С. А. Айвазян

# Байесовский подход в эконометрическом анализе

Предлагаемая в данном номере журнала консультация посвящена так называемому байесовскому подходу в эконометрическом анализе, основанному на субъективновероятностном способе операционализации принципа максимального использования (наряду с исходными статистическими данными) а при орной информации об исследуемом процессе.

Байесовские методы широко распространены в теории и практике эконометрического анализа и являются обязательной составной частью современных учебных программ магистерского уровня по эконометрике в ведущих университетах мира. Особенно заметные преимущества (по сравнению с классическими методами) с точки зрения точности получаемых статистических выводов они имеют в условиях относительно малых выборок, что весьма характерно для эконометрического моделирования.

## 1. «Философия» и общая логическая схема байесовского подхода

усть в описании рассматриваемой эконометрической модели (закона распределения анализируемой случайной величины, функции регрессии, временного ряда, системы одновременных уравнений и т. п.) участвует s-мерный параметр  $\Theta = (\theta_1, \theta_2, ..., \theta_s)^T$  и нашей задачей является построение наилучшей, в определенном смысле, статистической оценки  $\hat{\Theta}$  этого параметра по имеющимся k-мерным наблюдениям  $\overline{X}_i = (x_i^{(1)}, x_i^{(2)}, ..., x_i^{(k)})^T$ , i=1,2,...,n. Верхний индекс T здесь и в дальнейшем означает операцию транспонирования вектора или матрицы, прописными буквами будут обозначаться векторные величины (записываемые как векторы-столбцы), а строчные буквы будут использоваться для обозначения одномерных (возможных или наблюденных) значений анализируемых случайных величин.

Байесовский подход является одним из возможных способов формализации и операционализации тезиса, в справедливости которого нет видимых причин сомневаться: *степень нашей разумной уверенности в некотором утверждении* (касающемся, например, неизвестного численного значения интересующего нас параметра) возрастает и корректируется по мере пополнения имеющейся у нас информации относительно исследуемого явления. Могут быть различные формы интерпретации и подтверждения этого тезиса, в том числе не имеющие отношения к байесовскому подходу. Одна из них выражена, например, в свойстве состоятельности оценки  $\hat{\Theta}_n$  неизвестного параметра  $\Theta$ : чем больше объем выборки n, на основании которой мы строим свою оценку  $\hat{\Theta}_n$ , тем большей информацией об этом параметре мы располагаем и тем ближе (в смысле сходимости  $\hat{\Theta}_n$  к  $\Theta$  по вероятности) к истине наше заключение.

Специфика именно байесовского способа операционализации этого тезиса основана на двух положениях.

- 1) Во-первых, «степень нашей разумной уверенности» в справедливости некоторого утверждения численно выражается в виде вероятности. Это означает, что вероятность в байесовском подходе выходит за рамки ее интерпретации в терминах условий статистического ансамбля (см. п. В.2.1 в [Айвазян, Мхитарян (2001а)]), но относится к одной из категорий субъективной школы теории вероятностей.
- 2) Во-вторых, статистик при принятии решения использует в качестве исходной информации одновременно информацию двух типов: априорную и содержащуюся в исходных статистических данных (см. п. В.З.2 в [Айвазян, Мхитарян (2001а)]). При этом априорная информация предоставлена ему в виде некоторого априорного распределения вероятностей анализируемого неизвестного параметра, которое описывает степень его уверенности в том, что этот параметр примет то или иное значение, еще до начала сбора исходных статистик уточняет (пересчитывает) это распределение, переходя от априорного распределения к апостериорному, используя для этого известную формулу Байеса:

$$P\{A_i|B\} = \frac{P\{A_i\} \cdot P\{B|A_i\}}{\sum_{j=1}^{N} P\{B|A_j\} \cdot P\{A_j\}},$$
(1)

которая определяет правило вычисления условной вероятности события  $A_i$  (при условии, что событие B уже имело место) по безусловной вероятности события  $A_i$  и условным вероятностям  $P\{B \mid A_j\}, \ j=1,2,...,N$ . При этом предполагается, что  $A_1$ ,  $A_2$ ,..., $A_N$  образуют полную систему событий, а событие B имеет ненулевую вероятность (т. е.  $P\{B\} > 0$ ).

**Общая логическая схема байесовского метода оценивания** значений параметров представлена на рис. 1.



Рис. 1. Общая логическая схема байесовского подхода в статистическом оценивании

Рассмотрим реализацию схемы байесовского оценивания неизвестного параметра.

**Априорные сведения о параметре**  $\Theta$  основаны на предыстории функционирования анализируемого процесса (если таковая имеется) и на профессиональных теоретических соображениях о его сущности, специфике, особенностях и т. п. В конечном итоге эти априорные сведения должны быть представлены в виде функции  $p(\Theta)$ , задающей *априорное распределение параметра* и интерпретируемой как вероятность того, что параметр примет значение, равное  $\Theta$ , если параметр дискретен, или как функция плотности распределения в точке  $\Theta$ , если параметр непрерывен по своей природе.

**Исходные статистические данные**  $X_1, X_2, ..., X_n$  порождаются в соответствии с законом распределения вероятностей  $f(X|\Theta)$ , где под  $f(X|\Theta)$  понимается значение функции плотно-

сти наблюдаемой случайной величины  $\xi = (\xi^{(1)}, \xi^{(2)}, ..., \xi^{(k)})^{\mathsf{T}}$  в точке X, если  $\xi$  — непрерывна, или вероятность  $P\{\xi = X | \Theta\}$ , если  $\xi$  дискретна (при условии, что значение неизвестного параметра равно  $\Theta$ ). По умолчанию предполагается, что наблюдения

$$X_1, X_2, \dots, X_n \tag{2}$$

при фиксированном  $\Theta$  являются статистически взаимонезависимыми, т. е. образуют *случай-ную выборку* из анализируемой генеральной совокупности. Так что, получая исходные статистические данные (2), мы к имеющейся априорной информации о параметре (в виде функции  $p(\Theta)$ ) присоединяем соответствующую выборочную (эмпирическую) информацию.

Соответственно, **функция правдоподобия**  $L(X_1,...,X_n|\Theta)$  (условная, при данном  $\Theta$ ) имеющихся наблюдений (2) определится (с учетом их условной взаимонезависимости) соотношением

$$L(X_1, X_2, ..., X_n | \mathbf{\Theta}) = f(X_1 | \mathbf{\Theta}) \cdot f(X_2 | \mathbf{\Theta}) \cdot ... \cdot f(X_n | \mathbf{\Theta}). \tag{3}$$

**Вычисление апостериорного распределения**  $\tilde{p}(\Theta|X_1,...,X_n)$  осуществляется с помощью формулы Байеса (1) (или ее непрерывного аналога), в которой роль события  $A_i$  играет событие, заключающееся в том, что значение оцениваемого параметра равно  $\Theta$ , а роль условия B — событие, заключающееся в том, что значения n наблюдений, произведенных в анализируемой генеральной совокупности, зафиксированы на уровнях  $X_1, X_2, ..., X_n$ . Соответственно, имеем:

$$\widetilde{p}(\boldsymbol{\Theta}|X_1,...,X_n) = \frac{p(\boldsymbol{\Theta})L(X_1,...,X_n|\boldsymbol{\Theta})}{\int L(X_1,...,X_n|\boldsymbol{\Theta}) \cdot p(\boldsymbol{\Theta})d\boldsymbol{\Theta}}.$$
(4)

**Построение байесовских точечных и интервальных оценок** основано на использовании знания апостериорного распределения  $\widetilde{p}(\Theta|X_1,...,X_n)$ , задаваемого соотношением (4). В частности, в качестве байесовских точечных оценок  $\widehat{\mathbf{\Theta}}^{(6)}$  используют среднее или модальное значение этого распределения, т. е.:

$$\hat{\Theta}_{(cp)}^{(5)} = \mathbf{E}(\boldsymbol{\Theta}|X_1,...,X_n) = \int \boldsymbol{\Theta} \widetilde{p}(\boldsymbol{\Theta}|X_1,...,X_n) d\boldsymbol{\Theta},$$

$$\hat{\Theta}_{MOD}^{(5)} = \arg\max \widetilde{p}(\boldsymbol{\Theta}|X_1,...,X_n).$$
(5)

Отметим, что для определения общего вида апостериорной плотности  $\widetilde{p}(\mathbf{\Theta}|X_1,...,X_n)$  нам достаточно знать только числитель правой части (4), так как знаменатель этого выражения играет роль нормирующего множителя и от  $\mathbf{\Theta}$  не зависит (это существенно упрощает процесс практического построения оценок  $\hat{\mathbf{\Theta}}_{\mathsf{cp}}^{(5)}$  и  $\hat{\mathbf{\Theta}}_{\mathsf{мод}}^{(5)}$ ).

Отметим также одно важное оптимальное свойство оценки  $\hat{\mathbf{\Theta}}_{\text{ср}}^{(6)}$ . Пусть  $\hat{\mathbf{\Theta}}(X_1,\dots,X_n)$  — любая оценка параметра  $\mathbf{\Theta}$ . Оказывается, если качество любой оценки  $\hat{\mathbf{\Theta}}(X_1,\dots,X_n)$  измерять так называемым апостериорным байесовским риском

$$R^{(5)}(X_1,...,X_n) = \mathbf{E}\{(\hat{\Theta}(X_1,...,X_n) - \Theta)^2 | X_1,...,X_n\} = \int (\hat{\Theta}(X_1,...,X_n) - \Theta)^2 \tilde{p}(\Theta | X_1,...,X_n) d\Theta$$

*или его средним* (усреднение — по всем возможным выборкам (2)) *значением*  $R_{cp}^{(6)}$ , то байесовская оценка (5) является наилучшей и в том и в другом смысле.

Для построения байесовского доверительного интервала для параметра  $\Theta$  необходимо вычислить по формуле (4) функцию  $\widetilde{p}(\Theta|X_1,...X_n)$  апостериорного закона распределения параметра  $\Theta$ , а затем по заданной доверительной вероятности  $P_0$  определить  $100\frac{1+P_0}{2}$  и  $100\frac{1-P_0}{2}$ %-ные точки этого закона, которые и дают соответственно левый и правый концы искомой интервальной оценки.

Заметим, что байесовский способ оценивания может давать весьма ощутимый выигрыш в точности при *ограниченных* объемах выборок по сравнению с традиционным «частотным» подходом. В процессе же неограниченного роста объема выборки *n* оба подхода будут давать, в силу их состоятельности, все более похожие результаты.

**«Узкие места» или три главных вопроса**, возникающие при практической реализации байесовского подхода:

- і) как выбрать общий вид (т. е. параметрическое семейство  $p(\Theta; D)$ ) априорного распределения оцениваемого параметра?
- ii) как подобрать численные значения  $D_0$  параметров D, определяющие **конкретный** вид априорного распределения при уже сделанном выборе общего вида  $p(\Theta; D)$ ?
- ііі) как преодолеваются трудности реализации формулы (4) при вычислении апостериорного распределения  $\tilde{p}(\Theta|X_1,...,X_n)$ ?

# 2. Априорные распределения, сопряженные с наблюдаемой генеральной совокупностью (определение и условие существования)

В решении сформулированных выше трех главных вопросов практической реализации байесовского подхода существенную роль играют распределения, сопряженные с наблюдае-мой генеральной совокупностью (или, что то же, — распределения, сопряженные с функцией правдоподобия  $L(X_1, ..., X_n | \Theta)$ ).

**Определение 1.** Семейство априорных распределений  $G = \{p(\Theta; D)\}$  называется *сопряженным* по отношению к наблюдаемой генеральной совокупности  $f(X|\Theta)$  (или по отношению к функции правдоподобия  $L(X_1, ..., X_n|\Theta)$ , если и апостериорное распределение  $\widetilde{p}(\Theta|X_1, ..., X_n)$ , вычисленное по формуле (4), снова принадлежит этому же семейству G.

Другими словами, семейство распределений G сопряжено с $L(X_1,...,X_n|\Theta)$ , если оно замкнуто относительно операции (4) пересчета априорного распределения в апостериорное.

Таким образом, использование в качестве априорных законов распределения вероятностей (з.р.в.) сопряженных по отношению к L плотностей «расшивает» узкое место (iii): поскольку общий вид апостериорного з.р.в. в этом случае известен, остается лишь уметь пересчитывать значения его параметров D при переходе от априорного распределения к апостериорному.

Как мы увидим позже (см. ниже п. 3), использование сопряженных з.р.в. в качестве априорных оказывается в широком классе случаев вполне естественным и оправданным, что позволяет получить ответ и на вопрос (i).

Но всегда ли существует сопряженное по отношению к заданной функции  $L(X_1, X_2, ... X_n | \Theta)$  распределение, и если оно существует, то как его найти?

Условие существования сопряженного семейства априорных распределений: если функция правдоподобия  $L(X_1,...,X_n|\Theta)$  представима в форме

$$L(X_{1},...X_{n}|\Theta) = v(T_{1}(X_{1},...X_{n}),...,T_{m}(X_{1},...X_{n});\Theta) \cdot \psi(X_{1},...X_{n}), \tag{6}$$

где  $T_j(X_1,...X_n)$  (j=1,2,...,m) и  $\psi(X_1,...X_n)$  — некоторые функции от наблюдений  $X_1,...,X_n$ , не зависящие от параметров  $\Theta$ , то существует семейство  $G=p(\Theta;D)$  априорных распределений, сопряженное с  $L(X_1,...,X_n|\Theta)^1$ .

Проверка условия существования сопряженного априорного распределения на ряде примеров.

### Пример 1.

Анализируемая (наблюдаемая) генеральная совокупность нормальна с неизвестным значением среднего  $\mathbf{E}\xi=\theta$  и известной дисперсией  $\mathbf{D}\xi=\sigma_0^2$  (будем обозначать в дальнейшем подобный факт в форме  $\xi\in N_q(\theta;\sigma_0^2)$ , где  $\xi$  — наблюдаемая случайная величина, а нижний индекс q определяет ее размерность; так что, если  $\xi=(\xi^{(1)},...,\xi^{(k)})^{\mathsf{T}}$  — вектор, то  $\xi\in N_k(\Theta;\Sigma_\xi)$  означает, что многомерная случайная величина размерности k распределена нормально с вектором средних значений  $\Theta=(\theta_1,\theta_2,...,\theta_k)^{\mathsf{T}}$  и ковариационной матрицей  $\Sigma_\xi$ ). В данном примере

$$L(x_1,...,x_n|\theta) = \prod_{i=1}^n f(x_i|\theta) = \left(\frac{1}{\sqrt{2\pi\sigma_0}}\right)^n e^{-\frac{1}{2\sigma_0^2} \sum_{i=1}^n (x_i-\theta)^2} = e^{-\frac{n}{2\sigma_0^2} (\bar{x}-\theta)^2} \cdot \left(\frac{1}{\sqrt{2\pi\sigma_0}}\right)^n e^{-\frac{1}{2\sigma_0^2} \sum_{i=1}^n (x_i-\bar{x})^2}.$$
 (7)

Мы видим, что роль функции  $v(T(x_1...x_n);\theta)$  из правой части (6) играет первый сомножитель в правой части (7), причем m=1,  $T(x_1,...,x_n)=\bar{x}=\frac{1}{n}\sum_{i=1}^n x_i$  (достаточная статистика), а следующие за  $v(\bar{x};\theta)$  сомножители правой части (7) от  $\theta$  не зависят. Следовательно, семейство априорных, conpsженных c L распределений существует.

Пример 2.

$$\xi \in N_1$$
  $\left(\theta_1; \frac{1}{\theta_2}\right)$ , где и среднее значение  $\theta_1 = \mathbf{E}\xi$ , и  $\theta_2$  — параметр точности  $\left(\theta_2 = \frac{1}{\mathbf{D}\xi}\right)$  неиз-

вестны (т. е.  $\Theta = (\theta_1, \theta_2)$ ). Воспользовавшись тем же представлением (7) для функции правдоподобия L, убеждаемся, что  $T_1(x_1, ..., x_n) = \bar{x}$ ,  $T_2(x_1, ..., x_n) = s^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^2$  (достаточные статистики), так что в данном случае m = 2 и семейство априорных, сопряженных (по отношению к L) распределений существует.

¹ Функции  $T_j(X_1,...,X_n)$ , участвующие в представлении (6) (если таковое существует), называются  $\partial$ остаточными статистического оценивания параметров  $\Theta = (\theta_1,\theta_2,...,\theta_s)^T$ . Размерность m векторной достаточной статистики  $T(X_1,...,X_n) = (T_i(X_1,...,X_n),...,T_m(X_1,...,X_n))$  конечна при  $n \to \infty$  и зависит от специфики функции L и размерности s оцениваемого параметра  $\Theta$ . Достаточные статистики играют важную роль в теории и приложениях математической статистики. В частности, они используются в задаче построения наилучших несмещенных оценок в следующей схеме: пусть  $\hat{\Theta}$  — некоторая несмещенная оценка параметров  $\Theta$  и tr  $\Sigma < \infty$ ; тогда  $\hat{\Theta}_1 = \mathbf{E}(\hat{\Theta}|T)$  будет снова несмещенной оценкой параметров  $\Theta$ , причем tr  $\Sigma_{\hat{\Theta}_1} \le \operatorname{tr} \Sigma_{\hat{\Theta}}$  (под  $\Sigma_{\hat{\Theta}}$  понимается ковариационная матрица вектора $\hat{\Theta}$ ).

### Пример 3.

Анализируется биномиально распределенная случайная величина  $\xi_{\theta}(M)$  — число «успехов» в серии из M испытаний Бернулли, где  $\theta$  — неизвестная вероятность «успеха» в одном таком испытании, а M — общее число (известное) испытаний Бернулли в рассматриваемой серии, так что

$$f(x|\theta) = P\{\xi_{\theta}(M) = x|\theta\} = C_M^x \theta^x (1-\theta)^{M-x}, x = 0,1,2,...,M.$$

Наблюдаются *п* таких серий. Тогда

$$L(x_1, x_2, ..., x_n | \theta) = \prod_{i=1}^n C_M^{x_i} \theta^{x_i} (1-\theta)^{M-x_i} = \theta^{\sum_{i=1}^n x_i} (1-\theta)^{nM-\sum_{i=1}^n x_i} \prod_{j=1}^n C_M^{x_j},$$

где  $x_i$  — число «успехов» в i-й серии.

Поэтому в рамках общего представления (6) в данном случае имеем: m = 1,  $T(x_1, ..., x_n) = \sum_{i=1}^n x_i$  достаточная статистика, что подтверждает существование априорного, сопряженного с L распределения параметра  $\theta$ .

