Degenerations of the canonical series for curves (Part 1/2)

Eduardo Esteves IMPA 20 Septembro 2024

Abstract

Contents

1	Introduction	1
2	What we do	2
3	Some combinatorics	3
4	What we do	3
5	The additional data (?)	4
6	After break	5
7	Regular differentials (Rosenlicht)	5
8	Kapranov	6

1 Introduction

What is the canonical series? Consider C a projective smooth connected curve over a closed field k. The cotangent bundle ω_C is the same as the bundle of differentials, and the canonical bundle. It has complex dimension 1. The local sections are differentials.

A differential $\alpha \in \Gamma(C, \omega_C)$ is holomorphic, it can be meromorphic. It is written as $\alpha = fdt$ for some $f \in k(C)$. This leads to the notion of a *divisor* of a differential, which in this case is

$$div(\alpha) = \sum ord_p(t_p)p$$

and it is also the *canonical divisor*.

Now

$$\omega_{\rm C} = \Theta_{\rm C}(k)$$

The *genus*, which is a topological invariant, is also dim_k $\Gamma(C, \omega_C)$.

$$deg(\omega_C) = deg(K) = 2g - 2$$

And

$$\mathbb{H} = \Gamma(C, \omega_C)$$

is the *canonical series*.

Example Smooth quartic plane curve

$$C=V(F)\subset \mathbb{P}^2$$

We have that deg(F) = 4, and

$$\begin{split} \omega_C &= \mathfrak{O}_C(1) = \mathfrak{O}_{\mathbb{P}^2}(1)|_C\\ g &= \frac{(d-1)(d-L)}{2} = 3\\ \mathfrak{O}_C(1) &= \mathfrak{O}_C(L \cap C)\\ deg(\mathfrak{O}_C(1)) &= 4 = 2g - 2\\ dim_k \, \Gamma(G\mathfrak{O}_C(1)) &= 3 = g \end{split}$$

Think of the canonical series as a space of linear sections of a line bundle, but also as a collection of divisors parametrized by \mathbb{P}^2

Example (A singular quadric)

2 What we do

Given a nodal curve X (at a node there are two "branches" that intersect) which is general for its topology (G = (V, E) dual graph) where

- V is the set of irreducible components). There is a correspondence of the vertices in this graph and curves in $X : v \in V \iff X_v \subset X$.
- E is the set of nodes. Here $e \in E \iff N_e \in X$. So an edge is a pair of points if the node belongs to the intersection of the corresponding curves:

$$e = \{u, v\} \iff N_e \in X_u \cap X_v$$

• The *genus function* associates to every component its geometric genus:

$$\begin{split} g: V &\longrightarrow \mathbb{Z}_{\geqslant 0} \\ g(\nu) &= \text{geometric genus of } X_{\nu} \end{split}$$

(I think the geometric genus is the genus of the normalization of the variety.)

This is the combinatorial data attached to the curve.

We We look for a general curve with respect to the geometric genus, and say it is *general for its position* if the nodal points are in general position.

Then we have a stratification of

 $\overline{M} = \{ \text{stable curves X with finite automorphism group} \}$

And here *stable* means nodal. So for example you can have stability if the degree of $\omega_C|_X$ is positive.

So the stratification is:

$$\overline{m}_{g} = | | m_{(G,g)}$$

where

 $\mathcal{M}_{G,g} = \{X \text{ s.t. } G \text{ is the dual graph of } X_{\omega} \text{ genus function } g.\}$

And we have that

$$\operatorname{codim} M_{G,q} = |E|,$$

the number of edges.

Remark These are graph curves. All their components are \mathbb{P}^1 and they intersect in prescribed way.

3 Some combinatorics

We have the *genus formula*:

$$\begin{split} P_{\alpha}(X) &= \sum g_{\nu} + g(G) \\ g(G) &= |E| - |V| + 1 \\ g &= 3g - 3 - (2g - 2) + 1 \\ deg(F) &= 4 \end{split}$$

Remark When you have maximum number of edges, you force everything to be of a particular kind by the genus formula. (This follows from stability condition.)

Remark We may check stability looking if the canonical bundle is trivial.

Remark Stable \iff every component which is \mathbb{P}^1 has at least 3 special points.

4 What we do

Now let's finish the statement we started before:

Given a nodal curve X which is general for its topology, we describe all limits of the canonical series in any degeneration to X, and construct a parameter space for them.

Exercise Let X be a smooth projective variety such that K_X is ample. Prove that its automorphism group is finite.

We would like to study the moduli of stable curves. So we have a parameter for the objects we want to classify. Diaz-Cutievman described the locus of curves with special Weierstrass points.

Weierstrass points are such that the line (what line?) intersect the curve in at least (some bound). So for a quartic,

P is a W point
$$\iff$$
 I(P; T_pC \cap C) \geqslant 3

and in fact

$$g^3 - g = 24 \text{ W points.}$$

Remark A general smooth curve of genus 3 has exactly 24 Weierstrass points.

Exercise The genus g curve has $g^3 - g$ Weierstrass points.

- a. For g = 3 and plane quartics.
- b. For hyper-elliptic curve of genus 3 (also define W point in this case).
- c. For non-hyperelliptic genus 4 curve.
- d. Etc.

