

Connectivity
 A graph is connected if there is a path between every pair of vertices
 A connected component of a graph G is a maximal connected subgraph of G

Non connected graph with two connected components

Spanning Trees and Forests A spanning tree of a connected graph is a spanning subgraph that is a tree A spanning tree is not unique unless the graph is Graph a tree Spanning trees have applications to the design of communication networks A spanning forest of a graph is a spanning subgraph that is a forest Spanning tree

Ջ

connected

forest of G

Computes the connected

Computes a spanning

components of G

- DFS on a graph with n vertices and m edges takes O(n + m) time
- DFS can be further extended to solve other graph problems
 - Find and report a path between two given vertices
 - Find a cycle in the graph
- Depth-first search is to graphs what Euler tour is to binary trees

9

9

DFS Algorithm The algorithm uses a mechanism for setting and getting "labels" of Algorithm DFS(G, v)vertices and edges Input graph G and a start vertex v of GOutput labeling of the edges of G Algorithm **DFS**(G) in the connected component of vInput graph G as discovery edges and back edges Output labeling of the edges of G { setLabel(v, VISITED); as discovery edges and for all $e \in G.incidentEdges(v)$ back edges if (getLabel(e) = UNEXPLORED){ for all $u \in G$. vertices() $\{ w = opposite(v, e);$ setLabel(u, UNEXPLORED); if (getLabel(w) = UNEXPLORED)for all $e \in G$.edges() { setLabel(e, DISCOVERY); setLabel(e, UNEXPLORED); DFS(G, w);for all $v \in G.vertices()$ if (getLabel(v) = UNEXPLORED)DFS(G, v);setLabel(e, BACK); } 10

Analysis of DFS

- Setting/getting a vertex/edge label takes O(1) time
- Each vertex is labeled twice
 - once as UNEXPLORED
 - once as VISITED
- Each edge is labeled twice
 - once as UNEXPLORED
 - once as DISCOVERY or BACk
- Method incidentEdges is called once for each vertex
- DFS runs in O(n + m) time provided the graph is represented by the adjacency list structure
 - Recall that $\sum_{v} \deg(v) = 2m$

15

15

Path Finding

- We can specialize the DFS algorithm to find a path between two given vertices \(\nu\) and \(\nu\) using the template method pattern
- We call DFS(G, v) with v as the start vertex
- We use a stack S to keep track of the path between the start vertex and the current vertex
- As soon as destination vertex z is encountered, we return the path as the contents of the stack

```
Algorithm pathDFS(G, v, z)
{ setLabel(v, VISITED);
   S.push(v);
   if (v=z)
     return S.elements();
   for all e \in G.incidentEdges(v)
     if (getLabel(e) = UNEXPLORED)
      \{ w = opposite(v,e); 
        if (getLabel(w) = UNEXPLORED)
          { setLabel(e, DISCOVERY);
            S.push(e);
            pathDFS(G, w, z);
            S.pop();
          setLabel(e, BACK);
    S.pop();
                                         16
```


Determines whether G is

Computes the connected

Computes a spanning

components of G

connected

forest of G

- BFS on a graph with n vertices and m edges takes O(n + m) time
- BFS can be further extended to solve other graph problems
 - Find and report a path with the minimum number of edges between two given vertices
 - Find a simple cycle, if there is one

19

19

BFS Algorithm Algorithm BFS(G, s)The algorithm uses a $\{L_0 = \text{new empty sequence};$ mechanism for setting and L_0 .insertLast(s); getting "labels" of vertices and edges setLabel(s, VISITED); while $(\neg L_t is Empty())$ Algorithm BFS(G) { L_{i+1} = new empty sequence; Input graph Gfor all $v \in L_r$ elements() Output labeling of the edges for all $e \in G.incidentEdges(v)$ and partition of the if (getLabel(e) = UNEXPLORED)vertices of G $\{ w = opposite(v,e);$ if (getLabel(w) = UNEXPLORED) for all $u \in G.vertices()$ { setLabel(e, DISCOVERY); setLabel(u, UNEXPLORED); setLabel(w, VISITED); for all $e \in G.edges()$ L_{i+1} .insertLast(w); } setLabel(e, UNEXPLORED); setLabel(e, CROSS); for all $v \in G.vertices()$ if (getLabel(v) = UNEXPLORED)i = i + 1;BFS(G, v);20

Setting/getting a vertex/edge label takes o(1) time

- Each vertex is labeled twice
 - once as UNEXPLORED
 - once as VISITED
- Each edge is labeled twice
 - once as UNEXPLORED
 - once as DISCOVERY or CROSS
- Each vertex is inserted once into a sequence L_i
- Method incidentEdges is called once for each vertex
- BFS runs in O(n + m) time provided the graph is represented by the adjacency list structure
 - Recall that $\sum_{v} \deg(v) = 2m$

25

25

Applications

- Using the template method pattern, we can specialize the BFS traversal of a graph G to solve the following problems in O(n + m) time
 - Compute the connected components of G
 - Compute a spanning forest of G
 - Find a simple cycle in G, or report that G is a forest
 - Given two vertices of G, find a path in G between them with the minimum number of edges, or report that no such path exists

26

DFS vs. BFS (2/2)

• w is an ancestor of v in the tree of discovery edges

• w is in the same level as v or in the next level in the tree of discovery edges

• w is in the same level as v or in the next level in the tree of discovery edges

• DFS

• BFS

Digraph Application

Scheduling: edge (a,b) means task a must be completed before b can be started

| Complete | Complete

_

Reachability

DFS tree rooted at v: vertices reachable from v via directed paths

DFS tree rooted at v: vertices reachable from v via directed paths

Strongly Connected Components

- Maximal subgraphs such that each vertex can reach all other vertices in the subgraph
- Can also be done in O(n+m) time using DFS, but is more complicated (similar to biconnectivity).

37

Transitive Closure

- Given a digraph G, the transitive closure of G is the digraph G* such that
 - G* has the same vertices as G
 - if G has a directed path from u to v (u ≠v), G* has a directed edge from u to v
- The transitive closure provides reachability information about a digraph

Algorithm for Topological Sorting

| Method TopologicalSort(G) | { H = G; // Temporary copy of G | n = G.numVertices(); while H is not empty do | { Let v be a vertex with no outgoing edges; Label v = n; | n = n - 1; | Remove v from H; | } }

| Running time: O(n + m). How...?

Depth-First Search
Breadth-First Search
Transitive Closure
Topological Sorting
Suggested reading (Sedgewick):

Ch.18
Ch.19