Machine Learning 2

https://tinyurl.com/mtp3vxtp

Rifat Jahan Azad

Consultant Technical Lead of Data science and ML (Brain Station 23) Chief technology officer(ktinformatik)

contact(whatsapp): +8801775568572

linkedin: https://www.linkedin.com/in/rifat-jahan-azad/

Agenda

Get connected

List interest

Overview

Connect the topics

Set the Expectation

List Interest

https://forms.gle/pYdkGqVuaY5s2Uzj9

Overview

Regularization

- 1) Session 16: Regularization Part 1 | Bias-Variance Tradeoff
 - Why we need to study Bias and Variance
 - Expected Value and Variance
 - Bias and Variance Mathematically
- 2) Session on Regularization Part 1 | What is Regularization
 - Bias Variance Decomposition
 - Diagram
 - Analogy
 - Code Example
 - What is Regularization?
 - When to use Regularization?

3) Ridge Regression Part 1

- Types of Regularization
- Geometric Intuition
- Sklearn Implementation

Overview

Naive Bayse

- 1. Session 19: Crash course on Probability Part 1
 - 5 important terms in Probability
 - * Random Experiment
 - ❖ Trials
 - Outcome
 - ❖ Sample Space
 - Event
 - Some examples of these terms
 - Types of events
 - What is probability
 - Empirical vs Theoretical probability
 - Random variable
 - Probability distribution of random variable
 - Mean of 2 random variable
 - Variance of Random variable
- 2. Crash course on Probability Part 2
 - Venn diagrams
 - Contingency table
 - Joint probability
 - Marginal probability
 - Conditional probability
 - Intuition of Conditional Probability
 - Independent vs Dependent vs Mutually Exclusive Events
 - Bayes The orem

3. Session 20: Naive Bayes

- Intuition
- Mathematical formulation
- How Naive Bayes handles numerical data
- What if data is not Gaussian
- Naive Bayse on Textual data

Overview

Gradient Boosting and XGBoost

- 1. Session 25: Gradient Boosting
 - Boosting
 - What is Gradient Boosting
 - How
 - What
 - Why
- 2. Gradient Boosting
 - How Gradient Boosting works?
 - Intuition of Gradient Boosting
 - Function Space vs. Parameter Space
 - Direction of Loss Minimization
 - How to update the function
 - Iterate
 - Another perspective of Gradient Boosting
 - Difference between Gradient Boosting and Gradient Descent

Introduction to XGBoost

- Introduction
- ullet Features
 - ❖ Performance
 - Speed
 - ❖ Flexibility

XGBoost for Classification

- Classification Problem Statement
- Step-by-Step Mathematical Calculation

Session 26: DNN:

- MLP and Backpropagation
- Regression MLP
- Implementing MLP with Keras
- Fine tuning NN hyperparameters
- Activation function
- Batch normalization
- Monte Carlo droupout
- Tensor Flow's API
- Dataset with Keras
- Deep Computer Vision using CNN

Connect The Topics

https://www.mermaidchart.com/raw/35614d80-106e-46ef-b94e-2785beb1ffde?theme=light&version=v0.1&format=svg

Set The Expectation

https://www.menti.com/al7gcjdhm88h

What is you preferred method of communication?

