

Федеральное государственное бюджетное образовательное учреждение высшего образования «Новосибирский государственный технический университет»

Кафедра прикладной математики Практическое задание № 2

по дисциплине «Уравнения математической физики»

РЕШЕНИЕ ЭЛЛИПТИЧЕСКИХ КРАЕВЫХ ЗАДАЧ

МЕТОДОМ КОНЕЧНЫХ РАЗНОСТЕЙ

Бригада 1 ИСАКИН ДАНИИЛ

Группа ПМ-13 ВОСТРЕЦОВА ЕКАТЕРИНА

Вариант 5

Преподаватели ЗАДОРОЖНЫЙ АЛЕКСАНДР ГЕННАДЬЕВИЧ

ЛЕОНОВИЧ ДАРЬЯНА АЛЕКСАНДРОВНА

Новосибирск, 2024

Теоретическая часть

Анализ и формулы для основной части были представленны в основной части работы. Здесь представлю лишь формулы для сборки матрицы и вектора правой части линеаризованной по методу Ньютона. Выбирая конечный элемент $\Omega_m = [x_m; x_{m+1}]$ и вводя обозначения для весовых коэффициентов $q_m = \hat{q}_1$ и соответсвенно $q_{m+1} = \hat{q}_2$. После соотвествующих преобразований получим набор формул для локальных матриц линеразованныз по методу Ньютона

$$\begin{split} \hat{A}_{11}^{L} &= \hat{A}_{11} + \frac{1}{2h} \left(\frac{\partial \lambda(\hat{q}_{1}^{0})}{\partial u} \cdot \hat{q}_{1}^{0} - \frac{\partial \lambda(\hat{q}_{1}^{0})}{\partial u} \cdot \hat{q}_{2}^{0} \right) \\ \hat{A}_{12}^{L} &= \hat{A}_{12} + \frac{1}{2h} \left(\frac{\partial \lambda(\hat{q}_{2}^{0})}{\partial u} \cdot \hat{q}_{1}^{0} - \frac{\partial \lambda(\hat{q}_{2}^{0})}{\partial u} \cdot \hat{q}_{2}^{0} \right) \\ \hat{A}_{21}^{L} &= \hat{A}_{21} + \frac{1}{2h} \left(-\frac{\partial \lambda(\hat{q}_{1}^{0})}{\partial u} \cdot \hat{q}_{1}^{0} + \frac{\partial \lambda(\hat{q}_{1}^{0})}{\partial u} \cdot \hat{q}_{2}^{0} \right) \\ \hat{A}_{22}^{L} &= \hat{A}_{22} + \frac{1}{2h} \left(-\frac{\partial \lambda(\hat{q}_{2}^{0})}{\partial u} \cdot \hat{q}_{1}^{0} + \frac{\partial \lambda(\hat{q}_{2}^{0})}{\partial u} \cdot \hat{q}_{2}^{0} \right) \\ \hat{b}_{1}^{L} &= \hat{b}_{1} + \left(\frac{\hat{q}_{1}^{0} - \hat{q}_{2}^{0}}{2h} \right) \cdot \left(\frac{\partial \lambda(\hat{q}_{1}^{0})}{\partial u} \cdot \hat{q}_{1}^{0} + \frac{\partial \lambda(\hat{q}_{2}^{0})}{\partial u} \cdot \hat{q}_{2}^{0} \right) \\ \hat{b}_{2}^{L} &= \hat{b}_{2} + \left(\frac{\hat{q}_{2}^{0} - \hat{q}_{1}^{0}}{2h} \right) \cdot \left(\frac{\partial \lambda(\hat{q}_{1}^{0})}{\partial u} \cdot \hat{q}_{1}^{0} + \frac{\partial \lambda(\hat{q}_{2}^{0})}{\partial u} \cdot \hat{q}_{2}^{0} \right) \end{split}$$

где компоненты $\hat{A}_{ij},\;$ где $\;i,j=\overline{0,1}\;$ вычисляются по формулам из предыдущей части работы

Исследование

Ниже представлены таблицы с характеристиками сходимости количества узлов и количества итераций по нелинейности на всех временных слоях Условия задачи:

$$\epsilon = 10^{-7}$$
 $\sigma = 1$

maxiter = 1

Область пространства = $\Omega=[0,1]$

Время задано на отрезке = [0,1]

Первоначальное число узлов 11, а конечных элементов 11

Для неравномерных сеток по времени и пространству коэффициент k=1.1

Верификация

при $\lambda(u)=u$ метод Ньютона должен сходиться за 1 итерацию, при условии, что расчет всех функций происходит с машинной погрешностью. При внесении погрешности появляется небольшая погрешность, которая накапливается вследствие чего может быть на 1 или 2 итерации больше. Приведены итерации на последнем временном слое.

$$\lambda(u) = u \quad u(x,t) = 3x + t$$

N	Nodes	Iteration SI	Iteration NI	SI - NI	Ускорение
1	11	2	3	-1	0.667
2	21	2	3	-1	0.667
3	41	2	3	-1	0.667
4	81	2	2	0	1.000
5	161	2	2	0	1.000

$$\lambda(u) = u \quad u(x,t) = 2x^2 + t$$

N	Nodes	Iteration SI	Iteration NI	SI - NI	Ускорение
1	11	8	3	5	2.667
2	21	7	3	4	2.333
3	41	6	2	4	3.000
4	81	5	2	3	2.500
5	161	4	2	2	2.000

$$\lambda(u) = u \quad u(x,t) = x^3 + t$$

N	Nodes	Iteration SI	Iteration NI	SI - NI	Ускорение
1	11	7	3	4	2.333
2	21	6	3	3	2.000
3	41	6	2	4	3.000
4	81	5	2	3	2.500
5	161	4	2	2	2.000

$$\lambda(u) = u \quad u(x,t) = x^4 + t$$

N	Nodes	Iteration SI	Iteration NI	SI - NI	Ускорение
1	11	7	4	3	1.750
2	21	7	3	4	2.333
3	41	6	2	4	3.000
4	81	5	2	3	2.500
5	161	5	2	3	2.500

$$\lambda(u) = u \quad u(x,t) = e^x + t$$

N	Nodes	Iteration SI	Iteration NI	SI - NI	Ускорение
1	11	6	3	3	2.000
2	21	6	2	4	3.000
3	41	5	2	3	2.500
4	81	4	2	2	2.000
5	161	4	2	2	2.000

$$\lambda(u)=u \;\; u(x,t)=3x+t$$

N	Nodes	Iteration SI	Iteration NI	SI - NI	Ускорение
1	11	2	3	-1	0.667
2	21	2	3	-1	0.667
3	41	2	3	-1	0.667
4	81	2	2	0	1.000
5	161	2	2	0	1.000

$$\lambda(u)=u \;\; u(x,t)=3x+t^2$$

N	Nodes	Iteration SI	Iteration NI	SI - NI	Ускорение
1	11	6	3	3	2.000
2	21	5	3	2	1.667
3	41	4	3	1	1.333
4	81	3	2	1	1.500

N	Nodes	Iteration SI	Iteration NI	SI - NI	Ускорение
5	161	3	2	1	1.500

$$\lambda(u) = u \quad u(x,t) = 3x + t^3$$

N	Nodes	Iteration SI	Iteration NI	SI - NI	Ускорение
1	11	7	3	4	2.333
2	21	6	3	3	2.000
3	41	5	3	2	1.667
4	81	4	2	2	2.000
5	161	3	2	1	1.500

$$\lambda(u) = u \ \ u(x,t) = 3x + e^t$$

N	Nodes	Iteration SI	Iteration NI	SI - NI	Ускорение
1	11	5	3	2	1.667
2	21	4	2	2	2.000
3	41	3	2	1	1.500
4	81	3	2	1	1.500
5	161	2	2	0	1.000

$$\lambda(u) = u \;\; u(x,t) = 3x + sin(t)$$

N	Nodes	Iteration SI	Iteration NI	SI - NI	Ускорение
1	11	5	3	2	1.667
2	21	4	3	1	1.333
3	41	3	3	0	1.000
4	81	2	2	0	1.000
5	161	2	2	0	1.000

$$\lambda(u)=u \;\; u(x,t)=e^x+t^2$$

N	Nodes	Iteration SI	Iteration NI	SI - NI	Ускорение	

N	Nodes	Iteration SI	Iteration NI	SI - NI	Ускорение
1	11	6	3	3	2.000
2	21	6	3	3	2.000
3	41	5	2	3	2.500
4	81	5	2	3	2.500
5	161	4	2	2	2.000

$$\lambda(u) = u \quad u(x,t) = e^x + t^3$$

N	Nodes	Iteration SI	Iteration NI	SI - NI	Ускорение
1	11	6	3	3	2.000
2	21	6	3	3	2.000
3	41	5	2	3	2.500
4	81	5	2	3	2.500
5	161	4	2	2	2.000

$$\lambda(u) = u \quad u(x,t) = e^x + e^t$$

N	Nodes	Iteration SI	Iteration NI	SI - NI	Ускорение
1	11	6	3	3	2.000
2	21	5	2	3	2.500
3	41	5	2	3	2.500
4	81	4	2	2	2.000
5	161	4	2	2	2.000

$$\lambda(u) = u \;\; u(x,t) = e^t + sin(t)$$

N	Nodes	Iteration SI	Iteration NI	SI - NI	Ускорение
1	11	6	3	3	2.000
2	21	5	2	3	2.500
3	41	5	2	3	2.500
4	81	4	2	2	2.000

