RLChina Reinforcement Learning Summer School

博弈搜索算法

林 舒

中国科学院自动化研究所

2022年8月16日

目录

- 1 序列决策问题
- ② 盲目搜索 深度优先搜索 广度优先搜索
- 3 启发式搜索A* 算法IDA* 算法
- 4 对抗搜索

 $\alpha \beta$ 剪枝

 蒙特卡洛树搜索

 蒙特卡洛树搜索应用示例: AlphaGo
- 5 总结

目录

1 序列决策问题

② 盲目搜索 深度优先搜索 广度优先搜索

3 启发式设索 A* 算法 IDA* 算法

4 对抗搜索

lpha-eta 剪枝 蒙特卡洛树搜索 蒙特卡洛树搜索应用示例:AlphaGo

China

China

蒙特卡洛树搜索应用示例:AlphaGo

序列决策

序列决策 (Sequential Decision Making)

通过一系列的决策来达到某种目标,且每一步的决策都会对后续 决策产生影响

现实世界中许多问题都是序列决策问题:

- 路线规划
- 游戏博弈
- 机械控制
- 语言理解
-

序列决策问题建模

序列决策问题一般可用马尔可夫决策模型进行描述

马尔可夫决策模型 (Markov Decision Process, MDP)

MDP 模型用四元组 $\langle S, A(s), P(s, a), R(s, a) \rangle$ 表示,其中:

- **状态集** S: 问题中所有可能出现的状态的集合。其中, $s_0 \in S$ 是初始状态, $T \subseteq S$ 是终结状态集合
- 动作集 A(s): 状态 $s \in S$ 下所有可能的动作集合
- 转移函数 P(s, a) ∈ S: 状态 s ∈ S 下应用动作 a ∈ A(s) 后 得到的新状态
- **奖励函数** R(s,a): 状态 $s \in S$ 下应用动作 $a \in A(s)$ 后得到的相应奖励

MDP 模型将序列决策问题统一为最优路径问题: 将状态视为结点,转移函数视为边,要求从起点 s_0 出发到达任 意终点 $s_t \in T$,使得路径上奖励之和最大

序列决策问题示例:推箱子游戏

推箱子游戏的 MDP 模型

- $S = \{$ 所有可能出现的局面集合 $\}$ 。 s_0 如上图所示,唯一终结状态 s_t 为所有箱子都在目标位置上
- $A(s) = \{ 上, 下, 左, 右 \}$
- P(s, a): 根据规则移动玩家和箱子位置后的新状态
- $R(s, a) \equiv -1$

¹及第链接: http://www.jidiai.cn/env_detail?envid=7

通用求解算法:搜索

搜索是求解最优路径问题的经典算法:

- 搜索被称为"通用解题法",是最重要的算法之一
- 搜索框架简单, 但优化技术多样且灵活, 不容易掌握
- 搜索的效率通常较低,复杂度上限不容易估计
- 搜索是人工智能领域的基础算法之一
 - 早期人工智能研究的就是如何提高搜索效率
 - 现在许多人工智能算法都与搜索有关

搜索分类

- 暴力搜索(枚举算法、随机游走)
- 盲目搜索 (深度优先搜索、广度优先搜索)
- 启发式搜索 (A*, IDA*)
- 对抗搜索 ($\alpha \beta$ 剪枝, 蒙特卡洛树搜索)

目录

- 7 序列决策问题
- ② 盲目搜素 深度优先搜索 广度优先搜索
- 3 启发式搜索 A* 算法 IDA* 算法
- 4) 对抗搜索
 α β 剪枝
 蒙特卡洛树搜索
 蒙特卡洛树搜索应用示例: AlphaGo
- 5 总结

深度优先搜索算法思想

- 深度优先搜索算法通常采用递归或栈实现
- 算法思想:
 - 若当前状态是终结状态 $s \in T$: 计算总奖励,更新解
 - 枚举每个可行动作 $a \in A(s)$: 递归处理新状态 s' = P(s, a)
 - 返回上一步状态
- 典型示例: 走迷宫

