1 Notes for Week 2

V5 First order PDEs with variable coefficients

We now consider the case where a, b are functions instead of constants, ie $a(x, y)u_x + b(x, y)u_y = 0$ given $a, b \neq 0$

Example: $u_x + yu_y = 0$

Now, a = 1, b = y

This implies that the characteristic curves have slope y, so $\frac{dy}{dx} = y \implies y = e^x \cdot C \implies C = ye^{-x}$

We call this equation the characteristic curve, along which u(x, y) does not change So then $f(C) = f(ye^{-x})$ which is the general solution

Rule for variable coefficients

 $\frac{dy}{dx} = \frac{b(x,y)}{a(x,y)}$ then use this to find general solution

V6 Coordinate Method

Our goal is to solve equations of the form $au_x + bu_y = h(u, x, y)$

Consider $au_x + bu_y = 0$

Then, we can represent the curve x' = ax + by and y' = bx - ay and know that these lines are perpendicular, and that these coordinates have an x axis parallel to $v = \langle a, b \rangle$

Cross Product

Now we want to take the cross product to compute the partial x and y with our new coordinates

1.
$$u_x(x'(x,y), y'(x,y) = \frac{\partial u}{\partial x'} \frac{\partial x'}{\partial x} + \frac{\partial u}{\partial y'} \frac{\partial y'}{\partial x}$$

2.
$$u_y(x'(x,y), y'(x,y) = \frac{\partial u}{\partial x'} \frac{\partial x'}{\partial y} + \frac{\partial u}{\partial y'} \frac{\partial y'}{\partial y}$$

Then, we can simplify $au_x + bu_y$ in terms of these partial derivatives to get:

 $a(au_{x'} + bu_{y'}) + b(bu_{x'} - au_{y'} = (a^2 + b^2)u_{x'} = 0$

and then since we know $a, b \neq 0$ we have $u_{x'} = 0 \implies u(x', y') = f(y')$ then simply replace with our regular varibles to get u(x, y) = f(bx - ay)

V7 Coordinate Method continued

Coordinate method summary:

- 1. Rewrite with new coordinates x' = ax + by and y' = bx ay
- 2. Solve in new coordinates
- 3. Transform solution back to original coordinates (x, y)

Try: $u_x + u_y = 2$ So then x' = x + y and y' = x - y which gives us $2u_{x'} = 2$ Now we have $u(x', y') = x' + f(y') \implies u(x, y) = (x + y) + f(x - y)$

V8 Summary of 1st order PDEs

We know how to solve 1st order PDEs with variable coefficients, constant coefficients, and nonhomogenous PDEs set equal to a third function

Geometric Method

We use this for functions with variable coefficients

- 1. Write down ODE $\frac{dy}{dx} = \frac{b(x,y)}{a(x,y)}$ then solve the ODE
- 2. Solve for C in ODe
- 3. General solution is then u(x,y) = f(C)
- 4. replace C with solution to ODE

Coordinate Method

Refer to V7 summary

2 Practice Problems

V5

2. Suppose that u = u(x,y) satisfies the PDE $xu_x + yu_y = 0$ We then know $\frac{dy}{dx} = \frac{y}{x} \implies \frac{1}{y}dy = \frac{1}{x}dx \ ln(y) = ln(x) + C \implies e^{ln(y)} = e^{ln(x+C)} \implies y = Cx \implies C = y/x$

So, we know f(y/x) = u(x, y) we also know u(1, 1) = f(1) = 3 and u(1, 2) = f(2) = 4

(a) u(2,2) = 3 is TRUE because f(2/2) = f(1) which we know equals 3

- (b) u(2,3) = 3 is might be true because u(2,3) = f(3/2) and we don't know anything about f(3/2)
- (c) u(2,4) = 3 is FALSE because f(4/2) = f(2) which we know is equal to 4
- 3. Problem 6 in 1.2 Solve $\sqrt{1-x^2}u_x + u_y = 0$ given u(0,y) = yNow, we know $\frac{dy}{dx} = \frac{1}{\sqrt{1-x^2}}$

Then, this implies that $dy = \frac{1}{\sqrt{1-x^2}}dx \implies y = sin^{-1}(x) + C \implies C = y - sin^{-1}(x)$ We then have $u(x,y) = f(y - \sin^{-1}(x))$ Finally, we apply our initial condition u(0,y) = f(y-0) = f(y) = yThis implies that $u(x,y) = y - \sin^{-1}(x)$

V6

4. Confirm x' and y' are orthogonal

$$x' = ax + by \implies by = x' - ax \implies y = \frac{x'}{b} - \frac{a}{b}x$$

 $y' = bx - ay \implies ay = bx - y' \implies y = \frac{b}{a}x - \frac{y'}{a}$

 $y' = bx - ay \implies ay = bx - y' \implies y = \frac{b}{a}x - \frac{y'}{a}$ The slopes b/a and -a/b are negative reciprocals, so the lines are indeed orthogonal

- 5. Demonstrate that the x' axis is parallel to the vector $v = \langle a, b \rangle$ We know the gradient of x' is $\nabla x' = \langle a, b \rangle$ which is exactly the vector we have
- 6. Compute u_y using chain rule for $u(x',y') = \sin(x') + y'^2$ and x' = x + y and y' = x - y $u_y = \frac{\partial u}{\partial x'} \frac{\partial x'}{\partial y} + \frac{\partial u}{\partial y'} \frac{\partial u}{\partial y}$ $\implies u(x', y') = (u_{x'} \cdot 1) - (u_{y'} \cdot 1)$ Therefore, $u(x', y') = \cos(x') - 2y'$

V7

7. Solve $au_x + bu_y + cu = 0$

We can use the coordinate method to simplify this to be $(a^2 + b^2)u_{x'} + cu = 0$

This implies that $(a^2 + b^2)u_{x'} = -cu \implies u = e^{\frac{-cx}{a^2 + b^2}} \cdot f(y')$

Finally, we replace the coordinate variables to get our final answer:

$$u(x,y) = e^{\frac{-c(ax+by)}{a^2+b^2}} \cdot f(ax-by)$$

V8

- **8.** Graph b corresponds to $u_x + 2u_y = 0$ because the characteristic curves are linear
- 9. Graph a corresponds to $u_x + 2xy^2u_y = 0$ because the characteristic curves are $C = -x^2 \frac{1}{y}$. We got this since $dy/dx = 2xy^2 \implies dy = 2xy^2dx \implies -1/y = x^2 + C \implies C = -x^2 \frac{1}{y}$