Produits scalaires

Exercice 1.

Prouver que les applications suivantes sont des produits scalaires sur E :

1. sur $E = \mathbb{R}_2[X]$,

$$(P,Q) \mapsto \langle P|Q \rangle = P(-1)Q(-1) + P(0)Q(0) + P(1)Q(1)$$
;

2. pour $n \in \mathbb{N}$, sur $E = \mathbb{R}_n[X]$, pour $x_0, \dots, x_n \in \mathbb{R}$ deux à deux distincts,

$$\Psi: (P, Q) \mapsto \sum_{k=0}^{n} P(x_k) Q(x_k) ;$$

3. pour $n \in \mathbb{N}$, sur $E = \mathbb{R}_n[X]$, pour $a_0, \dots, a_n \in \mathbb{R}$,

$$(P,Q) \mapsto \varphi(P,Q) = \sum_{k=0}^{n} P^{(k)}(a_k) Q^{(k)}(a_k) ;$$

4. pour $n \in \mathbb{N}$, sur $E = \mathbb{R}_n[X]$,

$$(P,Q) \mapsto \langle P|Q \rangle = \int_0^1 P(t)Q(t)dt;$$

5. sur $E = \mathscr{C}([0,1], \mathbb{R}),$

$$(f,g) \mapsto \langle f|g\rangle = \int_0^1 f(t)g(t)dt;$$

6. pour $n \in \mathbb{N}$, sur $E = M_n(\mathbb{R})$,

$$\langle A|B\rangle = tr({}^t\!AB)$$
;

7. sur $E = \mathcal{C}^1([0,1], \mathbb{R}),$

$$(f,g) \mapsto \langle f|g \rangle = f(1)g(1) + \int_0^1 f'(t)g'(t)dt;$$

8. sur $E = \mathcal{C}^1([0,1], \mathbb{R}),$

$$(f,g) \mapsto \langle f|g\rangle = \int_0^1 (f(t)g(t) + f'(t)g'(t))dt.$$

Exercice 2.★

On définit sur l'espace vectoriel réel E des fonctions de classe \mathscr{C}^1 de [0,1] dans $\mathbb R$,

$$\langle f|g\rangle = f(1)g(1) + \int_0^1 f'(t)g'(t)dt.$$

- 1. Montrer que l'on définit ainsi un produit scalaire sur E.
- **2.** Etablir que $\forall f \in E$,

$$\left(f(1) + \int_0^1 f'(t) dt \right)^2 \leq 2 \left(f^2(1) + \int_0^1 f'^2(t) dt \right)$$

Bases orthonormales

Exercice 3.★

Sur l'espace vectoriel réel $E = \mathbb{R}_2[X]$, on définit

$$\langle P|Q\rangle = P(-1)Q(-1) + P(0)Q(0) + P(1)Q(1).$$

- 1. Montrer qu'il s'agit d'un produit scalaire.
- **2.** Trouver une base orthonormée de E par le procédé d'orthonormalisation de Schmidt appliqué à la base canonique de E.
- **3.** Trouver une *autre* base orthonormée de E en utilisant les polynômes interpolateurs de Lagrange.

Exercice 4.

Soit E un espace euclidien orienté de dimension $n \ge 1$.

- 1. Soient \mathcal{B} et \mathcal{B}' deux bases orthonormées directes de E. Montrer que $\det_{\mathcal{B}}(\mathcal{B}') = 1$.
- **2.** En déduire que $\det_{\mathcal{B}} = \det_{\mathcal{B}'}$.
- **3.** Soient x_1, \ldots, x_{n-1} n-1 vecteurs de E. Montrer que l'application $x \in E \mapsto \det_{\mathcal{B}}(x_1, \ldots, x_{n-1}, x)$ est une forme linéaire sur E.
- **4.** En déduire qu'il existe un unique vecteur $u \in E$ tel que pour tout $x \in E$, $\det_{\Re}(x_1,\ldots,x_{n-1},x) = \langle u,x \rangle$. On appelle u le produit vectoriel des vecteur x_1,\ldots,x_{n-1} et on note $u = x_1 \wedge x_2 \wedge \ldots \wedge x_{n-1}$.
- **5.** Montrer que l'application $(x_1, \dots, x_{n-1}) \in \mathbb{E}^{n-1} \mapsto x_1 \wedge x_2 \wedge \dots \wedge x_{n-1}$ est une application n-1-linéaire alternée.

