Annex XLVII: Molecular beacon internal hybridization probes for specific detection of tuf sequences.

		·	Originating	DNA fragment
SEQ ID NO.	Nucleotide	sequencea	SEQ ID NO.	Nucleotide position
Bacteria	l species:	Chlamydia pneumoniae		
2091	5'- <u>CGC GAC</u> TTC TTG	TTG AGA TGG AAC TTA GTG AGC GTC GCG	20	157-183
2092	5'- <u>CGC GAC</u> TGC AG <u>G</u>	GAA AGA ACT TCC TGA AGG TCG TCC AG	20	491-516
<u>Bacteria</u>	l species:	Chlamydia trachomatis		
2213	5'- <u>CGT GCC</u> GAC GCT	ATT GAC ATG ATT TCC GAA GAA GAA <u>GGC ACG</u>	1739 ^b	412-441
Bacteria:	l species:	Enterococcus faecalis		
1236	5'-GCG AGC GGC TCG	CGT GGT GAA GTT CGC GTT GGT C	883	370-391
Bacteria:	l species:	Enterococcus faecium		
1235	5'- <u>GCG AGC</u> TGC TG <u>G</u>	CGA AGT TGA AGT TGT TGG TAT	64	412-437
<u>Bacterial</u>	<u>species</u> :	Legionella pneumophila	9	
2084 ^C	5'- <u>CAC GCG</u> TTT TG <u>C</u>	TCA ACA CCC GTA CAA GTC GTC GCG TG	112	461-486
Bacteria]	L species:	Mycoplasma pneumoniae		
2096 ^C	5'-CGC GAC TGT CGC	CGG TAC CAC GGC CAG TAA TCG G	2097 ^b	658-679
Bacterial	species:	Neisseria gonorrhoeae		
2177	O ATC GAA ACC	C AAA CCA TTC CTG CTG CCT G TGT TC <u>C CGT GCC</u>	126	323-357
2178	C ACG ACG ACG ACG TCG AAC GT	A AAC CAT TCC TGC TGC CTA G CC	126	323-348
2179 5	5'- <u>GGC AGC</u> TC TAA CCG <u>GC</u>	T ACT TCC GTA CCA CTG ACG T GCC	126	692-718

a Underlined nucleotides indicate the molecular beacon's stem.

b Sequence from databases.

C This sequence is from the complementary DNA strand of the sequence of the originating fragment given in the Sequence Listing.

Annex XLVII: Molecular beacon internal hybridization probes for specific detection of tuf sequenc s (continued).

		Ori	ginating D	NA fragment
SEQ ID NO. Nucleotide sequence ^a		S	EQ ID I	Nucleotide position
Bacterial species: Pseudon	monas ae:	ruginosa		
2122 5'- <u>CCG AGC</u> GAA TGT AGG AG CT <u>G</u> <u>CTC</u> <u>G</u> G	GT CCA GGG	TCT 153	,880,2138 ^b ,	c 280-302d
Bacterial species: Staphy	lococcus	aureus		
2186 5'- <u>ACG CGC</u> TCA AAG CAG AA TAT CAA AAG AC <u>G CGC G</u>	AG TAT ACG I	TAT	1728	615-646
Bacterial group: Staphy	lococcus	sp. other	than S.	aureus
1233 5'- <u>GCG AGC</u> GTT ACT GGT G CG <u>G</u> CTC <u>GC</u>				
Fungal species: Candida	a albicar	ns		
2073 5'- <u>CCG AGC</u> AAC ATG ATT GA AAC TG <u>G</u> CTC <u>G</u> G	AA CCA TCC	ACC	408	404-429
Fungal species: Candida	dublini	ensis		
2074 5'- <u>CCG AGC</u> AAC ATG ATT GA AAC TG <u>G</u> <u>CTC</u> <u>GG</u>	AA GCT TCC	ACC	414	416-441
Fungal species: Candida	glabrat	a		
2110 ^b 5'- <u>GCG GGC</u> CCT TAA CGA TT TGG ATT CA <u>G CCC GC</u>	TT CAG CGA	ATC	417	307-335
2111 5'-GCG GGC ATG TTG AAG CC CTT CCT GGC CCG C	CA CCA CCA	ACG	417	419-447
Fungal species: Candida	krusei			
2112 ^b 5'- <u>GCG GGC</u> TTG ATG AAG TTT TGA CAA TT <u>G CCC GC</u>	GGG TTT C	or ·	422	318-347
2113 5'- <u>GCG GGC</u> ACA AGG GTT GGA CCA AGG CA <u>G</u> CCC <u>GC</u>	CTA AGG A	AA.	422	419-447
2114 5'-GCG GGC ATC GAT GCT ATT GTC AGA CCG CCC GC	GAA CCA C	CT	422	505-533

a Underlined nucleotides indicate the molecular beacon's stem.

b Sequence from databases.

^C These sequences were aligned to derive the corresponding primer.

d The nucleotide positions refer to the P. aeruginosa tuf sequence fragment (SEQ ID NO. 153).

Annex XLVII: Molecular beacon internal hybridization probes for specific det ction of tuf sequences (continu d).

			Originating DNA fragment
SEQ ID NO.	Nucleotid	e sequence ^a	SEQ ID Nucleotide NO. position
Fungal sp	pecies:	Candida lusitania	e
2115 ^b	5'- <u>GCG</u> <u>GGG</u> TTG TTG	GGT AAG TCC ACC GGT AAG ACC	2 424 304-330
2116	5'- <u>GCG GGG</u> GTT G <u>G</u> G	GTA AGT CAC CGG TAA GAC CT:	r 424 476-502
2117	5'- <u>GCG GGC</u> AGA <u>GCC</u>	GAC GCC ATT GAG CCA CCT TCC	G 424 512-535
Fungal sp	ecies:	Candida parapsilos	sis
2118 ^b	5'- <u>GCG GGC</u> CTG TTC	TCC TTG ACA ATT TCT TCG TAT	426 301-330
Fungal sp	ecies:	Candida tropicalis	5
2119	5'- <u>GCG GGC</u> ATT CGT	TTA CAA CCC TAA GGC TGT TCC	429 357-384
2120	5'- <u>GCG GGC</u> TAC CGG	AGA AAC CAA GGC TGG TAA GGT AGC CCG C	429 459-487
Fungal sp	ecies:	Cryptococcus neofo	rmans
2106	5'-GCG AGC TCG C	AGA GCA CGC CCT CCT CGC CGC	623,1985,1986° 226-244ª
2107	5'-GCG AGC CTC GC	TCC CCA TCT CTG GTT GGC ACG	623,1985,1986 ^c 390-408 ^d
<u>Bacterial</u>	genus:	Legionella sp.	
2083 5	'- <u>CCG CCG</u> A' GAA GGT C	TG TTC CGT AAA TTA CTT GAI GA GC <u>C GGC GG</u>	111-112 ^a 488-519 ^e

a Underlined nucleotides indicate the molecular beacon's stem.

b This sequence is from the complementary DNA strand of the sequence of the originating fragment given in the Sequence Listing.

C These sequences were aligned to derive the corresponding primer.

d The nucleotide positions refer to the C. neoformans tuf (EF-1) sequence fragment (SEQ ID NO. 623).

e The nucleotide positions refer to the L. pneumophila tuf (EF-1) sequence fragment (SEQ ID NO. 112).

Annex XLVII: Molecular beacon internal hybridization probes for specific detection of tuf sequences (continued).

				······································	Originating D	NA fragment
SEQ ID NO.	Nucleotide	sequence ^a			SEQ ID NO.	Nucleotide position
Fungal ge	nus:	Cand.	ida sp.			
2108		AAC TTC RTC	AAG AAG GI	TT GGT	414,417, 422,424, 426,429,624 ^b	~~
2109	5'- <u>GCG GGC</u> GAC AA <u>G</u>	CCA ATC TCT	GGT TGG AA	Y GGT	Same as SEQ ID NO. 2108	100-125 ^C
<u>Bacterial</u>	group:	Pseud	lomonads			
2121	5'- <u>CGA</u> CCG GTC G	CIA GCC GCA	CAC CAA GT	T C <u>CG</u>	153-155, 205,880,2137 ^d 2138 ^d ,b	

a Underlined nucleotides indicate the molecular beacon's stem.

b These sequences were aligned to derive the corresponding primer.

C The nucleotide positions refer to the *C. albicans tuf* (EF-1) sequence fragment (SEQ ID NO. 624).

d Sequence from databases.

 $^{^{}m e}$ The nucleotide positions refer to the *P. aeruginosa tuf* sequence fragment (SEQ ID NO. 153).

Annex XLVIII: Molecular beacon internal hybridization probes for specific detection of ddl and mtl gene sequences.

		Originating	DNA fragment
SEQ ID NO.	Nucleotide sequence ^a	SEQ ID NO.	Nucleotide position
Bacterial	species: E. faecium (ddl)		
1237	5'-GCG AGC CGC GAA ATC GAA GTT GCT GT TTA GGG CTC GC	YA 1242b	334~359
<u>Bacterial</u>	species: E. faecalis (mtl)		
1238	5'-GCG AGC GGC GTT AAT TTT GGC ACC GA GAA GAG CTC GC	A 1243b	631-656

a Underlined nucleotides indicate the molecular beacon's stem.

b Sequence from databases.

Annex XLIX: Internal hybridization probe for specific detection of S. aureus sequences of unknown coding potential.

			Originating	DNA fragment
SEQ ID NO.	Nucleotide	sequence	SEQ ID	Nucleotide position
Bacterial spe	cies:	Staphylococcus aureus		
1234	5'-ACT AAA	TAA ACG CTC ATT CG	1244	35-54

Annex L: Specific and ubiquitous primers for nuclic (antimicrobial agents resistance genes amplification sequences).

		Originating DNA fragmen
SEQ ID NO.	Nucleotide sequence	SEQ ID Nucleotide
Resistance	gene: aac(2')-Ia	
1344	5'-AGC AGC AAC GAT GTT ACG CAG CA	AG 1348 ^a 163-186
1345b	5'-CCC GCC GAG CAT TTC AAC TAT TG	392-414
1346	5'-GAT GTT ACG CAG CAG GGC AGT C	1348 ^a 172-193
1347 ^b	5'-ACC AAG CAG GTT CGC AGT CAA GT	A 1348a 467-490
Resistance	gene: aac(3')-Ib	
1349	5'-CAG CCG ACC AAT GAG TAT CTT GC	C 1351 ^a 178-201
1350 ^b	5'-TAA TCA GGG CAG TTG CGA CTC CT	'A 1351ª 178-201 'A 1351ª 356-379
	gene: aac(3')-IIb	220 373
1352	5'-CCA CGC TGA CAG AGC CGC ACC G	
1353b	5'-GGC CAG CTC CCA TCG GAC CCT G	
3354		1356 ^d 585-606
1354 1355 ^b	5'-CAC GCT GAC AGA GCC GCA CCG	1356 ^a 384-404
	CCC 110 CTG 1CG AAA 1CC 1CC	G 1356 ^a 606-629
<u>Resistance</u>	gene: aac(3')-IVa	
1357	5'-GCC CAT CCA TTT GCC TTT GC	1361 ^a 295-314
1358b	5'-GCG TAC CAA CTT GCC ATC CTG AAG	G 1361 ^a 517-540
1359	5'-TGC CCC TGC CAC CTC ACT C	1361 ^a 356-374
1360b	5'-CGT ACC AAC TTG CCA TCC TGA AGA	1361 ^a 356-374 A 1361 ^a 516-539
Resistance	gene: aac(3')-VIa	320 333
1362	E/ CCC CCC CND CCC CC	_
1363b	5'-CGC CGC CAT CGC CCA AAG CTG G 5'-CGG CAT AAT GGA GCG CGG TGA CTG	1366 ^a 285-306
		1366 ^a 551-574
1364 1365 ^b	5'-TTT CTC GCC CAC GCA GGA AAA ATC	1366 ^a 502-525
	5'-CAT CCT CGA CGA ATA TGC CGC G	1366 ^a 681-702
sistance de	ene: aac(6')-Ia	·
1367 .	5'-CAA ATA TAC TAA CAG AAG CGT TCA	1371 ^a . 56-79
1368 ^b	5'-AGG ATC TTG CCA ATA CCT TTA T	1371 ^a 269-290
1379	5'-AAA CCT TTG TTT CGG TCT GCT AAT	
1380b	5'-AAG CGA TTC CAA TAA TAC CTT GCT	
	the table of the traction of the control of the con	1371 ^a 320-343

a Sequence from databases.

b These sequences are from the complementary DNA strand of the sequence of the originating fragment given in the Sequence Listing.

Ann x L: Specific and ubiquitous primers for nucleic acid amplification (antimicrobial agents resistance genes sequences) (continued).

	•	Originating	DNA fragment
SEQ ID NO.	Nucleotide sequence	SEQ ID	Nucleotide position
Resistance	gene: aac(6')-Ic		
1372	5'-GCT TTC GTT GCC TTT GCC GAG GTC	1376 ^a	157-180
1373b	5'-CAC CCC TGT TGC TTC GCC CAC TC	1376 ^a	304-326
1374	5'-AGA TAT TGG CTT CGC CGC ACC ACA	1376ª	104-127
1375b	5'-CCC TGT TGC TTC GCC CAC TCC TG	1376ª	301-323
Resistance of	Tene: ant(3')-Ia		
1377	5'-GCC GTG GGT CGA TGT TTG ATG TTA	1381ª	100 100
1378 ^b	5'-GCT CGA TGA CGC CAA CTA CCT CTG	1381 ^a	100-123 221-244
1379	5'-AGC AGC AAC GAT GTT ACG CAG CAG		
1380b	5'-CGC TCG ATG ACG CCA ACT ACC TCT	1381 ^a 1381 ^a	127-150 222-245
	mene: ant(4')-Ia	2002	222-243
1382	5'-TAG ATA TGA TAG GCG GTA AAA AGC	12068	• • • • • •
1383 ^b	5'-CCC AAA TTC GAG TAA GAG GTA TT	1386 ^a 1386 ^a	149-172 386-408
1384	5'-GAT ATG ATA GGC GGT AAA AAG C	12063	
1385 ^b	5'-TCC CAA ATT CGA GTA AGA GGT A	1386 ^a 1386 ^a	151-172 388-409
<u>Resistance c</u>	ene: aph(3')-Ia		300 407
· 1387	F. TITA MOCO CING MAD DOLLAR		
1338b	5'-TTA TGC CTC TTC CGA CCA TCA AGC 5'-TAC GCT CGT CAT CAA AAT CAC TCG	1391 ^a 1391 ^a	233-256
1389			488-511
	5'-GAA TAA CGG TTT GGT TGA TGC GAG	1391 ^a	468-491
	5'-ATG GCA AGA TCC TGG TAT CGG TCT	1391 ^a	669-692
<u>sistance ger</u>	<u>aph(3')-IIa</u>		
1392	5'-TGG GTG GAG AGG CTA TTC GGC TAT	1396 ^a	43-66
1393b	5'-CAG TCC CTT CCC GCT TCA GTG AC	1396 ^a	250-272
1394	5'-GAC GTT GTC ACT GAA GCG GGA AGG	1396 ^a	
1395 ^b	5'-CTT GGT GGT CGA ATG GGC AGG TAG	1396 ^a	244-267 386-409

a Sequence from databases.

b These sequences are from the complementary DNA strand of the sequence of the originating fragment given in the Sequence Listing.

Annex L: Specific and ubiquitous primers for nucleic acid amplification (antimicrobial agents resistance g nes sequences) (continued).

CDO TO NO		Originating	DNA fragmen
SEQ ID NO.	Nucleotide sequence	SEQ ID NO.	Nucleotid position
Resistance	e gene: aph(3')-IIIa		
1397	5'-GTG GGA GAA AAT GAA AAC CTA T	14018	
1398 ^b	5'-ATG GAG TGA AAG AGC CTG AT	1401 ^a 1401a	103-124 355-374
1399		1401	355-3/4
1400b	5'-ACC TAT GAT GTG GAA CGG GAA AAG 5'-CGA TGG AGT GAA AGA GCC TGA TG	1401 ^a	160-183
5		1401 ^a	354-376
Resistance	gene: aph(3')-VIa		
1402	5'-TAT TCA ACA ATT TAT CGG AAA CAG	1406	
1403 ^b	5'-TCA GAG AGC CAA CTC AAC ATT TT	1406ª 1406ª	18-41
1404			175-197
1405 ^b	5'-AAA CAG CGT TTT AGA GCC AAA TAA	1406 ^a	36-59
	5'-TTC TCA GAG AGC CAA CTC AAC ATT	1406 ^a	177-200
Resistance	gene: blaCARB		
1407	5'-CCC TGT AAT AGA AAA GCA AGT AGG	1411 ^a	
1408 ^b	5'-TTG TCG TAT CCC TCA AAT CAC C	1411a 1411a	351-37 <u>4</u> 556-577
1409			220-277
1410 ^b	5'-TGG GAT TAC AAT GGC AAT CAG CG 5'-GGG GAA TAG GTC ACA AGA TCT GCT T	1411 ^a	205-227
D ' .		1411ª	329-353
<u> Kesistance</u>	gene: blaCMY-2		
1412	5'-GAG AAA ACG CTC CAG CAG GGC	1416 ^a	505 045
1413b	5'-CAT GAG GCT TTC ACT GCG GGG	1416 ^a	793-813
1414		7470	975-995
1415 ^b	5'-TAT CGT TAA TCG CAC CAT CAC	1416 ^a	90-110
_	5'-ATG CAG TAA TGC GGC TTT ATC	1416 ^a	439-459
sistance ge	enes: blaCTX-M-1, blaCTX-M-2		
1417	5'-TGG TTA ACT AYA ATC CSA TTG CGG A	1423ª	234 255
1418 ^b	5'-ATG CTT TAC CCA GCG TCA GAT T		314-338 583-604
sistance ge	ene: blaCTX-M-1	*4*3	J03-0U4
1419		_	
1420b	5'-CGA TGA ATA AGC TGA TTT CTC ACG	1423a	410-433
	5'-TGC TTT ACC CAG CGT CAG ATT ACG	.	580~603
1421	5'-AAT TAG AGC GGC AGT CGG GAG GAA	1423 ^a	116 122
₁₄₂₂ b	5'-GAA ATC AGC TTA TTC ATC GCC ACG	_	116-139
Sequence from		T473_	405-428

a Sequence from databases.

b These sequences are from the complementary DNA strand of the sequence of the originating fragment given in the Sequence Listing.

Annex L: Specific and ubiquitous primers for nucleic acid amplification (antimicrobial agents r sistance genes sequences) (continued).

			Originating	DNA fragment
SEQ ID NO.	Nucleotide	sequence	SEQ ID NO.	Nucleotide position
Resistance	gene:	blaCTX-M-2		
1424	5'-GTT AAC	GGT GAT GGC GAC GCT AC	1428 ^a	30.50
1425 ^b	5'-GAA TTA	TCG GCG GTG TTA ATC AGC	1428 ^a	30-52 153-176
1426	5'-CAC GCT	CAA TAC CGC CAT TCC A	1428 ^a	510-531
1427 ^b	5'-TTA TCG	CCC ACT ACC CAT GAT TTC	1428 ^a	687-710
<u>Resistance</u>	rene:	blaIMP		
1429	5'-TTT ACG	GCT AAA GAT ACT GAA AAG T	1433ª	205 222
1430 ^b	5'-GTT TAA	TAA AAC AAC CAC CGA ATA AT	1433ª 1433ª	205-229 513-538
1431	5'-TAA TTG	ACA CTC CAT TTA CGG CTA A		
1432b	5'-ACC GAA	TAA TAT TTT CCT TTC AGG CA	1433 ^a 1433 ^a	191-215 497-522
Resistance o			1433	437-322
1434	5'-CAC AAT	CAA GAC CAA GAT TTG CGA T	7.400 ²	
1435 ^b	5'-GAA AGG	GCA GCT CGT TAC GAT AGA G	1438 ^a 1438 ^a	319-343 532-556
Resistance o			2430	332-336
1436	5'-CAG ሮልጥ	CAA CAT TTA AGA TCC CCA		
1437b	5'-CTC CAC	TTG ATT AAC TGC GGA AAT TC	1439 ^a 1439 ^a	194-217 479-504
Resistance o			1400	473-304
1440	5'-AGA CCG	TTD TOO TO 300 TO 500	_	
1441b	5'-TTT TTT	TTA TCG TAA ACA GGG CTA AG GCT CAA ACT TTT TCA GGA TC	1442ª 1442ª	
Resistance ger		•	1445	3/3-604
1444b	5'-GGC GAC CA	C TGC TGA TGC TTG GC G GTA TTT TGT AAT ACT GC	1445 ^a	32-54
esistance ger		laPER-1, blaPER-2	1445 ^a	304-329
•				
1446 1447b	5'-GGC CTG YG	A TTT GTT ATT TGA ACT GGT		414-440
±37/	5 - CGC TST GG	F CCT GTG GTG GTT TC	1442 ^a	652-674
1448 1449b	5'-GAT CAG GT	G CAR TAT CAA AAC TGG AC A CAA YCC TTT TAA CCG CT	1442 ^a	532-557

a Sequence from databases.

b These sequences are from the complementary DNA strand of the sequence of the originating fragment given in the Sequence Listing.

Annex L: Specific and ubiquitous primers for nucleic acid amplification (antimicrobial agents resistance genes sequences) (continued).

	_	Originating	DNA fragmen
SEQ ID NO.	Nucleotide sequence	SEQ ID NO.	Nucleotide position
Resistance	gene: blashv		
1883	5'-AGC CGC TTG AGC AAA TTA AAC TA	1900ª	71-93
1884 ^b	5'-GTA TCC CGC AGA TAA ATC ACC AC	1900- 1900a	
1885	5'-AGC GAA AAA CAC CTT GCC GAC	1900 a	212 222
1884 ^b	5'-GTA TCC CGC AGA TAA ATC ACC AC	1900 ^a	313-333 763-785
Resistance	gene: blatem		, , , , ,
1906	5'-CCT TAT TCC CTT TTT TGC GG		
1907b	5'-CAC CTA TCT CAG CGA TCT GTC T	1927 ^a 1927 ^a	27-46 817-838
1908		200,	017-636
1907b	5'-AAC AGC GGT AAG ATC CTT GAG AG	1927 ^a	148-170
	5'-CAC CTA TCT CAG CGA TCT GTC T	1927 ^a	817-838
<u>Resistance</u>	gene: catI		
2145	5'-GCA AGA TGT GGC GTG TTA CGG T	2147ª	363-384
2146b	5'-GGG GCG AAG AAG TTG TCC ATA TT	2147 ^a	484-506
	gene: catII		
2148	5'-CAG ATT AAA TGC GGA TTC AGC C		_
2149b	5'-ATC AGG TAA ATC ATC AGC GGA TA	2150 ^a 2150 ^a	
	gene: catili	2150~	151-173
2151	5'-ATA TTT CAG CAT TAC CTT GGG TT	2153ª	419-441
2152b	5'-TAC ACA ACT CTT GTA GCC GAT TA	2153 ^a	603-625
sistance ge	ne: catP		
2154	5'-CGC CAT TCA GAG TTT AGG AC	2156 ^a	170 105
2155 ^b	5'-TTC CAT ACC GTT GCG TAT CAC TT	2156 ^a	178-197 339-361
sistance ge	ne: cat		333 301
2157		-	
2158b	5'-CCA CAG AAA TTG ATA TTA GTG TTT TAT 5'-TCG CTA TTG TAA CCA GTT CTA	· 2159ª 2159ª	89-115
04.50		4 133-	201-221
2160 2161 ^b	5'-TTT TGA ACA CTA TTT TAA CCA GC	2162 ^a	48-70
VT01~	5'-GAT TTA ACT TAT CCC AAT AAC CT	2162 ^a	231-253

a Sequence from databases.

b These sequences are from the complementary DNA strand of the sequence of the originating fragment given in the Sequence Listing.

Specific and ubiquitous primers for nucl ic acid amplification (antimicrobial agents resistanc genes Annex L: sequenc s) (continued).

		Originatin	g DNA fragmen
SEQ ID NO.	Nucleotide sequence	SEQ ID	Nucleotide position
Resistance	gene: dfrA	· · · · · · · · · · · · · · · · · · ·	
1450	5'-ACC ACT GGG AAT ACA CTT GTA ATG GC	7.4508	
1451 ^b	5'-ATC TAC CTG GTC AAT CAT TGC TTC GT	1452 ^a 1452 ^a	
Resistance	gene: dhfrla		234 324
1457	5'-CAA AGG TGA ACA GCT CCT GTT T		
1458 b	5'-TCC GTT ATT TTC TTT AGG TTG GTT AAA	1461 ^a 1461 ^a	, _ , _
1459		1491~	249-275
1560b	5'-AAG GTG AAC AGC TCC TGT TT	· 1461ª	77-96
	5'-GAT CAC TAC GTT CTC ATT GTC A	1461 ^a	207-228
<u>Resistance</u>	genes: dhfrIa, dhfrXV	•	
1453	5'-ATC GAA GAA TGG AGT TAT CGG RAA TG	2462	
1454 ^b	5'-CCT AAA AYT RCT GGG GAT TTC WGG A	1461 ^a 1461 ^a	2. 22
1455		7407	204-408
1456 ^b	5'-CAG GTG GTG GGG AGA TAT ACA AAA	1461 ^a	290-313
	5'-TAT GTT AGA SRC GAA GTC TTG GKT AA	1461 ^a	416-441
<u>Resistance</u>	gene: dhfrib		
1466	5'-AAG CAT TGA CCT ACA ATC AGT GT	14803	_
1467 ^b	5'-AAT ACA ACT ACA TTG TCA TCA TTT GAT	1470 ^a 1470 ^a	98-120
1468			204-230
1469b	5'-CGT TAC CCG CTC AGG TTG GAC ATC AA	1470 ^a	183-208
	S CAT CCC CCT CTG GCT CGA TGT CG	1470 ^a	354-376
Resistance	gene: dhfrv		
1471	5'-GAT AAT GAC AAC GTA ATA GTA TTC CC	•	
1472 ^b	5'-GCT CAA TAT CAA TCG TCG ATA TA	1475ª	208-233
		1475 ^a	342-364
1473 ₁₄₇₄ b	5'-TTA AAG CCT TGA CGT ACA ACC AGT GG	1475ª	95-120
	5'-TGG GCA ATG TTT CTC TGT AAA TCT CC	1475 ^a	300-325
sistance ge	enes: dhfrIb, dhfrV		
1462	5'-GCA CTC CCY AAT AGG AAA TAC GC		
. 1463b	5'-AGT GTT GCT CAA AAA CAA CTT CG	1470 ^a	157-179
464		1470 ^a	405-427
465b	5'-ACG TTY GAA TCT ATG GGM GCA CT	1470 ^a	139-161
. = 0.0	5'-GTC GAT AAG TGG AGC GTA GAG GC	1470 ^a	328-350

a Sequence from databases.

b These sequences are from the complementary DNA strand of the sequence of the originating fragment given in the Sequence Listing.

Annex L: Specific and ubiquitous primers for nucleic acid amplification (antimicrobial agents resistance genes sequences) (continued).

SEC ID NO	_	Originatin	g DNA fragmen
SEQ ID NO.	Nucleotide sequence	SEQ ID NO.	Nucleotide position
Resistance	gene: dhfrVI		
1476	5'-GGC GAG CAG CTC CTA TTC AAA G	_	
1477 ^b	5'-TAG GTA AGC TAA TGC CGA TTC AAC A	1480 ^a	75 100
1478			237-261
1479 ^b	5'-GAG AAT GGA GTA ATT GGC TCT GGA TT	1480 ^a	31-56
	5'-GCG AAA TAC ACA ACA TCA GGG TCA T	1480ª	
Resistance	gene: dhfrVII		
1485	5'-AAA ATG GCG TAA TCG GTA ATG GC		
1486 ^b	5'-CAT TTG AGC TTG AAA TTC CTT TCC TC	1489 ^a	~ D J4
1.405		1489 ^a	189-214
1487 1488 ^b	5'-AAT CGA AAA TAT GCA GTA GTG TCG AG	1489ª	166-191
1488~	5'-AGA CTA TTG TAG ATT TGA CCG CCA	1489ª	294-317
Resistance	genes: dhfrVII, dhfrXVII		27 31,
1481			
1482 ^b	5'-RTT ACA GAT CAT KTA TAT GTC TCT	1489 ^a	268-291
	5'-TAA TTT ATA TTA GAC AWA AAA AAC TG	1489 ^a	421-446
1483	5'-CAR YGT CAG AAA ATG GCG TAA TC	1489 ^a	77 45
1484b	5'-TKC AAA GCR WTT TCT ATT GAA GGA AA	1489ª	23-45 229-254
<u>Resistance</u>	Gene: dhfrVIII	2403	229-254
1490	•		
1491b	5'-GAC CTA TGA GAG CTT GCC CGT CAA A	1494 ^a	144-168
1431	5'-TCG CCT TCG TAC AGT CGC TTA ACA AA	1494 ^a	376-401
1492	5'-CAT TTT AGC TGC CAC CGC CAA TGG TT	44043	
14930	5'-GCG TCG CTG ACG TTG TTC ACG AAG A	1494 ^a	18-43
sistance oe	ene: dhfrix	1494ª -	245-269
	- MITTY		
1495	5'-TCT CTA AAC ATG ATT GTC GCT GTC	14003	
1496 ^b	5'-CAG TGA GGC AAA AGT TTT TCT ACC	1499 ^a 1499 ^a	7-30
1497		ユセフフー	133-156
1498b	5'-CGG ACG ACT TCA TGT GGT AGT CAG T	1499 ^a	171-195
	5'-TTT GTT TTC AGT AAT GGT CGG GAC CT	1499a	446-471

a Sequence from databases.

b These sequences are from the complementary DNA strand of the sequence of the originating fragment given in the Sequence Listing.

Annex L: Specific and ubiquitous primers for nucleic acid amplification (antimicrobial agents resistance genes sequ nces)

SEQ ID NO.	Normal and the	Originating	DNA fragment
	Nucleotide sequence	SEQ ID NO.	Nucleotide position
Resistance	qene: dhfrXII		
1500	5'-ATC GGG TTA TTG GCA ATG GTC CTA	1504ª	
1501b	5'-GCG GTA GTT AGC TTG GCG TGA GAT T	. 1504 ^a	50-73 201-225
1502	5'-GCG GGC GGA GCT GAG ATA TAC A	15048	
1503b	5'-AAC GGA GTG GGT GTA CGG AAT TAC AG	1504ª 1504ª	304-325 452-477
Resistance		1304	432-477
1505			
1505 1506 ^b	5'-ATT TTT CGC AGG CTC ACC GAG AGC	1507 ^a	106-129
	5'-CGG ATG AGA CAA CCT CGA ATT CTG CTG	1507 ^a	413-439
Resistance	gene: dhfrxv		
1508	5'-AGA ATG TAT TGG TAT TTC CAT CTA TCG	48443	
1509b	5'-CAA TGT CGA TTG TTG AAA TAT GTA AA	1512 ^a 1512 ^a	215-241 336-361
1510		2012	220-201
1511 ^b	5'-TGG AGT GCC AAA GGG GAA CAA T	1512 ^a	67-88
.	5'-CAG ACA CAA TCA CAT GAT CCG TTA TCG	1512 ^a	266-292
Resistance o	dene: dhfrxvII		
1513	5'-TTC AAG CTC AAA TGA AAA CGT CC	1517ª	224 222
1514 ^b	5'-GAA ATT CTC AGG CAT TAT AGG GAA T	1517 ^a	201-223 381-405
1515		131,	201-402
1516b	5'-GTG GTC AGT AAA AGG TGA GCA AC	1517 ^a	66-88
	5'-TCT TTC AAA GCA TTT TCT ATT GAA GG	1517 ^a	232-257
Perietanne n	tono · amhR		
2102	5'-CAC CTT CAC CCT GAC CGA CG		
2103 ^b	5'-CGA ACC AGC GGA AAT AGT TGG AC	2105 ^a	822-841
sistance ger	nes: ereA, ereA2	2105 ^a	948-970
	•		
	5'-AAC TTG AGC GAT TTT CGG ATA CCC TG	1530 ^a	80-105
	5'-TTG CCG ATG AAA TAA CCG CCG ACT	1530 ^a	317-340
		•	

a Sequence from databases.

b These sequences are from the complementary DNA strand of the sequence of the originating fragment given in the Sequence Listing.

Annex L: Specific and ubiquitous primers for nucleic acid amplification (antimicrobial agents resistance genes sequences) (continued).

		Originatin	g DNA fragmen
SEQ ID NO.	Nucleotide sequence	SEQ ID NO.	Nucleotide position
Resistance	gene: ereB		
1531	5'-TCT TTT TGT TAC GAC ATA CGC TTT T	1535 ^a	450
1532 ^b	5'-AGT GCT TCT TTA TCC GCT GTT CTA	1535ª	
1533	5'-CAG CGG ATA AAG AAG CAC TAC ACA TT		
1534b	5'-CCT CCT GAA ATA AAG CCC GAC AT	1535 ^a 1535 ^a	107 400
Pesistance		1535~	727-749
Nesistance	gene: gyrā		
1340	5'-GAA CAA GGT ATG ACA CCG GAT AAA T	1299 ^a	163 100
1341b	5'-GAT AAC TGA AAT CCT GAG CCA TAC G	1299a	163-188 274-299
1936	5'-TAC CAC CCG CAC GGC		233
₁₉₃₇ b	5'-CGG AGT CGC CGT CGA TG	1954ª	205-219
	o coo not coc cot con no	1954ª	309-325
1942	5'-GAC TGG AAC AAA GCC TAT AAA AAA TCA	1954 ^a	148-174
1937b	5'-CGG AGT CGC CGT CGA TG	1954ª	309-325
2040	5'-TGT GAC CCC AGA CAA ACC C		
2041b	5'-GTT GAG CGG CAG CAC TAT CT	2054a	33-51
_		2054 ^a	207-226
Resistance	gene: inhA		
2098	5'-CTG AGT CAC ACC GAC AAA CGT C	B	
₂₀₉₉ b	5'-CCA GGA CTG AAC GGG ATA CGA A	2101 ^a 2101 ^a	
Resistance		2101-	1074-1095
resistance	genes: linA, linA'		
1236	D'-AGA TGT ATT AAC TGG AAA ACA ACA A	15403	00 100
1537 ^b	5'-CTT TGT AAT TAG TTT CTG AAA ACC A	1540 ~ 1540ā	352-376
1538			332-376
1539 ^b	5'-TTA GAA GAT ATA GGA TAC AAA ATA GAA G 5'-GAA TGA AAA AGA AGT TGA GCT T		187-214
		1540ª	404-425
sistance ge	ene: linB		
1541	5'-TGA TAA TCT TAT ACG TGG GGA ATT T		
L542b	5'-ATA ATT TTC TAA TTG CCC TGT TTC AT	1545 ^a	246-270
E 43		1545ª	359-384
1543 1544 ^b	5'-GGG CAA TTA GAA AAT TAT TTA TCA GA	1545ª	367-392
-D#4_	5'-TTT TAC TCA TGT TTA GCC AAT TAT CA	1545 ^a	579-604

a Sequence from databases.

b These sequences are from the complementary DNA strand of the sequence of the originating fragment given in the Sequence Listing.

Annex L: Specific and ubiquitous primers for nucleic acid amplification (antimicrobial agents resistance genes sequences) (continued).

			Originatin	g DNA fragmen
SEQ ID NO.	Nucleotide sequence		SEQ ID NO.	Nucleotide position
Resistance	gene: mefA			
1546	5'-CAA GAA GGA ATG GCT GTA C	TA C	1548ª	625-646
1547b	5'-TAA TTC CCA AAT AAC CCT A	AT AAT AGA	1548 ^a	
Resistance	gene: mefE			
1549	5'-GCT TAT TAT TAG GAA GAT T	AG GGG GC	1551 a	815-840
1550b	5'-TAG CAA GTG ACA TGA TAC T	TC CGA	1551ª	1052-1075
	menes: mefA, mefE			
1552	5'-GGC AAG CAG TAT CAT TAA TO	CA CTA	1548 ^a	50-73
₁₅₅₃ b	5'-CAA TGC TAC GGA TAA ACA A'	TA CTA TC	1548ª	318-343
1554	5'-AGA AAA TTA AGC CTG AAT A	IT TAG GAC	1548 ^a	1010-1035
1555b	5'-TAG TAA AAA CCA ATG ATT TA	AC ACC G	1548ª	
<u>Resistance d</u>	enes: mphA, mphK			
1556	5'-ACT GTA CGC ACT TGC AGC CO	CG ACA T	1560ª	33-57
1557b	5'-GAA CGG CAG GCG ATT CTT GA	AG CAT	1560ª	
1558	5'-GTG GTG GTG CAT GGC GAT CT	C T	1560 ^a	583-604
1559 ^b	5'-GCC GCA GCG AGG TAC TCT TC	G TTA	1560ª	440 001
<u>Resistance d</u>	ene: mupA			
2142	5'-GCC TTA ATT TCG GAT AGT GC	:	2144ª	1831-1850
2143 ^D	5'-GAG AAA GAG CCC AAT TAT CTA	ATG T	2144ª	2002-2026
	ne: parC			
1342	5'-GAT GTT ATT GGT CAA TAT CAT	CCA	1321 ^a	205-229
1343b	5'-AAG AAA CTG TCT CTT TAT TAA	TAT CAC GT	1321 ^a	396-425
1934	5'-GAA CGC CAG CGC GAA ATT CAA	AAA G	1781	67-91
1935b	5'-AGC TCG GCA TAC TTC GAC AGG		1781	277-297
2044	5'-ACC GTA AGT CGG CCA AGT CA		2055ª	176-195
	5'-GTT CTT TCT CCG TAT CGT C		2055 ^a	436-454

a Sequence from databases.

b These sequences are from the complementary DNA strand of the sequence of the originating fragment given in the Sequenc Listing.

Annex L: Sp cific and ubiquitous primers for nucleic acid amplification (antimicrobial agents r sistance genes sequences) (continued).

Nucleotide	sequence	SEQ ID	
		NO.	Nucleotide position
gene:	ppflo-like		
5'-ACC TTC	ATC CTA CCG ATG TGG GTT	2165ª	922~945
5'-CAA CGA	CAC CAG CAC TGC CAT TG	2165 ^a	
gene:	гров		
5'-CCA GGA	CGT GGA GGC GAT CAC A	20728	1218-1239
		2072 ^a	
gene:	satG		
5'-AAT TGG	GGA CTA CAC CTA TTA TGA TG	15058	02 120
5'-GGC AAA	TCA GTC AGT TCA GGA GT	1585ª	93-118 310-332
5'-CGA TTG	SCA ACA ATTA CAC TYC TYC	15058	204 225
5'-TCA CCT	ATT TTT ACG CCT GGT AGG AC	1585ª	
rene:	sulII		
5'-GCT CAA	GGC AGA TGG CAT TCC C	10663	. 222 242
		1965 ^a	222-243 496-517
5'-CAT TCC (CGT CTC CCT CGA CAG T	10658	227 250
5'-ATC TGC	CTG CCC GTC TTG C	1965 ^a	237-258 393-411
mene:	tetB	•	
5'-CAT GCC A	ርጥ ርጥጥ ሮርር አልር ር	10708	cc 0.
		1970 a	66-84 242-264
5'-GCA GAG AM	. mch coo ann na		
		- · · -	457-476 721-742
		-276	721 / 12
5/_እሞጥ ሮሮሮ እርአ	NOC SUMM MOVE AND AND AND		
5'-CAT TGT TCA	GAT TCG GTA AAG TTC	1590ª 1590ª	361-386 501-524
			957-981 1172-1192
	5'-ACC TTC 5'-CAA CGA Gene: 5'-CCA GGA 6 5'-CAC CGA 6 5'-CAC CGA 6 5'-CAT TGG 6 5'-GGA CAA 6 5'-GGA CAA 6 5'-CAT TCC 6 5'-ATC TGC 6 5'-ATC TGC 6 5'-CAT GCC AA 7 5'-CAG CAA 7 5'-CAG CAA 7 5'-CAG CAA 7 5'-CAG CAA 7 5'-ATC TGC 6 5'-CAT TGC 6 5'-ATT CCC ACA 6 5'-CAT TGT TCA	5'-ACC TTC ATC CTA CCG ATG TGG GTT 5'-CAA CGA CAC CAG CAC TGC CAT TG Gene: ***rpoB** 5'-CCA GGA CGT GGA GGC GAT CAC A 5'-CAC CGA CAG CGA GCC GAT CAG A Gene: ***satG** 5'-AAT TGG GGA CTA CAC CTA TTA TGA TG 5'-GGC AAA TCA GTC AGT TCA GGA GT 5'-CGA TTG GCA ACA ATA CAC TCC TG 5'-TCA CCT ATT TTT ACG CCT GGT AGG AC	5'-ACC TTC ATC CTA CCG ATG TGG GTT 5'-CAA CGA CAC CAG CAC TGC CAT TG 2165a GENE: TPOB 5'-CCA GGA CGT GGA GGC GAT CAC A 2072a 5'-CAC CGA CAG CGA GCC GAT CAG A 2072a GENE: SatG 5'-AAT TGG GGA CTA CAC CTA TTA TGA TG 5'-GGC AAA TCA GTC AGT TCA GGA GT 1585a 5'-CGA TTG GCA ACA ATA CAC TCC TG 5'-TCA CCT ATT TTT ACG CCT GGT AGG AC 1585a 5'-CAT CCA GGC AGA TGG CAT TCC C 1965a 5'-GGT CAA GGC AGA TGG CAT TCC C 1965a 5'-GGA CAA GGC GGT TCC GTT TGA T 1965a 5'-CAT TCC CGT CTC GCT CGA CAG T 1965a 5'-ATC TGC CTG CCC GTC TTG C 1970a 5'-CAG CAA TAA GTA ATC CAC CGA TG 1970a 5'-GGA GAG ATT TCA CCG CAT AG 1970a 5'-GGA GAG ATT TCA CCG CAT AG 5'-AGC CAA CCA TCA TGC TAT TCC A 1970a 5'-GGA CAA CCA TCA TGC TAT TCC A 1970a 5'-GGT TTT GAA GTT AAA TAC TGC TCT T 1590a 5'-CAT TCC CACA ATC TTT TTT ATC AAT AA 1590a 5'-GTT TTT GAA GTT AAA TAG TGT TCT T 1590a

a Sequence from databases.

b These sequences are from the complementary DNA strand of the sequence of the originating fragment given in the Sequence Listing.

Annex L: Specific and ubiquitous primers for nucleic acid amplification (antimicrobial agents resistance genes sequences) (continu d).

		Originating DNA f	ragmen
SEQ ID NO.	Nucleotide sequence		eotide
Resistance	gene: vatB		•
1609	5'-GCC CTG ATC CAA ATA GCA TAT A	1613 ^a 1:	1-32
1610 ^b	5'-CCT GGC ATA ACA GTA ACA TTC TG	1613 ^a 379	9-401
1611	5'-TGG GAA AAA GCA ACT CCA TCT C	1613 ^a 301	1-322
16 1 2b	5'-ACA ACT GAA TTC GCA GCA ACA AT		1-446
Resistance	gene: vatC		
1614	5'-CCA ATC CAG AAG AAA TAT ACC C	1618 ^a 26	. 45
1615 ^b	5'-ATT AGT TTA TCC CCA ATC AAT TCA	· _	5-47 7-200
1616			
1617 ^b	5'-ATA ATG AAT GGG GCT AAT CAT CGT AT 5'-GCC AAC AAC TGA ATA AGG ATC AAC		-266
Resistance		1010 463	-486
1619	5'-AAG GCA AAA TAA AAG GAG CAA AGC	1623ª 641	
1620 ^b	5'-TGT ACC CGA GAC ATC TTC ACC AC		-664 -843
1621	5'-AAT TGA AGG ACG GGT ATT GTG GAA AG		
1622 ^b	5'-CGA TTT TGA CAG ATG GCG ATA ATG AA		-868 -1000
Resistance (1025 975	-1000
1624	F. I. P. P. O. P.		
1625 ^b	5'-TTC TTT AAT GCT CGT AGA TGA ACC TA 5'-TTT TCG TAT TCT TCT TGT TGC TTT C		-379
			-602
1626	5'-AGG AAT GAT TAA GCC CCC TTC AAA AA	1628 ^a 663	-688
1627 ^b	5'-TTA CAT TGC GAC CAT GAA ATT GCT CT	1628 ^a 849-8	74
<u>sistance ge</u>	nes: vgb, vgh		
1629	5'-AAG GGG AAA GTT TGG ATT ACA CAA CA	1633 ^a 73-9	•
1630 ^b	5'-GAA CCA CAG GGC ATT ATC AGA ACC	1633ª 73-99 1633ª 445-40	
1631	5'-CGA CGA TGC TTT ATG GTT TGT	_	
1632 ^b	5'-GTT AAT TTG CCT ATC TTG TCA CAC TC	1633 ^a 576-59 1633 ^a 850-89	} 6

a Sequence from databases.

b These sequences are from the complementary DNA strand of the sequence of the originating fragment given in the Sequence Listing.

Annex L: Specific and ubiquitous primers for nucleic acid amplification (antimicrobial agents resistance genes sequences) (continued).

		Originatin	g DNA fragment
SEQ ID NO.	Nucleotide sequence	SEQ ID	Nucleotide position
Resistance	gene: vgbB		
1634	5'-TTA ACT TGT CTA TTC CCG ATT CAG G	1882ª	22.45
₁₆₃₅ b	5'-GCT GTG GCA ATG GAT ATT CTG TA	1882ª	
1636	5'-TTC CTA CCC CTG ATG CTA AAG TGA	1 0003	
1637 ^b	5'-CAA AGT GCG TTA TCC GAA CCT AA	1882 ^a 1882 ^a	
	Sequencing primers		
<u>Resistance</u>	gene: gyrk		
1290	5'-GAY TAY GCI ATG ISI GTI ATH GT	1299ª	70.00
₁₂₉₂ b	5'-ARI SCY TCI ARI ATR TGI GC	1299- 1299a	
1291	5'-GCI YTI CCI GAY GTI MGI GAY GG	1299 ^a	
1292 ^b	5'-ARI SCY TCI ARI ATR TGI GC	1299ª 1299ª	100-123 1132-1152
1293	5'-ATG GCT GAA TTA CCT CAA TC	1299a	
1294b	5'-ATG ATT GTT GTA TAT CTT CTT CAA C	1299ª	1-21 2626-2651
1295 ^b	5'-CAG AAA GTT TGA AGC GTT GT	1299 ^a	1255-1275
1296	5'-AAC GAT TCG TGA GTC AGA TA	1299 ^a	1188-1208
1297 1298 ^b	5'-CGG TCA ACA TTG AGG AAG AGC T	1300 ^a	29-51
	5'-ACG AAA TCG ACC GTC TCT TTT TC	1300 ^a	415-437
Resistance	gene: gyrB		
1301	5'-GTT MGT AWT MGT CCT GST ATG TA		92.105
1302 ^b	5'-TAI ADI GGI GGI KKI GCI ATR TA	1307ª	R2-105 1600-1623
1303	5'-GGI GAI GAI DYI MGI GAR GG	1307ª	955-975
1304 ^b	5'-CIA RYT TIK YIT TIG TYT G	1307ª	1024-1043
1305	5'-ATG GTG ACT GCA TTG TCA GAT G	1307ª	1-23
1306 ^b	5'-GTC TAC GGT TTT CTA CAA CGT C	1307ª	1858-1888

a Sequence from databases.

b These sequences are from the complementary DNA strand of the sequence of the originating fragment given in the Sequence Listing.

Annex L: Specific ubiquitous primers for nucleic and amplification (antimicrobial agents resistance sequences) (continued). genes

SEQ ID NO.	Nucleotido	Originati	ng DNA fragmen
	Nucleotide sequence	SEQ I	
	Sequencing primers (continued)		
Resistanc	e gene: parC		
1308	5'-7TC TAY CT-		
1309b	5'-ATG TAY GTI ATG GAY MGI GC	1320a	67-90
	5'-ATI ATY TTR TTI CCY TTI CCY TT	1320ª	07-90
1310	5'-ATI ATI TSI ATI ACY TCR TC	_	1000-2016
1311b		1320ª	1112-1132
7077-	5'-GAR ATG AAR ATI MGI GGI GAR CA	12002	
1312		1320ª	1288-1311
1313b	5'-AAR TAY ATI ATI CAR GAR MGI GC	1321ª	67.00
	5'-AMI AYI CKR TGI GGI TTI TTY TT	1321ª	67-90 2212-2235
1314	5'-TAI GAI TTY ACI GAI SMI CAR GC		2212-2235
1315b		1321 ^a	1228-1251
431J	5'-ACI ATI GCI TCI GCY TGI KSY TC	120.2	
1316		1321 ^a	1240-1263
1317b	5'-GTG AGT GAA ATA ATT CAA GAT T	1321ª	1-23
	5'-CAC CAA AAT CAT CTG TAT CTA C	1321ª	2356-2378
1318	5'-ACC TAY TCS ATG TAC GTR ATC ATG GA		200-2578
1319b	5'-AGR TCG TCI ACC ATC GGY AGY TT	1320ª	58-84
esistance	meno.	1320ª	832-855
	parE		
1322	5'-RTT CAT ANY TOT		
1325b	5'-RTI GAI AAY ISI GTI GAY GAR G 5'-RTT CAT YTC ICC IAR ICC YTT	1328ª	133-155
1200		1328ª	1732-1752
1323	5'-ACI AWR SAI GGI GGI ACI CAY G		
1224h	_	1328ª	829-850
324~	5 - CUT CUT GUT SWR TUT CUY TU	1328273	1280-13020
326	5'-TC3 TTC 33 TTC		.*
127b	5'-TGA TTC AAT ACA GGT TTT AGA G	1328 ^a	27-49
	5'-CTA GAT TTC CTC CTC ATC AAA T		1971-1993

a Sequence from databases.

b These sequences are from the complementary DNA strand of the sequence of the originating fragment given in the Sequence Listing.

Annex LI: Internal hybridization probes for specific detection of antimicrobial ag nts resistance genes sequences (continued).

		Originating	DNA fragment
SEQ ID NO.	Nucleotide sequence	SEQ ID NO.	Nucleotide position
Resistance	gene: blaTEM (continued)	
2007	5'-TGG AGC CAG TGA GCG TGG	· 2010a	699-716
2008	5'-TCT GGA GCC GAT GAG CGT G	1929 ^a	697-715
2009	5'-CTG GAG CCA GTA AGC GTG G	2011 ^a	698-716
2141	5'-CAC CAG TCA CAG AAA AGC	1927 ^a	311-328
Resistance o	gene: dhfrIa		
2253	5'-CAT TAC CCA ACC GAA AGT A	1461 ^a	158-176
Resistance o	gene: embB		
2104	5'-CTG GGC ATG GCI CGA GTC	2105 ^a	910-927
Resistance d	gene: gyrA		
1333	5'-TCA TGG TGA CTT ATC TAT TTA TG	3 1299 ^a	240–263
1334	5'-CAT CTA TTT ATA AAG CAA TGG TA		251-274
1335	5'-CTA TTT ATG GAG CAA TGG T	- 1299 ^a	254-273
1940	5'-GTA TCG TTG GTG ACG TAA T	1299a	206-224
1943	5'-GCT GGT GGA CGG CCA G	1954a	279-294
1945	5'-CGG CGA CTA CGC GGT AT	1954 ^a	216-232
1946	5'-CGG CGA CTT CGC GGT AT	1954 ^a	216-232
1947	5'-CGG TAT ACG GCA CCA TCG T	1954a	227-245
1948	5'-GCG GTA TAC AAC ACC ATC G	1954 ^a	226-244
1949	5'-CGG TAT ACG CCA CCA TCG T	1954 ^a	227-245
2042	5'-CAC GGG GAT TTC TCT ATT TA	2054a	103-122
2043	5'-CAC GGG GAT TAC TCT ATT TA	2054 ^a	103-122
sistance ge	ne: inhA		
2100	5'-GCG AGA CGA TAG GTT GTC	2101 ^a	1017-1034
sistance ge	ne: parC		
1336	5'-TGG AGA CTA CTC AGT GT	1321 ^a	232_240
1337	5'-TGG AGA CTT CTC AGT GT	1321 ^a	232-249 232-249
1338	5'-GTG TAC GGA GCA ATG	1321 ^a	232-249 245-260
1339	5'-CCA GCG GAA ATG CGT	1321 ^a	342-357
1941	5'-GCA ATG GTC CGT TTA AGT	1321 ^a	253-270
1944	5'-TTT CGC CGC CAT GCG TTA C	1781	247-265
1950	5'-GGC GAC ATC GCC TGC	1781	·137-151
	5'-GGC GAC AGA GCC TGC TA	T,07	・エウィーエつエ

a Sequence from databases.

Annex LI: Internal hybridization probes for specific det ction of antimicrobial agents resistance genes sequences.

SEQ ID NO.	No3 and 12	Originating	DNA fragment
	Nucleotide sequence	SEQ ID NO.	Nucleotide position
Resistance	e gene: aph3'VIa		
2252	5'-CCA CAT ACA GTG TCT CTC	1406ª	149-166
Resistance	e gene: blashv		147-100
1886	5'-GAC GCC CGC GCC ACC ACT	_	
1887	5'-GAC GCC CGC GAC ACC ACT A	1900 ^a	484-501
1888	5'-GAC GCC CGC AAC ACC ACT A	1899 ^a	514-532
1889	5'-GTT CGC AAC TGC AGC TGC TG	1901 ^a	514-532
1890	5'-TTC GCA ACG GCA GCT GCT G	1899 ^a	593-612
1891	5'-CCG GAG CTG CCG AIC GGG	1899 ^a	594-612
1892	5'-CGG AGC TGC CAA RCG GGG	1902ª	692-709
1893	5'-GGA GCT GCG GAR RCG GGG	1903ª	693-710
1894	5'-GGA GCT GGC GAR CGG GGT	1899 ^a	694-711
1895	5'-GAC CGG AGC TAG CGA RCG	1904 ^a	690-707
1896	5'-CGG AGC TAG CAA RCG GGG T	1905 ^a	693-711
1897	5'-GAA ACG GAA CTG AAT GAG GCG	1899 ^a	484-504
1898	5'-CAT TAC CAT GGG CGA TAA CAG	1899 ^a	366-386
esistance	5'-CCA TTA CCA TGA GCG ATA ACAG	1899 ^a	365-386
·	gene: blaTEM		
1909	5'-ATG ACT TGG TTA AGT ACT CAC C	_	
1910	5'-ATG ACT TGG TTG AGT ACT CAC C	1928a	293-314
1911	5'-CCA TAA CCA TGG GTG ATA ACA C	1927 ^a	293-314
1912	5'-CCA TAA CCA TGA GTG ATA ACA C	1928 ^a	371-392
1913	5'-CGC CTT GAT CAT TGG GAA CC	1927 ^a	371-392
1914	5'-CGC CTT GAT CGT TGG GAA CC	1928 ^a	475-494
1915	5'-CGC CTT GAT AGT TGG GAA CC	1927ª	475-494
916		1929 ^a	475-494
917	5'-CGT GGG TCT TGC GGT ATC AT	1927ª ¯	712-731
918	5'-CGT GGG TCT GGC GGT ATC AT	1930 ^a	712-731
919	5'-GTG GGT CTC ACG GTA TCA TTG		713-733
920	5'-CGT GGG TCT CTC GGT ATC ATT	1931a	712-732
921	5'-CGT GGI TCT CGC GGT ATC AT	1927ª	712-731
22	5'-CGT GGG TCT AGC GGT ATC ATT		713-733
23	5'-GTT TTC CAA TGA TTA GCA CTT TTA		188-211
24	5'-GTT TTC CAA TGA TAA GCA CTT TTA		188-211
25	5'-GTT TTC CAA TGC TGA GCA CTT TT		188-210
26	5'-CGT TTT CCA ATG ATG AGC ACT TT	_	87-209
26 06	5'-GTT TTC CAA TGG TGA GCA CTT TT 5'-TGG AGC CGG TGA GCG TGG	_	.88-210
	DISTRICT ACC CCC MCA CCC CCC	1927 ^a 6	

a Sequence from databases.

Annex LI: Internal hybridization probes for specific detection of antimicrobial agents resistance genes sequences (continued).

					Originating I	ONA fragment	
SEQ ID NO.	Nucleoti	Nucleotide sequence				SEQ ID	Nucleotide position
Resistance	gene:	parC	(cor	tin	ued)		
1952	5'-CCT G	CT ATG GAG	CGA	TGG	T	1781	147-165
1953	5'-CGC C	TG CTA TAA	AGC	GAT	GGT	1781	145-165
2046		GG ATT TTT				2055ª	227-246
Resistance	gene:	rpoB					
2067	5'-AGC TO	GA GCC AAT	TCA	TGG		2072 ^a	1304-1321
2068	5'-ATT C	AT GGA CCA	GAA	CAA	С	2072ª	1314-1332
2069	5'-CGC TC	GT CGG GGT	TGA	CCC		2072ª	1334-1351
2070	5'-GTT GA	AC CCA CAA	GCG	CCG		2072ª	1344-1361
2071		TG TCG GCG				2072ª	1360-1377
Resistance	gene:	tetM					
2254	5'-ACC TO	SA ACA GAG	AGA	TAA	G	1590ª	1062-1080

a Sequence from databases.

Annex LII: Molecular beacon internal hybridization probes for specific detection of atpD sequences.

					Originating	DNA fragment
SEQ ID NO.	Nucleotide	sequence ^a			SEQ ID NO.	Nucleotide position
Bacteria:	l species:	Bacter	oides	fragilis	-	
2136	- 3000	CGT CCT CAA T G <u>GC GTT GG</u>	CA TTT	CTA ACT TO	T 929	353-382
<u>Bacterial</u>	species:	Bordet	ella p	ertussis		
2182	5'- <u>GCG CGC</u> AGA GTC	CAA CGA CTT C GCG CGC	ra cca	CGA AAT GG	A 1672	576-605
<u>Bacterial</u>	group:	Campy1	bacte	r jejuni	and C. col	i
2133	5'- <u>CCA</u> <u>CGC</u> : AGC AGC I	ACA WAA ACT TO VCA <u>GCG TGG</u>	FT TTT		1576, 1600,1849, 1863,2139 ^b ,c	44-73 ^d
Fungal sp	ecies:	Candida	glab	rata		
2078	5'- <u>CCG AGC</u> (<u>TCG</u> <u>G</u>	CTT GGT CTT CO	G CCA	aat gaa c <u>g</u>	C 463	442-463
Fungal sp	ecies:	Candida	krus	ei	•	
2075	5'- <u>CCG AGC</u> C	AG GTT CTG AX	G TCT	CTG CAT TA	T 468	720-748
Fungal sp	ecies:	Candida	lusi	taniae		
2080	5'- <u>CCG AGC</u> C G	GA AGA GGG CC	A AGA	TGT C <u>GC TC</u>	G 470	520-538
Fungal sp	ecies:	Candida	paraj	psilosis		
2079 5	'-CCG AGC GTI GCT CGG	CAG TTA CTT	CAG TC	C AAG CCG	472	837-860
ngal spec	ies:	Candida (ropic	alis		
		CGA TCC AGC			475	877-897
cterial s	pecies:	Klebsiell	a pne	umoniae		
•	'- <u>CCC CC</u> A GCT				217	40-59

a Underlined nucleotides indicate the molecular beacon's stem.

b Sequence from databases.

^c These sequences were aligned to derive the corresponding primer.

d The nucleotide positions refer to the C. jejuni atpD sequence fragment (SEQ ID NO. 1576).

Annex LII: Molecular beacon internal hybridization probes for specific detection of atpD s quences (continued).

											Originating	DNA	fragment
SEQ ID NO	Nucleo	tide	seđn	ence	e ^a					<u>-</u>	SEQ ID NO.		cleotide osition
Fungal g	enus:			C	andi	đa	sp.						
2076		AGC 1		YAA	CAT	TTT	CAG	ATT	CAC	CCA	460-478, 663 ^b	69	7-723°

a Underlined nucleotides indicate the molecular beacon's stem.

b These sequences were aligned to derive the corresponding primer.

 $^{^{\}rm C}$ The nucleotide positions refer to the $^{\rm C}$. albicans atpD sequence fragment (SEQ ID NO. 460).

Annex LIII: Internal hybridization prob s for specific detection of atpD sequences.

			Originating D	NA fragment
SEQ ID NO.	Nucleotide	sequence .	SEQ ID NO.	Nucleotide position
Bacterial s	species:	Acinetobacter bauma	nnii	
2169	5'-CCC GTT	TGC GAA AGG TGG	243	304-321
Bacterial s	species:	Klebsiella pneumoni	ae	
2167	5'-CAG CAG	CTG GGC GGC GGT	317	36-53

Annex LIV: Internal hybridization probes for specific d tection of ddl and mtl sequences.

					-		Originating	DNA fragment
SEQ ID NO. Nucleotide sequence .						SEQ ID NO.	Nucleotide position	
Bacterial s	oecies:	j	Enter	coco	ccus	faecium	(đđ1)	
2286	5'-AGT	TGC T	GT AT	AGG	AAA	TG	2288ª	784-803
2287	5'-TCG	AAG T	TG CTC	TAT	TAG	GA	2288 ^a	780-799
Bacterial s	oecies:	1	Enter	0000	cus	faecalis	mt1)	
2289	5'-CAC	CGA A	GA AGA	TGA	AAA	AA	1243ª	264-283
2290	5′-TGG	CAC Ç	GA AGA	AGA	TGA		1243 ^a	261-278
2291	5'-ATT	TTG G	CA CCG	AAG	AAG	A	1243 ^a	257-275

a Sequence from databases.

What is claimed is:

1. A method for generating a repertory of nucleic acids of tuf, fus, atpD and/or recA genes from which are derived probes or primers, or both, useful for the detection of one, more than one related microorganisms, or substantially all microorganisms of a group selected from algae, archaea, bacteria, fungi and parasites, which comprises the step of:

- amplifying the nucleic acids of a plurality of determinedalgal, archaeal, bacterial, fungal and parasitical species with any combination of the primer pairs defined in SEQ ID NOs.: 543, 556-574, 636-655, 664, 681-683, 694, 696-697, 699-700, 708, 812-815, 911-917, 919-922, 935-938, 1203-1207, 1212-1213, 1221-1229, 1605-1606, 1974-1984, 1999-2003, 2282-2285.
- 2. A method for generating a repertory of nucleic acid sequences, which comprises the steps of:
 - reproducing the method of claim 1, and
 - adding the step of:
 - sequencing said nucleic acids.
- 3. A method for generating sequences of probes, or primers, or both, useful for the detection of one, more than one related microorganisms, or substantially all microorganisms of a group selected from algae, archaea, bacteria, fungi and parasites, which comprises the steps of:
 - reproducing the method of claim 2, and
 - adding the steps of:
 - aligning a subset of nucleic acid sequences of said repertory,
 - locating nucleic acid stretches that are present in the nucleic acids of strains or representatives of said one, more than one related microorganisms, or substantially all microorganisms of said group, and not present in the nucleic acid sequences of other microorganisms, and

• deriving consensus nucleic acid sequences useful as probes or primers from said stretches.

- 4. A bank of nucleic acids comprising the repertory of nucleic acids obtained from the method of claim 1.
- 5. A bank of nucleic acid sequences comprising the repertory of nucleic acid sequences obtained from the method of claim 2.
- 6. A method for generating sequences of probes, or primers, or both, useful for the detection of one, more than one related microorganisms, or substantially all microorganisms of a group selected from algae, archaea, bacteria, fungi and parasites, which comprises the steps of.
 - aligning a subset of nucleic acid sequences of the bank as defined in claim 5,
 - locating nucleic acid sequence stretches that are present in the nucleic acid sequences of strains or representatives of said one, more than one related microorganisms, or substantially all microorganisms of said group, and not present in the nucleic acid sequences of other microorganisms, and
 - deriving consensus nucleic acid sequences useful as probes or primers from said stretches.
- 7. A method for generating probes, or primers or both, useful for the detection of one, more than one related microorganisms, or substantially all microorganisms of a group selected from algae, archaea, bacteria, fungi and parasites, which comprises the steps of:
 - reproducing the method of claim 3 or 6, and
 - adding the step of:
 - synthesising said probes or primers upon the nucleic acid sequences thereof.
- 8. A nucleic acid used for universal detection of any one of alga, archaeon, bacterium, fungus and parasite which is obtained from the method of claim 7.

9. A nucleic acid used for universal detection as set forth in claim 8, which has a nucleic acid sequence of at least 12 nucleotides capable of hybridizing with said any one of alga, archaeon, bacterium, fungus and parasite and with any one of SEQ ID NOs.: 543, 556-574, 636-655, 658-661, 664, 681-683, 694, 696, 697, 699, 700, 708, 812-815, 911-917, 919-922, 935-938, 1203-1207, 1212-1213, 1221-1229, 1605-1606, 1974-1984, 1999-2003, 2282-2285.

- 10. A nucleic acid used for the specific and ubiquitous detection and for identification of any one of a algal, archaeal, bacterial, fungal and parasitital species, genus, family and group, which is obtained from the method of claim 7.
- 11. A nucleic acid as set forth in claim 10 having any one of the nucleotide sequences which are defined in SEQ ID NOs.:

539, 540	for the detection and/or identification of Mycobacteriaceae
	family
541, 542, 544,	for the detection and/or identification of Pseudomonads
2121	group
545, 546	for the detection and/or identification of Corynebacterium
	sp.
547, 548, 1202	for the detection and/or identification of Streptococcus sp.
549, 550, 582, 583,	for the detection and/or identification of Streptococcus
625, 626, 627, 628,	agalactiae
1199	
551, 552, 2166,	for the detection and/or identification of Neisseria
2173, 2174, 2175,	gonorrhoeae
2176, 2177, 2178,	
2179	
553, 575, 605, 606,	for the detection and/or identification of Staphylococcus sp.
707, 1175, 1176	
554, 555, 2213	for the detection and/or identification of Chlamydia trachomatis

576, 631, 632, 633, 634, 635, 1163, 1164, 1167, 2076, 2108, 2109	for the detection and/or identification of Candida sp.
577, 1156, 1160 2073	for the detection and/or identification of Candida albicans
578, 1166, 1168, 2074	for the detection and/or identification of Candida dubliniensis
579, 2168 580, 603, 1174, 1236, 1238, 2289, 2290, 2291	for the detection and/or identification of <i>Escherichia coli</i> for the detection and/or identification of <i>Enterococcus faecalis</i>
581	for the detection and/or identification of <i>Haemophilus</i> influenzae
584, 585, 586, 587, 588, 1232, 1234, 2186	for the detection and/or identification of Staphylococcus aureus
589, 590, 591, 592, 593	for the detection and/or identification of Staphylococcus epidermidis
594, 595	for the detection and/or identification of Staphylococcus haemolyticus
596, 597, 598	for the detection and/or identification of Staphylococcus hominis
599, 600, 601, 695, 1208, 1209	for the detection and/or identification of Staphylococcus saprophyticus
602, 1235, 1237, 1696, 1697, 1698, 1699, 1700, 1701, 2286, 2287	for the detection and/or identification of Enterococcus faecium
604	for the detection and/or identification of Enterococcus gallinarum
620, 1122	for the detection and/or identification of Enterococcus casseliflavus, E. flavescens and E. gallinarum
629, 630, 2085, 2086, 2087, 2088, 2089, 2090, 2091, 2092	for the detection and/or identification of Chlamydia pneumoniae

636, 637, 638, 639, 640, 641, 642

for the detection and/or identification of at least the following: Abiotrophia adiacens, Abiotrophia defectiva, Acinetobacter baumannii, Acinetobacter lwoffi, Aerococcus viridans, Bacillus anthracis, Bacillus cereus, Bacillus subtilis. Brucella abortus, Burkholderia cepacia. Citrobacter diversus, Citrobacter freundii, Enterobacter aerogenes, Enterobacter agglomerans. Enterobacter cloacae. Enterococcus avium. Enterococcus casseliflavus, Enterococcus dispar, Énterococcus durans, Enterococcus faecalis, Enterococcus faecium, Enterococcus flavescens, Enterococcus gallinarum, Enterococcus Enterococcus raffinosus, Enterococcus solitarius, Escherichia coli, Gemella morbillorum, Haemophilus Haemophilus ducrevi. haemolyticus, Haemophilus influenzae, Haemophilus parahaemolyticus, Haemophilus parainfluenzae, Hafnia alvei, Kingella kingae, Klebsiella oxytoca, Klebsiella pneumoniae, Legionella pneumophila, Megamonas hypermegale, Moraxella atlantae, Moraxella catarrhalis, Morganella morganii, Neisseria gonorrheae, Neisseria meningitidis, Pasteurella aerogenes, Pasteurella multocida, Peptostreptococcus magnus, Proteus mirabilis, Providencia alcalifaciens, Providencia rettgeri, Providencia rustigianii, Providencia stuartii, Pseudomonas aeruginosa, Pseudomonas fluorescens, Pseudomonas Salmonella bongori, Salmonella choleraesuis, Salmonella enteritidis, Salmonella gallinarum, Salmonella typhimurium, Serratia liquefaciens, Serratia marcescens, Shigella flexneri, Shigella sonnei, Ștaphylococcus aureus, Salmonella Staphylococcus capitis Staphylococcus epidermidis. Staphylococcus haemolyticus, Staphylococcus hominis, Staphylococcus lugduneńsis, Staphylococcus saprophyticus, Staphylococcus simulans. Staphylococcus warneri. Stenotrophomonas maltophilia, Streptococcus acidominimus, Streptococcus agalactiae, Streptococcus anginosus, Streptococcus bovis, Streptococcus constellatus, Streptococcus cricetus, Streptococcus cristatus. Streptococcus dysgalactiae, Streptococcus Streptococcus ferus, Streptococcus gordonii, Streptococcus intermedius, Streptococcus macacae, Streptococcus mitis, Streptococcus mutans, Streptococcus oralis, Streptococcus parasanguinis, Streptococcus parauberis, Streptococcus pneumoniae, Streptococcus pyogenes, Streptococcus ratti, Streptococcus salivarius, Streptococcus sanguinis, Streptococcus sobrinus, Streptococcus uberis, Streptococcus vestibularis, Vibrio cholērae, Yersinia enterocolitica. Yersinia pestis, Yersinia pseudotuberculosis.

656, 657, 271,

for the detection and/or identification of Enterococcus sp.

1136, 1137

for the detection and/or identification of *Leishmania* sp.

•	
703, 704, 705, 706, 793	for the detection and/or identification of Entamoeba sp.
794, 795	for the detection and/or identification of Trypanosoma cruzi
796, 797, 808, 809,	for the detection and/or identification of <i>Clostridium</i> sp.
810, 811	sp.
798, 799, 800, 801,	for the detection and/or identification of Cryptosporidium
802, 803, 804, 805,	parvum
806, 807	
816, 817, 818, 819	for the detection and/or identification of Giardia sp.
820, 821, 822	for the detection and/or identification of Trypanosoma
	brucei
823, 824	for the detection and/or identification of Trypanosoma sp.
825, 826	for the detection and/or identification of Bordetella sp.
923, 924, 925, 926,	for the detection and/or identification of Trypanosomatidae
927, 928	family
933, 934	for the detection and/or identification of Enterobacteriaceae
	group
994, 995, 996, 997,	for the detection and/or identification of Streptococcus
998, 999, 1000,	pyogenes
1001, 1200, 1210,	
1211	
1157, 2079, 2118	for the detection and/or identification of Candida
	parapsilosis
1158, 1159, 2078,	for the detection and/or identification of Candida glabrata
2110, 2111	5
1160, 2077, 2119,	for the detection and/or identification of Candida tropicalis
2120	
1161, 2075, 2112,	for the detection and/or identification of Candida krusei
2113, 2114	
1162	for the detection and/or identification of Candida
	guilliermondii
1162, 2080, 2115	for the detection and/or identification of Candida lusitaniae
2116, 2117	
1165	for the detection and/or identification of Candida
	zeylanoides
1201	for the detection and/or identification of Streptococcus
	pneumoniae

1233	for the detection and/or identification of Staphylococcus sp.							
	other than S. aureus							
1329, 1330, 1331,	for the detection and/or identification of Klebsiella							
1332, 2167, 2281	pneumoniae							
1661, 1665	for the detection and/or identification of Escherichia coli							
4.00 4.01 4.01	and <i>Shigella</i> sp.							
1690, 1691, 1692,	for the detection and/or identification of Acinetobacter							
1693, 2169	baumanii							
1694, 1695, 2122	for the detection and/or identification of <i>Pseudomonas</i> aeruginosa							
1971, 1972, 1973	for the detection and/or identification of Cryptococcus sp.							
2081, 2082, 2083	for the detection and/or identification of Legionella sp.							
2084	for the detection and/or identification of Legionella							
	pneumophila							
2093, 2094, 2095,	for the detection and/or identification of Mycoplasma							
2096	pneumoniae							
2106, 2107	for the detection and/or identification of Cryptococcus neoformans							
2131, 2132, 2133	for the detection and/or identification of Campylobacter							
	jejuni and C. coli							
2134, 2135, 2136	for the detection and/or identification of Bacteroides fragilis							
2170	for the detection and/or identification of Abiotrophia adiacens							
2171	for the detection and/or identification of Gemella sp.							
2172	for the detection and/or identification of Enterococcus sp.,							
	Gemella sp., A. adiacens							
2180, 2181, 2182	for the detection and/or identification of Bordetella pertussis.							

- 12. A method for detecting the presence in a test sample of a microorganism that is an alga, archaeum, bacterium, fungus or parasite, which comprises:
 - a) putting in contact any test sample tuf or atpD or recA nucleic acids and nucleic acid primers and/or probes, said primers and/or probes having

been selected to be sufficiently complementary to hybridize to one or more tuf or atpD or recA nucleic acids that are specific to said group of microorganisms;

- b) allowing the primers and/or probes and any test sample tuf or atpD or recA nucleic acids to hybridize under specified conditions such as said primers and/or probes hybridize to the tuf or atpD or recA nucleic acids of said microorganism and does not detectably hybridize to tuf or atpD or recA sequences from other microorganisms; and,
- c) testing for hybridization of said primers and/or probes to any test sample *tuf* or *atpD* or *recA* nucleic acids.
- 13. The method of claim 12 wherein c) is based on a nucleic acid target amplification method.
- 14. The method of claim 12 wherein c) is based on a signal amplification method.
- 15. The method of any one of claims 12 to 14 wherein said primers and/or probes that are sufficiently complementary are perfectly complementary.
- 16. The method of any one of claims 12 to 14 wherein said primers and/or probes that are sufficiently complementary are not perfectly complementary.
- 17. A method for the specific detection and/or identification of a microorganism that is an algal, archaeal, bacterial, fungal or parasitical species, genus, family or group in any sample, using a panel of probes or amplification primers or both, each individual probe or primer being derived from a nucleic acid which has a nucleotide sequence of at least 12 nucleotides in length capable of hybridizing with the nucleic acids of said microorganism and with a nucleic acid having any one of the nucleotide sequences defined in SEQ ID NOs.:
- for the detection and/or identification of Mycobacteriaceae family
- 541, 542, 544, 2121 for the detection and/or identification of Pseudomonads group

545, 546	for the detection and/or identification of Corynebacterium sp.
547, 548, 1202 549, 550, 582, 583, 625, 626, 627, 628, 1199	for the detection and/or identification of Streptococcus sp.
551, 552, 2166, 2173, 2174, 2175, 2176, 2177, 2178, 2179	for the detection and/or identification of Neisseria gonorrhoeae
553, 575, 605, 606, 707, 1175, 1176	for the detection and/or identification of Staphylococcus sp.
554, 555, 2213	for the detection and/or identification of <i>Chlamydia</i> trachomatis
576, 631, 632, 633, 634, 635, 1163, 1164, 1167, 2076, 2108, 2109	for the detection and/or identification of Candida sp.
577, 1156, 1160 2073	for the detection and/or identification of Candida albicans
578, 1166, 1168, 2074 579, 2168 580, 603, 1174,	for the detection and/or identification of <i>Candida dubliniensis</i> for the detection and/or identification of <i>Escherichia coli</i> for the detection and/or identification of <i>Enterococcus</i>
1236, 1238, 2289, 2290, 2291	faecalis
581	for the detection and/or identification of Haemophilus influenzae
584, 585, 586, 587, 588, 1232, 1234, 2186	for the detection and/or identification of Staphylococcus aureus
589, 590, 591, 592, 593	for the detection and/or identification of Staphylococcus epidermidis
594, 595	for the detection and/or identification of Staphylococcus haemolyticus
596, 597, 598	for the detection and/or identification of Staphylococcus hominis

599, 600, 601, 695, 1208, 1209 602, 1235, 1237, 1696, 1697, 1698, 1699, 1700, 1701, 2286, 2287 604

620, 1122

629, 630, 2085, 2086, 2087, 2088, 2089, 2090, 2091, 2092 636, 637, 638, 639

636, 637, 638, 639, 640, 641, 642

for the detection and/or identification of Staphylococcus saprophyticus for the detection and/or identification of Enterococcus faecium

for the detection and/or identification of *Enterococcus* gallinarum for the detection and/or identification of *Enterococcus* casseliflavus, E. flavescens and E. gallinarum for the detection and/or identification of *Chlamydia* pneumoniae

for the detection and/or identification of at least the following: Abiotrophia adiacens, Abiotrophia defectiva, Acinetobacter baumannii, Acinetobacter lwoffi, Aerococcus viridans, Bacillus anthracis, Bacillus cereus, Bacillus subtilis, Brucella Burkholderia cepacia, abortus, Citrobacter diversus. Citrobacter freundii, Enterobacter aerogenes, Enterobacter agglomerans, Enterobacter cloacae, Enterococcus avium, Enterococcus casseliflavus. Enterococcus dispar. Enterococcus durans, Enterococcus faecalis, Enterococcus faecium, Enterococcus flavescens, Enterococcus gallinarum, Enterococcus mundtii. Enterococcus raffinosus, Enterococcus solitarius, Escherichia coli, Gemella morbillorum, Haemophilus ducrevi. Haemophilus haemolyticus, Haemophilus influenzae. Haemophilus parahaemolyticus, Haemophilus parainfluenzae, Hafnia alvei, Kingella kingae, Klebsiella oxytoca, Klebsiella pneumoniae, Legionella pneumophila, Megamonas hypermegale, Moraxella atlantae, Moraxella catarrhalis, Morganella morganii, Neisseria gonorrheae, Neisseria meningitidis, Pasteurella aerogenes, Pasteurella Peptostreptococcus magnus, Proteus mirabilis, Providencia alcalifaciens, Providencia rettgeri, Providencia rustigianii, Providencia stuartii, Pseudomonas aeruginosa, Pseudomonas fluorescens. Pseudomonas stutzeri. Salmonella bongori, Salmonella choleraesuis, Salmonella enteritidis, Salmonella gallinarum, Salmonella typhimurium, Serratia liquefaciens, Serratia marcescens, Shigella flexneri, Shigella sonnei, Staphylococcus aureus, Staphylococcus capitis Staphylococcus epidermidis, Staphylococcus haemolyticus. Staphylococcus hominis. Staphylococcus lugdunensis, Staphylococcus saprophyticus, Staphylococcus simulans, Staphylococcus warneri, Stenotrophomonas

maltophilia, Streptococcus acidominimus, Streptococcus agalactiae, Streptococcus anginosus, Streptococcus bovis, Streptococcus constellatus. Streptococcus cricetus. Streptococcus cristatus, Streptococcus dysgalactiae, Streptococcus equi, Streptococcus ferus, Streptococcus gordonii, Streptococcus intermedius, Streptococcus тасасае. Streptococcus mitis, Streptococcus mutans, Streptococcus oralis, Streptococcus parasanguinis, Streptococcus parauberis, Streptococcus pneumoniae, Streptococcus pyogenes, Streptococcus ratti, Streptococcus salivarius, Streptococcus sanguinis, Streptococcus sobrinus. Streptococcus uberis, Streptococcus vestibularis, Vibrio cholerae, Yersinia enterocolitica, Yersinia pestis, Yersinia pseudotuberculosis.

656, 657, 271, for the detection and/or identification of Enterococcus sp. 1136, 1137 701, 702 for the detection and/or identification of Leishmania sp. 703, 704, 705, 706, for the detection and/or identification of Entamoeba sp. 793 794, 795 for the detection and/or identification of Trypanosoma cruzi 796, 797, 808, 809, for the detection and/or identification of Clostridium sp. 810, 811 798, 799, 800, 801, for the detection and/or identification of Cryptosporidium 802, 803, 804, 805, parvum 806, 807 816, 817, 818, 819 for the detection and/or identification of Giardia sp. for the detection and/or identification of Trypanosoma 820, 821, 822 brucei 823, 824 for the detection and/or identification of Trypanosoma sp. 825, 826 for the detection and/or identification of Bordetella sp. 923, 924, 925, 926, for the detection and/or identification of Trypanosomatidae 927, 928 family 933, 934 for the detection and/or identification of Enterobacteriaceae group 994, 995, 996, 997, for the detection and/or identification of Streptococcus 998, 999, 1000, pyogenes 1001, 1200, 1210, 1211 1157, 2079, 2118 for the detection and/or identification of Candida

parapsilosis

1158, 1159, 2078, 2110, 2111	for the detection and/or identification of Candida glabrata
1160, 2077, 2119, 2120	for the detection and/or identification of Candida tropicalis
1161, 2075, 2112, 2113, 2114	for the detection and/or identification of Candida krusei
1162	for the detection and/or identification of Candida guilliermondii
1162, 2080, 2115 2116, 2117	for the detection and/or identification of Candida lusitaniae
1165	for the detection and/or identification of Candida zeylanoides
1201	for the detection and/or identification of Streptococcus pneumoniae
1233	for the detection and/or identification of Staphylococcus sp. other than S. aureus
1329, 1330, 1331, 1332, 2167, 2281	for the detection and/or identification of <i>Klebsiella</i> pneumoniae
1661, 1665	for the detection and/or identification of <i>Escherichia coli</i> and <i>Shigella</i> sp.
1690, 1691, 1692, 1693, 2169	for the detection and/or identification of <i>Acinetobacter</i> baumanii
1694, 1695, 2122	for the detection and/or identification of Pseudomonas aeruginosa
1971, 1972, 1973	for the detection and/or identification of Cryptococcus sp.
2081, 2082, 2083	for the detection and/or identification of Legionella sp.
2084	for the detection and/or identification of Legionella pneumophila
2093, 2094, 2095, 2096	for the detection and/or identification of <i>Mycoplasma</i> pneumoniae
2106, 2107	for the detection and/or identification of Cryptococcus neoformans
2131, 2132, 2133	
,, -	for the detection and/or identification of Campylobacter jejuni and C. coli

2170	for the detection and/or identification of Abiotrophia adiacens
2171	for the detection and/or identification of Gemella sp.
2172	for the detection and/or identification of Enterococcus sp.,
	Gemella sp., A. adiacens
2180, 2181, 2182	for the detection and/or identification of Bordetella pertussis,

said method comprising the step of contacting the nucleic acids of the sample with said primers or probes under suitable conditions of hybridization or of amplification and detecting the presence of hybridized probes or amplified products as an indication of the presence of said specificalgal, archaeal, bacterial, fungal or parasitical species, genus, family or group.

- 18. A method for the universal detection of any bacterium, fungus or parasite in a sample, using a panel of probes or amplification primers or both, each individual probe or primer being derived from a nucleic acid as defined in claims 8 or 9, the method comprising the step of contacting the nucleic acids of the sample with said primers or probes under suitable conditions of hybridization or of amplification and detecting the presence of any alga, archaeon, bacterium, fungus or parasite.
- 19. A method as set forth in claim 17 or 18, which further comprises probes or primers, or both, for the detection of at least one antimicrobial agent resistance gene.
- 20. A method as set forth in claim 17, 18 or 19, which further comprises probes or primers, or both, for the detection of at least one toxin gene.
- 21. A method as set forth in claim 19 or 20, wherein the probes or primers for the detection of said antimicrobial agent resistance gene or toxin gene have at least 12 nucleotides in length capable ofhybridizing with an antimicrobial agent resistance gene and/or toxin gene selected from SEQ ID NOs.:
- 1078, 1079, 1085 for the detection and/or identification of the *E. coli* Shigalike toxin 2 (stx₂) gene

1080, 1081, 1084, 2012 1082, 1083	for the detection and/or identification of the E . coli Shigalike toxin 1 (stx_1) gene for the detection and/or identification of E . coli Shiga-like toxins 1 and 2 (stx) genes
1086, 1087, 1088, 1089, 1090, 1091, 1092, 1170, 1239, 1240, 2292	for the detection and/or identification of the vanA resistance gene
1095, 1096, 1171, 1241, 2294, 2295	for the detection and/or identification of the vanB resistance gene
1111, 1112, 1113, 1114, 1115, 1116, 1118, 1119, 1120, 1121, 1123, 1124	for the detection and/or identification of the vanAB resistance genes
1103, 1104, 1109, 1110	for the detection and/or identification of the vanC1
1105, 1106, 1107, 1108 1097, 1098, 1099,	resistance gene for the detection and/or identification of the vanC2 and vanC3 resistance genes for the detection and/or identification of the vanC1, vanC2
1100, 1101, 1102 1150, 1153, 1154,	and vanC3 resistance genes for the detection and/or identification of the vanAXY
1155	resistance genes
1094, 1125, 1126,	for the detection and/or identification of the S. pneumoniae
1127, 1128, 1129,	pbp1a gene
1130, 1131, 1132,	
1133, 1134, 1135,	
1192, 1193, 1194, 1195, 1196, 1197,	
1214, 1216, 1217,	
1214, 1210, 1217, 1218, 1219, 1220,	
2015, 2016, 2017,	
2018, 2019, 2020,	
2021, 2022, 2023,	
2024, 2025, 2026,	
2027, 2028, 2029,	
2030, 2031, 2032,	
2033, 2034, 2035,	
2036, 2037, 2038,	
2039	·

1142, 1143, 1144,	for the detection and/or identification of the S. pneumoniae
1145	pbp2b gene
1146, 1147, 1148,	for the detection and/or identification of the S. pneumoniae
1149	pbp2x gene
1177, 1231	for the detection and/or identification of the mecA resistance
1290, 1291, 1292,	gene for the detection and/on identification of the
1293, 1294, 1295,	for the detection and/or identification of the gyrA resistance gene
1296, 1297, 1298,	gene
1333, 1334, 1335,	
1340, 1341, 1936,	
1937, 1940, 1942,	
1943, 1945, 1946,	
1947, 1948, 1949,	
2040, 2041, 2042,	
2043, 2250, 2251	
1301, 1302, 1303,	for the detection and/or identification of the gyrB resistance
1304, 1305, 1306	gene
1308, 1309, 1310,	for the detection and/or identification of the parC resistance
1311, 1312, 1313,	gene
1314, 1315, 1316,	
1317, 1318, 1319,	
1336, 1337, 1338,	
1339, 1342, 1343,	
1934, 1935, 1938,	
1939, 1941, 1944,	
1950, 1951, 1952,	
1953, 1955, 2044,	
2045, 2046	
1322, 1323, 1324,	for the detection and/or identification of the parE resistance
1325, 1326, 1327	gene
1344, 1345, 1346,	for the detection and/or identification of the $aac(2')$ -Ia
1347	resistance gene
1349, 1350	for the detection and/or identification of the $aac(3')$ -Ib
1352, 1353, 1354,	resistance gene
1355, 1353, 1354,	for the detection and/or identification of the $aac(3')$ -IIb resistance gene
1357, 1358, 1359,	for the detection and/or identification of the $aac(3')$ - IVa
1360	resistance gene
1362, 1363, 1364,	for the detection and/or identification of the $aac(3')$ -VIa
1365	resistance gene
- -	

1367, 1368, 1369,	for the detection and/or identification of the $aac(6')$ -Ia
1370	resistance gene
1372, 1373, 1374,	for the detection and/or identification of the aac(6')-Ic
1375	resistance gene
1377, 1378, 1379,	for the detection and/or identification of the ant(3')-Ia
1380	resistance gene
1382, 1383, 1384,	for the detection and/or identification of the ant(4')-Ia
1385	resistance gene
1387, 1388, 1389,	for the detection and/or identification of the aph(3')-Ia
1390	resistance gene
1392, 1393, 1394,	for the detection and/or identification of the aph(3')-IIa
1395	resistance gene
1397, 1398, 1399,	for the detection and/or identification of the aph(3')-IIIa
1400	resistance gene
1402, 1403, 1404,	for the detection and/or identification of the aph(3')-VIa
1405, 2252	resistance gene
1407, 1408, 1409	for the detection and/or identification of the blaCARB
1410	resistance gene
1412, 1413, 1414,	for the detection and/or identification of the blaCMY-2
1415	resistance gene
1417, 1418	for the detection and/or identification of the blaCTX-M-
	land blaCTX-M-2 resistance genes
1419, 1420, 1421,	for the detection and/or identification of the blaCTX-M-1
1422	resistance gene
1424, 1425, 1426,	for the detection and/or identification of the blaCTX-M-2
1427	resistance gene
1429, 1430, 1431,	for the detection and/or identification of the blaIMP
1432	resistance gene
1434, 1435	for the detection and/or identification of the blaOXA2
	resistance gene
1436, 1437	for the detection and/or identification of the blaOXA10
	resistance gene
1440, 1441	for the detection and/or identification of the blaPER-1
	resistance gene

1443, 1444	for the detection and/or identification of the blaPER-2
·	resistance gene
1446, 1447, 1448,	for the detection and/or identification of the blaPER-1 and
1449	blaPER -2 resistance genes
1450, 1451	for the detection and/or identification of the dfrA resistance
	gene
1453, 1454, 1455,	for the detection and/or identification of the dhfrIa and
1456	dhfrXV resistance genes
1457, 1458, 1459,	for the detection and/or identification of the dhfrIa
1460, 2253	resistance gene
1462, 1463, 1464,	for the detection and/or identification of the dhfrIb and
1465	dhfrV resistance genes
1466, 1467, 1468,	for the detection and/or identification of the dhfrIb
1469	resistance gene
1471, 1472, 1473,	for the detection and/or identification of the dhfrVresistance
1474	gene
1476, 1477, 1478,	for the detection and/or identification of the dhfrVI
1479	resistance gene
1481, 1482, 1483,	for the detection and/or identification of the dhfrVII and
1484	dhfrXVII resistance genes
1485, 1486, 1487,	for the detection and/or identification of the dhfrVII
1488	resistance gene
1490, 1491, 1492,	for the detection and/or identification of the dhfrVIII.
1493	resistance gene
1495, 1496, 1497,	for the detection and/or identification of the dhfrIX
1498	resistance gene
1500, 1501, 1502,	for the detection and/or identification of the dhfrXII
1503	resistance gene
1505, 1506	for the detection and/or identification of the dhfrXIII
	resistance gene
1508, 1509, 1510,	for the detection and/or identification of the dhfrXV
1511	resistance gene
1513, 1514, 1515,	for the detection and/or identification of the dhfrXVII
1516	resistance gene

1528, 1529	for the detection and/or identification of the ereA and ereA2 resistance genes
1531, 1532, 1533, 1534	for the detection and/or identification of the ereB resistance gene
1536, 1537, 1538, 1539	for the detection and/or identification of the <i>linA</i> and <i>linA'</i> resistance genes
1541, 1542, 1543,	for the detection and/or identification of the linB resistance
1544 1546, 1547	gene for the detection and/or identification of the <i>mefA</i> resistance gene
1549, 1550	for the detection and/or identification of the <i>mefE</i> resistance gene
1552, 1553, 1554, 1555	for the detection and/or identification of the <i>mefA</i> and <i>mefE</i> resistance genes
1556, 1557, 1558, 1559	for the detection and/or identification of the <i>mphA</i> and <i>mphK</i> resistance genes
1581, 1582, 1583,	for the detection and/or identification of the satG resistance
1584 1586, 1587, 1588,	gene for the detection and/or identification of the <i>tetM</i> resistance
1589, 2254 1591, 1592, 1593,	gene for the detection and/or identification of the vanD resistance
2297 1595, 1596, 1597,	gene for the detection and/or identification of the vanE resistance
1598 1609, 1610, 1611,	for the detection and/or identification of the vatB resistance
1612 1614, 1615, 1616,	gene for the detection and/or identification of the <i>vatC</i> resistance
1617 1619, 1620, 1621,	gene for the detection and/or identification of the <i>vga</i> resistance
1622 1624, 1625, 1626,	gene for the detection and/or identification of the vgaB resistance
1627 1629, 1630, 1631, 1632	gene for the detection and/or identification of the vgb and vgh resistance genes

1634, 1635, 1636, 1637	for the detection and/or identification of the vgbB resistance gene
1883, 1884, 1885, 1886, 1887, 1888, 1889, 1890, 1891, 1892, 1893, 1894, 1895, 1896, 1897, 1898	for the detection and/or identification of the blaSHV resistance gene
1906, 1907, 1908, 1909, 1910, 1911, 1912, 1913, 1914, 1915, 1916, 1917, 1918, 1919, 1920, 1921, 1922, 1923, 1924, 1925, 1926, 2006, 2007, 2008, 2009, 2141	for the detection and/or identification of the blaTEM resistance gene
1961, 1962, 1963,	for the detection and/or identification of the sulII resistance
1964 1966, 1967, 1968, 1969	gene for the detection and/or identification of the <i>tetB</i> resistance gene
2065, 2066, 2067, 2068, 2069, 2070, 2071	for the detection and/or identification of the rpoB resistance gene
2098, 2099, 2100	for the detection and/or identification of the <i>inhA</i> resistance gene
2102, 2103, 2104	for the detection and/or identification of the <i>embB</i> resistance gene
2123, 2124, 2125	for the detection and/or identification of the C. difficile cdtA toxin gene
2126, 2127, 2128	for the detection and/or identification of the <i>C. difficile cdtB</i> toxin gene
2142, 2143	for the detection and/or identification of the mupA resistance gene
2145, 2146	for the detection and/or identification of the catI resistance
2148, 2149	gene for the detection and/or identification of the catII resistance gene

2151, 2152	for the detection and/or identification of the catIII resistance
	gene
2154, 2155	for the detection and/or identification of the catP resistance
	gene
2157, 2158, 2160,	for the detection and/or identification of the cat resistance
2161	gene
2163, 2164	for the detection and/or identification of the ppflo-like
	resistance gene.

- 22. A composition of matter comprising a specific nucleic acid as set forth in claim 10 or 11, which is specific for a bacterial, fungal or parasitical species, genus, family, or group, or a nucleic acid as set forth in claim 8 or 9 which is universal for a bacterium, fungus or parasite, or both specific and universal nucleic acids, in conjunction with a nucleic acid sequence of at least 12 nucleotides capable of hybridizing with an antimicrobial agent resistance gene and/or toxin gene.
- 23. A composition as set forth in claim 22, wherein the nucleic acid capable of hybridizing with an antimicrobial agent resistance gene and/or toxin gene is any one of:

for the detection and/or identification of the E . coli Shigalike toxin 2 (stx_2) gene
for the detection and/or identification of the E . coli Shigalike toxin 1 (stx_1) gene
for the detection and/or identification of E . coli Shiga-like toxins 1 and 2 (stx) genes
for the detection and/or identification of the vanA resistance
gene
for the detection and/or identification of the vanB resistance
gene
for the detection and/or identification of the vanAB
resistance genes

1103, 1104, 1109,	for the detection and/or identification of the vanC1
1110	resistance gene
1105, 1106, 1107,	for the detection and/or identification of the vanC2 and
1108 1097, 1098, 1099,	vanC3 resistance genes
1100, 1101, 1102	for the detection and/or identification of the vanC1, vanC2
1150, 1151, 1162	and vanC3 resistance genes
1155, 1155, 1154,	for the detection and/or identification of the <i>vanAXY</i> resistance genes
1094, 1125, 1126,	for the detection and/or identification of the S. pneumoniae
1127, 1128, 1129,	pbp1a gene
1130, 1131, 1132,	poptu gene
1133, 1134, 1135,	
1192, 1193, 1194,	
1195, 1196, 1197,	
1214, 1216, 1217,	
1218, 1219, 1220,	
2015, 2016, 2017,	
2018, 2019, 2020,	
2021, 2022, 2023,	
2024, 2025, 2026,	
2027, 2028, 2029,	
2030, 2031, 2032,	
2033, 2034, 2035,	
2036, 2037, 2038,	
2039	
1142, 1143, 1144,	for the detection and/or identification of the S. pneumoniae
1145	pbp2b gene
1146, 1147, 1148,	for the detection and/or identification of the S. pneumoniae
1149	pbp2x gene
1177, 1231	for the detection and/or identification of the mecA resistance
1000 1001 1000	gene
1290, 1291, 1292,	for the detection and/or identification of the gyrA resistance
1293, 1294, 1295,	gene
1296, 1297, 1298,	
1333, 1334, 1335,	
1340, 1341, 1936,	
1937, 1940, 1942,	
1943, 1945, 1946,	
1947, 1948, 1949,	
2040, 2041, 2042, 2043, 2250, 2251	
2073, 2230, 2231	

~ ~ 100 8 2000 8

1301, 1302, 1303,	for the detection and/or identification of the gyrB resistance
1304, 1305, 1306	gene
1308, 1309, 1310,	for the detection and/or identification of the parC resistance
1311, 1312, 1313,	gene
1314, 1315, 1316,	
1317, 1318, 1319,	
1336, 1337, 1338,	
1339, 1342, 1343,	
1934, 1935, 1938,	
1939, 1941,1944,	
1950, 1951, 1952,	
1953, 1955, 2044,	
2045, 2046	
1322, 1323, 1324,	for the detection and/or identification of the parE resistance
1325, 1326, 1327	gene
1344, 1345, 1346,	for the detection and/or identification of the $aac(2')$ -Ia
1347	resistance gene
1349, 1350	for the detection and/or identification of the $aac(3')$ -Ib
1050 1050 1051	resistance gene
1352, 1353, 1354,	for the detection and/or identification of the $aac(3')$ -IIb
1355	resistance gene
1357, 1358, 1359,	for the detection and/or identification of the $aac(3')$ -IVa
1360	resistance gene
1362, 1363, 1364,	for the detection and/or identification of the $aac(3')$ -VIa
1365	resistance gene
1367, 1368, 1369,	for the detection and/or identification of the $aac(6')$ -Ia
1370	resistance gene
1372, 1373, 1374,	for the detection and/or identification of the $aac(6')$ -Ic
1375	resistance gene
1377, 1378, 1379,	for the detection and/or identification of the ant(3')-Ia
1380	resistance gene
1382, 1383, 1384,	for the detection and/or identification of the ant(4')-Ia
1385	resistance gene
1387, 1388, 1389,	for the detection and/or identification of the $aph(3')$ -Ia
1390	resistance gene
1392, 1393, 1394,	for the detection and/or identification of the $aph(3')$ -IIa
1395	resistance gene
1397, 1398, 1399,	for the detection and/or identification of the $aph(3')$ -IIIa
1400	resistance gene

1402, 1403, 1404,	for the detection and/or identification of the aph(3')-VIa
1405, 2252	resistance gene
1407, 1408, 1409	for the detection and/or identification of the blaCARB
1410	resistance gene
1412, 1413, 1414,	for the detection and/or identification of the blaCMY-2
1415	resistance gene
1417, 1418	for the detection and/or identification of the blaCTX-M-
	1 and blaCTX-M - 2 resistance genes
1419, 1420, 1421,	for the detection and/or identification of the blaCTX-M-1
1422	resistance gene
1424, 1425, 1426,	for the detection and/or identification of the blaCTX-M-2
1427	resistance gene
1429, 1430, 1431,	for the detection and/or identification of the blaIMP
1432	resistance gene
1434, 1435	for the detection and/or identification of the blaOXA2
	resistance gene
1436, 1437	for the detection and/or identification of the blaOXA10
	resistance gene
1440, 1441	for the detection and/or identification of the blaPER-1
	resistance gene
1443, 1444	for the detection and/or identification of the blaPER-2
	resistance gene
1446, 1447, 1448,	for the detection and/or identification of the blaPER-1 and
1449	blaPER -2 resistance genes
1450, 1451	for the detection and/or identification of the dfrA resistance
	gene
1453, 1454, 1455,	for the detection and/or identification of the dhfrIa and
1456	dhfrXV resistance genes
1457, 1458, 1459,	for the detection and/or identification of the dhfrIa
1460, 2253	resistance gene
1462, 1463, 1464,	for the detection and/or identification of the dhfrIb and
1465	dhfrV resistance genes
1466, 1467, 1468,	for the detection and/or identification of the dhfrIb
1469	resistance gene

1471, 1472, 1473, 1474	for the detection and/or identification of the dhfrVresistance									
1474, 1477, 1478,	gene for the detection and/or identification of the NATA									
1479	for the detection and/or identification of the <i>dhfrVI</i> resistance gene									
1481, 1482, 1483,	•									
1484	for the detection and/or identification of the <i>dhfrVII</i> and <i>dhfrXVII</i> resistance genes									
1485, 1486, 1487,	for the detection and/or identification of the dhfrVII									
1488	resistance gene									
1490, 1491, 1492,	for the detection and/or identification of the dhfrVIII									
1493	resistance gene									
1495, 1496, 1497,	for the detection and/or identification of the dhfrIX									
1498	resistance gene									
1500, 1501, 1502,	for the detection and/or identification of the dhfrXII									
1503	resistance gene									
1505, 1506	for the detection and/or identification of the dhfrXIII									
	resistance gene									
1508, 1509, 1510,	for the detection and/or identification of the dhfrXV									
1511	resistance gene									
1513, 1514, 1515,	for the detection and/or identification of the dhfrXVII									
1516	resistance gene									
1528, 1529	for the detection and/or identification of the ereA and ereA2									
	resistance genes									
1531, 1532, 1533,	for the detection and/or identification of the ereB resistance									
1534	gene									
1536, 1537, 1538,	for the detection and/or identification of the linA and linA'									
1539	resistance genes									
1541, 1542, 1543,	for the detection and/or identification of the linB resistance									
1544	gene									
1546, 1547	for the detection and/or identification of the mefA resistance									
1540 1550	gene									
1549, 1550	for the detection and/or identification of the mefE resistance									
1550 1550 1554	gene for the detection and/online tile tile of the CA o									
1552, 1553, 1554, 1555	for the detection and/or identification of the <i>mefA</i> and <i>mefE</i>									
1555	resistance genes									

1556, 1557, 1558, 1559	for the detection and/or identification of the mphA and mphK resistance genes
1581, 1582, 1583,	for the detection and/or identification of the satG resistance
1584	gene
1586, 1587, 1588,	for the detection and/or identification of the tetM resistance
1589, 2254	gene
1591, 1592, 1593,	for the detection and/or identification of the vanD resistance
2297	gene
1595, 1596, 1597, 1598	for the detection and/or identification of the vanE resistance
	gene
1609, 1610, 1611, 1612	for the detection and/or identification of the vatB resistance
1614, 1615, 1616,	gene for the detection and/anidavtification of the control of the
1617	for the detection and/or identification of the vatC resistance
1619, 1620, 1621,	gene for the detection and/or identification of the access to
1622	for the detection and/or identification of the vga resistance gene
1624, 1625, 1626,	for the detection and/or identification of the vgaB resistance
1627	gene
1629, 1630, 1631,	for the detection and/or identification of the vgb and vgh
1632	resistance genes
1634, 1635, 1636,	for the detection and/or identification of the vgbB resistance
1637	gene
1883, 1884, 1885,	for the detection and/or identification of the blaSHV
1886, 1887, 1888,	resistance gene
1889, 1890, 1891,	
1892, 1893, 1894,	
1895, 1896, 1897,	
1898	
1906, 1907, 1908,	for the detection and/or identification of the blaTEM
1909, 1910, 1911,	resistance gene
1912, 1913, 1914,	
1915, 1916, 1917,	
1918, 1919, 1920,	
1921, 1922, 1923,	
1924, 1925, 1926,	
2006, 2007, 2008, 2009, 2141	
1961, 1962, 1963,	for the detection and/or identification of the sulII resistance
1964	gene

1966, 1967, 1968, 1969	for the detection and/or identification of the tetB resistance gene							
2065, 2066, 2067,	for the detection and/or identification of the rpoB resistance							
2068, 2069, 2070, 2071	gene							
	for the detection on the distance of the dista							
2098, 2099, 2100	for the detection and/or identification of the <i>inhA</i> resistance gene							
2102, 2103, 2104	for the detection and/or identification of the <i>embB</i> resistance gene							
2123, 2124, 2125	for the detection and/or identification of the C. difficile cdtA toxin gene							
2126, 2127, 2128	for the detection and/or identification of the C. difficile cdtB toxin gene							
2142, 2143	for the detection and/or identification of the mupA resistance gene							
2145, 2146	for the detection and/or identification of the <i>catI</i> resistance gene							
2148, 2149	for the detection and/or identification of the <i>catII</i> resistance gene							
2151, 2152	for the detection and/or identification of the catIII resistance gene							
2154, 2155	for the detection and/or identification of the <i>catP</i> resistance gene							
2157, 2158, 2160,	for the detection and/or identification of the <i>cat</i> resistance							
2161	gene							
2163, 2164	for the detection and/or identification of the <i>ppflo</i> -like resistance gene.							

24. A nucleic acid having at least 12 nucleotides in length, capable of hybridizing with the nucleotide sequence of any one of the *tuf* sequences defined in SEQ ID NOs.: 1-73, 75-241, 399-457, 498-529, 612-618, 621-624, 675, 677, 717-736, 779-792, 840-855, 865, 868-888, 897-910, 932, 967-989, 992, 1266-1287, 1518-1526, 1561-1575, 1578-1580, 1662-1664, 1666-1667, 1669-1670, 1673-1683, 1685-1689, 1786-1843, 1874-1881, 1956-1960, 2183-2185, 2187-2188, 2193-2201, 2214-2249, 2255-2272.

25. A nucleic acid having at least 12 nucleotides in length, capable of hybridizing with the nucleotide sequence of any one of the *atpD* sequences defined in SEQ ID NOs.: 242-270, 272-398, 458-497, 530-538, 663, 667, 673, 674, 676, 678-680, 737-778, 827-832, 834-839, 856-862, 866-867, 889-896, 929-931, 941-966, 1245-1254, 1256-1265, 1527, 1576-1577, 1600-1604,1638-1647, 1649-1660, 1671, 1684, 1844-1848, 1849-1865, 2189-2192.

- 26. A nucleic acid having at least 12 nucleotides in length, capable of hybridizing with the nucleotide sequence of any one of the *recA* sequences defined in SEQ ID NOs.: 990-991, 1003, 1288-1289, 1714, 1756-1763, 1866-1873 and 2202-2212.
- 27. A nucleic acid having at least 12 nucleotides in length, capable of selectively hybridizing with the nucleotide sequence of any one of the antimicrobial agent resistance gene sequences defined in SEQ ID NOs.: 1004-1075, 1255, 1607-1608, 1648, 1764-1785, 2013-2014, 2056-2064, 2273-2280.
- 28. The nucleic acid sequences of the nucleic acids of any one of claims 24 to 27.
- 29. The use of a nucleic acid having at least 12 nucleotides in length capable of hybridizing with the nucleic acids of any one of the antimicrobial agent resistance genes sequences defined in SEQ ID NOs.: 1004-1075, 1255, 1607-1608, 1648, 1764-1785, 2013-2014, 2056-2064, 2273-2280 for the detection and identification of microbial species.
- 30. The use of a nucleic acid having at least 12 nucleotides in length capable of hybridizing with the nucleic acids of any one of the toxin genes defined in SEQ ID NOs.: 1078-1085, 2012 and 2123 to 2128 for the detection and identification of microbial species.
- 31. A repertory of hexA nucleic acids used for the detection and/or identification of Streptococcus pneumoniae, which repertory is created by amplifying

the nucleic acids of any streptococcal species with any combination of primers SEQ ID NOs.: 1179, 1181 and 1182.

- 32. A repertory as defined in claim 31, which comprises the nucleic acids having a nucleotide sequence defined in SEQ ID NOs.: 1184 to 1191.
- 33. A repertory of nucleic acid sequences derived from the repertory of claim 31 or 32.
- 34. A nucleic acid used for the specific and ubiquitous detection and for identification of *Streptococcus pneumoniae*, which is derived from the repertory of claim 31.
- 35. A nucleic acid as set forth in claim 34 which has a nucleic acid sequence of at least 12 nucleotides capable of hybridizing with said any Streptococcus pneumoniae and with any one of SEQ ID NOs.: 1184 to 1187.
- 36. A nucleic acid as set forth in claim 34, which has a nucleic acid sequence of at least 12 nucleotides capable of hybridizing with the nucleic acids of *Streptococcus pneumoniae* and with any one of the nucleic acids having SEQ ID NOs.: 1179, 1180, 1181, 1182.
- 37. A peptide derived from the translation of the nucleic acids from the repertory obtained from the method of claim 1, 31 or 32, or of the nucleic acids defined in any one of claims 24 to 27, 35 and 36.
 - 38. A peptide sequence derived from the peptide of claim 37.
- 39. A recombinant vector comprising a nucleic acid obtained from the method of claim 1, 31 or 32, or from the nucleic acids defined in any one of claims 24 to 27, 35 and 36.
- 40. A recombinant vector as defined in claim 39 which is an expression vector.

41. A recombinant host cell comprising the recombinant vector defined in claim 39 or 40.

- 42. The use of the nucleic acid sequences defined in claim 28 or 33, or obtained from the method of claim 2 and of the protein sequences deduced from said nucleic acid sequences, for the design of a therapeutic agent effective against said microorganisms.
- 43. The use as defined in claim 42, wherein said therapeutic agent is an antimicrobial agent, a vaccine or a genic therapeutic agent.
- 44. A method for identification of a microorganism in a test sample, comprising the steps of:
 - a) obtaining a nucleic acid sequence for a tuf, atpD, and/or recA genes of said microorganisms, and
 - b) comparing said nucleic acid sequence with the nucleic acid sequences of a bank as defined in claim 5, said repertory comprising a nucleic acid sequence obtained from the nucleic acids of said microorganism, whereby said microorganism is identified when said comparison results in a match between said sequences.

WO 01/23604

4/27	
200 NUDEYIP	VDDYIP
190 200 GDAQYEEKILELMEAVDTYIPGDAEYEEKILELMAAVDEYIPGDASYEEKILELMAAVDEYIP	GDEEYEQKIMDLMDAVDDYIP
IDAQYEER IDASYEER IDASYEER IDASYEER IDASYEER IDASYEER IDASYEER IDASYEER IDASYEER IDASYEER IDASYEER IDASYEER IDASYEER	DEEYEOK
	9
180 KALE KALE KALE KALE KALE KALE KALE CALE CALE CALE CALE CALE CALE CALE C	ALE
170 VIAGSALI VIAGSALI VIAGSALI VIAGSALI VIAGSALI VIAGSALI VIAGSALI VIAGSALI VIAGSALI VIAGSALI VIAGSALI VIAGSALI	/ISGSALK
FPGDDVP FPGDDTP FPGDDTP	FPGDDTP1
160 MILSEYD MILTEYE	DLLSEYD
140 150 170 170 170 170 170 170 170 170 170 17	INKAIDAN DOEELLELVEMEVROLLSEY OF PGOOT PVISGSALKALE
140 WODEELL	VDDEELLI
10VF 11V	
130 VGVPALVVE VGVPALVVE VGVPYIVVE VGVPY	
120 HILLSRN HI	- =
//	-
is A) A) A) Avus (A) us (A) um (A) vticus S	
aurens aurens aurans (A hirae (A) hirae (A) mundtii (faecium (cecorum (cecorum (raffinosu faecalis raffinosu tispar (A) malodorat malodorat secharol	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

H

5/27

TRERDNDKPFMMPVEDVI SULICRCIVATGRVERGOIKVGEEVEIIGMH.ETSKTTVTGVEMFRKILDYAEAGDNIGALLRGVAREDVO TRERDNDKPFMMPVEDVI SULICRGIVATGRVERGOVRVGDVVDIVGIAEETAQTTVTGVEMFRKILDYAEAGDNIGALLRGVAREDIO TRERDNDKPFMMPVEDVI SULICRGIVATGRVERGOVRVGDVVDIVGIAEETAQTTVTGVEMFRKILDYAEAGDNIGALLRGVAREDIO TRERDNDKPFMMPVEDVI SULICRGIVATGRVERGOVRVGDVIDIVGIAEETAQTTVTGVEMFRKILDYAEAGDNIGALLRGVAREDIO RGVAREDI **GOVRVGDEVEIVGIAEETAKTTVTGVEMFRKLLDYAEA GEVRVGDEVEIVGIKDETSKTTVTGVEMFRKLLDYAEA** SQVRVGDEVEIVGIAEETAKTTVTGVEMFRKLLDYAEA **GOVRVGDEVEIVGIAEETAKTTVTGVEMFRKILDYAEA GOVRVGDEVEIVGIADETAKTTVTGVEMFRKLLDYAEA SOVRVGDEVEIVGIADETAKTTVTGVEMFRKLLDYAEA** PERDHOKPFMMPIEDVI FSU THVRDTDKPFMMPVEDV1:5 TPERDNDKPFMMPVEDVI 35 PERDIOKPEMMPVEDVI 3 TRERDIDKPFMMPVEDVI: S TEVROTOKPENMPVEDVI 35 PERDIDKPEMMPVEDVI taeciun

كالمابع بعابع بعابع بعابع بعابعا بعابعا بعابعا بعابعا بعابعا

7/27

VGVLIRGVORDEIERG ||₽ ||₽ nenmour

11/27

331	CGATTCACCG	CGATCCACCG	CTATTCACCG	CTATTCATCG	CTATICACCG		T~~H~~R~~	1 E	~~~~~~~	I~~H~~R~~	I~~H~~R~~	I~~H~~K~~
	•	•	STA GAGATCGCCT	FIA GAGGITICCT	TT GAGGTGAACT				•	E~ ~I~~A~~S~~	E~ ~V~~S~~S~~	.E~ ~V~~N~~S~~
321	CG TTGGG	cg TTGGG	GG CAGCGCAG	G CAGCGCTC	GG TAGCAATG		~~ A~~ W~	[4]	 W. W.	~~ \\~~\\~~ S~	~S ~~A~~\V~	~~N~~~ S~
311	3 AAGAAGAG	3 AAGAAGAG	G AAGAAGAT	G AAGAAGAC	A ACGAAGAT		~ E~~E~~R~			~ E~~[~~[~	~ E~~D~~G~	· E~~D~~G~
GAGATCGGTI GAGAAGAGCG TTGGG							`~N~~Y~~T~					
	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	aggiomerans	ayyıcılıcı allısı di eneres	D)	i. pryseus		7700	agglomerans	addlomerans	dienarea	urspersa	pryseos
[z	a c	D	, D		-	Ĺ	a	гэ.	<i>p</i>	. 0	. E	Τ.

WO 01/23604

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

WO 01/23604

WO 01/23604

WO 01/23604

SUBSTITUTE SHEET (RULE 26)

24/27

25/27

SEQUENCE LISTING

50

55

(1) GENERAL INFORMATION: (i) APPLICANTS: 5 BERGERON, Michel G. 1, 1145 des Érables, Québec City, Québec, Canada, G2K 1T8
BOISSINOT, Maurice 1, 109 Jean-Bruchési, St-Augustinde-Desmaures, Québec, Canada, G3A 2N2 HULETSKY, Ann ¹, 1231 Av des Pins, Sillery, Québec, 10 Canada, G1S 4J3 MÉNARD, Christian 1, 1174 Rue du Pont, St-Lambert-de-Lévis, Québec, Canada, GOS 2WO OUELLETTE, Marc 1, 1035 de Ploërm 1, 1035 de Ploërmel, Sillery, Québec, Canada, G1S 3S1 PICARD, François J. 1, 1245 de la Sapinière, Cap-15 Rouge, Québec, Canada, G1Y 1A1 ROY, Paul H. 2, 28 Charles Garnier, Loretteville, Québec, Canada, G2A 2X8 20 1: Canadian citizenship ²:American citizenship (ii) TITLE OF THE INVENTION: HIGHLY CONSERVED GENES AN THEIR USE TO GENERATE SPECIES-SPECIFIC, GENUS-SPECIFIC AND 25 . UNIVERSAL NUCLEIC ACID PROBES AND AMPLIFICATION PRIMERS TO RAPIDLY DETECT AND IDENTIFY ALGAL, ARCHAEAL, BACTERIAL, FUNGAL AND PARASITICAL MICROORGANISMS FROM CLINICAL SPECIMENS FOR DIAGNOSIS 30 (iii) NUMBER OF SEQUENCES: 2297 (iv) CORRESPONDENCE ADDRESS: ADDRESSEE: (A) 35 (B) STREET: (C) CITY: (D) STATE: (E) COUNTRY: (F) ZIP: 40 (v) COMPUTER READABLE: (A) MEDIUM TYPE: (B) COMPUTER: 45 (C) OPERATING: (D) SOFTWARE: (vi) CURRENT APPLICATION DATA: (A) APPLICATION: (B) FILING DATE: (C) CLASSIFICATION: (vii) PRIOR APPLICATION DATA: (A) APPLICATION: (B) FILING DATE:

(viii) ATTORNEY/AGENT INFORMATION:

- (A) NAME:
- (B) REGISTRATION NUMBER:

- (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE:
 - (B) TELEFAX:

```
2) INFORMATION FOR SEO ID NO: 1
           (i) SEQUENCE CHARACTERISTICS:
   5
                    LENGTH: 750 bases
               (A)
                       TYPE: Nucleic acid
                (B)
               (C)
                       STRANDEDNESS: Double
                       TOPOLOGY: Linear
                (D)
  10
      (ii) MOLECULE TYPE: Genomic DNA
          (vi)ORIGINAL SOURCE:
                     ORGANISM: Acinetobacter baumannii
               (A)
                (B)
                       STRAIN: ATCC 19606
  15
       (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1
       CAAACTCGTG AGCACATCCT TCTTTCTCGT CAGGTAGGTG TACCTTACAT
                                                                                     50
       CATCGTATTC TTAAACAAAT GCGACCTTGT TGATGACGAA GAATTACTTG
                                                                                    100
       AATTAGTAGA AATGGAAGTA CGTGAACTTC TTTCTACTTA TGACTTCCCA
  20
                                                                                    150
       GGTGATGACA CTCCAGTAAT CCGTGGTTCA GCTCTTGCAG CGCTTAACGG
                                                                                    200
       TGAAGCTGGT CCTTACGGTG AAGAATCAGT TCTTGCTCTT GTAGCAGCAC
                                                                                    250
       TTGACTCTTA CATCCCAGAG CCAGAGCGTG CAATCGACAA AGCATTCTTG
                                                                                    300
       ATGCCAATCG AAGACGTATT CTCAATTTCT GGTCGTGGTA CAGTAGTAAC
                                                                                    350
       AGGCCGTGTT GAAGCTGGTA TCATCAAAGT TGGTGAAGAA GTAGAGATCG
                                                                                    400
       TTGGTATTAA AGATACAGTT AAAACAACTG TAACTGGCGT AGAAATGTTC
CGTAAACTTC TTGACGAAGG CCGTGCAGGT GAGAACTGTG GTATCTTACT
TCGTGGTACT AAGCGTGAAG AAGTACAACG TGGTCAAGTA CTTGCTAAAC
CAGGTACAAT CAAGCCGCAC ACTAAATTCG ACGCAGAAGT ATACGTACTT
TCTAAAGAAG AAGGTGGTCG TCACACTCCA TTCTTAAATG GTTACCGTCC
ACAGTTCTAC TTCCGTACAA CTGACGTAAC TGGTGCRATC CAGTTGAAAG
                                                                                    450
                                                                                    500
                                                                                    550
                                                                                    600
  30
                                                                                    650
                                                                                    700
       AAGGCGTTGA AATGGTAATG CCAGGTGACA ACGTTGAAAT GTCAGTAGAA
                                                                                    750
  35
       2) INFORMATION FOR SEQ ID NO: 2
           (i) SEQUENCE CHARACTERISTICS:
               (A)
                      LENGTH: 826 bases
  40
                       TYPE: Nucleic acid
               (B)
               (C)
                       STRANDEDNESS: Double
                   TOPOLOGY: Linear
        (ii) MOLECULE TYPE: Genomic DNA
45
        (vi)ORIGINAL SOURCE:
             (A) ORGANISM: Actinomyces meyeri
             (B)
                    STRAIN: ATCC 35568
50
        (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2
     CGGTGCGATC CTCGTGGTCG CCGCGACCGA CGGCCCCATG GCCCAGACCC
                                                                                  50
     GCGAGCACGT CCTGCTCGCC CGTCAGGTCG GCGTTCCCAC CATCCTCATC
                                                                                  100
     GCCCTCAACA AGTCCGACAT GGTTGACGAC GAGGAAATGA TGGAACTGGT
CGAGGAGGAG TGCCGCGACC TGCTGGAGTC CCAGGACTTC GATCGCGATG
CCCCGATCGT CCAGGTTTCC GCTCTGAAGG CCCTCGAGGG CGACGCGGAG
                                                                                 150
55
                                                                                 200
                                                                                 250
     TGGGTTGCCA AGATCGAGGA GCTCATGGAG GCTGTGGATT CCTACATCCC
                                                                                 300
     CACCCCGAG CGCGATATGG ACAAGCCCTT CCTCATGCCG ATCGAGGACG
TCTTCACGAT CACAGGTCGT GGCACGGTCG TCACGGGGCG TGTTGAGCGT
                                                                              350
400
450
     GGCAAGCTGC CGATCAACTC CGAGGTCGAG ATCCTCGGTA TCCGTGATCC
                                                                                 450
```

5	CCAGAAGACC ACGGTCACCG GCATCGAGAT GTTCCACAAG TCGATGGACG AGGCATGGGC CGGCGAGAAC TGTGGCCTGC TGCTGCGCGG TACCAAGCGC GATGAGGTTG AGCGCGGCCA GGTTGTGGCC ATTCCCGGCT CCATCACGCC TCACACCGAG TTCGAGGGCC AGGTTTACAT CCTCAAGAAG GAAGAGGGCG GCCGTCACAA CCCGTTCTTC TCGAACTACC GTCCGCAGTT CTACTTCCGT ACCACGGACG TGACCGGCGT CATCACCCTC CCCGAGGGCA CCGACATGGT CATGCCTGGC GACACCACCG AGATCTCCGT TCAGCTGATC CAGCCCATCG CCATGGAGCC CGGCTGGGCT TCGCCA	500 550 600 650 700 750 800 826
10	·	
	2) INFORMATION FOR SEQ ID NO: 3	
15	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 835 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear 	
20	(ii) MOLECULE TYPE: Genomic DNA	
25	<pre>(vi)ORIGINAL SOURCE: (A) ORGANISM: Aerococcus viridans (B) STRAIN: ATCC 11563</pre>	
23	(xi)SEQUENCE DESCRIPTION: SEQ ID NO: 3	
30	TGGTGCGATC TTAGTAGTAT CTGCTGCTGA TGGTCCAATG CCACAAACTC GTGAGCACAT CCTTTTAGCT GGCCAAATCG GTGTTCCTGC ATTCGTAGTA TTCTTAAACA AAGTTGACCA AGTTGACGAT GAAGAATTAC TAGAATTAGT TGAAATGGAA GTTCGTGACT TATTATCTGA GTACAACTAC CCAGGTGACG	50 100 150 200
35	ATCTACCTGT AATCGCTGGT TCTGCTTTAT TAGCATTACA AGGCGATGAA GCTCAAGAAG CTAAAATCAT GGAATTAATG GAAGCTGTAG ACTCTTACAT TCCAGAACCA GAACGTGACA ACGACAAACC ATTCATGATG CCAATTGAGG	250 300 350 400
	CGTGGTGAAG TTCGTACAGG TGACGAAGTT GACATCGTTG GTATTGCTGA ACAAATCGGT AAATCAGTTG TAACTGGTGT TGAAATGTTC CGTAAAAACT TAGACTACGC TCAAGCTGGT GACAACATCG GTGCATTATT ACGTGGTGTT CAACGTGAAG ACATCCAACG TGGTCAAGTA TTGGCTGCTC CTGGTTCAAT	450 500 550 600
40	CACTCCACAT ACTAAATTTA AAGCGCAAGT TTACGTTTTA TCTAAAGAAG AAGGTGGACG TCATACACCA TTCTTAACTA ACTACCGTCC ACAATTCTAC TTCCGTACTA CTGACATTAC TGGTGTTATC ACTTTACCAG AAGACGTAGC TATGGTTATG CCTGGTGACA ACGTTGATAT GGACGTTGAA TTGATTCACC	650 700 750 800
45	CAGTTGCGAT CGAAGATGGT ACTAAATTCT CTATC	835
	2) INFORMATION FOR SEQ ID NO: 4	
50	(i)SEQUENCE CHARACTERISTICS: (A) LENGTH: 827 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double	
55	(D) TOPOLOGY: Linear (ii) MOLECULE TYPE: Genomic DNA	
60	(vi)ORIGINAL SOURCE: (A) ORGANISM: Achromobacter xylosoxidans subsp. denitrificans	
	4	

(B) STRAIN: ATCC 15173

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4

5	CCTGGTGGTG	TCGGCCGCTG	ACGGCCCGAT	GCCGCAAACG	CGCGAACACA	50
	TCCTGCTGAG	CCGCCAGGTT	GGCGTGCCGT	ACATCATCGT	CTTCCTGAAC	100
	AAGGCCGACA	TGGTTGACGA	CGCCGAGCTG	CTTGAGCTGG	TGGAAATGGA	150
	AGTTCGCGAR	CTGCTGAGCA	AGTACGACTT	CCCGGGCGAC	GACACCCCGA	200
	TCGTGAAGGG	TTCGGCCAAG	CTGGCGCTGG	AAGGCGACAA	GGGCGAACTG	250
10	GGCGAACAGG	CCATCATGGC	GCTGGCCGCT	GCGCTGGACT	CGTACATCCC	300
	GACGCCTGAG	CGTGCCGTTG	ACGGCGCGTT	CCTGATGCCG	GTTGAAGACG	350
	TGTTCTCGAT	CTCGGGTCGC	GGCACCGTGG	TGACCGGCCG	TATCGAACGC	400
	GGCATCATCA	AGGTCGGCGA	GGAAATCGAA	ATCGTCGGTC	TGGTGCCGAC	450
		ACCTGCACGG		GTTCCGCAAG	CTGCTGGACC	500
15	AAGGTCAAGC	CGGCGACAAC	GTGGGCATCC	TRCTGCGCGG	CACCAAGCGT	550
	GAAGACGTCC	AGCGCGGCCA	GGTTCTGGCC	AAGCCGGGCT	CGATCACCCC	600
	GCACACGGAC	TTCACGTCCG	AGGTGTACAT	CCTGTCCAAG	GAAGAAGGCG	650
	GCCGTCACAC	TCCGTTCTTC	CAAGGCTATC	GTCCCCAGTT	CTACTTCCGC	700
	ACGACGGACG	TGACGGGCAC	GATCGAGCTG	CCGGCCGACA	AGGAAATGGT	750
20	CCTGCCGGGC		CCATGACGGT	CAAGCTGCTG	GCTCCGATCG	800
	CCATGGAAGA	AGGCCTGCGT	TCGCCAC			827

25 2) INFORMATION FOR SEQ ID NO: 5

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 823 bases
 - (B) TYPE: Nucleic acid
- (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: Genomic DNA
- 35 (vi)ORIGINAL SOURCE:
 - (A) ORGANISM: Anaerorhabdus furcosus
 - (B) STRAIN: ATCC 25662
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5

TGGATCAAT	C CTAGTAGTT	G CTGCAACTG	A TGGACCAAT	G CCTCAAACTC	50
GTGAACATAT	CTTACTTGCT	CGTCAAGTAG	GTGTTCCAAG	AATGGTTGTA	100
TTCTTGAACA	AATGCGACAT	GGTTGAAGAT	GAAGAATTAA	TCGACCTTGT	150
TGAAATGGAA	GTTCGTGAAC	TTCTAAGTGC	TTACGGTTTC	GAAGGTGATG	200
ATACACCAGT	TATCCGTGGT	TCTGCATTAA	AATCTCTTGA	AGGAAATGCT	250
GATTGGGAAG	CAAAAGTTGC	TGAATTAATG	GATGCAGTTG	ACTCTTGGAT	300
TCCAACTCCA	ACTCATGAAA	CAGACAAACC	ATTCTTAATG	GCTGTTGAAG	350
ATGTATTCAC	AATTACAGGT	CGTGGTACAG	TTGCTACTGG	ACGTGTTGAA	400
CGTGGACACT	TAAACCTTAA	CGAAGAAGTT	GAAATCGTTG	GTATTCATGA	450
TACTAAGAAA	TCAGTTGTTA	CTGGTATCGA	AATGTTCCGT	AAATTATTAG	500
ACTATGCTGA	AGCAGGAGAC	AACATTGGTG	CATTATTACG	TGGTGTTTCT	550
CGTGATGAAA	TCGAACGTGG	ACAATGTCTA	GCTAAACCTG	GATCAGTTAC	600
TCCACATACA	GCTTTCAAAG	CTCAAGTATA	CGTATTAACT	AAAGAAGAAG	650
GTGGACGTCA	TACACCATTC	GTAACTAACT	ACCGTCCTCA	ATTCTATTTC	700
CGTACAACTG	ACGTAACAGG	AGTTGTTAAA	CTTCCTGAAG	GTACTGAAAT	750
GGTTATGCCT	GGAGACAACA	TCGAAATGAT	CGTTGAATTA	ATCGCTCCAA	800
TCGCTGTTGA	ACAAGGAACT	AAG			823
	GTGAACATAT TTCTTGAACA TGAAATGGAA ATACACCAGT GATTGGGAAG TCCAACTCCA ATGTATTCAC CGTGGACACT TACTAAGAAA ACTATGCTGA CGTGATGAAA TCCACATACA GTGGACGTCA CGTACAACTG GGTACAACTG GGTTATGCCT	GTGAACATAT CTTACTTGCT TTCTTGAACA AATGCGACAT TGAAATGGAA GTTCGTGAAC ATACACCAGT TATCCGTGGT GATTGGGAAG CAAAAGTTGC TCCAACTCCA ACTCATGAAA ATGTATTCAC AATTACAGGT CGTGGACACT TAAACCTTAA TACTAAGAAA TCAGTTGTTA ACTATGCTGA AGCAGGAGAC CGTGATGAAA TCGAACGTGG TCCACATACA GCTTTCAAAG GTGGACGTCA TACACCATTC CGTACAACTG ACGTAACAGG	GTGAACATAT CTTACTTGCT CGTCAAGTAG TTCTTGAACA AATGCGACAT GGTTGAAGAT TGAAATGGAA GTTCGTGAAC TTCTAAGTGC ATACACCAGT TATCCGTGGT TCTGCATTAA GATTGGGAAG CAAAAGTTGC TGAATTAATG TCCAACTCCA ACTCATGAAA CAGACAAACC ATGTATTCAC AATTACAGGT CGTGGTACAG CGTGGACACT TAAACCTTAA CGAAGAAGTT TACTAAGAAA TCAGTTGTTA CTGGTATCGA ACTATGCTGA AGCAGGAGAC AACATTGGTG CGTGATGAAA TCGAACGTGG ACAATGTCTA TCCACATACA GCTTTCAAAG CTCAAGTATA GTGGACGTCA TACACCATTC GTAACTAACT CGTACAACTG ACGTAACAG AGTTGTTAAA GGTTATGCCT GGAGACAACA TCGAAATGAT	GTGAACATAT CTTACTTGCT CGTCAAGTAG GTGTTCCAAG TTCTTGAACA AATGCGACAT GGTTGAAGAT GAAGAATTAA TGAAATGGAA GTTCGTGAAC TTCTAAGTGC TTACGGTTTC ATACACCAGT TATCCGTGGT TCTGCATTAA AATCTCTTGA GATTGGGAAG CAAAAGTTGC TGAATTAATG GATGCAGTTG TCCAACTCCA ACTCATGAAA CAGACAAACC ATTCTTAATG ATGTATTCAC AATTACAGGT CGTGGTACAG TTGCTACTGG CGTGGACACT TAAACCTTAA CGAAGAAGTT GAAATCGTTG TACTAAGAAA TCAGTTGTTA CTGGTATCGA AATGTTCCGT ACTATGCTGA AGCAGGAGAC AACATTGGTG CATTATTACG CGTGATGAAA TCGAACGTGG ACAATGTCTA GCTAAACCTG TCCACATACA GCTTTCAAAG CTCAAGTATA CGTATTAACT GTGGACGTCA TACACCATTC GTAACTAACT ACCGTCCTCA CGTACAACTG GCGAGACAACA TCGAAATGAT CGTTGAATTA	TTCTTGAACA AATGCGACAT GGTTGAAGAT GAAGAATTAA TCGACCTTGT TGAAATGGAA GTTCGTGAAC TTCTAAGTGC TTACGGTTTC GAAGGTGATG ATACACCAGT TATCCGTGGT TCTGCATTAA AATCTCTTGA AGGAAATGCT GATTGGGAAG CAAAAGTTGC TGAATTAATG GATGCAGTTG ACTCTTGGAT TCCAACTCCA ACTCATGAAA CAGACAAACC ATTCTTAATG GCTGTTGAAG ATGTATTCAC AATTACAGGT CGTGGTACAG TTGCTACTGG ACGTGTTGAA CGTGGACACT TAAACCTTAA CGAAGAAGTT GAAATCGTTG GTATTCATGA TACTAAGAAA TCAGTTGTTA CTGGTATCGA AATGTTCCGT AAATTATTAG ACTATGCTGA AGCAGGAGAC AACATTGGTG CATTATTACG TGGTGTTTCT CGTGATGAAA TCGAACGTGG ACAATGTCTA GCTAAACCTG GATCAGTTAC TCCACATACA GCTTTCAAAG CTCAAGTATA CGTATTAACT AAAGAAGAAG GTGGACGTCA TACACCATTC GTAACTAACT ACCGTCCTCA ATTCTATTTC CGTACAACTG ACGTAACAGG AGTTGTTAAA CTTCCTGAAG GTACTGAAAT GGTTATGCCT GGAGACAACA TCGAAATGAT CGTTGAATTA ATCGCTCCAA

30

2) INFORMATION FOR SEQ ID NO: 6 (i) SEQUENCE CHARACTERISTICS: LENGTH: 825 bases 5 (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear (ii) MOLECULE TYPE: Genomic DNA 10 (vi)ORIGINAL SOURCE: ORGANISM: Bacillus anthracis (A) (B) **STRAIN: 4229** 15 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6 CGGCGGTATC TTAGTAGTAT CTGCTGCTGA TGGCCCAATG CCTCAAACTC GTGAGCACAT CCTTCTTCT CGTCAAGTAG GTGTACCTTA CATCGTTGTA 100 TTCTTAAACA AATGCGACAT GGTAGACGAC GAAGAATTAT TAGAATTAGT AGAAATGGAA GTTCGCGACC TATTATCTGA ATACGGATTC CCAGGCGACG 150 20 200 ACATTCCTGT AATCAAAGGT TCTGCTCTTA AAGCTCTTCA AGGAGAAGCT 250 GATTGGGAAG CAAAAATCAT TGAATTAATG GCTGAAGTTG ATGCTTACAT 300 CCCAACTCCA GAACGTGAAA CTGACAAACC ATTCTTAATG CCTGTAGAGG 350 ACGTATTCTC TATCACAGGT CGTGGTACAG TTGCTACTGG TCGTGTTGAG 400 25 CGCGGTATCG TTAAAGTTGG TGACGTAGTA GAAATCATCG GTCTTGCTGA 450 AGAAAATGCT TCTACAACTG TAACTGGTGT AGAGATGTTC CGTAAACTTC 500 TTGACCAAGC TCAAGCTGGA GACAACATCG GTGCTTTACT TCGTGGGGTT 550 GCTCGTGAAG ACATCCAACG TGGACAAGTA CTTGCAAAAA GCGGTTCTGT 600 AAAAGCTCAC GCTAAATTCA AAGCTGAAGT TTTCGTATTA TCTAAAGAAG 650 AAGGTGGACG TCACACTCCA TTCTTCGCTA ACTACCGTCC TCAGTTCTAC 30 700 TTCCGTACAA CTGACGTAAC TGGTATCATC CAATTACCAG AAGGTACTGA 750 AATGGTAATG CCTGGTGACA ACATCGAAAT GACTATCGAA CTTATCGCTC 800 CAATCGCTAT CGAAGAGGGA ACTAA 825 35 2) INFORMATION FOR SEQ ID NO: 7 (i) SEQUENCE CHARACTERISTICS: 40 (A) LENGTH: 829 bases (B) TYPE: Nucleic acid STRANDEDNESS: Double (C) (D) TOPOLOGY: Linear (ii) MOLECULE TYPE: Genomic DNA 45 (vi)ORIGINAL SOURCE: (A) ORGANISM: Bacillus cereus (B) STRAIN: ATCC 14579 50 (xi) SEOUENCE DESCRIPTION: SEO ID NO: 7 CGGCGGTATC TTAGTAGTAT CTGCTGCTGA TGGCCCAATG CCTCAAACAC 50 GTGAGCACAT CCTTCTTTCT CGTCAAGTAG GTGTTCCTTA CATCGTTGTA 100 TTCTTAAACA AATGCGACAT GGTAGATGAC GAAGAATTAT TAGAATTAGT AGAAATGGAA GTTCGCGACC TATTATCTGA ATACGGATTC CCAGGCGACG ACATTCCTGT AATCAAAGGT TCTGCTCTTA AAGCTCTTCA AGGAGAAGCT GATTGGGAAG CAAAAATCAT TGAATTAATG GCTGAAGTTG ATGCTTACAT 55 150 200 250 300 CCCAACTCCA GAACGTGAAA CTGACAAACC ATTCTTAATG CCTGTAGAGG 350 ACGTATTCTC TATCACAGGT CGTGGTACAG TTGCTACTGG TCGTGTTGAG 400

10	AAGGTGGACG TCACACTCCA TTCTTCGCTA ACTACCGTCC TCAGTTCTAC TTCCGTACAA CTGACGTAAC TGGTATCATC CAATTACCAG AAGGTACTGA AATGGTAATG CCTGGTGACA ACATTGAAAT GACTATCGAA CTTATCGCTC CAATCGCTAT CGAAGAGGGA ACTAAATTC	450 500 550 600 650 700 750 800 829
	2) INFORMATION FOR SEQ ID NO: 8	
15	(i)SEQUENCE CHARACTERISTICS: (A) LENGTH: 818 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
20		
25	<pre>(vi)ORIGINAL SOURCE: (A) ORGANISM: Bacteroides distasonis (B) STRAIN: ATCC 8503</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 8	
30	CGGTGCTATC ATCGTAGTTG CTGCTACTGA TGGTCCTATG CCTCAAACTC GCGAGCACAT CCTTTTGGCT CGTCAGGTAA ACGTTCCGAG ATTGGTTGTA TTCATGAACA AGTGTGACAT GGTTGACGAC GAGGAAATGT TGGAATTGGT TGAGATGGAG ATGAGAGAGT TGCTTTCATT CTATCAATTC GACGGTGACA	50 100 150 200
35	ACACTCCGAT CATCCGTGGT TCTGCTCTTG GTGCATTGAA CGGTGATGCT CAATGGGAAG ATAAAGTAAT GGAGTTGATG GAAGCTTGTG ATACTTGGAT TCCTCTGCCT CCGCGCGAAA TCGACAAGCC GTTCTTGATG CCGGTTGAGG ACGTATTCTC AATCACGGGT CGTGGTACTG TTGCTACAGG TCGTATCGAG ACAGGTATTG TTAAGGTTGG TGAGGAAGTT CAGATCATCG GTCTTGGCGC	250 300 350 400 450
40	TGCTGGTAAG AAATCTGTTG TTACAGGTGT TGAGATGTTC CGTAAGTTAT TGGATCAAGG TGAGGCTGGT GATAACGTTG GTTTGTTGCT TCGCGGTATC GATAAGAATG AGATCAAGCG TGGTATGGTA	500 550 600 650
45	AAGGTGGTCG TCACACTCCG TTCCACAACA AATATCGTCC TCAGTTCTAT ATCCGTACAT TGGATGTAAC TGGTGAGATC ACTTTGCCGG AAGGAACTGA AATGGTAATG CCGGGTGATA ACGTAACGAT CGAGGTTGAG TTGATCTATC CGGTAGCATG TAGCGTAG	700 750 800 818
50	2) INFORMATION FOR SEQ ID NO: 9	
50	(i)SEQUENCE CHARACTERISTICS: (A) LENGTH: 639 bases (B) TYPE: Nucleic acid	
55	(C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
60	(vi)ORIGINAL SOURCE: (A) ORGANISM: Enterococcus casseliflavus 7	

(B) STRAIN: R763

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 9

5			TGAACACATC			50
	TGTACCATAC	ATCGTTGTTT	TCTTAAACAA	AATGGATATG	GTTGATGACG	100
		AGAATTAGTT				150
	TATGACTTCC	CAGGCGACGA	TGTTCCTGTA	ATCGCTGGTT	CTGCTTTGAA	200
	AGCTCTTGAA	GGCGATGCTT	CATACGAAGA	AAAAATCATG	GAATTAATGG	250
10	CTGCAGTTGA	CGAATACGTT	CCAACTCCAG	AACGTGACAC	TGACAAACCA	300
	TTCATGATGC	CAGTCGAAGA	CGTATTCTCA	ATCACTGGAC	GTGGTACTGT	350
	TGCTACAGGC	CGTGTTGAAC	GTGGACAAGT	TCGCGTTGGT	GACGAAGTTG	400
	AAATCGTTGG	TATTGCTGAA	GAAACTGCTA	AAACAACTGT	AACTGGTGTT	450
	GAAATGTTCC	GTAAATTGTT	AGACTATGCT	GAAGCAGGGG	ATAACATTGG	500
15	TGCATTGCTA	CGTGGTGTTG	CTCGTGAAGA	CATCCAACGT	GGACAAGTAT	550
			ACACCTCATA		AGCTGAAGTT	600
	TACGTTTTAA	CAAAAGAAGA	AGGTGGACGT	CACACACCA		639

20

- 2) INFORMATION FOR SEQ ID NO: 10
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 692 bases
- 25 (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: Genomic DNA

30

- (vi)ORIGINAL SOURCE:
 - (A) ORGANISM: Staphylococcus saprophyticus
 - (B) STRAIN: CSG 197
- 35 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 10

					T TAGTTGTATT	50
	CTTAAACAA	A GTTGACATG	G TTGACGATG	A AGAATTATT	A GAATTAGTAG	100
	AAATGGAAG	T TCGTGACTT	'A TTAAGCGAA	T ATGACTICC	C AGGTGACGAT	150
40	GTACCTGTA	A TCTCTGGTI	'C TGCATTAAA	A GCTTTAGAA	G GCGACGCTGA	200
	CTATGAGCA	A AAAATCTTA	G ACTTAATGO	A AGCTGTTGA	T GACTTCATTC	250
	CAACACCAGA	ACGTGATTCT	GACAAACCAT	TCATGATGCC	AGTTGAGGAC	300
			TGGTACTGTT			350
	TGGTCAAATC	AAAGTCGGTG	AAGAAATCGA	AATCATCGGT	ATGCAAGAAG .	400
45	AATCAAGCAA	AACAACTGTT	ACTGGTGTAG	AAATGTTCCG	TAAATTATTA	450
	GACTACGCTG	AAGCTGGTGA	CAACATTGGT	GCATTATTAC	GTGGTGTTTC	500
	ACGTGATGAC	GTACAACGTG	GTCAAGTTTT	AGCTGCTCCT	GGTACTATTA	550
	CACCACATAC	AAAATTCAAA	GCGGATGTTT	ACGTTTTATC	TAAAGATGAA	600
	GGTGGTCGTC	ATACACCATT	CTTCACTAAC	TACCGCCCAC	AATTCTATTT	650
50			GTGTTGTTAA			692

2) INFORMATION FOR SEQ ID NO: 11

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 821 bases
 - (B) TYPE: Nucleic acid
- (C) STRANDEDNESS: Double
- 60 (D) TOPOLOGY: Linear

(ii) MOLECULE TYPE: Genomic DNA

(vi)ORIGINAL SOURCE:

5

45

- (A) ORGANISM: Bacteroides ovatus
- (B) STRAIN: ATCC 8483

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 11

10	CGGTGCTATC	ATCGTTTGTG	CTGCAACTGA	TGGTCCGATG	CCTCAAACTC	50
	GCGAACACAT	TCTGTTAGCT	CGTCAGGTAA	ACGTACCTCG	TCTGGTTGTA	100
	TTCTTGAACA	AATGCGATAT	GGTAGACGAC	GAAGAAATGT	TGGAACTCGT	150
	TGAAATGGAA	ATGAGAGAAC	TCCTTTCATT	CTATGATTTC	GATGGTGACA	200
	ATACTCCTAT	CATCCGTGGT	TCTGCTCTTG	GCGCATTGAA	CGGTGTTGAA	250
15	AAATGGGAAG	ACAAAGTTAT	GGAACTGATG	GATGCAGTTG	ATAACTGGAT	300
	TCCACTGCCT	CCGCGCGATG	TTGATAAACC	ATTCTTGATG	CCGGTTGAAG	350
	ACGTGTTCTC	TATCACAGGT	CGTGGTACTG	TAGCAACAGG	TCGTATCGAA	400
	ACAGGTGTCA	TCCACGTTGG	TGATGAAGTC	GAAATTCTTG	GTTTAGGTGA	450
	AGATAAGAAA	TCAGTTGTAA	CTGGTGTTGA	AATGTTCCGT	AAACTGTTGG	500
20	ATCAAGGTGA	AGCTGGTGAC	AACGTAGGTC	TTTTGCTTCG	TGGTATTGAC	550
	AAGAACGAAA	TCAAACGTGG	TATGGTTCTT	TGTAAACCAG	GTCAGATTAA	600
	ACCGCACTCT	AAATTCAAAG	CTGAGGTTTA	TATCTTGAAG	AAAGAAGAAG	650
	GTGGTCGTCA	CACTCCGTTC	CACAACAAAT	ACCGTCCTCA	GTTCTACTTG	700
	CGTACTATGG	ACTGTACAGG	TGAAATCACT	TTGCCGGAAG	GAACAGAAAT	750
25	GGTAATGCCG	GGTGATAACG	TAACTATTAC	AGTTGAGTTG	ATTTACCCAG	800
	TAGCATTGAA	CCCGGGCTTC	G			821

30 2) INFORMATION FOR SEQ ID NO: 12

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 838 bases
 - (B) TYPE: Nucleic acid
- 35 (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: Genomic DNA
- 40 (vi)ORIGINAL SOURCE:
 - (A) ORGANISM: Bartonella henselae
 - (B) STRAIN: ATCC 49882

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 12

1 3						
	TGGTGCGATT	TTGGTTGTTT	CAGCTGCTGA	TGGTCCGATG	CCTCAAACAC	50
	GTGAGCATAT	TCTTCTTGCC	CGTCAGGTTG	GTGTTCCAGC	GATTGTTGTT	100
	TTTCTTAATA	AGGTTGATCA	GGTTGATGAT	GCTGAGCTTT	TGGAGCTTGT	150
	TGAGCTTGAA	GTTCGGGAGT	TATTGTCGAA	ATATGATTTT	CCAGGAGACG	200
50	ATATTCCGAT	CGTTAAAGGT	TCTGCTTTGG	CAGCGCTTGA	AGATAAAGAT	250
	AAAAGCATTG		GGTTCGTCTT		AAGTTGATAA	300
	TTATATACCG	ACGCCTGAAC	GTCCTGTTGA	TCAGCCGTTT	TTGATGCCAA	350
	TTGAAGATGT	TTTTTCGATT	TCGGGTCGTG	GAACTGTTGT	GACGGGTCGT	400
	GTTGAGCGTG				TTATCGGCAT	450
55	TCGTCCAACT	TCTAAGACAA	CAGTTACAGG	GGTTGAAATG	TTCCGCAAGC	500
	TTTTAGATCA	GGGGCAAGCG	GGTGATAATA	TTGGAGCGCT	GCTTCGTGGT	550
	ATTGATCGTG			GTTTTGGCGA	AGCCTGCTTC	600
	GGTTACACCT	CATACGAGAT	TTAAAGCAGA	GGCTTACATT	TTGACGAAAG	650
	ATGAAGGTGG	TCGTCATACT	CCATTTTTCA	CGAATTATCG	TCCTCAGTTT	700
60	TATTTCCGTA	CTACGGATGT	AACGGGAATT	GTTACGCTTC	CAGAAGGTAC	750

	AGAGATGGTT ATGCCTGGTG ATAATGTTGC TATGGATGTC TCTCTGATTG TTCCAATTGC CATGGAAGAA AAACTTCGTT TTGCTATC	800 838
5	2) INFORMATION FOR SEQ ID NO: 13	
10	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 839 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear 	٠
15	<pre>(ii) MOLECULE TYPE: Genomic DNA (vi) ORIGINAL SOURCE: (A) ORGANISM: Bifidobacterium adolescentis (B) STRAIN: ATCC 15703</pre>	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 13	
25	TGGCGCCATC CTTGTTGTGG CCGCCACCGA CGGCCCGATG GCTCAGACCC GCGAGCACGT GCTGCTCGCT CGTCAGGTGG GCGTCCCGAA GATCCTCGTC GCTCTGAACA AGTGCGATAT GGTCGACGAC GACGAGCTCA TCGAGCTCGT TGAGGAAGAG GTCCGTGACC TCCTCGACGA AAATGGCTTC GATCGCGATT GCCCGGTCAT CCACGTGTCC GCTTACGGCG CACTGCACGA TGACGCTCCG GACCACGAGA AGTGGGTTGA GCAGATCAAG AAGCTCATGG ACGCCGTCGA TGACTACATC CCGACCCCGG TCCACGATCT GGACAAGCCG TTCCTGATGC	50 100 150 200 250 300
30	CGATCGAAGA TGTCTTCACC ATCTCCGGCC GTGGCACCGT GGTGACCGGC CGTGTCGAGC GTGGTAAGCT CCCGGTCAAC TCCAACGTCG AGATCGTCGG CATCCGTCCG ACCCAGACCA CCACCGTCAC CTCCATCGAG ACCTTCCACA AGCAGATGGA CGAGTGCGAG GCTGGCGACA ACACCGGTCT GCTGCTCCGC	350 400 450 500 550
35	GGCATCAACC GTGACCAGGT CGAGCGTGGC CAGGTTCTGG CTGCTCCGGG CTCCGTGACC CCGCACACCA AGTTCGAGGG CGAAGTCTAC GTGCTGACCA AGGACGAAGG CGGCCGTCAC TCGCCGTTCT TCTCCAACTA CCGTCCGCAG TTCTACTTCC GTACCACCGA CGTCACCGGC GTCATCACCC TGCCGGAAGG CGTTGAGATG GTGCAGCCGG GCGATCACGC TACCTTCGGC GTTGAGCTGA TCCAGCCGAT CGCTATGGAA GAGGGCCTGA CCTTCGCAG	600 650 700 750 800 839
40		
45	2) INFORMATION FOR SEQ ID NO: 14 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 839 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
50	(ii) MOLECULE TYPE: Genomic DNA	
55	<pre>(vi)ORIGINAL SOURCE: (A) ORGANISM: Bifidobacterium dentium (B) STRAIN: ATCC 27534 (xi)SEQUENCE DESCRIPTION: SEQ ID NO: 14</pre>	
60	TGGCGCTATC CTCGTTGTGG CCGCCACCGA CGGCCCGATG GCTCAGACCC GCGAGCACGT GCTGCTCGCT CGTCAGGTGG GCGTGCCGCG TATCCTCGTC GCCCTGAACA AGTGCGATAT GGTCGACGAC GAAGAGCTCA TCGAGCTCGT 10	50 100 150

5	CGTGTCGAGC GTGGTAAGCT CCCGGTCAAC TCCAACGTTG AGATCGTCGG CATCCGTCCG ACCCAGACCA CCACCGTCAC CTCCATCGAG ACCTTCCACA AGCAGATGGA CGAGTGCGAG GCTGGCGACA ACACCGGTCT GCTGCTCCGC	200 250 300 350 400 450 500 550
10	AGGACGAAGG CGGCCGTCAC TCGCCGTTCT TCTCCAACTA CCGTCCGCAG TTCTACTTCC GTACCACCGA CGTCACCGGC GTCATCACCC TGCCGGAAGG CGTTGAGATG GTGCAGCCGG GCGATCACGC TACCTTCGGC GTTGAGCTGA	750
15	TCCAGCCGAT CGCTATGGAA GAGGGCCTGA CCTTCGCAG	839
	2) INFORMATION FOR SEQ ID NO: 15	
20	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 838 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear 	
25	(ii) MOLECULE TYPE: Genomic DNA	
30	<pre>(vi)ORIGINAL SOURCE: (A) ORGANISM: Brucella abortus (B) STRAIN: S2308</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 15	
35	TTCCTCAACA AGTGCGACCA GGTTGACGAT GCAGAACTGC TCGAACTGGT TGAACTGGAA GTGCGCGAAC TTCTGTCGAA GTACGAATTC CCCGGCGACG	50 100 150 200
40	AAATCCCGAT CATCAAGGGC TCGGCTCTTG CTGCTCTGGA AGATTCTTCC AAGGAACTGG GCGAAGATGC CATCCGCAAC CTGATGGACG CGGTTGACAG CTACATTCCG ACCCCGGAAC GCCCGATCGA CCAGCCGTTC CTGATGCCGA TCGAAGACGT GTTCTCGATC TCCGGCCGTG GTACGGTTGT GACGGGTCGC GTTGAGCGCG GTATCGTTAA GGTCGGTGAA GAAGTTGAAA TCGTCGGCAT	250 300 350 400
45	CAAGGCGACG ACGAAGACCA CGGTTACCGG CGTTGAAATG TTCCGCAAGC TGCTCGACCA GGGCCAGGCT GGCGACAACA TTGGCGCGCT GATCCGCGGC GTTGGCCGTG AAGACGTTGA ACGCGGCCAG GTTCTCTGCA AGCCGGGTTC TGTGAAGCCG CACACCAAGT TTAAGGCAGA AGCCTATATT CTGACCAAGG ACGAAGGTGG CCGTCATACG CCGTTCTTCA CCAACTACCG TCCGCAGTTC	500 550 600 650 700
50	TACTTCCGTA CGACGGACGT GACGGGTGTT GTGACGCTTC CGGCTGGCAC GGAAATGGTC ATGCCTGGCG ATAACGTCGC CATGGACGTT ACCCTGATCG TGCCGATCGC CATGGAAGAG AAGCTTCGCT TCGCTATC	750 800 838
	2) INFORMATION FOR SEQ ID NO: 16	
55	(i) CROVINGE CUIDE COMPANIE	

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 771 bases

(B)

TYPE: Nucleic acid STRANDEDNESS: Double (C)

60 (D) TOPOLOGY: Linear

(ii) MOLECULE TYPE: Genomic DNA

(vi)ORIGINAL SOURCE:

- ORGANISM: Burkholderia cepacia (A)
- STRAIN: LSPQ 2217

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 16

10	GGCAGCAGAC	CCCCCATCC	CCCAAACCCC	TGAGCACATC	CTC CTC CC C	~ ~
					CTGCTGGCGC	50
	GTCAGGTTGG	CGTTCCGTAC	ATCATCGTGT	TCCTGAACAA	GTGCGACATG	100
	GTGGACGACG	CCGAACTGCT	CGAGCTGGTC	GAGATGGAAG	TTCGCGAACT	150
	CCTGTCGAAG	TACGACTTCC			GTGAAGGGTT	200
	CGGCGAAGCT			GCGAGCTGGG	CGAAGTGGCG	250
15				TACATCCCGA	CGCCGGAGCG	300
	TGCAGTTGAC	GGCGCGTTCC	TGATGCCGGT	GGAAGACGTG	TTCTCGATCT	350
	CGGGCCGCGG	TACGGTGGTG	ACGGGTCGTG	TCGAGCGCGG	CATCGTGAAG	400
	GTCGGCGAAG	AAATCGAAAT	CGTCGGTATC	AAGCCGACGG	TGAAGACGAC	450
	CTGCACGGGC	GTTGAAATGT	TCCGCAAGCT	GCTGGACCAA	GGTCAAGCAG	500
20	GCGACAACGT	TGGTATCCTG	CTGCGCGGCA	CGAAGCGTGA	AGACGTGGAG	550
	CGTGGCCAGG	TTCTGGCGAA	GCCGGGTTCG	ATCACGCCGC	ACACGCACTT	600
	CACGGCTGAA	GTGTACGTGC	TGAGCAAGGA	CGAAGGCGGC	CGTCACACGC	650
	CGTTCTTCAA	CAACTACCGT	CCGCAGTTCT	ACTTCCGTAC	GACGGACGTG	700
	ACGGGCTCGA	TCGAGCTGCC		GAAATGGTGA		750
25	CAACGTGTCG	ATCACGGTGA			= = = = = = = = = = = = = = = = = = = =	771
			4.4			//1

2) INFORMATION FOR SEQ ID NO: 17

30

5

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 829 bases
 - TYPE: Nucleic acid (B)
 - (C) STRANDEDNESS: Double
- 35 (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: Genomic DNA

(vi)ORIGINAL SOURCE:

40 (A) ORGANISM: Cedecea davisae

(B) STRAIN: ATCC 33431

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 17

45	GGCGCTATCC	TGGTTGTTGC	ጥርሶር እርጥር እጥ	GGCCCAATGC	C3 C3 C3 CCCC	
	TGAGCACATC					50
		CTGCTGGGTC	GTCAGGTTGG	CGTTCCGTAC	ATCATCGTGT	100
	TCCTGAACAA	ATGCGACATG	GTTGATGACG	AAGAGCTGCT	GGAACTGGTA	150
	GAAATGGAAG	TTCGTGAACT	TCTGTCCCAG	TACGACTTCC	CGGGCGACGA	200
		GTTCGTGGTT	CTGCTCTGAA	AGCGCTGGAA	GGCGAAGCAG	250
50	AGTGGGAAGC	TAAAATCGTT	GAGCTGGCTG	GCTACCTGGA	TTCTTACATC	300
	CCTGAGCCAG	AGCGTGCTAT	CGATAAGCCG	TTCCTGCTGC	CAATCGAAGA	350
	CGTATTCTCC	ATCTCCGGCC	GTGGTACCGT	TGTTACCGGT	CGTGTAGAGC	400
	GCGGTATCAT	CAAAGTTGGT	GAAGAAGTTG	AAATCGTTGG	TATCAAAGAT	450
	ACTGCGAAAT	CTACCTGTAC	CGGCGTTGAA	ATGTTCCGCA	AACTGCTGGA	500
55	CGAAGGCCGT	GCTGGTGAGA	ACGTTGGTGT	TCTGCTGCGT	GGTATCAAAC	550
	GTGAAGAAAT	CGAACGTGGT	CAGGTACTGG	CTAAGCCAGG	CTCTATCAAG	600
		AGTTCGAATC	TGAAGTGTAC	ATCCTGTCCA	AAGACGAAGG	650
	CGGCCGTCAT	ACTCCGTTCT	TCAAAGGCTA	CCGTCCACAG	TTCTACTTCC	700
	GTACAACTGA	CGTGACCGGC	ACCATCGAAC	TGCCAGAAGG	CGTTGAGATG	750
60	GTAATGCCTG	GCGACAACAT	CAAAATGGTT	GTTACCCTGA	TCCACCCAAT	800
			1	2 .		

