

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE ESCUELA DE INGENIERÍA DEPARTAMENTO DE CIENCIA DE LA COMPUTACIÓN

IIC1253 — Matemáticas Discretas — 1' 2016

Tarea 1 – Respuesta Pregunta 1

1. $\underline{PD} \neg (p \leftrightarrow q) \equiv \neg p \leftrightarrow q$

2. Al encontrar las primeras fórmulas de la definición recursiva, se observa que de todos los términos pares para $i \ge 0$, se puede llegar una misma fórmula equivalente, y que de todos los términos impares, a otra equivalente. Los primeros términos pares son:

Estos términos se pueden todos reducir utilizando absorción, De Morgan e implicancia a una misma fórmula equivalente. Por ejemplo, tomando φ_4 , se tiene:

$$((((p \to q) \to p) \to p) \to p) \to p \equiv ((((\neg p \lor q) \to p) \to p) \to p) \to p) \to p \qquad \text{(Implicación)}$$

$$\equiv (((\neg (\neg p \lor q) \lor p) \to p) \to p) \to p \qquad \text{(Implicación)}$$

$$\equiv ((((p \land \neg q) \lor p) \to p) \to p) \to p \qquad \text{(De Morgan)}$$

$$\equiv (((p \to p) \to p) \to p) \to p \qquad \text{(Absorción)}$$

$$\equiv (((p \lor p) \to p) \to p) \qquad \text{(Implicación)}$$

$$\equiv ((1) \to p) \to p \qquad \text{(Negación)}$$

$$\equiv (p) \to p \qquad \text{(Implicación)}$$

$$\equiv (p) \to p \qquad \text{(Implicación)}$$

$$\equiv (p) \to p \qquad \text{(Implicación)}$$

Es fácil ver que con cualquier fórmula φ par, es decir, para valores de i impares, se puede reducir a una equivalente $p \to p$. Por lo tanto no depende de los valores de p, y es una tautología.

Por otro lado las primeras fórmulas impares son:

$$\begin{split} \varphi_1 &:= (p \to q) \to p \\ \varphi_3 &:= (((p \to q) \to p) \to p) \to p \\ \varphi_5 &:= (((((p \to q) \to p) \to p) \to p) \to p) \to p) \to p \end{split}$$

Estos términos se pueden reducir a una fórmula equivalente de forma similar. Por ejemplo, tomando φ_3 , se tiene:

$$(((p \to q) \to p) \to p) \to p \equiv (((\neg p \lor q) \to p) \to p) \to p \qquad \qquad \text{(Implicación)}$$

$$\equiv ((\neg (\neg p \lor q) \lor p) \to p) \to p \qquad \qquad \text{(Implicación)}$$

$$\equiv (((p \land \neg q) \lor p) \to p) \to p \qquad \qquad \text{(De Morgan)}$$

$$\equiv ((p) \to p) \to p \qquad \qquad \text{(Absorción)}$$

$$\equiv (\neg p \lor p) \to p \qquad \qquad \text{(Implicación)}$$

$$\equiv (1) \to p \qquad \qquad \text{(Negación)}$$

$$\equiv (p) \qquad \qquad \text{(Implicación)}$$

$$\equiv (p) \qquad \qquad \text{(Implicación)}$$

Nuevamente es fácil ver que con cualquier fórmula φ impar, es decir para valores de i pares, se puede reducir a una equivalente p. Por lo tanto depende de los valores de p, de modo que no es una tautología.

Esto se da por la cantidad de $p \to p$ que quedan luego de absorver q al ir reduciendo. Dependiendo del número de p's, se irá sucesivamente alternando entre $1 \to p$ y $p \to p$, de modo que en las fórmulas φ pares $(i \ge 0 \text{ impar})$, existirá una cantidad impar de p's por lo que se reducirá siempre a $p \to p$, en cambio, en las φ impares $(i \ge 0 \text{ par})$, habrá una cantidad par de p's y se podrá reducir siempre a p.

