二. 一维标量守恒律的数学性质

1. 特征线

[**特征线法**] 对于准线性偏微分方程 $\sum_{i=1}^{n} a_i(\vec{x}, u) \frac{\partial u}{\partial x_i} = b(\vec{x}, u)$, 其中 $u(\vec{x}) = u(x_1, x_2, ..., x_N)$. 定义

特征线 $\frac{\partial x_k}{\partial s} = a_k(\vec{x}, u)$,原方程可变为常微分方程组 $\begin{cases} \frac{\partial x_k}{\partial s} = a_k(\vec{x}, u) \\ \frac{du}{ds} = b(\vec{x}, u) \end{cases}$, k = 1, ..., n. 方程组中第二

个方程表示原方程的解沿给定特征线的变化.

定义变量 s, 将 $u(\vec{x})$ 对 s 求导得: $\frac{du}{ds} = \sum_{i=1}^{n} \left(\frac{\partial x_i}{\partial s}\right) \frac{\partial u}{\partial x_i}$.

给 s 增加限制条件 $\frac{\partial x_k}{\partial s} = a_k(\vec{x}, u)$, 得 $\frac{du}{ds} = \sum_{i=1}^n a_i(\vec{x}, u) \frac{\partial u}{\partial x_i} = b(\vec{x}, u)$.

原方程变为
$$\begin{cases} \frac{\partial x_k}{\partial s} = a_k(\vec{x}, u) \\ \frac{du}{ds} = b(\vec{x}, u) \end{cases}, k = 1, ..., n.$$

[**对流方程**] 形如 $u_t + [a(x)u]_x = 0$ 的方程被称为对流方程, 其中 a 是关于 x 的光滑函数.

[常系数对流方程的特征 (线)] 对于一维常系数线性对流方程 $u_t + au_x = 0$ 在无穷区域 $x \in (-\infty, +\infty)$ 上的初值问题 $u(x, 0) = u_0(x)$, 其特征线为满足 $x'(t) = a, x(0) = x_0$ 的直线 $x - at = x_0$.

[**变系数对流方程的特征 (方程)**] 对于 $u_t + [a(x)u]_x = 0$, 其中 a(x)光滑. 其特征线满足 $x'(t) = a(x(t)), x(0) = x_0$.

当源项 g=0 时, 沿 u 的特征线是常数. 此时如果 A 不依赖于 X 和 t, 则特征线是一条过 X(0) 的直线.

[**依赖域**] 特征线法求得方程的解 u(x,t) 在任一点 $(\overline{x},\overline{t})$ 的值仅仅依赖于 u_0 在一点处的值 \overline{x}_0 . 集合 $D(\overline{x},\overline{t}) = {\overline{x}_0}$ 称为点 $(\overline{x},\overline{t})$ 的依赖域.

改变除 \bar{x}_0 以外所有点的数值都不会影响 (\bar{x},\bar{t}) .

[依赖区间(依赖区域)] 对于方程组,每个方程的依赖域共同构成一个依赖区间或区域.

守恒律系统的依赖域总是有界的, 因为守恒律方程解的传播速度有限. 解在 (\bar{x},\bar{t}) 的值依赖于距离 \bar{x} 有限距离处的初值.

依赖域的大小随时间增长,但是增长速度是有界的. 一般 $D(\overline{x},\overline{t})\subset\{x:|x-\overline{x}|\leq a_{max}\overline{t}\},$ 其中 a_{max} 对应于方程中的最大特征速度.

[非光滑初值问题] 当初值不光滑时, 解在间断处的导数是没有定义的.

[引入弱解] 只满足方程的积分形式的解. 通过特征线方法构造出来的含有间断的解是弱解.

对于守恒律方程, 在初边界条件适当给出的情况下, 弱解的存在是唯一的.

[强解] 处处满足方程形式的解. 也被称为古典解.

[非光滑初值问题求强解的方法 1] 找一组光滑初值 $u_0^{\varepsilon}(x)$ 来逼近间断初值, 使 $||u_0 - u_0^{\varepsilon}||_1 < \varepsilon$, $(\varepsilon \to 0)$. 对每个光滑初值, 可以找到原来线性方程的强解 $u^{\varepsilon}(x,t) = u_0^{\varepsilon}(x-at)$.

