

CA-IS372x 高速双通道数字隔离器

1. 产品特性

- 信号传输速率: DC to 150Mbps
- 宽电源电压范围: 2.5V to 5.5V
- 宽温度范围: -40°C to 125°C
- 无需启动初始化
- 默认输出高电平和低电平选项
- 优异的电磁抗扰度
- 高 CMTI: ±150kV/μs (典型值)
- 低功耗, (典型值):
 - 电流为 1.5mA/通道(@5V, 1Mbps)
 - 电流为 6.6mA/通道(@5V, 100Mbps)
- 精确时序 (典型值)
 - 8ns 传播延迟
 - 1ns 脉冲宽度失真
 - 2ns 传播延迟偏差
 - 5ns 最小脉冲宽度
- 高达 5KV_{RMS} 的隔离电压
- 隔离栅寿命: >40 年
- 施密特触发器输入
- 窄体 SOIC8(S), 宽体 SOIC8(G)封装和宽体 SOIC16(W),符合 RoHS 标准

2. 应用

- 工业自动化
- 电机控制
- 医疗电子
- 隔离开关电源
- 太阳能逆变器
- 隔离 ADC, DAC

3. 概述

CA-IS372x 是一款高性能 2 通道数字隔离器具有精确的时序特性和低电源损耗。 在隔离 CMOS 数字 I/O 时,CA-IS372x 器件可提供高电磁抗扰度和低辐射。所有器件版本均具有施密特触发器输入,可实现高抗噪性能。

每条隔离通道的逻辑输入和输出缓冲器均由二氧化硅 (SiO₂) 绝缘栅隔离。 CA-IS3720 器件具有两个前向双通 道,CA-IS3721 一个前向一个反向两个通道, CA-IS3722 和 CA-IS3721 通道相反,具有一个反向一个前向两个通道。所有设备都具有故障安全模式选项。 如果输入侧电源掉电或信号丢失,对于后缀为 L 的设备,默认输出为低,对于带有后缀 H 的设备,默认输出为高。

CA-IS372x 器件具有高绝缘能力,有助于防止数据总线或其他电路上的噪声和浪涌进入本地接地端,从而干扰或损坏敏感电路。高 CMTI 能力有望保证数字信号的正确传输。 CA-IS372x 器件采用 8 脚窄体 SOIC,8 脚宽体 SOIC 和 16 脚宽体 SOIC 封装。 所有产品均具有3.75kVrms 的隔离额定值,宽体封装的产品支持绝缘耐压高达 5kVrms。

器件信息

零件号	封装	封装尺寸(标称值)
CA-IS3720,	SOIC8 (S)	4.90 mm × 3.90 mm
CA-IS3721, CA-IS3722	SOIC8-WB(G)	5.85 mm ×7.50 mm
	SOIC16-WB(W)	10.30mm ×7.50 mm

简化通道结构图

通道 A 和 B 被隔离电容隔开。

GNDA 和 GNDB 分别连接 A 侧信号和 B 侧电源隔离接地。

4. 订购指南

表 4-1 有效订购零件编号

型号	输入通道数 A 侧	输入通道数 B 侧	故障安全输出 状态	额定耐压 (kV)	输出使能	封装
CA-IS3720LS	2	0	低	3.75	No	SOIC8
CA-IS3720LG	2	0	低	5.0	No	SOIC8-WB
CA-IS3720LW	2	0	低	5.0	No	SOIC16-WB
CA-IS3720HS	2	0	高	3.75	No	SOIC8
CA-IS3720HG	2	0	回	5.0	No	SOIC8-WB
CA-IS3720HW	2	0	高	5.0	No	SOIC16-WB
CA-IS3721LS	1	1	低	3.75	No	SOIC8
CA-IS3721LG	1	1	低	5.0	No	SOIC8-WB
CA-IS3721LW	1	1	低	5.0	No	SOIC16-WB
CA-IS3721HS	1	1	高	3.75	No	SOIC8
CA-IS3721HG	1	1	高	5.0	No	SOIC8-WB
CA-IS3721HW	1	1	高	5.0	No	SOIC16-WB
CA-IS3722LS	1	1	低	3.75	No	SOIC8
CA-IS3722LG	1	1	低	5.0	No	SOIC8-WB
CA-IS3722LW	1	1	低	5.0	No	SOIC16-WB
CA-IS3722HS	1	1	高	3.75	No	SOIC8
CA-IS3722HG	1	1	高	5.0	No	SOIC8-WB
CA-IS3722HW	1	1	高	5.0	No	SOIC16-WB

目录

1.	产品特	寺性	1
2.	应用		1
3.	概述		1
4.	订购排	旨南	2
5.	修订质	5史	4
6.	引脚项	力能描述	5
7.	产品	见格	7
	7.1.	绝对最大额定值 1	7
	7.2.	ESD 额定值	7
	7.3.	建议工作条件	7
	7.4.	热量信息	8
	7.5.	额定功率	8
	7.6.	隔离特性	9
	7.7.	安全相关认证	9
	7.8.	电气特性	. 11
	7.8 7.8 7.8	2. V _{DDA} = V _{DDB} = 3.3 V ± 10%, T _A = -40 to 125°C	. 11

	7.9.	电源电流特性	12
	7.9.	.1. $V_{DDA} = V_{DDB} = 5 \text{ V} \pm 10\%$, $T_A = -40 \text{ to } 125^{\circ}\text{C}$.	12
	7.9.	.2. $V_{DDA} = V_{DDB} = 3.3 \text{ V} \pm 10\%$, $T_A = -40 \text{ to } 125^\circ$	C 13
	7.9.	.3. $V_{DDA} = V_{DDB} = 2.5 \text{ V} \pm 5\%$, $T_A = -40 \text{ to } 125^{\circ}\text{C}$	14
	7.10.	时序特性	15
	7.10		
	7.10	0.2. $V_{DDA} = V_{DDB} = 3.3 \text{ V} \pm 10\%, T_A = -40 \text{ to } 12$	
	7.10	0.3. $V_{DDA} = V_{DDB} = 2.5 \text{ V} \pm 5\%$, $T_A = -40 \text{ to } 125$	5°C 15
8.	参数测	测量信息	16
9.	详细说	兑明	18
	9.1.	工作原理	18
	9.2.	功能框图	18
	9.3.	真值表	19
10.	应用电	B路	20
11.	封装信	言息	21
	11.1.	SOIC8 窄体外形尺寸	21
	11.2.	SOIC8 宽体外形尺寸	22
	11.3.	SOIC16 宽体外形尺寸	23
12.	焊接信	意	24
13.	TAPE A	AND REEL INFORMATION	25

