Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencia de la Computación

IIC2115 - Programación como herramienta para la ingeniería

Análisis de datos - Exploración, limpieza y depuración

Profesor: Hans Löbel

¿Qué es el análisis de datos en Python?

- Esencialmente, buscamos responder preguntas relevantes, o descubrir aspectos desconocidos, en base a la evidencia dada por los datos
- Desde un punto de vista práctico, consiste principalmente en utilizar herramientas para lo siguiente sobre los datos:
 - o Limpieza y transformación
 - o Exploración de distintas dimensiones
 - o Análisis estadístico
 - o Visualización

Para todo esto, utilizaremos Pandas

- Biblioteca de Python que permite manipular, analizar y visualizar datos.
- Puede ser visto como una herramienta para trabajar datos almacenados en una estructura de tabla o de serie de tiempo.
- Se basa en, y generaliza a, la biblioteca Numpy.
- 2 Estructuras principales
 - Series
 - DataFrame

En un DataFrame, cada columna es un Series

	Comuna	Manzana	Predial	Línea de construcción	Material estructural	Calidad construcción	Año construcción
0	9201	1	1	1	E	4	1940
1	9201	1	1	2	E	4	1960
2	9201	1	2	1	E	4	1930
3	9201	1	3	1	Е	4	1960
4	9201	1	4	1	Е	3	1925

El primero paso siempre es explorar los datos

- Abrirlos y describirlos
- Identificar la presencia de valores nulos y outliers
- Corregir e imputar lo que corresponda

¿Existen valores nulos en algunas columnas?

```
import pandas as pd
import numpy as np

df = pd.read_csv("data.csv")

display(df.describe())
```

	ApplicantIncome	CoapplicantIncome	LoanAmount	Loan_Amount_Term	Credit_History
count	614.000000	614.000000	592.000000	600.00000	564.000000
mean	5403.459283	1621.245798	146.412162	342.00000	0.842199
std	6109.041673	2926.248369	85.587325	65.12041	0.364878
min	150.000000	0.000000	9.000000	12.00000	0.000000
25%	2877.500000	0.000000	100.000000	360.00000	1.000000
50%	3812.500000	1188.500000	128.000000	360.00000	1.000000
75%	5795.000000	2297.250000	168.000000	360.00000	1.000000
max	81000.000000	41667.000000	700.000000	480.00000	1.000000

```
1 df['Property_Area'].value_counts()
```

Semiurban 233 Urban 202 Rural 179

Name: Property_Area, dtype: int64

```
def conteo_nulo(x):
    return sum(x.isnull())

df.apply(conteo_nulo, axis = 0)
```

```
Loan_ID
                    0
Gender
                   13
Married
Dependents
                   15
Education
                    0
Self_Employed
                    32
ApplicantIncome
                    0
CoapplicantIncome
                    0
LoanAmount
                   22
Loan_Amount_Term
                   14
Credit_History
                    50
Property_Area
                    0
Loan_Status
                    0
dtype: int64
```

```
1 def conteo_nulo(x):
 2
        return sum(x.isnull())
 4 df.apply(conteo_nulo, axis = 0)
Loan_ID
                     0
Gender
                    13
Married
                     3
Dependents
                    15
Education
                     0
Self_Employed
                    32
ApplicantIncome
                     0
CoapplicantIncome
                     0
LoanAmount
                    22
Loan_Amount_Term
                    14
Credit_History
                    50
Property_Area
                     0
Loan_Status
                     0
dtype: int64
 df['LoanAmount'].fillna(df['LoanAmount'].mean(), inplace=True)
 1 df.apply(conteo_nulo, axis = 0)
```

```
1 def conteo_nulo(x):
 2
        return sum(x.isnull())
 4 df.apply(conteo_nulo, axis = 0)
Loan ID
                     0
Gender
                    13
Married
                     3
Dependents
                    15
Education
                     0
Self Employed
                    32
ApplicantIncome
                     0
CoapplicantIncome
                     0
LoanAmount
                    22
Loan_Amount_Term
                    14
Credit_History
                    50
Property_Area
                     0
Loan_Status
                     0
dtype: int64
 1 df['LoanAmount'].fillna(df['LoanAmount'].mean(), inplace=True)
 1 df.apply(conteo_nulo, axis = 0)
Loan_ID
                     0
Gender
                    13
Married
                     3
Dependents
                    15
Education
                     0
Self_Employed
                    32
ApplicantIncome
                     0
CoapplicantIncome
                     0
                     0
LoanAmount
Loan_Amount_Term
                    14
Credit_History
                    50
Property_Area
                     0
Loan_Status
                     0
dtype: int64
```

