MATH 111, Assignment 3 (due 09/14/21)

MATH 111, Assignment 3 Solutions

Name: Dillon Allen, Julio Hernandez Date: 09/11/2021

Group Name: Group 2

1. (50 points) Negate the following statements. Give the statement *and* its negation in both symbolic form, then also give negation in the form of a sentence. Finally, write the converse of each statement when possible.

(i) The numbers x and y are both odd.

Solution: The statement can be written in $P \land Q$ in symbolic form. Thus, the statement reads $(x \text{ is odd}) \land (y \text{ is odd})$. The negation of the symbolic form is

$$\neg$$
($x \text{ is odd}$) \land ($y \text{ is odd}$) = ($x \text{ is even}$) \lor ($y \text{ is even}$)

The negation in word form can be described as, The number x is even or the number y is even.

(ii) Let *ABC* be an equilateral triangle or a right triangle.

Solution: P: ABC is an equilateral triangle

Q: ABC is a right triangle.

This statement is of the form $P \lor Q$, so the negation of this is

$$\neg(P \lor Q) = \neg P \land \neg Q$$

The negation in sentence form is that ABC is not an equilateral triangle and ABC is not a right triangle.

(iii) $\sqrt{2}$ is a real number that is not rational.

Solution: P: $\sqrt{2} \in \mathbb{R}$

 $Q: \sqrt{2} \notin \mathbb{Q}$

Symbolically, this is an and statement that is of the form $P \wedge Q$. The negation of this is $\neg (P \wedge Q) = \neg P \vee \neg Q$. In a sentence, this reads as $\sqrt{2}$ is not a real number or $\sqrt{2}$ is a rational number.

(iv) If x is a real number then $x^2 + 1 > 0$.

Solution: P: $x \in \mathbb{R}$

Q: $x^2 + 1 > 0$

Symbolically this is a $P \Longrightarrow Q$ statement. The negation of this is is $\neg(P \Longrightarrow Q) = P \land \neg Q$. In a symbolic form the negation this reads as $(x \in \mathbb{R}) \land (x^2 + 1 \le 0)$. In a sentence the negation reads as x is a real number and one added to the square of x is less than or equal to o. The converse of this statement would be that if $x^2 + 1 > 0$ then x is a real number.

(v) The number x is positive, but the number y is not positive.

1

Solution: The original statement in symbolic form is $(x > 0) \land (y < 0)$. The negation of this statement is

$$\neg((x > 0) \land (y < 0)) = \neg(x > 0) \lor \neg(y < 0)$$

= $(x < 0) \lor (y > 0)$

In sentence form, this statement says that the number *x* is less than or equal to zero or the number y is greater than or equal to zero.

(vi) If x is a rational number and $x \neq 0$, then tan(x) is not a rational number. Solution: The original statement in symbolic form would be

$$(x \in \mathbb{Q}) \land (x \neq 0) \implies (\tan(x) \notin \mathbb{Q})$$

. The negation of the following statement would be

$$\neg((P \land Q) \Longrightarrow R)$$
$$(P \land Q) \land \neg R$$

Symbolically, the negation says

$$((x \in \mathbb{Q}) \land (x \neq 0)) \land (\tan(x) \in \mathbb{Q})$$

In a sentence, this negation says that x is a rational number and $x \neq 0$ and tan(x) is a rational number.

For the converse, the statement would be $R \implies (P \land Q)$. In sentence form, this would say if tan(x) is not a rational number then x is a rational number and $x \neq 0$.

(vii) For all real numbers x and y, $x \neq y$ implies that $x^2 + y^2 > 0$. Solution: Symbolically, this statement reads

$$\forall x \in \mathbb{R} \ \forall y \in \mathbb{R}, \ (x \neq y) \implies (x^2 + y^2 > 0)$$

This is a $P \Longrightarrow Q$ statement, with the negation being $\neg (P \Longrightarrow Q) = P \land \neg Q$. Therefore, the negation of this statement is

$$\neg(\forall x \in \mathbb{R} \ \forall y \in \mathbb{R}, \ (x \neq y) \implies (x^2 + y^2 > 0)) = \exists x \in \mathbb{R} \ \exists y \in \mathbb{R}, \ \neg((x \neq y) \implies (x^2 + y^2 > 0))$$
$$= \exists x \in \mathbb{R} \ \exists y \in \mathbb{R}, \ (x \neq y) \land \neg(x^2 + y^2 > 0)$$
$$= \exists x \in \mathbb{R} \ \exists y \in \mathbb{R}, \ (x \neq y) \land (x^2 + y^2 \leq 0)$$

The negation, in sentence form, says that there exists some real numbers x and y such that if $x \neq y$ then $x^2 + y^2 \leq 0$.

The converse of this statement says that $x^2 + y^2 > 0$ implies that x and y are real numbers where $x \neq y$.

(viii) There exists a rational number whose square is 2. Solution Symbolically this statement read as

$$\exists x \in Q, \ x^2 = 2.$$

This is a P statement with the negation being $\neg P$

$$\neg(\exists x \in Q, x^2 = 2)$$

$$(\forall x \in Q, x^2 \neq 2)$$

This negation in as a sentence means says that for all $x \in \mathbb{Q}$ there is no Q that's $x^2 \neq 2$

(ix) If the set *B* is contained in the set *A*, then *B* without *A* is nonempty. Solution:

P: The set *B* is contained in set *A*.