De este modo, se concluye que la definición recursiva da lugar a fórmulas proposicionales tautológicas, para valores de i impares y no tautológicas para valores de i pares, partiendo de i = 0 en ambos casos.

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE ESCUELA DE INGENIERÍA DEPARTAMENTO DE CIENCIA DE LA COMPUTACIÓN

IIC1253 — Matemáticas Discretas — 1' 2016

Tarea 1 – Respuesta Pregunta 2

1. Si $\Sigma \models \alpha$ o $\Sigma \models \beta$, entonces $\Sigma \models \alpha \vee \beta$.

En este caso, se tiene que, o bien α es consecuencia lógica de Σ , o β lo es. Es claro ver que si cualquiera de los dos es consecuencia lógica del conjunto de fórmulas proposicionales, también lo es $\alpha \vee \beta$. Esto se debe a que todas las valuaciones de α están contenidas en $\alpha \vee \beta$, es, de cierto modo, una amplificación disyuntiva, ya que α siempre podrá ser amplificado a $\alpha \vee \varphi_i$, sin que se reduzca la cantidad de valuaciones en la que se cumple la consecuencia si esque $\Sigma \models \alpha$. Lo mismo ocurre para β .

Esta amplificación es, dicho de otra manera, una operación monótona. Visto en una tabla de verdad, se observa que las valuaciones verdaderas de $\alpha \vee \beta$ siempre se condicen con aquellas verdaderas de α o de β , o hay más, pero nunca menos. Para las tablas de verdad se considera que α o β son consecuencias lógicas del conjunto $\Sigma(\varphi_0,...,\varphi_n)$ respectivamente, por lo que las filas con "..." indicaran valuaciones que hacen cierto el hecho de la consecuencia lógica antes establecida.

α	β	φ_0		φ_n	α	$\alpha \vee \beta$
0	0				0	0
0	1				0	1
1	0				1	1
1	1	1	1	1	1	1

α	β	φ_0		φ_n	β	$\alpha \vee \beta$
0	0				0	0
0	1				1	1
1	0				0	1
1	1	1	1	1	1	1

Es claro que para los casos donde se da la consecuencia lógica para α , también se da para $\alpha \vee \beta$ (lo mismo sucede con β), por lo explicado anteriormente y lo explicitado en las tablas presentadas.

2. Si $\Sigma \models \alpha \vee \beta$, entonces $\Sigma \models \alpha$ o $\Sigma \models \beta$.

Si se toma el conjunto $\Sigma(\varphi_1, \varphi_2)$ con $\varphi_1 := \alpha \vee \gamma$ y $\varphi_2 := \neg \gamma \vee \beta$, con γ una fórmula proposicional cualquiera, se tiene la siguiente tabla de verdad.

α	γ	β	$\alpha \vee \gamma$	$\neg\gamma\vee\beta$	$\alpha \vee \beta$
0	0	0	0	1	0
0	0	1	0	1	1
0	1	0	1	0	0
0	1	1	1	1	1
1	0	0	1	1	1
1	0	1	1	1	1
1	1	0	1	0	1
1	1	1	1	1	1

Se observa que para cada fila en que φ_1 y φ_2 son verdaderas, $\alpha \vee \beta$ se hace verdadero, por lo tanto cumple con ser consecuencia lógica (resolución).

Sin embargo, al realizar la misma tabla de verdad para α y para β , en vez de $\alpha \vee \beta$, se observa lo siguiente:

α	γ	β	$\alpha \vee \gamma$	$\neg\gamma\vee\beta$	α	α	γ	β	$\alpha \vee \gamma$	$\neg\gamma\vee\beta$	β
0	0	0	0	1	0	0	0	0	0	1	0
0	0	1	0	1	0	0	0	1	0	1	1
0	1	0	1	0	0	0	1	0	1	0	0
0	1	1	1	1	0	0	1	1	1	1	1
1	0	0	1	1	1	1	0	0	1	1	0
1	0	1	1	1	1	1	0	1	1	1	1
1	1	0	1	0	1	1	1	0	1	0	0
1	1	1	1	1	1	1	1	1	1	1	1

Y se ve que para ambos casos existe una fila en la que, si bien ambas proposiciones del conjunto Σ son verdaderas, α o β no lo es, de modo que no cumple el requisito de consecuencia lógica, por lo tanto $\Sigma \models \alpha \lor \beta$, pero $\Sigma \not\models \alpha$ y $\Sigma \not\models \beta$.

