Note (hw20.10). d = 3, so there are three evenly spaced solutions, $x = 3 \mod 8$ or $x = 3, 11, 19 \mod 24$. We can either multiply by 7 or think 7 as -1.

Question: is R[x] a field?

No, x is never a unit.

$$x(a_0 + a_1x + \ldots + a_nx^n) = a_0x + a_1x^2 + \ldots + a_nx^{n+1} \neq 0.$$

Since $x0 \neq 1$ by theorem and definition of unit.

Example (Evaluation Homomorphism). Idea: "plug in values" for x.

Evaluate a polynomial of $\mathbb{R}[x]$ at i. $f(x) = \sqrt{2} - \pi x^2 + \frac{36}{7}x^3$. Then

$$\phi_i(f(x)) = \sqrt{2} + \pi - \frac{36}{7}i \in \mathbb{C}.$$

 $\phi_{\alpha}: F[x] \to E$. Two fields $F, E, F \leq E, \alpha \in E, \phi_{\alpha}(f(x)) = f(\alpha)$.

Why is ϕ_{α} a ring homomorphism?

Consider $\phi_i : \mathbb{R}[x] \to \mathbb{C}$,

$$\phi_i((\sqrt{2} - \pi x)(\frac{3}{7} + 4x^3)) = \frac{3\sqrt{2}}{7} - \frac{3\pi}{7}i + 4\sqrt{2}i^2 - 4\pi i^3 \text{ if we distributive}$$
$$= \phi_i(\sqrt{2} - \pi x)\phi_i(\frac{3}{7} + 4x^3)$$

This is very trivial because we just substitute i for x and everything else stays the same.

Definition: kernel of ring homomorphism

The **kernel** of a ring homomorphism are elements that are mapped to zero.

What about ker ϕ_i ? Notice that $\phi_i(0) = \phi_i(1+x^2) = 0$.

What is im ϕ_i ? $\mathbb{R}[x] \to \mathbb{C}$.

Example (22.6). $\phi_0: \mathbb{Q}[x] \to \mathbb{R}$.

$$\phi_0(a_0 + a_1x + \ldots + a_nx^n) = a_0 + \ldots = a_0.$$

 ϕ_0 is a ring homomorphism and ϕ_0 takes the constant term imply constant term of a sum is the sum of the constant terms.

$$\phi_0(a(x) + b(x)) = \phi_0(a(x)) + \phi_0(b(x)).$$

Same with the products.

But consider $\phi_1: \mathbb{Q}[x] \to \mathbb{Q}$.

$$\phi_1(a_0 + a_1x_1 + \ldots + a_nx^n) = \sum_{i=1}^n a_i.$$

This is a ring homomorphism too! So does ϕ_{-1} .

Goal: we want to study the (zero) roots of polynomials.

" $\sqrt{2}$ is a root of the polynomial x^2-2 ". We need evaluation homomorphism $\phi_{\sqrt{2}}:\mathbb{Q}[x]\to\mathbb{R}$. Then $\phi_{\sqrt{2}}(f(x))=0$ means that $\sqrt{2}$ is a root of x^2-2 in \mathbb{R} .

Does $x^2 - 2 \in \mathbb{Q}[x]$ have any roots in \mathbb{Q} ? No.

Theorem

If $n \in \mathbb{N}$, then a positive k-th root of n is either an integer or irrational.

23:

Consider F[x] and F is field. So F[x] is a domain.

Example. We want to divide $sx^4 - 3x^3 + x^2 + 4x - 1$ by $x^2 - 2x + 3$ in $\mathbb{Z}_5[x]$. The reminder term will have less degree than the divisor or 0.