Задачи по алгебраическим структурам. 3

Всюду далее G — группа. Также используются следующие обозначения: \mathbb{P} — множество простых чисел;

 $a_l(u)$, где $l \in \mathbb{N}$ и $u \in S_n$, — число циклов длины l в цикловой записи перестановки u; C_n , где $n \in \mathbb{N}$, — циклическая группа порядка n.

Вариант 1

- 1.1 Пусть $n = |G| < \infty$, ν биекция между множествами G и $\{0, \ldots, n-1\}$. Определим граф Γ следующим образом: множество его вершин есть $(G \times \{0\}) \cup (G \times \{1\})$; вершины (x,0) и (y,1), где $x,y \in G$, соединены ребром с кратностью $\nu(x^{-1}y)$; каждая вершина из множества $G \times \{1\}$ имеет одинарную петлю; других ребер в графе Γ нет. Докажите, что группа автоморфизмов графа Γ изоморфна группе G.
- 1.2 Пусть $H \leq G$, $Z(H) = \{1\}$ и все автоморфизмы группы H внутренние. Докажите, что существует такая подгруппа H' группы G, что $G \cong H \times H'$.
- 1.3 Докажите, что для всех $n \in \mathbb{N} \cup \{0\}$ и $p \in \mathbb{P}$ выполнено $\binom{n}{p} \equiv \left\lfloor \frac{n}{p} \right\rfloor \pmod{p}$.
- 1.4 Пусть $l,n\in\mathbb{N}$ и $l\leq n$. Докажите, что $\frac{1}{n!}\sum_{u\in\mathbf{S}_n}a_l(u)=\frac{1}{l}$.
- 1.5 Пусть $l \in \mathbb{N}$ и $t \in \mathbb{N} \cup \{0\}$. Докажите, что $\lim_{n \to \infty} \left(\frac{1}{n!} | \{u \in S_n \mid a_l(u) = t\}| \right) = \frac{e^{-1/l}}{l^t t!}$.
- 1.6 Пусть группа G действует на множестве $X, x, y \in X$ и Gx = Gy. Опишите группу $\operatorname{St}_G(y)$ и множество $\{g \in G \mid gx = y\}$ в терминах группы $\operatorname{St}_G(x)$.
- 1.7 Опишите все автоморфизмы поля ℝ.
- 1.8 Пусть K поле. Докажите, что кольцо K[[X]] евклидово; опишите все обратимые и неразложимые элементы этого кольца.
- 1.9 Пусть $|G| < \infty$. Докажите, что если $p \in \mathbb{Z}[G]$ и $p^2 = p$, то p = 0 или p = 1.
- 1.10 Докажите, что если $Aut(G) = \{id\}$, то $|G| \le 2$.
- 1.11 Пусть K алгебраически замкнутое поле, $n \in \mathbb{N}$, char $K \nmid n$. Докажите, что $K[\mathcal{C}_n] \cong K^n$.
- 1.12 Пусть $n \in \mathbb{N} \cup \{0\}$; обозначим через q_n число 2^{2^n} и через K_n поле \mathbb{F}_{q_n} . Докажите, что для любого неприводимого многочлена $f = X^2 + aX + b \in K_n[X]$ и любого корня x многочлена f в некотором расширении поля K_n выполнено $x^{q_n+1} = b$.

Вариант 2

- 2.1 Пусть $|G| < \infty$, $H \le G$, $\gcd(|H|, |G:H|) = 1$, $F \le G$ и |F| = |H|. Докажите, что F = H.
- 2.2 Докажите, что любая собственная подгруппа группы Q имеет бесконечный индекс.
- 2.3 Опишите множество таких чисел $n \in \mathbb{N} \cup \{0\}$, что существует группа, в которой количество подгрупп индекса 2 равно n.
- 2.4 Обозначим через T множество $\{x^2+2y^2\mid x,y\in\mathbb{Z}\}$. Докажите, что $3T=T\cap 3\mathbb{Z}$.

- 2.5 Пусть X и Y множества. Докажите, что отображение, действующее из $S(X) \times Y^X$ в Y^X по правилу $(u,f) \mapsto f \circ u^{-1}$ для любых $u \in S(X)$ и $f \in Y^X$, задает действие группы S(X) на множестве Y^X ; опишите орбиты данного действия, группы $St_{S(X)}(f)$ для любых $f \in Y^X$ и множества $Fix_{Y^X}(u)$ для любых $u \in S(X)$.
- 2.6 Пусть F и H группы, $K \leq F \times H$ и $K \cap \{(f,1) \mid f \in F\} = K \cap \{(1,h) \mid h \in H\} = \{(1,1)\}$. Докажите, что $K \leq \mathbf{Z}(F \times H)$.
- 2.7 Докажите, что если группа Aut(G) циклическая, то группа G абелева.

