A PYTHON PROGRAM TO IMPLEMENT K-MEANS MODEL

Ex.No.: 9B

Date of Experiment: 24/10/2024

AIM:-

To implement a python program using a K-Means Algorithm in a model.

ALGORITHM:-

Step1: Import all the other necessary libraries(numpy as np, matplotlib.pyplot as plt and sklearn.tree,pandas as pd and seaborn as sns).

Step2: Select the number K to decide the number of clusters.

Step3: Select random K points or centroids. (It can be different from the input dataset). Step4:

Assign each data point to their closest centroid, which will form the predefined K clusters. Step5:

Calculate the variance and place a new centroid of each cluster.

Step6: Repeat the fourth steps, which means assign each datapoint to the new closest centroid of each cluster.

Step7: If any reassignment occurs, then go to step-5 else go to FINISH.

Step8: Train the model and plot the graph using scatterplot() function.

IMPLEMENTATION:-

 $data = pd.read_csv('../input/k-means-clustering/KNN~(3).csv') \\$ data.head(5)

Text(0.5, 1.0, 'Different Species Visualization')

req_data = data.iloc[:,1:]
req_data.head(5)

	SepalLengthCm	SepaWidthCm	PetalLengthCm	PetalWidthCm	Species
0	5.1	3.5	1.4	0.2	Iris-setosa
1	4.9	3.0	1.4	0.2	Iris-setosa
2	4.7	3.2	1.3	0.2	Iris-setosa
3	4.6	3.1	1.5	0.2	Wis-setosa
4	5.0	3.6	1.4	0.2	tris-setosa

 $shuffle_index = np.random.permutation(req_data.shape[0]) \ \#shuffling \ the \ row \ index \ of \ our \ dataset$

req_data = req_data.iloc[shuffle_index]
req_data.head(5)

	SepalLengthCm	SepafWidthCm	PetalLengthCm	PetalWidthCm	Species
45	4.8	3.0	1.4	0.3	Iris-setosa
50	7.0	3.2	4.7	1.4	Iris-versicolor
135	7.7	3.0	6.1	2.3	Iris-virginica
49	5.0	3.3	1.4	0.2	Iris-setosa
89	5.5	2.5	4.0	1.3	Iris-versicolor

```
train\_size = int(req\_data.shape[0]*0.7)
train_df = req_data.iloc[:train_size,:]
test_df = req_data.iloc[train_size:,:]
train = train_df.values
test = test_df.values
y_true = test[:,-1]
print('Train_Shape: ',train_df.shape)
print('Test_Shape: ',test_df.shape)
  Train_Shape: (105, 5)
  Test_Shape: (45, 5)
from math import sqrt
def euclidean_distance(x_test, x_train):
  distance = 0
  for i in range(len(x_test)-1):
     distance += (x_test[i]-x_train[i])**2
  return sqrt(distance)
def get_neighbors(x_test, x_train, num_neighbors):
  distances = []
```

```
data = []
  for i in x train:
     distances.append(euclidean_distance(x_test,i))
     data.append(i)
  distances = np.array(distances)
  data = np.array(data)
    sort_indexes = distances.argsort() #argsort() function returns indices by sorting distances
data in ascending order
  data = data[sort_indexes] #modifying our data based on sorted indices, so that we can get the
nearest neighbors
  return data[:num_neighbors]
def prediction(x_test, x_train, num_neighbors):
  classes = []
  neighbors = get_neighbors(x_test, x_train, num_neighbors)
  for i in neighbors:
     classes.append(i[-1])
  predicted = max(classes, key=classes.count) #taking the most repeated class return
  predicted
def predict_classifier(x_test):
  classes = []
  neighbors = get_neighbors(x_test, req_data.values, 5)
  for i in neighbors:
     classes.append(i[-1])
  predicted = max(classes, key=classes.count)
  print(predicted)
  return predicted
def accuracy(y_true, y_pred):
  num\_correct = 0
```

```
for i in range(len(y_true)):
    if y_true[i]==y_pred[i]:
        num_correct+=1
    accuracy = num_correct/len(y_true)
    return accuracy

y_pred = []
for i in test:
    y_pred.append(prediction(i, train, 5))
y_pred
```

```
['Iris-virginica',
'Iris-versicolor',
'Iris-versicolor',
'Iris-setosa',
'Iris-virginica',
'Iris-setosa',
'Iris-setosa',
'Iris-setosa',
'Iris-virginica',
'Iris-versicolor',
'Iris-setosa',
'Iris-versicolor'.
'Iris-versicolor',
'Iris-virginica',
'Iris-setosa',
 'Iris-setosa',
'Iris-versicolor',
'Iris-virginica',
'Iris-virginica',
'Iris-setosa',
'Iris-virginica',
'Iris-versicolor',
'Iris-setosa',
'Iris-setosa',
'Iris-versicolor',
'Iris-setosa',
'Iris-setosa',
'Iris-versicolor',
'Iris-virginica',
'Iris-versicolor',
'Iris-virginica',
'Iris-versicolor',
'Iris-versicolor',
'Iris-virginica',
'Iris-virginica',
'Iris-versicolor',
'Iris-virginica',
'Iris-setosa',
'Iris-setosa',
'Iris-virginica',
'Iris-virginica',
'Iris-setosa',
'Iris-versicolor',
'Iris-virginica',
'Iris-versicolor']
```

accuracy = accuracy(y_true, y_pred)

accuracy

0.95555555555556

test_df.sample(5)

	SepalLengthCm	SepalWidthCm	PetaiLengthCm	PetalWidthCm	Species
113	5.7	2.5	5.0	2.0	Iris-virginica
125	7.2	3.2	6.0	1.8	Iris-virginica
149	5.9	3.0	5.1	1.8	tris-virginica
94	5.6	2.7	4.2	1.3	Iris-versicolo
99	5.7	2.8	4.1	1.3	Iris-versicolo

RESULT:-

Thus the python program to implement the K-Means model has been successfully implemented and the results have been verified and analyzed.