.

21/3

PCT

WELTORGANISATION FUR GEISTIGES EIGENTUM School School

INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation 6:

H01L 29/737

(11) Internationale Veröffentlichungsnummer:

WO 98/26457

A1 (43) Internationales

Veröffentlichungsdatum:

18. Juni 1998 (18.06.98)

(21) Internationales Aktenzeichen:

PCT/DE97/02908

(22) Internationales Anmeldedatum: 8. Dezember 1997 (08.12.97)

(30) Prioritätsdaten:

196 52 423.7 197 55 979.4 9. Dezember 1996 (09.12.96)

6. Dezember 1997 (06.12.97)

DE DE

(71) Anmelder (für alle Bestimmungsstaaten ausser US): INSTITUT FÜR HALBLEITERPHYSIK FRANKFURT (ODER) GMBH [DE/DE]; Walter-Korsing-Strasse 2, D-15230 Frankfurt an der Oder (DE).

72) Erfinder; und

- (75) Erfinder/Anmelder (nur für US): LIPPERT, Gunther [DE/DE]; Sophienstrasse 5, D-15230 Frankfurt an der Oder (DE). OSTEN, Hans-Jörg [DE/DE]; Fasanenweg 19, D-15299 Müllrose (DE). HEINEMANN, Bernd [DE/DE]; Schalmeienweg 29, D-15234 Frankfurt an der Oder (DE).
- (74) Anwalt: HEITSCH, Wolfgang; Göhlsdorfer Strasse 25g, D-14778 Jeserig (DE).

(81) Bestimmungsstaaten: JP, US, europäisches Patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Veröffentlicht

Mit internationalem Recherchenbericht.

Vor Ablauf der für Änderungen der Ansprüche zugelassenen Frist. Veröffentlichung wird wiederholt falls Änderungen eintreffen.

- (54) Title: SILICON-GERMANIUM HETERO-BIPOLAR TRANSISTOR, AND METHOD FOR MAKING ITS VARIOUS EPITACTIV LAYERS
- (54) Bezeichnung: SILIZIUM-GERMANIUM-HETEROBIPOLARTRANSISTOR UND VERFAHREN ZUR HERSTELLUNG DER EPITAKTISCHEN EINZELSCHICHTEN EINES DERARTIGEN TRANSISTORS

(57) Abstract

The present invention pertains to the sili-.um-germanium hetero-bipolar transistors having a higher transition frequency, a higher maximal oscillation frequency and/or a lower noise level, depending on the action-effects and the uses. On a surface made exclusively of silicone, a monocrystalline separation is operated taking into account the transistor profile desired. The silicone-germanium hetero-bipolar transistor contains an additional electrically active material. The semiconductor device is made from silicone-germanium hetero-bipolar transistors according to the epitaxy method. Insert-

ing an electrically inactive material into the epitaxial layer limits the manufacturing defects and reduces the dopant scattering. This enables high frequency transistors to be manufactured on two ways: increasing the dopant dose in the base area and/or reducing the base width.

(57) Zusammenfassung

Auf eine reine Siliziumoberfläche findet eine einkristalline Abscheidung entsprechend dem gewünschten Transistorprofil statt. Der Silizium-Germanium-Heterobipolartransistor enthält ein zusätzliches, elektrisch nicht aktives Material. Hergestellt wird die Halblelteranordnung von Silizium-Germanium-Heterobipolartransistoren mittels Epitaxieverfahren. Ein in die Epitaxieschicht eingebrachtes, elektrisch nicht aktives Material bindet Herstellungsdefekte und verringert die Diffusion des Dotanden. Damit lassen sich hoch frequenztaugliche Transistoren auf zwei Wegen herstellen: Die Dotierungsdosis des Basisgebiets wird erhöht und/oder die basisbreite wird verringert.

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss de PCT veröffentlichen.

