- Algoritma DBSCAN adalah metode clustering berbasis kepadatan yang dapat mengidentifikasi cluster dengan bentuk yang fleksibel dan secara otomatis mendeteksi outliers/noise. Berbeda dengan algoritma K-Means yang berbasis centroid, DBSCAN bekerja dengan mengelompokkan titik-titik data yang memiliki kepadatan tinggi yang dipisahkan oleh area kepadatan rendah. Cara kerja
 - a. Inisialisasi Parameter
 - i. eps (ε): Jarak maksimum antara dua titik untuk dianggap bertetangga
 - ii. min_samples: Minimum titik yang diperlukan untuk membentuk core point
 - iii. metric: Metode perhitungan jarak ('euclidean', 'manhattan', 'minkowski')
 - iv. p: Parameter untuk metric Minkowski
 - b. Inisialisasi State (fit)
 - i. Inisialisasi semua label sebagai unvisited (0)
 - ii. Siapkan counter untuk cluster ID
 - c. Main Clustering Loop
 - i. Untuk setiap titik data:
 - 1. Jika sudah dikunjungi, skip
 - 2. Cari semua tetangga dalam radius ε
 - 3. Jika jumlah tetangga < min_samples: label sebagai noise (-1)
 - 4. Jika cukup tetangga: expand cluster
 - d. Cluster Expansion (expand cluster)
 - i. Label titik sebagai cluster tertentu
 - ii. Iterasi melalui semua tetangga:
 - 1. Jika tetangga adalah noise, ubah menjadi border point
 - Jika tetangga unvisited, tambahkan ke cluster dan cari tetangganya
 - 3. Jika tetangga adalah core point, tambahkan tetangganya ke queue
- 2. Berdasarkan hasil evaluasi, model dari Sklearn memiliki nilai Silhouette 0.3578, sementara untuk model yang saya buat sendiri mendapatkan nilai Silhouette 0.3578. Hal ini menunjukan performa model yang sudah sama persis.