Lax Colimits and Fibrations of Double Categories

Dorette Pronk

Dalhousie University

Virtual Double Categories Workshop, December 1, 2022

Grothendieck Constructions for Double Categories

This talk is based on two papers:

- G.S.H. Cruttwell, M.J. Lambert, D.A. Pronk, M. Szyld, Double fibrations, *Theory and Applications of Categories*, Vol. 38, 2022, No. 35, pp 1326-1394.
- M. Bayeh, D.A. Pronk, M. Szyld, A Grothendieck construction for double categories, in progress.

The Grothendieck Construction / Category of Elements

For a pseudofunctor $F: C \rightarrow \mathbf{Cat}$, the *Grothendieck category of elements*

$$GrF \rightarrow C$$

can be characterized up to equivalence by either of the following two characterizations:

- **A. EI** *F* is the lax colimit of *F* in **Cat**.
- **B1. EI***F* is the value on objects of a 2-functor, which is an equivalence of 2-categories

EI:
$$\operatorname{\mathsf{Hom}}_p(\mathsf{C},\operatorname{\mathbf{Cat}})\longrightarrow\operatorname{\mathsf{coFib}}(\mathsf{C})$$

B2. For $F: C^{op} \to Cat$, **EI**F is the value on objects of a 2-functor, which is an equivalence of 2-categories

EI:
$$\operatorname{Hom}_p(\mathsf{C}^{\operatorname{op}},\mathbf{Cat})\longrightarrow \operatorname{Fib}(\mathsf{C})$$

Fibrations

Let $P:\mathscr{E}\longrightarrow\mathscr{B}$ be a functor between categories.

P is a fibration when:

$$B^* \xrightarrow{u^*E} E \iff B \xrightarrow{u} PE$$

(Cartesian lift)

- A cleavage is a choice of a Cartesian lift for each arrow of \mathcal{B} . A cloven fibration is a fibration and a chosen cleavage.
- -Any cloven fibration gives rise to an Indexed category $F: \mathscr{B}^{op} \to \mathbf{Cat}$.
- -Any indexed category gives rise to a cloven fibration by its Grothendieck construction/category of elements.

Morphisms of Fibrations

Given cloven fibrations $P:\mathscr{E}\longrightarrow\mathscr{B}$ and $P':\mathscr{E}'\longrightarrow\mathscr{B}'$,

 $\mathscr{E} \xrightarrow{f^{\top}} \mathscr{E}'$ • A morphism f between them is: $P \downarrow \qquad \qquad \downarrow P'$ $\mathscr{B} \xrightarrow{f^{\perp}} \mathscr{B}'$

where f^{\top} preserves the Cartesian arrows.

- f is said to be **cleavage-preserving** when f^{\top} maps the arrows of the cleavage of P to arrows in the cleavage of P'.
- This defines 2-categories cFib ⊆ Fib ⊆ Arr^s(Cat) (full on 2-cells, with objects the cloven fibrations).

The classical equivalence **Fib** \simeq **ICat** (with pseudo transformations) restricts to c**Fib** \simeq **ICat** $_t$ (with strict natural transformations.)

Double Categories

A double category is an internal category in Cat,

$$C_1 \times_{C_0} C_1 \xrightarrow{\otimes} C_1 \xrightarrow{s} C_0.$$

- It has
 - objects (objects of C₀);
 - inner/horizontal arrows (arrows of C_0), $d_0(f) \xrightarrow{f} d_1(f)$;
 - outer/vertical arrows (objects of C_1), $s(v) \xrightarrow{V} t(v)$;
 - double cells (arrows of C₁), denoted

where $d_0(\alpha) = v$, $d_1(\alpha) = w$, $s(\alpha) = f$, and $t(\alpha) = f'$.

Examples

• For any 2-category C, $\mathbb{Q}(C)$ is the double category of quintets in C, with double cells

② For any 2-category \mathcal{C} , $\mathbb{H}(\mathcal{C})$ is the double category with double cells

$$1_{A} \stackrel{f}{\underset{g}{\downarrow}} 1_{B} \qquad \text{for each } \alpha \colon f \Rightarrow g \text{ in } \mathcal{C}.$$

1 The double category V(C) is defined analogously.

7 / 48

More Examples

• For any 2-category $\mathcal C$ with a distinguished family of arrows Σ that forms a sub-category, we can define $\mathbb Q^\Sigma(\mathcal C)\subseteq\mathbb Q(\mathcal C)$ by requiring the inner/horizontal arrows to be in Σ :

$$A \xrightarrow{m} B$$

$$f \oint \alpha \oint g \qquad \text{for each } \alpha : gm \Rightarrow nf \text{ in } C; m, n \in \Sigma.$$

$$C \xrightarrow{n} D$$

Many examples of double categories are not exactly like this but have this *flavor*: \mathbb{R} el: functions and relations; \mathbb{P} rof: functors and profunctors; \mathbb{S} pan(Cat): functions and spans; \mathbb{R} ing: ring homomorphisms and bimodules; etc...

