清华大学本科生考试试题专用纸

考试课程 线性代数 (工科类) 2022 年 11 月 12 日本试题共 10 道大题,满分 100 分.

1.
$$(8 分) \diamondsuit A = \begin{bmatrix} 0 & 5 & 8 \\ 3 & 0 & 6 \\ 6 & 7 & 10 \end{bmatrix}$$
, 求关于 x 的方程组 $Ax = -3x$ 的所有解.

2.
$$(8 分) \diamondsuit A = \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ 1 & 1 & -2 \end{bmatrix}$$
, 求一个 3 阶非零实方阵 B 满足 $AB = O$.

3. (10 分) 求如下线性方程组的通解:
$$\begin{cases} x_2+x_3 & + 3x_5 = 4, \\ x_1-2x_2 & - 6x_5 = -7, \\ 3x_1-x_2+5x_3+x_4-3x_5 = -6, \\ -2x_1+2x_2-2x_3+x_4+16x_5 = 11. \end{cases}$$

4.
$$(7 分) \diamondsuit A = [a_1, a_2, a_3, a_4] = \begin{bmatrix} 2 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 \\ 0 & 2 & 1 & 0 \end{bmatrix}$$
.

- (1) 分别求出 A 的列空间和行空间的一组基.
- (2) 求 \mathbb{R}^3 中所有包含向量 a_1, a_2, a_3 但不包含向量 a_4 的子空间,并对每个满足条件的子空间求出对应的一组基和维数.

5. (12 分) 设
$$A$$
 为 3 阶方阵, 而 $b = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$.

(1) 设
$$Ax = \mathbf{0}$$
 的解集为 $\left\{ k_1 \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix} + k_2 \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} \middle| k_1, k_2 \in \mathbb{R} \right\}$,求 A 的行简化阶梯形.

(2) 设
$$Ax = b$$
 的解集为
$$\left\{ \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} + k_1 \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix} + k_2 \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} \middle| k_1, k_2 \in \mathbb{R} \right\}, \ \vec{X} \ A.$$

(3) 设
$$Ax = b$$
 的解集为 $\left\{ \begin{bmatrix} 1\\0\\1 \end{bmatrix} + k_1 \begin{bmatrix} 1\\-1\\0 \end{bmatrix} \middle| k_1 \in \mathbb{R} \right\}$, 求 A 的行简化阶梯形,并写 出一个满足条件的 A .

6. (30 分) 设
$$A = \begin{bmatrix} B & C \\ O & D \end{bmatrix}$$
,而 $B = \begin{bmatrix} 1 & 2 & 0 \\ 1 & 1 & 1 \\ 2 & 0 & -1 \end{bmatrix}$, $C = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$, $D = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 2 & 3 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 1 & 0 & 2 & 3 \end{bmatrix}$.

- (1) 计算 B 的 LU 分解,即找到单位下三角矩阵 L_B 和上三角矩阵 U_B ,使得 $B=L_BU_B$,判断 B 是否可逆并在可逆时求逆.
- (2) 计算 D 的 LU 分解,即找到单位下三角矩阵 L_D 和上三角矩阵 U_D ,使得 $D=L_DU_D$,判断 D 是否可逆并在可逆时求逆.
- (3) 计算 A 的 LU 分解,即找到单位下三角矩阵 L_A 和上三角矩阵 U_A ,使得 $A=L_AU_A$,判断 A 是否可逆并在可逆时求逆.
- 7. (12 分) 判断下列陈述是否正确,并给出理由.
 - (1) 设 A, B, C 为 3 阶方阵, 如果 $ABC = I_3$, 则 $BCA = I_3$.

(2) 设
$$A, B, C, D$$
 为 2 阶方阵,且 $AD - BC = I_2$,则
$$\begin{bmatrix} A & B \\ C & D \end{bmatrix}^{-1} = \begin{bmatrix} D & -B \\ -C & A \end{bmatrix}.$$

(3) 存在
$$2 \times 5$$
 矩阵 A ,使得 $\begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{bmatrix}$ 与 $\begin{bmatrix} 5 \\ 4 \\ 3 \\ 2 \\ 1 \end{bmatrix}$ 构成 $\mathcal{N}(A)$ 的一组基.

- (4) 存在 2 阶方阵 A, B 满足 $AB BA = I_2$.
- 8. (8 分) 设 A, B 分别为 $m \times n$, $n \times p$ 矩阵, 试证: 方程组 (AB)x = 0 与 Bx = 0 的 解集相同当且仅当 $\operatorname{rank}(AB) = \operatorname{rank}(B)$.
- 9. (5 分) 对方阵 A, 试证: 若 $|x^{T}Ax| < |x^{T}x|$ 对任意 $x \neq 0$ 成立,则 $I A^{2}$ 可逆.

以下为附加题,所得分数可加至总成绩到至多 100 分.

- A. (10 分) 设 A, B, C 分别为 $l \times m, n \times p, l \times p$ 矩阵. 试证:
 - (1) 关于 $p \times n$ 矩阵 W 的方程 BWB = B 总有解.
 - (2) 利用 (1) 中结论证明关于 $m \times n$ 矩阵 X 的方程 AXB = C 有解, 当且仅当 $\operatorname{rank}(A) = \operatorname{rank}\left(\begin{bmatrix} A & C \end{bmatrix}\right)$, $\operatorname{rank}(B) = \operatorname{rank}\left(\begin{bmatrix} B \\ C \end{bmatrix}\right)$.