Lineare Algebra: 1. Übungsblatt

Wintersemester 2016/17 Prof. Dr. Marzena Fügenschuh

Mengen

Ausgabe: 5. Oktober 2016

1. Übung:

Gegeben seien Mengen $A = \{1, 4, 5\}$ und $B = \{2, 3, 4, 5, 6, 7, 8, 9\}$ und die Grundmenge $G = \{x \in \mathbb{N} \mid 0 < x \le 10\}$.

- a) Bilden Sie die Mengen $A \cup B$, $A \cap B$, $A \setminus B$, $B \setminus A$, $\overline{A \cap B}$, $\overline{A} \setminus B$, $\overline{B \cap \overline{A}} \cup A$, $A \diamond \overline{B}$, $A \times \overline{B}$.
- b) Geben Sie alle Teilmengen von A an.

Hinweis: $A \diamond B = (A \cup B) \setminus (A \cap B)$. Es ist die symmetrische Differenz, entweder in A oder in B.

2. Übung:

Gegeben seien Intervalle $A =]-\infty, 2[$, B = [-4, 5] und $C =]0, \infty[$.

- 1. Bilden Sie die Mengen $A \cup B$, $B \cap C$, $(A \cap B) \cup (A \cap C)$, $C \setminus B$, $B \setminus A$, $B \diamond C$ sowie das Komplement A, B und C in \mathbb{R} .
- 2. Skizzieren Sie die Menge $A \times B$.

3. Übung:

Geben Sie alle Inklusionsbeziehungen $(=, \subset, \subseteq)$ zwischen den Mengen:

$$A = \{n \in \mathbb{Z} \mid |n| < 2\},\$$

$$B = \{ n \in \mathbb{Z} \mid n^3 = n \},$$

$$C = \{n \in \mathbb{Z} \mid n^2 < 2n\},\$$

$$D = \{ n \in \mathbb{Z} \, | \, n^2 < 1 \},$$

$$E = \{0, 1, 2\},\$$

4. Übung:

Gegeben seien Mengen $A = \{1, 2\}$ und $B = \{2, 3, 4\}$. Geben Sie die Potenzmengen beider Mengen an und enstcheiden anschliessend, welche der Aussage richtig sind.

- 1. $A \subseteq B$
- 2. $\{2,3\} \subseteq B$
- 3. $\{2\} \in A$
- 4. $\{2\} \in \mathcal{P}(B)$
- 5. $\{2, \{3, 4\}\}\ \in \mathcal{P}(B)$
- 6. $4 \in B$

5. Übung: Ungleichungen

1.
$$\frac{3x-4}{x-3} > 4$$
,

2.
$$\frac{1-x}{3+x} \le 1$$
,

$$3. \ \frac{1}{2x-1} < \frac{1}{x-3},$$

4.
$$|x-3| < 2$$
,

$$5. \ \frac{3-2x}{|x+2|} \le 2,$$

6.
$$\frac{1}{|1+x|} < \frac{2}{|1-x|}$$
.

6. Übung:

Ermitteln Sie die Lösungsmengen folgender Ungleichungen:

1.
$$\frac{4x-3}{2} > \frac{2x+1}{3}$$
,

$$2. \ \frac{3x-1}{x+3} \le 2,$$

$$3. \left| \frac{3x-1}{x+3} \right| > 2,$$

4.
$$\frac{x-3}{x-1} > \frac{3x-2}{3x-1}$$

5.
$$|4x+1| \ge 3 \cdot |x+2|$$
.