

MSFC ADVANCED CONCEPTS OFFICE DEFINING THE FUTURE OF SPACE EXPLORATION

Advanced Concepts Overview

We Are An Office Specializing In Pre-Phase A & Phase A Concept Definition For Space

Exploration Elements

Advanced Concepts Overview

We Utilize Multi-Disciplined Teams Within the Office to Provide Fully Integrated Assessments of Missions and Their Elements

Project & Study Highlights

Science & Robotic Exploration

- Advanced X-ray Timing Array (AXTAR)
- Small Orbital Debris Detection And Tracking (SODDAT)
- Cryogenic Propellant Storage & Transfer (CPST) Technology Demonstration Definition
- Nano-Energetic Propellants
- Space Solar Power

Human Exploration

- Space Launch Systems (SLS)
 Definition
 - Launch Vehicle Trades & Analysis
 - Architecture Definition
- Human Spaceflight Architecture Team (HAT)
 - Cryo Propulsion Stage Definition
 - Lunar Lander Definition
 - Deep Space Habitat Definition
- Manned GEO Servicing

ACO Contributions to the Agency

HEOMD HAT MSFC Center Development Directorate MSFC Science & Mission Systems

Earth-to-Orbit Transportation System Definition

Earth & Planetary Science Concept Definition

Human Exploration Architecture Definition

Scientific & Robotic Exploration

In Space Element Definition

Advanced Concepts Products Influence
NASA Programs

Collaborative Design Team

 The ACO Design Teams are established, co-located teams of systems and design engineers

Other disciplines or specific expertise are matrixed

into the team as necessary

Scientific Areas of Interest

Programmatic Support

Additional Discipline Support

INTROS

ProEngineer

Advanced Concepts
uses a suite of industry
standard and in-house
developed tools to
perform analysis

Thermal Desktop
Copernicus
LVA

3D Studio
POST COPA
FEMAP w/NX NASTRAN

Collaborative Design Process

Simplified Vehicle Definition Process

- Advanced Concepts Performs Rapid Pre-Phase A & Phase A Conceptual Design and Analysis for Space Exploration Elements
 - Collaborative Engineering Processes
 - Diverse Toolset

Vdot's implementation will greatly enhance the capabilities of the Advanced Concepts Office

National Aeronautics and Space Administration www.nasa.gov

STUDY EXAMPLES

Example: AXTAR Spacecraft Study

AXTAR: Introduction

Customer

Colleen Wilson-Hodge (VP62) and the AXTAR science team

· Mission Description

- The Advanced X-ray Timing Array (AXTAR) is an X-ray observatory concept combining very large collecting area, broadband spectral coverage, high time resolution, highly flexible scheduling, and an ability to respond promptly to time-critical targets of opportunity.
- It's mission is to probe the physics of ultra-dense matter, strongly curved space-times, and intense magnetic fields.
- Instruments: (1) the Large Area Timing Array (LATA) is for timing observations of accreting neutron stars and black holes; (2) the sensitive Sky Monitor (SM) acts as a trigger for pointed observations of X-ray transients and also provides sensitive monitoring of the X-ray sky.
- Mission Class: MIDEX science mission.

AXTAR Final Deliverable, 6 May 2010 (Revised June 10, 2010)

Sky monitor cluster (7)

Spacecraft bus

Solar Array (2X)

Science bus

Sky monitor cluster (4)

Sky monitor cluster (4)

Sky monitor cluster (5)

Sky monitor cluster (6)

Goals and Responsibilities

Study Goal

 Complete a conceptual spacecraft design to support the AXTAR science mission and determine the maximum number of LATA supermodules and Sky Monitor cameras that can be accommodated on a feasible configuration

Responsibilities

Advanced Concepts Office

Spacecraft

- -Communications -Electrical Power
- -Trajectory / GN&C
- -Propulsion -Thermal
- -AR&D
- Launch Stack
 Shroud
 Integration
- -Cost

9

Instruments

- Propose method to transfer heat from LATA to spacecraft thermal control system
- Determine max number of LATA modules and Sky Monitors for feasible configuration.

