高数学习

韩海舰

2020年1月2日

1 第一章 函数,极限,连续性

1.1 第一周练习

- 1. 已知 f(x+1) 的定义域为 [0,a](a>0), 则 f(x) 的定义域为 ()。
 - 1. [1, a+1]
 - 2. [-1, a+1]
 - 3. [a, a+1]
 - 4. [a-1,a]

正确答案: A 你错选为 B

9

若 $\lim_{n \to \infty} x_n = a$ (a 为常数),则下列说法不正确的是。

- 1. 数列 $\{x_n\}$ 有界。
- $2. \qquad \lim_{n \to \infty} x_{2n} = a$
- 3. 若 $x_n > 0$ (n=1,2...n), 则 a>0
- 4. 常数 a 唯一。

正确答案: C 你没选择任何选项

极限的性质包括:唯一性,有界性,保号性。其中保号性是指如果极限 >0, 则 $x_n>0$ 。

1.2 第二周练习

1. 已知函数

$$f(x) = \begin{cases} x^2 \sin \frac{1}{x}, & x < 0 \\ \frac{\sqrt{1+x^2}-1}{x}, & x > 0 \end{cases}$$

$$\mathbb{M}\lim_{x\to 0}f(x)=(?)$$

结果为0

2.

若
$$\lim_{x\to 0}f(x)=0,$$
 则 ()

- 1. 仅当 $\lim_{x \to x_0} g(x) = 0$ 时,才有 $\lim_{x \to x_0} f(x)g(x) = 0$ 成立。
- 2. 当 g(x) 为任意函数时,有 $\lim_{x \to x_0} f(x)g(x) = 0$ 成立
- 3. 仅当g(x)为常数时,才能使 $\lim_{x\to x_0} f(x)g(x) = 0$ 成立
- 4. 当g(x)有界时,能使 $\lim_{x \to x_0} f(x)g(x) = 0$ 成立

答案是 4.

$$\lim_{x \to 0} f(x) = 0$$

是无穷小,无穷小与有界函数之积是无穷小。

3.

$$\lim_{x \to 0} (1 - x)^{\frac{1}{\sin x}} = (?)$$

- 1. 1
- 2. e
- 3. e^{-1}
- 4. e^{-2}

正确答案: C 你错选为 B

1.3 第三周练习

等价无穷小:

$$\begin{aligned} &\ln(x+1) \sim x, & 1 - \cos(x) \sim \frac{1}{2}x^2 \\ &\sin(x) \sim x, & \tan(x) \sim x \\ &e^x - 1 \sim x, & a^x - 1 \sim x \ln a \end{aligned}$$

有用极限:

$$\lim_{x \to 0} (1+x)^{\frac{1}{x}} = e$$

无穷小的关系:

$$\alpha = \lim_{x \to 0} f(x) = 0, \beta = \lim_{x \to 0} g(x) = 0,$$
 均是无穷小

高阶无穷小:	$\frac{\alpha}{\beta} = 0$	α 是 β 的高阶无穷小
等价无穷小:	$\frac{\alpha}{\beta} = 1$	α 是 β 的等阶无穷小
同价无穷小:	$\frac{\alpha}{\beta} = c (c \neq 0)$	α 是 β 的同阶无穷小
k 价无穷小:	$\frac{\alpha}{\beta^k} = c (c \neq 0)$	α 是 β 的 k 阶无穷小

2 导数与微分

2.1 第四周练习

- 1. 设函数 f(u) 可导,且 $y = f(x^2)$ 当自变量 x 在 x=1 处取得增量 $\Delta x = -0.1$ 时,相应的函数增量 Δy 的线性主部为 0.1,则 $f^{'}(1) = ()$.
 - 1. 0.1
 - 2. 1
 - 3. -0.5
 - 4. -1

正确答案: C 你错选为 D

- 2. 函数 y=f(x) 在 x_0 处连续、可导、可微的关系中不正确的是:
 - 1. 可导是可微的充分必要条件
 - 2. 可微是连续的充分条件
 - 3. 连续是可导的充分必要条件

4. 连续式可微的必要条件

正确答案: C 你错选为 A 连续:

- 1. f(x) 在 x₀ 处有定义
- 2. f(x) 在 x₀ 处有极限
- $3. \quad \lim_{x \to x0} f(x) = f(x0)$

可导:

1. f(x) 在 x_0 的邻域内有定义

2.
$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

3.
$$f'_{+}(x_0) = f'_{-}(x_0)$$

可导 \Longrightarrow 连续,但连续未必可导。可导 \Longleftrightarrow 可微 二阶导数:

$$\frac{d^2y}{dx^2} = \frac{d\frac{dy}{dx}}{dx}$$

3 第三章微分中值定理与导数应用

3.1 第六周练习

1. 求

$$\lim_{x\to 0} \left\{\frac{sinx}{x}\right\}^{\frac{1}{1-cosx}} = ()$$

- 1. 1
- 2. $e^{-\frac{1}{3}}$
- 3. $e^{\frac{1}{6}}$
- 4. e^2

正确答案: B 你错选为 A