1. În corpul de pompă al unei maşini termice se găseşte aer care la temperatura $T_1 = 400\,\mathrm{K}$ şi presiunea $p_1 = 5 \cdot 10^5\,\mathrm{Pa}$ ocupă volumul $V_1 = 2\,\ell$. Gazul suferă o transformare în care temperatura rămâne constantă, ajungând în starea 2, în care volumul este $V_2 = 2.5\,\mathrm{L}$, apoi o comprimare în care presiunea gazului rămâne constantă, până în starea 3, după care revine în starea iniţială printr-o transformare în care volumul rămâne constant. **a.** Calculaţi parametrii fiecărei stări.

b. Reprezentati grafic transformarea ciclică în coordonate p-V; V-T; p-T

2. O cantitate de gaz ideal se află iniţial în starea de echilibru termodinamic (1) în care ocupă volumul $V_1 = 1$ L la presiunea $p_1 = 10^5$ N/m². Gazul trece din starea iniţială de echilibru termodinamic (1), printr-o transformare în care densitatea gazului se menţine constantă, până în starea de echilibru termodinamic (2) şi îşi măreşte temperatura de e = 2,71 ori. În continuare, gazul efectuează transformarea $2 \rightarrow 3$ în care temperatura rămâne constantă, până în starea de echilibru termodinamic (3) unde volumul devine $V_3 = e \cdot V_2$. Din starea de echilibru termodinamic (3) gazul revine în starea iniţială de echilibru termodinamic (1), printr-o transformare în care presiunea rămâne constantă.

a. Calculați parametrii fiecărei stări.

b. Reprezentati grafic transformarea ciclică în coordonate p-V; V-T; p-T

3. Un mol de heliu se găsește la presiunea $p_1=2\cdot 10^5\,\mathrm{Nm}^2$ și volumul $V_1=4\,\mathrm{dm}^3$. Gazul suferă o transformare ciclică în care dependența densității gazului de temperatură este ilustrată în figura alăturată. În procesele $2\to 3$ și $4\to 1$ densitatea și temperatura absolută variază astfel încât $\rho\cdot T=\mathrm{ct}$, iar în transformarea $1\to 2$ temperatura se dublează.

b. Reprezentati grafic transformarea ciclică în coordonate p-V; V-T; p-T

a. Exprimați parametrii fiecărei stări în funcție de p și V

b. Reprezentati grafic transformarea ciclică în coordonate V-T; p-T

5. În figura figura alăturată este reprezentată o transformare ciclică în coordonate p-T.

a. Exprimați parametrii fiecărei stări în funcție de p și T

b. Reprezentati grafic transformarea ciclică în coordonate V-T; p-V

- **6.** Un mol de gaz ideal, aflat inițial în starea A în care $p_A = 10^5 \, \text{Pa}$ și $V_A = 5 \, \text{L}$, este supus unui proces termodinamic ciclic format din: încălzire izobară $A \to B$ până la temperatura $T_B = 3 \cdot T_A$; răcire izocoră $B \to C$ astfel încât temperatura $T_C = 0.5 \cdot T_B$; răcire izobară $C \to D$ până la temperatura inițială T_A și comprimare izotermă $D \to A$.
- a. Calculați parametrii fiecărei stări.
- **b.** Reprezentati grafic transformarea ciclică în coordonate p-V; V-T; p-T
- 7. Un mol de gaz ideal se află în starea inițială caracterizată de parametrii $p_1 = 0.8 \, \text{MPa}$ și $V_1 = 1 \, \text{L}$ parcurge ciclul din figură reprezentat în coordonate p V. În decursul procesului $1 \rightarrow 2$ temperatura a gazului nu se modifică. În starea 2 presiunea are valoarea $p_2 = 3.2 \, \text{MPa}$.

- a. Calculați parametrii fiecărei stări.
- **b.** Reprezentati grafic transformarea ciclică în coordonate ρ -T (densitate-temperatură); V-T; p-T
- **8.** O cantitate dată de gaz ideal suferă procesul ciclic reprezentat în figura alăturată. Cunoscând valorile temperaturilor $T_1 = 250 \, \text{K}$ şi $T_2 = 300 \, \text{K}$ calculați valoarea temperaturii în starea 3

- **9.** O cantitate dată de gaz ideal suferă procesul ciclic reprezentat în figura alăturată. Demonstrați că stările 2 și 4 se află pe aceeași izotermă.
- **10.** În figura figura alăturată este reprezentată o transformare ciclică în coordonate V-T.
- a. Calculați parametrii fiecărei stări.
- **b.** Reprezentati grafic transformarea ciclică în coordonate p-T; p-V