VP62

Instruments

- -Design -Power
- -Power
- -Mass -Data requirements
- Cost (ED04/CS50 will also cost the instruments)

AXTAR Final Deliverable, 6 May 2010 (Revised June 10, 2010)

NASA

AXTAR: Mass Properties (Falcon 9 Concept)

4.0 Avionics/Control			422.53
4.1 ACS (includes Reaction Wheels and Torque Rods)	1	308.98	306.98
4.2 CDS (includes Flight Computers and Data Recorders)	1	20.00	20.00
4.3 Instrumentation	1	15.00	15.00
4.4 Communications System	1	38.55	38.55
4.5 Avionics Cabling	1	40.00	40.00
5.0 Thermal Control			53.90
5.1 Multilayer Insulation/Thermal Tape	1	42.00	42.00
5.2 Thermal Filler	1	2.10	2.10
5.3 Paint/Thermal Coatings	1	9.10	9.10
5.3 Heaters/Thermostats	1	0.70	0.70
6.0 Contingency			620.35
6.1 Structure	30%		382.50
6.2 Propulsion	30%		28.40
6.3 Power	30%		66.53
6.4 Avionics/Control	30%		126.76
6.5 Thermal	30%		16.17
Dry Mass			2688.19
7.0 Non-propellant Fluids			4.09
7.1 Residual Hydrazine	1	2.09	2.09
7.2 Pressurant (GN2)	1	2.00	2.00
8.0 Payload/Science Instruments			1797.20
8.1 LATA	42	30.00	1260.00
8.2 SM	27	2.00	54.00
8.3 IDS	1	30.00	30.00
8.4 Payload Contingency (30%)		403.20	403.20
8.5 Instrument Cabling	1	50.00	50.00
nert Mass			1801.29
Total Less Propellant			4489.48
9.0 Propellant (Hydrazine)	1	405.25	405.25
Gross Mass			4894,7268

AXTAR Final Deliverable, 6 May 2010 (Revised June 10, 2010)

...

Example: Cryostat

CRYOSTAT Mission Overview

Bus

Total Mass:

DESCRIPTION

 This project will demonstrate the technologies needed to store, monitor, access, pre-position and transfer cryogenic propellants for large cryogenic propellant storage and transfer systems that will support future space mission and commercial market opportunities

APPROACH

 Critical technologies are demonstrated in one mission utilizing one vehicle

APPLICATIONS

- Human exploration missions beyond LEO utilizing: Large cryogenic stages w/ long duration space exposures Propellant transfer for the earth departure stages (EDS)
- Supporting infrastructure for commercial space options (e.g., for satellite servicing, propellant transfer, refueling depots, tourism, etc.)

BENEFITS

- Enabling large cryogenic propulsion stages for **Human exploration**
- Options for use of commercial operations to support explorations missions (through use of multiple propellant transfers)

TECHNOLOGY ELEMENTS

- · Tank Thermal Control
- · Tank Pressure Control
- · Cryogenic Propellant Transfer
- Liquid Acquisition
- · Mass Gauging
- Leak Detection

CONFIGURATION

Notional CRYOSTAT

Configuration

YOSTYAT Concepts

on Falcon 9 Capability)

Lite Maximum Size CPS-Lite Minimum Size (Based on 2 Month Mission)

4.6 m Length: 4 m Dia.: 316 kg 2000 kg 3816 kg 3020 kg Bus 6836 kg

4.2 m 2 m LH2 Mass: 250 kg LOX Mass: 580 kg **CFM System** 2350 kg 1300 kg 3650 kg Total Mass:

CPS-Pathfinder (2 Month Mission)

Element	Mass		
LH2	250 kg		
Total CFM Payload	791 kg		
Spacecraft Bus	471 kg		
Launch Mass	1262 kg		

Spacecraft Size Length = 2.4 m Dia. = 1.9 m

Spacecraft Bus

Example: HEFT CryoPropulsion Stage

Groundrules & Assumptions

- Provides ΔV for circularization of the launch vehicle 30x130 nmi delivery orbit to the LEO 220 nmi circular orbit for itself and any other payloads manifested with it on the launch vehicle.
- CPS includes avionics, propulsion, and attitude control for automated rendezvous and docking. When rendezvous and docking with other elements the CPS can play either the active or passive role.
- CPS structure will provide adequate load bearing strength to account for its own fully loaded mass, plus the mass of any attached payloads through all phases of the mission, including launch, loiter, docking, and active thrusting.
- While loitering in-space, the CPS provides required attitude control for itself plus any attached payloads utilizing on-board RCS (storable, bi-prop system).

