SEQUENCE LISTING

<110>		e University t, John D	7				
<120>	NOVE	EL TARGETS F	FOR LITHIUM	THERAPY AND	TOXICITY '	TREATMENT	
<130>	180,	158/2					
<150> <151>		50/401480 2-08-06					
<160>	24						
<170>	Pate	entIn versio	on 3.2				
<210> ' <211> <212> <213>	2113 DNA	s sapiens					
<220> <221> <222>	mRNA	A (2113)					
<400> ggaatte	1 cggc	acgagaagct	cggtactgga	cacaacgagg	gacctgggtc	tacgataacg	60
cgcttt	tgct	cctcctgaag	tgtctttggt	ccaacgttgt	tccagagtgt	accatggctt	120
ccagta	acac	tgtgttgatg	cggttggtag	cctccgcata	ttctattgct	caaaaggcag	180
gaatga	tagt	cagacgtgtt	attgctgaag	gagacctggg	tattgtggag	aagacctgtg	240
caacaga	acct	gcagaccaaa	gctgaccgat	tggcacagat	gagcatatgt	tcttcattgg	300
cccggaa	aatt	ccccaaactc	acaattatag	gggaagagga	tctgccttct	gaggaagtgg	360
atcaag	agct	gattgaagac	agtcagtggg	aagaaatact	gaagcaacca	tgcccatcgc	420
agtaca	gtgc	tattaaagaa	gaagatctcg	tggtctgggt	tgatcctctg	gatggaacca	480
aggaata	atac	cgaaggtctt	cttgacaatg	taacagttct	tattggaatt	gcttatgaag	540
gaaaag	ccat	agcaggagtt	attaaccagc	catattacaa	ctatgaggca	ggaccagatg	600
ctgtgt	tggg	gaggacaatc	tggggagttt	taggtttagg	cgcctttggg	tttcagctga	660
aagaag	tccc	tgctgggaaa	cacattatca	caactactcg	atcccatagc	aacaagttgg	720
ttactg	actg	tgttgctgct	atgaaccccg	atgctgtgct	gcgagtagga	ggagcaggaa	780
ataaga	ttat	tcagctgatt	gaaggcaaag	cctctgctta	tgtatttgca	agtcctggtt	840
gtaaga	agtg	ggatacttgt	gctccagaag	ttattttaca	tgctgtggga	ggcaagttaa	900
ccgata	tcca	tgggaatgtt	cttcagtacc	acaaggatgt	gaagcatatg	aactctgcag	960
gagtcc	tggc	cacactgagg	aattatgact	actatgcaag	ccgagttcca	gaatctatta	1020

aaaatgcact tgttccttaa aggaaagttt catttggccg ggcgcggtgg ctcatgcctg taatcccagc actttgggag gccgaggcag gtggatcact tgagctcagg agtttgagac 1140 cagcctgggc aatatcgtga gaccccatct ctacaaaaat acaaattaac tgggcatcct 1200 gtcatgcgcc tgtcatccca gctacttgag aggctgaagc agaagaatct cttgagcccg 1260 gaaggeggag gttgcagtga getgagateg tgccactgca etecageetg agtgacagga 1320 gttaagccct gtctcagaaa aaaaacataa acccaaaaag tacttaaagt ttcatttact 1380 tactaggaaa agacttggtt ctcaaataat acattttaag attaattggg tagaattaga 1440 gttccacctt tatcattgtt gacagtgatt tatatttagt tatatattta gaataaaaat 1500 taactaaata atttaacttg attaatacca ttactcaacc tgacaattga gttggagact 1560 tataaactca ttatggttat catgtgtttt cctgttgaat gtgaagaagt gagaaaacat 1620 ttgccaatga cagttaggcg tgcacactga ccattcactg ataaaccaga ttctgcctga 1680 atctgaaggg attgcttgta gcatagggtt tagtggcgtg atcttgggtc actgcggccc 1740 getteegggg tteatgette teetgeetag eteegggtag etgggaetge ageaeggeee 1800 acgctggtaa ttttttgtat gatggtgaga agttttcacc gtgttgccag gatggcttat 1860 cctgacatcg tgatctgtat gcctcggatc ccaaagtgca tgggatgaca gctgtgagcc 1920 accgcacttg gcttaaacca gatttcttta gggcacattt ttttggaatc tcactctgtt 1980 tttcacagta attttaaaaa cgttttatcc aattagaata tatatgatgt tattatatat 2040 gcttatgaaa cagatttatg agaaaagttt tttttaaata aattatttaa tccctaaaaa 2100 aaaaaaaaa aaa 2113

