MATEMATIKA

EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM

Fontos tudnivalók

Formai előírások:

- 1. A dolgozatot a vizsgázó által használt színűtől **eltérő színű tollal** kell javítani, és a tanári gyakorlatnak megfelelően jelölni a hibákat, hiányokat stb.
- 2. A feladatok mellett található szürke téglalapok közül az elsőben a feladatra adható maximális pontszám van, a javító által adott **pontszám a** mellette levő **téglalapba** kerül
- 3. **Kifogástalan megoldás** esetén elég a maximális pontszám beírása a megfelelő téglalapokba.
- 4. Hiányos/hibás megoldás esetén kérjük, hogy az egyes **részpontszámokat** is írja rá a dolgozatra.

Tartalmi kérések:

- 1. Egyes feladatoknál több megoldás pontozását is megadtuk. Amennyiben azoktól **eltérő megoldás** születik, keresse meg ezen megoldásoknak az útmutató egyes részleteivel egyenértékű részeit, és ennek alapján pontozzon.
- 2. A pontozási útmutató pontjai tovább **bonthatók**. Az adható pontszámok azonban csak egész pontok lehetnek.
- 3. Nyilvánvalóan helyes gondolatmenet és végeredmény esetén maximális pontszám adható akkor is, ha a leírás az útmutatóban szereplőnél **kevésbé részletezett**.
- 4. Ha a megoldásban **számolási hiba**, pontatlanság van, akkor csak arra a részre nem jár pont, ahol a tanuló a hibát elkövette. Ha a hibás részeredménnyel helyes gondolatmenet alapján tovább dolgozik, és a megoldandó probléma lényegében nem változik meg, akkor a következő részpontszámokat meg kell adni.
- 5. **Elvi hibát** követően egy gondolati egységen belül (ezeket az útmutatóban kettős vonal jelzi) a formálisan helyes matematikai lépésekre sem jár pont. Ha azonban a tanuló az elvi hibával kapott rossz eredménnyel, mint kiinduló adattal helyesen számol tovább a következő gondolati egységben vagy részkérdésben, akkor erre a részre kapja meg a maximális pontot, ha a megoldandó probléma lényegében nem változik meg.
- 6. Ha a megoldási útmutatóban zárójelben szerepel egy **megjegyzés** vagy **mértékegység**, akkor ennek hiánya esetén is teljes értékű a megoldás.
- 7. Egy feladatra adott többféle helyes megoldási próbálkozás közül **a vizsgázó által** megjelölt változat értékelhető.
- 8. A megoldásokért **jutalompont** (az adott feladatra vagy feladatrészre előírt maximális pontszámot meghaladó pont) **nem adható**.
- 9. Az olyan részszámításokért, részlépésekért **nem jár pontlevonás**, melyek hibásak, de amelyeket a feladat megoldásához a vizsgázó ténylegesen nem használ fel.
- 10. A vizsgafeladatsor II. részében kitűzött 5 feladat közül csak 4 feladat megoldása értékelhető. A vizsgázó az erre a célra szolgáló négyzetben feltehetőleg megjelölte annak a feladatnak a sorszámát, amelynek értékelése nem fog beszámítani az összpontszámába. Ennek megfelelően a megjelölt feladatra esetlegesen adott megoldást nem is kell javítani. Ha mégsem derül ki egyértelműen, hogy a vizsgázó melyik feladat értékelését nem kéri, akkor automatikusan a kitűzött sorrend szerinti legutolsó feladat lesz az, amelyet nem kell értékelni.

írásbeli vizsga 0811 2 / 20 2009. május 5.

I.

1. a)		
$E = \frac{F}{36 \cdot \sqrt{2}}$ $D = C$ $A = 18$		
Az ACG derékszögű háromszögben a $GAC\angle$ (= α)szöget keressük.	1 pont	
Az <i>ABC</i> derékszögű háromszögben: $AC = 18 \cdot \sqrt{2}$;	1 pont	
igy $\cos \alpha = \frac{AC}{AG} = \frac{1}{2}$, (és $0^{\circ} < \alpha < 90^{\circ}$),	1 pont	
ahonnan $\alpha = 60^{\circ}$.	1 pont	
Összesen:	4 pont	
1. b)		
A négyzetes hasáb alapéle $a = 18$, magassága $m = CG = 18 \cdot \sqrt{6}$,	1 pont	
felszíne: $A = 2a^2 + 4a \cdot m = 2 \cdot 18^2 + 4 \cdot 18^2 \cdot \sqrt{6} \ (\approx 3822,5).$	1 pont	
A hasáb felszíne 3822,5 (területegység).	1 pont	
Összesen:	3 pont	
1. c)		
Ha a mértani sorozat első tagja a , hányadosa q , akkor $a = AB = 18$ és $a \cdot q^3 = AG = 36 \cdot \sqrt{2}$.	1 pont	

