Lecture 2 Camera Interface

Multimedia Systems
Spring 2020

Camera types

DSLR

▶ Vision camera (산업용)

Mobile camera

Camera interface

DSLR camera interface

Flash memory

Industrial vision camera interface

Mobile camera interface

Image/video

- Industrial camera
 - Analog interface

- Digital interface

▶ IEEE1394

- IEEE 1394, also known as FireWire, is an interface based on a technology developed by Apple Inc.
- There are two types: IEEE 1394a and IEEE 1394b

▶ IEEE1394

Speed

- For example:
 - 24-bit, 1080i @ 60 fps: 24 × 1920×540^[b] × 60 = 1.49 Gbit/s
 - 24-bit, 1080p @ 60 fps: 24 × 1920×1080 × 60 = 2.98 Gbit/s.
- IEEE 1394a: 400 Mbits/s with 6 pin connector.
- IEEE 1394b: 800 Mbits/s (일반적) 3.2 Gbits/s (최대)
- Receiver Device
 - PC (direct or capture card)
- Cable
 - IEEE 1394a,b uses shielded twisted pair (STP) cable
 - IEEE 1394b, sometimes uses an optical fiber cable (HPCF, GOF, POF) or UTP cable can be used.
- Connectors
 - Latch type for IEEE 1394a
 - Screw type for IEEE 1349b.

▶ USB 3.0

Single Camera

Camera connected by single cable to PC/laptop USB 3.0 ports providing power and up to 400 Mbytes/s data rate. No frame grabber required.

Host side (standard A locking)

Multiple Cameras

- ▶ USB 3.0 and USB 3.1
 - Speed
 - 400 Mbytes/s. (max 5 Gbps, 실제는 약 4 Gbps)
 - USB 3.1 standard max 10 Gbps (실제는 약 9.7 Gbps)
 - Receiver
 - Device PC (direct). With USB interfaces
 - Cable
 - Standard passive copper cable 3-5m
 - Active copper cable 8+m (with power input)
 - Multi-mode fiber optic cable 100m.
 - Connectors
 - USB3 Vision type connectors: host side (standard A locking) and device side (micro-B locking).
 - Camera Power Supply
 - 4.5W (5V, 950 mA) maximum

Camera Link

HDR 14-pin connector (PoCL-Lite)

SDR, HDR 26-pin connector Mini Camera Link)

MDR 26-pin connector

Standard PC with single frame grabber

Camera Link

- Speed
 - The high bandwidth of 255 Mbytes/s for one cable and up to 850 Mbytes/s for two cables
- Receiver Device
 - Frame grabber.
- Cable
 - Camera Link defines its own dedicated cable.
 - Maximum cable length is in the range of 7 to 15 meters
- Connectors
 - MDR 26-pin connector;
 - SDR, HDR 26-pin connector (Mini Camera Link)
 - HDR 14-pin connector (PoCL-Lite).
- Camera Power Supply
 - By frame grabber through the Camera Link cable

GigE Vision

Line scan or area scan camera powered through Ethernet cable or externally.

Data rate up to 10 Gbits/s.

No frame grabber required.

Ethernet (IEEE 802.3)

Copper Ethernet cable

Copper Ethernet with vision locking screws

Cameras powered through Ethernet cable or externally.

Total data rate up to 10 Gbits/s (for a 10 Gbits/s link to the PCs).

Ethernet fiber optic cable

GigE

- Speed
 - Currently 1 and 2 Gbits/s (max 10 Gbits/s)
- Receiver
 - Device PC (direct)
- Cable
 - Lengths up to 100m (copper) and 5,000m (fiber optic)
- Connectors
 - Copper Ethernet;
 - Copper Ethernet with vision locking screws;
 - 10 Gigabit Ethernet direct attach cable;
 - Ethernet fiber optic cable.
- Camera Power Supply
 - Through Ethernet cable (POE) or externally.

Smartphone and Automotive cameras

Single camera

Triple camera

Source: LG Innotek

Dual camera

Automotive camera

MIPI Alliance Interface

- 2003년에 ARM, 인텔, 노키아, 삼성, STMicroelectronics 와 텍사스 인스투루먼트가 모여서 MIPI(Mobile Industry Processor Interface) 얼라이언스를 설립
- ▶ MIPI는 모바일 및 사물인터넷 기기에서 재사용 및 호환성을 강화하기 위해 AP(Application Processor)를 비롯한 프로세서와 주변 기기들에 대한 인터페이스 사양을 개발하고 정의함
- ▶ MIPI에서 만든 대표적인 인터페이스
 - DSI(Display Serial Interface)는 AP와 LCD와 같은 디스플레이를 연결하는 인터페이스에 관한 표준
 - CSI(Camera Serial interface)는 AP와 카메라를 연결하는 인터페이스에 관한 표준
- ▶ 한편, MIPI는 세 종류의 고속 물리계층 (PHY)를 정의함: M-PHY, D-PHY, C-PHY.
 - ∘ M-PHY: The MIPI "Performance" Interface (DSI-2/CSI-3) (2011년)
 - D-PHY: DSI/CSI-2 Protocol에 대한 물리계층 표준 (2009년)
 - C-PHY: D-PHY의 개선 버전 (2014년)

MIPI Alliance Interface

Source: MIPI Alliance

MIPI Alliance Interface

Source: MIPI Alliance

MIPI Multimedia Specifications

- MIPI camera interface
 - Today almost every mobile phone contains cameras.
 - These camera modules can be directly connected to a baseband or multimedia processor (AP).

