Contents

Mealy and Moore m/cs

Section outline

- Mealy and Moore m/cs
 - Mealy m/c
 - D flip flop
 - Mealy m/c ex 1
 - Mealy m/c ex 2
 - Mealy m/c ex 3
 - Mealy m/c ex 4

- Moore m/c
- Moore m/c ex 1
- Moore m/c ex 2
- Moore m/c ex 3
- Moore m/c ex 4
- Mealy to Moore conversion
- Mealy→Moore ex 1
- Mealy→Moore ex 2
- Moore→Mealy ex 1

Mealy m/c

- Mealy machines are finite state machines whose outputs depends on the present state and on the inputs
- It can be defined as $\langle Q, q_0, \Sigma, \Delta, \delta, \lambda \rangle$ where:
- Q is a finite set of states
 - q_0 is the initial state
 - \sum is the input alphabet
 - △ is the output alphabet
 - δ is transition function which maps $Q \times \Sigma \rightarrow Q$
 - λ is the output function which maps $Q \times \Sigma \rightarrow \Delta$

D flip flop

- At the appropriate edge of clock data is transferred from D to Q
- Two SR latches in series clocked with complementary clocks to prevent racing through the FF and the combinational circuits
- Synchronous or asynchronous preset/clear possible
- Some problems still possible, better circuit to be discussed later

DFF (-ve edge) with synchronous present/clear

DFF (-ve edge) with asynchronous present/clear

Example (2's complement of input, starting from LSB)

•
$$\Sigma = \{0, 1\}$$

•
$$\Delta = \{0, 1\}$$

_	noo	dings	Other	en-	
	1		_	codings	also
q_0	'	q_1	U	possible	Э

	0		1		I
PS	NS	0	NS	0	PS
					q_0

I	0		1	
PS	NS O		NS O	
0	0	1	0	0
1	1	0	0	1

Example (Output A on 101, B on 110, C otherwise)

0/B

- $\Sigma = \{0, 1\}$
- $\bullet \ \Delta = \{A, B, C\}$

 q_3

Encodings

0/C

		٠ چ	•		
q_0	00	Α	01	Other codings	en-
q_1	01	В	10	codings	also
q_2		С	00	possible	Э
q_3	11				

1/C

I	0		1		I
PS	NS	0	NS	0	PS
					q_0

I	C)	1	
PS	NS	0	NS	0
00	00	00	01	00
01	10	00	11	00
10	01	00	01	01
11	10	10	11	00

Example (Output on ending with 00:A, 11:B, C, otherwise)

start

$$\bullet \ \Delta = \{A, B, C\}$$

Encodings

q ₀	000	q_3	011	Α	01
q_1	000 001	q_4	100	В	10
q_2	010			С	00

	0			1			I	
PS	NS	0	1	NS	0		PS	S
							90)
ı		0			1			
PS	NS	0		NS	S		0	
000	001	00)	01	1	(00	
001	010	01		00	0	(00	
010	010	01		01	1	(00	
010	000	00)	10	0	()1	
100	001	00)	10	0	(01	

Example (Serial adder, starting from LSB)

•
$$\Sigma = \{00, 01, 10, 11\} \triangleq \{\langle a_i, b_i \rangle\}, i \geq 0$$

$$\bullet \ \Delta = \{00, 01, 10, 11\} \triangleq \left\{\left\langle s_i, c_i^0 \right\rangle \right\}, i \geq 0$$

Ī	00)	0.	1	10)	11		T
PS	NS	0	NS	0	NS	0	NS	0	PS
									q_0

ı	0	0	01		10		11	
PS	NS	0	NS	0	NS	0	NS	0
0	0	00	0	10	0	10	1	01
1	0	10	1	01	1	01	1	11

Complete the realisation using DFF

Encodings $q_0 = 0$ $q_1 = 1$

Moore m/c

- Moore machines are finite state machines whose outputs depends only on the present state
- It can be defined as $\langle Q, q_0, \Sigma, \Delta, \delta, \lambda \rangle$ where:
- Q is a finite set of states
 - q_0 is the initial state
 - \sum is the input alphabet
 - △ is the output alphabet
 - δ is transition function which maps $Q \times \Sigma \rightarrow Q$
 - λ is the output function which maps $Q \to \Delta$

