# Project and Conquer Fast Quantifier Elimination for Checking Petri Net Reachability

Nicolas Amat, Silvano Dal Zilio, Didier Le Botlan











Page 1 of 3

generated on April 15, 8987



Is "ExecutingTask > TaskOnDisk" reachable from the initial marking?



State space  $\approx 10^{17}$ 

## Reachability properties verification

▶ *F* reachable if and only if  $\exists m \in R(N, m_0)$  such that  $m \models F$ 

## Reachability properties verification

- ▶ *F* reachable if and only if  $\exists m \in R(N, m_0)$  such that  $m \models F$
- ▶ *F* invariant if and only if  $\forall m \in R(N, m_0)$  we have  $m \models F$

## Some properties of interest

- ▶ Coverability:  $COVER(p, k) \equiv m(p) \ge k$
- ▶ Reachability: REACH $(p, k) \equiv m(p) = k$
- ▶ Quasi-liveness:  $QLIVE(t) \equiv \bigwedge_{p \in ^{\bullet}t} COVER(p, pre(t, p))$
- ▶ **Deadlock**: DEAD  $\equiv \bigwedge_{t \in T} \neg QLIVE(t)$

#### Petri nets semantics

#### Same formalism for semantics and properties

Some transition t enabled at m when  $m \models \text{ENBL}_t(\mathbf{p})$ :

$$\mathrm{ENBL}_t(oldsymbol{p}) riangleq igwedge_{i \in 1...n} (p_i \geqslant \mathrm{Pre}(t, p_i))$$

We have  $m \to m'$  if and only if  $m, m' \models T(p, p')$ :

$$T(\boldsymbol{\rho}, \boldsymbol{\rho'}) \triangleq \bigvee_{t \in T} \mathrm{ENBL}_t(\boldsymbol{\rho}) \wedge \Delta_t(\boldsymbol{\rho}, \boldsymbol{\rho'})$$

where the token displacement is defined as:

$$\Delta_t(\boldsymbol{p}, \boldsymbol{p'}) \triangleq \bigwedge_{i \in 1...n} (p'_i = p_i + \operatorname{Post}(t)(p_i) - \operatorname{Pre}(t)(p_i))$$

### Outline

- 1. Polyhedral reduction
- 2. Token Flow Graphs
- 3. Quantifier elimination
- 4. Experimental evaluation

### Outline

- 1. Polyhedral reduction
- 2. Token Flow Graphs
- 3. Quantifier elimination
- 4. Experimental evaluation

## SmallOperatingSystem

#### Polyhedral Reduction



**Marking equivalence:** denote  $m_1 \equiv_E m_2$  when:  $E \wedge \underline{m_1} \wedge \underline{m_2}$  is satisfiable

# Key results: reachability checking

Polyhedral Reduction

Lemma (Reachability checking)

For all pairs of markings  $m'_1, m'_2$  of  $N_1, N_2$  such that  $m'_1 \equiv_E m'_2$ :

if  $m'_2 \in R(N_2, m_2)$  then  $m'_1 \in R(N_1, m_1)$ .



# Key results: invariance checking

Polyhedral reduction

Lemma (Invariance checking) For all  $m'_1$  in  $R(N_1, m_1)$  there is  $m'_2$  in  $R(N_2, m_2)$  such that  $m'_1 \equiv_E m'_2$ .



## Polyhedral equivalence

Polyhedral reduction

```
Definition (Relaxed E-equivalence) (N_1, m_1) \equiv_E (N_2, m_2) if and only if 

(A1) initial markings are realated up-to E: m_1 \equiv_E m_2; 

(A2a) for all markings m in R(N_1, m_1) or R(N_2, m_2): E \land \underline{m} is satisfiable; 

(A2b) assume m'_1, m'_2 are markings of N_1, N_2 related up-to E, such that m'_1 \equiv_E m'_2, then m'_1 is reachable iff m'_2 is reachable.
```

