ECC & SM2

Long Wen longwen6@gmail.com 20250712 @ Qingdao

PART1 Elliptic Curve Cryptography

PART2 SM2 Implementation

PART3 SM2 Application

PART1 Elliptic Curve Cryptography

- ECC basics
- Introducing SM2

PART2 SM2 Implementation

Pay attention to the symmetry property: Allows us to compress the point representation a = -2 a = -1 a = -1 a = 0Pay attention to the symmetry property: a = 1 $y^2 = x^3 + ax + b$

1.1 ECC basics – finite field

Finite field F_q:

A finite set which is a field, this means that multiplication, addition, subtraction and division (excluding division by zero) are defined and satisfy the rules
of arithmetic

· Finite field order:

• The number of elements of a finite field is called its order $|F_q| = q$

Characteristic:

- A finite field of order q exists if and only if q is a prime power p^m (where p is a prime number and m is a positive integer.) Namely q = p^m, We call the characteristic of the field is n
 - If m = 1, the finite field is prime field
 - If $m \ge 2$, the finite field is extension field, m = 2, we call binary field

· Cofactor:

· Defined as the ratio between the order of a group and that of the subgroup

· Cofactor && order && cyclic subgroup:

- Let elliptic curve E is defined on a finite field F_q where q = p^m, p is prime. Let N = #(E(F_q)) to be the number of elements of elliptic curve group, namely order of the elliptic curve group. So how to find a cyclic subgroup which reduce to find the generator of the cyclic subgroup.
 - . Let r | N and r is the biggest prime which can divide N
 - Randomly choose a point P ∈ E(F₀) on the elliptic curve group, then the order of point P can divide N, namely ord(P) | N
 - $ord(P) \cdot P = 0, ord(P) | N \Rightarrow N \cdot P = 0$
 - Let cofactor h = N/r, $N \cdot P = 0 \Rightarrow r \cdot h \cdot P = 0 \Rightarrow r(h \cdot P) = 0$
 - Let subgroup generator G = h · P_i its' order is prime r. Finally, we create a subgroup < G > with order r. Since the subgroup is isomorphism with Z_r, thus the subgroup is a cyclic group

PART1 Elliptic curve cryptography

1.1 ECC basics

1.1 ECC basics

PART1 Elliptic curve cryptography

PART1 Elliptic curve cryptography

1.2 SM2 Parameters

• SM2 system parameters:

- \mathbb{F}_q : finite field where $|\mathbb{F}_q| = q$
- a, b: elliptic curve equation parameters
- $G = (x_G, y_G)$: base point
- n: order
- h: cofactor where $h = |E(F_a)|/n$

• SM2 system parameters: prime field

- Elliptic curve equation: $y^2 = x^3 + ax + b$ over \mathbb{F}_a -256
- Prime q: 8542D69E 4C044F18 E8B92435 BF6FF7DE 45728391 5C45517D 722EDB8B 08F1DFC3
- a: 787968B4 FA32C3FD 2417842E 73BBFEFF 2F3C848B 6831D7E0 EC65228B 3937E498
- b: 63E4C6D3 B23B0C84 9CF84241 484BFE48 F61D59A5 B16BA06E 6E12D1DA 27C5249A
- $G = (x_G, y_G)$, ord(G) = n
- x_6 : 421DEBD6 1B62EAB6 746434EB C3CC315E 32220B3B ADD50BDC 4C4E6C14 7FEDD43D
- y_G: 0680512B CBB42C07 D47349D2 153B70C4 E5D7FDFC BFA36EA1 A85841B9 E46E09A2
- n:8542D69E 4C044F18 E8B92435 BF6FF7DD 29772063 0485628D 5AE74EE7 C32E79B7

