Proving the Congruence of Triangles

Jonathan R. Bacolod

Sauyo High School

Given: $\overline{AB} \cong \overline{EF}$

 $\overline{AC}\cong \overline{ED}$

 $\angle A \cong \angle E$

Prove: $\triangle ABC \cong \triangle EFD$

Given: $\overline{AB} \cong \overline{EF}$ $\overline{AC} \cong \overline{ED}$

 $\angle A \cong \angle E$

Prove: $\triangle ABC \cong \triangle EFD$

Proof:

Statements Reasons

Given: $\overline{\underline{AB}} \cong \overline{\overline{EF}}$ $\overline{AC} \cong \overline{\overline{ED}}$

 $\angle A \cong \angle E$

Prove: $\triangle ABC \cong \triangle EFD$

Statements	Reasons
1. $\overline{AB} \cong \overline{EF}$	1. Given

Given: $\overline{\underline{AB}} \cong \overline{\overline{EF}}$ $\overline{AC} \cong \overline{\overline{ED}}$

 $\angle A \cong \angle E$

Prove: $\triangle ABC \cong \triangle EFD$

Statements	Reasons
1. <i>AB</i> ≅ <i>EF</i>	1. Given
2. $\overline{AC} \cong \overline{ED}$	2. Given

Given: $\overline{\underline{AB}} \cong \overline{\overline{EF}}$ $\overline{AC} \cong \overline{\overline{ED}}$

 $\angle A \cong \angle E$

Prove: $\triangle ABC \cong \triangle EFD$

Statements	Reasons
1. <i>AB</i> ≅ <i>EF</i>	1. Given
2. $\overline{AC} \cong \overline{FD}$	2. Given
3. ∠A ≅ ∠ <i>E</i>	3. Given

Given: $\overline{AB} \cong \overline{EF}$ $\overline{AC} \cong \overline{ED}$

 $\angle A\cong \angle E$

Prove: $\triangle ABC \cong \triangle EFD$

Statements	Reasons
1. <i>AB</i> ≅ <i>EF</i>	1. Given
2. $\overline{AC} \cong \overline{ED}$	2. Given
3. ∠A ≅ ∠ <i>E</i>	3. Given
	4. SAS Triangle
4. $\triangle ABC \cong \triangle EFD$	Congruence
	Postulate

Given: $\overline{AB} \cong \overline{AD}$

 $\angle B \cong \angle D$

Prove: $\triangle ABC \cong \triangle ADE$

Given: $\overline{AB} \cong \overline{AD}$

 $\angle B\cong \angle D$

Prove: $\triangle ABC \cong \triangle ADE$

Given: $\overline{AB} \cong \overline{AD}$

 $\angle B\cong \angle D$

Prove: $\triangle ABC \cong \triangle ADE$

Statements	Reasons
1. $\overline{AB} \cong \overline{AD}$	1. Given

Given: $\overline{AB} \cong \overline{AD}$

 $\angle B\cong \angle D$

Prove: $\triangle ABC \cong \triangle ADE$

Statements	Reasons
1. $\overline{AB} \cong \overline{AD}$	1. Given
2. ∠B ≅ ∠D	2. Given

Given: $\overline{AB} \cong \overline{AD}$

 $\angle B \cong \angle D$

Prove: $\triangle ABC \cong \triangle ADE$

Statements	Reasons
1. $\overline{AB} \cong \overline{AD}$	1. Given
2. ∠B ≅ ∠D	2. Given
3. ∠ <i>BAC</i> ≅ ∠ <i>DAE</i>	3. Vertical Angle
	Theorem

Given: $\overline{AB} \cong \overline{AD}$

 $\angle B\cong \angle D$

Prove: $\triangle ABC \cong \triangle ADE$

Statements	Reasons
1. $\overline{AB} \cong \overline{AD}$	1. Given
2. ∠B ≅ ∠D	2. Given
$3. \angle BAC \cong \angle DAE$	3. Vertical Angle
	Theorem
	4. ASA Triangle
4. $\triangle ABC \cong \triangle ADE$	Congruence
	Postulate

Given: $\overline{AB} \cong \overline{CD}$ $\overline{AD} \cong \overline{CB}$

Prove: $\triangle ABC \cong \triangle CDA$

Given: $\overline{AB} \cong \overline{CD}$ $\overline{AD} \cong \overline{CB}$

Prove: $\triangle ABC \cong \triangle CDA$

Statements	Reasons
------------	---------

Given: $\overline{AB} \cong \overline{CD}$ $\overline{AD} \cong \overline{CB}$ D A B

