Tema 2

Modelado de sistemas

Javier Valls

Dpto. Ingeniería Electrónica

Contenidos

- 1. Introducción y objetivos
- 2. Transformada de Laplace
- 3. Transformada Z
- 4. Función de transferencia en s y Z
- 5. Modelado de sistemas físicos
- 6. No linealidades y linealización
- 7. Digitalización de la planta
- 8. Diagrama de bloques del sistema
- 9. Bibliografía

Introducción y objetivos

Introducción

Para analizar y diseñar el sistema de control necesitamos disponer de modelos matemáticos de la planta y del sistema completo

En este tema se van a proporcionar las herramientas básicas para

- · la realización de modelos matemáticos de la planta
- · y la obtención de las funciones de transferencia del sistema

2

Objetivos

Al finalizar este tema el alumno será capaz de

- calcular la transformada de Laplace y Z, y sus inversas, utilizando tablas y Matlab
- utilizar las transformadas de Laplace y Z para obtener funciones de transferencia
- · obtener la función de transferencia de sistemas físicos sencillos
- obtener la función de transferencia discretizada de un sistema físico modelado en el dominio continuo
- obtener una función de transferencia linealizada de un sistema no lineal
- obtener la función de transferencia de sistemas representados a través de un diagrama de bloques
- modelar con Matlab funciones de transferencia en el dominio continuo y discreto

- · Los sistemas representados con las ec. diferenciales dificultan
 - · la obtención de la función de transferencia
 - · el modelado con diagramas de bloques
- · La transformada de Laplace soluciona ese problema
- Transforma la función de la variable tiempo (t) a una variable compleja (s)
- Nos da información del tipo de respuesta transitoria de los sistemas y de su estabilidad

Transformada de Laplace $(t \rightarrow s)$

$$\mathscr{L}{f(t)} = F(s) = \int_0^\infty f(t)e^{-st}dt$$

Función de variable compleja:

$$\left[s = \sigma + j\omega \right]$$

Transformada inversa de Laplace (s →t)

$$\left[\mathscr{L}^{-1} \{ F(s) \} = \frac{1}{2\pi j} \int_{\sigma - j\infty}^{\sigma + j\infty} F(s) e^{st} ds = f(t) u(t) \right]$$

No se calcularán integrales: utilizaremos tablas, teoremas y Matlab

Transformada de *Laplace* : tabla de teoremas

Teorema	Nombre
$\mathscr{L}\{kf(t)\}=kF(s)$	linealidad: proporcionalidad
$\mathcal{L}{f_1(t) + f_2(t)} = F_1(s) + F_2(s)$	linealidad: superposición
$\mathscr{L}\{e^{-at}f(t)\}=F(s+a)$	Desplazamiento frecuencial
$\mathscr{L}\{f(t-T)\}=e^{-sT}F(s)$	Desplazamiento temporal
$\mathscr{L}\{f(at)\} = \frac{1}{a}F(\frac{s}{a})$	Escalado temporal
$\mathscr{L}\left\{\frac{\partial^n f(t)}{\partial t^n}\right\} = s^n F(s)$	Diferenciación
$\mathscr{L}\left\{\int_{0^{-}}^{t} f(t)dt = \frac{F(s)}{s}\right\}$	Integración
$f(0) = \lim_{t \to 0} f(t) = \lim_{s \to \infty} sF(s)$	Valor inicial
$f(\infty) = \lim_{t \to \infty} f(t) = \lim_{s \to 0} sF(s)$	Valor final

Transformada de Laplace : tabla de señales típicas

E Transformada de *Laplace* de $x(t) = 3 + 4e^{-2t}$ con $t \ge 0$

$$\mathcal{L}\lbrace x(t)\rbrace = \mathcal{L}\lbrace 3u(t)\rbrace + \mathcal{L}\lbrace 4e^{-2t}u(t)\rbrace$$
$$= 3\mathcal{L}\lbrace u(t)\rbrace + 4\mathcal{L}\lbrace e^{-2t}u(t)\rbrace =$$
$$= 3\frac{1}{s} + 4\frac{1}{s+2}$$

$$\to \mathcal{L}\{x(t)\} = \frac{3}{s} + \frac{4}{s+2}$$

Transf. inversa de Laplace : Expansión parcial de fracciones

La transformada inversa de Laplace o cálculo complejo Simplificación o expansión parcial de fracciones