### Пример 4.

$$f(x|\theta) = P\{\xi(\theta; K) = x|\theta\} = C_{x-1}^{K-1}\theta^{K}(1-\theta)^{x-K}, x = K, K+1,...,$$

так что

$$L(x_1,...,x_n | \theta) = \prod_{i=1}^n C_{x_i-1}^{K-1} \theta^K (1-\theta)^{x_i-K} = \theta^{Kn} (1-\theta)^{\sum_{i=1}^n x_i-Kn} \cdot \prod_{i=1}^n C_{x_i-1}^{K-1}.$$

Поэтому в рамках общего представления (6) в данном случае имеем:  $m = 1, T(x_1, ..., x_n) = \sum_{i=1}^n x_i$  достаточная статистика, что подтверждает существование априорного, сопряженного с L распределения параметра  $\theta$ .

#### Пример 5.

В данном примере речь идет об оценивании параметра  $\theta$  пуассоновского з.р.в., т.е.

$$f(x|\theta) = P\{\xi = x|\theta\} = \frac{\theta^x}{x!}e^{-\theta}, x = 0, 1, 2, ...,$$

так что

$$L(x_1, x_2, ..., x_n | \theta) = \prod_{i=1}^n \frac{\theta^{x_i}}{x_i!} e^{-\theta} = e^{-n\theta} \cdot \theta^{\sum_{i=1}^n x_i} \cdot \prod_{i=1}^n \left(\frac{1}{x_i!}\right).$$

Сравнивая с общим представлением (6), в данном случае имеем: m = 1,  $T(x_1, ..., x_n) = \sum_{i=1}^{n} x_i$  достаточная статистика, что подтверждает существование априорного, *сопряженного с L* распределения параметра  $\theta$ .

### Пример 6.

Анализируется экспоненциально распределенная (без сдвига) случайная величина с неизвестным значением параметра масштаба  $\theta$ , т. е.

$$f(x|\mathbf{\theta}) = \begin{cases} \mathbf{\theta} \, e^{-\mathbf{\theta} x} & \text{при } x \ge 0 \\ 0 & \text{при } x < 0 \end{cases}.$$

Соответственно:

$$L(x_1,...,x_n|\theta) = \begin{cases} \theta^n e^{-\left(\sum\limits_{i=1}^n x_i\right)\cdot\theta} & \text{при } x_i \ge 0 \\ 0 & \text{при } x_i < 0 \end{cases}.$$

В рамках общего представления (6) в данном случае имеем: m=1;  $T(x_1,...,x_n)=\sum_{i=1}^n x_i$  достаточная статистика, что подтверждает существование априорного, сопряженного с L распределения параметра  $\theta$ .

### Пример 7.

Анализируется случайная величина, распределенная *равномерно* на отрезке  $[0;\theta]$  при неизвестном значении параметра  $\theta$ , т. е.

$$f(x|\theta) = \begin{cases} \frac{1}{\theta} & \text{при } 0 \le x \le \theta \\ 0 & \text{при } x \notin [0; \theta] \end{cases}.$$

Соответственно:

$$L(x_1,...,x_n|\theta) = \left(\frac{1}{\theta}\right)^n$$
 при  $\theta \ge x_{\max}(n) = \max_{k \le n} x_i$ .

Следовательно, в рамках общего представления (6) имеем: m=1;  $T(x_1,...,x_n)=x_{\max}(n)$  — достаточная статистика, что подтверждает существование априорного, сопряженного с L распределения параметра  $\theta$ .

### Пример 8.

Анализируется модель распределения Парето с неизвестным значением параметра формы  $\theta$ , т. е.

$$f(x|\theta) = \begin{cases} \frac{\theta \ X_0^{\theta}}{X^{\theta + 1}} & \text{при } X \ge X_0 \\ 0 & \text{при } X < X_0 \end{cases},$$

где пороговое значение  $x_0$  считается заданным.

Соответственно:

$$L(x_1,...,x_n|\theta) = \theta^n x_0^{n\theta} \cdot \left(\prod_{i=1}^n x_i\right)^{-(\theta+1)} = \theta^n \left(\frac{g_n}{x_0}\right)^{-n\theta} \cdot g_n^{-n},$$

где  $g_n = \left(\prod_{i=1}^n x_i\right)^{\frac{1}{n}}$  — среднее геометрическое значение наблюдений  $x_1, x_2, ..., x_n$  анализируемой случайной величины. Следовательно, обращаясь к (6), имеем m=1,  $T(x_1...x_n)=g_n$  —

достаточная статистика, что подтверждает существование априорного, *сопряженного с L* распределения параметра  $\theta$ .

### Пример 9.

Рассмотрим классическую линейную модель множественной регрессии (КЛММР, см., например, [Айвазян (2001), §2.2]) с нормальными, в среднем нулевыми, взаимонезависимыми и гомоскедастичными остатками  $\varepsilon_1, \varepsilon_2, ..., \varepsilon_n$ :

$$Y = \mathbf{X}\Theta + \varepsilon, \tag{8}$$

где

$$Y = (y_1, y_2, ..., y_n)^{\mathsf{T}} \qquad \mathsf{M} \qquad \mathbf{X} = \begin{pmatrix} 1 & x_1^{(1)} & \dots & x_1^{(k)} \\ 1 & x_2^{(1)} & \dots & x_2^{(k)} \\ \vdots & \dots & \dots & \dots \\ 1 & x_n^{(1)} & \dots & x_n^{(k)} \end{pmatrix} - \dots$$

наблюденные значения соответственно зависимой (у) и объясняющих ( $X=(1,x^{(1)},...,x^{(k)})^{\mathsf{T}}$ ) переменных,  $\mathbf{\epsilon}=(\mathbf{\epsilon}_1,\mathbf{\epsilon}_2,...,\mathbf{\epsilon}_n)^{\mathsf{T}}$  — случайные регрессионные остатки, а  $\Theta=(\theta_0,\theta_1,...,\theta_k)^{\mathsf{T}}$  и  $h=(\mathbf{D}\mathbf{\epsilon}_i)^{-1}$  — неизвестные значения параметров модели. Напомним, что значения  $\mathbf{X}$ , в соответствии с требованиями КЛММР, являются неслучайными и что упомянутые выше свойства регрессионных остатков формулируются в форме условий:

$$\varepsilon \in N_n \left( \mathbf{0}; \frac{1}{h} \mathbf{I}_n \right) \tag{9}$$

где  $\mathbf{I}_n$  — единичная матрица размерности n, ковариационная матрица остатков  $\Sigma_{\varepsilon} = \frac{1}{h} \mathbf{I}_n$ , а параметр  $h = (\mathbf{D}\varepsilon_i)^{-1}$  обычно называют *параметром точности*.

С учетом (8)–(9) функция правдоподобия наблюдений ( $\mathbf{X}$ , Y) может быть представлена в форме:

$$L(\mathbf{X},Y|\mathbf{\Theta};h) = \frac{h^{\frac{n}{2}}}{(2\pi)^{\frac{n}{2}}} e^{-\frac{h}{2}(Y-\mathbf{X}\mathbf{\Theta})^{\mathsf{T}}(Y-\mathbf{X}\mathbf{\Theta})}.$$
 (10)

Но  $(Y - \mathbf{X}\Theta)^{\mathsf{T}}(Y - \mathbf{X}\Theta) = (Y - \mathbf{X}\hat{\Theta} + \mathbf{X}\hat{\Theta} - \mathbf{X}\Theta)^{\mathsf{T}}(Y - \mathbf{X}\hat{\Theta} + \mathbf{X}\hat{\Theta} - \mathbf{X}\Theta) = [(Y - \mathbf{X}\hat{\Theta}) + \mathbf{X}(\hat{\Theta} - \Theta)]^{\mathsf{T}} \times [(Y - \mathbf{X}\hat{\Theta}) + \mathbf{X}(\hat{\Theta} - \Theta)],$  где  $\hat{\Theta} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}Y$  — оценка метода наименьших квадратов параметров регрессии  $\Theta$ .

Поэтому

$$(Y - \mathbf{X}\mathbf{\Theta})^{\mathsf{T}}(Y - \mathbf{X}\mathbf{\Theta}) = (Y - \mathbf{X}\hat{\mathbf{\Theta}})^{\mathsf{T}}(Y - \mathbf{X}\hat{\mathbf{\Theta}}) + (\hat{\mathbf{\Theta}} - \mathbf{\Theta})^{\mathsf{T}}\mathbf{X}^{\mathsf{T}}\mathbf{X}(\hat{\mathbf{\Theta}} - \mathbf{\Theta}), \tag{11}$$

так как  $(Y - \mathbf{X}\hat{\mathbf{\Theta}})^{\mathsf{T}}\mathbf{X}(\hat{\mathbf{\Theta}} - \mathbf{\Theta}) = [\mathbf{X}(\hat{\mathbf{\Theta}} - \mathbf{\Theta})]^{\mathsf{T}}(Y - \mathbf{X}\hat{\mathbf{\Theta}}) = (Y^{\mathsf{T}}\mathbf{X} - \hat{\mathbf{\Theta}}^{\mathsf{T}}\mathbf{X}^{\mathsf{T}}\mathbf{X})(\hat{\mathbf{\Theta}} - \mathbf{\Theta}) = [Y^{\mathsf{T}}\mathbf{X} - ((\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}Y)^{\mathsf{T}} \times (\mathbf{X}^{\mathsf{T}}\mathbf{X})](\hat{\mathbf{\Theta}} - \mathbf{\Theta}) = [Y^{\mathsf{T}}\mathbf{X} - Y^{\mathsf{T}}\mathbf{X}(\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}(\mathbf{X}^{\mathsf{T}}\mathbf{X})](\hat{\mathbf{\Theta}} - \mathbf{\Theta}) = 0.$ 

Возвращаясь к (10) и выражая в (11) сумму квадратов МНК-оцененных остатков  $(Y - \mathbf{X}\hat{\mathbf{\Theta}})^{\mathsf{T}}(Y - \mathbf{X}\hat{\mathbf{\Theta}})$  через оценку остаточной дисперсии  $\hat{\mathbf{\sigma}}^2 = \frac{1}{n-k-1}(Y - \mathbf{X}\hat{\mathbf{\Theta}})^{\mathsf{T}}(Y - \mathbf{X}\hat{\mathbf{\Theta}})$ , имеем:

$$L(\mathbf{X};Y|\mathbf{\Theta};h) = \frac{1}{(2\pi)^{\frac{n}{2}}} \cdot h^{\frac{n}{2}} e^{-\left(\frac{n-k-1}{2}\hat{\mathbf{\sigma}}^2\right)h - \frac{h}{2}(\hat{\mathbf{\Theta}} - \mathbf{\Theta})^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{X}(\hat{\mathbf{\Theta}} - \mathbf{\Theta})}.$$
 (12)

Отметим, что  $\hat{\sigma}^2$  и  $\hat{\Theta}$ , в конечном счете, определяются по  $Y^{\mathsf{T}}Y$ ,  $\mathbf{X}^{\mathsf{T}}Y$  и  $\mathbf{X}^{\mathsf{T}}\mathbf{X}$ , так что и в данном случае функция правдоподобия L представима в форме (6), в которой набор достаточных статистик  $T(\mathbf{X};Y)$  конечен (при  $n \to \infty$ ) и определяется статистиками  $Y^{\mathsf{T}}Y$  и  $\mathbf{X}^{\mathsf{T}}Y$ . Следовательно, существует априорное распределение параметров  $\Theta$  и h, сопряженное с L.

### 3. Генезис априорных сопряженных распределений

Оказывается, для широкого класса наблюдаемых генеральных совокупностей, функции правдоподобия которых допускают представление (6) (т. е. эти генеральные совокупности располагают сопряженным с L априорным распределением своих параметров), справедливо следующее **утверждение о генезисе сопряженных априорных распределений**:

если в байесовском подходе стартовать с априорного распределения, не несущего никакой дополнительной по отношению к имеющимся статистическим данным полезной информации об оцениваемых параметрах, то первый же переход от нее по формуле (4) к апостериорному распределению приведет нас к семейству распределений, сопряженному с наблюдаемой генеральной совокупностью<sup>2</sup>.

Именно этот прием поиска априорного распределения, сопряженного с анализируемой функцией правдоподобия, представимой в формуле (6), и предлагается использовать в байесовском подходе.

# 3.1. Априорные распределения, отражающие «скудость априорных знаний» (САЗ-априорные распределения)

Для математической формализации ситуаций, в которых исследователь не располагает никакой полезной **априорной** информацией о значениях оцениваемого параметра, Джеффрис (см. [Jeffreys (1957)]) предложил следующие два правила выбора соответствующего априорного распределения:

- (a) если оцениваемый скалярный параметр  $\theta$  может (теоретически) принимать значения на конечном интервале [ $\theta_{min}$ ,  $\theta_{max}$ ] или на бесконечном интервале от  $-\infty$  до  $+\infty$ , то априорную функцию плотности  $p(\theta)$  следует считать постоянной на соответствующем интервале;
- (б) если же из смысла оцениваемого параметра вытекает, что он может принимать любые положительные значения, то следует считать постоянной на всей числовой прямой  $(-\infty; +\infty)$  функцию плотности распределения логарифма от значения параметра, т. е.  $p(\ln \theta) = \text{const}$  при  $\theta \in (0; +\infty)$ .

Будем называть такие априорные распределения *«распределениями, отражающими ску-дость априорных знаний»* или коротко — **«САЗ-априорными распределениями»**. Соответственно, их одномерные функции плотности будем обозначать  $p_{CA3}(\Theta)$ , а многомерные —  $p_{CA3}(\Theta)$ .

Тот факт, что для определенных таким образом на бесконечной прямой (полупрямой) априорных распределений *нарушается известное правило нормировки* функции плотности

<sup>&</sup>lt;sup>2</sup> Строгое доказательство этого утверждения для однопараметрического экспоненциального семейства наблюдаемых генеральных совокупностей см. в [Ghosh et al. (2006), п. 5.1.5]. Однако справедливость этого утверждения подтверждается (непосредственной проверкой) и для весьма широкого класса наблюдаемых генеральных совокупностей, не принадлежащих экспоненциальному семейству.

вероятности (поскольку при этом  $\int p_{\text{CA3}}(\theta) d\theta \neq 1$ , но  $\int p_{\text{CA3}}(\theta) d\theta = \infty$ , где интегрирование проводится по всем возможным значениям  $\theta$ ), не доставляет «технических неудобств»: во-первых, пересчет такой «несобственной» априорной функции плотности  $p_{\text{CA3}}(\theta)$  в апостериорную по формуле (4) дает уже обычную (собственную) функцию плотности  $\widetilde{p}_{\text{CA3}}(\theta|X_1,\ldots,X_n)$ , а во-вторых, при любых сколь угодно больших значениях C плотность

$$p_{\text{CA3}}(\theta) = \begin{cases} \frac{1}{2C} & \text{при } \theta \in [-C; +C] \\ 0 & \text{при } \theta \notin [-C; +C] \end{cases}$$

минимизирует энтропийную меру информации —  $H = \int_{-\infty}^{\infty} p(\theta) \ln p(\theta) \ d\theta$ , содержащейся в плот-

ности  $p(\theta)$  относительно параметра  $\theta$  (см., например, [Зельнер (1980), с. 59]). Последнее обстоятельство подтверждает обоснованность использования равномерных распределений  $p_{\text{CA3}}(\theta) = \text{const}$  или  $p_{\text{CA3}}(\ln \theta) = \text{const}$  в качестве априорных распределений, отражающих скудость априорных знаний (или *CA3-априорных распределений*).

**Замечание 1.** Общий вид апостериорного распределения  $\widetilde{p}(\theta|X_1,...,X_n)$ , вычисляемого по формуле (4), определяется, с точностью до нормирующей константы, лишь числителем правой части этой формулы. Поэтому в дальнейшем при анализе равенств, справедливых с точностью до нормирующей константы, мы будем использовать знак  $\sim$ . Следуя этому правилу, сама формула (4) может быть представлена в виде:

$$\widetilde{p}(\Theta|X_1,...,X_n) \sim p(\Theta) \cdot L(X_1,...,X_n|\Theta).$$
 (4')

**Замечание 2.** При анализе *многомерных* параметров  $\Theta = (\theta_1, \dots, \theta_s)^{\mathsf{T}}$  априорные, в том числе САЗ-априорные, распределения обычно предполагают статистическую независимость компонент  $\theta_1, \dots \theta_s$ , т. е.

$$p(\Theta) = p(\theta_1) \cdot p(\theta_2) \cdot \dots \cdot p(\theta_s). \tag{13}$$

И, наконец, в заключение этого пункта определим вид априорной плотности  $p(\theta)$  для случая  $p(\ln \theta) = \text{const}$ , т. е. в ситуации, когда параметр  $\theta$  может принимать любые, но только положительные значения.

Пусть  $F_{\theta}(y) = P\{\theta < y\}$  — функция распределения параметра  $\theta$ . Тогда

$$F_{\theta}(y) = P\{\theta < y\} = P\{\ln \theta < \ln y\} = F_{\ln \theta}(\ln y).$$

Соответственно, функция плотности распределения heta будет:

$$f_{\theta}(y) = \frac{\partial F_{\theta}(y)}{\partial y} = \frac{\partial F_{\ln \theta}(\ln y)}{\partial (\ln y)} \cdot \frac{\partial (\ln y)}{\partial y} = f_{\ln \theta}(\ln y) \cdot \frac{1}{y} \sim \frac{1}{y},$$

так как по условию  $f_{\ln \theta}(\ln y) = p(\ln \theta) = \text{const.}$  Так что в сокращенной записи имеем для положительнозначных параметров  $\theta$ :

$$p_{\text{CA3}}(\theta) \sim \frac{1}{\theta'}$$
 (14a)

а для параметров  $\theta$  с возможными значениями, заполняющими всю числовую прямую,

$$p_{\text{CA3}}(\theta) = \text{const.} \tag{146}$$

# 3.2. Общий подход к выводу семейства априорных распределений, сопряженных с наблюдаемой генеральной совокупностью

Общий подход к выводу семейства априорных распределений, сопряженных с наблюдаемой генеральной совокупностью, основан на утверждении об их генезисе, сформулированном в начале пункта 3. Из этого утверждения вытекает, в частности, следующая общая схема определения такого семейства.

Шаг 1: проверка условия (6) существования семейства априорных распределений, сопряженных с функцией правдоподобия L для наблюдаемой генеральной совокупности.

Шаг 2: если функция правдоподобия L допускает представление (6) (т. е. если существует семейство сопряженных априорных распределений  $p(\Theta; \Lambda)$ ), то осуществляется вывод CA3-апостериорного распределения  $\widetilde{p}_{CA3}(\Theta|X_1, \dots, X_n)$  по формуле (4'), т. е.

$$\widetilde{p}_{CA3}(\mathbf{\Theta}|X_1,...,X_n) \sim p_{CA3}(\mathbf{\Theta}) \cdot L(X_1,...,X_n|\mathbf{\Theta}). \tag{15}$$

Правая часть соотношения (15) и будет определять общий вид семейства априорных распределений, сопряженных с наблюдаемой генеральной совокупностью, характеризуемой функцией правдоподобия  $L(X_1, X_2, ..., X_n | \Theta)$ .