CGCGATGGAT GACGGTCTGC GTTTCGCAA

5	2) INFORMATION FOR SEQ ID NO: 18				
10	(i)SEQUENCE CHARACTERISTICS: (A) LENGTH: 824 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear				
	(ii) MOLECULE TYPE: Genomic DNA				
15	<pre>(vi)ORIGINAL SOURCE: (A) ORGANISM: Cedecea neteri (B) STRAIN: ATCC 33855</pre>				
20	(xi)SEQUENCE DESCRIPTION: SEQ ID NO: 18				
20	CGCTATCCTG GTTGTTGCTG CGACTGACGG CCCTATGCCT CAGACCCGTG AGCACATCCT GCTGGGTCGT CAGGTTGGCG TTCCTTACAT CATCGTGTTC CTGAACAAAT GTGACATGGT TGATGACGAA GAGCTGCTGG AGCTGGTTGA	50 100			
25	AATGGAAGTT CGTGAACTTC TGTCTCAGTA CGACTTCCCG GGCGATGACA	15(20(25(30(35(
30	TATTCTCCAT CTCCGGCCGT GGTACCGTTG TTACCGGTCG TGTAGAGCGC GGTATCGTTA AAGTGGGCGA AGAAGTAGAA ATCGTTGGTA TCAAAGATAC TGCGAAATCT ACCTGTACCG GCGTTGAAAT GTTCCGCAAA CTGCTGGACG AAGGCCGTGC TGGTGAAACGT	400 450 500 550			
35	and the second of the second o	600 650 700 750			
	AATGCCAGGC GACAACATCA AAATGGTTGT TACCCTGATC CACCCAATCG CGATGGACGA CGGTCTGCGT TTCG	800 824			
40	2) INFORMATION FOR SEQ ID NO: 19				
45	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 827 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear				
50	(ii) MOLECULE TYPE: Genomic DNA				
30	(vi)ORIGINAL SOURCE: (A) ORGANISM: Cedecea lapagei (B) STRAIN: ATCC 33432				
55	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 19				
60	CGCTATTCTG GTTGTTGCTG CAACTGACGG CCCTATGCCT CAGACCCGTG AGCACATCCT GCTGGGTCGC CAGGTTGGCG TTCCTTACAT CATCGTGTTC CTGAACAAAT GTGACATGGT TGATGACGAA GAGCTGCTGG AGCTGGTAGA	50 100 150			
60	AATGGAAGTT CGTGAACTTC TGTCTCAGTA CGACTTCCCA GGCGATGATA	200			

10	TGCGAAATCT ACCTGTACTG GCGTTGAAAT GTTCCGCAAA CTGCTGGACG AAGGCCGTGC TGGTGAGAC GTTGGTGTTC TGCTGCGTGG TATCAAACGT GAAGAAATCG AACGTGGTCA GGTTCTGGCT AAGCCAGGCT CTATCAAGCC GCACACCAAG TTCGAATCTG AAGTGTACAT CCTGTCCAAA GACGAAGGCG GCCGTCATAC TCCGTTCTTC AARGGCTACC GTCCACAGTT CTACTTCCGT ACCACTGACG TGACCGGTAC CATCGAACTG CCAGAAGGCG TAGAGATGGT AATGCCAGGT GACAACATCA AAATGGTTGT TACCCTGATC CACCCAATCG	250 300 350 400 450 550 600 650 700 750 800
15	CGATGGACGA CGGTCTGCGT TTCGCAA	827
	2) INFORMATION FOR SEQ ID NO: 20	
20	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 831 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear 	
25	(ii) MOLECULE TYPE: Genomic DNA	
30	<pre>(vi)ORIGINAL SOURCE: (A) ORGANISM: Chlamydia pneumoniae (B) STRAIN: CWL 029 (xi)SEQUENCE DESCRIPTION: SEQ ID NO: 20</pre>	
35	GCGGAGCTAT CCTAGTCGTT TCAGCTACAG ACGGAGCTAT GCCACAAACT AAAGAACATA TCTTGCTAGC TCGCCAGGTT GGAGTTCCTT ATATCGTTGT TTTCTTGAAT AAAGTAGATA TGATCTCTCA AGAAGATGCT GAACTTATTG ACCTTGTTGA GATGGAACTT AGTGAGCTTC TTGAAGAAAA AGGCTACAAA GGATGCCCTA TTATCCGTGG TTCTGCTTTG AAAGCTCTTG AAGGTGATGC AAATTATATC GAAAAAGTTC GAGAACTTAT GCAAGCTGTG GATGACAACA	50 100 150 200 250
40	TCCCTACACC AGAAAGAGAA ATTGATAAGC CTTTCTTAAT GCCTATCGAA GACGTATTCT CAATCTCTGG TCGTGGTACT GTGGTTACAG GAAGAATCGA GCGTGGAATC GTTAAAGTTT CTGATAAAGT TCAGCTCGTG GGATTAGGAG	300 350 400 450
45	AGACTAAAGA AACAATCGTT ACTGGAGTCG AAATGTTCAG GAAAGAACTT CCTGAAGGTC GTGCAGGAGA AAACGTTGGT TTACTCCTCA GAGGTATTGG AAAGAACGAT GTTGAAAGAG GTATGGTGGT TTGTCAGCCT AACAGCGTGA AGCCTCATAC GAAATTTAAG TCAGCTGTTT ACGTTCTTCA GAAAGAAGAA GGCGGACGTC ATAAGCCTTT CTTCAGCGGA TACAGACCTC AGTTCTTCTT CCGTACTACA GACGTGACAG GAGTCGTAAC TCTTCCTGAA GGAACTGAAA TGGTAATGCC TGGAGATAAC GTTGAGCTTG ATGTTGAGCT CATTGGAACA	500 550 600 650 700 750 800
50	GTTGCTCTTG AAGAAGGAAT GAGATTTGCA A	831
	2) INFORMATION FOR SEQ ID NO: 21	
55	(i)SEQUENCE CHARACTERISTICS: (A) LENGTH: 826 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
60	(2) IOPOLOGI: Hilleat	

(ii) MOLECULE TYPE: Genomic DNA (vi)ORIGINAL SOURCE: (A) ORGANISM: Chlamydia psittaci 5 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 21 TGGAGCGATT CTCGTTGTTT CCGCTACTGA CGGTGCGATG CCTCAGACCA 50 AAGAACATAT TCTTTTGGCG AGACAGGTTG GTGTTCCTTA CATCGTTGTT 100 TTCCTTAACA AAATCGATAT GATTTCTCAA GAAGATGCTG AGCTCGTAGA 10 150 CTTAGTTGAA ATGGAATTGT CCGAACTTCT AGAAGAAAA GGTTATAAAG GTTGCCCAAT TATCCGTGGT TCTGCTTTGA AAGCCTTAGA AGGTGATGCA
AGCTACGTTG AAAAAATTCG CGAGTTAATG CAAGCAGTGG ATGATAACAT
CCCTACTCCA GAGCGTGAAG TTGATAAGCC TTTCTTAATG CCTATCGAAG
ACGTATTCTC TATTTCTGGT CGTGGTACTG TGGTCACAGG ACGTATCGAG
CGTGGAATCG TTAAAGTGGG TGATAAAGTA CAGATTGTTG GTTTAAGAGA
TACTAGAGAG ACAATTGTTA CCGGTGTGGA AATGTTCAGA AAAGAACTTC 200 250 300 350 400 450 500 CAGAAGGTCA AGCAGGGGAA AACGTTGGTT TGCTCCTCAG AGGTATCGGT 550 AAGAATGACG TTGAACGTGG TATGGTTATC TGCCAACCTA ATAGCGTGAA ATCTCACACA CAATTTAAAG GTGCTGTCTA CATTCTACAA AAAGAAGAGG GTGGACGTCA TAAACCTTTC TTTACCGGAT ACAGACCTCA GTTCTTCTTC 600 20 650 700 CGTACAACAG ATGTTACAGG TGTTGTAACT CTCCCAGAAG GTACAGAGAT 750 GGTTATGCCA GGCGATAACG TTGAATTCGA AGTTCAATTA ATTAGCCCAG 800 TAGCTCTAGA AGAAGGTATG AGATTT 826 25 2) INFORMATION FOR SEQ ID NO: 22 30 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 822 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double TOPOLOGY: Linear (D) 35 (ii) MOLECULE TYPE: Genomic DNA (vi)ORIGINAL SOURCE: (A) ORGANISM: Chlamydia trachomatis 40 (B) STRAIN: LGV 12 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 22 GGGGCTATTC TAGTAGTTTC TGCAACAGAC GGAGCTATGC CTCAAACTAA 50 AGAGCATATT CTTTTGGCAA GACAAGTTGG GGTTCCTTAC ATCGTTGTTT 45 100 TTCTCAATAA AATTGACATG ATTTCCGAAG AAGACGCTGA ATTGGTCGAC 150 TTGGTTGAGA TGGAGTTGGC TGAGCTTCTT GAAGAGAAAG GATACAAAGG GTGTCCAATC ATCAGAGGTT CTGCTCTGAA AGCTTTGGAA GGGGATGCTG 200 250 CATACATAGA GAAAGTTCGA GAGCTAATGC AAGCCGTCGA TGATAATATC 300 CCTACTCCAG AAAGAGAAAT TGACAAGCCT TTCTTAATGC CCATTGAGGA 50 350 CGTGTTCTCT ATCTCCGGAC GAGGAACTGT AGTAACTGGA CGTATTGAGC GTGGAATTGT TAAAGTTTCC GATAAAGTTC AGTTGGTCGG TCTTAGAGAT 400 450 ACTAAAGAAA CGATTGTTAC TGGGGTTGAA ATGTTCAGAA AAGAACTCCC
AGAAGGTCGT GCAGGAGAGA ATGTTGGATT GCTCCTCAGA GGTATTGGTA
AGAACGATGT GGAAAGAGGA ATGTTGGTTT GCTTGCCAAA CAGTGTTAAA
CCTCATACAC GGTTTAAGTG TGCTGTTTAC GTTCTGCAAA AAGAAGAAGG
TGGACGACAT AAGCCTTTCT TCACAGGATA TAGACCTCAA TTCTTCTTCC 500 550 55 600 650 700 GTACAACAGA CGTTACAGGT GTGGTAACTC TGCCTGAGGG AGTTGAGATG

GTCATGCCTG GGGATAACGT TGAGTTTGAA GTGCAGTTGA TTAGCCCTGT

GGCTTTAGAA GAAGGTATGA GA

60

750

800

```
2) INFORMATION FOR SEQ ID NO: 23
   5
         (i) SEQUENCE CHARACTERISTICS:
            (A)
                  LENGTH: 835 bases
            (B)
                  TYPE: Nucleic acid
             (C)
                  STRANDEDNESS: Double
  10
             (D)
                  TOPOLOGY: Linear
        (ii) MOLECULE TYPE: Genomic DNA
        (vi)ORIGINAL SOURCE:
 15
                ORGANISM: Chryseobacterium meningosepticum
            (A)
            (B)
                  STRAIN: CDC B7681
        (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 23
 20
      CGGAGCTATC TTAGTATGTG CTGCTACAGA TGGTCCAATG CCTCAAACTA
                                                                   50
      GAGAACACAT CCTACTTTGC CGTCAGGTAA ACGTACCTAG AATTGTTGTG
                                                                  100
      TTCATGAACA AAGTTGACAT GGTAGATGAT CCAGAATTGT TAGAGCTTGT
                                                                  150
      TGAGCTTGAA CTTAGAGATC TATTATCTAC TTACGAATAT GATGGTGATA
                                                                  200
      ACTCTCCAGT AATTCAAGGT TCTGCTCTTG GTGCTCTTAA CGGTGATGCT
                                                                  250
      AAGTGGGTAG CTACTGTAGA AGCTCTAATG GATGCTGTTG ATACTTGGAT
                                                                  300
      CGAGCAACCA GTAAGAGATT CTGATAAGCC ATTCCTTATG CCAATCGAAG
                                                                  350
      ACGTATTCTC TATTACAGGT AGAGGTACTG TAGCAACTGG TAGAATCGAG
                                                                  400
      GCTGGTGTAA TCAACACAGG TGATCCTGTT GACATCGTAG GTATGGGTGA
                                                                  450
      CGAGAAGTTA ACTTCTACTA TTACAGGTGT TGAGATGTTT AGAAAAATCC
                                                                  500
      TAGACAGAGG TGAAGCTGGT GATAACGTAG GTCTATTGTT GAGAGGTATT
                                                                  550
      GAAAAGACTG ACATCAAGAG AGGTATGGTT ATCGCTAAGA AAGATTCAGT
                                                                  600
      TAAGCCACAC AAGAAATTCA AAGCTGAGGT TTATATCCTT TCTAAAGAAG
                                                                  650
      AAGGTGGACG TCACACTCCA TTCCACAACA AATACCGTCC TCAGTTCTAT
                                                                  700
      GTAAGAACTA CTGACGTTAC AGGTGAAATC TTCTTACCAG AAGGTGTAGA
                                                                  750
 35
      AATGGTAATG CCTGGTGATA ACTTAACTAT CACTGTAGAA TTGTTACAAC
                                                                  800
      CAATCGCTCT TAACGAGGGT CTTAGATTCG CGATC
                                                                  835
 40
      2) INFORMATION FOR SEQ ID NO: 24
       (i) SEQUENCE CHARACTERISTICS:
          (A)
                LENGTH: 816 bases
           (B)
                TYPE: Nucleic acid
45
           (C)
                STRANDEDNESS: Double
                TOPOLOGY: Linear
      (ii) MOLECULE TYPE: Genomic DNA
50
      (vi)ORIGINAL SOURCE:
          (A)
                ORGANISM: Citrobacter amalonaticus
                STRAIN: ATCC 25405
      (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 24
55
    CGGCGCGATC CTGGTTGTTG CTGCGACTGA CGGCCCGATG CCGCAGACTC
                                                                  50
    GTGAGCACAT CCTGCTGGGT CGTCAGGTAG GCGTTCCGTA CATCATCGTG
                                                                100
    TTCCTGAACA AATGCGACAT GGTTGATGAC GAAGAGCTGC TGGAACTGGT
    AGAAATGGAA GTTCGTGAAC TTCTGTCTCA GTACGATTTC CCGGGCGACG
                                                                200
60 ACACCCCGAT CGTTCGTGGT TCTGCTCTGA AAGCGCTGGA AGGCGACGCA
                                                                250
```

10	ACGAAGGCCG TGCGGGTGAG AACGTTGGTG TTCTGCTGCG TGGTATCAAA CGTGAAGAAA TCGAACGTGG TCAGGTACTG GCTAAGCCGG GCWCCATCAA GCCGCACACC ATGTTCGAAT CYGAAGTGTA CATCCTGTCC AAAGACGAAG GCGGCCGTCA TACTCCGTTC TTCAAAGGCT ACCGTCCGCA GTTCTACTTC	300 350 400 450 500 550 600 650 700 750 800 816
15	2) INFORMATION FOR SEQ ID NO: 25	
20	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 825 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear 	
25	<pre>(ii) MOLECULE TYPE: Genomic DNA (vi)ORIGINAL SOURCE: (A) ORGANISM: Citrobacter braakii (B) STRAIN: ATCC 43162</pre>	
30		
35	CGCCGATCGT TCGTGGTTCT GCTCTGAAAG CGCTGGAAGG CGAWGCAGAG TGGGAAGCGA AAATCATCGA ACTGGCTGGC TTCCTGGATT CTTACATCCC GGAACCAGAG CGTGCGATTG ACAAGCCGTT CCTGCTGCCT ATCGAAGACG TATTCTCCAT CTCTGGTCGT GGTACCGTTG TTACCGGTCG TGTAGAGCGC	50 100 150 200 250 300 350 400
40	TGCTAAGTCT ACCTGTACTG GCGTTGAAAT GTTCCGCAAA CTGCTGGACG	450 500
45	AAGGCCGTGC TGGTGAGAAC GTTGGTGTTC TGCTGCGTGG TATCAAGCGT GAAGAAATCG AACGTGGTCA GGTACTGGCT AAGCCGGGCT CTATCAAGCC GCACACCAAG TTCGAATCTG AAGTGTACAT TCTGTCCAAA GACGAAGGCG GCCGTCATAC TCCGTTCTTC AARGGCTACC GTCCGCAGTT CTACTTCCGT ACTACTGACG TGACTGGTAC CATCGAACTG CCGGAAGGCG TTGAGATGGT AATGCCGGGC GACAACATCA AAATGGTTGT TACCCTGATC CACCCAATCG CGATGGACGA CGGTCTGCGT TTCGC	550 600 650 700 750 800 825
50		
	2) INFORMATION FOR SEQ ID NO: 26	
55	(i)SEQUENCE CHARACTERISTICS: (A) LENGTH: 830 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
60	(ii) MOLECULE TYPE: Genomic DNA	

```
(vi)ORIGINAL SOURCE:
                       ORGANISM: Citrobacter koseri
                         STRAIN: ATCC 27156
    5
            (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 26
         CGGCGCGATC CTGGTTGTTG CTGCGACTGA CGGCCCGATG CCGCAGACCC
                                                                                          50
         GTGAGCACAT CCTGCTGGGT CGTCAGGTAG GCGTTCCGTA CATCATCGTG
                                                                                          100
         TTCCTGAACA AATGCGACAT GGTTGATGAC GAAGAGCTGC TGGAACTGGT
   10
                                                                                          150
         TGAGATGGAA GTGCGTGAAC TGCTGTCTCA GTACGATTTC CCGGGCGACG
ACACGCCGAT CGTTCGTGGT TCTGCTCTGA AAGCGCTGGA AGGCGAMGCT
                                                                                          200
        300
                                                                                          350
                                                                                          400
                                                                                          450
                                                                                          500
                                                                                          550
                                                                                          600
                                                                                          650
                                                                                          700
                                                                                          750
                                                                                         800
         TCGCGATGGA CGACGGTCTG CGTTTCGCAA
                                                                                          830
  25
        2) INFORMATION FOR SEQ ID NO: 27
  30
             (i) SEQUENCE CHARACTERISTICS:
                 (A)
                        LENGTH: 827 bases
                 (B)
                        TYPE: Nucleic acid
                 (C)
                        STRANDEDNESS: Double
                        TOPOLOGY: Linear
                 (D)
  35
           (ii) MOLECULE TYPE: Genomic DNA
           (vi)ORIGINAL SOURCE:
                 (A) ORGANISM: Citrobacter farmeri
  40
                 (B)
                        STRAIN: ATCC 51112
         (X1) SEQUENCE DESCRIPTION: SEQ ID NO: 27
      CGCGATCCTG GTTGTTGCTG CGACTGACGG CCCGATGCCG CAGACTCGTG
                                                                                       50
      AGCACATCCT GCTGGGTCGT CAGGTAGGCG TTCCGTACAT CATCGTGTTC
45
                                                                                       100
      CTGAACAAAT GCGACATGGT TGATGACGAA GAGCTGCTGG AACTGGTAGA
                                                                                      150
      GATGGAAGTT CGTGAACTGC TGTCTCAGTA CGATTTCCCG GGCGACGACA
     CGCCGATCGT TCGTGGTTCT GCTCTGAAAG CGCTGGAAGG CGACGCAGAG
TGGGAAGCGA AAATCATCGA ACTGGCAGGC TTCCTGGATT CTTACATCCC
GGAACCAGAG CGTGCGATTG ACAAGCCGTT CCTGCTGCCG ATCGAAGACG
TATTCTCCAT CTCTGGTCGT GGTACCGTTG TTACCGGTCG TGTAGAGCGC
                                                                                       200
                                                                                       250
                                                                                       300
50
                                                                                       350
     GGTATCATCA AAGTGGGTGA AGAAGTTGAA ATCGTTGGTA TCAAAGAGAC
TGCCAAGTCT ACCTGTACTG GCGTTGAAAT GTTCCGCAAA CTGCTGGACG
AAGGCCGTGC TGGTGAGAAC GTAGGTGTTC TGCTGCGTGG TATCAAACGT
GAAGAAATCG AACGTGGTCA GGTACTGCT AAGCCGGGCW CCATCAAGCC
RCACACTATG TTCGAATCTG AAGTGTACAT TCTGTCCAAA GACGAAGGCG
GCCGTCATAC TCCGTTCTTC AAAGGCTACC GTCCGCAAGCTC TTCACATTCCGT
                                                                                       400
                                                                                       450
                                                                                       500
                                                                                      550
55
                                                                                      600
                                                                                      650
                                                                                       700
     ACGACTGACG TGACTGGCAC CATCGAACTG CCGGAAGGTG TTGAGATGGT
```

TATGCCGGGC GACAACATCA AAATGGTTGT TACCCTGATC CACCCGATCG

CGATGGACGA CGGTCTGCGT TTCGCAA

60

750

800

```
2) INFORMATION FOR SEQ ID NO: 28
   5
         (i) SEQUENCE CHARACTERISTICS:
                  LENGTH: 797 bases
             (A)
                  TYPE: Nucleic acid
             (B)
             (C)
                  STRANDEDNESS: Double
  10
             (D)
                  TOPOLOGY: Linear
        (ii) MOLECULE TYPE: Genomic DNA
        (vi)ORIGINAL SOURCE:
  15
             (A)
                  ORGANISM: Citrobacter freundii
             (B)
                  STRAIN: ATCC 8090
        (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 28
 20
      CCTGGTTGTT GCTGCGACTG ACGGCCCGAT GCCGCAGACT CGTGAGCACA
                                                                    50
      TCCTGCTGGG TCGTCAGGTA GGCGTTCCGT ACATCATCGT GTTCCTGAAC
                                                                   100
      AAATGCGACA TGGTTGATGA CGAAGAGCTG CTGGAACTGG TAGAAATGGA
                                                                   150
      AGTTCGTGAA CTTCTGTCTC AGTACGATTT CCCGGGCGAC GACACTCCGA
                                                                   200
      TCGTTCGTGG TTCTGCTCTG AAAGCGCTGG AAGGCGAAGC AGAGTGGGAA
                                                                   250
 25
      GCGAAAATCA TCGAACTGGC TGGCTTCCTG GATTCTTACA TCCCAGAACC
                                                                   300
      AGAGCGTGCG ATTGACAAGC CGTTCCTGCT GCCTATCGAA GACGTATTCT
                                                                   350
      CCATCTCCGG TCGTGGTACC GTTGTTACCG GTCGTGTAGA GCGCGGTATC
                                                                   400
      ATCAAAGTTG GTGAAGAAGT TGAAATCGTT GGTATCAAAG AGACTGCTAA
                                                                   450
      GTCTACCTGT ACTGGCGTTG AAATGTTCCG CAAACTGCTG GACGAAGGCC
                                                                   500
 30
      GTGCTGGTGA GAACGTTGGT GTTCTGCTGC GTGGTATCAA ACGTGAAGAA
                                                                   550
      ATCGAACGTG GTCAGGTACT GGCTAAGCCG GGCTCTATCA AGCCGCACAC
                                                                   600
      CAAGTTCGAA TCTGAAGTGT ACATTCTGTC CAAAGACGAA GGCGGCCGTC
                                                                   650
      ATACTCCGTT CTTCAAAGGC TACCGTCCGC AGTTCTACTT CCGTACTACT
                                                                   700
      GACGTGACTG GTACCATCGA ACTGCCGGAA GGCGTAGAGA TGGTAATGCC
                                                                   750
 35
      GGGCGACAAC ATCAAAATGG TTGTTACCCT GATCCACCCA ATCGCGA
                                                                   797
      2) INFORMATION FOR SEQ ID NO: 29
 40
         (i) SEQUENCE CHARACTERISTICS:
           (A)
                LENGTH: 826 bases
           (B)
                 TYPE: Nucleic acid
           (C)
                STRANDEDNESS: Double
45
           (D)
                TOPOLOGY: Linear
      (ii) MOLECULE TYPE: Genomic DNA
      (vi)ORIGINAL SOURCE:
50
           (A)
                ORGANISM: Citrobacter sedlakii
           (B)
                STRAIN: ATCC 51115
      (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 29
55
    CGGCGCGATC CTGGTTGTTG CCGCGACTGA CGGCCCGATG CCGCAGACCC
                                                                  50
    GTGAGCACAT CCTGCTGGGT CGTCAGGTAG GCGTTCCGTA CATCATCGTG
                                                                 100
    TTCCTGAACA AATGCGACAT GGTTGATGAC GAAGAGCTGC TGGAACTGGT
                                                                 150
    AGAGATGGAA GTTCGTGAAC TGCTGTCTCA GTACGATTTC CCGGGCGACG
                                                                 200
    ACACGCCGAT CGTTCGTGGT TCAGCTCTGA AAGCGCTGGA AGGCGACGCA
                                                                 250
    GAGTGGGAAG CGAAAATCAT CGAACTGGCT GGCTTCCTGG ATTCTTACAT
                                                                 300
```

5 10	TCCGGAACCA GAGCGTGCGA TTGACAAGCC GTTCCTGCTG CCGATCGAAG ACGTATTCTC CATCTCCGGT CGTGGTACCG TTGTTACCGG TCGTGTAGAG CGCGGTATCA TCAAAGTGGG CGAAGAAGTT GAAATCGTTG GTATCAAAGA GACTGCGAAG TCTACCTGTA CTGGCGTTGA AATGTTCCGC AAACTGCTGG ACGAAGGCCG TGCGGGTGAG AACGTAGGTG TCTGCTGCG TGGTATCAAA CGTGAAGAAA TCGAACGTGG TCAGGTACTG GCGAAGCCGG GCACCATCAA GCGGCCGTCA TACTCCGTTC TTCAAAGGCT ACCGTCCGCA GTTCTACTTC CGTACAACTG ACGTGACTAG CACCATCGAA CTGCCGGAAG GCGTAGAGAT TCAAAATGGT TGTTACCCTG ATCCACCCGA TCGCGGATGGA CGGCGATGGA CGGCGATGGA CGGTAGAGAT TCAAAATGGT TGTTACCCTG ATCCACCCGA	350 400 450 500 550 600 650 700 750 800 826
15	2) INFORMATION FOR SEQ ID NO: 30	
20	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 823 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear 	
25	(ii) MOLECULE TYPE: Genomic DNA (vi) ORIGINAL SOURCE: (A) ORGANISM: Citrobacter werkmanii	
30	(B) STRAIN: ATCC 51114 (xi)SEQUENCE DESCRIPTION: SEQ ID NO: 30 GCGATCCTGG TTGTTGCTGC GACTGACGGC CCGATGCCGC AGACTCGTGA	50
35	GCACATCCTG CTGGGTCGTC AGGTAGGCGT TCCGTACATC ATCGTGTTCC TGAACAAATG CGACATGGTT GATGACGAAG AGCTGCTGGA ACTGGTAGAA ATGGAAGTTC GTGAACTTCT GTCTCAGTAC GATTTCCCGG GCGACGACAC TCCGATCGTT CGTGGTTCTG CTCTGAAAGC GCTGGAAGGC GAAGCAGAGT GGGAAGCGAA AATCATCGAA CTGGCTGGCT TTCTGGATTC TTACATCCCG GAACCAGAGC GTGCGATTGA CAAGCCGTTC CTGCTRCCTA TCGAAGACGT ATTCTCCATC TCCGGTCGTG GTACCGTTGT TACCGGTCGT GTAGAGCGCG	100 150 200 250 300 350 400
40	GTATCATCAA AGTTGGTGAA GAAGTTGAAA TCGTTGGTAT CAAAGACACC GCTAAGTCTA CCTGTACCGG CGTTGAAATG TTCCGCAAAC TGCTGGACGA AGGCCGTGCT GGTGAGAACG TTGGTGTTCT GCTGCGTGGT ATCAAACGTG	450 500 550
45	AAGAAATCGA ACGTGGTCAG GTACTGGCTA AGCCGGGCTC TATCAAGCCG CACACCAAGT TCGAATCTGA AGTGTACATC CTGTCCAAAG ACGAAGGCGG CCGTCATACT CCGTTCTTCA AAGGCTACCG TCCGCAGTTC TACTTCCGTA CTACTGACGT GACTGGTACC ATCGAACTGC CGGAAGGCGT AGAGATGGTA ATGCCGGGCG ACAACATYAA AATGGTTGTT ACYCTGATCC ACCCGATCGC GATGGACGAC GGTCTGCGTT TCG	600 650 700 750 800 823
50	2) INFORMATION FOR SEQ ID NO: 31	

55

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 826 bases
- (B) TYPE: Nucleic acid
- (C) STRANDEDNESS: Double
- TOPOLOGY: Linear (D)

(ii) MOLECULE TYPE: Genomic DNA

```
(vi)ORIGINAL SOURCE:
                      ORGANISM: Citrobacter youngae
                      STRAIN: ATCC 29935
   5
           (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 31
        GGCGCGATCC TGGTTGTTGC TGCGACTGAC GGCCCGATGC CGCAGACTCG
                                                                                 50
        TGAGCACATC CTGCTGGGTC GTCAGGTAGG CGTTCCGTAC ATCATCGTGT
                                                                                100
        TCCTGAACAA ATGCGACATG GTTGATGACG AAGAGCTGCT GGAACTGGTA
                                                                                150
  10
        GAAATGGAAG TTCGTGAACT TCTGTCTCAG TACGATTTCC CGGGCGACGA
                                                                                200
       TACGCCGATC GTTCGTGGTT CTGCTCTGAA AGCGCTGGAA GGCGAAGCAG
                                                                                250
       AGTGGGAAGC GAAAATCATC GAACTGGCTG GCTTCCTGGA TTCTTACATC
                                                                                300
       CCGGAACCAG AACGTGCTAT CGATAAGCCG TTCCTGCTGC CAATCGAAGA
                                                                                350
       CGTATTCTCC ATCTCCGGTC GTGGTACCGT TGTTACTGGT CGTGTAGAAC
                                                                                400
       GCGGTATCAT CAAAGTTGGT GAAGAAGTTG AAATCGTTGG TATCAAAGAG
                                                                                450
       ACTGCCAAGT CTACCTGTAC TGGCGTTGAA ATGTTCCGCA AACTGCTGGA
                                                                                500
       CGAAGGCCGT GCTGGTGAGA ACGTTGGTGT TCTGCTGCGT GGTATCAAAC
                                                                                550
       GTGAAGAAAT CGAACGTGGT CAGGTACTGG CTAAGCCGGG CTCTATCAAG
                                                                                600
       CCGCACACCA AGTTCGAATC TGAAGTGTAC ATTCTGTCCA AAGACGAAGG
CGGCCGTCAT ACTCCGTTCT TCAAAGGCTA CCGTCCGCAG TTCTACTTCC
GTACTACTGA CGTGACGGGT ACCATCGAAC TGCCGGAAGG CGTAGAGATG
                                                                                650
  20
                                                                                700
                                                                                750
       GTAATGCCGG GCGACAACAT CAAAATGGTT GTTACCCTGA TCCACCCAAT
                                                                                800
       CGCGATGGAT GACGGTCTGC GTTTCG
                                                                                826
  25
       2) INFORMATION FOR SEO ID NO: 32
           (i) SEQUENCE CHARACTERISTICS:
  30
               (A)
                      LENGTH: 841 bases
               (B)
                      TYPE: Nucleic acid
               (C)
                      STRANDEDNESS: Double
               (D)
                      TOPOLOGY: Linear
  35
          (ii) MOLECULE TYPE: Genomic DNA
          (vi) ORIGINAL SOURCE:
               (A)
                    ORGANISM: Clostridium perfringens
               (B)
                      STRAIN: ATCC 13124
  40
          (xi) SEQUENCE DESCRIPTION: SEQ ID NO:32
     CGGAGCTATA TTAGTTTGTT CAGCAGCTGA TGGTCCAATG CCTCAAACAA
                                                                               50
     GAGAGCACAT CTTATTATCA TCAAGAGTTG GAGTTGACCA CATCGTAGTA
                                                                              100
     TTCTTAAACA AAGCAGATAT GGTTGACGAC GAAGAATTAT TAGAATTAGT
45
                                                                             150
     TGAAATGGAA GTTAGAGAGT TATTAAGCGA GTACAACTTC CCAGGAGACG
                                                                              200
     AYATTCCAGT AATCAARGGA TCAGCTTTAG TAGCATTAGA AAACCCAACT
                                                                              250
     GACGAAGCTG CAACAGCTTG TATCAGAGAG TTAATGGATG CTGTAGATAG
                                                                              300
     CTACATCCCA ACACCAGAAA GAGCAACAGA TAAGCCATTC TTAATGCCAG
TAGAGGACGT ATTCACAATC ACTGGTAGAG GAACAGTTGC AACAGGAAGA
                                                                              350
50
                                                                             400
     GTTGAAAGAG GAGTTCTACA TGTAGGAGAC GAAGTAGAAG TAATCGGATT
AACTGAAGAA AGAAGAAAAA CTGTTGTAAC AGGAATCGAA ATGTTCAGAA
AGTTATTAGA TGAAGCACAA GCTGGAGATA ACATCGGAGC ATTATTAAGA
                                                                             450
                                                                             500
                                                                             550
     GGTATCCAAA GAACTGAYAT CGAAAGAGGT CAAGTTTTAG CTCAAGTTGG
AACAATCAAC CCACACAAAA AATTCGTAGG TCAAGTATAC GTACTTAAAA
                                                                             600
                                                                             650
     AAGAAGAAGG TGGAAGACAT ACTCCATTCT TCGATGGATA CAGACCACAA
TTCTACTTCA GAACAACAGA CGTTACAGGA TCAATCAAAT TACCAGAAGG
```

AATGGAAATG GTTATGCCTG GAGACCACAT CGACATGGAA GTTGAATTAA

TCACAGAAAT CGCTATGGAY GAAGGATTAA GATTCGCTAT C

60

700 750

800

```
2) INFORMATION FOR SEQ ID NO: 33
   5
          (i) SEQUENCE CHARACTERISTICS:
              (A)
                    LENGTH: 822 bases
              (B)
                    TYPE: Nucleic acid
              (C)
                    STRANDEDNESS: Double
              (D)
                    TOPOLOGY: Linear
  10
         (ii) MOLECULE TYPE: Genomic DNA
         (vi)ORIGINAL SOURCE:
                  ORGANISM: Comamonas acidovorans
              (A)
  15
              (B)
                    STRAIN: ATCC 15668
         (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 33
       CGGCGCCATC CTGGTGTGCT CGGCCGCTGA CGGCCCCATG CCCCAGACCC
                                                                          50
       GCGAGCACAT CCTGCTGGCC CGTCAGGTGG GCGTGCCCTA CATCATCGTG
  20
                                                                         100
       TTCCTGAACA AGTGCGACAT GGTGGACGAC GAAGAGCTGC TGGAACTGGT
                                                                         150
       CGAAATGGAA GTGCGCGAGC TGCTTGCCAA GTACGACTTC CCCGGCGACG
                                                                         200
      ACACCCCCAT CATCCGCGGC TCGGCCAAGC TGGCCCTGGA AGGCGACCAG
                                                                         250
       TCCGACAAGG GCGAACCTGC CATCCTGCGC CTGGCTGAAG CACTGGACTC
                                                                         300
      CTACATCCCC ACGCCCGAGC GCGCTGTGGA CGGCGCCTTT GCAATGCCCG
TGGAAGACGT GTTCTCGATC TCTGGCCGTG GCACCGTGGT GACTGGCCGT
  25
                                                                         350
                                                                         400
      ATCGAGCGCG GCATCATCAA GGTCGGCGAA GAAATCGAAA TCGTCGGTAT
                                                                         450
       CCGCGACACC CAGAAGACCA TCGTCACCGG CGTGGAAATG TTCCGCAAGC
                                                                         500
       TGCTGGACCA AGGTCAAGCT GGCGACAACG TGGGTCTGCT GCTGCGCGGC
                                                                         550
 30
      ACCAAGCGTG AAGACGTGGA ACGCGGCCAA GTGCTGTGCA AGCCCGGCTC
                                                                         600
       CATCAAGCCC CACACCCACT TCACGGCTGA GGTGTACGTG CTGTCCAAGG
                                                                         650
      ACGAAGGTGG TCGCCACACT CCGTTCTTCA ACAACTACCG TCCCCAGTTC
                                                                         700
       TATTTCCGTA CGACCGACGT GACCGGCTCC ATCGAGCTGC CCGCCGACAA
       GGAAATGGTG ATGCCTGGCG ACAACGTGTC GATCACCGTC AAGCTGATCG
                                                                         800
 35
      CCCCCATCGC CATGGAAGAA GG
                                                                         822
      2) INFORMATION FOR SEQ ID NO: 34
 40
          (i) SEQUENCE CHARACTERISTICS:
                  LENGTH: 702 bases
            (A)
                  TYPE: Nucleic acid
            (B)
            (C)
                  STRANDEDNESS: Double
45
            (D)
                  TOPOLOGY: Linear
       (ii) MOLECULE TYPE: Genomic DNA
       (vi)ORIGINAL SOURCE:
50
            (A)
                 ORGANISM: Corynebacterium bovis
            (B)
                  STRAIN: ATCC 7715
       (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 34
    GCCGCAGACC CGTGAGCACG TCCTCCTGGC CCGTCAGGTC GGTGTGCCCT
                                                                        50
    ACATCCTCGT CGCCCTCAAC AAGTGCGACA TGGTCGACGA CGAGGACCTC
                                                                       100
    ATCGAGCTCG TCGAGATGGA GGTCCGTGAG CTCCTCGCCG AGCAGGACTA CGACGAGGAC GCCCCGATCA TCCACATCTC CGCCCTCAAG GCCCTCGAGG GTGACCCGGA GTGGACGCAG CGCATCGTCG ACCTCATGAA GGCCTGCGAC
                                                                       150
                                                                       200
                                                                       250
    GACGCCATCC CGGATCCGGA GCGCGAGACG GACAAGCCGT TCCTCATGCC
                                                                       300
```

10	GGCGCCTACA CGCCGCACAC CGAGTTCGAG GGCTCCGTGT ACATCCTCTC CAAGGACGAG GGTGGCCGCC ACACGCCGTT CTTCGACAAC TACCGTCCGC AGTTCTACTT CCGGACGACC GACGTCACCG GCGTCGTCAA GCTGCCGGAG GG	350 400 450 500 550 600 650 700			
	2) INFORMATION FOR SEQ ID NO: 35				
15	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 689 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear 				
20					
25	<pre>(vi)ORIGINAL SOURCE: (A) ORGANISM: Corynebacterium cervicis (B) STRAIN: NCTC 10604</pre>				
	(xi)SEQUENCE DESCRIPTION: SEQ ID NO: 35				
30	CTGGAGCTCG TTGAGGAAGA GTGCCGCGAC CTGCTCGAGT CCCAGGACTT CGATCGTGAC GCCCCGATCA TCCAGGTTTC CGCGCTGAAG GCTCTCGAAG	50 100 150 200			
35	GTGATCCGCA GTGGGTTGCT AAGGTCGAGG AGCTCATGGA GGCAGTCGAC ACCTTCGTGC CGACTCCTGA GCGCGACATG GACAAGCCGT TCCTCATGCC GATCGAAGAC GTCTTCACCA TCACCGGCCG TGGCACCGTT GTTACCGGTC GTGTTGAGCG TGGCAAGCTC CCGATCAACT CTGAGGTTGA AATCCTCGGT ATCCGCGAAC CGCAGAAGAC CACCGTTACC GGTATCGAGA TGTTCCACAA	250 300 350 400			
40	GTCCATGGAT GAAGCATGGG CAGGCGAGAA CTGTGGTCTC CTCCTGCGTG GCACCAAGCG CGATGAGGTT GAGCGCGGTC AGGTCGTTGC CGTTCCCGGT TCGATCACCC CGCACACCAA CTTCACCGGA CAGGTCTACA TCCTCAAGAA GGAAGAAGGC GGTCGTCACA ACCCGTTCTT CTCGAACTAC CGTCCGCAGT TCTACTTCCG CACCACGGAC GTGACCGGCG TCATCACCC	450 500 550 600 650 689			
45	2) INFORMATION FOR SEQ ID NO: 36				
50	(i)SEQUENCE CHARACTERISTICS: (A) LENGTH: 804 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear				
55	(ii) MOLECULE TYPE: Genomic DNA				
	(vi)ORIGINAL SOURCE:(A) ORGANISM: Corynebacterium flavescens(B) STRAIN: ATCC 10340				
60	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 36				

20

2) INFORMATION FOR SEQ ID NO: 37

(i) SEQUENCE CHARACTERISTICS:

25 (A) LENGTH: 692 bases

(B) TYPE: Nucleic acid

(C) STRANDEDNESS: Double

(D) TOPOLOGY: Linear

30 (ii) MOLECULE TYPE: Genomic DNA

(vi) ORIGINAL SOURCE:

(A) ORGANISM: Corynebacterium kutscheri

(B) STRAIN: ATCC 15677

35

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 37

	TGCCTCAGA	C CCGTGAGCA	C GTTCTTCTT	G CTCGCCAGG	T TGGCGTTCCT	50
40	TACATCCTC	G TTGCTCTTA	A CAAGTGCGA	C ATGGTTGAC	G ATGAGGAAAT	100
	CATCGAGCT			A GCTTCTTGC		150
	ACGATGAAG	A GGCTCCAAT	C ATCCACATO	T CTGCTTTGA	A GGCTCTTGAG	200
	GGCGACGAGA	AGTGGACTCA	GGCCATCATC	GACCTCATGC	AGGCTTGTGA	250
	TGACTCCATC	CCAGATCCAG	AGCGTGAGAC	CGACAAGCCA	TTCCTCATGC	300
		TATCTTCACC			TGTTACCGGT	350
45		GCGGTTCCTT			AGATCATCGG	400
		AAGTCCACCA			GAAATGTTCC	450
		TGATTACACC			TCTGCTTCTT	500
50		AGCGCGAAGA			TTGTTAAGCC	550
		ACACCTCACA			TACGTTCTTT	600
		GGGCGGCCGC				650
	CAGTTCTACT	TCCGCACCAC	TGACGTTACC	GGTGTTGTGA	AG	692

55 2) INFORMATION FOR SEQ ID NO: 38

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 797 bases
- (B) TYPE: Nucleic acid
- 60 (C) STRANDEDNESS: Double

50

100

150

200

250

300

350 400

450

500

550

600

650

700

750

797

(D) TOPOLOGY: Linear (ii) MOLECULE TYPE: Genomic DNA 5 (vi)ORIGINAL SOURCE: ORGANISM: Corynebacterium minutissimum (A) (B) STRAIN: ATCC 23348 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 38 10 CCTGGTTGTT GCTGCAACCG ATGGCCCGAT GCCGCAGACC CGCGAGCACG TTCTTCTGGC CCGCCAGGTT GGCGTTCCGT ACATCCTCGT TGCACTGAAC AAGTGTGACA TGGTTGACGA TGAGGAAATC ATCGAGCTCG TTGAGATGGA GATCCGTGAG CTGCTCGCTG AGCAGGACTA CGACGAGGAA GCTCCGATCG TTCACATCTC CGCTCTGAAG GCTCTTGAGG GCGACGAGAA GTGGGCACAG 15 TCCATCGTTG ACCTGATGCA GGCTTGCGAT GACTCCATCC CGGATCCGGA GCGCGAGCTG GACAAGCCGT TCCTGATGCC GATCGAGGAC ATCTTCACCA
TTACCGGCCG CGGTACCGTT GTTACCGGCC GTGTTGAGCG TGGCTCCCTG AACGTTAACG AGGACATCGA GATCATCGGT ATCAAGGACA AGTCCATGTC 20 CACCACCGTT ACCGGTATCG AGATGTTCCG CAAGATGATG GACTACACCG AGGCTGGCGA CAACTGTGGT CTGCTTCTGC GTGGTACCAA GCGTGAAGAG GTTGAGCGTG GCCAGGTTTG CATCAAGCCG GGCGCTTACA CCCCGCACAC CAAGTTCGAG GGTTCCGTCT ACGTCCTGAA GAAGGAAGAG GGCGGCCGCC ACACCCCGTT CATGGACAAC TACCGTCCGC AGTTCTACTT CCGCACCACC 25 GACGTCACCG GTGTCATCAA GCTGCCGGAG GGCACCGAGA TGGTCATGCC GGGCGACAAC GTTGAGATGT CCGTAGAGCT GATCCAGCCG GTCGCTA 30 2) INFORMATION FOR SEQ ID NO: 39 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 702 bases (B) TYPE: Nucleic acid 35 (C) STRANDEDNESS: Double

- - (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: Genomic DNA
- (vi)ORIGINAL SOURCE: 40
 - (A) ORGANISM: Corynebacterium mycetoides
 - STRAIN: ATCC 21134 (B)
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 39 45

	GCCGCAGACC	CGCGAGCACG	TTCTTCTGGC	CCGCCAGGTC	GGCGTCCCCT	50
	ACATCCTCGT		AAGTGCGACA			100
		TGGAGATGGA			AGCAGGACTA	150
_			TCCACATCTC	CGCTCTGAAG	GCTCTCGAGG	200
50		GTGGGTTCAG				250
	GACTCCATCC	CGGATCCGGT	CCGCGAGACC	GACCGCGACT	TCCTGATGCC	300
	GATCGAGGAC	ATCTTCACCA	TCTCCGGCCG	CGGCACCGTG	GTTACCGGTC	350
	GTGTGGAGCG	CGGCGTGCTC	AACCTCAACG	ACGAGGTCGA	GATCATCGGC	400
	ATCCGCGACA	AGTCCCAGAA	GACCACCGTC	ACCTCCATCG	AGATGTTCAA	450
55	CAAGCTGCTC	GATACCGCTG	AGGCAGGCGA	CAACGCGGCT	CTGCTGCTCC	500
	GCGGTCTGAA	GCGCGAGGAC	GTCGAGCGTG	GCCAGGTTGT	CATCAAGCCG	550
	GGCGCCTACA	CCCCGCACAC	CAAGTTCGAG	GGTTCCGTCT	ACGTCCTGTC	600
	CAAGGACGAG	GGCGGCCGCC	ACACCCCGTT	CTTCGACAAC	TACCGTCCGC	650
		CCGCACCACC	GACGTGACCG	GTGTTGTGAA	GCTGCCGGAG	700
60	GG					702

```
2) INFORMATION FOR SEQ ID NO: 40
   5
          (i) SEQUENCE CHARACTERISTICS:
                  LENGTH: 674 bases
             (A)
                   TYPE: Nucleic acid
             (B)
             (C)
                   STRANDEDNESS: Double
  10
             (D)
                   TOPOLOGY: Linear
        (ii) MOLECULE TYPE: Genomic DNA
        (vi)ORIGINAL SOURCE:
  15
             (A) ORGANISM: Corynebacterium pseudogenitalium
                   STRAIN: ATCC 33038
             (B)
        (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 40
 20
      GCTCGCCAGG TTGGCGTTCC TTACATCCTC GTTGCGCTGA ACAAGTGCGA
                                                                     50
      CATGGTTGAT GATGAGGAAA TCATCGAGCT CGTTGAGATG GAGATCCGTG
                                                                    100
      AGCTGCTCGC AGAGCAGGAT TACGATGAGG AAGCTCCTAT CGTTCACATC
                                                                    150
      TCCGCTCTGA AGGCCCTCGA GGGCGATGAC AAGTGGGTAC AGTCCGTCGT
                                                                    200
      TGATCTGATG GAAGCCTGCG ACAACTCCAT CCCGGATCCG GAGCGCGCTA
                                                                    250
 25
      CCGACCAGCC GTTCCTGATG CCTATCGAGG ACATCTTCAC CATTACCGGC
                                                                    300
      CGCGGTACCG TTGTTACCGG CCGTGTTGAG CGTGGCCGTC TGAACGTCAA
                                                                    350
      CGAGGACGTT GAGATCATCG GTATCCAGGA GAAGTCCCAG ACCACCACCG
                                                                    400
      TTACCGGTAT CGAGATGTTC CGCAAGATGA TGGACTACAC CGAGGCTGGC
                                                                    450
      GACAACTGTG GTCTGCTTCT GCGTGGTACC AAGCGTGAGG ACGTTGAGCG
                                                                    500
 30
      TGGCCAGGTT GTTATCAAGC CGGGCGCTTA CACCCCGCAC ACCAAGTTCG
                                                                    550
      AGGGCTCCGT CTACGTCCTG AAGAAGGAAG AGGGCGGCCG CCACACCCCG
                                                                    600
      TTCATGAACA ACTACCGTCC GCAGTTCTAC TTCCGTACCA CGGACGTTAC
                                                                    650
      CGGTGTTGTT CACCTGCCAG AGGG
                                                                    674
 35
      2) INFORMATION FOR SEQ ID NO: 41
         (i) SEQUENCE CHARACTERISTICS:
 40
             (A)
                 LENGTH: 694 bases
             (B)
                  TYPE: Nucleic acid
           (C) ---
                 STRANDEDNESS: Double
           (D)
                 TOPOLOGY: Linear
45
      (ii) MOLECULE TYPE: Genomic DNA
       (vi)ORIGINAL SOURCE:
                 ORGANISM: Corynebacterium renale
           (A)
           (B)
                 STRAIN: ATCC 19412
50
       (xi) SEQUENCE DESCRIPTION: SEO ID NO: 41
    TGCCTCAGAC CCGTGAGCAC GTTCTGCTTG CTCGTCAGGT CGGCGTTCCT
                                                                   50
    TACATCCTCG TTGCACTGAA CAAGTGCGAC ATGGTCGACG ACGAAGAAAT
                                                                  100
    CATCGAGCTC GTCGAGATGG AAATCCGTGA ACTGCTCGCA GAGCAGGACT
55
                                                                  150
    ACGATGAGGA AGCTCCTATC GTTCACATCT CCGCTCTGGG CGCCCTGAAC
                                                                  200
    GGCGAGCAGA AGTGGGTTGA CTCCATCGTC GAACTGATGG AAGCTTGCGA
                                                                  250
    CAACTCCATC CCAGACCCAG TTCGCGACAT CGACCACCCA TTCCTGATGC
CTATCGAGGA CATCTTCACC ATTACCGGTC GCGGTACCGT TGTTACCGGC
                                                                  300
                                                                  350
60
    CGTGTCGAGC GTGGCCGTCT CAACGTCAAC GAAGAAGTTG AGATCATCGG
                                                                  400
```

5	TATCAAGGAC AAGTCCCAGA AGACCACCGT CACCGGTATC GAGATGTTCC GCAAGATGCT GGACTACACC GAAGCTGGCG ACAACTGTGG TCTGCTGCTC CGCGGCATCG GCCGTGAGGA TGTCGAGCGT GGCCAGGTTA TCATCAAGCC AGGCGCTTAC ACCCCTCACT CTGAGTTCGA GGGCTCTGTC TACGTCCTGT CCAAGGACGA GGGTGGCCGC CACACCCCAT TCTTCGACAA CTACCGTCCA CAGTTCTACT TCCGCACCAC CGACGTGACC GGCGTTGTGC ACCT	450 500 550 600 650 694
10	2) INFORMATION FOR SEQ ID NO: 42	
15	(i)SEQUENCE CHARACTERISTICS: (A) LENGTH: 687 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
20	<pre>(vi)ORIGINAL SOURCE: (A) ORGANISM: Corynebacterium ulcerans (B) STRAIN: NCTC 8665</pre>	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 42	
22	GCCGCAGACC CGCGAGCACG TTCTGCTGGC TCGCCAGGTT GGCGTTCCKT ACATCCTSGT TGCACTGAAC AAGTGCGACA TGGTTGACGA TGAGGARCTC CTSGAGCTCG TCGAGATGGA GGTCCGCGAG CTGCTGGCTG AGCAGGACTA	50 100 150
30	CGACGAGGAA GCTCCGRTCG TTCACATCTC CGCWCTGAAC GCCCTGGACG GCGACSAGAA GTGGGCTVAC TCCATCCTCG AGCTGATGCA GGCTTGCGAC GAGTCCATCC CGGATCCGGA GCGCGAGACC GACAAGCCGT TCCTGATGCC GATTGAGGAC ATCTTCACCA TTACCGGTCG CGGYACCGTT GTTACCGGCC	200 250 300 350
35	GTGTTGAGCG TGGCDTCCTG AACGTSAACG ACGASGTTGA GATCATGGGY ATCCGGGAGA AGTCCCAGAA GACCACCGTY ACCKSCATCG AGATGTTCAA CAAGMTGMTG GACWCCGCAG AGGCTGGCGA CAACGCTGSW CTGCTGCTGC GTGGTMTSAA GCGTGAGGAC GTTGAGCGTG GCCAGATCAT CGYTAAGCCG GGCGCKTACA CCCCGCACAC CGAGTTCGAG GGCTCCGTCT ACGTCCTGTC CAAGGACGAG GGCGGCCGCC ACACCCCGTT CTTCGACAAC TACCGTCCGC	400 450 500 550 600
40	AGTTCTACTT CCGCACCACC GACGTSACCG GTGTTGT	687
	2) INFORMATION FOR SEQ ID NO: 43	
45	(i)SEQUENCE CHARACTERISTICS: (A) LENGTH: 778 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
50	(ii) MOLECULE TYPE: Genomic DNA	
55	<pre>(vi)ORIGINAL SOURCE: (A) ORGANISM: Corynebacterium urealyticum (B) STRAIN: ATCC 43042</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 43	
60	CTGGTTGTTG CTGCAACCGA TGGCCCGATG CCGCAGACCC GTGAGCACGT TCTGCTGGCT CGCCAGGTTG GCGTTCCGTA CATCCTCGTT GCACTGAACA 27	50 100

_	AGTGCGACAT GGTTGACGAT GAGGAGCTCC TCGAGCTCGT CGAGATGGAG GTCCGCGAGC TTCTGGCTGA GCAGGACTAC GACGAGGAGG CTCCGGTCGT CCCGATCTCC GCACTGGGCG CCCTGGACGG CGATCAGAAG TGGGTCGACT CCATCCTCGA GCTCATGAAG GCTTGCGACG AGTCCATCCC GGACCCGGAG	150 200 250 300
5	TACCGGTCGC GGCACCGTCG TTACCGGCCG TGTTGAGCGT GGCGTCCTGA ACCTGAACGA CGAGGTCGAG ATCCTGGGCA TCCGCGAGAA GTCCACCAAG ACCACCGTCA CCTCCATCGA GATGTTCAAC AAGCTGCTGG ACACCGCAGA	350 400 450 500
10	GGCTGGCGAC AACGCTGCAC TGCTGCTGCG TGGTCTGAAG CGTGAGGACG TCGAGCGAGG CCAGATCATC GCTAAGCCGG GCGCTTACAC CCCGCACACC GAGTTCGAGG GCTCCGTCTA CGTCCTGTCC AAGGACGAGG GCGCCGTCA CACCCCGTTC TTCGACAACT ACCGTCCGCA GTTCTACTTC CGTACCACCG ACGTCACCGG TGTCGTTACC CTGCCAGAGG GCACCGACAT GGTCATGCCG GGCGACAACG TTGAGATGAG CGTCAAGC	550 600 650 700 750
15	GGCGACAACG IIGAGAIGAG CGICAAGC	778
	2) INFORMATION FOR SEQ ID NO: 44	
20	(i)SEQUENCE CHARACTERISTICS: (A) LENGTH: 703 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double	
25	(D) TOPOLOGY: Linear (ii) MOLECULE TYPE: Genomic DNA	
	(vi)ORIGINAL SOURCE: (A) ORGANISM: Corynebacterium xerosis	
30	(B) STRAIN: ATCC 373	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 44	
35	CGCAGACCCG TGAGCACGTC CTCCTGGCCC GCCAGGTCGG CGTCCCCTAC ATCCTCGTCG CCCTGAACAA GTGCGACATG GTCGACGATG AGGAGATCAT CGAGCTCGTG GAGATGGAGG TGCGTGAGCT TCTCGCCGAG CAGGACTACG	50 100 150
40	ACGAGGAGGC CCCGATCGTG CACATCTCCG CCCTGGGCGC CCTCAATGGC GAAGAGAAGT GGGTCGACTC CATCGTCGAG CTCATGAACG CCGTCGACGA GAACGTTCCG GACCCGGTCC GCGAGACCGA CAAGCCGTTC CTGATGCCCG TCGAGGACAT CTTCACCATC ACCGGCCGCG GCACCGTCGC CACCGGTCGC GTGGAGCCGC GCACCCTGAA GGTCAACGAC GAGGTCGAGA TCCTGGGCAT	200 250 300 350 400
45	CCAGGAGAAG TCCCAGACCA CCACCGTCAC CGGCATCGAG ATGTTCCGCA AGCTGCTGGA CTCCGCCGAG GCCGGCGACA ACTGTGGCCT GCTGCTCCGC GGCATCAAGC GCGAGGACAT CGAGCGCGGC CAGATCATCG CGAAGCCGGG CGCCTACACC CCGCACACCG AGTTCGAGGG CTCCGTCTAC ATCCTGGCCA AGGACGAGGG CGGCCGCCAC ACCCCGTTCT TCGACAACTA CCGTCCGCAG TTCTACTTCC GCACCCGA CGTCACCGGC GTCGTGAAGC TGCCGGAGGG CAC	450 500 550 600 650 700

50

55

2) INFORMATION FOR SEQ ID NO: 45

(i) SEQUENCE CHARACTERISTICS:

LENGTH: 832 bases (A)

- (B)
- TYPE: Nucleic acid STRANDEDNESS: Double (C)
- (D) TOPOLOGY: Linear
- 60 (ii) MOLECULE TYPE: Genomic DNA

(vi)ORIGINAL SOURCE: ORGANISM: Coxiella burnetii STRAIN: Nine Mile phase II 5 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 45 GGAGCGATAT TGGTGGTGAG CGCAGCGGAC GGCCCGATGC CGCAAACGCG 50 GGAACACATT GTATTGGCGA AGCAAGTGGG TGTTCCGAAC ATAGTGGTTT 100 ACTTGAACAA AGCGGACATG GTGGATGACA AAGAGCTGTT GGAATTAGTG 10 150 GAAATGGAAG TGAGGGATTT ATTGAACAGT TATGATTTCC CTGGGGATGA 200 GACGCCGATA ATAGTGGGGT CAGCGTTAAA GGCGTTAGAA GGTGACAAGA 250 GTGAGGTTGG GGAGCCATCG ATAATCAAAT TAGTGGAAAC GATGGACACG 300 TACTTCCCGC AGCCGAGCG AGCGATAGAC AAACCGTTTT TAATGCCGAT CGAAGATGTG TTTTCGATAT CGGGCCGAGG GACGGTGGTG ACGGGACGCG 400 TAGAGCGAGG GATCATCAAA GTGGGCGACG AGATAGAGAT TGTGGGGATC AAGGACACGA CGAAGACGAC GTGCACGGGC GTTGAGATGT TTCGCAAATT ATTGGATGAA GGTCAAGCGG GTGACAACGT AGGAATTTTA TTGAGAGGGA 450 500 550 CGAAACGCGA AGAAGTGGAG CGTGGTCAAG TATTGGCGAA ACCGGGATCG 600 ATCACGCCAC ACAAGAATT TGAGGCGGAG ATTTATGTGT TGTCGAAGGA AGAAGGGGA CGCCACACAC CGTTTTTACA AGGCTATCGA CCGCAATTTT ATTTCCGCAC GACGGACGTG ACGGGCCAGT TATTGAGTTT ACCGGAGGGG ATAGAGATGG TGATGCCGGG AGATAACGTG AAAGTGACGG TTGAATTGAT TGCGCCGGTA GCGATGGATG AAGGGCTACG AT 20 650 700 750 800 832 25 2) INFORMATION FOR SEQ ID NO: 46 30 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 816 bases TYPE: Nucleic acid (B) (C) STRANDEDNESS: Double TOPOLOGY: Linear (D) 35 (ii) MOLECULE TYPE: Genomic DNA (vi)ORIGINAL SOURCE: (A) ORGANISM: Edwardsiella hoshinae 40 (B) STRAIN: ATCC 33379 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 46 GGCGCTATCC TGGTTGTTGC TGCGACTGAC GGCCCGATGC CGCAGACCCG 50 TGAGCACATC CTGCTGGGTC GCCAGGTAGG CGTTCCGTAC ATCATCGTGT 100 TCCTGAACAA GTGCGACATG GTTGATGACG AAGAGCTGCT GGAACTGGTT GAGATGGAAG TTCGCGAACT GCTGTCTCAG TACGATTTCC CGGGCGACGA 150 200 TACGCCGGTA ATCCGCGGTT CTGCGCTGAA AGCGCTGGAA GGCGAAGCCG 250 AGTGGGAAGC GAAGATCATC GAACTGGCTG AAACGCTGGA CTCCTACATT CCGGAACCTG AGCGTGACAT CGACAAGCCG TTCCTGCTGC CGATCGAAGA 300 350 CGTATTCTCA ATCTCTGGTC GTGGTACCGT TGTTACCGGT CGTGTAGAGC GCGGTATCAT CAAGGTAGGC GACGAAGTTG AAATCGTAGG TATCAAGCCG 400 450 ACCACCAAGA CTACCTGTAC TGGCGTTGAA ATGTTCCGCA AACTGCTGGA 500 CGAAGGCCGT GCTGGTGAGA ACGTAGGTGT TCTGCTGCGT GGTACCAAGC GTGACGAAAT CGAACGTGGT CAGGTACTGG CTAAGCCGGG CACCATCACT 550 600 CCGCACACCA AGTTCGAATC AGAAGTGTAC ATCCTGAGCA AGGATGAAGG 650 CGGCCGTCAT ACTCCGTTCT TCAAAGGTTA CCGTCCGCAG TTCTACTTCC 700 GTACCACTGA CGTGACTGGC ACCATCGAAC TGCCGGAAGG CGTAGAGATG 750 GTAATGCCGG GCGACAACAT CAAGATGGTT GTTACCCTGA TCCACCCGAT 800

816

CGCCATGGAC GATGGT

_	2) INFORMATION FOR SEQ ID NO: 47	
5	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 821 bases (B) TYPE: Nucleic acid	
	(B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
10	(D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
	(vi) ORIGINAL SOURCE:	
15	(A) ORGANISM: Edwardsiella tarda (B) STRAIN: ATCC 15947	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 47	
20	GGCGCGATCC TGGTTGTTGC TGCGACTGAC GGCCCGATGC CGCAGACCCG	50
	TGAGCACATC CTGTTGGGTC GCCAGGTAGG CGTTCCGTAC ATCATCGTGT TCCTGAACAA GTGCGACATG GTTGATGACG AAGAGCTGCT GGAACTGGTT	100 150
	GAGATGGAAG TTCGCGAACT GCTGTCTCAG TACGACTTCC CGGGCGACGA	200
	CACGCCGGTA ATCCGCGGTT CTGCGCTGAA AGCGCTGGAA GGCGAAGCCG	250
25		
	CCGGAACCTG AGCGTGACAT CGACAAGCCG TTCCTGCTGC CGATCGAAGA CGTATTCTCT ATCTCTGGCC GTGGTACCGT TGTTACCGGT CGTGTAGAGC	350
	GCGGTATCAT CAAGGTAGGC GACGAAGTTG AAATCGTTGG TATCAAGCCG	400 450
	ACCACCAAGA CCACCTGTAC TGGCGTTGAA ATGTTCCGCA AACTGCTGGA	500
30		550
	GTGACGAAAT CGAACGTGGT CAGGTACTGG CTAAGCCGGG CACCATCACT	600
	CCGCACACA AGTTCGAATC TGAAGTGTAC ATCCTGAGCA AGGATGAAGG CGGCCGTCAT ACTCCGTTCT TCAAAGGCTA CCGTCCGCAG TTCTACTTCC	650 700
	GTACTACTGA CGTGACTGGT ACCATCGAAC TGCCGGAAGG CGTAGAGATG	700 750
35		800
	CGCCATGGAC GATGGTCTGC G	821
40	2) INFORMATION FOR SEQ ID NO: 48	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 830 bases	
	(B) TYPE: Nucleic acid	
45	(C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
	(D) TOPOROGI: Efficat	
	(ii) MOLECULE TYPE: Genomic DNA	
50	(vi)ORIGINAL SOURCE:	
	(A) ORGANISM: Eikenella corrodens (B) STRAIN: ATCC 23834	
55	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 48	
-	CGGTGCCATC CTGGTGGTAT CCGCTGCTGA CGGCCCCATG CCTCAGACTC	50
	GCGAACACAT CCTGTTGGCT CGTCAGGTAG GTGTACCCTA CATCCTCGTA	100
	TTCATGAACA AATGCGACAT GGTAGATGAT GCCGAGCTGC TTGAGTTGGT TGAGATGGAA ATCCGCGACC TGCTCTCCAG CTATGACTTC CCTGGTGACG	150 200
60	ACTGCCGAT CGTACAAGGT TCCGCTCTCA AAGCCCTCGA AGGCGATGCC	250 250
	30	
	- -	

5	ACGAAGGTCA GGCCGGTGAC AACGTAGGCG TACTGCTGCG CGGTACCAAA CGTGAAGAAG TTGAGCGTGG TCAAGTATTG GCTAAACCCG GCACCATCAC	300 350 400 450 500 550 600
10	TCCGCACACC AAGTTCAAAG CCGAAGTATA CGTATTGAGC AAAGAAGAAG GTGGTCGTCA CACCCCGTTC TTTGCCAACT ACCGTCCACA GTTCTACTTC CGTACTACTG ACGTAACCGG TGCTGTAGAG CTGGAGCCTG GTGTAGAAAT GGTTATGCCT GGTGAGAACG TAACCATCAC CGTAGAACTG ATTGCTCCGA TTGCTATGGA AGAAGGTCTG CGCTTTGCGA	650 700 750 800 830
15	2) INFORMATION FOR SEQ ID NO: 49	
20	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 808 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear 	
25	(ii) MOLECULE TYPE: Genomic DNA (vi) ORIGINAL SOURCE:	
	(A) ORGANISM: Enterobacter aerogenes (B) STRAIN: ATCC 13048	
30	(xi)SEQUENCE DESCRIPTION: SEQ ID NO: 49	
35	GGCGCGATCC TGGTTGTTGC TGCGACTGAC GGCCCGATGC CGCAGACTCG TGAGCACATC CTGCTGGGTC GTCAGGTAGG CGTTCCGTAC ATCATCGTGT TCCTGAACAA ATGCGACATG GTTGATGACG AAGAGCTGCT GGAACTGGTT GAGATGGAAG TTCGTGAACT GCTGTCTCAG TACGATTTCC CGGGCGACGA CACTCCGATC GTTCGTGGTT CTGCTCTGAA AGCGCTGGAA GGCGACGCAG AGTGGGAAGC GAAAATCATC GAACTGGCTG GCTTCCTGGA TTCTTACATC CCRGAACCAG AGCGTGCGAT TGACAAGCCG TTCCTGCTGC CGATCGAAGA	50 100 150 200 250 300
40	CGTATTCTCC ATCTCCGGTC GTGGTACCGT TGTTACCGGT CGTGTAGAGC GCGGTATCAT CAAAGTTGGT GAAGAAGTTG AAATCGTTGG TATCAAAGAC ACCGCGAAAA CCACCTGTAC TGGCGTTGAA ATGTTCCGCA AACTGCTGGA	350 400 450 500
45	CGAAGGCCGT GCTGGTGAGA ACGTAGGYGT TCTGCTGCGT GGTATCAAAC GTGAAGAAAT CGAACGTGGT CAGGTACTGG CTAAGCCGGG CAGCATCAAG CCGCACACCA AGTTCGAATC TGAAGTGTAC ATCCTGTCCA AAGACGAAGG CGGCCGTCAT ACTCCGTTCT TCAAAGGCTA CCGTCCGCAG TTCTACTTCC GTACTACTGA CGTGACTGGT ACCATCGAAC TGCCGGAAGG CGTAGAGRTG GTAATGCCGG GCGACAACAT CAAAATGGTT GTTACCCTGA TCCACCCGAT CGCGATGG	550 600 650 700 750 800 808
50		
	2) INFORMATION FOR SEQ ID NO: 50	
55	(i)SEQUENCE CHARACTERISTICS: (A) LENGTH: 828 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
60	(ii) MOLECULE TYPE: Genomic DNA 31	

```
(vi)ORIGINAL SOURCE:
                  (A) ORGANISM: Enterobacter agglomerans
                          STRAIN: ATCC 27989
                  (B)
    5
            (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 50
         CGGCGCGATC CTGGTTGTTG CTGCGACTGA CGGCCCGATG CCGCAGACTC
         GTGAGCACAT CCTGCTGGGT CGTCAGGTAG GCGTTCCGTA CATCATCGTG
                                                                                             100
        TTCCTGAACA AATGTGACAT GGTTGATGAC GAAGAGCTGC TGGAACTGGT TGAAATGGAA GTTCGTGAAC TTCTGTCTCA GTACGATTTC CCGGGCGACG ATACTCCGAT CGTTCGTGGT TCTGCTCTGA AAGCGCTGGA AGGCGAMGCW
  10
                                                                                            150
                                                                                            200
                                                                                            250
        GAGTGGGAAG CGAAAATCAT CGARCTGGCT GGCCACCTGG ATACCTATAT CCCGGAACCA GAGCGTGCGA TTGACAAGCC GTTCCTGCTG CCGATCGAAG
                                                                                            300
                                                                                            350
        ACGTATTCTC CATCTCCGGT CGCGGTACCG TTGTTACCGG TCGTGTAGAG CGCGGTATCA TYAAAGTGGG CGAAGAAGTT GAAATCGTTG GTATCAAAGA
                                                                                            400
                                                                                            450
        TACYGCGAAA TCAACCTGTA CCGGCGTTGA AATGTTCCGC AAACTGCTGG
                                                                                             500
        ACGAAGGCCG TGCTGGTGAG AACGTTGGTG TTCTGCTGCG TGGTATCAAA
                                                                                            550
        CGTGAAGAAA TCGAACGTGG TCAGGTACTG GCTAAGCCGG GCACCATCAA
                                                                                            600
        GCCGCACACC AAGTTCGAAT CTGAAGTGTA CATTCTGTCC AAAGATGAAG
  20
                                                                                             650
        GCGGTCGTCA CACTCCGTTC TTCAAAGGCT ACCGTCCSCA GTTCTACTTC
                                                                                             700
        CGTACAACTG ACGTGACTGG CACCATCGAA CTGCCGGAAG GCGTAGAGAT
                                                                                            750
        GGTAATGCCG GGCGACAACA TCAAAATGGT TGTTACCCTG ATCCACCCGA
                                                                                           800
        TCGCGATGGA CGACGGTCTG CGTTCGCA
                                                                                             828
  25
       2) INFORMATION FOR SEQ ID NO: 51
  30
             (i) SEQUENCE CHARACTERISTICS:
                 (A) LENGTH: 825 bases
                         TYPE: Nucleic acid
                 (B)
                 (C)
                         STRANDEDNESS: Double
                         TOPOLOGY: Linear
  35
           (ii) MOLECULE TYPE: Genomic DNA
           (vi)ORIGINAL SOURCE:
                 (A) ORGANISM: Enterobacter amnigenus
  40
                         STRAIN: ATCC 33072
         (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 51
      TGGCGCGATC CTGGTTGTTG CTGCAACTGA TGGCCCTATG CCACAGACGC
45
      GTGAGCACAT CCTGCTGGGT CGTCAGGTAG GCGTTCCTTA CATCATCGTG
                                                                                         100
      TTCCTGAACA AATGCGACAT GGTTGATGAC GAAGAGCTGC TGGAACTGGT
                                                                                         150
     AGAAATGGAA GTTCGTGAAC TTCTGTCTCA GTACGATTTC CCAGGTGATG
ACACTCCAAT CATCCGTGGT TCTGCTCTGA AAGCGCTGGA AGGCGAAGCA
GAGTGGGAAG CTAAAATCGT TGAGCTGGCT GGCTACCTGG ATTCTTACAT
                                                                                         200
                                                                                         250
                                                                                         300
50
      CCCGGAACCA GAACGTGCTA TCGATAAGCC ATTCCTGCTG CCAATCGAAG
                                                                                         350
      ACGTATTCTC TATCTCCGGC CGTGGTACTG TTGTAACCGG TCGTGTAGAG
CGCGGTATCG TTAAAGTTGG CGAAGAAGTT GAAATCGTTG GTATCAAAGA
                                                                                         400
                                                                                         450
      GACTGCTAAG TCTACCTGTA CTGGCGTTGA AATGTTCCGC AAACTGCTGG
                                                                                         500
     ACGRAGGCCG TGCTGGTGAG AACGTTGCTGC AAACTGCTGG ACGRAGGCCG TGCTGGTGAACAAACTGCTGG TTCTGCTGCG TGGTATCAAA 550 CGTGAAGAAA TCGAACGTGG TCAGGTACTG GCTAAGCCAG GCTCAATCAA 600 GCCGCACACC AAATTCGAAT CTGAAGTTTA TATTCTGTCC AAAGATGAAG 650 GCGCCGTCA TACTCCGTTC TTCAAAGGCT ACCGTCCACA GTTCTACTTC 700 CGTACAACTG ACGTGACCG CACCATCGAA CTGCCAGAAG GCGTAGAGAT 750 GGTAATGCCA GGCGACAACA TTCAGATGGT TGTTACCCTG ATCCACCCAA 800 TCGCGATGGA TGACGGTCTG CGTTT
55
```

825

60 TCGCGATGGA TGACGGTCTG CGTTT

```
2) INFORMATION FOR SEQ ID NO: 52
   5
          (i) SEQUENCE CHARACTERISTICS:
                   LENGTH: 822 bases
             (A)
                   TYPE: Nucleic acid
             (B)
             (C)
                   STRANDEDNESS: Double
 10
             (D)
                   TOPOLOGY: Linear
         (ii) MOLECULE TYPE: Genomic DNA
         (vi)ORIGINAL SOURCE:
 15
             (A)
                 ORGANISM: Enterobacter asburiae
             (B)
                   STRAIN: ATCC 35953
         (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 52
 20
      CGGCGCGATC CTGGTTGTTG CTGCGACTGA CGGCCCAATG CCTCAGACTC
                                                                       50
      GTGAGCACAT CCTGCTGGGT CGTCAGGTAG GCGTTCCTTT CATCATCGTG
                                                                       100
      TTCCTGAACA AATGCGACAT GGTTGATGAC GAAGAGCTGC TGGAACTGGT
                                                                       150
      AGAGATGGAA GTTCGTGAAC TGCTGTCTCA GTACGATTTC CCGGGCGACG
ATACTCCAAT CGTTCGTGGT TCTGCTCTGA AAGCGCTGGA AGGCGACGCA
                                                                      200
                                                                      250
      GAGTGGGAAG CGAAAATCAT CGAACTGGCT GGCTTCCTGG ATTCTTACAT CCCAGAACCA GAGCGTGCGA TTGACAAGCC ATTCCTGCTG CCAATCGAAG
                                                                      300
                                                                      350
      ACGTATTCTC CATCTCCGGT CGTGGTACCG TTGTTACCGG TCGTGTAGAG
                                                                      400
      CGCGGTATCA TCAAAGTTGG CGAAGAAGTT GAAATCGTTG GTATCAAAGA
                                                                      450
      GACTGCTAAG TCTACCTGTA CTGGCGTTGA AATGTTCCGC AAACTGCTGG
                                                                      500
      ACGAAGGCCG TGCTGGTGAG AACGTTGGTG TTCTGCTGCG TGGTATCAAA
                                                                      550
      CGTGAAGAAA TCGAACGTGG TCAGGTTCTG GCGAAGCCAG GCTCAATCAA
                                                                      600
      GCCACACC AAGTTCGAAT CTGAAGTGTA CATCCTGTCC AAAGACGAAG
                                                                      650
      GCGGCCGTCA TACTCCGTTC TTCAAAGGCT ACCGTCCACA GTTCTACTTC
                                                                      700
      CGTACAACTG ACGTGACCGG TACCATCGAA CTGCCAGAAG GCGTTGAGAT
                                                                      750
      GGTAATGCCA GGCGACAACA TCAAGATGGT TGTGACTCTG ATCCACCCAA
 35
                                                                      800
      TCGCGATGGA CGACGGTCTG CG
                                                                      822
 40
      2) INFORMATION FOR SEQ ID NO: 53
        (i) SEQUENCE CHARACTERISTICS:
                 LENGTH: 826 bases
           (A)
           (B)
                 TYPE: Nucleic acid
45
           (C)
                 STRANDEDNESS: Double
           (D)
                 TOPOLOGY: Linear
       (ii) MOLECULE TYPE: Genomic DNA
50
       (vi)ORIGINAL SOURCE:
           (A)
                 ORGANISM: Enterobacter cancerogenus
           (B)
                 STRAIN: ATCC 35317
       (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 53
55
    CGGCGCGATC CTGGTTGTTG CTGCGACTGA CGGCCCAATG CCTCAGACTC
                                                                     50
    GTGAGCACAT CCTGCTGGGT CGTCAGGTAG GCGTTCCTTA CATCATCGTG
                                                                    100
    TTCCTGAACA AGTGCGACAT GGTTGATGAC GAAGAGCTGC TGGAACTGGT
                                                                   150
    AGAAATGGAA GTTCGTGAAC TGCTGTCTCA GTACGATTTC CCAGGCGACG
                                                                    200
    ACACTCCAAT CGTTCGTGGT TCCGCGCTGA AAGCGCTGGA AGGCGAAGCT
                                                                    250
```

5	GAGTGGGAAG CAAAAATCAT CGAACTGGCT GGCTTCCTGG ATTCTTACAT CCCAGAACCA GAGCGTGCGA TTGACAAGCC ATTCCTGCTG CCAATCGAAG ACGTATTCTC CATCTCCGGT CGTGGTACCG TTGTTACCGG TCGTGTAGAG CGCGGTATCA TCAAAGTTGG TGAAGAAGTT GAAATCGTTG GTATCAAAGA TACTGCKAAA TCTACCTGTA CTGGCGTTGA AATGTTCCGC AAACTGCTGG ACGAAGGCCG TGCTGGTGAG AACGTTGGTG TTCTGCTGCG TGGTATCAAA CGCGAAGAAAA TCGAACGTGG TCAGGTTCTG GCGAAGCCAG GCTCAATCAA GCCACACACC AAGTTCGAAT CTGAAGTGTA CATCCTGTCC AAAGACGAAG GCGGCCGTCA TACTCCGTTC TTCAAAGGCT ACCGTCCACA GTTCTACTTC	300 350 400 450 500 550 600
10	CGTACAACTG ACGTGACCGG TACCATCGAA CTGCCAGAAG GCGTAGAGAT GGTAATGCCA GGCGACAACA TCAAGATGGT TGTGACGCTG ATCCACCCAA TCGCGATGGA CGACGGTCTG CGTTTC	700 750 800 826
15	2) INFORMATION FOR SEQ ID NO: 54	
20	(i)SEQUENCE CHARACTERISTICS: (A) LENGTH: 806 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
25	(ii) MOLECULE TYPE: Genomic DNA	
	<pre>(vi)ORIGINAL SOURCE: (A) ORGANISM: Enterobacter cloacae (B) STRAIN: ATCC 13047</pre>	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 54	
35	GATCCTGGTA GTAGCTGCGA CTGACGGCCC AATGCCTCAG ACTCGTGAGC ACATCCTGCT GGGTCGTCAG GTAGGCGTTC CTTACATCAT CGTGTTCCTG AACAAATGCG ACATGGTTGA TGACGAAGAG CTGCTGGAAC TGGTAGAGAT GGAAGTTCGT GAACTGCTGT CTCAGTACGA TTTCCCAGGC GACGATACCC CAATCGTTCG TGGTTCTGCT CTGAAAGCGC TGGAAGGCGA CGCAGAGTGG GAAGMGAAAA TCATCGAACT GGCTGCCTAC CTGGATTCTT ACATCCCAGA ACCAGAGCGT GCGATTGAYA AGCCATTCCT GCTGCCAATC GAAGACGTAT	50 100 150 200 250 300 350
40	TCTCCATCTC CGGTCGTGGT ACCGTTGTTA CCGGTCGTGT AGAGCGCGGT ATCATCAAAG TGGGTGAAGA AGTTGAAATC GTTGGTATCA AAGAGACTGC GAAGTCTACC TGTACTGGCG TTGAAATGTT CCGCAAACTG CTGGACGAA	400 450 500
45	GCCGTGCTGG TGAGAACGTT GGTGTTCTGC TGCGTGGTAT CAAACGTGAA GAAATCGAAC GTGGTCAGGT TCTGGCGAAG CCAGGCTCAA TCAAGCCACA CACCAAGTTC GAATCTGAAG TGTACATCCT GTCCAAAGAC GAAGGCGGCC GTCATACTCC GTTCTTCAAA GGCTACCGTC CACAGTTCTA CTTCCGTACA ACTGACGTGA CCGGTACCAT CGAACTGCCA GAAGGCGTAG AGGTGGTAAT GCCAGGCGAC AACATCAAGA TGGTTGTGAC TCTGATCCAC CCAATCGCGA TGGACG	550 600 650 700 750 800 806
50		
	2) INFORMATION FOR SEQ ID NO: 55	
55	(i)SEQUENCE CHARACTERISTICS: (A) LENGTH: 826 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	

34

(C) (D)

60

TOPOLOGY: Linear

(ii) MOLECULE TYPE: Genomic DNA

(vi)ORIGINAL SOURCE: (A) ORGANISM: Enterobacter gergoviae STRAIN: ATCC 33028 5 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 55 CGGCGCGATC CTGGTTGTTG CTGCGACTGA CGGCCCGATG CCGCAGACCC 50 GTGAGCACAT CCTGCTGGGT CGTCAGGTAG GCGTTCCGTA CATCATCGTG 100 TTCCTGAACA AGTGCGACAT GGTTGATGAC GAAGAGCTGC TGGAACTGGT 10 150 AGAGATGGAA GTTCGTGAAC TGCTGTCTCA GTACGATTTC CCGGGCGACG ACACCCCGAT CGTTCGCGGT TCTGCGCTGA AAGCGCTGGA AGGCGACGCA 200 GAGTGGGAAG CGAAAATCAT CGAACTGGCT GGCCACCTGG ATACCTAYAT CCCGGAACCA GAGCGTGCGA TTGACAAGCC GTTCCTGCTG CCGATCGAAG ACGTATTCTC CATTTCCGGT CGTGGTACCG TTGTTACCGG TCGTGTAGAG CGCGGTATCA TCAAGGTTGG TGAAGAAGTT GAAATCGTTG GTATCAAAGA 250 300 350 400 CGCGGTATCA TCAAGGTTGG TGAAGAAGTT GAAATCGTTG GTATCAAAGA CACCGCGAAA ACCACCTGTA CTGGCGTTGA AATGTTCCGC AAACTGCTGG ACGAAGGCCG TGCTGGTGAG AACGTCGCG TCTGCTGCG TGGTATCAAG CGTGAAGAAA TCGAACGTGG TCAGGTACTG GCTAAGCCGG GCTCCATCAA GCCGCACACC AAGTTCGAAT CTGAAGTGTA CATCCTGTCC AAAGACGAAG GCGGCCGTCA CACTCCGTTC TTCAAAGGCT ACCGTCCGCA GTTCTACTTC CGTACAACTG ACGTGACTGG CACCATCGAA CTGCCGGAAG GCGTAGAGAT GGTAATGCCG GGCGACAACA TCAAGATGGT TGTTACCCTG ATCCACCCGA 450 500 550 600 20 650 700 750 800 TCGCGATGGA CGACGGTCTG CGTTTC 826 25 2) INFORMATION FOR SEO ID NO: 56 30 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 829 bases (B) TYPE: Nucleic acid STRANDEDNESS: Double (C) (D) TOPOLOGY: Linear 35 (ii) MOLECULE TYPE: Genomic DNA (vi)ORIGINAL SOURCE: (A) ORGANISM: Enterobacter hormaechei 40 (B) STRAIN: ATCC 49162 (X1) SEQUENCE DESCRIPTION: SEO ID NO: 56 GGCGCGATCC TGGTTGTTGC TGCGACTGAC GGCCCTATGC CTCAGACCCG 50 TGAGCACATC CTGCTGGGTC GTCAGGTAGG CGTTCCTTAC ATCATCGTGT 45 100 TCCTGAACAA ATGCGACATG GTTGATGACG AAGAGCTGCT GGAACTGGTA 150 GAGATGGAAG TTCGTGAACT GCTGTCTCAG TACGATTTCC CAGGCGACGA 200 CACCCCAATC GTTCGTGGTT CCGCGCTGAA AGCGCTGGAA GGCGAMGCAG 250 AGTGGGAAGM GAAAATCATC GARCTGGCTG GCTTCCTGGA TTCTTACATC AGTGGGAAGM GAAAATCATC GARCTGGCTG GCTTCCTGGA TTCTTACATC 300 CCAGAACCAG AGCGTGCGAT TGACAAGCCA TTCCTGCTGC CAATCGAAGA 350 CGTATTCTCC ATCTCCGGTC GTGGTACCGT TGTTACCGGT CGTGTWGAGC 400 GCGGTATCAT CAAAGTAGGT GAAGAAGTTG AAATCGTTGG TATCAAAGAG 450 ACTGCGAAGT CTACCTGTAC TGGCGTTGAA ATGTTCCGCA AACTGCTGGA 500 CGAAGGCCGT GCTGGTGAGA ACGTTGGTGT TCTGCTGCGT GGTATCAAAC 550 GTGAAGAAAT CGAACGTGGT CAGGTTCTGG CGAAGCCAGG CTCAATCAAG 600 CCACACACCA AGTTCGAATC TGAAGTGTAC ATTCTGTCCA AAGACGAAGG 650 CGGCCGTCAT ACTCCGTTCT TCAAAGGCTA CCGTCCACAG TTCTACTTCC 700 GTACAACTGA CGTGACCGGT ACCATCGAAC TGCCAGAAGG CGTAGAGATG 750 GTAATGCCAG GCGACAACAT CAAGATGGTT GTGACGCTGA TCCACCCAAT 800 CGCGATGGAC GACGGTCTGC GTTTCGCAA 50 55 60 CGCGATGGAC GACGGTCTGC GTTTCGCAA

```
2) INFORMATION FOR SEO ID NO: 57
  5
         (i) SEQUENCE CHARACTERISTICS:
                  LENGTH: 831 bases
            (A)
                  TYPE: Nucleic acid
            (B)
            (C)
                  STRANDEDNESS: Double
 10
                  TOPOLOGY: Linear
            (D)
        (ii) MOLECULE TYPE: Genomic DNA
        (vi)ORIGINAL SOURCE:
 15
            (A)
                ORGANISM: Enterobacter sakazakii
            (B)
                  STRAIN: ATCC 29544
        (xi) SEOUENCE DESCRIPTION: SEO ID NO: 57
 20
      GGCGCTATCC TGGTTGTTGC TGCGACTGAC GGCCCGATGC CGCAGACCCG
                                                                  50
      TGAGCACATC CTGCTGGGTC GTCAGGTAGG CGTTCCGTAC ATCATCGTGT
                                                                  100
      TCCTGAACAA ATGCGACATG GTTGATGACG AAGAGCTGCT GGAACTGGTT
                                                                  150
      GAGATGGAAG TGCGCGAGCT GCTGTCTCAG TACGACTTCC CGGGCGACGA
                                                                  200
      CACCCCGATC GTTCGTGGTT CTGCTCTGAA AGCGCTGGAA GGCGACGCTG
                                                                  250
      AGTGGGAAGC GAAAATCATC GAGCTGGCAG GTCACCTGGA TTCCTACATC
                                                                  300
      CCGGAACCGG AGCGTGCGAT TGACAAGCCG TTCCTGCTGC CGATCGAAGA
                                                                  350
      CGTATTCTCC ATCTCYGGTC GTGGTACCGT TGTTACCGGT CGTGTAGAGC
                                                                  400
      GCGGTATCAT CAAGGTTGGT GAAGAAGTTG AAATCGTGGG CATCAAAGAC
                                                                  450
      ACCGCGAAAT CCACCTGTAC CGGCGTTGAA ATGTTCCGCA AACTGCTGGA
                                                                  500
      CGAAGGCCGT GCGGGCGAGA ACGTAGGTGT TCTGCTGCGT GGTATCAAAC
                                                                  550
      GTGAAGAAAT CGAACGTGGT CAGGTACTGG CTAAGCCGGG CTCCATCAAG
                                                                  600
      CCGCACACCA AGTTCGAATC TGAAGTGTAC ATTCTGTCCA AAGATGAAGG
                                                                  650
      CGGCCGTCAC ACTCCGTTCT TCAAAGGCTA CCGTCCGCAG TTCTACTTCC
                                                                  700
      GTACRACTGA CGTGACTGGC ACCATCGAAC TGCCGGAAGG CGTTGAGATG
                                                                  750
 35
      GTAATGCCGG GCGACAACAT CAAAATGGTT GTTACCCTGA TCCACCCGAT
                                                                  800
      CGCGATGGAC GACGGTCTGC GTTTCGCAAT C
                                                                  831
 40
      2) INFORMATION FOR SEQ ID NO: 58
       (i) SEQUENCE CHARACTERISTICS:
          (A)
                LENGTH: 835 bases
          (B)
                TYPE: Nucleic acid
45
          (C)
                STRANDEDNESS: Double
          (a)
                TOPOLOGY: Linear
      (ii) MOLECULE TYPE: Genomic DNA
50
      (vi)ORIGINAL SOURCE:
          (A)
              ORGANISM: Enterococcus casseliflavus
          (B)
                STRAIN: ATCC 25788
      (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 58
55
    CGGCGCGATC TTAGTAGTAT CTGCTGCTGA TGGTCCTATG CCTCAAACAC
                                                                50
    GTGAACACAT CTTGTTATCA CGTAACGTTG GTGTACCATA CATCGTTGTT
                                                                100
    TTCTTAAACA AAATGGATAT GGTTGATGAC GAAGAATTAC TAGAATTAGT
                                                               150
    TGAAATGGAA GTTCGTGACT TATTGTCAGA ATATGACTTC CCAGGCGACG
                                                               200
60 ATGTTCCTGT AATCGCTGGT TCTGCTTTGA AAGCTCYTGA AGGCGATGCT
                                                               250
```

10	TAGACTATGC TGAAGCAGGG GATAACATTG GTGCATTGCT ACGTGGTGTT GCTCGTGAAG ACATCCAACG TGGACAAGTA TTGGCTAAAG CTGGTACAAT CACACCTCAT ACAAAATTTA AAGCTGAAGT TTACGTTTTA ACAAAAGAAG AAGGTGGACG TCACACCCA TTCTTCACTA ACTACCGTCC TCAGTTCTAC	300 350 400 450 550 650 750 800 835
15	2) INFORMATION FOR SEQ ID NO: 59	
20	(i)SEQUENCE CHARACTERISTICS: (A) LENGTH: 826 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
25	(vi)ORIGINAL SOURCE:	
	(A) ORGANISM: Enterococcus cecorum (B) STRAIN: ATCC 43198	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 59	
35 40	TGTTCCTGTA ATCGCTGGTT CTGCATTAAA AGCTTTAGAA GGCGACCCAT CTTACGAAGA AAAAATCTTA GAATTAATGG CTGCAGTTGA CGAATACATC CCAACTCCAG AACGTGACAA CGATAAACCA TTCATGATGC CAGTCGAAGA CGTATTTCA ATCACTGGTC GTGGTACTGT TGCTACAGGT CGTGTTGAAC	50 100 150 200 250 300 350 400 450
	GAAATTTCTA AAACAACAGT TACTGGTGTT GAAATGTTCC GTAAATTATT AGATTACGCT GAAGCTGGAG ACAACATCGG TGCATTATTA CGTGGTGTGG	500
45	CTCGTGAAGA TATCCAACGT GGTCAAGTAT TAGCTAAACC AGGTTCAATC ACTCCACATA CAAAATTCAC TGCTGAAGTG TACGTTTAA CTAAAGAAGA AGGTGGACGT CATACTCCAT TCTTCACTAA CTACCGTCCA CAATTCTACT TCCGTACAAC TGACGTTACA GGTGTAGTTA ACTTACCAGA AGGTACTGAA ATGGTTATGC CTGGTGATAA CGTAACTATG GAAGTTGAAT TAATCCACCC AATCGCTATC GAAGACGGAA CTCGTT	550 600 650 700 750 800 826
50		
	2) INFORMATION FOR SEQ ID NO: 60	
55	(i)SEQUENCE CHARACTERISTICS: (A) LENGTH: 835 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
60	(ii) MOLECULE TYPE: Genomic DNA	

(vi)ORIGINAL SOURCE: (A) ORGANISM: Enterococcus dispar STRAIN: ATCC 51266 (B) - 5 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 60 CGGCGCGATC TTGGTAGTAT CTGCTGCTGA TGGTCCTATG CCTCAAACTC 50 GTGAACACAT CCTATTGTCA CGTAACGTTG GTGTTCCTTA CATCGTCGTT 100 TTCTTGAACA AAATGACAT GGTTGATGAC GAAGAATTAT TAGAATTAGT TGAAATGGAA GTTCGTGACT TATTGTCAGA ATACGACTTC CCAGGCGACG ACACTCCAGT TATCGCAGGT TCAGCTTTGA AAGCCTTAGA AGGCGACGCT TCATATGAAG AAAAAATCTT AGAATTAATG GCTGCAGTTG ACGAATATAT 10 150 200 250 300 CCCAACTCCA GTTCGTGATA CTGACAAACC ATTCATGATG CCAGTCGAAG 350 ATGTATTCTC AATCACTGGT CGTGGTACTG TTGCAACTGG TCGTGTTGAA CGTGGACAAG TTCGCGTTGG TGACGAAGTT GAAATCGTAG GTATCGCTGA AGAAACTGCT AAAACTACTG TAACAGGTGT TGAAATGTTC CGTAAATTGT TGGATTACGC TGAAGCTGGC GACAACATTG GTGCATTATT ACGTGGTGTG 400 450 500 550 GCTCGTGAAG ATATCCAACG TGGTCAAGTA TTATCAAAAC CAGGTTCAAT 600 20 CACTCCACAT ACAAAATTTG CGGCAGAAGT TTACGTTTTA ACTAAAGAAG 650 AAGGTGGACG TCATACTCCA TTCTTCACTA ACTACCGCCC ACAATTCTAC 700 TTCCGTACAA CTGACGTAAC AGGTGTTGTT GAATTACCAG AAGGTACTGA 750 AATGGTTATG CCTGGCGATA ACGTTACTAT GGACGTTGAA TTAATCCACC 800 CAATCGCGAT CGAAGACGGT ACTCGTTTCT CAATC 835 25 2) INFORMATION FOR SEQ ID NO: 61 30 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 835 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear 35 (ii) MOLECULE TYPE: Genomic DNA (vi)ORIGINAL SOURCE: (A) ORGANISM: Enterococcus durans 40 STRAIN: ATCC 19432 (B) (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 61 CGGAGCTATC TTAGTAGTTT CTGCTGCTGA TGGCCCTATG CCTCAAACTC GTGAACATAT CCTATTATCT CGTCAAGTTG GTGTTCCTTA CATCGTYGTA TTCTTGAACA AAGTAGATAT GGTCGATGAC GAAGAATTAC TAGAATTAGT TGAAATGGAA GTTCGTGACT TATTAACAGA ATACGAATTC CCTGGTGACG ATGTTCCTGT AATCGCTGGT TCAGCTTTGA AAGCTTTAGA AGGCGACGCT TCATACGAAG AAAAAATCCT TGAATTAATG GCTGCAGTTG ACGAATATAT CCCAACTCCA GAACGTGACA ACGACAAACC ATTCATGATG CCAGGTTGAAG 50 45 100 150 200 250 300 50 350 ATGTATTCTC RATCACTGACA ACGACAAACC ATTCATGATG CCAGTTGAAG ATGTATTCTC RATCACTGGT CGTGGTACTG TTGCTACAGG TCGTGTTGAA CGTGGACAAG TTCGCGTTGG TGACGTTGTA GATATCGTTG GTATCGCAGA AGAAACAGCT CAAACAACAG TTACTGGTGT TGAAATGTTC CGTAAATTAT TAGRCTACGC TGAAGCTGGA GACAACATTG GTGCTTTACT ACGTGGTGTT GCACGTGAAG ACATCCAACG TGGACAAGTT TTAGCTAAAC CAGGTACAAT CACKCCTCAT ACAAAATTCT CTGCAGAAGT ATACGTGTTG ACTAAAGAAG AAGGTGGACG TCATACTCCA TTCTTCACTA ACTACCGTC ACAATTCTAC 400 450 500 550 5**5**

TTCCGTACAA CTGACGTAAC AGGTGTTGTT GAATTACCAG AAGGAACTGA

AATGGTTATG CCTGGCGACA ACGTAACAAT GGAAGTTGAA TTAATCCACC

60 CAATCGCTAT CGAAAATGGT ACTAAATTCT CAATC

600 650 700

750

800

```
2) INFORMATION FOR SEQ ID NO: 62
  5
         (i) SEQUENCE CHARACTERISTICS:
                 LENGTH: 680 bases
            (A)
            (B)
                  TYPE: Nucleic acid
            (C)
                  STRANDEDNESS: Double
  10
            (D)
                  TOPOLOGY: Linear
        (ii) MOLECULE TYPE: Genomic DNA
        (vi)ORIGINAL SOURCE:
            (A)
                ORGANISM: Enterococcus faecalis
            (B)
                  STRAIN: R610
        (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 62
 20
      AGTAGTTTCT GCTGCTGATG GTCCTATGCC TCAAACACGT GAACATATCT
                                                                 50
      TATTATCACG TAACGTTGGT GTACCATACA TCGTTGTATT CTTAAACAAA
                                                                 100
      ATGGATATGG TTGATGACGA AGAATTATTA GAATTAGTAG AAATGGAAGT
                                                                 150
      TCGTGACTTA TTATCAGAAT ACGATTTCCC AGGCGATGAT GTTCCAGTTA
                                                                 200
      TCGCAGGTTC TGCTTTGAAA GCTTTAGAAG GCGACGAGTC TTATGAAGAA
                                                                 250
      AAAATCTTAG AATTAATGGC TGCAGTTGAC GAATATATCC CAACTCCAGA
                                                                 300
      ACGTGATACT GACAAACCAT TCATGATGCC AGTCGAAGAC GTATTCTCAA
                                                                 350
      TCACTGGACG TGGTACTGTT GCTACAGGCC GTGTTGAACG TGGTGAAGTT
                                                                 400
      CGCGTTGGTG ACGAAGTTGA AATCGTTGGT ATTAAAGACG AAACATCTAA
                                                                 450
     AACAACTGTT ACAGGTGTTG AAATGTTCCG TAAATTATTA GACTACGCTG
                                                                 500
     AAGCAGGCGA CAACATCGGT GCTTTATTAC GTGGTGTAGC ACGTGAAGAT
                                                                 550
      ATCGAACGTG GACAAGTATT AGCTAAACCA GCTACAATCA CTCCACACAC
                                                                 600
     AAAATTCAAA GCTGAAGTAT ACGTATTATC AAAAGAAGAA GGCGGACGTC
                                                                650
     ACACTCCATT CTTCACTAAC TACCGTCCTC
                                                                 680
 35
      2) INFORMATION FOR SEQ ID NO: 63
         (i) SEQUENCE CHARACTERISTICS:
 40
                LENGTH: 680 bases
            (A)
            (B)
                 TYPE: Nucleic acid
          (C)
                STRANDEDNESS: Double
                TOPOLOGY: Linear
          (D)
45
      (ii) MOLECULE TYPE: Genomic DNA
    (vi)ORIGINAL SOURCE:
              ORGANISM: Enterococcus faecalis
          (A)
                STRAIN: R487
50
      (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 63
    AGTAGTTTCT GCTGCTGATG GTCCTATGCC TCAAACACGT GAACATATCT
    TATTATCACG TAACGTTGGT GTACCATACA TCGTTGTATT CTTAAACAAA
                                                               100
    ATGGATATGG TTGATGACGA AGAATTATTA GAATTAGTAG AAATGGAAGT
    TCGTGACTTA TTATCAGAAT ACGATTTCCC AGGCGATGAT GTTCCAGTTA
                                                              200
    TCGCAGGTTC TGCTTTGAAA GCTTTAGAAG GCGACGAGTC TTATGAAGAA
                                                              250
    AAAATCTTAG AATTAATGGC TGCAGTTGAC GAATATATCC CAACTCCAGA
                                                              300
    ACGTGATACT GACAAACCAT TCATGATGCC AGTCGAAGAC GTATTCTCAA
                                                              350
60 TCACTGGACG TGGTACTGTT GCTACAGGCC GTGTTGAACG TGGTGAAGTT
                                                              400
```

5	THE TOTAL GOLDSTILL HOUSE THE MONTON GOCGONCOIC	450 500 550 600 650
	ACACTCCATT CTTCACTAAC TACCGTCCTC	680
10	2) INFORMATION FOR SEQ ID NO: 64	
15	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 685 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear 	
	(ii) MOLECULE TYPE: Genomic DNA	
20	<pre>(vi)ORIGINAL SOURCE: (A) ORGANISM: Enterococcus faecium (B) STRAIN: R482</pre>	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 64	
	AGTAGTTTCT GCTGCTGACG GCCCAATGCC TCAAACTCGT GAACACATCC TATTGTCTCG TCAAGTTGGT GTTCCTTACA TCGTTGTATT CTTGAACAAA GTAGACATGG TTGATGACGA AGAATTACTA GAATTAGTTG AAATGGAAGT	50 100 150
30	TCGTGACCTA TTAACAGAAT ACGAATTCCC TGGTGACGAT GTTCCTGTAG TTGCTGGATC AGCTTTGAAA GCTCTAGAAG GCGACGCTTC ATACGAAGAA	200 250
	AAAATTCTTG AATTAATGGC TGCAGTTGAC GAATACATCC CAACTCCAGA ACGTGACAAC GACAAACCAT TCATGATGCC AGTTGAAGAC GTGTTCTCAA	300 350
	TTACTGGACG TGGTACTGTT GCTACAGGTC GTGTTGAACG TGGACAAGTT CGCGTTGGTG ACGAAGTTGA AGTTGTTGGT ATTGCTGAAG AAACTTCAAA	400 450
35	AACAACAGTT ACTGGTGTTG AAATGTTCCG TAAATTGTTA GACTACGCTG AAGCTGGAGA CAACATTGGT GCTTTACTAC GTGGTGTTGC ACGTGAAGAC	500
	ATCCAACGTG GACAAGTTTT AGCTAAACCA GGTACAATCA CACCTCATAC AAAATTCTCT GCAGAAGTAT ACGTGTTGAC AAAAGAAGAA GGTGGACGTC	550 600 650
40	ATACTCCATT CTTCACTAAC TACCGTCCTC AATTT	685
	2) INFORMATION FOR SEQ ID NO: 65	
45	(i)SEQUENCE CHARACTERISTICS: (A) LENGTH: 825 bases (B) TYPE: Nucleic acid	
	(C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
50	(ii) MOLECULE TYPE: Genomic DNA	
	(vi)ORIGINAL SOURCE:	
55	(A) ORGANISM: Enterococcus flavescens(B) STRAIN: ATCC 49996	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 65	
60	CGGCGCGATC TTAGTAGTAT CTGCTGCTGA TGGTCCTAYG CCTCAAACAC GTGAACACAT CTTGTTATCA CGTAACGTTG GTGTACCATA CATCGTTGTT 40	50 100

5	TTCTTAAACA AAATGGATAT GGTTGATGAC GAAGAATTAC TAGAATTAGT TGAAATGGAA GTTCGTGACT TATTGTCAGA ATATGACTTC CCAGGCGACG ATGTTCCTGT AATCGCTGGT TCTGCTTTGA AAGCTCTTGA AGGCGATGCT TCATACGAAG AAAAAATCAT GGAATTAATG GCTGCAGTTG ACGAATACGT TCCAACTCCA GAACGTGACA CTGACAAACC ATTCATGATG CCAGTCGAAG ACGTATTCTC AATCACTGGA CGTGGTACTG TTGCTACAGG CCGTGTTGAA CGTGGACAAG TTCGCGTTGG TGACGAAGTT GAAATCGTTG GTATTGCTGA AGAAACTGCT AAAACAACTG TAACTGGTGT TGAAATGTTC CGTAAATTGT	150 200 250 300 350 400 450
10	TAGACTATGC TGAAGCAGGG GATAACATTG GTGCATTGCT ACGTGGGGTT	500 550 600 650 700 750
15	AATGGTTATG CCTGGTGATA AMGTAACAAT CGACGTTGAA TTGATCCACC	800 825
20	2) INFORMATION FOR SEQ ID NO: 66 (i) SEQUENCE CHARACTERISTICS:	
25	(A) LENGTH: 636 bases(B) TYPE: Nucleic acid(C) STRANDEDNESS: Double	
30	(==, ==================================	
	(B) STRAIN: R420 (xi)SEQUENCE DESCRIPTION: SEQ ID NO: 66	
35	TACCATACAT CGTTGTTTTC TTGAACAAAA TGGATATGGT TGATGACGAA GAATTGCTAG AATTAGTTGA AATGGAAGTT CGTGACCTAT TGTCTGAGTA	50 100 150
40	CATGATGCCA GTCGAAGACG TATTCTCAAT CACTGGACGT GGTACTGTTG	200 250 300 350
45	CTACAGGCCG TGTTGAACGT GGACAAGTTC GCGTTGGTGA TGAAGTAGAA ATCGTTGGTA TTGCTGACGA AACTGCTAAA ACAACTGTAA CAGGTGTTGA AATGTTCCGT AAATTGTTAG ACTATGCTGA AGCAGGGGAT AACATTGGTG CATTGCTACG TGGGGTTGCT CGTGAAGACA TCCAACGTGG ACAAGTATTG GCTAAAGCTG GTACAATCAC ACCTCATACA AAATTCAAAG CTGAAGTTTA TGTTTTGACA AAAGAAGAAG GTGGACGTCA CACTCC	400 450 500 550 600 636
50	2) INFORMATION FOR SEQ ID NO: 67	
55	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 835 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear 	

(ii) MOLECULE TYPE: Genomic DNA

(vi)ORIGINAL SOURCE:

- (A) ORGANISM: Enterococcus hirae
- (B) STRAIN: ATCC 8043

5	(xi)SEQUENCE	DESCRIPTION:	SEO	ID	NO:	67
---	--------------	--------------	-----	----	-----	----

	CGGAGCTATC	TTAGTAGTTT	CTGCTGCTGA	TGGTCCTATG	CCTCAAACTC	50
	GTGAACATAT	CCTAYTATCT	CGTCAAGTTG	GTGTTCCATA	CATCGTTGTA	100
	TTCTTGAACA	AAGTAGATAT	GGTTGACGAC	GAAGAATTAC	TAGAATTAGT	150
10	TGAAATGGAA	GTTCGTGACT	TATTAACAGA	ATACGAATTC	CCTGGTGACG	200
	ATGTTCCTGT	AGTTGCTGGT	YCAGCTTTGA			250
	TCATACGAAG	AAAAAATCCT	TGAATTGATG	GCTGCAGTTG	ACGAATATAT	300
	CCCAACTCCA	GAACGTGACA	ACGACAAACC	ATTCATGATG	CCAGTCGAAG	350
	ACGTATTCTC	AATCACTGGT	CGTGGTACTG	TTGCTACAGG	TCGTGTTGAA	400
15	CGTGGACAAG	TTCGCGTTGG	TGACGTTGTA	GATATCGTTG	GTATCGCAGA	450
	AGAAACAGCT	CAAACAACAG	TTACTGGTGT	TGAAATGTTC	CGTAAATTAT	500
	TAGACTACGC	TGAAGCTGGA	GACAACATTG	GTGCTTTACT	ACGTGGTGTT	550
	GCACGTGAAG	ACATCCAACG	TGGACAAGTT	TTAGCTAAAC	CAGGTACAAT	600
	CACACCTCAT	ACAAAATTCT		ATACGTGTTG	ACAAAAGAAG	650
20	AAGGTGGACG	TCATACTCCA	TTCTTCACTA		ACAATTCTAC	700
	TTCCGTACRA	CTGACGTAAC	AGGTGTTGTT	GAATTACCAG	AAGGAACTGA	
	AATGGTTATG	CCTGGCGACA				750
	CAATCGCTAT		ACTAAATTCT	CAATC	TIAATCCACC	800
	orwar coctut	COMMICGGI	WCTWWWIICI	CHMIC	•	835

25

2) INFORMATION FOR SEQ ID NO: 68

- (i) SEQUENCE CHARACTERISTICS:
- 30 (A) LENGTH: 835 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
- 35 (ii) MOLECULE TYPE: Genomic DNA

(vi)ORIGINAL SOURCE:

- (A) ORGANISM: Enterococcus mundtii
- (B) STRAIN: ATCC 43186

40

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 68

	CGGAGCAATC	TTAGTTGTTT	CTGCTGCTGA	CGGCCCTATG	CCTCAAACTC	50
	GTGAACACAT	CCTATTATCT	CGTCAAGTTG	GTGTACCATA	CATCGTTGTA	100
45	TTCTTGAACA	AAGTAGATAT		GAAGAATTAC	TTGAATTAGT	150
	TGAAATGGAA	GTTCGTGACC			CCTGGTGACG	200
	ATGTTCCTGT	AATCGCTGGT		GAGCTTTAGA		250
	KCATACGAAG	AAAAAATTCT			ACGAATATAT	300
	CCCAACTCCA		ACGACAAACC		CCAGTTGAGG	350
50	ACGTATTCTC	AATCACTGGT	CGTGGTACTG		ACGTGTTGAA	400
		YTCGTGTTGG		GATATCGTTG	GTATCGCAGA	450 450
	AGAAACAGCT		TAACTGGTGT	TGAAATGTTC	CGTAAATTAT	500
	TAGACTACGC			GTGCGTTACT		
	TCACGTGAAG	ACATCCAACG	TGGTCAAGTT	TTAGCTAAAC		550
55	CACACCTCAT	ACAAAATTCT	CTGCAGAAGT	ATACGTGTTG		600
	AAGGTGGACG	· · · · · · · · · · · · · · · · · · ·	TTCTTCACTA	-	ACTAAAGAAG	650
	TTCYGTACGA		TRGTGTTGTY	ACTACCGTCC		700
	AATGGTTATG		ACGTAACAAT			750
		CCIGGCGACA	ACTAAATTCT	GGAAGTTGAA	TTAATCCACC	800
60	CHICGCIAI	CGMMAIGGI	ACTAAATTCT	CAATC		835

```
2) INFORMATION FOR SEQ ID NO: 69
   5
          (i) SEQUENCE CHARACTERISTICS:
             (A)
                   LENGTH: 836 bases
                   TYPE: Nucleic acid
             (B)
             (C)
                   STRANDEDNESS: Double
             (D)
                   TOPOLOGY: Linear
  10
         (ii) MOLECULE TYPE: Genomic DNA
         (vi)ORIGINAL SOURCE:
                 ORGANISM: Enterococcus pseudoavium
             (A)
  15
             (B)
                   STRAIN: ATCC 49372
        (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 69
      CGGAGCTATC TTAGTAGTAT CTGCTGCTGA TGGCCCTATG CCTCAAACAC
                                                                      50
 20
      GTGAACACAT CTTGTTATCT CGTAACGTTG GTGTTCCTTA CATCGYTGTA
                                                                     100
      TTCTTAAACA AAATGGATAT GGTTGATGAC GAAGAATTAC TAGAATTAGT
                                                                     150
      TGAAATGGAA GTTCGTGACT TATTGTCAGA ATACGATTTC CCAGGCGACG
                                                                     200
      ACACTCYAGT TATCGCTGGT TCAGCYTTGA AAGCTTTAGA AGGCGACCCT
                                                                     250
      TCATACRAAG AAAAAATCTT AGAATTAATG SCTGCTGTTG ACGAATACAT
                                                                     300
 25
      CCCAACACCA GTTCGTGATA CTGACAAACC ATTCATGATG CCAGTCGAAG
                                                                     350
      ACGTATTCTC AATCACTGGT CGTGGTACTG TTGCAACTGG TCGTGTTGAA
                                                                     400
      CGTGGACAAG TTCGCGTTGG TGACGAAGTT GAAATCGTAG GTATCGCTGA
                                                                     450
      AGAAACTGCT AAAACAACTG TTACAGGTGT TGAAATGTTC CGTAAATTGT
                                                                     500
      TAGACTACGC TGAAGCAGGC GATAACATCG GTGCATTATT ACGTGGTGTT
                                                                     550
 30
      GCACGTGAAG ACATCCAACG TGGACAAGTA TTGGCTAAAC CAGCTTCAAT
                                                                     600
      CACTCCACAT ACAAAATTCT CTGCAGAAGT TTACGTTTTA ACTAAAGAAG
                                                                     650
      AAGGCGGCCG TCACACTCCG TTCTTCACTA ACTACCGTCC TCAGTTCTAC
                                                                     700
      TTCCGTACAA CTGACGTAAC TGGTGTTGTT GATCTACCAG AAGGTACTGA
                                                                     750
     AATGGTAATG CCTGGTGATA ACGTAACTAT GGAAGTTGAA TTAATCCACC
                                                                    800
 35
      CAATCGCGAT CGAAGACGGA ACTCGTTTCT CTATTC
                                                                     836
      2) INFORMATION FOR SEQ ID NO: 70
 40
         (i) SEQUENCE CHARACTERISTICS:
           (A)
                 LENGTH: 835 bases
                 TYPE: Nucleic acid
           (B)
           (C)
                 STRANDEDNESS: Double
45
           (D)
                 TOPOLOGY: Linear
      (ii) MOLECULE TYPE: Genomic DNA
      (vi) ORIGINAL SOURCE:
50
           (A)
                 ORGANISM: Enterococcus raffinosus
           (B)
                 STRAIN: ATCC 49427
      (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 70
55
    CGGAGCTRTC TTAGTAGTAT CTGCTGCTGA TGGCCCTATG CCTCAAACTC
                                                                    50
    GTGAACACAT CTTGTTATCT CGTAACGTTG GTGTTCCTTA CATCGTTGTA
                                                                   100
    TTCTTAAACA AAATGGATAT GGTTGACGAT GAAGAATTAC TAGAATTAGT
                                                                   150
    TGAAATGGAA GTTCGTGACT TATTAACTGA ATACGACTTC CCAGGCGACG
ACACTCCAGT TATCGCAGGT TCAGCTTTGA AAGCCTTAGA AGGCGACGCT
                                                                   200
                                                                   250
    TCATACGAAG AAAAAATCTT AGAATTAATG GCTGCTGTTG ATGAATACAT
60
                                                                  300
```

10	GCACGTGAAG ACATCCAACG TGGACAAGTA TTGGCTAAAC CAGCTTCAAT CACTCCACAT ACAAAATTCT CTGCAGAAGT TTACGTTTTA ACTAAAGAAG AAGGCGGACG TCATACTCCA TTCTTCACTA ACTACCGTCC TCAGTTCTAC TTCCGTACAA CTGACGTAAC TGGTGTAGTT GATCTACCAG AAGGTACTGA	350 400 450 500 550 600 700 750 800 835
15	2) INFORMATION FOR SEQ ID NO: 71	
20	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 835 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear 	
25	(A) ORGANISM: Enterococcus saccharolyticus	
30	(B) STRAIN: ATCC 43076 (xi)SEQUENCE DESCRIPTION: SEQ ID NO: 71	
35	GTTTACGAAG AAAAAATCTT CGAATTAATG GCTGCAGTTG ACGAATATAT	50 100 150 200 250 300
40	CCCAACTCCA GAACGTGATA CTGAAAAACC ATTCATGATG CCAGTTGAGG ATGTATTCTC AATCACTGGT CGTGGTACTG TTGCTACAGG TCGTGTTGAA CGTGGACAAG TTCGCGTTGG TGACGTTGTA GAAATCGTTG GTATCGACGA AGAAACAGCT CAAACTACTG TAACAGGTGT TGAAATGTTC CGTAAATTAT TAGACTACGC TGAAGCAGGC GATAACATCG GTGCTTTATT ACGTGGGGTT	350 400 450 500 550
45	GCTCGTGAAG ACATCCAACG TGGACAAGTA TTAGCTAAAC CAGGAACAAT CACTCCTCAT ACAAAATTCG TAGCTGAAGT TTACGTTTTA ACTAAAGAAG AAGGTGGACG TCATACTCCA TTCTTCACTA ACTACCGTCC TCAATTCTAC TTCCGTACAA CTGACGTAAC TGGTGTTGTA GAATTACGCG AAGGTACTGA AATGGTAATG CCTGGTGACA ACGTAACTAT CGACGTTGAA TTAATCCACC CAATCGCTAT CGAAGACGGA ACTCGTTTCT CTATT	600 650 700 750 800 835
50	2) INFORMATION FOR SEQ ID NO: 72	
55	(i)SEQUENCE CHARACTERISTICS: (A) LENGTH: 823 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	

(ii) MOLECULE TYPE: Genomic DNA

(vi)ORIGINAL SOURCE: ORGANISM: Enterococcus solitarius (A) STRAIN: ATCC 49428 (xi) SEOUENCE DESCRIPTION: SEO ID NO: 72 GAGCTATCTT GGTAGTTTCT GCAGCTGATG GCCCAATGCC ACAAACTCGT 50 GAACATATT TGTTGTCACG TAATGTAGGT GTACCTTACA TCGTTGTGTT 100 CTTGAACAAA ATGGATATGG TTGATGACGA AGAATTACTT GAGTTAGTTG 150 10 AAATGGAAGT ACGTGATCTA TTATCTGAAT ACGACTTCCC AGGAGATGAT 200 ACTCCAGTTA TTTCCGGTTC AGCTTTGAAA GCTTTAGAAG GCGACGAAGA 250 ATATGAACAA AAAATTATGG ACTTAATGGA TGCAGTTGAT GACTACATTC 300 CAACTCCTGA ACGTGACCAT GACAAACCAT TCATGATGCC AATTGAAGAT 350 GTATTTCAA TTACAGGCCG TGGTACTGTT GCTACAGGAC GTGTTGAACG 400 CGGGACTATC AAAGTCGGCG ATGAAGTTGA CATTATTGGT ATTCATGAAG 15 450 ACGTTAAAAA GACAACAGTT ACTGGTGTAG AAATGTTCCG TAAATTGTTG 500 GACTACGCTG AAGCAGGCGA TAACATTGGT ACTTTGTTAC GTGGTGTTTC 550 TCGTGATGAT ATCGAACGTG GTCAAGTATT AGCTAAACCA GGTTCAATCA CACCACATAC AAGATTCTCT GCTGAAGTTT ATGTTTTGAC TAAAGAAGAA GGCGGACGTC ATACTCCATT CTTCTCAAAC TATCGTCCTC AATTCTACTT CCGTACAACT GATATCACTG GTGTCATTGA ATTGCCAGAA GGTACTGAAA 600 650 20 700 750 TGGTAATGCC AGGTGATAAT GTAACAATGG ATGTTGAATT AATCCACCCA 800 GTCGCTATCG AAGAAGGAAC TCG 823 25 2) INFORMATION FOR SEQ ID NO: 73 (i) SEQUENCE CHARACTERISTICS: 30 (A) LENGTH: 835 bases (B) TYPE: Nucleic acid STRANDEDNESS: Double (C) (D) TOPOLOGY: Linear 35 (ii) MOLECULE TYPE: Genomic DNA (vi)ORIGINAL SOURCE: (A) ORGANISM: Enterococcus casseliflavus (B) STRAIN: ATCC 25788 40 (xi) SEQUENCE DESCRIPTION: SEO ID NO: 73 CGGTGCAATC TTGGTCGTAT CAGCGACAGA TGGCCCAATG CCACAAACAC 50 GGGAGCATAT TTTGCTTTCT CGTCAAGTGG GTGTGAAACA TTTGATCGTC 100 45 TTTTTGAATA AGACGGACCT TGTCGATGAT GACGAGTTGA TCGATTTAGT 150 TGAAATGGAA GTCAGAGAAT TGCTGACTGA ATATGATTTT CCTGGCGACG 200 ACATTCCTGT GATCAAGGGC TCTGCGTTAA AAGCCTTGGA AGGGGACCCA 250 GATGCTGAAG CAGCGATCTT AACGCTGATG GATACAGTAG ATGAATATAT 300 CCCAACGCCA GAACGTGATA CTGACAAACC ATTGTTGTTA CCGATCGAAG 350 ATGTCTTTC GATCACAGGA CGGGGGACCG TTGCTTCTGG TCGGATCGAT 400 CGCGGCATGG TAAAAGTCGG GGATGAAGTA GAAATCGTCG GAATCAAACC 450 TGAAACAA AAAGCAGTCG TGACAGGGGT AGAAATGTTC CGCAAAACGA 500 TGGACTTCGG AGAAGCTGGC GATAACGTAG GGGTATTGTT ACGGGGCATC 550 ACCCGTGATG AAATTGAACG TGGCCAAGTG TTAGCAAAAC CAGGTTCTAT

CACACCGCAT ACGAAATTCC AAGCGGAAGT CTATGTGTTG ACAAAAGAAG

AAGGCGGTCG CCATACCCCA TTCTTTAATA ATTATCGCCC ACAATTTTAC

TTCCGTACAA CGGACGTAAC TGGGAATATC GTTTTACCAG AAGGAACGGA

AATGGTGATG CCTGGTGACA ACGTAACGAT CGATGTGGAA TTGATCCATC

CGATCGCTGT AGAAAATGGA ACGACCTTCT CGATT

55

60

600

650

700

750

800

```
2) INFORMATION FOR SEQ ID NO: 74
        (i) SEQUENCE CHARACTERISTICS:
  5
           (A) LENGTH: 380 bases
                 TYPE: Nucleic acid
            (B)
                 STRANDEDNESS: Double
            (C)
                 TOPOLOGY: Linear
            (D)
 10
       (ii) MOLECULE TYPE: Genomic DNA
       (vi)ORIGINAL SOURCE:
                ORGANISM: Staphylococcus saprophyticus
           (A)
 15
                 STRAIN: ATCC 15305
       (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 74
     TAACGGCGT CTCGATAGAA AAACACGTGA AAATCCCAAT GATTATAAAC
                                                                  50
                                                                 100
 20
     AATCAATATA CGATTTTGCT GAAGCTGTAA CAAAAGGTAT TAAGGAACAA
     ACAAATAAAA ATTAATAGGC AACTTAACCA GAATCGTTAA AACTATATGA
                                                                 150
     AGATTCTGGT TTTTTAAATT CAAAAAGTTT TCTAAAAAAT TTACTTGCTT
                                                                 200
     TTTTAAGTAT AGGTATAAAA TACGATTGAT TAAAACAGTA AAGGAAATGA
                                                                 250
     ATCATGAAAC AATTAACTAA GCCTTTATAC TTTTACCTAT TACTTTTAT
                                                                 300
     TACAACACG CTGATTGGCG CGTTACTATT ATATTTGCCA ATCACAGGTA
                                                                 350
 25
     AACATCCTAT TGATTTTGTG GACGCCCGTT
                                                                 380
 30
     2) INFORMATION FOR SEQ ID NO: 75
         (i) SEOUENCE CHARACTERISTICS:
                 LENGTH: 666 bases
            (A)
            (B)
                 TYPE: Nucleic acid
                 STRANDEDNESS: Double
 35
            (C)
            (D)
                 TOPOLOGY: Linear
       (ii) MOLECULE TYPE: Genomic DNA
        (vi)ORIGINAL SOURCE:
 40
                ORGANISM: Enterococcus flavescens
            (A)
                STRAIN: ATCC 49996
      (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 75
45
    GCAATCTTGG TCGTATCAGC GACAGATGGC CCAATGCCAC AAACACGGGA
                                                                50
    GCATATTTTG CTTTCTCGTC AAGTGGGTGT GAAACATTTG ATCGTCTTTT
                                                                100
    TGAATAAGAC GGACCTTGTC GATGATGACG AGTTGATCGA TTTAGTTGAA
                                                              . 150
    ATGGAAGTCA GAGAATTGCT GACTGAATAT GATTTTCCTG GCGACGACAT
                                                                200
    TCCTGTGATC AAGGGCTCTG CGTTAAAAGC CTTGGAAGGG GACCCAGATG
                                                                250
50
    CTGAAGCAGC GATCTTAACG CTGATGGATA CGGTAGATGA ATATATCCCA
                                                               300
    ACGCCAGAAC GTGATACTGA CAAACCATTG TTGTTACCGA TCGAAGATGT
                                                               350
    CTTTTCGATC ACAGGACGGG GGACCGTTGC TTCTGGTCGG ATCGATCGCG
                                                               400
    GCATGGTAAA AGTCGGGGAT GAAGTAGAAA TCGTCGGAAT CAAACCTGAA
                                                               450
55
    ACACAAAAG CAGTCGTGAC AGGGGTAGAA ATGTTCCGCA AAACGATGGA
                                                               500
    CTTCGGAGAA GCTGGCGATA ACGTAGGGGT ATTGTTACGG GGCATCACCC
                                                               550
    GTGATGAAAT TGAACGTGGC CAAGTGTTAG CAAAACCAGG TTCTATCACA
                                                               600
    CCGCATACGA AATTCCAAGC GGAAGTCTAT GTGTTGACAA AAGAAGAAGG
                                                               650
                                                                666
    CGGTCGCCAT ACCCCA
```

```
2) INFORMATION FOR SEO ID NO: 76
   5
          (i) SEQUENCE CHARACTERISTICS:
                  LENGTH: 751 bases
             (A)
                   TYPE: Nucleic acid
                   STRANDEDNESS: Double
             (C)
                  TOPOLOGY: Linear
             (D)
  10
         (ii) MOLECULE TYPE: Genomic DNA
        (vi)ORIGINAL SOURCE:
             (A) ORGANISM: Enterococcus gallinarum
  15
             (B)
                  STRAIN: ATCC 49573
         (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 76
      TGGTGCGATT TTAGTTGTAT CCGCAACAGA TGGTCCAATG CCTCAAACCC
                                                                     50
      GGGAACATAT CTTGCTTTCG AGACAAGTTG GTGTGAAACA TCTGATTGTT
 20
                                                                    100
      TTCTTGAACA AAATCGATTT AGTCGATGAC GAAGAATTGA TTGATTTAGT
      AGAAATGGAA GTAAGAGAAC TGCTATCTGA ATATAATTTT CCAGGGGATG
                                                                    200
      ACATTCCTGT TATCAAAGGT TCGGCATTAA AAGCGTTGGA AGGAGACCCT
GATGCAGAAG CTGCCATCAT GGAATTAATG GATACAGTAG ACAGCTATAT
                                                                    250
                                                                    300
 25
      CCCAACACCT GAGCGTGATA CAGACAAACC ATTACTCTTG CCAGTTGAAG
                                                                    350
      ATGTCTTTTC GATTACTGGA CGAGGAACAG TTGCTTCCGG ACGGATCGAT
                                                                    400
      CGGGGAACAG TTCGGGTAGG CGATGAAGTA GAAATCGTCG GTATCAAACC
                                                                    450
      TGAAACCCAA AAAGCTGTAG TGACAGGCGT CGAAATGTTC CGCAAGACGA
                                                                    500
      TGGACTTTGG GGAAGCCGGT GACAATGTAG GTGTCTTGCT GAGAGGGATC
                                                                    550
      ACTCGTGACG AAATTGAACG AGGACAAGTG TTGGCTAAAC CAGGTTCGAT
                                                                    600
      CACACCACAT ACAAAATTCC AAGCAGAAGT TTATGTATTG ACGAAAGAAG
                                                                    650
      AAGGTGGTCG TCATACACCA TTCTTCAACA ACTATCGTCC ACAATTTTAT
                                                                    700
      TTCCGTACAA CGGATGTGAC AGGGAACATT ACATTGCCTG AAGGAACAGA
                                                                    750
                                                                    751
 35
      2) INFORMATION FOR SEQ ID NO: 77
 40
         (i) SEQUENCE CHARACTERISTICS:
                 LENGTH: 834 bases
           (B)
                 TYPE: Nucleic acid
                STRANDEDNESS: Double
           (C)
                TOPOLOGY: Linear
45
       (ii) MOLECULE TYPE: Genomic DNA
      (vi)ORIGINAL SOURCE:
           (A) ORGANISM: Ehrlichia canis
50
                STRAIN: Florida
      (xi) SEQUENCE DESCRIPTION: SEO ID NO: 77
    TGCAGCAATA TTAGTAGTGT CTGCAACTGA TGGAGCAATG CCACAAACAA
                                                                   50
55
    GAGAACATAT ATTATTAGCA AAGCAAGTAG GTGTAAAAGA TATAGTAGTG
                                                                  100
    TGGATGAATA AGTGTGATGT TGTAGATGAT GAAGAAATGT TGTCATTAGT
                                                                  150
    TGAAATGGAA ATAAGGGAAT TGTTATCAAA ATATGGGTAT CCTGGGGATG
                                                                  200
    ATATAGATGT AGTTAGAGGA TCTGCAGTTA AAGCATTAGA AGAAGAAACA
                                                                  250
    GGCTCAGGTG TGTGGAGTGA AAAAATAATG GAATTGATGA ATGCTTTAGA
                                                                  300
  AAAAATAAGT TTACCAGTAA GAGAAAAAGA TAAGCCATTT TTAATGTCAA
60
                                                                  350
```

5	ATAGAAAGAG GCGTGAGATA CATTAGATGC	GTTTTCAATA GAGTAATTAG CAAAGTACAG AGGAGAAGCA	AGTAGGGGAT TATGTACAGG GGGGATAATG	AAAATAGAGA TGTTGAAATG CTGGAATATT	TAGTAGGATT TTTCATAAAG GTTAAGAGGG	400 450 500
ב	GATACATTCA AAGAAGGAGG TATGTTAGAA	AAGATGTAGA TATAAGAGAT AAGACATACT CAACAGATGT	TTAAGGCAGA CCATTTTTCT AACAGGGAAT	GGTATATATA CAAATTACCA ATAAAGTTAC	TTGAAAAAG GCCGCAATTT CAGAAGGAGT	600 650 700 750
10		ATGCCAGGGG TATTGATCAA			AGTTTGGATA	800 834

2) INFORMATION FOR SEQ ID NO: 78

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 817 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
- 20 (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: Genomic DNA
 - (vi) ORIGINAL SOURCE:
- 25 (A) ORGANISM: Escherichia coli
 - (B) STRAIN: ATCC 23511
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 78

30	CGGCGCGATC	CTGGTAGTTG	CTGCGACTGA	CGGCCCGATG	CCGCAGACTC	50
	GTGAGCACAT	CCTGCTGGGT	CGTCAGGTAG	GCGTTCCGTA	CATCATCGTG	100
	TTCCTGAACA	AATGCGACAT	GGTTGATGAC	GAAGAGCTGC	TGGAACTGGT	150
	TGAAATGGAA	GTTCGTGAAC	TTCTGTCTCA	GTACGACTTC	CCGGGCGACG	200
	ACACTCCGAT	CGTTCGTGGT	TCTGCTCTGA	AAGCGCTGGA	AGGCGACGCA	250
35	GAGTGGGAAG	CGAAAATCCT	GGAACTGGCT	GGCTTCCTGG	ATTCTTAYAT	300
	TCCGGAACCA	GAGCGTGCGA	TTGACAAGCC	GTTCCTGCTG	CCGATCGAAG	350
	ACGTATTCTC	CATCTCCGGT	CGTGGTACCG	TTGTTACCGG	TCGTGTAGAA	400
	CGCGGTATCA	TCAAAGTTGG	TGAAGAAGTT	GAAATCGTTG	GTATCAAAGA	450
	GACTCAGAAG	TCTACCTGTA	CTGGCGTTGA	AATGTTCCGC	AAACTGCTGG	500
40	ACGAAGGCCG	TGCTGGTGAG	AACGTAGGTG	TTCTGCTGCG	TGGTATCAAA	550
	CGTGAAGAAA	TCGAACGTGG	TCAGGTACTG	GCTAAGCCGG	GCACCATCAA	600
	GCCGCACACC A	AGTTCGAAT C	TGAAGTGTA C	ATTCTGTCC A	AAGATGAAG	650
	GCGGCCGTCA T		TCAAAGGCT A		TTCTACTTC	700
	CGTACTACTG A	CGTGACTGG T	ACCATCGAA C	TGCCGGAAG G	CGTAGAGAT	750
45	GGTAATGCCG G	GCGACAACA T	CAAAATGGT T	GTTACCCTG A	TCCACCCGA	800
	TCGCGATGGA CO	GACGGT				817

- 50 2) INFORMATION FOR SEQ ID NO: 79
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 825 bases
 - (B) TYPE: Nucleic acid
- (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear

 - (ii) MOLECULE TYPE: Genomic DNA
- 60 (vi)ORIGINAL SOURCE:

(A) ORGANISM: Escherichia fergusonii

(B) STRAIN: ATCC 35469

```
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 79
```

_						
	CGATCCTGGT	AGTTGCTGCG	ACTGACGGCC.	CGATGCCGCA	GACTCGTGAG	50
	CACATCCTGC	TGGGTCGTCA	GGTAGGCGTT	CCGTACATCA	TCGTGTTCCT	100
	GAACAAGTGC	GACATGGTTG	ATGACGAAGA	GCTGCTGGAA	CTGGTTGAAA	150
	TGGAAGTTCG	TGAACTTCTG	TCTCAGTACG	ACTTCCCGGG	CGACGACACT	200
10	CCGATCGTTC	GTGGTTCTGC	TCTGAAAGCG	CTGGAAGGCG	ACGCAGAGTG	250
	GGAAGCGAAA	ATCCTGGAAC	TGGCTGGCTT	CCTGGATTCT	TACATTCCGG	300
	AACCAGAGCG	TGCGATTGAC	AAGCCGTTCC	TGCTGCCGAT	CGAAGACGTG	350
	TTCTCCATCT	CCGGTCGTGG	TACCGTTGTT	ACCGGTCGTG	TAGAACGCGG	400
	TATCATCAAA	GTTGGTGAAG	AAGTTGAAAT	CGTTGGTATC	AAAGAGACTC	450
15	AGAAGTCTAC	CTGTACTGGC	GTTGAAATGT	TCCGCAAACT	GCTGGACGAA	500
	GGCCGTGCTG	GTGAGAACGT	AGGTGTTCTG	CTGCGTGGTA	TCAAACGTGA	550
	AGAAATCGAA	CGTGGTCAGG	TACTGGCTAA	GCCGGGCACC	ATCAAGCCGC	600
	ACACCAAGTT	CGAATCTGAA	GTGTACATTC	TGTCCAAAGA	TGAAGGCGGT	650
	CGTCATACTC	CGTTCTTCAA	AGGCTACCGT	CCGCAGTTCT	ACTTCCGTAC	700
20	TACTGACGTG	ACTGGTACCA	TCGAACTGCC	GGAAGGCGTA	GAGATGGTAA	750
	TGCCGGGCGA	CAACATCAAA	ATGGTTGTTA	CCCTGATCCA	CCCGATCGCG	800
	ATGGACGACG	GTCTGCGTTT	CGCAA			825

25

30

2) INFORMATION FOR SEQ ID NO: 80

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 829 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: Genomic DNA

- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Escherichia hermannii
 - (B) STRAIN: ATCC 33650
- 40 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 80

	•					
	GGCGCGATCC	TGGTTGTTGC	TGCGACTGAC	GGCCCGATGC	CGCAGACCCG	50
	TGAGCACATC	CTGCTGGGTC	GTCAGGTAGG	CGTTCCGTAC	ATCATCGTGT	100
	TCCTGAACAA	ATGCGACATG	GTTGATGACG	AAGAGCTGCT	GGAACTGGTT	150
45	GAGATGGAAG	TTCGCGAACT	GCTGTCCCAG	TACGATTTCC	CGGGCGACGA	200
	CACCCGATC	GTTCGTGGTT	CCGCGCTGAA	AGCGCTGGAA	GGCGAAGCAG	250
	AGTGGGAAGA	GAAAATCATC	GAACTGGCTG	GCTACCTGGA	TTCCTATATC	300
	CCGGAACCAG	AGCGTGCGAT	TGACAAGCCG	TTCCTGCTGC	CTATCGAAGA	350
	CGTATTCTCC	ATCTCCGGCC	GTGGTACCGT	TGTTACCGGT	CGTGTAGAGC	400
50		CAAAGTGGGT		AAATCGTGGG		450
	ACTGCGAAAT	CAACCTGTAC	CGGCGTTGAA	ATGTTCCGCA	AACTGCTGGA	500
	CGAAGGCCGT	GCGGGCGAGA	ACGTGGGTGT	TCTGCTGCGT	GGTATCAAAC	550
		CGAACGTGGT		CTAAGCCGGG		600
				ATTCTGTCCA		650
55				CCGTCCGCAG		700
				TGCCGGAAGG		750
	GTAATGCCGG	GCGACAACAT	CAAAATGGTT	GTTACCCTGA	TCCACCCGAT	800
	CGCGATGGAC	GACGGTCTGC	GTTTCGCAA			829

```
2) INFORMATION FOR SEQ ID NO: 81
          (i) SEQUENCE CHARACTERISTICS:
  5
                   LENGTH: 816 bases
                   TYPE: Nucleic acid
             (B)
             (C)
                   STRANDEDNESS: Double
                   TOPOLOGY: Linear
             (D)
       (ii) MOLECULE TYPE: Genomic DNA
 10
        (vi)ORIGINAL SOURCE:
             (A) ORGANISM: Escherichia vulneris
                   STRAIN: ATCC 33821
             (B)
 15
        (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 81
      CGGCGCGATC CTGGTTGTTG CTGCGACTGA CGGCCCGATG CCGCAGACCC
                                                                      50
      GTGAGCACAT CCTGCTGGGT CGTCAGGTAG GCGTTCCGTA CATCATCGTG
                                                                      100
 20
      TTCCTGAACA AATGCGACAT GGTTGATGAC GAAGAGCTGC TGGAACTGGT
                                                                      150
      TGAGATGGAA GTGCGTGAAC TTCTGTCCCA GTACGACTTC CCGGGCGACG
ACACCCCGAT CATTCGTGGT TCTGCGCTGA AAGCGCTGGA AGGCGAAGCT
GAGTGGGAAG AGAAAATCGT TGAGCTGGCT GGCTACCTGG ATTCCTACAT
                                                                      200
                                                                      250
      CCCGGAACCA GAGCGTGCGA TTGACAAGCC GTTCCTGCTG CCGATCGAAG
                                                                      350
      ACGTATTCTC CATCTCCGGT CGTGGTACCG TTGTTACCGG TCGTGTAGAG
      CGCGGTATCA TCAARGTKGG TGAAGAAGTT GAAATCGTGG GTATCAAAGA
      TACTGCGAAA TCTACCTGTA CCGGCGTTGA AATGTTCCGC AAACTGCTGG
      ACGAAGGTCG TGCAGGCGAG AACTGCGGCG TTCTGCTGCG TGGTATCAAG
                                                                      550
      CGTGAAGAGA TCCAGCGTGG CCAGGTTCTG GCTAAGCCGG GCTCAATCAA
                                                                      600
      GCCGCACACC AAGTTCGAAT CCGAAGTGTA CATCCTGTCC AAAGACGAAG
 30
                                                                      650
      GCGCCGTCA CACTCCGTTC TTCAAAGGCT ACCGTCCGCA GTTCTACTTC
                                                                      700
      CGTACAACTG ACGTGACTGG CACCATCGAA CTGCCGGAAG GCGTAGAGAT
                                                                      750
      GGTAATGCCG GGCGACAACA TCAAAATGGT TGTTACCCTG ATCCATCCGA
                                                                     800
      TCGCGATGGA CGACGG
                                                                     816
 35
     2) INFORMATION FOR SEQ ID NO: 82
 40
         (i) SEQUENCE CHARACTERISTICS:
                 LENGTH: 828 bases
                 TYPE: Nucleic acid
           (B)
           (C)
                 STRANDEDNESS: Double
                 TOPOLOGY: Linear
45
      (ii) MOLECULE TYPE: Genomic DNA
       (vi)ORIGINAL SOURCE:
           (A) ORGANISM: Eubacterium lentum
50
                 STRAIN: ATCC 43055
      (xi) SEQUENCE DESCRIPTION: SEO ID NO: 82
    CGGCGCCTCC TCGTTATCGC CGCCACCGAC GGCCCGATGG CCCAGACCCG
                                                                     50
55
    CGAGCACATC CTGCTCGCCC GTCAGGTCGG CGTGCCCTAC ATCGTGGTCT
                                                                   100
    TCCTGAACAA GTGCGACATG GTCGACGACG AGGAGCTCCT CGAGCTCGTC
                                                                   150
    GAGATGGAAG TTCGCGAGCT GCTCGACTCT TACGAGTTCC CGGGCGACGA
                                                                   200
    CACCCGATC ATCCGCGGCT CCGCTTTGAA GGCCCTCGAG GGCGACAAAG
                                                                   250
    AGTGGCAGGA GAAGGTCTGG GAGCTCATGG ACGCCGTCGA CTCCTACATC
                                                                   300
60
    CCGACGCCGG AGCGCATGGT CGACAAGCCG TTCCTGATGG CCGTCGAGGA
                                                                   350
```

5	CACGATGACC ATCACCGGCC GCGGCACCGT TGCCACCGGT CGTGTGGAGC GTGGTACGCT GCATGTCAAC GACCCGCTG AGATCGTCGG TATCAAGGAG ACCCAGAACA CGGTCTGCAC CGGTATCGAG ATGTTCCGCA AGCTGCTCGA CGAGGCTCAG GCCGGCGACA ACATCGGCTG CCTGCTCCGC GGTGTCAAGC GCGAGGAGAT CGTTCGCGGC CAGGTTCTCT GCAAGCCCGG TAGCGTGACC CCGCACACCG AGTTCGAGGG TCAGGTCTAC ATCCTGACGA AGGAAGAGGG CGGCCGCCAC ACGCCGTTCT TCGACGGCTA CCGTCCGCAG TTCTACTTCC GCACGACGGA CGTGACGGT GTTGCCCACC TTCCCGAGGG CACCGAGATG GTCATGCCGG GCGACAACGT GGAGATCAAG GGCGAGCTCA TTCACCCGAT	400 450 500 550 600 650 700 750
10		800 828
15	(i) SEQUENCE CHARACTERISTICS:	
20	(A) LENGTH: 835 bases(B) TYPE: Nucleic acid(C) STRANDEDNESS: Double(D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
25	<pre>(vi)ORIGINAL SOURCE: (A) ORGANISM: Eubacterium nodatum (B) STRAIN: ATCC 33099</pre>	
	(xi)SEQUENCE DESCRIPTION: SEQ ID NO: 83	
30	GGAGCAATTC TGGTTTGTGC AGCAACKGAC GGACCAATGC CTCAGACAAG AGAACATATC CTTTTGTCAA GGCAGGTAGG AGTGCCATAT ATCATCGTAT TCCTGAATAA ATGTGACATG GTGGATGAYG AAGAGCTTCT GGACTTGGTA GAGATGGAAG TAAGAGAACT TCTCAGTGAG TATGAATTCC CGGGAGATGA	100 150 200
35	TACCCCGATA GTAAGAGGTT CAGCCCTGAA GGCACTGGAA GAACCCAATG GAGAATGGGC AGACAAGATT GTAGAGCTGA TGGAGGAAGT AGATAAATAC ATTCCTGAAC CAAAGAGAGA TAACGACAAA CCGTTCCTGA TGCCTGTAGA GGACGTATTC TCAATAACAG GAAGAGGAAC AGTAGCGACA GGAAGRGTTG AAAGAGGAAT CCTGAAGGTC GGTGATGAAG TAGAAATCGT GGGAATGAGC	250 300 350 400
40	GAAGAGAA GAAAGGTAGT AGTAACGGGA GTTGAAATGT TCAGAAAGCT TCTGGATGAA GCAGAGACAG GAGACAACAT CGGAGCACTG CTGAGAGGAG TTCAGAGAAC RGAGATCCAG AGAGGTCAGG TATTGGCRGC ACCTGGAACG	450 500 550 600
45	ATCAACCCAC ATACAAAGTT CAAGGGTCAG GTATATGTAC TGAAGAAGGA AGAAGGAGA AGGCATACGC CGTTCTTCAA YGGATACAGW CCACAGTTCT ACTTCAGAAC AACAGACGTA ACAGGAGATT TGCAGCTGCC GGAAGGARCA GAGATGTGCA TGCCGGGAGA TAATGTGGTA ATGAACRTCA GCCTGATCAC TCCGATTGCT ATAGAAGAGG GWCTGAGATT TGCCA	650 700 750 800 835
50	2) INFORMATION FOR SEQ ID NO: 84	:
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 826 bases	

- (B)
- TYPE: Nucleic acid STRANDEDNESS: Double 55 [°] (C)
 - (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: Genomic DNA
- 60 (vi)ORIGINAL SOURCE:

> ORGANISM: Ewingella americana (A) STRAIN: ATCC 33852 (B)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 84

```
5
    GCGATCCTGG TTGTTGCTGC AACTGATGGC CCTATGCCAC AGACTCGTGA
                                                                 50
    GCACATCCTG TTGGGTCGYC AGGTTGGCGT TCCATTCATG ATCGTATTCA
                                                                 100
    TGAACAAATG CGACATGGTT GATGACGAAG AGCTGCTGGA ACTGGTAGAA
                                                                 150
    ATGGAAGTTC GYGAACTTCT GTCTGCTTAC GATTTCCCAG GCGACGACAT
                                                                200
10
    CCCAGTTGTT AAAGGTTCAG CGCTGAAAGC ACTGGAAGGC GAAGCAGAGT
                                                                250
    GGGAAGCTAA GATCATCGAG CTGGCTGGCC ACCTGGATAG CTACATCCCA
                                                                300
    GAACCAGAGC GTGCGATTGA CAAGCCATTC CTGCTGCCAA TCGAAGACGT
                                                                350
    ATTCTCCATC TCCGGTCGTG GTACCGTTGT TACCGGTCGT GTAGAGCGCG
                                                                400
    GTATCATCAA AGTTGGCGAA GAAGTTGAAA TCGTTGGTAT CAAGGACACT
                                                                450
    GTTAAGTCTA CTTGTACTGG CGTTGAAATG TTCCGCAAAC TGCTGGACGA
                                                                500
    AGGCCGTGCY GGTGAGAACG TTGGTGTTCT GCTGCGTGGT ATCAAGCGTG
                                                                550
    AAGACATCGA ACGTGGTCAG GTTCTGGCTA AACCAGGTTC AATCAAACCA
                                                                600
    CACACCACWT TYGACTCAGA AGTTTATATC CTGAGCAAAG ATGAAGGCGG
                                                                650
    CCGTCATACT CCGTTCTTCA AAGGCTACCG TCCACAGTTC TACTTCCGTA
                                                                700
    CAACTGACGT GACCGGTACC ATCGAACTGC CAGAAGGCGT AGAGATGGTA
20
```

ATGCCAGGTG ACAACATCAA CATGRTAGTT ACCCTGATCC ACCCAATCGC

750

800

826

25

2) INFORMATION FOR SEO ID NO: 85

GATGGATGAC GGTCTGCGTT TCGCAA

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 828 bases
 - (B) TYPE: Nucleic acid
 - STRANDEDNESS: Double (C)
 - (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: Genomic DNA

35

- (vi)ORIGINAL SOURCE:
 - (A) ORGANISM: Francisella tularensis
 - (B) STRAIN: LVS
- 40 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 85

	TGGTGCTATT	CTAGTATGTT	CTGCTGCGGA	TGGTCCTATG	CCACAAACTC	50 -
	GTGAGCACAT	TCTGCTTTCT			AATCGTTGTT	100
		AGTGTGACAT	GGTTGATGAT			150
45	TGAGATGGAA	GTTCGTGAGC	TTTTAGATCA	GTATGAGTTC	CCAGGTGATG	200
	ACACTCCAGT				AGGTGACGAA	250
	GCTTACGTTG	AGAAAATTGT	TGAGCTAGTT	CAAGCTATGG	ATGACTATAT	300
	TCCTGCTCCT	GAGCGTGATA	CTGAGAAGCC	ATTTATTCTT	CCGATCGAAG	350
	ATGTATTCTC	AATTTCAGGT	CGTGGTACTG	TTGTAACTGG	TCGTATTGAG	400
50	CGCGGTGTAG	TTAACGTTGG	TGATGAAGTT	GAAGTTGTTG	GTATTCGTCC	450
	AACTCAAAAA	ACTACAGTAA	CTGGTGTGGA	AATGTTCCGT	AAGCTTTTAG	500
	ATAGAGGGGA	AGCTGGTGAT	AACGTTGGTA	TCCTAGTTCG	TGGACTTAAG	550
	AGAGATGATG	TTGAGCGTGG	ACAAGTATTA	TGTAAGCCAG	GTTCAATTAA	600
	GCCACATACT.	AAGTTTGAAG	CTGAGGTTTA	TGTATTATCT	AAAGAAGAGG	650
55	GTGGTAGACA	TACTCCATTC	TTCAAGGGAT	ATAGACCACA	ATTCTACTTC	700
	CGTACTACAG	ACATTACTGG	AGCTGTTGAG	CTTCCAGAGG	GTGTAGAAAT	750
	GGTTATGCCT	GGTGATAACG	TTAAGATGAC	TATCACTCTA	ATTAACCCAA	800
	TCGCTAGGAT	GAAGGGTTAC	GTTTTGCA			828

```
2) INFORMATION FOR SEQ ID NO: 86
         (i) SEQUENCE CHARACTERISTICS:
                  LENGTH: 829 bases
  5
             (A)
                  TYPE: Nucleic acid
             (B)
             (C)
                  STRANDEDNESS: Double
                  TOPOLOGY: Linear
             (D)
 10
        (ii) MOLECULE TYPE: Genomic DNA
        (vi)ORIGINAL SOURCE:
            (A)
                  ORGANISM: Fusobacterium nucleatum subsp. polymorphum
                  STRAIN: ATCC 10953
            (B)
 15
        (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 86
      CGGTGCTATC ATCGTAGKTG CTGCTACTGA TGGTCCGATG CCTCARACTC
                                                                    50
      GTGAGCAYAT CYTGCTGGCT CGTCAGGTAA ACGTWCCKAG ACTGGTTGTA
                                                                   100
 20
      TTCATGAACA AGTGYGACAT GGTAGACGAC GCTGAAATGY TGGAACTCGT
                                                                   150
      TGAAATGGAA ATGCGTGAAC TGCTTTCAGC YTACGAATTC GAYGGYGACA
                                                                   200
      ACACTCCKTT CATTCAGGGT TCTGCTCTTG GTGCRTTGAA YGGCGTTGAA
                                                                   250
      AAGTGGGAAG AGAAGGTTAT GGANCTGATG GATGCTTGCG ACACTTGGAT
                                                                   300
      TCCTTTGCCT CCGCGTGATA TTGAYAAACC GTTCTTGATG CCGGTTGAAG
                                                                   350
 25
      ACGTATTCTC AATCACTGGT CGTGGTACTG TAGCTACTGG TCGTATCGAA
                                                                   400
      GCTGGTGTTA TCCATGTAGG TGACGAAGTT GAAATCCTCG GTTTGGGTGA
                                                                   450
      AGACAAGAAG TCTGTTGTAA CTGGTGTTGA AATGTTCCGC AAGTTGCTGG
                                                                   500
      ATCAAGGTGA AGCTGGTGAC AACGTAGGTY TGTTGCTCCG TGGTATCGAC
                                                                   550
      AAGAACGAAA TCAAACGTGG TATGGTTCTT TGTAAGCCCG GTCAGATTAA
                                                                   600
      ACCTCACTCT AAGTTCAAAG CTTCTATCTA CGTTTTGAAG AAAGAAGAAG
 30
                                                                   650
      GTGGTCGTCA CACTCCGTTC CACAACAAAT ACCGTCCTCA GTTCTATCTG
                                                                   700
      CGTACTATGG ACTGTACAGG TGAAATCWCT CTTCCGGAAG GAACTGAAAT
                                                                   750
      GGTAATGCCT GGTGATAACG TAGAAATCAC TGTAGAACTG ATCTACCCGG
                                                                   800
      TAGCATTGAA CGTAGGTTTG CGTTTCGCT
                                                                   829
 35
      2) INFORMATION FOR SEQ ID NO: 87
         (i) SEQUENCE CHARACTERISTICS:
 40
            (A)
                  LENGTH: 828 bases
           (B)
                TYPE: Nucleic acid
           (C)
                STRANDEDNESS: Double
           (D)
                TOPOLOGY: Linear
45
      (ii) MOLECULE TYPE: Genomic DNA
      (vi)ORIGINAL SOURCE:
           (A)
                ORGANISM: Gemella haemolysans
50
           (B)
                STRAIN: ATCC 10379
      (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 87
    CTATCTTAGT AATCGCTGCT ACAGATGGAC CAATGGCTCA AACTCGTGAG
                                                                  50
    CACATCCTAT TATCTCGTAA CGTTGGAGTA CCAAAAATCG TTGTATTCTT
55
                                                                 100
    AAACAAATGT GATATGGTTG ATGACGAAGA GTTATTAGAA TTAGTTGAAA
                                                                 150
    TGGAAGTTCG TGAACTATTA TCTGAATACG GATTCGACGG AGATGAACTA
                                                                 200
    CCAGTAATCA AAGGTTCTGC TCTTAAAGCT CTTGAAGGAG ATGCAGATGC
                                                                 250
    AGAAAAAGCT ATCATCGAAT TAATGGAAAC AGTTGACGAA TACATCCCAA
                                                                 300
    CTCCAGAACG TGATAACGCT AAACCATTCA TGATGCCAGT TGAGGACGTA
60
```

5	CACACACTCA ATTCGTAGCT GACGTGTACG TATTATCTAA AGAAGAAGGT GGACGTCACA CTCCATTCTT CACAAACTAC CGTCCTCAAT TCTACTTCCG TACTACTGAC GTAACTGGTG TAGTTACTTT ACCAGAAGGT ACTGAAATGG	400 450 500 550 600 650 700 750
10	TAATGCCTGG GGATAACGTA TCAATCAACG TAGAACTTAT TTCTCCAATC	800 828
15	2) INFORMATION FOR SEQ ID NO: 88 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 823 bases	
	(B) TYPE: Nucleic acid (C) STRANDEDNESS: Double	
20	(D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
25	<pre>(vi)ORIGINAL SOURCE: (A) ORGANISM: Gemella morbillorum (B) STRAIN: ATCC 27824</pre>	
	(xi)SEQUENCE DESCRIPTION: SEQ ID NO: 88	
30	TOUCH	50
٠.	ATCCTATTAT CTCGTAACGT TGGAGTACCT AAAATTGTTG TATTCTTAAA CAAATGTGAT ATGGTTGATG ACGAAGAGTT ATTAGAATTA GTAGAAATGG AAGTTCGTGA ACTATTATCT GAATACGGAT TTGATGGAGA TGAACTACCA GTAATCAAAG GTTCAGCTCT TAAAGCTCTT GAAGGAGATG CAGATGCTGA	100 150 200
35	AAAAGCTATC ATCGAATTAA TGGAAACAGT TGACGAGTAC ATCCCAACTC	250 300
	CAGAACGTGA TAACGCTAAA CCATTTATGA TGCCAGTTGA GGACGTGTTC TCAATCACAG GTCGTGGTAC AGTTGCTACT GGACGTGTTG AACGTGGACA	350
40	AGTTAAAGTT GGTGACGTAG TAGAAATCGT TGGATTAACT GAAGAACCAG CTTCAACTAC TGTAACAGGT GTTGAAATGT TCCGTAAATT ATTAGATTAC GCTGAAGCAG GAGATAACAT CGGTGCATTA TTACGTGGTG TTGCTCGTGA	400 450 500
	AGATATCGAA CGTGGACAAG TTTTAGCAGC TCCTAAAACA ATCACTCCAC	550 600
	ATACTCAATT CGTAGCTGAT GTGTACGTAT TATCTAAAGA AGAAGGTGGA CGTCACACTC CATTCTTCAC AAACTACCGT CCACAATTCT ACTTCCGTAC	650
	TACTGACGTA ACTGGTGTAG TTACTTTACC AGAAGGTACT GAAATGGTAA	700 750
45	TGCCTGGGGA CAACGTATCA ATCAACGTAG AACTTATTTC TCCAATCGCT	800
	ATCGAAGAAG GAACTCGTTT CTC	823
•		
5.A	2) INCOMMETON CON CRO. ID NO. 00	

- 50 2) INFORMATION FOR SEQ ID NO: 89
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 829 bases
 - (B) TYPE: Nucleic acid
- 55 (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: Genomic DNA
- 60 (vi)ORIGINAL SOURCE:

> (A) ORGANISM: Haemophilus actinomycetemcomitans

```
(B)
      STRAIN: ATCC 33384
```

```
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 89
```

	GCTATCTTAG	TAGTAGCAGC	AACCGACGGT	CCTATGCCAC	ለ አ አ ርጥርርጥር አ	50
	GCACATCTTA					
		TTAGGTCGCC	AAGTAGGTGT	TCCTTACATC		100
	TAAACAAATG	CGACATGGTA	GATGACGAAG	AGTTATTAGA	ATTAGTTGAA	150
	ATGGAAGTTC	GTGAACTTCT	TTCTCAATAT	GACTTCCCGG	GCGATGACAC	200
10	CCCAATCGTA	CGCGGTTCTG	CATTAAAAGC	GCTTGAAGGC	GATGCCGCAT	250
	GGGAAGAAAA	AATCCTTGAA	TTAGCAAACC	ATTTAGATAC	TTACATCCCG	300
	GAACCTGAGC	GTGCTATCGA	CCAACCGTTC	CTTCTTCCAA	TTGAAGATGT	350
	GTTCTCTATC	TCCGGTCGTG	GTACCGTAGT	AACGGGTCGT	GTTGAGCGCG	400
	GTATCATCCG	TACCGGTGAT	GAAGTTGAAA	TCGTGGGTAT	CAAACCGACT	450
15	GCAAAAACCA	CCGTAACCGG	TGTTGAAATG	TTCCGTAAAT	TACTTGACGA	500
	AGGTCGTGCG	GGTGAAAACA	TCGGTGCATT	ATTGCGTGGT	ACTAAACGTG	550
		ACGTGGTCAG	GTATTGGCGA	AACCGGGGTC	AATCACCCCG	600
	CACACTGACT	TCGAATCTGA	AGTGTACGTA	TTGTCCAAAG	AAGAAGGTGG	650
_	TCGTCATACT	CCATTCTTCA	AAGGTTACCG	TCCACAATTC	TATTTCCGTA	700
20	CAACTGACGT	AACCGGTACT	ATCGAGTTAC	CTGAAGGCGT	GGAAATGGTT	750
			AATGACCGTA	TCCTTAATTC	ACCCAATTGC	800
	GATGGACCAA	GGTTTACGTT	TCGCTATCG			829

25

5

2) INFORMATION FOR SEQ ID NO: 90

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 833 bases
 - (B)
 - TYPE: Nucleic acid STRANDEDNESS: Double (C)
 - (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: Genomic DNA

35

- (vi)ORIGINAL SOURCE:
 - (A) ORGANISM: Haemophilus aphrophilus
 - (B) STRAIN: ATCC 33389
- 40 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 90

	TGGTGCTATC	TTAGTAGTAG	CAGCAACTGA	TGGTCCTATG	CCACAAACTC	50-
	GTGAGCACAT	CTTATTAGGT	CGCCAAGTAG	GTGTTCCTTA	CATCATCGTA	100
	TTCTTAAACA	AATGCGACAT	GGTAGATGAC	GAAGAGTTAT	TAGAATTAGT	150
45	TGAAATGGAA	GTTCGTGAAC	TTCTTTCTCA	ATATGACTTC	CCGGGTGATG	200
	ATACACCAAT			AAGCGTTAAA		250
	GAATGGGAAG	AAAAAATCCT	TGAATTAGCA	AACCACTTAG	ATACTTACAT	300
	TCCTGAGCCA	CAACGTGCTA	TCGACCAACC	GTTCCTTCTT	CCAATTGAAG	350
	ACGTGTTCTC	TATCTCCGGT	CGTGGTACTG	TAGTAACAGG	TCGTGTTGAG	400
50	CGTGGTATCA	TCCGTACCGG	TGATGAAGTT	GAAATCGTAG	GTATCAAACC	450
	GACTGCGAAA	ACTACCGTAA	CCGGTGTTGA	AATGTTCCGT	AAATTACTTG	500
	ACGAAGGTCG	TGCAGGTGAA	AACATCGGTG	CATTATTACG	TGGCACTAAA	550
	CGTGAAGAAA	TCGAACGTGG	TCAAGTATTG	GCTAAACCGG	GCTCAATCAC	600
	TCCGCACACT	GATTTCGAAT	CTGAAGTGTA	CGTATTATCC	AAAGAAGAAG	650
55	GTGGTCGTCA	TACTCCATTC	TTCAAAGGTT	ACCGTCCACA	ATTCTATTTC	700
	CGTACAACTG			TTACCGGAAG		750
	GGTTATGCCT	GGCGATAACA	TCAAAATGAC	TGTATCCTTA	ATCCACCCAA	800
	TCGCGATGGA	CCAAGGTTTA	CGTTTCGCTA	TCG		833

```
2) INFORMATION FOR SEQ ID NO: 91
           (i) SEQUENCE CHARACTERISTICS:
   5
              (A)
                   LENGTH: 815 bases
                     TYPE: Nucleic acid
              (B)
              (C)
                     STRANDEDNESS: Double
              (D)
                     TOPOLOGY: Linear
  10
         (ii) MOLECULE TYPE: Genomic DNA
          (vi)ORIGINAL SOURCE:
                   ORGANISM: Haemophilus ducreyi
              (A)
                     STRAIN: DSM 8925
  15
          (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 91
       CGGCGCTATC TTAGTTGTAG CAGCAACTGA TGGTCCTATG CCTCAAACTC
                                                                              50
       GTGAACACAT CTTATTAGGC CGCCAAGTTG GTGTTCCTTA CATCATCGTA
                                                                             100
       TTCTTAAATA AATGCGATAT GGTAGATGAT GAAGAATTAT TAGAATTAGT
  20
                                                                             150
       TGAAATGGAA GTTCGTGAAC TTCTTTCTCA ATATGATTTC CCAGGTGACG
                                                                             200
      ATACTCCTAT CGTTCGTGGT TCAGCATTAC AAGCATTAAA TGGTGTGCCT
GAGTGGGAAG AAAAAATCAT TGAATTAGCA CAACACTTAG ATTCTTATAT
CCCTGAGCCT GAGCGTGCGA TTGATAAACC TTTCTTATTA CCCAATCGAAG
                                                                             250
                                                                             300
                                                                             350
       ACGTATTCTC AATTTCAGGT CGTGGTACAG TAGTAACCGG TCGTGTTGAG
CGTGGTATCA TCAAATCAGG TGAAGAAGTT GAAATCGTAG GGATTAAAGA
                                                                             400
                                                                             450
       AACGACAAAA ACAACAGTAA CCGGTGTTGA GATGTTCCGT AAACTATTAG
                                                                             500
       ACGAAGGTCG TGCGGGTGAA AACGTAGGTG CCTTATTACG TGGTACTAAA
                                                                             550
      CGTGAAGAAA TCGAACGTGG TCAAGTATTA GCGAAACCAG GTACAATTAC ACCACACACT GATTTTGAAT CAGAAGTTTA TGTATTATCA AAAGAAGAAG GTGGTCGTCA TACTCCATTC TTCAAAGGTT ATCGTCCTCA GTTCTACTTC
                                                                             600
 30.
                                                                             650
                                                                             700
       CGYACAACGG ACGTAACAGG AACGATTGAA TTACCTGAAG ATGTTGAGAT
                                                                             750
       GGTAATGCCT GGTGATAATA TCAAGATGAC AGTAAGCTTA ATTCACCCTA
                                                                             800
       TCGCGATGGA CGAAG
                                                                             815
 35
       2) INFORMATION FOR SEQ ID NO: 92
 40
          (i) SEQUENCE CHARACTERISTICS:
              (A) LENGTH: 830 bases
            (B)
                   TYPE: Nucleic acid
            (C)
                   STRANDEDNESS: Double
            (D)
                   TOPOLOGY: Linear
45
       (ii) MOLECULE TYPE: Genomic DNA
       (vi)ORIGINAL SOURCE:
            (A) ORGANISM: Haemophilus haemolyticus
50
            (B)
                   STRAIN: ATCC 33390
       (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 92
     TGGTGCTATC TTAGTAGTAG CAGCAACTGA TGGTCCAATG CCACAAACTC
                                                                            50
55
    GTGAGCACAT CTTATTAGGT CGCCAAGTAG GTGTTCCATA CATCATCGTA
                                                                           100
     TTCTTAAACA AATGCGACAT GGTAGATGAC GAAGAGTTAT TAGAATTAGT
    AGAAATGGAA GTTCGTGAAC TTCTTTCTCA ATATGACTTC CCAGGTGACG
                                                                           200
    ATACACCAAT CGTACGTGGT TCTGCATTAC AAGCATTAAA TGGCGTAGCA
                                                                           250
    GAATGGGAAG AAAAAATCCT TGAGTTAGCA AACCACTTAG ATACTTACAT
                                                                          300
   CCCAGAACCA GAGCGTGCAA TTGACCAACC GTTCCTTCTT CCAATCGAAG
                                                                          350
```

5	GCCACACACT GACTTCGAAT CAGAAGTTTA TGTATTATCA AAAGAAGAAG GTGGTCGTCA TACTCCATTC TTCAAAGGTT ACCGTCCACA ATTCTATTTC CGTACAACTG ACGTAACTGG TACTATCGAG TTACCAGAAG GCGTAGAAAT	400 450 500 550 600 650 700
10	GGTAATGCCA GGCGATAACA TCAAGATGAC AGTAAGCTTA ATCCACCCAA TCGCGATGGA CCAAGGTTTA CGTTTCGCAA	800 830
15	(i)SEQUENCE CHARACTERISTICS: (A) LENGTH: 824 bases	
20	(C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
25	(ii) MOLECULE TYPE: Genomic DNA(vi) ORIGINAL SOURCE:(A) ORGANISM: Haemophilus parahaemolyticus(B) STRAIN: ATCC 10014	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 93	
30	TCTTAGTAGT AGCAGCAACA GACGGTCCAA TGCCACAAAC TCGTGAGCAC ATCTTATTAG GTCGCCAAGT AGGTGTTCCA TACATCATCG TATTCTTAAA CAAATGCGAT ATGGTTGACG ATGAAGAATT ATTAGAATTA GTTGAAATGG AAGTGCGTGA ACTTCTTTCA CAATATGACT TCCCAGGTGA TGACACGCCA	50 100 150 200
35	CAGAGCGTGC GATTGATAAA CCATTCTTAT TACCAATCGA AGACGTATTC TCAATCTCAG GTCGTGGTAC AGTAGTAACA GGTCGTGTTG AGCGTGGTAT	250 300 350 400
40	AATCGAACGT GGTCAAGTGT TAGCGAAACC AGGTACAATT ACACCACACA	450 500 550 600
45	CAGACTTCGA ATCAGAAGTG TACGTATTAT CAAAAGAAGA AGGTGGTCGT CACACTCCAT TCTTCAAAGG TTACCGTCCA CAATTCTACT TCCGTACAAC TGACGTAACT GGTACTATTG AATTACCAGA AGGCGTAGAA ATGGTAATGC CAGGCGATAA CATCAAAATG ACAGTATCAT TAATCCACCC AATCGCGATG GACGAAGGTT TACGTTTTGC GATT	650 700 750 800 824
50	2) INFORMATION FOR SEQ ID NO: 94	
	(i) SEQUENCE CHARACTERISTICS:	

- 50
 - SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 833 bases
 (B) TYPE: Nucleic acid
- 55 (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: Genomic DNA
- 60 (vi)ORIGINAL SOURCE:

(A) ORGANISM: Haemophilus parainfluenzae

(B) STRAIN: ATCC 7901

```
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 94
```

	TGGTGCTATC	TTAGTAGTAG	CAGCAACTGA	TGGTCCTATG	CCACAAACTC	50-
	GTGAGCACAT	CTTATTAGGT	CGCCAAGTAG		CATCATCGTG	100
	TTCTTAAACA	AATGCGACAT	GGTAGATGAC	GAAGAGTTAT	TAGAATTAGT	150
	TGAAATGGAA	GTTCGTGAAC	TTCTTTCTCA	ATATGACTTC	CCGGGTGACG	200
10	ATACACCAAT	CGTACGTGGT	TCTGCATTAC	AAGCGTTAAA	CGGCGTWGCA	250
	GAATGGGAAG	AAAAAATCCT	TGAATTAGCT	AGCCACTTAG	ATTCTTACAT	300
	TCCTGAGCCT	CAACGTGCTA	TCGACCAACC	GTTCCTTCTT	CCAATCGAAG	350
	ACGTGTTCTC	TATCTCCGGT	CGTGGTACAG	TAGTAACAGG	TCGTGTTGAG	400
	CGTGGTATCA	TCCGTACCGG	TGATGAAGTT	GAAATCGTAG	GTATCAAACC	450
15	GACTGCGAAA			AATGTTCCGT	AAATTACTTG	500
	ACGAAGGTCG	TGCAGGTGAA	AACATCGGTG	CATTATTACG	TGGTACYAAA	550
	CGTGAAGAAA	TCGAACGTGG	TCAAGTATTG	GCTAAACCGG	GTTCAATCAC	600
	TCCACACACT	GATTTCGAAT	CTGAAGTGTA	CGTATTATCC	AAAGAAGAAG	650
	GTGGTCGTCA	TACTCCATTC	TTCAAAGGTT	ACCGTCCACA	ATTCTATTTC	700
20	CGTACAACTG	ACGTAACCGG	AACTATCGAA	TTACCGGAAG	GCGTGGAAAT	750
	GGTTATGCCT		TCAAAATGAC		ATCCACCCAA	800
	TCGCGATGGA	CCAAGGTTTA	CGTTTCGCTA	TCG		833

25

30

5

- 2) INFORMATION FOR SEQ ID NO: 95
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 824 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: Genomic DNA

- (vi)ORIGINAL SOURCE:
 - (A) ORGANISM: Haemophilus paraphrophilus
 - (B) STRAIN: ATCC 29241
- 40 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 95

	TGGTGCTATC	TTAGTAGTAG	CAGCAACTGA	TGGTCCTATG	CCACAAACTC	50
	GTGAGCACAT	CTTATTAGGT	CGCCAAGTAG		CATCATCGTA	100
	TTCTTAAACA		GGTAGATGAC	GAAGAGTTAT	TAGAATTAGT	150
45	TGAAATGGAA	GTTCGTGAAC	TTCTTTCTCA	ATATGACTTC	CCGGGTGACG	200
	ATACGCCAAT	0011-001	TCTGCATTAC	AAGCGTTAAA	CGGCGTTGCA	250
	GAATGGGAAG	AAAAAATCCT	TGAATTAGCA	AACCACTTGG	ATACTTACAT	300
	TCCTGAGCCA	CAACGTGCTA	TCGACCAACC	GTTCCTTCTT	CCAATCGAAG	350
	ACGTGTTCTC	TATCTCCGGT	CGTGGTACAG	TAGTAACAGG	TCGTGTTGAG	400
50	CGTGGTATCA	TCCGTACCGG	TGATGAAGTT	GAAATCGTAG	GTATCAAACC	450
	GACTGCGAAA	ACTACCGTAA	CCGGTGTTGA	AATGTTCCGT	AAATTACTTG	500
	ACGAAGGTCG	TGCAGGTGAA	AACATCGGTG	CATTATTACG	TGGTACCAAA	550
	CGTGAAGAAA	TCGAACGTGG	TCAAGTATTG	GCTAAACCGG	GTTCAATCAC	600
	TCCACACACT		CTGAAGTGTA	CGTATTATCC	AAAGAAGAAG	650
55	GTGGTCGTCA	TACTCCATTC	TTCAAAGGTT	ACCGTCCACA	ATTCTATTTC	700
	CGTACAACTG	ACGTAACCGG	TACTATCGAG	TTACCGGAAG	GTGTGGAAAT	750
	GGTAATGCCT	GGCGATAACA	TCAAAATGAC	CGTATCCTTA	ATCCACCCAA	800
	TCGCGATGGA	CCAAGGTTTA				824

```
2) INFORMATION FOR SEO ID NO: 96
           (i) SEQUENCE CHARACTERISTICS:
   5
                   LENGTH: 818 bases
              (A)
                    TYPE: Nucleic acid
              (B)
              (C)
                    STRANDEDNESS: Double
              (D)
                    TOPOLOGY: Linear
  10
     (ii) MOLECULE TYPE: Genomic DNA
         (vi)ORIGINAL SOURCE:
                    ORGANISM: Haemophilus segnis
              (A)
              (B)
                    STRAIN: ATCC 33393
  15
         (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 96
       GCTATCTTAG TAGTAGCAGC AACTGATGGT CCTATGCCAC AAACTCGTGA
                                                                           50
       GCACATCTTA TTAGGTCGCC AAGTAGGTGT TCCTTACATC ATCGTATTCT
                                                                           100
       TAAACAAATG CGACATGGTA GATGACGAAG AGTTATTAGA ATTAGTTGAA
  20
                                                                           150
      ATGGAAGTTC GTGAACTTCT TTCTCAATAT GACTTCCCAG GTGATGATAC
                                                                           200
      TCCAATCATT CGTGGTTCTG CATTACAAGC GTTAAACGGC GTAGCAGAAT
                                                                           250
       GGGAAGAAAA AATCCTTGAA TTAGCTCAAG CATTAGATAC TTACATTCCT
                                                                           300
       GAACCTGAGC GTGCAATCGA CCAACCGTTC CTTCTTCCAA TTGAAGACGT
      GTTCTCAATC TCTGGTCGTG GTACTGTAGT AACAGGTCGT GTAGAGCGTG
GTATCATCCG TACCGGTGAT GAAGTTGAAA TCGTTGGTAT CAAACCAACT
GCGAAAACAA CCGTAACCGG TGTTGAAATG TTCCGTAAAT TACTTGACGA
AGGTCGTGCA GGTGAAAACA TCGGTGCATT ATTACGTGGT ACTAAACGTG
                                                                           350
  25
                                                                           400
                                                                           450
                                                                           500
                                                                           550
      AAGAAATCGA ACGTGGTCAA GTATTAGCGA AACCGGGTTC AATCACTCCA
                                                                           600
      CACACTGACT TCGAATCTGA AGTGTACGTA TTATCTAAAG AAGAAGGTGG
TCGTCATACT CCATTCTTCA AAGGTTACCG TCCACAATTC TATTTCCGTA
  30
                                                                           650
                                                                           700
       CAACTGACGT AACCGGTACT ATCGAGTTAC CGGAAGGCGT GGAAATGGTT
                                                                           750
      ATGCCTGGCG ATAACATCAA AATGACCGTA TCCTTAATCC ACCCAATCGC
                                                                          800
       GATGGACCAA GGTTTACG
                                                                          818
  35
      2) INFORMATION FOR SEQ ID NO: 97
 40
          (i) SEQUENCE CHARACTERISTICS:
              (A) LENGTH: 763 bases
            (B)
                  TYPE: Nucleic acid
            (C)
                  STRANDEDNESS: Double
            (D)
                  TOPOLOGY: Linear
45
       (ii) MOLECULE TYPE: Genomic DNA
       (vi)ORIGINAL SOURCE:
            (A)
                ORGANISM: Hafnia alvei
50
                  STRAIN: ATCC 13337
       (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 97
    CGGCGCTATC CTGGTTGTTG CTGCGACTGA CGGCCCTATG CCTCAGACTC
                                                                          50
    GTGAGCACAT CCTGCTGGGT CGTCAGGTTG GCGTTCCTTW CATCATCGTR
                                                                        100
     TTCCTGAACA AATGCGACAT GGTTGATGAT GAAGAGCTGC TGGAACTGGT
                                                                        150
    AGAAATGGAA GTTCGTGAAC TTCTGTCTCA GTACGACTTC CCWGGYGATG
                                                                        200
    ATACTCCAAT CATCCGTGGT TCTGCTCTGA AAGCGCTGGA AGGYGMACCT
                                                                        250
    GAGTGGGAAG CTAAGATCGT AGAACTGGCT GAAACTCTGG ATTCTTACAT
                                                                        300
60 YCCACARCCA GAACGTGCTA TCGAYAAGCC ATTCCTGCTG CCAATCGAAG
                                                                        350
```

10	GCCACACCC AAGTTCGAAT CAGAAGTTTA TATTCTGAGC AAAGATGAAG GCGGYCGTCA TACTCCGTTC TTCAAAGGCT ACCGTCCACA GTTCTACTTC CGTACAACTG ACGTGACCGG TACCATCGAA TTGCCAGAAG GCGTGGAAAT GGTAATGCCA GGC	400 450 500 550 600 650 700 750 763						
	2) INFORMATION FOR SEQ ID NO: 98							
15	<pre>(i)SEQUENCE CHARACTERISTICS: (A) LENGTH: 828 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear</pre>							
20	(ii) MOLECULE TYPE: Genomic DNA							
	<pre>(vi)ORIGINAL SOURCE: (A) ORGANISM: Kingella kingae</pre>	•						
25	(B) STRAIN: ATCC 23330							
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 98							
30	CGGCGCAATC TTGGTATGTT CAGCAGCTGA CGGTCCTATG CCACAAACTC GCGAACACAT CTTGTTGGCT CGCCAAGTAG GTGTACCTTA TATCATCGTA	50 100						
	TTCATGAACA AATGCGACAT GGTCGATGAT GCTGAGTTGT TGGAATTGGT TGAAATGGAA ATCCGTGACT TGTTGTCTAG CTACGATTTT CCAGGCGACG	150 200						
	ATTGCCCAAT CGTTCAAGGT TCTGCATTGC GYGCATTGGA AGGCGACGCT	250						
35		300 350						
	ATGTATTCTC TATCTCTGGT CGTGGTACAG TAGTTACTGG TCGTGTAGAG CGCGGTATCA TCAAAGTAGG CGAAGAGATT GAAATCGTTG GTTTGAAAGA	400 450						
	CACGCAAAAA ACCACTTGTA CTGGCGTGGA AATGTTCCGC AAATTGTTGG	500						
40	ACGAAGGTCA AGCTGGTGAT AACGTTGGTG TATTATTGCG TGGTACGAAG CGTGAAGACG TTGAACGTGG TCAGGTATTG GCTAAACCAG GTTCTATCAC	550 600						
	TCCGCACAT AAATTTGAAG CTGAAGTGTA TGTGTTGAGC AAAGAAGAAG GTGGCCGTCA TACGCCATTC TTCGCTAACT ACCGCCCACA ATTCTACTTC	650						
	CGTACGACTG ACGTAACTGG TGCAGTTACT TTGTCTGAGG GTGTGGAAAT	700 750						
45	GGTTATGCCA GGCGAAAACG TGAAAATCAC TGTTGAGTTG ATTGCACCTA TCGCTAGGAA AACGGTTTGC GTTTTGCG	800 828						
	a) TWDODWARTON TOD GUO TO NO.							
50	2) INFORMATION FOR SEQ ID NO: 99							
	(i)SEQUENCE CHARACTERISTICS: (A) LENGTH: 828 bases							
	(B) TYPE: Nucleic acid							
55	(C) STRANDEDNESS: Double (D) TOPOLOGY: Linear							
	(ii) MOLECULE TYPE: Genomic DNA							
	(vi)ORIGINAL SOURCE:							
60	(A) ORGANISM: Klebsiella ornithinolytica							

(B) STRAIN: ATCC 31898

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 99

5	GGCGCGATCC	TGGTTGTTGC	TGCGACTGAC	GGCCCGATGC	CGCAGACTCG	50
	TGAGCACATC	CTGCTGGGTC	GTCAGGTAGG	CGTTCCGTAC	ATCATCGTGT	100
	TCCTGAACAA	ATGCGACATG	GTTGATGACG	AAGAGCTGCT	GGAGCTGGTT	150
	GAAATGGAAG	TCCGTGAGCT	GCTGTCTCAG	TACGACTTCC	CGGGCGACGA	200
	CACGCCGATC	GTTCGTGGTT	CCGCTCTGAA	AGCGCTGGAA	GGCGAAGCAG	250
10	ACTGGGAAGC	GAAAATCATC	GAACTGGCTG	GCTACCTGGA	TTCTTACATC	300
	CCGGAACCAG	AGCGTGCGAT	TGACAAGCCG	TTCCTGCTGC	CGATCGAAGA	350
	CGTATTCTCC	ATCTCCGGTC	GTGGTACCGT	TGTTACCGGT	CGTGTAGAGC	400
	GCGGTATCAT	CAAAGTGGGC	GAAGAAGTTG	AAATCGTTGG	TATCAAAGAG	450
	ACTGCGAAGT	CTACCTGTAC	TGGCGTTGAA	ATGTTCCGCA	AACTGCTGGA	500
15	CGAAGGCCGT	GCTGGTGAGA	ACGTTGGTGT	TCTGCTGCGT	GGTATCAAAC	550
	GTGAAGAAAT	CGAACGTGGT	CAGGTACTGG	CTAAGCCGGG	CTCTATCAAG	600
	CCGCACACCA	AGTTCGAATC	TGAAGTGTAC	ATTCTGTCCA	AAGACGAAGG	650
	CGGCCGTCAT	ACTCCGTTCT	TCAAAGGCTA	CCGTCCGCAG	TTCTACTTCC	700
	GTACAACTGA	CGTGACTGGC	ACCATCGAAC	TGCCGGAAGG	CGTAGAGATG	750
20	GTCATGCCGG	GCGACAACAT	CAAAATGGTT	GTTACCCTGA	TTCACCCGAT	800
	CGCGATGGAC	GATGGTCTGC	GTTTCGCA			828

25 2) INFORMATION FOR SEO ID NO: 100

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 749 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: Genomic DNA
- 35 (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Klebsiella oxytoca
 - (B) STRAIN: ATCC 33496
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 100

40 GATGCCGCAG ACTCGTGAGC ACATCCTGCT GGGTCGTCAG GTAGGCGTTC 50 CGTACATCAT CGTGTTCCTG AACAAGTGCG ACATGGTTGA TGACGAAGAG 100 CTGCTGGAAC TGGTTGAAAT GGAAGTTCGT GAACTTCTGT CTCAGTACGA TTTCCCGGGC GACGACACTC CGATCGTTCG TGGTTCTGCT CTGAAAGCGC 150 200 TGGAAGGCGA CGCWGAGTGG GAAKCKAAAA TCATCGAACT GGCTGGCTTC 45 250 CTGGATTCTT ACATTCCGGA ACCAGAGCGT GCGATTGACA AGCCGTTCCT 300 GCTGCCGATC GAAGACGTAT TCTCCATCTC CGGTCGTGGT ACCGTTGTTA CCGGTCGTGT AGAGCGCGGT ATCATCAAAG TTGGCGAAGA AGTTGAAATY 350 400 GTTGGTATYA AAGACACTGC TAAGTCTACC TGTACTGGCG TTGAAATGTT 450 50 CCGCAAACTG CTGGACGAAG GCCGYGCTGG TGAGAACGTT GGTGTTCTGC 500 TGCGTGGTAT CAAACGTGAA GAAATCGAAC GTGGTCAGGT ACTGGCTAAG 550 CCGGGCTCTA TCAAGCCGCA CACCAAGTTC GAATCTGAAG TTTATATCCT 600 GTCCAAAGAC GAAGGCGGCC GTCACACTCC GTTCTTCAAA GGCTACCGTC 650 CGCAGTTCTA CTTCCGTACA ACTGACGTGA CTGGCACCAT CGAACTGCCG 700 55 GAAGGCGTAG AGATGGTTAT GCCGGGCGAC AACATCAAAA TGGTTGTTA 749

