Interest Rate Swaps (IRS)

Definitions

- A swap is a derivative in which two counterparties agree to exchange one stream of cash flows against another stream.
- These streams are called the legs of the swap.
- An interest rate swap is a derivative in which one party exchanges a stream of interest payments for another party's stream of cash flows.

Hedging with an FRA

Hedging with an IRS

Very similar to an FRA, but is applied to a series of cashflows

Characteristics of IRS

Similar to FRA

- No exchange of principal
- Only interest flows are exchanged and netted
 Different from FRA
- Settlement amount paid at the end of relevant period

Motivation

Company A has access to floating-rates borrowing at LIBOR+0.1% fixed rate borrowing at 8.0% Company A would prefer floating-rate borrowing

Company B has access to floating-rate borrowing at LIBOR+0.8% fixed rate borrowing at 9.5% Company B would prefer fixed rate borrowing

How to create a win-win?

Win-Win

Net cost for A is: -8.0% + 8.3% - LIBOR = -(LIBOR - 0.3%)

Net cost for B is: - (LIBOR + 0.8%) - 8.3% + LIBOR = -9.1%

Borrowing Cost Comparison:	Co. A (Floating)	Co.B (Fixed)
> Borrowing at market	LIBOR+0.1%	9.5%
➤ Borrowing in association with IRS	LIBOR - 0.3%	9.1%
➤ Cost Saving	-0.4%	-0.4%

Type of Swap

- Coupon Swap
 - Party A pay fixed interest rate and receive floating interest rate from party B
- Basis Swap
 - > Floating vs floating but on different rate basis
- Index Swap
 - > the flow in one / other direction are based on index

Basis Swap

An example of a user of basis swaps would be bank that is lending at the six month Libor rate but its funding cost is based on the 3M Libor curve.

Index Swap

Valuation of Swap - Basic Concept

- Long Swap = + Long a Fixed rate bond Floating rate borrowing
- At inception, the NPV of the floating leg cashflow is zero. This is assumed that all future period floating rate are discounted at the then market floating borrowing rate, hence the NPV of floating leg = 0 at inception.
- Swap Value = + PV of Fixed leg cashflow PV of Floating leg cashflow
- Hence, Swap Value = NPV of the Fixed leg cashflow
- At inception, NPV of all the cashflow = 0
- i.e. NPV of the Fixed leg cashflow = 0

