A Summary of Methods of Solution for Linear Systems

Nate DeMaagd, Kurt O'Hearn

MTH 499-02

April 23, 2013

Outline

Outline

• Types of methods

Outline

- Types of methods
- Direct methods and examples

- Types of methods
- Direct methods and examples
- Indirect methods and examples

Recall: For the linear system Ax = b with $A_{m \times n}$:

Recall: For the linear system Ax = b with $A_{m \times n}$:

System Type	Possible Number of Solutions
Square $(m=n)$	None, Unique
Overdetermined $(m > n)$	None, Unique
Underdetermined $(m < n)$	None, Infinite

Recall: For the linear system Ax = b with $A_{m \times n}$:

System Type	Possible Number of Solutions
Square $(m=n)$	None, Unique
Overdetermined $(m > n)$	None, Unique
Underdetermined $(m < n)$	None, Infinite

Types of Methods

• Direct methods

Recall: For the linear system Ax = b with $A_{m \times n}$:

System Type	Possible Number of Solutions
Square $(m=n)$	None, Unique
Overdetermined $(m > n)$	None, Unique
Underdetermined $(m < n)$	None, Infinite

- Direct methods
 - Execute a predetermined number of computations to produce a result

Recall: For the linear system Ax = b with $A_{m \times n}$:

System Type	Possible Number of Solutions
Square $(m=n)$	None, Unique
Overdetermined $(m > n)$	None, Unique
Underdetermined $(m < n)$	None, Infinite

- Direct methods
 - Execute a predetermined number of computations to produce a result
 - Methods: compute A^{-1} , transform A using factorizations/pivoting

Recall: For the linear system Ax = b with $A_{m \times n}$:

System Type	Possible Number of Solutions
Square $(m=n)$	None, Unique
Overdetermined $(m > n)$	None, Unique
Underdetermined $(m < n)$	None, Infinite

- Direct methods
 - Execute a predetermined number of computations to produce a result
 - \bullet Methods: compute $A^{-1},$ transform A using factorizations/pivoting
- Indirect methods

Recall: For the linear system Ax = b with $A_{m \times n}$:

System Type	Possible Number of Solutions
Square $(m=n)$	None, Unique
Overdetermined $(m > n)$	None, Unique
Underdetermined $(m < n)$	None, Infinite

- Direct methods
 - \bullet Execute a predetermined number of computations to produce a result
 - \bullet Methods: compute $A^{-1},$ transform A using factorizations/pivoting
- Indirect methods
 - Generate a sequence of intermediate results which (hopefully) produce the desired final result

Recall: For the linear system Ax = b with $A_{m \times n}$:

System Type	Possible Number of Solutions
Square $(m=n)$	None, Unique
Overdetermined $(m > n)$	None, Unique
Underdetermined $(m < n)$	None, Infinite

- Direct methods
 - Execute a predetermined number of computations to produce a result
 - \bullet Methods: compute $A^{-1},$ transform A using factorizations/pivoting
- Indirect methods
 - Generate a sequence of intermediate results which (hopefully) produce the desired final result
 - Methods:

Recall: For the linear system Ax = b with $A_{m \times n}$:

System Type	Possible Number of Solutions
Square $(m=n)$	None, Unique
Overdetermined $(m > n)$	None, Unique
Underdetermined $(m < n)$	None, Infinite

- Direct methods
 - Execute a predetermined number of computations to produce a result
 - \bullet Methods: compute $A^{-1},$ transform A using factorizations/pivoting
- Indirect methods
 - Generate a sequence of intermediate results which (hopefully) produce the desired final result
 - Methods:
 - Richardson, Jacobi, Gauss-Seidel, SOR, steepest descent, conjugate gradient

Recall: For the linear system Ax = b with $A_{m \times n}$:

System Type	Possible Number of Solutions
Square $(m=n)$	None, Unique
Overdetermined $(m > n)$	None, Unique
Underdetermined $(m < n)$	None, Infinite

Types of Methods

- Direct methods
 - Execute a predetermined number of computations to produce a result
 - \bullet Methods: compute $A^{-1},$ transform A using factorizations/pivoting
- Indirect methods
 - Generate a sequence of intermediate results which (hopefully) produce the desired final result
 - Methods:
 - Richardson, Jacobi, Gauss-Seidel, SOR, steepest descent, conjugate gradient

