Network Layer

Computer Networks

Network layer

- transport segment from sending to receiving host
- on sending side encapsulates segments into datagrams
- on receiving side, delivers segments to transport layer
- network layer protocols in every host, router
- Router examines header fields in all IP datagrams passing through it

Two Key Network-Layer Functions

- Forwarding Function: move packets from router's input to appropriate router output
- o Routing Function:
 determine route
 taken by packets
 from source to
 destination
 - o Routing Algorithms

- o analogy:
- routing: process of planning trip from source to destination
- forwarding: process
 of getting through
 single interchange

Interplay between routing and forwarding

Connection setup

- o 3rd important function in *some* network architectures:
 - o Asynchronous Transfer Mode (ATM), Frame Relay, X.25
 - o Backbone networks in Internet are Switched WAN
 - Switched WAN: wide area network that cover large area and provide access at several point to users
- o before datagrams flow, two end hosts and intervening routers establish virtual connection

DTE : Data Terminating Equipment DCE : Data Circuit Equipment

UNI : User-to-Network Interface NNI : Network-to-Network Interface

Network layer connection and connection-less service

- o Network layer Connection service
 - o Virtual Circuit
 - o Connection setup
 - o Forwarding
 - o Routing
- o Network layer Connection-less service
 - o Datagram network
 - o Forwarding
 - o Routing
- Analogous to transport-layer services, but:
 - o service: host-to-host
 - o no choice: network provides one or the other
 - o implementation: in network core

Virtual circuits (VC)

"source-to-dest path behaves much like telephone circuit"

- o performance-wise
- o network actions along source-to-dest path
- call setup, teardown for each call before data can flow
- each packet carries VC identifier (VCI) (not destination host address)
- every router on source-dest path maintains "state" for each passing connection
- link, router resources (bandwidth, buffers) may be allocated to VC (dedicated resources = predictable service)

VC implementation

- VC consists of:
 - o Path from source to destination (Virtual Path: VP)
 - o VC numbers, one number for each link along path
 - o entries in forwarding tables in routers along path
- o packet belonging to VC carries VC number (rather than destination address)
- VC number can be changed on each link.
 - New VC number comes from forwarding table

Note that : <u>virtual connection</u> is defined by a pair of numbers: VPI and VCI.

Forwarding table

<u>Forwarding table in</u> northwest router:

Incoming interface Incoming VC #		Outgoing interface	Outgoing VC #	
1	12	3	22	
2	63	1	18	
3	7	2	17	
1 97 		3	87	

Routers maintain connection state information!

Datagram networks

- o no call setup at network layer
- o routers: no state about end-to-end connections
 - o no network-level concept of "connection"
- o packets forwarded using destination host address
 - o packets between same source-dest pair may take different paths

Virtual circuits: signaling protocols

- o used to setup, maintain teardown VC
- o used in ATM, Frame-Relay, X.25
- o not used in today's Internet

What is inside the router?: Router Architecture Overview

- Two key router functions:
- o run routing algorithms/protocol
 - Route Information Protocol (RIP),
 - Open Shortest Path First (OSPF),
 - Border Gateway Protocol (BGP)
- o forwarding datagrams from incoming to outgoing link

Input Port Functions lookup. data link forwarding switch processing termination (protocol, fabric queueing decapsulation) Physical layer: bit-level reception o Decentralized switching: Data link laver: e.g., Ethernet using forwarding table in input port

memory

- given datagram dest., lookup output port
- o Goal: complete input port processing at 'line speed'
- o Queuing: if datagrams arrive faster than forwarding rate into switch fabric

Output Ports

- o Buffering required when datagrams arrive from fabric faster than transmission rate
- o Scheduling discipline chooses among queued datagrams for transmission

Output port queueing

- o buffering when arrival rate via switch exceeds output line speed
- o queueing (delay) and loss due to output port buffer overflow!

Input Port Queuing

- o Fabric slower than input ports combined -> queueing may occur at input queues
- o Head-of-the-Line (HOL) blocking: gueued datagram at front of queue prevents others in queue from moving forward
- o queueing delay and loss due to input buffer overflow!

Three types of switching fabrics

o Packet was copied from input port into processor memory

Consisting of 2n buses

switching fabric

- o routing processor extracted destination address, looked up appropriate output port in forwarding table
- o Cisco's Catalyst 8500 series switches (10 Gbps)
- o Input port transfer packet directly to output port over shared bus
- o One packet at a time can be transferred over bus
- o switching bandwidth of router is limited to bus
- o Cisco 5600 switches packets over 32 Gbps bus

The Internet Network layer

Host, router network layer functions:

IP datagram format

MTU = Maximum Transmission Units

IP Fragmentation & Reassembly

 network links have MTU (max.transfer size) largest possible link-level frame.

