Diskrete Mathematik HS2025 — Prof. Dennis HOFHEINZ

Marian DIETZ — Milan GONZALEZ-THAUVIN — Zoé REINKE

Exercise sheet 3

This is the exercise sheet number 3. The difficulty of the questions and exercises are rated from very easy (\star) to hard $(\star \star \star \star)$. The graded exercises are Exercise 3.2 and 3.7 and your solution has to be uploaded on the Moodle page of the course by 09/10/2025, 23:59. The solution to these exercises must be your own work, you may not share your solutions with anyone else. See also the note on dishonest behavior on the Moodle page.

1 Predicate Logic

Exercise 3.1 Expressing Relationship of Humans in Predicate Logic (*)

Consider, as in the lecture, the universe of all humans (including those who died) and the following predicate:

$$par(x, y) = 1 \iff "x \text{ is parent of } y."$$

Express the following statements as a formula in predicate logic, using only the above predicates (in particular, do **not** use the predicate equals, often also written as =).

1. x is great-grandparent of y.

```
Solution: \exists u \exists v \, (\mathtt{par}(x,u) \land \mathtt{par}(u,v) \land \mathtt{par}(v,y))
```

2. x and y are (first) cousins.

$$\textbf{Solution:} \ \exists u \exists v \exists w \, (\mathtt{par}(u,v) \land \mathtt{par}(u,w) \land \mathtt{par}(v,x) \land \mathtt{par}(w,y) \land \neg \mathtt{par}(v,y) \land \neg \mathtt{par}(w,x))$$

Exercise 3.2 From Natural Language to a Formula (*) — GRADED (4 points) Please upload your solution by 09/10/2025

Consider the universe $U = \mathbb{N} \setminus \{0\}$. Express each of the following statements with a formula in predicate logic, in which the only predicates appearing are $\mathtt{smallerthan}(x,y)$, $\mathtt{divides}(x,y)$, $\mathtt{equals}(x,y)$ and $\mathtt{prime}(x)$ (instead of $\mathtt{smallerthan}(x,y)$, $\mathtt{divides}(x,y)$ and $\mathtt{equals}(x,y)$ you can write x < y, $x \mid y$ and x = y accordingly). You can also use the symbols + and \cdot to denote the addition and multiplication functions, and you can use constants (e.g., $0,1,\ldots$). You can also use \longrightarrow and \longleftrightarrow . No justification is required.

1. (\star) There does not exist a largest natural number.

Solution:
$$\neg \exists x \, \forall y \, (y < x \lor x = y)$$

2. (\star) The only divisors of a prime number are 1 and the number itself.

Solution:
$$\forall x \, \forall y \, \big((\texttt{prime}(x) \, \wedge \, y \, | \, x) \, \longrightarrow \, (y = x \, \vee \, y = 1) \big).$$

3. (\star) 1 is the only natural number which has an inverse.

Solution:
$$\forall x ((\exists y \ (x \cdot y = 1)) \longleftrightarrow (x = 1)).$$

4. (*) A prime number divides the product of two natural numbers if and only if it divides at least one of them.

Solution:
$$\forall x \, \forall y \, \forall z \, (\text{prime}(x) \longrightarrow ((x \mid (y \cdot z)) \longleftrightarrow (x \mid y \vee x \mid z))).$$

Exercise 3.3 Winning Strategy ($\star \star$)

Alice and Bob play a game in which the stake is a chocolate bar. Rules of the game are the following: Alice chooses two integers a_1, a_2 and Bob chooses two integers b_1, b_2 . Alice wins whenever $a_1 + (a_2 + b_1)^{|b_2|+1} = 1$ and Bob wins otherwise.

1. First, consider the case when Alice and Bob announce all their numbers at the same time. Give a formula that describes the statement "Alice has a winning strategy." Is this statement true?

