Introduction to Optimization of Digital Logic Design

- Chapter 6 -

Introduction

- We now know how to build digital circuits
 - How can we build <u>better</u> circuits?
- Let's consider two important design criteria
 - > Delay the time from inputs changing to new correct stable output
 - > Size the number of transistors
 - For quick estimation, assume
 - Every gate has delay of "1 gate-delay"
 - Every gate *input* requires 2 transistors
 - Ignore inverters

Transforming F1 to F2 represents an *optimization*: Better in all criteria of interest

Tradeoff

Tradeoff

Improves some, but worsens other, criteria of interest

Transforming G1 to G2 represents a *tradeoff*: Some criteria better, others worse.

Optimization and Tradeoff

Optimizations

All criteria of interest are improved (or at least kept the same)

- We obviously prefer optimizations, but often must accept tradeoffs
 - ➤ You can't build a car that is the most comfortable, and has the best fuel efficiency, and is the fastest you have to give up something to gain other things.

Combinational Logic Optimization and Tradeoffs

- 교재 6장 2절

Combinational Logic Optimization and Tradeoffs

- Two-level size optimization using algebraic methods
 - Goal: Two-level circuit (ORed AND gates) with fewest transistors
 - Though transistors getting cheaper (Moore's Law), still cost something
- Define problem algebraically
 - Sum-of-products yields two levels
 - F = abc + abc' is sum-of-products;G = w(xy + z) is not.
 - Transform sum-of-products equation to have fewest literals and terms
 - Each literal and term translates to a gate input, each of which translates to about 2 transistors (see Ch. 2)
 - For simplicity, ignore inverters

Example

$$F = xyz + xyz' + x'y'z' + x'y'z$$

$$F = xy(z + z') + x'y'(z + z')$$

$$F = xy*1 + x'y'*1$$

$$F = xy + x'y' \qquad 4 \text{ literals } + 2 \text{ terms } = 6 \text{ gate inputs}$$

$$x = xy + x'y' \qquad 1 \text{ for all } = 12 \text{ transistors}$$

Note: Assuming 4-transistor 2-input AND/OR circuits; in reality, only NAND/NOR use only 4 transistors.

Algebraic Two-Level Size Optimization

- Previous example showed common algebraic minimization method
 - (Multiply out to sum-of-products, then...)
 - > Apply following as much as possible

$$-ab + ab' = a(b + b') = a*1 = a$$

- "Combining terms to eliminate a variable"
 - (Formally called the "Uniting, theorem")
- Duplicating a term sometimes helps
 - Doesn't change function

$$-c+d = c+d+d = c+d+$$

 $d+d+d...$

> Sometimes after combining terms, cán

$$F = xyz + xyz' + x'y'z' + x'y'z$$

 $F = xy(z + z') + x'y'(z + z')$
 $F = xy*1 + x'y'*1$
 $F = xy + x'y'$

$$F = x'y'z' + x'y'z + x'yz$$

 $F = x'y'z' + x'y'z + x'y'z + x'yz$
 $F = x'y'(z+z') + x'z(y'+y)$
 $F = x'y' + x'z$

Karnaugh Maps for Two-Level Size Optimization

- Easy to miss possible opportunities to combine terms when doing algebraically
- Karnaugh Maps (K-maps)
 - Graphical method to help us find opportunities to combine terms
 - Minterms <u>differing in one variable</u> are adjacent in the map
 - Can clearly see opportunities to combine terms – look for adjacent 1s
 - For F, clearly two opportunities
 - Top left circle is shorthand for: x'y'z'+x'y'z = x'y'(z'+z) = x'y'(1) = x'y'
 - Draw circle, write term that has all the literals except the one that changes in the circle
 - Circle xy, x=1 & y=1 in both cells of the circle, but z changes (z=1 in one cell, 0 in the other)
 - Minimized function: OR the final terms

Easier than algebraically:

K-maps

- Four adjacent 1s means two variables can be eliminated
 - Makes intuitive sense those two variables appear in all combinations, so one term *must* be true
 - Draw one big circle shorthand for the algebraic transformations above

$$G = xy'z' + xy'z + xyz + xyz'$$

 $G = x(y'z'+ y'z + yz + yz')$ (must be true)
 $G = x(y'(z'+z) + y(z+z'))$
 $G = x(y'+y)$
 $G = x$