But note: except in Rel, vertical composition is no longer strict!

(Pseudo) Double Categories

• A (pseudo) double category is an internal pseudo category in Cat,

$$C_1 \times_{C_0} C_1 \xrightarrow{\otimes} C_1 \xrightarrow{s \atop \leftarrow y \atop t} C_0$$
.

The pull-back is still the same 2-pull-back, but instead of associativity and unit axioms we have invertible 2-cells (natural transformations)

(Pseudo) Double Categories

 A double category (Grandis-Paré, 1999) is a pseudo category in Cat,

$$C_1 \times_{C_0} C_1 \xrightarrow{\otimes} C_1 \xrightarrow{\stackrel{s}{\leftarrow} y} C_0$$
.

- Informally, this means that inner (horizontal) composition remains strict, but external (vertical) composition is pseudo.
- There is a 2-category **DblCat** of pseudo (double=internal) categories, pseudo (double=internal) functors to be defined on the next slide, and (horizontal=internal) transformations.

We have now all the examples from before (and more!)

Double Functors as Internal Functors

Internal pseudo categories can be considered in any 2-category ${\cal K}$ with 2-pullbacks instead of **Cat** (Martins-Ferreira, 2006).

A lax double functor $F: \mathbb{C} \to \mathbb{D}$ consists then of two arrows

 $F_0 \colon C_0 \to D_0$ and $F_1 \colon C_1 \to D_1$ and comparison 2-cells (+ axioms)

$$C_{1} \times_{C_{0}} C_{1} \xrightarrow{\otimes} C_{1}$$

$$F_{1} \times_{F_{0}} F_{1} \downarrow \qquad \phi \qquad \downarrow F_{1}$$

$$D_{1} \times_{D_{0}} D_{1} \xrightarrow{\otimes} D_{1}$$

$$C_0 \xrightarrow{y} C_1$$

$$F_0 \downarrow \qquad \downarrow F_1$$

$$D_0 \xrightarrow{y} D_1$$

If the comparison cells are invertible, F is a pseudo double functor.

Note that the interaction with s and t is required to be **stricter** than that with y and \otimes .

The category **DblCat** - Definition

The category **DblCat** of double categories has:

- **objects:** double categories $\mathbb{C}, \mathbb{D}, \ldots$;
- arrows: double functors F, G, \ldots ;
- transformations: these come in two *flavors*:
 - a horizontal transformation $\gamma \colon F \Rightarrow G$ is given by

pseudo functorial in the vertical direction and natural in the horizontal direction.

- **vertical transformations** $\nu \colon F \Longrightarrow G$ are defined dually, pseudonatural in the vertical direction and functorial in the horizontal direction;
- modifications given by a family of double cells.

The category **DblCat** - Properties

- **DblCat** is not a double category;
- a double category has two types of arrows, and **DblCat** has only one;
- a double category has one type of 2-cell, and DblCat has two;
- there are 2-categories **DblCat**_h and **DblCat**_v;
- **DblCat** is *enriched* in double categories: **DblCat**(C, D) is a double category for each pair of double categories C, D;
- so we need to replace **DblCat** by a double category as codomain for the indexing functors.

Replacements for **DblCat**, Option 1: Span(**Cat**)

- A double 2-category is a pseudo category in the 2-category of 2-categories, 2-functors and 2-natural transformations.
- There is a double 2-category \mathbb{S} pan(\mathcal{K}) for any 2-category \mathcal{K} with double cells and 2-cells between them:

• A lax double functor from the terminal double category to Span(Cat) is precisely a double category.

Replacements for **DblCat**, Option 2: \mathbb{Q} **DblCat**_{ν}

When considering colimits we would like to have a double category that has double categories as objects. There are six double categories

- $\mathbb{V}\mathsf{DblCat}_{h/v}$,
- \mathbb{H} **DblC**at_{h/v}
- \mathbb{Q} **DblC**at_{h/v}.

We will work with $\mathbb{Q}\mathbf{DblCat}_{v}$.

