Terminology

• R (matric no, firstname, surname, tutor no, tutor name)

tutor_no -> tutor_name

- A given tutor_no uniquely identifies (AKA functionally determines) a tutor_name.
- Tutor_name is dependent on tutor_no
- Tutor_no is the determinant
- An implied determinant (underlined) is also present in R:
- matrix_no -> firstname, surname, tutor_no, tutor_name

First Normal Form (Atomicity)

- A relation is in 1NF if, and only if, it contains no repeating attributes or groups of attributes (must be atomic values).
- A table with repeating groups is not in 1NF
 - it is an `un-normalized table'.
- To remove repeating groups, either:
 - flatten the table and extend the key, or
 - decompose (split) the relation

Example:

- A relation is in 1NF if it contains no repeating groups
- Remember to put the primary key from the original relation into both new relations.

a is Primary Key for the whole relation

R (\underline{a} ,b, (\underline{c} ,d)) becomes

R(a,b)

 $R1(\underline{a}, \underline{c}, d)$

Second Normal Form

KeyPart1 + KeyPart2 => attribute1, attribute2, ...

- A relation is in 2NF if, and only if, it is in 1NF and every non-key attribute is fully functionally dependent on the whole key.
- Thus all non-key attributes must depend on the whole key. Another way of saying this is that there must be no partial key dependencies (PKDs).
- Problems arise only when there is a compound key

Example:

- A relation is in 2NF if it is in 1NF and has no partial key functional dependencies
- NOTE: A relation in 1NF with a single key field must (inevitably) be in 2NF
- DECOMPOSE:
 - One relation for the attributes that are fully dependent upon the key.
 - One relation for each part of the key that has partially dependent attributes

R (**a** , **b** ,c,d)

a->c becomes

R (**a** , **b** ,d)

R1 (<u>a</u>, c)

Third Normal Form

Key -> non-key attribute -> non-key attribute

Transitivity

- 3NF removes virtually all the redundant data
- A relation is in 3NF if, and only if,
 - it is in 2NF and
 - there are no transitive functional dependencies
- A transitive functional dependency can only occur if there is
- more than one non-key field
- A non-key field must provide a fact about the key, the whole
- key (2NF) and nothing but the key (3NF).

Example:

- A relation is in 3NF if it is in 2NF and has no transitive functional dependencies
- NOTE: A relation in 2NF with only one non-key attribute must (inevitably) be in 3NF
- DECOMPOSE To remove transitive functional dependencies, remove the attributes involved in the transitive dependency to a new relation

```
R(\underline{a}, \underline{b}, c, d)
c \rightarrow d Becomes
R(\underline{a}, \underline{b}, c)
R1(\underline{c}, d)
```

Repeating Groups Example date_of_birth matric_no Name subject grade 960100 14/11/1977 Smith, J Databases C Soft_Dev A ISDE D 10/05/1975 960105 White, A Soft Dev В ISDE В 960120 Moore, T 11/03/1970 Databases A Soft_Dev В Workshop C 960145 Smith, J 09/01/1972 **Databases** В 960150 Black, D 21/08/1973 Databases В Soft Dev D ISDE C Workshop D

Student(<u>matric_no</u>, name, date_of_birth, (<u>subject</u>, grade)) name, date_of_birth -> matric_no

1 NF
Student(matric_no, name, date_of_birth, subject, grade)

Flatten table and extend primary key

Redundancy

STUDENT #2

	redundancy		naanoj	
matric_no	name	date_of/b/inth	Subject	grade
960100	Smith, J	14/11/1977 🋂	Databases	C
960100	Smith, J	14/11/1977	Soft_Dev	Α
960100	Smith, J	14/11/1977	ISDE	D
960105	White, A	10/05/1975	Soft_Dev	В
960105	White, A	10/05/1975	ISDE	В
960120	Moore, T	11/03/1970	Databases	A
960120	Moore, T	11/03/1970	Soft_Dev	В
960120	Moore, T	11/03/1970	Workshop	С
960145	Smith, J	09/01/1972	Databases	В
960150	Black, D	21/08/1973	Databases	В
960150	Black, D	21/08/1973	Soft_Dev	D
960150	Black, D	21/08/1973	ISDE	C
960150	Black, D	21/08/1973	Workshop	В

Dependency Diagram

 A dependency diagram is used to show how nonkey attributes relate to each part or combination of parts in the primary key.

Student (matric_no, name, date_of_birth)
Record (matric_no, subject, grade)

 the primary key from the original relation is included in both of the new relations!!

_				_
_	_	_	_	 _
_	_	•	_	~

matric_no	<u>subject</u>	grade	
960100	Databases	C	
960100	Soft_Dev	A	
960100	ISDE	D	
960105	Soft_Dev	В	
960105	ISDE	В	
960150	Workshop	В	
	•		

Student

matric_no	name	date_of_birth	
960100	Smith,J	14/11/1977	
960105	White,A	10/05/1975	
960120	Moore,T	11/03/1970	
960145	Smith,J	09/01/1972	
960150	Black,D	21/08/1973	

Example

Key field

Non-Key fields

Project_no	Manager	Address
p1	Black,B	32 High Street
p2	Smith,J	11 New Street
p3	Black,B	32 High Street
p4	Black,B	32 High Street

Project has more than one non-key field so we <u>must</u> check for transitive dependencies

Problem

- Data redundancy arises from this situation:
 - we will duplicate address if a manager is in charge of more than one project
 - this causes problems if we have to change the address it requires changing several entries, and this can lead to errors.

Fix

- · Eliminate the transitive functional dependency by splitting
- (decomposing) the table
 - create two relations one with the transitive dependency in it, and another for all of the remaining attributes.
 - split Project into Project and Manager.
- the determinant attribute becomes the primary key in thenew relation i.e., manager becomes the primary key to the Manager relation
- the original key is the primary key to the remaining nontransitive attributes in this case, project_no remains the key to the new Projects table.

Result: 3NF

- So now we need to store the address only once
- If we need to know a manager's address we can look it up in the Manager relation
- The manager attribute is the link between the two tables -- in the Projects table, manager is now a foreign key.
- These relations are now in third normal form.

Project	Project_no		Manager
	p1		Black,B
	p2		Smith,J
	p3		Black,B
	p4		Black,B
Манадан	Mandaan		Adduses
Manager	<u>Manager</u>		Address
	Black,B	32 High Street	
	Smith,J	11 New Street	