CSW

Computer Science Writing Fiona Polack

Who's here, doing what?

- All 3Y0s (MEng):
 - assessment, lectures, practicals

- All those taking PR3 (third year project):
 - lectures

AIMS

- To prepare for project work
- To prepare for writing up and assessment
- To prepare for project presentation
 - This applies to MEng students only

Learning Outcomes

- To be able to make an informed choice of text preparation facilities, and use these to present written text clearly and accurately
- To understand the difference between draft and final copy
- To be able to use literature effectively, including appropriate citation styles and constructing a critique
- To prepare and give a presentation on an academic subject, in a fixed time

DISCLAIMER

- This is a new module and a new venture
- If you don't like it
 - Or think it should be different
 - Say so... I may be able to modify later sessions!

Lectures

10 lectures:

- Thursdays, 1615, B/B/006, weeks 1-2
- Mondays, 1615, P/L/001, weeks 2-4
- Tuesdays, 1215, P/L/001, weeks 2-4
- Thursdays, 1615, P/X/001, weeks 3-4

All attend the lectures

"Guest" lectures

- Preparing a project using MS Word,
 - Alistair Edwards, Week 2 Thursday
- Preparing a project using latex
 - Jeremy Jacob, Week 3 Monday
- Scientific Method
 - Susan Stepney, Week 3 Thursday
 - may also be Week 4 Monday

Practicals I MEng Students Only

Practical slots for practice presentations

- Week 5 only (2-8 November)
 - Monday 1315 G/045
 - Monday 1615 A/EW/102
 - Tuesday 1415 G/045
 - Tuesday 1715 A/EW/102
 - Thursday 1315 A/EW/106

Practicals II MEng Students Only

- 8 or 9 students; 5 minutes each
 - Timing strictly enforced
- Feedback from demonstrators
- Provisional schedule
 - http://www-course.cs.york.ac.uk/csw/MEngsByName.htm
 - http://www-course.cs.york.ac.uk/csw/MEngsBySession.htm
- TELL ME IF YOU'RE NOT ON THE LIST OR WOULD LIKE TO SWAP

Practicals III MEng Students Only

- Each student prepares a 5-minute (unassessed) presentation.
- presented to the other students in the session
- A demonstrator will supervise each session
 - Hope to use PR5 presentation feedback forms
- Details on web
 - <u>http://www-</u><u>course.cs.york.ac.uk/csw/Presentation.html</u>

A silly interlude

If you are an MEng third year

• Stand on the right

If you are doing a PR3 project

Stand on the left

Anyone else: come to the front

MOVE NOW

AND THEN....

- Find one or two other people from your side
- Go and sit down together (so you can talk)
- Discuss projects whilst the others get sorted
- Elect a spokesperson

We'll use group discussion from time to time

MEngs talk about presentation subjects!

WHAT IS A PROJECT?

Discuss what might determine the nature of projects in the Department

2-3 minutes: timer

What do you think....?

Project definitions: rationale I

- Most degrees are accredited with IEE/BCS.
- Projects must conform to the Engineering Council definitions.
- Ours are a lot bigger than the minimum!
 - http://www.bcs.org/BCS/Products/HEAccreditation/ courseguidelines.htm

Project definitions: rationale II

- The National "Honours" and "Masters" level degree designations also affect project definitions.
 - http://www.qaa.ac.uk/crntwork/nqf/ewni2001/contents.htm

Project definitions

- All the project definitions are linked to the Projects web pages:
 - <u>http://www.cs.york.ac.uk/projects/</u>
 - http://www-users.cs.york.ac.uk/~fiona/PWG/
- Check the definition ... your supervisor may not have done so!

MEng Project Definition

- MEng projects (PR5) are Masters Level,
 - the degree qualifies for CEng exemptions
- A research or engineering project the approach is similar
- There must be an element of originality

PR3 Project Definition

- Third year projects (PR3) are Honours level
 - all treated as if they were part of the IEng accreditation
- They are engineering projects

Projects and Knowledge

"Engineering"

Discuss what Engineering means 2-3 minutes: timer

Definition I

The Engineering Council (SARTOR 1997), an engineer is:

"...one who has and uses scientific, technical and other skills to create, enhance, operate or maintain safe, efficient systems, structures, machine, plant, processes or devices of practical and economic value."

DEFINITON II

The Engineering Council is less exact these days:

• http://www.ukspec.org.uk/definitions_CEng_IE
ng_EngTech.asp defines CEng, IEng and all the other levels of engineer

What is an Engineering Project?

