Capítulo 3 – Limites de funções e funções contínuas

3.7 Exercícios

- 1 Seja $f(x) = \frac{4x^2 11x + 6}{x 2}$. Para cada ε dado, determine δ tal que $|f(x) - 5| < \varepsilon$ sempre que $0 < |x - 2| < \delta$.
 - a) $\varepsilon = 4$
- b) $\varepsilon = 2$
- c) $\varepsilon = 1$
- d) $\varepsilon = 0.08$

Sugestão: Simplificar a fração que define f por x - 2, para $x \ne 2$.

- 2 Calcule os limites.

 - a) $\lim_{x \to -1} (3x^2 7x 4)$ b) $\lim_{x \to 6} \frac{x^2 12x + 36}{x 5}$
 - c) $\lim_{x \to -2} \sqrt{5x^2 + 3x + 2}$
 - d) $\lim_{x \to -3} \log(x^4 3x + 10)$
 - e) $\lim_{x \to \pi} \cos x \cdot \sin(x + \pi)$
- f) $\lim_{x\to -\pi} e^{\text{sen}x}$
- 3 Para cada função a seguir, calcule $\lim_{x \to a^+} f(x)$, $\lim_{x \to a^-} f(x)$ e $\lim_{x \to a} f(x)$ caso este exista.
 - a) $f(x) =\begin{cases} 3 x^2 & \text{se } x < 0 \\ 2x & \text{se } x \ge 0 \end{cases}$ b) $f(x) = \frac{x^2 3x 4}{x 4}$

a=0

- c) $f(x) =\begin{cases} x^2 4x 1 & \text{se } x < 2 \\ 2 x & \text{se } x > 2 \end{cases}$ d) $f(x) =\begin{cases} 2x + 3 & \text{se } x < -1 \\ -x & \text{se } x > -1 \\ 0 & \text{se } x = -1 \end{cases}$

a=2

a=-1

4 - Calcule os limites.

a) $\lim_{x\to 2} \frac{x^2 + 5x - 14}{x - 2}$

- b) $\lim_{x \to 3} \frac{x^2 6x + 9}{x 3}$
- c) $\lim_{x \to -2} \frac{2x^2 + x 6}{x + 2}$
- d) $\lim_{x \to -3} \frac{5x^3 + 23x^2 + 24x}{x^2 x 12}$

- e) $\lim_{x \to -1} \frac{x^3 + 65x^2 + 63x 1}{x + 1}$ f) $\lim_{x \to 2} \frac{x^4 3x^2 4}{x 2}$ g) $\lim_{x \to 4} \frac{2x^3 13x^2 + 17x + 12}{x^2 6x + 8}$ h) $\lim_{x \to 1} \frac{x^5 x^3 5x^2 + 5}{x^2 + x 2}$
- i) $\lim_{h \to 0} \frac{(a+h)^2 a^2}{h}$ k) $\lim_{t \to 1} \frac{t^4 1}{t 1}$
 - j) $\lim_{h\to 0} \frac{(a+h)^3 a^3}{h}$

- 1) $\lim_{t \to 1} \frac{t^5 1}{t 1}$
- m) $\lim_{x \to 0} \frac{\sqrt{16-x}-4}{x}$
- n) $\lim_{x \to 27} \frac{\sqrt[3]{x} 3}{x 27}$
- o) $\lim_{x \to 9} \frac{x^2 9x}{\sqrt{x} 3}$
- p) $\lim_{x \to 1} \frac{\sqrt[3]{x} 1}{\sqrt{x} 1}$
- q) $\lim_{x \to 1} \frac{\sqrt[4]{x^3} 1}{\sqrt[6]{x} 1}$
- r) $\lim_{x \to 32} \frac{\sqrt[5]{x-2}}{x-32}$

- s) $\lim_{x \to 5} \frac{\sqrt{2(x-3)} 2}{x-5}$ t) $\lim_{h \to 0} \frac{h}{a \sqrt{a^2 + h}}$, (a>0)
- u) $\lim_{h \to 0} \frac{\sqrt{a+h} \sqrt{a}}{h}$ (a>0) v) $\lim_{h \to 0} \frac{\sqrt[3]{a+h} \sqrt[3]{a}}{h}$

- $5 \operatorname{Seja} f(x) = \frac{x+1}{x}.$
 - a) Encontre k tal que |f(x)-1| < 0.001 para todo x > k.
 - b) Dado $\varepsilon > 0$ encontre k < 0 tal que $x < k \implies |f(x)-1| < \varepsilon$.
 - c) Encontre o maior δ tal que $-\delta < x < 0 \implies f(x) < -100$.
 - d) Dado M > 0 encontre o maior δ , tal que $0 < x < \delta \implies f(x) > M$.

