Što se dogodi sa U_{p0} ako se W_p smanji za 50%, a W_n smanji za 25%?

$$r = \sqrt{\frac{-K_p}{K_n}} = \sqrt{\frac{\frac{u_p C_{ox} W_p}{L_p}}{\frac{u_n C_{ox} W_n}{L_n}}} = \sqrt{\frac{\frac{u_p W_p}{L_p}}{\frac{u_n W_n}{L_n}}}$$

$$r' = \sqrt{\frac{\frac{u_p W_p'}{L_p}}{\frac{u_n W_n'}{L_n}}} = \sqrt{\frac{0.5 \frac{u_p W_p}{L_p}}{0.75 \frac{u_n W_n}{L_n}}} = 0.82r$$

r pada => U_{p0} pada

Što se dogodi sa Upo ako se Wn smanji za 50%, a Wp smanji za 25%?

$$r' = \sqrt{\frac{\frac{u_p W_p'}{L_p}}{\frac{u_n W_n'}{L_n}}} = \sqrt{\frac{0.75 \frac{u_p W_p}{L_p}}{0.5 \frac{u_n W_n}{L_n}}} = 1.22r$$

r raste => U_{p0} raste

Što se dogodi sa Upo ako se Wn i Wp smanje za 25%?

$$r' = \sqrt{\frac{\frac{u_p W_p'}{L_p}}{\frac{u_n W_n'}{L_n}}} = \sqrt{\frac{0.75 \frac{u_p W_p}{L_p}}{0.75 \frac{u_n W_n}{L_n}}} = 1r$$

r ostaje isti => U_{p0} ostaje isti

Koje struje teku kroz pn spoj baza – emiter kod bipolarnog tranzistora?

Označi komponente struja npn tranzistora u normalnom aktivnom području rada.

Vidi pitanje iznad.

Što je napon praga okidanja i kako se definira?

Napon pri kojem oba tranzistora rade u području zasićenja, definira se kao točka u kojoj pravac $u_{iz} = u_{ul}$ presijeca prijenosnu karakteristiku CMOS invertora

Što se dogada sa t_{dNV} I t_{dVN} kad se širina kanala pMOS tranzistora poveća?

 K_p raste => t_{dNV} pada, t_{dVN} ostaje isti

Što se dogada sa t_{dNV} I t_{dVN} kad se širina kanala nMOS tranzistora poveća?

 K_n raste => t_{dNV} ostaje isti, t_{dVN} pada

Što se dogada sa t_{dNV} I t_{dVN} kad se širina kanala pMOS tranzistora smanji?

 K_p pada => t_{dNV} raste, t_{dVN} ostaje isti

Što se dogada sa t_{dNV} I t_{dVN} kad se širina kanala nMOS tranzistora smanji?

 K_n pada => t_{dNV} ostaje isti, t_{dVN} raste

Slika uz prethodna 4 zadatka

Što se dogada sa t_{dNV} I t_{dVN} kad se širina kanala pMOS tranzistora i kapacitivno opterećenje udvostruče?

$$\begin{split} K_P &= -u_P C_{OX} \frac{W_P}{L_P} \\ K_N &= u_N C_{OX} \frac{W_N}{L_N} \\ K_P' &= 2K_P \\ C_T' &= 2C_T \\ C_T U_{DD} \\ t_{dVN} &= \frac{C_T U_{DD}}{K_N (U_{DD} - U_{GS0n})^2} \Rightarrow raste \\ t_{dNV} &= \frac{C_T U_{DD}}{-K_P \left(U_{DD} + U_{GS0p}\right)^2} \Rightarrow ostaje \ isto \end{split}$$

Kad je bipolarni tranzistor u području zasićenja, zapiranja, normalno-aktivnom, inverzno-aktivnom?

polarizacije <i>pn</i> -spojeva		emiter-baza	
		propusno	zaporno
kolektor -baza	propusno	zasićenje	inverzno-aktivno
	zaporno	normalno-aktivno	zapiranje

U kojem području radi tranzistor sa slike, $U_c = 5 \text{ V}$, $U_B = 0.5 \text{ V}$?

$$U_{BE} = U_B - U_E = 0.5 - 0 = 0.5 V$$

 $U_{BC} = U_B - U_C = 0.5 - 5 = -4.5 V$

emiter-baza propusno, kolektor-baza zaporno => normalno aktivno područje

U kojem području radi tranzistor sa slike, $U_E = 3 \text{ V}$, $U_C = 3 \text{ V}$?

$$U_{BE} = U_B - U_E = 0 - 3 = -3 V$$

 $U_{BC} = U_B - U_C = 0 - 3 = -3 V$

emiter-baza zaporno, kolektor-baza zaporno => područje zapiranja

U kojem području radi tranzistor sa slike, $U_B = 3.7 \text{ V}$, $U_E = 3.2 \text{ V}$, $U_C = 3 \text{ V}$?

emiter-baza propusno, kolektor-baza propusno => podrucje zasicenja

Bila je slika sklopa sa labosa, bez naznačenih napona tranzistora i struji, zadan UE, UB, napon izvora U0 i iznos oba otpornika, izračunat beta i područje rada.

Statički faktor strujnog pojačanja zajedničke baze iznosi 0,995. Izvedi izračunaj statički faktor strujnog pojačanja spoja zajedničkog emitera.

$$\alpha = 0.995$$

$$I_{C} = -\alpha I_{E} + I_{CBO}$$

$$I_{E} + I_{B} + I_{C} = 0 \Rightarrow I_{E} = -I_{B} - I_{C}$$

$$I_{C} = \alpha I_{B} + \alpha I_{C} + I_{CBO}$$

$$I_{C}(1 - \alpha) = \alpha I_{B} + I_{CBO}$$

$$I_{C} = \frac{\alpha}{1 - \alpha} I_{B} + \frac{1}{1 - \alpha} I_{CBO}$$

$$\beta = \frac{\alpha}{1 - \alpha}$$

$$I_{CEO} = \frac{I_{CBO}}{1 - \alpha}$$

$$I_{C} = \beta I_{B} + I_{CEO}$$

$$\beta = 199$$

Istosmjerni napon na ulazu namješten je tako da je tranzistor u normalnom aktivnom području. Osciloskopom se mjeri U_B = - 15 mV na otporniku R_B = 1 k Ω . Odrediti struju koju pokazuje ampermetar ako se zna da je pojačanje tranzistora β = 300

$$I_B = -\frac{U_B}{R_B} = 1.5 * 10^{-5} A$$

$$I_C = \beta I_B = 4.5 * 10^{-3} A$$

$$I_E = -I_B - I_C = -4.5 mA$$

$$I_A = -I_E = 4.5 mA$$