Examenul de bacalaureat 2011 Proba E. c) Proba scrisă la MATEMATICĂ

Varianta 5

Filiera teoretică, profilul real, specializarea matematică - informatică. Filiera vocațională, profilul militar, specializarea matematică - informatică.

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul efectiv de lucru este de 3 ore.
- La toate subiectele se cer rezolvări complete.

SUBIECTUL I (30 de puncte)

- 1. Arătați că $(\sqrt{2}, \sqrt{5}) \cap \mathbb{Z} = \{2\}$.
- **2.** Determinați valorile reale ale lui m pentru care dreapta x=2 este axa de simetrie a parabolei 5p $v = x^2 + mx + 4.$
- 3. Rezolvați în mulțimea $[0,2\pi)$ ecuația $\sin\left(x-\frac{\pi}{6}\right)=\frac{1}{2}$.
- **4.** Determinați $n \in \mathbb{N}$, $n \ge 2$, pentru care $C_n^2 + A_n^2 = 18$. 5p
- 5p **5.** Determinați $a \in \mathbb{R}$ pentru care dreptele $d_1: ax + y + 2011 = 0$ și $d_2: x - 2y = 0$ sunt paralele.
- **5p** | **6.** Fie x un număr real care verifică egalitatea tgx + ctgx = 2. Arătați că sin 2x = 1.

SUBIECTUL al II-lea (30 de puncte)

- 1. Se consideră matricea $A(x) = \begin{pmatrix} 1 & x & x^2 \\ 0 & 1 & 2x \\ 0 & 0 & 1 \end{pmatrix}$, unde $x \in \mathbb{R}$.
- a) Arătați că $A(x) \cdot A(y) = A(x+y)$, oricare ar fi $x, y \in \mathbb{R}$. 5p
- **b)** Arătați că $(A(x) A(y))^{2011} = O_3$, pentru orice $x, y \in \mathbb{R}$.
- c) Determinați inversa matricei A(x), unde $x \in \mathbb{R}$.
 - **2.** Se consideră $\alpha \in \mathbb{C}$ și polinomul $f = X^3 + (1 \alpha)X^2 + (\alpha 2)iX + \alpha + (\alpha 2)i \in \mathbb{C}[X]$.
- a) Arătați că polinomul f are rădăcina -1. 5p
- **b)** Arătați că, dacă p,q sunt numere complexe și polinomul $g = X^2 + pX + q \in \mathbb{C}[X]$ are două 5p rădăcini distincte, complex conjugate, atunci p și q sunt numere reale și $p^2 < 4q$.
- c) Determinați $\alpha \in \mathbb{C}$ pentru care polinomul f are două rădăcini distincte, complex conjugate.

SUBIECTUL al III-lea (30 de puncte)

- 1. Se consideră funcția $f:(1,+\infty)\to\mathbb{R}, f(x)=\ln(x+1)-\ln(x-1)$.
- a) Arătați că funcția f este strict descrescătoare pe $(1, +\infty)$. 5p
- **b)** Determinați asimptotele graficului funcției f. 5p
- c) Calculați $\lim_{x \to +\infty} xf(x)$. 5p
 - **2.** Se consideră funcția $f:[1,2] \to \mathbb{R}$, $f(x) = x^2 3x + 2$.
- **5p a)** Calculați $\int_{1}^{4} f(\sqrt{x}) dx$.
- **b)** Calculați aria suprafeței determinate de graficul funcției $g:[1;2] \to \mathbb{R}$, $g(x) = \frac{f(x)}{x}$ și de axa Ox.
- **5p** c) Arătați că $(4n+2)\int_{1}^{2} f^{n}(x)dx + n\int_{1}^{2} f^{n-1}(x)dx = 0$.