Exercici: Memòria cau

Noms: Pol Moreno Data: 18/05/2016

Arquitectura de computadors

Disposem d'un computador de 32 bits que direcciona la memòria a nivell de bytes i que disposa d'una memòria cau per instruccions i una memòria cau de dades. Les dues memòries disposen de línies de 16 bytes (4 paraules) i una assignació de correspondència associativa per conjunts de *n* vies amb un algoritme de substitució LRU. S'utilitza una política de post-escriptura.

Considereu el següent fragment de codi:

```
for (i=0; i < 65536; i++)
a[i] = b[i] + c[i] + d[i];
```

On *a*, *b*, *c* i *d* representen vectors de *65536* nombres sencers (de 32 bits), que s'emmagatzemen a memòria de forma consecutiva. El vector *a* comença a l'adreça *m*. A continuació s'emmagatzema *d*, *c* i finalment *d*. Considerant que inicialment la cau està buida, es demana:

1) Per una grandària de memòria cau de dades de 128 KBytes, s'estudien dos graus d'associativitat: n= 2 o n = 4 (2 o 4 vies). Calculeu i raoneu quina és la taxa d'encerts en cadascun del dos casos i compareu els dos escenaris.

Justifiqueu les respostes. Considereu només l'accés a les memòria de dades.

La taxa d'encerts de la memòria cau mesura la probabilitat de trobar a la memòria cau la dada que volem accedir.

El valor de m es correspon al vostre DNI. Podeu modificar algun dígit si ho justifiqueu.

Primer de tot, hem de cambiar algun dígit del meu DNI perquè sigui múltiple de 4, ja que accedim a la memòria RAM a nivell de paraula. En el meu cas, he cambiat el últim dígit a 2 perquè sigui múltple de 4. Per tant, el valor de m serà 39393692.

n=2

Com que tenim una correspondència associativa amb 2 víes tenim:

Cada conjunt tindrà x bytes:

$$16 \frac{bytes}{linia} * 2 línies = 32 bytes per cada conjunt$$

El nombre total de conjunts és:

$$\frac{128*1024}{32} = 4096 \ conjunts = 4k \ Conjunts$$

El nombre de bits per redireccionar el conjunt serà:

$$\frac{Dades\ memoria\ cau\ (kb)\ *\ 1024}{Memoria\ per\ linia} = \frac{128*1024}{2} = 4096\ bits\ =\ 2^{12}$$

Necessitarem 4 bits per redireccionar els 16 bytes que tenim a cada bloc. Per tant, els bits destinats a l'etiqueta són:

32-12-4 = 16

Etiqueta (16 bits)	Conjunt (12 bits)	Bits redireccionament byte (4
		bits)

Tenim 65536 iteracions. Per trobar la longitud del vector farem:

$$2^{\log_2 65536} * \frac{32 \ bits}{8} - 1 = 2^{\log_2 65536} * 4 \ bytes - 1 = 262143$$

Llavors, la longitud dels vectors seran:

Vector A 39393692 - 393D3691

Vector B	393D3692	-	39413691
Vector C	39413692	-	39453691
Vector D	39453692	-	39493691

Llavors, els accesos a la memòria cau seran:

VALOR	Direcció	Tipu	Conjunt	Linia	Esdeveniment
b[0]	393D3692	Lectura	369	0	Fallada
c[0]	39413692	Lectura	369	1	Fallada
d[0]	39453692	Lectura	369	0	Fallada
a[0]	39393692	Escriptura	369	1	Fallada
-	-	-	-	-	-
b[1]	393D3696	Lectura	369	0	Fallada
c[1]	39413696	Lectura	369	1	Fallada
d[1]	39453696	Lectura	369	0	Fallada
a[1]	39393696	Escriptura	369	1	Fallada
-		-	-	-	-
b[2]	393D369A	Lectura	369	0	Fallada
c[2]	3941369A	Lectura	369	1	Fallada
d[2]	3945369A	Lectura	369	0	Fallada
a[2]	3939369A	Escriptura	369	1	Fallada
-		-	-	-	-
b[3]	393D369E	Lectura	369	0	Fallada
c[3]	3941369E	Lectura	369	1	Fallada
d[3]	3945369E	Lectura	369	0	Fallada
a[3]	3939369E	Escriptura	369	1	Fallada
-	-	-	-	-	-
b[4]	393D36A2	Lectura	36A	0	Fallada
c[4]	394136A2	Lectura	36A	1	Fallada
d[4]	394536A2	Lectura	36A	0	Fallada
a[4]	393936A2	Escriptura	36A	1	Fallada

