Locality-Sensitive Hashing (LSH)

Shusen Wang

Revisit Collision-Resistant Hashing

- Let **h** be a collision-resistant hash function.
- Even if x is close to y, h (x) is entire different from h (y).
 - x = ``ABCDEFTHIJKLMNOPQRST''.
 - y = ``ABCKEFTHIJKLMNOPQRST''.
 - ||h(x) h(y)|| must be very big.

Locality Sensitive Hashing (LSH)

- Locality sensitive hashing is the opposite of collision-resistant hashing.
- If x is close to y, then h (x) must be close to h (y).
 - $\cdot x = [3, 4, 1, 0, 9, 4, 8, 3].$
 - y = [3,3,3,0,9,4,8,3].
 - ||h(x) h(y)|| must be small.

Application: Nearest Neighbor Search

- Given a set of vectors, $\mathbf{x}_1, \dots, \mathbf{x}_n$, e.g., features of images, documents, etc.
- Nearest Neighbor Search: For a query q, find its nearest x.

- Naïve algorithm: compare q with every x; O(n) time complexity.
- There may be billions of queries every day. (E.g., search engine.)

Efficient Algorithm: Main Idea

• Partition the space to many regions (buckets).

Efficient Algorithm: Main Idea

- Partition the space to many regions (buckets).
- Compare the query with only the points in the same bucket.

Input Data

- Randomly sample a direction \mathbf{w}_1 as the normal.
 - 1. $\mathbf{v} \sim N(\mathbf{0}, \mathbf{I})$.
 - 2. $\mathbf{w_1} = \mathbf{v} / ||\mathbf{v}||_2$.

• Randomly sample a direction \mathbf{w}_1 as the normal.

1.
$$\mathbf{v} \sim N(\mathbf{0}, \mathbf{I})$$
.

2.
$$\mathbf{w_1} = \mathbf{v} / ||\mathbf{v}||_2$$
.

- Randomly sample a direction \mathbf{w}_1 as the normal.
 - 1. $\mathbf{v} \sim N(\mathbf{0}, \mathbf{I})$.
 - 2. $\mathbf{w_1} = \mathbf{v} / ||\mathbf{v}||_2$.

- Randomly sample a direction $\mathbf{w_1}$ as the normal.
 - 1. $\mathbf{v} \sim N(\mathbf{0}, \mathbf{I})$.
 - 2. $\mathbf{w_1} = \mathbf{v} / ||\mathbf{v}||_2$.

• Hash function: for any point x,

$$h_1(\mathbf{x}) = \begin{cases} 1, & \text{if } \mathbf{x}^T \mathbf{w}_1 \ge 0; \\ 0, & \text{otherwise.} \end{cases}$$

Build Buckets

Index	Data
00	$\mathbf{x}_1, \mathbf{x}_4, \mathbf{x}_5, \mathbf{x}_6, \mathbf{x}_7$
01	$\mathbf{x}_2, \mathbf{x}_3$
10	
11	X ₈ , X ₉

Build Buckets

Index	Data
00	$\mathbf{x}_1, \mathbf{x}_4, \mathbf{x}_5, \mathbf{x}_6, \mathbf{x}_7$
01	\mathbf{x}_2 , \mathbf{x}_3
10	
11	X ₈ , X ₉

One Bucket

Nearest Neighbor Search Using LSH

- Given a query **q**, find its nearest point.
- Hashing: $h_1(\mathbf{q}) = 0$, $h_2(\mathbf{q}) = 1$.

Return this point as the nearest neighbor.

- Given a query **q**, find its nearest point.
- Hashing: $h_1(\mathbf{q}) = 0$, $h_2(\mathbf{q}) = 1$.
- Thus q is in the "O1" bucket.
- Search the nearest point in the "01" bucket.

Index	Data
00	$\mathbf{X}_1, \mathbf{X}_4, \mathbf{X}_5, \mathbf{X}_6, \mathbf{X}_7$
01	$\mathbf{X}_2, \mathbf{X}_3$
10	
11	X ₈ , X ₉

• The points in the "01" bucket can be very efficiently retrieved.

What is wrong with this approach?

• The true nearest neighbor may be in a different bucket.

What is wrong with this approach?

 The true nearest neighbor may be in a different bucket.

Table 1

Index	Data
00	$\mathbf{x}_1, \mathbf{x}_4, \mathbf{x}_5, \mathbf{x}_6, \mathbf{x}_7$
01	$\mathbf{x}_2, \mathbf{x}_3$
10	
11	$\mathbf{x}_8, \mathbf{x}_9$

Table 2

Index	Data
00	\mathbf{x}_9
01	$\mathbf{x}_4, \mathbf{x}_5, \mathbf{x}_6, \mathbf{x}_7$
10	X ₈
11	$\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3$

- From Table 1, retrieve the points in the "O1" bucket.
- From Table 2, retrieve the points in the "11" bucket.