- · descomposición es una suma de términos simples
- · se realiza la transformada inversa de cada término
- **E** Cálculo de la transformada inversa de *Laplace* de $C(s) = \frac{6(s+1)}{s(s+2)(s+3)}$

$$C(s) = \frac{6(s+1)}{s(s+2)(s+3)} = \frac{1}{s} + \frac{3}{s+2} - \frac{4}{s+3}$$

$$c(t) = \mathcal{L}^{-1}\{C(s)\} = \mathcal{L}^{-1}\{\frac{1}{s}\} + \mathcal{L}^{-1}\{\frac{3}{s+2}\} - \mathcal{L}^{-1}\{\frac{4}{s+3}\}$$

$$= (1+3e^{-2t} - 4e^{-3t})u(t)$$

Transf. inversa de Laplace : Expansión parcial de fracciones

Posibles casos de descomposición en fracciones simples:

Caso 1: raíces de denominador reales y distintas

$$F(s) = \frac{N(s)}{D(s)} = \frac{N(s)}{(s-p_1)(s-p_2)\cdots(s-p_n)} = \frac{K_1}{s-p_1} + \frac{K_2}{s-p_2} + \cdots + \frac{K_n}{s-p_n}$$

Caso 2: raíces de denominador reales y repetidas

$$F(s) = \frac{N(s)}{D(s)} = \frac{N(s)}{(s-p_1)^r(s-p_2)} = \frac{K_1}{s-p_1} + \frac{K_2}{(s-p_1)^2} + \dots + \frac{K_r}{(s-p_1)^r} + \frac{K_{r+1}}{s-p_2}$$

Caso 3: raíces de denominador reales y complejas conjugadas

$$F(s) = \frac{N(s)}{D(s)} = \frac{N(s)}{(s-p_1)(s^2+as+b)\cdots} = \frac{K_1}{s-p_1} + \frac{K_2s+K_3}{s^2+as+b} + \cdots$$

M

Descomposición en fracciones simples de $C(s) = \frac{6(s+1)}{s(s+2)(s+3)}$

```
% Polinomio del numerador
>>  num =poly(-1)*6
num =
% Polinomio del denominador
>> den = poly([0 -2 -3])
den =
% Decomposición en fracciones
>> [r,p,k]=residue(num,den)
r =
   -4.0000
3.0000
1.0000
р
   -3.0000
-2.0000
k =
```

$$C(s) = \frac{6(s+1)}{s(s+2)(s+3)}$$

$$= \frac{-4}{s+3} + \frac{3}{s+2} + \frac{1}{s}$$

$$c(t) = -4e^{-3t} + 3e^{-2t} + 1$$

- Las señales discretas se representan como secuencias de muestras (ej. $x[nT_m] = (1/4)^{nT_m} \rightarrow x[n] = (1/4)^n$)
- Los sistemas representados con mediante secuencias discretas dificultan
 - · la obtención de la función de transferencia
 - · el modelado con diagramas de bloques
- · La transformada Z soluciona ese problema
- Transforma la función de la variable tiempo (nT_m) a una variable compleja (z)
- Nos da información del tipo de respuesta transitoria de los sistemas y de su estabilidad

Discretización de una señal continua

Transformada de Laplace ($\mathcal{L}\{\}$)

$$X(s) = \int_0^\infty x(t)e^{-st}dt \qquad X^*(s) = \int_0^\infty x^*(t)e^{-st}dt = \sum_{n=0}^\infty x(nT_m)e^{-nT_ms}$$

$$\text{Transformada Z:} \quad X(z) = \mathscr{Z}\{x(t)\} = \mathscr{L}\{x^*(t)\}\big|_{z=e^{T_ms}}$$

$$X(z) = \sum_{n=0}^\infty x(n)z^{-n} \qquad Z = e^{T_ms}$$

Transformada Z (n \rightarrow z)

$$\mathscr{Z}{f(n)} = F(z) = \sum_{0}^{\infty} f(n)z^{-n}$$

Función de variable compleja:

$$z = e^{T_m s} = e^{T_m(\sigma + j\omega)} = e^{\sigma T_m} e^{j\omega T_m} = e^{\sigma T_m} [\cos(\omega T_m) + j \sin(\omega T_m)] = e^{\sigma T_m} \angle \omega T_m$$

Transformada Z inversa ($z \rightarrow nT_m$)

$$\mathscr{Z}^{-1}\{F(z)\} = \frac{1}{2\pi j} \oint_{C} F(z)z^{n-1} = f(n)$$

No se calcularán integrales: utilizaremos tablas, teoremas y Matlab

Transformada Z: tabla de teoremas

Nombre	Teorema
$\mathscr{Z}\{kf(n)\}=kF(z)$	linealidad: proporcionalidad
$\mathscr{Z}{f_1(n) + f_2(n)} = F_1(z) + F_2(z)$	linealidad: superposición
$\mathscr{Z}\{a^{-n}f(n)\}=F(az)$	Multiplicación por exponencial
$\mathscr{Z}\{f(n-k)\}=z^{-k}F(z)$	Desplazamiento temporal
$f(0) = \lim_{n \to 0} f(n) = \lim_{z \to \infty} F(z)$	Valor inicial
$f(\infty) = \lim_{n \to \infty} f(n) = \lim_{z \to 1} (1 - z^{-1}) F(z)$	Valor final

