

Statistical Thinking (ETC2420/ETC5242)

Associate Professor Catherine Forbes

Week 7: Updating discrete probabilities

Learning Goals for Week 7

- Discuss model assessment tools for distributions fitted using MLE
- Transition to Bayesian Statistical Thinking
- Apply Bayes theorem in discrete cases

Assigned reading for Week 7:

■ Chapter 2 in *Doing Bayesian Data Analysis*, by J. K. Kruschke

Assessing model fit

Both CLT-based confidence intervals **and** Bootstrap-based confidence intervals

- Constructed from the output of an ML procedure
- Implicitly assume the selected "model" for ML is "correct" for the data

If the model doesn't match the data well

lacktriangle \Rightarrow parameter estimate and confidence interval(s) will not be very useful!

We need a way to assess the MODEL itself

- Is the fitted model suitable for the data?
- Use QQplots, which are based on pairs that match:
 - **theoretical** *n***-quantiles** (obtained by inverting the model's cdf) with
 - empirical n-quantiles (i.e. the sorted sample data values)
- If these pairs "match" then the model is a good fit to the data!

Relationship between quantiles (percentiles), the pdf and the cdf

- The cdf of X, denoted $F_X(c)$, returns a value $p \in [0,1]$
- This is equal to the area under the pdf of X, denoted $f_X(c)$, between $(-\infty, c]$

Inversion of a cdf

- \blacksquare Avoid potential inversion of cdf at 0 or 1 if range of distribution reaches $-\infty$ or ∞
 - e.g. set (n+1)-quantiles for $p_i = \frac{i}{n} \frac{1}{2n}$, $i = 1, 2, \dots, n$

Quantile-Quantile Plot (QQplot)

- A graphical tool (subjective visual check) to help assess if plausible that data came from specified distribution
 - e.g. a distribution from MLE fit
- Create scatterplot
 - ordered data (y-axis) against theoretical quantiles (x-axis), or
 - ordered sample data against ordered simulated data
- If both sets of quantiles from same distribution ⇒ points should lie on a straight line
 - if not straight, may get an idea of where data doesn't fit
- Often useful to add a line to QQplot
 - 45° line (perfect alignment)
 - ▶ line connecting specified quantiles (e.g. 25th- and 75th-%iles)

Example 1: $N(\mu, \sigma^2)$ against N(0,1) quantiles

Example 2: stat_qq() for different distributions

Example 3

About QQplots

- Can we test?
- H₀: data comes from the specified model vs. H₁ data does not come from the specified model
- In most cases, fit will not be perfect

Various approaches available for informal test:

- Use a 'thick-marker' judgment approach
- Use a bootstrap technique to obtain "confidence set"
- Embed QQplot from among many QQplots from data simulated from the model

Bootstrap MLE QQ plot

```
MLE.x <- fitsestimate # point estimate
boot.seg <- seg(1,n,1)/n-1/(2*n)
B < -500
MLE.x_boot <- matrix(rep(NA,2*B), nrow=B, ncol=2)
for(i in 1:B){
  temp <- sample(df$mydata, size=n, replace=TRUE)</pre>
  df <- df %>% mutate(temp=temp)
  MLE.x_boot[i,] <- fitdistr(temp, "normal")$estimate</pre>
  params_boot <- MLE.x_boot[i,]</pre>
  p <- p + stat_qq(aes(sample=temp), distribution = qnorm,</pre>
                    dparams = params_boot, colour="grey",
                    alpha=0.2)
p <- p + stat_qq(aes(sample=mydata), distribution = qnorm,</pre>
                  dparams = params) +
  qqtitle("QQ plot with B=500 Bootstrap replicates")
р
```

Bootstrap MLE QQ plot

Visual test

- Simulate K-1 samples of the same size from the fitted distribution
- Make additional QQ-plots for these simulated samples
- lacktriangle Randomly place QQ-plot of actual data among the K-1 comparator QQ-plots
- Try to spot the "odd-one-out" where data least compatible with the 45° line

Null and alternative hypotheses for visual test

- \blacksquare H_0 : actual data is a random sample from the fitted distribution, vs.
- H₁: actual data is not a from the fitted distribution
- \Rightarrow Reject H_0 if you can detect the QQplot constructed from the actual data
- Under H_0 , the chance of incorrectly rejecting H_0 is $\alpha = 1/(K)$

Visual test example

What do we do with the MLE?

