Упругие волны

Волна изменение (возмущение) состояния среды поля, ИЛИ распространяющееся пространстве и переносящее с собой энергию. B упругой случае (механической) волны таким возмущением является деформация среды, движение которой сопровождается смещением разного рода частиц среды, зависящим от

природы волны.

Отличие колебания от волны

Типы волн

продольные

поперечные

Направление колебания частиц совпадает или противоположно направлению распространения волны

Направление колебания частиц перпендикулярно направлению распространения волны

Смещение частиц шнура относительно положения равновесия $\xi(x,t)$. Если форма и величина возмущения не меняются в процессе распространения волны, то для точек шнура с координатой x в момент времени t и точек с координатой x+dx в момент времени t+dt значения ξ будут одинаковыми, если dx = vdt (v-cкорость распространения волны). Это условие выполняется, если зависимость $\xi(x,t)$ от x и t имеет вид

$$\xi(x,t) = \xi[z(x,t)]$$
, где $z = x - vt$

В этом случае

$$z(x,t) = x - vt = x + dx - v(t + dt) = const$$

Другая эквивалентная форма зависимости $\xi(x,t)$ есть:

$$\xi(x,t) = \xi(t - \frac{x}{v})$$

И в этом случае аргумент функции $\xi(t-x/v)$ остается неизменным:

$$t - \frac{x}{V} = t + dt - \frac{x + dx}{V} = t + dt - \frac{x + Vdt}{V} = t - \frac{x}{V} = const$$

Волновое уравнение

Функция $\xi(x,t)$, описывающая волну (*волновая функция*), является решением волнового уравнения.

$$\frac{\partial \xi(x,t)}{\partial x} = \frac{\partial \xi(x \pm vt)}{\partial x} = \frac{d\xi(z(x,t))}{dz} \frac{\partial z}{\partial x} = \frac{d\xi(z(x,t))}{dz} \quad (z \equiv x \pm vt)$$

$$\frac{\partial \xi(x,t)}{\partial t} = \frac{\partial \xi(x \pm vt)}{\partial t} = \frac{d\xi(z(x,t))}{dz} \frac{\partial z}{\partial t} = \pm v \frac{d\xi(z(x,t))}{dz}$$

$$\frac{\partial \xi(x,t)}{\partial x} = \pm \frac{1}{v} \frac{\partial \xi(x,t)}{\partial t} \quad - \quad \text{волновое} \quad \text{уравнение I порядка}$$

— описывает волны, распространяющиеся в направлении оси X (—) и в обратном направлении (+).

Аналогично для вторых производных:

$$\frac{\partial^2 \xi(x,t)}{\partial x^2} = \frac{1}{v^2} \frac{\partial^2 \xi(x,t)}{\partial t^2}$$
 волновое уравнение

общее решение – суперпозиция двух волн: $\xi(x,t) = \xi_1(x - vt) + \xi_2(x + vt)$.

В общем случае:

$$\frac{\partial^2 \xi(\vec{r},t)}{\partial x^2} + \frac{\partial^2 \xi(\vec{r},t)}{\partial y^2} + \frac{\partial^2 \xi(\vec{r},t)}{\partial z^2} \equiv \Delta \xi(\vec{r},t) = \frac{1}{v^2} \frac{\partial^2 \xi(\vec{r},t)}{\partial t^2}$$

$$\vec{r} \equiv (x, y, z)$$

Общие черты:

- 1. В каждом случае волна распространяется в среде с определенной скоростью **v**. Эта скорость определяется механическими свойствами среды и не то же самое, что скорость движения частиц в волне.
- 2. Сама среда в целом не перемещается в пространстве, ее частицы движутся вверх-вниз, вперед-назад и т.п. относительно положений равновесия.
- 3. Чтобы возбудить в системе волну, необходимо совершить над системой механическую работу. Волна переносит энергию, но не материю.

Гармонические волны

Гармоническая волна - волна, в которой каждая точка колеблющейся среды (или поле в каждой точке пространства) совершает гармонические колебания .

$$y(x = 0, t) = A\cos\omega t = A\cos 2\pi f t$$

$$y(x,t) = A\cos\left[\omega\left(t - t_{3an}\right)\right] = A\cos\left[\omega\left(t - \frac{x}{v}\right)\right]$$
(1)

$$y(x,t) = A\cos 2\pi \left(\frac{t}{T} - \frac{x}{vT}\right) = A\cos 2\pi \left(\frac{t}{T} - \frac{x}{\lambda}\right) (2)$$

$$\lambda = vT$$

$$k \equiv \frac{2\pi}{\lambda}; \quad \omega = \frac{2\pi}{T} = \frac{2\pi v}{Tv} = \frac{2\pi}{\lambda}v = vk$$

$$y(x,t) = A\cos(\omega t - kx)(3)$$

(1)-(3) — различные формы **уравнения плоской волны**, бегущей в направлении +x.

$$\xi(\vec{r},t) = A\cos\left(\omega t - \vec{k}\,\vec{r} + \varphi_0\right)(4)$$

Продольная волна

Поперечная волна

Аргумент косинуса (или синуса) в (1)-(4) называется фазой.

$$\varphi \equiv \omega t - kx + \varphi_0 \quad (5)$$

Если зафиксировать значение фазы $\omega t - kx + \varphi_0 = const$, то это значение с течением времени перемещается в направлении оси x со скоростью, определяемой из условия:

$$\frac{d\varphi}{dt} = \frac{d}{dt} (\omega t - kx + \varphi_0) = 0 \implies v = \frac{dx}{dt} = \frac{\omega}{k}$$

т.е. скорость перемещения фазы совпадает со скоростью распространения волны, поэтому эту скорость называют фазовой скоростью волны.

