Euler method functions to solve

Developed by Ibrahim Issah University of Eastern Finland Msc. Photonics

INITIALIZE

```
clear
close all
clc
```

ODE FUNCTION

```
dy = @(t,y) t*cos(sqrt(y)); %% Using functions
```

DASHBOARD

```
ta = 0; %% starting point
tn = 10; %% ending point
h = .05; %% stepsize
y = 1; %% initial condition

storery =[]; %% for storing y values

fprintf('t_values \t\t Euler method(values) \t\n');
```

```
t values Euler method(values)
```

```
for t = ta:h:tn-h
    y = y+dy(t,y)*h;
    fprintf('%f \t\t %f \n', t, y);
    t = t+h; %% increment with stepsize
    storery = [(storery), y];
end
```

```
      0.000000
      1.000000

      0.050000
      1.001351

      0.100000
      1.004049

      0.150000
      1.008089

      0.200000
      1.013458

      0.250000
      1.020141

      0.300000
      1.037367

      0.400000
      1.047860

      0.450000
      1.059566

      0.500000
      1.072450

      0.550000
      1.086476

      0.600000
      1.101602

      0.650000
      1.117785
```

1.050000 1.100000 1.150000 1.250000 1.350000 1.350000 1.400000 1.500000 1.550000 1.600000	1.134979 1.153136 1.172206 1.192137 1.212875 1.234366 1.256553 1.279381 1.302793 1.326731 1.351140 1.375962 1.401141 1.426622 1.452352 1.478275 1.504341 1.530499 1.556699
1.800000 1.850000 1.900000 2.000000 2.100000 2.150000 2.200000 2.250000 2.350000 2.400000 2.450000 2.500000	1.582895 1.609041 1.635092 1.661008 1.686748 1.712275 1.737553 1.762549 1.787230 1.811569 1.835537 1.859110 1.882265 1.904982 1.927240 1.949024 1.970319 1.991111 2.011390 2.031146 2.050372 2.069061 2.087209 2.104814 2.121872 2.138386 2.154354 2.154354 2.169781 2.184668 2.199021 2.212846 2.226147 2.238934 2.251213 2.262994 2.274286 2.251213 2.262994 2.274286 2.255099 2.295443 2.305329 2.314768 2.323773
3.700000 3.750000 3.800000 3.850000 3.900000	2.332354 2.340525 2.348297 2.355684 2.362697

3.950000	2.369349
4.000000	
4.050000	2.381623
4.100000	2.387269
4.150000	2.392605
4.200000	2.397643
4.250000	2.402394
4.300000	2.406873
4.350000	2.411089
4.400000	2.415055
4.450000	2.418782
4.500000	2.422281
4.550000	2.425564
4.600000	2.428640
4.000000	
	2.431520
4.700000	2.434213
4.750000	2.436731
4.800000	2.439081
4.850000	2.441273
4.900000	2.443316
4.950000	2.445218
5.000000	2.446988
5.050000	2.448632
5.050000	
5.100000	2.450158
	2.451574
E 200000	2.452886
5.200000	
5.250000	2.454100
5.300000	2.455224
5.350000	2.100221
5.350000	2.456262
5.400000	2.457220
5.450000	2.458104
5.500000	2.458919
5.500000	
5.550000 5.600000	2.459669
5.600000	2.460359
5.650000	2.460992
5.700000	2.461574
5.750000	2.462108
5.800000	2.462597
3.00000	
5.800000 5.850000 5.900000	2.463044
5.900000	2.463453
5.950000	2.463827
5.950000	2.403827
6.000000	2.464169
6.050000	2.464480
	2.464764
6.150000	2.465022
6.200000	2.465257
6.250000	2.465470
6.300000	2.465664
6.350000	2.465839
6.400000	2.465999
6.450000	2.466143
6.500000	2.466273
	2.466390
6.600000	2.466497
6.650000	2.466592
6 500000	2.466679
6.750000	2.466756
6.800000	2.466826
6.850000	2.466889
6.900000	2.466945
6.950000	2.466995
7.000000	2.467041
	2.467041
7.100000	2.467117
7.150000	2.467150

```
2.467296
7.550000
           2.467308
7.600000
           2.467320
7.650000
           2.467330
7.700000
           2.467338
7.750000
           2.467346
7.800000
           2.467353
7.850000
           2.467359
7.900000
           2.467364
7.950000
           2.467369
8.000000
            2.467373
8.050000
            2.467377
8.100000
            2.467380
8.150000
           2.467383
8.200000
           2.467385
8.250000
           2.467387
8.300000
           2.467389
           2.467391
8.350000
8.400000
          2.467392
8.450000
           2.467393
8.500000
          2.467394
8.550000
          2.467395
8.600000
          2.467396
8.650000
          2.467397
8.700000
           2.467397
8.750000
           2.467398
8.800000
           2.467398
8.850000
           2.467399
8.900000
           2.467399
           2.467399
8.950000
9.000000
           2.467400
9.050000
           2.467400
9.100000
           2.467400
9.150000
           2.467400
9.200000
           2.467400
9.250000
           2.467400
9.300000
           2.467401
9.350000
           2.467401
           2.467401
9.400000
9.450000
           2.467401
9.500000
          2.467401
9.550000
           2.467401
9.600000
           2.467401
9.650000
           2.467401
9.700000
           2.467401
9.750000
           2.467401
9.800000
           2.467401
9.850000
           2.467401
9.900000
           2.467401
9.950000
            2.467401
figure (1); plot(storery, 'b-', 'LineWidth', 2.5);
xlabel('t');
ylabel('y');
title('Function $y^{1} =tcos(\sqrt{y})$', 'Interpreter', 'Latex','Rotation', 0, ...
         'HorizontalAlignment', 'right');
```

7.200000

7.250000

7.300000

7.350000

7.400000

7.450000

7.500000

2.467178

2.467204

2.467227

2.467247

2.467265

2.467282

From taylor series

y(x+h) = y(x) + y'(x)*h;

DASHBOARD 2

```
h = 0.05; %% step size
y = zeros(1, 200); %% pre-processing
y(1) = 1; %% initial condtion
t(1) = 0; %% starting point of t
```

TAYLOR FORMULATION

Symbolic integration

```
syms y(t) t;
expr = diff(y,t) == t*cos(sqrt(y));
cond = y(0) == 1;
S = dsolve(expr, cond);
```

Warning: Unable to find explicit solution. Returning implicit solution instead.

```
disp(S);
```

$$solve\left(-4\sqrt{y} \operatorname{atan}\left(e^{\sqrt{y}\,i}\right)i + 2\operatorname{polylog}\left(2, -e^{\sqrt{y}\,i}\,i\right)i - 2\operatorname{polylog}\left(2, e^{\sqrt{y}\,i}\,i\right)i = \frac{t^2}{2} - 4\operatorname{atan}\left(e^i\right)i + 2\operatorname{polylog}\left(2, e^{\sqrt$$