- What do we do with a good model estimated using MLE?
- Use it to characterise features of the population, e.g. mean, median, IQR, event probabilities:

$$\begin{split} \hat{E}[X \mid \theta] &= E[X \mid \hat{\theta}_{\textit{MLE}}] \\ \hat{\textit{Median}}\{F_X(X \mid \theta)\} &= \textit{Median}\{F_X(X \mid \hat{\theta}_{\textit{MLE}})\} \end{split}$$

Use it to predict future outcomes or construct prediction intervals (assuming i.i.d)

$$\begin{split} \hat{E}[X_{n+1} \mid \theta] &= E[X_{n+1} \mid \hat{\theta}_{MLE}] \\ \hat{\Pr}(q_{0.025} \leq X_{n+1} \leq q_{0.975} \mid \theta) &= \Pr(q_{0.025} \leq X_{n+1} \leq q_{0.975} \mid \hat{\theta}_{MLE}) \end{split}$$

The invariance property of the MLE

- If $\hat{\theta}$ is the MLE of θ , then the MLE of a function $\tau(\theta)$ is $\hat{\tau}(\theta) = \tau(\hat{\theta})$
 - Bootstrap-based confidence intervals can be constructed
 - lacktriangle If au(heta) is a smooth function, then CLT-based confidence intervals can be obtained

Transition to Bayesian Thinking (Wasserman, 2004)

Frequentist inference (everything we have discussed so far...)

- Probability refers to limiting relative frequencies. Probabilities are objective properties of the real world.
- Parameters are fixed, unknown constants. Because they are not fluctuating, no useful probability statements can be made about parameters.
- Statistical procedures should be designed to have well-defined long run frequency properties. For example, a 95% confidence interval should trap the true value of the parameter with limiting frequency at least 95%.

Bayesian inference

- Probability describes degree of belief, and are inherently subjective. Prior belief can be updated, using data and a model for its behaviour.
- Probability statements can be made about parameters, even if parameters are conceived as being fixed, because our knowledge about them need not be fixed.
- lacktriangle We make inferences about a parameter, heta, by producing a probability distribution for heta. Inferences, such as point estimates and interval estimates, may then be extracted from this distribution.

Introduction to Bayesian statistics

- You all know about Bayes' theorem for calculating conditional probabilities
- Bayesian statistics applied Bayes' rule to modelling data
- e.g.
 - Fit models to data
 - Estimate unknown parameters
 - Characterising uncertainty in parameter estimates
 - Choosing between competing models
 - Predicting future events
 - Ensemble models
 - ...(and more)
- What make an approach "Bayesian"?
 - Using probabilities to characterise "belief"
 - Treat unknown parameters as "random", rather than being "fixed"
 - Condition on observed data

An example

You are the manager of a retail clothing store

- A customer returns a shirt purchased from the store that is faulty
- There are **only 3 manufacturers** who supply this particular shirt

Suppose it is known that

- **10**% of the clothing from M_1 (manufacturer 1) faulty
- **5%** from *M*₂ faulty
- **15%** from M_3 faulty

Which **manufacturer** produced the faulty shirt?

- Can statistics tell us anything about this?
- Note have only a single data point: X = 1

A model for the faulty shirt

Let p_i denote the probability that a shirt from M_i is faulty, for i = 1, 2, 3

Consider a **randomly selected shirt** could be either faulty (X = 1) or not (X = 0)

- For $M_i \Rightarrow X \sim Bernoulli(p_i)$ } random variable:
- lacktriangle The "success" probability (when X=1) depends on the manufacturer

We have

■ $Pr(X = 1 \mid M_i) = p_i \text{ for } i = 1, 2, 3$

We want

- $Pr(M_i \mid X = 1)$ for i = 1, 2, 3
- $\blacksquare \Rightarrow X \mid M_i \sim Bernoulli(p_i)$, where $p_1 = 0.10$, $p_2 = 0.05$ and $p_3 = 0.15$

Frequentist approach: Maximum likelihood estimation

We have a **model** for this one observation \Rightarrow a **likelihood function**:

$$\mathcal{L}(p) = p^{X}(1-p)^{1-X}, \text{ for } p \in \{p_1, p_2, p_3\}$$

This function $\mathcal{L}(p)$ can be maximised!

- view it as a function of p
- with X {fixed} at the observed X = 1

Manufacturer	Value of p	Likelihood	
M_i	p_i	$p_i = p_i^1 (1 - p_i)^0$	
M_1	0.10	0.09	
M_2	0.05	0.0475	
M_3	0.15	0.1275	

- \Rightarrow M_3 appears to be MOST LIKELY (not surprising!)
 - Note we cannot assess uncertainty around this guess

Prior information

Suppose we had some additional ("prior") information:

- 60% of the stock comes from M₁
- 30% from *M*₂
- 10% from M₃

Would knowing this prior information change your guess?

- After all, there are relatively few shirts from M_3
- Bayesian statistics helps us to answer questions like these
 - And more...
- For this we need to use **Bayes' theorem**:

$$\Pr(p_i \mid X = 1) = \frac{\Pr(X = 1 \mid p_i) \Pr(p_i)}{\sum_{j=1}^{3} \Pr(X = 1 \mid p_j) \Pr(p_j)}, \text{ for } i = 1, 2, 3$$

■ Notice the general form of **Bayes' theorem**:

Posterior \propto Likelihood imes Prior

Bayes' theorem: inverting probabilities

Review Probability from Week 6

$$\Pr(A \mid B \;) = \frac{\Pr(B \cap A)}{\Pr(B)} = \frac{\Pr(B \mid A) \Pr(A)}{\Pr(B \mid A) \Pr(A) + \Pr(B \mid A^c) \Pr(A^c)}$$