## AirplaneLD-PT-0050

#### Polyhedral reduction



## AirplaneLD-PT-0050

#### Polyhedral reduction



E contains about 400 variables and literals

## AirplaneLD-PT-0050

#### Polyhedral reduction



AirplaneLD-PT-4000: 30 000 variables and literals

Polyhedral reduction

▶ Is 
$$F_1$$
 reachable in  $(N_1, m_1)$ ?

$$F_1 \triangleq \left\{ \begin{array}{cc} 3p_7 + 2p_8 & \geqslant p_6 \\ p_8 & \geqslant p_1 \end{array} \right.$$

Polyhedral reduction

▶ Is 
$$F_1$$
 reachable in  $(N_1, m_1)$ ?  $F_1 \triangleq \left\{ \begin{array}{c} 3p_7 + 2p_8 \geqslant p_6 \\ p_8 \geqslant p_1 \end{array} \right.$ 

Definition (E-Transform Formula)

Formula  $F_2(\boldsymbol{p_2}) \triangleq \exists \boldsymbol{p_1}.~\tilde{E}(\boldsymbol{p_1},\boldsymbol{p_2}) \wedge F_1(\boldsymbol{p_1})$  is the *E*-transform of  $F_1$ .

Polyhedral reduction

▶ Is 
$$F_1$$
 reachable in  $(N_1, m_1)$ ?

$$F_1 \triangleq \left\{ \begin{array}{cc} 3p_7 + 2p_8 & \geqslant p_6 \\ p_8 & \geqslant p_1 \end{array} \right.$$

Definition (*E*-Transform Formula) Formula  $F_2(\mathbf{p}_2) \triangleq \exists \mathbf{q}_1 . \tilde{E}(\mathbf{q}_1, \mathbf{p}_2) \land F_1(\mathbf{q}_1)$  is the *E*-transform of  $F_1$ .

$$F_{2} \triangleq \exists q_{0}, ..., q_{8}. \exists a_{1}. \begin{cases} q_{1} = q_{4} + 4096 \\ q_{6} = q_{0} + q_{2} + q_{3} + q_{5} + q_{7} \\ a_{1} = q_{7} + q_{8} \\ a_{2} = a_{1} + q_{6} \end{cases} \land \begin{cases} p_{0} = q_{0} \\ p_{2} = q_{2} \\ p_{3} = q_{3} \\ p_{4} = q_{4} \end{cases} \land \begin{cases} 3q_{7} + 2q_{8} \geqslant q_{6} \\ q_{8} \geqslant q_{1} \\ p_{4} = q_{4} \end{cases}$$

Polyhedral reduction

 $F_1 \triangleq \begin{cases} 3p_7 + 2p_8 \geqslant p_6 \\ p_8 \geqslant p_1 \end{cases}$ ▶ Is  $F_1$  reachable in  $(N_1, m_1)$ ?

Definition (*E*-Transform Formula) Formula  $F_2(\mathbf{p}_2) \triangleq \exists \mathbf{q}_1 . \tilde{E}(\mathbf{q}_1, \mathbf{p}_2) \land F_1(\mathbf{q}_1)$  is the *E*-transform of  $F_1$ .

$$F_{2} \triangleq \exists q_{0}, ..., q_{8}. \ \exists a_{1}. \begin{cases} q_{1} = q_{4} + 4096 \\ q_{6} = q_{0} + q_{2} + q_{3} + q_{5} + q_{7} \\ a_{1} = q_{7} + q_{8} \\ a_{2} = a_{1} + q_{6} \end{cases} \land \begin{cases} p_{0} = q_{0} \\ p_{2} = q_{2} \\ p_{3} = q_{3} \\ p_{4} = q_{4} \end{cases} \land \begin{cases} 3q_{7} + 2q_{8} \geqslant q_{6} \\ q_{8} \geqslant q_{1} \\ p_{4} = q_{4} \end{cases}$$

Is the E-transform formula  $F_2$  reachable in  $(N_2, m_2)$ ?

