Московский Физико-Технический Институт (государственный университет)

Работа 4.7.1.

Цель работы:

изучение зависимости показателя преломления необыкновенной волны от направления в двоякопреломляющем кристалле; определение главных показателей преломления $n_{\rm o}$ и $n_{\rm e}$ – необыкновенной волны в кристалле; наблюдение эффекта полного отражения.

В работе используются:

гелий-неновый лазер, вращающийся столик с неподвижным лимбом, призма из исландского шпата, поляроид.

Описание работы

При падении световой волны на границу изотропной среды в этой среде от границы распространяется одна волна. Если среда анизотропна, то в ней в общем случае возникают две волны, распространяющиеся от границы в разных направлениях и с разными скоростями. Это явление называется двойным лучепреломлением.

Плаские волны в кристаллах. В кристаллических средах в отсутствие электрических зарядов и токо справделивы уравнения Максвелла:

$$rot\overrightarrow{H} = \frac{1}{c}\frac{\partial\overrightarrow{D}}{\partial t}, \quad rot\overrightarrow{E} = -\frac{1}{c}\frac{\partial\overrightarrow{B}}{\partial t}$$
 (1)

Если среды прозрачны и однородны, то в них могут распространяться плоские монохроматические волны. Запишем такую волну в комплексном виде:

$$\overrightarrow{E} = \overrightarrow{E}_0 e^{i(\omega t - \overrightarrow{k}\overrightarrow{r})}; \quad \overrightarrow{B} = \overrightarrow{H} = \overrightarrow{H}_0 e^{i(\omega t - \overrightarrow{k}\overrightarrow{r})}; \quad \overrightarrow{D} = \overrightarrow{D}_0 e^{i(\omega t - \overrightarrow{k}\overrightarrow{r})}$$

Тогда уравнения (1) можем записать в виде:

$$rot\overrightarrow{H} = -i[\overrightarrow{k}\overrightarrow{H}]$$

и аналогично для $rot \overrightarrow{E}$. В результате (1) перейдут в

$$[\overrightarrow{k}\overrightarrow{H}] = -\frac{\omega}{c}\overrightarrow{D}; \quad [\overrightarrow{k}\overrightarrow{E}] = \frac{\omega}{c}\overrightarrow{D}$$

Для характеристики оптических свойств анизотропной среды требуется девять величин ε_{ij} , образующих тензор диэлектрической проницаемости. Он вводится посредством соотношени:

$$D_i = \sum_{i} \varepsilon_{ij} E_j \quad (i, j = x, y, z). \tag{2}$$

Благодаря тензорной связи между \overrightarrow{D} и \overrightarrow{E} направления этих векторов в кристаллах. Зададим за $\overrightarrow{S} = \frac{c}{4\pi} \left[\overrightarrow{E} \overrightarrow{H} \right]$ вектор Пойнтинга. Четыре вектора $\overrightarrow{D}, \overrightarrow{E}, \overrightarrow{N}, \overrightarrow{S}$ лежат в одной плоскости, перпендикулярной вектору \overrightarrow{H} .

Оптически одноосные кристаллы. Всю совокупность возможных значений тензора диэлектрической проницаемости можно представить при помощи трехосного эллипсоида. Значение диэлектрической проницаемости для любого направления выражается длиной радиуса-вектора эллипсоида, проведенного по этому направлению. Три значения диэлектрической проницаемости $\varepsilon_x, \varepsilon_y, \varepsilon_z$, соответствующие осям эллипсоидв, называются главными значениями диэлектрической проницаемости и соответственно $\sqrt{\varepsilon_x}, \sqrt{\varepsilon_y}, \sqrt{\varepsilon_z}$ — главными показателями преломления.

В системе координат, оси которой совпадают с главными осями эллипсоида, тензор диэлектрической проницаемости приводится к диагональному виду, и проекции векторов D и E на оси координат связаны простыми соотношениями:

$$D_x = \varepsilon_x E_x$$
, $D_y = \varepsilon_y E_y$, $D_z = \varepsilon_z E_z$.

