Infintesimal Calculus 3

Assignment 5 Ari Feiglin

Exercise 5.1:

Suppose (X, ρ) is a metric space and $a \in X$.

- (1) Prove that $f_a: X \longrightarrow \mathbb{R}$ defined by $f(x) = \rho(x, a)$ is continuous.
- (2) Conclude that closed balls are closed.
- (1) Suppose $x \in X$, then for any $x_n \longrightarrow x$ by definition $\rho(x_n, x) \longrightarrow 0$. Thus

$$|f_a(x_n) - f_a(x)| = |\rho(x_n, a) - \rho(x, a)| \le \rho(x, x_n) \longrightarrow 0$$

And therefore $f_a(x_n) \longrightarrow f_a(x)$. So f is continuous.

(2) First we will prove the following lemma:

Lemma:

If $f: X \longrightarrow \mathbb{R}$ is continuous then for every $a \in \mathbb{R}$, $\{x \in X \mid f(x) \leq a\}$ is closed.

Proof:

Let $A = \{x \in X \mid f(x) \le a\}$. Suppose $x \in \overline{A}$ then there exists a sequence $x_n \in A$ such that $x_n \longrightarrow x$. Since $x_n \in A$, $f(x_n) \le a$, and since f is continuous $f(x_n) \longrightarrow f(x)$. Since limits preserve inequalities, this means $f(x) \le a$ and therefore $x \in A$. So A contains all of its points of closure, and is therefore closed.

Let $a \in X$, so since f_a is continuous and $\bar{B}_r(a) = \{x \in X \mid f_a(x) \leq r\}$, by the above lemma the closed ball is closed, as required.

Exercise 5.2:

We define a function $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ as follows:

$$f(x,y) = \begin{cases} 8 & xy = 0\\ \sqrt{2} & xy \neq 0 \end{cases}$$

find the set of points where f is continuous. Is it open or closed?

We claim that the set $S = \mathbb{R}^* \times \mathbb{R}^*$ is the set of all points where f is continuous. Suppose $(x,y) \in S$ then $x,y \neq 0$. So if we take $(x_n,y_n) \longrightarrow (x,y)$, at some point onward $x_n,y_n \neq 0$ so $x_ny_n \neq 0$ and so at some point onward $f(x_n,y_n) = \sqrt{2}$. So the limit of $f(x_n,y_n)$ is $\sqrt{2}$ which is equal to f(x,y). And if $(x,y) \notin S$, then we can define the sequence $\vec{v}_n = \left(x + \frac{1}{n}, y + \frac{1}{n}\right)$ which converges to (x,y). Since at some point onward $x + \frac{1}{n}$ and $y + \frac{1}{n}$ are both non-zero (otherwise $\frac{1}{n} = \frac{1}{m}$ for $n \neq m$), $f(\vec{v}_n) = \sqrt{2}$ and so the limit of $f(\vec{v}_n)$ is $\sqrt{2}$ which doesn't equal f(x,y) = 8. So f is not continuous at (x,y) for every $(x,y) \notin S$ as required.

We claim that S is open. This is because if $(x,y) \in S$ by choosing $r = \min |x|, |y|$ then $B_r(x,y) \subseteq S$.

Exercise 5.3:

Are the following functions uniformly continuous?

- (1) $f(x) = \sin(x^2)$ in \mathbb{R} .
- (2) $f(x,y) = \sin^{-1}\left(\frac{x}{y}\right)$ in $D = \{(x,y) \mid |x| \le |y|, y \ne 0\}.$
- (1) Notice that the peaks get closer and closer together as x grows, and the distance gets arbitrarily small. So for $\varepsilon=1$ for instance, if we take any $\delta>0$ at some point the distance between two peaks is less than δ . So if we take x to be the x value of a peak, there exists a valley within a distance of δ , and thus the distance between the images of these two points is 2, which is greater than $\varepsilon=1$. So f(x) is not uniformly continuous. To get numbers, let $x_n=\frac{\pi}{2}+2\pi n$, the x values of the peaks. Then we need to find an h such that $(x_n+h)^2=x_n^2+\pi$, and solving for a positive h gives $h=-x_n+\sqrt{x_n^2+\pi^2}$. So the distance between x_n and x_n+h (which is a valley) is $h=-x_n+\sqrt{x_n^2+\pi^2}$. The limit of h as n goes to infinity is 0 since we can rewrite h as

$$\frac{\pi^2}{x_n + \sqrt{x_n^2 + \pi^2}}$$

So for every $\delta > 0$ there is some $h < \delta$ as required.

