

SEQUENCE LISTING

<110> Paul B. Fisher
Rahul V. Gopalkrishnan

<120> Anti-tumor Effects of Prostate Carcinoma
Tumor Antigen-1

<130> A34694-A-PCT-USA-A

<140> To Be Assigned
<141> 2004-03-08

<150> PCT/US02/28587

<151> 2002-09-06

<150> 09/948,227

<151> 2001-09-07

<160> 19

<170> FastSEQ for Windows Version 4.0

<210> 1
<211> 1019
<212> DNA
<213> homo sapiens

<400> 1
agtaagcagc cagccattcc aagtggttga catgactttg tttaacttta tttgtatttc 60
tggctggtgt gtttacagcc aataggtaaa actatcaactc agtgttagggc cctgagaagt 120
cggttattta agagcatcta ataggcacag aattgtgctc catactgctt aaactgttcc 180
ctaagtgtcc aatttggaga aaacacccac acgcaggata accggcgagt gacgcggagt 240
ggctgcgagt ccaagttatc actaacggat ggggagcttg ggctgggcac agtccagcgt 300
actgaaccct tcccccaccc tttcacctgc atacagaggt gtgtactgtc aaaaagcagc 360
gcctccaagt ctcttctggc actgtctgga cttggatccg aggccagacga ggaagctgag 420
aaaaccctgg cggtgacccc gtggacctgg gcgcgggggg aaggccagcg cttggtccag 480
gcaggcgggg cctgtgcggt gaccacccctg gtccctgaaaa gtcccgaccc cgagcggccct 540
ccctccctaga cctggaggcc tggaacagcc aggtggacgt cggcccacct ttctttctt 600
tccttccat ttccttacca cctcccaccc cactccgcct tccgggcaaa ggcagccaga 660
tccacccagg acacatttt tgtccttatac cctctgtgtc cgtccccacag caagccagtc 720
gcggtccaag gtcggcagg ctgtgcagga ggccgagctg ggtggcgatc agcggcgggt 780
ccctgtccaa aacccagcag agccgcagg gacgccccag acacagaagg cggggcgcgg 840
ggagggtggg gagaccacag cagtggaggcg cgcgagccgg gaagtgaacg aggactgact 900
cctgtcgctt ccgtagccgc cacggacgcc agagccggga accctgacgg cacttactgc 960
tgacaaaacaa cctgctccgt ggagcgccctg aaacccaatc tttgggtgag tcgcgcgac 1019

<210> 2
<211> 173
<212> DNA
<213> homo sapiens

<400> 2
agtaagcagc cagccattcc aagtggttga catgactttg tttaacttta tttgtatttc 60
tggctggtgt gtttacagcc aataggtaaa actatcaactc agtgttagggc cctgagaagt 120
cggttattta agagcatcta ataggcacag aattgtgctc catactgctt aaa 173