Pre-Decisional: For NASA Internal Use Only

Cryo-Propulsion Stage – Block 1

Design Constraints/Parameters

Q2/H
0.1
7.5 n
18 n
4 / Altair DM8
18,62
448.6 se
NTO/MME
16 / Press-fer
300 se

Passive Thermal Control of Propellants

Pre-Decisional: For NASA Internal Use Only

The Block 1 Cryo Propulsion Stage (CPS-81) is delivered to a 30 x 130 nmi insertion orbit by the launch vehicle where the CPS is then responsible for raising and circularizing itself and any psyload to an orbit of 220 nmi. The nonreuseable CPS-81 utilizes passive thermal control techniques to limit cryogenic propellant boileff during its operation. The CPS-81 includes avionics, propulsion, and attitude control for automated rendezvous and docking. Inert propellants are mission specific and are affected by mission duration, number of engine burns, and other mission parameters.

Category	Mass, kg
Structure	2,913
Propulsion	3,023
MPS (including tanks)	2,761
RCS (including tanks)	260
Power	147
Avionics	455
Thermal	1,091
Actice CFM	
Passive CFM	364
Vehicle TCS	728
MMOD Protection	
Growth (30%)	2,289
Dry Mass	9,918
inert Mass*	2029
MPS Fuel Bailaff	45
MPS Oxidizer Boiloff	96
Non-Usable MPS Prop	1,716
Non-Usable RCS Prop	31
Pressurants	136
Total Less Usable Prop	11,947
Useable Propellant	67,897
MPS Fuel	10,286
MPS Oxidizer	56,572
RCS Fuel	300
RCS Oxidizer	647
Total Stage Wet Mass	s 79.844

Groundrules & Assumptions

- CPS has a power generation and storage system capable of providing the necessary power for itself, plus any required attached payloads (quantity TBD) for all phases of flight. The full power generation capability of the CPS can be transferred to other elements through the forward docking iDSS/payload interface.
- The CPS Block 2 includes a long duration cryogenic fluid management system that provides 0.5%/month liquid hydrogen loss (by mass), and 0%/month liquid oxygen loss.
- During high thrust maneuvers where a Solar Electric Propulsion (SEP) stage is connected, the CPS engines must maintain a thrust to weight of the assembled elements of less than 0.1g.

Pre-Decisional: For NASA Internal Use Only

Category

Structure

Propulsion

MPS (including to

RCS linduding

Cryo-Propulsion Stage - Block 2

Mass, kg

2.913

3,023

2.761

1,003 455

Design Constraints/Parameters

Stage PMF	0.0
Stage Diameter	7.5 m
Stage Length	18 m
# Engines / Type	4 / Alteir DME
Engine Thrust (199%)	18,627
Engine Isp (190%)	446.6 sec
RCS Propellants	NTOWMH
# RCS Thrusters / Type	16 / Press-fed
RCS Thruster Isp	300 sec

0.5% per month H2 Boiloff 0% per month O2 Boiloff

2 x UltreFlex Arrays (26.7 kW total power)

Description

The Block 2 Cryo Propulsion Stage (CPS-B2) builds upon the Block 1 CPS but includes a long duration cryogenic fluid management system that provides 0.5% month liquid hydrogen loss (by mass), and 0%-month liquid oxygen loss. The CPS includes avionics, propulsion, and attitude control for automated rendezvous and docking. Inset propellants are mission specific and are affected by mission duration, number of engine burns, and other mission parameters.