深度优先搜索基础:回溯法

回溯法框架

参数: 当前状态 s,已执行决策序列 D,当前奖励和 sum_r

Function Backtrack (s, D, sum_r) :

```
\begin{array}{c|c} \textbf{if } s \in T \textbf{ then} \\ & \textbf{if } sum_r > sum_r^* \textbf{ then} \\ & D^* \leftarrow D \\ & sum_r^* \leftarrow sum_r \end{array}
```

foreach $a \in A(s)$ do

BACKTRACK ($P(s,a), D.append(a), sum_r + R(s,a)$)

- 初始化:最优决策 D* ← ∅,最大奖励和 sum^{*}_r ← -∞
- 搜索入口: BACKTRACK(s_0 ,[],0)
- 搜索结束后的 D* 即为最优决策序列

搜索的核心优化技术: 剪枝

- 深度优先搜索是在回溯法的基础上加入剪枝,以减少搜索量
- 剪枝分类:
 - 可行性剪枝:若当前状态无法到达任一终结状态,直接返回设计思路:考虑终结状态的约束条件
 - 最优性剪枝:若未来奖励和无法大于当前最优解,直接返回 设计思路:考虑奖励函数的性质

剪枝示例: 推箱子游戏

• 可行性剪枝条件: 有箱子无法到达目标位置 (如下图所示)

最优性剪枝条件:已进行步数 + 估计未来步数下限 ≥ 当前最优步数

深度优先搜索

深度优先搜索框架

参数: 当前状态 s,已执行决策序列 D,当前奖励和 sum_r

Function DFS (s, D, sum_r) :

if s 满足可行性剪枝或最优性剪枝条件 then

return

if $s \in T$ then

$$D^* \leftarrow D$$

 $sum_r^* \leftarrow sum_r$

foreach $a \in A(s)$ do

DFS ($P(s, a), D.append(a), sum_r + R(s, a)$)

深度优先搜索其他基本优化

去除重复状态

- 记录所有已访问状态集合,遇到新状态时,若集合中已存在相同或等价状态,则直接返回
- 优点:减少重复计算,避免死循环
- 缺点: 需要额外空间存储集合, 以及额外时间判断等价性

迭代加深

- 限制递归深度上限, 并逐步放宽限制
- 优点: 提升最优性剪枝效果, 避免陷入很深的死胡同
- 缺点:需要额外时间重复计算浅层状态,但一般可忽略

广度优先搜索算法思想

- 广度优先搜索算法通常采用队列实现
- 算法思想:
 - 一开始队列中只有初始状态相关信息 $Q = [s_0]$
 - 若队列不为空:
 - 从队列中取出一个状态 s = Q.pop()
 - 若当前状态是终结状态 $s \in T$: 计算总奖励, 更新解
 - 枚举每个可行动作 $a \in A(s)$: 将新状态加入队列 Q.push(P(s,a))
- 典型示例: 洪水泛滥

广度优先搜索基础:泛洪填充法

泛洪填充法框架

```
Function Floodfill():
     D^* \leftarrow \emptyset
     sum_r^* \leftarrow -\infty
     Q \leftarrow [\langle \mathbf{s}_0, [\ ], 0 \rangle]
     while Q \neq \emptyset do
           \langle s, D, sum_r \rangle \leftarrow Q.pop()
           if s \in T then
                if sum_r > sum_r^* then
                      D^* \leftarrow D
                      sum_r^* \leftarrow sum_r
          foreach a \in A(s) do
                Q.push(\langle P(s, a), D.append(a), sum_r + R(s, a) \rangle)
```

