

Bibliografía Unidad 7

- Dangauthier P, Herbrich R, Minka T, Graepel T. *Trueskill through time:* Revisiting the history of chess. NeurIPS; 2008 (Descargar). (completo)
- Bishop, C. *Pattern recognition and machine learning*. Springer; 2006 (Descargar). (lecturas 13.2.3-13.2.4, 13.3)

Otros:

- Brodersen KH, Gallusser F, Koehler J, Remy N, Scott SL. *Inferring causal impact using Bayesian structural time-series models*. The Annals of Applied Statistics. 2015 (Paper).
 - Hernán. Causal inference: What if. CRC Boca Raton, FL. 2020. (Parte III).

La función de costo epistémica

$$\underbrace{P(\mathsf{Hip\acute{o}tesis},\mathsf{Datos})}_{\substack{\mathsf{Creencia\ compatible}\\ \mathsf{con\ los\ datos}}} = \underbrace{P(\mathsf{Hip\acute{o}tesis})}_{\substack{\mathsf{Acuerdo\ intersubjetivo}\\ \mathsf{inicial}}} \underbrace{P(\mathsf{dato}_1|\mathsf{Hip\acute{o}tesis})}_{\substack{\mathsf{Predicci\acute{o}n\ 2}}} \underbrace{P(\mathsf{dato}_2|\mathsf{dato}_1,\mathsf{Hip\acute{o}tesis})}_{\substack{\mathsf{Predicci\acute{o}n\ 2}}} \dots$$

La función de costo epistémica

$$\underbrace{P(\mathsf{Hip\acute{o}tesis},\mathsf{Datos})}_{\mathsf{Creencia\ compatible}} = \underbrace{P(\mathsf{Hip\acute{o}tesis})}_{\mathsf{Acuerdo\ intersubjetivo}} \underbrace{P(\mathsf{dato}_1|\mathsf{Hip\acute{o}tesis})}_{\mathsf{Predicci\acute{o}n\ 1}} \underbrace{P(\mathsf{dato}_2|\mathsf{dato}_1,\mathsf{Hip\acute{o}tesis})}_{\mathsf{Predicci\acute{o}n\ 2}} \dots$$

Un único 0 en la secuencia de predicciones hace falsa la hipótesis para siempre.

La función de costo epistémica

$$\underbrace{P(\mathsf{Hip\acute{o}tesis},\mathsf{Datos})}_{\mathsf{Creencia\ compatible}} = \underbrace{P(\mathsf{Hip\acute{o}tesis})}_{\mathsf{Acuerdo\ intersubjetivo}} \underbrace{P(\mathsf{dato}_1|\mathsf{Hip\acute{o}tesis})}_{\mathsf{Predicci\acute{o}n\ 1}} \underbrace{P(\mathsf{dato}_2|\mathsf{dato}_1,\mathsf{Hip\acute{o}tesis})}_{\mathsf{Predicci\acute{o}n\ 2}} \dots$$

Ejemplo

Esa persona no está apta para realizar esa tarea.

La función de costo epistémica

$$\underbrace{P(\mathsf{Hip\acute{o}tesis},\mathsf{Datos})}_{\mathsf{Creencia\ compatible}} = \underbrace{P(\mathsf{Hip\acute{o}tesis})}_{\mathsf{Acuerdo\ intersubjetivo}} \underbrace{P(\mathsf{dato}_1|\mathsf{Hip\acute{o}tesis})}_{\mathsf{Predicci\acute{o}n\ 1}} \underbrace{P(\mathsf{dato}_2|\mathsf{dato}_1,\mathsf{Hip\acute{o}tesis})}_{\mathsf{Predicci\acute{o}n\ 2}} \dots$$

Ejemplo
Esa persona no está apta para realizar esa tarea.
¿Para siempre?!

en la industria del videojuego

en la industria del videojuego

 $\mathsf{Prior} \ o \ \mathsf{Posterior}$; Cómo estimamos una habilidad en el tiempo?

en la industria del videojuego

¿Cómo estimamos una habilidad en el tiempo?

¿Si usamos el último posterior como prior del siguiente evento?