N	Nodes	Iteration SI	Iteration NI	SI - NI	Ускорение
5	161	4	2	2	2.000

Сравнение методов

Метод простой итерации

$$\lambda(u) = u^2 + 1 \quad u(x,t) = 3x + t$$

N	Nodes	Iteration	$ u(x,t)^*-u(x,t) _{L_2}$	$\log(\frac{ u(x,t)^* - u(x,t)_h _{L_2}}{ u(x,t)^* - u(x,t)_{\frac{h}{2}} _{L_2}})$
1	11	119	9.155494e-08	0
2	21	208	3.715434e-08	1.301107e+00
3	41	353	1.635214e-07	-2.137877e+00
4	81	564	5.153245e-08	1.665926e+00
5	161	804	2.625490e-07	-2.349034e+00

$$\lambda(u)=u^2+1 \quad u(x,t)=2x^2+t$$

N	Nodes	Iteration	$ u(x,t)^*-u(x,t) _{L_2}$	$\log(\tfrac{ u(x,t)^*-u(x,t)_h _{L_2}}{ u(x,t)^*-u(x,t)_{\frac{h}{2}} _{L_2}})$
1	11	103	3.890227e-03	0
2	21	183	9.798925e-04	1.989159e+00
3	41	323	2.454316e-04	1.997303e+00
4	81	547	6.154468e-05	1.995615e+00
5	161	803	1.507836e-05	2.029155e+00

$$\lambda(u)=u^2+1 \quad u(x,t)=x^3+t$$

N	Nodes	Iteration	$ u(x,t)^*-u(x,t) _{L_2}$	$\log(rac{ u(x,t)^* - u(x,t)_h _{L_2}}{ u(x,t)^* - u(x,t)_{rac{h}{2}} _{L_2}})$
1	11	71	3.912039e-03	0
2	21	141	9.741860e-04	2.005651e+00
3	41	241	2.433090e-04	2.001408e+00
4	81	402	6.065667e-05	2.004051e+00

N	Nodes	Iteration	$ u(x,t)^*-u(x,t) _{L_2}$	$\log(rac{ u(x,t)^*-u(x,t)_h _{L_2}}{ u(x,t)^*-u(x,t)_{rac{h}{2}} _{L_2}})$
5	161	742	1.486094e-05	2.029141e+00

$$\lambda(u)=u^2+1$$
 $u(x,t)=x^4+t$

N	Nodes	Iteration	$ u(x,t)^*-u(x,t) _{L_2}$	$\log(rac{ u(x,t)^*-u(x,t)_h _{L_2}}{ u(x,t)^*-u(x,t)_{rac{h}{2}} _{L_2}})$
1	11	80	1.214100e-02	0
2	21	141	2.986090e-03	2.023558e+00
3	41	242	7.433376e-04	2.006168e+00
4	81	481	1.856697e-04	2.001280e+00
5	161	802	4.631607e-05	2.003153e+00

$$\lambda(u) = u^2 + 1 \quad u(x,t) = e^x + t$$

N	Nodes	Iteration	$ u(x,t)^*-u(x,t) _{L_2}$	$\log(rac{ u(x,t)^* - u(x,t)_h _{L_2}}{ u(x,t)^* - u(x,t)_{rac{h}{2}} _{L_2}})$
1	11	79	1.066488e-03	0
2	21	143	2.669859e-04	1.998032e+00
3	41	243	6.679561e-05	1.998938e+00
4	81	403	1.669873e-05	2.000015e+00
5	161	643	4.054345e-06	2.042198e+00

$$\lambda(u)=u^2+1$$
 $u(x,t)=3x+t$

N	Nodes	Iteration	$ u(x,t)^*-u(x,t) _{L_2}$	$\log(\tfrac{ u(x,t)^*-u(x,t)_h _{L_2}}{ u(x,t)^*-u(x,t)_{\frac{h}{2}} _{L_2}})$
1	11	119	9.155494e-08	0
2	21	208	3.715434e-08	1.301107e+00
3	41	353	1.635214e-07	-2.137877e+00
4	81	564	5.153245e-08	1.665926e+00
5	161	804	2.625490e-07	-2.349034e+00

$$\lambda(u) = u^2 + 1 \ \ u(x,t) = 3x + t^2$$

N	Nodes	Iteration	$ u(x,t)^*-u(x,t) _{L_2}$	$\log(rac{ u(x,t)^* - u(x,t)_h _{L_2}}{ u(x,t)^* - u(x,t)_{rac{h}{2}} _{L_2}})$
1	11	121	1.538674e-03	0
2	21	204	7.837862e-04	9.731552e-01
3	41	347	3.937348e-04	9.932359e-01
4	81	539	1.971766e-04	9.977355e-01
5	161	818	9.845802e-05	1.001908e+00

$$\lambda(u)=u^2+1 \quad u(x,t)=3x+t^3$$

N	Nodes	Iteration	$ u(x,t)^*-u(x,t) _{L_2}$	$\log(rac{ u(x,t)^*-u(x,t)_h _{L_2}}{ u(x,t)^*-u(x,t)_{rac{h}{2}} _{L_2}})$
1	11	119	4.411252e-03	0
2	21	203	2.294004e-03	9.433204e-01
3	41	330	1.164032e-03	9.787372e-01
4	81	508	5.857115e-04	9.908684e-01
5	161	782	2.934329e-04	9.971598e-01

$$\lambda(u)=u^2+1$$
 $u(x,t)=3x+e^t$

N	Nodes	Iteration	$ u(x,t)^*-u(x,t) _{L_2}$	$\log(rac{ u(x,t)^* - u(x,t)_h _{L_2}}{ u(x,t)^* - u(x,t)_{rac{h}{2}} _{L_2}})$
1	11	97	6.858606e-04	0
2	21	177	3.524306e-04	9.605760e-01
3	41	307	1.781518e-04	9.842320e-01
4	81	539	8.943058e-05	9.942671e-01
5	161	804	4.462511e-05	1.002913e+00

$$\lambda(u)=u^2+1$$
 $u(x,t)=3x+sin(t)$

N	Nodes	Iteration	$ u(x,t)^*-u(x,t) _{L_2}$	$\log(rac{ u(x,t)^* - u(x,t)_h _{L_2}}{ u(x,t)^* - u(x,t)_{rac{h}{2}} _{L_2}})$
1	11	118	6.966347e-04	0
2	21	207	3.596696e-04	9.537299e-01

N	Nodes	Iteration	$ u(x,t)^*-u(x,t) _{L_2}$	$\log(rac{ u(x,t)^*-u(x,t)_h _{L_2}}{ u(x,t)^*-u(x,t)_{rac{h}{2}} _{L_2}})$
3	41	346	1.816208e-04	9.857426e-01
4	81	557	9.154871e-05	9.883183e-01
5	161	804	4.584023e-05	9.979254e-01

$$\lambda(u)=u^2+1 \quad u(x,t)=e^x+t^2$$

N	Nodes	Iteration	$ u(x,t)^*-u(x,t) _{L_2}$	$\log(rac{ u(x,t)^*-u(x,t)_h _{L_2}}{ u(x,t)^*-u(x,t)_{rac{h}{2}} _{L_2}})$
1	11	82	1.316144e-03	0
2	21	142	5.685822e-04	1.210876e+00
3	41	241	2.838319e-04	1.002332e+00
4	81	399	1.447834e-04	9.711405e-01
5	161	702	7.345375e-05	9.789881e-01

$$\lambda(u)=u^2+1 \quad u(x,t)=e^x+t^3$$

N	Nodes	Iteration	$ u(x,t)^*-u(x,t) _{L_2}$	$\log(\tfrac{ u(x,t)^*-u(x,t)_h _{L_2}}{ u(x,t)^*-u(x,t)_{\frac{h}{2}} _{L_2}})$
1	11	81	3.215417e-03	0
2	21	138	1.677325e-03	9.388430e-01
3	41	243	8.634555e-04	9.579689e-01
4	81	404	4.386762e-04	9.769653e-01
5	161	665	2.212058e-04	9.877677e-01

$$\lambda(u)=u^2+1$$
 $u(x,t)=e^x+e^t$

N	Nodes	Iteration	$ u(x,t)^*-u(x,t) _{L_2}$	$\log(\frac{ u(x,t)^* - u(x,t)_h _{L_2}}{ u(x,t)^* - u(x,t)_{\frac{h}{2}} _{L_2}})$
1	11	70	1.340520e-03	0
2	21	127	4.524199e-04	1.567058e+00
3	41	230	1.830342e-04	1.305549e+00
4	81	403	8.350207e-05	1.132229e+00

N	Nodes	Iteration	$ u(x,t)^*-u(x,t) _{L_2}$	$\log(rac{ u(x,t)^*-u(x,t)_h _{L_2}}{ u(x,t)^*-u(x,t)_{rac{h}{2}} _{L_2}})$
5	161	643	4.048926e-05	1.044273e+00

$$\lambda(u)=u^2+1 \ \ u(x,t)=e^t+sin(t)$$

N	Nodes	Iteration	$ u(x,t)^*-u(x,t) _{L_2}$	$\log(rac{ u(x,t)^* - u(x,t)_h _{L_2}}{ u(x,t)^* - u(x,t)_{rac{h}{2}} _{L_2}})$
1	11	79	1.393894e-03	0
2	21	141	4.560330e-04	1.611911e+00
3	41	243	1.756016e-04	1.376832e+00
4	81	403	7.696543e-05	1.190023e+00
5	161	643	3.599562e-05	1.096389e+00

