DataMing HW3

姓名:吳建澄

學號:NM6111035

HITS

1. 概述:

HITS 是可以用於幫網頁評分的 種 link analysis algorithm, 它的算法主要是 計算兩個數值—Hub, Authority, 這兩種數值會互相影響,可以看到 Hub, Authority 的算法如下圖, Hub 是所有 v node's children 之 Authority 總和, Authority 是所有 v node's parents 之 Hub 總和。

Recursive dependency:

$$a(v) \leftarrow \Sigma_{w \in pa[v]} h(w)$$

 $h(v) \leftarrow \Sigma_{w \in ch[v]} a(w)$

$$h(v) \leftarrow \Sigma_{w \in ch[v]} a(w)$$

透過上式,不斷重複計算每個 node 的 Hub, Authority, 最終會 Converge 在 個數值。

2. 程式碼簡述:

i. Node class:

這個class主要是用來建立graph的一個基本單位,總共有name、children、 parents, auth, preAuth, hub, preHub attribute,

```
class Node:
    def init (self, name):
        self.name = name
        self.children = []
        self.parents = []
        self.auth = 1.0
        self.preAuth = 1.0
        self.hub = 1.0
        self.preHub = 1.0
```

ii. Graph class:

這個class主要包含建立graph一些function,包含增加邊,以及尋找Node的 function_o

```
class Graph:
    def init (self):
        self.Nodes = []
    def search(self, name):
        exist = False
        for node in self.Nodes:
             if(node.name == name):
                 exist = True
        if exist:
            return next(node for node in self.Nodes if node.name == name)
            new_node = Node(name)
            self.Nodes.append(new node)
            return new node
    def addEdge(self, parent, child):
        parent_node = self.search(parent)
child_node = self.search(child)
        if(child_node.name not in parent_node.children):
             parent node.children.append(child node)
        if(parent_node.name not in child_node.parents):
             child node.parents.append(parent node)
```

1. addEdge function

和 function 名稱意思相同, 將 parent 和 child 兩個 node連結起來。

2. search function

和 function 名稱意思相同, 用來找尋 graph 中想找到node, 若無該 node, 則建立 個新的 node, 以便後續建立連結。

iii. HIT:

經由HIT algorithm, 下圖為我的程式碼對應片段

```
def HITS(g, num):
    for i in range(num):
        nodeList = g.Nodes
        for node in nodeList:
            node.auth = sum(parent_node.preHub for parent_node in node.parents)

    for node in nodeList:
        node.hub = sum(child_node.preAuth for child_node in node.children)

    auth_sum = sum(node.auth for node in nodeList)
    hub_sum = sum(node.hub for node in nodeList)

    for node in nodeList:
        node.auth /= auth_sum
        node.hub /= hub_sum
        node.f = node.auth
        node.preHub = node.hub
```

- 1. 將每個 node 的 parent(parent_node)的 Hub 加總, 成為該節點的新 Authority
- 2. 計算目前每個節點的 Authority 總和, 用於 normalize 歸一化。
- 3. 將每個節點的 Authority 進行 normalize。
- 以上是Authority的部分, Hub部分與其類似。

iv. Main:

主程式如下, file_path 決定要分析的檔案, it決定iteration的次數, 其他就是建立Graph以及使用HIT function來完成此次任務。

```
if __name__ == '__main__':
    authority_fname = '_HITS_authority.txt'
    hub_fname = '_HITS_hub.txt'
result_dir = 'result'
data_path = './hw3dataset/'
    for file_name in os.listdir(data_path):
         file_path = data_path + file_name
         fname = file_path.split('',')[-1].split('.')[0]
         it = 30
         graph = init graph(file path)
        start = time.time()
           graph.display()
        HITS(graph, it)
        end = time.time()
        print(end-start)
        auth_list, hub_list = get_auth_hub_list(graph)
        print()
         print(fname)
        print('Authority:')
        print(auth list)
        path = os.path.join(result_dir, fname)
        os.makedirs(path, exist_ok=True)
        np.savetxt(os.path.join(path, fname + authority fname), auth list, fmt='%.3f', newline=" ")
        print('Hub:')
         print(hub_list)
        print()
        np.savetxt(os.path.join(path, fname + hub fname), hub list, fmt='%.3f', newline=" ")
```

3. 結果

i. graph 1

graph 1 Authority:

[0. 0.2 0.2 0.2 0.2 0.2]

Hub:

[0.2 0.2 0.2 0.2 0.2 0.]