Table 1

Index	Data
00	$\mathbf{x}_1, \mathbf{x}_4, \mathbf{x}_5, \mathbf{x}_6, \mathbf{x}_7$
01	$\mathbf{x}_2, \mathbf{x}_3$
10	
11	$\mathbf{x}_8, \mathbf{x}_9$

Table 2

Index	Data
00	\mathbf{x}_9
01	$\mathbf{x}_4, \mathbf{x}_5, \mathbf{x}_6, \mathbf{x}_7$
10	X 8
11	$\mathbf{X}_1, \mathbf{X}_2, \mathbf{X}_3$

Time Complexity

Index	Data
00	
01	
10	
11	

- Build a hash table with 4 buckets.
- Random sample two unit-length vectors:

 \mathbf{W}_1 , \mathbf{W}_2 .

Index	Data
00000	
00001	
00010	
00011	
:	
11111	
1. hito	
k bits	

- Build a hash table with 2^k buckets.
- Random sample *k* unit-length vectors:

$$\mathbf{w}_1, \cdots, \mathbf{w}_k$$
.

Index	Data
00000	
00001	
00010	
00011	
:	
11111	
k bits	

• Hash function:
$$h_i(\mathbf{x}) = \begin{cases} 1, & \text{if } \mathbf{x}^T \mathbf{w}_i \geq 0; \\ 0, & \text{otherwise.} \end{cases}$$

• Let $g(\mathbf{x}) = [h_1(\mathbf{x}), \dots, h_k(\mathbf{x})] \in \{0, 1\}^k$.

Use multiple tables

Build m > 1 hash tables, each of which has 2^k buckets.

Table m

Index	Data
00000	
00001	
:	
11111	

Nearest Neighbor Search

- Given a query \mathbf{q} , find the m buckets where \mathbf{q} belongs to.
- Retrieve points in the m buckets and find the nearest to q.

Table m

Index	Data
00000	
00001	
:	
11111	

Time Complexity of Brute-Force Search

- There are n data points in the database.
- Brute-force algorithm compares \mathbf{q} with all the n points.
- Brute-force search has O(n) per-query time complexity.

Time Complexity of LSH

- Each table has 2^k buckets.
- On average, a bucket has $\frac{n}{2^k}$ points.
- There are *m* tables.
- Thus $\frac{mn}{2^k}$ points are retrieved.

Time complexity (on average): $O\left(\frac{mn}{2^k}\right)$ per query.

Time Complexity of LSH

Time complexity (on average): $O\left(\frac{mn}{2^k}\right)$ per query.

• If $m < 2^k$, then LSH is faster than the brute-force search.

- Set $k = \Theta(\log n)$ and $m = \sqrt{n}$. (So that the performance is theoretically guaranteed.)
- Time complexity (on average): $O(\sqrt{n})$ per query.

Index	Data
00000	
00001	
00010	
00011	
•	
11111	

- There are n vectors: $\mathbf{x}_1, \dots, \mathbf{x}_n$.
- Storing them (or simply their indices) in the table costs O(n) space.

Index	Data
00000	
00001	
00010	$\geq 2^k$ rows
00011	Z" rows
:	
11111	

- There are n vectors: $\mathbf{x}_1, \dots, \mathbf{x}_n$.
- Storing them (or simply their indices) in the table costs O(n) space.

- The table has 2^k rows.
- Thus $O(2^k)$ space.

Index	Data
00000	
00001	
00010	
00011	
:	
11111	
k bits	

- Each table costs $O(n + 2^k)$ space.
- There are m hash tables.
- Thus, the overall space complexity is

$$O\left(m(n+2^k)\right).$$

Data

- Set $k = \Theta(\log n)$.
- Set $m = \sqrt{n}$.
- Space: $O(m(2^k + n)) = O(n^{1.5})$.

Comparisons

- There are *n* data in the database.
- Build m hash tables; each table has 2^k buckets.
- Set $k = \Theta(\log n)$ and $m = \sqrt{n}$.

Comparisons

- There are n data in the database.
- Build m hash tables; each table has 2^k buckets.
- Set $k = \Theta(\log n)$ and $m = \sqrt{n}$.

Brute-Force Search

- Time: O(n) per query.
- Space: O(n).

Using LSH

- Time: $O(\sqrt{n})$ per query.
- Space: $O(n^{1.5})$.

Less time, more space.

Thank You!