6 - Calcule os limites.

1)
$$\lim_{x \to +\infty} \frac{4x^3 - 5x^2 + x}{x^4 + 7x^2}$$

3)
$$\lim_{x \to \infty} \frac{x^5 + \sin x}{20x^4 + 3x^2 + x}$$

5)
$$\lim_{x \to +\infty} \frac{10x^2 + 5 - 3\cos x^2}{2x^2 + 3x - 4}$$

7)
$$\lim_{x \to 1^{-}} \frac{x^3 + x - 3}{x - 1}$$

9)
$$\lim_{x \to -\infty} \frac{\sqrt{x^2 + \sqrt{x^2 + 1}}}{x}$$

11)
$$\lim_{x \to -\infty} \frac{\sqrt{1 - x + \sqrt{1 - x}}}{\sqrt{1 - x}}$$

13)
$$\lim_{x \to 4^+} \frac{4x + 4}{16 - x^2}$$

15)
$$\lim_{x \to 2^+} \frac{x^2 - x - 2}{x^2 - 4x + 4}$$

17)
$$\lim_{x \to 0} \frac{x}{\text{tg}x}$$

19)
$$\lim_{x\to 0^+} \left[7x(1+\operatorname{ctg}^2 x)\right]^{-1}$$

21)
$$\lim_{x \to +\infty} \left(2 + \frac{1}{x} \right)^x$$

23)
$$\lim_{x\to 0} (1-2x)^{\frac{1}{x}}$$

$$25) \lim_{x \to 0} \frac{7^{x-1} - \frac{1}{7}}{x}$$

2)
$$\lim_{x \to \infty} \frac{3x^5 - x^4 + 7x}{6x^5 + 8x^4 + 20}$$

4)
$$\lim_{x \to -\infty} \frac{4x^5 + 12x^2 + 5x}{x^3 + 4x^2 + 2}$$

6)
$$\lim_{x \to 1^+} \frac{x^3 + x - 3}{x - 1}$$

6)
$$\lim_{x \to 1^{+}} \frac{x^{3} + x - 3}{x - 1}$$

8) $\lim_{x \to +\infty} \frac{\sqrt{x^{2} - \sqrt{x}}}{\sqrt{x + 1}}$

10)
$$\lim_{x \to +\infty} \frac{\sqrt{x^2 + 1}}{\sqrt{x^2 + \sqrt{x^2 + 1}}}$$

12)
$$\lim_{x \to 3} \frac{x^2 + 4}{x^2 - 6x + 9}$$

14)
$$\lim_{x \to 4^{-}} \frac{4x + 4}{16 - x^2}$$

16)
$$\lim_{x \to 2^{-}} \frac{x^2 - x - 2}{x^2 - 4x + 4}$$

18)
$$\lim_{x \to 0} \frac{1 - \cos^4 x}{x^2}$$

20)
$$\lim_{x \to \infty} \left(1 + \frac{5}{x - 1} \right)^{x + 7}$$

22)
$$\lim_{x\to 0} (1+kx)^{\frac{1}{x}}$$

24)
$$\lim_{x\to 0} \frac{5^{x+2}-25}{10x}$$

26)
$$\lim_{x\to 0} \frac{(ab)^x - a^x}{ax}$$

27)
$$\lim_{x \to 2^{-}} \frac{x^2 + 3x - 7}{2 - x}$$
 28) $\lim_{x \to \infty} \left(1 + \frac{2}{x + 1} \right)^x$

$$28) \lim_{x \to \infty} \left(1 + \frac{2}{x+1} \right)^x$$

29)
$$\lim_{x \to -1} (2+x)^{\frac{1}{x+1}}$$

$$30) \lim_{x\to 0} x^2 \operatorname{ctg}^2 x$$

31)
$$\lim_{x \to +\infty} \left(\sqrt{x^3 - 3x} - x^2 \right)$$
 32) $\lim_{x \to +\infty} \left(\sqrt{x^4 - 3x} - x^2 \right)$

32)
$$\lim_{x \to +\infty} \left(\sqrt{x^4 - 3x} - x^2 \right)$$

33)
$$\lim_{x\to 0} \frac{\operatorname{tg} x}{x \cdot \sec x}$$

34)
$$\lim_{x\to 0} (x \cdot \sec x \cdot \csc x)$$

- 7 Calcule $\lim_{t\to +\infty} m(t)$ e $\lim_{t\to +\infty} l(t)$ para as funções m(t) e l(t) obtidas nos exercícios 7 e 8 do capítulo 2. Explique o significado desses limites.
- 8 Verifique se cada função a seguir é contínua no ponto a indicado.