(2) Notice that if x = y the $f(x,y) = \frac{\pi}{2}$ while $f(x,2y) = \frac{\pi}{6}$. So if we choose a sequence (a_n,a_n) and $(b_n,2b_n)$ such that $|a_n - b_n|$ and $|a_n - 2b_n|$ converge to 0 then we will have shown that the function is not uniformly continuous. Let $a_n = b_n = \frac{1}{n}$. Then notice that $f(\frac{1}{n},\frac{1}{n}) = \frac{\pi}{2}$ and $f(\frac{1}{n},\frac{2}{n}) = \frac{\pi}{6}$ but $|\frac{2}{n} - \frac{1}{n}| = \frac{1}{n}$ converges to 0, so $||(\frac{1}{n},\frac{1}{n}) - (\frac{1}{n},\frac{2}{n})||$ converges to 0 while the difference in their image is a non-zero constant and consequently doesn't converge to 0. Therefore the function is not uniformly continuous.

Exercise 5.4:

Suppose f(x,y) is defined on D and is continuous in the x variable and lipschitz continuous in its second variable y. Is f continuous?

Suppose $(x,y) \in D$, then we will show for any $D \ni (x_n,y_n) \longrightarrow (x,y)$, $f(x_n,y_n) \longrightarrow f(x,y)$. We know that:

$$|f(x_n, y_n) - f(x, y)| \le |f(x_n, y_n) - f(x_n, y)| + |f(x_n, y) - f(x, y)|$$

Since f is continuous in x, $|f(x_n, y) - f(x, y)| \longrightarrow 0$, and since f is Lipschitz in y then $|f(x_n, y_n) - f(x_n, y)| \le K \cdot |y_n - y| \longrightarrow 0$. So $|f(x_n, y_n) - f(x, y)|$ converges to 0. Therefore f is indeed continuous in D.

Exercise 5.5:

Compute the following limit:

$$\lim_{(x,y,z,w)\to(0,0,0,0)} \frac{|xzyw|^{\frac{n}{3}}}{|x|^n + |y|^n + |z|^n + |w|^n}$$

For any n > 0.

Firstly, let

$$f(x, y, z, w) = \frac{|xzyw|^{\frac{n}{3}}}{|x|^n + |y|^n + |z|^n + |w|^n}$$

Then let us define:

$$a = \max\{|x|, |y|, |z|, |w|\}$$
 $b = \min\{|x|, |y|, |z|, |w|\}$

Then notice that a and b are both equal to one of the values, $|xzyw| \le a^3 \cdot b$ and $|x|^n + |y|^n + |z|^n + |w|^n \ge 3b^n + a^n$. So all in all:

$$0 \le f(x, y, z, w) \le \frac{a^n \cdot b^{\frac{n}{3}}}{a^n + 3b^n} = b^{\frac{n}{3}} \cdot \frac{1}{1 + 3\left(\frac{a}{b}\right)^n}$$

We can divide by a^n since it is not equal to 0, since if it were, x = y = z = w = 0 which is not the case since limits don't include the point they converge to. Notice that since $1 + 3\left(\frac{a}{b}\right)^n \ge 1$, $\frac{1}{1+3\left(\frac{a}{b}\right)^n}$ is bounded (between 0 and 1).

And since (x, y, z, w) converges to 0, since convergence in \mathbb{R}^n is pointwise, b converges to 0 as well, since it is less than |x| etcetra. And therefore so does $b^{\frac{n}{3}}$. So the limit of the right hand side is 0, and so by the squeeze theorem, the limit of f(x, y, z, w) is 0 as well. That is:

$$\lim_{(x,y,z,w)\to(0,0,0,0)} \frac{|xzyw|^{\frac{n}{3}}}{|x|^n + |y|^n + |z|^n + |w|^n} = 0$$