An engineering-style project report

- Follows a lifecycle and a method
- Aims to "build" something
- States and explains the method
- Evaluates the method and product

Any project can be written up in this format.

General Engineering Issues

Professional organisations require,

- Quality
- Reliability
- Timeliness
- Maintainability
- Think what these might mean for your project, and strive to achieve them!

Engineering Lifecycle

Project undertaken and written up in terms of:

- Requirements: context, constraints
- Design: may be several stages
- Build: software, hardware, proof, experiment...
- Evaluate: product, method, results: relate to requirements

These are good practice in all projects.

Method

Any method will do (if it's appropriate)

- Software Engineering methods agile programming, RAD, unified process etc;
- Hardware methods for specification/design;
- Research method: problem-hypothesis-experiment
- Algorithm design/proof: problem-plan-doing it

STATE THE METHOD USED

Even if it was a retro-fit method (if there's more than one method, state them all)

Fitting a Project to a Lifecycle

- Design-and-build projects should fit ok
- Other projects:
 - Explain the goals, constraints, givens, literature
 - Write up the method: hypothesis, experimental design, plan etc
 - Write up and evaluate the results
 - Consider what maintenance might mean!

And MEng Projects...

- All the above apply
- More thoughtful and advanced in approach and content....
 - Systematic, comprehensive understanding
 - Critical awareness and evaluation
 - Forefront of the field; original knowledge or application

PLANNING

Planning I

Some supervisors ask for a formal plan

• Planning is always a good idea

Why?

Planning II

Because things go wrong in projects

• If you don't know how long it should have taken, you don't know how to revise your plan

Plans are made to be revised!

HOW DO YOU PLAN A PROJECT?

Discuss what is important...

2-3 minutes: timer

Planning a Plan I

- How do you like to work?
 - Concentrated blocks or parallel to other things?
 - Department, Library, at home, in a café?
- What facilities to you need, and when?
- How easily do you write (long reports!)?
 - Do you need a proof reader?
 - Do you write it all in one go or in stages?

Planning a Plan II

- What needs doing? All projects have
 - Literature review: context, resources etc
 - Design or set-up or planning
 - Implementing or doing
 - Results or testing
 - Evaluation
- Schedule at least these activities

Planning a Plan III

- Reports are about writing, not just doing
- Decide, and plan in, whether you write up
 - at the end (inadvisable)
 - in stages
 - as you go along
- Plan in at least a week at the end to finish the report

Planning: advice

Anything that can go wrong will go wrong

- (source anyone?)
- If you write up at the end, it WILL take at least 3 weeks
- However well you plan and work, something WILL go wrong in the last month/week/day/hour....

Doing the Work

- A less crucial part of the project... so long as it gets done
- Scale the work to fit the time
- The key things you need are
 - Clear notes
 - Good justification or motivation of what you did

The Report and its focii

The hourglass model

- Start work & report with a wide focus
 - Lit. review explores this focus and context
- From lit. review, develop & justify sharper focus
 - Design to the sharper focus
- Implement & test what you can of the design
- Evaluate against to the original context

The hourglass report

- Adapt the report title to what you did
 - project title may not be ideal for report
- Adapt the report introduction and conclusion to the rest of the report
- Make the developing focus clear at the start/end of each relevant chapter

The hourglass model example *DB transaction project* I

Project: modelling database transactions

- Method: an incremental development
 - Review, plan,
 - implement on case study,
 - plan next.
- Lit. review:
 - Existing modelling approaches
 - Definitions related to db transactions

The hourglass model example DB transaction project II

- Use Lit. to select a particular aspect
 - eg specification using UML; integrity at physical design;... or whatever
- Design (for example...)
 - Language extension for the chosen aspect
 - Metamodel (language definition)

The hourglass model example DB transaction project III

- Implementation (for example...)
 - Apply to a case study that highlights the chosen aspect of transaction modelling
 - Use the designed language on the case study
- Note what does and does not work

The hourglass model example DB transaction project IV

Evaluation questions:

- Did the language & metamodel suffice?
- How did the result compare with existing models?
- How would the new work fit into existing methods?
- Was the approach to the project adequate?

What if your Project "doesn't work"?

No project "fails" (though students sometimes do!)

- The plan can be revised
- The proposal can be rewritten, revetted etc
- The report reflects what was possible
 - Evaluation may be easier than for a project that achieved its original goal
- In extremis, put in an EC or apply for an extension...
 - But don't risk relying on these to help you!

