Зміст

9	Син	нтакси	чний аналіз без повернення назад	1
		9.0.1	Проблеми загальних граматик	1
	9.1	LL(k)	-граматики	2
		9.1.1	First_k	4
		9.1.2	Алгоритм пошуку First_k	4
	9.2	Силы	ні $LL(k)$ -граматики	6
		9.2.1	Не всі граматики сильні	6
		9.2.2	Алгоритм пошуку $Follow_k$	7
			arepsilon-нетермінали	
		9.2.4	Ліва рекурсія	8
	9.3	Контр	оольні запитання	10

9 Синтаксичний аналіз без повернення назад

9.0.1 Проблеми загальних граматик

При виведенні слова ω в G на кожному кроці безпосереднього виведення, коли ми беремо до уваги виділений нами нетермінал (в залежності від стратегії виведення), виникає питання, яку альтернативу для A_i використати. З точки зору практики, нас цікавить така стратегія виведення ω в граматиці G, коли кожний наступний крок безпосереднього виведення наближав би нас до мети. Ця стратегія дасть можливість виконати виведення ω в G за час O(n), де $n=|\omega|$.

Зрозуміло, що не маючи інформації про структуру ω , досягнути вибраної нами мети в більшості випадків неможливо. Але ж тримати інформацію про все слово ω також недопустимо. З точки зору практики, отримати потрібний результат розумно при наявності локальної інформації, наприклад, k поточних вхідних лексем програми (k — наперед фіксоване число) достатньо для організації виведення ω в G за час O(n). З точки зору синтаксичного аналізу слова ω мова ведеться про наступну ситуацію:

Зафіксуємо стратегію виведення: далі будемо розглядати лише лівосторонню стратегію виведення ω в G. Тоді:

- $S \Rightarrow^{\star} \omega_1 A \omega_2$ (A перший зліва направо нетермінал);
- ω_1 термінальна частина слова ω , яку вже виведено (проаналізована частина слова);
- результат ω_3 , який потрібно ще вивести, виводиться зі слова $A\omega_2$;
- щоб зробити вірний крок виведення (без повернення назад) нам достатньо k поточних вхідних символів з непроаналізованої частини програми ω_3 .

Сформульовані умови забезпечує клас LL(k)-граматик.

9.1 LL(k)-граматики

КС-граматика $G = \langle N, \Sigma, P, S \rangle$ називається LL(k)-граматикою для деякого фіксованого k, якщо для двох лівосторонніх виведень вигляду:

1.
$$S \Rightarrow^* \omega_1 A \omega_2 \Rightarrow \omega_1 \alpha \omega_2 \Rightarrow^* \omega_1 x;$$

2.
$$S \Rightarrow^{\star} \omega_1 A \omega_2 \Rightarrow \omega_1 \beta \omega_2 \Rightarrow^{\star} \omega_1 y$$
;

з $\mathrm{First}_k(x) = \mathrm{First}_k(y)$ випливає, що $\alpha = \beta$, де $A \mapsto \alpha \mid \beta$, а

$$First_k(\alpha) = \{ \omega \mid \alpha \Rightarrow^* \omega x, |\omega| = k \} \cup \{ \omega \mid \alpha \Rightarrow^* \omega, |\omega| < k \}.$$

Неформально, граматика G буде LL(k)-граматикою, якщо для слова

$$\omega_1 A \omega_2 \in (N \cup \Sigma)^*$$

достатньо k перших символів (за умови, що вони існують) решти непроаналізованого слова щоб визначити, що з $A\omega_2$ існує не більше однієї альтернативи виведення слова, що починається з ω та продовжується наступними k термінальними символами.

Сформулюємо основні твердження стосовно класу LL(k)-граматик:

- 1. Не існує алгоритма, який перевіряє належність КС-граматики класу LL(k)-граматик.
- 2. Для кожного конкретного k існує алгоритм, який перевіряє, чи є задана граматика LL(k)-граматикою.
- 3. Якщо граматика є LL(k)-граматикою, то вона є LL(k+p)-граматикою, $(p \ge 1)$.
- 4. Клас LL(k)-граматик це підклас КС-граматик, який не покриває його

Продемонструємо на **прикладі** справедливість останнього твердження. Розглянемо граматику G з наступною схемою $P: S \mapsto Sa \mid b$.

