

Si $x \in [n+1,+\infty]$ ya está pues $\varphi_{n+1}(x) = n+1 \geq n = \varphi_n(x)$.

Luego $\exists ! k = 0, \dots, n \cdot 2^{n+1} : x \in E_{n \cdot 2^{n+1} + k, n+1}$ y en ese caso $\phi_{n+1}(x) = \frac{n \cdot 2^{n+1} + k}{2^{n+1}} = n + \frac{k}{2^{n+1}} \ge n = \phi_n(x)$. Por lo tanto $\phi_n \le \phi_{n+1}$.

 $\text{Por \'ulitmo veamos que } f(x) = \text{lim}_{n \to +\infty} \varphi_n(x) \quad \forall x \in X.$

- $1. \ f(x) = +\infty \ \mathrm{luego} \ \forall n \geq 1 \quad \varphi_n(x) = n \to +\infty.$
- 2. $f(x) \in [0, +\infty)$. Consideremos $n_0 \in \mathbb{N}$: $f(x) < n_0$ luego $\forall n \geq n_0 \quad \exists k = 0, \cdots, n \cdot 2^n 1$: $x \in E_{k,n}$. Entonces $\varphi_n(x) = \frac{k}{2^n} \leq f(x) \leq \frac{k+1}{2^n} \iff 0 \leq f(x) \varphi_n(x) \leq \frac{1}{2^n}$.

$$\therefore \varphi_n(x) \to f(x).$$

Nota. Si f está acotada (superiormente) entonces $\phi_n \rightrightarrows f$.

4.2 Funciones medibles entre espacios medibles

Definición 4.3. Dados espacios medibles (X, \mathfrak{X}) y (Y, \mathfrak{Y}) una función $f: X \to Y$ es $(\mathfrak{X}, \mathfrak{Y})$ -medible si $f^{-1}(E) \in \mathfrak{X} \quad \forall E \in \mathfrak{Y}$.

Ejemplo. Si (X, \mathfrak{X}) es un espacio medible:

- 1. $f: X \to \mathbb{R}$ es \mathfrak{X} -medible \iff f es $(\mathfrak{X}, \mathcal{B})$ -medible.
- 2. $f: X \to \overline{\mathbb{R}}$ es \mathfrak{X} -medible \iff f es $(\mathfrak{X}, \overline{\mathcal{B}})$ -medible.
- 3. $f: X \to \mathbb{R}^n$, sean $f_j: X \to \mathbb{R}$ las componentes de f entonces f es $(\mathfrak{X}, \mathcal{B})$ -medible si y sólo si f_j lo es $\forall j$.

Proposición 4.4. Dados un espacio medible (X,\mathfrak{X}) y un conjunto Y, sea $f:X\to Y$ una función. Si $\mathcal{A}\subseteq P(Y):f^{-1}(A)\in\mathfrak{X}\quad \forall A\in\mathcal{A}$ entonces f es $(\mathfrak{X},\sigma(\mathcal{A}))$ -medible.

Demostración. Sea $Z = \{E \subseteq Y : f^{-1}(E) \in \mathfrak{X}\} \supseteq \mathcal{A}$. Es fácil ver que Z es σ -álgebra entonces $\sigma(\mathcal{A}) \subseteq Z$. Es decir que $f^{-1}(E) \in \mathfrak{X} \quad \forall E \in \sigma(\mathcal{A})$. Luego f es $(\mathfrak{X}, \sigma(\mathcal{A}))$ -medible.

Proposición 4.5. Sea (X, \mathfrak{X}) , (Y, \mathfrak{Y}) , (Z, \mathfrak{Z}) espacios medibles y $f: X \to Y$ y $g: Y \to Z$ funciones $(\mathfrak{X}, \mathfrak{Y})$ -medible y $(\mathfrak{Y}, \mathfrak{Z})$ -medible respectivamente. Entonces $g \circ f: X \to Z$ es $(\mathfrak{X}, \mathfrak{Z})$ -medible.

Demostración. Fijado $E \in \mathfrak{Z}$ tenemos que $(g \circ f)^{-1}(E) = f^{-1}(g^{-1}(E)) \in \mathfrak{X}$ pues f y g son medibles.

Parciales

- 5.1 Primer parcial Primera fecha
- 5.2 Primer parcial Segunda fecha
- 5.3 Segundo parcial Primera fecha
- 5.4 Segundo parcial Segunda fecha
- 5.5 Segundo parcial Tercera fecha

Bibliografía

[1] Robert G. Bartle. The elements of integration and Lebesgue. John Wiley and Sons, 1995.