Visualization vs. Interpretability

1. "CNN" Model Summary

Lab 1. CAM (Self-defined, sequential)

Model: "sequential"

Dense	
units =	10

Layer (type)	Output Shape	Param #
conv2d (Conv2D)	(None, 28, 28, 16)	160
max_pooling2d (MaxPooling2D)	(None, 14, 14, 16)	0
conv2d_1 (Conv2D)	(None, 14, 14, 32)	4,640
max_pooling2d_1 (MaxPooling2D)	(None, 7, 7, 32)	0
conv2d_2 (Conv2D)	(None, 7, 7, 64)	18,496
max_pooling2d_2 (MaxPooling2D)	(None, 3, 3, 64)	0
conv2d_3 (Conv2D)	(None, 3, 3, 128)	73,856
global_average_pooling2d (GlobalAveragePooling2D)	(None, 128)	0
dense (Dense)	(None, 10)	1,290

Model: "functional_9"

Layer (type)	Output Shape	Param #	Connected to
<pre>input_layer (InputLayer)</pre>	(None, 28, 28, 1)	0	_
conv2d (Conv2D)	(None, 28, 28, 16)	160	<pre>input_layer[0][0 input_layer[0][0]</pre>
max_pooling2d (MaxPooling2D)	(None, 14, 14, 16)	0	conv2d[6][0], conv2d[8][0]
conv2d_1 (Conv2D)	(None, 14, 14, 32)	4,640	max_pooling2d[5] max_pooling2d[7]
max_pooling2d_1 (MaxPooling2D)	(None, 7, 7, 32)	0	conv2d_1[4][0], conv2d_1[6][0]
conv2d_2 (Conv2D)	(None, 7, 7, 64)	18,496	max_pooling2d_1[max_pooling2d_1[
max_pooling2d_2 (MaxPooling2D)	(None, 3, 3, 64)	0	conv2d_2[2][0], conv2d_2[4][0]
conv2d_3 (Conv2D)	(None, 3, 3, 128)	73,856	max_pooling2d_2[max_pooling2d_2[
global_average_poo (GlobalAveragePool	(None, 128)	0	conv2d_3[2][0]
dense (Dense)	(None, 10)	1,290	global_average_p

Total params: 98,442 (384.54 KB)
Trainable params: 98,442 (384.54 KB)

Total params: 98,442 (384.54 KB)

Trainable params: 98,442 (384.54 KB)

Non-trainable params: 0 (0.00 B)

Loss I: sparse_categorical_crossentropy

Label format: Integer (sparse)

1D array of shape (batch_size,)

Lab 2. CAM (Self-defined, sequential)

Dense units = 1

Model: "sequential"

Layer (type)	Output Shape	Param #
conv2d (Conv2D)	(None, 300, 300, 16)	448
max_pooling2d (MaxPooling2D)	(None, 150, 150, 16)	0
conv2d_1 (Conv2D)	(None, 150, 150, 32)	4,640
max_pooling2d_1 (MaxPooling2D)	(None, 75, 75, 32)	0
conv2d_2 (Conv2D)	(None, 75, 75, 64)	18,496
max_pooling2d_2 (MaxPooling2D)	(None, 37, 37, 64)	0
conv2d_3 (Conv2D)	(None, 37, 37, 128)	73,856
global_average_pooling2d (GlobalAveragePooling2D)	(None, 128)	0
dense (Dense)	(None, 1)	129

Model: "functional_9"

Layer (type)	Output Shape	Param #	Connected to
<pre>input_layer (InputLayer)</pre>	(None, 300, 300, 3)	0	_
conv2d (Conv2D)	(None, 300, 300, 16)	448	input_layer[0][0 input_layer[0][0]
<pre>max_pooling2d (MaxPooling2D)</pre>	(None, 150, 150, 16)	0	conv2d[6][0], conv2d[8][0]
conv2d_1 (Conv2D)	(None, 150, 150, 32)	4,640	max_pooling2d[5] max_pooling2d[7]
max_pooling2d_1 (MaxPooling2D)	(None, 75, 75, 32)	0	conv2d_1[4][0], conv2d_1[6][0]
conv2d_2 (Conv2D)	(None, 75, 75, 64)	18,496	max_pooling2d_1[max_pooling2d_1[
max_pooling2d_2 (MaxPooling2D)	(None, 37, 37, 64)	0	conv2d_2[2][0], conv2d_2[4][0]
conv2d_3 (Conv2D)	(None, 37, 37, 128)	73,856	max_pooling2d_2[max_pooling2d_2[
global_average_poo (GlobalAveragePool	(None, 128)	0	conv2d_3[2][0]
dense (Dense)	(None, 1)	129	global_average_p

Total params: 97,569 (381.13 KB)

Trainable params: 97,569 (381.13 KB)

Non-trainable params: 0 (0.00 B)

Total params: 97,569 (381.13 KB)

