Approximation Algorithms

Hengfeng Wei

hfwei@nju.edu.cn

May 14 \sim May 18, 2017

Approximation Algorithms

- Approximation Classes
- 2 Approximation Algorithms

Approximation Classes

```
NPO: NP optimization problems 

APX: constant factor \epsilon-approximation (\epsilon > 1) 

f(n)-APX: Exp-APX, Poly-APX, Log-APX 

PTAS: \qquad \forall \epsilon > 0: (1+\epsilon)-approximation 

\qquad \qquad P: \operatorname{Poly}(n) \qquad O(n^{2/\epsilon}) \qquad O(n^{2^{2^{1/\epsilon}}}) 

FPTAS: \qquad \forall \epsilon > 0: (1+\epsilon)-approximation 

\qquad \qquad \qquad \vdash \operatorname{FP}: \operatorname{Poly}(n, 1/\epsilon) \qquad O((1/\epsilon)^2 \cdot n^3) 

PO: polynomial time solvable optimization problems
```

2 / 21

Approximation Classes

PO
$$\subsetneq$$
 FPTAS \subsetneq PTAS \subsetneq APX \subsetneq Log-APX \subsetneq Poly-APX \subsetneq Exp-APX \subsetneq NPO (if P \neq NP)

- 1. Knapsack \in FPTAS \setminus PO
- 2. Makespan \in PTAS \setminus FPTAS (TODAY)
- 3. Vertex Cover \in APX \ PTAS
- 4. Set Cover ∈ Log-APX \ APX (CLRS 35.3)
- 5. Clique \in Poly-APX \ Log-APX
- 6. $TSP \in Exp-APX \setminus Poly-APX$

Reference

"A Survey on the Structure of Approximation Classes" by Bruno Escoffier, Vangelis Th. Paschos, 2010.

TSP: worst-case complexity vs. inapproximability according to instances

- ▶ $TSP \in Exp-APX \setminus Poly-APX$
- ▶ Δ -TSP \in APX
- ▶ Euclidean TSP ∈ PTAS

Reference

► "Stability of Approximation Algorithms for Hard Optimization Problems" by Juraj Hromkovič, 1999.

Distance function (JH 4.2.3.3)

$$\begin{aligned} \operatorname{dist}_k(G,c) &= \\ \max\left\{0, \max\left\{\frac{c(\{u,v\})}{\sum_{i=1}^m c(\{p_i,p_{i+1}\})} - 1 \big| |u=p_1 \leadsto v = p_m| \le k\right\}\right\} \end{aligned}$$

enumerate: $k = n^{\frac{1}{3}}$

shortest paths of length $\leq k$ (Bellman-Ford)

$$h_{\text{index}}$$
 (JH 4.2.3.4)

 h_{index} : using canonical order

$$|\mathsf{Ball}_{r,h_{\mathsf{index}}}(L_I)| < \infty$$

$$\delta_{r,\epsilon} = \max\{R_A(x) : x \in \mathsf{Ball}_{r,h_{\mathsf{index}}}(L_I)\}$$

h (JH 4.2.3.5)

- ▶ *h*: infinite jumps
- lacktriangledown δ -approx. algorithm A for U is stable according to h

$$\mathsf{TSP}\ U:(G,1)$$

$$\mathsf{Multi}\text{-}\mathsf{TSP}\ \overline{U}:(G,k)$$

$$h(G,k) = k - 1$$

A is δ -approx. for $(G,1) \implies A$ is $r\delta$ -approx. for $(G,r \in \mathbb{N})$

Approximation Algorithms

- Approximation Classes
- 2 Approximation Algorithms

Makespan scheduling problem

Makespan scheduling problem (MS)

- ightharpoonup n jobs: J_1, \ldots, J_n
- ▶ processing time: p_1, \ldots, p_n
- ▶ $m \ge 2$ machines: M_1, \ldots, M_m
- ▶ goal: minimize the makespan

MS is NP-complete

Definition (Partition)

Instance:

$$\forall a \in A : s(a) \in \mathbb{Z}^+$$

Question: Is there a subset $A' \subseteq A$:

$$\sum_{a \in A'} s(a) = \sum_{a \in A \setminus A'} s(a)$$

$$A = \{5, 1, 3, 4, 8, 2, 7\} \implies A' = \{5, 3, 7\}, A \setminus A' = \{1, 2, 4, 8\}$$

MS is strongly NP-complete

Definition (3-Partition)

Instance:

$$|A| = 3m, B \in \mathbb{Z}^+$$
$$\forall a \in A : s(a) \in \mathbb{Z}^+, B/4 < s(a) < B/2$$

Question: Can A be partitioned into m disjoint sets S_1, \ldots, S_m :

$$\forall 1 \le i \le m : |S_i| = 3, \sum_{a \in S_i} s(a) = B$$

$$A = \{1, 2, 2, 3, 3, 4, 6, 7, 8\}, m = 3, B = 12 \implies \{1, 3, 8, 2, 4, 6, 2, 3, 7\}$$

List-Scheduling (LS) algorithm

List-Scheduling algorithm (JH 4.2.1.4)

- online
- assign job to the least heavily loaded

$$J = 2, 3, 4, 6, 2, 2$$
 $m = 3$

LS is 2-approx.

$$T$$
 vs. $T^*:rac{T}{T^*}$ $T^* \geq rac{1}{m} \sum_j t_j$ $T^* \geq \max_j t_j$