Diagrams Indexed by a Double Category

These observations lead us to two types of "double indexing functors":

• When aiming for double fibrations: A double indexing functor is a contravariant lax pseudo double functor,

$$\mathbb{D}^{\mathsf{op}} \to \mathbb{S}\mathsf{pan}(\textbf{Cat})$$

where is Span(Cat) a double 2-category (as we are considering Cat here as a 2-category).

 When aiming for doubly lax colimits: An indexing double functor is a double functor

$$\mathbb{D} \to \mathbb{Q}(\mathsf{DblCat}_{\mathsf{v}}),$$

also referred to as a vertical double functor

$$\mathbb{D} \longrightarrow \mathsf{DblCat}$$
.

Dorette Pronk Double Grothendieck 16 / 48

Grothendieck for $F: \mathbb{D} \to \mathbb{S}pan(\mathbf{Cat})$

A lax double functor $F : \mathbb{D}^{op} \to \mathbb{S}pan(\mathbf{Cat})$ gives rise to pseudo functors

$$F_0\colon \mathbb{D}_0^\mathsf{op} o \mathbb{S}$$
pan $(\mathsf{Cat})_0=\mathsf{Cat}$ and $F_1\colon \mathbb{D}_1^\mathsf{op} o \mathbb{S}$ pan $(\mathsf{Cat})_1\overset{\mathsf{apx}}{ o}\mathsf{Cat}$

The Grothendieck category of elements gives us cloven fibrations

$$\mathbb{E}\mathsf{I}(F)_0 o \mathbb{D}_0$$
 and $\mathbb{E}\mathsf{I}(F)_1 o \mathbb{D}_1$.

Now, $\mathbb{E}I(F)_0$ and $\mathbb{E}I(F)_1$ form the category of objects and arrows respectively of the double category $\mathbb{E}I(F)$ with a *double fibration*

$$\mathbb{E}\mathsf{I}(F) o \mathbb{D}$$

Dorette Pronk Double Grothendieck 17 / 48

The Double Fibration $\mathbb{E}\mathsf{I}(F) \to \mathbb{D}$

Notation

For $F: \mathbb{D} \to \mathbb{S}$ pan(**Cat**), and an outer arrow $m: A \longrightarrow B$ of \mathbb{D} , we denote its image by

Then $\mathbb{E}I(F)$ has

- Inner arrows $(A, X) \xrightarrow{(f, f)} (C, Z)$ with $f: A \to C$ in \mathbb{D} and $\overline{f}: X \to f^*Z$ in FA:
- Outer arrows (m, \overline{m}) : $(A, X) \longrightarrow (B, Y)$ with $m: A \longrightarrow B$ in \mathbb{D} and $\overline{m} \in Fm$ such that $L_m \overline{m} = X$ and $R_m \overline{m} = Y$

The Double Fibration $\mathbb{E}\mathsf{I}(F) \to \mathbb{D}$

• $\mathbb{E}I(F)$ has squares of the form

$$(A, X) \xrightarrow{(f,\overline{f})} (C, Z) \qquad A \xrightarrow{f} C$$

$$(m,\overline{m}) \downarrow \qquad (\theta,\overline{\theta}) \qquad \downarrow (n,\overline{n}) \quad \text{for} \qquad m \downarrow \qquad \theta \qquad \downarrow n$$

$$(B, Y) \xrightarrow{(g,\overline{g})} (D, W) \qquad B \xrightarrow{g} D \qquad \text{in } \mathbb{D}$$

and $\overline{\theta} \colon \overline{m} \to \theta^* \overline{n}$ in Fm such that $L_m \overline{\theta} = \overline{f}$ and $R_m \overline{\theta} = \overline{g}$.

ullet The projection double functor $\mathbb{E} I(F) o \mathbb{D}$ is a double fibration.

What is a Double Fibration?

Suggestion

Take an internal category in Fib.

Problem

Fib doesn't have all the 2-pullbacks we would need.

Also, the *fibrational strictness* of s and t would the same as that of y and \otimes , which is not in line with what we know about pseudo double functors.

The solution

A double fibration is a pseudo category in \mathbf{Fib} such that s and t are in $c\mathbf{Fib}$ (that is, they preserve the chosen cleavages).

