

SAMPLE PAPERS

Head Office: Aggarwal Corporate Heights, 1st Floor, Netaji Subhash Place, Opp. Wazirpur Depot, Pitampura, Delhi.

0

Sample Paper – 1 Year JEE Program

Vidyamandir Intellect Quest Test

Duration: 2.5 Hrs Maximum Marks: 240

PAPER SCHEME:

- The paper contains 60 Objective Type Questions divided into three sections: Section I (Chemistry),
 Section II (Physics) and Section III (Mathematics).
- Each section contains **25 Multiple Choice Questions**. Each question has 4 choices (A), (B), (C) and (D), out of which **ONLY ONE CHOICE is correct**.

MARKING SCHEME:

• For each question in Section-I, II and III, **4 marks** will be awarded for correct answer and **-1 negative marking** for incorrect answer.

GENERAL INSTRUCTIONS:

- For answering a question, an ANSWER SHEET (OMR SHEET) is provided separately. Please fill your Name,
 Roll Number, Seat ID, Date of Birth and the PAPER CODE properly in the space provided in the
 ANSWER SHEET. IT IS YOUR OWN RESPONSIBILITY TO FILL THE OMR SHEET CORRECTLY.
- The use of log tables, calculator and any other electronic device is strictly prohibited.
- Violating the examination room discipline will immediately lead to the cancellation of your paper and no excuses will be entertained.
- No one will be permitted to leave the examination hall before the end of the test.
- Please submit both the question paper and the answer sheet to the invigilator before leaving the examination hall.

SUGGESTIONS:

(C)

(D)

Gas can't be liquefied

All of the above

- Before starting the paper, spend 2-2.5 minutes to check whether all the pages are in order and report any issue to the invigilator immediately.
- Try to attempt the Sections in their respective order.
- Do not get stuck on a particular question for more than 2-2.5 minutes. Move on to a new question as

	there a	re 60 questions	to solve					·		
				SECTION - I [CHEMI	STRYI				
1.		of the following d 273 K ?					lar volun	ne of an ideal gas at 4		
	(A)	H_2	(B)	CH_4	(C)	CO_2	(D)	NH ₃		
2.	Which	of the following	contain	s ionic bond, cov	valent bo	ond and a co-ord	inate bor	nd?		
	(A)	Na_2O_2	(B)	NH ₄ Cl	(C)	NaCl	(D)	CH ₃ COOH		
3.	The co	mpressibility fac	ctor for a	real gas at high	pressure	e is:		1986		
	(A)	$1 + \frac{RT}{Pb}$	(B)	1	(C)	$1 + \frac{Pb}{RT}$	(D)	$1-\frac{Pb}{RT}$		
4.	Ionizat	ion energy of hy	drogen l	ike species Be ³⁺	is:	150		Ole		
	(A)	16R _H ·hc	(B)	9R _H ·hc	(C)	4R _H ·hc	(D)	$2R_{H} \cdot hc$		
5.				= 75) and Y (atome compound is:	omic ma	ss = 16) combin	e to give	e a compound having		
	(A)	XY	(B)	-	(C)	X_2Y_2	(D)	X_2Y_3		
6.	Which	of the following		is represented by	quantur	n number $\ell = 2$	and m =	0 ?		
	(A)	d_{xy}	(B)	$d_{x^2-y^2}$	(C)	d_{z^2}	(D)	d_{zx}		
7.	Which (A) (B) (C) (D)	(B) The molecular interactions are not present(C) Intermolecular collisions are responsible for pressure								
8.	If a ba	lloon filled with	n CO is	pierced and kep	ot in a ta	ank filled with	N ₂ gas	at same P and T, the		
	volume (A)	e of balloon will Increase	: (B)	Decrease	(C)	Remain same	(D)	Can't say		
9.				olutions are mix d solution can no 40 ml	-			n is diluted to double ution. Find <i>x</i> . 25 ml		
10.		rle's temperature	: volume	of a real gas and			(2)	20 III		

- 11. O_2 is oxidised to O_2^{\oplus} . The change in bond order of O-O bond is equal to :
 - **(A)** 2.5
- **(B)** 0.5
- **(C)** 1
- **(D)** 2