Transformada Z: tabla de señales típicas

Transformada Z inversa: Expansión parcial de fracciones

Posibles casos de descomposición en fracciones simples:

Caso 1: raíces de denominador reales y distintas

$$F(z) = \frac{N(z)}{D(z)} = \frac{N(z)}{(1-p_1z^{-1})(1-p_2z^{-1})\cdots(1-p_nz^{-1})} = \frac{K_1}{1-p_1z^{-1}} + \frac{K_2}{1-p_2z^{-1}} + \cdots + \frac{K_n}{1-p_nz^{-1}}$$

Caso 2: raíces de denominador reales y repetidas

$$F(z) = \frac{N(z)}{D(z)} = \frac{N(z)}{(1-p_1z^{-1})^r(1-p_2z^{-1})} = \frac{K_1}{1-p_1z^{-1}} + \frac{K_2}{(1-p_1z^{-1})^2} + \cdots + \frac{K_r}{(1-p_1z^{-1})^r} + \frac{K_{r+1}}{1-p_2z^{-1}}$$

Caso 3: raíces de denominador reales y complejas conjugadas

$$F(z) = \frac{N(z)}{D(z)} = \frac{N(z)}{(1-p_1z^{-1})(1+az^{-1}+bz^{-2})\cdots} = \frac{K_1}{1-p_1z^{-1}} + \frac{K_2+K_3z^{-1}}{1+az^{-1}+bz^{-2}} + \cdots$$

M

Descomposición en fracciones de $C(z) = \frac{2-z^{-1}}{1-z^{-1}+0.21z^{-2}}$

```
% Polinomio numerador
>> num=[2 -1];
% Polinomio denominador
>> den=[1 -1 0.21];
% Residuos
>> [r,p,k]=residuez(num,den)
r =
                           C(z) = \frac{2 - z^{-1}}{1 - z^{-1} + 0.21z^{-2}}
     0.7000
     0.3000
                               c(n) = (0.7)^n + (0.3)^n
k =
```

Función de transferencia en s y Z

Función de transferencia en sistemas continuos

Sistema LTI con entrada x(t) y salida y(t) modelado con su ec. diferencial:

$$\left[a_n \frac{\partial^n y(t)}{\partial t^n} + a_{n-1} \frac{\partial^{n-1} y(t)}{\partial t^{n-1}} + \dots + a_0 y(t) = b_m \frac{\partial^m x(t)}{\partial t^m} + b_{m-1} \frac{\partial^{m-1} x(t)}{\partial t^{m-1}} + \dots + b_0 x(t)\right]$$

Transformada de Laplace:

$$(a_n s^n Y(s) + a_{n-1} s^{n-1} Y(s) + \dots + a_0 Y(s) = b_m s^m X(s) + b_{m-1} s^{m-1} X(s) + \dots + b_0 X(s))$$

$$(a_n s^n + a_{n-1} s^{n-1} + \dots + a_0) Y(s) = (b_m s^m + b_{m-1} s^{m-1} + \dots + b_0) X(s)$$

Función de transferencia:

$$\frac{Y(s)}{X(s)} = H(s) = \frac{b_m s^m + b_{m-1} s^{m-1} + \dots + b_0}{a_n s^n + a_{n-1} s^{n-1} + \dots + a_0}$$

Representación como bloque:

$$H(s) = \frac{b_m s^m + b_{m-1} s^{m-1} + \dots + b_0}{a_n s^n + a_{n-1} s^{n-1} + \dots + a_0} Y(s)$$

Función de transferencia en sistemas continuos

E Función de transferencia $\frac{V_o(s)}{V_i(s)}$ de un circuito R-C

Ec. diferencial del circuito R-C

$$\underbrace{\begin{bmatrix} v_i(t) = RC \frac{\partial v_o(t)}{\partial t} + v_o(t) \end{bmatrix}}_{\mathcal{L}\{\}}$$

$$V_i(s) = RCV_o(s)s + V_o(s)$$

$$V_i(s) = (RCs + 1)V_o(s)$$

$$H(s) = \frac{V_o(s)}{V_i(s)} = \frac{1}{RCs + 1} = \frac{1/RC}{s + 1/RC}$$
Función de transferencia

$$\begin{array}{c|c}
 & R \\
 & + & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\
 & + & \\$$

E Respuesta temporal del circuito R-C a $v_i(t) = u(t)$

$$V_o(s) = H(s) \cdot V_i(s) = \frac{1/RC}{s + 1/RC} \cdot \frac{1}{s} = \frac{1}{s} + \frac{-1}{s + 1/RC}$$

$$V_0(t) = \mathcal{L}^{-1}\{V_0(s)\} = \mathcal{L}^{-1}\{\frac{1}{s}\} + \mathcal{L}^{-1}\{\frac{-1}{s+1/RC}\} = (1 - e^{-t/RC})u(t)$$

Funciones de transferencia en s: tf

% Función de transferencia a partir de los % polimios numerador y denominador

G1s =

Continuous-time transfer function.