<210> 3
<211> 3850
<212> DNA
<213> homo sapiens

<400> 3

cggcacgagc ggcacgagag aagagactcc aatcgacaag aagctggaaa agaatgatgt 60
tgtcctaaa caacctacag aatatcatct ataaccggc aatcccgtt gttggcacca 120
ttcctgatca gctggatcct ggaactttga ttgtgatacg tggcatgtt cctagtgacg 180
cagacagatt ccaggtggat ctgcagaatg gcagcagcgt gaaacctcga gccgatgtgg 240
ccttcattt caatcctcgt ttcaaaaggc ccggctgcat tgtttgcata actttgataa 300
atgaaaaatg gggacggaa gagatcacct atgacacgccc tttcaaaaga gaaaagtctt 360
ttgagatcgt gattatggtg ctgaaggaca aattccaggt ggctgtaaat ggaaaacata 420
ctctgctcta tggccacagg atcggcccg agaaaataga cactctggc atttatggca 480
aagtgaatat tcactcaatt ggttttagct tcagctcgga ctacaaaagt acccaacat 540
ctagtctgga actgacagag atagtttagag aaaatgtcc aaagtctggc acgccccagc 600
ttagcctgcc attcgctgca aggttgaaca ccccccattggg ccctggacga actgtcgtcg 660
ttcaaggaga agtgaatgca aatgccaaa gcttaatgt tgacctacta gcagggaaaat 720
caaaggatata tgctctacac ttgaacccac gcctgaatata taaagcattt gtaagaaatt 780
cttttctca ggagtcctgg ggagaagaag agagaaatata tacctcttc ccatttagtc 840
ctgggatgta ctttgagatg ataattttt gtgatgttag agaattcaag gttgcagtaa 900
atggcgtaca cagcctggag tacaaaacaca gatttaaaga gctcagcgt attgacacgc 960
tggaaattaa tggagacatc cacttactgg aagtaaggag ctggtagcct acctacacag 1020
ctgctacaaa aacccaaaata cagaatggct tctgtgatac tggccttgct gaaacgcattc 1080
tcactggtca ttctattgtt tatattgttta aatgagctt gtgcaccatt aggtcctgct 1140
gggtgttctc agtccttgcc atgacgtatg gtgggtctc gcactgaatg gggaaactgg 1200
gggcagcaac acttatagcc agttaaagcc actctgcctt ctctcctact ttggctgact 1260
cttcaagaat gccattcaac aagtattttt ggagtagacta ctataataca gtagctaaca 1320
tgtatttgagc acagattttt tttggtaat ctgtgaggag cttaggatata tacttggtga 1380
aacaaaaccag tatgttccct gttcttgcata gcttcgactc ttctgtgcgc tactgctcg 1440
caactgcttt tctacaggca ttacatcaac tcctaagggg tcctctgggta tttagttatgc 1500
agatattaaa tcacccgaag acactaactt acagaagaca caactccttc cccagtgatc 1560
actgtcataa ccagtgcctc gccgtatccc atcaactgagg actgatgttgc actgacatca 1620
tttttttat cgtataaaac atgtggctctt attagctgca agctttacca agtaattggc 1680
atgacatctg agcacagaaaa ttaagccaaa aaaccaaagc aaaacaaata catggctgctg 1740
aaattaactt gatgccaagc ccaaggcagc tgatttctgt gtatttgaac ttacccggaa 1800
tcagagtcta cacagacgccc tacagaagtt tcaggaagag ccaagatgca ttcaatttgc 1860
aagatattta tggccaacaa agtaaggctc ggatttagact tcaggcattc ataaggcagg 1920
caactatcaga aagtgtacgc caactaaggc acccacaaag caggcagagg taatgcagaa 1980
atctgttttgc ttcccatgaa atcacaatc aaggcctccg ttcttctaaa gattgtcca 2040
tcatcattag caactgagat caaagcactc ttccacttta cgtgattaaa atcaaaccctg 2100
tatcagcaag ttaaatgggtt ccatttctgt gattttcttta ttatttgagg ggagttggca 2160
gaagttccat gtatatggga tctttacagg tcagatcttgc ttacaggaaa tttcaaaagg 2220
ttgggagttgg ggagggaaaa aagctcagtc agtgaggatc attccacatt agactggggc 2280
agaactctgc caggatttag gaatatttc agaacagatt ttagatatta tttctatcca 2340
tatattgaaa aggaataccca ttgtcaatct tatttttta aaagtactca gtgtagaaat 2400
cgctagccct taattctttt ccagctttc atattaatgt atgcagatgc tcaccaagct 2460
caaagacact ggttgggggt ggaggggtgcc acagggaaag ctgtagaagg caagaagact 2520
cgagaatccc ccagagttat ctttctccat aaagaccatc agagtgccta actgagctgt 2580
tggagactgt gaggcattt gggaaaaat agcccactca catcattccct tgtaagtctt 2640
aagttcattt tcattttacg tggaggaaaa aaattttaaa agcttattgt atttattaaat 2700
gaattttact gagacatttc tttagaaatat gcacttctat actagcaagc tctgtctcta 2760
aaatgcaagt tggccttttgc ttgccacat ttctgcattt aacttctata tttagcttcaa 2820
aggcttttaa tctcaatgcg aacattctac gggatgttct tagatgcctt taaaaagggg 2880
gcaagatcta attttatttg aaccctcact ttccaacttt caccatgacc cagtactaga 2940
gattaggcga cttcaaagca ttgaaaaaaaaa tctactgata cttaactttct tagacaagta 3000

