Solution de la Série Nº1: Espaces vectoriels, sous-espace vectoriel et base

Exercice 1

1. Soit F un sous \mathbb{K} -e.v. d'un espace vectoriel E. Existe-t-il un sous-espace vectriel G de E tel que

$$F \cap G = \emptyset$$
.

- 2. Soit E et F deux K-e.v. Montrer que l'addition des applications linéaires et la multiplication par un scalaire munissent $\mathcal{L}(E,F)$ d'une structure d'espace vectoriel.
- 3. Quelles sont les applications linéaires de $\mathbb R$ dans lui-même? La loi

$$(f, g) \longmapsto f \circ g$$

définie dans $\mathcal{L}(\mathbb{R})$ est-elle commutative?

Solution:

1. Soit F un sous K-e.v. d'un espace vectoriel E. Supposons qu'il existe un sous-espace vectriel G de E tel que $F \cap G = \emptyset$.

Comme F et G sont deux sous-espaces vectoriels, alors $0_E \in F$ et $0_E \in G$ donc $0_E \in F \cap G$ soit $0_E \in \emptyset$ ce qui est absurde car \emptyset ne contient aucun élément. D'où l'hypothèse est fausse et enfin on ne pas trouver deux sous-espaces vectoriels dont l'intersection est vide.

- 2. Soit E et F deux K-e.v. Montrons que $(\mathcal{L}(E,F),+,\times)$ est un K-espace vectoriel. Cet ensemble est non vide car il contient l'application nulle $0_{E,F}$. Nous allons munir $\mathcal{L}(E,F)$ d'une structure "naturelle" d'espace vectoriel.
 - (a) Addition de deux applications linéaires :

Soit f et g deux applications linéaires de E dans F. Montrons que f+g est encore linéaire? Soit x et y deux vecteurs de E et $\lambda \in \mathbb{K}$.

- Il en résulte de la linéarité de f et g:

$$f(x+y) = f(x) + f(y)$$

 et

$$g(x+y) = g(x) + g(y),$$

d'où

$$f(x+y) + g(x+y) = f(x) + f(y) + g(x) + g(y)$$

= $(f+g)(x) + (f+g)(y)$

– La linéarité de f et g entraı̂ne $f(\lambda x) = \lambda f(x)$ et $g(\lambda x) = \lambda g(x)$, par suite

$$f(\lambda x) + g(\lambda x) = \lambda f(x) + \lambda g(x)$$
$$= \lambda (f(x) + g(x))$$
$$(f+g)(\lambda x) = \lambda (f+g)(x).$$

Par suite, on définit une loi interne $(f,g) \longmapsto f+g$ sur $\mathcal{L}(E,F)$, que nous appelons addition de $\mathcal{L}(E,F)$.

(b) Multiplication d'une application linéaire par un scalaire :

Soit f une application linéaire de E dans F et $\lambda \in \mathbb{K}$ un scalaire. Nous allons montrer que l'application

$$\lambda.f: E \longmapsto F, \quad x \longmapsto \lambda.f(x)$$

est linéaire.

- Étant donné deux vecteurs x et y de E, la relation

$$f(x+y) = f(x) + f(y)$$

entraîne

$$(\lambda.f)(x+y) = \lambda.(f(x) + f(y))$$

= $\lambda.f(x) + \lambda.f(y)$
= $(\lambda.f)(x) + (\lambda.f)(y)$.

– Soit μ un élément de \mathbb{K} . De la relation :

$$f(\mu.x) = \mu.f(x)$$

il en résulte

$$(\lambda.f)(\mu.x) = \lambda.(f(\mu.x))$$

$$= \lambda.(\mu.f(x))$$

$$= (\lambda.\mu).f(x) = \mu.(\lambda.f(x))$$

$$= \mu.((\lambda.f)(x)),$$

donc $\lambda.f$ est bien un élément de $\mathcal{L}(E,F)$. Par suite, on a défini sur $\mathcal{L}(E,F)$ une loi externe $(\lambda,f) \longmapsto \lambda.f$ ou $(\lambda \in \mathbb{K} \text{ et } f \in \mathcal{L}(E,F))$, de domaine \mathbb{K} , appelée multiplication par un scalaire de \mathbb{K} .

3. – les applications linéaires de \mathbb{R} dans lui-même sont telles que f(x+y) = f(x) + f(y) et $f(\lambda x) = \lambda f(x)$ pour tous x, y et λ dans \mathbb{R} , ces applications sont $x \mapsto ax$ avec $a \in \mathbb{R}$ fixé.

$$\mathscr{L}(\mathbb{R}) = \{ f : x \mapsto ax, \quad a \in \mathbb{R} \}.$$

– La loi $(f,g) \longmapsto f \circ g$ définie dans $\mathscr{L}(\mathbb{R})$ est commutative, en effet : soit $f \in \mathscr{L}(\mathbb{R})$ et $g \in \mathscr{L}(\mathbb{R})$, alors il existe a et b dans \mathbb{R} tels que pour tout $x \in \mathbb{R}$ on a $f : x \mapsto ax$ et $g : x \mapsto bx$ donc

$$f \circ g(x) = f(g(x)) = f(bx) = a(bx) = (ab)x = (ba)x = b(ax) = g(ax) = g(f(x)) = g \circ f(x)$$

car (\mathbb{R}, \times) est commutatif,

d'où $f \circ g(x) = g \circ f(x)$ pour tout $x \in \mathbb{R}$. D'où la loi \circ est commutative dans $\mathcal{L}(\mathbb{R})$.

Exercice 2

1. (a) Soit α , β et λ des nombres réels. Montrer que le système :

$$((1, \alpha, \beta), (0, 1, \lambda), (0, 0, 1))$$

est une base de \mathbb{R}^3

(b) Est-ce que le système :

est une base de \mathbb{R}^3

- 2. Soit u, v et w trois vecteurs linéairement indépendants d'un espace vectoriel E.
 - (a) Montrer que le système (v+w, w+u, u+v) est libre. Le système (v+w, w+u, u+v) est-t-il une base?
 - (b) On suppose que E est de dimension 3. Si (α, β, λ) est le système des coordonnées d'un vecteur x de E dans la base (u, v, w), quel est le système de coordonnées de x dans la base (v + w, w + u, u + v)?

Solution:

1. (a) Soit α , β et λ des nombres réels. Montrons que le système :

$$\{(1, \alpha, \beta), (0, 1, \lambda), (0, 0, 1)\}$$

est une base de \mathbb{R}^3 :

– le système : $\{(1,\alpha,\beta),\ (0,1,\lambda),\ (0,0,1)\}$ est libre, en effet soit a,b et c trois réels tels que $a(1,\alpha,\beta)+b(0,1,\lambda)+c(0,0,1)=0_{\mathbb{R}^3}=(0,0,0),$ montrons que a=b=c=0?

On a

$$a(1, \alpha, \beta) + b(0, 1, \lambda) + c(0, 0, 1) = (a, a\alpha + b, a\beta + b\lambda + c) = (0, 0, 0),$$

donc

$$\begin{cases} a = 0 \\ a\alpha + b = 0 \\ a\beta + b\lambda + c = 0 \end{cases} \Rightarrow \begin{cases} a = 0 \\ b = 0 \\ c = 0 \end{cases}$$

d'où a=b=c=0, ce qui entraine que le système $\{(1,\alpha,\beta),\ (0,1,\lambda),\ (0,0,1)\}$ est libre.