<210> 2

<211> 308 <212> PRT

<212> PRT <213> Homo sapiens

<220>

<221> PEPTIDE

<222> (1)..(308)

<400> 2

Met Ala Ser Ser Asn Thr Val Leu Met Arg Leu Val Ala Ser Ala Tyr 1 5 10 15

Ser Ile Ala Gl
n Lys Ala Gly Met Ile Val Arg Arg Val Ile Ala Glu
 $20 \hspace{1.5cm} 25 \hspace{1.5cm} 30 \hspace{1.5cm}$

Gly Asp Leu Gly Ile Val Glu Lys Thr Cys Ala Thr Asp Leu Gln Thr 35 40 45

- Lys Ala Asp Arg Leu Ala Gln Met Ser Ile Cys Ser Ser Leu Ala Arg 50 55 60
- Lys Phe Pro Lys Leu Thr Ile Ile Gly Glu Glu Asp Leu Pro Ser Glu 65 70 75 80
- Glu Val Asp Gln Glu Leu Ile Glu Asp Ser Gln Trp Glu Glu Ile Leu 85 90 95
- Lys Gln Pro Cys Pro Ser Gln Tyr Ser Ala Ile Lys Glu Glu Asp Leu 100 105 110
- Val Val Trp Val Asp Pro Leu Asp Gly Thr Lys Glu Tyr Thr Glu Gly 115 120 125
- Leu Leu Asp Asn Val Thr Val Leu Ile Gly Ile Ala Tyr Glu Gly Lys 130 140
- Ala Ile Ala Gly Val Ile Asn Gln Pro Tyr Tyr Asn Tyr Glu Ala Gly
 145 150 155 160
- Pro Asp Ala Val Leu Gly Arg Thr Ile Trp Gly Val Leu Gly Leu Gly 165 170 175
- Ala Phe Gly Phe Gln Leu Lys Glu Val Pro Ala Gly Lys His Ile Ile 180 185 190
- Thr Thr Thr Arg Ser His Ser Asn Lys Leu Val Thr Asp Cys Val Ala 195 200 205
- Ala Met Asn Pro Asp Ala Val Leu Arg Val Gly Gly Ala Gly Asn Lys 210 215 220
- Ile Ile Gln Leu Ile Glu Gly Lys Ala Ser Ala Tyr Val Phe Ala Ser 225 230 240
- Pro Gly Cys Lys Lys Trp Asp Thr Cys Ala Pro Glu Val Ile Leu His
 245 250 255
- Ala Val Gly Gly Lys Leu Thr Asp Ile His Gly Asn Val Leu Gln Tyr 260 265 270
- His Lys Asp Val Lys His Met Asn Ser Ala Gly Val Leu Ala Thr Leu 275 280 285

```
290
                        295
Ala Leu Val Pro
305
<210>
<211> 27
<212> PRT
<213> Artificial
<220>
<223> Li-sensitive sequence uniting motif.
<220>
<221>
      MISC FEATURE
<222>
      (2)..(2)
<223> Z is any number of integers of any amino acid.
<220>
<221> MISC_FEATURE
<222> (5)..(5)
<223> Z is any number of integers of any amino acid.
<220>
<221> MISC_FEATURE
<222>
      (8)..(8)
<223> X is isoleucine or an amino acid that can be conservatively
      substituted in place thereof.
<220>
<221> MISC_FEATURE
<222>
      (10)..(10)
      X is glycine or an amino acid that can be conservatively
       substituted in place thereof.
<220>
<221> MISC_FEATURE
<222> (11)..(11)
<223> X is threonine or an amino acid that can be conservatively
       substituted in place thereof.
<220>
<221> MISC FEATURE
<222>
      (12)..(12)
<223> Z is any number of integers of any amino acid.
<220>
<221> MISC_FEATURE
<222>
      (13)..(13)
<223> X is tryptophan or an amino acid that can be conservatively
       substituted in place thereof.
<220>
<221> MISC_FEATURE
<222> (14)..(14)
<223> X is aspartic acid or an amino acid that can be conservatively
```

