1. Let $a_n = \frac{3n-4}{n+6}$. Show an converges but $\sum_{n=1}^{\infty} a_n$ diverges.

2. Do these series converge or diverge? (If converges, what to?) $(a) \sum_{n=1}^{\infty} \frac{1}{4^n} \qquad (b) \sum_{n=0}^{\infty} (3/2)^n \qquad (c) \sum_{n=3}^{\infty} \frac{2^{2n+1}}{3^{n-4}}$

3. Find $\sum_{n=3}^{\infty} \frac{4}{n^2-2n}$ (Hint: use partial fractions to see is "telescoping")

4. Let $x = 0.123123\overline{123}$ (a repeated decimal). Use geometric series to write x as a ratio of two integers. (Warmup: do this process for $0.33\overline{3} = \frac{1}{3}$.)

5. Let an be $\begin{cases} a_1 = 1 \\ a_n = \frac{2a_{n-1} + 2}{a_{n-1} + 2} \end{cases}$ if $n \ge 2$ this converges? Maybe use numerical evidence to guess what to.

6. $\sum_{k=1}^{\infty} \frac{k}{2^k}$ (challenge!)