Уравнение постоянной фазы (5) определяет в данный момент времени плоскость, перпендикулярную оси x. Геометрическое место точек среды, колеблющихся в одной и той же фазе называют волновой поверхностью, геометрическое место точек, до которых доходят колебания к моменту времени t, называется волновым фронтом.

Скорость упругой волны

Скорость многих типов механических волн может быть записана в общем виде:

Примеры:

Поперечные волны в упругой струне $v = \sqrt{\frac{F_{\mu am}}{\mu}}$ μ – масса единицы длины

$$\mathbf{v} = \sqrt{\frac{F_{\mu am}}{\mu}}$$

Продольные волны в тонком стержне

$$\mathbf{v} = \sqrt{\frac{E}{\rho}}$$

Поперечные волны в изотропной неограниченной твердой среде

$$v = \sqrt{\frac{G}{\rho}}$$

Продольные волны в газе (звуковые волны)

$$v = \sqrt{\frac{\gamma RT}{M}}, \quad \gamma = \frac{C_p}{C_v}$$

Энергия волнового движения

Работа внешней силы F:

$$A = \int_{0}^{\Delta l} F(x) dx = \int_{0}^{\Delta l} \kappa x dx = \frac{\kappa (\Delta l)^{2}}{2} = U \qquad \sigma = \frac{F_{0}}{S} = \frac{\kappa l}{S} \frac{\Delta l}{l} = E\varepsilon \quad \left(\varepsilon = \frac{\Delta l}{l}\right)$$

$$U = \frac{F_{0}\Delta l}{2} = \frac{\sigma S \,\varepsilon l}{2} = \frac{E\varepsilon^{2}}{2} Sl = \frac{E\varepsilon^{2}}{2} V$$

Плотность потенциальной энергии $w_{\pi} = U/V = E\varepsilon^2/2$

Смещение частиц стержня относительно положений равновесия $\xi(x, t) = f(x-vt)$

Плотность полной энергии

$$w = w_{\kappa} + w_{n} = \rho \left(\frac{\partial \xi}{\partial t}\right)^{2} / 2 + E\varepsilon^{2} / 2$$

$$\mathbf{v} = \sqrt{E/\rho}$$
 $\varepsilon = \partial \xi/\partial x$ \mathbf{v}

$$w = \frac{\rho}{2} \left[\left(\frac{\partial \xi}{\partial t} \right)^2 + v^2 \left(\frac{\partial \xi}{\partial x} \right)^2 \right]$$

На основе волнового уравнения: $\frac{\partial \xi}{\partial x} = \pm \frac{1}{v} \frac{\partial \xi}{\partial t}$ и $w = \rho \left(\frac{\partial \xi}{\partial t}\right)^2$

Если $f(x-vt) = A \cos k [x - (\omega/k)t] = A \cos (\omega t - kx)$

$$w(t,x) = \rho A^2 \omega^2 \sin^2(\omega t - kx)$$

Интенсивность волны

Поток энергии — количество энергии, переносимое волной через определенную поверхность за единицу времени

$$\Phi = dW/dt$$
 $[\Phi] = B_T$

Плотность потока энергии — поток энергии через единичную площадку, перпендикулярную направлению переноса энергии

$$j = d\Phi / dS_{\perp} \qquad [j] = B_{\text{T/M}^2}$$

 $dS_{\perp} = dS cos \alpha$, $d\Phi = wv dS cos \alpha = wv dS_{\perp}$ (*w* - полная, кинетическая + потенциальная, энергия единицы объема среды, обусловленная распространением в ней волны).

Отсюда

$$j = wv$$

ИЛИ

$$\mathbf{j} = w\mathbf{v} - вектор$$
 Умова

Поток энергии через произвольную поверхность S: $\Phi = \int j \cdot dS = \int j_n \cdot dS$

Интенсивность волны — среднее по времени (за период T или за время t >> T) значение $|\boldsymbol{j}|$.

$$I = < |j| >$$

Для гармонической волны

$$w = \rho A^2 \omega^2 \sin^2(\omega t - kx)$$

И

$$I = \left\langle \left| \vec{j} \right| \right\rangle = \frac{1}{2} \rho A^2 \omega^2 \sim A^2 \omega^2$$

Если имеем в среде в точке О точечный источник волн ("пульсирующая точка"), от которого волна одинаково распространяется во все стороны, то в силу симметрии системы волновые поверхности такой волны — это концентрические сферы с центром в точке О (сферическая волна). Если потери энергии отсутствуют, то в среднем потоки энергии, проносимые сферической волной через эти сферы одинаковы, т.е.

$$4\pi r_1^2 I_1 = 4\pi r_2^2 I_2$$

$$r_1^2 A_1^2 = r_2^2 A_2^2 \implies A(r) = \frac{A_0}{r}$$

$$\xi(r, t) = \frac{A_0}{r} \cos(\omega t - kr + \varphi_0)$$

При наличии затухания амплитуда волны спадает по мере удаления от источника колебаний.

Уравнение *плоской* затухающей волны:

$$\xi(x,t) = Ae^{-\gamma x}\cos(\omega t - kx)$$

Уравнение *сферической* затухающей волны:

$$\xi(r,t) = \frac{A_0}{r} e^{-\gamma r} \cos(\omega t - kr)$$

γ – коэффициент затухания волны.