# JP54-23664B

# Claim 1

A process for electrolytically coloring an aluminum or an aluminum alloy , to improve the efficiency, which comprises these steps:

- (a) pre-coloring step that passes a direct (or substantially direct) current in the electrolytic coloring bath with the anodized aluminum or the anodized aluminum alloy used as the anode, a counter electrode as a cathode,
- (b) coloring step that electrolyzes the anodized aluminum or the anodized aluminum alloy in the same solution by use of alternating current.

⑩日本国特許庁(JP)

印特許出願公告

@特許 公 報 (B2) BB54 - 23664

MInt.Cl.2 C 25 D 11/22 C 25 D 11/20 識別記号 翌日本分類 12 A 49

庁内整理番号 ② 图公告 昭和54年(1979)8月15日

6554-4K 6554-4K

発明の数 1

(全 4 頁)

図アルミニウムまたはアルミニウム合金の電解者 色法

頭 昭50-26519 创特

顧 昭50(1975)3月6日 砂田

開 昭51-101740

④昭51(1976)9月8日

78 明 者 長谷川睦男

魚津市文化町3の20

相川和夫 同

富山市水橋大正町2の8

林新二 

富山市官条149

和出 顧 人 吉田工業株式会社

東京都千代田区神田和泉町I

②代 理 人 弁理士 米原正章 外1名

#### の特許請求の範囲

1 陽極酸化処理を施したアルミニクムまたはア ルミニウム合金を交流着色電解浴中で交流電解する 20 という欠点があつた。 前に、同浴中で眩陽極酸化処理アルミニウムまた はアルミニウム合金を陽極とし、対極を陰極とし、 両極間に直旋またはそれに類似する電流を印加す ることにより交流電解時の付廻り性を向上させる ことを特徴とするアルミニクムまたはアルミニウ 25 とにより交流電解時の付廻り性が向上することを ム合金の電解着色法。

## 発明の詳細な説明

本発明は、アルミニウムまたはアルミニウム合 金の電解着色法に関するものである。詳しく述べ ると、アルミニウムまたはアルミニウム合金に陽 30 で交流電解する前に、同浴中で該陽極酸化処理ア 極酸化処理を施して生成した未封孔の皮膜を、金 属塩を溶解した電解液中で交流電解して、酸化皮 膜中に電解液中の金属塩の金属または金属酸化物 お折出させてアルミニウムまたはアルミニウム合 金を着色する方法において、着色の均一化を計る 35 本発明方法をさらに詳しく述べると、つぎのと ために、交流電解前に、同電解液中で陽極酸化さ れたアルミニウムまたはアルミニウム合金を陽極

とし対極との間に直流またはそれに類似する重流 を印加することにより交流通電時の付廻り性を向 上させた改良方法に関するものである。

従来、アルミニウムまたはアルミニウム合金を 5 陽極酸化処理により酸化皮膜を生成させ、それを ニッケル塩などのような金属塩を含有する電解液 中で交流電解(特公昭38-1715号公報)ま たは直流電解することにより金属または金属酸化 物の皮膜孔内への折出により着色する方法は、二 10 浴電解法としてすでに知られ、えられる着色皮膜 は耐候性において比較的に優れているので広く使 用されている。しかしながら、このような従来の 交流軍解法においては、付廻り性が不十分である ため、複雑な形状の形材を処理する場合に、違み 15 部と突出部において着色むらが生じるという欠点。 があり、これが生産上の難点となつていた。また、 一次電解液中での通電終了後の放置時間や、一次 電解後の水洗、とくにPHの低い水洗槽における 水洗の時間経過とともに付廻り性の低下が著しい

本発明者らは、前記のような従来法の諸欠点を 改善しようと鋭意研究の結果、交流電解前に、同 一電解液中で陽極酸化処理アルミニウムまたはア ルミニウム合金を陽極として直流電解を行なうこ 見出し、本発明方法を完成したものである。すな わち、本発明によるアルミニウムまたはアルミニ ウム合金の電解着色法は、陽極酸化を施したアル ミニウムまたはアルミニウム合金を交流電解浴中 ルミニウムまたはアルミニウム合金を陽極とし、 対極を陰極とし、両極間に直旋またはそれに類似 する電流を印加することにより交流電解時の付廻 り性を向上させることにより行なわれる。