В оптически одноосном кристалле, каковым является исландский шпат, эллипсоид диэлектрической проницаемости представляет собой эллипсоид вращения. В нём оптическая ось совпадает с осью вращения эллипсоида диэлектрических проницаемостей. Для главных значений диэлектрических проницаемостей приняты обозначения $\varepsilon_z = \varepsilon_{\parallel}$ и $\varepsilon_x = \varepsilon_y = \varepsilon_{\perp}$. В дальнейшем нам потребуется связь между проекциями векторов \vec{D} и \vec{E} на оптическую ось кристалла (\vec{D}_{\parallel} и \vec{E}_{\parallel}) и на плоскость, перпендикулярную оси (\vec{D}_{\perp} и \vec{E}_{\perp}):

$$\vec{D}_{\parallel} = \varepsilon_{\parallel} \vec{E}_{\parallel}, \quad \vec{D}_{\perp} = \varepsilon_{\perp} \vec{E}_{\perp}.$$
 (3)

Волну, распространяющуюся в одноосном кристалле, можно разделить на две линейно поляризованные волны: обыкновенную, вектор электрической индукции \vec{D}_o которой перпендикулярен главному сеению, и необыкновенную, с вектором электрической индукции \vec{D}_e , лежащим в главном сечении (рис. 2) Главным сечением кристалла называется плоскость, в которой лежит оптическая ось кристалла и нормаль к фронту волны.

Рассмотрим вначале обыкновенную волну, которой вектор \vec{D}_o перпендикулярен главному сечению. Тогда $D_{oz}=0$, и из условия $D_z=\varepsilon_z E_z$ следует, что $E_{oz}=0$. Кроме того, так как $D_{oy}=\varepsilon_\perp E_{oy}$ и $D_{ox}=\varepsilon_\perp E_{ox}$, то можно записать

$$\vec{D}_o = \varepsilon_\perp \vec{E}_o. \tag{4}$$

Таким образом, для обыкновенной волны материальное уравнение имеет такой же вид, как и в изотропной среде. Найдем с помощью этого уравнения скорость распространения обыкновенной волны и соответ- ствующий показатель преломления. Из (2) имеем

Рис. 1: Расположение векторов \vec{N} и \vec{D} в анизотропной среде: $(\vec{D} = \vec{D}_o + \vec{D}_e; \vec{D}_o \perp \vec{D}_e; \vec{D} \perp \vec{N}); \ \vec{N}$ и \vec{D}_e лежат в плоскости $(Z,Y); \ \vec{D}_o$ перпендикулярен плоскости (Z,Y)

$$D_o = \frac{c}{v_o} H_o, \quad H_o = \frac{c}{v_o} E_o$$

или, учитывая (5),

$$\varepsilon_{\perp} E_o = \frac{c}{v_o} H_o, \quad H_o = \frac{c}{v_o} E_o,$$

откуда

$$v_o = \frac{c}{\sqrt{\varepsilon_\perp}} \quad \text{if} \quad n_o = \frac{c}{v_o} = \sqrt{\varepsilon_\perp}.$$

Таким образом, скорость распространения обыкновенной волны и ее показатель преломления не зависят от направления распространения.

У необыкновенной волны вектор \vec{D}_e не параллелен \vec{E}_e , и связь между ними сложнее, чем в (5).

Для того чтобы найти скорость распространения v и показатель преломления нобыкновенной волны n=c/v, достаточно найти связь между вектором электрической индукции этой волны \vec{D}_e и проекцией на него вектора электрического поля волны E_{eD} . Тогда, подставляя $D_e=\varepsilon E_{eD}$ в (2), приходим к соотношения

$$\varepsilon E_{eD} = \frac{c}{v} H_e; \quad H_e = \frac{c}{v} E_{eD},$$

формально тождественным с соотношениями для обыкновенной волны. Роль величины ε_{\perp} тперь играет величина ε , а показатель преломления необыкновеной волны равен $\sqrt{\varepsilon}$.

Найдём связь между D_e и E_{eD} . Для этого разложим векторы \vec{D}_e и \vec{E}_e на составляющие, параллельные и перпендикулярные оси кристалла:

$$\vec{D}_e = \vec{D}_{e\parallel} + \vec{D}_{e\perp}.$$

$$\vec{E}_e = \vec{E}_{e\parallel} + \vec{E}_{e\perp}.$$

Учитывая (4), находим

$$E_{eD} = \frac{\vec{E}_e \vec{D}_e}{D_e} = \frac{E_{e\parallel} D_{e\parallel} + E_{e\perp} D_{e\perp}}{D_e} = \frac{D_{e\parallel}^2 / \varepsilon_{\parallel} + D_{e\perp}^2 / \varepsilon_{\perp}}{D_e}$$

или

$$E_{eD} = D_e \left(\frac{\sin^2 \theta}{\varepsilon_{\parallel}} + \frac{\cos^2 \theta}{\varepsilon_{\perp}} \right) = \frac{D_e}{\varepsilon},$$

где θ — угол между оптической осью Z и волновой нормалью N:

$$\sin \theta = \frac{D_{e\parallel}}{D_e}, \quad \cos \theta = \frac{D_{e\perp}}{D_e}. \tag{5}$$

Таким образом, ε и соответственно скорость распространения и показатель преломления необыкновенной волны зависят от угла между оптической осью кристалла и направлением распространения волны.

