$\begin{array}{ll} \Re(z) = \frac{z+\overline{z}}{2} & \Im(z) = \frac{z-\overline{z}}{2i} & |z| = \sqrt{z \cdot \overline{z}} = \sqrt{x^2 + y^2} \in \mathbb{R} \\ \rho e^{i\theta} = \rho(\cos(\theta) + i\sin(\theta)) & z = \rho(\cos(\theta) + i\sin(\theta)) \end{array}$ $e^{z} = e^{x+iy} = e^{x} \cdot e^{iy} = e^{x} (\cos(y) + i\sin(y)) \in \mathbb{C}^{*}$ $\cos(z) := \frac{e^{iz} + e^{-iz}}{2} \quad \sin(z) := \frac{e^{iz} - e^{-iz}}{2i} \quad \cosh(z) := \frac{e^{z} + e^{-z}}{2} \quad \sinh(z) := \frac{e^{z} - e^{-z}}{2}$

F. complessa di variabile reale: $f: I \subset \mathbb{R} \to \mathbb{C}, f(x) = u(x) + iv(x), \text{ con } u, v: I \subset \mathbb{R} \to \mathbb{R}$

F. localmente p-integrabile: $f: \mathbb{R} \to \mathbb{C}, p \in [1, +\infty), \forall K \in \mathbb{R}, \int_K |f(x)|^p dx < +\infty$

 $L^p([-\frac{T}{2},\frac{T}{2}];\mathbb{X}\in\{\mathbb{R},\mathbb{C}\}):=L^p(T):=L^p$ è l'insieme delle funzioni $f:\mathbb{R}\to\mathbb{X}$ T-periodiche, localmente p-integrabili.

Norma: $||f||_{L_{\mathbb{X}}^{p}(T)} := \left(\int_{-\frac{T}{2}}^{\frac{T}{2}} |f(x)|^{p} dx \right)^{\frac{1}{p}}$

Prodotto scalare: $\langle f \mid g \rangle := \int_{-\frac{T}{2}}^{\frac{T}{2}} f(x) \overline{g(x)} \, dx$

Energia di una funzione: $||f||_2^2 := ||f||_{L^2}^2 := \int_{-\frac{T}{2}}^{\frac{T}{2}} |f(x)|^2 dx = \int_{-\frac{T}{2}}^{\frac{T}{2}} (u^2(x) + v^2(x)) dx$

 $||f||_{L^{1}} = \int_{-\frac{T}{2}}^{\frac{T}{2}} |f(x)| \, dx = \langle |f| \mid 1 \rangle \le ||1||_{L^{2}} ||f||_{L^{2}} = \int_{-\frac{T}{2}}^{\frac{T}{2}} 1 \cdot |f(x)| \, dx = \sqrt{T} ||f||_{L^{2}}$

Disuguaglianza di Cauchy-Schwarz: $|\langle f \mid g \rangle| \leq ||f|| ||g||$

Serie di Fourier: $\frac{a_0}{2} + \sum_{n=1}^{+\infty} (a_n \cos(n\omega x) + b_n \sin(n\omega x)), \quad a_0, a_n, b_n \in \mathbb{R}$ $\sum_{n=-\infty}^{+\infty} c_n e^{in\omega x}, \quad c_n \in \mathbb{C}$

Ridotta N-esima: $S_N(x) := \sum_{n=-N}^N c_n e^{in\omega x}$ Convergenza puntuale: $\lim_{N\to+\infty} S_N(x) = f(x)$ Convergenza uniforme: $\lim_{N\to+\infty} \sup_{x\in\mathbb{R}} (S_N(x)-f(x)) = \sum_{n=-N}^N c_n e^{in\omega x}$

F. k volte derivabilie: $\mathcal{C}^k(X;Y) := \{f : X \subset \mathbb{R} \to Y = \mathbb{R}, \mathbb{C} \text{ k volte derivabili}\}, \mathcal{C}^0 = \mathcal{C} \text{ spazio delle funzioni}$ continue.

M-Test di Weierstrass: $\{f_n\}$ successione di funzioni, $\{M_n\}$ successione di numeri reali positivi, $|f_n(x)| \leq M_n$ e $\sum_{n=1}^{+\infty} M_n < +\infty \Rightarrow \sum_{n=1}^{+\infty} f_n(x)$ converge uniformemente.

