四川大学软件学院数字逻辑实验

实验报告

学号:

姓名: 专业: 软件工程 班级:

第 15 周

实验项 目	同步十进制计数器	实验时间	2023年5月31日	
实验目	(1) 学会 Quartus II 软件的使用,利用其进行原理图的设计。			
的	(2)加深对课堂学习的组合逻辑电路的认 (3)增强实际动手能力,将设计电路运行。		7组合逻辑电路。	
实验环境	Quartus II 、Windows 11			
实容骤电理/V程管配真等展也验及(路 rilo字脚、结;内列内步含原图 g、分仿果扩容入				
也列入本栏)	在实验一的电路基础上,导入 clk_in (输) 依据卡诺图化简结果,使用 D 触发器实现同		lk_out(输出分频后的时钟)。并	

烧录实验的逻辑电路,运行正常

实验结 果分析 使用 D 触发器设计一个计数部分,使用分频模块对时钟进行分频,分频后的时钟作为输入时钟,实现一个同步十进制计数器,计数范围 0-9。实验结果与数字逻辑的设计相吻合。

实验方 案的缺 陷及改 进意见	每次给一个七段译码器绘制逻辑电路会显得杂乱无章,后续难以修改,可以将输入单独列出并将其命名,后续可以给输入命名相同的名称,这样可以省略输入端的绘制。使用卡诺图推导 Q3, Q2, Q1, Q0 时极易出错,需要仔细进行运算化简。		
心得体 会、问 题讨论	软件中存在内置的 D 触发器,可以选择使用来进行逻辑电路的简化。卡诺图化 简需要仔细认真,否则若逻辑电路绘制出错,运行会产生错误		
指导老师评 议	成绩评定: 指导教师签名:		