Vysoké učení technické v Brně Fakulta informačních technologií

Projekt do předmětu ISA

Jednoduchý DNS resolver

OBSAH OBSAH

Obsah

1	Úvo	d a zadání projektu	
2	Teor		
	2.1	Důvod k zavedení DNS	
	2.2	Princip DNS	
	2.3	DNS dotazování	
	2.4	Reverzní dotazování	
3	Implementace		
	3.1	lementace Testování	
	3.2	Přejaté části kódu	
	3.3	Nedokončené a nefunkční části projektu	
4	1 Závěr		

1 Úvod a zadání projektu

Zadáním projektu bylo vytvořit jednoduchý DNS resolver.

Na vstupu programu se očekává adresa DNS serveru, kam zasílat dotazy (IP nebo doménové jméno) a dotazovaná adresa (opět IP nebo doménové jméno). Dále proram umožňuje specifikovat port, typ dotazu (A nebo AAAA), rekurzi na straně DNS serveru a reverzní dotazování (při zadání adresy jako IP).

Na výstupu se očekávají základní informace o dotazu a dále vypsané jednotlivé části odpovědi (název, typ, třída, ttl a data).

2 Teorie

V této části stručně vysvětlím nastudovanou problematiku DNS dotazování a lehce nastíním způsob, jakým jsem vytvořil svůj projekt. Při studiu teorie jsem čerpal z následujícíh zdrojů:[3], [1].

2.1 Důvod k zavedení DNS

Jednotlivé stanice připojené k internetu jsou jednoznačně adresovány pomocí IP adres, ovšem běžní uživatelé místo nich používají textové reprezentace – doménová jména. Z toho plynoucí nutnost převodu mezi těmito dvěma způsoby adresace byla původně řešena jediným souborem na každé stanici ¹. Tento systém se ovšem ukázal jako nevhodný (složitá a pomalá aktualizace atd.), proto byl v roce 1983 nahrazen systémem doménových jmen - DNS.

2.2 Princip DNS

"Lidsky zapamatovatelná" podoba jména je rozdělena na několik částí oddělených tečkami (například www.google.com). Jednotlivé části adresy se nazávají doménová jména n-té úrovně, přičemž doména nejvyšší úrovně (TLD, Top-Level-Domain) leží vpravo a má největší význam.

Informace o doménách jsou poté uloženy na tzv. jmenných serverech (DNS serverech, nameserverech, doménových serverech). Tyto informace přitom můžou být dvojího druhu: přímo IP adresa, která odpovídá danému jménu, nebo odkaz na další jmenný server, který odpovídá následující doméně. Tím je docíleno efektivní hierarchie.

2.3 DNS dotazování

DNS dotazování poté probíhá tak, že je dotaz odeslán na lokální DNS server. V tuto chvíli může nastat několik možností: server buď zná IP adresu pro dané jméno a tu vrátí tazateli, nebo zná pouze další server v hierarchii, kam dotaz směřovat. V závislosti na typu dotazu (zda je od tazatele vyžadována rekurze), je buď dotaz přímo předán dál nebo je tazateli vrácena informace o dalším serveru v pořadí.

2.4 Reverzní dotazování

Systém doménových jmen funguje i obráceně – převádí IP adresy na doménová jména. Zde je důležité si uvědomit, že části IP adresy jsou řazeny podle opačného klíče než u doménových jmen; Úplně vpraco se nachází adresa stanice v (pod)síti, vlevo adresa sítě.

Při DNS dotazování se tedy v dotazu neuvádí přímo původní IP adresa (např. 12.34.465.7), ale její upravená verze s koncovkou in-addr.arpa(7.465.34.12.in-addr.arpa). Na takto upravenou adresu se již dotazuje standardním způsobem.

¹/etc/hosts na unixových systémech, stále používaný, ale nikoli hlavní způsob, jak převádět IP na doménová jména a naopak.

