人工智能

不确定性知识表示与推理

陈 川 中山大学 计算机学院 2024年

不确定性知识表示与推理

- ■概率统计、独立性、贝叶斯规则
- ■贝叶斯推断
- ■贝叶斯网络

Uncertainty 不确定性

- In search, we viewed actions as being deterministic.
 - executing action A in state S_1 causes transition to state S_2
- Furthermore, there was a fixed initial state S_0 .
- So after executing any sequence of actions, we know exactly what state we have arrived at.
- These assumptions are sensible in some domains, but in many domains they are not true.

The world is a very uncertain place

Uncertainty 不确定性

- We might not know exactly what state we start off in
 - *e.g.*, we can't see our opponents' cards in a poker game
 - We don't know what a patient's ailment is.
- We might not know all of the effects of an action
 - The action might have a random component, like rolling dice.
 - We might not know all of the long term effects of a drug.
 - An action might fail

Based on what we can see, there's a 30% chance we're in cell S_1 , 30% in S_s and 40% in S_3

Move(S_1 ,'N') = S_2 50% of the time Move(S_1 ,'N') = S_3 50% of the time

Uncertainty 不确定性

- In such domains we still need to act,
- but we can't act solely on the basis of known true facts.
- We have to "gamble".
- But how do we gamble rationally?

An example

设想下: We have to go to the airport. But we don't know for certain what the traffic will be like on the way to the airport. When do we leave?

- If we must arrive at the airport at 9 pm on a week night
 - we could "safely" leave for the airport 1 hour before.
 - Some probability of the trip taking longer, but the probability is low.
- If we must arrive at the airport at 6:30pm on Friday
 - we most likely need 1.5 hour or more to get to the airport.

Acting rationally under uncertainty typically corresponds to maximizing one's **Expected Utility** 期望效用.

Expected Utility Example

 Probability distribution over outcomes (also called a "joint distribution")

Event	Go to Bloor St.	Go to Queen Street
Find Ice Cream	0.5	0.2
Find donuts	0.4	0.1
Find live music	0.1	0.7

Utilities of outcomes

Event	Utility	
Ice Cream	10	
Donuts	5	
Music	20	

Expected Utility Example

• Maximum Expected Utility?

Event	Go to Bloor St.	Go to Queen Street
Ice Cream	0.5 * 10	0.2 *10
Donuts	0.4 * 5	0.1 * 5
Music	0.1 * 20	0.7 * 20
Utility	9.0	16.5

- Here, it's "Go to Queen Street"
- If the utility of Donuts of Ice Cream had been higher, however, it might have been "Go to Bloor Street".

Uncertainty

- To act rationally under uncertainty, we must be able to evaluate how likely certain things are.
 在面对不确定性时,要做出理性的行为,我们必须能够评估某些事情发生的可能性。
- By weighing likelihoods of events (probabilities), we can develop mechanisms for acting rationally under uncertainty. 通过权衡事件的可能性(概率),我们可以开发出在不确定性下行动的机制。

前置概念 Probability (over Finite Sets)

A probability is a function defined over a set of atomic events U.

U represents the universe of all possible events.

- It assigns a value Pr(e) to each event $e \in U$, in the range [0,1].
- It assigns a value to every set of events F by probabilities of the members of that set:
- $Pr(F) = \sum_{e \in F} Pr(e)$
- Thus Pr(U) = 1, $Pr(\emptyset) = 0$
- $Pr(A \cup B) = Pr(A) + Pr(B) Pr(A \cap B)$

前置概念 Probability (over Finite Sets)

给定一个集合U(universe),概率函数是定义在U的子集上的函数,它将每个子集映射到实数,并且满足概率公理

- \bullet Pr(U) = 1
- \bullet $Pr(A) \in [0,1]$
- $Pr(A \cup B) = Pr(A) + Pr(B) Pr(A \cap B)$