广度优先搜索:泛洪填充法 + 去重 & 剪枝

广度优先搜索框架

```
Function BFS():
      D^* \leftarrow \emptyset, sum_r^* \leftarrow -\infty, Q \leftarrow [\langle s_0, [], 0 \rangle]
      visited \leftarrow {s_0}
     while Q \neq \emptyset do
           \langle s, D, sum_r \rangle \leftarrow Q.pop()
           if s \in T then
                 D^* \leftarrow D, sum_r^* \leftarrow sum_r
           foreach a \in A(s) do
                 s' \leftarrow P(s, a)
                  if not s' 重复出现或满足剪枝条件 then
                        visited \leftarrow visited \cup {s'}
                        \textit{Q.push}(\langle \textit{s}', \textit{D.append(a)}, \textit{sum}_\textit{r} + \textit{R}(\textit{s}, \textit{a}) \rangle)
```

return D*

广度优先搜索其他基本优化

双向搜索

- 同时从起始状态和终结状态出发搜索, 直至相遇
- 优点:减少展开状态数,提高搜索效率
- 缺点: 要求终结状态数较少

调整搜索顺序

- 优先从队列中选取更好的状态进行扩展
- 优点: 更快找到较优或最优解
- 缺点:需要精心分析问题性质

小结:深度优先搜索 VS 广度优先搜索

- 深度优先搜索基于栈, 广度优先搜索基于队列
- 广度优先搜索不需要递归实现,额外时间开销小
- 深度优先搜索不需要存储经过的状态, 空间复杂度低
- 根据问题特性选择算法:
 - 状态数量多: 深度优先搜索
 - 重复状态: 深度优先搜索 + 状态去重, 广度优先搜索
 - 深度不定: 深度优先搜索 + 迭代加深, 广度优先搜索
 - 重复状态 + 深度不定: 广度优先搜索

代码实践:推箱子游戏的广度优先搜索算法

- https://github.com/jidiai/SummerCourse2022/ blob/main/course2/examples/bfs-sokoban/ submission.py
- https://gitee.com/rlchina/summercourse2022/ blob/main/course2/examples/bfs-sokoban/ submission.py

目录

- 7 序列决策问题
- ② 盲目搜索 深度优先搜索 广度优先搜索
- 3 启发式搜索A* 算法IDA* 算法
- 4 对抗搜索 $\alpha = \beta$ 剪枝 蒙特卡洛树搜索 蒙特卡洛树搜索 家特卡洛树搜索应用示例:AlphaGo

China

5 总结

从盲目搜索到启发式搜索

- 深度优先搜索和广度优先搜索都是盲目搜索
- 盲目搜索主要靠剪枝来减少搜索量,从而提高效率
- 盲目搜索一般用预定顺序访问各状态,不考虑问题特性
- 启发式搜索加入知识改变搜索顺序,指导更快找到最优解

A* 算法基础: 最优优先搜索

最优优先搜索框架

```
Function A^* ():
    Q \leftarrow [\langle s_0, [], 0 \rangle]
    visited \leftarrow {s_0}
    while Q \neq \emptyset do
         \langle s, D, sum_r \rangle \leftarrow Q.pop(\arg \max f(s \mid s \in Q))
         if s \in T then
             return D
         foreach a \in A(s) do
             s' \leftarrow P(s, a)
             if not s' 重复出现或满足剪枝条件 then
                  visited ← visited ∪ {s'}
                  Q.push(\langle s', D.append(a), sum_r + R(s, a) \rangle)
```

A* 算法

- 在广度优先搜索的基础上引入估价函数改变搜索顺序
- 估价函数 f(s) 由两个部分组成 f(s) = g(s) + h(s), 其中:
 - g(s) 是起点到 s 的估计奖励,一般定义为实际奖励 sum,
 - h(s) 是 s 到任意终点的估计奖励
- 对 h(s) 函数的要求:
 - h(s) 与真实值 h*(s) 越接近效果越好
 - h(s) 的计算不能太复杂,否则影响搜索效率
 - 可采纳性: 不低估未来奖励, 确保找到的第一个解是最优解

$$h(s) \geq h^*(s)$$

• 一致性: f(s) 随转移单调不增, 保证状态不会被重复处理

$$h(s) \ge R(s, a) + h(P(s, a))$$

估价函数设计示例

大部分问题中,仅需考虑对 h(s) 的设计:

 最短路径(平面)问题,用当前点 s 与终点 t 距离的相反数 作为未来奖励

欧拉距离:
$$h(s) = -\sqrt{(s.x - t.x)^2 + (s.y - t.y)^2}$$

• 迷宫(网格)问题,用当前点 s 与终点 t 距离的相反数作为未来奖励

曼哈顿距离:
$$h(s) = -(|s.x - t.x| + |s.y - t.y|)$$

- 推箱子,
 - 用箱子的最小移动距离的相反数作为未来奖励
 - 用不考虑障碍时人的最小移动距离的相反数作为未来奖励

A* 算法的局限性

- A* 算法基于广度优先搜索
- A* 算法空间复杂度较高,状态数多甚至无限时无法存储
- 如何避免存储状态?
- 回忆在盲目搜索中,深度优先搜索是不需要存储状态的
- 能否将估价函数与深度优先搜索结合?

- IDA* 算法: 使用深度优先搜索 + 迭代加深来实现 A* 算法
- 实现方式:

 - 限定估计奖励 f(s) 的下限 (深度) 为 f_{min} 在搜索过程中,若 $f(s) < f_{min}$ 则进行最优性剪枝
 若完成一轮搜索后没有找到解,适当减少 f_{min} 再次搜索

IDA* 算法

IDA* 算法框架

参数: 当前状态 s,已执行决策序列 D,当前奖励和 sum_r

Function IDA* (s, D, sum_r) :

if $f(s) < f_{min}$ 或 s 满足其他剪枝条件 then

return

if $s \in T$ then

$$D^* \leftarrow D$$

 $\textit{sum}^*_r \leftarrow \textit{sum}_r$

foreach $a \in A(s)$ do

 $IDA^* (P(s, a), D.append(a), sum_r + R(s, a))$

目录

- 7 序列决策问题
- ② 盲目搜索 深度优先搜索 广度优先搜索
- 3 启发式搜索 A* 算法 IDA* 算法
- 4 对抗搜索 $\alpha \beta$ 剪枝 蒙特卡洛树搜索 蒙特卡洛树搜索
- 5 总结

对抗博弈环境

- 上面介绍的盲目搜索和启发式搜索都是针对单决策者环境
- 当环境中出现两个或更多决策者时,需要使用对抗搜索
- 本讲只考虑最简单、却是最重要的一类博弈: 双人零和博弈
 - 两个决策者
 - 双方最终的总收益值为 0
 - 完全信息,即双方均充分知晓游戏规则及当前状态
 - 状态转移具有确定性
 - 双方轮流决策
 - 一定在有限步内到达终结状态
 - 双方均采用最优策略

双人零和博弈示例: 翻转棋²

²及第链接http://www.jidiai.cn/env_detail?envid=2

双人零和博弈基本思路

- 前提: 双方均采用最优策略
- 搜索中状态分为黑点 (我方决策点) 和白点 (敌方决策点)
- 在任意一条路径中黑点和白点交替出现
- 黑点目标使我方奖励最大,白点目标使我方奖励最小
- 我方称为 MAX 方, 敌方称为 MIN 方

极大极小搜索

极大极小搜索框架

```
参数: 当前状态 s,决策者 p
Function MINIMAX (s, p):
```

if $s \in T$ then return reward(s, p)

for each $a \in A(s)$ do

$$s' \leftarrow P(s, a)$$

 $f(s') \leftarrow -MINIMAX(s', opponent(p))$

$$\textit{a}^*(\textit{s}) \leftarrow \arg\max_{\textit{a} \in \textit{A}(\textit{s})} \{\textit{f}(\textit{P}(\textit{s},\textit{a}))\}$$

return $f(p(s, a^*(s)))$

α - β 剪枝

- 极大极小搜索提供了双人零和博弈的基本框架,但效率较低
- 可以加入最优性剪枝—— α - β 剪枝
 - α 为已找到的我方奖励下界, β 为已找到的我方奖励上界
 - 对于敌方来说,已找到的奖励下界和上界分别为 $-\beta$ 和 $-\alpha$
 - 剪枝条件: $\exists a \in A(s), f(P(s, a)) \geq \beta$