5 The additional data (?)

Take your variety. The drawing is a bunch of blue lines. Take another line (red). How do the y intersect?

$$\lim_{t\to 0} X_t \cap L = X \cap L.$$

And intersection with another curve F?

$$\lim_{t\to 0} X_t \cap L_0 = F \cap L_0$$

Let $L = L_0$. We have

$$\begin{aligned} L_0L_1L_2L_3 + tF &= 0 \\ L_0 &= 0 \end{aligned}$$

Dividing by t,

$$LL_1L_2L_3 + F = 0$$
$$L_0 = 0$$

Now look at linear series generated by $LL_1L_2L_3 \forall L$ and F on $L_0=0.$ $L_0=X.$

$$(\alpha Y + \beta Z)L_1L_2L_3 + \gamma F = 0, \qquad (\alpha, \beta, \gamma) \in \mathbb{P}^2$$

$$L_0 = 0$$

6 After break

Now we explain how these systems of divisor appear and how we are going to handle them.

The limit of the $\stackrel{\vee}{\mathbb{P}}^2$ is some divisors.

We are considering a smoothing

$$\downarrow \\ B = \Delta_0 = \operatorname{Spec} k[[t]] \subset \mathbb{C}$$

And we have

 $\omega_{\mathfrak{X}/B}$ is the relativa canonical bundle

$$\left. \begin{array}{l} \omega_{\mathfrak{X}/B} \right|_{\mathfrak{X}_{\eta}} = \cap_{\mathfrak{X}_{\eta}} \\ \left. \omega_{\mathfrak{X}/B} \right|_{\mathfrak{X}_{\sigma}} = \omega_{X} \subseteq \Omega_{X} = \bigoplus_{\nu \in V} \Omega_{\nu} \end{array}$$

where Ω_{ν} is the space of meromorphic differentials over $C_{\nu}=\tilde{X}_{\nu}.$

So it's a family of bundles that is the canonical bundle on the general fibers and on the exeptional fiber it is the canonical bundle too.

7 Regular differentials (Rosenlicht)

$$(\eta_\nu)_\nu \in \bigoplus_\nu \Omega_\nu$$

$$res_{\mathfrak{p}_{\mathfrak{a}}} \eta_{\mathfrak{v}} + res_{\mathfrak{p}_{\tilde{\mathfrak{a}}}} \eta_{\mathfrak{w}} = 0$$

Now η_{ν} can only have poles at the branches, and they should be simple.

Remark Looks like we have been computing how the bundles $\mathcal{O}_L(1)$, \mathcal{O}_{L_i} look like when restricted to different subvarieties. So for example

$$\mathcal{O}_{\mathfrak{X}}(1)(-L_0)|_{L_i} = \mathcal{O}_{L_i}(1)(-1)$$

is just a skyscraper sheaf.

In the end we concluded that (L_h, W_h) has infinitely many linear series in X where

$$W_{h} = \Gamma(\mathfrak{X}, \mathcal{L}_{h})\Big|_{\mathfrak{X}_{0}} \cap \Gamma(X, L_{h})$$

So, importantly,

$$\{0 \neq s \in W_h \qquad Z(s) \subseteq X \qquad |Z(s)| < \infty\} = \qquad \text{lim divisors}$$

h vary.

$$\begin{split} \omega_X &\subseteq \Omega = \bigoplus \Omega_\nu \\ \omega_\mathfrak{X} \left(-\sum h(\nu) X_\nu \right) \Big|_X &\subseteq \Omega \\ \Omega_{X_\omega} \left(\sum p_u - \sum p_u \right) \end{split}$$

Canonical case

$$W_h \subseteq \Omega = \bigoplus \Omega_v$$

where Ω_{ν} is the space of meromorphic differentials on $C_{\nu}=\tilde{X}.\ dim\,W_h=g.$

8 Kapranov

Take some k-vector spaces U_{ν} and consider

$$U=\bigoplus_{\nu\in V}U_{\nu}$$

and take the grassmanian of subspaces of dimension g, and the torus action:

$$Gr(g,U) \leftarrow \mathbb{G}_{m}^{\vee} = \{\psi : V \rightarrow k^{*}\}$$

and the projection maps:

$$\theta_I: \bigoplus_{\nu \in V} U_\nu \longrightarrow \bigoplus_{\nu \in I} U_\nu, \qquad I \subseteq V$$

W general, $\theta_{\rm I}\Big|_{W}$ has maximal rank.

So consider the orbit, it is a Chow variety:

$$\overline{[\mathbb{G}_m^\vee \cdot W} \in Chow(Gauss(g,U))$$

And we have the Chow quotient/Hilbert quotient/Mumford quotient (studied first by Thaddeus):

$$\overline{\{\overline{[\mathbb{G}_{\mathfrak{m}}^{\vee}\cdot W]},W \text{ general}\}}\subseteq Chow(Gauss(g,V))$$

And then

$$\partial \stackrel{\{*\}}{=} \sum [\mathbb{G}_{\mathfrak{m}}^{\vee} \cdot W_{i}], \quad Gauss(g, V)$$

The polytopes as rouled to W_i form a polyhedral decomposition of a certain polytope. Now

$$W\subseteq U \implies \mu_W: 2^V \longrightarrow \mathbb{Z}$$

which is a submodular function,

$$\begin{split} \mu &= \mu_W(I) = dim_k \, \theta_I(W) \\ \mu(I) &+ \mu(S) \geqslant \mu(I \cap J) + \mu(J \cup J) \\ P_\mu &= \{q \in \mathbb{R}^\vee : q(I) \leqslant \mu(I) \; \forall I, \; q(V) = \mu(V)\} \end{split}$$

What Kapranov observed

$$K: \bigcup P_{W_i} = P_{W \text{ general}}$$