1.2 SM2 Signature Algorithm

- Precompute:
 - compute $Z_A = H_{256}(ENTL_A||ID_A||a||b||x_G||y_G||x_A||y_A)$
 - · identifier IDA length is entlenA
 - . ENT LA is encoded from entlenA and takes two bytes
 - H₂₅₆: hash function SM3
- · KeyGen:
 - $P_A = d_A \cdot G = (x_A, y_A)$
- Sign(M):
 - $Sign_{\mathbf{d}_A}(M, Z_A) \rightarrow (r, s)$
 - Set $\overline{M} = Z_A || M$
 - Compute $e = H_v(\overline{M})$, where the output of H_v is v
 - Generate random number $k \in [1, n-1]$
 - Compute $kG = (x_1, y_1)$
 - Compute $r = (e + x_1) \mod n$,
 - if r = 0 or r + k = n, generate random number k again
 - Compute $s = ((1 + d_A)^{-1} \cdot (k r \cdot d_A)) \mod n$
 - if s = 0, generate random number k again

图 1 数字签名生成算法流程

1.2 SM2 Signature Algorithm

- · Verify signature
 - $Verify_{P_A}(M',r',s') \rightarrow 0/1$
 - Compute $Z_A = H_{256}(ENTL_A||ID_A||a||b||x_G||y_G||x_A||y_A)$
 - Check $r' \in [1, n-1]$
 - Check $s' \in [1, n-1]$
 - Set $\overline{M'} = Z_A || M'$
 - Compute $e' = H_n(\overline{M'})$
 - Compute $t = (r' + s') \mod n$
 - Compute $(x'_1, y'_1) = s'G + tP_A$
 - Compute $R = (e' + x_1') \mod n$, check R == r'
- Correction check
 - $s'G + tP_A = (s' + (r' + s')d_A)G$

$$= s'(1+d_A)G + r'd_AG$$

• $s = ((1+d_A)^{-1} \cdot (k-r \cdot d_A)) \mod n \Rightarrow k = s(1+d_A) + rd_A$

 $kG = s(1 + d_A)G + rd_AG$

1.3 SM2 Encryption

- Encryption: $Enc(M, P_B)$
 - Generate random number $k \in [1, n-1]$
 - Compute $C_1 = kG = (x_1, y_1)$
 - Compute $S = hP_R$
 - If S is 0, revert error (check pubkey)
 - Compute $kP_B = (x_2, y_2)$
 - Compute $t = KDF(x_2||y_2, klen)$
 - If t == 0, generate random number again
 - Compute $C_2 = M \oplus t$
 - Compute $C_3 = Hash(x_2||M||y_2)$
 - Output ciphertext $C = C1||C_2||C_3$
- Key derivation function: KDF(Z, klen)
 - Init 32 bit counter ct = 0x00000001
 - for $i \in [1, \lceil klen/v \rceil]$
 - Compute H_{ai} = H_v(Z||ct)
 - ct +
 - If klen/v is integer, then set $H_a!_{\lceil klen/v \rceil} = H_{a\lceil klen/v \rceil}$,
 - else $H_a!_{[klen/v]}$ is $H_{a[klen/v]}$ the left most (klen (v * [klen/v])) bits
 - Compute $K = H_{a_1} || H_{a_2} || \dots || H_{a \lceil klen/v \rceil} || H_a!_{\lceil klen/v \rceil}$

SM2 Decryption

- Decryption: $Dec(C, d_B)$
 - · Check C1 satisfies the elliptic curve equation
 - Compute $S = hC_1$
 - If S is O, revert error
 - Compute $d_BC_1 = (x_2, y_2)$
 - Compute $t = KDF(x_2||y_2, klen)$
 - If t == 0, generate random number again
 - Compute $M' = C_2 \oplus t$
 - Compute $u = Hash(x_2||M'||y_2)$, check $u = C_3$
 - Output plaintext M'