- **12.** Normality of 0.2M Ca₃(PO₄)₂ solution is :
 - (A)
- **(B)**
- (C) 0.8 N
- **(D)** 1.2 N
- 13. In which of the following case, would the probability of finding an electron residing in a d_{xy} orbital be zero?
 - (A) xy and yz plane

(B) xy and xz planes

(C) xz and yz planes

- **(D)** z-direction, yz and xz planes
- Suppose 10^{-17} J of energy is needed by interior of human eye to see an object. How many photons of green light ($\lambda = 550$ nm) are needed to generate this minimum amount of energy?
 - **(A)** 14
- **(B)** 28
- **(C)** 39
- **(D)** 42
- **15.** Of the following transition in hydrogen atom the one which gives an absorption line of lowest frequency is:
 - (A) n = 1 to n = 2
- **(B)** n = 3 to n = 8
- (C) 1
- n = 2 to n = 1
- **D**) n = 8 to n = 3
- **16.** Orbital angular momentum for an electron in 2s orbital is :
 - **(A)** 0
- **(B)** $\frac{h}{2\pi}$
- (C) $\sqrt{6} \frac{h}{2}$
- **(D)** $\sqrt{2} \frac{h}{2\pi}$
- 17. Which set is expected to show the smallest difference in first ionisation energy?
 - (A) He, Ne, Ar

(B) B, N, O

(C) Mg, Mg^+ , Mg^{2+}

- (**D**) Fe, Co, Ni
- **18.** Alkali metals are powerful reducing agents because :
 - (A) These are metals

- **(B)** Their ionic radii are large
- (C) These are monovalent
- **(D)** Their ionisation potential is low

- 19. The shape of $XeOF_2$ is:
 - (A) Trigonal planar

(B) Trigonal pyramidal

(C) T-shaped

- **(D)** Square planar
- **20.** Which of the following graphs represent Boyle's law?

SECTION - II [PHYSICS]

21. In the figure shown, the minimum force F to be applied perpendicular to the incline so that the block does not slide is:

 \vec{A} and \vec{B} are two vectors such that their resultant is perpendicular to \vec{A} and in magnitude equal to A. 22. Find the magnitude of vector \vec{B} .

(A)

$$A\sqrt{4}$$

$$A\sqrt{2}$$

A particle is moving eastward with a velocity of $5 ms^{-1}$. If in 10s the velocity changes to $5 ms^{-1}$ 23. northwards, what is the average acceleration in this time?

(A)

$$1/\sqrt{2}ms^{-2}$$
 North - West

(B)
$$1/2ms^{-2}$$
 East - North

(C)

$$\sqrt{2}ms^{-2}$$
 North - West

(D)
$$2\sqrt{2}ms^{-2}$$
 North - West

A particle moves with a deceleration proportional to \sqrt{v} . Initial velocity is v_0 . Find the time after 24. which it will stop. [Given 'k' is constant of proportionality]

(A)

$$\frac{\sqrt{v_0}}{k}$$

$$\frac{\sqrt{v_0}}{2k}$$

$$\mathbf{(B)} \qquad \frac{\sqrt{v_0}}{2k} \qquad \mathbf{(C)} \qquad \frac{2\sqrt{v_0}}{k} \qquad \mathbf{(D)}$$

A particle has an initial velocity of 9 m/s due east and a constant acceleration of $2m/s^2$ due west. 25. The distance covered by the particle in the 5th second of its motion is:

(B) 0.5 m (\mathbf{C}) 2 m **(D)** None

26. A particle is projected from a horizontal plane with speed u at some angle. At highest point its velocity is found to be u/2. The maximum height of the projectile will be:

(A)

$$\frac{u^2}{4g}$$

$$\frac{3u^2}{4g}$$

$$\frac{3u^2}{8g}$$

 $2:\sqrt{3}$

 $\frac{u^2}{4g} \qquad \qquad (\mathbf{B}) \qquad \frac{3u^2}{4g} \qquad \qquad (\mathbf{C}) \qquad \frac{3u^2}{8g} \qquad \qquad (\mathbf{D}) \qquad \frac{u^2}{8g}$

27. If the angle of projection of a particle from the horizontal is doubled keeping the speed of projection same, the particle strikes the same target on the ground, then the ratio of time of flight in the two cases will be:

(A)

1:1

(B) 1:2 **(C)**

(D) 1:
$$\sqrt{3}$$

28. Two bodies of mass 10 kg and 5 kg moving in concentric orbits of radii R and r such that their periods are same. Then the ratio between their centripetal accelerations is:

(A)

R/r

r/R**(B)**

 R^3/r^3 **(C)**

 r^3/R^3 **(D)**

29. A bus is going south with a speed of 5 m/s. To a man sitting in the bus, a car appears to move towards west with a speed of $2\sqrt{6}m/s$. What is the actual speed of the car?