>> whos Name	Size	Bytes	Class	Attributes
G1s d1	1x1 1x3	1217 24	double	
n1	1x2	16	double	

Funciones de transferencia en s: zpk

```
% Función de transferencia a partir de las raíces
% del numerador (ceros) v del denominador (polos)
>> z1=[-1]; % Vector con ceros
>> p1=[0 0 -3]; % Vector con polos
>> k1=6; % Cte.multiplicativa de la TF
>> G2s=zpk(z1,p1,k1)
G2s =
  6 (s+1)
 s^2 (s+3)
Continuous-time zero/pole/gain model.
```

>> whos Name	Size	Bytes	Class	Attributes
G2s k1 p1 z1	1x1 1x1 1x3 1x1	8	zpk double double double	22

Funciones de transferencia en s: tf directo

% Construcción directa con la veriable s

3

Continuous-time transfer function.

$$G3s =$$

Continuous-time transfer function.

>> whos Name	Size	Bytes	Class	Attributes
G3s	1x1	1233	tf	
s	1x1	1201	tf	

M

Funciones de transferencia en s: tfdata y zpkdata

```
% Coeficientes del numerador y denominador de
% una función de transferencia definida con "zpk"
>> [n2,d2]=tfdata(G2s,'v')
n2 =
d2 =
% Polos y ceros de una función de transferencia
% definida mediante "tf"
>> [z3,p3,k3]=zpkdata(G3s,'v')
z3 =
    -1
p3 =
k3 =
```

```
M
```

Funciones de transferencia en s: tf2zp y zp2tf

```
% Polos, ceros y k a partir de los coeficientes
% del numerador v denominador de "tf"
>> [z2,p2,k2]=tf2zp(n2,d2)
z2 =
    -1
p2 =
k2 =
% Coeficientes del numerador y denominador a
% de z1, p1 y k1 de "zpk"
>> [n3,d3]=zp2tf(z1,p1,k1)
n3 =
     0
           0
d3 =
```

Funciones de transferencia en s: conversión entre tf y zpk

26

Función de transferencia en sistemas discretos

La función de transferencia en el dominio discreto

- · A partir de las ecuaciones en diferencias
 - · implementación de controladores
 - · modelado de sistemas físicos directamente en tiempo discreto
- · A partir de la función de transferencia en el dominio continuo s
 - · modelado de la planta a partir de su $G_p(s)$
 - · necesitamos conocer el modelo del ADC y DAC

Función de transferencia a partir de ecuaciones en diferencias

Sistema con entrada x(n) y salida y(n) modelado con su ec. en diferencias:

$$a_{N}y(n-N)+a_{N-1}y(n-N+1)+\cdots+a_{0}y(n)=b_{M}x(n-M)+b_{M-1}x(n-M+1)+\cdots+b_{0}x(n)$$

Transformada Z:

$$\begin{bmatrix}
a_N z^{-N} Y(z) + a_{N-1} z^{-N+1} Y(z) + \dots + a_0 Y(z) = b_M z^{-M} X(z) + b_{M-1} z^{-M+1} X(z) + \dots + b_0 X(z) \\
(a_N z^{-N} + a_{N-1} z^{-N+1} + \dots + a_0) Y(z) = (b_M z^{-M} + b_{M-1} z^{-M+1} + \dots + b_0) X(z)
\end{bmatrix}$$

Función de transferencia:

$$H(z) = \frac{Y(z)}{X(z)} = \frac{b_M z^{-M} + b_{M-1} z^{-M+1} + \dots + b_0}{a_N z^{-N} + a_{N-1} z^{-N+1} + \dots + a_0}$$

Funciones de transferencia en z

```
>> Tm = 0.1; % Periodo de muestreo
% Función de transferencia con tf
>> G1z=tf(4,[1 1.5 0.2],Tm)
G17 =
  7^2 + 1.57 + 0.2
Sample time: 0.1 seconds
Discrete-time transfer function.
% Función de transferencia con zpk
\Rightarrow G2z=zpk(.5,[1 1 -3],10,Tm)
G27 =
  10 (z-0.5)
  (z-1)^2 (z+3)
Sample time: 0.1 seconds
Discrete-time zero/pole/gain model.
```