Мова, яку породжує наведена вище граматика $L(G)=\{ba^i,i=0,1,\ldots\}$. Візьмемо виведення наступного слова $S\Rightarrow^{i+1}ba^i$. За визначенням LL(k)-граматики якщо покласти $A=S,\ \omega_2=a^i,\ \alpha=Sa,\ \beta=b,$ то маємо отримати

$$\operatorname{First}_k(Saa^i) \cap \operatorname{First}_k(ba^i) = \varnothing.$$

Втім, для $i \geq k$ маємо:

$$\operatorname{First}_{k}\left(Saa^{i}\right) = \operatorname{First}_{k}\left(ba^{i}\right) = \left\{ba^{k-1}\right\}.$$

Таким чином, КС-граматика G не може бути LL(k)-граматикою для жодного k.

Як наслідок, КС-граматика G, яка має ліворекурсивний нетермінал A (нетермінал A називається *ліворекурсивним*, якщо в граматиці G існує вивід виду $A \Rightarrow^* A\omega$), не може бути LL(k)-граматикою.

З практичної точки зору в більшості випадків ми будемо користуватися LL(1)-граматиками. У класі LL(1)-граматик існує один цікавий підклас — це розподілені LL(1)-граматики.

LL(1)-граматика називаються *розподіленою*, якщо вона задовольняє наступним умовам:

- у схемі P граматики відсутні ε -правила (правила вигляду $A \mapsto \varepsilon$);
- \bullet для нетермінала A праві частини A-правила починаються різними терміналами.

$9.1.1 \quad \mathbf{First}_k$

Зауважимо, що $\operatorname{First}_k(\omega_1\omega_2)=\operatorname{First}_k(\omega_1)\oplus_k\operatorname{First}_k(\omega_2)$, де \oplus_k — бінарна операція над словарними множинами (мовами) визначена наступним чином:

$$L_1 \oplus_k L_2 = \{ \omega \mid \omega \omega_1 = xy, |\omega| = k \} \cup \{ \omega \mid \omega = xy, |\omega| < k \}, \quad x \in L_1, \quad y \in L_2.$$

Звідси маємо наступний тривіальний висновок: якщо $\omega = \alpha_1 \alpha_2 \dots \alpha_p$, де $\alpha_i \in (N \cup \Sigma)$, то

$$\operatorname{First}_k(\omega) = \operatorname{First}_k(\alpha_1) \oplus_k \operatorname{First}_k(\alpha_2) \oplus_k \ldots \oplus_k \operatorname{First}_k(\alpha_p)$$

Для подальшого аналізу визначення LL(k)-граматики розглянемо алгоритм обчислення функції $First_k(\alpha)$, $\alpha \in (N \cup \Sigma)$.

9.1.2 Алгоритм пошуку First_k

Очевидно, що якщо $\alpha_i \in \Sigma$, то $\mathrm{First}_k(\alpha_i) = \{\alpha_i\}$ при k > 0. Розглянемо алгоритм пошуку $\mathrm{First}_k(A_i), A_i \in N$.

Алгоритм [пошуку First_k(A_i), $A_i \in N$]: визначимо значення функції $F_i(x)$ для кожного $x \in (N \cup \Sigma)$:

- 1. $F_i(a) = \{a\}$ для всіх $a \in \Sigma, i \ge 0$.
- 2. $F_0(A_i) = \{ \omega \mid \omega \in \Sigma^{\star k} : A_i \mapsto \omega x, |\omega| = k \} \cup \{ \omega \mid \omega \in \Sigma^{\star k} : A_i \mapsto \omega, |\omega| < k \}.$

3.

$$F_n(A) = F_{n-1}(A_i) \cup \cup \left\{ \omega \mid \omega \in \Sigma^{\star k} : \omega \in F_{n-1}(\alpha_1) \oplus_k \dots \oplus F_{n-1}(\alpha_p), A_i \mapsto \alpha_1 \dots \alpha_p \right\}.$$

4.
$$F_m(A_i) = F_{m+1}(A_i) = \dots$$
 для всіх $A_i \in N$.

Очевидно, що:

- послідовність $F_0(A_i) \subseteq F_1(A_i) \subseteq \dots$ монотонно зростаюча;
- $F_n(A_i) \subseteq \Sigma^{\star k}$ послідовність обмежена зверху.

Тоді покладемо $\operatorname{First}_k(A_i) = F_m(A_i)$ для кожного $A_i \in N$.