(A)

 $4 \, m s^{-1}$

(B) $3ms^{-1}$ **(C)** $7ms^{-1}$

(D) $6ms^{-1}$

Rain is falling vertically with a velocity of $25 ms^{-1}$. A person rides a bicycle with a speed of $10 ms^{-1}$ **30.** in the north to south direction. What is the direction (angle with vertical) in which he should hold his umbrella to save himself from the rain?

(A)

 $tan^{-1}0.4$

(B)

 $tan^{-1}1$

(C) $tan^{-1}\sqrt{3}$

 $tan^{-1} 2.6$ **(D)**

31. In the figure shown, the wedge is fixed and the masses are released from rest. The coefficient of friction between 4 kg and wedge is 0.8 and between 2 kg and wedge is 0.6. Which of the following statement is(are) correct?

- **(B)** Friction force on 4 kg is 24 N
- (C) Friction force on 2 kg is 12 N
- (**D**) Normal reactions between block is non-zero

$$(\mathbf{A}) \qquad \Delta p_1 = -\Delta p_2$$

(B)
$$\Delta E = -\Delta (PE + KE) = 0$$

(C)
$$F \Delta t = m \Delta v$$

(D)
$$\Delta x \propto \Delta F$$

Natural length of a massless spring (of spring constant k) is x. It is slowly stretched by applying an external force. What is the work done in slowly stretching it from length 3x to 4x?

(A)
$$1.5kx^2$$

(B)
$$2.5kx^2$$

(C)
$$3.5kx^2$$

(D)
$$4.5kx^2$$

A block of negligible size and mass 2kg is placed above a plank of mass 4kg and length 16m as shown in figure. A force of 44N is applied on the lower block as shown in the figure. The ground is smooth, coefficient of friction between upper and lower block is 0.2. Find the time after which the upper block will fall over.

- (A) 1s
- **(B)** 2s
- **(C)** 3.5
- **(D)** 4*s*
- 35. Kinetic energy of a particle moving in a straight line varies with time t as $K = 4t^2$. The force acting on the particle:
 - (A) is constant

(B) is increasing

(C) is decreasing

- **(D)** first increases and then decreases
- **36.** A block is placed in an elevator moving down with a constant speed. Work done by normal force on the block is:
 - (A) Zero
- **(B)** Positive
- (C) Negative
- (**D**) Cannot say
- **37.** A block of mass 4kg at rest falls, on a spring from a height of 15cm. If spring constant is 2000 N/m, maximum compression in spring will be :

- (A) 14cm
- **(B)** 18.2cm
- (**C**) 12.6cm
- **(D)** 10cm
- **38.** A bullet when fired at a target has its velocity decreased to 50% after penetrating 30cm into it. Additional thickness it will penetrate, before coming to rest is: (Assume target applies constant resistive force on bullet)
 - (**A**) 10cm
- **(B)** 30cm
- (**C**) 40cm
- **(D)** 60cm

- **39.** A block of mass m is connected to a spring of force constant K. Initially the block is at rest and the spring is in its natural state. A constant force F is applied horizontally towards right. The maximum speed of the block will be: (All surfaces are frictionless)

- **(C)**
- **(D)**
- 40. Two blocks A and B each of mass m are placed on a smooth horizontal surface. Two horizontal forces F and 2F are applied on the blocks A and B respectively as shown in figure. The block A does not slide on block B. Then the normal reaction acting between the two blocks is: (Assume no friction between the blocks)
 - (A)

- **(D)**

SECTION - III [MATHEMATICS]

If $Z_1 \neq 0$ and Z_2 be two complex numbers such that $\frac{Z_2}{Z_1}$ is a purely imaginary number, then 41.