Метод Ньютона

$$\lambda(u) = u^2 + 1 \quad u(x,t) = 3x + t$$

N	Nodes	Iteration	$ u(x,t)^*-u(x,t) _{L_2}$	$\log(rac{ u(x,t)^*-u(x,t)_h _{L_2}}{ u(x,t)^*-u(x,t)_{rac{h}{2}} _{L_2}})$
1	11	16	1.174797e-08	0
2	21	25	1.939046e-08	-7.229351e-01
3	41	44	3.751197e-09	2.369924e+00
4	81	83	1.155411e-09	1.698945e+00
5	161	163	1.148152e-09	9.092376e-03

$$\lambda(u)=u^2+1 \quad u(x,t)=2x^2+t$$

N	Nodes	Iteration	$ u(x,t)^*-u(x,t) _{L_2}$	$\log(\tfrac{ u(x,t)^*-u(x,t)_h _{L_2}}{ u(x,t)^*-u(x,t)_{\frac{h}{2}} _{L_2}})$
1	11	32	3.890265e-03	0
2	21	43	9.799256e-04	1.989124e+00
3	41	83	2.454131e-04	1.997460e+00
4	81	162	6.137994e-05	1.999373e+00
5	161	267	1.889803e-05	1.699531e+00

$$\lambda(u)=u^2+1$$
 $u(x,t)=x^3+t$

N	Nodes	Iteration	$ u(x,t)^*-u(x,t) _{L_2}$	$\log(rac{ u(x,t)^*-u(x,t)_h _{L_2}}{ u(x,t)^*-u(x,t)_{rac{h}{2}} _{L_2}})$
1	11	31	3.912003e-03	0
2	21	42	9.741506e-04	2.005691e+00
3	41	82	2.433092e-04	2.001354e+00
4	81	162	6.082387e-05	2.000081e+00
5	161	264	1.892459e-05	1.684376e+00

$$\lambda(u)=u^2+1$$
 $u(x,t)=x^4+t$

N	Nodes	Iteration	$ u(x,t)^*-u(x,t) _{L_2}$	$\log(\tfrac{ u(x,t)^*-u(x,t)_h _{L_2}}{ u(x,t)^*-u(x,t)_{\frac{h}{2}} _{L_2}})$
1	11	31	1.214099e-02	0
2	21	42	2.986059e-03	2.023572e+00
3	41	82	7.434259e-04	2.005982e+00
4	81	162	1.856790e-04	2.001378e+00
5	161	322	4.640915e-05	2.000330e+00

$$\lambda(u)=u^2+1$$
 $u(x,t)=e^x+t$

N	Nodes	Iteration	$ u(x,t)^*-u(x,t) _{L_2}$	$\log(\tfrac{ u(x,t)^*-u(x,t)_h _{L_2}}{ u(x,t)^*-u(x,t)_{\frac{h}{2}} _{L_2}})$
1	11	24	1.066484e-03	0
2	21	43	2.669836e-04	1.998040e+00
3	41	83	6.677314e-05	1.999411e+00
4	81	162	1.670122e-05	1.999314e+00
5	161	163	4.377704e-06	1.931707e+00

$$\lambda(u) = u^2 + 1 \quad u(x,t) = 3x + t$$

N	Nodes	Iteration	$ u(x,t)^*-u(x,t) _{L_2}$	$\log(rac{ u(x,t)^* - u(x,t)_h _{L_2}}{ u(x,t)^* - u(x,t)_{rac{h}{2}} _{L_2}})$
1	11	16	1.174797e-08	0

N	Nodes	Iteration	$ u(x,t)^*-u(x,t) _{L_2}$	$\log(rac{ u(x,t)^*-u(x,t)_h _{L_2}}{ u(x,t)^*-u(x,t)_{rac{h}{2}} _{L_2}})$
2	21	25	1.939046e-08	-7.229351e-01
3	41	44	3.751197e-09	2.369924e+00
4	81	83	1.155411e-09	1.698945e+00
5	161	163	1.148152e-09	9.092376e-03

$$\lambda(u)=u^2+1$$
 $u(x,t)=3x+t^2$

N	Nodes	Iteration	$ u(x,t)^*-u(x,t) _{L_2}$	$\log(rac{ u(x,t)^* - u(x,t)_h _{L_2}}{ u(x,t)^* - u(x,t)_{rac{h}{2}} _{L_2}})$
1	11	24	1.538635e-03	0
2	21	44	7.838912e-04	9.729261e-01
3	41	51	3.937405e-04	9.934081e-01
4	81	83	1.970618e-04	9.985968e-01
5	161	163	9.856593e-05	9.994875e-01

$$\lambda(u) = u^2 + 1 \ \ u(x,t) = 3x + t^3$$

N	Nodes	Iteration	$ u(x,t)^*-u(x,t) _{L_2}$	$\log(rac{ u(x,t)^*-u(x,t)_h _{L_2}}{ u(x,t)^*-u(x,t)_{rac{h}{2}} _{L_2}})$
1	11	24	4.411195e-03	0
2	21	43	2.294089e-03	9.432482e-01
3	41	69	1.164039e-03	9.787823e-01
4	81	83	5.855382e-04	9.913037e-01
5	161	163	2.935896e-04	9.959625e-01

$$\lambda(u)=u^2+1 \ \ u(x,t)=3x+e^t$$

N	Nodes	Iteration	$ u(x,t)^*-u(x,t) _{L_2}$	$\log(rac{ u(x,t)^* - u(x,t)_h _{L_2}}{ u(x,t)^* - u(x,t)_{rac{h}{2}} _{L_2}})$
1	11	26	6.858642e-04	0
2	21	28	3.523188e-04	9.610413e-01
3	41	45	1.780884e-04	9.842884e-01

N	Nodes	Iteration	$ u(x,t)^*-u(x,t) _{L_2}$	$\log(rac{ u(x,t)^*-u(x,t)_h _{L_2}}{ u(x,t)^*-u(x,t)_{rac{h}{2}} _{L_2}})$
4	81	84	8.948248e-05	9.929160e-01
5	161	163	4.485540e-05	9.963234e-01

$$\lambda(u)=u^2+1$$
 $u(x,t)=3x+sin(t)$

N	Nodes	Iteration	$ u(x,t)^*-u(x,t) _{L_2}$	$\log(\tfrac{ u(x,t)^*-u(x,t)_h _{L_2}}{ u(x,t)^*-u(x,t)_{\frac{h}{2}} _{L_2}})$
1	11	25	6.965193e-04	0
2	21	40	3.596517e-04	9.535628e-01
3	41	44	1.817500e-04	9.846449e-01
4	81	83	9.126313e-05	9.938517e-01
5	161	163	4.570490e-05	9.976834e-01

$$\lambda(u)=u^2+1$$
 $u(x,t)=e^x+t^2$

N	Nodes	Iteration	$ u(x,t)^*-u(x,t) _{L_2}$	$\log(rac{ u(x,t)^*-u(x,t)_h _{L_2}}{ u(x,t)^*-u(x,t)_{rac{h}{2}} _{L_2}})$
1	11	24	1.316134e-03	0
2	21	43	5.685916e-04	1.210841e+00
3	41	81	2.839424e-04	1.001795e+00
4	81	142	1.447898e-04	9.716380e-01
5	161	163	7.143677e-05	1.019221e+00

$$\lambda(u)=u^2+1 \quad u(x,t)=e^x+t^3$$

N	Nodes	Iteration	$ u(x,t)^*-u(x,t) _{L_2}$	$\log(\tfrac{ u(x,t)^*-u(x,t)_h _{L_2}}{ u(x,t)^*-u(x,t)_{\frac{h}{2}} _{L_2}})$
1	11	26	3.215404e-03	0
2	21	40	1.677347e-03	9.388190e-01
3	41	75	8.634902e-04	9.579291e-01
4	81	129	4.387277e-04	9.768541e-01
5	161	192	2.212002e-04	9.879729e-01

$$\lambda(u)=u^2+1$$
 $u(x,t)=e^x+e^t$

N	Nodes	Iteration	$ u(x,t)^*-u(x,t) _{L_2}$	$\log(rac{ u(x,t)^*-u(x,t)_h _{L_2}}{ u(x,t)^*-u(x,t)_{rac{h}{2}} _{L_2}})$
1	11	25	1.340536e-03	0
2	21	44	4.524343e-04	1.567030e+00
3	41	83	1.830826e-04	1.305214e+00
4	81	162	8.352043e-05	1.132293e+00
5	161	163	3.925923e-05	1.089097e+00

$$\lambda(u) = u^2 + 1$$
 $u(x,t) = e^t + sin(t)$

N	Nodes	Iteration	$ u(x,t)^*-u(x,t) _{L_2}$	$\log(\tfrac{ u(x,t)^*-u(x,t)_h _{L_2}}{ u(x,t)^*-u(x,t)_{\frac{h}{2}} _{L_2}})$
1	11	24	1.393889e-03	0
2	21	43	4.559543e-04	1.612154e+00
3	41	83	1.755613e-04	1.376914e+00
4	81	156	7.752160e-05	1.179305e+00
5	161	163	3.641089e-05	1.090229e+00

Из таблиц видно, что итераций стало меньше при этом погрешность получаемого решения слабо отличается. Произведем оценку того, на сколько итераций стало меньше и вычисли ускорение при применении метода Ньютона для решения нелинейного ДУ. Параметры задачи не изменяются.

$$\lambda(u)=u^2+1 \quad u(x,t)=3x+t$$

N	Nodes	Iteration SI	Iteration NI	SI - NI	Ускорение
1	11	116	16	100	7.250
2	21	206	25	181	8.240
3	41	351	44	307	7.977
4	81	563	83	480	6.783