Reasons for "Failure"

- Method proved inappropriate
- Resources late or not available
 - Includes not enough time
- Research proved project infeasible or already done

Method proved inappropriate

- Can you change methods part way through?
 - use the experience to enhance the method justification;
 - Admit what happened and exploit it!
- Otherwise
 - Write up the project as done
 - In evaluation explain why method was inappropriate and what would have been better

Resources late or not available

Necessary hardware, software not available,

OR

Your time ran out

OR

There was more work than anticipated

- Adapt the project to fit what could be done
 - Adapt plan and report
- Comment (neutrally) on the problems in the Introduction and evaluation

Project infeasible or already done

- Consider adjusting the project
 - May redraft the proposal
 - Write the report on the revised project
 - you don't need to explain why the original was not done
- Vary the context to an area not already been done
 - Perhaps use lit. review to reflect on the existing work
 - requirements/design for revised context

Report presentation issues

WHAT STYLE SHOULD YOU USE FOR A PROJECT?

Discuss what is important...

2-3 minutes: timer

General Style I

It's a report, not a manual.

- Write for an academic audience
 - Succinct
 - Precise
- Support points with evidence
 - From literature
 - From your research

General Style II

- Use the marking criteria
- Marking forms are on line:
 - PR3: http://www.cs.york.ac.uk/projects/BEng.pdf
 - PR5 (MEng) http://www.cs.york.ac.uk/projects/MEng.pdf
- The general marking criteria are on line:
 - http://wwwusers.cs.york.ac.uk/~fiona/PROJECTS_WEBPAGES/markin g_form.html

Some Good Projects I

- Sedding (2004) PR3
 - Engineering presentation of research
 - not particularly "literary", but well structured and very clearly written
 - Nice use of literature, and good referencing
 - http://www.cs.york.ac.uk/library/onlineprojlib/proj_files/2004/ug/jps118/jps118_project.pdf

Some Good Projects II

- Goude (2003) PR3
 - Experimental project; could have been structured better as an engineering report
 - Very clearly written
 - Excellent evaluation chapter, and in-text justification or rationale
 - http://www.cs.york.ac.uk/library/onlineprojlib/proj_files/2004/ug/jps118/jps118_project.pdf

Some Good Projects III

- Crawford (2004) PR3
 - Well-presented engineering and methods
 - Good use of sources in literature and development
 - http://www.cs.york.ac.uk/library/onlineprojlib/proj_files/2004/ug/adc109/adc109_project.pdf

And some other names...

- PR3
 - Weeks, Gurney (PR3 2004)
 - Thorn, Lloyd (PR3 2003)
- PR5 (MEng final year)
 - Naylor, Whitham, Davis, W. (PR5 2004)
- PR4 (MMath final year):
 - Walker (PR4, 2004), Minichiello (PR4 2003)

Audience

- Assume a general computer science background.
- Elaborate specialist aspects of the project area
 - In literature review (with references)
 - In other chapters
 - In appendix if necessary

Readable reports

- Don't leave the reader guessing
 - Say what you're going to discuss,
 - discuss it
 - Summarise it
- Applies at report, chapter, and section level
- This is different to a lab book (or a novel!), where the plot unfolds as you progress

Linguistic issues

Language

These are academic norms, but not essential:

- Third person passive
 - "The project presents...."
 - "No further examples were found..."
- Present tense for main text
 - "This section contains...."
 - "The design uses UML diagrams...."

Drafting the report

- Everyone writes draft first
- native *and* non-native English speakers make mistakes and typographic errors
- Spelling checkers do NOT proof read
 - Do spell check, but also read it carefully

Proof readers

• If you want your report checking, you may ask someone to *proof-read* it

BUT:

- Don't expect your supervisor to do it
- Don't ask a student from this Department;
- Don't accept ANY technical input (risk of collusion).

Final Copy

- Clear language
- No typographic errors or wrong spellings
- Clear structure, with "waymarks" to content
- Consistent citation
- Consistent referencing of diagrams, tables, appendices etc
- All chapters and sections included

Report don'ts

- Don't "tart up" the text
 - but do lay it out nicely, with section headings,
 bullets etc
- Don't try to "sell" your product
- Don't embellish the truth (or the product)
- Don't repeat substance (but do provide clear "waymarks" through the text)

REPORT CONTENTS I

Preamble and Appendices

Preamble

Included in word & page counts:

- Title page
- Abstract
- Contents page(s)
- Acknowledgements
- Be canny follow the rules in the Handbook, but don't put in more than you need

Appendices (Marked)

Included in word & page counts and listed on the title page as part of these counts