Выпишем выражение для показателя преломления необыкновенной волны $n=\sqrt{\varepsilon}$ через главные показатели преломления n_o, n_e и угол θ :

$$\frac{1}{[n(\theta)]^2} = \frac{\sin^2 \theta}{n_e^2} + \frac{\cos^2 \theta}{n_o^2}.$$
 (6)

При $n_o - n_e \ll n_o$ и n_e (для исландского шпата $n_o = 1,655, n_e = 1,485$ для $\lambda = 0,63$ мкм) (7) можно упростить:

$$n(\theta) \approx n_e + (n_o - n_e) \cos^2 \theta.$$
 (7)

Двойное лучепреломление в призме из исландского шпата. Рассмотрим, как по преломлению лучей в кристаллической призме можно определить показатели преломления для обыкновенной и необыкновенной волны. В работе исследуется одна из двух призм, составляющих поляризатор (рис. 3). В исследуемой призме ось кристалла лежит в плоскости, параллельной верхней грани призмы, причем она параллельна входной грани призмы (длинному катету). При этом в обыкновенной волне вектор \vec{D}_o пендикулярен верхней грани призмы, а в необыкновенной волне вектор \vec{D}_e параллелен верхней грани.

Рис. 2: а) Исследуемая призма из исландского шпата. Штриховкой указано направление оптической оси кристалла. б) Ход лучей в поляризационной призме

Волну, падающую на входную грань призмы, можно представить в виде суммы двух ортогональных линейно поляризованных волн. Преломление этих двух волн на грани призмы можно рассматривать независимо. Волна, в которой вектор D направлен вертикально (перпендикулярно верхней грани и оси кристалла), внутри кристалла будет распространяться как обыкновенная. Для этой волны выполняется закон Снеллиуса, а показатель преломления призмы для нее равен n_o . Волна, в которой вектор D направлен горизонтально, в кристалле будет распространяться как необыкновенная. Для этой волны также будет выполняться закон Снеллиуса, но с тем отличием, что показатель преломления призмы для нее будет зависеть от угла между осью кристалла и волновой нормалью.

Значение показателя преломления и угол, под которым преломилась волна в призме, можно найти, измерив угол падения на входную

Рис. 3: Ход лучей в призме

грань призмы ϕ_1 и угол ϕ_2 на выходе призмы (рис. 4). Запишем закон Снеллиуса для одной из волн применительно к первой и второй граням призмы:

$$\sin \phi = n \sin \beta_1;$$

$$\sin \phi_2 = n \sin \beta_2 = n \sin(A - \beta_1).$$

При этом мы выразили угол падения на вторую грань призмы β_2 через угол преломления на первой грани призмы β_1 и угол при вершине призмы A. Как видно из рис. 4, эти углы связаны простым соотношением $A = \beta_1 + \beta_2$. Учитывая, что угол преломления β_1 связан

с углом θ между осью кристалла и волновой нормалью \vec{N} соотношением $\theta+\beta_1=\pi/2,$ находим n и θ :

$$n = \frac{1}{\sin A} \sqrt{\sin^2 \varphi_1 + \sin^2 \varphi_2 + 2\sin \varphi_1 \sin \varphi_2 \cos A};$$

$$\cos \theta = \frac{\sin \varphi_1}{n}.$$
(8)

Для обыкновенной волны n не будет зависеть от угла θ , а для необыкновенной волны зависимость n от θ должна описываться выражением (7).

Показатель преломления призмы из изотропного материала удобно находить по углу нименьшего отклонения луча от первоначального направления. Угол отклонения луча призмой (ψ на рис. 4) минимален для симметричного хода лучей, то есть когда $\varphi_1 = \varphi_2$. Тогда показатель преломления можно рассчитать по формуле

$$n = \frac{\sin\left(\frac{\psi_m + A}{2}\right)}{\sin\left(\frac{A}{2}\right)},\tag{9}$$

где ψ_m — угол наименьшего отклонения.

Если призма неизотропна, то этой формулой, строго говоря, можно воспользоваться только для обыкновенной волны, которая, как это было показано ранее, распространяется так же, как и в изотропной среде. Но если учесть, что угол при вершине призмы мал, и при угле наименьшего отклонения преломлённый луч в призме распространяется под углом к оси кристалла близким к $\pi/2$, то в качестве оценки формулу (10) можно использовать для определения n_e .