N	Nodes	Iteration SI	Iteration NI	SI - NI	Ускорение
5	161	803	163	640	4.926

$$\lambda(u)=u^2+1 \quad u(x,t)=2x^2+t$$

N	Nodes	Iteration SI	Iteration NI	SI - NI	Ускорение
1	11	101	32	69	3.156
2	21	182	43	139	4.233
3	41	322	83	239	3.880
4	81	546	162	384	3.370
5	161	803	267	536	3.007

$$\lambda(u)=u^2+1$$
 $u(x,t)=x^3+t$

N	Nodes	Iteration SI	Iteration NI	SI - NI	Ускорение
1	11	71	31	40	2.290
2	21	141	42	99	3.357
3	41	241	82	159	2.939
4	81	402	162	240	2.481
5	161	742	264	478	2.811

$$\lambda(u)=u^2+1$$
 $u(x,t)=x^4+t$

N	Nodes	Iteration SI	Iteration NI	SI - NI	Ускорение
1	11	80	31	49	2.581
2	21	141	42	99	3.357
3	41	242	82	160	2.951
4	81	481	162	319	2.969
5	161	802	322	480	2.491

$$\lambda(u)=u^2+1$$
 $u(x,t)=e^x+t$

N Nodes Iteration SI Iteration NI SI - NI Ускорение

N	Nodes	Iteration SI	Iteration NI	SI - NI	Ускорение
1	11	77	24	53	3.208
2	21	142	43	99	3.302
3	41	242	83	159	2.916
4	81	402	162	240	2.481
5	161	643	163	480	3.945

$$\lambda(u)=u^2+1$$
 $u(x,t)=3x+t$

N	Nodes	Iteration SI	Iteration NI	SI - NI	Ускорение
1	11	116	16	100	7.250
2	21	206	25	181	8.240
3	41	351	44	307	7.977
4	81	563	83	480	6.783
5	161	803	163	640	4.926

$$\lambda(u)=u^2+1 \quad u(x,t)=3x+t^2$$

N	Nodes	Iteration SI	Iteration NI	SI - NI	Ускорение
1	11	118	24	94	4.917
2	21	202	44	158	4.591
3	41	345	51	294	6.765
4	81	538	83	455	6.482
5	161	817	163	654	5.012

$$\lambda(u) = u^2 + 1 \ \ u(x,t) = 3x + t^3$$

N	Nodes	Iteration SI	Iteration NI	SI - NI	Ускорение
1	11	116	24	92	4.833
2	21	201	43	158	4.674
3	41	328	69	259	4.754
4	81	507	83	424	6.108

N	Nodes	Iteration SI	Iteration NI	SI - NI	Ускорение
5	161	781	163	618	4.791

$$\lambda(u)=u^2+1 \ \ u(x,t)=3x+e^t$$

N	Nodes	Iteration SI	Iteration NI	SI - NI	Ускорение
1	11	94	26	68	3.615
2	21	175	28	147	6.250
3	41	305	45	260	6.778
4	81	538	84	454	6.405
5	161	803	163	640	4.926

$$\lambda(u)=u^2+1$$
 $u(x,t)=3x+sin(t)$

N	Nodes	Iteration SI	Iteration NI	SI - NI	Ускорение
1	11	115	25	90	4.600
2	21	205	40	165	5.125
3	41	344	44	300	7.818
4	81	555	83	472	6.687
5	161	803	163	640	4.926

$$\lambda(u)=u^2+1$$
 $u(x,t)=e^x+t^2$

N	Nodes	Iteration SI	Iteration NI	SI - NI	Ускорение
1	11	80	24	56	3.333
2	21	141	43	98	3.279
3	41	240	81	159	2.963
4	81	399	142	257	2.810
5	161	702	163	539	4.307

$$\lambda(u)=u^2+1 \quad u(x,t)=e^x+t^3$$

N	Nodes	Iteration SI	Iteration NI	SI - NI	Ускорение	
					_	

N	Nodes	Iteration SI	Iteration NI	SI - NI	Ускорение
1	11	79	26	53	3.038
2	21	137	40	97	3.425
3	41	242	75	167	3.227
4	81	404	129	275	3.132
5	161	665	192	473	3.464

$$\lambda(u)=u^2+1$$
 $u(x,t)=e^x+e^t$

N	Nodes	Iteration SI	Iteration NI	SI - NI	Ускорение
1	11	68	25	43	2.720
2	21	125	44	81	2.841
3	41	229	83	146	2.759
4	81	402	162	240	2.481
5	161	643	163	480	3.945

$$\lambda(u)=u^2+1 \quad u(x,t)=e^t+sin(t)$$

N	Nodes	Iteration SI	Iteration NI	SI - NI	Ускорение
1	11	77	24	53	3.208
2	21	140	43	97	3.256
3	41	242	83	159	2.916
4	81	402	156	246	2.577
5	161	643	163	480	3.945

Вывод:

Исходя из полученных результатов следует, что количество итераций по нелинейности сокращается практически в 4 раза. Это связано с тем, что при составлении СЛАУ происходит учет первых производных, что по итогу ведет к тому, что направление выбирается более точно и ведет в минимум невязки, следовательно получаемый вектор решений является более точным. При запуске на тестах более высокой размерности или с более словжной функцией более крупно выйгрыша не получается достич.

Исходный код

main.cpp

```
ſĠ
#include "FEM_1D.h"
#include <string>
#include <unistd.h>
function1D calcFirstDerivative(const function1D& f) {
       return [f](double x) -> double {
               const double h = 0.00001;
               return (f(x - 2 * h) - 8 * f(x - h) + 8 * f(x + h)
       };
}
function2D calcRightPart(const function1D& lambda, const function2I
       return [=](double x, double t) -> double {
               using namespace std::placeholders;
               auto duBydt = calcFirstDerivative(std::bind(u, x,
               auto duBydx = calcFirstDerivative(std::bind(u, _1,
               auto lambda_grad = [=](double x, double t) -> doub.
                      return lambda(u(x, t)) * duBydx(x);
                      //return lambda(duBydt(t)) * duBydx(x);
               };
               auto div = calcFirstDerivative(std::bind(lambda_gra)
               return -div(x) + sigma * duBydt(t);
       };
}
/* Печатет табличку для исследования на сходимость */
void PrintTable(vector<string> &param_str, int CountOfDivide, funct
{
       /* 0 = lambda_str
          1 = u_str
       */
       FEM fem;
       function2D f_ = calcRightPart(lambda_, u_, 1);
   fem.init(u_, f_, lambda_, 1, "Grid.txt", "TimeGrid.txt");
       pair<int, double> res_Prev = fem.solve();
       pair<int, double> res_Curr;
       printf("lambda(u) = %s u(x,t) = %s", param_str[0].c_str(),
       printf("|-----
       printf("| N | Nodes | Iteration | || u(x,t)^* - u(x,t)^* - u(x,t)^* - u(x,t)^*
       printf("|-----
       printf("|%3d |%6d |%12d |%22e |%30e |\n", 1, fer
       for(int i = 2; i <= CountOfDivide; i++)</pre>
       {
               fem.DivideGridAndPrepareInternalParametrs(2);
               res_Curr = fem.solve();
               printf("|%3d |%6d |%12d |%22e |%30e |\n'
               printf("|-----
```

```
res_Prev = res_Curr;
        }
        printf("\n\n\n");
}
int main()
    vector < function 2D > u(14), f(14);
        u[0] = \{ [](double x, double t) \rightarrow double \{ return 3 * x + \} \}
        u[1] = \{ [](double x, double t) \rightarrow double \{ return 2 * x*x \}
        u[2] = \{ [](double x, double t) \rightarrow double \{ return x * x*x \}
        u[3] = \{ [](double x, double t) \rightarrow double \{ return x * x*x* \}
        u[4] = \{ [](double x, double t) \rightarrow double \{ return exp(x) \rightarrow double \} \}
        u[5] = \{ [](double x, double t) \rightarrow double \{ return 3 * x + \} \}
        u[6] = \{ [](double x, double t) \rightarrow double \{ return 3 * x + \} \}
        u[7] = \{ [](double x, double t) \rightarrow double \{ return 3 * x + \} \}
        u[8] = \{ [](double x, double t) -> double \{ return 3 * x +
        u[9] = \{ [](double x, double t) \rightarrow double \{ return 3 * x + \} \}
        u[10] = \{ [](double x, double t) -> double \{ return exp(x) \}
        u[11] = \{ [](double x, double t) -> double \{ return exp(x) \}
        u[12] = \{ [](double x, double t) -> double \{ return exp(x) \}
        u[13] = \{ [](double x, double t) -> double \{ return exp(x) \}
        vector <function1D> lambda(8);
        lambda[0] = { [](double u) -> double {return 1; } };
        lambda[1] = { [](double u) -> double {return u; } };
        lambda[2] = { [](double u) -> double {return u * u; } };
        lambda[3] = { [](double u) -> double {return u * u + 1; } ]}
        lambda[4] = { [](double u) -> double {return u * u*u; } };
        lambda[5] = { [](double u) -> double {return u * u*u*u; } ]
        lambda[6] = { [](double u) -> double {return exp(u); } };
        lambda[7] = { [](double u) -> double {return 2*u+sin(15*u)}
    double sigma = 1;
        std::vector<std::string> lambda_str = {"1", "u", "u^2", "u'
        std::vector<std::string> u_str = \{"3x + t", "2x^2 + t", "x'\}
        /* Генерация таблички для различных lambda */
        // for(int i = 0; i < lambda.size(); i++)</pre>
        // {
                 printf("lambda(u) = %s\n", lambda_str[i].c_str());
        //
        //
                 printf("|-----
        //
                 printf("| u(x,t) | || u(x,t)^* - \iota
        //
                 printf("|-----
        //
                for(int j = 0; j < u.size(); j++)
        //
        //
                          f[j] = calcRightPart(lambda[i], u[j], sigma
        //
                          FEM fem;
                 E.m. 2021/...... E.21 1200042..... 12000 110024 1.041
```

```
rem.init(u[j], r[j], iambda[i], sigma, "Grid.txt",
//
   //
                  auto res = fem.solve();
                  printf("|%23s |%20e |%8d |\n", u_
   //
                  printf("|-----
   //
   //
                  //sleep(1);
   //
           printf("\n\n\n");
   //
   // }
   int Lambda_num = 3;
   /* Делаем проход по всем функциям в списке и фиксированной
   // for(int k = 0; k < u.size(); k++)
   // {
   //
           FEM fem;
   //
           f[k] = calcRightPart(lambda[Lambda_num], u[k], sign
   //
           fem.init(u[k], f[k], lambda[Lambda_num], sigma, "G
   //
           auto res_Prev = fem.NutonSolve(); // Решение урави
   //
           pair<int, double> res_Curr;
   //
           printf("$\\lambda(u) = %s \\space\\space \\u00e4
   //
           printf("\n");
           //printf("|-----
   //
   //
           printf("| N | Nodes | Iteration | $ \setminus | u(x,t) |
   //
           printf("|-----|:-----:|:------:|:------
   //
           printf("|%2d |%6d |%7d
                                         |%18e
   //
           //printf("\n");
           //printf("|-----
   //
   //
           for(int i = 2; i \le 5; i++)
   //
           {
   //
                  fem.DivideGridAndPrepareInternalParametrs(:
   //
                  res_Curr = fem.NutonSolve();
   //
                                                 |%18e
                  printf("|%2d |%6d |%7d
   //
                  //printf("|-----
                  res_Prev = res_Curr;
   //
   //
           }
          printf("\n\n\n");
   //
   // }
           for(int k = 0; k < u.size(); k++)</pre>
   {
           FEM fem;
           f[k] = calcRightPart(lambda[Lambda_num], u[k], sign
           fem.init(u[k], f[k], lambda[Lambda_num], sigma, "G
           auto res_Prev_NI = fem.NutonSolve(); // Решение уן
           auto res_Prev_SI = fem.solve();
           pair<int, double> res_Curr_SI;
           pair<int, double> res_Curr_NI;
           printf("$\\lambda(u) = %s \\space\\space\\space u
           printf("\n");
           double w = (double) wee Dweet CT first //double) wee Dr
```

```
nonnte i - (nonnte)ie2_bie7_bi.iti2f\(nonnte)ie2_bi
             //printf("|-----
             printf("| N | Nodes | Iteration SI | Iteration
             printf("|-----|:------:|:-------:|:-------
             printf("|%5d|%9d|%14d|%14d|%9d|%11.3lf|\n", 1, fem
             res_Prev_SI.first - res_Prev_NI.first , r); // Περι
             //printf("\n");
             //printf("|-----
             for(int i = 2; i <= 5; i++)
              {
                    fem.DivideGridAndPrepareInternalParametrs(:
                    res_Prev_NI = fem.NutonSolve();
                    res_Prev_SI = fem.solve();
                    r = (double)res_Prev_SI.first/(double)res_I
                    printf("|%5d|%9d|%14d|%14d|%9d|%11.3lf|\n",
             res_Prev_SI.first - res_Prev_NI.first , r); // Περι
                    //printf("|-----
             }
             printf("\n\n\n");
       }
   return 0;
}
```