This translates into:

Definition of a Double Fibration

A **double fibration** as defined on the previous slide is the same as a (strict) double functor $P : \mathbb{E} \to \mathbb{B}$ between (pseudo) double categories

such that

- \bullet P_0 and P_1 are fibrations,
- 2 they admit a cleavage such that $s_{\mathbb E}$ and $t_{\mathbb E}$ are cleavage-preserving, and
- $y_{\mathbb{E}}$ and $y_{\mathbb{E}}$ are Cartesian-morphism preserving.

Dorette Pronk Double Grothendieck 21 / 48

Some Examples

- When $\mathbb{E}_0 = \mathbb{B}_0 = 1$, we recover monoidal fibrations [1];
- For any 2-functor $P: E \to B$, we have that P is a 2-fibration [2] if and only if $\mathbb{Q}P: \mathbb{Q}E \to \mathbb{Q}B$ is a double fibration;
- When P_0 and P_1 are discrete fibrations, we recover discrete double fibrations [3];
- The double Grothendieck construction in Definition 5.3 of [4] is also a double fibration.
- [1] Framed Bicategories and Monoidal Fibrations, Shulman (2008).
- [2] Fibred 2-Categories and Bicategories, Buckley (2014).
- [3] Discrete Double Fibrations, Lambert (2021).
- [4] Double Categories of Open Dynamical Systems, Myers (2021).

More Examples

ullet The domain fibration: dom: $\mathbb{D}^2 o \mathbb{D}$,

- $Im: \mathbb{S}pan \to \mathbb{R}el$ is a double optibration.
- There is a split double fibration $\Pi \colon \mathbb{F}am(\mathcal{C}) \to \mathbb{S}pan$.
- \bullet There is a codomain fibration cod: $\mathbb{D}^2 \to \mathbb{D}$ if
 - \mathbb{D}_1 and \mathbb{D}_0 have chosen finite limits,
 - these limits are preserved on the nose by s and t
 - and up to iso by y and \otimes .

Double Fibrations are Internal Fibrations

The notion of *internal fibration* for a 2-category was given by Street in 1974. Let **DblCat** be the 2-category of pseudo double categories, pseudo functors and horizontal/inner transformations.

Theorem [Cruttwell, Lambert, P., Szyld]

A *strict* double functor $P: \mathbb{E} \to \mathbb{B}$ is an internal fibration in **DblCat** if and only if it is a double fibration

Double Fibrations are Internal Fibrations

The notion of *internal fibration* for a 2-category was given by Street in 1974. Let **DblCat** be the 2-category of pseudo double categories, pseudo functors and horizontal/inner transformations.

Theorem [Cruttwell, Lambert, P., Szyld]

A *strict* double functor $P: \mathbb{E} \to \mathbb{B}$ is an internal fibration in **DblCat** if and only if it is a double fibration

In addition,

- A *pseudo* double functor P is an internal fibration in \mathbf{DblCat}_{ℓ} iff P_0 and P_1 are fibrations that admit cleavages preserved by $s_{\mathbb{E}}$ and $t_{\mathbb{E}}$
- It is an internal fibration in **DblCat** iff in addition, $y_{\mathbb{E}}$ and $\otimes_{\mathbb{E}}$ are Cartesian-morphism preserving.
- a strict double functor P is an internal fibration in **DblCat**_s iff P_0 and P_1 are fibrations that admit cleavages preserved by $s_{\mathbb{E}}$, $t_{\mathbb{E}}$, $y_{\mathbb{E}}$ and $\otimes_{\mathbb{E}}$.

The $\{\text{Fibrations}\} \stackrel{\sim}{\leftarrow} \{\text{Indexed}\}\ \text{Theorem}$

Let ISpan(Cat) be the category of contravariant lax pseudo double functors valued in the double 2-category Span(Cat).

Theorem [Cruttwell, Lambert, P., Szyld]

There is an equivalence of categories $\mathbf{DblFib} \simeq \mathbf{I}\mathbb{S}\mathsf{pan}(\mathbf{Cat})$

Idea for the proof: use pseudo monoids in double 2-categories.

$$\mathsf{Fib} \simeq \mathsf{ICat} \text{ restricts to } \mathsf{cFib} \simeq \mathsf{ICat}_t, \text{ so } \mathbb{S}\mathsf{pan}_c(\mathsf{Fib}) \simeq \mathbb{S}\mathsf{pan}_t(\mathsf{ICat}).$$

Now we lift:

$$\mathsf{DblFib} := \mathsf{PsMon}(\mathbb{S}\mathsf{pan}_c(\mathsf{Fib})) \simeq \mathsf{PsMon}(\mathbb{S}\mathsf{pan}_t(\mathsf{ICat})) \simeq \mathsf{I}\mathbb{S}\mathsf{pan}(\mathsf{Cat}))$$

Restricting to monoidal or to discrete fibrations, we recover the results in (Moeller-Vasilakopoulou, 2020) and (Lambert, 2021). The right-to-left functor restricts to the construction spelled out in (Paré, 2011).