Arg Asn Tyr Asp Tyr Tyr Ala Ser Arg Val Pro Glu Ser Ile Lys Asn

substituted in place thereof.

```
<220>
<221> MISC_FEATURE
<222> (15)..(25)
<223> X is any amino acid.
<400> 3
Asp Glx Glu Glx Asp Pro Xaa Asp Xaa Xaa Glx Xaa Xaa Xaa
                                  10
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Gly Gly
           20
<210> 4
<211> 290
<212> PRT
<213> Artificial
<223> Li-sensitive sequence uniting motif for Impase1.
<220>
<221> MISC_FEATURE
<222> (1)..(46)
<223> X is any amino acid.
<220>
<221> MISC_FEATURE
<222> (48)..(69)
<223> X is any amino acid.
<220>
<221> MISC_FEATURE <222> (72)..(89)
<223> X is any amino acid.
<220>
<221> MISC_FEATURE
<222> (96)..(218)
<223> X is any amino acid.
<220>
<221> MISC_FEATURE <222> (221)..(231)
<223> X is any amino acid.
<220>
<221> MISC FEATURE
<222> (234)..(290)
<223> X is any amino acid.
<400> 4
10
```

Xaa Xaa Xaa Xaa Xaa Glu Glu Xaa Asp Pro Ile Asp Gly Thr Xaa 8.5 130 -Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Trp Asp Xaa Xaa Xaa 220 , Xaa Xaa Xaa Xaa Xaa Xaa Gly Gly Xaa Xaa Xaa Xaa Xaa Xaa

260 265

280

Xaa Xaa 290

<210> 5

<211> 399

<212> PRT

<213> Artificial

<220>

<223> Li-sensitive sequence uniting motif for 1ptase.

<220>

<221> MISC FEATURE

<222> (1)..(53)

<223> X is any amino acid.

<220>

<221> MISC_FEATURE

<222> (55)..(78) <223> X is any amino acid.

<220>

<221> MISC_FEATURE

<222> (81)..(152)

<223> X is any amino acid.

<220>

<221> MISC_FEATURE <222> (159)..(314)

<223> X is any amino acid.

<220>

<221> MISC FEATURE

<222> (317)..(327)

<223> X is any amino acid.

<220>

<221> MISC_FEATURE

<222> (330)..(399)

<223> X is any amino acid.