Продемонстрируем реализацию этой общей схемы на рассмотренных выше примерах 1–9. Очевидно, нам остается реализовать лишь шаг 2 из этой схемы, так как шаг 1 уже был реализован выше (см. п. 2).

### Пример 1 (продолжение).

 $\xi \in N_1(\theta; \sigma_0^2)$ , где  $\theta = \mathbf{E}\xi$  — оцениваемый (неизвестный) параметр, а  $\sigma_0^2 = \mathbf{D}\xi$  — известное (заданное) значение дисперсии наблюдаемой случайной величины. Ранее было установлено (см. выше, пример 1, формулу (7)), что в этом случае существует семейство сопряженных априорных распределений параметра  $\theta$ .

Определим  $p_{\text{CA3}}\left(\theta\right)=\text{const}\,\text{и}\,\text{с}\,\text{учетом}\,\text{того, что}\,L(x_1,\dots,x_n|\theta)\sim e^{-\frac{n}{2\sigma_0^2}(\bar{x}-\theta)^2}$  (см. выше, формулу (7)), имеем:

$$\widetilde{p}_{\text{CA3}}(\boldsymbol{\theta}|\boldsymbol{x}_1,...,\boldsymbol{x}_n) \sim p_{\text{CA3}}(\boldsymbol{\theta}) \cdot L(\boldsymbol{x}_1,...,\boldsymbol{x}_n|\boldsymbol{\theta}) \sim e^{-\frac{n}{2\sigma_0^2}(\widetilde{\boldsymbol{x}} - \boldsymbol{\theta})^2}.$$

Но правая часть этого соотношения представляет собой (с точностью до нормирующего множителя, не зависящего от  $\theta$ ) плотность нормального распределения со средним значением  $\bar{x}$  и дисперсией  $\sigma_0^2/n$ . Следовательно, семейство сопряженных априорных распределений неизвестного среднего значения  $\theta$  нормально распределенной генеральной совокупности (при известной дисперсии  $\sigma_0^2 = \mathbf{D}\xi$ ) само принадлежит классу нормальных законов распределения.

# Пример 2 (продолжение).

 $\xi \in N_1igg( heta; rac{1}{h}igg)$  где и среднее значение heta, и параметр точности  $h=1/\mathbf{D}\xi$  являются неизвест-

ными (т. е.  $\Theta = (\theta, h)$ ). Ранее было установлено (см. выше, пример 2), что в этом случае существует семейство двумерных сопряженных априорных распределений параметра  $\Theta = (\theta, h)$ .

Определим 
$$p_{CA3}(\theta) = \text{const } \text{и } p_{CA3}(h) \sim \frac{1}{h} \text{ и с учетом (13) и того, что}$$

$$L(x_1,...,x_n|\theta,h) \sim h^{\frac{n}{2}}e^{-\frac{h}{2}\sum_{i=1}^{n}(x_i-\theta)^2} = h^{\frac{n}{2}}e^{-\frac{h}{2}\left[n(\theta-\bar{x})^2+\sum_{i=1}^{n}(x_i-\bar{x})^2\right]} \sim (nh)^{\frac{1}{2}}e^{-\frac{nh}{2}(\theta-\bar{x})^2} \cdot h^{\frac{n}{2}-\frac{1}{2}}e^{-\left(\frac{1}{2}\sum_{i=1}^{n}(x_i-\bar{x})^2\right)h}, \quad (16)$$

имеем:

$$\widetilde{p}_{CA3}(\theta, h|x_1, ..., x_n) \sim p_{CA3}(\theta) \cdot p_{CA3}(h) \cdot L(x_1, ..., x_n|\theta, h) \sim (nh)^{\frac{1}{2}} e^{-\frac{nh}{2}(\theta - \bar{x})^2} \cdot h^{\frac{n-1}{2} - 1} e^{-\left(\frac{1}{2}\sum_{i=1}^{n}(x_i - \bar{x})^2\right)h}.$$
(17)

Но правая часть (17) представляет собой (с точностью до нормирующего множителя, не зависящего от  $\theta$  и h, см. Приложение 2) плотность двумерного гамма-нормального распределения

$$p(\theta, h) \sim (\lambda_0 h)^{\frac{1}{2}} e^{-\frac{\lambda_0 h}{2} (\theta - \theta_0)^2} \cdot h^{\alpha - 1} e^{-\beta h}$$
(18)

с параметрами 
$$\lambda_0 = n, \theta_0 = \overline{x}, \alpha = \frac{n-1}{2}$$
 и  $\beta = \frac{1}{2} \sum_{i=1}^{n} (x_i - \overline{x})^2$ .

Следовательно, семейство сопряженных априорных распределений двумерного параметра  $\Theta = (\theta, h)$ , где  $\theta$  и h соответственно среднее значение и параметр точности наблюдаемой нормальной генеральной совокупности, *принадлежит классу двумерных гамманормальных распределений* (18).

### Пример 3 (продолжение).

Наблюдаемая случайная величина  $\xi_{\theta}(M)$  подчиняется биномиальному з.р.в. с неизвестным значением вероятности «успеха»  $\theta$  и заданным числом испытаний Бернулли M.

Ранее было установлено (см. выше, пример 3), что существует семейство сопряженных априорных распределений параметра  $\theta$ .

Определим  $p_{\text{CA3}}(\theta) = 1$  для  $\theta \in (0; 1)$  и с учетом того, что  $L(x_1, ..., x_n | \theta) \sim \theta^{\sum_{i=1}^{n} x_i} \cdot (1-\theta)^{nM - \sum_{i=1}^{n} x_i}$ , имеем:

$$\widetilde{p}_{CA3}(\theta|x_1,...,x_n) \sim p_{CA3}(\theta) \cdot L(x_1,...,x_n|\theta) \sim \theta^{\sum_{i=1}^{n} x_i} \cdot (1-\theta)^{nM - \sum_{i=1}^{n} x_i}.$$
 (19)

Но правая часть соотношения (19) представляет собой (с точностью до нормирующего множителя, не зависящего от  $\theta$ ) плотность бета-распределения

$$p(\theta) = \frac{\Gamma(a+b)}{\Gamma(a) \cdot \Gamma(b)} \theta^{a-1} (1-\theta)^{b-1}$$
(20)

с параметрами  $a=\sum_{i=1}^n x_i+1$ и  $b=nM-\sum_{i=1}^n x_i+1$  (участвующая в правой части (20) в выражении нормирующего множителя функция  $\Gamma(z)$  — это известная гамма-функция Эйлера, т. е.  $\Gamma(z)=\int\limits_0^\infty x^{z-1}e^{-x}\,dx$ ).

Следовательно, семейство сопряженных априорных распределений параметра  $\theta$  (вероятности «успеха») наблюдаемой биномиально распределенной генеральной совокупности принадлежит классу бета-распределений (20).

## Пример 4 (продолжение).

Ранее было установлено (см. выше, пример 4), что *отрицательно биномиально распределенная* случайная величина  $\xi(\theta;K)$  имеет сопряженное априорное распределение пара-

метра  $\theta$  — вероятности «успеха» в одном испытании Бернулли. Как и в предыдущем примере, определяем  $p_{\text{CA3}}(\theta) = 1$  (для  $\theta \in (0;1)$ ). Тогда с учетом того, что  $L(x_1, \dots, x_n | \theta) \sim \theta^{\kappa_n} (1-\theta)^{\sum_{i=1}^n x_i - \kappa_n}$  (см. выше, пример 4), имеем:

$$\widetilde{p}_{\text{CA3}}(\boldsymbol{\theta}|\boldsymbol{x}_{1},...,\boldsymbol{x}_{n}) \sim p_{\text{CA3}}(\boldsymbol{\theta}) \cdot L(\boldsymbol{x}_{1},...,\boldsymbol{x}_{n}|\boldsymbol{\theta}) \sim \boldsymbol{\theta}^{\kappa_{n}}(1-\boldsymbol{\theta})^{\sum_{i=1}^{n} \boldsymbol{x}_{i} - \kappa_{n}}.$$
(21)

Правая часть (21) представляет собой (с точностью до нормирующего множителя, не зависящего от  $\theta$ ) плотность бета-распределения (20) с параметрами a = Kn + 1 и  $b = \sum_{i=1}^{n} x_i - Kn + 1$ .

Так что семейство сопряженных априорных распределений параметра  $\theta$  (вероятности «успеха») наблюдаемой отрицательно биномиально распределенной случайной величины  $\xi(\theta;K)$  принадлежит классу бета-распределений (20).

### Пример 5 (продолжение).

Ранее было установлено (см. выше, пример 5), что параметр  $\theta$  пуассоновского з.р.в. имеет сопряженное априорное распределение. Из смысла параметра  $\theta$  следует, что он может принимать только положительные значения, поэтому определяем  $p_{\text{CA3}}(\theta) \sim \frac{1}{\theta}$ . Тогда с учетом того, что  $L(x_1, \dots, x_n | \theta) \sim \theta^{\sum_{i=1}^n x_i} \cdot e^{-n\theta}$  (см. выше, пример 5), имеем:

$$\widetilde{p}_{CA3}(\boldsymbol{\theta}|\boldsymbol{x}_{1},...,\boldsymbol{x}_{n}) \sim p_{CA3}(\boldsymbol{\theta}) \cdot L(\boldsymbol{x}_{1},...,\boldsymbol{x}_{n}|\boldsymbol{\theta}) \sim \boldsymbol{\theta}^{\sum_{i=1}^{n} \boldsymbol{x}_{i}-1} \cdot e^{-n\boldsymbol{\theta}}.$$
(22)

Правая часть (22) представляет собой (с точностью до нормирующего множителя, не зависящего от  $\theta$ ) плотность гамма-распределения

$$p(\theta) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} \cdot \theta^{\alpha - 1} e^{-\beta \theta}, \quad \theta > 0, \tag{23}$$

с параметрами  $\alpha = \sum_{i=1}^{n} x_i$  и  $\beta = n$ .

Следовательно, семейство сопряженных априорных распределений параметра  $\theta$  наблюдаемой генеральной совокупности *принадлежит классу гамма-распределений* (23).

### Пример 6 (продолжение).

Ранее было установлено (см. выше, пример 6), что параметр масштаба  $\theta$  экспоненциального распределения имеет сопряженное априорное распределение. Поскольку  $\theta > 0$ , опре-

деляем  $p_{\text{CA3}}\left(\theta\right) \sim \frac{1}{\theta}$ . Тогда с учетом того, что  $L(x_1, \dots, x_n | \theta) \sim \theta^n \cdot e^{-\left(\sum_{i=1}^n x_i\right)\theta}$  (см. выше, пример 6), имеем:

$$\widetilde{p}_{CA3}(\theta|x_1,...,x_n) \sim p_{CA3}(\theta) \cdot L(x_1,...,x_n|\theta) \sim \theta^{n-1} \cdot e^{-\left(\sum_{i=1}^n x_i\right)\theta}.$$
(24)

Правая часть (24) определяет (с точностью до нормирующего множителя, не зависящего от  $\theta$ ) плотность гамма-распределения (23) с параметрами  $\alpha = n$  и  $\beta = \sum_{i=1}^{n} x_i$ . Так что семейство

сопряженных априорных распределений параметра масштаба  $\theta$  экспоненциально распределенной генеральной совокупности *принадлежит классу гамма-распределений (23)*.

## Пример 7 (продолжение).

Как мы видели (см. выше, пример 7), и при равномерно распределенной на отрезке  $[0;\theta]$  случайной величине неизвестный параметр  $\theta$  имеет сопряженное априорное распределение. Поскольку параметр  $\theta$  может принимать любые *положительные* значения, определяем  $p_{\text{CA3}}(\theta) \sim \frac{1}{\theta}$ . Тогда с учетом того, что  $L(x_1,\ldots,x_n|\theta) = \left(\frac{1}{\theta}\right)^n$  (и  $x_{\text{max}}(n) = \max_{1 \le i \le n} x_i \le \theta$ ), имеем:

$$\widetilde{p}_{\text{CA3}}(\boldsymbol{\theta}|\boldsymbol{x}_{1},...,\boldsymbol{x}_{n}) \sim \begin{cases} p_{\text{CA3}}(\boldsymbol{\theta}) \cdot L(\boldsymbol{x}_{1},...,\boldsymbol{x}_{n}|\boldsymbol{\theta}) \sim \left(\frac{1}{\boldsymbol{\theta}}\right)^{n+1} \text{при } \boldsymbol{\theta} \geq \boldsymbol{x}_{\text{max}}(\boldsymbol{n}) \\ 0 \text{ при } \boldsymbol{\theta} < \boldsymbol{x}_{\text{max}}(\boldsymbol{n}) \end{cases}$$
(25)

Но правая часть соотношения (25) представляет собой (с точностью до нормирующего множителя, не зависящего от  $\theta$ ) плотность распределения Парето вида

$$p(\theta) = \begin{cases} \frac{\alpha \theta_{\min}^{\alpha}}{\theta^{\alpha + 1}} & \text{при } \theta \ge \theta_{\min} \\ 0 & \text{при } \theta < \theta_{\min} \end{cases}$$
 (26)

с параметром формы  $\alpha = n$  и некоторым параметром сдвига  $\theta_{\min} \ge x_{\max}(n)$ . Следовательно, семейство сопряженных априорных распределений параметра  $\theta$  равномерно (на [0; $\theta$ ]) распределенной случайной величины *принадлежит классу распределений Парето вида (26)*.

# Пример 8 (продолжение).

В данном примере речь идет о *наблюдаемой* генеральной совокупности, подчиняющейся распределению Парето с неизвестным значением параметра формы  $\theta$  и некоторым заданным значением параметра сдвига  $x_0$  (см. выше, пример 8), так что

$$L(x_1,...,x_n|\boldsymbol{\theta}) = \boldsymbol{\theta}^n \left( \frac{g_n}{x_0} \right)^{-n\boldsymbol{\theta}} \cdot g_n^{-n} \sim \boldsymbol{\theta}^n \cdot e^{-\left[n\ln\left(\frac{g_n}{x_0}\right)\right] \cdot \boldsymbol{\theta}},$$

где  $g_n = \left(\prod_{i=1}^n x_i\right)^{\frac{1}{n}}$ . Но тогда САЗ-апостериорная функция плотности распределения параметра  $\theta$  будет иметь вид  $\left(\text{с учетом того, что }p_{\text{CA3}}\left(\theta\right) \sim \frac{1}{\theta}\right)$ :

$$\widetilde{p}_{CA3}(\boldsymbol{\theta}|\boldsymbol{x}_{1},...,\boldsymbol{x}_{n}) \sim p_{CA3}(\boldsymbol{\theta}) \cdot L(\boldsymbol{x}_{1},...,\boldsymbol{x}_{n}|\boldsymbol{\theta}) \sim \boldsymbol{\theta}^{n-1} \cdot e^{-\left[n\ln\left(\frac{g_{n}}{x_{0}}\right)\right] \cdot \boldsymbol{\theta}}.$$
(27)

Мы видим, что правая часть соотношения (27) определяет (с точностью до нормирующего множителя, не зависящего от параметра  $\theta$ ) плотность гамма-распределения (23) с параметром  $\alpha = n$  и параметром  $\beta = n \ln \left( \frac{g_n}{x_0} \right)$ , так что сопряженные априорные распределения параметра формы  $\theta$  наблюдаемой Парето-распределенной генеральной совокупности npu- надлежат семейству гамма-распределений.

## Пример 9 (продолжение).

Выше при рассмотрении нормальной классической линейной модели множественной регрессии с неизвестными значениями коэффициентов регрессии  $\mathbf{\Theta} = (\mathbf{\theta}_0, \mathbf{\theta}_1, \dots, \mathbf{\theta}_k)^\mathsf{T}$  и параметра точности  $h = \frac{1}{\sigma^2}$  (где  $\sigma^2 = \mathbf{D} \mathbf{\epsilon}_i$ ) мы убедились в том, что у параметров  $\mathbf{\theta}_0, \mathbf{\theta}_1, \dots, \mathbf{\theta}_k, h$  существуют *сопряженные* априорные распределения. Определим теперь общий вид сопряженного априорного распределения  $p(\mathbf{\Theta};h)$  параметров  $\mathbf{\Theta}$  и h. С учетом «Замечания 2» (см. выше) и положительных значений параметра h имеем:

$$p_{\text{CA3}}(\boldsymbol{\theta}_0, \boldsymbol{\theta}_1, ..., \boldsymbol{\theta}_k; h) = p_{\text{CA3}}(\boldsymbol{\theta}_0) \cdot p_{\text{CA3}}(\boldsymbol{\theta}_1) \cdot ... \cdot p_{\text{CA3}}(\boldsymbol{\theta}_k) \cdot p_{\text{CA3}}(h) \sim \frac{1}{h}.$$

Используя полученное ранее выражение (12) для функции правдоподобия  $L(\mathbf{X};Y|\mathbf{\Theta};h)$ , имеем:

$$\widetilde{p}_{\text{CA3}}(\boldsymbol{\Theta}; \boldsymbol{h} | \mathbf{X}; \boldsymbol{Y}) \sim p_{\text{CA3}}(\boldsymbol{\Theta}; \boldsymbol{h}) \cdot L(\mathbf{X}; \boldsymbol{Y} | \boldsymbol{\Theta}; \boldsymbol{h}) \sim \frac{1}{h} \cdot h^{\frac{n}{2}} \cdot e^{-\left(\frac{n-k-1}{2}\hat{\boldsymbol{\sigma}}^{2}\right)^{h}} \cdot e^{-\frac{h}{2}(\hat{\boldsymbol{\Theta}} - \boldsymbol{\Theta})^{\mathsf{T}}(\mathbf{X}^{\mathsf{T}}\mathbf{X})(\hat{\boldsymbol{\Theta}} - \boldsymbol{\Theta})} =$$

$$= h^{\frac{n-k-1}{2}-1} \cdot e^{-\left(\frac{n-k-1}{2}\hat{\boldsymbol{\sigma}}^{2}\right)^{h}} \cdot h^{\frac{k+1}{2}} \cdot e^{-\frac{h}{2}(\hat{\boldsymbol{\Theta}} - \boldsymbol{\Theta})^{\mathsf{T}}(\mathbf{X}^{\mathsf{T}}\mathbf{X})(\hat{\boldsymbol{\Theta}} - \boldsymbol{\Theta})}.$$

$$(28)$$

Но правая часть соотношения (28) определяет (с точностью до нормирующего множителя, не зависящего от  $\Theta$  и h) так называемое многомерное гамма-нормальное распределение с параметром сдвига  $\hat{\Theta}$ , матрицей точности ( $\mathbf{X}^{\mathsf{T}}\mathbf{X}$ ) и параметрами  $\alpha = \frac{n-k-1}{2}$  и  $\beta = \frac{n-k-1}{2}\hat{\sigma}^2$  (подробнее о многомерном гамма-нормальном распределении и его свойствах см. в Приложении 2). Напомним, что  $\hat{\Theta} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}Y$  — это МНК-оценка параметров регрессии  $\Theta$ , а  $\hat{\sigma}^2 = \frac{1}{n-k-1}(Y-\mathbf{X}\hat{\Theta})^{\mathsf{T}}(Y-\mathbf{X}\hat{\Theta})$  — оценка остаточной дисперсии  $\sigma^2$ .