FEM_1D.h

ſĠ

```
#ifndef FEM_H_
#define FEM_H_
#include "Grid_1D.h"
#include "Slau.h"
#include <string>
#include <fstream>
#include <fstream>
#include <functional>
#include <cmath>
using namespace std;
typedef function<double(double, double)> function2D;
typedef function<double(double)> function1D;
class FEM
private:
    Grid_1D Grid;
    Grid_1D TimeGrid;
    Slau slau; // Она же глобальная матрицы и вектор правой ча
    Slau NutonSlau; // СЛАУ полченная в результате линеаризации по
    vector<double> q, qPrev;
    vector<double> qExact; // Вектор на прошлой итерации по нелі
    vector<vector<double>> Q; // Общее решение по временным слоям
    double lambda0, lambda1;
    double sigma;
    double t;
    double dt;
    const int maxiter = 1000; // Максимальное количество итераций
    double eps = 1e-7;
    double delta = 1e-7;
    double omega = 1;
    double PrevNonRepan = 0;
    int StepCoef = 1; // Шаговый коэффициент по пространству
    int TimeCoef = 1; // Шаговый коэффициент по времени
    function2D f, u;
    function1D lambda;
    function1D dlambda; // Производная коэффициента
    void GenerateProfile();
    void buildGlobalMatrixA(double _dt);
    void buildGlobalMatrixANuton(double _dt);
    void buildGlobalVectorb();
```

```
vold bulldGlobalVectorbNuton();
void printGlobalMatrixA();
void printGlobalVectorb();
/* Сборка локальных матриц */
void buildLocalMatrixG(int elemNumber);
void buildLocalMatrixM(int elemNumber);
void buildLocalmatrixA(int elemNumber);
void buildLocalVectorf(int elemNumber);
void buildLocalVectorfNuton(int elemNumber);
/* Локальные матрицы для Нютона */
void buildLocalMatrixNuton(int elemNumber);
bool shouldCalc(int i);
function1D calcFirstDerivative(const function1D &f)
    return [f](double x) -> double
    {
        const double h = 0.00001;
        return (f(x - 2 * h) - 8 * f(x - h) + 8 * f(x + h) - f(x + h))
    };
}
double calcNormAtMainNodes()
    double res = 0;
    auto normsub = [&](double x, double t)
        return pow(u(x, t) - CalculateU(x, t), 2.0);
    };
    /* Расчет интеграла. Берем шаг h = 0.002 и пройдемся по от
    double h = 0.0002;
    double start = Grid[0];
    int32_t N = int32_t((Grid[Grid.size() - 1] - Grid[0]) / h)
    for (int32_t i = 0; i < N; i++)
    {
        double a = start + i * h;
        double b = a + h;
        double arg = (b + a) / 2.0;
        // cout << "[ " << a << "; " << b << "]\n";
        // cout << "hx = " << h << " arg = " << arg << " norm:
        res += h * normsub(arg, 1.0);
    }
    return sqrt(res);
}
```

```
vector<vector<double>> GLOCAI, MLOCAI, ALOCAI;
vector<vector<double>> NutonALocal; // Добавка для методв Ньюто
vector<double> bLocal, NutonbLocal;

public:
    FEM() = default;

    void init(const function2D &_u, const function2D &_f, const function2to a const fun
```

