Math H185 Lecture 12

Keshav Balwant Deoskar

February 12, 2024

These are notes taken from lectures on Complex Analysis delivered by Professor Tony Feng for UC Berekley's Math $\rm H185$ class in the Sprng 2024 semester.

Contents

1	February 12 - Proof of Cauchy's Theorem	n (Sketch)	2
	1.1 Skotch		9

1 February 12 - Proof of Cauchy's Theorem (Sketch)

Recall that a primitive (i.e. an antiderivative) of $f:U\subseteq_{open}\mathbb{C}\to\mathbb{C}$ is a function $F:U\to\mathbb{C}$ such that F'(z)=f(z) for all $z\in U$.

Now, by the Fundamental Theorem of Calculus,

If

- f has a primitive on an open neighborhood of γ and
- γ is closed

Then

$$\int_{\gamma} f(z)dz = 0$$

This is to be contrasted with the Cauchy-Goursat Theorem which states that

If f is holomorphic on a neighborhood of U, then

$$\int_{\partial U} f(z)dz = 0$$

Though the two statements above are very similar, they're not quite the same. The first one requires a primitive locally whereas the second requires it over an entire region.

We will sketch a proof of Cauchy's Theorem.

1.1 Sketch

• Step 1: Approximate the path γ by polygons.

[Draw Image]

• Step 2: Subdivide into triangles.

[Draw Image]

Then the integral over the entire curve is the same as the sum of the integrals over triangles.

We then want to show that

$$\int_{\Delta} f = 0$$

where Δ is a triangle. We can do so by taking the triangle Δ and carrying out the barycentric subdivision i.e. take the midpoints of all sides and draw lines between them. Then, we get

$$\int_{\Delta} = \int_{\Delta_1} + \int_{\Delta_2} + \int_{\Delta_3} + \int_{\Delta_4}$$

By the Triangle inequality $|A + B| \le |A| + |B|$, we have

$$\implies \left| \int_{\Delta} f(z) dz \right| \leq 4 \sup_{i} \left| \int_{\Delta_{i}} f(z) dz \right|$$

Then, we take the biggest Δ_i and do the same procedure again. Repeatedly subdividing and using the Triangle Inequality, we have

$$\implies \left| \int_{\text{original } \Delta} f(z) dz \right| \leq 4^n \sup_{\Delta^{(n)}} \left| \int_{\Delta^{(n)}} f(z) dz \right|$$

where $\Delta^{(n)}$ is the triangle obtained after subdividing n-times. So, $\Delta^{(1)} \supseteq \Delta^{(2)} \cdots \Delta^{(n)}$.

Now, there exists a limit point z_0 for this sequence of shrinking triangles. The limit point lies in the intersection of all the triangles

$$z_0 \in \bigcap_n \Delta^{(n)}$$

<u>Key:</u> Near a point z_0 , the function f is well approximated by a linear function $f(z) = f(z_0) + f'(z_0)(z - z_0) + \epsilon(z)$ where $\lim_{z \to z_0} \frac{\epsilon(z)}{z - z_0} = 0$. We want to use this fact to control how big the integral over $\Delta^{(n)}$ can get.

$$\int_{\Delta^{(n)}} f = \underbrace{\int_{\Delta^{(n)}} f(z_0)}_{=0} + \underbrace{\int_{\Delta^{(n)}} f'(z_0)(z - z_0)}_{=0} + \int_{\Delta^{(n)}} \epsilon(z)$$

where the first two integrals are zero because constant and linear functions have primitives on \mathbb{C} and thus their integrals over any closed curve is zero by the Fundamental Theorem of Calculus. So, what we really need to control is the *error term*.

We have

$$4^{n} \left| \int_{\Delta^{(n)}} \epsilon(z) dz \right| \le 4^{n} \left| \int_{\Delta^{(n)}} |\epsilon(z)| \, |dz| \right| <<< 4^{n} \int_{\Delta^{(n)}} |z - z_{0}| \, |dz|$$

where |dz| = |z'(t)| |dt| and $A_n <<< B_n$ denotes

$$\lim_{n \to \infty} \frac{A_n}{B_n} = 0$$

Let's call the greatest possible distance between two points in a triangle as the *diameter* of the triangle, $diam(\Delta^{(n)})$. So,

$$|z - z_0| \le \operatorname{diam}(\Delta^{(n)}) = 2^{-n} \operatorname{diam}(\Delta^{(\text{original})})$$

[Get some more details from lecture recording]

Conclusion

$$\left| \int_{\Delta} f(z) dz \right| <<< C$$

where C is some fixed constant, and the LHS and RHS are constant sequences (but sequences none-the-less), meaning LHS/RHS $\rightarrow 0$ as $n \rightarrow \infty$ and so LHS = 0.

Summary

• Subdivide Δ into small triangles where f is well approximated by a linear function (because it's holomorphic).