Таким образом, *сопряженные* априорные распределения параметров ( $\Theta$ ;h) нормальной классической линейной множественной регрессии имеют общий вид:

$$p(\Theta;h) \sim h^{\frac{k+1}{2}} |\Lambda_0|^{\frac{1}{2}} e^{-\frac{h}{2}(\Theta - \Theta_0)^{\mathsf{T}} \Lambda_0(\Theta - \Theta_0)} \cdot h^{\alpha - 1} e^{-\beta h}, \tag{29}$$

в котором конкретное задание векторного параметра сдвига  $\Theta_0$ ,  $(k+1)\times(k+1)$ -матрицы точности  $\Lambda_0$  и скалярных параметров  $\alpha$  и  $\beta$  однозначно определяет априорный закон распределения параметров  $\Theta$  и h (напомним, что k+1 — это общее число объясняющих переменных, включая свободный член, в анализируемой модели регрессии).

Очевидно, семейство многомерных гамма-нормальных распределений (29) является многомерным обобщением двумерного гамма-нормального распределения (18).

# 3.3. Рекомендации по подбору конкретных значений параметров в сопряженных априорных распределениях

Использование в качестве априорных законов распределения вероятностей (з.р.в.), сопряженных с наблюдаемой генеральной совокупностью (в ситуациях, когда они существуют), позволяет нам определить их общий вид, т. е. задает целое семейство априорных распределений  $\{p(\Theta; D)\}$ . Однако при реализации байесовского подхода мы должны оперировать конкретным априорным распределением, что требует знания числовых значений  $D_0$  параметров D, от которых наш априорный з.р.в. зависит. Как же подбирать эти значения  $D_0$  в каж-

дом конкретном случае? Ниже описывается один из возможных подходов к решению данной задачи.

В широком классе ситуаций можно исходить из того, что нам известны априорные средние значения оцениваемого параметра  $\Theta_0 = \mathbf{E}\Theta = (\mathbf{E}\theta_1, \mathbf{E}\theta_2, \dots, \mathbf{E}\theta_s)^\mathsf{T}$  и их среднеквадратические ошибки  $\Delta_1 = \sqrt{\mathbf{D}\theta_1}$ ,  $\Delta_2 = \sqrt{\mathbf{D}\theta_2}$ , ...,  $\Delta_s = \sqrt{\mathbf{D}\theta_s}$ . Тогда параметры априорного распределения, как правило, могут быть определены методом моментов (в случае многомерного параметра  $\Theta$  — с учетом «Замечания 2» о статистической независимости компонент вектора  $\Theta$  в априорном распределении, см. (13)).

Продемонстрируем реализацию этого подхода на рассмотренных выше примерах.

**1)** Определение параметров априорного гамма-распределения (см. формулу (23) и примеры 5, 6, 8). Как известно (см., например, [Айвазян, Мхитарян (2001)]), среднее значение ( $\mathbf{E}\theta$ ) и дисперсия ( $\mathbf{D}\theta$ ) гамма-распределения выражаются через параметры  $\alpha$  и  $\beta$  этого распределения по формулам:

$$\textbf{E}\theta = \frac{\alpha}{\beta}, \quad \textbf{D}\theta = \frac{\alpha}{\beta^2}.$$

Подставляя в эти соотношения вместо **Е** $\theta$  и **D** $\theta$  соответственно заданные значения  $\theta_0$  и  $\Delta^2$ , получаем в качестве решений системы из двух уравнений (относительно  $\alpha$  и  $\beta$ ):

$$\alpha = \frac{\theta_0^2}{\Delta^2}, \quad \beta = \frac{\theta_0}{\Delta^2}.$$
 (30)

**2)** Определение параметров априорного бета-распределения (см. формулу (20) и примеры 3 и 4). Используя выражения для среднего и дисперсии бета-рапсределения (см., например, [Айвазян, Мхитарян (2001)]) и решая систему из двух уравнений

$$\begin{cases} \mathbf{E}\theta = \frac{a}{a+b} = \theta_0 \\ \mathbf{D}\theta = \frac{ab}{(a+b)^2(a+b+1)} = \Delta^2 \end{cases}$$
(31)

относительно *а* и *b*, получаем:

$$a = \frac{\theta_0^2 (1 - \theta_0)}{\Delta^2} - \theta_0$$
,  $b = \left(\frac{\theta_0^2 (1 - \theta_0)}{\Delta^2} - \theta_0\right) \frac{1 - \theta_0}{\theta_0}$ .

**3)** Определение параметров априорного распределения Парето (см. формулу (26) и пример 7). В данном случае параметр формы  $\alpha$  и параметр сдвига  $\theta_{\text{min}}$  определяются по заданным значениям  $\theta_0 = \mathbf{E}\theta$  и  $\Delta^2 = \mathbf{D}\theta$  из системы уравнений

$$\begin{cases} \mathbf{E}\theta = \frac{\alpha\theta_{\text{min}}}{\alpha - 1} = \theta_0 \\ \mathbf{D}\theta = \frac{\alpha\theta_{\text{min}}^2}{(\alpha - 1)^2(\alpha - 2)} = \Delta^2 \end{cases}$$
(32)

Решение этой системы относительно  $\alpha$  и  $\theta_{min}$  дает:

$$\alpha = 1 + \sqrt{1 + \frac{\theta_0^2}{\Delta^2}}, \quad \theta_{\text{min}} = \frac{1}{\alpha} \theta_0 \cdot (\alpha - 1). \tag{32'}$$

**4)** Определение параметров двумерного гамма-нормального распределения (см. формулу (18) в примере 2). Из свойств двумерного гамма-нормального распределения следует (см. Приложение 2), что частное априорное распределение параметра h есть гаммараспределение с параметрами  $\alpha$  и  $\beta$ . Поэтому, воспользовавшись заданными значениями  $h_0 = \mathbf{E}h$  и  $\Delta_h^2 = \mathbf{D}h$ , составляем систему из двух уравнений относительно  $\alpha$  и  $\beta$ :

$$\begin{cases} \mathbf{E}h = \frac{\alpha}{\beta} = h_0 \\ \mathbf{D}h = \frac{\alpha}{\beta^2} = \Delta_h^2 \end{cases}.$$

Получаем решение:

$$\alpha = \frac{h_0^2}{\Delta_h^2} \quad \text{if } \beta = \frac{h_0}{\Delta_h^2}. \tag{33}$$

Для определения параметра  $\lambda_0$  и параметра сдвига  $\theta_0$  воспользуемся тем, что частное априорное распределение параметра сдвига  $\theta$  есть обобщенное распределение Стьюдента с  $2\alpha$  степенями свободы, параметром сдвига  $\theta_0$  и параметром точности, равным  $\lambda_0$   $\frac{\alpha}{\beta}$  (сведения о  $t\left(2\alpha|\theta_0;\lambda_0\frac{\alpha}{\beta}\right)$ -распределении см. в Приложении 1). Из свойств этого распределения следует, что  $\mathbf{E}t\left(2\alpha|\theta_0;\lambda_0\frac{\alpha}{\beta}\right) = \theta_0$  и  $\mathbf{D}t\left(2\alpha|\theta_0;\lambda_0\frac{\alpha}{\beta}\right) = \frac{\beta}{\lambda_0\cdot\alpha}\cdot\frac{2\alpha}{2\alpha-2}$  (см. Приложение 1), так что при заданных значениях  $\theta_0=\mathbf{E}\theta$  и  $\Delta_\theta^2=\mathbf{D}\theta$  имеем:

• Значение параметра сдвига в распределении (18) равно  $\theta_0$ ;

• 
$$\Delta_{\theta}^2 = \frac{\beta}{\lambda_0 \cdot \alpha} \cdot \frac{\alpha}{\alpha - 1}$$
, откуда  $\lambda_0 = \frac{1}{\Delta_{\theta}^2} \cdot \frac{\beta}{\alpha - 1}$  (34)

(напомним, что  $\alpha$  и  $\beta$  уже определены соотношениями (33)).

- **5)** Определение параметров многомерного гамма-нормального распределения (см. формулу (29) в примере 9). Воспользуемся свойствами многомерного гамма-нормального распределения (см. Приложение 2). В соответствии с ними:
- (i) частное распределение числового сомножителя h является гамма-распределением с параметрами  $\alpha$  и  $\beta$ ;
- (ii) частное распределение параметра  $\Theta$  есть обобщенное (k + 1)-мерное распределение Стьюдента с  $2\alpha$  числом степеней свободы, параметром сдвига  $\Theta_0$  и матрицей точности  $B=\dfrac{\alpha}{\beta}\Lambda_0$  (мы обозначаем его как  $t(2\alpha|\Theta_0;B)$ -распределение).

Свойство (i) позволяет (при заданных значениях  $h_0 = \mathbf{E}h$  и  $\Delta_h^2 = \mathbf{D}h$ ) определить значения параметров  $\alpha$  и  $\beta$  по той же формуле (33).

Свойство (ii), дополненное «Замечанием 2» и правилами вычисления вектора средних значений и ковариационной матрицы (k+1)-мерной случайной величины  $t\left(2\alpha|\Theta_0\,;\frac{\alpha}{\beta}\Lambda_0\right)$ 

# Nº 1(9) 2008

(см. Приложение 1), позволяет определить остальные параметры распределения (29) — параметр сдвига  $\Theta_0$  и элементы матрицы  $\Lambda_0$ . Действительно:

$$\mathbf{E}\Theta = \mathbf{E}t \left( 2\alpha |\Theta_0; \frac{\alpha}{\beta} \Lambda_0 \right) = \Theta_0 \text{ (задано!)}$$

$$\Sigma_{\Theta} = \Sigma_{t(2\alpha|\Theta_0; \frac{\alpha}{\beta}\Lambda_0)} = \frac{2\alpha}{2\alpha - 2} \left(\frac{\alpha}{\beta}\Lambda_0\right)^{-1} = \begin{pmatrix} \Delta_0^2 & 0 \\ & \Delta_1^2 \\ & & \ddots \\ 0 & & \Delta_k^2 \end{pmatrix}, \tag{35}$$

где  $\Delta_j^2$  — заданные значения априорных дисперсий компонент вектора  $\Theta = (\theta_0, \theta_1, ..., \theta_k)$ , j = 0, 1, ..., k.

Таким образом, векторный параметр сдвига в распределении (29) определяется заданным вектором априорных средних значений  $\Theta_0$ , а диагональные элементы  $\lambda_0^{(j)}$  ( $j=0,1,\ldots,k$ ) матрицы  $\Lambda_0$  определяются из уравнений (35) по формуле:

$$\lambda_0^{(j)} = \frac{1}{\Delta_j^2} \cdot \frac{\beta}{\alpha - 1},\tag{36}$$

где значения  $\alpha$  и  $\beta$  определены соотношениями (33).

# 4. Пересчет значений параметров при переходе от априорного сопряженного распределения к апостериорному

Поскольку, по определению, семейство сопряженных априорных распределений  $\{p(\Theta;D)\}$  замкнуто относительно операции (4) пересчета априорного распределения в апостериорное, то общий вид апостериорного распределения  $\widetilde{p}(\Theta|X_1,...,X_n)$  при использовании сопряженных априорных распределений нам известен, и нам лишь надо уметь пересчитывать параметры  $\widetilde{D}(X_1,...,X_n)$  этого апостериорного распределения по заданным параметрам  $D_0$  априорного распределения и имеющимся наблюдениям  $X_1,X_2,...,X_n$ .

Общая схема такого пересчета следующая. Пусть  $\{p(\Theta; D)\}$  — семейство априорных распределений, сопряженных с функцией правдоподобия  $L(x_1, \dots, x_n | \Theta)$  имеющихся у нас наблюдений  $(D = (d_1, \dots, d_q)$  — вектор параметров, от которых зависит сопряженное априорное распределение  $p(\Theta; D)$ , и пусть  $D_0$  — заданные (известные) значения параметров D в анализируемом случае. Тогда с помощью ряда тождественных преобразований правая часть соотношения

$$\widetilde{p}(\boldsymbol{\Theta}|X_1,...,X_n) \sim p(\boldsymbol{\Theta};D_0) \cdot L(X_1,...,X_n|\boldsymbol{\Theta})$$
(37)

приводится, с точностью до множителей, не зависящих от  $\Theta$ , к виду  $p(\Theta; D(X_1, ..., X_n))$ , где последняя функция принадлежит семейству  $p(\Theta; D)$ , а каждая из компонент  $d_j(X_1, ..., X_n)$  (j = 1, 2, ..., q) вектора параметров  $D(X_1, ..., X_n)$  является функцией от  $D_0$  и  $\{X_1, X_2, ..., X_n\}$ .

Продемонстрируем реализацию этой общей схемы на наших примерах (с разной степенью подробности).

Пример 1 (продолжение). В данном примере  $L(x_1,x_2,\dots,x_n|\theta) \sim e^{-\frac{n}{2\sigma_0^2}(\vec{x}-\theta)^2}$  (см. (7)),  $p(\theta;D) = \frac{1}{\sqrt{2\pi}\Delta_0}e^{-\frac{(\theta-\theta_0)^2}{2\Delta_0^2}}$  (т. е.  $d_1 = \theta_0$ ,  $d_2 = \Delta_0^2$ ), так что

$$\widetilde{p}(\boldsymbol{\theta}|\boldsymbol{x}_1,...,\boldsymbol{x}_n) \sim e^{-\frac{(\boldsymbol{\theta}-d_1)^2}{2d_2}} \cdot e^{-\frac{1}{2\sigma_0^2/n}(\overline{\boldsymbol{x}}-\boldsymbol{\theta})^2} \sim e^{-\frac{1}{2\widetilde{d}_2}(\boldsymbol{\theta}-\widetilde{d}_1)^2},$$

где

И

$$\widetilde{d}_{1}(x_{1},...,x_{n}) = \mathbf{E}(\theta|x_{1},...,x_{n}) = \frac{\frac{1}{\sigma_{0}^{2}/n} \cdot \overline{x} + \frac{1}{\Delta_{0}^{2}} \cdot \theta_{0}}{\frac{1}{\sigma_{0}^{2}/n} + \frac{1}{\Delta_{0}^{2}}}$$

$$\widetilde{d}_{2}(x_{1},...,x_{n}) = \mathbf{D}(\theta|x_{1},...,x_{n}) = \left(\frac{1}{\sigma_{0}^{2}/n} + \frac{1}{\Delta_{0}^{2}}\right)^{-1}.$$
(38)

Необходимые промежуточные выкладки нацелены на выделение полного квадрата разности  $(\theta - \tilde{d}_1)^2$  из выражения  $\frac{1}{ad_2}(\theta - d_1)^2 + \frac{1}{2\sigma_0^2/n}(\theta - \bar{x})^2$  и не представляют принципиальных трудностей.

Мы видим, что среднее  $(\vec{d}_1)$  и дисперсия  $(\vec{d}_2)$  апостериорного нормального распределения являются определенным образом средневзвешенными значениями априорных и выборочных соответственно средних и дисперсий.

# Пример 2 (продолжение).

При реализации общей схемы пересчета априорных параметров в апостериорные в данном случае следует учесть представление функции правдоподобия L в форме (16) (см. выше, пример 2), вид (18) априорной плотности двумерного гамма-нормального распределения (в котором вектор параметров  $D_0 = (\lambda_0; \theta_0; \alpha; \beta)$ ), а также справедливость тождества

$$n(\theta - \overline{x})^2 + \lambda_0 (\theta - \theta_0)^2 = (\lambda_0 + n) \left(\theta - \frac{\lambda_0 \theta_0 + n\overline{x}}{\lambda_0 + n}\right)^2 + \frac{\lambda_0 n}{\lambda_0 + n} (\theta_0 - \overline{x})^2.$$

Тогда вычисление  $\widetilde{p}(\theta;h)$  по схеме (37) приводит нас снова к двумерному гамманормальному распределению вида (18), но с параметрами

$$\widetilde{\lambda}_{0} = \lambda_{0} + n,$$

$$\widetilde{\theta}_{0} = \frac{n\overline{x} + \lambda_{0}\theta_{0}}{n + \lambda_{0}},$$

$$\widetilde{\alpha} = \alpha + \frac{n}{2},$$

$$\widetilde{\beta} = \beta + \frac{1}{2} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2} + \frac{(\overline{x} - \theta_{0})^{2}}{2\left(\frac{1}{n} + \frac{1}{\lambda_{0}}\right)}.$$
(39)

# Пример 3 (продолжение).

Непосредственная реализация соотношения (37) в данном случае дает:

$$\widetilde{p}(\theta|x_1,...,x_n) \sim \theta^{a-1}(1-\theta)^{b-1} \cdot \theta^{\sum_{i=1}^{n} x_i} (1-\theta)^{nM-\sum_{i=1}^{n} x_i} = \theta^{a+\sum_{i=1}^{n} x_i-1} (1-\theta)^{b+nM-\sum_{i=1}^{n} x_i-1}.$$
(40)

Но правая часть (40) определяет (с точностью до нормирующего множителя) снова бетараспределение с параметрами:

$$\widetilde{a} = a + \sum_{i=1}^{n} x_{i},$$

$$\widetilde{b} = b + nM - \sum_{i=1}^{n} x_{i}.$$
(41)

## Пример 4 (продолжение).

Подставляя в правую часть соотношения (37)

$$p(\theta; D_0) = p(\theta; a, b) \sim \theta^{a-1} (1 - \theta)^{b-1},$$
  
$$L(x_1, ..., x_n | \theta) \sim \theta^{\kappa_n} (1 - \theta)^{\sum_{i=1}^{n} x_i - \kappa_n},$$

имеем:

$$\widetilde{p}(\boldsymbol{\theta}|\boldsymbol{x}_1,...,\boldsymbol{x}_n) \sim \boldsymbol{\theta}^{a+Kn-1}(1-\boldsymbol{\theta})^{b+\sum_{i=1}^n x_i-Kn-1}.$$

Мы видим, что апостериорное распределение параметра (вероятности «успеха») отрицательно-биномиального закона, так же как и априорное, является бетараспределением и что его параметры  $\widetilde{D} = (\widetilde{a}, \widetilde{b})$  определяются соотношениями:

$$\widetilde{a} = a + Kn, \quad \widetilde{b} = b + \sum_{i=1}^{n} x_i - Kn.$$
 (42)

