Algebraische Geometrie

gelesen von Prof. Dr. Frank Herrlich im Sommersemester 2015 am KIT

 $Geschrieben\ in\ \ \LaTeX von\ Arthur\ Martirosian,\ arthur.martirosian.93@gmail.com$

Inhaltsverzeichnis

Ι	Affine Varietäten				
	§ 1	Nullstellenmengen und Verschwindungsideale	5		
	§ 2	Die Zariski-Topologie	7		
	§ 3	Irreduzible Varietäten	9		
	§ 4	Der Hilbertsche Nullstellensatz	11		
	§ 5	Morphismen zwischen affinen Varietäten	14		
	§ 6	Reguläre Funktionen	18		
	§ 7	Rationale Abbildungen und Funktionenkörper	25		
II	Pro	jektive Varietäten	29		
	§ 8	Varietäten im projektiven Raum	29		
	§ 9	Die Zariski Topologie auf $\mathbb{P}^n(\mathbb{K})$	32		
	§ 10	Reguläre Funktionen	38		
	§ 11	Morphismen	42		
III	Loka	ale Eigenschaften von Varietäten	45		
	§ 12	Lokale Ringe	45		
	§ 13	Dimension	48		
	§ 14	Tangentialraum und Singularitäten	54		
IV	Nicl	ntsinguläre Kurven	63		
	§ 15	Diskrete Bewertungsringe	63		
	§ 16	Divisoren	66		
	§ 17	Der Satz von Riemann-Roch	70		

Kapitel I

Affine Varietäten

§ 1 Nullstellenmengen und Verschwindungsideale

Sei \mathbb{K} ein Körper, $n \in \mathbb{N}$.

Definition 1.1 Eine Menge $V \subseteq \mathbb{K}^n$ heißt affine Varietät, falls es eine Teilmenge $F \subseteq \mathbb{K}[X_1, \dots, X_n]$ gibt, sodass gilt

$$V = V(F) = \{x \in \mathbb{K}^n \mid f(x) = 0 \text{ für alle } f \in F\}$$

Beispiel 1.2 (i) Wir definieren $\mathbb{K}^n := V(\{0\}) = V(\emptyset)$. Damit wird \mathbb{K}^n zur affinen Varietät.

- (ii) Mit $V(\{1\}) = V(1) = \emptyset$ wird \emptyset zur affinen Varietät.
- (iii) Für jedes $a=(a_1,\ldots,a_n)\in\mathbb{K}^n$ ist $\{x\}$ affine Varietät via

$${a} = V(X_1 - a_1, \dots, X_n - a_n)$$

(iv) Allgemeiner gilt: Jeder affine Untervektorraum des \mathbb{K}^n ist affine Varietät.

Bemerkung 1.3 (i) Aus $F_1 \subseteq F_2$ folgt $V(F_1) \supseteq V(F_2)$.

- (ii) $F\ddot{u}r f_1, f_2 \in \mathbb{K}[X_1, \dots, X_n]$ gilt $V(f_1 f_2) = V(f_1) \cup V(f_2)$.
- (iii) Für $F \subseteq \mathbb{K}[X_1, \dots, X_n]$ gilt $V(F) = V(\langle F \rangle)$, wobei $\langle F \rangle$ das von F erzeugte Ideal bezeichnet.

Beweis. (i) Ist $x \in V(F_2)$, so gilt f(x) = 0 für alle $f \in F_2$. Wegen $F_1 \subseteq F_2$ folgt f(x) = 0 für alle $f \in F_1$, also $x \in V(F_1)$.

- (ii) Es gilt $x \in V(f_1f_2)$ genau dann, wenn $(f_1f_2)(x) = 0$, also $f_1(x) = 0$ oder $f_2(x) = 0$ und damit $x \in V(f_1) \cup V(f_2)$.
- (iii) " \supseteq " folgt aus (i) mit $F \subseteq \langle F \rangle$. Für die andere Inklusion wähle $x \in V(F)$ und $f \in \langle F \rangle$. Schreibe

$$f = \sum_{i=0}^{r} a_i f_i, \qquad a_i \in \mathbb{K}[X_1, \dots, X_n], f_i \in F$$

Dann ist

$$f(x) = \sum_{i=0}^{r} a_i(x) f_i(x) = 0$$

und damit $x \in V(\langle F \rangle.$

Folgerung 1.4 Sei $V \subseteq \mathbb{K}^n$ affine Varietät.

- (i) Dann gibt es ein Ideal $I \leq \mathbb{K}[X_1, \dots, X_n]$ mit V = V(I).
- (ii) Dann gibt es es $f_1, \ldots, f_r \in \mathbb{K}[X_1, \ldots, X_n]$ mit $V = V(f_1, \ldots, f_r)$.

Beweis.

- (i) Für V = V(F) wähle $I = \langle F \rangle$.
- (ii) Folgt aus dem Hilbertschen Basissatz.

Bemerkung + **Definition 1.5** (i) Sei R (kommutativer) Ring (mit 1) und $I \leq R$ ein Ideal. Dann heißt

$$\sqrt{I} := \{ f \in R \mid \text{ es existiert } n \in \mathbb{N} \text{ mit } f^n \in I \}$$

das Radikal von I.

- (ii) \sqrt{I} ist Ideal.
- (iii) I heißt Radikalideal, falls $I = \sqrt{I}$.
- (iv) Jedes Primadeal ist Radikalideal.
- (v) $n\mathbb{Z}$ ist Radikalideal genau dann, wenn n quadratfrei ist, d.h. $\nu_p(n) \in \{0,1\}$ für alle $p \in \mathbb{P}$.
- (vi) Für jedes Ideal $I \leq \mathbb{K}[X_1, \dots, X_n]$ gilt $V(I) = V(\sqrt{I})$.

Definition + **Bemerkung 1.6** Sei $V \subseteq \mathbb{K}^n$.

(i) Das Verschwindungsideal von V ist

$$I(V) := \{ f \in \mathbb{K}[X_1, \dots, X_n] \mid f(x) = 0 \text{ für alle } x \in V \}$$

- (ii) $I(V) \leq \mathbb{K}[X_1, \dots, X_n]$ ist Radikalideal.
- (iii) $V(I(V)) \supseteq V$.

Beweis. (i) Folgt aus (f+g)(x) = f(x) + g(x) und $(h \cdot f)(x) = h(x)f(x)$.

- (ii) Folgt aus $f^{d}(x) = f(f(...f(x)...)) = f(x)^{d}$.
- (iii) Klar. \Box

Beispiel 1.7 (i) $I(\emptyset) = \mathbb{K}[X_1, \dots, X_n]$.

- (ii) $I(\mathbb{K}^n) = \{0\}$ genau dann wenn (!) \mathbb{K} unendlich ist.
- (iii) Für n=2 betrachte $V=\{(0,0)\}\subseteq\mathbb{K}^2$. Dann ist

$$I(V) = \left\{ f = \sum_{i=1}^{n} \sum_{j=1}^{m} a_{i,j} X^{i} Y^{j} \mid a_{0,0} = 0 \right\}$$

Proposition 1.8 Seien V, V_1, V_2 affine Varietäten in \mathbb{K}^n . Dann gilt

- (i) V(I(V)) = V.
- (ii) $V_1 \subseteq V_2$ genau dann, wenn $I(V_1) \supseteq I(V_2)$.

Beweis. (i) " \supseteq " Klar.

" \subseteq " Sei V = V(I') für ein Ideal $I' \leq \mathbb{K}[X_1, \dots, X_n]$. Dann ist $I' \subseteq I(V)$, denn für $f \in I'$ ist f(x) = 0 für alle $x \in V = V(I')$, also $V(I') \supseteq V(I(V))$.

(ii) Folgt aus (i) und 1.2.

Bemerkung 1.9 Frage: Gilt auch I(V(I)) = I für ein Radikalideal? Antwort: Nicht uneingeschränkt! Betrachte

$$I = \langle X^2 + 1 \rangle \in \mathbb{K}[X]$$

Dann ist für $\mathbb{K} = \mathbb{R} \ V(I) = \emptyset$, also $I(V(I)) = I(\emptyset) = \mathbb{R}[X]$.

Gehen wir dagegen in einen algebraisch abgeschlossenen Körper, z.B. C über:

Dann ist $V(I) = \{i, -i\}$, also

$$I(V(I)) = \langle X - i \rangle \cap \langle X + i \rangle = \langle X^2 + 1 \rangle.$$

Unser Ziel soll es also sein, zu zeigen, dass dies allgemein in algebraisch abgeschlossenen Körpern gilt.

Definition + **Bemerkung 1.10** Sei $V \subseteq \mathbb{K}^n$ affine Varietät, I(V) das Verschwindungsideal.

(i) Wir definieren die affine Algebra bzw. den affinen Koordinatenring zu V als

$$A(V) := \mathbb{K}[X_1, \dots, X_n] / I(V)$$

- (ii) A(V) ist eine endlich erzeugte, reduzierte \mathbb{K} -Algebra, d.h. A(V) enthält keine nilpotenten Elemente, d.h. für $a \neq 0$ gilt $a^d \neq 0$ für alle $d \in \mathbb{N}$.
- (iii) Ist $V' \subseteq V$ affine Varietät, so erhalten wir einen surjektiven Homomorphismus von \mathbb{K} -Algebren $p: A(V) \longrightarrow A(V')$.
- Beweis. (ii) Sei $a \in A(V)$ mit $a \neq 0$ und $a^d = 0$ für ein $d \geq 1$. Wähle $f \in \mathbb{K}[X_1, \dots, X_n]$ mit $\overline{f} = a$ in A(V). Dann ist $f^d \in I(V)$, denn $\overline{f^d} = \overline{f}^d = a^d = 0$, und damit auch $f \in I(V)$, da I(V) Radikalideal ist. Dann gilt a = 0, also ein Widerspruch.
- (iii) Wegen 1.6 ist $I(V') \supseteq I(V)$. Mit dem Homomorphiesatz erhalten wir eine Faktorisierung

welche den gewünschten Homomorphismus liefert.

§ 2 Die Zariski-Topologie

Es sei \mathbb{K} ein Körper, $n \in \mathbb{N}$.

Definition + **Bemerkung 2.1** (i) Die affinen Varietäten in \mathbb{K}^n bilden die abgeschlossenen Mengen einer Topologie auf \mathbb{K}^n .

- (ii) Diese Topologie heißt Zariski-Topologie.
- (iii) Es bezeichne $\mathbb{A}^n(\mathbb{K})$ den topologischen Raum \mathbb{K}^n mit der Zariski-Topologie.

Beweis. Wir rechnen die Axiome einer Topologie nach.

(1) Per Definition sind $\mathbb{K}^n = V(0)$ und $\emptyset = V(1)$ affine Varietäten.

(2) Seien $V_1 = V(I_1), V_2 = V(I_2)$ affine Varietäten.

Beh. (a) Es gilt $V(I_1I_2) \stackrel{(i)}{\subseteq} V_1 \cup V_2 \stackrel{(ii)}{\subseteq} V(I_1 \cup I_2) \stackrel{(iii)}{\subseteq} V(I_1I_2)$.

Dann gilt an jeder Stelle Gleichheit und damit ist auch $V_1 \cup V_2$ affine Varietät.

Bew. (a) Es gilt

- (iii) $I_1I_2 \subseteq I_1 \cap I_2$, also $V(I_1I_2) \supseteq V(I_1 \cap I_2)$.
- (ii) Es ist $I_k \cap I_2 \subseteq I_k$, also $V_k \subseteq V(I_1 \cap I_2)$ für $k \in \{1, 2\}$, also auch $V_1 \cup V_2 \subseteq V(I_1 \cap I_2)$.
- (i) Sei $x \in V(I_1I_2)$, ohne Einschränkung $x \notin V_1$. Zu zeigen: $x \in V_2$. Da $x \notin V_1$, gibt es ein $f \in I_1$, sodass $f(x) \neq 0$. Sei nun $g \in I_2$. Nach Voraussetzung ist dann

$$0 = (f \cdot g)(x) = f(x) \cdot g(x)$$

und damit g(x) = 0. Dies impliziert $x \in V(I_2) = V_2$.

(3) Seien für eine beliebige Indexmenge J V_i , $i \in J$ affine Varietäten, es gelte $V_i = V(I_i)$. Dann ist

$$\bigcap_{i \in J} V_i = V\left(\bigcup_{i \in J} I_i\right) = V\left(\left\langle\bigcup_{i \in J} I_i\right\rangle\right) := V\left(\sum_{i \in J} I_i\right)$$

ebenfalls affine Varietät, was zu zeigen war.

Beispiel 2.2 Betrachte n=1. Dann ist $V \subseteq \mathbb{A}^1(\mathbb{K})$ abgeschlossen genau dann, wenn $V=\mathbb{A}^1(\mathbb{K})$ oder V endlich ist. Insbesondere ist $\mathbb{A}^1(\mathbb{K})$ damit nicht hausdorffsch.

Beispiel 2.3 Ist \mathbb{K} endlich, so ist die Zariski-Topologie auf \mathbb{K}^n die diskrete Topologie.

Proposition 2.4 Sei \mathbb{K} unendlich. Dann ist $\mathbb{A}^n(\mathbb{K})$ nicht hausdorffsch.

Beweis. Siehe Übung.

Proposition 2.5 Für $f \in \mathbb{K}[X_1, \dots, X_n]$ sei

$$D(f) := \{x \in \mathbb{K}^n \mid f(x) \neq 0\} = \mathbb{K}^n \backslash V(f)$$

 $Dann\ bildet\ die\ Familie\ \{D(f)\}_{f\in\mathbb{K}[X_1,\dots,X_n]}\ eine\ Basis\ der\ Zariski-Topologie\ auf\ \mathbb{A}^n(\mathbb{K}).$

Beweis. Sei $U \subseteq \mathbb{A}^n(\mathbb{K})$ offen. Es ist zu zeigen, dass U eine Menge D(f) für ein geeignetes f enthält. Offenbar ist $V := \mathbb{K}^n \setminus U$ abgeschlossen, also eine affine Varietät. Dann schreibe V = V(I) für ein Ideal $I \leq \mathbb{K}[X_1, \dots, X_n]$.

Sei nun $x \in U$. Da $x \notin V$ existiert ein $f \in I(V)$, sodass gilt $f(x) \neq 0$, also $x \in D(f)$. Da $f \in I$, gilt $\langle f \rangle \subseteq I$, also $V(f) \supseteq V(I) = V$ und damit $D(f) \subseteq U$, was zu zeigen war.

Definition + **Bemerkung 2.6** Für jede affine Varietät $V \subseteq \mathbb{A}^n(\mathbb{K})$ heißt die Spurtopologie ebenfalls *Zariski-Topologie*.

Für $f \in A(V) \setminus \mathbb{K}$ sei

$$D(f) := \{ x \in V \mid f(x) \neq 0 \}$$

Dann ist die Familie $\{D(F)\}_{f\in A(V)\setminus \mathbb{K}}$ offen und eine Basis der Zariski-Topologie.

§ 3 Irreduzible Varietäten

Definition 3.1 Sei X ein topologischer Raum.

- (i) X heißt reduzibel, falls es echte abgeschlossene Teilmengen $V, W \subset X$ gibt mit $V \cup W = X$.
- (ii) Ist X nicht reduzibel, so heißt X irreduzibel.
- (iii) Eine maximale irreduzible Teilmenge von X heißt irreduzible Komponente.

Beispiel 3.2 Sei X ein Hausdorffraum. Dann ist X irreduzibel genau dann wenn $|X| \leq 1$, also $X \in \{\{\text{pt}\}, \emptyset\}$.

Beweis. Seien $x, y \in X$, $x \neq y$ und U_x, U_y offene Umgebungen von x, y mit $U_x \cap U_y = \emptyset$. Dann sind $V_x := X \setminus U_x$, $V_y := X \setminus U_y$ abgeschlossene Mengen mit

$$V_x \cup V_y = (X \backslash U_x) \cup (X \backslash U_y) = X \backslash (U_x \cap U_y) = X$$

Bemerkung 3.3 (i) Sei X topologischer Raum, $V \subseteq X$ irreduzibel. Dann ist auch \overline{V} irreduzibel. (ii) Irreduzible Komponenten sind abgeschlossen.

Beispiel 3.4 (i) Sei \mathbb{K} unendlicher Körper. Dann ist $\mathbb{A}^n(\mathbb{K})$ irreduzibel für alle $n \in \mathbb{N}$. Beweis. Sei $\mathbb{A}^n(\mathbb{K}) = V(I_1) \cup V(I_2)$ mit $I_1 \neq \langle 0 \rangle \neq I_2$. Dann gilt nach Bemerkung 2.1

$$\mathbb{A}^{n}(\mathbb{K}) = V(I_{1}) \cup V(I_{2}) = V(I_{2}I_{2})$$

Wähle also $f \in I_2 \setminus \{0\}$, $g \in I_2 \setminus \{0\}$. Dann gilt für alle $x \in \mathbb{K}^n$ $(f \cdot g)(x) = 0$, also $f \cdot g = 0$, ein Widerspruch zur Nullteilerfreiheit.

 $V(X \cdot Y) \subseteq \mathbb{A}^2(\mathbb{K})$ ist reduzibel mit $V(X \cdot Y) = V(X) \cup V(Y)$.

Satz 3.5 Sei $V \subseteq \mathbb{A}^n(\mathbb{K})$ affine Varietät, $V \neq \emptyset$. Dann gilt

$$V \text{ ist irreduzibel } \iff I(V) \leqslant \mathbb{K}[X_1, \dots, X_n] \text{ ist Primideal}$$

Beweis. " \Rightarrow " Seien $f, g \in \mathbb{K}[X_1, \dots, X_n]$ mit $fg \in I(V)$, ohne Einschränkung $f \notin I(V)$. Dann gibt es $x \in V$ mit $f(x) \neq 0$, das heißt es gilt $V \nsubseteq V(f)$, nach Voraussetzung aber $V \subseteq V(fg) = V(f) \cup V(g)$. Damit ist

$$(V \cap V(f)) \cup (V \cap V(g)) = V$$

Da V aber irreduzibel ist und $V \cap V(f) \neq V$, muss gelten $V \cap V(g) = V$, also $V(g) \subseteq V$ und damit $g \in I(V)$.

" \Leftarrow " Sei $V = V_1 \cup V_2$ ein Zerlegung von V in zwei abgeschlossene Teilmengen V_1 und V_2 . Dann ist $V_1 = V(I_1), V_2 = V(I_2)$ für Ideale $I_1, I_2 \leq \mathbb{K}[X_1, \dots, X_n]$. Sei ohne Einschränkung $V \neq V_1$, also $V \nsubseteq V(I_1)$. Dann gibt es $x \in V, f \in I_1$ mit $f(x) \neq 0$, also $f \notin I(V)$. Zeige also $V \subseteq V(I_2)$. Hierfür genügt zu zeigen $I_2 \subseteq I(V)$.

Sei nun $g \in I_2$. Dann ist $fg \in I_1I_2$. Wegen $V = V_1 \cup V_2$, also $V = V(I_1) \cup V(I_2) = V(I_1I_2)$, gilt $I_1I_2 \subseteq I(V)$, also $fg \in I(V)$. Da I(V) prim ist und $f \notin I(V)$, gilt $g \in I(V)$ und damit $I_2 \subseteq I(V)$.

Satz 3.6 Sei $V \subseteq \mathbb{A}^n(\mathbb{K})$ affine Varietät. Dann qilt

- (i) V ist endliche Vereinigung irreduzibler Varietäten.
- (ii) Gilt $V = V_1 \cup \ldots \cup V_r$ mit irreduziblen Varietäten V_1, \ldots, V_r und $V_i \nsubseteq V_j$ für $i \neq j$ (das heißt, kein V_i ist überflüssig), so sind die V_i die irreduziblen Komponenten von V, also insbesondere eindeutig.

Beweis. (i) Definiere

 $\mathcal{B} := \{V \mid V \text{ ist nicht endliche Vereinigung irreduzibler Varietäten } \}$

$$\mathcal{I} := \{ I(V) \mid V \in \mathcal{B} \}$$

Zu zeigen: \mathcal{B}, \mathcal{I} sind leer.

Angenommen $\mathcal{I} \neq \emptyset$. Dann enthält \mathcal{I} ein maximales Element I_0 , denn $\mathbb{K}[X_1,\ldots,X_n]$ ist noethersch, also wird jede aufsteigende Kette von Idealen stationär. Schreibe $I_0 = I(V_0)$ mit $V_0 \in \mathcal{B}$. V_0 ist reduzibel, schreibe also $V_0 = V_1 \cup V_2$ mit abgeschlossenen Mengen $V_1 \subsetneq V_0 \supsetneq V_2$, also gilt dann $I(V_1) \supsetneq I_0 \subsetneq I(V_2)$. Da I_0 maximal ist, ist $I(V_1), I(V_2) \notin \mathcal{I}$ und damit $V_1, V_2 \notin |\mathcal{B}|$. Per Definition sind dann also V_1, V_2 darstellbar als endliche Vereinigungen irreduzibler Varietäten:

$$V_1 = \bigcup_{i=1}^n U_i, \qquad V_2 = \bigcup_{i=n+1}^m U_i$$

Damit ist aber V endliche Vereinigung von irreduziblen Komponenten, also $V \in \mathcal{B}$, ein Widerspruch zur Voraussetzung.

(ii) Zeige zunächst die Eindeutigkeit. Sei hierfür $W\subseteq V$ irreduzible Komponente. Zu zeigen: $W=V_i$ für ein $1\leqslant i\leqslant r$. Schreibe

$$W = W \cap V = \bigcup_{i=1}^{r} \underbrace{(W \cap V_i)}_{\text{abgeschlosser}}$$

Da W irreduzibel ist, gilt bereits $W \cap V_i = W$, also $W \subseteq V_i$ für ein $1 \le i \le r$. Da aber auch V_i irreduzibel ist, gilt $W = V_i$.

Zeige nun, dass V_1, \ldots, V_r irreduzible Komponenten sind. Sei $1 \leq i \leq r$. Dann existiert eine irreduzible Komponente W von V mit $V_i \subseteq W$, also $W = V_j$ für ein $j \in \{1, \ldots, r\}$. Also erhalten wir $V_i \subseteq V_j$ und wegen $V_i \nsubseteq V_j$ dann i = j und schließlich $W = V_i$. Damit ist V_i irreduzible Komponente.

Folgerung 3.7 Sei $V \subseteq \mathbb{A}^n(\mathbb{K})$ affine Varietät, I = I(V) ihr Verschwindungsideal und $A(V) := \mathbb{K}[X_1, \dots, X_N] / I(V) := \mathbb{K}[V]$ ihr affiner Koordinatenring. Dann gilt

- (i) $\mathbb{K}[V]$ hat nur endlich viele minimale Primideale.
- (ii) In $\mathbb{K}[X_1,\ldots,X_n]$ gibt es nur endlich viele Primideale, die I umfassen und minimal mit dieser Eigenschaft sind.

Beweis. (i) Folgt aus (ii), denn (surjektive) (Ur-)Bilder von Primidealen sind wieder Primideale.

(ii) Ist $p \leq \mathbb{K}[X_1, \dots, X_n]$ prim sodass $\mathfrak{p} \supseteq I$ und minimal mit dieser Eigenschaft. Dann ist $V(\mathfrak{p}) \subseteq V(I)$ irreduzible Komponente und nach 3.5 ist die Anzahl dieser endlich.

§ 4 Der Hilbertsche Nullstellensatz

Satz 4.1 (Hilbertscher Nullstellensatz) Sei \mathbb{K} algebraisch abgeschlossener Körper, $n \in \mathbb{N}$.

- (i) Für jedes Ideal $\{0\} \neq I \leqslant \mathbb{K}[X_1, \dots, X_n]$ ist $V(I) \neq \emptyset$.
- (ii) Für jedes Ideal $I \leq \mathbb{K}[X_1, \dots, X_n]$ ist $I(V(I)) = \sqrt{I}$.

Satz 4.2 (Algebraische Version des Hilbertschen Nullstellensatzes) Sei \mathbb{K} Körper, $n \in \mathbb{N}$, $\mathfrak{m} \triangleleft \mathbb{K}[X_1, \ldots, X_n]$ ein maximales Ideal. Dann ist $\mathbb{L} := \mathbb{K}[X_1, \ldots, X_n]/\mathfrak{m}$ eine algebraische Körpererweiterung von \mathbb{K} .

Folgerung 4.3 Sei \mathbb{K} algebraisch abgeschlossener Körper, $n \in \mathbb{N}$. Dann gibt es Bijektionen zwischen folgenden Mengen:

- (i) $\{x = (x_1, \dots, x_n) \in \mathbb{K}^n\}$
- (ii) Ideale $\{I_x = \langle X_1 x_1, \dots, X_n x_n \rangle \leqslant \mathbb{K}[X_1 \dots, X_n]\}$
- (iii) Maximale Ideale $\{\mathfrak{m} \triangleleft \mathbb{K}[X_1,\ldots,X_n]\}.$

Beweis. "(i) \Rightarrow (ii)" Klar.

"(ii) \Rightarrow (iii)" Sei für $x \in \mathbb{K}^n \phi : \mathbb{K}[X_1, \dots, X_n] \longrightarrow \mathbb{K}, f \mapsto f(x_1, \dots, x_n)$. Dann ist offenbar $\ker(\phi) = I_x$, und da ϕ surjektiv ist damit

$$\mathbb{K}[X_1,\ldots,X_n]/I_x\cong\mathbb{K}$$

"(iii) \Rightarrow (ii)" Sei $\mathfrak{m} \triangleleft \mathbb{K}[X_1,\ldots,X_n]$ maximales Ideal. Mit Satz 4.2 gilt also

$$\mathbb{K}[X_1,\ldots,X_n]/\mathbb{m} \cong \mathbb{K}$$

Sei nun

$$\phi: \mathbb{K}[X_1, \dots, X_n] \longrightarrow \mathbb{K}[X_1, \dots, X_n] / \mathfrak{m} \cong \mathbb{K}$$

die Restklassenabbildung, $x_i := \phi(X_i)$. Dann gilt $\mathfrak{m} = \ker(\phi)$ und $\mathfrak{m} = I_x$.

Beweis von Satz 4.1. (i) Sei $I \triangleleft \mathbb{K}[X_1, \dots, X_n]$ ein echtes Ideal. Dann existiert nach Zorn's Lemma ein maximales Ideal $I \subseteq \mathfrak{m} \triangleleft \mathbb{K}[X_1, \dots, X_n]$. Damit gilt $V(I) \supseteq V(\mathfrak{m})$. Nach Folgerung 4.3 gibt es damit $x = (x_1, \dots, x_n) \in \mathbb{K}^n$ mit

$$\mathfrak{m} = \langle X_1 - x_1, \dots, X_1 - x_1 \rangle$$

und damit $x \in V(\mathfrak{m}) \subseteq V(I)$, also gerade $V(I) \neq \emptyset$.

(ii) Sei $I \leq \mathbb{K}[X_1, \dots, X_n]$ Ideal. Dann gilt offenbar $\sqrt{I} \subseteq I(V(I))$. Zu zeigen ist somit $I(V(I)) \subseteq \sqrt{I}$. Sei also $g \in I(V(I))$. Zeige: Es existiert $d \in \mathbb{N}$ mit $g^d \in \sqrt{I}$. Seien dazu f_1, \dots, f_m Erzeuger von I und

$$J \leqslant \mathbb{K}[X_1, \dots, X_n, Y]$$

das von $f_1 \dots, f_m$ und dem Polynom gY - 1 erzeugte Ideal.

Beh. (a) Es gilt $V(J) = \emptyset$.

Bew. (a) Sei das Tupel $(x_1, \ldots, x_n, y) := (x', y) := x \in V(J)$. Dann gilt für alle $i \in \{1, \ldots, m\}$

$$0 = f_i(x) = f_i(x') \implies x' \in V(I)$$

Da $g \in I(V(I))$, gilt g(x') = 0, denn $x' \in V(I)$. Dann folgt wegen g(x') = 0

$$0 = (gY - 1)(x) = (g(x)Y(x) - 1) = g(x') \cdot Y - 1 = -1,$$

ein Widerspruch. Also gilt $V(J) = \emptyset$.