Приклад: знайти множину $\operatorname{First}_k(A_i)$ для нетерміналів граматики з наступною схемою правил:

$$\begin{split} S &\mapsto BA, \\ A &\mapsto +BA \mid \varepsilon, \\ B &\mapsto DC, \\ C &\mapsto \times DC \mid \varepsilon, \\ D &\mapsto (S) \mid a. \end{split}$$

Нехай k=2, тоді маємо наступну таблицю:

	S	A	В	C	D
F_0	Ø	$\{\varepsilon\}$	Ø	$\{\varepsilon\}$	<i>{a}</i>
F_1	Ø	$\{\varepsilon\}$	$\{a\}$	$\{\varepsilon, \times a\}$	$\{a\}$
F_2	$\{a\}$	$\{\varepsilon, +a\}$	$\{a, a \times \}$	$\{\varepsilon, \times a\}$	$\{a\}$
F_3	$\{a, a+, a\times\}$	$\{\varepsilon, +a\}$	$\{a, a \times \}$	$\{\varepsilon, \times a\}$	$\{a,(a\}$
F_4	$\{a, a+, a\times\}$	$\{\varepsilon, +a\}$	$\{a, a \times, (a\}$	$\{\varepsilon, \times a, \times (\}$	$\{a,(a\}$
F_5	$\{a, a+, a\times, (a\}$	$\{\varepsilon, +a, +(\}$	$\{a, a \times, (a\}$	$\{\varepsilon, \times a, \times (\}$	$\{a,(a\}$
F_6	$\{a, a+, a\times, (a\}$	$\{\varepsilon, +a, +(\}$	$\{a, a \times, (a\}$	$\{\varepsilon, \times a, \times (\}$	$ \{a, (a, (())) $
F_7	$\{a, a+, a\times, (a\}$	$\{\varepsilon, +a, +(\}$	$\{a, a \times, (a, (()$	$\{\varepsilon, \times a, \times (\}$	$ \{a, (a, (())) \} $
F_8	$a, a+, a\times, (a, (()$	$\{\varepsilon, +a, +(\}$	$\{a, a \times, (a, (()$	$\{\varepsilon, \times a, \times (\}$	$\{a, (a, (())\}$
F_9	$\{a, a+, a\times, (a, (()$	$\{\varepsilon, +a, +(\}$	$\{a, a \times, (a, (()$	$\{\varepsilon, \times a, \times (\}$	$\{a, (a, (())\}$

Скористаємося визначенням $\mathrm{First}_k(\alpha)$ сформулюємо необхідні й достатні умови, за яких КС-граматика буде LL(k)-граматикою: для довільного виводу в граматиці G вигляду $S \Rightarrow^* \omega_1 A \omega_2$ та правила $A \mapsto \alpha \mid \beta$:

$$\operatorname{First}_k(\alpha\omega_2) \cap \operatorname{First}_k(\beta\omega_2) = \varnothing.$$

Вище сформульована умова для LL(k)-граматик може бути перефразована з урахуванням визначення множини First_k : для довільного виведення в граматиці G вигляду $S \Rightarrow^\star \omega_1 A \omega_2$ та правила $A \mapsto \alpha \mid \beta$:

$$\operatorname{First}_k(\alpha \cdot L) \cap \operatorname{First}_k(\beta \cdot L) = \emptyset, \quad L = \operatorname{First}_k(\omega_2).$$

Оскільки $L\subseteq \Sigma^{\star k}$, то остання умова є конструктивною умовою і може бути використана для перевірки, чи КС-граматика є LL(k)-граматикою для фіксованого k.

9.2 Сильні LL(k)-граматики

КС-граматика називається $cunьною\ LL(k)$ -граматикою, якщо для кожного правила вигляду $A\mapsto \alpha\mid \beta$ виконується умова:

$$\operatorname{First}_k(\alpha \cdot \operatorname{Follow}_k(A)) \cap \operatorname{First}_k(\beta \cdot \operatorname{Follow}_k(A)) = \emptyset,$$

де $Follow_k(\alpha)$, $\alpha \in (N \cup \Sigma)^*$ визначається так:

$$Follow_k(\alpha) = \{ \omega \mid S \Rightarrow^{\star} \omega_1 \alpha \omega_2, \omega \in First_k(\omega_2) \}.$$

Неформально, відмінність сильних LL(k)-граматик від звичайних LL(k)-граматик полягає у тому, що наступне правило безпосереднього виведення, яке буде застосовано до A можна визначити абстраговано від уже виведеної частини слова ω_1 , розглядаючи тільки наступні k символів які потрібно отримати після A.