> o different link types. different MTUs

o large IP datagram divided ("fragmented") within net ←

- o one datagram becomes several datagrams
- o "reassembled" only at final destination
- o IP header bits used to identify, order related fragments

Point-to-Point Protocol (PPP)-296 bytes

IP Fragmentation and Reassembly

Network Layer: Logical Addressing

- o Communication at network layer is host-to-host
- o Computer somewhere in the world need to communicate with another computer somewhere else in the world through Internet
- o Packet transmitted by sending computer may pass through several LANs or WANs before reaching destination computer
- o We need *global addressing scheme* called *logical* addressing
- o Today, we use the term *IP address* to mean a logical address in network layer of TCP/IP protocol suite

IP Addresses

- o The Internet address are 32 bits in length
 - o Address space is 232 or 4,294,967,296
 - o These addresses are referred to as IPv4 (IP version 4) addresses or simply IP address
- o The need for more addresses motivated a new design of the IP layer called new generation of IP or IPv6 (IP version 6)
 - o The Internet uses 128-bit addresses that give much greater flexibility in address location
 - o These addresses are referred to as IPv6 (IP version 6) address

IPv4 Addressing: introduction

- o IPv4 address: 32-bit identifier for host. router *interface*
- o *Interface*: connection between host/router and physical link
 - o router's typically have multiple interfaces
 - o host typically has one interface
 - o IP addresses interface

IP Addresses "class-full" addressing:

given notion of "network", let's re-examine IP addresses:

Class D 224-239

Class E 240-255
b. Dotted-decimal notation

Class	Number of Blocks	Block Size	Application
A	128	16,777,216	Unicast
В	16,384	65,536	Unicast
С	2,097,152	256	Unicast
D	1	268,435,456	Multicast
Е	1	268,435,456	Reserved

Class	Network Octets (blanks in the IP address are used for octets identifying hosts)	Total Number of Possible Networks or Licenses	Host Octets (blanks in IP address are used for octets identifying networks)	Total Number of Possible IP Addresses in Each Networks
A	0 to 127	128	0.0.1 to 255.255.254	16,777,214
В	128.0 to 191.255	64×256 16,384	0.1 to 255.254	65,534
С	192.0.0 to 223.255.255	32×256×256 2,097,152	1 to 254	254

Address for Private Networks

Class D 1110

Class E 1111

a. Binary notation

		Total		
Class A	10.0.0.0	to	10.255.255.255	2^{24}
Class B	172.16.0.0	to	172.31.255.255	2^{20}
Class C	192.168.0.0	to	192.168.255.255	2^{16}

Subnets

- o IP address:
 - subnet part (high order bits)
 - host part (low order bits)
- o What's a subnet?
 - device interfaces with same subnet part of IP address
 - can physically reach each other without intervening router

network consisting of 3 subnets

Class C

Subnets

Recipe

- To determine the subnets, detach each interface from its host or router, creating islands of isolated networks.
- Each isolated network is called a subnet.

Subnet mask: /24

Class C

Subnets

How many?

IP addressing: CIDR

CIDR: Classless InterDomain Routing

- O Subnet portion of address of arbitrary length
- Address format: a.b.c.d/x, where x is # bits in subnet portion of address

subnet host part part 11001000 00010111 00010000 00000000

200.23.16.0/23

IP addresses: how to get one?

- o Q: How does host get IP address?
- o hard-coded by system admin in a file
 - o Windows:
 - o control-panel->network connections->properties
 ->Internet Protocol (TCP/IP)
 - o UNIX: /etc/rc.config
- DHCP: Dynamic Host Configuration Protocol: dynamically get address from as server
 - o "plug-and-play"
 - allow host to dynamically obtain its IP address from network server when it joins network

DHCP client-server scenario

NAT: Network Address Translation

NAT: Network Address Translation

- Motivation: local network uses just <u>one IP address</u> as far as outside world is concerned;
 - o range of addresses not needed from ISP: just one IP address for all devices
 - o can <u>change addresses of devices</u> in local network without notifying outside world
 - o can <u>change ISP</u> without changing addresses of devices in local network
 - devices inside local net not explicitly addressable, visible by outside world (a security plus).

NAT: Network Address Translation

Implementation: NAT router must:

- outgoing datagrams: replace (source IP address, port #) of every outgoing datagram to (NAT IP address, new port #)
 - ... remote clients/servers will respond using (NAT IP address, new port #) as destination address.
- remember (in NAT translation table) every (source IP address, port #) to (NAT IP address, new port #) translation pair
- incoming datagrams: replace (NAT IP address, new port #) in dest fields of every incoming datagram with corresponding (source IP address, port #) stored in NAT table

NAT: Network Address Translation

Address Mapping

- Delivery of packet to host or router requires two levels of addressing: logical address and physical address
- We need to be able to map a logical address to its corresponding physical address and vice versa.
- Mapping Logical Address to Physical Address can be done by Address Resolution Protocol (ARP) RFC 826

Address Resolution Protocol (ARP)

ARP Packet

Encapsulating of ARP packet

Case 1. A host has a packet to send to another host on the same network.