3 Implementace

Na základě výše uvedené teorie a zadání jsem vytvořil jednoduchý DNS resolver, který pracuje s následujícími parametry:

- -s server: Povinny argument, který specifikuje DNS server, použitá při dotazování
- address: adresa, která bude dotazovaná (doménové jméno nebo IP adresa)
- -p port: Volitelný parametr, specifikuje port, kam odesílat dotazy. Standardní port je 53
- -x: Volitelný parametr, specifikuje, že se bude provádět reverzní dotazování.
- -r: Volitelný parametr, specifikuje, že s ebude provádět rekurzivní dotazování na straně DNS serveru (program sám vypisuje pouze první přijatou odpověď a v případě, že není tento parametr specifikován, program neprovádí iterativní dotazování ve vlastní režii).
- -6: Volitelný parametr, specifikuje použití dotazu typu AAAA místo standardnho A

Kromě těchto parametrů program zvládá i parametr -h, který vypíše základní informace a použití programu a ukončí program.

Při implemetaci jsem vycházel ze svých předešlých projektů, především kódu k druhému projektu do předmětu IPK (parsování paketů a UDP komunikace), na kterém jem také začal stavět. V průběhu implementace ovšem došlo k téměř kompletnímu přepsání.

Samotná implementace probíhala v iteracích, kde každá iterace měla nějaký cíl a důvod:

- 1. Analýza vstupních argumentů, ošetření chybných vstupů.
- 2. Odesílání paketů (byť nesmyslných) ²
- 3. Vytvoření korektní DNS hlavičky
- 4. Vytvoření korektního DNS dotazu
- 5. Zachytávání odpovědi
- 6. Její analýza a výpis
- 7. Refaktorizace kódu z předchozích bodů

3.1 Testování

Program byl primárně testován ručně pomocí integrovaného vývojového prostředí Clion a jeho "Debug mode", kde jsem krokoval program a kontroloval správný tok dat a předávání řízení. V pozdějších fázích projektu jsem vytvořil i velmi jednoduchý skript v jazyce Python 3, který testoval základní testovací scénáře pro správný i nesprávný vstup.

Pro kontrolu komunikace s DNS serverem jsem také používal program Wireshark.

Dále jsem použil příkazovou utilitu dig, která mi pomáhala validovat výstup mého programu.

²Tento na první pohled nelogický krok má svůj důvod. Odeslaný pakety jsou zaznamenávány programem Wireshark, který je umí zpětně analyzovat a tím pomáhat v budoucích krocích s případnou opravou chyb.

3.2 Přejaté části kódu 4 ZÁVĚR

3.2 Přejaté části kódu

Při tvorbě projektu jsem narazil na problém při čtení některých částí odpovědi. Pro tyto účely jsem přejal funkcni ReadName() z [2]. Tato funkce tedy není mým dílem, jak je uvedeno i ve zdrojovém kódu.

3.3 Nedokončené a nefunkční části projektu

Projekt bohužel nezvládá zasílat dotazy typu AAAA. Zároveň také nepodporuje zadání DNS serveru pomocí IPv6 adresy.

4 Závěr

Nejprve proběhlo studium problematiky (zasílání DNS dotazů, programování DNS dotazů v jazyce C...), poté vlastní implementace. Výsledkem je projekt, který částečně splňuje zadání (nesplněné body zadání se dají najít v závěru předchozí sekce).

POUŽITÉ ZDROJE POUŽITÉ ZDROJE

Použité zdroje

[1] Benson, T.: Lab 4: DSN Primer Notes. [online]. 2016. URL https://www2.cs.duke.edu/courses/fall16/compsci356/DNS/DNS-primer.pdf

- [2] Fallahi, F.: dns.c. [online]. 2009. URL https://gist.github.com/fffaraz/9d9170b57791c28ccda9255b48315168
- [3] Matousek, J.: Síťové aplikace a jejich architektura. Brno: VUTIUM, 2014, ISBN 978-80-214-3766-1.