Curvas Elípticas

Emanuel Nicolás Herrador

Facultad de Matemática, Astronomía, Física y Computación Universidad Nacional de Córdoba

21 de Octubre 2025

UNC

Índice

- Curvas elípticas en un cuerpo finito
 - Definición y modelos
 - Operaciones
- Curvas elípticas en criptografía (ECC)
 - Definiciones
 - DL y curvas inseguras
 - Curvas específicas a usar
 - Ejemplos de uso

Definición (Forma general)

Una curva elíptica (EC) es definida en un cuerpo $\mathbb K$ con la ecuación:

$$E/\mathbb{K}: y^2 + a_1xy + a_3y = x^3 + a_2x^2 + a_4x + a_6$$

donde $a_i \in \mathbb{K}$ (i = 1, 2, 3, 4, 6) y tal que $\Delta \neq 0$ (discriminante).

Definición (Forma general)

Una curva elíptica (EC) es definida en un cuerpo $\mathbb K$ con la ecuación:

$$E/\mathbb{K}: y^2 + a_1xy + a_3y = x^3 + a_2x^2 + a_4x + a_6$$

donde $a_i \in \mathbb{K}$ (i = 1, 2, 3, 4, 6) y tal que $\Delta \neq 0$ (discriminante).

Hay muchos modelos para representar ECs con funciones más sencillas.

Hay muchos modelos para representar ECs con funciones más sencillas. Algunos de ellos son:

• Weierstrass: $y^2 = x^3 + ax + b \rightarrow Modelo más general$

- Weierstrass: $y^2 = x^3 + ax + b \rightarrow Modelo más general$
- Montgomery: $by^2 = x^3 + ax^2 + x \rightarrow \text{Puntos de orden 2}$

- Weierstrass: $y^2 = x^3 + ax + b \rightarrow Modelo más general$
- Montgomery: $by^2 = x^3 + ax^2 + x \rightarrow \text{Puntos de orden 2}$
- Twisted Edwards: $ax^2 + y^2 = 1 + dx^2y^2 \rightarrow \text{Puntos de orden 4}$

- Weierstrass: $y^2 = x^3 + ax + b \rightarrow Modelo más general$
- Montgomery: $by^2 = x^3 + ax^2 + x \rightarrow \text{Puntos de orden 2}$
- Twisted Edwards: $ax^2 + y^2 = 1 + dx^2y^2 \rightarrow \text{Puntos de orden 4}$
- Twisted Hessian
- Jacobi intersections

Hay muchos modelos para representar ECs con funciones más sencillas. Algunos de ellos son:

- Weierstrass: $y^2 = x^3 + ax + b \rightarrow \text{Modelo más general}$
- Montgomery: $by^2 = x^3 + ax^2 + x \rightarrow \text{Puntos de orden 2}$
- Twisted Edwards: $ax^2 + y^2 = 1 + dx^2y^2 \rightarrow \text{Puntos de orden 4}$
- Twisted Hessian
- Jacobi intersections

Nota

Montgomery \leftrightarrow Weierstrass con cambio de variable $u:=bx-\frac{a}{3}$ y v:=by.

Definición (Punto en la curva)

Sea E/\mathbb{F}_p EC y $e\geq 1$, decimos que (x_1,y_1) con $x_1,y_1\in \mathbb{F}_{p^e}$ es un punto en la curva E si (x_1,y_1) satisface la ecuación de E.

Definición (Punto en la curva)

Sea E/\mathbb{F}_p EC y $e \ge 1$, decimos que (x_1, y_1) con $x_1, y_1 \in \mathbb{F}_{p^e}$ es un punto en la curva E si (x_1, y_1) satisface la ecuación de E.

ullet Se incluye un punto especial ${\cal O}$ llamado punto al infinito.

Definición (Punto en la curva)

Sea E/\mathbb{F}_p EC y $e \ge 1$, decimos que (x_1, y_1) con $x_1, y_1 \in \mathbb{F}_{p^e}$ es un punto en la curva E si (x_1, y_1) satisface la ecuación de E.

- ullet Se incluye un punto especial ${\cal O}$ llamado punto al infinito.
- $E(\mathbb{F}_{p^e})$ denota el conjunto de puntos de E sobre \mathbb{F}_{p^e} incluyendo \mathcal{O} .