<400> 5

5

Xaa Xaa Xaa 35	Xaa Xaa	Xaa Xaa	Xaa Xa 40	a Xaa Xa	a Xaa	Xaa 45	Xaa	Xaa	Xaa
Xaa Xaa Xaa 50	Xaa Xaa	Asp Xaa 55	Xaa Xa	a Xaa Xa	a Xaa 60	Xaa	Xaa	Xaa	Xaa
Xaa Xaa Xaa 65	Xaa Xaa	Xaa Xaa 70	Xaa Xa	a Xaa Xa 75	a Xaa	Xaa	Xaa	Glu	Glu 80
Xaa Xaa Xaa	Xaa Xaa 85	Xaa Xaa	Xaa Xa	a Xaa Xa 90	a Xaa	Xaa	Xaa	Xaa 95	Xaa
Xaa Xaa Xaa	Xaa Xaa 100	Xaa Xaa	Xaa Xa		a Xaa	Xaa	Xaa 110	Xaa	Xaa
Xaa Xaa Xaa 115	Xaa Xaa	Xaa Xaa	Xaa Xa 120	a Xaa Xa	a Xaa	Xaa 125	Xaa	Xaa	Xaa
Xaa Xaa 130	Xaa Xaa	Xaa Xaa 135		a Xaa Xa	a Xaa 140	Xaa	Xaa	Xaa	Xaa
Xaa Xaa Xaa 145	Xaa Xaa	Xaa Xaa 150	Xaa As	p Pro Il 15	_	Ser	Thr	Xaa	Xaa 160
Xaa Xaa Xaa	Xaa Xaa 165	Xaa Xaa	Xaa Xa	a Xaa Xa 170	a Xaa	Xaa	Xaa	Xaa 175	Xaa
Xaa Xaa Xaa	180		18	5			190		
Xaa Xaa Xaa 195	Xaa Xaa	Xaa Xaa	Xaa Xa 200	a Xaa Xa	a Xaa	Xaa 205	Xaa	Xaa	Xaa
Xaa Xaa Xaa 210		215			220				
Xaa Xaa Xaa 225		230	-	23	5				240
Xaa Xaa Xaa	245			250				255	
Xaa Xaa Xaa	Xaa Xaa 260	Xaa Xaa	Xaa Xa 26		a Xaa	Xaa	Xaa 270	Xaa	Xaa
Xaa Xaa Xaa	Xaa Xaa	Xaa Xaa	Xaa Xa	a Xaa Xa -8-	a Xaa	Xaa	Xaa	Xaa	Xaa

275 280 285

295 300

Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Trp Asp Xaa Xaa Xaa Xaa 305 310 315

Xaa Xaa Xaa Xaa Xaa Xaa Gly Gly Xaa Xaa Xaa Xaa Xaa Xaa 325 330

345

390 395

<210> 6

<211> 338

<212> PRT

<213> Artificial

<220>

<223> Li-sensitive sequence uniting motif for Fbpasel.

<220>

<221> MISC_FEATURE <222> (1)..(74)

<223> X is any amino acid.

<220>

<221> MISC FEATURE

<222> (76)..(97) <223> X is any amino acid.

<220>

<221> MISC FEATURE

<222> (100)..(118)

<223> X is any amino acid.

<220>

<221> MISC_FEATURE <222> (125)..(279)

<223> X is any amino acid.

<220>

<221> MISC_FEATURE

<222> (282)..(292)

<223> X is any amino acid.

<220>

<221> MISC FEATURE

<222> (295)..(338)

<223> X is any amino acid.

<400> 6

Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Asp Xaa Xaa Xaa Xaa 65 70 75 80