Option 2: Vertical Indexing Functors $F: \mathbb{D} \to \mathbb{Q}\mathbf{DblCat}_{\nu}$

We have so far only worked out the strict case, where both $\mathbb D$ and F are assumed to be strict, and are working on the pseudo case.

Some concerns you may have:

- Have we lost our ability to use horizontal transformations and modifications?
- Have we lost our ability to distinguish between horizontal and vertical arrows in the indexing double category \mathbb{D} ?

No, they will show up in the notion of **doubly lax transformation**. Our lax colimits are lax with respect to a new notion of tranformation.

Intro to Doubly Lax Transformations

- We will introduce a cylinder double category Cyl_v(DblCat).
- There are vertical double functors

$$Cyl_v(\mathbf{DblCat}) \xrightarrow{\stackrel{d_0}{\smile}} \mathbf{DblCat}$$

• A doubly lax transformation $\alpha \colon F \Rightarrow G \colon \mathbb{D} \longrightarrow \mathbf{DblCat}$ is given by a double functor

$$\alpha \colon \mathbb{D} \to \mathsf{Cyl}_{\nu}(\mathbf{DblCat})$$

such that $d_0\alpha = F$ and $d_1\alpha = G$.

The Double Category of (Vertical) Cylinders

The double category $Cyl_{\nu}(\mathbf{DblCat})$ of **vertical cylinders** is defined by:

- Objects are double functors, denoted by $\downarrow f$.
- Vertical arrows $f \xrightarrow{(u,\mu,v)} \overline{f}$ are given by vertical transformations,

• Horizontal arrows $f \xrightarrow{(h,\kappa,k)} f'$ are given by horizontal transformations,

28 / 48

Double Cylinders

 $f \xrightarrow{(h,\kappa,k)} f'$ A double cell, $(u,\mu,v) \stackrel{\downarrow}{\psi} (\alpha,\Sigma,\beta) \stackrel{\downarrow}{\psi} (u',\mu',v')$ consists of two vertical 2-cells, $\overline{f} \xrightarrow{\overline{(h,\kappa,k)}} \overline{f'}$

$$\underbrace{\stackrel{h}{\underset{u^{\downarrow}}{\swarrow}}}_{\alpha} \underbrace{\stackrel{u'}{\underset{h}{\swarrow}}}_{\alpha} , \ \underbrace{\stackrel{k}{\underset{v^{\downarrow}}{\swarrow}}}_{\beta} \underbrace{\stackrel{v'}{\underset{k}{\swarrow}}}_{\overline{k}}$$

and a modification Σ ,

$$v'kf \stackrel{v'\kappa}{\Longrightarrow} v'f'h$$

$$\downarrow \beta f \qquad \qquad \downarrow \mu' I'$$

$$\overline{k}vf \qquad \Sigma \qquad \overline{f'}u'h$$

$$\downarrow \overline{k}\mu \qquad \qquad \downarrow \overline{f'}c$$

$$\overline{k} \ \overline{f}u \stackrel{\overline{\kappa}u}{\Longrightarrow} \overline{f'} \ \overline{h}u$$

Cylinders and Transformations

- There are vertical double functors d₀, d₁: Cyl_v(**DblCat**) → **DblCat**, sending a cylinder to its top and bottom respectively;
- A doubly lax transformation $\theta \colon F \Rightarrow G$ between vertical double functors $F, G \colon \mathbb{D} \longrightarrow \mathbf{DblCat}$ is given by a double functor

$$\theta \colon \mathbb{D} \to \mathsf{Cyl}_{\nu}(\mathbf{DblCat}),$$

such that $d_0\theta = F$ and $d_1\theta = G$.