Actice CFM	2,965
Passive CFM	364
Vehicle TDS	728
MMOD Protection	382
Growth (30%)	3,550
Dry Mass	15,383
Inert Mass*	2,220
MPS Fuel Ballet	336
MPS Oxidizer Bailoff	
Non-Usable MPS Prop	1,716
Non-Usable RCS Prop	31
Procesurants	136
Total Less Usable Prop	17,602
Useable Propellant	67,897
MPS Fuel	10,286
MPS Oxidizer	56,572
RCS Fuel	392
RC8 Oxidizar	647
Total Stage Wet Mass	85,499

EDEFT

Pre-Decisional: For NASA Internal Use Only

Example: Manned GEO Servicing

Astrodynamic mission architecture trades

- Radiation environment, ΔV vs. orbital altitude:
 - EVA radiation environment improves above GEO
 - Elements transiting from LEO to GEO or HEO-65k require minimal increase in fuel usage
- Chemical propulsion vs. electric propulsion:
 - Chemical propulsion provides lower time-offlight, electric propulsion provide better fuel economy
- Round trip ΔV and time-of-flight, LEO to GEO/ HEO-65k
- Maneuvering within GEO:
 - Relevant to ability to reach multiple satellites with either rapid response (1 day) or fuelefficient response (weeks)

12/09/2010

NASA/DARPA Pre-Decisional - for MGS Gov't Team Use Only

Example: Nano-Energetic Propellants

Potential Vehicle Benefit

Monopropellant Mission Matrix ∆V (m/sec) Load (kg) O2 / Metalized Gelled H2 (MGH) Mars Astrobiology Mars Sample 470 HAN / H2O / 16.2 Return Lander Mars Geophysical 132 38.6 296 Network Io Observer 89.4 989 1124 Saturn Probe 252 675

_	

Bipropellant Mission Matrix Odvanced						
Mission	Propellant (kg)	ΔV (m/ sec)	NEPP Propellant Candidates	Science Payload Increase (%) 02/H2 HAN		
Mercury Lander	1969	1238	O2 / Metalized	51.8	-2.6	
Venus Mobile Explorer	370	280	Gelled H2 (MGH)	15.5	4.6	
Venus Intrepid Terresa Lander	351	270	` '	9.5	3.0	
Venus Climate Mission	1432	1734	HAN / H2O / FGS-nDiamond	22.8	-0.4	
Lunar Polar Volatiles Explorer	216	254	- rus-iiDiaiiionu	3.5	2.0	
Mars Sample Return Orbiter	1573	3690	1	21 kg	-0.6	
Jupiter Europa Orbiter	2681	2260	1	27.1	-2.1	
Ganymede Orbiter	2664	2662	1	65.5	-5.0	
Trojan Tour	557	1933	1	18.3	2.5	
Titan Saturn System	2528	2377	1	32.8	-2.3	
Enceladus Fly-by	2000	2000	1	55.8	-2.9	
Enceladus Orbiter	2434	2881		60.9	-4.2	
Titan Lake Lander	2255	2590	1	54.4	-3.4	
Uranus Orbiter and Probe	1161	2500	1	23.5	0.3	
Chiron Orbiter	840	2166	1	28.6	1.9	
				Game-Cha	nging	

Mission	Baseline Propellant ΔV (i Motor Load (kg) sec)			NEPP Propellant	Science Payload Increase (%)				
Mercury Lander	Star 48V	2076	4426	(1) DCPD / AP /	-62.8	13.8	-9.1	13.8	(5) -21.3
Lunar Geophysical Network	Star 30BP	457	2450	(2) High Solids HTPB	-19.3	17.7	1.2	15.7	-7.7
Lunar Polar Volatiles Explorer	Star 48V	2010	2455	(3) HAN/HTPB/AI (4) HAN/GAP/AI	-41.0	10.1	-5.2	10.1	-13.3
Mars Sample Return Lander	Star 17A	145	1857	(5) HAN/DCPD/AI	-1.6	1.0	0.2	1.0	-0.2

Subsystem Specific Benefit