1. c)		
Ha a mértani sorozat első tagja a, hányadosa q, akkor	1	
$a = AB = 18 \text{ és } a \cdot q^3 = AG = 36 \cdot \sqrt{2}$.	1 pont	
Innen $q^3 = 2\sqrt{2}$,	1 pont	
azaz $q = \sqrt{2}$.	1 pont	
A mértani sorozat második tagja tehát:		
$a \cdot q = 18 \cdot \sqrt{2}$, és ez éppen az alaplap AC átlójának	1 pont	
hossza.		
Összesen:	4 pont	

- 1.) Ha a vizsgázó feltételezi, hogy az állítás igaz, tehát abból indul ki, hogy a mértani sorozat első két tagja 18 és $18\sqrt{2}$, és megmutatja, hogy ennek a sorozatnak a negyedik tagja $36\sqrt{2}$, akkor maximum 2 pontot kaphat.
- 2.) Ha a vizsgázó megmutatja, hogy a 18, $18\sqrt{2}$ és $36\sqrt{2}$ rendre egy mértani sorozat első, második és negyedik tagja, de nem igazolja, hogy a sorozatnak más szám nem lehet a második tagja, maximum 2 pontot kaphat.
- 3.) Ha a vizsgázó a "bizonyítást" közelítő értékekkel végzi, megoldására legfeljebb 2 pontot kaphat.

2. a)		
A lányok testmagasságának átlaga: $\frac{2624}{16} = 164$ (cm).	1 pont	
Az osztály tanulóinak átlagmagasságát (\bar{t}) a 16 lány átlagmagassága (\bar{l}) és a 14 fiú átlagmagassága (\bar{f}) segítségével számíthatjuk ki: $\bar{t} = \frac{16 \cdot \bar{l} + 14 \cdot \bar{f}}{30} =$	1 pont	Ha ez a gondolat csak a megoldás során derül ki, az l pont akkor is jár.
$=\frac{16\cdot 164 + 14\cdot 172,5}{30} =$	1 pont	
$=\frac{2624+2415}{30}=\frac{5039}{30}.$	1 pont	
Az osztály tanulóinak átlagmagassága 168,0 cm.	1 pont	Ha nem egy tizedesjegyre kerekít – például 168-at ír –, a pont nem jár.
Összesen:	5 pont	Ha nem súlyozott átlagot számol, az utolsó 4 pontot elveszíti.

2. b) első megoldás

alapján Venn-diagramon ábrázoljuk, csak négy tartományba jut tanuló, az ábra alapján jelöljük az egyes tartományokba jutó tanulók számát <i>x</i> -szel, <i>y</i> -nal, <i>z</i> -vel és <i>t</i> -vel.	1 pont	Csak a rajz alapján is jár a pont.
(1) alapján $x + y + z + t = 30$. (2) alapján $z + t = y$. (3) alapján $x + y + z = 27$. (4) alapján $x + t = 15$.	2 pont	Két helyes egyenlet felírásáért 1 pont jár.
Ezekből: $x = 12$; $y = 9$; $z = 6$; $t = 3$.	2 pont	Két helyes érték kiszámításáért 1 pont jár.
Mindhárom nyelvet 12-en tanulják, és 9-en nem tanulnak franciául.	2 pont	
Öggzagan	7 nont	

Összesen: 7 pont

A jól felrajzolt, négy halmazos (osztály, és az egyes nyelvet tanulók halmaza) Venn-diagramba szöveges magyarázat nélkül, de jól beírt elemszámból leolvasott helyes válasz esetén a 7 pont helyett 4 pont adható.