Операції ${\rm First}_k$ та ${\rm Follow}_k$ можна узагальнити для словарної множини L, тоді:

$$\operatorname{First}_k(L) = \{ \omega \mid \exists \alpha_i \in L : \omega \in \operatorname{First}_k(\alpha_i) \}.$$

$$\operatorname{Follow}_k(L) = \{ \omega \mid \exists \alpha_i \in L : S \Rightarrow^* \omega_1 \alpha_i \omega_2, \omega \in \operatorname{First}_k(\omega_2) \}.$$

Без доведення зафіксуємо наступні твердження:

- кожна LL(1)-граматика є сильною LL(1)-граматикою;
- існують LL(k)-граматики (k > 1), які не є сильними LL(k)-граматиками.

9.2.1 Не всі граматики сильні

На **прикладі** продемонструємо останнє твердження. Нехай граматика G визначена наступними правилами: $S \mapsto aAaa \mid bAba, A \mapsto b \mid \varepsilon$.

Відповідні множини $\mathrm{First}_2(S)=\{ab,aa,bb\}$, $\mathrm{First}_2(A)=\{b,\varepsilon\}$, $\mathrm{Follow}_2(A)=\{aa,ba\}$, $\mathrm{Follow}_2(S)=\{\varepsilon\}$.

Перевіримо умову для сильної LL(2)-граматики:

1. виконаємо перевірку LL(2)-умови для правила $S \mapsto aAaa \mid bAba$:

$$\operatorname{First}_{2}(aAaa \cdot \operatorname{Follow}_{2}(S)) \cap \operatorname{First}_{2}(bAba \cdot \operatorname{Follow}_{2}(S)) = \\ = (\operatorname{First}_{2}(aAaa) \oplus_{2} \operatorname{Follow}_{2}(S)) \cap (\operatorname{First}_{2}(bAba) \oplus_{2} \operatorname{Follow}_{2}(S)) = \\ = (\{ab, aa\} \oplus_{2} \{\varepsilon\}) \cap (\{bb\} \oplus_{2} \{\varepsilon\}) = \{ab, aa\} \cap \{bb\} = \varnothing.$$

2. виконаємо перевірку LL(2)-умови для правила $A\mapsto b\mid \varepsilon$:

$$\operatorname{First}_2(b \cdot \operatorname{Follow}_2(A)) \cap \operatorname{First}_2(\varepsilon \cdot \operatorname{Follow}_2(A)) = \{ba, bb\} \cap \{aa, ba\} = \{ba\}.$$

Висновок: вище наведена граматика не є сильною LL(2)-граматикою. Перевіримо цю ж граматику на властивість LL(2)-граматики. Тут ми маємо два різні варіанти виводу з S:

- 1. $S \Rightarrow^* aAaa$: First₂ $(b \cdot aa) \cap \text{First}_2(\varepsilon \cdot aa) = \{ba\} \cap \{aa\} = \emptyset$.
- 2. $S \Rightarrow^* bAba$: First₂ $(b \cdot ba) \cap \text{First}_2(\varepsilon \cdot ba) = \{bb\} \cap \{ba\} = \emptyset$.

Висновок: наведена вище граматика є LL(2)-граматикою.

9.2.2 Алгоритм пошуку Follow_k

Алгоритм [обчислення Follow $_k(A_i)$, $A_i \in N$]: будемо розглядати всілякі дерева, які можна побудувати, починаючи з аксіоми S:

- 1. $\sigma_0(S,S) = \{\varepsilon\}$. Очевидно, за 0 кроків ми виведемо S, після якої знаходиться ε . У інших випадках $\sigma_0(S,A_i)$ невизначено, $A_i \in (N \setminus \{S\})$.
- 2. $\sigma_1(S, A_i) = \sigma_0(S, A_i) \cup \{\omega \mid S \mapsto \omega_1 A_i \omega_2, \omega \in \mathrm{First}_k(\omega_2)\}$. В інших випадках $\sigma_1(S, A_i)$ невизначено.
- 3. $\sigma_n(S, A_i) = \sigma_{n-1}(S, A_i) \cup \{\omega \mid A_j \mapsto \omega_1 A_i \omega_2, \omega \in \mathrm{First}_k(\omega_2 \cdot \sigma_{n-1}(S, A_j))\}.$ В інших випадках $\sigma_n(S, A_i)$ невизначено.