Вариант 3

- 3.1 Пусть $H \leq G$. Докажите, что существует единственная нормальная подгруппа F группы G, содержащаяся в подгруппе H и обладающая свойством: если E нормальная подгруппа группы G, содержащаяся в подгруппе H, то E содержится в F.
- 3.2 Пусть $|G| < \infty$, p минимальный простой делитель числа |G|, H < G и |G:H| = p. Рассмотрите действие сдвигами группы G на множестве G/H и докажите, что $H \triangleleft G$.
- 3.3 Пусть группа A абелева, $B \leqslant A$, $n \in \mathbb{N} \cup \{0\}$, $A/B \cong \mathbb{Z}^n$. Докажите, что существует такая подгруппа B' группы A, что $A \cong B \oplus B'$.
- 3.4 Пусть $n \in \mathbb{N} \setminus \{1\}$. Докажите, что $|\{d \in \mathbb{N} \mid d \mid n\}| \ge \frac{1}{n} (\varphi(n) + \sum_{d \in \mathbb{N}, d \mid n} d)$, причем в данном неравенстве достигается равенство, если и только если $n \in \mathbb{P}$.
- 3.5 Пусть X и Y множества. Докажите, что отображение, действующее из $S(Y) \times Y^X$ в Y^X по правилу $(u,f) \mapsto u \circ f$ для любых $u \in S(Y)$ и $f \in Y^X$, задает действие группы S(Y) на множестве Y^X ; опишите орбиты данного действия, группы $\operatorname{St}_{S(Y)}(f)$ для любых $f \in Y^X$ и множества $\operatorname{Fix}_{Y^X}(u)$ для любых $u \in S(Y)$.
- 3.6 Докажите, что если $[G,G] \leq {\rm Z}(G)$, то для всех $x,y,z \in G$ выполнено [xy,z] = [x,z][y,z].
- 3.7 Пусть $p \in \mathbb{P}$, G конечная p-группа, $H \subseteq G$ и |H| = p. Докажите, что $H \subseteq \mathrm{Z}(G)$.

Вариант 4

- 4.1 Докажите, что $G \cong \mathbb{C}_{p^n}$, где $p \in \mathbb{P}$ и $n \in \mathbb{N}$, тогда и только тогда, когда существует собственная подгруппа группы G, содержащая все собственные подгруппы группы G.
- 4.2 Пусть X множество и X^* моноид слов, порожденный множеством X. Докажите, что для любого моноида M и отображения $t\colon X\to M$ существует единственный гомоморфизм моноидов $f\colon X^*\to M$, обладающий свойством: f(x)=t(x) для всех $x\in X$ (гомоморфизм моноидов определяется аналогично гомоморфизму групп).
- 4.3 Докажите, что $G \cong \mathbb{C}_2^n$, где $n \in \mathbb{N} \cup \{0\}$, тогда и только тогда, когда все неединичные элементы группы G имеют порядок 2.
- 4.4 Докажите, что если $n \in \mathbb{N}$ и $n \mid (2^n 1)$, то n = 1.
- 4.5 Пусть $n \in \mathbb{N} \setminus \{1,2\}$. Докажите, что $\frac{1}{n!} \sum_{u \in \mathcal{S}_n} a_1(u)^3 = 5$ и $\frac{1}{n!} \sum_{u \in \mathcal{S}_n} a_1(u) a_2(u) = \frac{1}{2}$.
- 4.6 Докажите, что если $Z(Aut(G)) \neq \{id\}$, то $Z(G) \neq \{1\}$.
- 4.7 Докажите, что если группа ${\rm Aut}(G)$ абелева, то $[G,G]\leq {\rm Z}(G)$.

Вариант 5

- 5.1 Пусть $g \in G$; определим отображение $\rho(g) \colon G \to G$ по правилу $(\rho(g))(x) = gx$ для любых $x \in G$. Докажите, что $\rho(g) \in S(G)$; опишите цикловый тип перестановки $\rho(g)$ в том случае, когда $|G| < \infty$.
- 5.2 Пусть G циклическая группа, $F, H \leq G$ и $G/F \cong G/H$. Докажите, что F = H.
- 5.3 Опишите все подгруппы группы $(\mathbb{Z}/p\mathbb{Z})^2$ для всех $p \in \mathbb{P}$.
- 5.4 Пусть $p,q\in\mathbb{P}$ и $p\neq q$. Докажите, что $p^{q-1}+q^{p-1}\equiv 1\pmod{pq}$.
- 5.5 Докажите, что для всех $n \in \mathbb{N} \setminus \{1, 2, 3\}$ выполнено $\frac{1}{n!} \sum_{u \in S_n} a_1(u)^4 = 15$.
- 5.6 Докажите, что $Aut(C_2^2) \cong S_3$.
- 5.7 Пусть $H \leq G$ и $\forall f \in \operatorname{Aut}(G) \ (f(H) = H)$. Докажите, что $H \leq G$.

Вариант 6

- 6.1 Пусть $f: G \to K$ гомоморфизм групп и $H \subseteq K$. Докажите, что $f^{-1}(H) \subseteq G$.
- 6.2 Пусть $\varnothing \subset X \subseteq G$. Докажите, что X класс смежности по некоторой подгруппе группы G, если и только если $\forall x, y, z \in X \ (xy^{-1}z \in X)$.
- 6.3 Обозначим через S_{∞} подмножество $\{u \in S(\mathbb{N}) \mid |\{x \in \mathbb{N} \mid u(x) \neq x\}| < \infty\}$ группы $S(\mathbb{N})$. Докажите, что $S_{\infty} \triangleleft S(\mathbb{N})$.
- 6.4 Пусть $m, n \in \mathbb{N}$ и $d = \gcd(m, n)$. Докажите, что $\frac{\varphi(d)}{d} \varphi(mn) = \varphi(m)\varphi(n)$.
- 6.5 Докажите, что для всех $n\in\mathbb{N}\setminus\{1\}$ выполнено $\frac{1}{n!}\sum_{u\in\mathrm{S}_n}a_1(u)^2=2.$
- 6.6 Докажите, что отображение, действующее из S_3 в S_3 по правилу $u \mapsto u^5$ для всех $u \in S_3$, является биекцией, но не является автоморфизмом группы S_3 .
- 6.7 Докажите, что если $H = \operatorname{Z}(G)$ или H = [G, G], то $\forall f \in \operatorname{Aut}(G) \ (f(H) = H)$.