Barney Overtrates contact strates al Telinshberg-Kuphy Almost contact objection; (Mari, g=kerx) a non-deg. 2 fem = 5. x rwh fo. Overhuled carted stradue; (Carals-Kurphy-Presas): (Dot × R² N Ker (dot + 40d)) (M, 5).

(1) - (5 (4)) 2 +555(1)) or thicker / R³ or, Thm: (B-E-h.) Cont Str (M) Almost Cort Str (M) is an isomorphism on To...
(restrict) more data, its a much hodrospy equiv.). somedne. any account. is rep. 57 genuine of. injectue! Overhytes etit obs. are complice if is sure hopy class. Follow-up work: Casals-Hughy-Preson: gave us. Se when deshis of OT. · Generalized may of catenon for OT in 3-D. to higher dimensions. · Connection of Plastikshie. Elishberg-Kuphy: Propo a hipmage for symp. studeres on obsiditing BW24 u/ an ot sag. end, when 2n >4. Gromov's h-principle: If V'200 is open, then Cont Str(V) ~ Almost (st(V) lblc V can be restorted out a codia. I skelcter: "holmanic approx." Igués in a sullabord of cosino 1. 1.

For closed manifolds:
Garage
(M, 3) almost contact strates.
Applying Gronar to a whood of adam. I skeleter, he have that but & is handpie to mother & sol-
he have that both & is honospic to nother 3 sol-
(3) is generie above - finite # of salls By - By
(Rmh: catalu N=1, by the need to retrie to a std. problem by choses a case
of the ball arrowy!
left -/ following problem:
(B2n+1 8) and 5 is gentine on a shoot of DB.
How can we make & genuine while fixing & near DB?
Call this a contract sheet
Demont Overver of pp;
That a special contact shot (R TOE)
That a special contact short (B) \$50 and ball sols whose You have an explaint way to show
a certain fixed a Bot # B & Soft \$) equives to a gensine contact str. type. Where (B, \$) is a) shell.

The looks like the least (2st + vdt)

$$\sum_{k=1}^{2} \{x,y,t\} \in \mathcal{M} \times \mathbb{R}^{2} : 0 \leq y \leq k(x) \}$$

$$\sum_{k=1}^{2} \{x,y,t\} \in \mathcal{M} \times \mathbb{R}^{2} : 0 \leq y \leq k(x) \}$$

$$\sum_{k=1}^{2} \{x,y,t\} \in \mathcal{M} \times \mathbb{R}^{2} : 0 \leq y \leq k(x) \}$$

$$\sum_{k=1}^{2} \{x,y,t\} \in \mathcal{M} \times \mathbb{R}^{2} : 0 \leq y \leq k(x) \}$$

$$\sum_{k=1}^{2} \{x,y,t\} \in \mathcal{M} \times \mathbb{R}^{2} : 0 \leq y \leq k(x) \}$$

$$\sum_{k=1}^{2} \{x,y,t\} \in \mathcal{M} \times \mathbb{R}^{2} : 0 \leq y \leq k(x) \}$$

$$\sum_{k=1}^{2} \{x,y,t\} \in \mathcal{M} \times \mathbb{R}^{2} : 0 \leq y \leq k(x) \}$$

$$\sum_{k=1}^{2} \{x,y,t\} \in \mathcal{M} \times \mathbb{R}^{2} : 0 \leq y \leq k(x) \}$$

$$\sum_{k=1}^{2} \{x,y,t\} \in \mathcal{M} \times \mathbb{R}^{2} : 0 \leq y \leq k(x) \}$$

$$\sum_{k=1}^{2} \{x,y,t\} \in \mathcal{M} \times \mathbb{R}^{2} : 0 \leq y \leq k(x) \}$$

$$\sum_{k=1}^{2} \{x,y,t\} \in \mathcal{M} \times \mathbb{R}^{2} : 0 \leq y \leq k(x) \}$$

$$\sum_{k=1}^{2} \{x,y,t\} \in \mathcal{M} \times \mathbb{R}^{2} : 0 \leq y \leq k(x) \}$$