Diffie-Hellman and MITM

PART1 Elliptic curve cryptography

SM2 key exchange

SM2 密钥交换协议中,用户 A 的密钥对包括 其私钥 d_A 和公钥 $P_A = [d_A]G = (x_A, y_A)$,用户 B 的密钥对包括其私钥 d_B 和公钥 $P_B = [d_B]G = (x_B, y_B)$,用户 A 具有位长为 entlen_A 的可辨别标识 ID_A ,记 $ENTL_A$ 是由整数 entlen_B 转换而成的 2 B 数据,用户 B 具有位长为 entlen_B 转换而成的 2 B 数据。A B 双方都需要用密码杂凑算法求得用户 A 的杂凑值 $Z_A = H_{250}(ENTL_A ||ID_A||a||b||x_G||y_G||x_A||y_A)$ 和用户 B 的杂凑值 $Z_B = H_{250}(ENTL_B ||ID_B||a||b||x_G|||y_B||x_B||y_B)$.

PART1 Elliptic curve cryptography

SM2 key exchange

• Key exchange protocol: user A and user B Cooperatively generate a key of length klen

Secure Communication

Authentication Algorithm Strength Mode

TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256

Key exchange Cipher MAC or PRF

PART2 SM2 Implementation

- · Scalar multiplication
- · Inverse
- · Public key format
- · Deduce public key from signature

PART3 SM2 Application

PART2 SM2 implementation

2.1 Scalar multiplication Q = kP - double and add

```
Input: P, k = (k_{N-1}...k_1k_0)_2 with k_{N-1} = 1
100
                                                                                 Output: \mathbf{Q} = k\mathbf{P}
101
          def mulByScalar(cls, point: EcpPoint, scalar: int) -> EcpPoint:
102
              assert point.isOnCurve()
103
              flag = 1 << 255
                                                                                 \mathbf{Q} \leftarrow \mathbf{P}:
104
              accumulator = cls.genInf()
105
                                                                                 For i \leftarrow N-2 downto 0 do
106
              for i in range(255):
107
                  if 0 != scalar & flag:
                                                                                 Begin
108
                      accumulator = cls.add(accumulator, point)
                                                                                      \mathbf{Q} \leftarrow 2\mathbf{Q};
109
                   accumulator = cls.double(accumulator)
110
                  flag >>= 1
                                                                                      If k_i \neq 0 then \mathbf{Q} \leftarrow \mathbf{Q} + \mathbf{P};
               if 0 != scalar & flag:
111
                  accumulator = cls.add(accumulator, point)
                                                                                 F.nd
113
               return accumulator
```

PART2 SM2 implementation

2.1 Scalar multiplication Q = kP - point add and point double

```
def add(cls, point1: EcpPoint, point2: EcpPoint) -> EcpPoint:
   assert point1.isOnCurve() and point2.isOnCurve()
   if point1.isInf():
   if point2.isInf():
       return point1
   if point1.x == point2.x:
       if point1.y != point2.y:
           return cls.genInf() # Point at infinity
       else: # P.x == Q.x && P.y == Q.y
            return cls.double(point1)
   else: # point1.x != point2.x
       lamb = (point2.y - point1.y) * inverse_mod_prime((point2.x - point1.x) % cls.p(), cls.p()) % cls.p()
       x3 = (lamb ** 2 - point1.x - point2.x) % cls.p()
       y3 = (lamb * (point1.x - x3) - point1.y) % cls.p()
       return cls(x3, y3)
@classmethod
def double(cls, point: EcpPoint) -> EcpPoint:
   assert point.isOnCurve()
    if point.isInf():
        return cls.genInf()
    lmbd = (3 * (point.x ** 2) + cls.a()) * inverse_mod_prime((2 * point.y) % cls.p(), cls.p()) % cls.p()
    x3 = (lmbd ** 2 - 2 * point.x) % cls.p()
    y3 = (lmbd * (point.x - x3) - point.y) % cls.p()
    return cls(x3, v3)
```