Xaa Xaa Xaa Xaa Xaa Asp Pro Leu Asp Gly Ser Xaa Xaa Xaa Xaa 115 120 125

2	210	٠,				215					220						
Xaa X 225	(aa	Xaa	Xaa	Xaa	Xaa 230	Xaa	Xaa	Xaa	Xaa	Xaa 235	Хаа	Xaa	Xaa	Xaa	Xaa 240		
Xaa X	(aa	Xaa	Xaa	Xaa 245	Xaa	Xaa	Xaa	Xaa	Xaa 250	Xaa	Xaa	Xaa	Xaa	Xaa 255	Xaa		
Xaa X	Kaa	Xaa	Xaa 260	Xaa	Xaa	Xaa	Xaa	Xaa 265	Xaa	Xaa	Xaa	Xaa	Xaa 27.0	Xaa	Xaa		
Xaa X	(aa	Xaa 275	Xaa	Xaa	Xaa	Xaa	Tyr 280	Glu	Xaa	Xaa	Xaa	Xaa 285	Xaa	Xaa	Xaa		
Xaa X 2	{aa 290	Xaa	Xaa	Gly	Gly	Xaa 295	Xaa	Xaa	Xaa	Xaa	Xaa 300	Xaa	Xaa	Xaa	Xaa		
Xaa X 305	(aa	Xaa	Xaa	Xaa	Xaa 310	Xaa	Xaa	Xaa	Xaa	Xaa 315	Xaa	Xaa	Xaa	Xaa	Xaa 320		
Xaa X	(aa	Xaa	Xaa	Xaa 325	Xaa	Xaa	Xaa	Xaa	Xaa 330	Xaa	Xaa	Xaa	Xaa	Xaa 335	Xaa		
Xaa X	(aa																
<210><211><211><212><213>	> 5 > D	3 NA	ficia	al													
<220>		אח ו:	מ גז	ית סי	rime	^										•	
<400> ggato	> 7	,		_			gagat	t cc	ccgg	gagc	ctg	:gca	aga a	aag	-		53
<210><211><211><212><213>	> 5 > D	55 NA	ficia	al													
<220>		o' DN	JA PO	CR pi	rime	c.								Ē			
<400> ggato			acgag	gatag	gc gg	gccg	cggt	g gaç	gtgad	ctgg	gtta	aaca	gcc 1	taag	С		55

```
<210> 9
<211> 49
<212> DNA
<213> artificial
<220>
<223> 5' DNA PCR primer
agatetttea attgaagett gtegaceage atgtegggga teaagaage
                                                                       49
<210> 10
<211> 48
<212> DNA
<213> artificial
<220>
<223> 5' DNA PCR primer.
<400> 10
agatctaagc ttccgcggtc gacctggagc caaaggctta gttcttct
                                                                       48
<210> 11
<211> 31
<212> DNA
<213> artificial
<220>
<223> 5' DNA PCR primer
<400> 11
ggatccatgc ctgctcctca cggtggtatt c
                                                                       31
<210> 12
<211> 43
<212> DNA
<213> artificial
<220>
<223> 5' DNA PCR primer.
<400> 12
ccgcggtcga cgcggccgcg gtcgatcatg aattttgccc tac
                                                                       43
<210> 13
<211> 31
<212> DNA
<213> artificial
<220>
<223> 5' DNA PCR primer.
<400> 13
ggatccaagc acactgtaca ccaatggcta c
                                                                       31
```

```
<210> 14
<211> 42
<212> DNA
<213> artificial
<220>
<223> 5' DNA PCR primer.
<400> 14
                                                                     42
gcggccgccg cggtcgaccg gatcagaatt tcacggtaat cc
<210> 15
<211>
      31
<212>
      DNA
<213> artificial
<220>
<223> 5' DNA PCR primer.
<400> 15
atcgatcata tggagccctt gcgtaaacca c
                                                                     31
<210> 16
<211> 22
<212> DNA
<213> artificial
<220>
<223> 5' DNA PCR primer
<400> 16
tcatatttga cagcggaacg tg
                                                                     22
<210> 17
<211>
      981
<212> DNA
<213> artificial
<220>
<223> Fragment of BPntase genomic DNA located between exons 5 and 6
       with 5' and 3' engineered restriction sites.
<400> 17
gtagcacctc acatactctc ccagctccag agctaggccc ctcctgggga atcactgttg
                                                                     60
tacacttcct ttcctgaggg actgtgctga catgtctgac tgggctagag aaatgctcca
                                                                    120
ccacccctgg tcccatagca tcccctcacc tgaggttgtc acaggtaaga aaaccagaag
                                                                    180
gcatcgaatt aaatccagag gtgtaaaagt caggaggagt tgtgtgagag ctcacacctg
taatctcagc acactggggc agagggactg ctttgagttt gaggccatct tgagtgctat
                                                                    300
acatggcaag ttctgggtca gcttgggtta gagcaagacc ttttctaggc aaagcaagac
                                                                    360
attagtcaga agaacccagt ctcagagctg gacttcgggt tttatttgtt tgtttgtttg
                                                                    420
tttttatttt ttgagacagg gtttctctgt gtagccctgg ttgtcctggc actcactttg
                                                                    480
```

