NP-Hardness

Not all problems are solvable with a reasonable efficiency. This categorization aims to partition problems based upon how "efficiently" solvable they are.

An example of a problem which is not solvable would be the coloring problem of graphs or a modified scheduling problem.

Given jobs j_1, \ldots, j_n and dwartion d_1, \ldots, d_n respectively; what is the optimal scheduling of these jobs on k identical processors, P_1, \ldots, P_k ?

No efficient algo found till date

Class P

A problem π belongs to the class P of there exists an algorithm which finds the correct result for any input π in time O(poly 121).

Class NP

A problem To belongs to NP if there exists a polynomial time verifying algorithm To and a possible polynomial sized assignment y for the case given by a such that:

- It a is a positive assignment; Iy. T(z,y) true
- If x is a negative assignment; $y \cdot \Upsilon(x, y) = false$ Note that PCNP.

In the above definition, It is a deterministic problem. That is, instead
of "Find valid coloring." we ask "Does there exist a coloring?"
Similarly, "Find shortest path" becomes "Does there exist a path of
length atmost 4?" where v is input.
Polynomial Reduction
Consider two problems II, and II. We say that II, is polynomial time
reducible to Tto if there exists a polynomial time function of such that
for every input W, WET, \(\rightarrow \(\lambda \) \(\mathbb{E} \mathbb{T}_2 \).
We are essentially stating that Tz is at least as hard as Ti; and
that we can solve T, if we can solve T.
T_1 is polynomial time reducible to $T_2 \Rightarrow T_1 \leq_m T_2$
NP-Hord
A problem It is NP-hard if ITENP and for every problem IT'ENP
で とって
A problem which both belongs to NP and is NP-haved is said to be
NP_ complete.
ı

Since many important problems are NP-hand in nature, we try to give
hewristics which work good enough for practical situations. For
optimization problems, we can try to give C-approximate algorithms
which differ from the optimal by a factor of C.