

Anotação de Variantes

Marcel Caraciolo marcel@genomika.com.br

Pipeline

What is functional annotation?

Why we do that?

- Each individual exome carries ~25,000 variants → PRIORITIZATION!
- We want to identify a small subset of functionally important variants to pinpoint the putative disease causal variants
- We need strategies to estimate the deleteriousness of our variants to better identify disease-causal variants

CAUTION!

On average, each *normal* person is found to carry:

- ~11,000 synonymous variants
- ~11,000 non-synonymous variants

250 to 300 los-of-function variants in annotated genes

50 to 100 variants previously implicated inherited disorders

1000 Genomes Project Consortium. A map of hi genome variation from population-scale sequen Nature. 2010 Oct 28;467(7319):1061-73. PubMed P! 20981092

Sources of functional information

Category Database/tool/project		Description	URL		
Genetic variant data	dbSNP ⁶⁸	Comprehensive, curated SNP and short indel database	http://www.ncbi.nlm.nih.gov/projects/		
sources	DbVar ⁶⁹	Comprehensive, curated database for structural variants	http://www.ncbi.nlm.nih.gov/dbvar		
	DGV ⁷⁰	Human structural variants from samples with no phenotype	http://projects.tcag.ca/variation		
Functional characterization of genomic elements	ENCODE ⁷¹	High-throughput functional characterization of DNA elements, including noncoding regions	http://www.genome.gov/10005107		
	SIFT ⁷² , PolyPhen ⁷³	Prioritization of nonsynonymous SNPs	http://sift.jcvi.org, http://genetics.bwh. harvard.edu/pph2		
Public gene–trait associations	dbGaP ³⁴	Comprehensive listing of genotype-to-phenotype mappings	http://www.ncbi.nlm.nih.gov/gap		
	EGA ⁷⁴	Genotype–phenotype experiment archive	http://www.ebi.ac.uk/ega		
Disease-associated mutations	HGMD ³⁵	Database for human disease mutations	http://www.hgmd.org		
	OMIM ³⁶	Mendelian disease gene associations	http://www.ncbi.nlm.nih.gov/omim		
	SwissVar ⁷⁶	Variant catalog of the UniProt knowledge bases	http://swissvar.expasy.org		
	GAD ⁷⁷	NCBI source for genotype – disease associations	http://geneticassociationdb.nih.gov		
	GWAS catalog from NHGRI ⁷⁸	SNP-phenotype associations found by GWAS	http://www.genome.gov/gwastudies		
Whole-genome repositories	Complete genomics public genomes ⁷⁹	Complete genomics for 69 genomes from multiple ancestries (includes samples from the NHGRI and NIGMS repositories)	http://www.completegenomics.com/ sequence-data/download-data		
	1,000 Genomes ⁸⁰	Expanding resource currently housing three low-coverage whole genomes of multiple ancestries	http://www.1000genomes.org		
Ancestry-focused	HapMap ²⁶	Haplo-block mapping for diverse populations	http://www.hapmap.org		
variant data sources	HGDP ²⁷	SNP profiles of samples from several endogenous populations	http://hagsc.org/hgdp		
Pharmacogenomic associations and data	PharmGKB ⁵⁶	Variant–pharmacokinetic/pharmacodynamic trait associations and gene–drug interactions	http://www.pharmgkb.org		
sources	DrugBank ⁸¹	Drug-target database with biochemical properties	http://drugbank.ca in		

Cordero P, Ashley EA. Whole-genome sequencing in personalized therapeutics. Clin Pharmacol Ther. 2012 Jun ;91(6):1001-9. PubMed PMID: 22549284

Computational method and tools

- Annotated information is sometimes limited, particularly for rare and complex traits
- Computational methods can measure deleteriousness by using comparative genomics and knowledge of protein biochemistry and structure

Comparative Genomics

Focus on sequences that have not been remove by **natural selection**.

Quantify evolutionary changes in genes or genomes and define conserved and neutral regions.

Variants observed in conserved sites are highly likely to be **deleterious**.

Effects in protein-coding variants

Can combine **evolutionary** and **biochemical** information.

Use alignments of homologous proteins to estimate mutational deleteriousness.

Use **biochemical data** such as amino acid properties, binding information and structural information to estimate the impact.

Effects in non-coding variants

The majority of the human genetic variation is in non-coding regions.

No detectable conservation outside vertebrates.

Main strategy for estimation is testing the **mammalian conservation** of the non-coding variants.

