HOMEWORK 3 Due November 5

You can write your answers in English or in French, choose what works best for you.

Exercises 1 to 4 go together, exercise 5 is independent.

EXERCICE 1. — Let $f \in M_k(\Gamma_1(N), \chi)$ be a normalized Hecke eigenform for $\mathbf{T}_1^0(N)$, for some Dirichlet character χ modulo N. Let $f(z) = \sum_n a_n q^n$ be the q-expansion of f. Show that for all n prime to N, we have $\overline{a_n} = \overline{\chi(n)}a_n$.

EXERCICE 2. — Let w_N be the matrix $\begin{pmatrix} 0 & -1 \\ N & 0 \end{pmatrix}$. If $f \in M_k(\Gamma_1(N))$, we set $w_N f = f|_k w_N$. Recall that $w_N f \in M_k(\Gamma_1(N))$.

- **1.** Show that if $f \in M_k(\Gamma_1(N), \chi)$ then $w_N f \in M_k(\Gamma_1(N), \overline{\chi})$, where $\overline{\chi}$ is the character $a \mapsto \overline{\chi(a)}$.
- **2.** Let $f \in M_k(\Gamma_1(N), \chi)$. Show that if f is an eigenvector for some T_n with n prime to N, with eigenvalue λ , then $w_N f$ is also an eigenvector for T_n , with eigenvalue $\overline{\lambda}$.

EXERCICE 3. — Let
$$C$$
 be the matrix $\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$.

- **1.** Let f be a function $\mathcal{H} \to \mathbf{C}$. We denote by c(f) the function $z \mapsto \overline{f(-\overline{z})}$. Show that if $f \in M_k(\Gamma)$ then $c(f) \in M_k(C\Gamma C^{-1})$.
 - **2.** Show that C normalizes $\Gamma_1(N)$.
- **3.** Let $f \in M_k(\Gamma_1(N))$ with q-expansion $f(z) = \sum_{n\geq 0} a_n q^n$. Show that c(f) has q-expansion $\sum_{n\geq 0} \overline{a_n} q^n$.
- **4.** Show that if $f \in M_k(\Gamma_1(N), \chi)$ for some Dirichlet character χ modulo N, then $c(f) \in M_k(\Gamma_1(N), \overline{\chi})$.
- **5.** Let $f \in M_k(\Gamma_1(N), \chi)$. Show that if f is an eigenvector for some T_n , with eigenvalue λ , then c(f) is also an eigenvector for T_n , with eigenvalue $\overline{\lambda}$.
 - **6.** Show that c(f) is old if f is old, and c(f) is new if f is new.

EXERCICE 4. — Let $f \in S_k(\Gamma_1(N))^{new}$ be a normalized eigenform.

- **1.** Show that exists some $\eta_f \in \mathbf{C}^{\times}$ such that $w_N f = \eta_f c(f)$.
- **2.** Prove the identities $\eta_f \eta_{c(f)} = (-N)^k$, $\eta_{c(f)} = (-1)^k \overline{\eta_f}$ and $|\eta_f| = N^{k/2}$.

EXERCICE 5. — Fix some integer N. Show that the subalgebra of $\mathbf{T}_1(N)$ generated by the T_n , n prime to N, contains all the diamond operators $\langle a \rangle$, $a \in (\mathbf{Z}/N\mathbf{Z})^{\times}$.

You can make use of the following theorem of Dirichlet on arithmetic progressions: let u, v be coprime positive integers. Then there exists an infinite number of primes that are congruent to u modulo v.