Damit folgt $J = \mathbb{K}[X_1, \dots, X_n]$, also insbesondere $1 \in J$. Schreibe

$$1 = \sum_{i=1}^{m} b_i f_i + c \cdot (gY - 1), \qquad b_i, c \in \mathbb{K}[X_1, \dots, X_n, Y]$$

Betrachte nun den Ring

$$R := \mathbb{K}[X_1, \dots, X_n] / \langle gY - 1 \rangle \cong \mathbb{K}[X_1, \dots, X_n] \left[\frac{1}{g}\right]$$

Für die Isomorphie betrachte den surjektiven Ringhomomorphismus

$$\phi: \mathbb{K}[X_1, \dots, X_n, Y] \longrightarrow \mathbb{K}[X_1, \dots, X_n] \left[\frac{1}{g}\right], \qquad \begin{cases} X_i \mapsto X_i \\ Y \mapsto \frac{1}{g} \end{cases}$$

Für diesen gilt

$$\ker(\phi) = \left\langle \left\{ Y = \frac{1}{q} \right\} \right\rangle = \left\langle gY - 1 \right\rangle$$

In R gilt

$$1 = \sum_{i=1}^{m} \overline{b_i f_i} + \overline{c(gY - 1)} = \sum_{i=1}^{m} \overline{b_i} f_i$$

Schreibe

$$\overline{b_i} = \sum_{j=1}^{d_i} c_j \frac{1}{g^j} = \sum_{j=1}^{d_i} \frac{c_0 g^{d_i} + c_1 g^{d_i - 1} + \dots + c_{d_i}}{g^{d_i}} := \frac{c_i}{g^{d_i}}$$

Sei $d:=\max_{1\leqslant i\leqslant m}\{d_i\}$. Dann gilt g^d $\overline{b_i}\in\mathbb{K}[X_1,\ldots,X_n]$. Schließlich ist

$$g^{d} = g^{d} \cdot 1 = g^{d} \cdot \sum_{j=1}^{m} \overline{b_{i}} f_{i} = \sum_{j=1}^{m} \underbrace{g^{d} \overline{b_{i}}}_{\in \mathbb{K}[X_{1}, \dots, X_{n}]} f_{i} \in I,$$

was die Behauptung liefert.

Beweis von Satz 4.2. Durch Induktion über n.

 $\mathbf{n} = \mathbf{1} \ \mathfrak{m} = \langle f \rangle$ für ein irreduzibles Polynom $f \in \mathbb{K}[X]$ (Algebra).

 $\mathbf{n}>\mathbf{1}$ Angenommen \mathbb{L}/\mathbb{K} ist nicht algebraisch. Dann ist ohne Einschränkung X_1 transzendent über \mathbb{K} , $x_i:=\overline{X_i}$. Dann ist

$$\mathbb{K}(X) = \operatorname{Quot}(\mathbb{K}[X]) \cong \mathbb{K}(x_1) \subseteq \mathbb{L}$$

Weiter wird \mathbb{L} über $\mathbb{K}(x_1)$ von x_2, \dots, x_n erzeugt. Damit ist

$$\mathbb{L} \cong \mathbb{K}(x_1)[X_2,\ldots,X_n]/\mathfrak{m}'$$

für ein maximales Ideal $\mathfrak{m}' \lhd \mathbb{K}(x_1)[X_2,\ldots,X_n]$. Per Induktionsvoraussetzung sind x_2,\ldots,x_n damit algebraisch über $\mathbb{K}(x_1)$, es gibt also normierte Minimalpolynome $f_2,\ldots,f_m\in\mathbb{K}(x_1)[X]$ aus denen Gleichungen

$$f_i(x_i) = x_i^{m_i} + \sum_{j=0}^{m_i-1} a_{ij} x_i^j = 0$$

mit geeigneten $a_{ij} \in \mathbb{K}(x_1)$. Sei nun R der kleinste Teilring vom $\mathbb{K}(x_1)$, der $\mathbb{K}[x_1]$ und alle a_{ij} enthält. Dann sind x_2, \ldots, x_n ganz über R, also \mathbb{L}/R eine ganze Ringerweiterung. Wir erhalten:

- (1) R ist kein Körper, da $\mathbb{K}[x_1]$ unendlich viele Primelemente enthält, R aber nur endlich viele Primfaktoren als Nenner enthält.
- (2) Jedes $a \in R \setminus \{0\}$ besitzt ein Inverses in R. Offenbar ist $\frac{1}{a}$ in \mathbb{L} enthalten. Andererseits ist $\frac{1}{a}$ ganz über R, das heißt es existiert eine Darstellung

$$\left(\frac{1}{a}\right)^m + \sum_{j=0}^{m-1} b_j \left(\frac{1}{a}\right)^j = 0$$

für geeignete $b_j \in R$. dann gilt aber

$$1 = -\sum_{j=0}^{m-1} b_j \ a^{m-j} = -a \cdot \sum_{j=0}^{m-1} b_j \ a^{m-j-1}$$

und damit $a \in \mathbb{R}^{\times}$, womit \mathbb{R} zum Körper wird, also ein Widerspruch zu (1).

Damit war die Annahme zu Beginn falsch und x_1 , und damit auch \mathbb{L} ist algebraisch über \mathbb{K} . \square

Folgerung 4.4 Für jeden Körper \mathbb{K} und jedes $n \in \mathbb{N}$ sei

$$\mathcal{V}_n(\mathbb{K}) := \{ V \subseteq \mathbb{K}^n \mid V \text{ is affine Varietät } \}$$

$$\mathcal{I}_n(\mathbb{K}) := \{ I \leqslant \mathbb{K}[X_1, \dots, X_n] \mid I = \sqrt{I} \}$$

$$V := V_{n,\mathbb{K}} : \mathcal{I}_n(\mathbb{K}) \longrightarrow \mathcal{V}_n(\mathbb{K}), \quad I \mapsto V(I)$$

$$I := I_{n,\mathbb{K}} : \mathcal{V}_n(\mathbb{K}) \longrightarrow \mathcal{I}_n(\mathbb{K}), \quad V \mapsto I(V)$$

Dann gilt

 \mathbb{K} ist algebraisch abgeschlossen \iff I und V sind zueinander invers

Bemerkung 4.5 Ist \mathbb{K} algebraisch abgeschlossen und ist $V \subseteq \mathbb{A}^n(\mathbb{K})$ affine Varietät, so entsprechen die Punkte in V bijektiv den maximalen Idealen in $A(V) := \mathbb{K}[X_1, \dots, X_n] / I(V)$.

§ 5 Morphismen zwischen affinen Varietäten

Definition + **Bemerkung 5.1** Sei \mathbb{K} Körper, $V \subseteq \mathbb{A}^n(\mathbb{K})$, $W \subseteq \mathbb{A}^m(\mathbb{K})$ affine Varietäten.

- (i) Eine Abbildung $f: V \longrightarrow W$ heißt Morphismus, falls es Polynome $f_1, \ldots, f_m \in \mathbb{K}[X_1, \ldots, X_n]$ gibt mit $f(x) = (f_1(x), \ldots, f_m(x))$ für alle $x = (x_1, \ldots, x_n) \in V \subseteq \mathbb{K}^n$.
- (ii) Jeder Morphiums $f: V \longrightarrow W$ ist die Einschränkung eines Morphismus $\tilde{f}: \mathbb{A}^n(\mathbb{K}) \longrightarrow \mathbb{A}^m(\mathbb{K})$.
- (iii) Ein Morphismus $f: V \longrightarrow W$ heißt *Isomorphismus*, falls es einen Morphismus $g: W \longrightarrow V$ gibt mit $f \circ g = \mathrm{id}_W$ und $g \circ f = \mathrm{id}_V$.
- (iv) Die affinen Varietäten bilden zusammen mit den Morphismen eine Kategorie Aff(K)

Beispiel 5.2 (0) Die Identität

$$\mathrm{id}_{\mathbb{A}^n(\mathbb{K})}: \mathbb{A}^n(\mathbb{K}) \longrightarrow \mathbb{A}^n(\mathbb{K}), \qquad (x_1, \dots, x_n) \mapsto (x_1, \dots, x_n)$$

ist ein Morphismus mit $f_i = X_i$.

(i) Weitere Morphismen sind

Einbettungen:
$$\mathbb{A}^n(\mathbb{K}) \longrightarrow \mathbb{A}^{n+m}(\mathbb{K}), (x_1, \dots, x_n) \mapsto (x_1, \dots, x_n, 0 \dots, 0)$$

Projektionen:
$$\mathbb{A}^{n+m}(\mathbb{K}) \longrightarrow \mathbb{A}^n(\mathbb{K}), (x_1, \dots x_{n+m}) \mapsto (x_1, \dots, x_n)$$

Vertauschungen:
$$\mathbb{A}^n(\mathbb{K}) \longrightarrow \mathbb{A}^n(\mathbb{K}), (x_1, \dots, x_n) \mapsto (x_{\sigma(1)}, \dots, x_{\sigma(n)}), \quad \sigma \in S_n$$

- (ii) Jedes $f \in \mathbb{K}[X_1, \dots, X_n]$ ist ein Morphimsus $f : \mathbb{A}^n(\mathbb{K}) \longrightarrow \mathbb{A}(\mathbb{K})$.
- (iii) Sei $V=\mathbb{A}^1(\mathbb{K}),\,W=V(Y^2-X^3)\subseteq\mathbb{A}^2(\mathbb{K}).$ Definiere

$$f: V \longrightarrow W, \ x \mapsto (x^2, x^3)$$

Dann ist f ein Morphismus. Außerdem ist f bijektiv mit Umkehrabbildung

$$g(x,y) = \begin{cases} \frac{y}{x} & x \neq 0\\ 0 & x = 0 \end{cases}$$

denn es gilt

$$f(g(x,y)) = f\left(\frac{y}{x}\right) = \left(\frac{y^2}{x^2}, \frac{y^3}{x^3}\right) = \left(\frac{x^3}{x^2}, \frac{y^3}{y^2}\right) = (x,y)$$

$$g(f(x)) = g(x^2, x^3) = \left(\frac{x^3}{x^2}\right) = x$$

Aber: g ist kein Morphismus (und f damit kein Isomorphismus), falls \mathbb{K} algebraisch abgeschlossen ist, denn andernfalls gäbe es ein Polynom $h \in \mathbb{K}[X,Y]$ mit $h(X,Y) = \frac{Y}{X}$, also

$$X \cdot h - Y \in I(W) = I(V(\langle Y^2 - X^3 \rangle)) = \langle Y^2 - X^3 \rangle$$

und damit $X \cdot h - Y = H \cdot (Y^2 - X^3)$ für ein $H \in \mathbb{K}[X,Y] \ \sharp$.

(iv) Sei char(\mathbb{K}) = p > 0. Dann heißt

$$f: \mathbb{A}^n(\mathbb{K}) \longrightarrow \mathbb{A}^n(\mathbb{K}), \quad (x_1, \dots, x_n) \mapsto (x_1^p, \dots, x_n^p)$$

Frobenius-Homomorphismus. Es gilt: f ist injektiv, denn für $x^p = y^p$ gilt

$$0 = x^p - y^p = (x - y)^p \implies x - y = 0 \implies x = y$$

f ist surjektiv, falls \mathbb{K} enthalten ist in $\overline{\mathbb{F}}_p$ (im Allgemeinen jedoch nicht!). Damit sind die Fixpunkte unter f gerade jene, deren Koordinaten alle in \mathbb{F}_p liegen, also

$$f(x) = x \iff x \in \mathbb{F}_p^n \text{ für } x = (x_1, \dots, x_n)$$

Bemerkung 5.3 Morphismen affiner Varietäten sind stetig bezüglich der Zariski-Toipologie.

Beweis. Seien $V \subseteq \mathbb{A}^n(\mathbb{K})$, $W \subseteq \mathbb{A}^m(\mathbb{K})$ affine Varietäten und $f: V \longrightarrow W$ ein Morphismus. Zeige, dass das Urbild abgeschlossener Mengen wieder abgeschlossen ist.

Sei $Z \subseteq W$ abgeschlossen. Dann ist Z auch abgeschlossen in $\mathbb{A}^m(\mathbb{K})$, also existiert ein Ideal

$$J \leqslant \mathbb{K}[X_1, \dots, X_n]$$

mit Z = V(J). Zeige: Z ist abgeschlossen, also affine Varietät.

Beh. (a) Es gilt $f^{-1}(Z) = V(I)$ mit $I = \{g \circ f \mid g \in J\} \leq \mathbb{K}[X_1, \dots, X_n]$. Dazu:

Bew. (a) Zunächst sehen wir ein

$$\mathbb{A}^n(\mathbb{K}) \xrightarrow{f} \mathbb{A}^m(\mathbb{K}) \xrightarrow{g} \mathbb{A}^1(\mathbb{K})$$

Damit ist $g \circ f : \mathbb{A}^n(\mathbb{K}) \longrightarrow \mathbb{A}(\mathbb{K})$ Morphismus, also gerade $g \circ f \in \mathbb{K}[X_1, \dots, X_n]$. Nun gilt

$$x \in f^{-1}(Z) \iff f(x) \in Z \iff g(f(x)) = 0 = (g \circ f)(x)$$
 für alle $g \in J$ $\iff h(x) = 0$ für alle $h \in I$ $\iff x \in V(I)$

also gerade die Behauptung.

Bemerkung 5.4 Für jede affine Varietät $V \subseteq \mathbb{A}^n(\mathbb{K})$ bilden die Morphismen $V \longrightarrow \mathbb{A}^1(\mathbb{K})$ eine \mathbb{K} -Algebra $\mathbb{K}[V]$. Es gilt

$$\mathbb{K}[V] \cong \mathbb{K}[X_1, \dots, X_n] / I(V) = A(V)$$

Beweis. Offenbar ist $Mor(V, \mathbb{A}^1(\mathbb{K}))$ eine \mathbb{K} -Unteralgebra von $Abb(V, \mathbb{K})$. Weiter ist die Abbildung

$$\phi: \mathbb{K}[X_1, \dots, X_n] \longrightarrow \mathbb{K}[V], \quad f \mapsto f|_V$$

surjektiver Homomorphimus mit $ker(\phi) = I(V)$, also

$$\mathbb{K}[V] \cong \mathbb{K}[X_1, \dots, X_n]/I(V),$$

was zu zeigen war.

Proposition 5.5 Seien $V \subseteq \mathbb{A}^n(\mathbb{K})$, $W \subseteq \mathbb{A}^m(\mathbb{K})$ affine Varietäten.

(i) Für jeden Morphismus $f: V \longrightarrow W$ ist die Abbildung

$$f^{\#}: \mathbb{K}[W] \longrightarrow \mathbb{K}[V], \quad g \mapsto g \circ f$$

ein Homomorphismus von \mathbb{K} -Algebren.

(ii) Die Abbildung

$$\alpha: \operatorname{Mor}(V, W) \longrightarrow \operatorname{Hom}_{\mathbb{K}}(\mathbb{K}[W], \mathbb{K}[V]), \quad f \mapsto f^{\#}$$

ist bijektiv.

Beweis. (i) $g \circ f$ ist als Komposition von Morphismen ein Morphismus $g \circ f : V \longrightarrow \mathbb{A}^n(\mathbb{K})$ und es gilt

$$(g_1 + g_2) \circ f = g_1 \circ f + g_2 \circ f$$

usw. (diese Eigenschaften kennen wir bereits lange). Damit ist $f^{\#}$ Homomorphismus.

(ii) Offenbar ist die Abbildung mit (i) wohldefiniert. Für die Bijektivität zeige injektiv. Seien $f_1, f_2 \in \text{Mor}(V, W)$ mit $f_1^{\#} = f_2^{\#}$, also $g \circ f_1 = g \circ f_2$ für alle $g \in \mathbb{K}[W]$. Insbesondere erhalten für die Projektionen p_i anstelle von g für alle $1 \leq i \leq m$

$$p_i \circ f_1 = p_i \circ f_2 \implies f_{1i} = f_{2i} \implies f_1 = f_2$$

surjektiv. Sei $\phi : \mathbb{K}[W] \longrightarrow \mathbb{K}[V]$ Homomorphismus von \mathbb{K} -Algebren, also $\phi \in \operatorname{Hom}_{\mathbb{K}}(\mathbb{K}[W], \mathbb{K}[V])$. Definiere

$$f: V \longrightarrow \mathbb{A}^m(\mathbb{K}), \quad x \mapsto (\phi(p_1)(x), \dots, \phi(p_m)(x))$$

Zeige nun

Beh. (1) $f(V) \subseteq W$.

Beh. (2) $f^{\#} = \phi$.

Dann ist f ein Urbild von ϕ und die Behauptung folgt.

Bew. (2) Für $i \in \{1, ..., m\}$ gilt $f^{\#}(p_i) = p_i \circ f \stackrel{Def.}{=} \phi(p_i)$. Da die p_i die \mathbb{K} -Algebra $\mathbb{K}[W]$ erzeugen, gilt $f^{\#} = \phi$.

Bew. (1) Zu zeigen ist $f(V) \subseteq V(I(W)) \subseteq W$. Sei also $x \in V$ und $g \in I(W)$ und zeige $g(f(x)) = (g \circ f)(x) = 0$. Sei dazu

$$\tilde{\phi}: \mathbb{K}[X_1, \dots, X_m] \longrightarrow \mathbb{K}[X_1, \dots, X_n]$$

ein Homomorphismus, der die X_i abbildet auf eine Reptäsentanten von $\phi(p_i)$ für $1 \le i \le m$. Genauer, betrachte

$$\mathbb{K}[X_1, \dots, X_m] \xrightarrow{\tilde{\phi}} \mathbb{K}[X_1, \dots, X_n]$$

$$\downarrow^{\pi_W} \qquad \qquad \downarrow^{\pi_V}$$

$$W \xrightarrow{\phi} \mathbb{K}[V]$$

Es gilt $\tilde{\phi}(I(W)) \subseteq I(V)$, also $\tilde{\phi}(g) \in I(V)$. Damit erhalten wir

$$0 = \tilde{\phi}(g)(x) = g(\phi(p_1)(x), \dots, \phi(p_m)(x)) = (g \circ f)(x)$$

und damit die Behauptung.

Folgerung 5.6 Die Zuordnung $V \longrightarrow \mathbb{K}[V]$ ist ein kontravarianter (=richtungsumkehrender) und volltreuer (=bijektiver) Funktor via

$$\Phi:\underline{\mathrm{Aff}}(\mathbb{K})\longrightarrow\mathbb{K}\text{-}\mathrm{Alg}^{\mathrm{red}}$$

 Φ ist ein Morphismus auf Objekte:

$$\Phi(f) = f^{\#}, \quad \Phi(V) = \mathbb{K}[V]$$

Für $f \in Mor(V, W)$ ist

$$\Phi(f): \Phi(W) = \mathbb{K}[W] \longrightarrow \mathbb{K}[V] = \Phi(V), \quad g \mapsto g \circ f = f^{\#}$$

$$\Phi(\mathrm{id}) = \mathrm{id} = \mathrm{id}^{\#}$$

$$\Phi(f_2 \circ f_1) = (f_2 \circ f_1)^{\#} = f_1^{\#} \circ f_2^{\#} = \Phi(f_1) \circ \Phi(f_2)$$

Das heißt, wir haben kommutative Diagramme

Bemerkung 5.7 Seien V, W affine Varietäten über \mathbb{K} und

$$\phi: \mathbb{K}[W] \longrightarrow \mathbb{K}[V]$$

ein Homomorphismus von \mathbb{K} -Algebren. Ist $f: V \longrightarrow W$ der zugehörige Morphismus (also $f^{\#} = \phi$), so gilt für jedes $x \in V$:

$$\mathfrak{m}_{f(x)} = \phi^{-1}(\mathfrak{m}_x)$$

Beweis. Es gilt

$$\mathfrak{m}_x = \{ g \in \mathbb{K}[V] \mid g(x) = 0 \},\$$

also

$$\phi^{-1}(\mathfrak{m}_x) = \{h \in \mathbb{K}[W] \mid \phi \circ h \in \mathfrak{m}_x\} = \{h \in \mathbb{K}[W] \mid h(f(x)) = 0\} = \mathfrak{m}_{f(x)},$$

was zu zeigen war.

Beispiel 5.8 Betrachte die Abbildung

$$f: \mathbb{A}^1(\mathbb{K}) \longrightarrow V(Y^2 - X^3) \subseteq \mathbb{A}^2(\mathbb{K}), \quad x \mapsto (x^2, x^3)$$

Dann ist

$$f^{\#}: \mathbb{K}[X,Y]/\langle Y^2 - X^3 \rangle \longrightarrow \mathbb{K}[T], \quad X \mapsto T^2, Y \mapsto T^3$$

Offensichtlich ist $f^{\#}$ Homomorphismus. Aber: Kein Isomorphismus, denn $f^{\#}$ ist zwar injektiv (nach Konstruktion), aber nicht surjektiv, da $T \notin \text{Bild}(f^{\#})$.

Bemerkung: Bei Übergang in den Quotientenkörper existiert die Fortsetzung $\tilde{f}^{\#}$, da $\langle X^2 - Y^3 \rangle$ prim und damit $\mathbb{K}[X,Y]/\langle Y^2 - X^3 \rangle$ nullteilerfrei ist. Hier gilt $T = \tilde{f}^{\#}\left(\frac{y}{x}\right)$, $\tilde{f}^{\#}$ ist also Isomorphismus.

Satz 5.9 Sei K algebraisch abgeschlossener Körper. Dann ist

$$\Phi: Aff(\mathbb{K}) \longrightarrow \mathbb{K}-Alg^{red}, \quad V \mapsto \mathbb{K}[V]$$

eine Äquivalenz von Kategorien, das heißt, es existiert ein Funktor

$$\Psi: \underline{\mathbb{K}} - \underline{Alg}^{red} \longrightarrow \underline{Aff}_{\mathbb{K}}$$

 $sodass \Phi \circ \Psi \ und \Psi \circ \Phi \ (als \ Funktoren) \ isomorph \ zur \ Identit\"{a}t \ sind.$

Beweis. Sei A endlich erzeugte, reduzierte \mathbb{K} -Algebra und a_1, \ldots, a_n Erzeuger von A als \mathbb{K} -Algebra. Dann gibt es einen surjektiven Homomorphismus von \mathbb{K} -Algebren

$$\pi: \mathbb{K}[X_1, \dots, X_n] \longrightarrow A, \quad X_i \mapsto a_i$$

Setze $V := V(\ker(\pi))$. Dann ist

$$\mathbb{K}[V] \cong \mathbb{K}[X_1, \dots, X_n] / I(V(\ker(\pi)) \stackrel{HNS}{=} \mathbb{K}[X_1, \dots, X_n] / \ker(\pi) = A$$

§ 6 Reguläre Funktionen

In diesem Paragraph sei K stets ein algebraisch abgeschlossener Körper.

Bemerkung 6.1 Sei $V \subseteq \mathbb{A}^n(\mathbb{K})$ affine Varietät, $h \in \mathbb{K}[X_1, \dots, X_n]$. Dann gilt

$$\overline{h} \in (\mathbb{K}[V])^{\times} \iff V(h) \cap V = \emptyset$$

Beweis. Wir erhalten folgende Kette von Äquivalenzen:

$$V \cap V(h) = V(I(V) + \langle h \rangle) \stackrel{!}{=} \emptyset$$

$$\iff$$
 HNS: $I(V) + \langle h \rangle = \mathbb{K}[X_1, \dots, X_n]$

$$\iff$$
 1 = f + gh für ein $f \in I(V)$ und $g \in \mathbb{K}[X_1, \dots, X_n]$

$$\iff$$
 $1 = \overline{g}\overline{h} \mod \mathbb{K}[V]$

$$\iff \overline{h} \in (\mathbb{K}[V])^{\times}.$$

Definition 6.2 Sei $V \subseteq \mathbb{A}^n(\mathbb{K})$ affine Varietät, $U \subseteq V$ offen, $x \in U$.

(i) Eine Abbildung $f: U \longrightarrow \mathbb{K}$ heißt regulär in x, falls es eine offene Umgebung $U_x \subseteq U$ von x und $g, h \in \mathbb{K}[V]$ gibt, sodass für alle $y \in U_x$ gilt

$$h(y) \neq 0$$
 und $f(y) = \frac{g(y)}{h(y)}$

- (ii) f heißt $regul\"{a}r$ auf U, falls f regul\"{a}r in x ist f\"{u}r alle $x \in U$.
- (iii) Die Menge der regulären Funktionen auf U

$$\mathcal{O}_V(U) := \{ f : U \longrightarrow \mathbb{K} \mid f \text{ ist reguläre Funktion auf } U \}$$

ist eine K-Algebra.

(iv) Die Einschränkung

$$\rho_U : \mathbb{K}[V] \longrightarrow \mathcal{O}_V(U), \quad f \mapsto f|_U$$

ist ein Homomorphismus von K-Algebren.

- (v) ρ_U ist injektiv genau dann, wenn U dicht in V ist.
- Beweis von (v) " \Leftarrow " Sei $f \in \ker(\rho_U)$, also $f|_U = 0$. Dann gilt $U \subseteq V(f)$, und da V(f) abgeschlossen ist also auch $\overline{U} \subseteq V(f)$. Da U dicht in V ist erhalten wir $V = \overline{U} \subseteq V(f)$ und damit f = 0 in $\mathbb{K}[V]$.
- " \Rightarrow " Angenommen es gelte $\overline{U} \neq V$. Wähle $x \in V \setminus \overline{U}$. Da $V(I(U)) = \overline{U}$, existiert $f \in I(U)$ mit $f(x) \neq 0$. Damit ist $f \neq 0$ in $\mathbb{K}[V]$ mit $f|_U = \rho_U(f) = 0$, also ist ρ_U nicht injektiv.
- **Beispiel 6.3** (i) $V = \mathbb{A}^1(\mathbb{K})$, $U = \mathbb{A}^1(\mathbb{K})\setminus\{0\}$. Dann ist $\frac{1}{X} \in \mathcal{O}_V(U)$. Setze dafür g(y) = 1 und h(y) = X.
 - (ii) $V = V(Y^2 X^3)$, $U = V \setminus \{(0,0)\}$. Dann ist $\frac{Y}{X} \in \mathcal{O}_V(U)$.
- (iii) $V = \mathbb{A}^n(\mathbb{K}), f \in \mathbb{K}[X_1, \dots, X_n]$. Dann ist $\frac{1}{f} \in \mathcal{O}_V(D(f))$.

Proposition + **Definition 6.4** Für jede affine Varietät $V \subseteq \mathbb{A}^n(\mathbb{K})$ ist die Zuordnung $U \mapsto \mathcal{O}_V(U)$ für alle $U \subseteq V$ offen eine Garbe von Ringen auf V. Das bedeutet im Einzelnen:

(i) Für offene Teilmengen $U' \subseteq U \subseteq V$ ist

$$\rho_{U'}^U: \mathcal{O}_V(U) \longrightarrow \mathcal{O}_V(U'), \quad f \mapsto f|_{U'}$$

ein Homomorphismus von K-Algebren und es gilt für $U'' \subseteq U' \subseteq V$ offen:

$$\rho^U_{U''} \ = \ \rho^{U'}_{U''} \ \circ \ \rho^U_{U'}$$

- (ii) Sei $U \subseteq V$ offen, $(U_i)_{i \in I}$ offene Überdeckung von U. Dann gilt
 - (1) Für $f \in \mathcal{O}_V(U)$ ist $f = 0 \iff \rho_{U_i}^U(f) = 0$ für alle $i \in I$.
 - (2) Ist für jedes $i \in I$ ein $f_i \in \mathcal{O}_V(U_i)$ gegeben, sodass

$$\rho^{U_i}_{U_i \cap U_j}(f_i) \ = \ \rho^{U_j}_{U_i \cap U_j}(f_j) \quad \text{ für alle } i, j \in I$$

so gibt es $f \in \mathcal{O}_V(U)$ mit $f_i = \rho_{U_i}^U(f)$ für alle $i \in I$.