Properties and sets 属性与集合

Any set of events A can be interpreted as a property: the set of events with property A 任何一组事件A都可以解释为一个属性: 具有属性A的事件集. Hence, we often write

- $A \lor B$ to represent the set of events with either property A or B: the set $A \cup B$
- $A \wedge B$ to represent the set of events with both property A and B: the set $A \cap B$
- $\neg A$ to represent the set of events that do not have property A: the set U A (i.e., the complement of A wrt the universe of events U)

Probability over Feature Vectors 多变量概率

- As we move forward, we will model sets of events in our universe as vectors of feature values.
- We have
 - a set of variables V_1, V_2, \ldots, V_n
 - a finite domain of values for each variable, $Dom[V_1]$, $Dom[V_2]$,..., $Dom[V_n]$.
- The universe of events U is the set of all vectors of values for the variables $\{(d_1, d_2, ..., d_n) \mid d_i \in Dom[V_i]\}$
- This event space has size $\prod_i |Dom[V_i]|$, *i.e.*, the product of the domain sizes.
- e.g., if |Dom[Vi]| = 2, we have 2^n distinct atomic events. (Exponential!)

Probability over Feature Vectors 多变量概率

- Asserting that some subset of variables have particular values allows us to specify a useful collection of subsets of U, *e.g.*
 - $\{V_1 = a\}$ = set of all events where $V_1 = a$
 - $\{V_1 = a, V_3 = d\} = \text{set of all events where } V_1 = a \text{ and } V_3 = d.$
- If we had Pr of every atomic event (full instantiation of the variables) we could compute Pr of any other set, *e.g.*

$$Pr(\{V_1 = a\}) = \sum_{x_n \in D[V_n]} \sum_{x_n \in D[V_n]} Pr(V_1 = a, V_2 = x_2, ..., V_n = x_n)$$

Review: Probability over Feature Vectors

Example:

```
P(\{V_1 = I\}) = \sum_{x_2 \in Dom[V_2]} \sum_{x_2 \in Dom[V_2]} P(\{V_1 = I, V_2 = x_2, V_3 = x_3\}).
                           (V1 = 2, V2 = 1, V3 = 1)
                                                     (V1 = 3, V2 = 1, V3 = 1)
(V1 = 1, V2 = 1, V3 = 1)
                          (V1 = 2, V2 = 1, V3 = 2) (V1 = 3, V2 = 1, V3 = 2)
(V1 = 1, V2 = 1, V3 = 2)
(V1 = 1, V2 = 1, V3 = 3)
                          (V1 = 2, V2 = 1, V3 = 3) (V1 = 3, V2 = 1, V3 = 3)
                          (V1 = 2, V2 = 2, V3 = 1) (V1 = 3, V2 = 2, V3 = 1)
(V1 = 1, V2 = 2, V3 = 1)
(V1 = 1, V2 = 2, V3 = 2)
                          (V1 = 2, V2 = 2, V3 = 2) (V1 = 3, V2 = 2, V3 = 2)
(V1 = 1, V2 = 2, V3 = 3)
                          (V1 = 2, V2 = 2, V3 = 3) (V1 = 3, V2 = 2, V3 = 3)
                          (V1 = 2, V2 = 3, V3 = 1) (V1 = 3, V2 = 3, V3 = 1)
(V1 = 1, V2 = 3, V3 = 1)
(V1 = 1, V2 = 3, V3 = 2)
                          (V1 = 2, V2 = 3, V3 = 2) (V1 = 3, V2 = 3, V3 = 2)
(V1 = 1, V2 = 3, V3 = 3)
                          (V1 = 2, V2 = 3, V3 = 3)
                                                     (V1 = 3, V2 = 3, V3 = 3)
```