Ход работы

1. Определим угол A при вершине призмы:

	a_1	a_2	A
Значение, °	320	177	37
σ , °	0,5	0,5	1

Можем найти угол A по формуле:

$$A = a_2 - (a_1 - 180) = 37 \pm 1$$
, °.

2. Теперь проведем измерения зависимости $n(cos^2(\theta))$. Для этого снимем зависимость углов отклонения для обыкновенной ψ_o и необыкновенной ψ_e волн от угла падения луча на призму φ_1 . Далее по формуле (8) рассчитаем n_e , n_o и их зависимость от $cos^2(\theta)$. Данные запишем в таблицу:

Запишем погрешности измерений:

$$\sigma_{\varphi_1} = \sigma_{\psi_o} = \sigma_{\psi_e} = 0, 5^{circ}$$

$$\sigma_{n_o} = \sigma_{n_e} = 5,7\%$$

$$\sigma_{\cos^2(\theta)_o} = \sigma_{\cos^2(\theta)_e} = 5,9\%$$

2φ1	180 + Ψ _ο	180 + Ψ _e	n _o	n _e	cos^2(θ)。	$cos^2(\theta)_e$
0	207	-	343,62	-	0	-
4	204	219	338,64	363,54	0,000572	0,000458
9	203	215	336,98	356,9	0,002927	0,002359
15	203	215	336,98	356,9	0,00802	0,006351
20	202	213	335,32	353,58	0,014452	0,011387
25	202	211	335,32	350,26	0,022323	0,018079
30	201	210	333,66	348,6	0,032673	0,026058
35	201	209	333,66	346,94	0,04395	0,035599
40	200	208	332	345,28	0,058456	0,046788
46	200	208	332	345,28	0,076147	0,060602
50	200	207	332	343,62	0,08901	0,072512
55	200	207	332	343,62	0,106203	0,086292
60	200	207	332	343,62	0,124537	0,101004
65	201	207	333,66	343,62	0,139391	0,11659
70	201	207	333,66	343,62	0,159064	0,132994
75	201	207	333,66	343,62	0,179545	0,150162
80	202	208	335,32	345,28	0,194661	0,163382
85	202	208	335,32	345,28	0,215864	0,181404
90	203	208	336,98	345,28	0,230684	0,200022
95	203	209	336,98	346,94	0,252292	0,213271
100	204	210	338,64	348,6	0,266662	0,226305
105	204	210	338,64	348,6	0,288417	0,245493
110	206	211	341,96	350,26	0,294392	0,258313
115	207	212	343,62	351,92	0,307788	0,270925
120	208	213	345,28	353,58	0,320902	0,283346
125	209	214	346,94	355,24	0,333758	0,295596
130	210	215	348,6	356,9	0,346382	0,307698
135	212	216	351,92	358,56	0,350695	0,319672

Рис. 4: Измерения зависимости n от $cos^2(\theta)$

3. Построим график зависимости $n(\cos^2(\theta))$ по полученным данным:

По графику можем рассчитать значения показателей преломления n_o и n_e . Для начала запишем зависимости, которое у нас получились через линеаризацию y = ax + b:

	\mathbf{a}	b
n_o	$0,251 \pm 0,045$	$1,42 \pm 0,01$
n_e	$0,051 \pm 0,042$	$1,593 \pm 0,007$

Рис. 5: График зависимости n от $cos^2(\theta)$

Взяв среднее значение для n при x=0,175 мы можем получить такое значение для n_o и n_e :

$$n_o = 1,46 \pm 0,17$$

$$n_e = 1,60 \pm 0,13$$

4. Теперь определим момент, когда $\varphi_1 = \varphi_2$. В этот момент определим угол наименьшего отклонения ψ_m для обычной и необычной волны:

$$\psi_{mo} = 22^{\circ}, \quad \psi_{me} = 30^{\circ}.$$

Теперь по формуле (9) рассчитаем значения n_o и n_e :

$$n_o = 1,55 \pm 0,05$$

$$n_e = 1,73 \pm 0,07$$

Вывод

Определили значения для углов преломления обычной и необычной волны двумя способами. Заметим, что полученный нами значения сходятся друг с другом в пределах погрешности. также заметим, что с табличными значениями ($n_0=1,655,\,n_e=1,485$) сходятся только значения полученные первым методом. Но о точности измерений выполненных каждым методом сложно что-либо сказать, так как несмотря на то, что значения полученные из первого метода сходятся с табличными, там мы получаем довольно большую случайную погрешность.