Projeto:

Acelerar operação de multiplicação e acumulação com deslocamento de bits com um Coprocessador de Hardware

> Computação Reconfigurável Universidade de Aveiro DETI

Gabriel Negri, (97157) Adalberto Jr. Vaz do Rosário, (105589)

Contents

1	Descrição do projeto	2
2	Algoritmo de convolução em VHDL	2
3	Block Design	3
4	Contribuição dos autores	3
5	Avaliação do trabalho	3

1 Descrição do projeto

Este projeto é Sistema com um acelerador de hardware para realizar operação que envolve a combinação de multiplicação, soma e deslocamento, entre dois vetores de 32 bits e um parâmetro de deslocamento de 32 bits. O sistema irá incluir hardware customizado (CovolutionCop_0, figura 1) para a execução da operação. O módulo irá interagir com o MicroBlaze através de uma interface AXI-Lite Slave.

Figure 1: Modulo ConvolutionCop 0

Após a interface AXI_Lite Slave do nosso modulo receber 4 vectores de 32 bits, é feito uma multiplicação entre os dois primeiros vectores, e é somado ao resultado do terceiro registro e no fim é feito o deslocamento a direita do valor e guardado no AXI Interconnect no endere, co base + 12. No final são verificados os resultados obtidos.

2 Algoritmo de convolução em VHDL

Essas operações são muito comuns em algoritmos de convolução usados em processamento de imagens, aprendizado profundo e filtragem de sinais. O hardware pode realizar múltiplas operações em paralelo, aumentando significativamente a velocidade em comparação com uma implementação puramente de software.

O módulo ConvolutionCop_0 foi implementado para simular um algoritmo de convolução. Contém quatro vetores de 32 bits. É multiplicado o primeiro

vetor e o segundo, depois o resultado obtido é somado ao terceiro vetor, que representa a soma acumulada das interações anteriores. Após isso o valor é deslocado para a direita e será enviado o valor de 32 bits.

3 Block Design

Figure 2: Block Design

4 Contribuição dos autores

- \bullet Adalberto Junior 50%
- \bullet Gabriel Negri 50%

5 Avaliação do trabalho

Nós tivemos alguns problemas com o vivado e com vitis que não conseguimos resolver, e isso impediu-nos de implementar a parte do softawe. E apeanas fizemos a primeira parte, ou seja só implementamos o hardware. Fizemos um programa em c, para exemplificar a implementação do software.