Funciones de transferencia en z

```
% Construcción directa con la veriable z
>> z=tf('z',Tm) % Define z como objeto tf
z =
  7
Sample time: 0.1 seconds
Discrete-time transfer function.
>> G3z=6*z/(z-0.3)
G37 =
   6 z
  z - 0.3
Sample time: 0.1 seconds
Discrete-time transfer function.
```

Modelado de sistemas físicos

Modelado matemático de sistemas físicos

Función de transferencia en redes eléctricas

- · Aplicación de las leyes de Kirchhoff
 - Suma de voltajes en lazos: $\sum v_i = 0$
 - Suma de corrientes en nodos: $\sum i_i = 0$

Relación (v-i), (i-v) y (v-q)

Component	Voltage-current	Current-voltage	Voltage-charge	Impedance $Z(s) = V(s)/I(s)$	Admittance $Y(s) = I(s)/V(s)$
— (— Capacitor	$v(t) = \frac{1}{C} \int_0^1 i(\tau) d\tau$	$i(t) = C \frac{dv(t)}{dt}$	$v(t) = \frac{1}{C}q(t)$	$\frac{1}{Cs}$	Cs
-_ Resistor	v(t) = Ri(t)	$i(t) = \frac{1}{R}v(t)$	$v(t) = R \frac{dq(t)}{dt}$	R	$\frac{1}{R} = G$
	$v(t) = L \frac{di(t)}{dt}$	$i(t) = \frac{1}{L} \int_0^1 v(\tau) d\tau$	$v(t) = L \frac{d^2 q(t)}{dt^2}$	Ls	$\frac{1}{Ls}$

Función de transferencia en redes eléctricas

E Función de transferencia de un circuito R-C

El modelo se obtiene aplicando la 2ª ley de Newton: $\sum \mathbf{F} = m \cdot \mathbf{a}$

$$\sum \mathbf{F} = m \cdot \mathbf{a}$$

- $\cdot \sum F$: vector suma de todas las fuerzas aplicadas (N, Newtons)
- a: vector aceleración (m/s²)
- · m: masa del cuerpo (kg)

Los sistemas mecánicos se modelan con 3 componentes lineales pasivos

- Amortiguador $\rightarrow b$, cte de amortiguación viscosa (N·s/m)
- Resorte $\rightarrow K$, cte del resorte (N/m)
- Masa \rightarrow (kg)

Relación fuerza ← velocidad y desplazamiento de los componentes pasivos lineales

Component	Force-velocity	Force-displacement	Impedence $Z_M(s) = F(s)/X(s)$
Resorte $x(t)$ $f(t)$	$f(t) = K \int_0^t v(\tau) d\tau$	f(t) = Kx(t)	K
Amortiguador $x(t)$ b	f(t) = b v(t)	$f(t) = b \frac{dx(t)}{dt}$	b s
Masa $x(t)$ $f(t)$	$f(t) = M \frac{dv(t)}{dt}$	$f(t) = M \frac{d^2 x(t)}{dt^2}$	Ms^2

E Velocidad de crucero

Objetivo: Mantener la velocidad aunque haya perturbaciones

- Variable a controlar $\rightarrow V$
- Fuerza aplicada para mantener la velocidad $\rightarrow u$
- Fricción por rozamiento → b·v

E Posición de un ascensor

Objetivo: Recorrer la misma distancia aunque haya perturbaciones

- Variable a controlar $\rightarrow x$
- Fuerza aplicada ightarrow u'
- Fricción → b·v

El modelo se obtiene aplicando la 2ª ley de Newton: $T = J \cdot \alpha$

- T: suma de todas las fuerzas par (torques) aplicadas (N·m)
- α : aceleración angular (rad/s²)
- · J: momento de inercia del cuerpo (kg⋅m²)

Los sistemas mecánicos se modelan con 3 componentes lineales pasivos

- Amortiguador \rightarrow D, cte de amortiguación viscosa (N·m·s/rad)
- Resorte \rightarrow K, cte del resorte (N·m/rad)
- · Inercia

Relación par (torque)←→velocidad y desplazamiento angular de los componentes pasivos lineales

Component	Torque-angular velocity	Torque-angular displacement	Impedence $Z_M(s) = T(s)/\theta(s)$
Resorte K	$T(t) = K \int_0^t \omega(\tau) d\tau$	$T(t) = K\theta(t)$	K
Amorti- guador $T(t) \theta(t)$	$T(t) = D\omega(t)$	$T(t) = D\frac{d\theta(t)}{dt}$	Ds
Inercia $T(t) \theta(t)$	$T(t) = J \frac{d\omega(t)}{dt}$	$T(t) = J\frac{d^2\theta(t)}{dt^2}$	Js^2

E Función de transferencia torque-velocidad angular

Obj. Control de velocidad angular

- Variable a controlar $\rightarrow \omega$
- · Torque aplicado o au
- Fricción $\rightarrow D \cdot \omega$