EXERCICE 5.

1. Soient $n \in \mathbb{N}$ et $a \in \mathbb{R}$. Montrer que l'application $\langle ., . \rangle$ de $\mathbb{R}_n[X]^2$ dans \mathbb{R} définie par

$$\forall (P,Q) \in \mathbb{R}_n[X]^2, \ \langle P,Q \rangle = \sum_{k=0}^n \frac{P^{(k)}(a)Q^{(k)}(a)}{(k!)^2}$$

est un produit scalaire sur $\mathbb{R}_n[X]$.

2. Donner sans calcul une base orthonormale de $\mathbb{R}_n[X]$.

Exercice 6.

Soient E un espace euclidien de dimension $n \in \mathbb{N}^*$ et e_1, \dots, e_n des vecteurs non nuls de E tels que

$$\forall x \in \mathcal{E}, \ \|x\|^2 = \sum_{k=1}^n \langle x, e_k \rangle^2$$

1. Montrer que

$$\forall (x,y) \in \mathbf{E}^2, \ \langle x|y \rangle = \sum_{i=1}^n \langle x|e_i \rangle \langle y|e_i \rangle.$$

2. En déduire que

$$\forall x \in E, \ x = \sum_{i=1}^{n} \langle x | e_i \rangle e_i.$$

3. Etablir que $(e_k)_{1 \le k \le n}$ est une base orthonormée de E.

Sous-espaces orthongonaux

Exercice 7.★

Soit $E = \mathcal{C}([0,1], \mathbb{R})$. Pour tout $(f,g) \in E^2$, on pose

$$\langle f|g\rangle = \int_0^1 f(t)g(t)dt.$$

- **1.** Prouver $\langle \cdot | \cdot \rangle$ est un produit scalaire sur E.
- 2. On pose

$$F = \{ f \in E \mid f(0) = 0 \}.$$

- **a.** Soit $f \in F^{\perp}$. Montrer que $f^2 \in F^{\perp}$.
- **b.** Prouver que $F^{\perp} = \{0\}$.
- **3.** E est-il de dimension finie?

EXERCICE 8.

Montrer que $s: \left\{ \begin{array}{ccc} \mathscr{M}_n(\mathbb{R}) & \longrightarrow & \mathscr{M}_n(\mathbb{R}) \\ \mathrm{M} & \longmapsto & \mathrm{M} \end{array} \right.$ est une symétrie orthogonale pour le produit scalaire sur $\mathscr{M}_n(\mathbb{R})$ pour le produit scalaire défini par $\langle \mathrm{A}, \mathrm{B} \rangle = \mathrm{tr}({}^t\!\mathrm{A}\mathrm{B})$ pour $\mathrm{A}, \mathrm{B} \in \mathscr{M}_n(\mathbb{R})$.

EXERCICE 9.

Soit E un espace euclidien et $f \in \mathcal{L}(E)$ tel que $\forall (x, y) \in E^2$, $\langle f(x), y \rangle = \langle x, f(y) \rangle$.

- 1. Soit $\mathcal B$ une base orthonormale de E. Montrer que la matrice de f dans la base $\mathcal B$ est symétrique.
- **2.** Montrer que $\operatorname{Ker} f = (\operatorname{Im} f)^{\perp}$.

Exercice 10.

Soient F et G deux sous-espaces vectoriels d'un espace préhilbertien réel E.

- **1.** Montrer que $F \subset G \implies G^{\perp} \subset F^{\perp}$ et que, si F et G sont de dimension finie, $G^{\perp} \subset F^{\perp} \implies F \subset G$.
- **2.** Montrer que $(F + G)^{\perp} = F^{\perp} \cap G^{\perp}$.
- **3.** Montrer que $F^{\perp} + G^{\perp} \subset (F \cap G)^{\perp}$ et que, si E est de dimension finie, $(F \cap G)^{\perp} = F^{\perp} + G^{\perp}$.

Projecteurs orthogonaux

Exercice 11.

Soit u un vecteur unitaire d'un espace euclidien E. On note U le vecteur colonne représentant u dans une base orthonormée \mathcal{B} de E. Déterminer la matrice de la projection orthogonale sur vect(u) dans \mathcal{B} .