这种方法对非线性方程不适用. 对于非线性方程,即使初值是无穷光滑的,经过一段时间后也可能产生间断的解. 因此无法保证强解的存在性.

[非光滑初值问题求强解的方法 2] 在守恒律方程上加入一个比较小的扩散.

2. 间断解和 Rankine-Hugoniot 条件

[本**质非线性**] 对于非线性标量守恒律方程 $u_t + f(u)_x = 0$, 其中 f(u) 是关于 u 的一个非线性函数, 如果对所有的 u 都有 $f''(u) \neq 0$ (即 f(u) 是严格凸或严格凹的), 则称该方程是本质非线性的.

[弱解] 弱解有两个等价的定义, 都是通过将原来的微分方程化成积分形式得到的.

- 1. 如果对于任意给定的区间 (a,b) 函数 u 都能满足 $\frac{d}{dt}\int_a^b u(x,t)dx + f(u(b,t)) f(u(a,t)) = 0$, 则 u 是方程的一个弱解.
- 2. 如果对任意 $\varphi \in C_0^1(\mathbb{R}^2)$, $\int_0^\infty \int_{-\infty}^{+\infty} (u\varphi_t + f(u)\varphi_x) dx dt + \int_{-\infty}^{+\infty} u(x,0)\varphi(x,0) dx = 0$, 则称 u 是方程的一个弱解.

注意: 弱解虽然能解决解的存在性问题, 但不能解决解的唯一性问题.

[Rankine-Hugoniot(R-H) 条件] 弱解若连续则满足条件 $u^- = u^+$. 弱解若在 x(t) 两侧不连续,则满足条件 $x'(t) = \frac{f(u^+) - f(u^-)}{u^+ - u^-}$. 其中 x'(t) 表示间断传播速度,等于通量穿过间断点的跳跃值比解的跳跃值.

假设 u 是方程的一个分片光滑弱解,它在一个由曲线 (x(t),t) 分割成的两块区域内分别是 C^1 的. 取区间 [a,b], 包含间断点 x(t).

由
$$\frac{d}{dt} \int_a^b u(x,t) dx + f(u(b,t)) - f(u(a,t)) = 0$$
 沿间断点拆分得:
$$\frac{d}{dt} \left[\int_a^{x(t)} u(x,t) dx + \int_{x(t)}^b u(x,t) dx \right] + f(u(b,t)) - f(u(a,t)) = 0.$$

因为
$$\frac{\partial u(x,t)}{\partial t} = \frac{\partial u}{\partial x} \frac{dx}{dt} + \frac{\partial u}{\partial t}$$
 且 $x'(t) = \frac{dx}{dt}$,得:
$$0 = u^- x'(t) + \int_a^{x(t)} u_t(x,t) dx - u^+ x'(t) + \int_{x(t)}^b u_t(x,t) dx + f(u(b,t)) - f(u(a,t))$$
$$= (u^- - u^+) x'(t) - f(u(b,t)) + f(u^+) - f(u^-) + f(u(a,t)) + f(u(b,t)) - f(u(a,t))$$
$$= (u^- - u^+) x'(t) + [f(u^+) - f(u^-)].$$

$$\mathbb{EI}: x'(t) = \frac{f(u^+) - f(u^-)}{u^+ - u^-}.$$

[**激波**] 若方程弱解中的间断是由间断两边的特征相互汇聚最终相交形成的,则这个间断被称为激波.

3. 熵解和熵条件

[**熵解**] 当方程有多个弱解时, 唯一一个与物理相符的解被称为熵解. 其名称来源于物理中的熵增加定律.

熵解被定义为满足方程
$$\begin{cases} u_t^\varepsilon + f(u^\varepsilon)_x = \varepsilon u_{xx}^\varepsilon \\ u^\varepsilon(x,0) = u^0(x) \end{cases}, \varepsilon \in (0,1] \text{ 的解 } u(x,t) = \lim_{\varepsilon \to 0} u^\varepsilon(x,t).$$

[一般熵条件] 任取熵函数 $U''(u) \ge 0$, 称满足 F'(u) = U'(u)f'(u) 的 F 为熵函数 U 对应的熵通量. 熵解对任意熵函数和其对应的熵通量满足 $U(u^{\varepsilon})_t + F(u^{\varepsilon})_x \le 0$.

