ACM: Matemática Electoral

Segunda Clase: Reparto Proporcional

David Cabezas Berrido

Ejercicio 1: Ejemplo en el que no se verifique la monotonía de los votos.

Solución: En vista de la tabla, es obvio que tenemos que buscar el ejemplo en el método de Hamilton. Presentamos el siguiente ejemplo, con 100 escaños y 4 partidos, en una población con cerca de 100 millones de votantes.

	Prin	Primeras Elecciones					
Partido	Votos	Cuota	Repart				
A	11 300 000	11.35632738	12				
В	16 200 000	16.28075253	16				
\mathbf{C}	36 002 000	36.18146004	36				
D	36 002 000	36.18146004	36				
Total	99 504 000	100	100				

Votos	Cuota	Reparto
11 302 000	11.59179487	11
16 198 000	16.61333333	17
35 000 000	35.8974359	36
35 000 000	35.8974359	36
97 500 000	100	100

Segundas Elecciones

En las primeras elecciones el reparto inicial sería (11, 16, 36, 36), que suma 99 escaños. El escaño restante se lo lleva **A** y suma 12 escaños.

En las segundas elecciones la participación baja, siendo \mathbf{C} y \mathbf{D} los principales perjudicados. A pesar de perder \mathbf{B} 2000 votos, el descenso en la participación hace que su cuota aumente. \mathbf{A} gana 2000 votos, lo que sumado al descenso de la participación supone un aumento de la cuota. Sin embargo, la parte decimal de la cuota de \mathbf{B} ahora supera a la de \mathbf{A} . Las cuotas de \mathbf{C} y \mathbf{D} bajan, puesto que la gran mayoría de votantes que han desistido de participar en las segundas elecciones eran suyos. Aun así, las partes decimales de sus cuotas son las más altas.

El primer reparto quedaría (11, 16, 35, 35), que suma 97 escaños. Las partes decimales más altas son las de las cuotas de \mathbf{C} y \mathbf{D} , por lo que vuelven a tener 36. Sin embargo, ahora es \mathbf{B} y no \mathbf{A} quien se lleva el escaño restante.

Ejercicio 2: Ejemplo de método de divisores que no sea de familia paramétrica y no se produzca una transferencia correcta entre votos y escaños.

Solución: Escogeremos las barreras 0.7, 1.9, 2.3, 3.9 y 4.1. Consideremos unas elecciones con cuatro partidos y 10 escaños a repartir en las que han participado 95 votantes. Los resultados son:

Partido	V	$0.1 \cdot \mathbf{V}$	Reparto
A	41	4.1	5
В	11	1.1	1
C	22	2.2	2
D	21	2.1	2
Total	95	9.7	10

Empezamos a transferir votos del partido $\bf A$ al $\bf B$. Al transferir un sólo voto podemos cambiar a k=0.103 y el reparto sigue siendo correcto. Al transferir dos votos, ahora el partido $\bf C$ pasa la barrera del 2.3 antes de que el partido $\bf A$ pase el 4.1 para recuperar su escaño. Tenemos el siguiente reparto con k=0.105:

Partido	\mathbf{V}	0.105 V	Reparto
A	39	4.095	4
В	13	1.365	1
\mathbf{C}	22	2.31	3
D	21	2.205	2
Total	95	9.975	10

Transfiriendo tres votos más, podemos usar k=0.109 y el reparto sigue siendo el mismo.

Partido	\mathbf{V}	$0.109\mathbf{V}$	Reparto
A	36	3.924	4
В	16	1.744	1
C	22	2.398	3
D	21	2.289	2
Total	95	10.355	10

Sin embargo, si transferimos un voto más, ahora ${\bf D}$ pasa la barrera del 2.3 antes que ${\bf A}$ la del 3.9. Obtenemos el siguiente reparto con k=0.11:

Partido	\mathbf{V}	$k\mathbf{V}$	Reparto
A	35	3.85	3
В	17	1.87	1
C	22	2.42	3
D	21	2.31	3
Total	95	10.45	10

El partido $\bf A$ ya ha perdido dos escaños en favor de $\bf C$ y $\bf D$, y $\bf B$ no ha logrado pasar la barrera del 1.9 para ganar su segundo escaños, luego no existe transferencia perfecta de $\bf A$ a $\bf B$.

Ejercicio 3: Ejemplo de inconsistencia de Hamilton en elección al Congreso.

Solución: Tomamos los votos de las elecciones al congreso de 2015 (pueden encontrarse aquí), no consideraremos todos los partidos.