	•				•		
AL	Albanien	ES	Spanien	LS	Lesotho	SI	Slowenien
AM	Armenien	FI	Finnland	LT	Litauen	SK	Slowakei
AT	Österreich	FR	Frankreich	LU	Luxemburg	SN	Senegal
ΑU	Australien	GA	Gabun	LV	Lettland	SZ	Swasiland
AZ	Aserbaidschan	GB	Vereinigtes Königreich	MC	Monaco	TD	Tschad
BA	Bosnien-Herzegowina	GE	Georgien	MD	Republik Moldau	TG	Togo
вв	Barbados	GH	Ghana	MG	Madagaskar	TJ	Tadschikistan
BE	Belgien	GN	Guinea	MK	Die ehemalige jugoslawische	TM	Turkmenistan
BF	Burkina Faso	GR	Griechenland		Republik Mazedonien	TR	Türkei
BG	Bulgarien	HU	Ungam	ML	Mali	TT	Trinidad und Tobago
ВЈ	Benin	ΙĖ	Irland	MN .	Mongolei	UA	Ukraine
BR	Brasilien	IL	Israel	MR	Mauretanien	UG	Uganda
BY	Belarus	IS	Island	MW	Malawi	US	Vereinigte Staaten von
CA	Kanada	İΤ	Italien	MX	Mexiko		Amerika .
CF	Zentralafrikanische Republik	JP	Japan	NE	Niger	UZ	Usbekistan
CG	Kongo	KE	Kenia	NL	Niederlande	VN	Vietnam
CII	Schweiz	KG	Kirgisistan	NO T	Norwegen _	ΥÙ	Jugoslawien
CI	Côte d'Ivoire	KP	Demokratische Volksrepublik	NZ	Neuseeland	zw	Zimbabwe
CM	Kamenin		Korea	PL	Polen		
CN	China	KR	Republik Korea	PT	Portugal		•
CU	Kuba	ΚZ	Kasachstan	RO	Rumanien		
CZ	Tschechische Republik	LC	St. Lucia	RU	Russische Föderation		
DE	Deutschland	LI	Liechtenstein	SD	Sudan _		
DK	Danemark	LK	Sri Lanka	SE	Schweden		
EE	Estland	LR	Liberia	SG	Singapur .		
ŀ							

Silizium-Germanium-Heterobipolartransistor und Versahren zur Herstellung der epitaktischen Einzelschichten eines derartigen Transistors

Die Erfindung bezieht sich auf einen Silizium-Germanium-Heterobipolartransistor und ein Verfahren zur Herstellung der epitaktischen Einzelschichten von einem Silizium-Germanium-Heterobipolartransistor.

10

15

25

Neben der Verwendung von Galliumarsenid zur Herstellung von Höchstfrequenztransistoren finden auch Silizium-Germanium-Heterobipolartransistoren in hochfrequenten Bereichen infolge der geringeren Herstellungskosten zunehmend Anwendung. Solche Transistoren bestehen meist aus einer Schichtenfolge Silizium-Kollektorschicht, p-dotierte Silizium-Germanium-Basisschicht und Emitterschicht.

Die deutsche Offenlegungsschrift DE 43 01 333 A1 beschreibt ein Verfahren zur Herstellung integrierter Silizium-Germanium-Heterobipolartransistoren, bei dem eine Kollektorschicht, eine Basisschicht, eine Emitterschicht und eine Emitteranschlußschicht mittels eines einzigen unterbrechungsfreien Prozesses abgeschieden und gleichzeitig dotiert werden. Dieses Verfahren zur Herstellung hochfrequenztauglicher Transistoren hat den Nachteil, daß eine weitere Erhöhung der Dotierung der Basis mit Fremdatomen eine bei entsprechender Temperatur stattfindende Dotandenausdiffusion, d. h. eine Verbreiterung des Basisgebiets zur Folge hätte. Eine Dotandenausdiffusion hat einerseits eine nichtkonstante Transistorfertigung und andererseits eine Verringerung der Kollektor- und Emitterströme zur Folge. Somit ist eine Verbesserung der Hochfrequenzeigenschaften von Transistoren auf diesem Wege nicht

möglich. Ebenfalls wird durch die Verbreiterung der dotierten Gebiete eine weitere Strukturverbreiterung begrenzt.

Die japanische Patentanmeldung JP 5 102 177 beinhaltet einen Silizium-Germanium-Heterobipolartransistor, dessen Basis mit 5% Kohlenstoff zur Kompensation der durch Germanium eingebrachten mechanischen Spannungen versetzt ist. Solche hohen Kohlenstoffkonzentrationen führen jedoch zu einer starken lokalen Gitterdeformation, die unter anderem die HF-Tauglichkeit der Transistoren einschränkt.

In der Patentschrift US 5,378,901 ist ein Siliziumkarbidtransistor offenbart, bei dem als Basis-, Kollektor- und Emittermaterial Siliziumkarbid verwendet wird. Die hohen Herstellungstemperaturen verhindern die Integration in hochfrequenztaugliche Schaltungen.

10

15

20

Erfindung einen Silizium-Germanium-Heterobipolartransistor es, vorzuschlagen, bei dem die Ausdiffusion des Dotanden des Basisgebiets um mehr als 50% gegenüber herkömmlichen Silizium-Germanium-Heterobipolartransistoren reduziert wird. Weiterhin ist es Aufgabe der Erfindung, an sich bekannte Verfahren zur Herstellung der epitaktischen Einzelschichten für einen solchen Silizium-Germanium-Heterobipolartransistor mit einer Silizium-Kollektorschicht, einer dotierten Silizium-Germanium-Basisschicht und einer Silizium-Emitterschicht so auszugestalten, daß die üblichen Beschränkungen und hohen Anforderungen für nachfolgende Prozesse verringert werden. Dies betrifft insbesondere die Implantationsdosis und die Temperatur-Zeit-Belastung der epitaktischen Schicht. Derart Silizium-Germanium-Heterobipolartransistoren hergestellte besitzen eine erhöhte Transitfrequenz, eine erhöhte maximale Schwingfrequenz und/oder ein verringertes Rauschmaß je nach Anforderungen und Einsatzzweck.

Weiterhin ist es Aufgabe der Erfindung, die Borausdiffusion aus der Silizium-Germanium-Schicht aufgrund punktdefektgestützter Diffusionsbeschleunigung zu unterbinden, um im Skalierungsbereich von 0,4 µm Stegbreite und kleiner, HF-Eigenschaften ohne Verluste zu erhalten. Dadurch sollen im Vergleich zu größeren Emitterflächen gleiche Transit- und maximale Schwingfrequenzen erreicht werden.

5

10

20

Diese Aufgabenstellung wird erfindungsgemäß durch die nachfolgende Erfindungsdarlegung gelöst.

Auf eine reine Siliziumoberfläche findet eine einkristalline Abscheidung entsprechend dem gewünschten Transistorprofil statt. Der erfindungsgemäße Silizium-Germanium-Heterobipolartransistor enthält in mindestens einer der drei Einzelschichten des Transistors, nämlich der Emitterschicht oder der Basisschicht oder der Kollektorschicht, in einer Konzentration zwischen 10¹⁸ cm⁻³ und 10²¹ cm⁻³ ein zusätzliches, elektrisch nicht aktives Material. vorzugsweise ein Element der vierten Hauptgruppe. Hergestellt wird die Halbleiteranordnung von Silizium-Germanium-Heterobipolartransistoren mittels Epitaxieverfahren, z. B. durch Gasphasenepitaxie oder Molekularstrahlepitaxie. Durch die der Epitaxie nachfolgenden technologischen Verfahrensschritte kommt Defekten, Zwischengitteratomen im Halbleiterkristall, die eine Diffusion von Gitterfremdatomen, z. B. Dotanden, begünstigen. Ein wie bereits ausgeführtes, in die Epitaxieschicht eingebrachtes, elektrisch nicht aktives Material bindet diese Defekte und verringert die Diffusion des Dotanden. Die durch das Einbringen eines elektrisch nicht aktiven Materials, vorzugsweise Kohlenstoff, hervorgerufene Gitteränderung ist dabei kleiner als 5·10-3. Die Ausdiffusion des Dotanden verringert sich, was eine Verbreiterung des Basisgebiets einschränkt. Damit lassen sich hochfrequenztaugliche Transistoren auf zwei Wegen herstellen: Die Dotierungsdosis des

Basisgebiets wird erhöht und/oder die Basisbreite wird verringert. In jedem der möglichen Fälle erhöht sich die Konzentration des Dotanden im Basisgebiet des Transistors auf einen Wert zwischen 5·10¹⁸ cm⁻³ und 10²¹ cm⁻³ bei Verwendung von Bor als Dotand. Damit verringert sich der Widerstand der inneren Basis. Ausgangspunkt für erfindungsgemäßes Verfahren ist die übliche Herstellung eines vorbehandelten Silizium-Substrats. Das Verfahren ist durch folgende Verfahrensschritte gekennzeichnet: Zuerst wird Silizium zur Herstellung der Kollektorschicht aufgedampft. Anschließend wird beim weiteren Siliziumaufdampfen zusätzlich Germanium eingebracht und mittels Gitterfremdatomen dotiert. Als Dotand findet vorzugsweise Bor Verwendung. Durch diesen Verfahrensschritt wird die Basis hergestellt. Nach dem Abschalten des Zuflusses von Germanium und dem Dotierstoff wird die 10 Emitterschicht durch weiteres Aufdampfen von Silizium hergestellt. Während mindestens einem der bisher aufgeführten Verfahrensschritte wird ein elektrisch nicht aktives Material, vorzugsweise Kohlenstoff, in einer Konzentration zwischen 10¹⁸ cm⁻³ und 10²¹ cm⁻³ während der Herstellung der epitaktischen Schicht hinzugefügt, wobei die dadurch eingebrachte Gitteränderung kleiner als 5·10-3 infolge der geringen Konzentration des 15 elektrisch nicht aktiven Materials ist. Geringe zusätzliche Gitterverspannung bedeutet keine zusätzliche Quelle von möglichen Gitterdefekten. Zur Herstellung der epitaktischen Schicht finden CVD-Verfahren oder MBE-Verfahren Anwendung. Nach der Epitaxie findet die übliche Weiterprozessierung bis zur Herstellung des endgültigen erfindungsgemäßen Silizium-Germanium-Heterobipolartransistors statt. Das Produkt 20 konzentration in der Basisschicht und Breite der Basisschicht von Kollektor bis Emitter beträgt bei erfindungsgemäßem Silizium-Germanium-Heterobipolartransistor zwischen 50 Atomprozent nm und 2000 Atomprozent nm. Die Breite der Basisschicht von Kollektor bis Emitter liegt etwa zwischen 5 nm und 60 nm, vorzugsweise zwischen 35 nm und 40 nm.

Die Konzentration des Germaniums in der Basisschicht liegt etwa zwischen 8% und 30%, vorzugsweise zwischen 20% und 28%.

Die Merkmale der Erfindung gehen außer aus den Ansprüchen auch aus der Beschreibung und den Zeichnungen hervor, wobei die einzelnen Merkmale jeweils für sich allein oder zu mehreren in Form von Unterkombinationen schutzfähige Ausführungen darstellen, für die hier Schutz beansprucht wird. Ausführungsbeispiele der Erfindung sind in den Zeichnungen dargestellt und werden im folgenden näher erläutert. In den Zeichnungen zeigen:

Fig. 1 schematischer Schichtaufbau eines Silizium-Germanium-Heterobipolartransistors

15

- Fig. 2 Stufen des Verfahrens zur Herstellung der epitaktischen Einzelschichten für einen Silizium-Germanium-Heterobipolartansistor
- Fig. 3 schematischer Schnitt durch einen Silizium-Germanium-Heterobipolartransistor
- Fig. 4, 5, 6 Konzentrationsverläufe von Germanium in Silizium-Germanium-Heterobipolartransistoren

In Fig. 1 ist der Schichtaufbau eines erfindungsgemäßen Silizium-GermaniumHeterobipolartransistors, bestehend aus einem dotierten Silizium-Substrat 1, einer undotierten Silizium-Kohlenstoff-Kollektorschicht 2, einer dotierten Silizium-Germanium-Kohlenstoff-Basisschicht 3 und einer undotierten Silizium-Kohlenstoff-Emitterschicht 4, dargestellt. Der gesamte Schichtaufbau des Transistors inklusive Dotierung des Basisgebiets mit Bor wird mittels Molekularstrahlepitaxie hergestellt.

Gleichzeitig wird bei der Epitaxie - in diesem Ausführungsbeispiel - während der Herstellung aller drei Einzelschichten, der Kollektorschicht, der Basisschicht und der Emitterschicht. Kohlenstoff in einer Konzentration zwischen 10¹⁸ cm⁻³ und 10²¹ cm⁻³ zugegeben. Dies entspricht einer Kohlenstoffkonzentration zwischen 0,0015% und 1,5%. Dadurch wird eine 5 mögliche Bordiffusion signifikant verringert, so daß die Dotandenausdiffusionsgebiete 5 im Vergleich zu herkömmlichen Transistoren dieses Typs verkleinert werden. Durch erfindungsgemäße Einfügung von Kohlenstoff verringert sich die Diffusionslänge von Bor um mehr als 50% gegenüber der Diffusionslänge, die ohne Hinzufügung von Kohlenstoff auftritt. Es kommt zur Ausbildung eines sehr steilen Borprofiles. Die dadurch verringerte Basisweite hat eine geringere Basislaufzeit zur Folge. Dies ist gleichbedeutend mit einer Erhöhung der Transitfrequenz und der Erhöhung der maximalen Schwingfrequenz bzw. einem verringerten Rauschmaß des erfindungsgemäßen Transistors.

10

15

20

Eine weitere Verbesserung der Hochfrequenztauglichkeit erfindungsgemäßen Silizium-Germanium-Heterobipolartransistors wird durch Erhöhung der Borkonzentration zwischen 5·10¹⁸ cm⁻³ und 10²¹ cm⁻³ in der Basisschicht 3 erreicht.

Zur Herstellung eines solchen Silizium-Germanium-Heterobipolartransistors werden folgende in Fig. 2 dargestellte Verfahrensschritte durchgeführt: Vor dem erfindungsgemäßen Teil des Verfahrens wird ein vorbehandeltes Silizium-Substrat in einem Verfahrensschritt Anüblicherweise hergestellt. Daran schließen sich die Schritte

- Siliziumaufdampfen zur Herstellung der Kollektorschicht.
- Siliziumaufdampfen und zusätzliches Einbringen von Germanium und В Dotanden zur Herstellung der Basisschicht und

C Abschalten von Germanium und Dotierstoff und Siliziumaufdampfen zur Herstellung der Emitterschicht

an, wobei während mindestens einem der Verfahrensschritte A bis C Kohlenstoff in einer Konzentration zwischen 10¹⁸ cm⁻³ und 10²¹ cm⁻³ eingebaut wird und die dadurch eingebrachte Gitteränderung kleiner als 5·10⁻³ ist.

5

20

Nach der Epitaxie findet eine übliche Weiterprozessierung D statt bis zur Herstellung eines erfindungsgemäßen Silizium-Germanium-Heterobipolartransistors.

Fig. 3 zeigt einen schematischen Schnitt durch einen derart hergestellten Silizium-Germanium-Heterobipolartransistor. Auf einem hochdotierten Subtrat 31 aus Silizium sind durch Epitaxie der undotierte Silizium-Kohlenstoff-Kollektor 32, der undotierte Silizium-Kohlenstoff-Emitter 33 und die mit Bor in einer Konzentration zwischen 5·10¹⁸ cm⁻³ und 10²¹ cm⁻³ dotierte Basis 34 aus Silizium, Germanium und Kohlenstoff aufgewachsen. Weiterhin beinhaltet die Figur die entsprechenden Kontaktgebiete 35 sowie ein Implantgebiet 36. Die Konzentration des Kohlenstoffs in der epitaktischen Schicht beträgt zwischen 10¹⁸ cm⁻³ und 10²¹ cm⁻³.

Die Figuren 4 bis 6 zeigen Konzentrationsverläuse von Germanium im Silizium erfindungsgemäßer Silizium-Germanium-Heterobipolartransistoren. Die Verläuse haben eine rechteckige, dreieckige oder trapezartige Form. In allen Diagrammen ist auf der Abszisse der Basisbereich durch die Werte x1 und x2 begrenzt. Die Ordinate stellt den prozentualen Verlaus der Konzentration des Germaniums dar.

Beim Transistor mit rechteckförmigem Germaniumkonzentrationsverlauf nach Fig. 4 beträgt die Breite der Basisschicht 30 nm. Die Konzentration des Germaniums in der Basisschicht beträgt etwa konstant 22%. Durch dieses Transistorprofil werden bevorzugt hohe Stromverstärkungen und gute dynamische Eigenschaften erreicht.

5

15

Beim Transistor mit dreieckförmigem Germaniumkonzentrationsverlauf nach Fig. 5 beträgt die Breite der Basisschicht 40 nm. Die Konzentration des Germaniums in der Basisschicht beträgt in der Mitte der Basisschicht, wo sie ihren Maximalwert erreicht, etwa 26%. Dieses Transistorprofil ermöglicht die Einstellung sehr hoher Early-Spannungen. Des weiteren gestattet dieses Transistorprofil die Einprägung eines Driftfeldes, um die Basislaufzeit der Minoritätsträger zu verringern.

Beim Transistor mit trapezförmigem Germaniumkonzentrationsverlauf nach Fig. 6 beträgt die Breite der Basisschicht 35 nm. Die Konzentration des Germaniums in der Basisschicht steigt von der Kollektor- bzw. Emitterseite des Transistor linear von etwa 10% auf 22% an. In diesem Ausführungsbeispiel werden durch das Transistorprofil sowohl eine hohe Stromverstärkung als auch eine hohe Early-Spannung, verbunden mit einem Driftfeld, zur Verringerung der Basislaufzeit erreicht.

Bei zunehmender Skalierung wird eine Verbreiterung der Kontaktgebiete durch die Verhinderung der Borausdiffusion durch Kohlenstoff unterbunden, so daß im Skalierungsbereich von 0,4 μm Stegbreite und kleiner HF-Eigenschaften ohne Verluste erhalten bleiben. Auch bei hier geringen Strömen werden im Vergleich zu größeren Strukturen gleiche Transit- und Maximalfrequenzen erreicht.

In der vorliegenden Erfindung wurde anhand konkreter Ausführungsbeispiele ein Silizium-Germanium-Heterobipolartransistor sowie ein Verfahren zur Herstellung der epitaktischen Einzelschichten eines solchen Transistors erläutert. Es sei aber vermerkt, daß die vorliegende Erfindung nicht auf die Einzelheiten der Beschreibung in den Ausführungsbeispielen eingeschränkt ist, da im Rahmen der Patentansprüche Änderungen und Abwandlungen beansprucht werden.

Patentansprüche

20

- 5 1. Silizium-Germanium-Heterobipolartransistor mit einer Silizium-Kollektorschicht, einer dotierten Silizium-Germanium-Basisschicht und einer Silizium-Emitterschicht, dadurch gekennzeichnet, daß ein zusätzliches, elektrisch nicht aktives Material, vorzugsweise ein Element der vierten Hauptgruppe, in mindestens einer der drei Einzelschichten des Transistors, nämlich der Emitterschicht und/oder der Basisschicht und/oder der Kollektorschicht, in einer Konzentration zwischen 10¹⁸ cm⁻³ und 10²¹ cm⁻³ eingebaut ist und die dadurch eingebrachte Gitteränderung kleiner 5·10⁻³ ist.
- Silizium-Germanium-Heterobipolartransistor nach Anspruch 1, dadurch gekennzeichnet, daß als elektrisch nicht aktives Material Kohlenstoff Verwendung findet.
 - 3. Silizium-Germanium-Heterobipolartransistor nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Basisschicht mit Bor dotiert ist und bei einer Konzentration des Dotanden im Basisgebiet zwischen 5·10¹⁹ cm⁻³ und 10²¹ cm⁻³ in der Epitaxieschicht eine Kohlenstoffkonzentration zwischen 10¹⁸ cm⁻³ und 10²¹ cm⁻³ vorliegt und dabei die Defektdichte des Transistors kleiner als 10⁴ cm⁻² ist.

WO 98/26457

4. Silizium-Germanium-Heterobipolartransistor mit einer Silizium-Kollektorschicht, einer dotierten Silizium-Germanium-Basisschicht und einer Silizium-Emitterschicht dadurch gekennzeichnet, daß ein zusätzliches, elektrisch nicht aktives Material, vorzugsweise ein Element der vierten Hauptgruppe, in mindestens einer der drei Einzelschichten des Transistors, nämlich der Emitterschicht und/oder der Basisschicht und/oder der Kollektorschicht, in einer Konzentration zwischen 10¹⁸ cm⁻³ und 10²¹ cm⁻³ eingebaut ist, die dadurch eingebrachte Gitteränderung kleiner 5·10⁻³ ist und das Produkt aus Germaniumkonzentration in der Basisschicht und Breite der Basisschicht von Kollektor bis Emitter zwischen 50 Atomprozent nm und 2000 Atomprozent nm liegt.

10

5

5. Silizium-Germanium-Heterobipolartransistor nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Breite der Basisschicht von Kollektor bis Emitter zwischen 5 nm und 60 nm, vorzugsweise zwischen 35 nm und 40 nm liegt.

15

6. Silizium-Germanium-Heterobipolartransistor nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Konzentration von Germanium in der Basisschicht zwischen 8% und 30%, vorzugsweise zwischen 20% und 28% liegt.

20

7. Silizium-Germanium-Heterobipolartransistor nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Germaniumkonzentrationsverlauf in der Basisschicht der Form eines Rechtecks, eines Dreiecks oder eines Trapezes entspricht.

8. Silizium-Germanium-Heterobipolartransistor nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Silizium-Germanium-Basisschicht mit Bor dotiert ist und die Borkonzentration zwischen 5·10¹⁸ cm⁻³ und 10²¹ cm⁻³ liegt und die Konzentration des eingebauten Kohlenstoffs als zusätzliches, elektrisch-nicht-aktives-Material-kleiner als 5·10¹⁸ cm⁻³ ist.

5

10

15

- 9. Verfahren zur Herstellung der epitaktischen Einzelschichten für einen im Anspruch 1 gekennzeichneten Silizium-Germanium-Heterobipolartransistor mit einer Silizium-Kollektorschicht, einer dotierten Silizium-Germanium-Basisschicht und einer Silizium-Emitterschicht, dadurch gekennzeichnet, daß während der Herstellung von Einzelschichten, nämlich Emitterschicht (4), Basisschicht (3) und Kollektorschicht (2), in mindestens eine dieser Schichten ein zusätzliches, elektrisch nicht aktives Material, vorzugsweise ein Element der vierten Hauptgruppe, in einer Konzentration zwischen 10¹⁸ cm⁻³ und 10²¹ cm⁻³ beigefügt wird und gleichzeitig die Basisschicht mittels Fremdatomen dotiert wird, wobei die dadurch eingebrachte Gitteränderung kleiner 5·10⁻³ ist.
- Verfahren nach Anspruch 9, dadurch gekennzeichnet, daß bei einem Verfahrens schritt (A), nämlich Siliziumaufdampfen zur Herstellung der Kollektorschicht,
 Kohlenstoff in einer Konzentration zwischen 10¹⁸ cm⁻³ und 10²¹ cm⁻³ eingebaut wird.

11. Verfahren nach Anspruch 9, dadurch gekennzeichnet, daß bei einem Verfahrensschritt (B), nämlich Siliziumaufdampfen und zusätzliches Einbringen von Germanium und Dotanden zur Herstellung der Basisschicht, Kohlenstoff in einer Konzentration zwischen 10¹⁸ cm⁻³ und 10²¹ cm⁻³ eingebaut wird.

5

10

15

20

- 12. Verfahren nach Anspruch 9, dadurch gekennzeichnet, daß bei einem Verfahrensschritt (C), nämlich Abschalten von Germanium und Dotierstoff und Siliziumaufdampfen zur Herstellung der Emitterschicht, Kohlenstoff in einer Konzentration zwischen 10¹⁸ cm⁻³ und 10²¹ cm⁻³ eingebaut wird, wobei die dadurch eingebrachte Gitteränderung kleiner 5·10⁻³ ist.
- 13. Verfahren nach einem der Ansprüche 10 bis 12, dadurch gekennzeichnet, daß Kohlenstoff in einer Konzentration zwischen 10¹⁸ cm⁻³ und 10²¹ cm⁻³ bei den Verfahrensschritten (A) und (B) oder den Verfahrensschritten (A) und (C) oder den Verfahrensschritten (B) und (C) oder den Verfahrensschritten (A) und (B) und (C) eingebaut wird.
- 14. Verfahren nach einem oder mehreren der Ansprüche 10 bis 13, dadurch gekennzeichnet, daß bei der Herstellung der Basisschicht (3) als Dotand Bor in einer Konzentration zwischen 5·10¹⁸ cm⁻³ und 10²¹ cm⁻³ Verwendung findet.
- 15. Verfahren nach einem oder mehreren der Ansprüche 10 bis 14, dadurch gekennzeichnet, daß die Herstellung der epitaktischen Schicht im CVD-Verfahren durchgeführt wird.

16. Verfahren nach einem oder mehreren der Ansprüche 10 bis 14, dadurch gekennzeichnet, daß die Herstellung der epitaktischen Schicht im MBE-Verfahren durchgeführt wird.

Fig. 5

Fig. 6

In. .. iational Application No PCT/DE 97/02908

A. CLASSIF	ICATION	OF S	UBJECT	MATTER
IPC 6	HQ 11	29/	737	

According to International Patent Classification (IPC) or to both national classification and IPC

Minimum documentation searched (classification system followed by classification symbols) IPC 6 HO1L

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUM	ENTS CONSIDERED TO BE RELEVANT	
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	LANZEROTTI L D ET AL: "SI/SI1-X-YGEXCY/SI HETEROJUNCTION BIPOLAR TRANSISTORS" IEEE ELECTRON DEVICE LETTERS, vol. 17, no. 7, 1 July 1996, pages 334-337, XP000595110 see the whole document	1-3,6, 9-16
A	DE 38 23 249 A (HITACHI LTD) 19 January 1989 see the whole document	1-16
Α .	US 5 557 118 A (HASHIMOTO) 17 September 1996 see the whole document	1
Α	US 5 177 025 A (TURNER ET AL.) 5 January 1993 see column 5, line 35 - column 6, line 9	1,4

Further documents are listed in the continuation of box C.	Patent family members are listed in annex.
Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international filling date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filling date but later than the priority date claimed	 "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. "&" document member of the same patent family
Date of the actual completion of theinternational search	Date of mailing of the international search report
16 April 1998	04/05/1998
Name and mailing address of the ISA	Authorized officer
European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Baillet, B

	ation) DOCUMENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to daim No.	
P,A	LANZEROTTI L D ET AL: "Suppression of boron outdiffusion in SiGe HBTs by carbon incorporation" INTERNATIONAL ELECTRON DEVICES MEETING. TECHNICAL DIGEST (CAT. NO.96CH35961), INTERNATIONAL ELECTRON DEVICES MEETING. TECHNICAL DIGEST, SAN FRANCISCO, CA, USA, 8-11 DEC. 1996, ISBN 0-7803-3393-4, 1996, NEW YORK, NY, USA, IEEE, USA, pages 249-252, XP002062275		
. •			

INTERNATIONAL SEARCH REPORT

Information on patent family members

PCT/DE 97/02908

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
DE 3823249 A	19-01-89	JP 1015912 A JP 2569058 B US 4885614 A	19-01-89 08-01-97 05-12-89
US 5557118 A	17-09-96	JP 2611640 B JP 7176541 A	21-05-97 14-07-95
JS 5177025 A	05-01-93	EP 0552561 A JP 5347313 A	28-07-93 27-12 - 93

INTERNATIONALER RECHERCHENBERICHT

.iationales Aktenzeichen PCT/DE 97/02908

A. KLASSIF	ZIZIERUNG	DES ANMELDU	NGSGEGENSTANDES	:
IPK 6	H0112	9/737		

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole)

IPK 6 H01L

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchlerten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Telle	Betr. Anspruch Nr.
X	LANZEROTTI L D ET AL: "SI/SI1-X-YGEXCY/SI HETEROJUNCTION BIPOLAR TRANSISTORS" IEEE ELECTRON DEVICE LETTERS, Bd. 17, Nr. 7, 1.Juli 1996, Seiten 334-337, XP000595110 siehe das ganze Dokument	1-3,6, 9-16
Α	DE 38 23 249 A (HITACHI LTD) 19.Januar 1989 siehe das ganze Dokument	1-16
A	US 5 557 118 A (HASHIMOTO) 17.September 1996 siehe das ganze Dokument	1

	X	Weitere Veröffentlichungen sind der Fortsetzung von Fe	eld C żu	X	Siehe Anhang	Patenttamilie
--	---	--	----------	---	--------------	---------------

- Besondere Kategorien von angegebenen Veröffentlichungen
- A. Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist
- "E" älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist
- Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft er-schelnen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)
- "O" Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht "P" Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach
- dem beanspruchten Prioritätsdatum veröffentlicht worden ist
- Spätere Veröffentlichung, die nach deminternationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundellegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist
- Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden
- Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Täligkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie In Verbindung gebracht wird und diese Verbindung tür einen Fachmann naheliegend ist
- "&" Veröffentlichung, die Mitglied derselben Patentfamilie ist

Absendedatum des internationalen Recherchenberichts

Datum des Abschlusses der internationalen Recherche

04/05/1998

16.April 1998

Bevollmächtigter Bediensteter

Name und Postanschrift der Internationalen Recherchenbehörde Europäisches Patentamt, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016

Baillet, B

Formblag PCT/ISA/210 (Blan 2) (Infl. 1902)

In. ..ationales Aktenzeichen PCT/DE 97/02908

C.(Fortsetz	ING) ALS WESENTLICH ANGESEHENE UNTERLAGEN		
Kategorie*	Bezeichnung der Veröffentlichung, sowelt erforderlich unter Angabe der in Betracht kommen	nden Telle	Betr. Anspruch Nr.
A	US 5 177 025 A (TURNER ET AL.) 5.Januar 1993		1,4
	siehe Spalte 5, Zeile 35 - Spalte 6, Zeile 9		
P,A	LANZEROTTI L D ET AL: "Suppression of boron outdiffusion in SiGe HBTs by carbon incorporation"		
	INTERNATIONAL ELECTRON DEVICES MEETING. TECHNICAL DIGEST (CAT. NO.96CH35961),	A STATE OF THE STA	Barantaggang ngganagan karantagangan suman yaya san manaysan ngga baran
	INTERNATIONAL ELECTRON DEVICES MEETING. TECHNICAL DIGEST, SAN FRANCISCO, CA, USA, 8-11 DEC. 1996, ISBN 0-7803-3393-4, 1996, NEW YORK, NY, USA, IEEE, USA, Seiten 249-252, XP002062275		
•			·
•			
			·
•		· .	
		•	
	· · · · · · · · · · · · · · · · · · ·	.•	
•			

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

In. ationales Aktenzeichen PCT/DE 97/02908

Im Recherchenbericht angeführtes Patentdokument	Datum der Veröffentlichung	Mitglied(er) der Patentlamilie	Datum der Veröffentlichung
DE 3823249 A	19-01-89	JP 1015912 A JP 2569058 B US 4885614 A	19-01-89 08-01-97 05-12-89
US 5557118 A	17-09-96	JP 2611640 B JP 7176541 A	21-05-97 14-07-95
US 5177025 A	05-01-93	EP 0552561 A JP 5347313 A	28-07-93 27-12-93

