IRAN UNIVERSITY OF SCIENCE AND TECHNOLOGY

Discrete mathematics Problem Set #3

Ali Heydari

March 18, 2018

1 Give the predicates

In each of the following, write a statement in first-order logic that expresses the indicated sentence. Your statement may use any first-order construct (equality, connectives, quantifiers, etc.), but you must only use the predicates, functions, and constants provided. You do not need to provide the simplest formula possible, though we'd appreciate it if you made an effort to do so.

i. Given the predicates

Natural(x), which states that x is an natural number

and the functions

x + y, which represents the sum of x and y, and

x.y, which represents the product of x and y

write a statement in first-order logic that says "for any $n \in \mathbb{N}$, n is even if and only if n^2 is even."

Answer. ANSWER HERE.

ii. Given the predicate

Person(p), which states that p is a person;

Kitten(k), which states that k is a kitten; and

HasPet(o, p), which states that o has p as a pet,

write an FOL statement that says "someone has exactly two pet kittens and no other pets."

Answer. ANSWER HERE.

iii. The *axiom of pairing* is the following statement: given any two distinct objects x and y, there's a set containing x and y and nothing else. Given the predicates

 $x \in y$, which states that x is an element of y, and

Set(S), which states that S is a set,

write a statement in first-order logic that expresses the axiom of pairing.

Answer. ANSWER HERE.

iv. Given the predicates

 $x \in y$, which states that x is an element of y, and Set(S), which states that S is a set,

write a statement in first-order logic that says "every set has a power set."

Answer. ANSWER HERE.

v. Given the predicates

Lady(x), which states that x is a lady;

Glitters(x), which states that x glitters;

SureIsGold(x, v), which states that x is sure that y is gold;

Buying(x, v), which states that x buys y; and

Stuirway To Heaven(A), which states that x is a Stairway to Heaven;

write a statement in first-order logic that says "there's a lady who's sure all that glitters is gold, and she's buying a Stairway to Heaven."

Answer. ANSWER HERE.

2 Consistent vocabulary

Represent the following sentences in first-order logic, using a consistent vocabulary (which you must define):

a. Some students took French in spring 2001.

Answer. ANSWER HERE.

b. Every student who takes French passes it.

Answer. ANSWER HERE.

c. Only one student took Greek in spring 2001.

Answer. ANSWER HERE.

d. The best score in Greek is always higher than the best score in French.

Answer. ANSWER HERE.

e. Every person who buys a policy is smart.

Answer. ANSWER HERE.

f. No person buys an expensive policy.

Answer. ANSWER HERE.

g. There is an agent who sells policies only to people who are not insured.

Answer. ANSWER HERE.

h. A person born in the UK. each of whose parents is a UK citizen or a UK resident, is a UK citizen by birth.

Answer. ANSWER HERE.

i. A person born outside the UK, one of whose parents is a UK citizen by birth, is a UK citizen by descent.

Answer. ANSWER HERE.

j. Politicians can fool some of the people all of the time, and they can fool all of the people some of the time, but they can't fool all of the people all of the time.

Answer. ANSWER HERE.

3 Germans

Represent the sentence "All Germans speak the same languages" in predicate calculus. Use Speaks(x, l), meaning that person x speaks language l, and German(y), meaning that y is a German person.

```
Answer. \forall x,y,l \quad (German(x) \land German(y) \land Speaks(x,l) \quad \Rightarrow \quad Speaks(y,l)) or \forall x,y \quad (German(x) \land German(y) \quad \Rightarrow \quad \forall l \quad (Speaks(x,l) \quad \Leftrightarrow \quad Speaks(y,l)))
```

4 Jim & Laura

What axiom is needed to infer the fact Female(Laura) given the facts Male(Jim) and Spouse(Jim, Laura)?

Answer. ANSWER HERE.

5 Describing the predicates

Write axioms describing the predicates: GrandChild, GreatGrandparent, Brother, Sister, Daughter, Son, Aunt, Uncle, BrotherInLaw, SisterInLaw and FirstCousin. Find out the proper definition of math cousin n times removed, and write the definition in first-order logic.

Answer.

- $GrandChild(a, b) \Rightarrow parent(b, x) \land parent(x, a)$
- $GreatGrandparent(a, b) \Rightarrow parent(a, x) \land GrandChild(b, x)$
- The Sibling relationship is added to make the expression of some future relationships simpler. In this situation, Sibling encompasses full, half and step siblings.

```
-Sibling(a,b) \Rightarrow parent(x,a) \land parent(x,b) \land not_equal(a,b)-Sibling(a,b) \Rightarrow Sibling(b,a)
```

- $Brother(a, b) \Rightarrow Sibling(a, b) \land gender(a, 'male')$
- $Sister(a,b) \Rightarrow Sibling(a,b) \land gender(a,'female')$
- $Son(a,b) \Rightarrow parent(b,a) \land gender(a,'male')$
- $Daughter(a,b) \Rightarrow parent(b,a) \land gender(a,'female')$
- $Uncle(a,b) \Rightarrow parent(x,b) \wedge Sibling(x,a) \wedge gender(a,'male')$
- $Aunt(a,b) \Rightarrow parent(x,b) \land Sibling(x,a) \land gender(a,'female')$
- married is a primitive relation, meaning it is not defined in terms of any other relations. It is necessary however to note that it is reflexive.

```
- married(a, b) \Rightarrow married(b, a)
```

- $BrotherInLaw(a,b) \Rightarrow married(b,x) \land Sibling(a,x) \land gender(a,'male')$
- $SisterInLaw(a,b) \Rightarrow married(b,x) \land Sibling(a,x) \land gender(a,'female')$
- $FirstCousin(a,b) \Rightarrow parent(x,a) \land parent(y,b) \land Sibling(x,y)$

6 Humanoid wolf

QUESTION HERE.

i. ITEM

Answer. ANSWER HERE.

ii. ITEM

Answer. ANSWER HERE.

iii. ITEM

Ali Heydari Problem Set #3 March 18, 2018

Answer. ANSWER HERE.

iv. ITEM

Answer. ANSWER HERE.

v. ITEM

Answer. ANSWER HERE.

vi. ITEM

Answer. ANSWER HERE.