30 / 48

Doubly Lax Transformations $\theta \colon F \Rightarrow G$

For each double cell
$$\begin{matrix} A \xrightarrow{f} B \\ u & \downarrow & \alpha & \downarrow v \\ A' \xrightarrow{f'} B' \end{matrix}$$

Doubly Lax Transformations

- Let $F, G: \mathbb{D} \longrightarrow \mathbf{DblCat}$ be vertical double functors.
- Since doubly lax transformations $F \Rightarrow G$ are represented by double functors,

$$\mathbb{D} \to \mathsf{Cyl}_{\nu}(\mathbf{DblCat})$$

they are the objects of a hom double category

$$\mathbb{H}om_{d\ell}(F,G) \subset \mathbf{DblCat}(\mathbb{D},\mathsf{Cyl}_{\nu}(\mathbf{DblCat})).$$

Lax Transformations Between 2-Functors

- By applying $\mathbb Q$ to the hom-categories of a 2-category $\mathcal B$, we can make it into a **DblCat**-enriched category $\widehat{\mathbb Q}(\mathcal B)$.
- This allows us to view lax transformations between 2-functors as a special case of the new doubly lax transformations.

$$\mathcal{A} \xrightarrow{F \atop \psi \alpha} \mathcal{B} \qquad \rightsquigarrow \qquad \mathbb{Q} \mathcal{A} \xrightarrow{\mathbb{Q} F \atop v} \widehat{\mathbb{Q}} (\mathcal{B})$$

- By taking a restricted $\mathbb Q$ on the codomain, taking only a particular class Ω of 2-cells of $\mathcal B$ for the local horizontal arrows, we obtain Ω -transformations.
- ullet By taking a restricted ${\mathbb Q}$ on the domain, we get Σ -transformations.

Doubly Lax Colimits

- A doubly lax cocone for a vertical double functor $F: \mathbb{D} \xrightarrow{\psi} \mathbf{DblCat}$ with vertex $\mathbb{E} \in \mathbf{DblCat}$ is a doubly lax transformation $F \stackrel{\theta}{\Rightarrow} \Delta \mathbb{E}$.
- There is a double category,

$$\mathbb{L}\mathsf{C}(F,\mathbb{E}) := \mathbb{H}\mathsf{om}_{d\ell}(F,\Delta\mathbb{E})$$

of doubly lax cocones with vertex \mathbb{E} .

• A doubly lax cocone $F \stackrel{\lambda}{\Longrightarrow} \Delta \mathbb{L}$ is the **doubly lax colimit** of F if, for every $\mathbb{E} \in \mathbf{DblCat}$,

$$\mathbf{DblCat}(\mathbb{L},\mathbb{E}) \xrightarrow{\lambda^*} \mathbb{LC}(F,\mathbb{E})$$

is an isomorphism of double categories.

• The doubly lax colimit can be obtained by a **double Grothendieck** construction, denoted by \mathbb{G} r $F = \int_{\mathbb{D}} F$.

The Double Grothendieck Construction: Objects and Arrows

Let $\mathbb{D} \xrightarrow{F} \mathbf{DblCat}$ be a vertical double functor. The **double category of elements**, \mathbb{G} r $F = \int_{\mathbb{D}} F$, is defined by:

- Objects: (C,x) with C in \mathbb{D} and x in FC,
- Vertical arrows:

$$(C,x) \xrightarrow{(u,\rho)} (C',x'),$$

where $C \xrightarrow{u} C'$ in \mathbb{D} and $Fux \xrightarrow{\rho} x'$ in FC'.

Horizontal arrows:

$$(C,x) \xrightarrow{(f,\varphi)} (D,y),$$

where $C \xrightarrow{f} D$ in \mathbb{D} , and $Ffx \xrightarrow{\varphi} y$ in FD.

The Double Grothendieck Construction: Double Cells

$$(C,x) \xrightarrow{(f,\varphi)} (D,y)$$
• Double cells: (u,ρ) \downarrow (α,Φ) \downarrow (v,λ) , where α : $(u \xrightarrow{f} v)$ is a double (C',x') $\xrightarrow{(f',\varphi')} (D',y')$

cell in \mathbb{D} and Φ is a double cell in FD':

Factorization

- Any horizontal arrow (f, φ) can be factored as $(A,x) \stackrel{(f,1_{Ffx})}{\longrightarrow} (B,Ffx) \stackrel{(1_B,\varphi)}{\longrightarrow} (B,v).$
- Any vertical arrow (u, ρ) can be factored as $(A,x) \stackrel{(u,1_{Fux}^{\bullet})}{\longrightarrow} (A',Fux) \stackrel{(1_{A'}^{\bullet},\rho)}{\longrightarrow} (A',x').$
- And any double cell (α, Φ) can be factored as

The Main Theorem

• There is a doubly lax cocone $F \stackrel{\lambda}{\Longrightarrow} \Delta \mathbb{G}r F$ with the required universal property:

$$\lambda^* \colon \mathbf{DblCat}\left(\int_{\mathbb{D}} F, \mathbb{E}\right) o \mathbb{LC}\left(\int_{\mathbb{D}} F, \mathbb{E}\right)$$

is an iso of double categories for all $\mathbb{E} \in \mathbf{DblCat}$.

