Note: revisit Neural Networks . Main key points are:

- a perceptron is a vector of numbers
- A "layer" is a matrix of numbers
- The neural network is a set of matrices, called "parameters" or "weights"

PART 1: Transformers

Basic diagram of Transformer

For now it's enough t know that they capture how words relate to each other over long-distances and that they don't use any recurrent structures(unlike recurrent NNs)

The problem with recurrent NNs is the difficulty the capture long-distance information

Vanishing gradients since the gradient signal from far away is weaker than signal close-by(Model

weights are only updated only with respect to near effects, not long-term effects.)

RNNs also lack parallelizability (Forward and backward passes have O(sequence length)
unparallelizable dependent operations) which hinders training on large datasets.

Key Concepts of Transformers:

- Input embeddings
- Attention / self-attention / multi-head self-attention
- Positional encoding
- Feed forward layer
- Residual connections + layer normalization
- Transformer encoder vs. transformer decoder
 We will break these down in the next parts

1) Transformer inputs

Inputs need to be vectors

Let's start with original text: "A boy is eating an apple."

Step1: Turn into a sequence of tokens: - [,A, boy, is, eating, an, apple, .,]

Step2: Turn into vocabulary IDs: - [0, 1026, 338, 257, 4171, 37437, 601, 13, 1]

Step3: Obtain embeddings for each token Option1: Each ID can be represented by a one-hot vector (Lecture 5) - e.g. 3 -> [0, 0, 0, 1, 0, 0, 0, ...]

2)Input Embeddings

One-hot vectors are poor representations of words or tokens

- Very high dimension → huge weight matrix
- Semantic relations between words are not encoded
 E.g., distance between "dog" and "cat" is the same as between "orange" and "apple"
 - -> We need an embedding matrix

The conversion from the initial input representation to the embedding matrix is basically what happens in the red rectangle from the transformer architecture diagram.

3) Attention

Intuition: for a given token in the output sequence, only one or a few tokens in the input sequence are most important

• Assume that we have a set of values $(\mathbf{v}_1,...,\mathbf{v}_n \in \mathbb{R}^{d_v})$ and a query vector $\mathbf{q} \in \mathbb{R}^{d_q}$ Steps of calculating attention

- Computing the **attention scores** $\mathbf{e} = g(\mathbf{q}, \mathbf{v}_i) \in \mathbb{R}^n$
- Taking softmax to get attention distribution α :

$$\alpha = \operatorname{softmax}(\mathbf{e}) \in \mathbb{R}^n$$

· Using attention distribution to take weighted sum of values:

$$\mathbf{a} = \sum_{i=1}^{n} \alpha_i \mathbf{v}_i \in \mathbb{R}^{d_v}$$

3.a)Self-Attention

Attention from the sequence to itself (attention of each word to all other words)
Self-attention: each word in a sequence as the query, and all words in the sequence as keys. and values.

Dimension: 64

Step #1: Transform each input vector into three vectors: query, key, and value vectors

$$\mathbf{q}_i = \mathbf{x}_i \mathbf{W}^Q \in \mathbb{R}^{d_q} \qquad \mathbf{k}_i = \mathbf{x}_i \mathbf{W}^K \in \mathbb{R}^{d_k} \qquad \mathbf{v}_i = \mathbf{x}_i \mathbf{W}^V \in \mathbb{R}^{d_v}$$

$$\mathbf{W}^Q \in \mathbb{R}^{d_1 \times d_q} \qquad \mathbf{W}^K \in \mathbb{R}^{d_1 \times d_k} \qquad \mathbf{W}^V \in \mathbb{R}^{d_1 \times d_v}$$
 Input Thinking Machines Dimension: 512
$$\mathbf{w}^Q = \mathbf{w}^Q \mathbf{v}_i = \mathbf{w}^Q \mathbf{v}_i \in \mathbb{R}^{d_q}$$
 Note that we use row vectors here; It is also common to write
$$\mathbf{q}_i = \mathbf{w}^Q \mathbf{x}_i \in \mathbb{R}^{d_q}$$
 for
$$\mathbf{x}_i = \mathbf{a} \text{ column vector}$$
 Values
$$\mathbf{w}^Q = \mathbf{w}^Q \mathbf{v}_i = \mathbf{v}^Q \mathbf{v}_i \in \mathbb{R}^{d_q}$$

Step #2: Compute pairwise similarities between keys and queries; normalize with softmax For each \mathbf{q}_i , compute attention scores and attention distribution:

$$lpha_{i,j} = \operatorname{softmax}(rac{\mathbf{q}_i \cdot \mathbf{k}_j}{\sqrt{d_k}})$$
 aka. "scaled dot product" It must be $d_a = d_k$ in this case

Q. Why scaled dot product?

To avoid the dot product to become too large for larger d_k ; scaling the dot product by $\frac{1}{\sqrt{d_k}}$ is easier for optimization

(https://jalammar.github.io/illustrated-transformer/)

Determine how much each word will be expressed at this position

(https://jalammar.github.io/illustrated-transformer/)

Computer Science Department | UKP Lab - Prof. Dr. Iryna Gurevych | FoLT

The result here is the output vector for the word "Thinking" and it is obviously: $0.88v_1 + 0.12v_2$

Calculating Attention in Matrix form

Apply the softmax function in each row of the n x n matrix

3.b) Multi-Head Self-Attention

The previous part was a basic explanation of Self-Attention concept. But what our transformer architecture actually uses is more advanced and it is called **Multi-Head Self-Attention**

- It is better to use multiple attention functions instead of one!
 - Each attention function ("head") can focus on different positions.