Note: methods can be general or exploit certain matrix characteristics

Compute A^{-1}

Compute A^{-1}

• Most likely too difficult but not always (e.g., diagonal)

Compute A^{-1}

• Most likely too difficult but not always (e.g., diagonal)

Compute A^{-1}

• Most likely too difficult but not always (e.g., diagonal)

Gaussian Elimination

• Solve by reducing the coefficient matrix to triangular form using elementary row operations

Compute A^{-1}

• Most likely too difficult but not always (e.g., diagonal)

- Solve by reducing the coefficient matrix to triangular form using elementary row operations
- Result can then by easily solved using forward/backward substitution

Compute A^{-1}

• Most likely too difficult but not always (e.g., diagonal)

- Solve by reducing the coefficient matrix to triangular form using elementary row operations
- Result can then by easily solved using forward/backward substitution
- Possible row operations:
 - Interchange
 - Scaling
 - Addition

Compute A^{-1}

• Most likely too difficult but not always (e.g., diagonal)

- Solve by reducing the coefficient matrix to triangular form using elementary row operations
- Result can then by easily solved using forward/backward substitution
- Possible row operations:
 - Interchange
 - Scaling
 - Addition
- Recall: GE is equivalent to computing LU factorization

- Types of pivoting:
 - \bullet Partial/complete: pertains to the amount of the matrix examined to find where to pivot

- Types of pivoting:
 - Partial/complete: pertains to the amount of the matrix examined to find where to pivot
 - Partial: analyze one row
 - Complete: analyze entire submatrix

- Types of pivoting:
 - Partial/complete: pertains to the amount of the matrix examined to find where to pivot
 - Partial: analyze one row
 - Complete: analyze entire submatrix
 - Unscaled/scaled: pertains to how the potential pivot locations are compared

- Types of pivoting:
 - Partial/complete: pertains to the amount of the matrix examined to find where to pivot
 - Partial: analyze one row
 - Complete: analyze entire submatrix
 - Unscaled/scaled: pertains to how the potential pivot locations are compared
 - Unscaled: compare absolute value of entries directly
 - Scaled: compare ratios of pivot entries to maximum entries in magnitude in each row

$$A_1 = \begin{bmatrix} 1 & 3 & 6 \\ 2 & 1 & 1 \\ 1 & 3 & 3 \end{bmatrix}$$

$$p = \begin{bmatrix} 1, & 2, & 3 \end{bmatrix}$$

1: **function** GE_SPP
$$(n, (a_{ij}), (p_i))$$

2: **for** $k = 1$ **to** $n - 1$ **do**
3: **for** $i = k + 1$ **to** n **do**
4: $z \leftarrow a_{p_i k} / a_{p_k k}$
5: $a_{p_i k} \leftarrow 0$
6: **for** $j = k + 1$ **to** n **do**
7: $a_{p_i j} \leftarrow a_{p_i j} - z a_{p_k j}$

$$\max(|1|, |2|, |1|) = 2$$

8:

return (a_{ij})

$$A_1 = \begin{bmatrix} 1 & 3 & 6 \\ 2 & 1 & 1 \\ 1 & 3 & 3 \end{bmatrix}$$

$$p = \begin{bmatrix} 2, & 1, & 3 \end{bmatrix}$$

1: **function** GE_SPP
$$(n, (a_{ij}), (p_i))$$

2: **for**
$$k = 1$$
 to $n - 1$ **do**

3: **for**
$$i = k + 1$$
 to n **do**

$$4: z \leftarrow a_{p_i k} / a_{p_k k}$$

5:
$$a_{p_ik} \leftarrow 0$$

6: **for**
$$j = k + 1$$
 to n **do**

7:
$$a_{p_ij} \leftarrow a_{p_ij} - z a_{p_kj}$$

8: **return**
$$(a_{ij})$$

$$\max(|1|, |2|, |1|) = 2$$

 $R_1 \leftarrow R_1 - \frac{1}{2}R_2$

$$R_3 \leftarrow R_3 - \frac{1}{2}R_2$$

$$R_2 \leftarrow \frac{1}{2}R_2$$

$$A_2 = \begin{bmatrix} 0 & 2.5 & 5.5 \\ 1 & 0.5 & 0.5 \\ 0 & 2.5 & 2.5 \end{bmatrix}$$

