CSC 458/2209 – Computer Networks

Handout # 2: Course Logistics and Introduction

Professor Yashar Ganjali

Department of Computer Science

University of Toronto

http://www.cs.toronto.edu/~yganjali

Today

- Outline
 - What this course is about
- Logistics
 - Course structure, assignments, evaluation
 - What is expected from you
 - What you can expect from this course
- Review
 - Simple example mail vs. FTP
- Foundations and basic concepts

What is This Course About?

- Undergrad course; can be taken by grads
- Computer networks
 - Basics: Layers, naming, and addressing, network (socket) programming, packet switching, routing, congestion control, ...
 - Advanced networking: HTTP, web, peer-to-peer, routers and switches, security, multimedia, online social networks, software-defined networking, ...
- Theory vs. Practice
 - CSC 358: foundation and theory
 - CSC 458: advanced networking and network programming

Logistics – Prerequisites, Readings

- Prerequisites
 - Algorithms
 - Basic probability theory
 - Strong background in C programming and Unix environment
- CSC 358 is not a prerequisite.
- Readings
 - Will be posted on course schedule web page
 - Read before class

Logistics – Textbooks

Textbook

• "Computer Networks: A Systems Approach", (5th Edition), Peterson, Davie, 2011

Recommended books

- "UNIX Network Programming, Volume I: The Sockets Networking API", W. Richard Stevens, Bill Fenner, and Andrew M. Rudoff, 3rd edition, 2003
- "TCP/IP Illustrated, Volume 1: The Protocols", W. Richard Stevens, 1993

Logistics – Hours, Web, Announcements

- Office hours
 - L0101, and L0201:
 - Tue. 3-4 PM, Thu. 3-4 PM, Bahen 5238,
 - Or by appointment
 - L5101
 - Please check with your instructor
- Course web page

http://www.cs.toronto.edu/~yganjali/courses/csc458/

 Please check the class web page, and the bulletin board regularly for announcements.

Logistics – Sections

- This course is offered in three sections
 - L0101: Thu 1-3PM, SS1087, Y. Ganjali
 - L0201: Tue. 1-3PM, SS1071, Y. Ganjali
 - L5101: Tue. 6-8PM, BA1200, J. Lim

- Might have slight differences in content
 - Assignments and exams are coordinated

Logistics – Teaching Assistants

- Shiva Ketabi
 - shketabi@cs.toronto.edu
- Joseph Wahba
 - joseph.wahba@mail.utoronto.ca
- Sajad Shirali-Shahreza
 - shirali@cs.toronto.edu
- Saeed Arezoumand
 - saeed.arezoumand@gmail.com

- Pegah Abed-Esfahani
 - pegah.abed73@gmail.com
- Yinan Liu
 - yinan@ece.toronto.edu
- Hongbo Fan
 - fhb1992@gmail.com
- Hao WANG
 - haowang@ece.utoronto.ca

Logistics – TA hours, Tutorials

Check class web page for office hours.

- Tutorials and discussion session
 - L0101: Fri. 11-12PM, SS1087
 - L0201: Fri. 1-2PM, SS1071
 - L0501: Tue. 8-9PM, BA1200
- First tutorial:
 - L0101 and L0201 this Friday
 - Section L0501 next Tue.

Logistics – Mailing List, Bulletin Board

Bulletin board

- We will use Piazza for announcements and Q&A
 - Sign up link on class web site
- Post any questions related to the course.
- Check previous posts before asking a question.
- We guarantee to respond within 48 hours.

Class mailing list

- Based on e-mail address you have defined on ROSI/ACORN.
- The TAs and I will use this list for announcements only.
- Do not send e-mails to this list!

Logistics – Grading

Grading for undergraduate AND graduate students

• Assignments: 50%

Problem sets: 20%

Programming: 30%

• Midterm exam: 20% - In class

L0101: Oct. 27th

L0201: Oct. 25th

• L0501: Oct. 25th

Final exam: 30% - TBA

 Please note that grading is the same for graduate and undergraduate students this year.

Logistics - Deadlines

- Assignment deadlines
 - One free late submission of 24 hours
 - Use on assignment of your choice
 - E-mail TAs before the deadline
 - 10% deduction for each day late
 - Up to 20%
 - Assignment not accepted after two days

Logistics – Programming Assignments

- To be completed in groups of three students.
- You can submit your assignment during a 7-10 day period before the deadline
 - And have the results of basic tests back
 - Your last submission before the deadline will be marked
- Socket Programming
- MiniNet
 - Your very own virtual network!
 - You will create and program your own network
 - VM available on CDF machines
 - More detail on this later.
- This is a <u>heavy</u> course, but <u>manageable</u>!

