Caso de estudio:

Una empresa en proceso de crecimiento desea implementar una estructuración telemática a la red existente (11.0.0.0/8) para crear cinco unidades administrativas, de las cuales cada una maneja un área específica orientada a la optimización administrativa. Las nuevas dependencias son:

Dependencia	Nro. Host
Mantenimiento	180
Logística	200
Ventas	35
Administrativos	70
Tic'S	10

Es importante tener en cuenta que tenemos tres switches administrables para la implementación, en los cuales se requiere administración remota bajo la red 11.22.33.0/27 (Vlan 123), y se evidencian las siguientes conexiones:

Switch	Puerto	Descripción
01	G0/2	Conexión Sw02
01	G0/1	Conexión Sw03
01	f0/11	Tic'S
01	f0/12	Ventas
01	f0/13	Administrativos
01	f0/15	Logística
02	G0/2	Conexión Sw01
02	f0/11	Tic'S
02	f0/12	Ventas
02	f0/13	Administrativos
02	f0/14	Mantenimiento
03	G0/1	Conexión Sw01
03	f0/11	Tic'S
03	f0/12	Ventas
03	f0/14	Mantenimiento
03	f0/15	Logística

De igual manera es requerido que el área de mantenimiento y el área de ventas el direccionamiento sea asignado de manera automática (DHCP).

Desarrollo

01. Organización subredes

Dependencia	Nro. Host
Logística	200
Mantenimiento	180
Administrativos	70
Ventas	35
Tic'S	10

02. Asignación VLAN

Dependencia	Nro. Host	Vlan
Logística	200	11
Mantenimiento	180	22
Administrativos	70	33
Ventas	35	44
Tic'S	10	55

03. Desarrollo VLSM Subred01 (Logística)

Tabla abreviaciones		
n	Potencia en base 2	
Н	Numero de host para la subred	
p	Numero de bits que pasan de host a red	
P	Numero de bit de red dirección principal	
S	Numero de host disponibles para la subred	
br	Numero de bits para red en el último octeto intervenido en decimal	

$$2^n - 2 \ge H$$
 (Numero de host de la subred)

$$2^8 - 2 \ge 200$$

$$256-2 \geq 200$$

$$254 \ge 200$$

$$n = 8$$

p = 16

$$p = (32 - P) - n$$

$$p = (32 - P) - n$$

$$p = (32 - 8) - 8$$

$$p = (32 - 8) -$$

$$S = 256 - br$$

$$S = 256 - 255$$

$$S = 1$$

Ahora desarrollamos el proceso teórico para obtener:

a. Nombre (dirección) de Subred01:

La primera subred se nombra igual que la red principal y se implementa el Prefijo Subred01 (/24), obteniendo: $11.0.0.0/24 \rightarrow$ dirección de subred01

b. Primer host:

El primer host es identificado por inspección o podemos aplicar la técnica basada en convertir la dirección de red en binario, luego excluimos de intervención los bits señalados por el prefijo de subred y procedemos a convertir los bits de host en cero (0) excepto el bit 32 el cual será uno (1), así:

Decimal: 11.0.0.0

Binario: 00001011.00000000.00000000.00000000

Identificar el prefijo de la subred: **00001011.0000000.0000000**.00000000 Convertir bits de host en cero (0) excepto el bit 32 el cual será uno (1):

00001011.00000000.0000000.00000001 *Binario a decimal*: $11.0.0.1 \rightarrow \text{primer host}$

c. Ultimo Host:

El ultimo host es identificado por inspección o podemos aplicar la técnica basada en convertir la dirección de red en binario, luego excluimos de intervención los bits señalados por el prefijo de subred y procedemos a convertir los bits de host en uno (1) excepto el bit 32 el cual será cero (0), así:

Decimal: 11.0.0.0

Binario: 00001011.00000000.00000000.00000000

Identificar el prefijo de la subred: **00001011.0000000.0000000**.00000000 Convertir bits de host en uno (1) excepto el bit 32 el cual será cero (0):