$$p = \begin{bmatrix} 2, & 1, & 3 \end{bmatrix}$$

1: **function** GE_SPP
$$(n, (a_{ij}), (p_i))$$

2: **for**
$$k = 1$$
 to $n - 1$ **do**

3: **for**
$$i = k + 1$$
 to n **do**

4:
$$z \leftarrow a_{p_i k} / a_{p_k k}$$

5:
$$a_{p_ik} \leftarrow 0$$

6: **for**
$$j = k + 1$$
 to n **do**

7:
$$a_{p_ij} \leftarrow a_{p_ij} - z a_{p_kj}$$

8: **return**
$$(a_{ij})$$

$$\max(|1|, |2|, |1|) = 2$$

$$R_1 \leftarrow R_1 - \frac{1}{2}R_2$$

$$R_3 \leftarrow R_3 - \frac{1}{2}R_2$$

$$R_2 \leftarrow \frac{1}{2}R_2$$

$$A_2 = \begin{bmatrix} 0 & 2.5 & 5.5 \\ 1 & 0.5 & 0.5 \\ 0 & 2.5 & 2.5 \end{bmatrix}$$

$$p = \begin{bmatrix} 2, & 1, & 3 \end{bmatrix}$$

1: **function** GE_SPP
$$(n, (a_{ij}), (p_i))$$
2: **for** $k = 1$ **to** $n - 1$ **do**
3: **for** $i = k + 1$ **to** n **do**
4: $z \leftarrow a_{p_i k}/a_{p_k k}$
5: $a_{p_i k} \leftarrow 0$
6: **for** $j = k + 1$ **to** n **do**
7: $a_{p_i j} \leftarrow a_{p_i j} - z a_{p_k j}$
8: **return** (a_{ij})

$$\max(|2.5|, |2.5|) = 2.5$$

$$A_2 = \begin{bmatrix} 0 & 2.5 & 5.5 \\ 1 & 0.5 & 0.5 \\ 0 & 2.5 & 2.5 \end{bmatrix}$$

$$p = \begin{bmatrix} 2, & 1, & 3 \end{bmatrix}$$

1: function
$$GE_SPP(n,(a_{ij}),(p_i))$$

2: **for**
$$k = 1$$
 to $n - 1$ **do**

3: **for**
$$i = k + 1$$
 to n **do**

$$4: z \leftarrow a_{p_i k} / a_{p_k k}$$

5:
$$a_{p_ik} \leftarrow 0$$

6: **for**
$$j = k + 1$$
 to n **do**

7:
$$a_{p_ij} \leftarrow a_{p_ij} - z a_{p_kj}$$

8: **return**
$$(a_{ij})$$

$$\max(|2.5|, |2.5|) = 2.5$$

$$R_3 \leftarrow R_3 - R_2$$

$$R_1 \leftarrow \frac{2}{5}R_1$$

$$A_3 = \begin{bmatrix} 0 & 1 & 2.2 \\ 1 & 0.5 & -0.6 \\ 0 & 0 & -3 \end{bmatrix}$$

$$p = \begin{bmatrix} 2, & 1, & 3 \end{bmatrix}$$

1: function
$$GE_SPP(n,(a_{ij}),(p_i))$$

2: **for**
$$k = 1$$
 to $n - 1$ **do**

3: **for**
$$i = k + 1$$
 to n **do**

4:
$$z \leftarrow a_{p_i k} / a_{p_k k}$$

5:
$$a_{p_ik} \leftarrow 0$$

6: **for**
$$j = k + 1$$
 to n **do**

7:
$$a_{p_ij} \leftarrow a_{p_ij} - z a_{p_kj}$$

8: **return**
$$(a_{ij})$$

$$\max(|2.5|, |2.5|) = 2.5$$

$$R_3 \leftarrow R_3 - R_2$$

$$R_1 \leftarrow \frac{2}{5}R_1$$

$$A_3 = \begin{bmatrix} 0 & 1 & 2.2 \\ 1 & 0.5 & -0.6 \\ 0 & 0 & -3 \end{bmatrix}$$

$$p = \begin{bmatrix} 2, & 1, & 3 \end{bmatrix}$$

1: function GE_SPP
$$(n, (a_{ij}), (p_i))$$

2: for $k = 1$ to $n - 1$ do
3: for $i = k + 1$ to n do
4: $z \leftarrow a_{p_i k}/a_{p_k k}$
5: $a_{p_i k} \leftarrow 0$
6: for $j = k + 1$ to n do

$$R_3 \leftarrow -\frac{1}{3}R_3$$

return (a_{ij})

