Correlação e Regressão

PRI5003 - Aula 10

Instituto de Relações Internacionais - Universidade de São Paulo

14 de Junho de 2018

Outline

Em que pé estamos

Revisão - Correlação

Inferência para correlação

Regressão bivariada

Interpretando a saída do Stata

Como julgar se o ajuste é bom?

O que vimos até agora

Nossas últimas aulas têm se concentrado em verificar a associação de variáveis:

- ► Aula 8: associação entre variáveis quantitativas e categóricas (testes de diferença de médias e de proporções)
- ► Aula 9: associação entre variáveis categóricas (qui-quadrado)
- Aula 10: associação entre variáveis quantitativas (correlação e regressão)

Introdução

Em ciências sociais, é frequente termos interesse em saber se duas variáveis quantitativas estão associadas:

- Quando um país reduz barreiras comerciais, aumenta sua taxa de crescimento?
- Candidatos que investem mais em campanha se elegem com mais frequência?
- Países que produzem mais riqueza têm menor taxa de mortalidade infantil?

Introdução

Definimos que duas variáveis estão associadas quando, ao mudar o valor de uma delas, encontramos variação também na segunda. Podemos, então, pensar na correlação como covariância.

O termo correlação significa relação em dois sentidos (co + relação), e é usado em estatística para designar a força que mantém unidos dois conjuntos de valores. A verificação da existência e do grau de relação entre as variáveis é o objeto de estudo da correlação.

Correlação

Relembrando a fórmula da variância

$$\sigma^2 = \sum_{i=1}^n \frac{(x_i - \bar{x})^2}{N}$$

É o mesmo que

$$\sigma^2 = \sum_{i=1}^n \frac{(x_i - \bar{x}) * (x_i - \bar{x})}{N}$$

Correlação

Para encontrarmos a covariância entre duas variáveis, incluímos o segundo fenômeno de interesse

Covariância

$$cov(x, y) = \sum_{i=1}^{n} \frac{(x_i - \bar{x}) * (y_i - \bar{y})}{N}$$

Correlação

O índice de covariância que calculamos tem um problema: não está padronizado. Assim, não podemos comparar covariâncias entre variáveis com medidas muito desiguais.

Para normalizarmos a covariância, utilizamos o *coeficiente r de Pearson*. Basta dividir a covariância pelo desvio-padrão das duas variáveis.

r de Pearson

$$r = \sum_{i=1}^{n} \frac{cov(x,y)}{\sigma_x \sigma_y}$$

Coeficiente de Correlação

O coeficiente de correlação linear r varia de -1 a +1 e sua interpretação dependerá do valor numérico e do sinal:

- $ightharpoonup r=1 \longrightarrow {\sf correlação}$ positiva perfeita
- $lackbox{0} < r < 1 \longrightarrow {\sf correlação positiva}$
- $ightharpoonup r=0 \longrightarrow$ não há correlação (variáveis independentes)
- $lackbox{-}1 < r < 0 \longrightarrow {\sf correlação\ negativa}$
- r=-1 correlação negativa perfeita

Lembram da prova?

Teste da Correlação

Fazendo inferências sobre a associação entre variáveis

Quando estamos trabalhando com uma amostra, é interessantes testar a associação entre as variáveis na população. Vamos calcular se a correlação linear ρ é estatisticamente significante.

 H_0 : Não há correlação populacional (
ho=0)

 H_a : Há correlação populacional (ho
eq 0)

Estatística-teste

$$t = r\sqrt{\frac{n-2}{1-r^2}}$$

Correlação e causalidade

Quando encontramos associação entre duas variáveis, não conseguimos distinguir se:

- 1. X influencia Y
- 2. Y influencia X
- 3. X e Y se influenciam mutuamente
- 4. Z influencia X e Y (variável omitida)

A regressão dá o primeiro passo para corrigir isso.

Correlação e causalidade

Regressão linear

Partindo de um gráfico de dispersão, o primeiro passo da regressão é ajustar uma reta que passe o mais próximo possível de todos os pontos. A função que gera essa reta tem o nome de *equação de regressão*.