E Función de transferencia torque-angulo

Obj. Control de posición angular

- Variable a controlar $\rightarrow \theta$
- Torque aplicado o au
- Fricción $\rightarrow D \cdot \omega$

τ θ D

Motor de DC

Funcionamiento básico

F: fueza inducida

I: corriente

L: longitud de la bobina

 τ : par fuerza (torque)

Ra: resistencia armadura

La: inductancia armadura

 v_a : voltaje aplicado a la armadura

ia: corriente que circula en la

armadura

v_e: voltaje inducido por la rotación de la bobina ω_{m} : velocidad angular de rotación

D: coeficiente de fricción

J: momento de inercia de la carga

 $\tau_{\rm m}$: par fuerza del motor (torque)

E Función de transferencia velocidad angular-voltaje (Ω_m/V_a)

Ecuación eléctrica:

$$v_a(t) = R \cdot i_a(t) + L \frac{\partial i_a(t)}{\partial t} + v_e(t)$$

Ecuación mecánica:

$$\tau_m(t) = J \frac{\partial \omega_m(t)}{\partial t} + D \cdot \omega_m(t)$$

Acoplo electro-mecánico $(k_e=k_t)$

Fuerza contraelectromotriz:
$$v_e(t) = k_e \cdot \omega_m(t)$$

Fuerza par:

$$\tau_m(t)=k_t\cdot i_a(t)$$

E Función de transferencia velocidad angular-voltaje (Ω_m/V_a)

Ecuación eléctrica:

$$V_a(t) = R \cdot I_a(t) + L \frac{\partial I_a(t)}{\partial t} + V_e(t)$$

$$V_a(s) = R \cdot I_a(s) + L \cdot I_a(s) \cdot s + V_e(s)$$

Ecuación mecánica:

$$\tau_m(t) = J \frac{\partial \omega_m(t)}{\partial t} + D \cdot \omega_m(t)$$

$$T_m(s) = J \cdot \Omega_m(s) \cdot s + D \cdot \Omega_m(s)$$

Acoplo electro-mecánico $(k_e=k_t)$

Fuerza contraelectromotriz:
$$v_{e}(t) = k_{e} \cdot \omega_{m}(t)$$
Fuerza par:
$$\tau_{m}(t) = k_{t} \cdot i_{a}(t)$$

$$\mathcal{L}$$

$$V_{e}(s) = k_{e} \cdot \Omega_{m}(s)$$

$$T_{m}(s) = k_{t} \cdot l_{a}(s)$$

E Función de transferencia velocidad angular-voltaje (Ω_m/V_a) $V_a(s) = (R + L \cdot s) \cdot I_a(s) + V_e(s) \longmapsto V_a(s) = (R + L \cdot s) \cdot I_a(s) + k_e \cdot \Omega_m(s)$ $V_e(s) = k_e \cdot \Omega_m(s)$ $T_m(s) = J \cdot \Omega_m(s) \cdot s + D \cdot \Omega_m(s)$ $I_m(s) = k_t \cdot I_a(s)$ $I_a(s) = \frac{I_m(s)}{k_t} = \frac{J \cdot \Omega_m(s) \cdot s + D \cdot \Omega_m(s)}{k_t}$ $V_a(s) = \frac{(R+L\cdot s)\cdot (D+J\cdot s)}{k_*} \cdot \Omega_m(s) + k_e \cdot \Omega_m(s)$ $\qquad \qquad \bullet \frac{\Omega_m(s)}{V_a(s)} = \frac{k_t/(R \cdot J)}{s + \frac{1}{I}(D + \frac{k_e \cdot k_t}{R})}$ si L≪R $\Omega_m(s)$ $V_0(s) = \frac{1}{(R+L\cdot s)\cdot (D+J\cdot s) + k_e \cdot k_t}$

Linealidad

- Los modelos presentados anteriormente corresponden a sistemas LTI
- Sistema lineal, y=f(x), se caracteriza por las propiedades de superposición y proporcionalidad

$$\begin{cases} x = a \cdot x_1 + b \cdot x_2 \rightarrow y = a \cdot f(x_1) + b \cdot f(x_2) \end{cases}$$

- La mayoría de sistemas no son lineales, pero se comportan como lineales en cierto rango (ej. saturación en los amplificadores)
- linealizar un sistema no lineal puede ayudar a conocer su comportamiento en ciertas zonas

No linealidad

E No linealidades en motores de DC

- Zona muerta: el motor no responde a pequeños voltajes debido a la fricción
- Saturación; la velocidad no aumenta a partir de un cierto voltaje
- Histéresis (backlash) en los engranajes: si los engranajes tienen holgura, pequeños cambios del voltaje no producen cambios en la posición

linealización de un sistema no lineal

Objetivo: modelar comportamiento lineal en un "punto de equilibrio" (A)

