Database Management System (DBMS) Lecture-30

Dharmendra Kumar October 31, 2020

Unit-3

Relational Database Design

Functional dependency

Consider a relation schema R, and let $\alpha \subseteq R$ and $\beta \subseteq R$. The functional dependency $\alpha \to \beta$ holds on relation schema R if, in any legal relation r(R), for all pairs of tuples t_1 and t_2 in r such that $t_1[\alpha] = t_2[\alpha]$, then $t_1[\beta] = t_2[\beta]$ must also satisfy with in r(R).

Super key: A subset α of a relation schema R is said to be super key of R if $\alpha \to R$ holds.

Candidate key: A subset α of a relation schema R is said to be super key of R if

- (1) α should be super key of R i.e. $\alpha \to R$.
- (2) There should not exist any proper subset K of α such that K \rightarrow R.

Example: Consider the following relation :-

Α	В	С	D
a_1	b_1	<i>c</i> ₁	d_1
a_1	b_2	<i>c</i> ₁	d_2
a ₂	b_2	<i>c</i> ₂	d_2
<i>a</i> ₂	b_2	<i>c</i> ₂	d_3
a 3	<i>b</i> ₃	<i>c</i> ₂	d ₄

Find out which functional dependencies are satisfied.

Observe that $A \rightarrow C$ is satisfied. There are two tuples that have an A value of a_1 . These tuples have the same C value namely, c_1 . Similarly, the two tuples with an A value of a_2 have the same C value, c_2 . There are no other pairs of distinct tuples that have the same A value. The functional dependency $C \rightarrow A$ is not satisfied, however. To see that it is not, consider the tuples $t_1 = (a_2, b_3, c_2, d_3)$ and $t_2 = (a_3, b_3, c_2, d_4)$. These two tuples have the same C values, c_2 , but they have different A values, a_2 and a_3 , respectively. Thus, we have found a pair of tuples t_1 and t_2 such that $t_1[C] = t_2[C]$, but $t_1[A] \neq t_2[A]$.

Some other functional dependencies which satisfied are the following:-

AB \rightarrow C, D \rightarrow B, BC \rightarrow A, CD \rightarrow A, CD \rightarrow B, AD \rightarrow C.

Trivial functional dependency

A functional dependency $\alpha \to \beta$ is said to be trivial if $\beta \subseteq \alpha$. Some trivial functional dependencies are the following:- ABC \to C, CD \to C, A \to A.

Closure of a Set of Functional Dependencies

Consider F is a set of functional dependencies defined on relation schema R.

Closure of F is the set of all the functional dependencies which are logically implied(or derived) from F. It is denoted by F^+ .

Armstrong's axioms

Following three rules are said to be Armstrong's axioms.

- Reflexivity rule: If α is a set of attributes and $\beta \subseteq \alpha$, then $\alpha \to \beta$ holds.
- Augmentation rule: If $\alpha \to \beta$ holds and γ is a set of attributes, then $\gamma \alpha \to \gamma \beta$ holds.
- Transitivity rule: If $\alpha \to \beta$ holds and $\beta \to \gamma$ holds, then $\alpha \to \gamma$ holds.

Some additional rules are the following:-

- Union rule: If $\alpha \to \beta$ and $\alpha \to \gamma$ holds, then $\alpha \to \beta \gamma$ holds.
- Decomposition rule: If $\alpha \to \beta \gamma$ holds then $\alpha \to \beta$ and $\alpha \to \gamma$ holds.
- Pseudo transitivity rule: If $\alpha \to \beta$ holds and $\gamma\beta \to \delta$ holds, then $\gamma\alpha \to \delta$ holds.

Example: Consider relation schema R = (A, B, C, G, H, I) and the set F of functional dependencies $A \rightarrow B$, $A \rightarrow C$, $CG \rightarrow H$, $CG \rightarrow I$, $B \rightarrow H$. We list several members of F+ here:

- A \rightarrow H. Since A \rightarrow B and B \rightarrow H hold, we apply the transitivity rule.
- \bullet CG \to HI . Since CG \to H and CG \to I , the union rule implies that CG \to HI.
- AG \to I. Since A \to C and CG \to I, the pseudo transitivity rule implies that AG \to I holds.

Note: The left-hand and right-hand sides of a functional dependency are both subsets of R. Since a set of size n has 2^n subsets, therefore there are a total of $2 \times 2^n = 2^{n+1}$ possible functional dependencies, where n is the number of attributes in R.

Algorithm to compute F^+ using Armstrong's axioms

In this algorithm, the input will be F and R. It is computed by following algorithm:-

```
Input: F and R
Output: F^+
F^+ \leftarrow F
repeat
    for for each functional dependency f in F^+ do
         apply reflexivity and augmentation rules on f
         add the resulting functional dependencies to F^+
    end
    for each pair of functional dependencies f_1 and f_2 in F^+ do
         if f_1 and f_2 can be combined using transitivity rule then
             add the resulting functional dependency to F^+
         end
    end
until F^+ does not change any further;
```

Algorithm 1: A procedure to compute F+