- 9.1. a)
 - b)
- 9.2. a)
 - **b**)
- 9.3.
- 9.4.
- **9.5.** a) In jedem Punkt ist $\nabla \varphi(x)$ eine orthogonale Matrix Q(x), da $\nabla \varphi(x)^{-1} = (\nabla \varphi(x))^{\top}$. Außerdem gilt auch $C_{\varphi^{-1}} \equiv I$, da $\nabla \varphi^{-1} = (\nabla \varphi)^{-1}$.

Aus dem Angleitner Skript S. 29:

$$\begin{split} &\frac{\left\|\varphi(x+\Delta x)-\varphi(x)\right\|^{2}}{\left\|(x+\Delta x)-x\right\|^{2}} = \frac{\left\|\nabla\varphi(x)\cdot\Delta x+\mathcal{O}(\|\Delta x\|^{2})\right\|^{2}}{\left\|\Delta x\right\|^{2}} \\ &= \frac{(\Delta x)^{\top}\cdot(\nabla\varphi(x))^{\top}\cdot(\nabla\varphi(x))\cdot\Delta x}{\left\|\Delta x\right\|^{2}} + \mathcal{O}(\|\Delta x\|) \stackrel{C=I}{=} 1 + \mathcal{O}(\|\Delta x\|) \end{split}$$

Wählt man nun $x + \Delta x = y$ erhält man:

$$\frac{\|\varphi(y) - \varphi(x)\|^2}{\|y - x\|^2} = 1 + \mathcal{O}(\|\Delta x\|)$$

Und das ganze für φ^{-1} :

$$\frac{\left\|y - x\right\|^2}{\left\|\varphi(y) - \varphi(x)\right\|^2} = 1 + \mathcal{O}(\left\|\varphi(y) - \varphi(x)\right\|) = 1 + \mathcal{O}(\left\|\Delta x\right\|)$$

Also

$$\frac{\|\varphi(y) - \varphi(x)\|^2}{\|y - x\|^2} = 1 + \mathcal{O}(\|\Delta x\|) = 1 + \mathcal{O}(\|\Delta x\|^{-1})$$

Kann man daraus schließen, dass die $\|\Delta x\|$ Terme wegfallen?

Offene Frage: Wo geht Konvexität von B ein?

b) Aus **a)** gilt G(x, y) = 0.

Zuerst nach y_i und dann nach x_j differenzieren führt zur gesuchten Identität:

$$G(x,y) = \sum_{k} (\varphi_k(x) - \varphi_k(y))^2 - (x_k - y_k)^2 = 0$$

$$\frac{\partial}{\partial y_i}G(x,y) = -2\sum_k (\varphi_k(x) - \varphi_k(y)) \frac{\partial \varphi_k(y)}{\partial y_i} + 2(x_i - y_i) = 0$$

$$\frac{\partial}{\partial x_j} \frac{\partial}{\partial y_i} G(x, y) = -2 \sum_k \frac{\partial \varphi_k(y)}{\partial y_i} \frac{\partial \varphi_k(x)}{\partial x_j} + 2\delta_{ij} = 0$$

Also $(\nabla \varphi(y))^\top \nabla \varphi(x) = I$ auch für verschiedene Punkte $y, x \in B.$

c) Es folgt, dass in konvexen Umgebungen von $x \in \Omega$ gilt: $(\nabla \varphi(y))^{\top} = \nabla \varphi(x)^{-1}$ und damit $\nabla \varphi(x) = \nabla \varphi(y)$. $\nabla \varphi$ ist lokal eine konstante orthogonale Matrix Q. Damit $\varphi(x) = Qx + a$.