Stochastic Process and Forecasting Assignment

Nick Head 15 April 2015

Question 2

i)

The following SAS code was used to identify and estimate appropriate univariate ARIMA models for each of the avg and end exchange rate time series:

```
proc arima data=LatDol;
identify var=avg(1) nlag=18;
estimate q=1 noint;
identify var=end nlag=18;
estimate p=1;
run;
```

The diagnostics plots indicates that the first difference of Avg has an ACF cut-off at lag 1, thereby leading us to believe the data follows an Arima(0,1,1) model with the following model equation:

$$\Delta Y_t = -0.36347\epsilon_{t-1} + \epsilon_t$$

In addition the Ljung-Box chi-square statistics do not have any significant p-values, giving further weight to the chosen model:

To Lag	Chi- Square	DF	Pr > ChiSq	Autocorrelations						
6	1.30	5	0.9346	-0.010	-0.041	-0.034	0.032	0.046	-0.051	
12	8.50	11	0.6681	-0.071	0.133	0.046	0.079	0.104	-0.066	
18	11.49	17	0.8299	0.059	-0.022	0.030	-0.087	0.075	0.015	
24	16.13	23	0.8497	-0.014	-0.121	-0.044	-0.074	-0.025	-0.066	

End is found to follow an AR(1) model with the following model equation:

$$Y_t = 0.58167 + 0.96945Y_{t-1} + \epsilon_t$$

This model was identified by the lag 1 cut-off in the PACF as shown in the diagnostics plots below:

In addition the Ljung-Box chi-square statistics do not have any significant p-values, giving further weight to the chosen model:

Autocorrelation Check of Residuals

То	Chi-		Pr >	
Lag	Square	DF	ChiSq	Autocorrelations

12 11.19 11 0.4279 -0.050 0.	31 0.153 0.092 0.081 0.076
18 13.25 17 0.7192 -0.035 -0. 24 18.91 23 0.7064 -0.024 -0.	

ii)

The following SAS code identifies and fits a VAR(p) model to the bivariate data:

```
proc varmax data=LatDol;
model end avg /
minic = (type=sbc p=(0:10) q=0) noint dif=(end(1) avg(1)) PRINT=DIAGNOSE;
output lead=3;
run;
```

Which gives the following truncated output:

Model Parameter Estimates

			Standard			
Equation	Parameter	Estimate	Error	t Value	Pr > t	Variable
end	AR1_1_1	0.03600	0.11185	0.32	0.7480	end(t-1)
	AR1_1_2	0.11050	0.12356	0.89	0.3727	avg(t-1)
avg	AR1_2_1	0.70995	0.07553	9.40	0.0001	end(t-1)
	AR1_2_2	-0.22236	0.08344	-2.66	0.0086	avg(t-1)

Covariances of Innovations

Variable	end	avg
end	0.00007	0.00004
avg	0.00004	0.00003

Based off which the fitted model is as follows:

$$\begin{pmatrix} x_t \\ y_t \end{pmatrix} = \begin{pmatrix} .03600 & 0.11050 \\ .70995 & 0.22236 \end{pmatrix} \begin{pmatrix} x_{t-1} \\ y_{t-1} \end{pmatrix} + \epsilon_t$$

The following Portmanteau Statistics shows significant p-values at all lags indicating that this VAR(1) model does not fit adequatly:

Portmanteau Test for Cross Correlations of Residuals

Up To			
Lag	DF	Chi-Square	Pr > ChiSq
2	4	23.29	0.0001
3	8	23.46	0.0028
4	12	26.37	0.0095
5	16	34.09	0.0053
6	20	35.06	0.0198
7	24	43.30	0.0092
8	28	44.79	0.0232
9	32	51.56	0.0157
10	36	58.37	0.0106
11	40	63.56	0.0103
12	44	64.87	0.0219

The following outputs show the forecasts of the average exchange rate for the next three months of 2006 are: $0.59273,\,0.59261,\,0.59261$

Forecasts

Variable	Obs	Forecast	Standard Error	95% Confiden	ce Limits
end	145	0.59274	0.00810	0.57686	0.60863
	146	0.59270	0.01204	0.56911	0.61630
	147	0.59269	0.01530	0.56270	0.62268
avg	145	0.59273	0.00547	0.58201	0.60346
	146	0.59261	0.01102	0.57101	0.61421
	147	0.59261	0.01435	0.56448	0.62074

```
iii)
ODS LISTING CLOSE;
ODS HTML;
data LatDol;
infile 'latdol.txt' delimiter='09'x MISSOVER DSD lrecl=32767 ;
       informat year best32.;
       informat month best32.;
       informat avg best32.;
       informat end best32.;
       format year best12.;
       format month best12. ;
       format avg best12.;
       format end best12.;
    input
                year
               month
                avg
                end
date = mdy(month,1,year);
format date year4.;
proc print data=LatDol;
proc timeplot data=LatDol;
plot avg;
proc arima data=LatDol;
identify var=end nlag=18;
estimate p=1;
identify var=avg(1) nlag=18;
estimate q=1 noint;
identify var=avg(1) crosscor=end nlag=18;
estimate q=1 input=(2 $ / (1) end) noint;
forecast lead=3 out=results;
run;
ODS HTML CLOSE;
ODS LISTING;
```

```
library(zoo)
##
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
       as.Date, as.Date.numeric
library(forecast)
## Loading required package: timeDate
## This is forecast 5.4
latdol.zoo <- read.zoo("LatDol.dat",</pre>
                        index.column = 1:2,
                        FUN = function(year, month){ as.yearmon(paste(year, month, sep = "-"))})
colnames(latdol.zoo) = c("Avg", "End")
#plot(latdol.zoo)
#plot(diff(latdol.zoo))
#acf(latdol.zoo$Avg)
#acf(diff(latdol.zoo$Avg))
acf(latdol.zoo$Avg, type='partial') #!!!
```

Series latdol.zoo\$Avg


```
#fitAvg <- auto.arima(latdol.zoo$Avg)</pre>
#plot(forecast(fitAvg,h=20))
arima(latdol.zoo$Avg, order = c(0,1,1))
## Series: latdol.zoo$Avg
## ARIMA(0,1,1)
##
## Coefficients:
##
            ma1
##
         0.3672
## s.e. 0.0786
## sigma^2 estimated as 4.792e-05: log likelihood=508.16
## AIC=-1012.32
                  AICc=-1012.24 BIC=-1006.4
#acf(latdol.zoo$End)
#acf(diff(latdol.zoo$End))
acf(latdol.zoo$End, type='partial') #!!!
```

Series latdol.zoo\$End


```
#acf(diff(latdol.zoo$End), type='partial')

#fitEnd <- auto.arima(latdol.zoo$End)
#plot(forecast(fitEnd,h=20))
arima(latdol.zoo$End, order = c(1,0,0))

## Series: latdol.zoo$End
## ARIMA(1,0,0) with non-zero mean</pre>
```

```
##
## Coefficients:
## ar1 intercept
## 0.9635 0.5796
## s.e. 0.0193 0.0157
##
## sigma^2 estimated as 6.451e-05: log likelihood=489.06
## AIC=-972.12 AICc=-971.95 BIC=-963.21

plot(latdol.zoo$End, ylim=range(latdol.zoo$End, latdol.zoo$Avg))
lines(latdol.zoo$Avg, col=2)
```


prewhiten(latdol.zoo\$Avg, latdol.zoo\$End)

x & y

ccf(latdol.zoo\$Avg, latdol.zoo\$End)

latdol.zoo\$Avg & latdol.zoo\$End