### Fundamental results on E-transform formulas

Polyhedral reduction

Definition (E-Transform Formula)

$$F_2(\boldsymbol{p_2}) \triangleq \exists \boldsymbol{p_1}.\, \tilde{E}(\boldsymbol{p_1},\boldsymbol{p_2}) \wedge F_1(\boldsymbol{p_1})$$
 is the *E*-transform of  $F_1$ 

Theorem (Reachability Conservation)

 $\mathit{F}_1$  reachable in  $\mathit{N}_1$  if and only if  $\mathit{F}_2$  reachable in  $\mathit{N}_2$ 

#### Fundamental results on *E*-transform formulas

Polyhedral reduction

Definition (*E*-Transform Formula)

$$F_2(\boldsymbol{p_2}) \triangleq \exists \boldsymbol{p_1}. \, \tilde{E}(\boldsymbol{p_1}, \boldsymbol{p_2}) \wedge F_1(\boldsymbol{p_1}) \text{ is the } E\text{-transform of } F_1$$

Theorem (Reachability Conservation)

 $F_1$  reachable in  $N_1$  if and only if  $F_2$  reachable in  $N_2$ 

- ► Not suitable with random exploration (need to evaluate a quantified formula for each visited state)
- Not usable with standard model-checkers (only support quantifier-free formulas on the set of places)

## Fundamental results on *E*-transform formulas

Polyhedral reduction

$$F_2(\boldsymbol{p_2}) \triangleq \exists \boldsymbol{p_1}. \, \tilde{E}(\boldsymbol{p_1}, \boldsymbol{p_2}) \wedge F_1(\boldsymbol{p_1}) \text{ is the } E\text{-transform of } F_1$$

Theorem (Reachability Conservation)

$$F_1$$
 reachable in  $N_1$  if and only if  $F_2$  reachable in  $N_2$ 

- Not suitable with random exploration (need to evaluate a quantified formula for each visited state)
- Not usable with standard model-checkers
   (only support quantifier-free formulas on the set of places)

We introduce a procedure to eliminate quantifiers in  $F_2$  (EXPSPACE in general)

## Why not use standard elimination methods?

Polyhedral reduction

Often requires the use of a divisibility operator (stride format)

▲ Not part of the logic fragment that we target!

Formulas involves several hundreds and sometimes thousands of variables

▲ Do not scale!

#### Performance of fast elimination

#### Polyhedral reduction



Octant: 99.5% isl: 61% Redlog: 33%

#### Outline

- 1. Polyhedral reduction
- 2. Token Flow Graphs
- 3. Quantifier elimination
- 4. Experimental evaluation

## SmallOperatingSystem

Token Flow Graphs



#### Motivation

#### Token Flow Graphs

- ► Reason on graphs instead of solving Presburger formulas
- ► Capture the **particular structure** of constraints from polyhedral reductions
- ► Directed Acyclic Graph (**DAG**) with two kinds of arcs

$$E \triangleq \exists a_1. \begin{cases} p_1 = p_4 + 4096 \\ p_6 = p_0 + p_2 + p_3 + p_5 + p_7 \\ a_1 = p_7 + p_8 \\ a_2 = a_1 + p_5 \end{cases}$$

#### Construction

Token Flow Graphs

$$\exists \mathbf{a_1.} \begin{cases} p_1 = p_4 + 4096 \\ p_6 = p_0 + p_2 + p_3 + p_5 + p_7 \\ a_1 = p_7 + p_8 \\ a_2 = a_1 + p_5 \end{cases}$$





 $(N_2, m_2)$ 

18/26

#### Construction

Token Flow Graphs

$$\exists a_{1}.\begin{cases} p_{1} = p_{4} + 4096 \\ p_{6} = p_{0} + p_{2} + p_{3} + p_{5} + p_{7} \\ a_{1} = p_{7} + p_{8} \\ a_{2} = a_{1} + p_{5} \end{cases}$$

$$p_{0} \qquad p_{2} \qquad p_{3} \qquad p_{4} \qquad p_{4} \qquad p_{4} \qquad p_{4} \qquad p_{5} \qquad p_{7} \qquad p_{8} \qquad p_{8} \qquad p_{7} \qquad p_{8} \qquad p_{8} \qquad p_{7} \qquad p_{8} \qquad p$$