PART2 SM2 implementation

2.2 Inversion

- · Module inversion operation for finite field
 - · Extended Euclidean algorithm
 - · Fermat Little theorem
 - · Constant-time extended Euclidean algorithm*

```
from _future__ import annotations

def inverse_mod_prime(a: int, primeMod: int) -> int:
    """

use Fermat little theorm, a^(p-2) == a^(-1) mod p
"""

assert 0 < a < primeMod
return pow(a, primeMod-2, primeMod)

if __name__ == '__main__':
    _x = inverse_mod_prime(5, 13)
    print(_x)</pre>
```

- Input: (r_0, r_1) and $r_0 > r_1$
- Output: $gcd(r_0, r_1)$ and s, t $s. t. <math>gcd(r_0, r_1) = s \cdot r_0 + t \cdot r_1$
 - Init
 - $s_0 = 1, t_0 = 0;$
 - $s_1 = 0, t_1 = 1$
 - Init i = 1,
 - Do while r_i ≠ 0 :
 - i = i + 1
 - $r_i = r_{i-2} \mod (r_{i-1})$
 - $q_{i-1} = (r_{i-2} r_i)/r_{i-1}$
 - $s_i = s_{i-2} q_{i-1} \cdot s_{i-1}$
 - $t_i = t_{i-2} q_{i-1} \cdot t_{i-1}$
 - · Return

•
$$gcd(r_0, r_1) = r_{i-1}$$

- $s = s_{i-1}$
- $t = t_{i-1}$

PART3 Application

2.3 Public key format

- · Public key format:
 - A point $P = (x_P, y_P)$ on elliptic curve $E: y^2 = x^3 + ax + b$, where x_P, y_P is 256 bits
 - Format: prefix||x||y, let $\overline{y_p}$ is the rightmost bit of y_p
 - Uncompress public key: prefix is 04||x||y
 - · Compress public key: prefix is 02 or 03
 - if y is even: 02||x
 - if y is odd: 03||x
 - Recover point P with x_P and $\overline{y_P}$ for E on F_n
 - Compute $\alpha = (x_p^3 + ax_p + b) \mod p$
 - Compute $\alpha \mod p$ square root β
 - If the rightmost bit of β is $\overline{y_p}$ then set $y_p = \beta$, else set $y_p = p \beta$

 $\begin{array}{l} x = F028892BAD7ED57D2FB57BF33081D5CFCF6F9ED3D3D7F159C2E2FFF579DC341A\\ y = 07CF33DA18BD734C600B96A72BBC4749D5141C90EC8AC328AE52DDFE2E505BDB \end{array}$

PART3 SM2 Application

- · Signature pitfalls
- SM2 signature pitfalls
- UTXO Commitment: Elliptic curve MultiSet Hash
- Private key protection via two party sign
- SM2 two party decrypt
- · Google's password leaking detection
- PSI

2.4 Deduce public key from signature

- · Recover public key from signature
 - · Send tx without attach public key, improve blockchain system
- Assume precompute info Z_A is not corresponding with public key
- $s = ((1+d_A)^{-1} \cdot (k-r \cdot d_A)) \mod n$
- $s \cdot (1 + d_A) = (k r \cdot d_A) \mod n$
- $(s+r)d_A = (k-s) \bmod n$
- $(s+r)d_AG = (k-s)G \bmod n$
- $d_A \cdot G = P_A = (s+r)^{-1}(kG sG)$
- How to compute kG
 - $(kG)_x = x_1 = (r e) \mod n$, then compute y_1
 - $e = Hash(Z_A||M)$ where Z_A is not related public key*

- · Precompute:
 - compute $Z_A = H_{256}(ENTL_A||ID_A||a||b||x_G||y_G||x_A||y_A)$
- KeyGen:
 - $P_A = d_A \cdot G$
- Sign(M):
 - $Sign_{d_A}(M, Z_A) \rightarrow (r, s)$
 - Set $\overline{M} = Z_A || M$
 - Compute $e = H_v(\overline{M})$, where the output of H_v is v
 - Generate random number $k \in [1, n-1]$
 - Compute $kG = (x_1, y_1)$
 - Compute $r = (e + x_1) \mod n$,
 - if r = 0 or r + k = n, generate random number k again
 - Compute $s = ((1+d_A)^{-1} \cdot (k-r \cdot d_A)) \mod n$
 - if s = 0, generate random number k again

