Note Title

A sequence of vector spaces and linear maps

is said to be exact when Im (f) = ker(g).

A sequence
$$A^* = \{ A^i, d^i \}$$

of vector spaces and linear maps is called a chain complex

provided.

$$d^{iH} \circ d^{i} = 0$$
 (\Rightarrow ker(d^{iH}) \supset Im(d^{i}))

for all i.

The chain complex is called exact if

An exact sequence of the form

is called a short exact sequence. This is equivalent to requiring

•
$$f$$
 is injective (\Leftrightarrow ker(f) = 0),

- \cdot Im(f) = $\ker(g)$,
- g is surjective (\Leftrightarrow Im(g) = C).

A linear map q:B-> C always Note: induces a linear map calso called g) q: B/ver(q) → C

defined by g(b+ker(g)):=g(b).

For a short exact sequence,

g: B/ker(g) → C is an isomorphism im(f)

since:

Another linear isomorphism:

Lamma For a short exact sequence

dim(A) < 00, dim(C) < 00 =>

dim (B) 400 and BEADC.

(prove it yourself or look up the proof)

Recall a chain complex

So far we have only seen one kind of chain complex (namely de Rham's), but there are other kinds in order for the following general definition worthwhile:

The true excitment happens when we have a
Short exact sequence of chain complexes
i.e.
$O \rightarrow A^* \stackrel{f}{\rightarrow} B^* \stackrel{q}{\rightarrow} C^* \rightarrow O$
1) f, g are chain maps
2 $O \rightarrow A^P \xrightarrow{f^P} B^P \xrightarrow{g^P} C^P \rightarrow O$ is exact $\forall P$.
So from the last lemma, f, g induce linear maps between the corresponding cohomology spaces
maps between the corresponding cohomology spaces
M .
HP(A*) 3 HP(B*) 3 HP(C*)
moreover: This sequence is exact $\forall p$.
(Lemma 4.4)
Roof:
Broof: O -> API -> BP-1 -> CP-1-> D
O-> API -> BPI O-> CPI->O
ly of rapyly
0 -> AP -> BP 9- CP -> 0 > HP(A*) -> HP(B*) -9>HP(C*) 0 -> AP -> BP 9- CP -> 0 0 -> APH -> BPH -> CPH -> 0 0 -> APH -> BPH -> CPH -> 0
a la la la u u
0 -> APH -> CPH -> 0 [6] [6]
<u> </u>
i i i
(i) Since gloff=0, for any [a] & HP(A*),
$g^*\circ f^*([a]) = g^*([f^a]) = [g^p(f^p(a))] = 0$
$SD \qquad q^* \circ f^* = O$
(ii) Assume $[b] \in H^{P}(B^{*})$ s.t $q^{*}(cbj) = 0$, so

$$g^{P}(b) \in \text{Im}(d_{C}^{P-1})$$
, or $g^{P}(b) = d_{C}^{P+1}(c)$ for some $C \in C^{P+1}$.

But g^{P+1} is surjective,

so $g^{P+1}(b_1) = C$ for some $b_1 \in B^{P+1}$.

Then $g^{P} \circ d_{B}^{P-1}(b_1) = d_{C}^{P+1} \circ g^{P+1}(b_1)$ $\downarrow = 1$

or $g^{P}(d_{B}^{P+1}b_1 - b) = 0$
 $e^{P}(d_{B}^{P+1}b_1 - b) = 0$

Then $d_{C}^{P+1}b_1 - b = f^{P}(a)$ for some $a \in A^{P}$.

We are done if we can show:

① $d_{A}^{P+1}(a) = 0$, so $[a]$ is a cohomology class in $H^{P}(A^{*})$

$$2 f^*([a]) = [b].$$

(1)
$$dA^{P}(a) = 0 \iff f^{PH}(dA^{P}(a)) = 0$$
, since f^{PH} is injective.

But then
$$f^{p+1} dA^{p} (a) = dB \circ f^{p} (a) \qquad \downarrow = 7$$

$$= dB (dB^{-1}b_1 - b)$$

$$= dB \circ dB^{-1}b_1 - dBb = 0$$

2
$$f^*[a] = [f^{p}(a)]$$
 (by def. of f^*)
$$= [d_3^{p_1}b_1 - b]$$

$$= [b]$$

$$= [md_3^{p_1}] \text{ (by def. of } f^*)$$

A	Key	result	(from	algebraic	topology)	Says
	0		•	0		0

Thm:

a long exact sequence of the corresponding cohomology. spaces

i.e.

V

2*([c]):=[(fp+1)-1(dp((gp)-1(c)))]

Direct sum of vector spaces A,B ABB := {(a,b): aeA, be B} 2(a,b) = (2a, 2b) $(a_1,b_1)+(a_2,b_2)=(a_1+a_2,b_1+b_2).$ dim (ABB) = dimA + dimB. If A*, B* are chain complexes A* @ B* := (... -> AP@BP -> AP+@BP+)-) is also a chain complex. Moreover: HP(A* + B*) = HP(A*) + HP(B*) (Lemma 4:13) (Easy to check.)