Advanced Math Notes

Yuchen Wang

May 5, 2019

Contents

1	Free parameter	2
2	2.1 Definition	2 2 2 2
3	Softmax Function	3
4	Cross Entropy	3
5	Cross Product in Higher Dimensions	4

Notes by Y.W. 2 RECTIFIER

1 Free parameter

A variable in a mathematical model which cannot be predicted precisely or constrained by the model and must be estimated experimentally or theoretically.

2 Rectifier

2.1 Definition

An activation function defined as the positive part of its argument:

$$f(x) = \max(0, x)$$

Also known as: ramp function

A unit employing the rectifier is also called a rectified linear unit (ReLU)

2.2 Softplus

A smooth approximation to the rectifier is the analytic function

$$f(x) = \log(1 + e^x)$$

Also known as: SmoothReLU The derivative of softplus is

$$f'(x) = \frac{1}{1 + e^{-x}}$$

(the logistic function)

Notes The logistic function is a smooth approximation of the derivative of the rectifier, the **Heaviside step function**

2.3 Multivariable Generalization to Softplus

LogSumExp with the first argument set to zero

$$LSE_0^+(x_1,\ldots,x_n) := LSE(0,x_1,\ldots,x_n) = \log(1+e^{x_1}+\ldots+e^{x_n})$$

Notes The LogSumExp function itself is:

$$LSE(x_1, \dots, x_n) = \log(e^{x_1} + \dots + e^{x_n})$$

and its gradient is the softmax.

The softmax with the first argument set to zero is the multivariable generalization of the logistic function.

3 Softmax Function

The softmax function takes an un-normalized vector, and normalizes it into a probability distribution. That is, prior to applying softmax, some vector elements could be negative, or greater than one; and might not sum to 1; but after applying softmax, each element x_i is in the interval [0, 1], and $\sum_i x_i = 1$

$$\sigma : \mathbb{R}^K \to \{ \sigma \in \mathbb{R}^K | \sigma_i > 0, \sum_{i=1}^K \sigma_i = 1 \}$$
$$\sigma(\mathbf{z})_j = \frac{e^{z_j}}{\sum_{k=1}^K e^{z_k}}$$

for j = 1, ..., K

4 Cross Entropy

The <u>Cross entropy</u> between two probability distributions p and q over the same underlying set of events measures the average number of bits needed to identify an even drawn from the set if a coding scheme used for the set is optimized for an estimated probability distribution q, rather than the true distribution p.

Discrete distributions

$$H(p,q) = -\sum_{x \in \chi} p(x) \, \log q(x)$$

Continuous distributions

$$H(p,q) = -\int_{\mathcal{X}} P(x) \log Q(x) dr(x)$$

5 Cross Product in Higher Dimensions

A way of turning 3 vectors in 4-space into a fourth vector, orthogonal to the others, in a trilinear way

Canonical basis of \mathbb{R}^4 : (e_1, e_2, e_3, e_4) . If your vectors are $\mathbf{t} = (t_1, t_2, t_3, t_4)$, $\mathbf{u} = (u_1, u_2, u_3, u_4)$ and $\mathbf{v} = (v_1, v_2, v_3, v_4)$, then compute the determinant:

$$\begin{vmatrix} t_1 & t_2 & t_3 & t_4 \\ u_1 & u_2 & u_3 & u_4 \\ v_1 & v_2 & v_3 & v_4 \\ e_1 & e_2 & e_3 & e_4 \end{vmatrix}$$

The cross product of \mathbf{t} , \mathbf{u} , \mathbf{v} is:

$$-e_1 \begin{vmatrix} t_2 & t_3 & t_4 \\ u_2 & u_3 & u_4 \\ v_2 & v_3 & v_4 \end{vmatrix} + e_2 \begin{vmatrix} t_1 & t_3 & t_4 \\ u_1 & u_3 & u_4 \\ v_1 & v_3 & v_4 \end{vmatrix} - e_3 \begin{vmatrix} t_1 & t_2 & t_4 \\ u_1 & u_2 & u_4 \\ v_1 & v_2 & v_4 \end{vmatrix} + e_4 \begin{vmatrix} t_1 & t_2 & t_3 \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix}$$