Random Variables & Discrete Probability Distributions

Sean Hellingman ©

Introduction to Statistical Data Analysis (ADSC1000) shellingman@tru.ca

Fall 2024

Topics

- Introduction
- Probability Distributions
- Discrete Probability
 - Distributions

- 5 Expected Value and Variance
- 6 Discrete Distributions
- Exercises and References

Introduction

- Many experiments naturally have numerical outcomes.
 - Rolling dice, returns on stocks, or number of goals scored.
- Other experiments have categorical sample spaces.
 - Flipping coins, colours of drawn cards, or type of car driving past.
- A **random variable** is a numerical description of the outcome of an experiment.
 - Function that assigns a real number to each element of a sample space.
- Colours of passing cars example:
 - Red = 0, Blue = 1, and Green = 2.

Probability Distributions

- A probability distribution is a characterization of the possible values that a random variable may assume & the corresponding probabilities.
 - Probability distributions can be either discrete or continuous.
- A discrete random variable is one for which the number of possible outcomes can be counted.
- A continuous random variable has outcomes over one or more continuous intervals of real numbers
- Can use theoretical, relative frequency, or subjective approaches.

- Determine if the following random variables are discrete or continuous:
 - Rolling a six sided die.
 - Daily returns on the Apple stock.
 - Olympic sprint times.
 - Drawing cards from a standard deck.
 - Data science test grades.

• What is the probability distribution of the sum of two six sided dice?

Solution:

Outcome	2	3	4	5	6	7	8	9	10	11	12
Probability	1/36	1/18	1/12	1/9	5/36	1/6	5/36	1/9	1/12	1/18	1/36

Probability Mass Function

- The probability distribution of the discrete random variable X is called a probability mass function.
- The probability mass function (PMF) is denoted by p(x).
- Where $p(x_i)$ is the probability of the i^{th} value of X.
- From Example 2:
 - $x_1 = 2$, then $p(x_2) = 1/36$.
 - $x_5 = 5$, then $p(x_5) = 1/9$.

Probability Mass Function Assumptions

• Recall from Probability:

$$0 \le p(x_i) \le 1 \tag{1}$$

$$\sum_{i} p(x_i) = 1 \tag{2}$$

Generally, the PMF determines:

$$p(x) = P(X = x) \tag{3}$$

 What is the probability mass function of the outcome of flipping two coins (unordered)?

Cumulative Distribution Function

- The cumulative distribution function (CDF) F(x), specifies the probability that the random variable X will assume a value less than or equal to a specified value, x.
- The probability that the random variable X is less than or equal to X.

$$F(x) = P(X \le x) \tag{4}$$

Using the Cumulative Distribution Function

- Can use it to find $P(X \le x)$ or P(X > x)
 - Example: $P(X > 5) = 1 P(X \le 5)$
- Can also use it to find probabilities over intervals $P(x_i \le X \le x_j)$
 - Example: $P(4 \le X \le 8) = P(X \le 8) P(X \le 3)$

- What is the cumulative distribution function of the sum of two six sided dice?
 - Use the CDF to determine the probability of rolling a sum between 5 and 7 $P(5 \le X \le 7)$.
- Distribution:

Outcome	2	3	4	5	6	7	8	9	10	11	12
Probability	1/36	1/18	1/12	1/9	5/36	1/6	5/36	1/9	1/12	1/18	1/36
Cumulative	1/36	1/12	1/6	5/18	5/12	7/12	13/18	5/6	11/12	35/36	1

Expected Value

- The expected value corresponds to the mean or average, for a sample.
- Discrete random variable X the expected value is denoted as E[x]
- The expected value is the weighted average of all possible outcomes, where the *weights are the probabilities*.

$$E[X] = \sum x_i \cdot p(x_i) \tag{5}$$

• What is the expected value of the sum of rolling two six sided dice?

Outcome	2	3	4	5	6	7	8	9	10	11	12
Probability	1/36	1/18	1/12	1/9	5/36	1/6	5/36	1/9	1/12	1/18	1/36
Cumulative	1/36	1/12	1/6	5/18	5/12	7/12	13/18	5/6	11/12	35/36	1

Variance

- Recall: The variance measures the level of uncertainty of the random variable.
- The **variance** of a discrete random variable *X* as a weighted average of the squared deviations from the expected value:

$$V[X] = \sum (x - E[X])^2 \cdot p(x). \tag{6}$$

• Where the weights are again the probabilities.

• Suppose we have the following PMF for a school raffle:

X	p(x)
-\$10	0.95
\$500	0.05

• Calculate the expected value E[X] and the variance V[X] of X.

Existing Distributions

- Often easier (theoretically & computationally) to assume our data come from a defined probability distribution.
 - Concerned with estimating the parameters of said distribution.
- Bernoulli Distribution
- Binomial Distribution
- Poisson Distribution

Bernoulli Distribution I

- The **Bernoulli distribution** characterises a random variable having two possible outcomes.
- These outcomes are typically defined as:
 - success (x = 1) with probability p
 - failure (x = 0) with probability 1 p
- Example: Define a success as a flipped coin landing on the tails side.

