3.) ISLR 2.4.1

- a) Better- a more flexible approach would be obtained will fit the data closer and with the large sample size a better fit than an inflexible approach.
- b.) Worse a flexible method would overfit the small ho of absorbations
- c) Better with more degrees of freedom, a flexible model would obtain a better fix.
- di) Worse Flexible method would fit to the noise in the ornor terms and increase variance.

4.) ISLR 2.4.7

a:)	Observations	×ι	X 2	X3	Distance (0,0,0)	Y
	1	0	3	0	\$	Red
	2	2	D	0	2	Red
	3	O	1	3	VIO 6 3.2	Red
	Lŧ	0	\	2	V5 4 2.2	Gizzeen
	<i>5</i> 6		0	la de la companya de	V2 1.4	Gisten Red

b) If
$$k=1$$
, then $x_5 \in \mathbb{N}_0$

$$P(Y=\text{Red} \mid X=x_0) = \frac{1}{1} \underbrace{\Xi}_{i \in \mathbb{N}_0} I(y_i=\text{Red}) = I(y_s=\text{Red}) = 0$$

$$P(Y=\text{Green} \mid X=x_0) = \frac{1}{1} \underbrace{\Xi}_{i \in \mathbb{N}_0} I(y_i=\text{Green}) = I(y_s=\text{Green}) = 1$$

$$P(Y=\text{Green} \mid X=x_0) = \frac{1}{1} \underbrace{\Xi}_{i \in \mathbb{N}_0} I(y_i=\text{Green}) = I(y_s=\text{Green}) = 1$$

- → Observation #5 is the closest neighbour for K=1.
- C) If K=3, then x2,25, 26 € No

P(Y=Red | X=x0) = 1 = 1 (Yi=Red) = 1 (1+0+1) = 2

PCY=Green | X=x0) = 1 & I (y:=Green) = 1 (0++0) - 1

- =) Observation #2, 5,6 are the closest neighbors for k=3. 2 is Red, 5 is Goren, and 6 is Red.
- d.) Small. A small K would be flexible for a non-linear decision boundary, who soos a large K would tory to fit a more linear boundary lecause it takes more points into consideration.