CA-IS3720, CA-IS3721, CA-IS3722

修订版 G

上海川土微电子有限公司

5. 修订历史

修订版 0: 初始版本 修订版 0 到 修订版 A

- 更新3概述
- 更新表 4-1
 - 修改额定耐压
- 更新图 6-1
 - 修改引脚名称
- 更新表 6-1
 - 修改引脚名称
- 更新图 6-2
 - 修改引脚名称
- 更新表 6-2
 - 修改引脚名称
- 更新 7.6 绝缘规格
- 更新 11.1 SOIC 16 宽体封装

修订版 A 到 修订版 B

• 更新产品特性

修订版 B 到修订版 C

• 增加 SOIC 8 脚宽体封装选项

修订版 C 到修订版 D

- 更新表 6-2
 - 修改引脚描述
- 更新封装信息

■ 更新了封装公差信息

修订版 D 到修订版 E

- 更新1产品特性
 - 更新 CMTI 典型值
 - 更新器件信息
- 更新表 4
 - 增加 SOIC16-WB 产品型号
- 更新6引脚功能描述。
 - 增加 SOIC16-WB 产品引脚定义
- 更新 7.2 ESD 额定值
- 更新表 7.8.1, 7.8.2, 7.8.2
 - 更新了 CMTI 最小值和典型值
- 更新 11 封装信息
 - 增加 SOIC16 宽体外形尺寸

修订版 E 到修订版 F

- 更新 7.7 安全相关认证
- 更新 7.8 漏电流最值

修订版 F 到修订版 G

- 更新 7.7 安全相关认证
- 变更编带数据
- 加入焊接信息

6. 引脚功能描述

图 6- 1 CA-IS372x SOIC8 脚窄体及 SOIC8 脚宽体封装顶部视图

表 6-1 CA-IS372x SOIC8 引脚功能描述

	次 0 1 0 7 10 0 7 2 7 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0				
引脚名称	SOIC8 引脚编号	类型	描述		
VDDA	1	电源	A 侧电源电压		
VI1/VO1	2	逻辑输入/输出	CA-IS3720/21 A 侧逻辑输入/ CA-IS3722 A 侧逻辑输出		
VI2/VO2	3	逻辑输入/输出	CA-IS3720/22 A 侧逻辑输入/ CA-IS3721 A 侧逻辑输出		
GNDA	4	地	A 侧接地基准点		
GNDB	5	地	B 侧接地基准点		
VI2/VO2	6	逻辑输入/输出	CA-IS3721 B 侧逻辑输入/CA-IS3720/22 B 侧逻辑输出		
VI1/VO1	7	逻辑输入/输出	CA-IS3722 B 侧逻辑输入/ CA-IS3720/21 B 侧逻辑输出		
VDDB	8	电源	B 侧电源电压		

图 6-2 CA-IS372x SOIC16-WB 宽体封装顶部视图

表 6-2 CA-IS372x SOIC16-WB 宽体引脚功能描述

地 NC 电源 逻辑输入/输出 逻辑输入/输出 NC 地	A 侧接地基准点
电源 逻辑输入/输出 逻辑输入/输出 NC 地 NC	A 侧电源电压 CA-IS3720/21 A 侧逻辑输入/ CA-IS3722 A 侧逻辑输出 CA-IS3720/22 A 侧逻辑输入/ CA-IS3721 A 侧逻辑输出 无内部连接 A 侧接地基准点 无内部连接
逻辑输入/输出 逻辑输入/输出 NC 地 NC	CA-IS3720/21 A 侧逻辑输入/ CA-IS3722 A 侧逻辑输出 CA-IS3720/22 A 侧逻辑输入/ CA-IS3721 A 侧逻辑输出 无内部连接 A 侧接地基准点 无内部连接
逻辑输入/输出 NC 地 NC	CA-IS3720/22 A 侧逻辑输入/ CA-IS3721 A 侧逻辑输出 无内部连接 A 侧接地基准点 无内部连接
NC 地 NC	无内部连接 A 侧接地基准点 无内部连接
地 NC	A 侧接地基准点 无内部连接
NC	无内部连接
Lily	
地	B 侧接地基准点
) NC	无内部连接
L NC	无内部连接
逻辑输入/输出	CA-IS3721 B 侧逻辑输入/CA-IS3720/22/ B 侧逻辑输出
逻辑输入/输出	CA-IS3722 B 侧逻辑输入/ CA-IS3720/21 B 侧逻辑输出
电源	B 侧电源电压
5 NC	无内部连接
5 地	B 侧接地基准点
	逻辑输入/输出 申源 NC

^{| 1.} 尤连接。 这些引脚没有内部连接。 它们可以悬空,连接到 VDD 或连接到 GND。

7. 产品规格

7.1. 绝对最大额定值 1

	参数	最小值	最大值	单位
V _{DDA} , V _{DDB}	电源电压 2	-0.5	7.0	V
V _{in}	输入电压 Ax, Bx, ENx	-0.5	V _{DD} +0.5 ³	V
I ₀	输出电流	-20	20	mA
T _J	结温		150	°C
T _{STG}	存储温度范围	-65	150	°C

备注:

- 1. 等于或超出上述绝对最大额定值可能会导致产品永久性损坏。这只是额定最值,并不能以这些条件或者在任何其它超出本技术规范操作章节中所示规格的条件下,推断产品能否正常工作。长期在超出最大额定值条件下工作会影响产品的可靠性。
- 2. 除差分 I/O 总线电压以外的所有电压值,均相对于本地接地端子(GNDA或GNDB),并且是峰值电压值。
- 3. 最大电压不得超过7V。

7.2. ESD 额定值

		数值	单位
v — — — — — — — — — — — — — — — — — — —	人体模型 (HBM), 根据 ANSI/ESDA/JEDEC JS-001,所有引脚 ¹	±6000	V
V _{ESD} 静电放电	组件充电模式(CDM), 根据 JEDEC specification JESD22-C101, 所有引脚 ²	±2000	V

备注:

- 1. JEDEC 文件 JEP155 规定 500V HBM 可通过标准 ESD 控制过程实现安全制造。
- 2. JEDEC 文件 JEP157 规定 250V CDM 允许使用标准 ESD 控制过程进行安全制造。

7.3. 建议工作条件

	参数		最小值	典型值	最大值	单位
V _{DDA} , V _{DDB}	电源电压		2.375	3.3	5.5	V
V _{DD (UVLO+)}	VDD 电源电压上升时的欠压阈值		1.95	2.24	2.375	V
V _{DD (UVLO-)}	VDD 电源电压下降时的欠压阈值		1.88	2.10	2.325	V
V _{HYS (UVLO)}	VDD 迟滞欠压阈值		70	140	250	mV
		$V_{DDO}^1 = 5V$	-4			
I _{OH}	高电平输出电流	$V_{DDO} = 3.3V$	-2			mA
		$V_{DDO} = 2.5V$	-1			
		$V_{DDO} = 5V$			4	
I _{OL}	低电平输出电流	$V_{DDO} = 3.3V$			2	mA
		$V_{DDO} = 2.5V$			1	
V _{IH}	输入阈值逻辑高电平		2.0			V
V _{IL}	输入阈值逻辑低电平				0.8	V
DR	信号传输速率		0		150	Mbps
T _A	环境温度		-40	27	125	°C
备注:			·			
1. V _{DDO} = ‡	输出侧 V _{DD}					

7.4. 热量信息

	热量表		CA-IS372x		单位
		SOIC8	SOIC8-WB(G)	SOIC16-WB(W)	干ഥ
Rеца	IC 结至环境的热阻	109.0	92.3	83.4	°C/W

7.5. 额定功率

	参数	测试条件	最小值	典型值	最大值	单位		
CA-IS37	720							
P_D	最大功耗	$V_{DDA} = V_{DDB} = 5.5 \text{ V}, C_{L} = 15 \text{ pF},$			120	mW		
P _{DA}	A 侧的最大功耗	T」= 150°C, 输入 75MHz 50% 占空比方			20	mW		
P _{DB}	B 侧的最大功耗	波			100	mW		
CA-IS3721								
P _D	最大功耗	$V_{DDA} = V_{DDB} = 5.5 \text{ V, } C_{L} = 15 \text{ pF,}$			120	mW		
P _{DA}	A 侧的最大功耗	T」= 150°C, 输入 75MHz 50% 占空比方			60	mW		
P _{DB}	B 侧的最大功耗	波			60	mW		
CA-IS37	CA-IS3722							
P _D	最大功耗	$V_{DDA} = V_{DDB} = 5.5 \text{ V, } C_{L} = 15 \text{ pF,}$			120	mW		
P _{DA}	A 侧的最大功耗	T」= 150°C, 输入 75MHz 50% 占空比方			60	mW		
P _{DB}	B 侧的最大功耗	波			60	mW		

7.6. 隔离特性

参数		测试条件	数	单位	
	少 数	一次	G/W	S	平江
CLR	外部气隙(间隙)1	测量输入端至输出端,隔空最短距离	8	4	mm
CPG	外部爬电距离 1	测量输入端至输出端,沿壳体最短距离	8	4	mm
DTI	隔离距离	最小内部间隙 (内部距离)	19	19	μm
CTI	相对漏电指数	DIN EN 60112 (VDE 0303-11); IEC 60112	>600	>600	V
	材料组	依据 IEC 60664-1	1	I	
		额定市电电压≤ 300 V _{RMS}	I-IV	1-111	
	IEC 60664-1 过压类别	额定市电电压≤ 400 V _{RMS}	I-IV	1-111	
		额定市电电压 ≤ 600 V _{RMS}	1-111	n/a	
DIN V VE	DE V 0884-11:2017-01 ²		1		
V _{IORM}	最大重复峰值隔离电压	交流电压(双极)	849	566	V_{PK}
		交流电压; 时间相关的介质击穿 (TDDB) 测试	600	400	V _{RMS}
V _{IOWM}	最大工作隔离电压	直流电压	849	566	V _{DC}
V _{IOTM}	最大瞬态隔离电压	V _{TEST} = V _{IOTM} , t = 60 s (认证); V _{TEST} = 1.2 × V _{IOTM} , t= 1 s (100% 产品测试)	7070	5300	V_{PK}
V _{IOSM}	最大浪涌隔离电压3	测试方法 依据 IEC 60065, 1.2/50 μs 波形, V _{TEST} = 1.6 × V _{IOSM} (生产测试)	6250	5000	V_{PK}
		方法 a,输入/输出安全测试子类 2/3 后, V _{ini} = V _{IOTM} , t _{ini} = 60 s; V _{pd(m)} = 1.2 × V _{IORM} , t _m = 10 s	≤5	≤5	
q_{pd}	表征电荷 4	方法 a,环境测试子类 1 后, V _{ini} = V _{IOTM} , t _{ini} = 60 s; V _{pd(m)} = 1.6 × V _{IORM} , t _m = 10 s	≤5	≤5	pC
		方法 b1, 常规测试 (100% 生产测试) 和前期 预处理(抽样测试) V _{ini} = 1.2 × V _{IOTM} , t _{ini} = 1 s; V _{pd(m)} = 1.875 × V _{IORM} , t _m = 1 s	≤5	≤5	
C _{IO}	栅电容,输入到输出5	$V_{IO} = 0.4 \times \sin(2\pi ft)$, $f = 1 \text{ MHz}$	~0.5	~0.5	pF
· -	and the second of the second o	V _{IO} = 500 V, T _A = 25°C	>1012	>1012	· ·
R _{IO}	绝缘电阻 5	$V_{10} = 500 \text{ V}, 100^{\circ}\text{C} \le T_{A} \le 125^{\circ}\text{C}$	>10 ¹¹	>10 ¹¹	Ω
· -	- -	V _{IO} = 500 V at T _S = 150°C	>109	>109	
	污染度	-	2	2	
UL 1577		1	1	<u>I</u>	1
V _{ISO}	最大隔离电压	V _{TEST} = V _{ISO} , t = 60 s (认证), V _{TEST} = 1.2 × V _{ISO} , t = 1 s (100%生产测试)	5000	3750	V _{RMS}

备注:

- 1. 根据应用的特定设备隔离标准应用爬电距离和间隙要求。注意保持电路板设计的爬电距离和间隙距离,以确保印刷电路板上隔离器的安装焊盘不会缩短该距离。在某些情况下印刷电路板上的爬电距离和间隙相等。在印刷电路板上插入凹槽的技术有助于提高这些指标。
- 2. 该标准仅适用于安全等级内的安全电气绝缘。 应通过适当的保护电路确保符合安全等级。
- 3. 测试在空气或油中进行,以确定隔离屏障的固有浪涌抗扰度。
- 4. 表征电荷是由局部放电引起的放电电荷(pd)。
- 5. 栅两侧的所有引脚连接在一起,形成双端子器件。

7.7. 安全相关认证

VDE UL	CQC	TUV
--------	-----	-----

CA-IS3720, CA-IS3721, CA-IS3722

修订版 G

上海川土微电子有限公司

根据 DIN V VDE V 0884-	UL1577 器件程序认证	根据 GB 4943.1-2011 和 GB 8898-2011 认证	根据 EN/IEC 61010-1:2010 (3rd Ed)和
11:2017-01 认证	ULI377 奋计性/7 从证	作品 GB 4945.1-2011 作 GB 8898-2011 八田	EN/IEC 62368-1:2014+A11:2017 认证
Maximum transient	SOP8-S: 3750 VRMS;	SOP8-S: 基本绝缘,最大工作电压 400 VRMS;	5000 V _{RMS} (SOP8-G / SOP16-W)和
isolation voltage,	SOP8-G: 5000 VRMS;	SOP8-G: 加强绝缘,最大工作电压 600 VRMS;	3750 V _{RMS} (SOP8-S)根据加强绝缘
7070V _{pk} (SOIC16-W),	SOP16-W: 5000 VRMS	SOP16-W: 加强绝缘,最大工作电压 600 VRMS	EN/IEC 61010-1:2010 (3rd Ed) 和
5300V _{pk} (SOIC8)		(仅适用于海拔 5000 米及以下)	EN/IEC 62368-1:2014+A11:2017,
			最大工作电压 600 V _{RMS} (SOP8-G /
			SOP16-W)和 400 V _{RMS} (SOP8-S)
证书编号: 40052786	证书编号: E511334	证书编号	CB 证书编号:
		SOP8-S: CQC20001251749	JPTUV-111116;
		SOP8-G: CQC20001251454	DE 2-027880
		SOP16-W: CQC20001251466	AK 证书编号:
			AK 50474784 0001;
			AK 50474786 0001

上海川土微电子有限公司

7.8. 电气特性

7.8.1. $V_{DDA} = V_{DDB} = 5 V \pm 10\%$, $T_A = -40 \text{ to } 125^{\circ}\text{C}$

	参数	测试条件	最小值	典型值	最大值	单位
V _{OH}	输出电压逻辑高电平	I _{OH} = -4mA; 图 8- 1	V _{DDO} ¹ -0.4	4.8		V
Vol	输出电压逻辑低电平	I _{OL} = 4mA; 图 8-1		0.2	0.4	V
V _{IT+(IN)}	正输入阈值		1.4	1.67	1.9	V
V _{IT-(IN)}	负输入阈值		1.0	1.23	1.4	V
V _{I(HYS)}	输入阈值迟滞		0.30	0.44	0.50	V
I _{IH}	输入高电平漏电流	V _{IH} = V _{DDA} at Ax or Bx or ENx			20	μΑ
I _{IL}	输入低电平漏电流	V _{IL} = 0 V at Ax or Bx	-20			μΑ
Zo	输出阻抗 ²			50		Ω
CMTI	共模瞬变抗扰度	V _I = V _{DDI} ¹ or 0 V, V _{CM} = 1200 V; 图 8-3	100	150		kV/μs
Cı	输入电容 ³	$V_1 = V_{DD}/2 + 0.4 \times \sin(2\pi ft)$, $f = 1 \text{ MHz}$, $V_{DD} = 5 \text{ V}$		2		pF

备注:

- V_{DDI} = 输入侧 V_{DD}, V_{DDO} = 输出侧 V_{DD}
- 2. 正常隔离器通道的输出阻抗约为 50 Ω ±40%。
- 3. 从引脚到地测量。

7.8.2. $V_{DDA} = V_{DDB} = 3.3 \text{ V} \pm 10\%$, $T_A = -40 \text{ to } 125^{\circ}\text{C}$

	参数	测试条件	最小值	典型值	最大值	单位
V _{OH}	输出电压逻辑高电平	I _{OH} = -4mA; 图 8- 1	V _{DDO} ¹ -0.4	3.1		V
V _{OL}	输出电压逻辑低电平	I _{OL} = 4mA; 图 8-1		0.2	0.4	V
V _{IT+(IN)}	正输入阈值		1.4	1.67	1.9	V
V _{IT-(IN)}	负输入阈值		1.0	1.23	1.4	V
V _{I(HYS)}	输入阈值迟滞		0.30	0.44	0.50	V
I _{IH}	输入高电平漏电流	V _{IH} = V _{DDA} at Ax or Bx or ENx			20	μΑ
I _{IL}	输入低电平漏电流	V _{IL} = 0 V at Ax or Bx	-20			μΑ
Zo	输出阻抗 ²			50		Ω
CMTI	共模瞬变抗扰度	V _I = V _{DDI} ¹ or 0 V, V _{CM} = 1200 V; 图 8-3	100	150		kV/μs
Cı	输入电容 3	$V_1 = V_{DD}/2 + 0.4 \times \sin(2\pi ft), f = 1 \text{ MHz}, V_{DD} = 3.3 \text{ V}$		2		pF

备注:

- V_{DDI} = 输入侧 V_{DD}, V_{DDO} = 输出侧 V_{DD}
- 2. 正常隔离器通道的输出阻抗约为 50 Ω ±40%。
- 3. 从引脚到地测量。

7.8.3. $V_{DDA} = V_{DDB} = 2.5 \text{ V} \pm 5\%$, $T_A = -40 \text{ to } 125^{\circ}\text{C}$