・おりである。まず、陽極酸化処理を処したアルミ ニウムまたはアルミニウム合金を交流電解浴中に

:0335936607

02-03-13:04:07PM:中村・成瀬特許法律事務所

浸漬してこれを陽極とし、一方、対極を陰極とし て、この谷中で両極間に直流またはそれに類似す る電流、たとえば、単相全波、三相継続波など (以下、単に直旋と結形する。)を通電する。この際 30 Vであり、5分以内、好ましくは5~60秒 間通電される。ついで、同一組成の交流電解浴中 で交流通電を行なう。交流電圧は5~50 V、好 ましくは10~30Vである。

前に、陽極酸化処理を施したアルミニウムまたは 電硫を印加することにより、たとえ、長時間水洗 したものであつても、その付廻り性は極めて良好 解電圧に比べて高電圧、かつ、長時間の直流また はそれに類似する電流を印加すると、つぎの交流 通電時間が長くても着色進行度が極めて遅くなる ことが確認された。一般に、交流電解着色におい ては、電流の流れやすい個所が渡く着色し、一方 20 れる。 **流れにくい個所が於くなることは知られている。** したがつて、左右上下の端部や形状の複雑な形材 においては、窪み部より突起部が震くなるのが現 状である。このため、生産においては左右上下の クの調整を行なつていた。しかるに、本発明方法 によれば、直流電流を予め印加すれば、電流の多 く流れる個所には、つぎの交流電解時に着色した くくなり、流れにくい個所は、それほど着色した る。すなわち、適当な量の直流電流を前もつて印 加すれば、それがマスキングの働きをして、つき の交流電解時には電流の流れやすい端部や突起部 などと、流れにくい中央部や建み部などを均一に らは完全に解消されるのである。

本発明において電解液中に使用される金属塩と しては種々のものがあるが、一例をあげると、ニ ツケル、コバルト、クロム、銅、マグネシウム、 鉄、カドニウム、チタン、マンガン、モリプデン、40 脱脂洗浄したのち、これを陽極とし、一方、対極 カルシウム、パナジウム、錫、鉛、亜鉛などのよ ろに金属の硝酸塩、硫酸塩、リン酸塩、塩酸塩、 クロム酸塩などの無機酸塩、シユウ酸塩、酢酸塩 商石製などの有機酸塩などがあるが、着色進行度

を増大させるためには、これらのうちから3種以 上の金属塩または2種以上の金属塩と強選元件化 合物との混合物を含有する電解液が使用される。 これにより融通性が増大する。これらの金属塩の の電圧は10~50Vであり、好ましくは15~ 5 渡度は、合計量で5~5008/8、好ましくは10 ~2508/10である。

本発明において使用される強盗元性化合物とし ては、たとえば、亜二チオン酸ナトリウム、亜二 チオン酸亜鉛などの亜二チオン酸塩、チオ硫酸T 以上述べたように、本発明によれば、交流通電 10 ンモニウム、チオ硫酸ナトリウム、チオ硫酸カリ ウム、チオ硫酸鉄などのチオ硫酸塩、亜硫酸水素 アルミニウム合金を陽極として対極との間に直流 ナトリウム、亜硫酸水素カリウムなどの亜硫酸水 素塩、亜硫酸、亜硫酸アンモニウム、亜硫酸ナト リウム、亜硫酸カリウムなどの亜硫酸塩、チォグ となるのである。また、ついで行なわれる交流電 15 りコール酸、チオグリコール酸アンモニウム、チ オグリコール酸ナトリウム、チオグリコール酸カ リウム、チオグリコール酸リチウムなどのチオグ リコール酸塩がある。これらは、0.05~10 8/8好ましくは0.5~38/8の優度で使用さ

また、上記電解液には、通常、硫酸、硝酸、塩 酸、リン酸、ホウ酸、チオシアン酸、クロム酸な どのような無機酸またはシユウ酸、酢酸、プロピ オン酸、ギ酸、酒石酸、リンゴ酸などのような有 端部の色むら解消のため、対極に微妙なマスキン 25 機酸、あるいはそれらのアンニウム塩、アミノ塩 またはイミノ塩の少なくとも1種が添加される。 その添加濃度は5~2508/1である。

また、交流着色電解において、初期印加電圧よ りも低い電圧に変動して電解を行なうことにより くくなることはない。本発明の着眼点はここにあ 30 付廻り性はさらに向上する。そして、その低下変 動させるべき電圧差は好ましくは1~10Vであ り、また、変動させるべき時期は、通常通電後2 分以内、好ましくは5~60秒間である。

