CPSC 314, Written Homework 1: Transformations

Out: Mon 14 Jan 2010 Due: Fri 25 Jan 2010 5pm Value: 4% of final grade Total Points: 100

1. (15 pts) The point coordinate P can be expressed as (2,3): that is, P = 2*i + 3*j, where i and j are basis vectors of unit length along the x and y axes, respectively, with an origin at the lower left of the grid. Describe the point P in terms of the three other coordinate systems given below (A, B, C).

			,	Ç	i		
Bj	₹			7	Cj		
$\left[\right]$	Bi			/			
						Αį	
		р			Αi,	, –	

- 2. (3 pts) Write down the 4x4 matrix for translating an object by 2 in y, 3 in x, and 4 in z.
- 3. (8 pts) Give the OpenGL commands required to encode M. You may assume the matrix stack has been initialized with glidentity().

$$\left[\begin{array}{cccc} 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ -1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{array}\right]$$

- 4. (4 pts) Homogenize the point (4,4,6,2).
- 5. (16 pts) Give the 4x4 OpenGL modelview matrix at the four lines A, B, C, and D below.

```
glLoadIdentity();
glTranslate(1,1,0);
A
glRotate(90, 1,0,0);
B
glPushMatrix();
glScale(1,2,1);
glTranslate(1,1,0);
C
glPopMatrix();
glTranslate(1,1,0);
```

6. (54 pts) For each equation below, sketch the new location L' of the L shape on the grid and provide the OpenGL sequence needed to carry out those operations. Use the function drawL(), which draws an L shape with the lower left corner at the current origin as shown below. You may assume the matrix mode is $GL_MODELVIEW$ and that the stack has been initialized with glLoadIdentity(). For reference, the OpenGL command syntax is glRotatef(angle,x,y,z), glTranslatef(x,y,z), glScalef(x,y,z). Show your partial work, with the position that the L would be drawn after each matrix multiplication.

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \mathbf{B} = \begin{bmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \mathbf{C} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \mathbf{D} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & -3 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

a) L' = BC L

b) L' = CDAC L

c) L' = ADCC L

d) L' = DCBD L

e) L' = BBCB L

f) L' = CCBC L