2. b) második megoldás		
Mivel az osztályból mindenki tanul legalább két	1 pont	
nyelvet, az angolt nem tanulók száma 30-27=3.	1 pont	
Az angolt nem tanulókat (3 fő) kihagyva a németet		
is és franciát is tanulók 15 fős halmazából:	1 pont	
megkapjuk a mindhárom nyelvet tanulók	1 point	
részhalmazát. (Ennek elemszáma 12.)		
Ha az osztályból kihagyjuk a mindhárom nyelvet		
tanulókat, kapjuk, hogy 30-12= 18 tanuló tanul	1 pont	
pontosan két nyelvet.		
A feladat feltételei közül a (2)-esből következik,		
hogy a pontosan két nyelvet tanulókra nézve is igaz a		
megadott feltétel. Vagyis a 18 elemű halmazt két	1 pont	
azonos elemű részhalmazra kell bontanunk. E két		
részhalmaz elemszáma 9-9.		
Mindezekből következik, hogy a pontosan két		
nyelvet tanulók közül angolt és németet 9-en,	1 nont	
(angolt és franciát 6-an, mivel németet és franciát	1 pont	
3-an) tanulnak.		
Mindhárom nyelvet 12-en tanulják, és 9-en nem	2 nort	
tanulnak franciául.	2 pont	
Összesen:	7 pont	

írásbeli vizsga 0811 5/20 2009. május 5.

3. a)

A megadott $2x + y = 10$ egyenletű egyenes az		
A(5;0) és a $B(0;10)$ pontban metszi a tengelyeket.	1 pont	
Az origóból az egyenesre bocsátott, rá merőleges egyenes egyenlete: $x - 2y = 0$.	1 pont	
A két egyenes D metszéspontjának koordinátái: $D(4; 2)$.	1 pont	Csak a kiszámolt vagy leolvasott és behelyette- sített értékekért jár az I pont.
A megadott feltételeknek három derékszögű háromszög felel meg: AOB háromszög (ahol $A(5;0)$, $O(0;0)$ és $B(0;10)$)	1 pont	
ADO háromszög (ahol $A(5;0)$, $D(4;2)$ és $O(0;0)$)	1 pont	
BDO háromszög (ahol $B(0;10)$, $D(4;2)$ és $O(0;0)$)	1 pont	
Összesen:	6 pont	

- 1.) Ha csak az AOB háromszöget adja meg, 2 pontot kaphat.
- 2.) A válaszhoz nem szükséges újból felírni a csúcsok koordinátáit.
- 3.) Az A és B pontok koordinátáinak megadása történhet "leolvasással" is.
- 4.) Ha csak annyit állapít meg, hogy három megfelelő derékszögű háromszög van, akkor az utolsó 3 pontból 1 pontot kap.

írásbeli vizsga 0811 6 / 20 2009. május 5.

3. b) első megoldás		
Az egyenesnek és a körnek akkor és csak akkor van közös pontja, ha az egyenes és a kör egyenletéből álló egyenletrendszernek van megoldása.	1 pont	Ha ez a gondolat csak a megoldás során derül ki, az l pont akkor is jár.
A kör egyenlete: $x^2 + y^2 = 16$.	1 pont	
Az egyenes egyenletéből $y = b - 2x$. Behelyettesítés után kapjuk, hogy $x^2 + (b - 2x)^2 = 16$.	1 pont	
$5x^2 - 4bx + b^2 - 16 = 0.$	1 pont	
A kapott másodfokú egyenletnek van megoldása, ha a D diszkriminánsa nem negatív.	1 pont	Ha ez a gondolat csak a megoldás során derül ki, az l pont akkor is jár.
$(D =)320 - 4b^2 \ge 0,$	1 pont*	
ahonnan $ b \le 4\sqrt{5}$.	1 pont	
A <i>b</i> paraméter lehetséges értékei tehát a $[-4\sqrt{5}; 4\sqrt{5}]$ elemei.	1 pont	A helyes válasz tizedes tört alakban megadva is 1 pontot ér.
Összesen:	8 pont	

3. b) második megoldás		
Mivel az e egyenesek egymással párhuzamosak, az egyenesekre az origóból állított merőleges f egyenes egyenlete $x - 2y = 0$.	1 pont	
Az <i>e</i> egyenesek és <i>f</i> metszéspontja $E = \left(\frac{2b}{5}; \frac{b}{5}\right)$.	2 pont	
Az <i>e</i> egyenesnek és a megadott körnek akkor és csak akkor van közös pontja, ha az <i>E</i> pont az origótól legfeljebb 4 egység távolságra van.	1 pont	Ha ez a gondolat csak a megoldás során derül ki, az l pont akkor is jár.
$OE = \sqrt{\frac{b^2}{5}} \le 4,$	2 pont*	
ahonnan $ b \le \sqrt{80}$.	1 pont	
A <i>b</i> paraméter lehetséges értékei: $-\sqrt{80} \le b \le \sqrt{80}$.	1 pont	A helyes válasz tizedes tört alakban megadva is 1 pontot ér.
Összesen:	8 pont	

^{*:} Ha az egyenlőség nem szerepel, akkor a *-gal jelölt pont (pontok) helyett 1 ponttal kevesebb jár.