Trainable params: 97,569 (381.13 KB)

Non-trainable params: 0 (0.00 B)

Loss III: binary_crossentropy

Label format: multi-hot encoded

2D array of shape (batch_size, num_classes)

Lab 3. Saliency (Self-defined, sequential) Dense units = 2

Model: "sequential"

Layer (type)	Output Shape	Param #
conv2d (Conv2D)	(None, 300, 300, 16)	448
max_pooling2d (MaxPooling2D)	(None, 150, 150, 16)	0
conv2d_1 (Conv2D)	(None, 150, 150, 32)	4,640
max_pooling2d_1 (MaxPooling2D)	(None, 75, 75, 32)	0
conv2d_2 (Conv2D)	(None, 75, 75, 64)	18,496
max_pooling2d_2 (MaxPooling2D)	(None, 37, 37, 64)	0
conv2d_3 (Conv2D)	(None, 37, 37, 128)	73,856
global_average_pooling2d (GlobalAveragePooling2D)	(None, 128)	0
dense (Dense)	(None, 2)	258

Assignment use this model too~

Loss II:

categorical_crossentropy

_abel format: One-hot encoded

2D array of shape (batch_size, num_classes)

Total params: 97,698 (381.63 KB)

Trainable params: 97,698 (381.63 KB)

Non-trainable params: 0 (0.00 B)

Lab 4. GradCAM (VGG16)

Model: "functional"

Layer (type)	Output Shape	Param #
<pre>input_layer (InputLayer)</pre>	(None, 224, 224, 3)	0
block1_conv1 (Conv2D)	(None, 224, 224, 64)	1,792
block1_conv2 (Conv2D)	(None, 224, 224, 64)	36,928
block1_pool (MaxPooling2D)	(None, 112, 112, 64)	0
block2_conv1 (Conv2D)	(None, 112, 112, 128)	73,856
block2_conv2 (Conv2D)	(None, 112, 112, 128)	147,584
block2_pool (MaxPooling2D)	(None, 56, 56, 128)	0
block3_conv1 (Conv2D)	(None, 56, 56, 256)	295,168
block3_conv2 (Conv2D)	(None, 56, 56, 256)	590,080
block3_conv3 (Conv2D)	(None, 56, 56, 256)	590,080
block3_pool (MaxPooling2D)	(None, 28, 28, 256)	0
block4_conv1 (Conv2D)	(None, 28, 28, 512)	1,180,160
block4_conv2 (Conv2D)	(None, 28, 28, 512)	2,359,808
block4_conv3 (Conv2D)	(None, 28, 28, 512)	2,359,808
block4_pool (MaxPooling2D)	(None, 14, 14, 512)	0

		<u> </u>
block5_conv1 (Conv2D)	(None, 14, 14, 512)	2,359,808
block5_conv2 (Conv2D)	(None, 14, 14, 512)	2,359,808
block5_conv3 (Conv2D)	(None, 14, 14, 512)	2,359,808
block5_pool (MaxPooling2D)	(None, 7, 7, 512)	0
global_average_pooling2d (GlobalAveragePooling2D)	(None, 512)	0
dense (Dense)	(None, 2)	1,026

Total params: 14,715,714 (56.14 MB)

Trainable params: 7,080,450 (27.01 MB)

Non-trainable params: 7,635,264 (29.13 MB)

Loss I: sparse_categorical_crossentropy

Label format: Integer (sparse)

1D array of shape (batch_size,)

Visualization vs. Interpretability

2. Review. Label format vs. Last Dense Layer # of Units Label format vs. Loss

Loss - 1. sparse_categorical_crossentropy

- You have single-label classification
- Labels are given as integer class indices (not one-hot)
- Predicted probabilities: [0.1, 0.2, 0.7]

$$loss = -log(p_{true\ class})$$

Loss - 2. categorical_crossentropy

- You have single-label classification
- Labels are one-hot encoded
- One-hot label: [0, 0, 1]
- Predicted probabilities: [0.1, 0.2, 0.7]

$$\mathrm{loss} = -\sum_{i=1}^N y_i \log(p_i)$$

Loss - 3. binary_crossentropy

- You have multi-label classification (multi-hot labels)
- Each class is treated as a separate binary problem (present or not)
- Multi-hot label: [1, 0, 1]
- Prediction: [0.9, 0.2, 0.8]

$$ext{loss} = -\sum_{i=1}^{N} \left[y_i \log(p_i) + (1-y_i) \log(1-p_i)
ight]$$

Loss vs. Label Dimension

Summary Table

Task Type	Label Format	Label Shape	Loss Function
Single-label	Integer	(batch_size,)	<pre>sparse_categorical_crossentr opy</pre>
Single-label	One-hot	(batch_size, num_classes)	categorical_crossentropy
Multi-label	Multi-hot	(batch_size, num_classes)	binary_crossentropy