Monochromatic triangles in two-colored plane

Vít Jelínek Jan Kynčl Rudolf Stolař Tomáš Valla

Euclidean Ramsey theory

X ...a finite set of points in \mathbb{E}^d

c ... a finite number of colors

Question: Does every coloring of \mathbb{E}^d with c colors contain a monochromatic copy of X?

 $\begin{array}{l} \operatorname{copy} \ \operatorname{of} \ X = \operatorname{congruent} \ \operatorname{copy} \ \operatorname{of} \ X = \operatorname{set} \ \operatorname{obtained} \ \operatorname{from} \ X \\ \operatorname{by} \ \operatorname{translations} \ \operatorname{and} \ \operatorname{rotations} \\ \end{array}$

 X^{\prime} is monochromatic if all points of X^{\prime} have the same color.

case
$$d = 2, c = 2, |X| = 3$$

triangle ... a set of 3 points, including degenerate triangle ... a set of 3 collinear points (a,b,c)-triangle ... a triangle with sides of length a,b,c in counter-clockwise order unit triangle ... a (1,1,1) triangle coloring ... a partition of \mathbb{E}^2 into two sets, \mathcal{B} (black) and \mathcal{W} (white)

Coloring χ contains a triangle T if there is a monochromatic copy of T, otherwise χ avoids T.

Examples of known results

Theorem [Erdös et al., 1973; Shader, 1979]

Every coloring contains every

- triangle with a 30° , 90° or 150° angle
- triangle with a ratio between two sides equal to $2\sin 15^{\circ}$, $2\sin 36^{\circ}$, $2\sin 45^{\circ}$, $2\sin 60^{\circ}$ or $2\sin 75^{\circ}$
- (a, 2a, 3a)-triangle
- (a, b, c)-triangle satisfying $c^2 = a^2 + 2b^2$

Strip coloring avoiding a unit triangle:

Conjecture 1 [Erdös et al., 1973]

Every coloring contains every non-equilateral triangle.

Conjecture 2 [Erdös et al., 1973]

The strip coloring is the only coloring avoiding any triangle (up to scaling and modification of colors on the boundaries of the strips).

Our results

Theorem 1 Each coloring $\chi = (\mathcal{B}, \mathcal{W})$, where \mathcal{B} is a closed set (and \mathcal{W} is open), contains every triangle.

Theorem 2

- Each polygonal coloring contains every non-equilateral triangle.
- Characterization of all polygonal colorings avoiding an equilateral triangle
- Conjecture 2 is false.

Reduction to equilateral triangles

Lemma [Erdös et al., 1973]

Let χ be a coloring of the plane.

- 1. If χ contains an (a,a,a)-triangle for some a>0, then χ contains any (a,b,c)-triangle, where b,c>0 and a,b,c satisfy the (possibly degenerate) triangle inequality.
- 2. If χ contains an (a,b,c)-triangle, then χ contains an (a,a,a), (b,b,b), or (c,c,c)-triangle.

proof: (1)

proof: (2)

Corollary:

- 1. χ contains every triangle if and only if χ contains every equilateral triangle.
- 2. χ contains every non-equilateral triangle if and only if there exists an a>0 such that χ contains all equilateral triangles except of the (a,a,a)-triangle.
- 3. χ contains an (a,b,c)-triangle if and only if χ contains a (b,a,c)-triangle.

Coloring by open and closed sets

(proof of Theorem 1)

- it satisfies to find a monochromatic unit triangle

 $\varepsilon\text{-almost unit triangle}$...an (a,b,c)-triangle whose edge-lengths satisfy $1-\varepsilon \leq a,b,c \leq 1+\varepsilon$

$$Q(a)$$
... a square $[-a, a] \times [-a, a]$

Proposition Let $Q(3) = \mathcal{B} \cup \mathcal{R}$ be an arbitrary coloring of the square Q(3) avoiding the unit triangle. Then for every $\varepsilon > 0$ both \mathcal{B} and \mathcal{R} contain an ε -almost unit triangle.

(if \mathcal{B} is closed, then \mathcal{B}^3 is a compact set containing a sequence of $\frac{1}{n}$ -almost unit triangles...)

proof of the proposition:

- given $\varepsilon>0$ and a coloring $\chi=(\mathcal{B},\mathcal{R})$ of Q(3)
- assume that χ avoids the unit triangle and that $\mathcal R$ does not contain any ε -almost unit triangle
- in Q(1) , find a red point ${\pmb R}$ and a blue point ${\pmb S}$, such that $|R-S|<\varepsilon$
- construct a circle $\mathcal C$ with the center S and radius 1
- denote $K(\alpha) = S + (\cos \alpha, \sin \alpha)$
- $K(\alpha)$ and $K(\alpha + \frac{\pi}{3})$ must have different color
- for every blue $K(\alpha)$, each $K(\beta)$, $|K(\beta)-K(\alpha)|<\varepsilon$, is also blue.
- \Rightarrow whole $\mathcal C$ is blue, a contradiction.