Prior → Posterior

 $\mathsf{Posterior}_t \to \mathsf{Prior}_{t+1}$

$\mathcal{N}(s_i|\mu_i,\sigma_i^2)$ Habilidad s_b $\mathcal{N}(p_i|s_i,\beta^2)$ Desempeño (p_b $\delta(d = p_a - p_b)$ Diferencia $\mathbb{I}(r=d>0)$ Resultado

Algoritmo suma-producto

Las reglas de la probabilidad por pasaje de mensajes

$$\mathcal{N}(s_i|\mu_i,\sigma_i^2)$$
 Habilidad s_a $\mathcal{N}(p_i|s_i,\beta^2)$ Desempeño p_a p_b $\delta(d=p_a-p_b)$ Diferencia d $\mathbb{I}(r=d>0)$ Resultado r

Algoritmo suma-producto Las reglas de la probabilidad por pasaje de mensajes

Prior

Likelihood

$$p(s_b, r) = \underbrace{m_{f_{s_b} \to s_b}(s_b)} \cdot \underbrace{m_{f_{p_b} \to s_b}(s_b)}$$

$$\mathcal{N}(s_i|\mu_i,\sigma_i^2)$$
 Habilidad s_a $\mathcal{N}(p_i|s_i,\beta^2)$ Desempeño p_a p_b $\delta(d=p_a-p_b)$ Diferencia d $\mathbb{I}(r=d>0)$ Resultado r

Algoritmo suma-producto Las reglas de la probabilidad por pasaje de mensajes

$$p(s_b, r) = \underbrace{m_{f_{s_b} \to s_b}(s_b)} \cdot \underbrace{m_{f_{p_b} \to s_b}(s_b)}$$

Prior

Likelihood

$$\underbrace{m_{x \to f}(x)}_{\text{Mensaje de las variables}} = \underbrace{\prod_{g \in v(x) \backslash \{f\}}}_{\text{El producto de lo que recibe de atrás}} m_{g \to x}(x)$$

$\mathcal{N}(s_i|\mu_i,\sigma_i^2)$ Habilidad S_h $\mathcal{N}(p_i|s_i,\beta^2)$ Desempeño (p_a $\delta(d=p_a-p_b)$ Diferencia $\mathbb{I}(r=d>0)$

Resultado

Algoritmo suma-producto

Las reglas de la probabilidad por pasaje de mensajes

$$p(s_b, r) = \underbrace{m_{f_{s_b} \to s_b}(s_b)}_{\text{Prior}} \cdot \underbrace{m_{f_{p_b} \to s_b}(s_b)}_{\text{Likelihood}}$$

$$\underbrace{m_{x \to f}(x)}_{\text{Mensaje de las variables}} = \underbrace{\prod_{g \in v(x) \backslash \{f\}} m_{g \to x}(x)}_{\text{El producto de lo que recibe de atrás}}$$

$$\underbrace{m_{f \to x}(x)}_{\text{Mensaje de los factores}} = \underbrace{\sum_{\boldsymbol{y}} \left(f(\boldsymbol{y}, x) \prod_{y \in v(f) \setminus \{x\}} m_{y \to f}(y) \right)}_{\text{Lo que recibe de atrás por el factor,}}$$

integrando todas las variables de atrás

 $p(p_b) = \int \mathcal{N}(p_b|s_b, \beta^2) \mathcal{N}(s_b|\mu_b, \sigma_b^2) ds_b$

$$p(p_b) = \int \mathcal{N}(p_b|s_b, \beta^2) \mathcal{N}(s_b|\mu_b, \sigma_b^2) ds_b$$

$\mathcal{N}(s_i|\mu_i,\sigma_i^2)$ Habilidad s_b $\mathcal{N}(p_i|s_i,\beta^2)$ Desempeño (p_b $\delta(d = p_a - p_b)$ Diferencia $\mathbb{I}(d>0)$ Resultado

$$p(p_b) = \int \mathcal{N}(p_b|s_b, \beta^2) \mathcal{N}(s_b|\mu_b, \sigma_b^2) ds_b$$

$$\mathcal{N}(s_i|\mu_i,\sigma_i^2)$$
 Habilidad s_a $\mathcal{N}(p_i|s_i,\beta^2)$ Desempeño p_a $\delta(d=p_a-p_b)$ Diferencia d $\mathbb{I}(d>0)$ Resultado r

$$p(p_b) = \int \mathcal{N}(p_b|s_b, \beta^2) \mathcal{N}(s_b|\mu_b, \sigma_b^2) ds_b$$

$$p(p_b) = \int \mathcal{N}(p_b|s_b, \beta^-) \mathcal{N}(s_b|\mu_b, \sigma_b^-) ds_b$$