2) INFORMATION FOR SEQ ID NO: 101

60

```
· (i) SEQUENCE CHARACTERISTICS:
                     LENGTH: 830 bases
                (A)
                (B)
                       TYPE: Nucleic acid
                       STRANDEDNESS: Double
                (C)
    5
                       TOPOLOGY: Linear
          (ii) MOLECULE TYPE: Genomic DNA
          (vi) ORIGINAL SOURCE:
  10
                (A) ORGANISM: Klebsiella planticola
                       STRAIN: ATCC 33531
           (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 101
      TGGCGCGATC CTGGTTGTTG CTGCGACTGA CGGCCCGATG CCGCAGACTC
                                                                                   50
        GTGAGCACAT CCTGCTGGGT CGTCAGGTAG GCGTTCCGTA CATCATCGTG
                                                                                  100
        TTCCTGAACA AATGCGACAT GGTTGATGAC GAAGAGCTGC TGGAACTGGT
                                                                                  150
        TGAAATGGAA GTTCGTGAGC TGCTGTCTCA GTACGACTTC CCGGGCGACG
                                                                                  200
        ACACTCCGAT CGTTCGTGGT TCCGCTCTGA AAGCGCTGGA AGGCGAAGCA
                                                                                  250
       GACTGGGAAG CGAAAATCAT CGAACTGGCT GGCTACCTGG ATTCTTACAT CCCGGAACCA GAGCGTGCGA TTGACAAGCC GTTCCTGCTG CCTATCGAAG ACGTATTCTC CATCTCCGGT CGTGGTACCG TTGTTACCGG TCGTGTAGAG
                                                                                  300
                                                                                  350
                                                                                  400
        CGCGGTATCA TCAAAGTGGG CGAAGAAGTT GAAATCGTTG GTATCAAAGA
                                                                                  450
        TACTGCTAAR TCWACCTGTA CYGGCGTTGA AATGTTCCGC AAACTGCTGG
                                                                                  500
       ACGAAGGCCG TGCTGGTGAG AACGTTGGTG TTCTGCTGCG TGGTATCAAA
       ACGAAGGCCG TGCTGGTGAG AACGTTGGTG TTCTGCTGCG TGGTATCAAA
CGTGAAGAAA TCGAACGTGG TCAGGTACTG GCTAAGCCGG GCTCTATCAA
GCCGCACACC AAGTTCGAAT CTGAAGTGTA CATTCTGTCC AAAGACGAAG
GCGGCCGTCA TACTCCGTTC TTCAAAGGCT ACCGTCCGCA GTTCTACTTC
CGTACAACTG ACGTGACTGG CACCATCGAA CTGCCGGAAG GCGTAGAGAT
GGTAATGCCG GGCGACAACA TCAAAATGGT TGTTACCCTG ATTCACCCRA
                                                                                  550
                                                                                  600
                                                                                  650
                                                                                  700
                                                                                  750
  30
                                                                                  800
        TCGCGATGGA CGACGGTCTG CGTTTCGCAA
                                                                                  830
       2) INFORMATION FOR SEQ ID NO: 102
  35
            (i) SEQUENCE CHARACTERISTICS:
               (A) LENGTH: 806 bases
                      TYPE: Nucleic acid
               (B)
  40
               (C)
                      STRANDEDNESS: Double
                      TOPOLOGY: Linear
               (D)
        (ii) MOLECULE TYPE: Genomic DNA
45
       (vi)ORIGINAL SOURCE:
             (A) ORGANISM: Klebsiella pneumoniae subsp. ozaenae
             (B)
                    STRAIN: ATCC 11296
        (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 102
50
     CCTGGTTGTT GCTGCGACTG ACGGCCCGAT GCCGCAGACT CGTGAGCACA
                                                                                 50
     TCCTGCTGGG TCGTCAGGTA GGCGTTCCGT ACATCATCGT GTTCCTGAAC
                                                                                100
     AAATGCGACA TGGTTGATGA CGAAGAGCTG CTGGAACTGG TTGAGATGGA
                                                                               150
     AGTTCGTGAA CTGCTGTCTC AGTACGATTT CCCGGGCGAC GACACCCCGA
                                                                               200
     TCGTTCGTGG TTCTGCTCTG AAAGCGCTGG AAGGCGACGC AGAGTGGGAA
GCGAAAATCA TCGAACTGGC TGGCCACCTG GATACCTATA TCCCGGAACC
55
                                                                               250
                                                                               300
     AGAGCGTGCG ATTGACAAGC CGTTCCTGCT GCCGATCGAA GACGTATTCT
                                                                               350
     CCATCTCCGG TCGTGGTACC GTTGTTACCG GTCGTGTAGA GCGCGGTATC
                                                                               400
     ATCAAAGTAG GTGAAGAAGT TGAAATCGTT GGTATCAAAG AAACCGCGAA
                                                                               450
60 AACCACCTGT ACTGGCGTTG AAATGTTCCG CAAACTGCTG GACGAAGGCC
                                                                               500
```

5	ATCGAACGTG GTCAGGTACT GGCTAAGCCG GGCACCATCA ACCCGCACAC 6 CAAGTTCGAA TCTGAAGTGT ACATCCTGTC CAAAGACGAA GGCGGCCGTC 6 ATACTCCGTT CTTCAAAGGC TACCGTCCGC AGTTCTACTT CCGTACTACT 7 GACGTGACTG GCACCATCGA ACTGCCGGAA GGCGTAGAGA TGGTAATGCC 7 GGGCGACAAC ATCAAAATGG TTGTTACCCT GATCCACCCG ATCGCGATGG 8	50 00 50 00 50 00
10	2) INFORMATION FOR SEQ ID NO: 103	
15	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 743 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear 	
20	(ii) MOLECULE TYPE: Genomic DNA	
	(vi)ORIGINAL SOURCE:(A) ORGANISM: Klebsiella pneumoniae subsp. pneumoniae(B) STRAIN: ATCC 13883	9
25	(x1) SEQUENCE DESCRIPTION: SEQ ID NO: 103	
30 35	TCATCGTGTT CCTGAACAAA TGCGACATGG TTGATGACGA AGAGCTGCTG GAACTGGTTG AGATGGAAGT TCGTGAACTG CTGTCTCAGT ACGATTTCCC GGGCGACGAC ACTCCGATCG TTCGTGGTTC TGCTCTGAAA GCGCTGGAAG GCGACGCAGA GTGGGAAGCG AAAATCATCG AACTGGCTGG CCACCTGGAT ACCTATATCC CGGAACCAGA GCGTGCGATT GACAAGCCGT TCCTGCTGCC GATCGAAGAC GTATTCTCCA TCTCCGGTCG TGGTACCGGTT GTTACCGGTC GTGTAGAGCG CGGTATCATC AAAGTAGGTG AAGAAGTTGA AATCGTTGGT ATCAAAGAAA CCGCGAAAAC CACCTGTACT GGCGTTGAAA TGTTCCGCAA ACTGCTGGAC GAAGGCCGTG CTGGTGAGAA CGTAGGTGTT CTGCTGCGTG GTATCAAACG TGAAGAAATC GAACGTGGTC AGGTACTGGC TAAGCCGGGC ACCATCAACC CGCACACCAA GTTCGAATCT GAAGTGTACA TCCTGTCCAA AGACGAAGGC GGCCGTCACA CTCCGTTCTT CAAAGGCTAC CGTCCGCAGT TCTACTTCCG TACTACTGAC GTGACTGGCA CCATCGAACT GCCGGAAGGC TCTACTTCCG TACTACTGAC GTGACTGGCA CCATCGAACT GCCGGAAGGC	50 00 50 50 00 50 00 00 00 00 00 00 00 0
45	2) INFORMATION FOR SEQ ID NO: 104	
50	(i)SEQUENCE CHARACTERISTICS: (A) LENGTH: 819 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
55	 (vi)ORIGINAL SOURCE: (A) ORGANISM: Klebsiella pneumoniae subsp. rhinoscleromatis (B) STRAIN: ATCC 13884 	
60	(xi)SEQUENCE DESCRIPTION: SEQ ID NO: 104 63	

	TGGTTGTTGC	TGCGACTGAC	GGCCCGATGC	CGCAGACTCG	TGAGCACATC	50
	CTGCTGGGTC	GTCAGGTAGG	CGTTCCGTAC	ATCATCGTGT	TCCTGAACAA	100
	ATGCGACATG	GTTGATGACG	AAGAGCTGCT	GGAACTGGTT	GAGATGGAAG	150
5	TTCGTGAACT	RCTGTCTCAG	TACGATTTCC	CGGGCGACGA	CACCCCGATC	200
	GTTCGTGGTT	CTGCTCTGAA	AGCGCTGGAA	GGCGACGCAG	AGTGGGAAGC	250
	GAAAATCATC	GAACTGGCTG	GCCACCTGGA	TACCTATATC	CCGGAACCAG	300
	AGCGTGCGAT	TGACAAGCCG	TTCCTGCTGC	CGATCGAAGA	CGTATTCTCC	350
	ATCTCCGGTC	GTGGTACCGT	TGTTACCGGT	CGTGTAGAGC	GCGGTATCAT	400
10	CAAAGTAGGT	GAAGAAGTTG	AAATCGTTGG	TATCAAAGAA	ACCGCGAAAA	450
	CCACCTGTAC	TGGCGTTGAA	ATGTTCCGCA	AACTGCTGGA	CGAAGGCCGT	500
		ACGTAGGTGT	TCTGCTGCGT	GGTATCAAAC	GTGAAGAAAT	550
	CGAACGTGGT	CAGGTACTGG	CTAAGCCGGG	CACCATCAAC	CCGCACACCA	600
	AGTTCGAATC	TGAAGTGTAC	ATCCTGTCCA	AAGACGAAGG	CGGCCGTCAC	650
15	ACTCCGTTCT	TCAAAGGCTA	CCGTCCGCAG	TTCTACTTCC	GTACTACTGA	700
	CGTGACTGGC	ACCATCGAAC	TGCCGGAAGG	CGTAGAGATG	GTAATGCCGG	750
	GCGACAACAT	CAAAATGGTT	GTTACCCTGA	TCCATCCGAT	CGCGATGGAC	800
	GACGGTCTGC	GTTTCGCAA				819
20						
	2) INFORMATI	ON FOR SEQ	ID NO: 105			

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 832 bases

- (B)
- TYPE: Nucleic acid STRANDEDNESS: Double (C)
- (D) TOPOLOGY: Linear
- 30 (ii) MOLECULE TYPE: Genomic DNA
 - (vi)ORIGINAL SOURCE:

25

35

- (A) ORGANISM: Kluyvera ascorbata
- STRAIN: ATCC 33433

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 105

	CGGCGCGATC CTGGTTC	TTG CTGCGACT	SA TGGCCCTAT	G CCACAGACTC	50
	GTGAGCACAT CCTGCTC	GGT CGTCAGGT	AG GCGTTCCTT	A CATCATCGTG	100
40	TTCCTGAACA AATGYGA	CAT GGTTGATG	AC GAAGAGCTG	C TGGAACTGGT	150
	TGAAATGGAA GTTCGTC	BAAC TTCTGTCT	CA GTACGATTI	C CCAGGCGACG	200
	ATACTCCAAT CATCCGTG	T TCTGCTCTGA	AAGCGCTGGA	AGGCGATGCA	250
	GAGTGGGAAG CGAAAATC	AT CGAACTGGCT	GGCTTCCTGG	ATTCTTACAT	300
	CCCAGAACCA GAACGTGC	TA TCGATAAGCC	GTTCCTGCTG	CCAATCGAAG	350
45	ACGTATTCTC CATCTCCG	T CGTGGTACCG	TTGTTACCGG	TCGTGTAGAG	400
	CGCGGTATCA TCAAAGTT	GG YGAAGAAGTT	GAAATCGTTG	GTATCAAAGA	450
	CACCGCTAAG TCTACCTG	PA CCGGCGTTGA	AATGTTCCGC	AAACTGCTGG	500
	ACGAAGGCCG TGCTGGTG	AG AACGTTGGTG	TTCTGCTGCG	TGGTATCAAA	550
	CGTGAAGAAA TCGAACGT	G TCAGGTTCTG	GCTAAGCCAG	GCTCTATCAA	600
50	GCCGCACACC AAGTTCGA	AT CTGAAGTGTA	CATTCTGTCC	AAAGACGAAG	650
	GCGGCCGTCA TACTCCGT	C TTCAAAGGCT	ACCGTCCACA	GTTCTACTTC	700
	CGTACTACTG ACGTGACC	G TACCATCGAA	CTGCCAGAAG	GCGTTGAGAT	750
	GGTAATGCCA GGCGACAA	CA TCAAGATGGT	TGTGACTCTG	ATCCACCCAA	800
	TCGCGATGGA CGACGGCC	rg cgtttcgcaa	CC		832
55					

- 2) INFORMATION FOR SEQ ID NO: 106
- 60 (i) SEQUENCE CHARACTERISTICS:

```
LENGTH: 830 bases
               (A)
                      TYPE: Nucleic acid
                (B)
               (C)
                      STRANDEDNESS: Double
               (D)
                      TOPOLOGY: Linear
   5
          (ii) MOLECULE TYPE: Genomic DNA
          (vi)ORIGINAL SOURCE:
               (A)
                      ORGANISM: Kluyvera cryocrescens
  10
               (B)
                      STRAIN: ATCC 33435
          (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 106
       TGGCGCGATC CTGGTTGTTG CTGCAACTGA TGGCCCTATG CCACAGACTC
                                                                                  50
       GTGAGCACAT CCTGCTGGGT CGTCAGGTAG GCGTTCCTTA CATCATCGTG
  15
                                                                                 100
       TTCCTGAACA AATGTGACAT GGTTGATGAC GAAGAGCTGC TGGAACTGGT
                                                                                 150
       TGAAATGGAA GTTCGTGAAC TTCTGTCTCA GTACGATTTC CCAGGCGACG
                                                                                 200
       ACACTCCTAT CGTTCGTGGT TCCGCGCTGA AAGCGCTGGA AGGCGACGCT
                                                                                 250
       GAGTGGGAAG CAAAAATCAT CGAACTGGCT GGCTTCCTGG ATTCTTACAT
                                                                                 300
       CCCAGAACCA GAGCGTGCGA TTGATAAGCC GTTCCTGCTG CCAATCGAAG
  20
                                                                                 350
       ACGTATTCTC CATCTCCGGT CGTGGTACCG TTGTTACCGG TCGTGTAGAG
                                                                                 400
       CGCGGTATCA TCAAAGTTGG TGAAGAAGTT GAAATCGTGG GTATCAAAGA
                                                                                 450
       CACTGCTAAG TCTACCTGTA CCGGCGTTGA AATGTTCCGC AAACTGCTGG
                                                                                 500
       ACGAAGGCCG TGCTGGTGAG AACGTTGGTG TTCTGCTGCG TGGTATCAAA
       ACGAAGGCCG TGCTGGTGAG AACGTTGGTG TTCTGCTGCG TGGTATCAAA
CGTGAAGAAA TCGAACGTGG TCAGGTTCTG GCTAAGCCAG GCTCCATCAA
GCCGCACACC AAATTCGAAT CTGAAGTTTA CATCCTGTCC AAAGACGAAG
GCGGCCGTCA TACTCCGTTC TTCAAAGGCT ACCGTCCACA GTTCTACTTC
CGTACTACTG ACGTGACTGG TACCATCGAA CTGCCAGAAG GCGTAGAGAT
GGTAATGCCG GGCGACAACA TCAAAATGGT TGTTACCCTG ATCCACCCAA
                                                                                 550
  25
                                                                                 600
                                                                                 650
                                                                                 700
                                                                                 750
                                                                                 800
  30
       TCGCGATGGA CGACGGTCTG CGTTTCGCAA
                                                                                 830
       2) INFORMATION FOR SEQ ID NO: 107
  35
           (i) SEQUENCE CHARACTERISTICS:
               (A)
                      LENGTH: 826 bases
               (B)
                      TYPE: Nucleic acid
               (C)
                      STRANDEDNESS: Double
  40
                      TOPOLOGY: Linear
               (D)
        (ii) MOLECULE TYPE: Genomic DNA
        (vi)ORIGINAL SOURCE:
45
             (A) ORGANISM: Kluyvera georgiana
             (B)
                    STRAIN: ATCC 51603
        (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 107
     CGCGATCCTG GTTGTTGCTG CGACTGACGG CCCGATGCCG CAGACTCGTG
50
                                                                                50
     AGCACATCCT GCTGGGTCGT CAGGTTGGCG TTCCGTACAT CATCGTGTTC
                                                                               100
     CTGAACAAAT GCGACATGGT TGATGACGAA GAGCTGCTGG AACTGGTTGA
AATGGAAGTT CGTGAACTTC TGTCTCAGTA CGACTTCCCG GGCGACGACA
CGCCGATCGT TCGTGGTTCT GCTCTGAAAG CGCTGGAAGG CGACGCTGAG
                                                                              150
                                                                              200
                                                                              250
55
     TGGGAAGCGA AAATCATCGA ACTGGCGGGC TTCCTGGATT CTTACATCCC
                                                                              300
     GGAACCAGAG CGTGCGATTG ACAAGCCGTT CCTGCTGCCG ATCGAAGACG
                                                                              350
     TATTCTCCAT CTCCGGTCGT GGTACCGTTG TTACCGGTCG TGTAGAACGC
                                                                              400
     GGTATCATCA AAGTTGGCGA AGAAGTTGAA ATCGTTGGTA TCAAAGACAC
                                                                              450
     CGCTAAGTCT ACCTGTACTG GCGTTGAAAT GTTCCGCAAA CTGCTGGACG
                                                                              500
     AAGGCCGTGC TGGTGAGAAC GTTGGTGTTC TGCTGCGTGG TATCAAACGT
                                                                              550
```

5	GAAGAAATCG AACGTGGTCA GGTACTGGCT AAGCCGGGTT CTATCAAGCC GCACACCAAG TTCGAATCTG AAGTGTACAT TCTGTCCAAA GACGAAGGCG GCCGTCATAC TCCGTTCTTC AAAGGCTACC GTCCGCAGTT CTACTTCCGT ACTACTGACG TGACTGGCAC CATCGAACTG CCGGAAGGCG TTGAGATGGT AATGCCGGGC GACAACATCA AAATGGTTGT TACCCTGATC CACCCGATCG CGAAGGACGA AGGTCTGCGT TTCGCA	600 650 700 750 800 826
10	2) INFORMATION FOR SEQ ID NO: 108	
15	(i)SEQUENCE CHARACTERISTICS: (A) LENGTH: 803 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
20	 (ii) MOLECULE TYPE: Genomic DNA (vi) ORIGINAL SOURCE: (A) ORGANISM: Lactobacillus casei subsp. casei (B) STRAIN: ATCC 393 	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 108	
30	GCTGCTGATG GCCCAATGCC ACAAACTCGT GAACATATCT TACTTTCACG TCAAGTTGGT GTTCCATACA TCGTTGTATT CATGAACAAA TGTGACATGG TTGACGATGA AGAATTACTA GAATTAGTTG AAATGGAAAT TCGTGATCTA TTAACTGAAT ATGAATTCCC TGGCGATGAC ATTCCTGTAA TCAAAGGTTC AGCTCTTAAA GCACTTCAAG GTGAAGCTGA CTGGGAAGCT AAAATTGACG AGTTAATGGA AGCTGTAGAT TCTTACATTC CAACTCCAGA ACGTGATACT GACAAACCATT TCATGATGCC AGTTGAACG TGGACAAGTT AAAGTTGGTG	50 100 150 200 250 300 350 400
35	ACGAAGTAGA AGTTATCGGT ATTGAAGAAG AGAGCAAAAA AGTAGTAGTA ACTGGAGTAG AAATGTTCCG TAAATYACTA GATTACGCTG AAGCTGGCGA CAACATTGGC GCACTTCTAC GTGGTGTTGC TCGTGAAGAT ATCCAACGTG GTCAAGTATT AGCTAAACCA GGTTCGATTA CTCCACACAC TAACTTCAAA GCTGAAACTT ATGTTTTAAC TAAAGAAGAA GGTGGACGTC ACACTCCATT	450 500 550 600 650
40	CTTCAACAAC TACCGCCCAC AATTCTATTT CCGTACTACT GACGTAACTG GTATTGTTAC ACTTCCAGAA GGTACTGAAA TGGTAATGCC TGGTGATAAC ATTGAGCTTG CAGTTGANCT AATTGCACCA ATCGCTATCG AAGACGGTAC FAA	700 750 800 803

45

50

55

2) INFORMATION FOR SEQ ID NO: 109

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 825 bases
- (B) TYPE: Nucleic acid
- (C) STRANDEDNESS: Double
- (D) TOPOLOGY: Linear

(ii) MOLECULE TYPE: Genomic DNA

(vi)ORIGINAL SOURCE:

- (A) ORGANISM: Lactococcus lactis subsp. lactis
- (B) STRAIN: ATCC 19435
- 60 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 109

5	ATATTCCTGT AATCGCTGGT TCAGCACTTG GTGCTTTGAA CGGTGAACCA CAATGGGTTG CTAAAGTTGA AGAATTGATG GACATCGTTG ATGAATACAT CCCAACTCCA GAACGCGACA CTGACAAACC ACTCCTTCTT CCAGTCGAAG	50 100 150 200 250 300 350
10	ACGTATTCTC TATCACTGGT CGTGGTACAG TTGCTTCAGG ACGTATCGAA CGTGGTACTG TTAAAGTTGG TGACGAAGTT GAAATCGTTG GTATCAAAGA AGAAACTAAA AAAGCTGTTG TTACTGGTAT CGAAATGTTC CGTAAAACAC TTACTGAAGG TCTTGCTGGT GATAACGTCG GTGCACTTCT CCGTGGTATC CAACGTGACG AAATCGAACG TGGTCAAGTT ATTGCTAAAC CAGGTTCAAT CACTCCACAC AAACTTTTCG AAGGTGAAGT TTACGTATTG AGCAAAGAAG	400 450 500 550 600
15	AAGCGGACG TCACACTCCA TTCTTCGACA ACTACCGTCC TCAATTCTAC TTCCACACAA CTGACGTTAC TGGTTCAGTT AAACTTCCAG AAGGAACTGA AATGGTAATG CCTGGTGACA ACGTGCATAT CGACGTTGAA TTGATCCACC CAGTTGCGAT CGAACAAGGT ACTAC	650 700 750 800 825
20		
	2) INFORMATION FOR SEQ ID NO: 110	
25	 (i)SEQUENCE CHARACTERISTICS: (A) LENGTH: 824 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear 	
30	(ii) MOLECULE TYPE: Genomic DNA	
	<pre>(vi)ORIGINAL SOURCE: (A) ORGANISM: Leclercia adecarboxylata</pre>	
35	(B) STRAIN: ATCC 23216	
	(xi)SEQUENCE DESCRIPTION: SEQ ID NO: 110	
40	GAGATGGAAG TTCGTGAACT YCTGTCCCAG TACGACTTCC CGGGCGACGA	50 100 150 200
45	CACCCCAATC GTTCGTGGTT CTGCGCTGAA AGCGCTGGAA GGCGAAGCAG AGTGGGAAGA GAAAATCATC GARCTGGCTG GCTACCTGGA TTCCTACATC CCAGAGCCAG AGCGTGCGAT TGACAAGCCG TTCCTGCTGC CTATCGAAGA CGTATTCTCC ATCTCCGGTC GTGGTACCGT TGTTACCGGT CGTGTAGAGC GCGGTATCAT CAARGTTGGC GAAGAAGTTG AAATCGTTGG TATCAAGGAC ACTGCTAAGT CTACCTGTAC CGGCGTTGAA ATGTTCCGCA AACTGCTGGA CGAAGGCCGT GCCGGTGAGA ACGTTGGTGT TCTGCTGCGT GGTATCAAAC	250 300 350 400 450 500
50	GTGAAGAAT CGAACGTGGT CAGGTTCTGG CTAAGCCAGG CTCYATCAAG CCGCACACCA AGTTCGAATC TGAAGTGTAC ATCCTGTCYA AAGACGAAGG CGGCCGTCAT ACTCCGTTCT TCAAAGGCTA CCGTCCACAG TTCTACTTCC GTACKACTGA CGTGACCGGT ACCATCGARC TGCCAGAAGG CGTTGAGATG GTAATGCCAG GCGACAACAT CAAAATGGTT GTTACCCTGA TCCACCCAAT CGCAATGGAC GATGGTCTGC GTTC	550 600 650 700 750 800
55	COCUMIDATOR GAIGOTOTO GITO	824

2) INFORMATION FOR SEQ ID NO: 111

60 (i) SEQUENCE CHARACTERISTICS:

```
LENGTH: 838 bases
             (A)
                  TYPE: Nucleic acid
             (B)
                  STRANDEDNESS: Double
             (C)
                  TOPOLOGY: Linear
             (D)
  5
        (ii) MOLECULE TYPE: Genomic DNA
        (vi)ORIGINAL SOURCE:
                  ORGANISM: Legionella micdadei
             (A)
 10
                  STRAIN: ATCC 33218
             (B)
        (xi) SEQUENCE DESCRIPTION: SEO ID NO: 111
      CGGAGCGATA TTAGTAGTAT CAGCAGCGGA TGGCCCAATG CCTCAAACGA
                                                                     50
 15
      GAGAGCACAT ACTYTTATCC CGSCAGGTAG GTGTTCCCTA TATAGTAGTG
                                                                    100
      TTCTTAAACA AAGCTGACAT GGTGGATGAT GCGGAGTTAT TAGAATTAGT
                                                                    150
      TGAAATGGAA GTACGCGAYT TGTTGAGCAG CTATGAATTT CCAGGAGATG
                                                                    200
      AGATCCCGAT TGTAGTTGGT TCAGCATTAA AAGCATTGGA AGGCGATACG AGTGATATAG GTGTACCAGC GATTGAGAAG TTAGTTGAGA CGATGGATTC
                                                                    250
                                                                    300
      TTATATACCT GAGCCGGTAA GAAACATCGA TAAAAGTTTC TTGTTACCGA
 20
                                                                    350
      TCGAAGACGT GTTCTCAATA TCTGGACGAG GAACAGTAGT AACAGGACGT
                                                                    400
      ATCGAAAGCG GGATCATCAA AGTTGGTGAG GAAGTCGAGA TTGTTGGTAT
                                                                    450
      ACGTGACACT CAAAAGACGA CATGCACAGG CGTTGAAATG TTCCGTAAAT
                                                                    500
      TACTTGACGA AGGTCGAGCT GGAGACAACG TTGGTATATT GCTACGTGGT
                                                                    550
 25
      ACGAAGCGGG ATGAAGTTGA ACGCGGACAA GTATTAGCTA AGCCGGGAAG
                                                                    600
      CATTAAACCG CATACTAAAT TTGAAGCTGA AGTGTATGTG TTGTCAAAAG
                                                                    650
      ATGAAGGTGG ACGTCATACC CCATTCTTTA ACGGATATCG GCCTCAATTT
                                                                    700
      TACTTCAGGA CCACAGACGT AACTGGTTCT TGTGATTTAC CTGARGGTAT
                                                                    750
      AGAAATGGTA ATGCCAGGTG ATAACGTCAA GCTGATTGTT AGCTTACACT
                                                                    800
 30
      CACCGATTGC TATGGACGAA GGTTTGCGTT TTGCAATC
                                                                    838
      2) INFORMATION FOR SEQ ID NO: 112
 35
         (i) SEQUENCE CHARACTERISTICS:
             (A)
                  LENGTH: 838 bases
             (B)
                  TYPE: Nucleic acid
             (C)
                  STRANDEDNESS: Double
 40
            (D)
                  TOPOLOGY: Linear
       (ii) MOLECULE TYPE: Genomic DNA
       (vi)ORIGINAL SOURCE:
45
           (A)
               ORGANISM: Legionella pneumophila subsp. pneumophila
                 STRAIN: ATCC 33152
       (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 112
50
    CGGAGCGATA CTGGTTGTAT CAGCAGCTGA TGGTCCTATG CCACAAACGA
                                                                   50
    GGGAACACAT TCTATTGTCT CGCCAGGTAG GTGTTCCATA TATTGTTGTG
                                                                  100
    TTCATGAACA AAGCGGATAT GGTTGATGAC CCTGAGTTAT TAGAGTTAGT
                                                                  150
    GGAAATGGAA GTGCGAGATT TATTAAGCAG TTACGATTTC CCAGGGGATG
                                                                  200
    ACATACCTAT TGTTGTTGGT TCAGCTTTGA AAGCATTGGA AGGTGAAGAC
                                                                  250
55
    AGTGATATAG GCGTTAAGGC TATTGAGAAA TTGGTTGAAA CAATGGATTC
                                                                  300
    ATACATTCCT GAGCCAGTTA GAAACATAGA CAAGCCATTT TTGTTGCCGA
                                                                  350
    TTGAAGACGT ATTTTCAATT TCTGGACGCG GAACAGTGGT AACTGGTCGT
                                                                  400
    GTAGAGAGTG GAATTGTTAA AGTTGGTGAG GAAGTTGAAA TTGTTGGAAT
                                                                  450
    AAGAGACACC CAAAAGACGA CTTGTACGGG TGTTGAGATG TTCCGTAAAT
                                                                  500
60
    TACTTGATGA AGGTCGAGCT GGTGATAACG TTGGTGTGTT ATTACGAGGT
                                                                  550
```

5	ACGAAGCGAG ATGAAGTGGA GCGTGGACAG GTATTGGCGA AGCCAGGAAC CATCAAGCCA CACACCAAGT TTGAAGCAGA AGTGTATGTA TTATCCAAGG AAGAAGGCGG ACGTCACACT CCATTCTTTA ATGGATACCG TCCACAATTC TATTTCAGAA CCACTGACGT GACAGGTACT TGTGACTTGC CATCAGGAGT TGAAATGGTA ATGCCTGGAG ATAATGTGCA ATTAGTTGTT AGCTTGCATG CTCCGATTGC GATGGATGAA GGTTTAAGAT TCGCAATT	600 650 700 750 800 838
10	2) INFORMATION FOR SEQ ID NO: 113	
15	(i)SEQUENCE CHARACTERISTICS: (A) LENGTH: 828 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
20	<pre>(vi)ORIGINAL SOURCE: (A) ORGANISM: Leminorella grimontii (B) STRAIN: ATCC 33999</pre>	
25		
30	GTGCAATCCT GGTAGTAGCA GCGACTGACG GCCCGATGCC TCAGACTCGC GAGCACATCC TGCTGGGTCG TCAGGTAGGC GTTCCGTACA TCATCGTATT CCTGAACAAG TGCGATATGG TTGATGACGA AGAGCTGCTG GAGCTGGTTG ARATGGAAGT TCGCGGAACTG CTGTCTCAGT ACGACTTCCC GGGCGACGAC	50 100 150 200
30	ACTCCGGTAG TCCGCGGTTC AGCGCTGAAA GCGCTGGAAG GCGAAGCCGA GTGGGAARCG AAAATCATCG AGCTGGCAGG CCMTCTGGAT ACTTATATCC CAGAACCTGA GCGTGCGATT GACAAGCCGT TCCTGCTGCC KATCGAAGAC GTATTCTCTA TCTCCGGCCG TGGTACCGTT GTTACCGGTC GTGTAGAGCG CGGCATCATC AAAGTCGGTG AAGAAGTGGA AATCGTCGGT ATCAAAGATA	250 300 350 400
35	CCACCAAGAC CACCTGTACC GGCGTTGAAA TGTTCCGTAA GCTGCTGGAC GAAGGCCGTG CGGGCGAGAA CGTGGGCGTT CTGCTGCGCG GTACCAAGCG TGACGAAATC GAACGTGGTC AAGTTCTGGC CAAGCCGGGC ACCATCACTC CTCACACCCA GTTCGTGTCA GAAGTGTATA TCCTGAGCAA GGATGAAGGC	450 500 550 600 650
40	GGCCGTCATA CTCCGTTCTT CAAAGGCTAC CGTCCTCAGT TCTACTTCCG	700 750 800
	GCAAIGGACG AAGGICIGCG CTICGCAA	828
45	2) INFORMATION FOR SEQ ID NO: 114	
50	(i)SEQUENCE CHARACTERISTICS: (A) LENGTH: 826 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
55	<pre>(vi)ORIGINAL SOURCE: (A) ORGANISM: Leminorella richardii (B) STRAIN: ATCC 33998</pre>	
60	(xi)SEQUENCE DESCRIPTION: SEQ ID NO: 114	٠

	•					
	GCTATCCTGG	TTGTTGCTGC	GACTGACGGC	CCAATGCCTC	AGACTCGTGA	50
	GCACATCCTG	CTGGGTCGCC	AGGTAGGCGT		ATCGTGTTCC	100
	TGAACAAGTG	CGACATGGTT	GATGACGAAG	AGCTGCTGGA	ACTGGTAGAA	1,50
5	ATGGAAGTTC	GTGAACTTCT	GTCTCAATAC	GACTTCCCGG	GCGACGATAC	200
	GCCGGTTGTT	CGCGGTTCAG	CGCTGAAAGC	GCTGGAAGGT	GACGCYGAGT	250
	GGGAARCGAA	AATCATTGAA	CTGGCGGAAT	CCTTRGATAC	TTAYATTCCA	300
	GAGCCAGAGC	GTGCGATTGA	CAAGCCGTTC	CTGCTGCCTA	TCGAAGACGT	350
	TTTCTCTATC	TCTGGCCGTG	GTACTGTAGT	CACCGGTCGT	GTAGAGCGCG	400
10	GCATCATCAA	AGTTGGTGAA	GAAGTGGAAA	TCGTGGGAAT	CAAAGACACC	450
	ACCAAGACCA	CCTGTACTGG	CGTTGAAATG	TTCCGTAAGC	TGCTGGACGA	500
	AGGCCGTGCA	GGTGAGAACG	TTGGTGTTCT	GCTGCGYGGT	ACTAAGCGTG	550
	ACGAAATCGA	ACGTGGTCAG	GTACTGGCTA	AGCCAGGCAC	CATCACTCCT	600
	CACACAGAAT	TCGTGTCAGA	AGTGTATATC	CTGAGCAAGG	ATGAAGGCGG	650
15	YCGTCATACT	CCGTTCTTCA	AAGGCTACCG	TCCTCAGTTC	TACTTCCGTA	700
	CGACTGACGT	GACCGGCACC	ATCGAACTGC	CAGAAGGCGT	AGAGATGGTA	750
	ATGCCAGGCG	ATAACATCCA	GATGGTAGTT	ACGCTGATTG	CCCCAATCGC	800
	GATGGACGAA	GGTCTGCGCT	TCGCAA			826
20					•	
	• >					
	2) INFORMAT	ON FOR SEQ	ID NO: 115			

- (i) SEQUENCE CHARACTERISTICS:
- 25 (A) LENGTH: 843 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
- 30 (ii) MOLECULE TYPE: Genomic DNA
 - (vi)ORIGINAL SOURCE:
 - (A) ORGANISM: Leptospira interrogans
 - (B) STRAIN: ATCC 23581

35

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 115

	TGCGGCGATT CTTG	TAGTAT CCGCAACT	GA CGGACCTATO	G CCACAAACAA	50
	AAGAACATAT CCTT	CTTGCT CGTCAGGT			100
40	· · · · · · · · · · · · · · · · ·	CAGATAT GCTTGCTG			
10					150
	CGAAATGGTT GAGA	ATGGACG TTCGTGAA	CT TCTCAATAA	G TATAGCTTCC	200
	CAGGAGATAC AACTC	CTATC GTTCATGGT	CTGCGGTAAA	AGCACTTGAG	250
	GGCGATGAAT CTGAA	ATTGG GATGCCTGC	ATTCTCAAAT	TGATGGAAGC	300
	TCTGGATACT TTCGT	TCCAA ATCCAAAAC(G TGTAATCGAC	AAACCTTTCC	350
45	TTATGCCAGT AGAAG	ACGTT TTCTCGATC	A CTGGTCGTGG	AACTGTTGCA	400
	ACTGGAAGAG TGGAA	CAAGG TGTTTTGAA	A GTGAACGACG	AAGTTGAAAT	450
	TATCGGTATC CGCCC	ААСАА САААААСТС	TGTTACCGGT	ATCGAAATGT	500
	TCAGAAAACT TCTCG	ATCAA GCGGAAGCT	G GCGACAACAT	CGGCGCTCTT	550
	CTTCGTGGAA CTAAA	AAAGA AGAAATCGA	A AGAGGGCAAG	TTCTTGCGAA	600
50	GCCAGGTTCT ATCAC	TCCTC ACAAAAAGT:	TGCCGCTGAG	GTGTATGTAT	650
	TAACTAAGGA TGAAG	GCGGA CGTCATACT(CCTTTATCAA	TAACTACCGT	700
	CCTCAGTTTT ACTTT	AGAAC AACTGACGT	ACCGGAGTTT	GTAACCTTCC	750
	TAATGGTGTC GAAAT	GGTTA TGCCTGGTG	TAACGTTTCT	TTGACGGTTG	800
	AATTGATTAG CCCGA	TCGCA ATGGACAAG	GTCTTAAGTT	CGC	843
55					

2) INFORMATION FOR SEQ ID NO: 116

60 (i) SEQUENCE CHARACTERISTICS:

```
(A)
                     LENGTH: 832 bases
                      TYPE: Nucleic acid
               (B)
               (C)
                     STRANDEDNESS: Double
               (D)
                      TOPOLOGY: Linear
   5
          (ii) MOLECULE TYPE: Genomic DNA
          (vi)ORIGINAL SOURCE:
               (A)
                     ORGANISM: Megamonas hypermegale
  10
               (B)
                      STRAIN: ATCC 25560
        (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 116
       CGGTGCTATC CTCGTTGTTA GTGCTGCTGA TGGTCCTATG CCTCAGACTC
                                                                                50
       GTGAACACAT CCTTCTCGCT CGTCAGGTTG GTGTTCCAGC TATCGTTGTA
                                                                              100
       TTCCTCAACA AAGCTGACCA GGTTGATGAC CCTGAACTTC TCGAACTTGT
                                                                              150
       TGAAATGGAA GTTCGTGAAC TTCTTTCCAG CTATGACTTC CCAGGCGATG
                                                                              200
       ACGTTCCAGT AATCACTGGT TCCGCTCTTC AGGCTCTCGA AGGCGACGAA
                                                                              250
       GAAGCTAAAA AGAAAATTCT TGAATTAATG GATGCTGTTG ATGATTACAT
                                                                              300
       CCCAACTCCA ACACGTGACA CTGATAAACC TTTCTTAATG CCAGTTGAAG
                                                                              350
       ACGTATTCAC AATTACTGGT CGTGGTACTG TTGCTACAGG CCGTGTTGAA
                                                                              400
       CGTGGCGAAC TTAAACTTGG TGACAGCGTT GAAATCGTTG GTCTTTCCGA
TGAAAAGAAA TCCACTACTG TAACTGGTAT CGAAATGTTC CGCAAAATGC
                                                                              450
                                                                              500
       TTGATAGCGC TGTTGCTGGT GATAACATCG GTGCACTTCT TCGTGGTATT
                                                                           550
       GACCGTAAAG AAATCGAACG TGGTCAAGTT CTTGCTAAAC CTGGCACAAT
TCATCCACAC AAAAAATTCA AAGCTCAGGT TTACGTATTA ACTAAAGAAG
AAGGTGGACG TCATACTCCA TTCTTCTCCA ACTATCGTCC ACAGTTCTAT
TTCCGTACTA CTGACGTTAC TGGTGTTGTA ACTCTCCAG AAGGTACTGA
                                                                              600
                                                                              650
                                                                              700
                                                                              750
       AATGGTTATG CCTGGCGATA ACATTGAAAT GAGCATCGAA CTCATCACTC
                                                                              800
  30
       CAATCGCTAT TGAAAAAGGT CTTCGCTTCG CT
                                                                              832
       2) INFORMATION FOR SEQ ID NO: 117
  35
           (i) SEQUENCE CHARACTERISTICS:
              (A)
                     LENGTH: 820 bases
                     TYPE: Nucleic acid
              (B)
                     STRANDEDNESS: Double
              (C)
                     TOPOLOGY: Linear
  40
              (D)
        (ii) MOLECULE TYPE: Genomic DNA
        (vi)ORIGINAL SOURCE:
45
            (A) ORGANISM: Mitsuokella multacida
            (B)
                   STRAIN: ATCC 27723
        (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 117
     TGGTGCTATC CTCGTCGTTT CCGCTGCTGA TGGCCCGATG CCGCAGACGC
50
                                                                             50
     GTGAGCACAT CCTGCTCGCT CGCCAGGTCG GTGTTCCGGC AATCGTTGTC
                                                                            100
     TTCCTCAACA AGGTTGACCA GGTTGACGAT CCGGAGCTCC TCGAGCTCGT
                                                                            150
    CGAGATGGAA GTTCGCGAGC TGCTCTCCAG CTACGACTCC TCGAGCTCGT
ACATCCCTGT AATCGCTGGT TCCGCTCTGA AGGCCCTCGA AGGCGACGAA
GAGCAGAAGA AGAACATCCT CAAGCTCATG GAAGCTGTCG ATGAGTACAT
                                                                            200
                                                                            250
55
                                                                            300
     CCCGACGCCG GTCCGCGACA ACGCTAAGCC GTTCCTGATG CCGGTCGAGG
                                                                            350
     ATGTCTTCAC GATCACGGGC CGTGGTACGG TTGCAACGGG CCGCGTTGAG
                                                                            400
     CGTGGTGAGC TCAAGATGAA CGATACGGTT GAGATCGTTG GTCTGCAGGA
                                                                           450
     CGAGCCGCGT CAGACGGTTG TCACGGGCAT CGAGATGTTC CGCAAGATGC
                                                                            500
60
    TTGATTTCGC TGAGGCTGGC GATAACATCG GTGCTCTGCT CCGTGGTATC
                                                                           550
```

5	GACCGCAAGG AGATCGAGCG TGGCCAGG TCATCCGCAC ACGAAGTTCA AGGCTCAG AAGGCGGCCG TCATACGCCG TTCTTCAG TTCCGCACGA CGGACGTAAC TGGCGTAG GATGGTTATG CCTGGCGATA ACGTCGAG CGATCGCTAT CGAGAAGGGC	GGT CTATGTCCTG ACGAAAGAAG CGA ACTATCGCCC GCAGTTCTAC 70 GTC AAACTGCCGG AAGGCACGGA 75 GAT GGAAGTTGAG CTCATCACCC 80	00 50 50 50 20
10	0 2) INFORMATION FOR SEQ ID NO: 1	118	
15	(i) SEQUENCE CHARACTERISTICS (A) LENGTH: 831 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Doub (D) TOPOLOGY: Linear		
	(ii) MOLECULE TYPE: Genomic I	NA	
20	(,	us curtisii subsp. holmesii	
25	(xi) SEQUENCE DESCRIPTION: SE	Q ID NO: 118	
25	CGGCGCTATC CTCGTGGTGG CTGCTACT	GA CGGTCCGATG GCTCAGACCA F	0
	AGGAACACAT CCTGTTGGCT AAGCAGG	TG GCGTGCCCTC CATCCTGGTC 10	
	GCTCTGAACA AGTGCGATTC TTCCGATG	TG GACGAAGACA TGCTCGAAAT 15	0
	CGTCGAGGAC GAAATCCGCG ATGACCTG	GA GAAGCAGGGC TTCGATCGTG 20	
30		GA AGGCCCTGGA AGGCGACCCC 25	
	GAGTGGACCA AGAGATTGA AGAGCTCA TCCTGAGCCT GTTCGTGACC TCGACAAG	ATG GAAGCGGTCG ATACCTACAT 30	
	ACGTCTTCAC CATTACTGGT CGCGGTAC	CC GTTCTTGATG CCTATCGAAG 35	_
	CGCGCAAGC TACCGTTGAA CGCCGAAG	CG TAGTGACCGG TCGTGTGGAA 40 TG GAAATCGTAG GTATTCGTCC 45	-
35		GA AATGTTCCAC AAGTCCATGG 50	_
	ACGAAGCCTA CGCCGGCGAG AACTGTGG	TC TGTTGCTGCG TGGCACCAAG 55	
	CGTGAGGACG TTGAGCGCGG TCAGGTTG	TC TGCATTCCTG GCTCCGTGAC 60	
	CCCGCACACC AAGTTCGAGG GCAAGGTC	TA CATCTTGAAG AAGGACGAAG 65	0
	GTGGACGTCA CAAGTCGTTC TACGACGG	CT ACCGCCCGCA GTTCTTCTTC 70	0
40		AC CTGCCCGAAG GCACCGAAAT 75	-
•	GGTTATGCCT GGCGACACCA CCGAAATT		0
	TCGCTATGGA GGAAGGTCTC GGCTTCGCT	A T 831	
5			
	2) INFORMATION FOR SEQ ID NO: 11:	9	
	(i) SEQUENCE CHARACTERISTICS:		

45

50

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 825 bases
- (B) TYPE: Nucleic acid
- (C) STRANDEDNESS: Double
- (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: Genomic DNA

55

(vi)ORIGINAL SOURCE:

- (A) ORGANISM: Moellerella wisconsensis
- (B) STRAIN: ATCC 35017
- 60 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 119

	GGTGCAATTC	TGGTTGTTGC	TGCAACTGAT	GGCCCTATGC	CACAGACTCG	50
	TGAGCACATC	CTGTTAGGTC	GTCAGGTTGG	CGTTCCATAC	ATCATCGTTT	100
	TCCTGAACAA	ATGTGACATG	GTAGACGACG	AAGAGCTGTT	AGAACTGGTT	150
5	GAAATGGAAG	TCCGTGAGCT	GCTGTCTCAG	TACGATTTCC	CAGGCGATGA	200
	CACTCCAGTA	ATCCGTGGTT	CAGCGCTGAA	AGCTCTGGAA	GGCGAAGCTG	250
	AGTGGGAAGC	TAAAATCATT	GAACTGGCAG	AAGCACTGGA	TTCTTATATC	300
	CCAGAGCCAG	AGCGTGACAT	TGATAAGCCA	TTCCTGTTAC	CAATCGAAGA	350
	CGTATTCTCA	ATTTCAGGCC	GTGGTACAGT	TGTTACTGGT	CGTGTTGAGC	400
10	GTGGTATCGT	TAAAGTCGGT	GAAGAAGTTG	AAATCGTTGG	TATCAAAGAT	450
	ACCGTGAAAA	CAACATGTAC	TGGCGTTGAA	ATGTTCCGTA	AACTGCTGGA	500
	CGAAGGCCGT	GCTGGTGAGA	ACGTTGGTGT	TCTGCTGCGT	GGTACTAAAC	550
	GTGATGATAT	CGAACGTGGT	CAAGTATTGG	CTAAACCAGG	TTCAATCACT	600
	CCGCATACAA	CTTTCGAATC	AGAAGTTTAC	ATCCTGAGCA	AAGATGAAGG	650
15	TGGCCGTCAT	ACTCCATTCT	TCAAAGGTTA	CCGTCCACAG	TTCTACTTCC	700
	GTACAACTGA	CGTAACCGGT	ACTATCGAAC	TGCCAGAAGG	CGTTGAGATG	750
	GTAATGCCAG	GTGATAACAT	CAAAATGATC	GTTACTCTGA	TCCACCCAAT	800
	TGCAATGGAT	GCAGGTCTGC	GTTTT			825
20						
711						

20

25

2) INFORMATION FOR SEQ ID NO:120

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 827 bases

- (B) TYPE: Nucleic acid
- (C) STRANDEDNESS: Double
- (D) TOPOLOGY: Linear
- 30 (ii) MOLECULE TYPE: Genomic DNA
 - (vi)ORIGINAL SOURCE:
 - (A) ORGANISM: Branhamella catarrhalis
 - (B) STRAIN: ATCC 43628

35

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 120

	TGGTGCTAT	C TTGGTTGTT	T CTGCAACTG	A TGGTCCTAT	G CCACAAACTC	50
	GTGAGCATA	T CCTACTATO	T · CGTCAGGTT	G GTGTACCAT	A CATCATGGTA	100
. 40	TTCATGAAC	'A AGTGCGATA	T GGTTGATGA	T GAAGAGCTA	C TAGAATTGGT	150
	TGAAATGGA	A GTTCGTGAA	C TTCTATCTC	A CTATGATTT	C CCTGGTGATG	200
	ATACCCCAAT	CATCAAAGGT	TCAGCAC'I'AG	AAGCATTGAA	TGGTTCTGAT	250
	GGTAAATATG	GCGAGCCTGC	AGTTCTAGAA	CTGCTAGACA	CACTAGACAG	300
	CTATATCCCA	GAGCCTGAGC	GTGATATCGA	TAAGTCATTC	TTGATGCCAA	350
45	TTGAAGATGT	CTTCTCGATC	TCAGGTCGTG	GTACAGTTGT	GACTGGTCGT	400
	GTTGAATCAG	GTATTATTAA	AGTTGGTGAT	GAAATTGAAA	TCATCGGTAT	450
	CAAACCAACT	GCTAAAACCA	CCTGTACTGG	TGTTGAAATG	TTCCGTAAAC	500
	TGTTAGACGA	AGGTCGTGCA	GGTGAGAACT	GTGGTATCTT	GTTGCGTGGT	550
	ACTAAGCGTG	AAGAAGTTCA	ACGCGGTCAA	GTACTTGCAA	AACCAGGTTC	600
50	AATCACCCCA	CATACTAAGT	TTGATGCTGA	AGTTTATGTA	CTGTCAAAAG	650
	AAGAAGGTGG	TCGTCACACC	CCATTCTTAA	ATGGCTATCG	CCCACAGTTC	700
	TACTTCCGTA	CCACAGATGT	GACTGGTGCC	ATCACTCTAC	AAGAAGGTAC	750
	CGAAATGGTT	ATGCCTGGTG	ACAATGTTGA	GATGAGTGTT	GAGCTTATCC	800
	ACCCAATCGC	CAGGATAAAG	GTCTACG			827
55						

2) INFORMATION FOR SEQ ID NO: 121

60 (i) SEQUENCE CHARACTERISTICS:

```
(A)
                     LENGTH: 806 bases
                     TYPE: Nucleic acid
               (B)
               (C)
                     STRANDEDNESS: Double
              (D)
                     TOPOLOGY: Linear
   5
         (ii) MOLECULE TYPE: Genomic DNA
         (vi) ORIGINAL SOURCE:
                     ORGANISM: Morganella morganii subsp. morganii
              (A)
  10
                     STRAIN: ATCC 25830
         (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 121
       CGGCGCTATC CTGGTTGTTG CTGCAACTGA TGGCCCTATG CCACAGACCC
                                                                            50
       GTGAGCACAT CCTGTTAGGT CGTCAGGTTG GCGTTCCTTA CATCATCGTA
                                                                            100
       TTCCTGAACA AATGTGACAT GGTTGATGAT GAAGAGCTGC TGGAACTGGT
                                                                            150
       TGAAATGGAA GTTCGTGAAC TTCTGTCTCA GTACGATTTC CCTGGCGACG
      TGAAATGGAA GTTCGTGAAC TTCTGTCTCA GTACGATTTC CCTGGCGACG
ACACGCCAAT CGTTCGCGGT TCAGCGCTGA AAGCACTGGA AGGCGAGCCA
GAGTGGGAAG CTAARATCGT TGAACTGGCA GGTTTCCTGG ATTCTTACAT
CCCTGAGCCA GAGCGTGCAA TTGACAAGCC GTTCCTGCTG CCAATCGAAG
ACGTATTCTC AATCTCCGGC CGTGGTACCG TTGTTACCGG TCGTGTTGAG
CGCGGTATCA TCAAGGTTGG TGAGGAAGTT GAAATCGTGG GTATCAAAGA
                                                                            200
                                                                           250
                                                                           300
                                                                       350
                                                                           400
                                                                           450
       TACTGCGAAA ACCACCTGTA CCGGTGTTGA AATGTTCCGC AAACTGCTGG
                                                                           500
      ACGAAGGCCG TGCMGGTGAG AACGTCGGTG TTCTGCTGCG TGGTACCAAG
                                                                           550
       CGTGAAGAAA TCGAACGTGG TCAGGTTCTG GCTAAACCAG GTTCAATCAA
                                                                           600
       ACCACAYACC AAATTTGAAT CAGAAGTTTA TATTCTGAGC AAAGATGAAG
                                                                           650
       GTGGTCGTCA TACTCCATTC TTCAAAGGYT ACCGTCCACA GTTCTACTTC
                                                                           700
       CGTACCACAG ACGTAACAGG TACTATCGAA CTGCCGGAAG GCGTTGAAAT
                                                                           750
       GGTAATGCCG GGCGACAACA TCAAAATGAT CGTCACCCTG ATCCACCCAA
                                                                           800
  30
       TCGCAA
                                                                           806
       2) INFORMATION FOR SEQ ID NO: 122
 35
          (i) SEQUENCE CHARACTERISTICS:
              (A)
                    LENGTH: 825 bases
                    TYPE: Nucleic acid
              (B)
              (C)
                    STRANDEDNESS: Double
 40
              (D)
                    TOPOLOGY: Linear
       (ii) MOLECULE TYPE: Genomic DNA
       (vi)ORIGINAL SOURCE:
45
            (A) ORGANISM: Mycobacterium tuberculosis
            (B)
                  STRAIN: TB 299
       (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 122
50
    GGTGCGATCC TGGTGGTCGC CGCCACCGAC GGCCCGATGC CCCAGACCCG
                                                                          50
     CGAGCACGTT CTGCTGGCGC GTCAAGTGGG TGTGCCCTAC ATCCTGGTAG
                                                                         100
     CGCTGAACAA GGCCGACGCA GTGGACGACG AGGAGCTGCT CGAACTCGTC
                                                                         150
    GAGATGGAGG TCCGCGAGCT GCTGGCTGCC CAGGAATTCG ACGAGGACGC
                                                                         200
     CCCGGTTGTG CGGGTCTCGG CGCTCAAGGC GCTCGAGGGT GACGCGAAGT
                                                                         250
55
    GGGTTGCCTC TGTCGAGGAA CTGATGAACG CGGTCGACGA GTCGATTCCG
                                                                         300
    GACCCGGTCC GCGAGACCGA CAAGCCGTTC CTGATGCCGG TCGAGGACGT
                                                                         350
    CTTCACCATT ACCGGCCGCG GAACCGTGGT CACCGGACGT GTGGAGCGCG
                                                                         400
    GCGTGATCAA CGTGAACGAG GAAGTTGAGA TCGTCGGCAT TCGCCCATCG
                                                                         450
    ACCACCAAGA CCACCGTCAC CGGTGTGGAG ATGTTCCGCA AGCTGCTCGA
                                                                         500
   CCAGGGCCAG GCGGGCGACA ACGTTGGTTT GCTGCTGCGG GGCGTCAAGC
                                                                         550
```

5	GCGAGGACGT CGAGCGTGGC CAGGTTGTCA CCAAGCCCGG CACCACCACG CCGCACACCG AGTTCGAAGG CCAGGTCTAC ATCCTGTCCA AGGACGAGGG CGGCCGGCAC ACGCCGTTCT TCAACAACTA CCGTCCGCAG TTCTACTTCC GCACCACCGA CGTGACCGGT GTGGTGACAC CAACATCTCG GTGAAGTTGA TCCAGCCCGT CGCCATGGAC GAAGGTCTGC GTTTCC	600 650 700 750 800 825
10	2) INFORMATION FOR SEQ ID NO: 123	
15	(i)SEQUENCE CHARACTERISTICS: (A) LENGTH: 806 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
20	(ii) MOLECULE TYPE: Genomic DNA (vi) ORIGINAL SOURCE: (A) ORGANISM: Neisseria cinerea (B) STRAIN: ATCC 14685	
25	(xi)SEQUENCE DESCRIPTION: SEQ ID NO: 123	
30	CGGTGCGATC TTGGTATGTT CCGCAGCTGA CGGTCCTATG CCGCAAACTC GCGAACACAT CCTGTTGGCC CGCCAAGTAG GTGTACCTTA CATCATCGTG TTCATGAACA AATGCGACAT GGTTGACGAT GCCGAGCTGT TGGAGCTGGT TGAAATGGAA ATCCGTGACT TGCTGTCAAG CTACGACTTC CCAGGTGACG ACTGCCCGAT CGTACAAGGT TCTGCACTGA AAGCCTTGGA AGGCGACGCA GCTTACGAAG AAAAAATCTT CGAATTGGCT GCTGCATTGG ACAGCTACAT CCCAACACCT GAGCGTGCAG TGGACAAACC TTTCTTGTTG CCTATCGAAG	50 100 150 200 250 300 350
35	ACGTATTCTC TATTTCCGGT CGCGGTACAG TAGTAACCGG TCGTGTAGAG CGCGGTATCA TCCACGTTGG TGACGAGATC GAAATCGTAG GTCTGAAAGA AACTCAAAAA ACCACTTGTA CCGGTGTTGA AATGTTCCGC AAACTGCTGG ACGAAGGTCA AGCTGGTGAC AACGTAGGTG TATTGCTGCG TGGTACTAAA CGTGAAGACG TAGAGCGTGG TCAAGTATTG GCTAAACCGG GTACTATCAC TCCTCACACC AAGTTCAAAG CAGAAGTATA CGTACTGAGC AAAGAAGAGG GTGGTCGTCA CACTCCGTTC TTCGCTAACT ACCGTCCACA ATTCTACTTC	400 450 500 550 600 650 700
40	CGTACTACCG ACGTAACCGG CGCGGTTACT TTGGAAGAAG GTGTAGAAAT GGTAATGCCG GGTGAGAACG TAACCATTAC TGTAGAACTG ATTGCGCCTA CGCTA	750 800 806

45

50

2) INFORMATION FOR SEQ ID NO: 124

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 822 bases
- (B) TYPE: Nucleic acid
- (C) STRANDEDNESS: Double
- (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: Genomic DNA

- (vi)ORIGINAL SOURCE:
 - (A) ORGANISM: Neisseria elongata subsp. elongata
 - (B) STRAIN: ATCC 25295
- 60 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 124

	CGGCGCAATC TTGGTATGTT CCGCTGCYGA CGGTCCTATG CCGCAAACTC	50
	GCGAACACAT CCTGTTGGCC CGCCAAGTAG GCGTACCTTA CATCATCGTG	100
	TTCATGAATA AATGCGACAT GGTTGAYGAT GCCGAACTGC TGGAACTGGT	150
5		200
	ACTGCCCGAT CGTACAAGGT TCCGCACTGA AAGCCTTGGA AGGCGACGCA	250
	GCTTACGAAG AAAAAATCTT CGAACTGGCT GCTGCATTGG ACAGCTACAT	300
	CCCGACACCT GAGCGTGCCG TGGACAAACC GTTCCTGTTG CCTATCGAAG	350
10	ACGTATTCTC TATCTCCGGC CGTGGTACAG TAGTAACCGG TCGTGTAGAG CGCGGTATCA TCCACGTCGG TGACGAGATC GAAATCGTAG GTCTGAAAGA	400
10	AACCCAAAAA ACCACTTGTA CCGGTGTTGA AATGTTCCGC AAACTGCTGG	450 500
	ACGAAGGTCA AGCAGGTGAC AACGTAGGCG TATTGCTGCG CGGTACCAAA	550
	CGTGAAGAAG TGGAACGCGG TCAAGTATTG GCTAAACCGG GTACCATCAC	600
	TCCTCACACC AAATTCAAAG CAGAAGTTTA CGTATTGAGC AAAGAAGAGG	650
15	GTGGTCGTCA TACTCCGTTC TTCGCTAACT ACCGTCCACA ATTCTACTTC	700
	CGTACTACCG ACGTAACCGG TGCGGTTACT TTGGAAGAAG GTGTAGAAAT	750
	GGTTATGCCT GGTGAGAACG TGGCCATCAC TGTAGAACTG ATTGCACCTA	800
	TCGCTATGGA AGAAGGTCTG CG	822
20		
20		
	2) INFORMATION FOR SEQ ID NO: 125	
	(i) SEQUENCE CHARACTERISTICS:	
25	(
	(B) TYPE: Nucleic acid	
	(C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
	(b) TOPOLOGI: Linear	
30	(ii) MOLECULE TYPE: Genomic DNA	
	(vi)ORIGINAL SOURCE:	
	(A) ORGANISM: Neisseria flavescens	
2.5	(B) STRAIN: ATCC 13120	
35	(xi)SEQUENCE DESCRIPTION: SEQ ID NO: 125	
	(XI) SEQUENCE DESCRIPTION: SEQ ID NO: 125	
	CGGCGCGACT TGGTATGTTC CGCAGCTGAC GGTCCTATGC CGCAAACCCG	50
	CGAACACATC CTGTTGGCTC GCCAAGTAGG TGTACCTTAC ATCATCGTAT	100
40	TCATGAACAA ATGCGACATG GTAGACGATG CCGAGCTGTT GGAACTGGTT	150
	GAAATGGAAA TTCGTGACTT GTTGTCAAGC TACGACTTCC CAGGCGACGA	200
	CTGCCCAATC GTACAAGGTT CTGCACTGAA AGCTTTGGAA GGTGATGCTG	250
	CTTACGAAGA AAAAATCTTC GAATTGGCTG CTGCCTTGGA CAGCTACATC	300
45	CCAACACCTG AGCGTGCTGT GGACAAACCT TTCTTGTTGC CTATCGAAGA	350
45	CGTATTCTCT ATCTCTGGTC GTGGTACAGT AGTAACCGGT CGCGTAGAGC	400
	GCGGTATCAT CCACGTTGGT GACGAGATCG AAATCGTAGG TCTGAAAGAA ACTCAAAAAA CCACTTGTAC CGGCGTTGAA ATGTTCCGCA AACTGCTGGA	450
	CGAAGGTCAA GCAGGTGACA ACGTAGGCGT ATTGCTGCGT GGTACTAAAC	500 550
	GTGAAGACGT AGAGCGTGGT CAAGTATTGG CTAAACCAGG TACCATCACT	600
50	CCTCACACCA AATTCAAAGC AGAAGTATAC GTACTGAGCA AAGAAGAGGG	650
	TGGTCGTCAC ACTCCATTTT TCGCTAACTA CCGTCCACAA TTCTACTTCC	700
	GTACTACCGA CGTAACTGGT GCAGTTACTT TGGAAGAAGG CGTAGAAATG	750
	GTAATGCCAG GTGAGAACGT AACCATTACT GTAGAACTGA TTGCGCCAAT	800
	CGCTATGGAA GAAGTCTGCG	820

- 2) INFORMATION FOR SEQ ID NO: 126
- 60 (i) SEQUENCE CHARACTERISTICS:

CGCTATGGAA GAAGTCTGCG

55

```
(A)
                   LENGTH: 830 bases
                   TYPE: Nucleic acid
              (B)
             (C)
                  STRANDEDNESS: Double
             (D)
                    TOPOLOGY: Linear
   5
         (ii) MOLECULE TYPE: Genomic DNA
         (vi) ORIGINAL SOURCE:
             (A) ORGANISM: Neisseria gonorrhoeae
  10
                    STRAIN: ATCC 49226
         (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 126
      GGTGCAATCC TGGTATGTTC TGCTGCCGAC GGCCCTATGC CGCAAACCCG
                                                                          50
      CGAACACATC CTGCTGGCCC GTCAAGTAGG CGTACCTTAC ATCATCGTGT
                                                                         100
      TCATGAACAA ATGCGACATG GTCGACGATG CCGAGCTGTT GGAACTGGTT
                                                                         150
      GAAATGGAAA TCCGCGACCT GCTGTCCAGC TACGACTTCC CCGGCGACGA
                                                                         200
      CTGCCCGATC GTACAAGGTT CCGCACTGAA AGCCTTGGAA GGCGATGCCG
                                                                         250
      CTTACGAAGA AAAAATCTTC GAACTGGCTA CCGCATTGGA CAGCTACATC
                                                                         300
      CCGACTCCCG AGCGTGCCGT GGACAAACCA TTCCTGCTGC CTATCGAAGA
CGTGTTCTCC ATTTCCGGCC GCGGTACCGT AGTCACCGGC CGTGTAGAGC
GAGGTATCAT CCACGTTGGT GACGAGATTG AAATCGTCGG TCTGAAAGAA
 20
                                                                         350
                                                                         400
                                                                         450
      ACCCAAAAAA CCACCTGTAC CGGCGTTGAA ATGTTCCGCA AACTGCTGGA
                                                                         500
      CGAAGGTCAG GCGGCGACA ACGTAGGCGT ATTGCTGCGC GGTACCAAAC
                                                                         550
      GTGAAGACGT AGAACGCGGT CAGGTATTGG CCAAACCGGG TACTATCACT CCTCACACCA AGTTCAAAGC AGAAGTGTAC GTATTGAGCA AAGAAGAGGG
 25
                                                                         600
                                                                         650
      CGGCCGCCAT ACCCCGTTTT TCGCCAACTA CCGTCCCCAA TTCTACTTCC
GTACCACTGA CGTAACCGGC GCGGTTACTT TGGAAAAAGG TGTGGAAATG
                                                                         700
                                                                         750
      GTAATGCCGG GTGAGAACGT AACCATTACT GTAGAACTGA TTGCGCCTAT
                                                                         800
 30
      CGCTATGGAA GAAGGTCTGC GCTTTGCGAT
                                                                         830
      2) INFORMATION FOR SEQ ID NO: 127
 35
          (i) SEQUENCE CHARACTERISTICS:
             (A) LENGTH: 816 bases
             (B)
                   TYPE: Nucleic acid
             (C)
                   STRANDEDNESS: Double
 40
                   TOPOLOGY: Linear
             (D)
       (ii) MOLECULE TYPE: Genomic DNA
       (vi)ORIGINAL SOURCE:
               ORGANISM: Neisseria lactamica
45
           (A)
                 STRAIN: ATCC 23970
           (B)
       (xi) SEQUENCE DESCRIPTION: SEO ID NO: 127
50
    CGGCGCAATC TTGGTATGTT CCGCCGCCGA CGGCCCTATG CCGCAAACCC
                                                                        50
    GCGAACACAT TCTGTTGGCC CGCCAAGTAG GTGTACCTTA CATCATCGTA
                                                                       100
    TTCATGAACA AATGCGATAT GGTCGACGAT GCCGAGCTGT TGGAACTGGT
                                                                       150
    TGAAATGGAA ATCCGCGACC TGCTGTCAAG CTACGACTTC CCAGGCGACG
                                                                       200
    ACTGCCCAAT CGTACAAGGT TCCGCACTGA AAGCTTTGGA AGGCGATGCC
                                                                       250
55
    GCTTACGAAG AAAAAATCTT CGAACTGGCT GCCGCATTGG ACAGCTACAT
                                                                       300
    CCCGACTCCC GAGCGTGCCG TGGACAAACC GTTCCTGCTG CCTATCGAAG
                                                                       350
    ACGTATTCTC CATCTCCGGC CGCGGTACGG TAGTAACCGG CCGTGTAGAG
                                                                      400
  CGCGGTGTCA TCCACGTTGG CGACGAGATC GAAATCGTCG GTCTGAAAGA
                                                                      450
   AACCCAAAAA ACCACCTGTA CCGGTGTCGA GATGTTCCGC AAACTGCTGG
                                                                      500
60 ACGAAGGTCA GGCAGGCGAC AACGTAGGCG TATTGCTGCG CGGTACCAAA
                                                                      550
```

5	CGTGAAGAAG TGGAACGCGG TCAGGTATTA GCCAAACCGG GTACCATCAC TCCGCACACC AAGTTCAAAG CAGAAGTGTA TGTATTGAGC AAAGAAGAGG GCGGTCGTCA CACTCCGTTC TTCGCCAACT ACCGTCCGCA ATTCTACTTC CGTACCACCG ACGTAACCGG CGCGGTTACT TTGGAAGAAG GCGTGGAAAT GGTAATGCCC GGTGAGAACG TAACCATTAC TGTAGAACTG ATTGCGCCTA TCGCTATGGA AGAAGG	600 650 700 750 800 816
10	2) INFORMATION FOR SEQ ID NO: 128	
15	(i)SEQUENCE CHARACTERISTICS: (A) LENGTH: 831 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
20	<pre>(vi)ORIGINAL SOURCE: (A) ORGANISM: Neisseria meningitidis (B) STRAIN: ATCC 13077</pre>	
25	(xi)SEQUENCE DESCRIPTION: SEQ ID NO: 128	
	CGGTGCAATC CTGGTATGTT CCGCAGCCGA CGGTCCTATG CCGCAAACCC GCGAACACAT CCTGCTGGCC CGTCAAGTAG GCGTACCTTA CATCATCGTG TTCATGAACA AATGCGACAT GGTCGACGAT GCCGAGCTGT TGGAACTGGT TGAAATGGAA ATCCGCGACC TGCTGTCCAG CTACGACTTC CCCGGCGACG	50 100 150 200
30		250 300 350
35	CGCGGTATCA TCCACGTCGG TGACGAGATC GAAATCGTCG GTCTGAAAGA	400 450 500 550 600
40	TCCTCACACC AAGTTCAAAG CAGAAGTATA CGTACTGAGC AAAGAAGAGG GCGGCCGCCA TACCCCGTTC TTCGCCAACT ACCGTCCCCA ATTCTACTTC	650 700 750 800 831
45	2) INFORMATION FOR SEQ ID NO: 129	
50	(i)SEQUENCE CHARACTERISTICS: (A) LENGTH: 815 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
55	(ii) MOLECULE TYPE: Genomic DNA	
23	<pre>(vi)ORIGINAL SOURCE: (A) ORGANISM: Neisseria mucosa (B) STRAIN: ATCC 19696</pre>	
60	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 129	

	CGGCGCAATC	TTGGTATGTT	CTGCTGCYGA	CGGTCCTATG	CCGCAAACCC	50
	GYGAACACAT	CCTGTTGGCC	CGTCAAGTAG	GYGTACCTTA	CATCATCGTG	100
	TTCATGAACA	AATGCGACAT	GGTTGACGAT	GCCGAAYTGT	TGGAACTGGT	150
5	TGAAATGGAA	ATCCGTGACT	TGCTGTCAAG	CTACGACTTC	CCTGGYGACG	200
	ACTGCCCGAT	TGTACAAGGT	TCTGCACTGA	AAGCCTTGGA	AGGCGATGCC	250
	GCTTACGAAG	AAAAAATCTT	CGAACTGGCT	GCCGCATTGG	ACAGCTACAT	300
	CCCGACTCCC	GAGCGTGCCG	TAGACAAACC	GTTCCTGTTG	CCTATCGAAG	350
	ACGTATTCTC	CATCTCCGGT	CGTGGTACAG	TAGTAACCGG	CCGTGTAGAG	400
10	CGCGGTGTTA	TCCACGTTGG	TGACGAGATC	GAAATCGTAG	GTCTGAAAGA	450
	AACCCAAAAA	ACCACATGTA	CCGGTGTTGA	AATGTTCCGC	AAACTGCTGG	500
	ACGAAGGTCA	AGCCGGTGAC	AACGTAGGCG	TATTGCTGCG	CGGTACCAAA	550
	CGTGAAGAAG	TGGAACGCGG	TCAAGTATTG	GCTAAACCGG	GTACCATCAC	600
	TCCGCACACC	AAATTCAAAG	CAGAAGTGTA	CGTATTGAGC	AAAGAAGAGG	650
15	GTGGTCGTCA	TACTCCGTTC	TTCGCTAACT	ACCGTCCTCA	ATTCTACTTC	700
	CGTACTACCG	ACGTAACCGG	TGCGGTTACT	TTGGAAGAAG	GTGTAGAAAT	750
	GGTTATGCCT	GGTGAGAAYG	TAGCCATYAC	TGTAGAACTG	ATTGCGCCTA	800
	TYGCTATGGA	AGAAG				815
20						
	a \ 					
	2) INFORMAT	ON FOR SEQ	ID NO: 130			

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 829 bases

- (B) TYPE: Nucleic acid
- (C) STRANDEDNESS: Double
- (D) TOPOLOGY: Linear
- 30 (ii) MOLECULE TYPE: Genomic DNA
 - (vi)ORIGINAL SOURCE:
 - (A) ORGANISM: Neisseria sicca
 - (B) STRAIN: ATCC 9913

35

25

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 130

	GGCGCAATC	T TGGTATGTT	C CGCTGCTGA	C GGTCCTATO	C CGCAAACCCG	50
	CGAACACAT	C CTGTTGGCC	C GCCAAGTAG	G CGTACCTTA	C ATCATCGTGT	100
40	TCATGAACA	A ATGCGACAT	G GTTGACGAT	G CCGAGCTGI	T GGAACTGGTT	150
	GAAATGGAA	A TCCGTGACT	T GCTGTCAAG	C TACGACTTC	C CTGGTGACGA	200
•	CTGCCCGATC	GTACAAGGTT	CTGCACTGAA	AGCCTTGGAA	GGCGACGCCG	250
	CTTACGAAGA	AAAAATCTTC	GAACTGGCTG	CTGCATTGGA	CAGCTACATC	300
	CCGACTCCTG	AGCGTGCCGT	GGACAAACCG	TTCCTGTTGC	CTATTGAAGA	350
45	CGTATTCTCC	ATCTCCGGTC	GCGGTACCGT	AGTAACCGGC	CGTGTAGAGC	400
	GCGGTGTTAT	CCACGTTGGT	GACGAGATTG	AAATCGTAGG	TCTGAAAGAA	450
	ACCCAAAAAA	CCACTTGTAC	CGGTGTTGAA	ATGTTCCGCA	AACTGCTGGA	500
	CGAAGGTCAA	GCCGGTGACA	ACGTAGGCGT	ATTGCTGCGC	GGTACCAAAC	550
	GTGAAGAAGT	GGAACGCGGT	CAAGTATTGG	CTAAACCGGG	TACCATCACT	600
50	CCTCACACTA	AATTCAAAGC	AGAAGTTTAC	GTATTGAGTA	AAGAAGAGGG	650
	TGGTCGTCAT	ACTCCGTTCT	TCGCTAACTA	CCGTCCTCAA	TTCTACTTCC	700
	GTACTACCGA	CGTAACCGGC	GCGGTTACTT	TGGAAGAAGG	TGTAGAAATG	750
	GTTATGCCTG	GTGAGAACGT	AGCCATCACT	GTAGAACTGA	TTGCACCGAT	800
	CGCTATGGAA	GAAGGTCTGC	GCTTTGCGA			829
55						

- 2) INFORMATION FOR SEQ ID NO: 131
- 60 (i) SEQUENCE CHARACTERISTICS:

```
LENGTH: 814 bases
            (A)
                  TYPE: Nucleic acid
            (B)
                  STRANDEDNESS: Double
            (C)
                  TOPOLOGY: Linear
            (D)
  5
        (ii) MOLECULE TYPE: Genomic DNA
        (vi) ORIGINAL SOURCE:
            (A) ORGANISM: Neisseria subflava
 10
                  STRAIN: ATCC 14221
            (B)
        (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 131
     CGGCGCGACT TGGTATGTTC CGCAGCTGAT GGTCCTATGC CTCAAACTCG
                                                                     50
      CGAACACATC CTGTTGGCTC GCCAAGTAGG TGTACCTTAC ATCATCGTAT
                                                                     100
      TCATGAACAA ATGCGACATG GTTGACGATG CCGAGCTGTT GGAACTGGTT
                                                                     150
      GAAATGGAAA TCCGTGACCT GTTGTCAAGC TACGACTTCC CAGGCGACGA
                                                                     200
      CTGCCCAATC GTACAAGGTT CTGCACTGAA AGCTTTGGAA GGTGACGCTG
                                                                     250
      GTTACGAAGA GAAAATCTTC GAATTGGCTG CTGCTCTGGA CAGCTACATC
                                                                     300
      CCAACACCTG AGCGTGCTGT GGACAAACCT TTCTTGTTGC CTATCGAAGA
CGTATTCTCT ATCTCTGGCC GTGGTACAGT AGTAACTGGT CGTGTAGAGC
GCGGTATCAT CCACGTTGGT GACGAGATCG AAATCGTAGG TCTGAAAGAA
 20
                                                                     350
                                                                     400
                                                                     450
      ACCCAAAAAA CCACTTGTAC CGGCGTTGAA ATGTTCCGCA AACTGCTGGA
                                                                     500
      CGAAGGTCAA GCTGGTGACA ACGTAGGCGT ATTGCTGCGT GGTACCAAAC
                                                                     550
      GTGAAGACGT AGAGCGTGGT CAAGTATTGG CTAAACCAGG TACCATTACT
                                                                     600
      CCTCACACCA AATTCAAAGC AGAAGTATAC GTACTGAGCA AAGAAGAGGG
                                                                     650
      TGGTCGTCAC ACTCCATTCT TCGCTAACTA CCGTCCACAA TTCTACTTCC
                                                                     700
      GTACTACTGA CGTAACTGGT GCAGTTACTT TGGAAGAAGG CGTAGAAATG
                                                                     750
      GTAATGCCAG GTGAGAACGT AACCATTACT GTAGAACTGA TTGCGCCTAT
                                                                     800
 30
     CGCTATGGAA GAAG
                                                                     814
      2) INFORMATION FOR SEQ ID NO: 132
 35
         (i) SEQUENCE CHARACTERISTICS:
                  LENGTH: 818 bases
            (A)
                  TYPE: Nucleic acid
            (B)
            (C)
                  STRANDEDNESS: Double
 40
            (D)
                  TOPOLOGY: Linear
      (ii) MOLECULE TYPE: Genomic DNA
      (vi) ORIGINAL SOURCE:
45
           (A) ORGANISM: Neisseria weaveri
                 STRAIN: ATCC 51223
       (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 132
50
    GCCATCTTGG TATGTTCTGC TGCTGACGGT CCTATGCCGC AAACCCGTGA
                                                                   50
    GCACATCCTG TTGGCTCGTC AAGTAGGTGT ACCCTACATC ATCGTATTCA
                                                                   100
    TGAACAAATG CGATATGGTT GATGATGCAG AGCTGCTGGA ATTGGTAGAA
                                                                  150
    ATGGAAATCC GTGATCTGCT GAGCAGCTAC GATTTCCCTG GCGATGATTG
                                                                  200
    YCCAATCGTG CAAGGTTCTG CTTTGAAAGC TTTGGAAGGT GATGCCGCTT
                                                                  250
55
    ACGAAGAAA AATCTTTGAA TTAGCTGCTG CATTGGATAG CTATATTCCA
                                                                  300
    ACWCCTGAGC GYGCTGTTGA TAAACCATTC CTGTTGCCGA TTGAAGATGT
                                                                  350
    ATTCTCAATT TCAGGTCGTG GTACAGTAGT AACTGGTCGT GTAGAGCGCG
    GTATTATTCA CGTAGGCGAT GAAATTGAAA TTGTAGGTTT GAAAGARACY
                                                                  450
    CAAAAACTA CTTGTACCGG CGTTGAAATG TTCCGTAAAT TGCTGGATSA
                                                                  500
60 AGGTCAGGCT GGTGATAACG TAGGCGTATT GTTGCGTGGT ACCAAACGTG
                                      80
```

5	AAGACGTTGA GCGTGGTCAA GTATTGGCTA AGCCTGGTWC TATTACTCCG CAYACCAAAT TCAAAGCAGA RGTKTATGTW TTGAGYAAGG AAGAAGGCGG TCGTCATACT CCGTTCTTCG CTAACTATCG TCCGCAATTC TATTTCCGTA CTACAGACGT TACCGGTGCK GTRACTTTAG AAGAAGGTGT GGAAATGGTA ATGCCTGGTG AGAAYGTTGC CATTACTGTW GARYTGATYG CTCCGATTGC KATGGAAGAA GGYTGCGT	600 650 700 750 800 818
10	2) INFORMATION FOR SEQ ID NO: 133	
15	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 836 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear 	
20	(ii) MOLECULE TYPE: Genomic DNA(vi) ORIGINAL SOURCE:(A) ORGANISM: Ochrobactrum anthropi(B) STRAIN: ATCC 49188	
25	(xi)SEQUENCE DESCRIPTION: SEQ ID NO: 133	
30	AAGGAACTGG GCGAAGACGC CGTTCGTTCG CTGATGGCCG CTGTTGACGA CTACATTCCG ACCCCGGAAC GTCCGATCGA CCAGCCGTTC CTGATGCCGA	50 100 150 200 250 300 350
35	TGCTCGAYCA GGGCCAGGCT GGCGACAACA TCGGCGCTCT GATCCGCGGC GTTGGCCGTG AAGACGTTGA ACGCGGCCAG GTTCTCTGCA AGCCGGGTTC	400 450 500 550 600
40	TGTGAAGCCG CACACCAAGT TCAAGGCAGA AGCCTACATT CTGACCAAGG ACGAAGGTGG CCGTCATACG CCGTTCTTTA CGAACTACCG TCCGCAGTTC TACTTCCGCA CGACGGACGT GACCGGTGTT GTCACGCTGC CGGAAGGCAC GGAAATGGTT ATGCCTGGCG ACAACGTCGC TATGGACGTC ACCCTGATCG TGCCGATCGC CATGGAAGAG AAGCTCCGCT TCGCTA	650 700 750 800 836
45	2) INFORMATION FOR SEQ ID NO: 134	
50	(i)SEQUENCE CHARACTERISTICS: (A) LENGTH: 805 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
55	(ii) MOLECULE TYPE: Genomic DNA	

81

(A) ORGANISM: Pantoea agglomerans
(B) STRAIN: ATCC 27155

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 134

(vi)ORIGINAL SOURCE:

	CCTGGTTGTT	GCTGCGACTG	ATGGCCCAAT	GCCACAGACC	CGTGAGCACA	50
	TCCTGCTGGG	TCGTCAGGTT	GGCGTTCCTT	ACATCATCGT	GTTCCTGAAC	100
	AAGTGTGACA	TGGTTGATGA	TGAAGAGCTG	CTGGAACTGG	TAGAGATGGA	150
5	AGTACGTGAC	CTGCTGTCAC	AGTACGACTT	CCCAGGCGAT	GACACCCCGA	200
	TCGTTCGTGG	TTCTGCTCTG	AAAGCGCTGG	AAGGCGTTCC	TGAGTGGGAA	250
	GCAAAAATCG	TTGAGCTGGC	TGAACACCTG	GACAACTACA	TCCCGGATCC	300
	AGTCCGTGCG	ATCGACATGC	CGTTCCTGCT	GCCAATCGAA	GACGTATTCT	350
	CAATCTCTGG	CCGTGGTACC	GTTGTTACCG	GTCGTGTTGA	GCGCGGCATC	400
10	GTTAAAGTCG	GCGACGAAGT	TGAAATCGTG	GGTATCAAAG	ATACTGCGAA	450
	ATCAACCTGT	ACCGGTGTTG	AGATGTTCCG	TAAGCTGCTG	GACCAGGGTC	500
	AGGCAGGCGA	AAACTGTGGT	GTTCTGCTGC	GCGGTATCAA	GCGTGAAGAC	550
	ATCCAGCGTG	GCCAGGTTCT	GGCTAAGCCA	GGCTCAATCA	AGCCGCACAC	600
	CCAGTTCGAG	TCAGAAGTTT	ACGTTCTGTC	TAAAGACGAA	GGTGGCCGCC	650
15	ATACTCCGTT	CTTCAAAGGC	TATCGTCCAC	AGTTCTACTT	CCGTACAACT	700
	GATGTAACCG	GTTCAGTAGA	GCTGCCAGAA	GGCGTTGAGA	TGGTCATGCC	7 50
	AGGCGACAAC	ATCAAAATGG	TTGTTACCCT	GATCCACCCA	ATCGCAATGG	800
	ACGAA					805

20

25

2) INFORMATION FOR SEQ ID NO: 135

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 825 bases

- (B) TYPE: Nucleic acid
- (C) STRANDEDNESS: Double
- (D) TOPOLOGY: Linear
- 30 (ii) MOLECULE TYPE: Genomic DNA
 - (vi)ORIGINAL SOURCE:
 - (A) ORGANISM: Pantoea dispersa
 - (B) STRAIN: ATCC 14589

35

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 135

	CGCGATCCT	G GTTGTTGCT	G CGACTGATG	G CCCAATGCC	T CAGACCCGTG	50
	AGCACATCC	T GCTGGGCCG	T CAGGTTGGC	G TTCCTTACA	T CATCGTGTTC	100
40	CTGAACAAG	T GTGACATGG	T TGATGACGA	A GAGCTGCTG	G AACTGGTTGA	150
	GATGGAAGT	T CGCGATCTG	C TGTCTCAGI	A CGACTTCCC	A GGCGACGATA	200
	CCCCAATCGT	ACGCGGTTCT	GCGCTGAAAG	CGCTGGAAGG	CGACGCTGAG	250
		AAGTCGTTGA		CACCTGGATA		300
	AGATCCAGTA	CGTGCTATCG	ATCTGCCGTT	CCTGCTGCCA	ATCGAAGACG	350
45	TATTCTCAAT	CTCTGGCCGT	GGTACCGTTG	TTACCGGTCG	TGTTGAGCGC	400
	GGCATCGTGA	AAGTGGGCGA	CGAAGTAGAA	ATCGTTGGTA	TCAAAGCGAC	450
	TGCCAAGTCT	ACCTGTACCG	GTGTTGAAAT	GTTCCGCAAA	CTGCTGGACC	500
				TGCTGCGCGG		550
				AAGCCAGGCA		600
50	ACACACCAAG	TTCGTATCAG	AAGTGTACGT	ACTGTCTAAA	GACGAAGGCG	650
	GCCGTCATAC		AAAGGCTACC		CTACTTCCGT	700
	ACYACTGATG	TGACCGGCAM			TTGAGATGGT	750
			AAATGRCCGT	TGAGCTGATC	CACCCAATCG	800
	CGATGGACCA	GGGTCTGCGT	TTCGC			825
55						

2) INFORMATION FOR SEQ ID NO: 136

60 (i) SEQUENCE CHARACTERISTICS:

```
LENGTH: 762 bases
            (A)
            (B)
                  TYPE: Nucleic acid
            (C)
                  STRANDEDNESS: Double
                  TOPOLOGY: Linear
            (D)
  5
        (ii) MOLECULE TYPE: Genomic DNA
        (vi)ORIGINAL SOURCE:
                  ORGANISM: Pasteurella multocida
            (A)
                  STRAIN: NCTC 10322
 10
            (B)
        (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 136
      CACAAACACG TGAGCACATC CTTTTAGGTC GCCAAGTAGG CGTTCCTTAC
                                                                     50
      ATCATCGTAT TCTTAAACAA ATGCGACATG GTGGATGATG AAGAATTATT
 15
                                                                    100
      AGAATTAGTT GAAATGGAAG TGCGTGAACT TCTTTCTCAA TATGATTTCC
                                                                    150
      CAGGTGATGA TACACCAATC GTACGTGGTT CAGCGTTACA AGCGTTAAAC
                                                                    200
      GGYGTAGCTG AGTGGGAAGA GAAAATTCTT GAGTTAGCCA ACCACTTAGA
                                                                    250
      TACTTACATT CCAGAGCCAC AACGTGCAAT CGACCAACCG TTCCTTCTTC
                                                                    300
      CGATTGAAGA CGTGTTCTCA ATTTCTGGTC GTGGTACAGT AGTAACAGGT
 20
                                                                    350
      CGTGTTGAGC GTGGTATCAT CCGTACAGGT GAAGAGGTTG AAATTGTTGG ·
                                                                    400
      TATTAAAGCG ACAACGAAGA CCACAGTAAC AGGTGTTGAG ATGTTCCGTA
                                                                    450
      AATTATTAGA CGAAGGTCGT GCGGGTGAGA ACGTTGGTGC TTTATTACGT
GGTACTAARC GTGAAGAAAT CGAACGTGGT CAAGTGTTAG CGAAACCGGG
                                                                    500
                                                                    550
      TTCAATYACG CCACACTG ATTTTGAATC AGAAGTTTAC GTGTTATCAA
 25
                                                                    600
      AAGAAGAAGG TGGTCGTCAT ACACCATTCT TCAAAGGTTA CCGTCCACAG
                                                                    650
      TTCTACTTCC GTACAACGGA CGTAACAGGT ACAATCGAAT TACCGGAAGG
                                                                    700
      TGTTGAGATG GTGATGCCTG GTGATAACAT CAAGATGACT GTAAGTTTGA
                                                                    750
      TTCACCCAAT CG
                                                                    762
 30
      2) INFORMATION FOR SEQ ID NO: 137
 35
         (i) SEQUENCE CHARACTERISTICS:
            (A)
                  LENGTH: 832 bases
            (B)
                  TYPE: Nucleic acid
            (C)
                  STRANDEDNESS: Double
                  TOPOLOGY: Linear
            (D)
 40
        (ii) MOLECULE TYPE: Genomic DNA
       (vi)ORIGINAL SOURCE:
                 ORGANISM: Peptostreptococcus anaerobius
           (A)
45
           (B)
                 STRAIN: ATCC 27337
       (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 137
    TGGAGCTATC TTAGTTGTAT CAGCAGCGGA TGGACCAATG CCACAAACAA
                                                                    50
    GAGAACACAT CTTATTATCA AGACAAGTAG GAGTACCATA TATCGTAGTA
50
                                                                   100
    TATTTGAATA AAGCAGATAT GGTAGAAGAT GAAGAATTAT TAGAATTAGT
                                                                  150
    AGAAATGGAA GTAAGAGAAT TACTATCTGA ATATGGATTC CCAGGAGATG
                                                                  200
    AAATTCCAAT CATAACAGGA TCATCCTTAG GAGCATTAAA TGGAGAACAA
                                                                  250
    AAATGGATAG ATCAAATCAT GGCATTGATG AAAGCCGTAG ATGAATATAT
                                                                  300
    TCCAACACCG GAAAGAGCAG TAGATCAACC ATTCTTGATG CCAATCGAAG
55
                                                                  350
    ACGTATTTAC AATTACAGGA AGAGGAACTG TAGTAACAGG AAGAGTTGAA
                                                                  400
    AGAGGAGTTG TAAAAGTWGG AGAAGAAGTT GAAATCGTAG GAATCAAAGC
                                                                  450
    GACAACAAG ACAACTTGTA CYGGAGTAGA AATGTTCCGA AAATTATTGG
                                                                  500
    ATCAAGGACA AGCAGGAGAT AACATCGGAG CTTTATTRAG AGGAACCAAG
                                                                 550
60
                                                                  600
    AAAGAAGATG TAGAAAGAGG ACAAGTATTG GCAAAACCAG GAACAATTCA
                                      83
```

5	TCCTCATACA AACTTCAGTG GAGAAGTATA TGTATTGACA AAAGAAGAAG GAGGAAGACA TACTCCATTC TTCTCAGGAT ACAGACCACA ATTTTACTTT AGAACCACAG ATATTACAGG AGCAGTAACA TTACCAGAAG GAGTAGAATT GGTAATGCCR GGAGATAATA TCACAATGAC AGTAGAATTG ATTCACCCAA TTGCAATGGA AACAGGATTA CGATTTGCAA TT	650 700 750 800 832
10	2) INFORMATION FOR SEQ ID NO: 138 (i) SEQUENCE CHARACTERISTICS:	
15	 (A) LENGTH: 823 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear 	
	(ii) MOLECULE TYPE: Genomic DNA (vi) ORIGINAL SOURCE:	
20	(A) ORGANISM: Peptostreptococcus asaccharolyticus (B) STRAIN: LSPQ 2639	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 138	
25	TAGTATGTTC AGCAGCAGAY GGTCCAATGC CACAAACAAG AGAACACATT CTACTAGCAA GACAAGTTGG TGTACCAAAG ATAGTAGTAT TCCTAAACAA AGAAGACCAA GTAGACGATC CAGAACTAAT TGAATTAGTA GAGATGGAAA	50 100
30	TCAGAGACCT ACTATCAGAA TATGACTTCG AYGGAGACAA CACACCAATC GTAGTAGGAT CAGCATTAAA AGCCCTAGAC GATCCAGACG GAGAATGGGG	150 200 250 300 350
35	TCAATYACAG GAAGAGGAAC AGTAGCAACA GGAAGAGTAG AACAAGGTGT AGTAAAAGTA GGMGACACAG TAGAACTAGT AGGCTTAACA GACGAAAGCA GACAAGTAGT AGTAACAGGT GTAGAAAATGT TTAGAAAAACA ACTAGACCTA	400 450 500
33	AGAAATCCAA AGAGGACAAG TACTAGCAGC ACCAGGAACA ATCAAACCAC ACACAAAATT TGAAGCAGAA GTATACGTAC TAACAAAAGA AGAAGGTGGA AGACACACC CATTCTTTAA CGGATACAGA CCACAATTCT ACTTCAGAAC	550 600 650 700
40	AACAGACGTA ACAGGAGACA TCCAACTAGC AGACGGAGTA GAAATGGTAA TGCCAGGAGA CAACTCAACA TTTACAGTAA CACTAATCAC ACCAATCGCA ATGGACGAAG GACTAAGATT CGC	750 800 823
45	2) INFORMATION FOR SEQ ID NO: 139	
	(i) SEQUENCE CHARACTERISTICS:	
50	(A) LENGTH: 832 bases(B) TYPE: Nucleic acid(C) STRANDEDNESS: Double(D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
55	<pre>(vi)ORIGINAL SOURCE: (A) ORGANISM: Peptostreptococcus prevotii (B) STRAIN: ATCC 9321</pre>	
60	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 139	

	CTATCATCGT	AGTATCTGCA	GCAGACGGTC	CAATGCCCAA	ACAGAGAGAA	50
	CACATCCTAC	TAGCAAGACA	AGTAGGCGTT	CCAAAAATCG	CAGTATTCCT	100
	AAACAAAGAA	GACCAAGTAG	ACGATCCAGA	ACTAATCGAA	TTAGTAGAAA	150
	TGGAAATCAG	AGACCTACTT	TCAGAATACG	ACTTCGATGG	AGACAACGCT	200
5	CCAGTAGTAG	TAGGATCTGC	TCTTAAATCA	CTAGAAGAAG	GCGGAGAAGG	250
	CCCATGGTCA	GACAAAATCC	TTGACCTAAT	GGCACAAGTA	GACGAATACT	300-
	TCGACATCCC	AGAAAGAGAC	AACGACCAAC	CATTCCTAAT	GCCAGTAGAA	350
	GACGTAATGA	CAATCTCAGG	ACGTGGAACA	GTAGCAACAG	GAAGAGTTGA	400
	AAGAGGAACA	CTAAAAGTTG	GTGATACAGT	AGAAATCGTA	GGACTAACAG	450
10	AAGATACAAA	AGAAACAGTA	GTAACTGGAG	TAGAAATGTT	CCACAAATCM	500
	CTAGACCAAG	CAGAATCTGG	AGATAACGTA	GGACTACTAC	TAAGAGGAGT	550
	AACAAGAGAT	CAAATCTCAA	GAGGACAAGT	ACTAGCAAAA	CCAGGWTCAG	600
	TAAACCCACA	CACAGAATTC	GAAGGTCAAG	TATACGTACT	AACAAAAGAA	650
	GAAGGTGGAC	GTCACACACC	ATTCTTCAGT	GGATATAGAC	CACAATTCTT	700
15	CTTTAGAACA	ACAGACGTAA	CAGGAGACAT	CGAACTAGAA	GAAGGCGTAG	750
	AAATGGTAAT	GCCAGGAGAC	AACGCAACAT	TCAAAATCAC	ACTCCAAAAA	800
	CCAATCGCTC	TAGAAGAAGG	ACTAAGATTC	GC		832
			•			
20						
	2) INFORMATI	ON FOR SEQ	ID NO: 140	•		

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 831 bases
- 25 (B)
- TYPE: Nucleic acid STRANDEDNESS: Double (C)
 - (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: Genomic DNA

30

- (vi)ORIGINAL SOURCE:
 - (A) ORGANISM: Porphyromonas asaccharolytica
 - (B) STRAIN: ATCC 25260
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 140 35

	CGGTGCTAT	C ATCGTAGTT	G CTGCAACTG	A TGGTCCTAT	G CCTCAGACGC	50
	GTGAGCACA			A ACGTACCTC	G TCTAGTTGTC	100
	TTTATGAAC	A AGTGCGACC	T TGTTGATGA	C GAGGAGATG	C TCGAGCTCGT	150
40	AGAGATGGA	T ATGCGTGAG	C TACTAAGCT	T CTATGACTI	T GACGGCGACA	200
	ACACTCCTG	T CATCCGTGG	T TCTGCTCTT	G GTGCTCTCA	A TGGTGAGCCT	250
	AAGTGGGTAG	AGAAGGTTAT	GGAGCTCATG	GAGGCTGTAG	ACACTTGGAT	300
	CCCACTACCT	GAGCGCGACA	TCGACAAGCC	TTTCCTAATG	CCTGTAGAGG	350
	ACGTATTCTC	TATCACAGGT	CGTGGTACTG	TCGCTACTGG	TCGTATCGAG	400
45	ACTGGTGTCG	TTAAGGTCAA			GTCTAGGTGC	450
	TGAGGGTAAG	AAGAGCGTCG	TAACTGGCGT	GGAAATGTTC	CGCAAGATCC	500
		TGAAGCTGGT		GTCTCCTACT	CCGTGGTATC	550
		AGATCAAGCG			CAGGTCAGGT	600
	CAAGCCTCAC	GATCACTTCA	AGGCTGAGGT	CTATATCCTG	AAGAAGGAAG	650
50	AGGGTGGTCG	TCACACACCA			TCAGTTCTAC	700
	ATCCGTACGC	TAGACGTAAC	GGGCGAGATC	ACACTCCCAG	AGGGTGTAGA	750
	GATGGTTATG	CCTGGTGATA	ACGTCACCAT	CGATGTCAAG	CTCATCTCTC	800
	CAGTAGCTTG	TAGCGTAGGT	CTACGCTTCG	C		831

55

2) INFORMATION FOR SEQ ID NO: 141

(i) SEQUENCE CHARACTERISTICS:

60 (A) LENGTH: 818 bases

```
(B)
                    TYPE: Nucleic acid
              (C)
                    STRANDEDNESS: Double
                    TOPOLOGY: Linear
              (D)
  5 (ii) MOLECULE TYPE: Genomic DNA
         (vi)ORIGINAL SOURCE:
              (A) ORGANISM: Porphyromonas gingivalis
                    STRAIN: ATCC 33277
 10
         (xi) SEQUENCE DESCRIPTION: SEO ID NO: 141
      CGGTGCTATA ATCGTTGTAG CAGCTACAGA CGGTCCTATG CCTCAGACTC
                                                                          50
      GCGAGCACAT CCTTTTGGCT CGCCAGGTAA ACGTTCCTCG TCTGGTTGTT
                                                                         100
      TTCATGAACA AATGTGACAT GGTAGACGAT GAAGAGATGC TCGAGCTTGT
                                                                         150
      TGAAATGGAC ATGCGCGAAC TCCTTTCTTT CTACGATTTC GATGGTGACA
                                                                         200
      ATACCCCTAT CATCCGTGGT TCTGCTCTGG GCGCTTTGAA TGGAGAGCCT
                                                                         250
      CAGTGGGAAG ACAAGGTGAT GGAGCTTATG GAAGCTGTTG ACAACTGGGT
                                                                         300
      TCCCCTGCCT GAGCGCGATA TCGACAAACC GTTCTTGATG CCGGTTGAAG
                                                                         350
      ACGTGTTCTC TATCACGGGT CGTGGTACGG TCGCTACAGG ACGTATCGAA
 20
                                                                         400
      ACCGGTATTG TGAAGACCGG TGACGAAGTT CAAATCATCG GCCTCGGTGC
                                                                         450
      AGAAGGAATG AAGTCGGTTG TTACGGGTGT TGAAATGTTC CGTAAGATTC
                                                                         500
      TTGACGAAGG TCAGGCTGGT GACAACGTTG GTCTCCTCCT GCGTGGTATC
                                                                         550
      GATAAGGATC AGATCAAGCG TGGTATGGTT ATCTCTCACC CGGGTAAGAT
                                                                         600
      TACTCCTCAC AAGAGATTTA AGGCCGAGGT TTATATCTTG AAGAAAGAAG AAGGTGGTCG CCACACTCCT TTCCACAACA AATATCGTCC GCAGTTCTAC ATCCGTACGC TTGACGTGAC CGGTGAAATC ACTCTTCCCG AAGGAACAGA
                                                                         650
                                                                         700
                                                                         750
      AATGGTTATG CCCGGTGACA ACGTAACGAT CACTGTAGAA CTCATCTACC
                                                                         800
      CGGTTGCATG TAATGTAG
                                                                         818
 30
      2) INFORMATION FOR SEQ ID NO: 142
 35
          (i) SEQUENCE CHARACTERISTICS:
                 LENGTH: 830 bases
             (A)
                    TYPE: Nucleic acid
             (B)
             (C)
                    STRANDEDNESS: Double
                    TOPOLOGY: Linear
             (D)
 40
         (ii) MOLECULE TYPE: Genomic DNA
       (vi)ORIGINAL SOURCE:
            (A)
                  ORGANISM: Pragia fontium
45
            (B)
                  STRAIN: ATCC 49100
       (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 142
    CGGCGCTATT CTGGTTGTTG CTGCAACTGA TGGTCCTATG CCTCAAACTC
                                                                        50
    GTGAGCACAT CCTGTTAGGY CGCCAGGTTG GCGTACCATA CATCATTGTG
50
                                                                       100
    TTCCTGAACA AGTGTGACAT GGTTGAYGAT GAAGAGCTGT TAGAACTGGT
                                                                       150
    TGAAATGGAA GTTCGTGAGC TTCTGTCTCA GTACGATTTC CCAGGTGATG
ATACTCCAGT TGTTCGTGGT TCTGCGCTGA AAGCGTTRGA AGGCGAAGCT
GAGTGGGAAG CTAAAATCAT TGAATTGGCT GACTCCCTGG AYAGCTACAT
                                                                       200
                                                                      250
55
    TCCACAGCCA GAGCGTGCAA TTGATAAGCC GTTCCTGCTG CCAATCGAAG
    ACGTTTTCTC AATCTCTGGC CGTGGTACAG TAGTAACCGG TCGTGTAGAG
    CGCGGTATCG TTAAAGTTGG TGAAGAAGTT GAAATCGTTG GTATCAAAGA
    TACTGTGAAA ACAACTTGTA CTGGCGTTGA AATGTTCCGT AARTTACTGG
                                                                     500
    ATGAAGGCCG TGCGGGTGAG AACGTTGGTG TTCTGCTGCG TGGTACTAAG
                                                                      550
60 CGTGATGAAA TCGAACGTGG TCAAGTATTA GCAAAACCAG GTTCAATCAA
                                                                     600
```

5	CCCGCATACT AACTTCGTAT CAGAAGTTTA TATCCTGAGC AAAGATGAAG GTGGTCGTCA TACTCCATTC TTCAAAGGCT ACCGTCCACA GTTYTACTTC CGTACAACTG ACGTGACCGG TACCATCGAA CTGCCAGAAG GCGTAGAGAT GGTAATGCCA GGTGATAACA TTCAGATGAC TGTAACTCTG ATTGCCCCAA TCGCGATGGA CGAAGGTTTA CGCTTCGCTA	650 700 750 800 830
10	2) INFORMATION FOR SEQ ID NO: 143 (i) SEQUENCE CHARACTERISTICS:	
15	(A) LENGTH: 821 bases(B) TYPE: Nucleic acid(C) STRANDEDNESS: Double(D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
20	<pre>(vi)ORIGINAL SOURCE: (A) ORGANISM: Prevotella melaninogenica (B) STRAIN: ATCC 25845</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 143	
25	TGGTGCTATC TTGGTTGTAG CTGCTACTGA TGGTCCTATG CCTCAGACTC GTGAGCACGT ATTGCTCGCT CGTCAGGTAA ACGTACCTCG CTTGGTTGTA TTCTTGAACA AGTGTGATAT GGTTGACGAT GCTGAGATGC TTGACCTCGT	50 100 150
30	TGAGATGAG GTTCGTGAGA TCCTCGAGCA GTACGGTTAT GAGGAGGATA CTCCTATTAT TCGTGGTTCT GCACTCGGTG CTTTGAACGG TGTTGAGAAG TGGGTAGACT CTGTAATGGA GCTCATGGAT ACTGTTGACA CTTGGATTGA AGAGCCAGAG CGTGAGATTG ACAAGCCATT CTTGATGCCT GTTGAGGACG TATTCTCTAT CACAGGTCGT GGTACTGTAG CTACTGGTCG TATCGAGACT	200 250 300 350 400
35	GGTATCTGTA AGGTAGGTGA TGAGGTTCAG TTGCTCGGTC TCGGTGAGGA CAAGAAGTCT GTTATCACTG GTGTTGAGAT GTTCCGTAAG AACCTTCCAA CAGGTCAGGC TGGTGACAAC GTAGGTCTCC TCCTTCGTGG TATCGATAAG GCTGAGGTTA AGCGTGGTAT GGTTGTTGTG CACCCAGGTG CTATTACTCC TCACGATCAC TTCAAGGCAT CTATCTATGT ATTGAAGAAG GAAGAGGGTG	450 500 550 600
40	GTCGTCATAC TCCATTCGGT AACAAGTATC GTCCACAGTT CTACCTCCGT ACAATGGACT GTACAGGTGA AATCCACCTC CCAGAGGGCG TTGAGATGGT TATGCCAGGT GACAACGTAG AGATTGAAGT TGTATTGATC TATAAGGTTG CTTTGAACGA GGGTCTTCGT T	700 750 800 821
45	2) INFORMATION FOR SEQ ID NO: 144	
10	(i) SEQUENCE CHARACTERISTICS:	
50	(A) LENGTH: 827 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
55	<pre>(vi)ORIGINAL SOURCE: (A) ORGANISM: Prevotella oralis (B) STRAIN: ATCC 33269</pre>	
60	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 144	

5	TGGTGCTATT CTTGTAGTAG CTGCTACTGA CGGTCCTATG CCTCAAACTC GTGAACACGT GCTTCTTGCT CGTCAGGTGA ACGTACCTCG TTTGGTCGTT TTCTTGAACA AGTGCGATAT GGTTGACGAT GAAGAAATGC TTGAGCTCGT AGAAATGGAG CTTCATGAAC TTCTCGAGCA GTATGAATAT GAGGAGGATA CTCCTATTGT TCGTGGTTCG GCACTTGGCG CTCTGAATGG AGTAGAGAAG TGGGTTGACA GCGTGATGAA GTTGATGGAT ACCGTTGATG AATGGATACA GGAACCACCG CGTGATCTT ATAAGCCTTT CTTGATGCCG GTAGAGGATG TATTTTCTAT TACTGGTCGT GGAACGGTTG TTACAGGCCG TATTGAAACT GGTAAGGTTA AGGTGGGCGA TGAAGTTCAA CTTCTTGGTC TCGGTGAAGA	200 250 300 350 400
10		450 500 550 600 650 700
15		750 800 827
20	2) INFORMATION FOR SEQ ID NO: 145	
25	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 833 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear 	
30	<pre>(ii)MOLECULE TYPE: Genomic DNA (vi)ORIGINAL SOURCE: (A) ORGANISM: Propionibacterium acnes (B) STRAIN: ATCC 6919</pre>	
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 145	
40	ACTGCCCTGT CGTTCGCATC TCCGCCTTCC AGGCCCTCCA GGGTGATGAG AAGTGGACCC AGTCGATCCT CGACCTCATG GACGCCGTGG ACGAGTACAT	50 100 150 200 250
45	CCCGCAGCCT GAGCGCGATC TCGACAAGCC CTTCCTTATG CCGATCGAGG ACGTCTTCAC CATCACCGGC CGTGGCACCG TTGTCACCGG TCGTGTCGAG CGCGGCGTCG TCAAGACTGG CGAAGAGGTC GAGATCGTCG GTATCCACGA GAAGACCCAG AAGACCACCG TTACCGGTGT CGAGATGTTC CGCAAGATCC TCGACGAGGG CCGCGCTGGT GAGAACGTCG GCGTTCTGCT CCGTGGCACC	350 400 450 500 550
50	AAGAAGGAGG ATGTCGTTCG CGGCATGGTC CTCTCCAAGC CTGGTTCCAC CACCCCCAC ACCGACTTCG AGGGCCAGGT CTACGTCCTC AAGAAGGATG AGGGTGGCCG CCACAAGCCG TTCTTCTCCC ACTACAGCCC CCAGTTCTAC TTCCGTACCA CGGACGTGAC TGGCACTGTT GAGCTCCCCG AGGGCACCGA GATGGTCATG CCTGGCGACA ACACCGACAT GACTGTGCAC CTGATTCACC CGGTTGCCAT GGAGGATCAG CTCAAGTTCG CTA	600 650 700 750 800 833
55		

2) INFORMATION FOR SEQ ID NO: 146

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 745 bases

```
(B)
                   TYPE: Nucleic acid
                   STRANDEDNESS: Double
             (C)
             (D)
                   TOPOLOGY: Linear
        (ii) MOLECULE TYPE: Genomic DNA
  5
        (vi)ORIGINAL SOURCE:
             (A) ORGANISM: Proteus mirabilis
                   STRAIN: ATCC 35659
 10
        (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 146
      CACAAACTCG TGAGCACATC CTGTTAGGTC GTCAGGTTGG TGTTCCTTAC
                                                                        50
      ATCATCGTAT TCCTGAACAA ATGTGACATG GTAGATGATG AAGAGCTGTT
                                                                       100
      AGAATTAGTT GAAATGGAAG TTCGTGAACT TCTGTCTCAA TACGATTTCC
                                                                       150
      CAGGTGATGA CACTCCAGTA ATCCGTGGTT CAGCGCTGAA AGCACTGGAA
                                                                       200
      GGCGAAGCAG AGTGGGAAGC AAAAATTGTT GAATTAGCAG AAGCACTGGA
                                                                       250
      TTCTTATATC CCAGAGCCAG AGCGTGCAAT TGACAAACCA TTCCTGTTAC
                                                                       300
      CAATCGAAGA TGTATTCTCA ATCTCAGGCC GTGGTACAGT AGTTACTGGT
                                                                       350
      CGTGTAGAGC GTGGTATCAT CAAAGTAGGT GATGAAGTTG AGATTGTTGG
 20
                                                                       400
      TATCAAAGAA ACCGCCAAAA CAACTTGTAC TGGCGTTGAA ATGTTCCGTA
                                                                       450
      AATTACTTGA CGAAGGTCGT GCAGGTGAGA ACGTAGGTGT TCTGCTGCGT
                                                                       500
      GGTACAAAAC GTGAAGAAAT CGAACGTGGA CAAGTACTGG CRAAACCAGG
                                                                       550
      CTCAATCAAC CCACACAACA AATTTGAATC AGAAGTTTAT ATTCTGAGCA
AAGATGAAGG TGGTCGTCAC ACTCCATTCT TCAAAGGCTA CCGTCCACAG
TTCTACTTCC GTACAACTGA CGTAACTGGT ACTATCGAAT TACCAGAAGG
                                                                       600
 25
                                                                       650
                                                                       700
      CGTAGAAATG GTAATGCCAG GCGACAACGT GAACATGATC GTTGA
                                                                       745
 30
      2) INFORMATION FOR SEQ ID NO: 147
          (i) SEQUENCE CHARACTERISTICS:
             (A) LENGTH: 829 bases
 35
             (B)
                   TYPE: Nucleic acid
                   STRANDEDNESS: Double
             (C)
             (D)
                   TOPOLOGY: Linear
        (ii) MOLECULE TYPE: Genomic DNA
 40
        (vi)ORIGINAL SOURCE:
                ORGANISM: Proteus penneri
           (A)
                 STRAIN: ATCC 33519
           (B)
45
       (xi) SEQUENCE DESCRIPTION: SEO ID NO: 147
    GGAGCTATCC TGGTTGTTGC TGCGACAGAT GGCCCAATGC CACAAACTCG
TGAGCACATC CTGTTAGGTC GTCAGGTTGG TGTTCCTTAC ATCATCGTAT
                                                                      50
                                                                     100
    TCCTGAACAA ATGTGACATG GTAGATGATG AAGAGTTACT GGAATTAGTM
                                                                     150
    GAAATGGAAG TTCGTGAACT TCTGTCTCAG TACGATTTCC CAGGTGATGA
                                                                     200
    CACTCCAGTA ATCCGTGGTT CAGCGCTGAA AGCACTGGAA GGCGAAGCAG
                                                                     250
    AGTGGGAAGC AAAAATTGTT GAATTAGCAG AAGCACTGGA TTCATACATC
                                                                     300
    CCAGARCCAG AGCGTGCAAT TGACAAACCA TTCCTGTTAC CAATTGAAGA
                                                                     350
    CGTATTCTCA ATTTCAGGCC GTGGTACAGT AGTAACAGGT CGTGTTGAGC
                                                                     400
    GTGGCGTAAT CAAAGTTGGT GAAGAAGTTG AAATCGTTGG TATTAAACCA
55
                                                                     450
    ACAGCGAAAA CAACTTGTAC TGGCGTTGAA ATGTTCCGTA AATTACTTGA
                                                                     500
    CGAAGGTCGT GCAGGTGAGA ACGTAGGTGT TCTTCTGCGT GGTACTAAAC
                                                                     550
    GTGAAGAAT CGAACGTGGA CAAGTACTGG CGAAACCAGG TTCAATCAAC
                                                                     600
    CCACACACTA AATTTGAATC AGAAGTTTAT ATTCTGAGCA AAGATGAAGG
                                                                     650
60
   TGGTCGTCAT ACTCCATTCT TCAAAGGCTA CCGTCCACAG TTCTACTTCC
                                                                     700
```

	GTACAACTGA CGTAACTGGT ACTATCGAAT TACCAGAAGG CGTAGAAATG GTAATGCCAG GTGACAACAT CAACATGATC GTTGAACTGA TTCACCCAAT CGCGATGGAC GACGGTTTAC GTTTCGCTA	750 800 829
5		
	2) INFORMATION FOR SEQ ID NO: 148	
10	(i)SEQUENCE CHARACTERISTICS: (A) LENGTH: 824 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
15	(ii) MOLECULE TYPE: Genomic DNA	
20	<pre>(vi)ORIGINAL SOURCE: (A) ORGANISM: Proteus vulgaris (B) STRAIN: ATCC 13315 (xi)SEQUENCE DESCRIPTION: SEQ ID NO: 148</pre>	
25	CGGAGCTATT CTGGTTGTTG CTGCGACTGA TGGCCCAATG CCACAAACTC GTGAGCACAT CCTGTTAGGT CGCCAGGTTG GTGTACCTTA CATCATCGTA TTCCTGAACA AATGTGACAT GGTTGATGAT GAAGAACTGC TGGAATTAGT AGAAATGGAA GTTCGTGAAC TTCTGTCTCA GTACGATTTC CCAGGTGATG ACACTCCAGT AATCCGTGGT TCAGCGCTGA AAGCACTGGA AGGCGAAGCT GAGTGGGAAG CAAAAATTGT TGAATTAGCA GAAGCACTGG ATTCTTACAT	50 100 150 200 250
30	CCCAGAACCA GAGCGTGCAA TTGACAAACC ATTCCTGCTG CCTATCGAAG ACGTATTCTC AATCTCTGGT CGTGGTACAG TAGTAACAGG CCGTGTAGAG CGTGGTGTTG TTAAAGTTGG TGAAGAAGTT GAGATTGTTG GTATTAAAGA CACAGTTAAA ACAACTTGTA CTGGCGTTGA AATGTTCCGT AAATTACTTG ACGAAGGTCG TGCAGGTGAG AACGTAGGTG TTCTTCTGCG TGGTACTAAA	350 400 450 500 550
35	CGTGAAGAAA TCGAACGTGG ACAAGTACTG GCTAAACCAG GTTCAATCAA GCCACACACT AAATTCGAAT CAGAAGTTTA TATCCTGAGC AAAGATGAAG GTGGTCGTCA CACTCCATTC TTCAAAGGTT ACCGTCCACA GTTCTACTTC CGTACAACTG ACGTAACTGG TACTATCGAA TTACCAGAAG GCGTAGAAAT GGTAATGCCA GGTGACAACA TCAACATGAT CGTTGAACTG ATTCACCCTA TCGCGTAGGA CGACGGTTTA CGTT	600 650 700 750 800 824
40		
	2) INFORMATION FOR SEQ ID NO: 149	
45	(i)SEQUENCE CHARACTERISTICS: (A) LENGTH: 745 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
50	(ii) MOLECULE TYPE: Genomic DNA	
55	<pre>(vi)ORIGINAL SOURCE: (A) ORGANISM: Providencia alcalifaciens (B) STRAIN: ATCC 9886</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 149	
60	CACAAACTCG TGAGCACATC CTGTTAGGTC GCCAAGTAGG TGTTCCTTAC ATCATCGTTT TCCTGAACAA ATGTGACATG GTAGACGACG AAGAACTGTT 90	50 100

	AGAATTAGTT	GAAATGGAAG	TTCGTGAACT	TCTGTCTCAG	TACGATTTCC	150
	CAGGCGATGA	CACTCCAGTT	GTTCGCGGTT	CAGCACTGAA	AGCGCTGGAA	200
	GGCAACCCAG	AGTGGGAAGC	AAAAATTGTT	GAATTAGCAG	GTTACCTGGA	250
	TTCTTACATC	CCAGAACCAG	AGCGTGCAAT	TGACAAGCCA	TTCCTGCTGC	300
5	CAATCGAAGA	CGTATTCTCA	ATCTCTGGTC	GTGGTACAGT	AGTAACAGGC	350
	CGTGTTGAGC	GTGGTATCAT	CAAAGTTGGT	GAAGAAGTTG	AAATCGTTGG	400
	TATTCAAGCG	ACTGCGAAAA	CAACTTGTAC	TGGCGTTGAA	ATGTTCCGTA	450
	AACTGCTGGA	TGAAGGTCGT	GCGGGTGAGA	ACGTTGGTGT	TCTGCTGCGT	500
	GGTACTAAAC	GTGAAGAAAT	TCAACGTGGT	CAAGTACTGG	CTAAACCAGG	550
10	TTCAATCAAG	CCACACACTC	AATTCGAATC	AGAAGTATAT	ATTCTGAGCA	600
	AAGATGAAGG	TGGTCGTCAT	ACTCCATTCT	TCAAAGGCTA	CCGTCCACAG	650
	TTCTACTTCC	GTACAACTGA	CGTAACCGGT	ACTATCGAAC	TGCCAGAAGG	700
	CGTAGAGATG	GTAATGCCAG	GCGACAACAT	CAACATGATC	GTGAC	745
15						
	2) TATEODMATT	ION FOR SEQ	TD NO. 150			
	2) INFORMAL.	LON FOR SEQ	1D NO: 150			
	(i) SEOUE	ENCE CHARACT	PERTSTTCS.			
20	(1/D1Q01	LENGTH: 83				
) <u></u> ;			•		

- (B) TYPE: Nucleic acid
- (C) STRANDEDNESS: Double
- (D) TOPOLOGY: Linear
- 25 (ii) MOLECULE TYPE: Genomic DNA
 - (vi)ORIGINAL SOURCE:
 - (A) ORGANISM: Providencia rettgeri
 - (B) STRAIN: ATCC 9250

30 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 150

	CGGTGCAATC CTGGTT	GTTG CTGCGACT	GA TGGCCCAATG	CCACAAACTC	50
	GTGAGCACAT CCTGTT	AGGY CGCCAAGT.	AG GTGTWCCTTA	CATCATCGTT	100
35	TTCCTGAACA AATGTG	ACAT GGTAGACG	AC GAAGAACTGT	TAGAATTAGT	150
	TGAAATGGAA GTTCGT	GAAC TTCTGTCT	CA ATACGATTIC	CCAGGCGACG	200
	ACACTCCAGT TGTCCG	TGGT TCAGCTCT	GA AAGCGCTGGA	AGGCAACCCA	250
	GAGTGGGAAG CGAAAA	TTGT TGAATTAG	CA GGTCACTTGG	ATTCTTACAT	300
	CCCAGAACCA GAGCGT	GCAA TTGACAAA	CC ATTCCTGCTG	CCAATCGAAG	350
40	ACGTATTCTC AATCTC	TGGT CGTGGTAC	AG TAGTAACAGG	CCGTGTTGAG	400
	CGTGGTATCA TCAAAG	TTGG TGAAGAAG'	IT GAAATCGTTG	GTATCCAAGA	450
	CACGGTTAAA ACAACTTG	TA CTGGCGTTGA	AATGTTCCGT A	AAACTGCTGG	500
	ACGAAGGTCG TGCGGGTG	AG AACGTTGGTG	TTCTGCTGCG T	rggtactaaa	550
	CGTGAAGAAA TTCAACGT	GG TCAAGTACTG	GCAAAACCAG (GTTCAATCAA	600
45	GCCACACACT AAATTCGA	AT CAGAAGTCTA	TATTCTGAGC A	AAAGATGAAG	650
	GTGGTCGTCA CACTCCAT	TC TTCAAAGGTI	ACCGTCCACA (GTTCTACTTC	700
	CGTACAACTG ACGTAACA	GG TACTATCGAA	CTGCCAGAAG (GCGTAGAGAT	7 50
	GGTAATGCCA GGTGATAA	CA TCAACATGAI	CGTTACCCTG A	ATCCACCCAA	800
	TCGCGATGGA CGACGGTT	TA CGTTTCGCAA	•		830
50					

2) INFORMATION FOR SEQ ID NO: 151

- 55 (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 826 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear

(ii) MOLECULE TYPE: Genomic DNA

(vi)ORIGINAL SOURCE:

- (A) ORGANISM: Providencia rustigianii
- 5 (B) STRAIN: ATCC 33673

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 151

	CGGTGCAATC	CTGGTTGTTG	CTGCGACTGA	TGGCCCAATG	CCACAAACTC	50
10	GTGAGCACAT	CCTGTTAGGT	CGCCAAGTAG	GTGTTCCTTA	CATCATCGTT	100
	TTCCTGAACA	AATGTGACAT	GGTTGACGAC	GAAGAACTGT	TAGAATTAGT	150
	TGAAATGGAA	GTTCGTGAAC	TTCTGTCTCA	GTACGATTTC	CCAGGCGACG	200
	ACACTCCAGT	TGTTCGYGGT	TCAGCACTGA	AAGCGCTGGA	AGGTATCCCT	250
	GAGTGGGAAG	CGAAAATTGT	TGAATTAGCC	GGTTACCTGG	ACAGCTACAT	300
15	CCCAGAACCA	GAGCGCGCAA	TTGACCGTCC	ATTCCTGCTG	CCAATCGAAG	350
	ACGTATTCTC	AATCTCTGGT	CGTGGTACAG	TAGTAACAGG	SCGTGTTGAG	400
	CGTGGTATCG	TTAAAGTTGG	TGAAGAAGTT	GAAATCGTTG	GTATCCAAGA	450
	CACRGTTAAA	ACAACTTGTA	CTGGCGTTGA	AATGTTCCGT	AAACTGCTTG	500
	ACGAAGGTCG	TGCTGGTGAG	AACGTTGGTG	TTTTACTGCG	TGGTACTAAG	550
20	CGTGAAGAAA	TTCAACGTGG	TCAAGTACTG	GCTAAACCAG	GTTCAATCAA	600
	GCCACACACT	ACTTTTGAAT	CAGAAGTTTA	TATTCTGAGC	AAAGATGAAG	650
	GTGGTCGTCA	TACTCCATTC	TTCAAAGGCT	ACCGTCCACA	GTTCTACTTC	700
	CGTACAACTG	ACGTAACCGG	TACTATCGAA	CTGCCAGAAG	GCGTAGAGAT	750
	GGTAATGCCA	GGCGACAACA	TCAACATGAT	CGTGACACTG	ATTCACCCAA	800
25	TCGCGATGGA	TGATGGTTTA	CGTTTC			826

2) INFORMATION FOR SEQ ID NO: 152

30

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 830 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
- 35 (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: Genomic DNA

(vi) ORIGINAL SOURCE:

- 40 (A) ORGANISM: Providencia stuartii
 - (B) STRAIN: ATCC 33672

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 152

45	GTGAGCACAT		CGGCAACAGA CGTCAGGTTG GGTAGACGAC	GCGTTCCTTA GAAGAGCTGC	CCACAAACTC CATCATCGTG TGGAACTGGT	50 100 150
	TGAAATGGAA ACACTCCAGT		TTCTGTCTCA	ATACGATTTC AAGCGTTGGA	CCAGGTGATG	200 250
50	GAGTGGGAAG		TGAACTAGCA	GAAGCACTGG	ACAGCTACAT	300
	CCCAGAGCCA	GAGCGTGCAA	TTGACAAGCC	ATTCCTGCTG	CCAATCGAAG	350
	ACGTATTCTC	AATCTCAGGT	CGTGGTACAG	TAGTCACAGG	CCGTGTTGAG	400
	CGTGGTATCA	TCAAAGTTGG	TGAAGAAGTT	GAAATCGTAG	GTATCAAAGA	450
	GACTGCGAAA	ACCACTTGTA	CTGGCGTTGA	AATGTTCCGT	AAACTGCTGG	500
5 5	ACGAAGGCCG	TGCGGGTGAG	AACGTAGGTG	TTCTGCTGCG	TGGTACTAAG	550
	CGTGAAGAAA	TCGAACGTGG	TCAAGTTCTG	GCGAAACCAG	GTTCAATCAA	600
	GCCACACACA	ACTTTCGAAT	CAGAAGTTTA	TATTCTGAGC	AAAGATGAAG	650
	GTGGTCGTCA	CACGCCATTC	TTCAAAGGYT	ACCGTCCACA	GTTCTACTTC	700
	CGTACAACTG	ACGTAACAGG	TACTATCGAA	CTGCCAGAAG	GCGTAGAGAT	750
60	GGTAATGCCA	GGCGACAACG	TGAACATGAA	AGTAACTCTG	ATTCACCCAA	800

TCGCGATGGA CGATGGTTTG CGTTTCGCAA

```
2) INFORMATION FOR SEQ ID NO: 153
  5
         (i) SEQUENCE CHARACTERISTICS:
                 LENGTH: 827 bases
            (B)
                  TYPE: Nucleic acid
 10
            (C)
                  STRANDEDNESS: Double
            (D)
                  TOPOLOGY: Linear
        (ii) MOLECULE TYPE: Genomic DNA
 15
        (vi)ORIGINAL SOURCE:
            (A) ORGANISM: Pseudomonas aeruginosa
            (B)
                  STRAIN: ATCC 35554
        (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 153
 20
      CCTGGTTTGC TCGGCTGCCG ACGGCCCCAT GCCGCAGACC CGCGAGCACA
                                                                   50
      TCCTGCTGTC CCGCCAGGTA GGCGTTCCCT ACATCGTCGT GTTCCTGAAC
                                                                  100
      AAAGCCGACA TGGTCGACGA CGCCGAGCTG CTGGAACTGG TCGAGATGGA
                                                                  150
      AGTTCGCGAT CTGCTGAACA CCTACGACTT CCCGGGCGAC GACACTCCGA
                                                                  200
      TCATCATCGG TTCCGCGCTG ATGGCGCTGG AAGGCAAGGA TGACAACGGC
 25
                                                                  250
      ATCGGCGTAA GCGCCGTGCA GAAGCTGGTA GAGACCCTGG ACTCCTACAT
                                                                  300
      TCCGGAGCCG GTTCGTGCCA TCGACCAGCC GTTCCTCATG CCGATCGAAG.
                                                                  350
      ACGTGTTCTC GATCTCCGGT CGCGGTACCG TGGTAACCGG TCGTGTAGAG
                                                                  400
      CGCGGCATCA TCAAGGTCCA GGAAGAGTG GAAATCGTCG GCATCAAGGC
                                                                  450
      GACCACCAAG ACCACCTGCA CCGGCGTTGA AATGTTCCGC AAGCTGCTCG
 30
                                                                  500
      ACGAAGGTCG TGCTGGTGAG AACGTTGGTA TCCTGCTGCG TGGCACCAAG
                                                                  550
      CGTGAAGACG TAGAGCGTGG CCAGGTACTG GCCAAGCCGG GCACCATCAA
                                                                  600
      GCCGCACACC AAGTTCGAGT GCGAAGTGTA CGTGCTGTCC AAGGAAGAAG
                                                                  650
      GTGGTCGTCA CACCCCGTTC TTCAAGGGCT ACCGTCCGCA GTTCTACTTC
                                                                  700
 35
      CGTACCACKG ACGTGACCGG TAMCTGCGAG CTGCCGGAAG GCGTAGAGAT
                                                                  750
      GGTAATGCCG GGCGACAACA TCAAGATGGT TGTCACCCTG ATCGCTCCGA
                                                                  800
      TCGCCATGGA AGATGGCTGC GTTCGCG
                                                                  827
 40
      2) INFORMATION FOR SEQ ID NO: 154
       (i) SEQUENCE CHARACTERISTICS:
                LENGTH: 841 bases
          (A)
                TYPE: Nucleic acid
45
          (B)
          (C)
                STRANDEDNESS: Double
                TOPOLOGY: Linear
      (ii) MOLECULE TYPE: Genomic DNA
50
      (vi) ORIGINAL SOURCE:
          (A) ORGANISM: Pseudomonas fluorescens
          (B)
                STRAIN: ATCC 13525
55
      (xí) SEQUENCE DESCRIPTION: SEO ID NO: 154
    CGGCGCAATC CTGGTTTGCT CGGCCGCTGA TGGTCCGATG CCACAAACCC
    GTGAACACAT CCTGCTGTCC CGTCAGGTTG GCGTTCCGTA CATCGTGGTT
                                                                100
    TACCTGAACA AGGCTGACCT GGTAGACGAC GCTGAGCTGC TGGAACTGGT
60
    TGAGATGGAA GTGCGCGATC TGCTGAGCAC TTACGACTTC CCAGGCGACG
                                                               200
```

10	TCTGCGTGAC ACTACCGTCA CCACCTGCAC CGGTGTTGAA ATGTTCCGTA AGCTGCTCGA CGAAGGTCGT GCTGGCGAGA ACTGCGGCGT TCTGCTGCGT GGTACCAAGC GTGACGACGT TGAGCGTGGC CAGGTTCTGG TTAAGCCAGG TTCGGTTAAG CCGCACACCA AGTTCGAAGC TGAAGTCTAC GTACTGAGCA	400 450 500 550 600 650 700 750
15	2) INFORMATION FOR SEQ ID NO: 155	
20	(i)SEQUENCE CHARACTERISTICS: (A) LENGTH: 841 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
25	<pre>(ii) MOLECULE TYPE: Genomic DNA (vi) ORIGINAL SOURCE: (A) ORGANISM: Pseudomonas stutzeri (B) STRAIN: ATCC 17588</pre>	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 155	
35	CGGCGCGATC CTGGTCTGCT CGGCTGCTGA CGGCCCCATG CCGCAGACTC GCGAGCACAT CCTGCTGTCC CGTCAGGTTG GTGTTCCGTA CATCGTCGTG TTCCTGAACA AGGCCGACAT GGTTGATGAC GCCGAGCTGC TCGAGCTGGT CGAGATGGAA GTTCGYGACC TGCTGTCGAC CTACGACTTC CCGGGTGAYG ACACTCCGAT CATCATCGGC TCCGCGCTGA TGGCGCTGAA CGGCGAAGAC GACAACGAGC TCGGCACCAC TGCGGTGAAG AAGCTGGTCG AGACCCTGGA	50 100 150 200 250 300
40	CAGCTACATT CCCGAGCCGG TTCGTGCCAT CGACAAGCCG TTCCTGATGC CGATCGAAGA CGTGTTCTCG ATCTCCGGTC GCGGCACSGT GGTAACCGGT CGCGTAGAGC GCGCATCGT CAAGGTTCAG GAAGAGATCG AGATCGTCGG TCTGCGTCCG ACCACCAAGA CTACCTGCAC CGGCGTTGAG ATGTTCCGCA AGCTGCTCGA YGARGGTCGT GCTGCGAGAACTGCGGYGT GCTGCTGCGT	350 400 450 500
45	GGCACCAAGC GTGACGAAGT GGAGCGTGGT CAGGTTCTGG CCAAGCCGGG CACCATCAAG CCGCACACCA AGTTCGAAGC CGAAGTGTAC GTGCTGTCCA AGGAAGAAGG TGGTCGTCAC ACCCCGTTCT TYAAGGGCTA CCGTCCKCAG TTCTACTTCC GTACCACTGA YGTGACYGGW TCGTGCGARC TGCCGGAAGG CGTCGAGATG GTAATGCCGG GCGACAACGT GAAGATGGTT GTCACCCTGA TCAAGCCGAT CGCCATGGAA GACGGCCTGC GCTTCGCGAT T	600 650 700 750 800 841
50		
	2) INFORMATION FOR SEQ ID NO: 156	
55	(i)SEQUENCE CHARACTERISTICS: (A) LENGTH: 833 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
60	(ii) MOLECULE TYPE: Genomic DNA	

```
(vi)ORIGINAL SOURCE:
                  ORGANISM: Psychrobacter phenylpyruvicus
            (A)
                  STRAIN: ATCC 23333
            (B)
  5
        (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 156
                                                                      50
      GCTATTCTAG TAGTATCAGC AACTGACGGT CCAATGCCAC AAACACGTGA
      GCACATTCTA TTATCACGTC AGGTTGGTGT ACCATACATC ATCGTATTCA
                                                                     100
      TGAACAAATG TGACATGGTA GATGACGAAG AGTTACTAGA GCTAGTAGAA
                                                                     150
 10
      ATGGAAGTGC GTGAATTACT TTCAGACTAC GACTTCCCAG GTGATGACAC
                                                                     200
      TCCAATCATC AAAGGTTCAG CTTTAGAAGC GTTAAATGGT AACGACGGTA
                                                                     250
      AGTACGGTGA GCCAGCAGTT ATCGAACTAC TAAACACTCT AGACACTTAC
                                                                     300
      ATTCCAGAGC CAGAGCGTGA CATCGATAAG CCATTCCTAA TGCCAATCGA
                                                                     350
      AGACGTATTC TCAATCTCAG GTCGTGGTAC AGTAGTAACA GGCCGTGTTG
                                                                     400
 15
      AATCTGGTAT CATCAAAGTT GGTGACGAAA TCGAAATCGT TGGTATCAAA
                                                                     450
      GACACAGTTA AAACAACTTG TACTGGTATC GAGATGTTCC GTAAGTTACT
                                                                     500
      AGACGAAGGT CGTGCTGGTG AGAACTGTGG TGTACTATTA CGTGGTACTA
                                                                     550
      AGCGTGAAGA CGTACAACGT GGTCAAGTAC TTGCTAAGCC AGGTTCAATC
                                                                     600
      ACTCCACACA CCAACTTCGA CGCAGAAGTA TACGTACTAT CAAAAGAAGA
 20
                                                                     650
      AGGTGGTCGT CACACTCCAT TCTTAAATGG TTACCGTCCA CAGTTCTACT TCCGTACTAC TGACGTAACA GGTGCAATCA CGTTACAAGA AGGTACTGAA
                                                                     700
                                                                     750
      ATGGTAATGC CAGGCGATAA CGTTGAGATG AGCGTAGAGC TAATCCACCC
                                                                     800
      AATCGCTAGG ACAAAGGTTT ACGTTTCGCA ATC
                                                                     833
 25
      2) INFORMATION FOR SEQ ID NO: 157
 30
         (i) SEQUENCE CHARACTERISTICS:
                  LENGTH: 825 bases
            (A)
                   TYPE: Nucleic acid
             (B)
                   STRANDEDNESS: Double
             (C)
                   TOPOLOGY: Linear
             (D)
 35
        (ii) MOLECULE TYPE: Genomic DNA
        (vi) ORIGINAL SOURCE:
            (A)
                   ORGANISM: Rahnella aquatilis
 40.
                   STRAIN: ATCC 33071
       (X1) SEQUENCE DESCRIPTION: SEQ 1D NO: 157
    GGCGCTATCC TGGTTGTTGC TGCAACTGAC GGCCCTATGC CTCAGACTCG
                                                                    50
45
    TGAGCACATC CTGCTGGGTC GCCAGGTTGG CGTTCCATAC ATGATCGTGT
                                                                    100
    TCATGAACAA ATGCGACATG GTAGATGACG AAGAGCTGCT GGAACTGGTA
                                                                    150
    GAAATGGAAG TTCGCGAACT TCTGTCTGCT TACGAATTCC CAGGCGACGA
CATCCCGGTC ATCAAAGGTT CAGCGCTGAA AGCACTGGAA GGCGATGCTA
                                                                    200
                                                                    250
    CTTGGGAAGC GAAAATCATC GAACTGGCAG AAGCACTGGA CAGCTACATT
                                                                    300
    CCATTGCCAG AGCGTGCTAT CGATAAGCCA TTCCTGCTGC CAATCGAAGA
                                                                    350
50
    CGTATTCTCC ATCTCCGGTC GTGGTACAGT GGTTACCGGT CGTGTAGAGC
                                                                    400
    GCGGTATCGT TAAAGTGGGC GAAGAAGTTG AAATCGTCGG TATCAAGGAC
                                                                    450
    ACTGTTAAGT CTACTTGTAC TGGCGTTGAA ATGTTCCGCA AACTGCTGGA
                                                                    500
    CGAAGGCCGT GCGGGCGAGA ACGTGGGTGT TCTGCTGCGT GGTATCAAGC
                                                                    550
    GTGAAGACAT CGAACGTGGT CAGGTTCTGG CTAAACCAGG TTCAATCAAA
                                                                   600
55
    CCACACCA AGTTTGATTC CGAAGTGTAC ATCCTGAGCA AAGATGAAGG
                                                                    650
    TGGTCGTCAC ACTCCATTCT TCAAAGGCTA CCGTCCACAG TTCTACTTCC
                                                                    700
    GTACAACTGA CGTGACCGGT ACTATCGAAC TGCCAGAAGG CGTTGAGATG
                                                                    750
    GTTATGCCTG GTGACAACGT GAACATGGTT GTTACCCTGA TCCACCCAAT
                                                                    800
                                                                    825
    CGCGATGGAT GACGGTCTGC GTTTC
60
```

```
2) INFORMATION FOR SEQ ID NO: 158
 5
        (i) SEQUENCE CHARACTERISTICS:
                 LENGTH: 830 bases
            (A)
                  TYPE: Nucleic acid
            (B)
                  STRANDEDNESS: Double
            (C)
                  TOPOLOGY: Linear
 10
            (D)
        (ii) MOLECULE TYPE: Genomic DNA
        (vi)ORIGINAL SOURCE:
                  ORGANISM: Salmonella choleraesuis subsp. arizonae
 15
            (A)
                  STRAIN: ATCC 13314
            (B)
        (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 158
     CGGCGCGATC CTGGTTGTTG CTGCGACTGA CGGCCCGATG CCGCAGACCC
                                                                     50
 20
     GTGAGCACAT CCTGCTGGGC CGTCAGGTAG GCGTTCCGTA CATCATCGTG
                                                                    100
     TTCCTGAACA AATGCGACAT GGTTGATGAC GAAGAGCTGC TGGAACTGGT
                                                                    150
     TGAAATGGAA GTTCGTGAAC TTCTGTCTCA GTACGACTTC CCGGGCGACG
ATACGCCGAT CGTTCGTGGT TCTGCTCTGA AAGCGCTGGA AGGCGACGCA
                                                                    200
                                                                    250
     GAGTGGGAAG CGAAAATCAT CGAACTGGCT GGCTTCCTGG ACTCTTACAT
                                                                    300
 25
     CCCGGAACCA GAGCGTGCGA TTGACAAGCC GTTCCTGCTG CCGATCGAAG
                                                                    350
     ACGTATTCTC CATCTCCGGT CGTGGTACCG TTGTTACCGG TCGTGTAGAA
                                                                    400
     CGCGGTATCA TCAAAGTGGG CGAAGAAGTT GAAATCGTTG GTATCAAAGA
                                                                    450
     GACTCAGAAG TCTACCTGTA CTGGCGTTGA AATGTTCCGC AAACTGCTGG
                                                                    500
     ACGAAGGCCG TGCCGGTGAG AACGTAGGTG TTCTGCTGCG TGGTATCAAA
                                                                    550
     CGTGAAGAAA TCGAACGTGG TCAGGTACTG GCTAAGCCGG GCACCATCAA
                                                                    600
     GCCGCACACC AAGTTCGAAT CTGAAGTGTA CATTCTGTCC AAAGATGAAG
                                                                    650
     GCGGCCGTCA TACTCCGTTC TTCAAAGGCT ACCGTCCGCA GTTCTACTTC
                                                                    700
      CGTACTACTG ACGTGACTGG CACCATCGAA CTGCCGGAAG GCGTGGAGAT
                                                                    750
     GGTAATGCCG GGCGACAACA TCAAAATGGT TGTTACCCTG ATCCACCCGA
                                                                    800
      TCGCGATGGA CGACGGTCTG CGTTTCGCAA
                                                                     830
 40
     2) INFORMATION FOR SEQ ID NO: 159
       (1) SEQUENCE CHARACTERISTICS:
                LENGTH: 832 bases
           (A)
                 TYPE: Nucleic acid
           (B)
45
                 STRANDEDNESS: Double
           (C)
           (D)
                TOPOLOGY: Linear
      (ii) MOLECULE TYPE: Genomic DNA
      (vi) ORIGINAL SOURCE:
50
                ORGANISM: Salmonella choleraesuis subsp. choleraesuis
           serotype Choleraesuis
                 STRAIN: ATCC 7001
     (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 159
55
    CGGCGCGATC CTGGTTGTTG CTGCGACTGA CGGYCCGATG CCGCAGACCC
                                                                    50
    GTGAGCACAT CCTGCTGGGT CGTCAGGTAG GCGTTCCGTA CATCATCGTG
                                                                   100
    TTCCTGAACA AATGCGACAT GGTTGATGAC GAAGAGCTGC TGGAACTGGT
                                                                   150
    TGAAATGGAA GTTCGTGAAC TTCTGTCTCA GTACGACTTC CCGGGCGACG
                                                                   200
```

						_	
	ACACGCCGAT	CGTTCGTGGT	TCTGCTCTGA	AAGCGCTGGA	AGGTGACGCA		250
	GAGTGGGAAG	CGAAAATCAT	CGAACTGGCT	GGCTTCCTGG	ATTCTTACAT		300
	TCCGGAACCA	GAGCGTGCGA	TTGACAAGCC	GTTCCTGCTG	CCGATCGAAG		350
	ACGTATTCTC	CATCTCCGGT	CGTGGTACCG	TTGTTACCGG	TCGTGTAGAG		400
5	CGCGGTATCA	TCAAAGTGGG	YGAAGAAGTT	GAAATCGTTG	GTATCAAAGA		450
	GACTCAGAAG	TCTACCTGTA	CTGGCGTTGA	AATGTTCCGC	AAACTGTTGG		500
	ACGAAGGCCG	TGCCGGTGAG	AACGTAGGTG	TTCTGCTGCG	TGGTATCAAA		550
	CGTGAAGAAA	TCGAACGTGG	TCAGGTACTG	GCTAAGCCGG	GCACCATCAA		600
	GCCGCACACC	AAGTTCGAAT	CTGAAGTGTA	CATTCTGTCC	AAAGATGAAG		650
10	GCGGCCGTCA	TACTCCGTTC	TTCAAAGGCT	ACCGTCCGCA	GTTCTACTTC		700
•	CGTACTACTG	ACGTGACTGG	CACCATCGAA	CTGCCGGAAG	GCGTAGAGAT		750
	GGTAATGCCG	GGCGACAACA	TCAAAATGGT	TGTTACCCTG	ATCCACCCGA		800
	TCGCAATGGA	CGACGGTCTG	CGTTTCGCAA	TC			832

15

- 2) INFORMATION FOR SEQ ID NO: 160
 - (i) SEQUENCE CHARACTERISTICS:
- 20 (A) LENGTH: 807 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
- 25 (ii) MOLECULE TYPE: Genomic DNA
 - (vi)ORIGINAL SOURCE:
 - (A) ORGANISM: Salmonella choleraesuis subsp. diarizonae
 - (B) STRAIN: ATCC 43973

30

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 160

	CCTGGTTGTT	GCTGCGACTG	ACGGCCCGAT	GCCGCAGACC	CGTGAGCACA	50
	TCCTGCTGGG	TCGTCAGGTA	GGCGTTCCGT	ACATTATCGT	GTTCCTGAAC	100
35	AAATGCGACA	TGGTTGATGA	CGAAGAGCTG	CTGGAACTGG	TAGAAATGGA	150
	AGTTCGTGAA	CTTCTGTCTC	AGTACGACTT	CCCGGGCGAC	GACACGCCAA	200
	TCGTTCGTGG	TTCTGCTCTG	AAAGCGCTGG	AAGGCGACGC	AGAGTGGGAA	250
	GCGAAAATCA	TCGAACTGGC	TGGCTTCCTG	GATTCTTACA	TCCCGGAACC	300
	AGAGCGTGCG	ATTGACAAGC	CGTTCCTGCT	GCCGATCGAA	GACGTATTCT	350
40	CCATCTCCGG	TCGTGGTACC	GTTGTTACCG	GTCGTGTAGA	GCGCGGTATC	400
	ATCAAAGTGG	GCGAAGAAGT	TGAAATCGTT	GGTATCAAAG	AGACTCAGAA	450
	GTCTACCTGT	ACTGGCGTTG	AAATGTTCCG	CAARCTGCTG	GACGAAGGCC	500
	GTGCWGGTGA	GAACGTAGGT	GTTCTGCTGC	GTGGTATCAA	ACGTGAAGAA	550
	ATCGAACGTG	GTCAGGTACT	GGCTAAGCCG	GGCACCATCA	AGCCGCACAC	600
45	CAAGTTCGAA	TCTGAAGTGT	ATATTCTGTC	CAAAGATGAA	GGCGGCCGTC	650
	ATACTCCGTT	CTTCAAAGGC	TACCGTCCGC	AGTTCTACTT	CCGTACCACT	700
	GACGTGACTG	GCACCATCGA	ACTGCCGGAA	GGCGTGGAGA	TGGTAATGCC	750
	GGGCGACAAC	ATCAAAATGG	TTGTTACCCT	GATCCACCCG	ATCGCGATGG	800
	ACGACGG					807

50

- 2) INFORMATION FOR SEQ ID NO: 161
- 55 (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 832 bases
 - (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double
 - (C) STRANDEDNESS: Do(D) TOPOLOGY: Linear

(ii) MOLECULE TYPE: Genomic DNA

(vi)ORIGINAL SOURCE:

5

- (A) ORGANISM: Salmonella choleraesuis subsp. choleraesuis serotype Heidelberg
- (B) STRAIN: ATCC 8326
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 161

10	CGGCGCGATC	CTGGTTGTTG	CTGCGACTGA	CGGCCCGATG	CCGCAGACCC	50
	GTGAGCACAT	CCTGCTGGGT	CGTCAGGTAG	GCGTTCCGTA	CATCATCGTG	100
	TTCCTGAACA	AATGCGACAT	GGTTGATGAC	GAAGAGCTGC	TGGAACTGGT	150
	TGAAATGGAA	GTTCGTGAAC	TTCTGTCTCA	GTACGACTTC	CCGGGCGACG	200
	ACACTCCGAT	CGTTCGTGGT	TCTGCTCTGA	AAGCGCTGGA	AGGCGACGCA	250
15	GAGTGGGAAG	CGAAAATCAT	CGAACTGGCT	GGCTTCCTGG	ATTCTTACAT	300
	CCCGGAACCA	GAGCGTGCGA	TTGACAAGCC	GTTCCTGCTG	CCGATCGAAG	350
	ACGTATTCTC	CATCTCCGGT	CGTGGTACCG	TTGTTACCGG	TCGTGTAGAA	400
	CGCGGTATCA	TCAAAGTGGG	CGAAGAAGTT	GAAATCGTTG	GTATCAAAGA	450
	GACTCAGAAG	TCTACCTGTA	CTGGCGTTGA	AATGTTCCGC	AAACTGCTGG	500
20	ACGAAGGCCG	TGCCGGTGAG	AACGTAGGTG	TTCTGCTGCG	TGGTATCAAA	550
	CGTGAAGAAA	TCGAACGTGG	TCAGGTACTG	GCTAAGCCGG	GCACCATCAA	600
	GCCGCACACC	AAGTTCGAAT	CTGAAGTGTA	CATTCTGTCC	AAAGATGAAG	650
	GCGGCCGTCA	YACTCCGTTC	TTCAAAGGCT	ACCGTCCGCA	GTTCTACTTC	700
	CGTACTACTG	ACGTGACTGG	CACCATCGAA	TTGCCGGAAG	GCGTAGAGAT	750
25	GGTAATGCCG	GGCGACAACA	TCAAAATGGT	TGTTACCCTG	ATCCACCCGA	800
	TCGCGATGGA	CGACGGTCTG	CGTTTCGCAA	TC		832

- 30 2) INFORMATION FOR SEQ ID NO: 162
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 807 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: Genomic DNA
- 40 (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Salmonella choleraesuis subsp. houtenae
 - (B) STRAIN: ATCC 43974
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 162

45						
	CCTGGTTGTT	GCTGCGACTG	ACGGCCCGAT	GCCGCAGACC	CGTGAGCACA	50
	TCCTGCTGGG	TCGTCAGGTA	GGCGTTCCGT	ACATCATCGT	GTTCCTGAAC	100
	AAATGCGACA	TGGTTGATGA	CGAAGAGCTG	CTGGAACTGG	TAGAAATGGA	150
	AGTTCGTGAA	CTTCTGTCTC	AGTACGATTT	CCCGGGCGAC	GACACGCCGA	200
50	TCGTGCGTGG	TTCTGCTCTG	AAAGCGCTGG	AAGGCGACGC	AGAATGGGAA	250
	GCGAAAATCA	TCGAACTGGC	TGGCTACCTG	GATTCTTACA	TCCCGGAACC	300
	AGAGCGTGCG	ATTGACAAAC	CGTTCCTGCT	GCCGATCGAA	GACGTATTCT	350
	CTATCTCCGG	TCGTGGTACC	GTTGTTACCG	GTCGTGTAGA	GCGCGGTATC	400
	ATCAAAGTGG	GCGAAGAAGT	TGAAATCGTT	GGTATCAAAG	AGACTCAGAA	450
5 5	GTCGACCTGT	ACTGGCGTTG	AAATGTTCCG	CAAACTGCTG	GACGAAGGCC	500
	GTGCTGGCGA	GAACGTAGGT	GTTCTGCTGC	GTGGTATCAA	ACGTGAAGAA	550
	ATCGAACGTG	GTCAGGTACT	GGCTAAGCCG	GGCACCATCA	AGCCGCACAC	600
	CAAGTTCGAA	TCTGAAGTGT	ACATTCTGTC	CAAAGATGAA	GGCGGCCGTC	650
	ATACTCCGTT	CTTCAAAGGC	TACCGTCCGC	AATTCTACTT	CCGTACGACT	700
60	GACGTGACTG	GCACCATCGA	ACTGCCGGAA	GGCGTGGAGA	TGGTAATGCC	750

	GGGCGACAAC ATCAAAATGG TTGTTACCCT GATCCACCCG ATCGCGATGG ACGACGG	800 807
5	2) INFORMATION FOR SEQ ID NO: 163	
10	(i)SEQUENCE CHARACTERISTICS: (A) LENGTH: 827 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
15	(ii) MOLECULE TYPE: Genomic DNA(vi) ORIGINAL SOURCE:(A) ORGANISM: Salmonella choleraesuis subsp. indica(B) STRAIN: ATCC 43976	3
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 163	
25	CGCGATCCTG GTTGTTGCTG CGACTGACGG CCCGATGCCG CAGACCCGTG AGCACATCCT GCTGGGTCGT CAGGTAGGCG TTCCGTACAT CATCGTGTTC CTGAACAAAT GCGACATGGT TGATGACGAA GAGCTGCTGG AACTGGTTGA AATGGAAGTT CGTGAACTTC TGTCTCAGTA CGACTTCCCG GGTGACGACA CGCCGATCGT GCGTGGTTCT GCTCTGAAAG CGCTGGAAGG CGACGCAGAG TGGGAAGCGA AAATCATCGA ACTGGCTGGC TTCCTGGATT CTTACATTCC GGAACCAGAG CGTGCGATTG ACAAGCCGTT CCTGCTGCCG ATCGAAGACG	50 100 150 200 250 300 350
30	TATTCTCCAT CTCCGGTCGT GGTACYGTTG TTACCGGTCG TGTAGAGCGC GGTATCATCA AAGTGGGCGA AGAAGTTGAA ATCGTTGGTA TCAAAGAGAC TCAGAAGTCT ACCTGTACTG GCGTTGAAAT GTTCCGCAAA CTGCTGGACG AAGGCCGTGC CGGTGAGAAC GTAGGTGTTC TGCTGCGTGG TATCAAACGT GAAGAAATCG AACGTGGTCA GGTACTGGCT AAGCCGGGCA CCATCAAGCC	400 450 500 550 600
35	GCACACCAAG TTCGAATCTG AAGTGTACAT TCTGTCCAAA GATGAAGGCG GCCGTCATAC TCCGTTCTTC AAAGGCTACC GTCCGCAGTT CTACTTCCGT ACTACTGACG TGACTGGCAC CATCGAACTG CCGGAAGGCG TAGAGATGGT AATGCCGGGC GACAACATCA AAATGGTTGT TACCCTGATC CATCCGATCG CRATGGACGA CGGTCTGCGT TTCGCAA	650 700 750 800 827
40		
	2) INFORMATION FOR SEQ ID NO: 164 (i) SEQUENCE CHARACTERISTICS:	
45	(A) LENGTH: 807 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
50	(ii) MOLECULE TYPE: Genomic DNA	
55	<pre>(vi)ORIGINAL SOURCE: (A) ORGANISM: Salmonella choleraesuis subsp. salama (B) STRAIN: ATCC 43972 (xi)SEQUENCE DESCRIPTION: SEQ ID NO: 164</pre>	ae
	CCTGGTTGTT GCTGCGACTG ACGGCCCGAT GCCGCAGACC CGTGAGCACA	50
60	TCCTGCTGGG TCGTCAGGTA GGCGTTCCGT ACATCATCGT GTTCCTGAAC AAATGCGACA TGGTTGATGA CGAAGAGCTG CTGGAACTGG TAGAAATGGA 99	100 150

						-
	AGTTCGTGAA	CTTCTGTCTC	AGTACGACTT	CCCGGGCGAC	GACACGCCGA	200
	TCGTGCGTGG	TTCCGCTCTG	AAAGCGCTGG	AAGGCGAMGC	TGAGTGGGAA	250
	GMGAAAATCA	TCGAACTGGC	TGGCTWCCTG	GATTCTTACA	TTCCGGAACC	300
	AGAGCGTGCG	ATTGACAAGC	CGTTCCTGCT	GCCGATCGAA	GACGTATTCT	350
5	CCATCTCCGG	TCGTGGTACC	GTTGTTACCG	GTCGTGTAGA	GCGCGGTATC	400
	ATCAAAGTGG	GCGAAGAAGT	TGAAATCGTT	GGTATCAAAG	AGACTCAGAA	450
	GTCTACCTGT	ACTGGCGTTG	AAATGTTCCG	CAAACTGCTG	GACGAAGGCC	500
	GTGCCGGTGA	GAACGTAGGT	GTTCTGCTGC	GTGGTATCAA	ACGTGAAGAA	550
	ATCGAACGTG	GTCAGGTACT	GGCTAAGCCG	GGCACCATCA	AGCCGCACAC	600
10	CAAGTTCGAA	TCTGAAGTGT	ACATTCTGTC	CAAAGATGAA	GGCGGCCGTC	650
	ATACTCCGTT	CTTCAAAGGC	TACCGTCCGC	AGTTCTACTT	CCGTACCACT	700
	GACGTGACTG	GCACCATCGA	ACTGCCGGAA	GGCGTGGAGA	TGGTAATGCC	750
	GGGCGACAAC	ATCAAAATGG	TTGTTACCCT	GATCCACCCG	ATCGCGATGG	800
	ACGACGG					807
7 =						

15

2) INFORMATION FOR SEQ ID NO: 165

- 20 (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 832 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear

25

30

- (ii) MOLECULE TYPE: Genomic DNA
- (vi) ORIGINAL SOURCE:
- (A) ORGANISM: Salmonella choleraesuis subsp. choleraesuis serotype Typhi
 - (B) STRAIN: ATCC 10749
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 165

35	CGGCGCGATC	CTGGTTGTTG	CTGCGACTGA	CGGCCCGATG	CCGCAGACCC	50
	GTGAGCACAT	CCTGCTGGGT	CGTCAGGTAG	GCGTTCCGTA	CATCATCGTG	100
	TTCCTGAACA	AATGCGACAT	GGTTGATGAC	GAAGAGCTGC	TGGAACTGGT	150
	TGAAATGGAA	GTTCGTGAAC	TTCTGTCTCA	GTACGACTTC	CCGGGCGACG	200
	ACACGCCGAT	CGTTCGTGGT	TCTGCTCTGA	AAGCGCTGGA	AGGCGACGCA	250
40	GAGTGGGAAG	CGAAAATCAT	CGAACTGGCT	GGCTTCCTGG	ATTCTTACAT	300
	CCCGGAACCA	GAGCGTGCGA	TTGACAAGCC	GTTCCTGCTG	CCGATCGAAG	350
	ACGTATTCTC	CATCTCCGGT	CGTGGTACCG	TTGTTACCGG	TCGTGTAGAA	400
	CGCGGTATCA	TCAAAGTGGG	CGAAGAAGTT	GAAATCGTTG	GTATCAAAGA	450
	GACTCAGAAG	TCTACCTGTA	CTGGCGTTGA	AATGTTCCGC	AAACTGCTGG	500
45	ACGAAGGCCG	TGCNGGTGAG	AACGTAGGTG	TTCTGCTGCG	TGGTATCAAA	550
	CGTGAAGAAA	TCGAACGTGG	TCAGGTACTG	GCTAAGCCGG	GCACCATCAA	600
	GCCGCACACY	AAGTTCGAAT	CTGAAGTGTA	CATTCTGTCC	AAAGATGAAG	650
	GCGGCCGTCA	TACTCCGTTC	TTCAAAGGCT	ACCGTCCGCA	GTTCTACTTC	700
	CGTACTACTG	ACGTGACTGG	CACCATCGAA	CTGCCGGAAG	GCGTAGAGAT	750
50	GGTAATGCCG	GGCGACAACA	TCAAAATGGT	TGTTACCCTG	ATCCACCCGA	800
	TCGCAATGGA	CGACGGTCTG	CGTTTCGCAA	TC		832

55 2) INFORMATION FOR SEQ ID NO: 166

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 817 bases
 - (B) TYPE: Nucleic acid
- 60 (C) STRANDEDNESS: Double

(D) TOPOLOGY: Linear

(ii) MOLECULE TYPE: Genomic DNA

- 5 (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Serratia fonticola
 - (B) STRAIN: DSM 4576
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 166

10						
	CGGCGCTATC	CTGGTTGTAG	CTGCGACTGA	CGGCCCTATG	CCTCAGACTC	50
	GTGAGCACAT	CCTGCTGGGT	CGTCAGGTTG	GCGTTCCTTA	CATCATCGTA	100
	TTCATGAACA	AATGCGACAT	GGTTGATGAT	GAAGAGCTGC	TGGAACTGGT	150
	AGAAATGGAA	GTTCGTGAAC	TTCTGTCTGC	TTATGACTTC	CCTGGTGATG	200
15	ACCTGCCGGT	TGTTCGTGGT	TCAGCGCTGA	AAGCACTGGA	AGGCGAAGCT	250
15	GAGTGGGAAG	CTAAAATCAT	CGAGCTGGCC	GGTCACCTGG	ATTCCTACAT	300
	CCCAGAACCA	GAGCGTGCTA	TCGATCAGCC	GTTCCTGCTG	CCAATCGAAG	350
	ACGTATTCTC	CATCTCCGGT	CGTGGTACCG	TAGTTACCGG	TCGTGTTGAG	400
	CGCGGTATCG	TTAAAGTTGG	CGAAGAAGTT	GAAATCGTTG	GTATCAAAGA	450
20	CACCGTTAAG	TCTACCTGTA	CTGGCGTTGA	AATGTTCCGC	AAACTGCTGG	500
20	ACGAAGGCCG	TGCTGGTGAG	AACGTTGGTG	TTCTGCTGCG	TGGTATCAAG	550
•		TCGAACGTGG	TCAGGTACTG	GCTAAACCAG	GTTCCATCAA	600
	CGTGAAGACA	CAGTTCGATT	CAGAAGTGTA	TATCCTGAGC	AAAGAAGAAG	650
	GCCGCACACT		TTCAAAGGCT	ACCGTCCACA	GTTCTACTTC	700
	GTGGTCGTCA	TACTCCATTC			GCGTAGAGAT	750
25	CGTACAACTG	ACGTGACCGG	TACCATCGAA	CTGCCAGAAG		
	GGTAATGCCA	GGCGATAACG	TGAACATGGT	TGTTACCCTG	ATCCACCCAA	800
	TCGCTATGGA	CCAAGGC				817

30
2) INFORMATION FOR SEQ ID NO: 167

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 787 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: Genomic DNA

40 (vi)ORIGINAL SOURCE:

- (A) ORGANISM: Serratia liquefaciens
- (B) STRAIN: ATCC 27592
- 45 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 167

50	GCTGCGACTG TCGTCAGGTT TGGTTGATGA CTTCTGTCTG	ACGGCCCAAT GGCGTTCCTT TGAAGAGCTG CTTACGACTT	GCCTCAGACC TCATCATCGT CTGGAACTGG CCCTGGTGAT	CGTGAGCACA ATTCATGAAC TAGAAATGGA GACCTGCCGG	AAATGCGACA AGTTCGTGAA	50 100 150 200
50		AAAGCACTGG	AAGGCGAAGC	TGAGTGGGAA	GCTAAAATCA	250
	TCGAGCTGGC	CGGTTACCTG	GATTCTTACA	TCCCAGAACC	AGAGCGTGCT	300
	ATCGACAAGC	CGTTCCTGCT	GCCAATCGAA	GACGTCTTCT	CCATCTCCGG	350
	TCGTGGTACC		GTCGTGTTGA	GCGCGGTATC	GTTAAAGTTG	400
55	GCGAAGAAGT	TGAAATCGTT	GGTATCAAAG	ACACCGTTAA	GTCTACCTGT	450
	ACTGGCGTTG	AAATGTTCCG	CAAACTGCTG	GACGAAGGCC	GTGCTGGTGA	500
	GAACGTTGGT			GCGTGAAGAC	ATCGAACGTG	550
		GGCTAAACCA	GGTTCAATCA	AGCCACACAC	CAAGTTCGAC	600
		ACATCCTGAG		GGTGGTCGTC	ATACTCCATT	650
60	CTTCAAAGGC	TACCGTCCAC	AGTTCTACTT	CCGTACAACT	GACGTGACCG	700

	GTACCATCGA ACTGCCAGAA GGCGTTGAAA TGGTAATGCC AGGTGACAAC GTGAACATGG TTGTTACCCT GATCCACCCA ATCGCGA	750 787
5	2) INFORMATION FOR SEQ ID NO: 168	
10	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 745 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear 	
15	<pre>(ii) MOLECULE TYPE: Genomic DNA (vi) ORIGINAL SOURCE: (A) ORGANISM: Serratia marcescens (B) STRAIN: ATCC 13880</pre>	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 168	
25	GCCTCAGACT CGTGAGCACA TCCTGCTGGG TCGTCAGGTT GGCGTTCCTT TCATCATCGT ATTCATGAAC AAATGCGACA TGGTTGATGA TGAAGAGCTG YTGGAACTGG TAGAAATGGA AGTTCGCGAA CTGCTGTCCG CTTACGACTT CCCTGGCGAC GACCTGCCGG TAATCCGCGG TTCCGCGCTG AAAGCGCTGG AAGGCGAAGC TGAGTGGGAA GCGAAAATCA TCGAACTGGC CGAAGCCCTG GACAGCTACA TCCCAGAGCC AGAGCGTGCT ATCGACAAGC CGTTCCTGCT GCCAATCGAA GACGTATTCT CCATCTCCGG TCGTGGTACC GTTGTTACCG	50 100 150 200 250 300 350
30	GTCGTGTTGA GCGCGGCATC ATCAAAGTTG GCGAAGAAGT TGAAATCGTT GGTATCAAAG ACACCGTTAA GTCTACCTGT ACTGGCGTTG AAATGTTCCG CAAACTGCTG GACGAAGGCC GTGCTGGTGA GAACGTAGGT GTTCTGCTGC GTGGTATCAA ACGTGAAGAA ATCGAACGTG GTCAGGTACT GGCTAAGCCA GGCTCCATCA AGCCGCACAC CCAGTTCGAA TCTGAAGTGT ACATCCTGAG	400 450 500 550 600
35	CAAAGATGAA GGTGGTCGTC ACACKCCATT CTTCAAAGGC TACCGTCCAC AGTTCTACTT CCGTACCACT GACGTGACCG GTACCATCGA ACTGCCAGAA GGCGTAGAGA TGGTAATGCC AGGCGACAAC GTGAACATGG TTGTA	650 700 745
40	2) INFORMATION FOR SEQ ID NO: 169	
45	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 829 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear 	
	(ii) MOLECULE TYPE: Genomic DNA	
50	<pre>(vi)ORIGINAL SOURCE: (A) ORGANISM: Serratia odorifera (B) STRAIN: ATCC 33077</pre>	
55	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 169	
	GGCGCAATCC TGGTTGTTGC TGCGACTGAC GGCCCTATGC CTCAGACCCG TGAGCACATC CTGCTGGGTC GCCAGGTTGG CGTTCCTTTC ATCATCGTGT TCATGAACAA ATGTGACATG GTTGATGACG AAGAGCTGCT GGAACTGGTA GAAATGGAAG TTCGCGAGCT GCTGTCTGCT ACCGATTCC CTGGCGACGA	50 100 150 200 250
60	CCTGCCAGTA ATCCGCGGTT CTGCGCTGAA AGCGCTGGAA GGCGAAGCAG	250

PCT/CA00/01150 WO 01/23604

5	AGTGGGAAGC TAAGATTGTA GAACTGGCTG AAGCGCTGGA TTCTTACATC CCAGAACCAG AGCGTGCTAT CGACAAGCCG TTCCTGCTGC CAATCGAAGA CGTATTCTCC ATCTCCGGTC GTGGTACCGT TGTTACCGGT CGTGTTGAGC GCGGTATCAT CAAAGTTGGC GAAGAAGTTG AAATCGTTGG TATCAAAGAC ACCGTTAAGT CTACCTGTAC CGGTGTAGAA ATGTTCCGCA AACTGCTGGA CGAAGGCCGT GCTGGTAGAA ACGTTGGTG TCTGCTGCGT GGTATCAAGC GTGAAGACAT CGAACGTGGT CAGGTTCTGG CTAAACCAGG TTCTATCAAG CCGCACACCA AATTCGACTC AGAAGTGTAC ACCATCGAAC CCGTCCACAG TTCTACTTCC GTACTACTGA CGTGACCGGT ACCATCGAAC TGCCAGAAGG CGTAGAGATG GTAATGCCAG GCGATAACGT GAACATGGTT GTTACCCTGA TTCAACCCAAT CGCAATGGAC GACGGTCTGC GTTTCGCAA	300 350 400 450 500 550 650 700 750 800 829
15	2) INFORMATION FOR SEQ ID NO: 170	
20	(i)SEQUENCE CHARACTERISTICS: (A) LENGTH: 830 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
25	 (ii) MOLECULE TYPE: Genomic DNA (vi) ORIGINAL SOURCE: (A) ORGANISM: Serratia plymuthica (B) STRAIN: DSM 4540 	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 170	
35	CGGCGCAATC CTGGTTGTTG CTGCGACTGA CGGCCCAATG CCTCAGACCC GTGAGCACAT CCTGCTGGGT CGTCAGGTTG GCGTTCCTTT CATCATCGTA TTCATGAACA AATGCGACAT GGTTGATGAT GAAGAGCTGC TGGAACTGGT AGAAATGGAA GTTCGTGAAC TTCTGTCTGC TTACGACTTC CCTGGTGATG ACCTGCCGGT TGTTCGTGGT TCAGCGCTGA AAGCACTGGA AGGCGAACCA GAGTGGGAAG CTAAAATCAT CGAGCTGGT GGTTTCCTGG ATTCTTACAT CCCAGGACCA GAGCGTGCTA TCGACAAGCC GTTCCTGCTG CCAATCGAAG	50 100 150 200 250 300 350 400
40	ACGTATTCTC CATCTCCGGT CGTGGTACCG TTGTTACCGG TCGTGTTGAG CGCGGTATCG TTAAAGTTGG CGAAGAAGTT GAAATCGTGG GTATCAAAGA CACCGTTAAG TCTACCTGTA CCGGCGTTGA AATGTTCCGC AAACTGCTGG ACGAAGGCCG TGCTGGTGAG AACGTGGGTG TTCTGCTGCG TGGTATCAAG CGCGAAGATA TCGAACGTGG TCAGGTCCTG GCTAAACCAG GTTCAATCAA	450 500 550 600
45	GCCACACAC AAGTTTGACT CAGAAGTGTA CATCCTGAGC AAAGAAGAAG GTGGTCGTCA TACTCCATTC TTCAAAGGCT ACCGTCCACA GTTCTACTTC CGTACAACTG ACGTGACCGG TACCATCGAA CTGCCAGAAG GCGTAGAGAT GGTAATGCCA GGTGACAACG TGAACATGGT TGTAACCCTG ATCCACCCAA TCGCGATGGA CGACGGCCTG CGTTTCGCAA	650 700 750 800 830
50		
	2) INFORMATION FOR SEQ ID NO: 171	
	(i) SEQUENCE CHARACTERISTICS:	

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 829 bases
(B) TYPE: Nucleic acid
(C) STRANDEDNESS: Double
(D) TOPOLOGY: Linear

(ii) MOLECULE TYPE: Genomic DNA 50

(vi) ORIGINAL SOURCE:

- (A) ORGANISM: Serratia rubidaea
- (B) STRAIN: ATCC 27593

5

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 171

	GGCGCAATCC	TGGTAGTAGC	AGCGACTGAC	GGCCCAATGC	CTCAGACCCG	50
	TGAGCACATC	CTGCTGGGCC	GCCAGGTAGG	CGTACCTTAC	ATCATCGTAT	100
10	TCATGAACAA	ATGCGACATG	GTAGATGATG	AAGAGCTGCT	GGAACTGGTA	150
	GAGATGGAAG	TTCGCGAACT	GCTGTCTGCT	TACGACTTCC	CAGGCGACGA	200
	CCTGCCGGTA	ATCCGTGGTT	CCGCGCTGAA	AGCGCTGGAA	GGCGAAGCCG	250
	AGTGGGAAGC	GAAAATCGTT	GAGCTGGCAG	AAGCGCTGGA	CAGCTACATC	300
	CCAGAGCCAG	AGCGTGCTGT	AGACAAGCCG	TTCCTGCTGC	CAATCGAAGA	350
15	CGTATTCTCC.	ATCTCCGGTC	GTGGTACCGT	TGTTACCGGT	CGTGTAGAGC	400
	GCGGTATCAT	CAAAGTTGGT	GAAGAAGTAG	AAATCGTAGG	TATCAAAGAC	450
	ACCGTTAAGT	CTACCTGTAC	TGGCGTAGAA	ATGTTCCGCA	AACTGCTGGA	500
	CGAAGGCCGT	GCTGGTGAGA	ACGTAGGTGT	TCTGCTGCGT	GGTATCAAGC	550
	GTGAAGAAAT	CGAACGTGGT	CAGGTACTGG	CGAAGCCAGG	TTCAATCAAG	600
20	CCGCACACCC	AGTTCGAATC	TGAAGTGTAC	ATTCTGTCCA	AAGACGAAGG	650
	CGGCCGTCAT	ACTCCGTTCT	TCAAAGGCTA	CCGTCCACAG	TTCTACTTCC	700
	GTACAACTGA	CGTGACCGGT	ACCATCGAAC	TGCCAGAAGG	CGTAGAGATG	750
	GTAATGCCAG	GCGACAACGT	GAACATGAAA	GTTACTCTGA	TTCACCCAAT	800
	CGCAATGGAC	GACGGTCTGC	GTTTCGCAA			829

25

- 2) INFORMATION FOR SEQ ID NO: 172
- 30 (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 826 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear

- (ii) MOLECULE TYPE: Genomic DNA
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Shigella boydii
- 40 (B) STRAIN: ATCC 9207
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 172

	CGGCGCGATC	YTGGTAGTTG	CTGCGACTGA	CGGCCCGATG	CCGCAGACTC	50
45	GTGAGCACAT	CCTGCTGGGT	CGTCAGGTAG	GCGTTCCGTA	CATCATCGTG	100
	TTCCTGAACA	AATGCGACAT	GGTTGATGAC	GAAGAGCTGC	TGGAACTGGT	150
	TGAAATGGAA	GTTCGTGAAC	TTCTGTCTCA	GTACGACTTC	CCGGGCGACG	200
			TCTGCTCTGA			250
	GAGTGGGAAG	CGAAAATCCT	GGAACTGGCT	GGCTTCCTGG	ATTCTTACAT	300
50	TCCGGAACCA	GAGCGTGCGA	TTGACAAGCC	GTTCCTGCTG	CCGATCGAAG	350
	ACGTATTCTC	CATCTCCGGT	CGTGGTACCG	TTGTTACCGG	TCGTGTAGAA	400
	CGCGGTATCA	TCAAAGTTGG	TGAAGAAGTT	GAAATCGTTG	GTATCAAAGA	450
	GACTCAGAAG	TCTACCTGTA	CTGGCGTTGA	AATGTTCCGC	AAACTGCTGG	500
	ACGAAGGCCG	TGCTGGTGAG	AACGTAGGTG	TTCTGCTGCG	TGGTATCAAA	550
55	CGTGAAGAAA	TCGAACGTGG	TCAGGTACTG	GCTAAGCCGG	GCACCATCAA	600
	GCCGCACACC	AAGTTCGAAT	CTGAAGTGTA	CATTCTGTCC	AAAGATGAAG	650
	GCGGCCGTCA	TACTCCGTTC	TTCAAAGGCT	ACCGTCCGCA	GTTCTACTTC	700
	CGTACTACTG	ACGTGACTGG	TACCATCGAA	CTGCCGGAAG	GCGTAGAGAT	750
	GGTAATGCCG	GGCGACAACA	TCAAAATGGT	TGTTACCCTG	ATCCACCCGA	800
50	TCGCGATGGA	CGACGGTCTG	CGTTTC			826