Exercice 12.★★

Soient E un espace euclidien et p une projection de E. Etablir l'équivalence des trois propriétés suivantes :

- **1.** *p* est orthogonale;
- **2.** $\forall x, y \in E$, $\langle p(x)|y \rangle = \langle x|p(y) \rangle$;
- **3.** $\forall x \in E, \|p(x)\| \le \|x\|.$

Exercice 13.★

On munit \mathbb{R}^4 de son produit scalaire canonique. Donner la matrice dans la base canonique du projecteur orthogonal sur le sous-espace vectoriel F d'équations,

$$\begin{cases} x_1 + x_2 + x_3 + x_4 = 0 \\ x_1 - x_2 + x_3 - x_4 = 0 \end{cases}$$

Optimisation

Exercice 14.★

Soit $E = \mathbb{R}_2[X]$ muni de sa structure euclidienne canonique (ie la base canonique est orthonormée). On note F le sous-espace vectoriel de E des polynômes s'annulant en 1.

- 1. Déterminer une base de F.
- 2. Calculer $\delta = \inf_{P \in F} ||X P||$.

Exercice 15.

Calculer le minimum de $\phi: \mathbb{R}^2 \to \mathbb{R}$ $(a,b) \mapsto \int_0^{\pi} (\sin x - ax^2 - bx)^2 dx$

Exercice 16.

Soient $m, n \in \mathbb{N}^*$. On munit $\mathcal{M}_{m,1}(\mathbb{R})$ (resp. $\mathcal{M}_{n,1}(\mathbb{R})$) du produit scalaire $(X, Y) \mapsto {}^t\!XY$. On se donne $A \in \mathcal{M}_{m,n}(\mathbb{R})$ et $B \in \mathbb{R}^m$. On pose $E = \{\|AX - B\|^2, X \in \mathbb{R}^n\}$ et $K = \inf E$.

- 1. Justifier l'existence de K.
- **2.** On considère le système linéaire $(\mathcal{S}): AX = B$. On appelle *pseudo-solution* de \mathcal{S} tout élément Y de $\mathcal{M}_{n,1}(\mathbb{R})$ tel que $\|AY B\|^2 = K$. Montrer que si (\mathcal{S}) admet une solution, les pseudo-solutions de (\mathcal{S}) sont les solutions de (\mathcal{S}) .
- **3.** On associe à (\mathcal{S}) le système (\mathcal{S}') : ${}^t\!AAX = {}^t\!AB$. Montrer qu'un élément X de $\mathcal{M}_{n,1}(\mathbb{R})$ est pseudo-solution de (\mathcal{S}') si et seulement si il est solution de (\mathcal{S}') .
- **4.** Montrer que rg ${}^{t}AA = rg A$.
- **5.** Montrer que si rg A = n, (\mathcal{S}) admet une unique pseudo-solution.

Exercice 17.

Soient E un espace euclidien et x_1, \dots, x_p des vecteurs de E. Pour $x \in E$, on pose $f(x) = \sum_{i=1}^p \|x - x_i\|^2$. Montrer que f atteint son minimum en un unique point que l'on précisera.

EXERCICE 18.

Soient E un espace euclidien et x_1, \dots, x_p des vecteurs de E. Pour $x \in E$, on pose $f(x) = \sum_{i=1}^p \|x - x_i\|^2$. Montrer que f atteint son minimum en $m = \frac{1}{p} \sum_{i=1}^p x_i$.

Automorphismes orthogonaux

Exercice 19.★

Soient E un plan vectoriel euclidien orienté, r une rotation de E et s une réflexion. Calculer $s \circ r \circ s$ et $r \circ s \circ r$.

Exercice 20.

Soient E un espace euclidien orienté de dimension trois muni d'une base orthonormée directe

$$\mathcal{B}=(\overrightarrow{u},\overrightarrow{v},\overrightarrow{w}).$$

On note f la rotation d'axe $\vec{u} + \vec{v} + \vec{w}$ et d'angle $\frac{2\pi}{3}$. Calculer la matrice de f relativement à la base \mathcal{B} .

Exercice 21.

Déterminer la nature et les caractéristiques de l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique vaut

$$\operatorname{mat}_{\mathscr{B}}(f) = \frac{1}{4} \left(\begin{array}{ccc} 3 & 1 & \sqrt{6} \\ 1 & 3 & -\sqrt{6} \\ -\sqrt{6} & \sqrt{6} & 2 \end{array} \right).$$

Exercice 22.