Definición (Punto en la curva)

Sea E/\mathbb{F}_p EC y $e \ge 1$, decimos que (x_1, y_1) con $x_1, y_1 \in \mathbb{F}_{p^e}$ es un punto en la curva E si (x_1, y_1) satisface la ecuación de E.

- ullet Se incluye un punto especial ${\cal O}$ llamado punto al infinito.
- $E(\mathbb{F}_{p^e})$ denota el conjunto de puntos de E sobre \mathbb{F}_{p^e} incluyendo \mathcal{O} .
- El número de puntos de una EC es cercano a $p^e + 1$:

Teorema (Hasse)

 $|E(\mathbb{F}_{p^e})| = p^e + 1 - t$ para algún entero t tal que $|t| \leq 2\sqrt{p^e}$.

Supongamos $P, Q, R \in E(\mathbb{F}_{p^e})$.

ullet Denotamos la suma como oxplus

- Denotamos la suma como ⊞
- La identidad es $\mathcal{O} \to \forall P, P \boxplus \mathcal{O} = \mathcal{O} \boxplus P = P$.

- ullet Denotamos la suma como oxplus
- La identidad es $\mathcal{O} \to \forall P, P \boxplus \mathcal{O} = \mathcal{O} \boxplus P = P$.
- Supongamos $P \neq Q$ y queremos P + Q = R. Gráficamente la idea es:
 - 1 Dibujar la línea que cruza P y Q.
 - ② Denotar -R al tercer punto intersecado en la curva por la línea
 - **3** Trazar la recta vertical en -R, de tal modo que el punto intersecado en la curva es R.

- Denotamos la suma como ⊞
- La identidad es $\mathcal{O} \to \forall P, P \boxplus \mathcal{O} = \mathcal{O} \boxplus P = P$.
- Supongamos $P \neq Q$ y queremos P + Q = R. Gráficamente la idea es:
 - 1 Dibujar la línea que cruza P y Q.
 - ② Denotar -R al tercer punto intersecado en la curva por la línea
 - **3** Trazar la recta vertical en -R, de tal modo que el punto intersecado en la curva es R.
- Si P = Q, el doblado de puntos es el mismo proceso pero trazando la tangente a P.

- Denotamos la suma como ⊞
- La identidad es $\mathcal{O} \to \forall P, P \boxplus \mathcal{O} = \mathcal{O} \boxplus P = P$.

Supongamos $P, Q, R \in E(\mathbb{F}_{p^e})$.

- Denotamos la suma como ⊞
- La identidad es $\mathcal{O} \to \forall P, P \boxplus \mathcal{O} = \mathcal{O} \boxplus P = P$.

Nota

Es un grupo abeliano porque cada punto tiene un inverso aditivo, la suma es asociativa y también conmutativa.

Operaciones: Multiplicación por escalar

Supongamos
$$P \in E(\mathbb{F}_{p^e})$$

• Denotamos $kP := P \boxplus \cdots \boxplus P$

Operaciones: Multiplicación por escalar

- Denotamos $kP := P \boxplus \cdots \boxplus P$
- Se puede computar en $O(2 \log_2 k)$ operaciones de grupo usando los algoritmos de Montgomery o de Joye.

Operaciones: Multiplicación por escalar

Supongamos $P \in E(\mathbb{F}_{p^e})$

• Denotamos
$$kP := P \oplus \cdots \oplus P$$

• Se puede computar en $O(2 \log_2 k)$ operaciones de grupo usando los algoritmos de Montgomery o de Joye.

Algoritmo 1: Idea similar a binexp

return kP

Índice

- Curvas elípticas en un cuerpo finito
 - Definición y modelos
 - Operaciones
- 2 Curvas elípticas en criptografía (ECC)
 - Definiciones
 - DL y curvas inseguras
 - Curvas específicas a usar
 - Ejemplos de uso

EC en criptografía

Sea E/\mathbb{F}_p una EC, consideraremos:

• $E(\mathbb{F}_p)$ cícliclo, i.e., generado por algún punto $P \in E(\mathbb{F}_p)$.