_	2) INFORMATION FOR SEQ ID NO: 173	
5	(i)SEQUENCE CHARACTERISTICS: (A) LENGTH: 818 bases	
	(R) TYPE: Nucleic acid	
10	(C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
10	•	
	(ii) MOLECULE TYPE: Genomic DNA	
15	<pre>(vi)ORIGINAL SOURCE: (A) ORGANISM: Shigella dysenteriae</pre>	
12	(B) STRAIN: ATCC 11835	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 173	
20	TGGTAGTTGC TGCGACTGAC GGCCCGATGC CGCAGACTCG TGAGCACATC	50
	CTGCTGGGTC GTCAGGTAGG CGTTCCGTAC ATCATCGTGT TCCTGAACAA ATGCGACATG GTTGATGACG AAGAGCTGCT GGAACTGGTT GAAATGGAAG	, 100 150
	TTCGTGAACT TCTGTCTCAG TACGACTTCC CGGGCGACGA CACTCCGATC	200
2.5	GTTCGTGGTT CTGCTCTGAA AGCGCTGGAA GGCGACGCAG AGTGGGAAGC GAAAATCCTG GAACTGGCTG GCTTCCTGGA TTCYTAYATT CCGGAACCAG	250 300
25	AGCGTGCGAT TGACAAGCCG TTCCTGCTGC CGATCGAAGA CGTATTCTCC	350
	ATCTCCGGTC GTGGTACCGT TGTTACCGGT CGTGTAGAAC GCGGTATCAT	400 450
	CAAAGTTGGT GAAGAAGTTG AAATCGTTGG TATCAAAGAG ACYCAGAAGT CTACCTGTAC TGGCGTTGAA ATGTTCCGCA AACTGCTGGA CGAAGGCCGT	500
30	GCTGGTGAGA ACGTAGGTGT TCTGCTGCGT GGTATCAAAC GTGAAGAAAT	550
	CGAACGTGGT CAGGTACTGG CGAAGCCRGG CACCATCAAG CCGCACACCA AGTTCGAATC TGAAGTGTAC ATTCTGTCCA AAGATGAAGG CGGCCGTCAT	600 650
	ACTCCGTTCT TCAAAGGCTA CCGTCCGCAG TTCTACTTCC GTACTACTGA	700
	CGTGACTGGT ACCATCGAAC TGCCGGAAGG CGTAGAGATG GTAATGCCGG	750
35	GCGACAACAT CAAAATGGTT GTTACCCTGA TCCACCCGAT CGCGATGGAC GACGGTCTGC GTTTCGCA	800 818
40	2) INFORMATION FOR SEQ ID NO: 174	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 806 bases	
45	(B) TYPE: Nucleic acid (C) STRANDEDNESS: Double	
	(D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
50	(vi)ORIGINAL SOURCE:	
	(A) ORGANISM: Shigella flexneri (B) STRAIN: ATCC 12022	
55	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 174	
	CCTGGTAGTT GCTGCGACTG ACGGCCCGAT GCCGCAGACT CGTGAGCACA	50 100
	TCCTGCTGGG TCGTCAGGTA GGCGTTCCGT ACATCATCGT GTTCCTGAAC AAATGCGACA TGGTTGATGA CGAAGAGCTG CTGGAACTGG TTGAAATGGA	150
	AGTTCGTGAA CTTCTGTCTC AGTACGACTT CCCGGGCGAC GACACTCCGA	200
60	TCGTTCGTGG TTCTGCTCTG AAAGCGCTGG AAGGCGACGC AGAGTGGGAA	250
	105	

AGAGCG CCATCT	CCGG TCGTGGTA	GC CGTTCCTGC CC GTTGTTACC	T GCCGATCGAA G GTCGTGTAGA	GACGTATTCT ACGCGGTATC	300 350 400
ATCAAA 5 GTCTAC GTGCTG ATCGAA	CTGT ACTGGCGT GTGA GAACGTAG	TG AAATGTTCC GT GTTCTGCTG	G GGIAICAAAG G CAAACTGCTG C GTGGTATCAA G GGCACCATCA	ACGTGAAGAA	450 500 550 600
CAAGTT ATACTC 10 GACGTG	CGAA TCTGAAGI CGTT CTTCAAAC	GT ACATTCTGT GC TACCGTCCG		GGCGGMCGTC CCGTACTACT	650 700 750
	CAAC ATCAAAAT	·			800 806

15

- 2) INFORMATION FOR SEQ ID NO: 175
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 832 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: Genomic DNA

25

20

- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Shigella sonnei
 - (B) STRAIN: ATCC 29930
- 30 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 175

	CGGCGCGATC	CTGGTAGTTG	CTGCGACTGA	CGGCCCGATG	CCGCAGACTC	50
	GTGAGCACAT	CCTGCTGGGT	CGTCAGGTAG	GCGTTCCGTA	CATCATCGTG	100
	TTCCTGAACA	AATGCGACAT	GGTTGATGAC	GAAGAGCTGC	TGGAACTGGT	150
35	TGAAATGGAA	GTTCGTGAAC	TTCTGTCTCA	GTACGACTTC	CCGGGCGACG	200
	ACACTCCGAT	CGTTCGTGGT	TCTGCTCTGA	AAGCGCTGGA	AGGCGACGCA	250
	GAGTGGGAAG	CGAAAATCCT	GGAACTGGCT	GGCTTCCTGG	ATTCTTACAT	300
	TCCGGAACCA	GAGCGTGCGA	TTGACAAGCC	GTTCCTGCTG	CCGATCGAAG	350
	ACGTATTCTC	CATCTCCGGT	CGTGGTACCG	TTGTTACCGG	TCGTGTAGAA	400
40	CGCGGTATCA	TCAAAGTTGG	TGAAGAAGTT	GAAATCGTTG	GTATCAAAGA	450
	GACTCAGAAG	TCTACCTGTA	CTGGCGTTGA	AATGTTCCGC	AAACTGCTGG	500
	ACGAAGGCCG	TGCTGGTGAG	AACGTAGGTG	TTCTGCTGCG	TGGTATCAAA	550
	CGTGAAGAAA	TCGAACGTGG	TCAGGTACTG	GCTAAGCCGG	GCACCATCAA	600
	GCCGCACACC	AAGTTCGAAT	CTGAAGTGTA	CATTCTGTCC	AAAGATGAAG	650
45	GCGGYCGTCA	TACTCCGTTC	TTCAAAGGCT	ACCGTCCGCA	GTTCTACTTC	700
	CGTACTACTG	ACGTGACTGG	TACCATCGAA	CTGCCGGAAG	GCGTAGAGAT	750
	GGTAATGCCG	GGCGACAACA	TCAAAATGGT	TGTTACCCTG	ATCCACCCGA	800
	TCGCGATGGA	CGACGGTCTG	CGTTTCGCAA	TC		832

50

- 2) INFORMATION FOR SEQ ID NO: 176
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 716 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
- 60 (ii) MOLECULE TYPE: Genomic DNA

(vi)ORIGINAL SOURCE:

- (A) ORGANISM: Staphylococcus aureus
- (B) STRAIN: ATCC 13301

5

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 176

	TCTGCTGCTG	ACGGTCCAAT	GCCACAAACT	CGTGAACACA	TTCTTTTATC	50
	ACGTAACGTT	GGTGTACCAG	CATTAGTAGT	ATTCTTAAAC	AAAGTTGACA	100
10	TGGTTGACGA	TGAAGAATTA	TTAGAATTAG	TAGAAATGGA	AGTTCGTGAC	150
			CCCAGGTGAC			200
	TTCAGCATTA	AAAGCTTTAG	AAGGCGATGC	TCAATACGAA	GAAAAAATCT	250
	TAGAATTAAT	GGAAGCTGTA	GATACTTACA	TTCCAACTCC	AGAACGTGAT	300
			GCCAGTTGAG			350
15	TCGTGGTACT	GTTGCTACAG	GCCGTGTTGA	ACGTGGTCAA	ATCAAAGTTG	400
	GTGAAGAAGT	TGAAATCATC	GGTTTACATG	ACACATCTAA	AACAACTGTT	450
	ACAGGTGTTG	AAATGTTCCG	TAAATTATTA	GACTACGCTG	AAGCTGGTGA	500
			GTGGTGTTGC			550
			GGTTCAATTA			600
20	GCAGAAGTAT	ACGTATTATC	AAAAGACGAA	GGTGGACGTC	ACACTCCATT	650
	CTTCTCAAAC	TATCGTCCAC	AATTCTATTT	CCGTACTACT	GACGTAACTG	700
	GTGTTGTTCA	CTTACC			•	716

25

- 2) INFORMATION FOR SEQ ID NO: 177
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 719 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: Genomic DNA

35

30

- (vi)ORIGINAL SOURCE:
 - (A) ORGANISM: Staphylococcus aureus
 - (B) STRAIN: ATCC 29247
- 40 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 177

	ጥጥር ተጥጥጥ ነገር	ACGTAACGTT	CCTCTACCAC	C 3 TO TO 3 C TO 3 C TO 5	7 7777 7777 7 7 7 7	F 0
						50
	AAAGTTGACA	TGGTTGACGA	TGAAGAATTA	TTAGAATTAG	TAGAAATGGA	100
	AGTTCGTGAC	TTATTAAGCG	AATATGACTT	CCCAGGTGAC	GATGTACCTG	150
45	TAATCGCTGG	TTCAGCATTA	AAAGCTTTAG	AAGGCGATGC	TCAATACGAA	200
	GAAAAAATCT	TAGAATTAAT	GGAAGCTGTA	GATACTTACA	TTCCAACTCC	250
	AGAACGTGAT	TCTGACAAAC	CATTCATGAT	GCCAGTTGAG	GACGTATTCT	300
	CAATCACTGG	TCGTGGTACT	GTTGCTACAG	GCCGTGTTGA	ACGTGGTCAA	350
	ATCAAAGTTG	GTGAAGAAGT	TGAAATCATC	GGTTTACATG	ACACATCTAA	400
50	AACAACTGTT	ACAGGTGTTG	AAATGTTCCG	TAAATTATTA	GACTACGCTG	450
	AAGCTGGTGA	CAACATTGGT	GCATTATTAC	GTGGTGTTGC	TCGTGAAGAC	500
			AGCTGCTCCT			550
	TGAATTCAAA	GCAGAAGTAT	ACGTATTATC	AAAAGACGAA	GGTGGACGTC	600
	ACACTCCATT	CTTCTCAAAC	TATCGTCCAC	AATTCTATTT	CCGTACTACT	650
55	GACGTAACTG	GTGTTGTTCA	CTTACCAGAA	GGTMCTGAAA	TGGTAATGCC	700
	TGGTGATAAC	GTTGAAATG				719

60 2) INFORMATION FOR SEQ ID NO: 178

	(i)SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 625 bases	
	(B) TYPE: Nucleic acid	
5	(C) STRANDEDNESS: Double	
	(D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
10	(vi)ORIGINAL SOURCE:	
	(A) ORGANISM: Staphylococcus aureus	
	(B) STRAIN: ATCC 33591	
	(xi)SEQUENCE DESCRIPTION: SEQ ID NO: 178	
15		
	GTGAACACAT TCTTTTATCA CGTAACGTTG GTGTACCAGC ATTAGTAGTA	50
	TTCTTAAACA AAGTTGACAT GGTTGACGAT GAAGAATTAT TAGAATTAGT	100
	AGAAATGGAA GTTCGTGACT TATTAAGCGA ATATGACTTC CCAGGTGACG	150
	ATGTACCTGT AATCGCTGGT TCAGCATTAA AAGCTTTAGA AGGCGATGCT	200
20	CAATACGAAG AAAAAATCTT AGAATTAATG GAAGCTGTAG ATACTTACAT	250
	TCCAACTCCA GAACGTGATT CTGACAAACC ATTCATGATG CCAGTTGAGG	300
	ACGTATTCTC AATCACTGGT CGTGGTACTG TTGCTACAGG CCGTGTTGAA	350
	CGTGGTCAAA TCAAAGTTGG TGAAGAAGTT GAAATCATCG GTTTACATGA	400
	CACATCTAAA ACAACTGTTA CAGGTGTTGA AATGTTCCGT AAATTATTAG	450
25	ACTACGCTGA AGCTGGTGAC AACATTGGTG CATTATTACG TGGTGTTGCT	500
		550
		600
	GTGGACGTCA CACTCCATTC TTCTC	625
30		
	2) INFORMATION FOR SEQ ID NO: 179	
•	2, Intoldantion for one of the notation	
	(i) SEQUENCE CHARACTERISTICS:	
35	(A) LENGTH: 704 bases	
	(B) TYPE: Nucleic acid (C) STRANDEDNESS: Double	
	(C) STRANDEDNESS: Double	
	(D) TOPOLOGY: Linear	
40	(ii) MOLECULE TYPE: Genomic DNA	
	(vi)ORIGINAL SOURCE:	
	(A) ORGANISM: Staphylococcus aureus	
	(B) STRAIN: ATCC 43300	
45	(=, ===================================	
	(xi)SEQUENCE DESCRIPTION: SEQ ID NO: 179	
	GTTGGTGTAC CAGCATTAGT AGTATTCTTA AACAAAGTTG ACATGGTTGA	50
	CGATGAAGAA TTATTAGAAT TAGTAGAAAT GGAAGTTCGT GACTTATTAA	100
50	GCGAATATGA CTTCCCAGGT GACGATGTAC CTGTAATCGC TGGTTCAGCA	150
50	TTAAAAGCTT TAGAAGGCGA TGCTCAATAC GAAGAAAAAA TCTTAGAATT	200
	AATGGAAGCT GTAGATACTT ACATTCCAAC TCCAGAACGT GATTCTGACA	250
•	AACCATTCAT GATGCCAGTT GAGGACGTAT TCTCAATCAC TGGTCGTGGT	300
	ACTGTTGCTA CAGGCCGTGT TGAACGTGGT CAAATCAAAG TTGGTGAAGA	350
5 5	AGTTGAAATC ATCGGTTTAC ATGACACATC TAAAACAACT GTTACAGGTG	400
		450
	GGTGCATTAT TACGTGGTGT TGCTCGTGAA GACGTACAAC GTGGTCAAGT	500
	ATTAGCTGCT CCTGGTTCAA TTACACCACA TACTGAATTC AAAGCAGAAG	550
	TATACGTATT ATCAAAAGAC GAAGGTGGAC GTCACACTCC ATTCTTCTCA	600
60		650
	108	

	TCACTTACCA GAAGGTACTG AAATGGTAAT GCCTGGTGAT AACGTTGAAA TGAC	700 704
5	2) INFORMATION FOR SEQ ID NO: 180	
10	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 730 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear 	
15	(ii) MOLECULE TYPE: Genomic DNA(vi) ORIGINAL SOURCE:(A) ORGANISM: Staphylococcus aureus subsp. aureus(B) STRAIN: ATCC 6538	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 180	
25	GTGAACACAT TCTTTTATCA CGTAACGTTG GTGTACCAGC ATTAGTAGTA TTCTTAAACA AAGTTGACAT GGTTGACGAT GAAGAATTAT TAGAATTAGT AGAAATGGAA GTTCGTGACT TATTAAGCGA ATATGACTTC CCAGGTGACG ATGTACCTGT AATCGCTGGT TCAGCATTAA AAGCTTTAGA AGGCGATGCT CAATACGAAG AAAAAATCTT AGAATTAATG GAAGCTGTAG ATACTTACAT TCCAACTCCA GAACGTGATT CTGACAAACC ATTCATGATG CCAGTTGAGG ACGTATTCTC AATCACTGGT CGTGGTACTG TTGCTACAGG CCGTGTTGAA	50 100 150 200 250 300 350
30	CGTGGTCAAA TCAAAGTTGG TGAAGAAGTT GAAATCATCG GTTTACATGA CACATCTAAA ACAACTGTTA CAGGTGTTGA AATGTTCCGT AAATTATTAG ACTACGCTGA AGCTGGTGAC AACATTGGTG CATTATTACG TGGTGTTGCT CGTGAAGACG TACAACGTGG TCAAGTATTA GCTGCTCCTG GTTCAATTAC ACCACATACT GAATTCAAAG CAGAAGTATA CGTATTATCA AAAGACGAAG	400 450 500 550 600
35	GTGGACGTCA CACTCCATTC TTCTCAAACT ATCGTCCACA ATTCTATTTC CGTACTACTG ACGTAACTGG TGTTGTTCAC TTACCAGAAG GTACTGAAAT GGTAATGCCT GGTGATAACG TTGAAATGAC	650 700 730
40	2) INFORMATION FOR SEQ ID NO: 181	
45 ⁻	(i)SEQUENCE CHARACTERISTICS: (A) LENGTH: 834 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
50	<pre>(vi)ORIGINAL SOURCE: (A) ORGANISM: Staphylococcus auricularis (B) STRAIN: ATCC 33753</pre>	
55	(xi)SEQUENCE DESCRIPTION: SEQ ID NO: 181	
60	CGGTGCGATC TTAGTTGTAT CTGCAGCTGA TGGTCCAATG CCACAAACTC GTGAACACAT CTTATTATCA CGTAACGTTG GTGTACCAGC ATTAGTTGTA TTCTTAAACA AAGTTGACCA AGTTGACGAC GAAGAATTAT TAGAATTAGT AGAAATGGAA GTTCGTGACT TATTAAGCGA ATACGACTAC CCAGGTGACG ATGTACCTGT AATCTCTGGT TCTGCGTTGA AAGCATTAGA AGGCGACAAA 109	50 100 150 200 250

5	TCCAACTCCA GAACGTGACT CTGATAAACC ATTCATGATG CCAGTTGAAG ACGTATTCTC AATCACTGGT CGTGGTACTG TTGCAACAGG CCGTGTTGAA CGTGGTCAAA TCAAAGTCGG TGAAGAAGTT GAAATCATCG GTATGAAAGA CGGTTCACAA AAAACAACAG TTACTGGTGT AGAAATGTTC CGTAAATTAT TAGACTACGC TGAAGCTGGT GACAACATCG GTGCTTTATT ACGTGGTATT TCACGTGAAG AAGTACAACG TGGTCAAGTT TTAGCTGCTC CTGGTTCAAT TACACCACAC ACTAAATTCA CTGCAGAAGT TTACGTATTA TCTAAAGATG AAGGTGGACG TCACACTCCA TTCTTCTCTA ACTACCGTCC ACAATTCTAT TTCCGTACTA CTGACGTAAC AGGTGTTGTT ACTTTACCAG AAGGTACAGA AATGGTAATG CCTGGCGATA ACGTTAAAAT GGAAGTTGAA TTAATTTCTC 8	300 350 100 150 550 550 750 750 334
15	2) INFORMATION FOR SEQ ID NO: 182	
20	(i)SEQUENCE CHARACTERISTICS: (A) LENGTH: 835 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
25	 (ii) MOLECULE TYPE: Genomic DNA (vi) ORIGINAL SOURCE: (A) ORGANISM: Staphylococcus capitis subsp. capitis (B) STRAIN: ATCC 27840 	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 182	
35	TTCTTAAACA AAGTTGACAT GGTAGACGAC GAAGAATTAT TAGAATTAGT TGAAATGGAA GTTCGTGACT TATTAAGCGA ATATGACTTC CCAGGTGATG ATGTACCTGT AATCGCTGGT TCAGCATTAA AAGCTTTAGA AGGCGATGCT CAATACGAAG AAAAAATCTT AGAATTAATG CAAGCAGTTG ATGATTACAT	50 100 150 200 250 350
40	ACGTATTCTC AATCACTGGT CGTGGTACTG TTGCTACAGG CCGTGTTGAA CGTGGTCAAA TCAAAGTTGG TGAAGAAGTT GAAATCATCG GTATCCACGA AACTTCTAAA ACAACTGTTA CTGGTGTAGA AATGTTCCGT AAATTATTAG ACTACGCTGA AGCTGGTGAC AACATCGGTG CTTTATTACG TGGTGTTGCT	400 450 500 550
45	ACCACACACT AAATTCAAAG CGGAAGTTTA CGTTTTATCT AAAGACGAAG GTGGACGTCA CACTCCATTC TTCAGTAACT ACCGCCCACA ATTCTATTTC CGTACTACTG ACGTAACTGG TGTTGTTAAC TTACCAGAAG GTACTGAAAT GGTTATGCCT GGCGACAACG TTGAAATGAC AGTTGAATTA ATCGCTCCTA	500 550 700 750 800

2) INFORMATION FOR SEQ ID NO: 183

50

55

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 804 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double

TCGCTATTGA AGACGGTACT CGTTTCTCAA TCGGA

- (D) TOPOLOGY: Linear
- 50 (ii) MOLECULE TYPE: Genomic DNA

(vi)ORIGINAL SOURCE:

- (A) ORGANISM: Macrococcus caseolyticus
- (B) STRAIN: ATCC 13548

5

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 183

	GTATCTTAGT	AGTATCTGCT	GCTGACGGTC	CAATGCCACA	AACTCGTGAA	50
	CACATCCTTT	TATCACGTAA	CGTTGGTGTA	CCAGCATTAG	TAGTATTCTT	100
10	GAACAAAGTT	GACATGGTTG	ACGATGAAGA	ATTATTAGAA	TTAGTTGAAA	150
	TGGAAGTTCG	TGACTTATTA	TCTGAATATG	ACTTCCCTGG	TGACGATGTA	200
	CCTGTAATCG	CTGGATCTGC	TTTAAAAGCA	TTAGAAGGCG	TTGAAGAATA	250
	CGAAGACAAA	ATCATGGAAT	TAATGGACGC	AGTTGATGAG	TACATCCCAA	300
	CTCCAGAACG	TGATTCTGAC	AAACCATTCA	TGATGCCAGT	TGAGGACGTA	350
15	TTCTCAATCA	CTGGTCGTGG	TACAGTTGCA	ACTGGACGTG	TTGAGCGTGG	400
	ACAAGTTAAA	GTTGGTGAAG	AAGTTGAAAT	CATTGGTTTA	ACTGAAGAAC	450
	CAGCAAAAAC	TACAGTTACA	GGTGTAGAAA	TGTTCCGTAA	ATTATTAGAT	500
	TACGCTGAAG	CTGGAGATAA	CATCGGTGCT	TTATTACGTG	GTGTTTCTCG	550
	TGAAGACGTA	CAACGTGGAC	AAGTATTAGC	TAAACCAGGT	TCAATTACTC	600
20	CACATACTAA	ATTCAAAGCT	GAAGTTTACG	TATTATCTAA	AGAAGAAGGT	650
	GGACGTCATA	CTCCATTCTT	CACTAACTAC	CGCCCTCAGT	TCTACTTCCG	700
	TACAACTGAC	GTAACTGGTG	TAGTTAACTT	ACCAGAAGGT	ACTGAAATGG	750
	TAATGCCTGG	AGATAACATC	GAAATGAACG	TTGAATTAAT	TTCTCCAATC	800
	GCGA					804

25

- 2) INFORMATION FOR SEQ ID NO: 184
- 30 (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 832 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear

- (ii) MOLECULE TYPE: Genomic DNA
- (vi)ORIGINAL SOURCE:
 - (A) ORGANISM: Staphylococcus cohnii
- 40 (B) STRAIN: DSM 20260
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 184

	CGGAGCTATC	TTAGTAGTAT	CTGCTGCTGA	TGGCCCAATG	CCACAAACTC	50
45	GTGAACATAT	CCTTTTATCA	CGTAACGTTG	GTGTTCCAGC	ATTAGTTGTA	100
	TTCTTAAACA	AAGTTGACAT	GGTTGACGAT	GAAGAATTAT	TAGAATTAGT	150
	AGAAATGGAA	GTTCGTGACT	TATTAAGCGA	ATATGACTTC	CCAGGTGACG	200
	ATGTACCTGT	AATCTCTGGT	TCAGCATTAA	AAGCTCTTGA	AGGCGACGCT	250
	GACTATGAGC	AAAAAATCTT	AGACTTAATG	CAAGCTGTTG	ATGACTTCAT	300
50	TCCAACACCA	GAACGTGATT	CTGACAAACC	ATTCATGATG	CCAGTTGAGG	350
	ACGTATTCTC	AATCACTGGT	CGTGGTACTG	TTGCTACAGG	GCGTGTTGAA	400
	CGTGGTCAAA	TCAAAGTCGG	TGAAGAAGTT	GAAATCATCG	GTATGCAAGA	450
	AGATTCAAGC	AAAACAACTG	TTACTGGTGT	AGAAATGTTC	CGTAAATTAT	500
	TAGACTACGC	TGAAGCTGGT	GACAACATTG	GTGCGTTATT	ACGTGGTGTT	550
55	GCACGTGAAG	ACATCCAACG	TGGTCAAGTT	TTAGCTGCTC	CTGGTTCAAT	600
	TACACCACAC	ACAAACTTTA	AAGCGGAAGT	TTACGTTTTA	TCAAAAGATG	650
	AAGGTGGCCG	TCATACGCCA	TTCTTCAGTA	ACTATCGCCC	ACAATTCTAT	700
	TTCCGTACTA	CTGACGTAAC	AGGTGTTGTT	ACTTTACCAG		750
	AATGGTTATG	CCTGGCGACA	ACGTAGAAAT	GGAAGTTGAA	CTAATTTCTC	800
50	CAATCGCTAT	CGAAGACGGT	ACACGTTTCT	CT		832

5	2) INFORMATION FOR SEQ ID NO: 185	
J	(i) SEQUENCE CHARACTERISTICS:	-
	(A) LENGTH: 699 bases (B) TYPE: Nucleic acid	•
	(C) STRANDEDNESS: Double	
10	(D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
	(vi)ORIGINAL SOURCE:	
15	(A) ORGANISM: Staphylococcus epidermidis (B) STRAIN: CSG 269	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 185	
2.0		50
20	ATCTGCTGCT GACGGTCCAA TGCCACAAAC TCGTGAACAC ATCTTATTAT CACGTAACGT TGGTGTACCA GCATTAGTTG TATTCTTAAA CAAAGTTGAC	100
	ATGGTAGACG ACGAAGAATT ATTAGAATTA GTTGAAATGG AAGTTCGTGA CTTATTAAGC GAATATGACT TCCCAGGTGA CGATGTACCT GTAATCGCTG	150 200
	GTTCTGCATT AAAAGCATTA GAAGGCGATG CTGAATACGA ACAAAAAATC	250
25	TTAGACTTAA TGCAAGCAGT TGATGATTAC ATTCCAACTC CAGAACGTGA	300 350
	TTCTGACAAA CCATTCATGA TGCCAGTTGA GGACGTATTC TCAATCACTG GTCGTGGTAC TGTTGCTACA GGCCGTGTTG AACGTGGTCA AATCAAAGTT	400
	GGTGAAGAAG TTGAAATCAT CGGTATGCAC GAAACTTCTA AAACAACTGT	450
30	TACTGGTGTA GAAATGTTCC GTAAATTATT AGACTACGCT GAAGCTGGTG ACAACATCGG TGCTTTATTA CGTGGTGTTG CACGTGAAGA CGTACAACGT	500 550
	GGTCAAGTAT TAGCTGCTCC TGGTTCTATT ACACCACACA CAAAATTCAA	600
	AGCTGAAGTA TACGTATTAT CTAAAGATGA AGGTGGACGT CACACTCCAT TCTTCACTAA CTATCGCCCA CAATTCTATT TCCGTACTAC TGACGTAAC	
35	•	
33		
	2) INFORMATION FOR SEQ ID NO: 186	
	(i) SEQUENCE CHARACTERISTICS:	
40	(A) LENGTH: 829 bases (B) TYPE: Nucleic acid	
	(C) STRANDEDNESS: Double	
	(D) TOPOLOGY: Linear	
45	(ii) MOLECULE TYPE: Genomic DNA	
	(vi)ORIGINAL SOURCE:	
	(A) ORGANISM: Staphylococcus haemolyticus (B) STRAIN: ATCC 29970	
50	(
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 186	
	CGGCGGTATC TTAGTAGTAT CTGCTGCTGA CGGTCCAATG CCACAAACTC GTGAACACAT TCTTTTATCA CGTAACGTTG GTGTACCAGC ATTAGTAGTA	50 100
55	TTCTTAAATA AAGTTGACAT GGTTGACGAT GAAGAATTAT TAGAATTAGT	150
	TGAAATGGAA GTACGTGACT TATTATCTGA ATACGACTTC CCAGGTGACG	200 250
	ATGTACCTGT AATCGCTGGT TCAGCATTAA AAGCTTTAGA AGGCGATGCT CAATACGAAG AAAAAATCTT AGAATTAATG CAAGCAGTTG ATGACTACAT	300
~	TCCAACTCCA GAACGTGATT CTGACAAACC ATTCATGATG CCAGTTGAGG	350
60	ACGTATTCTC AATCACTGGT CGTGGTACTG TTGCTACAGG CCGTGTTGAA	400

5	CGTGGGCAAA TCAAAGTTGG TGAAGAAGTT GAAATCATTG GYATCCATGAY CACTTCTAAA ACAACTGTTA CTGGTGTAGA AATGTTCCGT AAATTATTAG ACTACGCTGA AGCTGGTGAC AACATCGGTG CATTATTACG TGGTGTTGCT CGTGAAGACG TACAACGTGG TCAAGTATTA GCTGCTCCAG GTTCAATCAC ACCTCACACA AAATTTAAAG CAGACGTATA CGTTTTATCT AAAGACGAAG GTGGACGTCA CACTCCATTC TTCACAAACT ATCGTCCACA ATTCTATTTC CGTACTACTG ACGTAACTGG TGTTGTTAAC TTACCAGAAG GTACTGAAAT GGTTATGCCT GGCGACAACG TTGAAATGAC AGTAGAATTA ATCGCTCCTA TCGCGATTGA AGACGGTACT CGTTTCTCA	500 550 600 650 700 750 800 829
	OLTHODWINTON FOR GEO ID NO. 105	
	2) INFORMATION FOR SEQ ID NO: 187	
15	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 705 bases(B) TYPE: Nucleic acid(C) STRANDEDNESS: Double	
20	(D) TOPOLOGY: Linear	
20	(ii) MOLECULE TYPE: Genomic DNA	
25	<pre>(vi)ORIGINAL SOURCE: (A) ORGANISM: Staphylococcus warneri (B) STRAIN: CSG 123</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 187	
30	CACAAACTCG TGAACACATT CTTTTATCAC GTAACGTTGG TGTACCAGCT TTAGTTGTAT TCTTAAACAA AGTTGATATG GTAGACGACG AAGAATTATT AGAATTAGTA GAAATGGAAG TTCGTGACTT ATTATCTGAA TATGACTTCC CAGGTGACGA CGTACCTGTA ATCGCTGGTT CAGCATTAAA AGCTTTAGAA	50 100 150 200
35	GGCGACGAAA AATACGAAGA AAAAATCTTA GAATTAATGC AAGCAGTTGA TGACTACATT CCAACTCCAG AACGTGATTC TGACAAACCA TTCATGATGC CAGTTGAGGA CGTATTCTCA ATCACTGGTC GTGGTACTGT TGCTACAGGC CGTGTTGAAC GTGGTCAAAT CAAAGTTGGT GAAGAAGTTG AAATCATCGG TTTACATGAC ACTTCTAAAA CAACTGTTAC TGGTGTAGAA ATGTTCCGTA	250 300 350 400 450
40	AGTTATTAGA CTACGCTGAA GCTGGTGACA ACATCGGTGC TTTATTACGT GGTGTTGCTC GTGAAGACGT ACAACGTGGT CAAGTATTAG CTGCTCCTGG TTCAATTACA CCACATACAA AATTCAAAGC GGAAGTTTAC GTTTTATCTA AAGACGAAGG TGGACGTCAC ACTCCATTCT TCAGTAACTA CCGCCCACAA TTCTATTTCC GTACTACTGA CGTAACTGGC GTTGTTCAAT TACCAGAAGG TACTG	500 550 600 650 700 705
45		
	2) INFORMATION FOR SEQ ID NO: 188	
50	(i)SEQUENCE CHARACTERISTICS: (A) LENGTH: 678 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
55	(ii) MOLECULE TYPE: Genomic DNA	
	<pre>(vi)ORIGINAL SOURCE: (A) ORGANISM: Staphylococcus haemolyticus (B) STRAIN: CSG 23</pre>	
60	(=)	

113.

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 188:

	TTTTATCACG	TAACGTTGGT	GTACCAGCAT	TAGTAGTATT	CTTAAACAAA	50
	GTTGACATGG	TTGACGATGA	AGAATTATTA	GAATTAGTTG	AAATGGAAGT	100
5	ACGTGACTTA	TTATCTGAAT	ACGACTTCCC	AGGTGACGAC	GTACCTGTAA	150
	TCGCTGGTTC	AGCTTTAAAA	GCTTTAGAAG	GCGATGCTCA	ATACGAAGAA	200
	AAAATCTTAG	AATTAATGCA	AGCAGTTGAT	GATTACATTC	CAACTCCAGA	250
	ACGTGACTCT	GATAAACCAT	TCATGATGCC	AGTTGAGGAC	GTATTCTCAA	300
	TCACTGGTCG	TGGTACTGTT	GCTACAGGTC	GTGTTGAACG	TGGTCAAATC	350
10	AAAGTTGGTG	AAGAAGTTGA	AATTATTGGT	ATCAAAGAAA	CTTCTAAAAC	400
	AACTGTTACT	GGTGTAGAAA	TGTTCCGTAA	ATTATTAGAC	TACGCTGAAG	450
	CTGGTGACAA	CATCGGTGCT	TTATTACGTG	GTGTTGCTCG	TGAAGATGTA	500
	CAACGTGGTC	AAGTATTAGC	TGCTCCAGGT	TCAATTACAC	CTCACACAAA	550
	ATTCAAAGCA	GACGTATACG	TTTTATCAAA	AGATGAAGGT	GGACGTCATA	600
15	CTCCATTCTT	CACTAACTAT	CGTCCACAAT	TCTATTTCCG	TACTACTGAC	650
	GTAACTGGTG	TTGTTAACTT	ACCAGAAG			678

20 2) INFORMATION FOR SEO ID NO: 189

- (i) SEQUENCE CHARACTERISTICS:
 - LENGTH: 668 bases (A)
 - TYPE: Nucleic acid (B)
 - STRANDEDNESS: Double (C)
 - (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: Genomic DNA
- 30 (vi)ORIGINAL SOURCE:
 - (A) ORGANISM: Staphylococcus haemolyticus
 - (B) STRAIN: CSG 33
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 189

ACCAGCATTA GTAGTATTCT TAAATAAAGT TGACATGGTT GACGATGAAG 50 AATTATTAGA ATTAGTTGAA ATGGAAGTAC GTGACTTATT ATCTGAATAC 100 GACTTCCCAG GTGACGATGT ACCTGTAATC GCTGGTTCAG CATTAAAAGC TTTAGAAGGC GATGCTCAAT ACGAAGAAAA AATCTTAGAA TTAATGCAAG 150 200 250 CAGTTGATGA CTACATTCCA ACTCCAGAAC GTGATTCTGA CAAACCATTC ATGATGCCAG TTGAGGACGT ATTCTCAATC ACTGGTCGTG GTACTGTTGC 300 350 TACAGGCCGT GTTGAACGTG GTCAAATCAA AGTTGGTGAA GAAGTTGAAA TCATTGGTAT CCATGACACT TCTAAAACAA CTGTTACTGG TGTAGAAATG 400 TTCCGTAAAT TATTAGACTA CGCTGAAGCT GGTGACAACA TCGGTGCATT 450 45 ATTACGTGGT GTTGCTCGTG AAGACGTACA ACGTGGTCAA GTATTAGCTG 500 CTCCAGGTTC AATCACACCT CACACAAAAT TTAAAGCAGA CGTATACGTT 550 TTATCTAAAG ACGAAGGTGG ACGTCACACT CCATTCTTCA CAAACTATCG 600 TCCACAATTC TATTTCCGTA CTACTGACGT AACTGGTGTT GTTAACTTAC 650 CAGAAGGTAC TGAAATGG 668

2) INFORMATION FOR SEQ ID NO: 190

- 55 (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 593 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 (D) TOPOLOGY: Linear

50

50

25

(ii) MOLECULE TYPE: Genomic DNA

(vi) ORIGINAL SOURCE:

- (A) ORGANISM: Staphylococcus haemolyticus
- (B) STRAIN: CSG 8
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 190

	AAAGTTGACA	TGGTTGACGA	TGAAGAATTA	TTAGAATTAG	TTGAAATGGA	50
10	AGTACGTGAC	TTATTATCTG	AATACGACTT	CCCAGGTGAC	GATGTACCTG	100
	TAATCGCTGG	TTCAGCATTA	AAAGCTTTAG	AAGGCGATGC	TCAATACGAA	150
	GAAAAAATCT	TAGAATTAAT	GCAAGCAGTT	GATGATTACA	TTCCAACTCC	200
	AGAACGTGAT	TCTGACAAAC	CATTCATGAT	GCCAGTTGAG	GACGTATTCT	250
	CAATCACTGG	TCGTGGTACT	GTTGCTACAG	GCCGTGTTGA	ACGTGGTCAA	300
15	ATCAAAGTTG	GTGAAGAAGT	TGAAATCATT	GGTATCCATG	ACACTTCTAA	350
	AACAACTGTT	ACTGGTGTAG	AAATGTTCCG	TAAATTATTA	GACTACGCTG	400
	AAGCTGGTGA	CAACATTGGT	GCATTATTAC	GTGGTGTTGC	TCGTGAAGAC	450
	GTACAACGTG	GTCAAGTATT	AGCTGCTCCA	GGTTCAATCA	CACCTCACAC	500
	AAAATTTAAA	GCAGACGTAT	ACGTTTTATC	TAAAGACGAA	GGTGGACGTC	550
20	ACACTCCATT	CTTCACAAAC	TATCGTCCAC	AATTCTATTT	CCG	593

2) INFORMATION FOR SEQ ID NO: 191

25

35

5

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 828 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
- 30 (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: Genomic DNA
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Staphylococcus hominis subsp. hominis
 - (B) STRAIN: ATCC 27844
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 191

4	O CGGCGC	TATC '	TTAGTAGTAT	CTGCTGCTGA	TGGTCCAATG	CCACAAACTC	50
	GTGAAC	ACAT '	TCTTTTATCA	CGTAACGTTG	GTGTACCAGC	ATTAGTAGTA	100
	TTCTTA	AACA I	AAGTTGACAT	GGTTGACGAT	GAAGAATTAT	TAGAATTAGT	150
•	TGAAAT	GGAA (GTACGTGACT	TATTATCTGA	ATACGACTTC	CCAGGTGACG	200
	ACGTAC	CTGT 3	AATCGCTGGT	TCAGCTTTAA	AAGCTTTAGA	AGGCGATGCT	250
4	5 CAATAC	GAAG A	AAAAAATCTT	AGAATTAATG	CAAGCAGTTG	ATGATTATAT	300
	TCCAAC	TCCA (GAACGTGACT	CTGATAAACC	ATTCATGATG	CCAGTTGAGG	350
	ACGTAT	TCTC 3	AATCACTGGT	CGTGGTACTG	TTGCTACAGG	CCGTGTTGAA	400
	CGTGGT	CAAA '	TCAAAGTTGG	TGAAGAAGTT	GAAATTATTG	GTATCAAAGA	450
	AACTTC	TAAA	ACAACTGTTA	CTGGTGTAGA	AATGTTCCGT	AAATTATTAG	500
5	0 ACTACG	CTGA	AGCTGGTGAC	AACATCGGTG	CTTTATTACG	TGGTGTTGCT	550
	CGTGAA	GATG '	TACAACGTGG	TCAAGTATTA	GCTGCTCCAG	GTTCAATTAC	600
	ACCTCA	CACA .	AAATTCAAAG	CAGACGTATA	CGTTTTATCA	AAAGATGAAG	650
	GTGGAC	GTCA '	TACTCCATTC	TTCTCTAACT	ATCGTCCACA	ATTCTATTTC	700
	CGTACT	ACTG .	ACGTAACTGG	TGTTGTTAAC	TTACCAGAAG	GTACTGAAAT	750
5	5 GGTAAT	GCCT (GGTGACAACG	TTGAAATGAC	AGTAGAATTA	ATCGCTCCTA	800
	TCGCGA	TTGA	AGACGGTACT	CGTTTCTC			828

60 2) INFORMATION FOR SEQ ID NO: 192

```
(i) SEQUENCE CHARACTERISTICS:
                LENGTH: 620 bases
                TYPE: Nucleic acid
           (B)
5
           (C)
                 STRANDEDNESS: Double
                TOPOLOGY: Linear
           (D)
      (ii) MOLECULE TYPE: Genomic DNA
      (vi)ORIGINAL SOURCE:
10
                ORGANISM: Staphylococcus warneri
           (A)
                 STRAIN: ATCC 35982
           (B)
       (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 192
15
    ATGGTCCAAT GCCACAAACT CGTGAACACA TTCTTTTATC ACGTAACGTT
                                                                    50
                                                                   100
    GGTGTACCAG CTTTAGTTGT ATTCTTAAAC AAAGTTGATA TGGTAGACGA
    CGAAGAATTA TTAGAATTAG TAGAAATGGA AGTTCGTGAC TTATTATCTG
                                                                   150
    AATATGACTT CCCAGGTGAC GACGTACCTG TAATCGCTGG TTCAGCATTA
                                                                   200
    AAAGCTTTAG AAGGCGACGA AAAATACGAA GAAAAAATCT TAGAATTAAT
                                                                   250
20
    GCAAGCAGTT GATGACTACA TTCCAACTCC AGAACGTGAT TCTGACAAAC
                                                                   300
    CATTCATGAT GCCAGTTGAG GACGTATTCT CAATCACTGG TCGTGGTACT
                                                                   350
    GTTGCTACAG GCCGTGTTGA ACGTGGTCAA ATCAAAGTTG GTGAAGAAGT
                                                                   400
    TGAAATCATC GGTTTACATG ACACTTCTAA AACAACTGTT ACTGGTGTAG
                                                                   450
    AAATGTTCCG TAAGTTATTA GACTACGCTG AAGCTGGTGA CAACATCGGT
                                                                   500
25
    GCTTTATTAC GTGGTGTTGC TCGTGAAGAC GTACAACGTG GTCAAGTATT
                                                                   550
    AGCTGCTCCT GGTTCAATTA CACCACATAC AAAATTCAAA GCGGAAGTTT
                                                                   600
    ACGTTTTATC TAAAGACGAA
                                                                   620
30
    2) INFORMATION FOR SEQ ID NO: 193
        (i) SEQUENCE CHARACTERISTICS:
35
                 LENGTH: 692 bases
           (A)
           (B)
                 TYPE: Nucleic acid
           (C)
                 STRANDEDNESS: Double
                 TOPOLOGY: Linear
           (D)
40
      (ii) MOLECULE TYPE: Genomic DNA
       (vi)ORIGINAL SOURCE:
                 ORGANISM: Staphylococcus hominis
           (A)
                 STRAIN: CSG 170
           (B)
45
       (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 193
     CCAGCATTAG TAGTATTCTT AAACAAAGTT GACATGGTTG ACGATGAAGA
                                                                    50
                                                                   100
     ATTATTAGAA TTAGTTGAAA TGGAAGTACG TGACTTATTA TCTGAATACG
     ACTTCCCAGG TGACGACGTA CCTGTAATCG CTGGTTCAGC TTTAAAAGCT
                                                                   150
50
     TTAGAAGGCG ATGCTCAATA CGAAGAAAAA ATCTTAGAAT TAATGCAAGC
                                                                   200
     AGTTGATGAT TATATTCCAA CTCCAGAACG TGACTCTGAT AAACCATTCA
TGATGCCAGT TGAGGACGTA TTCTCAATCA CTGGTCGTGG TACTGTTGCT
                                                                    250
                                                                    300
     ACAGGCCGTG TTGAACGTGG TCAAATCAAA GTTGGTGAAG AAGTTGAAAT
                                                                    350
     TATTGGTATC AAAGAAACTT CTAAAACAAC TGTTACTGGT GTAGAAATGT
                                                                   400
55
     TCCGTAAATT ATTAGACTAC GCTGAAGCTG GTGACAACAT CGGTGCTTTA
                                                                    450
     TTACGTGGTG TTGCTCGTGA AGATGTACAA CGTGGTCAAG TATTAGCTGC
                                                                    500
     TCCAGGTTCA ATTACACCTC ACACAAAATT CAAAGCAGAC GTATACGTTT
                                                                    550
     TATCAAAAGA TGAAGGTGGA CGTCATACTC CATTCTTCTC TAACTATCGT
                                                                    600
     CCACAATTCT ATTTCCGTAC TACTGACGTA ACTGGTGTTG TTAACTTACC
                                                                    650
```

AGAAGGTACT GAAATGGTAA TGCCTGGTGA CAACGTTGAA AT '

5	2) INFORMATION FOR SEQ ID NO: 194	
10	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 684 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear 	
	(ii) MOLECULE TYPE: Genomic DNA	
15	(vi)ORIGINAL SOURCE:	
	(A) ORGANISM: Staphylococcus hominis (B) STRAIN: CSG 36	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 194	
20		
	CATTCTTTTA TCACGTAACG TTGGTGTACC AGCATTAGTA GTATTCTTAA	50
	ACAAAGTTGA CATGGTTGAC GATGAAGAAT TATTAGAATT AGTTGAAATG	100
	GAAGTACGTG ACTTATTATC TGAATACGAC TTCCCAGGTG ACGACGTACC	150
2.5	TGTAATCGCT GGTTCAGCTT TAAAAGCTTT AGAAGGCGAT GCTCAATACG	200
25	AAGAAAAAT CTTAGAATTA ATGCAAGCAG TTGATGATTA TATTCCAACT CCAGAACGTG ACTCTGATAA ACCATTCATG ATGCCAGTTG AGGACGTATT	250 300
	CTCAATCACT GGTCGTGGTA CTGTTGCTAC AGGCCGTGTT GAACGTGGTC	350
	AAATCAAAGT TGGTGAAGAA GTTGAAATTA TTGGTATCAA AGAAACTTCT	400
	AAAACAACTG TTACTGGTGT AGAAATGTTC CGTAAATTAT TAGACTACGC	450
30	TGAAGCTGGT GACAACATCG GTGCTTTATT ACGTGGTGTT GCTCGTGAAG	500
•	ATGTACAACG TGGTCAAGTA TTAGCTGCTC CAGGTTCAAT TACACCTCAC	550
	ACAAAATTCA AAGCAGACGT ATACGTTTTA TCAAAAGATG AAGGTGGACG	600
	TCATACTCCA TTCTTCTCTA ACTATCGTCC ACAATTCTAT TTCCGTACTA	650
35	CTGACGTAAC TGGTGTTGTT AACTTACCAG AAGG	684
	2) INFORMATION FOR SEQ ID NO: 195	
40	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 685 bases	
	(B) TYPE: Nucleic acid	
	(C) STRANDEDNESS: Double	•
	(D) TOPOLOGY: Linear	
45	(ii) MOLECULE TYPE: Genomic DNA	
	(vi)ORIGINAL SOURCE:	
	(A) ORGANISM: Staphylococcus hominis	
50	(B) STRAIN: CSG 6	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 195	
	1001001000	
55	ACCAGCATTA GTAGTATTCT TAAACAAAGT TGACATGGTT GACGATGAAG AATTATTAGA ATTAGTTGAA ATGGAAGTAC GTGACTTATT ATCTGAATAC	50 10 0
22	GACTTCCCAG GTGACGACGT ACCTGTAATC GCTGGTTCAG CTTTAAAAGC	150
	TTTAGAAGGC GATGCTCAAT ACGAAGAAAA AATCTTAGAA TTAATGCAAG	200
	CAGTTGATGA TTACATTCCA ACTCCAGAAC GTGACTCTGA TAAACCATTC	250
	ATGATGCCAG TTGAGGACGT ATTCTCAATC ACTGGTCGTG GTACTGTTGC	300
60	TACAGGCCGT GTTGAACGTG GTCAAATCAA AGTTGGTGAA GAAGTTGAAA	350
	117	

5	TTATTGGTAT CAAAGAAACT TCTAAAACAA CTGTTACTGG TGTAGAAATG TTCCGTAAAT TATTAGACTA CGCTGAAGCT GGTGACAACA TCGGTGCTTT ATTACGTGGT GTTGCTCGTG AAGATGTACA ACGTGGTCAA GTATTAGCTG CTCCAGGTTC AATTACACCT CACACAAAAT TCAAAGCAGA CGTATACGTT TTATCAAAAG ATGAAGGTGG ACGTCATACT CCATTCTTCA CTAACTATCG TCCACAATTC TATTTCCGTA CTACTGACGT AACTGGTGTT GTTAACTTAC CAGAAGGTAC TGAAATGGTA ATGCCTGGCG ACAAC	400 450 500 550 600 650 685
10	2) INFORMATION FOR SEQ ID NO: 196	
15	(i)SEQUENCE CHARACTERISTICS: (A) LENGTH: 611 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
20	<pre>(vi)ORIGINAL SOURCE: (A) ORGANISM: Staphylococcus hominis (B) STRAIN: CSG 62</pre>	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 196	
30 35	GACTTATTAT CTGAATACGA CTTCCCAGGT GACGACGTAC CTGTAATCGC TGGTTCAGCT TTAAAAGCTT TAGAAGGCGA TGCTCAATAC GAAGAAAAAA TCTTAGAATT AATGCAAGCA GTTGATGATT ACATTCCAAC TCCAGAACGT GACGTCGTGGT ACCATTCAT CAGGCCGTGT TGAACGTGGT CAAATCAACG TTGGTGAAGA AGTTGAAATT ATTGGTATACA AAGATACTTC TAAAACAACT GTTACTGGTG TAGAAATGTT CCGTAAATTA TTAGACTACG CTGAAGCTGG TGACAACATC GGTGCTTAT TACGTGGTGT TGCTCGTGAA GATGTACAAC GTGGTCAAGT ATTAGCTGCT CCAGGTTCAA TCACACCTCA CACAAAATTC AAAGCAGACG TATATGTTTT ATCAAAAGAT GAAGGTGGAC GTCATACTCC ATTCTTCACT AACTATCGTC CACAATTCTA TTTCCGTACT ACTGACGTAA CCTGGTGTTGT TAACTTACCA GAAGGTACTG AAATGGTAAT GCCTGGCGAC AACGTTGAAA T	50 100 150 200 250 300 350 400 450 500 550 600 611
	2) INFORMATION FOR SEQ ID NO: 197	
1 5		
50	(ii) MOLECULE TYPE: Genomic DNA	
55	(vi)ORIGINAL SOURCE: (A) ORGANISM: Staphylococcus lugdunensis (B) STRAIN: ATCC 43809	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 197 CGGCGGTATC TTAGTAGTTT CTGCTGCAGA TGGTCCAATG CCACAAACTC	50
50	GTGAACACAT TCTTTTATCA CGTAACGTTG GTGTGCCAGC ATTAGTAGTA	100

	TTCTTAAACA	AAGTTGACAT	GGTTGACGAT	GAAGAATTAT	TAGAATTAGT	150
	AGAAATGGAA	GTTCGTGATT	TATTAACTGA	ATATGACTTC	CCAGGTGACG	200
	ATGTGCCTGT	AATCGCTGGT	TCAGCATTAA	AAGCTTTAGA	AGGCGACGAA	250
	AAATACGAAG	CTAAAATCTT	AGAATTAATG	GATGCAGTTG	ATAACTACAT	300
5	TCCAACTCCA	GAACGTGACT	CTGACAAACC	ATTCATGATG	CCAGTTGAGG	350
	ACGTATTCTC	AATCACTGGT	CGTGGTACTG	TTGCTACAGG	CCGTGTTGAA	400
	CGTGGTCAAA	TCAAAGTCGG	TGAAGAAGTT	GAAATTATTG	GTATCCACGA	450
	TACTACTAAA	ACAACTGTTA	CTGGTGTAGA	AATGTTCCGT	AAATTATTAG	500
	ACTACGCTGA	AGCTGGTGAC	AACATCGGTG	CGTTATTACG	TGGTGTTGCT	550
10	CGTGAAGATG	TACAACGTGG	ACAAGTATTA	GCTGCTCCAG	GTTCAATTAC	600
	ACCTCACACT	AAATTTAAAG	CTGACGTATA	TGTTTTATCT	AAAGATGAAG	650
	GTGGACGTCA	TACACCATTC	TTCTCAAACT	ACCGCCCACA	ATTCTATTTC	700
	CGTACTACAG	ACGTAACTGG	TGTTGTTAAC	TTACCAGAAG	GTACAGAAAT	750
	GGTTATGCCT	GGCGACAACG	TTGAAATGAC	AGTTGAATTA	ATCGCTCCAA	800
15	TCGCTATCGA	AGACGGAACT	CGTTTCTC			828

2) INFORMATION FOR SEQ ID NO: 198

20

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 690 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
- 25 (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: Genomic DNA
 - (vi)ORIGINAL SOURCE:
- 30 (A) ORGANISM: Staphylococcus saprophyticus
 - (B) STRAIN: ATCC 35552
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 198

35	AGTAGTATCT	GCTGCTGATG	GCCCAATGCC	ACAAACTCGT	GAACACATTC	50
	TTTTATCACG	TAACGTTGGT	GTTCCAGCAT	TAGTTGTATT	CTTAAACAAA	100
	GTTGACATGG	TTGACGATGA	AGAATTATTA	GAATTAGTAG	AAATGGAAGT	150
	TCGTGACTTA	TTAAGCGAAT	ATGACTTCCC	AGGTGACGAT	GTACCTGTAA	200
			GCTTTAGAAG			250
40			AGCTGTTGAT			300
			TCATGATGCC			350
	TCACTGGTCG	TGGTACTGTT	GCTACAGGCC	GTGTTGAACG	TGGTCAAATC	400
			AATCATCGGT	ATGCAAGAAG	AATCAAGCAA	450
			AAATGTTCCG			500
45					ACGTGATGAC	550
					CACCACATAC	600
					GGTGGTCGTC	650
			TACCGCCCAC			690

50

- 2) INFORMATION FOR SEQ ID NO: 199
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 723 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
- 60 (ii) MOLECULE TYPE: Genomic DNA

(vi)ORIGINAL SOURCE:

5

25

30

- (A) ORGANISM: Staphylococcus saprophyticus
- (B) STRAIN: CSG 83

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 199

	GCATTAGTTG	TATTCTTAAA	CAAAGTTGAC	ATGGTTGACG	ATGAAGAATT	50
	ATTAGAATTA	GTAGAAATGG	AAGTTCGTGA	TTTATTAAGC	GAATATGACT	100
10	TCCCAGGTGA	CGATGTACCT	GTAATCTCTG	GTTCTGCATT	AAAAGCTTTA	150
10	GAAGGCGACG	CTGACTATGA	GCAAAAAATC	TTAGACTTAA	TGCAAGCTGT	200
	TGATGACTTC	ATTCCAACAC	CAGAACGTGA	TTCTGACAAA	CCATTCATGA	250
	TGCCAGTTGA	GGACGTATTC	TCAATCACTG	GTCGTGGTAC	TGTTGCTACA	300
	GGCCGTGTTG	AACGTGGTCA	AATCAAAGTC	GGTGAAGAAA	TCGAAATCAT	350
15	CGGTATGCAA	GAAGAATCAA	GCAAAACAAC	TGTTACTGGT	GTAGAAATGT	400
	TCCGTAAATT	ATTAGACTAC	GCTGAAGCTG	GTGACAACAT	TGGTGCATTA	450
	TTACGTGGTG	TTTCACGTGA	TGACGTACAA	CGTGGTCAAG	TTTTAGCTGC	500
	TCCTGGTACT	ATTACACCAC	ATACAAAATT	CAAAGCGGAT	GTTTACGTTT	550
	TATCTAAAGA	TGAAGGTGGT	CGTCATACAC	CATTCTTCAC	TAACTACCGC	600
20	CCACAATTCT	ATTTCCGTAC	TACTGACGTA	ACTGGTGTTG	TTAACTTACC	650
	AGAAGGTACT	GAAATGGTTA	TGCCTGGCGA	TAACGTTGAA	ATGGATGTTG	700
	AATTAATTTC	TCCAATCGCT	ATT			723

2) INFORMATION FOR SEQ ID NO: 200

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 697 bases
- (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: Genomic DNA
- (vi)ORIGINAL SOURCE:
 - (A) ORGANISM: Staphylococcus saprophyticus
 - (B) STRAIN: CSsa 18
- 40 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 200

	CGTTGGTGTT	CCAGCATTAG	TTGTATTCTT	AAACAAAGTT	GACATGGTTG	50
		ATTATTAGAA			TGACTTATTA	100
	AGCGAATATG	ACTTCCCAGG	TGACGATGTA	CCTGTAATCT	CTGGTTCTGC	150
45	ATTAAAAGCT	TTAGAAGGCG	ACGCTGACTA	TGAGCAAAAA	ATCTTAGACT	200
	TAATGCAAGC	TGTTGATGAC	TTCATTCCAA	CACCAGAACG	TGATTCTGAC	250
	AAACCATTCA	TGATGCCAGT	TGAGGACGTA	TTCTCAATCA	CTGGTCGTGG	300
	TACTGTTGCT	ACAGGCCGTG	TTGAACGTGG	TCAAATCAAA	GTCGGTGAAG	350
		CATCGGTATG				400
50	GGTGTAGAAA	TGTTCCGTAA	ATTATTAGAC	TACGCTGAAG	CTGGTGACAA	450
-		TTATTACGTG				500
		TGCTCCTGGT				550
		TTTTATCTAA				600
		CGCCCACAAT				• 650
55	TTGTTAACTT	ACCAGAAGGT	ACTGAAATGG	TTATGCCTGG	CGATAAC	697

2) INFORMATION FOR SEQ ID NO: 201

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 835 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
- (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: Genomic DNA
 - (vi)ORIGINAL SOURCE:

5

10

- (A) ORGANISM: Staphylococcus sciuri subsp. sciuri
 - (B) STRAIN: ATCC 29060
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 201

15	CGGCGGTATC	TTAGTAGTAT	CTGCTGCTGA	CGGTCCAATG	CCTCAAACTC	50
	GTGAGCACAT	TCTTTTATCA	CGTAACGTAG	GTGTTCCTGC	ATTAGTAGTA	100
	TTCTTAAACA	AAGTTGACAT	GGTTGACGAT	GAAGAATTAT	TAGAATTAGT	150
	TGAAATGGAA	GTTCGTGACT	TATTATCTGA	ATATGACTTC	CCAGGCGACG	200
	ACGTTCCTGT	AATTGCTGGT	TCAGCATTAA	AAGCATTAGA	AGGCGACGAA	250
20	GCTTACGAAG	ACAAAATCAT	GGAATTAATG	GATGCTGTTG	ATACATTCAT	300
	CCCAACTCCA	GAACGTGACT	CTGACAAACC	ATTCATGATG	CCAGTTGAGG	350
	ACGTATTCTC	AATCACTGGT	CGTGGTACTG	TTGCTACAGG	CCGTGTTGAA	400
	CGTGGTCAAA	TCACTGTTGG	TGAAGAAGTT	GAAATCATCG	GTTTAACTGA	450
	AGAATCTTCT	AAAACAACTG	TAACTGGTGT	TGAAATGTTC	CGTAAATTAT	500
25	TAGACTTCGC	TGAAGCTGGA	GATAACATCG	GTGCATTATT	ACGTGGTGTT	550
	GCTCGTGAAG	ACGTTAACCG	TGGTCAAGTA	TTAGCTAAAC	CAGGTTCAAT	600
	CACACCTCAC	ACTAAATTCA	AAGCTGAAGT	TTATGTATTA	TCTAAAGACG	650
	AAGGTGGACG	TCATACTCCA	TTCTTCACAA	ACTACCGCCC	ACAATTCTAT	700
	TTCCGTACTA	CTGACGTAAC	TGGTGTAGTT	AACTTACCAG	AAGGTACTGA	750
30	AATGGTTATG	CCTGGCGACA	ACGTTGAAAT	GGACGTTGAA	TTAATTTCAC	800
	CAATCGCTAT	TGAAGACGGT	ATCGTTTCTC	AATCA		835

- 35 2) INFORMATION FOR SEQ ID NO: 202
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 831 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: Genomic DNA
- 45 (vi)ORIGINAL SOURCE:
 - (A) ORGANISM: Staphylococcus warneri
 - (B) STRAIN: ATCC 27836
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 202

50						
	CGGCGGTATC	TTAGTTGTAT	CTGCAGCTGA	TGGTCCAATG	CCACAAACTC	50
		TCTTTTATCA				100
	TTCTTAAACA	AAGTTGATAT	GGTAGACGAC	GAAGAATTAT	TAGAATTAGT	150
		GTTCGTGACT				200
55	ACGTACCTGT	AATCGCTGGT	TCAGCATTAA	AAGCTTTAGA	AGGCGACGAA	250
-		AAAAAATCTT				300
	TCCAACTCCA	GAACGTGATT	CTGACAAACC	ATTCATGATG	CCAGTTGAGG	350
	ACGTATTCTC	AATCACTGGT	CGTGGTACTG	TTGCTACAGG	CCGTGTTGAA	400
		TCAAAGTTGG				450
60		ACAACTGTTA				500

	ACTACGCTGA	AGCTGGTGAC	AACATCGGTG	CTTTATTACG	IGGIGITGCI	5 5 6
	CGTGAAGACG	TACAACGTGG	TCAAGTATTA	GCTGCTCCTG	GTTCAATTAC	600
	ACCACATACA	AAATTCAAAG	CGGAAGTTTA	CGTTTTATCT	AAAGACGAAG	650
	GTGGACGTCA	CACTCCATTC	TTCAGTAACT	ACCGCCCACA	ATTCTATTTC	700
;	CGTACTACTG	ACGTAACTGG	CGTTGTTCAA	TTACCAGAAG	GTACTGAAAT	750
	GGTTATGCCT	GGTGATAACG	TTGAAATGAC	AGTAGAATTA	ATCGCTCCTA	800
	TCGCGATTGA	AGACGGTACT	CGTTTCTCAA	C		831

10

15

5

- 2) INFORMATION FOR SEQ ID NO: 203
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 829 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: Genomic DNA

20

- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Staphylococcus warneri
 - (B) STRAIN: CSG 50
- 25 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 203

	CGGCGGTATC	TTAGTTGTAT	CTGCAGCTGA	TGGTCCAATG	CCACAAACTC	50
	GTGAACACAT	TCTTTTATCA	CGTAACGTTG	GTGTACCAGC	TTTAGTTGTA	100
	TTCTTAAACA	AAGTTGATAT	GGTAGACGAC	GAAGAATTAT	TAGAATTAGT	150
30	AGAAATGGAA	GTTCGTGACT	TATTATCTGA	ATATGACTTC	CCAGGTGACG	200
	ACGTACCTGT	AATCGCTGGT	TCAGCATTAA	AAGCTTTAGA	AGGCGACGAA	250
	AAATACGAAG	AAAAAATCTT	AGAATTAATG	CAAGCAGTTG	ATGACTACAT	300
	TCCAACTCCA	GAACGTGATT	CTGACAAACC	ATTCATGATG	CCAGTTGAGG	350
	ACGTATTCTC	AATCACTGGT	CGTGGTACTG	TTGCTACAGG	CCGTGTTGAA	400
35	CGTGGTCAAA	TCAAAGTTGG	TGAAGAAGTT	GAAATCATCG	GTTTACATGA	450
	CACTTCTAAA	ACAACTGTTA	CTGGTGTAGA	AATGTTCCGT	AAGTTATTAG	500
	ACTACGCTGA	AGCTGGTGAC	AACATCGGTG	CTTTATTACG	TGGTGTTGCT	550
	CGTGAAGACG	TACAACGTGG	TCAAGTATTA	GCTGCTCCTG	GTTCAATTAC	600
	ACCACATACA	AAATTCAAAG	CGGAAGTTTA	CGTTTTATCT	AAAGACGAAG	650
40	GTGGACGTCA	CACTCCATTC	TTCAGTAACT	ACCGCCCACA	ATTCTATTTC	700
	CGTACTACTG	ACGTAACTGG	CGTTGTTCAA	TTACCAGAAG	GTACTGAAAT	750
	GGTTATGCCT	GGTGATAACG	TTGAAATGAC	AGTAGAATTA	ATCGCTCCTA	800
	TCGCGATTGA	AGACGGTACT	CGTTTCTCA			829

45

50

- 2) INFORMATION FOR SEQ ID NO: 204
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 839 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
- 55 (ii) MOLECULE TYPE: Genomic DNA
 - (vi)ORIGINAL SOURCE:
 - (A) ORGANISM: Bifidobacterium longum
 - (B) STRAIN: ATCC 15707

PCT/CA00/01150 WO 01/23604

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 204

_	TGGCGCTATC GCGAGCACGT	GCTGCTCGCC	CCGCCACCGA CGTCAGGTTG	GCGTTCCGAA	GCCCAGACTC GATCCTCGTC	50 100
5	GCCCTGAACA CGAAGAAGAG	AGTGCGACAT GTCCGCGACC	GGTCGACGAT TCCTCGACGA	GAAGAGCTCA GAACGGCTTC	TCGAGCTCGT GACCGTGACT	150 200
	GCCCGGTCAT		GCTTACGGTG	CTCTGCACGA	CGACGCTCCG	250
	GACCACGAGA	AGTGGGTCCA	GTCCGTTAAG	GACCTCATGG	ACGCTGTCGA	300
	CGACTACATC	CCGACCCCGG	TTCACGACCT	GGACAAGCCG	TTCCTGATGC	350
10	CGATCGAGGA	CGTCTTCACC	ATCTCCGGCC	GTGGTACCGT	TGTCACCGGT	400
	CGTGTCGAGC	GTGGCCAGCT	GGCCGTCAAC	ACCCCGGTCG	AGATCGTTGG	450
	TATCCGTCCG	ACCCAGCAGA	CCACCGTCAC	CTCCATCGAG	ACCTTCCACA	500
	AGACCATGGA	CGCCTGCGAG	GCTGGCGACA	ACACCGGTCT	GCTTCTGCGT	550
	GGTCTCGGCC	GTGACGATGT	CGAGCGTGGC	CAGGTTGTGG	CCAAGCCGGG	600
15	CTCCGTCACC	CCGCACACCA	AGTTCGAGGG	CGAAGTCTAC	GTGCTGACCA	650
	AGGACGAAGG	CGGCCGTCAC	TCGCCGTTCT	TCTCCAACTA	CCGTCCGCAG	700
	TTCTACTTCC	GCACCACCGA	CGTCACCGGC	GTCATCGAGC	TGCCGGAAGG	750
	CGTCGAGATG	GTTCAGCCGG	GCGACCACGC	TACCTTCACC	GTTGAGCTGA	800
	TTCAGCCCAT	CGCTATGGAG	GAAGGCCTGA	CCTTCGCTG		839

20

2) INFORMATION FOR SEQ ID NO: 205

(i) SEQUENCE CHARACTERISTICS: 25

- LENGTH: 754 bases (A)
- TYPE: Nucleic acid (B)
- STRANDEDNESS: Double (C)
- TOPOLOGY: Linear (D)

30

(ii) MOLECULE TYPE: Genomic DNA

(vi) ORIGINAL SOURCE:

ORGANISM: Stenotrophomonas maltophilia (A)

- STRAIN: CDC F3338 (B) 35
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 205

	CGGCGCGATC	CTGGTGTGCT	CGGCCGCTGA	CGGCCCGATG	CCGCAGACCC	50
40	GTGAGCACAT	CCTGCTGTCG	CGCCAGGTCG	GCGTGCCGTA	CATCGTCGTG	100
	TTCCTGAACA	AGGCCGACAT	GGTCGACGAC	GCCGAGCTGC	TCGAGCTGGT	150
	CGAGATGGAA	GTGCGCGAAC	TGCTGAGCAA	GTACGAGTTC	CCGGGCGACG	200
	ACACCCCGAT	CATCGCCGGT	TCGGCCCGCC	TGGCGCTGGA	AGGCGACCAG	250
	AGCGACATCG	GCGTGCCGGC	CATCCTGAAG	CTGGTCGACG	CGCTGGACAG	300
45	CTGGATTCCG	GAGCCGGAGC	GTGCGATCGA	CAAGCCGTTC	CTGATGCCGG	350
	TGGAAGACGT	GTTCTCGATC	TCGGGCCGCG	GCACCGTGGT	GACCGGTCGT	400
	ATCGAGCGCG	GCGTGATCAA	GGTTGGCGAC	GAAATCGAAA	TCGTCGGCAT	450
	CCGTCCGGTG	CAGAAGACCA	CCGTGACCGG	CGTTGAAATG	TTCCGCAAGC	500
	TGCTGGACCA	GGGTCAGGCA	GGCGACAACG	CTGGCCTGCT	GCTGCGCGGC	550
50	ACCAAGCGTG	ATGACGTCGA	GCGTGGCCAG	GTGCTGGCCA	AGCCGGGCAC	600
50	GATCAAGCCG	CACACCAAGT	TCGAAGGCGA	AGTGTACGTC	CTGTCGAAGG	650
	ACGAGGGCGG	CCGCCACACC		ACGGCTACCG	TCCGCAGTTC	700
				GCTGCACTGC	CGGAAGGCGT	750
	CGAA	00.1000.10.12				754
	~~.					

55·

2) INFORMATION FOR SEQ ID NO: 206

50 (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 835 bases
(B) TYPE: Nucleic acid
(C) STRANDEDNESS: Double
(D) TOPOLOGY: Linear

5

(ii) MOLECULE TYPE: Genomic DNA

(vi)ORIGINAL SOURCE:

- (A) ORGANISM: Streptococcus acidominimus
- 10 (B) STRAIN: ATCC 51726

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 206

	TGGTGCTATC	CTTGTAGTAG	CTTCAACTGA	CGGACCAATG	CCACAAACTC	50
15	GTGAGCACAT	CCTTCTTTCA	CGTCAAGTTG	GTGTTAAAAA	CCTTATCGTT	100
	TTCATGAACA	AAGTTGACCT	TGTTGATGAT	GAAGAATTGC	TTGAATTGGT	150
	TGAAATGGAA	ATCCGTGACC	TTCTTTCAGA	ATACGATTTC	CCAGGTGATG	200
	ATCTTCCAGT	TGTTCAAGGT	TCAGCTCTTA	AAGCGCTTGA	AGGTGATTCA	250
	GCACAAGAAG	ATGTTATCAT	GGAATTGATG	TCAATCGTTG	ACACATACAT	300
20	TCCAGAACCA	GAACGTGATA	CTGACAAACC	ATTGCTTCTT	CCAGTCGAGG	350
	ATGTATTCTC	AATCACTGGA	CGTGGTACTG	TTGCTTCAGG	ACGTATCGAC	400
	CGTGGTACTG	TTAAAGTTAA	TGACGAAGTT	GAAATCGTTG	GTATCAAAGA	450
	CGAAATCTCT	AAAGCAGTTG	TTACTGGTGT	TGAAATGTTC	CGTAAACAAC	500
	TTGACGAAGG	TCTTGCTGGA	GATAACGTTG	GTGTTCTTCT	TCGTGGTGTA	550
25	CAACGTGATG	AAATCGAACG	TGGTCAAGTT	CTTGCTAAAC	CAGGTTCAAT	600
	CAACCCACAC	ACTAAATTCA	AAGGTGAAGT	TTACGTTCTT	TCTAAAGAAG	650
	AAGGTGGACG	TCACACTCCA	TTCTTCGATA	ACTACCGTCC	TCAGTTCTAC	700
	TTCCGTACAA	CTGACGTAAC	TGGTTCAATC	AAATTGCCAG	AAGGTACTGA	750
	AATGGTAATG	CCTGGTGATA	ACGTAACTAT	CGAAGTTGAG	TTGATCCACC	800
30	CAATCGCCGT	TGAACAAGGT	ACTACTTTCT	CTATC		835

2) INFORMATION FOR SEQ ID NO: 207

35

10

45

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 819 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
- (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: Genomic DNA

(vi) ORIGINAL SOURCE:

- (A) ORGANISM: Streptococcus agalactiae
 - (B) STRAIN: ATCC 12403

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 207

50	CTATCCTTGT	AGTTGCTTCA	ACTGATGGAC	CAATGCCACA	AACTCGTGAG	50
50	CACATCCTTC	TTTCACGTCA	AGTTGGTGTT	AAACACCTTA	TCGTATTCAT	100
			ATGATGAAGA			150
	TGGAAATTCG	TGACCTTCTT	TCAGAATACG	ACTTCCCAGG	TGATGACCTT	200
	CCAGTTATCC	AAGGTTCAGC	TCTTAAAGCA	CTTGAAGGCG	ACGAAAAATA	250
55			TGATGAGCAC			300
	AACCAGAACG	TGATACTGAC	AAACCTTTAC	TTCTTCCAGT	TGAAGATGTA	350
	TTCTCAATCA	CTGGACGTGG	TACAGTTGCT	TCAGGACGTA	TCGACCGTGG	400
	TACTGTTCGT	GTCAACGACG	AAGTTGAAAT	CGTTGGTATT	AAAGAAGATA	450
	TCCAAAAAGC	AGTTGTTACT	GGTGTTGAAA	TGTTCCGTAA	ACAACTTGAC	500
50	GAAGGTCTTG	CAGGGGACAA	CGTTGGTGTT	CTTCTTCGTG	GTGTTCAACG	5 50

5	TGATGAAATC GAACGTGGTC AAGTTCTTGC TAAACCAGGT TCAATCAACCCCACACACACACAAA ATTTAAAGGT GAAGTTTACA TCCTTTCTAA AGAAGAAGGT GGACGTCATA CTCCATTCTT CAACAACTAC CGTCCACAAT TCTACTTCCG TACAACTGAC GTAACAGGTT CAATCGAACT TCCAGCAGGA ACAGAAATGG TTATGCCTGG TGATAACGTT ACTATCGAAG TTGAATTGAT TCACCCAATC GCCGTAGAAC AAGGTACTA	600 650 700 750 800 819
LO	2) INFORMATION FOR SEQ ID NO: 208	
15 .	(i)SEQUENCE CHARACTERISTICS: (A) LENGTH: 819 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
20	<pre>(vi)ORIGINAL SOURCE: (A) ORGANISM: Streptococcus agalactiae (B) STRAIN: ATCC 12973</pre>	
25	(xi)SEQUENCE DESCRIPTION: SEQ ID NO: 208	
25	CTATCCTTGT AGTTGCTTCA ACTGATGGAC CAATGCCACA AACTCGTGAG CACATCCTTC TTTCACGTCA AGTTGGTGTT AAACACCTTA TCGTATTCAT GAACAAAGTT GACCTTGTTG ATGATGAAGA ATTGCTTGAA TTGGTTGAAA TGGAAATTCG TGACCTTCTT TCAGAATACG ACTTCCCAGG TGATGACCTT	50 100 150 200
30	CCAGTTATCC AAGGTTCAGC TCTTAAAGCA CTTGAAGGCG ATGAAAAATA CGAAGACATC ATCATGGAAT TGATGAGCAC TGTTGATGAG TACATTCCAG AACCAGAACG TGATACTGAC AAACCTTTAC TTCTTCAGT CGAAGATGTA TTCTCAATCA CTGGACGTGG TACAGTTGCT TCAGGACGTA TCGACCGTGG	250 300 350 400
35	TACTGTTCGT GTCAACGACG AAGTTGAAAT CGTTGGTATT AAAGAAGATA TCCAAAAAGC AGTTGTTACT GGTGTTGAAA TGTTCCGTAA ACAACTTGAC GAAGGTCTTG CAGGGGACAA CGTTGGTGTT CTTCTTCGTG GTGTTCAACG TGATGAAATC GAACGTGGTC AAGTTCTTGC TAAACCAGGT TCAATCAACC CACACACTAA ATTTAAAGGT GAAGTTTACA TCCTTTCTAA AGAAGAAGGT	450 500 550 600 650
40	GGACGTCATA CTCCATTCTT CAACAACTAC CGTCCACAAT TCTACTTCCG TACAACTGAC GTAACAGGTT CAATCGAACT TCCAGCAGGA ACAGAAATGG TTATGCCTGG TGATAACGTT ACTATCGAAG TTGAATTGAT TCACCCAATC GCCGTAGAAC AAGGTACTA	700 750 800 819
45	2) INFORMATION FOR SEQ ID NO: 209	
	(i)SEQUENCE CHARACTERISTICS:	
50	(A) LENGTH: 822 bases(B) TYPE: Nucleic acid(C) STRANDEDNESS: Double(D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
55	<pre>(vi)ORIGINAL SOURCE: (A) ORGANISM: Streptococcus agalactiae (B) STRAIN: ATCC 13813</pre>	

125

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 209

	AGCTATCCTT	GTAGTTGCTT	CAACTGATGG	ACCAATGCCA	CAAACTCGTG	50
	AGCACATCCT	TCTTTCACGT	CAAGTTGGTG	TTAAACACCT	TATCGTATTC	100
	ATGAACAAAG	TTGACCTTGT	TGATGATGAA	GAATTGCTTG	AATTGGTTGA	150
5	AATGGAAATT	CGTGACCTTC	TTTCAGAATA	CGACTTCCCA	GGTGATGACC	200
	TTCCAGTTAT	CCAAGGTTCA	GCTCTTAAAG	CACTTGAAGG	CGATGAAAAA	, 250
	TACGAAGACA	TCATCATGGA	ATTGATGAGC	ACTGTTGATG	AGTACATTCC	300
	AGAACCAGAA	CGTGATACTG	ACAAACCTTT	ACTTCTTCCA	GTCGAAGATG	350
	TATTCTCAAT	CACTGGACGT	GGTACAGTTG	CTTCAGGACG	TATCGACCGT	400
LO	GGTACTGTTC	GTGTCAACGA	CGAAGTTGAA	ATCGTTGGTA	TTAAAGAAGA	450
	TATCCAAAAA	GCAGTTGTTA	CTGGTGTTGA	AATGTTCCGT	AAACAACTTG	500
	ACGAAGGTCT	TGCAGGGGAC	AACGTTGGTG	TTCTTCTTCG	TGGTGTTCAA	550
	CGTGATGAAA	TCGAACGTGG	TCAAGTTCTT	GCTAAACCAG	GTTCAATCAA	600
	CCCACACACT	AAATTTAAAG	GTGAAGTTTA	CATCCTTTCT	AAAGAAGAAG	650
15	GTGGACGTCA	TACTCCATTC	TTCAACAACT	ACCGTCCACA	ATTCTACTTC	700
	CGTACAACTG	ACGTAACAGG	TTCAATCGAA	CTTCCAGCAG	GAACAGAAAT	750
	GGTTATGCCT	GGTGATAACG	TTACTATCGA	AGTTGAATTG	ATTCACCCAA	800
	TCGCCGTAGA	ACAAGGTACT	AC			822
			•			

30

25

2) INFORMATION FOR SEQ ID NO: 210

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 825 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
- 30 (ii) MOLECULE TYPE: Genomic DNA
 - (vi)ORIGINAL SOURCE:
 - (A) ORGANISM: Streptococcus agalactíae
 - (B) STRAIN: CDCss-1073

35

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 210

	CGGAGCTATC	CTTGTAGTTG	CTTCAACTGA	TGGACCAATG	CCACAAACTC	50
	GTGAGCACAT	CCTTCTTTCA	CGTCAAGTTG	GTGTTAAACA	CCTTATCGTA	100
40	TTCATGAACA	AAGTTGACCT	TGTTGATGAT	GAAGAATTGC	TTGAATTGGT	150
	TGAAATGGAA	ATTCGTGACC	TTCTTTCAGA	ATACGACTTC	CCAGGTGATG	200
	ACCTTCCAGT	TATCCAAGGT	TCAGCTCTTA	AAGCACTTGA	AGGCGACGAA	250
	AAATACGAAG	ACATCATCAT	GGAATTGATG	AGCACTGTTG	ATGAGTACAT	300
	TCCAGAACCA	GAACGTGATA	CTGACAAACC	TTTACTTCTT	CCAGTTGAAG	350
45	ATGTATTCTC	AATCACTGGA	CGTGGTACAG	TTGCTTCAGG	ACGTATCGAC	400
	CGTGGTACTG	TTCGTGTCAA	CGACGAAGTT	GAAATCGTTG	GTATTAAAGA	450
	AGATATCCAA	AAAGCAGTTG	TTACTGGTGT	TGAAATGTTC	CGTAAACAAC	500
	TTGACGAAGG	TCTTGCAGGG	GACAACGTTG	GTGTTCTTCT	TCGTGGTGTT	550
	CAACGTGATG	AAATCGAACG	TGGTCAAGTT	CTTGCTAAAC	CAGGTTCAAT	600
50	CAACCCACAC	ACTAAATTTA	AAGGTGAAGT	TTACATCCTT	TCTAAAGAAG	650
	AAGGTGGACG	TCATACTCCA	TTCTTCAACA	ACTACCGTCC	ACAATTCTAC	700
	TTCCGTACAA	CTGACGTAAC	AGGTTCAATC	GAACTTCCAG	CAGGAACAGA	750
	AATGGTTATG	CCTGGTGATA	ACGTTACTAT	CGAAGTTGAA	TTGATTCACC	800
	CAATCGCCGT	AGAACAAGGT	ACTAC			825

55

2) INFORMATION FOR SEQ ID NO: 211

60 (i) SEQUENCE CHARACTERISTICS:

```
(A)
                LENGTH: 826 bases
                TYPE: Nucleic acid
          (B)
                STRANDEDNESS: Double
          (C)
          (D)
                TOPOLOGY: Linear
5
      (ii) MOLECULE TYPE: Genomic DNA
      (vi)ORIGINAL SOURCE:
                ORGANISM: Streptococcus anginosus
          (A)
                STRAIN: ATCC 33397
10
          (B)
      (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 211
    GGAGCTATCC TTGTAGTAGC TTCAACTGAC GGACCAATGC CTCAAACTCG
                                                                   50
15
    TGAACACATC CTTCTTTCAC GCCAAGTAGG TGTTAAATAC CTTATCGTCT
                                                                  100
    TCATGAATAA AGTTGACTTG GTTGACGATG AAGAATTGCT TGAATTGGTT
                                                                 150
    GAAATGGAAA TCCGTGACCT TCTTTCAGAA TACGATTTCC CAGGTGATGA
                                                                 200
    AATCCCAGTT ATCCAAGGTT CAGCTCTTAA AGCTCTTGAA GGTGATGAAA
                                                                  250
    AATATGAAGA CATCATCATG GAATTGATGG ATACTGTTGA TGAATACATT
                                                                 300
    CCAGAACCAG AACGTGACAC TGACAAACCA TTGCTTCTTC CAGTTGAAGA
                                                                 350
20
    TGTATTCTCA ATTACTGGAC GTGGTACTGT TGCTTCAGGA CGTATCGACC
                                                                 400
    GTGGTACTGT TAAAGTCAAC GACGAAGTTG AAATCGTTGG TATCCGTGAT
                                                                 450
    GAAATCCAAA AAGCAGTTGT TACTGGTGTT GAAATGTTCC GTAAACAATT
                                                                  500
    GGACGAAGGT CTTGCTGGAG ATAACGTAGG GGTTCTTCTT CGTGGTATCC
                                                                  550
    AACGTGACGA AATCGAACGT GGACAAGTTC TTGCTAAACC AGGTTCAATT
                                                                  600
25
    CATCCACACA CTAAATTCAA AGGTGAAGTT TACATCCTTA CTAAAGAAGA
                                                                  650
    AGGTGGACGT CATACTCCAT TCTTCAACAA CTACCGTCCT CAATTCTACT
                                                                  700
    TCCGTACTAC AGACGTTACA GGTTCAATCG AACTTCCTGC AGGTACTGAA
                                                                  750
    ATGGTAATGC CTGGTGATAA CGTAACAATC GACGTTGAAT TGATCCACCC
                                                                  800
30
    AATTGCCGTA GAACAAGGAA CTACAT
                                                                  826
    2) INFORMATION FOR SEQ ID NO: 212
35
       (i) SEQUENCE CHARACTERISTICS:
                LENGTH: 827 bases
          (A)
                TYPE: Nucleic acid
          (B)
                STRANDEDNESS: Double
           (C)
40
           (D)
                TOPOLOGY: Linear
      (ii) MOLECULE TYPE: Genomic DNA
      (vi)ORIGINAL SOURCE:
                ORGANISM: Streptococcus bovis
45
           (A)
           (B)
                STRAIN: ATCC 33317
      (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 212
50
    TGGTGCTATC CTTGTAGTAG CTTCTACAGA TGGTCCAATG CCACAAACAC
                                                                   50
    GTGAACACAT CCTTCTTCA CGTCAAGTTG GTGTTAAACA CCTTATCGTC
                                                                  100
    TTCATGAACA AAGTTGACCT TGTTGATGAC GAAGAATTGC TTGAATTGGT
                                                                  150
    TGAAATGGAA ATCCGTGACC TTCTTTCAGA ATATGATTTC CCAGGTGATG
                                                                  200
    AAATCCCTGT AATCCAAGGT TCAGCTCTTA AAGCCCTTGA AGGTGACACT
                                                                  250
55
    CACTACGAAG ACATCATCAT GGAATTGATG AACACTGTAG ATGAATACAT
                                                                  300
    TCCAGAACCA AAACGTGATA CTGACAAACC ATTGCTTCTT CCAGTCGAAG
                                                                  350
    ACGTATTCTC AATCACTGGT CGTGGTACTG TAGCATCAGG ACGTATCGAC
                                                                  400
    CGTGGTACTG TTAAAGTCAA CGACGAAGTT GAAATCGTTG GTATCCGTGA
                                                                  450
    CGACATCCAA AAAGCTGTTG TTACTGGTGT TGAAATGTTC CGTAAACAAC
                                                                  500
```

550

TTGATGAAGG TATCGCAGGG GATAACGTTG GTGTTCTTCT TCGTGGTATC

	CAACGTGATG	AAATCGAACG	TGGTCAAGTT	CTTGCTAAAC	CAGGTTCAAT	600
	CCACCCACAC	ACTAAATTCA	AAGGTGAAGT	TTACATCCTT	ACTAAAGAAG	650
	AAGGTGGACG	TCACACTCCA	TTCTTCAACA	ACTACCGTCC	TCAATTCTAC	700
	TTCCGTACAA	CTGACGTTAC	AGGTTCAATC	GAACTTCCAG	CAGGTACTGA	750
5	AATGGTAATG	CCTGGTGATA	ACGTTACTAT	CGACGTTGAA	TTGATTCACC	800
•	CAATCGCCGT	TGAACAAGGT	ACTACAT			827

- 10 2) INFORMATION FOR SEQ ID NO: 213
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 821 bases
 - (B) TYPE: Nucleic acid
- 15 (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: Genomic DNA
- 20 (vi)ORIGINAL SOURCE:
 - (A) ORGANISM: Streptococcus anginosus (deposited as Streptococcus constellatus)
 - (B) STRAIN: ATCC 27823
- 25 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 213

	GCTATCCTCG	TAGTAGCTTC	AACTGATGGA	CCAATGCCTC	AAACTCGTGA	50
٠	ACATATCCTT	CTTTCACGTC	AAGTAGGTGT	TAAATACCTT	ATCGTCTTCA	100
	TGAACAAAGT	TGACTTGGTT	GACGATGAAG	AATTGCTTGA	ATTGGTTGAA	150
30	ATGGAAATCC	GTGACCTTCT	TTCAGAATAC	GATTTCCCAG	GTGATGAAAT	200
	CCCAGTTATC	CAAGGTTCAG	CTCTTAAAGC	TCTTGAAGGT	GATGAAAAAT	250
	ATGAAGACAT	CATCATGGAA	TTGATGGATA	CTGTTGATGA	ATACATTCCA	300
	GAACCAGAAC	GTGACACTGA	CAAACCACTT	CTTCTTCCAG	TCGAAGATGT	350
	ATTCTCAATC	ACTGGACGTG	GTACTGTTGC	TTCAGGACGT	ATCGACCGTG	400
35	GTACTGTTAA	AGTCAATGAT	GAAGTTGAAA	TTGTTGGTAT	TCGTGACGAA	450
	ATCCAAAAAG	CAGTTGTTAC	TGGTGTTGAA	ATGTTCCGTA	AACAATTGGA	500
	CGAAGGTCTT	GCTGGAGATA	ACGTAGGGGT	TCTTCTTCGT	GGTATCCAAC	550
	GTGACGAAAT	CGAACGTGGA	CAAGTTCTTG	CTAAACCAGG	TTCAATTCAT	600
	CCACACACTA	AATTCAAAGG	TGAAGTTTAC	ATCCTTACTA	AAGAAGAAGG	650
40	TGGACGTCAT	ACTCCATTCT	TCAACAACTA	CCGTCCTCAA	TTCTACTTCC	700
	GTACTACAGA	CGTTACAGGT	TCAATCGAAC	TTCCTGCAGG	TACTGAAATG	750
	GTAATGCCTG	GTGATAACGT	AACAATTGAT	GTTGAGTTGA	TCCACCCAAT	800
	TGCCGTAGAA	CAAGGAACTA	С			821

45

50

- 2) INFORMATION FOR SEQ ID NO: 214
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 821 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 (D) TOPOLOGY: Linear
- 55 (ii) MOLECULE TYPE: Genomic DNA
 - (vi)ORIGINAL SOURCE:
 - (A) ORGANISM: Streptococcus cricetus
 - (B) STRAIN: ATCC 19642

PCT/CA00/01150 WO 01/23604

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 214

5	GCTATCCTTG ACACATCTTG TGAACAAGGT ATGGAAATCC CCCTGTTGTT	TAGTAGCTTC CTTTCACGCC TGACTTGGTT GTGATCTTCT CAAGGTTCAG	TACAGACGGA AAGTTGGTGT GACGATGAAG TTCAGAATAC CTCTTAAAGC	CCAATGCCAC TAAGAGCCTT AATTGCTTGA GATTTCCCAG CCTTGAAGGT	AAACTCGTGA ATCGTCTTCA ATTGGTTGAA GTGATGATAT GATACAGCTG	50 100 150 200 250
	CCGAAGACAA	GATCATGGAA	TTGATGGACA	TCGTTGATGA	CTACATTCCA	300
	GAACCAAAAC	GTGATACTGA	TAAGCCATTG	CTTCTTCCAG	TCGAAGACGT	350
10	ATTCTCAATC	ACTGGACGTG	GTACTGTTGC	TTCAGGACGT	ATCGACCGTG	400
	GTACTGTTAA	GGTCAATGAC	GAAGTTGAAA	TCGTTGGTAT	CAAGGACGAA	450
	ATCCAAAAAG	CGGTTGTTAC	CGGAGTTGAA	ATGTTCCGTA	AACAATTGGA	500
	TGAAGGTCTT	GCAGGGGATA	ACGTTGGTGT	GCTTCTTCGT	GGTATCCAAC	550
	GTGATGAAAT	CGAACGTGGT	CAAGTATTGG	CTGCACCTGG	TTCAATCCAT	600
15	CCACACACTA	AATTCAAGGG	TGAAGTTTAC	ATCCTTTCTA	AAGATGAAGG	650
	TGGACGTCAC	ACTCCATTCT	TCAACAACTA	CCGTCCACAG	TTCTACTTCC	700
	GTACAACTGA	CGTAACTGGT	TCAATCGAAT	TGCCAGCAGG	TACTGAAATG	750
	GTTATGCCTG	GTGATAACGT	TACTATCGAC	GTTGAATTGA	TCCACCCAAT	800
	CGCTGTTGAA	AAAGGTACTA	C			821

2) INFORMATION FOR SEQ ID NO: 215

(i) SEQUENCE CHARACTERISTICS: 25

- LENGTH: 821 bases (A)
- (B)
- TYPE: Nucleic acid STRANDEDNESS: Double (C)
- TOPOLOGY: Linear (D)

(ii) MOLECULE TYPE: Genomic DNA

(vi)ORIGINAL SOURCE:

- ORGANISM: Streptococcus cristatus (A)
- STRAIN: ATCC 51100 35 (B)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 215

	TATCCTTGTA	GTAGCTTCAA	CTGACGGACC	AATGCCACAA	ACTCGTGAGC	50
40	ACATCCTTCT	TTCACGTCAG	GTTGGTGTTA	AACACCTTAT	CGTCTTCATG	100
	AACAAGATCG	ACTTGGTTGA	TGACGAAGAA	TTGCTTGAAT	TGGTTGAAAT	150
	GGAAATCCGT	GACCTCTTGT	CAGAATACGA	CTTCCCAGGT	GACGATCTTC	200
	CAGTTATCCA	AGGTTCAGCT	CTTAAAGCTC	TTGAAGGTGA	TACTAAGTAC	250
	GAAGACATCA	TCATGGAATT	GATGAACACT	GTTGATGAGT	ACATCCCAGA	300
45	ACCAGAACGT	GATACTGACA	AACCTCTTCT	TCTTCCAGTC	GAAGACGTAT	350
	TCTCAATCAC	TGGTCGTGGT	ACAGTTGCTT	CAGGACGTAT	CGACCGTGGT	400
	ACTGTTCGTG	TCAACGATGA	AATCGAAATC	GTTGGTATCA	AAGAAGAAAT	450
	CCAAAAAGCA	GTTGTTACTG	GTGTTGAAAT	GTTCCGTAAA	CAGCTTGACG	500
	AAGGTCTTGC	AGGGGACAAC	GTAGGTGTAC	TTCTTCGTGG	TATCCAACGT	550
50	GATGAAATCG	AACGTGGTCA	AGTTATCGCT	AAACCAGGTT	CAATCAACCC	600
	ACACACTAAA	TTCAAGGGTG	AAGTTTACAT	CCTTACTAAA	GAAGAAGGTG	650
	GACGTCACAC	TCCATTCTTC	AACAACTACC	GTCCACAGTT	CTACTTCCGT	700
	ACAACTGACG	TTACAGGTTC	AATCGAACTT	CCAGCAGGTA	CTGAAATGGT	750
	AATGCCTGGT	GATAACGTAA	CTATCGACGT	TGAGTTGATC	CACCCAATCG	800
5 5	CCGTTGAACA	AGGTACTCCT	T			821

²⁾ INFORMATION FOR SEQ ID NO: 216

20

```
(i) SEQUENCE CHARACTERISTICS:
                LENGTH: 792 bases
          (A)
                TYPE: Nucleic acid
          (B)
                STRANDEDNESS: Double
          (C)
                TOPOLOGY: Linear
5
          (D)
      (ii) MOLECULE TYPE: Genomic DNA
      (vi) ORIGINAL SOURCE:
                ORGANISM: Streptococcus downei
10
          (A)
          (B)
                STRAIN: ATCC 33748
      (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 216
    AGTAGCTTCT ACTGATGGAC CAATGCCACA AACTCGTGAA CACATCTTGC
15
                                                                  50
    TTTCACGTCA GGTTGGTGTT AAGAACCTTA TCGTCTTCAT GAACAAGGTT
                                                                 100
    GACTTGGTTG ACGATGAAGA ATTGCTTGAA TTGGTTGAAA TGGAAATCCG
                                                                 150
    TGACCTGCTT TCAGAATACG ATTTCCCAGG TGATGATATC CCTGTTGTTC
                                                                 200
    AAGGTTCAGC TCTTAAGGCT CTTGAAGGTG ATACAGCTGC CGAAGACAAG
                                                                 250
    ATCATGGAAT TGATGGACAT CGTTGATGAC TACATTCCAG AACCAAAACG
                                                                 300
20
    TGATACTGAT AAGCCTTTGC TTCTTCCAGT CGAAGATGTA TTCTCAATCA
                                                                 350
    CTGGACGTGG TACTGTAGCT TCAGGACGTA TCGACCGTGG TACTGTTAAG
                                                                 400
    GTCAACGACG AAGTTGAAAT CGTTGGTATC AAGGACGAAA TCCAAAAAGC
                                                                 450
    AGTTGTTACC GGAGTTGAAA TGTTCCGTAA ACAATTGGAC GAAGGTCTTG
                                                                 500
    CAGGGGATAA CGTTGGTGTG CTTCTTCGTG GTATCCAACG TGATGAAATC
25
                                                                 550
    GAACGTGGTC AAGTGTTGGC TGCGCCTGGT TCGATTCACC CACACACTAA
                                                                 600
    GTTTAAAGGT GAAGTTTACA TCCTTTCTAA AGAAGAAGGT GGACGTCATA
                                                                 650
    CTCCATTCTT TAACAACTAC CGTCCACAGT TCTACTTCCG TACAACTGAC
                                                                 700
    GTAACTGGTT CAATCGAATT GCCAGCGGGT ACTGAAATGG TTATGCCTGG
                                                                 750
    TGATAACGTT ACTATCGACG TTGAATTGAT CCACCCAATT GC
30
                                                                 792
    2) INFORMATION FOR SEQ ID NO: 217
35
       (i) SEQUENCE CHARACTERISTICS:
          (A)
                LENGTH: 795 bases
                TYPE: Nucleic acid
           (B)
           (C)
                STRANDEDNESS: Double
40
                TOPOLOGY: Linear
           (D)
      (ii) MOLECULE TYPE: Genomic DNA
      (vi) ORIGINAL SOURCE:
45
                ORGANISM: Streptococcus dysgalactiae
           (A)
                STRAIN: ATCC 43078
           (B)
      (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 217
    GTAGTTGCTT CAACAGACGG ACCAATGCCA CAAACTCGTG AGCACATCCT
                                                                  50
50
    CCTTTCACGT CAGGTTGGTG TTAAACACCT TATCGTGTTC ATGAACAAAA
                                                                 100
    TTGACCTTGT TGACGATGAA GAATTGCTTG AATTGGTTGA AATGGAAATC
                                                                 150
    CGTGACCTTC TTTCAGAATA CGATTTCCCA GGTGATGACC TTCCAGTTAT
                                                                 200
    CCAAGGTTCA GCTCTTAAAG CTCTTGAAGG CGACACTAAA TTTGAAGACA
                                                                 250
35
    TCATCATGGA ATTGATGGAT ACTGTTGATT CATACATTCC AGAACCAGAA
                                                                 300
    CGTGACACTG ACAAACCATT GCTTCTTCCA GTCGAAGACG TATTCTCAAT
                                                                  350
    CACAGGTCGT GGTACAGTTG CTTCAGGACG TATCGACCGT GGTACTGTTC
                                                                 400
    GTGTCAACGA CGAAATCGAA ATCGTTGGTA TCAAAGAAGA AACTAAAAAA
                                                                 450
    GCTGTTGTTA CTGGTGTTGA AATGTTCCGT AAACAACTTG ACGAAGGTCT
                                                                  500
50
    TGCAGGAGAC AACGTAGGTA TCCTTCTTCG TGGTGTTCAA CGTGACGAAA
                                                                 550
```

	TCGAACGTGG	TCAAGTTATT	GCTAAACCAG	GTTCAATCAA	CCCACACACT	600
	AAATTCAAAG	GTGAAGTATA	TATCCTTTCT	AAAGACGAAG	GTGGACGTCA	650
	CACTCCATTC	TTCAACAACT	ATCGTCCACA	ATTCTACTTC	CGTACAACTG	700
	ACGTAACAGG	TTCAATCGAA	CTTCCAGCTG	GTACAGAAAT	GGTTATGCCT	750
5	GGTGATAACG	TGACAATCAA	CGTTGAGTTG	ATCCACCCAA	TCGCC	795

2) INFORMATION FOR SEQ ID NO: 218

10

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 828 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
- 15 (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: Genomic DNA
 - (vi)ORIGINAL SOURCE:
- 20 (A) ORGANISM: Streptococcus equi subsp. equi
 - (B) STRAIN: ATCC 9528
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 218

25	CGGAGCTATC	CTTGTAGTTG	CTTCAACTGA	CGGACCAATG	CCACAAACTC	50
	GTGAGCACAT	CCTTCTTTCA	CGTCAGGTTG	GTGTTAAGCA	CCTTATCGTG	100
	TTCATGAACA	AGGTTGACCT	TGTTGACGAT	GAAGAATTGC	TTGAGCTTGT	150
	TGAAATGGAA	ATTCGTGACC	TTCTTTCAGA	ATATGATTTC	CCAGGTGATG	200
	ACCTTCCAGT	TATCCAAGGT	TCAGCGCTTA	AGGCTCTTGA	AGGCGACAGC	250
30	AAATACGAAG	ATATCATCAT	GGAATTGATG	GATACTGTTG	ATTCATACAT	300
	TCCAGAACCA	GAACGTGACA	CAGACAAGCC	ATTGCTTCTT	CCAGTCGAGG	350
	ACGTATTCTC	AATCACTGGA	CGTGGTACTG	TTGCTTCAGG	ACGTATCGAC	400
	CGCGGTACTG	TTCGTGTTAA	CGACGAAATC	GAAATCGTTG	GTATCAGAGA	450
	CGAGATCAAA	AAAGCAGTTG	TTACTGGTGT	CGAAATGTTC	CGTAAACAGC	500
35	TTGACGAAGG	TCTTGCAGGG	GACAACGTTG	GTGTTCTTCT	TCGTGGTGTA	550
	CAACGTGATG	AAATCGAACG	TGGTCAAGTT	ATTGCTAAGC	CAGGTTCTAT	600
	CAACCCACAC	ACTAAATTTA	AAGGTGAAGT	ATATATCCTT	ACTAAAGAAG	650
	AAGGTGGACG	TCACACACCA	TTCTTCAACA	ACTATCGTCC	ACAATTCTAC	700
	TTCCGTACTA	CTGACGTAAC	AGGTTCAATC	GAGCTTCCAG	CAGGTACAGA	750
40	AATGGTTATG	CCTGGTGATA	ACGTGACTAT	TGACGTTGAG	TTGATCCACC	800
	CAATCGCCGT	AGAACAAGGT	ACTACATT			828

- 45 2) INFORMATION FOR SEQ ID NO: 219
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 825 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: Genomic DNA
- 55 (vi)ORIGINAL SOURCE:
 - (A) ORGANISM: Streptococcus ferus
 - (B) STRAIN: ATCC 33477
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 219

60

5	GTGAGCACAT TTCATGAACA TGAAATGGAA ACCTTCCAGT	ATCCGTGACC TATCCAAGGT ATGTTATCAT	CTTCTACAGA CGTCAGGTAG GGTTGACGAT TGCTTTCAGA TCAGCTCTTA GGAATTGATG CTGACAAACC CGTGGTACTG CGATGAAGTT	TGGACCAATG GTGTTAAACA GAAGAATTGC ATATGATTTC AAGCGCTTGA AAAACCGTTG ATTGCTTCTT TAGCTTCAGG GAAATCGTTG	CCACAAACTC CCTTATCGTC TTGAATTGGT CCAGGTGATG AGGTGATACT ATGAGTACAT CCAGTCGAAG ACGTATCGAT GTATCAAAGA	50 100 150 200 250 300 350 400 450
10	CGAAATCACT TGGACGAAGG CAACGTGATG CAACCCACAC AAGGTGGACG TTCCGTACAA AATGGTTATG CAATCGCCGT	AAAGCAGTTG TCTTGCTGGT AAATCGAACG ACTAAATTTA TCATACACCA CTGACGTAAC CCTGGTGATA TGAACAAGGT	TTACCGGTGT GATAACGTTG TGGTCAAGTA AAGGTGAAGT TTCTTCAACA TGGTTCAATC ACGTGACTAT ACTAC	GAATTGCCAG	CGTAAACAAT CCGTGGTGTG CAGGTTCAAT ACTAAAGAAG ACAGTTCTAC CAGGTACTGA TTGATCCACC	500 550 600 650 700 750 800 825

20

25

- 2) INFORMATION FOR SEQ ID NO: 220
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 826 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: Genomic DNA

30

- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Streptococcus gordonii
 - (B) STRAIN: ATCC 10558
- 35 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 220

•	CGGAGCTATC	CTTGTAGTAG	CTTCAACTGA	TGGTCCTATG	CCACAAACTC	50
	GTGAGCACAT	CCTTCTCTCA	CGCCAAGTTG	GTGTTAAACA	CTTGATCGTG	100
	TTCATGAACA	AAGTTGACTT	GGTTGACGAT	GAAGAATTGC	TTGAGTTGGT	150
1 0	TGAAATGGAA	ATCCGTGACC	TCTTGTCAGA	ATACGACTTC	CCAGGTGACG	200
	ATCTTCCAGT	TATCCAAGGT	TCAGCTCTTA	AAGCTCTTGA	AGGTGACTCT	250
	AAATATGAAG	ATATCATCAT	GGAATTGATG	AACACTGTTG	ATGAGTACAT	300
		GAACGCGACA		ATTGCTTCTT	CCAGTCGAAG	350
	ACGTATTCTC	AATCACTGGA	CGTGGTACAG	TTGCTTCAGG	ACGTATCGAC	400
15	CGTGGTATCG	TTAAAGTCAA	TGACGAAATC	GAAATCGTTG	GTATCAAAGA	450
		AAAGCAGTTG	TTACTGGTGT	TGAAATGTTC	CGTAAACAGC	500
	TTGACGAAGG	TCTTGCAGGG	GACAACGTTG	GTGTGCTTCT	TCGTGGTATC	550
	CAACGTGATG	AAATCGAACG	TGGACAAGTT	ATTGCTAAAC	CAGGTTCAAT	600
	CAACCCACAC	ACTAAATTCA	AAGGTGAAGT	TTATATCCTT	ACTAAAGAAG	650
50	AAGGTGGACG	TCACACTCCA	TTCTTCAACA	ACTACCGTCC	ACAGTTCTAC	700
	TTCCGTACAA	CTGACGTTAC	AGGTTCAATC	GAACTTCCAG	CAGGTACTGA	750
	AATGGTAATG	CCTGGTGATA	ACGTAACTAT	CGACGTTGAG	TTGATCCACC	800
	CAATCGCCGT	TGAACAAGGT	ACTACT			826

55

- 2) INFORMATION FOR SEQ ID NO: 221
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 799 bases

- (B) TYPE: Nucleic acid
- (C) STRANDEDNESS: Double
- (D) TOPOLOGY: Linear
- 5 (ii) MOLECULE TYPE: Genomic DNA
 - (vi)ORIGINAL SOURCE:
 - (A) ORGANISM: Streptococcus anginosus
 - (B) STRAIN: ATCC 27335

10

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 221

	TGTAGTAGCT	TCAACTGACG	GACCAATGCC	TCAAACTCGT	GAACATATCC	50
	TTCTTTCACG	TCAAGTAGGT	GTTAAATACC	TTATTGTCTT	CATGAACAAA	100
15	GTTGACTTGG	TTGACGATGA	AGAATTGCTT	GAATTGGTTG	AAATGGAAAT	150
	CCGTGATCTT	CTTTCAGAAT	ACGATTTCCC	AGGTGATGAT	ATTCCAGTAA	200
	TCCAAGGTTC	AGCACTTAAA	GCTCTTGAAG	GTGATGAAAA	ATATGAAGAC	250
	ATCATCATGG	AATTGATGAA	TACTGTTGAT	GAATATATTC	CAGAACCAGA	300
	ACGTGATACT	GACAAACCAT	TGCTTCTTCC	AGTCGAAGAT	GTATTCTCAA	350
20	TCACTGGACG	TGGTACTGTT	GCTTCAGGAC	GTATCGACCG	TGGTACTGTT	400
	AAAGTCAACG	ATGAAGTTGA	AATCGTTGGT	ATCCGCGAGG	AAATCCAAAA	450
	AGCAGTTGTT	ACTGGTGTTG	AAATGTTCCG	TAAACAATTG	GACGAAGGTC	500
	TTGCTGGAGA	TAACGTAGGG	GTTCTTCTTC	GTGGTATCCA	ACGTGACGAA	550
	ATTGAACGTG	GACAAGTTCT	TGCTAAACCA	GGTTCAATTC	ATCCACACAC	600
25	TAAATTCAAA	GGTGAAGTTT	ACATCCTTAC	TAAAGAAGAA	GGTGGACGTC	650
	ATACTCCATT	CTTCAACAAC	TACCGTCCTC	AATTCTACTT	CCGTACTACA	700
	GACGTTACAG	GTTCAATCGA	ACTTCCTGCA	GGTACTGAAA	TGGTAATGCC	750
	TGGTGATAAC	GTAACAATTG	ATGTTGAGTT	GATCCACCCA	ATTGCCGTA	799

30

35

- 2) INFORMATION FOR SEQ ID NO: 222
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 825 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
- 40 (ii) MOLECULE TYPE: Genomic DNA
 - (vi)ORIGINAL SOURCE:
 - (A) ORGANISM: Streptococcus macacae
 - (B) STRAIN: ATCC 35911

45

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 222

	TGGTGCTATT	CTTGTAGTAG	CTTCAACTGA	CGGTCCAATG	CCTCAAACGC	50
	GTGAACATAT	CCTTCTTTCA	CGCCAAGTAG	GTGTTAAAAA	CCTTATTGTT	100
50	TTCATGAATA	AAGTTGACTT	AGTTGATGAT	GAAGAATTGC	TTGAATTGGT	150
	TGAAATGGAA	ATCCGTGATC	TTCTTACAGA	ATATGATTTC	CCAGGCGATG	200
	AACTTCCAGT	TATCCAAGGT	TCAGCACTTA	AAGCTCTTGA	AGGTGATACT	250
	AAGTACGAAG	ATATTATCAT	GGAATTGTTG	GATACTGTAG	ATGATTACAT	300
	CCCAGAACCA	CAACGTGATA	CTGACAAGCC	ATTGCTTCTT	CCAGTCGAAG	350
55	ATGTTTTCTC	TATTACTGGA	CGTGGTACTG	TTGCTTCAGG	ACGTATTGAC	400
	CGTGGTACTG	TTAAGGTTAA	TGATGAAGTT	GAAATCGTTG	GTATTCGTGA	450
	CGATATTCAA	AAAGCAGTTG	TTACTGGTGT	TGAAATGTTC	CGTAAACAGC	500
	TTGACGAAGG	TCTTGCTGGT	GATAACGTCG	GTGTCCTTCT	TCGTGGTATC	550
	CAACGTGATG	AAATTGAACG	CGGTCAAGTT	CTTGCTAAAC	CAGGATCAAT	600
50	TCATCCACAT	ACTAAATTCA	AAGGTGAAGT	TTATATTCTT	ACTAAAGAAG	650

AAGGTGGACG	TCATACTCCA	TTCTTTAACA	ACTACCGTCC	ACAGTTCTAC	700
TTCCGTACAA	CTGATGTAAC	TGGTTCAATT	GATTTGCCAG	CAGGTACTGA	750
AATGGTTATG	CCTGGTGATA	ATGTTACGAT	TGATGTTGAA	CTGATCCACC	800
CAATCGCTGT	TGAACAAGGT	ACAAC			825

5

- 2) INFORMATION FOR SEQ ID NO: 223
- 10 (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 822 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear

15

20

- (ii) MOLECULE TYPE: Genomic DNA
- (vi)ORIGINAL SOURCE:
 - (A) ORGANISM: Streptococcus gordonii (deposited as Streptococcus mitis)
 - (B) STRAIN: ATCC 33399
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 223

25	CTATCCTTGT	AGTAGCTTCA	ACTGACGGAC	CAATGCCACA	AACTCGTGAG	50
	CACATCCTTC	TTTCACGTCA	GGTTGGTGTT	AAACACCTTA	TCGTCTTCAT	100
	GAACAAAGTT	GACTTGGTTG	ACGACGAAGA	ATTGCTTGAA	TTGGTTGAAA	150
	TGGAAATCCG	TGACCTATTG	TCAGAATACG	ACTTCCCAGG	TGACGATCTT	200
	CCAGTTATCC	AAGGTTCAGC	TCTTAAAGCC	CTTGAAGGTG	ACACTAAATA	250
30	CGAAGACATC	GTTATGGAAT	TGATGAACAC	AGTTGATGAG	TACATCCCAG	300
	AACCAGAACG	TGACACTGAC	AAACCATTGC	TTCTTCCAGT	CGAAGACGTA	350
	TTCTCAATCA	CTGGTCGTGG	TACAGTTGCT	TCAGGACGTA	TCGACCGTGG	400
	TATCGTTAAA	GTCAACGACG	AAATCGAAAT	CGTTGGTATC	AAAGAAGAAA	450
	CTCAAAAAGC	AGTTGTTACT	GGTGTTGAAA	TGTTCCGTAA	ACAACTTGAC	500
35	GAAGGTCTTG	CCGGAGATAA	TGTAGGTGTC	CTTCTTCGTG	GTGTTCAACG	550
	TGATGAAATC	GAACGTGGAC	AAGTTATTGC	TAAACCAGGT	TCAATCAACC	600
	CACACACTAA	ATTCAAAGGT	GAAGTTTACA	TCCTTACTAA	AGAAGAAGGT	650
	GGACGTCACA	CTCCATTCTT	CAACAACTAC	CGTCCACAAT	TCTACTTCCG	700
	TACTACTGAC	GTTACAGGTT	CAATCGAACT	TCCAGCAGGT	ACTGAAATGG	750
4 0	TAATGCCTGG	TGATAACGTG	ACAATCGACG	TTGAGTTGAT	CCACCCAATC	800
	GCCGTAGAAC	AAGGTACTAC	AΤ			822

- 45 2) INFORMATION FOR SEQ ID NO: 224
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 827 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: Genomic DNA
- 55 (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Streptococcus mutans
 - (B) STRAIN: ATCC 25175
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 224

50

	CCCTGGTGCT	ATCCTTGTAG	TAGCTTCAAC	TGATGGACCA	ATGCCACAAA	50
	CTCGTGAACA	CATTCTTCTT	TCACGTCAAG	TTGGTGTTAA	ATACCTCATT	100
	GTCTTCATGA	ATAAAGTTGA	TTTGGTTGAC	GATGAAGAAT	TGCTTGAATT	150
	GGTTGAAATG	GAAATCCGTG	ATCTTCTTTC	AGAATATGAT	TTCCCAGGTG	200
5	ATGATATTCC	AGTTATTCAA	GGTTCAGCTC	TTAAAGCTCT	TGAAGGCGAT	250
	ACTGCTCAAG	AAGATATCAT	CATGGAATTA	ATGCATACTG	TTGATGACTA	300
	CATTCCAGAT	CCAGAACGTG	ATACTGACAA	GCCGCTCCTT	CTTCCAGTCG	350
	AAGATGTTTT	CTCAATCACT	GGTCGTGGTA	CTGTTGCTTC	AGGACGTATT	400
	GATCGTGGTA	CTGTTAAAGT	TAACGATGAA	GTTGAAATCG	TTGGTATCCG	450
10	TGATGACATT	CAAAAAGCTG	TTGTTACTGG	TGTTGAAATG	TTCCGTAAAC	500
	AATTGGATGA	AGGTATTGCA	GGGGATAATG	TTGGTGTTCT	CCTTCGTGGT	550
	ATCCAACGTG	ATGAAATCGA	ACGTGGTCAA	GTTCTTGCTA	AACCAGGTTC	600
	AATTCACCCA	CATACTAAAT	TCAAAGGTGA	AGTTTATATC	CTTACTAAAG	650
	AGGAAGGTGG	ACGTCATACA	CCATTCTTCA	ATAACTATCG	TCCACAATTC	700
15	TACTTCCGTA	CAACTGACGT	AACTGGTTCA	ATTGAGTTGC	CAGCAGGTAC	750
	TGAAATGGTT	ATGCCTGGTG	ATAACGTTAC	TATTGACGTT	GAATTGATCC	800
	ATCCAATCGC	TGTTGAACAA	GGTACTA			827

20

25

2) INFORMATION FOR SEQ ID NO: 225

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 824 bases
- (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: Genomic DNA

30

- (vi)ORIGINAL SOURCE:
 - (A) ORGANISM: Streptococcus parasanguinis
 - (B) STRAIN: ATCC 15912
- 35 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 225

	AGCTATCCTT	GTAGTAGCTT	CAACTGACGG	ACCAATGCCA	CAAACACGTG	50
•	AACACATCCT	TCTTTCACGT	CAGGTTGGTG	TTAAACACTT	GATCGTCTTC	100
	ATGAACAAAG	TTGACTTGGT	TGATGATGAA	GAATTGCTTG	AATTGGTTGA	150
40	AATGGAAATC	CGTGACCTTC	TTTCAGAATA	CGATTTCCCA	GGTGATGACC	200
	TTCCAGTTAT	CCAAGGTTCA	GCTCTTAAAG	CTCTTGAAGG	TGACTCTAAA	250
	TATGAAGATA	TCATCATGGA	ATTGATGGAT	ACTGTTGATG	AGTACATCCC	300
	AGAACCAGAA	CGCGATACTG	ACAAACCATT	GCTTCTTCCA	GTCGAAGACG	350
	TATTCTCAAT	CACTGGACGT	GGTACAGTTG	CTTCAGGACG	TATCGACCGT	400
45	GGTGTTGTTC	GTGTCAATGA	TGAAATCGAA	ATCGTTGGTA	TCAAAGAAGA	450
	AATCCAAAAA	GCAGTTGTTA	CTGGTGTTGA	AATGTTCCGT	AAACAACTTG	500
	ACGAAGGTCT	TGCAGGGGAT	AACGTTGGTG	TGCTTCTTCG	TGGTATCCAA	550
	CGTGATGAAA	TCGAACGTGG	ACAAGTTATC	GCTAAACCAG	GTTCAATCAA	600
	CCCACACACT	AAATTCAAAG	GTGAAGTTTA	CATCCTTACT	AAAGAAGAAG	650
50	GTGGACGTCA	TACTCCATTC	TTCAACAACT	ACCGTCCACA	GTTCTACTTC	700
	CGTACAACTG	ACGTAACTGG	ATCTATCGAA	CTTCCACCAG	GAACTGAAAT	750
	GGTAATGCCT	GGTGATAACG	TGACTATCGA	CGTTGAGTTG	ATCCACCCAA	800
	TCGCCGTTGA	ACAAGGTACT	ACAT			824

- 2) INFORMATION FOR SEQ ID NO: 226
 - (i) SEQUENCE CHARACTERISTICS:
- 50 (A) LENGTH: 824 bases

- (B) TYPE: Nucleic acid
- (C) STRANDEDNESS: Double
- (D) TOPOLOGY: Linear
- 5 (ii) MOLECULE TYPE: Genomic DNA
 - (vi)ORIGINAL SOURCE:
 - (A) ORGANISM: Streptococcus ratti
 - (B) STRAIN: ATCC 19645

10

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 226

	TGGTGCTATC	CTTGTAGTAG	CTTCAACTGA	TGGACCAATG	CCGCAAACTC	50
	GTGAACACAT	CTTGCTTTCA	CGTCAAGTTG	GTGTTAAATA	CCTTATCGTC	100
15	TTCATGAACA	AGGTTGACTT	GGTTGATGAT	GAAGAATTGC	TTGAATTGGT	150
	TGAAATGGAA	ATCCGTGATC	TTCTTTCAGA	ATACGATTTC	CCAGGTGATG	200
	ACATTCCAGT	TATCCAAGGT	TCAGCCCTTA	AAGCTCTTGA	AGGTGACACT	250
	GAACAAGAAG	ATGTTATCAT	GGAATTGATG	AAAACAGTTG	ATGAGTACAT	300
	CCCAGATCCA	GAACGCGATA	CTGATAAGCC	ATTGCTTCTT	CCAGTCGAAG	350
20	ACGTGTTCTC	AATCACTGGA	CGTGGTACTG	TTGCATCAGG	ACGTATCGAC	400
	CGTGGTACTG	TTAAAGTCAA	TGACGAAGTT	GAAATCGTTG	GTATCCGTGA	450
	TGACATCCAA	AAAGCTGTTG	TTACTGGTGT	TGAAATGTTC	CGTAAACAGC	500
	TTGACGAAGG	TCTTGCTGGT	GATAACGTTG	GTGTACTTCT	TCGTGGTATC	550
	CAACGTGATG	AAATCGAACG	CGGTCAAGTT	CTTGCTAAAC	CAGGTTCAAT	600
25	TCATCCGCAT	ACTAAATTTA	AAGGTGAAGT	TTACATCCTT	ACTAAAGAAG	650
	AAGGCGGACG	TCACACTCCA	TTCTTCAACA	ACTACCGTCC	ACAGTTCTAC	700
	TTCCGTACAA	CTGACGTAAC	TGGTTCAATC	GAATTGCCAG	CAGGTACTGA	750
	AATGGTTATG	CCTGGTGATA	ACGTGACTAT	CGACGTTGAA	TTGATCCACC	800
	CAATCGCTGT	TGAACAAGGT				824
30						

2) INFORMATION FOR SEQ ID NO: 227

- 35 (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 795 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear

- (ii) MOLECULE TYPE: Genomic DNA
- (vi)ORIGINAL SOURCE:
 - (A) ORGANISM: Streptococcus sanguinis
- 45 (B) STRAIN: ATCC 10556
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 227

	TGTAGTAGCT	TCAACTGACG	GACCAATGCC	ACAAACTCGT	GAGCACATCT	50
50	TGCTTTCACG	TCAGGTTGGT	GTTAAACACT	TGATCGTCTT	CATGAACAAA	100
	GTTGACTTGG	TTGACGATGA	AGAATTGCTT	GAATTGGTTG	AAATGGAAAT	150
	CCGTGACCTC	TTGTCAGAAT	ACGACTTCCC	AGGTGACGAT	CTTCCAGTTA	200
	TCCAAGGTTC	AGCTCTTAAA	GCTCTTGAAG	GTGACTCTAA	ATATGAAGAC	250
	ATCATCATGG	AATTGATGGA	CACTGTTGAT	GAGTACATCC	CAGAACCAGA	300
55	ACGCGATACT	GACAAGCCAT	TGCTTCTTCC	AGTCGAAGAC	GTATTCTCAA	350
	TCACTGGTCG	TGGTACAGTT	GCTTCAGGAC	GTATCGACCG	TGGTATCGTT	400
	AAAGTCAACG	ACGAAATCGA	AATCGTTGGT	ATCAAAGAAG	AAATCCAAAA	450
	AGCAGTTGTT	ACTGGTGTTG	AAATGTTCCG	TAAACAGCTT	GACGAAGGTC	500
	TTGCAGGGGA	CAACGTAGGT	GTGCTTCTCC	GTGGTATCCA	ACGTGATGAA	550
50	ATCGAACGTG	GACAAGTTAT	CGCTAAACCA	GGTTCAATCA	ACCCACACAC	600

5	TAAATTCAAG GGTGAAGTTT ATATCCTTAC TAAAGAAGAA GGCGGACGTC ACACTCCATT CTTCAACAAC TACCGTCCAC AGTTCTACTT CCGTACAACT GACGTTACAG GTTCAATCGA ACTTCCAGCA GGTACTGAAA TGGTAATGCC TGGTGATAAC GTAACAATCG ACGTTGAGTT GATCCACCCA ATCGC	650 700 750 795
	2) INFORMATION FOR SEQ ID NO: 228	
10		
	 (A) LENGTH: 795 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear 	
15	(ii) MOLECULE TYPE: Genomic DNA	
20	<pre>(vi)ORIGINAL SOURCE: (A) ORGANISM: Streptococcus sobrinus (B) STRAIN: ATCC 33478</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 228	
25	TGTAGTAGCT TCTACTGACG GACCAATGCC ACAAACTCGT GAACACATCT TGCTTTCACG CCAAGTTGGT GTTAAGAACC TCATCGTCTT CATGAACAAG GTTGACTTGG TTGATGATGA AGAATTGCTT GAATTGGTTG AAATGGAAAT	50 100 150
	CCGTGATCTT CTTTCAGAAT ACGATTTCCC AGGTGACGAC ATTCCTGTTG TTCAAGGTTC AGCTCTTAAG GCTCTTGAAG GTGATACAGC TGCCGAAGAC AAGATTATGG AATTGATGGA CATCGTTGAT GATTACATTC CAGAACCAAA	200 250 300
30	ACGCGATACT GATAAGCCAT TGCTTCTCCC AGTCGAAGAC GTATTCTCAA TCACTGGTCG TGGTACTGTT GCTTCAGGAC GTATTGACCG TGGTACTGTT AAGGTTAACG ACGAAGTTGA AATCGTTGGT ATCCGTGACG ATATCCAAAA	350 400 450
35	AGCAGTTGTT ACTGGAGTTG AAATGTTCCG TAAGCAATTG GACGAAGGTC TTGCTGGAGA TAACGTTGGT GTGCTTCTTC GTGGTATCCA ACGTGATGAA ATTGAACGTG GTCAAGTATT GGCTGCACCT GGTTCAATCC ACCCACACAC TAAGTTCAAG GGTGAAGTTT ACATCCTTTC TAAAGATGAA GGTGGACGTC	500 550 600 650 700
	ACACTCCATT CTTCAACAAC TACCGTCCAC AGTTCTACTT CCGTACAACT GACGTAACTG GTTCAATCGA ATTGCCAGCA GGTACTGAAA TGGTTATGCC TGGTGATAAC GTTACTATCG ACGTTGAATT GATCCACCCA ATCGC	750 755
40		
	2) INFORMATION FOR SEQ ID NO: 229	
45	(i)SEQUENCE CHARACTERISTICS: (A) LENGTH: 797 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double	
50	(D) TOPOLOGY: Linear (ii) MOLECULE TYPE: Genomic DNA	
55	<pre>(vi)ORIGINAL SOURCE: (A) ORGANISM: Streptococcus suis (B) STRAIN: ATCC 43765</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 229	
50	TGTAGTAGCT TCAACTGACG GTCCAATGCC ACAAACTCGT GAGCACATCC TTCTTTCACG TCAGGTTGGT GTTAAACACC TTATCGTCTT CATGAACAAA 137	50 100

	GTTGACTTGG	TTGACGATGA	AGAATTGCTT	GAGTTGGTTG	AAATGGAAAT	150
	CCGTGACCTT	CTTTCAGAAT	ACGATTTCCC	AGGTGATGAT	CTTCCAGTTA	200
	TCCAAGGTTC	AGCTCTTAAA	GCTCTTGAAG	GTGACTCTAA	GTACGAAGAC	250
	ATCGTTATGG	AATTGATGAA	CACTGTTGAT	GAGTACATTC	CAGAACCAGA	300
5	ACGCGACACT	GACAAACCAT	TGTTGCTTCC	AGTCGAGGAC	GTATTCTCAA	350
_	TCACTGGTCG	TGGTACTGTA	GCTTCAGGAC	GTATCGACCG	TGGTACTGTT	400
	CGTGTCAACG	ACGAAATCGA	AATCGTTGGT	CTTCAAGAAG	AAAAATCTAA	450
	AGCAGTTGTT	ACTGGTGTTG	AAATGTTCCG	TAAACAACTT	GACGAAGGTC	500
	TTGCCGGCGA	TAACGTTGGT	GTGCTTCTTC	GTGGTGTACA	ACGTGATGAA	550
10	ATCGAACGTG	GTCAAGTTAT	CTCTAAACCA	GGTTCTATCA	ACCCACACAC	600
	TAAATTCAAA	GGTGAAGTTT	ACATCCTTAC	TAAAGAAGAA	GGTGGACGTC	650
	ACACTCCATT	CTTCGACAAC	TACCGTCCAC	AGTTCTACTT	CCGTACAACT	700
	GACGTAACTG	GTTCAATCAA	ATTGCCAGAA	GGTACTGAAA	TGGTAATGCC	750
	TGGTGATAAC	GTTACTATCG	ACGTTGAATT	GATCCACCCA	ATCGCCG	797
15						

2) INFORMATION FOR SEQ ID NO: 230

- 20 (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 793 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear

25 (ii) MOLECULE TYPE: Genomic DNA

(vi)ORIGINAL SOURCE:

- (A) ORGANISM: Streptococcus uberis
- 30 (B) STRAIN: ATCC 19436

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 230

	TTGTTGTTGC	ATCAACTGAT	GGACCAATGC	CACAAACTCG	TGAGCACATC	50
35	CTTCTTTCAC	GCCAAGTTGG	TGTTAAACAC	CTTATCGTTT	TCATGAACAA	100
	AATCGACCTT	GTTGACGATG	AAGAATTGCT	TGAATTAGTT	GAAATGGAAA	150
	TCCGTGACCT	TCTTTCAGAA	TACGATTTCC	CAGGTGATGA	CCTACCAGTT	200
	ATCCAAGGTT	CAGCTCTTAA	AGCTCTTGAA	GGTGATTCTA	AATACGAAGA	250
	CATCATCATG	GAATTGATGA	AAACTGTTGA	TGAGTATATT	CCAGAACCAG	300
40	AACGTGATAC	AGACAAACCA	TTACTTCTTC	CAGTCGAAGA	CGTATTCTCA	350
	ATCACAGGTC	GTGGTACTGT	AGCTTCAGGA	CGTATCGATC	GTGGTACTGT	400
	TCGTGTCAAC	GACGAAATTG	AAATCGTTGG	TATCAAAGAA	GAAACTAAAA	450
	AAGCAGTTGT	TACTGGTGTT	GAAATGTTCC	GTAAACAACT	TGACGAAGGT	500
	CTTGCAGGAG	ATAACGTAGG	TATCCTTCTT	CGTGGTGTTC	AACGTGACGA	550
45	AATCGAACGT	GGACAAGTTA	TTGCTAAACC	AGGTTCAATC	AACCCACACA	600
	CTAAATTCAA	AGGTGAAGTT	TACATCCTTT	CTAAAGATGA	AGGTGGACGT	650
	CATACTCCAT	TCTTCAACAA	CTACCGTCCT	CAATTCTATT	TCCGTACAAC	700
	TGACGTAACA	GGTTCAATCG	AACTTCCAGC	TGGTACTGAA	ATGGTAATGC	750
	CTGGTGATAA	CGTGACAATC	AGCGTTGAGT	TGATCCACCC	AAT	793

2) INFORMATION FOR SEQ ID NO: 231

- 55 (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 798 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear

50

(ii) MOLECULE TYPE: Genomic DNA

(vi)ORIGINAL SOURCE:

- (A) ORGANISM: Streptococcus vestibularis
- 5 (B) STRAIN: ATCC 49124
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 231

	TTGTAGTAGC	ATCTACTGAC	GGACCAATGC	CACAAACTCG	TGAGCACATC	50
10	CTTCTTTCAC	GTCAGGTTGG	TGTTAAACAC	CTTATCGTCT	TCATGAACAA	100
	AGTTGACTTG	GTTGACGATG	AAGAATTGCT	TGAATTGGTT	GAAATGGAAA	150
	TCCGTGACCT	TCTTTCAGAA	TACGATTTCC	CAGGTGATGA	TATTCCAGTT	200
	ATCCAAGGTT	CAGCTCTTAA	AGCTCTTGAA	GGTGATTCTA	AATACGAAGA	250
	CATCATCATG	GACTTGATGA	ACACTGTTGA	CGAATACATT	CCAGAACCAG	300
15	AACGTGACAC	TGACAAACCA	TTGTTGCTTC	CAGTCGAAGA	CGTATTCTCA	350
	ATCACTGGTC	GTGGTACTGT	TGCTTCAGGA	CGTATCGACC	GTGGTGTTGT	400
	TCGTGTTAAT	GACGAAGTTG	AAATCGTTGG	TCTTAAAGAA	GAAATCCAAA	450
	AAGCAGTTGT	TACTGGTGTA	GAAATGTTCC	GTAAACAACT	TGACGAAGGT	500
	ATTGCCGGAG	ATAACGTCGG	TGTCCTTCTT	CGTGGTATCC	AACGTGATGA	550
20	AATTGAACGT	GGTCAAGTAT	TGGCTGCACC	TGGTTCAATC	AACCCACACA	600
	CTAAATTCAA	AGGTGAAGTT	TACATCCTTT	CTAAAGAAGA	AGGTGGACGT	650
	CACACTCCAT	TCTTCAACAA	CTACCGTCCA	CAGTTCTACT	TCCGTACAAC	700
	TGACGTAACA	GGTTCAATCG	AACTTCCTGC	AGGTACTGAA	ATGGTTATGC	750
	CTGGTGATAA	CGTGACTATC	GACGTTGAGT	TGATCCACCC	AATCGCCG	798

2) INFORMATION FOR SEQ ID NO: 232

- 30 (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 829 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear

35

- (ii) MOLECULE TYPE: Genomic DNA
- (vi)ORIGINAL SOURCE:
 - (A) ORGANISM: Tatumella ptyseos
- 40 (B) STRAIN: ATCC 33301
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 232

	GGCGCTATCC	TGGTTGTTGC	TGCAACTGAC	GGCCCTATGC	CTCAGACCCG	50
45	TGAGCACATC	CTGCTGGGCC	GCCAGGTAGG			100
	TCCTGAACAA	ATGTGACATG	GTTGATGATG	AAGAGCTGCT	GGAACTGGTA	150
	GAAATGGAAG	TCCGTGACCT	GCTGTCACAG	TACGACTTCC	CGGGTGACGA	200
	CACGCCAATC	GTTCGCGGTT	CAGCGCTGAA	AGCACTGGAA	GGTGAAGGCG	250
	AGTGGGAAGA	GAAGATTCTG	GAGCTGGCTG	GCTTCCTGGA	TTCTTACATC	300
50	CCTGAGCCAG	AGCGTGCTAT	CGATCAGCCG	TTCCTGCTGC	CAATCGAAGA	350
	CGTATTCTCA	ATCTCCGGTC	GTGGTACAGT	TGTTACCGGT	CGTGTAGAGC	400
	GCGGGATCAT	CAAAGTCGGT	GAAGAAGTTG	AGATCGTTGG	TATCAAAGAT	450
	ACTGCGAAAT	CAACCTGTAC	CGGTGTTGAA	ATGTTCCGTA	AACTGCTGGA	500
	CCAGGGTCAG	GCGGGTGAGA	ACGTTGGTGT	TCTGCTGCGT	GGTATCAAGC	550
55	GTGAAGAGAT	CGAACGTGGT	CAGGTTCTGG	CTAAACCAGG	TTCAATCAAA	600
	CCACACACCC	AGTTCGAGTC	AGAAGTTTAT	ATTCTGTCTA	AAGACGAAGG	650
	CGGCCGTCAT	ACTCCGTTCT	TCAAAGGCTA	CCGTCCACAG	TTCTACTTCC	700
	GTACAACTGA	CGTGACCGGA	ACCATCGAAC	TGCCGGAAGG	CGTAGAGATG	750
	GTAATGCCTG	GTGACAACAT	CAAAATGGTT	GTTACCCTGA	TCCATCCAAT	800
50	CGCGATGGAC	GATGGTCTGC	GTTTCGCAA			829

_	2) INFORMATION FOR SEQ ID NO: 233	
5	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 829 bases	
	(B) TYPE: Nucleic acid	
10	(C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
10	(b) 10ronog1. Himeal	
	(ii) MOLECULE TYPE: Genomic DNA	
	(vi)ORIGINAL SOURCE:	
15	(A) ORGANISM: Trabulsiella guamensis	
	(B) STRAIN: ATCC 49490	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 233	
20	GGCGCAATCC TGGTAGTAGC AGCGACTGAC GGCCCGATGC CGCAGACTCG	50
	TGAGCACATC CTGCTGGGTC GTCAGGTAGG CGTTCCGTAC ATCATCGTGT	100
	TCCTGAACAA ATGCGACATG GTTGATGACG AAGAGCTGCT GGAACTGGTA	150 200
	GAGATGGAAG TTCGTGAACT GCTGTCTCAG TACGATTTCC CGGGCGATGA CACGCCGATC GTACGTGGTT CTGCTCTGAA AGCGCTGGAA GGCGACGCAG	250
25	AGTGGGAAGC GAAAATCATC GAACTGGCAG GTTTCCTGGA TTCTTACATT	300
	CCGGAACCAG AGCGTGCGAT TGACAAGCCG TTCCTGCTGC CGATCGAAGA	350
	CGTATTCTCC ATCTCTGGTC GTGGTACCGT TGTTACCGGT CGTGTAGAGC	400 450
	GCGGTATCAT CAAAGTGGGT GAAGAAGTAG AAATCGTTGG TATCAAAGAG ACTGCGAAGT CAACCTGTAC TGGCGTAGAA ATGTTCCGCA AACTGCTGGA	500
30	CGAAGGCCGT GCTGGTGAGA ACGTAGGTGT TCTGCTGCGT GGTATCAAAC	550
	GTGAAGAAAT CGAACGTGGT CAGGTACTGG CTAAGCCGGG CACCATCAAC	600
	CCGCACACCA AGTTCGAATC TGAAGTGTAC ATTCTGTCCA AAGACGAAGG CGGCCGTCAC ACTCCGTTCT TCAAAGGCTA CCGTCCGCAG TTCTACTTCC	650 700
	GTACAACTGA CGTGACTGGC ACCATCGAAC TGCCGGAAGG CGTAGAGATG	750
35	GTAATGCCGG GCGACAACAT CAAAATGGTT GTTACCCTGA TCCACCCGAT	800
	CGCGATGGAC GACGGTCTGC GTTTCGCAA	829
40	2) INFORMATION FOR SEQ ID NO: 234	
	(') CHOURNED, CHADACHERICHT CO	
	(i)SEQUENCE CHARACTERISTICS: (A) LENGTH: 825 bases	
	(B) TYPE: Nucleic acid	
45	(C) STRANDEDNESS: Double	
	(D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
50	(vi)ORIGINAL SOURCE:	
	(A) ORGANISM: Veillonella parvula	
	(B) STRAIN: ATCC 10790	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 234	
55	00000000000000000000000000000000000000	۲.
	CGGCGCTATC TTGGTTGTAT CCGCAGCTGA CGGCCCTATG CCTCAAACTC GCGAACACAT CTTGTTGGCT CGCCAAGTTG GTGTTCCTGC AATCGTAGTA	50 100
	TTCTTGAACA AAGCTGACAT GGTTGACGAT GAAGAATTGA TCGAATTGGT	150
	AGAAATGGAA GTTCGTGAAC TTCTTTCTTC CTACGAATTC CCTGGCGACG	200
60	AAGTACCTAT CGTTGTAGGT TCCGCGTTGA AAGCTTTGGA AGGCGATGCT	250
	140	

WO 01/23604	PCT/CA00/01150
V V V I / 4 J V V T	1 C1/CA00/01150

	CAATATGTAG	CTAAAATTGA	CGAATTGATG	GACGCTGTAG	ACTCCTACAT	300
	CCCAACACCA	GTTCGTGACA	CTGATAAACC	ATTCTTGATG	CCTGTGGAAG	350
	ATGTTTTCAC	AATCACTGGT	CGTGGTACAG	TAGCAACTGG	CCGTGTTGAA	400
	CGTGGTCAAG	TAAACGTTGG	TGATACTGTT	GAAGTAGTAG	GCTTGAAAGA	450
5			TAACAGGTCT			500
			GACAACGTAG			550
	GATCGTAAAG	ACATYGAACG	TGGTCAAGTA	TTGGCTAAAC	CAGGTTCCAT	600
			AAGCAGAAGT			650
	AAGGTGGTCG	TCATACTCCA	TTCTTCTCCA	ACTACCGTCC	ACAATTCTAC	700
10			AGGTGTTGTA			750
	AATGTGTATG	CCTGGCGATA	ACGTAACAAT	GGAAATCGAA	TTGATTACTC	800
	CAATCGCTAT	CGAAGAAGGT	CTTCG			825

15

- 2) INFORMATION FOR SEQ ID NO: 235
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 825 bases
- 20 (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: Genomic DNA

25

- (vi)ORIGINAL SOURCE:
 - (A) ORGANISM: Yersinia enterocolitica
 - (B) STRAIN: ATCC 9610
- 30 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 235

	CGCTATCCTG	GTTGTTGCTG	CAACTGATGG	CCCAATGCCA	CAGACTCGTG	50
	AGCACATCCT	GTTGGGTCGT	CAGGTTGGTG	TTCCTTACAT	CATCGTATTC	100
	ATGAACAAAT	GTGACATGGT	TGACGATGAA	GAGCTGCTAG	AACTGGTAGA	150
35	AATGGAAGTG	CGCGATCTTC	TGTCTACCTA	CGATTTCCCA	GGCGATGATA	200
	CGCCAGTTGT	TCGTGGTTCC	GCGCTGAAAG	CATTGGAAGG	CGAACCTGAG	250
	TGGGAAGCAA	AAATTATCGA	ACTGGCTGGC	TACCTGGATT	CTTACATCCC	300
	AGAACCAGAG	CGTGCTATCG	ATAAGCCGTT	CCTGCTGCCA	ATCGAAGACG	350
	TATTCTCTAT	CTCTGGTCGT	GGTACTGTTG	TAACGGGTCG	TGTAGAGCGC	400
40	GGTATCGTTA	AAGTTGGTGA	AGAAGTCGAA	ATTGTTGGCC	TGAAAGATAC	450
	CGTTAAATCT	ACTTGTACTG	GCGTTGAAAT	GTTCCGCAAA	CTGCTGGATG	500
	AAGGCCGTGC	AGGTGAGAAC	GTTGGTGTTC	TGCTGCGTGG	TATCAAGCGT	550
	GAAGATATCG	AACGTGGTCA	AGTTCTTGCT	AAACCAGGTT	CGATTAAACC	600
	ACACACCAAA	TTTGAATCAG	AAGTTTATAT	TCTGAGCAAA	GATGAAGGTG	650
45	GTCGCCATAC	TCCGTTCTTC	AAAGGCTACC	GTCCTCAGTT	CTACTTCCGT	700
	ACAACTGATG	TAACCGGTAC	TATTGAACTG	CCAGAAGGCG	TTGAGATGGT	750
	GATGCCAGGT	GATAACATTC	AAATGATTGT	TAACCTGATT	GCTCCTATCG	800
	CAATGGATGA	CGGCTTGCGC	TTTGC			825

50

- 2) INFORMATION FOR SEQ ID NO: 236
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 828 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
- 60 (ii) MOLECULE TYPE: Genomic DN A

(vi)ORIGINAL SOURCE: (B)

(A) ORGANISM: Yersinia frederiksenii

STRAIN: ATCC 33641

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 236

	GGCGCGATCC	TGGTTGTTGC	TGCCACTGAT	GGCCCGATGC	CACAGACTCG	50
	CGAGCACATT	CTGTTAGGGC	GTCAGGTGGG	TGTTCCTTAC	ATCCTGGTCT	100
10	TCCTGAACAA	ATGTGACATG	GTTGACGACG	AAGAGCTGCT	GGAACTGGTA	150
	GAAATGGAAG	TTCGTGAACT	TCTGTCTCAG	TACGATTTCC	CTGGCGACGA	200
	CACTCCAGTT	ATCCGTGGTT	CTGCGCTGAA	AGCGCTGGAA	GGCGAAGCTG	250
	AGTGGGAAGC	AAAAATCATC	GAATTGGCTG	AGGCGCTGGA	TAGCTATATT	300
	CCACAGCCAG	AGCGTGCGAT	TGATAAACCA	TTCCTGCTGC	CAATCGAAGA	350
15	CGTATTCTCA	ATCTCTGGCC	GTGGTACTGT	TGTCACCGGT	CGTGTAGAGC	400
	GCGGTATCGT	TAAAGTCGGC	GAAGAAGTCG	AAATCGTTGG	TATCATTGAT	450
	ACCATCAAGA	CTACCTGTAC	TGGTGTTGAA	ATGTTCCGCA	AATTGCTGGA	500
	CGAAGGCCGT	GCGGGTGAGA	ACGTTGGTGT	TCTGCTACGT	GGTACTAAAC	550
	GTGATGACGT	ACAACGTGGT	CAGGTATTGG	CAAAACCAGG	TTCTATCAAG	600
20	CCACACACCA	AATTTGAATC	AGAAGTTTAT	ATTCTGAGCA	AAGATGAAGG	650
	TGGTCGCCAT	ACTCCGTTCT	TCAAAGGTTA	TCGTCCTCAG	TTCTACTTCC	700
	GTACAACTGA	CGTGACCGGT	ACTATCGAAC	TGCCAGAAGG	CGTTGAGATG	750
	GTGATGCCAG	GTGATAACAT	TCAAATGATT	GTTAACCTGA	TTGCTCCTAT	800
	CGCAATGGAT	GACGGTCTGC	GCTTTGCG			828
25	•					

2) INFORMATION FOR SEQ ID NO: 237

- 30 (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 813 bases

 - (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear

35

5

- (ii) MOLECULE TYPE: Genomic DNA
- (vi)ORIGINAL SOURCE:
 - (A) ORGANISM: Yersinia intermedia
- 40 (B) STRAIN: ATCC 29909

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 237

	ammaammama		3 mccmccm3 m	2222 22 22 22 2 2		
	CTTGGTTGTC			GCCACAGACT	CGCGAGCACA	50
45	TCCTGCTAGG	TCGTCAGGTG	GGTGTTCCTT	ACATCCTGGT	CTTCCTGAAC	100
	AAGTGTGACA	TGGTTGACGA	TGAGGAGTTG	CTGGAATTGG	TAGAAATGGA	150
	AGTCCGCGAA	CTTCTGTCTC	AATATGATTT	CCCTGGCGAT	GATACTCCTG	200
	TTATCCGTGG	TTCAGCGCTG	AAGGCGTTGG	AAGGCGAGCC	TGAATGGGAA	250
	GCAAAAATTA	TCGAATTAGC	TGAGGCGCTG	GATAGTTATA	TTCCACAGCC	300
50	AGAGCGCGCG	ATTGATAGAC	CATTCTTGCT	GCCAATCGAA	GACGTATTCT	350
	CTATCTCAGG	TCGTGGTACA	GTCGTCACTG	GTCGTGTAGA	GCGTGGGATC	400
	GTTAAAGTTG	GCGAAGAAGT	TGAAATCGTT	GGTATTATCG	ATTCCATTAG	450
	AACAACATGT	ACTGGCGTTG	AAATGTTCCG	CAAATTGCTG	GACGAAGGCC	500
	GCGCGGGTGA	GAACGTTGGT	GTTCTACTGC	GTGGGACTAA	ACGTGATGAC	550
55	GTACAGCGTG	GTCAGGTATT	AGCTAAGCCA	GGTTCTATCA	AGCCACATAC	600
	TAAATTCGAA	TCCGAAGTTT	ATATTCTGAG	CAAAGATGAA	GGCGGGCGTC	650
	ACACGCCGTT	CTTCAAAGGC	TACCGTCCTC	AGTTCTACTT	CCGTACAACG	700
	GATGTAACCG	GTACTATTGA	ATTGCCAGAC	GGCGTTGAGA	TGGTGATGCC	750
	AGGTGATAAC	ATTCAAATGA	TTGTTAACCT	GATTGCACCT	ATTGCGATGG	800
50	ATGATGGTCT	GCG				813

_	2) INFORMATION FOR SEQ ID NO: 238	
5	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 829 bases (B) TYPE: Nucleic acid	
10	(C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
10		
	(ii) MOLECULE TYPE: Genomic DNA	
15	<pre>(vi)ORIGINAL SOURCE: (A) ORGANISM: Yersinia pestis</pre>	
13	(B) STRAIN: KIM D27	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 238	
20	GGAGCGATCT TGGTTGTTGC TGCAACCGAT GGCCCTATGC CGCAGACTCG	50
	TGAGCATATC CTGCTGGGCC GCCAGGTTGG TGTCCCATAC ATTATTGTCT TCCTGAACAA ATGTGACATG GTTGACGATG AAGAGTTGCT AGAGTTGGTT	100 150
	GAAATGGAGG TTCGTGAGCT TCTGTCTCAA TACGATTTCC CAGGCGACGA CACTCCAGTC ATCCGTGGTT CAGCGTTGAA AGCCCTGGAA GGTGACGCTG	200 250
25	AGTGGGAAGC TAAAATTATC GAGTTGGCAG AAGCTCTGGA TAGCTATATT	300
	CCGCAACCAG AACGCGCTAT TGATAGACCA TTCCTATTGC CAATTGAAGA CGTATTCTCT ATTTCTGGTC GTGGTACTGT AGTTACTGGT CGTGTAGAAC	350 400
	GTGGTATTGT TAAGGTCGGC GAAGAAGTTG AAATCGTTGG TATTATCGAT ACGATTAAAA CAACTTGTAC TGGCGTTGAA ATGTTCCGCA AGCTGCTGGA	450 500
30	TGAAGGCCGT GCTGGTGAAA ATGTTGGTGT TCTGCTGCGT GGTACTAAGC	550
	GTGACGATGT TCAGCGTGGT CAAGTACTGG CGAAACCAGG TTCTATCAAG CCACACACGA AGTTTGAGTC AGAAGTTTAT ATTCTGAGCA AAGATGAAGG	600 650
	CGGCCGTCAT ACACCGTTCT TCAAGGGCTA CCGTCCTCAG TTCTACTTCC	700 750
35	GTACAACTGA CGTGACCGGT ACCATTGAGC TGCCAGAAGG CGTTGAAATG GTCATGCCTG GTGACAACGT AAACATGGTT GTTAACCTAA TTGCTCCTAT	800
	CGCAATGGAT GATGGTCTGC GCTTCGCAA	829
40	2) INFORMATION FOR SEQ ID NO: 239	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 817 bases (B) TYPE: Nucleic acid	
45	(C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
50	(vi)ORIGINAL SOURCE:	
	(A) ORGANISM: Yersinia pseudotuberculosis (B) STRAIN: ATCC 29833	
	•	
55	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 239	
	TGGAGCGATC TTGGTTGTTG CTGCAACCGA TGGCCCTATG CCGCAGACTC GTGAGCATAT CCTGCTGGGC CGCCAGGTTG GTGTCCCATA CATTATTGTC	50 100
	TTCCTGAACA AATGTGACAT GGTTGACGAT GAAGAGTTGC TAGAGTTGGT	150
50	TGAAATGGAG GTTCGTGAGC TTCTGTCTCA ATACGATTTC CCAGGCGACG ACACTCCAGT CATCCGTGGT TCAGCGTTGA AAGCCCTGGA AGGTGACGCT	200 250
	143	

	TCCGCAACCA		TTGATAGACC	GAAGCTCTGG ATTCCTATTG		300 350 400
		TTAAGGTCGG			GTATTATCGA	450
5				AATGTTCCGC	AAGCTGCTGG	500
	ATGAAGGCCG	TGCTGGTGAA	AATGTTGGTG	TTCTGCTGCG	TGGTACTAAG	550
	CGTGACGATG	TTCAGCGTGG	TCAAGTACTG	GCGAAACCAG	GTTCTATCAA	600
	GCCACACACG	AAGTTTGAGT	CAGAAGTTTA	TATTCTGAGC	AAAGATGAAG	650
	GCGGCCGTCA	TACACCGTTC	TTCAAGGGCT	ACCGTCCTCA	GTTCTACTTC	700
10	CGTACAACTG	ACGTGACCGG	TACCATTGAG	CTGCCAGAAG	GCGTTGAAAT	750
	GGTCATGCCT	GGTGACAACG	TAAACATGGT	TGTTAACCTA	ATTGCTCCTA	800
	TCGCAATGGA	TGATGGT	•			817

15

- 2) INFORMATION FOR SEQ ID NO: 240
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 829 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - -(D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: Genomic DNA

25

20

- (vi)ORIGINAL SOURCE:
 - (A) ORGANISM: Yersinia rohdei
 - (B) STRAIN: ATCC 43380
- 30 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 240

	TGGCGCGATC	CTGGTTGTTG	CTGCAACTGA	TGGCCCAATG	CCACAGACTC	50
	GCGAGCACAT	CCTGTTGGGT	CGTCAAGTGG	GTGTTCCTTA	CATCTTAGTC	100
	TTCCTGAACA	AGTGTGACAT	GGTTGACGAC	GAAGAGTTGC	TGGAACTGGT	150
35	TGAAATGGAA	GTTCGTGAGC	TTCTGTCTCA	ATACGATTTC	CCTGGCGATG	200
	ACACTCCGGT	TATTCGTGGT	TCCGCGCTGA	AAGCGCTGGA	AGGCGAGGCC	250
	GAGTGGGAAG	CCAAAATTAT	TGAACTTGCT	GAAGCACTGG	ATAGCTACAT	300
	TCCACAGCCA	GAGCGCGCGA	TTGATAAACC	ATTCTTGCTG	CCAATCGAAG	350
	ACGTATTCTC	TATCTCAGGC	CGTGGAACAG	TTGTTACCGG	GCGTGTTGAG	400
4 O·	CGCGGTATCG	TCAGAGTGGG	CGAAGAAGTT	GAAATCGTGG	GTATCATCGA	450
	CACCATTAAA	ACCACTTGTA	CCGGTGTTGA	AATGTTCCGC	AAACTGCTGG	500
	ACGAAGGCCG	TGCCGGTGAG	AACGTTGGTG	TTCTGCTGCG	CGGTACTAAA	550
	CGCGATGACG	TGCAACGTGG	TCAAGTGTTG	GCTAAACCAG	GTTCTATTAA	600
	GCCGCATACC	AAATTTGAGT	CAGAAGTTTA	TATTCTGAGC	AAAGATGAAG	650
45	GTGGTCGTCA	TACTCCGTTC	TTCAAAGGTT	ACCGTCCACA	GTTCTACTTC	700
	CGTACAACTG	ACGTGACCGG	TACCATCGAA	CTGCCAGACG	GTGTTGAGAT	750
	GGTGATGCCA	GGTGATAACA	TTCAAATGAT	TGTTAACCTG	ATTGCGCCTA	800
	TTGCAATGGA	TGACGGTCTA	CGATTTGCA			829

50

- 2) INFORMATION FOR SEQ ID NO: 241
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 804 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
- 50 (ii) MOLECULE TYPE: Genomic DNA

(vi) ORIGINAL SOURCE: (A) ORGANISM: Yokenella regensburgei STRAIN: ATCC 35313 5 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 241 TGGCGCGATC CTGGTTGTTG CTGCGACTGA CGGCCCGATG CCGCAGACTC 50 GTGAGCACAT CCTGCTGGGT CGTCAGGTAG GCGTTCCGTA CATCATCGTG 100 TTCCTGAACA AATGCGACAT GGTTGATGAC GAAGAGCTGC TGGAACTGGT 150 10 AGAAATGGAA GTTCGTGAAC TTCTGTCTCA GTACGATTTC CCGGGCGACG 200 ACACTCCGAT CATCCGTGGT TCTGCTCTGA AAGCGCTGGA AGGCGAAGCA 250 GAGTGGGAAG CTAAAATCGT TGAGCTGGCT GGCTTCCTGG ATTCTTACAT CCCAGAACCA GTTCGTGCTA TCGACCTGCC GTTCCTGCTG CCGATCGAAG 300 350 ACGTATTCTC CATCTCCGGT CGTGGCACCG TTGTTACCGG TCGTGTAGAG 400 15 CGCGGTATCG TTAAAGTTGG CGAAGAAGTT GAAATCGTTG GTATCAAAGA 450 GACTGCTAAG TCTACCTGTA CCGGCGTTGA AATGTTCCGC AAACTGCTGG 500 ACGAAGGCCG TGCTGGTGAG AACGTTGGTG TTCTGCTGCG TGGTATCAAA 550 CGTGAAGAAA TCGAACGTGG TCAGGTACTG GCTAAGCCGG GTTCCATCAA 600 GCCGCACACC AAATTCGAAT CTGAAGTTTA TATCCTGTCC AAAGACGAAG GCGGCCGTCA TACTCCGTTC TTCAAAGGCT ACCGTCCGCA GTTCTACTTC 650 20 700 750 CGTACAACTG ACGTGACTGG TACCATCGAA CTGCCGGAAG GCGTAGAGAT GGTAATGCCG GGCGACAACA TCAAAATGGT TGTTACCCTG ATCCACCCGA 800 804 TCGC 25 2) INFORMATION FOR SEQ ID NO: 242 (i) SEQUENCE CHARACTERISTICS: 30 LENGTH: 849 bases (A) (B) TYPE: Nucleic acid STRANDEDNESS: Double (C) (D) TOPOLOGY: Linear 35 (ii) MOLECULE TYPE: Genomic DNA (vi) ORIGINAL SOURCE: ORGANISM: Achromobacter xylosoxidans subsp. 40 denitrificans STRAIN: ATCC 15173 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 242 TCAGTTCCCC CGCGATCACA TGCCCAAGAT CTACGAAGCG CTTACTCTGG 50 45 CCGACGAGGG TTCCTCGTTC GCCGAAAAGG GTCTGACGCT GGAAGTGCAG 100 CAACAGCTGG GCGACGCGT GGTGCGTACC ATCGCGCTGG GCTCCAGCGA 150 CGGCCTGCGC CGCGGTATGA AGGTCACCGG TACGGGCGCG CCGATCTCGG TGCCGGTCGG CACCGGCACG CTGGGCCGCA TCATGGACGT GCTGGGTCGT 250 CCCATCGACG AAGCCGGCCC GATCCAGCAC GAAGAAAAGC GTGGCATTCA 300 50 CCAGCCGGCT CCCCGTTTCG ACGAACTGTC GCCGTCGGTG GAACTGCTGG AAACCGGCAT CAAGGTTATT GACCTGGTCT GCCCGTTCGC CAAGGGCGGC 350 400

AAGGTCGGCC TGTTCGGCGG CGCCGGCGTG GGCAAGACCG TCAACATGAT

GGAACTGATC AACAACATCG CCAAGCAGCA CAGCGGCTTG TCGGTGTTCG

CCGCCTGGG CGAGCGTACC CGCGAAGGCA ACGACTTCTA CCACGAAATG

GAAGAGTCGA ACGTTCTGGA CAAGGTTGCG ATGGTGTTCG GTCAGATGAA

CGAACCCCG GGCAACCGTC TGCGCGTGGC GCTGACCGGC CTGACCATGG

CCGAGAAGTT CCGCGACGAA GGCCGCGACA TCCTGTTCTT CGTGGACAAC

ATCTACCGCT ACACCCTGGC CGGTACGGAA GTGTCCGCGC TGCTGGGCCG

TATGCCGTCG GCAGTGGGCT ACCAGCCCAC GCTGGCCGAA GAAATGGGCA

55

50

450

500

550

600

650

700

750

WO 01/23604

5	2) INFORMATION FOR SEQ ID NO: 243	
10	(i)SEQUENCE CHARACTERISTICS: (A) LENGTH: 787 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
15	(ii) MOLECULE TYPE: Genomic DNA(vi) ORIGINAL SOURCE:(A) ORGANISM: Acinetobacter baumannii	
20	(B) STRAIN: ATCC 19606 (xi)SEQUENCE DESCRIPTION: SEQ ID NO: 243 TGAAACTACT TTAGAAGTTC AGCAACAACT TGGTGATGGT GTTGTTCGTA	50
25	CCATCGCAAT GGGTTCTACA GAAGGTCTTA AACGTGGTCT TACTGTAACT AGCACAAACG CACCGATCTC TGTTCCAGTT GGTACAGCCA CTCTTGGCCG TATCATGGAC GTTTTAGGTC GTCCTATCGA TGAAGCAGGT CCTGTTGCGA CTGAAGAACG TTTGCCGATT CACCGTCAAG CGCCTTCTTA TGCTGAACAA	100 150 200 250
55	GCAGCTTCTA CTGACCTTT AGAAACTGGT ATTAAAGTCA TCGACTTACT TTGCCCGTTT GCGAAAGGTG GTAAAGTTGG TTTATTCGGT GGTGCTGGTG TTGGTAAAAC CGTTAACATG ATGGAATTGA TCAACAACAT CGCGAAAGCA CACTCAGGTT TATCTGTGTT TGCTGGTGTT GGTGAGCGTA CTCGTGAAGG	300 350 400 450
30	TAATGACTTC TATCACGAAA TGAAAGATTC TAACGTTCTT GACAAAGTAG CAATGGTCTA CGGTCAGATG AACGAGCCAC CAGGTAACCG TTTACGCGTA GCGTTAACTG GTTTGACTAT GGCTGAATAC TTCCGTGATG AAAAAGACGA AAACGGTAAA GGTCGTGACG TATTATTATT CGTCGACAAC ATCTACCGTT	500 550 600 650
35	ATACACTTGC AGGTACTGAA GTATCAGCAT TGTTAGGTCG TATGCCATCT GCGGTAGGTT ACCAACCTAC ACTTGCAGAA GAAATGGGTG TTCTTCAAGA GCGTATTACA TCTACTAAAT CTGGTTCGAT CACTTCG	700 750 787
40	2) INFORMATION FOR SEQ ID NO: 244	
45	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 825 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear 	
	(ii) MOLECULE TYPE: Genomic DNA	
50	<pre>(vi)ORIGINAL SOURCE: (A) ORGANISM: Acinetobacter lwoffii (B) STRAIN: CDCF 3697</pre>	
55	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 244	
ינ	GTTCCTAAGA TCTATGACGC TCTCCACGTT GATGGCACTG AAACTACATT AGAAGTTCAG CAACAACTTG GTGATGGCGT AGTTCGTACT ATTGCAATGG GTTCTACTGA AGGCCTTAAG CGTGGTTTGA ACGTAACTAA CACTAACGCG CCGATTTCTG TACCAGTAGG TACAGCGACT CTAGGTCGTA TCATGGACGT	50 100 150 200

TGCCGATTCA	CCGTCAAGCA	CCTTCTTATG	CTGAACAAGC	AGCTTCTACT	300
GACCTTTTAG	AAACTGGTAT	TAAAGTCATC	GACTTACTTT	GCCCGTTCGC	350
TAAAGGTGGT	AAAGTTGGTC	TGTTCGGTGG	TGCCGGTGTT	GGTAAAACTG	400
TAAACATGAT	GGAGTTGATC	AACAACATCG	CTAAAGCGCA	CTCAGGTTTA	450
TCTGTATTCG	CTGGTGTTGG	TGAGCGTACT	CGTGAAGGTA	ATGACTTCTA	500
TCACGAGATG	AAAGACTCAA	ACGTTCTAGA	CAAAGTAGCA	ATGGTCTACG	550
GTCAGATGAA	CGAGCCACCG	GGTAACCGTT	TACGCGTAGC	GTTGACTGGT	600
TTGACCATGG	CTGAGTACTT	CCGTGACGAG	AAAGACGAAA	ACGGCAAAGG	650
					700
					750
CAACCGACAC	TTGCAGAAGA	GATGGGTGTT	CTTCAAGAAC	GTATTACATC	800
GACTAAGTCT	GGTTCGATTA	CGTCA			825
	GACCTTTTAG TAAAGGTGGT TAAACATGAT TCTGTATTCG TCACGAGATG GTCAGATGAA TTGACCATGG CCGTGACGTA GTACTGAAGT CAACCGACAC	GACCTTTTAG AAACTGGTAT TAAAGGTGGT AAAGTTGGTC TAAACATGAT GGAGTTGATC TCTGTATTCG CTGGTGTTGG TCACGAGATG AAAGACTCAA GTCAGATGAA CGAGCCACCG TTGACCATGG CTGAGTACTT CCGTGACGTA CTATTGTTCG GTACTGAAGT ATCAGCACTT CAACCGACAC TTGCAGAAGA	GACCTTTTAG AAACTGGTAT TAAAGTCATC TAAAGGTGGT AAAGTTGGTC TGTTCGGTGG TAAACATGAT GGAGTTGATC AACAACATCG TCTGTATTCG CTGGTGTTGG TGAGCGTACT TCACGAGATG AAAGACTCAA ACGTTCTAGA GTCAGATGAA CGAGCCACCG GGTAACCGTT TTGACCATGG CTGAGTACTT CCGTGACGAG CCGTGACGTA CTATTGTTCG TAGATAACAT GTACTGAAGT ATCAGCACTT CTAGGTCGTA	GACCTTTTAG AAACTGGTAT TAAAGTCATC GACTTACTTT TAAAGGTGGT AAAGTTGGTC TGTTCGGTGG TGCCGGTGTT TAAACATGAT GGAGTTGATC AACAACATCG CTAAAGCGCA TCTGTATTCG CTGGTGTTGG TGAGCGTACT CGTGAAGGTA TCACGAGATG AAAGACTCAA ACGTTCTAGA CAAAGTAGCA GTCAGATGAA CGAGCCACCG GGTAACCGTT TACGCGTAGC TTGACCATGG CTGAGTACTT CCGTGACGAG AAAGACGAAA CCGTGACGTA CTATTGTTCG TAGATAACAT CTACCGTTAT GTACTGAAGT ATCAGCACTT CTAGGTCGTA TGCCGTCTGC CAACCGACAC TTGCAGAAGA GATGGGTGTT CTTCAAGAAC	TAAAGGTGGT AAAGTTGGTC TGTTCGGTGG TGCCGGTGTT GGTAAAACTG TAAACATGAT GGAGTTGATC AACAACATCG CTAAAGCGCA CTCAGGTTTA TCTGTATTCG CTGGTGTTGG TGAGCGTACT CGTGAAGGTA ATGACTTCTA TCACGAGATG AAAGACTCAA ACGTTCTAGA CAAAGTAGCA ATGGTCTACG GTCAGATGAA CGAGCCACCG GGTAACCGTT TACGCGTAGC GTTGACTGGT TTGACCATGG CTGAGTACTT CCGTGACGAG AAAGACGAAA ACGGCAAAGG CCGTGACGTA CTATTGTTCG TAGATAACAT CTACCGTTAT ACACTAGCAG GTACTGAAGT ATCAGCACTT CTAGGTCGTA TGCCGTCTGC AGTAGGTTAC CAACCGACAC TTGCAGAAGA GATGGGTGTT CTTCAAGAAC GTATTACATC

15

- 2) INFORMATION FOR SEQ ID NO: 245
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 837 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: Genomic DNA

25

20

- (vi)ORIGINAL SOURCE:
 - (A) ORGANISM: Staphylococcus saprophyticus
 - (B) STRAIN: CSG-197
- 30 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 245

CAATGAAGTT	CCAGAAATTA	ACAATGCCTT	AGTCGTAGAC	GTTGAAAGAG	50
ATGAAGGTAC	AGTATCTCTT	ACATTAGAAG	TGGCATTACA	ACTTGGCGAT	100
GATGTCGTAC	GTACAATTGC	AATGGATTCT	ACTGATGGTG	TTAAACGTGG	150
TACAGAAGTT	CGAGATAGCG	GAGATAGCAT	CAGTGTTCCA	GTTGGTGATG	200
CTACGTTAGG	ACGTGTGTTT	AATGTTCTTG	GTGATACAAT	TGACTTAGAC	250
GAGAAGCTTG	ATACTTCTGT	CAAACGTGAT	CCAATTCATA	GAGAAGCACC	300
TGCATTCGAT	CAATTATCAA	CAAAAGTTGA	AATCTTAGAA	ACAGGTATTA	350
AAGTAATTGA	TTTACTTGCA	CCATATATTA	AAGGTGGTAA	AATCGGTTTA	400
TTCGGTGGCG	CTGGTGTAGG	TAAAACAGTA	TTAATTCAAG	AATTAATTAA	450
TAATATAGCT	CAAGAACATG	GTGGTATTTC	AGTATTTGCC	GGCGTAGGTG	500
AACGTACGCG	TGAAGGTAAT	GACTTATACT	ACGAAATGAG	TGATAGTGGT	550
GTTATTAAGA	AAACAGCTAT	GGTCTTCGGA	CAAATGAATG	AGCCACCTGG	600
TGCGCGTATG	CGTGTTGCTT	TATCAGGCTT	AACAATGGCT	GAACACTTCC	650
GTGATGTACA	AGGACAAGAT	GTTTTACTAT	TTATTGATAA	CATATTCAGA	700
TTTACGCAAG	CTGGTTCAGA	AGTATCAGCA	CTATTAGGTC	GTATGCCATC	750
AGCCGTTGGT	TATCAACCTA	CCCTTGCTAC	TGAAATGGGT	CAATTACAAG	800
AACGTATTAC	ATCAACAACT	AAAGGATCTG	TAACGTC		837
	ATGAAGGTAC GATGTCGTAC TACAGAAGTT CTACGTTAGG GAGAAGCTTG TGCATTCGAT AAGTAATTGA TTCGGTGGCG TAATATAGCT AACGTACGCG GTTATTAAGA TGCGCGTATG GTGATGTACA ATGCGCAAG AGCCGTTGGT	ATGAAGGTAC AGTATCTCTT GATGTCGTAC GTACAATTGC TACAGAAGTT CGAGATAGCG CTACGTTAGG ACGTGTGTTT GAGAAGCTTG ATACTTCTGT TGCATTCGAT CAATTATCAA AAGTAATTGA TTTACTTGCA TTCGGTGGCG CTGGTGTAGG TAATATAGCT CAAGAACATG AACGTACGCG TGAAGGTAAT GTTATTAAGA AAACAGCTAT TGCGCGTATG CGTGTTGCTT GTGATGTACA AGGACAAGAT TTTACGCAAG CTGGTTCAGA AGCCGTTGGT TATCAACCTA	ATGAAGGTAC AGTATCTCTT ACATTAGAAG GATGTCGTAC GTACAATTGC AATGGATTCT TACAGAAGTT CGAGATAGCG GAGATAGCAT CTACGTTAGG ACGTGTGTTT AATGTTCTTG GAGAAGCTTG ATACTTCTGT CAAACGTGAT TGCATTCGAT CAATTATCAA CAAAAGTTGA AAGTAATTGA TTTACTTGCA CCATATATTA TTCGGTGGCG CTGGTGTAGG TAAAACAGTA TAATATAGCT CAAGAACATG GTGGTATTC AACGTACGCG TGAAGGTAAT GACTTATACT GTTATTAAGA AAACAGCTAT GGTCTTCGGA TGCGCGTATG CGTGTTGCTT TATCAGGCTT GTGATGTACA AGGACAAGAT GTTTTACTAT TTTACGCAAG CTGGTTCAGA AGTATCAGCA	ATGAAGGTAC AGTATCTCTT ACATTAGAAG TGGCATTACA GATGTCGTAC GTACAATTGC AATGGATTCT ACTGATGGTG TACAGAAGTT CGAGATAGCG GAGATAGCAT CAGTGTTCCA CTACGTTAGG ACGTGTGTTT AATGTTCTTG GTGATACAAT GAGAAGCTTG ATACTTCTGT CAAACGTGAT CCAATTCATA TGCATTCGAT CAATTATCAA CAAAAGTTGA AATCTTAGAA AAGTAATTGA TTTACTTGCA CCATATATTA AAGGTGGTAA TTCGGTGGCG CTGGTGTAGG TAAAACAGTA TTAATTCAAG TAATATAGCT CAAGAACATG GTGGTATTC AGTATTTGCC AACGTACGCG TGAAGGTAAT GACTTATACT ACGAAATGAG GTTATTAAGA AAACAGCTAT GGTCTTCGGA CAAATGAATG TGCGCGTATG CGTGTTGCTT TATCAGGCTT AACAATGGCT GTGATGTACA AGGACAAGAT GTTTTACTAT TTATTGATAA TTTACGCAAG CTGGTTCAGA AGTATCAGCA CTATTAGGTC AGCCGTTGGT TATCAACCTA CCCTTGCTAC TGAAATGGGT	ATGAAGGTAC AGTATCTCTT ACATTAGAAG TGGCATTACA ACTTGGCGAT GATGTCGTAC GTACAATTGC AATGGATTCT ACTGATGGTG TTAAACGTGG TACAGAAGTT CGAGATAGCG GAGATAGCAT CAGTGTTCCA GTTGGTGATG CTACGTTAGG ACGTGTGTTT AATGTTCTTG GTGATACAAT TGACTTAGAC GAGAAGCTTG ATACTTCTGT CAAACGTGAT CCAATTCATA GAGAAGCACC TGCATTCGAT CAATTATCAA CAAAAGTTGA AATCTTAGAA ACAGGTATTA AAGTAATTGA TTTACTTGCA CCATATATTA AAGGTGGTAA AATCGGTTTA TTCGGTGGCG CTGGTGTAGG TAAAACAGTA TTAATTCAAG AATTAATTAA TAATATAGCT CAAGAACATG GTGGTATTC AGTATTTGCC GGCGTAGGTG GACGTACGCG TGAAGGTAAT GACTTATACT ACGAAATGAG TGATAGTGGT GTTATTAAGA AAACAGCTAT GGTCTTCGGA CAAATGAATG AGCCACCTGG TGCGCGTATG CGTGTTGCTT TATCAGGCTT AACAATGGCT GAACACTTCC GTGATGTACA AGGACAAGAT GTTTTACTAT TTATTGATAA CATATTCAGA TTTACGCAAG CTGGTTCAGA AGTATCAGCA CTATTAGGT GTATGCCATC AGCCGTTGGT TATCAACCTA CCCTTGCTAC TGAAATGGGT CAATTACAAG