### Пример 5 (продолжение).

Как мы видели ранее, функция правдоподобия наблюдений пуассоновской генеральной совокупности имеет вид:

$$L(x_1,...,x_n|\theta) \sim \theta^{\sum_{i=1}^n x_i} e^{-n\theta}.$$

Так что, используя в качестве априорного распределения  $p(\theta; D) = p(\theta; \alpha, \beta)$  параметра  $\theta$  гамма-распределение (23), имеем:

$$\widetilde{p}(\boldsymbol{\theta}|\boldsymbol{x}_1,...,\boldsymbol{x}_n) \sim \boldsymbol{\theta}^{\alpha-1} e^{-\beta\boldsymbol{\theta}} \cdot \boldsymbol{\theta}^{\sum_{i=1}^n \boldsymbol{x}_i} e^{-n\boldsymbol{\theta}} = \boldsymbol{\theta}^{\alpha + \sum_{i=1}^n \boldsymbol{x}_i - 1} e^{-(\beta + n)\boldsymbol{\theta}}.$$

Тем самым подтверждается сопряженность априорного гамма-распределения, причем апостериорное гамма-распределение определяется параметрами  $\widetilde{D}=(\widetilde{\alpha},\widetilde{\beta})$ , где

$$\widetilde{\alpha} = \alpha + \sum_{i=1}^{n} x_i; \quad \widetilde{\beta} = \beta + n.$$
 (43)

### Пример 6 (продолжение).

Функция правдоподобия экспоненциально распределенных наблюдений (с параметром масштаба  $oldsymbol{ heta}$ ) имеет вид:

$$L(x_1,...,x_n|\theta) = \theta^n e^{-\left(\sum_{i=1}^n x_i\right)\theta}.$$

Так что при априорном гамма-распределении параметра  $\theta$  имеем:

$$\widetilde{p}(\theta|x_1,...,x_n) \sim \theta^{\alpha-1}e^{-\beta\theta}\cdot\theta^n e^{-\left(\sum_{i=1}^n x_i\right)\theta} = \theta^{\alpha+n-1}e^{-\left(\beta+\sum_{i=1}^n x_i\right)\theta}.$$

Мы видим, что апостериорное распределение параметра  $\theta$  снова подчиняется закону гамма-распределения (23), но с параметрами:

$$\widetilde{\alpha} = \alpha + n, \quad \widetilde{\beta} = \beta + \sum_{i=1}^{n} x_i.$$
 (44)

## Пример 7 (продолжение).

Подставляя в правую часть соотношения (37) функцию правдоподобия *равномерно* распределенных (на отрезке [0; $\theta$ ]) наблюдений и функцию плотности распределения Парето (26) в качестве априорного распределения  $p(\theta; D) = p(\theta; \alpha; \theta_{min})$ , имеем:

$$\widetilde{p}(\boldsymbol{\theta}|\boldsymbol{x}_1,...,\boldsymbol{x}_n) \sim \frac{\alpha \boldsymbol{\theta}_{\min}^{\alpha}}{\boldsymbol{\theta}^{\alpha+1}} \cdot \frac{1}{\boldsymbol{\theta}^n} \quad (\text{при } \boldsymbol{\theta} \geq \max\{\boldsymbol{\theta}_{\min}; \boldsymbol{x}_1, \boldsymbol{x}_2, ..., \boldsymbol{x}_n\}).$$

Отсюда следует, что апостериорное распределение параметра  $\theta$  описывается, так же как и априорное, законом Парето (26), но с параметрами:

$$\widetilde{\alpha} = \alpha + n, \quad \widetilde{\theta}_{\min} = \max\{\theta_{\min}; x_1, x_2, ..., x_n\}.$$
 (45)

## Пример 8 (продолжение).

Как мы видели (см. выше, пример 8), функция правдоподобия Парето-распределенных наблюдений имеет вид:

$$L(x_1,...,x_n|\mathbf{\theta}) \sim \mathbf{\theta}^n \cdot e^{-\left[n\ln\left(\frac{g_n}{x_0}\right)\right]\cdot \mathbf{\theta}}$$
.

Подставляя ее в правую часть соотношения (37), а также, в качестве априорного распределения  $p(\theta; D_0)$ , плотность гамма-распределения (23), имеем:

$$\widetilde{p}(\boldsymbol{\theta}|\boldsymbol{x}_1,...,\boldsymbol{x}_n) \sim \boldsymbol{\theta}^{\alpha-1} e^{-\beta\boldsymbol{\theta}} \cdot \boldsymbol{\theta}^n e^{-\left[n\ln\left(\frac{g_n}{x_0}\right)\right]\boldsymbol{\theta}} = \boldsymbol{\theta}^{\alpha+n-1} e^{-\left(\beta+n\ln\left(\frac{g_n}{x_0}\right)\right)\boldsymbol{\theta}},$$

что определяет гамма-распределение с параметрами:

$$\widetilde{\alpha} = \alpha + n, \quad \widetilde{\beta} = \beta + n \ln \left( \frac{g_n}{x_0} \right),$$
 (46)

где  $g_n = \left(\prod_{i=1}^n x_i\right)^{\frac{1}{n}}$  — среднее геометрическое наблюдений  $x_1, \dots, x_n$ , а  $x_0$  — параметр сдвига в анализируемом распределении Парето (его значение считается заданным).

### Пример 9 (продолжение).

Байесовское оценивание коэффициентов регрессии  $\Theta = (\theta_0, \theta_1, ..., \theta_k)$  и параметра h в нормальной классической модели множественной регрессии (8)–(9) предполагает использование апостериорного распределения  $\widetilde{p}(\Theta; h|\mathbf{X}, Y)$  этих параметров, определяемого по схеме (37). Подставляя в правую часть соотношения (37) в качестве априорного многомер-

ное гамма-нормальное распределение (29), а также функцию правдоподобия  $L(\mathbf{X},Y|\mathbf{\Theta},h)$  (12), преобразованную к виду

$$L(\mathbf{X}, Y|\Theta; h) \sim h^{\frac{n-k-1}{2}} e^{-\left(\frac{n-k-1}{2}\hat{\mathbf{o}}^2\right)h} \cdot h^{\frac{k+1}{2}} e^{-\frac{h}{2}(\hat{\mathbf{o}}-\mathbf{\Theta})^{\mathsf{T}}(\mathbf{X}^{\mathsf{T}}\mathbf{X})(\hat{\mathbf{o}}-\mathbf{\Theta})},$$

получаем после ряда тождественных преобразований (см. [Де Грот (1974)]) апостериорную плотность  $\widetilde{\rho}(\Theta;h|\mathbf{X},Y)$  в форме многомерного гамма-нормального распределения (29), параметры которого определяются по параметрам  $\Theta_0$ ,  $\Lambda_0$ ,  $\alpha$  и  $\beta$  априорного распределения и наблюдениям ( $\mathbf{X},Y$ ) следующими соотношениями:

$$\begin{cases} \widetilde{\Theta}_{0} = (\boldsymbol{\Lambda}_{0} + \boldsymbol{X}^{\mathsf{T}}\boldsymbol{X})^{-1}(\boldsymbol{\Lambda}_{0}\boldsymbol{\Theta}_{0} + \boldsymbol{X}^{\mathsf{T}}\boldsymbol{Y}) & --\text{ параметр сдвига;} \\ \widetilde{\boldsymbol{\Lambda}}_{0} = \boldsymbol{\Lambda}_{0} + \boldsymbol{X}^{\mathsf{T}}\boldsymbol{X} & --\text{ матрица точности;} \\ \widehat{\boldsymbol{\alpha}} = \boldsymbol{\alpha} + \frac{n}{2}; \\ \widetilde{\boldsymbol{\beta}} = \boldsymbol{\beta} + \frac{1}{2} \big[ (\boldsymbol{Y} - \boldsymbol{X}\widetilde{\boldsymbol{\Theta}}_{0})^{\mathsf{T}}\boldsymbol{Y} + (\boldsymbol{\Theta}_{0} - \widetilde{\boldsymbol{\Theta}}_{0})^{\mathsf{T}}\boldsymbol{\Lambda}_{0}\boldsymbol{\Theta}_{0} \big] \end{cases}$$
 параметры частного апостериорного гамма-распределения параметра точности  $\boldsymbol{h}$ .

# 5. Примеры задач на точечное и интервальное байесовское оценивание параметров модели

**Задача 1.** Анализ закона распределения домашних хозяйств определенной социальноэкономической страты в заданном регионе страны по величине среднедушевого дохода  $\eta$ . Мы располагаем следующей информацией об анализируемой генеральной совокупности:

- (а) логарифм (натуральный) величины среднедушевого дохода (т. е.  $\xi = \ln \eta$ ) домашних хозяйств рассматриваемой страты данного региона распределен нормально с *неизвестным* средним значением  $\theta$  и *известной* дисперсией  $\sigma_0^2 = 0.28$ ;
- (б) имеются результаты обследования n=10 случайно отобранных от анализируемой страты домашних хозяйств по среднедушевому доходу  $y_i$  (в нижеследующей таблице даны значения  $x_i = \ln y_i$ ):

| i  | 1    | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10   |
|----|------|------|------|------|------|------|------|------|------|------|
| Xi | 0,54 | 1,20 | 0,36 | 0,80 | 0,42 | 2,10 | 0,70 | 0,25 | 0.90 | 0,48 |

(в) из предыстории и опыта обследования домашних хозяйств той же страты в других регионах страны получены априорные значения среднего  $\mathbf{E}\theta = \mathbf{\theta}_0 = 0,60$  и дисперсии  $\mathbf{E}\theta = \Delta_0^2 = 0,03$ .

Требуется:

Используя сопряженное априорное распределение параметра  $\theta$ , получить байесовские точечную и интервальную (с уровнем доверия  $P_0=0.95$ ) оценки средней величины логарифма среднедушевого дохода и сравнить их с соответствующими оценками метода максимального правдоподобия.

Решение. Мы уже знаем (см. выше, пример 1), что сопряженное априорное распределение в данном случае существует и является нормальным, причем параметры этого распределения непосредственно заданы ( $\mathbf{E}\theta = \theta_0 = 0,60$  и  $\mathbf{D}\theta = \Delta_0^2 = 0,03$ ). В соответствии с выведенными выше формулами пересчета (см. п. 4, формулы (38)) имеем:

$$\widetilde{\theta}_{0} = \mathbf{E}(\theta|x_{1},...,x_{n}) = \frac{\frac{1}{\sigma_{0}^{2}/n} \cdot \overline{x} + \frac{1}{\Delta_{0}^{2}} \cdot \theta_{0}}{\frac{1}{\sigma_{0}^{2}/n} + \frac{1}{\Delta_{0}^{2}}} = 0,691,$$

$$\widetilde{\Delta}_0^2 = \mathbf{D}(\boldsymbol{\theta}|x_1, ..., x_n) = \left(\frac{1}{\sigma_0^2/n} + \frac{1}{\Delta_0^2}\right)^{-1} = 0.015.$$

Соответственно:

$$\hat{\boldsymbol{\theta}}^{(5)} = \mathbf{E}(\boldsymbol{\theta}|x_1,...,x_n) = 0.691$$

и с вероятностью  $P_0=0.95$  можем утверждать, что  $\hat{\mathbf{\theta}}^{(6)}-u_{0.025}\cdot\widetilde{\Delta}_0<\mathbf{\theta}<\hat{\mathbf{\theta}}^{(6)}+u_{0.025}\cdot\widetilde{\Delta}_0$ . С учетом того, что 2,5%-ная точка стандартного нормального распределения  $u_{0.025}=1.96$  и  $\widetilde{\Delta}_0=\sqrt{\widetilde{\Delta}_0^2}=0.120$ , имеем:

$$\theta \in [0,451;0,931]$$
 с вероятностью  $P_0 = 0,95$ .

Решение этих же задач, основанное на методе максимального правдоподобия, дает:

$$\hat{\mathbf{\theta}}_{\scriptscriptstyle{\mathrm{M}}\mathrm{D}} = \bar{x} = 0,775$$
 и  $\mathbf{\theta} \in [0,447;1,103]$  с вероятностью  $P_{\scriptscriptstyle{0}} = 0,95$ 

(концы последнего доверительного интервала вычислены по формулам  $\hat{\theta}_{\text{мп}} \pm u_{0,025} \cdot \frac{\sigma_0}{\sqrt{n}}$ ).

Мы видим, что использование априорной информации о неизвестном значении параметра  $\theta = \mathbf{E}(\ln \eta)$  и применение, соответственно, байесовского подхода в данной задаче позволили уточнить оценку и, в частности, сузить интервальную оценку по сравнению с классическим подходом почти в полтора раза.

**Задача 2.** Оценка интенсивности вызовов, поступающих на пункт «Скорой помощи» в час.

Число вызовов  $\xi$ , поступающих на пункт «Скорой помощи» в час, описывается распределением Пуассона с неизвестным значением параметра  $\theta = \mathbf{E}\xi$  (см. выше, пример 5). Результаты регистрации числа вызовов  $x_i$  (в час), зафиксированные в течение одной смены (длящейся 8 часов), приведены в следующей таблице:

| i  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
|----|---|---|---|---|---|---|---|---|
| Xi | 3 | 1 | 4 | 2 | 6 | 3 | 3 | 2 |

Из опыта работы аналогичных пунктов определено априорное среднее значение  $\theta_0 = \mathbf{E}\theta = 3,6$ , причем случайный разброс значений этого параметра характеризуется дисперсией  $\Delta_0^2 = \mathbf{D}\theta = 0,09$ .

Требуется:

Используя сопряженное априорное распределение параметра  $\theta$ , получить байесовские точечную и интервальную (с уровнем доверия  $P_0 = 0.95$ ) оценки средней интенсивности  $\theta = \mathbf{E}\xi$  вызовов, поступающих на пункт «Скорой помощи», и сравнить их с соответствующими оценками метода максимального правдоподобия.

Решение. Как было установлено выше (см. пример 5), сопряженное априорное распределение параметра  $\theta$  в этом случае существует и описывается гамма-законом, параметры  $\alpha$  и  $\beta$  которого определяются (в соответствии с рекомендациями п. 3.3) из системы уравнений:

$$\begin{cases} \mathbf{E}\theta = \frac{\alpha}{\beta} = 3,60 \\ \mathbf{D}\theta = \frac{\alpha}{\beta^2} = 0,09 \end{cases}.$$

Отсюда  $\alpha = 144$  и  $\beta = 40$ .

В соответствии с выведенными выше (см. п.4) формулами пересчета (43) параметров апостериорного гамма-распределения имеем:

$$\widetilde{\alpha} = \alpha + \sum_{i=1}^{8} x_i = 144 + 24 = 168,$$

$$\widetilde{\beta} = \beta + n = 40 + 8 = 48.$$

Таким образом:

$$\hat{\boldsymbol{\theta}}^{(5)} = E(\boldsymbol{\theta}|\boldsymbol{x}_1, ..., \boldsymbol{x}_n) = \frac{\widetilde{\boldsymbol{\alpha}}}{\widetilde{\boldsymbol{\beta}}} = 3.5,$$

и можно утверждать, что с вероятностью  $P_0 = 0.95$  справедливы неравенства

$$\gamma_{0.975}(\widetilde{\alpha},\widetilde{\beta}) < \theta < \gamma_{0.025}(\widetilde{\alpha},\widetilde{\beta}),$$

где  $\gamma_q(\widetilde{\alpha},\widetilde{\beta})$  — 100q%-ная точка гамма-распределения с параметрами  $\widetilde{\alpha}$  и  $\widetilde{\beta}$ . Воспользовавшись известными формулами (см. приложение 2):

$$\gamma_q(\widetilde{\alpha}; \widetilde{\beta}) = \frac{1}{2\widetilde{\beta}} \chi_q^2(2\widetilde{\alpha})$$

и, при *m* > 100:

$$\chi_q^2(m)\approx m+u_q\cdot\sqrt{2m},$$

где  $\chi_q^2(m)$  и  $u_q$  — 100q%-ные точки «хи-квадрат»-распределения и стандартного нормального распределения, соответственно, имеем:

$$\theta \in [2,97; 4,03]$$
 с вероятностью  $P_0 = 0,95$ .

Решение этих же задач, основанное на методе максимального правдоподобия, дает:

$$\hat{\theta}_{MD} = \overline{x} = 3.0;$$

 $\theta \in [1,80; 4,20;]$  с вероятностью  $P_0 = 0.95^3$ .

Мы видим, что в данном случае использование априорной информации о параметре  $\theta$  в рамках байесовского подхода позволило сузить размах интервальной оценки более чем в два раза!

**Задача 3.** Оценка «необходимой доли брака»  $\theta$  в продукции, производимой автоматической линией.

Предприятие приобрело новую автоматическую линию (АЛ). Для оценки так называемой «необходимой доли брака»  $\theta$  — вероятности того, что произведенное этой АЛ в режиме стационарного функционирования изделие окажется некондиционным, — было проконтролировано n=5 партий по M=80 изделий в каждой партии. Число дефектных изделий  $\xi$ , обнаруженных в партии изделий объема M, адекватно описывается биномиальным з.р.в. с параметрами  $\theta$  и M. Результаты контроля представлены в таблице ( $x_i$  — это число дефектных изделий, обнаруженных в i-й проконтролированной партии):

| i  | 1 | 2 | 3 | 4 | 5 |
|----|---|---|---|---|---|
| Xi | 2 | 0 | 3 | 1 | 2 |

Кроме того, проведенный анализ работы аналогичных АЛ, установленных на других предприятиях, показал, что «необходимая доля брака» в среднем равна 0,01 и имеет разброс, характеризуемый среднеквадратическим отклонением 0,003.

# Требуется:

Используя сопряженное априорное распределение параметра  $\theta$ , получить байесовские точечную и интервальную (с уровнем доверия  $P_0 = 0.90$ ) оценки «необходимой доли брака»  $\theta$  и сравнить их с соответствующими оценками метода максимального правдоподобия.