Muchas veces exploraremos múltiples fuentes

- Cuando todo está en un (1) DataFrame, todo tiende a ser más fácil.
- Pero la mayoría de las veces, tenemos más de una fuente.
- Pandas entrega varios mecanismos para enfrentar esto.

```
      A
      B

      1
      A1
      B1

      2
      A2
      B2

      4
      A4
      B4
```

```
dfc = pd.concat([df1, df2], axis=1,)
display(df1, df2, dfc)
```

```
      A
      B

      1
      A1
      B1

      2
      A2
      B2

      4
      A4
      B4
```

dfc = pd.concat([df1, df2], axis=1,)
display(df1, df2, dfc)

	Α	В	Α	В	
1	A1	B1	NaN	NaN	
2	A2	B2	NaN	NaN	
3	NaN	NaN	А3	В3	
4	1 NaN	NaN	A4	В4	

	employee	group
0	Bob	Accounting
1	Jake	Engineering
2	Lisa	Engineering
3	Sue	HR

	employee	hire_date
0	Lisa	2004
1	Bob	2008
2	Jake	2012
3	Sue	2014

```
1 df3 = pd.merge(df1, df2)
2 df3
```

group	employee	
Accounting	Bob	0
Engineering	Jake	1
Engineering	Lisa	2
HR	Sue	3

	employee	hire_date
0	Lisa	2004
1	Bob	2008
2	Jake	2012
3	Sue	2014

```
1 df3 = pd.merge(df1, df2)
2 df3
```

	employee	group	hire_date
0	Bob	Accounting	2008
1	Jake	Engineering	2012
2	Lisa	Engineering	2004
3	Sue	HR	2014

Agregación es la más común de las tareas exploratorias

- Analizar tendencias o buscar patrones se hace difícil si el análisis es individual
- Para evitar esto, datos generalmente se analizan de manera agregada
- Además de esto, la agregación suele ser a nivel grupal y no global
- Pandas permite enfrentar estos problemas con una serie de mecanismos que facilitan la exploración

Función groupby permite combinar todo el procesamiento agregado

Pandas provee múltiples funciones de agregación

Aggregation	Description
count()	Total number of items
first(),last()	First and last item
<pre>mean(), median()</pre>	Mean and median
min(),max()	Minimum and maximum
std(),var()	Standard deviation and variance
mad()	Mean absolute deviation
prod()	Product of all items
sum()	Sum of all items

¿Existe alguna relación entre el método usado en el descubrimiento y el período orbital de un planeta?

```
1 import seaborn as sns
2 planets = sns.load_dataset('planets')
3 planets.head()
```

₽		method	number	orbital_period	mass	distance	year
	0	Radial Velocity	1	269.300	7.10	77.40	2006
	1	Radial Velocity	1	874.774	2.21	56.95	2008
	2	Radial Velocity	1	763.000	2.60	19.84	2011
	3	Radial Velocity	1	326.030	19.40	110.62	2007
	4	Radial Velocity	1	516.220	10.50	119.47	2009

1 planets.dropna().describe()

8		number	orbital_period	mass	distance	year
	count	498.00000	498.000000	498.000000	498.000000	498.000000
	mean	1.73494	835.778671	2.509320	52.068213	2007.377510
	std	1.17572	1469.128259	3.636274	46.596041	4.167284
	min	1.00000	1.328300	0.003600	1.350000	1989.000000
	25%	1.00000	38.272250	0.212500	24.497500	2005.000000
	50%	1.00000	357.000000	1.245000	39.940000	2009.000000
	75%	2.00000	999.600000	2.867500	59.332500	2011.000000
	max	6.00000	17337.500000	25.000000	354.000000	2014.000000

¿Existe alguna relación entre el método usado en el descubrimiento y el período orbital de un planeta?

```
1 planets.groupby('method')['orbital_period'].median()
```

method Astrometry 631.180000 Eclipse Timing Variations 4343.500000 Imaging 27500.000000 Microlensing 3300.000000 Orbital Brightness Modulation 0.342887 Pulsar Timing 66.541900 Pulsation Timing Variations 1170.000000 Radial Velocity 360.200000 Transit 5.714932 Transit Timing Variations 57.011000 Name: orbital_period, dtype: float64