+ Long a Fixed rate bond - Floating rate borrowing

NPV of Floating Leg Cashflow

$$\begin{split} \text{NPV} = & 10\text{m} - \frac{10\text{m} \times \text{L}_1 \times \frac{184}{360}}{\left(1 + \text{L}_1 \times \frac{184}{360}\right)} - \frac{10\text{m} \times \text{L}_2 \times \frac{181}{360}}{\left(1 + \text{L}_1 \times \frac{184}{360}\right)\left(1 + \text{L}_2 \times \frac{181}{360}\right)} - \frac{10\text{m} \times \text{L}_3 \times \frac{181}{360}}{\left(1 + \text{L}_1 \times \frac{184}{360}\right)\left(1 + \text{L}_2 \times \frac{181}{360}\right)} - \frac{10\text{m} \times \text{L}_4 \times \frac{184}{360}}{\left(1 + \text{L}_4 \times \frac{182}{360} + 10\text{m}\right)} - \frac{10\text{m} \times \text{L}_4 \times \frac{182}{360}}{\left(1 + \text{L}_4 \times \frac{181}{360}\right)\left(1 + \text{L}_4 \times \frac{181}{360}\right)} - \frac{10\text{m} \times \text{L}_4 \times \frac{181}{360}}{\left(1 + \text{L}_4 \times \frac{181}{360}\right)\left(1 + \text{L}_4 \times \frac{181}{360}\right)} - \frac{10\text{m} \times \text{L}_5 \times \frac{181}{360}}{\left(1 + \text{L}_4 \times \frac{181}{360}\right)\left(1 + \text{L}_4 \times \frac{181}{360}\right)} - \frac{10\text{m} \times \text{L}_5 \times \frac{181}{360}}{\left(1 + \text{L}_4 \times \frac{181}{360}\right)\left(1 + \text{L}_4 \times \frac{181}{360}\right)} - \frac{10\text{m} \times \text{L}_5 \times \frac{181}{360}}{\left(1 + \text{L}_4 \times \frac{181}{360}\right)\left(1 + \text{L}_4 \times \frac{181}{360}\right)} - \frac{10\text{m} \times \text{L}_5 \times \frac{181}{360}}{\left(1 + \text{L}_4 \times \frac{181}{360}\right)\left(1 + \text{L}_4 \times \frac{181}{360}\right)} - \frac{10\text{m} \times \text{L}_5 \times \frac{181}{360}}{\left(1 + \text{L}_4 \times \frac{181}{360}\right)\left(1 + \text{L}_4 \times \frac{181}{360}\right)} - \frac{10\text{m} \times \text{L}_5 \times \frac{181}{360}}{\left(1 + \text{L}_4 \times \frac{181}{360}\right)\left(1 + \text{L}_4 \times \frac{181}{360}\right)} - \frac{10\text{m} \times \text{L}_5 \times \frac{181}{360}}{\left(1 + \text{L}_4 \times \frac{181}{360}\right)\left(1 + \text{L}_4 \times \frac{181}{360}\right)} - \frac{10\text{m} \times \text{L}_5 \times \frac{181}{360}}{\left(1 + \text{L}_4 \times \frac{181}{360}\right)} - \frac{10\text{m} \times \text{L}_5 \times \frac{181}{360}}{\left(1 + \text{L}_4 \times \frac{181}{360}\right)} - \frac{10\text{m} \times \text{L}_5 \times \frac{181}{360}}{\left(1 + \text{L}_4 \times \frac{181}{360}\right)} - \frac{10\text{m} \times \text{L}_5 \times \frac{181}{360}}{\left(1 + \text{L}_4 \times \frac{181}{360}\right)} - \frac{10\text{m} \times \text{L}_5 \times \frac{181}{360}}{\left(1 + \text{L}_4 \times \frac{181}{360}\right)} - \frac{10\text{m} \times \text{L}_5 \times \frac{181}{360}}{\left(1 + \text{L}_4 \times \frac{181}{360}\right)} - \frac{10\text{m} \times \text{L}_5 \times \frac{181}{360}}{\left(1 + \text{L}_4 \times \frac{181}{360}\right)} - \frac{10\text{m} \times \text{L}_5 \times \frac{181}{360}}{\left(1 + \text{L}_4 \times \frac{181}{360}\right)} - \frac{10\text{m} \times \text{L}_5 \times \frac{181}{360}}{\left(1 + \text{L}_4 \times \frac{181}{360}\right)} - \frac{10\text{m} \times \text{L}_5 \times \frac{181}{360}}{\left(1 + \text{L}_4 \times \frac{181}{360}\right)} - \frac{10\text{m} \times \text{L}_5 \times \frac{181}{360}}{\left(1 + \text{L}_4 \times \frac{181}{360}\right)} - \frac{10\text{m} \times \text{L}_5 \times \frac{181}{360}}{\left(1 + \text{L}_4 \times \frac{181}{360}\right)} - \frac{10\text{m} \times \text{L}_5 \times \frac{181}{360}}{\left(1 + \text{L}_4 \times \frac{181}{360}\right)} - \frac{10\text{m} \times \text{L}$$

NPV of Floating Leg Cashflow

$$\begin{split} \text{NPV} = & 10\text{m} - \frac{\left(10\text{m} \times \text{L}_{1} \times \frac{184}{360}\right) \left(1 + \text{L}_{2} \times \frac{181}{360}\right) + 10\text{m} \times \text{L}_{2} \times \frac{181}{360}}{\left(1 + \text{L}_{1} \times \frac{184}{360}\right) \left(1 + \text{L}_{2} \times \frac{181}{360}\right)} - \frac{10\text{m} \times \text{L}_{3} \times \frac{181}{360}}{\left(1 + \text{L}_{1} \times \frac{184}{360}\right) \left(1 + \text{L}_{2} \times \frac{181}{360}\right) \left(1 + \text{L}_{3} \times \frac{181}{360}\right)} \\ - \frac{10\text{m} \times \text{L}_{4} \times \frac{182}{360} + 10\text{m}}{\left(1 + \text{L}_{1} \times \frac{184}{360}\right) \left(1 + \text{L}_{2} \times \frac{181}{360}\right) \left(1 + \text{L}_{3} \times \frac{181}{360}\right) \left(1 + \text{L}_{4} \times \frac{182}{360}\right)} \end{split}$$

