GCD

Input file: standard input
Output file: standard output

Time limit: 3 seconds

Memory limit: 1024 megabytes

Does anyone understand why many problem setters think it is funny to place a GCD-themed problem as problem G?

-Braised-chicken

Given two integers a and b, you can perform one of the following two operations in each round:

- If a > 0, then reduce the value of a by gcd(a, b).
- If b > 0, then reduce the value of b by gcd(a, b).

Grace wants to know the minimum number of rounds needed to make both a and b become 0.

Input

Each test file contains multiple test cases. The first line contains the number of test cases T ($1 \le T \le 1000$). The description of the test cases follows.

Each test case consists of a single line containing two integers a and b $(1 \le a \le b, a \le 5000, b \le 10^{18})$.

For each test file, it is guaranteed that the sum of a over all test cases does not exceed 10^4 .

Output

For each test case, output a single integer representing the minimum number of rounds needed to make both a and b become 0.

Example

standard input	standard output
3	3
3 4	4
12 20	6
114 514	
114 514	

Note

For the first test case in the example, one possible optimal solution is:

- Perform an operation on a: $a = 3 \gcd(3, 4) = 2$.
- Perform an operation on a: $a = 2 \gcd(2, 4) = 0$.
- Perform an operation on b: $b = 4 \gcd(0, 4) = 0$.

[†] gcd(x, y) denotes the greatest common divisor of x and y. For example, gcd(6, 8) = 2, gcd(7, 5) = 1. The values of gcd(x, 0) and gcd(0, x) are defined as x.