- Appendices that you want marking, eg
 - Large diagrams, tables, results which are essential but peripheral to the main text
- Use appendices to make the text of the report flow well

Appendices (unmarked)

- Supplementary material for the reader
- Early versions of diagrams, if you wish
- Code listings and implementation detail
- Screen shots (if not an HCI project!)
- On title page, list the unmarked appendices and state that these are excluded from the word & page counts

REPORT CONTENTS II

Context and literature review

Context

- A project always has a context
 - Those things that motivate, limit and define the project from without
- Context needs to be explored in the early chapters of the report
 - PR3, PR5 etc refer to all the contextual material as literature review

Literature review as context

Thus, for projects, *literature review* is not only a review of relevant literature

- It could cover any context-setting material
 - Selection of methods, based on literature
 - Review of what has been done in the area
 - Review of things from other areas that are relevant to the project

Project Literature review

Literature Review

- May be one chapter or several
- May include sections of other chapters
 - For instance, each design/implement/evaluation chapter could include justifications of approach or content based on cited sources

Bibliography

- Between main text and appendices
- NOT included in page and word counts
 - There's no penalty for
 - Citing lots of sources
 - Giving full citations
 - Other good bibliographic practices

Good use of literature always benefits a project.

WHAT CAN YOU USE?

HOW CAN YOU FIND MATERIAL?

Discuss possible sources...

2-3 minutes: timer

Finding Material

- google
- citeseer
- University library Catalogue
 - Current periodicals, Interlibrary loans
- Pages of interested academics
- Anything else you can think of....

Books

- Good for background material
- Good for information about established methods, notations etc
- Often out of date (even new ones)
- Not usually sufficient on their own

Journals

- Academic papers, reviewed and accepted by an academic community
- May include seminal or key works
- Usually reasonably accurate
- Most journals take over a year to publish a paper, so not really state of the art

Conferences

- Proceedings of academic talking-shops
- State of the art, both good and bad
- Reviewed and accepted by academic panels, but discrimination may be poor
- Good for review purposes, but expect to find contentious points or errors

LNCS, LNAI etc

- http://www.springeronline.com/sgw/cda/frontpa ge/0,11855,3-164-12-72397-0,00.html
- Specialist Computer Science publishers
- Many conference proceedings
- Some specialist issues
- Find them in the library and browse them!

Technical reports

- From educational and industrial organisations
- "unpublishable" reports e.g.
 - Pre-publication papers and results
 - Highly technical
 - Case studies
- If relevant, use "published" version
- eg. http://www.cs.york.ac.uk/ftpdir/

Web pages

- Technical information, manuals, user hints etc on commercial products
- Non-commercial software
- Shortcut to published material
 - cite the published source where possible
- A lot of rubbish appears on the web
- Don't worry if a page disappears
 - cite the link and the date you last consulted it

Popular press

- Reputable magazines such as *Nature*, *Science* and *New Scientist* may provide general context
- Sometimes good for evidence of trends
- In general, too sensationalist for serious literature review
 - Back up popular press citations with serious academic references

Unpublished sources

- Draft papers, comments, emails
- In general, get originator's permission to cite
- If cited, be clear that it is *unpublished*
- Use *personal communication* footnotes if necessary 1,2
 - 1. Personal communication, F. A. C. Polack, 14 October 2004
 - 2. Email, Prof. Ding Bats, received 21 May 2003, used with permission

Reading and noting

- Always record the details of the source when you get it
 - Saves a huge amount of time later
- Note comments as well as content
 - Review is about critique, not just content
- Be realistic about the amount of review you can do

Citation to distinguish your Contribution

The report must make clear what's yours & what is other people's work

- Reference all use of others' material, such as,
 - Background literature
 - Method steps,
 - Equations,
 - Reused code or structures etc

Academic culture, Citation & Plagiarism avoidance

Prof. S. Stepney, PD1 lectures, 2003-04

 http://wwwcourse.cs.york.ac.uk/csw/ExtractSSPD1Ethics.p
 pt

Plagiarism checking

- The Department is exploring plagiarism detection
- Electronic copies of the project may be checked through automatic detection tools
 - Selected projects (at random)
 - Ones that raise markers' suspicions

You have been warned!

What is the purpose of a Bibliography?