Soient E un espace euclidien et $u \in \mathcal{L}(E)$. Prouver l'équivalence des trois propriétés suivantes :

- **1.** $\langle x|y\rangle = 0 \Rightarrow \langle u(x)|u(y)\rangle = 0$;
- **2.** $\exists k \ge 0$, $\forall x \in E$, ||u(x)|| = k||x||;
- 3. *u* est la composée d'une homothétie et d'une isométrie.

Exercice 23.

Soient H et K deux hyperplans d'un espace euclidien E. On note s_H et s_K les symétries orthogonales par rapport à H et K. Montrer que s_H et s_K commutent si et seulement si H = K ou $H^{\perp} \subset K$.

Exercice 24.

Soit E un espace euclidien orienté de dimension 3.

1. Trouver les $f \in \mathcal{L}(E)$ tels que

$$\forall u, v \in \mathcal{E}, f(u \wedge v) = f(u) \wedge f(v)$$

2. Trouver les $f \in \mathcal{L}(E)$ tels que

$$\forall u, v \in E, f(u \wedge v) = -f(u) \wedge f(v)$$

Exercice 25.

Déterminer la matrice de la symétrie orthogonale par rapport au plan d'équation x + 2y - 3z = 0 dans la base canonique de \mathbb{R}^3 .

Exercice 26.

Soit E un espace euclidien de dimension 2.

- 1. On sait que la matrice d'une réflexion de E dans une base orthonormée est de la forme $\begin{pmatrix} \cos\theta & \sin\theta \\ \sin\theta & -\cos\theta \end{pmatrix}. \ Quelle \ est \ l'interprétation géométrique de \ \theta \ ?$
- **2.** Déterminer une condition portant sur l'angle entre leurs axes pour que la *somme* de deux réflexions soit encore une réflexion.

Exercice 27.

Soit *u* un automorphisme orthogonal d'un espace euclidien E. On pose $v = \text{Id}_E - u$.

- 1. Montrer que Im v et Ker v sont orthogonaux et supplémentaires.
- **2.** Montrer que pour tout $k \in \mathbb{N}$, u^k est un automorphisme orthogonal.

EXERCICE 28.

Soit E le sous-espace vectoriel de $\mathscr{C}(\mathbb{R})$ engendré par la famille (e_1,e_2,e_3) où

$$e_1: t \mapsto \frac{1}{\sqrt{2}}$$
 $e_2: t \mapsto \cos(2\pi t)$ $e_3: t \mapsto \sin(2\pi t)$

- **1.** Montrer que $\Phi: (f,g) \mapsto 2\int_0^1 f(t)g(t) dt$ est un produit scalaire sur E.
- **2.** Montrer que (e_1, e_2, e_3) est une base orthonormée de E.
- 3. Pour tout réel x, on définit l'application τ_x qui à tout élément f de E associe g tel que

$$\forall t \in \mathbb{R}, \ g(t) = f(x - t)$$

- **a.** Montrer que τ_x est un endomorphisme de E. Donner sa matrice relativement à \mathcal{B} .
- **b.** Montrer que τ_x est un automorphisme orthogonal de E.
- c. Caractériser géométriquement τ_x .

Exercice 29.

Soit E un espace euclidien et f une application de E dans E (non supposée linéaire) telle que

$$\forall (x, y) \in E^2, ||f(x) - f(y)|| = ||x - y||$$

Montrer que f est la composée d'une translation et d'un automorphisme orthogonal.

Exercice 30.

Soient E un espace euclidien et $f \in \mathcal{L}(E)$. On note A la matrice de f dans une base orthonormale \mathcal{B} de E. Montrer que f est une symétrie orthogonale si et seulement si A est une matrice orthogonale symétrique.

Matrices orthogonales

Exercice 31.

Soit A = $(a_{i,j})_{1 \le i,j \le n} \in \mathcal{O}_n(\mathbb{R})$. Montrer que

$$\sum_{1 \leqslant i,j \leqslant n} |a_{i,j}| \leqslant n \sqrt{n}.$$

EXERCICE 32.

Soit $O = \begin{pmatrix} A & B \\ \hline C & D \end{pmatrix}$ une matrice orthogonale réelle de taille n où A et D sont deux blocs carrés de tailles respectives p et q. Montrer que $(\det A)^2 = (\det D)^2$.