$$\stackrel{*}{=} \int \mathcal{N}(p_a|\mu_a, \beta^2 + \sigma_a^2) \mathcal{N}(s_a|\mu_*, \beta^2 + \sigma_a^2) \mathcal{N}($$

$$\stackrel{*}{=} \int \mathcal{N}(p_a|\mu_a, \beta^2 + \sigma_a^2) \mathcal{N}(s_a|\mu_*, \sigma_*^2) ds_a$$

$$p(p_b) = \int \mathcal{N}(p_b|s_b, \beta^2) \mathcal{N}(s_b|\mu_b, \sigma_b^2) ds_b$$

$$\stackrel{*}{=} \int \underbrace{\mathcal{N}(p_b|\mu_b, \beta^2 + \sigma_b^2)}_{} \underbrace{\mathcal{N}(s_a|\mu_*, \sigma_b^2)}_{} \underbrace{\mathcal{N}(s_a|\mu_*, \sigma_b^2)}_{} \underbrace{\mathcal{N}(s_b|\mu_b, \beta^2 + \sigma_b^2)}_{} \underbrace{\mathcal{N}(s_b|\mu_b, \beta^2 + \sigma_b^2)}_{} \underbrace{\mathcal{N}(s_b|\mu_b, \delta^2 + \sigma_b^2)}_{} \underbrace{\mathcal{N}(s$$

$$= \int \underbrace{\mathcal{N}(p_b|\mu_b, \beta^2 + \sigma_b^2)}_{\text{const.}} \underbrace{\mathcal{N}(s_a|\mu_*, \sigma_*^2) ds_b}_{1}$$

$$\mathcal{N}(s_i|\mu_i,\sigma_i^2)$$
 Habilidad s_a $\mathcal{N}(p_i|s_i,\beta^2)$ Desempeño p_a $\delta(d=p_a-p_b)$ Diferencia d $\mathbb{I}(d>0)$ Resultado r

$$p(p_b) = \int \mathcal{N}(p_b|s_b, \beta^2) \mathcal{N}(s_b|\mu_b, \sigma_b^2) ds_b$$

$$\mathcal{N}(p_b|\mu_b, \beta^2 + \sigma_b^2)$$

$$\stackrel{*}{=} \mathcal{N}(p_b|\mu_b,\beta^2+\sigma_b^2)$$

 $p(p_a) \stackrel{*}{=} \mathcal{N}(p_b|\mu_a, \beta^2 + \sigma_a^2)$

 $p(p_a) \stackrel{*}{=} \mathcal{N}(p_b|\mu_a, \beta^2 + \sigma_a^2)$

 $p(p_a) \stackrel{*}{=} \mathcal{N}(p_b|\mu_a, \beta^2 + \sigma_a^2)$

Resultado

$\mathcal{N}(s_i|\mu_i,\sigma_i^2)$ Habilidad s_b $\mathcal{N}(p_i|s_i,\beta^2)$ Desempeño (p_b $\delta(d = p_a - p_b)$ Diferencia $\mathbb{I}(d>0)$ Resultado

$\mathcal{N}(s_i|\mu_i,\sigma_i^2)$ Habilidad s_b $\mathcal{N}(p_i|s_i,\beta^2)$ Desempeño (p_b $\delta(d = p_a - p_b)$ Diferencia $\mathbb{I}(d>0)$ Resultado

$\mathcal{N}(s_i|\mu_i,\sigma_i^2)$ Habilidad s_b $\mathcal{N}(p_i|s_i, \beta^2)$ Desempeño (p_b $\delta(d = p_a - p_b)$ Diferencia $\mathbb{I}(d>0)$ Resultado

$\mathcal{N}(s_i|\mu_i,\sigma_i^2)$ Habilidad s_b $\mathcal{N}(p_i|s_i, \beta^2)$ Desempeño (p_b $\delta(d = p_a - p_b)$ Diferencia $\mathbb{I}(d>0)$ Resultado

$$\widehat{p}(s_b|r^*) = \mathcal{N}(s_b \,|\, \widehat{\mu},\, \widehat{\sigma}^2)$$

$$\widehat{\mathsf{Posterior}}_t o \mathsf{Prior}_{t+1}$$

Prior₂

 $\underline{p(s_b)} = \mathcal{N}(s_b \mid \widehat{\mu}, \, \widehat{\sigma}^2 + \gamma^2)$

Diferencia

 $\mathbb{I}(d>0)$

Resultado

$\mathsf{Enfoque}\;\mathsf{Posterior}\to\mathsf{Prior}$

$\mathsf{Enfoque}\;\mathsf{Posterior}\to\mathsf{Prior}$

Problemas.