Solution: The numbers announced by Alice cannot depend on Bob's choice for b_1 and b_2 . Therefore, the statement can be described by the following formula:

$$\exists a_1 \exists a_2 \forall b_1 \forall b_2 \ (a_1 + (a_2 + b_1)^{|b_2|+1} = 1).$$

The above statement is false, because for each tuple (a_1, a_2) , there exists a tuple $(b_1, b_2) := (2 - a_2 - a_1, 0)$ such that

$$a_1 + (a_2 + b_1)^{|b_2|+1} = a_1 + (a_2 + 2 - a_2 - a_1) = 2.$$

Therefore, Alice does not have a winning strategy.

2. In the second case, Alice and Bob announce their numbers one by one. That is, first Alice announces a_1 , then Bob announces b_1 , then Alice announces a_2 , and at the end Bob replies with b_2 . Once again, give a formula that describes the statement "Alice has a winning strategy." Is this statement true in this case?

Solution: In this case, Alice's choice for a_2 can depend on b_1 . Therefore, the statement can be described by the following formula:

$$\exists a_1 \forall b_1 \exists a_2 \forall b_2 \ (a_1 + (a_2 + b_1)^{|b_2|+1} = 1).$$

This statement is true. A possible winning strategy for Alice is to choose $a_1 = 1$ and $a_2 = -b_1$. For such choice, we have

$$a_1 + (a_2 + b_1)^{|b_2|+1} = 1 + 0^{|b_2|+1} = 1.$$

2 Proof Patterns

Exercise 3.4 Indirect Proof of an Implication

Prove indirectly that for all natural numbers n > 0, we have:

1. (\star) If n^2 is odd, then n is also odd.

Solution: Assume that n is even. Then, n=2k for some $k \in \mathbb{N}$. We have therefore $n^2=n\cdot n=2k\cdot 2k=2\cdot 2k^2$. Hence, n^2 is even.

Detailed solution:

Statement $S: n^2$ is odd.

Statement T: n is odd.

Indirect proof:

n is not odd.

 $\stackrel{\cdot}{\Longrightarrow} n$ is even.

 $\stackrel{\cdot}{\Longrightarrow} n = 2k$ for some $k \in \mathbb{N}$.

 $\stackrel{\cdot}{\Longrightarrow} n \cdot n = 2k \cdot 2k$ for some $k \in \mathbb{N}$.

 $\stackrel{\cdot}{\Longrightarrow} n \cdot n = 2 \cdot 2k^2$ for some $k \in \mathbb{N}$.

 $\stackrel{\cdot}{\Longrightarrow} n \cdot n = 2l \text{ for some } l \in \mathbb{N}.$

 $\stackrel{\cdot}{\Longrightarrow} n^2 = 2l$ for some $l \in \mathbb{N}$.

 $\stackrel{\cdot}{\Longrightarrow} n^2$ is even.

2. $(\star \star)$ If $42^n - 1$ is a prime, then n is odd.

Solution: Assume that n is even. We show that in such case 42^n-1 is not a prime. To this end, notice that, since n is even, there must exist a natural number k>0, such that n=2k. It follows that $42^n-1=42^{2k}-1=(42^k+1)(42^k-1)$. Therefore, we found two non-trivial divisors of 42^n-1 , namely (42^k+1) and (42^k-1) (they are greater than 1, because k>0). Thus, 42^n-1 cannot be a prime.

Detailed solution:

We consider two statements S and T. We have to show that $S \Longrightarrow T$ is true. To this end, we use an indirect direct proof, that is, we assume that T is false and show that, under this assumption S, must also be false.

Statement $S: 42^n - 1$ is a prime.

Statement T: n is odd.

Indirect proof:

n is not odd.

 $\stackrel{\cdot}{\Longrightarrow} n$ is even.

 \Rightarrow There exists a natural number, call it k, such that k > 0 and n = 2k.

 \implies We have $42^n - 1 = 42^{2k} - 1 = (42^k + 1)(42^k - 1)$ for k > 0.