- On sait que le système $\{e_1 = (1,0,0), e_2 = (0,1,0), e_3 = (0,0,1)\}$ est une partie génératrice de \mathbb{R}^3 , alors $u=(1,\alpha,\beta)=(1,0,0)+\alpha(0,1,0)+\beta(0,0,1)$ et $v = (0, 1, 0) + \lambda(0, 0, 1),$

donc $u = e_1 + \alpha e_2 + \beta e_3$, $v = e_2 + \lambda e_3$ et $w = e_3$, d'où $u = e_1 + \alpha(v - \lambda w) + \beta w$, $e_2 = v - \lambda w$ et $w = e_3$, soit

$$\begin{cases}
e_3 = w \\
e_2 = v - \lambda w \\
e_1 = u + \alpha v + (\beta - \alpha \lambda)w
\end{cases}$$

Pour tout $x \in \mathbb{R}^3$, il existe a, b et c dans \mathbb{R} tels que $x = ae_1 + be_2 + ce_3$, donc

$$x = a(u + \alpha v + (\beta - \alpha \lambda)w) + b(v - \lambda w) + cw$$

d'où

$$x = a'u + b'v + c'w$$

avec a' = a, $b' = \alpha a + b$ et $c' = c + \beta a - \lambda(\alpha a + b)$, ce qui prouve que le système $\{u=(1,\alpha,\beta),\ v=(0,1,\lambda),\ w=(0,0,1)\}\ \text{engendre}\ \mathbb{R}^3.$

Finalement, le système $\{u=(1,\alpha,\beta),\ v=(0,1,\lambda),\ w=(0,0,1)\}$ est une base de \mathbb{R}^3 .

(b) Soit le système $\{u = (1, 2, 3), v = (2, 3, 4), w = (3, 4, 5)\}$, pour que ce système soit une base de \mathbb{R}^3 , il faut que ce système soit libre et générateur de \mathbb{R}^3 , soit α , β et γ des réels tels que $\alpha u + \beta v + \gamma w = 0_{\mathbb{R}^3}$, a-t-on $\alpha = \beta = \gamma = 0$?

a-t-on
$$\alpha = \beta = \gamma = 0$$
:

$$\alpha u + \beta v + \gamma w = (\alpha + 2\beta + 3\gamma, 2\alpha + 3\beta + 4\gamma, 3\alpha + 4\beta + 5\gamma) = (0, 0, 0)$$

donc

$$\begin{cases} \alpha + 2\beta + 3\gamma = 0 \\ 2\alpha + 3\beta + 4\gamma = 0 \\ 3\alpha + 4\beta + 5\gamma = 0 \end{cases} \Leftrightarrow \begin{cases} \alpha = -2\beta - 3\gamma \\ 2(-2\beta - 3\gamma) + 3\beta + 4\gamma = 0 \\ 3(-2\beta - 3\gamma) + 4\beta + 5\gamma = 0 \end{cases}$$
$$\begin{cases} \alpha = -2\beta - 3\gamma \\ -\beta - 2\gamma = 0 \\ -2\beta - 4\gamma = 0 \end{cases} \Leftrightarrow \begin{cases} \alpha = \gamma \\ \beta = -2\gamma \end{cases}$$

ce qui prouve que le triplet de scalaires (α, β, γ) vérifiant $\alpha u + \beta v + \gamma w = 0_{\mathbb{R}^3}$ est la droite d'équation

$$\begin{cases} \alpha = \gamma \\ \beta = -2\gamma \end{cases}$$

ce qui montre que pour $\gamma = 1 \neq 0$, on a $\alpha = 1 \neq 0$ et $\beta = -2 \neq 0$, puis on aura

$$(1-2+3, 2-6+4, 3-8+5) = (0,0,0)$$

c'est à dire que le système $\{u=(1,2,3),\ v=(2,3,4),\ w=(3,4,5)\}$ est lié (n'est pas libre), Enfin ce système ne peut pas être une base de \mathbb{R}^3 .

2. Soit u, v et w trois vecteurs linéairement indépendants d'un espace vectoriel E.

(a) – Montrons que le système (v+w, w+u, u+v) est libre : soit a, b et c trois scalaires tels que $a(v+w) + b(w+u) + c(u+v) = 0_E$, montrons que a = b = c = 0.

$$a(v+w) + b(w+u) + c(u+v) = (b+c)u + (a+c)v + (a+b)w = 0_E$$

 $\operatorname{car}(E,+)$ est un groupe,

comme $\{u, v, w\}$ est un système libre, alors

$$\begin{cases} b+c=0\\ a+c=0\\ a+b=0 \end{cases} \Rightarrow a=b=c=0$$

ce qui prouve que le système $\{v+w, w+u, u+v\}$ est libre.

- Le système $\{v+w,w+u,u+v\}$ n'est pas forcément une base de E, en effet on peut prendre $v+w=e_1=(1,0,0,0), w+u=e_2=(0,1,0,0)$ et $u+v=e_3=(0,0,0,1)$ dans $E=\mathbb{R}^4$, alors le système $\{v+w,w+u,u+v\}$ est libre dans E, mais il n'est pas une base de E car on ne connait pas la dimension de E.
- (b) Supposons que E est de dimension 3. Soit (α, β, λ) le système des coordonnées d'un vecteur x de E dans la base (u, v, w), soit (a, b, c) le système de coordonnées de x dans la base (v + w, w + u, u + v), calculons a, b et c en fonction de α, β et γ . On a $x = \alpha v + \beta w + \gamma u$ d'une part et d'autre part x = a(v + w) + b(w + u) + c(u + v) = (b + c)u + (a + c)v + (a + b)w, donc

$$\alpha v + \beta w + \gamma u = (b+c)u + (a+c)v + (a+b)w$$

comme le système $\{u, v, w\}$ est un système libre, alors

$$\begin{cases} b+c=\alpha \\ a+c=\beta \\ a+b=\gamma \end{cases} \Rightarrow \begin{cases} a=\frac{1}{2}(\beta+\gamma-\alpha) \\ b=\frac{1}{2}(\gamma+\alpha-\beta) \\ c=\frac{1}{2}(\alpha+\beta-\gamma) \end{cases}$$

D'où le système de coordonnées (a,b,c) donné par les expressions qu'on vient de trouver.

Exercice 3

Soit \mathcal{D} l'ensemble des fonctions numériques, définies et dérivables sur \mathbb{R} et $\mathcal{F}(\mathbb{R})$ l'espace vectoriel des fonctions numériques définies sur \mathbb{R} .

- 1. Montrer que \mathcal{D} est un sous-espace de $\mathcal{F}(\mathbb{R})$.
- 2. Soit $\varphi : \mathcal{D} \longrightarrow \mathcal{F}(\mathbb{R})$ l'application qui à une fonction $f \in \mathcal{D}$ associe la fonction dérivée f'. Montrer que φ est linéaire.
- 3. L'application φ est-elle injective? surjective?

