DSC 1408 Representation Learning

Lecture 21 | Part 1

Backpropagation

Gradient of a Network

- ▶ We want to compute the gradient $\nabla_{\vec{w}}H$.
 - ► That is, $\partial H/\partial W_{ij}^{(\ell)}$ and $\partial H/\partial b_i^{(\ell)}$ for all valid i,j,ℓ .
- A network is a composition of functions.
- We'll make good use of the chain rule.

Recall: The Chain Rule

= f'(q(x)) q'(x)

$$\frac{d}{dx}f(g(x)) = \frac{df}{dg}\frac{dg}{dx}$$

Some Notation

► We'll consider an arbitrary node in layer ℓ of a neural network.

- Let *g* be the activation function.
- ho_{ℓ} denotes the number of nodes in layer ℓ .

Arbitrary Node

Claim #1

$$\frac{\partial H}{\partial W_{ij}^{(\ell)}} = \frac{\partial H}{\partial z_j^{(\ell)}} a_i^{(\ell-1)}$$

Claim #2

$$\frac{\partial H}{\partial z_i^{(\ell)}} = \frac{\partial H}{\partial a_i^{(\ell)}} g'(z_j^{\ell})$$

Claim #3

$$\frac{\partial H}{\partial a_{j}^{(\ell)}} = \sum_{k=1}^{n_{\ell+1}} \frac{\partial H}{\partial z_{k}^{(\ell+1)}} \, W_{jk}^{(\ell+1)}$$

Exercise

What is $\partial H/\partial b_j^{(\ell)}$?

General Formulas

For any node in any neural network¹, we have the following recursive formulas:

$$\frac{\partial H}{\partial W_{ij}^{(\ell)}} = \frac{\partial H}{\partial z_i^{(\ell)}} a_i^{(\ell-1)}$$

¹Fully-connected, feedforward network

Main Idea

The derivatives in layer ℓ depend on derivatives in layer $\ell+1$.

Backpropagation

- ▶ **Idea:** compute the derivatives in last layers, first.
- ► That is:
 - ► Compute derivatives in last layer, \(\extit{\eta}\); store them.
 - ▶ Use to compute derivatives in layer ℓ 1.
 - ▶ Use to compute derivatives in layer ℓ 2.
 - · ...

Backpropagation

Given an input \vec{x} and a current parameter vector \vec{w} :

- 1. Evaluate the network to compute $z_i^{(\ell)}$ and $a_i^{(\ell)}$ for all nodes.
- 2. For each layer \{\epsilon\ from last to first:

► Compute
$$\frac{\partial H}{\partial a_i^{(\ell)}} = \sum_{k=1}^{n_{\ell+1}} \frac{\partial H}{\partial z_k^{(\ell+1)}} W_{jk}^{(\ell+1)}$$

Compute
$$\frac{\partial H}{\partial z_i^{(\ell)}} = \frac{\partial H}{\partial a_i^{(\ell)}} g'(z_j^{\ell})$$

Compute
$$\frac{\partial H}{\partial W_{ij}^{(\ell)}} = \frac{\partial H}{\partial z_j^{(\ell)}} a_i^{(\ell-1)}$$
Compute $\frac{\partial H}{\partial b_i^{(\ell)}} = \frac{\partial H}{\partial z_i^{(\ell)}}$

Compute
$$\frac{\partial H'}{\partial b_i^{(\ell)}} = \frac{\partial H}{\partial z_i^{(\ell)}}$$

