Learning High-Order Word Representations

Konstantinos Kogkalidis June 12, 2018

Logic & Language Fan Club

Motivation

Categorical Compositional Distributional Semantics

Idea: structure-preserving map ${\mathcal F}$

$$\mathcal{F}:\mathcal{G} \to \textbf{FdVect}$$

- Atomic types translated to vectors (order-one tensors)
- Complex types translated to (multi-)linear maps (higher order tensors)

- · Bridging of formal & distributional semantics
- · Syntax-informed meaning derivations
- Modeling of functional words
- Formal treatment of ambiguous words
- Richer representations

:

- √ Great properties
- ? How to obtain word representations?

Possible options:

1. Co-occurrence statistics

- √ Great properties
- ? How to obtain word representations?

Possible options:

1. Co-occurrence statistics X

- √ Great properties
- ? How to obtain word representations?

Possible options:

- 1. Co-occurrence statistics X
- 2. Unsupervised techniques (a la word2vec)

- √ Great properties
- ? How to obtain word representations?

Possible options:

- 1. Co-occurrence statistics X
- 2. Unsupervised techniques (a la word2vec) X

- √ Great properties
- ? How to obtain word representations?

Possible options:

- 1. Co-occurrence statistics X
- 2. Unsupervised techniques (a la word2vec) X
- 3. Supervised learning?

Supervised Learning

Functional Overview

- Search over set of functions $A \rightarrow B$ parameterized over P
- Find optimal approximation \hat{f}_P to $f: A \to B$
- Use samples $(a, f(a)) \in A \times B$ to update P

Supervised Learning

Dataset

Finding Data

Sample space must be:

- · Labeled
- · constrained
- · of large size
- · of high quality

Paraphrase Database

Raw text paraphrase pairs

Example pair

proposed by the president \sim suggested by the chairman

- Labeled ✓
- constrained X (different syntactic types)
- of large size √
- · of high quality?

Dataset: Preprocessing

1. Parse and filter by type

- Labeled ✓
- constrained √
- of large size ✗ (>95% loss)
- of high quality X (parser-induced errors)

Dataset: Preprocessing

2. Back-translation

- Labeled ✓
- constrained √
- of large size √
- of high quality X (translation-induced errors)

Dataset: Preprocessing

3. Filter by co-occurrence / mutual information

- Labeled ✓
- constrained √
- of large size √
- of high quality?

Dataset: End Product

Verb / object dictionaries:

$$V: \{v_1: 1, v_2: 2, ..., v_N: N\}$$

 $\mathcal{O}: \{o_1: 1, o_2: 2, ..., o_M: M\}$

Paraphrase relation:

$$\mathcal{P}: \mathbb{N} \times \mathbb{N} \times \mathbb{N} \times \mathbb{N} \to \{0,1\} \qquad \text{(binary classification)}$$

$$\mathcal{P}(i,j,k,l) = \mathcal{P}(k,l,i,j) = \begin{cases} 1 & v_i o_j \sim v_k o_l \\ 0 & \text{otherwise} \end{cases}$$

Supervised Learning

Intermediate Representations

Objective Function

Our semantic interpretations are:

- Sentences: $[s] = \mathbb{R}^S$
- Objects: $\lceil np \rceil = \mathbb{R}^{NP}$
- Verbs: $\lceil s/np \rceil = \mathbb{R}^{S \times NP}$

And our objective is to learn a verb embedding function ε_{verb} :

$$\varepsilon_{verb}: \mathbb{N} \to \mathbb{R}^{S \times NP}$$

But instead we have samples from some $f: \mathbb{N}^4 \to \{0,1\}$

Formulating the network

Solution

Formulate f_P to incorporate ε_{verb} .

$$f_p = f_1 \circ f_2 \circ \cdots \circ \varepsilon_{verb} \circ \ldots$$

Formulating the network

Solution

Formulate f_P to incorporate ε_{verb} .

$$f_p = f_1 \circ f_2 \circ \cdots \circ \varepsilon_{verb} \circ \ldots$$

Simplification

Assume pre-trained object embedding function ε_{object}

$$\varepsilon_{objects}: \mathbb{N} \to \mathbb{R}^{300}$$

Filling the missing blocks