[Oleinik **熵条件**] 设 u^-, u^+ 是间断两侧的值,任意介于 u^-, u^+ 之间的熵解 u 都应该使不等式 $\frac{f(u)-f(u^-)}{u-u^-} \ge s \ge \frac{f(u)-f(u^+)}{u-u^+}$ 成立. 其中 s=x'(t) 是间断速度,由 R-H 条件决定.

[Lax **熵条件**] 设 u^-, u^+ 是间断两侧的值, 如果通量函数 f 是严格凸的或严格凹的, 则熵解间断满足 $f'(u^-) > s > f'(u^+)$. 这个间断是一个激波, s = x'(t) 是间断速度, 由 R-H 条件决定.

Oleinik 熵条件能够导出 Lax 熵条件. 对于一般的通量函数 f, Lax 熵条件只是一个必要条件. 当 f 是严格凸或严格凹时, Lax 熵条件充分且必要.

$$[L^1 压缩性] 初值问题 \begin{cases} u_t^{\varepsilon} + f(u^{\varepsilon})_x = \varepsilon u_{xx}^{\varepsilon} \\ u^{\varepsilon}(x,0) = u^0(x) \end{cases}$$
的解 u^{ε} 是 L^1 压缩的.

即当 v^{ε} 是初值问题 $\begin{cases} v_t^{\varepsilon} + f(v^{\varepsilon})_x = \varepsilon v_{xx}^{\varepsilon} \\ v^{\varepsilon}(x,0) = v^0(x) \end{cases}$ 的解, 两个解满足满足 $||u^{\varepsilon}(\cdot,t) - v^{\varepsilon}(\cdot,t)||_{L^1} \le t$

 $||u^0-v^0||_{L^1}.$

[**总变差**] 函数 u 的总变差 TV(u) 定义为 $TV(u) := \sup_{h} \int_{-\infty}^{+\infty} \left| \frac{u(x+h)-u(x)}{h} \right| dx$.

[解的总变差不增性] 守恒律初值问题的解 u 是总变差不增的, 即 $TV(u(\cdot,t)) \leq TV(u^0)$.

4.Riemann 问题

[**一维标量守恒律黎曼问题解的特征线**] 一维标量守恒律黎曼问题的特征线 (X(t),t) 满足 $\frac{dX(t)}{dt}=f'(u)$.

当特征线不相交时,
$$X(t) = \begin{cases} x_0 + f'(u_l)t, x_0 < 0 \\ x_0 + f'(u_r)t, x_0 > 0 \end{cases}$$
.

[一维标量守恒律黎曼问题解的特征速度] 一维标量守恒律黎曼问题解的特征速度 λ_l, λ_r 定义为 $\begin{cases} \lambda_l = f'(u_l) \\ \lambda_l = f'(u_r) \end{cases}$

- 2. 当 $\lambda_l > \lambda_r$ 时, 在 $x_0 = 0$ 附近的特征线将会相交. 特征线相交会产生激波, 激波的传播速度由 R-H 条件确定. 但激波的数量由 $f(\cdot)$ 的具体性质决定.

[本质非线性 Riemann 问题] 对于
$$\lambda_l < \lambda_r$$
(稀疏波) 情况, 熵解为 $u(x,t) = \begin{cases} u_l, x < \lambda_l t \\ g(\frac{x}{t}), \lambda_l t \leq x \leq \lambda_r t \\ u_r, x > \lambda_r t \end{cases}$

其中 $g(\cdot)$ 是 $f'(\cdot)$ 的反函数. 对于 $\lambda_l > \lambda_r(激波)$ 情况,熵解为 $u(x,t) = \begin{cases} u_l, x < st \\ u_r, x > st \end{cases}$, 其中 $s = \frac{f(u_l) - f(u_r)}{u_l - u_r}$ 是激波速度.

黎曼问题 (无论是稀疏波还是激波), 解都沿着射线 $\lambda=\frac{x}{t},$ $\lambda\in R$ 是常数. 若 u(x,t) 是解, u(ax,at) 也是解. 即解 u(u,t) 只与 $\frac{x}{t}$ 有关.

设 $u(x,t) = w(\frac{x}{t})$, 其中 $w(\cdot)$ 是一个待定函数.

