1

GATE 2022 IN.53

EE23BTECH11010 - VENKATESH BANDAWAR*

(5)

Question: In a unity-gain feedback control system, the plant $P(s) = \frac{0.001}{s(2s+1)(0.01s+1)}$ is controlled by a lag compensator $C(s) = \frac{s+10}{s+0.1}$ The slope (in dB/decade) of the asymptotic Bode magnitude plot of the loop gain at $\omega = 3$ rad/s is _____ (in integer) (GATE 2022 IN)

Solution:

Parameter	Description	Value
P(s)	Plant Transfer Function	$\frac{\frac{0.001}{s(2s+1)(0.01s+1)}}{s+10}$
C(s)	Lag Compensator	$\overline{s+0.1}$
L(s)	Loop gain= $P(s) \times C(s)$	$\frac{0.001(s+10)}{s(2s+1)(0.01s+1)(s+0.1)}$
ω	Angular Frequency	3rad/s

TABLE I: Given Parameters list

$$Gain(K) = \lim_{s \to 0} L(s) \tag{1}$$

Excluding s and $\frac{1}{s}$,

$$K = \lim_{s \to 0} \frac{0.001 (s+10)}{(2s+1)(0.01s+1)(s+0.1)}$$
 (2)

$$=0.1$$

$$|L(s)| = 20\log_{10} K \tag{4}$$

$$= -20dB/decade$$

Zero of L(s) = 10

$$|L(s)| = 20\log_{10}\omega$$

Poles of L(s) = 0, 0.1, 0.5, 100

$$|L(s)| = -20\log_{10}\omega\tag{7}$$

Solpe of Bode magnitude plot (at $\omega = 3$) = -60 dB/decade

(6) Fig. 1: Pink Line = Bode magnitude plot of loop gain