Решение. Выше (см. п. 3) было установлено, что сопряженное априорное распределение параметра  $\theta$  в данном случае существует и описывается бета-распределением, параметры a и b которого определяются из системы (см. п.3.3):

$$\begin{cases} \frac{a}{a+b} = 0.01 \\ \frac{ab}{(a+b)^2(a+b+1)} = (0.003)^2 \end{cases}$$

Решение этой системы дает a=10 и b=990. Воспользовавшись формулами пересчета (41), получаем значения параметров  $\tilde{a}$  и  $\tilde{b}$  апостериорного распределения  $\theta$ :

$$\widetilde{a} = a + \sum_{i=1}^{5} x_i = 10 + 8 = 18,$$

$$\widetilde{b} = b + 5.80 - \sum_{i=1}^{5} x_i = 1382.$$

Таким образом:

$$\hat{\boldsymbol{\theta}}^{(5)} = \mathbf{E}(\boldsymbol{\theta}|x_1, ..., x_n) = \frac{\widetilde{a}}{\widetilde{a} + \widetilde{b}} = 0,01286,$$

и можно утверждать, что с вероятностью  $P_0 = 0.90$  справедливы неравенства

$$\beta_{0.95}(\widetilde{a},\widetilde{b}) < \theta < \beta_{0.05}(\widetilde{a},\widetilde{b}),$$

где  $\beta_q(\widetilde{a},\widetilde{b})$  — 100q%-ная точка бета-распределения с параметрами  $\widetilde{a}$  и  $\widetilde{b}$ . Воспользовавшись известными равенствами

$$\beta_q(\widetilde{a};\widetilde{b}) = \frac{\widetilde{a} F_q(2\widetilde{a};2\widetilde{b})}{\widetilde{b} + \widetilde{a} F_q(2\widetilde{a};2\widetilde{b})}, F_{1-q}(\mathbf{v}_1,\mathbf{v}_2) = \frac{1}{F_q(\mathbf{v}_2,\mathbf{v}_1)}$$

и таблицами 100q-процентных точек $F_q(\mathbf{v}_1, \mathbf{v}_2)$  распределения F с числами степеней свободы числителя  $\mathbf{v}_1$  и знаменателя  $\mathbf{v}_2$ , имеем:

$$\theta \in [0,0083;0,0182]$$
 с вероятностью  $P_0 = 0,90$ .

Решение этих же задач, основанное на методе максимального правдоподобия (см., например, [Айвазян, Мхитарян (20016), задача 1.18]), дает:

$$\hat{\theta}_{M\Pi} = \frac{1}{nM} \sum_{i=1}^{n} x_i = 0.02,$$

 $\theta \in [0,0085;0,0315]$  с вероятностью  $P_0 = 0,90$ .

Размах этой интервальной оценки в 2,3 раза превосходит ширину *байесовской* интервальной оценки!

### Задача 4. Оценка интервала движения автобуса.

Приходящий в случайные моменты времени на остановку пассажир в течение пяти своих поездок фиксировал время ожидания автобуса (в минутах):  $x_1 = 1,2$ ;  $x_2 = 2,5$ ;  $x_3 = 0,5$ ;  $x_4 = 3,2$ ;  $x_5 = 2,9$ . Известно, что автобус ходит строго по расписанию с интервалом в  $\theta$  минут, так что время ожидания автобуса пассажиром можно считать случайной величиной  $\xi$ , подчиненной  $[0;\theta]$ -равномерному з.р.в. (см. выше, пример 7). Пытаясь оценить интервал движения автобуса, пассажир сумел получить дополнительную информацию о параметре  $\theta$ : из анализа опыта работы различных автобусных маршрутов города, функционирующих в едином регламентном режиме, следовало, что среднее значение этого параметра равно 5,38 мин., а случайный разброс в его значениях характеризуется средним квадратическим отклонением, равным 1,39 мин.

Требуется:

Используя сопряженное априорное распределение параметра  $\theta$ , получить байесовские точечную и интервальную (с уровнем доверия  $P_0 = 0.95$ ) оценки для неизвестного интервала движения автобуса и сравнить их с соответствующими оценками, основанными на методе максимального правдоподобия.

*Решение*. В п. 3 (см. пример 7) было установлено, что сопряженное априорное распределение параметра  $\theta$  в данном случае существует и описывается распределением Парето с па-

раметром формы  $\alpha$  и параметром сдвига  $\theta_{\text{min}}$ , которые определяются из системы уравнений (32), т. е. по формулам (32'). В нашем случае имеем:

$$\alpha = 1 + \sqrt{1 + \frac{\theta_0^2}{\Delta^2}} = 1 + \sqrt{1 + \frac{5,38^2}{1,39^2}} = 5,00,$$

$$\theta_{\text{min}} = \frac{1}{\alpha} \theta_0 \cdot (\alpha - 1) = \frac{1}{5} \cdot 5,38 \cdot 4 = 4,30 \text{ (мин.)}.$$

Параметры *апостериорного* распределения Парето определяются формулами пересчета (45):

$$\widetilde{\alpha} = \alpha + n = 5 + 5 = 10$$
,

$$\widetilde{\theta}_{\min} = \max \{ \theta_{\min}; x_1, ..., x_5 \} = 4,30$$
 (мин.).

Соответственно:

$$\hat{\boldsymbol{\theta}}^{(6)} = \mathbf{E}(\boldsymbol{\theta}|x_1,...,x_5) = \frac{\widetilde{\boldsymbol{\alpha}} \cdot \widetilde{\boldsymbol{\theta}}_{\min}}{\widetilde{\boldsymbol{\alpha}} - 1} = 4,78 \text{ (MИН.)}$$

и  $\theta \in [\theta_{0,975}(\widetilde{\alpha}; \widetilde{\theta}_{\min}); \theta_{0,025}(\widetilde{\alpha}; \widetilde{\theta}_{\min})]$  с вероятностью  $P_0 = 0,95$ , где  $\theta_q(\widetilde{\alpha}; \widetilde{\theta}_{\min})$  — это 100q%-ная точка распределения Парето с параметрами  $(\widetilde{\alpha}; \widetilde{\theta}_{\min})$ . Поскольку функция распределения Парето определяется соотношением

$$F(\theta) = P\{\xi(\widetilde{\alpha}; \widetilde{\theta}_{\min}) < \theta\} = 1 - \left(\frac{\widetilde{\theta}_{\min}}{\theta}\right)^{\widetilde{\alpha}},$$

то значения  $\theta_{0.975}(\widetilde{\alpha};\widetilde{\theta}_{min})$  и  $\theta_{0.025}(\widetilde{\alpha};\widetilde{\theta}_{min})$  определяется из уравнений соответственно:

$$\left(\frac{\widetilde{\theta}_{min}}{\theta_{0,975}(\widetilde{\alpha};\widetilde{\theta}_{min})}\right)^{\widetilde{\alpha}} = 0,975,$$

$$\left(\frac{\widetilde{\theta}_{min}}{\theta_{0,025}(\widetilde{\alpha};\widetilde{\theta}_{min})}\right)^{\widetilde{\alpha}} = 0,025.$$

Решение этих уравнений относительно  $\theta_{0,975}(\widetilde{\alpha};\widetilde{\theta}_{min})$  и  $\theta_{0,025}(\widetilde{\alpha};\widetilde{\theta}_{min})$  при  $\widetilde{\alpha}=10$  и  $\widetilde{\theta}_{min}=4$ ,3 дает:

$$\theta_{0,975}(\widetilde{\alpha};\widetilde{\theta}_{min})=$$
 4,31 и  $\theta_{0,025}(\widetilde{\alpha};\widetilde{\theta}_{min})=$  6,22,

так что

$$\theta \in [4,31; 6,22]$$
 с вероятностью  $P_0 = 0,95$ .

Решение тех же задач, основанное на *методе максимального правдоподобия*, дает (см. [Айвазян, Мхитарян (20016), задача 1.22]):

$$\hat{\boldsymbol{\theta}}_{\scriptscriptstyle \mathsf{M} \mathsf{\Pi}} = 3,84 \, (\mathsf{M} \mathsf{U} \mathsf{H}.),$$

$$\theta \in [3,22;6,69]$$
 с вероятностью  $P_0 = 0,95$ 

(здесь дается оценка максимального правдоподобия  $\hat{\theta}_{M\Pi}$ , подправленная на несмещенность). И в данном случае байесовский подход позволил сузить ширину доверительного интервала почти в 2 раза (точнее, в 1,82 раза).

**Задача 5.** Оценка параметров модели зависимости душевых доходов от объема автономных инвестиций.

В нижеследующей таблице приведены макроэкономические данные по США, характеризующие среднедушевой доход  $y_t$  и автономные инвестиции  $x_t$  (в долларах, в дефлированных, с помощью индекса стоимости жизни, ценах) за 1922–1941 годы. Инвестиции определены приближенно как разность между среднедушевым доходом и душевым расходом на личное потребление (данные заимствованы из работы *Haavelmo T*. Methods of Measuring the Marginal Propensity to Consume. — JASA, vol. 42 (1947), pp 105–122).

| t  | 1<br>(1922) | 2   | 3   | 4   | 5   | 6   | 7   | 8   | 9   | 10  | 11  | 12  | 13  | 14  | 15  | 16  | 17  | 18  | 19  | 20<br>(1941) |
|----|-------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|--------------|
| Xt | 39          | 60  | 42  | 52  | 47  | 51  | 45  | 60  | 39  | 41  | 22  | 17  | 27  | 33  | 48  | 51  | 33  | 46  | 54  | 100          |
| Уt | 433         | 483 | 479 | 486 | 494 | 498 | 511 | 534 | 478 | 440 | 372 | 381 | 419 | 449 | 511 | 520 | 477 | 517 | 548 | 629          |

Анализируется нормальная классическая линейная модель парной регрессии (см. пример 9 в пункте 2 при k=1):

$$y_t = \theta_0 + \theta_1 x_t + \varepsilon_t, \ t = 1, 2, ..., 20.$$
 (48)

Анализ предыстории и экспертных оценок модели позволил получить следующую априорную информацию о значениях параметров  $\theta_0$ ,  $\theta_1$  и  $h = (\mathbf{D} \boldsymbol{\epsilon}_t)^{-1}$ :

$$\theta_0^0 = \mathbf{E}\theta_0 = 330; \quad \theta_1^0 = \mathbf{E}\theta_1 = 2,85; \quad h_0 = \mathbf{E}h = 0,002;$$

$$\Delta_0^2 = \mathbf{D}\theta_0 = 225; \quad \Delta_1^2 = \mathbf{D}\theta_1 = 0,01; \quad \Delta_h^2 = \mathbf{D}h = 25 \cdot 10^{-8}.$$

Требуется:

Используя сопряженное априорное распределение параметров ( $\theta_0$ ;  $\theta_1$ ; h), получить бай-есовские точечные и интервальные (с уровнем доверия  $P_0 = 0.90$ ) оценки этих параметров и сравнить их с соответствующими оценками метода максимального правдоподобия.

Решение. Проведенный в пунктах 2 и 3 анализ примера 9 показал, что в данном случае существует сопряженное с наблюдаемой генеральной совокупностью распределение параметров ( $\theta_0$ ;  $\theta_1$ ; h) и что оно описывается трехмерным гамма-нормальным распределением (29) с параметрами  $\Theta^0 = (\theta_0^0; \theta_1^0; h^0)^T$ ,  $\Lambda_0$ ,  $\alpha$  и  $\beta$ , определяемыми в соответствии с рекоменда-

циями (33) и (36), т. е.: 
$$\mathbf{\Theta}^{\,0} = (330; 2.85)^{\mathrm{T}}; \alpha = \frac{h_0^2}{\Delta_h^2} = 16; \beta = \frac{h_0}{\Delta_h^2} = 8000;$$

$$\Lambda_0 = \begin{pmatrix} 2,37 & 0 \\ 0 & 53333,3 \end{pmatrix}.$$

Параметры *anocmepuopнoго* гамма-нормального распределения вычисляются в соответствии с формулами пересчета (47):

$$\widetilde{\Theta}_0 = \begin{pmatrix} 349,0 \\ 2,9 \end{pmatrix}, \ \widetilde{\alpha} = 26, \ \widetilde{\beta} = 14578, \ \widetilde{\Lambda}_0 = \begin{pmatrix} 22,37 & 907 \\ 907 & 100176 \end{pmatrix}.$$

Точечные байесовские оценки параметров ( $\theta_0$ ;  $\theta_1$ ; h) определяются средними значениями соответствующих частных апостериорных распределений. С учетом свойств (i) и (ii) многомерного гамма-нормального распределения (см. выше, п. 5 раздела 3.3) имеем:

$$\hat{\boldsymbol{\Theta}}^{(6)} = \mathbf{E}(\boldsymbol{\Theta}|\mathbf{X},Y) = \widetilde{\boldsymbol{\Theta}}_0 = (349,0;2,90)^{\mathsf{T}},$$

$$\hat{\boldsymbol{h}}^{(6)} = \mathbf{E}(\boldsymbol{h}|\mathbf{X},Y) = \frac{\widetilde{\boldsymbol{\alpha}}}{\widetilde{\mathbf{g}}} = 0,00178.$$

При выводе *интервальных* байесовских оценок также используются свойства (*i*) и (*ii*) многомерного гамма-нормального распределения, а также факт  $t(2\widetilde{\alpha})$ -распределенности случайных величин  $(\hat{\boldsymbol{\theta}}_{j}^{(5)} - \boldsymbol{\theta}_{j}) \sqrt{\widetilde{c}_{j}}$ , где параметр точности  $\widetilde{c}_{j}$  вычисляется по блочным компонентам матрицы точности  $\widetilde{B}$  частного апостериорного обобщенного многомерного  $t(2\widetilde{\alpha}|\hat{\boldsymbol{\Theta}}^{(5)};\widetilde{\mathcal{B}})$ -распределения по формуле

$$\widetilde{C}_{j} = \widetilde{b}_{jj} - \widetilde{\beta}_{j.} \cdot \widetilde{\beta}(j) \cdot \widetilde{\beta}_{.j} \tag{49}$$

(см. Приложение 16). Участвующие в этом соотношении число  $\widetilde{b}_{j}$ ,  $1\times(k-1)$ -матрица  $\widetilde{B}_{j}$ ,  $(k-1)\times 1$ -матрица  $\widetilde{B}_{j}$  и  $(k-1)\times (k-1)$ -матрица  $\widetilde{B}(j)$  определяются следующим блочным представлением матрицы  $\widetilde{B}$ :

$$\widetilde{B} = \begin{pmatrix} \widetilde{b}_{ji} & \widetilde{B}_{j.} \\ \widetilde{B}_{.j} & \widetilde{B}(j) \end{pmatrix}. \tag{50}$$

В нашем случае k=2, j=0 или 1, матрица  $\widetilde{B}=\frac{\widetilde{\alpha}}{\widetilde{\beta}}\widetilde{\Lambda}_0=\begin{pmatrix} 0,040 & 1,618\\ 1,618 & 178,665 \end{pmatrix}$ , так что

 $ilde{c}_0 = 0,040 - (1,618)^2 / 178,665 = 0,0254$  и  $ilde{c}_1 = 178,665 - (1,618)^2 / 0,040 = 113,217$ . Следовательно, с вероятностью  $P_0 = 0,90$  мы можем утверждать, что  $|\hat{\boldsymbol{\theta}}_0^{(5)} - \boldsymbol{\theta}_0| \cdot \sqrt{0,0254} < t_{0,05}(52)$  и  $|\hat{\boldsymbol{\theta}}_1^{(5)} - \boldsymbol{\theta}_1| \cdot \sqrt{113,217} < t_{0,05}(52)$ , так что (с учетом того, что  $t_{0,05}(52) = 1,676$ ) имеем:

$$\theta_0 \in [338,5;359,5]$$
 с вероятностью  $P_0 = 0,90,$ 

$$\theta_1 \in [2,743;3,057]$$
 с вероятностью  $P_0 = 0,90$ .

Поскольку параметр h подчиняется апостериорному гамма-распределению с параметрами  $\widetilde{\alpha}$  и  $\widetilde{\beta}$ , то

$$h \in \left[\gamma_{0,95}(\widetilde{\alpha}; \widetilde{\beta}); \gamma_{0,05}(\widetilde{\alpha}; \widetilde{\beta})\right]$$
 с вероятностью  $P_0 = 0,90$ .

Используя соотношение  $\gamma_q(\widetilde{\alpha}; \widetilde{\beta}) = \frac{1}{2\widetilde{\beta}} \chi_q^2(2\widetilde{\alpha})$ , имеем (с учетом  $\chi_{0,95}^2(52) \approx 36,4$  и  $\chi_{0,05}^2(52) \approx 69,8$ ):

$$h \in [0,00125;0,00239]$$
 с вероятностью  $P_0 = 0,90$ .

Оценивание модели (48) с помощью *метода максимального правдоподобия* (дающего в данном случае те же результаты, что и *метод наименьших квадратов*) приводит к следующим точечным и интервальным оценкам:

$$\hat{\Theta}_{M\Pi} = \hat{\Theta}_{MHK} = (\mathbf{X}^{T} \mathbf{X})^{-1} \mathbf{X}^{T} Y = (344,7;3,05)^{T},$$

$$\hat{h}_{\text{MR}} = \left[ \frac{1}{18} (Y - \mathbf{X} \hat{\boldsymbol{\Theta}}_{\text{MR}})^{\mathsf{T}} (Y - \mathbf{X} \hat{\boldsymbol{\Theta}}_{\text{MR}}) \right]^{-1} = 0,0015,$$

316,1< $\theta_0$  < 373,3; 2,45 <  $\theta_1$  < 3,64 с вероятностью  $P_0$  = 0,90,

 $h \in [0,00093;0,00285]$  с вероятностью  $P_0 = 0,90$ .

Мы видим, что байесовский подход позволяет сузить доверительный интервал для  $\theta_0$  в 2,6 раза, для  $\theta_1$  — в 3,7 раза и для h — в 1,4 раза по сравнению с подходом, основанным на методе максимального правдоподобия.

# 6. Байесовский прогноз зависимой переменной, основанный на нормальной классической линейной модели множественной регрессии

Мы продолжаем рассматривать нормальную КЛММР

$$y_t = \theta_0 + \sum_{j=1}^k \theta_j \cdot x_t^{(j)} + \varepsilon_t, \ t = 1, 2, ..., n,$$

или, в матричной записи, модель (8)–(9) (см. выше), в которой остатки  $\varepsilon_i = \varepsilon(X_i)$  нормальны, гомоскедастичны и взаимнонекоррелированы при **любом** (*а не только наблюденном*) наборе значений объясняющих переменных.