gttcttagtt aaccaccaat ggaactgggt tcattctgaa tcctggagga gcttcctcg 3060
gccacccagt gtttctgggc cctctgtgtc agcagccagg tgtgagctgt tttagaagca 3120
gcgtgttgc ttcatctctc ccgttccca aaagaacaaa ggataaaggt gacagtcaca 3180
ctcctgggtt aaaaaaagca ttccagaacc acttctctt atgggcacaa caacaaagaa 3240
gctaagttcg ctttacccaaa tgaaagttagg ctttacagtc aagtacttct gttgattgct 3300
aaataacttc attttcttga aatagagcaa ctttgagtga aatctgcaac atggatcca 3360
tgtatgttaag atactgtgt acagaagagt taaggcttac agtgc当地 aggcgtcagc 3420
tttgggtgct aaaattaaca agtctaataat tattaccatc aatccaggaa agataataaa 3480
tgtttaaaca aacacagcag tctgtataaa aatacgtgtt tatttactct ttctgtgcac 3540
gctctatagc ataggcagga gaggcttatg tggcagcaca agccaggtgg ggattttgt 3600
aagaagtgtt aaaacatttg taagtaatcc aagttaggaga tattaaggca cccaaagtaa 3660
catggcaccc aacacccaaa aataaaaata tgaaatatga gtgtgaactc tgagttaggt 3720
atgaaacacc acagaaagtc ttagaaatag ctctggagtg gctctcccag gacagttcc 3780
agttggctga atagtctttt ggcactgtatg ttctacttct tcacattcat ctaaaaaaaaaa 3840
aaaaaaaaaa 3850

<210> 4
<211> 126
<212> DNA
<213> homo sapiens

<400> 4
cctagtaata gaggaggaga catttctaaa atgcacccca gaactgtcta caccaagagc 60
aaagattcga ctgtcaatca cactttgact tgcacccaaa taccacctat gaactatgtg 120
tcaaag 126

<210> 5
<211> 132
<212> DNA
<213> homo sapiens

<400> 5
cagactgtct ctccccctcct gggatttaca gggcatggc tctgaaacat tctgttagt 60
tctttggaca cgagtttcc ctggagatcg ctttctgcag gcctattggc cctgactgtg 120
gccttttc ag 132

<210> 6
<211> 317
<212> PRT
<213> homo sapiens

<400> 6
Met Met Leu Ser Leu Asn Asn Leu Gln Asn Ile Ile Tyr Asn Pro Val
1 5 10 15
Ile Pro Phe Val Gly Thr Ile Pro Asp Gln Leu Asp Pro Gly Thr Leu
20 25 30
Ile Val Ile Arg Gly His Val Pro Ser Asp Ala Asp Arg Phe Gln Val
35 40 45
Asp Leu Gln Asn Gly Ser Ser Val Lys Pro Arg Ala Asp Val Ala Phe
50 55 60
His Phe Asn Pro Arg Phe Lys Arg Ala Gly Cys Ile Val Cys Asn Thr
65 70 75 80
Leu Ile Asn Glu Lys Trp Gly Arg Glu Glu Ile Thr Tyr Asp Thr Pro
85 90 95
Phe Lys Arg Glu Lys Ser Phe Glu Ile Val Ile Met Val Leu Lys Asp
100 105 110
Lys Phe Gln Val Ala Val Asn Gly Lys His Thr Leu Leu Tyr Gly His

115	120	125
Arg Ile Gly Pro Glu Lys Ile Asp Thr Leu Gly Ile Tyr Gly Lys Val		
130	135	140
Asn Ile His Ser Ile Gly Phe Ser Phe Ser Ser Asp Leu Gln Ser Thr		
145	150	155
Gln Ala Ser Ser Leu Glu Leu Thr Glu Ile Val Arg Glu Asn Val Pro		160
165	170	175
Lys Ser Gly Thr Pro Gln Leu Ser Leu Pro Phe Ala Ala Arg Leu Asn		
180	185	190
Thr Pro Met Gly Pro Gly Arg Thr Val Val Val Gln Gly Glu Val Asn		
195	200	205
Ala Asn Ala Lys Ser Phe Asn Val Asp Leu Leu Ala Gly Lys Ser Lys		
210	215	220
Asp Ile Ala Leu His Leu Asn Pro Arg Leu Asn Ile Lys Ala Phe Val		
225	230	235
Arg Asn Ser Phe Leu Gln Glu Ser Trp Gly Glu Glu Glu Arg Asn Ile		240
245	250	255
Thr Ser Phe Pro Phe Ser Pro Gly Met Tyr Phe Glu Met Ile Ile Tyr		
260	265	270
Cys Asp Val Arg Glu Phe Lys Val Ala Val Asn Gly Val His Ser Leu		
275	280	285
Glu Tyr Lys His Arg Phe Lys Glu Leu Ser Ser Ile Asp Thr Leu Glu		
290	295	300
Ile Asn Gly Asp Ile His Leu Leu Glu Val Arg Ser Trp		
305	310	315