Conversion of Moore m/c to a Mealy m/c

- The Mealy m/c has the same set of states and transitions as the Moore m/c
- $\forall a \in \Sigma, q \in Q : \lambda_{\mathsf{Mealy}}(q, a) = \lambda_{\mathsf{Moore}}(\delta_{\mathsf{Moore}}(q, a))$

Example (Acceptor for even 0s, odd 1s)

- $\Sigma = \{0, 1\}$
- $\Delta = \{0, 1\}$

Encodings

EE	00	OE	01
EO	01	00	11

PS	N	0	
	I=0		
EE	OE	0	
OE	EE	00	0
EO	00	1	
00	EO	OE	0

PS	N	0	
	I=0	I=1	
00	10	10	0
10	00	11	0
10	11	00	1
11	10	10	0

Example (Remainder on division by 3, from MSB)

- $\Sigma = \{0, 1\}$
- $\Delta = \{00, 01, 10\}$

- Initial remainder is taken as zero
- On every new bit existing remainder is doubled
- Also, add 1 to new remainder on getting 1, nothing for 0

PS	N	0	
	I=0	l=1	
R0 (00)	R0 (00)	R1 (01)	00
R1 (01)	R2 (10)	R0 (00)	01
R2 (10)	R1 (01)	R2 (10)	10

Example (Remainder on division by 3, from LSB)

- $\Sigma = \{0, 1\}$
- $\Delta = \{00, 01, 10\}$

Encodings

E0	000	E1	001	E2	010
O0	100	O1	101	O2	110

- Initial remainder is taken as zero
- 1 on an even index bit adds 1 to the accumulated remainder
- 1 on an odd index bit adds 2 to the accumulated remainder
- Need to keep track of parity of bit index being handled

Example (Output A on 101, B on 110, C otherwise)

- $\Sigma = \{0, 1\}$
- $\Delta = \{00, 01, 10\} \triangleq \{C, A, B\}$

Encodings

					9-				
$\overline{q_0}$	000	q_1	001	q_2	011 111	Α	01	С	00
q_3	010	q_4	110	q ₅	111	В	10		

Mealy to Moore conversion

- In the Mealy m/c let s_i have input transitions with outputs $O_{i_1}, O_{i_2}, \ldots, O_{i_n}$
- In the Moore m/c create states $s_{i,j_1}/o_{j_1}, s_{i,j_2}/o_{j_2}, \ldots, s_{i,j_i}/o_{j_i}$
- $s_{i,i_k}/o_{i_k}$ means copy of Mealy m/c state s_i as s_{i,i_k} to output o_{i_k} in the Moore m/c
- If there is a transition from s_i to s_i on input a with output o_k in the Mealy m/c, create a transition on a from each copy of s_i to $s_{i,k}$
- For the Moore m/c, let o_{ϵ} be a special symbol which is output at the beginning when no inputs have been received, then $\Delta_{\mathsf{Moore}} = \Delta_{\mathsf{Mealy}} \cup \{o_{\epsilon}\}$
- A new state q_0'/o_ϵ is created as the initial state of the Moore m/c
- Sucessors of q_0'/o_{ϵ} are same as those of any copy of q_0 in the created Moore m/c
- However, if the start state in Mealy m/c has not been split to multiple states, that may be retained as the start state of the Moore m/c; here o_{ϵ} is arbitrarily taken as the unique output of q_0

Mealy→Moore ex 1

Example (2's complement of input, starting from LSB)

Here the output initial state state has been set to 0 as all incoming transitions to q_0 in the Mealy m/c had output a 0

Mealy→Moore ex 2

Example (Serial adder, starting from LSB)

For the adder $q_{i,o_{\epsilon}}/o_{\epsilon}$ is semantically not needed, $q_{0,00}/00$ may be retained as the initial state

Moore→Mealy ex 1