Review: Probability over Feature Vectors

Example:

$$P(\{V_1 = I, V_3 = 2\}) = \sum_{x_2 \in Dom[V_2]} P(\{V_1 = I, V_2 = x_2, V_3 = 2\}).$$

$$(V1 = 1, V2 = 1, V3 = 1) \qquad (V1 = 2, V2 = 1, V3 = 1) \qquad (V1 = 3, V2 = 1, V3 = 1)$$

$$(V1 = 1, V2 = 1, V3 = 2) \qquad (V1 = 2, V2 = 1, V3 = 2) \qquad (V1 = 3, V2 = 1, V3 = 2)$$

$$(V1 = 1, V2 = 1, V3 = 3) \qquad (V1 = 2, V2 = 1, V3 = 3) \qquad (V1 = 3, V2 = 1, V3 = 3)$$

$$(V1 = 1, V2 = 2, V3 = 1) \qquad (V1 = 2, V2 = 2, V3 = 1) \qquad (V1 = 3, V2 = 2, V3 = 2)$$

$$(V1 = 1, V2 = 2, V3 = 2) \qquad (V1 = 2, V2 = 2, V3 = 2) \qquad (V1 = 3, V2 = 2, V3 = 2)$$

$$(V1 = 1, V2 = 2, V3 = 3) \qquad (V1 = 2, V2 = 2, V3 = 3) \qquad (V1 = 3, V2 = 2, V3 = 3)$$

$$(V1 = 1, V2 = 3, V3 = 1) \qquad (V1 = 2, V2 = 3, V3 = 1) \qquad (V1 = 3, V2 = 3, V3 = 2)$$

$$(V1 = 1, V2 = 3, V3 = 2) \qquad (V1 = 2, V2 = 3, V3 = 2) \qquad (V1 = 3, V2 = 3, V3 = 2)$$

$$(V1 = 1, V2 = 3, V3 = 3) \qquad (V1 = 2, V2 = 3, V3 = 3) \qquad (V1 = 3, V2 = 3, V3 = 3)$$

In these examples we are "summing out" 总结法则 some variables, which is also known as "marginalizing" our distribution

Problem and solution 存在的问题与解决思路

Problem

- This is an exponential number of atomic probabilities to specify. 需要指定指数级别的原子概率
- Requires summing up an exponential number of items. 需要对指数级别的项求和。

Solution

Make use of probabilistic independence, especially conditional

independence. 利用概率独立性,特别是条件独立性。

Conditional probabilities 条件概率

- Before we get to conditional independence, we need to define the meaning of conditional probabilities.
 - Say that A is a set of events such that Pr(A) > 0.
 - Then one can define a conditional probability wrt the event A: $Pr(B|A) = Pr(B \cap A)/Pr(A)$
 - Conditioning on A, corresponds to restricting one's attention to the events in A.

An example

B covers about 30% of the entire space (U), but covers over 80% of A.

So Pr(B) = 0.3, but Pr(B|A) = 0.8

These capture conditional information about the influence of any one variable's value on the probability of others'.

Summing out rule 总结法则

- Say that B_1, B_2, \ldots, B_k form a partition of the universe U.
 - $B_i \cap B_j = \emptyset$, $i \neq j$ (mutually exclusive 相互排斥)
 - $B_1 \cup B_2 \cup \ldots \cup B_k = U$ (exhaustive 周全)
- In probabilities:
 - $Pr(B_i \cap B_j) = 0, i \neq j$
 - $Pr(B_1 \cup B_2 \cup \ldots \cup B_k) = 1$
- Given any other set of events A, we have that $Pr(A) = Pr(A \cap B_1) + ... + Pr(A \cap B_k)$
- In conditional probabilities: $Pr(A) = Pr(A | B_1)Pr(B_1) + ... + Pr(A | B_k)Pr(B_k)$
- Often we know $Pr(A | B_i)$, so we can compute Pr(A) this way.

