ROB3 S6 - Algorithmique

PROBLÈME DU VOYAGEUR DU COMMERCE

2 mars 2019

Florian CORMÉE Hugo DUARTE

Table des matières

Introduction	2
Partie n	2
Question 1	2
Question 2	2
Conclusion	3

Introduction

Du contenue

Partie n

Question 1

L'algorithme de Prim a pour complexité $\Theta((n+m)\log(n))$

"démonstration dans le cours"

Question 3

Soient A le 1-arbre optimal et T la tournée optimale.

- Si tous les sommets de A sont de degré 2, alors le 1-arbre est une tournée. Or A est optimale donc $A \equiv T$.
- Sinon il existe des sommets de A de degrés autres que 2, soient les sommets s_1, s_2, \ldots, s_k avec $k \in \mathbb{N}$

 $k \leq n \text{ tels que } \forall i \leq k, d(s_i) \neq 2.$

- Si $d(s_i) = 1$, alors cette feuille manque d'un voisin pour faire parti d'un tour.
- Si $d(s_i) > 2$, alors ce sommet possêde "trop" de voisins pour faire parti d'un tour.

Or les arêtes d'un 1-arbre optimale, sont toutes optimales au sens de leur longueur. Donc l'arête ajoutée aux feuilles de A pour faire de A une tournée ne sont pas de longueur optimale. Soit $(a_i)_{i\in\mathbb{N}}$ la longueur des arêtes ajoutées. De plus, les arêtes retirées aux noeuds de degrés supérieur à 2 sont optimales. Soit $(r_i)_{i\in\mathbb{N}}$ la longueur de chaque arête retirée. Alors on a :

$$d(T) = d(A) + \sum_{i} a_{i} - \sum_{i} r_{i}$$

Or les r_i sont de longueur optimale contrairement aux a_i . Donc,

$$\sum_{i} r_i \le \sum_{i} a_i$$

Donc,

$$d(T) \ge d(A)$$

Donc un 1-arbre optimale est de "longueur" inférieure ou égale à la tournée optimale. Donc un 1-arbre optimale est une borne inférieur de la longueur d'une tournée optimale.

Conclusion

Du contenue