Alphabets and Languages

Lecture notes based on "Elements of the theory of computation" by H.R. Lewis and C. H. Papadimitriou.

Alphabets and Languages

"In computational practice, data are encoded in the computer's memory as strings of bits or other symbols appropriate for manipulation by a computer. The mathematical study of the theory of computation must therefore begin by understanding the mathematics of strings of symbols."

Alphabet: a finite set of symbols, e.g., $\{a, b, \dots, z\}$, $\{0, 1\}$.

String: A string over an alphabet is a finite sequence of symbols from the alphabet, e.g., "apple", "0011", "a", "e" (empty string). The set of all strings (including the empty string) over Σ is denoted by Σ^* . The length of a string is the length of the sequence, e.g. |abc| = 3. A string $w \in \Sigma^*$ can be considered as a function $w : \{1, \ldots, |w|\} \to \sigma$, where w(j) is the symbol at the j-th position.

Language: Any subset L of Σ^* for an alphabet Σ is called a language over Σ .

String operations

Concatenation: Two strings x, y over the same alphabet, e.g. $x, y \in \Sigma^*$, can be combined. $w = x \circ y$, or simply w = xy. |w| = |x| + |y|, w(i) = x(i) for $i \le |x|$, and w(i) = y(i - |x|) for i > |x|.

 $w \circ e = e \circ w = w$. Concatenation is associative, x(yz) = (xy)z

Substring: A string v is a substring of w if w can be written as w = xvy. If w = vx then v is a prefix of w, and if w = xv, then v is a suffix of w.

 w^i : For each string $w \in \Sigma^*$ and natural number $i \in \mathbb{N}$, w^i is defined as (definition by induction):

$$w^0 = e$$

$$w^{i+1} = w^i \circ w \text{ for each } i \ge 0$$

Reversal The reverse of a string w, denoted by w^R , is the string spelled backwards, $w^R(i) = w(|w| - i + 1)$. Inductive definition:

- If |w| = 0, then $w^R = w = e$
- If |w| = n + 1 for some $n \in \mathbb{N}$, then w = ua for some $a \in \Sigma$, and $w^R = au^R$.

Theorem 1 For any two strings x, w, $(wx)^R = x^R w^R$.

Languages

Given an alphabet Σ , any subset of Σ^* is called a language. E.g. $\Sigma = \{0,1\}$, $L_1 = \{0,1\}$, $L_2 = \{e,0,1,00,01,10,11\}$, $L_3 = \{w \in \Sigma^* \mid |w| \le 2\}$, $L_4 = \{w \in \Sigma^* \mid w \text{ has an equal number of 0's and 1's}\}$. Representation:

$$L = \{ w \in \Sigma^{\star} \mid w \text{ has the property } P \}$$

Language operations

Languages are sets, so set operations (union, intersection, difference) can be used on languages.

Complement: $\overline{L} = \Sigma^* \setminus L$

Concatenation: L_1, L_2 are languages over Σ . $L = L_1 \circ L_2$ (or simply $L = L_1 L_2$) is defined as

$$L = \{w_1 w_2 \mid w_1 \in L_1 \text{ and } w_2 \in L_2\}$$

Kleene star: The Kleene star of a language L, denoted by L^* , is the set of strings obtained by concatenating 0 or more strings from L.

Note that Σ^* and L^* definitions are consistent.

$$L^+ = LL^*$$

See problems for section 1.7.