上圖,可以看到 graph 1 節點間的關係,我們可以探討 Node 1 的 Authority, Hub 值。由 HITS algorithm 可以得知 Authority 是其父節點的 Hub 加總,但 因為 Node 1 並沒有 parent nodes, 因此其 Authority為 0, 若想增加 Node 1 的 Authority, 可以透過將其餘 4 個node 中其中 個 node 指向 Node 1, 但相對 Hub 卻下降(如下圖, node 6 指向 node 1)。另外是 Node 1 的 Hub 值,從公式 中可以看出 Hub 是由其子節點的 Authority 加總, 因此若想增加 Node 1 的 Hub, 可以增加 Node 1 的 childnode(如下圖二, 新增 node 1 指向 node 3), 亦 或是使其child node 的 Authority 增加。

ii. graph 2

graph_2 Authority: [0.2 0.2 0.2 0.2 0.2] Hub: [0.2 0.2 0.2 0.2 0.2]

上圖,可以看到 graph_2 節點間的關係,我們可以探討Node 1 的 Authority, Hub 值。由 HITS algorithm 可以得知 Authority 是其父節點的 Hub 加總,若想增加 Node 1 的 Authority,可以透過增加 node 1 的父節點(如下圖, node 4 指向 node 1)。另外是 Node 1 的Hub 值,從公式中可以看出 Hub 是由其子節點的 Authority加總,因此若想增加 Node 1 的 Hub,可以增加 Node 1 的child node(如下圖,新增 node 1 指向 node 4),亦或是使其 child node 的 Authority增加。

iii. graph 3

graph_3 Authority: [0.2 0.3 0.3 0.2] Hub: [0.167 0.333 0.333 0.167]

上圖,可以看到 graph_3 節點間的關係,我們可以探討Node 1 的 Authority, Hub 值。由 HITS algorithm 可以得知 Authority 是其父節點的 Hub 加總,若想增加 Node 1 的 Authority,可以透過增加 node 1 的父節點(如下圖, node 4 指向 node 1)。另外是 Node 1 的Hub 值,從公式中可以看出 Hub 是由其子節點的 Authority加總,因此若想增加 Node 1 的 Hub,可以增加 Node 1 的child node(如下圖,新增 node 1 指向 node 3),亦或是使其 child node 的 Authority增加。

graph_3 Authority: [0.308 0.231 0.308 0.154] Hub: [0.143 0.286 0.286 0.286]

graph_3 Authority: [0.154 0.308 0.385 0.154] Hub: [0.286 0.286 0.286 0.143]

二、PageRank

1. 概述:

PageRank 是能夠被應用在網頁排名的 種 link analysisalgorithm,它的核心概念是評分越高的 node 通常被許多其他node 所連結(或 reference),評分的算法為下圖。

$$PR(P_i) = \frac{(d)}{n} + (1 - d) \times \sum_{l_{j,i} \in E} PR(P_j) / \text{Outdegree}(P_j)$$

D(damping factor)=0.1~0.15 n=|page set|

它的算法是計算評分數值,是所有 v node's parents 之評分/其children 數後的總和。透過上式,不斷重複計算每個 node 的評分,最終會Converge 在 個數值。 阻尼係數(damping factor)所代表的意義為,用戶訪問到某頁面後繼續訪問下一個 頁面的概率,相對應的 (1-d) 則是用戶停止點擊,隨機瀏覽新網頁的概率。的大小由一般上網者使用瀏覽器書籤功能的頻率的平均值估算得到。

2. 程式碼簡述:

i. Node class:

這個class主要是用來建立graph的一個基本單位,總共有name、children、parents、rank attribute。

```
class Node:
    def __init__(self, name):
        self.name = name
        self.children = []
        self.parents = []
        self.rank = 1.0
```

ii. Graph class:

這個class主要包含建立graph一些function,包含增加邊,以及尋找Node的function。(這部份的程式碼和HIT演算法所使用的方式一模一樣)

```
class Graph:
    def init (self):
        self.Nodes = []
    def search(self, name):
        exist = False
        for node in self.Nodes:
             if(node.name == name):
                 exist = True
        if exist:
             return next(node for node in self.Nodes if node.name == name)
        else:
            new node = Node(name)
            self.Nodes.append(new node)
             return new node
    def addEdge(self, parent, child):
        parent_node = self.search(parent)
child_node = self.search(child)
        if(child node.name not in parent node.children):
             parent node.children.append(child node)
        if(parent node.name not in child node.parents):
             child node.parents.append(parent node)
```