Solution:

Soit \mathcal{D} l'ensemble des fonctions numériques, définies et dérivables sur \mathbb{R} et $\mathcal{F}(\mathbb{R})$ l'espace vectoriel des fonctions numériques définies sur \mathbb{R} .

1. Montrons que \mathcal{D} est un sous-espace de $\mathcal{F}(\mathbb{R})$:

5

- Tout d'abord $\mathcal{D} \subset \mathcal{F}(\mathbb{R})$, en effet toute fonction f définie et dérivable sur \mathbb{R} est une fonction numérique, donc $f \in \mathcal{F}(\mathbb{R})$, d'où \mathcal{D} est un sous-ensemble de $\mathcal{F}(\mathbb{R})$.
- $-\mathcal{D} \neq \emptyset$ car la fonction nulle 0 est définie et dérivable sur \mathbb{R} , donc la fonction nulle est un élément de \mathcal{D} .
- Soit f et g dans \mathcal{D} et λ un réel. Soit $x \in \mathbb{R}$, on a

$$(f+g)'(x) = f'(x) + g'(x)$$
 et $(\lambda f)'(x) = \lambda f'(x)$

donc $f + g \in \mathcal{D}$ et $\lambda f \in \mathcal{D}$. Ce qui prouve que \mathcal{D} est un sous-espace vectoriel de $\mathcal{F}(\mathbb{R})$.

- 2. Soit $\varphi : \mathcal{D} \longrightarrow \mathcal{F}(\mathbb{R})$ l'application qui à une fonction $f \in \mathcal{D}$ associe la fonction dérivée f'. Montrons que φ est linéaire : soit f et g dans \mathcal{D} et λ un réel, alors on a
 - $[\varphi(f+g)](x) = (f+g)'(x) = f'(x) + g'(x) = [\varphi(f)](x) + [\varphi(g)](x) = [\varphi(f) + \varphi(g)](x),$ pour tout $x \in \mathbb{R}$. Donc $\varphi(f+g) = \varphi(f) + \varphi(g)$.
 - $[\varphi(\lambda f)](x) = (\lambda f)'(x) = \lambda f'(x) = [\lambda \varphi(f)](x)$, pour tout $x \in \mathbb{R}$. Donc $\varphi(\lambda f) = \lambda \varphi(f)$. D'où φ est linéaire.
- 3. L'application φ n'est pas injective, en effet, en prenant h = f + 5 et g = f + 6 deux fonctions dans \mathcal{D} , alors on a $\varphi(h) = f' = \varphi(g)$ mais $h \neq g$ car sinon f(x) + 5 = f(x) + 6 pour tout $x \in \mathbb{R}$, et donc 1 = 0 ce qui est absurde.
 - L'application φ est injective, en effet, soit g dans $\mathcal{F}(\mathbb{R})$, existe-t-elle une fonction f dans \mathcal{D} telle que $g = \varphi(f)$. On a $g = \varphi(f) = f'$, alors g(t) = f'(t) pour tout $t \in \mathbb{R}$, donc $f(x) = f(0) + \int_0^x g(t)dt$ pour tout $x \in \mathbb{R}$. D'où il existe une fonction f dans \mathcal{D} vérifiant $g = \varphi(f)$, cette fonction est $f(x) = f(0) + \int_0^x g(t)dt$ pour tout $x \in \mathbb{R}$.

Exercice 4

- 1. Soit E un espace vectoriel non nul. On note $\mathcal{H}(E)$ l'ensemble des homothéties vectorielles de E sur lui-même. Montrer que $\mathcal{H}(E)$ est un sous-groupe de $\mathrm{GL}(E)$.
- 2. Soit $h \in \mathcal{H}(E)$. Montrer que :

$$(\forall f \in \mathrm{GL}(E)), \quad f^{-1} \circ h \circ f \in \mathcal{H}(E)$$

3. Montrer que si $E = \mathbb{R}$ est la droite vectorielle, alors $\mathcal{H}(\mathbb{R}) = \mathrm{GL}(\mathbb{R})$.

Solution:

- 1. Soit E un espace vectoriel non nul et $(\mathbf{GL}(E), \circ)$ le groupe des endomorphismes bijectifs de l'espace vectoriel E, on note $\mathcal{H}(E)$ l'ensemble des homothéties vectorielles de E sur lui-même. Montrons que $\mathcal{H}(E)$ est un sous-groupe de $\mathrm{GL}(E)$. Soit f dans $\mathcal{H}(E)$, alors il existe λ un scalaire tel que $f(x) = \lambda x$ pour tout $x \in E$, le paramètre λ s'appelle le rapport de l'homthétie.
 - $-\mathcal{H}(E) \neq \emptyset$ car l'application identique id : $E \to E$ est une homothétie vectorielle de rapport $\lambda = 1$ appartient à $\mathcal{H}(E)$. Donc id est l'élément neutre de $\mathcal{H}(E)$.
 - Soit f et g dans $\mathcal{H}(E)$, alors il existe α et β des scalaires tels que $f(x) = \alpha x$ et $g(x) = \beta x$ pour tout x dans E. On a

$$f \circ g(x) = f(g(x)) = \alpha g(x) = \alpha(\beta x) = (\alpha \beta)x$$

on pose $\lambda = \alpha \beta$ alors $f \circ g(x) = \lambda x$ pour tout x dans E. Ce qui prouve que $f \circ g$ est une homothétie de rapport $\lambda = \alpha \beta$, soit $f \circ g \in \mathcal{H}(E)$ pour tout f et g dans $\mathcal{H}(E)$.

– Soit f dans $\mathcal{H}(E)$, existe-t-il un élément g dans $\mathcal{H}(E)$ tel que $f \circ g = \mathrm{id}$. Soit $x \in E$ et $f(x) = \alpha x$ avec $\alpha \neq 0$ alors

$$f \circ g(x) = \alpha g(x) = x$$

donc $g(x) = \frac{1}{\alpha}x$, d'où g est une homothétie de rapport $\lambda = \frac{1}{\alpha}$, ce qui montre que pour toute homothétie f de rapport $\alpha \neq 0$, il existe une et une seule homothétie g de rapport $\frac{1}{\alpha}$ telle que $f \circ g = g \circ f = \mathrm{id}$

ce qui prouve que $\mathcal{H}(E)$ est un sous-groupe de $(\mathbf{GL}(E), \circ)$.

2. Soit $h \in \mathcal{H}(E)$, montrons que :

$$(\forall f \in GL(E)), \quad f^{-1} \circ h \circ f \in \mathcal{H}(E)$$

On a $h \in \mathcal{H}(E)$, alors il existe $\lambda \neq 0$ tel que $h(x) = \lambda x$, pour tout x dans E. Soit $f \in GL(E)$, on a $f^{-1} \circ h \circ f(x) = f^{-1}(h(f(x))) = f^{-1}(\lambda f(x)) = f^{-1}(f(\lambda x)) = f^{-1}(\lambda f(x))$ car f est linéaire et bijectif, d'où

$$f^{-1} \circ h \circ f(x) = \lambda x = h(x), \quad \forall x \in E$$

d'où $(\forall f \in GL(E)), f^{-1} \circ h \circ f \in \mathcal{H}(E)$, ce qui prouve que $\mathcal{H}(E)$ est un sous-groupe distingué dans $\mathbf{GL}(E)$.