- $f(x) \rightarrow$ función no lineal
- Pequeñas variaciones de la entrada: $\delta x \to \text{variaciones}$ lineales a la salida: $\delta f(x) = m \cdot \delta x$

Punto de equilibrio: $A \rightarrow [x_0, f(x_0)]$

Aproximación con serie de Taylor de 1^{er} orden:

$$f(x) \approx f(x_0) + m \cdot (x - x_0) = f(x_0) + m \cdot \delta x$$

Pendiente de f(x) en x_0 : $m = \frac{\partial f(x)}{\partial x}|_{x_0}$

linealización de un sistema no lineal

E linealización de f(θ) = cos(θ) alrededor de θ 0 = -45°

Punto de equilibrio: $[\theta_0, cos(\theta_0)]$ Aproximación de 1^{er} orden:

$$\cos(\theta_0 + \delta\theta) \approx \cos(\theta_0) + m \cdot \delta\theta$$

Pendiente de f(x) en x_0 :

$$m = \frac{\partial \cos(\theta_0 + \delta\theta)}{\partial \theta} \Big|_{\theta_0} = -\sin(\theta_0) = \frac{\sqrt{2}}{2}$$

linealización de $f(\theta) = \cos(\theta)$ alrededor de $\theta_0 = -45^{\circ}$:

$$\cos(\theta_0 + \delta\theta) \approx \cos(\theta_0) + \frac{\sqrt{2}}{2} \cdot (\theta - \theta_0)$$

El Control de posición de un brazo con hélice propulsora

Obj. El brazo debe mantenerse estable en el ángulo dado.

Se asume que el brazo tiene una masa despreciable frente a la del motor y que no hay fuerzas de fricción

- · Variable a controlar ightarrow heta
- Longitud del brazo $\rightarrow r$
- Par aplicado $\rightarrow r \cdot F_h$
- Masa del motor $\rightarrow m$
- Momento de inercia del sistema → J=m·r²

Modelo (2ª ley de Newton):
$$\sum \tau(\mathbf{t}) = J \cdot \alpha(\mathbf{t}) \longrightarrow r \cdot F_h - r \cdot F_g \cdot \cos(\theta) = J \cdot \alpha$$
Ec. diferencial no lineal
$$F_h = m \cdot r \cdot \ddot{\theta} + F_g \cdot \cos(\theta) \longrightarrow r \cdot F_h - r \cdot F_g \cdot \cos(\theta) = J \cdot \ddot{\theta}$$

E Brazo con hélice propulsora: modelo lineal en un punto de equilibrio

En el punto de equilibrio $\theta_0 = -45^\circ$ el brazo está estable (quieto) El motor aplica la fuerza para mantenerlo en $\theta_0 \to F_h\big|_{\theta_0} = F_g \cdot cos(\theta_0)$ Solo habrá pequeños cambios alrededor de $\theta_0 \to \theta = \theta_0 + \delta(\theta)$

E Brazo con hélice propulsora: modelo lineal en un punto de equilibrio

En el punto de equilibrio $\theta_0 = -45^\circ$ el brazo está estable (quieto) El motor aplica la fuerza para mantenerlo en $\theta_0 \to F_h\big|_{\theta_0} = F_g \cdot cos(\theta_0)$ Solo habrá pequeños cambios alrededor de $\theta_0 \to \theta = \theta_0 + \delta(\theta)$

$$\delta F_h = m \cdot r \cdot \frac{\partial^2(\delta\theta)}{\partial t^2} + F_g \cdot \frac{\sqrt{2}}{2} \cdot \delta\theta$$

$$\Delta F_h(s) = m \cdot r \cdot \Delta \theta(s) \cdot s^2 + F_g \cdot \frac{\sqrt{2}}{2} \cdot \Delta \theta(s)$$

$$\Delta F_h(s) = (m \cdot r \cdot s^2 + F_g \cdot \frac{\sqrt{2}}{2}) \cdot \Delta \theta(s)$$
Function de transferencia
$$H(s) = \frac{\Delta \theta(s)}{\Delta F_h(s)} = \frac{1}{m \cdot r \cdot s^2 + F_g \cdot \frac{\sqrt{2}}{2}}$$

$$F_g \cdot \cos(\theta)$$

$$F_g = m \cdot g$$

Digitalización de la planta

Sistema realimentado con control digital

Se requiere discretizar la conversión D/A, la planta y la conversión A/D para disponer de un modelo en tiempo discreto del sistema

Modelos del conversor D/A y del A/D

Modelo del conversor D/A → muestreo y ZOH

Modelo del conversor A/D → discretización

Retención de orden cero

Retención de orden cero (zero-order hold, ZOH)