VOH 输出电压逻辑高电平 IOH = -4mA; 图 8-1 VDD0 ¹ -0.4 2.3 VOL 输出电压逻辑低电平 IOL = 4mA; 图 8-1 0.2 0.4 VIT+(IN) 正输入阈值 1.4 1.67 1.9	1/
V _{IT+(IN)} 正输入阈值 1.4 1.67 1.9	V
	V
	٧
V _{IT-(IN)}	٧
V _{I(HYS)} 输入阈值迟滞 0.30 0.44 0.50	٧
I _{IH} 输入高电平漏电流V _{IH} = V _{DDA} at Ax or Bx or ENx20	μΑ
I _{IL} 输入低电平漏电流 V _{IL} = 0 V at Ax or Bx -20	μΑ
Zo 输出阻抗 ²	Ω
CMTI 共模瞬变抗扰度 V _I = V _{DDI} ¹ or 0 V, V _{CM} = 1200 V; 图 8-3 100 150	kV/μs
C_{l} 输入电容 ³ $V_{l} = V_{DD}/2 + 0.4 \times \sin(2\pi ft), f = 1 \text{ MHz}, V_{DD} = 2.5 \text{ V}$ 2	pF

- 1. V_{DDI} = 输入侧 V_{DD,} V_{DDO} = 输出侧 V_{DD}
- 2. 正常隔离器通道的输出阻抗约为 50 Ω ±40%。
- 3. 从引脚到地测量。

7.9. 电源电流特性

7.9.1. $V_{DDA} = V_{DDB} = 5 \text{ V} \pm 10\%$, $T_A = -40 \text{ to } 125^{\circ}\text{C}$

参数	测试条件	电源电流	最小值 典	型值_	最大值	单位	
CA-IS3720							
	V _{IN} = 0V (CA-IS3720L);		I _{DDA}	C	0.8	1.2	
电源电流 -直流信号	$V_{IN} = V_{DDI}^{1} (CA-IS3720H)$		I_{DDB}	1	L.6	2.3	
	$V_{IN} = V_{DDI}$ (CA-IS3720L);		I_{DDA}	2	2.3	3.5	
	$V_{IN} = 0V(CA-IS3720H)$		I_{DDB}	1	L.6	2.4	
		1Mbps	I_{DDA}	1	L.6	2.9	m/
		(500kHz)	I_{DDB}	1	L.7	2.6] ''''
电源电流 – 交流信号	所有通道输入 50%占空比,幅值为	10Mbps	I _{DDA}	1	L.6	2.9	
电源电流 - 文流信亏	5V 的方波;每个通道 C _L = 15 pF	(5MHz)	I _{DDB}	2	2.7	4.0	
		100Mbps	I _{DDA}	1	L.6	2.9	
		(50MHz)	I _{DDB}	1	L2.2	18.2	
A-IS3721	·			•			•
	V _{IN} = 0V (CA-IS3721L);		I _{DDA}	1	L.3	2.0	
山沥山沟 古济信县	$V_{IN} = V_{DDI}$ (CA-IS3721H)		I _{DDB}	1	L.3	2.0	7
电源电流 –直流信号	$V_{IN} = V_{DDI}$ (CA-IS3721L);		I _{DDA}	2.1	3.1		
	V _{IN} = 0V(CA-IS3721H)		I _{DDB}	2	2.1	3.1	
		1Mbps	I _{DDA}	1	L.8	2.6	1
		(500kHz)	I _{DDB}	1	L.8	2.6	m/
市海市法 大法 居里	所有通道输入 50%占空比,幅值为 5V 的方波;每个通道 C _L = 15 pF	10Mbps	I _{DDA}	2	2.2	3.3	
电源电流 - 交流信号		(5MHz)	I _{DDB}	2	2.2	3.3	
		100Mbps	I _{DDA}	7	7.0	10.5	
		(50MHz)	I _{DDB}	7	7.0	10.5	
A-IS3722	'	'		1			
	V _{IN} = 0V (CA-IS3722L);		I _{DDA}	1	L.3	2.0	
5. 据由法 古法片口	$V_{IN} = V_{DDI}$ (CA-IS3722H)		I _{DDB}	1	L.3	2.0	
担源电流 –直流信号	$V_{IN} = V_{DDI}$ (CA-IS3722L);		I _{DDA}	2	2.1	3.1	
	V _{IN} = 0V(CA-IS3722H)		I _{DDB}	2	2.1	3.1	
		1Mbps	I _{DDA}	1	L.8	2.6	
		(500kHz)	I _{DDB}	1	L.8	2.6	m/
- 洒山法 - 六法片旦	所有通道输入 50%占空比,幅值为	10Mbps	I _{DDA}	2	2.2	3.3	
旦源电流 – 交流信号	5V 的方波;每个通道 C _L = 15 pF	(5MHz)	I _{DDB}	2	2.2	3.3	
		100Mbps	I _{DDA}	7	7.0	10.5	
		(50MHz)	I _{DDB}	7	7.0	10.5	

7.9.2. $V_{DDA} = V_{DDB} = 3.3 \text{ V} \pm 10\%$, $T_A = -40 \text{ to } 125^{\circ}\text{C}$

参数	测试条件		电源电流	最小值	典型值	最大值	单位
i-IS3720							
	V _{IN} = 0V (CA-IS3720L);		I _{DDA}		0.8	1.2	
山海山沟 古法 片旦	$V_{IN} = V_{DDI}^{1}$ (CA-IS3720H)		I _{DDB}		1.6	2.3	1
电源电流 –直流信号	$V_{IN} = V_{DDI}$ (CA-IS3720L);		I _{DDA}		2.3	3.5	1
	V _{IN} = 0V(CA-IS3720H)		I _{DDB}		1.6	2.4	1
		1Mbps	I _{DDA}		1.6	2.9	1
		(500kHz)	I _{DDB}		1.7	2.6	m
市派市法 六法 /	所有通道输入 50%占空比,幅值为	10Mbps	I _{DDA}		1.6	2.9	1
电源电流 - 交流信号	5V 的方波;每个通道 C _L = 15 pF	(5MHz)	I _{DDB}		2.4	3.6	
		100Mbps	I _{DDA}		1.6	2.9	1
		(50MHz)	I _{DDB}		9.2	13.7	1
-IS3721		1					
	V _{IN} = 0V (CA-IS3721L);		I _{DDA}		1.3	2.0	
上 海上达 主体片日	V _{IN} = V _{DDI} (CA-IS3721H)		I _{DDB}		1.3	2.0	1
电源电流 –直流信号	$V_{IN} = V_{DDI}$ (CA-IS3721L);		I _{DDA}		2.1	3.1	1
	$V_{IN} = OV(CA-IS3721H)$		I _{DDB}		2.1	3.1	1
		1Mbps	I _{DDA}		1.8	2.6	1
		(500kHz)	I _{DDB}		1.8	2.6	 m
***** *****	所有通道输入 50%占空比,幅值为	10Mbps	I _{DDA}		2.1	3.2	1
电源电流 - 交流信号	5V 的方波;每个通道 C _L = 15 pF	(5MHz)	I _{DDB}		2.1	3.2	1
	·	100Mbps	I _{DDA}		5.5	8.2	1
		(50MHz)	I _{DDB}		5.5	8.2	
-IS3722			I				
	V _{IN} = 0V (CA-IS3722L);		I _{DDA}		1.3	2.0	
上班上 次	$V_{IN} = V_{DDI}$ (CA-IS3722H)		I _{DDB}		1.3	2.0	1
电源电流 –直流信号	$V_{IN} = V_{DDI}$ (CA-IS3722L);		I _{DDA}		2.1	3.1	1
	V _{IN} = 0V(CA-IS3722H)		I _{DDB}		2.1	3.1	
	·	1Mbps	I _{DDA}		1.8	2.6	1
		(500kHz)	I _{DDB}		1.8	2.6	m
	所有通道输入 50%占空比,幅值为	10Mbps	I _{DDA}		2.1	3.2	1
电源电流 - 交流信号	5V 的方波;每个通道 C _L = 15 pF	(5MHz)	I _{DDB}	1	2.1	3.2	1
	, , , , , , , , , , , , , , , , , , ,	100Mbps	I _{DDA}		5.5	8.2	1
		(50MHz)	I _{DDB}		5.5	8.2	1