NVP of Fixed Leg

$$-10m + 10m \times \left(r \times \frac{184}{360}\right) D_1 + 10m \times \left(r \times \frac{181}{360}\right) D_2 + 10m \times \left(r \times \frac{181}{360}\right) D_3$$
$$+10m \times \left(1 + r \times \frac{182}{360}\right) D_4 = 0$$

$$\left(r \times \frac{184}{360}\right) D_1 + \left(r \times \frac{181}{360}\right) D_2 + \left(r \times \frac{181}{360}\right) D_3 + \left(1 + r \times \frac{182}{360}\right) D_4 = 1$$

Valuation of Swap (Cont)

where

P = hypothetical principal notional

t_i = day count fraction of each interest payment period i

C_i = cashflow at time period i

$$= P*r*t_i$$

D_i = discount factor at time i

 D_n = discount factor at time n (i.e. at maturity)

r = swap par rate (fixed leg)

$$NPV = -P + \sum_{i=1}^{n} C_i D_i + PD_n$$

$$NPV = 0$$

$$D_{n} = \frac{\left(1 - r \sum_{i=1}^{n-1} t_{i} D_{i}\right)}{1 + rt_{n}}$$

$$r = \frac{\left(1 - D_n\right)}{\sum_{i=1}^{n} t_i D_i}$$

Pricing IRS from Futures or FRAs

- For each successive futures maturity, create a strip to generate a discount factor
- Use the series of discount factors to calculate the yield of a par swap

Pricing IRS from FRAs

3-month LIBOR		14.0625%	(91 days)
FRA	3 v 6	12.42%	(91 days)
	6 v 9	11.57%	(91 days)
	9 v 12	11.25%	(92 days)

What is the 1 year IRS rate, which pay fix and receive floating LIBOR on a quarterly basis?

Consider the following:

Borrow USD 1 now for 3 months. At end of 3 months, repay:

$$USD\left(1+0.140625 \times \frac{91}{360}\right) = USD \ 1.03555$$

• Borrow USD 1.03555 and use FRA 3 v 6. Assume repayment at the end of 6 months:

USD
$$1.03555 \times \left(1 + 0.1242 \times \frac{91}{360}\right) = \text{USD } 1.06806$$

Pricing IRS from FRAs

• Borrow USD 1.03555 and use FRA 6 v 9. Assume repayment at the end of 9 months:

USD
$$1.06806 \times \left(1 + 0.1157 \times \frac{91}{360}\right) = \text{USD } 1.09929$$

• Borrow USD 1.03555 and use FRA 9 v 12. Assume repayment at the end of 12 months:

USD
$$1.09929 \times \left(1 + 0.1125 \times \frac{92}{360}\right) = \text{USD } 1.13090$$

Valuing the cashflows

$$1 = \left(i \times \frac{91}{360} \times \frac{1}{1.03555}\right) + \left(i \times \frac{91}{360} \times \frac{1}{1.06806}\right) + \left(i \times \frac{91}{360} \times \frac{1}{1.09929}\right) + \left(\left(1 + i \times \frac{92}{360}\right) \times \frac{1}{1.13090}\right)$$