- CSI (camera serial interface): a main fast serial interface connection protocol.
- Two interface protocols:
 - CSI-2 uses the MIPI D-PHY (or C-PHY) specification for the data transport. Version : CSI-2 v3.0 (2019년)
 - CSI-3, MIPI's next-generation interface, is a preferred option for designers who are working with new, higher-performance camera technologies (2014년 v1.1)

CMOS Sensor Bridge Model

CSI-2 and D-PHY interface diagram

Example of camera sensor block diagram

CSI-2 D-PHY 1.2 extension Pix BW scales linearly

 2.5 Gbps Channel delivers 10 Gbps over 4 data lanes and a clock lane (10 D-PHY pins).

Pin compatible coexistence supports CSI-2 over combo C/D-PHY solutions

- CSI-2 C-PHY 1.0 extension Pix BW benefit from log₂5 mapping gain
 - 2.5 Gsps Channel delivers17.1 Gbps over 3 lanes (9 C-PHY pins), or 22.7 Gbps over 4 lanes (12 C-PHY pins)

CSI-2

D-PHY

CSI-2 C-PHY

- CSI-3 application stack connects to UniPro and M-PHY
- supports networking features using fixed gear channel rates of up to 5.8 Gbps.
- Rev control may run lower rate if asymmetric gears are supported by Image Sensor and Application Processor.

CSI-3 camera host interface

Characteristic	M-PHY	D-PHY	C-PHY
Primary use case	Performance driven, bidirectional packet/ network oriented interface	Efficient unidirectional, streaming interface, with low speed in-band, reverse channel	Efficient unidirectional, streaming interface, with low speed in-band, reverse channel
HS clocking method	Embedded Clock	DDR Source-Sync Clock	Embedded Clock
Channel compensation	Equalization	Data skew control, relative to clock	Encoding to reduce data, toggle rate
Minimum configuration and pins	1 lane per direction,dual- simplex, 2 pins each (4 total)	1 lane plus clock,simplex, 4 pins	1 lane (trio), simplex, 3 pins
Maximum transmitter swing amplitude	SA: 250mV (peak), LA: 500mV (peak)	LP: 1300mV	(peak),HS: 360mV (peak)
Data rate per lane (HS)	HS-G1: 1.25, 1.45 Gb/s, HS-G2: 2.5, 2.9 Gb/s, HS-G3: 5.0, 5.8 Gb/s; (Line rates are 8b10b encoded)	80 Mbps to ~2.5 Gbps (aggregate)	80 Msym/s to 2.5 Gsym/s times 2.28 bits/sym, or max 5.7 Gbps (aggregate)
Data rate per lane (LS)	10kbps - 600 Mbps	< 10 Mbps	< 10 Mbps
Bandwidth per Port (3 or 4 lanes)	~ 4.0 – 18.6 Gb/s (aggregate BW)	Max ~10 Gbps per 4- lane port (aggregate)	Max ~ 17.1 Gbps per 3- lane port (aggregate)
Typical pins per Port (3 or 4 lanes)	10 (4 lanes TX, 1 lane RX)	10 (4 lanes, 1 lane clock) 9 (3 lanes)	
Version	v4.1 (March 2017)	v2.1 (March 2017)	v1.2 (March 2017)

Multimedia for Automotive

Multimedia for Automotive

Multiple camera interface using bridged D-/C-PHY

MIPI interface specifications for Automotive

MIPI Specification	Description	Automotive Use	Features
CSI-2	Camera Serial Interface protocol	Protocol for cameras, lidar, radar sensors	 High pixel count High frame rate Functional safety Transportable over A-PHY
DSI-2	Display Serial Interface protocol	Protocol for dashboard and rear displays and HUDs	 HD and beyond High frame rate Content protection Transportable over A-PHY
С-РНҮ	3-phase physical layer for CSI-2 & DSI-2	Short-reach physical layer for cameras and displays	 High performance (Gbps), low power Embedded clock Symbol rate encoding
D-PHY	Differential physical layer for CSI-2 & DSI-2	Short-reach physical layer for cameras and displays	 High performance (Gbps), low power Simple clock-forwarding Differential signaling
I3C	Control and data bus protocol and interface	Sensor and general purpose data and control interface within a module	 High performance (10s Mbps) and low power relative to legacy interfaces Multi-point Transportable over A-PHY

MIPI interface specifications for Automotive

MIPI Specification	Description	Automotive Use	Features
RFFE	RF control protocol	Front end control within a wireless module	 High performance (10s Mbps), low power Multi-point Low latency
SoundWire	Digital audio and control interface	Audio interface within a module	Simple, low costMulti-pointFlexible topologies
UniPro	Data transport protocol for UFS over M-PHY	Transport protocol for UFS storage	High reliability and QOS via bit-rate monitoring
M-PHY	Differential physical layer for UFS storage	Short-reach physical transport for UFS storage	 High performance and low power Full duplex (dual simplex)
A-PHY	Long reach physical layer for MIPI protocols, including CSI-2 and DSI-2	Long reach interface to cameras, lidar, radar, sensors & displays	 High performance High noise immunity Functional safety