Završni ispit iz Baza podataka

27. lipnja 2016.

Zadaci **1 - 6** odnose se na bazu podataka prikazanu na **slici 1**. Baza podataka služi za evidenciju podataka o turnirima (*turnir*) rekreativne teniske lige koji se odvijaju uz unaprijed poznat broj kola (*ukupnoKola*). Rezultati mečeva bilježe se u relaciji *mec*, a pojedinih setova meča u relaciji *set*. Broj setova koje je osvojio prvi (*ukSetova1*), odnosno drugi igrač (*ukSetova2*) izračunava se temeljem broja osvojenih gemova (*set.ukGemova1* i *set.ukGemova2*) i redundantno pohranjuju u relaciji *mec*. Set osvaja igrač s većim osvojenim brojem gemova. Početna vrijednost ta dva atributa jednaka je 0. Ključevi relacija su podcrtani. Na slici **nisu** prikazane sve n-torke sadržane u relacijama.

turnir			
<u>sifTurnir</u>	nazivTurnir	datumPocetak	ukupnoKola
50	Zimski turnir 2015	12.10.2015	15
51	Ljetni turnir 2016	04.04.2016	20

igrac			
siflgrac	imelgrac	prezigrac	korisnik
100	Ivo	Habuš	ihabus
110	Ante	Tolj	atolj
120	Josip	Vargek	NULL
130	Ana	Pecci	NULL
140	Marko	Anić	NULL
set			

mec	

<u>datumMec</u>	siflgrac1	siflgrac2	sifTurnir	uk Setova1	uk Setova2
08.06.2016	100	110	51	1	2
18.06.2016	120	100	51	0	2
22.06.2016	100	140	51	2	1

_		
SI	ika	ı 1

<u>datumMec</u>	siflgrac1	rbrSet	uk Gemova1	uk Gemova2
08.06.2016	100	1	6	4
08.06.2016	100	2	6	7
08.06.2016	100	3	5	7
18.06.2016	120	1	2	6

U zadacima 1 i 2 napisati **po jednu SQL naredbu** kojom će se obaviti sljedeće:

1. (4 boda) Za mečeve **odigrane** u zadnjih 100 dana ispisati datum meča te podatke o paru igrača i ukupno odigranom broju setova u sljedećem obliku:

datumMec	Igraci	ukupnoSetova
08.06.2016	I. Habuš – A. Tolj	3

Zapise poredati prema datumu meča uzlazno a potom prema broju odigranih setova silazno.

- **2. (5 bodova)** Za igrače bez evidentiranog korisničkog imena ispisati šifru igrača, ime i prezime te ukupno osvojenih i ukupno izgubljenih gemova u mečevima koje je odigrao kao prvi igrač na turnirima s najvećim brojem kola. Ako igrač na takvim turnirima nije sudjelovao, za broj osvojenih i izgubljenih gemova ispisati vrijednost 0.
- **3. (4 boda)** Uz pretpostavku da su kreirane relacije *turnir* i *igrac* i pri tom, između ostalog, definirani integriteti ključa i referencijski integriteti, napisati naredbe za kreiranje relacije *mec* i pritom osigurati sljedeće:
 - integritet ključa i entitetski integritet,
 - vrijednosti svih atributa moraju biti poznate,
 - pretpostavljena (default) vrijednost za atribute ukSetova1 i ukSetova2 mora biti 0,
 - atributi *siflgrac1* kao i *siflgrac2* smiju poprimiti isključivo vrijednost atributa *siflgrac* u relaciji *igrac,* pokušaj brisanja igrača koji je sudjelovao u barem jednom meču treba spriječiti,
 - atribut sifTurnir u relaciji mec smije poprimiti isključivo vrijednosti istoimenog atributa u relaciji turnir, pri brisanja turnira za kojeg postoje mečevi treba obrisati i pripadne mečeve,
 - spriječiti evidenciju meča u kojem bi igrač igrao sam sa sobom,
 - spriječiti evidenciju meča u kojem bi razlika između broja setova prvog i drugog igrača bila veća od 2.

Napomena: zadnja dva ograničenja riješiti pomoću CHECK ograničenja, ne pisati okidače. Domene atributa odabrati proizvoljno ali smisleno.