$$\sum_{k=1}^{2} \{x,y,t\} \in \mathcal{M} \times \mathbb{R}^{2} : 0 \leq y \leq k(x) \}$$

$$\sum_{k=1}^{2} \{x,y,t\} \in \mathcal{M} \times \mathbb{R}^{2} : 0 \leq y \leq k(x) \}$$

$$\sum_{k=1}^{2} \{x,y,t\} \in \mathcal{M} \times \mathbb{R}^{2} : 0 \leq y \leq k(x) \}$$

$$\sum_{k=1}^{2} \{x,y,t\} \in \mathcal{M} \times \mathbb{R}^{2} : 0 \leq y \leq k(x) \}$$

$$\sum_{k=1}^{2} \{x,y,t\} \in \mathcal{M} \times \mathbb{R}^{2} : 0 \leq y \leq k(x) \}$$

$$\sum_{k=1}^{2} \{x,y,t\} \in \mathcal{M} \times \mathbb{R}^{2} : 0 \leq y \leq k(x) \}$$

$$\sum_{k=1}^{2} \{x,y,t\} \in \mathcal{M} \times \mathbb{R}^{2} : 0 \leq y \leq k(x) \}$$

$$\sum_{k=1}^{2} \{x,y,t\} \in \mathcal{M} \times \mathbb{R}^{2} : 0 \leq y \leq k(x) \}$$

$$\sum_{k=1}^{2} \{x,y,t\} \in \mathcal{M} \times \mathbb{R}^{2} : 0 \leq y \leq k(x) \}$$

$$\sum_{k=1}^{2} \{x,y,t\} \in \mathcal{M} \times \mathbb{R}^{2} : 0 \leq y \leq k(x) \}$$

$$\sum_{k=1}^{2} \{x,y,t\} \in \mathcal{M} \times \mathbb{R}^{2} : 0 \leq y \leq k(x) \}$$

$$\sum_{k=1}^{2} \{x,y,t\} \in \mathcal{M} \times \mathbb{R}^{2} : 0 \leq y \leq k(x) \}$$

$$\sum_{k=1}^{2} \{x,y,t\} \in \mathcal{M} \times \mathbb{R}^{2} : 0 \leq y \leq k(x) \}$$

$$\sum_{k=1}^{2} \{x,y,t\} \in \mathcal{M} \times \mathbb{R}^{2} : 0 \leq y \leq k(x) \}$$

$$\sum_{k=1}^{2} \{x,y,t\} \in \mathcal{M} \times \mathbb{R}^{2} : 0 \leq y \leq k(x) \}$$

$$\sum_{k=1}^{2} \{x,y,t\} \in \mathcal{M} \times \mathbb{R}^{2} : 0 \leq y \leq k(x) \}$$

$$\sum_{k=1}^{2} \{x,y,t\} \in \mathcal{M} \times \mathbb{R}^{2} : 0 \leq y \leq k(x) \}$$

$$\sum_{k=1}^{2} \{x,y,t\} \in \mathcal{M} \times \mathbb{R}^{2} : 0 \leq y \leq k(x) \}$$

$$\sum_{k=1}^{2} \{x,y,t\} \in \mathcal{M} \times \mathbb{R}^{2} : 0 \leq y \leq k(x) \}$$

$$\sum_{k=1}^{2} \{x,y,t\} \in \mathcal{M} \times \mathbb{R}^{2} : 0 \leq y \leq k(x) \}$$

$$\sum_{k=1}^{2} \{x,y,t\} \in \mathcal{M} \times \mathbb{R}^{2} : 0 \leq y \leq k(x) \}$$

$$\sum_{k=1}^{2} \{x,y,t\} \in \mathcal{M} \times \mathbb{R}^{2} : 0 \leq y \leq k(x) \}$$

Ruh: In higher dirensions, how regarder lemma is no longer time, & need to modify to beep truck of how regardere from are, etc. - less brians.

the homotpy equi- of fix poster ut ot disk.

(provis this is careened by topol. of space of OT disks; open ever in diversion 3)