3. Soit $E = \mathbb{R}$ la droite vectorielle, montrer que $\mathcal{H}(\mathbb{R}) = \mathrm{GL}(\mathbb{R})$: les endomorphismes de \mathbb{R} sont les applications linéaires sur \mathbb{R} de la forme f(x) = ax pour tout $x \in \mathbb{R}$ où $a \in \mathbb{R}$ est fixé. Alors

$$\mathrm{GL}(\mathbb{R}) = \{ f : x \mapsto ax \, / \, a \neq 0 \}$$

donc pour tout $g \in GL(\mathbb{R})$, il existe $\alpha \neq 0$ un réel tel que $g(x) = \alpha x$ pour tout $x \in \mathbb{R}$, d'où $g \in \mathcal{H}(E)$ c'est à dire $GL(\mathbb{R}) \subset \mathcal{H}(E)$, et comme $\mathcal{H}(E) \subset GL(\mathbb{R})$. Finalement $GL(\mathbb{R}) = \mathcal{H}(E)$.

Exercice 5

1. Soit E un espace vectoriel de dimension 2 et (i,j) une base de E. Soit f et g deux endomorphisme de E définis respectivement par :

$$\begin{cases} f(i) &= i + 2j, \\ f(j) &= 4i + 5j, \end{cases} \text{ et } \begin{cases} g(i) &= 5i + 6j \\ g(j) &= 7i + 8j. \end{cases}$$

Soit v = x.i + y.j (où $(i, j) \in \mathbb{R}^2$) un vecteur de E.

Quelles sont les composantes sur la base (i, j) des vecteurs suivants :

$$f(v)$$
; $g(v)$; $(5.f(v) - 4.g(v))$; $(2.f - id_E)(v)$; $(-f + \pi.g)(v)$.

2. Soit S et T les sous-espaces de \mathbb{R}^3 engendrés respactivement par les vecteurs :

$$S = \overline{\langle (1, -1, 2); (1, 1, 2); (3, 6, -6) \rangle}$$

$$T = \overline{\langle (0, -2, -3); (1, 0, 1) \rangle}$$

Quelles sont les dimensions de S, T et $S \cap T$?

Solution:

1. Soit E un espace vectoriel de dimension 2 et (i, j) une base de E. Soit f et g deux endomorphisme de E définis respectivement par :

$$\begin{cases} f(i) = i + 2j, \\ f(j) = 4i + 5j, \end{cases} \text{ et } \begin{cases} g(i) = 5i + 6j \\ g(j) = 7i + 8j. \end{cases}$$

Soit v=x.i+y.j (où $(i,j)\in\mathbb{R}^2)$ un vecteur de E.

Les composantes des vecteurs suivants :

$$f(v); g(v); (5.f(v) - 4.g(v)); (2.f - id_E)(v); (-f + \pi.g)(v).$$

relativement à la base (i, j).

- f(v) = f(x.i + y.j) = xf(i) + yf(j) = x(i + 2j) + y(4i + 5j) = (x + 4y)i + (2x + 5y)j, alors les coordonnées du vecteur f(v) sont (x + 4y, 2x + 5y).
- g(v) = g(x.i + y.j) = xg(i) + yg(j) = x(5i + 6j) + y(7i + 8j) = (5x + 7y)i + (6x + 8y)j, alors les coordonnées du vecteur f(v) sont (5x + 7y, 6x + 8y).
- $5 \cdot f(v) 4 \cdot g(v) = 5(x + 4y)i + 5(2x + 5y)j 4(5x + 7y)i 4(6x + 8y)j = [5x + 20y 20x 28y]i + [10x + 25y 24x 32y]j = (-15x 8y)i + (-14x 7y)j$, alors les coordonnées du vecteur f(v) sont (-15x 8y, -14x 7y).
- $(2.f id_E)(v) = 2f(v) v = 2(xf(i) + yf(j)) xi yj = 2x(i+2j) + 2y(4i+5j) xi yj = (2x + 8y x)i + (4x + 10y y)j = (x + 8y)i + (4x + 9y)j$, alors les coordonnées du vecteur f(v) sont (x + 8y, 4x + 9y).
- $(-f+\pi g)(v) = -f(v) + \pi g(v) = -(x+4y)i (2x+5y)j + \pi (5x+7y)i + \pi (6x+8y)j = (-x-4y+5\pi x+7\pi y)i + (-2x-5y+6\pi x+8\pi y)j$, alors les coordonnées du vecteur f(v) sont $(-x-4y+5\pi x+7\pi y,-2x-5y+6\pi x+8\pi y)$.
- 2. Soit S et T les sous-espaces de \mathbb{R}^3 donnés par : $S = \overline{\langle (1,-1,2); (1,1,2); (3,6,-6) \rangle}$, $T = \overline{\langle (0,-2,-3); (1,0,1) \rangle}$, respectivement. Les dimensions des espaces S, T et $S \cap T$:
 - l'ensemble S est un sous-espace vectoriel de \mathbb{R}^3 engendré par le système $\{(1,-1,2);(1,1,2);(3,6,-6)\}$, mais pour que ce système soit une base de S il faut que le système $\{(1,-1,2);(1,1,2);(3,6,-6)\}$ soit libre; en effet, soit α , β et γ des scalaires tels que $\alpha(1,-1,2)+\beta(1,1,2)+\gamma(3,6,-6)=(0,0,0):$ A-t-on $\alpha=\beta=\gamma=0$? On a $\alpha(1,-1,2)+\beta(1,1,2)+\gamma(3,6,-6)=(\alpha+\beta+3\gamma,-\alpha+\beta+6\gamma,2\alpha+2\beta-6\gamma)=(0,0,0)$ alors

$$\begin{cases} \alpha + \beta + 3\gamma &= 0 \\ -\alpha + \beta + 6\gamma &= 0 \\ 2\alpha + 2\beta - 6\gamma &= 0. \end{cases} \Leftrightarrow \begin{cases} 2\beta + 9\gamma = 0 \\ -12\gamma = 0 \end{cases} \Leftrightarrow \begin{cases} \beta = 0 \\ \gamma = 0. \end{cases}$$

donc $\alpha = 0$; ce qui montre que $\alpha = \beta = \gamma = 0$ ainsi le système $\{(1, -1, 2); (1, 1, 2); (3, 6, -6)\}$ est libre; d'où le sous-espace vectoriel S a pour base le système $\{(1, -1, 2); (1, 1, 2); (3, 6, -6)\}$, soit $\dim_{\mathbb{R}}(S) = 3$.

Remarque : On a $\dim_{\mathbb{R}}(S) = 3$, alors S est isomorphe à \mathbb{R}^3 et comme le système $\{(1, -1, 2); (1, 1, 2); (3, 6, -6)\}$ est formé de vecteurs dans \mathbb{R}^3 , alors $\{(1, -1, 2); (1, 1, 2); (3, 6, -6)\}$ serait une base de \mathbb{R}^3 ; d'où $S = \mathbb{R}^3$.