Compute the entries of the gradient given:

$$W^{(1)} = \begin{pmatrix} 2 & -3 \\ 2 & 1 \end{pmatrix}$$
 $W^{(2)} = \begin{pmatrix} 2 & 1 \\ 0 & 1 \end{pmatrix}$ $W^{(3)} = \begin{pmatrix} 3 \\ -2 \end{pmatrix}$ $\vec{x} = (2, 1)^T$ $g(z) = \text{ReLU}$

$$\frac{\partial H}{\partial a_j^{(\ell)}} = \sum_{k=1}^{n_{\ell+1}} \frac{\partial H}{\partial z_k^{(\ell+1)}} \, W_{jk}^{(\ell+1)} \qquad \frac{\partial H}{\partial z_j^{(\ell)}} = \frac{\partial H}{\partial a_j^{(\ell)}} \, g'(z_j^{\ell}) \qquad \frac{\partial H}{\partial W_{ij}^{(\ell)}} = \frac{\partial H}{\partial z_j^{(\ell)}} a_i^{(\ell-1)}$$

Aside: Derivative of ReLU

$$g(z) = \max\{0, z\}$$

$$g'(z) = \begin{cases} 0, & z < 0 \\ 1, & z > 0 \end{cases}$$

Summary: Backprop

- Backprop is an algorithm for efficiently computing the gradient of a neural network
- It is not an algorithm **you** need to carry out by hand: your NN library can do it for you.

DSC 1408 Representation Learning

Lecture 21 | Part 2

Gradient Descent for NN Training

Empirical Risk Minimization

- 0. Collect a training set, $\{(\vec{x}^{(i)}, y_i)\}$
- Pick the form of the prediction function, H.
 E.g., a neural network, H.
- 2. Pick a loss function.
- 3. Minimize the empirical risk w.r.t. that loss.

Minimizing Risk

- To minimize risk, we often use **vector calculus**.
 - ► Either set $\nabla_{\vec{w}} R(\vec{w}) = 0$ and solve...
 - Or use gradient descent: walk in opposite direction of $\nabla_{\vec{w}} R(\vec{w})$.
- ► Recall, $\nabla_{\vec{w}} R(\vec{w}) = (\partial R / \partial w_0, \partial R / \partial w_1, ..., \partial R / \partial w_d)^T$

In General

- Let ℓ be the loss function, let $H(\vec{x}; \vec{w})$ be the prediction function.
- ► The empirical risk:

$$R(\vec{w}) = \frac{1}{n} \sum_{i=1}^{n} \ell(H(\vec{x}^{(i)}; \vec{w}), y_i)$$

Using the chain rule:

$$\nabla_{\vec{w}} R(\vec{w}) = \frac{1}{n} \sum_{i=1}^{n} \frac{\partial \ell}{\partial H} \nabla_{\vec{w}} H(\vec{x}^{(i)}; \vec{w})$$

Training Neural Networks

- For neural networks with nonlinear activations, the risk $R(\vec{w})$ is typically **complicated**.
- ► The minimizer cannot be found directly.
- Instead, we use iterative methods, such as gradient descent.

Iterative Optimization

- To minimize a function $f(\vec{x})$, we may try to compute $\vec{\nabla} f(\vec{x})$; set to 0; solve.
- Often, there is no closed-form solution.
- ► How do we minimize *f*?

Consider $f(x, y) = e^{x^2+y^2} + (x-2)^2 + (y-3)^2$.

- ► Try solving $\vec{\nabla} f(x, y) = 0$.
- ► The gradient is:

$$\vec{\nabla}f(x,y) = \begin{pmatrix} 2xe^{x^2+y^2} + 2(x-2) \\ 2ye^{x^2+y^2} + 2(y-3) \end{pmatrix}$$

Can we solve the system?

$$2xe^{x^2+y^2} + 2(x-2) = 0$$
$$2ye^{x^2+y^2} + 2(y-3) = 0$$

- ► Try solving $\vec{\nabla} f(x, y) = 0$.
- ► The gradient is:

$$\vec{\nabla}f(x,y) = \begin{pmatrix} 2xe^{x^2+y^2} + 2(x-2) \\ 2ye^{x^2+y^2} + 2(y-3) \end{pmatrix}$$

Can we solve the system? Not in closed form.

$$2xe^{x^2+y^2} + 2(x-2) = 0$$
$$2ye^{x^2+y^2} + 2(y-3) = 0$$

Idea

- Apply an iterative approach.
- Start at an arbitrary location.
- "Walk downhill", towards minimum.

