

AD-A123 208

INTERNET PROTOCOL DARPA INTERNET PROGRAM PROTOCOL
SPECIFICATION(U) UNIVERSITY OF SOUTHERN CALIFORNIA
MARINA DEL REY INFORMATION SCIENCES INST SEP 81

1/1

UNCLASSIFIED

ISI/RFC-795

F/G 17/2

NL

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

September 1981

RFC: 795

2

INTERNET PROTOCOL

DARPA INTERNET PROGRAM
PROTOCOL SPECIFICATION

September 1981

ADA123208

APPROVED FOR PUBLIC RELEASE
DISTRIBUTION UNLIMITED

prepared for

Defense Advanced Research Projects Agency
Information Processing Techniques Office
1400 Wilson Boulevard
Arlington, Virginia 22209

by

Information Sciences Institute
University of Southern California
4676 Admiralty Way
Marina del Rey, California 90291

E

83 01 10 082

DTIC FILE COPY

SERVICE MAPPINGS

→ This memo describes the relationship between the Internet Protocol (IP) [1] Type of Service and the service parameters of specific networks; including AUTODIN II, ARPA-NET, PRNET and SATNET.

The IP Type of Service has the following fields:

Bits 0-2: Precedence.
Bit 3: 0 = Normal Delay, 1 = Low Delay.
Bits 4: 0 = Normal Throughput, 1 = High Throughput.
Bits 5: 0 = Normal Reliability, 1 = High Reliability.
Bit 6-7: Reserved for Future Use.

- 111 - Network Control
- 110 - Internetwork Control
- 101 - CRITIC/ECP
- 100 - Flash Override
- 011 - Flash
- 010 - Immediate
- 001 - Priority
- 000 - Routine

The individual networks listed here have very different and specific service choices.

APPROVED FOR PUBLIC RELEASE
DISTRIBUTION: U

AUTODIN II

The service choices are in two parts: Traffic Acceptance Categories, and Application Type. The Traffic Acceptance Categories can be mapped into and out of the IP TOS precedence reasonably directly. The Application types can be mapped into the remaining IP TOS fields as follows.

TA	DELAY	THROUGHPUT	RELIABILITY
---	---	---	---
I/A	1	0	0
Q/R	0	0	0
B1	0	1	0
B2	0	1	1

DTR	TA
---	---
000	Q/R
001	Q/R
010	B1
011	B2
100	I/A
101	I/A
110	I/A
111	error

Accession For	
NTIS GRA&I	<input checked="" type="checkbox"/>
DTIC TAB	<input type="checkbox"/>
Unannounced	<input type="checkbox"/>
Justification	
By _____	
Distribution/ _____	
Availability Codes	
Avail and/or	
Dist	Special
A	

ARPANET

The service choices are in quite limited. There is one priority bit that can be mapped to the high order bit of the IP TOS precedence. The other choices are to use the regular ("Type 0") messages vs. the uncontrolled ("Type 3") messages, or to use single packet vs. multipacket messages. The mapping of ARPANET parameters into IP TOS parameters can be as follows.

Type	Size	DELAY	THROUGHPUT	RELIABILITY
0	S	1	0	0
0	M	0	0	0
3	S	1	0	0
3	M	not allowed		

DTR	Type	Size
---	---	---
000	0	M
001	0	M
010	0	M
011	0	M
100	3	S
101	0	S
110	3	S
111		error

PRNET

There is no priority indication. The two choices are to use the station routing vs. point-to-point routing, or to require acknowledgments vs. having no acknowledgments. The mapping of PRNET parameters into IP TOS parameters can be as follows.

ROUTING	ACKS	DELAY	THROUGHPUT	RELIABILITY
ptp	no	1	0	0
ptp	yes	1	0	1
station	no	0	0	0
station	yes	0	0	1

DTR	ROUTING	ACKS
000	station	no
001	station	yes
010	station	no
011	station	yes
100	ptp	no
101	ptp	yes
110	ptp	no
111	ptp	yes

SATNET

There is no priority indication. The four choices are to use the block vs. stream type, to select one of four delay categories, to select one of two holding time strategies, or to request one of three reliability levels. The mapping of SATNET parameters into IP TOS parameters can thus quite complex there being $2*4*2*3=48$ distinct possibilities.

References

[1] Postel, J. (ed.), "Internet Protocol - DARPA Internet Program Protocol Specification," RFC 791, USC/Information Sciences Institute, September 1981.