Project Design Phase-II Technology Stack (Architecture & Stack)

reminiogy otder (Aremicotare & otder)			
Date	01 November 2023		
Team ID	Team-593148		
Project Name	Fake/Real Logo detection using Deep Learning		
Maximum Marks	4 Marks		

Technical Architecture:

The Deliverable shall include the architectural diagram as below and the information as per the table1.

Fake/Real Logo Detection Using Deep Learning

Reference: https://www.irjmets.com/uploadedfiles/paper//issue_5_may_2023/40937/final/fin_irjmets1685567608.pdf

Guidelines:

- 1. Include all the processes (As an application logic / Technology Block)
- 2. Provide infrastructural demarcation (Local / Cloud)
- 3. Indicate external interfaces (third party API's etc.)
- 4. Indicate Data Storage components / services
- 5. Indicate interface to machine learning models (if applicable)

Table-1 : Components & Technologies:

S.No	Component	Description	Technology
1.	Deep learning Framework	Popular deep learning framework that provide a wide range of tools for building and training deep neural networks	TensorFlow / PyTorch
2.	Neural Network Architecture	Commonly used architecture for image classification tasks	VGG16 / ResNet / EfficientNet
3.	Data Preprocessing	Useful for image preprocessing tasks, such as resizing, normalization, and data augmentation.	OpenCV
4.	Data Augmentation	This tool can help you generate augmented training data, which is crucial for improving the model's generalization	Keras ImageDataGenerator
5.	Transfer Learning	Utilize pretrained models on large image datasets like ImageNet to benefit from learned features. You can fine-tune these models on your logo dataset.	Pertain Models like ImageNet
6.	Model Training	Use GPU-accelerated environments for faster training times, especially if you're working with large datasets and complex models.	NVIDIA CUDA
7.	Hyperparameter Tuning	TensorFlow's or PyTorch's built-in tools for hyperparameter tuning.	TensorFlow or PyTorch
8.	Deployment	For building a web application to deploy the model.	Flask / Django
		For serving the trained model in a production environment	TensorFlow Serving / ONNX Runtime

9.	Frontend	For buildings the user interface	HTML / CSS / JavaScript
10.	Database	To store and manage user data or other relevant information	MySQL / postgreSQL / MongoDB
11.	Containerization	For containerizing the application, making it easier to deploy and manage across different environments.	Docker
12.	Version Control	For version control of your codebase	Git
13.	Continuous Integration / Continuous Deployment	Automate the testing and deployment the processes	Jenkins / GitLab CI / GitHub Actions
14.	Monitoring and Logging	Tools for monitoring the application's performance	Prometheus / Grafana
15.	Authentication and Authorization	Implement user authentication to secure access to your application	OAuth / JWT

References:

- 1) <u>Alireza Alaei and Mathieu Delalandre. 2014. A complete logo detection/recognition system for document images. In Proceedings of the 11th IAPR International Workshop on Document Analysis Systems. 324–328.</u>
- 2) <u>Marisa Bernabeu, Antonio Javier Gallego, and A. Pertusa. 2022. Multi-label logo recognition and retrieval based on weighted fusion of neural features. Retrieved from https://arXiv:2205.05419</u>
- 3) <u>Simone Bianco, Marco Buzzelli, Davide Mazzini, and Raimondo Schettini. 2017. Deep learning for logo recognition. Neurocomputing 245 (2017), 23–30.</u>

- 4) Alexey Bochkovskiy, Chien Yao Wang, and H. Liao. 2020. YOLOv4: Optimal speed and accuracy of object detection. Retrieved from https://arXiv:2004.10934
- 5) Raluca Boia, Corneliu Florea, and Laura Florea. 2015. Elliptical ASIFT agglomeration in class prototype for logo detection. In Proceedings of the British Machine Vision Conference. 115.1–115.12.