1. Solve the following initial value problems.

(a)
$$\frac{dN}{dt} = \frac{t+2}{t}$$
 for $t \ge 1$ with $N(1) = 2$.

(b)
$$\frac{dy}{dx} = \frac{e^{-x} + e^x}{2}$$
 for $x \ge 0$ with $y(0) = 0$.

2. Approximate the area under the parabola $y = x^2$ from 0 to 1 using four equal subintervals.

3. Use Leibniz's Rule to solve $y = \frac{d}{dx} \int_{x}^{2x} (1+t^2)dt$.

4. Find the average value of $f(x) = -x^2 - 2x + 5$ over the interval [-4, 0].

5. Find the area of the region bounded by $y = x^2 + 1$ and y = x + 1.

6. Find the volume of the solid bounded by $y = -x^2 + 1$, y = 0, and rotated about the x-axis

7. Imagine stacking squares whos sides are the length between $f(x) = 2x^2 - 1$ and g(x) = 7. This would create a shape over the area between f(x) and g(x). What is the volume of this solid?

8. Solve the indefinite integral $\int x^3 e^{x^2} dx$.