EC en criptografía

Sea E/\mathbb{F}_p una EC, consideraremos:

- $E(\mathbb{F}_p)$ cícliclo, i.e., generado por algún punto $P \in E(\mathbb{F}_p)$.
- Asunción de que los siguientes problemas son difíciles en el grupo:
 - Logaritmo discreto (DL)
 - Computational Diffie-Hellman (CDH)
 - Decision Diffie-Hellman (DDH)

EC en criptografía

Sea E/\mathbb{F}_p una EC, consideraremos:

- $E(\mathbb{F}_p)$ cícliclo, i.e., generado por algún punto $P \in E(\mathbb{F}_p)$.
- Asunción de que los siguientes problemas son difíciles en el grupo:
 - Logaritmo discreto (DL)
 - Computational Diffie-Hellman (CDH)
 - Decision Diffie-Hellman (DDH)
- Además de otros usos en esquemas de pairings o isogenies, pueden aplicarse en los criptosistemas vistos anteriormente con grupos finitos.

Definición (Problema DL)

Sea $P \in E(\mathbb{F}_p)$ de orden q (i.e., tal que $qP = \mathcal{O}$). Son dados (P,q,Q) donde $Q := \alpha P$ para algún $\alpha \in \mathbb{Z}_q$ y se pretende computar α , el logaritmo discreto de Q base P en $E(\mathbb{F}_q)$.

• El algoritmo para romper DL en un grupo cíclico de orden q usa al menos $O(\sqrt{q})$ operaciones de grupo. En el caso de ECC, tenemos $q:=|E(\mathbb{F}_p)|$.

- El algoritmo para romper DL en un grupo cíclico de orden q usa al menos $O(\sqrt{q})$ operaciones de grupo. En el caso de ECC, tenemos $q:=|E(\mathbb{F}_p)|$.
- No todas las curvas son seguras:
 - Si $|E(\mathbb{F}_p)| = q_1 \cdot \dots \cdot q_n$ con q_i primos tal que $q_i \leq q_{\max}$, entonces existe un algoritmo que resuelve DL en $\tilde{O}(\sqrt{q_{\max}})$.
 - Si $|E(\mathbb{F}_p)| = p$ entonces DL es resoluble en tiempo polinomial.

- El algoritmo para romper DL en un grupo cíclico de orden q usa al menos $O(\sqrt{q})$ operaciones de grupo. En el caso de ECC, tenemos $q:=|E(\mathbb{F}_p)|$.
- No todas las curvas son seguras:
 - Si $|E(\mathbb{F}_p)| = q_1 \cdot \dots \cdot q_n$ con q_i primos tal que $q_i \leq q_{\max}$, entonces existe un algoritmo que resuelve DL en $\tilde{O}(\sqrt{q_{\max}})$.
 - Si $|E(\mathbb{F}_p)|=p$ entonces DL es resoluble en tiempo polinomial.
- En particular para E/\mathbb{F}_{p^e} , existe un algoritmo que lo resuelve en un tiempo conjeturado de $\tilde{O}\left(p^{2-\frac{2}{e}}\right)$. Por ello, se suele tomar p suficientemente grande para hacerlo impráctico $(p \geq 2^{256}$ es suficiente).

secp256r1

- Conocida como Curva P256 en el estándar de NIST
- Primo $p_r := 2^{256} 2^{224} + 2^{192} + 2^{96} 1$
- Forma de Weierstrass $y^2 = x^3 3x + b$ con b de 255-bits dado por

elegido de un algoritmo determinístico público con una constante S (seed) dada.

- $|E(\mathbb{F}_{p_r})|$ es primo cercano a p_r
- Se especifica un punto G_r que genera el grupo $E(\mathbb{F}_{p_r})$

secp256r1

- Conocida como Curva P256 en el estándar de NIST
- Primo $p_r := 2^{256} 2^{224} + 2^{192} + 2^{96} 1$
- Forma de Weierstrass $y^2 = x^3 3x + b$ con b de 255-bits dado por

elegido de un algoritmo determinístico público con una constante S (seed) dada.