3.1 SM2 signature: leaking k

- Precompute:
 - $Z_A = H_{256}(ENTL_A||ID_A||a||b||x_G||y_G||x_A||y_A)$
- Key Generation: $P_A = d_A \cdot G$, order is n
- Sign (Z_A, M) : Sign $_{d_A}(M, Z_A) \rightarrow (r, s)$
 - Set $\overline{M} = Z_A || M$,
 - $e = H_v(\overline{M})$
 - $k \leftarrow Z_n^*$, $kG = (x_1, y_1)$
 - $r = (e + x_1) \mod n$,
 - $s = ((1 + d_A)^{-1} \cdot (k r \cdot d_A)) \mod n$
 - Signature is (r,s)
- Verify (r, s) of M with P_A
 - $Z_A = H_{256}(ENTL_A||ID_A||a||b||x_G||y_G||x_A||y_A)$
 - Set $\overline{M} = Z_A || M$, $e = H_v(\overline{M})$
 - $t = (r + s) \mod n$
 - $(x_1, y_1) = sG + tP_A$
 - $R = (e + x_1) \mod n$, Verify R = r

- Compute d_A with $\sigma = (r, s)$ and k:
 - $s = ((1 + d_A)^{-1} \cdot (k r \cdot d_A)) \mod n$
 - $s(1+d_A) = (k-r \cdot d_A) \mod n$
 - $d_A = (s+r)^{-1} \cdot (k-s) \mod n$

^{*}Project: report on the application of this deduce technique in Ethereum with ECDSA

3.1 SM2 signature: reusing k

- · Precompute:
 - $Z_A = H_{2.56}(ENTL_A||ID_A||a||b||x_G||y_G||x_A||y_A)$
- Key Generation: $P_A = d_A \cdot G$, order is n
- Sign (Z_A, M) : Sign $_{d_A}(M, Z_A) \rightarrow (r, s)$
 - Set $\overline{M} = Z_A || M$,
 - $e = H_n(\overline{M})$
 - $k \leftarrow Z_n^*$, $kG = (x_1, y_1)$
 - $r = (e + x_1) \mod n$,
 - $s = ((1 + d_A)^{-1} \cdot (k r \cdot d_A)) \mod n$
 - Signature is (r, s)
- Verify (r, s) of M with P_A
 - $Z_A = H_{256}(ENTL_A||ID_A||a||b||x_G||y_G||x_A||y_A)$
 - Set $\overline{M} = Z_A || M$, $e = H_v(\overline{M})$
 - $t = (r + s) \mod n$
 - $(x_1, y_1) = sG + tP_A$
 - $R = (e + x_1) \mod n$, Verify R = r

- Signing message M_1 with d_A
 - Randomly select $k \in [1, n-1]$, kG = (x, y)
 - $r_1 = (Hash(Z_A||M_1) + x) \mod n$
 - $s_1 = ((1 + d_A)^{-1} \cdot (k r_1 \cdot d_A)) \mod n$
- Signing message M_2 with d_A
 - Reuse the same k, kG = (x, y)
 - $r_2 = (Hash(Z_A||M_2) + x) \mod n$
 - $s_2 = ((1 + d_A)^{-1} \cdot (k r_2 \cdot d_A)) \mod n$
- Recovering d_A with 2 signatures $(r_1, s_1), (r_2, s_2)$
 - $s_1(1+d_A) = (k-r_1 \cdot d_A) \mod n$
 - $s_2(1+d_A) = (k-r_2 \cdot d_A) \mod n$
 - $d_A = \frac{s_2 s_1}{s_1 s_2 + r_1 r_2} \mod n$