K-maps

- Four adjacent cells can be in shape of a square
- OK to cover a 1 twice
 - Just like duplicating a term
 - Remember, c + d = c + d + d
- No need to cover 1s more than once
 - Yields extra terms not minimized

The two circles are shorthand for: I = x'y'z + xy'z' + xy'z + xyz + xyz' I = x'y'z + xy'z + xy'z' + xy'z + xyz + xyz' I = (x'y'z + xy'z) + (xy'z' + xy'z + xyz + xyz')

$$I = (y'z) + (x)$$

K-maps

- Circles can cross left/right sides
 - > Remember, edges are adjacent
 - Minterms differ in one variable only
- Circles must have 1, 2, 4, or 8cells 3, 5, or 7 not allowed
 - > 3/5/7 doesn't correspond to algebraic transformations that combine terms to eliminate a variable
- Circling all the cells is OK
 - > Function just equals 1

K-maps for Four Variables

- Four-variable K-map follows same principle
 - Adjacent cells differ in one variable
 - Left/right adjacent
 - Top/bottom also adjacent
- 5 and 6 variable maps exist
 - But hard to use
- Two-variable maps exist
 - But not very useful easy to do algebraically by hand

General K-map method

- 1. Convert the function's equation into sum-of-minterms form
- Place 1s in the appropriate Kmap cells for each minterm
- Cover all 1s by drawing the fewest largest circles, with every 1 included at least once; write the corresponding term for each circle
- 4. OR all the resulting terms to create the minimized function.

General K-map method

- 1. Convert the function's equation into sum-of-minterms form
- Place 1s in the appropriate Kmap cells for each minterm

Common to revise (1) and (2):

- Create *sum-of-products*
- Draw 1s for each product

Ex:
$$F = w'xz + yz + w'xy'z'$$

General K-map method

- 1. Convert the function's equation into sum-of-minterms form
- Place 1s in the appropriate Kmap cells for each minterm
- 3. Cover all 1s by drawing the fewest largest circles, with every 1 included at least once; write the corresponding term for each circle
- 4. OR all the resulting terms to create the minimized function.

Example: Minimize:

$$G = a + a'b'c' + b*(c' + bc')$$

1. Convert to sum-of-products

$$G = a + a'b'c' + bc' + bc'$$

2. Place 1s in appropriate cells

3. Cover 1s

4. OR terms: G = a + c'

- Four Variable Example
- Minimize:
 - H = a'b'(cd' + c'd') + ab'c'd' + ab'cd' + a'bd + a'bcd'
- 1. Convert to sum-of-products:
 - H = a'b'cd' + a'b'c'd' + ab'c'd' + ab'cd' + a'bd + a'bcd'
- 2. Place 1s in K-map cells
- 3. Cover 1s
- 4. OR resulting terms

Funny-looking circle, but remember that left/right adjacent, and top/bottom adjacent

H = b'd' + a'bc + a'bd

Don't Care Input Combinations

- What if we know that particular input combinations can never occur?
 - e.g., Minimize F = xy'z', given that x'y'z' (xyz=000) can *never* be true, and that xy'z (xyz=101) can *never* be true
 - So it doesn't matter what F outputs when x'y'z' or xy'z is true, because those cases will never occur
 - Thus, make F be 1 or 0 for those cases in a way that best minimizes the equation
- On K-map
 - > Draw Xs for don't care combinations
 - Include X in circle ONLY if minimizes equation
 - Don't include other Xs

Good use of don't cares

Unnecessary use of don't cares; results in extra term

Optimization Example using Don't Cares

Minimize:

- $F = \underline{a'bc'} + \underline{abc'} + \underline{a'b'c}$
- Given don't cares: a'bc, abc

Note: Introduce don't cares with caution

- Must be sure that we really don't care what the function outputs for that input combination
- If we do care, even the slightest, then it's probably safer to set the output to 0

F = a'c + b

Optimization with Don't Cares Example: Sliding Switch

Switch with 5 positions

>3-bit value gives position in binary

Want circuit that

- > Outputs 1 when switch is in position 2, 3, or 4
- Outputs 0 when switch is in position 1 or 5
- Note that the 3-bit input, can never output binary 0, 6, or 7
 - Treat as don't care input combinations