Настане крок m, коли $\sigma_m(S, A_i) = \sigma_{m+1}(S, A_i) = \ldots, \forall A_i \in N$.

Тоді покладемо $Follow_k(A_i) = \sigma_m(S, A_i), \forall A_i \in N.$

Очевидно, що:

- послідовність $\sigma_0(S, A_i) \subseteq \sigma_1(S, A_i) \subseteq \dots$ монотонно зростаюча;
- $\sigma_n(S, A_i) \subseteq \Sigma^{\star k}$ послідовність обмежена зверху.

Разом ці умови гарантують збіжність послідовності $\{\sigma_n(S, A_i)\}$, а отже і алгоритму пошуку Follow $_k(A_i)$.

9.2.3 ε -нетермінали

Нетермінал A_i КС-граматики G називається ε -нетерміналом, якщо $A_i \Rightarrow^\star \varepsilon$

Алгоритм [пошуку ε -нетерміналів]:

- 1. $S_0 = \{A_i \mid A_i \mapsto \varepsilon\}.$
- 2. $S_1 = S_0 \cup \{A_i \mid A_i \mapsto \alpha_1 \alpha_2 \dots \alpha_p, \alpha_j \in S_0, j = \overline{1 \dots p}\}.$
- 3. $S_n = S_{n-1} \cup \{A_i \mid A_i \mapsto \alpha_1 \alpha_2 \dots \alpha_p, \alpha_j \in S_{n-1}, j = \overline{1 \dots p}\}.$
- 4. $S_m = S_{m+1} = \dots$

Тоді множина S_m — множина ε -нетерміналів.

Приклад. Для граматики G з схемою правил P знайдемо множину ε -нетерміналів:

$$\begin{split} S &\mapsto aBD \mid D \mid AC \mid b, \\ A &\mapsto SCB \mid SABC \mid CbD \mid \varepsilon, \\ B &\mapsto CA \mid d, \\ C &\mapsto ADC \mid a \mid \varepsilon, \\ D &\mapsto EaC \mid SC, \\ E &\mapsto BCS \mid a. \end{split}$$

$$S_0 = \{A, C\},$$

$$S_1 = \{A, C\} \cup \{B, S\},$$

$$S_2 = \{A, B, C, S\} \cup \{D\},$$

$$S_3 = \{A, B, C, S, D\} \cup \{E\},$$

$$S_4 = \{A, B, C, S, D, E\} \cup \{E\}.$$

Таким чином, множина ε -нетерміналів для наведеної вище граматики — $\{S,A,B,C,D,E\}$.

9.2.4 Ліва рекурсія

До того, як перевірити граматику на LL(k)-властивість необхідно перевірити її на наявність ліворекурсивних нетерміналів та спробувати уникнути лівої рекурсії.

Алгоритм [тестування нетермінала A_i на ліву рекурсію]: для кожного нетермінала A_i побудуємо наступну послідовність множин S_0, S_1, \ldots :

1.
$$S_0 = \{A_i \mid A_i \mapsto \omega_1 A_i \omega_2, \omega_1 \Rightarrow^* \varepsilon\}$$
, починаємо з нетерміналу A_i .

2.
$$S_1 = S_0 \cup \{A_i \mid A_i \mapsto \omega_1 A_j \omega_2, \omega_1 \Rightarrow^* \varepsilon, A_j \in S_0\}.$$

3.
$$S_n = S_{n-1} \cup \{A_i \mid A_i \mapsto \omega_1 A_j \omega_2, \omega_1 \Rightarrow^* \varepsilon, A_j \in S_{n-1}\}.$$

4.
$$S_m = S_{m+1} = \dots$$

Тоді якщо $A_i \in S_m$, то A_i — ліворекурсивний нетермінал.