Exercice 33.

Soient A et B les matrices, dans deux bases orthonormales, d'un endomorphisme d'un espace euclidien. Montrer que $tr({}^t\!AA) = tr({}^t\!BB)$.

Exercice 34.

- **1.** Soit X une matrice colonne réelle de taille n. Montrer que ${}^t\!XX \in \mathbb{R}_+$ et que ${}^t\!XX = 0$ implique X = 0.
- 2. Soit M une matrice antisymétrique réelle de taille n. Montrer que $I_n + M$ est inversible.
- **3.** On pose $A = (I_n M)(I_n + M)^{-1}$. Montrer que A est orthogonale.

Exercice 35.

Soient $n \in \mathbb{N} \{0, 1, 2\}$ et $A \in \mathcal{M}_n(\mathbb{R})$. Montrer que A = com(A) si et seulement si A = 0 ou $A \in SO(n)$.

Familles de vecteurs

Exercice 36.

Soit E un espace euclidien. A une famille (x_1,\ldots,x_p) de p vecteurs de E, on associe la matrice $G_p(x_1,\ldots,x_p)=((x_i|x_j))_{1\leq i,j\leq p}.$

- 1. Montrer que la famille (x_1, \dots, x_p) est liée si et seulement si $\det G_p(x_1, \dots, x_p) = 0$.
- **2.** On suppose maintenant que la famille (x_1, \dots, x_p) est libre et on note $F = \text{vect}(x_1, \dots, x_p)$.
 - **a.** Soit $\mathcal{B} = (e_1, \dots, e_p)$ une base orthonormée de F et A = $\max_{\mathcal{B}} (x_1, \dots, x_p)$. Montrer que $G_p(x_1, \dots, x_p) = {}^t A A$.
 - **b.** En déduire que det $G_p(x_1, ..., x_p) > 0$.
- 3. Soit $x \in E$. On note π la projection orthogonale sur F.
 - **a.** Montrer que $\det G_{p+1}(x, x_1, ..., x_p) = \det G_{p+1}(x \pi(x), x_1, ..., x_p)$.
 - **b.** Montrer que

$$d(x, F)^2 = \frac{\det G_{p+1}(x, x_1, \dots, x_p)}{\det G_p(x_1, \dots, x_p)}$$

Exercice 37.

Soient E un espace euclidien, p un entier naturel supérieur ou égal à 2 et x_1, \dots, x_p des vecteurs de E tels que

$$\forall i, j \in [1, p], i \neq j \implies \langle x_i, x_i \rangle < 0$$

- **1.** Soient $\alpha_1, \ldots, \alpha_{p-1}$ des réels tels que $\sum_{i=1}^{p-1} \alpha_i x_i = 0$. On pose $I = \{i \in [1, p-1] \mid \alpha_i > 0\}$ et $J = \{j \in [1, p-1] \mid \alpha_j < 0\}$. En considérant $u = \sum_{i \in I} \alpha_i x_i$ et $v = \sum_{j \in J} \alpha_j x_j$, montrer que l'un des ensembles I ou J est vide (on convient qu'une somme indexée sur l'ensemble vide est nulle).
- **2.** Montrer que I et J sont vides.
- **3.** En déduire que la famille (x_1, \dots, x_{p-1}) est libre.

Exercice 38.

Soit E un espace euclidien. A toute famille (x_1, \dots, x_p) de p vecteurs de E, on associe la matrice $G(x_1, \dots, x_p) = (\langle x_i, x_j \rangle)_{1 \leq i,j \leq p}$.

- **1.** Soit $\mathcal{B} = (e_1, \dots, e_n)$ une base orthonormée de $F = \text{vect}(x_1, \dots, x_p)$. On note $A = \text{mat}_{\mathcal{B}}(x_1, \dots, x_p)$. Montrer que $G(x_1, \dots, x_p) = {}^t AA$.
- **2.** En déduire que $\det G(x_1,\ldots,x_p) \geq 0$ et que (x_1,\ldots,x_p) est liée si et seulement si $\det G(x_1,\ldots,x_p)=0$.
- **3.** On se donne $x \in E$. Montrer que

$$\det G(x_1, ..., x_n, x) = d(x, F)^2 \det G(x_1, ..., x_n)$$

EXERCICE 39.

