Geometric Embedding of Road distance as a metric for Geospatial Analysis

Shashwathy Kannan - CS19B041

May 17, 2023

Outline

- → Motivation
- → Objectives
- → Input Resources
- → Embedding on Road Networks
- → Analysis
- → Applications
- → Conclusion

Motivation

Why?

VRP in logistics and ride-sharing is indispensable

Why?

Lack of Real-world distance based dataset

Improve precision of Routing Algorithms

Objective

Aim

Methodical Conversion

Input Resources

CVRP

- Definition and Constraints:
 - n customers and a single depot
 - Each customer has a specific demand
 - Each container has a maximum demand capacity it can accommodate
- Objective:
 - Reduce the total combined distance of routes

Sample Data

Benchmark Datasets

- Benchmark Dataset Augerat (1995) was used from CVRPLIB, DIMACS, Rutgers University
- N ranges from 30 to 80
- 27 datasets in all

```
NAME: A-n6-k5
COMMENT: (Augerat et al, No of trucks: 5, Optimal value: /*cost*/)
TYPE: CVRP
DIMENSION: 6
EDGE_WEIGHT_TYPE: EUC_2D
CAPACITY: 50
NODE_COORD_SECTION
1 82 76
2 96 44
3 50 5
4 49 8
5 13 7
6 29 89
DEMAND SECTION
2 19
3 21
46
5 19
67
DEPOT_SECTION
EOF
```

Embedding on Road Networks

Transformation Algorithm

Projection

Developable Surfaces

Suitable Map Projections

Mercator **Cylindrical** Projection

Lambert Conical Conformal Projection

Disproportionate Areas

Translation and Contraction

Time Complexity

→ Shapley's contain function is O(V) where V is the number of vertices in the polygon.
In order to optimize this, one can alter the variables in Polygon creation by OSRM to obtain smoother or a detailed polygon.

→ The compression factor also bears an inverse relationship in the time complexity

→ Overall, O(N*V/k) where N is the total number of input points, V the number of vertices in the polygon and k is the compression factor

Embedding

Road distance $d_Y(f(x), f(y))$ can be modeled as a **D-embedding** to Euclidean distance $d_X(x, y)$ with a **distortion D**, where $D \ge 1$ is a real number, if there is a number r > 0 such that for all $x, y \in X$

$$r \cdot d_{x}(x, y) \le d_{y}(f(x), f(y)) \le D \cdot r \cdot d_{x}(x, y)$$

This is an approximation embedding as an isometric embedding where,

$$d_{road}[f(x), f(y)] = d_{euc}[x, y]$$

Analysis

RMSE

The Mercator projection method is suitable while considering Haversine distance RMSE values between mercator and lambert projection using Haversine v/s Euc distance

RMSE

The Lambert conical conformal projection is a better fit when considering Road distance in the case of Chennai city

RMSE values between mercator and lambert projection using OSRM v/s Euc distance

Correlation Coefficient

Correlation values between mercator and lambert projection using OSRM v/s Euc distance

Distortion

→ A lower value of D indicates a better embedding, and thus, the Lambert projection was found to be a superior embedding method for the Road distance metric in Chennai city

→ D was calculated by dividing the sum of MSE by sum of euclidean distance squares

R here is the greatest lower bound (was determined using typical Shepard-Kruska' inbuilt algorithm)

Distortion value between Road and Euclidean distance in D-embedding

Bounds for Routing Algorithm

→ We try to predict the bounds of output for road distance data by utilizing the cost associated with euclidean distance

- → The obtained output values fall within the predicted upper and lower bounds, indicating that our model has effectively captured the relationship between road and euclidean distance
- However, this result may be specific to this particular dataset and still requires further testing before making a generalization

Bounds of O/P Cost between Road and Euclidean distance using D-embedding

Underlying City Network as a Standard Metric

F-Statistic

The code applies the k-means clustering algorithm to find how similar the clusters are in each metric

A high F-statistic indicates that the clusters are significantly different from each other, meaning the metric used is ineffective in capturing the underlying structure of the road network

Underlying City Network as a Standard Metric

Simple Efficiency Metric

We consider the harmonic mean efficiency for each value in the distance matrix.

This is suitable for local travel and transportation as it gives more weight to smaller distances.

Applications

Applications

City Planning

- Building new roads
- Optimising existing network
- Allocating resources for public transportation

Logistics and Delivery

- Optimising delivery routes
- Setting up headquarters or warehouses in ideally connected locations

Environmental Impact

 Locating areas contributing to air pollution due to traffic

Conclusions

→ Methodical Transformation - Inverse Map projection

→ City's Road Network analysis

Geometric Embedding of road distance