- l'ensemble T est un sous-espace vectoriel de \mathbb{R}^3 engendré par le système $\{(0,-2,-3);(1,0,1)\}$, mais pour que ce système soit une base de T il faut que le système $\{(1,-1,2);(1,1,2);(3,6,-6)\}$ soit libre; en effet, soit α et β des scalaires tels que $\alpha(0,-2,-3)+\beta(1,0,1)=(0,0,0)$:

A-t-on $\alpha = \beta = \gamma = 0$?

On a $\alpha(0, -2, -3) + \beta(1, 0, 1) = (\beta, -2\alpha, -3\alpha + \beta) = (0, 0, 0)$ alors

$$\begin{cases} \beta = 0 \\ -2\alpha = 0 \\ -3\alpha + \beta = 0. \end{cases} \Leftrightarrow \begin{cases} \alpha = 0 \\ \beta = 0 \end{cases}$$

donc $\alpha = \beta = 0$,

ce qui montre que le système $\{(0, -2, -3); (1, 0, 1)\}$, ainsi le système $\{(0, -2, -3); (1, 0, 1)\}$ est une base de T, soit $\dim_{\mathbb{R}}(T) = 2$.

- On a $T = \overline{\{(0, -2, -3); (1, 0, 1)\}}$ et $S = \overline{\{(1, -1, 2); (1, 1, 2); (3, 6, -6)\}}$. On vient de voir que $\dim_{\mathbb{R}}(S) = 3$, alors S est isomorphe à \mathbb{R}^3 et comme le système

$$\{(1,-1,2);(1,1,2);(3,6,-6)\}$$

est formé de vecteurs dans \mathbb{R}^3 , alors $\{(1,-1,2);(1,1,2);(3,6,-6)\}$ serait une base de \mathbb{R}^3 ; d'où $S=\mathbb{R}^3$ ceci d'une part et d'autre on a $T=\overline{\{(0,-2,-3);(1,0,1)\}}$ est un sous-espace vectoriel de \mathbb{R}^3 ; donc T est inclus dans S soit $S\cap T=T$; d'où $\dim_{\mathbb{R}}(S\cap T)=\dim_{\mathbb{R}}(T)=2$.

Exercice 6

1. Soit (e_1, e_2, e_3) la base naturelle de \mathbb{R}^3 et f l'endomorphisme de \mathbb{R}^3 tel que :

$$f(e_1) = e_1 - e_2;$$
 $f(e_2) = -e_2 + e_3$ et $f(e_3) = e_2 + e_3.$

Déterminer une base de Ker(f) et Im(f).

2. Soit E un espace vectoriel de dimension 3 et (i, j, k) une base de E. Soit f l'endomorphisme de E tel que :

$$f(i) = \frac{1}{3} [2i + 2j - k];$$
 $f(j) = \frac{1}{3} [2i - j + 2k];$ $f(k) = \frac{1}{3} [-i + 2j + 2k].$

- (a) Montrer que $f^2 = id_E$. Déterminer Ker(f) et Im(f).
- (b) Déterminer une autre base (e_1, e_2, e_3) de E telle que l'on ait :

$$f(e_1) = e_1, \quad f(e_2) = e_2, \quad f(e_3) = -e_3.$$

Solution:

1. Soit (e_1, e_2, e_3) la base naturelle de \mathbb{R}^3 et $f \in \mathcal{L}(\mathbb{R}^3)$ tel que :

$$f(e_1) = e_1 - e_2$$
; $f(e_2) = -e_2 + e_3$ et $f(e_3) = e_2 + e_3$.

Déterminons Ker(f) et Im(f): soit $v \in \mathbb{R}^3$, alors il existe (x,y,z) unique tel que $v=xe_1+ye_2+ze_3$. D'après la linéarité de f on a

$$f(v) = xf(e_1) + yf(e_2) + zf(e_3) = x(e_1 - e_2) + y(-e_2 + e_3) + z(e_2 + e_3) = xe_1 + (-x - y + z)e_2 + (y + z)e_3$$

- Soit $v \in \text{Ker}(f)$ alors $f(v) = 0_{\mathbb{R}^3}$, soit $xe_1 + (-x - y + z)e_2 + (y + z)e_3 = 0_{\mathbb{R}^3}$; comme $\{e_1, e_2, e_3\}$ est libre alors

$$\begin{cases} x = 0 \\ -x - y + z = 0 \\ y + z = 0. \end{cases} \Rightarrow \begin{cases} x = 0 \\ -y + z = 0 \\ y + z = 0. \end{cases} \Rightarrow x = y = z = 0$$

d'où $v = 0_{\mathbb{R}^3}$, soit $\operatorname{Ker}(f) \subset \{0_{\mathbb{R}^3}\}$;

et comme $\operatorname{Ker}(f)$ est un sous-espace vectoriel de \mathbb{R}^3 , alors $\{0_{\mathbb{R}^3}\} \subset \operatorname{Ker}(f) \subset \{0_{\mathbb{R}^3}\}$, Finalement $\operatorname{Ker}(f) = \{0_{\mathbb{R}^3}\}$; on peut prendre par convention $\{0_{\mathbb{R}^3}\}$ comme base de $\operatorname{Ker}(f)$.

– On a $\{e_1, e_2, e_3\}$ est la base naturelle de \mathbb{R}^3 , alors $\{f(e_1), f(e_2), f(e_3)\}$ engendre $\operatorname{Im}(f) = f(\mathbb{R}^3)$.

Le système $\{f(e_1), f(e_2), f(e_3)\}$ est-il libre? Soit (x, y, z) un système de scalaires tels que

$$xf(e_1) + yf(e_2) + zf(e_3) = x(e_1 - e_2) + y(-e_2 + e_3) + z(e_2 + e_3) = xe_1 + (-x - y + z)e_2 + (y + z)e_3 = 0_{\mathbb{R}^3}$$

comme $\{e_1, e_2, e_3\}$ est libre alors

$$\begin{cases} x = 0 \\ -x - y + z = 0 \\ y + z = 0. \end{cases} \Rightarrow \begin{cases} x = 0 \\ -y + z = 0 \\ y + z = 0. \end{cases} \Rightarrow x = y = z = 0$$

donc le système $\{f(e_1), f(e_2), f(e_3)\}$ est libre. Finalement le système $\{f(e_1), f(e_2), f(e_3)\}$ est libre et engendre Im(f) à la fois, soit le système $\{f(e_1), f(e_2), f(e_3)\}$ est une base de Im(f).

2. Soit E un espace vectoriel de dimension 3 et (i, j, k) une base de E. Soit f l'endomorphisme de E tel que :

$$f(i) = \frac{1}{3} [2i + 2j - k];$$
 $f(j) = \frac{1}{3} [2i - j + 2k];$ $f(k) = \frac{1}{3} [-i + 2j + 2k].$

(a) Soit $v \in E$, alors v = xi + yj + zk est la combinaison linéaire unique du vecteur v relativement à la base $\{i, j, k\}$ de E.

