Задание на вторую неделю.

- 1. Докажите следующие свойства полиномиальной сводимости:
- (i) Рефлексивность: $A \leq_{\mathfrak{p}} A$; транзитивность: если $A \leq_{\mathfrak{p}} B$ и $B \leq_{\mathfrak{p}} C$, то $A \leq_{\mathfrak{p}} C$;
- (ii) Если $B \in \mathcal{P}$ и $A \leq_{\mathfrak{p}} B$, то $A \in \mathcal{P}$;
- (iii) Если $B \in \mathcal{NP}$ и $A \leq_{\mathfrak{p}} B$, то $A \in \mathcal{NP}$.
- **2.** Докажите, что следующие языки принадлежат классу \mathcal{P} . Считайте, что графы заданы матрицами смежности.
- (і) Язык двудольных графов, содержащих не менее 2018 треугольников (троек попарно смежных вершин);
- (ii) Язык несвязных графов без циклов;
- (iii) Язык квадратных $\{0;1\}$ -матриц порядка $n\geq 3000$, в которых есть квадратная подматрица порядка n-2018, заполненная одними единицами.
- 3. (оба пункта по 1 баллу) Рассмотрим СЛУ Ax = b с целыми коэффициентами. Пусть в этой системе т уравнений и п неизвестных, причем максимальный модуль элемента в матрице A и столбце b равен b.
- (i) Оцените сверху числители и знаменатели чисел, которые могут возникнуть при непосредственном применении метода Гаусса. Приведите пример, в котором в процессе вычислений в промежуточных результатах длина возникающих чисел растёт быстрее, чем любой полином от длины записи системы в битовой арифметике.
- (ii) Оказывается, что если на каждом шаге эмулировать рациональную арифметику и сокращать дроби с помощью алгоритма Евклида, модифицированный таким образом метод Гаусса окажется полиномиальным по входу (по поводу этого факта будет выложен доп. файл). Оцените трудоемкость такого модифицированного метода по параметрам m, n и log h.
- 4. Докажите, что классы $\mathcal P$ и $\mathcal N\mathcal P$ замкнуты относительно операции * звезды Клини (была в ТРЯПе). Для языка NP приведите также и сертификат принадлежности слова из Σ^* языку L^* , где $L\in \mathcal N\mathcal P$.
- 5. Покажите, что классу NP принадлежит язык несовместных си-

стем линейных уравнений с целыми коэффициентами от 2018 неизвестных, и постройте соответствующий сертификат у и проверочный предикат R(x,y).

6. Покажите, что язык разложения на множители

 $L_{factor} = \{(N,M) \in \mathbb{Z}^2 \mid 1 < M < N \text{ и N имеет делитель } d, 1 < d \leq M\}$ лежит в пересечении $\mathcal{NP} \cap co - \mathcal{NP}.$

- 7. Язык ГП состоит из описаний графов, имеющих гамильтонов путь. Язык ГЦ состоит из описаний графов, имеющих гамильтонов цикл (проходящий через все вершины, причем все вершины в этом цикле, кроме первой и последней, попарно различны). Постройте явные полиномиальные сводимости ГЦ к ГП и ГП к ГЦ.
- 8. Регулярный язык L задан регулярным выражением. Постройте полиномиальный алгоритм проверки непринадлежности $w \notin L$. Вы должны определить, что вы понимаете под длиной входа, и выписать явную оценку трудоёмкости алгоритма.
- 9. (i) Языки $L_1, L_2, \ldots, L_{2019}$ заданы регулярными выражениями. Постройте полиномиальный алгоритм, проверяющий, что их пересечение не пусто, т. е. $\bigcap_{i=1}^{2019} L_i \equiv \emptyset$.
- (ii) Следует ли из решения предыдущей задачи, что проверка непустоты пересечения конечного семейства Δ KA (в фиксированным алфавите, например, унарном) принадлежит классу \mathcal{P} ?

Является ли эта задача разрешимой?

10 (Доп). Пусть $A \in \mathcal{NP}-\text{complete}$. Пусть машина имеет дополнительную функцию (оракул) за 1 такт получать ответ, лежит ли слово x в языке A. Тогда существует полиномиальный алгоритм, решающий задачу поиска для A. Докажите это утверждение.