Independence 独立性

- It could be that the density of B on A is identical to its density on the entire set.
 - **Probability density** is a measure of likelihood: pick an element at random from the entire set. How likely is it that the picked element is in the set B?
- Alternately, the density of B on A could be much different from its density on the whole space.
- In the first case P(B|A) = P(B), we say that B is **independent** of A. While in the second case, it is B is **dependent** on A. $(P(B|A) \neq P(B))$.
- In this case, knowing an element belongs to A does not tell us anything more about whether it also belongs to B

Conditional independence 条件独立性

- Say we have already learned that a randomly picked element has property A.
- We want to know whether or not the element has property B:
 - Arr Pr(B|A) expresses the probability of this being true.
- Now we learn that the element also has property C. Does this give us more information about B-ness?
 - $Pr(B|A \cap C)$ expresses the probability of this being true under the additional information.

Conditional independence 条件独立性

- If $Pr(B|A \cap C) = Pr(B|A)$, then we have not gained any additional information from knowing that the element is in C.
- In this case we say that B is conditionally independent of C given A.
- That is, once we know A, additionally knowing C is irrelevant (it will give us no more information as to the value of whether or not B is true).
- Conditional independence is independence in the conditional probability space $Pr(\bullet|A)$.

Conditional independence 条件独立性

Note!

These pictures represent the probabilities of event sets A, B and C by the areas shaded red, blue and yellow respectively with respect to the total area. In both examples A and B are conditionally independent given C because:

$$P(A^B|C) = P(A|C)P(B|C)$$

BUT A and B are NOT conditionally independent given $\neg C$, as:

$$P(A^B|\neg C) \neq P(A|\neg C)P(B|\neg C)$$

Computational Impact of Independence独立性下的计算

If A and B are independent, then $Pr(A \cap B) = Pr(A) \cdot Pr(B)$ Proof:

P(B|A) = P(B) (def'n of independence)

$$P(B|A) = P(B)$$
 (def'n of independence)
 $P(A \land B)/P(A) = P(B)$
 $P(A \land B) = P(B) * P(A)$

• If given *A*, *B* and *C* are conditionally independent, then $Pr(B \cap C|A) = Pr(B|A) \cdot Pr(C|A)$

Proof:

 $P(B|C \land A) = P(B|A)$ (def'n of conditional independence) $P(B \land C \land A)/P(C \land A) = P(B \land A)/P(A)$ $P(B \land C \land A)/P(A) = P(C \land A)/P(A) * P(B \land A)/P(A)$ $P(B \land C|A) = P(B|A) * P(C|A)$

Computational Impact of Independence独立性下的计算

Independence property allows us to "break" up the computation of a conjunction " $P(A \land B)$ " into two separate computations "P(A)" and "P(B)". $P(B \land C|A)$ into P(B|A) and P(C|A), $P(B|A \land C)$ into P(B|A)

This can yield great computational savings.

Review: Chain rule 链式法则

$$P(A_1 \land A_2 \land ... \land A_n) =$$

$$P(A_1 | A_2 \land ... \land A_n) * P(A_2 | A_3 \land ... \land A_n)$$

$$* ... * P(A_{n-1} | A_n) * P(A_n)$$

Proof:

$$P(A_{1}|A_{2} \land ... \land A_{n}) * P(A_{2}|A_{3} \land ... \land A_{n}) * ... * P(A_{n-1}|A_{n})$$

$$= P(A_{1} \land A_{2} \land ... \land A_{n}) / P(A_{2} \land ... \land A_{n}) * P(A_{2} \land ... \land A_{n}) / P(A_{3} \land ... \land A_{n}) *$$

$$... * P(A_{n-1} \land A_{n}) / P(A_{n}) * P(A_{n})$$

$$P_{\Gamma}(A_{1} \cap A_{2} \cap A_{3})$$

= $P_{\Gamma}(A_{1} | A_{2} \cap A_{3}) P_{\Gamma}(A_{2} \cap A_{3})$
= $P_{\Gamma}(A_{1} | A_{2} \cap A_{3}) P_{\Gamma}(A_{2} | A_{3}) P_{\Gamma}(A_{3})$

流感案例分析

P(Headache=true) = 1/10

P(Flu=true) = 1/40

P(Headache=true|Flu=true) = 1/2

Headaches are rare and having flu is rarer. But, given flu, there is a 50% chance you have a headache.