De este modo, por medio del contraejemplo se muestra que existe un conjunto Σ en el que se cumple que $\Sigma \models \alpha \vee \beta$ pero no se cumple ni $\Sigma \models \alpha$ ni $\Sigma \models \beta$.

3. Si
$$\{\varphi_1, ..., \varphi_n\} \models \alpha \land \beta$$
, entonces $\{\varphi_1, ..., \varphi_n, \alpha\} \models \beta$.

Para este caso, si se considera que $\{\varphi_1, ..., \varphi_n\} \models \alpha \land \beta$, se tiene que la consecuencia es la validación de ambas fórmulas, α y β , por lo tanto α tiene como única posibilidad ser verdadero para una valuación donde se cumpla la premisa enunciada, al mismo tiempo que β tiene que ser verdadero si α lo es.

Así, una vez introducido α al conjunto, considerando que se cumple lo anterior, β tiene que seguir siendo verdadero.

Visto de otra forma, como se explicó en clases, por definición:

Si
$$\{\varphi_1,...,\varphi_m\} \models \varphi$$
, entonces $\{\varphi_1,...,\varphi_m,\vartheta\} \models \varphi$ para toda formula ϑ .

De modo que, aplicado al problema, como $\{\varphi_1, ..., \varphi_n\} \models \alpha \land \beta$, entonces $\{\varphi_1, ..., \varphi_n, \alpha\} \models \alpha \land \beta$, lo que significa que por consiguiente, también es consecuencia lógica de β , por lo explicado previamente.

Además, como se señaló en una demostración anterior, la consecuencia β , es decir, cuando es una valuación verdadera, ocurre en igual cantidad o más ocasiones que $\alpha \wedge \beta$, por lo que no habrán casos en los que el nuevo conjunto sea consecuencia lógica únicamente de $\alpha \wedge \beta$ y no de β . En la tabla a continuación se explicita.

α	β	φ_0		φ_n	α	$\alpha \wedge \beta$	β
0	0				0	0	0
0	1				0	0	1
1	0				1	0	0
1	1	1	1	1	1	1	1

4. Si $\{\varphi_1,...,\varphi_n,\alpha\} \models \beta$, entonces $\{\varphi_1,...,\varphi_n\} \models \alpha \wedge \beta$.

Si se toma un conjunto cualquiera de la forma $\{\varphi_1, ..., \varphi_n, \alpha\}$, tal como $\{\neg \alpha \lor \beta, \alpha\}$, es claro que β es consecuencia lógica de ese conjunto. En la tabla se ve más claramente:

α	β	$\neg \alpha \lor \beta$	α	β
0	0	1	0	0
0	1	1	0	1
1	0	0	1	0
1	1	1	1	1

Ahora, es evidente que no se cumple lo buscado en el enunciado, ya que $\alpha \wedge \beta$ no es consecuencia lógica de, en este caso, $\{\neg \alpha \vee \beta\}$, la tabla en cuestión es:

	α	β	$\neg \alpha \lor \beta$	$\alpha \wedge \beta$
Ī	0	0	1	0
	0	1	1	0
	1	0	0	0
	1	1	1	1

Ya que muestra filas donde las valuaciones del conjunto de proposiciones son verdaderas, pero β no lo es. Por lo que si bien $\{\neg \alpha \lor \beta, \alpha\} \models \beta$, ocurre que $\{\neg \alpha \lor \beta\} \not\models \alpha \land \beta$.

Así, se concluye con el contraejemplo, que no necesariamente se cumple $\{\varphi_1,...,\varphi_n\} \models \alpha \wedge \beta$, si $\{\varphi_1,...,\varphi_n,\alpha\} \models \beta$.