• Ofrece resultados que van en contra de nuestra intuición

- Ofrece resultados que van en contra de nuestra intuición
- Mucha incertidumbre al inicio de las series temporales

- Ofrece resultados que van en contra de nuestra intuición
- Mucha incertidumbre al inicio de las series temporales
- No aprovecha la información disponible (entre ramas paralelas)

- Ofrece resultados que van en contra de nuestra intuición
- Mucha incertidumbre al inicio de las series temporales
- No aprovecha la información disponible (entre ramas paralelas)
- No garantiza comparabilidad entre estimaciones lejanas en el tiempo y el espacio.

Propaga la información en una sola dirección, del pasado al futuro.

- Ofrece resultados que van en contra de nuestra intuición
- Mucha incertidumbre al inicio de las series temporales
- No aprovecha la información disponible (entre ramas paralelas)
- No garantiza comparabilidad entre estimaciones lejanas en el tiempo y el espacio.

Modelos de historia completa Estado del arte en la industria del videojuego.

Modelos de historia completa Estado del arte en la industria del videojuego.

 $\mathcal{N}(s_{a_2}|s_{a_1},\gamma^2)_{\blacktriangledown}$ $\bigvee \mathcal{N}(s_{b_2}|s_{b_1},\gamma^2)$

Modelos de historia completa

Estado del arte en la industria del videojuego.

Modelos de historia completa Estado del arte en la industria del videojuego.

TrueSkill Through Time

Estado del arte en la industria del videojuego.

TrueSkill Through Time

Estado del arte en la industria del videojuego.

TrueSkill Through Time

Estado del arte en la industria del videojuego.

Efecto causal en series temporales

El control sintético

$$p(\boldsymbol{w}) = \prod_{i} \mathcal{N}(w_{i} \mid 0, \sigma^{2})$$

$$x \leftarrow p(y \mid \boldsymbol{w}, x) = \mathcal{N}(y \mid w_{0} + w_{1} x_{1} + w_{2} x_{2}^{2} + w_{3} x_{3}^{3}, \beta^{2})$$

$$p(\boldsymbol{w}) = \prod_{i} \mathcal{N}(w_{i} \mid 0, \sigma^{2})$$

$$\boldsymbol{w}$$

$$x \leftarrow p(y \mid \boldsymbol{w}, x) = \mathcal{N}(y \mid \sum_{i} w_{i} \phi_{i}(x), \beta^{2})$$

$$p(\boldsymbol{w}) = \prod_{i} \mathcal{N}(w_{i} \mid 0, \sigma^{2})$$

$$\boldsymbol{x} \leftarrow p(\boldsymbol{y} \mid \boldsymbol{w}, \boldsymbol{x}) = \mathcal{N}(\boldsymbol{y} \mid \boldsymbol{w}^{T} \boldsymbol{\phi}(\boldsymbol{x}), \beta^{2})$$

Modelos lineales para series temporales

Tendencia lineal local

Modelos lineales para series temporales Tendencia lineal local

 $\mathcal{N}(\delta_{t+1}|\delta_t,q^2)$ $p(\mu_{t+1}|\mu_t, \delta_t) = \mathcal{N}(\mu_{t+1}|\mu_t + \delta_t, r^2)$ $p(\mu_0)$ Lo establecido $x_0 \bullet$ $x_2 \bullet$ y_1 Pre-tratamiento | Post-tratamiento

Modelos lineales para series temporales Tendencia lineal local

¿Y la relación con otras series temporales?

Modelos lineales para series temporales

Tendencia lineal local + controles externos

Modelos lineales para series temporales

Ejemplo. Generación de datos.

```
set.seed(1)
x <- 100 + arima.sim(model = list(ar = 0.999), n = 100)
y <- 1.2 * x + rnorm(100)
y[71:100] <- y[71:100] + 10 # Intervencion</pre>
```

Modelos lineales para series temporales Ejemplo. Generación de datos.

```
set.seed(1)
x <- 100 + arima.sim(model = list(ar = 0.999), n = 100)
y <- 1.2 * x + rnorm(100)
y[71:100] <- y[71:100] + 10 # Intervencion</pre>
```


Modelos lineales para series temporales Ejemplo. Inferencia.

```
library("CausalImpact")
# Google "Inferring causal impact using
# bayesian structural time-series models"

data <- cbind(y, x)
pre.period <- c(1, 70)
post.period <- c(71, 100)
impact <- CausalImpact(data, pre.period, post.period)</pre>
```

Modelos lineales para series temporales Ejemplo. Inferencia.

