Fachbereich Wirtschafts- und Sozialwissenschaften | WiSo

Exploring Generalizability of Time Series Classification Models for Predicting Mortality in Intensive Care Units

Goals of the Meeting

What is this meeting about

Agenda:

- Overview
- Preliminary Results
- Technical view
- Outlook

Friedrich-Alexander-Universität

Fachbereich Wirtschafts- und Sozialwissenschaften | WiSo

Overview

Main Idea

Beth Israel - Medical Center Boston, Massachusetts, USA

University Hospital Carl Gustav Carus
Dresden, Saxony, Germany

Main Idea

Beth Israel - Medical Center Boston, Massachusetts, USA

features measured as time series

University Hospital Carl Gustav Carus
Dresden, Saxony, Germany

Performance on different population?

Insights to performance difference through XAI

Why Is This Interesting?

- Datasets are often centralized or commercialized
 - smaller hospitals have to rely on external data/ models
- High stake environment
 - Trust & understanding of model behaviour is crucial
- Generalization is not a given
 - Past events show that population shift can lower performance
- Time series may hold a high information density and are suitable for event detection

Target

Experiments

Generalizability

Interpretability

Main Contribution

- Exploring the unique challenges of applying time series classification models to ICU mortality prediction across different populations
- Visualizing the models behavior when transferred from one dataset to another in the in order to understanding the underlying behaviour of the model.
- Providing insights into how varying data availability impacts performance of time series classification models.

Differentiation and Similarities to HCMS Paper

Friedrich-Alexander-Universität

Fachbereich Wirtschafts- und Sozialwissenschaften | WiSo

Preliminary Results

Preliminary Results

Table 2 caption

Preliminary Results

Feature importance heatmap with SHAP

- Idea: compare heatmap from different trained models
- Sampling of background data (10% of total test set)
 - background data excluded from test
- Concat per sample absolute SHAP values with **DeepExplainer** (1000 samples)
 - o from explainer: (num_samples,time_steps,num_features)
 - o so each (time_step, feature) cell has a SHAP value
- Downside: time steps are not independent due to memory states (sequential nature of the lstm)

Idea from Thorsen-Meyer Et al. 2020 https://www.thelancet.com/journals/landig/article/PIIS2589-7500(20)30018-2/fulltext

Preliminary results

Mean Blood Pressure

Friedrich-Alexander-Universität

Fachbereich Wirtschafts- und Sozialwissenschaften | WiSo

Technical View

- 15 features used
- At first usual pre-processing steps

Feature		MIMIC-IV			EUH		
	Mean	Std	Missing (%)	Mean	Std	Missing (%)	
Sequential Features							
Temperature	36.84	0.48	3.60	36.76	0.75	6.82	
Heart Rate	84.93	15.88	0.13	83.40	16.81	0.27	
Glucose	136.12	49.12	5.26	138.39	35.54	0.27	
Mean Blood Pressure	78.67	11.48	0.55	83.80	12.20	17.16	
Glasgow Coma Scale Total	12.52	3.26	0.91	11.56	4.52	56.31	
Potassium	4.18	0.55	4.51	4.13	0.42	0.37	
Leukocytes	11.91	7.70	5.58	11.50	5.93	4.90	
Thrombocytes	207.29	105.80	5.13	223.84	110.03	4.83	
Prothrombin Time	1.44	0.61	20.81	1.37	0.35	5.16	
Anion Gap	14.08	3.30	5.39	6.16	2.91	71.97	
Lactate	2.24	1.81	46.83	1.48	1.57	0.25	
Creatinine	1.42	1.51	4.49	1.07	0.99	5.78	
Static Features							
Gender (Female %)	44.22	_	0.00	40.24	_	0.00	
Age	63.16	16.79	0.00	64.39	15.96	0.00	
Weight	82.00	23.60	3.50	77.88	19.55	37.53	
Mortality (%)	7.43	_	0.00	5.72	-	0.00	

Sequencing - create common table

stay_id: xxxx

Time	Feature1	Feature2	
13:45	-	3	
14:10	3	-	Aggregate
14:20	1	5	to full hour
14:35	-	9	
14:50	4	-	

stay_id: xxxx

Time	Feature1	Feature2
14:00	2	4
15:00	4	9

. 24 rows

stay ID	Time Index
xxxx	0
xxxx	1
xxxx	23
уууу	0

+ concatenate

Time	Feature1	Feature2
19:00	25	43
20:00	155	56

. 24 rows

+ concatenate

stay_id: zzzz

Time	Feature1	Feature2
9:00	45	65
10:00	99	76

· 24 rows

stay ID	Time Index	Feature1	Feature2
xxxx	0	2	4
xxxx	1	4	9
xxxx	23	5	4
уууу	0	25	56

Sequencing - create input sequences

stay ID	Time Index	Feature1	Feature2
xxxx	0	2	4
xxxx	1	4	9
xxxx	23	5	4
уууу	0	25	56

stay ID	Label	
xxxx	1	
уууу	0	

Grouped by stay id, time index

Model Architecture

Hyperparameters

hidden state: 100 dropout: 0.75 optimizer: Adam

Ir: 1e-4

loss: cross entropy

class weights: 3.0 on non survival

batch size: 128 epochs: 5

Friedrich-Alexander-Universität

Fachbereich Wirtschafts- und Sozialwissenschaften | WiSo

Outlook

Outlook

- Comparison of models trained on MIMIC and Dresden dataset
- Test for SHAP variability
- Add attention layer to lstm and visualize attention weights
- Other models?