Bernoulli Distribution II

• The PMF of the Bernoulli distribution is:

$$p(x) = \begin{cases} p, & \text{if } x = 1\\ 1 - p, & \text{if } x = 0 \end{cases}$$
 (7)

- Expected value: p
- Variance: p(1-p)

Binomial Distribution I

- The **binomial distribution** models *n* independent Bernoulli trials each with the probability *p* of *success*.
- Example: Probability of a coin flipped n = 10 times landing on tails 7 times.

Binomial Distribution II

• The PMF of the binomial distribution is:

$$p(x) = \begin{cases} \binom{n}{x} p^{x} (1-p)^{n-x}, & \text{for } x = 0, 1, ..., n \\ 0, & \text{otherwise} \end{cases}$$
 (8)

- Expected value: np
- Variance: np(1-p)

Binomial Distribution III

- Hand calculations using the binomial distribution may be a bit complicated
- R functions:
 - PMF: dbinom(x, n, p) calculates P(X = x)
 - CDF: pbinom(x, n, p) calculates P(X < x)
 - qbinom(P, n, p) used to find the nth quantile.
 - rbinom(n, N, p) generates *n* random variables of a particular probability.

Poisson Distribution I

- The Poisson distribution is a discrete distribution used to model the number of occurrences in some unit of measure.
- Examples:
 - Number of customers within an hour.
 - Number of baskets per minute in a basketball game.
 - Number of errors per line of R code.

Poisson Distribution II

- There is no limit on the number of occurrences (X can be any non-negative integer).
- The PMF of the Poisson distribution is:

$$p(x) = \begin{cases} \frac{e^{-\lambda} \lambda^{x}}{x!}, & \text{for } x = 0, 1, \dots \\ 0, & \text{otherwise} \end{cases}$$
 (9)

- Expected value: λ
- Variance: λ

Poisson Distribution III

- Hand calculations using the Poisson distribution may be a bit complicated
- R functions:
 - PMF: dpois(x, lambda) calculates P(X = x)
 - CDF: ppois(x, lambda, lower.tail = TRUE) calculates $P(X \le x)$ & P(X > x) if lower.tail = FALSE.
 - qpois(P, lambda) the number of successes that corresponds to a certain quantile P.
 - rpois(n, lambda) generates n randomly generated numbers that follow a Poisson distribution with an average number of lambda successes.

- Suppose we are rolling a six sided die. We define a *success* to be rolling a 3 or a 4.
 - Define the Bernoulli distribution for this experiment.
 - Calculate the expected value and variance (from the theory).

- Suppose we are repeating the experiment from Example 7 n=10 times
 - What is the name of the resulting distribution?
 - What is the expected value and variance of this distribution?
 - Using R:
 - Calculate the probability that we get 4 successes.
 - Calculate the probability that we get at most 4 successes.

- Suppose we have a Poisson distribution for the number of arrivals at a grocery sore with $\lambda=10$ per hour.
 - What is the expected value and variance of this distribution?
 - Using R:
 - Calculate the probability that we only have 4 arrivals in an hour.
 - Calculate the probability that we get at most 15 arrivals in an hour.
 - Calculate the probability that we get at least 11 arrivals in an hour.

 Identify three continuous and three discrete random variables you might come across in real life.

- What is the probability mass function (PMF) and the cumulative distribution (CDF) generated by the sum of spinning two 3 numbered spinners of equal probability (The spinners' possible outcomes are 1, 2, or 3 with equal probabilities of 1/3)?
- Calculate the following probabilities:
 - P(X = 3) or $x_3 = 3$
 - $P(X \le 5)$
 - $P(3 \le X \le 6)$

• What is the expected value and variance of the random variable from Exercise 2?

• Suppose we have the following PMF:

X	p(x)
-10	0.60
20	0.25
15	0.15

• Calculate the expected value E[X] and the variance V[x] of X.

- Suppose we have n = 20 Bernoulli trials with p = 0.25.
- From theory, what is he expected value and variance of this distribution?
 - Note: this is not a Bernoulli distribution
- Using R:
 - Calculate the probability that we get 4 successes.
 - Calculate the probability that we get at most 4 successes.
 - Calculate the probability that we get between 5 and 7 successes.
 - Calculate the probability that we get at least 11 successes.

- Suppose we have a Poisson distribution for the number of goals during a 90 minute soccer game with $\lambda = 3$.
 - What is the expected value and variance of this distribution?
 - Using R:
 - Calculate the probability that we have 4 goals in a 90 minute game.
 - Calculate the probability that we get at most 2 goals.
 - Calculate the probability that we get at least 4 goals.
 - Calculate the probability that we get between 2 and 4 goals.

References & Resources

- Evans, J. R., Olson, D. L., & Olson, D. L. (2007). *Statistics, data analysis, and decision modeling.* Upper Saddle River, NJ: Pearson/Prentice Hall.
- ② Devore, J. L., Berk, K. N., & Carlton, M. A. (2012). *Modern mathematical statistics with applications (Second Edition)*. New York: Springer.

- https://rpubs.com/mpfoley73/458411
- https://en.wikipedia.org/wiki/Binomial_distribution
- https://en.wikipedia.org/wiki/Poisson_distribution