D'après la linéarité de f on a

$$f(v) = xf(i) + yf(j) + zf(k) = \frac{1}{3}x\left[2i + 2j - k\right] + \frac{1}{3}y\left[2i - j + 2k\right] + \frac{1}{3}z\left[-i + 2j + 2k\right]$$

donc

$$f(v) = \frac{1}{3}(2x + 2y - z)i + \frac{1}{3}(2x - y + 2z)j + \frac{1}{3}(-x + 2y + 2z)k$$

– Montrons que $f^2 = id_E$: d'après la linéarité de f, on a

$$f \circ f(j) = f(f(j)) = f\left(\frac{1}{3}\left[2i + 2j - k\right]\right) = \frac{1}{3}\left[2f(i) + 2f(j) - f(k)\right]$$
$$= \frac{2}{9}\left[2i + 2j - k\right] + \frac{2}{9}\left[2i - j + 2k\right] - \frac{1}{9}\left[-i + 2j + 2k\right]$$
$$= \left(\frac{4}{9} + \frac{4}{9} + \frac{1}{9}\right)i + \left(\frac{4}{9} - \frac{2}{9} - \frac{2}{9}\right)j + \left(-\frac{2}{9} + \frac{4}{9} - \frac{2}{9}\right)k$$

d'où $f \circ f(i) = i$

$$f \circ f(i) = f(f(i)) = f\left(\frac{1}{3}\left[2i - j + 2k\right]\right) = \frac{1}{3}\left[2f(i) - f(j) + 2f(k)\right]$$

$$= \frac{2}{9}\left[2i + 2j - k\right] - \frac{1}{9}\left[2i - j + 2k\right] + \frac{2}{9}\left[-i + 2j + 2k\right]$$

$$= \left(\frac{4}{9} - \frac{2}{9} - \frac{2}{9}\right)i + \left(\frac{4}{9} + \frac{1}{9} + \frac{4}{9}\right)j + \left(-\frac{2}{9} - \frac{2}{9} + \frac{4}{9}\right)k$$

d'où $f \circ f(j) = j$

$$f \circ f(k) = f(f(k)) = f\left(\frac{1}{3}\left[-i+2j+2k\right]\right) = \frac{1}{3}\left[-f(i)+2f(j)+2f(k)\right]$$
$$= -\frac{1}{9}\left[2i+2j-k\right] + \frac{2}{9}\left[2i-j+2k\right] + \frac{2}{9}\left[-i+2j+2k\right]$$
$$= \left(-\frac{2}{9} + \frac{4}{9} - \frac{2}{9}\right)i + \left(-\frac{2}{9} - \frac{2}{9} + \frac{4}{9}\right)j + \left(\frac{1}{9} + \frac{4}{9} + \frac{4}{9}\right)k$$

d'où $f \circ f(k) = k$, ceci d'une part et d'autre part pour tout $v \in E$ on a

$$f \circ f(v) = f(f(v)) = xf \circ f(i) + yf \circ f(j) + zf \circ f(k) = xi + yj + zk = v$$

car $f \circ f$ est linéaire, d'où $f \circ f = \mathrm{Id}_E$.

- Déterminons Ker(f) et Im(f):

$$Ker(f) = \{v \in E / f(v) = 0_E\}$$

On a $f(v) = \frac{1}{3}(2x + 2y - z)i + \frac{1}{3}(2x - y + 2z)j + \frac{1}{3}(-x + 2y + 2z)k$, alors

$$\frac{1}{3}(2x+2y-z)i + \frac{1}{3}(2x-y+2z)j + \frac{1}{3}(-x+2y+2z)k = 0_E$$

donc

$$\begin{cases} 2x + 2y - z &= 0 \\ 2x - y + 2z &= 0 \\ -x + 2y + 2z &= 0. \end{cases} \Leftrightarrow \begin{cases} z &= 2(x+y) \\ y &= 2(x+z) \\ x &= 2(y+z). \end{cases}$$

car le système $\{i,j,k\}$ est libre dans E, d'où

$$Ker(f): \quad x = y = z = 0$$

d'où $Ker(f) = \{0_E\}$ qui est le sous-espace vectoriel propre nul de E. L'image Im(f) de E par f est :

$$Im(f) = \{ f(v) / v \in E \}$$

Pour tout $v \in E$ on a $f(v) = \alpha i + \beta j + \gamma k$ où $\alpha = \frac{1}{3}(2x + 2y - z)$, $\beta = \frac{1}{3}(2x - y + 2z)$ et $\gamma = \frac{1}{3}(-x + 2y + 2z)$, alors le système $\{i, j, k\}$ engendre f(E) qui est inclus dans E, donc Im(f) = E puisque E est de dimension 3.

(b) Déterminons une autre base (e_1, e_2, e_3) de E telle que l'on ait :

$$f(e_1) = e_1, \quad f(e_2) = e_2, \quad f(e_3) = -e_3.$$

soit $e_1 = ai + bj + ck$, $e_2 = a'i + b'j + c'k$ et $e_3 = a''i + b''j + c''k$, alors

$$f(e_1) = \frac{1}{3}(2a+2b-c)i + \frac{1}{3}(2a-b+2c)j + \frac{1}{3}(-a+2b+2c)k$$

$$f(e_2) = \frac{1}{3}(2a'+2b'-c')i + \frac{1}{2}(2a'-b'+2c')j + \frac{1}{3}(-a'+2b'+2c')k$$

$$f(e_3) = \frac{1}{3}(2a'' + 2b'' - c'')i + \frac{1}{3}(2a'' - b'' + 2c'')j + \frac{1}{3}(-a'' + 2b'' + 2c'')k$$

on cherche e_1 tel que $f(e_1) = e_1$, soit

$$\frac{1}{3}(2a+2b-c)i+\frac{1}{3}(2a-b+2c)j+\frac{1}{3}(-a+2b+2c)k=ai+bj+ck$$

comme $\{i, j, k\}$ est libre, alors

$$\begin{cases} \frac{1}{3}(2a+2b-c) &= a \\ \frac{1}{3}(2a-b+2c) &= b \\ \frac{1}{3}(-a+2b+2c) &= c. \end{cases} \Leftrightarrow \begin{cases} a=2b-c \\ (b,c) \in \mathbb{R}^2 \end{cases}$$

on prend b = c = 1 alors a = 1, donc $e_1 = i + j + k$, ainsi on a bien $f(e_1) = e_1$. De la même façon, on veut $f(e_2) = e_2$ alors

$$\begin{cases} \frac{1}{3}(2a' + 2b' - c') &= a'\\ \frac{1}{3}(2a' - b' + 2c') &= b'\\ \frac{1}{3}(-a' + 2b' + 2c') &= c'. \end{cases} \Leftrightarrow \begin{cases} a' = 2b' - c'\\ (b', c') \in \mathbb{R}^2 \end{cases}$$

alors on prend b' = 3, c' = 2 alors a' = 4, donc $e_2 = 4i + 3j + 2k$. on cherche e_3 tel que $f(e_3) = -e_3$, soit

$$\frac{1}{3}(2a'' + 2b'' - c'')i + \frac{1}{3}(2a'' - b'' + 2c'')j + \frac{1}{3}(-a'' + 2b'' + 2c'')k = -a''i - b''j - c''k$$

comme $\{i, j, k\}$ est libre, alors

$$\begin{cases} \frac{1}{3}(2a'' + 2b'' - c'') &= -a'' \\ \frac{1}{3}(2a'' - b'' + 2c'') &= -b'' \\ \frac{1}{3}(-a'' + 2b'' + 2c'') &= -c''. \end{cases} \Leftrightarrow \begin{cases} b'' &= -2a'' \\ c'' &= a'' \\ a'' &\in \mathbb{R} \end{cases}$$

donc on prend $e_3 = \alpha(i-2j+k)$ avec $\alpha \in \mathbb{R}^*$, d'où on a $f(e_3) = -e_3$. Finalement, on a une base $\{e_1, e_2, e_3\}$ de E.