Cooper GM, Shendure J. Needles in stacks of needles: finding disease-causal variants in a wealth of genomic data. Nature Reviews Genetics. 2011 Aug 18;12(9):628-40. Pubmed PMID: 21850043

Computational methods and tools

Prediction scores for non-synonymous variants

Table 1 | Tools for protein-sequence-based prediction of deleteriousness

Name	Туре	Information	URL	Refs
MAPP	Constraint-based predictor	Evolutionary and biochemical	http://mendel.stanford.edu/SidowLab/ downloads/MAPP/index.html	27
SIFT	Constraint-based predictor	Evolutionary and biochemical (indirect)	http://sift.bii.a-star.edu.sg/	39
PANTHER	Constraint-based predictor	Evolutionary and biochemical (indirect)	http://www.pantherdb.org/	41
MutationTaster*	Trained classifier	Evolutionary, biochemical and structural	http://www.mutationtaster.org/	40
nsSNP Analyzer	Trained classifier	Evolutionary, biochemical and structural	http://snpanalyzer.uthsc.edu/	44
PMUT	Trained classifier	Evolutionary, biochemical and structural	http://mmb2.pcb.ub.es:8080/PMut/	38
polyPhen	Trained classifier	Evolutionary, biochemical and structural	http://genetics.bwh.harvard.edu/pph2/	35
SAPRED	Trained classifier	Evolutionary, biochemical and structural	http://sapred.cbi.pku.edu.cn/	42
SNAP	Trained classifier	Evolutionary, biochemical and structural	http://www.rostlab.org/services/SNAP/	36
SNPs3D	Trained classifier	Evolutionary, biochemical and structural	http://www.snps3d.org/	51
PhD-SNP	Trained classifier	Evolutionary and biochemical (indirect)	http://gpcr2.biocomp.unibo.it/~emidio/ PhD-SNP/PhD-SNP_Help.html	37

^{*}Also makes predictions for synonymous and non-coding variant effects: for example, splicing. MAPP, Multivariate Analysis of Protein Polymorphism; polyPhen, polymorphism phenotyping.

Computational methods and tools

Prediction scores for non-coding variation

Table 2 | Tools for nucleotide-sequence-based prediction of deleteriousness

Name	Туре	Information	URL	Refs
phastCons	Phylogenetic HMM	Evolutionary	http://compgen.bscb.cornell.edu/phast/	60
GERP	Single-site scoring	Evolutionary	http://mendel.stanford.edu/SidowLab/ downloads/gerp/index.html	67
Gumby	Single-site scoring	Evolutionary	http://pga.jgi-psf.org/gumby/	21
phyloP	Single-site scoring	Evolutionary	http://compgen.bscb.cornell.edu/phast/	66
SCONE	Single-site scoring	Evolutionary	http://genetics.bwh.harvard.edu/scone/	68
binCons	Sliding-window scoring	Evolutionary	http://zoo.nhgri.nih.gov/binCons/index.cgi	69
Chai Cons	Sliding-window scoring	Evolutionary and structural	http://research.nhgri.nih.gov/software/chai	71
VISTA	Visualization tool (various scores)	Evolutionary	http://genome.lbl.gov/vista/index.shtml	70

GERP, Genomic Evolutionary Rate Profiling; HMM, hidden Markov model; SCONE, Sequence Conservation Evaluation.

Tools for functional annotation

Align GVD

- We need to measure the impact of each variant in the genome
- We cannot annotate 25,000 variants manually checking more than 20 databases

Tools integrate biological information and ease the functional annotation of hundreds of thousand variants **PANTHER HPG VARIANT** SNPseek Parepro SeattleSeq LS-SNP **PMUT SNPHunter** SNPs&GO Oncotator Annotation CandiSNPer SNPnexus SNPeffect **HSF** SCONE **PHAST PupaSNP CUPSAT** 4.0 SNP Function FANS SNPdbe Finder SNPper CHASM and F-SNP Portal ABSOLUTE SIFT SCAN **SNVBox** Auto-mute nsSNPAnalyzer MutationTaster PolyPhen-2 PhD-SNP AnnTools **FastSNP** pfSNP FOLD-X MAPP **SNAP** GERP++ **HOPE** PESX SAPRED ResqueESE VEP SegAnt **FESD** QuikSNP SNPs3D **PolyDoms** MutaGeneSys MutPred ANNOVAR NGS-SNP SiPhy **SVA** ESEfinder ESRSearch **GSITIC** PolyMAPr **dbNSFP** MuD MutSlg SeqProfCod Stephan Pabinger et al. A survey of tools for I-Mutant2.0 SNP@Domain analysis of next-generation genome seq MutationAssesor data. Briefings in Bioinformatics, 2013 Jan. 8

PMID: 23341494

AnnoVar

ANNOVAR web site: http://www.openbioinformatics.org/annovar/

- Free and open source
- Can annotate SNV, insertions and deletions
- Regulatory information: Conserved genomic regions, TFBSs, miRNA targets and predicted miRNA secondary structures. ENCODE DNAse I hypersensitive sites, Histone methylations, ChIP and RNA-Seq peaks
- DbSNP, 1000 genomes, SIFT and GERP filtering
- Predictions: Polyphen, LRT, MutationTaster, PhyloP
- Can handle custom annotations in GFF3
- Can handle 1 o 0-based coordinates
- 5 Species (human, mouse, worm, fly, yeast)