Which way is down?

- Consider a differentiable function f(x, y).
- We are standing at $P = (x_0, y_0)$.
- In a small region around *P*, *f* looks like a plane.
- Slope of plane in x, y directions:

$$\frac{\partial f}{\partial x}(x_0, y_0) \quad \frac{\partial f}{\partial y}(x_0, y_0)$$

The Gradient

Let $f : \mathbb{R}^d \to \mathbb{R}$ be differentiable. The gradient of f at \vec{x} is defined:

$$\vec{\nabla} f(\vec{x}) = \left(\frac{\partial f}{\partial x_1}(\vec{x}), \frac{\partial f}{\partial x_2}(\vec{x}), \dots, \frac{\partial f}{\partial x_d}(\vec{x})\right)^T$$

▶ **Note:** $\vec{\nabla} f(\vec{x})$ is a **function** mapping $\mathbb{R}^d \to \mathbb{R}^d$.

Which way is down?

- ▶ $\vec{\nabla} f(x_0, y_0)$ points in direction of steepest **ascent** at (x_0, y_0) .
- ► $-\vec{\nabla} f(x_0, y_0)$ points in direction of steepest **descent** at (x_0, y_0) .

Gradient Properties

The gradient is used in the linear approximation of f:

$$f(x_0+\delta_x,y_0+\delta_y)\approx f(x_0,y_0)+\vec{\delta}\cdot\vec{\nabla}f(x_0,y_0)$$

- Important properties:
 - $\vec{\nabla} f(\vec{x})$ points in direction of **steepest ascent** at \vec{x} .
 - ▶ $-\vec{\nabla} f(\vec{x})$ points in direction of **steepest descent** at \vec{x} .
 - In directions orthogonal to $\vec{\nabla} f(\vec{x})$, f does not change!

Gradient Descent

- Pick arbitrary starting point $\vec{x}^{(0)}$, learning rate parameter $\eta > 0$.
- Until convergence, repeat:
 - ► Compute gradient of f at $\vec{x}^{(i)}$; that is, compute $\vec{\nabla} f(\vec{x}^{(i)})$.
 - ► Update $\vec{x}^{(i+1)} = \vec{x}^{(i)} \eta \vec{\nabla} f(\vec{x}^{(i)})$.
- When do we stop?
 - ▶ When difference between $\vec{x}^{(i)}$ and $\vec{x}^{(i+1)}$ is negligible.
 - ► I.e., when $\|\vec{x}^{(i)} \vec{x}^{(i+1)}\|$ is small.

```
def gradient_descent(
          gradient, x, learning_rate=.01,
          threshold=.1e-4
):
    while True:
        x_new = x - learning_rate * gradient(x)
```

break

x = x new

return x

if np.linalg.norm(x - x new) < threshold:</pre>

Backprop Revisited

- The weights of a neural network can be trained using gradient descent.
- This requires the gradient to be calculated repeatedly; this is where backprop enters.
- Sometimes people use "backprop" to mean "backprop + SGD", but this is not strictly correct.

Backprop Revisited

Consider training a NN using the square loss:

$$\nabla_{\vec{w}} R(\vec{w}) = \frac{1}{n} \sum_{i=1}^{n} \frac{\partial \ell}{\partial H} \nabla_{\vec{w}} H(\vec{x}^{(i)}; \vec{w})$$

$$= \frac{2}{n} \sum_{i=1}^{n} (H(\vec{x}^{(i)}) - y_i) \nabla_{\vec{w}} H(\vec{x}^{(i)}; \vec{w})$$

Backprop Revisited

► Interpretation:

$$\nabla_{\vec{w}} R(\vec{w}) = \frac{2}{n} \sum_{i=1}^{n} \underbrace{(H(\vec{x}^{(i)}) - y_i)}_{\text{Error}} \underbrace{\nabla_{\vec{w}} H(\vec{x}^{(i)}; \vec{w})}_{\text{Blame}}$$

When used in SGD, backprop "propagates error backward" in order to update weights.