Введем в рассмотрение, наряду с наблюденными значениями **X** и Y анализируемых переменных  $X = (1; x^{(1)}, x^{(2)}, ..., x^{(k)})^{\mathsf{T}}$  и y, их прогнозные (на q тактов времени вперед) значения:

$$\widetilde{\mathbf{X}} = \begin{pmatrix} 1 & x_{n+1}^{(1)} & x_{n+1}^{(2)} & \dots & x_{n+1}^{(k)} \\ 1 & x_{n+2}^{(1)} & x_{n+2}^{(2)} & \dots & x_{n+2}^{(k)} \\ \vdots & \vdots & \vdots & \dots & \vdots \\ 1 & x_{n+q}^{(1)} & x_{n+q}^{(2)} & \dots & x_{n+q}^{(k)} \end{pmatrix} \text{ if } \widetilde{Y} = \begin{pmatrix} y_{n+1} \\ y_{n+2} \\ \vdots \\ y_{n+q} \end{pmatrix},$$

а также соответствующие остатки  $\widetilde{\boldsymbol{\varepsilon}} = (\boldsymbol{\varepsilon}_{n+1}, \boldsymbol{\varepsilon}_{n+2}, \dots, \boldsymbol{\varepsilon}_{n+q})^{\mathsf{T}}$ . Тогда в соответствии с (8)–(9):

$$\begin{cases} \widetilde{Y} = \widetilde{\mathbf{X}} \mathbf{\Theta} + \widetilde{\boldsymbol{\varepsilon}} \\ \widetilde{\boldsymbol{\varepsilon}} \in N_q(\mathbf{0}; h^{-1} \cdot \mathbf{I}_q) \end{cases}$$

Для того чтобы строить точечные и интервальные оценки для  $\widetilde{Y}$  по заданным значениям  $\mathbf{X}$ ,  $\widetilde{\mathbf{X}}$  и Y, очевидно, надо располагать плотностью условного распределения  $p(\widetilde{Y}|\mathbf{X};\widetilde{\mathbf{X}};Y)$ , которую обычно называют «**прогнозной функцией плотности вероятности**». Но поскольку из (8a)–(9a) следует, что распределение вектора  $\widetilde{Y}$  зависит также от параметров  $\mathbf{\Theta}$  и h, а они в байесовском подходе интерпретируются как случайные величины, имеющие соответствующее апостериорное распределение, то реализуется следующая схема определения прогнозной функции плотности  $p(\widetilde{Y}|\mathbf{X};\widetilde{\mathbf{X}};Y)$ :

$$p(\widetilde{Y}|\mathbf{X};\widetilde{\mathbf{X}};Y) = \iint_{\Theta} p(\widetilde{Y};\Theta;h|\mathbf{X};\widetilde{\mathbf{X}};Y)d\Theta dh = \iint_{\Theta} p(\widetilde{Y}|\Theta;h;\mathbf{X};\widetilde{\mathbf{X}};Y) \cdot p(\Theta;h|\mathbf{X};\widetilde{\mathbf{X}};Y) d\Theta dh.$$
 (51)

Правая часть (51) получена с использованием формулы произведения условных вероятностей  $P(AB|C) = P(A|B,C) \cdot P(B|C)$ . С учетом того, что  $p(\widetilde{Y}|\mathbf{\Theta};h;\mathbf{X};\widetilde{\mathbf{X}};Y) = p(\widetilde{Y}|\mathbf{\Theta};h;\widetilde{\mathbf{X}}) \sim h^{\frac{q}{2}} \cdot e^{-\frac{h}{2}(\widetilde{Y}-\mathbf{X}\mathbf{\Theta})^{\mathsf{T}}(\widetilde{Y}-\mathbf{X}\mathbf{\Theta})}$ , а  $p(\mathbf{\Theta};h|\mathbf{X};\widetilde{\mathbf{X}};Y) = p(\mathbf{\Theta};h|\mathbf{X};Y)$  — гамма-нормальное распределение с параметрами  $\widetilde{\mathbf{\Theta}}_0$ ,  $\widetilde{\mathbf{\Lambda}}_0$ ,  $\widetilde{\mathbf{\alpha}}$  и  $\widetilde{\mathbf{\beta}}$ , определяемыми по параметрам  $\mathbf{\Theta}_0$ ,  $\mathbf{\Lambda}_0$ ,  $\mathbf{\alpha}$  и  $\mathbf{\beta}$  априорного гамма-нормального распределения  $p(\mathbf{\Theta},h)$  по формулам (47), интегрирование в правой части (51) дает:

$$p(\widetilde{Y}|\mathbf{X};\widetilde{\mathbf{X}};Y) \sim \left[1 + \frac{1}{V}(\widetilde{Y} - \widetilde{\mathbf{X}}\widetilde{\boldsymbol{\Theta}}_{0})^{\mathsf{T}} B'(Y - \widetilde{\mathbf{X}}\widetilde{\boldsymbol{\Theta}}_{0})\right]^{-\frac{V+Q}{2}},\tag{52}$$

где 
$$v = n - k - 1$$
 и  $B' = \frac{\widetilde{\alpha}}{\widetilde{\beta}} \left[ \mathbf{I}_q - \widetilde{\mathbf{X}} (\Lambda_0 + \mathbf{X}^\top \mathbf{X} + \widetilde{\mathbf{X}}^\top \widetilde{\mathbf{X}})^{-1} \widetilde{\mathbf{X}}^\top \right]$  (53)

(подробное доказательство этого факта читатель найдет, например, в [Зельнер (1980)]). Таким образом, мы пришли к тому, что условное распределение q-мерного вектора  $\widetilde{Y}$  при заданных значениях  $\mathbf{X}$ , Y и  $\widetilde{\mathbf{X}}$  описывается обобщенным многомерным t-распределением с n-k-1степенями свободы, параметром сдвига  $\widetilde{\mathbf{X}}\widetilde{\Theta}_0$  и матрицей точности B', определенной соотношением (53) (т. е.  $(\widetilde{Y}|\mathbf{X};\widetilde{\mathbf{X}};Y)=t(n-k-1)\widetilde{\mathbf{X}}\widetilde{\Theta}_0$ ; B'), см. Приложение 16).

Используя известные свойства обобщенного t-распределения Стьюдента (см. Приложение 16), получаем следующие байесовские прогнозы для  $\widetilde{Y}$ :

• точечный байесовский прогноз для компонент вектора  $\widetilde{Y}$  определяется соотношением:

$$\hat{y}_{n+m}$$
 (прогнозное) =  $(\hat{\Theta}^{(5)})^{\mathsf{T}} \cdot X_{n+m}, \ m = 1, 2, ..., q;$  (54)

• интервальный байесовский прогноз для компонент вектора  $\widetilde{Y}$  с вероятностью  $P_0$  определяется соотношением:

$$y_{n+m} \in \left[ \hat{y}_{n+m} - t_{\frac{1-\rho_0}{2}} (n-k-1) \cdot \frac{1}{\sqrt{c'_m}}; \quad \hat{y}_{n+m} + t_{\frac{1-\rho_0}{2}} (n-k-1) \cdot \frac{1}{\sqrt{c'_m}} \right], m = 1, 2, ..., q,$$
 (55)

где  $t_{\varepsilon}(v)$  —  $100\varepsilon\%$ -ная точка стандартного t(v)-распределения Стьюдента, а величины  $c'_m$  вычисляются по схеме (49)—(50) с заменой ( $k \times k$ )-матрицы  $\widetilde{B}$  на  $q \times q$ -матрицу B', определенную соотношением (53);

• байесовская прогнозная доверительная область  $\Delta \widetilde{Y}$  для вектора  $\widetilde{Y} = (y_{n+1}, \dots, y_{n+q})^{\mathsf{T}}$  состоит, с заданной вероятностью  $P_0$ , из всех тех  $\widetilde{Y} = (y_{n+1}, \dots, y_{n+q})^{\mathsf{T}}$ , которые удовлетворяют неравенству

$$\frac{1}{q} (\widetilde{Y} - \widetilde{\mathbf{X}} \hat{\mathbf{\Theta}}^{(5)})^{\mathsf{T}} \Sigma_{\widetilde{Y}}^{-1} (\widetilde{Y} - \widetilde{\mathbf{X}} \hat{\mathbf{\Theta}}^{(5)}) < F_{1-P_0} (q; n-k-1), \tag{56}$$

где  $F_{\varepsilon}(v_1, v_2)$  — 100 $\varepsilon$ %-ная точка  $F(v_1, v_2)$ -распределения,  $\hat{\mathbf{\Theta}}^{(5)}$  — байесовская точечная оценка параметров регрессии  $\mathbf{\Theta}$ , а  $\Sigma_{\widetilde{Y}} = \frac{n-k-1}{n-k-3} (B')^{-1}$  — ковариационная матрица вектора  $\widetilde{Y}$ . Можно показать, что для модели (8a)–(9a) эта область имеет форму g-мерного эллипсоида.

Рассмотрим реализацию описанной выше схемы построения точечных и интервальных байесовских прогнозов значений зависимой переменной в нормальной КЛММР на нашем примере, проанализированном в задаче 5.

### Задача 5 (продолжение).

В условиях примера, рассмотренного выше в задаче 5, требуется:

по заданным (планируемым) значениям автономных инвестиций  $x_{21}=120$  и  $x_{22}=140$  построить точечные и интервальные байесовские прогнозы для среднедушевых доходов населения  $y_{21}$  и  $y_{22}$ , а также прогнозную доверительную область  $\Delta\widetilde{Y}$  для этих значений с уровнем

# Nº 1(9) 2008

доверия  $P_0 = 0.90$ . Сравнить полученные решения с решениями, основанными на методе максимального правдоподобия.

Решение. Итак, в нашем случае:

$$\widetilde{\mathbf{X}} = \begin{pmatrix} 1 & 120 \\ 1 & 140 \end{pmatrix}; \quad \widetilde{Y} = \begin{pmatrix} y_{21} \\ y_{22} \end{pmatrix} = ?$$

В соответствии с (52) плотность условного распределения вектора  $\widetilde{Y}$  при заданных  $\mathbf{X}$ ,  $\widetilde{\mathbf{X}}$  и Y описывается обобщенным многомерным t-распределением с числом степеней свободы v=20-1-1=18, параметром сдвига  $\begin{pmatrix} 1 & 120 \\ 1 & 140 \end{pmatrix} \begin{pmatrix} 349,0 \\ 2,9 \end{pmatrix}$  и матрицей точности B', определенной соотношением (53).

Произведя необходимые вычисления по формулам (53)—(56) и используя известные свойства обобщенного многомерного t-распределения (см. Приложение 16), имеем:

$$\hat{y}_{21}(\text{прогн.}) = 349 + 2,9 \cdot 120 = 697,4,$$
 
$$\hat{y}_{22}(\text{прогн.}) = 349 + 2,9 \cdot 140 = 755,5,$$
 
$$B' = \begin{pmatrix} 0,00159 & -0,00022 \\ -0,00022 & 0,00152 \end{pmatrix}; \quad \Sigma_{\overline{Y}} = \begin{pmatrix} 721,8 & 106,8 \\ 106,8 & 757,4 \end{pmatrix},$$
 
$$y_{21} \in [653,6;741,2] \text{ с вероятностью } P_0 = 0,90,$$
 
$$y_{22} \in [710,7;800,3] \text{ с вероятностью } P_0 = 0,90,$$
 
$$\Delta_{\overline{Y}} = \left\{ \begin{pmatrix} y_{21} \\ y_{22} \end{pmatrix} : \frac{1}{2} \begin{pmatrix} y_{21} - 697,4 \\ y_{22} - 755,5 \end{pmatrix}^{\mathsf{T}} \begin{pmatrix} 0,00159 & -0,00022 \\ -0,00022 & 0,00152 \end{pmatrix} \begin{pmatrix} y_{21} - 697,4 \\ y_{22} - 755,5 \end{pmatrix} < 2,62 \right\}.$$

Сравним эти результаты с соответствующими прогнозами, основанными на оценках *метода максимального правдоподобия*:

• точечный прогноз

$$\hat{y}_{21}^{\text{MI}}$$
 (прогнозное) = 344,7 + 3,05 · 120 = 710,7,

$$\hat{y}_{22}^{\text{MD}}$$
 (прогнозное) = 344,7 + 3,05 · 140 = 771,7;

 $\bullet$  интервальный прогноз строится на основе t(n-2)-распределенности случайных величин

$$\frac{\hat{y}_{n+m}^{Mn} (\text{прогн.}) - y_{n+m}}{\hat{\sigma}_{Mn} \cdot \sqrt{1 + \frac{1}{n} + \frac{(x_{n+m} - \bar{x})^2}{\sum_{i=1}^{n} (x_i - \bar{x})^2}}}, \quad m = 1, 2;$$

в нашем случае 
$$n=20$$
,  $x_{n+1}=120$ ,  $x_{n+2}=140$ ,  $\hat{\sigma}_{M\Pi}^2=\frac{1}{\hat{h}_{M\Pi}}=\frac{1}{0,0015}=666,67$ ;  $\hat{\sigma}_{M\Pi}=25,82$ ;  $\frac{(x_{n+1}-\bar{x})^2}{\sum_{i=1}^{20}(x_i-\bar{x})^2}=\frac{5572,6}{5711}=0,976$ ;  $\frac{(x_{n+2}-\bar{x})^2}{\sum_{i=1}^{20}(x_i-\bar{x})^2}=\frac{8958,6}{5711}=1,569$  и  $t_{0,05}(18)=1,734$ , так что:

 $y_{21} \in [647,1;774,3]$  с вероятностью  $P_0 = 0,90,$ 

 $y_{22} \in [699,2;844,2]$  с вероятностью  $P_0 = 0,90$ .

Мы видим, что и в прогнозе байесовский подход позволяет сузить ширину прогнозной интервальной оценки для  $y_{22}$  в 1,45 раза, а для  $y_{22}$  — в 1,62 раза!

Приложения

# Некоторые сведения об одномерных и многомерных законах распределения вероятностей, используемые в байесовском подходе

Приложение 1а

Обобщенное одномерное распределение Стьюдента с v степенями свободы, параметром сдвига  $\theta_0$  и параметром точности c ( $t(v|\theta_0;c)$ -распределение)

Как известно (см., например, [Айвазян, Мхитарян (2001), гл. 3]), стандартный з.р.в. Стьюдента с  $\mathbf{v}$  степенями свободы (ст. св.) описывает распределение случайной величины

$$t(\mathbf{v}) = \frac{\xi_0}{\sqrt{\frac{1}{\nu} \sum_{i=1}^{\nu} \xi_i^2}},$$
 (П.1)

где  $\xi_0$ ,  $\xi_1,\ldots,\xi_v$  — статистически взаимонезависимые (0;  $\sigma^2$ )-нормально распределенные случайные величины. Значение соответствующей функции плотности вероятности  $f_{t(v)}(x)$  в точке x задается соотношением:

$$f_{t(v)}(x) = \frac{\Gamma\left(\frac{v+1}{2}\right)}{\sqrt{v\pi} \cdot \Gamma\left(\frac{v}{2}\right)} \left(1 + \frac{x^2}{v}\right)^{-\frac{v+1}{2}},\tag{\Pi.2}$$

причем  $\mathbf{E}t(\mathbf{v}) = 0$  и  $\mathbf{D}t(\mathbf{v}) = \frac{\mathbf{v}}{\mathbf{v} - 2}$  ( $\mathbf{v} > 2$ ).

Введем в рассмотрение случайную величину  $t(\mathbf{v}|\mathbf{\theta}_0$ ; c), являющуюся линейной функцией от  $t(\mathbf{v})$ , а именно:

$$t(\mathbf{v}|\theta_0;c) = \frac{1}{\sqrt{c}}t(\mathbf{v}) + \theta_0. \tag{\Pi.3}$$

Легко показать, что функция плотности вероятности  $f_{t(\mathbf{v}|\mathbf{\theta}_0;c)}(x)$  случайной величины  $t(\mathbf{v}|\mathbf{\theta}_0;c)$  в точке x имеет вид:

$$f_{t(\mathbf{v}|\theta_0;c)}(x) = \frac{\sqrt{c} \cdot \Gamma\left(\frac{\mathbf{v}+1}{2}\right)}{\sqrt{\mathbf{v}\pi} \cdot \Gamma\left(\frac{\mathbf{v}}{2}\right)} \left(1 + \frac{c(x-\theta_0)^2}{\mathbf{v}}\right)^{-\frac{\mathbf{v}+1}{2}},\tag{\Pi.4}$$

причем  $\mathbf{E}t(\mathbf{v}|\theta_0;c) = \theta_0$  и  $\mathbf{D}t(\mathbf{v}|\theta_0;c) = \frac{1}{c} \cdot \frac{\mathbf{v}}{\mathbf{v}-2} (\mathbf{v} > 2).$ 

Распределение, задаваемое плотностью (П.4), называют обобщенным распределением Стьюдента (или  $t(\mathbf{v}|\mathbf{\theta}_0; c)$ -распределением) с параметром сдвига  $\mathbf{\theta}_0$  и параметром точности c. Отметим, что в данном случае параметр точности c не есть величина, обратная к дисперсии случайной величины  $t(\mathbf{v}|\mathbf{\theta}_0; c)$ : дисперсия может и не существовать (при  $\mathbf{v} \le 2$ ).

Приложение 16

Обобщенное k-мерное ( $k \ge 2$ ) распределение Стьюдента с v степенями свободы, параметром сдвига  $\Theta_0 = (\theta_1^0, \theta_2^0, ..., \theta_k^0)^\mathsf{T}$  и ( $k \times k$ )-матрицей точности B (или так называемое  $\bar{t}(v|\Theta_0; B)$ -распределение)

Cтандартный k-мерный з.р.в. Стьюдента с  $\mathbf{v}$  ст. св. описывает распределение k-мерной случайной величины

$$\bar{t}(\mathbf{v}) = (t^{(1)}(\mathbf{v}), t^{(2)}(\mathbf{v}), ..., t^{(k)}(\mathbf{v}))^{\mathsf{T}}, \tag{\Pi.5}$$

где каждая из компонент  $t_j(\mathbf{v})$  — стандартная стьюдентовская случайная величина (П.1), и все компоненты  $t_j(\mathbf{v})$  ( j=1,2,...,k) взаимнонекоррелированы. Функция плотности вероятности  $f_{\tilde{t}(\mathbf{v})}(X)$  в точке  $X=(x^{(1)},x^{(2)},...,x^{(k)})^{\mathsf{T}}$  задается соотношением

$$f_{\bar{t}(\mathbf{v})}(X) = \frac{\Gamma\left(\frac{\mathbf{v}+k}{2}\right)}{(\pi\mathbf{v})^{\frac{k}{2}} \cdot \Gamma\left(\frac{\mathbf{v}}{2}\right)} \cdot \left(1 + \frac{1}{\mathbf{v}}X^{\mathsf{T}} \cdot X\right)^{-\frac{\mathbf{v}+k}{2}},\tag{\Pi.6}$$

причем  $\mathbf{E}\bar{t}(\mathbf{v}) = \mathbf{0}_k$  и ковариационная матрица  $\Sigma_{\bar{t}(\mathbf{v})} = \frac{\mathbf{v}}{\mathbf{v}-2} \cdot \mathbf{I}_k$ , где  $\mathbf{0}_k$  обозначает k-мерный вектор-столбец из нулей, а  $\mathbf{I}_k$  — единичная матрица размерности k.

