Sprawozdanie z Laboratorium Aparatury Automatyzacji					
Nr. ćw. Temat laboratoriu ĆW. 6		Temat laboratoriu	Asynchroniczny silnik klatkowy z falownikiem		
\bigsqcup	, w. O		Asymomormozny smilk kid	trowy 2 latewinkiem	
Wydzia	Wydział EAIIIB		Automatyka i Robotyka	Rok ///	
Zespół Zespół nr 7		ł nr 7	Grupa Grupa 1, piątek 8:00	Data 23 stycznia 2023	
L.p.	Skład grupy ćwiczeniowej				
1	Jakub Szczypek				
2	Iwona Fafara				
3	Dawid Antosz				

Spis treści

- 1. Wstęp
- 2. Opis stanowiska
- 3. Wykonanie Ćwiczenia
- 4. Wnioski

1. Wstęp

Celem ćwiczenia było zapoznanie się z konfiguracją i uruchomienie napęd elektrycznego z falownikiem. Do wykonania ćwiczenia wykorzystywaliśmy komputer PC z oprogramowaniem producenta, falownik oraz fizycznych potencjometrów i przełączników.

2. Opis stanowiska

Opis z czego składało się stanowisko:

- Opis katalogowy falownika SIEMENS MICROMASTER 420
- Instrukcja obsługi falownika SIEMENS MICROMASTER 420
- Opis oprogramowania SIMANICS v4.4 STARTER
- Systemy pomocy kontekstowej oprogramowania SINAMICS 4.4 STARTER
- Tachometr laserowy
- Falownik MICROMASTER 420
- Bezpiecznik
- Włącznik zasilania
- Komputer PC z SIEMENS SIMANICS v4.4
- Silnik asynchroniczny klatkowy firmy PRO-MOTOR MS 71 2-4
- Magistrala komunikacyjna RS232 z przejściówką na USB

Wygląd stanowiska przedstawiamy na rysunku poniżej:

Zdj.1. Wygląd stanowiska laboratoryjnego

Zdj.2. Tabliczka znamionowa silnika asynchronicznego klatkowego PRO-MOTOR MS 71 2-4

3. Wykonanie Ćwiczenia

Wykonanie ćwiczenia rozpoczęliśmy od konfiguracji nowego projektu w programie producenta SIEMENS SINAMICS. Wpisaliśmy szczegółowe dane silnika asynchronicznego (Zdj.2.) do kreatora projektu. W zakładce "Set PG/PC Interface" z listy rozwijanej wybraliśmy Access Point "S7ONLINE". Dzięki przyciskowi "Diagnostics" byliśmy w stanie sprawdzić poprawność konfiguracji połączenia komputera z falownikiem. Po pozytywnym teście połączyliśmy się z falownikiem, przesłaliśmy konfigurację do jego pamięci. Następnie przeszliśmy do konstruowania tabeli do monitorowania zmiennych parametrów. Z listy "Expert List" wybraliśmy parametry: częstotliwość - r21, prędkość obrotową - r22, napięcie na wejściu analogowym - r752 oraz napięcie na wyjściu analogowym - r25.

Zdj.3. Tabela do monitorowania zmiennych

Następnym krokiem po zakończeniu konfiguracji było otworzenie panelu sterującego dla falownika. Dzięki niemu byliśmy w stanie przesyłać zadaną przez nas częstotliwość zasilającego prądu AC. Po przełączeniu włącznika na "START" i ustawieniu przykładowej częstotliwości silnik zaczął pracować co świadczyło o poprawnym połączeniu całego układu.

Zdj.4. Panel sterujący programu SIEMENS SINAMICS

Pierwszą eksperymentalną część ćwiczenia zaczęliśmy wraz z wykonaniem serii pomiarów prędkości obrotowej silnika asynchronicznego klatkowego w zależności od zadanej częstotliwości prądu f. Przeprowadzone dla tego zadania pomiary zostały zebrane w Tab.1.. Do pomiarów wykorzystaliśmy prędkościomierz laserowy. Oprogramowanie SINAMICS umożliwia precyzyjne odczytanie prędkości kątowej z programu co zostało zestawione z naszymi pomiarami oraz zadaną częstotliwością. Częstotliwość zmienialiśmy w zakresie 5 - 50 Hz co 5 Hz.

Tab.1. Tabela reprezentująca zadaną częstotliwość, odczytaną prędkość kątową na tachometrze oraz					
odczytaną z programu STARTER					

Zadana częstotliwość [Hz] $f\left[\frac{1}{s}\right]$	Prędkość kątowa zmierzona $\omega_{laser} \left[rac{1}{min} ight]$	Prędkość kątowa odczytana $\omega \left[\frac{1}{min} \right]$
5	141,2	150
10	291,4	300
15	438,1	450
20	585,6	600
25	735,9	750
30	880,0	900
35	1033	1050
40	1185	1200
45	1336	1350
50	1488	1500

Wykres 1. Wykres reprezentujący zależność prędkości kątowej (zadanej i odczytanej) od częstotliwości

Kolejnym zadaniem było sprawdzenie właściwości sterowania silnikiem asynchronicznym przy pomocy regulacji napięcia wejściowego. Potencjometr miał działkę rozpiętości 0 - 10. Jeden pełny obrót pokrętła stanowił zmianę napięcia zadanego co 1V. Celem eksperymentu było wyznaczenie zależności pomiędzy prędkością obrotową silnika i napięciem wejściowym. Na podstawie dwóch tabel (Tab.2. i Tab.3.) wyznaczono charakterystykę liniową i charakterystykę paraboliczną.

Niestety na tym etapie mieliśmy sporo problemów z połączeniem z falownikiem. Ze względu na połączenie komputera magistralą RS232 half-duplex z falownikiem tylko jeden sygnał mógł być nadawany lub odbierany w tym samym czasie. Ze względu na błędy lub przeciążoną pamięć RAM komputera przesył danych napotkał problemy. Musieliśmy parę razy tworzyć projekt od nowa i przeprowadzać ponowną konfigurację. Przycisk "Assume Control Priority" nie przynosił poprzednich

rezultatów. Za kolejnym razem z kolei udało nam się odzyskać kontrolę nad falownikiem i silnikiem i dokończyliśmy zaczęte zadanie.

Tab.2. Tabela re	prezentująca zmier	zona i odczytana	prędkośc	ć obrotowej z	falownika :

$U_{wej}[V]$	$U_{wyj}[V]$	$\omega_{laser} \left[\frac{1}{min} \right]$	$\omega\left[\frac{1}{min}\right]$	$f_{rzecz}\left[\frac{1}{s}\right]$
0	14,91	0	0	0
1	34,81	146,5	155,9	5,17
2	53,19	286	292,93	9,75
3	72,88	428,2	435,42	14,48
4	94,4	576	586,48	19,49
5	115,55	721,3	730,13	24,27
6	137,83	868,2	879,73	29,27
7	160,28	1050,3	1029,23	34,29
8	184	1174	1190	39,62
9	206,71	1331	1342,22	44,72
10	230	1487	1500	50

Wykres 2. Wykres reprezentujący zależność prędkości kątowej (zmierzonej i odczytanej) od napięcia

$U_{wej}[V]$	$U_{wyj}[V]$	$\omega_{laser} \left[\frac{1}{min} \right]$	$\omega\left[\frac{1}{min}\right]$	$f_{rzecz}\left[\frac{1}{s}\right]$
0	15	0	0	0
1	32,39	128,9	4,6	137,47
2	43,56	403,12	10,77	293
3	72,77	576	14,51	435,42
4	94,49	753,9	19,53	586,48
5	115,59	840	24,31	729,82
6	137,88	872,5	29,32	879,73
7	160,15	1015	34,25	1029,23
8	183,4	1170	39,48	1183,77
9	206,36	1323	44,72	1340,69
10	230	1487	50	1500

Tab.3. Charakterystyka paraboliczna przy regulacji kątowej od napięcia

Wykres 3. Wykres reprezentujący zależność prędkości kątowej (zmierzonej i odczytanej) od napięcia

Ostatnim z Ćwiczeń była modyfikacja czasów $Ramp-up\ time\ (t_{up})$ i $Ramp-down\ time\ (t_{down})$. Po włączeniu silnika obserwowaliśmy zachowanie układu oraz mierzyliśmy czas rozbiegu i hamowania. Parametry rozbiegu i hamowania ustawiliśmy odpowiednio na 2s i 10 s. Do pomiarów korzystaliśmy z normalnego stopera w telefonie komórkowym.

Zdj.5. Konfiguracja czasów rozbiegu i hamowania układu

$t_{up}[s]$	$t_{down}^{}[s]$	$t_{rozbiegu}[s]$	$t_{_{hamowania}}[s]$
2	2	10	6,4
10	10	19,2	16,5
2	10	8,9	16,1
10	2	18,4	6,9

Tab.4. Czasy rozbiegu i hamowania silnika asynchronicznego

4. Wnioski

Ćwiczenie pozwoliło zapoznać się z obsługą i metodami sterowania asynchronicznym silnikiem klatkowym zasilanym z falownika oraz z programem SINAMICS 4.4. Prędkość obrotowa silnika asynchronicznego jest wprost proporcjonalna do napięcia oraz częstotliwości prądu podawanego na falownik. Pomiar prędkości z czujnika laserowego był mniejszy od teoretycznego, ponieważ w każdym rzeczywistym silniku występuje jakiś moment obciążenia, chociażby moment tarcia w łożyskach czy oporów powietrza.