<210> 7
<211> 131
<212> PRT
<213> homo sapiens

<400> 7		
Phe Ala Ala Arg Leu Asn Thr Pro Met Gly Pro Gly Arg Thr Val Val		
1	5	10
Val Gln Gly Glu Val Asn Ala Asn Lys Ser Phe Asn Val Asp Leu		15
20	25	30
Leu Ala Gly Lys Ser Lys Asp Ile Ala Leu His Leu Asn Pro Arg Leu		
35	40	45
Asn Ile Lys Ala Phe Val Arg Asn Ser Phe Leu Gln Glu Ser Trp Gly		
50	55	60
Glu Glu Glu Arg Asn Ile Thr Ser Phe Pro Phe Ser Pro Gly Met Tyr		
65	70	75
80		
Phe Glu Met Ile Ile Tyr Cys Asp Val Arg Glu Phe Lys Val Ala Val		
85	90	95
Asn Gly Val His Ser Leu Glu Tyr Lys His Arg Phe Lys Glu Leu Ser		
100	105	110
Ser Ile Asp Thr Leu Glu Ile Asn Gly Asp Ile His Leu Leu Glu Val		
115	120	125
Arg Ser Trp		
130		

<210> 8
<211> 183
<212> PRT
<213> homo sapiens

<400> 8
Met Met Leu Ser Leu Asn Asn Leu Gln Asn Ile Ile Tyr Asn Pro Val
1 5 10 15
Ile Pro Phe Val Gly Thr Ile Pro Asp Gln Leu Asp Pro Gly Thr Leu
20 25 30
Ile Val Ile Arg Gly His Val Pro Ser Asp Ala Asp Arg Phe Gln Val
35 40 45
Asp Leu Gln Asn Gly Ser Ser Val Lys Pro Arg Ala Asp Val Ala Phe
50 55 60
His Phe Asn Pro Arg Phe Lys Arg Ala Gly Cys Ile Val Cys Asn Thr
65 70 75 80
Leu Ile Asn Glu Lys Trp Gly Arg Glu Glu Ile Thr Tyr Asp Thr Pro
85 90 95
Phe Lys Arg Glu Lys Ser Phe Glu Ile Val Ile Met Val Leu Lys Asp
100 105 110
Lys Phe Gln Val Ala Val Asn Gly Lys His Thr Leu Leu Tyr Gly His
115 120 125
Arg Ile Gly Pro Glu Lys Ile Asp Thr Leu Gly Ile Tyr Gly Lys Val
130 135 140
Asn Ile His Ser Ile Gly Phe Ser Phe Ser Asp Leu Gln Ser Thr
145 150 155 160
Gln Ala Ser Ser Leu Glu Leu Thr Glu Ile Val Arg Glu Asn Val Pro
165 170 175
Lys Ser Gly Thr Pro Gln Leu
180

<210> 9
<211> 15
<212> PRT
<213> homo sapiens

<400> 9
Met Leu Ser Leu Asn Asn Leu Gln Asn Ile Ile Tyr Asn Pro Val
1 5 10 15

<210> 10
<211> 29
<212> PRT
<213> homo sapiens

<400> 10
Ile Pro Phe Val Gly Thr Ile Pro Asp Gln Leu Asp Pro Gly Thr Leu
1 5 10 15
Ile Val Ile Arg Gly His Val Pro Ser Asp Ala Asp Arg
20 25

<210> 11
<211> 70
<212> PRT
<213> homo sapiens

<400> 11
Phe Gln Val Asp Leu Gln Asn Gly Ser Ser Val Lys Pro Arg Ala Asp

1	5	10	15
Val Ala Phe His Phe Asn Pro Arg Phe Lys Arg Ala Gly Cys Ile Val			
20	25	30	
Cys Asn Thr Leu Ile Asn Glu Lys Trp Gly Arg Glu Glu Ile Thr Tyr			
35	40	45	
Asp Thr Pro Phe Lys Arg Glu Lys Ser Phe Glu Ile Val Ile Met Val			
50	55	60	
Leu Lys Asp Lys Phe Gln			
65	70		

<210> 12
<211> 40
<212> PRT
<213> homo sapiens

<400> 12
Val Ala Val Asn Gly Lys His Thr Leu Leu Tyr Gly His Arg Ile Gly
1 5 10 15
Pro Glu Lys Ile Asp Thr Leu Gly Ile Tyr Gly Lys Val Asn Ile His
20 25 30
Ser Ile Gly Phe Ser Phe Ser Ser
35 40