What is P(Flu=true|Headache=true)?

 $P(Flu|Headache) = P(Flu \land Headache)/P(Headache)$

= P(Flu \(\Lambda\) Headache)/P(Flu) * P(Flu)/P(Headache)

= P(Headache| Flu)P(Flu)/P(Headache)

What we just did

We Derived Bayes' Rule.

$$P(Y|X) = P(X|Y)P(Y)/P(X)$$

$$P(Y|X) = P(Y \land X)/P(X)$$

$$= P(Y \land X)/P(Y) * P(Y)/P(X)$$

$$= P(X|Y)P(Y)/P(X)$$

What we just did, more formally

This is Bayes Rule

Bayes, Thomas (1763) An essay towards solving a problem in the doctrine of chances. *Philosophical Transactions of the Royal Society of London*, 53:370-418

Using Bayes Rule to Gamble

The "Win" envelope has a dollar and four beads in it

The "Lose" envelope has three beads and no money

Trivial question: Someone picks an envelope and random and asks you to bet as to whether or not it holds a dollar. What are your odds?

Using Bayes Rule to Gamble

The "Win" envelope has a dollar and four beads in it

The "Lose" envelope has three beads and no money

Not trivial question: Someone lets you take a bead out of the envelope before you bet. If it is black, what are your odds? If it is red, what are your odds? $P(A | B) = P(A) \frac{P(B | A)}{P(B)}$

Bayes rule贝叶斯法则

 Bayes rule is a simple mathematical fact. But it has great implications wrt how probabilities can be reasoned with.

$$Pr(Y|X) = Pr(X|Y)Pr(Y)/Pr(X)$$

- *e.g.*, from treating patients with heart disease we might be able to estimate the value of
- Pr(high Cholesterol高胆固醇|heart disease心脏病)
- With Bayes rule, we can turn this around into a predictor for heart disease
- Pr(heart disease心脏病 | high Cholesterol高胆固醇)
- With a simple blood test we can determine "high Cholesterol", and use it to help estimate the likelihood of heart disease.

Bayes Rule Example 贝叶斯法则案例

- Disease ∈ {*malaria*疟疾, cold感冒, flu流感};
- Symptom = fever 发烧
- Must compute Pr(Disease | fever) to prescribe treatment. Why not assess this quantity directly?
 - *Pr(mal|fever)* is not natural to assess. It does not reflect the underlying "causal mechanism" malaria ⇒ fever 难以直接评估,无法反映内在因果机制
 - *Pr(mal|fever)* is not "stable": a malaria epidemic changes this quantity (for example) 随环境不断变化
- So we use Bayes rule:
- Pr(mal|fever) = Pr(fever|mal)Pr(mal)/Pr(fever)

Pr(mal)表示当前环境下患疟疾概率,反映的就是环境的影响

Bayes Rule Example 贝叶斯法则案例

- What about Pr(fever)
- Say that malaria, cold and flu are the only possible causes of fever, i.e., $Pr(fever | \neg malaria \land \neg cold \land \neg flu) = 0$, and they are mutually exclusive.
- Then Pr(fever) = Pr(malaria \ fever) + Pr(cold \ fever) + Pr(flu \ fever)
 - $\not\equiv Pr(malaria \land fever) = Pr(fever \mid mal)Pr(mal)$
- Similarly, we can obtain $Pr(cold \land fever)$ and $Pr(flu \land fever)$

