

Fourier Analysis

Author: Javier Duoandikoetxea

Date: August 26, 2023

Contents

1 Fourier Series and Integrals

1

Chapter 1 Fourier Series and Integrals

We will go through the book's notes in this document. Chapter 1 is organized as follows:

- 1. Fourier coefficients and Series
- 2. Criteria for pointwise convergence
- 3. Convergence in norm
- 4. summability methods
- 5. The fourier transform of L^1 functions
- 6. Schwartz class and tempered distributions
- 7. Fourier transform on L^p , for 1
- 8. Convergence and summability of Fourier Integrals
- 9. Further results

The Lebesgue measure in \mathbb{R}^n will be denoted using dx, and on the unit sphere S^{n-1} will be $d\sigma$.

Let
$$a=(a_1,...,a_n)\in\mathbb{N}^n$$
 be a multiindex, and $f:\mathbb{R}^n\to\mathbb{C}$, then

$$D^a f = \frac{\partial^{|a|} f}{\partial_{x_1}^{a_1} \dots \partial_{x_n}^{a_n}}$$

where $|a| = a_1 + ... + a_n$.

Theorem 1.1 (Minkowski's integral inequality.

Given (X, μ) , (Y, ν) as σ -finite measure spaces, we have the following inequality

$$\left(\int_X \left|\int_Y f(x,y) d\nu(y)\right|^p d\mu(x)\right)^{1/p} \leq \int_Y \left(\int_X |f(x,y)^p d\mu(x)\right)^{1/p} d\nu(y)$$

Taking ν to be the counting measure over a two point set S=1,2 gives the usual Minkowski inequality

$$||f_1 + f_2||_{L^p} \le ||f_1||_{L^p} + ||f_2||_{L^p}$$

We will use $\mathcal D$ to denote the space of test functions, i.e. C_c^∞ , and $\mathcal S$ to denote the space of Schwartz functions.