00001011.00000000.0000000.11111110 *Binario a decimal*: 11.0.0.254 → ultimo host

d. Broatcast (dirección de difusión):

La dirección de difusión es identificada por inspección o podemos aplicar la técnica basada en convertir la dirección de red en binario, luego excluimos de intervención los bits señalados por el prefijo de subred y procedemos a convertir los bits de host en uno (1), así:

Decimal: 11.0.0.0

Binario: 00001011.00000000.00000000.00000000

Identificar el prefijo de la subred: **00001011.0000000.0000000**.00000000 Convertir bits de host en uno (1): **00001011.00000000.0000000**.11111111

Binario a decimal: 11.0.0.255 → dirección de difusión

e. Mascara:

La máscara es identificada por inspección o podemos aplicar la técnica basada en convertir el prefijo en binario, identificando los bits de red como uno (1) y los de host como cero (0), para luego generar su versión en decimal puenteado, así:

Prefijo subred01: 24

Prefijo subred01 (binario): 11111111. 11111111. 11111111.00000000

Decimal punteado: 255.255.255.0 → Mascara

f. Wildcar:

g. Tabla:

S = 1

Nombre Red	11.0.0.0/24
Primer Host	11.0.0.1
Ultimo Host	11.0.0.254
Broatcast	11.0.0.255
Mascara	255.255.255.0
Wildcar	0. 0 .0.255

Subred02 (Mantenimiento)

 $2^n - 2 \ge H$ (Numero de host de la subred) $2^8 - 2 \ge 180$ $256 - 2 \ge 180$ $254 \ge 180$ n = 8

Ahora desarrollamos el proceso teórico para obtener:

a. Nombre (dirección) de Subred02:

La segunda subred se nombra con la dirección IP siguiente a la dirección de broatcast de la red anterior, y se implementa el Prefijo Subred02 (/24), obteniendo:

 $11.0.1.0/24 \rightarrow \text{dirección de subred02}$

b. Primer host:

El primer host es identificado por inspección o podemos aplicar la técnica basada en convertir la dirección de red en binario, luego excluimos de intervención los bits señalados por el prefijo de subred y procedemos a convertir los bits de host en cero (0) excepto el bit 32 el cual será uno (1), así:

Decimal: 11.0.1.0

Binario: 00001011.00000000.00000001.00000000

Identificar el prefijo de la subred: **00001011.0000000.0000001**.00000000

Convertir bits de host en cero (0) excepto el bit 32 el cual será uno (1):

00001011.00000000.0000001.00000001 *Binario a decimal*: $11.0.1.1 \rightarrow$ primer host

c. Ultimo Host:

El ultimo host es identificado por inspección o podemos aplicar la técnica basada en convertir la dirección de red en binario, luego excluimos de intervención los bits señalados por el prefijo de subred y procedemos a convertir los bits de host en uno (1) excepto el bit 32 el cual será cero (0), así:

Decimal: 11.0.1.0

Binario: 00001011.00000000.00000001.00000000

Identificar el prefijo de la subred: **00001011.00000000.00000001**.00000000

Convertir bits de host en uno (1) excepto el bit 32 el cual será cero (0):

00001011.00000000.0000001.11111110 *Binario a decimal*: 11.0.1.254 → ultimo host

d. Broatcast (dirección de difusión):

La dirección de difusión es identificada por inspección o podemos aplicar la técnica basada en convertir la dirección de red en binario, luego excluimos de intervención los bits señalados por el prefijo de subred y procedemos a convertir los bits de host en uno (1), así:

Decimal: 11.0.1.0

Bingrio: 00001011.00000000.00000001.00000000

Identificar el prefijo de la subred: **00001011.0000000.0000001**.00000000 Convertir bits de host en uno (1): **00001011.0000000.0000001**.111111111