Useful equations 常用的计算公式总结

- Conditional probability: $Pr(B|A) = Pr(B \cap A)/Pr(A)$
- Summing out rule: Say that B_1, B_2, \ldots, B_k form a partition of U. Then $Pr(A) = Pr(A \cap B_1) + \ldots + Pr(A \cap B_k)$
- If A and B are independent, then $Pr(A \cap B) = Pr(A) \cdot Pr(B)$
- If given A, B and C are conditionally independent, then $Pr(B \cap C|A) = Pr(B|A) \cdot Pr(C|A)$
- Bayes rule: Pr(Y | X) = Pr(X | Y)Pr(Y)/Pr(X)
- Chain rule: $Pr(A_1 \cap A_2 \cap \ldots \cap A_n) = Pr(A_1 | A_2 \cap \ldots \cap A_n) \cdot Pr(A_2 | A_3 \cap \ldots \cap A_n) \cdot Pr(A_{n-1} | A_n) \cdot Pr(A_n)$

扩展到连续空间分布

- Pr(X) for variable X refers to the (marginal边际) distribution over X. Pr(X|Y) refers to family of conditional distributions over X, one for each $y \in Dom(Y)$.
- For each $d \in Dom[Y]$, Pr(X|Y = d) specifies a distribution over the values of X: $Pr(X = d_1|Y = d)$, $Pr(X = d_2|Y = d)$, ..., $Pr(X = d_n|Y = d)$, where $Dom[X] = \{d_1, d_2, ..., d_n\}$.
- Distinguish between Pr(X) which is distribution and Pr(X = d) ($d \in Dom[X]$) which is a number.

Think of Pr(X) as a function that accepts any $x \in Dom[X]$ as an argument and returns Pr(X = x).

Similarly, think of Pr(X|Y) as a function that accepts any $y \in Dom[Y]$ and returns a distribution Pr(X|Y = y).

贝叶斯推断

对条件概率公式进行变形,可以得到

$$P(A|B) = P(A) \frac{P(B|A)}{P(B)}$$

后验概率 先验概率 调整因子

P(A)称为"先验概率" (Prior probability) ,即在B事件发生之前,我们对A事件概率的一个判断。

P(A|B)称为"后验概率"(Posterior probability),即在B事件发生之后,我们对A事件概率的重新评估。

P(B|A)/P(B)称为"可能性函数"(Likelyhood),这是一个调整因子,使得预估概率更接近真实概率。

贝叶斯推断的含义

条件概率可以理解为

后验概率 = 先验概率 × 调整因子

贝叶斯推断含义:我们先<mark>预估一个"先验概率",然后加入实验结果,看这个实验到底是增强还是削弱了"先验概率",由此得到更接近事实的"后验概率"。</mark>

如果 "调整因子">1, 意味着"先验概率"被增强, 事件 A的发生的可能性变大;

如果 "调整因子"=1, 意味着B事件无助于判断事件A的可能性;

如果 "调整因子" < 1, 意味着 "先验概率"被削弱, 事件 A的可能性变小。

【例子】水果糖问题

两个一模一样的碗,一号碗有30颗水果糖和10颗巧克力糖,二号碗有水果糖和巧克力糖各20颗。现在随机选择一个碗,从中摸出一颗糖,发现是水果糖。请问这颗水果糖来自一号碗的概率有多大?

【例子】水果糖问题

假定, H1表示一号碗, H2表示二号碗。由于这两个碗是一样的, 所以P(H1)=P(H2), 也就是说, 在取出水果糖之前, 这两个碗被选中的概率相同。因此, P(H1)=0.5, 我们把这个概率就叫做"先验概率", 即没有做实验之前, 来自一号碗的概率是0.5。

再假定, E表示水果糖, 所以问题就变成了在已知E的情况下, 来自一号碗的概率有多大, 即求P(H1|E)。我们把这个概率叫做"后验概率", 即在E事件发生之后, 对P(H1)的修正。