1. addEdge function

和 function 名稱意思相同, 將 parent 和 child 兩個 node連結起來。

2. search function

和 function 名稱意思相同, 用來找尋 graph 中想找到node, 若無該 node, 則建立 個新的 node, 以便後續建立連結。

iii. PageRank function:

經由 PageRank algorithm, 下圖為我的程式碼對應片段

```
def PageRank(g, dampingFactor, num):
    for i in range(num):
        nodeList = g.Nodes
        for node in nodeList:
            pNodes = node.parents
            pageRankSum = sum((pNode.rank / len(pNode.children)) for pNode in pNodes)
            node.rank = (dampingFactor / len(g.Nodes)) + (1-dampingFactor) * pageRankSum

    pageRankSum = sum(node.rank for node in g.Nodes)
    for node in g.Nodes:
            node.rank /= pageRankSum
```

由上圖可以將我的程式碼分成2個部分

1. 計算 PageRank 的 sum

- 2. 計算當前 node 的 pageRank
- 3.將 PageRank 進行 normalize 處理

iv. Main:

主程式如下, file_path 決定要分析的檔案, it決定iteration的次數, Damping Factor 設定為0.1。其他就是建立Graph以及使用PageRank function來完成此次任務。

```
import os
import time
if name == ' main ':
    iteration = 30
    dampingFactor = 0.1
data_path = './hw3dataset/'
    for file_name in os.listdir(data_path):
        file path = data path + file name
        result dir = 'result
        fname = file_path.split(',')[-1].split('.')[0]
        pagerank_fname = '_PageRank.txt
        graph = init_graph(file_path)
        start = time.time()
        PageRank(graph, dampingFactor, iteration)
        end = time.time()
        print(end-start)
        pagerank_list = get_pagerank_list(graph)
print('PageRank:')
        print(pagerank_list)
        print()
        path = os.path.join(result_dir, fname)
        os.makedirs(path, exist_ok=True)
        np.savetxt(os.path.join(path, fname + pagerank_fname), pagerank_list, fmt='%.3f', newline=" ")
```

3.結果

i. graph 1(Damping Factor = 0.1)

上圖,可以看到 graph_1 節點間的關係,我們可以探討Node 1 的 PageRank 值。由 PageRank algorithm 可以得知 PageRank 它的核心概念是評分越高的

node 通常被許多其他 node 所連結(或reference), 若想增加 Node 1 的 PageRank, 可以透過將其餘4 個 node 中其中 個 node 指向 Node 1 (如下圖, node 6指向 node 1)。

ii. graph 1(Damping Factor = 0.15)

由上圖可以發現增加了damping factor, PageRank 原本較低的值都變高了;相反的,原本較高的值都變低了。

iii. graph_2(Damping Factor = 0.1)

graph_2.txt PageRank: [0.2 0.2 0.2 0.2 0.2]

由上圖, 可以看到 graph_2 節點間的關係, 我們可以探討Node 1 的 ageRank 值。由 PageRank algorithm 可以得知 PageRank 它的核心概念是評分越高的 node 通常被許多其他 node 所連結(或reference), 若想增加 Node 1 的

PageRank, 可以透過將其餘4 個 node 中其中 個 node 指向 Node 1 (如下圖, node 4指向 node 1)。

graph_2.txt PageRank: [0.224 0.222 0.219 0.217 0.118]

iv. graph 2(Damping Factor = 0.5)

graph_2.txt PageRank: [0.2 0.2 0.2 0.2 0.2]

由上圖可以發現更改 Damping Factor 後的 PageRank 完全和更改前的數值一模一樣,由 PageRank 的演算法來看,他們的關聯性的比值是一樣的,因此更改 Damping Factor 對 graph 2 來說是不影響的。

v. graph_3(Damping Factor = 0.1)

graph_3.txt PageRank: [0.172 0.328 0.328 0.172]