Binario a decimal: 11.0.1.255 → dirección de difusión

e. Mascara:

La máscara es identificada por inspección o podemos aplicar la técnica basada en convertir el prefijo en binario, identificando los bits de red como uno (1) y los de host como cero (0), para luego generar su versión en decimal puenteado, así:

Prefijo subred02: 24

Prefijo subred02 (binario): 11111111. 11111111. 11111111.00000000

Decimal punteado: 255.255.255.0 → Mascara

f. Wildcar:

La wildcar es identificada por inspección o podemos aplicar la técnica basada en tomar la ip (binario), y restar la máscara, así:

255.255.255 -11111111.11111111.11111111.11111111-255.255.255.0 0 11111111. 11111111. 11111111.00000000 0.0.255 00000000. 00000000. 00000000. 11111111

g. Tabla:

Nombre Red	11.0.1.0/24
Primer Host	11.0.1.1
Ultimo Host	11.0.1.254
Broatcast	11.0.1.255
Mascara	255.255.255.0
Wildcar	0. 0 .0.255

Subred03 (Administrativos)

 $2^n - 2 \ge H$ (Numero de host de la subred)

 $2^7 - 2 \ge 70$

 $128 - 2 \ge 70$

 $126 \ge 70$

n = 7

p = (32 - P) - nPrefijo principal (Binario): 11111111.00000000.0000000.0000000 /8

p = (32 - 8) - 7

p = 17

S = 256 - br

S = 256 - 128

S = 128

Ahora desarrollamos el proceso teórico para obtener:

a. Nombre (dirección) de Subred03:

La tercera subred se nombra con la dirección IP siguiente a la dirección de broatcast de la red anterior, y se implementa el Prefijo Subred03 (/25), obteniendo:

 $11.0.2.0/25 \rightarrow \text{dirección de subred03}$

b. Primer host:

El primer host es identificado por inspección o podemos aplicar la técnica basada en convertir la dirección de red en binario, luego excluimos de intervención los bits señalados por el prefijo de subred y procedemos a convertir los bits de host en cero (0) excepto el bit 32 el cual será uno (1), así:

Decimal: 11.0.2.0

Binario: 00001011.00000000.0000010.00000000

Identificar el prefijo de la subred: **00001011.00000000.0000010.0**0000000

Convertir bits de host en cero (0) excepto el bit 32 el cual será uno (1):

00001011.00000000.0000010.00000001 *Binario a decimal*: $11.0.2.1 \rightarrow \text{primer host}$

c. Ultimo Host:

El ultimo host es identificado por inspección o podemos aplicar la técnica basada en convertir la dirección de red en binario, luego excluimos de intervención los bits señalados por el prefijo de subred y procedemos a convertir los bits de host en uno (1) excepto el bit 32 el cual será cero (0), así:

Decimal: 11.0.2.0

Binario: 00001011.00000000.00000010.00000000

00001011.00000000.00000010.01111110 *Binario a decimal: 11.0.2.126* → ultimo host

d. Broatcast (dirección de difusión):

La dirección de difusión es identificada por inspección o podemos aplicar la técnica basada en convertir la dirección de red en binario, luego excluimos de intervención los bits señalados por el prefijo de subred y procedemos a convertir los bits de host en uno (1), así:

Decimal: 11.0.2.0

Binario: 00001011.00000000.0000010.00000000

Binario a decimal: 11.0.2.127 → dirección de difusión

e. Mascara:

La máscara es identificada por inspección o podemos aplicar la técnica basada en convertir el prefijo en binario, identificando los bits de red como uno (1) y los de host como cero (0), para luego generar su versión en decimal puenteado, así:

Prefijo subred03: 25

Prefijo subred03 (binario): 11111111. 11111111. 11111111. 10000000

Decimal punteado: 255.255.255.128 \rightarrow Mascara

f. Wildcar:

255.255.255.255 -		11111111.11111111.11111111.111111111111
255.255.255.128	0	11111111. 11111111. 11111111.10000000
0 . 0 . 0 . 127		00000000. 00000000. 00000000. 01111111

g. Tabla:

Nombre Red	11.0.2.0/25
Primer Host	11.0.2.1
Ultimo Host	11.0.2.126
Broatcast	11.0.2.127
Mascara	255.255.255.128
Wildcar	0. 0 .0.127

Subred04 (Ventas)

 $2^n - 2 \ge H$ (Numero de host de la subred)

 $2^6-2\geq 35$

 $64 - 2 \ge 35$

 $62 \ge 35$

n = 6

Ahora desarrollamos el proceso teórico para obtener:

a. Nombre (dirección) de Subred04:

La cuarta subred se nombra con la dirección IP siguiente a la dirección de broatcast de la red anterior, y se implementa el Prefijo Subred04 (/26), obteniendo:

11.0.2.128/26 → dirección de subred04

b. Primer host:

El primer host es identificado por inspección o podemos aplicar la técnica basada en convertir la dirección de red en binario, luego excluimos de intervención los bits señalados por el prefijo de subred y procedemos a convertir los bits de host en cero (0) excepto el bit 32 el cual será uno (1), así:

Decimal: 11.0.2.128

Binario: 00001011.00000000.00000010.10000000

Identificar el prefijo de la subred: **00001011.0000000.0000010.10**000000

Convertir bits de host en cero (0) excepto el bit 32 el cual será uno (1):

00001011.00000000.0000010.100000001 *Binario a decimal: 11.0.2.129* → primer host

c. Ultimo Host:

El ultimo host es identificado por inspección o podemos aplicar la técnica basada en convertir la dirección de red en binario, luego excluimos de intervención los bits señalados por el prefijo de subred y procedemos a convertir los bits de host en uno (1) excepto el bit 32 el cual será cero (0), así:

Decimal: 11.0.2.128

Binario: 00001011.00000000.0000010.10000000

Identificar el prefijo de la subred: **00001011.0000000.0000010.10**0000000

Convertir bits de host en uno (1) excepto el bit 32 el cual será cero (0):

00001011.00000000.0000010.101111110 *Binario a decimal*: 11.0.2.190 → ultimo host

d. Broatcast (dirección de difusión):

La dirección de difusión es identificada por inspección o podemos aplicar la técnica basada en convertir la dirección de red en binario, luego excluimos de intervención los bits señalados por el prefijo de subred y procedemos a convertir los bits de host en uno (1), así:

Decimal: 11.0.2.128

Binario: 00001011.00000000.00000010.10000000

Identificar el prefijo de la subred: **00001011.0000000.0000010.10**000000 Convertir bits de host en uno (1): **00001011.00000000.0000010.10**111111

Binario a decimal: 11.0.2.191 → dirección de difusión

e. Mascara:

La máscara es identificada por inspección o podemos aplicar la técnica basada en convertir el prefijo en binario, identificando los bits de red como uno (1) y los de host como cero (0), para luego generar su versión en decimal puenteado, así:

Prefijo subred04: 26

Prefijo subred04 (binario): 11111111. 11111111. 11111111.11000000

Decimal punteado: 255.255.255.192 → Mascara

f. Wildcar:

255.255.255.255 -		
255.255.255.192	0	
0.0.0.63		

g. Tabla:

Nombre Red	11.0.2.128/26
Primer Host	11.0.2.129
Ultimo Host	11.0.2.190
Broatcast	11.0.2.191
Mascara	255.255.255.192
Wildcar	0. 0 .0.63

Subred05 (Tic'S)

 $2^n - 2 \ge H$ (Numero de host de la subred)

 $2^4 - 2 \ge 10$

 $16 - 2 \ge 10$

 $16 \ge 10$

n = 4

Ahora desarrollamos el proceso teórico para obtener:

a. Nombre (dirección) de Subred05:

La quinta subred se nombra con la dirección IP siguiente a la dirección de broatcast de la red anterior, y se implementa el Prefijo Subred05 (/28), obteniendo: $11.0.2.192/28 \rightarrow$ dirección de subred05

b. Primer host:

El primer host es identificado por inspección o podemos aplicar la técnica basada en convertir la dirección de red en binario, luego excluimos de intervención los bits señalados por el prefijo de subred y procedemos a convertir los bits de host en cero (0) excepto el bit 32 el cual será uno (1), así:

Decimal: 11.0.2.192

Binario: 00001011.00000000.0000010.11000000

Identificar el prefijo de la subred: **00001011.0000000.0000010.1100**0000

Convertir bits de host en cero (0) excepto el bit 32 el cual será uno (1):

00001011.00000000.0000010. **1100**00001 *Binario a decimal*: **11.0.2.193** → primer host

c. Ultimo Host:

El ultimo host es identificado por inspección o podemos aplicar la técnica basada en convertir la dirección de red en binario, luego excluimos de intervención los bits señalados por el prefijo de subred y procedemos a convertir los bits de host en uno (1) excepto el bit 32 el cual será cero (0), así:

Decimal: 11.0.2.192

Binario: 00001011.00000000.00000010.11000000

Identificar el prefijo de la subred: 00001011.00000000.0000010.1100

Convertir bits de host en uno (1) excepto el bit 32 el cual será cero (0):

00001011.00000000.0000010. **1100**1110 *Binario a decimal*: *11.0.2.206* → ultimo host

d. Broatcast (dirección de difusión):

La dirección de difusión es identificada por inspección o podemos aplicar la técnica basada en convertir la dirección de red en binario, luego excluimos de intervención los bits señalados por el prefijo de subred y procedemos a convertir los bits de host en uno (1), así:

Decimal: 11.0.2.192

Binario: 00001011.00000000.00000010.11000000

Identificar el prefijo de la subred: **00001011.0000000.00000010**. **1100**0000 **00001011.00000000.00000010**. **1100**1111 Convertir bits de host en uno (1):

Binario a decimal: 11.0.2.207 → dirección de difusión

e. Mascara:

La máscara es identificada por inspección o podemos aplicar la técnica basada en convertir el prefijo en binario, identificando los bits de red como uno (1) y los de host como cero (0), para luego generar su versión en decimal puenteado, así:

Prefijo subred05: 28

Prefijo subred05 (binario): 11111111. 11111111. 11111111.11110000

Decimal punteado: 255.255.255.240 → Mascara

f. Wildcar:

La wildcar es identificada por inspección o podemos aplicar la técnica basada en tomar la ip (binario), y restar la máscara, así:

255.255.255.255 -		11111111.111111111.11111111.11111111111
255.255.255.240	0	11111111. 11111111. 11111111.11110000
0 . 0 . 0 . 15		00000000. 00000000. 00000000. 00001111

g. Tabla:

Nombre Red	11.0.2.192/28
Primer Host	11.0.2.193
Ultimo Host	11.0.2.206
Broatcast	11.0.2.207
Mascara	255.255.255.240
Wildcar	0. 0 .0.15

04. Construcción esquema

05. Configuración básica en switch

Enable (cifrada)	Redes
Usuario	Estudiante
Contraseña	Nro. Celular
Banner	Redes-UTS-Cortell
Nombre Switch	Sw0x

Switch>enable

Switch#conf

Switch#configure ter

Switch#configure terminal

Enter configuration commands, one per line. End with CNTL/Z.