α - β 剪枝

加入 α - β 剪枝的搜索框架

参数: 当前状态 s, 决策者 p, 奖励下界 α , 奖励上界 β

Function Alphabeta (s, p, α, β) :

$$a^*(s) \leftarrow \arg\max_{a \in A(s)} \{f(P(s, a))\}$$

$$\alpha \leftarrow \max\{\alpha, f(p(s, a^*(s)))\}$$

return $f(p(s, a^*(s)))$

翻转棋 AI 实现思路

- 双人零和博弈,直接套用极大极小算法 $+\alpha$ - β 剪枝框架
- 规模较大,需要限制深度,设计状态价值估计函数
 - 方案 1: 状态价值 = 我方棋子数 敌方棋子数
 - 方案 2: 状态价值 = 我方棋子加权和 敌方棋子加权和 以 8 × 8 为例:

			* . · · · · · · · · · · · · · · · · · ·	76			
20	-3	113	8	8	11	-3	20
-3	-7	-4	/1	1	-4	-7	-3
11	-4	2	2	2	2	-4	11
8	13	2	-3	-3	2	1	8
8	1	2	-3	-3	2	1	8
11	-4	2	2	2	2	-4	11
-3	-7	-4	1	1	-4	-7	-3
20	-3	11	8	8	11	-3	20

代码实践: 翻转棋游戏的 α - β 剪枝实现

- https://github.com/jidiai/SummerCourse2022/ blob/main/course2/examples/ alphabeta-reversi/submission.py
- https://gitee.com/rlchina/summercourse2022/ blob/main/course2/examples/ alphabeta-reversi/submission.py

α - β 剪枝的不足

- 以找到最优解为目标,而非尽快找到一个较优解
- 不评估各分支权重,无法将算力集中在重要分支上
- 过分依赖人类提供的评估函数

蒙特卡洛树搜索 MCTS

蒙特卡洛树搜索重复进行以下四个步骤3:

① 选择:根据节点数据选择动作(ε-greedy 或 UCB等)

② 扩展: 到达未访问节点, 创建新节点并加入树中

③ 模拟:从新节点出发随机行动到达终结节点,重复多次

4 回溯:用模拟结果更新沿途各节点数据

3 图片作者: Rmoss92

代码实践: 翻转棋游戏的蒙特卡洛树搜索实现

- https://github.com/jidiai/SummerCourse2022/ blob/main/course2/examples/mcts-reversi/ submission.py
- https://gitee.com/rlchina/summercourse2022/ blob/main/course2/examples/mcts-reversi/ submission.py

AlphaGo 介绍4

⁴Mastering the game of Go with Deep Neural Networks & Tree Search

AlphaGo 中的蒙特卡洛树搜索5

1 选择:根据 Q + u(P) 选择节点

② 扩展: 创建新节点,用 P_s 初始化概率

③ 模拟:结合估值网络 v_{θ} 和快速走子策略 P_{π} 进行采样

4 回溯: 更新 Q

⁵Mastering the game of Go with Deep Neural Networks & Tree Search

目录

- 深度优先搜索 广度优先搜索

蒙特卡洛树搜索应用示例:AlphaGo

China

China

总结

博弈搜索算法

- 盲目搜索
 - 深度优先搜索: 基于递归或栈
 - 广度优先搜索: 基于队列
- 启发式搜索
 - A* 算法: 广度优先搜索 + 估价函数
 - IDA* 算法:深度优先搜索 + 估价函数 + 迭代加深
- 对抗搜索
 - α-β 剪枝: 极大极小搜索 + 最优性剪枝
 - 蒙特卡洛树搜索:选择 → 扩展 → 模拟 → 回溯

作业: 翻转棋

• 作业说明:使用 α - β 剪枝或蒙特卡洛树搜索实现翻转棋 AI

• 及第入口: http://www.jidiai.cn/env_detail?envid=2

• 作业要求: 在及第上提交, 排名高于随机 (Jidi_random)