- $ightharpoonup \Pr(A)$ and $\Pr(A^c)$ are marginal probabilities ("prior")
- $Pr(A \mid B)$ and $Pr(A^c \mid B)$ are **conditional probabilities** ("**posterior**", after update)

More possibilities:

$$\Pr(\textit{A}_1 \mid \textit{B}\) = \frac{\Pr(\textit{B} \cap \textit{A}_1)}{\Pr(\textit{B})} = \frac{\Pr(\textit{B} \mid \textit{A}_1) \Pr(\textit{A}_1)}{\Pr(\textit{B} \mid \textit{A}_1) \Pr(\textit{A}_1) + \dots + \Pr(\textit{B} \mid \textit{A}_k) \Pr(\textit{A}_k)}$$

- $ightharpoonup \Pr(A_k)$'s are marginal probabilities ("prior")
- e.g. $Pr(A_1 \mid B)$'s is a **conditional probability** (**"posterior"**, after observing B)

Note this is for **discrete set** of possibilities A_1, A_2, \dots, A_k

Bayesian Solution to the retail problem

- Here we have **prior probabilities** for each p_i , i = 1, 2, 3
- Bayes theorem calculation:

-	Prior	Likelihood	Prior × Likelihood	Posterior
M_i	$\Pr(M_i)$	$\Pr(X=1\mid M_i)=p_i$	$\Pr(M_i)\Pr(X=1\mid M_i)$	$\Pr(M_i \mid X = 1)$
1	0.60	0.10	0.060	0.67
2	0.30	0.05	0.015	0.17
3	0.10	0.15	0.015	0.17
Column				
Total	1.0	_	0.09	1.0
			(denominator for Bayes' theorem)	

- Now $\Rightarrow M_1$ appears to be MOST PROBABLE, with
- $Pr(M_1 \mid X = 1) = 67\%$
- $ightharpoonup \Pr(M_2 \mid X = 1) = 17\%$
- $ightharpoonup \Pr(M_3 \mid X = 1) = 17\%$

What if you didn't believe a specific coin was fair?

Bayesians could put prior probabilities over a collection $p \in \{p_1, p_2, \dots, p_k\}$ Or could assume belief for p over continuum $p \in (0, 1)$ (e.g. $p \sim Uniform(0, 1)$)

In either case

- ⇒ Can work out updated probabilites after viewing tosses of specific coin (data) using Bayes' theorem
- Then we update subjective prior belief, given data

Let data X = number of heads ("successes") in n coin tosses

- This is a **model** for the random variable X, given parameter p
- $\blacksquare \Rightarrow X \sim Binomial(n,p)$

$$P(X = x \mid n, p) = \binom{n}{x} p^{x} (1-p)^{n-x} \text{ for } x \in \{0, 1, 2, ..., n\}$$

■ When viewed as a function of p, with X = x fixed \Rightarrow **likelihood function** $\mathcal{L}(p)$

Bayes theorem for Binomial observation, with a discrete prior

- $lue{}$ After observing data X=x, we update our beliefs and calculate the posterior distribution
- Assign **prior probabilities** $\{\pi_1, \pi_2, \dots, \pi_K\}$ over a discrete set of points $\{p_1, p_2, \dots, p_K\}$,
 - i.e. $Pr(p = p_i) = \pi_i$, for i = 1, 2, ..., K
 - \triangleright p_i is like A_i , and X is like B in Bayes' theorem
- We use Bayes theorem similar to in the "shirt problem"
 - ▶ $\Pr(p_i \mid X = x) \propto Prior \times Likelihood$, subject to $\sum_{i=1}^K \Pr(p_i \mid X = x) = 1$

	n :	1.91 191 1	B : 13 13 1	Б
	Prior	Likelihood	Prior × Likelihood	Posterior
p_i	$\Pr(p=p_i)$	$\Pr(X = x \mid p_i)$	$\Pr(p = p_i) \Pr(X = x \mid p_i)$	$\Pr(p_i \mid X = x)$
p_1	π_1	$p_1^x (1-p_1)^{n-x}$	$\pi_1 p_1^x (1-p_1)^{n-x}$	$\pi_1 p_1^x (1-p_1)^{n-x}/m(x)$
p_2	π_2	$p_2^x (1-p_2)^{n-x}$	$\pi_2 p_2^x (1-p_2)^{n-x}$	$\pi_2 p_2^x (1-p_2)^{n-x}/m(x)$
:	:	:	:	:
			•	
p_K	$\pi_{\mathcal{K}}$	$p_K^x(1-p_K)^{n-x}$	$\pi_{K} p_{K}^{x} (1-p_{K})^{n-x}$	$\pi_K p_K^x (1-p_K)^{n-x}/m(x)$
Column				
Total	1.0	_	$m(x) = \sum_{k=1}^{K} \pi_k p_k^X (1 - p_k)^{n-X}$	1.0
			(denominator for Bayes' theorem)	