 $\stackrel{\cdot}{\Longrightarrow}$ There exist two non-trivial divisors of 42^n-1 , namely (42^k+1) and (42^k-1) .

 \implies $42^n - 1$ is not a prime.

Exercise 3.5 Case Distinction

Prove by case distinction that:

1. (*) $n^3 + 2n + 6$ is divisible by 3 for all natural numbers $n \ge 0$.

Solution: Let n be any natural number greater or equal 0. Let n=3k+c, where $0 \le c \le 2$ and $k \in \mathbb{N}$. We have

$$n^{3} + 2n + 6 = (3k + c)^{3} + 2(3k + c) + 6$$
$$= c^{3} + 9c^{2}k + 27ck^{2} + 2c + 27k^{3} + 6k + 6.$$

Each summand is divisible by 3, except the term $c^3 + 2c$. Hence, we only need to show that $c^3 + 2c$ is divisible by 3 for $0 \le c \le 2$.

Case c = 0: $c^3 + 2c = 0$, which is divisible by 3.

Case c = 1: $c^3 + 2c = 3$, which is divisible by 3.

Case c = 2: $c^3 + 2c = 12$, which is divisible by 3.

Since the above cases cover all possibilities for c, we can conclude the proof.

2. $(\star \star)$ If p and $p^2 + 2$ are primes, then $p^3 + 2$ is also a prime.

Solution: In the following, we let $R_3(x)$ denote the remainder of the division of x by 3 (for example, $R_3(5) = 2$). For any prime number p, we can distinguish the following three cases:

p=2: If p=2, then $p^2+2=6$ is not a prime. Thus, the claim holds for p=2.

p=3: If p=3, then $p^2+2=11$ is a prime. However, we now have $p^3+2=29$, which is also a prime. Thus, the claim also holds for p=3.

p > 3: If p > 3 is a prime, then 3 cannot divide p. Therefore, we have $R_3(p) \in \{1, 2\}$. Thus, it holds that

$$R_3(p^2) = R_3(R_3(p) \cdot R_3(p)) = 1.$$

It follows that

$$R_3(p^2+2) = R_3(R_3(p^2) + R_3(2)) = R_3(1+2) = 0$$

Therefore, p^2+2 must be divisible by 3 and so it is not a prime. Thus, the claim holds also for p>3.

Since the above cases cover all prime numbers, the claim holds.

Exercise 3.6 Proof by Contradiction

1. $(\star \star)$ Show by contradiction that the sum of a rational number and an irrational number is irrational.

Hint: Use the fact that the difference of two rational numbers is rational.

Solution: Let x be any irrational number and let r be any rational number. Assume that s=x+r is rational. To reach a contradiction, we show that in such case x must be rational. Indeed, we have x=s-r. Therefore, we have that x is a difference of two rational numbers and thus, by the fact from the hint, it must also be rational. This is a contradiction with the assumption that x is irrational.

Detailed solution:

Consider a statement S. To show that S is true, we will state a false statement T, and show that if S is false, then T is true.

Fix any irrational number x and any rational number r.

Statement S: The sum x + r is irrational.

Statement T: x is rational.

Proof by contradiction:

We show that if S is false, then T is true:

S is false.

- \Longrightarrow It is not true that the sum x + r is irrational.
- \implies The sum s = x + r is rational.
- $\Rightarrow x = s r$, where s and r are some rational numbers.
- \Rightarrow x is rational. (by the fact from the hint)
- $\stackrel{\cdot}{\Longrightarrow} T$ is true.

The statement T is trivially false.

2. $(\star \star \star)$ Show that the number $2^{\frac{1}{n}}$ is irrational for n > 2, by reaching a contradiction with Fermat's Last Theorem.

Hint: Fermat's Last Theorem states that no positive integers a,b,c satisfy the equation $a^n+b^n=c^n$ for n>2.