Prove: $\triangle ABC \cong \triangle CDA$

Statements	Reasons
1. $\overline{AB} \cong \overline{CD}$	1. Given

Given: $\overline{AB} \cong \overline{CD}$ $\overline{AD} \cong \overline{CB}$ D A B

Prove: $\triangle ABC \cong \triangle CDA$

Statements	Reasons
1. <i>AB</i> ≅ <i>CD</i>	1. Given
$2. \overline{AD} \cong \overline{CB}$	2. Given

Given: $\overline{AB} \cong \overline{\overline{CD}}$ $\overline{AD} \cong \overline{\overline{CB}}$

Prove: $\triangle ABC \cong \triangle CDA$

Statements	Reasons
1. $\overline{AB} \cong \overline{CD}$	1. Given
$2. \overline{AD} \cong \overline{CB}$	2. Given
$\overline{3. \ AC} \cong \overline{CA}$	3. Reflexive Property

Given: $\overline{AB} \cong \overline{CD}$ $\overline{AD} \cong \overline{CB}$

Prove: $\triangle ABC \cong \triangle CDA$

Statements	Reasons
1. $\overline{AB} \cong \overline{CD}$	1. Given
$2. \overline{AD} \cong \overline{CB}$	2. Given
$\overline{3. \ AC} \cong \overline{CA}$	3. Reflexive Property
	4. SSS Triangle
$4. \triangle ABC \cong \triangle CDA$	Congruence
	Postulate

Given: $\overline{WX} \cong \overline{KX}$

V is the midpoint of \overline{WK}

Prove: $\triangle WXV \cong \triangle KXV$

Given: $\overline{WX} \cong \overline{KX}$

V is the midpoint of \overline{WK}

Prove: $\triangle WXV \cong \triangle KXV$

Statements Reasons

Given: $\overline{WX} \cong \overline{KX}$

V is the midpoint of \overline{WK}

Prove: $\triangle WXV \cong \triangle KXV$

W V K

Statements	Reasons
1. $\overline{WX} \cong \overline{KX}$	1. Given

Given: $\overline{WX} \cong \overline{KX}$

V is the midpoint of \overline{WK}

Prove: $\triangle WXV \cong \triangle KXV$

W V K

Statements	Reasons
1. $\overline{WX} \cong \overline{KX}$	1. Given
2. V is the midpoint of \overline{WK}	2. Given

Given: $\overline{WX} \cong \overline{KX}$

V is the midpoint of \overline{WK}

Prove: $\triangle WXV \cong \triangle KXV$

Statements	Reasons
1. $\overline{WX} \cong \overline{KX}$	1. Given
2. V is the midpoint of \overline{WK}	2. Given
$3. \ \overline{WV} \cong \overline{KV}$	3. Definition of Midpoint

Given: $\overline{WX} \cong \overline{KX}$

V is the midpoint of \overline{WK}

Prove: $\triangle WXV \cong \triangle KXV$

Statements	Reasons
1. $\overline{WX} \cong \overline{KX}$	1. Given
2. V is the midpoint of \overline{WK}	2. Given
3. $\overline{WV} \cong \overline{KV}$	3. Definition of
$\int S. VVV = KV$	Midpoint
$\overline{4. \ \overline{XV} \cong \overline{XV}}$	4. Reflexive Property

Given: $\overline{WX} \cong \overline{KX}$

V is the midpoint of \overline{WK}

Prove: $\triangle WXV \cong \triangle KXV$

Statements	Reasons
1. $\overline{WX} \cong \overline{KX}$	1. Given
2. V is the midpoint of \overline{WK}	2. Given
$\overline{$ 3. $\overline{WV}\cong\overline{KV}$	3. Definition of Midpoint
$\overline{4. \ \overline{XV}} \cong \overline{XV}$	4. Reflexive Property
5. $\triangle WXV \cong \triangle KXV$	5. SSS Triangle Congruence Postulate

Given: \overline{HD} and \overline{OG} bisect each other at F

Prove: $\triangle OFH \cong \triangle GFD$

Given: \overline{HD} and \overline{OG} bisect each other at F

Prove: $\triangle OFH \cong \triangle GFD$

Given: \overline{HD} and \overline{OG} bisect each other at F

Prove: $\triangle OFH \cong \triangle GFD$

 $H \xrightarrow{F} D$

Statements	Reasons
1. \overline{HD} and \overline{OG} bisect each other at F	1. Given