4. (5 bodova) Napisati niz SQL naredbi za kreiranje svih potrebnih objekata kojima će se osigurati ažuriranje atributa *mec.ukSetova1* i *mec.ukSetova2* pri unosu n-torke u relaciju *set.*

Primjer: Nakon obavljanja sljedeće INSERT naredbe

```
INSERT INTO set VALUES ('08.06.2016', 100, 4, 7, 6); vrijednost atributa uk Setova1 u n-torki {datumMec:08.06.2016, sifIgrac1:100, sifIgrac2:110, sifTurnir:51, ukSetova1:1, ukSetova2:2} treba biti postavljena na vrijednost 2.
```

Održavanje konzistentnosti navedenih atributa pri obavljanju ostalih akcija u relaciji **set** nije potrebno implementirati.

- **5.** (4 boda) Vrijednost atributa igrac.korisnik jednaka je korisničkom imenu (USER) s kojim korisnik uspostavlja SQL sjednicu. Napisati niz SQL naredbi kojima će se korisniku 'ihabus':
 - dodijeliti ovlasti potrebne za uspostavu korisničke sjednice
 - pregledavanje svih podataka o mečevima u kojima je sudjelovao (kao prvi ili drugi igrač)
 - unos i izmjena atributa datumMec, siflgrac1, siflgrac2 i sifTurnir relacije mec za mečeve u kojima je sudjelovao.
- **6. (4 boda)** Sve relacije sa slike 1 su kreirane u bazi podataka. Pri tom su definirani integriteti ključa i referencijski integriteti, te pripadni indeksi.

Izvodi se upit:	Optimizator raspolaže sljedećim podacima	
SELECT *	N(turnir) = 60	
FROM mec, igrac, turnir	N(igrac) = 300	
WHERE mec.sifIgrac1 = igrac.sifIgrac	$N(mec) = 90\ 000$	
AND mec.sifTurnir = turnir.sifTurnir		
AND igrac.imeIgrac = 'Ana'	V(ukupnoKola, turnir) = 15	
AND mec.datumMec < '01.06.2016'	V(datumMec, mec) = 9000	
	V(imelgrac, igrac) = 50	
	V(prezIgrac, igrac) = 60	

Nacrtati stablo upita nakon provedene heurističke optimizacije. Dovoljno je nacrtati samo konačno stablo upita. Redoslijed spajanja relacija odrediti temeljem procjene broja n-torki u rezultatima spajanja. Navesti sve izraze prema kojima je obavljena procjena broja n-torki u međurezultatima i u konačnom rezultatu. U stablu upita naznačiti očekivani broj n-torki.

7. (4 boda)

- a) Koje svojstvo transakcije se štiti kontrolom istodobnog pristupa? Objasnite to svojstvo transakcije.
- b) Navedite i objasnite vrste ključeva koje koriste protokoli zasnovani na zaključavanju u svrhu kontrole istodobnog pristupa. Skicirajte matricu kompatibilnosti ključeva
- **8. (3 boda)** Administrator IBM Informix sustava za upravljanje bazama podataka obavlja arhiviranje na sljedeći način:
 - razina 0 svake prve nedjelje u mjesecu (npr. za lipanj 2016: 05. lipanj),
 - razina 1 svakih 7 dana (za lipanj 2016: 12. lipanj, 19. lipanj,...),
 - razina 2 svakodnevno u 05:00 sati.

Zbog kvara na fizičkom mediju na kojem su pohranjeni podaci iz baza podataka, do kojeg je došlo 15. lipnja 2016. u 08:00 sati administrator mora obaviti obnovu. Sve arhive su ispravne.