Proposition 6.5 Sei $V \subseteq \mathbb{A}^n(\mathbb{K})$ affine Varietät. Dann gelten folgende Endlichkeitsaussagen:

- (i) Jede absteigende Kette von abgeschlossenen Teilmengen von V wird stationär, d.h. V ist noetherscher topologische Raum.
- (ii) Jede offene Überdeckung von V besitzt eine endliche Teilüberdeckung, d.h. V ist kompakt.
- (iii) Jede offene Teilmenge von V ist kompakt.
- Beweis. (i) Sei $V_1 \supseteq V_2 \supseteq V_3 \supseteq \ldots$ abgeschlossen in V, d.h. $V_j = V(I_j)$ mit Idealen $I_j \leqslant \mathbb{K}[V]$ für all $j \in I$. Aus $V_j \supseteq V_{j+1}$ folgt $I_j \subseteq I_{j+1}$, also ist $I_1 \subseteq I_2 \subseteq I_3 \subseteq \ldots$ absteigende Kette von Idealen. Da $\mathbb{K}[V]$ noethersch ist, wird wird die Kette der Ideale stationär, so auch die V_j .
 - (ii) Folgt unmittelbar aus (iii).
- (iii) Sei $(U_i)_{i\in I}$ offene Überdeckung von $U\subseteq V$ offen. Angenommen, es gibt eine Folge $(U_k)_{k\in\mathbb{N}}\subseteq (U_i)_{i\in I}$ mit

$$\bigcup_{n=1}^k U_n \neq U \quad \text{und} \quad U_{k+1} \not \subseteq \bigcup_{n=1}^k U_n \quad \text{f\widetilde{A}CEr alle $k \in \mathbb{N}$.}$$

FÃŒr

$$V_k := V \setminus \bigcup_{n=1}^k U_n$$

wäre $V_1 \supsetneq V_2 \supsetneq \ldots$ eine nicht stationär werdende, absteigende Kette von abgeschlossenen Teilmengen, ein Widerspruch zu (i).

Satz 6.6 Sei $V \subseteq \mathbb{A}^n(\mathbb{K})$ affine Varietät, $f \in \mathbb{K}[V] \setminus \{0\}$. Dann ist

$$\mathcal{O}_V(D(f)) \cong \mathbb{K}[V]_f$$

wobei $\mathbb{K}[V]_f$ die Lokalisierung von $\mathbb{K}[V]$ nach den Potenzen von f bezeichne, also gerade

$$\mathbb{K}[V]_f = \left\{ \frac{g}{f^d} \mid g \in \mathbb{K}[V], \ d \geqslant 0 \right\}$$

Dabei gilt, da $\mathbb{K}[V]$ nicht notwendigerweise nullteilerfrei ist

$$\frac{g_1}{f^{d_1}} = \frac{g_2}{f^{d_2}} \iff f^d \left(g_1 f^{d_2} - g_2 f^{d_1} \right) = 0 \quad \text{für ein } d \geqslant 0$$

Insbesondere erhalten wir für f = 1

$$O_V(V) \cong \mathbb{K}[V]$$

Beweis. Definiere

$$\alpha : \mathbb{K}[V]_f \longrightarrow \mathcal{O}_V(D(f)), \quad \frac{g}{f^d}(y) \mapsto \frac{g(y)}{f(y)^d}$$

Zeige nun, dass α der gewünschte Isomorphismus ist. wohldefiniert. Seien dafür für $d_1, d_2 \ge 0, g_1, g_2 \in \mathbb{K}[V]$

$$\frac{g_1}{f^{d_1}} = \frac{g_2}{f^{d_2}} \text{ in } \mathbb{K}[V] \iff f^d\left(g_1f^{d_2} - g_2f^{d_1}\right) = 0 \text{ für ein } d \geqslant 0$$

Damit gilt für alle $y \in V$

$$f(y)^d (g_1(y)f(y)^{d_2} - g_2(y)f(y)^{d_1}) = 0,$$

wegen der Nullteilerfreiheit von \mathbb{K} also

$$g_1(y)f(y)^{d_2} - g_2(y)f(y)^{d_1} = 0 \iff \frac{g_1(y)}{f(y)^{d_1}} = \frac{g_2(y)}{f(y)^{d_2}}$$

injektiv. Sei

$$\frac{g}{f^d} \in \ker(\alpha) \iff \alpha \left(\frac{g}{f^d}(y) \right) = \frac{g(y)}{f(y)^d} = 0 \text{ für alle } y \in D(f)$$

Dann ist g(y) = 0 auf ganz D(f), also $g \in I(D(f))$ und somit $f \cdot g = 0$ auf V. Dann gilt

$$f(g \cdot 1 - 1 \cdot 0) = 0 \iff \frac{g}{1} = \frac{0}{1}$$

und somit g = 0. Folglich ist α injektiv.

surjektiv. Sei $g \in \mathcal{O}_V(V)$. Finde $\tilde{g} \in \mathbb{K}[V]_f$ mit $\alpha(\tilde{g}) = g$.

Für jedes $x \in D(f)$ gibt es offene Umgebungen $U_x \subseteq D(f), g_x, h_x \in \mathbb{K}[V]$, sodass gilt

$$g(y) = \frac{g_x(y)}{h_x(y)}$$
 für alle $y \in U_x$

Wegen 6.4 gibt es endlich viele $x_1, \ldots x_m \in D(f)$ mit

$$\bigcup_{i=1}^{m} U_{x_i} = D(f)$$

Setze $g_i := g_{x_i}, h_i := h_{x_i}, U_i := U_{x_i}$ für alle $1 \le i \le m$. Wegen $U_i \subseteq D(h_i)$ ist mit Komplementbildung

$$D(f) = \bigcup_{i=1}^{m} U_i \subseteq \bigcup_{i=1}^{m} D(h_i)$$

und damit

$$V(f) \supseteq \bigcap_{i=1}^{m} V(h_i) \iff f \in I\left(\bigcap_{i=1}^{m} V(h_i)\right) = \sqrt{\langle h_1, \dots, h_n \rangle}$$

Folglich finden wir $d \in \mathbb{N}$ mit

$$f^d = \sum_{i=1}^m b_i h_i$$
 für geeignete $b_i \in \mathbb{K}[V]$

Sei

$$\tilde{g} := \sum_{i=1}^{m} b_i g_i \in \mathbb{K}[V]$$

Dann gilt für $1 \leq j \leq m$ und $y \in U_j$:

$$g(y) = \frac{g_j(y)}{h_j(y)} = \frac{(g_j f^d)(y)}{(h_j f^d)(y)} = \frac{g_j \sum_{i=1}^m b_i h_i}{h_j f^d}(y) \stackrel{Beh.(i)}{=} \frac{\left(\sum_{i=1}^m b_i g_i\right) h_j}{h_j f^d}(y) = \frac{\tilde{g}}{f^d}(y) = \frac{\tilde{g}(y)}{f^d(y)}$$

Also $\alpha(\tilde{g}) = g$.

Es bleibt zu zeigen:

$$g_j \left(\sum_{i=1}^m b_i h_i \right) = \left(\sum_{i=1}^m b_i g_i \right) h_j$$

also $g_i h_j = g_j h_i$ auf ganz U_j , nicht nur auf $U_j \cap U_i$. Dafür

Beh. (1) Ohne Einschränkung ist $g_i h_j = g_j h_i$ in $\mathbb{K}[V]$.

Beh. (2) Ohne Einschränkung ist $U_i = D(h_i)$.

Nun folgt die Behauptung des Satz.

Bew.(1) Aus Beh. (2) folgt $g_i h_j = g_j h_i$ auf $U_i \cap U_j$, also gerade $D(h_i) \cap D(h_j) = D(h_i h_j)$. Weiter gilt

$$h_i h_j (g_i h_j - g_j h_i) = 0$$
 auf $\mathbb{K}[V]$ (*)

Setze

$$\tilde{g}_i := g_i h_i, \quad \tilde{h}_i := h_i^2, \quad \tilde{g}_j := g_j h_j. \quad \tilde{h}_j := h_j^2$$

Dann wird (*) zu

$$\tilde{g}_i \tilde{h}_j - \tilde{g}_j \tilde{h}_i = 0 \quad \text{in } \mathbb{K}[V]$$

und es gilt

$$\frac{\tilde{g}_i}{\tilde{h}_i} = \frac{g_i}{h_i}, \qquad \frac{\tilde{g}_j}{\tilde{h}_j} = \frac{g_j}{h_j} \quad \text{auf } U_i \cap U_j$$

wobei $U_i = D(h_i)$ und $D(h_j) = U_j$, also folgt die Behauptung.

Bew. (2) Es gilt $U_i \subseteq D(h_i)$. Es bilden die $\{D(h) \mid h \in \mathbb{K}[V]\}$ eine Basis der Zariski-Topologie, d.h. es existiert $h \in \mathbb{K}[V]$ mit $x_i \in D(h)$ und $D(h) \subseteq U_i$.

$$\implies D(h) \subseteq D(h_i) \implies V(h) \supseteq V(h_i)$$

$$\implies h \in I(V(h_i)) = \sqrt{h_i}.$$

Damit finden wir $d \in \mathbb{N}$, sodass gilt

$$h^d = a \cdot h_i$$
 für ein $a \in \mathbb{K}[V]$

Ersetze nun g_i durch $g_i \cdot a$, h_i durch $h^d = a \cdot h_i$, U_i durch $D(h_i)$ und setze \tilde{g}_i , \tilde{h}_i wie oben. Dann gilt für $y \in D(h)$

$$g(y) = \frac{g_i}{h_i}(y) = \frac{g_i \cdot a}{h_i \cdot a}(y) = \frac{\tilde{g}_i}{\tilde{h}_i}(y),$$

es folgt die Behauptung.

Proposition 6.7 Seien $V \subseteq \mathbb{A}^n(\mathbb{K})$, $W \subseteq \mathbb{A}^m(\mathbb{K})$ affine Varietäten, $f: V \longrightarrow W$ ein Morphismus, $U \subseteq W$ offen. Dann ist

$$f_U^{\#}: \mathcal{O}_W(U) \longrightarrow \mathcal{O}_V(f^{-1}(U)), \quad g \mapsto g \circ f$$

ein Homomorphismus von \mathbb{K} -Algebren.

Beweis. Zu zeigen ist: $g \circ f \in \mathcal{O}_V(f^{-1}(U))$. Seien dazu $g \in \mathcal{O}_W(U), x \in f^{-1}(U), y = f(x) \in U$. Nach

Voraussetzung gibt es eine Umgebung $U_y \subseteq U$ von y, sodass

$$g = \frac{g_y}{h_y}$$
 für geeignete $g_y, h_y \in \mathbb{K}[V]$

Für $z \in f^{-1}(U_y) \subseteq f^{-1}(U)$ ist dann

$$(g \circ f)(z) = \frac{g_y(f(z))}{h_y(f(z))} = \frac{g_y \circ f}{h_y \circ f}(z) = \frac{f^{\#}(g_y)}{f^{\#}(h_y)}(z)$$

mit $f^{\#}: \mathbb{K}[V] \longrightarrow \mathbb{K}[V], g \mapsto g \circ f$ wie gewöhnlich. Damit ist $g \circ f$ regulär auf $f^{-1}(U_y)$ und damit insbesondere in x.

- Bemerkung + Definition 6.8 (i) Sind \mathcal{F}, \mathcal{G} Garben, so ist ein *Garbenmorphismus* $\Phi : \mathcal{F} \longrightarrow \mathcal{G}$ eine Kollektion von Morphismen $\phi_U : \mathcal{F}(U) \longrightarrow \mathcal{G}(U)$, welche mit der Einschränkungsabbildung verträglich sind.
 - (ii) Die Homomorphismen $f_U^\#$ für $U\subseteq W$ offen bilden einen Garbenmorphismus

$$f^{\#}: \mathcal{O}_W \longrightarrow f_*\mathcal{O}_V, \quad U \mapsto (f_*\mathcal{O}_V)(U) = \mathcal{O}_v(f^{-1}(U))$$

d.h. für offene Mengen $U' \subseteq U \subseteq W$ ist das folgende Diagramm kommutativ:

$$\mathcal{O}_{W}(U) \xrightarrow{\rho_{U'}^{U}} \rightarrow \mathcal{O}_{W}(U')$$

$$\downarrow^{f_{U}^{\#}} \qquad \qquad \downarrow^{f_{U'}^{\#}}$$

$$\mathcal{O}_{V}(f^{-1}(U)) \xrightarrow{\rho_{f^{-1}(U')}^{f^{-1}(U)}} \rightarrow \mathcal{O}_{V}(f^{-1}(U'))$$

Lemma 6.9 Seien $V \subseteq \mathbb{A}^n(\mathbb{K}), W \subseteq \mathbb{A}^m(\mathbb{K})$ affine Varietäten. Dann ist eine Abbildung $f: V \longrightarrow W$ Morphismus genau dann, wenn für jedes offene $U \subseteq W$ und jedes $g \in \mathcal{O}_W(U)$ gilt: $g \circ f \in \mathcal{O}_V(f^{-1}(U))$.

Beweis. " \Rightarrow " Siehe 6.6

" \Leftarrow " Zu zeigen: $p_i \circ f$ ist Polynom für jedes $i \in \{1, \ldots, n\}$, wobei

$$p_i: \mathbb{A}^n(\mathbb{K}) \longrightarrow \mathbb{A}^1(\mathbb{K}), \quad (x_1, \dots, x_n) \mapsto x_i$$

die Projektionen auf die i-te Komponente ist.

Es gilt $p_i \in \mathcal{O}_W(U)$ für jedes offene $U \subseteq W$, nach Voraussetzung also auch $p_i \circ f \in \mathcal{O}_V(f^{-1}(U))$. Dann gilt $p_i \circ f \in \mathcal{O}_V(V) \stackrel{6.5}{=} \mathbb{K}[V]$.

Beispiel 6.10 Sei $U = \mathbb{A}^1(\mathbb{K}) \setminus \{0\}$. Dann ist $g := \frac{1}{x} \in \mathcal{O}_{\mathbb{A}^1(\mathbb{K})}(U)$. Sei

$$f: U \longrightarrow \mathbb{A}^2(\mathbb{K}), \quad x \mapsto (x, g(x)) = \left(x, \frac{1}{x}\right)$$

Dann ist

$$f(U) = V(XY - 1) \subseteq \mathbb{A}^2(\mathbb{K})$$

Die Projektion

$$p_1: \mathbb{A}^2(\mathbb{K}) \longrightarrow \mathbb{A}^1(\mathbb{K}), \quad (x,y) \mapsto x$$

ist die Umkehrabbildung zu f.

Definition + **Bemerkung 6.11** (i) Ein offene Teilmenge $U \subseteq \mathbb{A}^n(\mathbb{K})$ heißt quasiaffine Varietät, wenn U Zariski-offen in einer affinen Varietät $V \subseteq \mathbb{A}^n(\mathbb{K})$ ist.

- (ii) Eine Abbildung $f: U_1 \longrightarrow U_2$ von quasiaffinen Varietäten heißt *Morphismus* oder auch *regulär*, falls f stetig bezüglich der Zariski-Topologie ist und für jede offene Teilmenge $U \subseteq U_2$ und $g \in \mathcal{O}_{U_2}(U)$ gilt: $g \circ f \in \mathcal{O}_{U_1}(f^{-1}(U))$.
- (iii) Seien $U_1 \subseteq \mathbb{A}^n(\mathbb{K}), U_2 \subseteq \mathbb{A}^m(\mathbb{K})$ quasiaffine Varietäten. Dann ist die Abbildung $f: U_1 \longrightarrow U_2$ genau dann regulär, wenn es reguläre Funktionen $f_1, \ldots, f_m \in \mathcal{O}_{U_1}(U_1)$ gibt, sodass

$$f(x) = (f_1(x), \dots, f_m(x))$$
 für alle $x \in U_1$

- (iv) Die quasiaffinen Varietäten bilden zusammen mit den regulären Abbildungen eine Kategorie, von der $\underline{\text{Aff}}(\mathbb{K})$ eine volle Unterkategorie ist.
- (v) Eine quasioffene Varietät heißt affin (als abstrakte Varietät), falls sie isomorph zu einer affinen Varietät, also einer Zariski-abgeschlossenen Teilmenge des $\mathbb{A}^n(\mathbb{K})$ für ein $n \ge 1$ ist.

Beweis. (iii) Folgt aus 6.8.

(iv) Zeige dass für affine Varietäten die regulären Abbildungen bereits Morphismen sind (also dass $Aff(\mathbb{K})$ eine volle Unterkategorie bildet).

Sei $f:V\longrightarrow W$ regulär zwischen affinen Varietäten V und W. Mit (iii) folgt

$$f(x) = (f_1(x), \dots, f_m(x))$$
 für alle $x \in V$

mit $f_i \in \mathcal{O}_V(V) = \mathbb{K}[V]$. Dann folgt bereits, dass f Morphismus ist.

Bemerkung 6.12 Für $f \in \mathbb{K}[X_1, \dots X_n]$ ist D(f) affin als abstrakte Varietät.

Beweis. Definiere

$$G := f \cdot X_{n+1} - 1 \in \mathbb{K}[X_1, \dots, X_n, X_{n+1}]$$

und $V := V(G) \subseteq \mathbb{A}^{n+1}(\mathbb{K})$.

Die Projektion

$$\pi_{n+1}: \mathbb{A}^{n+1}(\mathbb{K}) \longrightarrow \mathbb{A}^n(\mathbb{K}), \quad (x_1, \dots, x_{n+1}) \mapsto (x_1, \dots, x_n)$$

ist Morphismus mit $\pi_{n+1}(V) \subseteq D(f)$. Weiter ist

$$\phi: D(f) \longrightarrow \mathbb{A}^{n+1}(\mathbb{K}), \quad x \mapsto \left(x, \frac{1}{f(x)}\right)$$

regulär mit $\phi(D(f)) \subseteq V$. π_{n+1}, ϕ sind invers zueinander, also gilt $D(f) \cong V$.

§ 7 Rationale Abbildungen und Funktionenkörper

Sei \mathbb{K} weiterhin algebraisch abgeschlossen.

Definition + **Bemerkung 7.1** Sei $V \subseteq \mathbb{A}^n(\mathbb{K})$ quasiaffine Varietät.

(i) Eine rationale Funktion auf V ist eine Äquivalenzklasse von Paaren (U, f) mit $U \subseteq V$ offen und dicht sowie $f \in \mathcal{O}_V(U)$. Dabei sei

$$(U_1, f_1) \sim (U_2, f_2) \iff f_1|_{U_1 \cap U_2} = f_2|_{U_1 \cap U_2}$$

- (ii) In jeder Äquivalenzklasse gibt es eine bezüglich der Inklusion maximalen Vertreter (U_{max}, f_{max}) . U_{max} heißt Definitionsbereich von $(U, f)_{\sim}$. $V \setminus U_{max}$ heißt Polstellenmenge von $(U, f)_{\sim}$.
- (iii) Die rationalen Funktionen auf V bilden eine \mathbb{K} -Algebra.
- (iv) Ist V irreduzibel, so ist

$$Rat(V) \cong \mathbb{K}(V) = Quot(\mathbb{K}[V])$$

der $Funktionenk\"{o}rper$ von V.

- Beweis. (i) Zu zeigen ist lediglich die Transitivität: Gelte $(U_1, f_1) \sim (U_2, f_2), (U_2, f_2) \sim (U_3, f_3).$ Dann gilt per Definition $f_1|_{U_1 \cap U_2 \cap U_3} = f_2|_{U_1 \cap U_2 \cap U_3}$ und damit, da $U_1 \cap U_2 \cap U_3$ dicht in $U_1 \cap U_3$ ist: $f_1|_{U_1 \cap U_3} = f_3|_{U_1 \cap U_3}$.
- (ii) Setze $U_{max} = \bigcup_{(U',f')\in(U,f)_{\sim}} U'$.
- (iii) klar.
- (iv) Sei

$$\alpha : \mathbb{K}(V) \longrightarrow \mathrm{Rat}(V), \quad \frac{f}{g} \mapsto \left(D(g), \frac{f}{g}\right)_{\sim}$$

Dann ist α offensichtlich Homomorphismus von K-Algebren.

injektiv: klar.

surjektiv: Sei $(U, f)_{\sim} \in \text{Rat}(V)$. Dann ist $f \in \mathcal{O}_V(U)$ und es existiert eine offene dichte Teilmenge $U' \subseteq U$ und $g, h \in \mathcal{O}_V(U)$, sodass gilt

$$f = \frac{g}{h}$$
 auf $U' \iff \alpha\left(\frac{g}{h}\right) = f$,

was zu zeigen war.

Beispiel 7.2 Sei $U \subseteq V$ von der Form U = D(h) für ein $h \in \mathbb{K}[V]$. Dann ist

$$\mathcal{O}_V(D(h)) = \mathbb{K}[V]_h = \left\{ \frac{f}{g} \in \text{Quot}(\mathbb{K}[V]) \mid f \in \mathbb{K}[V], g = h^d \text{ für ein } d \in \mathbb{N}_0 \right\}$$

Dann ist

$$\operatorname{Quot}\left(\mathcal{O}_{V}(D(h))\right) = \operatorname{Quot}(\mathbb{K}[V]_{h}) = \operatorname{Quot}(\mathbb{K}[V]) = \mathbb{K}(V),$$

denn es gilt

$$\mathbb{K}[V] \subseteq \mathbb{K}[V]_h \subseteq \mathbb{K}[V]_{\mathbb{K}[V] \setminus \{0\}} = \operatorname{Quot}(\mathbb{K}[V]).$$

Definition + **Bemerkung 7.3** Seien *V, W* quasi-affine Varietäten.

(i) Eine rationale Abbildung $f: V \dashrightarrow W$ ist eine Äquivalenzklasse von Paaren (U, f) mit $U \subseteq V$ offen und dicht sowie $f: U \longrightarrow W$ reguläre Abbildung. Dabei gelte wieder

$$(U_1, f_1) \sim (U_2, f_2) \iff f_1|_{U_1 \cap U_2} = f_2|_{U_1 \cap U_2}$$

- (ii) In jeder Äquivalenzklasse $(U, f)_{\sim}$ gibt es ein maximales U := Def(f). U heißt Definitionsbereich.
- (iii) Rationale Abbildungen $f:V \dashrightarrow \mathbb{A}^1(\mathbb{K})$ entsprechen den rationalen Funktionen auf V.

Definition 7.4 Ein Morphismus $f:V\longrightarrow W$ von quasiaffinen Varietäten heißt dominant, falls $f(V)\subseteq W$ dicht in W ist.

Bemerkung + Definition 7.5 (i) Die irreduziblen quasiaffinen Varietäten über K bilden mit den dominanten rationalen Abbildungen eine Kategorie.

(ii) Isomorphismen in dieser Kategorie heißen birationale Abbildungen.

Beweis von (i). Sind $f: V \dashrightarrow W, g: W \dashrightarrow Z$ dominante rationale Abbildungen irreduzibler Varietäten V, W, Z, so ist $f^{-1}(\text{Def}(g))$ offen und nichtleer, da f dominant ist.

Damit ist $U := f^{-1}(Def(g))$ dicht in V.

 $\Longrightarrow U \subseteq \text{Def}(g \circ f)$, also ist $g \circ f$ rationale Abbildung.

Beispiel 7.6 (i) Sei $V = V(XY) \subseteq \mathbb{A}^2(\mathbb{K})$,

$$f: V \longrightarrow \mathbb{A}^1(\mathbb{K}), \quad (x,y) \mapsto x$$

$$g: \mathbb{A}^1(\mathbb{K}) \longrightarrow \mathbb{A}^1(\mathbb{K}), \quad x \mapsto \frac{1}{x}$$

Dann ist f surjektiv, g ist dominante rationale Abbildung. Aber es gilt $Def(g \circ f) = V \setminus V(X)$ ist nicht dicht in V, also ist $g \circ f$ keine rationale Abbildung.

(ii) Betrachte

$$\sigma: \mathbb{A}^2(\mathbb{K}) \dashrightarrow \mathbb{A}^2(\mathbb{K}), \quad (X,Y) \mapsto \left(\frac{1}{X}, \frac{1}{Y}\right)$$

 σ ist rationale Abbildung mit $Def(\sigma) = D(XY), \sigma^2 = id$ als birationale Abbildung. Damit ist σ eine birationale Abbildung.

Proposition 7.7 Sei $f: V \longrightarrow W$ Morphismus von affinen Varietäten und

$$f^{\#}: \mathbb{K}[V] \longrightarrow \mathbb{K}[V], \quad g \mapsto g \circ f$$

der induzierte K-Algebren Homomorphismus der zwischen den Koordinatenringen. Dann gilt

$$f^{\#}$$
 ist injektiv \iff f ist dominant

Beweis. Beh. (1) Für $Z \subseteq W$ abgeschlossen gilt

$$(f^{\#})^{-1}(I(Z)) = I(\overline{f(Z)}) = I(f(Z))$$

Bew. (1) Es gilt:
$$g \in (f^{\#})^{-1}(I(Z))$$

 $\iff f^{\#}(g) \in I(Z)$
 $\iff g \circ f \in I(Z)$
 $\iff g(f(z)) = 0$ für alle $z \in Z$
 $\iff g(y) = 0$ für alle $y \in f(Z)$
 $\iff g \in I(\overline{f(Z)}) = I(f(Z))$

Damit gilt für Z = V wegen I(V) = 0 in $\mathbb{K}[V]$ mit Beh. (1):

$$(f^{\#})^{-1}(0) = (f^{\#})^{-1}(I(V)) = I(\overline{f(V)}) \stackrel{dom.}{=} I(W) = 0$$

Also gerade $\ker(f^{\#}) = \{0\}$, also ist $f^{\#}$ injektiv.

Folgerung 7.8 Jede dominante Abbildung $f: V \dashrightarrow W$ zwischen irreduziblen quasiaffinen Varietäten induziert einen Körperhomomorphismus $f^{\#}: \mathbb{K}(W) \longrightarrow \mathbb{K}(V)$.

Beweis. Seien V, W affin. Ist f Morphismus, so ist

$$f^{\#}: \mathbb{K}[W] \longrightarrow \mathbb{K}[V], \quad g \mapsto g \circ f$$

injektiv und lässt sich damit fortsetzen zu

$$f^{\#}: \mathbb{K}(W) \longrightarrow \mathbb{K}(V), \quad \frac{g}{h} \mapsto \frac{f^{\#}(g)}{f^{\#}(h)}$$

Ist $Def(f) \neq V$, so sei $g \in \mathbb{K}[V]$ mit $D(g) \supseteq Def(f)$. Für $h \in \mathbb{K}[W]$ ist dann

$$f^{\#}(h) = h \circ f \in \mathcal{O}_V(D(g)),$$

also induziert f einen Homomorphismus

$$f^{\#}: \mathbb{K}[W] \longrightarrow \mathcal{O}_V(D(g)) = \mathbb{K}[V]_g$$

D(g) ist nach 6.10 affin, mit 7.6 folgt also die Injektivität von $f^{\#}$. Damit existiert die Fortsetzung

$$f^{\#}: \mathbb{K}(W) \longrightarrow \operatorname{Quot}(\mathbb{K}[V]_q) = \operatorname{Quot}(\mathbb{K}[V]) = \mathbb{K}(V)$$

Satz 7.9 Ist K algebraisch abgeschlossen, so ist die Zuordnung

$$\Phi: \left\{ \begin{array}{ll} \textit{irreduzible, quasi-affine Variet\"{a}ten} \\ \textit{dominante rationale Abbildungen} \end{array} \right\} \quad \longrightarrow \quad \left\{ \begin{array}{ll} \mathbb{L}/\mathbb{K} \ \textit{endlich erzeugt} \\ \mathbb{K}\text{-}\textit{Algebra Homomorphismen} \end{array} \right\}$$

$$\begin{cases} V \\ f: V \longrightarrow W \end{cases} \mapsto \begin{cases} \mathbb{K}(V) \\ f^{\#}: \mathbb{K}(W) \longrightarrow \mathbb{K}(V) \end{cases}$$

eine Äquivalenz von Kategorien.

Beweis. Offensichtlich ist Φ ein Funktor. Zu zeigen bleibt also noch

- (i) Zu jeder endlich erzeugten Körpererweiterung \mathbb{L}/\mathbb{K} gibt es V mit $\mathbb{K}(V) \cong \mathbb{L}$.
- (ii) Die Zuordnung

$$\operatorname{Rat}^{\operatorname{Dom}}(V,W) \longrightarrow \operatorname{Hom}_{\mathbb{K}}(\mathbb{K}(W),\mathbb{K}(V)), \quad f \mapsto f^{\#}$$

ist eine Bijektion.

zu (i) Seien x_1, \ldots, x_n Erzeuger von \mathbb{L} über \mathbb{K} und $A := \mathbb{K}[x_1, \ldots, x_n]$ die von den x_i erzeugte \mathbb{K} Algebra. A ist als solche offenbar endlich erzeugt und reduziert, da A Teilmenge eines Körpers
ist. Damit existiert eine affine Varietät V mit $A \cong \mathbb{K}[V]$. Da A nullteilerfrei ist, ist V sogar
irreduzibel und damit

$$\mathbb{K}(V) = \operatorname{Quot}(\mathbb{K}[V]) \cong \operatorname{Quot}(A) = \mathbb{L}$$

zu (ii) Es gilt

injektiv. Seien $f, g: V \dashrightarrow W$ mit $f^{\#} = g^{\#}$. Wähle $U = D(h) \subseteq \text{Def}(f) \cap \text{Def}(g)$ offen und affin. $f|_{U}$ und $g|_{U}$ sind Morphismen von U nach W.