írásbeli vizsga 0811 7 / 20 2009. május 5.

4.	a)
	ш,

A függvények ábrázolása.	2 pont	Függvényenként 1-1 pont jár. Egység jelölése nélkül legfeljebb 1 pont adható.
$-1 = x^2 - 2$ egyenlet megoldása az $x \le -1$ feltétel esetén az $x = -1$.	1 pont	Ha az $x_1 = -1$ megoldást a grafikonról olvassa le, jár érte az l pont.
$2x+1=x^2-2$ egyenletnek nincs megoldása az $]-1;0[$ intervallumon.	1 pont	
$1 = x^2 - 2$ egyenlet megoldása az $x \ge 0$ feltétel esetén az $x = \sqrt{3}$.	1 pont	
Az $f(x) = g(x)$ egyenletnek két megoldása van: $x_1 = -1$ és $x_2 = \sqrt{3}$.	1 pont	
Összesen:	6 pont	

írásbeli vizsga 0811 $8\,/\,20$ 2009. május 5.

4. b) első megoldás

Tekintsük az f és g grafikonját, ahol $A(-1; -1)$, $B(0; 1)$, $C(\sqrt{3}; 1)$ és $D(0; -2)$.	1 pont	Ha ezek a gondolatok
A vizsgálandó síkidomot az <i>AB</i> ; a <i>BC</i> szakaszok és az <i>ADC</i> parabolaív határolja.	1 pont	csak a megoldás során derülnek ki, a vonatkozó
Vágjuk ketté a síkidomot az y tengellyel! $T_{ABCD} = T_{ABD} + T_{DBC}.$	1 pont	pontok akkor is járnak.
$T_{ABD} = \int_{-1}^{0} (f(x) - g(x)) dx = \int_{-1}^{0} (-x^2 + 2x + 3) dx =$	1 pont	
$= \left[-\frac{x^3}{3} + x^2 + 3x \right]_{-1}^0 = \frac{5}{3}$	1 pont	
$T_{DBC} = \int_{0}^{\sqrt{3}} (f(x) - g(x)) dx = \int_{0}^{\sqrt{3}} (3 - x^{2}) dx =$	1 pont	
$= \left[3x - \frac{x^3}{3}\right]_0^{\sqrt{3}} = 2 \cdot \sqrt{3} .$	1 pont	
A keresett terület nagysága: $\frac{5}{3} + 2 \cdot \sqrt{3} \ (\approx 5,13)$	1 pont	
Összesen:	8 pont	

írásbeli vizsga 0811 9 / 20 2009. május 5.

4. b) második megoldás		
Tekintsük az f és g grafikonját, ahol $A(-1; -1)$, $B(0; 1)$, $C(\sqrt{3}; 1)$ és $D(0; -2)$.	1 pont	
A vizsgálandó síkidomot az <i>AB</i> ; a <i>BC</i> szakaszok és az <i>ADC</i> parabolaív határolja.	1 pont	Ez a pont a rajz alapján is jár.

Toljuk el mind a két grafikont y tengellyel párhuzamosan +2 egységgel!	2 pont	Ez a 2 pont akkor is jár, ha a számításaiból derül ki, hogy helyes értékekkel dolgozik, de az eltolt pontok koordinátáit nem jelöli a rajzán.	
A vizsgált síkidom területét (T) megkaphatjuk, ha a $KLMNP$ ötszög területéből ($T_{\delta tsz\delta g}$) kivonjuk a parabola KM íve alatti területet (T_{KM}). $T = T_{\delta tsz\delta g} - T_{KM}$.	1 pont	Ezek a pontok bármilyen jó számításért járnak.	
$T_{\delta t S Z \delta g} = T_{PNMQ} - T_{KQL} =$ $= (1 + \sqrt{3}) \cdot 3 - \frac{1 \cdot 2}{2} = 3 \cdot \sqrt{3} + 2 (\approx 7,196).$	1 pont	jo szamuasen jarnak.	
$T_{KM} = \int_{-1}^{\sqrt{3}} x^2 dx = \left[\frac{x^3}{3} \right]_{-1}^{\sqrt{3}} = \sqrt{3} + \frac{1}{3} (\approx 2,065).$	1 pont		
A keresett terület nagysága: $\frac{5}{3} + 2 \cdot \sqrt{3} \ (\approx 5,13)$.	1 pont		
Összesen:	8 pont		

II.

5. a)		
A nevező nem lehet 0, ezért $2^{x-1} - 2 \neq 0$,	1 pont	
ahonnan $x \neq 2$.	1 pont	
A továbbiakban a tört akkor 0, ha a számlálója 0,	1 nont	
tehát $2x^2 + x - 10 = 0$, azaz $x_1 = 2$ és $x_2 = -2.5$.	1 pont	
Így az egyenletnek egyetlen valós megoldása van,	1 nont	
az $x = -2.5$.	1 pont	
Összesen:	4 pont	

Ha a vizsgázó nem szűkíti az alaphalmazt, és a másodfokú egyenlet mindkét megoldását az eredeti egyenlet gyökeként adja meg, maximum 1 pontot kaphat. Ha viszont a két számot behelyettesítéssel ellenőrzi, és így zárja ki a 2-t mint megoldást, a teljes pontszám jár.

5. b) első megoldás		
Mivel $x \ge -16$ és $x \ge 9$ lehet csak, így az egyenlet azon x valós számokra értelmezett, amelyekre $x \ge 9$ teljesül.	1 pont	
A [9;+ ∞ [halmazon értelmezett $f(x) = \sqrt{x+16} + \sqrt{x-9}$ függvény szigorúan növő,	1 pont	
ezért az f minimumértéke $f(9) = 5$.	1 pont	
Így az egyenlet egyetlen megoldása az $x = 9$.	1 pont	
Összesen:	4 pont	

5. b) második megoldás		
A rendezés után kapott $\sqrt{x+16} = 5 - \sqrt{x-9}$ egyenlet mindkét oldalát négyzetre emelve,	1 pont	
rendezés után kapjuk, hogy $10\sqrt{x-9} = 0$.	1 pont	
Innen $x = 9$,	1 pont	
Behelyettesítéssel ellenőrizve adódik, hogy az $x = 9$ gyöke az eredeti egyenletnek is.	1 pont	
Összesen:	4 pont	

- 1.) Ha a vizsgázó nem ellenőriz behelyettesítéssel, csak arra hivatkozik, hogy az egyenlet gyökeit a $[9;+\infty[$ alaphalmazon keresi, az utolsó 1 pontot nem kaphatja meg.
- 2.) Ha viszont az alaphalmaz szűkítésén túl a négyzetre emelés előtt az egyenlet bal oldalán álló kifejezés értékkészletét is vizsgálja $(5-\sqrt{x-9}\geq 0$, azaz $x\leq 34$), ellenőrzés nélkül is maximális pontot kaphat.

5. c)		
A logaritmus értelmezése szerint:	1 4	
$x^2 + x - 6 > 0$ és $1 - x^2 > 0$.	1 pont	
Az első egyenlőtlenség megoldásai azon x valós számok, amelyekre $x < -3$ vagy $x > 2$,	1 pont	
a másodiké: $-1 < x < 1$.	1 pont	
A két egyenlőtlenség megoldáshalmazának nincs	1 nont	
közös eleme, így az egyenletnek nincs megoldása.	1 pont	
Összesen:	4 pont	

Ha a vizsgázó az értelmezési tartomány vizsgálata nélkül oldja meg a feladatot, az értékelés a következő:

A logaritmus függvény egy-egy értelmű hozzárendelésére (vagy annak szigorű monotonitására) hivatkozás (1 pont), az $x^2+x-6=1-x^2$, azaz $2x^2+x-7=0$ egyenlet gyökeinek meghatározása: $x_{1,2}=\frac{-1\pm\sqrt{57}}{4}$ (1 pont), indoklás, hogy egyik sem gyöke az eredeti egyenletnek (akár a közelítő értékek behelyettesítésével vagy grafikus úton) (2 pont).

5. d)		
A jobb oldali kifejezés értéke az értelmezési tartományán csak nemnegatív lehet, így $\sin x - 1 \ge 0$.	1 pont	
Ez csak $x = \frac{\pi}{2} + 2k\pi$ ($k \in \mathbb{Z}$) esetén teljesül.	1 pont	
De mivel $\cos\left(\frac{\pi}{2} + 2k\pi\right) = 0$, minden $k \in \mathbb{Z}$ esetén	1 pont	
és nullára a logaritmus nincs értelmezve, így nincs olyan valós szám, amelyre az egyenlet értelmezve lenne, tehát nincs megoldása.	1 pont	
Összesen:	4 pont	

írásbeli vizsga 0811 12 / 20 2009. május 5.