- a) Navesti što od dostupnih arhiva i kojim redoslijedom se koristi prilikom obnove.
- b) Koje svojstvo transakcije se štiti pomoću mehanizama za obnovu baze podataka? Objasnite to svojstvo transakcije.
- **9.** (**7 bodova**) Oblikovati ER model segmenta baze podataka za praćenje podataka o nebeskim tijelima i misijama koje čovjek poduzima pri istraživanju Svemira. Evidentiraju se:
 - nebeska tijela
 - šifra, naziv tijela, površina, masa, period rotacije, godina otkrića, vrsta tijela (šifra i naziv npr. 1- "Zvijezda", 2- "Planet", 3- "Asteroid"...), prirodni sateliti ako postoje (npr. asteroidi "Fobos" i "Deimos" su Marsovi sateliti) i osobe koje su ga otkrile (šifra, ime i prezime i datum rođenja). Smatra se da nebesko tijelo pripada samo jednoj vrsti. Prirodni sateliti su također nebeska tijela. Moguće je da je u otkrivanju nebeskog tijela sudjelovalo više osoba (npr. smatra se da su Neptun otkrili Urbain Le Verrier i Johann Gottfried Galle).
 - svemirski programi i svemirske misije:
 - Svemirski program je serija svemirskih misija npr. program Apollo se sastoji od 11 misija Apollo1 Apollo11.
 - Za programe se evidentira šifra, naziv programa, godina početka, godina završetka, države koje financijski podupiru program (ISO kôd države, naziv države).
 - Za misije se evidentira pripadnost svemirskom programu, šifra i naziv misije, datum lansiranja, trajanje misije u danima i naziv korištene letjelice. Za neke svemirske misije evidentira se nebesko tijelo (samo jedno) na koje se želi sletjeti u okviru misije.
 - posade svemirskih misija:
 - šifra, ime i prezime i datum rođenja člana posade te njegova uloga (šifra i naziv uloge npr. 1- "Primarna posada", 2 "Pomoćna posada",...). Ista osoba može sudjelovati u različitim misijama ali u određenoj misiji sudjeluje samo u jednoj ulozi.

Nacrtati ER model baze podataka, navesti sheme entiteta i sheme veza (označiti ključeve). Svaki entitet (osim slabih entiteta) opisuje se **isključivo vlastitim atributima**. Nužno je da sve sheme zadovoljavaju **3NF**.

Rješenja:

1. (4 boda)

```
SELECT datumMec,
       SUBSTRING(igrac1.imeIgrac FROm 1 FOR 1) || '. ' || TRIM(igrac1.prezIgrac) || ' - ' || SUBSTRING(igrac2.imeIgrac FROm 1 FOR 1) || '. ' || TRIM(igrac2.prezIgrac) igraci,
       ukSetova1+ukSetova2 ukupnoSetova
  FROM mec
  JOIN igrac igrac1 ON igrac1.sifIgrac = mec.sifIgrac1
  JOIN igrac igrac2 ON igrac2.sifIgrac = mec.sifIgrac2
WHERE (TODAY - datumMec) <= 100
ORDER BY datumMec, ukupnoSetova DESC
2. (5 bodova)
SELECT igrac.sifIgrac, imeIgrac, prezIgrac,
       CASE WHEN SUM(ukGemova1) IS NULL THEN 0
            ELSE SUM(ukGemova1) END,
       CASE WHEN SUM(ukGemova2) IS NULL THEN 0
            ELSE SUM(ukGemova2) END
  FROM set
  JOIN mec
    ON set.datumMec = mec.datumMec
   AND set.sifIgrac1 = mec.sifIgrac1
  JOIN turnir
    ON turnir.sifTurnir = mec.sifTurnir
   AND turnir.ukupnoKola = (SELECT max(ukupnoKola) FROM turnir)
 RIGHT JOIN igrac
    ON igrac.sifIgrac = mec.sifIgrac1
WHERE korisnik IS NULL
GROUP BY igrac.sifIgrac, imeIgrac,prezIgrac
3. (4 boda)
CREATE TABLE mec (
   datumMec DATE,
   sifIgrac1
                  SMALLINT
                                       REFERENCES igrac(sifIgrac),
                  SMALLINT NOT NULL REFERENCES igrac(sifIgrac),
   sifIgrac2
                  SMALLINT NOT NULL
                                       REFERENCES turnir (sifTurnir) ON DELETE CASCADE,
   sifTurnir
   ukSetova1SMALLINT DEFAULT 0 NOT NULL,ukSetova2SMALLINT DEFAULT 0 NOT NULL,
   CHECK (sifIgrac1 != sifIgrac2) CONSTRAINT chkHostGuest,
   CHECK ((ukSetova1 - ukSetova2) BETWEEN -2 AND 2) CONSTRAINT chkSetDiff,
   PRIMARY KEY (datumMec, sifIgrac1));
4. (5 bodova)
DROP TRIGGER insSet;
CREATE TRIGGER insSet
INSERT ON Set
REFERENCING NEW AS setNew
 FOR EACH ROW
        (UPDATE mec
            SET ukSetova1 = ukSetova1 +1
          WHERE mec.datumMec = setNew.datumMec
            AND mec.sifIgrac1 = setNew.sifIgrac1
            AND setNew.ukGemova1 > setNew.ukGemova2),
        (UPDATE mec
            SET ukSetova2 = ukSetova2 +1
          WHERE mec.datumMec = setNew.datumMec
            AND mec.sifIgrac1 = setNew.sifIgrac1
```