$$i = 12.35\%$$

Example

Base date = 17-7-2006

Day to Spot is 2, Start date = 19-7-2006

Pricing of a 4 year Interest Rate Swap

Maturity 4 years

Receive Fixed rate = ?, quarterly, Act / 365

Pay Floating rate = 3month HIBOR, quarterly, 30/365

Notional = \$1mio

Example - Swap Pricing

Swap Pricing = R	kec Fixed vs H	'ay Floa	ting			
INPUT				_		
Base Date	17-Jul-2006			$(1-D_{})$)	
Day to Spot	2		r = -	$\frac{(1-D_n)}{\sum_{i=1}^n t_i D_i}$	<u>-</u>	
				n		
No. of Years	4			$ > t_i D_i $		
Fixed Pymt Frq	3			_ ' '		
(no. of months)				1=1		
Notional (P)	1,000,000					
Start Date	19-Jul-2006	(Spot Da	te)			
End Date	19-Jul-2010					
ОИТРИТ			Calculate th	e Swap Rate		
			Daycount	Spot DF		
			fraction	(extracted		
		No. of	ti	from Yield		
From	То	days	(Act/365)	Curve)	ti*Di	
19/07/2006	19/10/2006	92	0.252055	0.99204	0.250047	
19/10/2006	19/01/2007	92	0.252055	0.98302	0.247774	
19/01/2007	19/04/2007	90	0.246575	0.97403	0.240173	
19/04/2007	19/07/2007	91	0.249315	0.96439	0.240436	
19/07/2007	19/10/2007	92	0.252055	0.95522	0.240768	
19/10/2007	19/01/2008	92	0.252055	0.94599	0.238441	
19/01/2008	19/04/2008	91	0.249315	0.93679	0.233556	
19/04/2008	19/07/2008	91	0.249315	0.92752	0.231246	
19/07/2008	19/10/2008	92	0.252055	0.91826	0.231451	
19/10/2008	19/01/2009	92	0.252055	0.90896	0.229108	
19/01/2009	19/04/2009	90	0.246575	0.89984	0.221879	
19/04/2009	19/07/2009	91	0.249315	0.89060	0.222040	
19/07/2009	19/10/2009	92	0.252055	0.88131	0.222138	
19/10/2009	19/01/2010	92	0.252055	0.87201	0.219795	
19/01/2010	19/04/2010	90	0.246575	0.86291	0.212772	
19/04/2010	19/07/2010	91	0.249315	0.85370	0.212840	
				Σ ti*Di	3.694463	
			_	wap Rate ==>	-	r = (1-Dn)/(Σti*D

Example - Valuation of Swap

Validation of S	wan at Ince	otion · N	$\mathbf{PV} = 0$	U UI	MSD		
vandation of S	wap at mee		1 1 - 0				
INPUT							
				n			
Fix Rate (r)	3.9600%		NIDV/ -	$-P + \sum_{i=1}^{m}$	CD + D	\mathcal{D}	
Notional (P)	1,000,000		_ INT N —	-1 + Z	C_iD_i+I	D_n	
				$\overline{i=1}$			
Base Date	17-Jul-2006		** Di is spot Disco	unt Factor			
Start Date	19-Jul-2006	(Spot Da	te)				
End Date	19-Jul-2010						
OUTPUT				** Valuation of Sw	aps with DF to Sp	ot date	
				Daycount		Spot DF	
				fraction		(extracted	
		No. of		ti	Ci = P*r*t	from Yield	
From	То	days	Fix Rate	(Act/365)		Curve)	P
19/07/2006	19/07/2006	0	Initial Notional Exc	h (Hypothetical) =>	-1,000,000.00	1.00000	-1,000,00
19/07/2006	19/10/2006	92	3.9600%	0.252055	9,981.37	0.99204	9,90
19/10/2006	19/01/2007	92	3.9600%	0.252055	9,981.37	0.98302	9,81
19/01/2007	19/04/2007	90	3.9600%	0.246575	9,764.38	0.97403	9,51
19/04/2007	19/07/2007	91	3.9600%	0.249315	9,872.88	0.96439	9,52
19/07/2007	19/10/2007	92	3.9600%	0.252055	9,981.37	0.95522	9,53
19/10/2007	19/01/2008	92	3.9600%	0.252055	9,981.37	0.94599	9,44
19/01/2008	19/04/2008	91	3.9600%	0.249315	9,872.88	0.93679	9,24
19/04/2008	19/07/2008	91	3.9600%	0.249315	9,872.88	0.92752	9,15
19/07/2008	19/10/2008	92	3.9600%	0.252055	9,981.37	0.91826	9,16
19/10/2008	19/01/2009	92	3.9600%	0.252055	9,981.37	0.90896	9,07
19/01/2009	19/04/2009	90	3.9600%	0.246575	9,764.38	0.89984	8,78
19/04/2009	19/07/2009	91	3.9600%	0.249315	9,872.88	0.89060	8,79
19/07/2009	19/10/2009	92	3.9600%	0.252055	9,981.37	0.88131	8,79
19/10/2009	19/01/2010	92	3.9600%	0.252055	9,981.37	0.87201	8,70
19/01/2010	19/04/2010	90	3.9600%	0.246575	9,764.38	0.86291	8,42
19/04/2010	19/07/2010	91	3.9600%	0.249315	9,872.88	0.85370	8,42
19/07/2010	19/07/2010	0	Final Notional Exc	h (Hypothetical) =>	1,000,000.00	0.85370	853 <i>,</i> 69
						NPV	

