Clase 21

Cálculo 3

Carlos Martínez Ranero

Departamento de Matemática Universidad de Concepción

Recordatorio de la clase anterior.

- Teorema de cambio de variable.
- · Coordenadas esféricas.

Objetivos de la clase de hoy.

- Curvas parametrizadas.
- · Campos vectoriales.

Definición

• Una **curva parametrizada** en el espacio es una función continua \vec{r} : $[a,b] \to \mathbb{R}^3$ donde $\vec{r}(t) = (x(t),y(t),z(t))$.

Definición

- Una **curva parametrizada** en el espacio es una función continua $\vec{r}: [a,b] \to \mathbb{R}^3$ donde $\vec{r}(t) = (x(t),y(t),z(t))$.
- Una curva parametrizada es **regular** si $\vec{r}'(t) \neq \vec{0}$ para cada $t \in [a, b]$.

Definición

- Una **curva parametrizada** en el espacio es una función continua \vec{r} : $[a,b] \to \mathbb{R}^3$ donde $\vec{r}(t) = (x(t),y(t),z(t))$.
- Una curva parametrizada es regular si r

 '(t) ≠ 0 para cada
 t ∈ [a, b].
- Una curva parametrizada es suave si es regular y de clase C¹.

Definición

- Una **curva parametrizada** en el espacio es una función continua $\vec{r}: [a,b] \to \mathbb{R}^3$ donde $\vec{r}(t) = (x(t),y(t),z(t))$.
- Una curva parametrizada es regular si r

 ['](t) ≠ 0 para cada t ∈ [a, b].
- Una curva parametrizada es suave si es regular y de clase C¹.

Una curva parametrizada describe el movimiento de una particula a través del tiempo.

Definición

Una curva parametrizada es suave por tramos si existe una partición a = a₀ < a_i < ··· < a_n = b tal que continua r ↑ [a_i, a_{i+1}] es una curva suave.

Definición

- Una curva parametrizada es **suave por tramos** si existe una partición $a = a_0 < a_i < \cdots < a_n = b$ tal que continua $\vec{r} \upharpoonright [a_i, a_{i+1}]$ es una curva suave.
- Sean $\vec{r}_1:[a,b]\to\mathbb{R}$ y $\vec{r}_2:[b,c]\to\mathbb{R}$ tales que $\vec{r}_1(b)=\vec{r}_2(b)$, entonces $\vec{r}_1+\vec{r}_2$ es la concatenación de las dos curvas.

Definición

- Una curva parametrizada es **suave por tramos** si existe una partición $a = a_0 < a_i < \cdots < a_n = b$ tal que continua $\vec{r} \upharpoonright [a_i, a_{i+1}]$ es una curva suave.
- Sean $\vec{r}_1:[a,b]\to\mathbb{R}$ y $\vec{r}_2:[b,c]\to\mathbb{R}$ tales que $\vec{r}_1(b)=\vec{r}_2(b)$, entonces $\vec{r}_1+\vec{r}_2$ es la concatenación de las dos curvas.
- La imagen de la curva $\vec{r}([a,b])$ se llama la **traza.**

Ejemplos:

• Segmento de recta del punto p al punto q, $\vec{r}(t) = (1-t)p + tq$, $0 \le t \le 1$.

Ejemplos:

- Segmento de recta del punto p al punto q, $\vec{r}(t) = (1-t)p + tq$, $0 \le t \le 1$.
- $\vec{r}_1 : [0, 2\pi] \to \mathbb{R}^2, \vec{r}_1(t) = (\cos(t), \sin(t)).$

Ejemplos:

- Segmento de recta del punto p al punto q, $\vec{r}(t) = (1-t)p + tq$, $0 \le t \le 1$.
- $\vec{r}_1 : [0, 2\pi] \to \mathbb{R}^2, \vec{r}_1(t) = (\cos(t), \sin(t)).$
- $\vec{r}_2 : [0, 2\pi] \to \mathbb{R}^2$, $\vec{r}_2(t) = (\sin(t), -\cos(t))$.

