Definitions

Some examples from linear algebra

Definition: A set $\{v_1, \ldots, v_n\}$ of elements of a vector space V is called *linearly independent* if, for any set a_1, \ldots, a_n of scalars, if $\sum_{i=1}^n a_i v_i = 0$ then $a_i = 0$ for all $i = 1, \ldots, n$. A set of elements of a vector space that is not linearly independent is called *linearly dependent*.

Definition: A set v_1, \ldots, v_n of elements of a vector space V is called a (finite) *spanning set* if, for any $w \in V$, there exist scalars a_1, \ldots, a_n so that

$$w=\sum a_iv_i.$$

Definition: A set v_1, \ldots, v_n of elements of a vector space V is called a (finite) *basis* if it is both linearly independent and a spanning set.

Definition: A vector space is finite dimensional if it has a finite spanning set.