Finally, we just concatenate all the heads and apply an output projection matrix.

If we stack multiple layers, usually $d_1 = d_2 = d$

 The total computational cost is similar to that of single-head attention with full dimensionality.

 $W^O \in \mathbb{R}^{d \times d_2}$

In the previous example, $d_1 = 512$, $d_q = d_k = d_v = 64$, m = 8

4)Positional encoding

Self-Attention is **position-invariant**:

E.g., [this, movie, is, great] is the same as [is, this, movie, great]

-> Solution: we add position-encoding vectors to embedding vectors

5)Feed-Forward layer(Lecture about neural networks)

- Problem: There are no elementwise nonlinearities in self-attention
- Solution: add a feed-forward network to post-process each output vector

$$\begin{aligned} \text{FFN}(\mathbf{x}_i) &= \text{ReLU}(\mathbf{x}_i \mathbf{W}_1 + \mathbf{b}_1) \mathbf{W}_2 + \mathbf{b}_2 \\ \mathbf{W}_1 &\in \mathbb{R}^{d \times d_{ff}}, \mathbf{b}_1 \in \mathbb{R}^{d_{ff}} \\ \mathbf{W}_2 &\in \mathbb{R}^{d_{ff} \times d}, \mathbf{b}_2 \in \mathbb{R}^d \end{aligned}$$

In practice, they use $d_{ff} = 4d$

6) Residual Connection and Layer Normalization

Add & Norm: LayerNorm(x + Sublayer(x))

Residual connection

- o output = module(input) + input
- Allows gradient to flow from the loss function all the way to the first layer

$$X^{(i-1)}$$
 Layer $X^{(i)}$ Layer $X^{(i)}$

Layer Normalization

- Neural net modules perform best when input vectors have uniform mean and std in each dimension.
- As inputs flow through the network, means and std's get blown out.
- Layer Normalization is a hack to reset things to where we want them in between layers.
- Idea: normalize the hidden vector values to unit mean and stand deviation within each layer

$$y = rac{x - \mathrm{E}[x]}{\sqrt{\mathrm{Var}[x] + \epsilon}} * \gamma + eta$$

 $\gamma, \beta \in \mathbb{R}^d$ are learnable parameters Layer normalization (Ba et al., 2016)

Tranformer Encoder(1+2+3+4+5+6)

From the bottom to the top:

- Input embedding
- · Positional encoding
- · A stack of Transformer encoder layers

Transformer encoder is a stack of N layers, which consists of two sub-layers:

- · Multi-head attention layer
- Feed-forward layer

$$\mathbf{x}_1,...,\mathbf{x}_n \in \mathbb{R}^{d_1} \xrightarrow{\mathsf{Transformer} \atop \mathsf{Encoder}} \mathbf{h}_1,...,\mathbf{h}_n \in \mathbb{R}^{d_2}$$

7) Masked Self-Attention

- We can't attend to the future text for the decoder!
- Solution: for every q_i , only attend to the previous context $\{(\mathbf{k}_j, \mathbf{v}_j)\}, j \leq i$

 Masked multi-head attention: compute attention as we normally do, mask out attention to future words by setting attention scores to -∞

 Masked multi-head attention: compute attention as we normally do, mask out attention to future words by setting attention scores to -∞

Quiz

$$\mathbf{q}_i = \mathbf{x}_i \mathbf{W}^Q, \mathbf{k}_i = \mathbf{x}_i \mathbf{W}^K, \mathbf{v}_i = \mathbf{x}_i \mathbf{W}^V$$
 $e_{i,j} = \frac{\mathbf{q}_i \cdot \mathbf{k}_j}{\sqrt{d_k}}, \forall j = 1, \dots, n$
 $\alpha_i = \operatorname{softmax}(\mathbf{e}_i)$
 $\alpha_i = \operatorname{softmax}(\mathbf{e}_i)$
 $\alpha_i = \operatorname{softmax}(\mathbf{e}_i)$
 $\alpha_i = \operatorname{softmax}(\mathbf{e}_i)$

The following matrix denotes the values of $\frac{\mathbf{q}_i \cdot \mathbf{k}_j}{\sqrt{d_k}}$ for $1 \le i \le n, 1 \le j \le n \ (n=4)$

1	0	-1	-1
1	1	-1	0
0	1	1	-1
-1	-1	2	1

What should be the value of $\alpha_{2,2}$ in masked attention?

