Mate 6540

Tarea 3

Problema 1.	Considere al espacio $\widehat{2} = \{0,1\}$ con la topología discreta \mathscr{T}_{disc} . Demuestre la proposición: "El espacio topológico (X,\mathscr{T}_X) es conexo \iff No existe una función continua $g:(X,\mathscr{T}_X)\longrightarrow \left(\widehat{2},\mathscr{T}_{disc}\right)$ que sea suprayectiva."
Problema 2.	Sea X un conjunto infinito dotado de la siguiente topología $\mathscr{T}_{cof} = \{U \subseteq X \mid X - U \text{ es finito o } U = \varnothing\}$ (i.e. la topología de los complementos finitos) (a) <u>Demuestre</u> : " (X, \mathscr{T}_{cof}) es conexo." (b) <u>Demuestre</u> : " (X, \mathscr{T}_{cof}) es compacto."
Problema 3.	Dé ejemplos de subespacios $A y B$ de $(\mathbb{R}^2, \mathcal{T}_{\mathcal{E}^2})$ tales que: (a) $A y B$ son conexos, pero $A \cap B$ no es conexo. (b) $A y B$ no son conexos, pero $A \cup B$ es conexo. (c) $A y B$ son conexos, pero $A - B$ no es conexo. (d) $A y B$ son conexos y $\overline{A} \cap \overline{B} \neq \emptyset$, pero $A \cup B$ no es conexo.
Problema 4.	 Sean (X, T_X) un espacio topológico y {∞} un objeto que no pertenezca a X. Defina Y = X ∪ {∞} y T_∞ = {U ⊆ Y U ∈ T_X o Y − U es compacto y cerrado en X}. (a) Demuestre que T_∞ es una topología sobre Y. (b) Sea T' la topología relativa sobre X, la que hereda como subconjunto de Y. Demuestre que T' = T_X.
Problema 5.	Sean (X, \mathcal{T}_X) un espacio topológico y $\{\infty\}$ un objeto que no pertenezca a X . Defina $Y = X \cup \{\infty\}$ y $\mathcal{T}_{\infty} = \{U \subseteq Y \mid U \in \mathcal{T}_X \text{ o } Y - U \text{ es compacto y cerrado en } X\}.$ (c) Demuestre que $(Y, \mathcal{T}_{\infty})$ es compacto.