tagaccagac tggcctcgaa ctcagaaatc tgcctgcctc tgcctcccga gtgctgggat	540
taaaggtgtg cgccaccact gcctggctta gacttcaagt tttaaaagcc tagagttgta	6.00
gttttgaaat aaagatctgc attgagaact tgtgaggctg aggcaggaag actgtgaggt	660
cageetggee tteacagtga gttteaggte ageetgagat agaggageag tgtgaggeea	720
gaaggacccc acaaagaaag acctccacag cgctgcttct aacgggtcca gcttcgagag	780
gettteteae agetgeeaga gagaatgttg ttggeeeetg gaggagatag agtgatagtg	840
actctgtgtg tgtgtgtgta aatatatact gtatatactg tgagggtgca tgtgtgcaac	900
atgcatatgt actgtgaaaa tgtgtgagag gcagtgtgtt cgtatgtgtg tctgtgagta	960
taacccatgc gtatgtaatc t	981
<210> 18 <211> 35 <212> DNA <213> artificial <220> <223> 5' DNA PCR primer	
<400> 18 ggcgccgt agcacctcac atactctccc agctc	35
<210> 19	
<212> DNA <213> artificial	
<220>	
<223> 3' DNA PCR primer	
<400> 19 ggcgcgccag attacatacg catgggttat actc	34
<210> 20 · · · · · · · · · · · · · · · · · ·	
<212> DNA <213> artificial	
<220> <223> Fragment of the genomic BPntase sequence with engineered 5' a 3' flanking restriction sites.	and
<400> 20 tggcgagctt gcttattctg ctttcagagt atggggttgt ataaagcacg tggcgccaca	60
ctggggtttc ccgactctta gcccatttaa agcaggttgg aatctagagc gttatgaaag	120
agtttctcaa ttagagaaga gaatattcca aataatttaa aagcaccttt gcaaacttga	180
actgttgtgg agctgggaat gcagttcagt ggtagtgcct gcttggtgtg tgtcaggggc -14-	240

\$

300 360 cacacacaca cacacacgct gttttaaact atgattgttt attggtatac agtttcacac 420 ggtagtacaa gctgatctca gattcatggc tgtccttcta tgtcctgata ttagagccgt 480 geagtgetat ceageeteae treteagtet trettgrett tregtritigtt tregtritigtt 540 ttgttttatt tttttgagac agggtttctc tgtgaagccc tggctgtcct ggaactcact 600 ctgtagacca ggctggcctc gaactcagaa atccgcctgc ctctgcctcc cgagtgctgg 660 gattaaaggc gtgcgccgcc acgcccggcg tcacttctca gtcttagctg ctgttacttc 720 tetgagaage agegagggee eteaetagtt gateeetggg etegggtetg egttataetg 780 gggagtcgga agactggtta ccccgatttg tactgatacg gagatttgca ttcttggtta 840 900 cagacetegg ceaeegacet geagaceaaa geegaceget tggtgeagat gageatatge tetteeetgg eeeggaagtt eeegaagetg accateatag gggaagaggt gagaggegeg 960 cgccacttgg attcataccc tacctgccat tgagccgtag gttatggtca gtcttagcgt 1020 tggcactaac gttccaacac aaagcgatcg ttttccttag gggaaaaatc tgacttaatg 1080 atattttggt ccacttaatg ggctaagtct ccatttctag tgatgggagc tatggtcacc 1140 attgtaatac catacgatgg actcagtggc agaaagtcgc ctactgtatg tgaggctcta 1200 aggtgggaga catctcagtc ataagaccat gtggctcaca tatgtgaggt cctgggttgg 1260 agcccctgca tcagcagtta tatgtgaaga gtcggcaagg ttctggaact ctgagatgac 1320 tgggcttggt ttgcttgtct gcttgtccgt catttcagat tggacttgtg tacttacaac 1380 tgaaacaata gactatgttt tagttttgtt ttttattaag ttagttcgtt gacaatttag 1440 1500 tgcatacatg taatacattc tgatttccct catacttcgg attctcctcc cctccccttc ttccttgccc gccccctctt cccacttagt ttattcagga tcatccatgt gaccatttca 1560 ttgggaccat ccattggtca tcagtggtgc acagctgaaa gcaatggctt cccctttccc 1620 tgaatcagtc tgtaggaaat agttctgcag tgaaggagag agagtgctgg tctgcatctc 1680 tectecacet etgettaact gttgggaete attetttete agacecagea cagteatetg 1740 1800 gttgttgaga gttcatgctt gcactggctc gcaccccagt aatgacgttt ggcagccctt ctccccgttt ttcagctctt accatctttc tgcccctctc ctacaaagcc tggtaaacct 1860 tagaggggat aaatgtctaa atatcttatt cagagctgag caatcagctg taagtttgtc 1920 ttattaggcc ttcatatatc tctcccttca ttatagtcct ctagaaagag aatcttctct 1980 gactaaggct gagtggtaat tegetatgtg aataaacate tatatttagg aagetgtttg 2040