 \bullet Furthermore, $\int_{\mathbb{D}}$ extends to a functor of $\mathbf{DblCat}\text{-}\mathsf{categories}$

$$\mathsf{Hom}_{\nu}(\mathbb{D},\mathsf{DblCat})_{d\ell}\to\mathsf{DblCat}/\mathbb{D}$$

which is locally an isomorphism of double categories

$$\mathbb{H}\mathsf{om}_{d\ell}(F,G)\cong (\mathsf{DblCat}/\mathbb{D})\left(\int_{\mathbb{D}}F o \mathbb{D},\int_{\mathbb{D}}G o \mathbb{D}
ight).$$

Dorette Pronk Double Grothendieck 39 / 48

Application I: Tricolimits in 2-Cat

• For a 2-category $\mathcal A$ and a 2-functor $F \colon \mathcal A \to \mathbf{2\text{-}Cat}$, we construct a double index functor as follows. First take

$$\mathcal{A} \xrightarrow{F}$$
 2-Cat $\xrightarrow{\mathbb{V}}$ DblCat _{V}

and then apply $\mathbb V$ to obtain:

$$\mathbb{V}(\mathcal{A}) \xrightarrow{\quad \mathbb{V}(\mathbb{V} \circ F) \quad} \mathbb{V}(\mathsf{DblCat}_{\nu}) \xrightarrow{\quad \mathsf{incl} \quad} \mathbb{Q}(\mathsf{DblCat}_{\nu}).$$

Applying the double Grothendieck construction gives us

$$\int_{\mathbb{V}\mathcal{A}} \mathbb{V}(\mathbb{V} \circ F) = \mathbb{V} \int_{\mathcal{A}} F$$

(as defined by Bakovic and Buckley)

- The functor $V: \mathbf{2}\text{-}\mathbf{Cat} \to \mathbf{DblCat}_{v}$ induces an isomorphism of 3-categories between **2-Cat** and its image in \mathbf{DblCat}_{v} .
- It follows that $\int_A F$ is the lax tricolimit of F in 2-Cat.

Application II: Categories of Elements

• For a functor $F: A \rightarrow \mathbf{Set}$,

$$colim F = \pi_0 \mathbf{EI}(dF),$$

where

$$A \xrightarrow{F} \mathbf{Set} \xrightarrow{d} \mathbf{Cat}$$

and **EI** (dF) has objects (A, x) with $x \in F(A)$ and arrows $f: (A, x) \to (A', x')$ where $f: A \to A'$ with F(f)(x) = x'.

• This follows from the universal property of the elements construction as lax colimit by applying it to cones with discrete categories as vertex and using the adjunction $\pi_0 \dashv d$.

ullet We can apply the same paradigm to a functor $F \colon \mathcal{A} \to \mathbf{Cat}$ and use

$$\mathsf{Cat} \xrightarrow{\stackrel{\pi_0}{\bot}} \mathsf{DblCat}_{v}$$

where the π_0 is taken with respect to horizontal arrows and cells to obtain a quotient of the vertical category of a double category.

- It follows from our Main Theorem that $\pi_0 \int_{\mathbb{H} A} \mathbb{Q}(\mathbb{V} \circ F)$ gives the strict 2-categorical colimit of F.
- $\int_{\mathbb{H} A} \mathbb{Q}(\mathbb{V} \circ F)$ is actually $\mathbb{E}I(F)$, introduced by Paré (1989): its double cells " (α, Φ) " are in this case given by 2-cells α : $f \Longrightarrow f'$ in A:

$$(C,x) \xrightarrow{(f,id)} (D,y) \qquad Ffx \xrightarrow{id} Ffx$$

$$(id,\rho) \downarrow \qquad (\alpha,id) \qquad \downarrow (id,\lambda) \qquad (F\alpha)_x \downarrow \qquad id \qquad \downarrow \lambda$$

$$(C,x') \xrightarrow{(f',id)} (D,y') \qquad Ff'x \xrightarrow{Ff'\rho} Ff'x' .$$