左上圖, 可以看到 graph_3 節點間的關係, 我們可以探討Node 1 的PageRank 值。由 PageRank algorithm 可以得知 PageRank 它的核心概念是評分越高的 node 通常被許多其他 node 所連結(或reference), 若想增加 Node 1 的 PageRank, 可以透過將其餘4 個 node 中其中 個 node 指向 node 1 (如下圖, node 4指向 node 1)。

graph_3.txt PageRank: [0.25 0.362 0.25 0.138]

vi. graph 3(Damping Factor = 0.15)

graph_3.txt PageRank: [0.175 0.325 0.325 0.175]

由上圖可以發現增加了damping factor, PageRank 原本較低的值都變高了;相反的,原本較高的值都變低了。

三、SimRank

1. 概述:

SimRank 和上述兩種 algorithm 不同,是 種透過 graphstructure 分析 node 與 node 間相似度的 algorithm, 它的核心概念是若 2 個 node 的 parent 相似,那 麼這 2 個 node 的相似度較高。

可以看到相似度的算法如下圖,相似度是所有 a node 和b node 的 parents 之組合的相似度總和再平均。

SimRank formula

$$S(a,b) = \frac{C}{|I(a)||I(b)|} \sum_{i=1}^{|I(a)|} \sum_{j=1}^{|I(b)|} S(I_i(a),I_j(b))$$

- I(a), I(b): all in-neighbors
- □ C is decay factot, 0<C<1</p>
- \Box S(a, b) ∈ [0, 1]
- □ S(a, a)=1

2.程式碼簡述:

i. Node class:

這個class主要是用來建立graph的一個基本單位,總共有name、children、parents attribute。

```
class Node:
    def __init__(self, name):
        self.name = name
        self.children = []
        self.parents = []
```

ii. Graph class:

這個class主要包含建立graph一些function,包含增加邊,以及尋找Node的function。(這部份的程式碼和HIT、PageRank演算法所使用的方式一模一樣)

```
class Graph:
    def init (self):
        self.Nodes = []
    def search(self, name):
        exist = False
        for node in self.Nodes:
             if(node.name == name):
                 exist = True
                 break
        if exist:
             return next(node for node in self.Nodes if node.name == name)
        else:
            new node = Node(name)
            self.Nodes.append(new node)
             return new node
    def addEdge(self, parent, child):
        parent_node = self.search(parent)
child_node = self.search(child)
        if(child node.name not in parent node.children):
             parent node.children.append(child node)
        if(parent node.name not in child node.parents):
             child node.parents.append(parent node)
```

1. addEdge function

和 function 名稱意思相同, 將 parent 和 child 兩個 node連結起來。

2. search function

和 function 名稱意思相同, 用來找尋 graph 中想找到node, 若無該 node, 則建立 個新的 node, 以便後續建立連結。

iii. calSimRank function:

```
def calSimRank(self, nodel, node2):
    if(nodel.name == node2.name):
        return 1.0

pNodes1 = nodel.parents
pNodes2 = node2.parents

if(len(pNodes1) == 0 or len(pNodes2) == 0):
    return 0.0

SimRankSum = 0
for nodel in pNodes1:
    for node2 in pNodes2:
        node1Idx = self.nodeList.index(nodel.name)
        node2Idx = self.nodeList.index(node2.name)
        SimRankSum += self.oldSim[node1Idx][node2Idx]

newSimRank = (self.decayFactor / (len(pNodes1) * len(pNodes2))) * SimRankSum
```

由上圖可以將我的程式碼分成

- 1. 計算 SimRank 的總和
- 2. 計算 node1,node2 的 SimRank

iv. SimRank function

這個 function 是透過使用 calSimRank 得到對應 2 個 node 的simRank 值,並 將其值建立成 個 SimRank Matrix。

v. Main

主程式如下, file_path 決定要分析的檔案, it決定iteration的次數, decay_Factor 設定為0.7。其他就是建立Graph以及使用 SimRank function來完成此次任務。

```
if name == ' main ':
    decay factor = 0.7
    it = 30
    result_dir = 'result'
    data path = './hw3dataset/'
    for file name in os.listdir(data path):
        print(file name)
        if(file name == "IBM.txt" or file name == "graph 6.txt"):
           continue
        file_path = data_path + file_name
        fname = file path.split('/')[-1].split('.')[0]
        simrank fname = ' SimRank.txt
        graph = init graph(file path)
        sim = Similarity(graph, decay factor)
        start = time.time()
        SimRank(graph, sim, iteration)
        end = time.time()
        print(end-start)
        ans = sim.get_sim_matrix()
        print('SimRank:')
        print(ans)
        print()
        path = os.path.join(result dir, fname)
        os.makedirs(path, exist ok=True)
        np.savetxt(os.path.join(path, fname + simrank_fname), ans, delimiter=' ', fmt='%.3f')
```