**Обобщенное k-мерное распределение Стьюдента** (или  $\bar{t}(\mathbf{v}|\Theta_0;B)$ -распределение) с  $\mathbf{v}$  ст. св., параметром сдвига  $\Theta_0$  и матрицей точности B описывает распределение случайной величины

$$\bar{t}(\mathbf{v}|\mathbf{\Theta}_{0};B) = C \cdot \bar{t}(\mathbf{v}) + \mathbf{\Theta}_{0}, \tag{\Pi.7}$$

где C — некоторая невырожденная  $k \times k$ -матрица,  $B = (CC^{\mathsf{T}})^{-1}$ ,  $\Theta_0 = (\theta_1^0, \theta_2^0, ..., \theta_k^0)$ , а  $\bar{t}(\mathbf{v})$  — стандартная стьюдентовская k-мерная случайная величина (П.5), подчиняющаяся з.р.в. с плотностью (П.6). Значение функции плотности вероятности  $f_{\bar{t}(\mathbf{v}|\Theta_0;B)}(X)$  случайной величины  $\bar{t}(\mathbf{v}|\Theta_0;B)$  в точке  $X = (x^{(1)}, x^{(2)}, ..., x^{(k)})^{\mathsf{T}}$  задается соотношением

$$f_{\tilde{t}(\mathbf{v}|\Theta_0;B)}(X) = \frac{\Gamma\left(\frac{\mathbf{v}+k}{2}\right)}{(\pi\mathbf{v})^{\frac{k}{2}}\Gamma\left(\frac{\mathbf{v}}{2}\right)} \cdot |B|^{\frac{1}{2}} \left(1 + \frac{1}{\mathbf{v}}(X - \Theta_0)^{\mathsf{T}}B(X - \Theta_0)\right)^{-\frac{\mathbf{v}+k}{2}},\tag{\Pi.8}$$

причем  $\mathbf{E}\bar{t}(\mathbf{v}|\Theta_0;B) = \Theta_0$  и ковариационная матрица  $\Sigma_{\bar{t}(\mathbf{v}|\Theta_0;B)} = \frac{\mathbf{v}}{\mathbf{v}-2} \cdot B$ .

Именно этим з.р.в. описывается сопряженное априорное (а следовательно, и апостериорное) частное распределение вектора  $\boldsymbol{\Theta} = (\boldsymbol{\theta}_0 \ , \boldsymbol{\theta}_1, \dots, \boldsymbol{\theta}_k)^\mathsf{T}$  коэффициентов регрессии в нормальной КЛММР, а также условное (при фиксированных  $\mathbf{X}$ , Y и  $\hat{\mathbf{X}}$ ) апостериорное распределение вектора  $\hat{Y} = (y_{n+1}, y_{n+2}, \dots, y_{n+q})^\mathsf{T}$  прогнозных значений зависимой переменной в этой модели (см. в тексте консультации пример 9 и задачу 5).

При построении байесовских интервальных оценок и доверительных областей для параметров  $\Theta$ , так же как и при построении байесовских интервальных оценок и доверительных областей для прогнозных значений  $\widetilde{Y}$ , используются следующие свойства  $\overline{t}(\mathbf{v}|\Theta_0;B)$ -распределения.

**Свойство (А).** Пусть анализируемая k-мерная случайная величина  $t(\mathbf{v}|\mathbf{\Theta}_0; B)$  разбита на два подвектора  $\bar{t}^{(1)}(\mathbf{v}|\mathbf{\Theta}_0; B)$  и  $\bar{t}^{(2)}(\mathbf{v}|\mathbf{\Theta}_0; B)$  соответственно размерностей  $k_1$  и  $k_2$  ( $k_1 + k_2 = k$ ), т. е.

$$\bar{t}(\mathbf{v}|\mathbf{\Theta}_{0};B) = \begin{pmatrix} \bar{t}^{(1)}(\mathbf{v}|\mathbf{\Theta}_{0};B) \\ \bar{t}^{(2)}(\mathbf{v}|\mathbf{\Theta}_{0};B) \end{pmatrix}.$$

Соответственно этому разобьются на блоки вектор средних значений  $\Theta_0$  и матрица точности B:

$$\Theta_0 = \begin{pmatrix} \Theta_1(1) \\ \Theta_1(2) \end{pmatrix} \text{ if } B = \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}.$$

Сформулируем свойство (А).

Частное (маржинальное) распределение вектора  $\bar{t}^{(1)}(\mathbf{v}|\mathbf{\Theta}_0; B)$  является  $k_1$ -мерным обобщенным распределением Стьюдента  $\bar{t}(\mathbf{v}|\mathbf{\Theta}_0(1); B(1))$  с параметром сдвига  $\mathbf{\Theta}_0(1) = (\mathbf{\theta}_1^0, ..., \mathbf{\theta}_{k_1}^0)^\mathsf{T}$  и матрицей точности  $B(1) = B_{11} - B_{12}$   $B_{21}$   $B_{21}$ .

При построении интервальных оценок нас интересует частное распределение отдельной (*j*-й) компоненты  $t^{(j)}(\mathbf{v}|\mathbf{\Theta}_0; B)$  анализируемой k-мерной обобщенной стьюдентовской случайной величины  $\bar{t}(\mathbf{v}|\mathbf{\Theta}_0; B)$ . Соответственно, при этом используется частный случай данного свойства, когда в роли  $\bar{t}^{(1)}(\mathbf{v}|\mathbf{\Theta}_0; B)$  выступает компонента  $t^{(j)}(\mathbf{v}|\mathbf{\Theta}_0; B)$ . Тогда:

$$k_1 = 1; \Theta_0(1) = \Theta_j^0; B(1) = b_{jj} - B_{j.} \cdot B(j) \cdot B_{.j},$$
 (\Pi.9)

где  $b_{jj}$  — j-й диагональный элемент матрицы точности B,  $B_{j\cdot} = (b_{j1}, \dots, b_{j\cdot j-1}, b_{j\cdot j+1}, \dots, b_{jk})$  — (k-1)-мерная строка,  $B_{\cdot j} = (b_{1j}, \dots, b_{j-1\cdot j}, b_{j+1\cdot j}, \dots, b_{kj})^{\mathsf{T}}$  — (k-1)-мерный столбец матрицы B(j), а B(j) — это (k-1)-матрица, получающаяся из матрицы B вычеркиванием из нее j-й строки и j-го столбца.

Заметим, что в данном случае B(1) — это *числовой параметр точности* в частном обобщенном одномерном стьюдентовском распределении компоненты  $t^{(j)}(\mathbf{v}|\mathbf{\Theta}_0; B)$ .

**Свойство (В)** используется при построении *доверительных областей* для неизвестных значений параметров КЛММР или одновременно для нескольких прогнозных значений зависимой переменной и *заключается в том, что статистика* 

$$\gamma = \frac{1}{k} (\bar{t}(\mathbf{v}|\mathbf{\Theta}_{0}; B) - \mathbf{\Theta}_{0})^{\mathsf{T}} B(\bar{t}(\mathbf{v}|\mathbf{\Theta}_{0}; B) - \mathbf{\Theta}_{0})$$

асимптотически (no  $v \to \infty$ ) подчиняется F(k; v)-распределению.

Поэтому, определяя из таблиц по заданной доверительной вероятности  $P_0$  значение  $100(1-P_0)$ %-ной точки  $F_{1-P_0}$  ( $k; \mathbf{v}$ ) соответствующего F-распределения, мы можем с помощью неравенства

$$\frac{1}{k} \left( \bar{t}(\mathbf{v}|\mathbf{\Theta}_{0}; B) - \mathbf{\Theta}_{0} \right)^{\mathsf{T}} B \left( \bar{t}(\mathbf{v}|\mathbf{\Theta}_{0}; B) - \mathbf{\Theta}_{0} \right) < F_{1-P_{0}} (k; \mathbf{v})$$
 (П.10)

определить k-мерную область, в которую попадает  $100P_0$  % наблюдений случайной величины  $\bar{t}(\mathbf{v}|\mathbf{\Theta}_0; B)$ .

Приложение 2а

### Двумерное гамма-нормальное распределение и его свойства

Совместное двумерное распределение случайной величины  $(\theta;h)$  называется **гамма- нормальным**, если его функция плотности вероятности  $p(\theta;h)$  задается (с точностью до нормирующего множителя) соотношением

$$p(\theta; h) \sim (\lambda_0 h)^{\frac{1}{2}} e^{-\frac{\lambda_0 h}{2} (\theta - \theta_0)^2} \cdot h^{\alpha - 1} e^{-\beta h},$$
 (П.11)

где  $\lambda_0$ ,  $\theta_0$ ,  $\alpha$  и  $\beta$  — некоторые числовые значения параметров этого семейства распределений.

### Свойства двумерного гамма-нормального распределения

(I) *Частное распределение параметра*  $\theta$  есть одномерное обобщенное распределение Стьюдента (П.4) с  $2\alpha$  ст. св., параметром сдвига  $\theta_0$  и параметром точности  $c = \lambda_0 \cdot \alpha / \beta$ , т. е.

$$\theta = t \left( 2\alpha | \theta_0; \lambda_0 \frac{\alpha}{\beta} \right).$$

Отсюда, в частности, следует, что случайная величина  $\sqrt{\lambda_0} \, \frac{\alpha}{\beta} (\theta - \theta_0)$  подчиняется стандартному распределению Стьюдента с  $2\alpha$  ст. св.

(II) Частное распределение параметра h есть гамма-распределение (23) с параметрами

 $(\alpha,\beta)$  и, следовательно,  $\mathbf{E}h=\dfrac{\alpha}{\beta},\mathbf{D}h=\dfrac{\alpha}{\beta^2}$  и  $h\in [\gamma_{1-\epsilon}(\alpha;\beta);\gamma_{\epsilon}(\alpha;\beta)]$  с вероятностью  $P_0=1-2\epsilon$ , где  $\gamma_q(\alpha,\beta)$  — это 100q%-ная точка гамма-распределения с параметрами  $\alpha$  и  $\beta$ .

Отметим, что при  $\alpha$ , кратном 0,5, справедлива формула:

$$\gamma_q(\alpha, \beta) = \frac{1}{2\beta} \chi_q^2(2\alpha), \tag{\Pi.12}$$

где  $\chi_q^2(m)$  — это 100q%-ная точка «хи-квадрат»-распределения с m ст. св.

(III) Условное распределение параметра  $\theta$  (при условии заданности значения параметра h, т. е. при  $h=h_0$ , где  $h_0$  — заданное число) является ( $\theta_0$ ;  $1/\lambda_0 h_0$ )-нормальным распределением (вытекает из (П.11) при подстановке в правую часть этого соотношения заданного значения  $h=h_0$ ).

Приложение 26

### Многомерное (k + 1-мерное, k > 1) гамма-нормальное распределение и его свойства

Совместное k+1-мерное распределение параметров  $\Theta = (\theta_1,\theta_2,\dots,\theta_k)^{\mathsf{T}}$  и h называется **многомерным гамма-нормальным**, если его функция плотности вероятности  $p(\Theta;h)$  задается (с точностью до нормирующего множителя) соотношением:

$$p(\boldsymbol{\Theta};h) \sim h^{\frac{k}{2}} |\boldsymbol{\Lambda}_0|^{\frac{1}{2}} e^{-\frac{h}{2}(\boldsymbol{\Theta} - \boldsymbol{\Theta}_0)^{\mathsf{T}} \boldsymbol{\Lambda}_0(\boldsymbol{\Theta} - \boldsymbol{\Theta}_0)} \cdot h^{\alpha - 1} e^{-\beta h}, \tag{\Pi.13}$$

где заданные численные значения векторного параметра сдвига  $\Theta_0 = (\theta_1^0, \theta_2^0, ..., \theta_k^0)^{\mathsf{T}}$ , элементов  $(k \times k)$ -матрицы точности  $\Lambda_0$ , а также параметров  $\alpha$  и  $\beta$  однозначно определяют з.р.в. параметров  $\Theta$  и h.

### Свойства многомерного гамма-нормального распределения

- (I) Частное распределение векторного параметра  $\Theta = (\theta_1, \theta_2, ..., \theta_k)^{\mathsf{T}}$  есть многомерное обобщенное распределение Стьюдента (П.8) с  $2\alpha$  ст. св., параметром сдвига  $\Theta = (\theta_1^0, \theta_2^0, ..., \theta_k^0)^{\mathsf{T}}$  и матрицей точности  $B = \frac{\alpha}{\beta} \cdot \Lambda_0$ .
- (II) Частное распределение скалярного параметра h есть гамма-распределение (23) с параметрами  $\alpha$  и  $\beta$ .
- (III) Условное распределение векторного параметра  $\Theta$  (при условии заданности значения параметра h, т. е. при  $h=h_0$ , где  $h_0$  заданное значение) является k-мерным ( $\Theta_0$ ;  $(h_0\Lambda_0)^{-1}$ )-нормальным распределением.

Приложение 3

Некоторые сведения об априорных з.р.в., сопряженных по отношению к наблюдаемым генеральным совокупностям, зависящим от единственного неизвестного параметра

| ПП | 3.р.в. наблюдаемой<br>генеральной совокупности                                                                                                                  | Сопряженный априорный<br>з.р.в. $p$ ( $\theta$ ), выражения для Е $\theta$<br>и D $\theta$                                                                                                                                                                                                                                 | Апостериорный з.р.в. $p(\theta x_1,x_2,\ldots,x_n)$ , выражения для его параметров                                                                                                          |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1  | $(\theta;\sigma^2)$ -нормальный, $f(x \theta) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\theta)^2}{2\sigma^2}}$ (значение дисперсии $\sigma^2$ известно)       | $(\theta_0;\sigma_0^2)$ -нормальный;<br>$\mathbf{E}\theta=\theta_0;\mathbf{D}\theta=\sigma_0^2$ $(\theta_0$ и $\sigma_0^2$ — заданы)                                                                                                                                                                                       | $(\theta_0';\sigma_0'^2)$ -нормальный, где $\theta_0' = \frac{\overline{x} + \gamma \theta_0}{1 + \gamma}$ и $\sigma_0'^2 = \sigma^2 / n(1 + \gamma)$ , а $\gamma = \sigma^2 / n\sigma_0^2$ |
|    | Экспоненциальный $f(x \theta) = \begin{cases} \theta e^{-\theta x} & \text{при } x \ge 0 \\ 0 & \text{при } x < 0 \end{cases}$                                  | $\begin{split} \rho(\theta) = & \frac{\beta^{\alpha}}{\Gamma(\alpha)} \theta^{\alpha-1} e^{-\beta \theta}  (\theta > 0)  -\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$                                                                                                                          | Гамма-распределение с параметрами $\alpha' = \alpha + n,$ $\beta' = \beta + \sum_{i=1}^{n} x_i$                                                                                             |
|    | $[0; \theta]$ -равномерный: $f(x \theta) = \begin{cases} \frac{1}{\theta} & \text{для } 0 \le x \le \theta \\ 0 & \text{для } x \notin [0; \theta] \end{cases}$ | 1                                                                                                                                                                                                                                                                                                                          | Распределение Парето с параметрами $\alpha' = \alpha + n$ , $\theta'_0 = \max\{\theta_0; x_1, x_2,, x_n\}$                                                                                  |
|    | Распределение Пуассона: $P \{ \xi = x \} = \frac{\theta^x}{x!} e^{-\theta}$ $x = 0, 1, 2,$                                                                      | $\begin{split} & \rho(\theta) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} \theta^{a-1} e^{-\beta \theta}  (\theta > 0)  -\!\!\!\!\! \\ & \text{гамма-распределение;} \\ & \mathbf{E} \theta = \frac{\alpha}{\beta}; \; \mathbf{D} \theta = \frac{\alpha}{\beta^2} \\ & (\alpha \text{ и } \beta \text{ — заданы}) \end{split}$ | Гамма-распределение с параметрами $ \alpha' = \alpha + \sum_{i=1}^n x_i, $ $ \beta' = \beta + n $                                                                                           |

Окончание

| ПП | 3.р.в. наблюдаемой<br>генеральной совокупности                                                                                                                                                    | Сопряженный априорный з.р.в. $p(\theta)$ , выражения для $E\theta$ и $D\theta$                                                                                                                                                                                                  | Апостериорный з.р.в. $p(\theta x_1,x_2,\ldots,x_n)$ , выражения для его параметров                                                                                              |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5  |                                                                                                                                                                                                   | $p(\theta) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} \theta^{a-1} (1-\theta)^{b-1}$ $(0 \le \theta \le 1) \longrightarrow \text{бета-распределение;}$ $\mathbf{E}\theta = \frac{a}{a+b};$ $\mathbf{D}\theta = \frac{ab}{(a+b)^2(a+b+1)}$ (а и $b \longrightarrow \text{заданы})$ | Бета-распределение с параметрами $a' = a + \sum_{i=1}^{n} x_i,$ $b' = b + nN - \sum_{i=1}^{n} x_i$                                                                              |
| 6  | $P\{\xi = x\} = C_{x-1}^{k-1}\theta^{k}(1-\theta)^{x-k}$ (значение параметра $k$ известно) $x = k, k + 1,$                                                                                        | $p(\theta) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} \theta^{a-1} (1-\theta)^{b-1}$ $(0 \le \theta \le 1)$ — бета-распределение; $\mathbf{E}\theta = \frac{a}{a+b};$ $\mathbf{D}\theta = \frac{ab}{(a+b)^2(a+b+1)}$ $(a \ \text{и} \ b \ \text{— заданы})$                       | Бета-распределение с параметрами $a' = a + kn$ , $b' = b + \sum_{i=1}^{n} x_i - kn$                                                                                             |
| 7  | Распределение Парето $f(x \theta) = \begin{cases} \frac{\theta x_0^{\theta}}{x^{\theta+1}} & \text{при } x \geq x_0 \\ 0 & \text{при } x < x_0 \end{cases}$ (значение параметра $x_0$ — известно) | P P                                                                                                                                                                                                                                                                             | Гамма-распределение с параметрами $\alpha' = \alpha + n$ , $\beta' = \beta + n \ln \left( \frac{g_n}{x_0} \right)$ , где $g_n = \left( \prod_{i=1}^n x_i \right)^{\frac{1}{n}}$ |

### Список литературы

Айвазян С. А. (2001). Прикладная статистика и основы эконометрики. Том 2: Основы эконометрики. Издание 2-е. Юнити. §§ 2.1–2.3.

Айвазян С. А., Мхитарян В. С. (2001а). Прикладная статистика и основы эконометрики. Том 1: Теория вероятностей и прикладная статистика. Издание 2-е. Юнити. § 7.6.

Айвазян С. А., Мхитарян В. С. (20016). Прикладная статистика в задачах и упражнениях. М.: Юнити.

Де Гроот М. (1974). Оптимальные статистические решения. Пер. с англ. М.: Мир. Гл. 4, 5, 9 и §§ 11.10–11.12.

*Зельнер А. (1980).* Байесовские методы в эконометрике. Пер. с англ. М.: Статистика. Главы 1–3. *Ghosh J. K., Delampady M., Samanta T. (2006*). An Introduction to Bayesian Analysis. Theory and Methods. Springer.

*Jeffreys H. (1957)*. Scientific Inference. 2nd ed. Cambridge University Press. *Lancaster A. (2004)*. An Introduction to Modern Bayesian Econometrics. Blackwell Publ.