50

- 2) INFORMATION FOR SEQ ID NO: 246
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 851 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
- 60 (ii) MOLECULE TYPE: Genomic DNA

(vi)ORIGINAL SOURCE:

- (A) ORGANISM: Alcaligenes faecalis
- (B) STRAIN: ATCC 15554

5

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 246

	TTCCCCCGCG	ACAGCATCCC	TAAAGTCTAC	GAAGCATTGA	CGCTCGTTGA	50
	CGAAAGTTCG	GCTTTCGCAG	AAAAAGGCCT	GACTTTTGAA	GTACAGCAAC	100
10	AATTGGGTGA	CGGTGTAGTT	CGCACCATCG	CCATGGGTTC	CAGCGACGGC	150
	CTGCGCCGCG	GTATGGAAGT	GGCCGGTTCG	GGCGCTCCCA	TCTCCGTTCC	200
	CGTGGGTGTC	GGCACCCTGG	GTCGCATTAT	GGACGTTCTG	GGTCGCCCTA	250
	TTGACGAAGT	CGGTCCTATT	CAGTCCGACG	AGCGTCGCGC	CATTCACCAG	300
	CCTGCGCCTA	CTTTCGACGA	ACTGTCGCCT	TCCGTAGAGC	TGCTGGAAAC	350
15	CGGTATTAAA	GTGATTGACC	TGGTTTGCCC	GTTCGCCAAG	GGTGGTAAGG	400
	TTGGTCTGTT	CGGTGGTGCC	GGTGTGGGCA	AGACCGTGAA	CATGCTGGAG	450
	CTGATCAACA	ACATCGCCAA	GGCACACAGC	GGTCTGTCCG	TGTTTGCCGG	500
	TGTGGGTGAG	CGTACCCGTG	AAGGTAACGA	CTTCTACCAC	GAAATGGCCG	550
	ATGCTGGCGT	TATCCAGATG	GACAACCTGA	GCGAGTCCAA	AGTGGCCATG	600
20	GTGTTCGGTC	AGATGAACGA	ACCTCCAGGC	AACCGTCTGC	GTGTGGCACT	650
	GTCCGGCCTG	ACCATGGCCG	AGAAGTTCCG	TGACGAAGGC	CGTGACATCC	700
	TGTTCTTTGT	GGACAACATC	TACCGCTACA	CGCTGGCCGG	TACAGAAGTG	750
	TCCGCTCTGC	TGGGTCGTAT	GCCTTCCGCA	GTGGGTTACC	AGCCTACGCT	800
	GGCCGAGGAA	ATGGGTAAGC	TGCAAGAGCG	CATTACCTCC	ACCAAGACCG	850
25	G					851

2) INFORMATION FOR SEQ ID NO: 247

30

35

10

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 846 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
- (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: Genomic DNA
 - (vi)ORIGINAL SOURCE:
 - (A) ORGANISM: Bacillus anthracis
 - (B) STRAIN: 4229

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 247

45	GATGGCGGAA	AGCTACCAGA	AATCTACAAC	GCCCTTACGG	TAAAACAGAG	50
	CAACGAAAAC	GGAACAAGCA	TTAACTTAAC	ATTTGAAGTT	GCACTTCATT	100
	TAGGTGATGA	CACAGTTCGT	ACAGTTGCAA	TGTCTTCCAC	AGATGGACTT	150
	GTTCGTGGCA	CAGAAGTAGA	AGATACTGGT	AAAGCAATCT	CTGTACCAGT	200
	TGGTGATGCA	ACACTTGGTC	GTGTATTTAA	CGTATTAGGT	GATGCAATTG	250
50	ACTTAGATGG	TGAGGTTCCT	GCGGATGTAC	GTCGTGATCC	AATTCACCGT	300
	CAAGCACCTG			AAAGTAGAAA	TTCTTGAAAC	350
		GTAGTAGACT			GGTGGTAAGA	400
	TCGGTCTATT	CGGTGGTGCC	GGTGTAGGTA	AAACGGTATT	AATTCAGGAA	450
		ACATCGCACA			TATTCGCTGG	500
55	TGTAGGTGAG	CGTACTCGTG	AGGGTAATGA	CTTATACCAC	GAAATGAGCG	550
	ATTCTGGCGT	AATTAAGAAA	ACTGCGATGG	TATTCGGACA	AATGAACGAG	600
	CCACCTGGAG	CACGTCAACG	TGTTGCGTTA	ACAGGTTTAA	CAATGGCTGA	650
	GCATTTCCGT	GATGAGCAAG	GACAAGATGT	ACTTCTGTTC	ATCGATAATA	700
	TCTTCCGTTT			TATCTGCCCT		750
50	ATGCCATCTG	CGGTAGGTTA	CCAACCAACA	CTTGCAACAG	AAATGGGTCA	800

5	2) INFORMATION FOR SEQ ID NO: 248	
10	(i)SEQUENCE CHARACTERISTICS: (A) LENGTH: 810 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
15	<pre>(vi)ORIGINAL SOURCE: (A) ORGANISM: Bacillus cereus (B) STRAIN: ATCC 14579</pre>	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 248	
20	CCAGAAATCT ACAATGCCCT TACGGTAAAA CAAAGCAACG AAAACGGAAG CATGAACTTA ACATTTGAAG TTGCACTTCA TTTAGGTGAT GATACAGTTC GTACAGTTGC GATGTCTTCC ACAGATGGAC TTGTTCGTGG CACAGAAGTA GAAGATACTG GTAAAGCAAT CTCTGTACCA GTTGGTGATG CAACACTTGG	50 100 150
25	ACGTGTATTC AACGTATTAG GTGATGCAAT TGACTTAGAT GGTGAACTTC CTGCGGATGT ACACCGTGAT CCAATTCACC GTCAAGCACC TGCATTCGAA GAATTATCTA CTAAAGTAGA AATTCTTGAA ACTGGTATTA AAGTAGTAGA CTTACTTGCT CCTTACATTA AGGGTGGTAA GATCGGCCTA TTCGGTGGTG	200 250 300 350 400
30	CCGGCGTAGG TAAAACAGTA TTAATTCAGG AGTTAATCAA TAACATCGCA CAAGAGCACG GTGGTATCTC TGTATTCGCT GGTGTAGGTG AGCGTACTCG TGAGGGTAAT GACTTATACC ACGAAATGAG CGATTCTGGC GTAATCAAGA AAACTGCGAT GGTATTCGGA CAAATGAACG AGCCACCTGG AGCACGTCAA CGTGTTGCAT TAACAGGTTT AACAATGGCT GAGCATTTCC GTGATGAGCA	450 500 550 600 650
35	AGGACAAGAC GTACTTCTGT TCATCGATAA CATCTTCCGT TTCACGCAAG CGGGTTCTGA AGTATCTGCC CTTCTTGGTC GTATGCCATC TGCGGTAGGT TACCAACCAA CACTTGCAAC AGAAATGGGT CAATTACAAG AGCGTATTAC ATCTACAAAT	700 750 800 810
10	2) INFORMATION FOR SEQ ID NO: 249	
1 5	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 944 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear 	
50	(ii) MOLECULE TYPE: Genomic DNA	
	<pre>(vi)ORIGINAL SOURCE: (A) ORGANISM: Bacteroides distasonis (B) STRAIN: ATCC 8503</pre>	
55	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 249	
50	CTTTGATTAT GGGACAGAAG AAACAGTAAC CCTCCCCCGT ATCCACGACG CCATGGAGAT TTCCCGCCCA AACGGAAAGA TCTTGATCGT CGAAGTTCAG CAACACATCG GGGAAAACAC CGTCCGTACC GTAGCGATGG ATACGACCGA CGGATTGAGA CGAGGCATGG AGGCCGTGTC ATACGGAATG CCCATCACCA	50 100 150 200

	TGCCGACCGG	CGACCAAGTC	AAAGGACGTT	TAATGAATGT	CACCGGCGAC	250
	CCTATCGATG	GCATGGCCCA			TTCCCATCCA	300
	TCGTGAGCCT	CCTAAATTCG	AGGATCTGAC		GAGGTCTTGT	350
	ACACGGGTAT	TAAAGTAATC	GATTTATTGG	AACCTTACGC	CAAAGGAGGC	400
5	AAGATCGGAC	TTTTCGGAGG	AGCCGGAGTC	GGCAAAACGG	TATTGATCAT	450
	GGAATTGATC	AACAACATCG	CAAAGAAAAA	CAACGGATTC	TCCGTCTTCG	500
	CCGGTGTGGG	TGAACGTACA	CGTGAAGGAA	ATGACCTATT	GCGTGAAATG	550
	ATCCAATCCG	GTGTCATCCG	ATACGGCGAG	GAGTTTAAGA	AGAGTATGGA	600
	GGCAGGCAAC	TGGGACTTGT	CGAAGATCGA	TTACGATGAA	TTGGCTAAGT	650
10	CGCAGGCTAC	CTTGGTATTC	GGGCAGATGA	ACGAACCGCC	GGGCGCCCGC	700
	TCGTCCGTGG	CCTTATCCGG	TTTGACGATC	GCCGAATCCT	TCCGTGACAA	750
	AGCCTCTGAG	GGAGAAAGAA	AAGATATATT	ATTCTTCATC	GATAATATCT	800
	TCCGTTTCAC	CCAAGCCGGT	TCCGAGGTTT	CCGCCTTGCT	GGGGCGTATG	850
	CCTTCCGCCG	TAGGTTACCA	ACCGACATTG	GCCACGGAAA	TGGGAGCTAT	900
15	GCAAGAGCGT	ATCACTTCAA	CCAAGAAGGG	CTCCATCACC	TCCG	944

2) INFORMATION FOR SEQ ID NO: 250

20

25

30

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 939 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
- (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: Genomic DNA
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Bacteroides ovatus
 - (B) STRAIN: ATCC 8483
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 250

35	TTGAGGGTAC	GGATGCAGAA	TTGGTGCTGC	CAAGCATCCA	CGACGCACTG	50
	GAGATAAAGA	GGCCAAACGG	CAAAATACTG	GTTGTAGAAG	TTCAGCAACA	100
	TATCGGCGAA	AATACGGTGC	GTACCGTAGC	GATGGACAGT	ACTGACGGAC	150
	TTCAGAGAGG	CATGAAAGTG	TATCCCACCG	GAGGCCCGAT	CACGATGCCG	200
	ATTGGCGAAC	AGATTAAAGG	ACGACTGATG	AACGTAGTCG	GTGATTCGAT	250
40	CGACGGTATG	AAAGGACTCG	ACCGCAAAGG	TGCATATTCC	ATTCATCGCG	300
	ACCCCCTAA	GTTTGAGGAT	TTGACTACTG	TGCAAGAGGT	GCTCTTCACA	350
	GGTATCAAAG	TGATCGACCT	GCTCGAACCG	TATGCCAAAG	GTGGTAAAAT	400
	CGGTTTGTTC	GGCGGTGCCG	GTGTAGGAAA	GACTGTATTG	ATTCAGGAAC	450
	TTATCAATAA	TATCGCCAAG	AAACATAATG	GATTCTCTGT	ATTTGCCGGA	500
45	GTAGGTGAAC	GTACCCGTGA	AGGTAACGAC	TTGCTGCGCG	AAATGATTGA	550
	ATCCGGTGTA	ATCCGTTACG	GCGAAGCATT	CAAAGAAGGA	ATGGAGAAAG	600
	GTCACTGGGA	TCTTTCGAAA	GTGGATTATA	ACGAACTGGA	GAAATCGCAA	650
	GTGTCTCTGA	TTTTCGGTCA	GATGAACGAG	CCTCCGGGCG	CACGTGCCTC	700
	TGTGGCATTG	TCCGGACTGA	CGGTGGCGGA	ATCTTTCCGC	GACGCAGGAA	750
50	AAGAAGGTGA	GAAACGCGAT	ATTCTGTTCT	TTATTGATAA	TATCTTCCGT	800
	TTCACGCAAG	CAGGTTCAGA	AGTGTCCGCC	CTTTTGGGAC	GTATGCCCTC	850
	CGCTGTTGGT	TACCAGCCCA	CGTTGGCTAC	GGAAATGGGT	GCGATGCAGG	900
	AACGTATCAC	GTCTACCCGC	AAAGGTTCTA	TCACCTCCG		939

55

- 2) INFORMATION FOR SEQ ID NO: 251
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 833 bases

- (B) TYPE: Nucleic acid
- (C) STRANDEDNESS: Double
- (D) TOPOLOGY: Linear
- 5 (ii) MOLECULE TYPE: DNA
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Leclercia adecarboxylata
 - (B) STRAIN: ATCC 23216

10

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 251

	CGAATTCCCT	CAGGATGCCG	TACCGCGCGT	GTACGATGCT	CTTGAGGTTC	50
	AGAATGGTAA	TGAGAGCCTG	GTGCTGGAAG	TTCAGCAGCA	GCTCGGCGGC	100
15	GGTATTGTGC	GTACCATCGC	CATGGGTTCT	TCCGACGGTC	TGCGTCGTGG	150
	TCTGGAAGTT	AAAGACCTCG	AGCACCCAAT	CGAAGTACCA	GTAGGTAAAG	200
	CAACCCTGGG	CCGTATCATG	AACGTCCTGG	GTCAGCCGAT	CGACATGAAA	250
	GGCGACATCG	GCGAAGAAGA	GCGTTGGGCT	ATCCACCGTT	CAGCACCTTC	300
	CTATGAAGAG	CTGTCCAGCT	CTCAGGAACT	GCTGGAAACC	GGCATCAAAG	350
20	TTATCGACCT	GATGTGTCCG	TTCGCGAAGG	GCGGTAAAGT	TGGTCTGTTC	400
	GGCGGTGCGG	GTGTAGGTAA	AACCGTAAAC	ATGATGGAGC	TGATCCGTAA	450
	CATCGCGATC	GAGCACTCCG	GTTACTCCGT	GTTTGCAGGC	GTGGGTGAGC	500
	GTACTCGTGA	GGGTAACGAC	TTCTACCACG	AAATGACCGA	CTCCAACGTT	550
	CTGGACAAAG	TATCCCTGGT	TTACGGCCAG	ATGAACGAGC	CACCAGGAAA	600
25	CCGTCTGCGC	GTTGCGCTGA	CCGGCCTGAC	CATGGCTGAG	AAGTTCCGTG	650
	ACGAAGGTCG	TGACGTACTG	CTGTTCGTTG	ACAACATCTA	CCGTTACACC	700
	CTGGCCGGTA	CGGAAGTATC	CGCACTGCTG	GGTCGTATGC	CATCAGCAGT	750
	AGGCTACCAG	CCGACCCTGG	CGGAAGAGAT	GGGTGTTCTG	CAGGAACGTA	800
	TCACCTCTAC	CAAAACCGGT	TCTATCACCT	CCG		833
30						

2) INFORMATION FOR SEQ ID NO: 252

- 35 (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 819 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear

- (ii) MOLECULE TYPE: Genomic DNA
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Stenotrophomonas maltophilia
- 45 (B) STRAIN: CDC F3338
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 252

	GTGTACGACG	CACTGAAGGT	GGAAAACACC	GAGATCACCC	TCGAAGTCCA	50
50	GCAGCAGCTG	GGCGACGGCG	TGGTGCGTAC	CATCGCCCTC	GGTTCCACCG	100
	ACGGCCTGAA	GCGCAACCTG	GTTGCCGTCA	ACACCGGCCG	TGGCATCTCG	150
	GTGCCGGTCG	GCGCCGGCAC	CCTGGGCCGC	ATCATGGACG	TGCTGGGCCG	200
	TCCGATCGAC	GAAGCCGGCC	CGGTCGCTGC	CAGCGACAAC	TGGGAAATCC	250
	ACCGCGCTGC	GCCGTCGTAT	GAAGACCAGT	CCCCGGCCAC	CGAGCTGCTG	300
55	GAAACCGGCA	TCAAGGTCAT	CGACCTGATG	TGCCCGTTCG	CCAAGGGCGG	350
	CAAGGTCGGC	CTGTTCGGCG	GCGCCGGCGT	CGGCAAGACC	GTCAACATGA	400
	TGGAACTGAT	CAACAACATC	GCCAAGGCGC	ACAGCGGCCT	GTCCGTGTTC	450
	GCCGGCGTGG	GTGAGCGTAC	CCGTGAGGGC	AACGACTTCT	ACCACGAGAT	500
	GAAGGACTCC	AACGTCCTGG	ACAAGGTGGC	GATGGTGTAC	GGCCAGATGA	550
60	ACGAGCCGCC	GGGCAACCGT	CTGCGCGTCG	CCCTGACCGG	CCTGACCATG	600

WO 01/23604	PCT/CA00/01150

	GCCGAGTACT	TCCGCGATGA	GAAGGACGAA	AACGGCAAGG	GCAAGGACGT	650
	CCTGCTGTTC	GTCGACAACA	TCTACCGCTA	CACCCTGGCC	GGTACCGAAG	700
					CCAGCCGACC	750
	CTGGCCGAGG	AAATGGGCGT	CCTGCAGGAG	CGCATCACCT	CGACCAAGAA	800
_	TGGTTCGATC					819

2) INFORMATION FOR SEQ ID NO: 253

10

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 864 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
- 15 (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: Genomic DNA
 - (vi)ORIGINAL SOURCE:
- 20 (A) ORGANISM: Bartonella henselae
 - (B) STRAIN: ATCC 49882
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 253

25	AGTTTGAAGG	CCCTTTGCCA	AATATTCTCA	ATGCATTAGA	AACAGATAAT	50
	TTGGGCAATC	GGCTAGTTTT	AGAAGTTGCT	CAGCATTTGG	GTGAAAATAC	100
	CGTGCGTACC	ATTGCCATGG	ATACTACCGA	TGGTCTTGTC	CGTGGTCAAA	150
	AAGTTTTTGA	TACAGGAACA	CAGATCAGTG	TTCCCGTGGG	AGAAGCAACA	200
	CTTGGTCGTA	TTATGAATGT	GATTGGAGAG	CCGGTTGATA	ATGTTGGCCC	250
30	AATTGCTACA	AGCAAAACCC	GTTCCATTCA	CCAAGAGGCT	CCTGAATATG	300
	TGGAGCAATC	AACCGCATCA	GAAATCCTTG	TGACTGGTAT	TAAAGTCGTT	350
	GATCTGTTAG	CTCCTTATTC	TAAAGGGGGG	AAGGTTGGTT	TGTTTGGAGG	400
	TGCCGGTGTT	GGTAAAACCG	TTCTCATTAT	GGAGCTTATC	AACAATATTG	450
	CAAAGGCGCA	TGGTGGCTAT	TCAGTGTTTG	CCGGTGTTGG	TGAACGTACA	500
35	CGTGAGGGAA	ATGATCTTTA	TTATGAAATG	ATCGAAAGCC	GTGTGAATGT	550
	GAATCCAAAA	GACAACAATG	GTTCAACAGA	AGGATCAAAA	TGTGCACTCG	600
	TTTATGGGCA	AATGAATGAA	CCACCAGGGG	CGCGTGCACG	TGTGGCTCTT	650
	TCAGGATTGA	CCATTGCAGA	AAGTTTCCGT	GATGAGGGAC	AAGATGTTTT	700
	GTTCTTCGTA	GATAATATTT	TCCGTTTTAC	GCAAGCAGGC	GCTGAAGTGT	750
40	CAGCTCTTTT	AGGGCGTATT	CCTTCTGCTG	TAGGGTATCA	GCCAACTTTG	800
	GCAACTGATA	TGGGGGCTTT	GCAAGAGCGT	ATTACCAGTA	CAAGAACAGG	850
	CTCTATTACC	TCTG	•			864

45

- 2) INFORMATION FOR SEQ ID NO: 254
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 866 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: Genomic DNA

55

- (vi)ORIGINAL SOURCE:
 - (A) ORGANISM: Bifidobacterium adolescentis
 - (B) STRAIN: ATCC 15703
- 50 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 254

	TTCCCGGTGG	GCCACCTGCC	CGACATTTAC	AATGCACTTA	CCGTTGAACT	50
	GKCCAACACC	GGYGTCCACG	AASAGGGCGA	GACCACCAAG	AAGATCACCC	100
	TTGMGGTTGA	ACAGCATCTT	GGCGATTCCA	CCGTGCGTAC	CGTCGCTCTG	150
5	AAGCCGACTG	ACGGCCTTGT	GCGTGGCGCC	ACCGTGTATG	ACACCGGCGG	200
	CCCGATCTCT		GCGATGTCAC		GTATTCGACG	250
	TGTCCGGCAA		AAGAAGGCCG		TAAGGTTACC	300
	GAACGTTGGT		TAACCCGCCG		AGCTGGAGTC	350
	CAAGACCCAG		CCGGTATCAA	GGTCATCGAT	TTGCTGACCC	400
10	CGTATGTGCA	GGGCGGCAAG	ATCGGTCTGT	TCGGCGGCGC	AGGCGTCGGC	450
	AAGACCGTGC	TGATCCAGGA	AATGATTCAG	CGTGTGGCTC	AGAACCACGG	500
	CGGTGTGTCC	GTGTTCGCAG	GCGTCGGCGA	GCGTACCCGT	GAGGGTAACG	550
	ATCTGATCGG	CGAAATGGAC	GAAGCCGGCG	TGCTCGAGAA	GACCGCACTG	600
	GTCTTCGGCC	AGATGGATGA	GCAGCCGGGT	ACCCGTCTGC	GCGTGCCGCT	650
15	GACCGCACTG	ACCATGGCAG	AGTACTTCCG	TGACGTACAG	AATCAGGACG	700
	TGCTGCTGTT	CATCGATAAC	ATCTTCCGTT	TCACCCAGGC	TGGTTCCGAG	750
	GTGTCCACCC	TGCTCGGCCG	TATGCCGTCC	GCAGTGGGCT	ACCAGCCGAA	800
	CCTGGCCGAT	GAGATGGGCG	CGCTGCAGGA	GCGAATCACT	TCGACCCGTG	850
	GACACTCCAT	CACCTC				866
20						

2) INFORMATION FOR SEQ ID NO: 255

- 25 (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 842 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear

30

- (ii) MOLECULE TYPE: Genomic DNA
- (vi)ORIGINAL SOURCE:
 - (A) ORGANISM: Brucella abortus
- 35 (B) STRAIN: S2308
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 255

	AAGGCCAGCT	GCCGCTGATC	CTGAACGCGC	TTGAAGTGGA	CAATCAGGGC	50
40	CATCGTCTGG	TTCTCGAAGT	TGCCCAGCAC	CTCGGCGAAG	ACACCGTGCG	100
	CACCATCGCC	ATGGACGCGA	CCGAAGGTCT	CGTTCGCGGT	CAGGAAGCAC	150
	GCGACACTGG	CGAACCGATC	ATGGTGCCGG	TCGGCGTCGA	AACGCTTGGC	200
	CGCATCATGA	ACGTCATCGG	CGAGCCGGTT	GACGAAGCAG	GCCCCATCAA	250
	GACCAAGGCA	ACCCGCGCCA	TCCACCAGAA	CGCGCCGGAA	TATATCGAAC	300
45	AGTCGACCGA	AGCCGAAATT	CTGGTCACGG	GCATCAAGGT	CGTCGACCTT	350
	CTGGCGCCTT	ACGCCAAGGG	CGGCAAGATC	GGCCTCTTCG	GCGGTGCAGG	400
	CGTCGGCAAG	ACCGTTCTCA	TCATGGAACT	CATCAACAAC	GTCGCCAAGG	450
	CGCACGGCGG	TTATTCCGTG	TTCGCAGGCG	TCGGTGAGCG	TACCCGTGAG	500
	GGCAACGACC	TTTACCACGA	AATGATCGAG	TCGGGCGTGA	ACAAGCTCGG	550
50	CGGCGGCGAA	GGCTCCAAGG	CAGCCCTCGT	TTACGGCCAG	ATGAACGAAC	600
	CCCCGGGTGC	CCGCGCCCGC	GTTGCCCTTT	CCGGTCTGAC	GGTTGCTGAA	650
	AACTTCCGTG	ACCAGGGCCA	GGACGTTCTG	TTCTTCGTGG	ACAACATCTT	700
	CCGCTTCACG	CAGGCAGGTT	CGGAAGTGTC	GGCTCTTCTC	GGCCGTATTC	750
	CTTCCGCTGT	GGGTTATCAG	CCGACGCTGG	CAACCGACAT	GGGCGCCATG	800
55	CAGGAACGCA	TCACCACGAC	GACCAAGGGT	TCGATCACCT	CG	842

²⁾ INFORMATION FOR SEQ ID NO: 256

```
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 833 bases
(B) TYPE: Nucleic acid
(C) STRANDEDNESS: Double
(D) TOPOLOGY: Linear
```

- (ii) MOLECULE TYPE: Genomic DNA
- (vi)ORIGINAL SOURCE:

5

10

40

- (A) ORGANISM: Cedecea davisae
 - (B) STRAIN: ATCC 33431
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 256

15	CGAGTTCCCT	CAGGACGGCG	TACCGCGCGT	TKATGATGCG	CTTGAAGTAC	50
	AAAATAACAG	CGAGCAGCTG	GTGCTGGAAG	TTCAGCAGCA	GCTCGGCGGC	100
	GGTATCGTGC	GTACCATCGC	TATGGGTTCT	TCCGACGGTC	TGCGTCGTGG	150
	TCTGGAAGTT	AAAGACCTCG	AGCACCCGAT	CGAAGTCCCG	GTAGGTAAAG	200
	CGACCCTTGG	CCGTATCATG	AACGTGCTGG	GTCAGCCGAT	CGACATGAAA	250
20	GGCGATATCG	GCGAAGAAGA	CCGTTGGGCT	ATTCACCGCG	CTGCACCTTC	300
	CTATGAAGAG	CTGTCCAGCT	CTCAGGAACT	GCTGGAAACC	GGCATCAAAG	350
	TAATCGACCT	TATCTGTCCG	TTCGCTAAGG	GCGGTAAAGT	AGGTCTGTTC	400
	GGTGGTGCGG	GCGTGGGTAA	AACCGTAAAC	ATGATGGAGC	TTATCCGTAA	450
	CATCGCGATC	GAGCACTCCG	GCTACTCCGT	GTTTGCGGGC	GTGGGTGAGC	500
25	GTACTCGTGA	GGGTAACGAC	TTCTATCACG	AAATGACCGA	CTCCAACGTT	550
	CTGGACAAAG	TTGCCCTGGT	TTACGGCCAG	ATGAACGAGC	CACCGGGTAA	600
	CCGTCTGCGC	GTAGCGCTGA	CCGGTCTGAC	CATCGCGGAG	AAATTCCGTG	650
	ACGAAGGTCG	TGACGTTCTG	CTGTTCGTTG	ATAACATCTA	CCGTTACACC	700
	CTGGCCGGTA	CTGAAGTATC	CGCGCTGCTG	GGTCGTATGC	CTTCTGCGGT	750
30	AGGTTACCAG	CCAACTCTGG	CGGAAGAGAT	GGGTGTTCTT	CAGGAGCGTA	800
	TTACCTCCAC	CAAGACCGGT	TCCATCACCT	CCG		833

- 35 2) INFORMATION FOR SEO ID NO: 257
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 829 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: Genomic DNA
- 45 (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Cedecea lapagei
 - (B) STRAIN: ATCC 33432
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 257

TTCCCTCAGG ACGGCGTACC GCGCGTATAT GACGCGCTTG AGGTACAGAA 50 TAACAGCGAG AAGCTGGTGC TGGAAGTTCA GCAGCAGCTC GGCGGCGGTA 100 TCGTACGTAC CATCGCAATG GGTTCTTCCG ACGGTCTGCG TCGTGGTCTG 150 GAAGTGAAAG ACCTCGAGCA CCCGATCGAA GTCCCGGTAG GTAAAGCGAC 200 55 TCTGGGTCGT ATCATGAACG TGCTGGGTCA GCCAATTGAT ATGAAAGGCG 250 ACATCGGCGA AGAAGATCGT TGGGCGATTC ACCGCGCAGC ACCTTCCTAT 300 GAAGAGCTGT CCAGCTCTCA GGAACTGCTG GAAACCGGCA TCAAAGTTAT 350 CGACCTGATT TGTCCGTTCG CTAAGGGCGG TAAAGTTGGT CTGTTCGGTG 400 GTGCGGGCGT AGGTAAAACC GTAAACATGA TGGAGCTGAT CCGTAACATC 450 50 GCGATCGAGC ACTCCGGTTA CTCCGTGTTT GCAGGCGTGG GTGAGCGTAC 500

TCGTGAGGGT	AACGACTTCT	ACCACGAGAT	GACCGACTCC	AACGTTCTGG	550
ACAAAGTTGC	ACTGGTTTAC	GGCCAGATGA	ACGAGCCGCC	AGGTAACCGT	600
CTGCGCGTAG	CGCTGACCGG	TCTGACCATC	GCGGAGAAAT	TCCGTGACGA	650
AGGCCGTGAC	GTTCTGCTGT	TCGTCGATAA	CATCTATCGT	TATACCCTGG	700
CCGGTACAGA	AGTTTCTGCA	CTGCTGGGTC	GTATGCCATC	TGCGGTAGGT	750
TATCAGCCTA	CTCTGGCAGA	AGAGATGGGT	GTTCTTCAGG	AGCGTATTAC	800
CTCCACCAAG	ACCGGTTCCA	TCACTTCCG			829
	ACAAAGTTGC CTGCGCGTAG AGGCCGTGAC CCGGTACAGA TATCAGCCTA	ACAAAGTTGC ACTGGTTTAC CTGCGCGTAG CGCTGACCGG AGGCCGTGAC GTTCTGCTGT CCGGTACAGA AGTTTCTGCA TATCAGCCTA CTCTGGCAGA	ACAAAGTTGC ACTGGTTTAC GGCCAGATGA CTGCGCGTAG CGCTGACCGG TCTGACCATC AGGCCGTGAC GTTCTGCTGT TCGTCGATAA CCGGTACAGA AGTTTCTGCA CTGCTGGGTC	ACAAAGTTGC ACTGGTTTAC GGCCAGATGA ACGAGCCGCC CTGCGCGTAG CGCTGACCGG TCTGACCATC GCGGAGAAAT AGGCCGTGAC GTTCTGCTGT TCGTCGATAA CATCTATCGT CCGGTACAGA AGTTTCTGCA CTGCTGGGTC GTATGCCATC TATCAGCCTA CTCTGGCAGA AGAGATGGGT GTTCTTCAGG	TCGTGAGGGT AACGACTTCT ACCACGAGAT GACCGACTCC AACGTTCTGG ACAAAGTTGC ACTGGTTTAC GGCCAGATGA ACGAGCCGCC AGGTAACCGT CTGCGCGTAG CGCTGACCGG TCTGACCATC GCGGAGAAAT TCCGTGACGA AGGCCGTGAC GTTCTGCTGT TCGTCGATAA CATCTATCGT TATACCCTGG CCGGTACAGA AGTTTCTGCA CTGCTGGGTC GTATGCCATC TGCGGTAGGT TATCAGCCTA CTCTGGCAGA AGAGATGGGT GTTCTTCAGG AGCGTATTAC CTCCACCAAG ACCGGTTCCA TCACTTCCG

10

15

- 2) INFORMATION FOR SEQ ID NO: 258
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 830 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: Genomic DNA

20

- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Cedecea neteri
 - (B) STRAIN: ATCC 33855
- 25 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 258

	TCCCTCAGGA	CGGCGTACCG	CGCGTTTATG	ACGCGCTTGA	GGTACAGAAC	50
	AACAATGAGA	AGCTGGTGCT	GGAAGTTCAG	CAGCAGCTCG	GCGGCGGTAT	100
	CGTGCGTACC	ATCGCAATGG	GTTCTTCCGA	CGGTCTGCGT	CGTGGTCTGG	. 150
30	TAGTAACAGA	CCTCGAGCAC	CCGATCGAAG	TCCCGGTAGG	TAAAGCGACC	200
	CTTGGCCGTA	TCATGAACGT	GCTGGGTCAG	CCGATCGACA	TGAAAGGCGA	250
	CATCGGCGAA	GAAGACCGTT	GGGCGATTCA	CCGCGCAGCA	CCTTCCTACG	300
	AAGAGCTGTC	CAGCTCTCAG	GAATTGCTGG	AAACCGGCAT	CAAAGTTATC	350
	GACCTGATTT	GTCCGTTCGC	TAAGGGCGGT	AAAGTAGGTC	TGTTCGGTGG	400
35	TGCGGGCGTA	GGTAAAACCG	TAAACATGAT	GGAGCTGATC	CGTAACATTG	450
	CGATCGAGCA	CTCCGGTTAT	TCCGTGTTTG	CGGGCGTGGG	TGAGCGTACT	500
	CGTGAGGGTA	ACGACTTCTA	CCACGAAATG	ACCGACTCCA	ACGTTCTGGA	550
	TAAAGTAGCA	CTGGTTTACG	GCCAGATGAA	CGAGCCACCA	GGTAACCGTC	600
	TGCGCGTAGC	GCTGACCGGT	CTGACCATCG	CGGAAAAATT	CCGTGACGAA	650
40	GGCCGCGACG	TTTTGCTGTT	CGTTGATAAC	ATCTACCGTT	ATACCCTGGC	700
	CGGTACCGAA	GTATCTGCAC	TGCTGGGTCG	TATGCCTTCT	GCGGTAGGTT	750
	ATCAGCCAAC	TCTGGCAGAA	GAGATGGGTG	TTCTTCAGGA	GCGTATTACC	800
	TCCACCAAGA	CCGGTTCTAT	CACCTCCGTA			830

45

50

- 2) INFORMATION FOR SEQ ID NO: 259
- (i) SEOUENCE CHARACTERISTICS:
 - (A) LENGTH: 931 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
- 55 (ii) MOLECULE TYPE: Genomic DNA
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Chryseobacterium meningosepticum
 - (B) STRAIN: CDC B7681

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 259

	TTTCAGGAAG	TAGAGGAACT	ACCAAACATT	TATGACGCAC	TTGAAGTTGT	50
	CAGAGAAGGC	CAGAAAGGTC	TGATCTTAGA	AGTTGAACAA	CACATCGGTG	100
5	AGGATACAGT	GAGATGTATC	GCTATGGATG	CAACAGACGG	ACTTCAAAGA	150
	GGACAATCTG	TAATAGGACA	TGGAAGACAA	ATTACTATGC	CTATTGGTGA	200
	AGAAGTAAAT	GGTAGATTGT	TCAACGTGGT	AGGAGATGCT	ATCGACGGAC	250
	TTCAGGAATT	ATCTAAAGAC	AATGGTTTGC	CAATCCACAG	AGAAGCACCT	300
10	AAATTCGATC	AGTTATCAAC	TTCTGCTGAA	GTACTATATA	CAGGTATCAA	350
	AGTAATCGAC	CTTATCGAGC	CTTATGCAAA	AGGTGGTAAA	ATTGGTTTGT	400
	TCGGTGGTGC	TGGTGTAGGT	AAAACAGTAT	TGATCCAGGA	ATTGATTAAT	450
	AACATTGCTA	AAGGACACGG	TGGTCTTTCT	GTATTCGCAG	GAGTAGGTGA	500
	GAGAACAAGA	GAAGGAAATG	ACCTTCTTCG	TGAGATGTTA	GAGTCTGGTA	550
	TTATTAAATA	TGGTGACGAA	TTCATGCATT	CTATGGAGAA	CGGTGGATGG	600
15	GATCTTTCTA	AAGTTGACAG	TGAGTTGATG	AAAGAGTCTA	AAGCTGCTTT	650
	CGTTTTCGGA	CAGATGAACG	AGCCACCAGG	TGCAAGAGCA	CGTGTAGCCC	700
	TTTCTGGTCT	TACTTTAGCT	GAATACTACC	GTGATGGTGG	CGAAAGCGGA	750
	CAAGGTAGAG	ACGTTCTTTT	CTTCGTAGAC	AACATCTTCC	GTTTTACACA	800
	GGCTGGTTCT	GAGGTGTCTG	CACTTCTAGG	TCGTATGCCT	TCAGCGGTAG	850
20	GTTACCAACC	AACTCTAGCT	TCTGAGATGG	GTGCAATGCA	GGAGAGAATT	900
	ACTTCAACTA	AAAACGGATC	TATTACATCT	G		931

25 2) INFORMATION FOR SEQ ID NO:260

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 726 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: Genomic DNA
- 35 (vi)ORIGINAL SOURCE:
 - (A) ORGANISM: Citrobacter amalonaticus
 - (B) STRAIN: ATCC 25405
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 260

10						
	GTATCGTACG	TACCATCGCA	ATGGGTTCTT	CCGACGGTCT	GCGTCGTGGT	50
	CTGGAAGTCA	AAGACCTCGA	GCACCCGATC	GAAGTCCCGG	TAGGTAAAGC	100
	AACCCTGGGT	CGTATCATGA	ACGTCCTGGG	TCACCCGATC	GACATGAAAG	150
	GCGATATCGG	TGAAGAAGAG			AGCACCGTCC	200
45	TATGAAGAGC	TGTCCAGCTC	TCAGGAACTG	CTGGAAACCG	GTATCAAAGT	250
	TATCGACCTG	ATGTGTCCGT	TCGCGAASGG	CGGTAAAGTG	GGTCTGTTCG	300
	GTGGTGCGGG			TGATGGAGCT	TATCCGTAAC	350
	ATCGCGATCG	AGCACTCCGG			TAGGTGAACG	400
	TACTCGTGAG			AATGACCGAC		450
50	TGGATAAAGT			TGAACGAGCC		500
	CGTCTGCGCG			ATGGCAGAGA	AATTCCGTGA	550
	CGAAGGTCGT	GACGTACTGC			CGTTACACCC	600
	TGGCCGGTAC	GGAAGTTTCC	GCACTGCTGG	GTCGTATGCC	ATCAGCGGTA	650
				GGTGTTCTGC	AGGAACGTAT	700
55	CACTTCTACC	AAAACCGGTT	CTATCA			726

²⁾ INFORMATION FOR SEQ ID NO: 261

30

```
(i) SEQUENCE CHARACTERISTICS:
                LENGTH: 812 bases
           (B)
                TYPE: Nucleic acid
                STRANDEDNESS: Double
           (C)
5
                TOPOLOGY: Linear
          (D)
      (ii) MOLECULE TYPE: Genomic DNA
      (vi)ORIGINAL SOURCE:
                ORGANISM: Citrobacter braakii
10
          (A)
                STRAIN: ATCC 43162
          (B)
      (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 261
15
    GCCGTACCGC GCGTGTACGA TGCTCTTGAG GTTATGAATG GTAAAGAGAG
                                                                  50
    CCTGGTGCTG GAAGTTCAGC AGCAGCTCGG CGGCGGTATC GTACGTACCA
                                                                 100
    TCGCCATGGG TTCTTCCGAC GGTCTGCGTC GTGGTCTGGA AGTTAAAGAT
                                                                 150
    CTCGAGCACC CGATCGAAGT CCCGGTAGGT AAAGCAACTC TGGGTCGTAT
                                                                 200
    CATGAACGTC CTGGGTCACC CGATCGACAT GAAAGGCGAT ATCGGTGAAG
                                                                 250
    AAGAGCGTTG GGCTATCCAC CGCGCGGCAC CTTCCTATGA AGAGCTGTCC
20
                                                                 300
    AGCTCTCAGG AACTGCTGGA AACCGGCATC AAAGTTATCG ACCTGATGTG
                                                                 350
    TCCGTTCGCT AAGGGCGGTA AAGTTGGTCT GTTCGGTGGT GCGGGTGTAG
                                                                 400
    GTAAAACCGT AAACATGATG GAGCTGATCC GTAACATCGC GATCGAACAC
                                                                 450
    TCCGGTTACT CCGTGTTTGC GGGCGTGGGT GAACGTACTC GTGAGGGTAA
                                                                 500
    CGACTTCTAC CACGAAATGA CCGACTCCAA CGTTCTGGAT AAAGTATCCC
25
                                                                 550
    TGGTATATGG CCAGATGAAC GAGCCGCCGG GAAACCGTCT GCGCGTTGCT
                                                                 600
    CTGACCGGTC TGACCATGGC AGAGAAGTTC CGTGACGAAG GTCGTGACGT
                                                                 650
    TCTGCTGTTC GTTGATAACA TCTATCGTTA CACCCTGGCC GGTACAGAAG
                                                                 700
    TATCCGCTCT GCTGGGTCGT ATGCCATCAG CGGTAGGCTA CCAGCCGACC
                                                                 750
30
    CTGGCGGAAG AGATGGGTGT TCTTCAGGAA CGTATCACCT CTACCAAAAC
                                                                 800
    CGGTTCTATC AC
                                                                 812
35
    2) INFORMATION FOR SEO ID NO: 262
       (i) SEQUENCE CHARACTERISTICS:
                LENGTH: 811 bases
          (B)
                TYPE: Nucleic acid
40
          (C)
                STRANDEDNESS: Double
          (D)
                TOPOLOGY: Linear
      (ii) MOLECULE TYPE: Genomic DNA
45
      (vi)ORIGINAL SOURCE:
          (A)
                ORGANISM: Citrobacter koseri
          (B)
                STRAIN: ATCC 27156
      (xi) SEQUENCE DESCRIPTION: SEO ID NO: 262
50
    GCGCGTGTAC GACGCCCTTG AGGTGCAGAA TGGTAATGAA CATCTGGTGC
                                                                  50
    TGGAAGTTCA GCAGCAGCTC GGTGGCGGTA TCGTACGTAC CATCGCCATG
                                                                 100
    GGTTCTTCCG ACGCCTGCG TCGTGGTCTG GATGTGAAAG ACCTTGAGCA
                                                                 150
    CCCGATCGAA GTCCCGGTAG GTAAAGCAAC GCTGGGTCGT ATCATGAACG
                                                                 200
    TACTGGGCGA ACCAGTAGAC ATGAAAGGCG AGATCGGTGA AGAAGAGCGT
55
                                                                 250
    TGGGCTATCC ACCGTGCGGC ACCGTCCTAC GAAGAGTTGT CAAACTCTCA
                                                                 300
    GGAACTGCTG GAAACCGGTA TCAAAGTTAT CGACCTGATG TGCCCGTTCG
                                                                 350
    CGAAGGCCG TAAAGTGGGT CTGTTCGGTG GTGCGGGTGT AGGTAAAACC
                                                                 400
    GTAAACATGA TGGAGCTGAT CCGTAACATC GCGATCGAAC ACTCCGGTTA
                                                                 450
```

500

CTCCGTGTTT GCGGGCGTAG GTGAACGTAC TCGTGAGGGT AACGACTTCT

GGCCAGATGA CCTGACCATG TCGTCGACAA CTGCTGGGTC	GACCGACTCC ACGAGCCGCC GCGGAGAAAT CATCTACCGT GTATGCCTTC GTTTTGCAGG	GGGAAACCGT TCCGTGACGA TACACCCTGG AGCGGTAGGT	CTGCGCGTTG AGGTCGTGAC CCGGTACGGA TACCAGCCGA	CGCTGACCGG GTTCTGCTGT AGTATCCGCA CCCTGGCGGA	550 600 650 700 750
TCACCTCCGT		AACGIAICAC	CICCACCAAA	ACCGGTTCTA	800 811

10

5

- 2) INFORMATION FOR SEQ ID NO: 263
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 816 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: Genomic DNA

20

15

- (vi)ORIGINAL SOURCE:
 - (A) ORGANISM: Citrobacter farmeri
 - (B) STRAIN: ATCC 51112
- 25 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 263

	GATGCCGTAC	CGCGCGTGTA	CGATGCTCTT	GAGGTTATGA	ATGGTAAAGA	50
	GAGTCTGGTG	CTGGAAGTTC	AGCAGCAGCT	CGGCGGCGGT	ATCGTACGTA	100
	CCATCGCGAT	GGGTTCTTCC	GACGGTCTGC	GTCGTGGTCT	GGAAGTAAAA	150
30	GACCTCGAAC	ACCCGATCGA	AGTCCCGGTA	GGTAAAGCAA	CTCTGGGTCG	200
	TATCATGAAC	GTCCTGGGTC	ACCCGATCGA	CATGAAAGGC	GATATCGGTG	250
	AAGAAGAGCG	TTGGGCTATC	CACCGCGCAG	CGCCATCCTA	TGAAGAGCTG	300
	TCCAGCTCTC	AGGAACTGCT	GGAAACCGGT	ATCAAAGTTA	TCGACCTGAT	350
	GTGTCCGTTT	GCGAAGGGCG	GTAAAGTCGG	TCTGTTCGGT	GGTGCGGGTG	400
35	TAGGTAAAAC	CGTAAACATG	ATGGAACTCA	TCCGTAACAT	CGCGATCGAG	450
	CACTCCGGTT	ACTCCGTGTT	TGCGGGCGTA	GGTGAACGTA	CTCGTGAGGG	500
	TAACGACTTC	TACCACGAAA	TGACCGATTC	CAACGTTCTG	GATAAAGTAT	550
	CCCTGGTATA	TGGCCAGATG	AACGAGCCGC	CGGGAAACCG	TCTGCGCGTT	600
	GCGCTGACCG	GTCTGACCAT	GGCAGAGAAA	TTCCGTGACG	AAGGTCGTGA	650
40	CGTACTGCTG	TTCGTCGATA	ACATCTATCG	TTACACCCTG	GCCGGTACGG	700
	AAGTATCCGC	ACTGCTGGGC	CGTATGCCAT	CAGCGGTAGG	CTACCAGCCA	750
	ACCCTGGCGG	AAGAGATGGG	TGTTCTGCAG	GAACGTATCA	CTTCTACCAA	800
	AACCGGTTCT	ATTACC				816

45

50

- 2) INFORMATION FOR SEQ ID NO: 264
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 819 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
- 55 (ii) MOLECULE TYPE: Genomic DNA
 - (vi)ORIGINAL SOURCE:
 - (A) ORGANISM: Citrobacter freundii
 - (B) STRAIN: ATCC 8090

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 264

	AGGATGCCGT	ACCGCGCGTG	TACGATGCTC	TTGAGGTTAT	GAATGGTAAA	50
	GAGAGCCTGG	TGCTGGAAGT	TCAGCAGCAG	CTCGGCGGCG	GTATCGTACG	100
5	TACCATCGCC	ATGGGTTCTT	CTGACGGTCT	GCGTCGTGGT	CTGGAAGTTA	150
	AAGACCTCGA	GCACCCGATC	GAAGTCCCGG	TAGGTAAAGC	·	200
	CGTATCATGA	ACGTTCTGGG	TCACCCGATC	GACATGAAAG	GCGATATCGG	250
	TGAAGAAGAG	CGTTGGGCTA	TCCACCGTGC	AGCACCTTCC	TACGAAGAGC	300
	TGTCAAGCTC	TCAGGAACTG	CTGGAAACCG	GTATCAAAGT	TATCGACCTG	350
10	ATGTGTCCGT	TCGCTAAGGG	CGGTAAAGTT	GGTCTGTTCG	GTGGTGCGGG	400
	TGTAGGTAAA	ACCGTAAACA	TGATGGAGCT	GATCCGTAAC	ATCGCGATCG	450
	AACACTCCGG	TTACTCCGTG	TTTGCGGGCG	TAGGTGAACG	TACTCGTGAG	500
	GGTAACGACT	TCTACCACGA	AATGACCGAC	TCCAACGTTC	TGGACAAAGT	550
	ATCCCTGGTA	TATGGCCAGA	TGAACGAGCC	GCCTGGAAAC	CGTCTGCGTG	600
15	TTGCGCTGAC	CGGTCTGACC	ATGGCTGAGA	AGTTCCGTGA	CGAAGGTCGT	650
	GACGTTCTGC	TGTTCGTTGA	TAACATCTAT	CGTTACACCC	TGGCCGGTAC	700
	AGAAGTATCT	GCACTGCTGG	GTCGTATGCC	ATCAGCGGTA	GGCTACCAGC	750
	CGACCCTGGC	GGAAGAGATG	GGTGTTCTGC	AGGAACGTAT	CACCTCCACC	800
	AAAACCGGTT	CTATCACCT				819
20						

2) INFORMATION FOR SEQ ID NO: 265

- 25 (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 822 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear

(ii) MOLECULE TYPE: Genomic DNA

- (vi)ORIGINAL SOURCE:
 - (A) ORGANISM: Citrobacter koseri
- 35 (B) STRAIN: ATCC 27028
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 265

	GATGCCGTAC	CGCGCGTGTA	CGACGCCCTT	GAGGTGCAGA	ATGGTAATGA	50
40	ACATCTGGTG	CTGGAAGTTC	AGCAGCAGCT			100
	CCATCGCCAT	GGGTTCTTCC	GACGGCCTGC	GTCGTGGTCT		150
	GACCTTGAGC	ACCCGATCGA	AGTCCCGGTA	GGTAAAGCAA	CGCTGGGTCG	200
	TATCATGAAC	GTACTGGGCG	AACCAGTAGA	CATGAAAGGC	GAGATCGGTG	250
	AAGAAGAGCG	TTGGGCTATC	CACCGTGCGG	CACCGTCCTA	CGAAGAGTTG	300
45	TCAAACTCTC	AGGAACTGTT	GGAAACCGGT	ATCAAAGTTA	TCGACCTGAT	350
	GTGTCCGTTC	GCGAAGGGCG	GTAAAGTGGG	TCTGTTCGGT	GGTGCGGGTG	400
	TAGGTAAAAC	CGTAAACATG	ATGGAGCTGA	TCCGTAACAT	CGCGATCGAA	450
	CACTCCGGTT	ACTCCGTGTT	TGCGGGCGTA	GGTGAACGTA	CTCGTGAGGG	500
	TAACGACTTC	TACCACGAAA	TGACCGACTC	CAACGTTATC	GACAAAGTAT	550
50	CCTTGGTTTA	CGGCCAGATG	AACGAGCCGC	CGGGAAACCG	TCTGCGCGTT	600
	GCGCTGACCG	GCCTGACCAT		TTCCGTGACG	AAGGTCGTGA	650
	CGTTCTGCTG	TTCGTCGACA	ACATCTACCG	TTACACCCTG	GCCGGTACGG	700
	AAGTATCCGC	ACTGCTGGGT		CAGCGGTAGG	TTACCAGCCG	750
	ACCCTGGCGG	AAGAGATGGG	TGTTTTGCAG	GAACGTATCA	CCTCCACCAA	800
55	AACCGGTTCT	ATCACCTCCG	TA			822

²⁾ INFORMATION FOR SEQ ID NO: 266

```
(i) SEQUENCE CHARACTERISTICS:
           (A)
                LENGTH: 820 bases
           (B)
                TYPE: Nucleic acid
           (C)
                STRANDEDNESS: Double
 5
           (D)
                TOPOLOGY: Linear
      (ii) MOLECULE TYPE: Genomic DNA
      (vi)ORIGINAL SOURCE:
10
                ORGANISM: Citrobacter sedlakii
           (A)
                STRAIN: ATCC 51115
           (B)
      (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 266
15
    GATGCCGTAC CGCGCGTGTA CGACGCCCTT GAGGTACAGA ATGGTAATGA
                                                                  50
    GCGTCTGGTG CTGGAAGTTC AGCAGCAGCT CGGTGGCGGT ATTGTACGTA
                                                                 100
    CCATCGCCAT GGGTTCTTCC GACGGTCTGC GTCGTGGTCT GGAAGTAAAA
                                                                 150
    GACCTTGAGC ACCCGATCGA AGTCCCGGTA GGTAAAGCAA CGCTGGGTCG
                                                                 200
    TATCATGAAC GTACTGGGCG AACCAGTAGA CATGAAAGGC GACATCGGTG
                                                                 250
    AAGAAGAGCG TTGGGCTATC CACCGTGCCG CGCCGTCCTA TGAAGAGTTG
20
                                                                 300
    TCTAACTCTC AGGAACTGCT GGAAACCGGC ATCAAAGTTA TCGACCTGAT
                                                                 350
    GTGTCCGTTC GCGAAGGCCG GTAAAGTCGG TCTGTTCGGT GGTGCGGGCG
                                                                 400
    TAGGTAAAAC CGTAAACATG ATGGAGCTGA TCCGTAACAT CGCGATCGAG
                                                                 450
    CACTCCGGTT ACTCTGTGTT TGCGGGCGTG GGTGAACGTA CTCGTGAGGG
                                                                 500
    TAACGACTTC TACCACGAAA TGACCGACTC CAACGTTATC GACAAAGTAT
                                                                 550
    CCCTGGTGTA CGGCCAGATG AACGAGCCGC CTGGAAACCG TCTGCGCGTC
                                                                 600
    GCACTGACCG GTCTGACCAT GGCTGAGAAG TTCCGTGACG AAGGTCGTGA
                                                                 650
    CGTTCTGCTG TTCGTCGATA ACATCTATCG TTACACCCTG GCCGGTACGG
                                                                 700
    AAGTATCCGC ACTGCTGGGT CGTATGCCTT CAGCGGTAGG TTATCAGCCG
                                                                 750
30
    ACTCTGGCGG AAGAGATGGG TGTTCTGCAG GAACGTATCA CCTCAACCAA
                                                                 800
    AACCGGTTCT ATCACCTCCG
                                                                 820
35
    2) INFORMATION FOR SEQ ID NO: 267
       (i) SEQUENCE CHARACTERISTICS:
          (A)
                LENGTH: 806 bases
          (B)
                TYPE: Nucleic acid
40
          (C)
                STRANDEDNESS: Double
          (D)
                TOPOLOGY: Linear
      (ii) MOLECULE TYPE: Genomic DNA
45
      (vi) ORIGINAL SOURCE:
                ORGANISM: Citrobacter werkmanii
          (A)
          (B)
                STRAIN: ATCC 51114
      (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 267
50
    GCCGTACCGC GCGTGTACGA TGCTCTTGAG GTTATGAATG GTAAAGAGAG
                                                                  50
    CCTGGTGCTG GAAGTTCAGC AGCAGCTCGG CGGCGGTATC GTACGTACCA
                                                                 100
    TCGCCATGGG TTCTTCCGAC GGTCTGCGTC GTGGTCTGGA AGTTAAAGAC
                                                                 150
    CTTGAGCACC CGATCGAAGT CCCGGTAGGT AAAGCAACCC TGGGTCGTAT
                                                                 200
    CATGAACGTC CTGGGTCATC CGATCGACAT GAAAGGCGAT ATCGGTGAAG
                                                                 250
    AAGAGCGTTG GGCTATCCAC CGCGCAGCAC CTACCTATGA AGAACTGTCC
                                                                 300
    AGTTCTCAGG AACTGCTGGA AACCGGCATC AAAGTTATCG ACCTGATGTG
                                                                 350
    TCCGTTCGCG AAGGGCGGTA AAGTTGGTCT GTTCGGTGGT GCGGGTGTAG
                                                                 400
    GTAAAACCGT AAACATGATG GAGCTGATCC GTAACATCGC GATCGAACAC
                                                                 450
```

500

TCCGGTTACT CAGTGTTTGC GGGCGTTGGT GAACGTACTC GTGAGGGTAA

WO 01/23604			PCT/CA0	0/01150
TGGTATATGG	GAGCCGCCGG	GAAACCGTCT	AAAGTATCCC GCGCGTTGCG	550 600

00 CTGACCGGTC TGACCATGGC TGAGAAGTTC CGTGACGAAG GTCGTGACGT 650 TCTGCTGTTC GTTGATAACA TCTATCGTTA CACCCTGGCC GGTACTGAAG 700 TATCTGCACT GCTGGGTCGT ATGCCATCAG CGGTAGGCTA CCAGCCAACC 750 CTGGCGGAAG AGATGGGTGT TCTGCAGGAA CGTATCACCT CTACCAAAAC 800 CGGTTC

806

10

15

- 2) INFORMATION FOR SEQ ID NO: 268
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 810 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: Genomic DNA

20

- (vi)ORIGINAL SOURCE:
 - ORGANISM: Citrobacter youngae (A)
 - (B) STRAIN: ATCC 29935
- 25 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 268

	GCCGTACCGC	GCGTGTACGA	TGCTCTTGAG	GTTATGAATG	GTAAAGAGAG	50
	CCTGGTGCTG	GAAGTTCAGC	AGCAGCTCGG	CGGCGGTATC	GTACGTACCA	100
	TCGCCATGGG	TTCTTCCGAC	GGTCTGCGTC	GTGGTCTGGA	AGTTAAAGAC	150
30	CTCGAGCACC	CGATCGAAGT	CCCGGTAGGT	AAAGCAACGC	TGGGTCGTAT	200
	CATGAACGTT	CTGGGTCACC	CGATCGACAT	GAAAGGCGAT	ATCGGAGAAG	250
	AAGAGCGTTG	GGCTATTCAC	CGCGCAGCAC	CTTCCTATGA	AGAGCTGTCC	300
	AGCTCTCAGG	AACTGCTGGA	AACCGGCATC	AAAGTTATCG	ACCTGATGTG	350
	TCCGTTCGCT	AAGGGCGGTA	AAGTTGGTCT	GTTCGGTGGT	GCGGGTGTAG	400
35	GTAAAACCGT	AAACATGATG	GAGCTTATTC	GTAACATCGC	GATCGAGCAC	450
	TCCGGTTACT	CTGTGTTTGC	GGGTGTAGGT	GAACGTACTC	GTGAGGGTAA	500
	CGACTTCTAC	CACGAAATGA	CCGATTCCAA	CGTTCTGGAT	AAAGTATCCC	550
	TGGTTTATGG	CCAGATGAAC	GAGCCGCCGG	GAAACCGTCT	GCGCGTTGCG	600
	CTGACCGGTC	TGACCATGGC	TGAGAAATTC	CGTGACGAAG	GTCGTGACGT	650
1 0	ACTGCTGTTC	GTCGATAACA	TCTATCGTTA	TACCCTGGCC	GGTACGGAAG	700
	TATCCGCACT	GCTGGGTCGT	ATGCCATCAG	CGGTAGGTTA	CCAGCCGACC	750
	CTGGCGGAAG	AGATGGGTGT	TCTGCAGGAA	CGTATCACTT	CTACCAAAAC	800
	CGGTTCTATC					810

£5

50

- 2) INFORMATION FOR SEQ ID NO: 269
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 827 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
- 55 (ii) MOLECULE TYPE: Genomic DNA
 - (vi) ORIGINAL SOURCE:
 - ORGANISM: Clostridium innocuum (A)
 - (B) STRAIN: ATCC 14501

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 269

	TTGAGAACGG	AGATTTGCCG	CAGCTATTGA	CCGCTATTGA	AATTCCTCTG	50
				GCTCAGCATA		
	AAAGACAGTG	AATCTCTGAT	TGTCGAAGTT		TCGGTGATGA	100
5	ACGTGTCCGC	TGTATCGCTA	TGGGCGGTAC	AGATGGTCTG	GTTCGTGGAA	150
	TGGAAGCCAT	TGATACAGGA	TCCGCAATCC	GTGTACCGGT	GGGAAAAGAA	200
	ATTCTGGGAA	GAATGTTCAA	TGTCCTCGGA	CGTGAAATTG	ATGGTCTGGG	250
	ACCTGTAGGA	ACGGATAACA	CACTGCCGAT	CCACAGACAG	GCACCGGGCT	300
	TTGAGGAGCA	GCAGACATCC	GCAGAAATGC	TGGAAACAGG	AATTAAGGTC	350
10	ATTGACCTGT	TATGTCCATA	TTCCAAGGGT	GGTAAGATTG	GTTTGTTTGG	400
	TGGTGCGGGA	GTAGGTAAAA	CCGTACTGAT	TCAGGAGCTG	ATTCATAATA	450
	TCGCCAAGGA	ACATGGTGGA	ATGTCCGTCG	TTACCGGTGT	AGGGGAGAGA	500
	ACCCGTGAAG	GAAACGACAT	GTATCATGAA	ATGAAGGACA	GCGGTGTCCT	550
	TGATAAGACC	GTACTGGTTT	ACGGACAGAT	GAATGAATCA	CCGGGTGCCA	600
15	GAATGCGTGT	CGGTCTGACC	GGGCTGACGA	TGGCGGAATA	TTTCCGTGAT	650
	CACGACCATC	AGGATGTATT	GCTGTTTATT	GATAATATTT	TCCGTTTTAC	700
	CCAGGCGGGA	AGTGAAGTAA	GTGCCCTGCT	GGGACGTATG	CCAAGTGCAG	750
	TAGGCTATCA	GCCGACACTT	GCGACAGAAA	TGGGACAGCT	GCAGGAGCGC	800
	ATTACATCCA	CGAAGGATGG	TTCCATT			827
20			•			

2) INFORMATION FOR SEQ ID NO: 270

- 25 (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 829 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear

- (ii) MOLECULE TYPE: Genomic DNA
- (vi)ORIGINAL SOURCE:
 - (A) ORGANISM: Clostridium perfringens
- 35 (B) STRAIN: ATCC 13124
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 270

	GCAAATGATG	AACTTCCTAA	TATATTTAAT	GCAATACACA	TAAAAATGGA	50
40	CGATGGAAAA	ATCTTAGTTT	GTGAGGTAGA	GCAACACGTA	GGAGACGATA	100
	TAGTTAGAAC	TATAGCTATG	GAAGCTACTG	AAGGACTAAG	AAGAGGTGTA	150
	GAAGCTGTTG	ATACAGGAGC	ACCTATATCA	GTACCAGTTG	GTGAATGCGT	200
	ATTAGGAAGA	ATATTTAACG	TATTAGGTAA	ACCACTAGAT	AGTGGAGCTG	250
	AAGTTAATAA	CGAAGAAAAA	TATCCAATTC	ATAGACCAGC	TCCATCATTT	300
45	GAAGAACAAT	CAGTTGTTCC	TCAAATGTTT	GAGACAGGAA	TAAAGGTTAT	350
	CGACCTTTTA	GCACCTTACC	AAAGAGGGGG	AAAAATCGGT	CTATTTGGAG	400
	GTGCAGGTGT	TGGTAAAACA	GTTCTTATCC	AAGAGCTTAT	AAACAACATA	450
	GCTAAAGAGC	ACGGTGGACT	TTCTGTATTC	ACAGGAGTTG	GAGAAAGATC	500
	AAGAGAAGGT	AATGACCTTT	ACTATGAAAT	GATGGAATCA	GGAGTTATAA	550
50	AAAATACAGC	ATTAGTATTT	GGACAAATGA	ACGAACCACC	TGGAGCAAGA	600
	ATGAGAGTTG	CTTTAACAGG	ACTTACTATG	GCTGAGTACT	TCAGAGACCA	650
	AGGTCAAGAC	GTGTTATTAT	TCATAGATAA	CATATTCAGA	TTCTCACAAG	700
	CTGGATCAGA	GGTTTCAGCT	TTATTAGGAA	GAATACCATC	AGCTGTTGGT	750
	TACCAACCAA	CTCTTGCTAC	AGAGATGGGA	GCTCTTCAAG	AGAGAATCAC	800
55	ATCAACTACC	CATGGATCAA	TTACATCAG			829

²⁾ INFORMATION FOR SEQ ID NO: 271

```
(i) SEQUENCE CHARACTERISTICS:
                 LENGTH: 22 bases
                 TYPE: Nucleic acid
           (B)
           (C)
                 STRANDEDNESS: Double
 5
           (D)
                 TOPOLOGY: Linear
       (ii) MOLECULE TYPE: Genomic DNA
       (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 271
10
     TTGTCCACGT TGGATRTCTT CA
15
    2) INFORMATION FOR SEQ ID NO: 272
        (i) SEQUENCE CHARACTERISTICS:
           (A)
                 LENGTH: 818 bases
           (B)
                 TYPE: Nucleic acid
20
           (C)
                 STRANDEDNESS: Double
                 TOPOLOGY: Linear
       (ii) MOLECULE TYPE: Genomic DNA
25
       (vi)ORIGINAL SOURCE:
                ORGANISM: Corynebacterium diphtheriae
           (A)
           (B)
                 STRAIN: ATCC 27010
       (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 272
30
    CCCGCGTGGC GAGCTGCCGG CACTGTACAA CGCGTTGACT GTCGAGGTCA
                                                                   50
    CCCTCGAGGC AGTCGCTAAG ACCATTACCC TTGAGGTTGC CCAGCACTTG
                                                                  100
    GGCGACAACC TCGTTCGCGC CGTGTCCATG GCCCCTACCG ACGGCCTCGT
                                                                  150
    CCGTGGTGCT GTTGTGACCG ACTCGGGCAA GCCAATCTCC GTGCCAGTTG
                                                                  200
    GCGACGTTGT TAAAGGCCAC GTTTTCAACG CACTGGGCGA TTGCTTGGAT
35
                                                                  250
    GAGCCAGGTC TCGGCCGCGA TGGTGAGCAG TGGGGAATTC ACCGCGATCC
                                                                  300
    ACCACCATTC GATCAGCTCG AAGGTAAGAC CGAAATCCTC GAGACCGGTA
                                                                  350
    TTAAGGTCAT CGACTTGCTC ACCCCTTACG TTAAGGGCGG CAAGATTGGT
                                                                  400
    CTGTTCGGTG GTGCAGGTGT GGGTAAGACC GTGCTCATCC AGGAGATGAT
                                                                  450
    CACTCGTATT GCTCGCGAGT TCTCCGGTAC CTCCGTCTTC GCTGGCGTTG
                                                                  500
    GTGAGCGTAC CCGTGAGGGC ACCGACCTCT TCCTCGAAAT GGAAGAAATG
                                                                  550
    GGCGTTCTTC AGGACACCGC TCTCGTGTTC GGCCAGATGG ACGAGCCACC
                                                                  600
    AGGAGTCCGT ATGCGCGTTG CTCTGTCCGG TCTGACCATG GCGGAGTACT
                                                                  650
    TCCGCGATGT TCAGCACCAG GACGTGCTTC TGTTCATCGA TAACATTTTC
                                                                  700
45
    CGTTTCACCC AGGCCGGTTC CGAGGTTTCG ACCCTTCTTG GTCGTATGCC
                                                                  750
    TTCCGCCGTG GGTTACCAGC CAACCTTGGC TGACGAGATG GGTGTTCTCC
                                                                  800
    AGGAGCGTAT TACCTCTA
                                                                  818
50
    2) INFORMATION FOR SEQ ID NO: 273
        (i) SEQUENCE CHARACTERISTICS:
           (A)
                LENGTH: 833 bases
55
           (B)
                TYPE: Nucleic acid
           (C)
                STRANDEDNESS: Double
           (D)
                TOPOLOGY: Linear
      (ii) MOLECULE TYPE: Genomic DNA
б0
```

(vi)ORIGINAL SOURCE:

- (A) ORGANISM: Corynebacterium pseudodiphtheriticum
- (B) STRAIN: ATCC 10700
- 5 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 273

	CGATGCCTGC	TCTGTACAAC	GCGCTGACTG	TCGAGGTCAC	CCTCGAGGCA	50
	GTCGCCAAGA	CCATCACGCT	TGAGGTTGCA	CAGCACCTCG	GCGATAACCT	100
	GATCCGGACC	ATTGCGTTGG	CACCTACGGA	CGGTCTCGTC	CGTGGCGCTG	150
10	AGGTTATCGA	CACTGGTAAG	CCAATTACTG	TTCCCGTCGG	CGATGCCGTC	200
	AAAGGACACG	TCTTCAATGC	GCTCGGTGAG	TGTTTGGACG	AACCAGGATT	250
	GGGCCGCGAC	GGCGAACAGT	GGGGAATCCA	CCGCGATCCG	CCACCATTCG	300
	ATGCGCTGGA	GGGCAAAACC	GAGATTCTGG	AGACTGGAAT	CAAGGTTATC	350
	GACCTCCTTA	CCCCTTACGT	TAAGGGTGGC	AAAATTGGTC	TGTTCGGTGG	400
15	CGCCGGCGTC	GGCAAGACCG	TTCTTATCCA	GGAAATGATC	ACTCGTATCG	450
	CTCGTAACTT	CTCCGGTACT	TCCGTGTTCG	CCGGCGTCGG	TGAGCGTACC	500
	CGTGAGGGTA	CTGACCTGTT	CCTGGAAATG	GAAGAGATGG	GCGTGTTGCA	550
	AGACACCGCC	CTTGTCTTCG	GTCAAATGGA	CGAACCACCA	GGGGTTCGTA	600
	TGCGCGTGGC	CTTGTCTGGT	CTAACCATGG	CTGAATATTT	CCGCGACGTT	650
20	CAAAACCAGG	ACGTTTTGTT	GTTCATTGAC	AACATCTTCC	GTTTTACTCA	700
	GGCAGGTTCC	GAGGTTTCCA	CGCTGTTGGG	CCGTATGCCT	TCCGCCGTGG	7 50
	GTTATCAGCC	AACATTGGCT	GATGAGATGG	GTGTTTTGCA	GGAACGGATT	800
	ACCTCTACAC	GTGGTAAGTC	AATTACTTCC	CTG		833

25

30

- 2) INFORMATION FOR SEQ ID NO: 274
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 417 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
- 35 (ii) MOLECULE TYPE: Genomic DNA
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Corynebacterium ulcerans
 - (B) STRAIN: NCTC 8665

10

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 274

	CCGTGCTCAT	CCAGGAGATG	ATCACCCGTG	TGGCCCGCAA	CTTCGGCGGC	50
				ACCCGTGAGG		100
1 5	CTGGGTCGAG	ATGGACGAGG	CCGACGTGCT	CAAGGACACC	GCCCTGGTGT	150
				GTCTGCGCGT		200
				GTGCAGAACC		250
	GCTGTTCATC	GACAACATCT	TCCGCTTCTC	CCAGGCCGGC	TCCGAGGTCT	300
	CCACCCTGCT	GGGCCGCATG	CCCTCCGCGG	TGGGCTACCA	GCCGAACCTG	350
50	GCGGACGAGA	TGGGTGTGCT	GCAGGAGCGC	ATCACCTCGA	CTCGCGGCCA	400
	CTCCATCACC	TCGATGC				417

- 55 2) INFORMATION FOR SEQ ID NO: 275
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 835 bases
 - (B) TYPE: Nucleic acid
- 50 (C) STRANDEDNESS: Double

(D) TOPOLOGY: Linear

(ii) MOLECULE TYPE: Genomic DNA

5 (vi)ORIGINAL SOURCE:

10

35

40

- (A) ORGANISM: Corynebacterium urealyticum
- (B) STRAIN: ATCC 43042
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 275

	GGGCAGCAGC	CAGCACTATT	CAACGCGCTG	CACGTCGAGG	TTGACCTCGA	50
	GGCAGTTGCG	AAGACCATTA	CCCTGGAGGT	CGCACAGCAC	CTGGGTGACA	100
	ACCTGGTGCG	CACCGTCTCC	ATGGCCCCGA	CCGACGGCCT	GGTCCGCGGT	150
	GCAGAGGTCA	AGGACACCGG	TAAGCCGATC	TCTGTGCCAG	TCGGCGATGT	200
15	TGTCAAGGGG	CACGTCTTCA	ACGCCCTGGG	CGACTGCCTG	GATGAGCCAG	250
	GTCTCGGCCG	CGACGGCGAG	CAGTGGGGCA	TCCACCGCGA	GCCACCGGCA	300
	TTCGACGAGC	TCGAGGGTAA	GACCGAGATC	CTGGAGACCG	GCGTTAAGGT	350
	CATCGACCTG	CTGACCCCTT	ACGTCAAGGG	CGGCAAGATT	GGCCTCTTCG	400
	GTGGTGCAGG	TGTGGGTAAG	ACCGTCCTGA	TTCAGGAGAT	GATTACCCGT	450
20	ATCGCCCGCG	AGTTCTCCGG	TACCTCCGTG	TTCGCCGGCG	TCGGCGAGCG	500
	TACCCGTGAG	GGTACGGACC	TCTTCCTCGA	GATGGAGGAG	ATGGGCGTGC	550
	TCCAGGACAC	CGCGCTGGTG	TTCGGTCAGA	TGGATGAGCC	GCCGGGAGTC	600
	CGTATGCGCG	TGGCTCTGTC	CGGTCTGACC	ATGGCGGAGT	ACTTCCGCGA	650
	TGTTCAGGGC	CAGGACGTGC	TGCTGTTCAT	CGACAACATC	TTCCGTTTCA	700
25	CCCAGGCAGG	TTCTGAGGTC	TCCACGCTGC	TCGGCCGCAT	GCCGTCCGCA	750
	GTGGGTTACC	AGCCGACCCT	GGCTGACGAG	ATGGGTGTTC	TGCAGGAGCG	800
	CATTACCTCC	ACGAAGGGTA	AGTCCATTAC	CTCCC	•	835

30 2) INFORMATION FOR SEQ ID NO: 276

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 818 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: Genomic DNA

(vi)ORIGINAL SOURCE:

- (A) ORGANISM: Coxiella burnetii
- (B) STRAIN: Nine Mile phase II
- 45 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 276

בכבביים בכב ייביים בכבי	3 3 CMCM3 CC3 mc	COMPROSI COM	~~	
CCCGTCACGC TGTCCCGA				50
AATTTAACGC TCGAAGTC	CA ACAGCAACTC	GGGGACGGTG	TCGTGCGCAC	100
AATTGCCATG GGCAGCAC		ACGCGATATC	GCCGTAAAAA	150
50 ATACGGAAAA ACCGATTO	AA GTTCCCGTAG	GAAAAGAAAC	TTTAGGTCGT	200
ATCATGAACG TGCTGGGT	GA GCCGATCGAT	GAGTTAGGTC	CCATTAATTC	250
AAAAGAAAAA CTCCCTAI	TC ATCGTCCTGC	GCCGAGCTTT	ATTGAGCAAT	300
CTGGCGCTAC CGAATTAI	TA GAAACCGGTA	TTAAAGTGGT	CGATTTGCTT	350
TGCCCCTTTG CTAAGGGA	GG CAAAGTGGGT	CTTTTTGGAG	GCGCGGGCGT	400
55 TGGAAAAACG GTTAATAT	GA TGGAATTAAT	CCGTAATATC	GCCATTGAAC	450
ACAGCGGTTA TTCTGTTT		GAGAAAGAAC		500
AATGATTTT ATCATGAA		AATGTCTTGG		550
GTTGGTGTAC GGACAAAT	GA ACGAGCCGCC	AGGGAACCGC	TTGCGGGTGG	600
GTTTGACGGG GCTTACGC		TCCGTGACGA		650
50 GTTCTGTTAT TTATCGAT		TACACTTTGG		700

	WO 01/23604	PCT/CA00/01150	
	AGTCTCTGCC CTCCTCGGTC GGATGCCATC GGCTGTGGGT TATCA CGTTGGCCGA AGAGATGGGG GCCCTGCAAG AACGCATTAC TTCCA AAAGGGTCCA TTACGTCG	ACTAAA 8	50 00 18
5			
	2) INFORMATION FOR SEQ ID NO: 277		
10	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 829 bases(B) TYPE: Nucleic acid(C) STRANDEDNESS: Double(D) TOPOLOGY: Linear		
15	(ii) MOLECULE TYPE: Genomic DNA		
	<pre>(vi)ORIGINAL SOURCE: (A) ORGANISM: Edwardsiella hoshinae (B) STRAIN: ATCC 33379</pre>		
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 277		
25	TTCCCGCAGG ACGCCGTGCC GAAGGTGTAT AACGCACTGG AAGTA CGGTGCCACG AAACTGGTAC TGGAAGTGCA GCAGCAGCTG GGTGG TAGTTCGCTG CATCGCGATG GGCTCTTCCG ACGGTCTGCG CCGTG GAGGTTGAAG ACCAAGACCA TCCGATCGAG GTTCCTGTTG GCAAG TCTGGGCCGT ATCATGAACG TACTGGGTGA TCCGGTCGAC ATGAA	GCGGCG 10 GGCTA 19 GGCGAC 20	50 00 50 00
30	AGATCGGTGA AGAAGAGCGT TGGGCTATCC ATCGTGCTGC ACCGA GAAGATCTGT CTAACTCTCA GGAACTGCTG GAGACCGGCA TTAAC CGACCTGATT TGCCCGTTCG CTAAAGGCGG TAAAGTGGGC CTGTT GGGCCGGTGT GGGTAAGACC GTTAACATGA TGGAGCTTAT CCGTA GCTATCGAGC ACTCCGGTTA CTCAGTCTTC GCCGGTGTGG GTGAG	AGCTAT 36 EGTTAT 35 ECGGTG 46 AACATC 45	50 50 50 50 50
35	CCGTGAGGGT AACGACTTCT ACCACGAGAT GACCGATTCC AACGT ATAAAGTTTC TCTGGTGTAT GGTCAGATGA ACGAGCCACC GGGAA CTGCGCGTGG CGCTGACCGG TCTGACCATG GCGGAGAAAT TCCGT AGGTCGTGAT GTACTGTTGT TCATCGATAA CATCTACCGT TATAC CCGGTACTGA AGTCTCCGCT CTGCTGGGCC GTATGCCGTC GGCGG TATCAGCCGA CTCTGGCGGA GGAAATGGGG GTGCTGCAAG AGCGT	AACCGT 60 FGATGA 69 CCTTGG 70 GTAGGT 79	50 00 50 00 50
40	CTCCACTAAG ACCGGGTCCA TCACCTCTG		29
	2) INFORMATION FOR SEQ ID NO: 278		
45	(i)SEQUENCE CHARACTERISTICS: (A) LENGTH: 809 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double		
50	(D) TOPOLOGY: Linear		
	(ii) MOLECULE TYPE: Genomic DNA		
55	<pre>(vi)ORIGINAL SOURCE: (A) ORGANISM: Edwardsiella tarda (B) STRAIN: ATCC 15947</pre>		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 278		

166

50

100

GCCGTGCCGA AGGTGTATAA CGCACTGGAA GTAAAAGGCG GTGCCACGAA

ACTGGTACTG GAAGTGCAGC AGCAGCTGGG TGGCGGCGTC GTTCGCTGCA

PCT/CA00/01150 WO 01/23604

```
TCGCGATGGG CTCCTCCGAC GGTCTGCGCC GTGGGCTGGT GGTTGAAGAC
                                                                150
    CAAGACCATC CGATCGAGGT TCCGGTCGGT AAGGCGACCC TGGGCCGTAT
                                                                200
    CATGAACGTA CTGGGTGATC CGGTCGACAT GAAGGGCGAG ATCGGCGAAG
    AAGAGCGTTG GGCTATCCAC CGCGCGGCGC CGAGCTATGA AGATCTGTCC
                                                                300
    AACTCTCAGG AGCTGCTGGA GACCGGCATC AAGGTTATCG ACCTGATTTG
                                                                350
    CCCGTTCGCC AAAGGCGGTA AAGTTGGCCT GTTCGGTGGT GCCGGTGTGG
                                                                400
    GTAAGACCGT TAACATGATG GAGCTTATCC GTAACATCGC TATCGAGCAC
                                                                450
    TCCGGTTACT CCGTATTTGC CGGTGTAGGC GAGCGTACCC GTGAGGGTAA
                                                                500
    CGACTTCTAC CACGAGATGA CCGACTCCAA CGTATTGGAT AAAGTTTCTC
                                                                550
    TGGTATACGG CCAGATGAAT GAGCCGCCGG GAAACCGTCT GCGTGTGGCG
10
                                                                600
    TTGACCGGTC TGACCATGGC GGAGAAATTC CGTGATGAAG GTCGCGATGT
                                                                650
    GTTGTTGTTC ATCGATAACA TTTATCGTTA TACCTTGGCT GGTACCGAAG
                                                                700
    TTTCTGCTCT GCTGGGTCGT ATGCCGTCGG CGGTAGGTTA TCAGCCGACC
                                                                750
    CTGGCGGAAG AGATGGGTGT GTTGCAAGAG CGTATCACCT CAACGAAGAC
                                                                800
15
    GGGCTCTAT
                                                                809
```

2) INFORMATION FOR SEQ ID NO: 279

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 840 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
- 25 (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: Genomic DNA
 - (vi)ORIGINAL SOURCE:
- 30 (A) ORGANISM: Eikenella corrodens
 - (B) STRAIN: ATCC 23834
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 279

35	TTTCCGCGTA	CCGCCATTCC	GCGTGTTTAC	GATGCACTCA	AACTGGTTGA	50
	TACTGATTTG	ACGCTGGAAG	TACAGCAGCA	GCTTGGTGAC	GGCGTTGTCC	100
	GTACCATTGC	GATGGGTAGT	ACAGACGGTT	TGAAACGTGG	CTTGGCTGTG	150
	CAAAATACTG	GTGCACCGAT	TACTGTGCCG	GTGGGGAAAG	CCACCCTAGG	200
	CCGCATCATG	GACGTTCTGG	GCAACCCCGT	GGACGAACAA	GGTCCGATCG	250
40	GTTCTGACCA	AACCCGTGCT	ATTCATCAAT	TTGCACCTAA	GTTCGACGAA	300
	CTCTCCAGCA	CTACCGAATT	GTTGGAAACA	GGCATTAAAG	TGATCGATTT	350
	GCTTTGTCCG	TTTGCTAAAG	GTGGTAAAGT	GGGTCTGTTT	GGCGGTGCCG	400
	GTGTGGGCAA	AACCGTGAAC	ATGATGGAGC	TGATTAACAA	CATTGCCAAA	450
	GCGCACAGTG	GTCTTTCCGT	ATTCGCCGGT	GTGGGTGAGC	GTACTCGTGA	500
45	AGGTAACGAC	TTCTACCACG	AAATGAAAGA	CTCCAACGTG	TTGGATAAAG	550
	TGGCAATGGT	GTATGGCCAG	ATGAACGAGC	CGCCTGGTAA	CCGCTTGCGT	600
	GTTGCTCTAA	CTGGTTTGTC	GATGGCTGAA	TACTTCCGTG	ACGAAAAAGA	650
	CGAAAACGGC	AAAGGCCGTG	ACGTATTATT	CTTTGTGGAT	AATATCTACC	700
	GCTATACTCT	GGCGGGTACC	GAAGTGTCGG	CTCTGCTTGG	CCGTATGCCT	750
50	TCTGCTGTGG	GTTATCAGCC	AACTTTGGCT	GAAGAAATGG	GTCGTTTGCA	800
	GGAGCGTATT	ACCTCCACCC	AAACTGGTTC	CATTACCTCT		840

- 55 2) INFORMATION FOR SEQ ID NO: 280
 - (i) SEQUENCE CHARACTERISTICS:
 - LENGTH: 803 bases (A)
 - TYPE: Nucleic acid (B)
- 50 (C) STRANDEDNESS: Double

(D) TOPOLOGY: Linear

(ii) MOLECULE TYPE: Genomic DNA

5 (vi)ORIGINAL SOURCE:

- (A) ORGANISM: Enterobacter agglomerans
- (B) STRAIN: ATCC 27989

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 280

GCCGTACCAC GAGTGTACGA TGCACTTGAG GTAAAGAATG GTGAAGAGCG 50 TCTGGTGCTG GAAGTTCAGC AACAGCTCGG CGGTGGCGTT GTACGTACCA 100 TCGCAATGGG TTCTTCTGAT GGTCTGCGTC GTGGTCTGGA AGTAACGGAC 150 CTGGCTCACC CGATCGAAGT CCCGGTAGGT AAAGCAACAC TGGGTCGTAT CATGAACGTA CTGGGCGAAC CAGTAGACAT GAAAGGCGAC ATCGGTGAAG 15 250 AAGAGCGTTG GGCGATCCAC CGTGCAGCAC CGTCCTACGA AGAGTTGTCA 300 AACTCTCAGG AACTGCTGGA AACCGGTATC AAAGTTATCG ACCTGATGTG 350 TCCGTTCGCT AAGGGCGGTA AAGTGGGTCT GTTCGGTGGT GCGGGTGTAG GTAAAACCGT AAACATGATG GAGCTTATTC GTAACATCGC GATCGAGCAC 400 450 TCCGGTTACT CTGTGTTTGC GGGCGTAGGT GAACGTACTC GTGAGGGTAA CGACTTCTAC CACGAAATGA CCGACTCCAA CGTTATCGAC AAAGTATCCC 20 500 550 TGGTGTATGG TCAGATGAAC GAGCCGCCGG GAAACCGTCT GCGCGTTGCG 600 CTGACCGGTC TGACCATGGC TGAGAAGTTC CGTGACGAAG GTCGTGACGT 650 ACTGTTGTTC GTTGACAACA TCTACCGTTA CACCCTGGCC GGTACGGAAG 700 TATCCGCACT GCTGGGCCGT ATGCCTTCTG CGGTAGGTTA TCAGCCGACG 750 CTGGCGGAAG AGATGGGCGT TCTGCAGGAA CGTATCACCT CCACCAAAAC 800 CGG 803

30

35

10

- 2) INFORMATION FOR SEO ID NO: 281
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 833 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: Genomic DNA

- (vi)ORIGINAL SOURCE:
 - (A) ORGANISM: Enterobacter amnigenus
 - (B) STRAIN: ATCC 33072
- 15 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 281

	CGAATTCCCT	CAGGATGCCG	TACCGCGCGT	GTACGATGCT	CTTGAGGTAC	50
	AGAATGGTAA	CGAGAGTCTG	GTGCTGGAAG	TTCAGCAGCA	GCTCGGTGGT	100
			CATGGGTTCT			150
50			AACACCCGAT			200
	CAACACTGGG	TCGTATCATG	AACGTTTTGG	GTCAACCAAT	CGACATGAAA	250
	GGCGACATCG	GTGAAGAAGA	CCGTTGGGCA	ATCCACCGTG	CAGCACCTTC	. 300
	CTATGAAGAG	CTGTCTAGCT	CTCAGGAACT	GCTGGAAACC	GGCATCAAAG	350
			TTCGCTAAGG			400
55			AACTGTAAAC			450
			GTTACTCCGT			500
			TTCTACCACG			550
			TTATGGCCAG			600
			CCGGTCTGAC			650
50			CTGTTCGTAG			700

	WO 01/23604	PCT/CA00/01150	0
	CTGGCCGGTA CTGAAGTATC TGCGCTGCTG GGCCGTATGC AGGTTACCAG CCGACCCTGG CGGAAGAGAT GGGCGTTCTC TCACTTCTAC CAAAACCGGT TCTATCACCT CCG	G CAGGAACGTA 8	750 800 833
5			
	2) INFORMATION FOR SEQ ID NO: 282		
10	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 810 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear 		
15	(ii) MOLECULE TYPE: Genomic DNA		
20	<pre>(vi)ORIGINAL SOURCE: (A) ORGANISM: Enterobacter asburiae (B) STRAIN: ATCC 35953</pre>	, 2	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 282		
25	GCCGTACCAC GCGTGTACGA CGCGCTTGAG GTACAGAATC CCTGGTGCTG GAAGTTCAGC AGCAGCTCGG CGGCGGTATC TCGCGATGGG TTCTTCCGAC GGTCTGCGTC GTGGTCTGGC CTTGAGCACC CGATCGAAGT CCCGGTAGGT AAAGCAACAC	C GTGCGTACCA A AGTCAAAGAC C TGGGTCGTAT 2	50 100 150 200
30	CATGAACGTA TTGGGTCAAC CAATCGACAT GAAAGGCGAC AAGAGCGTTG GGCTATCCAC CGCGCGCAC CTTCCTACGA AGCTCTCAGG AACTGCTGGA AACCGGTATC AAAGTTATCC TCCGTTCGCG AAGGGCGGTA AAGTCGGTCT GTTCGGTGGT	A AGAGCTGTCC 3 B ACCTGATGTG 3 C GCGGGTGTTG 4	250 300 350 400
	GTAAAACCGT AAACATGATG GAGCTGATCC GTAACATCGC TCCGGTTACT CCGTGTTTGC GGGCGTAGGT GAACGTACTC CGACTTCTAC CACGAAATGA CCGACTCCAA CGTTCTGGAC TGGTTTACGG CCAGATGAAC GAGCCACCAG GAAACCGTCT	C GTGAGGGTAA S C AAAGTATCCC S C GCGCGTTGCG	150 500 550
35	CTGACCGGTC TGACGATGGC TGAGAAGTTC CGTGATGAAG TCTGCTGTTC GTTGATAACA TCTATCGTTA CACCCTGGCC TATCTGCACT GCTGGGTCGT ATGCCTTCAG CGGTAGGTTA CTGGCGGAAG AGATGGGTGT TCTTCAGGAA CGTATCACCT CGGTTCTATC	C GGTACGGAAG A CCAGCCTACG CTACCAAAAC 8	550 700 750 300
40		8	310
	2) INFORMATION FOR SEQ ID NO: 283	r	
45	(i)SEQUENCE CHARACTERISTICS:		
	(A) LENGTH: 811 bases(B) TYPE: Nucleic acid(C) STRANDEDNESS: Double		
50	(D) TOPOLOGY: Linear		
	(ii) MOLECULE TYPE: Genomic DNA		
55 [°]	<pre>(vi)ORIGINAL SOURCE: (A) ORGANISM: Enterobacter cancerog (B) STRAIN: ATCC 35317</pre>	renus	
- ~	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 283		

169

50

100

GCCGTACCGC GCGTGTACGA TGCTCTTGAG GTACAGAATG GTAACGAGAG CCTGGTGCTG GAAGTTCAGC AGCAGCTCGG CGGCGGTATC GTACGTACTA

	TCGCCATGGG	TTCTTCCGAC	GGTCTGCGTC	GTGGTCTGGA	AGTAAAAGAC	150
	CTTGAGCACC	CGATCGAAGT	CCCGGTAGGT	AAAGCAACAC	TGGGTCGTAT	200
	CATGAACGTA	TTGGGTCAAC	CAATCGACAT	GAAAGGCGAC	ATCGGTGAAG	250
	AAGAGCGTTG	GGCTATCCAC	CGCGCAGCAC	CTTCCTACGA	AGAGCTGTCC	300
5				AAAGTTATCG		350
				GTTCGGTGGT		400
	GTAAAACCGT	AAACATGATG	GAGCTGATCC	GTAACATCGC	GATCGAGCAC	450
				GAACGTACTC		500
				CGTTCTGGAT		550
10				GAAACCGTCT		600
	CTGACCGGCC	TGACCATGGC	TGAGAAGTTC	CGTGACGAAG	GTCGTGACGT	650
	ACTGCTGTTC	GTTGATAACA	TCTACCGTTA	CACCCTGGCC	GGTACCGAAG	700
	TATCTGCACT			CGGTAGGTTA		750
	CTGGCGGAAG	AGATGGGTGT	TCTTCAGGAA	CGTATCACCT	CAACCAAAAC	800
15	CGGTTCTATC	A	-			811

2) INFORMATION FOR SEQ ID NO: 284

20

30

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 817 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
- 25 (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: Genomic DNA
 - (vi)ORIGINAL SOURCE:
 - (A) ORGANISM: Enterobacter cloacae
 - (B) STRAIN: ATCC 13047
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 284

35	GCCGTACCAC	GCGTGTACGA	CGCGCTTGAG	GTACAGAATG	GTAACGAGAG	50
	CCTGGTGCTG	GAAGTTCAGC	AGCAGCTCGG	CGGCGGTATC	GTGCGTACCA	100
	TCGCGATGGG	GTCTTCCGAC	GGTCTGCGTC	GTGGTCTGGA	AGTTAAAGAC	150
	CTTGAGCACC	CGATCGAAGT	CCCGGTAGGT	AAAGCAACAC	TGGGTCGTAT	200
	CATGAACGTA	TTGGGTCAGC	CAATCGACAT	GAAAGGCGAC	ATCGGTGAAG	250
4 0	AAGAGCGTTG	GGCTATCCAC	CGCGCGGCAC	CTTCCTACGA	AGAGCTGTCC	300
	AGCTCTCAGG	AACTGCTGGA	AACCGGTATC	AAAGTTATCG	ACCTGATGTG	350
	TCCGTTTGCG	AAGGGCGGTA	AAGTTGGTCT	GTTCGGTGGT	GCGGGTGTAG	400
	GTAAAACCGT	AAACATGATG	GAGCTGATCC	GTAACATCGC	GATCGAGCAC	450
	TCCGGTTACT	CCGTATTTGC	GGGCGTAGGT	GAACGTACTC	GTGAGGGTAA	500
4 5	CGACTTCTAC	CACGAAATGA	CCGACTCCAA	CGTTCTGGAC	AAAGTATCCC	550
	TGGTTTACGG	CCAGATGAAC	GAGCCACCAG	GAAACCGTCT	GCGCGTTGCG	600
	CTGACTGGTC	TGACGATGGC	TGAGAAGTTC	CGTGACGAAG	GCCGTGACGT	650
	TCTGCTGTTC	GTTGATAACA	TCTACCGTTA	CACCCTGGCC	GGTACGGAAG	700
	TATCTGCACT	GCTGGGTCGT	ATGCCTTCAG	CGGTAGGTTA	TCAGCCTACG	750
50	CTGGCGGAAG	AGATGGGTGT	TCTTCAGGAA	CGTATCACCT	CTACCAAAAC	800
	CGGTTCTATC	ACTTCCG				817

55 2) INFORMATION FOR SEQ ID NO: 285

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 766 bases
 - (B) TYPE: Nucleic acid
- (C) STRANDEDNESS: Double

(D) TOPOLOGY: Linear

(ii) MOLECULE TYPE: Genomic DNA

5 (vi) ORIGINAL SOURCE:

10

- (A) ORGANISM: Enterobacter gergoviae
- (B) STRAIN: ATCC 33028
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 285

	AATGAGAGCC	TGGTGCTGGA	AGTTCAGCAG	CAGCTCGGCG	GCGGTATCGT	50
	GCGTACCATC	GCAATGGGTT	CTTCTGACGG	TCTGCGTCGC	GGTCTGGAAG	100
	TTAAAGATCT	CGAACATCCG	ATCGAAGTCC	CGGTAGGTAA	AGCGACCCTC	150
	GGCCGTATTA	TGAACGTGCT	GGGTCAGCCG	GTTGATATGA	AAGGCGATAT	200
15	CGGCGAAGAA	GAGCGTTGGG	CGATCCACCG	CGCTGCGCCG	TCCTATGAAG	250
	AGCTCTCCAG	CTCTCAGGAA	CTGCTGGAAA	CCGGTATCAA	GGTAATGGAC	300
	CTGATTTGCC	CGTTCGCGAA	GGGCGGTAAA	GTCGGTCTGT	TCGGCGGTGC	350
	GGGCGTTGGT	AAAACCGTAA	ACATGATGGA	GCTGATCCGT	AACATCGCGA	400
	TCGAGCACTC	CGGCTACTCC	GTGTTTGCGG	GCGTGGGTGA	ACGTACTCGT	450
20	GAGGGTAACG	ACTTCTACCA	CGAAATGACC	GACTCCAACG	TTATCGACAA	500
	AGTATCCCTG	GTGTACGGCC	AGATGAACGA	GCCGCCGGGA	AACCGTCTGC	550
	GCGTGGCGCT	GACCGGTCTG	ACCATGGCTG	AGAAATTCCG	TGACGAAGGT	600
	CGTGACGTTC	TGCTGTTCGT	CGATAACATC	TACCGCTATA	CCCTCGCCGG	650
	TACTGAAGTA	TCCGCACTGC	TGGGCCGTAT	GCCTTCTGCA	GTAGGTTACC	700
25	AGCCGACGCT	GGCGGAAGAG	ATGGGTGTTC	TGCAGGAACG	TATCACCTCC	750
	ACCAAAACCG	GTTCTA				766

- 30 2) INFORMATION FOR SEQ ID NO: 286
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 805 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: Genomic DNA
- 40 (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Enterobacter hormaechei
 - (B) STRAIN: ATCC 49162
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 286

	GCCGTACCAC	GCGTGTACGA	CGCGCTTGAG	GTACAGAATG	GTAACGAGAG	50
	CCTGGTGCTG	GAAGTTCAGC	AGCAGCTCGG	CGGCGGTATC	GTGCGTACCA	100
	TCGCCATGGG	TTCTTCCGAC	GGTCTGCGTC	GTGGTCTGGA	AGTGAAAGAC	150
	CTTGAGCACC	CGATCGAAGT	CCCGGTAGGT	AAAGCAACGC	TGGGTCGTAT	200
50	CATGAACGTA	TTGGGTCAGC	CAATCGACAT	GAAAGGCGAC	ATCGGTGAAG	250
	AAGAGCGTTG	GGCTATCCAC	CGCGCGGCAC	CTTCCTACGA	AGAGCTGTCC	300
	AGCTCTCAGG	AACTGCTGGA	AACCGGCATC	AAAGTTATCG	ACCTGATGTG	350
	TCCGTTTGCG	AAGGGCGGTA	AAGTTGGTCT	GTTCGGTGGT	GCGGGTGTAG	400
	GTAAAACCGT	AAACATGATG	GAGCTGATCC	GTAACATCGC	GATCGAGCAC	450
55	TCCGGTTACT	CCGTGTTTGC	GGGCGTGGGT	GAACGTACTC	GTGAGGGTAA	500
	CGACTTCTAC	CACGAAATGA	CCGACTCCAA	CGTTCTGGAC	AAAGTATCCC	550
	TGGTTTACGG	CCAGATGAAC	GAGCCACCAG	GAAACCGTCT	GCGCGTTGCG	600
	CTGACTGGCC	TGACGATGGC	TGAGAAGTTC	CGTGACGAAG	GCCGTGACGT	650
	TCTGCTGTTC	GTCGATAACA	TCTACCGTTA	CACCCTGGCC	GGTACGGAAG	700
50	TATCTGCACT	GCTGGGTCGT	ATGCCTTCAG	CGGTAGGTTA	TCAGCCAACG	750

	CTTGCGGAAG AGATGGGTGT TCTTCAGGAA CGTATCACCT CGACCAAAAC CGGTT	800 805
5	2) INFORMATION FOR SEQ ID NO: 287	
10	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 791 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear 	
15	<pre>(ii) MOLECULE TYPE: Genomic DNA (vi) ORIGINAL SOURCE: (A) ORGANISM: Enterobacter sakasakii (B) STRAIN: ATCC 29544</pre>	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 287	
25	TACGACGCCC TTGAGGTAAC GAATGGTAAT GAGCGTCTGG TGCTGGAAGT CCAGCAGCAG CTCGGCGGCG GTATCGTACG TACCATCGCG ATGGGCTCTT CCGACGGTCT GCGTCGCGGT CTGCCTGTTG CAGACCTTGA GCACCCGATC GAAGTGCCGG TAGGTAAAGC GACGCTGGGT CGTATCATGA ACGTCCTGGG TCAGCCTATC GACATGAAAG GCGACATCGG CGAAGAAGAG CGTTGGGCGA TTCATCGCGC GGCGCCGTCC TATGAAGAGC TGTCCAGCTC TCAGGAACTG CTGGAAACCG GCATCAAAGT TATCGACCTG ATGTGTCCGT TCGCGAAGGG	50 100 150 200 250 300 350
30	CGGTAAAGTC GGTCTGTTCG GTGGTGCAGG TGTAGGTAAA ACCGTAAACA TGATGGAGCT TATTCGTAAC ATCGCGATTG AGCACTCCGG TTACTCCGTG TTTGCGGGCG TGGGCGAACG TACCCGTGAA GGTAACGACT TCTACCACGA AATGACCGAC TCCAACGTAC TGGATAAAGT ATCCCTGGTG TACGGCCAGA TGAACGAGCC GCCGGGAAAC CGTCTGCGCG TTGCGCTGAC CGGCCTGACC	400 450 500 550 600
35	ATGCTGAGA AATTCCGTGA CGAAGGTCGT GACGTTCTGC TGTTCGTCGA CAACATCTAC CGTTACACCC TGGCCGGTAC TGAAGTATCC GCACTGCTGG GCCGTATGCC TTCAGCGGTA GGTTATCAGC CGACCCTGGC GGAAGAGATG GGTGTTCTGC AGGAGCGTAT CACCTCCACC AAAACCGGTT C	650 700 750 791
40	2) INFORMATION FOR SEQ ID NO: 288	
45	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 839 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear 	
50	(ii) MOLECULE TYPE: Genomic DNA	
30	<pre>(vi)ORIGINAL SOURCE: (A) ORGANISM: Enterococcus avium (B) STRAIN: ATCC 14025</pre>	
55·	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 288	
50	TTTCTTTAGA TCAATCCTTA CCAGACATCA ACAATGCGTT GATTGTTTAC AAAAAAGATA AAACAAAAGT TGTTCTTGAA GTTGCTTTGG AACTTGGTGA TGGTGTTATC CGCACAATCG CTATGGAGGC TACTGATGGA TTGCAACGTG GAATGGAAGT TGTCGATACT GGCAAATCAA TCTCCGTTCC TGTAGGTAAA	50 100 150 200

	GATACTCTAG	GTCGTGTGTT	TAACGTATTA	GGTGAAACGA	TTGATAAAGA	250
	AGCACCTTTT	CCAGAAGATG	CAGAAAGAAG	CGGCATTCAT	AAAAAGGCGC	300
	CTGCTTTTGA	AGACCTTAGT	ACAAGTAACG	AGATTTTGGA	AACAGGGATC	350
	AAGGTTATCG	ACTTATTAGC	CCCTTATTTA	AAAGGTGGGA	AAGTCGGACT	400
5	ATTCGGTGGT	GCCGGTGTTG	GTAAAACCGT	TTTGATCCAA	GAATTAATTC	450
				CAGTGTTTAC		500
	GAACGTACTC	GTGAAGGGAA	CGACCTTTAT	TATGAAATGA	AAGACTCTGG	550
	CGTTATTGAG	AAAACAGCCA	TGGTGTTCGG	ACAAATGAAC	GAGCCGCCTG ·	600
				TGACATTAGC		650
10	CGTGATGAAG	AAGGACAAGA	TGTGTTGCTA	TTTATTGACA	ACATCTTCCG	700
	CTTTACTCAA	GCCGGATCAG	AAGTTTCTGC	CTTATTAGGA	CGTATGCCAT	750
	CAGCCGTTGG	GTATCAACCA	ACTTTGGCAA	CTGAAATGGG	GCAATTACAA	800
	GAACGAATCA	CTTCAACCAA	AAAAGGTTCG	ATCACTTCA		839

15

2) INFORMATION FOR SEQ ID NO: 289

- (i) SEQUENCE CHARACTERISTICS:
- 20 (A) LENGTH: 847 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
- 25 (ii) MOLECULE TYPE: Genomic DNA
 - (vi)ORIGINAL SOURCE:
 - (A) ORGANISM: Enterococcus casseliflavus
 - (B) STRAIN: ATCC 25788

30 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 289

	TTCTCTCTAG	ACCAATCATT	ACCAGATATC	AACAATGCGT	TGATTGTTTA	50
	CAAAAAAGAT	GAGCAGAAAA	CAAAAGTTGT	GTTAGAAGCT	GCCTTAGAAC	100
35	TTGGCGACGG	CGTTATCCGT	ACGATTGCCA	TGGAATCAAC	AGATGGCTTA	150
	CAACGAGGAA	TGGAAGTAAT	CGATACAGGC	GCCTCCATTT	CTGTTCCAGT	200
	TGGGACAGAA	ACCTTAGGAC	GGGTGTTTAA	TGTCTTAGGG	GACACCATCG	250
	ATTTAGAAGC	GCCGTTCCCT	GAAGAAGCAC	CCCGCAGTGG	GATTCACAAA	300
		ACTTTGATGA			TCCTTGAAAC	350
40	TGGGATCAAA	GTTATCGATT	TGTTAGCCCC	TTATTTAAAA	GGGGGGAAAG	400
	TTGGACTTTT		GGTGTTGGTA		GATCCAAGAA	450
	TTGATCCACA	ACATCGCCCA	AGAGCATGGT	GGGATCTCTG	TCTTCACAGG	500
	TGTTGGTGAA	CGGACACGTG	AAGGAAATGA	CCTTTATAAT	GAAATGAAAG	550
	AATCTGGCGT	TATCGAAAAA	ACAGCCATGG	TGTTTGGACA	AATGAACGAA	600
45	CCACCAGGTG	CTCGGATGCG	GGTAGCCTTG	ACTGGTTTGA	CATTAGCCGA	650
	GTACTTCCGT	GATGTGGAAG	GACAAGACGT	GCTCTTGTTT	ATCGATAATA	700
	TCTTCCGCTT	CACTCAAGCA	GGTTCTGAAG	TATCTGCCTT	ACTAGGTCGG	750
	ATGCCGTCTG	CCGTTGGGTA			AGATGGGGCA	800
	ATTACAAGAA	CGGATCACAT	CGACGAAGAA	AGGTTCCGTT	ACGTCTA	847
ΞΛ.						

50

2) INFORMATION FOR SEQ ID NO: 290

- 55 (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 845 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear

(ii) MOLECULE TYPE: Genomic DNA

(vi)ORIGINAL SOURCE:

- (A) ORGANISM: Enterococcus durans
- (B) STRAIN: ATCC 19432
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 290

	TTTCTTTAGA	CCAATCCTTA	CCAGATATCA	ACAACGCTTT	AGTTGTTTAT	50
10	AAAAATGATG	AGAAGAAATC	GAAAGTTGTT	CTTGAAACAG	CGCTAGAATT	100
	AGGTGACGGT	GTCATCCGTA	CAATCGCGAT	GGAATCAACA	GATGGTTTAC	150
	AACGCGGAAT	GGAAGTCATT	GATACAGAAA	AAGCAATTTC	TGTACCAGTG	200
	GGTAAAGAAA	CGTTAGGTCG	TGTATTCAAT	GTATTAGGAG	ATACGATCGA	250
	TTTATCTGCA	CCTTTCCCAG	AAGATGCAAA	ACGTAGCGAA	ATCCATAAAA	300
15	AAGCACCAAA	CTTTGATGAG	TTAAGTACAA	GTACTGAGAT	CCTTGAAACT	350
	GGGATCAAAG	TTATTGACTT	GCTTGCTCCT	TACTTAAAAG	GTGGGAAAGT	400
	TGGATTATTC	GGTGGTGCCG	GTGTAGGTAA	AACTGTATTG	ATCCAAGAAT	450
	TGATCCATAA	TATCGCTCAA	GAACACGGTG	GTATTTCTGT	ATTTACTGGT	500
	GTTGGTGAAC	GTACACGTGA	AGGTAATGAC	CTTTATTATG	AAATGAAAGA	550
20	TTCAGGAGTT	ATTGAAAAA	CAGCCATGGT	GTTTGGTCAA	ATGAACGAAC	600
		ACGTATGCGT	GTTGCCTTGA	CTGGTTTGAC	GATTGCTGAA	650
	TACTTCCGTG	ATGTTGAAGG	GCAAGACGTG	CTATTGTTTA	TTGATAATAT	700
	TTTCCGTTTC	ACTCAAGCCG	GTTCAGAAGT	TTCTGCCCTA	TTAGGTCGTA	750
	TGCCTTCTGC	CGTTGGGTAC	CAACCAACGC	TAGCAACAGA	AATGGGTCAA	800
25	TTACAAGAAC	GGATCACTTC	AACGAAAAAA	GGTTCAATCA	CTTCA	845

2) INFORMATION FOR SEQ ID NO: 291

30

10

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 840 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
- 35 (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: Genomic DNA
 - (vi)ORIGINAL SOURCE:
 - (A) ORGANISM: Enterococcus faecalis
 - (B) STRAIN: ATCC 29212
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 291

45 TTAGATCAAT CCTTACCCGA TATTAACAAC GCTTTAGTCG TTTATAAAAA	50
TGGCGAAGCA AAACAAAAAG TAGTACTTGA AGTCGCTTTA GAACTAGGTG	100
ATGGAGTGAT TCGTTCTATC GCCATGGAAT CGACAGATGG TTTACAACGT	150 ⁻
GGAATGGAAG TTATCGATAC AGGAAAATCA ATTTCAGTTC CTGTTGGTAA	200
AGATACATTA GGTCGTGTGT TTAACGTTTT AGGAGACACA ATTGACTTAG	250
50 AAGCGCCATT CCCTGCAGAT GCTGAACGTA GTGGGATTCA TAAAAAAGCG	300
CCAGCATTTG ATGAATTAAG TACCAGTAAT GAAATTTTAG AAACAGGGAT	350
TAAAGTTATT GACTTATTAG CACCTTATCT AAAAGGTGGT AAAGTCGGAC	400
TTTTCGGTGG TGCCGGTGTT GGTAAAACCG TCTTAATTCA AGAATTAATT	450
CATAATATTG CCCAAGAACA TGGAGGGATT TCCGTCTTTA CTGGTGTTGG	500
55 TGAACGGACA CGTGAAGGGA ACGATCTGTA CTATGAAATG AAAGATTCAG	550
GCGTTATTGA AAAAACAGCC ATGGTTTTTG GTCAAATGAA CGAACCGCCA	600
GGTGCACGGA TGCGTGTGGC CTTAACTGGG TTAACGATTG CTGAATATTT	650
CCGTGATGTG GAAGGACAAG ACGTGCTATT ATTTATTGAT AACATTTTCC	700
GTTTCACCCA AGCCGGTTCA GAAGTTTCTG CCCTTTTAGG TCGGATGCCG	750
50 TCAGCCGTTG GTTACCAACC AACCTTAGCG ACTGAAATGG GACAATTACA	800

5	2) INFORMATION FOR SEQ ID NO: 292	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 831 bases	
	(A) LENGIA: 631 bases (B) TYPE: Nucleic acid	
10	(C) STRANDEDNESS: Double	
10	(C) SIRANDEDNESS: DOUDIE (D) TOPOLOGY: Linear	
	(b) TOPOLOGI: Lillear	
	(ii) MOLECULE TYPE: Genomic DNA	
15	(vi)ORIGINAL SOURCE:	
10	(A) ORGANISM: Enterococcus faecium	
	(B) STRAIN: ATCC 19434	
	/ · · · · · · · · · · · · · · · · · · ·	
20	(xi)SEQUENCE DESCRIPTION: SEQ ID NO: 292	
20	TTTCTTTAGA CCAATCCTTA CCAGATATCA ACAACGCATT AGTTGTTTAT	50
	AAAAATGACG AAAATAAATC AAAAGTTGTT CTTGAAGCAG CGTTAGAATT	
	AGAGACG AAAATAAATC AAAAGTIGIT CIIGAAGCAG CGIIAGAATT AGGGGACGGA GTGATCCGGA CCATTGCGAT GGAATCAACA GATGGTTTAC	100
	AAAGAGGAAT GGAAGTCATT GATACAGGCA AAGCAATCTC TGTTCCTGTA	150
25	GGTAAAGAAA CATTAGGTCG CGTATTCAAC GTACTAGGAG ATACGATCGA	200
23	TTTAGAAACA CCTTTCCCAG AAGATGCGGA AAGAAGCGAA ATTCATAAAA	250
	AAGCACCAGC CTTTGACGAA TTAAGTACAA GTACAGAAAT TTTGGAAACA	300
	GGGATCAAAG TTATCGATTT GCTTGCCCCA TATTTAAAAG GTGGGAAAGT	350
	CGGACTATTC GGTGGTGCCG GTGTTGGTAA AACCGTACTG ATCCAAGAAC	400 450
30	TGATCCATAA TATCGCCCAA GAACATGGTG GTATTTCTGT ATTTACCGGT	500
50	GTAGGTGAAC GTACTCGTGA AGGTAATGAC TTGTATTATG AAATGAAAGA	550 550
	TTCAGGAGTT ATCGAAAAAA CAGCCATGGT GTTCGGACAA ATGAACGAAC	600
	CACCAGGTGC ACGTATGCGT GTTGCTTTGA CTGGTTTGAC GATTGCGGAA	650
	TATTTCCGTG ATGTAGAAGG TCAAGATGTA CTGTTGTTTA TCGACAACAT	
35	TTTCCGTTTC ACTCAAGCTG GATCTGAAGT ATCAGCCTTG TTAGGACGGA	700 750
<i></i>	TGCCTTCTGC GGTTGGTTAT CAACCAACAT TGGCAACAGA AATGGGTCAA	800
	TTGCAAGAAC GTATCACATC TACGAAAAAA G	831
		031
40	0) THEODINATION TOD ODG TO 110 000	
	2) INFORMATION FOR SEQ ID NO: 293	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 826 bases	
45	(B) TYPE: Nucleic acid	
	(C) STRANDEDNESS: Double	
	(D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
50	(11) MODECODE 11PE: GENOMIC DNA	
50	(vi)ORIGINAL SOURCE:	
	(A) ORGANISM: Enterococcus gallinarum	
	(B) STRAIN: ATCC 49573	
55	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 293	
	CCTTACCAGA TATCAACAAT GCGTTGATCG TTTACAAAAA AGACGAGAAA	50
	AAAACAAAAG TAGTATTGGA AGCCGCTTTA GAACTAGGGG ATGGTGTGAT	100
	CCGCACCATC GCAATGGAAT CTACAGACGG TTTGCAACGA GGAATGGAAG	150
60	TCATCGATAC CGGTGCCTCA ATCTCTGTCC CTGTAGGAAC AGATACTCTA	200

					AAGCACCATTU	25 7 0
	CCCAGAAGAT	GCCAAACGTA	GTGGCATCCA	CAAAAAAGCC	CCAGATTTCG	300
	ATGAATTGTC	AACAAGTACA	GAAATCCTTG	AAACTGGGAT	CAAAGTTATC	350
	GATTTATTAG	CTCCTTACTT	AAAAGGTGGT	AAAGTCGGCT	TGTTCGGTGG	400
5				AGAATTGATT		450
	CTCAAGAGCA	TGGGGGAATT	TCAGTATTTA	CCGGTGTTGG	CGAACGGACG	500
	CGTGAAGGTA	ATGACTTGTA	TTATGAAATG	AAAGAATCAG	GCGTTATCGA	550
				TGAACCACCA		600
				CTGAGTATTT		650
10	GAAGGACAAG	ATGTGCTCTT	GTTTATCGAT	AATATTTTCC	GTTTCACACA	700
	AGCGGGTTCT	GAAGTATCTG	CCTTGTTAGG	CCGGATGCCA	TCAGCCGTTG	750
				GTCAATTACA		800
	ACTTCTACGA	AAAAAGGATC	TGTAAC			826
	,	•				320

15

20

30

2) INFORMATION FOR SEQ ID NO: 294

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 846 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
- 25 (ii) MOLECULE TYPE: Genomic DNA
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Enterococcus saccharolyticus
 - (B) STRAIN: ATCC 43076

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 294

	TTTCTTTGGA	CCAATCCTTA	CCACACATCA	ACAATGCGTT	CCTCCTTTTT T	
					GGTGGTCTAT	50
	AAAAAGAATG	ATGAAAAAAC	AAAAGTGGTA	CTTGAAACAG	CTTTAGAACT	100
35	TGGTGATGGT	GTCGTACGTA	CGATTGCTAT	GTCGTCAACA	GACGGTTTGC	150
	AACGTGGGAT	GGAAGTCATC	GATACAGGAG	CATCAATTTC	TGTTCCTGTT	200
	GGGAAAGAGA	CATTAGGACG	TGTATTTAAC	GTTTTAGGGG	AGACTATCGA	250
	CTTAGATGGT	CCATTCCCAG	AAGAAGTAGC	ACGAGATGGT	ATTCATAAAA	300
	AGGCACCTGA	TTTTGATGAA	TTAAGTACAA	GTACGGAGAT	TCTTGAAACA	350
1 0	GGGATTAAAG	TAATCGATTT	ATTAGCGCCT	TACTTAAAAG	GTGGGAAAGT	400
•	TGGTTTATTC	GGTGGTGCCG	GTGTAGGTAA	AACGGTATTA	ATTCAAGAAT	450
	TGATTAACAA	TATTGCGCAA	GAACATGGTG	GTATTTCAGT	ATTTGCGGGT	500
	GTTGGTGAGC	GTACTCGTGA	AGGAAATGAC	CTTTATTATG	AAATGAAAGA	550
	GTCGGGCGTT	ATTGAGAAAA	CAGCGATGGT	TTTTGGACAA	ATGAACGAAC	600
1 5	CACCAGGTGC	ACGTATGCGA	GTTGCTTTAA	CTGGTTTAAC	CATTGCAGAA	650
	TACTTCCGTG	ATGTTGAAGG	ACAAGATGTA	TTACTATTTA	TTGATAACAT	700
	TTTCCGTTTT	ACTCAAGCTG	GTTCAGAAGT	TTCAGCTTTA	TTAGGACGTA	750
	TGCCTTCAGC	GGTAGGGTAT	CAACCGACAT	TAGCAACAGA	AATGGGACAA	800
	TTACAAGAAC	GTATTACGTC	AACGAAAAA	GGCTCAATTA	CATCAA	846
50						0.0

50

2) INFORMATION FOR SEQ ID NO: 295

- 55 (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 803 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear

(ii) MOLECULE TYPE: Genomic DNA

(vi)ORIGINAL SOURCE:

- (A) ORGANISM: Escherichia fergusonii
- (B) STRAIN: ATCC 35469
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 295

	GCCGTACCGC	GCGTGTACGA	TGCTCTTGAG	GTGCAAAATG	GTAATGAGCG	50
10	TCTGGTGCTG	GAAGTTCAGC	AGCAGCTCGG	CGGTGGTATC	GTGCGTACCA	100
	TCGCAATGGG	GTCCTCCGAC	GGTCTGCGTC	GCGGTCTGGA	TGTAAAAGAC	150
-	CTCGAACACC	CGATCGAAGT		AAAGCGACTC	TGGGCCGTAT	200
	CATGAACGTA		CGGTCGACAT	GAAAGGCGAG	ATCGGTGAAG	250
	AAGAGCGTTG	GGCGATTCAC		CTTCCTACGA	AGAGCTGTCA	300
15	AACTCTCAGG	AACTGCTGGA		AAAGTTATCG	ACCTGATGTG	350
	TCCGTTCGCT	AAGGGCGGTA		GTTCGGTGGT	GCGGGTGTAG	400
		AAACATGATG		GTAACATCGC	GATCGAGCAC	450
	TCCGGTTACT	CTGTGTTTGC	GGGCGTAGGT	GAACGTACTC	GTGAGGGTAA	500
	CGACTTCTAC			CGTTATCGAC	AAAGTATCCC	550
20	TGGTATATGG	CCAGATGAAC	GAGCCGCCGG	GAAACCGTCT	GCGCGTTGCA	600
	CTGACCGGCC	TGACCATGGC	TGAGAAATTC	CGTGACGAAG	GTCGTGACGT	650
	TCTGCTGTTC	GTTGACAACA	TCTATCGTTA	CACCCTGGCC	GGTACGGAAG	700
	TATCCGCACT	GCTGGGCCGT		CGGTAGGTTA	TCAGCCGACT	750
		AGATGGGCGT	TCTTCAGGAA	CGTATCACCT	CCACCAAAAC	800
25	TGG					803

2) INFORMATION FOR SEQ ID NO: 296

30

40

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 822 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
- 35 (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: Genomic DNA
 - (vi)ORIGINAL SOURCE:
 - (A) ORGANISM: Escherichia hermannii
 - (B) STRAIN: ATCC 33650
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 296

45	GATGCCGTAC	CGCGCGTGTA	CGATGCTCTT	GAGGTGCAAA	ATGGTGATGA	50
	GCGTCTGGTG	CTGGAAGTGC	AGCAGCAGCT	CGGCGGCGGT	ATCGTGCGTA	100
	CCATCGCAAT	GGGTTCTTCC	GACGGTCTGC	GTCGTGGTCT	GACTGTCGTC	150
	GACCTCGAGC	ACCCGATCGA	AGTCCCGGTA	GGTAAAGCGA	CCCTGGGCCG	200
	TATCATGAAC	GTGCTGGGTC	AGCCGATCGA	CATGAAAGGC	GATATCGGTG	250
50	AAGAAGAGCG	TTGGGCGATT	CACCGCGCGG	CGCCGTCCTA	TGAAGAGCTG	300
	TCCAGCTCTC	AGGAACTGCT	GGAAACCGGC	ATCAAAGTTA	TCGACCTGAT	350
	GTGTCCGTTC	GCGAAGGGCG	GTAAAGTCGG	TCTGTTCGGT	GGTGCGGGCG	400
	TAGGTAAAAC	CGTAAACATG	ATGGAGCTGA	TCCGTAACAT	CGCGATCGAG	450
	CACTCCGGTT	ACTCTGTGTT	TGCGGGCGTG	GGTGAACGTA	CTCGTGAGGG	500
55	TAACGACTTC	TACCATGAAA	TGACCGACTC	CAACGTTCTG	GACAAAGTAT	550
	CCCTGGTTTA	CGGCCAGATG	AACGAACCGC	CGGGAAACCG	TCTGCGCGTT	600
	GCACTGACCG	GCCTGACCAT	GGCTGAGAAA	TTCCGTGACG	AAGGTCGTGA	650
	CGTTCTGTTG	TTCGTCGACA	ACATCTACCG	TTACACCCTG	GCCGGTACTG	700
	AAGTATCCGC	ACTGCTGGGC	CGTATGCCTT	CTGCGGTAGG	TTACCAGCCG	750
50	ACCCTGGCGG	AAGAGATGGG	CGTTCTGCAG	GAGCGTATCA	CCTCCACCAA	800

AACCGGTTCT ATCACCTCCG TA

```
2) INFORMATION FOR SEQ ID NO: 297
5
        (i) SEOUENCE CHARACTERISTICS:
           (A)
                LENGTH: 808 bases
           (B)
                 TYPE: Nucleic acid
10
           (C)
                 STRANDEDNESS: Double
           (D)
                 TOPOLOGY: Linear
      (ii) MOLECULE TYPE: Genomic DNA
15
      (vi)ORIGINAL SOURCE:
                 ORGANISM: Escherichia vulneris
           (A)
           (B)
                 STRAIN: ATCC 33821
      (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 297
20
    CCGAACGTGT ACGACGCCCT CGAAGTGACA AATGGTAATG AGCGTCTGGT
                                                                   50
    GCTGGAAGTT CAGCAGCAGC TCGGCGGCGG TATCGTACGT ACCATCGCTA
                                                                  100
    TGGGTTCTTC CGACGGTCTG CGTCGTGGTC TGGAAGTTCA GGACCTCGAG
                                                                  150
    CACCCGATCG AAGTGCCGGT AGGTAAAGCG ACCCTGGGTC GTATCATGAA
                                                                  200
    CGTACTGGGT CAGCCGATCG ATATGAAAGG CGACATCGGT GAAGAAGAGC
25
                                                                  250
    GTTGGGCTAT TCACCGTGCA GCACCGTCCT ATGAAGAGCT CTCCAGCTCT
                                                                  300
    CAGGAACTGC TGGAAACCGG CATCAAGGTT ATCGACCTGA TGTGTCCGTT
                                                                  350
    CGCCAAGGGC GGTAAAGTCG GCCTGTTCGG CGGCGCGGGC GTGGGTAAAA
                                                                  400
    CCGTAAACAT GATGGAGCTG ATCCGTAACA TCGCGATCGA GCACTCCGGT
                                                                  450
    TACTCCGTGT TTGCAGGCGT GGGTGAGCGT ACTCGTGAGG GTAACGACTT
30
                                                                  500
    CTACCACGAG ATGACCGACT CCAACGTTCT GGACAAAGTA TCCCTGGTGT
                                                                  550
    ACGGCCAGAT GAACGAGCCG CCGGGAAACC GTCTGCGCGT GGCACTGACC
                                                                  600
    GGCCTGACCA TGGCTGAGAA GTTCCGTGAC GAAGGTCGTG ACGTTCTGCT
                                                                  650
    GTTCGTTGAC AACATCTATC GTTACACCCT GGCCGGTACG GAAGTATCTG
                                                                  700
35
    CACTGCTGGG CCGTATGCCT TCAGCGGTAG GTTACCAGCC GACGCTGGCG
                                                                  750
    GAAGAGATGG GCGTTCTGCA GGAGCGTATC ACCTCCACCA AAACCGGTTC
                                                                  800
    TATCACCT
                                                                  808
40
    2) INFORMATION FOR SEQ ID NO: 298
        (i) SEQUENCE CHARACTERISTICS:
                 LENGTH: 843 bases
           (A)
45
           (B)
                 TYPE: Nucleic acid
           (C)
                 STRANDEDNESS: Double
           (D)
                 TOPOLOGY: Linear
       (ii) MOLECULE TYPE: Genomic DNA
50
       (vi)ORIGINAL SOURCE:
                 ORGANISM: Eubacterium lentum
           (A)
           (B)
                 STRAIN: ATCC 43055
55
       (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 298
    TTTCCCCCTG ATCAGCTGCC GGCGATTTAC AACGCGCTGA CGGTTGATGC
                                                                   50
    CAAGACCCTG GCGGGCGACT TGCACCTCGT GCTCGAGGTC GAGACGCACC
                                                                  100
    TGCCGGGCAA CCTTGTCCGC TCGGTGGCCA TGAGCTCGAC GGACGGTCTC
                                                                  150
50
    GTCCGCGGCC TCGAGGTCGT CGACACGGGC AACCCGATCA TGATGCCCGT
                                                                  200
```

	GGGTCCCGAG	ACCCTGGGTC	GCATCTGGAA	CGTCATGGGC	GAGCCCGTCG	250
	ACGAGAAGCC	GATGCCCGAG	GTGAAGGGCT	ACATGCCCAT	CCACCGTCCG	300
		ACGACGAGCT				350
		ATCGACCTCG				400
5	GTCTGTTCGG	CGGCGCCGGC	GTGGGCAAGA	CGGTTATCAT	CCAGGAGCTC	450
	ATCAACAACC	TGGCCCAGGA	GCACGGCGGC	ACGTCGGTGT	TCACGGGCGT	500
		ACCCGCGAGG				550
		CAACAAGACC				600
	CCGGGAGCGC	GTCTGCGCGT	GGGTCTCGCG	GGCCTCACCG	AGGCGGAGTA	650
10	CTTCCGCGAT	CAGGGCCAGG	ACGTGCTTCT	GTTCGTGGAC	AACATCTTCC	700
	GCTTCACGCA	GGCCGGCTCC	GAGGTGTCCG	CTCTGCTGGG	CCGCATGCCC	750
	TCTGCCGTGG	GTTACCAGCC	GACGCTGGCA	ACCGAGATGG	GCGACCTGCA	800
	GGAGCGCATC	ACGTCGACGT	CCACCGGCTC	CATCACGTCC	GTG	843

15

20

30

2) INFORMATION FOR SEQ ID NO: 299

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 829 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
- 25 (ii) MOLECULE TYPE: Genomic DNA
 - (vi)ORIGINAL SOURCE:
 - (A) ORGANISM: Ewingella americana
 - (B) STRAIN: ATCC 33852

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 299

	TCCCTCAGGA	TGCAGTACCG	AACGTGTACA	ATGCTCTTGA	GGTAGAAAAC	50
	GGTGCCTCCA	AACTGGTTCT	GGAAGTTCAG	CAACAGTTAG	GCGGCGCGT	100
35	TGTTCGTTGT	ATCGCAATGG	GTACCTCAGA	CGGCCTTCGT	CGCGGTCTGA	150
	AAGTGAACAA	CCTGGAACAC	CCAATTGAAG	TTCCGGTTGG	TAAAGCGACT	200
	CTGGGTCGTA	TCATGAACGT	ATTGGGTGAA	CCAATCGACA	TGAAAGGTGA	250
	AATCGGCGAA	GAAGAACGTC	GTGCAATTCA	CCGTCCAGCG	CCTTCTTATG	300
	AAGAGCTGGC	TAACTCCCAA	GAATTGCTGG	AAACCGGTAT	CAAAGTTATG	350
40	GACCTGATGT	GTCCGTTCGC	TAAGGGCGGT	AAAGTCGGTC	TGTTCGGTGG	400
	TGCGGGTGTT	GGTAAAACTG	TAAACATGAT	GGAGCTGATC	CGTAACATCG	450
•	CGATCGAGCA	CTCCGGTTAC	TCAGTGTTTG	CAGGCGTGGG	TGAGCGTACT	500
	CGTGAGGGTA	ACGACTTCTA	CCACGAAATG	ACTGACTCCA	ACGTTATCGA	550
	CAAAGTTTCC	CTGGTCTATG	GTCAGATGAA	TGAGCCACCA	GGTAACCGTC	600
45	TGCGCGTTGC	ACTGACCGGC	CTGACCATGG	CGGAGAAATT	CCGTGATGAA	650
	GGTCGTGACG	TACTGCTGTT	CGTTGACAAC	ATTTACCGTT	ACACCCTGGC	700
	AGGTACCGAA	GTGTCCGCAC	TTCTGGGCCG	TATGCCATCG	GCGGTAGGTT	750
	ATCAGCCAAC	GCTGGCGGAA	GAGATGGGTG	CTCTGCAAGA	GCGTATCACC	800
	TCTACCAAAA	GTGGTTCTAT	CACCTCCGT			829

50

2) INFORMATION FOR SEQ ID NO: 300

- 55 (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 805 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear

(ii) MOLECULE TYPE: Genomic DNA

(vi)ORIGINAL SOURCE:

- (A) ORGANISM: Francisella tularensis
- 5 (B) STRAIN: LVS
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 300

	AACACGCCTA	AAGTATATGA	TGCTTTAAAT	GTAGTAGAAG	CTGGTTTAGT	50
10	ATTAGAAGTT	CAGCAACAAA	TTGGTGATGG	CGTAGTTCGT	ACAATTGCTA	100
	TGGGATCTAG	TGATGGTCTT	AGACGTGGTA	TGGAAGTTAA	GAACACAAAT	150
	GCGCCTATTT	CTGTTCCAGT	TGGACATGGC	ACACTTGGAC	GTATCATGAA	200
	TGTTTTAGGT	GAACCAATTG	ATGAAGCTGG	TCCAATTGAA	TATACTGAGA	250
	AAAGATCTAT	CCATCAAGCT	CCTCCTGCAT	ATGATGAGTT	AGCATTAAGT	300
15	ACAGAAATAT	TAGAAACAGG	TATCAAAGTA	GTTGACCTTA	TTTGTCCATT	350
	TGCTAAGGGC	GGTAAAGTTG	GTTTATTTGG	CGGTGCAGGT	GTTGGTAAAA	400
	CTGTAACGAT	GATGGAACTT	ATCAACAATA	TTGCAAAAGA	ACATAGTGGC	450
	TACTCTGTAT	TTTCCGGTGT	TGGTGAAAGA	ACTCGTGAAG	GTAATGACTT	500
	CTACTATGAG	ATGAAATATT	CTAATGTATT	GGATAAAGTA	TCATTAGTAT	550
20	ATGGTCAGAT	GAATGAGCCG	CCTGGAAACA	GATTAAGAGT	AGCTCTTAGT	600
	GGCTTAACAA	TAGCAGAAGG	ATTCCGTGAT	GAAAAGCGTG	ATGTTTTGAT	650
	GTTTATCGAT	AACATCTATC	GTTATACATT	AGCAGGTACA	GAGGTATCGG	700
	CGCTACTTGG	TCGTATGCCA	TCTGCTGTGG	GTTATCAGCC	AACGCTTGCA	750
	GCTGAGATGG	GTGCTTTACA	GGAGCGTATT	ACATCTACTA	AGACAGGATC	800
25	TATTA					805

2) INFORMATION FOR SEQ ID NO: 301

30

35

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 825 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
- (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: Genomic DNA
 - (vi)ORIGINAL SOURCE:
 - (A) ORGANISM: Fusobacterium gonidiaformans
 - (B) STRAIN: ATCC 25563
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 301

4	15	GACGAATTGC	CAAAAATATA	CAATGCATTA	AAGGTGCAAG	TTGGAGAAAA	50
		AGAACTTGTA	TTGGAAGTGC	AACAACATTT	GGGAAATAAT	GTTGTGAGAA	100
		CAGTAGCGAT	GGACTCAACA	GATGGATTGC	TTCGAGGAAT	GGAAGTAATG	15Ò
		GATACCGGAG	CACCGATTAC	TGTTCCAGTA	GGGAAGGCGG	TTTTAGGAAG	200
		AATATTGAAT	GTTTTGGGAG	AGCCTGTGGA	TCAAAAAGGG	CCTGTGGAAA	250
5	50	CAGAAGAATA	TTTACCTATC	CATAGAGAAG	CACCAAAATT	TGAAGAACAA	300
		GAAACAGTAA	CAGAAATTTT	TGAAACAGGA	ATTAAAGTCA	TAGATTTGTT	350
		AGCCCCTTAT	ATCAAAGGAG	GAAAGACAGG	TCTATTCGGT	GGAGCCGGAG	400
		TAGGGAAAAC	AGTTTTAATT	ATGGAATTAA	TTAATAACAT	TGCAAAGGGC	450
		CACGGAGGAA	TTTCTGTGTT	TGCAGGAGTT	GGAGAAAGAA	CAAGAGAAGG	500
=	55	AAGAGATTTA	TACAACGAAA	TGACAGAGTC	CGGAGTTTTG	AATAAGACCT	550
		CGTTGGTGTA	TGGTCAAATG	AATGAGCCGC	CCGGAGCAAG	ACTTCGTGTG	600
		GCGTTGACAG	GATTAACGGT	TGCTGAAAAC	TTTAGAGATA	AAGAAGGGCA	650
		AGATGTATTG	TTGTTTATCG	ACAATATCTT	CCGTTTCACA	CAAGCAGGAT	700
		CAGAAGTATC	GGCTCTATTG	GGAAGAATTC	CATCGGCAGT	AGGATATCAA	750
3	50	CCGAACTTAG	CGACAGAAAT	GGGAACTTTA	CAAGAAAGAA	TTACTTCTAC	800

AAAATCAGGA TCTATCACTT CGGTA

5	2) INFORMATION FOR SEQ ID NO: 302	
10	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 806 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear 	
	(ii) MOLECULE TYPE: Genomic DNA	
15	 (vi)ORIGINAL SOURCE: (A) ORGANISM: Fusobacterium necrophorum subsp. necrophorum (B) STRAIN: ATCC 25286 	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 302	
25	CAGCAACATT TAGGAAATAA TGTTGTCAGA ACAGTAGCAA TGGATTCAAC AGACGGATTA CTTCGGGGAA TGGAAGTGAG AGATACAGGA GTTCCCATTA CTGTTCCGGT AGGAAAAGGC GTTTTGGGAA GAATATTAAA TGTCTTAGGG GAGCCTGTGG ACGAAAAAGG TCCGATAGAG ACAGAAGAAT ATTTACCAAT ACATAGAGAA GCACCGAAAT TTGAAGAACA GGAAACGGTG ACAGAAATTT 30	50 50 50 50 50 50
30	GGAAAAACAG GCCTATTCGG AGGAGCCGGA GTAGGAAAAA CCGTTTTGAT TATGGAACTG ATCAATAATA TTGCAAAAGG TCATGGAGGA ATTTCTGTTT TTGCAGGAGT TGGAGAAAGA ACGAGAGAGG GAAGAGATCT ATACAACGAA ATGACAGAGT CCGGAGTTTT GAATAAAACT TCTTTGGTAT ATGGGCAAAT GAATGAGCCG CCCGGAGCAA GACTTCGAGT GGCTTTAACC GGACTTACTG	00 50 00 50
3 5.	GACAATATTT TCCGTTTCAC ACAAGCAGGT TCGGAAGTAT CGGCACTTTT 76 GGGGAGAATT CCTTCTGCAG TGGGATATCA ACCGAACTTG GCGACAGAAA TGGGAAGCTT ACAAGAAAGA ATTACTTCTA CAAAATCCGG TTCTATCACT 86	50 50 50 00
40		
	2) INFORMATION FOR SEQ ID NO: 303	
45	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 821 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear 	
50	(ii) MOLECULE TYPE: Genomic DNA	
55	<pre>(vi)ORIGINAL SOURCE: (A) ORGANISM: Fusobacterium nucleatum subsp. polymorg (B) STRAIN: ATCC 10953</pre>	hum
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 303	
5 0	GATGAATTGC CTGCAATATA TAATGCTTTA AAAGTAAAAT TAGAAGATAA GGAACTTGTT CTAGAAGTTG AACAACATCT TGGTAACAAT GTTGTAAGAA 10 CTGTTGCTAT GGATTCAACT GATGGATTAA AAAGAGGAAT GGAAGTTATA 15	
	-	

	CATACACCTA	AACCAATTAC	አርጥአርርአርጥጥ	COTALACOTO	mmamma amia	200
						200
	AATATTAAAT	GTTTTAGGAG	AACCTGTTGA	TAATCAAGGT	CCTATAAATG	250
	CTGAAACATT			CACCAGAATT	TGATGACTTA	300
	GAAACTGAAA	CTGAAATATT	TGAAACAGGA	ATAAAAGTTA	TAGACTTATT	350
5		ATTAAAGGTG		ATTATTTGGT		400
	TAGGAAAAAC	AGTTTTAATA	ATGGAACTTA	TCAACAACAT	TGCAAAAGGA	450
	CATGGAGGAA	TTTCAGTTTT	TGCAGGAGTT	GGAGAAAGAA	CAAGAGAAGG	500
	TAGAGACTTA					5 50
	CTCTTGTTTA					600
10	GCATTAACAG	GGCTTACTGT	TGCAGAAAAC	TTTAGAGATA	AAGATGGGCA	650
	AGATGTTCTT	CTATTTATAG	ATAATATATT	TAGATTTACA	CAAGCAGGTT	700
	CAGAAGTTTC	AGCTTTACTT	GGAAGAATAC	CATCAGCTGT	TGGATATCAA	750
	CCAAACCTAG	CAACTGAAAT	GGGTGCTTTA	CAAGAAAGAA	TAACATCTAC	800
	AAAATCTGGT	TCAATTACAT	C			821
15						

2) INFORMATION FOR SEQ ID NO: 304

- 20 (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 864 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: Genomic DNA
 - (vi)ORIGINAL SOURCE:

25

- (A) ORGANISM: Gardnerella vaginalis
- 30 (B) STRAIN: ATCC 49145
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 304

	TTCCCAGTTG	GCTATCTTCC	AGATATTTAT	AATGCTCTCA	AGGTTGATAT	50
35	CAACACCGTT	GGAAACACGG	AGGGAGATAC	CGTCCACGAG	ATTACATTGG	100
	AAGTTGAGCA	GCACCTTGGT	GATTCAACTG	TGCGAGCAGT	GGCACTTAAG	150
	CCTACGGACG	GCTTGGTCCG	TGGTGCTTTA	GTGCGAGATA	CTGGTGGCCC	200
	AATTTCTGTG	CCTGTTGGAG	ATGTTACAAA	AGGTCACGTT	TTTGACGTAA	250
	CTGGTAACAT	TTTAAACGCT	AAACCAGGCG	AAAACATTGA	GGTGACCGAG	300
40	CGCTGGCCAA	TCCACCGCAA	CCCACCTGCT	TTCGATCAGC	TTGAGTCTAA	350
	GACTCAAATG	TTTGAAACAG	GCATTAAGGT	TATCGATTTG	CTTACGCCTT	400
	ACGTTCAGGG	CGGAAAGATT	GGTCTGTTCG	GTGGTGCAGG	CGTTGGTAAA	450
	ACTGTGTTGA	TTCAGGAGAT	GATTCAGCGC	GTTGCACAGA	ACCACGGCGG	500
	TGTGTCTGTG	TTTGCTGGCG	TTGGCGAACG	TACTCGTGAG	GGTAACGATT	550
45	TGATTGGCGA	AATGGCTGAG	GCTGGCGTTT	TGGAGAAAAC	AGCGCTTGTC	600
	TTTGGTCAGA	TGGATGAGCC	TCCTGGGACT	CGTCTTCGTG	TGCCTCTTAC	650
	TGCTTTGACT	ATGGCTGAGT	ATTTCCGTGA	TGTTCAGAAT	CAGGATGTGT	700
	TGCTGTTTAT	CGACAACATC	TTCCGCTTTA	CTCAGGCAGG	TTCTGAGGTT	750
	TCCACGTTGC	TTGGTCGTAT	GCCTTCTGCA	GTTGGTTATC	AGCCAAACTT	800
50	GGCGGATGAA	ATGGGTGCGT	TGCAGGAGCG	CATTACTTCT	ACGCGCGGTC	850
	ATTCTATTAC	GTCG				864

55 2) INFORMATION FOR SEQ ID NO: 305

- (i) SEQUENCE CHARACTERISTICS:
 - (A). LENGTH: 848 bases
 - (B) TYPE: Nucleic acid
- 60 (C) STRANDEDNESS: Double

(D) TOPOLOGY: Linear

(ii) MOLECULE TYPE: Genomic DNA

5 (vi)ORIGINAL SOURCE:

10

30

35

- (A) ORGANISM: Gemella haemolysans
- (B) STRAIN: ATCC 10379
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 305

	TCGAATCAGG	GCATATGCCA	AATCTATTAA	ACGCTTTAGA	AGTTTACATA	50
	GAAAAAGGCG	ATGGGAAAAA	AGAAAAATTA	GTTCTTGAAG	TTTCTCTTGA	100
	AATTGGTGAT	AACGTAGTAA	GAACAATCGC	TATGTCATCT	ACTGATGGAT	150
	TAAATAGGGG	AGCAGAAGTA	GTAGATACAG	GAGCACCAAT	TACAGTTCCT	200
15	GTAGGTAACT	ACACATTAGG	TCGTGTGTTC	AACGTATTAG	GTGAAGCAGT	250
	TGACCACGGT	GAAGAAGCAG	GAGCAGAAGT	TCGTAAAGAT	TCAATTCACA	300
	AAGAAGCTCC	AACATTCGAT	GAATTATCAA	CTCACGTTGA	GGTTCTTGAA	350
	ACAGGTATTA	AAGTTATCGA	CTTACTTGCA	CCATATATTA	AAGGTGGTAA	400
	AATCGGTCTT	TTCGGTGGTG	CGGGAGTTGG	TAAAACGGTT	CTTATCCAAG	450
30	AACTTATCAA	CAACGTTGCG	CAACAACACG	GTGGATTATC	AGTATTCACA	5 0 0
	GGTGTAGGTG	AGCGTACTCG	TGAAGGAAAT	GACTTATACT	ATGAAATGAA	550
	AGATTCTGGT	GTTATTAACA	AAACAGCCAT	GGTATTCGGA	CAAATGAACG	600
	AACCACCAGG	TGCTCGTATG	CGTGTAGCAT	TAACAGGATT	AACAATGGCG	650
	GAATACTTCC	GTGATGAAGA	AGGACAAGAC	GTGCTTCTAT	TCATCGATAA	700
25	CATTTTCCGT	TTCACACAAG	CAGGTTCTGA	GGTTTCTGCG	TTATTAGGAC	750
	GTATGCCATC	AGCCGTTGGT	TACCAACCAA		AGAGATGGGA	800
	CGTTTACAAG	AACGTATAAC	ATCAACTAAA	AAAGGTTCTG	TTACATCT	848

2) INFORMATION FOR SEQ ID NO: 306

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 848 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: Genomic DNA

40
 (vi)ORIGINAL SOURCE:

- (A) ORGANISM: Gemella morbillorum
- (B) STRAIN: ATCC 27824
- 45 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 306

	TCGAATCAGG	GCATATGCCT	AATCTACTAA	ACGCTTTAGA	AGTTTATATA	50
	GAAAAAGGCG	ATGGAAAAAA	AGAAAAATTA	GTTCTTGAAG	TTTCTCTTGA	100
	AATCGGGGAT	AATGTCGTAA	GAACTATTGC	GATGTCATCT	ACTGATGGAT	150
50	TAAACAGAGG	GGCAGAAGTA	GTTGATACTG	GAGCGCCAAT	TACAGTGCCA	200
	GTAGGTAACT	ATACATTAGG	ACGTGTGTTC	AACGTATTAG	GTGAAGCAGT	250
	TGACCACGGA	GAAGAAGCTG	GAGCAGAAGT	TCAAAAAGAA	TCTATTCATA	300
	AAGAAGCTCC	AACTTTCGAA	GAATTATCAA	CACATGTTGA	GGTATTAGAA	350
	ACAGGTATTA	AAGTTATCGA	CCTTCTTGCA	CCATATATTA	AAGGTGGTAA	400
55	GATTGGACTA	TTCGGTGGTG	CTGGAGTTGG	GAAAACAGTT	CTTATCCAAG	450
	AACTTATTAA	CAACGTAGCA	CAACAACACG	GAGGACTTTC	AGTATTTACT	500
			TGAGGGTAAC			550
	AGACTCTGGA	GTTATTAATA	AAACTGCCAT	GGTATTTGGT	CAAATGAATG	600
			CGTGTTGCCT			650
50	GAGTACTTCC	GTGATGAAGA	AGGACAAGAC	GTACTATTAT	TTATCGATAA	700

	TATCTTCCGT TTCACACAAG CAGGGTCTGA GGTATCTGCA TTATTAGGGC GTATGCCTTC AGCCGTTGGA TATCAACCAA CTCTTGCAAC AGAAATGGGA CGTCTTCAAG AACGTATTAC ATCAACTAAA AAAGGATCTG TTACATCT	750 800 848
5	·	
	2) INFORMATION FOR SEQ ID NO: 307	
10	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 813 bases(B) TYPE: Nucleic acid(C) STRANDEDNESS: Double(D) TOPOLOGY: Linear	
15	(ii) MOLECULE TYPE: Genomic DNA	
20	<pre>(vi)ORIGINAL SOURCE: (A) ORGANISM: Haemophilus ducreyi (B) STRAIN: DSM 8925</pre>	
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 307	
25	GATGCAGTAC CAAAAGTATA TGATGCTTTA AAAGTTGAAT CAGGTTTAAC CTTAGAAGTT CAACAACAAT TAGGTGGTGG TTTAGTACGT TGTATCGCAT TAGGTACCTC AGATGGTTTA AAGCGTAGCT TAAAGGTTGT AAATACAGGT AACCCTATTC AAGTTCCTGT AGGCACTAAA ACATTAGGCC GTATTATGAA TGTATTAGGC GAACCAATTG ATGAAAAAGG ACCTATTAGC GAAGAAGCTC	50 100 150 200 250
30	GTTGGGATAT TCATCGTGCG GCTCCAAATT ATGAAGAACA GTCAAATAGT ACTGAATTAC TTGAAACCGG TATCAAAGTT ATTGACTTAA TTTGTCCATT TGCAAAAGGT GGTAAAGTCG GCTTATTTGG TGGAGCTGGT GTAGGTAAAA CCGTTAATAT GATGGAATTG ATCCGTAATA TTGCTATTGA GCACTCAGGT TATTCGGTTT TTGCTGGTGT AGGTGAGCGT ACTCGTGAAG GTAATGATTT	300 350 400 450 500
35	TTATCATGAA ATGACGGATT CTAATGTATT AGATAAAGTA TCACTAGTAT ATGGTCAAAT GAATGAACCA CCAGGTAACC GCCTACGTGT TGCGTTAACA GGTTTAACTA TGGCTGAAAA ATTCCGTGAT GAAGGTCGTG ATGTATTATT TTTCGTAGAT AATATTTATC GTTATACTTT AGCCGGTACA GAAGTTTCTG CTTTATTAGG CCGTATGCCA TCAGCGGTAG GTTATCAACC AACCCTTGCA GAAGAATGG GTGTATTACA AGAACGTATT ACCTCAACTA AAACTGGTTC	550 600 650 700 750 800
10	AATCACGGCA GTA	813
	2) INFORMATION FOR SEQ ID NO: 308	
15	(i)SEQUENCE CHARACTERISTICS: (A) LENGTH: 826 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double	
50	(D) TOPOLOGY: Linear	
30	(ii) MOLECULE TYPE: Genomic DNA	
5 5	<pre>(vi)ORIGINAL SOURCE: (A) ORGANISM: Haemophilus haemolyticus (B) STRAIN: ATCC 33390</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 308	
50	TGAATTTCCA CAAGATGCAG TGCCAAAAGT TTACGATGCA TTAAAAGTTG AATCAGGTTT AACACTTGAG GTGCAACAAC AATTAGGTGG CGGTGTGGTA 184	50 100

	CGTTGTATCG	CATTAGGTGC	TTCTGACGGT	TTAAAACGTG	GTTTAAAAGT	150
	AGAAAACACG	AATGATCCGA	TTCAAGTACC	GGTAGGCACA	AAAACCCTTG	200
	GTCGTATCAT	GAATGTATTG	GGTGAACCAA	TTGACGAACA	AGGTCCAATC	250
	GGTGAAGAAG	AGCGTTGGGC	TATCCATCGT	TCTGCACCAA	GCTATGAAGA	300
5	ACAATCAAAC	AGTACGGAAT	TATTAGAGAC	TGGTATCAAA	GTTATCGACT	350
	TAATTTGTCC	ATTCGCAAAA	GGTGGTAAAG	TTGGTCTATT	CGGTGGTGCG	400
	GGTGTAGGTA	AAACCGTTAA	CATGATGGAA	TTAATCCGTA	ACATCGCGAT	450
	CGAGCACTCA	GGTTACTCCG	TATTTGCGGG	TGTAGGTGAA	CGTACTCGTG	500
	AAGGTAACGA	CTTCTATCAT	GAAATGAAAG	ATTCTAACGT	ATTAGATAAA	550
10	GTATCTTTGG	TTTATGGTCA	GATGAATGAG	CCACCAGGTA	ACCGTTTACG	600
	TGTTGCGTTA	ACTGGTTTAA	CCATGGCAGA	AAAATTCCGC	GATGAAGGTC	650
	GTGATGTATT	ATTCTTCGTG	GATAATATCT	ATCGTTATAC	CCTTGCTGGT	700
	ACGGAAGTAT	CTGCGTTATT	AGGTCGTATG	CCATCTGCGG	TAGGTTACCA	750
	ACCAACTCTT	GCTGAAGAAA	TGGGTGTGTT	ACAAGAACGT	ATCACTTCAA	. 800
15	CCAAAACAGG	TTCTATTACA	TCTGTA			826

2) INFORMATION FOR SEQ ID NO: 309

20

25

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 809 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
- (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: Genomic DNA
- (vi)ORIGINAL SOURCE:
- (A) ORGANISM: Haemophilus parahaemolyticus
 - (B) STRAIN: ATCC 10014
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 309

35	GATGCAGTAC	CAAAAGTATA	TGATGCGTTA	AAAGTTGAAT	CAGGTTTAAC	50
	GCTTGAAGTT	CAACAACAAT	TAGGCGGTGG	CTTAGTGCGC	TGTATCGCAT	100
	TAGGTACGTC	TGATGGTTTA	AAACGTGGCT	TAAAAGTAGA	AAATACAGGC	150
	AACCCAATTG	AAGTGCCAGT	GGGCACTAAA	ACCCTTGGTC	GTATTATGAA	200
	CGTATTGGGT	GAGCCGATTG	ACGAAAAAGG	TCCTATCGGT	GAAGAAGCAC	250
40	GCTGGGCAAT	CCACCGTGCA	GCACCAAGCT	ACGAAGAGCA	ATCAAATAGC	300
	ACGGAATTAC	TCGAAACAGG	TATCAAAGTT	ATCGACTTAA	TCTGCCCATT	350
	CGCAAAAGGG	GGTAAAGTTG	GTTTATTTGG	TGGTGCAGGT	GTAGGTAAAA	400
	CCGTAAATAT	GATGGAGTTA	ATCCGTAACA	TCGCGATCGA	ACACTCTGGT	450
	TACTCTGTAT	TTGCAGGGGT	AGGTGAGCGT	ACTCGTGAAG	GTAATGACTT	500
45	CTACCACGAA	ATGACAGACT	CTAACGTATT	AGATAAAGTA	TCGTTAGTGT	550
	ATGGTCAAAT	GAACGAACCA	CCAGGTAACC	GTTTACGCGT	AGCTTTAACA	600
	GGCTTAACCA	TGGCGGAAAA	ATTCCGCGAT	GAAGGTCGTG	ACGTATTATT	650
	CTTCGTCGAT	AACATCTACC	GTTATACCCT	AGCAGGTACG	GAAGTGTCAG	700
	CACTTCTCGG	TCGTATGCCA	TCTGCGGTAG	GTTATCAGCC	AACCTTAGCA	750
50	GAAGAAATGG	GTGTATTACA	AGAGCGTATC	ACTTCAACCA	AAACTGGTTC	800
	TATCACCTC					809

- 55 2) INFORMATION FOR SEQ ID NO: 310
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 824 bases
 - (B) TYPE: Nucleic acid
- 60 (C) STRANDEDNESS: Double

(D) TOPOLOGY: Linear

(ii) MOLECULE TYPE: Genomic DNA

5 (vi)ORIGINAL SOURCE:

10

30

35

- (A) ORGANISM: Haemophilus parainfluenzae
- (B) STRAIN: ATCC 7901
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 310

	CGAATTTCCA	CAAGATGCAG	TACCAAAAGT	TTATGATGCA	TTAAAAGTTG	50
	AATCGGGTTT	AACCCTTGAA	GTTCAACAAC	AATTAGGTGG	TGGTGTGGTA	100
	CGTTGTATCG	CACTGGGAGC	TTCTGACGGT	TTAAAACGCA	GTTTAAGCGT	150
	TGAAAATACC	AATAAACCAA	TTTCAGTACC	GGTTGGTGTA	AAAACTCTCG	200
15	GTCGTATTAT	GAACGTATTG	GGCGAACCGA	TTGATGAAAG	AGGTCCTATC	250
	GGTGCGGAAG	AAGAATGGGC	AATTCACCGT	TCTACTCCAA	GTTATGAAGA	300
	ACAGTCCAAC	AGTACCGAAT	TATTAGAAAC	CGGTATCAAA	GTTATCGACT	350
	TAATTTGTCC	ATTCGCGAAG	GGTGGTAAAG	TTGGTTTATT	CGGTGGTGCG	400
	GGTGTAGGTA	AGACCGTAAA	TATGATGGAA	TTAATCCGTA	ATATTGCGAT	450
20	TGAGCACTCA	GGTTACTCCG	TATTTGCCGG	TGTAGGTGAG	CGTACCCGTG	500
	AAGGTAACGA	CTTCTACCAT	GAAATGACAG	AATCTAACGT	ATTAGACAAA	550
	GTATCCCTAG	TTTACGGACA	AATGAATGAG	CCGCCGGGTA	ACCGTTTACG	600
	TGTTGCTTTA	ACCGGTTTAA	CCATGGCAGA	AAAATTCCGT	GACGAAGGTC	650
	GTGATGTATT	ATTCTTCGTG	GATAACATCT	ATCGTTATAC	CCTTGCAGGG	700
25	ACTGAAGTAT	CGGCACTTTT	AGGCCGTATG	CCATCAGCGG	TAGGTTATCA	750
	GCCGACACTT	GCAGAAGAAA	TGGGTGTGTT	ACAAGAACGT	ATTACATCAA	800
	CCAAAACAGG	TTCTATTACT	TCTG			824

2) INFORMATION FOR SEQ ID NO: 311

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 811 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: Genomic DNA

- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Hafnia alvei
 - (B) STRAIN: ATCC 13337
- 45 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 311

	GCCGTGCCTA	AAGTGTATAA	CGCACTTGAG	GTGAAAGGCG	GTGCCACTAA	50
	ACTGGTACTG	GAAGTTCAGC	AGCAGCTAGG	CGGCGGCGTT	GTACGCTGTA	100
	TCGCTATGGG	TACTTCTGAC	GGTCTGCGTC	GCGGACTGGA	CGTTGTTGAC	150
50	CTGGAGCACC	CGATTGAAGT	CCCAGTAGGT	AAAGCGACCT	TAGGCCGCAT	200
	TATGAACGTA	CTGGGTGAGC	CAATTGATAT	GAAGGGTGAT	ATCGGCGAAG	250
	AAGATCGCTG	GGCTATTCAC	CGTGAAGCTC	CAAGCTACGA	AGAACTGTCT	300
	AACTCGCAAG	AACTGCTGGA	AACTGGTATC	AAGGTAATGG	ACCTGATTTG	350
	TCCGTTCGCT	AAGGGCGGTA	AAGTTGGTCT	GTTCGGTGGT	GCGGGTGTTG	400
55	GTAAAACAGT	AAACATGATG	GAGCTGATCC	GTAACATCGC	GATCGAGCAC	450
	TCAGGTTACT	CTGTATTTGC	CGGCGTGGGT	GAACGTACTC	GTGAGGGTAA	500
	CGACTTCTAC	CACGAAATGA	CCGACTCCAA	CGTATTGGAC	AAAGTATCAC	550
	TGGTTTATGG	CCAGATGAAC	GAGCCACCAG	GAAACCGTCT	GCGCGTTGCG	600
	CTGACCGGTC	TGACTATGGC	TGAGAAGTTC	CGTGACGAAG	GTCGTGACGT	650
60	ACTGCTGTTC	ATCGATAACA	TCTACCGTTA	TACCTTGGCC	GGTACCGAAG	700

	TATCTGCACT GTTGGGTCGT ATGCCTTCTG CGGTAGGTTA TCAGCCAACG CTGGCGGAAG AGATGGGTGT TCTGCAAGAA CGTATCACCT CGACCAAAAC GGGTTCAATC A	750 800 811
5		
	2) INFORMATION FOR SEQ ID NO: 312	
10	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 831 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear 	
15	(ii) MOLECULE TYPE: Genomic DNA	
20	<pre>(vi)ORIGINAL SOURCE: (A) ORGANISM: Kingella kingae (B) STRAIN: ATCC 23330 (xi)SEQUENCE DESCRIPTION: SEQ ID NO: 312</pre>	
25	GCGATGCTAT TCCACGCGTT TACGATGCGT TGAAACTGGT TGATGTGGAC TTGACATTAG AAGTGCAACA ACAACTGGGC GATGGCGTAG TGCGTACCAT TGCGATGGGT AGTACCGATG GTTTGAAACG CGGCTTAGCC GTGAACAACA CAGGCGCACC TATTACAGTG CCTGTTGGTA AAGCAACATT GGGTCGTATT ATGGACGTAT TGGGTAATCC TGTTGATGAA GCAGGTCCAA TTGGTTCTGA	50 100 150 200 250
30	CCAAACGCGT GCTATTCACC AACCAGCTCC TAAATTTGAT GAACTGTCTA GCGCAACCGA ATTGCTGGAA ACAGGCATCA AAGTGATTGA CTTGCTTTGC CCATTTGCAA AAGGTGGTAA AGTAGGTTTG TTTGGTGGTG CAGGTGTGGG CAAAACTGTG AACATGATGG AGTTGATTAA CAACATTGCC AAAGCGCACA GTGGTTTGTC TGTATTTGCA GGCGTGGGTG AACGTACTCG CGAAGGTAAT GACTTCTATC ACGAGATGAA AGATTCTAAC GTGTTGGATA AAGTTGCCAT	300 350 400 450 500 550
35	GGTGTATGGT CAAATGAATG AACCTCCTGG CAACCGTTTG CGCGTTGCAT TGACTGGTTT GTCTATGGCA GAACACTTCC GTGATGAAAA AGACGAAAAT GGCAAAGGTC GCGATGTATT GTTCTTTGTG GACAACATCT ATCGCTACAC ATTGGCAGGT ACAGAAGTAT CGGCATTGCT GGGTCGTATG CCCTCTGCGG TAGGTTATCA ACCAACATTG GCAGAAGAAA TGGGTCGTTT GCAAGAGCGT	600 650 700 750 800
1 0	ATTACTTCAA CGCAAACAGG TTCGATTACT T	831
	2) INFORMATION FOR SEQ ID NO: 313	
15		
50	(ii) MOLECULE TYPE: Genomic DNA	
55	(vi)ORIGINAL SOURCE: (A) ORGANISM: Klebsiella pneumoniae subsp. ozaenae (B) STRAIN: ATCC 11296	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 313	50
50	ATGCCGTACC ACGCGTGTAC GAAGCCCTTG AGGTACAGAA TGGTAATGAA GTTCTGGTGC TGGAAGTTCA GCAGCAGCTG GGCGGCGGTA TCGTACGTAC 187	100

	ACCTCGAGCA ATCATGAACG	GGTTCTTCTG CCCGATCGAA TACTGGGTCA	GTCCCGGTAG ACCGGTTGAC	GTAAAGCAAC ATGAAAGGCG	GATGTAAÀAG GCTGGGTCGT ACATCGGCGA	150 200 250
5	= '	TGGGCTATCC GGAACTGCTG	ACCGCGCGCC GAAACCGGCA		GAAGAGCTGT CGACCTGATG	300 350
~		CCAAGGGCGG		_	GTGCGGGTGT	400
	AGGTAAAACT	GTAAACATGA	TGGAGCTGAT	CCGTAACATC	GCGATCGAGC	450
	ACTCCGGTTA	CTCTGTGTTT	GCGGGCGTAG	GTGAGCGTAC	TCGTGAGGGT	500
	AACGACTTCT	ACCACGAAAT	GACCGACTCC	AACGTTATCG	ATAAAGTATC	550
10	CCTGGTGTAC	GGCCAGATGA	ACGAGCCGCC	GGGAAACCGT	CTGCGCGTTG	600
	CGCTGACCGG	CCTGACCATG	GCTGAGAAAT	TCCGTGACGA	AGGTCGTGAC	650
	GTACTGCTGT	TCGTCGATAA	CATCTATCGT	TACACCCTGG	CCGGTACTGA	700
	AGTATCCGCG	CTGCTGGGTC	GTATGCCTTC	AGCGGTAGGT	TATCAGCCGA	750
	CCCTGGCGGA	AGAGATGGGC	GTTCTGCAGG	AACGTATCAC	CTCCACCAAA	800
15	ACCGGTTCTA	TC				812

2) INFORMATION FOR SEQ ID NO: 314

30

30

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 812 bases
- (B) TYPE: Nucleic acid
- (C) STRANDEDNESS: Double
- 25 (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: Genomic DNA

(vi) ORIGINAL SOURCE:

- (A) ORGANISM: Klebsiella ornithinolytica
- (B) STRAIN: ATCC 31898

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 314

3 E	A MOOOOMA OO	CCCCCCCCC	C N THO C THO C THE C	7000707077	maama amaa a	EA
35	ATGCCGTACC	GCGCGIGIAC	GAIGCICITG	AGGTACAGAA	IGGIAATGAG	50
	AGCCTGGTGC	TGGAAGTTCA	GCAGCAGCTC	GGCGGTGGTA	TCGTACGTGC	100
	TATCGCCATG	GGTTCTTCCG	ACGGTCTGCG	TCGTGGTCTG	GAAGTTAAAG	150
	ACCTTGAGCA	CCCGATCGAA	GTCCCGGTTG	GTAAAGCAAC	GCTGGGTCGT	200
	ATCATGAACG	TGCTGGGTCA	GCCAATCGAT	ATGAAAGGCG	ACATCGGCGA	250
40	AGAAGAGCGT	TGGGCTATTC	ACCGTGCAGC	TCCGTCCTAT	GAAGAGCTGT	300
	CCAGCTCTCA	GGAACTGCTG	GAAACCGGCA	TCAAAGTTAT	CGACCTGATG	350
	TGTCCGTTCG	CTAAGGGCGG	TAAAGTTGGT	CTGTTCGGTG	GTGCGGGTGT	400
	AGGTAAAACC	GTAAACATGA	TGGAGCTGAT	CCGTAACATC	GCGATCGAGC	450
•	ACTCCGGTTA	CTCCGTGTTT	GCGGGCGTAG	GTGAACGTAC	TCGTGAGGGT	500
4 5	AACGACTTCT	ACCACGAAAT	GACCGACTCC	AACGTTCTGG	ATAAAGTATC	550
	CCTGGTTTAT	GGCCAGATGA	ACGAGCCGCC	GGGAAACCGT	CTGCGCGTTG	600
	CTCTGACCGG	CCTGACCATG	GCTGAGAAAT	TCCGTGACGA	AGGTCGTGAC	650
	GTTCTGCTGT	TCGTCGATAA	CATCTATCGT	TATACCCTGG	CCGGTACTGA	700
	AGTATCCGCA	CTGCTGGGTC	GTATGCCTTC	AGCGGTAGGT	TATCAGCCGA	750
50	CCCTGGCGGA	AGAGATGGGT	GTTCTGCAGG	AACGTATCAC	CTCCACCAAA	800
	ACCGGTTCTA	TC				812

55 2) INFORMATION FOR SEQ ID NO: 315

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 813 bases
- (B) TYPE: Nucleic acid
- 50 (C) STRANDEDNESS: Double

(D) TOPOLOGY: Linear

(ii) MOLECULE TYPE: Genomic DNA

- 5 (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Klebsiella oxytoca
 - (B) STRAIN: ATCC 33496
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 315

	GTACCGCGCG	TGTACGAGGC	TCTTGAGGTA	CAAAATGGTA	GTGAGAATCT	50
	GGTGCTGGAA	GTTCAGCAGC	AGCTCGGCGG	CGGTATTGTT	CGTACCATCG	100
	CCATGGGTTC	TTCCGACGGT	CTGCGTCGCG	GTCTGGAAGT	CAAAGACCTC	150
	GAGCATCCGA	TCGAAGTCCC	GGTAGGTAAA	GCAACGCTGG	GTCGTATCAT	200
15	GAACGTACTG	GGCCAACCGG		AGGCGACATC	GGCGAAGAAG	250
	AGCGTTGGGC	GATTCACCGC	GCAGCGCCTT			300
	TCTCAGGAAC	TGCTGGAAAC		GTTATCGACC	TGATGTGTCC	350
	GTTTGCGAAG	GGCGGTAAAG	TTGGTCTGTT	CGGTGGTGCG	GGTGTAGGTA	400
	AAACCGTAAA	CATGATGGAG	CTGATCCGTA	ACATCGCGAT		450
20	GGTTACTCCG	TGTTTGCGGG	CGTAGGTGAA	CGTACTCGTG	AGGGTAACGA	500
	CTTCTACCAC	GAAATGACCG	ACTCCAACGT	TATCGATAAA	GTATCCCTGG	550
	TGTATGGCCA	GATGAACGAG	CCGCCGGGAA	ACCGTCTGCG	CGTTGCGCTG	600
	ACCGGCCTGA	CCATGGCTGA	GAAGTTCCGT	GACGAAGGTC	GTGACGTTCT	650
	GCTGTTCGTC	GATAACATCT	ATCGTTACAC	CCTGGCCGGT	ACTGAAGTAT	700
25	CCGCACTGCT	GGGTCGTATG	CCTTCAGCGG	TAGGTTACCA	GCCGACTCTG	750
	GCGGAAGAGA	TGGGCGTTCT	GCAGGAACGT	ATCACCTCCA	CCAAAACGGG	800
	TTCTATCACT	TCC				813

30

35

10

- 2) INFORMATION FOR SEQ ID NO: 316
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 822 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: Genomic DNA

- (vi)ORIGINAL SOURCE:
 - (A) ORGANISM: Klebsiella planticola
 - (B) STRAIN: ATCC 33531
- 45 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 316

	GATGCCGTAC	CGCGCGTGTA	CGATGCTCTT	GAGGTACAGA	ATGGTAATGA	50
	GAGCCTGGTG	CTGGAAGTTC	AGCAGCAGCT	CGGCGGTGGT	ATCGTACGTG	100
	CTATCGCCAT	GGGTTCTTCT	GACGGTCTGC	GTCGTGGTCT	GGAAGTTAAA	150
50	GACCTTGAGC	ACCCGATCGA	AGTCCCGGTT	GGTAAAGCAA	CGCTGGGTCG	200
	TATCATGAAC	GTGCTGGGTC	AGCCGATCGA	TATGAAAGGC	GACATCGGCG	250
	AAGAAGAGCG	TTGGGCTATT	CACCGCGCAG	CTCCGTCTTA	TGAAGAGCTG	300
	TCCAGTTCTC	AGGAACTGCT	GGAAACCGGC	ATCAAAGTTA	TCGACCTGAT	350
	GTGTCCGTTC	GCTAAGGGCG	GTAAAGTAGG	TCTGTTCGGT	GGTGCGGGCG	400
55	TAGGTAAAAC	CGTAAACATG	ATGGAGCTGA	TCCGTAACAT	CGCGATCGAG	450
	CACTCCGGTT	ACTCCGTGTT	TGCGGGCGTC	GGTGAACGTA	CTCGTGAGGG	500
	TAACGACTTC	TACCACGAAA	TGACCGACTC	CAACGTTCTG	GATAAAGTAT	550
	CCCTGGTTTA	TGGCCAGATG	AACGAGCCGC	CGGGAAACCG	TCTGCGCGTT	600
	GCTCTGACCG	GCCTGACCAT	GGCTGAGAAA	TTCCGTGACG	AAGGTCGTGA	650
50	CGTTCTGCTG	TTCGTCGATA	ACATCTATCG	TTATACCCTG	GCCGGTACTG	700

	WO 01/25004	
	ACCCTGGCGG AAGAGATGGG TGTTCTGCAG GAACGTATCA CCTCCACCAA	750 800 822
5		
	2) INFORMATION FOR SEQ ID NO: 317	
10	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 785 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear 	
15	(ii) MOLECULE TYPE: Genomic DNA	
20	<pre>(vi)ORIGINAL SOURCE: (A) ORGANISM: Klebsiella pneumoniae subsp. pneumoni (B) STRAIN: ATCC 13883</pre>	ae
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 317	
25	AGAATGGTAA TGAAGTTCTG GTGCTGGAAG TTCAGCAGCA GCTGGGCGGC GGTATCGTAC GTACCATCGC CATGGGTTCT TCTGATGGTC TGCGCCGCGG TCTGGATGTA AAAGACCTCG AGCACCCGAT CGAAGTCCCG GTAGGTAAAG CAACGCTGGG TCGTATCATG AACGTACTGG GTCAACCGGT TGACATGAAA GGCGACATCG GCGAAGAAGA GCGTTGGGCT ATCCACCGCG CGGCACCGTC	50 100 150 200 250
30	CTATGAAGAG CTGTCCAGCT CTCAGGAACT GCTGGAAACC GGCATCAAAG TTATCGACCT GATGTGTCCG TTCGCCAAGG GCGGTAAAGT TGGTCTGTTC GGCGGTGCGG GTGTAGGTAA AACTGTAAAC ATGATGGAGC TGATCCGTAA CATCGCGATC GAGCACTCCG GTTACTCTGT GTTTGCGGGC GTAGGTGAGC GTACTCGTGA GGGTAATGAC TTCTACCACG AAATGACCGA CTCCAACGTT ATCGATAAAG TATCCCTGGT GTACGGCCAG ATGAACGAGC CGCCGGGAAA	300 350 400 450 500 550
35	CCGTCTGCGC GTTGCGCTGA CCGGCCTGAC CATGGCTGAG AAATTCCGTG ACGAAGGTCG TGACGTACTG CTGTTCGTCG ATAACATCTA TCGTTACACC CTGGCCGGTA CTGAAGTATC CGCACTGCTG GGTCGTATGC CTTCAGCGGT AGGTTATCAG CCGACCCTGG CGGAAGAGAT GGGCGTTCTG CAGGAACGTA TCACCTCCAC CAAAACCGGT TCTATCACCT CCGTA	600 650 700 750 785
10		
	2) INFORMATION FOR SEQ ID NO: 318	
15	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 759 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear 	
50	(ii) MOLECULE TYPE: Genomic DNA	
55	<pre>(vi)ORIGINAL SOURCE: (A) ORGANISM: Kluyvera ascorbata (B) STRAIN: ATCC 33433 (xi)SEQUENCE DESCRIPTION: SEQ ID NO: 318</pre>	
50	CTGGTGCTGG AAGTTCAGCA GCAGCTCGGC GGCGGTATCG TACGTWCCAT CGCTATGGGT TCTTCCGACG GTCTGCGTCG CGGTCTGGAT GTTAAAGATC TCGAGCACCC AATCGAAGTT CCGGTMGGTA AAGCAACMCT GGGTCGTATC 190	50 100 150

	ATGAACGTAC	TGGGTCAKCC	AGTMGACATG	AAAGGCGACA	TCGGTGAAGA	200
	AGAGCGTTGG	GCTATCCACC	GCGCTGCACC	TTCCTACGAA	GAGCTGTCTA	250
	GCTCTCAGGA	ATTGCTGGAA	ACCGGTATCA	AAGTTATCGA	CCTGATGTGT	300
	CCGTTCGCTA	AGGGCGGTAA	AGTCGGTCTG	TTCGGTGGTG	CSGGTGTTGG	350
5	TAAAACCGTA	AACATGATGG	AGCTGATCCG	TAACATCGCG	ATCGAGCACT	400
	CCGGTTACTC	CGTGTTTGCG	GGCGTAGGTG	AACGTACTCG	TGAGGGTAAC	450
		ACGAAATGAC				500
	GGTATATGGC	CAGATGAACG	AGCCACCGGG	AAACCGTCTG	CGCGTTGCTC	550
	TGACCGGTCT	GACCATGGCT		GTGACGAAGG		600
10	CTGCTGTTCG	TCGATAACAT	CTATCGTTAC	ACCCTGGCCG	GTACTGAAGT	650
	ATCTGCWCTG		TGCCTTCAGC			700
	TGGCGGAAGA	GATGGGCGTT	CTGCAGGAAC	GTATCACCTC	CACCAAGACC	750
	GGTTCTATC					759