Schnorr two variants PART3 Application

ECDSA

- Key Gen: P = dG, n is order
- Sign(m)
 - $k \leftarrow Z_n^*, R = kG$
 - $r = R_r \mod n, r \neq 0$
 - e = hash(m)
 - $s = k^{-1}(e + dr) \mod n$
 - Signature is (r, s)
- Verify (r,s) of m with P
 - e = hash(m)
 - $w = s^{-1} \mod n$
 - $(r',s') = e \cdot wG + r \cdot wP$
 - Check if r' == r
 - · Holds for correct sig since
 - $es^{-1}G + rs^{-1}P = s^{-1}(eG + rP) =$
 - $k(e + dr)^{-1}(e + dr)G = kG = R$

- SM2
- Precompute:

3.1 Signatures – ECDSA, SM2, Schnorr

- $Z_A = H_{256}(ENTL_A||ID_A||a||b||x_G||y_G||x_A||y_A)$
- Key Generation: $P_A = d_A \cdot G$, order is n
- $Sign(Z_A, M): Sign_{d_A}(M, Z_A) \rightarrow (r, s)$
- Set $\overline{M} = Z_A || M$,
- e = H_n(M)
- $k \leftarrow Z_n^*$, $kG = (x_1, y_1)$
- $r = (e + x_1) \mod n$,
- $s = ((1 + d_A)^{-1} \cdot (k r \cdot d_A)) \mod n$
- Signature is (r,s)
- Verify (r, s) of M with P_A
 - $Z_A = H_{256}(ENTL_A||ID_A||a||b||x_G||y_G||x_A||y_A)$
 - Set $\overline{M} = Z_4 || M$, $e = H_n(\overline{M})$
 - $t = (r + s) \mod n$
 - $(x_1, y_1) = sG + tP_A$
 - $R = (e + x_1) \mod n$, Verify R = r

Key Generation

• P = dG

Sign on given message M

- randomly k, let R = kG
- e = hash(R||M)
- $s = k + ed \mod n$
- Signature is: (R, s)

Verify (R,s) of M with P

- Check sG vs R + eP
- sG = (k + ed)G = kG + edG = R + eP

Key Generation

• P = dG

Sign on given message M

- randomly k, let R = kG
- e = hash(R||M)• $s = r - ex \mod n$
- Signature is: (e, s)

Verify (e, s) of M with P

- Compute R' = sG + eP
- Check hash(R'||M) vs e
- R' = (r ed)G + eP = rG

3.1 SM2 signature: reusing k by different users

- · Precompute:
 - $Z_A = H_{256}(ENTL_A||ID_A||a||b||x_G||y_G||x_A||y_A)$
- Key Generation: $P_A = d_A \cdot G$, order is n
- $Sign(Z_A, M): Sign_{d_A}(M, Z_A) \rightarrow (r, s)$
 - Set $\overline{M} = Z_A || M$,
 - $e = H_n(\overline{M})$
 - $k \leftarrow Z_n^*$, $kG = (x_1, y_1)$
 - $r = (e + x_1) \mod n$,
 - $s = ((1 + d_A)^{-1} \cdot (k r \cdot d_A)) \mod n$
 - Signature is (r,s)
- Verify (r, s) of M with P_A
 - $Z_A = H_{256}(ENTL_A||ID_A||a||b||x_G||y_G||x_A||y_A)$
 - Set $\overline{M} = Z_A || M$, $e = H_n(\overline{M})$
 - $t = (r + s) \mod n$
 - $(x_1, y_1) = sG + tP_A$
 - $R = (e + x_1) \mod n$, Verify R = r