Diese induzieren K-Algebren Homomorphismen

$$g_U^{\#}, f_U^{\#} : \mathbb{K}[W] \longrightarrow \mathbb{K}[U] \subseteq \mathbb{K}(V)$$

surjektiv. Sei

$$\alpha: \mathbb{K}(W) \longrightarrow \mathbb{K}(V)$$

ein K-Algebren Homomorphismus. Wähle Erzeuger g_1, \ldots, g_n von K[W] also K-Algebra. Für jedes $1 \leq i \leq n$ ist $\alpha(g_i)$ rationale Funktion auf V.

Da V irreduzibel ist, ist

$$\bigcap_{i=1}^{n} \operatorname{Def}(\alpha(g_i))$$

offen und affin für geeignete $g \in \mathbb{K}[V]$. Nach Konstruktion induziert α einen \mathbb{K} -Algebren Homomorphismus

$$\alpha: \mathbb{K} \longrightarrow \mathcal{O}_U(U) = \mathbb{K}[U]$$

Damit gilt nach 5.8 gilt dann $\alpha = f^{\#}$ für einen Morphismus $f: U \longrightarrow W$.

Da außerdem U dicht in V ist, ist (U, f) rationale Abbildung, denn f ist dominant, da $f^{\#}$ als Körperhomomorphismus injektiv ist.

Kapitel II

Projektive Varietäten

§ 8 Varietäten im projektiven Raum

Erinnerung 8.1 Sei \mathbb{K} ein Körper, $n \in \mathbb{N}_0$.

(i) Der projektiven Raum ist

$$\mathbb{P}^n(\mathbb{K}) := \mathbb{K}^{n+1}/_{\sim}$$

mit

$$(x_0,\ldots,x_n)\sim (y_0,\ldots,y_n) \iff es\ ex.\ \lambda\in\mathbb{K}^\times\ mit\ \lambda x_i=y_i\ f\"ur\ alle\ 0\leqslant i\leqslant n$$

Anschaulich sind die Elemente des projektiven Raums gerade die Ursprungsgeraden des \mathbb{K}^{n+1} . Schreibeweise: Es sei $(x_0:\ldots:x_n)\in\mathbb{P}^n(\mathbb{K})$ die Äquivalenzklasse von $(x_0,\ldots,x_n)\in\mathbb{K}^{n+1}$.

(ii) $F\ddot{u}r \ i \in \{0,\ldots,n\}$ sei

$$U_i := \{(x_0 : \dots x_n) \in \mathbb{P}^n(\mathbb{K}) \mid x_i \neq 0\}$$

Es gilt $\mathbb{P}^n(\mathbb{K}) = U_0 \cup \ldots \cup U_n$. Für ein festes $i \in \{0, \ldots, n\}$ betrachte

$$\psi_i: \mathbb{K}^n \longrightarrow \mathbb{P}^n(\mathbb{K}), \quad (y_1, \dots, y_n) \mapsto (y_1: \dots y_i: 1: y_{i+1}: \dots y_n)$$

Offenbar ist ψ_i injektiv mit $Bild(\psi_i) = U_i$. Die Umkehrabbildung ist

$$\phi_i: U_i \longrightarrow \mathbb{K}^n, \quad (x_0: \dots : x_n) \mapsto \left(\frac{x_0}{x_i}, \dots, \frac{x_{i-1}}{x_i}, \frac{x_{i+1}}{x_i}, \dots, \frac{x_n}{x_i}\right)$$

(iii) Die Abbildung

$$\rho_i: \mathbb{P}^n(\mathbb{K}) \backslash U_i \longrightarrow \mathbb{P}^{n-1}(\mathbb{K}), \quad (x_0: \ldots: x_n) \mapsto (x_0: \ldots x_{i-1}: x_{i+1}: \ldots x_n)$$

ist bijektiv. Induktiv erhalten wir

$$\mathbb{P}^{n}(\mathbb{K}) = \mathbb{K}^{n} \cup \mathbb{K}^{n-1} \cup \cdots \cup \mathbb{K}^{2} \cup \mathbb{K} \cup \{\infty\}$$

wobei die Wahl von ∞ willkürlich ist. Insbesondere gilt also

$$\mathbb{P}^1(\mathbb{K}) = \mathbb{K} \cup \{\infty\}$$

(iv) $\mathbb{P}^n(\mathbb{R})$ und $\mathbb{P}(\mathbb{C})$ sind n-dmensionale Mannigfaltigkeiten.

Definition + **Bemerkung 8.2** Sei \mathbb{K} ein Körper, $n \in \mathbb{N}_0$.

(i) Ein Polynom

$$f = \sum_{(i_0...i_n) \in \mathbb{N}_0^{n+1}}^{\infty} a_{i_0...i_n} X_0^{i_0} \dots X_n^{i_n} \in \mathbb{K}[X_0, \dots, X_n]$$

heißt homogen von Grad $d \ge 0$, falls für alle nichtverschwindenden Koeffizienten der Gesamtgrad konstant ist, also

$$a_{i_0...i_n} \neq 0 \implies i_0 + ... + i_n = d$$
 für alle i

(ii) Ist $f \in \mathbb{K}[X_0, \dots, X_n]$ homogen von Grad d, so gilt für alle $x = (x_0, \dots x_n) \in \mathbb{K}^{n+1}$ und $\lambda \in \mathbb{K}^{\times}$:

$$f(\lambda x_0, \dots, \lambda x_n) = \lambda^d f(x_0, \dots, x_n)$$

(iii) Ist $f \in \mathbb{K}[X_1, \dots, X_n]$ homogen, so ist die Nullstellenmenge $V(f) \subseteq \mathbb{P}^n(\mathbb{K})$ wohldefiniert.

Definition 8.3 Ein Teilmenge $V \subset \mathbb{P}^n(\mathbb{K})$ heißt *projektive Varietät*, wenn es eine Menge $\mathcal{F} \subseteq \mathbb{K}[X_0, \dots, X_n]$ von homogenen Polynomen gibt, sodass

$$V = \{x = (x_0, \dots, x_n) \in \mathbb{P}^n(\mathbb{K}) \mid f(x) = 0 \text{ für alle } f \in \mathcal{F}\}$$

Beispiel 8.4 (i) Für $i \in \{0, \dots, n\}$ ist

$$V(X_i) = \mathbb{P}^n(\mathbb{K}) \backslash U_i \cong \mathbb{P}^{n-1}(\mathbb{K})$$

eine projektive Varietät.

(ii) Es gilt $V(X_0, \ldots, X_n) = \emptyset$.

Bemerkung 8.5 Ist $V \subseteq \mathbb{P}^n(\mathbb{K})$ projektive Varietät, so ist

$$\phi_i(V \cap U_i) \subseteq \mathbb{A}^n(\mathbb{K})$$

affine Varietät für alle $i \in \{0, ..., n\}$.

Beweis. Es genügt, die Aussage für $V(f), f \in \mathbb{K}[X_0, \dots, X_n]$ homogen zu zeigen, denn:

$$V(\mathcal{F}) = \bigcap_{f \in \mathcal{F}} V(f) \implies \phi_i(V \cap U_i) = \bigcap_{f \in \mathcal{F}} \phi_i(V(f) \cap U_i)$$

Sei nun

$$\tilde{f} := f(X_0, \dots, X_{i-1}, 1, X_{i+1}, \dots, X_n) \in \mathbb{K}[X_0, \dots, X_{i-1}, X_{i+1}, \dots, X_n] = \mathbb{K}[Y_1, \dots, Y_n]$$

Beh. (1) Es gilt $V(\tilde{f}) = \phi_i(V(f) \cap U_i)$.

Bew. (1) Wir haben

"⊇" Sei $x \in V(f) \cap U_i$, $x = (x_0 | \dots | x_n)$. Dann gilt

$$x_i \neq 0, \quad \phi_i(x) = \left(\frac{x_0}{x_i}, \dots, \frac{x_{i-1}}{x_i}, \frac{x_{i+1}}{x_i}, \dots, \frac{x_n}{x_i}\right)$$

Also

$$\tilde{f}(\phi_i(x)) = f\left(\frac{x_0}{x_i}, \dots, \frac{x_{i-1}}{x_i}, 1, \frac{x_{i+1}}{x_i}, \dots, \frac{x_n}{x_i}\right) = \frac{1}{x_i^d} f(x_0, \dots, x_{i-1}, x_i, x_{i+1}, \dots, x_n) = 0$$

" \subseteq " Sei nun $y = (y_1, \dots, y_n) \in V(\tilde{f})$. Dann gilt

$$\tilde{f}(y_1,\ldots,y_n) = f(y_1,\ldots,y_i,1,y_{i+1},\ldots,y_n) = 0$$

Also gilt $x := (y_1 : \ldots : y_i : 1 : y_{i+1} : \ldots : y_n) \in U_i \cap V(f)$ und $\phi_i(x) = y$, also gerade die Behauptung.

Beispiel 8.6 Betrachte $V = V(X_0X_2 - X_1^2) \subseteq \mathbb{P}^2(\mathbb{K})$. Es gilt

$$\phi_0(V \cap U_0) = V(X_2 - X1_1^2) \qquad Parabel$$

$$\phi_1(V \cap U_1) = V(X_0 X_2 - 1)$$
 Hyperbel

$$\phi_2(V \cap U_2) = V(X_0 - X_1^2)$$
 Parabel

Bemerkung 8.7 Zu jeder affine Varietät $V \subseteq \mathbb{A}^n(\mathbb{K})$ gibt es eine projektive Varietät $\tilde{V}_i \subseteq \mathbb{P}^n(\mathbb{K})$ mit $\phi_i(\tilde{V}_i \cap U_i) = V$.

Beweis. Sei ohne Einschränkung V = V(f) für ein $f \in \mathbb{K}[Y_1, \dots, Y_n]$. Schreibe

$$f = \sum_{k=0}^{d} f_k$$

mit homogenen Polynomen f_k von Grad k für $1 \leq k \leq d, d = \deg(f)$. Sei

$$F := \sum_{k=0}^{d} X_i^{d-k} f_k \in \mathbb{K}[Y_1, \dots, Y_i, X_i, Y_{i+1}, \dots, Y_n]$$

Dann ist F homogen von Grad d und es gilt:

Beh. (1) Es gilt $\phi_i(V(F) \cap U_i) = V(f)$.

Bew. (1) Wir haben

"\(\text{\text{"}}\)" Sei $y := (y_1, \dots, y_n) \in V(f)$, d.h es gilt f(y) = 0. Setze

$$x := \psi_i(y) = (y_1 : \dots : y_i : 1 : y_{i+1} : \dots : y_n) \in U_i, \quad \phi_i(x) = y.$$

Dann gilt

$$F(x) = \sum_{k=0}^{d} X_i^{d-k} f_k(y_1, \dots, y_n) = f(y) = 0.$$

" \subseteq " Sei nun $y \in \phi_i(V(F) \cap U_i)$, d.h. es gilt $y = \phi(x)$ mit $x \in V(F) \cap U_i$. Damit gilt $x = (x_1 : \ldots : x_i : 1 : x_{i+1} : \ldots : x_n)$ und

$$0 = F(x) = \sum_{k=0}^{d} f_k(x_1, \dots, x_n) = f(x_1, \dots, x_n) = f(\phi_i(x)) = f(y),$$

also
$$y \in V(f)$$
.

Definition + **Bemerkung 8.8** Sei \mathbb{K} ein Körper, $n \ge 1$.

(i) Für $i \in \{1, ..., n\}$ heißt die Abbildung

$$D_i: \mathbb{K}[X_0, \dots, X_n] \longrightarrow \mathbb{K}[X_0, \dots, X_{i-1}, X_{i+1}, \dots, X_n] \cong \mathbb{K}[Y_1, \dots, Y_n],$$
$$f(x_0, \dots, x_n) \mapsto f(x_0, \dots, x_{i-1}, 1, x_{i+1}, \dots, x_n)$$

Dehomogenisierung nach der i-ten Variable. D_i ist als Auswertung ein K-Algebren Homomorphismus.

(ii) Für $i \in \{1, ..., n\}$ heißt die Abbildung

$$H_i: \mathbb{K}[Y_1, \dots, Y_n] \longrightarrow \mathbb{K}[Y_1, \dots, Y_n, X_i] \cong \mathbb{K}[X_0, \dots, X_n]$$

 $f = \sum_{k=0}^d f_k \mapsto \sum_{k=0}^d X_i^{d-k} f_k$

(i-te) Homogenisierung, wobei f_k homogene Polynoms von Grad k sind. Es gilt

$$H_i(fg) = H_i(f)H_i(g)$$

$$H_i(f+g) \neq H_i(f) + H_i(g),$$
 falls $\deg(f) \neq \deg(g)$

(iii) Es gilt

$$D_i \circ H_i = \mathrm{id}_{\mathbb{K}[Y_1, \dots, Y_n]}$$

$$(H_i \circ D_i)(f) = \frac{1}{X_i^e} f, \quad e = \max_{e \in \mathbb{N}_0} \{ X_i^e \mid X_i^e \mid f, X_i^{e+1} \nmid f \}, \quad \text{falls } f \text{ homogen.}$$

§ 9 Die Zariski Topologie auf $\mathbb{P}^n(\mathbb{K})$

Definition 9.1 Für $V \subseteq \mathbb{P}^n(\mathbb{K})$ sei $I(V) \leq \mathbb{K}[X_0, \dots, X_n]$ das von allen homogenen Polynomen $f \in \mathbb{K}[X_0, \dots, X_n]$ mit f(x) = 0 für alle $x \in V$ erzeugte Ideal. I(V) heißt Verschwindungsideal von V.

Definition + **Bemerkung 9.2** (i) Ein (kommutativer) Ring (mit 1) R heißt graduiert, falls es eine Zerlegung

$$R = \bigoplus_{d=0}^{\infty} R_d$$

in abelsche Gruppen R_d gibt, sodass für alle $f \in R_d, g \in R_e$ gilt: $f \cdot g \in R_{d+e}$.

(ii) eine \mathbb{K} -Algebra S heißt graduiert, wenn

$$S = \bigoplus_{d=0}^{\infty} S_d$$

graduierter Ring ist und $S_0 = \mathbb{K}$. Dies impliziert, dass die S_d sogar zu \mathbb{K} -Vektorräumen werden.

- (iii) Die Elemente in R_d bzw. S_d heißen homogen vom Grad d.
- (iv) Ein Ideal in R heißt homogen, wenn es von homogenen Elementen erzeugt werden kann.
- (v) Für ein Ideal $I \leq R$ sind äquivalent:
 - (a) I ist homogen.
 - (b) I besitzt eine Darstellung

$$I = \bigoplus_{d=0}^{\infty} (I \cap R_d)$$

(c) Für jedes $f \in I$ mit

$$f = \sum_{d=0}^{\infty} f_d, \quad f_d \in R_d$$

gilt bereits $f_d \in I$ für alle $d \in \mathbb{N}_0$.

(vi) Ist $I \leq R$ homogenes Ideal, so ist R/I graduiert mit

$$R/I = \bigoplus_{d=0}^{\infty} R_d / (R_d \cap I)$$

(vii) Summe, Produkt, Durchschnitt und Radikal von homogenen Idealen sind wieder homogen.

Beweis. (v) "(a) \Rightarrow (b)" " \supseteq " Klar.

"
⊆" Seien $a_i, i \in J$ homogene Erzeuger von I. Es genügt zu zeigen:

$$r \cdot a_i \in \bigoplus_{d=0}^{\infty} I \cap R_d$$
 für alle $r \in R$

Schreibe

$$r = \sum_{d=1}^{n} r_d, \qquad r_d \in R_d$$

Dann gilt mit $d_i := \deg(a_i)$

$$r \cdot a_i = \sum_{d=1}^n r_d a_i, \quad r_d a_i \in R_{d+d_i} \cap I$$

also gerade die Behauptung.

 $"(b) \Rightarrow (c)"$ Klar.

$$(c)\Rightarrow(a)$$
 Klar.

(vi) Für jedes Ideal $I \leq R$ ist

$$\pi: \bigoplus_{d=0}^{\infty} R_d / (R_d \cap I) \longrightarrow R/I$$

surjektiv, denn für $d \in \mathbb{N}_0$ ist $R_d \longrightarrow R$ surjektiv. Für den Kern betrachte

$$\sum_{d=0}^n r_d \mod (R_d \cap I) \in \ker(\pi) \iff \sum_{d=0}^n r_d \in I \iff r_d \in I \iff \sum_{d=0}^n r_d \equiv 0 \mod (R_d \cap I)$$

Damit folgt die Behauptung.

(vii) Seien I_1, I_2 homogene Ideale, also mit homogenen Erzeugern $\{f_i\}, \{g_j\}$.

Dann wird $I_1 + I_2$ von $\{f_i + g_j\}$ erzeugt und I_1I_2 von $\{f_ig_j\}$. Durchschnitt. Für $I_1 \cap I_2$ verwende (v)(b):

$$\bigoplus_{d=0}^{\infty} ((I_1 \cap I_2) \cap R_d) = \bigoplus_{d=0}^{\infty} ((I_1 \cap R_d) \cap (I_2 \cap R_d)) = \bigoplus_{d=0}^{\infty} (I_1 \cap R_d) \cap \bigoplus_{d=0}^{\infty} I_2 \cap R_d = I_1 \cap I_2$$

Radikal. Sei nun I homogen, $x \in \sqrt{I}$. Schreibe

$$x = \sum_{d=0}^{n} x_d, \quad x_d \in R_d$$

Nach Voraussetzung existiert $m \ge 1$, sodass $x^m \in I$, also

$$I \ni \left(\sum_{d=0}^{n} d_d\right)^m = x_n^m + \mathcal{O}(x_n^{m-1})$$

Damit gilt $x_n^m \in I$ und somit $x_n \in \sqrt{I}$ und $(x - x_n) \in \sqrt{I}$.

Per Induktion über deg(x) folgt nun die Behauptung.

Proposition 9.3 (i) Für jede Teilmenge $V \subseteq \mathbb{P}^n(\mathbb{K})$ ist I(V) ein Radikalideal.

- (ii) Die projektiven Varietäten bilden die abgeschlossenen Mengen der Zariski-Topologie auf $\mathbb{P}^n(\mathbb{K})$.
- (iii) Eine projektive Varietät V ist irreduzibel genau dann, wenn I(V) ein Primadeal ist.
- (iv) Jede projektive Varietät ist endliche Vereinigung ihrer irreduziblen Komponenten.

Beweis. (i) Zu zeigen ist: $\sqrt{I(V)} \subseteq I(V)$.

Nach 9.2 (vii) ist $\sqrt{I(V)}$ ein homogenes Ideal. Sei also $f \in \sqrt{I(V)}$ homogen und $m \in \mathbb{N}$, sodass

$$f^m \in I(V) \implies f(x)^m = 0 \text{ für alle } x \in V$$

Damit gilt $f \in I(V)$, also die Behauptung.

- (ii) Folgt wie im affine Fall aus 9.2 (vii).
- (iii) Wörtlich wie in 3.5 mit gelöster Übungsaufgabe.
- (iv) Wie in 3.6

Folgerung 9.4 Bezüglich der Einschränkung der Zariskitopologie von $\mathbb{P}^n(\mathbb{K})$ auf U_i ist die Bijektion $\phi_i: U_i \longrightarrow \mathbb{A}^n(\mathbb{K})$ ein Homoömorphismus.

Beweis. Folgt aus Bemerkung 8.4 und 8.5.

Bemerkung 9.5 Sei $V \subseteq \mathbb{A}^n(\mathbb{K})$ affine Vareität, $I = I(V) \leqslant \mathbb{K}[X_1, \dots, X_n]$ ihr Verschwindungsideal und $I^* \leqslant \mathbb{K}[X_0, \dots, X_n]$ das von den Homogenisierungen $H_0(f)$ aller $f \in I$ erzeugte Ideal. Dann ist $V(I^*) = \overline{V}$ der Zariski-Abschluss von V in $\mathbb{P}^n(\mathbb{K})$.

Beweis. Aus dem Beweis von Bemerkung 8.5 folgt $V(I^*) \cap U_0 = V$.

Sei $\tilde{V} \subseteq \mathbb{P}^n(\mathbb{K})$ abgeschlossen mit $V \subseteq \tilde{V}$. Zeige $V(I^*) \subseteq \tilde{V}$. Sei dazu $\tilde{V} = V(J)$ für ein homogenes Ideal J. Dann genügt es zu zeigen: $J \subseteq I^*$.

Sei dazu $f \in J$ homogen. Für $y \in \tilde{V}$ ist dann $D_0(f)(y) = 0$, also $D_0(f) \in I$. Per Definition ist dann $H_0(D_0(f)) \in I^*$. Es gilt aber $H_0(D_0(f)) = f \cdot X_0^{-e}$ für ein $e \ge 0$, es folgt also die Behauptung.

- **Definition** + **Bemerkung 9.6** (i) Eine Teilmenge $W \subseteq \mathbb{P}^n(\mathbb{K})$ heißt quasiprojektive Varietät, wenn W offene Teilmenge einer projektiven Varietät $V \subseteq \mathbb{P}^n(\mathbb{K})$ ist.
 - (ii) $W \subseteq \mathbb{P}^n(\mathbb{K})$ ist quasiprojektiv genau dann, wenn es eine offene Teilmenge $U \subseteq \mathbb{P}^n(\mathbb{K})$ und eine abgeschlossene Menge $V \subseteq \mathbb{P}^n(\mathbb{K})$ gibt, sodass gilt $W = U \cap V$.
 - (iii) Die Zariski-Topologie auf einer quasiprojektiven Varietät hat eine Basis aus (abstrakt) affine Varietäten.
- (iv) Jede quasi-projektive Varietät ist kompakt.
- Beweis. (iii) Sei $W \subseteq \mathbb{P}^n(\mathbb{K})$ und $U \subseteq W$ offen. Dann ist $U \cap U_i$ offen für alle $i \in \{0, \dots, n\}$ und der Zariskiabschluss $\overline{U \cap U_i}$ von $U \cap U_i$ in U_i eine affine Varietät.

Nach Proposition 2.5 bilden die D(f) für $f \in \mathbb{K}[X_1, \dots, X_n]$ eine Basis der Zariski-Topologie auf $\overline{U \cap U_i}$, d.h. es existiert f mit $D(f) \subseteq U \cap U_i$. Nach 6.11 Ist D(f) isomorph zu einer affine Varietät, es folgt die Behauptung.

(iv) Nach Proposition 6.5(iii) ist $W \cap U_i$ kompakt für alle $i \in \{0, ..., n\}$. Also ist

$$W = \bigcup_{i=0}^{n} W \cap U_i$$

ebenfalls kompakt.

Definition + **Bemerkung 9.7** Sei $V \subseteq \mathbb{P}^n(\mathbb{K})$ projektive Varietät, $V \neq \emptyset$.

(i) Der affine Kegel von V ist definiert als

$$\tilde{V} := \{(x_0, \dots, x_n) \in \mathbb{K}^{n+1} \mid (x_0 : \dots : x_n) \in V\} \cup \{(0, \dots, 0)\}$$

- (ii) \tilde{V} ist affine Varietät. Genauer gilt: Ist V = V(I) für ein homogenes Ideal $I \leq \mathbb{K}[X_0, \dots, X_n]$, so ist $\tilde{V} = V_{\text{aff}}(I)$ die Nullstellenmenge vom I in $\mathbb{A}^{n+1}(\mathbb{K})$.
- (iii) Falls \mathbb{K} unendlich ist, gilt $I(V) = I(\tilde{V})$.
- Beweis. (ii) Nach Definition ist $(x_0, \ldots, x_n) \in \tilde{V} \setminus \{(0, \ldots, 0)\}$ genau dann, wenn $(x_0 : \ldots : x_n) \in V$. Es bleibt also noch zu zeigen: $(0, \ldots, 0) \in V_{\text{aff}}(I)$.

Ist $f \in I$ homogen, so ist deg(f) > 0, also f(0, ..., 0) = 0.

(iii) Für jedes homogene $f \in \mathbb{K}[X_0, \dots, X_n]$ gilt:

$$f \in I(V) \iff f \in I(\tilde{V})$$

Zu zeigen ist also: $I(\tilde{V})$ ist homogen. Sei dazu

$$f = \sum_{i=0}^{d} f_i \in I(\tilde{V}), \qquad f_i \text{ homogen von Grad } i$$

Zu zeigen ist: $f_i \in I(\tilde{V})$ für alle $0 \le i \le d$.

Für jedes $x = (x_0, \dots, x_n) \in \tilde{V} \setminus \{(0, \dots, 0)\}$ und jedes $\lambda \in \mathbb{K}$ ist $(\lambda x_0, \dots, \lambda x_n) \in \tilde{V}$, also

$$0 = f(\lambda x_0, \dots, \lambda x_n) = \sum_{i=0}^d \lambda^i f_i(x_0, \dots, x_n)$$

Sind $\lambda_0, \ldots, \lambda_d$ verschiedene Elemente in \mathbb{K} , so hat das LGS

$$\begin{pmatrix} 1 & \lambda_0 & \dots & \lambda_0^d \\ 1 & \lambda_1 & \dots & \lambda_1^d \\ \vdots & \vdots & \ddots & \vdots \\ 1 & \lambda_d & \dots & \lambda_d^d \end{pmatrix} \cdot \begin{pmatrix} f_0(x_0, \dots, x_n) \\ f_1(x_0, \dots, x_n) \\ \vdots \\ f_d(x_0, \dots, x_n) \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

nur die triviale Läösung (Vandermonde-Matrix)

$$f_0(x_0,\ldots,x_n) = \ldots = f_d(x_0,\ldots,x_n) = 0,$$

woraus die Behauptung folgt.

Satz 9.8 (Projektiver Nullstellensatz) Sei \mathbb{K} algebraisch abgeschlossen, $n \ge 0$. Dann gilt für jedes homogene Radikalideal $I \le \mathbb{K}[X_0, \dots, X_n], I \ne \langle X_0, \dots, X_n \rangle$:

$$I(V(I)) = \sqrt{I} = I$$

Das Ideal $\langle X_0, \ldots, X_n \rangle$ heißt auch irrelevantes Ideal.

Beweis. Offenbar stimmt die Aussage für $I = \mathbb{K}[X_0, \dots, X_n]$. Sei nun also I ein echtes Ideal, also

$$I \subset \langle X_0, \dots, X_n \rangle$$

Seien $V_{\mathrm{aff}}(I) \subseteq \mathbb{A}^{n+1}(\mathbb{K})$ die affine und $V = V_{\mathrm{proj}}(I) \subseteq \mathbb{P}^n(\mathbb{K})$ die projektive Nullstellenmenge von I. Dann ist $\tilde{V} := V_{\mathrm{aff}}(I)$ der affine Kegel von V.

Da $I \neq \langle X_0, \dots, X_n \rangle$, ist nach HNS $V_{\text{aff}}(I) \neq \{0\}$, also $V \neq \emptyset$. Nach 9.7(iii) gilt dann

$$I(V(I)) = I(V) = I(\tilde{V}) = I(V_{\text{aff}}(I)) \stackrel{HNS}{=} I,$$

was zu zeigen war.

Beispiel 9.9 Es sei $E_0 := V(Y^2 - X^3 + X)$ und $E := \overline{E_0}$ der projektive Abschluss von E_0 in $\mathbb{P}^2(\mathbb{K})$, also

$$E = V(Y^2Z - X^3 + XZ^2)$$

Dann gilt

$$E \setminus E_0 = E \cap V(Z) = \{(0:1:0)\}$$

Es sei nun $\mathbb{L} \subseteq \mathbb{P}^2(\mathbb{K})$ eine Gerade also L = V(aX + bY + cZ), wobei $(a, b, c) \neq (0, 0, 0)$.

Dann kann man zeigen: Unter der Bedingung, dass \mathbb{K} algebraisch abgeschlossen ist, Tangenten doppelt und Wendetangenten dreifach zählen, gilt

$$\#(L \cap E) = 3$$

Genauer folgt dies aus dem Satz von Bézout. Im folgenden möchten wir eine Gruppenstruktur auf E definieren. Sei hierzu

 $\tilde{\mu}: E \times E \longrightarrow E, \quad (P,Q) \mapsto$ dritter Schnitterpunkt der Gerade durch P und Q

Zunächst einmal ist diese innere Verknüpfung wohldefiniert und kommutativ. Allerdings finden wir kein neutrales Element:

Denn gäbe es $P_0 \in E$ mit $\tilde{\mu}(P, P_0) = P$ für alle $P \in E$, so müssten alle Tangenten an E durch P_0 gehen. Das ist offenbar falsch, weshalb $\tilde{\mu}$ nicht der richtige Weg ist.