Ejemplos:

- Segmento de recta del punto p al punto q, $\vec{r}(t) = (1-t)p + tq$, $0 \le t \le 1$.
- $\vec{r}_1 : [0, 2\pi] \to \mathbb{R}^2, \vec{r}_1(t) = (\cos(t), \sin(t)).$
- $\vec{r}_2 : [0, 2\pi] \to \mathbb{R}^2, \vec{r}_2(t) = (\sin(t), -\cos(t)).$
- $\vec{r}_3: [0,2\pi] \to \mathbb{R}^2, \vec{r}_3(t) = (\cos(2t), \sin(2t)).$

Algunas curvas interesantes:

- La curva de Lissajous que representa un movimiento ármonico complejo esta dada por r
 (t) = (cos(3t), sin(5t)), 0 ≤ t ≤ 2π.
- La curva
 r̄ = (cost + 0,1 cos(17t), sint + 0,1 sin(17t)), 0 ≤ t ≤ 2π
 representa un epicicloide y se utiliza en el diseño de engranes.

Campos Vectoriales.

Definición

Un **campo vectorial**, en el plano es una función $\vec{F}(x,y) = \langle P(x,y), Q(x,y) \rangle$. Un campo vectorial en el espacio es una función $\vec{F}(x,y,z) = \langle P(x,y,z), Q(x,y,z), R(x,y,z) \rangle$.

Ejemplos.

Para visualizar los ejemplos dar click en los siguientes enlaces Campos Vectoriales Planos y Campos Vectoriales Espaciales.

- 1. $\vec{F}(x,y) = \langle x,y \rangle$;
- 2. $\vec{F}(x,y) = \langle -x, -y \rangle$;
- 3. $\vec{F}(x,y) = \langle x+y, x-y \rangle$;
- 4. $\vec{F}(x,y) = \langle -y,x \rangle$.
- 5. $\vec{F}(x,y,z) = \langle -y,x,z \rangle$.
- 6. $\vec{F}(x, y, z) = \langle y, z, x \rangle$.

Sea $f: D \subset \mathbb{R}^2 \to \mathbb{R}$ y C una curva en D, dada por $\vec{r}(t) = \langle x(t), y(t) \rangle$, $a \le t \le b$. Calcular el área de la superficie entre la curva C y la gráfica de f.

Sea $f: D \subset \mathbb{R}^2 \to \mathbb{R}$ y C una curva en D, dada por $\vec{r}(t) = \langle x(t), y(t) \rangle$, $a \le t \le b$.

Calcular el área de la superficie entre la curva C y la gráfica de f.

La idea es utilizar sumas de Riemann para aproximar el área y posteriormente tomar limites.

$$\int_{C} f ds = \lim_{\|P\| \to 0} \sum_{i=1}^{n} f(x(t_{i}), y(t_{i})) \sqrt{x'(t_{i})^{2} + y'(t_{i})^{2}} (t_{i+1} - t_{i})$$

donde $P = \{a = t_0 < \cdots < t_n = b\}$ es una partición del intervalo [a, b].

Teorema

Sea C una curva suave y $f:C\to\mathbb{R}$ una función continua, entonces

$$\int_C f ds = \int_a^b f(\vec{r}(t)) ||\vec{r}'(t)|| dt$$

donde $\vec{r} : [a, b] \to \mathbb{R}^3$ es una parametrización de la curva C.

Teorema

Sea C una curva suave y $f:C\to\mathbb{R}$ una función continua, entonces

$$\int_C f ds = \int_a^b f(\vec{r}(t)) ||\vec{r}'(t)|| dt$$

donde $\vec{r}:[a,b]\to\mathbb{R}^3$ es una parametrización de la curva C.

Definición

Sea $C = C_1 + \cdots + C_n$ es una curva suave por tramos y $f : C \to \mathbb{R}$ una función continua, definimos

$$\int_{C} f ds = \int_{C_{1}} f ds + ... \int_{C_{n}} f ds.$$

• La integral $\int_C ds$ representa la longitud de la curva.

- La integral $\int_C ds$ representa la longitud de la curva.
- La integral de linea ∫ fds la podemos interpretar también como el área arriba de la curva C y debajo de la gráfica de la función.