FEM_1D.cpp

```
ſĠ
#include "FEM_1D.h"
#include "head.h"
/* Private */
bool FEM::shouldCalc(int i)
    // Выход по макисмальному количеству итераций
    if(i > maxiter)
        return false;
    }
        /* Выход по измененинию вектора решения */
        if(calcNormE(q-qExact)/calcNormE(q) < delta)</pre>
                return false;
        }
    // Вывод по невязке
        //cout << "Non-repan: " << calcNormE(MultAOnq(slau.Matr, q</pre>
    // if(PrevNonRepan < calcNormE(MultAOnq(slau.Matr, q) - slau.f
        // {
        //
                omega = 0.5;
        // }
        // else
        // {
        //
                omega = 1.0;
        // }
        if( calcNormE(MultAOnq(slau.Matr, q) - slau.f)/calcNormE(sl
    {
        return false;
    }
    return true;
}
void FEM::GenerateProfile()
    int n = Grid.size();
    slau.Matr.ia[0] = 0;
    for(int i = 1; i < n+1; i++)</pre>
        slau.Matr.ia[i] = i-1;
        /* Профиль для матрицы Ньютона */
        NutonSlau.Matr.ia = slau.Matr.ia;
}
void FEM::buildGlobalMatrixA(double _dt)
```

```
{
        int nodesCount = Grid.size();
    int finiteElementsCount = nodesCount-1;
    dt = _dt;
        auto &di = slau.Matr.di;
    auto &au = slau.Matr.au;
    auto &al = slau.Matr.al;
        di.clear();
        au.clear();
        al.clear();
        di.resize(nodesCount, 0);
        al.resize(nodesCount - 1, 0);
        au.resize(nodesCount - 1, 0);
    for (size_t elemNumber = 0; elemNumber < finiteElementsCount; (</pre>
        {
                buildLocalmatrixA(elemNumber);
                //cout << ALocal << endl;</pre>
                di[elemNumber] += ALocal[0][0];
                                                          au[elemNuml
                al[elemNumber] += ALocal[1][0];
                                                          di[elemNuml
        }
        // Первые краевые условия
        di[0] = 1;
        au[0] = 0;
        di[nodesCount - 1] = 1;
        al[al.size() - 1] = 0;
}
void FEM::buildGlobalVectorb()
{
    auto &f = slau.f;
    int nodesCount = Grid.size();
    int finiteElementsCount = nodesCount-1;
    f.clear();
        f.resize(nodesCount, 0);
        for (size_t elemNumber = 0; elemNumber < finiteElementsCour</pre>
        {
                buildLocalVectorf(elemNumber);
                f[elemNumber] += bLocal[0];
                f[elemNumber + 1] += bLocal[1];
        }
        f[0] = u(Grid[0], t);
        f[nodesCount - 1] = u(Grid[nodesCount - 1], t);
}
void FEM::buildGlobalMatrixANuton(double _dt)
```

```
{
        int nodesCount = Grid.size();
    int finiteElementsCount = nodesCount-1;
    dt = _dt;
        auto &di = NutonSlau.Matr.di;
    auto &au = NutonSlau.Matr.au;
    auto &al = NutonSlau.Matr.al;
        di.clear();
        au.clear();
        al.clear();
        di.resize(nodesCount, 0);
        al.resize(nodesCount - 1, 0);
        au.resize(nodesCount - 1, 0);
    for (size_t elemNumber = 0; elemNumber < finiteElementsCount; </pre>
        {
                buildLocalMatrixNuton(elemNumber);
                //cout << ALocal << endl;</pre>
                di[elemNumber] += NutonALocal[0][0];
                                                                   au
                al[elemNumber] += NutonALocal[1][0];
                                                                   di
        }
        // Первые краевые условия
        di[0] = 1;
        au[0] = 0;
        di[nodesCount - 1] = 1;
        al[al.size() - 1] = 0;
}
void FEM::buildGlobalVectorbNuton()
{
         auto &f = NutonSlau.f;
    int nodesCount = Grid.size();
    int finiteElementsCount = nodesCount-1;
    f.clear();
        f.resize(nodesCount, 0);
        for (size_t elemNumber = 0; elemNumber < finiteElementsCour</pre>
        {
                buildLocalVectorfNuton(elemNumber);
                f[elemNumber] += NutonbLocal[0];
                f[elemNumber + 1] += NutonbLocal[1];
        }
        f[0] = u(Grid[0], t);
        f[nodesCount - 1] = u(Grid[nodesCount - 1], t);
}
void FEM::printGlobalMatrixA()
```

```
ί
}
void FEM::printGlobalVectorb()
}
void FEM::buildLocalMatrixG(int elemNumber)
    double hx = Grid[elemNumber+1] - Grid[elemNumber];
        lambda0 = lambda(q[elemNumber]);
        lambda1 = lambda(q[elemNumber + 1]);
        double numerator = (lambda0 + lambda1) /(2.0 * hx);
        GLocal[0][0] = GLocal[1][1] = numerator;
        GLocal[0][1] = GLocal[1][0] = -numerator;
}
void FEM::buildLocalMatrixM(int elemNumber)
{
    double hx = Grid[elemNumber+1] - Grid[elemNumber];
        double numerator = (sigma * hx) / (6 * dt);
        MLocal[0][0] = MLocal[1][1] = 2 * numerator;
        MLocal[0][1] = MLocal[1][0] = numerator;
}
void FEM::buildLocalmatrixA(int elemNumber)
{
        ALocal = GLocal = MLocal = \{ \{0,0\}, \{0,0\} \};
        buildLocalMatrixG(elemNumber);
        buildLocalMatrixM(elemNumber);
        for (size_t i = 0; i < 2; i++)</pre>
        {
                for (size_t j = 0; j < 2; j++)
                        ALocal[i][j] = GLocal[i][j] + MLocal[i][j]
                }
        }
}
void FEM::buildLocalMatrixNuton(int elemNumber)
{
        /* Собираем матрицу для не линеаризованной */
        buildLocalmatrixA(elemNumber);
        // Сейчас есть ALocal в которой не линеаризованная часть лю
        // Сборка Ньютоновской части
        double hx2 = 1.0/(2.0*(Grid[elemNumber+1] - Grid[elemNumber
        double q1 = q[elemNumber];
        double q2 = q[elemNumber+1];
        double dlambdaq1q1 = dlambda(q1)*q1;
        ·Cn*/(rn)ehdmelh - Cnrnehdmelh aldunh
```

```
UUUDIE UIAHIDUAYIYE - UIAHIDUA(YI) YE,
                              double dlambdaq2q1 = dlambda(q2)*q1;
                              double dlambdaq2q2 = dlambda(q2)*q2;
                              NutonAlocal[0][0] = Alocal[0][0] + hx2*(dlambdaq1q1 - dlaml)
                              NutonALocal[0][1] = ALocal[0][1] + hx2*(dlambdaq2q1 - dlaml)
                              NutonALocal[1][0] = ALocal[1][0] + hx2*(-1.0*dlambdaq1q1 +
                              NutonALocal[1][1] = ALocal[1][1] + hx2*(-1.0*dlambdaq2q1 +
}
void FEM::buildLocalVectorf(int elemNumber)
               double hx = Grid[elemNumber+1] - Grid[elemNumber];
                              bLocal = \{ 0, 0 \};
                              bLocal[0] = hx * (2.0 * f(Grid[elemNumber], t) + f(Grid[elemNumber])
                                                            + sigma *hx * (2.0 * qPrev[elemNumber] + qPrev[eler
                              bLocal[1] = hx * (f(Grid[elemNumber], t) + 2.0 * f(Grid[elemNumber])
                                                            + sigma * hx *(qPrev[elemNumber] + 2.0 * qPrev[eler
}
void FEM::buildLocalVectorfNuton(int elemNumber)
{
                              double hx2 = 1.0/(2.0*(Grid[elemNumber+1] - Grid[elemNumber
                              NutonbLocal = \{0,0\};
                              buildLocalVectorf(elemNumber);
                              double q1 = q[elemNumber];
                              double q2 = q[elemNumber+1];
                              double dlambdaq1q1 = dlambda(q1)*q1;
                              double dlambdaq2q2 = dlambda(q2)*q2;
                              NutonbLocal[0] = bLocal[0] + hx2*(q1-q2)*(dlambdaq1q1 + dlambdaq1q1 + 
                              NutonbLocal[1] = bLocal[1] + hx2*(q2-q1)*(dlambdaq1q1 + dlambdaq1q1 + 
}
/* Public */
void FEM::init(const function2D &_u, const function2D &_f, const function2D &_f
{
               Grid = Grid_1D(Grid_);
               TimeGrid = Grid_1D(TimeGrid_);
                              Grid.GenerateGrid();
                              TimeGrid.GenerateGrid();
              u = \underline{u};
                              f = _f;
                              lambda = _lambda;
                              sigma = _sigma;
                              dlambda = calcFirstDerivative(lambda); // Производная от ля
               /* Allocate memory for matrix and right part */
               int n = Grid.size();
                slau Matr di resize(n):
```

```
slau.Matr.au.resize(n-1);
    slau.Matr.al.resize(n-1);
    slau.Matr.ia.resize(n+1);
    slau.f.resize(n);
        /* СЛАУ для Ньютона */
        NutonSlau.Matr.di.resize(n);
        NutonSlau.Matr.au.resize(n-1);
        NutonSlau.Matr.al.resize(n-1);
        NutonSlau.Matr.ia.resize(n+1);
        NutonSlau.f.resize(n);
    /* Генерация профиля матрицы она имеет 3-х диагональную структу
    GenerateProfile();
    /* Память под вектора решений */
    q.resize(n);
    qPrev.resize(n);
        qExact.resize(n);
        Q.resize(TimeGrid.size());
    /* Память под локальные матрицы */
    GLocal = vector(2, vector<double>(2));
    MLocal = vector(2, vector<double>(2));
    ALocal = vector(2, vector<double>(2));
        NutonALocal = vector(2, vector<double>(2));
}
void FEM::DivideGridAndPrepareInternalParametrs(const int32_t coef
{
        /* Дробим сетку */
        Grid.DivideGrid(coef);
        Grid.ReGenerateGrid();
        TimeGrid.DivideGrid(coef);
        TimeGrid.ReGenerateGrid();
        slau.Matr.di.clear();
        slau.Matr.al.clear();
        slau.Matr.au.clear();
        slau.Matr.ia.clear();
        NutonSlau.Matr.al.clear();
        NutonSlau.Matr.au.clear();
        NutonSlau.Matr.ia.clear();
        NutonSlau.Matr.di.clear();
        slau.f.clear();
        NutonSlau.f.clear();
        q.clear();
        qPrev.clear();
        gExact.clear():
```

```
Q.clear();
         /* Allocate memory for matrix and right part */
    int n = Grid.size();
    slau.Matr.di.resize(n);
    slau.Matr.au.resize(n-1);
    slau.Matr.al.resize(n-1);
    slau.Matr.ia.resize(n+1);
    slau.f.resize(n);
        NutonSlau.Matr.di.resize(n);
        NutonSlau.Matr.au.resize(n-1);
        NutonSlau.Matr.al.resize(n-1);
        NutonSlau.Matr.ia.resize(n+1);
        NutonSlau.f.resize(n);
    /* Генерация профиля матрицы она имеет 3-х диагональную структу
    GenerateProfile();
    /* Память под вектора решений */
    q.resize(n);
    qPrev.resize(n);
        qExact.resize(n);
        Q.resize(TimeGrid.size());
}
pair<int, double> FEM::solve()
        // Задаём начальные условия
        int n = Grid.size();
        //q.resize(n, 0);
        //qPrev.resize(n, 0);
        for (size_t i = 0; i < n; i++)</pre>
                qPrev[i] = u(Grid[i], TimeGrid[0]);
        //qPrev = qExact; // Прошлый временной слой его трогать нел
        Q[0] = qPrev;
        //cout << "QTrue: [" << qPrev << "]\n";
        int count = 0;
        int allCount = 0;
        // Решаем в каждый момент временной сетки
        double sumNormQ = 0;
        for (size_t i = 1; i < TimeGrid.size(); i++)</pre>
        {
                count = 0; // Обнулили счеткик итераций
                dt = TimeGrid[i] - TimeGrid[i - 1];
                t = TimeGrid[i];
                /* Производим первую итерацию q = q1 - первая итера
                buildGlobalMatrixA(dt);
```

```
buildGlobalVectorb();
                SolveSlau(slau, q);
                count++; // Итеарция прошла
                /* Сначала делаем еще одну итерацию по нелинейності
                do {
                        qExact = q; // Сохранили векор после итера
                        buildGlobalMatrixA(dt);
                        buildGlobalVectorb();
                        SolveSlau(slau, q); // Расчитали новый q =
                        count++; // Итеарция прошла
                        allCount++;
                        //cout << "time: " << t << " q = [" << q <<
                        //cout << "time: " << t << " qPrev = [" <<
                } while (shouldCalc(count));
                qPrev = qExact; // Новый временной слой присвоили
                //cout << "Time = " << t <<" Total iteration = " <<
                Q[i] = q; // Заносим в решение очередной временной
        }
        return make_pair(allCount, calcNormAtMainNodes()); // в ког
}
pair<int, double> FEM::NutonSolve()
// Задаём начальные условия
        int n = Grid.size();
        //q.resize(n, 0);
        //qPrev.resize(n, 0);
        for (size_t i = 0; i < n; i++)</pre>
                qPrev[i] = u(Grid[i], TimeGrid[0]);
        //qPrev = qExact; // Прошлый временной слой его трогать нел
        Q[0] = qPrev;
        //cout << "QTrue: [" << qPrev << "]\n";
        int count = 0;
        int allCount = 0;
        // Решаем в каждый момент временной сетки
        double sumNormQ = 0;
        for (size_t i = 1; i < TimeGrid.size(); i++)</pre>
        {
                count = 0; // Обнулили счеткик итераций
                dt = TimeGrid[i] - TimeGrid[i - 1];
                t = TimeGrid[i];
```