Case 3. A router receives a packet to be sent to a host on another network. It must first be delivered to the appropriate router.

Case 2. A host wants to send a packet to another host on another network.

It must first be delivered to a router.

Case 4. A router receives a packet to be sent to a host on the same network.

Internet Control Message Protocol (ICMP)

- IP provides unreliable and connectionless datagram delivery
- o IP protocol is a best-effort delivery service that delivers datagram from original source to final destination
- Two deficiencies
 - o Lack of error control
 - o No error-reporting or error-correcting mechanism
 - Lack of assistance mechanism for host and management queries
 - Host sometimes needs to determine if router or another host is alive
 - o Sometimes a network administrator needs information from another host or router

ICMP: Type of Messages

- ICMP message are divided into two broad categories
 - o Error-reporting message
 - o Report problems that router or host (destination) may encounter when it processes IP packet
 - o Query message
 - o Help host or network manager get specific information from router or another host
 - o Ex. Nodes can discover their neighbors
 - o Hosts can discover and learn about routers on their network

ICMP: Message Format

 ICMP message has 8-byte header and variable-size data section

ICMP: Error Reporting

ICMP always reports error messages to original source.

Redirection Concept

- Host A wants to send a datagram to host B
- Router R2 is obviously most efficient routing choice, but host A did not choose router R2
- o Datagram goes to R1 instead
- Router R1, after consulting its table, finds that packet should have gone to R2
- R1 sends packet to R2 and, at the same time, sends a redirection message to host A
- Host A's routing table can now be updated

Type: 3 Code: 0 to 15 Checksum Unused (All 0s) Part of the received IP datagram including IP header plus the first 8 bytes of datagram data

Destination Unreachable

Type: 4	Code: 0	Checksum			
	Unused (All 0s)				
Part o	Part of the received IP datagram including IP header plus the first 8 bytes of datagram data				

Source Quench 0 : Time to Live exceeded in Transit 1 : Fragment Reassembly Time Exceeded

TTL Expired

ICMP: Error Reporting (continued)

- o All error messages contain data section that includes
 - o IP header of the original datagram plus
 - o the first 8 bytes of data in that datagram

- o network-layer "above" IP:
 - o ICMP messages carried in IP datagrams

 ${\it Code}\ {\it O}: Error\ in\ one\ of\ header\ field, value\ in\ pointer\ field\\$

points to byte with problem

Code 1: required part of option is missing

Type: 12	Code: 0 or 1	Checksum
Pointer	Ur	nused (All 0s)
Part	of the received IP datagrar plus the first 8 bytes of	

Parameter Problem

Type: 5	Code: 0 to 3	Checksum		
IP address of the target router				
Part of the received IP datagram including IP header plus the first 8 bytes of datagram data				

Redirection message format

Code 0 - Redirection for network (or Subnet) -specific route

Code 1 - Redirection for host-specific route

Code 2 - same as code 0, based on specified type of service

Code 3 - same as code 1, based on specified type of service

ICMP: Query

Type	Code	description
0	0	echo reply (ping)
8	0	echo request (ping)
9	0	route advertisement
10	0	router discovery

- Query message is encapsulated in IP packet, which in turn is encapsulated in data link layer frame
- o In this case, no bytes of original IP are included in message

Echo-reguest and echo-reply messages

Route discovery and Route Advertisement

Route discovery

Type: 10	Code: 0	Checksum	
Identifier		Sequence number	

information for each router address entry in the Route advertisement list. The value is normally set to 2 (router address + preference level).

Ping

o Ping program is used to find whether a host is alive or not

Traceroute

- Source sends series of UDP segments to dest
 - o First has TTL =1
 - Second has TTL=2, etc.
 - o Unlikely port number
- When nth datagram arrives to nth router:
 - o Router discards datagram
 - o And sends to source an ICMP message (type 11, code 0): TTL expired
 - o Message includes name of $\,_{0}\,$ When source gets this router& IP address

- When ICMP message arrives, source calculates RTT
- Traceroute does this 3 times
- Stopping criterion
- UDP segment eventually arrives at destination host
- Destination returns ICMP "port unreachable" packet (type 3, code 3: **Destination Port** Unreachable)
- ICMP, stops.

"Real" Internet delays and routes

- What do "real" Internet delay & loss look like?
- <u>Traceroute program (tracert for windows):</u> provides delay measurement from source to router along end-end Internet path towards destination. For all i:
 - o sends three packets that will reach router ion path towards destination
 - o router i will return packets to sender
 - o sender times interval between transmission and reply.

