Applied Machine Learning

- Noise and Autoencoders
- Perceptual Loss
- Training a Denoising Autoencoder

Noise in Autoencoders

- Cost function sensitive to noise: $\|\mathscr{D}(Z_i, \theta_d) I_i\|^2$
- Denoising autoencoders account for potential noise at the input: noise(I_i)
 - Additive Gaussian Noise
 - per pixel: add independent samples of normal random variable
 - Salt and pepper noise
 - select at random a predefined number of pixels: replace with random selection of [0,1]
 - Masking Noise:
 - select at random a predefined number of pixels: set to 0
 - Masking Blocks
 - select predefined blocks of pixels: set to 0
 - selection of blocks to train the network to complete them in case they are blocked in source images

Denoising Autoencoders - Loss

- Perceptual loss
 - Accounts for perceptual changes at the output
 - Input to network: I_k
 - At layer i: Output: $D_i(I_k)$ dimensions: $W_i \times H_i \times F_i$
 - flattened: $\mathbf{d}_i(I_k)$ number of components: $W_iH_iF_i$
 - $_{\bullet}$ Feature reconstruction loss at layer i between images I_1 and I_2 :

$$\mathcal{L}_{\mathsf{fr},i}(I_1,I_2) = \frac{\|\mathbf{d}_i(I_1),\mathbf{d}_i(I_2)\|^2}{W_i H_i F_i}$$

Perceptual loss between images:

$$\mathcal{L}_{\mathsf{per}(I_1,I_2)} = \sum_{i} w_i \mathcal{L}_{\mathsf{fr},i}(I_1,I_2)$$

General Loss

$$\mathcal{L}_{gen}(\mathcal{D}(Z_i, \theta_d), I_i) = \lambda_1 \mathcal{L}_{per}(\mathcal{D}(Z_i, \theta_d), I_i) + \lambda_2 \|\mathcal{D}(Z_i, \theta_d) - I_i\|^2$$

Denoising Autoencoder - Training

- Dataset of N images $I_1, ... I_N$
- Apply model noise to each image I_i : noise(I_i)
- Output at encoder: $Z_i = \mathcal{E}(\text{noise}(I_i), \theta_e)$
- Output at decoder: $\mathcal{D}(Z_i, \theta_d)$
- Loss: $\mathcal{L}_{gen}(\mathcal{D}(Z_i, \theta_d), I_i)$
- Train through Stochastic Gradient Descent

- Noise and Autoencoders
- Perceptual Loss
- Training a Denoising Autoencoder

Applied Machine Learning