Analiză matematică EXAMEN PARŢIAL - GRUPELE 311 şi 314 Marti 15 decembrie 2020 - ora 12:00

Rezolvările trebuie scrise de mână, menționând numele, grupa și varianta în antetul primei pagini

Exercițiul 1.1 Să se studieze convergența șirului $(x_n)_{n\in\mathbb{N}}$, definit prin

$$x_n = \frac{\sin \pi}{2} + \frac{\sin(\pi/2)}{2^2} + \ldots + \frac{\sin(\pi/n)}{2^n}, \ \forall n \in \mathbb{N}.$$

Exercițiul 1.2 Studiați convergența seriei $\sum_{n\geq 1} \frac{n+1}{e^n}$.

Exercițiul 1.3 Fie $f: \mathbb{R} \to \mathbb{R}$ funcția definită prin

$$f(x) = \begin{cases} 1 & \text{dacă} \ x \in \mathbb{Z} \\ 0 & \text{dacă} \ x \in \mathbb{R} \setminus \mathbb{Z}. \end{cases}$$

Determinați mulțimea tuturor punctelor de continuitate ale funcției f, apoi studiați dacă această mulțime este deschisă sau închisă.

Exercițiul 2.1 Să se studieze convergența șirului $(x_n)_{n\in\mathbb{N}}$, definit prin

$$x_n = \frac{\cos \pi}{1 \cdot 2} + \frac{\cos(\pi/2)}{2 \cdot 3} + \ldots + \frac{\cos(\pi/n)}{n(n+1)}, \ \forall n \in \mathbb{N}.$$

Exercițiul 2.2 Studiați convergența seriei $\sum_{n\geq 1}\left(\frac{n^2+1}{2n^2+n}\right)^{2n}$.

Exercițiul 2.3 Fie $f: \mathbb{R} \to \mathbb{R}$ funcția definită prin

$$f(x) = \begin{cases} x & \text{dacă} \ x \in \mathbb{Z} \\ 0 & \text{dacă} \ x \in \mathbb{R} \setminus \mathbb{Z}. \end{cases}$$

Determinați mulțimea tuturor punctelor de continuitate ale funcției f, apoi studiați dacă această mulțime este deschisă sau închisă.

Exercițiul 3.1 Calculați
$$\lim_{n\to\infty} \sqrt[n]{n! \left(\sin\frac{\pi}{2}\right) \left(\sin\frac{\pi}{3}\right) \cdots \left(\sin\frac{\pi}{n}\right)}$$
.

Exercițiul 3.2 Studiați convergența seriei $\sum_{n\geq 1} \frac{(n+1)^{n-1}}{n^{n+1}}$.

Exercițiul 3.3 Să se demonstreze că există un singur număr $a \in \mathbb{R}$ pentru care mulțimea $A = (-1, +\infty) \cup \{a\}$ să fie închisă iar funcția $f : \mathbb{R} \to \mathbb{R}$ definită prin

$$f(x) = \begin{cases} \frac{\sin x}{x} & \text{dacă } x \neq 0\\ a+2 & \text{dacă } x = 0. \end{cases}$$

să fie continuă.

Exercițiul 4.1 Calculați $\lim_{n\to\infty} \sqrt[n]{1^2+2^2+\cdots+n^2}$.

Exercițiul 4.2 Studiați convergența seriei
$$\sum_{n\geq 1} \left[\frac{1\cdot 4\cdot \ldots \cdot (3n-2)}{3\cdot 6\cdot \ldots \cdot (3n)} \cdot \frac{1}{n+3} \right].$$

Exercițiul 4.3 Să se demonstreze că există un singur număr $a \in \mathbb{R}$ pentru care mulțimea $A = (a, +\infty) \cup \{2e\}$ să fie închisă iar funcția $f : \mathbb{R} \to \mathbb{R}$ definită prin

$$f(x) = \begin{cases} (1+x)^{\frac{1}{x}} & \text{dacă } x \neq 0 \\ a-e & \text{dacă } x = 0. \end{cases}$$

să fie continuă.