

- (a) Find the number of points on E modulo p for p=2,3,5,7,11. Which ones satisfy $N_p \equiv 3 \pmod{4}$?
- (b) Find the solutions to E modulo 11, other than the solutions in the torsion collection, and group them into bundles of four solutions each by drawing lines through the points in the torsion collection.

2:
$$2^{3}-2=6 \notin S$$

3: $3^{3}-3=24=2 \notin S$
4: $4^{3}-4(=60=5=4^{7} \Rightarrow (4,4),(4,7)$
5: $5^{3}-5=120=10 \notin S$
6: $(-5)^{3}-(-5)=-125+5=-120=-10=1$
Note $(-x)^{3}-(-x)=-(x^{3}-x)$
 $(6,1),(6,6)$
7=-4: $(-4)^{3}-(-4)=-60=-5=6$
8=3: $(-3)^{3}-(-3)=-24=-2=9$
 $\Rightarrow (9,3),(8,8)$
9=-2: $(-2)^{3}-(-2)=-8+2=-6$
 $\Rightarrow (9,4),(9,7)$
10=-1 $(-1)^{3}-(-1)=0$
 $\Rightarrow (10,0)$

look at (9,4) connect this to each point in T, find the intersection. * Connect (9,4) to (2,0) live from (0,0) to (9,4/- y = 4x $M = \frac{1}{2} / \sqrt{\frac{1}{2}} = \frac{1}{2} \times \frac{1}{2}$ 4-1 mod 11 = 3 find where Y=3x intersects E $\frac{\sqrt{2} - \chi - \chi}{(3\chi)^2 = 9\chi^2}$ $\rightarrow 0 = \chi^3 - 9\chi^2 - \chi$ Sum of the roots to 1=9 $\Rightarrow 0+9+\chi_3=9$ $\Rightarrow X_3 = 7$ $\Rightarrow X_3 = 0$ $\Rightarrow X_$

42.4. This exercise guides you in proving that the elliptic curve

$$E: y^2 = x^3 + 7$$

has no solutions in integers x and y. (This special case of Siegel's Theorem was originally proven by V.A. Lebesgue in 1869.)

- (a) Suppose that (x, y) is a solution in integers. Show that x must be odd.
- **(b)** Show that $y^2 + 1 = (x+2)(x^2 2x + 4)$.
- (c) Show that $x^2 2x + 4$ must be congruent to 3 modulo 4. Explain why $x^2 2x + 4$ must be divisible by some prime q satisfying $q \equiv 3 \pmod{4}$.
- (d) Reduce the original equation $y^2 = x^3 + 7$ modulo q, and use the resulting congruence to show that -1 is a quadratic residue modulo q. Explain why this is impossible, thereby proving that $y^2 = x^3 + 7$ has no solutions in integers.