Polygonal colorings

A coloring $\chi=(\mathcal{B},\mathcal{W})$ is polygonal, if

- ullet each of the two sets ${\cal B}$ and ${\cal W}$ is contained in the closure of its interior
- The boundary of χ (a common boundary of $\mathcal B$ and $\mathcal W$), is a union of straight line segments (called boundary segments), which can intersect only at their endpoints (boundary vertices).
- Every bounded region of the plane is intersected by only finitely many boundary segments.

Theorem 2 Polygonal coloring χ avoids a unit triangle if and only if χ is zebra-like (up to modification of the colors on the boundary).

$$|\vec{x}| = |\vec{y}| = 1, \vec{x} \perp \vec{y}$$

$$L_i = L_i + \vec{x}$$

$$L_{i+1} = L_i + \vec{z}$$

Theorem 2 Polygonal coloring χ avoids a unit triangle if and only if χ is zebra-like (up to modification of the colors on the boundary).

$$|AB| < 1 \Leftrightarrow \theta_{AB} \in (\pi/3, 2\pi/3)$$

proof of \Rightarrow (outline):

- given a polygonal coloring $\chi=(\mathcal{B},\mathcal{W})$ with a boundary Δ avoiding the unit triangle.
- $\mathcal{C}(A)$... a unit circle centered at A
- a boundary point A is feasible, if it is not a boundary vertex and $\mathcal{C}(A)$ does not contain any boundary vertex. Other boundary points are called infeasible.
- orientation of boundary segments (white region on the left)

Local properties of χ

Lemma: Let s be a (horizontal) boundary segment containing a feasible point A, let $P(\alpha)$ denote the point $A + (\cos \alpha, \sin \alpha)$ on C(A). Let $B = P(\beta) \in \Delta$ and let t be a segment passing through B. Then

- ullet s and t are parallel
- AB is not perpendicular to t, i.e, $\beta \notin \{-\frac{\pi}{2}, \frac{\pi}{2}\}$.
- $P(\alpha) \in \Delta$ if and only if $P(\alpha + \frac{\pi}{3}) \in \Delta$.
- If $\beta \in (\frac{\pi}{6}, \frac{5\pi}{6})$ or $\beta \in (\frac{7\pi}{6}, \frac{11\pi}{6})$, then s and t have opposite orientation. If $|\beta| < \frac{\pi}{6}$ or $|\beta \pi| < \frac{\pi}{6}$, then s and t have the same orientation.
- For every θ there is exactly one value of $\alpha \in [\theta, \theta + \frac{\pi}{3})$ such that $P(\alpha) \in \Delta$.

Global properties of χ

Lemma: The size of the convex angle formed by two segments sharing an endpoint is greater than $\frac{2\pi}{3}$.

- ⇒ No three boundary segments share a common endpoint.
- ⇒ Every boundary component is a piecewise linear curve (closed or unbounded).

Let $A \in \Delta$. For $t \in \mathbb{R}$ let A(t) be a point on the same boundary component as A, such that the directed length of the boundary curve between A and A(t) is t.

Let $p_i(t) = P_i(A(t))$ (for feasible A(t)).

Clearly, A(t) is a continuous function of t.

Lemma: The functions $p_i(t)$ can be extended to continuous functions by defining $P_i(A(t))$ for infeasible points A(t).

Lemma: Let $A \in \Delta$ be an arbitrary boundary point. For each $i=0,1,\ldots,5$, all the unit segments of the form $A(t)p_i(t)$ have the same slope, independently of the choice of t.

 \Rightarrow The translation by vector $P_i(A) - A$ is Δ -invariant.

Lemma: Infeasible boundary points A have similar local properties as feasible points (the circle $\mathcal{C}(A)$ can touch the boundary at points different from $P_i(A)$).

Lemma: Let $A \in \Delta$ be an arbitrary boundary point. Then inside $\mathcal{C}(A)$, $P_1(A)$ is connected with $P_2(A)$, P_0 with A, A with P_3 , and P_4 with P_5 .

 $\Rightarrow \chi$ is zebra-like!

Open problems

- monochromatic triangles in colorings by regions with curved boundary
- monochromatic triangles in measurable colorings
- polygonal chromatic number of the plane (lower bound is 6 [Woodall, 1973])
- measurable chromatic number of the plane (lower bound is 5 [Falconer, 1981])