Lecture 25A – Computing a Vector Field \vec{F} when $\nabla \times \vec{F}$ and $\nabla \cdot \vec{F}$ are Given

Arnav Patil

University of Toronto

Many problems in nature (electrostatics, magnetostatics, heat transfer, fluid flow, etc.) are described by either of the following equations:

$$\nabla \cdot \vec{F} = \rho(x,y,z) \qquad \qquad \nabla \times \vec{F} = 0 \text{ irrotational field}$$
 (1)
$$\nabla \cdot \vec{F} = 0 \qquad \qquad \nabla \times \vec{F} = \vec{J}(x,y,z) \text{ source-free field}$$
 (2)

$$\nabla \cdot \vec{F} = 0$$
 $\nabla \times \vec{F} = \vec{J}(x, y, z)$ source-free field (2)

Symmetries

There are various types of symmetries. The main criterion is that the vector \vec{F} is aligned with one of the basis vectors in the appropriate coordinate system.

1.1 Planar Symmetry

Consider $\vec{F} = f(x)\hat{x}$ in 3d Cartesian coordinates. The expression indicates that the vector points in the \hat{x} direction and the magnitude depends only on the x position.

Figure 1: Planar Symmetry

1.2 Cylindrical Symmetry

Let $\vec{F}=f(\sqrt{x^2+y^2})(-\frac{y}{\sqrt{x^2+y^2}}\hat{x}+\frac{x}{\sqrt{x^2+y^2}}\hat{y})=f(r)\hat{\theta}$. The vector points in the $\hat{\theta}$ direction and its magnitude depends only on position r where $r=\sqrt{x^2+y^2}$.

Figure 2: Cylindrical Symmetry

1.3 Cylindrical Symmetry

Let \vec{F} be the vector such that $\vec{F}=f(\sqrt{x^2+y^2})(\frac{x}{\sqrt{x^2+y^2}}\hat{x}+\frac{x}{\sqrt{x^2+y^2}}\hat{y})=f(r)\hat{r}$. The vector points in the \hat{r} direction and its magnitude depends only on position r where $r=\sqrt{x^2+y^2}$.

Figure 3: Cylindrical Summary

1.4 Spherical Symmetry

Let \vec{F} be the vector $\vec{F}=f(\sqrt{x^2+y^2+z^2})(\frac{y}{\sqrt{x^2+y^2+z^2}}\hat{x}+\frac{x}{\sqrt{x^2+y^2+z^2}}\hat{y}+\frac{z}{\sqrt{x^2+y^2+z^2}}\hat{z})=f(r)\hat{r}$. The vector points in the direction of \hat{r} and its magnitude depends only on the position r where $r=\sqrt{x^2+y^2+z^2}$.

Figure 4: Spherical Symmetry

2 Cases That Can be Solved Without Specialized Tools or Knowledge

1. An irrotational field \vec{F} and symmetry $\rho(x, y, z)$:

$$\nabla \cdot \vec{F} = \rho(x, y, z) \tag{3}$$

$$\nabla \times \vec{F} = 0 \tag{4}$$

We compute \vec{F} using the Divergence Theorem:

$$\oint \int_{S} d\vec{S} = \iiint_{V} \nabla \cdot \vec{F} dV = \iint_{V} \rho dV \tag{5}$$

2. A source free field \vec{F} , and symmetry for $\vec{J}(x,y,z)$:

$$\nabla \cdot \vec{F} = 0 \tag{6}$$

$$\nabla \times \vec{F} = \vec{J}(x, y, z) \tag{7}$$

 \vec{F} is computed using Stokes' Theorem:

$$\oint_C \vec{F} \cdot d\vec{s} = \iint_S \nabla \times \vec{F} \cdot d\vec{s} = \iint_S \vec{J} \cdot d\vec{s}$$
 (8)

3 Summary of Conditions for Symmetry

We invoke symmetry on equations (3) and (4) if ρ is a function of only variable in an appropriately chosen coordinate system. Likewise, we can only invoke symmetry on (6) and (7) if \vec{J} is directed along one of the basis vectors in an appropriate coordinate system and has a magnitude that is a function of only one coordinate system.