Wir nehmen nun folgende Modifikation vor: Für ein festes $P_0 \in E$ definieren wir eine Abbildung

$$\otimes_{P_0}: E \times E \longrightarrow E, \quad (P,Q) \mapsto P \otimes_{P_0} Q := \tilde{\mu}(P_0, \tilde{\mu}(P,Q))$$

Dann gilt:

- (i) Die Verknüpfung ist wohldefiniert
- (ii) P_0 ist das neutrale Element der Verknüpfung, d.h. es gilt

$$P \oplus_{P_0} P_0 = P$$
 für alle $P \in E$

- (iii) Die Verknüpfung \bigoplus_{P_0} ist assoziativ
- (iv) und kommutativ

Damit haben wir eine Gruppenstruktur auf unserer Varietät definiert. Nun stellt sich die Frage nach Elementen endlicher Ordnung? Gibt es sie? Ja!

- (i) Die drei Punkte mit senkrechter Tangente haben Ordnung 2, bilden mit P_0 also eine Klein'sche Vierergruppe.
- (ii) Die 8 Punkte mit Wendetangente (nur 2 sichtbar!) haben Ordnung 3.

§ 10 Reguläre Funktionen

Definition 10.1 Sei $V \subseteq \mathbb{P}^n(\mathbb{K})$ projektive Varietät und I(V) das zugehörige Verschwindungsideal von V. Dann heißt

$$\mathbb{K}[V] := \mathbb{K}[X_0, \dots, X_n] / I(V)$$

homogener Koordinatenring von V. Nach 9.2 (vi) ist $\mathbb{K}[V]$ ein graduierter Ring.

Bemerkung 10.2 Sind $F,G \in \mathbb{K}[X_0,\ldots,X_n]$ homogen von gleichem Grad, so ist $\frac{F}{G}$ eine wohlbestimmte Funktion aus D(G).

Definition 10.3 Sei $W \subseteq \mathbb{P}^n(\mathbb{K})$ projektive Varietät, $f: W \longrightarrow \mathbb{K}$ eine Abbildung.

(i) f heißt $regul\"{a}r$ in $x \in W$, wenn es eine Umgebung $U_x \ni x, U_x \subseteq W$ und homogene Polynome $F, G \in \mathbb{K}[X_0, \dots, X_n]$ vom selben Grad gibt, sodass $U_x \subseteq D(G)$ und

$$f(y) = \frac{F}{G}(y)$$
 für alle $y \in U_x$

(ii) f heißt reguläre Funktion auf W, wenn f in jedem $x \in W$ regulär ist.

Bemerkung 10.4 Sei $W \subseteq \mathbb{P}^n(\mathbb{K})$ projektive Varietät, $f: W \longrightarrow \mathbb{K}$ Abbildung: Dann gilt

f ist regulär $\iff f|_{U_i \cap W} = f \circ \psi_i$ ist regulär im Sinne von 6.2 für alle $i \in \{0, \dots, n\}$

Beweis. " \Rightarrow " Sei $x \in W \cap U_i$ für ein $i \in \{0, ..., n\}$ sowie $f = \frac{F}{G}$ in einer Umgebung U_x von x und homogenen Polynomen gleichen Grades $F, G \in \mathbb{K}[X_0, ..., X_n]$. Ohne Einschränkung sei $U_x \subseteq U_i$, ansonsten verkleinere U_x . Auf U_x gilt dann

$$(f \circ \psi_i)(x_1, \dots, x_n) = \frac{F}{G}(x_1 : \dots, x_i : 1 : x_{i+1} : \dots : x_n) = \frac{D_i(F)}{D_i(G)},$$

also ist $f \circ \psi_i$ regulär im Sinne von 6.2.

" \Leftarrow " Sei $x \in W \cap U_i$ sowie $f = \frac{g}{h}$ in einer Umgebung $x \ni U_x \subseteq U_i, f, g \in \mathbb{K}[X_0, \dots, X_{i-1}, X_{i+1}, \dots, X_n]$. Sei $G := H_i(g), H := H_i(h)$. Ohne Einschränkung sei deg $G \leqslant \deg H$. Dann ist

$$\frac{\tilde{G}}{H}$$
, $\tilde{G} := G \cdot X_i^{\deg H - \deg G}$

reguläre Funktion im Sinne von Definition 12.2 auf U_x mit $f = \frac{\tilde{G}}{H}$ auf U_x .

Definition + **Bemerkung 10.5** Sei $W \subseteq \mathbb{P}^n(\mathbb{K})$ projektive Varietät.

(i) Für $U \subseteq W$ offen sei

$$\mathcal{O}_W(U) := \{ f : U \longrightarrow \mathbb{K} \mid f \text{ ist regulär } \}$$

- (ii) $\mathcal{O}_W(U)$ ist \mathbb{K} -Algebra.
- (iii) Die Zuordnung $U \mapsto \mathcal{O}_W(U)$ ist eine Garbe von \mathbb{K} -Algebren auf W.

Beispiel 10.6 Es gilt

$$\mathcal{O}_{\mathbb{P}^n(\mathbb{K})}(U_i) = \mathcal{O}_{U_i}(U_i) = \mathbb{K}[Y_1, \dots, Y_n]_{X_i}$$

via der Zuordnung

$$f\left(\frac{x_0}{x_i}, \dots, \frac{x_{i-1}}{x_i}, \frac{x_{i+1}}{x_i}, \dots, \frac{x_n}{x_i}\right) \quad \longleftarrow \quad f$$

Ist zum Beispiel i = 0, n = 3, so haben wir

$$Y_1Y_3^2 - 2Y_2^2 \quad \longmapsto \quad \frac{X_1}{X_0} \left(\frac{X_3}{X_0}\right)^2 - 2\left(\frac{X_2}{X_0}\right)^2 = \frac{X_1X_3^2 - 2X_2^2X_0}{X_0^3}$$

Bemerke:

$$f\left(\frac{x_0}{x_i},\dots,\frac{x_{i-1}}{x_i},\frac{x_{i+1}}{x_i},\dots,\frac{x_n}{x_i}\right) = \frac{H_i(f)}{X_i^d}$$

mit $d = \deg(f)$. Damit erhalten wir

$$\mathcal{O}_{\mathbb{P}^n(\mathbb{K})}(U_i) = \left\{ \frac{H}{X_i^d} \mid H \in \mathbb{K}[X_0, \dots, X_n] \text{ homogen von Grad } d \right\}$$

Satz 10.7 (Homogene Lokalisierung) Sei \mathbb{K} algebraisch abgeschlossen, $V \subseteq \mathbb{P}^n(\mathbb{K})$ projektive Varietät

(i) Für $F \in \mathbb{K}[V]$ homogen von Grad deg $F \geqslant 1$ gilt

$$\mathcal{O}_V(D(F)) = (\mathbb{K}[V]_F)_0 := \left\{ \frac{H}{F^d} \mid H \in \mathbb{K}[V] \text{ homogen von } Grad \deg H = d \cdot \deg F \right\}$$

(ii) Falls V zusammenhägend ist, gilt

$$\mathcal{O}_V(V) = \mathbb{K}$$

Beweis. (i) Definiere

$$\psi : \mathbb{K}[V]_F \longrightarrow \mathcal{O}_V(D(F)), \quad \frac{G}{F^d} \mapsto \left(x \mapsto \frac{G}{F^d}(x)\right)$$

Dann ist ψ wohldefinierter Homomorphismus von K-Algebren.

injektiv. Ist

$$\frac{G}{Fd}(x) = 0$$

für alle $x \in D(F)$, so gilt $D(F) \subseteq V(G)$, also $F \cdot G = 0$ auf V. Dann ist aber

$$\frac{G}{F^d} = 0 \quad \text{in } \mathbb{K}[V]_F,$$

also ψ injektiv.

surjektiv. Sei $h \in \mathcal{O}_V(D(F))$.

Für $i \in \{0, ..., n\}$ sei $f_i := D_i(F)$ die *i*-te Dehomogenisierung von F. Dann ist

$$D(F) \cap U_i = D(f_i)$$

Nach Satz 6.5 gibt es dann $G_i \in \mathbb{K}[Y_1, \dots, Y_n]$ und $d_i \ge 0$, sodass h(D(F)) regulär ist, also

$$h(D(F) \cap U_i) = \frac{g_i}{f_i^{d_i}}$$

Mit $G_i := H_i(g_i)$ ist dann

$$h|_{D(F)\cap U_i} = \frac{G_i}{F^{d_i}X_i^{e_i}}, \quad e_i \in \mathbb{Z}$$

Auf $D(F) \cap U_i \cap U_j$ ist weiter

$$\frac{G_i}{F^{d_i}X_i^{e_i}} = \frac{G_j}{F^{d_j}X_j^{e_j}}$$

also

$$G_j F^{d_j} X_j^{e_j} - G_j F^{d_i} X_i^{e_i} = 0$$

und schließlich

$$G_j F^{d_j+1} X_i^{e_j} X_i X_j - G_j F^{d_i+1} X_i^{e_i} X_i X_j = 0$$
 auf V (*)

Sei nun ohne Einschränkung $d_i = 1$ für $i \in \{0, ..., n\}$, da $V(F^{d_i}) = V(F)$ für alle $d_i \ge 1$. Da $\deg(F) \ge 1$ ist $F \in \langle X_0, ..., X_n \rangle$, also

$$F^m \in \langle X_0^{e_0+1}, \dots, X_n^{e_n+1} \rangle$$

für hinreichend großes m und wegen

$$F^{m+1} = F \cdot F^m \in \langle FX_0^{e_0+1}, \dots, FX_n^{e_n+1} \rangle$$

damit

$$F^{m+1} = \sum_{i=0}^{n} H_i F X_i^{e_i+1}, \quad H_i \in \mathbb{K}[X_0, \dots, X_n]$$
 homogen

Beobachtung: Sei $I := \langle a_1, \dots, a_m \rangle$ mit homogenen a_i . Ist b homogen, so können wir b schreiben als

$$b = \sum_{i=1}^{n} r_i a_i$$
 mit geeigneten homogenen $r_i \in R$

(Man kann dies leicht durch Ausmultiplizieren und Koeffizientenvergleich einsehen).

Schreibe nun also

$$G = \sum_{i=0}^{n} H_i G_i$$

Dann ist

$$X_{j}F^{m+1}G_{j} = X_{j}\sum_{i=0}^{n}H_{i}FX_{i}^{e_{i}+1}G_{j} = \sum_{i=0}^{n}H_{i}G_{i}FX_{j}^{e_{j}+1}X_{i} = GFX_{j}^{e_{j}+1}$$

also

$$h(D(F) \cap U_j) = \frac{G_j}{FX_j^{e_j}} = \frac{G}{F^{m+1}}$$

Daraus folgt

$$\psi\left(\frac{G}{F^{m+1}}\right) = h,$$

also die Behauptung.

(ii) Sei V ohne Einschränkung irreduzibel. Denn dann ist $h \in \mathcal{O}_V(V)$ aus jeder irreduziblen Komponente konstant, und da V zusammenhängend ist, stimmen diese Konstanten überein.

Damit ist I(V) prim, der homogene Koordinatenring $\mathbb{K}[V]$ also nullteilerfrei.

Sei $\mathbb{L} := \operatorname{Quot}(\mathbb{K}[V]), f \in \mathcal{O}_V(V)$ und ohne Einschränkung $U_i \cap V \neq \emptyset$ für $i \in \{0, \dots, n\}$. Sei weiter $f_i := f|_{V \cap U_i}$. Nach (i) ist

$$f_i = \frac{G}{X_i^{d_i}}$$
 für ein homogenes $G_i \in \mathbb{K}[V], \deg(G_i) = d_i$

Beh. (1) f_i ist ganz über $\mathbb{K}[V]$.

Dann gibt es $m \ge 1, a_0, \dots, a_{m-1} \in \mathbb{K}[V]$ mit

$$f_i^m + \sum_{j=0}^{m-1} a_j f_i^j = 0 \qquad (I)$$

und durch Multiplikation mit $X_i^{d_i m}$

$$G_i^m + \sum_{j=0}^{m-1} a_j G_i^j X_i^{d_i(m-j)} \qquad (II)$$

Ohne Einschränkung gelte $a_j \in \mathbb{K}$, denn (II) muss im Grad $d_i m$ erfüllt sein.

Dann ist (I) mit $a_j \in \mathbb{K}$ erfüllt, f_i also ganz über \mathbb{K} . Da \mathbb{K} algebraisch abgeschlossen ist, ist f_i sogar konstant, es folgt also die Behauptung.

Bew. (1) Es gilt

$$f|_{U_i \cap V} = \frac{G}{X_i^{d_i}} \in \mathbb{L}$$

Setze

$$d := \sum_{i=0}^{n} d_i$$

und

$$\mathbb{K}[V]_d := \{ H \in \mathbb{K}[V] | H \text{homogen von Grad } d \}$$

Beh. (2) Es gilt $\mathbb{K}[V]_d f_i^j \subseteq \mathbb{K}[V]_d$ für alle $j \ge 0$.

Bew. (1) Dann ist $X_i^d f_i^j \in \mathbb{K}[V]$, also

$$f_i^j \in \frac{1}{X_i^d} \mathbb{K}[V] \implies \mathbb{K}[V][f_i] \subseteq \frac{1}{X_i^d} \mathbb{K}[V]$$

Da $\mathbb{K}[V]$ noethersch und endlich erzeugt ist, ist auch $\mathbb{K}[V][f_i]$ endliche erzeugter $\mathbb{K}[V]$ -Modul. Dann existiert $m \ge 1$, sodass f_i^m in dem von $1, f_i, \ldots, f_i^{m-1}$ erzeugten $\mathbb{K}[V]$ -Modul liegt. Damit folgt die Behauptung.

Bew. (2) $\mathbb{K}[V]_d$ wird als \mathbb{K} -Vektorraum von den Restklassen der Monome $X_o^{j_0},\dots,X_n^{j_n}$ mit

$$\sum_{i=0}^{n} j_i = d = \sum_{i=0}^{n} d_i$$

erzeugt. Für jedes solcher Monome gibt es einen Index i mit $j_i \ge d_i$, also

$$X_0^{j_0} \dots X_n^{j_n} \cdot f_i = X_0^{j_0} \cdots X_i^{j_i - d_i} \cdots X_n^{j_n} \cdot G_i \in \mathbb{K}[V]_d,$$

was zu zeigen war.

§ 11 Morphismen

Proposition + **Definiton 11.1** Seien $V \subseteq \mathbb{P}^n(\mathbb{K}), W \subseteq \mathbb{P}^m(\mathbb{K})$ quasiprojektive Vareitäten, $f: V \longrightarrow W$ eine Abbildung. Dann sind die folgenden Eigenschaften äquivalent:

(i) Für jedes $x \in V$ gibt es eine offene Umgebung U_x von x und homogene Polynoms $F_0, \ldots, F_m \in \mathbb{K}[X_0, \ldots, X_n]$ von gleichem Grad, sodass für alle $y \in U_x$ gilt:

$$f(y) = (F_0(y), \dots, F_m(y))$$

(ii) Für alle $i \in \{0, \dots, n\}$ und $j \in \{0, \dots, m\}$ mit $U_{ij} := U_i \cap f^{-1}(W \cap U_j) \neq \emptyset$ ist

$$f\left(U_i \cap f^{-1}(W \cap U_j)\right) : U_{ij} \longrightarrow W \cap U_j$$

Morphismus von quasiaffinen Varietäten.

(iii) f ist stetig und für jedes offene $U \subseteq W$ und jede reguläre Funktion $g \in \mathcal{O}_W(U)$ ist

$$g \circ f \in \mathcal{O}_V(f^{-1}(U))$$

Ist eine und damit alle jede der Bedingungen erfüllt, so heißt f Morphismus.

Beweis. "(ii) \Leftrightarrow (iii) " Folgt aus 10.4 und 6.9

"(i) \Rightarrow (iii)" Die Stetigkeit von f folgt wie im affinen Fall.

Ist $g \in \mathcal{O}_W(U)$ regulär, so gilt lokal $g = \frac{G}{H}$ mit homogenen Polynomen G, H von gleichem Grad. Damit ist

$$g \circ f = \frac{G(F_0(y), \dots, F_m(y))}{H(F_0(y), \dots, F_m(y))}$$

regulär auf einer geeigneten offenen Menge.

"(ii) \Rightarrow (i)" Sei j=0 und $x \in V \cap U_i$ und f in einer offenen Umgebung von x gegeben durch

$$f(y) = (f_1(y), \dots, f_m(y))$$

mit

$$f_k = \frac{g_k}{h_k}, \qquad g_k, h_k \in \mathbb{K}[Y_1, \dots, Y_n]$$

§ 11 MORPHISMEN 43

Durch Homogenisieren erhalten wir

$$f(y) = (1: f_1(y): \ldots: f_m(y))$$

Multiplizieren mit dem Hauptnenner und bei Bedarf mit einer Potenz von X_0 ergibt die gewünschten Polynome von gleichem Grad.

Beispiel 11.2 Sei

$$f: \mathbb{P}^2(\mathbb{K})\backslash\{(0:1:0)\} \longrightarrow \mathbb{P}^1(\mathbb{K}), \quad (x:y:z) \mapsto (x:z)$$

Dann ist f Morphismus. Aber: f lässt sich nicht zum Morphismus $\mathbb{P}^2(\mathbb{K}) \longrightarrow \mathbb{P}^1(\mathbb{K})$ fortsetzen. Denn: Betrachte $f(\lambda : \mu : \lambda) = (1 : 1)$ für ein $\lambda \in \mathbb{K}^{\times}, \mu \in \mathbb{K}$. Es gilt

$$\{(\lambda:\mu:\lambda)\in\mathbb{P}^2(\mathbb{K})\mid\lambda\neq0\}=V(X-Z)\setminus\{(0:1:0)\}$$

das heißt, f ist konstant auf $V(X-Z)\setminus\{(0:1:0)\}$, also auch auf $\overline{V(X-Z)\setminus\{(0:1:0)\}}=V(X-Z)$, falls $\mathbb K$ unendlich ist.

Betrachte nun $f(\lambda : \mu : -\lambda) = (1 : -1)$ für ein $\lambda \in \mathbb{K}^{\times}, \mu \in \mathbb{K}$. Analog erhält man hier, dass f konstant auf V(X + Z) ist, also

$$f(V(X-Z)) = (1:1), \qquad f(V(X+Z)) = (1:-1)$$

Damit kann es eine solche Fortsetzung nicht geben.

Beispiel 11.3 Sei $E := V(Y^2Z - X^3 + XZ^2)$, Siehe Beispiel 9.9, und

$$f: E \setminus \{(0:1:0)\} \longrightarrow \mathbb{P}^1(\mathbb{K}), \quad (x:y:z) \mapsto (x:z)$$

Dann lässt sich f zum Morphismus $E \longrightarrow \mathbb{P}^1(\mathbb{K})$ fortsetzen.

Betrachte hierzu die Tangente an E in $P_{\infty} := (0:1:0)$ Diese ist die Gerade Z = 0, denn die Tangente ist gerade der lineare Term. Dann gilt $f|_{V(Z)} = (1:0)$. Setze nun $P_0 := (0:0:1)$ und

$$g(x:y:z) = \begin{cases} (x:z) & \text{für } (x:y:z) \in E \setminus \{P_{\infty}\} \\ (y^2 + xz:x^2) & \text{für } (x:y:z) \in E \setminus \{P_0\} \end{cases}$$

g ist Morphismus. Es bleibt zu zeigen: Für $(x:y:z)\in E\backslash\{P_0,P_\infty\}$ ist $(x:z)=(y^2+xz:x^2)$. Es gilt aber

$$y^2z + xz^2 = x^3 \quad \Longleftrightarrow \quad \frac{y^2 + xz}{x^2} = \frac{x}{z}$$

und damit

$$(x:z) = (x(y^2 + xz): z(y^2 + x^2)) \stackrel{(x:y:z) \in E}{=} (xy^2 + x^2z: x^3) \stackrel{x \neq 0}{=} (y^2 + xz: x^2)$$

Außerdem ist $y^2 + xz \neq 0$, da sonst $0 = y^2z - x^3 + xz^2 = (y^2 + xz)z - x^3 = -x^3$, also x = 0, also $(x : y : z) \in \{P_0, P_\infty\}$.

Proposition 11.4 Ist $f: \mathbb{P}^n(\mathbb{K}) \longrightarrow \mathbb{P}^m(\mathbb{K})$ Morphismus, so gibt es homogene Polynome F_0, \ldots, F_m von gleichem Grad, sodass gilt

$$f(x) = (F_0(x) : \ldots : F_m(x))$$
 für alle $x \in \mathbb{P}^n(\mathbb{K})$

Beweis. Übung. Hauptgrund: $\mathbb{K}[X_0,\ldots,X_n]$ ist faktoriell.

Bemerkung 11.5 Für jede quasiprojektive Varietät V ist

$$Aut(V) := \{ f : V \longrightarrow V \mid f \text{ ist Isomorphismus } \}$$

eine Gruppe.

Beispiel 11.6 Es gilt Aut $(\mathbb{P}^1(\mathbb{K})) \cong \operatorname{GL}_2(\mathbb{K}) / \mathbb{K}^{\times} I_2 \cong \mathbb{P}\operatorname{GL}_2(\mathbb{K})$ mit Isomorphismus

$$\phi: \operatorname{PGL}_2(\mathbb{K}) \longrightarrow \operatorname{Aut}\left(\mathbb{P}^1(\mathbb{K})\right), \qquad \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mapsto \left(\left(X_0: X_1\right) \mapsto \left(aX_0 + bX_1: cX_0 + dX_1\right)\right)$$

Analog ist

$$\operatorname{Aut}\left(\mathbb{P}^n(\mathbb{K})\right) \cong \operatorname{PGL}_{n+1}(\mathbb{K})$$

Beispiel 11.7 Sei wieder $E:=V(Y^2Z-X^3+XZ^2)$ wie in Beispiel 9.9. Wir haben bereits eine Gruppenstruktur auf E via

$$\oplus := \oplus_{P_0} : E \times E \longrightarrow E, \qquad (P,Q) \mapsto P \oplus_{P_0} Q$$

Mit den Formeln für \oplus , die man sich analytisch herleiten kann, sieht man: \oplus ist Morphismus. Für jedes $P \in E$ ist also

$$\mu_P: E \longrightarrow E, \qquad Q \mapsto P \oplus Q$$

ein Automorphismus. Damit enthält $\operatorname{Aut}(E)$ eine zu E isomorphe Untergruppe. Einen weiteren Automorphismus finden wir zum Beispiel via

$$X \mapsto -X, \quad Y \mapsto i \cdot Y, \quad Z \mapsto Z$$

Kapitel III

Lokale Eigenschaften von Varietäten

§ 12 Lokale Ringe

 $\textbf{Definition} \ + \ \textbf{Bemerkung 12.1} \ \ \text{Sei} \ \mathbb{K} \ \ \text{K\"{o}rper}, \ V \ \text{eine quasiprojektive Variet\"{a}t\"{a}t\"{u}ber} \ \mathbb{K}, \ x \in V.$

(i) Der lokale Ring von V in x ist definiert als

$$\mathcal{O}_{V,x} := \{(U,f)_{\sim} \mid U \subseteq V \text{ offen }, x \in U, f \in \mathcal{O}_V(U)\}$$

wobei

$$(U_1, f_1) \sim (U_2, f_2) \iff \text{Es existiert } U \subseteq U_1 \cap U_2 \text{ offen mit } f_1|_U = f_2|_U$$

- (ii) Die Elemente von $\mathcal{O}_{V,x}$ heißen Keime von regulären Funktionen. Notation: $(U,f)_{\sim} =: f_x$.
- (iii) $\mathcal{O}_{V,x}$ ist K-Algebra und die Abbildung

$$\phi_x: \mathcal{O}_{V,x} \longrightarrow \mathbb{K}, \quad (U,f)_{\sim} \mapsto f(x)$$

ist surjektiver Homomorphismus von K-Algebren.

(iv) $\mathcal{O}_{V,x}$ ist lokaler Ring mit maximalem Ideal

$$\mathfrak{m}_x = \{(U, f)_{\sim} \mid f(x) = 0\} = \ker \phi_x$$

Beweis. (iii) Klar.

(iv) Nach dem Homomorphiesatz und (iii) gilt

$$\mathcal{O}_{V,x}/\mathfrak{m}_x\cong\mathbb{K}$$

also ist \mathfrak{m}_x maximales Ideal. Zeige nun, dass \mathfrak{m}_x das einzige ist. Sei hierfür $f \in \mathcal{O}_V(U)$ für ein $U \subseteq V$ mit $x \in U$ und es gelte $f(x) \neq 0$. Zeige: f_x ist Einheit in $\mathcal{O}_{V,x}$.

Es gilt $x \in D(f) \subseteq V$ offen, d.h. $(U, f) \sim (D(f), f)$. Damit haben wir

$$\frac{1}{f} \in \mathcal{O}_V(D(f))$$

also schließlich

$$\left(D(f), \frac{1}{f}\right) \cdot \left(D(f), f\right) = 1_x,$$

was behauptet wurde.

Bemerkung 12.2 Für jedes offene $U \subseteq V$ mit $x \in U$ ist

$$\psi_x^U : \mathcal{O}_V(U) \longrightarrow \mathcal{O}_{V,x}, \quad f \mapsto f_x = (U, f)_{\sim}$$

ein Homomorphismus von \mathbb{K} -Algebren.

Dabei sind die ψ^U_x verträglich mit Restriktionsabbildungen und es gilt

$$\mathcal{O}_{V,x} = \varinjlim_{U \subseteq V, x \in U} \mathcal{O}_V(U)$$

Proposition 12.3 Sei V quasiprojektive Varietät über \mathbb{K} , $V_0 \subseteq V$ affin, offen und $x \in V_0$. Dann ist

$$\mathcal{O}_{V,x} \cong \mathbb{K}[V_0]_{\mathfrak{m}_x^{V_0}},$$

wobei

$$\mathfrak{m}_x^{V_0} = \{ f \in \mathbb{K}[V_0] \mid f(x) = 0 \}$$

das zu x zugehörige maximale Ideal des affinen Koordinatenrings $\mathbb{K}[V_0]$ ist.

Beweis. Sei

$$\alpha: \mathbb{K}[V_0]_{\mathfrak{m}_x^{V_0}} \longrightarrow \mathcal{O}_{V,x}, \quad \frac{f}{g} \mapsto \left(\frac{f}{g}\right)_x$$

wobei $f, g \in \mathbb{K}[V_0]$ und $g \notin \mathfrak{m}_x^{V_0}$, d.h. $g(x) \neq 0$. Dann ist α wohldefinierter Homomorphismus. Zeige, dass dieser die gewünschte Isomorphie der \mathbb{K} -Algebren liefert.

injektiv. Sei

$$\frac{f}{g} \in \ker \alpha$$
, also $\alpha \left(\frac{f}{g} \right) = 0$.

Dann gibt es eine Umgebung U von x, $U \subseteq D(g)$ mit f(y) = 0 für alle $y \in U$.

Sei $W = V_0 \backslash U$. Dann ist W abgeschlossen in V_0 und es gilt $x \notin W$.

Damit existiert $h \in I(W)$ mit $h(x) \neq 0$, also $h \notin \mathfrak{m}_x^{V_0}$ und $(h \circ f)(y) = 0$ für alle $y \in V_0$. Dann ist $h \circ f = 0$ in $\mathbb{K}[V_0]$, also

$$\frac{f}{g} = 0 \text{ in } \mathbb{K}[V_0]_{\mathfrak{m}_x^{V_0}}$$

surjektiv. Sei nun $(U, f)_{\sim} \in \mathcal{O}_{V,x}$, ohne Einschränkung sei $U \subseteq V_0$ und U = D(h) für ein $h \in \mathbb{K}[V_0]$ mit $h(x) \neq 0$. Dann gilt

$$f \in \mathcal{O}_V(U) = \mathcal{O}_{V_0}(U) = \mathcal{O}_{V_0}(D(h)) = \mathbb{K}[V_0]_h$$

d.h. es ist

$$f = \frac{g}{h^k}, \quad k \geqslant 0, g \in \mathbb{K}[V_0] \implies \frac{g}{h^k} \in \mathbb{K}[V_0]_{\mathfrak{m}_x^{V_0}}$$

Damit gilt

$$(U, f)_{\sim} = \left(\frac{g}{h^k}\right)_r = \alpha \left(\frac{g}{h^k}\right),$$

wie behauptet.