7:

8:

 $a_{p_ij} \leftarrow a_{p_ij} - z a_{p_kj}$

Direct Methods: Scaled Partial Pivoting Example

$$A_4 = \begin{bmatrix} 0 & 1 & 2.2 \\ 1 & 0.5 & -0.6 \\ 0 & 0 & 1 \end{bmatrix}$$

$$p = \begin{bmatrix} 2, & 1, & 3 \end{bmatrix}$$

1: **function** GE_SPP
$$(n, (a_{ij}), (p_i))$$

2: **for** $k = 1$ **to** $n - 1$ **do**
3: **for** $i = k + 1$ **to** n **do**
4: $z \leftarrow a_{p_i k} / a_{p_k k}$
5: $a_{p_i k} \leftarrow 0$
6: **for** $j = k + 1$ **to** n **do**
7: $a_{p_i j} \leftarrow a_{p_i j} - z a_{p_k j}$
8: **return** (a_{ij})

$$R_3 \leftarrow -\frac{1}{3}R_3$$

Recall: General Conditions for Iterative Method Convergence

Recall: General Conditions for Iterative Method Convergence

Theorem

For the linear system Ax = b with A invertible, define the iteration formula

$$x^{(k)} = Gx^{(k-1)} + c.$$

The sequence $\{x^{(k)}\}$ will converge to $(I-G)^{-1}c$ provided that $\rho(G) < 1$.

Recall: General Conditions for Iterative Method Convergence

Theorem

For the linear system Ax = b with A invertible, define the iteration formula

$$x^{(k)} = Gx^{(k-1)} + c.$$

The sequence $\left\{x^{(k)}\right\}$ will converge to $(I-G)^{-1}c$ provided that $\rho(G)<1$.

Methods

- Richardson
- Jacobi
- Gauss-Seidel
- SOR
- Steepest Descent
- Conjugate Gradient

Richardson

System Stipulations

• A invertible

Iteration Formula

•
$$x^{(k)} = (I - A)x^{(k-1)} + b = x^{(k-1)} + r^{(k-1)}$$

Convergence Criteria

•
$$\rho(I - A) < 1$$

• Consider matrix
$$A = \begin{bmatrix} 6 & 1 & 1 \\ 2 & 4 & 0 \\ 1 & 2 & 6 \end{bmatrix}$$
 with solution $b = \begin{bmatrix} 12 \\ 0 \\ 6 \end{bmatrix}$.

- Consider matrix $A = \begin{bmatrix} 6 & 1 & 1 \\ 2 & 4 & 0 \\ 1 & 2 & 6 \end{bmatrix}$ with solution $b = \begin{bmatrix} 12 \\ 0 \\ 6 \end{bmatrix}$.
- Algorithm is $x^{(k+1)} = (I \omega A)x^{(k)} + \omega b^{(k)}$ for some scalar $\omega \neq 0$ such that |r| < 1.

- Consider matrix $A = \begin{bmatrix} 6 & 1 & 1 \\ 2 & 4 & 0 \\ 1 & 2 & 6 \end{bmatrix}$ with solution $b = \begin{bmatrix} 12 \\ 0 \\ 6 \end{bmatrix}$.
- Algorithm is $x^{(k+1)} = (I \omega A)x^{(k)} + \omega b^{(k)}$ for some scalar $\omega \neq 0$ such that |r| < 1.
- Let $x^{(0)} = \begin{bmatrix} 2 & 2 & 2 \end{bmatrix}^T$ and $\omega = \frac{1}{6}$.

- $\bullet \text{ Consider matrix } A = \begin{bmatrix} 6 & 1 & 1 \\ 2 & 4 & 0 \\ 1 & 2 & 6 \end{bmatrix} \text{ with solution } b = \begin{bmatrix} 12 \\ 0 \\ 6 \end{bmatrix}.$
- Algorithm is $x^{(k+1)}=(I-\omega A)x^{(k)}+\omega b^{(k)}$ for some scalar $\omega\neq 0$ such that |r|<1.
- Let $x^{(0)} = \begin{bmatrix} 2 & 2 & 2 \end{bmatrix}^T$ and $\omega = \frac{1}{6}$.