Limitaciones Modelo lineal

La transformaciones no-lineales $\Phi(x)$ están fijas.

$$f(x, \boldsymbol{w}) = \boldsymbol{w}^T \Phi(x)$$

Limitaciones Modelo lineal

La transformaciones no-lineales $\Phi(x)$ están fijas.

$$f(x, \boldsymbol{w}) = \boldsymbol{w}^T \Phi(x)$$

Necesitaríamos infinitos modelos para poder representar cualquier función!

Evaluación de infinitos modelos $f(\boldsymbol{x})$

$$p(y_i) = \mathcal{N}(y_i|f(\boldsymbol{x}_i), \beta^2)$$
 donde f es la función objetivo

Prior sobre los modelos:

$$f(\boldsymbol{x}) \sim \mathcal{GP}(m(\boldsymbol{x}), k(\boldsymbol{x}, \boldsymbol{x}'))$$

Evaluación de infinitos modelos $f(\boldsymbol{x})$

$$p(y_i) = \mathcal{N}(y_i | f(\mathbf{x}_i), \beta^2)$$
 donde f es la función objetivo

Prior sobre los modelos:

$$f(\boldsymbol{x}) \sim \mathcal{GP}(m(\boldsymbol{x}), k(\boldsymbol{x}, \boldsymbol{x}'))$$

$$f(\boldsymbol{x}) \sim \mathcal{GP}(m(\boldsymbol{x}), k(\boldsymbol{x}, \boldsymbol{x}'))$$

$$m(\boldsymbol{x}) = \mathbb{E}[f(\boldsymbol{x})]$$

$$k(\boldsymbol{x}, \boldsymbol{x}') = \mathbb{E}[(f(\boldsymbol{x}) - m(\boldsymbol{x}))(f(\boldsymbol{x}') - m(\boldsymbol{x}'))]$$

Evaluación de infinitos modelos f(x)

$$p(y_i) = \mathcal{N}(y_i | f(\boldsymbol{x}_i), \beta^2)$$
 donde f es la función objetivo

Prior sobre los modelos:

$$f(\boldsymbol{x}) \sim \mathcal{GP}(m(\boldsymbol{x}), k(\boldsymbol{x}, \boldsymbol{x}'))$$

$$m(\mathbf{x}) = \mathbb{E}[f(\mathbf{x})]$$

$$k(\mathbf{x}, \mathbf{x}') = \mathbb{E}[(f(\mathbf{x}) - m(\mathbf{x}))(f(\mathbf{x}') - m(\mathbf{x}'))]$$

Posterior sobre los modelos tiene solución analítica!

Procesos Gaussianos Evaluación de infinitos modelos $f(\boldsymbol{x})$

y Redes Neuronales

y Redes Neuronales

Se han demostrado las siguientes equivalencia

Procesos Gaussianos y Redes Neuronales

Se han demostrado las siguientes equivalencia

• Neal, RM. 1994. *Priors for infinite networks*. Universidad de Toronto. Equivalencia entre una red neuronal de una sola capa totalmente conectada infinitamente ancha y los proceso gaussiano.

Procesos Gaussianos v Redes Neuronales

Se han demostrado las siguientes equivalencia

- Neal, RM. 1994. *Priors for infinite networks*. Universidad de Toronto. Equivalencia entre una red neuronal de una sola capa totalmente conectada infinitamente ancha y los proceso gaussiano.
- Lee et al (Google Brain). 2018. *Deep Neural Networks as Gaussian Process*. International Conference on Learning Representations

 Derivan la equivalencia exacta entre redes infinitamente profundas y GPs.

Monty Hall

Monty Hall

Con sesgo

 $\mathsf{Dirichlet}(1,1,1)$

 $\mathsf{Dirichlet}(1,1,1)$

 $\mathsf{Dirichlet}(5,5,5)$

 $\mathsf{Dirichlet}(2,5,15)$

Monty Hall Con sesgo dinámico

P=5 Laboratorios de

Métodos Bayesianos