Data Cleaning: Redwood Lab

January 29, 2025

Today's plan

- 1 Review: Git/GitHub + Reproducible Environments
- 2 Hands-on practice: Redwood data cleaning

Review: Git/GitHub + Reproducible Environments

Setting up git, GitHub, and a reproducible environment

Details at: https://tiffanymtang.github.io/dsip-s25/

- We set up two repositories:
 - + dsip-s25: for me to distribute course materials (lecture slides, **code**, etc) to you
 - + You should only *pull* to retrieve information
 - + dsip: your repository to do all your work in
- + We introduced **renv** and **conda** to create reproducible environments

Overview of renv and conda

Details at: https://tiffanymtang.github.io/dsip-s25/

		<u>renv</u>	<u>conda</u>
1.	Create environment:	<pre>Create .Rproj and open it renv::init()</pre>	conda createname env_name
2.	Activate:	<pre>renv::activate("pkg_name") # not necessary if you're working in an .Rproj # (automatically activated if in .Rproj)</pre>	conda activate env_name
3.	Add packages:	<pre>renv::install("pkg_name")</pre>	conda install pkg_name
4.	Create/update lock file:	renv::snapshot()	<pre>conda env exportfrom-history > environment.yml conda lock # to run `conda lock`, need to have installed # conda-lock package beforehand</pre> 5

Why bother with reproducible environments?

- Exact reproduction of the packages, software versions, etc.
- Different projects might use/require different package versions
 - E.g., older projects might use older package versions
- + Ease of portability to different computers and operating systems:

renv

- 1. Clone GitHub repository
- 2. Open R project
- 3. Install renv:
 install.packages("renv")
- 4. Restore environment:
 renv::restore()

<u>conda</u>

- Clone GitHub repository
- 2. Navigate to directory with lock file
- Install conda-lock (and conda if not already available) conda install conda-lock
- Restore environment: conda-lock install --name "new env name"

A couple extra bells and whistles from last time...

- + How do you choose a particular conda environment in VS Code?
 - + Open command palette (Ctrl+Shift+P or Cmd+Shift+P)
 - + Search for "Python: Select Interpreter"
- + What is quarto and how do you use quarto in VS Code?
 - + Details: https://tiffanymtang.github.io/dsip-s25/#using-quarto
 - Note: to do this, usually need to install jupyterlab and ipykernel in your conda environment: conda install ipykernel conda install jupyterlab

Pushing changes to GitHub

We've completed our basic setup – A great time to pause and take a snapshot of our project.

But before doing so, if you check your git status,

- You might notice a lot of "junk" files that aren't worth tracking (e.g., they are useless to collaborators and/or they change too frequently)
- Add these files to your .gitignore, e.g.,

```
*.DS_Store
*/data/*
*__pycache__*
*.ipynb_checkpoints*
```

Details: https://tiffanymtang.github.io/dsip-s25/#pushing-your-changes-to-github

Getting started with the Redwood Lab

Lab 1: A Macroscope in the Redwoods [Tolle et al. (2005)]

Lab 1: A Macroscope in the Redwoods [Tolle et al. (2005)]

- Coastal redwood trees: very tall, very old
- 44-day study in Sonoma, California
 (April 27, 2004 5:10pm June 10, 2004 2pm)

Figure 2: Sensor node and packaging

Figure 1: The placement of nodes within the tree

Getting started with the redwood lab

Available templates on the course repository (dsip-s25)

- + For your **reproducible report**: you can find R Markdown (R only) and quarto templates (R, Python) in notebooks/
 - This report should only contain your "filtered" code, not everything you ever did and or looked at in this lab.
- Some loading and cleaning functions have already been populated in R/ and python/ folders
 - Some functions have scaffolding but not yet filled in; this is your to-do

For today's class, you can use **notebooks/exploration_R.qmd** (or _python.qmd)

Your tasks for today

1. Load in the data

- a. Epoch/dates and redwood datasets have already been filled out for you.
- b. You need to fill out the load_mote_location_data() in the load.R/load.py file.
- 2. Look and "play" around with the data in order to:
 - a. Try to **identify as many issues or oddities** with the data as you can. *Hint*: there are many!!
 - b. Also **think** about how you might address these issues and clean the data. Jot down these ideas, but no need to take the time to implement it *yet*.
 - Time permitting: you can start implementing your ideas, but prioritize identifying the issues over fixing them.

Redwood Data Issues

- Two trees
- Outliers in voltage
- Missing values in humidity, hamatop/bot, temperature
- Log versus network data
 - Duplicated observations
- + Humidity/temperature log data (mean = 16.4 in paper)
 - Lots of -4's, -9000, -5000 in humidity
 - Lots of -138 in temperature

Redwood Data Issues

- Unknown/missing mote location data
- + NAs in humidity, temperature, and PAR measurements
- Reported dates/times were weird
- + Two(?) trees
- + Erroneous humidity, temperature, PAR measurements or other outliers
- Failed sensors/missing observations
- Inverse relationship between voltage from network and log datasets
- >1 observation within 5 minutes; some exact duplicates; some aren't
- Issues with network data versus local logging system
- So many others...

Your tasks for today

- 3. **Start** data cleaning:
 - a. Remove duplicate rows/observations
 - b. Remove missing data
 - c. Merge redwood log and network data
 - d. Merge redwood data with epoch/dates data and mote location data
 - e. *Time permitting:* other data cleaning steps that you think are appropriate

A Macroscope in the Redwoods [Tolle et al. (2005)]

Data Collection

- + 44-day study in Sonoma California (April 27, 2004 5:10pm June 10, 2004 2pm)
- **+** Total of 33 motes
- * Timing: measurements taken every 5 minutes
- Vertical distance: placed between 15m 70m about 2m apart
- Angular location: mostly west side since it has a thicker canopy to buffer against direct environmental effects
- * Radial distance: 0.1-1m from the trunk to capture trends that affect the tree directly and not the broader climate

Ground

Figure 1: The placement of nodes within the tree

A Macroscope in the Redwoods [Tolle et al. (2005)]

Data Collection (continued)

- Measured variables
 - Temperature
 - Humidity
 - Light levels: PAR (photosynthetically active radiation)
 - Incident (direct) PAR: provide information about energy available for photosynthesis
 - Reflected (ambient) PAR: related to measurements of land surface reflectance

Figure 1: The placement of nodes within the tree

Recap + Next Time

Recap

- Data cleaning is a highly iterative process.
- + My two cents:
 - Don't be afraid to ask lots of questions. Better to ask than to assume (more likely than not, incorrectly)
 - Read all documentation

Next Time

+ More hands-on practice with exploratory data analysis [chapters 4 and 5 from VDS textbook]