_ .

```
/* Производим первую итерацию q = q1 - первая итера
                buildGlobalMatrixA(dt);
                buildGlobalVectorb();
                buildGlobalMatrixANuton(dt);
                buildGlobalVectorbNuton();
                SolveSlau(NutonSlau, q);
                count++; // Итеарция прошла
                // Считаем невязку
                PrevNonRepan = calcNormE(MultAOnq(slau.Matr, q) - :
                /* Сначала делаем еще одну итерацию по нелинейності
                do {
                        qExact = q; // Сохранили векор после итера:
                        buildGlobalMatrixA(dt); // Исходная не лине
                        buildGlobalVectorb(); // Исходная не линеа
                        buildGlobalMatrixANuton(dt); // СЛАУ Ньютог
                        buildGlobalVectorbNuton(); // СЛАУ Ньютон
                        SolveSlau(NutonSlau, q); // Расчитали новы
                        q = omega*q + (1-omega)*qExact;
                        count++; // Итеарция прошла
                        allCount++; // Общее количество итераций
                        //cout << "time: " << t << " q = [" << q <<
                        //cout << "time: " << t << " qPrev = [" <<
                } while (shouldCalc(count));
                qPrev = qExact; // Новый временной слой присвоили
                //cout << "Time = " << t <<" Total iteration = " <
                Q[i] = q; // Заносим в решение очередной временной
        }
        return make_pair(allCount, calcNormAtMainNodes()); // в ког
}
double FEM::CalculateU(double x, double t)
{
        double res = 0;
        // Пусть мы берем последний временной слой пока что
        vector<double>& TmpQ = Q[Q.size()-1];
        /* Определим отрезок в котором будем расчитвыать значение (
        int32_t NumElement = 0;
        for(; NumElement < Grid.size()-1; NumElement++)</pre>
```

```
if(Grid[NumElement] <= x && Grid[NumElement+1] >= ;
}

double xm = Grid[NumElement];
double xm1 = Grid[NumElement+1];

auto Psi1 = [&](double x) { return (xm1 - x)/(xm1-xm); };
auto Psi2 = [&](double x) { return (x-xm)/(xm1-xm); };

return TmpQ[NumElement]*Psi1(x) + TmpQ[NumElement+1]*Psi2(;
}
```

Grid_1D.h

```
ſĠ
#ifndef GRID_1D_H
#define GRID_1D_H
#include <vector>
#include <string>
#include <fstream>
using namespace std;
/* Формат файла */
/*
    * Nx - Количество опорных узлов по оси х
    * x1 x2 ... xn
    * далее коэффиценты дробления сетки
    * n1 q1 n2 q2 ...
 */
class Grid_1D
{
    private:
    const double eps = 1e-10;
    ifstream fin;
    ofstream fout;
    struct DivideParamS
    {
                    // количество интервалов на которое нужно разд
        double coef; // Коэффициент растяжения или сжатия
    };
    int32_t Nx;
    vector<double> BaseGridX;
    vector<DivideParamS> DivideParam;
    vector<double> Grid;
    int stepCoef = 1; // Коэффициент с шагом для базовой сетки умно
    public:
    Grid_1D() = default;
    Grid_1D(const string &filename);
    void Load(const string &filenmae);
    void GenerateGrid();
    void DivideGrid(const int coef);
    void ReGenerateGrid();
    inline int32_t size() const { return (int32_t)Grid.size(); }
    inline double& operator[](const int32_t idx) { return Grid[(uir)
    void PrintGrid() const;
    Grid_1D& operator=(const Grid_1D &Grid_)
```

```
this->BaseGridX = Grid_.BaseGridX;
this->Nx = Grid_.Nx;
this->DivideParam = Grid_.DivideParam;
this->Grid = Grid_.Grid;

return *this;
}

~Grid_1D() = default;
};
```

Grid_1D.cpp

```
ſĠ
#include "Grid_1D.h"
#include <iostream>
#include <cmath>
/* Private */
void Grid_1D::Load(const string &filename)
{
    fin.open(filename);
    if(!fin.is_open())
        cout << "Файл можна????\n";
    fin >> Nx;
    BaseGridX.resize((uint64_t)Nx);
    for(int32_t i = 0; i < Nx; i++)</pre>
        fin >> BaseGridX[(uint64_t)i];
    // Интервалов на 1 меньше чем опроных узлов
    DivideParam.resize(uint64_t(Nx-1));
    for(int32_t i = 0; i < Nx-1; i++)</pre>
        fin >> DivideParam[(uint64_t)i].num >> DivideParam[(uint64_
    //cout << "File is load done\n";</pre>
    fin.close();
}
/* Public */
Grid_1D::Grid_1D(const string &filename)
{
    Load(filename);
    /* Рачет общего числа узлов */
    int32_t GlobalNx = 0;
    for(int32_t i = 0; i < Nx-1; i++)</pre>
        GlobalNx+=DivideParam[(uint64_t)i].num;
    GlobalNx++;
    Grid.resize((uint64_t)GlobalNx);
}
void Grid_1D::GenerateGrid()
     struct SettingForDivide
    {
        double step; // Шаг на отрезке
        double coef; // Коэффициент увеличения шага
```

```
// Количество интервалов идем то num-1 и потог
    int num;
};
/* Расчитываем шаг для сетки */
/*
    @param
    int j - Номер элемента в массиве
    double left - левая грани отрезка
    double right - правая граница отрезка
    ret: SettingForDivide - структура с вычесленными параметра
*/
auto CalcSettingForDivide = [&](int j, double left, double rigl
    SettingForDivide res;
    int num = DivideParam[j].num;
    double coef = DivideParam[j].coef;
    if (coef > 1.0)
    {
        double coefStep = 1.0 + (coef * (std::pow(coef, num - :
        res.step = (right - left) / coefStep;
    }
    else
    {
        res.step = (right - left) / num;
    }
    // Убираем погрешность
    if (std::abs(res.step) < eps)</pre>
        res.step = 0.0;
    res.num = num;
    res.coef = coef;
    return res;
};
/* Генерация разбиения по X с учетом разбиения */
/*
    @param
    SettingForDivide &param - параметр разбиения
    double left - левая граница отрезка
    double right - правая граница отрезка
    double *Line - генерируемый массив
    int &idx - индекс в массиве на какую позицию ставить элемен
*/
auto GenerateDivide = [](SettingForDivide &param, double left,
    int num = param.num;
    double coef = param.coef;
    double step = param.step;
```

```
Line[iax] = iert;
        idx++;
        double ak = left;
        for (int k = 0; k < num - 1; k++)
        {
            ak = ak + step * std::pow(coef, k);
            Line[idx] = ak;
            idx++;
        Line[idx] = right;
    };
    int idx = 0;
    for(int32_t j = 0; j < Nx-1; j++)
    {
        double left = BaseGridX[j];
        double right = BaseGridX[j+1];
        SettingForDivide param = CalcSettingForDivide(j, left, rigl
        GenerateDivide(param, left, right, Grid, idx);
    }
}
void Grid_1D::DivideGrid(const int coef)
    for(uint64_t i = 0; i < DivideParam.size(); i++)</pre>
    {
        DivideParam[i].num *= static_cast<double>(coef);
        DivideParam[i].coef = pow(DivideParam[i].coef, 1.0/(static_
    stepCoef *= coef;
}
void Grid_1D::ReGenerateGrid()
{
    Grid.clear(); // Очистка сетки
    /* Рачет общего числа узлов */
    int32_t GlobalNx = 0;
    for(int32_t i = 0; i < Nx-1; i++)</pre>
        GlobalNx+=DivideParam[(uint64_t)i].num;
    GlobalNx++;
    Grid.resize((uint64_t)GlobalNx);
    GenerateGrid(); // Перегенерация сетки
}
void Grid_1D::PrintGrid() const
{
    cout << "Print 1D Grid: \n";</pre>
    for(int32_t i = 0; i < Grid.size(); i++)</pre>
```

```
cout << Grid[i] << " ";
}
cout << "\n";
}</pre>
```