Continuità del limite: $\{f_n\}_{n\in\mathbb{N}}\subset\mathcal{C}(E;\mathbb{C})$ converge uniformemente a f allora $f\in\mathcal{C}(E;\mathbb{C})$. Integrazione termine a termine: $f_n:[a,b]\subset\mathbb{R}\to\mathbb{C}$, integrabile, $\sum_{n=1}^{+\infty}f_n(x)$ converge uniformemente a f allora $\int_a^b f(x) dx = \sum_{n=1}^{+\infty} \int_a^b f_n(x) dx.$

Derivazione termine a termine: $f_n:[a,b]\subset\mathbb{R}\to\mathbb{C}$, derivabile, $\sum_{n=1}^{+\infty}f_n(x)$ converge uniformemente a $f \in \sum_{n=1}^{+\infty} f'_n(x)$ converge uniformemente a g allora $f \in \mathcal{C}^1([a,b];\mathbb{C})$ e f'(x) = g(x), ossia $\frac{d}{dx}\left(\sum_{n=1}^{+\infty} f_n(x)\right) = \sum_{n=1}^{+\infty} f'_n(x)$.

Convergenza uniforme di serie trigonometriche: $\frac{|a_0|}{2} + \sum_{n=1}^{+\infty} (|a_n| + |b_n|) < +\infty \Rightarrow f(x)$ converge uniformemente in \mathbb{R} .

 $\sum_{n=-\infty}^{+\infty} |c_n| < +\infty \Rightarrow f(x)$ converge uniformemente in \mathbb{R} .

Analisi di Fourier: $c_n = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(x) e^{-in\omega x} dx$, $a_n = \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(x) \cos(n\omega x) dx$ $b_n = \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(x) \sin(n\omega x) dx$

Associare a una f. la sua serie di Fourier: $f \in L^1_{\mathbb{X} \in \{\mathbb{R}, \mathbb{C}\}}(T) \Rightarrow$ i coefficienti di Fourier sono ben definiti ed è possibile associare canonicaente a f una serie trigonometrica.

Spettro di una f.: $f \in L_{\mathbb{X}}^1$ se $\mathbb{X} = \mathbb{C}$, $\{c_n\}_{n \in \mathbb{Z}} = \{c_n(f)\}_{n \in \mathbb{Z}}$ è lo spettro, se $\mathbb{X} = \mathbb{R}$, $\{a_0, (a_n, b_n)_{n \geq 1}\} = \{c_n(f)\}_{n \in \mathbb{Z}}$ $\{a_0(f), (a_n(f), b_n(f))_{n\geq 1}\}$ è lo spettro.

Sintesi di Fourier (inverso): $c = \{c_n\}_n : \mathbb{Z} \to \mathbb{C}, \{c_n\}_{n \in \mathbb{Z}} \mapsto \sum_{n \in \mathbb{Z}} c_n e^{in\omega x} \stackrel{?}{\mapsto} f$

Convergenza puntuale della serie di Fourier: $f \in L^1_{\mathbb{C}}(T), \{c_n(f)\}_{n \in \mathbb{Z}}, \quad S_N(x) := \sum_{n=-N}^N c_n(f)e^{in\omega x}, \lim_N S_N(x_0) = \sum_{n=-N}^N c_n(f)e^{in\omega x}$

Teorema di Dirichlet-Weiherstrass: $f \in L^1_{\mathbb{C}}(T), x_0 \in \mathbb{R}$, se esistono finiti $\lim_{x \to x_0^{\pm}} f(x_0^{\pm}), \lim_{x \to x_0^{\pm}} \frac{f(x) - f(x_0^{\pm})}{x - x_0}$ allora $\lim_{N\to+\infty} S_N(x_0) = \frac{f(x_0^+) + f(x_0^-)}{2}$.

Lemma di Riemann-Lebesgue: $f \in L^1_{\mathbb{C}}(T), c_n = c_n(f), \text{ allora } \lim_{n \to +\infty} c_n(f) = 0.$

Regolarità di una f. e decadimento dei coefficienti di Fourier

Lemma: $f, g \in \mathcal{C}^1([-\frac{T}{2}, \frac{T}{2}); \mathbb{C})$ T-periodiche, $c_n(f) = c_n(g) \quad \forall n \in \mathbb{Z} \Rightarrow f = g \forall x \in [-\frac{T}{2}, \frac{T}{2}).$

Proposizione: $k \in \mathbb{N}, f \in L^1_{\mathbb{C}}(T)$ derivabile k volte e $f^{(j)} \in L^1_{\mathbb{C}}(T)$ $\forall j = 0, \dots, k$, allora $c_n(f^{(j)}) = 0$ $(i\omega n)^j c_n(f) \quad \forall n \in \mathbb{Z}.$

Lemma: $T>0, k\in\mathbb{N}, \sum_{n\in\mathbb{Z}}\gamma_ne^{in\omega x}$ che converge puntualmente a f in $\left[-\frac{T}{2},\frac{T}{2}\right)$ e $\exists p>k+1$ tale che $|\gamma_n| = O(|n|^{-p})$ allora $f \in \mathcal{C}^k([-\frac{T}{2}, \frac{T}{2}); \mathbb{C}).$