Difficulty of Training NNs

Gradient descent is guaranteed to find optimum when objective function is convex.²

²Assuming it is properly initialized

Difficulty of Training NNs

When activations are non-linear, neural network risk is highly non-convex:

Non-Convexity

- When R is non-convex, GD can get "stuck" in local minima.
 - Solution depends on initialization.
- More sophisticated optimizers, using momentum, adaptation, better initialization, etc.
 - Adagrad, RMSprop, Adam, etc.

Difficulty of Training (Deep) NNs

Deep networks can suffer from the problem of vanishing gradients: if w is a weight at the "front" of the network, ∂H/∂w can be very small

Vanishing Gradients

- If $\partial H/\partial w$ is always close to zero, w is updated **very slowly** by gradient descent.
- In short: early layers are slower to train.
- One mitigation: use ReLU instead of sigmoid.

Vanishing Gradients

Lecture 21 | Part 3

Stochastic Gradient Descent

Gradient Descent for Minimizing Risk

▶ In ML, we often want to minimize a risk function:

$$R(\vec{w}) = \frac{1}{n} \sum_{i=1}^{n} \ell(H(\vec{x}^{(i)}; \vec{w}), y_i)$$

Observation

The gradient of the risk function is a sum of gradients:

$$\vec{\nabla}R(\vec{w}) = \frac{1}{n} \sum_{i=1}^{n} \vec{\nabla}\ell(H(\vec{x}^{(i)}; \vec{w}), y_i)$$

One term for each point in training data.

Problem

- In machine learning, the number of training points *n* can be **very large**.
- Computing the gradient can be expensive when n is large.
- Therefore, each step of gradient descent can be expensive.

Idea

► The (full) gradient of the risk uses all of the training data:

$$\nabla R(\vec{w}) = \frac{1}{n} \sum_{i=1}^{n} \nabla \ell(H(\vec{x}^{(i)}; \vec{w}), y_i)$$

- ▶ It is an average of *n* gradients.
- ▶ **Idea:** instead of using all n points, randomly choose $\ll n$.

Stochastic Gradient

- Choose a random subset (mini-batch) B of the training data.
- Compute a stochastic gradient:

$$\nabla R(\vec{w}) \approx \sum_{i \in B} \vec{\nabla} \ell(H(\vec{x}^{(i)}; \vec{w}), y_i)$$

Stochastic Gradient

$$\nabla R(\vec{w}) \approx \sum_{i \in B} \vec{\nabla} \ell(H(\vec{x}^{(i)}; \vec{w}), y_i)$$

- ▶ **Good:** if $|B| \ll n$, this is much faster to compute.
- Bad: it is a (random) approximation of the full gradient, noisy.

Stochastic Gradient Descent (SGD) for ERM

- Pick arbitrary starting point $\vec{x}^{(0)}$, learning rate parameter $\eta > 0$, batch size $m \ll n$.
- Until convergence, repeat:
 - Randomly sample a batch *B* of *m* training data points (on each iteration).
 - ► Compute stochastic gradient of f at $\vec{x}^{(i)}$:

$$\vec{g} = \sum_{i=0} \vec{\nabla} \ell(H(\vec{x}^{(i)}; \vec{w}), y_i)$$

► Update $\vec{x}^{(i+1)} = \vec{x}^{(i)} - \eta \vec{q}$

Idea

- In practice, a stochastic gradient often works well enough.
- It is better to take many noisy steps quickly than few exact steps slowly.

Batch Size

- Batch size m is a parameter of the algorithm.
- ► The larger *m*, the more reliable the stochastic gradient, but the more time it takes to compute.
- \triangleright Extreme case when m = 1 will still work.

Usefulness of SGD

- SGD allows learning on massive data sets.
- Useful even when exactl solutions available.
 - E.g., least squares regression / classification.