Приклад. Для граматики G зі схемою правил P знайдемо множину ліворекурсивних нетерміналів:

$$\begin{split} S &\mapsto AbS \mid AC, \\ A &\mapsto BD, \\ B &\mapsto BC \mid \varepsilon, \\ C &\mapsto Sa \mid \varepsilon, \\ D &\mapsto aB \mid BA. \end{split}$$

Виконаємо процедуру тестування для кожного нетермінала окремо, наприклад, для нетермінала S:

$$S_0 = \{A\},\$$

 $S_1 = \{A, B, D\},\$
 $S_2 = \{A, B, D, C\},\$
 $S_3 = \{A, B, D, C, S\}.$

Запропонуємо декілька прийомів, що дають можливість при побудові LL(k)-граматик уникнути лівої рекурсії. Розглянемо граматику зі схемою правил $S\mapsto Sa\mid b$, яка має ліворекурсивний нетермінал S. Замінимо схему правил новою схемою з трьома правилами $S\mapsto bS_1,\ S_1\mapsto aS_1\mid \varepsilon.$

Приклад: для граматики G з схемою правил P для кожного нетермінала знайдемо множину $Follow_1(A)$ (k=1):

$$S \mapsto BA,$$

$$A \mapsto +BA \mid \varepsilon,$$

$$B \mapsto DC,$$

$$C \mapsto \times DC \mid \varepsilon,$$

$$D \mapsto (S) \mid a.$$

3 прикладу, що наведено раніше множини ${\rm First}_1(A)$, будуть такими:

$$First_1(S) = First_1(B) = First_1(D) = \{(, a\}, First_1(A) = \{+, \varepsilon\}, First_1(C) = \{\times, \varepsilon\}.$$

	S	A	В	C	D
δ_0	$\{\varepsilon\}$	Ø	Ø	Ø	Ø
δ_1	$\{\varepsilon\}$	$\{\varepsilon\}$	$\{+, \varepsilon\}$	Ø	Ø
δ_2	$\{\varepsilon\}$	$\{\varepsilon\}$	$\{+,\varepsilon\}$	$\{+, \varepsilon\}$	Ø
δ_3	$\{\varepsilon\}$	$\{\varepsilon\}$	$\{+, \varepsilon\}$	$\{+, \varepsilon\}$	$\{\times, +, \varepsilon\}$
δ_4	$\{\varepsilon,)\}$	$\{\varepsilon\}$	$\{+, \varepsilon\}$	$\{+, \varepsilon\}$	$\{\times, +, \varepsilon\}$
δ_5	$\{\varepsilon,)\}$	$\{\varepsilon,)\}$	$\{+, \varepsilon\}$	$\{+, \varepsilon\}$	$\{\times, +, \varepsilon\}$
δ_6	$\{\varepsilon,)\}$	$\{\varepsilon,)\}$	$\{+,\varepsilon,)\}$	$\{+, \varepsilon,)\}$	$\{\times, +, \varepsilon,)\}$
δ_7	$\{\varepsilon,)\}$	$\{\varepsilon,)\}$	$\{+,\varepsilon,)\}$	$\{+, \varepsilon,)\}$	$\{\times, +, \varepsilon,)\}$

Таким чином, $\operatorname{Follow}_1(S) = \{\varepsilon, \}$, $\operatorname{Follow}_1(A) = \{\varepsilon, \}$, $\operatorname{Follow}_1(B) = \{+, \varepsilon, \}$, $\operatorname{Follow}_1(C) = \{+, \varepsilon, \}$, $\operatorname{Follow}_1(D) = \{\times, +, \varepsilon, \}$.

9.3 Контрольні запитання

- 1. Яка граматика називається LL(k)-граматика?
- 2. Чи кожна КС-граматика є LL(k)-граматикою для деякого k?
- 3. Яка LL(1)-граматика називається розподіленою?
- 4. Яку бінарну операцію над мовами позначає символ \oplus_k ?
- 5. Яку мову (множину слів) позначає запис ${\rm First}_k(\alpha)$?
- 6. Опишіть алгоритм пошуку $First_k$ і доведіть його збіжність.
- 7. Яка LL(k)-граматика називається сильною?
- 8. Чи кожна LL(k)-граматика є сильною LL(k)-граматикою?
- 9. Яку мову (множину слів) позначає запис Follow $_k(\alpha)$?
- 10. Опишіть алгоритм пошуку $Follow_k$ і доведіть його збіжність.
- 11. Який нетермінал $A_i \in N$ називається ε -нетерміналом?

- 12. Опишіть алгоритм перевірки нетерміналу $A_i \in N$ на ε -нетермінал і доведіть його збіжність.
- 13. Який нетермінал $A_i \in N$ називається ліворекурсивним?
- 14. Опишіть алгоритм перевірки нетерміналу $A_i \in N$ на ліву рекурсію і доведіть його збіжність.