Switch(config)#line console 0

Switch(config-line)#login local

Switch(config-line)#exit

Switch(config)#username Estudiante password 318751**91

Switch(config)#banner motd #Redes-UTS-CorteII#

Switch(config)#hostname Sw01

Sw01(config)#end

Sw01#

%SYS-5-CONFIG_I: Configured from console by console

Sw01#wr me
Sw01#wr memory
Building configuration...
[OK]
Sw01# (ejemplo Sw01, aplicar Sw02 & Sw03)

06. Creación DHCP SubRed02

Sw01(config)#ip dhcp pool SubRed-22
Sw01(dhcp-config)#default-router 11.0.1.1
Sw01(dhcp-config)#dns-server 8.8.4.4
Sw01(dhcp-config)#network 11.0.1.0 255.255.255.0
Sw01(dhcp-config)#exit
Sw01(config)#ip dhcp excluded-address 11.0.1.1 11.0.1.99
Sw01(config)#exit
Sw01#
%SYS-5-CONFIG I: Configured from console by console

Sw01#configure terminal Enter configuration commands, one per line. End with CNTL/Z. Sw01(config)#interface vlan 22

%LINK-5-CHANGED: Interface Vlan22, changed state to up

%LINEPROTO-5-UPDOWN: Line protocol on Interface Vlan22, changed state to up

Sw01(config-if)#ip address 11.0.1.254 255.255.255.0 Sw01(config-if)#end Sw01# %SYS-5-CONFIG_I: Configured from console by console

Sw01#wr me Sw01#wr memory Building configuration... [OK] Sw01#

07. Creación DHCP SubRed04

Sw01(config)#ip dhcp pool SubRed-44
Sw01(dhcp-config)#default-router 11.0.2.129
Sw01(dhcp-config)#dns-server 8.8.8.8
Sw01(dhcp-config)#network 11.0.2.128 255.255.255.192
Sw01(dhcp-config)#exit
Sw01(config)#ip dhcp excluded-address 11.0.2.150 11.0.2.180

Sw01(config)#interface vlan 44

Sw01(config-if)#

%LINK-5-CHANGED: Interface Vlan44, changed state to up

%LINEPROTO-5-UPDOWN: Line protocol on Interface Vlan44, changed state to up

Sw01(config-if)#ip address 11.0.2.190 255.255.255.192 Sw01(config-if)#end Sw01#

%SYS-5-CONFIG_I: Configured from console by console

Sw01#wr memory
Building configuration...
[OK]
Sw01#

08. Creacion Vlan's

Dependencia	Vlan
Logística	11
Mantenimiento	22
Administrativos	33
Ventas	44
Tic'S	55

Sw01#configure terminal

Enter configuration commands, one per line. End with CNTL/Z.

Sw01(config)#vlan 11

Sw01(config-vlan)#name Logistica

Sw01(config-vlan)#vlan 22

Sw01(config-vlan)#name Mantenimiento

Sw01(config-vlan)#vlan 33

Sw01(config-vlan)#name Administrativos

Sw01(config-vlan)#vlan 44

Sw01(config-vlan)#name Ventas

Sw01(config-vlan)#vlan 55 Sw01(config-vlan)#name Tic's Sw01(config-vlan)#end Sw01# %SYS-5-CONFIG_I: Configured from console by console

Sw01#wr memory
Building configuration...
[OK]
Sw01#

09. Asignación puertos acceso

Switch	Puerto	Descripción Interface		
01	f0/11	Conexión-PC55-01		
01	f0/12	Conexión-PC44-01		
01	f0/13	Conexión-PC33-01		
01	f0/15	Conexión-PC11-01		
02	f0/11	Conexión-PC55-02		
02	f0/12	Conexión-PC44-02		
02	f0/13	Conexión-PC33-02		
02	f0/14	Conexión-PC22-02		
03	f0/11	Conexión-PC55-03		
03	f0/12	Conexión-PC44-03		
03	f0/14	Conexión-PC22-03		
03	f0/15	Conexión-PC11-03		

10. Asignación puertos troncales

Switch	Puerto	Descripción Interface
01	G0/2	Conexión Sw01-Sw02
01	G0/1	Conexión Sw01-Sw03
02	G0/2	Conexión Sw02-Sw01
03	G0/1	Conexión Sw03-Sw01

Sw01#configure terminal

Enter configuration commands, one per line. End with CNTL/Z.