Muestreo y retención de orden cero

Discretización de la función de transferencia de la planta

Conexión de la planta en el sistema de control digital

$$x(n)$$
 D/A $x'(t)$ $x'(s)$ $x'(s)$ $x'(s)$ $x'(s)$ $x'(s)$ $x'(s)$ $x'(s)$ $x'(s)$ $x'(s)$ $x'(s)$

Sustituimos los modelos del D/A y D/A

$$x(n)$$
 $X(z)$
 T_m
 $x^*(t)$
 $X'(s)$
 $X'(t)$
 $X'(s)$
 $Y(s)$
 $Y(s)$
 $Y(s)$
 $Y(s)$
 $Y(s)$
 $Y(s)$

Función de transferencia $Gp(z) = \frac{Y(z)}{X(z)}$

$$G_p^*(s) = \frac{Y(s)}{X^*(s)} = H_{ZOH}(s)G_p(s) \xrightarrow{\mathscr{L}^{-1}\{\}} g^*(t) \longrightarrow g^*(nT_m) \xrightarrow{\mathscr{L}\{\}} G_p^*(z)$$

En Matlab este proceso se realiza con la función: Gpz = c2d(Gps, 'zoh')

Discretización de la planta

```
% Función de transferencia continua
>> s=tf('s');
>> Gps=10/(s*(s+10))
Gps =
      10
  s^2 + 10 s
Continuous-time transfer function.
>> Tm=.01;
% Discretización de Gps
>> Gpz=c2d(Gps,Tm,'zoh')
Gpz =
  0.0004837 z + 0.0004679
  z^2 - 1.905 z + 0.9048
Sample time: 0.01 seconds
Discrete-time transfer function.
```

Diagrama de bloques del sistema

Diagrama de bloques

Los sistemas se representan mediante la interconexión de sub-sistemas formando un diagrama de bloques

Nos interesa obtener la función de transferencia del sistema para analizar su comportamiento

Componentes de los diagramas de bloques

Diagrama de bloques

Conexión en cascada

TF equivalente de conexión en serie de bloques

```
% Definición de TFs
>> G1=tf(3,[1 3])
G1 =
 s + 3
Continuous-time transfer function.
>> G2=tf(4,[1 1.5,4])
G2 =
  s^2 + 1.5 s + 4
Continuous-time transfer function.
>> Gs1=series(G1,G2) % TF equivalente serie
Gs1 =
   ____12____
  s^3 + 4.5 s^2 + 8.5 s + 12
Continuous-time transfer function.
>> Gs2=G1*G2 % TF equiv. serie con operación directa
Gs2 =
  s^3 + 4.5 s^2 + 8.5 s + 12
Continuous-time transfer function.
```

TF equivalente de conexión en paralelo de bloques

Continuous-time transfer function.

 $3 s^2 + 8.5 s + 24$ $s^3 + 4.5 s^2 + 8.5 s + 12$

Diagrama de bloques

Conexión con realimentación

M

TF equivalente de conexión realimentada de bloques

```
>> G=G1; % TF directa (planta y controlador)
>> H=G2; % TF feedback
>> Gf1=feedback(G,H) % TF equiv. realimentada
Gf1 =
  ___3_s^2_+_4.5_s_+_12___
  s^3 + 4.5 s^2 + 8.5 s + 24
Continuous-time transfer function.
>> Gf2=G/(1+G*H) % TF equiv. con operación directa
Gf2 =
  3 s<sup>3</sup> + 13.5 s<sup>2</sup> + 25.5 s + 36
  s^4 + 7.5 s^3 + 22 s^2 + 49.5 s + 72
Continuous-time transfer function.
>> Gf2s=minreal(Gf2) % Simplificación de Gf2
Gf2s =
  -3_{s^2} + 4.5_{s} + 12
  s^3 + 4.5 s^2 + 8.5 s + 24
Continuous-time transfer function.
```

Movimiento de bloques

Bibliografía

Referencias

- · Norman S. Nise, Control systems engineering, Wiley 2017
 - · Capítulo 2
 - · Capítulo 5: secciones 1, 2 y 3
 - · Capítulo 13: secciones 1, 2, 3 y 4
- M.S. Fadali A. Visioli, Digital Control Engineering Analysis and Design, Elsevier 2019
 - · Capítulo 2: secciones 2, 3 y 5
 - · Capítulo 3: secciones 1, 2 y 3
- E. Pinto Bermúdez, et. al., Fundamentos de control con MATLAB, Prentice Hall 2010
 - Sección 4.4 y capítulo 5
- Control Tutorials for Matlab & Simulink, http: //ctms.engin.umich.edu/CTMS/index.php?aux=Home
- LPSA (Linear Physical Systems Analysis) website,
 https://lpsa.swarthmore.edu/LPSAHelp/LPSA_Help_ Index.html