^{1.} V_{DDI} = 输入侧 V_{DD}

参数	测试条件		电源电流	最小值	典型值	最大值	单位
A-IS3720			1				1
	$V_{IN} = 0V (CA-IS3720L);$		I _{DDA}		0.8	1.2	1
电源电流 –直流信号	$V_{IN} = V_{DDI}^{1} (CA-IS3720H)$		I _{DDB}		1.6	2.3	
- Provident Property	$V_{IN} = V_{DDI}$ (CA-IS3720L);		I _{DDA}		2.3	3.5	
	V _{IN} = 0V(CA-IS3720H)		I _{DDB}		1.6	2.4	
		1Mbps	I _{DDA}		1.6	2.9	m,
		(500kHz)	I _{DDB}		1.7	2.6	
电源电流 – 交流信号	所有通道输入 50%占空比,幅值为	10Mbps	I _{DDA}		1.6	2.9	
电源电视 - 文机 同 5	5V 的方波;每个通道 C _L = 15 pF	(5MHz)	I _{DDB}		2.2	3.3	
		100Mbps	I _{DDA}		1.6	2.9	
		(50MHz)	I _{DDB}		7.2	10.7	
\-IS3721	·						
	V _{IN} = 0V (CA-IS3721L);		I _{DDA}		1.3	2.0	
山海山沟 古海岸 旦	$V_{IN} = V_{DDI}$ (CA-IS3721H)	V _{IN} = V _{DDI} (CA-IS3721H)			1.3	2.0	
电源电流 -直流信号	$V_{IN} = V_{DDI}$ (CA-IS3721L);		I _{DDA}		2.1	3.1	1
	$V_{IN} = 0V(CA-IS3721H)$		I _{DDB}		2.1	3.1	
		1Mbps	I _{DDA}		1.8	2.6	1
		(500kHz)	I _{DDB}		1.8	2.6	m
电源电法 六法层具	所有通道输入 50%占空比,幅值为	10Mbps	I _{DDA}		2.0	3.0	
电源电流 – 交流信号	5V 的方波;每个通道 C _L = 15 pF l	(5MHz)	I _{DDB}		2.0	3.0	1
		100Mbps	I _{DDA}		4.5	6.7	
		(50MHz)	I _{DDB}		4.5	6.7	1
A-IS3722		1	1				
	V _{IN} = 0V (CA-IS3722L);		I _{DDA}		1.3	2.0	
山海山冰 古冰片 日	$V_{IN} = V_{DDI}$ (CA-IS3722H)		I _{DDB}		1.3	2.0	1
电源电流 –直流信号	$V_{IN} = V_{DDI}$ (CA-IS3722L);		I _{DDA}		2.1	3.1	
	V _{IN} = 0V(CA-IS3722H)		I _{DDB}		2.1	3.1	1
		1Mbps	I _{DDA}		1.8	2.6	1
		(500kHz)	I _{DDB}		1.8	2.6	m
山泥山冰	所有通道输入 50%占空比,幅值为	10Mbps	I _{DDA}		2.0	3.0	1
电源电流 – 交流信号	5V 的方波;每个通道 C _L = 15 pF	(5MHz)	I _{DDB}		2.0	3.0	1
	·	100Mbps	I _{DDA}		4.5	6.7	1
		(50MHz)	I _{DDB}		4.5	6.7	1
注:	·		•	•			•
V _{DDI} = 输入侧 V _{DD}							

7.10. 时序特性

7.10.1. $V_{DDA} = V_{DDB} = 5 \text{ V} \pm 10\%$, $T_A = -40 \text{ to } 125^{\circ}\text{C}$

	参数	测试说明	最小值	典型值	最大值	单位
DR	数据速率			0	150	Mbps
PW_{min}	最小脉宽				5.0	ns
t _{PLH} , t _{PHL}	传播延迟	图 8-1	5.0	8.0	13.0	ns
PWD	脉冲宽度失真 t _{PLH} - t _{PHL}	図 0-1		0.2	4.5	ns
t _{sk(o)}	通道到通道输出偏移时间 1	同方向通道		0.4	2.5	ns
t _{sk(pp)}	片与片之间通道输出偏移时间 ²			2.0	4.5	ns
t _r	输出上升时间	图 8-1		2.5	4.0	ns
t _f	输出下降时间	图 8-1		2.5	4.0	ns
t _{DO}	默认输出延迟时间从输入电源损耗	图 8- 2		8	12	ns
t _{su}	启动时间			15	40	μs

备注:

- 1. tsk(o) 为具有所有驱动输入连接在一起的单个设备的输出与驱动相同负载时沿相同方向切换的输出之间的偏差
- 2. tsk(pp)是在相同的电源电压、温度、输入信号和负载下,不同器件在同一方向切换的任意终端之间传播延迟时间的差值