Sw01(config)#interface gigabitEthernet 0/2

Sw01(config-if)#switchport mode trunk

Sw01(config-if)#switchport trunk allowed vlan 22,33,44,55

Sw01(config-if)#switchport nonegotiate

Sw01(config-if)#description Conexion-Sw01-Sw02

Sw01(config-if)#exit

Sw01(config-if)#interface gigabitEthernet 0/1

SSw01(config-if)#switchport mode trunk

SSw01(config-if)#switchport trunk allowed vlan 11,22,44,55

Sw01(config-if)#switchport nonegotiate

Sw01(config-if)#description Conexion-Sw01-Sw03

Sw01(config-if)#end

Sw01#

%SYS-5-CONFIG I: Configured from console by console

Sw01#wr memory

Building configuration...

[OK]

Sw01# (ejemplo Sw01, aplicar Sw02 & Sw03-OJO... Solo las vlan's necesarias según el caso))

11. Configuración para administración en switch01 (se debe ajustar para Sw02 & Sw03)

a. Creación Vlan

Sw01#configure terminal

Enter configuration commands, one per line. End with CNTL/Z.

Sw01(config)#vlan 123

Sw01(config-vlan)#name Vlan-Adm

Sw01(config-vlan)#exit

b. Asignación IP Vlan

Sw01(config)#interface vlan 123

Sw01(config-if)#

%LINK-5-CHANGED: Interface Vlan123, changed state to up

Sw01(config-if)#ip address 11.22.33.11 255.255.255.224

Sw01(config-if)#description Adm-Sw01

c. Agregar vlan adm al troncal

Sw01#configure terminal

Enter configuration commands, one per line. End with CNTL/Z.

Sw01(config)#interface gigabitEthernet 0/1

Sw01(config-if)#switchport trunk allowed vlan 11,22,44,55,123

Sw01(config-if)#exit

Sw01(config)#interface gigabitEthernet 0/2

Sw01(config-if)#switchport trunk allowed vlan 22,33,44,55,123

Sw01(config-if)#end

Sw01#

%SYS-5-CONFIG_I: Configured from console by console

Sw01#wr memory
Building configuration...
[OK]
Sw01#

d. Configuración para conexión remota

Sw01#configure terminal

Enter configuration commands, one per line. End with CNTL/Z.

Sw01(config)#line vty 0 15

Sw01(config-line)#login local

Sw01(config-line)#end

Sw01#

%SYS-5-CONFIG_I: Configured from console by console

Sw01#wr memory

Building configuration...

[OK]

Sw01#

e. Asignación puerto acceso para administración (Sw01-f0/23)

Sw01#configure terminal

Enter configuration commands, one per line. End with CNTL/Z.

Sw01(config)#interface fastEthernet 0/23

Sw01(config-if)#switchport mode access

Sw01(config-if)#switchport access vlan 123

Sw01(config-if)#description Conexion-PC-Adm

Sw01(config-if)#end

Sw01#

%SYS-5-CONFIG_I: Configured from console by console

Sw01#wr memory

Building configuration...

[OK]

Sw01#

f. Configuración PC para administración (PC123-01)

PC0		-	_	×
Physical Config Desktop	Programming	Attributes		
IP Configuration Interface FastEthernel IP Configuration	ŧ0			×
O DHCP IPv4 Address		• Static		
Subnet Mask				
Default Gateway DNS Server		0.0.0.0		-
IPv6 Configuration		0.0.0		
Automatic IPv6 Address		• Static	1	
Link Local Address Default Gateway		FE80::260:3EFF:FE11:C43B		
DNS Server				5
802.1X Use 802.1X Security				
Authentication N Username	MD5			~
Password				