acactgtgtg	actttagtaa	agctgtagag	tttaactccc	taagaggact	catggcctcc	2100
ctttttatac	actgagtggg	tctccagaca	tggagtgtgt	ttaacgtact	aagcgtggat	2160
tcccatgctg	gagtagccct	cacattcgat	caagagcagg	tagttacccc	ccaacagtgc	2220
cgacactgtt	gttgtaccag	tgagcacagc	ttgcctgaca	gatggtgctg	tagtttgtca	2280
ggtgcacaga	tgggcaatac	tttcttcccc	agcagcctgc	agagaaaatg	tgttcaggtc	2340
tgacttcttt	gtctcatgca	accaaagtgt	gtggtgtcat	tagcagtaag	gtcttagcat	2400
ctaatgctag	tgggcaacca	agaaaaatga	caatgcctat	attgtcttag	ggcagtggga	2460
cctccgtgac	caacttatca	ggaggcacca	cacacacagc	aggtggggtt	ttaatgaagg	2520
ataatttcac	aggggagcag	tttctaggtc	tctctcttcc	aacttaaaaa	aatgcatcct	2580
agttattgtg	agtaaattga	aaatcaacag	ataagttagt	ttccaacagt	gcgatgtcag	2640
gcctctggac	gtgtggaaga	cagcagtatt	ccatgtactg	ggatagctgg	ccatgtgccg	2700
gaacagctgg	gctacggatg	ctgttcttag	tgttgtaagg	aattgccaca	ccagtttcca	2760
tatggctgca	ctggtttccc	accagcaatg	aaggagtccc	tcttttccac	cctcaccagc	2820
actgcctgtc	ttgaggtttc	ttacggattg	ccattctgac	aggacaagat	gaaatcttag	2880
agcagcttta	atttgtactt	ccttttgtgc	taatgatgtc	aaatactttt	taaaatgttt	2940
atttttcaat	cctattactt	ttgagaattc	tctgttcagt	tccatagccc	atttttgctg	3000
ttgtttgttg	acacagggtc	tttctctatg	tatccctggc	tatgtagaac	agagttacct	3060
caaagctgac	agagatccat	ctacttttac	ctcccaggtg	ctgggattag	aggcatgcag	3120
atttttaaag	ttattaatat	ttatttgtgt	acctgtgtct	gatctgtgta	tgtggatgga	3180
tgttttgctt	gcctggatag	ctctgctcca	catgtgagcc	agttacctgc	ggtggccaga	3240
agagggcatc	ggatgccctg	gaactggagt	taggatggtt	gtgagctgcc	tgtgggtgct	3300
cgagaacaag	cctgggtcct	cgggagagca	gcgttgttct	tacctcctag	cccactctcc	3360
agctccgggg	gttgattctt	gttcaagaca	gcagagaagg	ctcgagcttc	cctcttctcc	3420
gtgtagacat	ccagtcttcc	cagcgccagt	ttgagatgct	ccctctccct	tcgtgtattt	3480
ttggtgtgtt	tttcaagaat	caggtggctg	taattgtatg	gcattagtcc	ggggtttcca	3540
ttctgttgca	ctgatctaca	catcggtttt	tgtgccagca	ccgtgccctt	tgttaccctg	3600
attctgtagt	gttattttgg	ctcagaattt	ttttggctgc	ctgggccttt	tgtgttttgc	3660
atcactcatt	ctaccgatcc	atgagcaggg	agacctttca	tctactagtc	tctgccttga	3720
tttctttctt	tagagttttt	tgagacaggg	tctcacatat	aatcttggct	gaccaggaac	3780
tcagtgtgta	gaccaggctg	gcctcaaact	cacagagttc	tgcctgcctc	tgccccctga	3840
gtgctggggt	ttaaggctta	tgccactggg	cctgggattt -16-	tctctgattt	taaagttttc 	3900