On pose $Q_n = (1 - X^2)^n = (1 + X)^n (1 - X)^n$ pour $n \in \mathbb{N}$.

- **1.** Montrer que $\varphi : (P, Q) \mapsto \int_{-1}^{1} P(t)Q(t) dt$ est un produit scalaire sur $\mathbb{R}_n[X]$. On notera $\varphi(P, Q) = \langle P, Q \rangle$ par la suite.
- **2.** Soit *n* et *k* deux entiers tels que $0 \le k < n$. Montrer que $Q_n^{(k)}(-1) = Q_n^{(k)}(1) = 0$.
- **3.** On pose $P_n = Q_n^{(n)}$ pour $n \in \mathbb{N}$. Montrer que $(P_k)_{0 \le k \le n}$ est une base orthogonale de $\mathbb{R}_n[X]$.

Endomorphismes remarquables

Exercice 40.

Soit E un espace euclidien de dimension $n \ge 2$. Une application $u : E \to E$ est dite *antisymétrique* si

$$\forall (x, y) \in E^2, \langle x, u(y) \rangle + \langle y, u(x) \rangle = 0$$

On note A(E) l'ensemble des applications antisymétriques de E.

REMARQUE. Rien à voir avec les applications multilinéaires antisymétriques!

- **1.** Soit $u \in A(E)$. Montrer que u est linéaire.
- **2.** Soit $u : E \to E$. Démontrer l'équivalence entre les propositions suivantes :
 - (i) u est linéaire et $\forall x \in E$, $\langle u(x), x \rangle = 0$;
 - (ii) *u* est antisymétrique;
 - (iii) u est linéaire et sa matrice dans une base orthonormée est antisymétrique.
- **3.** Montrer que A(E) est un \mathbb{R} -espace vectoriel et déterminer sa dimension.
- **4.** Soit $u \in A(E)$. Montrer que Im u est l'orthogonal de Ker u.
- **5.** Montrer que si F est un sous-espace vectoriel de E stable par u alors F^{\perp} est également stable par u.

Exercice 41.

Soient E un espace euclidien, p une projection orthogonale et \mathcal{B} une base orthonormale de E. Montrer que la matrice A de p dans la base \mathcal{B} est symétrique.

Exercice 42.

Montrer que le rang d'une matrice antisymétrique réelle est pair.

Exercice 43.

Soient E un espace euclidien et $u \in \mathcal{L}(E)$ tel que

$$\forall x \in \mathcal{E}, \ \langle u(x)|x\rangle = 0.$$

Montrer que

$$(\operatorname{Ker}(u))^{\perp} = \operatorname{Im}(u).$$

Exercice 44.

Soit E un espace vectoriel euclidien de dimension n, n étant un entier naturel supérieur ou égal à 2. Soit (a,b) une famille libre de E. Soit f l'application

$$x \mapsto \langle a|x\rangle b + \langle b|x\rangle a$$
.

1. Montrer que $f \in \mathcal{L}(E)$ et que

$$\forall (x, y) \in E^2, \ \langle f(x)|y\rangle = \langle x|f(y)\rangle.$$

- 2. Déterminer le noyau et le rang de f.
- **3.** On pose F = Im(f).
 - **a.** Montrer que F est un sous-espace vectoriel de E stable par f et en donner une base.
 - **b.** Déterminer la matrice de l'endomorphisme *g* induit par *f* sur F dans cette base.

Exercice 45.

Soient E un espace euclidien et $u \in \mathcal{L}(E)$ tel que

$$\forall x \in E, \|u(x)\| \le \|x\|.$$

Etablir que

$$\mathsf{E} = \mathsf{Ker}(u - id_{\mathsf{E}}) \oplus \mathsf{Im}(u - id_{\mathsf{E}}).$$

Divers

Exercice 46.

Soit $n \in \mathbb{N}^*$. On travaille dans l'espace des matrices $\mathscr{M}_n(\mathbb{R})$.