"Real" Internet delays and routes

traceroute: gaia.cs.umass.edu to www.eurecom.fr

Routing Algorithms

o Link state

o Ex. Open Shortest Path First (OSPF)

local forwarding table header value output link 0100 3 0101 2 0111 2 1001

routing algorithm

o Distance Vector

o Ex. Routing Information Protocol (RIP)

packet's header

Graph abstraction

Graph: G = (N,E)

 $N = set of routers = \{ u, v, w, x, y, z \}$

 $E = \text{set of links} = \{ (u,v), (u,x), (v,x), (v,w), (x,w), (x,y), (w,y), (w,z), (y,z) \}$

Remark: Graph abstraction is useful in other network contexts

Example: P2P, where N is set of peers and E is set of TCP connections

Graph abstraction: costs

- $\cdot c(x,x') = cost of link(x,x')$
 - e.g., c(w,z) = 5
- cost could always be 1, or inversely related to bandwidth, or inversely related to congestion

Cost of path
$$(x_1, x_2, x_3, ..., x_p) = c(x_1, x_2) + c(x_2, x_3) + ... + c(x_{p-1}, x_p)$$

Question: What's the least-cost path between u and z?

Routing algorithm: algorithm that finds least-cost path

Routing Algorithm classification

- Global or decentralized information?
- o Global:
 - all routers have complete topology, link cost information
 - "link state" algorithms
- o Decentralized:
 - router knows physicallyconnected neighbors, link costs to neighbors
 - iterative process of computation, exchange of information with neighbors
 - o "distance vector" algorithms

- o Static or dynamic?
- o Static:
 - routes change slowly over time
- o Dynamic:
 - routes change more quickly
 - o periodic update
 - o in response to link cost changes

A Link-State Routing Algorithm

- o Dijkstra's algorithm
- o network topology, link costs known to all nodes
 - accomplished via "link state broadcast"
 - o all nodes have same information
- computes least cost paths from one node ('source") to all other nodes
 - o gives forwarding table for that node
- iterative: after k
 iterations, know least cost
 path to k destination's

- o Notation:
- O C(X,y): link cost from node x to y; = ∞ if not direct neighbors
- D(v): current value of cost of path from source to destination v
- p(v): predecessor node along path from source to v
- N': set of nodes whose least cost path definitively known

Dijsktra's Algorithm

15 until all nodes in N'

```
1 Initialization:

2 N' = {u}
3 for all nodes v
4 if v adjacent to u
5 then D(v) = c(u,v)
6 else D(v) = ∞
7
8 Loop
9 find w not in N' such that D(w) is a minimum
10 add w to N'
11 update D(v) for all v adjacent to w and not in N':
12 D(v) = min( D(v), D(w) + c(w,v) )
```

/* new cost to v is either old cost to v or known

shortest path cost to w plus cost from w to v */

P : โหนดใดๆ ในเครือข่ายที่ไม่เป็นสมาชิกของ N'

Dijsktra's Algorithm

Dijkstra's algorithm: example

D(P): current value of cost of path from source to destination P p(P): predecessor node along path from source to P

St	ер	N'	D(v),p(v)	D(w),p(w)	D(x),p(x)	D(y),p(y)	D(z),p(z)
	0	u	2,u	5,u	1,u	∞	∞
	1	ux ←	2,u	4,x		2,x	∞
	2	uxy←	2,u	3,y			4,y
	3	uxyv		3,y			4,y
	4	uxyvw 🗲		_			4,y
	5	uxyvwz ←					

ต้องการหา Shortest Path จาก Node น ไปยังทุก Node

Dijkstra's algorithm: example (2)

Resulting shortest-path tree from u:

Resulting forwarding table in u:

destination	link
V	(u,v)
×	(u,x)
У	(u,x)
w	(u,x)
Z	(u,x)

Distance Vector Algorithm

Bellman-Ford Equation (dynamic programming)

Define

 $d_x(y) := cost of least-cost path from x to y$

Then

$$d_x(y) = \min_{v} \{c(x,v) + d_v(y)\}$$

where \underline{min} is taken over all neighbors v of x

Bellman-Ford example

Clearly, $d_v(z) = 5$, $d_x(z) = 3$, $d_w(z) = 3$

B-F equation says:

$$d_{u}(z) = \min \{ c(u,v) + d_{v}(z), c(u,x) + d_{x}(z), c(u,w) + d_{w}(z) \}$$

$$= \min \{ 2 + 5, 1 + 3, 5 + 3 \} = 4$$

Node that achieves minimum is **next**hop in shortest path → forwarding table

Distance Vector Algorithm

- Iterative, asynchronous:
 each local iteration caused
 by:
 - o local link cost change
 - DV update message from neighbor
- o Distributed:
 - o each node notifies neighbors only when its DV changes o neighbors then notify
 - o neighbors then notif their neighbors if necessary

Each node:

