EUROCLEAR TM HACKATHON

APPROACH SIMPLY SCALA

- · Considered most of the label identification as a classification problem
- · Except for amounts: regular expression matching
- · first tried NER with libraries from Stanford
 - not satisfactory
 - · slow
- classification with Stanford classifier
 - very good results on the first train/test set
 - with training of 7000 docs: Out of Memory error (memory leaks ?)
- classification with Spark:
 - cluster on Amazon EC2 with master and 4 slaves (6GB, dual core)
 - training using Spark ML pipeline, 3 fold cross validation
 - hyper parameter grids for tuning

PRE-PROCESSING SIMPLY SCALA

- check OCR'ed text file if they're valid: count the number of non-word characters
- if not valid:
 - remove alpha layer from pdf
 - convert to tiff
 - OCR with tesseract
- Input for classifiers:
 - use whole document
 - minimal preprocessing for Stanford classifier
 - stop word removal for Spark jobs

ALGOS SIMPLY SCALA

- Stanford classifier:
 - maximum entropy (softmax) classifier, similar to multi class logistic regression
 - has been worked on for over a decade
 - intimate knowledge of the English language
 - for multi-label (ROCs) I used 'problem transformation' (binary classifiers for each label/ROC)
- Spark:
 - feature extraction with word2vec
 - logistic regression for binary classifiers (zero coupon)
 - experimented with "multilayer perceptron" (neural network)
 - · too time consuming
 - used random forest for multi class

CHALLENGES SIMPLY SCALA

- wasted a lot of time trying to combine input files
- memory leak problem with Stanford classifier
- machine learning in Spark is not as mature as I expected:
 - many classifiers are only binary: logistic regression, gradient boosted trees
 - impossible to save state of trained classifiers
 - on the other hand: provides an elegant pipeline interface, inspired by Python

FUTURE IMPROVEMENTS

SIMPLY SCALA

- Focus on content, domain
- Use of generic machine learning for NLP?
- Get the input organised
- Possible implementation of trained classifiers:
 - deploy in Scala Akka framework
 - each classifier is an actor, working in parallel
 - drag and drop pdf on a web page
 - receive answers from actors through web sockets