Comparing File Organizations

- Heap files (random order; insert at eof)
- Sorted files, sorted on <age, sal>
- Clustered B+ tree file, Alternative (1), search key <age, sal>
- * Heap file with unclustered B + tree index on search key <age, sal>
- Heap file with unclustered hash index on search key <age, sal>

Cost Model for Our Analysis

We ignore CPU costs, for simplicity:

- **B:** The number of data pages
- R: Number of records per page
- D: (Average) time to read or write disk page
- Measuring number of page I/O's ignores gains of pre-fetching a sequence of pages; thus, even I/O cost is only approximated.
- Average-case analysis; based on several simplistic assumptions.
 - **►** Good enough to show the overall trends!

Operations to Compare

- Scan: Fetch all records from disk
- Equality search
- Range selection
- Insert a record
- Delete a record

Assumptions in Our Analysis

- Heap Files:
- Equality selection on key; exactly one match.
- * Sorted Files:
- Files compacted after deletions.
- Indexes:
 - Alt (2), (3): data entry size = 10% size of record
- Hash: No overflow chains.
 - 80% page occupancy => File size = 1.25 data size
- B+Tree:
 - 67% occupancy (typical): implies file size = 1.5 data size
 - Balanced with fanout F (133 typical) at each non-level

Assumptions (contd.)

Scans:

- Leaf levels of a tree-index are chained.
- Index data-entries plus actual file scanned for unclustered indexes.

* Range searches:

 We use tree indexes to restrict the set of data records fetched, but ignore hash indexes.

Cost of Operations

	Scan	Equality	Range	Insert	Delete
Heap File	BD	.5BD	BD	2D	Search + D
Sorted File	BD	Dlog ₂ B	D(log ₂ B + #matching pages)	Search + BD	Search + BD
Clustered Tree Index	1.5BD	Dlog _F 1.5B	D(log _F 1.5B + #matching pages)	Search + D	Search + D
Unclustered Tree Index	BD(R+. 15)	D(1+log _{F.} 15B)	D(log _F .15B + #matching recs)	Search + 3D	Search + 3D
Unclustered Hash Index	BD(R+. 125)	2D	BD	4D	4D

Several assumptions underlie these (rough) estimates!