HKN ECE 110 Exam 3 Review Worksheet

- 1. For the following circuit, $V_{CC} = 5.2V$, $V_{BE,ON} = 0.7V$, $V_{CE,SAT} = 0.2V$ $R_B = 20k\Omega$, $R_C = 1k\Omega$ and $\beta = 100$.
 - a. Determine the values of V_{o1} , V_{o2} , V_{i1} , and V_{i2} .
 - b. What is the maximum value of A that keeps the BJT in the active region when:
 - i. $V_i = 1.2 + Asin(\omega t)$
 - ii. $V_i = 0.9 + Asin(\omega t)$
 - iii. $V_i = 1.4 + Asin(\omega t)$
 - c. What is the voltage gain in the active region?

- 2. For the following circuit, $V_{DD} = 6V$, $R_D = 100\Omega$ and $I_1 = 5mA$.
 - a. List the equations for I_D in the Ohmic and Active regions.
 - b. Using the equations from part (a), determine the value of k.
 - c. Find the values of I_D and V_{DS} when:
 - i. $V_{GS} = 4V$ and $V_{TH} = 2V$
 - ii. $V_{GS} = 5V$ and $V_{TH} = 1V$

3. Fill in the truth table for the following cMOS circuit where A, B and C are inputs and Z is the output.

- 4. Suppose we have a square wave signal with $V_{rms} = 8V$ and $P_{avg} = 16W$ attached to some unknown load R. There is also some amount of sinusoidal noise corrupting the system.
 - a. What is the value of R?
 - b. Suppose the SNR of the system is 64. What is the amplitude of the noise signal?
 - c. What would be the new SNR of the system if the amplitude of the noise signal was doubled?

- 5. Lightning Round! The parts of this question are not related to one another.
 - a. An IC has an operating frequency of 2.4 GHz, supply voltage of $V_{DD} = 5$ V, and dissipates 10W.
 - i. What is the new power dissipation if the supply voltage is increased to 15V?
 - ii. Suppose we want the IC to dissipate 15W by changing only the operating frequency. What should this new operating frequency be?
 - b. We have a continuous-time signal given by $x(t) = 3\cos(4\pi t) \sin(8\pi t)$ sampled at $T_s = \frac{1}{8}s$ to form the sampled signal x[n].
 - i. List the frequencies present in the above signal (in Hertz).
 - ii. Find the values of x[n] at samples n = 0, 1, 2, 3, 4.
 - iii. What is the sampling frequency of this sampler?