Logistics – Academic Integrity

- Academic Integrity
 - All submissions must present original, independent work.
 - We take academic offenses very seriously.
 - Please read
 - Handout # 1 (course information sheet)
 - "Guideline for avoiding plagiarism"
 - http://www.cs.toronto.edu/~fpitt/documents/plagiarism.
 html
 - "Advice about academic offenses"
 - http://www.cs.toronto.edu/~clarke/acoffences/

Logistics - Accessibility

- Accessibility Needs
 - The University of Toronto is committed to accessibility.
 If you require accommodations or have any accessibility concerns, please visit
 http://studentlife.utoronto.ca/accessibility as soon as possible.

Acknowledgements

- Special thanks to:
 - Nick McKeown from Stanford University
 - Jennifer Rexford from Princeton University
 - David Wetherall from University of Washington
 - Nick Feamster from Georgia Tech

Quick Survey

- Have you taken CSC358 before?
- Have you taken any networking course?
- Are you familiar with
 - Socket programming?
 - Ethernet, framing, encoding, error detection/correction?
 - UDP, TCP and congestion control?
 - DNS, SNMP, BGP?
 - BitTorrent?
 - Voice and video over IP?
 - Control plane vs. data path?
 - Network security?
 - Software-defined networking?

Questions?

What else do you want to know about this course?

Announcement

- First tutorial
 - L0101 and L0201, Friday, Sep. 16th
 - L5101, Tue. Sep 20th
- Covers socket programming
- You'll need this information for your first programming assignment, which will be posted next week.

Let's Begin

- An introduction to the mail system
- An introduction to the Internet

An Introduction to the Mail System

Characteristics of the Mail System

- Each envelope is individually routed.
- No time guarantee for delivery.
- No guarantee of delivery in sequence.
- No guarantee of delivery at all! resent
 - Things get lost
 - How can we acknowledge delivery?
 - Retransmission
 - How to determine when to retransmit? Timeout?
 - Need local copies of contents of each envelope.
 - How long to keep each copy.
 - What if an acknowledgement is lost?

An Introduction to the Mail System

An Introduction to the Internet

Characteristics of the Internet

- Each packet is individually routed.
- No time guarantee for delivery.
- No guarantee of delivery in sequence.
- No guarantee of delivery at all!
 - Things get lost
 - Acknowledgements
 - Retransmission
 - How to determine when to retransmit? Timeout?
 - Need local copies of contents of each packet.
 - How long to keep each copy?
 - What if an acknowledgement is lost?

Characteristics of the Internet - Cont'd

- No guarantee of integrity of data.
- Packets can be fragmented. chopping packets into smaller pieces
- Packets may be duplicated.

sender thought receiver did not receive, but did receive

- delay in sending packet
- delay in Ack

Layering in the Internet

- Transport Layer
 - Provides reliable, in-sequence delivery of data from end-to-end on behalf of application.
- Network Layer
 - Provides "best-effort", but unreliable, delivery of datagrams.
- Link Layer
 - Carries data over (usually) point-to-point links between hosts and routers; or between routers and routers.

An Introduction to the Mail System

Some Questions About the Mail System

- How many sorting offices are needed and where should they be located?
- How much sorting capacity is needed?
 - Should we allocate for Mother's Day?
- How can we guarantee timely delivery?
 - What prevents delay guarantees?
 - Or delay variation guarantees?
- How do we protect against fraudulent mail deliverers, or fraudulent senders?

Outline – Foundations & Basic Concepts

A detailed FTP example dropbox

- Layering
- Packet switching and circuit switching

Example: FTP over the Internet Using TCP/IP and Ethernet

In the Sending Host

- 1. Application-Programming Interface (API)
 - Application requests TCP connection with

reliable data delivery but maybe slow 2. Transmission Control Protocol (TCP)

- Creates TCP "Connection setup" packet
 TCP requests IP packet to be sent to "B"

In the Sending Host – Cont'd

- 3. Internet Protocol (IP) use to distinguish hosts in the network
 - Creates IP packet with correct addresses.
 - IP requests packet to be sent to router.

In the Sending Host - Cont'd

4. Link ("MAC" or Ethernet) Protocol

- Creates MAC frame with Frame Check Sequence (FCS).
- Wait for Access to the line.
- MAC requests PHY to send each bit of the frame.