Exercice 7

Soit E un espace vectoriel de dimension 3 et (i, j, k) une base de E. Soit f l'endomorphisme de E tel que :

$$f(i) = \frac{1}{4}i + \frac{1}{8}j + \frac{\sqrt{11}}{8}k; \quad f(j) = \frac{1}{8}i + \frac{1}{16}j + \frac{\sqrt{11}}{16}k; \quad f(k) = \frac{\sqrt{11}}{8}i + \frac{\sqrt{11}}{16}j + \frac{11}{16}k.$$

- 1. Calculer $f \circ f$.
- 2. Montrer que $\operatorname{Ker}(f)$ est le plan d'équation : $\frac{1}{2}x + \frac{1}{4}y + \frac{\sqrt{11}}{4}z = 0$.
- 3. Montrer que $\operatorname{Im}(f)$ est la droite D de vecteur directeur : $\frac{1}{2}i + \frac{1}{4}j + \frac{\sqrt{11}}{4}k$.

Solution:

Consifdérons E un espace vectoriel de dimension 3 et (i, j, k) une base de E. Soit f l'endomorphisme de E tel que :

$$f(i) = \frac{1}{4}i + \frac{1}{8}j + \frac{\sqrt{11}}{8}k; \quad f(j) = \frac{1}{8}i + \frac{1}{16}j + \frac{\sqrt{11}}{16}k; \quad f(k) = \frac{\sqrt{11}}{8}i + \frac{\sqrt{11}}{16}j + \frac{11}{16}k.$$

1. Calculons $f \circ f$: soit v un vecteur dans E tel que v = xi + yj + zk, alors

$$f \circ f(v) = xf \circ f(i) + yf \circ f(j) + zf \circ f(k)$$

car $f \circ f$ est linéaire. Donc pour calculer $f \circ f$, il suffit de calculer $f \circ f(i)$, $f \circ f(j)$ et $f \circ f(k)$.

$$f \circ f(i) = f(f(i))$$

$$= f\left(\frac{1}{4}i + \frac{1}{8}j + \frac{\sqrt{11}}{8}k\right)$$

$$= \frac{1}{4}f(i) + \frac{1}{8}f(j) + \frac{\sqrt{11}}{8}f(k)$$

$$= \frac{1}{4}\left(\frac{1}{4}i + \frac{1}{8}j + \frac{\sqrt{11}}{8}k\right) + \frac{1}{8}\left(\frac{1}{8}i + \frac{1}{16}j + \frac{\sqrt{11}}{16}k\right) + \frac{\sqrt{11}}{8}\left(\frac{\sqrt{11}}{8}i + \frac{\sqrt{11}}{16}j + \frac{11}{16}k\right)$$

$$= \frac{1}{4}\left(\frac{1}{4} + \frac{1}{16} + \frac{11}{16}\right)i + \frac{1}{8}\left(\frac{1}{4} + \frac{1}{16} + \frac{11}{16}\right)j + \frac{\sqrt{11}}{8}\left(\frac{1}{4} + \frac{1}{16} + \frac{11}{16}\right)k$$

$$= \frac{1}{4}i + \frac{1}{8}j + \frac{\sqrt{11}}{8}k$$

$$= f(i)$$

car $\frac{1}{4} + \frac{1}{16} + \frac{11}{16} = 1$. D'où $f \circ f(i) = f(i)$. De la même façon, on trouve que $f \circ f(j) = f(j)$ et $f \circ f(k) = f(k)$. Pour tout $v \in E$ on a

$$f \circ f(v) = xf \circ f(i) + yf \circ f(j) + zf \circ f(k)$$

$$= xf(i) + yf(j) + zf(k)$$

$$= f(xi + yj + zk)$$

$$= f(v)$$

car f est linéaire, d'où $f \circ f(v) = f(v)$ pour tout $v \in E$, finalement $f \circ f = f$, ce qui prouve que f est un projecteur.

2. Montrons que Ker(f) est le plan d'équation : $\frac{1}{2}x + \frac{1}{4}y + \frac{\sqrt{11}}{4}z = 0$. Soit $v \in E$, on a

$$f(v) = f(xi + yj + zk)$$

$$= xf(i) + yf(j) + zf(k)$$

$$= x\left(\frac{1}{4}i + \frac{1}{8}j + \frac{\sqrt{11}}{8}k\right) + y\left(\frac{1}{8}i + \frac{1}{16}j + \frac{\sqrt{11}}{16}k\right) + z\left(\frac{\sqrt{11}}{8}i + \frac{\sqrt{11}}{16}j + \frac{11}{16}k\right)$$

$$= \frac{1}{2}\left(\frac{1}{2}x + \frac{1}{4}y + \frac{\sqrt{11}}{4}z\right)i + \frac{1}{4}\left(\frac{1}{2}x + \frac{1}{4}y + \frac{\sqrt{11}}{4}z\right)j + \frac{\sqrt{11}}{4}\left(\frac{1}{2}x + \frac{1}{4}y + \frac{\sqrt{11}}{4}z\right)k$$

on a

$$Ker(f) = \{v \in E / f(v) = 0_E\}$$

or $f(v) = 0_E$ implique

$$\frac{1}{2} \left(\frac{1}{2} x + \frac{1}{4} y + \frac{\sqrt{11}}{4} z \right) i + \frac{1}{4} \left(\frac{1}{2} x + \frac{1}{4} y + \frac{\sqrt{11}}{4} z \right) j + \frac{\sqrt{11}}{4} \left(\frac{1}{2} x + \frac{1}{4} y + \frac{\sqrt{11}}{4} z \right) k = 0_E$$

comme le système $\{i, j, k\}$ est libre, alors

$$\operatorname{Ker}(f): \begin{cases} \frac{1}{2} \left(\frac{1}{2}x + \frac{1}{4}y + \frac{\sqrt{11}}{4}z \right) &= 0\\ \frac{1}{4} \left(\frac{1}{2}x + \frac{1}{4}y + \frac{\sqrt{11}}{4}z \right) &= 0\\ \frac{\sqrt{11}}{4} \left(\frac{1}{2}x + \frac{1}{4}y + \frac{\sqrt{11}}{4}z \right) &= 0, \end{cases}$$

d'où Ker(f) est le sous-espace vectoriel de E d'équation

$$\frac{1}{2}x + \frac{1}{4}y + \frac{\sqrt{11}}{4}z = 0$$

soit $\operatorname{Ker}(f)$ est le plan vectoriel d'équation caractéristique $\frac{1}{2}x + \frac{1}{4}y + \frac{\sqrt{11}}{4}z = 0$.