15

30

- 2) INFORMATION FOR SEQ ID NO: 319
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 831 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
- 25 (ii) MOLECULE TYPE: Genomic DNA
 - (vi)ORIGINAL SOURCE:
 - (A) ORGANISM: Kluyvera cryocrescens
 - (B) STRAIN: ATCC 33435

30

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 319

	TTCCCTCAGG	ATGCCGTACC	GCGTGTGTAC	GAAGCCCTTG	AGGTTCAGAA	50
	TGGTAATGAA	GTGCTGGTGC	TGGAAGTTCA	GCAGCAGCTC	GGCGGCGGTA	100
35	TCGTACGTAC	CATCGCTATG	GGTTCTTCCG	ACGGTCTGCG	TCGTGGTCTG	150
	GATGTAAAAG	ACCTCGAGCA	CCCGATCGAA	GTCCCGGTAG	GTAAAGCAAC	200
	ACTGGGTCGT	ATCATGAACG	TACTGGGCCA	ACCGGTAGAC	ATGAAAGGCG	250
	ACATCGGTGA	AGAAGAACGT	TGGGCTATCC	ACCGTGCAGC	ACCTTCCTAC	300
	GAAGAGCTGT	CAAGCTCTCA	GGAACTGCTG	GAAACCGGCA	TCAAAGTTAT	350
10	CGACCTGATG	TGTCCGTTTG	CGAAGGGCGG	TAAAGTTGGT	CTGTTCGGTG	400
	GTGCGGGTGT	AGGTAAAACC	GTAAACATGA	TGGAGCTTAT	TCGTAACATC	450
	GCGATTGAGC	ACTCCGGTTA	TTCTGTGTTT	GCGGGCGTAG	GTGAACGTAC	500
	TCGTGAGGGT	AACGACTTCT	ACCACGAAAT	GACCGACTCC	AACGTTATCG	550
	ATAAAGTTTC	CCTGGTTTAC	GGCCAGATGA	ACGAGCCACC	AGGAAACCGT	600
1 5'	CTGCGCGTTG	CGCTGACTGG	TCTGACTATG	GCTGAGAAGT	TCCGTGACGA	650
	AGGTCGCGAC	GTACTGCTGT	TCGTCGATAA	CATCTATCGT	TACACCCTGG	700
	CCGGTACAGA	AGTATCTGCA	CTGCTGGGTC	GTATGCCTTC	AGCGGTAGGT	7 50
	TACCAGCCGA	CTCTGGCGGA	AGAGATGGGC	GTTCTGCAGG	AACGTATCAC	800
	CTCCACCAAA	ACCGGTTCTA	TCACCTCCGT	A		831
50						

2) INFORMATION FOR SEQ ID NO: 320

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 810 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear

(ii) MOLECULE TYPE: Genomic DNA

(vi) ORIGINAL SOURCE:

- (A) ORGANISM: Kluyvera georgiana
- (B) STRAIN: ATCC 51603

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 320

	GCCGTACCGC	GCGTGTACGA	AGCCCTTGAG	GTACAGAATG	GTAATGAAGT	50
10	GCTGGTGCTG	GAAGTTCAGC	AGCAGCTCGG	TGGCGGTATC	GTGCGTACCA	100
	TCGCCATGGG	TTCCTCCGAC	GGTCTGCGTC	GCGGTCTGGA	AGTTAAAGAT	150
	CTCGAGCACC	CGATCGAAGT	TCCGGTAGGT	AAAGCAACAC	TGGGTCGTAT	200
	CATGAACGTA	CTGGGTCACC	CGGTAGACAT	GAAAGGCGAC	ATCGGTGAAG	250
	AAGAGCGTTG	GGCTATCCAC	CGCGCTGCGC	CTTCCTACGA	AGAGCTGTCC	300
15	AGCTCTCAGG	AACTGCTGGA	AACCGGTATC	AAAGTTATCG	ACCTGATGTG	350
	TCCGTTCGCG	AAGGGCGGTA	AAGTCGGTCT	GTTCGGCGGT	GCGGGTGTTG	400
	GTAAAACCGT	AAACATGATG	GAGCTGATCC	GTAACATCGC	GATCGAGCAC	450
	TCCGGTTACT	CTGTGTTTGC	GGGCGTAGGT	GAACGTACTC	GTGAGGGTAA	500
	CGACTTCTAC	CACGAAATGA	CCGACTCCAA	CGTTATCGAT	AAAGTATCCC	550
20	TGGTGTATGG	CCAGATGAAC	GAGCCGCCGG	GAAACCGTCT	GCGCGTTGCG	600
	CTGACCGGCC	TGACCATGGC	TGAGAAATTC	CGTGACGAAG	GTCGTGACGT	650
	ACTGCTGTTC	GTCGATAACA	TCTATCGTTA	CACCCTGGCC	GGTACTGAAG	700
	TATCTGCACT	GCTGGGTCGT	ATGCCTTCAG	CGGTAGGTTA	CCAGCCGACT	7 50
	CTGGCGGAAG	AGATGGGCGT	TCTGCAGGAA	CGTATCACCT	CCACCAAGAC	800
25	CGGTTCTATC					810

2) INFORMATION FOR SEQ ID NO: 321

30

40

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 834 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
- 35 (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: Genomic DNA
 - (vi)ORIGINAL SOURCE:
 - (A) ORGANISM: Lactobacillus acidophilus
 - (B) STRAIN: ATCC 4356
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 321

45	TCGATAAGAA	TTTACCTGAT	ATTAACAACG	CCTTACGTGT	AATCAAGTCC	50
	GAAGATGAAA	GCATCGTTCT	TGAAGTTACA	CTTGAACŢCG	GTGATGGTGT	100
	TTTAAGAACA	ATCGCCATGG	AATCTACCGA	TGGTCTTCGT	CGTGGTATGA	150
	AAGTCGAAGA	TACTGGCGCT	CCAATTTCAG	TTCCAGTTGG	AGAAGACACT	200
	TTAGGTCGTG	TGTTTAACGT	TTTAGGACAG	CCTATTGATG	GTGGTCCAGC	250
50	CTTTCCAAAG	GATCACCCAC	GTGAGGGTAT	CCACAAGGAA	GCACCTAAAT	300
	ATGAAGATTT	AACTACTAGT	CGTGAAATTC	TTGAAACTGG	TATCAAGGTT	350
	ATCGACCTTC	TTGAACCATA	TGTTCGTGGT	GGTAAAGTTG	GTTTGTTTGG	400
	TGGTGCCGGT	GTTGGTAAAA	CTACTATTAT	TCAAGAATTA	ATTCACAACA	450
	TCGCTCAAGA	ACACGGTGGT	ATTTCCGTAT	TTACTGGTGT	TGGTGAAAGA	500
55	ACTCGTGAAG	GTAATGACCT	TTACTTTGAA	ATGAAAGCTT	CAGGCGTTTT	550
	AAGTAAGACT	GCCATGGTAT	TTGGTCAGAT	GAACGAGCCG	CCTGGTGCCA	600
	GAATGCGTGT	TGCATTAACC	GGTTTGACAC	TTGCTGAATA	CTTTAGAGAT	650
	GTTGAAGGTC	AAGACGTATT	GCTCTTTATT	GACAATATCT	TTAGATTTAC	700
	TCAGGCTGGT	TCAGAGGTAT	CTGCTTTGCT	TGGTCGTATG	CCAAGTGCCG	750
50	TAGGTTATCA	GCCAACTTTG	GCAACAGAAA	TGGGTCAATT	GCAGGAAAGA	800

ATTACTTCTA CTAAGAAGGG TTCAATTACT TCAA

5	2) INFORMATION FOR SEQ ID NO: 322	
10	(i)SEQUENCE CHARACTERISTICS: (A) LENGTH: 824 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
15	(vi)ORIGINAL SOURCE:(A) ORGANISM: Legionella pneumophila subsp. pneumophila(B) STRAIN: ATCC 33152	1
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 322	
20	TTCCTCGTGA TAGCGTGCCT AAAGTCAATG ATGCGTTAAA GCTTGTTGAT 50 AGTGATCTGG TTTTTGAAGT GCAGCAGCAA CTTGGAGACG GAGTTGTGCG 100 TACTATTGCC ATGGGAACAA CCGATGGTTT AAAGCGAGGA TTAAAAGCAG 150 AAAATACAGG CCATCCTATT CAAGTGCCAG TAGGTAAGAA AACTTTGGGA 200	
25	CGCATTATGG ATGTTCTTGG GCGTCCTGTA GATGATGCTG GGCCTATCGA TGCTGAAGAG ACTTGGGCTA TTCATCGTAA AGCACCAAGT TATGAAGAGC AAGCTGGCAG CCAGGAATTA TTGGAAACTG GTATTAAAGT AATTGATTTG CTTTGCCCTT TTGCCAAGGG AGGTAAAGTT GGTCTATTCG GTGGTGCCGG 400	
30	TGTAGGCAAA ACCGTTAACA TGATGGAATT AATACGAAAC ATTGCAATTG AGCATAGCGG TTATTCAGTG TTTGCAGGGG TTGGTGAACG TACCCGTGAA GGAAACGACT TCTATCATGA GATGAAAGAC TCTAATGTAT TGGATAAAGT ATCGCTTGTT TATGGTCAGA TGAATGAGCC GCCAGGAAAC CGTTTGCGTG 600	
35	TTGCTCTAAC CGGTTTGACT ATGGCTGAAA AATTCCGGGA TGAAGGGCGA 650 GACGTTCTTT TGTTTATCGA TAATATTTAT CGTTATACCT TGGCTGGGT 700 TGAAGTATCT GCGCTGTTAG GCCGTATGCC TTCTGCAGTA GGATATCAGC 750 CGACATTAGC AGAGGAAATG GGTATGCTGC AAGAGCGCAT TACCTCCACA 800 AAAACAGGTT CTATTACTTC CATA 824	
40	2) INFORMATION FOR SEQ ID NO: 323	
45	(i)SEQUENCE CHARACTERISTICS: (A) LENGTH: 818 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
50	(ii) MOLECULE TYPE: Genomic DNA	
30	(vi)ORIGINAL SOURCE: (A) ORGANISM: Leminorella grimontii (B) STRAIN: ATCC 33999	
55	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 323	
60 _.	GACGCCGTAC CGAAAGTGTA CGATGCGCTT GAAGTTCAAA TTGATGCCAA GCTGGTTCTG GAAGTTCAAC AGCAGCTCGG CGGCGGCGTT GTTCGCTGCA TCGCGATGGG TACTTCAGAC GGCTTAAGCC GCGGTCTGGA CGTGCTCGAT CTGGAACACC CGATTGAAGT ACCGGTGGGC AAAGCGACGC TGGGCCGCAT 193))

		CTTGGTCACC				
	AAGAGCGTTG			CGAGCTACGA		300
	GGCGCAACCG	AGCTGCTGGA	GACCGGCATC	AAGGTTATCG	ACCTGATTTG	350
	TCCGTTCGCC	AAGGGCGGTA	AAGTCGGCCT	GTTCGGCGGC	GCCGGCGTAG	400
5	GTAAAACCGT	AAACATGATG	GAGCTCATTC	GCAACATTGC	GACCGAGCAC	450
	TCCGGTTACT	CCGTGTTTGC	AGGCGTAGGT	GAACGTACCC	GTGAGGGTAA	500
	CGACTTCTAC	CACGAAATGA	CTGAATCCAA	CGTATTGGAC	AAGGTGTCGC	550
	TGGTATACGG	TCAGATGAAC	GAGCCGCCTG	GAAACCGTCT	GCGCGTAGCG	600
	TTAACGGGCT	TGACCATGGC	GGAGAAGTTC	CGTGATGAAG	GCCGTGACGT	650
10	TCTGCTGTTT	ATCGACAACA	TTTACCGCTA	TACCCTGGCC	GGTACGGAAG	700
	TATCCGCACT	GCTGGGCCGT	ATGCCTTCAG	CCGTAGGCTA	CCAGCCGACT	750
	CTGGCTGAGG	AAATGGGCGT	GCTTCAAGAG	CGTATTACCT	CTACCAAGAC	800
	GGGGTCTATC	ACCTCCGT				818

15

20

- 2) INFORMATION FOR SEQ ID NO: 324
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 835 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
- 25 (ii) MOLECULE TYPE: Genomic DNA
 - (vi)ORIGINAL SOURCE:
 - (A) ORGANISM: Listeria monocytogenes
- 30 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 324

	GTGGAAACTT	ACCTGAAATC	TACAATGCCC	TAGTTATTGA	ATATAAATCT	50
	GATGCAGAAG	AAGCACCAAC	TAGCCAACTT	ACTTTAGAAG	TAGCCATCCA	100
	ATTAGGTGAT	GATGTTGTAC	GTACAATCGC	AATGGCATCA	ACAGATGGTG	150
35	TTCAAAGAGG	TATGGAAGTT	ATTGATACTG	GGAGCCCAAT	TACAGTTCCT	200
	GTAGGTACAG	TAACTCTTGG	TCGTGTATTT	AATGTATTAG	GAAACACCAT	250
	CGATTTGGAC	GAACCACTTC	CAAGCGATAT	TAAACGTAAT	AAAATTCACC	300
	GCGAAGCTCC	AACTTTCGAT	CAATTAGCAA	CGACAACAGA	AATTCTTGAA	350
	ACAGGAATTA	AAGTAGTTGA	CTTGCTAGCT	CCTTACTTAA	AAGGTGGTAA	400
40	AATCGGATTG	TTCGGTGGTG	CCGGTGTTGG	TAAAACCGTT	CTAATTCAAG	450
	AGCTTATCCA	TAATATCGCA	CAAGAACATG	GTGGTATTTC	TGTGTTCGCT	500
	GGCGTTGGAG	AACGTACTCG	TGAAGGTAAC	GACCTTTACT	TCGAAATGAA	550
	AGATTCAGGC	GTTATTGAAA	AAACAGCGAT	GGTATTCGGT	CAAATGAACG	600
	AGCCACCAGG	TGCGCGTATG	CGTGTTGCCT	TAACTGGTCT	AACAATTGCT	650
45	GAATATTTCC	GTGATGAAGA	ACATCAAGAT	GTACTTTTAT	TCATTGATAA	. 700
	CATTTTCCGT	TTCACACAAG	CTGGTTCAGA	GGTTTCGGCT	TTACTAGGTC	750
	GTATGCCATC	TGCGGTAGGT	TACCAACCAA	CCCTAGCTAC	TGAAATGGGT	800
	CAACTACAAG	AACGTATTAC	ATCTACTAAC	GTTGG		835

50

- 2) INFORMATION FOR SEQ ID NO: 325
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 828 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
- 60 (ii) MOLECULE TYPE: Genomic DNA

PCT/CA00/01150

50

100

150

200

250

300

350

400

450

500

550

600

650

700

750

800

828

WO 01/23604 (vi)ORIGINAL SOURCE: ORGANISM: Micrococcus lylae (A) STRAIN: ATCC 27566 (B) 5 (xi) SEQUENCE DESCRIPTION: SEO ID NO: 325 CCCGCGTGGC GAGTTGCCGG CACTGTTCAA CGCGCTGACT GTCGAGGTCA CCCTCGAAGC AGTCGCTAAA ACCATTACCC TTGAGGTTGC TCAGCACCTC GGCGACAACT TGGTTCGTGC CGTGTCCATG GCACCGACCG ACGGTCTCGT 10 CCGTGGCGCT GCTGTGATCG ACAGCGGTAA GCCGATCTCA GTTCCCGTTG GTGACGTAGT CAAGGGACAC GTCTTCAACG CTCTGGGTGA TTGCCTCGAT GAGCCAGGTC TTGGCCGTGA CGGTGAGCAG TGGGGCATCC ACCGCGATCC GCCACCTTTT GACCAGCTTG AGGGTAAGAC CGAGATTCTG GAAACCGGTA TTAAGGTCAT CGACCTGCTG ACCCCGTATG TTAAGGGCGG CAAGATCGGC 15 CTGTTCGGTG GTGCTGGTGT GGGTAAGACC GTTCTTATCC AGGAAATGAT CACCCGTATC GCTCGCGAGT TCTCCGGTAC CTCGGTGTTC GCAGGCGTGG GTGAGCGTAC CCGTGAGGGC ACCGACCTCT TCCTGGAAAT GGAAGAGATG GGCGTTCTCC AGGACACCGC TCTTGTGTTC GGCCAGATGG ACGAGCCTCC AGGAGTTCGT ATGCGCGTGG CGCTGTCCGG CCTGACCATG GCGGAGTACT TCCGCGATGT GCAGCACCAG GACGTGCTTC TGTTCATCGA CAACATCTTC CGTTTCACCC AGGCAGGTTC CGAGGTTTCC ACCCTCCTAG GCCGCATGCC TTCTGCCGTG GGTTACCAGC CAACGCTGGC AGACGAGATG GGTGTTCTGC

2) INFORMATION FOR SEQ ID NO: 326

AGGAGCGTAT TACCTCCACA AAGGGTAA

30 (i) SEOUENCE CHARACTERISTICS:

25

35

- (A) LENGTH: 822 bases
- TYPE: Nucleic acid (B)
- (C) STRANDEDNESS: Double
- TOPOLOGY: Linear

(ii) MOLECULE TYPE: Genomic DNA

(vi)ORIGINAL SOURCE:

- (A) ORGANISM: Moellerella wisconsensis
- 40 (B) STRAIN: ATCC 35017

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 326

	GATGCCGTAC	CAAAAGTGTA	CGATGCTCTT	GAGGTTCTTA	ACGGTAAAGA	50
45	AAAATTGGTG	CTGGAAGTTC	AGCAACAATT	AGGCGGTGGT	GTTGTTCGTT	100
	GTATCGÇAAT	GGGTACATCA	GATGGTTTAA	GCCGCGGTTT	AGAAGTTAAA	150
	AATACAGATC	ATCCGATCGA	AGTTCCTGTC	GGTGTTAAAA	CGCTTGGCCG	200
	TATCATGAAC	GTGCTGGGTG	ACCCAATCGA	CATGAAAGGT	GATATCGGCG	250
	AAGAAGAACG	CTGGTCAATT	CACCGCGCAG	CACCAAGCTA	TGAAGATCTG	300
50	GCTAACTCAA	CAGAACTTCT	AGAAACAGGT	ATCAAAGTTA	TGGACCTGAT	350
	TTGCCCATTC	GCTAAAGGGG	GTAAAGTGGG	TCTGTTCGGT	GGTGCGGGTG	400
	TCGGTAAAAC	AGTTAACATG	ATGGAGCTTA	TTCGTAATAT	CGCGATTGAG	450
	CACTCAGGTT	ATTCTGTATT	CGCGGGTGTT	GGTGAACGTA	CTCGTGAAGG	500
	TAACGATTTC	TACCATGAAA	TGACAGACTC	AAACGTTCTG	GATAAAGTTT	550
55	CATTGGTTTA	TGGCCAGATG	AATGAGCCAC	CAGGAAACCG	TCTGCGTGTT	600
	GCTCTGACTG	GTCTGACTAT	GGCAGAGAAA	TTCCGTGACG	AAGGTCGTGA	650
	CGTACTGTTA	TTCGTAGATA	ATATTTATCG	TTATACCTTA	GCAGGGACAG	700
	AAGTATCTGC	ACTGCTGGGT	CGTATGCCTT	CAGCGGTGGG	TTATCAGCCA	750
	ACGCTGGCGG	AAGAGATGGG	TGTTCTGCAA	GAACGTATCA	CCTCGACTAA	800
50	GACCGGCTCT	ATCACTTCCG	TA			822

_	2) INFORMATION FOR SEQ ID NO: 327	
5	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 854 bases	•
	(B) TYPE: Nucleic acid (C) STRANDEDNESS: Double	
10	(D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
	(vi)ORIGINAL SOURCE:	
15	(A) ORGANISM: Branhamella catarrhalis (B) STRAIN: ATCC 43628	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 327	
20	CCGTGGCGAT GTCCCCCAAA TCTTTGATGC ACTTCATGTT GATGGTACTG	50
	AAACCACCT TGAAGTCCAA CAACAGTTAG GTGATGGTGT GGTGCGTACC ATTGCCATGG GTTCTACCGA AGGCTTAAAG CGTGGCTTGC CTGTCTCTAA	100 150
	TTCAGGTGCA CCCATTTCGG TACCAGTCGG TCAAGCAACA CTGGGTCGCA	200
2.5	TTATGGATGT CCTAGGTCGC CCAATCGATG AAGCAGGTCC GGTAAATGCT	250 300
25	GAACAAAAT GGTCCATTCA TCGTGAAGCA CCAAGTTATG ATGAACAGTC AAATAGTACA GAACTTTTAG AAACAGGCAT CAAAGTGATT GATTTGCTTT	350
	GTCCATTTGC CAAAGGTGGT AAAGTCGGTC TGTTCGGTGG TGCTGGTGTT	400
	GGTAAGACCG TTAACATGAT GGAGCTTATC AATAATATCG CCCTAAAACA CTCAGGTCTG TCGGTTTTTG CTGGTGTGGG TGAGCGTACT CGTGAGGGTA	450 500
30	ATGACTICTA CCATGAAATG CAAGAAGCAG GCGTTGTTAA TACCGAAGAT	550
	TTTACTCAGT CAAAAGTTGC CATGGTTTAT GGTCAGATGA ATGAGCCACC	600
	AGGAAACCGT CTGCGTGTTG CCTTAACTGG TTTGACCATG GCAGAGTATT TCCGTGATGA AAAAGACGAA GCAACGGGCA AAGGCCGTGA TGTTCTGCTG	650 700
	TTCGTTGATA ATATTTATCG TTACACATTG GCAGGTACTG AGGTATCAGC	750
35	ACTITIAGGI CGIATGCCAI CIGCGGIAGG TIATCAGCCG ACTITGGCCG	800 850
	AAGAGATGGG CTTGCTACAA GAGCGTATCA CCTCCACCCA ATCAGGCTCA ATTA	854
40		
	2) INFORMATION FOR SEQ ID NO: 328	
	(i) SEQUENCE CHARACTERISTICS:	
45	(A) LENGTH: 831 bases (B) TYPE: Nucleic acid	
±5	(C) STRANDEDNESS: Double	
	(D) TOPOLOGY: Linear	
50	(ii) MOLECULE TYPE: Genomic DNA	
	(vi)ORIGINAL SOURCE:	
	(A) ORGANISM: <i>Moraxella osloensis</i> (B) STRAIN: ATCC 19976	
55	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 328	
	CCGTCAAAGC GTACCAAGAA TTTATGATGC CTTAAAAGTT GAAGGCACAG	50
	AAACTACATT AGAAGTACAA CAACAATTGG GTGATGGTAT CGTACGTACT	100 150
50	ATTGCCATGG GTTCTACTGA AGGTCTAAAA CGTGGTCTAC CAGTTAGCAA CACTGGCGCA CCAATCTCTG TACCTGTGGG TAAAGGTACA CTAGGTCGTA	200
	196	

	TCATGGACGT	TTTAGGACAC	CCAATCGATG	AGGCAGGTCC	GGTAGAGCAT	2 50 '
	AGTAACACTT	GGGCGATTCA	CCGTGAAGCG	CCAAGCTATG	ATGAACAATC	300
	AAACTCTACT	GAACTTTTAG	AAACCGGTAT	TAAAGTAATT	GACTTACTAT	350
	GCCCATTTGC	TAAAGGTGGT	AAAGTCGGTC	TGTTCGGTGG	CGCGGGTGTT	400
5	GGTAAAACCG	TTAACATGAT	GGAACTTATC	AATAACATCG	CAAAAGCACA	450
	CTCAGGTTTA	TCGGTATTTG	CTGGTGTAGG	TGAGCGTACT	CGTGAAGGTA	500
	ATGACTTCTA	CCACGAGATG	AAAGACTCAA	ACGTACTTGA	TAAAGTTGCG	550
	ATGGTGTATG	GTCAGATGAA	TGAGCCACCA	GGAAACCGTT	TACGTGTTGC	600
	CCTGACAGGT	TTAACCATGG	CAGAATACTT	CCGTGACGAA	AAAGATGAAA	650
10	ACGGTAAAGG	TCGTGACGTA	TTATTGTTCG	TTGACAATAT	TTATCGTTAC	700
	ACGCTAGCGG	GTACCGAAGT	ATCAGCATTA	TTAGGTCGTA	TGCCATCTGC	750
	AGTAGGGTAT	CAGCCAACGC	TTGCAGAAGA	GATGGGTGTA	CTACAAGAAC	800
	GTATTACTTC	AACCCAATCA	GGCTCTATTA	C		831

15

20

2) INFORMATION FOR SEQ ID NO: 329

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 835 bases

- (B) TYPE: Nucleic acid
- (C) STRANDEDNESS: Double
- (D) TOPOLOGY: Linear
- 25 (ii) MOLECULE TYPE: Genomic DNA

(vi)ORIGINAL SOURCE:

- (A) ORGANISM: Morganella morganii subsp. morganii
- (B) STRAIN: ATCC 25830

30

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 329

	CGAATTTCCT	CAGGATGCAG	TACCGAAAGT	GTACGATGCG	CTTGAGGTAA	50
	CAAATGGTAA	AGAAAAACTG	GTGCTGGAAG	TTCAGCAGCA	GTTAGGCGGC	100
35	GGGGTTGTCC	GTTGTATCGC	TATGGGTACA	TCTGATGGTC	TGAGCCGTAA	150
	TCTGGAAGTA	ACCGATTTAG	GCCACCCGAT	CGAAGTCCCT	GTCGGCGTGA	200
	AAACCTTAGG	ACGTATCATG	AACGTTCTGG	GTGATCCGAT	CGATATGAAA	250
	GGTGACATCG	GCGCAGAAGA	AAAATGGTCT	ATTCACCGTG	CTGCACCAAC	300
	ATACGAAGAA	CTGTCTAACT	CCCAGGAACT	GCTGGAAACA	GGTATCAAAG	350
40	TAATGGACCT	GATCTGCCCG	TTCGCGAAGG	GTGGTAAAGT	CGGTCTGTTC	400
	GGTGGTGCGG	GTGTGGGTAA	AACCGTAAAC	ATGATGGAAC	TGATCCGTAA	450
	CATCGCGATC	GAGCACTCCG	GTTACTCTGT	ATTCGCAGGG	GTCGGTGAGC	500
	GTACCCGTGA	AGGTAACGAC	TTCTATCATG	AAATGACAGA	CTCCAACGTT	550
	CTGGACAAAG	TATCACTCGT	GTACGGCCAG	ATGAACGAGC	CACCGGGAAA	600
45	CCGTCTGCGC	GTTGCTCTGA	CCGGTCTGAC	CATGGCGGAA	AAATTCCGTG	650
	ATGAAGGCCG	CGATGTACTG	CTGTTCGTTG	ATAACATCTA	CCGTTATACC	700
	CTGGCCGGTA	CTGAAGTATC	CGCGCTGTTA	GGCCGTATGC	CTTCAGCGGT	750
	AGGTTACCAG	CCGACACTGG	CGGAAGAAAT	GGGTGTGCTT	CAGGAACGTA	800
	TCACATCGAC	CAAAACAGGC	TCTATCACGT	CTGTA		835

50

2) INFORMATION FOR SEQ ID NO: 330

- 55 (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 824 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear

(ii) MOLECULE TYPE: Genomic DNA

(vi) ORIGINAL SOURCE:

- (A) ORGANISM: Pantoea agglomerans
- 5 (B) STRAIN: ATCC 27155
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 330

	GACGCGGTAC	CGCAAGTGTA	CAGCGCCCTC	GAGGTTATGA	ATGGTGATGC	50
10	GCGTCTGGTG	CTGGAAGTTC	AGCAGCAGCT	CGGCGGCGGC	GTAGTACGTA	100
	CCATCGCAAT	GGGTACGTCT	GACGGCCTGA	AGCGTGGTCT	GAGCGTCAAC	150
	GACCTGCAGA	AACCGATTCA		GGTAAAGCGA		200
	TATCATGAAC	GTTCTCGGCG	AGCCAATCGA	TATGAAAGGC	GAGCTGAAAG	250
	AAGAAGATGG	CAGCGCAGTA	GAGATCGCCT	CTATTCACCG	CGCAGCCCCT	300
15	TCTTATGAAG	ATCAGTCTAA	CTCGCAGGAA	CTGCTGGAAA	CCGGCATCAA	350
	GGTTATCGAC	CTGATGTGTC	CGTTTGCTAA	AGGCGGTAAA	GTCGGTCTGT	400
	TCGGTGGTGC	GGGTGTAGGT	AAAACCGTCA	ACATGATGGA	ACTGATCCGT	450
	AACATCGCGG	CTGAACACTC	AGGTTACTCA	GTGTTTGCCG	GTGTGGGTGA	500
	GCGTACTCGT	GAGGGTAACG	ACTTCTACCA	CGAAATGACT	GACTCTAACG	550
20	TTATCGATAA	AGTTGCACTG	GTCTATGGCC	AGATGAACGA	GCCGCCGGGT	600
	AACCGTCTGC	GCGTAGCACT	GACCGGTCTG	ACCATGGCGG	AAAAATTCCG	650
	TGATGAAGGT	CGCGACGTTC	TGCTGTTCAT	CGATAACATC	TACCGTTATA	700
	CCCTGGCCGG	TACAGAAGTT	TCTGCACTGC	TGGGTCGTAT	GCCATCTGCG	750
	GTAGGTTACC	AGCCAACGCT	GGCAGAAGAG	ATGGGTGTGT	TGCAGGAGCG	800
25	TATTACCTCC	ACCAAGACCG	GTTC			824

2) INFORMATION FOR SEQ ID NO: 331

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 808 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
- 35 (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: Genomic DNA
 - (vi)ORIGINAL SOURCE:
- 40 (A) ORGANISM: Pantoea dispersa
 - (B) STRAIN: ATCC 14589
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 331

45	TATACAGCGC	TCTCGAGGTA	AAAAATGGTG	ATGCTCGTCT	GGTGCTGGAA	50
	GTACAGCAGC	AGCTGGGCGG	TGGCGTGGTG	CGTACCATCG	CCATGGGTTC	100
	TTCTGACGGC	CTGAAGCGCG	GTCTGGAAGT	CACCGACCTG	AAAAAACCTA	150
	TCCAGGTTCC	GGTTGGTAAA	GCAACACTCG	GCCGTATCAT	GAACGTGCTG	200
	GGTGAGCCAA	TCGACATGAA	AGGCGACCTG	AAAGAAGAAG	ACGGCAGCGC	250
50	TGTAGAGGTT	TCCTCTATTC	ATCGCGCAGC	GCCTTCTTAT	GAAGATCAGT	300
	CAAACTCGCA	GGAACTGCTG	GAAACCGGCA	TCAAGGTTAT	CGACCTGATG	350
	TGTCCGTTCG	CGAAGGGCGG	TAAAGTCGGT	CTGTTCGGTG	GTGCGGGTGT	400
	AGGTAAAACC	GTAAACATGA	TGGAGCTGAT	CCGTAACATC	GCGGCTGAGC	450
	ACTCAGGTTA	TTCGGTCTTT	GCCGGCGTGG	GTGAGCGTAC	TCGTGAGGGT	500
55	AACGACTTCT	ACCACGAAAT	GACGGACTCC	AACGTTATCG	ATAAAGTAGC	550
	GCTGGTGTAT	GGCCAGATGA	ACGAGCCGCC	GGGTAACCGT	CTGCGCGTAG	600
	CACTGACCGG	TCTGACCATG	·GCGGAAAAAT	TCCGTGATGA	AGGCCGTGAC	650
	GTTCTGCTGT	TCATCGACAA	CATCTACCGT	TACACCCTGG	CCGGTACAGA	700
	GGTTTCTGCA	CTGCTGGGTC	GTATGCCATC	GGCGGTAGGT	TATCAGCCAA	750
50	CGCTGGCTGA	AGAGATGGGT	GTGCTGCAGG	AGCGTATTAC	CTCCACCAAG	800

ACCGGTTC

5	2) INFORMATION FOR SEQ ID NO: 332	
10	(i)SEQUENCE CHARACTERISTICS: (A) LENGTH: 805 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double	
	(D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
15	<pre>(vi)ORIGINAL SOURCE: (A) ORGANISM: Pasteurella multocida (B) STRAIN: NCTC 10322</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 332	
30	GATGCAGTAC CAAAAGTATA TGATGCCTTA AATGTTGAAA CAGGTTTAGT ACTTGAAGTT CAACAACAAT TAGGTGGTGG TGTAGTTCGC TGTATCGCAA TGGGATCATC TGATGGATTA AAACGCGGTT TAAGCGTAAC AAATACGAAT AACCCAATTT CTGTTCCAGT GGGAACGAAA ACATTGGGTC GTATCATGAA	50 100 150 200
25	CGTATTGGGT GAACCAATCG ATGAGCAAGG TGAAATCGGT GCAGAAGAGA ATTGGTCTAT TCACCGTGCG CCACCAAGTT ATGAAGAACA ATCTAACAGT ACTGAACTTT TAGAAACGGG AATTAAAGTT ATCGACTTAG TTTGTCCGTT TGCGAAAGGG GGTAAAGTAG GTTTATTCGG TGGTGCGGGT GTCGGTAAAA CCGTCAATAT GATGGAATTA ATCCGTAACA TCGCAATTGA GCACTCAGGT	250 300 350 400 450
30	TACTCTGTCT TTGCGGGGGT AGGTGAGCGT ACGCGTGAAG GTAACGACTT CTATCATGAG ATGAAAGACT CTAACGTATT AGATAAAGTG TCTCTTGTTT ATGGTCAAAT GAACGAGCCA CCAGGTAACC GTTTACGTGT GGCATTAACA GGCTTAACTA TGGCGGAAAA ATTCCGTGAT GAAGGTCGTG ATGTCTTATT CTTCGTTGAT AATATTTATC GTTATACTCT TGCTGGTACA GAAGTTTCTG	500 550 600 650 700
35	CATTATTAGG TCGTATGCCA TCTGCGGTAG GTTATCAACC AACCCTTGCA GAAGAAATGG GTGTTCTGCA AGAGCGTATT ACCTCAACCA AAACAGGTTC TATTA	750 800 805
10	2) INFORMATION FOR SEQ ID NO: 333	
15	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 828 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear 	
50	(ii) MOLECULE TYPE: Genomic DNA	
,0	<pre>(vi)ORIGINAL SOURCE: (A) ORGANISM: Pragia fontium (B) STRAIN: ATCC 49100</pre>	
55	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 333	
50	TTTCCTCAAG ACGCCGTACC AAAAGTGTAC GACGCGCTTG AAGTTCAGAA CGATGCCAAG CTGGTGCTGG AAGTTCAACA ACAGCTCGGT GGTGGTGTCG TTCGTTGTAT CGCAATGGGT ACTTCCGATG GCTTAAGCCG CGGTTTAAAA GTGCTTGATT TAGAACATCC TATCGAAGTA CCGGTTGGTA CTGCGACGCT 199	50 100 150 200

	GGGCCGTATT	ATGAACGTGC	TCGGTCAGCC	AATCGATATG	AAAGGCGATA	250
	TTGGTGAAGA	AGAGCGTTGG	GCTATTCACC	GTGAAGCACC	AAGTTATGAA	300
	GATTTATCTG		ACTGCTGGAA			350
		CCGTTTGCTA				400
5		TAAAACCGTA				450
	ACTGAGCACT	CAGGTTACTC	CGTATTCGCC	GGTGTAGGGG	AACGTACCCG	500
		GACTTCTACC				550
	AAGTATCTCT	GGTTTATGGC	CAGATGAACG	AGCCACCAGG	AAACCGTCTG	600
	CGCGTGGCGT	TAACGGGTTT	GACCATGGCT	GAAAAATTCC	GTGATGAAGG	650
10	TCGTGACGTT	CTGTTATTTA	TCGATAACAT	TTATCGCTAT	ACCTTAGCCG	700
	GTACCGAAGT	ATCAGCACTG	TTGGGGCGTA	TGCCATCAGC	GGTAGGTTAT	750
	CAGCCAACGT	TAGCAGAAGA	GATGGGTGTG	TTGCAGGAAC	GTATTACTTC	800
	AACCAAAACC	GGTTCAATCA	CTTCTGTA			828

15

20

2) INFORMATION FOR SEQ ID NO: 334

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 807 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
- 25 (ii) MOLECULE TYPE: Genomic DNA
 - (vi)ORIGINAL SOURCE:
 - (A) ORGANISM: Proteus mirabilis
 - (B) STRAIN: ATCC 25933

30

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 334

	GTCCCTAAAG	TATACGACGC	TCTTGAGGTT	ATGAATGGTA	AAGAAAAACT	50
	GGTGCTGGAA	GTTCAGCAAC	AGTTAGGCGG	TGGTATCGTT	CGTTGTATCG	100
35	CAATGGGTAC	ATCAGACGGT	TTAAGCCGTG	GCTTAAAGGT	TGAAGATTTA	150
	GGCCACCCAA	TTGAAGTACC	AGTAGGTAAA	GCGACTTTAG	GACGTATCAT	200
	GAACGTTCTG	GGTACACCTA	TTGATATGAA	AGGTGAGATT	GAAACCGAAG	250
	AGCGTTGGTC	AATCCACCGT	GAAGCACCAA	CTTACGAAGA	GTTATCAAAC	300
	TCTCAAGAAC	TGCTTGAAAC	CGGTATCAAA	GTTATGGACT	TAATCTGTCC	350
10	ATTTGCTAAA	GGTGGTAAAG	TCGGTCTGTT	CGGTGGTGCG	GGTGTTGGTA	400
	AAACAGTTAA	CATGATGGAA	TTGATCCGTA	ATATCGCGAT	CGAGCACTCA	450
	GGTTACTCTG	TATTTGCTGG	TGTTGGTGAG	CGTACTCGTG	AGGGTAACGA	500
	CTTCTATCAT	GAAATGACAG	ATTCTAACGT	TCTTGACAAA	GTATCGTTAG	550
	TTTACGGTCA	GATGAATGAG	CCACCAGGAA	ACCGTCTGCG	TGTTGCACTG	600
1 5	ACTGGTCTGA	CTATGGCTGA	GAAATTCCGT	GATGAAGGCC	GTGACGTACT	650
	GTTATTCGTC	GATAACATCT	ATCGTTACAC	CTTAGCCGGT	ACAGAAGTAT	700
	CAGCACTGTT	AGGTCGTATG	CCATCAGCGG	TAGGTTACCA		750
		TGGGTGTTCT	GCAAGAGCGT	ATCACTTCAA	CCAAAACAGG	800
	TTCTATC					807
-^						

50

2) INFORMATION FOR SEQ ID NO: 335

- 55 (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 811 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear

(ii) MOLECULE TYPE: Genomic DNA

(vi)ORIGINAL SOURCE:

- (A) ORGANISM: Proteus vulgaris
- (B) STRAIN: ATCC 13315
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 335

	CCCTAAAGTA	TACGACGCTC	TTGAGGTTAT	GAATGGTAAA	GAGAAACTGG	50
10	TGCTAGAAGT	TCAGCAACAG	TTAGGCGGTG	GTATCGTTCG	TTGTATCGCA	100
	ATGGGTACAT	CAGACGGTTT	AAGCCGTGGC	TTAAAAGTTG	AAAACTTAGG	150
	CCACCCAATT	GAAGTACCAG	TAGGTAAAGC	AACACTGGGA	CGTATCATGA	200
	ACGTTCTGGG	TACACCTATC	GATATGAAAG	GTGATATTGC	AACTGAAGAA	250
	CGTTGGTCTA	TTCACCGCGA	AGCGCCAACC	TATGAAGAGT	TATCAAGCTC	300
15	TCAAGAACTA	CTAGAAACCG	GTATCAAAGT	AATGGACTTA	ATCTGTCCGT	350
	TTGCTAAAGG	TGGTAAAGTA	GGTCTCTTCG	GTGGTGCGGG	TGTTGGTAAA	400
	ACAGTTAACA	TGATGGAATT	GATCCGTAAC	ATCGCGATTG	AGCACTCAGG	450
	TTATTCTGTA	TTTGCAGGTG		TACTCGTGAG	GGTAACGACT	500
	TCTATCATGA	AATGACAGAT	TCTAACGTTC	ŢTGACAAAGT	ATCGTTAGTT	550
20	TATGGTCAGA	TGAATGAGCC	ACCAGGAAAC	CGTCTACGTG	TAGCACTGAC	600
	GGGTTTAACC	ATGGCGGAAA	AATTCCGTGA	TGAAGGCCGT	GACGTACTGT	650
	TATTCGTCGA	TAACATCTAT	CGTTACACCT	TAGCCGGTAC	CGAAGTATCA	700
	GCACTGTTAG	GCCGTATGCC	ATCAGCAGTA	GGTTACCAAC	CAACATTGGC	750
	TGAAGAGATG		AAGAACGTAT	CACTTCAACC	AAAACAGGTT	800
25	CAATCACCTC	T		•		811

2) INFORMATION FOR SEQ ID NO: 336

30

40

- (i) SEQUENCE CHARACTERISTICS:

 - (B) TYPE: Nucleic acid
 (C) STRANDEDNESS: Double
 (D) TOPOLOGY: Linear
- 35
 - (ii) MOLECULE TYPE: Genomic DNA
 - (vi)ORIGINAL SOURCE:
 - (A) ORGANISM: Providencia alcalifaciens
 - STRAIN: ATCC 9886 (B)
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 336

45	TCAAGATAAC	GTACCAAAAG	TGTACGATGC	TCTTGAGGTT	ATTAACGGTA	50
	AAGAAAAACT	GGTGTTGGAA	GTTCAACAAC	AGTTAGGTGG	TGGTGTTGTC	100
	CGTTGTATCG	CAATGGGTAC	ATCAGATGGT	CTGAGCCGTG	GTTTAGAAGT	150
	TGTAAACTTA	GAGCACCCAA	TCGAAGTACC	AGTCGGTAAA	GCAACTCTGG	200
	GACGTATCAT	GAACGTTCTG	GGTGAACCAA	TCGACATGAA	AGGTGATATC	250
50	GGCGAAGAAG	AGCGCTGGTC				300
		TCAACTGAAC				350
		ATTCGCGAAA		TAGGTCTGTT		400
	GGTGTTGGTA	AAACCGTAAA	CATGATGGAA	CTGATCCGTA	ACATCGCGAT	450
	TGAGCACTCA	GGTTACTCAG	TGTTCGCTGG	TGTTGGTGAG	CGTACCCGTG	500
55		CTTCTATCAT				550
	GTATCACTGG			CCACCAGGAA		600
	TGTTGCGCTG	ACTGGTCTGA	CTATGGCTGA	AAAATTCCGT	GACGAAGGTC	650
	GTGACGTACT	GCTGTTCGTT	GACAACATTT	ATCGTTATAC	ACTGGCAGGT	700
	ACTGAAGTAT	CAGCACTGTT	AGGTCGTATG	CCATCAGCGG	TAGGTTACCA	750
50	ACCAACGCTG	GCGGAAGAGA	TGGGTGTTCT	TCAAGAACGT	ATTACCTCAA	800

CTCAAA

5	2) INFORMATION FOR SEQ ID NO: 337	
10	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 830 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear 	
	(ii) MOLECULE TYPE: Genomic DNA	
15	<pre>(vi)ORIGINAL SOURCE: (A) ORGANISM: Providencia rettgeri (B) STRAIN: ATCC 9250</pre>	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 337	
20	TTCCCTCAAG ATGACGTACC AAAAGTGTAC GACGCTCTTG AGGTTGTTAA CGGTAAAGAA ACACTGGTGC TGGAAGTTCA GCAACAGTTA GGCGGTGGTG TTGTCCGTTG TATCGCAATG GGTACATCAG ATGGCCTGAG CCGTGGTTTA	50 100 150
25	GAAGTTGTAA ACTTAGAGCA CCCAATTGAA GTACCAGTAG GTAAAGCAAC TTTAGGACGT ATCATGAACG TTCTGGGTCA GCCTATTGAT ATGAAAGGTG ATATCGGCGA AGAAGAGCGC TGGTCAATTC ACCGTGCTGC ACCTAGCTAC GAAGAGTTAG CTAACTCAAC AGAGCTGCTG GAAACCGGTA TCAAAGTAAT GGACTTAATC TGTCCATTCG CGAAAGGTGG TAAAGTTGGT CTGTTCGGTG	200 250 300 350 400
30	GTGCGGGTGT TGGTAAAACA GTAAACATGA TGGAACTGAT CCGTAACATC GCGATTGAGC ACTCAGGTTA CTCAGTATTC GCTGGTGTTG GTGAGCGTAC TCGTGAAGGG AACGACTTCT ATCATGAAAT GACTGACTCA AACGTTCTGG ATAAAGTATC ACTGGTTTAT GGCCAGATGA ATGAGCCACC AGGAAACCGT	450 500 550 600
35	CTGCGCGTTG CGTTGACTGG TCTGACTATG GCTGAAAAAT TCCGTGACGA AGGTCGTGAC GTACTACTGT TCGTTGACAA CATCTATCGT TATACACTGG CAGGTACTGA AGTATCAGCA CTGTTAGGTC GTATGCCTTC AGCGGTAGGT TATCAGCCAA CGCTGGCGGA AGAGATGGGT GTTCTGCAAG AACGTATTAC CTCAACTCAA ACGGGTTCTA TCACTTCCGT	650 700 750 800 830
10	2) INFORMATION FOR SEQ ID NO: 338	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 812 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
50	(ii) MOLECULE TYPE: Genomic DNA	
	<pre>(vi)ORIGINAL SOURCE: (A) ORGANISM: Providencia rustigianii (B) STRAIN: ATCC 33673</pre>	
55	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 338	
50	AGCGTACCAA AAGTGTACGA TGCTCTTGAG GTTATTAACG GTAAAGAAAA ACTGGTGTTG GAAGTTCAGC AGCAGTTAGG CGGTGGTGTT GTCCGTTGTA TCGCAATGGG TACATCAGAT GGTCTGAGCC GTGGTTTAGA AGTTGTAAAC TTAGAACACC CAATTGAAGT ACCAGTAGGT AAAGCAACTC TGGGACGTAT 202	50 100 150 200

	CATGAACGTT	CTGGGTGACC	CTATTGATAT	GAAAGGTGAT	ATCGGCGAAG	250
	AAGAGCGCTG	GTCTATTCAC	CGTTCAGCGC	CAAGCTATGA	AGAATTAGCT	300
	AACTCAACAG	AACTGCTAGA	AACCGGTATC	AAAGTAATGG	ACTTAATCTG	350
	TCCATTCGCG	AAAGGTGGTA	AAGTTGGTCT	GTTCGGTGGT	GCGGGTGTTG	400
5 ·	GTAAAACAGT	AAACATGATG	GAACTGATCC	GTAACATCGC	GATTGAGCAC	450
	TCAGGTTACT	CAGTATTCGC	TGGTGTTGGT	GAGCGTACCC	GTGAAGGTAA	500
	CGACTTCTAT	CATGAAATGA	CTGATTCTAA	CGTTCTGGAT	AAAGTATCAC	550
	TGGTTTATGG	CCAGATGAAC	GAGCCACCAG	GAAACCGTCT	GCGTGTTGCG	600
	CTGACTGGTC	TGACTATGGC	TGAAAAATTC	CGTGACGAAG	GTCGTGACGT	650
10	ACTGCTGTTC	GTTGACAACA	TTTATCGTTA	TACACTGGCA	GGTACTGAAG	700
	TATCAGCACT	GTTAGGTCGT	ATGCCTTCAG	CGGTAGGTTA	TCAGCCAACA	750
	TTGGCAGAAG	AGATGGGTGT	TCTACAAGAA	CGTATCACTT	CTACCAAAAC	800
	CGGTTCTATC	AC				812

15

20

2) INFORMATION FOR SEQ ID NO: 339

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 819 bases

- (B) TYPE: Nucleic acid
- (C) STRANDEDNESS: Double
- (D) TOPOLOGY: Linear
- 25 (ii) MOLECULE TYPE: Genomic DNA
 - (vi)ORIGINAL SOURCE:
 - (A) ORGANISM: Providencia stuartii
 - (B) STRAIN: ATCC 33672

30

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 339

	TCAAGATGCA	GTACCAAAAG	TGTACGATGC	GCTTGAGGTT	GTTAACGGTA	50
	AAGAAAAACT	GGTGCTGGAA	GTTCAGCAAC	AGTTAGGCGG	TGGTGTTGTC	100
35	CGTTGTATCG	CAATGGGTAC	ATCAGATGGC	CTAAGCCGTG	GTTTAGAAGT	150
	TAAAAATTTA	GAACACCCAA	TTGAAGTACC	AGTAGGTAAA	GCAACACTCG	200
	GACGTATCAT	GAACGTTCTG	GGTGACCCTA	TTGATATGAA	AGGTGATATC	250
	GGCGAAGAAG	AGCGTTGGTC	TATTCACCGC	GCTGCACCAA	GCTACGAAGA	300
	GCTATCGAGC	TCAACTGAAC	TGCTAGAGAC	AGGTATCAAA	GTCATGGACT	350
10	TGATCTGTCC	ATTCGCGAAA	GGTGGTAAAG	TTGGTCTGTT	CGGTGGTGCG	400
	GGTGTTGGTA	AAACGGTAAA	CATGATGGAA	CTTATCCGTA	ACATCGCGAT	450
	TGAGCACTCA	GGTTACTCAG	TATTCGCAGG	TGTTGGTGAG	CGTACCCGTG	500
	AAGGTAACGA	CTTCTATCAT	GAAATGACAG	ATTCAAACGT	TCTTGACAAA	550
	GTATCACTGG	TTTATGGTCA	GATGAATGAG	CCACCAGGAA	ACCGTCTACG	600
15	CGTAGCATTG	ACTGGTTTGA	CTATGGCTGA	GAAATTCCGT	GACGAAGGCC	650
	GTGATGTTCT	GTTGTTCGTG	GATAACATCT	ATCGTTATAC	ACTGGCAGGT	700
	ACAGAAGTAT	CGGCTCTGTT	AGGTCGTATG	CCATCAGCAG	TAGGTTATCA	750
	GCCAACATTG	GCAGAAGAGA	TGGGTGTTCT	TCAAGAACGT	ATCACTTCTA	800
•	CTAAGACAGG	TTCTATCAC				819
- ^						

50

2) INFORMATION FOR SEQ ID NO: 340

- 55 (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 907 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear

(ii) MOLECULE TYPE: Genomic DNA

(vi)ORIGINAL SOURCE:

5

35

- (A) ORGANISM: Psychrobacter phenylpyruvicus
- (B) STRAIN: ATCC 233333
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 340

	AACCGCACTG	ACGTGCCTCA	AATTTATGAC	GCGTTAGTTG	TAGATGGTAC	50
10	CGAAACCACC	CTAGAAGTTC	AGCAGCAGCT	GGGCGATGGT	GTGGTACGTA	100
	CTATTGCAAT	GGGATCTACT	GAAGGTCTTA	AGCGTGGTTT	ACCAGTAACA	150
	AACACTGGTG	CCCCAATTAC	AGTTCCAGTA	GGTGATGCGA	CTTTAGGTCG	200
	TATTATGGAC	GTTTTAGGTC	GTCCAATTGA	CGAACAAGGT	CCAGTTAATT	250
	CTGAAGACCA	TTGGTCAATC	CACCGTCAAG	CGCCATCATA	TGATGAGCAA	300
15	GCTAACAGTA	CTGACCTATT	AGAGACAGGT	ATTAAAGTAA	TTGACTTACT	350
	TTGTCCGTTC	GCTAAAGGGG	GTAAAGTTGG	TCTGTTCGGT	GGTGCCGGTG	400
	TTGGTAAAAC	CGTAAACATG	ATGGAATTGA	TTAATAACAT	CGCTCTTAAG	450
	CACTCAGGTT	TATCAGTATT	CGCTGGTGTG	GGTGAGCGTA	CTCGTGAAGG	500
	TAACGACTTC	TACCACGAGA	TGCAAGAAGC	GGGTGTTGTT	GACGTTGAAA	550
20	ACTTCACCAA	CTCAAAAGTT	GCGATGGTTT	ATGGTCAGAT	GAATGAGCCA	600
	CCAGGTAACC	GTTTACGTGT	TGCGTTAACC	GGTCTGACTA	TGGCTGAGTA	650
	CTTCCGTGAT	CAAAAAGATG	AAAACGGTAA	AGGTAAAGAC	GTTCTATTAT	700
	TCGTTGATAA	CATCTACCGC	TACACGCTAG	CCGGTACTGA	AGTATCAGCA	750
	CTTCTAGGTC	GTATGCCATC	AGCAGTAGGT	TATCAGCCAA	CACTAGCGGA	800
25	AGAGATGGGT	GTACTACAAG	AGCGTATTAC	TTCAACTCAG	ACTGGTTCTA	850
	TTACTTC					9 07

30 2) INFORMATION FOR SEQ ID NO: 341

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 832 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: Genomic DNA
- 40 (vi)ORIGINAL SOURCE:
 - (A) ORGANISM: Rahnella aquatilis
 - (B) STRAIN: DSM 4594
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 341

	,, , , ,					
45						
	GTTCCCTCAG	GATGCAGTAC	CGAACGTGTA	CAATGCTCTT	GAGGTAGAAA	50
	ACGGTACCTC	CAAACTGGTG	CTGGAAGTTC	AGCAACAGTT	AGGCGGCGGC	100
	GTTGTTCGTT	GTATCGCAAT	GGGTACCTCA	GACGGCCTGC	GTCGCGGTCT	150
	GAAAGTGAAC	AACCTGGAAC	ACCCAATTGA	AGTACCGGTA	GGTAAAGCGA	200
50	CTCTGGGTCG	TATCATGAAC	GTATTGGGTG	AACCAATCGA	CATGAAAGGT	250
	GAAATCGGCG	AAGAAGAACG	TCGTGCTATT	CACCGTGCTG	CGCCTTCTTA	300
	TGAAGAGCTG	GCAAACTCCC	AGGAATTGCT	GGAAACCGGT	ATCAAAGTTA	350
	TGGACCTGAT	GTGTCCGTTC	GCTAAGGGCG	GTAAAGTTGG	TCTGTTCGGT	400
	GGTGCGGGTG	TAGGTAAAAC	TGTGAACATG	ATGGAGCTGA	TCCGTAACAT	450
55	TGCGATCGAG	CACTCCGGTT	ATTCTGTGTT	TGCAGGCGTG	GGTGAACGTA	500
	CTCGTGAGGG	TAACGACTTC	TACCACGAAA	TGACTGATTC	CAACGTTATC	550
	GACAAAGTTT	CCCTGGTGTA	TGGCCAGATG	AATGAGCCAC	CAGGTAACCG	600
	TCTGCGCGTT	GCACTGACCG	GCCTGACCAT	GGCGGAAAAA	TTCCGTGATG	650
	AAGGTCGTGA	CGTACTGCTG	TTCGTTGACA	ACATTTACCG	TTACACCCTG	700
60	GCCGGTACCG	AAGTGTCCGC	ACTTCTGGGC	CGTATGCCAT	CGGCGGTAGG	750

	TTATCAGCCA ACGCTGGCGG AAGAGATGGG CGCTCTGCAA GAACGTATCA CCTCGACCAA AAGTGGTTCT ATCACCTCCG TA	800 832
5	2) INFORMATION FOR SEQ ID NO: 342	
10	 (i)SEQUENCE CHARACTERISTICS: (A) LENGTH: 824 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear 	
	(ii) MOLECULE TYPE: Genomic DNA	
15	(vi)ORIGINAL SOURCE:(A) ORGANISM: Salmonella choleraesuis subsp. arizo.(B) STRAIN: ATCC 13314	nae
20	(xi)SEQUENCE DESCRIPTION: SEQ ID NO: 342	
25	TTCCCTCAGG ATGCCGTACC ACGCGTGTAC GATGCTCTTG AGGTGCAGAA TGGTAATGAG AAGCTGGTGC TGGAAGTTCA GCAGCAGCTT GGCGGCGGTA TCGTGCGTAC CATCGCGATG GGGTCTTCTG ACGGTCTGCG TCGCGGTCTT GATGTAAAAG ATCTCGAACA CCCGATCGAA GTCCCGGTAG GTAAAGCCAC GCTGGGTCGT ATCATGAACG TCCTGGGCGA ACCGGTCGAT ATGAAAGGCG AGATCGGCGA AGAAGAGCGT TGGGCTATTC ACCGCGCGC GCCGTCCTAC GAAGAGTTGT CAAACTCTCA GGAACTGCTG GAAACCGGTA TAAAAGTTAT	50 100 150 200 250 300 350
30	CGACCTGATG TGTCCGTTCG CGAAGGGCGG TAAAGTCGGT CTGTTCGGTG GCGCGGGTGT AGGTAAAACC GTAAACATGA TGGAGCTTAT CCGTAACATC GCGATCGAGC ACTCCGGTTA CTCTGTGTTT GCGGGCGTAG GTGAACGTAC TCGTGAGGGT AACGACTTCT ACCACGAAAT GACCGACTCT AACGTTATCG ATAAAGTATC CCTGGTGTAT GGCCAGATGA ACGAGCCACC GGGAAACCGT CTGCGCGTTG CATTGACCGG CCTGACCATG GCGGAAAAAAT TCCGTGATGA	400 450 500 550 600 650
35	AGGTCGTGAC GTTCTGCTGT TCGTCGACAA CATCTACCGT TATACCCTCG CCGGTACGGA AGTATCCGCA CTGCTGGGTC GTATGCCTTC CGCGGTAGGT TAYCASCCGA CTCTGGCGGA AGAGATGGGC GTTCTGCAGG AACGTATCAC CTCCACCAAA ACCGGTTCTA TCAC	700 750 800 824
40		
	2) INFORMATION FOR SEQ ID NO: 343	
45	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 820 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear 	
50	(ii) MOLECULE TYPE: Genomic DNA	
55	<pre>(vi)ORIGINAL SOURCE: (A) ORGANISM: Salmonella choleraesuis subsp. chole serotype Choleraesuis (B) STRAIN: ATCC 7001</pre>	raesuis
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 343	
60	GATGCCGTAC CACGCGTGTA CGATGCCCTT GAGGTGCAGA ATGGTAATGA GAAGCTGGTG CTGGAAGTTC AGCAGCAGCT TGGCGGCGGT ATCGTGCGTA	50 100

	CCATCGCGAT		GACGGTCTGC	ביירכרכבייריי.	CCATCTAAAA	150
	CCATCGCGAT					
	GATCTCGAAC	ACCCGATCGA	AGTCCCGGTA	GGTAAAGCCA	CGCTGGGTCG	200
	TATCATGAAC	GTCCTGGGCG	AACCGGTCGA	CATGAAAGGC	GAGATCGGCG	250
	AAGAAGAGCG	TTGGGCGATT	CACCGCGCAG	CACCTTCCTA	CGAAGAGTTG	300
5	TCAAACTCTC	AGGAACTGCT	GGAAACCGGT	ATCAAAGTTA	TCGACCTGAT	350
	GTGTCCGTTC	GCGAAGGGCG	GTAAAGTCGG	TCTGTTCGGT	GGTGCGGGTG	400
	TAGGTAAAAC	CGTAAACATG	ATGGAGCTTA	TTCGTAACAT	CGCGATCGAG	450
	CACTCCGGTT	ACTCAGTGTT	TGCGGGCGTA	GGGGAACGTA	CTCGTGAGGG	500
	TAACGACTTC	TACCACGAAA	TGACCGACTC	CAACGTTATC	GATAAAGTAT	550
10	CCCTGGTGTA	TGGCCAGATG	AACGAGCCGC	CGGGAAACCG	TCTGCGCGTT	600
	GCACTGACCG	GCCTGACCAT	GGCGGAGAAA	TTCCGTGACG	AAGGTCGTGA	650
	TGTACTGCTG	TTCGTCGATA	ACATCTATCG	TTACACCCTG	GCCGGTACGG	700
•	AAGTATCCGC	ACTGCTGGGC	CGTATGCCTT	CCGCAGTAGG	TTACCAGCCG	750
	ACTCTGGCGG	AAGAGATGGG	CGTTCTGCAG	GAACGTATCA	CCTCCACCAA	800
15	AACCGGTTCT	ATCACCTCCG				820

2) INFORMATION FOR SEQ ID NO: 344

20

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 831 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
- 25 (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: Genomic DNA
 - (vi)ORIGINAL SOURCE:
 - (A) ORGANISM: Salmonella choleraesuis subsp. diarizonae
 - (B) STRAIN: ATCC 43973
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 344

35	TTCCCTCAGG	ATGCCGTACC	ACGCGTGTAC	GATGCTCTTG	AGGTGCAGAA	50
	TGGTAATGAG	AAGCTGGTGC	TGGAAGTTCA	GCAGCAGCTT	GGCGGCGGTA	100
	TCGTGCGTAC	CATCGCGATG	GGGTCTTCTG	ACGGTCTGCG	TCGCGGTCTT	· 150
	GATGTAAAAG	ATCTCGAACA	CCCGATCGAA	GTCCCGGTAG	GTAAAGCAAC	200
	GCTGGGTCGT	ATCATGAACG	TCCTGGGTGA	ACCGGTCGAT	ATGAAAGGCG	250
40	AGATCGGCGA	AGAAGAGCGT	TGGGCGATTC	ACCGCGCGGC	GCCGTCCTAC	300
	GAAGAGTTGT	CAAACTCTCA	GGAACTGCTG	GAAACCGGTA	TCAAAGTTAT	350
	CGACCTGATG	TGTCCGTTCG	CGAAGGGCGG	TAAAGTCGGT	CTGTTCGGTG	400
	GCGCGGGTGT	AGGTAAAACC	GTAAACATGA	TGGAGCTTAT	CCGTAACATC	450
	GCGATCGAGC	ACTCCGGTTA	CTCTGTGTTT	GCGGGCGTAG	GTGAACGTAC	500
45	TCGTGAGGGT	AACGACTTCT	ACCACGAAAT	GACCGACTCT	AACGTTATCG	550
	ATAAAGTATC	CCTGGTGTAT	GGCCAGATGA	ACGAGCCACC	GGGAAACCGT	600
	CTGCGCGTTG	CATTGACCGG	CCTGACCATG	GCGGAAAAAT	TCCGTGATGA	650
	AGGTCGTGAC	GTTCTGCTGT	TCGTCGACAA	CATCTACCGT	TATACCCTCG	700
	CCGGTACGGA	AGTATCCGCA	CTGCTGGGTC	GTATGCCTTC	CGCGGTAGGT	750
50	TATCAGCCGA	CTCTGGCTGA	AGAAATGGGC	GTTCTGCAGG	AACGTATCAC	800
	CTCCACCAAA	ACCGGTTCTA	TCACCTCCGT	A		831

- 55 2) INFORMATION FOR SEQ ID NO: 345
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 831 bases
 - (B) TYPE: Nucleic acid
- 60 (C) STRANDEDNESS: Double 206

(D) TOPOLOGY: Linear

(ii) MOLECULE TYPE: Genomic DNA

- 5 (vi)ORIGINAL SOURCE:
 - (A) ORGANISM: Salmonella choleraesuis subsp. houtenae
 - (B) STRAIN: ATCC 43974
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 345

TTCCCTCAGG	ATGCCGTACC	ACGCGTGTAC	GATGCTCTTG	AGGTGCAGAA	50
TGGTAATGAG	AAGCTGGTGC	TGGAAGTTCA	GCAGCAGCTT	GGCGGCGGTA	100
TCGTACGTAC	CATCGCGATG	GGGTCTTCTG	ACGGTCTGCG	TCGCGGTCTG	150
GATGTAAAAG	ATCTCGAACA	CCCGATCGAA	GTCCCGGTAG	GTAAAGCTAC	200
GCTGGGTCGT	ATCATGAACG	TCCTGGGCGA	ACCGGTCGAT	ATGAAAGGCG	250
AGATCGGCGA	AGAAGAGCGT	TGGGCGATTC	ACCGCGCTGC	GCCGTCCTAC	300
GAAGAGTTGT	CAAACTCTCA	GGAACTGCTG	GAAACCGGTA	TCAAAGTTAT	.350
CGACCTGATG	TGTCCGTTCG	CGAAGGGCGG	TAAAGTCGGT	CTGTTCGGTG	400
GCGCGGGTGT	AGGTAAAACC	GTAAACATGA	TGGAGCTTAT	CCGTAACATC	450
GCGATCGAGC	ACTCCGGTTA	CTCCGTGTTT	GCGGGCGTAG	GTGAACGTAC	500
TCGTGAGGGT	AACGACTTCT	ACCACGAAAT	GACCGACTCC	AACGTTATCG	550
ATAAAGTATC	CCTGGTGTAT	GGTCAGATGA	ACGAGCCGCC	GGGAAACCGT	600
CTGCGCGTTG	CATTGACCGG	CCTGACCATG	GCGGAAAAAT	TCCGTGACGA	650
AGGTCGTGAC	GTTCTGCTGT	TCGTCGATAA	CATCTATCGT	TACACCCTGG	700
CCGGTACGGA	AGTATCCGCA	CTGCTGGGTC	GTATGCCTTC	CGCGGTAGGT	750
TATCAGCCGA	CGCTGGCGGA	AGAGATGGGC	GTTCTGCAGG	AACGTATCAC	800
CTCCACCAAG	ACCGGTTCTA	TCACCTCCGT	A		831
	TGGTAATGAG TCGTACGTAC GATGTAAAAG GCTGGGTCGT AGATCGGCGA GAAGAGTTGT CGACCTGATG GCGCGGGTGT GCGATCGAGC TCGTGAGGGT ATAAAGTATC CTGCGCGTTG AGGTCGTGAC CCGGTACGGA TATCAGCCGA	TGGTAATGAG AAGCTGGTGC TCGTACGTAC CATCGCGATG GATGTAAAAG ATCTCGAACA GCTGGGTCGT ATCATGAACG AGATCGGCGA AGAAGAGCGT GAAGAGTTGT CAAACTCTCA CGACCTGATG TGTCCGTTCG GCGCGGGTGT AGGTAAAACC GCGATCGAGC ACTCCGGTTA TCGTGAGGGT AACGACTTCT ATAAAGTATC CCTGGTGTAT CTGCGCGTTG CATTGACCGG AGGTCGTGAC GTTCTGCTGT CCGGTACGGA AGTATCCGCA TATCAGCCGA CGCTGGCGA	TGGTAATGAG AAGCTGGTGC TGGAAGTTCA TCGTACGTAC CATCGCGATG GGGTCTTCTG GATGTAAAAG ATCTCGAACA CCCGATCGAA GCTGGGTCGT ATCATGAACG TCCTGGGCGA AGATCGGCGA AGAAGAGCGT TGGGCGATTC GAAGAGTTGT CAAACTCTCA GGAACTGCTG CGACCTGATG TGTCCGTTCG CGAAGGGCGG GCGCGGGTGT AGGTAAAACC GTAAACATGA GCGATCGAGC ACTCCGGTTA CTCCGTGTTT TCGTGAGGGT AACGACTTCT ACCACGAAAT ATAAAGTATC CCTGGTGTAT GGTCAGATGA CTGCGCGTTG CATTGACCGG CCTGACCATG AGGTCGTGAC GTTCTGCTGT TCGTCGATAA CCGGTACGGA AGTATCCGCA CTGCTGGGTC TATCAGCCGA CGCTGGCGGA AGAGATGGGC	TGGTAATGAG AAGCTGGTGC TGGAAGTTCA GCAGCAGCTT TCGTACGTAC CATCGCGATG GGGTCTTCTG ACGGTCTGCG GATGTAAAAG ATCTCGAACA CCCGATCGAA GTCCCGGTAG GCTGGGTCGT ATCATGAACG TCCTGGGCGA ACCGGTCGAT AGATCGGCGA AGAAGAGCGT TGGGCGATTC ACCGCGCTGC GAAGAGTTGT CAAACTCTCA GGAACTGCTG GAAACCGGTA CGACCTGATG TGTCCGTTCG CGAAGGGCGG TAAAGTCGGT GCGCGGGTGT AGGTAAAACC GTAAACATGA TGGAGCTTAT GCGATCGAGC ACTCCGGTTA CTCCGTGTTT GCGGGCGTAG TCGTGAGGGT AACGACTTCT ACCACGAAAT GACCGACTCC ATAAAGTATC CCTGGTGTAT GGTCAGATGA ACGAGCCGCC CTGCCGCTTG CATTGACCGG CCTGACCATG GCGGAAAAAT AGGTCGTGAC GTTCTGCTGT TCGTCGATAA CATCTATCGT CCGGTACGGA AGTATCCGCA CTGCTGGGTC GTATGCCTTC TATCAGCCGA CGCTGGCGGA AGAGATGGC GTTCTGCAGG	TGGTAATGAG AAGCTGGTGC TGGAAGTTCA GCAGCAGCTT GGCGGCGGTA TCGTACGTAC CATCGCGATG GGGTCTTCTG ACGGTCTGCG TCGCGGTCTG GATGTAAAAG ATCTCGAACA CCCGATCGAA GTCCCGGTAG GTAAAGCTAC GCTGGGTCGT ATCATGAACG TCCTGGGCGA ACCGGTCGAT ATGAAAGCG AGATCGGCGA AGAAGAGCGT TGGGCGATTC ACCGCGCTGC GCCGTCCTAC GAAGAGTTGT CAAACTCTCA GGAACTGCTG GAAACCGGTA TCAAAGTTAT CGACCTGATG TGTCCGTTCG CGAAGGGCGG TAAAGTCGGT CTGTTCGGTG GCGCGGGTGT AGGTAAAAACC GTAAACATGA TGGAGCCTTAT CCGTAACATC GCGATCGAGC ACTCCGGTTA CTCCGTGTTT GCGGGCGTAG GTGAACGTAC TCGTGAGGGT AACGACTTCT ACCACGAAAT GACCGACTCC AACGTTATCG ATAAAGTATC CCTGGTGTAT GGTCAGATGA ACGAGCCGCC GGGAAACCGT CTGCGCGTTG CATTGACCGG CCTGACCATG GCGGAAAAAAT TCCGTGACGA AGGTCGTGAC GTTCTGCTGT TCGTCGATAA CATCTATCGT TACACCCTGG CCGGTACGGA AGTATCCGCA CTGCTGGGTC GTATGCCTTC CGCGGTAGGT TATCAGCCGA CGCTGGCGGA AGAGATGGGC GTTCTGCAGG AACGTATCAC

30-

10

- 2) INFORMATION FOR SEQ ID NO: 346
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 829 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: Genomic DNA

40

- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Salmonella choleraesuis subsp. indica
 - (B) STRAIN: ATCC 43974
- 45 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 346

TTCCCTCAGG ATGCCGTACC ACGCGTGTAC GATGCCCTTG A		50 100
	GCGGCGGTA	100
TGGTAATGAG AAGCTCGTGC TGGAAGTTCA GCAGCAGCTT G		T00
TCGTGCGTAC CATCGCGATG GGGTCTTCTG ACGGTCTGCG T	CGCGGTCTG	150
50 GATGTAAAAG ATCTCGAACA CCCGATCGAA GTCCCGGTAG G	STAAAGCCAC	200
GCTGGGTCGT ATCATGAACG TCCTGGGCGA ACCGGTCGAT A	ATGAAAGGCG	250
AGATCGGCGA AGAAGAGCGT TGGGCGATTC ACCGCGCGGC G	CCGTCCTAT	300
GAAGAGTTGT CAAACTCTCA GGAACTGCTG GAAACCGGTA T	CAAAGTTAT	350
CGACCTGATG TGTCCGTTCG CGAAGGGCGG TAAAGTCGGT C	CTGTTCGGTG	400
55 GTGCGGCGT AGGTAAAACC GTAAACATGA TGGAGCTTAT C	CCGTAACATC	450
GCGATCGAGC ACTCCGGTTA CTCTGTGTTT GCGGGCGTAG G	STGAACGTAC	500
TCGTGAGGGT AACGACTTCT ACCACGAAAT GACCGACTCC A	ACGTTATCG	550
ACAAAGTATC CCTGGTGTAT GGCCAGATGA ACGAGCCGCC G	GGAAACCGT	600
CTGCGCGTTG CACTGACCGG CCTGACCATG GCGGAGAAGT T	CCGTGACGA	650
60 AGGTCGTGAC GTACTGCTGT TCGTCGATAA CATCTATCGT T	TATACCCTGG	700

CCGGTACGGA	AGTTTCCGCA	CTGCTGGGTC	GTATGCCTTC	CGCGGTAGGT	750
TATCAGCCAA	CTCTGGCGGA	AGAGATGGGC	GTTCTGCAGG	AACGTATCAC	800
CTCCACCAAA	ACCGGTTCTA	TCACCTCCG			829

5

10

- 2) INFORMATION FOR SEQ ID NO: 347
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 817 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
- 15 (ii) MOLECULE TYPE: Genomic DNA
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Salmonella choleraesuis subsp. choleraesuis serotype Paratyphi A
- 20 (B) STRAIN: ATCC 9150
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 347

	GCCGTACCAC	GCGTGTACGA	TGCCCTTGAG	GTGCAGAATG	GTAATGAGAA	50
25	GCTGGTGCTG	GAAGTTCAGC	AGCAGCTTGG	CGGCGGTATC	GTGCGTACCA	100
	TCGCGATGGG	GTCTTCTGAC	GGTCTGCGTC	GCGGTCTGGA	TGTAAAAGAT	150
	CTCGAACACC	CGATCGAAGT	CCCGGTAGGT	AAAGCTACGC	TGGGTCGTAT	200
	CATGAACGTC	CTGGGCGAAC	CGGTCGACAT	GAAAGGCGAG	ATCGGCGAAG	250
	AAGAGCGTTG	GGCGATTCAC	CGCGCAGCGC	CTTCCTACGA	AGAGTTGTCA	300
30	AACTCTCAGG	AACTGCTGGA	AACCGGTATC	AAAGTTATCG	ACCTGATGTG	350
	TCCGTTCGCG	AAGGGCGGTA	AAGTCGGTCT	GTTCGGTGGT	GCGGGTGTAG	400
				GTAACATCGC		450
	TCCGGTTACT	CTGTGTTTGC	GGGCGTAGGT	GAACGTACTC	GTGAGGGTAA	500
	CGACTTCTAC	CATGAAATGA	CCGACTCCAA	CGTTATCGAT	AAAGTATCCC	5 50
35	TGGTGTATGG	CCAGATGAAC	GAGCCGCCGG	GAAACCGTCT	GCGCGTTGCA	600
	CTGACCGGCC	TGACCATGGC	GGAGAAATTC	CGTGACGAAG	GTCGTGACGT	650
	ACTGCTGTTC	GTCGATAACA	TCTATCGTTA	CACCCTGGCC	GGTACGGAAG	700
	TATCCGCACT	GCTGGGTCGT	ATGCCTTCCG	CGGTAGGTTA	CCAGCCGACT	750
	CTGGCGGAAG	AGATGGGCGT	TCTGCAGGAA	CGTATCACCT	CCACCAAGAC	800
40	CGGTTCTATC	ACCTCCG				817

2) INFORMATION FOR SEQ ID NO: 348

45

50

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 806 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
- (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: Genomic DNA
- (vi)ORIGINAL SOURCE:
- (A) ORGANISM: Salmonella choleraesuis subsp. choleraesuis serotype Paratyphi B
 - (B) STRAIN: ATCC 8759
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 348

60

	GCCGTACCAC	GCGTGTACGA	TGCCCTTGAG	GTGCAGAATG	GTAATGAGAA	5 0
	GCTGGTGCTG	GAAGTTCAGC	AGCAGCTTGG	CGGCGGTATT	GTGCGTACCA	100
	TCGCGATGGG	GTCTTCTGAC	GGTCTGCGTC	GCGGTCTGGA	TGTAAAAGAT	150
	CTCGAACACC	CGATCGAAGT	CCCGGTAGGT	AAAGCCACGC	TGGGTCGTAT	200
5	CATGAACGTC	CTGGGCGAAC	CGGTCGACAT	GAAAGGCGAG	ATCGGCGAAG	250
	AAGAGCGTTG	GGCGATTCAC	CGCGCAGCGC	CTTCCTACGA	AGAGTTGTCA	300
	AACTCTCAGG	AACTGCTGGA	AACCGGTATC	AAAGTTATCG	ACCTGATGTG	350
	TCCGTTCGCG	AAGGGCGGTA	AAGTCGGTCT	GTTCGGTGGT	GCGGGTGTGG	400
	GTAAAACCGT	AAACATGATG	GAGCTTATCC	GTAACATCGC	GATCGAGCAC	450
10	TCCGGTTACT	CTGTGTTTGC	GGGCGTAGGT	GAACGTACTC	GTGAGGGTAA	500
	CGACTTCTAC	CACGAAATGA	CCGACTCCAA	CGTTATCGAT	AAAGTATCCC	550
	TGGTGTATGG	CCAGATGAAC	GAGCCGCCGG	GAAACCGTCT	GCGCGTTGCA	600
	TTGACCGGTC	TGACCATGGC	GGAGAAATTC	CGTGACGAAG	GTCGTGACGT	650
	ACTGCTGTTC	GTCGATAACA	TCTATCGTTA	CACCCTGGCC	GGTACGGAAG	700
15	TATCCGCACT	GCTGGGCCGT	ATGCCTTCCG	CAGTAGGTTA	CCAGCCGACT	750
	CTGGCGGAAG	AGATGGGCGT	TCTGCAGGAA	CGTATCACCT	CCACCAAAAC	800
	CGGTTC					806

20

25

- 2) INFORMATION FOR SEQ ID NO: 349
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 831 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: Genomic DNA

30

- (vi)ORIGINAL SOURCE:
 - (A) ORGANISM: Salmonella choleraesuis subsp. salamae
 - (B) STRAIN: ATCC 43972
- 35 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 349

	TTCCCTCAGG	ATGCCGTACC	ACGCGTGTAC	GATGCCCTTG	AGGTGCAGAA	50
	TGGTAATGAG	AAGCTGGTGC	TGGAAGTTCA	GCAGCAGCTT	GGCGGCGGTA	100
	TCGTGCGTAC	CATCGCGATG	GGGTCTTCTG	ACGGTCTGCG	TCGKGGTCTG	150
40	GATGTAAAAG	ATCTCGAACA	CCCGATCGAA	GTCCCGGTAG	GTAAAGCAAC	200
	GCTGGGCCGT	ATCATGAACG	TACTGGGCGA	ACCGGTCGAC	ATGAAAGGCG	250
	AGATTGGTGA	AGAAGAGCGT	TGGGCTATTC	ACCGTGCTGC	GCCGTCCTAC	300
	GAAGAGTTGT	CAAACTCTCA	GGAACTGCTG	GAAACCGGTA	TCAAAGTTAT	350
	CGACCTGATG	TGTCCGTTCG	CGAAGGGCGG	TAAAGTCGGT	CTGTTCGGTG	400
45	GCGCGGGTGT	AGGTAAAACC	GTAAACATGA	TGGAGCTCAT	CCGTAACATC	450
	GCGATCGAGC	ACTCCGGTTA	CTCCGTGTTT	GCGGGCGTAG	GTGAACGTAC	500
	TCGTGAGGGT	AACGACTTCT	ACCACGAAAT	GACCGACTCC	AACGTTATCG	550
	ATAAAGTATC	CCTGGTGTAT	GGCCAGATGA	ACGAGCCGCC	GGGAAACCGT	600
	CTGCGCGTTG	CACTGACCGG	CCTGACCATG	GCGGAAAAAT	TCCGTGACGA	650
50	AGGTCGTGAC	GTACTGCTGT	TCGTCGATAA	CATCTATCGT	TATACCCTGG	700
	CCGGTACGGA	AGTATCCGCA	CTGCTGGGTC	GTATGCCTTC	CGCGGTAGGT	750
	TATCAGCCGA	CGCTGGCGGA	AGAGATGGGC	GTTCTGCAGG	AACGTATCAC	800
	CTCCACTAAA	ACCGGTTCTA	TCACCTCCGT	A		831

- 2) INFORMATION FOR SEQ ID NO: 350
 - (i) SEQUENCE CHARACTERISTICS:
- 60 (A) LENGTH: 823 bases

- (B) TYPE: Nucleic acid
- (C) STRANDEDNESS: Double
- (D) TOPOLOGY: Linear
- 5 (ii) MOLECULE TYPE: Genomic DNA
 - (vi)ORIGINAL SOURCE:
 - (A) ORGANISM: Salmonella choleraesuis subsp. choleraesuis serotype Typhi
- 10 (B) STRAIN: ATCC 10749
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 350

	TTCCCTCAGG	ATGCCGTACC	ACGCGTGTAC	GATGCCCTTG	AGGTGCAGAA	50
15	TGGTAATGAG	AAGCTGGTGC	TGGAAGTTCA	GCAGCAGCTT	GGCGGCGGTA	100
	TCGTGCGTAC	CATCGCGATG	GGGTCTTCTG	ACGGTCTGCG	TCGCGGTCTG	150
	GATGTAAAAG	ATCTCGAACA	CCCGATCGAA	GTCCCGGTAG	GTAAAGCTAC	200
	GCTGGGTCGT	ATCATGAACG	TCCTGGGCGA	ACCGGTCGAC	ATGAAAGGCG	250
	AGATCGGCGA	AGAAGAGCGT	TGGGCGATTC	ACCGCGCAGC	GCCTTCCTAC	300
20	GAAGAGTTAT	CAAACTCTCA	GGAACTGCTG	GAAACCGGTA	TCAAAGTTAT	350
	CGACCTGATG	TGTCCGTTCG	CGAAGGGCGG	TAAAGTCGGT	CTGTTCGGTG	400
	GTGCGGGTGT	AGGTAAAACC	GTAAACATGA	TGGAGCTTAT	CCGTAACATC	450
	GCGATCGAGC	ACTCCGGTTA	CTCTGTGTTT	GCGGGCGTAG	GTGAACGTAC	500
	TCGTGAGGGT	AACGACTTCT	ACCATGAAAT	GACCGACTCC	AACGTTATCG	550
25	ATAAAGTATC	CCTGGTGTAT	GGCCAGATGA	ACGAGCCGCC	GGGAAACCGT	600
	CTGCGCGTTG	CACTGACCGG	CCTGACCATG	GCGGAGAAAT	TCCGTGACGA	650
	AGGTCGTGAC	GTACTGCTGT	TCGTCGATAA	CATCTATCGT	TACACCCTGG	700
	CCGGTACGGA	AGTATCCGCA	CTGCTGGGTC	GTATGCCTTC	CGCGGTAGGT	750
	TACCAGCCGA	CTCTGGCGGA	AGAGATGGGC	GTTCTGCAGG	AACGTATCAC	800
30	CTCCACCAAG	ACCGGTTCTA	TCA			823

2) INFORMATION FOR SEQ ID NO: 351

35

45

50

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 831 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
- 40 (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: Genomic DNA
 - (vi)ORIGINAL SOURCE:
 - (A) ORGANISM: Salmonella choleraesuis subsp. choleraesuis serotype Typhimurium
 - (B) STRAIN: ATCC 14028
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 351

TTCCCTCAGG ATGCCGTACC ACGCGTGTAC GATGCCCTTG AGGTGCAGAA 50 100 TGGTAATGAG AAGCTGGTGC TGGAAGTTCA GCAGCAGCTT GGCGGCGGTA TTGTGCGTAC CATCGCGATG GGGTCTTCTG ACGGTCTGCG TCGCGGTCTG 150 GATGTAAAAG ATCTCGAACA CCCGATCGAA GTCCCGGTAG GTAAAGCTAC 200 55 GCTGGGTCGT ATCATGAACG TCCTGGGCGA ACCGGTCGAC ATGAAAGGCG 250 AGATCGCCA AGAAGAGCGT TGGGCGATTC ACCGCGCAGC GCCTTCCTAC 300 GAAGAGTTGT CAAACTCTCA GGAACTGCTG GAAACCGGTA TCAAAGTTAT 350 CGACCTGATG TGTCCGTTCG CGAAGGGCGG TAAAGTCGGT CTGTTCGGTG 400 GTGCGGGTGT AGGTAAAACC GTAAACATGA TGGAGCTTAT CCGTAACATC 450 GCGATCGAGC ACTCCGGTTA CTCAGTGTTT GCGGGCGTAG GGGAACGTAC 60 500

10

15

- 2) INFORMATION FOR SEQ ID NO: 352
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 810 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: Genomic DNA

20

- (vi)ORIGINAL SOURCE:
 - (A) ORGANISM: Salmonella choleraesuis subsp. choleraesuis serotype Virchow
 - (B) STRAIN: ATCC 51955

25

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 352

	GCCGTACCAC	GCGTGTACGA	TGCCCTTGAG	GTGCAGAATG	GTAATGAGAA	50
	GCTGGTGCTG	GAAGTTCAGC	AGCAGCTTGG	CGGCGGTATC	GTGCGTACCA	100
30	TCGCGATGGG	GTCTTCTGAC	GGTCTGCGTC	GCGGTCTGGA	TGTAAAAGAT	150
	CTCGAACACC	CGATCGAAGT	CCCGGTAGGT	AAAGCCACGC	TGGGTCGTAT	200
	CATGAACGTC	CTGGGCGAAC	CGGTCGACAT	GAAAGGCGAG	ATCGGCGAAG	250
	AAGAGCGTTG	GGCGATTCAC	CGCGCAGCAC	CTTCCTACGA	AGAGTTGTCA	300
	AACTCTCAGG	AACTGCTGGA	AACCGGTATC	AAAGTTATCG	ACCTGATGTG	350
35	TCCGTTCGCG	AAGGGCGGTA	AAGTCGGTCT	GTTCGGTGGT	GCGGGTGTAG	400
	GTAAAACCGT	AAACATGATG	GAGCTTATTC	GTAACATCGC	GATCGAGCAC	450
	TCCGGTTACT	CTGTGTTTGC	GGGCGTAGGG	GAACGTACTC	GTGAGGGTAA	500
	CGACTTCTAC	CACGAAATGA	CCGACTCCAA	CGTTATCGAT	AAAGTCTCCC	550
•	TGGTGTATGG	CCAGATGAAC	GAGCCGCCGG	GAAACCGTCT	GCGCGTTGCA	600
40	TTGACCGGTC	TGACCATGGC	GGAGAAATTC	CGTGACGAAG	GTCGTGACGT	650
	ACTGCTGTTC	GTCGATAACA	TCTATCGTTA	CACCCTGGCC	GGTACGGAAG	700
	TATCCGCACT	GCTGGGCCGT	ATGCCTTCCG	CAGTAGGTTA	CCAGCCGACT	750
	CTGGCGGAAG	AGATGGGCGT	TCTGCAGGAA	CGTATCACCT	CCACCAAAAC	800
	CGGTTCTATC					810

45

- 2) INFORMATION FOR SEQ ID NO: 353
- 50 (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 820 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear

- (ii) MOLECULE TYPE: Genomic DNA
- (vi)ORIGINAL SOURCE:
 - (A) ORGANISM: Serratia ficaria
- 60 (B) STRAIN: ATCC 33105

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 353

	GATGCCGTAC	CAAAAGTGTA	CGATGCCCTT	GAGGTAGAAA	ACGGTACCGA	50
5	GAAACTGGTG	CTGGAAGTTC	AGCAGCAGCT	GGGCGGTGGC	GTCGTTCGCT	100
	GTATCGCAAT	GGGGACCTCT	GACGGTCTGC	GTCGCGGTCT	GAAAGTGAAC	150
	AACCTGGAAC	ACCCGATTGA	AGTGCCGGTG	GGTAAAGCTA	CCCTGGGCCG	200
	TATCATGAAC	GTATTGGGCG	AACCAATCGA	CATGAAAGGC	GAGATCGGCG	250
	AAGAAGAGCG	TTGGGCGATT	CACCGTCCTG	CGCCAAGCTA	CGAAGAGCTG	300
10	TCCAACTCCC	AGGACCTGCT	GGAAACCGGT	ATCAAGGTAA	TGGACCTGAT	350
	TTGTCCGTTC	GCCAAGGGCG	GTAAAGTCGG	TCTGTTCGGT	GGTGCGGGCG	400
	TGGGCAAAAC	CGTAAACATG	ATGGAGCTGA	TCCGTAACAT	CGCGATCGAG	450
	CACTCCGGTT	ATTCCGTGTT	TGCGGGCGTG	GGCGAGCGTA	CTCGTGAGGG	500
	TAACGACTTC	TACCACGAAA	TGAACGACTC	CAACGTTCTG	GACAAAGTAT	550
15	CCCTGGTTTA	CGGCCAGATG	AACGAGCCGC	CGGGTAACCG	TCTGCGCGTT	600
	GCATTGACCG	GCCTGACCAT	GGCGGAGAAA	TTCCGTGACG	AAGGCCGCGA	650
	CGTTCTGCTG	TTCGTTGACA	ACATTTACCG	TTACACCCTG	GCCGGTACCG	700
	AAGTGTCCGC	ACTTCTGGGC	CGTATGCCAT	CCGCGGTAGG	TTATCAGCCA	750
	ACGCTGGCGG	AAGAGATGGG	CGTTCTGCAA	GAACGTATCA	CCTCGACCAA	800
20	GACCGGTTCC	ATCACCTCCG				820

2) INFORMATION FOR SEQ ID NO: 354

25

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 816 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
- 30 (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: Genomic DNA
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Serratia fonticola
 - (B) STRAIN: ATCC 29844
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 354

40	GATGCCGTAC	CGAAAGTGTA	CAACGCTCTT	GAGGTTGCAA	ACGGCACCGA	50
	GAAATTGGTG	CTGGAAGTTC	AGCAACAGCT	GGGTGGCGGC	GTGGTTCGCT	100
	GTATCGCAAT	GGGGACCTCA	GACGGTCTGC	GTCGTGGTCT	GGCCGTAACC	150
	GACCTGCAGC	ACCCAATTGA	AGTACCGGTA	GGTAAAGCTA	CCCTGGGCCG	200
	TATCATGAAC	GTATTGGGTG	AACCAATCGA	CATGAAGGGC	GACATCGGCG	250
45	AAGAAGAACG	TTGGGCTATT	CACCGCCCTG	CGCCAAGCTA	CGAAGAGCTG	300
	TCCAGCTCCC	AGGATCTGCT	GGAAACCGGT	ATCAAGGTAA	TGGACCTGAT	350
	CTGCCCGTTC	GCCAAGGGTG	GTAAAGTTGG	TCTGTTCGGT	GGTGCTGGTG	400
	TAGGTAAAAC	CGTAAACATG	ATGGAGCTGA	TCCGTAACAT	CGCGATCGAG	450
	CACTCCGGTT	ATTCTGTGTT	TGCGGGCGTG	GGTGAACGTA	CTCGTGAGGG	500
50	TAACGACTTC	TACCACGAAA	TGACCGATTC	CAACGTACTG	GACAAAGTTT	550
	CCCTGGTTTA	CGGCCAGATG	AACGAGCCAC	CAGGTAACCG	TCTGCGCGTT	600
	GCGCTGACCG	GCCTGACCAT	GGCTGAGAAG	TTCCGTGACG	AAGGTCGTGA	650
	CGTACTGCTG	TTCGTCGATA	ACATCTACCG	TTATACCCTG	GCCGGTACCG	700
	AAGTGTCCGC	ACTTCTGGGC	CGTATGCCAT	CGGCGGTAGG	TTATCAGCCA	750
55	ACGCTGGCGG	AAGAGATGGG	TGTTCTGCAA	GAACGTATCA	CCTCTACCAA	800
	GACTGGTTCA	ATCACC				816

^{60 2)} INFORMATION FOR SEQ ID NO: 355

5	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 822 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear 	
	(ii) MOLECULE TYPE: Genomic DNA	
10	<pre>(vi)ORIGINAL SOURCE: (A) ORGANISM: Serratia grimesii (B) STRAIN: ATCC 14460</pre>	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 355	
13	GATGCCGTAC CAAAAGTGTA CAACGCTCTT GAGGTAGAAA ACGGTGCCAA TAAGCTGGTG CTGGAAGTTC AGCAACAGTT GGGCGGTGGC GTGGTTCGCT GTATCGCAAT GGGGACCTCT GATGGTCTGC GTCGCGGTCT GAAAGTCACA	50 100 150
20	GACCTGGACC ACCCAATTGA AGTACCGGTA GGTAAAGCTA CTCTGGGCCG TATCATGAAC GTATTGGGTG AACCAATCGA CATGAAGGGC GATATCGGCG AAGAAGAACG TTGGGCGATT CACCGTCCGG CGCCAAGCTA CGAAGATTTG	200 250 300 350
25	GCCAACTCCC AGGATCTGCT GGAAACCGGT ATCAAGGTAA TGGACCTGAT CTGCCCGTTC GCCAAGGGTG GTAAAGTCGG TCTGTTCGGT GGTGCGGGTG TTGGTAAAAC CGTAAACATG ATGGAGCTGA TCCGTAACAT CGCGATCGAG CACTCCGGTT ATTCTGTGTT TGCGGGCGTG GGTGAGCGTA CTCGTGAGGG TAACGACTTC TACCACGAAA TGAACGACTC CAACGTACTG GACAAAGTAT	400 450 500 550 600
30	CCCTGGTTTA CGGCCAGATG AACGAGCCAC CGGGTAACCG TCTGCGCGTT GCTCTGACCG GTCTGACCAT GGCTGAGAAA TTCCGTGACG AAGGCCGTGA CGTTCTGCTG TTCGTTGATA ACATCTACCG TTATACCCTG GCCGGTACCG AAGTGTCCGC ACTTCTGGGC CGTATGCCAT CGGCGGTAGG TTATCAGCCA ACGCTGGCGG AAGAGATGGG TGTTCTGCAA GAACGTATCA CCTCTACCAA GACTGGTTCA ATCACCTCCG TA	650 700 750 800 822
35	2) INFORMATION FOR SEQ ID NO: 356	
40	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 819 bases(B) TYPE: Nucleic acid(C) STRANDEDNESS: Double(D) TOPOLOGY: Linear	
45	(ii) MOLECULE TYPE: Genomic DNA	
45	<pre>(vi)ORIGINAL SOURCE: (A) ORGANISM: Serratia liquefaciens (B) STRAIN: ATCC 27592</pre>	
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 356	
55 [°]	ATGCCGTACC AAAAGTGTAC AATGCTCTTG AGGTAGAAAA CGGTACCGAG AAGCTGGTGC TGGAAGTTCA GCAGCAGTTG GGCGGTGGCG TAGTTCGCTG TATCGCGATG GGGACCTCAG ATGGTCTGCG CCGCGGTCTG AAAGTGAACG ATCTGGAACA CCCAATTGAA GTACCGGTAG GTAAAGCTAC CCTGGGCCGT ATCATGAACG TATTGGGTGA ACCAATCGAC ATGAAAGGCG ACATCGGCGA AGAAGAACGT TGGGCGATTC ACCGTCCAGC GCCAAGCTAC GAACATTTGT CAAACTCCCA GGATCTGCTG GAAACCGGTA TCAAGGTTAT GGACCTGATT	50 100 150 200 250 300 350 400
60	TGTCCGTTCG CTAAGGCCGG TAAAGTTGGT CTGTTCGGTG GTGCTGGTGT TGGTAAAACC GTAAACATGA TGGAGCTGAT CCGTAACATC GCGATCGAGC 213	450

	ACTCCGGTTA	TTCCGTGTTT	GCAGGCGTGG	GTGAGCGTAC	TCGTGAGGGT	500
	AACGACTTCT	ACCACGAAAT	GAACGACTCC	AACGTACTGG	ACAAAGTATC	550
	CCTGGTTTAC	GGCCAGATGA	ACGAGCCACC	GGGTAACCGT	CTGCGCGTTG	600
	CTCTGACCGG	TCTGACCATG	GCGGAGAAAT	TCCGTGACGA	AGGCCGCGAC	650
5	GTTCTGCTGT	TCGTTGATAA	CATTTACCGT	TATACCCTGG	CCGGTACCGA	700
	AGTGTCCGCA	CTTCTGGGCC	GTATGCCATC	TGCGGTAGGT	TATCAGCCAA	750
	CGCTGGCGGA	AGAGATGGGC	GTTCTGCAAG	AACGTATCAC	CTCTACCAAG	800
	ACCGGTTCTA					819

10

15

- 2) INFORMATION FOR SEQ ID NO: 357
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 805 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
- 20 (ii) MOLECULE TYPE: Genomic DNA
 - (vi)ORIGINAL SOURCE:
 - (A) ORGANISM: Serratia marcescens
 - (B) STRAIN: ATCC 13880

25

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 357

	TCAGGATGCC	GTACCGAAAG	TGTACGACGC	CCTTGAGGTA	GAAAACGGCA	50
	CCGAAAAACT	GGTGTTGGAA	GTTCAGCAAC	AGCTGGGCGG	TGGCGTGGTT	100
30	CGCTGTATCG	CAATGGGGAC	CTCCGACGGT	CTGCGTCGCG	GTCTGAAAGT	150
	GAACAACCTG	GACCACCCGA	TTGAAGTGCC	GGTGGGTAAA	GCTACCCTGG	200
	GTCGTATCAT	GAACGTATTG	GGTCAACCGA	TCGACATGAA	AGGCGACATC	250
	GGCGAAGAAG	AGCGTTGGGC	GATTCACCGC	GCGGCGCCAA	GCTACGAAGA	300
	GCTGTCAAGC	TCTCAGGAAC	TGCTGGAAAC	CGGTATCAAG	GTAATGGACC	350
35	TGATTTGTCC	GTTCGCCAAG	GGCGGTAAAG	TCGGTCTGTT	CGGCGGTGCG	400
	GGCGTAGGTA	AAACCGTAAA	CATGATGGAG	CTGATCCGTA	ACATCGCGAT	450
	CGAGCACTCC	GGTTATTCCG	TGTTTGCGGG	CGTGGGCGAG	CGTACTCGTG	500
	AGGGTAACGA	CTTCTACCAC	GAAATGACCG	ACTCCAACGT	TCTGGACAAA	550
	GTATCCCTGG	TTTACGGCCA	GATGAACGAG	CCACCAGGTA	ACCGTCTGCG	600
40	CGTTGCGCTG	ACCGGTCTGA	CCATGGCGGA	GAAATTCCGT	GACGAAGGCC	650
-	GTGACGTTCT	GCTGTTCGTT	GACAACATCT	ACCGTTACAC	CCTGGCCGGT	700
	ACCGAAGTGT	CCGCACTTCT	GGGCCGTATG	CCATCCGCGG	TAGGTTATCA	750
	GCCAACGCTG	GCGGAAGAGA	TGGGCGTTCT	GCAAGAACGT	ATCACCTCGA	800
	CCAAG					805

45

- 2) INFORMATION FOR SEQ ID NO: 358
- 50 (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 822 bases(B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear

- (ii) MOLECULE TYPE: Genomic DNA
- (vi)ORIGINAL SOURCE:
 - (A) ORGANISM: Serratia odorifera
- 60 (B) STRAIN: ATCC 33077

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 358

	GATGCCGTAC	CAAAAGTGTA	CGATGCCCTT	GAGGTAGAAA	ACGGTACCGA	50
5	AACTCTGGTG	CTGGAAGTTC	AGCAGCAGCT	GGGCGGTGGC	GTGGTTCGTT	100
	GTATCGCTAT	GGGCACCTCC	GACGGTTTGC	GTCGCGGCCT	GAAAGTGAAC	150
	GATCTGCAAC	ACCCAATCGA	AGTCCCGGTT	GGCAAGGCAA	CGCTGGGTCG	200
	TATCATGAAC	GTATTGGGTC	AACCAATCGA	CATGAAAGGC	GACATCGGCG	250
	AAGAAGAGCG	TTGGGCGATT	CACCGCGCGG	CGCCAAGCTA	CGAAGAACTG	300
10	TCCAACTCCC	AGGATCTGCT	GGAAACCGGT	ATCAAGGTTA	TGGACCTGAT	350
	CTGCCCGTTT	GCCAAGGGTG	GTAAAGTCGG	TCTGTTCGGT	GGTGCGGGTG	400
	TTGGTAAAAC	CGTAAACATG	ATGGAGCTGA	TCCGTAACAT	CGCGATCGAG	450
	CACTCCGGTT	ATTCAGTGTT	TGCGGGCGTG	GGTGAGCGTA	CTCGTGAGGG	500
	TAACGACTTC	TACCACGAAA	TGACCGACTC	CAACGTACTG	GACAAGGTTT	550
15	CCCTGGTTTA	CGGCCAGATG	AACGAGCCAC	CGGGTAACCG	TCTGCGCGTT	600
	GCGCTGACCG	GTCTGACCAT	GGCCGAGAAA	TTCCGTGACG	AAGGTCGTGA	650
	CGTTCTGCTG	TTCGTTGACA	ACATTTACCG	TTACACCCTG	GCCGGTACCG	700
	AAGTGTCTGC	ACTTCTGGGC	CGTATGCCAT	CGGCGGTAGG	TTATCAGCCA	750
	ACGCTGGCGG	AAGAGATGGG	CGTTCTGCAA	GAACGTATCA	CCTCGACCAA	800
20	GACCGGTTCT	ATCACCTCCG	TA			822

2) INFORMATION FOR SEQ ID NO: 359

25

30

35

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 805 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
- (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: Genomic DNA
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Serratia plymuthica
 - (B) STRAIN: ATCC 183
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 359

40	GTGTACAACG	CTCTTGAGGT	AGAAAACGGT	GCCAATAAGC	TGGTGCTGGA	50
	AGTTCAGCAA	CAGCTGGGCG	GTGGCGTGGT	TCGCTGTATC	GCGATGGGGA	100
	CCTCTGATGG	TCTGCGTCGC	GGTCTGAAAG	TGATCGACCT	GGATCACCCG	150
	ATTGAAGTAC	CGGTAGGTAA	AGCTACCCTG	GGCCGTATCA	TGAACGTATT	200
	GGGTGAACCA	ATCGACATGA	AAGGCGACAT	CGGCGAAGAA	GAACGTTGGG	250
45	CAATTCACCG	TCCAGCGCCA	AGCTACGAAG	ATTTGGCCAA	CTCCCAGGAT	300
	CTGCTGGAAA	CCGGTATCAA	GGTTATGGAC	CTGATCTGTC	CGTTCGCTAA	350
	GGGCGGTAAA	GTGGGTCTGT	TCGGCGGTGC	GGGCGTGGGT	AAAACCGTAA	400
	ACATGATGGA	GCTGATCCGT	AACATCGCGA	TCGAACACTC	CGGTTATTCC	450
	GTGTTTGCGG	GCGTGGGTGA	GCGTACTCGT	GAGGGTAACG	ACTTCTACCA	500
50	CGAAATGAAC	GACTCCAACG	TACTGGACAA	AGTATCCCTG	GTTTACGGCC	550
	AGATGAACGA	GCCACCGGGT	AACCGTCTGC	GCGTTGCTCT	GACCGGTCTG	600
	ACCATGGCGG	AGAAATTCCG	TGACGAAGGC	CGCGACGTTC	TGCTGTTCGT	650
	TGATAACATC	TACCGTTATA	CCCTGGCCGG	TACCGAAGTG	TCCGCACTTC	700
	TGGGCCGTAT	GCCATCTGCG	GTAGGTTATC	AGCCAACGCT	GGCGGAAGAG	750
55	ATGGGCGTTC	TGCAAGAACG	TATCACCTCT	ACCAAGACCG	GTTCTATCAC	800
	CTCCG					805

60 2) INFORMATION FOR SEQ ID NO: 360

```
(i) SEQUENCE CHARACTERISTICS:
                LENGTH: 831 bases
           (A)
           (B)
                TYPE: Nucleic acid
5
                 STRANDEDNESS: Double
           (C)
           (D)
                TOPOLOGY: Linear
      (ii) MOLECULE TYPE: Genomic DNA
10
      (vi) ORIGINAL SOURCE:
           (A)
                ORGANISM: Serratia rubidaea
           (B)
                 STRAIN: ATCC 27593
      (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 360
15
    TTCCCTCAGG ATGCCGTACC AAAAGTGTAC GATGCCCTTG AGGTAGAGAA
                                                                   50
    CGGTAACGAA AAACTGGTGC TGGAAGTTCA GCAGCAGCTG GGCGGCGGCG
                                                                  100
    TTGTACGCTG TATCGCCATG GGTACTTCCG ACGGTCTGCG TCGCGGTCTG
                                                                  150
    AAAGTTAACG ACCTCGAGCA CCCAATCGAA GTGCCAGTTG GTAAAGCAAC
                                                                  200
    GCTGGGTCGT ATCATGAACG TATTGGGTCA GCCAATCGAC ATGAAAGGCG
                                                                  250
20
    ACATCGGCGA AGAAGAGCGT TGGGCGATTC ACCGCGCGGC GCCAAGCTAC
                                                                  300
    GAAGAGCTGT CCAGCTCCCA AGAGCTGCTG GAAACCGGTA TCAAGGTAAT
                                                                  350
    GGACCTGATC TGCCCGTTCG CCAAGGGTGG TAAAGTTGGT CTGTTCGGTG
                                                                  400
    GTGCGGGCGT AGGTAAAACC GTAAACATGA TGGAGCTGAT CCGTAACATC
                                                                  450
    GCGATCGAGC ACTCCGGTTA CTCTGTGTTT GCGGGCGTGG GTGAGCGTAC
25
                                                                  500
    TCGTGAGGGT AACGACTTCT ACCACGAAAT GACCGACTCC AACGTACTGG
                                                                  550
    ACAAAGTATC CCTGGTTTAC GGCCAGATGA ACGAGCCGCC GGGTAACCGT
                                                                  600
    CTGCGCGTTG CACTGACCGG CCTGACCATG GCGGAAAAAT TCCGTGATGA
                                                                  650
    AGGCCGCGAC GTTCTGCTGT TCGTGGATAA CATCTACCGT TACACCCTGG
                                                                  700
    CCGGTACCGA AGTGTCCGCA CTGCTCGGCC GTATGCCATC TGCGGTAGGT
30.
                                                                  750
    TATCAGCCAA CGCTGGCGGA AGAGATGGGC GTTCTGCAAG AACGTATCAC
                                                                  800
    CTCGACCAAG ACCGGTTCAA TCACCTCCGT A
                                                                  831
35
    2) INFORMATION FOR SEQ ID NO: 361
        (i) SEQUENCE CHARACTERISTICS:
                 LENGTH: 406 bases
           (A)
40
           (B)
                 TYPE: Nucleic acid
           (C)
                 STRANDEDNESS: Double
                 TOPOLOGY: Linear
           (D)
       (ii) MOLECULE TYPE: Genomic DNA
45
       (vi)ORIGINAL SOURCE:
                 ORGANISM: Pseudomonas putida
           (A)
           (B)
                 STRAIN: LCDC D7172
50
       (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 361
    CCGTAAACAT GATGGAACTG ATCCGTAACA TCGCCATCGA GCACAGCGGT
                                                                   50
    TATTCCGTGT TCGCCGGTGT GGGTGAGCGT ACTCGTGAGG GTAACGACTT
                                                                  100
    CTACCACGAG ATGAAGGACT CCAACGTTCT CGACAAGGTA GCGCTGGTCT
                                                                  150
    ACGGTCAGAT GAACGAGCCA CCAGGAAACC GTCTGCGCGT AGCGCTGACC
55
                                                                  200
    GGCCTGACCA TGGCCGAGAA GTTCCGTGAC GAAGGTAACG ACGTTCTGCT
                                                                  250
    GTTCGTCGAC AACATCTATC GTTACACCCT GGCCGGTACC GAAGTATCCG
                                                                  300
    CACTGCTGGG CCGTATGCCT TCGGCGGTAG GTTACCAGCC GACCCTGGCT
                                                                  350
    GAAGAGATGG GCGTTCTGCA AGAACGTATC ACTTCGACCA AGGAAGGTTC
                                                                  400
60
    GATCAC
                                                                  406
```

_	2) INFORMATION FOR SEQ ID NO: 362	
5	(i)SEQUENCE CHARACTERISTICS: (A) LENGTH: 831 bases	
	(B) TYPE: Nucleic acid	
	(C) STRANDEDNESS: Double	
10	(D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
	(vi)ORIGINAL SOURCE:	
15	(A) ORGANISM: Shigella boydii	
	(B) STRAIN: ATCC 9207	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 362	
20	TTCCCTCAGG ATGCCGTACC GCGCGTGTAC GATGCTCTTG AGGTGCAAAA	50
	TGGTAATGAG CGTCTGGTGC TGGAAGTTCA GCAGCAGCTC GGCGGCGGTA	100
	TCGTGCGTAC CATCGCAATG GGTTCCTCCG ACGGTCTGCG TCGCGGTCTG	150
	GATGTAAAAG ACCTCGAACA CCCGATCGAA GTCCCGGTAG GTAAAGCGAC	200
25	TCTGGGCCGT ATCATGAACG TACTGGGTGA ACCGGTCGAC ATGAAAGGCG AGATCGGTGA AGAAGAGCGT TGGGCGATTC ACCGCGCAGC ACCTTCCTAC	250
25	GAAGAGCTGT CAAACTCTCA GGAACTGCTG GAAACCGGTA TCAAAGTTAT	300 350
	CGACCTGATG TGTCCGTTCG CTAAGGGCGG TAAAGTTGGT CTGTTCGGTG	400
	GTGCGGGTGT AGGTAAAACC GTAAACATGA TGGAGCTCAT TCGTAACATC	450
	GCGATCGAGC ACTCCGGTTA CTCTGTGTTT GCGGGCGTAG GTGAACGTAC	500
30	TCGTGAGGGT AACGACTTCT ACCACGAAAT GACCGACTCC AACGTTATCG	550
	ACAAAGTATC CCTGGTGTAT GGCCAGATGA ACGAGCCGCC GGGAAACCGT	600
	CTGCGCGTTG CTCTGACCGG TCTGACCATG GCTGAGAAAT TCCGTGACGA	650
	AGGTCGTGAC GTTCTGCTGT TCGTTGACAA CATCTATCGT TACACCCTGG	700
25	CCGGTACGGA AGTATCCGCA CTGCTGGGCC GTATGCCTTC AGCGGTAGGT	750
35	TATCAGCCGA CCCTGGCGGA AGAGATGGGC GTTCTGCAGG AACGTATCAC CTCCACCAAA ACTGGTTCTA TCACCTCCGT A	800 831
		031
40	2) INFORMATION FOR SEQ ID NO: 363	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 802 bases	
45	(B) TYPE: Nucleic acid (C) STRANDEDNESS: Double	
	(D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
50	(vi)ORIGINAL SOURCE:	
	(A) ORGANISM: Shigella dysenteriae	
	(B) STRAIN: ATCC 11835	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 363	
55		
	GCCGTACCGC GCGTGTACGA TGCTCTTGCG GTGCAAAATG GTAATGAGCG	50
	TCTGGTGCTG GAAGTTCAGC AGCAGCTCGG CGGCGGTATC GTGCGTACCA	100
	TCGCAATGGG TTCCTCCGAC GGTCTGCGTC GCGGTCTGGA TGTAAAAGAC	150
60	CTCGAACACC CGATCGAAGT CCCGGTAGGT AAAGCGACTC TGGGCCGTAT CATGAACGTA CTGGGTGAAC CGGTCGACAT GAAAGGCGAG ATCGGTGAAG	200
Q U	CAIGAACGIA CIGGGGAAC CGGICGACAI GAAAGGCGAG ATCGGTGAAG	250

	AAGAGCGTTG	GGCTATTCAC	CGCGCAGCAC	CTTCCTACGA	AGAGCTGTĆA	300
	AACTCTCAGG	AACTGCTGGA	AACCGGTATC	AAAGTTATCG	ACCTGATGTG	350
	TCCGTTCGCT	AAGGGCGGTA	AAGTTGGTCT	GTTCGGTGGT	GCGGGTGTAG	400
	GTAAAACCGT	AAACATGATG	GAGCTCATTC	GTAACATCGC	GATCGAGCAC	450
5	_	CTGTGTTTGC				500
	CGACTTCTAC	CACGAAATGA	CCGACTCCAA	CGTTATCGAC	AAAGTATCCC	550
	TGGTGTATGG	CCAGATGAAC	GAGCCGCCGG	GAAACCGTCT	GCGCGTTGCT	600
	CTGACCGGTC	TGACCATGGC	TGAGAAATTC	CGTGACGAAG	GTCGTGACGT	650
	TCTGCTGTTC	GTTGACAACA	TCTATCGTTA	CACCCTGGCC	GGTACGGAAG	700
10	TATCCGCACT	GCTGGGCCGT	ATGCCTTCAG	CGGTAGGTTA	TCAGCCGACC	750
	CTGGCGGAAG	AGATGGGCGT	TCTGCAGGAA	CGTATCACCT	CCACCAAAAC	800
	CG					802

15

20

- 2) INFORMATION FOR SEQ ID NO: 364
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 819 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: Genomic DNA

25

- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Shigella flexneri
 - (B) STRAIN: ATCC 12022
- 30 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 364

	ATGCCGTACC	GCGCGTGTAC	GATGCTCTTG	AGGTGCAAAA	TGGTAATGAG	50
	CGTCTGGTGC	TGGAAGTTCA	GCAGCAGCTC	GGCGGCGGTA	TCGTGCGTAC	100
	CATCGCAATG	GGTTCCTCCG	ACGGTCTGCG	TCGCGGTCTG	GATGTAAAAG	150
35	ACCTCGAACA	CCCGATCGAA	GTCCCGGTAG	GTAAAGCGAC	TCTGGGCCGT	200
	ATCATGAACG	TACTGGGTGA	ACCGGTCGAC	ATGAAAGGCG	AGATCGGTGA	250
	AGAAGAGCGT	TGGGCGATTC	ACCGCGCAGC	ACCTTCCTAC	GAAGAGCTGT	300
	CAAACTCTCA	GGAACTGCTG	GAAACCGGTA	TCAAAGTTAT	CGACCTGATG	350
	TGTCCGTTCG	CTAAGGGCGG	TAAAGTTGGT	CTGTTCGGTG	GTGCGGGTGT	400
40	AGGTAAAACC	GTAAACATGA	TGGAGCTCAT	TCGTAACATC	GCGATCGAGC	450
	ACTCCGGTTA	CTCTGTGTTT	GCGGGCGTAG	GTGAACGTAC	TCGTGAGGGT	500
	AACGACTTCT	ACCACGAAAT	GACCGACTCC	AACGTTATCG	ACAAAGTATC	550
	CCTGGTGTAT	GGCCAGATGA	ACGAGCCGCC	GGGAAACCGT	CTGCGCGTTG	600
	CTCTGACCGG	TCTGACCATG	GCTGAGAAAT	TCCGTGACGA	AGGTCGTGAC	650
45	GTTCTGCTGT	TCGTTGACAA	CATCTATCGT	TACACCCTGG	CCGGTACGGA	700
	AGTATCCGCA	CTGCTGGGCC	GTATGCCTTC	AGCGGTAGGT	TATCAGCCGA	750
	CCCTGGCGGA	AGAGATGGGC	GTTCTGCAGG	AACGTATCAC	CTCCACCAAA	800
	ACTGGTTCTA	TCACCTCCG				819

50

- 2) INFORMATION FOR SEQ ID NO: 365
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 802 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
- 60 (ii) MOLECULE TYPE: Genomic DNA

(vi)ORIGINAL SOURCE: (A) ORGANISM: Shigella sonnei STRAIN: ATCC 29930 (B) 5 (xi) SEQUENCE DESCRIPTION: SEO ID NO: 365 GTACCGCGCG TGTACGATGC TCTTGAGGTG CAAAATGGTA ATGAGCGTCT 50 GGTGCTGGAA GTTCAGCAGC AGCTCGGCGG CGGTATCGTG CGTACCATCG 100 CAATGGGTTC CTCCGACGGT CTGCGTCGCG GTCTGGATGT AAAAGACCTC 150 GAACACCCGA TCGAAGTCCC GGTAGGTAAA GCGACTCTGG GCCGTATCAT GAACGTACTG GGTGAACCGG TCGACATGAA AGGCGAGATC GGTGAAGAAG 200 250 AGCGTTGGGC GATTCACCGC GCAGCACCTT CCTACGAAGA GCTGTCAAAC 300 TCTCAGGAAC TGCTGGAAAC CGGTATCAAA GTTATCGACC TGATGTGTCC 350 GTTCGCTAAG GGCGGTAAAG TTGGTCTGTT CGGTGGTGCG GGTGTAGGTA 15 400 AAACCGTAAA CATGATGGAG CTCATTCGTA ACATCGCGAT CGAGCACTCC 450 GGTTACTCTG TGTTTGCGGG CGTAGGTGAA CGTACTCGTG AGGGTAACGA 500 CTTCTACCAC GAAATGACCG ACTCCAACGT TATCGACAAA GTATCCCTGG 550 TGTATGGCCA GATGAACGAG CCGCCGGGAA ACCGTCTGCG CGTTGCTCTG 600 ACCGGTCTGA CCATGGCTGA GAAATTCCGT GACGAAGGTC GTGACGTTCT 20 650 GCTGTTCGTT GACAACATCT ATCGTTACAC CCTGGCCGGT ACGGAAGTAT 700 CCGCACTGCT GGGCCGTATG CCTTCAGCGG TAGGTTATCA GCCGACCCTG 750 GCGGAAGAGA TGGGCGTTCT GCAGGAACGT ATCACCTCCA CCAAAACTGG 800 802 25 2) INFORMATION FOR SEQ ID NO: 366 30 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 785 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear 35 (ii) MOLECULE TYPE: Genomic DNA (vi)ORIGINAL SOURCE: (A) ORGANISM: Staphylococcus aureus 40 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 366 TAACGCCTTG GTTATTGATG TGCCTAAAGA AGAAGGTACA ATACAACTAA 50 CATTAGAAGT TGCGCTGCAA TTAGGTGACG ACGTTGTTCG TACAATTGCG 100 ATGGATTCAA CTGATGGTGT CCAAAGAGGC ATGGATGTAA AAGATACAGG 45 150 CAAAGAAATT AGTGTACCTG TTGGTGATGA AACATTAGGT CGTGTATTTA 200 ATGTACTAGG TGAAACAATT GACCTTAAAG AAGAAATTAG TGATTCTGTT 250 CGCCGCGATC CTATCCATCG TCAAGCACCA GCATTCGATG AACTTTCAAC 300 AGAAGTTCAA ATTTTAGAAA CAGGTATTAA AGTAGTAGAT TTACTAGCAC 350 CTTATATTAA AGGTGGTAAA ATCGGATTGT TCGGTGGTGC CGGTGTAGGT 50 400 AAAACAGTAT TAATCCAAGA ATTAATTAAC AACATCGCTC AAGAGCACGG 450 TGGTATTTCT GTATTCGCCG GTGTAGGTGA ACGTACTCGT GAAGGTAACG 500 ATTTATACTT CGAAATGAGT GATAGTGGTG TAATTAAGAA AACAGCCATG 550 GTATTCGGGC AAATGAATGA GCCACCTGGT GCACGTATGC GTGTTGCATT ATCTGGTTTA ACAATGGCTG AATATTTCCG TGACGAACAA GGTCAAGACG 600

55

650

700

750

785

TATTATTATT CATCGATAAC ATTTTCAGAT TTACACAAGC TGGTTCTGAG

GTATCTGCAT TATTAGGTCG TATGCCTTCT GCAGTAGGTT ACCAACCAAC

ACTTGCTACT GAAATGGGAC AATTACAAGA ACGTA

2) INFORMATION FOR SEQ ID NO: 367 (i) SEQUENCE CHARACTERISTICS: 5 LENGTH: 843 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear 10 (ii) MOLECULE TYPE: Genomic DNA (vi)ORIGINAL SOURCE: (A) ORGANISM: Staphylococcus auricularis (B) STRAIN: ATCC 33753 15 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 367 GAACATAACG AAGTGCCTAA TATTAATAAC GCCTTAGTAC TCGATGTTGA 50 AAGAGAAGAC GGAACAGTGT CTTTAACTTT AGAAGTAGCT TTACAATTAG 100 GCGATGACGT TGTTCGTACC ATTGCAATGG ATTCAACTGA TGGTGTTAAA 20 150 CGTGGTAACG AAGTCAAAGA TACTGGTAAT AGCATTAGCG TACCAGTCGG 200 AGACGAAACT TTAGGACGTG TCTTCAACGT TCTAGGTGAA ACAATTGATT 250 TAGAAGATAA ACTTGATGAT TCTGCGCGAC GTGACCCTAT ACATAGAGAA 300 GCGCCAGCGT TTGATCAATT ATCAACTCAA GTTGAAATTT TAGAAACAGG 350 AATTAAAGTT GTTGACTTAT TAGCACCTTA TATTAAAGGT GGTAAAGTTG 25 400 GACTCTTCGG TGGTGCCGGT GTTGGTAAAA CCGTTTTAAT CCAAGAATTA 450 ATCAACAACA TCGCTCAAGA ACACGGTGGT ATTTCAGTCT TTGCCGGTGT 500 AGGTGAACGT ACACGTGAAG GTAACGACTT GTACTATGAA ATGAGCGACA 550 GTGGTGTAAT CAAGAAAACA GCCATGGTCT TCGGACAAAT GAACGAACCA 600 30 CCTGGCGCAC GTATGCGTGT TGCTTTATCT GGTTTAACAA TGGCTGAATA 650 TTTCCGTGAT GAACAAGGAC AAGACGTATT GTTATTCATC GACAATATTT 700 TCCGTTTCAC ACAAGCCGGT TCAGAAGTTT CTGCCTTACT AGGTCGTTTA 750 CCATCAGCCG TTGGTTATCA ACCTACATTA GCAACAGAAA TGGGACAATT 800 ACAAGAACGT ATTACTTCAA CAACAAAAGG ATCAGTTACT TCA 843 35 2) INFORMATION FOR SEQ ID NO: 368 40 (i) SEQUENCE CHARACTERISTICS: LENGTH: 849 bases TYPE: Nucleic acid (B) (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear 45 (ii) MOLECULE TYPE: Genomic DNA (vi) ORIGINAL SOURCE: ORGANISM: Staphylococcus capitis subsp. capitis (A) 50 (B) STRAIN: ATCC 27840 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 368 GCTTTGAACA TAATGAAGTT CCTGATATTA ACAATGCCTT ACACATCGAA 50 GTTCCTAAAG AAGATAGCAC ACTTCATTTA ACTTTAGAAG TTGCACTTCA 55 100 ATTAGGTGAC GATGTAGTAC GTACAATCGC AATGGACTCA ACTGACGGCG 150 TTCAAAGAGG TATGGAAGTT AAAGATACAG GTAAAGATAT TAGCGTACCT 200 GTTGGTGATG CAACTTTAGG AAGAGTATTT AACGTATTAG GAGAAACAAT 250 CGATTTAGAT GAAAAGATTG ATGATTCAGT ACGTCGTGAT CCTATTCATA

300

350

GACAGGCACC TGGCTTCGAT GAATTATCTA CTAAAGTAGA AATCTTAGAA

	ACAGGTATCA	AAGTAGTAGA	CTTATTAGCA	CCTTACATTA	AAGGTGGTAA	400
	AATTGGATTA	TTCGGTGGTG	CCGGTGTTGG	TAAGACAGTT	TTAATCCAAG	450
	AACTTATCAA	TAATATCGCT	CAAGAGCATG	GTGGTATTTC	AGTATTCGCC	500
		AACGTACACG				550
5		GTAATTAAGA				600
		TGCTCGTATG				650
		GTGATGAAGA				700
		TTCACACAAG				750
		AGCCGTTGGT				800
10	CAATTACAAG	AACGTATTAG	TTCAACTAAT	AAAGGTTCTG	TTACTTCAA	849

2) INFORMATION FOR SEQ ID NO: 369

15

25

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 830 bases
 - (B)
 - TYPE: Nucleic acid STRANDEDNESS: Double (C)
- 20 (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: Genomic DNA
 - (vi)ORIGINAL SOURCE:
 - ORGANISM: Staphylococcus cohnii (A)
 - STRAIN: DSM 20260 (B)
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 369

30	GAAGTTCCAG	AAATTAATAA	TGCCTTAGTT	CTCGATATAG	AAAGAGAAGA	50
	AGGTACTGTT	GAATTAACGT	TAGAAGTTGC	ATTACAACTT	GGTGATGACG	100
	TAGTACGAAC	AATCGCAATG	GATTCAACTG	ATGGTGTTAA	ACGTGGTACA	150
	GAAGTTAGAG	ATAGCGGAAA	TAGTATCAGC	GTACCAGTTG	GTAATGAAAC	200
	ATTAGGTAGA	GTATTTAATG	TATTAGGTGA	TACGATAGAT	TTAGATGAAG	250
35	ACATAGATGA	CTCAGTGCGT	CGTGACCCAA	TTCATAGAGA	AGCACCTGCA	300
	TTTGATCAGT	TATCTACTAA	AGTTGAAATT	TTAGAAACAG	GTATCAAAGT	350
	CATTGATTTA	TTAGCACCAT	ATATCAAAGG	TGGTAAAGTT	GGATTATTCG	400
	GTGGTGCCGG	TGTTGGTAAA	ACTGTATTAA	TTCAAGAATT	AATCAATAAT	450
	ATCGCTCAAG	AGCATGGTGG	TATATCCGTA	TTTGCTGGTG	TAGGTGAGCG	500
40	TACGCGTGAA	GGTAATGACC	TATACTTTGA	AATGAGTGAT	AGTGGTGTTA	550
	TTAAAAAGAC	AGCTATGGTA	TTTGGACAAA	TGAACGAACC	ACCTGGTGCG	600
	CGTATGCGAG	TAGCACTTTC	TGGTTTAACA	ATGGCTGAAT	ATTTCCGGGA	650
	TGAACAAGGA	CAAGATGTTC	TATTATTCAT	AGATAACATC	TTTAGATTTA	700
	CTCAAGCTGG	TTCAGAAGTT	TCTGCGTTAT	TAGGTCGTAT	GCCTTCAGCT	750
45	GTTGGTTACC	AACCAACGTT	AGCAACTGAA	ATGGGACAAT	TACAAGAACG	800
	TATTACTTCT	ACAACTAAAG	GTTCAGTAAC			830

- 50 2) INFORMATION FOR SEQ ID NO: 370
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 787 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: Genomic DNA
- 60 (vi) ORIGINAL SOURCE:

(A) ORGANISM: Staphylococcus epidermidïs

(B) STRAIN: ATCC 14990

```
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 370
```

AATAATGCAT TACACATCGA AGTTCCTAAA GAAGATGGAG CGCTTCAATT 50 AACATTAGAA GTTGCACTTC AACTAGGTGA CGATGTAGTT CGTACAATTG 100 CAATGGACTC AACTGACGGC GTTCAAAGAG GAATGGAAGT TAAAGATACA 150 GGTAGAGACA TAAGTGTACC TGTCGGTGAC GTAACTCTAG GAAGAGTGTT 200 TAACGTACTA GGAGAAACTA TTGACTTAGA TGAAAAAATT GATGATTCAG 10 250 TACGACGTGA CCCTATCCAT AGACAAGCTC CAGGATTCGA CGAATTATCA 300 ACAAAAGTAG AAATCTTAGA AACTGGTATT AAAGTAGTAG ACTTATTAGC 350 ACCTTACATA AAAGGTGGTA AAATTGGATT ATTTGGTGGT GCCGGTGTAG 400 GTAAAACCGT ACTAATCCAA GAACTTATTA ATAACATCGC TCAAGAACAC 450 GGTGGTATCT CAGTATTCGC TGGTGTTGGT GAACGTACAC GTGAAGGTAA 15 500 TGATCTTTAC TATGAAATGA GTGACAGTGG TGTTATCAAG AAAACTGCAA 550 TGGTCTTTGG TCAAATGAAT GAGCCACCTG GTGCACGTAT GCGTGTAGCA 600 TTATCCGGAT TAACAATGGC CGAATATTTC CGAGATGAAG AAGGCCAAGA 650 TGTGTTATTA TTCATTGATA ACATTTTCAG ATTCACTCAA GCTGGTTCAG 700 20 AAGTTTCTGC GTTATTAGGT CGTATGCCAT CAGCTGTTGG TTATCAACCT 750 ACACTTGCTA CAGAAATGGG TCAATTACAA GAACGTA 787

25 2) INFORMATION FOR SEQ ID NO: 371

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 830 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: Genomic DNA
- 35 (vi)ORIGINAL SOURCE:
 - (A) ORGANISM: Staphylococcus haemolyticus
 - (B) STRAIN: ATCC 29970
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 371

7 U						
	GAAGTACCTG	AAATTAATAA	CGCCTTAATC	ATCGAAGTTC	CCAAAGAAGA	50
	TGGTACTTTT	GAATTAACGC	TTGAAGTTGC	ATTACAACTA	GGTGATGACG	100
	TTGTTCGTAC	AATTGCTATG	GATTCAACAG	ATGGTGTTCA	ACGTGGTATG	150
	GAAGTTCAGA	ACACTGGAAA	AGACATTTCA	GTACCAGTTG	GCGAAGTAAC	200
45	TTTAGGACGT	GTATTTAACG	TATTAGGTGA	CACAATTGAT	TTAGAAGATA	250
	AATTAGATGG	TTCAGTAAGA	CGTGATCCAA	TTCATAGACA	ATCACCTAAC	300
	- · ·		AGTAGAAATT	CTTGAAACTG	GAATCAAAGT	350
	TGTAGACTTA	TTAGCACCAT	ACATCAAAGG	TGGTAAAATC	GGTCTATTTG	400
	GTGGTGCCGG	TGTTGGTAAA	ACCGTTTTAA	TCCAAGAATT	GATTAATAAT	450
50	ATCGCACAAG	AACATGGTGG	TATCTCAGTA	TTTGCTGGTG	TAGGTGAACG	500
	TACACGTGAA	GGTAACGACC	TATATTATGA	AATGAGAGAT	AGTGGTGTTA	550
	TTAAGAAAAC	AGCAATGGTA	TTTGGTCAAA	TGAACGAGCC	ACCTGGTGCA	600
	CGTATGCGTG	TGGCACTTTC	TGCATTGACA	ATGGCTGAGT	ATTTCCGTGA	650
	TGAACAAGGA	CAAGACGTTC	TGTTATTCAT	CGATAACATT	TTCAGATTTA	700
55	CTCAAGCAGG	TTCAGAAGTA	TCAGCATTAT	TGGGACGTAT	GCCTTCAGCT	750
	GTAGGTTATC	AACCTACTTT	AGCTACAGAA	ATGGGTCAAT	TACAAGAACG	800
	TATTACATCA	ACGAATAAAG	GTTCAGTAAC			830

5

30

2) INFORMATION FOR SEQ ID NO: 372

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 846 bases
- (B) TYPE: Nucleic acid
- (C) STRANDEDNESS: Double
- (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: Genomic DNA

10

5

(vi)ORIGINAL SOURCE:

- (A) ORGANISM: Staphylococcus hominis subsp. hominis
- (B) STRAIN: ATCC 27844
- 15 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 372

	TCGAACATAA	TGAAGTCCCT	GAAATTAATA	ATGCCCTAAT	TATTGAAGTA	50
•	CCCAAAAATG	ATGGCACATT	TAAATTAACA	TTAGAAGTTG	CATTGCAACT	100
	AGGTGATGAT	GTTGTTCGTA	CTATTGCAAT	GGATTCAACT	GATGGTGTTC	150
20.	AACGTGGTAT	GCAAGTTGTG	AATACTGGTA	AAGATATTAG	TGTTCCTGTA	200
	GGTGAAGAAA	CACTTGGACG	TGTGTTTAAC	GTTTTAGGAG	AAACAATAGA	250
	TTTAAACGAA	AAAATAGATA	GTTCTGTTAG	ACGTGATCCA	ATTCATCGTC	300
	GTCAACCTAA	TTTTGATGAA	TTATCTACTG	AAGTAGAAAT	TCTTGAAACA	350
	GGTATTAAAG	TTGTAGACTT	ATTAGCACCT	TATATTAAAG	GTGGTAAGAT	400
25	TGGTTTATTC	GGTGGTGCCG	GCGTAGGTAA	AACTGTATTA	ATTCAAGAAT	450
	TAATCAATAA	TATCGCTCAA	GAACATGGTG	GTATTTCTGT	ATTCGCTGGT	500
	GTAGGTGAAC	GTACTCGTGA	AGGTAACGAT	TTATACTATG	AAATGAGCGA	550
	TAGTGGCGTT	ATCAATAAAA	CAGCCATGGT	ATTTGGGCAA	ATGAATGAGC	600
	CGCCAGGTGC	GCGTATGCGT	GTTGCTTTAT	CAGCATTGAC	AATGGCTGAA	650
30	TATTTCCGTG	ATGAACAAGG	TCAAGATGTA	CTTTTATTCA	TTGACAATAT	700
	TTTCCGCTTT	ACTCAAGCTG	GTTCTGAAGT	TTCAGCATTA	TTAGGACGTA	750
	TGCCTTCAGC	TGTAGGTTAT	CAACCTACAT	TAGCAACTGA	AATGGGTCAA	800
	TTACAAGAAC	GTATTACATC	TACTAATAAA	GGTTCAGTCA	CTTCAA	846

35

40

2) INFORMATION FOR SEQ ID NO: 373

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 846 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
- 45 (ii) MOLECULE TYPE: Genomic DNA
 - (vi)ORIGINAL SOURCE:
 - (A) ORGANISM: Staphylococcus hominis
 - (B) STRAIN: CSG 175

50

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 373

TCGAACATAA	TGAAGTCCCT	GAAATTAATA	ATGCCCTAAT	TATTGAAGTA	50
CCCAAAAATG	ATGGCACATT	CAAATTAACA	TTAGAAGTTG	CATTGCAACT	100
					150
					200
					250
					300
GTCAACCTAA	TTTTGATGAA	TTATCTACTG	AAGTAGAAAT	TCTTGAAACA	· 350
GGTATTAAAG	TTGTAGACTT	ATTAGCACCT	TATATTAAAG	GTGGTAAGAT	400
	CCCAAAAATG AGGTGATGAT AACGTGGTAT GGTGAAGAAA TTTAAACGAA GTCAACCTAA	CCCAAAAATG ATGGCACATT AGGTGATGAT GTTGTTCGTA AACGTGGTAT GCAAGTTGTG GGTGAAGAAA CACTTGGACG TTTAAACGAA AAAATAGATA GTCAACCTAA TTTTGATGAA	CCCAAAAATG ATGGCACATT CAAATTAACA AGGTGATGAT GTTGTTCGTA CTATTGCAAT AACGTGGTAT GCAAGTTGTG AATACTGGTA GGTGAAGAAA CACTTGGACG TGTGTTTAAC TTTAAACGAA AAAATAGATA GTTCTGTTAG GTCAACCTAA TTTTGATGAA TTATCTACTG	CCCAAAAATG ATGGCACATT CAAATTAACA TTAGAAGTTG AGGTGATGAT GTTGTTCGTA CTATTGCAAT GGATTCAACT AACGTGGTAT GCAAGTTGTG AATACTGGTA AAGATATTAG GGTGAAGAAA CACTTGGACG TGTGTTTAAC GTTTTAGGAG TTTAAACGAA AAAATAGATA GTTCTGTTAG ACGTGATCCA GTCAACCTAA TTTTGATGAA TTATCTACTG AAGTAGAAAT	TCGAACATAA TGAAGTCCCT GAAATTAATA ATGCCCTAAT TATTGAAGTA CCCAAAAATG ATGGCACATT CAAATTAACA TTAGAAGTTG CATTGCAACT AGGTGATGAT GTTGTTCGTA CTATTGCAAT GGATTCAACT GATGGTGTTC AACGTGGTAT GCAAGTTGTG AATACTGGTA AAGATATTAG TGTTCCTGTA GGTGAAGAAA CACTTGGACG TGTGTTTAAC GTTTTAGGAG AAACAATAGA TTTAAACGAA AAAATAGATA GTTCTGTTAG ACGTGATCCA ATTCATCGTC GTCAACCTAA TTTTGATGAA TTATCTACTG AAGTAGAAAT TCTTGAAACA GGTATTAAAG TTGTAGACTT ATTAGCACCT TATATTAAAG GTGGTAAGAT

	TGGTTTATTC	GGTGGTGCCG	GCGTAGGTAA	AACTGTATTA	ATTCAAGAAT	450
	TAATCAATAA	TATCGCTCAA	GAACATGGTG	GTATTTCTCT	ATTCCCTCCT	500
	GTAGGTGAAC	GTACTCGTGA	AGGTAACGAT	$TT\Delta T\Delta CT\Delta TC$	ANATCACCCA	550
	TAGTGGCGTT	ATCAATAAAA	CAGCCATGGT	A TTTTTCCCCC A	AMAI GAGCGA	
5	CGCCAGGTGC	GCGTATGCGT	CTTCCCTTGGT	ATTIGGGCAA	AIGAAIGAGC	600
J	TATTTCCCTC	ATCAACAACC	TONACATORA	CAGCATIGAC	AATGGCTGAA	650
	TATTICCGIG	ATGAACAAGG	COMMONOR	CTTTTATTCA	TTGACAATAT	700
	TITCCGCTTT	ACTCAAGCTG	GTTCTGAAGT	TTCAGCATTA	TTAGGACGTA	750
	TGCCTTCAGC	TGTAGGTTAT	CAACCTACAT	TAGCAACTGA	AATGGGTCAA	800
	TTACAAGAAC	GTATTACATC	TACTAATAAA	GGTTCAGTCA	CTTCAA	846
10			•			

2) INFORMATION FOR SEQ ID NO: 374

- 15 (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 835 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear

20

- (ii) MOLECULE TYPE: Genomic DNA
- (vi)ORIGINAL SOURCE:
 - (A) ORGANISM: Staphylococcus lugdunensis
- 25 (B) STRAIN: ATCC 43809
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 374

	ATAATGAAGT	GCCTGAAATA	AATAATGCGC	TCATTGTTGA	AATTCCTAAA	50
30	AGTGATACAA	CAATCAGTTT			AATTAGGTGA	100
	CGATGTTGTA	CGTACTATTG	CAATGGATTC	AACTGATGGC	GTTCAACGTG	150
		TCAAAACACA	GGTAAAGACA	TCAGTGTACC	TGTTGGAGAT	200
	GAAACATTAG	GAAGAGTATT	TAACGTTTTA	GGAGAATCTA	TTGATTTAGA	250
	AGAAAAGCTA		TGCGTAGAGA	TCCAATTCAT	AGACTAGCAC	300
35	CTAAATTTGA	TGAATTATCT	ACAGAAGTAG	AAATTCTTGA	AACTGGTATT	350
	AAAGTTGTTG	ATTTATTAGC	ACCATATATT	AAAGGTGGTA	AAGTTGGATT	400
		GCCGGAGTAG	GTAAAACGGT	ATTAATTCAA	GAATTAATCA	450
		TCAAGAACAT	GGTGGTATTT	CTGTGTTTGC	CGGAGTAGGT	500
		GTGAAGGTAA		TATGAAATGA	GCGATAGTGG	550
40		AAAACAGCGA	TGGTATTTGG	CCAAATGAAT	GAACCACCTG	600
		GAGAGTTGCG	TTATCTGCCT	TAACAATGGC	TGAATATTTC	650
	CGTGACGAGC	AAGGACAAGA	CGTATTGCTG	TTTATCGATA	ATATATTCCG	700
		0	AAGTATCTGC	ATTACTTGGA	CGTATGCCAT	750
		TTATCAACCA			ACAATTGCAA	800
45	GAAAGAATTA	CATCTACAAA	TAAAGGTTCT	GTAAC		835

2) INFORMATION FOR SEQ ID NO: 375

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 842 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
- 55 (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: Genomic DNA
 - (vi)ORIGINAL SOURCE:
- 60 (A) ORGANISM: Staphylococcus saprophyticus 224

(B) STRAIN: ATCC 15305

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 375

5	GAGCACAATG	AAGTTCCAGA	AATTAACAAT	GCCTTAGTCG	TAGACGTTGA	50
	AAGAGATGAA	GGTACAGTAT	CTCTTACATT	AGAAGTGGCA	TTACAACTTG	100
	GCGATGATGT	CGTACGTACA	ATTGCAATGG	ATTCTACTGA	TGGTGTTAAA	150
	CGTGGTACAG	AAGTTCGAGA	TAGCGGAGAT	AGCATCAGTG	TTCCAGTTGG	200
	TGATGCTACG	TTAGGACGTG	TGTTTAATGT		ACAATTGACT	250
10	TAGACGAGAA	GCTTGATACT	TCTGTCAAAC	GTGATCCAAT	TCATAGAGAA	300
	GCACCTGCAT	TCGATCAATT	ATCAACAAAA	GTTGAAATCT	TAGAAACAGG	350
	TATTAAAGTA	ATTGATTTAC	TTGCACCATA	TATTAAAGGT	GGTAAAATCG	400
	GTTTATTCGG	TGGCGCTGGT	GTAGGTAAAA	CAGTATTAAT	TCAAGAATTA	450
	ATTAATAATA		ACATGGTGGT	ATTTCAGTAT	TTGCCGGCGT	500
15	AGGTGAACGT		GTAATGACTT	ATACTACGAA	ATGAGTGATA	550
	GTGGTGTTAT		GCTATGGTCT	TCGGACAAAT	GAATGAGCCA	600
	CCTGGTGCGC	GTATGCGTGT	TGCTTTATCA	GGCTTAACAA	TGGCTGAACA	650
	CTTCCGTGAT	GTACAAGGAC	AAGATGTTTT	ACTATTTATT	GATAACATAT	700
	TCAGATTTAC	GCAAGCTGGT	TCAGAAGTAT	CAGCACTATT	AGGTCGTATG	750
20	CCATCAGCCG	TTGGTTATCA	ACCTACCCTT	GCTACTGAAA	TGGGTCAATT	800
	ACAAGAACGT	ATTACATCAA	CAACTAAAGG	ATCTGTAACG	TC	842

- 25 2) INFORMATION FOR SEQ ID NO: 376
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 842 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: Genomic DNA
- 35 (vi)ORIGINAL SOURCE:
 - (A) ORGANISM: Staphylococcus simulans
 - (B) STRAIN: ATCC 27848
- (xi)SEQUENCE DESCRIPTION: SEQ ID NO: 376

40						
	TGATGAACTG	CCTAAGATTA	ATAACGCATT	AGTGCTAGAT	GTACCTAAGA	50
	AAGATGGCAC	GACTGAATCT		AAGTAGCACT		100
	GACGACGTAG	TTAGAACTAT	CGCCATGGAC	TCTACAGACG	GAATTAAACG	150
	TGGTGACGAC	GTTAAAGACA	CTGGTCGTCC	AATCAGTGTA	CCTGTCGGTG	200
45	AAGATACGTT	AGGAAGAGTA		TAGGTGATCC	AATCGATAAT	250
	GATGGACCGA	TTTCTGAATC	AGTTCCACGT	GAACCAATTC	ATAGACAACC	300
	ACCTAAATTT		CAACAAAAGT	TGAACTACTT	GAAACTGGTA	350
		AGACTTATTA	GCACCATATA	TCAAAGGTGG	TAAAGTTGGT	400
	TTATTCGGTG			GTATTAATCC	AAGAATTAAT	450
50		GCTCAAGAAC		TTCAGTATTC	GCAGGTGTTG	500
		ACGTGAAGGT		ACTTCGAAAT	GAGCGACAGT	550
	_	AGAAAACAGC	GATGGTATTC	GGACAAATGA	ACGAACCACC	600
	TGGTGCACGT	ATGCGTGTAG	CTTTATCAGG	TTTAACAATG	GCTGAATACT	650
	TCCGTGATGT		GACGTTCTTT	TATTCATCGA	TAACATTTTC	700
55		AAGCAGGTTC	TGAGGTATCA	GCATTGCTTG	GCCGTATGCC	750
		GGTTACCAAC	CAACATTGGC	AACAGAAATG	GGTCAATTAC	800
	AAGAACGTAT	CACTTCTACA	ATGAAAGGTT	CTATCACATC	TA	842

2) INFORMATION FOR SEQ ID NO: 377

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 841 bases

- (B) TYPE: Nucleic acid
- (C) STRANDEDNESS: Double
- (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: Genomic DNA

10 (vi)ORIGINAL SOURCE:

- (A) ORGANISM: Staphylococcus warneri
- (B) STRAIN: ATCC 27836
- 15 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 377

	CATAACGAAG	TCCCTGATAT	TAATAATGCC	CTTATTATTG	AAGTTCCAAA	50
	AGAAGATGGA	ACGTTAAACT	TAACATTAGA	AGTTGCACTA	CAATTAGGTG	100
	ATGATGTTGT	ACGTACAATT	GCAATGGATT	CAACTGATGG	TGTTCAAAGA	150
20	GGCATGGATG	TTAAAGACAC	AGGTAAAGAT	ATTAGTGTAC	CTGTAGGCGA	200
	TGAAACGCTT	GGAAGAGTGT	TTAATGTACT	AGGTGAAACA	ATTGACTTGG	250
	AAGAGAAAAT	TGATGATTCC		ATCCAATCCA		300
	CCAGGTTTCG	ATGAATTATC	TACTGAAGTA	GAAATCTTAG	AAACAGGTAT	350
	TAAAGTAGTA	GACTTATTAG	CACCTTACAT	TAAAGGTGGT	AAAGTTGGAC	400
25	TATTCGGTGG	TGCCGGAGTA	GGTAAAACCG	TTTTAATCCA	AGAATTAATT	450
	AACAATATTG	CACAAGAACA		TCAGTATTCG		500
	TGAACGTACT	CGTGAAGGTA	ATGATTTATA	CTATGAAATG	AGTGATAGTG	550
	GTGTAATTAA	GAAAACAGCG	ATGGTATTTG	GACAAATGAA	TGAACCACCT	600
	GGCGCACGTA		TTTATCTGGT	TTAACTATGG	CTGAATACTT	650
30	CCGTGATGAA	CAAGGACAAG	ACGTACTTTT	ATTCATCGAT	AATATTTTCA	700
		AGCTGGTTCT	GAAGTTTCTG	CATTACTTGG	TCGTATGCCT	750
	TCAGCCGTTG	GTTACCAACC	AACATTAGCA	ACTGAAATGG	GTCAATTACA	800
	AGAACGAATT	ACATCTACAA	ATAAAGGTTC	TGTAACATCT	A	841

35

40

50

- 2) INFORMATION FOR SEQ ID NO: 378
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 846 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
- 45 (ii) MOLECULE TYPE: Genomic DNA
 - (vi)ORIGINAL SOURCE:
 - (A) ORGANISM: Streptococcus acidominimus
 - (B) STRAIN: ATCC 51726
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 378

	TTTAACACGA	ATGAACCGCT	TCCTGAGATA	ል ስጥል ል ጥር ር ል ር	ጥጥር ጥጥር ሙጥጥ	50
	CAAACACACT	CACAAAAAAA	ALMONOTOSE	TATALIGCAC	IIGIIGIIIA	
	CAAAGACAGI	GAGAAAAAC	ATAAAATCGT	TCTTGAAGTA	GCTCTTGAAC	100
55	TTGGTGAAGG	CCTCGTTCGT	ACCATTGCTA	TGGAATCAAC	TGATGGTTTG	150
	ACACGTGGTC	TAGAAGTTCT	TGATACAGGC	CGTGCAATCA	GTGTACCAGT	200
	TGGTAAAGAA	ACGCTTGGAC	GTGTCTTCAA	CGTTCTTGGT	GATGCTATCG	250
	ATCTTGAAGA	ACCATTTGGA	GAAGATGCAG	AACGTCACCC	CATTCATAAG	300
	AGTGCCCCAA	CTTTTGATGA	ATTATCAACG	TCAACAGAAA	TCCTTGAAAC	350
60	AGGGATTAAA	GTTATCGACC	TACTTGCCCC	TTACTTAAAA	GGAGGGAAGG	400

2) INFORMATION FOR SEQ ID NO: 379

- 15 (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 846 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear

20

- (ii) MOLECULE TYPE: Genomic DNA
- (vi)ORIGINAL SOURCE:
 - (A) ORGANISM: Streptococcus agalactiae
- 25 (B) STRAIN: ATCC 12403
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 379

	TTGCAAGTGG		CCTGAGATTA			50
30	AAAAATGGCG		AAAAGTAGTA		CTCTTGAACT	100
	TGGTGACGGC	CTCGTTCGTA	CAATCGCTAT	GGAATCAACT	GATGGGCTTA	150
	CACGTGGTTT	GGAAGTATTA	GATACTGGTC	GCGCAATTAG	TGTGCCGGTT	200
	GGTAAGGATA	CTTTGGGTCG	TGTCTTCAAC	GTTCTTGGAG	ATGCTATTGA	250
	CCTTGAAGAG	CCTTTTGCAG	AAGATGCAGA	ACGTCAACCA	ATCCATAAAA	300
35	AAGCACCATC		TTATCAACAT			350
			ATTAGCACCT			400
	TGGACTTTTC		GTGTTGGTAA	AACCGTTCTT	ATTCAAGAAT	450
	TAATCCACAA	CATCGCCCAA	GAACATGGTG	GTATTTCAGT	ATTTACTGGT	500
	GTAGGAGAAC	GTACTCGTGA	AGGGAATGAC	CTTTATTGGG	AAATGAAAGA	550
40			CGGCTATGGT	CTTTGGTCAA	ATGAATGAAC	600
		ACGTATGCGT		CTGGTCTTAC	AATAGCTGAG	650
		ATGTAGAAGG	ACAAGATGTG	CTTCTCTTCA	TTGATAATAT	700
		ACACAAGCTG	GGTCAGAAGT		TTAGGTCGTA	750
			CAACCAACAC		AATGGGACAA	800
45	TTACAAGAGC	GTATCACTTC	AACTAAAAA	GGTTCTGTTA	CCTCAA	846

2) INFORMATION FOR SEQ ID NO: 380

50

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 846 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
- (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: Genomic DNA
 - (vi) ORIGINAL SOURCE:
- 60 (A) ORGANISM: Streptococcus agalactiae

(B) STRAIN: ATCC 13813

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 380

5	TTGCAAGTGG	CGACAAACTT	CCTGAGATTA	ATAATGCATT	GATTGTCTAT	50
	AAAAATGGCG	ATAAGTCACA	AAAAGTAGTA	CTTGAAGTTG	CTCTTGAACT	100
•	TGGTGACGGC	CTCGTTCGTA	CAATCGCTAT	GGAATCAACT	GATGGGCTTA	150
	CACGTGGTTT	GGAAGTATTA	GATACTGGTC	GCGCAATTAG	TGTGCCGGTT	200
	GGTAAGGATA	CTTTGGGTCG	TGTCTTCAAC	GTTCTTGGAG	ATGCTATTGA	250
10	TCTTGAAGAG	CCTTTTGCAG	AAGATGCAGA	ACGTCAACCA	ATCCATAAAA	300
	AAGCACCATC	GTTTGATGAA	TTATCAACAT	CATCAGAAAT	CTTAGAAACT	350
	GGTATTAAAG	TTATTGACTT	ATTAGCACCT	TACTTAAAAG	GTGGTAAAGT	400
	TGGACTTTTC	GGTGGTGCGG	GTGTTGGTAA	AACCGTTCTT	ATTCAAGAAT	450
	TAATCCACAA	CATCGCCCAA	GAACATGGTG	GTATTTCAGT	ATTTACTGGT	500
15	GTAGGAGAAC	GTACTCGTGA	AGGGAATGAC	CTTTATTGGG	AAATGAAAGA	550
	ATCTGGCGTT	ATTGAAAAAA	CGGCTATGGT	CTTTGGTCAA	ATGAATGAAC	600
	CACCAGGAGC	ACGTATGCGT	GTGGCACTTA	CTGGTCTTAC	AATAGCTGAG	650
	TACTTCCGTG	ATGTAGAAGG	ACAAGATGTG	CTTCTCTTCA	TTGATAATAT	700
	CTTCCGTTTC	ACACAAGCTG	GGTCAGAAGT	GTCAGCGCTT	TTAGGTCGTA	750
20	TGCCTTCAGC	CGTTGGTTAT	CAACCAACAC	TTGCTACAGA	AATGGGACAA	800
	TTACAAGAGC	GTATCACTTC	AACTAAAAAA	GGTTCTGTTA	CCTCAA	846

25 2) INFORMATION FOR SEQ ID NO: 381

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 845 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: Genomic DNA
- 35 (vi)ORIGINAL SOURCE:
 - (A) ORGANISM: Streptococcus agalactiae
 - (B) STRAIN: ATCC 12973
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 381

40						
	TTGCAAGTGG	CGACAAACTT	CCTGAGATTA	ATAATGCATT	GATTGTCTAT	50
	AAAAATGGCG	ATAAGTCACA	AAAAGTAGTA	CTTGAAGTTG	CTCTTGAACT	100
	TGGTGACGGC	CTCGTTCGTA	CAATCGCTAT	GGAATCAACT	GATGGGCTTA	150
	CACGTGGTTT	GGAAGTATTA	GATACTGGTC	GTGCAATTAG	TGTGCCGGTT	200
45	GGTAAGGATA	CTTTGGGTCG	TGTCTTCAAC	GTTCTTGGAG	ATGCTATTGA	250
	CCTTGAAGAG	CCTTTTGCAG	AAGATGCAGA	ACGTCAACCA	ATCCATAAAA	300
	AAGCACCATC	ATTTGATGAA	TTATCAACAT	CATCAGAAAT	CTTAGAAACA	350
	GGTATTAAAG	TTATTGACTT	ATTAGCACCT	TACTTAAAAG	GTGGTAAAGT	400
	TGGACTTTTC	GGTGGTGCGG	GTGTTGGTAA	AACCGTTCTT	ATTCAAGAAT	450
50	TAATCCACAA	CATCGCCCAA	GAACATGGTG	GTATTTCAGT	ATTTACTGGT	500
	GTAGGAGAAC	GTACTCGTGA	AGGGAATGAC	CTTTATTGGG	AAATGAAAGA	550
	ATCTGGCGTT	ATTGAAAAAA	CGGCTATGGT	CTTTGGTCAA	ATGAATGAAC	600
	CACCAGGAGC	ACGTATGCGT	GTGGCACTTA	CTGGTCTTAC	AATAGCTGAG	650
	TACTTCCGTG	ATGTAGAAGG	ACAAGATGTG	CTTCTCTTCA	TTGATAATAT	700
55	CTTCCGTTTC	ACACAAGCTG	GGTCAGAAGT	GTCAGCGCTT	TTAGGTCGTA	750
	TGCCTTCAGC	CGTTGGTTAT	CAACCAACAC	TTGCTACAGA	AATGGGACAA	800
	TTACAAGAGC	GTATCACTTC	AACTAAAAA	GGTTCTGTTA	CCTCA	845

WO 01/23604 PCT/CA00/01150 2) INFORMATION FOR SEQ ID NO: 382 (i) SEQUENCE CHARACTERISTICS: LENGTH: 845 bases (A) TYPE: Nucleic acid (B) (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear (ii) MOLECULE TYPE: Genomic DNA (vi)ORIGINAL SOURCE: (A) ORGANISM: Streptococcus agalactiae (B) STRAIN: ATCC 27591 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 382 TTGCAAGTGG CGACAAACTT CCTGAGATTA ATAATGCATT GATTGTCTAT 50 AAAAATGGCG ATAAGTCACA AAAAGTAGTA CTTGAAGTTG CTCTTGAACT 100 TGGTGACGGC CTCGTTCGTA CAATCGCTAT GGAATCAACT GATGGGCTTA 150 CACGTGGTTT GGAAGTATTA GATACTGGTC GCGCAATTAG TGTGCCGGTT 200 GGTAAGGATA CTTTGGGTCG TGTCTTCAAC GTTCTTGGAG ATGCTATTGA 250 CCTTGAAGAG CCTTTTGCAG AAGATGCAGA ACGTCAACCA ATCCATAAAA 300 AAGCACCATC GTTTGATGAA TTATCAACAT CATCAGAAAT CTTAGAAACT 350 GGTATTAAAG TTATTGACTT ATTAGCACCT TACTTAAAAG GTGGTAAAGT 400 TGGACTTTTC GGTGGTGCAG GTGTTGGTAA AACCGTTCTT ATTCAAGAAT 450 TAATCCACAA CATCGCCCAA GAACATGGTG GTATTTCAGT ATTTACTGGT 500 GTAGGAGAAC GTACTCGTGA AGGGAATGAC CTTTATTGGG AAATGAAAGA 550 ATCTGGCGTT ATTGAAAAAA CGGCTATGGT CTTTGGTCAA ATGAATGAAC 600 CACCAGGAGC ACGTATGCGT GTGGCACTTA CTGGTCTTAC AATAGCTGAG 650 TACTTCCGTG ATGTAGAAGG ACAAGATGTG CTTCTCTTCA TTGATAATAT 700 CTTCCGTTTC ACACAAGCTG GGTCAGAAGT GTCAGCGCTT TTAGGTCGTA 750 TGCCTTCAGC CGTTGGTTAT CAACCAACAC TTGCTACAGA AATGGGACAA 800 TTACAAGAGC GTATCACTTC AACTAAAAAA GGTTCTGTTA CATCA 845 2) INFORMATION FOR SEQ ID NO: 383 (i) SEQUENCE CHARACTERISTICS: LENGTH: 845 bases (A) (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear (ii) MOLECULE TYPE: Genomic DNA (vi)ORIGINAL SOURCE: ORGANISM: Streptococcus agalactiae (A) STRAIN: CDC ss1073

5

10

15

20

25

30

35

40

45

50

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 383

TTGCAAGTGG CGACAAACTT CCTGAGATTA ATAATGCATT GATTGTCTAT 50 AAAAATGGCG ATAAGTCACA AAAAGTAGTA CTTGAAGTTG CTCTTGAACT 100 55 TGGTGACGGC CTCGTTCGTA CAATCGCTAT GGAATCAACT GATGGGCTTA 150 CACGTGGTTT GGAAGTATTA GATACTGGTC GCGCAATTAG TGTGCCGGTT 200 GGTAAGGATA CTTTGGGTCG TGTCTTCAAC GTTCTTGGAG ATGCTATTGA 250 CCTTGAAGAG CCTTTTGCAG AAGATGCAGA ACGTCAACCA ATCCATAAAA 300 AAGCACCATC GTTTGATGAA TTATCAACAT CATCAGAAAT CTTAGAAACT 350 GGTATTAAAG TTATTGACTT ATTAGCACCT TACTTAAAAG GTGGTAAAGT 400

PCT/CA00/01150 WO 01/23604

	TGGACTTTTC	GGTGGTGCAG	GTGTTGGTAA	AACCGTTCTT	ATTCAAGAAT	450
	TAATCCACAA	CATCGCCCAA	GAACATGGTG	GTATTTCAGT	ATTTACTGGT	500
	GTAGGAGAAC	GTACTCGTGA	AGGGAATGAC	CTTTATTGGG	AAATGAAAGA	550
	ATCTGGCGTT	ATTGAAAAAA	CGGCTATGGT	CTTTGGTCAA	ATGAATGAAC	600
5	CACCAGGAGC	ACGTATGCGT	GTGGCACTTA	CTGGTCTTAC	AATAGCTGAG	650
	TACTTCCGTG	ATGTAGAAGG	ACAAGATGTG	CTTCTCTTCA	TTGATAATAT	700
	CTTCCGTTTC	ACACAAGCTG	GGTCAGAAGT	GTCAGCGCTT	TTAGGTCGTA	750·
		CGTTGGTTAT				800
	TTACAAGAGC	GTATCACTTC	AACTAAAAA	GGTTCTGTTA	CATCA	845

10

2) INFORMATION FOR SEQ ID NO: 384

- 15 (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 845 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear

20

25

- (ii) MOLECULE TYPE: Genomic DNA
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Streptococcus dysgalactiae
- (B) STRAIN: ATCC 43078
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 384

	TTGCTAGTGG	GGACAAACTT	CCAGAGATTA	ATAATGCATT	GATTGTTTAT	50
30	AAAGATAGTG	ATAAAAAGCA	AAAAATCGTC	CTTGAAGTTG	CTCTGGAACT	100
	TGGTGACGGT	ATGGTGCGAA	CAATCGCTAT	GGAATCAACT	GATGGGCTTA	150
	CACGTGGGTT	AGAAGTTCTT	GACACTGGTC	GTGCGATTAG	TGTACCAGTA	200
	GGTAAAGAAA	CTTTGGGACG	CGTCTTTAAT	GTACTTGGAG	AAACCATTGA	250
	CTTGGAAGAA	CCATTTGCAG	AAGACGTTGA	CCGTCAGCCA	ATCCATAAAA	300
35	AAGCACCATC	GTTTGATGAA	TTATCAACAT	CATCAGAAAT	TCTTGAAACT	350
	GGTATCAAGG	TAATTGACCT	TCTTGCCCCT	TACCTTAAAG	GTGGTAAAGT	400
	TGGACTTTTC	GGGGGTGCCG	GAGTTGGTAA	GACTGTCCTT	ATCCAAGAAT	450
	TAATCCACAA	TATCGCCCAA	GAACACGGAG	GTATTTCAGT	ATTTACCGGT	500
	GTTGGTGAGC	GAACACGTGA	AGGAAATGAC	CTTTACTGGG	AAATGAAAGA	550
40	ATCAGGCGTT	ATTGAGAAAA	CTGCCATGGT	TTTTGGTCAG	ATGAATGAGC	600
	CGCCTGGGGC	ACGTATGCGT	GTAGCCCTTA	CTGGTTTAAC	CATTGCTGAG	650
	TATTTCCGTG	ATGTAGAAGG	CCAAGATGTT	TTGCTCTTTA	TTGATAATAT	700
	CTTCCGTTTC	ACTCAGGCAG	GTTCAGAAGT	ATCAGCCCTC	TTAGGCCGTA	750
	TGCCTTCTGC	TGTTGGTTAC	CAACCGACCC	TTGCTACTGA	AATGGGACAA	800
45	TTGCAAGAAC	GTATTACGTC	AACTCAAAAA	GGATCTGTTA	CTTCT	845

2) INFORMATION FOR SEQ ID NO: 385

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 846 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
- 55 (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: Genomic DNA
 - (vi) ORIGINAL SOURCE:
- 60 (A) ORGANISM: Streptococcus equi subsp. equi 230

(B) STRAIN: ATCC 9528

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 385

5	TTGCGAGTGG	GGACAAACTA	CCAGAGATTA	ATAATGCGTT	GATAGTTTAT	50
	AAAGATGGCG	ATAAAAAGCA	AAAAATCGTT	CTCGAGGTTG	CCCTAGAGCT	100
	TGGAGACGGT	ATGGTACGTA	CAATTGCTAT	GGAATCAACC	GATGGGCTTA	150
	CACGTGGATT	AGAGGTTCTT	GATACTGGTC	GTGCCATTAG	TGTACCAGTT	200
	GGTAAAGAGA	CTCTAGGTCG	TGTTTTCAAC	GTTCTTGGTG	AAACCATCGA	250
10	CCTAGAAGCA	CCATTTGCAG	ATGATGTTAA	TCGTGAACCG	ATCCATAAAA	300
	AAGCACCAGC	CTTTGATGAA	TTGTCAACAT	CATCAGAAAT	TCTTGAAACA	350
	GGTATCAAGG	TTATTGACCT	GCTTGCCCCT	TACTTAAAGG	GTGGTAAGGT	400
	CGGTCTTTTC	GGTGGTGCCG	GAGTTGGTAA	AACCGTTCTT	ATCCAAGAAT	450
	TAATCCACAA	TATCGCTCAA	GAGCATGGTG	GGATCTCGGT	ATTTACCGGT	500
15	GTTGGTGAGC	GTACGCGTGA	AGGAAATGAC	CTTTACTGGG	AAATGAAGGA	550
	ATCAGGCGTT	ATTGAAAAAA	CAGCCATGGT	TTTTGGTCAG	ATGAATGAAC	600
	CACCAGGAGC	CCGTATGCGT	GTTGCCTTGA	CCGGCTTGAC	AATTGCTGAA	650
	TATTTCCGCG	ATGTTGAAGG	CCAAGACGTC	CTGCTCTTCA	TTGACAATAT	700
	TTTCCGCTTT	ACTCAAGCAG	GCTCAGAGGT	ATCAGCCCTT	CTAGGTCGTA	750
20	TGCCTTCAGC	CGTTGGTTAC	CAGCCAACAC	TTGCCACTGA	AATGGGACAA	800
	TTGCAAGAGC	GTATCACCTC	AACGAAAAAA	GGCTCTGTTA	CCTCTA	846

25 2) INFORMATION FOR SEQ ID NO: 386

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 846 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: Genomic DNA
- 35 (vi)ORIGINAL SOURCE:
 - (A) ORGANISM: Streptococcus anginosus
 - (B) STRAIN: ATCC 27335
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 386

40						
	TTGCAGCTGG	TGATAAATTA	CCTGAGATAA	ATAATGCACT	TGTAGTCTAT	50
	AAAAATGACG	AAAATAAATC	AAAAATCGTC	CTTGAAGTAG	CTCTTGAGCT	100
	TGGTGATGGA	GTGGTTCGAA	CTATTGCCAT	GGAATCCACT	GATGGGTTGA	150
	CTCGTGGCAT	GGAAGTTCTA	GATACTGGTC	GACCAATTTC	TGTTCCAGTT	200
45	GGGAAAGAAA	CACTTGGTCG	CGTCTTTAAC	GTTTTAGGCG	ATACCATTGA	250
	TTTGGATACT	CCATTCGGCG	AAGATGCAGA	ACGTCAACCA	ATCCATAAAA	300
	AAGCTCCAAC	TTTTGATGAG	TTATCTACTT	CATCAGAAAT	CTTAGAAACA	350
	GGAATAAAGG	TTATTGACCT	TTTAGCCCCC	TACCTCAAAG	GTGGGAAAGT	400
	CGGCCTCTTC	GGTGGTGCTG	GCGTTGGGAA	AACTGTCTTG	ATTCAAGAGT	450
50	TGATTCATAA	TATCGCCCAA	GAACACGGCG	GGATTTCAGT	CTTTACTGGT	500
	GTTGGGGAAC	GAACTCGTGA	AGGGAATGAC	CTGTACTGGG	AAATGAAAGA	550
	ATCTGGTGTT	ATCGAAAAGA	CGGCTATGGT	CTTTGGGCAA	ATGAATGAAC	600
	CGCCTGGAGC	ACGTATGCGT	GTAGCTTTGA	CTGGGTTAAC	GATTGCAGAG	650
	TATTTCCGTG	ATGTGGAAGG	TCAAGATGTT	CTTTTGTTTA	TTGATAATAT	700
55	TTTCCGTTTC	ACTCAAGCTG	GTTCTGAAGT	GTCAGCCCTT	CTTGGTCGTA	750
	TGCCATCAGC	TGTTGGTTAC	CAACCAACCT	TGGCTACTGA	AATGGGGCAA	800
	TTACAAGAAC	GTATTACATC	AACGAAAAAA	GGTTCTGTTA	CCTCAA	846

2) INFORMATION FOR SEQ ID NO: 387 (i) SEQUENCE CHARACTERISTICS:

- LENGTH: 843 bases (A)
- TYPE: Nucleic acid (B)
- STRANDEDNESS: Double (C)
- (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: Genomic DNA

10

5

- (vi)ORIGINAL SOURCE:
 - (A) ORGANISM: Streptococcus salivarius
 - (B) STRAIN: ATCC 7073
- 15 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 387

	GCAGCTGGTG	ATAAACTTCC	TGAGATTAAC	AATGCATTGG	TCGTTTATAC	50
	TGATGAACAA	AAGTCTAAAC	GTATCGTGCT	CGAAGTAGCT	CTTGAACTTG	100
	GAGAAGGTGT	GGTTCGTACC	ATTGCCATGG	AATCTACTGA	TGGATTGACT	150
20	CGTGGACTAG	AAGTTCTGGA	CACTGGTCGT	CCAATCAGCG	TTCCTGTTGG	200
	TAAAGATACC	CTTGGACGTG	TCTTTAACGT	TCTTGGTGAT	ACCATTGACT	250
•	TGGAAGCACC	TTTTGCAGAC	GATGCAGAGC	GTGAACCAAT	TCACAAAAA	300
	GCACCAACTT	TCGATGAATT	GTCAACATCT	ACTGAAATCC	TTGAAACAGG	350
	GATTAAAGTT	ATCGACTTGC	TAGCCCCTTA	CCTTAAGGGT	GGTAAAGTCG	400
25	GACTCTTCGG	TGGTGCCGGT	GTTGGTAAAA	CCGTTCTTAT	TCAAGAGTTG	450
	ATTCACAACA	TTGCCCAAGA	GCACGGTGGT	ATTTCCGTGT	TTACAGGTGT	500
	TGGTGAACGT	ACACGTGAAG	GTAATGACCT	TTACTGGGAA	ATGAAAGAAT	550
	CTGGCGTTAT	CGAGAAAACA	GCCATGGTCT	TCGGTCAAAT	GAACGAACCA	600
	CCTGGAGCAC	GTATGCGTGT	TGCCCTTACT	GGTTTGACAA	TTGCGGAATA	650
30	CTTCCGTGAT	GTCGAGGGTC	AAGACGTTCT	TCTCTTCATC	GATAACATCT	700
	TCCGTTTCAC	TCAAGCAGGT	TCTGAGGTTT	CTGCCCTTCT	TGGTCGTATG	750
	CCATCAGCCG	TTGGTTACCA	ACCTACACTT	GCTACTGAAA	TGGGTCAATT	800
	GCAAGAACGT	ATCACATCAA	CTAAAAAAGG	TTCTGTTACA	TCT	843

35

40

50

- 2) INFORMATION FOR SEQ ID NO: 388
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 841 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
- 45 (ii) MOLECULE TYPE: Genomic DNA
 - (vi)ORIGINAL SOURCE:
 - (A) ORGANISM: Streptococcus suis
 - (B) STRAIN: ATCC 43765