1. 如果有稀疏波产生.

对
$$u(x,t) = w(\frac{x}{t})$$
 求导得
$$\begin{cases} u_t = w'(\frac{x}{t}) \cdot (-1) \frac{x}{t^2} \\ f(u)_x = f'(u)w'(\frac{x}{t})t^{-1} \end{cases}.$$

代入守恒律方程 $u_t + f(u)_x = 0$ 得 $0 = w'(\frac{x}{t}) \frac{f'(u) - \frac{x}{t}}{t}$.

1.a. 若w'=0, 即w是常数,对应于左右两侧解为常数的区域.

1.b. 若 $w' \neq 0$, t > 0, 则 $f'(u) = \frac{x}{t}$.

本质非线性守恒律方程 f' 的反函数处处存在, 定义 $f'(\cdot)$ 的反函数为 $g(\cdot)$.

则含稀疏波的解为
$$u(x,t) = \begin{cases} u_l, x < \lambda_l t \\ g(\frac{x}{t}), \lambda_l t \le x \le \lambda_r t \\ u_r, x > \lambda_r t \end{cases}$$
,是熵解

2. 如果有激波产生.

含激波的解为
$$u(x,t) = \begin{cases} u_l, x < st \\ u_r, x > st \end{cases}$$
 , 其中激波速度 $s = \frac{f(u_l) - f(u_r)}{u_l - u_r}$. 此解满足 Lax 熵

条件, 是熵解.

[一般 Riemann 问题的困难] 一般黎曼问题的 f 不是严格凸或严格凹的. 对于稀疏波情况, 无法确定两个初值都能通过一个稀疏波过度 (f' 不一定唯一存在). 对于激波情况, 无法只通过一个激波把两个初值连接且相应的解满足 Oleinik 熵条件.

[一般 Riemann 问题的凸包方法]

由熵解的总变差不增性知连接 u_l, u_r 的解 u(x,t) 在 x 方向必须是单调的. 否则 $TV(u(\cdot,t)) > |u_l - u_r| = TV(u(\cdot,0))$.

设 u^-, u^+ 是连接 u_l, u_r 的解在间断处的左极限和右极限, 由 Oleinik 条件知 $\frac{f(u) - f(u^-)}{u - u^-} \ge s \ge \frac{f(u) - f(u^+)}{u - u^+}, u \in (u^-, u^+)$. 其中 s 是间断速度, 由 R-H 条件确定.

- 1. 对于 $u_l = u_r$. 解是一个常数 $u(x,t) = u_l = u_r$. 古典解是熵解.
- 2. 对于 $u_l < u_r$.

若有间断, 由总变差不增性得 $u_l \le u^- < u^+ \le u_r$.

Oleinik 熵条件变为
$$\begin{cases} f(u) \geq f(u^-) + s(u-u^-) \\ f(u) \geq f(u^+) + s(u-u^+) \end{cases}$$
,不等式右端分别是过 $(u^-, f(u^-))$

和 $(u^+, f(u^+))$ 斜率为 s 的直线段.

由于 s 固定, 这两条线段实际上同一条直线段, 即同时过 $(u^-,f(u^-))$ 和 $(u^+,f(u^+))$ 斜率为 s 的直线段. 设该直线为 L.

若取 $u^- = u_l, u^+ = u_r$, Oleinik 熵条件成立. 即使 f(u) 整体在直线 L 上方. 则 u_l, u_r 可以由一个激波直接连接, 相应的解为熵解.

如果 $u^- = u_l, u^+ = u_r$ 不能成立, 则 u^-, u^+ 只能取到某些中间值, 熵条件无法满足. 连接 u_l, u_r 的解中应该有连续过度部分, 解的形式为 $u(x,t) = w(\frac{x}{t})$, 为稀疏波.

综合上述, 此时方法即做一个连接 $(u_l, f(u_l)), (u_r, f(u_r))$ 两点的曲线 f(u) 的下凸包. 下凸包中直线部分对应间断, 曲线部分对应稀疏波. 因为凸包的曲线部分是凸的, 因此对应 f' 在相应区域是可逆的. 这种构造的解满足熵条件.

3. 对于 $u_l > u_r$, 可通过构造上凸包的方法求解.