

Neural Machine Translation

Anoop Sarkar anoopsarkar.github.io/neuralmt-class

Simon Fraser University

November 27, 2017

Neural Machine Translation

Anoop Sarkar anoopsarkar.github.io/neuralmt-class

Simon Fraser University

Part 1: Positional Encoding

Vaswani+ arXiv:1706.03762v4 Jun 2017

▶ No recurrent networks

- No recurrent networks
- ► No convolutional networks

- No recurrent networks
- No convolutional networks
- Use feedforward networks

- No recurrent networks
- No convolutional networks
- Use feedforward networks
- Use positional encoding

- No recurrent networks
- No convolutional networks
- Use feedforward networks
- Use positional encoding
- ► Layer wise rescaling (Ba+, arXiv 2016)

- No recurrent networks
- No convolutional networks
- Use feedforward networks
- Use positional encoding
- ► Layer wise rescaling (Ba+, arXiv 2016)
- Use softmax for output

- No recurrent networks
- No convolutional networks
- Use feedforward networks
- Use positional encoding
- ► Layer wise rescaling (Ba+, arXiv 2016)
- Use softmax for output
- (multi-head) Attention is all you need

- No recurrent networks
- No convolutional networks
- Use feedforward networks
- Use positional encoding
- ► Layer wise rescaling (Ba+, arXiv 2016)
- Use softmax for output
- (multi-head) Attention is all you need
- Any questions?

Notation

▶ Input is a sequence of symbols: $(w_1, w_2, ..., w_n)$

Notation

- ▶ Input is a sequence of symbols: $(w_1, w_2, ..., w_n)$
- ▶ Model creates sequence of continuous representations: $(z_1, z_2, ..., z_n)$

Notation

- ▶ Input is a sequence of symbols: $(w_1, w_2, ..., w_n)$
- ▶ Model creates sequence of continuous representations: $(z_1, z_2, ..., z_n)$
- ▶ Output sequence of symbols: $(o_1, o_2, ..., o_m)$

Ba+ arXiv 2016

▶ In a multi-layer model:

$$\mathbf{h}_t^\ell = W_{hh}\mathbf{h}_t^{\ell-1} + W_{xh}\mathbf{x}_t$$

Ba+ arXiv 2016

▶ In a multi-layer model:

$$\mathbf{h}_t^\ell = W_{hh}\mathbf{h}_t^{\ell-1} + W_{xh}\mathbf{x}_t$$

▶ Instead of this, let us use an intermediate value a

$$\mathbf{a}_t^\ell = W_{hh}\mathbf{h}_t^{\ell-1} + W_{xh}\mathbf{x}_t$$

Ba+ arXiv 2016

In a multi-layer model:

$$\mathbf{h}_t^\ell = W_{hh}\mathbf{h}_t^{\ell-1} + W_{\times h}\mathbf{x}_t$$

▶ Instead of this, let us use an intermediate value a

$$\mathbf{a}_t^\ell = W_{hh}\mathbf{h}_t^{\ell-1} + W_{xh}\mathbf{x}_t$$

► Take the mean of a

$$\mu^{\ell} = \frac{1}{H} \sum_{i=1}^{H} a_i^{\ell}$$

Ba+ arXiv 2016

In a multi-layer model:

$$\mathbf{h}_t^\ell = W_{hh}\mathbf{h}_t^{\ell-1} + W_{\! imes h}\mathbf{x}_t$$

Instead of this, let us use an intermediate value a

$$\mathbf{a}_t^\ell = W_{hh}\mathbf{h}_t^{\ell-1} + W_{xh}\mathbf{x}_t$$

► Take the mean of a

$$\mu^{\ell} = \frac{1}{H} \sum_{i=1}^{H} \mathsf{a}_{i}^{\ell}$$

Take the variance of a

$$\sigma^\ell = \sqrt{rac{1}{H}\sum_{i=1}^H (a_i^\ell - \mu^\ell)^2}$$

Ba+ arXiv 2016

► Introduce two new hyperparameter vectors b (bias) and g (gain). Same dimension as h_t.

Ba+ arXiv 2016

- ► Introduce two new hyperparameter vectors b (bias) and g (gain). Same dimension as h_t.
- ► Compute \mathbf{h}_t^{ℓ} using μ^{ℓ} , σ^{ℓ} , \mathbf{b} and \mathbf{g} :

$$\mathbf{h}_t^\ell = f\left(rac{\mathbf{g}}{\sigma^\ell}\odot(\mathbf{a}^\ell-\mu)+\mathbf{b}
ight)$$

Ba+ arXiv 2016

- ► Introduce two new hyperparameter vectors **b** (bias) and **g** (gain). Same dimension as **h**_t.
- ► Compute \mathbf{h}_t^{ℓ} using μ^{ℓ} , σ^{ℓ} , \mathbf{b} and \mathbf{g} :

$$\mathbf{h}_t^\ell = f\left(\frac{\mathbf{g}}{\sigma^\ell}\odot(\mathbf{a}^\ell-\mu) + \mathbf{b}\right)$$

There is a tendency for the average magnitude of the summed inputs to the recurrent units to either grow or shrink at every time-step, leading to exploding or vanishing gradients

6

Ba+ arXiv 2016

- ► Introduce two new hyperparameter vectors **b** (bias) and **g** (gain). Same dimension as **h**_t.
- ▶ Compute \mathbf{h}_t^{ℓ} using μ^{ℓ} , σ^{ℓ} , **b** and **g**:

$$\mathbf{h}_t^\ell = f\left(\frac{\mathbf{g}}{\sigma^\ell}\odot(\mathbf{a}^\ell-\mu) + \mathbf{b}\right)$$

- There is a tendency for the average magnitude of the summed inputs to the recurrent units to either grow or shrink at every time-step, leading to exploding or vanishing gradients
- ► The normalization terms make it invariant to re-scaling all of the summed inputs to a layer

6

Ba+ arXiv 2016

- ► Introduce two new hyperparameter vectors **b** (bias) and **g** (gain). Same dimension as **h**_t.
- ▶ Compute \mathbf{h}_t^{ℓ} using μ^{ℓ} , σ^{ℓ} , **b** and **g**:

$$\mathbf{h}_t^{\ell} = f\left(\frac{\mathbf{g}}{\sigma^{\ell}}\odot(\mathbf{a}^{\ell}-\mu) + \mathbf{b}\right)$$

- There is a tendency for the average magnitude of the summed inputs to the recurrent units to either grow or shrink at every time-step, leading to exploding or vanishing gradients
- ► The normalization terms make it invariant to re-scaling all of the summed inputs to a layer
- Results in much more stable hidden-to-hidden dynamics

Figure modified from one made by J. Kummerfeld

Positional encoding which is a vector of the same length as the word representation. Depends only on position in the input.

$$f(pos, dim) = sin(\frac{pos}{10000^{\frac{2dim}{d_w}}})$$

Attention is all you need: Other details

When outputs are words, vectors used to represent input words are also used for outputs and in the final linear transformation (with some rescaling).

Attention is all you need: Other details

- When outputs are words, vectors used to represent input words are also used for outputs and in the final linear transformation (with some rescaling).
- ▶ They use a new formula for adjusting the learning rate.

Attention is all you need: Other details

- When outputs are words, vectors used to represent input words are also used for outputs and in the final linear transformation (with some rescaling).
- ▶ They use a new formula for adjusting the learning rate.
- They use dropout in several places and label smoothing for regularization