3. 結果

```
i. graph 1(\text{decay Factor} = 0.7)
```

```
3 6
```

```
graph_1.txt
SimRank:
```

```
[[1. 0. 0. 0. 0. 0. 0.]

[0. 1. 0. 0. 0. 0. 0.]

[0. 0. 1. 0. 0. 0.]

[0. 0. 0. 1. 0. 0.]

[0. 0. 0. 1. 0. 0.]

[0. 0. 0. 0. 1. 0.]
```

ii. graph_1(decay_Factor = 0.8)

由上圖可以發現變更 decay_Factor 對於 SimRank 是沒有影響的, 因為對於 graph_1 來說, 每個 node 彼此之間的相似度都是1, 因此更改阻尼係數是無關的。

iii. graph_2(decay_Factor = 0.7)

iv. graph_2(decay_Factor = 0.8)

由上圖可以發現變更 decay_Factor 對於 SimRank 是沒有影響的, 因為對於 graph_2 來說, 每個 node 彼此之間的相似度都是1, 因此更改阻尼係數是無關的。

v. $graph_3(decay_Factor = 0.7)$

vi. graph_3(decay_Factor = 0.8)

由上圖顯示,將 decay_Factor 變大,除了1以外的 SimRank 都變大了,可以藉由 SimRank 算法看得出來,分子變大,分數就變大

四、Effectiveness analysis

1. graph_1

i.HIT:0.17 ms

ii.PageRank: 0.1ms

iii.SimRank:1.03ms

2. graph 2

i.HIT:0.14 ms

ii.PageRank: 0.09ms

iii.SimRank: 0.8ms

3. graph 3

i.HIT:0.12 ms

ii.PageRank: 0.07ms

iii.SimRank:0.6ms

4. graph 4

i.HIT:0.20 ms

ii.PageRank: 0.15ms

iii.SimRank: 10.75ms

5. graph 5

i.HIT:13.22 ms

ii.PageRank: 8.91ms

iii.SimRank: 11787ms

6. graph_6

i.HIT:49.02 ms

ii.PageRank: 29.89ms

iii.SimRank: x

7. IBM

i.HIT:29.71 ms

ii.PageRank: 21.65ms

iii.SimRank: x

這三個演算法中, Page Rank 執行的速度最快, 其次是 HIT 最後是 SimRank。

1. HIT

其中 HIT 的算法是線性的,因此所花的時間也會和 Node 數成正比,若 node 數越多,花費時間會越來越巨大,而當 node 數相同時,鏈結數越多(相同 node 數的狀況下 fullyconnected graph 的鏈結數比單向連通圖多),花費時間 越多,並且從線性的成長變成非線性成長。

2. PageRank

同樣在 PageRank 中, 也會發現和 HITS algorithm 相同的情況, 同樣是 比較在相同 node 數量下, 單向連通圖以及 fully-connected graph, 因 為鏈結數的不同, 而產生執行效率的不同, 但在 PageRank 中可以更明 顯地觀察到 fully-connected graph 的成長曲線是非線性的情況

3. SimRank

在 SimRank 中, 也會發現和 HITS algorithm 以及 PageRank 相同的情況,同樣是比較在相同 node 數量下,單向連通圖以及 fully-connected graph,因為鏈結數的不同,而產生執行效率的不同,但在 SimRank 中可以直接地觀察到 fully-connected graph 的成長曲線是非線性的情況,比起 HITS 和 PageRank 而言更加明顯。這是因為 SimRank 的算法為

$$S(a,b) = \frac{C}{|I(a)||I(b)|} \sum_{i=1}^{|I(a)|} \sum_{j=1}^{|I(b)|} S(I_i(a), I_j(b))$$

可以看到紅色框起來的部分, 若應用在 fully-connected graph 時, 若有 n 個 node, 則這邊就必須計算 n 的平方個 SimRank 值, 因此在 fully-connected graph 下, 當 node 越多, 所花費的時間就越多。