head.h

```
ſĠ
#pragma once
#define _CRT_SECURE_NO_WARNINGS
#include <fstream>
#include <iostream>
#include <vector>
#include <string>
#include <iomanip>
#include <functional>
#include <cmath>
using namespace std;
typedef std::function<double(double)> function1D;
typedef std::function<double(double, double)> function2D;
typedef vector <double> vector1D;
typedef vector <vector <double>> matrix2D;
// Сравнение векторов
inline bool operator==(const vector1D& a, const vector1D& b) {
#ifdef _DEBUG
        if (a.size() != b.size())
                throw std::exception();
#endif
        for (int i = 0; i < a.size(); ++i)</pre>
                if (a[i] != b[i])
                        return false;
        return true;
}
// Сложение векторов
inline vector1D operator+(const vector1D& a, const vector1D& b) {
#ifdef _DEBUG
        if (a.size() != b.size())
                throw std::exception();
#endif
        vector1D result = a;
        for (int i = 0; i < b.size(); i++)</pre>
                result[i] += b[i];
        return result;
// Сложение матриц
inline matrix2D operator+(const matrix2D& a, const matrix2D& b) {
#ifdef _DEBUG
        if (a.size() != b.size())
                throw std::exception();
#endif
        matrix2D result = a;
```

```
tor (int 1 = 0; 1 < b.size(); 1++)</pre>
                for (int j = 0; j < b.size(); j++)</pre>
                         result[i][j] += b[i][j];
        return result;
}
// Деление матрицы на число
inline matrix2D operator/(const matrix2D& a, const double& b) {
        matrix2D result = a;
        for (int i = 0; i < a.size(); i++)</pre>
                for (int j = 0; j < a.size(); j++)</pre>
                         result[i][j] /= b;
        return result;
}
// Вычитание векторов
inline vector1D operator-(const vector1D& a, const vector1D& b) {
#ifdef _DEBUG
        if (a.size() != b.size())
                throw std::exception();
#endif
        vector1D result = a;
        for (int i = 0; i < b.size(); i++)</pre>
                result[i] -= b[i];
        return result;
// Обратный знак вектора
inline vector1D operator-(const vector1D& a) {
        vector1D result = a;
        for (int i = 0; i < a.size(); i++)</pre>
                result[i] = -result[i];
        return result;
}
// Умножение матрицы на вектор
inline vector1D operator*(const matrix2D& a, const vector1D& b) {
        vector1D result = \{0.0, 0.0\};
        for (int i = 0; i < a.size(); i++)</pre>
                for (int j = 0; j < a.size(); j++)</pre>
                         result[i] += a[i][j] * b[j];
        return result;
}
// Умножение на число
inline vector1D operator*(const vector1D& a, double b) {
```

```
vectorid result = a;
        for (int i = 0; i < result.size(); i++)</pre>
                 result[i] *= b;
        return result;
}
// Умножение на число
inline vector1D operator*(double b, const vector1D& a) {
        return operator*(a, b);
}
// Деление на число
inline vector1D operator/(const vector1D& a, double b) {
        vector1D result = a;
        for (int i = 0; i < result.size(); i++)</pre>
                 result[i] /= b;
        return result;
}
// Деление на число
inline vector1D operator/(double b, const vector1D& a) {
        return operator/(a, b);
}
// Скалярное произведение
inline double operator*(const vector1D& a, const vector1D& b) {
#ifdef _DEBUG
        if (a.size() != b.size())
                throw std::exception();
#endif
        double sum = 0;
        for (int i = 0; i < a.size(); i++)</pre>
                sum += a[i] * b[i];
        return sum;
}
// Потоковый вывод вектора
inline std::ostream& operator<<(std::ostream& out, const vector1D&</pre>
        for (int i = 0; i < v.size() - 1; ++i)</pre>
                out << v[i] << ", ";
        out << v.back();
        return out;
// Потоковый вывод матрицы
inline std::ostream& operator<<(std::ostream& out, const matrix2D&
        for (int i = 0; i < v.size() - 1; ++i)</pre>
                out << v[i] << " ";
        out << v.back();
        return out;
```

```
}
  // Потоковый вывод вектора для ТеХ
  inline void printTeXVector(std::ofstream &fout, const vector1D &v,
          fout << "$(";
          for (int i = 0; i < v.size() - 1; ++i)</pre>
                  if (i % int(pow(2, coefGrid)) == 0)
                           fout << v[i] << ", ";
          fout << v.back() << ")^T$";
  }
Matrix.h
```

```
Q
#ifndef MATRIX_H_
#define MATRIX_H_
#include <vector>
#include "head.h"
using namespace std;
struct Matrix
    /* Matrix */
    vector<int> ia;
    vector<double> di;
    vector<double> al;
    vector<double> au;
};
vector<double> MultAOnq(Matrix &matr, vector<double>& q);
double calcNormE(const vector1D &x);
#endif
```

Matrix.cpp

3/4/24, 13:21 48 of 53

Slau.h

```
ſŪ
#ifndef SLAU_H_
#define SLAU_H_
#include "Matrix.h"
#include <vector>
using namespace std;
struct Slau
{
    Matrix Matr;
    /* f */
    vector<double> f;
};
void LUDecomposition(Slau &slau);
void GausForward(Slau &slau, vector<double> &y);
void GausBack(Slau &slau, vector<double> &x);
void SolveSlau(Slau &slau ,vector<double>&x);
void TestSlau();
#endif
```

Slau.cpp	

Q

```
#include "Slau.h"
void LUDecomposition(Slau &slau)
{
    Matrix &Matr = slau.Matr;
    const int n = Matr.di.size();
    const int TriangMat = Matr.ia.size();
    for (int i = 0; i < n; i++)</pre>
        int i0 = Matr.ia[i];
        int i1 = Matr.ia[i + 1];
        int j = i - (i1 - i0);
        double sd = 0;
        for (int m = i0; m < i1; m++, j++)</pre>
            double sl = 0;
            double su = 0;
            int j0 = Matr.ia[j];
            int j1 = Matr.ia[j + 1];
            int mi = i0;
            int mj = j0;
            int kol_i = m - i0;
            int kol_j = j1 - j0;
            int kol_r = kol_i - kol_j;
            if (kol_r < 0)</pre>
                 mj -= kol_r;
            else
                mi += kol_r;
            for (; mi < m; mi++, mj++)</pre>
            {
                 sl += Matr.al[mi] * Matr.au[mj];
                 su += Matr.au[mi] * Matr.al[mj];
            }
            Matr.au[m] = Matr.au[m] - su;
            Matr.al[m] = (Matr.al[m] - sl) / Matr.di[j];
            sd += Matr.al[m] * Matr.au[m];
        Matr.di[i] = Matr.di[i] - sd;
    }
}
```

```
void GausForward(Slau &slau, vector<double> &y)
{
    Matrix &Matr = slau.Matr;
    int n = Matr.di.size();
    // Решение системы Ly = b
    for (int i = 0; i < n; i++)</pre>
    {
        auto &al = Matr.al;
        int i0 = Matr.ia[i];
        int i1 = Matr.ia[i + 1];
        double s = 0;
        int j = i - (i1 - i0);
        for (int k = i0; k < i1; k++, j++)
            s += al[k] * y[j];
        y[i] = slau.f[i] - s;
    }
}
void GausBack(Slau &slau, vector<double> &x)
{
    Matrix &Matr = slau.Matr;
    int n = Matr.di.size();
    // Решение системы Ux = y
    for (int i = n - 1; i \ge 0; i - -)
        double xi = x[i] / Matr.di[i];
        auto &au = Matr.au;
        int i0 = Matr.ia[i];
        int i1 = Matr.ia[i + 1];
        // int m = Matr.ai[i+1] - Matr.ai[i];
        int j = i - 1;
        for (int k = i1 - 1; k >= i0; k - -, j - -)
            x[j] -= au[k] * xi;
        }
        x[i] = xi;
    }
}
void SolveSlau(Slau &slau, vector<double> &x)
{
    LUDecomposition(slau);
    GausForward(slau, x);
    GausBack(slau, x);
}
void TestSlau()
    vector<double> q;
    01-.. -1-...
```

```
Slau Slau;

slau.Matr.di = { 1, 2.66667, 2.66667, 2.66667, 2.66667

slau.Matr.al = { -0.833333, -0.833333, -0.833333, -0.833333;

slau.Matr.au = { 0, -0.8333333, -0.833333, -0.833333, -0.833333, -0.833333, -0.833333, -0.833333, -0.833333, -0.833333, -0.833333, -0.833333, -0.833333, -0.833333, -0.833333, -0.833333, -0.833333, -0.833333, -0.833333, -0.833333, -0.833333, -0.833333, -0.833333, -0.833333, -0.833333, -0.833333, -0.833333, -0.833333, -0.833333, -0.833333, -0.833333, -0.833333, -0.833333, -0.833333, -0.833333, -0.833333, -0.833333, -0.833333, -0.833333, -0.833333, -0.833333, -0.833333, -0.833333, -0.8333333, -0.8333333, -0.8333333, -0.8333333, -0.8333333, -0.8333333, -0.8333333, -0.8333333, -0.8333333, -0.8333333, -0.8333333, -0.8333333, -0.8333333, -0.8333333, -0.8333333, -0.8333333, -0.8333333, -0.8333333, -0.8333333, -0.8333333, -0.8333333, -0.8333333, -0.8333333, -0.8333333, -0.8333333, -0.8333333, -0.8333333, -0.8333333, -0.8333333, -0.8333333, -0.8333333, -0.8333333, -0.8333333, -0.8333333, -0.8333333, -0.8333333, -0.8333333, -0.8333333, -0.8333333, -0.8333333, -0.8333333, -0.8333333, -0.8333333, -0.8333333, -0.8333333, -0.8333333, -0.8333333, -0.8333333, -0.8333333, -0.8333333, -0.8333333, -0.8333333, -0.8333333, -0.8333333, -0.8333333, -0.8333333, -0.8333333, -0.8333333, -0.8333333, -0.8333333, -0.8333333, -0.8333333, -0.8333333, -0.8333333, -0.8333333, -0.8333333, -0.8333333, -0.833333, -0.833333, -0.833333, -0.833333, -0.8333333, -0.833333, -0.833333, -0.833333, -0.833333, -0.833333, -0.833333, -0.833333, -0.833333, -0.833333, -0.833333, -0.833333, -0.833333, -0.833333, -0.833333, -0.833333, -0.833333, -0.833333, -0.833333, -0.833333, -0.833333, -0.833333, -0.833333, -0.833333, -0.833333, -0.833333, -0.833333, -0.833333, -0.833333, -0.833333, -0.833333, -0.833333, -0.833333, -0.833333, -0.833333, -0.833333, -0.833333, -0.833333, -0.833333, -0.833333, -0.833333, -0.833333, -0.833333, -0.833333, -0.833333, -0.833333, -0.833333, -0.833333, -0.833333, -0.833333, -0.833333, -0.833333, -0.833333,
```