In Router R1

1 App "A" U of T "B" Stanford 20 App 19 05 17 17 Ethernet 14 15 15 R5 16 17 R4 13

5. Link ("MAC" or Ethernet) Protocol

- Accept MAC frame, check address and Frame Check Sequence (FCS).
- Pass data to IP Protocol.

In Router R1

6. Internet Protocol (IP)

- Use IP destination address to decide where to send packet next ("next-hop routing").
- Request Link Protocol to transmit packet.

the same ip though

In Router R1

1 App "A" U of T "B" Stanford 20 App 2 3 05 4 18 17 R1 6 8 2 R3 12 16

7. Link ("MAC" or Ethernet) Protocol

- Creates MAC frame with Frame Check Sequence (FCS).
- Wait for Access to the line.
- MAC requests PHY to send each bit of the frame.

In Router R5

16. Link ("MAC" or Ethernet) Protocol

- Creates MAC frame with Frame Check Sequence (FCS).
- Wait for Access to the line.
- MAC requests PHY to send each bit of the frame.

In the Receiving Host

1 App "A" U of T "B" Stanford 20 App 2 3 05 19 18 17 R1 6 8 17 15 R5 11 16 R

17. Link ("MAC" or Ethernet) Protocol

- Accept MAC frame, check address and Frame Check Sequence (FCS).
- Pass data to IP Protocol.

In the Receiving Host - Cont'd

18. Internet Protocol (IP)

- Verify IP address.
- Extract/decapsulate TCP packet from IP packet.
- Pass TCP packet to TCP Protocol.

In the Receiving Host - Cont'd

19. Transmission Control Protocol (TCP)

- Accepts TCP "Connection setup" packet
- Establishes connection by sending "Ack".

20. Application-Programming Interface (API)

 Application receives request for TCP connection with "A".

Outline – Foundations & Basic Concepts

A detailed FTP example

Packet switching and circuit switching

Layering – The OSI Model

Layering – Our FTP Example

Outline – Foundations & Basic Concepts

- A detailed FTP example
- Layering

Packet switching and circuit switching

Circuit Switching

- It's the method used by the telephone network.
- A call has three phases:
 - Establish circuit from end-to-end ("dialing"),
 - Communicate,
 - Close circuit ("tear down").
- Originally, a circuit was an end-to-end physical wire.
- Nowadays, a circuit is like a virtual private wire: each call has its own private, guaranteed data rate from end-to-end.

Circuit Switching – Telephone Network

Packet Switching

- It's the method used by the Internet.
- Each packet is individually routed packet-by-packet, using the router's local routing table.
- The routers maintain no per-flow state.
- Different packets may take different paths.
- Several packets may arrive for the same output link at the same time, therefore a packet switch has buffers.

have to store in buffers if line is busy

Packet Switching – Simple Router Model

Statistical Multiplexing – Basic Idea

- Network traffic is bursty.
 i.e. the rate changes frequently.
- Peaks from independent flows generally occur at different times.
- Conclusion: The more flows we have, the smoother the traffic.

Average rates of: 1, 2, 10, 100, 1000 flows.

Packet Switching – Statistical Multiplexing

- ❖ Because the buffer absorbs temporary bursts, the egress link need not operate at rate *N.R.*
- ❖ But the buffer has finite size, B, so losses will occur.

Statistical Multiplexing

Statistical Multiplexing Gain

Statistical multiplexing gain = 2C/R

Other definitions of SMG: The ratio of rates that give rise to a particular queue occupancy, or particular loss probability.

Why Packet Switching in the Internet?

- Efficient use of expensive links:
 - The links are assumed to be expensive and scarce.
 - Packet switching allows many, bursty flows to share the same link efficiently.
 - "Circuit switching is rarely used for data networks, ...
 because of very inefficient use of the links" Gallager
- Resilience to failure of links & routers:
 - "For high reliability, ... [the Internet] was to be a datagram subnet, so if some lines and [routers] were destroyed, messages could be ... rerouted" Tanenbaum

Final Comments, Discussion

- Is layering the best approach?
 - Simplifies design
 - Yet, limited and inflexible since protocols maybe introduce overheads, speed, timely delivery
- Best effort service
 - Made the rapid growth of the Internet possible
 - Makes providing any guarantees very difficult
- Packet switching
 - Enables statistical multiplexing
 - We need extremely fast routers
- Routing
 - How does a router know which output port to send the packet to?