- Alice signed message M_1 with d_A , $\sigma_A = (r_1, s_1)$
 - Randomly select $k \in [1, n-1]$, kG = (x, y)
 - $r_1 = (Hash(Z_A||M_1) + x) \mod n$
 - $s_1 = ((1 + d_A)^{-1} \cdot (k r_1 \cdot d_A)) \mod n$
- Bob signed message M_2 with d_B , $\sigma_B = (r_2, s_2)$
 - Reuse the same k, kG = (x, y)
 - $r_2 = (Hash(Z_R||M_2) + x) \mod n$
 - $s_2 = ((1 + d_B)^{-1} \cdot (k r_2 \cdot d_B)) \mod n$
- · Alice can deduce Bob secret key
 - $d_B = \frac{k s_2}{s_2 + r_2} \bmod n$
- · Bob can deduce Alice secret key
 - $d_A = \frac{k-s_1}{s_1+r_1} \mod n$

Project 5+: impl sm2 with RFC6979

PART3 Application

3.2 SM2 signature: same d and k with ECDSA

- ECDSA signing with private key d
 - Randomly select k. R = kG = (x, y)
 - $e_1 = hash(m)$
 - $r_1 = x \mod n, s_1 = (e_1 + r_1 d)k^{-1} \mod n$
 - Signature (r_1, s_1)
- SM2 signing with private key d
 - Reuse the same k as ECDSA, (x, y) = kG
 - $e_2 = h(Z_A || m)$
 - $r_2 = (e_2 + x) \mod n$
 - $s_2 = (1+d)^{-1} \cdot (k-r_2d) \mod n$
 - Signature (r_2, s_2)
- With the two sigs, private key d can be recovered:
 - $d \cdot r_1 = ks_1 e_1 \mod n$

 - $d \cdot (s_2 + r_2) = k s_2 \mod n$ • $d = \frac{s_1 s_2 - e_1}{(r_1 - s_1 s_2 - s_1 r_2)} \mod n$

3.1 Signatures pitfalls summary

pitfalls	ECDSA	Schnorr	SM2-sig
Leaking k leads to leaking of d	✓	✓	✓
Reusing k leads to leaking of d	✓	✓	✓
Two users, using k leads to leaking of d , that is they can deduce each other's d	✓ RFC 6979	✓ RFC 6979	✓
Malleability, e.g. (r,s) and $(r,-s)$ are both valid signatures, lead to blockchain network split	✓	✓	$r = (e + x_1) \bmod n$ $e = Hash(Z_A M)$
Ambiguity of DER encode could lead to blockchain network split	✓	✓	
One can forge signature if the verification does not check m	✓	✓	✓
Same d and k with ECDSA, leads to leaking of d	✓	✓	✓

Project 5: verify the above pitfalls with proof-of-concept code with SM2 (ECDSA & Schnorr are optional)

PART3 Application

3.5 SM2 two-party sign

- Public key: $P = [(d_1d_2)^{-1} 1]G$
- Private key: $d = (d_1d_2)^{-1} 1$
- $(k_1k_3 + k_2)G = (x_1, y_1)$
- $r = (x_1 + e) \mod n$
- $s = (1+d)^{-1} \cdot ((k_1k_3 + k_2) r \cdot d) \mod n$

- (1) Generate sub private key $d_1 \in [1, n-1]$,
- (1) Generate sub private key $d_2 \in [1, n-1]$,
- compute $P_1 = d_1^{-1} \cdot G$

(2) Generate shared public key: compute $P = d_2^{-1} \cdot P_1 - G_1$ publish public key P

- (3) Set Z to be identifier for both parties, message is M
- Compute M' = Z||M, e = Hash(M')• Randomly generate $k_1 \in [1, n-1]$, compute $Q_1 = k_1 Q_2$
- (4) Generate partial signature r:
- - Randomly generate $k_2 \in [1, n-1]$, compute $Q_2 = k_2 G$
 - Randomly generate $k_3 \in [1, n-1]$, compute $k_3Q_1 + Q_2 = (x_1, y_1)$
 - Compute $r = x_1 + e \mod n$ $(r \neq 0)$