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 388

TTGCAGCAGA	AGATAAACTT	CCTGAGATTA	ACAACGCACT	CGTTGTATAT	50
AAAAATGATG	ATTCCAAACA	AAAAGTCGTG	CTTGAAGTGG	CTTTGGAACT	100
TGGTGATGGC	GTTGTACGGA	CCATTGCCAT	GGAATCAACG	GATGGATTGA	150
CACGTGGGAT	GGAAGTTCTC	GATACAGGTC	GTCCCATCTC	TGTTCCAGTC	200
GGTAAAGAAA	CGCTGGGTCG	TGTCTTCAAT	GTGTTGGGAG	ATACCATTGA	250
CCTTGAAGAG	TCTTTTCCGG	CAGATTTTGA	ACGTGAGCCT	ATCCATAAGA	300
AAGCGCCGGC	TTTTGACGAA	TTATCTACTT	CAAGCGAAAT	TTTGGAAACA	350
GGGATTAAGG	TTATCGACCT	CCTAGCACCT	TATCTAAAAG	GTGGTAAGGT	400
	AAAAATGATG TGGTGATGGC CACGTGGGAT GGTAAAGAAA CCTTGAAGAG AAGCGCCGGC	AAAAATGATG ATTCCAAACA TGGTGATGGC GTTGTACGGA CACGTGGGAT GGAAGTTCTC GGTAAAGAAA CGCTGGGTCG CCTTGAAGAG TCTTTTCCGG AAGCGCCGGC TTTTGACGAA	AAAAATGATG ATTCCAAACA AAAAGTCGTG TGGTGATGGC GTTGTACGGA CCATTGCCAT CACGTGGGAT GGAAGTTCTC GATACAGGTC GGTAAAGAAA CGCTGGGTCG TGTCTTCAAT CCTTGAAGAG TCTTTTCCGG CAGATTTTGA AAGCGCCGGC TTTTGACGAA TTATCTACTT	AAAAATGATG ATTCCAAACA AAAAGTCGTG CTTGAAGTGG TGGTGATGGC GTTGTACGGA CCATTGCCAT GGAATCAACG CACGTGGGAT GGAAGTTCTC GATACAGGTC GTCCCATCTC GGTAAAGAAA CGCTGGGTCG TGTCTTCAAT GTGTTGGGAG CCTTGAAGAG TCTTTTCCGG CAGATTTTGA ACGTGAGCCT AAGCGCCGGC TTTTGACGAA TTATCTACTT CAAGCGAAAT	TTGCAGCAGA AGATAAACTT CCTGAGATTA ACAACGCACT CGTTGTATAT AAAAATGATG ATTCCAAACA AAAAGTCGTG CTTGAAGTGG CTTTGGAACT TGGTGATGGC GTTGTACGGA CCATTGCCAT GGAATCAACG GATGGATTGA CACGTGGGAT GGAAGTTCTC GATACAGGTC GTCCCATCTC TGTTCCAGTC GGTAAAGAAA CGCTGGGTCG TGTCTTCAAT GTGTTGGGAG ATACCATTGA CCTTGAAGAG TCTTTTCCGG CAGATTTTGA ACGTGAGCCT ATCCATAAGA AAGCGCCGGC TTTTGACGAA TTATCTACTT CAAGCGAAAT TTTGGAAACA GGGATTAAGG TTATCGACCT CCTAGCACCT TATCTAAAAG GTGGTAAGGT

```
TGGTCTCTTC GGTGGTGCTG GTGTTGGTAA AACCGTTCTT ATCCAAGAAT
                                                                 450
    TGATTCACAA TATTGCCCAA GAACACGGTG GTATCTCTGT ATTTACCGGA
                                                                 500
    GTTGGCGAGC GTACCCGTGA AGGGAACGAT CTTTACTGGG AAATGAAAGA
                                                                 550
    ATCAGGTGTT ATTGAAAAAA CGGCCATGGT ATTTGGTCAG ATGAATGAGC
                                                                 600
    CACCAGGAGC CCGTATGCGT GTTGCTCTTA CTGGTTTGAC TATTGCGGAA
                                                                 650
    TACTTCCGTG ATGTGGAAGG GCAGGATGTT CTTCTGTTCA TCGATAATAT
                                                                 700
    CTTCCGTTTC ACACAGGCTG GTTCAGAAGT GTCTGCCCTC TTGGGTCGTA
                                                                 750
    TGCCATCAGC CGTTGGTTAT CAGCCAACAC TTGCGACGGA GATGGGACAA
                                                                 800
    TTGCAGGAGC GTATTACCTC AACCAAGAAG GGTTCTGTTA C
                                                                 841
1.0
    2) INFORMATION FOR SEQ ID NO: 389
15
       (i) SEQUENCE CHARACTERISTICS:
                LENGTH: 844 bases
          (A)
           (B)
                TYPE: Nucleic acid
           (C)
                STRANDEDNESS: Double
          (D)
                TOPOLOGY: Linear
20
      (ii) MOLECULE TYPE: Genomic DNA
      (vi)ORIGINAL SOURCE:
           (A)
                ORGANISM: Streptococcus uberis
25
           (B)
                STRAIN: ATCC 19436
      (xi) SEQUENCE DESCRIPTION: SEO ID NO: 389
    GCAAACGGTG AAAAATTACC AGAGATTAAT AATGCATTGA TAGTTTATAA
                                                                  50
30
    AGGTAGCGAT AAAAAACAAA AGATTGTTCT TGAAGTTGCT TTGGAACTTG
                                                                 100
    GGGACGGAAT GGTTCGTACA ATCGCTATGG AATCAACTGA TGGGCTTACA
                                                                 150
    CGTGGATTAG AAGTTTTAGA TACTGGCCGT GCCATTAGTG TACCAGTCGG
                                                                 200
    AAAAGAAACT TTGGGTCGTG TTTTCAATGT GCTTGGTGAA ACCATTGATT
                                                                 250
    TGGATGAACC ATTTGCCGCT GATGCTGCAA GAGAACCCAT CCATAAAAA
                                                                 300
35
    GCCCCAGCAT TTGATGAACT ATCAACGTCT TCAGAAATTC TTGAAACCGG
                                                                 350
    AATAAAAGTT ATTGACTTAT TAGCCCCTTA TCTCAAAGGT GGTAAAGTTG
                                                                 400
    GTTTATTTGG TGGTGCCGGA GTAGGTAAAA CGGTTTTAAT TCAAGAATTA
                                                                 450
    ATTCATAATA TTGCACAAGA ACATGGTGGT ATTTCAGTAT TTACCGGTGT
                                                                 500
    TGGTGAAAGA ACTCGTGAAG GTAATGACCT TTATTGGGAA ATGAAAGAAT
                                                                 550
40
    CTGGCGTTAT TGAAAAAACA GCCATGGTAT TTGGACAAAT GAACGAACCA
                                                                 600
    CCAGGAGCAC GTATGCGCGT TGCTTTAACA GGTTTAACCA TTGCTGAATA
                                                                 650
    TTTCCGGGAT GTTGAAGGTC AAGATGTTTT GCTCTTTATT GACAACATTT
                                                                 700
    TCCGTTTCAC GCAAGCTGGT TCAGAAGTTT CAGCCCTATT GGGTCGTATG
                                                                 750
    CCTTCAGCGG TAGGATACCA ACCAACACTT GCTACCGAAA TGGGACAATT
                                                                 800
45
    GCAAGAAAGA ATTACCTCAA CTAACAAGGG ATCTGTTACT TCTA
                                                                 844
    2) INFORMATION FOR SEQ ID NO: 390
50
       (i) SEQUENCE CHARACTERISTICS:
                LENGTH: 896 bases
                TYPE: Nucleic acid
          (B)
          (C)
                STRANDEDNESS: Double
55
          (D)
                TOPOLOGY: Linear
      (ii) MOLECULE TYPE: Genomic DNA
      (vi)ORIGINAL SOURCE:
          (A) ORGANISM: Tatumella ptyseos
60
```

(B) STRAIN: ATCC 33301

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 390

5	TTCCCTCAGG	ACGCTGTACC	ACAGGTGTAC	AACGCTCTTG	AGGTTGAAAA	50
	TGGTGATACC	CGTCTGGTGC	TGGAAGTTCA	GCAGCAGCTG	GGCGGTGGTG	100
	TCGTTCGTAC	GATTGCAATG	GGAACCTCTG	ACGGCCTGAA	ACGTGGCCTT	150
	AAGGTGACCG	ATCTGCAAAA	ACCGATTCAG	GTACCGGTCG	GTAAAGCGAC	200
	GCTGGGCCGT	ATCATGAACG	TACTGGGTCA	GCCAATCGAT	ATGAAAGGCG	250
10	ACCTGAAGAA	CGAAGATGGT	AGCAATGTTG	AGGTGAACTC	TATTCACCGT	300
	GCAGCGCCAA	GCTACGAAGA	ACTGGCTAAC	TCTACTGAGC	TGCTGGAAAC	350
	GGGTATCAAG	GTTATCGACC	TGATCTGTCC	GTTTGCAAAA	GGCGGTAAAG	400
	TGGGTCTGTT	CGGTGGTGCG	GGTGTAGGTA	AGACCGTCAA	CATGATGGAA	450
	CTGATCCGTA	ACATCGCTAT	CGAGCACTCT	GGTTACTCTG	TATTTGCAGG	500
15	GGTGGGTGAG	CGTACCCGTG	AAGGTAACGA	CTTCTACCAC	GAAATGACCG	550
	AGTCTAACGT	TCTGGATAAA	GTTGCTCTGG	TTTATGGCCA	GATGAACGAG	600
	CCACCAGGAA	ACCGTCTGCG	CGTTGCGCTG	ACCGGTCTGA	CTATGGCTGA	650
	AAAATTCCGT	GACGAAGGCC	GTGACGTACT	GCTGTTCGTT	GATAACATCT	700
	ATCGTTATAC	CCTGGCCGGT	ACTGAAGTTT	CAGCACTGCT	GGGTCGTATG	750
20	CCTTCTGCGG	TAGGTTATCA	GCCAACACTG	GCCGAAGAAA	TGGGTGTTCT	800
	TCAGGAACGT	ATCACGTCAA	CCAAAACCGG	TTCAATCACT	TCCGTA	896

25 2) INFORMATION FOR SEQ ID NO: 391

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 829 bases
 - (B) TYPE: Nucleic acid
- (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: Genomic DNA
- 35 (vi)ORIGINAL SOURCE:
 - (A) ORGANISM: Trabulsiella guamensis
 - (B) STRAIN: ATCC 49490
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 391

30						
	TTCCCTCAGG	ATGCCGTACC	GCGCGTGTAC	GATGCTCTTG	AGGTTATGAA	50
	TGGTAGTGAG	CGTCTGGTGC	TGGAAGTTCA	GCAGCAGCTC	GGTGGTGGTA	100
	TCGTACGTAC	TATCGCCATG	GGTTCTTCCG	ACGGTCTGCG	TCGTGGTCTG	150
	GATGTAAAAG	ATCTCGAGCA	TCCGATCGAA	GTCCCGGTAG	GTAAAGCAAC	200
45	GCTGGGTCGT	ATCATGAACG	TGCTGGGTCA	GCCGATCGAT	ATGAAAGGCG	250
	ACATCGGCGA	AGAAGAGCGT		ACCGCGCAGC	ACCGTCCTAC	300
	GAAGAGCTGT	CCAGCTCTCA	GGAACTGCTG	GAAACCGGCA	TCAAAGTTAT	350
	CGACCTGATG	TGTCCGTTCG	CGAAGGGCGG	TAAAGTCGGT	CTGTTCGGTG	400
		AGGTAAAACC	GTAAACATGA	TGGAGCTGAT	TCGTAACATC	450
50	GCGATCGAGC		CTCTGTGTTT	GCGGGCGTGG	GTGAACGTAC	500
	TCGTGAGGGT		ACCACGAAAT	GACCGACTCC	AACGTTCTGG	550
	ACAAAGTATC	CCTGGTGTAT	GGACAGATGA	ACGAGCCGCC	GGGAAACCGT	600
	CTGCGCGTTG	CACTGACCGG	TCTGACCATG	GCTGAGAAGT	TCCGTGACGA	650
	AGGTCGTGAC	GTTCTGCTGT	TCGTCGATAA	CATCTACCGT	TACACCCTGG	700
55	CGGGTACTGA		CTGCTGGGCC		AGCGGTAGGT	750
	TACCAGCCGA			GTTCTTCAGG	AACGTATCAC	800
	CTCAACCAAA	ACCGGTTCTA	TCACCTCCG			829

30

WO 01/23604 PCT/CA00/01150 2) INFORMATION FOR SEQ ID NO: 392 (i) SEQUENCE CHARACTERISTICS: LENGTH: 835 bases (A) TYPE: Nucleic acid (B) (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear (ii) MOLECULE TYPE: Genomic DNA (vi)ORIGINAL SOURCE: ORGANISM: Yersinia bercovieri (A) (B) STRAIN: ATCC 43970 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 392 CGAATTCCCC CAAGACGCTG TACCAAAAGT GTACAACGCC CTTGAGGTTG 50 AAGGCACAGC TCAGAAGCTG GTGCTGGAAG TTCAGCAACA GCTGGGCGGT 100 GGTGTTGTTC GTTGTATCGC AATGGGCTCT TCCGATGGTC TGAGCCGCGG 150 GTTGAAAGTC ATCAACCTGG AACACCCAAT TGAAGTGCCG GTGGGTAAAT 200 CAACTCTGGG CCGTATCATG AACGTATTGG GTGACCCAAT CGACATGAAA 250 GGTCCTATCG GTGAAGAAGA GCGTTGGGCA ATCCACCGCG AAGCGCCTTC 300 TTACGAAGAG CTTGCCAGCT CGCAAGATCT GTTAGAAACC GGTATCAAGG 350 TAATGGATCT GATTTGTCCG TTCGCTAAGG GCGGTAAAGT CGGTCTGTTC 400 GGTGGTGCGG GTGTGGGTAA AACAGTCAAC ATGATGGAGC TGATTCGTAA 450 TATTGCGATT GAGCACTCAG GTTATTCTGT ATTTGCCGGT GTGGGTGAGC 500 GTACTCGTGA GGGTAACGAC TTCTACCACG AGATGACTGA CTCCAACGTT 550 CTGGACAAAG TATCCTTGGT TTATGGCCAG ATGAATGAGC CACCAGGTAA 600 CCGTCTGCGC GTTGCACTGA CCGGCTTGAC CATGGCGGAG AAATTCCGTG 650 ATGAAGGTCG TGATGTACTG TTATTCATCG ATAACATCTA TCGTTATACC 700 CTGGCCGGTA CAGAGGTATC TGCACTGCTA GGTCGTATGC CATCAGCGGT 750 AGGCTATCAG CCAACGCTGG CAGAAGAGAT GGGTGTGTTG CAGGAACGTA 800 TCACTTCCAC CAAGACGGGT TCAATCACCT CCGTA 835 2) INFORMATION FOR SEQ ID NO: 393 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 812 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double TOPOLOGY: Linear (D) (ii) MOLECULE TYPE: Genomic DNA (vi)ORIGINAL SOURCE: ORGANISM: Yersinia enterocolitica (A) (B) STRAIN: ATCC 9610 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 393

5

10

15

20

25

30

35

40

45

50

GCTGTACCAA AAGTGTACAA CGCCCTTGAG GTTGAAGGCG CAGCTGAGAA 50 GCTGGTGCTG GAAGTTCAGC AACAGCTGGG CGGTGGTGTT GTTCGTTGTA 100 TCGCAATGGG CTCTTCCGAT GGTCTGAGCC GTGGGTTGAA AGTCATCAAC 55 150 CTGGAACACC CAATTGAAGT GCCTGTGGGC AAGTCAACTC TGGGCCGTAT CATGAACGTA TTGGGTGACC CAATCGACAT GAAAGGTCCT ATCGGCGAAG 200 250 AAGAGCGTTG GGCAATCCAT CGTGAAGCGC CTTCTTACGA AGATCTTGCC 300 AGCTCGCAAG ACTTGTTAGA AACCGGTATC AAGGTAATGG ACTTGATTTG 350 60 TCCGTTCGCT AAGGGCGGTA AAGTCGGTCT GTTCGGTGGT GCGGGTGTAG 400

	GTAAAACGGT	AAACATGATG	GAGCTTATTC	GTAACATTGC	GATTGAGCAC	450
	TCAGGTTATT	CCGTATTTGC	TGGCGTGGGT	GAGCGTACTC	GTGAGGGTAA	500
	CGACTTCTAC	CACGAGATGA	CTGACTCCAA	CGTTCTGGAC	AAAGTATCCT	550
•	TGGTTTATGG	CCAAATGAAT	GAGCCACCAG	GTAACCGTCT	GCGCGTTGCA	600
5	CTGACCGGCT	TGACCATGGC	GGAGAAATTC	CGTGATGAAG	GTCGTGACGT	650
	ATTGCTGTTC	ATCGATAACA	TCTATCGCTA	TACCTTAGCC	GGTACGGAAG	700
	TTTCCGCACT	GCTGGGTCGT	ATGCCATCTG	CCGTAGGTTA	CCAGCCAACG	750
	CTGGCAGAAG	AGATGGGTGT	GTTGCAGGAA	CGTATTACTT	CCACCAAGAC	800
	GGGTTCAATC	AC				812
^						

10

2) INFORMATION FOR SEQ ID NO: 394

- 15 (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 802 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear

20

- (ii) MOLECULE TYPE: Genomic DNA
- (vi)ORIGINAL SOURCE:
 - (A) ORGANISM: Yersinia frederiksenii
- 25 (B) STRAIN: ATCC 33641
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 394

	AAAGTGTACA	ACGCCCTTGA	GGTTGAAGGT	ACTGCTGAGA	AGTTAGTACT	50
30	GGAAGTTCAG	CAACAGCTGG	GCGGTGGTGT	TGCTCGTTGT	ATCGCCATGG	100
	GCTCTTCCGA	TGGTTTGAGC	CGCGGGTTGA	AAGTTGTCAA	CCTGGAACAC	150
	CCAATTGAAG	TACCGGTTGG	TAAATCAACT	CTGGGCCGTA	TCATGAACGT	200
	ATTGGGTGAC	CCAATCGACA	TGAAAGGTCC	TATCGGTGAA	GAAGAGCGTT	250
	GGGCAATCCA	CCGCGAAGCG	CCTTCTTACG	AAGAGCTTGC	CAGCTCGCAA	300
35	GATCTGTTAG	AAACCGGTAT	CAAGGTAATG	GATCTGATTT	GCCCGTTCGC	350
	TAAAGGCGGT	AAAGTCGGTC	TGTTCGGTGG	TGCGGGTGTA	GGTAAAACGG	400
	TAAACATGAT	GGAGCTGATC	CGTAATATCG	CGATCGAGCA	CTCAGGTTAT	450
	TCCGTATTTG	CGGGTGTTGG	TGAACGTACC	CGTGAGGGTA	ACGACTTCTA	500
	CCACGAGATG	ACTGACTCCA	ACGTTCTGGA	CAAAGTATCC	TTGGTTTATG	550
40	GCCAGATGAA	TGAGCCACCA	GGTAACCGTC	TTCGCGTTGC	ACTGACCGGT	600
	CTGACCATGG	CGGAGAAATT	CCGTGATGAA	GGTCGTGACG	TATTGCTGTT	650
	CATCGATAAC	ATCTATCGTT	ATACCTTGGC	CGGTACGGAA	GTATCCGCAC	700
	TGCTGGGTCG	TATGCCATCT	GCGGTAGGCT	ATCAGCCAAC	GCTGGCAGAA	750
	GAGATGGGTG	TGTTGCAGGA	ACGTATTACT	TCCACCAAGA	CGGGTTCAAT	800
45	CA					802

2) INFORMATION FOR SEQ ID NO: 395

50

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 806 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
- (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: Genomic DNA
 - (vi) ORIGINAL SOURCE:
- 60 (A) ORGANISM: Yersinia intermedia

(B) STRAIN: ATCC 29909

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 395

5	GCTGTACCAA	GAGTGTACAA	CGCCCTTGAG	GTTGAAGGCA	CTGCTGAGAA	50
	GCTGGTGCTG	GAAGTTCAGC	AACAGCTAGG	CGGTGGTGTT	GTTCGTTGTA	100
	TCGCAATGGG	CTCTTCCGAT	GGTCTGAGCC	GCGGGTTGAA	AGTCATCAAC	150
	CTGGAACACC	CAATTGAAGT	GCCGGTTGGT	AAATCAACTC	TGGGCCGTAT	200
	CATGAACGTA	TTGGGTGACC	CAATCGACAT	GAAAGGTCCT	ATCGGTGAAG	250
10	AAGAGCGTTG	GGCAATCCAC	CGCGAAGCGC	CTTCTTACGA	AGAGCTTGCC	300
	AGCTCACAAG	ATTTGTTAGA	AACCGGTATC	AAAGTAATGG	ACTTGATTTG	350
	CCCGTTCGCT	AAGGGCGGTA	AAGTGGGTCT	GTTCGGTGGT	GCGGGTGTAG	400
	GTAAAACAGT	AAACATGATG	GAGCTTATTC	GTAACATCGC	GATTGAGCAC	450
	TCAGGTTATT	CTGTATTTGC	TGGTGTGGGT	GAGCGTACTC	GTGAGGGTAA	500
15	CGACTTCTAC	CACGAGATGA	CTGACTCCAA	CGTTCTGGAC	AAAGTATCCT	550
	TGGTGTATGG	CCAGATGAAT	GAGCCACCAG	GTAACCGTCT	GCGCGTTGCA	600
	CTGACCGGCC	TGACCATGGC	GGAGAAATTC	CGTGATGAAG	GTCGTGACGT	650
	ACTGTTGTTC	ATCGATAACA	TCTATCGCTA	TACCTTGGCC	GGTACGGAAG	700
	TATCCGCACT	GCTGGGTCGT	ATGCCATCAG	CGGTAGGCTA	CCAGCCAACG	750
20	CTGGCAGAAG	AGATGGGTGT	GTTGCAGGAA	CGTATTACGT	CCACCAAGAC	800.
	GGGTTC					806

25 2) INFORMATION FOR SEQ ID NO: 396

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 806 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: Genomic DNA
- 35 (vi)ORIGINAL SOURCE:
 - (A) ORGANISM: Yersinia pseudotuberculosis
 - (B) STRAIN: ATCC 29833
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 396

40						
	GCTGTACCAA	AAGTGTACAA	CGCCCTTGAG	GTAGAAGGCA	CAACTGAAAA	50 [.]
	GTTAGTGCTG	GAAGTTCAGC	AACAGTTGGG	CGGTGGTGTT	GTTCGTTGTA	100
	TCGCAATGGG	CTCTTCCGAT	GGTCTGAGCC	GTGGGTTGAA	AGTAACCAAC	150
	CTGGAACACC	CGATCGAAGT	ACCGGTTGGT	AAAGCGACCC	TTGGCCGTAT	200
45	CATGAACGTA	TTGGGTGAAC	CAATCGACAT	GAAAGGTCCT	ATCGGTGAAG	250
	AAGAGCGTTG		CGCGAAGCGC			300
		ATCTGTTAGA				350
	TCCGTTTGCT	AAGGGCGGTA	AAGTCGGTCT	GTTCGGTGGT	GCGGGTGTAG	400
	GTAAAACAGT	AAACATGATG	GAGCTGATCC	GTAACATCGC	GATCGAGCAC	450
50	TCTGGGTATT	CTGTATTTGC	CGGTGTAGGT	GAGCGTACCC	GTGAGGGTAA	500
	TGACTTCTAC	CATGAAATGA	CTGACTCCAA	CGTTTTGGAC	AAAGTATCCT	550
	TGGTTTACGG	CCAGATGAAT	GAGCCACCAG	GTAACCGTCT	ACGCGTTGCA	600
	CTGACCGGCC	TGACCATGGC	GGAGAAATTC	CGTGATGAAG	GTCGTGACGT	650
	ACTGCTGTTC	ATCGATAATA	TCTATCGTTA	TACCCTAGCT	GGTACGGAAG	700
55	TATCCGCATT	GCTGGGTCGT	ATGCCATCAG	CGGTAGGTTA	TCAGCCAACA	750
	CTGGCTGAAG	AGATGGGTGT	GTTGCAGGAA	CGTATTACTT	CCACTAAGAC	800
	GGGTTC					806

30

2) INFORMATION FOR SEQ ID NO: 397 (i) SEQUENCE CHARACTERISTICS: LENGTH: 829 bases (A) 5 TYPE: Nucleic acid (B) (C) STRANDEDNESS: Double TOPOLOGY: Linear (D) (ii) MOLECULE TYPE: Genomic DNA 10 (vi)ORIGINAL SOURCE: (A) ORGANISM: Yersinia rohdei (B) STRAIN: ATCC 43380 15 (xi) SEOUENCE DESCRIPTION: SEO ID NO: 397 TTCCCCCAAG ACGCTGTACC AAAAGTGTAC AACGCCCTTG AGGTTGAAGG 50 TGCAGCTGAG AAGCTTGTGC TGGAAGTTCA GCAGCAGCTG GGCGGTGGTG 100 TTGTTCGTTG TATCGCAATG GGCTCTTCCG ATGGTTTGAG CCGTGGGTTG 150 AAAGTTATCA ACCTGGAACA CCCAATTGAA GTGCCAGTTG GTAAATCAAC 20 200 TCTGGGCCGT ATCATGAACG TATTGGGTGA CCCAATCGAC ATGAAAGGCC 250 CTATCGGTGA AGAAGAGCGT TGGGCAATCC ACCGTGAAGC GCCTTCTTAC 300 GAAGAGCTTG CCAGCTCGCA AGATCTGTTA GAAACCGGTA TCAAGGTAAT 350 GGATCTGATT TGTCCGTTCG CTAAGGGCGG TAAAGTCGGT CTGTTCGGTG 400 GTGCGGGTGT TGGTAAAACA GTAAACATGA TGGAGCTTAT TCGTAACATC GCGATTGAGC ACTCAGGTTA TTCTGTATTT GCCGGGGTAG GTGAACGTAC 25 450 500 TCGTGAGGGT AACGACTTCT ACCACGAGAT GACTGACTCC AACGTTCTGG 550 ACAAAGTATC CTTGGTTTAT GGCCAGATGA ATGAGCCACC AGGTAACCGT 600 CTGCGCGTTG CACTGACCGG CTTGACCATG GCGGAAAAAT TCCGTGATGA 650 AGGCCGTGAC GTATTGCTGT TCATCGATAA CATTTATCGT TATACCCTAG 700 CCGGTACGGA AGTATCCGCA CTGCTGGGTC GTATGCCATC TGCGGTAGGC 750 TATCAGCCAA CACTGGCAGA AGAGATGGGT GTGTTGCAGG AACGTATTAC 800 TTCCACTAAG ACGGGTTCAA TCACCTCCG 829 35 2) INFORMATION FOR SEQ ID NO: 398 (i) SEQUENCE CHARACTERISTICS: 40 LENGTH: 819 bases (A) (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear 45 (ii) MOLECULE TYPE: Genomic DNA (vi)ORIGINAL SOURCE: ORGANISM: Yokenella regensburgei (A) (B) STRAIN: ATCC 35313 50 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 398 ATGCCGTACC GCGCGTGTAC GATGCTCTTG AGGTACAAAA TGGTAACGAG 50 AAACTGGTGC TGGAAGCTCA GCAGCAGCTC GGCGGCGGTA TCGTGCGTAC 100 55 TATCGCCATG GGTTCTTCCG ACGGTCTGCG TCGTGGTCTG GAAGTTAAAG 150 ACCTCGAGCA CCCGATCGAA GTCCCGGTAG GTAAAGCAAC CCTGGGCCGT 200

250

300

350

400

ATCATGAACG TCCTGGGTCA GCCGATCGAC ATGAAAGGCG ACATCGGTGA

AGAAGAGCGT TGGGCTATCC ACCGCGCAGC ACCTTCCTAT GAAGAGCTGT

CCAGCTCTCA GGAACTGCTG GAAACCGGTA TCAAAGTAAT GGATCTGATC

TGCCCGTTCG CTAAGGGTGG TAAAGTCGGT CTGTTCGGTG GTGCGGGTGT

	AGGTAAAACT	GTAAACATGA	TGGAGCTTAT	CCGTAACATC	GCGATTGAGC	450
				GTGAACGTAC		500
	AACGACTTCT	ACCACGAAAT	GACCGACTCC	AACGTACTGG	ATAAAGTATC	550
	CCTGGTGTAC	GGCCAGATGA	ACGAGCCGCC	GGGAAACCGT	CTGCGCGTTG	600
5				TCCGTGACGA		650
	GTTCTGCTGT	TCGTCGATAA	CATCTACCGT	TATACCCTGG	CCGGTACGGA	700
	AGTATCCGCA	CTGCTGGGTC	GTATGCCTTC	TGCGGTAGGT	TATCAGCCAA	750
	CTCTGGCGGA	AGAGATGGGT	GTTCTTCAGG	AACGTATCAC	CTCTACCAAA	800
	ACCGGTTCTA	TCACCTCCG				819
10						

2) INFORMATION FOR SEQ ID NO: 399

- 15 (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1097 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear

20

- (ii) MOLECULE TYPE: Genomic DNA
- (vi)ORIGINAL SOURCE:
 - (A) ORGANISM: Yarrowia lipolytica
- 25 (B) STRAIN: ATCC 38295
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 399

	AAGCTTAAGG	CTGAGCGAGA	GCGAGGTATC	ACCATTGATA	TCGCTCTCTG	50
30	GAAGTTCCAG	ACCCCTAAGT	ACTACGTCAC	CGTTATTGAT	GCTCCCGGTC	100
	ACCGAGATTT	CATCAAGAAC	ATGATTACCG	GTACTTCCCA	GGCTGACTGC	150
	GCCATCCTCA	TCATTGCTGG	TGGTGTTGGT	GAGTTCGAGG	CTGGTATCTC	200
	CAAGGATGGT	CAGACCCGAG	AGCACGCCCT	GCTCGCTTTC	ACCCTCGGTG	250
	TTAAGCAGCT	CATTGTTGCT	ATCAACAAGA	TGGACTCCGT	CAAGTGGTCT	300
35	CAGGATCGAT	ACCTCGAGAT	TTGCAAGGAG	ACTGCCAACT	TCGTCAAGAA	350
	GGTCGGTTAC	AACCCCAAGG	CTGTCCCCTT	CGTCCCCATT	TCCGGATGGA	400
	ACGGTGACAA	CATGATCGAG	CCCTCTACCA	ACTGTGACTG	GTACAAGGGA	450
	TGGACCAAGG	AGACCAAGGC	CGGCGAGATC	AAGGGTAAGA	CCCTCCTCGA	500
	GGCCATTGAT	GCCATTGAGC	CCCCCGTGCG	ACCCCACGAC	AAGCCCCTCC	550
40	GACTTCCCCT	CCAGGATGTC	TACAAGATCG	GTGGTATCGG	CACAGTGCCC	600
	GTTGGCCGAG	TCGAGACCGG	TGTTATCAAG	GCCGGTATGG	KTGTTACCTT	650
	CGCTCCCGCC	AACGTGACCA	CTGAGGTCAA	GTCTGTCGAG	ATGCACCACG	700
	AGATCCTCCC	CGATGGAGGT	TTCCCCGGTG	ACAACGTCGG	TTTCAACGTC	750
	AAGAACGTTT	CCGTCAAGGA	TATCCGACGA	GGTAACGTTG	CTGGTGACTC	800
45	CAAGAACGAC	CCCCCAAGG	GCTGCGACTC	TTTCAACGCT	CAGGTCATTG	850
	TTCTTAACCA	CCCCGGTCAG	ATCGGTGCTG	GTTACGCTCC	CGTCCTTGAT	900
	TGCCACACTG	CCCACATTGC	TTGCAAGTTC	GACACCCTGA	TCGAGAAGAT	950
	CGACCGACGA	ACCGGTAAGA	AGATGGAGGA	CTCCCCCAAG	TTCATCAAGT	1000
	CTGGTGATGC	TGCCATTGTC	AAGATGGTTC	CCTCCAAGCC	CATGTGTGTC -	1050
50	GAGGCCTTCA	CTGAGTACCC	CCCTCTTGGT	CGATTCGCCG	TCCGAGA	1097

2) INFORMATION FOR SEQ ID NO: 400

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1233 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
- 60 (D) TOPOLOGY: Linear

(ii) MOLECULE TYPE: Genomic DNA

(vi) ORIGINAL SOURCE:

5

45

- (A) ORGANISM: Absidia corymbifera
- (B) STRAIN: ATCC 46775

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 400

10	CAAGCTTAAG	GCTGAACGTG	AGCGTGGTAT	CACCATCGAT	ATCGCTCTCT	50
	GGAAGTTCGA	GACTCCCAAG	TACCACGTTA	CCGTCATTGA	TGCCCCTGGC	100
	CATCGTGATT	TCATCAAGAA	CATGATTACT	GGTACTTCCC	AAGCTGACTG	150
	CGGTATCTTG	ATTATTGCTG	CTGGTACTGG	TGAATTCGAA	GCTGGTATCT	200
	CCAAGGATGG	TCAAACCCGT	GAACACGCTT	TGCTTGCTTT	CACCCTTGGT	250
15	GTCCGTCAAT	TGATTGTCGC	TATCAACAAG	ATGGATTCCA	CCAAGTACTC	300
	TGAGGCCCGT	TACAACGAAA	TTGTCAAGGA	AGTCTCCACC	TTCATCAAGA	350
•	AGATTGGTTT	CAACCCCAAG	TCCGTTCCTT	TCGTCCCTAT	CTCTGGCTGG	400
	AACGGTGACA	ACATGTTGGA	GGARTCCACC	AACATGCCTT	GGTTCAAGGG	450
	ATGGAACAAG	GAGACTAAGG	CTGGTGCCAA	GACYGGCAAG	ACCCTTCTTG	500
20	AAGCCATTGA	CAACATTGAT	CCCCCTGTTC	GTCCTTCCGA	CAAGCCCCTT	550
	CGTCTTCCCC	TTCAAGATGT	CTACAAGATC	GGTGGTATTG	GTACAGTTCC	600
	TGTCGGTCGT	GTTGAGACTG	GTGTCATCAA	GCCTGGTATG	GTTGTCACCT	650
	TCGCTCCCGC	TAACGTCACC	ACTGAAGTCA	AGTCCGTYGA	AATGCACCAC	700
	GAGCAACTTG	CTGAAGGTGT	TCCCGGTGAC	AACGTCGGTT	TCAACGTCAA	750
25	GAACGTTTCC	GTCAAGGATA	TCCGCCGTGG	TAACGTYTGC	TCTGACTCCA	800
	AGAACGACCC	CGCCAAGGAA	TCCGCTTCCT	TCACCGCTCA	AGTTATTGTC	850
	TTGAACCACC	CTGGTCARAT	TGGTGCTGGT	TACTCTCCTG	TCTTGGATTG	900
	CCACACTGCT	CACATTGCAT	GCAAGTTCTY	TKAGCTTCTT	KAGAAGATCG	950 950
	ATYGTCGTTC	CGGTAAGTAA	ATANTTTGGT	TTRGGATATG	GGTATTGGGC	1000
30	TTAATCTYTG	GATTTTGCCT	CAATTGCTCC	TTCCTTGATC	TTTCTCGATT	1050
•	ACTTTTTGAT	CATTTGCTAA	TCCAAACCCT	TTCCATTTYA	TTGAAAACAG	1100
	GTAAGAAGTT	GGAAGACTCC	CCCAAGTTCG	TCAAGWSYGG	TGACTCTGCY	
	ATCGTCAAGA	TGGTTCCTTC	CAAGCCCATG	TGCGTTGAAG		1150
	ATATCCTCCT	CTTGGTCGTT	TCGCTGTCCG	TGA	CCTACACTGA	1200
35	MIMICULCUL	CIIGGICGII	100010100	IGA		1233
J J						

2) INFORMATION FOR SEQ ID NO: 401

- 40 (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1151 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear

(ii) MOLECULE TYPE: Genomic DNA

(vi) ORIGINAL SOURCE:

- (A) ORGANISM: Alternaria alternata
- 50 (B) STRAIN: ATCC 62099

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 401

	CAAGTTGAAG	GCCGAGCGTG	AGCGTGGTAT	CACCATCGAC	ATTGCTCTCT	50
5 5	GGAAGTTCGA	GACTCCCAAG	GTTAGTACCC	CTCTGCCTAC	TACATCAAGT	100
	TCTTTACAAT	GCTAACATGT	TGTACTCAGT	ACTATGTCAC	CGTCATTGAC	150
	GCCCCCGGTC	ACCGTGATTT	CATCAAGAAC	ATGATCACTG	GTACCTCCCA	200
			TCATTGCCGC			250
	CTGGTATCTC	CAAGGATGGC	CAGACTCGTG	AGCACGCTCT	CCTCGCTTAC	300
60	ACCCTCGGTG	TCAAGCAGCT	CATCGTTGCC	ATCAACAAGA	TGGACACCAC	350

	CAAGTGGTCC	GAGGAGCGTT	ACCAGGAGAT	CATCAAGGAG	ACCTCCAACT'	400
	TCATCAAGAA	GGTCGGCTAC	AACCCCAAGC	ACGTTCCCTT	CGTCCCCATC	450
	TCCGGTTTCA	ACGGTGACAA	CATGATTGAG	GCCTCATCCA	ACTGCCCCTG	500
			AGACCAAGGC		GGTAAGACCC	550
5	TCCTCGAGGC	CATCGACGCC	ATCGACCCTY	CCAGCCGTCC	CACCGACAAG	600
	CCCCTCCGTC	TTCCCCTYCA	GGATGTTTAC	AAGATTGGTG	GTATTGGCAC	650
	GGTGCCCGTC	GGTCGTGTCG	AGACCGGTAT	CATCAAGGCC	GGTATGGTCG	700
	TCACCTTCGC	CCCCGCTGGT	GTCACCACTG	AAGTCAAGTC	CGTCGAGATG	750
	CACCACGAGC	AGCTCACCGA	GGGTGTCCCC	GGTGACAACG	TCGGCTTCAA	800
10			AGGAGATCCG		GTTGCCGGTG	850
			AAGGGTGCCG		CGCCCAGGTC	900
			TCAGGTCGGT	_	CCCCAGTCCT	950
•	CGACTGCCAC	ACCGCCCACA	TTGCTTGCAA	GTTCTCTGAG	CTCCTCGAGA	1000
	AGATTGACCG	CCGTACCGGA	AAGTCTGTTG	AGAACTCTCC	CAAGTTCATC	1050
15			CGTCAAGATG		AGCCCATGTG	1100
	CGTTGAGGCT	TTCACTGACT	ACCCTCCTCT	CGGTCGTTTC	GCTGTCCGTG	1150
	A					1151

20

25

2) INFORMATION FOR SEQ ID NO: 402

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1283 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: Genomic DNA

- (vi)ORIGINAL SOURCE:
 - (A) ORGANISM: Aspergillus flavus
 - (B) STRAIN: ATCC 26947
- 35 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 402

	CAAGCTCAAG	TCCGAGCGTG	AGCGTGGTAT	CACCATCGAT	ATCGCCCTCT	50
	GGAAGTTCCA	GACCTCCAAG	TATGAGGTCA	CCGTCATTGG	TAAGCATTTG	100
	AGTTCCAACC	TACGTTGCCC	AACATTTACA	GTCATCTAAC	AAAGTTCAAT	150
40	AGATGCCCCC	GGTCACCGTG	ACTTCATCAA	GAACATGATC	ACTGGTACTT	200
	CCCAGGCTGA	CTGCGCTATC	CTCATCATTG	CCTCCGGTAC	TGGTGAATTC	250
	GAGGCTGGTA	TCTCCAAGGA	TGGTCAGACC	CGTGAGCACG	CTCTGCTCGC	300
	TTTCACCCTC	GGTGTCCGTC	AGCTCATCGT	TGCCCTCAAC	AAGATGGACA	350
	CCTGCAAGTG	GTCTCAGGAT	CGTTACAACG	AAATCGTTAA	GGAGACTTCC	400
45	AACTTCATCA	AGAAGGTCGG	ATACAACCCC	AAGAGCGTTC	CTTTCGTCCC	450
	CATCTCCGGT	TTCAACGGTG	ACAACATGAT	TGAGGCCTCC	ACCAACTGCC	500
•	CCTGGTACAA	GGGTTGGGAG	AAGGAGACCA	AGGCTGGCAA	GTCCACCGGT	550
	AAGACCCTTC	TCGAGGCCAT	CGATGCCATC	GAGCCCCCCG	TCCGTCCCAC	600
	CGACAAGCCT	CTCCGTCTTC	CCCTYCAGGA	TGTCTACAAG	ATCTCTGGTA	650
50	TCGGTACTGT	GCCCGTCGGT	CGTGTCGAGA	CTGGTGTCAT	CAAGCCTGGT	700
	ATGGTCGTTA	CTTTCGCTCC	TGCCAACGTG	ACCACTGAAG	TCAAGTCCGT	750
	TGAAATGCAC	CACCAGCAGC	TCCAGGCCGG	TAACCCCGGT	GACAACGTTG	800
	GTTTCAACGT	CAAGAACGTC	TCCGTCAAGG	AAGTCCGCCG	TGGTAACGTT	850
	GCCGGTGACT	CCAAGAACGA	CCCCCCTGCT	GGCTGCGATT	CCTTCAACGC	900
55	CCAGGTCATC	GTCCTTAACC	ACCCCGGTCA	GGTCGGCAAC	GGTTACGCTC	950
	CCGTCCTGGA	CTGCCACACC	GCTCACATTG	CTTGCAAGTT	CGCTGAGCTC	1000
	CTTGAGAAGA	TTGACCGCCG	TACCGGTAAA	TCTGTTGAGG	ACAAGCCCAA	1050
	GTTCATCAAG	TCTGGTGATG	CTGCCATCGT	CAAGATGATT	CCCTCCAAGC	1100
	CCATGTGTGT	GGAGTCTTTC	ACTGACTTCC	CCCCTCTTGG	TCGTTTCGCT	1150
60	GTCCGTGACG	TAAGTTTTTC	CCTCTTGACT	ATCTTCACAA	TTTTTCACAT	1200

	ATTTTCACGC CTCGTCCCAC TCTTTTTCCT CCCTTCCTCT TTGGTTCCCC TTTTTGCCTG CAAGTTCTCT ATAGCTAACA TGA	1250 1283
5	2) INFORMATION FOR SEQ ID NO: 403	
10	(i)SEQUENCE CHARACTERISTICS: (A) LENGTH: 1103 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
15	(ii) MOLECULE TYPE: Genomic DNA (vi) ORIGINAL SOURCE:	
	(VI)ORIGINAL SOURCE: (A) ORGANISM: Aspergillus fumigatus (B) STRAIN: DAL95	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 403	
25	TCCGAGCGTG AGCGTGGTAT CACCATCGAC ATTGCCCTCT GGAAGTTCCA GACTCCCAAG TATGAGGTCA CTGTCATCGG TAAGCTCGAC TCGCCCCGAT ATGTTTTGGT GCTGTAGCTA ACACGATCTG AAGATGCCCC CGGTCACCGT GACTTCATCA AGAACATGAT CACTGGTACC TCCCAGGCTG ACTGCGCTAT CCTCATCATT GCCTCCGGTA CTGGTGAGTT CGAGGCTGGT ATCTCCAAGG ATGGCCAGAC CCGTGAGCAC GCTCTGCTGG CTTTCACCCT CGGTGTCAAG CAGCTCATCG TCGCCCTCAA CAAGATGGAC ACCTGCAAGT GGTCCGAGGA	50 100 150 200 250 300 350
30	TCGTTACAAC GAAATTGTCA AGGAAACCTC CAACTTCATC AAGAAGGTCG GCTACAACCC CAAGGCCGTT CCCTTCGTCC CCATCTCTGG CTTCAACGGT GACAACATGC TTGAGCCCTC CTCCAACTGC CCCTGGTACA AGGGATGGGA GAAGGAGACC AAGGCCGGCA AGGTCACTGG TAAGACCCTC ATCGAGGCCA TCGACGCCAT TGAGCCCCCT GTCCGTCCCT CCAACAAGCC CCTCCGTCTT	400 450 500 550 600
35	CCCCTCCAGG ATGTCTACAA GATCTCTGGT ATCGGAACGG TCCCTGTCGG CCGTGTCGAG ACCGGTATCA TCAAGCCCGG CATGGTCGTC ACCTTCGCCC CCGCCAACGT CACCACTGAA GTCAAGTCCG TCGAGATGCA CCACCAGCAG CTCCAGGAGG GTGTCCCCGG TGACAACGTC GGTTTCAACG TCAAGAACGT TTCCGTCAAG GAAGTCCGCC GTGGTAACGT CTGCGGTGAC TCCAAGAACG	650 700 750 800 850
40	ATCCCCTCA GGGTGCTGCC TCCTTCAACG CCCAGGTCAT CGTCCTCAAC CACCCCGGTC AGGTCGGCGC TGGTTACGCC CCCGTCCTCG ACTGCCACAC TGCCCACATT GCTTGCAAGT TCTCTGAGCT GCTTGAGAAG ATTGACCGCC GTACCGGCAA GTCTGTTGAG AACAACCCCA AGTTCATCAA GTCCGGTGAT GCCGCCATCG TGAAGATGGT TCCTTCCAAG CCCATGTGTG TCGAGTCCTT CAC	900 950 1000 1050 1100 1103
45		1100
	2) INFORMATION FOR SEQ ID NO: 404	
50	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1149 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear 	
55.	(ii) MOLECULE TYPE: Genomic DNA	
	(vi)ORIGINAL SOURCE:	
60	(A) ORGANISM: Aspergillus fumigatus (B) STRAIN: WSA-172	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 404

-	AAGCTCAAGT	CCGAGCGTGA	GCGTGGTATC	ACCATCGACA	TTGCCCTCTG	50
5	GAAGTTCCAG	ACTCCCAAGT	ATGAGGTCAC	TGTCATCGGT	AAGCTCGACT	100
	CGCCCCGATA	TGTTTTGGTG	CTGTAGCTAA	CACGATCTGA	AGATGCCCCC	150
	GGTCACCGTG	ACTTCATCAA	GAACATGATC	ACTGGTACCT	CCCAGGCTGA	200
	CTGCGCTATC	CTCATCATTG	CCTCCGGTAC	TGGTGAGTTC	GAGGCTGGTA	250
	TCTCCAAGGA	TGGCCAGACC	CGTGAGCACG	CTCTGCTGGC	TTTCACCCTC	300
10	GGTGTCAAGC	AGCTCATCGT	CGCCCTCAAC	AAGATGGACA	CCTGCAAGTG	350
	GTCCGAGGAT	CGTTACAACG	AAATTGTCAA	GGAAACCTCC	AACTTCATCA	400
	AGAAGGTCGG	CTACAACCCC	AAGGCCGTTC	CCTTCGTCCC	CATCTCTGGC	450
	TTCAACGGTG	ACAACATGCT	TGAGCCCTCC	TCCAACTGCC	CCTGGTACAA	500
	GGGATGGGAG	AAGGAGACCA	AGGCCGGCAA	GGTCACTGGT	AAGACCCTCA	550
15	TCGAGGCCAT	CGACGCCATT	GAGCCCCCTG	TCCGTCCCTC	CAACAAGCCC	600
	CTCCGTCTTC	CCCTCCAGGA	TGTCTACAAG	ATCTCTGGTA	TCGGAACGGT	650
	CCCTGTCGGC	CGTGTCGAGA	CCGGTATCAT	CAAGCCCGGC	ATGGTCGTCA	700
	CCTTCGCCCC	CGCCAACGTC	ACCACTGAAG	TCAAGTCCGT	CGAGATGCAC	750
	CACCAGCAGC	TCCAGGAGGG	TGTCCCCGGT	GACAACGTCG	GTTTCAACGT	800
20	CAAGAACGTT	TCCGTCAAGG	AAGTCCGCCG	TGGTAACGTC	TGCGGTGACT	850
	CCAAGAACGA	TCCCCCTCAG	GGTGCTGCCT	CCTTCAACGC	CCAGGTCATC	900
	GTCCTCAACC	ACCCCGGTCA	GGTCGGCGCT	GGTTACGCCC	CCGTCCTCGA	950
	CTGCCACACT	GCCCACATTG	CTTGCAAGTT	CTCTGAGCTG	CTTGAGAAGA	1000
	TTGACCGCCG	TACCGGCAAG	TCTGTTGAGA	ACAACCCCAA	GTTCATCAAG	1050
25	TCCGGTGATG	CCGCCATCGT	GAAGATGGTT	CCTTCCAAGC	CCATGTGTGT	1100
	CGAGTCCTTC	ACTGACTACC	CCCCTCTGGG	TCGTTTCGCC	GTCCGTGAC	1149

30 2) INFORMATION FOR SEQ ID NO: 405

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1151 bases
- (B) TYPE: Nucleic acid
- (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear

(ii) MOLECULE TYPE: Genomic DNA

40 (vi)ORIGINAL SOURCE:

35

45

- (A) ORGANISM: Aspergillus niger
- (B) STRAIN: ATCC 9508

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 405

	CDDCCTCDDC	TCCGAGCGTG	አ <i>ርርር</i> ጥርር ሙእ ሙ	CACCATCCAC	3 DDCCCCCCC	5 0
		TCCGAGCGTG				50
•	GGAAGTTCCA		TATGAGGTCA	CCGTCATTGG	TATGTACTCA	100
	CAGAGTTCTC	TTTTCATCAA	AGCAATATAC	TAACGTCCAT	CATAGACGCC	150
		GTGACTTCAT				200
50	TGACTGCGCT	ATCCTCATCA	TTGCCTCCGG	TACTGGTGAG	TTCGAGGCTG	250
		GGATGGCCAG				300
		GCCAGCTCAT				350
		GACCGTTACA				400
		CGGATACAAC				450
55		GTGACAACAT				500
	CAAGGGTTGG	GAGAAGGAGA	CCAAGGCCGG	CAAGGTCACC	GGTAAGACCC	550
		CATCGACGCC				600
	CCCCTCCGTC	TTCCCCTCCA	GGATGTCTAC	AAGATCTCCG	GTATTGGAAC	650
	TGTTCCCGTC	GGTCGTGTCG	AGACCGGTAT	CATTGCCCCT	GGTATGGTCG	700
60	TGACCTTCGC	TCCCGCCAAC	GTCACCACTG	AAGTCAAGTC	CGTTGAGATG	7 50

	CACCACCAGC	AGCTCAAGGA	AGGTGTCCCC	GGTGACAACG	TTGGTTTCAA	800
	CGTCAAGAAC	GTTTCCGTCA	AGGAGGTTCG	CCGTGGTAAC	GTTGCCGGTG	850
	ACTCCAAGAA	CGACCCCCCT	CTTGGCTGTG	AGAGCTTCAC	CGCCCAGGTC	900
	ATCGTCCTCA	ACCACCCCGG	TCAGGTCGGC	GCTGGTTACG	CTCCCGTCCT	950
5	GGACTGCCAC	ACTGCTCACA	TTGCTTGCAA	GTTCGCTGAG	CTCCTTGAGA	1000
	AGATTGACCG	CCGTACCGGA	AAGTCTGTTG	AATCTTCCCC	CAAGTTCATC	1050
	AAGTCCGGTG	ACGCTGCCAT	CGTCAAGATG	ATTCCCTCCA	AGCCCATGTG	1100
	TGTTGAGGCT	TTCACTGACT	ACCCCCTCT	TGGTCGTTTC	GCCGTCCGCG	1150
	A					1151

10

2) INFORMATION FOR SEQ ID NO: 406

- 15 (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1093 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear

20

(ii) MOLECULE TYPE: Genomic DNA

(vi)ORIGINAL SOURCE:

- (A) ORGANISM: Blastoschizomyces capitatus
- 25 (B) STRAIN: ATCC 10663
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 406

	GCTTAAAGCT	GAACGTGAAC	GTGGTATCAC	CATTGATATC	GCTCTCTGGA	50
30	AGTTCGAAAC	TCCTAAGTAC	TACGTTACTG	TTATTGATGC	TCCAGGTCAC	100
	CGTGATTTCA	TCAAGAACAT	GATTACTGGT	ACTTCCCAAG	CCGATTGCGC	150
	CATTCTTATC	ATTGCTGCCG	GTGTCGGTGA	ATTCGAAGCT	GGTATCTCCA	200
	AGGAAGGTCA	AACCAGAGAA	CACGCTCTTC	TCGCTTTCAC	CCTTGGTGTC	250
	AGACAACTTA	TCATTGCCAT	CAACAAGATG	GACTCTGTCA	AGTGGGACCA	300
35	AAAGAGATAC	GAAGAAATCG	TCAAGGAGGC	TTCCAACTTC	GTCAAGAAGG	350
	TTGGTTACAA	CCCCAAGTCT	GTTCCATTCG	TTCCTATCTC	TGGTTGGAAC	400
	GGTGACAACA	TGTTGGAACC	TACCACCAAC	GCCCCATGGT	ACAAGGGATG	450
	GACCAAGGAA	ACCAAGGCTG	GTGCCACTAA	GGGTATGACT	CTTATTGAAG	500
	CCATTGACGC	CATTGAACCA	CCAGTAAGAC	CATCCGACAA	GCCACTCCGT	550
40	CTCCCACTCC	AAGATGTTTA	CAAGATTGGT	GGTATCGGAA	CTGTGCCAGT	600
	CGGCCGTGTC	GAAACCGGTA	TCATCAAGGC	CGGTATGGTC	GTTACCTTTG	650
	CTCCACCAAT	GGTCACAACT	GAAGTTAAGT	CCGTTGAAAT	GCACCACGAA	700
	CAACTTGCTC	AAGGTAACCC	AGGTGACAAC	GTTGGTTTCA	ACGTCAAGAA	750
	CGTTTCCGTT	AAGGAAATCA	GACGTGGTAA	CGTCTGTGGT	GACTCCAAGA	800
45	ACGATCCACC	AAAGGGCTGC	GAATCTTTCA	ACGCTCAAGT	TATCGTCTTG	850
	AACCACCCTG	GTCAAATCTC	TGCTGGTTAC	TCTCCAGTTC	TCGATTGCCA	900
	CACTGCCCAC	ATTGCCTGCA	GATTCGACGA	ACTCCTTGAA	AAGATCGACC	950
	GTCGTTCTGG	TAAGAAGATT	GAAGACTCTC	CAAAGTTTGT	CAAGTCTGGT	1000
	GATGCCGCTA	TCGTCAAGAT	GATCCCAACC	AAGCCAATGT	GCGTTGAAAC	1050
50	CTTCACTGAA	TACCCACCAC	TTGGTCGTTT	CGCCGTCCGT	GAT	1093

2) INFORMATION FOR SEQ ID NO: 407

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1101 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
- 60 (D) TOPOLOGY: Linear

(ii) MOLECULE TYPE: Genomic DNA

(vi)ORIGINAL SOURCE:

- (A) ORGANISM: Candida albicans
- (B) STRAIN: ATCC 10231

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 407

10	CTTGGACAAA	TTGAAGGCTG	AAAGAGAAAG	AGGTATCACC	ATTGATATCG	50
	CTTTGTGGAA	ATTCGAAACT	CCAAAATACC	ACGTTACCGT	CATTGATGCT	100
	CCAGGTCACA	GAGATTTCAT	CAAGAATATG	ATCACTGGTA	CTTCTCAAGC	150
	TGATTGTGCT	ATTTTGATTA	TTGCTGGTGG	TACTGGTGAA	TTCGAAGCCG	200
	GTATTTCTAA	GGATGGTCAA	ACCAGAGAAC	ACGCTTTGTT	GGCTTACACT	. 250
15	TTGGGTGTCA	AACAATTGAT	TGTTGCTGTC	AACAAGATGG	ACTCTGTCAA	300
	ATGGGACAAA	AACAGATTTG	AAGAAATCAT	CAAGGAAACC	TCCAACTTCG	350
	TCAAGAAGGT	TGGTTACAAC	CCAAAGACTG	TTCCATTYGT	TCCAATCTCT	400
	GGTTGGAATG	GTGACAACAT	GATTGAACCA	TCCACCAACT	GTCCATGGTA	450
	CAAGGGTTGG	GAAAAGGAAA	CCAAATCCGG	TAAAGTTACT	GGTAAGACCT	500
20	TGTTAGAAGC	TATTGACGCT	ATTGAACCAC	CAACCAGACC	AACCGACAAA	550
	CCATTGAGAT	TGCCATTGCA	AGATGTTTAC	AAGATCGGTG	GTATTGGTAC	600
	TGTGCCAGTC	GGTAGAGTTG	AAACTGGTAT	CATCAAAGCC	GGTATGGTTG	650
	TTACTTTCGC	CCCAGCTGGT	GTTACCACTG	AAGTCAAATC	CGTTGAAATG	700
	CATCACGAAC	AATTGGCTGA	AGGTGTTCCA	GGTGACAATG	TTGGTTTCAA	750
25	CGTTAAGAAC	GTTTCCGTTA	AAGAAATTAG	AAGAGGTAAC	GTTTGTGGTG	800
	ACTCCAAGAA	CGATCCACCA	AAGGGTTGTG	ACTCTTTCAA	TGCCCAAGTC	850
	ATTGTTTTGA	ACCATCCAGG	TCAAATCTCT	GCTGGTTACT	CTCCAGTCTT	900
	GGATTGTCAC	ACTGCCCACA	TTGCTTGTAA	ATTCGACACT	TTGGTTGAAA	950
	AGATTGACAG	AAGAACTGGT	AAGAAATTGG	AAGAAAATCC	AAAATTCGTC	1000
30	AAATCCGGTG	ATGCTGCTAT	CGTCAAGATG	GTCCCAACCA	AACCAATGTG	1050
	TGTTGAAGCT	TTCACTGACT	ACCCACCATT	AGGTAGATTC	GCTGTCAGAG	1100
	A					1101

35

5

2) INFORMATION FOR SEQ ID NO: 408

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1089 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: Genomic DNA

45

- (vi)ORIGINAL SOURCE:
 - (A) ORGANISM: Candida albicans
 - (B) STRAIN: ATCC 18804
- 50 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 408

	GAAGGCTGAA	AGAGAAAGAG	GTATCACCAT	TGATATCGCT	TTGTGGAAAT	50
	TCGAAACTCC	AAAATACCAC	GTTACCGTCA	TTGATGCTCC	AGGTCACAGA	100
	GATTTCATCA	AGAATATGAT	CACTGGTACT	TCTCAAGCTG	ATTGTGCTAT	150
55	TTTGATTATT	GCTGGTGGTA	CTGGTGAATT	CGAAGCCGGT	ATTTCTAAGG	200
		CAGAGAACAC				250
		TTGCTGTCAA				300
	CAGATTTGAA	GAAATCATCA	AGGAAACCTC	CAACTTCGTC	AAGAAGGTTG	350
	GTTACAACCC	AAAGACTGTT	CCATTCGTTC	CAATCTCTGG	TTGGAATGGT	400
60	GACAACATGA	TTGAACCATC	CACCAACTGT	CCATGGTACA	AGGGTTGGGA	450

WO 01/23604	PCT/CA00/01150

CCATTGCAAG ATGTTTACAA GATCGGTGGT ATTGGTACTG TGCCAGTCGG 60	50
CCATTGCAAG ATGTTTACAA GATCGGTGGT ATTGGTACTG TGCCAGTCGG 60	0.0
TAGAGTTGAA ACTGGTATCA TCAAAGCCGG TATGGTTGTT ACTTTCCCCC 6	
	50
	00
	50
TTCCGTTAAA GAAATTAGAA GAGGTAACGT TTGTGGTGAC TCCAAGAACG 80	00
ATCCACCAAA GGGTTGTGAC TCTTTCAATG CCCAAGTCAT TGTTTTGAAC 85	50
CATCCAGGTC AAATCTCTGC TGGTTACTCT CCAGTCTTGG ATTGTCACAC 90	00
10 TGCCCACATT GCTTGTAAAT TCGACACTTT GGTTGAAAAG ATTGACAGAA 95	50
GAACTGGTAA GAAATTGGAA GAAAATCCAA AATTCGTCAA ATCCGGTGAT 100	00
GCTGCTATCG TCAAGATGGT CCCAACCAAA CCAATGTGTG TTGAAGCTTT 105	50
CACTGACTAC CCACCATTAG GTAGATTCGC TGTCAGAGA 108	~ ~

15

20

2) INFORMATION FOR SEQ ID NO: 409

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1101 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
- 25 (ii) MOLECULE TYPE: Genomic DNA
 - (vi)ORIGINAL SOURCE:
 - (A) ORGANISM: Candida albicans
 - (B) STRAIN: ATCC 56884

30

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 409

	CTTGGACAAA	TTGAAGGCTG	AAAGAGAAAG	AGGTATCACC	ATTGATATCG	50
	CTTTGTGGAA	ATTCGAAACT	CCAAAATACC	ACGTTACCGT	CATTGATGCT	100
35	CCAGGTCACA	GAGATTTCAT	CAAGAATATG	ATCACTGGTA	CTTCTCAAGC	150
	TGATTGTGCT	ATTTTGATTA	TTGCTGGTGG	TACTGGTGAA	TTCGAAGCCG	200
	GTATTTCTAA	GGATGGTCAA	ACCAGAGAAC	ACGCTTTGTT	GGCTTACACT	250
	TTGGGTGTCA	AACAATTGAT	TGTTGCTGTC	AACAAGATGG	ACTCTGTCAA	300
	ATGGGACAAA	AACAGATTTG	AAGAAATCAT	CAAGGAAACC	TCCAACTTCG	350
40	TCAAGAAGGT	TGGTTACAAC	CCAAAGACTG	TTCCATTCGT	TCCAATCTCT	400
	GGTTGGAATG	GTGACAACAT	GATTGAACCA	TCCACCAACT	GTCCATGGTA	450
	CAAGGGTTGG	GAAAAGGAAA	CCAAATCCGG	TAAAGTTACT	GGTAAGACCT	500
	TGTTAGAAGC	TATTGACGCT	ATTGAACCAC	CAACCAGACC	AACCGACAAA	550
	CCATTGAGAT	TGCCATTGCA	AGATGTTTAC	AAGATCGGTG	GTATTGGTAC	600
45	TGTGCCAGTC	GGTAGAGTTG	AAACTGGTAT	CATCAAAGCC	GGTATGGTTG	650
	TTACTTTCGC	CCCAGCTGGT	GTTACCACTG	AAGTCAAATC	CGTTGAAATG	700
	CATCACGAAC	AATTGGCTGA	AGGTGTTCCA	GGTGACAATG	TTGGTTTCAA	750
	CGTTAAGAAC	GTTTCCGTTA	AAGAAATTAG	AAGAGGTAAC	GTTTGTGGTG	800
	ACTCCAAGAA	CGATCCACCA	AAGGGTTGTG	ACTCTTTCAA	TGCCCAAGTC	850
50	ATTGTTTTGA	ACCATCCAGG	TCAAATCTCT	GCTGGTTACT	CTCCAGTCTT	900
	GGATTGTCAC	ACTGCCCACA	TTGCTTGTAA	ATTCGACACT	TTGGTTGAAA	950
	AGATTGACAG	AAGAACTGGT	AAGAAATTGG		AAAATTCGTC	1000
	AAATCCGGTG	ATGCTGCTAT	CGTCAAGATG		AACCAATGTG	1050
	TGTTGAAGCT	TTCACTGACT	ACCCACCATT	AGGTAGATTC	GCTGTCAGAG	1100
55	A			orrowitC	GCIGICAGAG	1100
						7707

²⁾ INFORMATION FOR SEQ ID NO: 410

```
(i) SEQUENCE CHARACTERISTICS:
                LENGTH: 1102 bases
                TYPE: Nucleic acid
           (B)
               STRANDEDNESS: Double
           (C)
 5
              TOPOLOGY: Linear
           (D)
       (ii) MOLECULE TYPE: Genomic DNA
       (vi)ORIGINAL SOURCE:
10
           (A) ORGANISM: Candida albicans
           (B)
                 STRAIN: ATCC 60193
       (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 410
15
    CTTGGACAAA TTGAAGGCTG AAAGAGAAAG AGGTATCACC ATTGATATCG
                                                                 50
    CTTTGTGGAA ATTCGAAACT CCAAAATACC ACGTTACCGT CATTGATGCT
                                                                 100
    CCAGGTCACA GAGATTTCAT CAAGAATATG ATCACTGGTA CTTCTCAAGC
                                                                150
    TGATTGTGCT ATTTTGATTA TTGCTGGTGG TACTGGTGAA TTCGAAGCCG
                                                                200
    GTATTTCTAA GGATGGTCAA ACCAGAGAAC ACGCTTTGTT GGCTTACACT
                                                                250
    TTGGGTGTCA AACAATTGAT TGTTGCTGTC AACAAGATGG ACTCTGTCAA
20
                                                                300
    ATGGGACAAA AACAGATTTG AAGAAATCAT CAAGGAAACC TCCAACTTCG
                                                                350
    TCAAGAAGGT TGGTTACAAC CCAAAGACTG TTCCATTCGT TCCAATCTCT
                                                                400
    GGTTGGAATG GTGACAACAT GATTGAACCA TCCACCAACT GTCCATGGTA
                                                                450
    CAAGGGTTGG GAAAAGGAAA CCAAATCCGG TAAAGTTACT GGTAAGACCT
                                                                500
    TGTTAGAAGC TATTGACGCT ATTGAACCAC CAACCAGACC AACCGACAAA
25
                                                                550
    CCATTGAGAT TGCCATTGCA AGATGTTTAC AAGATCGGTG GTATTGGTAC
                                                                600
    TGTGCCAGTC GGTAGAGTTG AAACTGGTAT CATCAAAGCC GGTATGGTTG
                                                                650
    TTACTTTCGC CCCAGCTGGT GTTACCACTG AAGTCAAATC CGTTGAAATG
                                                                700
    CATCACGAAC AATTGGCTGA AGGTGTTCCA GGTGACAATG TTGGTTTCAA
                                                                750
    CGTTAAGAAC GTTTCCGTTA AAGAAATTAG AAGAGGTAAC GTTTGTGGTG
30
                                                                800
    ACTCCAAGAA CGATCCACCA AAGGGTTGTG ACTCTTTCAA TGCCCAAGTC
                                                                850
    ATTGTTTTGA ACCATCCAGG TCAAATCTCT GCTGGTTACT CTCCAGTCTT
                                                                900
    GGATTGTCAC ACTGCCCACA TTGCTTGTAA ATTCGACACT TTGGTTGAAA
                                                                950
    AGATTGACAG AAGAACTGGT AAGAAATTGG AAGAAAATCC AAAATTCGTC
                                                               1000
35
    AAATCCGGTG ATGCTGCTAT CGTCAAGATG GTCCCAACCA AACCAATGTG
    TGTTGAAGCT TTCACTGACT ACCCACCATT AGGTAGATTC GCTGTCAGAG
                                                               1100
    AT
                                                               1102
4.0
    2) INFORMATION FOR SEQ ID NO: 411
        (i) SEQUENCE CHARACTERISTICS:
           (A) LENGTH: 1102 bases
45
                TYPE: Nucleic acid
           (B)
           (C)
                STRANDEDNESS: Double
           (D)
                TOPOLOGY: Linear
      (ii) MOLECULE TYPE: Genomic DNA
50
      (vi) ORIGINAL SOURCE:
           (A) ORGANISM: Candida albicans
           (B)
                STRAIN: ATCC 90028
      (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 411
55
    CTTGGACAAA TTGAAGGCTG AAAGAGAAAG AGGTATCACC ATTGATATCG
                                                                 50
    CTTTGTGGAA ATTCGAAACT CCAAAATACC ACGTTACCGT CATTGATGCT
                                                                100
    CCAGGTCACA GAGATTTCAT CAAGAATATG ATCACTGGTA CTTCTCAAGC
                                                                150
60
    TGATTGTGCT ATTTTGATTA TTGCTGGTGG TACTGGTGAA TTCGAAGCCG
                                                                200
```

SUBSTITUTE SHEET (RULE 26)

	GTATTTCTAA	GGATGGTCAA	ACCAGAGAAC	ACGCTTTGTT	GGCTTACACT	2 5 0
	TTGGGTGTCA	AACAATTGAT	TGTTGCTGTC	AACAAGATGG	ACTCTGTCAA	300
	ATGGGACAAA	AACAGATTTG	AAGAAATCAT	CAAGGAAACC	TCCAACTTCG	350
	TCAAGAAGGT	TGGTTACAAC	CCAAAGACTG	TTCCATTCGT	TCCAATCTCT	400
5	GGTTGGAATG	GTGACAACAT	GATTGAACCA	TCCACCAACT	GTCCATGGTA	450
	CAAGGGTTGG	GAAAAGGAAA	CCAAATCCGG	TAAAGTTACT	GGTAAGACCT	500
	TGTTAGAAGC	TATTGACGCT	ATTGAACCAC	CAACCAGACC	AACCGACAAA	550
	CCATTGAGAT	TGCCATTGCA	AGATGTTTAC	AAGATCGGTG	GTATTGGTAC	600
	TGTGCCAGTC	GGTAGAGTTG	AAACTGGTAT	CATCAAAGCC	GGTATGGTTG	650
10	TTACTTTCGC	CCCAGCTGGT	GTTACCACTG	AAGTCAAATC	CGTTGAAATG	700
	CATCACGAAC	AATTGGCTGA	AGGTGTTCCA	GGTGACAATG	TTGGTTTCAA	750
	CGTTAAGAAC	GTTTCCGTTA	AAGAAATTAG	AAGAGGTAAC	GTTTGTGGTG	800
	ACTCCAAGAA	CGATCCACCA	AAGGGTTGTG	ACTCTTTCAA	TGCCCAAGTC	850
	ATTGTTTTGA	ACCATCCAGG	TCAAATCTCT	GCTGGTTACT	CTCCAGTCTT	900
15	GGATTGTCAC	ACTGCCCACA	TTGCTTGTAA	ATTCGACACT	TTGGTTGAAA	950
	AGATTGACAG	AAGAACTGGT	AAGAAATTGG	AAGAAAATCC	AAAATTCGTC	1000
	AAATCCGGTG	ATGCTGCTAT	CGTCAAGATG	GTCCCAACCA	AACCAATGTG	1050
	TGTTGAAGCT	TTCACTGACT	ACCCACCATT	AGGTAGATTC	GCTGTCAGAG	1100
	AT					1102
20						

2) INFORMATION FOR SEQ ID NO: 412

- 25 (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1101 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear

- (ii) MOLECULE TYPE: Genomic DNA
 - (vi)ORIGINAL SOURCE:
 - (A) ORGANISM: Candida dubliniensis
- 35 (B) STRAIN: NCPF 3108
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 412

	CTTGGATAAA	TTGAAGGCTG	AAAGAGAAAG	AGGTATCACC	ATTGATATCG	50
40	CTTTGTGGAA	ATTCGAAACT	CCAAAATACC	ACGTTACCGT	CATTGATGCT	100
	CCAGGTCACA	GAGATTTCAT	CAAGAACATG	ATCACTGGTA	CTTCTCAAGC	150
	TGATTGTGCT	ATTTTGATTA	TTGCTGGTGG	TACTGGTGAA	TTCGAAGCCG	200
	GTATTTCTAA	GGATGGTCAA	ACCAGAGAAC	ACGCTTTGTT	GGCTTACACT	250
	TTGGGTGTCA	AACAATTGAT	TGTTGCTGTC	AACAAGATGG	ACTCTGTCAA	300
45	ATGGGACAAA	AACAGATTTG	AAGAAATCAT	CAAGGAAACC	TCTAACTTCG	350
	TCAAGAAGGT	TGGTTACAAC	CCAAAGACTG	TTCCATTCGT	TCCAATCTCT	400
	GGTTGGAATG	GTGACAACAT	GATTGAAGCT	TCCACCAACT	GTCCATGGTA	450
	CAAGGGTTGG	GAAAAGGAAA	CCAAATCCGG	TAAGGTTACT	GGTAAGACCT	500
	TGTTAGAAGC	TATTGATGCT	ATTGAACCAC	CAACCAGACC	AACCGACAAA	550
50	CCATTGAGAT	TGCCATTGCA	AGATGTTTAC	AAGATCGGTG	GTATTGGTAC	600
	TGTGCCAGTC	GGTAGAGTTG	AAACTGGTGT	CATTAAAGCC	GGTATGGTTG	650
	TCACTTTTGC	CCCAGCTGGT	GTTACCACTG	AAGTCAAATC	CGTTGAAATG	700
	CATCACGAAC	AATTGGCTGA	AGGTGTTCCA	GGTGACAATG	TTGGTTTCAA	750
	CGTTAAGAAT	GTTTCTGTCA	AAGAAATTAG	AAGAGGTAAC	GTTTGTGGTG	800
55	ACTCCAAGAA	CGATCCACCA	AAGGGTTGTG	ACTCTTTCAA	TGCCCAAGTC	850
	ATTGTCTTGA	ACCATCCAGG	TCAAATCTCT	GCTGGTTACT	CTCCAGTCTT	900
	GGATTGTCAC	ACTGCCCACA	TTGCTTGTAA	ATTCGACACT	TTGGTTGAAA	950
	AGATTGACAG	AAGAACTGGT	AAGAAATTGG	AAGAAAATCC	AAAATTCGTC	1000
	AAATCCGGTG	ACGCTGCTAT	YGTCAAGATG	GTCCCAACCA	AACCAATGTG	1050
60	TGTTGAAGCT	TTCACTGACT	ACCCACCATT	AGGTAGATTC	GCTGTCAGAG	1100

A 1101

```
5 2) INFORMATION FOR SEQ ID NO: 413
```

```
(i) SEQUENCE CHARACTERISTICS:
```

- (A) LENGTH: 1098 bases
- (B) TYPE: Nucleic acid
- (C) STRANDEDNESS: Double
- (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: Genomic DNA
- 15 (vi)ORIGINAL SOURCE:
 - (A) ORGANISM: Candida catenulata
 - (B) STRAIN: ATCC 10565
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 413

GGACAAGCTT AAGGCTGAGC GTGAGAGAGG TATCACCATT GACATTGCCT 50 TGTGGAAGTT CGAGACTCCC AAGTACCACG TCACTGTCAT TGACGCCCCC 100 GGTCACAGAG ATTTCATCAA GAACATGATC ACTGGTACCT CGCAGGCTGA 150 CTGTGCTATC TTGATCATTG CTTCCGGTGT CGGTGAGTTC GAGGCTGGTA 200 TCTCCAAGGA CGGTCAGACC CGTGAGCACG CCTTGTTGGC CTACACCTTG 25 250 GGTGTCAAGC AGTTGATCGT TGCCATCAAC AAGATGGACT CCGTCAAGTG 300 GGACAAGAAC AGATTCGAGG AGATTGTCAA GGAGACCACC AACTTCGTCA AGAAGGTTGG TTACAACCCC AAGGCTGTCC CCTTCGTCCC CATCTCTGGC 400 TGGAACGGTG ACAACATGAT TGAGGCCTCC ACCAACTGCC CCTGGTACAA 450 GGGCTGGGAG AAGGAGACCA AGGCCGGTAA GTCTACCGGT AAGACCTTGT 30 500 TGGAGGCCAT TGACGCCATT GAGCCCCCTA CCAGACCCAC CGACAAGCCC 550 TTGAGATTGC CCTTGCAGGA TGTCTACAAG ATCGGTGGTA TTGGTACGGT 600 GCCCGTCGGC CGTGTCGAGA CCGGTGTCAT CAAGCCCGGT ATGGTCGTCA 650 CCTTCGCCCC CGCTGGTGTC ACCACTGAAG TCAAGTCCGT CGAGATGCAC 700 CACGAGCAGT TGTCCGAGGG TGTCCCCGGT GACAACGTTG GTTTCAACGT 35 750 CAAGAACGTC TCTGTTAAGG AGATCAGACG TGGTAACGTC TGCGGTGACT 800 CCAAGAACGA CCCCCCATG GGTTGCTCTT CTTTCAACGC CCAGGTTATC 850 GTGTTGAACC ACCCCGGTCA GATCTCTGCC GGTTACTCTC CCGTCTTGGA 900 CTGCCACACC GCCCACATTG CTTGCAAGTT CGCCGAGTTG ATCGAGAAGA 950 TTGACAGACG TACCGGTAAG TCCATGGAGG CTAACCCCAA GTTCGTCAAG 40 1000

TCTGGTGACG CCGCCATCGT CAAGATGGAG CCCACTAAGC CCATGTGTGT

TGAGGCCTTC ACTGACTTCC CTCCTTTGGG TAGATTCGCC GTCAGAGA

1050

1098

45

50

10

20

- 2) INFORMATION FOR SEQ ID NO: 414
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1102 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: Genomic DNA

- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Candida dubliniensis
 - (B) STRAIN: NCPF 3949
- 60 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 414

PCT/CA00/01150 WO 01/23604

	CTTGGATAAA	TTGAAGGCTG	AAAGAGAAAG	AGGTATCACC	ATTGATATCG	50
	CTTTGTGGAA	ATTCGAAACT	CCAAAATACC	ACGTTACCGT	CATTGATGCT	100
	CCAGGTCACA	GAGATTTCAT	CAAGAACATG	ATCACTGGTA	CTTCTCAAGC	150
5	TGATTGTGCT	ATTTTGATTA	TTGCTGGTGG	TACTGGTGAA	TTCGAAGCCG	200
	GTATTTCTAA	GGATGGTCAA	ACCAGAGAAC	ACGCTTTGTT	GGCTTACACT	250
	TTGGGTGTCA	AACAATTGAT	TGTTGCTGTC	AACAAGATGG	ACTCTGTCAA	300
	ATGGGACAAA	AACAGATTCG	AAGAAATCAT	CAAGGAAACC	TCTAACTTCG	350
	TCAAGAAGGT	TGGTTACAAC	CCAAAGACTG	TTCCATTCGT	TCCAATCTCT	400
10	GGTTGGAATG	GTGACAACAT	GATTGAAGCT	TCCACCAACT	GTCCATGGTA	450
	CAAGGGTTGG	GAAAAGGAAA	CCAAATCCGG	TAAGGTTACT	GGTAAGACCT	500
	TGTTAGAAGC	TATTGATGCT	ATTGAACCAC	CAACCAGACC	AACCGACAAA	550
	CCATTGAGAT	TGCCATTGCA	AGATGTTTAC	AAGATCGGTG	GTATTGGTAC	600
	TGTGCCAGTC	GGTAGAGTTG	AAACTGGTGT	CATTAAAGCC	GGTATGGTTG	650
15	TCACTTTTGC	CCCAGCTGGT	GTTACCACTG	AAGTCAAATC	CGTTGAAATG	700
	CATCACGAAC	AATTGGTTGA	AGGTGTTCCA	GGTGACAATG	TTGGTTTCAA	750
	CGTTAAGAAT	GTTTCTGTCA	AAGAAATTAG	AAGAGGTAAC	GTTTGTGGTG	800
	ACTCCAAGAA	CGATCCACCA	AAGGGTTGTG	ACTCTTTCAA	TGCCCAAGTC	850
	ATTGTCTTGA	ACCATCCAGG	TCAAATCTCT	GCTGGTTAYT	CTCCAGTCTT	900
20	GGATTGTCAC	ACTGCCCACA	TTGCTTGTAA	ATTCGACACT	TTGGTTGAAA	950
	AGATTGACAG	AAGAACTGGT	AAGAAATTGG	AAGAAAATCC	AAAATTCGTC	1000
	AAATCCGGTG	ACGCTGCTAT	YGTCAAGATG	GTCCCAACCA	AACCAATGTG	1050
	TGTTGAAGCT	TTCACTGACT	ACCCACCATT	AGGTAGATTC	GCTGTCAGAG	1100
	AT					1102
25						

2) INFORMATION FOR SEQ ID NO: 415

- 30 (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1102 bases
 - (B)
 - TYPE: Nucleic acid STRANDEDNESS: Double (C)
 - (D) TOPOLOGY: Linear

(ii) MOLECULE TYPE: Genomic DNA

(vi)ORIGINAL SOURCE:

- (A) ORGANISM: Candida dubliniensis
- STRAIN: CBS 7987 40 (B)
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 415

	CTTGGATAAA	TTGAAGGCTG	AAAGAGAAAG	AGGTATCACC	ATTGATATCG	50
45	CTTTGTGGAA	ATTCGAAACT	CCAAAATACC	ACGTTACCGT	CATTGATGCT	100
	CCAGGTCACA	GAGATTTCAT	CAAGAACATG	ATCACTGGTA	CTTCTCAAGC	150
	TGATTGTGCT	ATTTTGATTA	TTGCTGGTGG	TACTGGTGAA	TTCGAAGCCG	200
	GTATTTCTAA	GGATGGTCAA	ACCAGAGAAC	ACGCTTTGTT	GGCTTACACT	250
	TTGGGTGTCA	AACAATTGAT	TGTTGCTGTC	AACAAGATGG	ACTCTGTCAA	300
50	ATGGGACAAA	AACAGATTYG	AAGAAATCAT	CAAGGAAACC	TCTAACTTCG	350
	TCAAGAAGGT	TGGTTACAAC	CCAAAGACTG	TTCCATTCGT	TCCAATCTCT	400
	GGTTGGAATG	GTGACAACAT	GATTGAAGCT	TCCACCAACT	GTCCATGGTA	450
	CAAGGGTTGG	GAAAAGGAAA	CCAAATCCGG	TAAGGTTACT	GGTAAGACCT	500
	TGTTAGAAGC	TATTGATGCT	ATTGAACCAC	CAACCAGACC	AACCGACAAA	550
55	CCATTGAGAT	TGCCATTGCA	AGATGTTTAC	AAGATCGGTG	GTATTGGTAC	600
	TGTGCCAGTC	GGTAGAGTTG	AAACTGGTGT	CATTAAAGCC	GGTATGGTTG	650
	TCACTTTTGC	CCCAGCTGGT	GTTACCACTG	AAGTCAAATC	CGTTGAAATG	700
	CATCACGAAC	AATTGGTTGA	AGGTGTTCCA	GGTGACAATG	TTGGTTTCAA	750
	CGTTAAGAAT	GTTTCTGTCA	AAGAAATTAG	AAGAGGTAAC	GTTTGTGGTG	800
60	ACTCCAAGAA	CGATCCACCA	AAGGGTTGTG	ACTCTTTCAA	TGCCCAAGTC	850

ATTGTCTTGA	ACCATCCAGG	TCAAATCTCT	GCTGGTTAYT	CTCCAGTCTT	900
GGATTGTCAC	ACTGCCCACA	TTGCTTGTAA	ATTCGACACT	TTGGTTGAAA	950
AGATTGACAG	AAGAACTGGT	AAGAAATTGG	AAGAAAATCC	AAAATTCGTC	1000
AAATCCGGTG	ACGCTGCTAT	YGTCAAGATG	GTCCCAACCA	AACCAATGTG	1050
TGTTGAAGCT	TTCACTGACT	ACCCACCATT	AGGTAGATTC	GCTGTCAGAG	1100
AT					1102

- 10 2) INFORMATION FOR SEQ ID NO: 416
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1094 bases
 - (B) TYPE: Nucleic acid
- 15 (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: Genomic DNA
- 20 (vi)ORIGINAL SOURCE:

5

- (A) ORGANISM: Candida famata
- (B) STRAIN: ATCC 62894
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 416

25 AATTGAAGGC TGAAAGAGAA AGAGGTATCA CCATTGATAT CGCTTTATGG 50 AAATTCGAAA CTCCAAAATA CCACGTTACC GTTATTGATG CTCCAGGTCA 100 CAGAGATTTC ATCAAGAACA TGATTACTGG TACTTCTCAA GCTGATTGTG 150 CTATTTRAT TATTGCTGGT GGTGTCGGTG AATTCGAAGC CGGTATCTCT 200 AAGGATGGTC AAACCAGAGA ACACGCTTTA TTGGCTTACA CCTTAGGTGT 30 250 TAGACAATTG ATTGTTGCCG TCAACAAGAT GGACTCTGTT AAATGGGACA 300 AGGCTAGATT CGAAGAAATC ATCAAGGAAA CCTCTAACTT CGTCAAGAAG 350 GTTGGTTACA ACCCTAAGAC TGTTCCTTTC GTYCCAATTT CTGGATGGAA 400 CGGTGACAAC ATGATTGAAG CCTCCACCAA CTGTCCATGG TACAAGGGTT 450 35 GGGAAAAGGA AACCAAGGCT GGTAAATCTA CTGGTAAGAC TTTGTTAGAA 500 GCCATTGATG CCATTGAACC ACCAACCAGA CCAACCGAAA AGCCATTGAG 550 ATTACCATTA CAAGATGTCT ACAAGATCGG TGGTATTGGT ACTGTGCCAG 600 TCGGTAGAGT TGAAACCGGT GTTATCAAGG GTGGTATGGT TGTTACCTTT 650 GCCCCAGCCG GTGTCACTAC CGAAGTCAAA TCCGTTGAAA TGCACCACGA 700 ACAATTAGCT GAAGGTGTTC CAGGTGACAA TGTTGGTTTC AACGTCAAGA 40 750 ACGTTTCCGT TAAGGAAATC AGAAGAGGTA ACGTTTGTGG TGACTCCAAG 800 AACGACCCAC CAAAGGGTGC TGAATCTTTC ACCGCTCAAG TTATTGTCTT 850 GAACCACCA GGTCARATCT CTGCTGGTTA CTCTCCAGTC TTAGATTGTC 900 ACACCGCCCA CATTGCTTGT AAATTCGATG CTTTACTCGA AAAGATTGAC 950 AGAAGATCCG GTAAGAAATT AGAAGACGAA CCAAAATTCG TCAAGTCCGG 45 1000 TGATGCTGCT ATCGTCAAGA TGGTCCCAAC CAAACCAATG TGTGTTGAAG 1050 CTTTCACTGA ATACCCACCA TTAGGTAGAT TCGCTGTTAG AGAT 1094

2) INFORMATION FOR SEQ ID NO: 417

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1101 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: Genomic DNA

60

50

(vi) ORIGINAL SOURCE:

- (A) ORGANISM: Candida glabrata
- (B) STRAIN: ATCC 66032
- 5 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 417

	TTTGGACAAG	TTGAAGGCTG	AAAGAGAAAG	AGGTATCACT	ATCGATATCG	50
	CTTTGTGGAA	GTTCGAAACT	CCAAAGTACC	ACGTYACCGT	TATCGATGCY	100
	CCAGGTCACA	GAGATTTCAT	CAAGAACATG	ATTACTGGTA	CTTCTCAAGC	150
10	TGACTGTGCT	ATCTTGATTA	TTGCTGGTGG	TGTCGGTGAA	TTCGAAGCYG	200
	GTATCTCCAA	GGATGGTCAA	ACCAGAGAAC	ACGCTCTATT	GGCTTTCACC	250
	CTAGGTGTTA	GACAATTGAT	TGTYGCTGTC	AACAAGATGG	ACTCTGTCAA	300
	GTGGGATGAA	TCCAGATTCG	CTGAAATCGT	TAAGGAAACC	TCCAACTTCA	350
	TCAAGAAGGT	CGGTTACAAC	CCAAAGACTG	TTCCATTCGT	CCCAATCTCT	400
15	GGTTGGAACG	GTGACAACAT	GATTGAAGCC	ACCACCAACG	CTTCCTGGTA	450
	CAAGGGTTGG	GAAAAGGAAA	CCAAGGCTGG	TGTCGTCAAG	GGTAAGACCT	500
	TGTTGGAAGC	CATTGACGCT	ATCGAACCAC	CAACCAGACC	AACTGACAAG	550
	CCATTGAGAT	TGCCATTGCA	AGATGTCTAC	AAGATCGGTG	GTATCGGTAC	600
	GGTGCCAGTC	GGTAGAGTCG	AAACCGGTGT	CATCAAGCCA	GGTATGGTTG	650
20	TTACCTTCGC	CCCAGCTGGT	GTTACCACTG	AAGTCAAGTC	CGTTGAAATG	700
	CACCACGAAC	AATTGACTGA	AGGTTTGCCA	GGTGACAACG	TTGGTTTCAA	750
	CGTTAAGAAC	GTTTCCGTTA	AGGAAATCAG	AAGAGGTAAT	GTCTGTGGTG	800
	ACTCCAAGAA	CGACCCACCA	AAGGCTGCTG	CTTCTTTCAA	CGCTACCGTC	850
	ATTGTCTTGA	ACCACCCAGG	TCAAATCTCT	GCTGGTTACT	CTCCAGTTTT	900
25	GGACTGTCAC	ACCGCCCACA	TTGCTTGTAA	GTTCGAAGAA	TTGTTGGAAA	950
	AGAACGACAG	AAGATCCGGT	AAGAAGTTGG	AAGACTCTCC	AAAGTTCTTG	1000
	AAGTCCGGTG	ACGCTGCTTT	GGTTAAGTTC	GTTCCATCCA	AGCCAATGTG	1050
	TGTCGAAGCT	TTCTCCGACT	ACCCACCATT	GGGTAGATTC	GCTGTCAGAG	1100
	A					1101

2) INFORMATION FOR SEQ ID NO: 418

35 (i) SEQUENCE CHARACTERISTICS:

30

40

- (A) LENGTH: 1080 bases
- (B) TYPE: Nucleic acid
- (C) STRANDEDNESS: Double
- (D) TOPOLOGY: Linear

(ii) MOLECULE TYPE: Genomic DNA

- (vi)ORIGINAL SOURCE:
 - (A) ORGANISM: Candida guilliermondii
- 45 (B) STRAIN: ATCC 6260
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 418

	AGAGAAAGAG	GTATCACCAT	TGACATTGCT	TTGTGGAAAT	TCGAGACTCC	50
50				AGGTCACAGA		100
	AGAACATGAT	CACTGGTACT	TCTCAAGCTG	ACTGTGCTAT	TTTGATTATT	150
	GCTGGTGGTA	CCGGTGAATT	CGAAGCTGGT	ATCTCTAAGG	ATGGTCAAAC	200
	CAGAGAGCAC	GCTTTGTTGG	CTTACACCTT	GGGTGTTAGA	CAATTGATTG	250
	TTGCTGTCAA	CAAGATGGAC	TCCGTCAART	GGGACAAGAA	CAGATTYGAG	300
55				AAGAAGGTTG		350
	TAAGACTGTG	CCATTCGTTC	CTATCTCTGG	ATGGAAYGGT	GACAACATGA	400
	TTGAGGCTTC.	TACCAACTGT	CCTTGGTACA	AGGGATGGGA	GAAGGAGACC	450
	AAGGCTGGTA	AGTCCACCGG	TAAGACTTTG	TTGGAGGCCA	TTGACGCCAT	500
	TGAGCCACCT	CAAAGACCAA	CCGACAAGCC	ATTGAGATTG	CCATTGCAAG	550
60	ATGTYTACAA	GATTGGTGGT	ATTGGAACGG	TGCCAGTCGG	TAGAGTTGAA	600

	ACCGGTATCA	TYAAGGCCGG	TATGGTTGTT	ACCTTTGCCC	CAGCTGGTGT	650
	YACCACTGAA	GTCAAGTCCG	TGGAAATGCA	CCACGAACAA	TTGGTTGAAG	700
		TGACAATGTT				750
		GAGGTAACGT				800
5		TCTTTCACCG				850
	AAATCTCTGC	TGGTTACTCT	CCAGTTTTGG	ACTGTCACAC	CGCCCACATT	900
	GCTTGTAAAT	TCGACACCTT	GTTGGAGAAG	ATTGACAGAA	GAACCGGTAA	950
		GACAACCCCA				1000
	TCAAGATGGT	GCCATCCAAG	CCAATGTGTG	TTGAGGCTTT	CACCGACTAC	1050
10	CCACCATTGG	GAAGATTCGC	CGTCAGAGAC		•	1080

2) INFORMATION FOR SEQ ID NO: 419

15

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 751 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
- 20 (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: Genomic DNA
 - (vi)ORIGINAL SOURCE:
- 25 (A) ORGANISM: Candida haemulonii
 - (B) STRAIN: ATCC 22991
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 419

30	TCTGTCAAGT	GGGACAAGGC	CAGATACGAG	GAAATCGTCA	AGGAGACCTC	50
	TAACTTCGTC	AAGAAGGTTG	GTTACAACCC	TAAGACTGTT	CCATTCGTCC	100
	CAATCTCTGG	TTGGAACGGT	GACAACATGA	TTGAGGCTTC	TACCAACTGT	150
	GACTGGTACA	AGGGTTGGGA	GAAGGAGACC	AAGTCTGGTA	AGTCCACCGG	200
	TAAGACCTTG	TTGGAGGCCA	TTGACGCCAT	TGAGCCACCA	ACCAGACCAA	250
35	CCGACAAGCC	ATTGAGATTG	CCATTGCAGG	ATGTCTACAA	GATTGGTGGT	300
	ATCGGAACTG	TGCCAGTCGG	CAGAGTTGAG	ACCGGTGTTA	TCAAGGCCGG	350
	TATGGTTGTC	ACCTTCGCCC	CAGCTGGTGT	CACCACTGAA	GTCAAGTCTG	400
	TCGAGATGCA	CCACGAGCAG	TTGCCAGAGG	GTGTCCCAGG	TGACAACGTT	450
	GGTTTCAACG	TCAAGAACGT	TTCCGTTAAG	GAAATCAGAA	GAGGTAACGT	500
40	CTGTGGTGAC	TCCAAGCAGG	ACCCACCAAA	GGGCTGTGAC	TCTTTCACCG	550
	CTCAGGTTAT	TGTGTTGAAC	CACCCAGGTC	AGATCTCTTC	TGGTTACTCT	600
	CCAGTTTTGG	ACTGTCACAC	TGCCCACATT	GCTTGTAAGT	TCGACACCTT	650
	GGTTGAGAAG	ATCGACAGAA	GAACCGGTAA	GAAGTTGGAA	GATGAGCCAA	700
	AGTTCATCAA	GTCCGGTGAC	GCTGCTATCG	TCAAGATGGT	CCCAACCAAG	750
45	C					751

2) INFORMATION FOR SEQ ID NO: 420

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1102 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
- 55 (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: Genomic DNA
 - (vi) ORIGINAL SOURCE:
- 60 (A) ORGANISM: Candida inconspicua

(B) STRAIN: ATCC 16783

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 420

5	TCTTGACAAG	TTAAAGGCTG	777C7C7777	3 CCM3 MC3 CM	3 MM (2 3 M 2 6 6 6 6)	
5				AGGTATCACT	ATTGATATTG	50
		ATTCGAAACT	CCAAAGTATC		CATTGATGCT	100
	CCAGGTCACA	GAGATTTCAT	TAAGAACATG	ATTACTGGTA	CTTCTCAAGC	150
	AGATTGTGCT	ATTTTGATTA	TTGCTGGTGG	TGTCGGTGAA	TTCGAAGCTG	200
	GTATTTCCAA	GGATGGTCAA	ACTAGAGAAC	ACGCTTTATT	AGCATTCACC	250
10	TTAGGTGTTA	AGCAATTGAT	TGTTGCTATC	AACAAGATGG	ATTCTGTTAA	300
	GTGGGATGAA	AAGAGATTTG	AAGAAATTGT	CAAGGAAACC	CAAAACTTCA	350
	TCAAGAAGGT	TGGTTACAAC	CCAAAGACTG	TTCCATTCGT	TCCAATTTCT	400
	GGTTGGAATG	GTGACAACAT	GATTGAACCA	TCTTCTAACT	GTCCATGGTA	450
	CAAGGGTTGG	ACTAAGGAAA	CCAAGGCAGG	TGTTGTCAAG	GGTAAGACCT	500
15	TATTAGAAGC	TATTGATGCT	ATTGAACCAC	CTGTCAGACC	AACTGATAAG	550
	CCATTAAGAT	TACCATTACA	AGATGTTTAC	AAGATTGGTG	GTATTGGTAC	600
	TGTGCCAGTC	GGTAGAGTTG	AAACCGGTAT	TATTAAGCCA	GGTATGGTTG	650
	TTGTTTTCGC	ACCATCTGGT	GTTACCACTG	AAGTCAAGTC	CGTTGAAATG	700
	CACCATGAAC	AATTAGAAGA	AGGTGTCCCA	GGTGACAATG	TTGGTTTCAA	750
20	CGTCAAGAAC	GTCTCTGTTA	AGGATATCAA	GAGAGGTAAC	GTTTGTGGTG	800
	ACTCCAAGAA	TGACCCACCA	CAAGGTTGTG	CTTCCTTCAA	TGCTCAAGTC	850
	ATTGTCTTGA	ACCACCCTGG	TCAAATTTCT	GCTGGTTACT		
	AGATTGTCAC	ACTGCCCACA			CTCCAGTTTT	900
	AGATTGACAG		TTGCATGTAA	ATTCGATGAA	TTAATTGAAA	950
2.5	·	AAGAACTGGT	AAGTCCGTTG	AAGACCATCC	AAAGTCTGTT	1000
25	AAGTCTGGTG	ATGCAGCTAT	CGTTAAGATG	GTTCCAACCA	AGCCAATGTG	1050
	TGTTGAAGCT	TTCACTGAAT	ACCCACCATT	AGGTAGATTC	GCAGTCAGAG	1100
	AT					1102

2) INFORMATION FOR SEQ ID NO: 421

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1099 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: Genomic DNA

40

- (vi)ORIGINAL SOURCE:
 - (A) ORGANISM: Candida kefyr
 - (B) STRAIN: ATCC 28838
- 45 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 421

	TGGACAAGTT	AAAGGCTGAA	AGAGAAAGAG	GTATCACCAT	CGATATCGCT	50
	TTGTGGAAGT	TCGAAACTCC	AAAGTACCAA	GTTACCGTTA	TCGATGCTCC	100
	AGGTCACAGA	GATTTCATCA	AGAACATGAT	TACTGGTACT	TCTCAAGCTG	150
50	ACTGTGCTAT	CTTGATTATT	GCTGGTGGTG	TCGGTGAATT	CGAAGCCGGT	200
				GCTTTGTTGG		250
				CAAGATGGAC		300
	GGGATGAATC	TCGTTACCAA	GAAATTGTTA	AGGAAACCTC	CAACTTCATC	350
				CCATTCGTCC		400
55	TTGGAACGGT	GACAAÇATGA	TTGAAGCCAC	CACCAACGCT	CCATGGTACA	450
	AGGGTTGGGA	AAAGGAAACC	AAGGCTGGTA	CCGTCAAGGG	TAAGACCTTG	500
				ACCAGACCAA		550
	ATTGAGATTG	CCATTGCAAG	ATGTCTACAA	GATCGGTGGT	ATTGGTACTG	600
	TGCCAGTCGG	TAGAGTCGAA	ACCGGTGTCA	TCAAGCCAGG	TATGGTTGTT	650
60	ACCTTCGCCC	CAGCCGGTGT	CACTACCGAA	GTTAAGTCCG	TCGAAATGCA	700

```
CCACGAACAA TTGGAAGAAG GTCTACCAGG TGACAACGTC GGTTTCAACG `
                                                            750
TCAAGAACGT TTCCGTTAAG GAAATCAGAA GAGGTAACGT CTGTGGTGAC
                                                           800
TCCAAGAACG ATCCACCAAA GGCTGCTGCT TCTTTCAACG CCACTGTTAT
                                                            850
CGTCTTGAAC CACCCAGGTC AAATCTCTGC TGGTTACTCT CCAGTTTTGG
                                                           900
ATTGTCACAC TGCTCACATT GCTTGTAAGT TCGACGAATT GTTGGAAAAG
                                                           950
AACGACAGAA GATCCGGTAA GAAGTTGGAA GACTCTCCAA AGTTCTTGAA
                                                          1000
GTCTGGTGAC GCTGCTTTGG TTAAGTTCGT TCCATCTAAG CCAATGTGTG
                                                          1050
TTGAAGCATT CTCTGACTAC CCACCATTGG GTAGATTCGC TGTCAGAGA
                                                          1099
```

10

15

5

- 2) INFORMATION FOR SEQ ID NO: 422
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1095 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
- 20 (ii) MOLECULE TYPE: Genomic DNA
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Candida krusei
 - (B) STRAIN: ATCC 34135

25

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 422

	AAGTTAAAGG	CAGAAAGAGA	AAGAGGTATC	ACTATTGATA	TTGCTTTATG	50
	GAAGTTYGAA	ACTCCAAART	ACCACGTTAC	CGTTATTGAT	GCTCCAGGTC	100
30	ACAGAGATTT	CATCAAGAAC	ATGATTACCG	GTACTTCTCA	AGCTGATTGT	150
	GCTATTTTGA	TTATTGCTGG	TGGTGTCGGT	GAATTCGAAG	CTGGTATCTC	200
	CAAGGATGGT	CAAACTAGAG	AACACGCTCT	ATTGGCTTTC	ACCTTAGGTG	250
	TTAGACAATT	GATTGTTGCT	ATCAACAAGA	TGGATTCCGT	TAARTGGGAT	300
	GAAAACAGAT	TTGAAGAAAT	TGTCAAGGAA	ACCCAAAACT	TCATCAAGAA	350
35	GGTTGGTTAC	AACCCAAAGA	CTGTTCCATT	CGTTCCAATY	TCTGGTTGGA	400
	ATGGTGACAA	CATGATTGAA	GCATCCACCA	ACTGTCCATG	GTACAAGGGT	450
	TGGACTAAGG	AAACCAAGGC	AGGTGTTGTT	AAGGGTAAGA	CCTTATTAGA	500
	AGCAATCGAT	GCTATTGAAC	CACCTGTCAG	ACCAACCGAA	AAGCCATTAA	550
	GATTACCATT	ACAAGATGTT	TACAAGATTG	GTGGTATTGG	TACTGTGCCA	600
40	GTCGGTAGAG	TCGAAACCGG	TGTCATTAAG	CCAGGTATGG	TTGTCACTTT	650
	TGCTCCAGCA	GGTGTCACCA	CCGAAGTCAA	GTCCGTTGAA	ATGCACCATG	700
	AACAATTAGA	ACAAGGTGTT	CCAGGTGATA	ACGTTGGTTT	CAACGTTAAG	7 50
	AACGTTTCTG	TCAAGGATAT	CAAGAGAGGT	AACGTTTGTG	GTGACTCCAA	800
	GAACGACCCA	CCAATGGGTG	CAGCTTCCTT	CAATGCTCAA	GTCATTGTCT	850
45	TGAACCACCC	TGGTCAAATT	TCCGCTGGTT	ACTCTCCAGT	CTTGGATTGT	900
	CACACTGCCC	ACATTGCATG	TAAGTTCGAC	GAATTAATCG	AAAAGATTGA	950
	CAGAAGAACT	GGTAAGTCTG	TTGAAGACCA	TCCAAAGTCY	GTCAAGTCTG	1000
	GTGATGCAGC	TATCGTCAAG	ATGGTCCCAA	CCAAGCCAAT	GTGTGTTGAA	1050
	GCTTTCACTG	AATAYCCACC	ATTAGGTAGA	TTCGCAGTCA	GAGAT	1095

2) INFORMATION FOR SEQ ID NO: 423

- 55 (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1104 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear

60

(ii) MOLECULE TYPE: Genomic DNA

(vi)ORIGINAL SOURCE:

5

40

- (A) ORGANISM: Candida lambica
- (B) STRAIN: ATCC 24750
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 423

	CTTGGACAAG	CTTAAGGCTG	AAAGAGAAAG	AGGTATCACC	ATTGATATCG	50
10	CTTTATGGAA	GTTCGAAACT	CCAAAGTACC	ACGTTACCGT	CATTGACGCT	100
	CCAGGTCACA	GAGATTTCAT	CAAGAACATG	ATTACTGGTA	CCTCTCAAGC	150
	AGATTGTGCT	ATTTTRATYA	TTGCTGGTGG	TGTCGGTGAA	TTCGAAGCTG	200
	GTATCTCTAA	GGATGGTCAA	ACCAGAGAAC	ACGCTCTTCT	TGCATTCACT	250
	CTTGGTGTTA	GACAATTGAT	TGTTGCTATC	AACAAGATGG	ACTCTGTCAA	300
15	GTGGGACGAA	TCCAGATTCG	ATGAAATTTG	TAAGGAAACC	GCWAACTTCA	350
	TCAAGAAGGT	TGGTTACAAC	CCAAAGACTG	TTCCATTCGT	CCCAATCTCT	400
	GGTTGGAACG	GTGACAACAT	GATTGAACCA	TCTGCTAACT	GTCCATGGTA	450
	CAAGGGATGG	ACTAAGGAAA	CCAAGGCTTC	CGGTGTCGTC	AAGGGTAAGA	500
	CCCTTCTTGA	AGCAATTGAT	GCTATTGAGC	CACCTGTCAG	ACCAACTGAC	550
20	AAGGCTTTGA	GATTGCCATT	RCAAGATGTC	TACAAGATTG	GTGGTATTGG	600
	TACTGTGCCA	GTCGGTAGAG	TTGAAACCGG	TATCATCAAG	CCAGGTATGA	650
	TTGTCGTTTT	CGCTCCAACC	GGTGTTACTA	CTGAAGTTAA	GTCCGTTGAA	700
	ATGCACCATG	AACAATTAGA	AGAAGGTGTC	CCAGGTGACA	ATGTTGGTTT	750
	CAACGTCAAG	AACGTCTCTG	TTAAGGATAT	TAAGAGAGGT	AACGTCTGTG	800
25	GTGACTCCAA	GAACGACCCA	CCAATGGGTT	GTGCTTCCTT	CAATGCTCAA	850
	GTCATTGTTC	TTAACCACCC	AGGTCAAATT	TCTGCTGGTT	ACTCACCAGT	900
	TCTTGACTGT	CACACTGCCC	ACATTGCATG	TAAGTTCGAY	GAATTACTCG	950
	AAAAGATTGA	CAGAAGAACC	GGTAAGGCTA	CTGAAGACCA	TCCAAAGTCT	1000
	GTCAAGTCTG	GTGATGCAGC	TATCGTCAAG	ATGGTTCCAA	CCAAGCCAAT	1050
30	GTGTGTYGAA	GCTTTCACTG	ACTACCCACC	ATTAGGTAGA	TTCGCTGTYA	1100
	GAGA					1104

35 2) INFORMATION FOR SEQ ID NO: 424

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1098 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear

(ii) MOLECULE TYPE: Genomic DNA

- 45 (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Candida lusitaniae
 - (B) STRAIN: ATCC 66035

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 424

50						
50	CO2 C2 2 CMMC	3.3.0.0.0mg3.c3	a. a a. a.			
	GGACAAG1"1G	AAGGCTGAGA	GAGAAAGAGG	TATCACCATC	GATATCGCTT	50
	TGTGGAAGTT	CGAGACTCCA	AAGTACCACG	TTACCGTCAT	TGACGCTCCA	100
	GGTCACAGAG	ATTTCATCAA	GAACATGATC	ACTGGTACTT	CCCAAGCTGA	150
	CTGTGCTATC	TTGATTATCG	CTGGTGGTGT	CGGTGAGTTC	GAAGCCGGTA	200
55	TCTCTAAGGA	CGGTCAAACC	AGAGAGCACG	CTTTGTTGGC	TTACACCTTG	250
	GGTGTCAAGC	AGTTGATTGT	TGCTGTCAAC	AAGATGGACT	CCGTCAAGTG	300
	GGACCAATCT	AGATTCGAGG	AAATCATCAA	GGAAACCTCT	AACTTCGTCA	350
	AGAAGGTTGG	TTACAACCCT	AAGACTGTTC	CATTCGTCCC	AATCTCTGGT	400
	TGGAACGGTG	ACAACATGAT	TGAGCCATCY	ACCAACTGCC	CATGGTACAA	450
60	GGGTTGGGAG	AAGGAGACCA	AGTCYGGTAA	GTCCACCGGT	AAGACCTTGT	500

	TGGAGGCCAT	TGACGCCATT	GAGCCACCTT	CGAGACCAAC	CGACAAGCCĂ	5 5
	TTGAGATTGC	CATTGCAAGA	TGTCTACAAG	ATYGGTGGTA	TTGGTACTGT	600
	GCCAGTCGGT	AGAGTTGAGA	CCGGTGTCAT	CAAGGCCGGT	ATGGTTGTCA	650
	CCTTTGCTCC	AGCTGGTGTC	ACCACTGAAG	TCAAGTCCGT	GGAAATGCAC	700
5	CACGAACAAT	TGGCTGAGGG	TGTCCCAGGT	GACAACGTTG	GTTTCAACGT	750
	CAAGAACGTT	TCCGTCAAGG	AAATCAGAAG	AGGTAACGTC	TGTGGTGACT	800
	CCAAGAACGA	CCCACCAAAG	GCTGCTGCTT	CYTTCACTGC	TCAAGTYATY	850
	GTCTTGAACC	ACCCAGGTCA	AATCTCCTCY	GGTTACTCTC	CAGTYTTGGA	900
	CTGTCACACT	GCYCACATTG	CTTGTAAGTT	CGACACCTTG	ATTGAGAAGA	950
10	TCGACAGAAG	AACYGGTAAG	AAGTTGGAAG	AAGAGCCAAA	GTTCATCAAG	1000
	TCYGGTGACG	CTGCTATCGT	CAAGATGGTC	CCAACCAAGC	CAATGTGYGT	1050
	YGAAGCTTTC	ACCGACTACC	CACCATTGGG	TAGATTCGCT	GTCAGAGA	1098

15

- 2) INFORMATION FOR SEQ ID NO: 425
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1101 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: Genomic DNA

25

20

- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Candida norvegensis
 - (B) STRAIN: ATCC 22977
- 30 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 425

	TCTTGACAAG	TTAAAGGCTG	AAAGAGAAAG	AGGTATCACT	ATTGATATTG	50
	CTTTATGGAA	ATTCGAAACT	CCAAAATACC	ACGTTACCGT	TATTGATGCT	100
	CCAGGTCACA	GAGATTTCAT	TAAGAACATG	ATTACTGGTA	CTTCCCAAGC	150
35	TGATTGTGCT	ATCTTAATTA	TTGCTGGTGG	TGTCGGTGAA	TTCGAAGCTG	200
	GTATCTCCAA	GGATGGTCAA	ACCAGAGAAC	ACGCTTTATT	AGCATTCACC	250
	TTAGGTGTTA	AGCAATTAAT	TGTTGCTATC	AACAAGATGG	ACTCTGTTAA	300
	GTGGGATGAA	AAGAGATTTG	AAGAAATTGT	CAAGGAAACC	CAAAACTTCA	350
	TCAAGAAGGT	TGGTTACAAC	CCAAAGACTG	TTCCATTCGT	TCCAATTTCT	400
40	GGTTGGAATG	GTGACAACAT	GATTGAACCA	TCTACTAACT	GTCCATGGTA	450
	CAAGGGTTGG	ACTAAGGAAA	CCAAGGCAGG	TGTTGTTAAG	GGTAAGACCT	500
	TATTAGAAGC	TATTGATGCT	ATTGAACCAC	CTGTCAGACC	AACTGACAAG	5 5 0
	CCATTAAGAT	TACCATTACA	AGATGTTTAC	AAGATTGGTG	GTATTGGTAC	600
	TGTGCCAGTC	GGTAGAGTTG	AAACCGGTGT	TATTAAGCCA	GGTATGGTTG	650
45	TTGTTTTCGC	ACCATCTGGT	GTTACCACTG	AAGTCAAGTC	CGTTGAAATG	700
	CACCATGAAC	AATTAGAACA	AGGTGTCCCA	GGTGACAATG	TTGGTTTCAA	750
	CGTCAAGAAC	GTCTCTGTTA	AGGATATTAA	GAGAGGTAAC	GTTTGTGGTG	800
	ACTCCAAGAA	CGACCCACCA	CAAGGTTGTG	CTTCCTTCAA	TGCTCAAGTC	850
	ATTGTCTTGA	ACCACCCTGG	TCAAATTTCT	GCAGGTTACT	CTCCAGTTTT	900
50	AGATTGTCAC	ACTGCCCACA	TTGCATGTAA	GTTCGATGAA	TTAATCGAAA	950
	AGATTGACAG	AAGAACTGGT	AAGTCCGTTG	AAGACCATCC	AAAGTCTGTT	1000
	AAGTCTGGTG	ATGCAGCTAT	CGTTAAGATG	GTTCCAACCA	AGCCAATGTG	1050
	TGTTGAAGCT	TTCACTGAAT	ACCCACCATT	AGGTAGATTC	GCAGTCAGAG	1100
	A					1101

- 2) INFORMATION FOR SEQ ID NO: 426
- 60 (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1095 bases
- (B) TYPE: Nucleic acid
- (C) STRANDEDNESS: Double
- (D) TOPOLOGY: Linear

5 (ii) MOLECULE TYPE: Genomic DNA

(vi) ORIGINAL SOURCE:

- (A) ORGANISM: Candida parapsilosis
- 10 (B) STRAIN: ATCC 90018
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 426

	CAAATTGAAG	GCTGAAAGAG	AAAGAGGTAT	CACCATTGAT	ATCGCTTTGT	50
15	GGAAATTCGA	AACTCCAAAA	TACCATGTTA	CTGTTATTGA	TGCTCCAGGT	100
	CACAGAGATT	TCATCAAGAA	TATGATTACT	GGTACTTCTC	AAGCTGATTG	150
	TGCTATTTTG	ATTATTGCTG	GTGGTACTGG	TGAATTCGAA	GCTGGTATCT	200
	CTAAGGATGG	TCAAACCAGA	GAACACGCTT	TGTTGGCTTA	CACCTTGGGT	250
	GTTAAGCAAT	TGATTGTTGC	CATCAACAAG	ATGGACTCAG	TCAAATGGGA	300
20	CAAGAACAGA	TACGAAGAAA	TTGTCAAGGA	AACTTCCAAC	TTCGTCAAGA	350
	AGGTTGGTTA	CAACCCTAAA	GCTGTCCCAT	TCGTCCCAAT	CTCTGGTTGG	400
	AACGGTGACA	ATATGATTGA	ACCATCAACC	AACTGTCCAT	GGTACAAGGG	450
	TTGGGAAAAG	GAAACTAAAG	CTGGTAAGGT	TACCGGTAAG	ACCTTGTTGG	500
	AAGCTATCGA	TGCTATCGAA	CCACCAACCA	GACCAACTGA	CAAGCCATTG	550
25	AGATTGCCAT	TGCAAGATGT	CTACAAGATT	GGTGGTATTG	GAACTGTGCC	600
	AGTTGGTAGA	GTTGAAACCG	GTATCATCAA	GGCTGGTATG	GTTGTTACTT	650
	TTGCCCCAGC	TGGTGTTACC	ACTGAAGTCA	AGTCCGTTGA	AATGCACCAC	700
	GAACAATTGA	CTGAAGGTGT	CCCAGGTGAC	AATGTTGGTT	TCAACGTCAA	7 50
	GAACGTTTCA	GTTAAGGAAA	TCAGAAGAGG	TAACGTTTGT	GGTGACTCCA	800
30	AGAACGATCC	ACCAAAGGGA	TGTGAYTCCT	TCAATGCTCA	AGTTATTGTC	850
	TTGAACCACC	CAGGTCAAAT	CTCTGCTGGT	TACTCACCAG	TCTTGGATTG	900
	TCACACTGCC	CACATTGCTT	GTAAATTCGA	CACTTTGATT	GAAAAGATTG	950
	ACAGAAGAAC	CGGTAAGAAA	TTGGAAGATG	AACCAAAATT	CATCAAGTCC	1000
	GGTGATGCTG	CYATCGTCAA	GATGGTCCCA	ACCAAGCCAA	TGTGTGTTGA	1050
35	AGCTTTCACT	GACTACCCAC	CATTGGGAAG	ATTCGCTGTT	AGAGA	1095

2) INFORMATION FOR SEQ ID NO: 427

40

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 752 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
- 45 (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: Genomic DNA
 - (vi)ORIGINAL SOURCE:
 - (A) ORGANISM: Candida rugosa
 - (B) STRAIN: ATCC 96275
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 427

55	CTCCGTCAAG	TGGTCTCAGT	CTCGTTTCGA	GGAGATCGTC	AAGGAGGTTT	50
-	CCAACTTCAT	CAAGAAGGTT	GGTTACAAGC	CCGATGAGGT	TCCTTTCGTC	100
	CCCATCTCTG	GCTGGAACGG	CGACAACATG	CTTGAGCCCT	CCACCAACTG	150
	CCCCTGGTAC	AAGGGATGGA	CCAAGAAGAC	CAAGAAGGGT	GAGGTCAAGG	200
	GTAAGACTCT	TCTCGAGGCC	ATTGACGCCA	TCGAGCCCCC	CTCCCGTCCT	250
60	ACCGACAAGC	CCCTCCGCTT	GCCTCTTCAG	GATGTCTACA	AGATCGGCGG	300

	TATCGGTACG	GTACCTGTCG	GCCGTGTCGA	GACCGGTATC	ATCAAGCCCG	350
	GCATGGTCGT	CACTTTCGCC	CCCGCTGGTG	TCACCACTGA	AGTGAAGTCC	400
	GTCGAGATGC	ACCACGAGCA	GATCCCCGAG	GGTCTCCCCG	GTGACAACGT	450
	CGGTTTCAAC	GTCAAGAACG	TTACCGTCAA	GGATATCCGC	CGTGGTAACG	500
5	TCTGCGGTGA	CTCCAAGAAC	GACCCCCCCA	AGGGCTGCTC	TTCCTTCACT	550
_		TCGTTTTCAA				600
	CCCCGTTTTG	GACTGCCACA	CCGCCCACAT	TGCCTGCCGC	TTCGACGAGA	650
	TCCAGTCCAA	GATGGACCGT	CGTACTGGTA	AGACCCTTGA	GGAGAACCCC	700
	AAGTTCATCA	AGGCTGGTGA	CTCCGCTATC	GTCAAGATGG	TTCCCTCCAA	750
10	GC					752

2) INFORMATION FOR SEQ ID NO: 428

15

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1093 bases
- (B) TYPE: Nucleic acid
- (C) STRANDEDNESS: Double
- 20 (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: Genomic DNA

(vi) ORIGINAL SOURCE:

25 (A) ORGANISM: Candida sphaerica

(B) STRAIN: ATCC 2504

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 428

30	AGTTAAAGGC	TGAAAGAGAA	AGAGGTATCA	CCATCGATAT	CGCTTTGTGG	50
	AAGTTCGAAA	CTCCAAAGTA	CCAAGTTACC	GTTATCGATG	CTCCAGGTCA	100
	CAGAGATTTC	ATCAAGAACA	TGATTACTGG	TACTTCTCAA	GCTGACTGTG	150
	CTATCTTGAT	TATTGCTGGT	GGTGTCGGTG	AATTCGAAGC	CGGTATCTCC	200
	AAGGATGGTC	AAACCAGAGA	ACACGCTTTG	TTGGCTTTCA	CCTTGGGTGT	250
35	TAGACAATTG	ATTGTTGCTG	TTAACAAGAT	GGATTCCGTT	AAGTGGGATG	300
	AATCTCGTTT	CCAAGAAATT	GTCAAGGAAA	CCTCTAACTT	CATCAAGAAG	350
	GTCGGTTACA	ACCCAAAGAC	TGTTCCATTC	GTCCCAATCT	CTGGTTGGAA	400
	CGGTGACAAC	ATGATTGAAG	CCACCACCAA	TGCTTCATGG	TACAAGGGTT	450
	GGGAAAAGGA	AACCAAGTCC	GGTGTCGTCA	AGGGTAAGAC	CTTGTTGGAA	500
40	GCTATTGACG	CTATCGAACC	ACCATCCAGA	CCAACTGACA	AGCCATTGAG	550
	ATTGCCATTG	CAAGATGTCT	ACAAGATTGG	TGGTATCGGA	ACTGTGCCAG	600
	TCGGTAGAGT	CGAAACCGGT	GTTATCAAGC	CAGGTATGAT	TGTTACCTTT	650
	GCCCCAGCCG	GTGTTACTAC	TGAAGTTAAG	TCCGTCGAAA	TGCACCACGA	700
	ACAATTGGAA	GAAGGTCTAC	CAGGTGACAA	CGTCGGTTTC	AACGTCAAGA	750
45	ACGTTTCCGT	TAAGGAAATC	AGAAGAGGTA	ACGTCTGTGG	TGACTCCAAG	800
	AACGATCCAC	CAAAGGCTGC	TGCTTCTTTC	AACGCCACTG	TTATCGTCTT	850
	GAACCATCCA	GGTCAAATCT	CTGCTGGTTA	CTCTCCAGTT	TTGGATTGTC	900
	ACACTGCTCA	CATTGCTTGT	AAGTTCGACG	AATTGTTGGA	AAAGAACGAT	950
	AGAAGATCCG	GTAAGAAGTT	GGAAGACTCT	CCAAAGTTCT	TGAAGTCCGG	1000
50	TGATGCTGCT	TTGGTTAAGT	TCGTTCCATC	TAAGCCAATG	TGTGTTGAAG	1050
	CCTTCTCTGA	CTACCCACCT	CTAGGTAGAT	TCGCTGTCAG	AGA	1093

55 2) INFORMATION FOR SEQ ID NO: 429

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1094 bases
- (B) TYPE: Nucleic acid
- 60 (C) STRANDEDNESS: Double

(D) TOPOLOGY: Linear

(ii) MOLECULE TYPE: Genomic DNA

- 5 (vi)ORIGINAL SOURCE:
 - (A) ORGANISM: Candida tropicalis
 - (B) STRAIN: ATCC 13803
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 429

10	(===, =====			15 110. 127		
	AAATTGAAGG	CTGAAAGAGA	AAGAGGTATC	ACCATTGATA	TCGCTTTGTG	50
	GAAATTCGAA	ACTCCAAAAT	ACCACGTTAC	CGTTATTGAT	GCTCCAGGTC	100
	ACAGAGATTT	CATCAAGAAC	ATGATTACTG	GTACTTCCCA	AGCTGATTGT	150
	GCTATTTTGA	TTATTGCTGG	TGGTACTGGT	GAATTCGAAG	CTGGTATTTC	200
15	TAAAGATGGT	CAAACCAGAG	AACACGCTTT	GTTGGCTTAC	ACCTTGGGTG	250
	TCAAACAATT	GATTGTTGCT	GTCAACAAGA	TGGACTCTGT	TAAATGGGAC	300
	AAAAACAGAT	TTGAAGAAAT	TATCAAGGAA	ACTTCTAACT	TCGTCAAGAA	350
	GGTTGGTTAC	AACCCTAAGG	CTGTTCCATT	CGTTCCAATC	TCTGGTTGGA	400
	ATGGTGACAA	CATGATTGAA	GCTTCTACCA	ACTGTCCATG	GTACAAGGGT	450
20	TGGGAAAAAG	AAACCAAGGC	TGGTAAGGTT	ACCGGTAAGA	CTTTGTTGGA	500
	AGCCATTGAT	GCTATTGAAC	CACCTTCAAG	ACCAACTGAC	AAGCCATTGA	550
	GATTGCCATT	GCAAGATGTT	TACAAGATTG	GTGGTATTGG	TACTGTGCCA	600
	GTCGGTAGAG	TTGAAACTGG	TGTCATCAAA	GCCGGTATGG	TTGTTACTTT	650
	CGCCCCAGCT	GGTGTTACCA	CTGAAGTCAA	ATCCGTCGAA	ATGCACCACG	700
25	AACAATTGGC	TGAAGGTGTC	CCAGGTGACA	ATGTTGGTTT	CAACGTTAAG	750
	AACGTTTCTG	TTAAAGAAAT	TAGAAGAGGT	AACGTTTGTG	GTGACTCCAA	800
	GAACGATCCA		GTGACTCTTT	CAACGCTCAA	GTTATTGTCT	850
			TCTGCTGGTT	ACTCTCCAGT	CTTGGATTGT	900
	CACACTGCTC	ATATTGCTTG	TAAATTCGAC	ACCTTGGTTG	AAAAGATTGA	950
30	CAGAAGAACT	GGTAAGAAAT	TGGAAGAAAA	TCCAAAATTC	GTCAAATCCG	1000
	GTGATGCTGC	TATTGTCAAG	ATGGTTCCAA	CCAAACCAAT	GTGTGTTGAA	1050
	GCTTTCACTG	ACTACCCACC	ATTAGGTAGA	TTCGCTGTCA	GAGA	1094

35

40

- 2) INFORMATION FOR SEQ ID NO: 430
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1095 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: Genomic DNA

- (vi)ORIGINAL SOURCE:
 - (A) ORGANISM: Candida utilis
 - (B) STRAIN: Csp 388
- 50 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 430

	CAAGCTTAAA	GCTGAGAGAG	AGAGAGGTAT	CACTATCGAC	ATTGCTCTCT	50
			TACCACGTTA			100
			CATGATTACT			150
55			GTGGTGTTGG			200
			GAGCACGCTT			250
			TATCAACAAG			300
	CGAGAAGAGA	TTCGAGGAGA	TCGTTAAGGA	GACCTCTAAC	TTCATCAAGA	350
			ACTGTTCCAT			400
60	AACGGTGACA	ACATGATTGA	GGCCTCTACC	AACTGTCCAT	GGTACAAGGG	450

	TTGGGAGAAG	GAGACCAAGG	CTGGTGTTGT	CAAGGGTAAG	ACCTTGCTCG '	500
	ATGCCATTGA	CGCCATTGAG	CCACCAACAA	GACCAACTGA	CAAGCCATTG	550
	AGATTGCCAC	TCCAGGATGT	CTACAAGATT	GGTGGTATCG	GAACTGTTCC	600
	AGTCGGTAGA	GTCGAGACCG	GTGTCATCAA	GCCAGGTATG	GTTGTTACCT	650
5	TTGCCCCATC	CGGTGTCACC	ACTGAGGTTA	AGTCCGTCGA	GATGCACCAC	700
	GAGCAGCTTG	CTGAGGGTAT	CCCAGGTGAC	AACGTTGGTT	TCAACGTTAA	750
	GAACGTCTCT	GTTAAGGAGA	TCAGAAGAGG	TAACGTTGCC	GGTGACTCCA	800
	AGAACGACCC	ACCACAGGGT	GCTGAGTCCT	TCAACGCTCA	GGTCATTGTC	850
	TTGAACCACC	CAGGTCAGAT	CTCTGCTGGT	TACTCTCCAG	TTTTGGACTG	900
10	TCACACCGCC	CACATTGCTT	GTAAGTTCTC	TGAGCTTTTG	GAGAAGATTG	950
	ACAGAAGATC	CGGTAAGTCC	CTTGAGGCCT	CTCCAAAGTT	CGTCAAGTCT	1000
	GGTGATGCCG	CTATCGTCAA	GATGGTTCCA	TCCAAGCCAT	TGTGTGTTGA	1050
	GGCCTTCACT	GACTACCCAC	CACTCGGTAG	ATTCGCTGTC	AGAGA	1095

15

2) INFORMATION FOR SEQ ID NO: 431

(i) SEQUENCE CHARACTERISTICS:

20 (A) LENGTH: 1085 bases

- (B) TYPE: Nucleic acid
- (C) STRANDEDNESS: Double
- (D) TOPOLOGY: Linear
- 25 (ii) MOLECULE TYPE: Genomic DNA
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Candida viswanathii
 - (B) STRAIN: ATCC 28269

30

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 431

	GCTGAAAGAG	AAAGAGGTAT	САССАТССАТ	ATCGCTTTGT	GGAAATTCGA	50
	AACTCCAAAR	TACCACGTTA	CCGTCATTGA	YGCTCCAGGT	CACAGAGATT	100
35	TCATCAAGAA	CATGATYACT	GGTACTTCTC	AAGCTGATTG	TGCTATYTTG	150
33	ATTATCGCTG	GTGGTACTGG	TGAATTCGAA	GCTGGTATYT		- -
					CTAAGGATGG	200
	TCAAACCAGA	GAACACGCTT	TGTTGGCCTA	CACCTTGGGT	GTCAAGCAAT	250
	TGATTGTTGC	TGTCAACAAG	ATGGACTCTG	TCAAATGGGA	CAAGAACAGA	300
	TTCGAAGAAA	TCATCAAGGA	AACCTCCAAC	TTCGTCAAGA	AGGTTGGTTA	350
40	CAACCCAAAG	ACTGTTCCAT	TCGTCCCAAT	CTCTGGTTGG	AACGGTGACA	400
	ACATGATTGA	AGCCTCCACC	AACTGCCCAT	GGTACAAGGG	TTGGGAAAAG	450
	GAAACCAAGG	CTGGTAAGGT	TACCGGTAAG	ACTTTGTTGG	AAGCCATTGA	500
	CGCTATCGAA	CCACCAACCA	GACCAACTGA	CAAGCCATTG	AGATTGCCAT	550
	TGCAAGATGT	CTACAAGATT	GGTGGTATCG	GAACTGTGCC	AGTCGGTAGA	600
45	GTTGAAACTG	GTGTCATCAA	GGCCGGTATG	GTTGTCACTT	TYGCCCCAGC	650
	TGGTGTTACC	ACTGAAGTCA	AGTCCGTTGA	AATGCACCAC	GAACAATTGG	700
	CTGAAGGTGT	CCCAGGTGAC	AACGTTGGTT	TCAACGTCAA	GAACGTTTCC	750
	GTCAAGGAAA	TCAGAAGAGG	TAACGTCTGT	GGTGACTCCA	AGAACGACCC	800
	ACCAAAGGGT	TGTGASTCTT	TCAACGCTCA	AGTCATTGTC	TTGAACCACC	850
50	CAGGTCAAAT	CTCTGCTGGT	TACTCTCCAG	TCTTGGATTG	TCACACTGCC	900
	CACATTGCTT	GTAAGTTTGA	CACCTTGGTT	GAAAAGATTG	ACAGAAGAAC	950
	CGGTAAGAAG	TTGGAAGAAA	ACCCAAAGTT	TGTCAAGTCC	GGTGACGCTG	1000
	CTATCGTCAA		ACCAAGCCAA	TGTGTGTTGA		1050
	GACTACCCAC	CATTGGGTAG	ATTCGCTGTC	AGAGA	MOCIFICACI	1085
55	ONCINCECTE	CHITGGGING	WI I COCTOIC	AUAUA		1002
55						

2) INFORMATION FOR SEQ ID NO: 432

60 (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1072 bases
- (B) TYPE: Nucleic acid
- (C) STRANDEDNESS: Double
- (D) TOPOLOGY: Linear

5

- (ii) MOLECULE TYPE: Genomic DNA
- (vi)ORIGINAL SOURCE:
 - (A) ORGANISM: Candida zeylanoides
- 10 (B) STRAIN: ATCC 7351
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 432

	AGGTATTACC	ATTGACATTG	CCTTGTGGAA	GTTCGAGACC	CCCAAGTACC	50
15	AGGTCACCGT	CATTGACGCT	CCTGGCCACA	GAGATTTCAT	TAAGAACATG	100
	ATCACTGGTA	CCTCCCAGGC	TGACTGTGCC	ATCTTGATCA	TTGCTGGTGG	150
	TGTTGGTGAG	TTCGAGGCTG	GTATCTCCAA	GGATGGCCAG	ACCAGAGAGC	200
	ACGCCTTGCT	TGCCTACACC	TTGGGTGTCA	AGCAATTGAT	TGTTGCTGTC	250
	AACAAGATGG	ACTCCGTCAA	GTGGGACAAG	AACAGATTCG	AGGAGATTGT	300
20	CAAGGAGACC	TCCAACTTCG	TCAAGAAGGT	TGGCTACAAC	CCCAAGACTG	350
	TCCCCTTCGT	TCCCATCTCC	GGTTGGAACG	GTGACAACAT	GATTGAGGCC	400
	TCCACCAACT	GCCCTTGGTA	CAAGGGTTGG	GAGAAGGAGA	CCAAGGCCGG	450
	TAAGGTCACT	GGTAAGACCT	TGTTGGAGGC	TATTGACGCC	ATTGAGCCCC	500
•	CCACCAGACC	CACCGACAAG	CCCTTGAGAT	TGCCCTTGCA	GGATGTCTAC	550
25	AAGATTGGTG	GTATTGGAAC	GGTGCCCGTT	GGCAGAGTTG	AGACCGGCAT	600
	CATCAAGGCC	GGTATGGTTG	TCACCTTTGC	CCCCGCTGGT	GTCACTACTG	650
	AAGTGAAGTC	TGTCGAGATG	CACCACGAGC	AATTGGCTGA	GGGTGTCCCA	700
	GGTGACAATG	TTGGTTTCAA	CGTGAAGAAC	GTTTCCGTTA	AGGAGATCAG	750
	AAGAGGTAAC	GTTTGCGGTG	ACTCCAAGAA	CGACCCCCC	AAGGCTGCTG	800
30	CTTCTTTCAA	CGCCCAGGTT	ATCGTCTTAA	ACCACCCCGG	TCAAATCTCT	850
	GCTGGTTACT	CTCCGGTTTT	GGATTGCCAC	ACTGCCCACA	TTGCTTGCAG	900
	ATTCGACCAG	TTGATTGAGA	AGATCGACAG	AAGAACCGGT	AAGAAGATGG	950
	AGGACGACCC	TAAGTTCATC	AAGTCCGGTG	ACGCTGCCAT	CGTCAAGATG	1000
	GTTCCTTCCA	AGCCCATGTG	TGTTGAGGCC	TTCACTGACT	ACCCTCCCTT	1050
35	GGGTCGTTTC	GCTGTCAGAG	AC			1072

2) INFORMATION FOR SEQ ID NO: 433

40

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 751 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
- 45 (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: Genomic DNA
 - (vi)ORIGINAL SOURCE:
 - (A) ORGANISM: Coccidioides immitis
 - (B) STRAIN: Silveira
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 433
- AGCACCAACT GGTCCGAGCC TCGTTTCAAC GAAATCGTCA AGGAAGTCTC
 CAACTTCATC AAGAAGGTCG GATACAACCC CAAGGCTGTT CCATTCGTCC
 CCATCTCTGG TTTCGAAGGT GACAACATGA TTCAACCCTC CACCAACGCT
 CCTTGGTACA AGGGCTGGAA CAAGGAGACC GCCTCTGGCA AGCACACTGG
 CAAGACCCTC CTCGACGCA TTGATGCCAT CGACCCCCCA ACCCGCCCCA
 CCGAGAAGCC CCTCCGTCTC CCACTTCAGG ATGTGTACAA GATCTCTGGT
 300

	ATCGGAACAG	TCCCAGTCGG	CCGTGTCGAA	ACCGGTGTTA	TCAAGCCTGG \	350
	TATGGTTGTG	ACCTTCGCTC	CTTCCAACGT	CACCACTGAA	GTCAAGTCCG	400
	TCGAAATGCA	CCACCAGCAG	CTCACCCAGG	GTAACCCTGG	TGACAACGTT	450
			CTCTGTCAAG			500
5	CGCTGGTGAC	TCCAAGAACG	ACCCACCAAA	GGGCTGCGAC	TCCTTCAACG	550
	CCCAGGTCAT	CGTCCTCAAC	CACCCTGGTC	AAGTCGGTGC	TGGTTATGCC	600
	CCAGTCCTTG	ACTGCCACAC	TGCCCACATT	GCTTGCAAGT	TCTCCGAGCT	650
	CCTCGAGAAG	ATCGACCGCC	GTACCGGTAA	ATCCGTTGAG	AACAACCCCA	700
	AGTTCATCAA	GTCTGGTGAT	GCCGCTATCG	TCAAGATGGT	TCCATCCAAG	750
10	C					751

2) INFORMATION FOR SEQ ID NO: 434

15

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1146 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
- 20 (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: Genomic DNA
 - (vi) ORIGINAL SOURCE:
- 25 (A) ORGANISM: Cryptococcus albidus
 - (B) STRAIN: ATCC 66030
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 434

30	AAGCTCAAGG	CCGAGCGAGA	GCGAGGTATC	ACCATCGACA	TCGCCTTGTG	50
	GAAGTTCGAG	ACCCCCAAGT	ACAATGTCAC	CGTCATTGAC	GCCCCCGGTC	100
	ACCGAGACTT	CATCAAGAAC	ATGATCACCG	GTACCTCGCA	GGCCGACTGT	150
	GCCATCCTCA	TCATCGCCTC	CGGTATCGGA	GAGTTCGAGG	CTGGTATCTC	200
	CAAGGACGGT	CAGACCCGAG	AGCACGCCCT	TTTGGCCTTC	ACCCTCGGTG	250
35	TCCGACAGCT	CATCATTGCC	ATCAACAAGA	TGGACACCTG	CAAGGTTAGT	300
	TCGCAGGTCC	TGGTCTCTGT	ACGAATCTTG	CTGACCCCTT	TTACAGTGGT	350
	CCGAAGACCG	ATACAACGAA	ATCGTCAAGG	AGGCTTCCGG	TTTCATCAAG	400
	AAGGTCGGAT	ACAACCCCAA	GACCGTTCCC	TTCGTCCCCA	TCTCCGGATG	450
	GCACGGAGAC	AACATGTTGG	AGGAGTCCAC	CAACATGCCC	TGGTACAAGG	500
40	GATGGCACAA	GGAGTCCAAG	GCCGGTGTTG	TCAAGGGAAA	GACCTTGCTC	5 50
	GAGGCCATCG	ACGCCATCGA	GCCCCTACC	CGACCTTCCG	ACAAGCCCTT	600
	GCGATTGCCC	CTCCAGGATG	TCTACAAGAT	CGGTGGTATC	GGTACGGTGC	650
	CCGTCGGTCG	AGTCGAGACC	GGTGTCATCA	AGGCTGGTAT	GGTCGTCACC	700
	TTCGCCCCTG	CCAACGTCAC	CACCGAAGTC	AAGTCCGTCG	AAATGCACCA	750
45	CGAACAGCTC	GCTGAGGGTG	TTCCCGGTGA	CAACGTCGGT	TTCAACGTCA	800
	AGAACGTTTC	CGTCAAGGAC	ATCCGACGAG	GAAACGTCTG	CTCCGACTCG	850
	AAGAACGACC	CCGCTATGGA	GTCTGCTTCC	TTCAACGCTC	AGGTCATTGT	900
	CTTGAACCAC	CCGGGTCAGA	TCGGTGCCGG	CTACTCCCCC	GTTTTGGACT	950
	GCCACACCGC	TCACATTGCC	TGCAAGTTCG	CTGAGCTCGT	TGAGAAGATC	1000
50	GACCGACGAA	CCGGTAAGGT	CATGGAGGCC	GCCCCCAAGT	TCGTCAAGTC	1050
	CGGTGACGCC	GCCATCGTCA	AGTTGATCCC	GTCCAAGCCC	ATGTGTGTCG	1100
	AGTCCTACTC	CGAGTACCCC	CCCTTGGGTC	GATTCGCCGT	CCGAGA	1146

- 2) INFORMATION FOR SEQ ID NO: 435
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1095 bases
- 60 (B) TYPE: Nucleic acid

- (C) STRANDEDNESS: Double
- (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: Genomic DNA

5

- (vi)ORIGINAL SOURCE:
 - (A) ORGANISM: Exophiala jeanselmei
 - (B) STRAIN: ATCC 64755
- 10 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 435

	CAAGCTGAAG	GCCGAGCGTG	AGCGTGGTAT	CACCATCGAT	ATCGCCTTGT	50
	GGAAGTTCGA	GACTCCCAAG	TACTATGTCA	CTGTCATCGA	CGCCCTGGT	100
	CATCGTGACT	TTATCAAGAA	CATGATCACT	GGTACTTCCC	AGGCTGACTG	150
15	CGCCATTCTC	ATCATTGCCG	CCGGTACTGG	TGAATTCGAA	GCCGGTATCT	200
	CCAAGGATGG	TCAGACTCGT	GAGCACGCTC	TGCTCGCCTA	CACCCTGGGT	250
	GTCAAGCAGC	TCATTGTCGC	CATCAACAAG	ATGGACACCA	CCAAGTGGTC	300
	CGAGGATCGT	TTCAACGAAA	TCATCAAGGA	GACTTCCAGC	TTCATCAAGA	350
	AGGTCGGCTA	CAACCCCAAG	TCCGTTCCTT	TCGTCCCCAT	CTCCGGCTTC	400
20	AACGGTGACA	ACATGATCGA	TGTCTCCACC	AACTGCCCCT	GGTACAAGGG	450
	CTGGGAGAAG	GAGACCAAGG	CTGGCAAGGC	CTCTGGCAAG	ACTCTCCTCG	500
	AGGCCATCGA	CGCCATCGAC	CCCCCCACTC	GTCCCACCGA	CAAGCCTCTC	550
	CGTCTTCCTC	TCCAGGATGT	CTACAAGATC	TCTGGTATCG	GAACGGTGCC	600
	CGTCGGTCGT	GTTGAGACTG	GTGTCATCAA	GGCCGGTATG	GTCGTTACCT	650
25	TCGCTCCTGC	CAACGTCACC	ACTGAAGTCA	AGTCCGTCGA	AATGCACCAC	700
	GAACAACTCG	CCGAGGGTGT	TCCAGGTGAC	AACGTTGGTT	TCAACGTCAA	750
	GAACGTCTCC	GTCAAGGAGG	TTCGTCGTGG	AAACGTCTGC	GGTGACTCCA	800
	AGAACGACCC	ACCCAAGGGT	GCTGATTCCT	TCAACGCCCA	GGTCATCGTC	850
	TTGAACCACC	CTGGTCAAGT	CGGTGCTGGC	TACGCCCCAG	TGTTGGATTG	900
30	CCACACTGCC	CACATTGCTT	GCAAGTTCTC	TGAGCTTCTC	GAGAAGATTG	950
	ACCGCCGTAC	CGGTAAATCC	ATCGAAAACA	ACCCCAAGTT	CATCAAGTCT	1000
	GGTGACGCTG	CCATCGTCAA	GATGGTTCCC	AGCAAGCCCA	TGTGTGTTGA	1050
	GGCCTTCACT	GACTACCCAC	CTCTTGGTCG	TTTCGCCGTC	CGTGA	1095

35

40

- 2) INFORMATION FOR SEQ ID NO: 436
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1113 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
- 45 (ii) MOLECULE TYPE: Genomic DNA
 - (vi)ORIGINAL SOURCE:
 - (A) ORGANISM: Fusarium oxysporum
 - (B) STRAIN: WSA-212

50

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 436

AAGCTCAAGG	CCGAGCGTGA	GCGTGGTATC	ACCATCGATA	TTGCTCTCTG	50
GAAGTTCGAG	ACTCCTCGCT	ACTATGTCAC	CGTCATTGGT	ATGTTGTCGC	100
TCATGCTTCA	TTCTACTTCT	CTTCGTACTA	ACACATCACT	CAGACGCTCC	150
CGGTCACCGT	GATTTCATCA	AGAACATGAT	CACTGGTACT	TCCCAGGCCG	200
ATTGCGCCAT	TCTCATCATT	GCCGCCGGTA	CTGGTGAGTT	CGAGGCTGGT	250
ATCTCCAAGG	ATGGCCAGAC	CCGTGAGCAC	GCTCTTCTTG	CCTACACCCT	300
TGGTGTCAAG	AACCTCATCG	TCGCCATCAA	CAAGATGGAC	ACCACCAAGT	350
GGTCTGAGGC	CCGTTACCAG	GAGATCATCA	AGGAGACCTC	CTCTTTCATC	400
	GAAGTTCGAG TCATGCTTCA CGGTCACCGT ATTGCGCCAT ATCTCCAAGG TGGTGTCAAG	GAAGTTCGAG ACTCCTCGCT TCATGCTTCA TTCTACTTCT CGGTCACCGT GATTTCATCA ATTGCGCCAT TCTCATCATT ATCTCCAAGG ATGGCCAGAC TGGTGTCAAG AACCTCATCG	GAAGTTCGAG ACTCCTCGCT ACTATGTCAC TCATGCTTCA TTCTACTTCT CTTCGTACTA CGGTCACCGT GATTTCATCA AGAACATGAT ATTGCGCCAT TCTCATCATT GCCGCCGGTA ATCTCCAAGG ATGGCCAGAC CCGTGAGCAC TGGTGTCAAG AACCTCATCG TCGCCATCAA	GAAGTTCGAG ACTCCTCGCT ACTATGTCAC CGTCATTGGT TCATGCTTCA TTCTACTTCT CTTCGTACTA ACACATCACT CGGTCACCGT GATTTCATCA AGAACATGAT CACTGGTACT ATTGCGCCAT TCTCATCATT GCCGCCGGTA CTGGTGAGTT ATCTCCAAGG ATGGCCAGAC CCGTGAGCAC GCTCTTCTTG TGGTGTCAAG AACCTCATCG TCGCCATCAA CAAGATGGAC	AAGCTCAAGG CCGAGCGTGA GCGTGGTATC ACCATCGATA TTGCTCTCTG GAAGTTCGAG ACTCCTCGCT ACTATGTCAC CGTCATTGGT ATGTTGTCGC TCATGCTTCA TTCTACTTCT CTTCGTACTA ACACATCACT CAGACGCTCC CGGTCACCGT GATTTCATCA AGAACATGAT CACTGGTACT TCCCAGGCCG ATTGCGCCAT TCTCATCATT GCCGCCGGTA CTGGTGAGTT CGAGGCTGGT ATCTCCAAGG ATGGCCAGAC CCGTGAGCAC GCTCTTCTTG CCTACACCCT TGGTGTCAAG AACCTCATCG TCGCCATCAA CAAGATGGAC ACCACCAAGT GGTCTGAGGC CCGTTACCAG GAGATCATCA AGGAGACCTC CTCTTTCATC

					~ ~
AAGAAGGTCG	GCTACAACCC	CAAGGCTGTC	GCTTTCGTCC	CCATCTCCGG	450
TTTCAACGGT	GACAACATGC	TTACCCCCTC	CACCAACTGC	CCCTGGTACA	500
AGGGTTGGGA	GCGTGAGATC	AAGTCCGGCA	AGCTCACTGG	CAAGACCCTC	550
CTCGAGGCCA	TTGACTCCAT	CGAGCCCCCC	AAGCGTCCCG	TTGACAAGCC	600
CCTTCGTCTT	CCCCTTCAGG	ATGTCTACAA	GATCGGTGGT	ATTGGAACGG	650
TTCCCGTCGG	CCGTATCGAG	ACTGGTGTCA	TCAAGCCCGG	TATGGTCGTT	700
ACCTTCGCTC	CTTCCAACGT	CACCACTGAA	GTCAAGTCCG	TCGAGATGCA	750
CCACGAGCAA	CTCACTGAGG	GCCAGCCCGG	TGACAACGTT	GGTTTCAACG	800
TGAAGAACGT	CTCCGTCAAG	GACATCCGAC	GTGGTAACGT	CGCTGGTGAC	850
TCCAAGAACG	ACCCCCTAT	GGGTGCCGCT	TCTTTCACCG	CCCAGGTCAT	900
CGTCCTCAAC	CACCCCGGTC	AGGTCGGTGC	TGGTTACGCT	CCCGTCCTCG	950
ATTGTCACAC	TGCCCACATT	GCCTGCAAGT	TCGCCGAGAT	CCAGGAGAAG	1000
ATCGACCGCC	GAACCGGTAA	GGCTACTGAG	GCCGCCCCA	AGTTCATCAA	1050
GTCTGGTGAC	TCCGCCATCG	TCAAGATGGT	TCCCTCCAAG	CCCATGTGTG	1100
TTGAGGCTTT	CAC				1113
	TTTCAACGGT AGGGTTGGGA CTCGAGGCCA CCTTCGTCTT TTCCCGTCGG ACCTTCGCTC CCACGAGCAA TGAAGAACGT TCCAAGAACG CGTCCTCAAC ATTGTCACAC ATTGTCACAC GTCTTGGTGAC	TTTCAACGGT GACAACATGC AGGGTTGGGA GCGTGAGATC CTCGAGGCCA TTGACTCCAT CCTTCGTCTT CCCCTTCAGG TTCCCGTCGG CCGTATCGAG ACCTTCGCTC CTTCCAACGT CCACGAGCAA CTCACTGAGG TGAAGAACGT CTCCGTCAAG TCCAAGAACG ACCCCCTAT CGTCCTCAAC CACCCCGGTC ATTGTCACAC TGCCCACATT ATCGACCGCC GAACCGGTAA GTCTGGTGAC TCCGCCATCG	TTTCAACGGT GACAACATGC TTACCCCCTC AGGGTTGGGA GCGTGAGATC AAGTCCGGCA CTCGAGGCCA TTGACTCCAT CGAGCCCCCC CCTTCGTCTT CCCCTTCAGG ATGTCTACAA TTCCCGTCGG CCGTATCGAG ACTGGTGTCA ACCTTCGCTC CTTCCAACGT CACCACTGAA CCACGAGCAA CTCACTGAGG GCCAGCCCGG TGAAGAACGT CTCCGTCAAG GACATCCGAC TCCAAGAACG ACCCCCTAT GGGTGCCGCT CGTCCTCAAC CACCCCGGTC AGGTCGGTGC ATTGTCACAC TGCCCACATT GCCTGCAAGT ATCGACCGCC GAACCGGTAA GGCTACTGAG GTCTGGTGAC TCCGCCATCG TCAAGATGGT	TTTCAACGGT GACAACATGC TTACCCCCTC CACCAACTGC AGGGTTGGGA GCGTGAGATC AAGTCCGGCA AGCTCACTGG CTCGAGGCCA TTGACTCCAT CGAGCCCCC AAGCGTCCCG CCTTCGTCTT CCCCTTCAGG ATGTCTACAA GATCGGTGGT TTCCCGTCGG CCGTATCGAG ACTGGTGTCA TCAAGCCCGG ACCTTCGCTC CTTCCAACGT CACCACTGAA GTCAAGTCCG CCACGAGCAA CTCACTGAG GCCAGCCCGG TGACAACGTT TGAAGAACGT CTCCGTCAAG GACATCCGAC GTGGTAACGT TCCAAGAACG ACCCCCTAT GGGTGCCGCT TCTTTCACCG CGTCCTCAAC CACCCCGGTC AGGTCGGTGC TGGTTACGCT ATTGTCACAC TGCCCACATT GCCTGCAAGT TCGCCGAGAT ATCGACCGC GAACCGGTAA GGCTACTGAG GCCGCCCCA GTCTGGTGAC TCCCCCCAGGTC TCTTTCACCG TCCTCGGTGAC TCCCCCCAAGT TCCCCCCAAGT TCCCCCCCAAGT TCCCCCCCCAAGT TCCCCCCCCAAGT TCCCCCCCCAAGT TCCCCCCCCAAGT TCCCCCCCCCAAGT TCCCCCCCCCAAGT TCCCCCCCCCAAGT TCCCCCCCCCAAGT TCCCCCCCCCAAGT TCCCCCCCCCAAGT TCCCCCCCCCAAGT TCCCCCCCCCC	TTTCAACGGT GACAACATGC TTACCCCCTC CACCAACTGC CCCTGGTACA AGGGTTGGGA GCGTGAGATC AAGTCCGGCA AGCTCACTGG CAAGACCCTC CTCGAGGCCA TTGACTCCAT CGAGCCCCCC AAGCGTCCCG TTGACAAGCC CCTTCGTCTT CCCCTTCAGG ATGTCTACAA GATCGGTGGT ATTGGAACGG TTCCCGTCGG CCGTATCGAG ACTGGTGTCA TCAAGCCCGG TATGGTCGTT ACCTTCGCTC CTTCCAACGT CACCACTGAA GTCAAGTCCG TCGAGATGCA CCACGAGCAA CTCACTGAGG GCCAGCCCGG TGACAACGTT GGTTTCAACG TGAAGAACGT CTCCGTCAAG GACATCCGAC GTGGTAACGT CGCTGGTGAC TCCAAGAACG ACCCCCCTAT GGGTGCCGCT TCTTTCACCG CCCAGGTCAT CGTCCTCAAC CACCCCGGTC AGGTCGGTGC TGGTTACGCT CCCGTCCTCG ATTGTCACAC TGCCCACATT GCCTGCAAGT TCGCCGAGAT CCAGGAGAAG ATCGACCGC GAACCGGTAA GGCTACTGAG GCCGCCCCCA AGTTCATCAA GTCTGGTGAC TCCGCCATCG TCAAGATGGT TCCCTCCAAG CCCATGTGTG

2) INFORMATION FOR SEQ ID NO: 437

20

25

30

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 726 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
- (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: Genomic DNA
 - (vi)ORIGINAL SOURCE:
 - (A) ORGANISM: Geotrichum spp.
 - (B) STRAIN: LEV-4
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 437

35	GGTCCGAGGA	CAGATTCAAC	GAGATTGTCA	AGGAGACTTC	CAACTTCATC	50
	AAGAAGGTTG	GTTAYAACCC	CAAGACTGTT	GCTTTCGTCC	CCATCTCTGG	100
	TTGGAACGGT	GACAACATGA	TTGAGCCCTC	CACCAACTGC	CCCTGGTACA	150
	AGGGATGGCA	GAAGGAGACC	AAGGCTGGTG	TCACTAAGGG	TAAGACCCTC	200
	CTTGAGGCCA	TCGATGCCAT	TGAGCCCCCT	GTCAGACCTT	CCGACAAGCC	250
40	CCTCCGTCTT	CCCCTCCAGG	ATGTCTACAA	GATCGGTGGT	ATCGGAACTG	300
	TGCCCGTCGG	CCGTGTCGAA	ACCGGTGTCA	TCAAGGCCGG	TATGGTCGTC	350
	ACCTTCGCCC	CCGCTGGTGT	CACCACTGAA	GTCAAGTCCG	TCGAGATGCA	400
	CCACGAGCTC	CTCACTGAGG	GTCTCCCCGG	TGACAACGTT	GGTTTCAACG	450
	TCAAGAACGT	CTCCGTTAAG	GATATCAGAC	GTGGTAACGT	CTGCGGTGAC	500
45	TCCAAGAACG	ATCCCCCAA	GGCTTGCGCT	TCTTTCAACG	CCCAGGTCAT	550
	TATCTTCAAC	CACCCTGGTC	AGATCTCTGC	TGGATACTCT	CCCGTCCTTG	600
	ATTGCCACAC	CGCCCATATT	GCTTGCAAGT	TCGACACTTT	GATCGAGAAG	650
	ATTGACCGTC	GTACTGGTAA	GAAGACTGAG	GACTCCCCCA	AGTTCGTCAA	700
	GGCCGGTGAT	GCTGCTATCG	TCAAGA			726

2) INFORMATION FOR SEQ ID NO: 438

- 55 (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 754 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear

60

(ii) MOLECULE TYPE: Genomic DNA

(vi)ORIGINAL SOURCE:

5

25

35

- (A) ORGANISM: Histoplasma capsulatum
- (B) STRAIN: G186A5
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 438

	CACCACCAAG	TGGTCCGAGT	CCCGTTTCAA	CGAAATCATC	AAGGAGGTTT	50
10	CCAACTTCAT	CAAGAAGGTC	GGATATAACC	CCAAGGCTGT	TCCCTTCGTG	100
	CCAATCTCTG	GTTTCGAGGG	TGACAACATG	ATTGAACCCT	CCCCCAACTG	150
	CACATGGTAC	AAGGGCTGGA	ACAAGGAGAC	TGCCTCTGGC	AAGTCTTCTG	200
	GTAAAACCCT	TCTCGATGCC	ATTGACGCCA	TTGAACCCCC	AACCCGTCCT	250
	ACCGATAAGC	CCCTCCGTCT	TCCCCTCCAG	GATGTGTACA	AAATCTCTGG	300
15	TATTGGCACT	GTTCCCGTCG	GACGTGTTGA	GACTGGTGTC	ATCAAGCCCG	350
	GTATGGTCGT	GACTTTCGCT	CCCTCCAACG	TCACCACTGA	AGTCAAGTCC	400
	GTCGAAATGC	ACCACCAACA	ACTCCAGGCT	GGTTACCCTG	GCGACAACGT	450
	CGGCTTCAAC	GTCAAGAACG	TTTCAGTCAA	GGAAGTCCGC	CGTGGCAACG	500
	TTGCTGGCGA	CTCCAAAAAT	GATCCCCCTA	AGGGCTGCGA	ATCCTTCAAT	550
20	GCCCAGGTCA	TCGTCCTTAA	CCACCCGGC	CAGGTTGGCG	CTGGTTATGC	600
	CCCAGTCCTC	GACTGCCACA	CTGCCCACAT	TGCTTGCAAG	TTCTCTGAGC	650
	TTATTGAGAA	GATCGACCGC	CGTACCGGAA	AGTCTGTTGA	GAACAACCCC	700
	AAGTTCATCA	AGTCTGGTGA	TGCTGCTATC	GTCAAGATGG	TTCCCTCCAA	750
	GCCC					754

2) INFORMATION FOR SEQ ID NO: 439

- 30 (i)SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 743 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear

(ii) MOLECULE TYPE: Genomic DNA

- (vi)ORIGINAL SOURCE:
 - (A) ORGANISM: Issatchenkia orientalis
- 40 (B) STRAIN: ATCC 6258
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 439

TGGGATGAAA	ACAGATTTGA	AGAAATTGTC	AAGGAAACCC	AAAACTTCAT	50
CAAGAAGGTT	GGTTACAACC	CAAAGACTGT	TCCATTCGTT	CCAATCTCTG	100
GTTGGAATGG	TGACAACATG	ATTGAAGCAT	CCACCAACTG	TCCATGGTAC	150
AAGGGTTGGA	CTAAGGAAAC	CAAGGCAGGT	GTTGTTAAGG	GTAAGACCTT	200
ATTAGAAGCA	ATCGATGCTA	TTGAACCACC	TGTCAGACCA	ACCGAAAAGC	250
CATTAAGATT	ACCATTACAA	GATGTTTACA	AGATTGGTGG	TATTGGTACT	300
GTGCCAGTCG	GTAGAGTCGA	AACCGGTGTC	ATTAAGCCAG	GTATGGTTGT	350
CACTTTTGCT	CCAGCAGGTG	TCACCACCGA	AGTCAARTCC	GTTGAAATGC	400
ACCATGAACA	ATTAGAACAA	GGTGTTCCAG	GTGATAACGT	TGGTTTCAAC	450
GTTAAGAACG	TCTCTGTCAA	GGATATCAAG	AGAGGTAACG	TTTGTGGTGA	500
CTCCAAGAAC	GACCCACCAA	TGGGTGCAGC	TTCYTTCAAT	GCTCAAGTCA	550
TTGTCTTGAA	CCACCCTGGT	CAAATTTCCG	CTGGTTACTC	TCCAGTCTTG	600
GATTGTCACA	CTGCCCACAT	TGCATGTAAG	TTCGACGAAT	TAATCGAAAA	650
GATTGACAGA	AGAACTGGTA	AGTCTGTTGA	AGACCATCCA	AAGTCYGTCA	700
AGTCTGGTGA	TGCAGCTATC	GTCAAGATGG	TCCCAACCAA	GCC	743
	CAAGAAGGTT GTTGGAATGG AAGGGTTGGA ATTAGAAGCA CATTAAGATT GTGCCAGTCG CACTTTTGCT ACCATGAACA GTTAAGAACG CTCCAAGAAC TTGTCTTGAA GATTGTCACA GATTGACAGA	CAAGAAGGTT GGTTACAACC GTTGGAATGG TGACAACATG AAGGGTTGGA CTAAGGAAAC ATTAGAAGCA ATCGATGCTA CATTAAGATT ACCATTACAA GTGCCAGTCG GTAGAGTCGA CACTTTTGCT CCAGCAGGTG ACCATGAACA ATTAGAACAA GTTAAGAACG TCTCTGTCAA CTCCAAGAAC GACCCACCAA TTGTCTTGAA CCACCCTGGT GATTGACAGA AGAACTGGTA	CAAGAAGGTT GGTTACAACC CAAAGACTGT GTTGGAATGG TGACAACATG ATTGAAGCAT AAGGGTTGGA CTAAGGAAAC CAAGGCAGGT ATTAGAAGCA ATCGATGCTA TTGAACCACC CATTAAGATT ACCATTACAA GATGTTTACA GTGCCAGTCG GTAGAGTCGA AACCGGTGTC CACTTTTGCT CCAGCAGGTG TCACCACCGA ACCATGAACA ATTAGAACAA GGTGTTCCAG GTTAAGAACA GACCACCAA TGGGTGCAGC CTCCAAGAAC GACCCACCAA TGGGTGCAGC TTGTCTTGAA CCACCCTGGT CAAATTTCCG GATTGACAGA AGAACTGGTA AGTCTGTTGA	CAAGAAGGTT GGTTACAACC CAAAGACTGT TCCATTCGTT GTTGGAATGG TGACAACATG ATTGAAGCAT CCACCAACTG AAGGGTTGGA CTAAGGAAAC CAAGGCAGGT GTTGTTAAGG ATTAGAAGCA ATCGATGCTA TTGAACCACC TGTCAGACCA CATTAAGATT ACCATTACAA GATGTTTACA AGATTGGTGG GTGCCAGTCG GTAGAGTCGA AACCGGTGTC ATTAAGCCAG CACTTTTGCT CCAGCAGGTG TCACCACCGA AGTCAARTCC ACCATGAACA ATTAGAACAA GGTGTTCCAG GTGATAACGT GTTAAGAACG TCTCTGTCAA GGATATCAAG AGAGGTAACG CTCCAAGAAC GACCCACAA TGGGTGCAGC TTCYTTCAAT TTGTCTTGAA CCACCCTGGT CAAATTTCCG CTGGTTACTC GATTGTCACA AGAACTGCAA AGAACTTCCA AGACCAACCAA TGCATGTAAG TTCGACGAAT GATTGACAGA AGAACTGGTA AGTCTGTTGA AGACCATCCA	TGGGATGAAA ACAGATTTGA AGAAATTGTC AAGGAAACCC AAAACTTCAT CAAGAAGGTT GGTTACAACC CAAAGACTGT TCCATTCGTT CCAATCTCTG GTTGGAATGG TGACAACATG ATTGAAGCAT CCACCAACTG TCCATTGGTAC AAGGGTTGGA CTAAGGAAAC CAAGGCAGGT GTTGTTAAGG GTAAGACCTT ATTAGAAGCA ATCGATGCTA TTGAACCACC TGTCAGACCA ACCGAAAAGC CATTAAGATT ACCATTACAA GATGTTTACA AGATTGGTGG TATTGGTACT GTGCCAGTCG GTAGAGTCGA AACCGGTGTC ATTAAGCCAG GTATGGTTGT CACTTTTGCT CCAGCAGGTG TCACCACCGA AGTCAARTCC GTTGAAATGC ACCATGAACA ATTAGAACAA GGTGTTCCAG GTGATAACGT TGGTTTCAAC GTTAAGAACG TCTCTGTCAA GGATATCAAG AGAGGTAACG TTTGTGGTGA CTCCAAGAAC GACCCACCAA TGGGTGCAGC TTCYTTCAAT GCTCAAGTCA TTGTCTTGAA CCACCCTGGT CAAATTTCCG CTGGTTACTC TCCAGTCTTG GATTGTCACA CTGCCCACAT TGCATGTAAG TTCGACGAAT TAATCGAAAA GATTGACAGA AGAACTGGTA AGTCTGTTGA AGACCATCCA AAGTCYGTCA AGTCTGGTGA TGCAGCTATC GTCAAGATGG TCCCAACCAA GCC

2) INFORMATION FOR SEQ ID NO: 440 (i) SEQUENCE CHARACTERISTICS: 5 (A) LENGTH: 1091 bases TYPE: Nucleic acid (B) (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear 10 (ii) MOLECULE TYPE: Genomic DNA (vi)ORIGINAL SOURCE: (A) ORGANISM: Malassezia furfur (B) STRAIN: ATCC 42132 15 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 440 CAAGCTCAAG GCTGAGCGTG AGCGTGGTAT CACCATCGAC ATTGCTCTGT 50 GGAAGTTCGA GACCCCTAAG TACCACGTTA CCGTCATTGA CGCTCCTGGT 100 20 CACCGTGACT TCATCAAGAA CATGATTACG GGTACCTCGC AGGCTGACTG 150 CGCTATCCTC ATCATTGCCG GTGGTACCGG TGAGTTCGAG GCTGGTATCT 200 CGAAGGACGG TCAGACCCGT GAGCACGCTC TGCTCGCTTT CACCCTGGGT 250 GTGCGTCAGC TCATTGTGGC CGTCAACAAG ATGGACACCA CCAAGTACTC 300 GGAGGACCGC TTCAACGAGA TTGTCCGCGA AGTGTCGAAC TTCATCAAGA 350 AGGTCGGTTT CAACCCCAAG ACTGTTGCCT TCGTCCCCAT CTCGGGCTGG 25 400 CACGGTGACA ACATGATCGA GGCCACCACC AACATGCCTT GGTACAAGGG 450 CTGGGAGAG GAGACCAAGT CGGGCAAGGT CACTGGTAAG ACTCTGCTGG 500 ACGCCATCGA CGCCATCGAG CCCCCGACCC GCCCCACTGA CAAGCCCCTG 550 CGTCTCCCTC TGCAGGATGT GTACAAGATC GGTGGTATCG GTACTGTCCC 600 TGTCGGTCGT GTTGAGACCG GTGTGATCAA GCCCGGTATG GTTGTGACCT 30 650 TCGCTCCCTC GAACGTCACC ACTGAAGTTA AGTCGGTTGA GATGCACCAC 700 GAGTCGCTCC CTGAGGGTCT CCCCGGTGAC AACGTTGGTT TCAACGTGAA 750 GAACGTCTCG GTTAAGGACA TTCGCCGTGG TAACGTTGCC TCGGACTCGA 800 AGAACGACCC CGCTCAGGAG GCTGCTTCGT TCAACGCGCA GGTCATTGTC 850 ATGAACCACC CTGGTCAGAT CAGCAACGGT TACTCGCCCG TGCTTGACTG 900 CCACACTGCG CACATTGCCT GCCGCTTCAA CAACATCCTC CAGAAGATCG 950 ACCGTCGCTC GGGTAAGGTG CTTGAGGAGA ACCCCAAGTT CATCAAGTCG 1000 GGTGACGCTG CCATGGTGGA GATGATCCCC ACCAAGCCCA TGTGTGTGGA 1050 GTCGTTCAAC GAGTACCCCC CTCTGGGTCG TTTCGCTGTG C 1091 40 2) INFORMATION FOR SEQ ID NO: 441 45 (i) SEQUENCE CHARACTERISTICS: LENGTH: 749 bases (A) (B) TYPE: Nucleic acid STRANDEDNESS: Double (C) TOPOLOGY: Linear 50 (ii) MOLECULE TYPE: Genomic DNA (vi)ORIGINAL SOURCE: ORGANISM: Malassezia pachydermatis (A) 55 (B) STRAIN: ATCC 42756 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 441 ACCACCAAGT ACTCGGAGGA CCGCTTCAAC GAGATTATTC GCGAGACTTC 50 GAACTTCATC AAGAAGGTCG GTTACAACCC GAAGACTGTT GCCTTCGTCC 60 100 267

WO 01/23604	PCT/CA00/01150

	CGATCTCGGG	CTGGCACGGT	GACAACATGA	TTGAGGCGAC	CACCAACATG	150
	CCGTGGTACA	AGGGCTGGGA	GAAGGAGACC	AAGTCGGGCA	AGGCCACTGG	200
	TAAGACCCTT	CTGGACGCTA	TTGACGCCAT	TGAGCCGCCG	ACGCGCCCGA	250
	CCGACAAGCC	TCTCCGTCTT	CCTCTCCAGG	ATGTGTACAA	GATCGGTGGT	300
5	ATCGGTACYG	TCCCGGTCGG	CCGTGTTGAG	ACCGGTGTTA	TCAAGCCCGG	350
	TATGGTTGTG	ACCTTCGCTC	CGTCGAACGT	CACSACTGAA	GTTAAGTCGG	400
	TCGAGATGCA	CCACGAGCAG	ATCCCTGAGG	GTCTTCCGGG	TGACAACGTT	450
	GGTTTCAACG	TGAAGAACGT	GTCGGTCAAG	GACATTCGCC	GTGGTAACGT	500
	CGCCTCGGAC	TCGAAGAACG	ACCCGGCTCA	GGAGGCTGCC	TCGTTCAATG	550
10	CTCAGGTCAT	TGTGATGAAC	CACCCTGGTC	AGATCAGCAA	CGGTTACTCG	600
	CCRGTGCTCG	ACTGCCACAC	TGCTCACATT	GCCTGCCGCT	TCAACAACAT	650
	CCTCCAGAAG	ATCGACCGTC	GTTCGGGTAA	GGTTCTYGAA	GAGAACCCCA	700
	AGTTCATCAA	GTCGGGTGAC	GCTGCCATGG	TTGAGATGAT	CCCGACCAA	749

15

20

2) INFORMATION FOR SEQ ID NO: 442

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1150 bases

- (B) TYPE: Nucleic acid
- (C) STRANDEDNESS: Double
- (D) TOPOLOGY: Linear
- 25 (ii) MOLECULE TYPE: Genomic DNA

(vi)ORIGINAL SOURCE:

- (A) ORGANISM: Malbranchea filamentosa
- (B) STRAIN: ATCC 48174

30

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 442

	ACTGAAGGCC	GAGCGTGAGC	GTGGTATCAC	CATCGATATC	GCCCTCTGGA	50
	AGTTCGAGAC	CCCCAAGTAC	CATGTCACCG	TCATTGGTAC	GTTCGACATG	100
35	TTCGACCTTT	TGCCTAGTGT	CCCCTTCTAA	CCACAGTTTA	TAGACGCCCC	150
	TGGCCATCGT	GATTTCGTCA	AGAACATGAT	CACTGGTACT	TCCCAGGCTG	200
	ATTGCGCTAT	CCTCATCATT	GCTTCCGGCA	CTGGTGAATT	CGAGGCTGGT	250
	ATCTCCAAGG	ATGGCCAGAC	CCGTGAGCAC	GCTCTGCTTT	CCTTCACCCT	300
	CGGTGTTAGG	CAGCTCATTG	TCGCCCTCAA	CAAGATGGAC	ACTGTCAACT	350
40	TCGCTGAGGC	CCGTTACAAC	GAGATTGTCA	AGGAAGTCTC	CAACTTCATC	400
	AAGAAGGTCG	GCTACAACCC	CAAGGCCGTT	CCTTTCGTCC	CCATCTCCGG	450
	TTTCGAGGGT	GACAACATGA	TCGAGGCCTC	CACCCGCATT	CCTTGGTACA	500
	AGGGCTGGAA	CAAGGAGACC	GCCAGTGGCA	AGAGCACCGG	CAAGACCCTY	550
	CTCGAGGCCA	TTGATGCCAT	CGAACCCCCG	GTCCGTCCCA	CCGACAAGCC	600
45	CCTYCGTCTC	CCTCTTCAGG	ATGTGTACAA	GATCTCCGGT	ATTGGCACTG	650
	TTCCTGTCGG	TCGTGTTGAG	ACTGGTGTCA	TCAAGCCTGG	TATGGTCGTT	700
	ACTTTCGCCC	CCGCCAACGT	CACCACTGAA	GTCAAGTCCG	TCGAGATGCA	750
	CCACCAGCAG	CTCCAGGCCG	GTAACCCCGG	TGACAACGTC	GGCTTCAACG	800
•	TCAAGAACGT	TTCCGTCAAG	GAAGTCCGCC	GTGGCAACGT	TGCCTCCGAC	850
50	TCCAAGAACG	ACCCCGCCAA	GGGCTGCGAC	TCCTTCAACG	CCCAGGTCAT	900
	CGTCCTTAAC	CACCCCGGTC	AGGTCGGTGC	TGGATACGCT	CCCGTCCTCG	<i>9</i> 50
	ATTGCCACAC	TGCCCACATT	GCTTGCAAGT	TCTCTGAGCT	TCTTGAGAAG	1000
	ATCGATCGCC	GTACCGGTAA	ATCCGTTGAG	GACCACCCCA	AGTTCATCAA	1050
	GTCTGGTGAT	GCCGCTATCG	TCAAGATGGT	TCCCTCCAAG	CCTATGTGCG	1100
55	TTGAGGCTTT	CACTGACTAC	CCTCCCCTTG	GTCGTTTCGC	CGTCCGTGAC	1150

2) INFORMATION FOR SEQ ID NO: 443

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1099 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
- (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: Genomic DNA
- (vi) ORIGINAL SOURCE:

5

45

55

- 10 (A) ORGANISM: Metschnikowia pulcherrima
 - (B) STRAIN: DSM 70336
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 443

15	GGACAAGTTG	AAGGCTGAGA	GAGAGAGAGG	TATCACCATC	GACATTGCCT	50
	TGTGGAAGTT	CGAGACTCCT	AAGTACCACG	TCACCGTYAT	TGACGCCCCA	100
	GGTCACAGAG	ATTTCATCAA	GAACATGATC	ACTGGTACTT	CCCAGGCTGA	150
	CTGTGCYATC	TTGATTATCG	CYGGTGGTGT	TGGTGAGTTC	GAGGCTGGTA	200
	TCTCCAAGGA	TGGCCAGACC	AGAGAGCACG	CTTTGTTGGC	YTACACCTTG	250
20	GGTGTTAGAC	ARTTGATTGT	TGCCGTCAAC	AAGATGGACT	CTGTCAAGTG	300
	GGACAAGAAC	AGATTTGAGG	AGATCATCAA	GGAGACCTCT	AACTTCGTCA	350
	AGAAGGTTGG	TTACAACCCT	AAGACYGTGC	CATTCGTGCC	AATYTCTGGT	400
	TGGAACGGTG	ACAACATGAT	TGAGGCYTCC	ACTAACTGCC	CATGGTACAA	450
	GGGTTGGGAG	AAGGAGACCA	AGGCCGGTAA	GTCTWCCGGT	AAGACCTTGT	500
25	TGGAGGCCAT	TGACGCCATT	GAGCCACCAA	CCAGACCTAC	CGACAAGGCC	550
	TTGAGATTGC	CTTTGCAGGA	TGTCTACAAG	ATCGGTGGTA	TCGGAACGGT	600
	GCCAGTCGGC	CGTGTCGAGA	CCGGTGTCAT	TAAGGCCGGT	ATGGTTGTYA	650
	CCTTYGCCCC	AGCTGGTGTC	ACCACTGAGG	TCAAGTCCGT	CGAGATGCAC	700
	CACGAGCAGT	TGGTCGAGGG	TCTTCCAGGT	GACAAYGTTG	GTTTCAACGT	750
30	CAAGAACGTC	TCCGTTAAGG	AGATCAGAAG	AGGTAACGTC	TGTGGTGACT	800
	CCAAGCAGGA	CCCACCAAAG	GGTGCCGCTT	CTTTCACCGC	YCAGGTTATT	850
	GTGTTGAACC	ACCCTGGTCA	GATCTCCTCT	GGTTACTCTC	CAGTGTTGGA	900
	CTGYCACACC	GCCCACATTG	CCTGTAARTT	CGACACCTTG	TTGGAGAAGA	950
	TTGACAGAAG	AACTGGTAAG	TCCTTGGAGT	CYGAGCCTAA	GTTCGTCAAG	1000
35	TCYGGTGACG	CCGCCATTGT	CAAGATGGTG	CCAACCAAGC	CAATGTGTGT	1050
	TGAGGCTTTC	ACCGACTACC	CACCTTTGGG	TAGATTCGCC	GTCAGAGAC	1099

- 40 2) INFORMATION FOR SEQ ID NO: 444
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1153 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: Genomic DNA
- 50 (vi)ORIGINAL SOURCE:
 - (A) ORGANISM: Paecilomyces lilacinus
 - (B) STRAIN: ATCC 42570
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 444

CAAGCTCAAG GCCGAGCGTG AGCGTGGTAT CACCATCGAC ATTGCCCTCT 50
GGAAGTTCGA GACTCCCAAG TACTATGTCA CCGTCATTGG TACGTCGACT 100
CGCGCGAGAC TGGTCGCAAT TTCCACGTCG CTAACGTGCT TGAACAGACG 150
CTCCCGGCCA CCGTGACTTC ATCAAGAACA TGATCACTGG TACCTCCCAG 200
GCTGACTGCG CTATCCTCAT TATCGCTGCC GGCACTGGTG AGTTCGAGGC 250

	TGGTATCTCC	AAGGATGGCC	AGACCCGTGA	GCACGCTCTG	CTCGCCTACA	300
	CCCTCGGTGT	TAAGCAGCTC	ATCGTCGCTA		GGACACCACC	350
	AAGTGGTCTG	AGGCCCGTTT	CCAGGAGATC	ATCAAGGAGA	CCTCCAACTT	400
	CATCAAGAAG		ACCCCAAGAC		GTCCCCATCT	450
5	CTGGTTTCCA			CCTCCACCAA		500
_	TACAAGGGCT	GGGAGAAGGA		GGCAAGTCCA		550 550
	CCTCCTTGAG				· - 	
		GCCATCGACT			CCCAGCGACA	600
	AGCCCCTCCG	CCTTCCCCTT	CAGGATGTGT	ACAAGATCGG	CGGTATCGGC	650
	ACAGTCCCTG	TCGGCCGTAT	CGAGACTGGT	GTCATCAAGC	CCGGCATGGT	700
10	CGTGACCTTC	GCTCCTTCCA	ACGTCACCAC	CGAAGTCAAG	TCCGTTGAGA	750
	TGCACCACGA	GCAGCTCTCC	GAGGGTGTCC	CCGGTGACAA	CGTCGGCTTC	800
	AACGTCAAGA	ACGTCTCCGT	CAAGGAGATC	CGTCGTGGCA	ACGTCGCCGG	850
	TGACTCCAAG	AACGACCCCC	CTCTGGGTGC	CGCTTCTTTC	GATGCCCAGG	900
	TCATCGTCCT	CAACCACCCC	GGCCAGGTCG	GTGCTGGCTA	CGCCCCGTC	950
15	CTCGACTGCC	ACACCGCCCA	CATTGCCTGC	AAGTTCGCCG	AGATCAAGGA	1000
	GAAGATCGAC	CGCCGTACCG	GCAAGTCTGT	CGAGTCCGCC	CCCAAGTTCA	1050
	TCAAGTCTGG	CGACTCTGCC	ATCGTCAAGA	TGATTCCCTC	CAAGCCCATG	1100
	TGCGTTGAGG	CTTTCACCGA	CTACCCTCCT	CTGGGCCGCT	TCGCCGTCCG	1150
	TGA					
20						1133
15 20	TCATCGTCCT CTCGACTGCC GAAGATCGAC TCAAGTCTGG TGCGTTGAGG	CAACCACCCC ACACCGCCCA CGCCGTACCG CGACTCTGCC	CTCTGGGTGC GGCCAGGTCG CATTGCCTGC GCAAGTCTGT ATCGTCAAGA	CGCTTCTTTC GTGCTGGCTA AAGTTCGCCG CGAGTCCGCC TGATTCCCTC	GATGCCCAGG CGCCCCCGTC AGATCAAGGA CCCAAGTTCA CAAGCCCATG	900 950 1000 1 050

2) INFORMATION FOR SEQ ID NO: 445

- 25 (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 763 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear

- (ii) MOLECULE TYPE: Genomic DNA
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Paracoccidioides brasiliensis
- 35 (B) STRAIN: ATCC 32071
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 445

	TACCACTAAG	TGGTCCGAGA	CCCGATTCAA	TGAAATTATC	AAGGAAGTCA	50
40	CCAATTTCAT	TAAGAAGGTC	GGATATAACC	CCAAGACTGT	TCCTTTCGTT	100
	CCCATTTCTG	GTTTCGAGGG	TGACAACATG	ATCGAGCCCT	CTGCCAACTG	150
	CCCATGGTAC	AAGGGCTGGT	CCAAGGAGAC	TGCTCAGGGC	AAGTACTCTG	200
	GCAAGACCCT	TCTTGAGGCC	ATCGACGCCA	TTGAGCCCCC	CACCCGTCCT	250
	ACCGATAAAC	CTCTCCGTCT	TCCCCTCCAG	GATGTCTACA	AGATCTCCGG	300
45	TATTGGCACT	GTTCCTGTCG	GACGTGTTGA	GACTGGAGTC	ATCAAGCCCG	350
	GTATGGTCGT	GACCTTCGCT	CCCGCCAACG	TCACCACTGA	AGTCAAGTCC	400
				GGTAACCCCG		450
	CGGCTTCAAC	GTCAAGAATG	TTTCCGTCAA	AGAAGTCCGC	CGTGGTAACG	500
	TTGCCGGTGA	CTCTAAGAAT	GATCCCCCAA	AGGGCTGCGA	TTCCTTCAAT	550
50	GCCCAGGTCA	TCGTCCTCAA	CCACCCTGGT	CAGGTTGGCG	CTGGTTATGC	600
	CCCAGTCCTC	GACTGCCATA	CTGCCCACAT	TGCCTGCAAA	TTCGCTGAGC	650
	TCCTTGAGAA	GATTGATCGA	CGAACCGGAA	AGTCTGTTGA	GAACAACCCC	700
	AAGTTCATCA	AGTCCGGTGA	TGCTGCTATC	GTCAAGATGA	TTCCTTCCAA	750
	GCCCATGTGC	GTC				763
55						

- 2) INFORMATION FOR SEQ ID NO: 446
- 60 (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1346 bases
- (B) TYPE: Nucleic acid
- (C) STRANDEDNESS: Double
- (D) TOPOLOGY: Linear

5

- (ii) MOLECULE TYPE: Genomic DNA
- (vi)ORIGINAL SOURCE:
 - (A) ORGANISM: Penicillium marneffei
- 10 (B) STRAIN: ATCC 64101
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 446

	AAGCTCAAGG	CTGAGCGTGA	GCGTGGTATC	ACCATCGATA	TTGCTCTCTG	50
15	GAAGTTCCAG	ACTGCCAAGT	ACGAGGTTAC	CGTCATTGAC	GCCCCCGGTC	100
	ACCGTGATTT	CATCAAGAAC	ATGATCACTG	GTACCTCCCA	GGCCGATTGC	150
	GCTATTCTCA	TCATTGCCTC	TGGTACTGGT	GAATTCGAGG	CTGGTATCTC	200
	CAAGGATGGC	CAGACTCGTG	AGCACGCTCT	TTTGGCTTTC	ACCCTCGGTG	250
	TCCGTCAGCT	CATTGTTGCC	CTCAACAAGA	TGGACACTTG	CAAGTGGTCT	300
20	CAGGGTGAGT	ACTCGTACCT	GCGTTTGGCC	TTGAATATCT	TACTAATGCA	· 350
	CCATAGATCG	TTACAACGAA	ATTGTCAAGG	AGACTTCCAA	CTTCATCAAG	400
	AAGGTCGGAT	ACAACCCCAA	GAACGTTCCT	TTCGTTCCTA	TCTCCGGTTT	450
	CAACGGTGAC	AACATGCTTG	AGCCCTCCCC	CAACTGCCCC	TGGTACAAGG	500
	GTTGGGAGAA	GGAGACCAAG	GCCGGTAAGG	TCACTGGTAA	GACCCTCCTC	550
25	GAGGCCATCG	ACGCCATTGA	GCCCCTACC	CGTCCCGCCA	ACAAGGTTAG	600
	TCCCTCCTCG	ACTACTCAAA	CCCTCCTCAT	AAGTTCAGAT	TACTGACTCG	650
	TTCACAGCCC	CTCCGTCTTC	CCCTCCAGRA	TGTCTACAAG	ATCGGTGGTA	700
	TTGGAACGGT	TCCCGTCGGT	CGTGTTGAGA	CTGGTACCAT	CGTTCCTGGT	750
	ATGGTTGTCA	CCTTGTAAGT	CACTCTCCTC	GCTTATCCTA	CCTGAAATCA	800
30	TCATGTGCTA	ACTTGACACT	CAGCGCTCCC	GCCAACGTCA	CCACTGAAGT	850
	CAAGAGTGTT	GAAATGCACC	ACCAGCAGCT	CACTGCCGGT	CAGCCCGGTG	900
	ACAACGTTGG	TTTCAACGTG	AAGAACGTCT	CCGTCAAGGA	AATCCGTCGT	950
	GGTAACGTTG	CTGGTGACAG	CAAGAACGAC	CCCCCTGCCG	GTGCTGCCTC	1000
	CTTCAACGCC	CAGGTCATCG	TCCTCAACCA	CCCCGGTCAG	GTCGGTGCTG	1050
35	GTTACGCCCC	AGTCCTCGAT	TGCCACACTG	CCCACATTGC	TTGCAAGTTC	1100
	GCTGAGCTCC	TCGAGAAGAT	TGACCGTCGT	ACCGGAAAGT	CTGTTGAGGA	1150
	CCACCCCAAG	TTCATCAAGT	CCGGTGACGC	TGCCATCGTC	AAGATGATTC	1200
	CTTCCAAGCC	CATGTGTGTT	GAGGCTTTCA	CCGAGTACCC	TCCTCTCGGT	1250
	CGTTTCGCCG	TTCGCGAGTA	AGTTTTATCT	CCGTTGTCTA	TTTTCCATCC	1300
40	TTCCCTTCTC	CTCCGTCTTC	CATATATACT	TTTTCAGTTA	TATGTG	1346

2) INFORMATION FOR SEO ID NO: 447

45

50

55.

