POLITECNICO DI MILANO – A.A. 2023/24 MSC IN MATHEMATICAL ENGINEERING

MATHEMATICS OF QUANTUM MECHANICS

Prof. MICHELE CORREGGI, Dr. MATTIA CANTONI

Homework 3

Consider an hydrogen atom immersed in a magnetic field $\mathbf{B}(\mathbf{x})$. Neglecting the interaction between the electron spin and the magnetic field, the Hamiltonian in the center of mass reference frame reads (with $r = |\mathbf{x}|$)

$$H_{\mathbf{A}} = \frac{\hbar}{2m} \left(-i\nabla + \gamma \mathbf{A} \right)^2 - \frac{e^2}{r},$$

where $\gamma > 0$ is the coupling constant and the vector potential $\mathbf{A} \in C_0^{\infty}(\mathbb{R}^3)$ is real and such that $\mathbf{B}(\mathbf{x}) = \nabla \wedge \mathbf{A}(\mathbf{x})$ and $\nabla \cdot \mathbf{A} = 0$ (Coulomb gauge).

- 1. Prove that the operator $H_{\mathbf{A}}$ is essentially self-adjoint on $C_0^{\infty}(\mathbb{R}^3)$ and bounded from below.
- 2. Prove that $\sigma_{\text{ess}}(H_{\mathbf{A}}) = \mathbb{R}^+$.
- 3. Prove that $\sigma_{\rm disc}(H_{\bf A}) \neq \emptyset$ and find upper and lower bounds for $E_1 := \inf \sigma(H_{\bf A})$ matching to leading order in γ as $\gamma \to 0$.