Course program - Linear and Logistic Regression Modelling in ${\bf R}$

Daily schedule

Time	Activity
09:00-10:40 10:40-11:00 11:00-12:30	Lectures (with short break) Coffee break (20 min) Exercises
12:30-13:30 13:30-15:00 15:00-15:20 15:20-17:00	Lunch break Lectures (with short break) Coffee break (20 min) Exercises

Program overview

Day	Time	Topic
Mon	AM	Simple linear regression
	PM	Multiple linear regression
Tue	AM	Introduction to logistic regression
	PM	Model building considerations and strategies
Wed	AM	Models for stratified designs and categorical outcomes
	PM	Exercises, QA, wrap-up

Detailed content

Day	Time	Content
Mon AM	AM	Simple linear regression
		Least squares estimation
		Assessing model fit (R^2)
		Model assumptions
		Standard errors and tests $(t$ -test, F -test)
	\mathbf{PM}	Multiple linear regression
		Including multiple independent variables
		Model selection (F-test, adjusted R^2)
		Residual analysis (Residual plots, leverage, QQ-plot)
		Multicollinearity (variance inflation factor)
	\mathbf{AM}	Introduction to logistic regression
		Generalising the linear model (link functions, maximum likelihood estimation)
		The logistic model (logistic link, binomial distribution)
		Interpretating of coefficients (logits, odds ratios)
		Interactions
	\mathbf{PM}	Model building considerations and strategies
		Testing (Wald and likelihood ratio tests)
		Assessing linearity of association
		Purposeful variable selection
		Special issues in prediction modelling (calibration, discrimination, overfitting)
Wed	\mathbf{AM}	Models for stratified designs and categorical outcomes
		Conditional logistic regression
		Ordered logistic regression
		Multinomial logistic regression