6. a)		
Minden sorban kell lyukasztásnak lenni. Az első sorban 3 lehetőségünk van a lyuk kiválasztására, a második sorban már csak 2, a harmadik sorbeli lyukat pedig az előző kettő egyértelműen meghatározza.	1 pont	
A megfelelő lyukasztások száma: $3 \cdot 2 \cdot 1 = 6$.	1 pont	
1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9	2 pont	Legalább három, de hatnál kevesebb helyes ábráért l pont adható.
Összesen:	4 pont	

(6. c)		
Az első kilenc pozitív egész között 4 prímszám van.	1 pont	
Kedvező esetek száma: 4.	1 pont	
Az összes lehetséges lyukasztások száma: $\binom{9}{3} = 84$.	2 pont	
Áron kívánsága $P = \frac{4}{84} (\approx 0,048)$ valószínűséggel teljesül.	1 pont	
Zita kívánságának 7 számhármas felel meg: (1; 3; 9), (1; 4; 8), (1; 5; 7), (2; 3; 8), (2; 4; 7), (2; 5; 6), (3; 4; 6).	3 pont	1.) Ötnél kevesebb eset felsorolása esetén nem jár pont. 2.) 5 jó eset 1 pont; 6 jó eset 2 pont; 7 jó eset 3 pont, ha egy vagy több hibás számhármast is megad, akkor 1 ponttal kevesebb jár. 3.) A 3 pont megadható minden olyan megoldásrészletre, amellyel a vizsgázó helyesen indokolja a kedvező kiválasztások számát.
A keresett valószínűség: $P = \frac{7}{84} (\approx 0.083)$.	1 pont	Ha csupán eredményként közli a kért valószínű- séget, csak az utolsó I pontot kapja meg.
Összesen:	9 pont	

7. a)		
Jelölje a_n az n -edik napon leúszott hosszat, méterben		
mérve.	1 pont	
$a_1 = 10000 \cdot 1,1 (= 11000).$	1 point	
$a_2 = a_1 \cdot 0.9 = 10000 \cdot 1.1 \cdot 0.9 = 9900$.		
$a_3 = a_2 \cdot 1, 1 = 10000 \cdot 1, 1^2 \cdot 0, 9 (= 10890).$	14	Ezek a nontok akkon ia
$a_4 = a_3 \cdot 0.9 = 10000 \cdot 1.1^2 \cdot 0.9^2 (= 9801).$	1 pont	Ezek a pontok akkor is járnak, ha a 6. tagot ezek
$a_5 = a_4 \cdot 1, 1 = 10000 \cdot 1, 1^3 \cdot 0, 9^2 (\approx 10781).$	1 .	felírása nélkül is helyesen
$a_6 = a_5 \cdot 0.9 = 10000 \cdot 1.1^3 \cdot 0.9^3 (\approx 9703).$	1 pont	határozta meg.
A hatodik napon kb. 9703 métert úszott.	1 pont	
Összesen:	4 pont	

írásbeli vizsga 0811 $$15\,/\,20$$ 2009. május 5.

7. b)		
A páratlan és a páros sorszámú napokon leúszott hosszak is egy-egy mértani sorozat első 10 tagját alkotják. A páratlan sorszámúaknak az első tagja 11 000, hányadosa 0,99, a páros sorszámúak első tagja 9 900, a hányadosa 0,99.	1 pont	Ez az 1 pont akkor is jár, ha ez a gondolat a megoldás során jelenik csak meg.
A páratlan sorszámú napokon: $S_{pil} = a_1 + a_3 + a_5 + + a_{19} = $ $= 11000 + 11000 \cdot 0,99 + 11000 \cdot 0,99^2 +$ $ + 11000 \cdot 0,99^9 =$	1 pont	Ez az 1 pont akkor is jár, ha ez a gondolat a megoldás során jelenik csak meg.
$=11000 \cdot \frac{1-0.99^{10}}{1-0.99} (\approx 105\ 179.7).$	1 pont	
A páros sorszámú napokon: $S_{ps} = a_2 + a_4 + a_6 + + a_{20} =$ $= 9900 + 9900 \cdot 0,99 + 9900 \cdot 0,99^2 +$ $ + 9900 \cdot 0,99^9 =$	1 pont*	Ez az 1 pont akkor is jár, ha ez a gondolat a megoldás során jelenik csak meg.
$=9900 \cdot \frac{1 - 0.99^{10}}{1 - 0.99} (\approx 94 \ 661.7).$	1 pont*	
Az első 20 napon kb. 199 841 métert úszott összesen.	1 pont	A tízesekre kerekített jó eredményt is fogadjuk el.
Összesen:	6 pont	1: / /: 1 /