$$\left| \frac{2Z_1 + 3Z_2}{2Z_1 - 3Z_2} \right|$$
 is equal to:

- **(D)**
- If $z_r = \cos\frac{r\alpha}{n^2} + i\sin\frac{r\alpha}{n^2}$, where $r = 1, 2, 3, \ldots, n$, then $\lim_{n \to \infty} z_1.z_2.\ldots z_n$ is equal to: 42.
 - (A) $\cos \alpha + i \sin \alpha$

(B) $cos\left(\frac{\alpha}{2}\right) - i sin\left(\frac{\alpha}{2}\right)$

 $\rho^{i\alpha/2}$ **(C)**

- Given that, $(1 + \tan 1^{\circ})(1 + \tan 2^{\circ}) \dots (1 + \tan 45^{\circ}) = 2^{\lambda}$, then $(\lambda + 1)$ is divisible by : **(A)** 2 **(B)** 5 **(C)** 7 **(D)** 9 43.

- Let α , β be the roots of the quadratic equation $ax^2 + bx + c = 0$, then the roots of the equation 44. $a(x+1)^2 + b(x+1)(x-2) + c(x-2)^2 = 0$ are:
 - (A) $\frac{2\alpha+1}{\alpha-1}, \frac{2\beta+1}{\beta-1}$ (B) $\frac{2\alpha-1}{\alpha+1}, \frac{2\beta-1}{\beta+1}$ (C) $\frac{\alpha+1}{\alpha-2}, \frac{\beta+1}{\beta-2}$ (D) $\frac{2\alpha+3}{\alpha-1}, \frac{2\beta+3}{\beta-1}$
- The value of $x^{1/2}$. $x^{1/4}$. $x^{1/8}$ upto infinity is: 45.
 - (A)
- **(B)**
- **(C)**
- **(D)**

- $\sum_{k=1}^{\infty} \sum_{k=1}^{\infty} \sum_{k=1}^{\infty} \frac{1}{a^{i+j+k}}$ is equal to, where |a| > 1: 46.
 - **(A)** $(a-1)^{-3}$ **(B)** $\frac{3}{a-1}$
- **(D)** None of these

	•										
47.	If A and G are arithmetic mean (AM) and geometric mean (GM) between two numbers a and b , then roots of the equation : $x^2 - 2Ax + G^2 = 0$ are :										
	(A)	a, 2b	(B)	2 <i>a</i> , <i>b</i>	(C)	a, b	(D)	2a, 2b			
48.	The si	um of the series	$\frac{1}{1.4} + \frac{1}{4.7}$	$\frac{1}{7} + \frac{1}{7.10} + \dots$	to <i>n</i> tern	ns is:					
	(A)	$\frac{1}{3n-1}$	(B)	$\frac{n}{3n+1}$	(C)	$\frac{n}{3n-1}$	(D)	$\frac{1}{3n+1}$			
49.	The n	umber of solution	ons of co	sx + cos2x +	$\cos 4x = 0,$	where 0≤	$x \le \pi$ are:				
	(A)	2	(B)	3	(C)	4	(D)	5			
50.	Let P	be the relation d	lefined o	n the set of all	l real numb	ers such tha	at:				
	$P = \left\{ (a, b) : sec^2 a - tan^2 b = 1 \right\}.$ Then P is:										
	(A) reflexive and symmetric but not transitive										
	(B)										
	(C) symmetric and transitive but not reflective(D) an equivalence relation										
51.	(D) Δ rela				where 7 i	s the set of	integers is de	fined by			
51.	A relation on the set $A = \{x : x < 3, x \in Z\}$, where Z is the set of integers is defined by $R = \{(x, y) : y = x , x \ne -1\}$. Then the number of elements in the power set of R is:										
	(A)	64	(B)	8	(C)	16	(D)	32			
52.	Let $A = \{1, 2, 3, 4\}$ and $R: A \to A$ be the relation defined by : $R = \{(1, 1), (2, 3), (3, 4), (4, 2)\}$.										
		orrect statement				D : .		,•			
	(A) (C)	R does not have R is an onto fu		verse	(B) (D)		n one to one fo n function	inction			
53.	Let $R = \{(3, 3), (5, 5), (9, 9), (12, 12), (5, 12), (3, 9), (3, 12), (3, 5)\}$ be a relation on the second										
	$A = \{3, 5, 9, 12\}$. Then, R is:										
	(A) (C)	reflexive, sym an equivalenc			ve (B) (D)	-	ic, transitive b , transitive bu				
		· ·									
54.	If $X = \{(4^n - 3n - 1 : n \in N)\}$ and $Y = \{9(n-1) : n \in N\}$, when N is the set of natural numbers, then										
		Y is equal to:	(D)	X	(C)	Y	(D)	λI			
	(A)	Y-X	(B)	Λ	(C)	1	(D)	N			
55.	If sum of an infinite GP is S_1 and sum of the squares of the infinite terms of same G.P. is S_2 then common ratio is given by :										
		$S_1 - S_2$	•	$S_1^2 + S_2$	(6)	$S_1^2 - S_2$	(-)	$S_1^2 - S_2^2$			

