ggT und kgV

Erinnerung

R kommutativer Ring, $I \subseteq R$ Ideal in R, falls

- $\blacktriangleright I \neq \emptyset;$
- ▶ $a + b \in I$ für alle $a, b \in I$;
- ▶ $ar \in I$ für alle $a \in I$, $r \in R$.

Beispiele

- ▶ Hauptideale: (a) = aR für $a \in R$
- $(a,b) = \{\lambda a + \mu b \mid a,b \in R\}.$

Sei $R = \mathbb{Z}$ oder R = K[X] für einen Körper K.

Satz

Ist I ein Ideal in R, dann exisitiert $a \in R$ mit I = (a), d.h. I ist ein Hauptideal.

Definition

Ein Integritätsbereich, in dem jedes Ideal ein Hauptideal ist, heißt Hauptidealring.

Erinnerung

X geordnete Menge, $x \in X$ x heißt Maximum von X, falls $y \le x$ für alle $y \in X$.

Erinnerung

Die Teilbarkeitsrelation ist eine Ordnung auf \mathbb{N} sowie auf $\{f \in K[X] \setminus \{0\} \mid f \text{ normiert}\}.$

Folgerung

▶ Seien $a, b \in \mathbb{Z}$, $b \neq 0$. Betrachte

$$D := \{d \in \mathbb{N} \mid d \text{ teilt } a \text{ und } d \text{ teilt } b\}.$$

Dann besitzt D bzgl. | ein Maximum. Dieses ist von der Gestalt $\lambda a + \mu b$ für geeignete $\lambda, \mu \in \mathbb{Z}$.

▶ Seien $f, g \in K[X]$, $g \neq 0$. Betrachte

$$D := \{d \in K[X] \mid d \text{ teilt } f, d \text{ teilt } g \text{ und } d \text{ normiert}\}.$$

Dann besitzt D bzgl. | ein Maximum.

Dieses ist von der Gestalt $\lambda f + \mu g$ für geeignete $\lambda, \mu \in K[X]$.

Definition

Sei $R = \mathbb{Z}$ oder R = K[X] und seien $a, b \in R$.

$$ggT(a, b) := max D$$

mit D wie in der Folgerung, falls $b \neq 0$, und

$$ggT(a,0) := |a|,$$

falls b=0.

ggT(a, b) heißt der größte gemeinsame Teiler von a und b.

Notation

Ist R = K[X] und $a \neq 0$, dann bezeichnet |a| das eindeutig bestimmte normierte Polynom in der Assoziiertenklasse von a (und |a| = 0 für a = 0).

Bemerkung

Sei $R = \mathbb{Z}$ oder R = K[X] und seien $a, b \in R$, $b \neq 0$ und

$$d \in \left\{ egin{array}{ll} \mathbb{N}, & \mathsf{falls} \ R = \mathbb{Z} \\ \mathcal{K}[X] \setminus \{0\} \ \mathsf{normiert}, & \mathsf{falls} R = \mathcal{K}[X] \end{array}
ight.$$

Dann sind äquivalent:

- b d = ggT(a,b)
- ► (i) *d* | *a* und *d* | *b*;
 - (ii) ist $d' \in R$ mit $d' \mid a$ und $d' \mid b$, dann ist $d' \mid d$.

Lemma von Bézout

Sei $R = \mathbb{Z}$ oder R = K[X] und seien $a, b \in R$.

Dann existieren $\lambda, \mu \in R$ mit

$$ggT(a,b) = \lambda a + \mu b.$$

Erinnerung: Sei $R = \mathbb{Z}$ oder R = K[X] für einen Körper K.

Satz

Ist I ein Ideal in R, dann exisitiert $a \in R$ mit I = (a).

Folgerung

▶ Seien $a, b \in \mathbb{Z} \setminus \{0\}$. Betrachte

$$V := \{ v \in \mathbb{N} \mid a \text{ teilt } v \text{ und } b \text{ teilt } v \}.$$

Dann besitzt V bzgl. | ein Miminimum.

▶ Seien $f, g \in K[X] \setminus \{0\}$. Betrachte

$$V := \{ v \in K[X] \setminus \{0\} \mid f \text{ teilt } v, g \text{ teilt } v \text{ und } v \text{ normiert} \}.$$

Dann besitzt V bzgl. | ein Minimum.

Definition

Sei $R = \mathbb{Z}$ oder R = K[X] und seien $a, b \in R$.

$$kgV(a, b) := min V$$

mit V wie in der Folgerung, falls $a, b \neq 0$, und

$$kgV(a, b) := 0,$$

falls a = 0 oder b = 0.

kgV(a,b) heißt das kleinste gemeinsame Vielfache von a und b.

Bemerkung

Sei $R = \mathbb{Z}$ oder R = K[X] und seien $a, b \in R$, $a, b \neq 0$ und

$$v \in \left\{ egin{array}{ll} \mathbb{N}, & \mathsf{falls} \ R = \mathbb{Z} \\ \mathcal{K}[X] \ \mathsf{normiert}, & \mathsf{falls} \ R = \mathcal{K}[X] \end{array}
ight.$$

Dann sind äquivalent:

- ightharpoonup v = kgV(a, b)
- $\bullet \quad (i) \ a \mid v \text{ und } b \mid v;$
- (ii) ist $v' \in R$ mit $a \mid v'$ und $b \mid v'$, dann ist $v \mid v'$.

Euklidischer Algorithmus

Sei
$$R = \mathbb{Z}$$
 oder $R = K[X]$

Erinnerung

Lemma von Bézout: Für $a, b \in R$ gibt es $\lambda, \mu \in R$ mit

$$ggT(a, b) = \lambda a + \mu b.$$

Ziel

Berechne ggT(a, b), λ , μ algorithmisch.

Lemma

Es seien $a, b \in R$.

- ▶ ggT(a,0) = |a|.
- ▶ Sind $q, r \in R$ mit a = qb + r, dann ist ggT(a, b) = ggT(b, r).

Euklidischer Algorithmus (Forts.)

Beispiel

In \mathbb{Z} : ggT(168, 91)

Euklidischer Algorithmus (Forts.)

Beispiel

In $\mathbb{Q}[X]$: $ggT(2X^3 - 9X^2 + 4X, X^2 - 3X - 4)$.

Euklidischer Algorithmus (Forts.)

Es sei $R = \mathbb{Z}$ oder R = K[X].

Erweiterter euklidischer Algorithmus

Es seien $a, b \in R$ mit $b \neq 0$.

Die folgende Prozedur liefert $d, \lambda, \mu \in R$ mit $d = ggT(a, b) = \lambda a + \mu b$.

EUKLID
$$(a, b)$$

- 1 Bestimme q, r mit a = qb + r und $\nu(r) < \nu(b)$.
- 2 if r = 0
- 3 **then return** (|b|, 0, |b|/b)
 - then return (|D|, 0, |D|/D)
- 4 **else** $(d, \lambda, \mu) \leftarrow \text{EUKLID}(b, r)$
- 5 return $(d, \mu, \lambda q\mu)$