Application III: The double categorical wreath product

For a functor $F: \mathscr{A}^{op} \to \mathbf{Cat}$, we consider:

$$\mathscr{A}^{\mathsf{op}} \xrightarrow{F} \mathsf{Cat} \xrightarrow{\mathbb{Q}} \mathsf{DblCat}_{\nu} \xrightarrow{()^{\wedge}} \mathsf{DblCat}_{\nu}$$

where $\mathbb{E} \to \mathbb{E}^{\wedge}$ is the horizontal flip functor, and apply \mathbb{Q} to all of this:

$$\int_{\mathbb{Q}\mathscr{A}}\mathbb{Q}((\mathbb{Q}\circ F)^{\wedge})=F\wr F^{op}$$

as introduced by Myers (2020). In this case our Φ in (α, Φ) matches the basic diagram in his definition

\mathbb{G} r $F \to \mathbb{D}$ is also a fibration

A double functor $P \colon \mathbb{E} \to \mathbb{B}$ is an **hv-split coop-fibration** if the following four induced functors are opfibrations of categories that admit cleavages that are suitably **compatible** and **hv-split**.

- 1v. Opfibration on vertical arrows: $P \colon \mathscr{V}\mathbb{E} \to \mathscr{V}\mathbb{B}$ between the categories of objects and vertical arrows,
- 1h. Opfibration on horizontal arrows: $P: \mathcal{H}\mathbb{E} \to \mathcal{H}\mathbb{B}$ between the categories of objects and horizontal arrows,
- 2h. Opfibration on double cells with horizontal composition: $P: \mathbb{E}_1^h \to \mathbb{B}_1^h$ between the categories which have vertical arrows as objects and double cells as arrows with horizontal composition, and, let $(\mathbb{E}_1^v)_f$ be the fiber category which has horizontal arrows $C \to D$ over $PC \xrightarrow{1_{PC}} PC$ as objects and double cells $\alpha: (u \xrightarrow{g} v)$ over $1_{Pu}: (Pu \xrightarrow{1} Pu)$ as arrows, composed vertically,
- 2v.1 Opfibration on the 2h-fibers with vertical composition: $P_f: (\mathbb{E}_1^{\mathsf{v}})_f \to \mathscr{V}\mathbb{B}$; where P_f maps $C \to D$ as above to PC and α as above to Pu.

The connection with 2-fibrations

Proposition

Let $P \colon \mathsf{B} \to \mathsf{E}$ be a 2-functor between 2-categories. Then P is a split-2-coop-fibration as in (Buckley, 2014) if and only if $\mathbb{V}P \colon \mathbb{V}\mathsf{B} \to \mathbb{V}\mathsf{E}$ is an hv-split coop-fibration.

The Correspondence

Theorem

The double Grothendieck construction $\mathbb{G}r$ is the value on objects of a **Dblcat**-functor

$$\mathcal{H}om_{\nu}(\mathbb{D}, \mathcal{D}blCat)_{s} \xrightarrow{\mathbb{G}r} \mathbf{coop}\mathcal{F}\mathbf{ib}_{h\nu-s}(\mathbb{D}),$$

which is an equivalence of **Dblcat**-categories; that is, it is esentially surjective and locally an isomorphism of double categories

$$\mathbb{H}om_{s}(F,G) \xrightarrow{\mathbb{G}r} (\mathbf{coop}\mathcal{F}ib_{hv-s}(\mathbb{D}))(\mathbb{G}rF,\mathbb{G}rG)$$
 (5.2)

The double functor $S: \mathbb{Q}\mathbf{DblCat}_{\nu} \to \mathbb{S}\mathsf{pan}(\mathbf{Cat})$

There is a double functor connecting the two codomain options we have explored:

$$S: \mathbb{Q}\mathbf{DblCat}_{\nu} \to \mathbb{S}\mathsf{pan}(\mathbf{Cat})$$

defined as follows:

- On objects: $\mathbb{X} \mapsto \mathbb{X}_0$;
- On inner arrows: $(\mathbb{X} \xrightarrow{f} \mathbb{Y}) \mapsto (\mathbb{X}_0 \xrightarrow{f_0} \mathbb{Y}_0);$

with respect to χ_0 and s.

The double functor $S: \mathbb{Q}DblCat_{\nu} \to \mathbb{S}pan(\mathbf{Cat})$

On double cells:

- $\mathbb{E}I(S \circ F) = \mathbb{G}r(F)$ for any indexing functor $F : \mathbb{D} \to \mathbb{Q}DblCat_v$.
- Work in progress: can we view $\mathbb{E}I(F)$ as a double colimit for more general indexing functors into $\mathbb{S}pan(\mathbf{Cat})$?