本発明方法により着色されるアルミニシムまた 着色させることが可能となり、その結果、着色む 35 はアルミニウム合金とは、純アルミニシムまたは 純アルミニウムにケイ案、マグネシウム、銅、ニ ツケル、亜鉛、クロム、鉛、ピスマス、鉄、チタ ン、マンガンなどの金属を1種または2種以上含 む合金である。これらは、その表面を常法により として設けた陰極との間に、硫酸、シュウ酸、ス ルフアミン酸などのように酸性電解液中で通電し て陽極酸化皮膜処理を施したものである。

以上述べたような方法で電解着色された皮膜は、

(3)

RADER

特公 昭54-23664

必要により、沸とう水、薬品封孔または加圧水蒸 気など公知の手段により封孔処理が施される。ま た、この封孔処理を施したのち、あるいは封孔処 理を施すことなく、必要によりさらに樹脂塗料に よる浸液塗装または電着塗装を行なつて表面保護 5 の装置に下記の組成の液を入れ、液温30℃とし を行つてもよい。

つぎに、実施例をあげて本発明方法をさらに詳 細に説明する。

#### 実施例 1

れたアルミニウム押出形材Aー6063S(長さ ・ るグレー色の潜色をえた。 150mm、幅70mm、厚さ1.3mm)を17.5W/V % 硫酸水溶液中に浸漬して陽極とし、対極として 設けられたアルミニウム陰極との間に15Vの直 旅電流を電流密度 1.2 A/dmi で 3 5 分間通電 15 して、その表面に約12ミクロンの陽極酸化皮膜 を形成させた。これを流水中で12時間水洗した のち、長さ300mm、幅100mm、長さ150 mm の容器を用い、対極を1個とし、極間距離を 250 mm とした装置に、下記の組成の液を入れ 20 およびキャスト試験において実施例1のものと同 液温20℃とした電解液中に浸渍した。まず、陽 極酸化皮膜側を陽極とし、対極のカーボン陰極と の間に、直流電流を18.5Vの電圧で20秒間通 電し、ついで、12.5 Ⅴの電圧で6分間交流電解 を行なつたところ、アルミニウム押出形材の対極 25 厚さ1.3 mm )を陽極酸化して、その表面に約 面と非対極面ともにむらのない均一なプロンズ色 の潜色をえた。

| A D E 70.00    |        |
|----------------|--------|
| 硫酸ニツケル(6水化物)   | 308/8  |
| 硫酸マグネシウム(7水化物) | 108/8  |
| 硫酸アンモニウム       | 358/1  |
| チオ硫酸アンモニウム     | 1.08/8 |
| ボウ酸            | 108/4  |
| DLーリンゴ酸        | 1.09/1 |
| n H            | 5. 6   |

上記着色皮膜を 5 kg/cm² の圧力水蒸気で30 35 分間封孔処理したのち、ウエザーメータにより 3.000時間の促進耐候性試験を行なつたところ、 まつたく異常は認められず、200℃における2 時間の加熱試験においても着色に変化はなかつた。 また、キャス試験において16時間で異常なく、 40 外装材としての性能を十分に有することを確認し たっ

## 突施例 2

実施例1と同様の方法でアルミニウム押出形材

A-6063S(長さ150mm、福70mm、 厚さ1.3 mm )を陽極酸化して、その表面に約 12ミクロンの陽極酸化皮膜を形成させた。これ を流水中で6時間水洗したのち、実施例1と同様 た電解液中に浸漬した。まず、陽極酸化皮膜側を 陽極とし、対極のカーポン陰極との間に単相全波 電流を26Vの電圧で10秒間通電し、ついで、

16 Vの電圧で5分間交流電解を行なつたところ、 常法により脱脂、エッチング、スマット除去さ 10 実施例1と同様にむらのない均一なやや赤珠のあ

| 硫酸ニツケル( 6 水化物 ) | 3 0 <i>8 / E</i> |
|-----------------|------------------|
| 硫酸マグネシウム(7水化物)  | 1.08/8           |
| 硫酸アンモニウム        | 3 5 8 ∕ €        |
| ホウ酸             | 108/6            |
| n H             | 5. 6             |