Ejemplo 1

Calcular $\int_C \frac{1}{1+z} ds$ donde C es la curva parametrizada por $\vec{r}(t) = (-2\sin t, 2\cos t, t^2), 0 \le t \le 1$.

•
$$\vec{r}'(t) = (-2\cos t, -2\sin t, 2t)$$

- $\vec{r}'(t) = (-2\cos t, -2\sin t, 2t)$
- $\|\vec{r}'(t)\| = \sqrt{4\cos^2 t + 4\sin^2 t + 4t^2} = 2\sqrt{1+t^2}$.

- $\vec{r}'(t) = (-2\cos t, -2\sin t, 2t)$
- $\|\vec{r}'(t)\| = \sqrt{4\cos^2 t + 4\sin^2 t + 4t^2} = 2\sqrt{1+t^2}$.
- $\int_C ds = \int_0^1 f(\vec{r}(t)) ||\vec{r}'(t)|| dt = \int_0^1 (\frac{1}{1+t^2}) 2\sqrt{1+t^2} dt$.

- $\vec{r}'(t) = (-2\cos t, -2\sin t, 2t)$
- $\|\vec{r}'(t)\| = \sqrt{4\cos^2 t + 4\sin^2 t + 4t^2} = 2\sqrt{1+t^2}$.
- $\int_C ds = \int_0^1 f(\vec{r}(t)) ||\vec{r}'(t)|| dt = \int_0^1 (\frac{1}{1+t^2}) 2\sqrt{1+t^2} dt$.
- $\int_0^1 \frac{2}{\sqrt{1+t^2}} dt$

- $\vec{r}'(t) = (-2\cos t, -2\sin t, 2t)$
- $\|\vec{r}'(t)\| = \sqrt{4\cos^2 t + 4\sin^2 t + 4t^2} = 2\sqrt{1+t^2}$.
- $\int_C ds = \int_0^1 f(\vec{r}(t)) ||\vec{r}'(t)|| dt = \int_0^1 (\frac{1}{1+t^2}) 2\sqrt{1+t^2} dt$.
- $\int_0^1 \frac{2}{\sqrt{1+t^2}} dt$
- Haciendo la sustitución trigonométrica $t = \tan \theta$ tenemos

- $\vec{r}'(t) = (-2\cos t, -2\sin t, 2t)$
- $\|\vec{r}'(t)\| = \sqrt{4\cos^2 t + 4\sin^2 t + 4t^2} = 2\sqrt{1 + t^2}$.
- $\int_C ds = \int_0^1 f(\vec{r}(t)) ||\vec{r}'(t)|| dt = \int_0^1 (\frac{1}{1+t^2}) 2\sqrt{1+t^2} dt$.
- $\int_0^1 \frac{2}{\sqrt{1+t^2}} dt$
- Haciendo la sustitución trigonométrica $t = \tan \theta$ tenemos

•
$$\int_0^{\pi/4} \frac{2 \sec^2 \theta}{\sec \theta} d\theta = 2 \ln(\sec \theta + \tan \theta) \Big|_0^{\pi/4} = 2 \ln(1 + \sqrt{2})$$

Definición

Sea $\vec{F}: U \to \mathbb{R}^3$ un campo vectorial y $C \subset U$ una curva parametrizada por $\vec{r}(t)$, $a \le t \le b$. Definimos

$$\int_{C} \vec{F} \cdot d\vec{r} = \int_{a}^{b} \vec{F}(\vec{r}(t)) \cdot \vec{r}'(t) dt$$

Definición

Sea $\vec{F}: U \to \mathbb{R}^3$ un campo vectorial y $C \subset U$ una curva parametrizada por $\vec{r}(t)$, $a \le t \le b$. Definimos

$$\int_{C} \vec{F} \cdot d\vec{r} = \int_{a}^{b} \vec{F}(\vec{r}(t)) \cdot \vec{r}'(t) dt$$

• Si $\vec{F} = \langle P, Q, R \rangle$, y $d\vec{r} = \langle dx, dy, dz \rangle$. Podemos denotar a la integral como $\int_C \vec{F} \cdot d\vec{r} = \int_C Pdx + Qdy + Rdz$.