(5) Generate signature $\sigma = (r, s)$

- Compute $s_2 = d_2 \cdot k_3 \mod n$, • Compute $s_3 = d_2(r + k_2) \mod n$

- Compute $s = (d_1 * k_1) * s_2 + d_1 * s_3 r \mod n$
- If $s \neq 0$ or $s \neq n-r$, output signature $\sigma = (r,s)$
- Project 5: implement sm2 2P sign with real network communication

3.3 UTXO Commitment: Elliptic curve MultiSet Hash

- · Homomorphic, or incremental, multiset hash function
 - hash({a}) + hash({b}) = hash({a,b})
- Basic idea: hash each element to an EC point (try and increment)
 - · An empty set maps to the infinity point of EC
- Combine/add/remove elements → Points Add of corr. EC Point
- · The order of the elements in the multiset does not matter
- · Duplicate elements are possible, {a} and {a, a} have different digest
- To update the digest of a multiset, only needs to compute the difference
- Can be constructed on any elliptic curve
- · Collision resistant relies on hardness of ECDLP
 - · The same security assumption as SM2/ECDSA sign/verify
 - · Need more eyes to investigate the security proof of ECMH (maybe worry too much)
- · Gains: fast node synchronization, no need to start from the beginning
- · Still: you cannot prove to others that you own some Bitcoin efficiently

2 463a.. → 3bc2.. — find Y → (3bc2..,b180...

3.6 SM2 two-party decrypt

- Public key: $P = [(d_1d_2)^{-1} 1]G$
- Private key: $d = (d_1d_2)^{-1} 1$

- (1) Generate sub private key $d_1 \in [1, n-1]$,
- (2) get ciphertext $C = C_1 ||C_2||C_3$
- Check $C_1 \neq 0$
- Compute $T_1 = d_1^{-1} \cdot C_1$
- (4) Recover plaintext M'
- Compute $T_2 C_1 = (x_2, y_2) = [(d_1 d_2)^{-1} 1] \cdot C_1 = kP$
- Compute $t = KDF(x_2||y_2, klen)$
- Compute $M'' = C_2 \oplus t$
- Compute $u = Hash(x_2||M''||y_2)$
- If u = C₃, output M"

*Project: implement sm2 2P decrypt with real network communication

PART3 Application

- $C_1 = kG = (x_1, y_1)$ where $k \in [1, n-1]$ • $kP = (x_2, y_2)$
- $t = KDF(x_2||y_2, klen)$
- C₂ = M⊕t
- $C_3 = H(x_2||M||y_2)$

(1) Generate sub private key $d_2 \in [1, n-1]$

(3) compute $T_2 = d_2^{-1} \cdot T_1$.

^{*}Project: Implement the above ECMH scheme

3.7 Google Password Checkup

Username and password detection

*Project: PoC impl of the scheme, or do implement analysis by Google

 $Google\ server\ sk=b$

• Data records: $(userName, password) \rightarrow (u_i, p_i)$

• k_i is the first two bytes of h_i , namely $k_i = h_i [:2]$

• Divide the table into 2^{16} sets according to the key k_i (2 bytes)

Create key-value table (1TB): (k_i, v_i)

compute h_i = Argon2(u_i, p_i)

PART3 Application

(2) User input name and password: (u, p)

- Client generate ephemeral secret key: $sk_c = a$
- Client compute key-value: (k, v)
 - compute h = Argon2(u, p)
 - k = h[:2]
 - v = h^a

(4) Username and password detection

- Compute $(h^{ab})^{a^{-1}} = h^b$
- Check whether h^b exists in $\mathcal S$

(k, v)

h^{ab}, data set S

compute h^{ab}

Find set S according to key k

(1) Process data info

(3) Find the data set

Conclusion: The client knows whether its userName and password are leaked, but cannot obtain any other information about the set S returned by the server

THANKS QUESTIONS TIME