Q: *B* without *A* is nonempty.

 $P \Longrightarrow Q$ statement. Therefore, the negation of this would be

$$\neg(P \Longrightarrow Q) = P \land \neg Q$$

In a sentence, this negation reads as: The set *B* is contained in set *A* and *B* without *A* is empty.

The converse of this sentence is if set B without A is nonempty, then the set B is contained in the set A.

(x) For every prime number p, either p is odd or p is 2. Solution: Symbolically, the statement can be written as

for all primes
$$p$$
, $(p \text{ odd}) \lor (p = 2)$

The statement is of the form $\forall x, P \lor Q$ so the general negation is $\exists x, \neg P \land \neg Q$. So, the negation of this statement is

There exists some prime p, $\neg(p \text{ odd}) \land \neg(p = 2)$

There exists some prime p, such that , $(p \text{ even}) \land (p \neq 2)$

In sentence form, there exists a prime p such that p is even and p is not equal to 2.

- 2. (30 points) Write each of the following as English sentences. Say whether they are true or false. Prove your claim (this may need examples and/or counterexamples)
 - (i) $(\forall x \in \mathbb{N})(x \ge 1)$.

Solution: For all natural numbers x, such that x is greater than or equal to 1 We know this to be true as natural numbers are defined as $\mathbb{N} = \{1, 2, 3, ...\}$. Therefore if we were to take the number 2 as an example, we get $2 \ge 1$. Which we know satisfies our condition. The lowest number we could use would be 1 and if we plug that in we get $1 \ge 1$. By this we know that all natural numbers will satisfy our condition.

(ii) $(\exists! x \in \mathbb{R})(x \ge 0 \land x \le 0)$.

Solution: There is exactly one number such that x is greater than or equal to 0 and also less than or equal to 0. This is a true statement for only the number 0.

Proof. We will prove this by taking 3 cases, for x > 0, x = 0, and x < 0.

Case 1: Taking x > 0, let x = 5. $5 \ge 0$, which is true, but $5 \le 0$ is false. Therefore, the logical statement $P \land Q$ is false.

Case 2: Let x = 0. $0 \ge 0$ is true and $0 \le 0$ is also true. So, logically, $T \land T = T$. This is a true statement.

Case 3: Taking x < 0, let x = -2. $-2 \ge 0$ is false, whereas $-2 \le 0$ is true. $F \land T = F$, therefore this case is false.

Therefore, the only case that satisfies this claim is when x = 0.

(iii) $\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, x + y = 0.$

Solution:For all real numbers x, there is some number y such that their sum is zero. This is a true statement. For every value x, we have the equation x = -y. So no matter what value of x we have, there will exist a y value that is the additive inverse of x.

(iv) $\exists x \in \mathbb{R}, \forall y \in \mathbb{R}, x + y = 0.$

Solution: For exists some real number x such that for all real numbers y, their sum is zero. This statement is false, because you can not have a value for x that is the additive inverse for all numbers y.

(v) $\exists x \in \mathbb{R}, \forall y \in \mathbb{R}, x \geq y$.

Solution: There is a real number x that is bigger than all real numbers y. This is a true statement, which has to do with the infinities of the real numbers. I can always find some number bigger than the previous ones suggested. Whenever you can guess a number x, I can always guess 10^x . This argument can continue building until we exhaust all numbers, but will come up with new real numbers in the process.

- 3. (20 points) Translate each of the following sentences into symbolic logic.
 - (i) Even numbers are divisible by 2.

Solution: Symbolically, this can be rewritten into a $P \Longrightarrow Q$ conditional with:

P: *n* is an even number.

Q: n is divisible by 2.

Therefore, we have $P \Longrightarrow Q$ rewriting the statement as "if n is an even number then it is divisible by 2".

(ii) If f is a polynomial, f' is constant whenever the degree of f is less than 2. Solution: Let p(x) represent all polynomial functions and deg(f) represent the degree of some function f. Then

$$(\forall f \in p(x)), (\deg(f) < 2) \implies (f' = \text{constant})$$

(iii) If *x* is prime, then \sqrt{x} is not a rational number.

Solution: $x \in \{\text{primes}\} \implies \sqrt{x} \notin \mathbb{Q}$

(iv) Every set is contained in itself.

Solution: P: A is a set.

Q: A is a subset of itself.

 $P \Longrightarrow Q$ says that if A is a set then A is a subset of itself.

(v) There exist two integers whose product is negative, but whose sum is positive. Solution:

This is a $P \wedge Q$ statement.

 $(\exists x \in \mathbb{Z}, \exists y \in \mathbb{Z}), (x * y < 0) \land (x + y > 0)$

Extra Credit: Write each of the following as English sentences. Say whether they are true or false. Prove your claim (this may need examples and/or counterexamples)

(i) $(\forall x \in \mathbb{N})(x \text{ is prime } \land x \neq 2 \implies x \text{ is odd}).$

- $\begin{array}{ll} \text{(ii)} & (\exists ! x \in \mathbb{R}) (\log_e x = 1). \\ \text{(iii)} & \forall x \in \mathbb{R}, x + 2 > x. \\ \text{(iv)} & \exists x \in \mathbb{N}, 2x + 3 \geq 6x + 7. \end{array}$