attgtagagg	ttcttcactt	ctttgcttgg	gtttcctctg	aggtactttg	tttattaagg	3960
ctgctataaa	tgggattgtt	tttctgattt	cttcttcacc	ttgtttgcca	ttggtataaa	4020
aaagcatgcc	atgtgtgtat	cctgacactg	cagaagtgtt	agtaattcta	ggagctttct	4080
ggtggagact	gtagggtctc	ccatgtacag	cattatattc	tctgtagaca	ggaacacgct	4140
gtcttcttta	tttcctacct	atattccttt	cccatcttgt	ttttattgtt	ttagctaaga	4200
ctaaaacacc	aaatcgatgg	ccctgtctcg	cttctagttt	taatgttgat	gtttgtttgg	4260
cagggtctcg ,	ttacttagcc	caggctggcc	ttgaattctt	cctgcttcat	ccaacccagt	4320
gctgggatta	ccagtacaca	ggactctata	aaaaggtttt	tgtttttgtt	attgttttta	4380
tttctctctt	ctctgcactc	acattgcccc	tctggtgctg	gagatcatgc	cagagtctcg	4440
tgtgtgctgg	gcaattactg	accactgagc	tggatcccag	gtcccttgtg	taactcaatg	4500
ccaagttcat	tcccactgtc	tcagcctccc	agcattccaa	aggaaattgg	ggaaacagaa	4560
atatgtaaag	gaaactggat	gtatttacaa	ttttaggtaa	acagatatga	ggaaaaggtt	4620
ttgggttcct	tctagacgtt	cctgagtcag	ggtttacatg	tggctaggac	ccagccgtga	4680
ggctttctgt	gaggatgctg	ttcctcgtgc	tcatacttca	aactaggatg	gaagctcctg	4740
ggccaatcct	agctgctcac	ttcctctctt	tcggctcctg	ccagtcttat	gctaggtttg	4800
ctataaaagc	tctaaatatt	agagaaatta	aacagaagtg	gctaggcgtc	ccattgct	4858
<210> 21 <211> 35 <212> DNA <213> art	ificial					
	DNA primer					
<400> 21 geggeegetg	gcgagcttgc	ttattctgct	ttcag			35
<210> 22 <211> 32 <212> DNA <213> art	ificial					
<220> <223> PCR	DNA primer					
<400> 22 aagcttagca	atgggacgcc	tagccacttc	tg			32

<210> 23 <211> 24 <212> DNA

<213>	artificial	
<220> <223>	oligonucleotide for PCR screen	
<400> tccagc	23 cttg ggacaagaga tcag	24
<210><211><211><212><213>	24	
<220> <223>	DNA oligonucleotide for PCR screen	
<400> accaaa	24 gaac ggagccggtt ggcg	24