Definición

Sea $\vec{F}: U \to \mathbb{R}^3$ un campo vectorial y $C \subset U$ una curva parametrizada por $\vec{r}(t)$, $a \le t \le b$. Definimos

$$\int_{C} \vec{F} \cdot d\vec{r} = \int_{a}^{b} \vec{F}(\vec{r}(t)) \cdot \vec{r}'(t) dt$$

- Si $\vec{F} = \langle P, Q, R \rangle$, y $d\vec{r} = \langle dx, dy, dz \rangle$. Podemos denotar a la integral como $\int\limits_C \vec{F} \cdot d\vec{r} = \int\limits_C Pdx + Qdy + Rdz$.
- Si \vec{F} representa un campo de fuerza, entonces la integral de linea $\int_{C} \vec{F} d\vec{r}$ representa el **trabajo**.

Definición

Sea $\vec{F}: U \to \mathbb{R}^3$ un campo vectorial y $C \subset U$ una curva parametrizada por $\vec{r}(t)$, $a \le t \le b$. Definimos

$$\int_{C} \vec{F} \cdot d\vec{r} = \int_{a}^{b} \vec{F}(\vec{r}(t)) \cdot \vec{r}'(t) dt$$

- Si $\vec{F} = \langle P, Q, R \rangle$, y $d\vec{r} = \langle dx, dy, dz \rangle$. Podemos denotar a la integral como $\int\limits_C \vec{F} \cdot d\vec{r} = \int\limits_C Pdx + Qdy + Rdz$.
- Si \vec{F} representa un campo de fuerza, entonces la integral de linea $\int_{C} \vec{F} d\vec{r}$ representa el **trabajo**.
- · La integral depende de la orientación de la curva.

Ejemplo 2

Sea C la elipse dada por la intersección del cilindro $x^2 + y^2 = 1$ y el plano z = 2y + 1 orientada en sentido antihorario visto desde arriba y sea $\vec{F} = (y, z, x)$ un campo vectorial. Calcular $\int_C y dx + z dy + x dz$.

Solución:

· Primero parametrizamos la elipse por medio de la función

- · Primero parametrizamos la elipse por medio de la función
- $\vec{r}(t) = (\cos t, \sin t, 2 \sin t + 1), 0 \le t \le 2\pi$

- · Primero parametrizamos la elipse por medio de la función
- $\vec{r}(t) = (\cos t, \sin t, 2 \sin t + 1), 0 \le t \le 2\pi$
- $x = \cos t$, $y = \sin t$, $z = 2 \sin t + 1$

- · Primero parametrizamos la elipse por medio de la función
- $\vec{r}(t) = (\cos t, \sin t, 2 \sin t + 1), 0 \le t \le 2\pi$
- $x = \cos t$, $y = \sin t$, $z = 2\sin t + 1$
- $dx = -\sin t dt$, $dy = \cos t dt$, $dz = 2 \cos t$

- · Primero parametrizamos la elipse por medio de la función
- $\vec{r}(t) = (\cos t, \sin t, 2 \sin t + 1), 0 \le t \le 2\pi$
- $x = \cos t$, $y = \sin t$, $z = 2\sin t + 1$
- $dx = -\sin t dt$, $dy = \cos t dt$, $dz = 2 \cos t$
- $\int_C y dx + z dy + x dz =$

- · Primero parametrizamos la elipse por medio de la función
- $\vec{r}(t) = (\cos t, \sin t, 2 \sin t + 1), 0 \le t \le 2\pi$
- $x = \cos t$, $y = \sin t$, $z = 2\sin t + 1$
- $dx = -\sin t dt$, $dy = \cos t dt$, $dz = 2 \cos t$
- $\int_C y dx + z dy + x dz =$
- $\int_0^{2\pi} -\sin^2 t + 2\cos t \sin t + \cos t + 2\cos^2 t dt = \frac{\pi^2}{4}$.