(A) 0 (B) 0.5 (C)
$$\frac{e}{2e + e^{-1} + 1}$$
 (D) 1

Note: quiz inserted as a small exercise

8) Multi-head Cross-attention

Self-attention:

$$\mathbf{q}_i = \mathbf{x}_i \mathbf{W}^Q, \mathbf{k}_i = \mathbf{x}_i \mathbf{W}^K, \mathbf{v}_i = \mathbf{x}_i \mathbf{W}^V$$

$$e_{i,j} = \frac{\mathbf{q}_i \cdot \mathbf{k}_j}{\sqrt{d_k}}, \forall j = 1, \dots, n$$

$$\alpha_i = \operatorname{softmax}(\mathbf{e}_i)$$

$$\mathbf{h}_i = \sum_{j=1}^n \alpha_{i,j} \mathbf{v}_j$$

Cross-attention:

(always from the top layer)

 $\tilde{\mathbf{x}}_1, \dots, \tilde{\mathbf{x}}_m$: hidden states from encoder

 $\mathbf{x}_1, \dots, \mathbf{x}_n$: hidden states from decoder

$$\mathbf{q}_i = \mathbf{x}_i \mathbf{W}^Q \quad i = 1, 2, \dots, n$$

$$\mathbf{k}_{i} = \tilde{\mathbf{x}}_{i} \mathbf{W}^{K}, \mathbf{v}_{i} = \tilde{\mathbf{x}}_{i} \mathbf{W}^{V} \quad \forall j = 1, 2, ..., m$$

$$e_{i,j} = \frac{\mathbf{q_i} \cdot \mathbf{k}_j}{\sqrt{d_k}}, \forall j = 1, \dots, m$$

$$\alpha_i = \operatorname{softmax}(\mathbf{e}_i)$$

$$\mathbf{h}_i = \sum_{j=1}^m \alpha_{i,j} \mathbf{v}_j$$

Transformer Decoder

Transformer Decoder

From the bottom to the top:

- Output embedding
- Positional encoding
- A stack of Transformer decoder layers
- Linear + softmax

Transformer decoder is a stack of N layers, which consists of three sub-layers:

- Masked multi-head attention
- Multi-head cross-attention
- Feed-forward layer
- (W/ Add & Norm between sub-layers)

We finally discussed all the Transformer architecture and here is how it looks like

Now let's end this section by discussing some pros and cons of transformers

Pros:

- Easier to capture long-range dependencies: we draw attention between every pair of words!
- Easier to parallelize:

$$Q = XW^Q \qquad K = XW^K \qquad V = XW^V$$

$$\operatorname{Attention}(Q,K,V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$$

Cons

- Are positional encodings enough to capture positional information? self-attention is an unordered function of its input
- Quadratic computation in self-attention: can become very slow when the sequence length is large

Transformer parameters

The main transformer layer is stacked many times (That is what the Nx in the Transformer Diagram refers to)

The overall hyperparameters are:

- Number of layers
- Number of attention heads
- Embedding dimension

PART2: Contextualized Representations and Transformerbased LLMs

Limitations of Word2Vec:

Static word embeddings: one vector for each token (Embedding (bank) = [0.224, 0.168, -0.309, 0.160]) **But** Polysemous words

bank¹: ...a *bank* can hold the investments in a custodial account ... **bank**²: ...as agriculture burgeons on the east *bank*, the river ...

-> Cannot capture the nuanced semantics of a word in different contexts

- He plays basketball every Saturday.
- Peter plays the lead role in a Broadway show.
- Weather plays a big role in shaping our daily activities.

1)Contextualized Representations

Transformer-based pretrained LMs (e.g., BERT, GPT) can generate contextualized representations for a word/token according to its surrounding context:

2)Transformer based LLMS

A good example to understand the utility of each architecture

1) Pretraining and Fine-Tuning (BERT)

"Pre-train" a model on a large dataset for task X, then "fine-tune" it on a dataset for task Y Key idea: X is somewhat related to Y, so a model that can do X will have some good neural representations for Y as well

Example: Image-Net pretraining

Image-Net pretraining

BERT- NLP's Image-Net Moment

We will use BERT for this part as an example to explain Pretraining and Fine-Tuning

BERT

- BERT: Bidirectional Encoder Representations from Transformers
 - BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding (NAACL2019, preprint released in 10/2018)
- It is a fine-tuning approach based on a deep bidirectional
 Transformer encoder instead of a Transformer decoder
- The key: learn representations based on bidirectional contexts
- Two new pre-training objectives
 - Masked language modeling (MLM)
 - o Next sentence prediction (NSP)

Masked Language Models (MLM)

Idea: Masked out k% of the input words, and then predict the masked words

Next Sentence Prediction (NSP)

- Idea: Many NLP tasks require understanding the relationships between two sentences
- NSP is designed to reduce the gap between pre-training and fine-tuning

(Later work shows that NSP hurts performance though)

BERT Pre-training and Fine-tuning

2)T5

Encoder-decoder architecture based on Transformers

- Unsupervised pre-training: corrupting span prediction
 - o Mean span length of 3 and corrupt 15% of the original sequences

GPT: Generative Pretrained Transform

- Based on the transformer decoder architecture
- Unsupervised pretraining: next token prediction given the previous context

Inference

- Autoregressive
- Sample the next token from the distribution, append it to the input, run through the model again

