How to enjoy a mathematical discussion with your laptop

Filippo Alberto Edoardo Nuccio Mortarino Majno di Capriglio

Université Jean Monnet Saint-Étienne - France

Computer-verified proofs: 48 hours in Rome – January 24st 2024

Thank you

Your support powers our independent journalism

The Guardian

Opinion Sport Culture Lifestyle More ~ News

Fashion Food Recipes Love & sex Health & fitness Home & garden Women Men Family Travel Money

Dining across the divide

Can breaking bread together help bridge political differences?

7 December 2023

Dining across the divide: 'I enjoyed his company. But afterwards thought, hang on a moment ...'

Would a Labour-voting gardener who has worked as a life model and a Tory who's eveing up Reform UK find common ground?

@ 1-30 PM

What is Lean?

Un assistant de preuve (= a proof assistant)

A theorem prover

/-- **Cauchy integral formula**: if `f` is continuous on a punctured closed disc of radius `R`, is differentiable at all but countably many points of the interior of this disc, and has a limit 'y' at the center of the disc, then the integral $\alpha = \frac{||z-c||=R|}{||z-c||}$ is equal to $2\pi i y^2$. -/ theorem Cauchy_formula {c : C} $\{R : R\}$ (h0 : 0 < R) $\{f : C \rightarrow C\}$ $\{y : C\}$ $\{s : Set C\}$ (hs : s.Countable) (hc : ContinuousOn f (closedBall c R \ {c})) (hd : \forall z \in (ball c R \ {c}) \ s, DifferentiableAt C f z) (hy : Tendsto f ($\mathcal{N}[\{c\}^c]$ c) (\mathcal{N} y)) $(\oint z \text{ in } C(c, R), (z - c)^{-1} \cdot f z) = (2 * \pi * I : C) \cdot v := bv$ rw [+ sub eq zero, + norm le zero iff] refine' le of forall le of dense fun ε ε0 => obtain $(\delta, \delta 0, h \delta)$: $\exists \delta > (0 : \mathbb{R}), \forall z \in closedBall c \delta \setminus \{c\}, dist (f z) y < \epsilon / (2 * \pi)$ exact ((nhdsWithin hasBasis nhds basis closedBall).tendsto iff nhds basis ball).1 hy (div pos E0 Real.two pi pos) obtain (r. hr0, hr6, hrR) : \exists r. $0 < r \land r \le \delta \land r \le R$:= (min & R. lt min &0 h0, min le left , min le right) have hsub : closedBall c R \ ball c r ⊆ closedBall c R \ {c} := diff subset diff right (singleton subset iff.2 < | mem ball self hr0) have hsub' : ball c R \ closedBall c r ⊆ ball c R \ {c} := diff_subset_diff_right (singleton_subset_iff.2 <| mem_closedBall_self hr0.le) have hzne : ∀ z ∈ sphere c r, z ≠ c := fun z hz => ne of mem of not mem hz fun h => hr0.ne' <| dist self c * Eq.symm h /- The integral $\hat{\phi}$ z in C(c, r), f z / (z - c) does not depend on $\hat{\phi}$ < r \leq R and tends to '2πIv' as 'r → 0'. -/ calc $\|(\phi z \text{ in } C(c, R), (z - c)^{-1} \cdot f z) - (2 * \uparrow \pi * I) \cdot y\| =$ $\|(\phi z \text{ in } C(c, r), (z - c)^{-1} \cdot f z) - \phi z \text{ in } C(c, r), (z - c)^{-1} \cdot y\| := by$ congr 2 · exact circleIntegral_sub_center_inv_smul_eq_of_differentiable_on_annulus_off_countable hr0 hrR hs (hc.mono hsub) fun z hz => hd z (hsub' hz.1, hz.2) · simp only [circleIntegral.integral smul const. ne eq. hr@.ne', not false eq true, circleIntegral.integral sub center invl $= \| \phi z \text{ in } C(c, r), (z - c)^{-1} \cdot (f z - y) \| := by$ simp only [smul_sub] have hc' : ContinuousOn (fun $z \Rightarrow (z - c)^{-1}$) (sphere c r) := (continuousOn_id.sub continuousOn_const).invo fun z hz => sub_ne_zero.2 <| hzne _ hz

rw [circleIntegral.integral sub] <:> refine' (hc'.smul).circleIntegrable hr0.le

▼ Colloquium.lean:49:65

▼ Tactic state 1 goal R:R h0: 0 < R $f: C \rightarrow C$ y : 0 s : Set C hs: Set.Countable s hc: ContinuousOn f (closedBall c R \ {c}) hd: ∀ z ∈ (ball c R \ {c}) \ s, DifferentiableAt C f z hy : Tendsto f $(\mathcal{N}[\neq] c)$ $(\mathcal{N} \lor)$ ε: R **€0**: 0 < € δ : R 50: δ > 0 h\delta: \forall z ∈ closedBall c δ \ {c}, dist (f z) v < ϵ / (2 * π) r: Rhr0 : 0 < r $hr\delta : r < \delta$ $hrR: r \le R$

hsub : closedBall c R \ ball c r ⊆ closedBall c R \ {c}

 \vdash ||(ϕ (z : C) in C(c, R), (z - c)⁻¹ • f z) - (2 * ↑π * I) • y|| ≤

► All Messages (1)

· exact hc.mono <| subset inter

You are studying Diophantus' *Arithmetica*: you don't understand some detail in the proof that

You are studying Diophantus' *Arithmetica*: you don't understand some detail in the proof that

Year	Location	
A. D. 265	Alexandria, Egypt	Everywhere else
	Ask Diophantus	???

