Supervised Classification

Sumary

- Introduction
- K-NN
- Neural Networks
- Support Vector Machines (SVM)

Un Ejemplo

Fish Identification: Only two measurements are available

1 kg

1,2 kg

750 gr

850 gr

1,25 Kg

1 Kg

Example

Which one?

Peso: 900 gr

Example

Pattern = Fish

Features/Characteristics = Measurements

Training Set = Pattern with their labels

Decision Rule = Rule to decide how to classify a new sample.

Otro Ejemplo

Campos de Aplicación del Reconocimiento de Patrones

Campos de Aplicación del Reconocimiento de Patrones

Chemistry

Applications

Face Recognition

Surveillance

Trajectory recognition

Campos de Aplicación del Reconocimiento de Patrones

Energy

Algunas definiciones

Binary classification: Two Classes

Clasification Vs Regression

<u>Regression:</u> For a given training set, $\mathbf{x} = \{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4, \mathbf{x}_5, \dots, \mathbf{x}_N\}, x \hat{\mathbf{i}}_i d$ find the transformation to get a real number

Example:

Algunas definiciones

Supervised Learning vs non supervised

Surpervised learning:

The labels (classes) of the training samples are known.

Conjunto de entrenamiento:

Definitions

Supervised Learning vs non supervised

Non supervised learning:

There is no information about the classes of the training data

Conjunto de entrenamiento:

K- Nearest Neighbours

Given a problem with 3 classes, with dimension 2: Length and Width

- x Clase 1.
- Clase 2.
- Clase 3.

A new sample is classified:

Euclidean Distance to the training samples

Very simple method with good results

KNN

Pros:

- Easy to understand and implement.
- Good results.
- Multiclass as Binary.

Cons:

 For big data set the computational load is high during test and the memory need is big.

K-LAESA reduce computational load problem

Training set

Input vector to be classified

The first calculated distance

Every vector outside the circle is not closer the the first vector

We do not know which vector are inside the circle

If the distances to a reference vector are known

Si conocemos las distancias al primer vector con el que hemos probado, $d_2 \le d_1 + d_v ==> d_2 - d_1 \le d_v$

If we have an ordered list with the distances when a dy largaer than the minimum is obtained the process can be finished

```
Ejercicio 1:
>> Representar_Datos('data1.mat');
>>Clasificar_Nueva_Muestra('data1.mat');
Ejercicio 2:
>>data=Obtener_Datos();
>> save p.mat data
>>Clasificar_Nueva_Muestra('data1.mat');
Ejercicio 3:
Modificación del código para 5 vecinos
```

```
Exercise 4:
>> load datachar.mat
>> visualizar_datos
>> model=Train_kNN(data,2);
>>
  [ACC,CM,Labels]=Test_kNN(dataTest,model);
```

ACC: Accuracy

CM: Confusión

Confusion Matrix

	C1	C2	C3	C4	C5
C1	0.98	0.01	0.00	0.00	0.01
C2	0.00	0.97	0.02	0.01	0.00
C 3	0.00	0.00	1.00	0.00	0.00
C4	0.00	0.01	0.00	0.97	0.02
C5	0.01	0.00	0.00	0.02	0.97

Confusion Matrix

		98% of the samples from class 1 Are correctly classified					
	C1	C2	C3	C4	C5		
C1	0.98	0.01	0.00	0.00	0.01		
C2	0.00	0.97	0.02	0.01	0.00		
C3	0.00	0.00	1.00	0.00	0.00		
C4	0.00	0.01	0.00	0.97	0.02		
C5	0.01	0.00	0.00	0.02	0.97		

Teoría de la Señal y Comunicaciones