Bemerkung 12.4 Sei $\phi: V \longrightarrow W$ Morphismus quasiprojektiver Varietäten. Für jedes $x \in V$ induziert ϕ einen Homomorphismus von \mathbb{K} -Algebren

$$\phi_x^\#: \mathcal{O}_{W,\phi(x)} \longrightarrow \mathcal{O}_{V,x}$$

Weiter gilt

$$\phi_x^{\#}\left(\mathfrak{m}_{\phi(x)}\right) \subseteq \mathfrak{m}_x$$

Beweis. Ohne Einschränkung seien V, W affin, denn x und $\phi(x)$ sind in affine Teilmengen enthalten. ϕ induziert also

$$\phi^{\#}: \mathbb{K}[W] \longrightarrow \mathbb{K}[V] \hookrightarrow \mathbb{K}[V]_{\mathfrak{m}^{V}}, \quad f \mapsto f \circ \phi = \phi^{\#}(f)$$

Dabei ist

$$f \in \mathfrak{m}_{\phi(x)}^{W} \iff f(\phi(x)) = 0 \iff (f \circ \phi)(x) = 0 \iff f \circ \phi = \phi^{\#}(f) \in \mathfrak{m}_{x}^{V}$$

und es gilt also

$$\phi^{\#}\left(\mathbb{K}[W]\backslash\mathfrak{m}_{\phi(x)}^{W}\right)\subseteq\left(\mathbb{K}[V]_{\mathfrak{m}_{x}^{V}}\right)^{\times}.$$

Mit der universellen Eigenschaft der Lokalisierung lässt sich $\phi^{\#}$ also fortsetzen zu

$$\phi_x^\#: \mathcal{O}_{W,\phi(x)} = \mathbb{K}[W]_{\mathfrak{m}_{\phi(x)}^W} \longrightarrow \mathbb{K}[V]_{\mathfrak{m}_x^V} = \mathcal{O}_{V,x}$$

Weiter gilt

$$\phi_x^{\#}(\mathfrak{m}_{\phi(x)}) = \phi_x^{\#}\left(\mathfrak{m}_{\phi(x)}^W \cdot \mathbb{K}[W]_{\mathfrak{m}_{\phi(x)}^W}\right) \subseteq \mathfrak{m}_x^V \cdot \mathbb{K}[V]_{\mathfrak{m}_x^V} = \mathfrak{m}_x,$$

was zu zeigen war.

Proposition 12.5 Seien V, W quasiprojektive Varietäten $x \in V, y \in W$. Gilt

$$\mathcal{O}_{V,x} \cong \mathcal{O}_{W,y}$$

als \mathbb{K} -Algebren, so gibt es offene Umgebungen $U \subseteq V$ von x und $U' \subseteq W$ von y und einen Isomorphismus

$$f: U \longrightarrow U', \quad x \mapsto y$$

Beweis. Ohne Einschränkung seien V,W affin. Sei

$$\phi: \mathcal{O}_{V,x} = \mathbb{K}[V]_{\mathfrak{m}_x^V} \longrightarrow \mathbb{K}[W]_{\mathfrak{m}_y^W} = \mathcal{O}_{W,y}$$

ein Isomorphismus. Seien f_1, \ldots, f_r die Erzeuger von $\mathbb{K}[V]$ als \mathbb{K} -Algebra. Für die Keime $(f_i)_x$ gilt also

$$\phi((f_i)_x) = \left(\frac{g_i}{h_i}\right)_y, \quad g_i, h_i \in \mathbb{K}[W], h_i(y) \neq 0$$

Sei $U_2 \subseteq W$ offen, affin mit $y \in U_2$ und es gelte

$$\frac{g_i}{h_i} \in \mathcal{O}_W(U_2) \iff \frac{g_i}{h_i} \text{ regulär für alle } i \in \{1, \dots, r\}$$

Beh. (1) Falls x auf jeder irreduziblen Komponente von V liegt, ist ψ_x^V injektiv. Dann folgt daraus:

$$\phi \circ \psi_x^V : \mathbb{K}[V] \longrightarrow \mathbb{K}[W]$$

ist injektiv. Damit induziert $\phi \circ \psi_x^V$ einen dominanten Morphismus $g: W \longrightarrow V$. Selbiges Vorgehen mit ϕ^{-1} liefert einen dominanten Morphismus $f: V \longrightarrow W$ mit $g \circ f = \mathrm{id}_V$ und $f \circ g = \mathrm{id}_W$ Bew. (1) Es gilt:

$$\psi_x^V : \mathbb{K}[V] \longrightarrow \mathbb{K}[V]_{\mathfrak{m}_x^V}$$

ist injekitv genau dann, wenn $\mathbb{K}[V]\backslash \mathfrak{m}_x^V$ keine Nullteiler enthält. Sei also $h \in \mathbb{K}[V]\backslash \mathfrak{m}_x^V$ Nullteiler in $\mathbb{K}[V]$, d.h. es gibt $g \in \mathbb{K}[V]\backslash \{0\}$ mit $h \cdot g = 0$, also $h(x) \neq 0$.

Sei Z eine irreduzible Komponente mit $g|_Z \neq 0$, d.h. $V(g) \cap Z \neq Z$. Da $x \in Z$, gilt auch $V(h) \cap Z \neq Z$. Damit ist $(V(h) \cap V(g)) \cap Z \neq Z$, da Z irreduzibel ist und V(h), V(g) echt abgeschlossen sind. Damit folgt $g \cdot h \neq 0$, ein Widerspruch zur Annahme.

§ 13 Dimension

Definition 13.1 Für einen topologischen Raum X heißt

 $\dim(X) := \sup\{n \in \mathbb{N}_0 \mid \text{ es existiert eine Kette } V_0 \subsetneq V_1 \subsetneq \ldots \subsetneq V_n, V_i \text{ abgeschlossen und irreduzibel } \}$ die *Krull-Dimension* von X.

Beispiel 13.2 (i) Für einen Hausdorffraum H gilt $\dim(H) = 0$.

(ii) Es gilt $\dim(\mathbb{A}^1(\mathbb{K})) = 1$, falls \mathbb{K} unendlich ist.

Erinnerung 13.3 Sei R ein Ring, $\mathfrak{p} \leq R$ ein Primadeal.

(i) Die $H\ddot{o}he$ von \mathfrak{p} in R ist

 $\operatorname{ht}(\mathfrak{p}) := \sup\{n \in \mathbb{N}_0 \mid \text{ es existiert eine Kette von Primidealen } \mathfrak{p}_{\mathfrak{o}} \subsetneq \mathfrak{p}_1 \subsetneq \ldots \subsetneq \mathfrak{p}_n = \mathfrak{p}\}$

(ii) Die Krull-Dimension von R ist

$$\dim(R) := \sup\{\operatorname{ht}(\mathfrak{p}) \mid \mathfrak{p} \leqslant R \text{ prim }\}$$

§ 13 DIMENSION 49

Proposition 13.4 Ist \mathbb{K} algebraisch abgeschlossen, $V \subseteq \mathbb{A}^n(\mathbb{K})$ affine Varietät, so gilt

$$\dim(V) = \dim(\mathbb{K}[V])$$

Beweis. Irreduzible Teilmengen von V entsprechen gerade bijektiv den Primaidealen in $\mathbb{K}[V]$.

Erinnerung + **Bemerkung 13.5** Für eine Körpererweiterung \mathbb{L}/\mathbb{K} ist $\operatorname{trdeg}_{\mathbb{K}}\mathbb{L}$ die Maximalzahl an algebraisch unabhängigen Elementen in \mathbb{L} über \mathbb{K} . Beispielsweise ist $\operatorname{trdeg}_{\mathbb{K}}\mathbb{K}(X) = 1$. Wir halten fest:

- (i) Es gilt $\operatorname{trdeg}_{\mathbb{K}}\mathbb{K}(X_1,\ldots,X_n)=n$.
- (ii) Es gilt $\operatorname{trdeg}_{\mathbb{K}} \mathbb{L} = 0$, falls \mathbb{L}/\mathbb{K} algebraisch ist.
- (iii) Noether-Normalisierung light: Sei A endlich erzeugte \mathbb{K} -Algebra. Dann ist A ganze Ringerweiterung eines Polynomrings $\mathbb{K}[X_1, \dots, X_n]$.
- (iv) Ist S/R ganze Ringerweiterung, so gilt dim $R = \dim S$.
- (v) Es gilt dim $\mathbb{K}[X_1,\ldots,X_n]=n$.
- (vi) Noether-Normalisierung deluxe: Sei $I \leq A$ ein Ideal. Dann gibt es einen Polynomring, sodass $A/\mathbb{K}[X_1, \ldots X_n]$ ganze Ringerweiterung ist und

$$I \cap \mathbb{K}[X_1, \dots X_n] = \langle X_{\delta+1}, \dots, X_n \rangle$$

für ein $0 \le \delta \le n$.

Beispiel 13.6 Es sei $A := \mathbb{K}[X,Y]$ und I das vom Polynom $f := Y^2 - X^3 + X \in A$ erzeugte Ideal. Es wird $f = Y^2 - X^3 + X$ als Variable in einem neuen Polynomring betrachtet, setze also $B := \mathbb{K}[X,f] \subseteq A$. Dann wird A als Ringerweiterung von B offenbar durch das Elemente Y erzeugt. Weiter ist Y ganz über B, denn für das normierte Polynom $g := Z^2 - X^3 + X - f \in B[Z]$ gilt

$$g(Y) = Y^2 - X^3 + X - f = f - f = 0$$

und damit ist A/B ganze Ringerweiterung. Weiter gilt $I \cap B = \langle f \rangle$.

Beachte: f ist nun eine Variable, das heißt, wir haben für $\delta = 1$ ein Beispiel für eine Noether-Normalisierung gefunden.

Lemma 13.7 Für eine irreduzible Varietät V gilt

$$\dim V = \operatorname{trdeg}_{\mathbb{K}} \mathbb{K}(V)$$

Beweis. Nach 13.3 gilt dim $V = \dim \mathbb{K}[V]$. Mit Bemerkung 13.4 (iii) folgt, dass $\mathbb{K}[V]$ als endlich erzeugte \mathbb{K} -Algebra eine ganze Ringerweiterung von $\mathbb{K}[X_1, \dots, X_n]$ für ein $n \in \mathbb{N}$ ist. Mit (iv) gilt

$$\dim \mathbb{K}[V] = \dim \mathbb{K}[X_1, \dots, X_n] = n.$$

Damit ist $\mathbb{K}(V)/\mathbb{K} = \operatorname{Quot}(\mathbb{K}[V])/\mathbb{K}$ algebraische Erweiterung von $\mathbb{K}(X_1, \dots, X_n)$ und es folgt

$$\operatorname{trdeg}_{\mathbb{K}}\mathbb{K}(V) = \operatorname{trdeg}_{\mathbb{K}}\mathbb{K}(X_1, \dots, X_n) = n,$$

die Behauptung.

Proposition 13.8 Sei $V \subseteq \mathbb{P}^n(\mathbb{K})$ quasiprojektive Varietät.

(i) Dann gilt für jede affine Varietät $V_0 \subseteq V$, die in V offen und dicht ist:

$$\dim(V) = \dim(V_0)$$

(ii) Seien Z_1, \ldots, Z_r die irreduziblen Komponenten von V. Dann ist

$$\dim(V) = \max_{i \in \{1, \dots, r\}} \dim(Z_i)$$

Beweis. (i) Es gilt:

">" Diese Aussage gilt allgemein für einen topologischen Raum und einer Teilmenge $Y \subseteq X$, denn:

Ist $\emptyset \subsetneq Y_0 \subset \ldots \subsetneq Y_d$ eine Kette von abgeschlossenen, irreduziblen Teilmengen von Y, so gilt für die Abschlüsse $X_i := \overline{Y}_i$: X_i ist irreduzibel in Y und $X_i \cap Y = Y_i$ für alle $i \in \{1, \ldots, d\}$ und damit $X_{i+1} \neq X_i$. Da die Y_i abgeschlossen sind, folgt die Inklusion.

"< " Wegen (ii) dürfen wir V und damit auch V_0 irreduzibel voraussetzen. Sei

$$\emptyset \neq Z_0 \subsetneq Z_1 \subset \ldots \subsetneq Z_d$$

eine Kette von abgeschlossenen, irreduziblen Teilmengen von V und $d = \dim V$. Dann ist Z_0 offenbar ein Punkt (andernfalls verlängern wir die Kette).

Sei nun $V_0 \subseteq V$ eine affine, offene, dichte Untervarietät mit $Z_0 \in V_0$. Dann ist $X_i = Z_i \cap V_0$ nichtleer und abgeschlossen in V_0 und damit $\overline{X}_i = Z_i$, da sonst

$$Z_i = \overline{X}_i \cup (Z_i \backslash V_0)$$

eine unerlaubte Zerlegung von Z_i wäre. Damit ist X_i irreduzibel mit $X_{i+1} \neq X_i$, es folgt also die Behauptung.

(ii) Es gilt allgemeiner: Ist X toplogischer Raum mit

$$X = \bigcup_{i=1}^{r} Z_i, \qquad Z_i \subseteq X$$
 abgeschlossen,

so gilt

$$\dim X = \max_{i \in \{1, \dots, r\}} \dim Z_i,$$

denn:

"≥" Klar.

" \leq " Sei $\varnothing \subsetneq X_0 \subsetneq X_1 \subsetneq \ldots \subsetneq X_d$ eine Kette von abgeschlossenen, irreduziblen Teilmengen von X. Dann ist

$$X_d = \bigcup_{i=1}^r X_d \cap Z_i$$

und da $X_d \cap Z_i$ abgeschlossen in X_d ist und X_d irreduzibel ist, existiert ein $i \in \{1, \dots r\}$ mit $X_d \subseteq Z_i$. Damit ist bereits die gesamte Kette in Z_i enthalten und es folgt $d \leq \dim Z_i$.

§ 13 DIMENSION 51

Proposition 13.9 Ist A endlich erzeugbare, nullteilerfreie \mathbb{K} -Algebra, so haben alle maximalen Primidealketten in A dieselbe Länge. Dabei heißt eine Kette $\langle 0 \rangle \subsetneq \mathfrak{p}_0 \subsetneq \ldots \subset \mathfrak{p}_d$ maximal, falls es kein Primadeal $\mathfrak{p} \leqslant A$ gibt mit $\mathfrak{p}_{i-1} \subsetneq \mathfrak{p} \subsetneq \mathfrak{p}_i$ für alle $i \in \{1, \ldots d\}$

Definiton + **Proposition 13.10** Sei $V \subseteq \mathbb{P}^n(\mathbb{K})$ quasiprojektive Varietät, $x \in V$.

- (i) $\dim_x V := \dim \mathcal{O}_{V,x}$ heißt lokale Dimension von V in x.
- (ii) Es gilt

$$\dim_x V = \operatorname{ht}(\mathfrak{m}_x) = \operatorname{ht}(\mathfrak{m}_x^{V_0})$$

für jede offene, affine Umgebung $V_0 \subseteq V$ von x.

- (iii) Es gilt $\dim_x V = \dim V$, falls V irreduzibel ist.
- (iv) Allgemeiner gilt

 $\dim_x V = \max\{\dim Z \mid Z \subseteq V \text{ ist irreduzible Komponente von } V \text{ mit } x \in Z\}$

Beweis. (ii) Es gilt $\mathcal{O}_{V,x} = \mathbb{K}[V_0]_{\mathfrak{m}_x^{V_0}}$ und damit dim $\mathcal{O}_{V,x} = \operatorname{ht}(\mathfrak{m}_x^{V_0})$.

(iii) Ohne Einschränkung sei V affin (vgl. 13.4). Dann gilt nach (ii)

$$\dim_x V = \operatorname{ht}(\mathfrak{m}_x^V)$$

Wegen 13.7 haben alle maximalen Ideale in $\mathbb{K}[V]$ dieselbe Höhe. Damit folgt bereits

$$\dim V = \dim \mathbb{K}[V] = \operatorname{ht}(\mathfrak{m}_x^V) = \dim_x V.$$

(iv) Ohne Einschränkung sei V wieder affin. Es gilt

$$\dim_x V = \dim \mathcal{O}_{V,x} = \operatorname{ht} \left(\mathfrak{m}_x^V\right) = \sup\{k \in \mathbb{N} \mid \text{es gibt eine Primidealkette} \ \langle 0 \rangle \neq \mathfrak{p}_{\mathfrak{o}} \subsetneq \ldots, \subsetneq \mathfrak{p}_k = \mathfrak{m}_x^V\}$$

Damit entspricht \mathfrak{p}_0 einer irreduziblen Komponente Z mit $x \in Z$ Mit Proposition 13.7 hat diese Kette die Länge dim Z und damit folgt die Behauptung.

Korollar 13.11 *Ist* \mathbb{K} *algebraisch abgeschlossen, so gilt für jede irreduzible Varietät* $V \subseteq \mathbb{A}^n(\mathbb{K})$:

$$\dim V + \operatorname{ht}(I(V)) = n.$$

Beweis. Sei $0 \subseteq \mathfrak{p}_1 \subset \ldots \subseteq \mathfrak{p}_d$ eine maximale Primidealkette in $\mathbb{K}[X_1, \ldots X_n]$, die I(V) enthält. Dann gilt $I(V) = \mathfrak{p}_i$ für ein $i \in \{1, \ldots d\}$. Es folgt $i = \operatorname{ht}(I(V))$ und wegen 13.9 auch d = n. Außerdem ist

$$0 = \mathfrak{p}_i / I(V) \subset \ldots \subset \mathfrak{p}_n / I(V)$$

eine maximale Primidealkette für $\mathbb{K}[X_1,\ldots,X_n]/I(V)=\mathbb{K}[V]$, und erneut mit 13.9 folgt

$$n - i = \dim \mathbb{K}[V] = \dim V$$
,

was zu zeigen war.

Korollar 13.12 Sei \mathbb{K} algebraisch abgeschlossen, $V \subseteq \mathbb{A}^n(\mathbb{K})$ eine Hyperfläche, d.h. V = V(f) für ein $f \in \mathbb{K}[X_1, \dots X_n]$ mit deg $f \geqslant 1$. Dann ist

$$\dim V = n - 1.$$

Beweis. Aus 13.9 folgt

$$\dim V = n - \operatorname{ht}(\langle f \rangle).$$

Zeige also: $ht(\langle f \rangle) = 1$.

 \gg " Klar.

" \leq " Sei $\mathfrak{p} \leq \mathbb{K}[X_1, \dots X_n]$ ein Primideal mit $\langle 0 \rangle \subsetneq \mathfrak{p} \subseteq \langle f \rangle$. Sei $h \in \mathfrak{p} \setminus \{0\}$ mit minimalem Grad. Da $\mathfrak{p} \subseteq \langle f \rangle$, gilt $h = f \cdot g$ für ein $g \in \mathbb{K}[X_1, \dots X_n]$. Wir erhalten

$$\deg h = \deg f + \deg g > \deg g$$

und damit ist $g \notin \mathfrak{p}$. Da \mathfrak{p} prim ist, folgt $f \in \mathfrak{p}$ und damit $\mathfrak{p} = \langle f \rangle$.

Satz 13.13 ("Going down", Cohen-Seidenberg) Sei A endlich erzeugte, nullteilerfreie \mathbb{K} -Algebra, A/B mit $B := \mathbb{K}[X_1, \dots X_n]$ via Noether-Normalisierung eine ganze Ringerweiterung. Sei weiter $\mathfrak{P}_1 \subset A$ ein Primadeal, $\mathfrak{p}_0 \subset B$ mit $\mathfrak{p}_0 \subset \mathfrak{p}_1 := \mathfrak{P}_1 \cap B$. Dann gibt es ein Primadeal $\mathfrak{P}_0 \subset A$ mit $\mathfrak{P}_0 \subset \mathfrak{P}_1$ und $\mathfrak{P}_0 \cap B = \mathfrak{p}_0$.

Beweis. Nach dem "Going up"-Theorem in der Algebra (Prop. 13.7) gibt es ein Primadeal $\mathfrak{P}'_0 \subset A$ mit $\mathfrak{P}'_0 \cap B = \mathfrak{p}_0$ und ein Primadeal $\mathfrak{P}'_1 \subset A$ mit $\mathfrak{P}'_0 \subset \mathfrak{P}'_1$ und $\mathfrak{P}'_1 \cap B = \mathfrak{p}_1$. Setze

$$\mathbb{M} := \operatorname{Quot}(B), \qquad \mathbb{L} := \operatorname{Quot}(A).$$

Dann ist L/M eine endliche, algebraische Körpererweiterung.

Fall (a) Es ist L/M Galoiserweiterung. Dann ist

$$Gal(\mathbb{L}/\mathbb{M}) = \{ \sigma_1 = id, \sigma_2, \dots \sigma_n \}, \quad n := [\mathbb{L} : \mathbb{M}].$$

Sei nun $\mathfrak{P}_i := \sigma_i(\mathfrak{P}_1)$ für $i \in \{1, \dots n\}$. Dann ist \mathfrak{P}_i ein Primadeal in A für ein $i \in \{1, \dots n\}$ (nichttrivial! Warum gilt $\sigma_i(A) \subseteq A$?).

Angenommen, $\mathfrak{P}'_i \neq \mathfrak{P}_i$ für alle $i \in \{1, \dots n\}$. Dann ist auch $\mathfrak{P}'_1 \subseteq \mathfrak{P}_i$, da

$$\mathfrak{P}'_i \cap B = \mathfrak{P}_1 \cap B = \mathfrak{p} = \mathfrak{P}_i \cap B$$
.

Dann folgt

$$\mathfrak{P}'_i \subseteq \bigcup_{i=1}^n \mathfrak{P}_i$$

(diese Aussage gilt nicht nur für Primideale). Also existiert $a \in \mathfrak{P}'_1$ mit $a \notin \mathfrak{P}_i$ für alle $i \in \{1, \ldots n\}$ und es gilt $\sigma_j(a) \in \mathfrak{P}_i$ für alle $i, j \in \{1, \ldots n\}$. Schließlich ist

$$\mathbb{M} \ni N_{\mathbb{L}/\mathbb{M}} \stackrel{(*)}{=} \prod_{i=1}^{n} \sigma_{j}(a) \in \mathfrak{P}_{i}$$
 für alle $i \in \{1, \dots n\},$

§ 13 DIMENSION 53

andererseits aber

$$N_{\mathbb{L}/\mathbb{M}} \in \mathbb{M} \cap \mathfrak{P}'_1 = B \cap \mathfrak{P}'_1 = \mathfrak{p}_1$$

und $\mathfrak{p}_i \subseteq \mathfrak{P}_i$ für alle $i \in \{1, \ldots, n\}$, ein Widerspruch!

Damit war die Annahme falsch und es gibt einen Index $i \in \{1, ... n\}$, sodass

$$\mathfrak{P}_i' = \sigma_i(\mathfrak{P}_i).$$

Das Ideal $\mathfrak{P}_0 = \sigma_i^{-1}(\mathfrak{P}'_0)$ erfüllt damit

$$\mathfrak{P}_0 \subset \mathfrak{P}_1$$
 und $\mathfrak{P}_0 \cap B = \mathfrak{P}'_0 \cap B = \mathfrak{p}_0$.

Fall (b) L/M ist nicht Galois. Ist L/M nicht separabel, so ändert dies nichts an dem Beweis, bis auf die Tatsache, dass der Ausdruck in (*) nicht der Norm entspricht, sondern nur eine gewissen Wurzel von ihr.

Ist andererseits \mathbb{L}/\mathbb{M} nicht normal, so betrachten wir die die normale Hülle $\tilde{\mathbb{M}} \supset \mathbb{M}$. Hier wird der Beweis ein wenig technischer, im Wesentlichen ändert sich jedoch trotzdem nicht viel.

(Beweis von 13.9) Es sei

$$\langle 0 \rangle = \mathfrak{P}_1 \subsetneq \mathfrak{P}_1 \subsetneq \ldots \subsetneq \mathfrak{P}_m$$

eine maximale Kette von Primidealen in A. Sei weiter A/B mit $B := \mathbb{K}[X_1, \dots X_d]$ eine via Noether-Normalisierung erhaltene ganze Ringerweiterung . Setze

$$\mathfrak{p}_i := \mathfrak{P}_i \cap B$$
 für $i \in \{1, \dots m\}$.

Beh. (a) Wir haben eine maximale Kette von Primideale in B:

$$\langle 0 \rangle \subsetneq \mathfrak{p}_1 \subsetneq \ldots \subsetneq \mathfrak{p}_m$$

Da dim $A = \dim B$, genügt es nun zu zeigen: m = d. Zeige dies über Induktion nach d: d=1 Klar.

 $\mathbf{d} \geqslant \mathbf{1}$ Sei C/B mit $C := \mathbb{K}[Y_1, \dots Y_d]$ eine via Noether-Normalisierung erhaltene ganze Ringerweiterung, sodass gilt $\mathfrak{p}_1 \cap C = \langle Y_{\delta+1}, \dots, Y_d \rangle$ für ein $dir 0o \leqslant \delta \leqslant d$. Für

$$\mathfrak{q}_i := \mathfrak{p}_i \cap C, \qquad i \in \{1, \dots m\}$$

ist wegen der Behauptung

$$\langle 0 \rangle \subsetneq \mathfrak{q}_1 \subsetneq \ldots \subsetneq \mathfrak{q}_m$$

eine maximale Kette in C. damit folgt $\operatorname{ht}(\mathfrak{q}_1)=1$, also $\delta=d-1$. Sei nun $C':=C/\mathfrak{q}_1\cong \mathbb{K}[Y_1,\ldots,Y_{d-1}]$. Dann ist

$$\langle 0 \rangle = \mathfrak{q}_1 / \mathfrak{q}_1 \subsetneq \ldots \subsetneq \mathfrak{q}_m / \mathfrak{q}_1$$

eine maximale Kette in C', d.h. es gilt m-1=d-1, also m=d.

Es bleibt nun also, die Behauptung (a) zu zeigen.

Bew. (a) Nach Definition ist $\mathfrak{p}_i \subseteq \mathfrak{p}_{i+1}$. Es ist also zu zeigen: $\mathfrak{p} \neq \mathfrak{p}_{i+1}$. Sei dazu ohne Einschränkung i = 0 - andernfalls ersetze A durch A/\mathfrak{p}_i und B durch B/\mathfrak{p}_i .

Sei $b \in \mathfrak{P}_1 \setminus \{0\} = \mathfrak{P}_1 \setminus \mathfrak{P}_0$. Da b ganz ist über B, gibt es eine Gleichung

$$b^n + a_{n-1}N^{n-1} + \ldots + a_1b + a_0 = 0$$
, $a_i \in B$ für alle $i \in \{1, \ldots, n-1\}$.

Wir wählen *n* minimal, sodass gilt $a_0 = 0$.Dann ist

$$a_0 = -b \cdot (b^{n-1} + a_{n-1}b^{n-1} + \dots + a_1) \in B \cap \mathfrak{P}_1 = \mathfrak{p}_1,$$

also $\mathfrak{p}_1 \neq \langle 0 \rangle 0$.

Schließlich muss noch gezeigt werden, dass die Kette tatsächlich maximal ist, d.h. es gibt für kein $i \in \{1, ... m\}$ ein Primideal \mathfrak{q} mit $\mathfrak{p}_{i-1} \subsetneq \mathfrak{q} \subsetneq \mathfrak{p}_i$. Proposition 13.11 liefert und jedoch genau dies. Damit ist die Behauptung gezeigt.

§ 14 Tangentialraum und Singularitäten

Erinnerung 14.1 Sei $f \in \mathbb{K}[X_1, \dots, X_n], a = (a_1, \dots, a_n) \in \mathbb{K}^n$.

(i) Es gilt

$$f = \sum_{(\nu_1, \dots, \nu_n) \in \mathbb{N}_n^n} \frac{1}{(\nu_1 + \dots + \nu_n)!} \left(\left(\frac{\partial}{\partial X_1} \right)^{\nu_1} \cdots \left(\frac{\partial}{\partial X_n} \right)^{\nu_n} f \right) (a) \prod_{i=1}^n (X_i - a_i)^{\nu_i}$$

(ii) Es ist

$$f = f(a) + \sum_{i=1}^{n} \frac{\partial f}{\partial X_i}(a)(X_i - a_i) + \text{ h\"ohere Terme}$$

Definition + **Bemerkung 14.2** Sei $f \in \mathbb{K}[X_1, \dots, X_n], a = (a_1, \dots, a_n) \in \mathbb{K}^n$.