(A)
$$\frac{S_1 - S_2}{S_1 + S_2}$$
 (B) $\frac{S_1^2 + S_2}{S_1^2 - S_2}$ (C) $\frac{S_1^2 - S_2}{S_1^2 + S_2}$ (D) $\frac{S_1^2 - S_2^2}{S_1^2 + S_2^2}$

56.

$$2+5x+10x^{2}+17x^{3}+26x^{4}+\dots \text{ upto infinite terms is } \left(-1 < x < 1, \ x \neq 0\right)$$
(A)
$$\frac{1-x+x^{2}}{\left(1-x\right)^{3}}$$
 (B)
$$\frac{2+x+x^{2}}{\left(1-x\right)^{3}}$$
 (C)
$$\frac{2-x-x^{2}}{\left(1-x\right)^{3}}$$
 (D)
$$\frac{2-x+x^{2}}{\left(1-x\right)^{3}}$$

- If $\frac{\sin^4 x}{2} + \frac{\cos^4 x}{3} = \frac{1}{5}$ then which of the following is not true:
 - **(A)** $tan^2 x = \frac{2}{3}$

(B) $\frac{\sin^8 x}{8} + \frac{\cos^8 x}{27} = \frac{1}{125}$ (D) $\sin^2 3x = \frac{98}{125}$

(C) $\cos 2x = \frac{5}{13}$

- Let $f_k(x) = \frac{1}{k} \left(\sin^k x + \cos^k x \right)$ where $x \in R$, $k \ge 1$ then $f_4(x) f_6(x) =$ **58.**
 - (A) $\frac{1}{4}$ (B) $\frac{1}{12}$ (C) $\frac{1}{6}$

- **59.** Complete general solution of the equation sin(2x). sec(3x)=1 is:
 - (A) $\frac{2n\pi}{5} + \frac{\pi}{10} \text{ or } (4n-1)\frac{\pi}{2}, n \in I$ (B) $\frac{2n\pi}{5} + \frac{\pi}{10}, n \in I$ (C) $\frac{2n\pi}{5} + \frac{\pi}{10}, n \in I \{5k+1 : k \in I\}$ (D) $\frac{2n\pi}{5} + \frac{\pi}{10} \text{ or } 2n\pi, n \in I$
- Sum of values of p such that $3x^2 2x + p = 0$ and $6x^2 17x + 12 = 0$ have a common root is: **60.** THE IMEDICAL FOUND (D)
 - **(A)**