- $|E(\mathbb{F}_{p_r})|$ es primo cercano a p_r
- Se especifica un punto G_r que genera el grupo $E(\mathbb{F}_{p_r})$

Nota

Si una organización elige/setea el S, estamos confiando de que no lo haga de modo tal que sea fácil para ellos romper DL el los grupos generados.

secp256k1

- Primo $p_k := 2^{256} 2^{32} 2^9 2^8 2^7 2^6 2^4 1$
- Forma de Weierstrass $y^2 = x^3 + 7$
- $|E(\mathbb{F}_{p_k})|$ primo cercano a p_k
- Se especifica un punto G_k que genera a $E(\mathbb{F}_{p_k})$

secp256k1

- Es una curva de Koblitz, por lo que $\exists \omega \neq 1 \in \mathbb{F}_p : \omega^3 = 1$.
- Sea el mapeo $\phi: \mathbb{F}_p^2 \to \mathbb{F}_p^2$ dado por $\phi(x,y) := (\omega x, y)$, entonces:
 - Es un mapeo de $E(\mathbb{F}_p)$ en $E(\mathbb{F}_p)$, i.e., homomorfismo de grupo.
 - Luego, $\exists \lambda \in \mathbb{Z}_q : \forall P \in E(\mathbb{F}_p), \phi(P) = \lambda \cdot P$. Este es la raíz no trival en $1 + \lambda + \lambda^2 = 0$.
- Dado $lpha \in \mathbb{Z}_q$, podemos encontrar $| au_i| \leq 2q^{\frac{1}{3}}$ tal que

$$\alpha = \tau_0 + \tau_1 \lambda + \tau_2 \lambda^2$$

• Luego, αP se computa como $\tau_0 \cdot P + \tau_1 \cdot \phi(P) + \tau_2 \cdot \phi^2(P)$, reduciendo su complejidad.

Definición (Twist)

Sean E/\mathbb{F}_p una EC y $c\in\mathbb{F}_p$ no residuo cuadrático. Entonces si la curva E es $y^2=x^3+ax+b$, luego su twist/torcedura \tilde{E} es $cy^2=x^3+ax+b$.

Definición (Twist)

Sean E/\mathbb{F}_p una EC y $c\in\mathbb{F}_p$ no residuo cuadrático. Entonces si la curva E es $y^2=x^3+ax+b$, luego su twist/torcedura \tilde{E} es $cy^2=x^3+ax+b$.

Definición (Security twist)

Una curva E/\mathbb{F}_p es *twist secure* si DL es difícil en $E(\mathbb{F}_q)$ y en $\tilde{E}(\mathbb{F}_q)$.

Definición (Twist)

Sean E/\mathbb{F}_p una EC y $c\in\mathbb{F}_p$ no residuo cuadrático. Entonces si la curva E es $y^2=x^3+ax+b$, luego su twist/torcedura \tilde{E} es $cy^2=x^3+ax+b$.

Definición (Security twist)

Una curva E/\mathbb{F}_p es *twist secure* si DL es difícil en $E(\mathbb{F}_q)$ y en $\tilde{E}(\mathbb{F}_q)$.

Ejemplo de importancia: Supongamos oblivious PRF donde Bob tiene SK $\alpha \in \mathbb{Z}_q$ y dado $P \in E(\mathbb{F}_p)$ retorna αP . Por optimización, a veces solo se pide P_x por lo que no se corrobora pertenencia. Luego, podemos considerar $P \in \tilde{E}(\mathbb{F}_q)$ y como DL es fácil en el twist, obtenemos α .

Demo: Twist and shout (RCSC 2023 - Noruega)

- Diseñada para soportar operaciones de grupo optimizadas y ser twist secure
- Primo $p := 2^{255} 19$
- Forma de Montgomery: $y^2 = x^3 + 486662 \cdot x^2 + x$
- El cofactor de la curva es 8 (i.e., $|E(\mathbb{F}_p)| = 8k$ con k primo)
- Generada por $P = (x_1, y_1)$ con $x_1 = 9$

Ejemplos de uso

Algunos esquemas de ejemplo donde se usan las EC son:

- ECDH: variante de Diffie-Hellman
- ECDSA: variante de DSA (firma)

La ventaja de EC por sobre esquemas basados en RSA o factorización es que obtiene la misma seguridad con claves más cortas.