由条件概率公式,有

$$P(H_1|E) = P(H_1) \frac{P(E|H_1)}{P(E)}$$

【例子】水果糖问题

已知, P(H1)等于0.5, P(E|H1)为一号碗中取出水果糖的概率, 等于0.75, 那么求出P(E)就可以得到答案。

根据全概率公式

$$P(E) = P(E|H_1)P(H_1) + P(E|H_2)P(H_2)$$

所以

$$P(E) = 0.75 \times 0.5 + 0.5 \times 0.5 = 0.625$$

代入数据得

$$P(H1|E) = 0.5 \times \frac{0.75}{0.625} = 0.6$$

这表明,来自一号碗的概率是0.6。也就是说,取出水果糖之后,H1事件的可能性得到了增强。

【例子】别墅与狗

一座别墅在过去的 20*365天里一共发生过 2 次被盗,别墅的主人有一条狗,狗平均每周晚上叫 3 次,在盗贼入侵时狗叫的概率被估计为 0.9,问题是:在狗叫的时候发生入侵的概率是多少? TRY

- 我们假设 A 事件为狗在晚上叫, B 为盗贼入侵, P(A) = 3/7
 P(B)=2/(20·365)=2/7300
 P(A | B) = 0.9
- 按照公式很容易得出结果:
 P(B|A)=0.9*(2/7300)/(3/7)=0.00058

【例子】假阳性问题

已知某种疾病的发病率是0.001,即1000人中会有1个人得病。现有一种试剂可以检验患者是否得病,它的准确率是0.99,即在患者确实得病的情况下,它有99%的可能呈现阳性。它的误报率是5%,即在患者没有得病的情况下,它有5%的可能呈现阳性。现有一个病人的检验结果为阳性,请问他确实得病的可能性有多大?

【例子】假阳性问题

假定A事件表示得病,那么P(A)为0.001。这就是"先验概率",即没有做试验之前,我们预计的发病率。再假定B事件表示阳性,那么要计算的就是P(A|B)。这就是"后验概率",即做了试验以后,对发病率的估计。

根据公式

$$P(A|B) = P(A)\frac{P(B|A)}{P(B)}$$

用全概率公式改写分母

$$P(A \mid B) = P(A) \frac{P(B \mid A)}{P(B \mid A)P(A) + P(B \mid \overline{A})P(\overline{A})}$$

结果

$$P(A|B) = 0.001 \times \frac{0.99}{0.99 \times 0.001 + 0.05 \times 0.999} \approx 0.019$$

【例子】假阳性问题

P(A|B)约等于0.019。也就是说,即使检验呈现阳性,病人得病的概率,也只是从0.1%增加到了2%左右。这就是所谓的"假阳性",即阳性结果完全不足以说明病人得病。为什么?

原因: 误报率太高、疾病发生概率低

$$P(A|B) = 0.001 \times \frac{0.99}{0.99 \times 0.001 + 0.05 \times 0.999} \approx 0.019$$

Bayesian Classifiers 贝叶斯分类器

Consider each attribute and class label as random variables 比如给定一位学生人工智能、明清文学、宋明理学、常微分方程几门课的成绩attribute,判别他是计算机学院还是历史学院class label

Given a record with attributes $(A_1, A_2, ..., A_n)$

- Goal is to predict class C
- Specifically, we want to find the value of C that maximizes P(C| A₁, A₂,...,A_n)

Can we estimate $P(C|A_1, A_2,...,A_n)$ directly from data?

Bayesian Classifiers贝叶斯分类器

Approach:

 compute the posterior probability P(C | A₁, A₂, ..., A_n) for all values of C using the Bayes theorem

$$P(C \mid A_{1}A_{2}...A_{n}) = \frac{P(A_{1}A_{2}...A_{n} \mid C)P(C)}{P(A_{1}A_{2}...A_{n})}$$

- Choose value of C that maximizes
 P(C | A₁, A₂, ..., A_n)
- Equivalent to choosing value of C that maximizes
 P(A₁, A₂, ..., A_n|C) P(C)

How to estimate $P(A_1, A_2, ..., A_n \mid C)$?

