Appendix F

Selected Solutions

F.2 Chapter 2 Solutions

- 2.1 The answer is 2^n
- 2.3 (a) For 400 students, we need at least 9 bits.
 - (b) $2^9 = 512$, so 112 more students could enter.
- 2.5 If each number is represented with 5 bits,

```
7 = 00111 in all three systems
-7 = 11000 (1's complement)
= 10111 (signed magnitude)
= 11001 (2's complement)
```

2.7 Refer the following table:

0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	-8
1001	-7
1010	-6
1011	-5
1100	-4
1101	-3
1110	-2
1111	-1

- 2.9 Avogadro's number (6.02×10^{23}) requires 80 bits to be represented in two's complement binary representation.
- 2.11 (a) 01100110
 - (b) 01000000
 - (c) 00100001
 - (d) 10000000
 - (e) 01111111
- 2.13 (a) 11111010
 - (b) 00011001
 - (c) 11111000
 - (d) 00000001
- 2.15 Dividing the number by two.
- 2.17 (a) 1100 (binary) or -4 (decimal)
 - (b) 01010100 (binary) or 84 (decimal)
 - (c) 0011 (binary) or 3 (decimal)
 - (d) 11 (binary) or -1 (decimal)
- 2.21 Overflow has occurred if both operands are positive and the result is negative, or if both operands are negative and the result is positive.
- 2.23 Overflow has occurred in an unsigned addition when you get a carry out of the leftmost bits.

- 3
- 2.25 Because their sum will be a number which if positive, will have a lower magnitude (less positive) than the original postive number (because a negative number is being added to it), and vice versa.
- 2.27 The problem here is that overflow has occurred as adding 2 positive numbers has resulted in a negative number.
- 2.29 Refer to the following table:

X	Y	X AND Y	
0	0	0	
0	1	0	
1	0	0	
1	1	1	

- 2.31 When atleast one of the inputs is 1.
- 2.33 (a) 11010111
 - (b) 111
 - (c) 11110100
 - (d) 10111111
 - (e) 1101
 - (f) 1101
- 2.35 The masks are used to set bits (by ORing a 1) and to clear bits (by ANDing a 0).
- 2.37 [(n AND m AND (NOT s)) OR ((NOT n) AND (NOT m) AND s)] AND 1000
- - (b) 1 10000100 1011101011100000000000000
 - (c) 0 10000000 100100100001111111011011
- 2.41 (a) 127
 - (b) -126
- 2.43 (a) Hello!
 - (b) hELLO!
 - (c) Computers!
 - (d) LC-2
- 2.45 (a) xD1AF
 - (b) x1F
 - (c) x1

- (d) xEDB2
- 2.47 (a) -16
 - (b) 2047
 - (c) 22
 - (d) -32768
- 2.49 (a) x2939
 - (b) x6E36
 - (c) x46F4
 - (d) xF1A8
 - (e) The results must be wrong. In (3), the sum of two negative numbers produced a positive result. In (4), the sum of two positive numbers produced a negative result. We call such additions OVERFLOW.
- 2.51 (a) x644B
 - (b) x4428E800
 - (c) x48656C6C6F
- 2.53 Refer to the table below:

Α	В	Q1	Q2
0	0	1	0
0	1	1	1
1	0	1	1
1	1	0	1

- Q2 = A OR B
- 2.55 (a) 63
 - (b) $4^n 1$
 - (c) 310
 - (d) 222
 - (e) 11011.11

 - (g) 4^{4m}