Solution: Assume for contradiction that $2^{\frac{1}{n}}$ is rational for some n>2. That is, assume that there exist two positive integers, call them p and q, such that $2^{\frac{1}{n}}=\frac{p}{q}$. This implies that $2=\frac{p^n}{q^n}$. Hence, we have $q^n+q^n=p^n$, which is a contradiction

The contradiction with Fermat's Last Theorem follows from the counterexample $q^n + q^n = p^n$.

Detailed solution:

Fix any integer n > 2.

Statement $S: 2^{\frac{1}{n}}$ is irrational.

Statement *T*: There exist positive integers p, q such that $q^n + q^n = p^n$.

Proof by contradiction:

We show that if S is false, then T is true:

S is false

- \Longrightarrow It is not true that $2^{\frac{1}{n}}$ is irrational.
- $\stackrel{\cdot}{\Longrightarrow} 2^{\frac{1}{n}}$ is rational.
- \Rightarrow There exist positive integers p and q such that $2^{\frac{1}{n}} = \frac{p}{q}$.
- \Longrightarrow There exist positive integers p and q such that $2 = \frac{p^n}{q^n}$.
- \Longrightarrow There exist positive integers p and q such that $q^n + q^n = p^n$.
- $\stackrel{\cdot}{\Longrightarrow} T$ is true.

The statement *T* is false, since it is a counterexample to Fermat's Last Theorem.

Please upload your solution by 09/10/2025

For each of the following proof patterns, **prove** or **disprove** that it is sound. Do so by first writing it as a statement involving logical consequence on formulas and then proving that the resulting statement is either true or false.

1. (*) To prove a statement S, find two appropriate statements T_1 and T_2 . Assume that S is false and show (from this assumption) that at least one of the statements T_1 and T_2 is true. Then show that at least one of the statements T_1 and T_2 is false.

Solution: The proof pattern described corresponds to the following statement (where statement S corresponds to propositional symbol A, T_1 to B, and T_2 to C):

$$(\neg A \to (B \lor C)) \land (\neg B \lor \neg C) \models A. \tag{1}$$

We show that the proof pattern is not sound by showing that the statement is false. To do so, we compute the function tables of the formulas involved.

A	В	C	$(\neg A \to (B \lor C)) \land (\neg B \lor \neg C)$
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

For the truth assignment in which A has truth value 0, B has truth value 0, and C has truth value 1, the formula $(\neg A \to (B \lor C)) \land (\neg B \lor \neg C)$ has truth value 1 despite A having truth value 0. Therefore, statement (1) is false, and the given proof pattern is **not** sound.

2. (*) To prove an implication $S \Rightarrow T$, find an appropriate statement R. First, show that R is false. Then, assume that S is true and T is false, and prove that (from these assumptions) R is true.

Solution: The proof pattern described corresponds to the following statement (where statement R corresponds to propositional symbol A, S to B, and T to C):

$$\neg A \land ((B \land \neg C) \to A) \models B \to C . \tag{2}$$

We show that the proof pattern is sound by showing that the statement is true. To do so, we compute the function tables of the formulas involved.

B	C	A	$\neg A$	$(B \land \neg C) \to A$	$\neg A \land ((B \land \neg C) \to A)$	$B \to C$
0	0	0	1	1	1	1
0	0	1	0	1	0	1
0	1	0	1	1	1	1
0	1	1	0	1	0	1
1	0	0	1	0	0	0
1	0	1	0	1	0	0
1	1	0	1	1	1	1
1	1	1	0	1	0	1

We can see that for every truth assignment (on propositional symbols B,C, and A) for which the truth value of $B\to C$ is 1, the truth value of $\neg A \land ((B\land \neg C)\to A)$ is also 1. Therefore, statement (2) is true, and the proof pattern is sound.

Due by 09/10/2025, 23:59. Exercise 3.2 and 3.7 will be graded.