Given: \overline{HD} and \overline{OG} bisect each other at F

Prove: $\triangle OFH \cong \triangle GFD$

 $H \xrightarrow{G} D$

Statements	Reasons
1. \overline{HD} and \overline{OG} bisect each other at F	1. Given
2. $\overline{\mathit{HF}}\cong\overline{\mathit{DF}}, \overline{\mathit{OF}}\cong\overline{\mathit{GF}}$	2. Definition of Segment Bisector

Given: \overline{HD} and \overline{OG} bisect each other at F

Prove: $\triangle OFH \cong \triangle GFD$

 $H \xrightarrow{F} D$

Statements	Reasons
1. \overline{HD} and \overline{OG} bisect each other at F	1. Given
$2. \ \overline{\mathit{HF}} \cong \overline{\mathit{DF}}, \overline{\mathit{OF}} \cong \overline{\mathit{GF}}$	2. Definition of Segment Bisector
3. ∠OFH ≅ ∠GFD	3. Vertical Angle Theorem

Given: \overline{HD} and \overline{OG} bisect each other at F

Prove: $\triangle OFH \cong \triangle GFD$

 $H \xrightarrow{F} D$

Statements	Reasons
1. \overline{HD} and \overline{OG} bisect each other at F	1. Given
2. $\overline{\mathit{HF}}\cong\overline{\mathit{DF}},\overline{\mathit{OF}}\cong\overline{\mathit{GF}}$	2. Definition of
Z. HF = DF, OF = GF	Segment Bisector
3. ∠OFH ≅ ∠GFD	3. Vertical Angle
3. ZOTT = ZOTD	Theorem
4. \triangle OFH \cong \triangle GFD	4. SAS Congruence
	Postulate

Given: $\overline{QR} \perp \overline{QS}$

 $\frac{\overline{SD}}{\overline{RQ}} \perp \frac{\overline{SQ}}{\overline{DS}}$

Prove: $\triangle RQS \cong \triangle DSQ$

Given: $\overline{QR} \perp \overline{QS}$

 $\frac{\overline{SD} \perp \overline{SQ}}{\overline{RQ} \cong \overline{DS}}$

Prove: $\triangle RQS \cong \triangle DSQ$

Statements	Reasons

Given: $\overline{QR} \perp \overline{QS}$ $\overline{SD} \perp \overline{SQ}$

 $\frac{3D}{RQ} \cong \frac{3Q}{DS}$

Prove: $\triangle RQS \cong \triangle DSQ$

Statements	Reasons
$\boxed{1. \ \overline{QR} \perp \overline{QS}, \overline{SD} \perp \overline{SQ}, \overline{RQ} \cong \overline{DS}}$	1. Given

Given: $\overline{QR} \perp \overline{QS}$ $\overline{SD} \perp \overline{SQ}$ $\overline{RQ} \cong \overline{DS}$

S

Prove: $\triangle RQS \cong \triangle DSQ$

Statements	Reasons
1. $\overline{QR} \perp \overline{QS}, \overline{SD} \perp \overline{SQ}, \overline{RQ} \cong \overline{DS}$	1. Given
2. <i>m∠RQS</i> = 90°, <i>m∠DSQ</i> = 90°	2. Definition of Perpendicular Line Segments

Given: $\overline{QR} \perp \overline{QS}$ $\overline{SD} \perp \overline{SQ}$ $\overline{RQ} \cong \overline{DS}$

S

Prove: $\triangle RQS \cong \triangle DSQ$

Statements	Reasons
1. $\overline{QR} \perp \overline{QS}, \overline{SD} \perp \overline{SQ}, \overline{RQ} \cong \overline{DS}$	1. Given
2. <i>m∠RQS</i> = 90°, <i>m∠DSQ</i> = 90°	2. Definition of Perpendicular Line Segments
$\overline{3. \ QS} \cong \overline{SQ}$	3. Reflexive Prop.

Given: $\overline{QR} \perp \overline{QS}$ $\overline{SD} \perp \overline{SQ}$

 $\frac{3D}{RQ} \cong \frac{3D}{DS}$

Prove: $\triangle RQS \cong \triangle DSQ$

S

Statements	Reasons
1. $\overline{QR} \perp \overline{QS}, \overline{SD} \perp \overline{SQ}, \overline{RQ} \cong \overline{DS}$	1. Given
2. <i>m∠RQS</i> = 90°, <i>m∠DSQ</i> = 90°	2. Definition of
	Perpendicular Line
	Segments
$3. \overline{QS} \cong \overline{SQ}$	3. Reflexive Prop.
$4. \ \triangle RQS \cong \triangle DSQ$	4. SAS Triangle
	Congruence
	Postulate

Thank you for watching.