Accepts VCF4, GFF3-SOLiD and CSV BUT after conversion to their particular input file:

Chr	Start	End	Ref	0bs	Comments
1	161003	161003	С	Т	comments: rs1000050

- Perl written program
- Installation required
- Users need to download every annotation database and save them locally (~35GB per assembly)
- Need to be run several times
- Output: several files depending on the query

AnnoVar

EXAMPLE of ANNOVAR usage

```
DOWNLOADING BIOLOGICAL DATA:
user@computer:~$ annotate_variation.pl -buildver hg19 -downdb refgene humandb/
user@computer:~$ annotate variation.pl -buildver hg19 -downdb snp135 -webfrom annovar humandb/
user@computer:~$ annotate_variation.pl -buildver hg19 -downdb phastConsElements46way humandb/
user@computer:~$ annotate_variation.pl -buildver hg19 -downdb 1000g2012apr -webfrom annovar
humandb/
user@computer:~$ annotate_variation.pl -buildver hg19 -downdb cytoBand humandb/
EXTRACTING THE EFFECT:
user@computer:~$ annotate_variation.pl -geneanno example/ex1.human humandb/
user@computer:~$ annotate_variation.pl -regionanno -dbtype band example/ex1.human humandb/
user@computer:~$ annotate_variation.pl -filter -dbtype 1000g2012apr_eur example/ex1.human humandb/
```


Variant Effect Predictor (VEP)

VEP documentation site: http://www.ensembl.org/info/docs/variation/vep/index.html

- Backed by Ensembl
- Free and open source
- 3 ways of functionality: web interface, standalone Perl script and Ensembl's Perl API
- Input formats: CSV, VCF, Pileup and HGVS
- Regulatory information: TFBSs
- Filtering by coding regions and MAF
- Predictions: SIPF, PolyPhen
- 1000 genomes and dbSNP information
- Uses Sequence Ontology
- Many species

- Regulatory information does not include miRNA targets
- The standalone Perl script needs:
 - Perl and MySQL support
 - Download, install and update every ~ 2 months
- Perl API requires:
 - Installation
 - Downloads and update
 - API documentation → Hard to understand

Variant Effect Predictor (VEP)

VEP web interface: http://www.ensembl.org/Homo_sapiens/Tools/VEP

McLaren W, Pritchard B, Rios D, Chen Y, Flicek P, Cunningham F. *Deriving the consequences of genomic variants with the Ensembl API and SNP Effect Predictor.* **BMC Bioinformatics** 26(16):2069-70(2010) Pubmed PMID: 20562413

SnpEff

SNPEFF

Home

SnpEff description

Download

Features

SnpSift

Paper & Citing

Who uses SnpEff?

Integration

HELP

Bug reports

Feature requests

Asking for help

About

DOCUMENTATION

SnpEff manual

SnpSift manual

Usage Examples

SnpEff

Genetic variant annotation and effect prediction toolbox.

Download SnpEff

Latest version 4.0 E (2014-09-13)

Requires Java 1.7

SnpEff

Genetic variant annotation and effect prediction toolbox. It annotates and predicts the effects of variants on genes (such as amino acid changes). Features:

- Supports over 20,000 genomes.
- · Cancer variants analysis
- GATK compatible (-o gatk)
- HGVS notation
- · Sequence Ontology standardized terms

View details »

Version 4.0

Major improvements and support for standards:

- HGVS notations
- Sequence Ontology terms
- Easier to use
- SnpEff downloads databases automatically
- · Automatic third party databases downloads
- Support for GRCh38
- Support for Ebola Zaire Virus (2014 West Africa outbreak)

View details »

SnpSift

SnpSift helps filtering and manipulating genomic annotated files (VCF). Once you annotated your files using SnpEff, you can use SnpSift to help you filter large genomic datasets in order to find the most significant variants

View details »

SnpEff

Number of effects by type and region

Count Percent

107

68

1,164

374 12.467%

42.9%

3.567%

2.267%

38.8%

Туре			Regio
Type (alphabetical order)	Count	Percent	
downstream_gene_variant	1,287	42.9%	Type (alphabetical order)
intergenic_region	107	3.567%	DOWNSTREAM
intragenic_variant	68	2.267%	EXON
missense_variant	68	2.267%	INTERGENIC
stop_retained_variant	1	0.033%	NONE
synonymous_variant	305	10.167%	UPSTREAM
upstream_gene_variant	1,164	38.8%	

Anotação de Variantes

Marcel Caraciolo marcel@genomika.com.br