AND setNew.ukGemova1 < setNew.ukGemova2);

```
ILI
DROP TRIGGER insSet;
CREATE TRIGGER insSet
 INSERT ON Set
 REFERENCING NEW AS setNew
 FOR EACH ROW
       (UPDATE mec
   SET (ukSetova1, ukSetova2) =
       (CASE
           WHEN setNew.ukGemova1 > setNew.ukGemova2
              THEN ukSetova1 +1
           ELSE ukSetova1
        END,
        CASE
           WHEN setNew.ukGemova1 < setNew.ukGemova2
              THEN ukSetova2 +1
           ELSE ukSetova2
        END)
         WHERE mec.datumMec = setNew.datumMec
           AND mec.sifIgrac1 = setNew.sifIgrac1);
5. (4 boda)
CREATE VIEW vMec AS
SELECT * FROM mec
 WHERE EXISTS (SELECT *
                  FROM igrac
                 WHERE (mec.sifIgrac1 = igrac.sifIgrac
                     OR mec.sifIgrac2 = igrac.sifIgrac)
                     AND igrac.korisnik = USER)
  WITH CHECK OPTION;
GRANT CONNECT TO ihabus;
GRANT SELECT ON vMec TO ihabus;
GRANT INSERT, UPDATE (datumMec, sifIgrac1, sifIgrac2, sifTurnir) ON vMec TO ihabus;
6. (4 boda)
    N(igrac1) = N(igrac) / V(imelgrac,igrac) = 300/50= 6
```

```
N(mec1) = N(mec) / 3 = 30000
```

Procjena broja n-torki u međurezultatu za različite redoslijede spajanja:

N(turnir ⋈ mec1) <= N(mec1) <= 30000 jer je sifTurnir PK u turnir N(igrac1 ⋈ mec1) <= N(mec₁) <= 30000 jer je siflgrac PK u igrac $N(igrac1 \ X \ turnir) \le N(igrac_1)^* \ N(turnir) = 360$ Redoslijed: 1. N(igrac1 X tour)

7. (4 boda)

a) Svojstvo izolacije.

Kada se istodobno obavljaju dvije ili više transakcija, njihov učinak mora biti jednak kao da su se obavljale jedna iza druge.

b)

- ključ za pisanje/izmjenu WRITE LOCK, EXCLUSIVE LOCK
 - o transakcija T1 zaključa objekt za pisanje
 - o niti jedna druga transakcija ga ne može zaključati (niti za čitanje niti za pisanje) dok ga T1 ne otključa
 - o svaka operacija izmjene (SQL naredbe INSERT, UPDATE, DELETE) postavlja ključ za pisanje
- ključ za čitanje READ LOCK, SHARED LOCK
 - transakcija T1 (SQL naredbom SELECT) zaključa objekt za čitanje
 - o bilo koja druga transakcija ga također može zaključati za čitanje
 - o niti jedna ga transakcija ne može zaključati za pisanje

Proces 2 pokušava postaviti na isti objekt

Proces 1 postavio je na objekt ključ:

isti objekt ključ:	READ	WRITE	NO LOCK
READ	*	×	1
WRITE	×	X	4

8. (3 boda)

Obnovu je moguće obaviti na korištenjem sljedećih arhivskih kopija:

- 1. Arhiva razine 0 od 5.lipnja
- 2. Arhiva razine 1 od 12.lipnja
- 3. Arhiva razine 2 od 15.lipnja
- 4. Logički dnevnik započet 15.lipnja nakon izrade arhive razine 2

Štiti se svojstvo Durability - izdržljivost - ako je transakcija obavila svoj posao, njezini efekti ne smiju biti izgubljeni ako se dogodi kvar sustava, čak i u situaciji kada se kvar desi neposredno nakon završetka transakcije

jeSatelit.sifNebTijelo je šifra nebeskog tijela koje je nekom drugom satelit (npr. šifra Fobosa ili Deimosa)

jeSatelit.sifMatNebTijelo je šifra "matičnog" nebeskog tijela tj. onog kojemu je jeSatelit.sifNebTijelo satelit (npr. šifra Marsa)