CLUSTERED MONOTONE TRANSFORMS FOR RATING FACTORIZATION

Gaurush Hiranandani*, UIUC

Raghav Somani*, Microsoft Research, India

Oluwasanmi Koyejo, UIUC

Sreangsu Acharyya, Microsoft Research, India

^{*}Equal Contribution

MOTIVATION

IMDB

Extremists

Moderates

Goodreads

MOTIVATION

INTRODUCTION

1-CMTRF

$$\min_{\substack{U,V,\\\mathbf{r}\in\mathcal{R}_{I,\epsilon}}} \sum_{i} C_{\phi}(E_{i}\mathbf{r} \|V_{i}u_{i}) + \frac{\lambda_{u}}{2} \sum_{i} \|u_{i}\|^{2} + \frac{\lambda_{v}}{2} \sum_{j} \|v_{j}\|^{2}$$

Algorithm

$$\boldsymbol{x}^{t+1} = \underset{\boldsymbol{x} \in \mathcal{R}_{L,\epsilon}}{\operatorname{arg\,min}} \sum_{i} C_{\phi} (E_{i}\boldsymbol{x} \| V_{i}^{t}\boldsymbol{u}_{i}^{t})$$

$$U^{t+1}, V^{t+1} = \underset{U,V}{\operatorname{arg\,min}} \sum_{i} C_{\phi} (E_{i}\boldsymbol{x}^{t+1} \| V_{i}\boldsymbol{u}_{i})$$

$$+ \frac{\lambda_{u}}{2} \sum_{i} ||\boldsymbol{u}_{i}||^{2} + \frac{\lambda_{v}}{2} \sum_{j} ||\boldsymbol{v}_{j}||^{2}$$
(LS Solution)

N-CMTRF

$$\min_{\substack{U,V,\\ \{\mathbf{r}_i \in \mathcal{R}_{L,\epsilon}\}_{i=1}^N}} \sum_{i} C_{\phi} \left(E_i \mathbf{r}_i ||V_i \mathbf{u}_i \right) + \frac{\lambda_u}{2} \sum_{i} ||\mathbf{u}_i||^2 + \frac{\lambda_v}{2} \sum_{j} ||\mathbf{v}_j||^2$$

Algorithm

$$\begin{aligned} \boldsymbol{x}_{i}^{t+1} &= \underset{\boldsymbol{x}_{i} \in \mathcal{R}_{L,\epsilon}}{\min} \sum_{i} C_{\phi}(E_{i}\boldsymbol{x}_{i} \| V_{i}^{t}\boldsymbol{u}_{i}^{t}) \quad \forall i \text{ in parallel} \\ U^{t+1}, V^{t+1} &= \underset{U,V}{\arg\min} \sum_{i} C_{\phi}(E_{i}\boldsymbol{x}_{i}^{t+1} \| V_{i}\boldsymbol{u}_{i}) \\ &+ \frac{\lambda_{u}}{2} \sum_{i} ||\boldsymbol{u}_{i}||^{2} + \frac{\lambda_{v}}{2} \sum_{j} ||\boldsymbol{v}_{j}||^{2} \end{aligned} \tag{LS Solution}$$

K-CMTRF

$$\min_{\substack{U,V,\{\mathbf{z}_i\}_{i=1}^N\\\{\mathbf{r}_k \in \mathcal{R}_{L,\epsilon}\}_{k=1}^K}} \sum_{k=1}^K \sum_{i=1}^N z_{ik} C_{\phi}(E_i \mathbf{r}_k || V_i \mathbf{u}_i) \\
+ \frac{\lambda_u}{2} \sum_i ||\mathbf{u}_i||^2 + \frac{\lambda_v}{2} \sum_j ||\mathbf{v}_j||^2$$

$$\begin{aligned} \mathbf{z}_{i}^{t+1} &= \arg\min_{k \in [K]} C_{\phi}(E_{i}\mathbf{x}_{k}^{t} \| V_{i}^{t}\mathbf{u}_{i}^{t}) \ \, \forall \, i \\ \mathbf{x}_{k}^{t+1} &= \arg\min_{\mathbf{x}_{k} \in \mathcal{R}_{L,\epsilon}} \sum_{i:\mathbf{z}_{ik}^{t+1}=1} C_{\phi}(E_{i}\mathbf{x}_{k} \| V_{i}^{t}\mathbf{u}_{i}^{t}) \ \, \forall k \text{ in parallel} \end{aligned} \tag{FAVA} \\ U^{t+1}, V^{t+1} &= \arg\min_{U,V} \sum_{k=1}^{K} \sum_{i:\mathbf{z}_{ik}^{t+1}=1} C_{\phi}(E_{i}\mathbf{x}_{k}^{t+1} \| V_{i}\mathbf{u}_{i}) \\ &+ \frac{\lambda_{u}}{2} \sum_{i} ||\mathbf{u}_{i}||^{2} + \frac{\lambda_{v}}{2} \sum_{j} ||\mathbf{v}_{j}||^{2} \end{aligned} \tag{LS Solution}$$

THEORETICAL RESULTS

- Alternating Minimization possible because objective functions are tri-convex
- Global solution guarantees for 1-CMTRF and N-CMTRF for square loss (cost) function
- Local solution guarantees for K-CMTRF for square loss (cost)
 function

EMPIRICAL RESULTS

Chronological Split								
Metric	Data	MF	LMaFit	MMC	NNMF	1-C	N-C	K-C
MSE	ML100k	0.989	2.269	1.058	0.947	0.908	0.948	0.911
	ML1M	0.809	1.918	0.989	0.797	0.799	0.790	0.778
	ML10M	0.834	1.947	0.975	0.832	0.806	0.807	0.799
	GB	0.811	3.232	0.888	0.768	0.778	0.772	0.757
	Epinions	1.329	11.00	_	1.113	1.232	1.184	1.167
MAE	ML100k	0.989	1.173	0.830	0.755	0.759	0.758	0.752
	ML1M	0.708	1.058	0.777	0.700	0.723	0.693	0.778
	ML10M	0.712	0.988	0.791	0.698	0.708	0.697	0.691
	GB	0.701	1.418	0.753	0.691	0.694	0.677	0.670
	Epinions	0.864	2.886	-	0.800	0.845	0.812	0.811
Uniform Split								
Metric	Data	MF	LMaFit	MMC	NNMF	1-C	N-C	K-C
MSE	Douban	0.543	1.462	0.846	0.542	0.541	0.534	0.534
	Flixster	0.870	6.789	1.52	0.765	0.869	0.757	0.729
	ML100k_u	0.890	2.240	1.072	0.876	0.846	0.833	0.833
MAE	Douban	0.575	0.934	0.720	0.576	0.575	0.570	0.570
	Flixster	0.704	2.005	1.015	0.667	0.710	0.623	0.630
	ML100k_u	0.749	1.160	0.808	0.744	0.728	0.720	0.721

EMPIRICAL RESULTS

CONCLUSIONS

Proposed Clustered Monotonic Transformation for Rating Factorization:

regression upto unknown monotonic transform over unknown

population segments

- Three algorithms
- Unique solution for squared loss and local solution for general Bregman

Divergences