En el primer cas, no trobem el valor de b[0] ja que inicialment la memoria cau està buida. El següent valor (c[0]) també produeix una fallada, i el guardem a la segona línia. Al llegir el valor d[0] es produirà una fallada, i com el guardem al mateix conjunt haurem d'alliberar memòria, ja que només tenim 2 línies. Al tenir un algoritme de substitució LRU,

treurem de la memoria cau el valor més antic que no hem utilitzat, per tant, treurem b[0]. Això es va repetint en tot moment, per tant, amb n=2, sempre tindrem fallades, per tant:

freqüència d'encert (%) =
$$\frac{Nombre\ encerts}{Nombre\ total\ accesos} * 100 = \frac{0}{8} * 100 = 0\%$$

n=4

Ara analitzarem el cas quan el nombre de vies sigui 4. Hem de tornar a calcular el nombre de conjunts:

$$16 \frac{bytes}{linia} * 4 línies = 64 bytes per cada conjunt$$

El nombre de conjunts serà:

$$\frac{128*1024}{64} = 2048 \ conjunts = 2k \ Conjunts$$

El nombre de bits per redireccionar el conjunt serà:

$$\frac{\frac{Dades\ memoria\ cau\ (kb)\ *\ 1024}{Memoria\ per\ linia}}{n} = \frac{\frac{128*1024}{16}}{4} = 2048\ bits\ =\ 2^{11}$$

Necessitarem 4 bits per redireccionar els 16 bytes que tenim a cada bloc. Per tant, els bits destinats a l'etiqueta són:

32-11-4 = 17

Etiqueta (17 bits)	Conjunt (11 bits)	Bits redireccionament byte (4
		bits)

Els accesos a la memòria cau seran:

VALOR	Direcció	Tipu	Conjunt	Linia	Esdeveniment
b[0]	393D3692	Lectura	369	0	Fallada
c[0]	39413692	Lectura	369	1	Fallada
d[0]	39453692	Lectura	369	2	Fallada
a[0]	3939 3692	Escriptura	369	3	Fallada

b[1]	393D3696	Lectura	369	0	Encert
c[1]	39413696	Lectura	369	1	Encert
d[1]	39453696	Lectura	369	2	Encert
a[1]	3939 3696	Escriptura	369	3	Encert
-		-	-	-	-
b[2]	393D369A	Lectura	369	0	Encert
c[2]	3941369A	Lectura	369	1	Encert
d[2]	3945369A	Lectura	369	2	Encert
a[2]	3939369A	Escriptura	369	3	Encert
-		-	-	-	-
b[3]	393D369E	Lectura	369	0	Encert
c[3]	3941369E	Lectura	369	1	Encert
d[3]	3945369E	Lectura	369	2	Encert
a[3]	3939369E	Escriptura	369	3	Encert
b[4]	393D36A2	Lectura	36A	0	Fallada
c[4]	394136A2	Lectura	36A	1	Fallada
d[4]	394536A2	Lectura	36A	2	Fallada
a[4]	393936A2	Escriptura	36A	3	Fallada
-					-
b[5]	393D36A6	Lectura	36A	0	Encert
c[5]	394136A6	Lectura	36A	1	Encert
d[5]	394536A6	Lectura	36A	2	Encert
a[5]	393936A6	Escriptura	36A	3	Encert
-					-
b[6]	393D36AA	Lectura	36A	0	Encert
c[6]	394136AA	Lectura	36A	1	Encert
d[6]	394536AA	Lectura	36A	2	Encert
a[6]	393936AA	Escriptura	36A	3	Encert
-					-
b[7]	393D36AE	Lectura	36A	0	Encert
c[7]	394136AE	Lectura	36A	1	Encert
d[7]	394536AE	Lectura	36A	2	Encert
a[7]	393936AE	Escriptura	36A	3	Encert
b[8]	393D36B2	Lectura	36B	0	Fallada
c[8]	394136B2	Lectura	36B	1	Fallada
d[8]	394536B2	Lectura	36B	2	Fallada
a[8]	393936B2	Escriptura	36B	3	Fallada

b[9]	393D36B6	Lectura	36B	0	Encert
c[9]	394136B6	Lectura	36B	1	Encert
d[9]	394536B6	Lectura	36B	2	Encert
a[9]	393936B6	Escriptura	36B	3	Encert

Al estar inicialment buida com abans, els 4 primers valors donaràn errada, però després, al tenir el mateix conjunt i etiqueta els vectors de 0 a 3, trobarem encert en les 3 pròximes iteracions. En b[4] tornarem a tenir una fallada ja que l'etiqueta és la mateixa però el conjunt ha variat. Per tant, podem deduïr el patró que seguirà la memòria cau, que serà de 3*4 encerts cada 4 fallades. Per tant, el percentatge d'encerts serà:

freqüència d'encert (%) =
$$\frac{Nombre\ encerts}{Nombre\ total\ accesss} * 100 = \frac{12}{16} * 100 = 75\%$$