(i) Die Linearisierung von f in a ist

$$f_a^{(1)} = \sum_{i=1}^n \frac{\partial f}{\partial X_i}(a) X_i =: D_a(f)$$

(ii) Sei $V \subseteq \mathbb{A}^n(\mathbb{K})$ affine Varietät, $a \in V$, $I = I(V) \leq \mathbb{K}[X_1, \dots, X_n]$. Sei weiter I_a das von den Linearisierungen $f_a^{(1)}$ für alle $f \in I$ erzeugte Ideal in $\mathbb{K}[X_1, \dots, X_n]$. Dann heißt

$$T_a = T_{V,a} := V(I_a)$$

Tangential raum an V in a.

- (iii) Ist $I(V) = \langle f_1, \dots, f_r \rangle$, so ist $I_a = \langle (f_1)_a^{(1)}, \dots, (f_r)_a^{(1)} \rangle$.
- (iv) $T_{V,a}$ ist ein Untervektorraum des \mathbb{K}^n . Genauer ist

$$T_{V,a} = \ker \mathcal{J}_{f_1,\dots,f_r}(a), \quad \mathcal{J} := \mathcal{J}_{f_1,\dots,f_r} = \left(\frac{\partial f}{\partial X_i}\right)_{i,j}$$

Beweis. (iii) Es gilt

$$D_{a}(f+g) = D_{a}(f) + D_{a}(g)$$

$$D_{a}(fg) = (f \cdot g)_{a}^{(1)} = \sum_{i=1}^{n} \frac{\partial}{\partial X_{i}} (fg)(a) X_{i} = \sum_{i=1}^{n} \left(f(a) \frac{\partial g}{\partial X_{i}} (a) + g(a) \frac{\partial f}{\partial X_{i}} (a) \right) X_{i}$$

$$= f(a) \sum_{i=1}^{n} \frac{\partial g}{\partial X_{i}} (a) X_{i} + g(a) \sum_{i=1}^{n} \frac{\partial f}{\partial X_{i}} (a) X_{i}$$

$$= f(a) D_{a}(g) + g(a) D_{a}(f)$$

Ist nun also

$$f = \sum_{k=1}^{r} g_k f_k \in I(V), \qquad g_k \in \mathbb{K}[X_1, \dots, X_n],$$

so ist

$$D_a(f) = \sum_{k=1}^r (f_k(a)D_a(g_k) + g_k(a)D_a(f_k)) = \sum_{k=1}^r g_k(a)(f_k)_a^{(1)} \in \langle (f_a)_a^{(1)}, \dots, (f_r)_a^{(1)} \rangle$$

(iv) Folgt aus (iii).

Beispiel 14.3 (i) Sei $f = Y^2 - X^3 - X^2 \in \mathbb{K}[X, Y], V = V(f)$. Ist $(a, b) \in V$, so gilt

$$f_{(a,b)}^{(1)} = -a(3a+2)X + 2bY$$

Trivial wird dieses Gleichungssystem für (a,b)=0 und $(a,b)=\left(-\frac{2}{3},0\right)$. Da aber der zweite Punkt nicht auf V liegt, erhalten wir als Tangentialraum eine Gerade außerhalb von (0,0) und $T_{V,(0,0)}=\mathbb{K}^2$.

(ii) Sei $f = Y^2 - X^3 \in \mathbb{K}[X, Y], V = V(f)$. Dann ist

$$f_{(a,b)}^{(1)} = -3a^2X + 2bY$$

und mit selbiger Argumentation ist $T_{V,(0,0)} = \mathbb{K}^2$ und außerhalb von (0,0) eine Gerade.

(iii) Sei $f = X^2 + Y^2 - Z^2 \in \mathbb{K}[X, Y, Z], V = V(f)$. Es ist

$$f_{(a,b)}^{(1)} = 2aX + abY - 2cZ,$$

also ist $T_{V,(0,0,0)} = \mathbb{K}^3$ und eine Ebene außerhalb von (0,0).

Bemerkung 14.4 Seien $V_0 \subseteq V \subseteq \mathbb{A}^n(\mathbb{K})$ affine Varietäten, V_0 dicht in V, $a \in V_0$. Dann ist

$$T_{V_0,a} \cong T_{V,a}$$
.

Beweis. Ohne Einschränkung sei $V_0 = D(g)$ für ein $g \in \mathbb{K}[V]$. Sei $I(V) = \langle f_1, \dots, f_r \rangle$. Dann ist $V_0 \cong V_0' := V(f_1, \dots, f_r, gX_{n+1} - 1) \subseteq \mathbb{A}^{n+1}(\mathbb{K})$. Dabei entspricht der Punkt $a = (a_1, \dots, a_n) \in V_0$ dem Punkt $a' = \left(a_1, \dots, a_n, \frac{1}{g(a)}\right)$. Weiter ist

$$T_{V_0',a'} = V\left((f_1)_{a'}^{(1)}, \dots, (f_r)_{a'}^{(1)}, \frac{1}{g(a)}g_{a'}^{(1)} + g(a)X_{n+1}\right) \subseteq \mathbb{K}^{n+1}.$$

Da der Term $\frac{1}{g(a)}g_{a'}^{(1)} + g(a)X_{n+1}$ als einziger X_{n+1} enthält, gilt

$$\dim T_{V',a'} = n + 1 - \operatorname{Rang}\left((f_1)_{a'}^{(1)}, \dots, (f_r)_{a'}^{(1)}, \frac{1}{g(a)}g_{a'}^{(1)} + g(a)X_{n+1}\right)$$

$$= n - \operatorname{Rang}\left((f_1)_{a'}^{(1)}, \dots, (f_r)_{a'}^{(1)}\right)$$

$$= \dim T_{V,a},$$

was zu zeigen war.

Definition 14.5 Sei $V \subseteq \mathbb{P}^n(\mathbb{K})$ quasiprojektive Varietät, $a \in V$. Dann ist der *Tangentialraum in a* an V definiert als

$$T_{V,a} := T_{V_0,a},$$

wobei $V_0 \subseteq V$ ein offene, affine Umgebung von a ist.

Definition 14.6 Sei $V \subseteq \mathbb{P}^n(\mathbb{K})$ quasiprojektive Varietät.

- (i) $a \in V$ heißt nichtsingulärer oder regulärer Punkt, falls dim $T_{V,a} = \dim_a V$. Andernfalls heißt a singulär.
- (ii) V heißt nichtsingulär, wenn jedes $a \in V$ nichtsingulär ist.

Proposition 14.7 (Jacobi-Kriterium) $Sei V \subseteq \mathbb{A}^n(\mathbb{K})$ affine $Varite\"{a}t, a \in V, I = I(V) = \langle f_1, \dots, f_r \rangle$. Dann gilt

$$a \text{ ist nichtsingul\"{a}r} \iff Rang(\mathcal{J}_{f_1,\dots,f_r}(a)) = n - \dim_a V.$$

Beweis. Nach Bemerkung 14.2 ist

$$T_{V,a} = \ker\left(\frac{\partial f_i}{\partial X_i}(a)\right)_{i,j}$$

Mit

$$\operatorname{Rang}(\mathcal{J}_{f_1,\dots,f_r}(a)) = n - \dim \ker \mathcal{J}(a) = n - \dim T_{V,a}$$

folgt die Behauptung.

Beispiel 14.8 (i) Sei $V = V(f) \subseteq \mathbb{A}^n(\mathbb{K})$ Hyperfläche. Dann ist

$$\mathcal{J}_f(a) = \left(\frac{\partial f}{\partial X_1}(a), \dots, \frac{\partial f}{\partial X_n}(a)\right)$$

also

$$a \text{ ist singulär} \iff \frac{\partial f}{\partial X_1}(a) = \ldots = \frac{\partial f}{\partial X_n}(a) = f(a) = 0.$$

(ii) Sei $f = Y^2 - X^3 + X \in \mathbb{K}[X, Y], V = V(f) \subseteq \mathbb{A}^2(\mathbb{K})$. Dann ist

$$\mathcal{J}_f(x,y) = \left(-3x^2 + 1, 2y\right).$$

Dann gilt:

$$a = (x_0, y_0)$$
 ist singulär $\iff y_0 = 0, \ 3x_0^2 = 1 \iff a = \left(\frac{1}{\sqrt{3}}, 0\right).$

Aber es gilt: $f(a) \neq 0 \iff a \notin V$. Damit ist V(f) nichtsingulär.

Wir betrachten nun den projektiven Abschluss $\overline{V} = V(Y^2Z - X^3 + XZ^2) \subseteq \mathbb{P}^2(\mathbb{K})$. Der einzige neu auftretende Punkt ist $P_{\infty} = (0:1:0)$. Wir betrachten eine affine Umgebung

$$U := U_Y \cap \overline{V} = V(Z - X^3 + XZ^2).$$

Dann ist für $G = Z - X^3 + XZ^2$:

$$\mathcal{J}_g(x,z) = (-3x^2 + z^2, 2xz + 1) \implies \mathcal{J}_g(P_\infty) = (0,1)$$

womit P_{∞} ein regulärer Punkt ist. Also ist sogar \overline{V} nichtsingulär.

(iii) Wir variieren nun die Varietät aus Beispiel (ii). Setze hierfür

$$f_{a,b} := Y^2 - X^3 - aX - b.$$

Dann ist

$$\mathcal{J}_{f_{a,b}}(x,y) = (-3x^2 - a, 2y)$$

Sei nun $x_0, y_0 \in E_{a,b} = V(f_{a,b})$ singulär. Dann ist $y_0 = 0$ und $-a = 3x_0^2$. Weiter muss der Punkt auf $E_{a,b}$ liegen, wir erhalten also die Bedingung

$$x_0^3 - 3x_0^3 + b = 0 \iff b = 2x_0^3 \iff b^2 = 4x_0^6 = 4\frac{-a^3}{27} \iff 27b^2 + 4a^3 = 0.$$

Andererseits gilt

$$f_{a,b9=0} \iff Y^2 = X^3 + aX + b =: g_{a,b}(X)$$

und damit

$$\Delta(a,b) = 0 \iff g_{a,b}$$
 hat eine doppelte Nullstelle.

Wobei mit $\Delta(a,b)$ die Diskriminante von a und b bezeichnet wird. Damit erhalten wir

$$\overline{E}_{a,b}$$
 ist nichtsingulär \iff $\Delta(a,b) \neq 0$,

was zu zeigen war.

Satz 14.9 Sei \mathbb{K} algebraisch abgeschlossen, $V \subseteq \mathbb{A}^n(\mathbb{K})$ affine Varietät. Sei $\mathfrak{m}_x = \{f_x \in \mathcal{O}_{V,x} \mid f_x(x) = 0\}$ das zum Punkt $x \in V$ zugehörige maximale Ideal. Bezeichne weiterhin $(\mathfrak{m}_x/\mathfrak{m}_x^2)^*$ den Dualraum des \mathbb{K} -Vektorraums $\mathfrak{m}_x/\mathfrak{m}_x^2$. Dann gibt es einen natürlichen Isomorphismus von \mathbb{K} -Vektorräumen

$$\alpha: T_{V,x} \longrightarrow \left(\mathfrak{m}_x / \mathfrak{m}_x^2\right)^*$$

Beweis. Zur Wohldefiniertheit der Behauptung: Es ist $\mathfrak{m}_x/\mathfrak{m}_x^2$ ein Modul über $\mathcal{O}_{V,x}$, das heißt, Multiplikation mit Ringelementen aus $\mathcal{O}_{V,x}$ ist definiert. Multiplikation mit einem Elemente aus \mathfrak{m}_x ist die Nullabbildung. Damit ist $\mathfrak{m}_x/\mathfrak{m}_x^2$ ein $\mathcal{O}_{V,x}/\mathfrak{m}_x$ -Modul, also ein \mathbb{K} -Vektorraum und der Dualraum dazu ist wohldefiniert. Dieser wird auch als Zariski-Tangentialraum bezeichnet.

Nun zur Behauptung. Definiere

$$\alpha: T_{V,x} \longrightarrow \left(\mathfrak{m}_x / \mathfrak{m}_x^2\right)^*, \quad v = (v_1, \dots, v_n) \mapsto \alpha(v)(\overline{f}) := \sum_{i=1}^n \frac{\partial f}{\partial X_i}(x)v_i$$

Dann ist α wohldefiniert, denn für $g, h \in \mathfrak{m}_x$ gilt

$$\alpha(v)(gh) = \sum_{i=1}^{n} \frac{\partial(gh)}{\partial X_i}(x)v_i = \sum_{i=1}^{n} \left(g(x) \frac{\partial h}{\partial X_i}(x) + h(x) \frac{\partial g}{\partial X_i}(x) \right) v_i = 0$$

Damit ist dann auch für alle $f \in \mathfrak{m}_x^2$ bereits $\alpha(v)(f) = 0$. Definiere nun umgekehrt

$$\beta: (\mathfrak{m}_x/\mathfrak{m}_x^2)^* \longrightarrow T_{V,x}, \quad l \mapsto (l(\overline{X_1 - x_1}), \dots, l(\overline{X_n - x_n}))$$

Zeige zunächst: $\beta(l) \in T_{V,x}$ für alle $l \in (\mathfrak{m}_x/\mathfrak{m}_x^2)^*$. Sei dazu $f \in I(V)$ und

$$f_x^{(1)} = \sum_{i=1}^n \frac{\partial f}{\partial X_i}(a) X_i \in I$$

seine Linearisierung. Dann ist

$$f_x^{(1)}(\beta(l)) = \sum_{i=1}^n \frac{\partial f}{\partial X_i}(x)l\left(\overline{X_i - x_i}\right) = l\left(\sum_{i=1}^n \overline{\frac{\partial f}{\partial X_i}(x)(X_i - x_i)}\right) = l\left(\overline{f_x^{(1)} - f_x^{(1)}(x)}\right) = 0$$

Die letzte Gleichheit gilt, da $f_x^{(1)} - f_x^{(1)}(x) \in \mathfrak{m}_x^2$, denn es gilt

$$\mathbb{K}[V] \ni f = \underbrace{f(x)}_{=0} + f_x^{(1)} - f_x^{(1)}(x) + \text{ Terme in } \mathfrak{m}_x^2$$

Wir rechnen nach:

(i) Es gilt
$$(\beta \circ \alpha)(v) = \beta (\alpha(v)) = \beta \left(f \mapsto \sum_{i=1}^{n} \frac{\partial f}{\partial X_{i}}(x)v_{i} \right)$$

$$= \left(\sum_{i=1}^{n} \frac{\partial (\overline{X_{i} - x_{i}})}{\partial X_{i}}(x)v_{1}, \dots, \sum_{i=1}^{n} \frac{\partial (\overline{X_{n} - x_{n}})}{\partial X_{i}}(x)v_{n} \right)$$

$$= (v_{1}, \dots, v_{n})$$

(ii) sowie für $l \in \mathfrak{m}_x / \mathfrak{m}_x^2$ und $f \in \mathfrak{m}_x$

$$(\alpha \circ \beta)(l)(f) = \alpha \left(l(\overline{X_1 - x_1}), \dots, l(\overline{X_n - x_n}) \right)$$

$$= \sum_{i=1}^n \frac{\partial f}{\partial X_i}(x) l(\overline{X_i - x_i})$$

$$= l(\overline{f}),$$

es folgt also die Behauptung.

Folgerung 14.10 Sei V quasiprojektive Varietät, $x \in V$. Dann gilt

$$x$$
 ist nichtsingulär \iff $\dim \mathfrak{m}_x / \mathfrak{m}_x^2 = \dim \mathcal{O}_{V,x}$

Definition 14.11 Ein noetherscher lokaler Ring R heißt regulär, falls

$$\dim_{\mathbb{K}} \mathfrak{m} / \mathfrak{m}^2 = \dim R,$$

wobei \mathfrak{m} das maximale Ideal in R sowie \mathbb{K} den zugehörigen Restklassenkörper bezeichne.

Beispiel 14.12 Betrachte $R = \mathbb{Z}_{\langle p \rangle}$ für eine Primzahl $p \in \mathbb{P}$. Dann ist $\mathfrak{m} = p\mathbb{Z}_{\langle p \rangle}$ sowie $\mathbb{K} = \mathbb{Z}_{\langle p \rangle} / p\mathbb{Z}_{\langle p \rangle} \cong \mathbb{F}_p$. Weiter ist

$$\dim \mathbb{Z}_{\langle p \rangle} = 1 = \dim_{\mathbb{F}_p} \mathbb{F}_p = \dim_{\mathbb{F}_p} p \mathbb{Z}_{\langle p \rangle} \left/ p^2 \mathbb{Z}_{\langle p \rangle} = \dim_{\mathbb{F}_p} \mathfrak{m} \left/ \mathfrak{m}^2 \right.,$$

folglich ist $\mathbb{Z}_{\langle p \rangle}$ regulär.

Lemma 14.13 (Nakayama-Lemma) Sei R lokaler Ring mit maximalem Ideal \mathfrak{m} und M endlich erzeugter R-Modul, $N \subseteq M$ Untermodul. Dann gilt

$$M = N + \mathfrak{m}M \implies M = N.$$

Beweis. Ohne Einschränkung gelte N=0, denn aus $M=\mathfrak{m}M+N$ folgt

$$M/N = (N + \mathfrak{m}M)/N \cong \mathfrak{m}M/N \cap \mathfrak{m}M \cong \mathfrak{m}M/N$$

Sei nun also $M = \mathfrak{m}M$ und nehme an, es gelte $M \neq 0$. Dann sei $x_1, \dots x_n$ ein minimales Erzeugendensystem von M. Dann gilt

$$x_1 = \sum_{i=1}^n a_i x_i$$
 für geeignete $a_i \in \mathfrak{m}$,

also wegen $R^{\times} = R \backslash \mathfrak{m}$

$$x_1(\underbrace{1-a_1}_{\notin \mathfrak{m}}) = \sum_{i=2}^n a_i x_i \in \langle x_2, \dots x_n \rangle,$$

ein Widerspruch zur Minimalität.

Lemma 14.14 Sei (R, \mathfrak{m}) noetehrscher lokaler Ring. Dann bilden $x_1, \ldots, x_n \in \mathfrak{m}$ ein minimales Erzeugendensystem von \mathfrak{m} genau dann, wenn die Restklassen $\overline{x}_1, \ldots, \overline{x}_n \in \mathfrak{m}/\mathfrak{m}^2$ eine \mathbb{K} -Vektorraumbasis von $\mathfrak{m}/\mathfrak{m}^2$ bilden.

Beweis. " \Rightarrow " Sei also $x_1, \ldots x_n$ ein minimales Erzeugendensystem von \mathfrak{m} . Sicherlich bildet $S := \{\overline{x}_1, \ldots, \overline{x}_n\}$ ein Erzeugendensystem für $\mathfrak{m}/\mathfrak{m}^2$. Angenommen, S ist linear abhängig, d.h. ohne Einschränkung finden wir eine Darstellung

$$\overline{x}_1 = \sum_{i=2}^n \lambda_i \overline{x}_i, \qquad \lambda_i \in \mathbb{K}.$$

Für $\tilde{\lambda}_i \in R$ mit $\overline{\tilde{\lambda}}_i = \lambda_i$ gilt dann

$$x_1 - \sum_{i=2}^n \tilde{\lambda}_i x_i \in \mathfrak{m}^2.$$

Andererseits wird \mathfrak{m}^2 erzeugt von den $x_i x_j$. Schreibe also

$$x_1 - \sum_{i=2}^n \tilde{\lambda}_i x_i = \sum_{j=1}^n \mu_{1j} x_1 x_j + \underbrace{\sum_{i,j=2}^n \mu_{ij} x_i x_j}_{=:y} = y + x_1 \sum_{j=1}^n \mu_{1j} x_j,$$

wobei $\mu_i \in R$ geeignete Konstanten sind. Dann folgt

$$x_1 \left(\underbrace{1 - \sum_{i=1}^{n} \mu_i x_i}_{\notin \mathfrak{m}}\right) \in \langle x_2, \dots, x_n \rangle,$$

also ein Widerspruch zur Minimalität von S.

"

"

Sei nun umgekehrt $\overline{x}_1, \ldots, \overline{x}_n$ eine K-Basis von $\mathfrak{m}/\mathfrak{m}^2$. Zeige nun, dass x_1, \ldots, x_n \mathfrak{m} erzeugen. Die Minimalität ist klar. Sei dazu $N := \langle x_1, \ldots x_n \rangle \subseteq \mathfrak{m}$. Dann gilt

$$m = N + m^2$$

und mit Lemma 14.11 folgt $N = \mathfrak{m}$.

Proposition 14.15 Ein noetherscher lokaler Ring (R, \mathfrak{m}) ist genau dann regulär, wenn \mathfrak{m} von dim $R = ht(\mathfrak{m})$ Elementen erzeugt werden kann.

Beweis. " \Rightarrow " Sei R regulär. Dann gilt $\dim R = \dim \mathfrak{m}/\mathfrak{m}^2 =: n$. Dan kann \mathfrak{m} also von n Elementen erzeugt werden.

"

"
Kann nun umgekehrt \mathfrak{m} von $n:=\dim R$ Elementen erzeugt werden, so auch $\mathfrak{m}/\mathfrak{m}^2$, das heißt, mit Lemma 14.14 gilt bereits $\dim \mathfrak{m}/\mathfrak{m}^2 \leqslant \dim R$. Krulls Hauptidealsatz (ohne Beweis) liefert die umgekehrte Ungleichung und damit $\dim R = \dim \mathfrak{m}/\mathfrak{m}^2$.

Folgerung 14.16 Sei $V \subseteq \mathbb{P}^n(\mathbb{K})$ quasiprojektive Varietät, $x \in V$. Dann gilt

$$x$$
 ist singulär \iff $\dim \mathfrak{m}_x / \mathfrak{m}_x^2 > \dim_x V$

Proposition 14.17 Jede irreduzible d-dimensionale Varietät ist birational äquivalent zu einer Hyper-fläche in $\mathbb{A}^{d+1}(\mathbb{K})$.

Beweis. Zuz zeigen: $\mathbb{K}(V)$ ist isomorph zum Funktionenkörper einer Hyperfläche, also

$$\mathbb{K}(V) \cong \operatorname{Quot}\left(\mathbb{K}[X_1,\ldots,X_n]/\langle f\rangle\right)$$

für ein geeignetes $f \in \mathbb{K}[X_1, \dots, X_n]$. Sei hierfür $\mathbb{K}[V]/\mathbb{K}[X_1, \dots, X_d]$ eine durch Noethernormalisierung erhaltene, ganze Ringerweiterung. Dann ist $\mathbb{K}(V)/\mathbb{K}(X_1, \dots, X_d)$ eine endliche Körperweite-

rung. Ohne Einschränkung sei diese separabel. Dann liefert der Satz vom primitiven Element ein $y \in \mathbb{K}(X_1, \dots, X_d)$, sodass gilt

$$\mathbb{K}(V) = \mathbb{K}(X_1, \dots, X_d)[y].$$

Sei $h \in \mathbb{K}(X_1, \dots, X_d)[Y]$ das Minimalpolynom von y und g der Hauptnenner von h. Dann ist

$$f = g \cdot h \in \mathbb{K}[X_1, \dots, X_d, Y] \cong \mathbb{K}[X_1, \dots, X_{d+1}]$$

und

Quot
$$(\mathbb{K}[X_1,\ldots,X_d,Y]/\langle f\rangle) = \mathbb{K}(V),$$

was die Behauptung liefert.

Satz 14.18 Sei \mathbb{K} algebraisch abgeschlossen, $V \subseteq \mathbb{P}^n(\mathbb{K})$ nichtleere, quasiprojektive Varietät. Dann ist

$$Sing(V) := \{ x \in V \mid x \text{ ist singulär } \}$$

eine echte abgeschlossene Teilmenge.

Beweis. Zeige zunächst, dass Sing(V) abgeschlossen ist. Ohne Einschränkung sei hierfür V irreduzibel. Denn sind V_1, \ldots, V_r die irreduziblen Komponenten von V, so gilt

$$\operatorname{Sing}(V) = \bigcup_{i=1}^r \operatorname{Sing}(V_i) \cup \bigcup_{i \neq j}^r V_i \cap V_j.$$

Weiter sei V ohne Einschränkung affin, denn Abgeschlossenheit ist eine lokale Eigenschaft. Wähle nun Erzeuger f_1, \ldots, f_r von $I(V) \leq \mathbb{K}[X_1, \ldots, X_n]$ und betrachte die Jacobimatrix $\mathcal{J} := \left(\frac{\partial f_i}{\partial X_j}\right)_{i,j}$. Dann gilt

$$\begin{aligned} \operatorname{Sing}(V) &= & \{x \in V \mid \operatorname{Rang}(\mathcal{J}(x)) < n - \dim V =: s\} \\ &= & \{x \in V \mid \det M(x) = 0 \text{ für alle } s \times s \text{ Untermatrizen } M \text{ von } \mathcal{J}\} \end{aligned}$$

Da die Determinante ein Polynom in n Variablen ist, ist $\operatorname{Sing}(V) = V(\det)$ und $\operatorname{Sing}(V)$ als affine Varietät abgeschlossen. Zeige nun, dass $\operatorname{Sing}(V)$ eine echte Teilmenge von V ist. Ohne Einschränkung sei hierfür V irreduzibel, denn: Sei Z eine irreduzible Komponente von V mit $\operatorname{Sing}(Z) \neq Z$, so ist $Z\backslash\operatorname{Sing}(Z)$ offen, nichtleer, also dicht in Z. Damit enthält $Z\backslash\operatorname{Sing}(Z)$ einen Punkt z, die auf keiner anderen irreduziblen Komponente liegt. Wegen $\mathcal{O}_{Z,z} = \mathcal{O}_{V,z}$ folgt $z \in V\backslash\operatorname{Sing}(V)$, also $\operatorname{Sing}(V) \neq V$. Wegen Proposition 14.17 genügt es, denn Spezialfall $V = V(f) \subseteq \mathbb{A}^n(\mathbb{K})$ zu betrachten, wobei $f \in \mathbb{K}[X_1,\ldots,X_n]$ ein irreduzibles Polynom von Grad $\deg f > 0$ ist. Es ist

$$\operatorname{Sing}(V) = \left\{ x \in V \mid \frac{\partial f}{\partial X_1}(x), \dots, \frac{\partial f}{\partial X_n}(x) = 0 \right\}.$$

Angenommen es gelte $\operatorname{Sing}(V) = V$. Dann wäre $\frac{\partial f}{\partial X_i} \in I(V) = \langle f \rangle$ für alle $i \in \{1, \dots, n\}$. Ist $\operatorname{char}(\mathbb{K}) = 0$, so folgt daraus, dass f konstant ist, ist $\operatorname{char}(\mathbb{K}) = p > 0$, so gilt $f \in \mathbb{K}[X_1^p, \dots, X_n^p]$, also $f = g^p$ für ein $g \in \mathbb{K}[X_1, \dots, X_n]$. In beide Fällen erhalten wir einen Widerspruch zur Wahl von f, es folgt die Behauptung.

Kapitel IV

Nichtsinguläre Kurven

§ 15 Diskrete Bewertungsringe

Definition 15.1 Eine zusammenhängende, quasiprojektive Varietät C mit dim C=1 über einem algebraisch abgeschlossenen Körper \mathbb{K} heißt Kurve.

Lemma 15.2 Sei (R, \mathfrak{m}) lokaler, noetherscher, nullteilerfreier Ring und es gelte dim R = 1. Falls \mathfrak{m} ein Hauptideal ist, so ist bereits R ein Hauptidealring.