Valuing Swaps

Value the following IRS on 27 March 2002

Notional amount: 10 million

Start of swap: 23 July 2001 Maturity of swap: 23 July 2004

Receive: 7.4% (annual 30/360)

Pay: LIBOR (semi-annual ACT/360)

Previous LIBOR fixing: 9.3% from 23 Jan 2002 to 23 Jul 2002

Zero-coupon discount factors from 27 Mar 2002:

23 Jul 2002: 0.9703 23 Jan 2003: 0.9249 23 Jul 2003: 0.8825 23 Jan 2004: 0.8415

23 Jul 2004: 0.8010

Swaps Cashflows

Dates	Fixed Leg	Floating Leg
23 Jul 2002 :	$+10m \times 7.4\%$	$-10m \times 9.3\% \times \frac{181}{360}$
23 Jan 2003 :		$-10m \times L_1 \times \frac{184}{360}$
23 Jul 2003:	$+10m \times 7.4\%$	$-10m \times L_2 \times \frac{181}{360}$
23 Jan 2004 :		$-10m \times L_3 \times \frac{181}{360}$
23 Jul 2004 :	$+10m \times 7.4\%$	$-10m \times L_4 \times \frac{182}{360}$
where L_1, L_1, L_1	and L ₁ are LIBOR	

$$-10m + 10m \times L_{1} \times \frac{184}{360} + 10m \times L_{2} \times \frac{181}{360} + 10m \times L_{3} \times \frac{181}{360} + 10m \times L_{4} \times \frac{182}{360} + 10m$$

Reversing a Swap

- To close out a previous position
- Transact another swap in the opposite direction for the remaining term of the existing swap
- Fixed rate unlikely to be the same
- Net receipt or payment on each future payment date

Example

The original swap details:

Notional amount = 10 mio

Start date of swap = 23 Jul 2001

Maturity of swap = 23 Jul 2004

Receive Leg = 7.4% (annual 30/360) Fixed

Pay Leg = LIBOR (semi-annual ACT/360) Floating

On 23 Jul 2002, we decide to reverse the swap. The same counterparty quotes a swap rate of 8.25% for the remaining 2 years.

Discount factors from 27 Mar 2002:

23 Jul 2003: 0.9250 23 Jul 2004: 0.8530

LIBOR-based flows on the two swaps offset each other exactly. The remaining flows are:

Date	Original swap	Reverse swap	Net cashflows
23 Jul 2003	$+10m \times 7.4\%$	$-10m \times 8.25\%$	-85,000
23 Jul 2004	$+10m \times 7.4\%$	$-10m \times 8.25\%$	-85,000

The NPV of the net cashflows is ? -151,130

Example - Further Explain

In other words, the cashflow leg that relevant in swap unwind on 23-Jul-2002 ...

	Start Date End Date	23-Jul-2001 23-Jul-2004	(Spot Date	<u>:</u>)			
(DUTPUT	(Original Swap)				
			No. of	Fix Rate	Daycount fraction ti	Ci = P*r*t	
	From	То	days	(Original Swap)			
	From 23/07/2001	To 23/07/2001	days 0	(Original Swap) Initial Notional Exch (H	(30/360)	-10,000,000.00	
		23/07/2001		, ,	(30/360)	-10,000,000.00	Realised Cashflow
	23/07/2001	23/07/2001 23/07/2002	0	Initial Notional Exch (H	(30/360) ypothetical) =>	- 10,000,000.00 740,000.00	
	23/07/2001 23/07/2001	23/07/2001 23/07/2002 23/07/2003	0 360	Initial Notional Exch (H 7.4000%	(30/360) ypothetical) => 1.000000	-10,000,000.00 740,000.00 740,000.00	Realised Cashflow

The NPV of the net cashflows is?

Notional (P)	10,000,000						
		Fix Rate (Original			Net Cash Flow Ci = P*rd*t		PV
From	To	Swap)	Swap)	(rd)			
23/07/2002	23/07/2003	7.4000%	8.2500%	-0.85%	-85,000	0.925	-78,625
23/07/2003	23/07/2004	7.4000%	8.2500%	-0.85%	-85,000	0.853	-72,505
				-1.70%	-170,000		-151,130

Hence, we have to pay 151,130 to the same counterparty to close out the swap.