- 1.) A teljes pontszám akkor is jár, ha a vizsgázó valamennyi napra kiszámította a leúszott métereket, és ezek után összegzett, függetlenül attól, hogy a napi teljesítményeket kerekítette egész méterekre, vagy az összeadás után kerekített helyesen.
- 2.) Ha a vizsgázó úgy oldja meg, hogy az (a_n) sorozat két szomszédos tagjának összegéből képzett mértani sorozat első 10 tagját összegzi, akkor a következőképpen értékeljünk:

Az $a_1 + a_2$, $a_3 + a_4$, ... sorozat is mértani sorozat, amelynek az első tagja $11000 \cdot 1,9 = 20900$, hányadosa 0,99 (3 pont). A sorozat első 10 tagjának összege:

$$20900 + 20900 \cdot 0,99 + 20900 \cdot 0,99^2 + \ldots + 20900 \cdot 0,99^9 = 20900 \cdot \frac{1 - 0,99^{10}}{1 - 0,99} (\approx 199\,841)$$

(2 pont), szöveges válasz (1 pont).

3.) A *-gal jelzett pontokat a következő lépésekért is megkaphatja:

$$S_{ps} = 0.9 \cdot S_{ptl}$$
 (1 pont), $S_{ps} \approx 0.9 \cdot 105180 = 94662$ (1 pont)

7. c) első megol	dás			
Az edzések húsz napja közül két szomszédos nap 19- féleképpen választható ki.			1 pont	
Ha két szomszédos nap során összességében nem teljesül a tervezett 20 000 méter, később sem fog, mert a kétnaponkénti összteljesítmény csökken.		1 pont		
napok sorszáma (n) 1. 2. 3. 4. 5. 6. 7. 8. 9. 10.	naponta leúszott táv (méterben) (a _n) 11000 9900 10890 9801 10781 9703 10673 9606 10566 9510 10461	kétnapi össztáv $(b_n = a_n + a_{n+1})$ 20900 20790 20691 20582 20484 20376 20279 20172 20076 19971	2 pont	Egy vagy két számítási hiba esetén I pont jár. Következetes kerekítési értékekkel elkészített táblázat teljes pontszámot ér.
A kedvező nappár	ok száma 9.		1 pont	
A keresett valószí	nűség: $\frac{9}{19} $ (≈ 0.474	4).	1 pont	
		Összesen:	6 pont	

7. c) második megoldás		
A $b_1 = a_1 + a_2$, $b_2 = a_2 + a_3$,, $b_n = a_n + a_{n+1}$ (ahol $n = 1, 2,, 19$) összegeket kell vizsgálni.	1 pont	
(b_n) szigorúan csökkenő,	1 pont	
hiszen k paritásától függetlenül igaz, hogy $a_{k+1} = 0.99 \cdot a_{k-1}$ és $a_{k-1} > 0$, így $a_{k-1} + a_k > a_k + a_{k+1}$ (ahol $1 \le k-1$ és $k+1 \le 20$).	1 pont	
$b_9 = 20\ 076 \text{ és } b_{10} = 19\ 971,$	1 pont	
így pontosan 9 esetben lesz a kétnapi teljesítmény legalább 20 000 m.	1 pont	
Miután bármely két szomszédos napot azonos eséllyel választhatjuk, így a keresett valószínűség: $\frac{9}{19} (\approx 0,474)$.	1 pont	
Összesen:	6 pont	

8. a)		
A E O A B		
Jó ábra.	1 pont	
Thalész tételéből adódóan:	1 pont	
$ABE\angle = DCE\angle = 90^{\circ}$.	1 pont	
Mivel AB és CD merőleges a BC egyenesre, ezért az		
ABDC négyszögnek van párhuzamos oldalpárja, azaz	2 pont	
trapéz.		
Összesen:	5 pont	