1 Year JEE Sample Paper Answer Key									
Code - A	Code - A_Answer Key	Code A difficulty	Code-A subject	Code-A Topic	Code-A Skill	Code-A +ve marks	Code-A -ve marks		
1	Α	Medium	Chemistry	States of Matter	Conceptual	4	1		
2	В	Easy	Chemistry	Chemical Bonding	Conceptual	4	1		
3	С	Medium	Chemistry	States of Matter	Calculation	4	1		
4	Α	Medium	Chemistry	Atomic Structure	Calculation	4	1		
5	D	Easy	Chemistry	Stoichiometry	Calculation	4	1		
6	С	Easy	Chemistry	Atomic Structure	Memory	4	1		
7	С	Easy	Chemistry	States of Matter	Memory	4	1		
8	С	Easy	Chemistry	States of Matter	Conceptual	4	1		
9	D	Easy	Chemistry	Stoichiometry	Calculation	4	1		
10	D	Difficult	Chemistry	States of Matter	Conceptual	4	1		
11	В	Easy	Chemistry	Chemical Bonding	Calculation	4	1		
12	D	Easy	Chemistry	Stoichiometry	Calculation	4	1		
13	С	Medium	Chemistry	Atomic Structure	Application	4	1		
14	В	Medium	Chemistry	Atomic Structure	Calculation	4	1		
15	В	Easy	Chemistry	Atomic Structure	Application	4	1		
16	Α	Easy	Chemistry	Atomic Structure	Calculation	4	1		
17	D	Medium	Chemistry	Periodic Classification	Memory	4	1		
18	D	Easy	Chemistry	Periodic Classification	Application	4	1		
19	С	Easy	Chemistry	Chemical Bonding	Memory	4	1		
20	В	Easy	Chemistry	States of Matter	Conceptual	4	1		
21	D	Medium	Physics	Introduction to Vectors and Forces	Conceptual	4	1		
22	С	Easy	Physics	Vectors	Application	4	1		
23	А	Easy	Physics	Kinematics	Conceptual	4	1		
24	С	Medium	Physics	Kinematics	Calculation	4	1		
25	В	Easy	Physics	Kinematics	Calculation	4	1		
26	С	Easy	Physics	Motion in 2D	Conceptual	4	1		
27	D	Easy	Physics	Motion in 2D	Conceptual	4	1		
28	Α	Easy	Physics	Motion in 2D	Conceptual	4	1		
29	С	Medium	Physics	Introduction to Vectors and Forces	Calculation	4	1		
30	Α	Difficult	Physics	Introduction to Vectors and Forces	Conceptual	4	1		
31	В	Medium	Physics	Dynamics	Conceptual	4	1		
32	С	Easy	Physics	Dynamics	Memory	4	1		
33	С	Easy	Physics	Energy and Momentum	Conceptual	4	1		
34	В	Medium	Physics	Dynamics	Calculation	4	1		
35	А	Medium	Physics	Energy and Momentum	Conceptual	4	1		
36	С	Easy	Physics	Energy and Momentum	Memory	4	1		
37	D	Easy	Physics	Energy and Momentum	Conceptual	4	1		
38	А	Easy	Physics	Energy and Momentum	Calculation	4	1		
39	А	Difficult	Physics	Dynamics	Conceptual	4	1		
40	D	Easy	Physics	Dynamics	Conceptual	4	1		
41	D	Easy	Mathematics	Complex Number	Conceptual	4	1		
42	С	Easy	Mathematics	Complex Number	Conceptual	4	1		
43	А	Medium	Mathematics	Trigonometry	Application	4	1		
44	А	Medium	Mathematics	Quadratic Equation	Application	4	1		
45	С	Easy	Mathematics	Sequence and Series	Conceptual	4	1		

46	А	Easy	Mathematics	Sequence and Series	Conceptual	4	1
47	С	Easy	Mathematics	Sequence and Series	Conceptual	4	1
48	В	Easy	Mathematics	Sequence and Series	Application	4	1
49	С	Easy	Mathematics	Trigonometry	Conceptual	4	1
50	D	Medium	Mathematics	Trigonometry	Application	4	1
51	С	Easy	Mathematics	Sets	Conceptual	4	1
52	С	Easy	Mathematics	Sets	Conceptual	4	1
53	D	Easy	Mathematics	Sets	Conceptual	4	1
54	С	Easy	Mathematics	Sets	Conceptual	4	1
55	С	Easy	Mathematics	Sequence and Series	Application	4	1
56	D	Medium	Mathematics	Sequence and Series	Application	4	1
57	С	Medium	Mathematics	Trigonometry	Application	4	1
58	В	Medium	Mathematics	Trigonometry	Application	4	1
59	С	Medium	Mathematics	Trigonometry	Application	4	1
60	В	Easy	Mathematics	Quadratic Equation	Application	4	1

VMC CENTRES ACROSS INDIA

- Head Office: Aggarwal Corporate Heights, 1st Floor, Netaji Subhash Place, Opp. Wazirpur Depot, Pitampura, Delhi.
 Ph.: (011) 45221191 - 93
- www.vidyamandir.com

