Brain Tumor Segmentation using MRI Image

Vidushi Garg (203050027)

Swapnil Malviya (203050067)

Introduction

- Brain tumor is of two types:
 - Primary brain tumor
 - Secondary brain tumor

Gliomas are primary brain tumors and they are of two types:

- HGG = High Grade Glioma
 - Malignant brain tumor
 - Requires surgery and radiotherapy
- LGG = Low Grade Glioma

Introduction

- Deep learning models have been used for segmentation task
- Each MRI image contains 3 types of tumor:
 - Enhancing Tumor
 - Non-Enhancing Tumor
 - Edema Tumor

Fig: (a)T1 (b) T1-weighted (c) T2 Flair (d) T2 (e) axial view of Segmented Brain Tumor MRI Image (f) sagittal view (g) coronal view

BraTS'19 Dataset

- The dataset contains 259 MRI scans of patients with high-grade gliomas (HGG).
- Each MRI image is of size 240x240x155.
- The dataset contains MRI image of 4 different modalities.
- Each image contains three types of tumor: Non-enhancing Necrotic tumor (NET), enhancing tumor (ET), and edema (ED) tumor.

Preprocessing data

- In biomedical field, the dataset is not freely available
 - Images can only be annotated by experts.
- BraTS'19 dataset contains only 259 MRI images along with their labelled mask.
- For data augmentation, the 3D MRI image is scaled, rotated and translated.

Segmentation Models

UNet 3D

Two parts

- Downsampling part
 - Feature channels doubled
 - Decreasing the Image size
- Upsampling part
 - Upconvolution of image
 - Concatenation of feature maps
 - Localizing information
 - Final layer: 1x1 convolution
 - 64-feature maps -> 4-feature maps

ResUnet

Two parts

- Downsampling path => ResNet
 - Skip connections used
 - Overcome vanishing gradient problem
 - Max Pooling done for concatenation
 - 3x3x3 Convolutional layer + BN + ReLU
- Upsampling path => Unet 3D
 - Upconvolution of image
 - Concatenation of feature maps
 - Localizing information
 - Final layer: 1x1 convolution
 - 64-feature maps -> 4-feature maps

Loss Function

Dice Coefficient

- Measures similarity between 2 images
- Range of dice coefficient => [0,1]
 - 1 => completely similar
 - 0 => completely different
- Loss = (1- Dice Coefficient)

$$DSC(f, x, y) = \frac{2 \times \sum_{i,j} f(x)_{ij} \times y_{ij} + \epsilon}{\sum_{i,j} f(x)_{ij} + \sum_{i,j} y_{ij} + \epsilon}$$

where,

x = input image

f(x) = predicted image

y = ground truth

 ϵ = small number added to avoid division by zero error

Result: For Unet-3D

Result: For ResUnet-3D

Result: For Unet-2D

Result: For ResUnet-2D

Result: Quantitative

- Dice Tumor Core(TC)
 - \circ Dice TC = (NET + ET)/2
- Dice Enhancing Tumor(ET)
 - Dice ET
- Dice Whole Tumor
 - Dice WT = (NET +ET + ED)/3

Model	Epochs	Dice TC	Dice ET	Dice WT
UNet-3D	15	0.35395	0.4332	0.3940
ResUnet-3D	10	0.37995	0.4729	0.4300
Unet-2D	40	0.7510	0.7201	0.7466
ResUnet-2D	30	0.6663	0.6781	0.6815

Table 1: Dice Coefficient on Training Set

Model	Epochs	Dice TC	Dice ET	Dice WT
UNet-3D	15	0.37485	0.457	0.4089
ResUnet-3D	10	0.30785	0.3881	0.3614
Unet-2D	40	0.7212	0.7090	0.7166
ResUnet-2D	30	0.6443	0.6981	0.6622

Table 2: Dice Coefficient on Test Set

Thank You!!

Github Link: swapnilmalviya-git/BrainTumorSegmentationUsingBratsDataset (github.com)