- **1.** Montrer que l'application $(A, B) \mapsto \operatorname{tr}({}^{t}\!AB)$ est un produit scalaire sur $\mathcal{M}_{n}(\mathbb{R})$. Que peut-on dire de la base canonique de $\mathcal{M}_{n}(\mathbb{R})$.
- **2.** Montrer que pour toute matrice $A \in \mathcal{M}_n(\mathbb{R})$, on a $|\operatorname{tr}(A)| \leq \sqrt{n} ||A||$.
- 3. a. Quel est l'orthogonal de l'espace $\mathscr{S}_n(\mathbb{R})$ des matrices symétriques?
 - **b.** Soit $A \in \mathcal{M}_n(\mathbb{R})$. Exprimer la distance de A à $S_n(\mathbb{R})$ en fonction des coefficients de A?
- **4.** Soit $U \in \mathcal{O}_n(\mathbb{R})$. Montrer que pour tout $A \in \mathcal{M}_n(\mathbb{R})$, ||UA|| = ||AU|| = ||A||.
- **5.** Montrer que pour A, B $\in \mathcal{M}_n(\mathbb{R})$, $||AB|| \leq ||A|| ||B||$.

Exercice 47.

Soit E un espace euclidien de dimension n et u_1, \ldots, u_{n+1} des vecteurs non nuls de E faisant Soit $n \ge 1$. Prouver que un angle constant α_n (non nul) deux à deux. Que vaut α_n ?

Exercice 48.

Soit $A \in \mathcal{M}_{n,p}(\mathbb{R})$. Montrer que $\operatorname{rg}({}^{t}AA) = \operatorname{rg}(A{}^{t}A) = \operatorname{rg} A$.

Exercice 49.

1. Montrer qu'on définit un produit scalaire sur $\mathbb{R}[X]$ en posant

$$\langle \mathbf{P}, \mathbf{Q} \rangle = \sum_{n=0}^{+\infty} a_n b_n$$

pour P =
$$\sum_{n=0}^{+\infty} a_n X^n$$
 et Q = $\sum_{n=0}^{+\infty} b_n X^n$.

- **2.** On pose $F = \text{vect}(1 + X^n, n \in \mathbb{N}^*)$. Montrer que F est un hyperplan de $\mathbb{R}[X]$.
- **3.** Montrer que $F^{\perp} = \{0\}$. Conclusion?

Inégalités

Exercice 50.

Soit E un espace euclidien. On pose $f: E\{0\} \rightarrow E\{0\}$. $x \mapsto \frac{x}{\|x\|^2}$

- **1.** Montrer que pour $x, y \in E \{0\}, ||f(x) f(y)|| = \frac{||x y||}{||x|| ||y||}.$
- **2.** Soient $a, b, c, d \in E$. Montrer que

$$||a - c|| ||b - d|| \le ||a - b|| ||c - d|| + ||b - c|| ||a - d||$$

Exercice 51.

Soit E un espace euclidien de dimension $n \in \mathbb{N}^*$ et de base orthonormée \mathcal{B} . Soient (x_1, \dots, x_n) une famille de *n* vecteurs de E. Montrer que

$$\left|\det_{\mathcal{B}}(x_1,\ldots,x_n)\right| \le \prod_{i=1}^n \|x_i\|$$

EXERCICE 52.

$$\left[1 + \frac{1}{2} + \dots + \frac{1}{n}\right]^2 \le n\left[1 + \frac{1}{2^2} + \dots + \frac{1}{n^2}\right].$$

Exercice 53.★

Soient $n \ge 1$ et $x_1, \dots, x_n > 0$. Prouver que

$$\left[\sum_{k=1}^{n} x_k\right] \left[\sum_{k=1}^{n} \frac{1}{x_k}\right] \geqslant n^2.$$

Exercice 54.★★

Soit $n \ge 2$. Prouver que

$$\frac{2}{n(n-1)} \left(\sum_{k=1}^{n-1} \frac{k}{n-k} \right)^2 \le \sum_{k=1}^{n-1} \frac{k}{(n-k)^2}.$$

Exercice 55.

On considère l'ensemble E des fonctions continues et strictement positives sur [a, b]. Montrer que:

$$\inf_{f \in \mathcal{E}} \left(\int_{a}^{b} f(x) dx \int_{a}^{b} \frac{dx}{f(x)} \right)$$

existe et est atteint.

Exercice 56.

Soit f une fonction \mathscr{C}^1 sur [a,b] à valeurs dans \mathbb{R} . On suppose f(a)=0. Montrer que

$$\int_{a}^{b} f^{2}(u) du \leqslant \frac{(b-a)^{2}}{2} \int_{a}^{b} f^{'2}(u) du.$$