7.10.2. $V_{DDA} = V_{DDB} = 3.3 \text{ V} \pm 10\%$, $T_A = -40 \text{ to } 125^{\circ}\text{C}$

	参数	测试说明	最小值	典型值	最大值	单位
DR	数据速率			0	150	Mbps
PW _{min}	最小脉宽				5.0	ns
t _{PLH} , t _{PHL}	传播延迟	图 8- 1	5.0	8.0	13.0	ns
PWD	脉冲宽度失真 t _{PLH} - t _{PHL}	図 6-1		0.2	4.5	ns
t _{sk(o)}	通道到通道输出偏移时间 1	同方向通道		0.4	2.5	ns
t _{sk(pp)}	片与片之间通道输出偏移时间 ²			2.0	4.5	ns
t _r	输出上升时间	图 8-1		2.5	4.0	ns
t _f	输出下降时间	图 8-1		2.5	4.0	ns
t _{DO}	默认输出延迟时间从输入电源损耗	图 8- 2		8	12	ns
t _{SU}	启动时间			15	40	μs

备注:

- 1. tsk(o) 为具有所有驱动输入连接在一起的单个设备的输出与驱动相同负载时沿相同方向切换的输出之间的偏差
- 2. tsk(pp)是在相同的电源电压、温度、输入信号和负载下,不同器件在同一方向切换的任意终端之间传播延迟时间的差值

7.10.3. $V_{DDA} = V_{DDB} = 2.5 \text{ V} \pm 5\%$, $T_A = -40 \text{ to } 125^{\circ}\text{C}$

	参数	测试说明	最小值	典型值	最大值	单位
DR	数据速率			0	150	Mbps
PW_{min}	最小脉宽				5.0	ns
t _{PLH} , t _{PHL}	传播延迟	图 8-1	5.0	8.0	13.0	ns
PWD	脉冲宽度失真 tplh - tphl	图 8-1		0.2	5.0	ns
t _{sk(o)}	通道到通道输出偏移时间 1	同方向通道		0.4	2.5	ns
t _{sk(pp)}	片与片之间通道输出偏移时间 ²			2.0	5.0	ns
t _r	输出上升时间	图 8-1		2.5	4.0	ns
t _f	输出下降时间	图 8-1		2.5	4.0	ns
t _{DO}	默认输出延迟时间从输入电源损耗	图 8- 2		8	12	ns
t _{SU}	启动时间			15	40	μs
		·	-			

- 1. tsk(o) 为具有所有驱动输入连接在一起的单个设备的输出与驱动相同负载时沿相同方向切换的输出之间的偏差
- 2. tsk(pp)是在相同的电源电压、温度、输入信号和负载下,不同器件在同一方向切换的任意终端之间传播延迟时间的差值

10%

8. 参数测量信息

备注:

- 1. 信号发生器产生输入信号 V_{IN} 具有以下约束条件:波形频率≤100kHz,占空比 50%,tr≤3ns, tf≤3ns。由于波形发生器的输出阻抗 Zout = 50Ω,图中的 50Ω电阻是用来匹配。在实际应用中不需要。
- 2. C_i 是大约 15pF 的负载电容和仪表电容。由于负载电容会影响输出上升时间,因此它是时序特性测量的关键因素。

图 8-1 时序特性测试电路和电压波形

- 1. 信号发生器产生输入信号 V_{IN}具有以下约束条件:波形频率≤100kHz,占空比 50%,tr≤3ns,tf≤3ns。由于波形发生器的输出阻抗 Zout = 50Ω,图中的 50Ω电阻是用来匹配。在实际应用中不需要。
- 2. C_L是大约 15pF 的负载电容和仪表电容。由于负载电容会影响输出上升时间,因此它是时序特性测量的关键因素。

图 8-2 默认输出延迟时间测试电路和电压波形

- 1. 高压浪涌脉冲发生器产生振幅> 1kV,上升/下降时间<10ns,达到共模瞬态噪声压摆率> 150kV /μs 的重复高压脉冲。
- 2. CL 是大约 15pF 的负载电容以及仪表电容。
- 3. 通过-失败标准:每当高压浪涌到来时,输出必须保持稳定。
- 4. CBP 是 0.1~1uF 的旁路电容。

图 8-3 共模瞬变抗扰度测试电路

9. 详细说明

9.1. 工作原理

CA-IS37xx 系列产品采用全差分隔离电容技术。由 SiO₂ 构成的高压隔离电容为不同的电压域之间提供可靠的绝缘屏障,并提供可靠的高频信号传输路径;为了保证稳定的数据传输质量,引入开关键控(OOK)调制解调技术。发射机(TX)将输入信号调制到载波频率上,即 TX 在一个输入状态下通过隔离电容传递高频信号,而在另一个输入状态下无信号通过隔离电容,然后接收机根据检测到的带内数据重建输入信号。这个架构为隔离的不同电压域之间提供了可靠的数据传输路径,在启动时不需要考虑初始化。全差分的隔离电容架构可以最大限度地提高信号共模瞬态抗于扰能力。

CA-IS37xx 系列产品采用先进的电路技术可以有效的抑制载波信号和 IO 开关引入的 EMI。相比于电感耦合隔离架构,电容耦合架构具有更高的电磁抗干扰能力。OOK 调制方案消除了脉冲调制方案中可能出现的脉冲丢失引起的误码现象。图 9-1 和图 9-2 分别为单通道功能框图和 OOK 开关键控调制方案波形示意图。

9.2. 功能框图

图 9-1 单通道功能框图

图 9-2 OOK 开关键控调制方案波形示意图

9.3. 真值表

表 9-1 为 CA-IS372x 器件真值表。

表 9-1 真值表 1

V _{DDI}	V_{DDO}	输入(Ax/Bx)²	输出 (Ax/Bx)	模式							
		Н	Н	正常运行模式:							
PU	PU	L	L	通道的输出跟随通道输入状态							
PU	PU	Open	Default	默认输出故障安全模式:							
			Open	Open	Open	Open	Open	Open	Open	Open	Open Default
DD	DLI	V	Dofault	默认输出故障安全模式:							
ן אם	PD PU X	X	Default	如果输入侧 VDD 未通电,则输出进入默认输出故障安全模式高电平							
Х	PD	Х	Undetermined	如果输出侧 VDD 未供电,则输出的状态不确定。 ³							