a)
$$f(x) = \begin{cases} x+3 & \text{se } x \le 1 \\ 4 & \text{se } x > 1 \end{cases}$$
, $a=1$

b)
$$f(x) = \begin{cases} 1 - x^2 & \text{se } x < 2 \\ x - 5 & \text{se } x > 2 \\ 0 & \text{se } x = 2 \end{cases}$$

$$c) f(x) = \begin{cases} \frac{\sin x}{x} & \text{se } x < 0 \\ \frac{\tan x}{x} & \text{se } x > 0 \\ 1 & \text{se } x = 0 \end{cases}, \quad a = 0$$

$$d) f(x) = \begin{cases} x \text{ sen } x & \text{se } x \neq 0 \\ 0 & \text{sex} = 0 \end{cases}, \quad a=0$$

Capítulo 3 – Limites de funções e funções contínuas

e)
$$f(x) =\begin{cases} x^2 - 8 & \text{se } x < 3\\ \frac{\sin(x - 3)}{x - 3} & \text{se } x > 3\\ 1 & \text{se } x = 3 \end{cases}$$

f)
$$f(x) = \begin{cases} x - x^2 & \text{se } x < -2 \\ x^3 + 2 & \text{se } x > -2 \\ 3 & \text{se } x = -2 \end{cases}$$
, $a = -2$

9 - Explique por que as seguintes funções são contínuas:

$$a) f(x) = \ln(1 + \sin^2 x)$$

b)
$$g(x) = \cos(x^3 - 2x + 7)$$

c)
$$h(x) = \sqrt{x^2 - 7x - 4}$$

d)
$$r(x) = e^{x + \cos x}$$

- 10 Mostre que existe $x \in (-1,0)$ tal que $e^x + x = 0$. Sugestão: Use o T.V.I..
- 11 Mostre que a função $f(x) = x^3 + x^2 2x 2$ possui uma raiz no intervalo (1,2).
- 12 Sejam $f(x) = e^x$ e $g(x) = -x^2 + 4$. Mostre que existe $x \in (0,2)$ tal que f(x) = g(x).Sugestão: Considere $h(x) = f(x) - g(x) = e^x + x^2 - 4$ e use o T.V.I..
- 13- Seja $k \in \mathbb{R}$, $k \ne 0$. Dada $f(x) = e^{kx} + x^2 5$, verifique se existe $x \in (0,2)$ tal que f(x) = 0. Sugestão: Analise separadamente os casos k>0 e k<0.

Respostas

1) a) 1 b)
$$\frac{1}{2}$$
 c) $\frac{1}{4}$ d) 0,02

- 2) a) 6
- b) 0
- c) 4 d) 2
- e) 0
- f) 1

- 3) a) 0; 3; não existe
- b) 5; 5; 5 c) 0; -5; não existe
- d) 1; 1; 1 f) 20

- 4) a) 9
- c) -7
- h) $-\frac{8}{3}$ i) 2a j) $3a^2$
- 1) 5

m)
$$-\frac{1}{8}$$
 n) $\frac{1}{27}$ o) 54 p) $\frac{2}{3}$ q) $\frac{9}{2}$

- s) $\frac{1}{2}$ t) -2a u) $\frac{1}{2\sqrt{a}}$ v) $\frac{1}{3\sqrt[3]{a^2}}$
- 5) a) k=1000 ou k>1000 b) $k \le -\frac{1}{\varepsilon}$ c) $\frac{1}{101}$

6)
$$I$$
) 0 2) $\frac{1}{2}$ 3) $-\infty$ 4) $+\infty$ 5) 5 6) $-\infty$

- 8) $+\infty$ 9) -1 10) 1 11) 1 12) $+\infty$ 13) $-\infty$ 14) $+\infty$

- $16) -\infty$ 17) 1 18) 2 19) 0

- 20) e^5

- 22) e^{k} 23) e^{-2} 24) $\frac{5}{2} \ln 5$

26)
$$\frac{\ln b}{a}$$
 27) +\infty 28) e^2 29) e^2

30) 1

- *33*) 1
- *34*) 1

- 7) 1030kg e 40cm
- 8) a) Contínua
- b) Descontínua .
- c) Contínua

- d) Contínua
- e) Contínua
- f) Descontínua