Partido	Votos	Cuota	Cuota Inf	Resto	+1	Reparto
PP	7215530	101.941215371344	101	0.941215371343745	1	102
PSOE	5530693	78.1377897764659	78	0.137789776465937		78
PODEMOS	5189333	73.3150458783515	73	0.315045878351455		73
C's	3500446	49.4544017669885	49	0.454401766988525		49
ERC-CATSI	599289	8.46677222860652	8	0.466772228606521	1	9
DL	565501	7.98941439280417	7	0.989414392804168	1	8
PNV	301585	4.26080155411546	4	0.260801554115456		4
UNID. POP.	923105	13.0416539901247	13	0.041653990124669		13
EH Bildu	218467	3.08650805949547	3	0.08650805949547		3
CCa-PNC	81750	1.1549663512739	1	0.154966351273898		1
PACMA	219181	3.09659547203137	3	0.096595472031367		3
UPYD	153498	2.16862415887267	2	0.16862415887267		2
NÓS	70464	0.995517418668672	0	0.995517418668672	1	1
unio.cat	64726	0.914450789633692	0	0.914450789633692	1	1
VOX	57733	0.815653484502703	0	0.815653484502703	1	1
R0-GV	48217	0.681211162805792	0	0.681211162805792	1	1
MÉS	33931	0.479378143915286	0	0.479378143915286	1	1
Total	24773449		342			350

Si ahora nos restringimos a PP y MÉS, que suman 103 escaños, y repartimos esos escaños entre ellos por el método de Hamilton obtenemos un número de escaños distinto al que obtenían antes.

Partido	Votos	Cuota	Cuota Inf	Resto	+1	Reparto
PP	7215530	102.517909952202	102	0.517909952201961	1	103
MÉS	33931	0.482090047798036	0	0.479378143915286	0	0
Total	7249461		102			103

Por tanto, no se verifica la consistencia.

Ejercicio 4: Inventa un nuevo método o propiedad y analízalo.

Solución: La siguiente propiedad me parece adecuada:

Concordancia con refinamientos: Si el número de escaños se multiplica por un número natural m, no pueden agravarse las infrarrepresentaciones ni las sobrerrepresentaciones. Entendemos estas en el sentido

$$\|\mathbf{q} - \mathbf{a}\| < \|m\mathbf{q} - \mathbf{b}\|,$$

donde a corresponde al reparto original y b al nuevo reparto.

Esta propiedad resulta natural, puesto que el problema de reparto proporcional radica en que hay que discretizar las cuotas. Si podemos subdividir cada uno de los escaños anteriores en dos o más, deberíamos de ser capaces de distribuir los nuevos escaños de forma más justa. Incluso podríamos plantearnos si tiene sentido en caso de aumentar el número de escaños a un número que no sea necesariamente un múltiplo del número de escaños original.

La propiedad depende de la norma, trabajaremos con la norma $\|\cdot\|_1$ pero podrían considerarse otras.

Observamos que el método de Hamilton no cumple esta propiedad. Consideremos las siguientes elecciones en las que se reparten 40 escaños.

Partido	Votos	Cuota	Cuota Inf	Resto	+1	Reparto	Dif
A	6534	5.28	5	0.28		5	0.28
В	7810	6.31111	6	0.31111	1	7	0.68889
С	13992	11.30667	11	0.30667		11	0.30667
D	21164	17.10222	17	0.10222		17	0.10222
Total	49500	40	39		1	40	1.37778

Si ahora repartimos 80 escaños la suma de las diferencias en valor absoluto entre las cuotas y las asignaciones aumenta.

Partido	Votos	Cuota	Cuota Inf	Resto	+1	Reparto	Dif
A	6534	10.56000	10	0.56000		10	0.56
В	7810	12.62222	12	0.62222	1	13	0.37778
С	13992	22.61333	22	0.61333	1	23	0.38667
D	21164	34.20444	34	0.20444		34	0.20444
Total	49500	80	78		2	80	1.5288

En el siguiente ejemplo observamos que el método d'Hondt tampoco la verifica. Se reparten 8 escaños, pero si se pasa a 16 la diferencia entre el vector de cuotas y el reparto (en norma de la suma) aumenta.

Partido	Votos	$0.095 \cdot \mathbf{Votos}$	Reparto	Cuota	Dif
A	21	1.995	1	1.69697	0.69697
В	33	3.135	3	2.66667	0.33333
С	45	4.275	4	3.63636	0.36363
Total	99	9.405	8	8	1.39394

Partido	Votos	$0.18 \cdot \mathbf{Votos}$	Reparto	Cuota	Dif
A	21	3.78	3	3.39394	0.39394
В	33	5.94	5	5.33333	0.33333
С	45	8.1	8	7.27273	0.72727
Total	99	17.82	16	16	1.45455

Que el método de d'Hont no cumpla nuestra propiedad no es buena noticia y podría ser indicio de que no estamos usando una métrica correcta para cuantificar las sobrerrepresentaciones e infrarrepresentaciones. Otra alternativa es que nuestra propiedad no sea muy importante, o simplemente que el método no la cumple, ningún método es perfecto.