 $(N_2, m_2)$ 

18/26

#### Construction

Token Flow Graphs

$$\exists a_1. \begin{cases} p_1 = p_4 + 4096 \\ p_6 = p_0 + p_2 + p_3 + p_5 + p_7 \\ a_1 = p_7 + p_8 \\ a_2 = a_1 + p_5 \end{cases}$$





 $(N_2, m_2)$ 

#### Construction

Token Flow Graphs

$$\exists a_1. \begin{cases} p_1 = p_4 + 4096 \\ p_6 = p_0 + p_2 + p_3 + p_5 + p_7 \\ a_1 = p_7 + p_8 \\ a_2 = a_1 + p_5 \end{cases}$$





 $(N_2, m_2)$ 

18/26

#### Construction

Token Flow Graphs

$$\exists a_1. \begin{cases} p_1 = p_4 + 4096 \\ p_6 = p_0 + p_2 + p_3 + p_5 + p_7 \\ a_1 = p_7 + p_8 \\ a_2 = a_1 + p_5 \end{cases}$$





18/26

#### Construction

Token Flow Graphs

$$\exists a_1. \begin{cases} p_1 = p_4 + 4096 \\ p_6 = p_0 + p_2 + p_3 + p_5 + p_7 \\ a_1 = p_7 + p_8 \\ a_2 = a_1 + p_5 \end{cases}$$





 $(N_2, m_2)$ 

18/26

#### Outline

- 1. Polyhedral reduction
- 2. Token Flow Graphs
- 3. Quantifier elimination
- 4. Experimental evaluation

#### Quantifier elimination



$$F_1 \triangleq (3p_7 + 2p_8 \geqslant p_6) \land (p_8 \geqslant p_1)$$

#### Definition

$$F_1 \equiv_E F_2$$
, with  $FV(F_i) \subseteq P_i$  for all  $i \in 1...2$  iff

 $F_1$  is **reachable** in  $N_1$  if and only if  $F_2$  is **reachable** in  $N_2$ 





















Quantifier elimination



polarized: p<sub>8</sub> variable with the highest coefficient in both literals







Quantifier elimination



polarized: a<sub>1</sub> variable with the highest coefficient in both literals



$$F_2 \triangleq (2a_2 \geqslant p_0 + p_2 + p_3) \land (a_2 \geqslant p_4 + 4096)$$

# If not polarized?

- ▶ under-approximation: If  $m_2 \models F_2$  then  $\exists m_1$  s.t.  $m_1 \equiv_E m_2$  and  $m_1 \models F_1$
- ▶ over-approximation: If  $m_1 \models F_1$  then  $\exists m_2$  s.t.  $m_1 \equiv_E m_2$  and  $m_2 \models F_2$

# If not polarized?

Quantifier elimination

- ▶ under-approximation: If  $m_2 \models F_2$  then  $\exists m_1$  s.t.  $m_1 \equiv_E m_2$  and  $m_1 \models F_1$
- **ver-approximation**: If  $m_1 \models F_1$  then  $\exists m_2$  s.t.  $m_1 \equiv_E m_2$  and  $m_2 \models F_2$

In practice, 80% of the formulas in the MCC benchmark are polarized!

#### Outline

- 1. Polyhedral reduction
- 2. Token Flow Graphs
- 3. Quantifier elimination
- 4. Experimental evaluation

#### Workflow



#### Workflow



# Gains with TAPAAL: challenging queries





# Model Checking Contest: the tool SMPT

#### Experimental evaluation



2021: BMC & PDR (coverability)

2022: Added standard methods

**2023**: Projection (+5.5%)

#### Discussion

- ▶ Quantifier-elimination procedure tailored to the constraints we handle
- ► Combine polyhedral reduction with any model checking technique or tool
- Experimental results show the effectiveness of the approach
- Demonstrate it does not overlap other optimizations: slicing, symmetries, . . .





#### Prevalence of reductions over the MCC instances

Experimental evaluation

**Benchmark:**  $\approx 1400$  nets and  $\approx 25000$  reachability formulas



# Gains with k-induction: $50\% \le \text{reduction ratio} \le 100\%$



Gains with k-induction:  $1\% \leqslant \text{reduction ratio} \leqslant 50\%$ 