You are studying Diophantus' *Arithmetica*: you don't understand some detail in the proof that

Year	Location		
A. D. 265	Alexandria, Egypt		Everywhere else
	Ask Diophantus		???
A. D. 500	Alexandria, Egypt Find someone whose	grand-	Everywhere else
	Find someone whose grand-grand-grand-grandparents Diophantus	met	???

You are studying Diophantus' *Arithmetica*: you don't understand some detail in the proof that

Year	Location		
A. D. 265	Alexandria, Egypt	Everywhere else	
	Ask Diophantus	???	
A. D. 500	Alexandria, Egypt Find someone whose grand- grand-grand-grandparents met	Everywhere else	
	Diophantus	???	
A. D. 1910	Cambridge, UK	Everywhere else	
	Cambridge, UK Read 379 pages of Principia Mathematica to be sure that $1+1=2$	Go to the local bookshop	

You are studying Diophantus' *Arithmetica*: you don't understand some detail in the proof that

Year	Location		
A. D. 265	Alexandria, Egypt	Everywhere else	
	Ask Diophantus	???	
A. D. 500	Alexandria, Egypt	Everywhere else	
	Find someone whose grand- grand-grand-grandparents met Diophantus	???	
A. D. 1910	Cambridge, UK	Everywhere else	
	Read 379 pages of Principia Mathematica to be sure that $1+1=2$	Go to the local bookshop	
A. D. 2024	Any better?		

Posted on December 5th 2020

I [Peter Scholze] want to propose a challenge: Formalise the proof of the following theorem.

Theorem (Clausen-S.)

Let $0 < p' < p \le 1$ be real numbers, let S be a profinite set, and let V be a p-Banach space. Let $\mathcal{M}_{p'}(S)$ be the space of p'-measures on S. Then

$$\operatorname{Ext}^{i}_{\operatorname{Cond}(\operatorname{Ab})}(\mathcal{M}_{p'}(S), V) = 0$$

for $i \geq 1$.

Posted on December 5th 2020

I [Peter Scholze] want to propose a challenge: Formalise the proof of the following theorem.

Theorem (Clausen-S.)

Let $0 < p' < p \le 1$ be real numbers, let S be a profinite set, and let V be a p-Banach space. Let $\mathcal{M}_{p'}(S)$ be the space of p'-measures on S. Then

$$\operatorname{Ext}^{i}_{\operatorname{Cond}(\operatorname{Ab})}(\mathcal{M}_{p'}(S), V) = 0$$

for $i \geq 1$.

Why do I want a formalisation?

Posted on December 5th 2020

- ...
- [...] In the end, we were able to get an argument pinned down on paper, but I think nobody else has dared to look at the details of this, and so I still have some small lingering doubts.
- [...] I think the theorem is of utmost foundational importance, so being 99.9% sure is not enough.
- I have occasionally been able to be very persuasive even with wrong arguments.

Posted on December 5th 2020

- ...
- [...] In the end, we were able to get an argument pinned down on paper, but I think nobody else has dared to look at the details of this, and so I still have some small lingering doubts.
- [...] I think the theorem is of utmost foundational importance, so being 99.9% sure is not enough.
- I have occasionally been able to be very persuasive even with wrong arguments.

Completed on July 14th 2022

with **J. Commelin, A. Topaz**, R. Barton, A. Best, R. Brasca, K. Buzzard, Y. Dillies, F. van Doorn, F. Glöckle, M. Himmel, H. Macbeth, P. Massot, B. Mehta, S. Morrison, F. N., J. Riou, D. Testa, A. Yang

In mathlib: a lot of algebra, analysis, topology, . . .

- In mathlib: a lot of algebra, analysis, topology, . . .
- The definition of perfectoid spaces, October 2019

K. Buzzard, J. Commelin, P. Massot

- In mathlib: a lot of algebra, analysis, topology, . . .
- The definition of perfectoid spaces, October 2019

K. Buzzard, J. Commelin, P. Massot

The Liquid Tensor Experiment, July 2022

- In mathlib: a lot of algebra, analysis, topology, . . .
- The definition of perfectoid spaces, October 2019

K. Buzzard, J. Commelin, P. Massot

- The Liquid Tensor Experiment, July 2022
- The sphere eversion theorem, *November 2022*

P. Massot, O. Nash, F. van Doorn

- In mathlib: a lot of algebra, analysis, topology, . . .
- The definition of perfectoid spaces, October 2019

K. Buzzard, J. Commelin, P. Massot

- The Liquid Tensor Experiment, July 2022
- The sphere eversion theorem, November 2022

P. Massot, O. Nash, F. van Doorn

- Fermat's Last Theorem for regular primes, December 2023
 - R. Brasca, A. Best, C. Birkbeck, E. Rodriguez, R. Van de Velde, A. Yang

- In mathlib: a lot of algebra, analysis, topology, . . .
- The definition of perfectoid spaces, October 2019

K. Buzzard, J. Commelin, P. Massot

- The Liquid Tensor Experiment, July 2022
- The sphere eversion theorem, *November 2022*

P. Massot, O. Nash, F. van Doorn

- Fermat's Last Theorem for regular primes, *December 2023*
 - R. Brasca, A. Best, C. Birkbeck, E. Rodriguez, R. Van de Velde, A. Yang
- More and more papers formalizing mathematics in Lean

JFK Ask not what Lean can do for you — ask what you can do for Lean.

JFK Ask not what Lean can do for you — ask what you can do for Lean.

There is a Zulip thread where we discuss, we ask questions, we have fun.

JFK Ask not what Lean can do for you — ask what you can do for Lean.

- There is a Zulip thread where we discuss, we ask questions, we have fun.
- Enjoy 48 hours in Rome chatting about computer-verified proofs!

Thank you