0	<pre>1 planets.groupby('method')['year'].describe()</pre>								
₽		count	mean	std	min	25%	50%	75%	max
	method								
	Astrometry	2.0	2011.500000	2.121320	2010.0	2010.75	2011.5	2012.25	2013.0
	Eclipse Timing Variations	9.0	2010.000000	1.414214	2008.0	2009.00	2010.0	2011.00	2012.0
	Imaging	38.0	2009.131579	2.781901	2004.0	2008.00	2009.0	2011.00	2013.0
	Microlensing	23.0	2009.782609	2.859697	2004.0	2008.00	2010.0	2012.00	2013.0
	Orbital Brightness Modulation	3.0	2011.666667	1.154701	2011.0	2011.00	2011.0	2012.00	2013.0
	Pulsar Timing	5.0	1998.400000	8.384510	1992.0	1992.00	1994.0	2003.00	2011.0
	Pulsation Timing Variations	1.0	2007.000000	NaN	2007.0	2007.00	2007.0	2007.00	2007.0
	Radial Velocity	553.0	2007.518987	4.249052	1989.0	2005.00	2009.0	2011.00	2014.0
	Transit	397.0	2011.236776	2.077867	2002.0	2010.00	2012.0	2013.00	2014.0

4.0 2012.500000 1.290994 2011.0 2011.75 2012.5 2013.25 2014.0

Transit Timing Variations

```
1 import numpy as np
2 import pandas as pd
3 import seaborn as sns
4 titanic = sns.load_dataset('titanic')
5 titanic.head()
```

₽		survived	pclass	sex	age	sibsp	parch	fare	embarked	class	who	adult_male	deck	embark_town	alive	alone
	0	0	3	male	22.0	1	0	7.2500	S	Third	man	True	NaN	Southampton	no	False
	1	1	1	female	38.0	1	0	71.2833	С	First	woman	False	С	Cherbourg	yes	False
	2	1	3	female	26.0	0	0	7.9250	S	Third	woman	False	NaN	Southampton	yes	True
	3	1	1	female	35.0	1	0	53.1000	S	First	woman	False	С	Southampton	yes	False
	4	0	3	male	35.0	0	0	8.0500	S	Third	man	True	NaN	Southampton	no	True


```
1 titanic.groupby('sex')[['survived']].mean()
₽
           survived
       sex
    female 0.742038
           0.188908
     male
     1 titanic.groupby(['sex', 'class'])['survived'].aggregate('mean')
          class
   female First
                  0.968085
          Second
                  0.921053
                  0.500000
          Third
          First
   male
                   0.368852
                  0.157407
          Second
          Third
                  0.135447
   Name: survived, dtype: float64
```

Tablas dinámicas son otra forma de agrupar

- Nos permiten agregar valores utilizando múltiples dimensiones y funciones.
- Además, Pandas permite crear rangos para las variables a analizar, permitiendo un análisis más fino.

Tablas dinámicas nos permiten simplificar y extender la agrupación y agregación

```
1 titanic.pivot_table('survived', index='sex', columns='class')
    class
            First Second
                            Third
      sex
   female 0.968085 0.921053 0.500000
    male 0.368852 0.157407 0.135447
     1 age = pd.cut(titanic['age'], [0, 18, 80])
     2 titanic.pivot_table('survived', ['sex', age], 'class')
\Box
            class
                    First Second
                                     Third
      sex
              age
           (0, 18) 0.909091 1.000000 0.511628
    female
          (18, 80) 0.972973 0.900000 0.423729
           (0, 18] 0.800000 0.600000 0.215686
     male
          (18, 80) 0.375000 0.071429 0.133663
```

Tablas dinámicas nos permiten simplificar y extender la agrupación y agregación

```
1 fare = pd.qcut(titanic['fare'], 2)
     2 titanic.pivot_table('survived', ['sex', age], [fare, 'class'])
\Box
                  (-0.001, 14.454]
                                         (14.454, 512.329]
                  First Second Third
                                         First
                                                          Third
                                                  Second
           (0, 18]
                   NaN 1.000000 0.714286 0.909091 1.000000 0.318182
                   NaN 0.880000 0.444444 0.972973 0.914286 0.391304
           (18, 80]
           (0, 18]
                   NaN 0.000000 0.260870 0.800000 0.818182 0.178571
           (18, 80]
                    0.0 0.098039 0.125000 0.391304 0.030303 0.192308
```


Cómo podemos presentar todo esto en Python

- Existen varias maneras en Python de presentar resultado gráficamente. Todas comparten la facilidad de uso y gran calidad de la presentación.
- Con el fin de facilitar su uso, Pandas incorpora varias visualizaciones adecuadas a Series y DataFrame.

Una última pregunta, ¿cómo podemos encontrar outliers a partir de una visualización?

Una última pregunta, ¿cómo podemos encontrar outliers a partir de una visualización?

Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencia de la Computación

IIC2115 - Programación como herramienta para la ingeniería

Análisis de datos - Exploración, limpieza y depuración

Profesor: Hans Löbel