3. Montrons que Im(f) est la droite D de vecteur directeur : $\frac{1}{2}i + \frac{1}{4}j + \frac{\sqrt{11}}{4}k$. On a

$$\operatorname{Im}(f) = \{ f(v) / v \in E \}$$

comme

$$f(v) = \frac{1}{2} \left(\frac{1}{2}x + \frac{1}{4}y + \frac{\sqrt{11}}{4}z \right) i + \frac{1}{4} \left(\frac{1}{2}x + \frac{1}{4}y + \frac{\sqrt{11}}{4}z \right) j + \frac{\sqrt{11}}{4} \left(\frac{1}{2}x + \frac{1}{4}y + \frac{\sqrt{11}}{4}z \right) k$$

$$= \left(\frac{1}{2}x + \frac{1}{4}y + \frac{\sqrt{11}}{4}z \right) \left(\frac{1}{2}i + \frac{1}{4}j + \frac{\sqrt{11}}{4}k \right)$$

$$= \alpha \left(\frac{1}{2}i + \frac{1}{4}j + \frac{\sqrt{11}}{4}k \right)$$

où $\alpha = \left(\frac{1}{2}i + \frac{1}{4}j + \frac{\sqrt{11}}{4}k\right) \in \mathbb{R}.$

$$\operatorname{Im}(f) = \left\{ \alpha \left(\frac{1}{2}i + \frac{1}{4}j + \frac{\sqrt{11}}{4}k \right) / \alpha \in \mathbb{R} \right\}$$

d'où $\operatorname{Im}(f)$ est le sous-espace vectoriel engendré par le vecteur $u=\frac{1}{2}i+\frac{1}{4}j+\frac{\sqrt{11}}{4}k$, soit $\operatorname{Im}(f)$ est la droite vectorielle de vecteur directeur $u=\frac{1}{2}i+\frac{1}{4}j+\frac{\sqrt{11}}{4}k$.

Exercice 8

Soit E un espace vectoriel de dimension 3 et (i, j, k) une base de E. On désigne par f l'endomorphisme de E tel que :

$$f(i) = \frac{1}{2}i - \frac{1}{2}j;$$
 $f(j) = -\frac{1}{2}i + \frac{1}{2}j$ et $f(k) = \frac{1}{2}i + \frac{1}{2}j + k.$

- 1. Montrer que $f \circ f = f$.
- 2. Déterminer Ker(f).
- 3. Déterminer l'ensemble des points fixes de f.

Solution:

On considère E un espace vectoriel de dimension 3 et (i, j, k) une base de E. Soit f l'endomorphisme de E tel que :

$$f(i) = \frac{1}{2}i - \frac{1}{2}j;$$
 $f(j) = -\frac{1}{2}i + \frac{1}{2}j$ et $f(k) = \frac{1}{2}i + \frac{1}{2}j + k.$

1. Montrons que $f \circ f = f$: soit v un vecteur dans E tel que v = xi + yj + zk, alors

$$f \circ f(v) = xf \circ f(i) + yf \circ f(j) + zf \circ f(k)$$

car $f \circ f$ est linéaire. Donc pour calculer $f \circ f$, il suffit de calculer $f \circ f(i)$, $f \circ f(j)$ et $f \circ f(k)$.

$$f \circ f(i) = f(f(i))$$

$$= f\left(\frac{1}{2}i - \frac{1}{2}j\right)$$

$$= \frac{1}{2}f(i) - \frac{1}{2}f(j)$$

$$= \frac{1}{2}\left(\frac{1}{2}i - \frac{1}{2}j\right) - \frac{1}{2}\left(-\frac{1}{2}i + \frac{1}{2}j\right)$$

$$= \left(\frac{1}{4} + \frac{1}{4}\right)i + \left(-\frac{1}{4} - \frac{1}{4}\right)j$$

$$= \frac{1}{2}i - \frac{1}{2}j$$

$$= f(i)$$

D'où $f \circ f(i) = f(i)$.

De la même façon, on trouve que $f \circ f(j) = f(j)$ et $f \circ f(k) = f(k)$.

Pour tout $v \in E$ on a

$$f \circ f(v) = xf \circ f(i) + yf \circ f(j) + zf \circ f(k)$$
$$= xf(i) + yf(j) + zf(k)$$
$$= f(xi + yj + zk)$$
$$= f(v)$$

car f est linéaire, d'où $f \circ f(v) = f(v)$ pour tout $v \in E$, finalement $f \circ f = f$, ce qui prouve que f est un projecteur.

2. Déterminons le noyau Ker(f) de f : Soit $v \in E$, on a

$$\begin{split} f(v) &= f(xi + yj + zk) \\ &= xf(i) + yf(j) + zf(k) \\ &= x\left(\frac{1}{2}i - \frac{1}{2}j\right) + y\left(-\frac{1}{2}i + \frac{1}{2}j\right) + z\left(\frac{1}{2}i + \frac{1}{2}j + k\right) \\ &= \frac{1}{2}(x - y + z)i + \frac{1}{2}(-x + y + z)j + zk \end{split}$$

on a

$$Ker(f) = \{v \in E / f(v) = 0_E\}$$

or $f(v) = 0_E$ implique

$$\frac{1}{2}(x - y + z) i + \frac{1}{2}(-x + y + z) j + zk = 0_E$$

comme le système $\{i, j, k\}$ est libre, alors

$$\operatorname{Ker}(f) : \begin{cases} \frac{1}{2}(x - y + z) &= 0\\ \frac{1}{2}(-x + y + z) &= 0\\ z &= 0, \end{cases}$$

d'où Ker(f) est le sous-espace vectoriel de E d'équation

$$\begin{cases} x - y &= 0 \\ z &= 0, \end{cases}$$

soit $\operatorname{Ker}(f)$ est la droite vectorielle d'équation caractéristique $\begin{cases} x-y=0\\ z=0, \end{cases}$ ou soit $\operatorname{Ker}(f)$ est la droite vectorielle de vecteur directeur u=i+j.

3. Déterminons l'ensemble des points fixes de f, soit les vecteurs $v \in E$ tels que f(v) = v. Soit D l'ensemble des vecteurs $v \in E$ tels que f(v) = v

$$f(v) = v \iff \frac{1}{2}(x - y + z)i + \frac{1}{2}(-x + y + z)j + zk = xi + yj + zk$$

comme le système $\{i, j, k\}$ est libre, alors

$$\mathcal{D}: \begin{cases} \frac{1}{2}(x-y+z) = x \\ \frac{1}{2}(-x+y+z) = y \\ z = z, \end{cases}$$

donc

$$\mathcal{D}: \left\{ \begin{array}{lcl} z & = & x+y \\ z & \in & \mathbb{R}, \end{array} \right.$$

D'où $\mathcal{D} = \{\alpha w_1 + \beta w_2 / (\alpha, \beta) \in \mathbb{R}^2\}$ où $w_1 = i + j$ et $w_2 = j + k$, ceci puisque $v \in \mathcal{D}$ est équivalent à

$$v = xi + yj + zk = x(i + k) + y(j + k)$$

ce qui prouve que \mathcal{D} est le plan vectoriel qui a pour base $\{i+k,j+k\}$, soit

$$\mathcal{D} = \text{Vect}\{i+k, j+k\}$$