g. Verificación de equipos en red


```
Physical Config Desktop Programming Attributes

Command Prompt

Cisco Packet Tracer FC Command Line 1.0

C:\>

Top
```

```
Physical Config Desktop Programming Attributes

Command Prompt

Cisco Packet Tracer PC Command Line 1.0

CINDPING 11.22.33.11

Finging 11.22.33.11 with 32 bytes of data:

Request timed out.

Reply from 11.22.33.11: bytes=32 time(lms TTL=255

Reply from 11.22.33.11: bytes=32 time(lms TTL=255)

Ping statistics for 11.22.33.11:

Ping statistics for 11.22.33.11:

Ping attristics for 11.22.33.11:

Ping statistics for 11.22.33.11:

Pinging 11.22.33.11 with 32 bytes of data:

Reply from 11.22.33.11 bytes=32 time(lms TTL=255)

Reply from 11.22.33.11: bytes=30 time(lms TTL=255)

Reply from 11
```


h. Conexión Remota

```
Physical Config Desktop Programming Attributes

Command Prompt

X

Cisco Packet Tracer PC Command Line 1.0
C:\Poping 11.22.33.11 with 32 bytes of data:

Request timed out.

Reply from 11.22.33.11: bytes=32 timeclms TTL=255
Reply from 11.22.33.11:
```

12. Configuración de PC's

PC	Vlan	Switch	
PC55-01	Tic'S	01	
PC44-01	Ventas	01	
PC33-01	Administrativos	01	
PC11-01	Logística	01	
PC55-02	Tic'S	02	
PC44-02	Ventas	02	
PC33-02	Administrativos	02	
PC22-02	Mantenimiento	02	
PC55-03	Tic'S	03	
PC44-03	Ventas	03	
PC22-03	Mantenimiento	03	
PC11-03	Logística	03	

13. Verificación conectividad

PC Origen	PC Destino	Ok	Fail	PC Origen	PC Destino	Ok	Fail
PC55-01	PC44-01			PC11-01	PC22-02		
PC55-01	PC33-01			PC11-01	PC55-03		
PC55-01	PC11-01			PC11-01	PC44-03		
PC55-01	PC55-02			PC11-01	PC22-03		
PC55-01	PC44-02			PC11-01	PC11-03		
PC55-01	PC33-02			PC55-02	PC44-02		
PC55-01	PC22-02			PC55-02	PC33-02		
PC55-01	PC55-03			PC55-02	PC22-02		
PC55-01	PC44-03			PC55-02	PC55-03		
PC55-01	PC22-03			PC55-02	PC44-03		
PC55-01	PC11-03			PC55-02	PC22-03		
PC44-01	PC33-01			PC55-02	PC11-03		
PC44-01	PC11-01			PC44-02	PC33-02		
PC44-01	PC55-02			PC44-02	PC22-02		
PC44-01	PC44-02			PC44-02	PC55-03		
PC44-01	PC33-02			PC44-02	PC44-03		
PC44-01	PC22-02			PC44-02	PC22-03		
PC44-01	PC55-03			PC44-02	PC11-03		
PC44-01	PC44-03			PC33-02	PC22-02		
PC44-01	PC22-03			PC33-02	PC55-03		
PC44-01	PC11-03			PC33-02	PC44-03		
PC33-01	PC11-01			PC33-02	PC22-03		
PC33-01	PC55-02			PC33-02	PC11-03		
PC33-01	PC44-02			PC22-02	PC55-03		
PC33-01	PC33-02			PC22-02	PC44-03		
PC33-01	PC22-02			PC22-02	PC22-03		
PC33-01	PC55-03			PC22-02	PC11-03		
PC33-01	PC44-03			PC55-03	PC44-03		
PC33-01	PC22-03			PC55-03	PC22-03		
PC33-01	PC11-03			PC55-03	PC11-03		
PC11-01	PC55-02			PC44-03	PC22-03		
PC11-01	PC44-02			PC44-03	PC11-03		
PC11-01	PC33-02			PC22-03	PC11-03		
Nombre:							