A partir dessa reta, podemos fazer previsões para \boldsymbol{y} a partir de valores específicos de \boldsymbol{x}

Exemplo

Regressão linear

Equação da reta que você viu na escola

$$y = ax + b$$

Notação do modelo populacional

$$y = \alpha + \beta x + \epsilon$$

- y é a variável dependente;
- $ightharpoonup \alpha$ é o intercepto;
- β é a inclinação da reta;
- x é a variável independente.

Ilustração

FIGURE 9.2: Graph of the Straight Line $y = \alpha + \beta x$. The y-intercept is α and the slope is β .

O que é o resíduo?

Resíduo é a diferença entre a previsão feita para y pela reta ajustada e o valor observado para y.

Em notação, resíduo= $y - \hat{y}$.

Para sabermos o desvio geral das obsevações em relação à previsão, calculamos a soma dos quadrados dos erros:

$$SQE = \sum (y - \hat{y})^2$$

Como a função minimiza o quadrado dos erros entre a reta e os pontos observados, ela é chamada *linha dos mínimos quadrados*

Ilustração

E como calular os coeficientes?

Inclinação

$$\hat{\beta} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{n} (x_i - \bar{x})^2}$$

Intercepto

$$\hat{\alpha} = \bar{y} - \hat{\beta}\bar{x}$$

Como ler a saída do Stata

. reg VOTE GRO	DWTH						
Source	SS	df	MS			Number of obs	= 34
Model Residual	385.31241 785.539343	1 32		312461 481045		F(1, 32) Prob > F R-squared	= 0.0004 = 0.3291
Total	1170.8518	33	33 35.4803577			= 0.3081 = 4.9546	
VOTE	Coef.	Std.	Err.	t	p> t	[95% Conf.	Interval]
GROWTH _cons	.6249078 51.50816	. 1577 . 8569		3.96 60.11	0.000	.3036193 49.76271	.941963 53.25361

- 1. Quais são a VD e a VI?
- 2. Identifique α e β
- 3. Onde está o SQE?
- 4. Quais são as hipóteses sendo testadas?

Teste de hipóteses na regressão

- $H_0: \beta = 0$
- ightharpoonup n-k são os graus de liberdade. n é o número de observações no banco, k é o número de variáveis
- Cuidado com bancos de dados com muitas variáveis e poucas observações!
- ▶ n > k
- lacktriangle O teste de hipóteses para lpha segue a mesma lógica

Estatística-teste

$$t_{n-k} = \frac{\hat{\beta} - \beta_0}{ep(\hat{\beta})}$$

Root Mean-Squared Error

Root MSE

$$RMSE = \sqrt{\frac{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2}{n}}$$

- O nome parece complicado
- A fórmula parece complicada
- O conceito é simples: é a distância média entre os pontos e a reta de ajuste
- Quanto menor o valor, melhor o ajuste

R^2

A imagem abaixo ilustra a intuição do r^2

- ▶ a é a variação residual de y
- ▶ b é a variação conjunta de x e y
- Quanto maior a área de b e menor a área de a, maior será o R². Em consequência, melhor será o ajuste (mas não é tão simples).

O R^2 compara quão boa é a reta ajustada em relação a uma previsão que só leva em consideração a média de y, ignorando ${\sf x}$

$$R^2$$

\mathbb{R}^2 - Coeficiente de determinação

$$r^2 = \frac{SQT - SQE}{SQT}$$

Soma dos quadrados totais

$$SQT = \sum (y - \bar{y})^2$$

Soma dos quadrados dos erros

$$SQE = \sum (y - \hat{y})^2$$

Voltando ao Stata

. reg VOTE GRO	DWTH						
Source	SS	df	MS			Number of obs	= 34
Model Residual	385.31241 785.539343	1 32		312461 481045		F(1, 32) Prob > F R-squared	= 0.0004 = 0.3291
Total	1170.8518	33	35.4803577		Adj R-squared Root MSE	= 0.3081 = 4.9546	
VOTE	Coef.	Std.	Err.	t	p> t	[95% Conf.	Interval]
GROWTHcons	.6249078 51.50816	. 157 . 856		3.96 60.11	0.000	.3036193 49.76271	.941963 53.25361

- Se SQT e SQE forem próximos, o numerador será baixo e, consequentemente, o ajuste será baixo
- Quanto mais distante o SQE estiver do SQT, maior será o numerador, e maior será o ajuste