- 1. M_i : with the maximum load
- 2. J_i : the last job on M_i

$$ms_i \le \sum_j t_j \implies s_i \le \frac{1}{m} \sum_j t_j \le T^*$$

$$T = c_i = s_i + p_i \le T^* + T^* = 2T^*$$

2-approx. is (almost) tight

$$n = \underbrace{m(m-1)}_{p_i=1} + \underbrace{1}_{p_i=m}$$

$$\frac{T}{T^*} = \frac{2m-1}{m} = 2 - \frac{1}{m}$$

LS is $(2-\frac{1}{m})$ -approx.

$$ms_i \le \sum_{j \ne i} p_j = \frac{1}{m} \left(\sum_j p_j - p_i \right)$$
$$= \frac{1}{m} \sum_j p_j - \frac{1}{m} p_i$$
$$\le T^* - \frac{1}{m} p_i$$

$$T = c_i = s_i + p_i$$

$$\leq T^* + (1 - \frac{1}{m})p_i$$

Sorting-Scheduling algorithm

Sorting-Scheduling algorithm (JH 4.2.1.5)

Longest Processing Time (LPT) rule:

- sorting non-increasingly
- applying LS
- 1. M_i : with the maximum load
- 2. J_i : the last job on M_i

$$|M_i| = 1 \implies T = T^*$$

$$|M_i| \ge 2 \implies p_i \le \frac{1}{2}T^*$$

$$\implies T = s_i + p_i \le (\frac{3}{2} - \frac{1}{2m})T^*$$

LPT rule is $(\frac{4}{3} - \frac{1}{3m})$ -approx.

$$p_1 \ge p_2 \ge \cdots \ge p_n$$

CASE
$$p_i \leq \frac{1}{3}T^*$$
:

$$T \le \left(\frac{4}{3} - \frac{1}{3m}\right)T^*$$

CASE
$$p_i > \frac{1}{3}T^*$$
:

$$p_i \equiv p_n(\text{w.l.o.g: } T \text{ unchanged; } T^* \text{ not smaller})$$

$$\implies p_1 \ge p_2 \ge \dots \ge p_n > \frac{1}{3}T^* \implies |M_i| \le 2$$

$$\implies n \leq 2m \implies n = 2m - h \xrightarrow{\text{exchange}} T = T^*$$

$$(\frac{4}{3} - \frac{1}{3m})$$
-approx. is tight

$$n = 2m + 1$$

LPT:
$$J_1=x, J_{2m}=y, J_{2m+1}=z$$
 OPT: $J_{2m-1}=J_{2m}=J_{2m+1}=y$ vs. $\frac{x+2y}{3y}=\frac{4}{3}-\frac{1}{3m}$

$$J = \{2m - 1, 2m - 1, \dots, m + 1, m + 1, m, m, m\}$$

Reference

- ▶ "Bounds on Multiprocessing Timing Anomalies" by R.L.Graham, 1969
- ► "Approximation Algorithms for NP-Hard Problems" edited by Dorit Hochbaum, 1996 (Theorem 1.5)

PTAS for MS

- 1. M_i : with the maximum load
- 2. J_i : the last job on M_i

$$T = s_i + p_i \le T^* + p_i$$

- 1. $J = J_L \triangleq \{ \text{long jobs} \} \uplus J_S \triangleq \{ \text{short jobs} \}$
- 2. S_L : the optimal schedule for J_L
- 3. S: apply List-Scheduling to S_L and J_S

Reference

► "The Design of Approximation Algorithms" by David P. Williamson and David Shmoys, 2011 (Section 3.2).

PTAS for MS

1. Split *J*:

$$J_i \in J_S \iff p_i \le \epsilon \cdot \frac{1}{m} \sum_j p_j$$

$$\implies |J_L| < \frac{1}{\epsilon} \cdot m$$

2. Time for S_L (m being a constant!):

$$m^{\frac{1}{\epsilon} \cdot m} \cdot O(n)$$

3. Approx. ratio $(p_i \in J_S \text{ case})$:

$$T = s_i + p_i \le \frac{1}{m} \sum_j p_j + \epsilon \cdot \frac{1}{m} \sum_j p_j$$
$$= (1 + \epsilon) \frac{1}{m} \sum_j p_j$$

No FPTAS for MS

Theorem (MS \in PTAS \setminus FPTAS)

No FPTAS for MS.

MS is strongly NP-complete \implies MS with $\max_j p_j \leq q(n)$ is NP-complete.

Reference

▶ "The Design of Approximation Algorithms" by David P. Williamson and David Shmoys, 2011 (Section 3.2).

No FPTAS for MS

Theorem

 $\exists FPTAS \text{ for MS} \implies MS \in P.$

$$A_{\epsilon} : \epsilon = \frac{1}{\lceil 2nq(n) \rceil}$$

$$(1+\epsilon)T^* = T^* + \epsilon \cdot T^*$$

$$< T^* + \frac{1}{\lceil 2nq(n) \rceil} \cdot nq(n)$$

$$(1+\epsilon)T = T + \epsilon \cdot T$$

$$\leq T^* + \frac{1}{\lceil 2nq(n) \rceil} \cdot nq(n)$$

$$\leq T^* + \frac{1}{2}$$

Time: $\operatorname{Poly}(\frac{1}{\epsilon},n) = \operatorname{Poly}(\lceil 2nq(n) \rceil,n) = \operatorname{Poly}(n)$

May 14 \sim May 18, 2017