Beweis. Es sei $I \leq R$ ein Ideal sowie $t \in \mathfrak{m}$ ein Erzeuger von \mathfrak{m} . Ohne Einschränkung gelte $0 \neq I \neq R$, das heißt, es gilt $I \subseteq \mathfrak{m}$. Wähle n maximal, sodass $I \subseteq \mathfrak{m}^n$. Sei $x \in I \cap (\mathfrak{m}^n \backslash \mathfrak{m}^{n+1})$. Wegen $\mathfrak{m}^n \supseteq \langle t^n \rangle$ können wir x schreiben als

$$x = u \cdot t^n, \quad u \in R.$$

Wäre $u \notin R^{\times}$, so wäre $u \in \mathfrak{m}$ und damit $x = u \cdot t^n \in \mathfrak{m}^{n+1}$, Widerspruch zur Annahme. Damit ist $t^n = u^{-1}x \in \langle x \rangle \subseteq I \cap (\mathfrak{m}^n \backslash \mathfrak{m}^{n+1})$. Dies ergibt $\langle t^n \rangle \subseteq \mathfrak{m}^n$, also $\langle t^n \rangle = \mathfrak{m}^n$ und

$$\langle t^n \rangle = \mathfrak{m}^n \subseteq I,$$

also insgesamt $\mathfrak{m}^n = I$, also ist I Hauptideal. Es bleibt zu zeigen, dass man ein solches n wählen kann. Angenommen, es gäbe keines. Dann gilt

$$I \subseteq \bigcap_{n=1}^{\infty} \mathfrak{m}^n =: N.$$

N ist lokal in (einem noetherschen Ring) R, also endlich erzeugt. Damit ist

$$\mathfrak{m} \cdot N = \bigcap_{n=1}^{\infty} \mathfrak{m}^{n+1} = N$$

und das Nakayama-Lemma liefert N=0 - also I=0, ein Widerspruch zur Annahme.

Proposition 15.3 Es sei C eine Kurve, $x \in C$. Dann gilt

 $x \text{ ist nichtsingul\"{a}r} \iff \mathcal{O}_{C,x} \text{ ist diskreter Bewertungsring.}$

Beweis. Da $\mathcal{O}_{C,x}$ noetherscher lokaler Ring von Dimension 1 ist, genügt die Eigenschaft Hauptidealring, um die Behauptung zu zeigen. Nach Lemma 15.2 genügt es hierfür wiederum zu zeigen, dass \mathfrak{m} ein Hauptideal ist. Nach Folgerung 14.10 gilt

$$x$$
 ist regulär \iff $\dim \mathfrak{m}_x / \mathfrak{m}_x^2 = \dim \mathcal{O}_{C,x} = 1,$

nach Krulls Hauptidealsatz kann \mathfrak{m}_x also von einem Element erzeugt werden, ist also ein Hauptideal. Damit folgt die Behauptung.

Bemerkung + **Definition 15.4** Sei C eine Kurve, C irreduzibel, $x \in C$ regulär, $t \in \mathcal{O}_{C,x}$ ein Erzeuger von \mathfrak{m}_x . Dann lässt sich $f \in \mathbb{K}(C)^{\times} = \operatorname{Quot}(\mathcal{O}_{C,x})^{\times}$ schreiben als

$$f = u \cdot t^n, \qquad n \in \mathbb{Z}, u \in \mathcal{O}_{C,x}^{\times}$$

Dann heißt $n := \operatorname{ord}_x f$ die Ordnung von f in x. Weiter ist die Zuordnung $f \mapsto \operatorname{ord}_x f$ eine diskrete Bewertung.

Beispiel 15.5 Sei $C = V(Y^2 - X^3 + X)$, P = (0,0) sowie $x, y \in \mathbb{K}(C)$. Es gilt $Y^2 = X(X^2 - 1)$ auf C. Wegen

$$X = \underbrace{\frac{1}{X^2 - 1}}_{\in \mathcal{O}_{C,P}^{\times}} \cdot Y^2 \in \mathcal{O}_{C,P} \qquad (*)$$

erhalten wir

$$\operatorname{ord}_P(x) = 2\operatorname{ord}_P(y).$$

Weiter wird \mathfrak{m}_P erzeugt von $(\overline{X}-0,\overline{Y}-0)$, mit (*) gilt also

$$\operatorname{ord}_P(y) = 1, \qquad \operatorname{ord}_P(x) = 2$$

Proposition 15.6 Sei C nichtsinguläre irreduzible Kurve, $f \in \mathbb{K}(C)^{\times}$. Dann gibt es nur endlich viele Punkte $x \in C$ mit $ord_x f \neq 0$.

Beweis. Es gilt

$$\operatorname{ord}_x f > 0 \iff f \in \mathfrak{m}_x \iff f(x) = 0$$

sowie

$$\operatorname{ord}_x f < 0 \iff \operatorname{ord}_x \frac{1}{f} > 0 \iff \frac{1}{f} \in \mathfrak{m}_x \iff \frac{1}{f}(x) = 0$$

damit ist

$${x \in C \mid \operatorname{ord}_x f \neq 0} = V(f) \cup V\left(\frac{1}{f}\right).$$

Da $f \neq 0 \neq \pm \frac{1}{f}$, sind $V(f), V\left(\frac{1}{f}\right)$ abgeschlossene, echte Teilmengen von C. Da dim C=1 und C irrreduzibel ist, haben V(f) und $V\left(\frac{1}{f}\right)$ Dimension 0, das heißt, die irreduziblen Komponenten der beiden Verschwindungsmengen sind Punkte. Da beide aus endlich vielen irreduziblen Komponenten bestehen, ist auch die Vereinigung endlich und somit folgt die Behauptung.

Proposition 15.7 Sei C nichtsinguläre, irreduzible Kurve, $U \subseteq C$ offen und nichtleer, V projektive Varietät sowie $f: U \longrightarrow V$ ein Morphismus. Dann gibt es genau einen Morphismus $\overline{f}: C \longrightarrow V$ mit $\overline{f}|_{U} = f$, das heißt, f lässt sich in regulären Punkten fortsetzen.

Beweis. Eindeutigkeit. Seien $g, h: C \longrightarrow V, g|_{U} = f = h|_{U}$. Dann ist

$$U = \{x \in C \mid g(x) = h(x)\}\$$

abgeschlossen und wegen $\overline{U} = C$ folgt g = h.

Existenz. Ohne Einschränkung sei $C \setminus U = \{p\}$ sowie $V = \mathbb{P}^n(\mathbb{K})$. Außerdem gelte $f(U) \subseteq V(X_i)$ (denn sonst wäre $f(U) \subseteq \mathbb{P}^{n-1}(\mathbb{K})$). Sei weiter

$$W := f^{-1} \left(\bigcap_{i=0}^{n} U_i \right).$$

 W_i ist nichtleer, offen und damit dichte Teilmenge. Definiere

$$h_{ij} = \left(\frac{X_i}{X_j} \circ f\right) = "\frac{f_i}{f_j}".$$

 h_{ij} ist eine wohldefinierte, reguläre Funktion auf W für alle $i, j \in \{0, ..., n\}$, also $h_{ij} \in \mathbb{K}(C)^{\times}$. Sei

$$r_i := \operatorname{ord}_p h_{i0}, \quad i \in \{0, \dots, n\}$$

und wähle k, sodass

$$r_k = \min\{r_i \mid i \in \{0, \dots, n\}\}.$$

Es gilt

$$\operatorname{ord}_{p} h_{ik} = \operatorname{ord}_{p} \frac{h_{i0}}{h_{k0}} = \operatorname{ord}_{p} h_{i0} - \operatorname{ord}_{p} h_{k0} = r_{i} - r_{k} \geqslant 0,$$

also $h_{ik} \in \mathcal{O}_{C,p}$. Damit existiert eine Umgebung \tilde{U} von p mit $h_{ik} \in \mathcal{O}(\tilde{U})$. Setze

$$\overline{f}(x) := \begin{cases} f(x), & x \neq p \\ (h_{0k}(x) : \dots : h_{nk}(x)), & x = p \end{cases}$$

Beachte: \overline{f} ist wohldefiniert, da $h_{kk}=1.$ In einer Umgebung \tilde{U} von p gilt $x\in \tilde{U}\backslash\{p\}$, also

$$\overline{f}(x) = f(x) = ((X_0 \circ f)(x) : \dots : (X_n \circ f)(x))$$

$$= \left(\left(\frac{X_0}{X_k} \circ f\right)(x) : \dots : \left(\frac{X_n}{X_k} \circ f\right)(x)\right)$$

$$= (h_{0k}(x) : \dots : h_{nk}(x)),$$

also ist \overline{f} Morphismus.

Folgerung 15.8 (i) Eine Funktion $f \in \mathbb{K}(C)$ induziert einen Morphismus $f: C \longrightarrow \mathbb{P}^1(\mathbb{K})$.

(ii) Ist C nichtsinguläre, zusammenhängende Kurve, so ist C bereits irreduzibel, denn gäbe es zwei irreduzible Komponenten mit nichtleerem Schnitt, so wäre $x \in Z_1 \cap Z_2$ singulär (Übung 12.2).

§ 16 Divisoren

In diesem Abschnitt sei C nichtsinguläre Kurve über einem algebraisch abgeschlossenen Körper \mathbb{K} .

Definition 16.1 (i) Ein(Weil-) Divisor D auf C ist eine formale Summe

$$D = \sum_{i=1}^{n} n_i P_i, \qquad n_i \in \mathbb{Z}, n \in \mathbb{N}, P_i \in C$$

Schreibweise: (P) für $1 \cdot P$.

(ii) Die Divisorengruppe auf C ist

$$Div(C) := \{D \mid D \text{ ist Divisor auf } C\}$$

- (iii) Div(C) ist freie abelsche Gruppe über der Menge C.
- (iv) Für eine Divisor D wie in (i) heißt

$$\deg(D) := \sum_{i=1}^{n} n_i$$

der Grad von D.

(v) Wir haben einen surjektiven Gruppenhomomorphismus

$$deg : Div(C) \longrightarrow \mathbb{Z}, \quad D \mapsto deg(D)$$

(vi) Ein Divisor $D = \sum_{i=1}^{n} n_i P_i \in \text{Div}(C)$ heißt effektiv, falls $n_i \ge 0$ für alle $i \in \{1, ..., n\}$. Schreibweise: $D \ge 0$.

Definition + **Bemerkung 16.2** (i) Für $f \in \mathbb{K}(C)^{\times}$ heißt

$$\operatorname{div}(f) := \sum_{p \in C} \operatorname{ord}_p(f) \cdot P$$

 $\det Divisor von f.$

- (ii) $\operatorname{div}(f)$ ist Divisor.
- (iii) Ein Divisor $D \in \text{Div}(C)$ heißt Haupt divisor, falls es $f \in \mathbb{K}(C)^{\times}$ gibt mit D = div(f).
- (iv) Haben einen Gruppenhomomorphismus

$$\operatorname{div}: \mathbb{K}(C)^{\times} \longrightarrow \operatorname{Div}(C), f \mapsto \operatorname{div}(f),$$

d.h. es gilt für alle $f, g \in Div(C)$:

$$\operatorname{div}(f \cdot g) = \operatorname{div}(f) + \operatorname{div}(g)$$

(v) Die Hauptdivisoren bilden eine Untergruppe

$$Div_H(C) := Im div$$

(vi) D, D' heißen linear äquivalent, wenn ihre Differenz D - D' ein Hauptdivisor ist, schreibe $D \equiv D'$.

§ 16 DIVISOREN 67

(vii) Der Quotient

$$Cl(C) := Div(C)/Div_H(C)$$

heißt Divisorenklassengruppe von C.

Beispiel 16.3 Sei $C := \mathbb{P}^1(\mathbb{K})$. Da \mathbb{K} algebraisch abgeschlossen ist, lässt sich jedes $f \in \mathbb{K}(C)^{\times} = \mathbb{K}(X)^{\times}$ eindeutig schreiben als

$$f = \frac{\prod_{i=1}^{n} (X - a_i)}{\prod_{i=1}^{m} X - b_i}, \qquad a_i \neq b_j \in \mathbb{K} \text{ für alle } i, j.$$

Schreibe $\mathbb{P}^1(\mathbb{K}) = \mathbb{A}^1(\mathbb{K}) \cup \{\infty\}$. Für $P \in \mathbb{A}^1(\mathbb{K})$ ist

$$\operatorname{ord}_P f = |\{i \in \{1, \dots, n\} \mid a_i = P\}| - |\{j \in \{1, \dots, m\} \mid b_j = P\}|,$$

denn

$$\mathcal{O}_{\mathbb{P}^1(\mathbb{K}),P} = \mathcal{O}_{\mathbb{A}^1(\mathbb{K}),P} = \mathbb{K}[X]_{\langle X-p \rangle}$$

wird von X - p erzeugt. Für $P = \infty$ ist

$$\mathcal{O}_{\mathbb{P}^1(\mathbb{K}),\infty} = \mathbb{K}\left[\frac{1}{X}\right]_{\langle \frac{1}{X}\rangle}$$

Schreibe

$$f = \frac{X^n}{X^m} \cdot \frac{\prod_{i=1}^n 1 - \frac{a_i}{X}}{\prod_{j=1}^m 1 - \frac{b_j}{X}} = \left(\frac{1}{X}\right)^{m-n} \cdot \frac{\prod_{i=1}^n 1 - \frac{a_i}{X}}{\prod_{j=1}^m 1 - \frac{b_j}{X}}.$$

Dann folgt $\operatorname{ord}_{\infty} f = m - n$. Damit ist

$$\operatorname{div}(f) = \sum_{i=1}^{n} 1 \cdot a_i - \sum_{j=1}^{m} 1 \cdot b_j + (m-n) \cdot \infty,$$

also $\deg \operatorname{div}(f) = 0$.

Sei umgekehrt $D \in \text{Div}(C)$ mit deg D = 0. Schreibe

$$D = \sum_{i=1}^{m} 1 \cdot a_i - \sum_{j=1}^{m} 1 \cdot b_j, \qquad a_i \neq b_j \text{ für alle } i, j.$$

Setze

$$f := \frac{\prod_{a_i \neq \infty} X - a_i}{\prod_{b_i \neq \infty} X - b_j} \in \mathbb{K}(C)^{\times}.$$

Dann gilt $\operatorname{div}(f) = D$ und damit

$$\operatorname{Div}_{H}(\mathbb{P}^{1}(\mathbb{K})) = \{ D \in \operatorname{Div}(\mathbb{P}^{1}(\mathbb{K})) \mid \deg D = 0 \} = \ker \deg$$

und mit dem Homomorphiesatz

$$\operatorname{Cl}(\mathbb{P}^1(\mathbb{K})) = \operatorname{Div}(\mathbb{P}^1(\mathbb{K})) / \operatorname{Div}_H(\mathbb{P}^1(\mathbb{K})) \cong \mathbb{Z}.$$

Weiters Vorgehen: Zeige deg div(f) = 0 für alle Kurven C und $f \in \mathbb{K}(C)^{\times}$. Fasse hierfür f als Morphismus $f: C \longrightarrow \mathbb{P}^1(\mathbb{K})$ auf. Wollen haben:

- (i) $\operatorname{div}(f) = f^*((0) (\infty)) = \text{"Nulstellen minus Polstellen"}.$
- (ii) $\deg f^*(D) = \deg f \deg D$.

Bemerkung + Definition 16.4 Sei $f: C_1 \longrightarrow C_2$ surjektiver, nichtkonstanter Morphismus zwischen zwei nichtsingulären Kurven.

(i) Sei $Q \in C_2$, $P \in f^{-1}(Q) \subseteq C_1$ sowie $t \in \mathfrak{m}_Q$ eine Uniformisierende, d.h. es gilt $\langle t \rangle = \mathfrak{m}_Q$. Dann heißt

$$e_P := e_P(f) = \operatorname{ord}_P(t \circ f)$$

der Verzweigungsindex von f in P.

(ii) Definiere den Gruppenhomomorphismus

$$f^* : \operatorname{Div}(C_2) \longrightarrow \operatorname{Div}(C_1), \quad Q \mapsto \sum_{P \in f^{-1}(Q)} e_P(f) \cdot P$$

(iii) Für $g \in \mathbb{K}(C_2)^{\times}$ gilt:

$$f^*(\operatorname{div}(g)) = \operatorname{div}(g \circ f).$$

Insbesondere ist $f^*(\operatorname{Div}_H(C_2)) \subseteq \operatorname{Div}_H(C_1)$.

(iv) f induziert einen Homomorphismus

$$f^*: \operatorname{Cl}(C_2) \longrightarrow \operatorname{Cl}(C_1), \quad [D] \mapsto [f^*(D)]$$

Beweis. (i) Zu zeigen: $e_P(f)$ ist unabhängig von der Wahl von t. Sei $t' \in \mathfrak{m}_Q$ eine weitere Uniformisierende. Dann gibt es $u \in \mathcal{O}_{C_2,x}^{\times}$ mit t' = ut. Damit ist

$$\operatorname{ord}_{P}(t'\circ f)=\operatorname{ord}_{P}(ut\circ f)=\operatorname{ord}_{P}((u\circ f)\cdot (t\circ f))=\underbrace{\operatorname{ord}_{P}(u\circ f)}_{=0}+\operatorname{ord}_{P}(t\circ f)=\operatorname{ord}_{P}(t\circ f),$$

wobei letzte Gleichung gilt, da $u \circ f$ Einheit in $\mathcal{O}_{C_1,P}$ mit Inverser $\frac{1}{u} \circ f$ ist.

- (ii) Zu zeigen: $f^{-1}(Q)$ ist endlich, denn dann ist $f^*(Q)$ Divisor. Da f stetig ist, ist $f^{-1}(Q)$ abgeschlossen und echte Teilmenge von C_1 , denn $f^{-1}(Q) \neq C_1$ (da sonst f konstant wäre). Da dim $C_1 = 1$, folgt damit dim $f^{-1}(Q) = 0$, also ist $f^{-1}(Q)$ nach 2.2 endlich.
- (iii) Es gilt

$$f^*\left(\operatorname{div}(g)\right) = f^*\left(\sum_{Q \in C_2} \operatorname{ord}_Q(g) \cdot Q\right) = \sum_{Q \in C_2} \operatorname{ord}_Q(g) \cdot f^*(Q) = \sum_{Q \in C_2} \sum_{P \in f^{-1}(Q)} \operatorname{ord}_Q(g) e_P(f) \cdot P$$

sowie

$$\operatorname{div}(g \circ f) = \sum_{P \in C_1} \operatorname{ord}_P(g \circ f) \cdot P = \sum_{Q \in C_2} \sum_{P \in f^{-1}(Q)} \operatorname{ord}_P(g \circ f) \cdot P$$

das heißt, es ist zu zeigen:

$$s := \operatorname{ord}_P(g \circ f) = \operatorname{ord}_Q(g)e_P(f) =: r \cdot e_P(f)$$

§ 16 DIVISOREN 69

für alle Q = f(P).

Seien dazu t_Q, t_P Uniformisierende von \mathfrak{m}_Q bzw. \mathfrak{m}_P , d.h. es gilt $\langle t_Q \rangle = \mathfrak{m}_Q, \langle t_P \rangle = \mathfrak{m}_P$. Dann gibt es $u.u' \in \mathcal{O}_{C_1,P}^{\times}$ sowie $v \in \mathcal{O}_{C_2,Q}^{\times}$ sodass gilt:

$$g \circ f = u \cdot t_P^s$$
, $g = v \cdot t_Q^r$, $t_Q \circ f = u' \cdot t_P^{r \cdot e_P(f)}$.

Wir rechnen

$$ut_{P}^{s} = g \circ f = (v \cdot t_{Q}^{r}) \circ f = (v \circ f) \cdot (t_{Q} \circ f)^{r} = (v \circ f) \left(u't_{P}^{e_{P}(f)}\right)^{r} = (v \circ f) \cdot u'^{r} \cdot t_{P}^{e_{P}(f) \cdot r}$$

und wegen der Eindeutigkeit der Darstellungen links und rechts folgt

$$s = e_P(f) \cdot r$$
,

also die Behauptung.

Folgerung 16.5 Sei C nichtsingulär, $f \in \mathbb{K}(C)^{\times}$. Dann definiert f einen Morphismus $f: C \longrightarrow \mathbb{P}^1(\mathbb{K})$ und es gilt

$$\operatorname{div}(f) = f^*((0) - (\infty)).$$

Beweis. Die erste Aussage folgt aus Proposition 15.7.

Sei $P \in C$ mit f(P) = 0. Dann ist X eine Uniformisierende von \mathfrak{m}_P und wir erhalten

$$e_P(f) = \operatorname{ord}_P(X \circ f) = \operatorname{ord}_P(f)$$

Ist $P = \infty$, so ist $\frac{1}{X}$ Uniformisierende von \mathfrak{m}_P und wir erhalten

$$e_P(f) = \operatorname{ord}_P\left(\frac{1}{X} \circ f\right) = \operatorname{ord}_P\left(\frac{1}{f}\right) = -\operatorname{ord}_P(f).$$

Damit gilt

$$f^*((0) - (\infty)) = \sum_{P \in f^{1-}(0)} e_P(f) \cdot P - \sum_{P \in f^{-1}(\infty)} e_P(f) \cdot P = \sum_{P \in C} \operatorname{ord}_P(f) \cdot P = \operatorname{div}(f),$$

was zu zeigen war.

Bemerkung + **Definition 16.6** Sei $f: C_1 \longrightarrow C_2$ surjektiver Morphismus nichtsingulärer, projektiver Kurven. Dann induziert f einen Körperhomomorphismus

$$f^{\#}: \mathbb{K}(C_2) \longrightarrow \mathbb{K}(C_1)$$

 $\mathbb{K}(C_2)$ kann damit via $f^{\#}$ als Teilkörper von $\mathbb{K}(C_1)$ aufgefasst werden. Die Erweiterung $\mathbb{K}(C_1)/\mathbb{K}(C_2)$ ist endlich. deg $f := [\mathbb{K}(C_1) : \mathbb{K}(C_2)]$ heißt Grad von f.

Beweis. Sicherlich sind $\mathbb{K}(C_1)$, $\mathbb{K}(C_2)$ endlich erzeugt über \mathbb{K} . Weiter gilt $\operatorname{trdeg}_{\mathbb{K}}\mathbb{K}(C_1) = 1 = \operatorname{trdeg}_{\mathbb{K}}\mathbb{K}(C_2)$, d.h. die Erweiterung ist algebraisch. Insgesamt folgt also $[\mathbb{K}(C_1) : \mathbb{K}(C_2)] < \infty$.

Satz 16.7 (i) Jeder Hauptdivisor auf einer nichtsingulären, projektiven Kurve hat Grad 0.

(ii) Sei $f: C_1 \longrightarrow C_2$ surjektiver Morphismus nichtsingulärer, projektiver Kurven. Dann gilt für jeden Punkt $Q \in C_2$

$$\deg f^*(Q) = \sum_{P \in f^{-1}(Q)} e_P(f) = \deg f.$$

Weiter gilt damit für jeden Divisor $D \in Div(C_2)$

$$\deg f^*(D) = \deg f \cdot \deg D.$$

Beweis. (i) Es sei $f \in \mathbb{K}(C)^{\times}$. Dann lässt sich f fortsetzen zu $f: C \longrightarrow \mathbb{P}^{1}(\mathbb{K})$. Damit ist

$$\deg(\operatorname{div} f) = \sum_{P \in f^{-1}(0)} e_P(f) - \sum_{P \in f^{-1}(\infty)} e_P(f) = \deg f^*((0) - (\infty)) = \deg f \cdot \deg((0) - (\infty)) = 0.$$

(ii) Wird noch hinzugefügt.

§ 17 Der Satz von Riemann-Roch

In diesem Paragraphen sei C stets nichtsinguläre, projektive Kurve über einem algebraisch abgeschlossenen Körper \mathbb{K} .

Definition + **Bemerkung 17.1** Es sei $D = \sum_{P \in C} n_P \cdot P$ ein Divisor auf C.

(i) Der Riemann-Roch-Raum zu D

$$\mathcal{L}(D) := \{ f \in \mathbb{K}(C)^{\times} \mid \operatorname{div}(f) + D \geqslant 0 \} \cup \{ 0 \}$$

ist ein \mathbb{K} -Vektorraum.

- (ii) $l(D) := \dim_{\mathbb{K}} \mathcal{L}(D)$.
- (iii) Es gilt $\mathcal{L}(0) = \mathbb{K}$.
- (iv) Ist $\deg D < 0$, so ist $\mathcal{L}(D) = \{0\}$.
- (v) Für linear äquivalente Divisoren gilt $\mathcal{L}(D) \cong \mathcal{L}(D')$.
- (vi) Für $D' \ge D$ gilt $\mathcal{L}(D) \le \mathcal{L}(D')$.

Beweis. (i) Es gilt $f \in \mathcal{L}(D) \iff$ für jeden Punkt $P \in C$ ist $\operatorname{ord}_P(f) + n_P \geqslant 0$. Für $f, g \in \mathcal{L}(D)$ ist

$$\operatorname{ord}_P(f+g) \geqslant \min\{\operatorname{ord}_P(f), \operatorname{ord}_P(g)\} \geqslant -n_P$$

also $f + g \in \mathcal{L}(D)$.

- (iii) Es gilt $f \in \mathcal{L}(0)$ genau dann, wenn $\operatorname{ord}_P(f) \geq 0$ für alle $P \in C$. Damit gilt $f \in \mathcal{O}_C(C) = \mathbb{K}$.
- (iv) Es gilt $\deg(\operatorname{div} f) = 0$, also $\deg(\operatorname{div} f + D) = \deg D < 0$ für alle $f \in \mathbb{K}(C)^{\times}$.
- (v) Es sei $D' = D + \operatorname{div} f$ für ein $f \in \mathbb{K}(C)^{\times}$. Dann ist

$$\alpha: \mathcal{L}(D') \longrightarrow \mathcal{L}(D), \quad g \mapsto f \cdot g$$

ein K-Vektorraumisomorphismus, denn es gilt

$$g \in \mathcal{L}(D') \iff \operatorname{div} g + D' \geqslant 0 \iff \operatorname{div} g + \operatorname{div} f + D \geqslant 0 \iff \operatorname{div} f \cdot g + D \geqslant 0. \iff f \cdot g \in \mathcal{L}(D).$$

Damit folgt insgesamt die Behauptung.

Proposition 17.2 Für jeden Divisor $D \in Div(C)$ und jeden Punkt $P \in C$ qilt

- (i) $l(D+P) \le l(D) + 1$.
- (ii) $l(D) \leq \deg D + 1$, falls $\deg D \geq -1$.

Insbesondere ist $\mathcal{L}(D)$ endlichdimensional.

Beweis. (i) Es gilt $\mathcal{L}(D) \subseteq \mathcal{L}(D+P)$ nach 17.1. Für $f \in \mathcal{L}(D+P) \setminus \mathcal{L}(D)$ gilt $\operatorname{ord}_P(f) = -n_P - 1$. Für $f, g \in \mathcal{L}(D+P) \setminus \mathcal{L}(D)$ ist also

$$\operatorname{ord}_P(f) = \operatorname{ord}_P(g) = -n_P - 1.$$

Sei nun $t \in \mathfrak{m}_P$ Uniformisierende, d.h. es gilt $\langle t \rangle = \mathfrak{m}_P$. Schreibe

$$f = u \cdot t^{-n_P - 1}, \quad g = v \cdot t^{-n_P - 1}, \quad u, v \in \mathcal{O}_{CP}^{\times}.$$

Für

$$h = u(P)g - v(p)f \in \mathcal{L}(D+P)$$

gilt

$$\operatorname{ord}_{P}(h) = \operatorname{ord}_{P}\left((u(P)v - v(P)u)t^{-n_{P}-1}\right) \geqslant -n_{P},$$

also $h \in \mathcal{L}(D)$. Damit ist $g \in \mathcal{L}(D) + \langle f \rangle$, also

$$\dim \mathcal{L}(D+P) \leqslant \dim \mathcal{L}(D) + 1.$$

(ii) per Induktion über $d = \deg D$:

d=-1. Klar, denn es ist $\mathcal{L}(0)=0$.

 $d \ge 0$. Sei $P \in C$, D' = D - P. Mit der Induktionsvoraussetzung folgt $l(D') \le \deg D' + 1 = d$, also mit (i) $l(D) = l(D' + P) \le d + 1$.

Satz + Definition 17.3 (Satz von Riemann) Es gibt eine Konstante $\gamma \in \mathbb{N}_0$, sodass für jeden Divisor $D \in \text{Div}(C)$ gilt:

$$l(D) \geqslant \deg D + 1 - \gamma.$$

Das kleinste γ mit dieser Eigenschaft nennen wir das Geschlecht von C. Schreibe

$$g := g(C) = \min\{\gamma \in \mathbb{N}_0 \mid l(D) \leqslant \deg D + 1 - \gamma\}$$

Satz 17.4 (Satz von Riemann-Roch) Es gibt einen (bis auf lineare Äquivalenz eindeutigen) Divisor K auf C, der sogenannte kanonische Divisor, sodass für alle Divisoren $D \in \text{Div}(C)$ gilt:

$$l(D) - l(K - D) = \deg D + 1 - g(C).$$