# **CPT302 W6 Multiagent Interactions**



#### 一个多代理系统包含许多代理:

- 它们通过交流 interact
- 可以在环境中执行活动
- 有不同的"势力范围 (spheres of influence)" (这些区域可能重合 (coincide)) 注: spheres of influence 即这些代理的感知范围,上图环境中实线的圈
- 通过其他 (organizational) relationships 联系起来

注: 上图虚线的圈构成一个组织, 代理在其中交互

# **Utilities and preferences**

Self-interested agents: 每个 agent 对世界状态都有自己的preferences and desires (偏好和心愿) (non-cooperative game theory, 非合作博弈论)

# **Modelling preferences**

Outcomes (states of the world):

$$\Omega = \{W_1, W_2, \ldots\}$$

Utility function:

$$u_i:\Omega o R ext{ (real numbers)}$$

### **Preference Ordering**

使用 utility function 导致 outcomes 存在优先顺序:

• Preference over w

$$u_i(w) \geq u_i\left(w'
ight) \Leftrightarrow w \succeq w'$$

• Strict preference over w

$$u_i(w) > u_i\left(w'
ight) \Leftrightarrow w \succ w'$$

utility function 将世界状态映射为数字,数字越大,说明 agent 越偏向该世界状态。

注:上面的  $\succ$  与之前 behavior 之前的抑制完全不同;之前 b1  $\prec$  b2 意为 b1 抑制 b2;现在  $w \succ w'$  说明 w 更受偏向。

## **Multiagent Encounter**

现在我把 interaction 看作一场游戏: 世界的状态可以被看作是一场游戏的结果

- 假设我们只有两个 agent (玩家) Ag={i,j}
- 最终结果  $\Omega$  取决于每个代理选择的行动的组合
- State transformer function:

$$au: \underbrace{Ac}_{ ext{agent i's action}} imes \underbrace{Ac}_{ ext{agent } j' ext{ s action}} o \Omega$$

## Normal-form game (or strategic-form game)

游戏中的交互通常表示为元组 (N, A, u), 其中:

- N是(有限的)玩家的集合
- $A = A_1 imes A_2 imes \ldots imes A_n$ , 其中  $A_i$  代表玩家 i 所能使用的一系列行动
- $U = (u_1, u_2, \dots, u_n)$  是 每个玩家的 utility function

# Payoff matrix

|      | i: C         | i: D |
|------|--------------|------|
| j: C | <b>1</b> , 1 | 1, 4 |
| j: D | 4,4          | 4, 1 |

上表代表有两个玩家 i 和 j,它们分别有两个可采取的行动 (或策略) C 和 D。每个策略被 utility function 转换为数字显示在表格中。

现在我们面临一些问题:作为一个 rational agent (理性代理),我们希望最大化我们的 expected payoff (single-agent point of view)。然而,这在大多数情况下是不可行的,因为个人最佳策略取决于他人的选择 (multi-agent point of view)

# **Solution Concepts**

Best response: 给定玩家 j 的策略  $s_j$ ,玩家 i 对  $s_j$  的最佳对策是使玩家 i 收益最高的策略  $s_i$ 

|              | i: C         | i: D |
|--------------|--------------|------|
| j: C         | <b>1</b> , 1 | 1, 4 |
| <i>j</i> : D | 4,4          | 4, 1 |

如上图所示,如果j采取C,那么i的 best response 是D(因为i的收益为4);如果j采取D,那么i的 best response 是C。

## **Dominant Strategy**

主导策略就是:对于玩家i来说,不管另一个玩家j选择什么策略,i的策略都可以至少和策略  $s_i^*$ 一样好。那么 $s_i^*$ 就是 dominant strategy。

如果  $s_i^*$  是对玩家 j 所有策略的最佳对策,则  $s_i^*$  是主导的。

|              | i: C | i: D |
|--------------|------|------|
| j: C         | 1,4  | 1, 1 |
| <i>j</i> : D | 4,1  | 4, 4 |

如上图,玩家 j 有一个 dominant strategy D, j 只要选 D 就可以收益最大化;另一个策略 C (dominated strategy) 可以从表格中移除。玩家 i 没有主导策略。

# **Pareto Optimality**

帕累托最优性(或帕累托效率):如果没有其他结果使一个代理变得更好而不使另一个代理变得更糟,则这个结果被称为 Pareto optimal(或 Pareto efficient)。

| Agent 2<br>Agent 1 | С    | D    |
|--------------------|------|------|
| C                  | 3, 3 | 0, 5 |
| D                  | 5, 0 | 1, 1 |

上图中(C,C),(D,C)和(C,D)达到了pareto optimal。

例如(C,C),它的右边和下面,都会导致一个值变大和另一个值变小;而右下角则是两个值都变小,这是 pareto optimal。又比如(D,C),它的上面,右面,和右上方,都会导致一个变小,另一个变大。

而(D,D),它的左上有另一个可以使得值变大,但不使另一个值变小的结果,因此它不是pareto optimal。

## **Nash Equilibrium**

### Nash equilibrium for pure strategies

两个策略 S1 和 S2 处于纳什均衡,如果:

- 1. 代理 i 采取 s1, 而代理 j 不能得到比采取 s2 更好的结果
- 2. 并且,代理 j 采取 s2,而代理 i 不能得到比采取 s1 更好的结果

因此这两个主体都没有任何偏离纳什均衡的动机,纳什均衡代表了 self-interested agents 所玩游戏的"理性"结果。

不幸的是,并非每个交互场景都有纳什均衡,而一些交互情景具有多个纳什均衡。

夫妻俩想一起看电影,妻子更喜欢 FilmA,丈夫更喜欢 FilmB。

|             | <i>husband:</i><br>FilmA | husband:<br>FilmB |
|-------------|--------------------------|-------------------|
| wife: FilmA | 2, 1                     | 0, 0              |
| wife: FilmB | 0, 0                     | 1, 2              |

上图中(A, A)和(B, B)处于纳什均衡。

在 payoff matrix 中找到纯策略纳什均衡的简单方法: 取第一个数字是这一列的最大值的单元格, 然后检查第二个数字是否是这一行的最大值。

#### **Social Welfare**

Outcome  $\omega$  的 social welfare 是每个代理从  $\omega$  获得的 utilities 之和:

$$\sum_{i\in Aq}u_i(\omega)$$

可以把它想象成"系统中的货币总量"。

Social welfare 将所有 agent 看作整体来考虑得失。

# **Example**

#### The Prisoner's Dilemma

囚徒困境:两个人被共同指控犯罪并被关押在单独的牢房中,无法见面或交流。他们被告知:

- 如果一个人招供而另一个人不招供 (confess), 供认者将被释放, 另一个将被监禁十年;
- 如果两人都招供,那么每个人都将被监禁五年;
- 两个囚犯都知道,如果他们都不招供,那么他们每个人都将被监禁一年。

|                           | Player 2 confesses | Player 2 does not confess |
|---------------------------|--------------------|---------------------------|
| Player 1 confesses        | (5,5)              | (0,10)                    |
| Player 1 does not confess | (10,0)             | (1,1)                     |

注:上面的数字是刑期,所以是越小收益越大。

|                           | Player 2 confesses      | Player 2 does not confess |
|---------------------------|-------------------------|---------------------------|
| Player 1 confesses        | (5,5)<br><u>NASH</u>    | (0,10)<br><u>PARETO</u>   |
| Player 1 does not confess | (10,0)<br><u>PARETO</u> | (1,1) PARETO              |

注:这里存在 dominant strategy。招供的获刑区间在 0-5,而不招供的区间在 1-10,显然招供更好。因此 dominant strategy 是招供。