Naïve Bayes Classifier朴素贝叶斯分类器

Assume independence among attributes A_i when class is given:

-
$$P(A_1, A_2, ..., A_n | C) = P(A_1 | C_i) P(A_2 | C_i)... P(A_n | C_i)$$

- Can estimate P(A_i| C_j) for all A_i and C_j.
- New point is classified to C_j if $P(C_j) \ P(A_1|\ C_j) \ P(A_2|\ C_j) \dots \ P(A_n|\ C_j)$ is maximal.

How to Estimate Probabilities from Data?

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Class: $P(C) = N_c/N$

- e.g., P(No) = 7/10, P(Yes) = 3/10

For discrete attributes:

$$P(A_i \mid C_k) = |A_{ik}| / N_{ck}$$

- where |A_{ik}| is number of instances having attribute
 A_i and belongs to class C_k
- Examples:

P(Status=Married|No) = 4/7 P(Refund=Yes|Yes)=0

How to Estimate Probabilities from Data?

For continuous attributes:

- 离散化 Discretize the range into bins
 - Large interval number: too few training records for reliable estimate
 - Small interval number: aggregate records from different classes
- 概率密度估计 Probability density estimation:
 - Assume attribute follows a normal distribution
 - Use data to estimate parameters of distribution (e.g., mean and standard deviation)
 - ◆ Once probability distribution is known, can use it to estimate the conditional probability P(A_i|C_i)

How to Estimate Probabilities from Data?

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Normal distribution:

$$P(A_i \mid C_j) = \frac{1}{\sqrt{2\pi\sigma_{ij}^2}} e^{-\frac{(A_i - \mu_{ij})^2}{2\sigma_{ij}^2}}$$

- One for each (A_i,C_i) pair

For (Income, Class=No):

- If Class=No
 - ◆ sample mean = 110
 - sample variance = 2975

$$P(Income = 120 \mid No) = \frac{1}{\sqrt{2\pi \times 2975}} e^{-\frac{(120-110)^2}{2\times 2975}} = 0.0072$$

Example of Naïve Bayes Classifier

Given a Test Record:

X = (Refund = No, Married, Income = 120K)

naive Bayes Classifier:

```
P(Refund=Yes|No) = 3/7
P(Refund=No|No) = 4/7
P(Refund=Yes|Yes) = 0
P(Refund=No|Yes) = 1
P(Marital Status=Single|No) = 2/7
P(Marital Status=Divorced|No)=1/7
P(Marital Status=Married|No) = 4/7
P(Marital Status=Single|Yes) = 2/7
P(Marital Status=Divorced|Yes)=1/7
P(Marital Status=Married|Yes) = 0
```

For taxable income:

If class=No: sample mean=110

sample variance=2975

If class=Yes: sample mean=90

sample variance=25

```
P(X|Class=No) = P(Refund=No|Class=No) \\ \times P(Married|Class=No) \\ \times P(Income=120K|Class=No) \\ = 4/7 \times 4/7 \times 0.0072 = 0.0024 P(X|Class=Yes) = P(Refund=No|Class=Yes) \\ \times P(Married|Class=Yes) \\ \times P(Income=120K|Class=Yes) \\ = 1 \times 0 \times 1.2 \times 10^{-9} = 0
```

Since
$$P(X|No)P(No) > P(X|Yes)P(Yes)$$

Therefore $P(No|X) > P(Yes|X)$
=> Class = No

Naïve Bayes Classifier

If one of the conditional probability is zero, then the entire expression becomes zero Probability estimation:

Original:
$$P(A_i \mid C) = \frac{N_{ic}}{N_c}$$

Laplace:
$$P(A_i \mid C) = \frac{N_{ic} + 1}{N_c + c}$$

m - estimate :
$$P(A_i \mid C) = \frac{N_{ic} + mp}{N_c + m}$$

c: number of classes

p: prior probability

m: parameter

Thanks

*Some Slides based on those of Prof. Sheila McIlraith, Prof. Dan Klein and Prof. Pieter Abbeel. Thanks for their support.