8. b)		
Az ABE derékszögű háromszögben $BE = 2R \cos \alpha$,	1 pont	
$ és AB = 2R \sin \alpha . $	1 pont	
A DCE derékszögű háromszögben $EC = 2r \cos \alpha$.	1 pont	
Így $BC = 2R\cos\alpha + 2r\cos\alpha = 2(r+R)\cos\alpha$.	1 pont	
Mivel az ABC∠ derékszög,	1 pont	
$\text{igy } T_{ABC} = \frac{AB \cdot BC}{2} = \frac{AB \cdot (BE + EC)}{2}.$	1 pont	
Így $T_{ABC} = 2R(r+R)\sin\alpha\cos\alpha = R(r+R)\sin2\alpha$.	1 pont	
Összesen:	7 pont	

8. c) első megoldás		
Mivel $T_{ABC} = R(r+R)\sin 2\alpha$ (és $R(r+R)$ pozitív),	1 pont	
ezért T_{ABC} akkor maximális, ha $\sin 2\alpha = 1$,	2 pont	
azaz $\alpha = 45^{\circ}$.	1 pont	
Összesen:	4 pont	

8. c) második megoldás		
(Mivel $T_{ABC} = T_{ABE} + T_{AEC}$, a terület maximumát		
tagonként fogjuk keresni.)		
T_{ABE} akkor maximális, ha az adott hosszúságú AE	2 pont	
átfogóhoz tartozó magasság a legnagyobb, azaz		
mikor KB merőleges AE-re.		
T_{AEC} akkor maximális, ha az adott AE -hez tartozó		
magasság a legnagyobb,	1 pont	
azaz ha <i>OC</i> merőleges <i>ED</i> -re.		
Mindkét esetben $\alpha = 45^{\circ}$ esetén valósul meg a		
maximum, (ekkor a B, E és C pontok egy egyenesre	1 pont	
esnek), így az ABC háromszög területe is ekkor lesz	r poin	
maximális.		
Összesen:	4 pont	

8. c) harmadik megoldás		
Adott r és R esetén a $T_{ABC}(\alpha) = 2R(r+R)\sin\alpha\cos\alpha$		
$(0 < \alpha < \frac{\pi}{2})$ függvény deriváltja:	1 pont	
$T'_{ABC}(\alpha) = 2R(r+R)(\cos^2 \alpha - \sin^2 \alpha).$		
$2R(r+R)(\cos^2\alpha - \sin^2\alpha) = 0$ megoldását keressük.	1 pont	
Mivel α hegyesszög, így $\cos \alpha = \sin \alpha$,		
azaz $\alpha = \frac{\pi}{4}$.	1 pont	
Mivel $0 < \alpha < \frac{\pi}{4}$ esetén a derivált függvény értéke		
pozitív, míg $\frac{\pi}{4} < \alpha < \frac{\pi}{2}$ esetén negatív,	1 pont	
ezért $\alpha = \frac{\pi}{4}$ esetén maximális a terület.		
Összesen:	4 pont	

9. a)		
Minden fiú öt lehetőség közül választhat,	1 pont	
ez együtt 5³ lehetőség;	1 pont	
minden lány négy lehetőség közül választhat,	1 pont	
ez együtt 4 ² lehetőség.	1 pont	
(A választásuk független egymástól, így) az	2 pont	
elhelyezkedési lehetőségek száma: $5^3 \cdot 4^2 =$		
= 2000.	1 pont	
Összesen:	7 pont	

9. b)		
A három fiú az öt helyre összesen $5 \cdot 4 \cdot 3 = 60$ -féleképpen helyezkedhet el.	1 pont	
A két lány a négy helyre $4 \cdot 3 = 12$ -féleképpen helyezkedhet el.	1 pont	
(A fiúk és a lányok választása független egymástól, így) az összes elhelyezkedések száma: $60 \cdot 12 = 720$	2 pont	
Összesen:	4 pont	

Ha az a) és b) kérdés bármelyikénél hibás modellt használ (például felcseréli az ismétléses és az ismétlés nélküli variációt), akkor annak a kérdésnek a megoldására nem kaphat pontot.

9. c)		
		A feltételeknek megfelelő partik gráfja. (A megoldásban a gráf felrajzolását nem követeljük meg.)
A körmérkőzésen két mérkőzést játszók kiválasztása		
$\binom{4}{2}$ = 6-féleképpen lehet.	2 pont	
A két-két mérkőzést játszó bármelyik diák két		
személy közül választhatja az egy mérkőzést játszó	2 pont	
társát.		
Ezért összesen $6 \cdot 2 = 12$ párosítás lehetséges.	1 pont	
Összesen:	5 pont	

írásbeli vizsga 0811 20 / 20 2009. május 5.