上記着色皮膜を実施例1と同様に封孔処理した ものは、ウエサーメータによる3.000時間の促 進耐候試験、200℃における2時間の加熱試験 様の結果を示した。

#### 実施例 3

実施例1と同様の方法でアルミニウム押出形材 A-6063S(長さ150mm、幅70mm、 12ミクロンの陽極酸化皮膜を形成させた。これ を流水中で12時間水洗したのち、実施例1と同 様の装置に下記の組成の液を入れ、液温20℃と した電解液中に浸漬した。まず、陽極酸化皮膜側 30 を陽極とし、対極のステンレススチール板との間 に直流電流を25Vの電圧で20秒間通電し、つ いで、18Vの電圧で5分間交流電解を行なつた。 ところ、実施例1と同様にむらのない均一プロン ス色の着色をえた。

| 硫酸ニツケル(6水化物)   | 308/8   |
|----------------|---------|
| 硫酸マグネシウム(7水化物) | 108/1   |
| 硫酸アンモニウム       | 358/8   |
| チオ硫酸アンモニウム     | 1.08/0  |
| ホウ酸            | 108/1   |
| マレイン酸          | 0.5 8/E |
| pН             | 5. 6 .  |

上記着色皮膜を実施例1と同様に封孔処理した ものは、ウエザーメータによる 3.000時間の促 進耐候試験、200℃における2時間の加熱試験

(4)

特公 昭54-23664

:0335936607

およびキャス試験において実施例1のものと同様 の結果を示した。

#### 実施例 4

実施例3の方法において、チオ硫酸アンモニウ ム1.08/10代りに下記第1表に記載した強選 5 元性化合物を使用したところ、実施例3と阿様な 結果がえられた。

## 第 1 表

| 天地例 | 短尾兀性化合物            | 孫加量    | pН   |
|-----|--------------------|--------|------|
| 10  | チオグリコール酸           | 1.58/8 | 4.5  |
| 1 1 | チオグリコール酸<br>アンモニウム | 1.58/6 | 5. 6 |
| 1 2 | 亜硫酸アンモニウ<br>ム      | 2.08/4 | .5.6 |
| 1 3 | 亜硫酸水素アンモ<br>ニウム    | 1.08/1 | 5.6  |

#### 実施例 5

実施例1と同様の方法でアルミニウム押圧形材 A-60638(長さ150mm、幅70mm、厚さ ミクロンの陽極酸化皮膜を形成させた。これを流 水中で12時間水洗したのち、長さ300mm、 幅 1 0 0 mm 、高さ 1 5 0 mm の容器を用い、対 極を1個とし、極間距離を250mmにし、これ 形材)は2枚を1cm間隔に対極にたいして配置し た装置に下記の組成の液を入れ、液温20℃とし た電解液中に浸漬した。まず、陽極酸化皮膜側を 陽極とし、対極のカーポンとの間に直流電流を 電圧で20秒間交流電解した。ついで、16 Vの 電圧で5分間交流電解を行なつたところ、2枚の アルミニウム押出形材の 4 面ともにむらのない均 一なプロンズ色の着色をえた。

硫酸ニッケル(6水化物)

258/8 35

硫酸マグネシウム(7水化物) 158/1 硫酸アンモニウム 358/2 チオ硫酸アンモニウム 1.08/4 ホウ酸 208/8

8

рΗ 5. 6

上記着色皮膜を実施例1と同様に封孔処理した ものは、ウエザーメータによる3.000時間の促 進耐候性試験、200℃における2時間の加熱試 験およびキャス試験において実施例1のものと同

# 10 様の結果を示した。

比較例 1

実施例1と同様の方法でアルミニウム押出形材 A-6063S(長さ150mm、幅70mm、厚き 1.3 mm) を隔極酸化して、その表面に約12ミ 15 クロンの陽極酸化皮膜を形成させた。これを流水 中で12時間水洗したのち、実施例1と同様の装 置に同液組成の液を入れ液温20℃とした電解液 中に浸漬して12.5 Vの電圧で6分間交流電解を 行なつたところ、アルミニウム押出形材はプロン 1.3mm)を陽極酸化処理して、その表面に約12 20 ×色に着色されたが、対極面が微く非対極面が全 体に炎く着色され、実施例1の着色の付廻り性と の差が明らかである。

#### 比較例 2

実施例3と同様の方法でアルミニウム押出形材 に前記被処理材(陽極酸化処理アルミニウム押出 25 A-60638(長さ150mm、幅70mm、厚さ1.3 mm) を陽極酸化して、その表面に約12ミクロ. ンの陽極酸化皮膜を形成させた。とれを流水中で 12時間水洗したのち、実施例3と同様の装置に 同液組成の液を入れ液温 20℃とした電解液中に 24Vの電圧で15秒間通電したのち、24Vの 30 浸漬して18Vの電圧で5分間交流電解を行つた ところ、濃プロンズ色に落色されたが、対極面に 比し非対極面が著しく炎く、中央部に行くにした がい一層炎く着色され、実施例3の着色の付廻り 性との差が明らかである。

