《人工智能与 Python 程序设计》 期末建模报告

郭立为

中国人民大学经济学院

2025年6月12日

1957

◆□▶ ◆□▶ ◆重▶ ◆重▶ ■ 夕久◎

模型建立及预测结果 特征数据的处理

建模"两步法"

- 房屋价格的决定因素有很多,本次提供的数据文件中也包含 异常丰富的特征信息
- 然而,这些信息并不是同等重要的(OLS 算法的局限性)
- 课程中学习了大量的建模方法,它们可以协助我判断哪些信 息对于房屋价格有重要的影响
- 然而, 机器是没有感情的, 人类的经验和直觉往往是有效的

-个思考

地理位置在房屋价格的决定中有举足轻重的地位, 其他任何因素 都只是在此基础上对价格进行一定的增减。

建模"两步法"

建模的基本思路

- 分两步拟合模型
- 第一步:計算房屋所在版块房价的平均值(实际是一个线性模型)
- 第二步:利用其他特征,对房屋在平均值上下浮动的百分比进行估计(更进一步的模型)

937

特征数据的处理 模型建立及预测结果

信息提取

利用 TF-IDF 处理文本信息

- 部分特征是描述性的而非定量的,相应特征也将会为购买者 所直接阅读,因此适合使用文本处理方法
- 具体而言,采用 TF-IDF 工具,我们得以发现最重要的文本信息,从而将冗长的文本划分为特征变量

部分变量的特殊处理

• 户型: 利用 KNN 算法填充

• 交易权属等: 利用常识判断

937

◆ロト ◆卸 ト ◆ 差 ト ◆ 差 ・ 夕 Q ©

第一步模型

模型的基本思想

- 预测变量: 地理位置信息 (城市、区域、板块)
- 模型类别: OLS、Lasso、Ridge、ElasticNet
- 利用 Optuna 进行参数优化

模型表现

模型	预测得分	备注
OLS	-	
Lasso	64	$\alpha = 527$
Ridge	76	$\alpha = 7870$
${\sf ElasticNet}$	24	1

表 1: 第一步模型的预测性能比较

(ロ) (固) (量) (量) (量)

模型的基本思想

第二步模型

- 预测变量: 除地理位置信息外的其他信息
- 模型类别:决策树模型、随机森林模型、XGBoost 模型、神经网络模型

模型表现

模型	预测得分	样本内 MSE	备注
决策树	76.798	0.0332	
随机森林	78.123	0.0260	
XGBoost	79.19	0.0004	最优
神经网络	75.713	0.0131	过拟合

表 2: 第二步模型的预测性能比较

- 4 ロ ト 4 回 ト 4 亘 ト 4 亘 ・ 夕久で

未来的优化方向

• 特征工程: 许多信息还没有用到

• 模型选择和优化: 可以尝试更多的复杂模型

<ロ > < 回 > < 回 > < 巨 > く 巨 > 三 の < の