- To show that you understand the context of your work.
- To allow other people to follow up your references:
- For their own research
- To check your facts

Bibliography rationale

- Cite things used so that others could find them
- The Student Handbook indicates that common knowledge does not need to be cited
 - You don't have to cite the O.E.D. every time you use an English word
 - You don't have to cite e.g. Wirth every time you mention
 Pascal, or Knuth every time you mention LaTeX
- In most other cases, it's safer to cite

Citation styles

- Some use [Stepney03] or [Ste03] in text
 - May need [Ste03a] and [Ste03b] etc
- In bibliography: [Stepney03] S. Stepney, Lecture Notes, PD1 Ethics, 2003
- Others use numbers: [1] in the text
- In bibliography: [1] S. Stepney, Lecture Notes, PD1 Ethics, 2003
- Either is fine, but be consistent

Fine-grained citation

- Computer Scientists are slapdash about citing precisely
- If you want to use a finer grain of citation:
 - In text: [1, chapter 2]; [Stepney03, p3]
 - In bibliography, don't repeat the entry
 - just one entry for every reference to [1] or [Stepney03], as before.

Citation Planning

- Latex bibtex does most of the layout for you (see J. Jacob's material)
- Microsoft Word has cross-referencing, which does some of it for you (see A. Edward's material)
- Always check the bibliography for accuracy

Bibliographic content

Enough information to trace your source:

- Books author(s) or editor; title; publication date
- Journals article author and title; journal title, volume and number (as appropriate)
- Web pages full http address; date accessed

Bibliographic entry examples I

- C. J. Date, Introduction to Databases, 2000
 - Could add edition (7th edition)
- F. Polack, A Case Study using Lightweight Formalism to Review an Information System Specification, *Software Practice & Experience*, 31(8), 2001
 - Could add pages (pp57-80), month (July)

Bibliographic entry examples II

- Jill Srivatanakul, John A Clark and Fiona Polack, Security Zonal Analysis, Technical Report YCS-2004-374, University of York Computer Science Department, 2004.
- http://www-course.cs.york.ac.uk/pd1/ethics.pdf, last accessed 20 September 2004
 - Could add author (S. Stepney) and subject (PD1 notes on Ethics).

Some things to avoid in citation

- Don't use footnotes for referencing
- Don't put more than one entry per source in the bibliography
- Don't include uncited material in the bibliography
 - use a separate listing of uncited but influential works if necessary

Using Literature

Critical Review

- Projects get credit for justification, motivation, explanation
- Review contributes to these if it is
- Critique means commentary
 - Positive and negative, and neutral
- Don't just regurgitate published material

Good and bad reviews

- The best reviews present an argument or discussion, supported by literature
- The worst reviews just present the contents of what was read with no comment
- You get no credit (and may loose it) if a review does not include appropriate citations

Giving a presentation MEng only

THE PRESENTATION

- Marked presentations were first used for MSc students in September 2004.
- PR5 presentation marked by
 - report second marker
 - and someone else (not supervisor)
- The PR5 mark combines the presentation mark and the report mark in the ratio 5:95.

PR5 Presentation details I

- A 10-minute talk, followed by questions
 - Timing strictly enforced
- 10 minutes is not very long:
 - keep it simple
- Sessions running in parallel

PR5 Presentation facilities

- A standard dual-boot PC
 - Networked to the student system
- Projector connection for own computers
- Overhead projector and flipchart
- Student wireless network access

PR5: Personal Computers

You may use your own portable computer, but

- All electrical equipment must be power checked in advance
- Wireless access requires advance registration
- Contact support@cs.york.ac.uk for advice
- Don't leave it to the last minute

PR5 Presentations including a hardware demo

- Specialist requirements must be notified
 - at least 14 days before the report hand-in
- Presentations may take place at separate times and locations
- It's your duty to notify the presentations coordintator of your requirements

PR5 Presentation contents

- 1. Project title and objectives
- 2. Context
 - quick summary of background and literature
- 3. How you went about it (method)
- 4. What you achieved
 - you must include a demo if you can
- 5. Evaluation how you did it and what you concluded

PR5 FEEDBACK

- Presentation feedback will be available with the returned copy of the report
- Currently, there is no formal feedback on the project; if this changes, you'll get that too!

CSW Presentation I

- Week 5 sessions
- Review one recent paper by a member of staff (see module webpage)
- Use this structure:
 - 1. Paper title and subject area
 - 2. Context: general CS background
 - 3. What the paper covers
 - 4. Evaluation what are its merits and demerits?

CSW Presentation II

- 5 minute presentations in flat classrooms
- Facilities are limited, and so is time
 - Ambitious presentations are not acceptable
 - Computer presentations may not work
 - OHP slides, hand written, are fine
 - Black- or white-board should be provided
- Don't waffle