<210> 13
<211> 19
<212> PRT
<213> homo sapiens

<400> 13
Asp Leu Gln Ser Thr Gln Ala Ser Ser Leu Glu Leu Thr Glu Ile Val
1 5 10 15
Arg Glu Asn

<210> 14
<211> 9
<212> PRT
<213> homo sapiens

<400> 14
Val Pro Lys Ser Gly Thr Pro Gln Leu
1 5

<210> 15
<211> 30
<212> PRT
<213> homo sapiens

<400> 15
Ser Leu Pro Phe Ala Ala Arg Leu Asn Thr Pro Met Gly Pro Gly Arg
1 5 10 15
Thr Val Val Val Gln Gly Glu Val Asn Ala Asn Ala Lys Ser
20 25 30

<210> 16
<211> 55
<212> PRT
<213> homo sapiens

<400> 16
Phe Asn Val Asp Leu Leu Ala Gly Lys Ser Lys Asp Ile Ala Leu His
1 5 10 15
Leu Asn Pro Arg Leu Asn Ile Lys Ala Phe Val Arg Asn Ser Phe Leu
20 25 30
Gln Glu Ser Trp Gly Glu Glu Arg Asn Ile Thr Ser Phe Pro Phe
35 40 45
Ser Pro Gly Met Tyr Phe Glu
50 55

<210> 17
<211> 49
<212> PRT
<213> homo sapiens

<400> 17
Met Ile Ile Tyr Cys Asp Val Arg Glu Phe Lys Val Ala Val Asn Gly
1 5 10 15
Val His Ser Leu Glu Tyr Lys His Arg Phe Lys Glu Leu Ser Ser Ile
20 25 30
Asp Thr Leu Glu Ile Asn Gly Asp Ile His Leu Leu Glu Val Arg Ser
35 40 45
Trp

<210> 18
<211> 549
<212> DNA
<213> homo sapiens

<400> 18
atgatgttgt ccttaaacaa cctacagaat atcatctata acccgtaat cccgtttgtt 60
ggcaccattc ctgatcagct ggatcctgga actttgattg tgatacgtgg gcatgttcct 120
agtgcgcag acagattcca ggtggatctg cagaatggca gcagcgtgaa acctcgagcc 180
gatgtggcct ttcatttcaa tcctcgttc aaaagggccg gctgcattgt ttgcaatact 240
ttgataaatg aaaaatgggg acggaaagag atcacctatg acacgcctt caaaagagaa 300
aagtcttttgc agatcgat tatggtgctg aaggacaaat tccaggtggc tgtaaatgg 360
aaacataactc tgctctatgg ccacaggatc ggcccagaga aaatagacac tctggcatt 420
tatggcaaag tgaatattca ctcaattgggt tttagctca gctcgactt acaaagtacc 480
caagcatcta gtctgaaact gacagagata gttagagaaa atgttccaaa gtctggcacg 540
ccccagctt 549

<210> 19
<211> 832
<212> DNA
<213> homo sapiens

<400> 19

ctgttcccta agtgtccaat ttggagaaaa cacccacacg caggataacc ggcgagtgac 60
gcggagtggc tgcgagtcca agttatcaact aacggatggg gagcttggc tgggcacagt 120
ccagcgtaact gaacccttcc cccaccgtt cacctgcata cagaggtgtg tactgtcaaa 180
aagcagcgcc tccaagtctc ttctggact gtctggactt ggatccgagg cagacgagga 240
agctgagaaa accctggegt tgaccccgtg gacctggcg ccccggyaag gccagcgctt 300
ggtccaggca ggcggggcct gtgcggtgac caccctggtc ctgaaaagtc ccagccccga 360
gcccctccc tcctagacct ggaggcctgg aacagccagg tggacgtcgg cccaccttc 420
ttttcttcc ttcccattt cctaccacct cccacccac tccgccttcc gggcaaaggc 480
agccagatcc acccaggaca cattttgt ccttattccct ctgtgctcgt cccacagcaa 540
gccagtcgcg gtccaaggct ccagaggctg tgcaggaggc cgagctgggt ggcgatcgc 600
ggcgggtccc tgtccaaaac ccagcagagc cgccagggac gccccagaca cagaaggcgg 660
ggcgcgggga gggtggggag accacagcag tgaggcgcgc gagccggaa gtgaacgagg 720
actgactcct gtcgcttccg tagccgccac ggacgccaga gccgggaacc ctgacggcac 780
ttactgctga caaacaacct gctccgtgga gcgcctgaaa cccaatctt gg 832