Ejemplo 3

Sea C la curva consistente del segmento de (0,0) a (1,0), seguido del sector de circunferencia de (1,0) a $(\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}})$, seguido del segmento de recta de $(\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}})$ al origen. Calcular $\int\limits_C y dx + x dy$.

Solución:

• La curva C es suave por tramos. Por lo que la vamos a escribir como la unión de 3 curvas $C = C_1 + C_2 + C_3$

- La curva C es suave por tramos. Por lo que la vamos a escribir como la unión de 3 curvas C = C₁ + C₂ + C₃
- $C_1 : \vec{r}_1(t) = (t, 0), 0 \le t \le 1$

- La curva C es suave por tramos. Por lo que la vamos a escribir como la unión de 3 curvas C = C₁ + C₂ + C₃
- $C_1 : \vec{r}_1(t) = (t, 0), 0 \le t \le 1$
- x = t, dx = dt, y = 0, dy = 0

- La curva C es suave por tramos. Por lo que la vamos a escribir como la unión de 3 curvas C = C₁ + C₂ + C₃
- $C_1 : \vec{r}_1(t) = (t, 0), 0 \le t \le 1$
- x = t, dx = dt, y = 0, dy = 0
- $C_2 : \vec{r}_2(t) = (\cos t, \sin t), 0 \le t \le \frac{\pi}{4}$

- La curva C es suave por tramos. Por lo que la vamos a escribir como la unión de 3 curvas C = C₁ + C₂ + C₃
- $C_1 : \vec{r}_1(t) = (t, 0), 0 \le t \le 1$
- x = t, dx = dt, y = 0, dy = 0
- $C_2 : \vec{r}_2(t) = (\cos t, \sin t), 0 \le t \le \frac{\pi}{4}$
- $x = \cos t$, $dx = -\sin t dt$, $y = \sin t$, $dy = \cos t dt$

- La curva C es suave por tramos. Por lo que la vamos a escribir como la unión de 3 curvas C = C₁ + C₂ + C₃
- $C_1 : \vec{r}_1(t) = (t, 0), 0 \le t \le 1$
- x = t, dx = dt, y = 0, dy = 0
- $C_2 : \vec{r}_2(t) = (\cos t, \sin t), 0 \le t \le \frac{\pi}{4}$
- $x = \cos t$, $dx = -\sin t dt$, $y = \sin t$, $dy = \cos t dt$
- $C_3: \vec{r}_3(t) = (\frac{1-t}{\sqrt{2}}, \frac{1-t}{\sqrt{2}}), 0 \le t \le 1$

- La curva C es suave por tramos. Por lo que la vamos a escribir como la unión de 3 curvas $C = C_1 + C_2 + C_3$
- $C_1 : \vec{r}_1(t) = (t, 0), 0 \le t \le 1$
- x = t, dx = dt, y = 0, dy = 0
- $C_2: \vec{r}_2(t) = (\cos t, \sin t), 0 \le t \le \frac{\pi}{4}$
- $x = \cos t$, $dx = -\sin t dt$, $y = \sin t$, $dy = \cos t dt$
- $C_3: \vec{r}_3(t) = (\frac{1-t}{\sqrt{2}}, \frac{1-t}{\sqrt{2}}), 0 \le t \le 1$
- $x = \frac{1-t}{\sqrt{2}}$, $dx = -\frac{1}{\sqrt{2}}dt$, $y = \frac{1-t}{\sqrt{2}}$, $dy = -\frac{1}{\sqrt{2}}dt$

•
$$\int_{C} ydx + xdy = \int_{C_1} ydx + xdy + \int_{C_2} ydx + xdy + \int_{C_3} ydx + xdy$$

•
$$\int_{C} ydx + xdy = \int_{C_1} ydx + xdy + \int_{C_2} ydx + xdy + \int_{C_3} ydx + xdy$$

•
$$\int_0^1 0 dt + \int_0^{\pi/4} -\sin^2 t + \cos^2 t dt + \int_0^1 -1 + t dt = 0 + \frac{1}{2} - \frac{1}{2} = 0$$