0

$$x^{(1)} = \begin{bmatrix} 0 & -1/6 & -1/6 \\ -1/3 & 1/3 & 0 \\ -1/6 & -1/3 & 0 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \\ 2 \end{bmatrix} + \frac{1}{6} \begin{bmatrix} 12 \\ 0 \\ 6 \end{bmatrix}$$
$$= \begin{bmatrix} 4/3 & 0 & 0 \end{bmatrix}^{T}$$

- $\bullet \text{ Consider matrix } A = \begin{bmatrix} 6 & 1 & 1 \\ 2 & 4 & 0 \\ 1 & 2 & 6 \end{bmatrix} \text{ with solution } b = \begin{bmatrix} 12 \\ 0 \\ 6 \end{bmatrix}.$
- Algorithm is $x^{(k+1)}=(I-\omega A)x^{(k)}+\omega b^{(k)}$ for some scalar $\omega\neq 0$ such that |r|<1.
- Let $x^{(0)} = \begin{bmatrix} 2 & 2 & 2 \end{bmatrix}^T$ and $\omega = \frac{1}{6}$.

•

$$x^{(1)} = \begin{bmatrix} 0 & -1/6 & -1/6 \\ -1/3 & 1/3 & 0 \\ -1/6 & -1/3 & 0 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \\ 2 \end{bmatrix} + \frac{1}{6} \begin{bmatrix} 12 \\ 0 \\ 6 \end{bmatrix}$$
$$= \begin{bmatrix} 4/3 & 0 & 0 \end{bmatrix}^{T}$$

• After 12 iterations, $x^{(12)} \approx \begin{bmatrix} 2 & -1 & 1 \end{bmatrix}^T$.

• Jacobi

System Stipulations

- A invertible
- ullet A diagonally dominant

Iteration Formula

•
$$x^{(k)} = (I - D^{-1}A)x^{(k-1)} + D^{-1}b$$

•
$$D = a_{ii}$$

Convergence Criteria

•
$$\rho(I - D^{-1}A) < 1$$

• Gauss-Seidel

System Stipulations

- A invertible
- A diagonally dominant

Iteration Formula

•
$$x^{(k)} = (I - L^{-1}A)x^{(k-1)} + L^{-1}b$$

•
$$L = a_{ij}, i \geq j$$

Convergence Criteria

•
$$\rho(I - L^{-1}A) < 1$$

• SOR

System Stipulations

- Complex system
- A: positive definite, Hermitian

Iteration Formula

•
$$x^{(k+1)} = (I - (\alpha D - C)^{-1}A)x^{(k)} + (\alpha D - C)^{(-1)}b$$

• D: positive definite, Hermitian

•
$$C: C + C^* = D - A$$

•
$$\alpha \in \mathbb{R} \ni \alpha > \frac{1}{2}$$

Convergence Criteria

•
$$\rho(I - (\alpha D - C)^{-1}A) < 1$$

Typical values

•
$$D = a_{ii}, C = -a_{ij} \ni i \ge j$$

Indirect Methods: SOR Example

 ${\bf SOR} \ {\bf Example}$

Indirect Methods: Steepest Descent

Method

• Steepest Descent

System Stipulations

- A invertible
- A symmetric, positive definite

Iteration Formula

•
$$x^{(k)} = x^{(k-1)} + t_{k-1}v^{(k-1)}$$

•
$$t_{k-1} = \frac{\langle v^{(k-1)}, b - Ax^{(k-1)} \rangle}{\langle v^{(k-1)}, Av^{(k-1)} \rangle}$$

•
$$v^{(k-1)} = -\nabla x^{(k-1)} = -\frac{d}{dx}q(x^{(k-1)})$$

•
$$q(x) = \langle x, Ax \rangle - 2\langle x, b \rangle$$

Indirect Methods: Conjugate Gradient

Method

• Conjugate Gradient

System Stipulations

- A invertible
- A symmetric, positive definite

Iteration Formula

•
$$x^{(k)} = x^{(k-1)} + t_{k-1}v^{(k-1)}$$

•
$$t_{k-1} = \frac{\langle v^{(k-1)}, b - Ax^{(k-1)} \rangle}{\langle v^{(k-1)}, Av^{(k-1)} \rangle}$$

•
$$\left\{v^{(0)}, \dots, v^{(n)}\right\}$$
 are A-orthogonal

•
$$v^{(k-1)} = -\nabla x^{(k-1)} = -\frac{d}{dx}q(x^{(k-1)})$$

•
$$q(x) = \langle x, Ax \rangle - 2\langle x, b \rangle$$