Other Generalized Linear Models

Logistic Binomial Model For count data we have discussed Poisson and Negative-Binomial sampling models. It is also possible to use a Binomial distribution, but know that the support of the response will not be countably infinite.

A common example of binomial data would be free throw shooting for basketball players or batting data for baseball players.

```
batting <- read_csv('http://math.montana.edu/ahoegh/teaching/stat491/data/BattingAverage.csv') %>%
  mutate(NotHits = AtBats - Hits)
## Parsed with column specification:
## cols(
##
    Player = col_character(),
    PriPos = col_character(),
##
    Hits = col_double(),
##
##
     AtBats = col_double(),
    PlayerNumber = col_double(),
##
    PriPosNumber = col_double()
## )
```

## #	A tibble: 5 x 7						
##	Player	PriPos	Hits	${\tt AtBats}$	PlayerNumber	PriPosNumber	NotHits
##	<chr></chr>	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
## 1	Martin Maldonado	Catcher	62	233	539	2	171
## 2	Jeff Suppan	Pitcher	1	10	842	1	9
## 3	Nathan Eovaldi	Pitcher	3	32	252	1	29
## 4	Eric Young	Center Field	55	174	940	8	119
## 5	Reed Johnson	Left Field	78	269	445	7	191

batting %>% sample_n(5)

The logistic-binomial framework is written as:

$$y_i \sim Binomial(n_i, p_i),$$
 (1)

$$logit(p_i) = X_i \beta \tag{2}$$

```
log_binom <- stan_glm(cbind(Hits, NotHits ) ~ PriPos - 1,</pre>
              family = binomial(link = "logit"), data = batting, refresh = 0)
print(log_binom, digits = 2)
## stan_glm
## family:
                  binomial [logit]
                  cbind(Hits, NotHits) ~ PriPos - 1
## formula:
  observations: 948
   predictors:
## -----
##
                      Median MAD_SD
                      -1.05
## PriPos1st Base
                              0.02
## PriPos2nd Base
                      -1.07
                              0.02
## PriPos3rd Base
                      -1.02
                              0.02
## PriPosCatcher
                      -1.11
                              0.02
## PriPosCenter Field -1.03
                              0.02
                      -1.05
## PriPosLeft Field
                              0.02
## PriPosPitcher
                      -1.91
                              0.04
## PriPosRight Field -1.03
                              0.02
## PriPosShortstop
                      -1.07
                              0.02
##
## ----
## * For help interpreting the printed output see ?print.stanreg
## * For info on the priors used see ?prior_summary.stanreg
```

Overdispersion can also occur with binomial data. Recall that the variance of binomial trials is np(1-p). Then define the residuals as $z_i = \frac{y_i - \hat{y}_i}{sd(\hat{y}_i)}$.

Then the z_i terms should be approximately iid N(0,1). A formal test for $\sum z_i^2$ using a χ^2 distribution can be used to detect overdispersion.

Often hierarchical models will solve some of these issues, otherwise an overdispersion model can be formulated with variance equal to $\omega np(1-p)$. See **brm** or write your own in stan.

Probit Model Consider an alternative link function for binary/binomial data.

$$y_i \sim Binomial(n_i, p_i),$$
 (3)

$$y_{i} \sim Binomial(n_{i}, p_{i}),$$

$$\Phi^{-1}(p_{i}) = X_{i}\beta$$

$$p_{i} = \Phi(X_{i}\beta),$$

$$(3)$$

$$(4)$$

$$(5)$$

$$p_i = \Phi(X_i \beta), \tag{5}$$

where $\Phi()$ is the cumulative distribution function for a standard normal random variable.

This model is a latent data model, which are very common and useful in statistics. We assume there is an underlying continuous random variable that is mapped to a standard normal distribution.

where

$$y_i = \begin{cases} 1 & \text{if } z_i > 0 \\ 0 & \text{if } z_i < 0 \end{cases}$$

$$z_i = X_i \beta + \epsilon$$
$$\epsilon \sim N(0, 1)$$

Note $\epsilon \sim N(0,1)$ is a necessary constraint for this model.

```
probit_binom <- stan_glm(cbind(Hits, NotHits ) ~ PriPos - 1,</pre>
              family = binomial(link = "probit"), data = batting, refresh = 0)
print(probit_binom)
## stan_glm
                  binomial [probit]
## family:
## formula:
                  cbind(Hits, NotHits) ~ PriPos - 1
## observations: 948
  predictors:
##
##
                      Median MAD_SD
## PriPos1st Base
                      -0.6
                              0.0
## PriPos2nd Base
                      -0.7
                              0.0
## PriPos3rd Base
                      -0.6
                              0.0
## PriPosCatcher
                      -0.7
                              0.0
## PriPosCenter Field -0.6
                              0.0
                      -0.6
## PriPosLeft Field
                              0.0
## PriPosPitcher
                      -1.1
                              0.0
## PriPosRight Field -0.6
                              0.0
## PriPosShortstop
                      -0.7
                              0.0
##
## -----
## * For help interpreting the printed output see ?print.stanreg
## * For info on the priors used see ?prior_summary.stanreg
plot(probit_binom)
```


log	g_binom\$coefficients				
##	PriPos1st Base	PriPos2nd Base	PriPos3rd Base	${\tt PriPosCatcher}$	
##	-1.051951	-1.068610	-1.020217	-1.112554	
##	PriPosCenter Field	PriPosLeft Field	PriPosPitcher	PriPosRight Field	
##	-1.028060	-1.050782	-1.906119	-1.027139	
##	PriPosShortstop				
##	-1.070992				
pro	bit_binom\$coefficier	nts			
	D :D 4 + D	D 'D 0 1 D	D 'D 0 1 D	D 'D (1 1	
##	PriPos1st Base	PriPos2nd Base	PriPos3rd Base	PriPosCatcher	
##	-0.6469227	-0.6568591	-0.6277234	-0.6828566	
##	PriPosCenter Field	PriPosLeft Field	PriPosPitcher	PriPosRight Field	
##	-0.6326863	-0.6464448	-1.1309219	-0.6325274	
##	PriPosShortstop				
##	-0.6584987				

inv	<pre>invlogit(log_binom\$coefficients) * 1000</pre>					
## ## ## ## ##	PriPos1st Base 258.8506 PriPosCenter Field 263.4604 PriPosShortstop 255.2145	PriPos2nd Base 255.6674 PriPosLeft Field 259.0749	PriPos3rd Base 264.9851 PriPosPitcher 129.4175	PriPosCatcher 247.3950 PriPosRight Field 263.6391		
pno	<pre>pnorm(probit_binom\$coefficients) * 1000</pre>					
## ## ## ##	PriPos1st Base 258.8410 PriPosCenter Field 263.4692 PriPosShortstop 255.1089	PriPos2nd Base 255.6358 PriPosLeft Field 258.9957	PriPos3rd Base 265.0926 PriPosPitcher 129.0440	PriPosCatcher 247.3487 PriPosRight Field 263.5211		