- 1. V_{DDI} =输入侧 V_{DD}; V_{DDO} =输出侧 V_{DD}; PU = 上电 (VCC ≥ 2.375 V); PD = 断电(VCC ≤ 2.25 V); X = 无关; H =高电平; L =低电平; Z =高阻态。
- 2. 强驱动的输入信号可以通过内部保护二极管微弱地驱动浮动的 VDD,从而导致输出不确定。
- 3. 当电源电压 2.25V < VDDI, VDDO < 2.375 V 时,输出状态不确定。

10. 应用电路

相比于光耦器件,CA-IS37xx 系列数字隔离器不需要外部元件来提供偏置或限制电流能力,只需要两个外部 VDD 旁路电容(0.1μ F 至 1μ F)即可工作。 CA-IS37xx 产品输入同时兼容 CMOS 和 TTL 电平,仅吸收微安级的输入漏电流,无需外部缓冲电路即可驱动。 输出电阻为 50Ω (轨到轨输出),可提供正向和反向通道配置。图 10-1 显示了 CA-IS37x1 的典型应用电路。图 10-2 显示了 CA-IS37xx 系列产品的典型应用电路。

图 10-1 SOIC-16 CA-IS3721 典型应用电路

图 10-2 CA-IS37xx 系列数字隔离器应用原理图

11. 封装信息

11.1. SOIC8 窄体外形尺寸

下图说明了 CA-IS372x 系列数字隔离器采用 SOIC8 窄体封装大小尺寸图和建议焊盘尺寸图。尺寸以毫米为单位。

TOP VIEW

RECOMMENDED LAND PATTERN

8° 0.25 0.30 0.30

0.50 0.25

FRONT VIEW

LEFT-SIDE VIEW

11.2. SOIC8 宽体外形尺寸

下图说明了 CA-IS372x 系列数字隔离器采用 SOIC8 宽体封装大小尺寸图和建议焊盘尺寸图。尺寸以毫米为单位。

TOP VIEW

RECOMMENDED LAND PATTERN

FRONT VIEW

LEFT-SIDE VIEW

11.3. SOIC16 宽体外形尺寸

下图说明了 CA-IS372x 系列数字隔离器采用 SOIC-16WB 宽体封装大小尺寸图和建议焊盘尺寸图。 尺寸以毫米为单位。

LEFT-SIDE VIEW

FRONT VIEW

12. 焊接信息

图 12-1 焊接温度曲线

表 12-1 焊接温度参数

Profile Feature	Pb-Free Assembly					
Average ramp-up rate(217 °C to Peak)	3°C/second max					
Time of Preheat temp(from 150 °C to 200 °C	60-120 second					
Time to be maintained above 217 °C	60-150 second					
Peak temperature	260 +5/-0 °C					
Time within 5 °Cof actual peak temp	30 second					
Ramp-down rate	6 °C/second max.					
Time from 25°C to peak temp	8 minutes max					

13. TAPE

AND REEL INFORMATION

	Α0	Dimension designed to accommodate the component width
	В0	Dimension designed to accommodate the component length
Ī	K0	Dimension designed to accommodate the component thickness
	W	Overall width of the carrier tape
İ	P1	Pitch between successive cavity centers

Q2 Q1 Q1 Q2 Q3 Q4 Q3 Q4 Pocket Quadrants

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
CA-IS3720LS	SOIC	S	8	2500	330	12.4	6.5	5.4	2.1	8.0	12.0	Q1
CA-IS3720LG	SOIC	G	8	1000	330	16.4	12.05	6.15	3.3	16.0	16.0	Q1
CA-IS3720LW	SOIC	W	16	1000	330	16.4	10.9	10.7	3.2	12.0	16.0	Q1
CA-IS3720HS	SOIC	S	8	2500	330	12.4	6.5	5.4	2.1	8.0	12.0	Q1
CA-IS3720HG	SOIC	G	8	1000	330	16.4	12.05	6.15	3.3	16.0	16.0	Q1
CA-IS3720HW	SOIC	W	16	1000	330	16.4	10.9	10.7	3.2	12.0	16.0	Q1
CA-IS3721LS	SOIC	S	8	2500	330	12.4	6.5	5.4	2.1	8.0	12.0	Q1
CA-IS3721LG	SOIC	G	8	1000	330	16.4	12.05	6.15	3.3	16.0	16.0	Q1
CA-IS3721LW	SOIC	W	16	1000	330	16.4	10.9	10.7	3.2	12.0	16.0	Q1
CA-IS3721HS	SOIC	S	8	2500	330	12.4	6.5	5.4	2.1	8.0	12.0	Q1
CA-IS3721HG	SOIC	G	8	1000	330	16.4	12.05	6.15	3.3	16.0	16.0	Q1
CA-IS3721HW	SOIC	W	16	1000	330	16.4	10.9	10.7	3.2	12.0	16.0	Q1
CA-IS3722LS	SOIC	S	8	2500	330	12.4	6.5	5.4	2.1	8.0	12.0	Q1
CA-IS3722LG	SOIC	G	8	1000	330	16.4	12.05	6.15	3.3	16.0	16.0	Q1
CA-IS3722LW	SOIC	W	16	1000	330	16.4	10.9	10.7	3.2	12.0	16.0	Q1
CA-IS3722HS	SOIC	S	8	2500	330	12.4	6.5	5.4	2.1	8.0	12.0	Q1
CA-IS3722HG	SOIC	G	8	1000	330	16.4	12.05	6.15	3.3	16.0	16.0	Q1
CA-IS3722HW	SOIC	W	16	1000	330	16.4	10.9	10.7	3.2	12.0	16.0	Q1

重要声明

上述资料仅供参考使用,用于协助 Chipanalog 客户进行设计与研发。Chipanalog 有权在不事先通知的情况下,保 留因技术革新而改变上述资料的权利。

上海川土微电子有限公司

Chipanalog 产品全部经过出厂测试。 针对具体的实际应用,客户需负责自行评估,并确定是否适用。Chipanalog 对客户使用所述资源的授权仅限于开发所涉及 Chipanalog 产品的相关应用。 除此之外不得复制或展示所述资源, 如 因使用所述资源而产生任何索赔、 赔偿、 成本、 损失及债务等, Chipanalog 对此概不负责。

商标信息

Chipanalog Inc.®、Chipanalog®为 Chipanalog 的注册商标。

http://www.chipanalog.com