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1094 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
- (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: Genomic DNA
 - (vi)ORIGINAL SOURCE:
 - (A) ORGANISM: Pichia anomala
 - (B) STRAIN: ATCC 18205
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 447
- 60 AAGTTAAAAG CTGAACGTGA AAGAGGTATC ACTATTGATA TTGCTTTATG

	GAAATTCGAA	ACTCCAAAAT	ACCATGTTAC	CGTTATTGAT	GCTCCAGGTC	100
	ACAGAGATTT	CATCAAAAAT	ATGATTACTG	GTACTTCCCA	AGCTGATTGT	150
	GCTATYTTAA	TTATTGCCGG	TGGTATTGGT	GAATTCGAAG	CTGGTATCTC	200
	AAAAGATGGT	CAAACCAGAG	AACACGCTTT	NTTAGCTTAC	ACCTTAGGTG	250
5	TTAAACAATT	GATTGTTGCT	ATCAACAAGA	TGGATTCCGT	TAAATGGGAT	300
	GAATCTCGTT	TCGAAGAAAT	TGTCAAGGAA	ACYTCAAACT	TTATCAAGAA	350
	AGTTGGTTAC	AACCCAAAAA	CTGTTCCATT	CGTTCCAATC	TCAGGTTGGA	400
	ATGGTGATAA	CATGATTGAA	CCATCAWCTA	ACTGTCCATG	GTACAAAGGT	450
	TGGAAAAAAG	AAACCAAAGC	TGGTGAAGCT	AAAGGTAAAA	CTTTATTAGA	500
10	AGCCATTGAT	GCTATTGACC	CACCATCAAG	ACCAACTGAT	AAACCATTAC	550
	GTTTACCATT	ACAAGATGTT	TACAARATTG	GTGGTATTGG	TACTGTGCCA	600
	GTCGGTAGAG	TTGAAACCGG	TGTTATCAAA	CCAGGTATGG	TTGTTACCTT	650
	TGCCCCAGCT	GGTGTTACCA	CTGAAGTCAA	ATCTGTTGAA	ATGCATCATG	700
	AACAATTGAC	TGAAGGTTTA	CCAGGTGACA	ATGTTGGTTT	CAACGTTAAG	750
15	AATGTTTCTG	TTAAAGAAAT	CCGTCGTGGT	AACGTCTGTG	GTGACTCTAA	800
	AAACGATCCA	CCAAAAGCTG	CTGAATCATT	CAATGCTCAA	GTTATTGTCT	850
	TAAACCATCC	AGGTCAAATC	TCTGCTGGTT	ACTCTCCAGT	TTTAGATTGT	900
	CACACTGCTC	ACATTGCTTG	TAAATTTGAC	ACTTTAATTG	AAAAAATTGA	950
	CAGACGTACT	GGTAAGAAAT	TAGAAGAAGC	TCCAAAATTC	ATCAAATCAG	1000
20	GTGATGCTGC	TATTGTTAAA	TTTGTTCCAT	CAAAACCATT	ATCAGTTGAA	1050
	GCTTTCACTG	ACTACCCACC	ATTAGGTCGT	TTCGCTGTCA	GAGA	1094

25 2) INFORMATION FOR SEQ ID NO: 448

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1100 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: Genomic DNA
- 35 (vi)ORIGINAL SOURCE:

30

- (A) ORGANISM: Pichia anomala
- (B) STRAIN: ATCC 2149
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 448

	CTTAGATAAG	TTAAAAGCTG	AACGTGAAAG	AGGTATCACT	ATTGATATTG	50
	CTTTATGGAA	ATTCGAAACT	CCAAAATACC	ATGTTACCGT	TATTGATGCT	100
	CCAGGTCACA	GAGATTTCAT	CAAAAATATG	ATTACTGGTA	CTTCCCAAGC	150
	TGATTGTGCT	ATMTTAATTA	TTGCCGGTGG	TATTGGTGAA	TTCGAAGCTG	200
45	GTATCTCAAA	AGATGGTCAA	ACCAGAGAAC	ACGCTTTRTT	AGCTTACACC	250
	TTAGGTGTTA	AACAATTGAT	TGTTGCTATC	AACAAGATGG	ATTCCGTTAA	300
	ATGGGATGAA	TCTCGTTTCG	AAGAAATTGT	CAAGGAAACY	TCAAACTTTA	350
	TCAAGAAAGT	TGGTACAACC	CAAAAACTGT	TCCATTCGTT	CCAATCTCAG	400
	GTTGGAATGG	TGATAACATG	ATTGAACCAT	CAACTAACTG	TCCATGGTAC	450
50	AAAGGTTGGA	AAAAAGAAAC	CAAAGCTGGT	GAAGCTAAAG	GTAAAACTTT	500
_	ATTAGAAGCC	ATTGATGCTA	TTGATCCACC	ATCAAGACCA	ACTGATAAAC	550
	CATTACGTTT	ACCATTACAA	GATGTTTACA	ARATTGGTGG	TATTGGTACT	600
	GTGCCAGTCG	GTAGAGTTGA	AACCGGTGTT	ATCAAACCAG	GTATGGTTGT	650
	TACCTTTGCC	CCAGCTGGTG	TTACCACTGA	AGTCAAATCT	GTTGAAATGC	700
55	ATCATGAACA	ATTGACTGAA	GGTTTACCAG	GTGACAATGT	TGGTTTCAAC	750
_	GTTAAGAATG	TTTCTGTTAA	AGAAATCCGT	CGTGGTAACG	TCTGTGGTGA	800
	CTCTAAAAAC	GATCCACCAA	AAGCTGCTGA	ATCATTCAAT	GCTCAAGTTA	850
	TTGTCTTAAA	CCATCCAGGT	CAAATCTCTG	CTGGTTACTC	TCCAGTTTTA	900
	GATTGTCACA	CTGCTCACAT	TGCTTGTAAA	TTTGACACTT	TAATTGAAAA	950
60	AATTGACAGA	CGTACTGGTA	AGAAATTAGA	AGAAGCTCCA	AAATTCATCA	1000

AATCAGGTGA TGCTGCTATT GTTAAATTTG TTCCATCAAA ACCATTATCA 1050 GTTGAAGCTT TCACTGACTA CCCACCATTA GGTCGTTTCG CTGTCAGAGA 1100

5

10

- 2) INFORMATION FOR SEQ ID NO: 449
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1201 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: Genomic DNA

15

- (vi)ORIGINAL SOURCE:
 - (A) ORGANISM: Pseudallescheria boydii
 - (B) STRAIN: ATCC 44331
- 20 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 449

	CAAGCTCAAG	GCCGAGCGTG	AGCGTGGTAT	CACCATCGAT	ATCGCCCTCT	50
	GGAAGTTCGA	GACCCCCAAG	TACCAGGTCA	CCGTCATTGG	TATGTCTTTG	100
	00.2.01100.1	011000000		GCACAATTCC	AGCCCTCGAT	150
	TGCTTTTTGT	GCTTTTTGTG	CCTGTGCCTC			
25	AATTATGAAC	CTCGTACTAA	TATGTCGTTC	TCCCACTACC	CACAGACGCC	200
	CCCGGCCATC	GTGATTTCAT	CAAGAACATG	ATTACTGGTA	CCTCCCAGGC	250
	TGATTGCGCC	ATTCTCATCA	TTGCCTCCGG	TACTGGTGAG	TTCGAGGCTG	300
	GCATCTCCAA	GGATGGCCAG	ACCCGTGAGC	ACGCTCTTCT	CGCCTTCACC	350
	CTCGGTGTCA	AGAACCTCAT	TGTTGCCATC	AACAAGATGG	ACACCAACAA	400
30	CTGGTCCGAG	GACCGATACA	AGGAGATCAT	CAAGGAGACC	TCCAACTTCA	450
	TCAAGAAGGT	CGGCTACAAC	CCCAAGGCCG	TTCCTTTCGT	CCCCATCTCC	500
	GGTTTCCACG	GAGACAACAT	GCTTACCCCC	TCCACCAACT	GCCCCTGGTA	550
	CAAGGGTTGG	GTCCGTGAGG	TCAAGGGTAA	CACCCTTACC	GGCAAGACCC	600
	TTCTCGAGGC	CATCGACTYC	ATCGAGCCCC	CCAAGCGTCC	CACCGAGAAG	650
35	CCCCTCCGTC	TTCCCCTTCA	GGACGTCTAC	AAGATCGGTG	GTATTGGCAC	700
	TGTGCCCGTC	GGCCGTATCG	AGACCGGTAT	CCTCAAGCCC	GGTATGGTCG	750
	TCACCTTCGC	TCCCTCCAAC	GTCACCACTG	AAGTCAAGTC	CGTCGAGATG	800
	CACCACGAGC	AGCTTACCGA	GGGTGTCCCC	GGTGACAACG	TTGGTTTCAA	850
	CGTGAAGAAC	GTCTCCGTCA	AGGATATCCG	CCGTGGCAAC	GTCTGCGGTG	900
40	ACTCCAAGAA	CGACCCCCC	GCTGCTGCCG	CCTCTTTCCA	GGCCCAGGTC	950
	ATTGTCCTCA	ACCACCCGG	CCAGATCGGT	GCTGGTTACG	CTCCCGTTCT	1000
	TGACTGCCAC	ACTGCCCACA	TTGCTTGCAA	GTTCGCCGAG	CTCCTTGAGA	1050
	AGATCGACCG	CCGTACCGGT	AAGTCGGTCG	AGAACAACCC	CAAGTTCGTC	1100
	AAGTCTGGTG	ATGCCGCCAT	CGTCAAGATG	GTTCCCTCCA	AGCCCATGTG	1150
45	TGTTGAGTCC	TTCACCGAGT	ACCCCCTCT	CGGTCGTTTC	GCCGTCCGTG	1200
	A					1201

- 50 2) INFORMATION FOR SEQ ID NO: 450
 - (i) SEOUENCE CHARACTERISTICS:
 - (A) LENGTH: 1095 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: Genomic DNA
- 60 (vi)ORIGINAL SOURCE:

(A) ORGANISM: Rhizopus oryzae

(B) STRAIN: ATCC 56015

```
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 450
```

_						
	CAAGCTTAAG	GCTGAACGTG	AACGTGGTAT	CACCATCGAT	ATTGCTCTCT	50
	GGAAGTTCGA	AACCCCCAAG	TACCAAATTA	CCGTTATTGA	TGCTCCCGGT	100
	CACCGTGATT	TCATCAAGAA	CATGATTACC	GGTACTTCTC	AAGCCGATTG	150
	TGCTATTCTT	ATCATTGCTG	GTGGTACTGG	TGAATTCGAA	GCTGGTATCT	200
10.	CCAAGGATGG	TCAAACCCGT	GAACACGCCC	TTTTGGCTTT	CACTCTCGGT	250
	GTCCGTCAAT	TGATTGTTGC	TGTCAACAAG	ATGGATACCA	CCAAGTGGTC	300
	CGAAGCTCGT	TTCAACGAAA	TYGTCAAGGA	AGTTTCTTCC	TTCATCAAGA	350
	AGATTGGTTA	CAACCCCAAG	TCTGTTCCCT	TCGTCCCCAT	CTCTGGTTGG	400
	CACGGTGACA	ACATGTTGGA	AGAATCTACC	AACATGCCCT	GGTACAAGGG	450
15	ATGGAACAAG	GAAACCAAGG	CTGGTGCCAA	GTCTGGTAAG	ACCCTCTTGG	500
	ATGCCATTGA	CAACATTGAC	CCTCCTACCC	GTCCTGTTGA	CAAGCCTCTC	550
	CGTCTTCCTC	TTCAAGATGT	TTACAAGATT	GGTGGTATCG	GTACTGTCCC	600
	CGTCGGTCGT	GTCGAAACTG	GTGTCATCAA	GGCTGGTATG	GTTGTCACCT	650
	TCGCTCCTGC	TGCTGTCACC	ACTGAAGTTA	AGTCCGTCGA	AATGCACCAC	700
20	GAAACCCTCA	CTGAAGGTCT	CCCCGGTGAC	AACGTCGGTT	TCAACGTCAA	750
	GAACGTCTCC	GTCAAGGATA	TCCGTCGTGG	TAACGTCTGT	TCTGACTCCA	800
	AGAACGACCC	CGCCAAGGAA	GCCGGTTCCT	TCACCGCTCA	AGTCATTATC	850
	TTGAACCACC	CTGGTCAAAT	TGGTGCTGGT	TACGCTCCYG	TTTTGGATTG	900
	TCACACTGCT	CACATTGCCT	GTAAGTTCGC	TGAATTGATC	GAAAAGATTG	950
25	ACAGACGTTC	CGGTAAGTCC	TTGGAAGCTA	CTCCCAAGTT	CGTCAAGTCT	1000
	GGTGACTCTG	CCATCGTCAA	GATGATCCCC	TCCAAGCCCA	TGTGTGTTGA	1050
	AGCTTACACT	GACTACCCTC	CTCTCGGTCG	TTTCGCTGTT	CGTGA	1095

2) INFORMATION FOR SEQ ID NO: 451

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1092 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: Genomic DNA

40

30

35

- (vi)ORIGINAL SOURCE:
 - (A) ORGANISM: Rhodotorula minuta
 - (B) STRAIN: ATCC 10658
- 45 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 451

	GCTGAAGGCC	GAGCGAGAGC	GTGGTATCAC	CATCGATATC	GCTCTATGGA	50
	AGTTCGAGAC	CCCCAAGTAC	AACGTCACCG	TCATTGACGC	TCCAGGACAT	100
	CGTGATTTCA	TCAAGAGTGA	GTTAACCATA	ACATCAAACA	GTGTTGCAAA	150
50	CATCAGCTAA	TGCATGTTAT	GCGTCCAGAC	ATGATTACTG	GTACTTCCCA	200
	GGCCGATTGC	GCTATTCTCA	TCATCGCCAC	CGGTGTTGGT	GAGTTCGAGG	250
	CTGGTATCTC	CAAGGATGGC	CAGACCCGAG	AGCACGCCCT	TCTCGCCTTC	300
	ACCCTCGGTG	TCAGACAGCT	CATCGTTGCC	TTGAACAAGA	TGGACTCGGT	350
	CAAGGTAGGC	TAACTTCACA	ACGTCGGCTT	CCCATCATTC	ATTCACTTAC	400
55	CTGTCTTGTC	TTCCACCCTC	CAGTTCTCCG	AGTCCCGATA	CGATGAAATC	450
	GTCAAGGAGA	CATCCGGTTT	CATCAAGAAG	GTCGGATTCG	ACCCCAAGGG	500
	TGTTCCCTTC	GTCCCCATCT	CAGGATGGCA	CGGAGACAAC	ATGATCGAGG	550
	AGTCCACCAA	CATGCCTTGG	TACAAGGGAT	GGAAGAAGAC	CACCAAGACC	600
	GGCGAGTACA	AGGGAAAGAC	CCTGCTCGAG	GCCATCGACT	CCATCGAGCC	650
60	CCCCACCCGT	CCTACCGACA	AGCCTCTCCG	ACTTCCCCTC	CAGGATGTCT	700

PCT/CA00/01150 WO 01/23604

	ACAAGATTGG	TGGTATCGGA	ACAGTGCCAG	TCGGACGAGT	CGAGACTGGT	750
	ACCATCAAGG	CTGGTATGGT	CGTCACCTTC	GCTCCTTCAG	CTGTCACCAC	800
	CGAAGTCAAG	TCTGTTGAGA	TGCACCACGA	GCAGCTCGAG	GCTGGTCTTC	850
	CAGGTGACAA	CGTCGGATTC	AACATCAAGA	ACGTTTCAGT	CAAGGATATC	900
5	CGAAGAGGAA	ACGTCTGCGG	TGACTCCAAG	AACGATCCCC	CCAAGGAGGC	950
	TGCTTCCTTC	ACCGCCCAGG	TCATTGTCCT	CAACCACCCC	GGTCAAATCG	1000
	GTAACGGATA	CTCTCCAGTT	CTCGATTGCC	ACACTGGTGA	GTCATTCTTC	1050
	CATATTAGTT	TGAACTCTTT	TGAACAATAC	TAACGTGAAT	CATTATACTT	1100
	TTCAGCCCAC	ATTGCATGCA	AGTTCGACAC	CCTCCTAGAG	AAGATTGACC	1150
10	GACGATCCGG	AAAGTCCATC	GAAGATACCC	CCAAGTTCGT	CAAGTCTGGT	1200
	GACGCCGCCA	TCGTCAAGAT	GGTCCCCACC	AAGCCAATGT	GCGTTGAGGC	1250
	TTTCACCGAC	TACCCACCTC	TTGGACGATT	CGCCGTCCGT	GA	1292

15

- 2) INFORMATION FOR SEQ ID NO: 452
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1289 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: Genomic DNA

25

20

- (vi)ORIGINAL SOURCE:
 - ORGANISM: Sporobolomyces salmonicolor STRAIN: ATCC 32311 (A)

- (B)
- 30 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 452

	AAGCTCAAGG	CCGAGCGTGA	GCGTGGTATC	ACCATCGATA	TCGCTCTCTG	50
	GAAGTTCGAG	ACCCCCAAGG	TGCGTTCTCA	CCCCGGCTGA	GGAGCACGCA	100
	CGCGAGGGCT	CACGCTGCGC	CTCTTACAGT	ACATGATCAC	CGTCATCGAC	150
35	GCCCCGGGTC	ACCGTGACTT	CATCAAGAAC	ATGATCACCG	GTACCTCGCA	200
	GGCCGACTGC	GCCATCCTCA	TCATCGCCGC	CGGTACCGGT	GAGTTCGAGG	250
	CTGGTATCTC	GAAGGACGGC	CAGACCCGCG	AGCACGCCCT	CCTCGCCTTC	300
	ACCCTCGGTG	TCCGTCAGCT	CATCGTCGCC	ATCAACAAGA	TGGACACGAC	350
	CAAGTACTCG	GAGGCCCGTT	TCGAGGAGAT	CATCAAGGAG	ACCTCCAACT	400
40	TCATCAAGAA	GGTCGGCTTC	AACCCCAAGA	ACGTCCCCTT	CGTCCCCATC	450
	TCGGGATGGC	ACGGTGACAA	CATGATTGAG	GAGACCGCCA	ACATGCCCTG	500
	GTACAAGGGA	TGGAAGAAGG	AGACCAAGGC	CGGTGAGGTC	AAGGGCAAGA	550
	CCCTCCTCGA	CGCCATCGAC	GCGATCGAGC	CCCCTTCGCG	CCCTACCGAC	600
	AAGCCCCTCC	GTCTTCCCCT	CCAGGTTCGT	TTCCCTGCTC	GCGGTTTACG	650
45	CTGCTACTTC	GAGCTGACCC	GCGAGCTCTG	CCCGAACAGG	ATGTCTACAA	700
	GATCGGTGGT	ATCGGCACAG	TCCCCGTCGG	CCGTGTCGAG	ACCGGCACGA	. 750
	TCAAGGCCGG	TATGGTCGTC	GTCTTCGCCC	CGGCCAACGT	CACCACTGAG	800
	GTCAAGTCGG	TCGAGATGCA	CCACGAGCAG	CTCGAGGCTG	GTCTCCCGGG	850
	AGACAACGTC	GGCTTCAAGT	GCGTCTCATC	ATGTTTTTGC	TTCGCTCGGC	900
50	CATTTTTTCA	GTCCTGACCC	CGTTTTGCCC	CTCGACAGCG	TCAAGAACGT	950
	TTCCGTTAAG	GACATCCGTC	GCGGTAACGT	CTGCGGTGAC	TCGAAGAACG	1000
	ACCCCCCAA	GGAGGCCGCT	TCCTTCAAGG	CCCAGGTCAT	CGTCATGAAC	1050
	CACCCCGGTC	AGATCGGCAA	CGGTTACGCT	CCCGTTCTCG	ACTGCCACAC	1100
	CGCCCACATT	GCCTGCAAGT	TCGACACCCT	CCTCGAGAAG	ATCGACCGTC	1150
55	GCTCGGGCAA	GTCGATTGAG	GACCTCCCCA	AGTTCGTCAA	GTCGGGTGAC	1200
	GCCGCCATCG	TCAAGATGGT	TCCCTCCAAG	CCGATGTGTG	TCGAGTCGTT	1250
	CGCCGAGTAC	CCCCCTCTCG	GACGTTTCGC	CGTCCGTGA		1289

2) INFORMATION FOR SEQ ID NO: 453

```
(i) SEQUENCE CHARACTERISTICS:
```

- (A) LENGTH: 1070 bases
- (B) TYPE: Nucleic acid
- (C) STRANDEDNESS: Double
- (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: Genomic DNA

10

5

(vi)ORIGINAL SOURCE:

- (A) ORGANISM: Sporothrix schenckii
- (B) STRAIN: WSA-148
- 15 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 453

	GTGAGCGCGG	TATCACCATC	GATATTGCTC	TGTGGAAGTT	CGAGACCCCC	50
	AAGTACTACG	TCACCGTCAT	TGACGCCCCC	GGTCATCGCG	ATTTCATCAA	100
	GAACATGATC	ACTGGTACCT	CGCAGGCCGA	CTGCGCCATT	CTCATCATTG	150
20	CCGCTGGTAC	TGGTGAGTTC	GAGGCTGGTA	TCTCCAAGGA	TGGCCAGACT	200
	CGTGAGCACG	CTCTGCTCGC	CTACACCCTG	GGTGTGCGGC	AGCTGATCGT	250
	CGCCATCAAC	AAGATGGACA	CGGCCAAGTG	GGCTGAGGCT	CGTTACCAGG	300
	AGATCATCAA	GGAGACCTCC	AACTTCATCA	AGAAGGTCGG	CTACAACCCC	350
	AAGACTGTTG	CCTTCGTCCC	CATCTCGGGC	TTCCACGGCG	ACAACATGCT	400
25	TACTCCCTCG	ACCAACTGCC	CCTGGTACAA	GGGCTGGGAG	AAGGAGGCA	450
	AGAGCGGCAA	GGTTACCGGT	AAGACTCTGC	TGGACGCCAT	TGACGCCGTC	500
	GAGCCCCCCA	AGCGCCCCAC	GGACAAGCCC	CTGCGTCTGC	CCCTCCAGGA	550
	TGTCTACAAG	ATCGGCGGTA	TCGGCACTGT	CCCTGTCGGC	CGTATCGAGA	600
	CTGGTGTCCT	GAAGCCCGGC	ATGGTCGTCA	CCTTTGCCCC	GTCCAACGTC	650
30	ACCACTGAAG	TCAAGTCCGT	CGAGATGCAC	CACGAGCAGC	TTGTTGAGGG	700
	TGTTCCCGGC	GACAACGTCG	GCTTCAACGT	CAAGAACGTC	TCCGTCAAGG	750
	AGATCCGTCG	TGGCAACGTT	GCCGGTGACT	CCAAGAACGA	CCCCCCTCG	800
	GGCGCCGCCA	CCTTCAACGC	CCAGGTCATT	GTCCTGAACC	ACCCCGGCCA	850
	GGTCGGCAAC	GGCTACGCCC	CGGTTCTGGA	CTGCCACACC	GCCCACATTG	900
35	CCTGCAAGTT	CACCGAGATC	CTTGAGAAGA	TCGACCGCCG	TACCGGCAAG	950
	TCGGTTGAGA	ACAAÇCCCAA	GTTCATCAAG	TCGGGTGACG	CCGCCATTGT	1000
	CAAGCTGACG	CCCTCGAAGC	CCATGTGCGT	TGAGGCCTTC	ACTGACTACC	1050
	CCCCTCTGGG	CCGTTTCGCC				1070

40

45

2) INFORMATION FOR SEQ ID NO: 454

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1092 bases
- (B) TYPE: Nucleic acid
- (C) STRANDEDNESS: Double
- (D) TOPOLOGY: Linear
- 50 (ii) MOLECULE TYPE: Genomic DNA
 - (vi)ORIGINAL SOURCE:
 - (A) ORGANISM: Stephanoascus ciferrii
 - (B) STRAIN: ATCC 52550

55

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 454

	CTTAAGTCTG	AGCGTGAGAG	AGGTATCACC	ATCGATATTG	CTCTCTGGAA	50
	ATTCGAGACT	CCTAAGTACA	ACGTTACCGT	CATTGATGCT	CCAGGTCACA	100
60	GAGATTTCAT	CAAGAACATG	ATTACTGGTA	CCTCCCAGGC	CGATCTTGCC	150

PCT/CA00/01150 WO 01/23604

	ATCCTTATCA	TTGCTGGTGG	TGTCGGTGAG	TTCGAGGCTG	GTATCTCCAA	200
	GGACGGTCAG	ACCAGAGAGC	ACGCTCTTCT	TTCTTTCACC	CTTGGTGTCA	250
	GAAACATGAT	TGTTGCTGTC	AACAAGATGG	ACTCCGTCAA	GTGGTCTGAG	300
	GATCGTTTCA	ACGAAATTGT	CAAGGAGACC	TCCAACTTCG	TCAAGAAGGT	350
5	TGGTTACAAC	CCTAAGAATA	TTGCTTTCGT	TCCTATCTCC	GGTTGGAACG	400
	GTGACAATAT	GATTGAGCCA	TCCACCAACT	GCCCATGGTA	CAAGGGTTGG	450
	GAGCGTGAGA	CCAAGAACGG	TACTGCCAAG	GGTAAGACCA	TCTTGGAGGC	500
	CATTGACTCT	ATGGAGCCAC	CTTCCAGACC	AGTTGACAAG	CCTCTCCGTC	550
	TTCCTCTTCA	GGACGTTTAC	AAGATTGGTG	GTATTGGTAC	GGTGCCAGTT	600
10	GGTCGTGTTG	AGACTGGTGT	TATCAAGCCA	GGTATGGTTG	TTACCTTTGC	650
	CCCAGCTGGT	GTCACCACTG	AAGTCAAGTC	TGTCGAGATG	CACCACGAAC	700
	AGATCCCAGA	AGGTACCCCA	GGTGACAACG	TTGGTTTCAA	CGTCAAGAAC	750
	GTCTCCGTCA	AGGAAATCAG	ACGTGGTAAC	GTTACTGGTG	ACTCCAAGAA	800
	CGACCCACCA	AAGGGCTGCG	ACTCTTTCAA	CGCTCAGGTC	ATCATCTTCA	850
15	ACCACCCTGG	TCAGATCTCT	GCTGGTTACG	CTCCAGTTTT	GGACTGCCAC	900
	ACTGCTCACA	TTGCTTGCAA	GTTTGAGGAG	CTCATTGAGA	AGATTGACAG	950
	ACGTTCCGGT	AAGAAGGTCG	AAGACTCTCC	TAAGTTCGTC	AAGGCCGGTG	1000
	ATGCCGCCAT	TGTCAAGATG	GTTCCATCCA	AGCCAATGTG	TGTTGAAACC	1050
	TTCACTGAGT	ACCCACCTCT	TGGTCGTTTC	GCCGTCCGTG	AC	1092

20

2) INFORMATION FOR SEQ ID NO: 455

- (i) SEQUENCE CHARACTERISTICS: 25
 - LENGTH: 1149 bases (A)
 - TYPE: Nucleic acid (B)
 - STRANDEDNESS: Double (C)
 - TOPOLOGY: Linear (D)

30

- (ii) MOLECULE TYPE: Genomic DNA
- (vi)ORIGINAL SOURCE:
 - (A) ORGANISM: Trichophyton mentagrophytes

- (B) STRAIN: WSA-225 35
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 455

	GCCGAGCGTG	AGCGTGGTAT	CACCATCGAT	ATCGCCCTCT	GGAAGTTCGA	50
40	GACCCCCAAG	TACAATGTCA	CCGTCATTGG	TATGTTTTCT	CTTTACCTTT	100
	CCCCTCCATC	GTCTTGCTGT	GCCATAACTA	ACGAGAGTAG	ACGCCCCCGG	150
	TCACCGTGAC	TTCATCAAGA	ACATGATCAC	TGGTACCTCC	CAGGCCGACT	200
	GTGCTATTCT	CATCATTGCT	GCCGGTACTG	GTGAGTTCGA	GGCTGGTATC	250
	TCCAAGGATG	GCCAGACCCG	TGAGCACGCT	CTGCTCGCCT	TCACCCTTGG	300
45	TGTCAAGCAG	CTCATCGTTG	CCATCAACAA	GATGGACACC	ACCAACTGGT	350
	CCGAGGACCG	TTTCAAGGAA	ATCATCAAGG	AAGTCACCAA	CTTCATCAAG	400
	AAGGTTGGCT	ACGACCCCAA	GGGTGTTCCA	TTCGTTCCAA	TCTCTGGTTT	450
	CAACGGTGAC	AACATGATTG	AGGCCTCCAC	CAACTGCCCA	TGGTACAAGG	500
	GATGGAACAA	GGAGACTAAG	GCCGGTGGTG	CCAAGACTGG	CAAGACCCTC	550
50	CTCGAGGCCA	TCGATGCCAT	CGACATGCCA	ACCCGTCCTA	CCGACAAGCC	600
	CCTCCGTCTC	CCACTCCAGG	ATGTCTACAA	GATCTCTGGT	ATCGGAACTG	650
	TACCAGTCGG	TCGTGTTGAG	ACCGGTATCA	TCAAGCCCGG	TATGGTCGTC	700
	ACCTTCGCCC	CTGCCAACGT	CACCACTGAA	GTCAAGTCCG	TCGAAATGCA	750
	CCACCAGCAG	CTTCAGCAGG	GTGTCCCCGG	TGACAACGTC	GGCTTCAACG	800
55	TCAAGAACGT	TTCCGTCAAG	GAAGTCCGCC	GTGGTAACGT	TGCCGGTGAC	850
	TCCAAGAACG	ACCCACCATC	CGGCTGTGCC	TCCTTCAACG	CCCAGGTCAT	900
	CGTCCTCAAC	CACCCCGGCC	AGATCGGTGC	TGGTTACGCC	CCAGTCCTCG	950
	ACTGCCACAC	TGCTCACATT	GCTTGCAAGT	TCGCTGAGCT	CCTCGAGAAG	1000
	ATTGACCGCC	GTACCGGTAA	ATCCGTCGAA	GCCAACCCCA	AGTTCGTCAA	1050
60	GTCTGGTGAT	GCCGCTATCG	CCAAGATGGT	TCCCTCCAAG	CCTATGTGCG	1100
	0.00					

TTGAGGCTTT CACTGACTAC CCCCCACTTG GTCGTTTCGC CGTCCGTGA 1149

```
5 2) INFORMATION FOR SEQ ID NO: 456
```

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1101 bases
- (B) TYPE: Nucleic acid
- (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear

(ii) MOLECULE TYPE: Genomic DNA

- 15 (vi)ORIGINAL SOURCE:
 - (A) ORGANISM: Trichosporon cutaneum
 - (B) STRAIN: ATCC 62965

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 456

20

10

	TCTTGACAAG	CTTAAAGCTG	AACGTGAACG	TGGTATCACC	ATTGATATCG	50
	CTCTCTGGAA	GTTCGAAACT	CCTAAGTACT	ACGTTACTGT	TATTGATGCT	100
	CCAGGTCACC	GTGATTTCAT	CAAGAACATG	ATTACTGGTA	CTTCCCAAGC	150
	CGACTGCGCC	ATTCTTATCA	TTGCTGCCGG	TGTCGGTGAA	TTCGAAGCTG	200
25	GTATCTCCAA	GGAAGGTCAA	ACCAGAGAAC	ACGCTCTTCT	CGCTTTCACC	250
	CTTGGTGTCA	GACAACTTAT	CATTGCCATC	AACAAGATGG	ACTCTGTCAA	300
	GTGGGACCAA	AAGAGATACG	AAGAAATCGT	CAAGGAGGCT	TCCAACTTCG	350
	TCAAGAAGGT	TGGTTACAAC	CCCAAGTCTG	TTCCATTCGT	TCCTATCTCT	400
	GGTTGGAACG	GTGACAACAT	GTTGGAACCT	ACCACCAACG	CCCCATGGTA	450
30	CAAGGGATGG	ACCAAGGAAA	CCAAGGCTGG	TGCCACTAAG	GGTATGACTC	500
	TTATTGAAGC	CATTGACGCC	ATTGAACCAC	CAGTAAGACC	ATCCGACAAG	550
	CCACTCCGTC	TCCCACTCCA	AGATGTTTAC	AAGATTGGTG	GTATCGGAAC	600
	TGTGCCAGTC	GGCCGTGTCG	AAACCGGTAT	CATCAAGGCC	GGTATGGTCG	650
	TCACCTTTGC	TCCACCAATG	GTCACAACTG	AAGTTAAGTC	CGTTGAAATG	700
35	CACCACGAAC	AACTTGCTCA	AGGTAACCCA	GGTGACAACG	TTGGTTTCAA	750
	CGTCAAGAAC	GTTTCCGTTA	AGGAAATCAG	ACGTGGTAAC	GTCTGTGGTG	800
	ACTCCAAGAA	CGATCCACCA	AAGGGCTGCG	AATCTTTCAA	CGCTCAAGTT	850
	ATCGTCTTGA	ACCACCCTGG	TCAAATCTCT	GCTGGTTACT	CTCCAGTTCT	900
	CGATTGCCAC	ACTGCCCACA	TTGCCTGCAG	ATTCGACGAA	CTCCTTGAAA	950
40	AGATCGACCG	TCGTTCCGGT	AAGAAGATTG	AAGACTCTCC	AAAGTTTGTC	1000
	AAGTCTGGTG	ATGCCGCTAT	CGTCAAGATG	ATCCCAACCA	AGCCAATGTG	1050
	CGTTGAAACC	TTCACTGAAT	ACCCACCACT	TGGTCGTTTC	GCCGTCCGTG	1100
	A					1101

45

50

2) INFORMATION FOR SEQ ID NO: 457

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1085 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
- 55 (ii) MOLECULE TYPE: Genomic DNA
 - (vi)ORIGINAL SOURCE:
 - (A) ORGANISM: Wangiella dermatitidis
 - (B) STRAIN: WSA-229

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 457

	GTTGAAGGCC	GAGCGTGAGC	GTGGTATCAC	CATCGATATC	GCCCTCTGGA	50
	AGTTCGAGAC	CCCCAAGTAC	TATGTCACCG	TCATCGACGC	CCCGGGTCAT	100
5	CGTGACTTTA	TCAAGAACAT	GATCACTGGT	ACCTCGCAGG	CCGACTGCGC	150
	CATCTTGATC	ATTGCCGCCG	GTACCGGTGA	ATTCGAAGCC	GGTATCTCCA	200
	AGGATGGTCA	GACCCGTGAG	CACGCTCTGC	TCGCCTACAC	CTTGGGTGTC	250
	AAGCAGCTCA	TCGTCGCCAT	CAACAAGATG	GACACCACCA	AGTGGTCCGA	300
	GGAGCGTTTC	AACGAAATCA	TCAAGGAGAC	TTCCAACTTC	ATCAAGAAGG	350
10	TCGGCTACAA	CCCCAAGGCC	GTTCCTTTCG	TCCCCATCTC	CGGCTTCAAC	400
	GGTGACAACA	TGATTGAGGT	CTCCACCAAC	TGCCCGTGGT	ACAAGGGATG	450
	GGAGAAGGAG	TCCAAGGCTG	GCAAGGCCAC	CGGCAAGACC	CTCCTCGAGG	500
	CCATTGACGC	CATCGACCCA	CCCACCCGTC	CCACCGACAA	GCCTCTCCGT	550
	CTCCCTCTCC	AGGATGTCTA	CAAGATCTCT	GGTATCGGAA	CGGTTCCTGT	600
15	CGGTCGTGTC	GAGACCGGTA	CCATCAAGGC	CGGTATGGTC	GTCACCTTCG	650
	CTCCGGCCAA	CGTCACCACT	GAAGTCAAGT	CCGTCGAAAT	GCACCACGAG	700
	CAGCTCGCCG	AGGGTCTGCC	AGGTGACAAC	GTTGGCTTCA	ACGTCAAGAA	750
	CGTCTCCGTC	AAGGAGGTTC	GTCGTGGTAA	CGTTGCCGGT	GACTCCAAGA	800
	ACGACCCGCC	CAAGGGTGCC	GAGTCCTTCA	ACGCCCAGGT	CATTGTCCTC	850
20	AACCACCCTG	GTCAGATCGG	TGCCGGCTAC	GCTCCAGTCT	TGGATTGCCA	900
	CACTGCCCAC	ATTGCTTGCA	AGTTCGCCGA	GTTGCTCGAG	AAGATCGACC	950
	GTCGTACCGG	AAAGTCCATC	GAGAACAACC	CCAAGTTCAT	CAAGTCTGGT	1000
	GATGCTGCCA	TCGTCAAGAT	GATTCCCAGC	AAGCCCATGT	GTGTCGAGGC	1050
	TTTCACCGAC	TATCCTCCTC	TGGGTCGTTT	CGCTG		1085
25						

2) INFORMATION FOR SEQ ID NO: 458

- 30 (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 492 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear

35

- (ii) MOLECULE TYPE: Genomic DNA
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Aspergillus fumigatus
- 40 (B) STRAIN: DAL-95
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 458

	TGTCTTCATC	CGGAATTGAT	TGTGAGTCGT	TCCACATGCT	CACCTAGTTT	50
45	TCGCTCGATC	TTTTCACTAA	CGCAAACCAT	GTAGAACAAC	ATTGCCAAGG	100
	CCCACGGTGG	TTACTCCGTC	TTCACTGGTG	TTGGTGAGCG	TACTCGTGAG	150
	GGTAACGATC	TGTACCACGA	AATGCAGGAG	ACTGGTGTCA	TTCAGCTCGA	200
	GGGTGAATCC	AAGGTCGCAC	TGGTGTTCGG	ACAGATGAAC	GAGCCCCCCG	250
	GTGCCCGTGC	CCGTGTCGCC	CTTACCGGTC	TGACCATTGC	CGAGTACTTC	300
50	CGTGACGAGG	AGGGTCAGGA	CGTGCTGCTC	TTCATTGACA	ACATTTTCCG	350
	TTTCACCCAG	GCCGGTTCTG	AGGTGTCTGC	CCTTCTCGGT	CGTATCCCCT	400
	CTGCCGTCGG	TTACCAGCCC	ACCCTGGCCG	TCGACATGGG	TGGTATGCAG	450
	GAGCGTATCA	CCACCACCAA	GAAGGGTTCT	ATTACCTCCG	TC	492

5**5**

- 2) INFORMATION FOR SEQ ID NO: 459
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1154 bases

- (B) TYPE: Nucleic acid
- (C) STRANDEDNESS: Double
- (D) TOPOLOGY: Linear
- 5 (ii) MOLECULE TYPE: Genomic DNA
 - (vi)ORIGINAL SOURCE:

10

45

55.

- (A) ORGANISM: Blastoschizomyces capitatus
- (B) STRAIN: ATCC 10663

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 459

•	GTCCGTGGTC	AAGAAGTTAT	TGACACTGGT	GCCCCAATTA	CCATTCCTGT	50
	TGGTCGTGGT	ACTCTTGGTA	GAATTATCAA	CGTCATTGGT	GAACCAATTG	100
15	ACGAACGTGG	TCCTATCAAG		-		
12			GCTTCTAAGT	ATGCTCCTAT	CCATACTGAA	150
	CCACCAACCT	TTGCTGAACA	ATCTACTTCT	GCTGAAGTTC	TTGAAACTGG	200
	TATCAAGGTT	GTCGATCTTC	TTGCTCCTTA	CGCCCGTGGT	GGTAAGATTG	250
	GTCTTTTCGG	TGGTGCTGGT	GTCGGTAAGA	CTGTCTTCAT	TCAAGAACTT	300
	ATTAACAACA	TTGCCAAGGC	TCACGGTGGT	TTCTCTGTCT	TCACTGGTGT	350
20	CGGTGAAAGA	ACCCGTGAAG	GTAACGATCT	TTACCGTGAA	ATGAAGGAAA	400
	CTGGTGTCAT	CAACCTCGAA	GGTGACTCCA	AGGTCGCTCT	CGTTTTCGGT	450
	CAAATGAACG	AACCTCCAGG	TGCCCGTGCC	CGTGTCGCTT	TGACTGGTCT	500
	TACCATTGCC	GAATACTTCC	GTGATGAAGA	AGGACAAGAT	GTCTTGCTTT	550
	TCGTTGACAA	CATTTTCAGA	TTCACCCAAG	CCGGTTCTGA	AGTCTCTGCT	600
25	CTTTTGGGTC	GTATTCCATC	TGCCGTCGGT	TACCAACCTA	CCCTTGCTAC	650
	CGATATGGGT	GCCCTCCAAG	AACGTATTAC	CACCACCCAA	AAGGGTTCCG	700
	TCACATCTGT	CCAAGCCGTC	TATGTCCCAG	CAGACGATTT	GACTGATCCT	750
	GCCCCAGCCA	CCACTTTCGC	TCACTTGGAC	GCCACCACTG	TCTTGTCTCG	800
	TTCCATTTCC	GAATTGGGTA	TCTACCCAGC	TGTCGATCCT	CTCGATTCCA	850
30	AGTCTCGTCT	TTTGGATCCT	GAAGTTATTG	GACACGAACA	CTACGAAGTT	900
	GCCACTCAAG	TTCAACAAAC	CCTCCAAGCT	TACAAGTCTC	TCCAAGATAT	950
	CATTGCCATT	TTGGGTATGG	ATGAATTGTC	TGAAGCTGAT	AAGCTTACTG	1000
	TCGAACGTGC	CCGTAAGATC	CAAAGATTCC	TTTCCCAACC	ATTCGCTGTT	1050
	GCCGAAGTTT	TCACTGGTAT	CGAAGGTCGT	CTCGTTCCAT	TGAAGGAAAC	1100
35	CGTCAGATCT	TTCAAGGAAA	TCCTTGAAGG	TAAGTACGAT	CACCTTCCAG	1150
	AAGC					1154

- 40 2) INFORMATION FOR SEQ ID NO: 460
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1295 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: Genomic DNA
- 50 (vi)ORIGINAL SOURCE:
 - (A) ORGANISM: Candida albicans
 - (B) STRAIN: ATCC 18804
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 460

CCAATTCGAC GAAGGAAACT TGCCAGCTAT TTTGAATGCT TTGACTTTGA 50
AGAACGGTGA CCAAGACTTG GTCTTGGAAG TTGCTCAACA TTTGGGTGAA 100
AACACCGTCA GAGCTATTGC TATGGATGGT ACTGAAGGTT TAGTCAGAGG 150
TACCGAAGTC AACGATACCG GTGCCCCAAT CTCCGTCCCA GTCGGTAGAG 200
GTACTTTAGG TAGAATCATC AATGTTGTTG GTGAACCAAT TGATGACAGA 250

	GGTCCAATTG	AATGTAAGGA	AAAGAAACCA	ATTCACGCTG	AACCACCATC	300
	ATTCGTTGAA	CAATCCACTG	CTGCCGARAT	TTTGGAAACC	GGTATCAAGG	350
	TTGTCGACTT	GTTGGCCCCA	TACGCCAGAG	GTGGTAARAT	TGGTTTATTC	400
	GGTGGTGCTG	GTGTCGGTAA	GACCGTCTTT	ATCCAAGAAT	TGATTAACAA	450
5	CATTGCCAAA	GCCCATGGTG	GTTTCTCTGT	CTTTACCGGT	GTYGGTGAAA	500
	GAACCAGAGA	AGGTAACGAT	TTGTACCGTG	AAATGAAAGA	AACCGGTGTC	550
	ATCAACTTGG	AAGGTGACTC	CAAGGTCGCT	TTGGTCTTCG	GTCAAATGAA	600
	CGAACCACCA	GGTGCTAGAG	CTAGAGTTGC	TTTGACTGGT	TTGACCATTG	650
	CTGAATACTT	CAGAGATGAA	GAAGGTCAAG	ATGTCTTGTT	GTTCATTGAT	700
10	AACATTTTCA	GATTCACCCA	AGCTGGTTCC	GAAGTGTCTG	CTTTGTTAGG	750
	TCGTATTCCA	TCTGCTGTCG	GTTATCAACC	AACCTTAGCC	ACTGATATGG	800
	GTCTTTTGCA	AGAACGTATT	ACCACCACCA	AGAAAGGTTC	CGTCACCTCT	850
	GTCCAAGCTG	TCTATGTCCC	AGCTGATGAT	TTGACCGATC	CTGCTCCAGC	900
	CACTACATTC	GCCCATTTGG	ATGCCACTAC	TGTCTTGTCT	AGAGGTATTT	950
15	CTGAATTGGG	TATCTACCCA	GCTGTCGATC	CATTGGATTC	CAAATCCAGA	1000
	TTATTGGACG	CTTCTGTTGT	TGGTCAAGAA	CATTACGATG	TCGCTACTGG	1050
	TGTTCAACAA	ACTTTACAAG	CTTACAAATC	CTTACAAGAT	ATCATTGCTA	1100
	TTTTGGGTAT	GGATGAATTG	TCTGAAGCTG	ATAAATTGAC	TGTCGAAAGA	1150
	GCCCGTAAGA	TCCAAAGATT	CTTGTCTCAA	CCATTCGCTG	TTGCTGAAGT	1200
20	TTTCACTGGT	ATCCCAGGTA	GATTAGTCAG	ATTGCAAGAC	ACTGTCAAAT	1250
	CATTCAAGGA	TGTTTTGGAA	GGTAAATACG	ATAACTTGCC	AGAAA	1295

25 2) INFORMATION FOR SEQ ID NO: 461

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1277 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: Genomic DNA
- 35 (vi)ORIGINAL SOURCE:

30

- (A) ORGANISM: Candida dubliniensis
- (B) STRAIN: NCPF 3949
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 461

	TAACTTGCCA	GCTATTTTGA	ATGCTTTGAC	TTTGAAGAAC	GGTGACCAAG	50
	ATTTAGTTTT	GGAAGTTGCT	CAACATTTGG	GTGAAAACAC	CGTCAGAGCT	100
	ATTGCTATGG	ATGGTACTGA	AGGTTTAGTC	AGAGGTACTG	AAGTCAACGA	150
	TACCGGTGCC	CCAATCTCCG	TTCCAGTCGG	TAGAGGTACC	TTAGGTAGAA	200
45	TCATCAATGT	TGTTGGTGAA	CCAATTGATG	ACAGAGGTCC	AATTGAATGT	250
	AAGGAAAAGA	AACCAATTCA	TGCAGAACCA	CCATCCTTCG	TTGAGCAATC	300
	CACTGCTGCC	GAAATTTTGG	AAACCGGTAT	CAAGGTTGTC	GACTTATTGG	350
	CCCCATACGC	CAGAGGTGGT	AAGATTGGTT	TGTTCGGTGG	TGCTGGTGTC	400
	GGTAAGACCG	TCTTTATCCA	AGAATTGATT	AACAACATTG	CTAAAGCCCA	450
50	TGGTGGTTTC	TCCGTCTTTA	CCGGTGTCGG	TGAAAGAACC	AGAGAAGGTA	500
	ACGATTTGTA	CCGTGAAATG	AAAGAAACCG	GTGTCATCAA	CTTAGAAGGT	550
	GACTCCAAGG	TCGCTTTGGT	CTTTGGACAA	ATGAACGAAC	CACCAGGTGC	600
	TAGAGCTAGA	GTTGCTTTGA	CTGGTTTGAC	TATTGCTGAA	TACTTCAGAG	650
	ATGAAGAAGG	TCAAGATGTC	TTGTTGTTCA	TCGATAACAT	TTTCAGATTC	700
55	ACCCAAGCTG	GTTCCGAAGT	GTCTGCTTTG	TTAGGTCGTA	TTCCATCTGC	750
	CGTCGGTTAT	CAACCAACCT	TAGCTACTGA	TATGGGTCTT	TTGCAAGAAC	800
	GTATTACCAC	CACCAAGAAA	GGTTCCGTCA	CCTCTGTCCA	AGCTGTCTAT	850
	GTCCCAGCTG	ATGATTTGAC	CGATCCTGCT	CCAGCCACCA	CATTCGCCCA	900
	TTTGGATGCC	ACTACTGTCT	TGTCTAGAGG	TATTTCTGAA	TTGGGTATTT	950
60	ACCCAGCTGT	CGATCCATTG	GATTCCAAAT	CCAGATTATT	GGACGCTGCC	1000

GTTGTTGGTC	AAGAACATTA	TGATGTCGCT	ACTGGTGTTC	AACAAACTTT	1050
GCAAGCTTAC	AAATCCTTAC	AAGATATCAT	TGCTATTTTG	GGTATGGATG	1100
AATTGTCTGA	AGCTGATAAA	TTGACTGTCG	AAAGAGCCCG	TAAGATTCAA	1150
AGATTCTTGT	CTCAACCATT	CGCCGTTGCT	GAAGTTTTCA	CTGGTATTCC.	1200
AGGTAGATTA	GTCAGATTGC	AAGACACTGT	CAAATCATTC	AAGGATGTTT	1250
TGGAAGGTAA	ATACGATCAC	TTGCCAG			1277

- 10 2) INFORMATION FOR SEQ ID NO: 462
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1278 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: Genomic DNA
- 20 (vi)ORIGINAL SOURCE:

5

15

- (A) ORGANISM: Candida famata
- (B) STRAIN: ATCC 62894
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 462

20						
	GTAACTTGCC	AGCTATTTTG	AACGCTTTGA	CCTTGAAGAA	CGGTGAAAAC	50
	GACTTAGTTT	TAGAAGTTGC	CCAACATTTG	GGTGAAAACA	CCGTCAGAGC	100
	TATTGCTATG	GATGGTACTG	AAGGTTTAGT	TAGAGGTACT	CCAGTTACCG	150
	ATTCTGGTGC	TCCAATTTCT	GTCCCAGTCG	GTAGAGGTAC	TTTAGGTAGA	200
30	ATCTTGAACG	TTATTGGTGA	ACCAATTGAT	GAACAAGGTC	CAGTTGATGC	250
	CAAGGAAACC	AGACCAATTC	ACCAAGACCC	ACCAGCATTC	GTTGATCAAT	300
	CCACCAAGGC	TGAAGTTTTG	GAAACTGGTA	TCAAGGTTGT	CGATTTATTA	350
	GCCCCTTACG	CTAGAGGTGG	TAAGATTGGT	TTATTCGGTG	GTGCCGGTGT	400
	CGGTAAGACC	GTCTTTATCC	AAGAATTGAT	TAACAACATT	GCCAAGGCCC	450
35	ATGGTGGTTT	CTCTGTTTTC	ACTGGTGTCG	GTGAAAGAAC	CAGAGAAGGT	500
	AACGATTTAT	ATAGAGAAAT	GAAGGAAACT	GGTGTCATTA	ACTTGGAAGG	550
	TGACTCCAAG	GTCGCCTTGG	TTTTCGGTCA	AATGAACGAA	CCACCAGGTG	600
	CTAGAGCTAG	AGTTGCTTTA	ACCGGTTTAA	CCATTGCCGA	ATACTTCAGA	650
	GACGAAGAAG	GTCAAGATGT	GTTATTGTTC	GTCGATAACA	TTTTTAGATT	700
40	CACCCAAGCC	GGTTCCGAAG	TGTCTGCTTT	GTTAGGTCGT	ATTCCATCGG	750
	CTGTCGGTTA	TCAACCAACC	TTAGCCACTG	ATATGGGTCT	TTTACAAGAA	800
	AGAATTACCA	CCACCACCAA	GGGTTCCGTT	ACTTCTGTCC	AAGCTGTCTA	850
	CGTCCCAGCC	GATGATTTAA	CCGATCCTGC	TCCAGCTACC	ACTTTCGCCC	900
	ACTTGGATGC	TACCACTGTG	TTGTCTCGTG	GTATCTCTGA	ATTGGGTATT	950
45	TACCCAGCTG	TCGATCCATT	GGATTCCAAA	TCCAGATTGT	TAGATGCTGA	1000
	TATCGTTGGT	AAAGAACACT	ACGAAGTTGC	CACTGGTGTC	CAACAAACCT	1050
	TACAAGCTTA	CAAATCTTTA	CAAGATATCA	TTGCTATTTT	AGGTATGGAT	1100
	GAATTGTCTG	AAGCCGATAA	ATTGACTGTC	GAAAGAGCCA	GAAAGATCCA	1150
	AAGATTCTTG	TCTCAACCAT	TCGCCGTTGC	CGAAGTTTTC	ACCGGTATCC	1200
50·	CAGGTAGATT	AGTTAGATTG	CAAGACACTG	TTAAATCTTT	CAAGGAAGTC	1250
	TTAGAAGGTA	AATATGATCA	CTTACCAG			1278

- 55 2) INFORMATION FOR SEQ ID NO: 463
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1154 bases
 - (B) TYPE: Nucleic acid
- 60 (C) STRANDEDNESS: Double

(D) TOPOLOGY: Linear

(ii) MOLECULE TYPE: Genomic DNA

5 (vi)ORIGINAL SOURCE:

- (A) ORGANISM: Candida glabrata
- (B) STRAIN: ATCC 66032

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 463

	(,			LD NO. 403		
10						
	TCTGGTCAGA	GGCGAGAAGG	TCGTCGACAC	AGGTGCCCCA	ATCTCCGTCC	50
	CTGTCGGCAG	AGAGACCCTG	GGCAGAATCA	TCAACGTTAT	CGGTGAACCT	100
	ATCGACGAGC	GTGGCCCAAT	CAACTCAAAG	TTGAGAAAGC	CTATCCACGC	150
	CGACCCTCCT	TCCTTCGCAG	AACAGTCCAC	CGCCGCCGAA	GTCCTGGAAA	200
15	CAGGTATCAA	GGTCGTCGAC	TTGCTGGCCC	CTTACGCCAG	AGGTGGTAAG	250
	ATCGGTCTGT	TCGGTGGTGC	CGGTGTCGGT	AAGACCGTGT	TCATCCAAGA	300
	ACTGATCAAC	AACATCGCAA	AGGCTCACGG	TGGTTTCTCC	GTGTTCACAG	350
	GTGTCGGTGA	AAGAACCAGA	GAAGGTAACG	ATTTGTACAG	AGAAATGAAG	400
	GAAACCGGTG	TCATCAACTT	GGAAGGTGAC	TCTAAGGTCG	CCTTGGTCTT	450
20	CGGCCAAATG	AACGAACCAC	CAGGAGCCAG	AGCCAGAGTC	GCCTTGACCG	500
	GTTTGACCAT	CGCAGAATAC	TTCAGAGATG	AAGAAGGTCA	AGATGTCCTG	550
	CTGTTCGTCG	ACAACATTTT	CAGATTCACC	CAAGCCGGTT	CAGAAGTCTC	600
	CGCTTTGCTA	GGTCGTATCC	CATCCGCCGT	CGGTTATCAA	CCAACCTTGG	650
	CCACCGATAT	GGGTCTGTTG	CAAGAAAGAA		AAAGAAGGGT	700
25	TCCGTCACTT	CCGTCCAAGC	CGTCTACGTG	CCTGCAGATG	ATTTAACAGA	750
	TCCTGCCCCT	GCCACTACTT	TCGCGCACTT	GGACGCCACC	ACCGTCTTGT	800
	CCAGAAGTAT	CTCAGAATTG	GGTATCTACC	CAGCTGTCGA	CCCATTGGAC	850
	TCCAAGTCTA	GATTGCTAGA	CGCTGCCGTT	GTCGGTGAAG	AGCATTACAA	900
	CGTCGCCACA	AAGGTCCAAG	AAACTTTACA	AACTTACAAG	TCTCTGCAAG	950
30	ATATCATCGC	CATTTTGGGT	ATGGATGAAT	TGTCCGAACA	AGATAAGCTA	1000
	ACTGTCGAAA	GAGCAAGAAA	GATCCAAAGA		AACCATTCGC	1050
	TGTCGCTGAA	GTTTTCACCG	GTATCGAAGG		AGATTGAAGG	1100
	ACACCATCTC	CTCTTTCAAG	GCTGTCTTGG		CGATGATCTT	1150
	CCAG				-	1154

2) INFORMATION FOR SEQ ID NO: 464

40 (i) SEQUENCE CHARACTERISTICS:

35

45

- (A) LENGTH: 1293 bases
- (B) TYPE: Nucleic acid
- (C) STRANDEDNESS: Double
- (D) TOPOLOGY: Linear

(ii) MOLECULE TYPE: Genomic DNA

(vi)ORIGINAL SOURCE:

- (A) ORGANISM: Candida guilliermondii
- 50 (B) STRAIN: ATCC 6260

	CCACTACGAG	GACGGTAACC	TTCCTGCTAT	TTTCAACGCC	TTGACTCTTA	50
55	AGAACGGTGA	CCAAAACTTG	GTTTTGGAAG	TTGCCCAGCA	TTTGGGTGAA	100
	AACACCGTCA	GAACCATTGC	TATGGATGGT	ACTGAAGGTT	TGGTTAGAGG	150
	TGCCAGCGTC	ACTGACACTG	GTGCTCCTAT	CTCTGTGCCT	GTTGGTCGTG	200
	GTACTTTGGG	TCGTATCATC	AACGTTATTG	GTGAGCCAAT	TGACGAGCGT	250
	GGACCAATCG	AGTCCAAGCA	AAAGAAGCCC	ATTCACGCTG	AACCACCATC	300
60	GTTCGTCGAA	CAATCCACTT	CTGCCGAGGT	TTTGGAAACC	GGTATCAAGG	350

	TTGTCGACTT	GTTGGCTCCA	TACGCCAGAG	GTGGTAAGAT	TGGATTGTTC	~ 400
	GGTGGTGCCG	GTGTCGGTAA	GACTGTGTTT	ATCCAAGAGT	TGATTAACAA	450
	CATTGCCAAG	GCTCACGGTG	GTTTCTCCGT	GTTCACCGGT	GTCGGTGAAA	500
	GAACCAGAGA	AGGTAACGAT	TTGTACCGTG	AAATGAAGGA	AACTGGTGTC	550
5	ATCAACTTGG	AAGGTGAATC	CAAGGTGGCC	TTGGTGTTCG	GTCAAATGAA	600
	CGAACCTCCA	GGAGCTAGAG	CCAGAGTTGC	CCTTACCGGT	TTGACCATCG	650
	CTGAATACTT	CAGAGATGAG	GAGGGTCAAG	ATGTGTTGTT	GTTCGTCGAC	700
	AACATTTTCA	GATTCACTCA	AGCTGGTTCT	GAAGTGTCGG	CTTTGTTGGG	750
	TCGTATTCCT	TCGGCTGTCG	GTTACCAACC	TACTTTGGCC	ACCGATATGG	800
10	GTTTGTTGCA	AGAGCGTATT	ACCACCACCA	AGAAGGGTTC	CGTCACCTCT	850
	GTCCAAGCTG	TCTATGTGCC	AGCCGATGAT	TTGACCGATC	CTGCTCCTGC	900
	TACTACTTTT	GCTCACTTGG	ATGCTACCAC	TGTGTTGTCT	AGAGGTATCT	950
	CCGAGTTGGG	TATTTACCCA	GCTGTCGATC	CTTTGGATTC	CAAGTCGAGA	1000
	TTGTTGGATG	CCTCTGTTGT	CGGTGAGGAG	CACTACTCGG	TTGCTTCTAA	1050
15	CGTTCAACAA	ACCTTGCAAG	CTTACAAGTC	TTTGCAAGAT	ATCATTGCCA	1100
	TTTTGGGTAT	GGACGAATTG	TCGGAAGCTG	ACAAGTTGAC	CGTCGAGAGA	1150
	GCCCGTAAGA	TCGAGAGATT	CTTGTCTCAA	CCATTTGCTG	TTGCCGAAGT	1200
	TTTCACTGGT	ATCAGTGGTA	AGTTGGTCAG	ATTGGAGGAC	ACTATCAGAT	1250
	CTTTCAAGGA	AGTCTTGGAA	GGTAAGTACG	ATCACTTGCC	AGA	1293

20

2) INFORMATION FOR SEQ ID NO: 465

- 25 (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1293 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear

- (ii) MOLECULE TYPE: Genomic DNA
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Candida haemulonii
- 35 (B) STRAIN: ATCC 22991
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 465

	CACTTTGACG	ATGGTAACTT	GCCAGCCATT	TTCAACGCCT	TGAAGTTGAA	50
40	GAACGGTGAC	CAGGACTTGG	TCTTGGAGGT	CGCCCAGCAC	TTGGGTGAGA	100
	ACACCGTCAG	AACCATTGCC	ATGGACGGTA	CCGATGGTTT	GGTCAGAGGC	150
	GAGGCTGTCA	CTGACACTGG	TGCTCCAATC	TCCGTGCCTG	TTGGTCGTGA	200
	GACTTTGGGT	CGTATCATCA	ACGTTATTGG	TGAGCCAATT	GACGAGAGAG	250
	GACCAATCAA	GTCCAAGAAG	AGAAACCCAA	TCCACACTGA	CCCACCAACC	300
45	TTCGTTGAGC	AGTCTACTTC	TGCTGAGGTT	TTGGAGACTG	GTATTAAGGT	350
	TGTCGACTTG	TTGGCCCCTT	ACGCCAGAGG	TGGTAAGATT	GGTTTGTTCG	400
	GTGGTGCCGG	TGTCGGTAAG	ACCGTCTTTA	TCCAAGAGTT	GATTAACAAC	450
	ATTGCCAAGG	CCCACGGTGG	TTTCTCTGTC	TTTACCGGTG	TCGGTGAGAG	500
	AACCAGAGAA	GGTAACGATT	TGTACCGTGA	AATGCAGGAG	ACCGGTGTCA	550
50	TCAACTTCGA	GGGTGACTCC	AAGGTCGCCT	TGGTCTTCGG	TCAGATGAAC	600
	GAGCCACCAG	GAGCTAGAGC	TAGAGTTGCT	TTGACCGGTT	TGACCATTGC	650
	CGAATACTTC	AGAGATGAAG	AAGGTCAGGA	TGTGTTGTTG	TTCGTTGACA	700
	ACATTTTCAG	ATTCACTCAG	GCTGGTTCCG	AGGTGTCCGC	CTTGTTGGGT	750
	CGTATTCCAT	CTGCTGTCGG	TTACCAGCCA	ACCTTGGCCA	CCGATATGGG	800
55	TACCTTGCAA	GAAAGAATTA	CCACCACCAA	GAAGGGTTCC	GTCACCTCTG	850
	TCCAGGCCGT	TTACGTGCCA	GCTGATGATT	TGACCGATCC	TGCCCCAGCT	900
	ACCACTTTCG	CTCACTTGGA	TGCTACCACT	GTGTTGTCTA	GAGGTATTTC	950
	CGAGTTGGGT	ATCTACCCAG	CTGTCGACCC	ATTGGACTCC	AAGTCTAGAT	1000
	TGTTGGATGC	CTCTGTTGTC	GGTAAGGAGC	ACTACGATGT	TGCTACCAAC	1050
60	GTCCAGCAGA	CCTTGCAGGC	CTACAAGTCC	TTGCAGGATA	TCATTGCCAT	1100

TTTGGGTATG	GATGAATTGT	CCGAAGCCGA	CAAGTTGACT	GTCGAGAGAG	1150
CTAGAAAGAT	TCAGAGATTC	TTGTCCCAGC	CATTCGCCGT	CGCCGAGGTT	1200
TTCACTGGTA	TCGAGGGTAA	GTTGGTCAGA	TTGGAGGAGA	CCGTCAAGTC	1250
TTTCAAGGAG	GTCTTGGATG	GTAAGTACGA	CCACTTGCCA	GAG	1293

5

- 2) INFORMATION FOR SEQ ID NO: 466
- 10 (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1111 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear

15

- (ii) MOLECULE TYPE: Genomic DNA
- (vi)ORIGINAL SOURCE:
 - (A) ORGANISM: Candida inconspicua
- 20 (B) STRAIN: ATCC 16783
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 466

	AACGGTGGAT	CTAAGTTAGT	CTTAGAAGTT	GCTCAACATT	TGGGTGAAAA	50
25	CACTGTCAGA	ACCATTGCTA	TGGATGGTAC	TGAAGGTTTA	GTTAGAGGTC	100
	AACCAGTTAA	TGATACTGGT	GCTCCAATCT	CTGTCCCAGT	CGGTAGAGGT	150
	ACTTTAGGTA	GAATCTTAAA	CGTTATTGGT	GATCCAGTCG	ATGAAAGAGG	200
	TCCAATTGAT	TGTAAGGAAA	GAAAACCAAT	TCATCAAGAT	CCTCCTGCTT	250
	TCGTTGAACA	ATCTACTGAA	GCTGAAGTTT	TAGAAACCGG	TATTAAGGTT	300
30	GTTGATTTAT	TAGCTCCTTA	CGCTAGAGGT	GGTAAGATTG	GTTTATTCGG	350
	TGGTGCTGGT	GTCGGTAAAA	CCGTTTTCAT	TCAAGAATTA	ATTAACAATG	400
	TTGCAAAGGC	TCATGGTGGT	TTCTCAGTTT	TCACTGGTGT	CGGTGAAAGA	450
	ACCAGAGAAG	GTAATGATTT	ATACAGAGAA	ATGAAGGAAA	CTGGTGTTAT	500
	TAACTTAGAA	GGTGAATCTA	AGGTCGCCTT	AGTTTTCGGT	CAAATGAATG	550
35	AACCACCAGG	AGCAAGAGCA	AGAGTTGCTT	TAACCGGTTT	AACTATTGCT	600
	GAATACTTCA	GAGATGAAGA	AGGTCAAGAT	GTCTTGTTAT	TCATTGATAA	650
	CATTTTCAGA	TTTACTCAAG	CAGGTTCTGA	AGTTTCTGCA	TTGTTAGGTA	700
	GAATTCCATC	CGCTGTCGGT	TATCAACCAA	CTTTAGCAAC	TGATATGGGT	750
	CTTTTACAAG	AAAGAATTAC	AACTACTAAG	AAAGGTTCCG	TTACTTCTGT	800
40	CCAAGCAGTT	TATGTCCCAG	CAGATGATTT	AACTGATCCT	GCTCCAGCAA	850
	CTACTTTCGC	CCACTTAGAT	GCAACTACTG	TCTTATCTAG	AGGTATTTCC	900
	GAATTAGGTA	TTTACCCAGC	TGTCGATCCA	TTAGATTCTA	AATCTAGATT	950
	ATTAGATGTT	GCTGTTGTTG	GTCAAGAACA	TTATGATGTT	GCAACTCAAG	1000
	TTCAAGAAAC	TTTACAAGCA	TACAAATCTT	TACAAGATAT	TATTGCTATT	1050
45	TTAGGTATGG	ATGAATTATC	TGAACAAGAT	AAATTAACCG	TTGAAAGAGC	1100
	AAGAAAGATT	C				1111

- 50 2) INFORMATION FOR SEQ ID NO: 467
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1283 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: Genomic DNA
- 60 (vi)ORIGINAL SOURCE:

(A) ORGANISM: Candida kefyr

(B) STRAIN: ATCC 28838

5

40

50

	TCGAACAAGG	TCAATTGCCA	GAAATTTTGA	ACGCTTTGGA	GATTGAWACT	50
	CCTCAAGGTA	AGTTGGTTTT	GGAAGTTGCC	CAACATTTGG	GTGAAAACAC	100
	CGTCAGAACC	ATTGCTATGG	ACGGTACCGA	AGGTTTGGTC	CGTGGTGAGA	150
	AGGTTTTGGA	CACTGGTGCT	CCAATTTCCG	TCCCAGTCGG	TAGAGAAACT	200
10	TTGGGTAGAA	TCATCAACGT	TATTGGTGAG	CCAATTGACG	AAAGAGGCCC	250
	AATCAAGTCC	AAGATGAGAA	AGCCAATTCA	CGCTGACCCT	CCATCCTTTG	300
	TTGAACAATC	CACTGCTGCT	GAAGTTTTGG	AAACCGGTAT	CAAGGTTGTC	350
	GACTTGTTGG	CCCCATACGC	CAGAGGTGGT	AAGATTGGTT	TGTTCGGTGG	400
	TGCCGGTGTC	GGTAAGACCG	TTTTCATCCA	AGAGTTGATT	AACAACATTG	450
15	CCAAGGCCCA	TGGTGGTTTC	TCCGTCTTCA	CCGGTGTCGG	TGAAAGAACC	500
	AGAGAAGGTA	ACGATTTGTA	CCGTGAAATG	AAGGAAACCG	GTGTCATCAA	550
	CTTGGAAGGT	GACTCCAAGG	TCGCCTTGGT	CTTCGGTCAA	ATGAACGAAC	600
	CACCTGGAGC	TAGAGCCAGA	GTTGCCTTGA	CCGGTTTGAC	TATCGCTGAA	650
	TACTTCAGAG	ATGAAGAAGG	TCAAGATGTG	TTGTTGTTTA	TCGACAACAT	700
20	TTTCAGATTC	ACACAAGCCG	GTTCCGAAGT	GTCCGCTTTG	TTGGGTCGTA	750
	TTCCATCCGC	TGTCGGTTAC	CAACCTACTT	TGGCCACCGA	TATGGGTTTG	800
	TTGCAAGAAA	GAATTACCAC	TACCAAGAAG	GGTTCCGTTA	CCTCCGTCCA	850
	AGCTGTCTAC	GTCCCTGCTG	ATGATTTGAC	TGATCCTGCT	CCAGCTACYA	900
	CTTTCGCCCA	TTTGGACGCC	ACCACCGTGT	TGTCCAGAGG	TATCTCCGAA	950
25	TTGGGTATCT	ACCCAGCTGT	CGATCCATTG	GATTCCAAGT	CTAGATTGTT	1000
	GGACGCTGCC	GTTGTCGGTC	AAGAACATTA	CGACGTCGCT	ACTCAAGTTC	1050
	AACAAACTTT	GCAAGCTTAC	AAGTCTTTGC	AAGATATCAT	TGCCATTTTG	1100
	GGTATGGATG	AATTGTCTGA	ACAAGACAAG	TTGACTGTCG	AAAGAGCCAG	1150
	AAAGATCCAA	AGATTCTTGT	CTCAACCATT	CGCCGTCGCC	GAAGTTTTCA	1200
30	CTGGTATCCC	AGGTAGATTG	GTCAGATTAA	AGGACACCAT	CGCTTCCTTC	1250
	AAGGCTGTTT	TGGAAGGTAA	GTACGATCAC	TTG		1283

- 35 2) INFORMATION FOR SEQ ID NO: 468
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1287 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: Genomic DNA
- 45 (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Candida krusei
 - (B) STRAIN: ATCC 34135
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 468

50						
	CTTCGAACAA	GGCCAATTAC	CACAAATTTT	AAACGCTTTA	GTTATGGATA	50
	ATGGTGGTAA	CAAGTTAGTT	TTAGAAGTTG	CTCAACATTT	AGGTGAAAAC	100
	ACTGTCAGAA	CCATTGCTAT	GGATGGTACT	GAAGGTTTAG	TTAGAGGTCA	150
	AACCGTTAAC	GATACCGGTG	CTCCAATCTC	TGTCCCAGTT	GGTAGAGGTA	200
55	CCTTAGGTAG	AATCTTGAAC	GTCATTGGTG	ATCCAGTCGA	TGAAAGAGGT	250
	CCAGTTGACT	GTAAGGAAAG	AAAGCCAATT	CACGCTGATC	CTCCAGCTTT	300
	CGTTGAACAA	TCCACTGAAG	CTGAAGTTTT	GGAAACTGGT	ATTAAGGTTG	350
	TCGATTTATT	AGCACCTTAC	GCAAGAGGTG	GTAAGATTGG	TTTATTCGGT	400
	GGTGCTGGTG	TTGGTAAGAC	CGTTTTTATC	CAAGAATTGA	TCAACAATGT	450
60	YGCAAAGGCT	CATGGTGGTT	TCTCCGTTTT	CACTGGTGTT	GGTGAAAGAA	500

	CCAGAGAAGG	TAACGATTTA	TACAGAGAAA	TGAAGGAAAC	TGGTGTTATT	550
	AACTTGGAAG	GTGAATCCAA	GGTCGCCTTA	GTTTTCGGTC	AAATGAACGA	600
	ACCACCAGGA	GCTAGAGCAA	GAGTTGCTTT	AACTGGTTTG	ACCATTGCAG	650
	AATATTTCAG	AGATGAAGAA	GGTCAAGATG	TCTTGTTATT	CATTGATAAC	700
5	ATTTTCAGAT	TCACCCAAGC	AGGTTCTGAA	GTCTCTGCAT	TATTAGGTAG	750
	AATTCCATCT			TTTAGCAACC	GATATGGGTC	800
	TTTTACAAGA	AAGAATTACC	ACCACCAAGA	AGGGTTCCGT	TACTTCTGTC	850
	CAAGCTGTTT	ATGTCCCAGC	CGATGATTTA	ACCGATCCTG	CTCCAGCTAC	900
	TACTTTCGCC	CACTTGGATG	CAACCACTGT	CTTGTCYAGA	GGTATTTCCG	950
10	AATTAGGTAT	CTACCCAGCT	GTCGATCCAT	TAGATTCTAA	GTCTAGATTA	1000
	TTAGATGTTG	CAGTTGTTGG	TCAAGAACAT	TATGAAGTTG	CAACTCAAGT	1050
	CCAAGAAACT	TTACAAGCTT	ACAAGTCTTT	ACAAGATATT	ATTGCTATTT	1100
	TGGGTATGGA	TGAATTATCT	GAACAAGATA	AGTTAACYGT	TGAAAGAGCA	1150
	AGAAAGATCC	AAAGATTCTT	ATCTCAACCA	TTCTCTGTTG	CAGAAGTTTT	1200
15	CACTGGTATT	CCAGGTAAGT		AGAAGAAACC	ATCAAGTCTT	1250
	TCAGGGATGT	TCTTGCAGGT	AAGTACGATC	ACTTACC		1287

20 2) INFORMATION FOR SEQ ID NO: 469

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1283 bases
- (B) TYPE: Nucleic acid
- (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear

(ii) MOLECULE TYPE: Genomic DNA

30 (vi)ORIGINAL SOURCE:

25

35

- (A) ORGANISM: Candida lambica
- (B) STRAIN: ATCC 24750

TCGAACAAGG	TCAATTACCA	CCAATTCTTA	ACGCTTTGGT	CATGGAAAAC	50
GATGGTCAAA	AGTTAGTTTT	GGAAGTTGCT	CAACATTTGG	GTGAAAACAC	100
CGTCAGAACC	ATTGCTATGG	ACGGTACCGA	AGGTTTAGTT	AGAGGTCAAC	150
CTGTTAACGA	CACTGGTGCT	CCAATCTCTG	TCCCAGTTGG	TAGAGGTACT	200
CTTGGTAGAA	TCTTGAACGT	CACTGGTGAC	CCAGTYGATG	AAAGAGGTCC	250
TGTCGAMTGT	AAGGAGAGAA	GACCAATTCA	CCAAGACCCA	CCTGCTTTCG	300
TTGACCAATC	CACTGAAGCT	GAAGTTTTGG	AAACCGGTAT	TAAGGTTGTC	350
GATTTATTAG	CACCTTACGC	TAGAGGTGGT	AAGATTGGTT	TGTTCGGTGG	400
TGCTGGTGTC	GGTAAGACCG	TTTTCATCCA	AGAATTGATT	AACAATGTTG	450
CTAAGGCCCA	CGGTGGTTTC	TCCGTTTTCA	CTGGTGTCGG	TGAAAGAACC	500
AGAGAAGGTA	ACGATTTATA	CAGAGAAATG	AAGGAAACCG	GTGTTATTAA	550
CCTTGAAGGT	GAATCTAAGG	TCGCCCTCGT	TTTCGGTCAA	ATGAACGAAC	600
CACCAGGAGC	AAGAGCTAGA	GTTGCTCTTA	CTGGTTTGAC	CATTGCTGAA	650
TACTTCAGAG	ATGAAGAAGG	TCAAGATGTC	TTGCTTTTCA	TTGACAACAT	700
TTTCAGATTC	ACCCAAGCAG	GTTCCGAAGT	GTCTGCTTTG	TTAGGTAGAA	750
TTCCWTCTGC	CGTTGGTTAC	CAACCAACCT	TAGCAACCGA	TATGGGTTTG	800
TTACAAGAAA	GAATTACCAC	CACCAAGAAG	GGTTCCGTCA	CCTCCGTCCA	850
AGCTGTTTAC	GTCCCAGCTG	ATGATTTRAC	TGACCCTGCA	CCAGCAACCA	900
CTTTCGCCCA	CTTGGATGCT	ACCACCGTCT	TGTCTAGAGG	TATTTCCGAA	950
TTAGGTATTT	ACCCAGCTGT	CGATCCATTA	GATTCTAAGT	CTAGATTATT	1000
GGATGTCGCT	GTTGTCGGTC	AAGAACATTA	TACCGTTGCA	ACYCAAGTCC	1050
AAGAAACTTT	ACAAGCTTAC	AAGTCCTTAC	AAGATATCAT	TGCTATTTTG	1100
GGTATGGACG	AATTATCTGA	ACAAGATAAG	CTTACTGTTG	AAAGAGCAAG	1150
AAAGATCCAA	AGATTCCTTT	CCCAACCTTT	CTCCGTCGCA	GAAGTTTTCA	1200
CTGGTATCCC	AGGTAAGCTT	GTCAGATTAG	AAGAAACCAT	TATTTCTTTC	1250
	GATGGTCAAA CGTCAGAACC CTGTTAACGA CTTGGTAGAA TGTCGAMTGT TTGACCAATC GATTTATTAG TGCTGGTGTC CTAAGGCCCA AGAGAAGGTA CCTTGAAGGT CACCAGGAGC TACTTCAGAG TTTCAGATTC TTCCWTCTGC TTACAAGAAA AGCTGTTTAC CTTTCGCCCA TTAGGTATTT GGATGTCGCT AAGAAACTTT GGTATGGACG AAAGATCCAA	GATGGTCAAA AGTTAGTTTT CGTCAGAACC ATTGCTATGG CTGTTAACGA CACTGGTGCT CTTGGTAGAA TCTTGAACGT TGTCGAMTGT AAGGAGAGAA TTGACCAATC CACTGAAGCT GATTTATTAG CACCTTACGC TGCTGGTGTC GGTAAGACCG CTAAGGCCCA CGGTGGTTTC AGAGAAGGTA ACGATTTATA CCTTGAAGGT GAATCTAAGG CACCAGGAGC AAGAGCTAGA TACTTCAGAG ATGAAGAAGG TTTCAGATTC ACCCAAGCAG TTCCWTCTGC CGTTGGTTAC TTACAAGAAA GAATTACCAC AGCTGTTTAC GTCCCAGCTG CTTTCGCCCA CTTGGATGCT TTAGGTATTT ACCCAGCTGT GGATGTCGCT GTTGTCGGTC AAGAAACTTT ACAAGCTTAC GGTATGGACG AATTATCTGA AAAGATCCAA AGATTCCTTT	GATGGTCAAA AGTTAGTTTT GGAAGTTGCT CGTCAGAACC ATTGCTATGG ACGGTACCGA CTGTTAACGA CACTGGTGCT CCAATCTCTG CTTGGTAGAA TCTTGAACGT CACTGGTGAC TGTCGAMTGT AAGGAGAGAA GACCAATTCA TTGACCAATC CACTGAAGCT GAAGTTTTGG GATTTATTAG CACCTTACGC TAGAGGTGGT TGCTGGTGTC GGTAAGACCG TTTTCATCCA CTAAGGCCCA CGGTGGTTTC TCCGTTTTCA AGAGAAGGTA ACGATTTATA CAGAGAAATG CCTTGAAGGT GAATCTAAGG TCGCCCTCGT CACCAGGAGC AAGAGCTAGA GTTGCTCTTA TACTTCAGAG ATGAAGAAGG TCAAGATGTC TTCCWTCTGC CGTTGGTTAC CAACCAACCT TTACAAGAAA GAATTACCAC CACCAAGAAG AGCTGTTTAC GTCCCAGCTG ATGATTTAC CTTTCGCCCA CTTGGATGCT ACCACCGTCT TTAGGTATTT ACCCAGCTGT CGATCCATTA GGATGTCGCT GTTGTCGGTC AAGAACATTA AAGAAACTTT ACAAGCTTAC AAGTCCTTAC GGTATGGACG AATTATCTGA ACAAGATAAG AAAGATCCAA AGATTCCTTT CCCAACCTTT	GATGGTCAAA AGTTAGTTTT GGAAGTTGCT CAACATTTGG CGTCAGAACC ATTGCTATGG ACGGTACCGA AGGTTTAGTT CTGTTAACGA CACTGGTGCT CCAATCTCTG TCCCAGTTGG CTTGGTAGAA TCTTGAACGT CACTGGTGAC CCAGTYGATG TGTCGAMTGT AAGGAGAGAA GACCAATTCA CCAAGACCCA TTGACCAATC CACTGAAGCT GAAGTTTTGG AAACCGGTAT GATTTATTAG CACCTTACGC TAGAGGTGGT AAGATTGGTT TGCTGGTGTC GGTAAGACCG TTTTCATCCA AGAATTGATT CTAAGGCCCA CGGTGGTTC TCCGTTTCA CTGGTGTCGG AGAGAAGGTA ACGATTTATA CAGAGAAATG AAGGAAACCG CCTTGAAGGT GAATCTAAGG TCGCCCTCGT TTTCGGTCAA CACCAGGAGC AAGAGCTAGA GTTGCTCTTA CTGGTTTGAC TACTTCAGAG ATGAAGAAGG TCAAGATGTC TTGCTTTTCA TTCCWTCTGC CGTTGGTTAC CAACCAACCT TAGCAACCGA CTTTCAGAAA GAATTACCAC CACCAAGAAG GGTTCCGTCA AGCTGTTTAC GTCCCAGCTG ATGATTTAC TGACCCTGCA CTTTCGCCCA CTTGGATGCT ACCACCGTCT TGTCTAGAGG TTAGGTATTT ACCCAGCTGT CGATCCATTA GATTCTAAGT GGATGTCGCT GTTGTCGGTC AAGAACATTA TACCGCTTGCA AAGAAACTTT ACCAGCTGT CAACACCTT TACCGTTGCA AAGAAACTTT ACAAGCTTAC AAGAACATTA TACCGTTGCA AAGAAACTTT ACAAGCTTAC AAGAACATTA TACCGTTGCA AAGAAACTTT ACAAGCTTAC AAGAATAAG CTTACTGTTG AAAGAACCTAA AGATTCCTTT CCCCACCTTT CTCCGTCGCA AAGAAACTTT ACAAGCTTAC AAGAATAAG CTTACTGTTG AAAGAACCTAA AGATTCCTTT CCCCACCTTT CTCCGTCGCA	GATGGTCAAA AGTTAGTTTT GGAAGTTGCT CAACATTTGG GTGAAAACAC CGTCAGAACC ATTGCTATGG ACGGTACCGA AGGTTTAGTT AGAGGTCAAC CTGTTAACGA CACTGGTGCT CCAATCTCTG TCCCAGTTGG TAGAGGTACT CTTGGTAGAA TCTTGAACGT CACTGGTGAC CCAGTYGATG AAAGAGGTCC TGTCGAMTGT AAGGAGGAA GACCAATTCA CCAAGACCCA CCTGCTTTCG TTGACCAATC CACTGAAGCT GAAGTTTTGG AAACCGGTAT TAAGGTTGTC GATTTATTATTAG CACCTTACGC TAGAGGTGCT AAGATTGATT AACAATGTTG TGTCGGTGGT GGTAAGACCG TTTTCATCACA AGAATTGATT AACAATGTTG TCCGTTGTCA CTGGTGTCA AGAATTGATT AACAATGTTG TCCGTTGAAGGCCA CGGTGGTTTC TCCGTTTTCA CTGGTGTCGG TGAAAGAACC AGAGAAGGTAA ACGATTTATA CAGAGAAAACC GTGTTATAAA ATGAACGAAC TTTCCAGAGG AAGAGCTAGA GTTGCTCTTA CTGGTTGAC CATTGCTGAA ATGAACAACAT TTCCAGAGA ATGAAGAAGG TCAAGAATGTC TTGCTTTACA TTGACAACAT TTCCAGAGAA AGAATTACCAC CAACCAACCT TAGCAACCGA TATGGGTTTG TTACAAGAAA GAATTACCAC CAACCAACCT TAGCAACCGA TATGGGTTTG TTACAAGAAA GAATTACCAC CAACCAAGAAG GGTTCCGTCA CCTCCGTCAA ATGATTTAC ACCAGCTG ATGATTTAC TTGACAACCAC CACCAAGAAG GGTTCCGTCA CCTCCGTCCA ATGATTTAC TTGACCAACCA CACCAAGAAG GGTTCCGTCA CCACCAACCA TATGGGTTTG TTACAGGTATTT ACCCACCGTCT TGACCCTGCA CCACCAACCA CACCAAGAAG GGTTCCGTCA CCACCAACCA CACCAAGAAG GGTTCCGTCA CCACCAACCA CACCAAGAAG GGTTCCGTCA CACCACAACCA CACCAACCA TTGCTTCAA CACCACCACCA CAGCAACCA CACCAACCAACCA TAGAGTTATT ACCCACCGTCT ACCACCGTCT TGACCAACCA CAGCAACCA CACCAACCAT TGACCCTGCA CAGCAACCA CACCAACCAT TGACTCAAGAG TATTTCCGAA ACCACCGTCT TGCTCTAAGG TATTTCCGAA AAGAACCTT AACAACCTT AACAACCTT AACAACCTT TGCTATTATT ACCAACCAACCA CACAACATTA TACCGTTGCA ACCACCGTCT AAGAACATTA TACCGTTGCA AAGAACATTA TACCGTTGCA AAGAACCTA TTGCTATTTTTG AAAGAACATTA AACAAGATTAA TACCGTTGCA AAGAACATTA TACCGTTGC

5 2) INFORMATION FOR SEQ ID NO: 470

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1140 bases
 - (B) TYPE: Nucleic acid
- (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: Genomic DNA
- 15 (vi)ORIGINAL SOURCE:

WO 01/23604

- (A) ORGANISM: Candida lusitaniae
- (B) STRAIN: ATCC 66035
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 470

20

10

	AGGTGCCTCT	GTCACTGACA	CTGGTTCTCC	AATCTCTGTC	CCTGTTGGTC	50
	GTGAAACCTT	GGGTAGAATT	ATCAACGTTG	TTGGTGAGCC	AATTGACGAG	100
	AGAGGCCCAA	TCAACTCCAA	GAAGAGAAAC	CCAATTCACA	CTGAGCCACC	150
	ATCGTTTGTT	GAACAATCCA	CTTCTGCTGA	AGTTTTGGAG	ACTGGTATCA	200
25	AGGTTGTCGA	CTTGTTGGCC	CCTTACGCCA	GAGGTGGTAA	GATTGGTTTG	250
	TTCGGTGGTG	CCGGTGTCGG	TAAGACCGTT	TTCATCCAAG	AGTTGATTAA	300
	CAACATTGCC	AAGGCCCACG	GTGGTTTCTC	TGTTTTCACT	GGTGTCGGTG	350
	AAAGAACCAG	AGAAGGTAAC	GATTTGTACC	GTGAAATGCA	AGAGACCGGT	400
•	GTCATCAACT	TCGAGGGTGA	CTCCAAGGTC	GCCTTGGTCT	TCGGTCAAAT	450
30	GAACGAACCA	CCAGGAGCCA	GAGCTAGAGT	TGCTTTGACC	GGTTTGACTA	500
	TTGCCGAGTA	CTTCAGAGAC	GAAGAGGCC	AAGATGTCTT	GTTGTTCGTT	550
	GACAACATTT	TCAGATTCAC	CCAGGCCGGT	TCTGAAGTGT	CTGCTTTGTT	600
	GGGTCGTATT	CCATCCGCTG	TCGGTTACCA	ACCAACCTTG	GCCACCGATA	650
	TGGGTGCTTT	GCAAGAGAGA	ATTACCACCA	CCAAGAAGGG	TTCCGTCACC	700
35	TCTGTCCAAG	CCGTTTATGT	TCCAGCTGAT	GACTTGACTG	ACCCTGCTCC	750
	AGCCACCACC	TTCGCCCACT	TGGACGCCAC	CACTGTGTTG	TCCAGAGGTA	800
•	TCTCTGAATT	GGGTATCTAC	CCAGCTGTCG	ACCCATTGGA	CTCCAAGTCT	850
	AGATTGTTGG	ACGCTTCTAT	TGTTGGTAAG	GAGCACTACG	AAGTTGCTTC	900
	TAACGTTCAA	CAAACTTTGC	AAGCTTACAA	GTCTTTGCAA	GATATCATTG	950
40	CCATTTTGGG	TATGGATGAA	TTGTCTGAGG	CTGACAAGTT	GACCGTTGAG	1000
	AGAGCCAGAA	AGATCCAAAG	ATTCTTGTCT	CAACCATTCG	CTGTTGCCGA	1050
	GGTTTTCACT	GGTATCCCAG	GTAGATTGGT	CAGATTGGAG	GACACTGTCA	1100
	GATCCTTCAA	GGAAGTTTTG	GACGGTAAGT	ACGACCACTT		1140

45

50

- 2) INFORMATION FOR SEQ ID NO: 471
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1296 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
- 55 (ii) MOLECULE TYPE: Genomic DNA
 - (vi)ORIGINAL SOURCE:
 - (A) ORGANISM: Candida norvegensis
 - (B) STRAIN: ATCC 22977

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 471

	TCAATTCGAA	CAAGGTCAAT	TACCACCAAT	TTTAAACGCT	TTAGTCATGG	50
	ACAACGGTGG	AACTAAGTTA	GTTTTAGAAG	TTGCTCAACA	TTTAGGTGAA	100
5	AACACCGTCA	GAACCATTGC	TATGGATGGT	ACTGAAGGTT	TAGTTAGAGG	150
	TCAACCAGTT	AATGATACTG	GTGCTCCAAT	CTCTGTCCCA	GTCGGTAGAG	200
	GTACTTTAGG	TAGAATCTTA	AACGTTATTG	GTGATCCAGT	CGATGAAAGA	250
	GGTCCAATCG	ATTGTAAGGA	AAGAAAACCA	ATTCATCAAG	ATCCTCCTGC	300
	TTTCGTTGAA	CAATCAACTG	AAGCTGAAGT	TTTAGAAACT	GGTATTAAAG	350
10	TTGTCGATTT	ATTAGCTCCT	TACGCTAGAG	GTGGTAAGAT	TGGTTTATTC	400
	GGTGGTGCAG	GTGTTGGTAA	AACCGTTTTT	ATTCAAGAAT	TAATTAACAA	450
	TGTTGCAAAA	GCTCATGGTG	GTTTCTCCGT	TTTCACTGGT	GTCGGTGAAA	500
	GAACTAGAGA	AGGTAACGAT	TTATACAGAG	AAATGAAGGA	AACTGGTGTT	550
	ATTAATTTAG	AAGGTGATTC	TAAGGTCGCA	TTAGTTTTCG	GTCAAATGAA	600
15	CGAACCACCT	GGAGCAAGAG	CAAGAGTTGC	TTTAACTGGT	TTAACTATTG	650
	CTGAATATTT	CAGAGATGAA	GAAGGTCAAG	ATGTCTTGTT	ATTCATTGAT	700
	AACATTTTCA	GATTTACTCA	AGCAGGTTCT	GAAGTTTCCG	CTTTGTTAGG	750
	TAGAATTCCA	TCCGCTGTCG	GTTATCAACC	AACTTTAGCA	ACTGATATGG	800
	GTCTTTTACA	AGAAAGAATT	ACTACTACTA	AGAAAGGTTC	TGTTACTTCC	850
20	GTTCAAGCAG	TTTATGTCCC	AGCAGATGAT	TTAACTGATC	CTGCTCCAGC	900
	AACTACTTTC	GCCCACTTAG	ATGCAACTAC	TGTCTTATCT	AGAGGTATTT	950
	CCGAATTAGG	TATTTACCCA	GCTGTCGATC	CATTAGATTC	TAAATCTAGA	1000
	TTATTAGATG	TTGCAGTTGT	TGGTCAAGAA	CATTATGATG	TTGCAACTCA	1050
	AGTTCAAGAA	ACTTTACAAG	CTTACAAATC	TTTACAAGAT	ATTATTGCTA	1100
25	TTTTAGGTAT	GGATGAATTA	TCTGAACAAG	ATAAATTAAC	CGTTGAAAGA	1150
	GCTAGAAAAA	TTCAAAGATT	CTTATCTCAA	CCTTTCTCTG	TCGCAGAAGT	1200
	TTTCACTGGT	ATCCCAGGTA	AGCTTGTTAG	ATTAGAAGAA	ACTATTTCTT	1250
	CATTCAGAGA	TGTCTTAGCA	GGTAAGTACG	ATCACTTACC	AGAAAA	1296
2.0		•				

30

35

45

2) INFORMATION FOR SEQ ID NO: 472

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1297 bases
- (B) TYPE: Nucleic acid
- (C) STRANDEDNESS: Double
- (D) TOPOLOGY: Linear
- 40 (ii) MOLECULE TYPE: Genomic DNA
 - (vi)ORIGINAL SOURCE:
 - (A) ORGANISM: Candida parapsilosis
 - (B) STRAIN: ATCC 90018

	ACACTTCGAA	GAAGGAAACT	TGCCAGCTAT	TTTGAACGCT	TTGACCTTGA	50
	AAAACGGTAA	ACAAGACTTG	GTCTTGGAAG	TTGCCCAACA	TTTGGGTGAA	100
50	AACACCGTCA	GAGCAATTGC	TATGGATGGT	ACTGAAGGTT	TAGTTAGAGG	150
	TACTTCTGTC	ACTGACACTG	GTGCCCCAAT	TTCTGTCCCA	GTTGGTAGAG	200
	GTACTTTGGG	TAGAATCATC	AATGTTACTG	GTGACCCAAT	TGATGAAAGA	250
	GGTCCAATTG	AATGTAAGAA	GAGAAACCCA	ATCCACGCTG	AACCACCTTC	300
	ATTCATTGAA	CAATCCACTG	CTGCTGAAGT	TTTGGAAACC	GGTATTAAGG	350
55	TTGTCGACTT	GTTGGCTCCA	TACGCTAGAG	GTGGTAAGAT	TGGTTTGTTC	400
	GGTGGTGCCG	GTGTCGGTAA	AACCGTGTTT	ATCCAAGAAT	TGATCAACAA	450
	CATTGCCAAG	GCACATGGTG	GTTTCTCGGT	TTTCACTGGT	GTTGGTGAAA	500
	GAACCAGAGA	AGGTAACGAT	TTGTACCGTG	AAATGAAGGA	AACTGGTGTT	550
	ATCAACTTGG	AAGGTGACTC	CAAGGTCGCT	TTGGTTTTCG	GTCAAATGAA	600
60	CGAACCACCT	GGAGCTAGAG	CTAGAGTTGC	TTTGACTGGT	TTGACCATTG	650

						4
	CTGAATACTT	TAGAGATGAA	GAAGGTCAAG	ATGTCTTGTT	GTTTATTGAC	700
	AACATTTTCA	GATTCACCCA	AGCTGGTTCA	GAAGTGTCTG	CTTTGTTGGG	750
	TCGTATTCCA	TCCGCTGTCG	GTTATCAACC	AACCTTGGCC	ACCGATATGG	800
	GTCTTTTGCA	AGAACGTATT	ACCACTACCA	AAAAGGGTTC	AGTTACTTCA	850
5	GTCCAAGCCG	TTTACGTGCC	AGCTGATGAT	TTAACCGATC	CTGCTCCAGC	900
	TACCACTTTC	GCTCACTTGG	ATGCCACCAC	TGTGTTGTCT	AGAGGTATTT	950
	CGGAGTTGGG	TATTTACCCA	GCTGTCGATC	CATTGGATTC	CAAATCCAGA	1000
	TTGTTGGATG	CTGCCGTTGT	TGGTCAAGAA	CATTACGACG	TTGCCACTGG	1050
	TGTTCAACAA	ACTTTACAAG	CTTACAAGTC	CTTGCAAGAT	ATCATTGCTA	1100
10	TCTTGGGTAT	GGATGAATTG	TCCGAACAAG	ATAAATTGAC	TGTCGAAAGA	1150
	GCTCGTAAGA	TTCAAAGATT	CTTGTCTCAA	CCATTTGCTG	TCGCTGAAGT	1200
	TTTCACTGGT	ATTCCAGGTA	AATTGGTTAG	ATTGTCTGAA	ACTGTCAAGT	1250
-	CATTCAAGGA	AGTCTTGGAA	GGTAAGTACG	ATAACTTGCC	AGAAAAT	1297

15

20

- 2) INFORMATION FOR SEQ ID NO: 473
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1285 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
- 25 (ii) MOLECULE TYPE: Genomic DNA
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Candida rugosa
 - (B) STRAIN: ATCC 96275

30

	CCAGTTTGGC	AACGACCTCC	CTGCCATTTT	GAACGCCCTC	ACTCTTCAGC	50
	GTGAAGACGG	TAACAAGCTT	GTTCTTGAGG	TTGCCCAGCA	TCTCGGTGAG	100
35	AACACCGTCC	GTACCATTGC	TATGGACGGT	ACCGAGGGTT	TGGTGCGTGG	150
	CACTGGTGTC	CACGACACCG	GACACCCCAT	CATGACTCCC	GTCGGTGACG	200
	GTACCCTGGG	ACGTATTCTT	AACGTCACCG	GTGACCCTGT	AGACGAGCGT	250
	GGTCCCGTCA	AGACTGACAA	GTTCCGCCCC	ATCCACGCCG	AGGCCCCTGC	300
	CTTCGATGAG	CAGGCTACCA	GTGCCGAGGT	TCTTGAGACC	GGTATCAAGG	350
40	TTGTCGACTT	GCTCGCTCCT	TACGCCAAGG	GTGGTAAGAT	TGGTTTGTTC	400
	GGTGGTGCCG	GTGTCGGCAA	GACCGTCTTC	ATCCAGGAGC	TGATTAACAA	450
	CATCGCCAAG	GCCCACGGTG	GTTACTCCGT	GTTCACTGGT	GTCGGTGAGC	500
	GTACTCGTGA	GGGTAACGAT	TTGTACAAGG	AAATGATCGA	GTCCGGTGTC	550
	ATCAACCTCG	ATGGTGAGTC	CAAGGTCGCC	TTGGTGTTCG	GTCAGATGAA	600
45	CGAGCCCCCT	GGAGCCCGTG	CCCGTGTCGC	CCTTACCGGT	CTTACCATCG	650
	CTGAGTATTT	CCGTGATGAG	GAGGGTAAGG	ATGTCTTGTT	GTTCGTTGAC	700
	AACATTTTCC	GCTTCACTCA	GGCCGGTTCT	GAGGTGTCCG	CCTTGCTTGG	750
	TCGTATTCCT	TCCGCTGTCG	GTTACCAGCC	TACCCTGGCC	ACCGATATGG	800
	GTGCCCTTCA	GGAGCGTATC	ACCACCACCA	AGAAGGGTTC	CGTTACATCC	850
50	GTCCAGGCCG	TCTACGTCCC	TGCCGATGAT	TTGACTGATC	CCGCCCCTGC	900
	CACCACCTTC	GCCCATTTGG	ATGCCACCAC	TGTCTTGTCT	CGTGCCATCT	950
	CTGAGTTGGG	TATCTACCCC	GCTGTCGACC	CTCTCGACTC	CAAGTCCCGT	1000
	CTTCTTGACG	CCGCTGTCGT	TGGTCAGGAG	CACTACGATA	CTGCCACCTC	1050
	CGTTCAGCAG	ACTTTGCAGG	CTTACAAGTC	TTTGCAGGAT	ATCATTGCCA	1100
55	TTCTTGGTAT	GGATGAGTTG	TCCGAGTCTG	ACAAGCTCAC	CGTCGAGCGT	1150
	GCTCGTAAGA	TCCAGCGTTT	CCTCTCCCAG	CCTTTCGCTG	TTGCTGAGGT	1200
	CTTCACTGGT	ATTCAGGGCC	GTCTTGTTCC	TCTCAAGGAC	ACTGTCCGCT	1250
	CCTTCAAGGA	GATTCTCGAA	GGTAAGTACG	ATGCT		1285

2) INFORMATION FOR SEQ ID NO: 474

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1283 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
- 10 (ii) MOLECULE TYPE: Genomic DNA
 - (vi)ORIGINAL SOURCE:
 - (A) ORGANISM: Candida sphaerica
 - (B) STRAIN: ATCC 2504

15 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 474

	TTGAACAAGG	TCAATTGCCA	GCTATTTTGA	ACGCTTTGGA	AATCGACACT	50
	CCAGAAGGAA	AGTTGGTTTT	GGAAGTCGCT	CAACATTTGG	GTGAAAACAC	100
20	TGTCAGAACC	ATTGCTATGG	ATGGTACTGA	AGGTTTAGTC	CGTGGTGAAA	150
	ACGTTTCTGA	CACTGGTGCT	CCAATTTCCG	TCCCAGTTGG	TAGAGAAACC	200
	TTGGGTAGAA	TTATCAACGT	TATTGGTGAG	CCAATTGACG	AAAGAGGTCC	250
	AATCAACTCC	AAGATGAGAA	AGCCAATTCA	TGCTGATCCT	CCATTATTCG	300
	TTGAACAATC	CACTGCTGCT	GAAGTTTTGG	AAACTGGTAT	CAAGGTTGTC	350
25	GACTTGTTGG	CCCCATACGC	CAGAGGTGGT	AAGATTGGTT	TGTTCGGTGG	400
	TGCCGGTGTC	GGTAAGACCG	TTTTCATCCA	AGAATTGATT	AACAACATTG	450
	CCAAGGCTCA	TGGTGGTTTC	TCTGTCTTCA	CTGGTGTCGG	TGAAAGAACC	500
	AGAGAAGGTA	ACGATTTGTA	CCGTGAAATG	AAGGAAACTG	GTGTTATCAA	550
	CTTGGAAGGT	GATTCTAAGG	TCGCGTTGGT	TTTCGGTCAA	ATGAACGAAC	600
30	CTCCTGGAGC	TAGAGCTAGA	GTCGCCTTGA	CTGGTTTGAC	CATCGCTGAA	650
	TACTTCAGAG	ATGAAGAAGG	TCAAGATGTC	TTGTTGTTTA	TCGACAACAT	700
	TTTCAGATTC	ACACAAGCCG	GTTCCGAAGT	GTCCGCTTTG	TTGGGTCGTA	750
	TTCCATCCGC	TGTCGGTTAT	CAACCAACTT	TGGCCACCGA	TATGGGTTTG	800
	TTGCAAGAAA	GAATTACTAC	CACCAAGAAG	GGTTCCGTCA	CTTCTGTCCA	850
35	AGCCGTTTAC	GTGCCAGCTG	ATGATTTGAC	TGATCCTGCT	CCAGCTACCA	900
	CTTTCGCGCA	TTTGGATGCC	ACCACTGTGT	TGTCCAGAGG	TATCTCTGAA	950
	TTGGGTATCT	ACCCAGCTGT	CGATCCTTTG	GATTCCAAAT	CTAGATTGTT	1000
	GGATGCTGCC	GTCGTTGGTC	AAGAACATTA	CGATGTCGCT	ACTCAAGTTC	1050
	AACAAACTTT	GCAAGCTTAC	AAGTCTTTGC	AAGATATCAT	TGCCATTTTG	1100
40	GGTATGGATG	AATTGTCCGA	ACAAGATAAG	TTGACCGTCG	AAAGAGCTAG	1150
	AAAGATTCAA	AGATTCTTGT	CTCAACCTTT	CGCTGTCGCT	GAAGTCTTCA	1200
	CTGGTATCCC	AGGTAGATTG	GTCAGATTAA	AGGACACCAT	CTCTTCTTTC	1250
	AAGGCTGTCT	TGGACGGTAA	GTACGATCAC	TTG		1283

45

50

5

- 2) INFORMATION FOR SEQ ID NO: 475
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1290 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
- 55 (ii) MOLECULE TYPE: Genomic DNA
 - (vi)ORIGINAL SOURCE:
 - (A) ORGANISM: Candida tropicalis
 - (B) STRAIN: ATCC 13803

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 475

	CGACGAAGGT	AACTTGCCAG	CTATTTTGAA	TGCTTTGACT	TTGAAGAACG	50
	GTGACCAAGA	CTTGGTTTTG	GAAGTTGCTC	AACATTTGGG	TGAAAACACC	100
5	GTCAGGGCTA	TTGCTATGGA	TGGTACCGAA	GGTTTAGTCA	GAGGTACTGC	150
	TGTCACTGAT	ACCGGTGCTC	CAATTTCTGT	CCCAGTTGGT	AGAGGTACCT	200
	TGGGTAGAAT	TATCAACGTT	GTTGGTGAAC	CAATTGATGA	CAGAGGTCCA	250
	ATTGAATGTA	AGGAAAGAAA	GCCAATTCAC	GCTGAACCAC	CTTCATTCGT	300
	TGAACAATCT	ACTGCTGCCG	AAATTTTGGA	AACCGGTATT	AAGGTTGTCG	350
10	ATTTGTTGGC	TCCTTACGCT	AGAGGTGGTA	AGATTGGTTT	GTTCGGTGGT	400
	GCTGGTGTCG	GTAAAACCGT	CTTCATCCAA	GAATTGATTA	ACAACATTGC	450
	CAAAGCTCAT	GGTGGTTTCT	CTGTCTTTAC	CGGTGTCGGT	GAAAGAACCA	500
	GAGAAGGTAA	CGATTTGTAC	CGTGAAATGA	AAGAAACTGG	TGTCATCAAC	550
	TTGGAAGGTG	ACTCCAAGGT	CGCCTTGGTC	TTCGGTCAAA	TGAACGAACC	600
15	ACCTGGTGCT	AGAGCTAGAG	TTGCTTTGAC	TGGTTTGACC	ATTGCTGAAT	650
	ACTTCAGAGA	TGAAGAAGGT	CAAGATGTCT	TGTTGTTCAT	TGACAACATT	700
	TTCAGATTCA	CCCAAGCTGG	TTCCGAAGTG	TCTGCTTTGT	TGGGTCGTAT	750
	TCCATCTGCT	GTCGGTTATC	AACCAACCTT	GGCCACTGAT	ATGGGTCTTT	800
	TGCAAGAACG	TATTACCACC	ACCAAGAAAG	GTTCTGTTAC	TTCTGTCCAA	850
20	GCTGTTTATG	TCCCAGCCGA	TGATTTAACC	GATCCAGCTC	CAGCTACCAC	900
	CTTCGCTCAC	TTGGATGCCA	CTACTGTCTT	GTCTAGAGGT	ATTTCTGAAT	950
	TGGGTATTTA	CCCAGCTGTC	GATCCATTGG	ATTCTAAATC	CAGATTATTG	1000
	GATGCTACTG	TTGTTGGTCA	AGAACATTAT	GATGTTGCCA	CTGGTGTTCA	1050
	ACAAACTTTA	CAAGCTTACA	AGTCCTTGCA	AGATATCATT	GCTATTTTGG	1100
25	GTATGGATGA	ATTGTCCGAA	GCCGATAAAT	TGACTGTCGA	AAGAGCTCGT	1150
	AAGATTCAAA	GATTCTTGTC	CCAACCATTC	GCTGTTGCCG	AAGTTTTCAC	1200
	TGGTATCCCA	GGTAGATTGG	TTAGATTACA		AAATCTTTCA	1250
	AAGATGTCTT	GGAAGGTAAA	TACGATCACT	TGCCAGAAAA		1290

30

35

2) INFORMATION FOR SEQ ID NO: 476

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1267 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
- 40 (ii) MOLECULE TYPE: Genomic DNA
 - (vi)ORIGINAL SOURCE:
 - (A) ORGANISM: Candida utilis
 - (B) STRAIN: Csp 388

45

	TTTGAACGCC	CTTGAGATCA	AGAACCACGA	GTCTGGAAGA	ፕ ፐርርፕሮርፕሮር	50
		- · · - · · -	GAGAACACTG			100
50			TGGTGAGTCT			150
	AATTACTGTC	CCAGTTGGTC	GTGAGACCTT	GGGTCGTATC	ATCAACGTTA	200
	TTGGTGAGCC	AATTGATGAG	CGTGGTCCAA	TCAACACCAA	GCACAGAAAC	250
	CCAATTCACG	CTGAGCCACC	ATCCTTCGCT	GAGCAGTCTA	CTGCTGCTGA	300
	GGTTTTGGAG	ACTGGTATCA	AGGTTGTCGA	CCTTCTCGCC	CCATACGCCA	350
55	GAGGTGGTAA	GATTGGTCTC	TTTGGTGGTG	CCGGTGTCGG	TAAGACCGTT	400
	TTCATCCAGG	AGTTGATTAA	CAACATTGCC	AAGGCCCACG	GTGGTTTCTC	450
	TGTTTTCACC	GGTGTCGGTG	AGAGAACCAG	AGAGGGTAAC	GATTTGTACC	500
	GTGAGATGAA	GGAGACTGGT	GTCATCAATC	TCGAGGGTGA	GTCCAAGGTT	550
	GCTCTCGTCT	TCGGTCAGAT	GAACGAGCCA	CCAGGTGCCC	GTGCCCGTGT	600
60	CGCTTTGACC	GGTTTGACCA	TTGCTGAGTA	CTTCAGAGAT	GAGGAGGGTC	650

	AGGATGTCTT	GTTGTTTATT	GACAACATTT	TCAGATTCAC	CCAGGCCGGT	700
	TCCGAGGTGT	CTGCCTTGCT	TGGTCGTATT	CCATCCGCTG	TCGGTTACCA	750
	GCCAACTTTG	GCCACCGATA	TGGGTTTGTT	GCAGGAGAGA	ATTACCACCA	800
	CCCAGAAGGG	TTCCGTCACT	TCTGTCCAGG	CCGTTTACGT	CCCAGCTGAT	850
5	GATTTGACTG	ATCCTGCTCC	AGCCACCACT	TTCGCCCACT	TGGACGCCAC	900
		TCCCGTGGTA				950
		CTCCAAGTCC				1000
		ACACCGCCAC				1050
		GATATCATTG				1100
10		GACTGTCGAG				1150
		CTGTCGCTGA				1200
		GACACCATCA	AGTCCTTCAG	AGAGGTTTTG	GACGGTAAGT	1250
	ACGACCACTT	GCCAGAG				1267

15

20

2) INFORMATION FOR SEQ ID NO: 477

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1296 bases

- (B) TYPE: Nucleic acid
- (C) STRANDEDNESS: Double
- (D) TOPOLOGY: Linear
- 25 (ii) MOLECULE TYPE: Genomic DNA
 - (vi)ORIGINAL SOURCE:
 - (A) ORGANISM: Candida viswanathii
 - (B) STRAIN: ATCC 28269

30

	CCAATTCGAC	GAAGGTAGCT	TGCCAGCTAT	CTTGAACGCC	TTGACCTTGA	50
	AGAACGGTGA	CCAAGACTTG	GTCTTGGAAG	TTGCCCAACA	CTTGGGTGAA	100
35	AACACTGTCA	GAGCTATTGC	TATGGATGGT	ACCGAAGGTT	TGGTCAGAGG	150
	TACTGCTGTC	ACTGACACCG	GTGCTCCAAT	CTCCGTCCCA	GTCGGTAGAG	200
	GTACCTTGGG	TAGAATCATC	AACGTTGTTG	GTGAACCAAT	TGACGACAGA	250
	GGTCCAATTG	AATGTAAGGA	AAGAAAGCCA	ATTCACGCTG	AACCACCTTC	300
	TTTCGTTGAA	CAATCCACTG	CTGCCGAAAT	TTTGGAAACC	GGTATCAAGG	350
40	TTGTCGACTT	GTTGGCCCCA	TACGCCAGAG	GTGGTAAGAT	TGGTTTGTTC	400
	GGTGGTGCCG	GTGTCGGTAA	GACTGTCTTT	ATCCAAGAGT	TGATTAACAA	450
	CATTGCCAAG	GCCCATGGTG	GTTTCTCTGT	CTTCACTGGT	GTCGGTGAAA	500
	GAACCAGAGA	AGGTAACGAT	TTGTACCGTG	AAATGAAGGA	AACCGGTGTC	550
	ATCAACTTGG	AAGGTGACTC	CAAGGTCGCC	TTGGTTTTCG	GTCAAATGAA	600
45	CGAACCACCT	GGTGCTAGAG	CTAGAGTTGC	TTTGACTGGT	TTGACCATTG	650
	CCGAATACTT	CAGAGACGAA	GAAGGTCAAG	ATGTCTTGTT	GTTTATTGAC	700
	AACATTTTCA	GATTCACCCA	AGCCGGTTCC	GAAGTGTCTG	CTTTGTTGGG	750
	TCGTATTCCA	TCTGCCGTCG	GTTATCAACC	AACCTTGGCC	ACCGATATGG	800
	GTCTTTTGCA	AGAACGTATT	ACCACCACCA	AGAAGGGTTC	CGTCACCTCT	850
50	GTCCAAGCTG	TCTATGTCCC	AGCCGATGAT	TTGACCGATC	CTGCTCCAGC	900
	CACCACCTTC	GCTCACTTGG	ATGCCACTAC	TGTCTTGTCT	AGAGGTATTT	950
	CCGAATTGGG	TATCTACCCA	GCTGTCGATC	CATTGGACTC	CAAGTCCAGA	1000
	TTGTTGGATG	CTGCTGTTGT	TGGTCAAGAA	CATTACGATG	TTGCCACTGG	1050
	TGTCCAACAA	ACCTTGCAAG	CTTACAAGTC	TTTGCAAGAT	ATCATTGCCA	1100
55	TTTTGGGTAT	GGATGAATTG	TCTGAATCCG	ATAAGTTGAC	TGTCGAAAGA	1150
	GCTCGTAAGA	TCCAAAGATT	CTTGTCGCAA	CCATTTGCTG	TTGCCGAAGT	1200
	TTTCACTGGT	ATCCCAGGTA	GATTAGTTAG	ATTGCTGGAA	ACCGTCCAAT	1250
	CTTTCAAAGA	CGTCTTGGCT	GGTAAATACG	ATCACTTGCC	AGAAAA	1296

2) INFORMATION FOR SEQ ID NO: 478

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1295 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
- 10 (ii) MOLECULE TYPE: Genomic DNA
 - (vi)ORIGINAL SOURCE:
 - (A) ORGANISM: Candida zeylanoides
 - (B) STRAIN: ATCC 7351
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 478

	TCAATTCGAG	CAAGGCAACC	TCCCTGCCAT	CTTGAACGCT	CTCACCTTGA	50
	AGAATGGTGA	CAACGACTTG	GTTTTGGAAG	TTGCCCAGCA	CTTGGGTGAG	100
20	AACACCGTCA	GAGCCATTGC	CATGGATGGT	ACCGAGGGTT	TGGTTAGAGG	150
	TGCGTCCGTC	AAGGACACTG	GCGCCCTAT	CTCGGTCCCC	GTTGGCCGCG	200
	GGACTTTGGG	TCGTATCATC	AACGTCACCG	GTGACCCCAT	TGACGAGAGA	250
	GGTCCCATCG	AGCTGACCCA	GAGAAACCCT	ATCCACGCCG	ACCCCCCTC	300
	GTTCGTTGAG	CAGTCCACCA	ACGCTGAGGT	TTTGGAGACT	GGTATCAAGG	350
25	TTGTCGATTT	GTTGGCTCCC	TACGCCAGAG	GTGGTAAGAT	TGGTTTGTTC	400
	GGTGGTGCCG	GTGTCGGTAA	GACCGTCTTC	ATTCAGGAGT	TGATCAACAA	450
	CATCGCCAAG	GCCCACGGTG	GGTTCTCGGT	CTTCACTGGT	GTCGGTGAGA	500
	GAACTAGAGA	GGGTAACGAC	TTGTACCGTG	AGATGAAGGA	GACCGGTGTC	550
	ATCAACTTGG	AGGGTGACTC	CAAGGTGGCC	TTGGTGTTCG	GTCAGATGAA	600
30	CGAGCCCCCT	GGAGCCAGAG	CCAGAGTCGC	CTTGACCGGG	TTGACCATTG	650
	CCGAATACTT	TAGAGACGAG	GAGGGTCAGG	ATGTGTTGTT	GTTCGTCGAC	700
	AACATCTTCA	GATTCACCCA	AGCTGGTTCG	GAGGTGTCGG	CCTTGTTGGG	750
	TCGTATTCCC	TCTGCCGTCG	GTTACCAGCC	CACCTTGGCA	ACTGATATGG	800
	GATTGTTGCA	GGAGCGTATC	ACCACGACCA	AGAAGGGTTC	CGTCACCTCA	850
35	GTGCAGGCCG	TCTACGTCCC	CGCTGATGAC	TTGACTGACC	CTGCTCCCGC	900
	CACCACCTTT	GCCCACTTGG	ACGCCACCAC	CGTGTTGTCC	AGAGGTATCT	950
	CTGAGTTGGG	TATCTACCCC	GCCGTCGACC	CCTTGGACTC	CAAATCGAGA	1000
	TTGTTGGACG	CTGCCGTGGT	CGGTCAGGAG	CACTACGATG	TTGCCTCGAA	1050
	CGTCCAGCAG	ACCTTGCAGG	CCTACAAGTC	CTTGCAGGAT	ATCATTGCCA	1100
40	TTTTGGGTAT	GGATGAGTTG	TCCGAGGCTG	ACAAGTTGAC	CGTTGAGAGA	1150
	GCCAGAAAGA	TCCAGAGATT	CTTGTCGCAG	CCCTTCGCTG	TTGCCGAGGT	1200
	TTTCACTGGT	ATCAAGGGTA		ATTGGAGGAC	ACCGTCAGAT	1250
	CTTTCAAGGA	GGTTTTGGAG	GGTAAGTACG	ACCACTTGCC	CGAGA	1295

45

50

5

15

- 2) INFORMATION FOR SEQ ID NO: 479
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 534 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
- 55 (ii) MOLECULE TYPE: Genomic DNA
 - (vi)ORIGINAL SOURCE:
 - (A) ORGANISM: Coccidioides immitis
 - (B) STRAIN: Silveira

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 479

	TTCAGGAATT	GATTGTAAGT	TCTGTTATCA	ACTAAAGCCG	ACAGCGGTTG	50
		CTAGAACAAC				100
5		TCGGTGAGCG				150
		ACCCGTGTCA				200
		TCAAATGAAC				250
		TGACCATTGC				300
		CATGCTTCTA				350
10		AGTGCTTCTC				400
		AAGTGTCTGC				450
	TTACCAACCT	ACTCTCGCCG	TCGACATGGG	TGTTATGCAG	GAACGTATCA	500
	CCACCACCAC	CAAGGGATCC	ATTACTTCAG	TGCA		534

15

20

2) INFORMATION FOR SEQ ID NO: 480

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 494 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
- 25 (ii) MOLECULE TYPE: Genomic DNA
 - (vi)ORIGINAL SOURCE:
 - (A) ORGANISM: Cryptococcus albidus
 - (B) STRAIN: ATCC 66030

30

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 480

	CGTCTTGATT	CAAGAATTGA	ТСААСААСАТ	CGCCAAGGCC	СУССССССТ	50
	ACTCGGTCTT	CACCGGTGTC	GGTGAGCGAA	CTCGAGAGGG	TAACCATCTC	100
35	TACCACCAAC	TCA CTTCCCC	COTTOCOTO	CICGAGAGGG	IAACGAICIG	
33	IACCACGAAG	TGAGTTGCGC	CGTCCGAGTG	TTTCCCGGGG	AA'I'CGCAAGA	150
	CTGATGTTGT	CCCTTCTTCT	CAGATGAGGG	AAACCGGTGT	CATCAACCTC	200
		CCAAGGTCGC				250
	TGGAGCCCGA	GCCCGAGTCG	CCTTGACCGG	TTTGACCATT	GCCGAATACT	300
		GGAGGGTCAG				350
40	CGATTCACCC	AAGCCGGTTC	CGAAGTGTCC	GCCTTGTTGG	GTCGTATCCC	400
	CTCCGCCGTC	GGTTACCAGC	CCACTCTGTC	CACCGACATG	GGTACCATGC	450
	AGGAGCGAAT	TACCACCACC	AAGAAGGGTT	CCATCACTTC	CGTC	494

45

- 2) INFORMATION FOR SEQ ID NO: 481
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 415 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: Genomic DNA

55

- (vi)ORIGINAL SOURCE:
 - (A) ORGANISM: Fusarium oxysporum
 - (B) STRAIN: WSA-212
- 60 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 481

	TTCAGGAGCT	TATCAACAAC	ATCGCCAAGG	CCCACGGTGG	TTACTCCGTC	50
			AACTCGTGAG			100
					AAGGTCGCCC	150
5	TGGTCTTCGG					200
			TGAATACTTC			250
			ACATTTTCCG			300
			CGTATCCCCT			350
	ACCCTCGCCG	TCGACATGGG	TGGTATGCAA	GAGCGTATTA	CCACCACCAC	400
10	CAAGGGTTCC	ATTAC				415

2) INFORMATION FOR SEQ ID NO: 482

15

- (i) SEQUENCE CHARACTERISTICS:
 - A) LENGTH: 1281 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
- 20 (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: Genomic DNA
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Geotrichum spp.
 - (B) STRAIN: Lev-4
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 482

30	AGGACAACCT	CCCCGCTATT	CTTAACGCTC	TTGAGCTTAA	GAGAGATAAC	50
	GGTGAGAAGC	TCGTTCTCGA	GGTTGCCCAG	CATCTGGGTG	AGAACACTGT	100
	CCGTACTATT	GCTATGGACG	GTACTGAGGG	TCTCGTCCGT	GGTCAGCCCG	150
	TTGTTGACAC	CGGTGCCCCC	ATTACCATTC	CCGTTGGTCG	TGGTACTCTT	200
	GGTAGAATTA	TCAACGTCAT	TGGTGAGCCC	ATCGATGAGC	GTGGACCCAT	250
35	TGAGGCTACC	AAGTACCTCC	CCATCCACAC	CGAGCCCCCC	ACCTTCGCTG	300
	AGCAGTCTAC	CTCCGCTGAG	GTTCTTGAGA	CTGGTATCAA	GGTTGTCGAT	350
	CTCCTTGCCC	CCTACGCCCG	TGGTGGTAAG	ATTGGTCTCT	TCGGTGGTGC	400
	CGGTGTCGGT	AAGACCGTTT	TCATTCAGGA	GCTGATTAAC	AACATTGCCA	450
	AGGCCCATGG	TGGTTTCTCC	GTTTTCACCG	GTGTCGGTGA	GAGAACCCGT	500
40	GAGGGTAACG	ATTTGTACCG	TGAGATGAAG	GAGACCGGTG	TCATCAACCT	550
	CGAGGGTGAG	TCTAAGGTCG	CTCTCGTTTT	CGGTCAGATG	AACGAGCCCC	600
	CTGGAGCCCG	TGCCCGTGTT	GCTCTTACTG	GTCTTACCAT	TGCTGAGTAC	650
	TTCCGTGATG	AGGAGGGTCA	GGATGTGTTG	CTCTTCGTTG	ACAACATTTT	700
	CCGTTTCACT	CAGGCCGGTT	CCGAGGTGTC	TGCCCTTTTG	GGTCGTATTC	750
45	CCTCCGCTGT	CGGTTACCAG	CCCACCCTTG	CCACTGATAT	GGGTGCCCTG	800
	CAAGAGCGTA	TTACCACCAC	CCAGAAGGGT	TCCGTCACTT	CCGTCCAGGC	850
	CGTCTACGTC	CCTGCCGATG	ATTTGACCGA	TCCTGCCCCT	GCTACCACCT	900
	TCGCCCATTT	GGATGCCACC	ACCGTCTTGT	CGCGTTCCAT	TTCTGAGTTG	950
	GGTATCTACC	CCGCTGTCGA	TCCCCTTGAT	TCCAAGTCTC	GTCTTTTGGA	1000
50	TATCACCGTC	GTTGGCCAGG	AGCACTACGA	TGTTGCTACC	CAGGTCCAGC	1050
	AGACCCTCCA	GTCCTACAAG	TCTCTTCAGG	ATATCATTGC	CATTTTGGGT	1100
	ATGGATGAGT	TGTCTGAGGC	TGATAAGCTT	ACTGTCGAGC	GTGCCCGTAA	1150
	GATCCAGAGA	TTCCTTTCCC	AGCCCTTCAC	TGTCGCTGAG	GTTTTCACTG	1200
	GTATCGAGGG	CCGTCTCGTT	CCTTTGAAGG	ACACTGTTCG	CTCTTTCAAG	1250
55	GAGATCCTTG	AGGGCAAGTA	CGACCACCTC	C		1281

²⁾ INFORMATION FOR SEQ ID NO: 483

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 586 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
- (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: Genomic DNA
 - (vi)ORIGINAL SOURCE:

5

10

- (A) ORGANISM: Histoplasma capsulatum
 - (B) STRAIN: G185A5
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 483

15	ATTCAAGAAT	TGATCGTACG	TTCCTCCGCC	CCACACACGA	TCAATGGAGA	50
	AAGAAACAAA	TTTTTTGGGA	GTGGTCATTT	TTTCTAATAA	TTCGAATAGA	100
	ACAACATTGC	CAAAGCCCAC	GGTGGTTACT	CCGTGTTCAC	TGGTGTCGGC	150
	GAGCGGACCC	GTGAAGGAAA	TGACTTGTAC	CACGAAATGC	AGGAAACCCG	200
	TGTTATCCAG	CTCGATGGAG	AGTCCAAGGT	CGCCCTCGTT	TTCGGTCAGA	250
20	TGAACGAGCC	TCCCGGAGCC	CGTGCCCGTG	TTGCCCTCAC	TGGTCTGACC	300
	GTTGCCGAGT	ACTTCCGTGA	CGAGGAAGGC	CAAGACGGTA	TGTATAAGTA	350
	TACACCGTAG	CAAATCAACA	CAGAGCTTCA	CTCACGCTCG	GATTTAGTGC	400
	TTCTCTTCAT	CGACAACATT	TTCCGCTTCA	CTCAGGCCGG	TTCCGAAGTG	450
	TCTGCCCTGC	TCGGCCGTAT	TCCCTCCGCC	GTCGGTTACC	AACCCACCCT	500
25	CGCCGTGGAC	ATGGGTGGTA	TGCAGGAACG	TATCACCACT	ACCACCAAGG	550
	GCTCCATCAC	CTCTGTGCAR	GCCGTCTACG	TCCCCG		586

- 30 2) INFORMATION FOR SEQ ID NO: 484
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1145 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: Genomic DNA
- 40 (vi)ORIGINAL SOURCE:
 - (A) ORGANISM: Malassezia furfur
 - (B) STRAIN: ATCC 42132
 - (xi) SEQUENCE DESCRIPTION: SEO ID NO: 484

45						÷
	GCGTGGCCAG	AAGGTCATTG	ACACTGGTGC	TCCCATCACC	ATCCCCGTCG	50
	GTGGTGCCAC	ACTGGGTCGT	ATTCTGAACG	TCACGGGTGA	CCCTATTGAC	100
	GAGCGTGGCC	CCGTTAAGAC	TGACGTTTTC	CGCCCCATTC	ACCGTGACCC	150
	CCCTGCCTTT	GTCGAGCAGT	CGACTGATGC	CGAGATTCTC	GAGACTGGTA	200
50	TCAAAGTCGT	TGACCTGATT	GCCCCTTACG	CCCGTGGTGG	TAAGATTGGT	250
	CTGTTCGGTG	GTGCCGGTGT	CGGTAAGACC	GTGCTTATCC	AGGAGCTCAT	300
	CAACAACATC	GCCAAGGCCC	ACGGTGGTTT	CTCCGTGTTC	ACTGGTGTCG	350
	GTGAGCGTAC	TCGTGAGGGT	AACGATTTGT	ACCACGAGAT	GATTGAAACC	400
	GGTGTCATTA	ACCTCGAGGG	TGACTCGAAG	GTGGCTCTGG	TGTTCGGTCA	450
55	GATGAACGAG	CCCCCGGGTG	CCCGTGCGCG	TGTCGCTCTT	ACTGGTCTGA	500
	CTGTGGCCGA	GTACTTCCGT	GACGACGAGG	GCCAGGATGT	GCTGCTGTTC	550
	ATTGACAACA	TTTTCCGTTT	CACCCAGGCC	GGTTCGGAGA	CTTCGGCTCT	600
	GCTGGGTCGT	ATCCCTTCGT	CGGTCGGTTA	CCAGCCCACT	TTGTCGACCG	650
	ATATGGGTGC	CATGCAGGAG	CGTATCACCA	CCACCAAGAA	GGGTTCGATT	700
60	ACGTCGGTGC	AGGCCGTCTA	CGTGCCCGCC	GATGATGTCA	CTGACCCTGC	750

CCCTGCCACT	ACCTTCGCCC	ACCTTGACGC	TACCACTGTG	CTTGACCGTT	800
CGATCGCTGA	GCTGGGTATC	TACCCCGCTG	TTGACCCGTT	GAACTCGAAC	850
TCGCGTATGC	TTGACCCCGC	TATTGTGGGT	CAGGAGCACT	ACGACGTGGC	900
CTCTGGCGTG	CAGAAGCTGC	TCCAGGACTA	CAAGTCGCTT	CAAGATATCA	950
	GGGTATGGAT				1000
GAGCGTGCCC	GTAAGATGCA	GCGTTTCATG	TCGCAGCCTT	TCGCTGTCGC	1050
CCAGGTCTTT	ACTGGTATCG	AAGGTCGTCT	TGTTGCCCTG	AAGGACACGA	1100
TCAAGGCCTG	CAAGGAGATC	CTGTCGGGCA	AGCACGACAA	CCTCC	1145

10

15

5

- 2) INFORMATION FOR SEQ ID NO: 485
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1261 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
- 20 (ii) MOLECULE TYPE: Genomic DNA
 - (vi)ORIGINAL SOURCE:
 - (A) ORGANISM: Malassezia pachydermatis
 - (B) STRAIN: ATCC 42756

25

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 485

	TCCCGCCATC	TTCAACGCCC	TGGAGGTCCA	GGACATGAAG	AACGGTGGCC	50
	GCCTTGTTCT	GGAGGTTGCC	CAGCACCTTG	GTGAGAACAC	TGTTCGTTGC	100
30	ATTGCTATGG	ACGGTACCGA	GGGTCTTGTC	CGTGGTCAGA	AGGTCCTTGA	150
	CACTGGTGCC	CCGATCACTA	TCCCTGTCGG	TAACGGTACC	TTGGGCCGYA	200
	TCCTGAACGT	CACTGGTGAG	CCTGTGGATG	AGCGTGGTCC	GGTTAAGACT	250
	GACGTCTACC	GTCCAATCCA	CCGTGAGCCC	CCGGCGTTCG	TTGAGCAGTC	300
	GACTGATGCT	GAGATTCTTG	AGACTGGTAT	CAAGGTGGTC	GACCTGCTCG	350
35	CCCCATACGC	TCGTGGTGGT	AAGATTGGTC	TWTTCGGTGG	TGCYGGTGTY	400
	GGTAAGACCG	TGCTGATTCA	GGAGCTTATC	AACAACATTG	CCAAGGCCCA	450
	CGGTGGTTTC	TCGGTGTTCA	CTGGTGTCGG	TGAGCGTACT	CGTGAGGGTA	500
	ACGATCTGTA	CCATGAAATG	ATTGAGACTG	GTGTCATCAA	CGTTGACGGT	550
	GACTCGAAGG	TCGCTCTCGT	GTTCGGTCAG	ATGAACGAGC	CCCCGGGTGC	600
40	CCGTGCCCGT	GTCGCCCTGA	CYGGTCTGAC	CATCGCCGAG	TACTTCCGTG	650
	ACGACGAGGG	TCAGGATGTG	CTGCTCTTCA	TTGACAACAT	TTTCCGTTTC	700
	ACTCAGGCTG	GTTCGGAGAC	TTCGGCTCTG	CTGGGTCGTA	TCCCGTCGGC	750
	TGTCGGTTAC	CAGCCKACCC	TTGCCACGGA	TATGGGTGCC	ATGCAGGARC	800
	GTATYACCAC	CACCAAGAAG	GGTTCGATTA	CCTCGGTGCA	GGCYGTTTAC	850
45	GTTCCGGCCG	ACGATGTGAC	TGACCCTGCC	CCGGCCACGA	CCTTCGCCCA	900
	CTTGGACGCC	ACCACGGTGT	TGGACCGTTC	GATTGCYGAG	CTGGGTATCT	950
	ACCCGGCCGT	CGACCCGCTG	AACTCGAAGT	CGCGTATGCT	TGACCCGTCA	1000
	ATTGTCGGTG	TGGAGCACTA	CAACGTTGCT	TCGGGTGTCC	AGAAGCTTCT	1050
	YCAGGACTAC	AAGTCGCTCC	AAGATATCAT	TGCCATTCTG	GGTATGGATG	1100
50	AGTTGTCGGA	GGAGGACAAG	CTCACTGTCG	AGCGTGCCCG	TAAGATGCAG	1150
	CGTTTCCTGT	CGCAGCCTTT	CGCTGTGGCC	CAGGTCTTCA	CTGGTATCGA	1200
	GGGTCGTCTT	GTGTCGCTCA	AGGACACCAT	CAACGCCTGC	AAGGAGATTC	1250
	TGTCCGGTAA	G				1261

- 2) INFORMATION FOR SEQ ID NO: 486
 - (i) SEQUENCE CHARACTERISTICS:
- 60 (A) LENGTH: 1282 bases

WO 01/23604

PCT/CA00/01150 (B) TYPE: Nucleic acid STRANDEDNESS: Double (C) TOPOLOGY: Linear (D) 5 (ii) MOLECULE TYPE: Genomic DNA (vi) ORIGINAL SOURCE: (A) ORGANISM: Metschnikowia pulcherrima (B) STRAIN: DSM 70336 10 (xi) SEOUENCE DESCRIPTION: SEO ID NO: 486 AGGAGGCAA CTTGCCAGCT ATCTTCAACG CTTTGACGTT GAAGAACGGC 50 GACCAGAAGT TGGTCTTGGA GGTGGCCCAG CACTTGGGTG AGAACACCGT 100 CAGAACCATT GCCATGGACG GTACCGAGGG TTTGGTCAGA GGCGCCTCTG 15 150 TCACCGACAC YGGTGCCCCT ATCTCCGTGC CTGTCGGCCG TGAGACCTTG 200 GGTCGTATTA TCAATGTTGT TGGTGAGCCA ATCGACGAGA GAGGCCCAAT CAACACCAAG AAGAGAAACC CTATTCACAC CGACCCACCT TCGTTTGTCC 250 300 AGCAATCCAC TTCCGCCGAG GTCTTGGAGA CTGGTATCAA GGTTGTCGAC 350 20 TTGTTGGCCC CTTACGCCAG AGGTGGTAAG ATTGGTTTGT TCGGTGGTGC 400 CGGTGTCGGT AAGACCGTGT TCATCCAGGA GTTGATTAAC AACATTGCCA 450 AGGCCCACGG TGGTTTCTCC GTTTTCACCG GTGTCGGTGA GAGAACCAGA 500 GAGGGTAACG ATTTGTACCG TGAAATGCAG GAGACTGGTG TCATCAACTT 550 CGAGGGTGAC TCCAAGGTCG CCTTGGTTTT CGGTCAGATG AACGAGCCTC 600 CAGGAGCTAG AGCYAGAGTT GCCTTGACCG GTTTGACCAT CGCCGAGTAC 25 650 TTCAGAGACG AGGAGGTCA GGATGTGTTG TTGTTCGTCG ACAACATTTT 700 CAGATTCACC CAAGCCGGTT CTGAGGTGTC TGCCTTGTTG GGTCGTATTC 750 CATCCGCTGT CGGATACCAG CCAACCTTGG CCACCGATAT GGGTGCCTTG CAGGAGAGA TTACCACCAC CAAGAAGGGT TCCGTCACCT CCGTCCAGGC 850 CGTCTACGTG CCAGCCGATG ACTTGACTGA CCCTGCGCCA GCCACCACTT 30 900 TCGCCCACTT GGACGCCACC ACTGTGTTGT CCAGAGGTAT CTCTGAGTTG 950 GGTATCTACC CCGCTGTCGA CCCCTTGGAC TCCAACTCCA GATTGTTGGA 1000 CGCCACCGTT GTTGGCCAGG AGCACTACGA CGTCGCCACC AACGTCCAGC 1050 AAACTTTACA AGCTTACAAG TCCTTGCAGG ATATCATTGC CATTTTGGGT 1100 35 ATGGATGAGT TGTCCGAGAC CCGACAAGTT GACCCGTCGA GAGAGCCAGA AAGATCCAGA AGTTCTTGTC CCAGCCATTT GCCGTCGCCG AGGTTTTCAC 1200 CGGTATTGAG GGTAGATTGG TTAGATTGGA GGACACCGTT AGATCCTTTA 1250 AGGAGGTTTT GGAAGGTAAG TACGACCACT TG 1282 40 2) INFORMATION FOR SEQ ID NO: 487 (i) SEOUENCE CHARACTERISTICS: LENGTH: 482 bases 45 (A) (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear (ii) MOLECULE TYPE: Genomic DNA 50 (vi)ORIGINAL SOURCE: (A) ORGANISM: Penicillium marneffei (B) STRAIN: WSA-214 55 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 487

TGTCTTTATC CAGGAGTTGA TTGTACGTCT TTACCTTTCT GCCTGACTGT 50 TTACGACAAC TAACGAAAGC GTAGAACAAC ATTGCCAAGG CTCACGGTGG 100 TTACTCTGTC TTCACTGGTG TCGGTGAACG TACTCGTGAG GGTAACGATT 150

TGTACCACGA	AATGCAGGAA	ACTGGTGTCA	TTCAGCTCGA	GGGTGAATCC	200
AAGGTCGCCC	TCGTGTTCGG	TCAGATGAAC	GAGCCCCCCG	GTGCCCGTGC	250
CCGTGTCGCT	CTTACTGGTT	TGACCATTGC	CGAGTACTTC	CGTGACGAGG	300
	CGTGCTTCTC				350
GCCGGTTCTG	AGGTGTCTGC	CCTTCTGGGT	CGTATCCCCT	CTGCCGTCGG	400
	ACCCTTGCCG			GAGCGTATTA	450
CCACCACCAC	CAAGGGTTCC	ATCACCTCCG	TC		482

10

15

5

- 2) INFORMATION FOR SEQ ID NO: 488
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1290 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - TOPOLOGY: Linear (D)
 - (ii) MOLECULE TYPE: Genomic DNA

20

- (vi) ORIGINAL SOURCE:
 - ORGANISM: Pichia anomala (A)
 - STRAIN: ATCC 18205 (B)
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 488 25

	TCGAACAAGG	TAACTTACCA	GCTATCTTGA	א תיכורתיתיא הא	<u>አ</u> ለጥሮአ አአአርሮ	50
	CCAAGTGGTA	CTCCATTAGT	TTTAGAAGTT	GCTCAACATT	TAGGTGAAAA	100
	CACTGTCAGA	ACTATTGCTA	TGGATGGTAC	TGAAGGTTTA	GTTCGTGGTG	150
20	0.10101			CTGTCCCAGT		
30	AACAAGTTAC	TGATACTGGT	TCTCCAATCA		TGGTCGTGAA	200
	ACTTTAGGTC	GTATTATCAA	CGTTGTTGGT	GAACCAATTG	ATGAACGTGG	250
•	TCCAATTAAC	ACCAAACAAA	GAAACCCAAT	TCACGCTGAA	CCACCTTCAT	300
	TCAGTGAACA	ATCAACTGCT	GCTGAAGTTT	TAGAAACTGG	TATCAAAGTT	350
	GTYGATTTAT	TAGCTCCATA	CGCTAGAGGT	GGTAAAATTG	GTTTATTCGG	400
35	TGGTGCCGGT	GTCGGTAAAA	CTGTCTTTAT	CCAAGAATTG	ATTAACAACA	450
	TTGCTAAAGC	TCATGGTGGT	TTCTCAGTTT	TCACCGGTGT	TGGTGAAAGA	500
	ACCAGAGAAG	GTAACGATTT	ATACCGTGAA	ATGAAAGAAA	CTGGTGTTAT	550
	TAACTTGGAA	GGTGATTCTA	AGGTCGCTTT	AGTTTTCGGT	CAAATGAATG	600
	AACCACCAGG	TGCTAGAGCT	CGTGTTGCTT	TAACTGGTTT	GACCATTGCT	650
40	GAATACTTCA	GAGATGAAGA	AGGTCAAGAT	GTCTTGTTAT	TCGTTGATAA	700
	CATTTTCAGA	TTCACCCAAG	CCGGTTCAGA	AGTTTCTGCC	TTATTAGGTC	750
	GTATTCCATC	TGCTGTCGGT	TATCAACCAA	CTTTAGCAAC	TGATATGGGT	800
	TTGTTACAAG	AACGTATTAC	CACCACACAA	AAAGGTTCAG	TTACTTCTGT	850
	CCAAGCTGTT	TATGTCCCAG	CTGATGATTT	AACAGATCCT	GCTCCAGCTA	900
45	CCACTTTCGC	CCATTTGGAT	GCTACTACTG	TCTTGTCTCG	TGGTATTTCA	950
	GAATTAGGTA	TTTACCCAGC	TGTCGATCCA	TTAGATTCTA	AATCAAGATT	1000
	ATTAGATGCT	TCAGTTGTTG	GTCAAGAACA	TTATGATGTT	GCTACCAACG	1050
	TTCAACAAAC	TTTACAAGCT	TACAAATCTT	TACAAGATAT	TATTGCTATT	1100
	TTAGGTATGG	ATGAATTGTC	TGAACAAGAT	AAATTGACTG	TCGAAAGAGC	1150
50	AAGAAAAATC	CAAAGATTCT	TATCTCAACC	ATTTGCTGTT	GCCGAAGTTT	1200
-	TCACTGGTAT	YCCAGGTAGA	TTGGTTAGAT	TAAAAGACAC	TATCAAATCA	1250
	TTCAAAGATG	TTTTGGAAGG	TAAATATGAT	CACTTACCAG		1290

- 2) INFORMATION FOR SEQ ID NO: 489
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1291 bases
- 60 (B) TYPE: Nucleic acid

- (C) STRANDEDNESS: Double
- (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: Genomic DNA

5

- (vi)ORIGINAL SOURCE:
 - (A) ORGANISM: Pichia anomala
 - (B) STRAIN: ATCC 2149
- 10 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 489

	CCAATTCGAA	CAAGGTAACT	TACCAGCTAT	CTTGAATGCT	TTAGAAATCA	50
	AAACCCCAAG	TGGTACTCCA	TTAGTTTTAG	AAGTTGCTCA	ACATTTAGGT	100
	GAAAACACTG	TCAGAACTAT	TGCTATGGAT	GGTACTGAAG	GTTTAGTCCG	150
15	TGGTGAACAA	GTTACTGATA	CTGGTTCTCC	AATCACTGTC	CCAGTTGGTC	200
_	GTGAAACTTT	AGGTCGTATT	ATCAACGTTG	TTGGTGAACC	AATTGATGAA	250
	CGTGGTCCAA	TTAACACCAA	ACAAAGAAAC	CCAATTCACG	CTGAACCACC	300
	TTCATTCAGT	GAACAATCAA	CTGCTGCTGA	AGTTTTAGAA	ACTGGAATCA	350
	AAGTTGTTGA	TTTATTAGCT	CCATACGCTA	GAGGTGGTAA	AATTGGTTTA	400
20	TTCGGTGGTG	CCGGTGTCGG	TAAAACTGTC	TTTATCCAAG	AATTGATTAA	450
	CAACATTGCT	AAAGCTCATG	GTGGTTTCTC	AGTTTTCACC	GGTGTTGGTG	500
	AAAGAACCAG	AGAAGGTAAC	GATTTATACC	GTGAAATGAA	AGAAACTGGT	550
	GTTATTAACT	TGGAAGGTGA	TTCTAAGGTC	GCTTTAGTTT	TCGGTCAAAT	600
	GAATGAACCA	CCAGGTGCTA	GAGCTCGTGT	TGCTTTAACT	GGTTTGACCA	650
25	TTGCTGAATA	CTTCAGAGAT	GAAGAAGGTC	AAGATGTCTT	GTTATTCGTT	700
	GATAACATTT	TCAGATTCAC	CCAAGCCGGT	TCAGAAGTTT	CTGCCTTATT	750
	AGGTCGTATT	CCATCTGCTG	TCGGTTATCA	ACCAACTTTA	GCAACTGATA	800
	TGGGTTTGTT	ACAAGAACGT	ATTACCACCA	CACAAAAAGG	TTCAGTTACT	850
	TCTGTCCAAG	CTGTTTATGT	CCCAGCTGAT	GATTTAACAG	ATCCTGCTCC	900
30	AGCTACCACT	TTCGCCCATT	TGGATGCTAC	TACTGTCTTG	TCTCGTGGTA	950
	TTTCAGAATT	AGGTATTTAC	CCAGCTGTCG	ATCCATTAGA	TTCTAAATCA	1000
	AGATTATTAG	ATGCTTCAGT	TGTTGGTCAA	GAACATTATG	ATGTTGCTAC	1050
	CAACGTTCAA	CAAACTTTAC	AAGCTTACAA	ATCTTTACAA	GATATTATTG	1100
	CTATTTTAGG	TATGGATGAA	TTGTCTGAAC	AAGATAAATT	GACTGTCGAA	1150
35	AGAGCAAGAA	AAATCCAAAG	ATTCTTATCT	CAACCATTTG	CTGTTGCCGA	1200
	AGTTTTCACT	GGTATCCCAG	GTAGATTGGT	TAGATTAAAA	GACACTATCA	1250
	AATCATTCAA	AGATGTTTTG	GAAGGTAAAT	ATGATCACTT	A	1291

40

- 2) INFORMATION FOR SEQ ID NO: 490
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 508 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: Genomic DNA

50

60

- (vi)ORIGINAL SOURCE:
 - (A) ORGANISM: Rhodotorula minuta
 - (B) STRAIN: ATCC 10658
- 55 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 490

	CGTATTGATT	CGTGAGTGGC	CGTTCCCTTA	CAGCAAGCTT	ATAAAGGAGC	50
	GAAAAAGATC	TGACATTCGG	CTTATGTGCT	ATACAGAGGA	ACTCATCAAC	100
	AACGTCGCCA	AGGCTCATGG	TGGTTACTCT	GTCTTCACCG	GTGTCGGAGA	150
)	GCGAACACGT	GAAGGTAACG	ATCTCTACCA	CGAAATGATT	GAAACCGGTG	200

WO 01/23604	PCT/CA00/0115
VV () () 1/2.30U4	1 01/01/01/01

TCATTCAGCT CAAGAAC	GAC AAGTCCAAGG	CCGCTCTGGT	CTTCGGACAG	` 2 50
ATGAACGAGC CCCCCGG	AGC TCGTGCCCGT	GTCGCTCTGA	CCGGTCTCAC	300
CATCGCCGAG TACTTCC	GTG ACGTCGAAGG	ACAGGATGTG	CTACTCTTCA	350
TCGACAACAT TTTCCGA				400
CTCGGACGTA TCCCATC	TGC TGTCGGATAC	CAGCCCACAC	TCTCAACCGA	450
TATGGGTGGT ATGCAAG	AGC GAATCACAAC	CACCAAGAAG	GGTTCGATTA	500
CCTCCGTC				508

10

15

5

2) INFORMATION FOR SEQ ID NO: 491

(i) SEQUENCE CHARACTERISTICS:

- LENGTH: 686 bases (A)
- TYPE: Nucleic acid (B) STRANDEDNESS: Double (C)
- (D) TOPOLOGY: Linear

(ii) MOLECULE TYPE: Genomic DNA

20

(vi)ORIGINAL SOURCE:

- ORGANISM: Rhodotorula mucilaginosa (A)
- (B) STRAIN: ATCC 66034

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 491 25

	TGTCCTCATT	CAGGAGCTCA	TCAACAACAT	CGCCAAGGCC	CACGGTGGTT	50
	ACTCGGTCTT	CACCGGTGTC	GGCGAGCGTA	CCCGTGAGGG	TAACGGTGAG	100
	TCTCCCCCTT	CAAACTTTTG	GCCGGCTAGT	TGGCGCAGCG	CAAACTGACG	150
30	CGCGCGCCCT	GTCCAGACTT	GTACCACGAG	ATGATCGAGA	CTGGTGTCAT	200
	CCAGCTCGAG	AACGACAACT	CGAAGTGCGC	TCTCGTGTTC	GGCCAGATGA	250
	ACGAGCCCCC	TGGTGCCCGT	GCCCGTGTCG	CTCTCACTGG	GTTCGTCCTT	300
	TCTCTCTCTC	GAGCGTCCTG	GCTTGATACG	GAACGCTGAC	ACGTCACGCA	350
	GTCTCACTAT	TGCTGAGTAC	TTCCGTGACG	AGGAGGCCA	GGACGTGCTC	400
35	CTCTTCATCG	ACAACATCTT	CCGTTTCACC	CAGGGTGAGC	CGCCTCCGCG	450
	GGCATTCTCC	CGTTTCTTTC	GCGCTGACGT	CTGTCCCGTA	TAGCCGGTTC	500
	GGAGGTGTCT	GCCCTTCTCG	GACGTATCCC	GTCCGCTGTC	GGATACCAGC	550
	CGACTCTCTC	GACCGACATG	GGTCAGATGC	AGGAGCGTAT	CACGTAAGTT	600
	TGGCCGCAGC	TCCGTCCGCG	GCGCCCTTTG	TGTCTGACCG	TGTTCCACCG	650
40	CTCAGCACCA	CCAAGAAGGG	CTCGATCACC	TGTGTC		686

2) INFORMATION FOR SEQ ID NO: 492

45

50

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 625 bases
 - TYPE: Nucleic acid (B)
 - (C) STRANDEDNESS: Double
 - TOPOLOGY: Linear (D)
- (ii) MOLECULE TYPE: Genomic DNA
- (vi)ORIGINAL SOURCE:
 - ORGANISM: Sporobolomyces salmonicolor (A)
 - STRAIN: ATCC 32311 (B)
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 492
- TGTCTTGATT CAGGAGCTCA TCAACAACGT CGCCAAGGCG CACGGTGGTT 60

ACTCCGTTT CACCGGTGTC GSTGAGGGTA CCCGTGAGGG TAACGGTGAG CACACTTTCG CCGACCTGGC CATTCCGGAA CGTGCGAGAC ACTCCGACAC ACTCCGACAC ACTCCGACAC ACTCTGAGAC ACTCTGAGAC ACGAGGAGAC CACAGGTGAGAC CACAGGTGAGAC CACAGGAGAGAC ACGAGGAGAC ACGAGGAGAC CACAGGAGAGAC CACAGGAGAGAC CACAGGAGAGAC ACGAGGAGAGAC CACAGGAGAGAC CACAGGAGAGAC CACAGGAGAGAC ACGAGAGAGA		WO 01/23604				POTIO:	00/01150
CACACTTICG CCGACCTGGC CATTCCGGAA CGTGCGGACT GACGAGGACC ACCTCGGACA GATCCTCACA CACGAGATGAT CGAGACCGGT GTCATTCAGC TCGACAAGGA CAAGTCCGAGA ACTGCTCTC TCTTCGGCCA GATGAACCAG GTACTTCGGT GACGACGAGG CCCAGGACGT TCTTCGGCCA GATGAACCAG GTACTTCCGT GACGACGAGG GCCAGGACGT GCTTCTCTT CATCCACAACA TCTTCCGTT CACCCAGGGG ACCGTCCATCC CGCCCGTCC AACACCGAATG TCGTGGTGAC TGACCAACCTG TTGCGCGTGC AACACGCAATG CCCTTCTCGG TCGACTACCT TCGGCGTGC AACACGCAATG CCCTTCTCGG TCGACTACCT TCGGCGTGC AACACGCAATG CCCTTCTCGG TCGGATACCA GCGACGTTCC GACGACTCTCTCG TCTCTCGTT CGCTCTGCAT CGCTCTGCG ACCACCCCC CACTCTCTCG TCTCTCGTT CGCTCTGCAT CGCTCACGCA TGTTCGCCC TCTTCTGTT 550 TCTCTCGTTT CGCTCTGCAT CGCTCACGCA TGTTCGCCC ACCACCAC 600 CAAGAAGGGT TCGATACCT GTGTC (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1211 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear (vi) ORIGINAL SOURCE: (A) ORGANISM: Sporothrix schenckii (B) STRAIN: WSA-148 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 493 TCTCGTCCGT GGTGCTAAGG CCACTCACAC TGGTTCCCC ATTACCATCC CCCTCGCCC CGGTACCCC TAAGACCCCAC AGCCCCACCAC GGTTCCGTC CATCACGC 150 TGAGGCTCC GGTACCCTT GAGACCCGAC AAGTCCCTC CCATCACACC 150 TGAGGCTCC GGTTCCTTG ACCACTCCAC AAGACCCGC GTTTCCTGTG 200 ACTGGACGAG GCGGTCCCAT CAAGACCCGA AAGACCGTCAT CAACACCACGC 150 ATTGGTCTGT TTGGCGGTG CGGTGTGGCA AAGACCGTT TCATCCAGGA 350 ATTGGTCTGT TTGGCGGTG CGGTGTTGGC AAGACCGGT TCATCCAGC 150 ATTGGTCTGT TTGGCGGTG CGGTGTTGCC CAACCCCTGAGG GTTCTCCTGG 250 ACTGGACGAG GCGTACCAC AGGCCCACAC AGGCCCACCAC GGTTACCCC CATCACACC 150 ATTGGTCTGT TTGGCGGTG CGGTGTGGC AAGACCGTT TCATCCAGGA 350 ACTGGCCGA GCGTACCCT GAGGCTACA TGAAGACCGT TTCCTCCCC ATTCACCC 350 ACTGGACGAG GCGTACCCT TGAAGACCACCG TGGTTACCC CGATCACACC 350 ACTGGACGAG GCTACCCT TGAAGACCAC AGCCCCACCAC GGTTACCC CGATCACACC 350 ACTGGACGAG CCGTCACAT TGCGGAC AAGACCCACC GGTGTTACCC CCATCACACC 350 ACTGGACGAG CCGTCACAT TGCGGAC AAGACCCACC GGTGTTACCC CCATCACACC 350 ACTGGACGAG CCGACACACT TCCCTGACC GGGACACCT TCATCACC GCGACACC GGCACACCT TCATCACC GCGACACC TCATCACC GCGACACC TCATCACC GCCACACCC TCACCCCCCCACCACCC TCCCCCCCCCC							
ACCTGGAACA GATCTCTACC ACGAGATGAT CGAGACGGT GTCATTCAGC TCGACAAGAG ACAGTCGAAA ACTGGCTCTG TCTTCTGGCCA GATGAACGAA CACACGAACGA ACCTGCCGT TGTGGCTCTTA ACTGGTCTCA CCATGAGCGAA TCTTCCGTTT CACCCAGGGT ACGTTCGATC CCGCCGGTCC ACACACGAATG TCTTCGGTTAC TCACCCAGGGT ACGTTCACTC ACCCCGTTCG CCCTTCTGG TCGCAACACTG TTGGCGGTGC CACCGGTTCG GAGGTTCTG 500 ACCGACATGG GTGGCATGCAG GAGCGTATC ACGCCGTTCG GACTCTCTCG 500 ACCGACATGG GTGGCATGCAG GAGCGTATC ACGTCAGCC ACCTCTCTCG 500 ACCGACATGG GTGGCATGCAG GAGCGTATC ACGTCAGCC ACCTCTCTCG 500 CCAGGAAGGGT TCGATCACCT GTGTC GATCACCCC ACCACCAC 602 10 ACCGACATGG GTGGCATGCAG GAGCGTATC ACGTCACCC ACCACCAC 602 CCAGGAAGGGT TCGATCACCT GTGTC ACGTCACCC ACCACCAC 602 (i) SEQUENCE CHARACTCRISTICS: (a) LENGTH: 1211 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear (vi) ORIGINAL SOURCE: (A) ORGANISM: Sporothrix schenckii (B) STRAIN: WSA-148 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 493 TCTCGTCCTGT GGTGCACCT GGTGCACAC TGGTTCCCCC ATTACCATCC CCGTGGCCC GGGTACCCT GAACACTCAC CGGTGACCCG 100 ACCGACAGAG GCGGTCCAT CAAGACCGAC AAGTTCCCC CGGTGACCCG 100 ACCGCGGCC CGGTACCCTC GGTCGCATCA TGAACGTCAC CGGTGACCG 100 ACCGCAGAGC GCGGTCCAT CAAGACCGAC AAGTTCCCTC CCGTCGGCC CGGTACCCCC AGTTCACAC TGACCGCTAGAC GTGTCTCACAC TGGTCCACCAC CATTCACACC TGGTCCACAC ACCTCACAC ACCTCACAC ACCTCACAC TGGTCCCCT TGGTCCTCAC ACCTCACAC TGGTCCCCT ACCACCC TGGTGCCCC ACTCACAC TGGTCCCC ACTCACAC TGGTCCCC ACCTCACAC TGGTCCCCC ACCTCACAC TGGTCCCC ACCTCACAC TGGTCCCC ACCTCACAC TGGTCCCC ACCTCACAC TGGTCCCC ACCTCACAC TGGTCCCC ACCTCACAC TGGTCCCC TGGTCCCC TGGTCCCC ACCTCACAC TGGTCCCC TGGTCCCCCCCC		ACTCCGTTTT	CACCGGTGTC	GGTGAGCGTA	CCCGTGAGGG	TAACGGTGAG	
TCGACAAGGA CAAGTCGAAG ACTGCTCTCG TCTTCGGCCA GATGAACGAG 250 GTACTTCGGT GACGACGAGG GCCAGGACGT TACTGCGTCTA CACATCGGGA 300 GTACTTCGGT GACGACGAGG GCCAGGACGT GCTTCTCTTC ATCGACAACA 350 TCGTGGTGAC TGACCAACCTG TTGGCGTGC ACCCGTCC AACACGAATG 450 TCGTGGTGAC TGACCAACCTG TTGGCGTGC GATCACGAC CACTCTCTG 450 ACCGACATGG GTGGCATGCA TCGCGTGTCG GATACCAGC CACTCTCTCG TCCTCTTCGG TCGTTCCGT CACTCAGCAC GATCACCACC CACTCTCTCG TCCTCTCGAT CACTCAGCAC ACCCACCAC CACTCTCTCG TCCTCTCGAT CACTCAGCAC ACCCACACAC 600 TCTCTCTGTT CGGTCTGCAT CGGTCACGCA TGTTCGCCG ACAGCACCAC 600 CAAGAAGGGT TCGATCACCT GTGTC TGTTC (i)SEQUENCE CHARACTERISTICS: (i)SEQUENCE CHARACTERISTICS: (ii)MOLECULE TYFE: Genomic DNA (vi)ORIGINAL SOURCE: (i) ORGANISM: Sporothrix schenckii (i) STRAIN: WSA-148 (xi)SEQUENCE DESCRIPTION: SEQ ID NO: 493 TCTCGTCGT GGTGCTAAGG CCACTGACAC TGGTTCCCCC ATTACCATC CCGTCGGCC CGGTGACCCT GGTGCCATCA TGAACGTCAC CGGTGACCCG 100 ACCGACAGC GCGGTCCCAT CAAGACCGAC AAGTTCCCTC CATCACAC TGGACCCG TGGTGATCACAC TGGTGCTCCACACAC TGGTGCCC CAGTCACACC TGGTGCCC CGGTGACCCC GGTGACCCC CGGTGACCCC CGGTGACCCC CGGTGACCCC CGGTGACCCC CGGTGACCCC CTGGTGTCTCACAC ACGCCCTGAG TTTCTGCGCG CCGTGACCCC CGGTGACCCC GGGTGACCCG AACTCCACCAC TGGTGCTCACAC TGGTGCCC CACTCACAC TGGTGCTC CCTCTCACAC ACGCCCAC AGGCCCAC AGGCCCAC AGGCCCAC AGGCCCAC AGGCCCAC AGGCCCAC TGGTGTACC CCTCTCACAC ACCCCCCAC AGGCCCAC TGGTGCTC CCTCACCAC CACAATCCAC CACAATCCAC CGGTACCCC TGGTGTTT TGGCGGTGC CGGTTACCTC GGTTGCCCC TGCTCTCACCAC CGAAATCCAC CGGTACACC TGGTCTCT TACCAGC TGGTTCTCCC CCTCTCACAC CCCACCT TGGCCC CCCACC TGCTCTCAC CCCCCCAC TGCTCTTCACC CCCCCCAC TGCTCTCAC CCCCCCCAC TGCTCTCAC CCCCCCCAC TGCTCTCAC CCCCCCCAC TGCCCCCCCCAC TGCCCCCCCCAC TGCCCCCCCCCC		A CCTCCA A CA	CCGACCTGGC	CATTCCGGAA	CGTGCGGACT	GACGAGGACC	
5 CCCCCTGGGG CCCGTGCCG TGTCGCTCTT ACTGGTCTC CCATCGCGGA 350 GTACTTCCGT GACGACGAGG GCCGGGACGT GCTTCTCTTCT		TCCACAACA	CAICICIACC	ACGAGATGAT	CGAGACCGGT	GTCATTCAGC	
GTACTTCCGTT GACGAGGAG GCCAGGAGGT GCTTCTCTC ATCAGACAA 350 TCGTGGTGAC TCACCAGGGT ACGTTCGATC CCGCCCGTCC AACACGAATG 400 TCGTGGTGAC TGCATACCCG TCCGCTGTCG AGCAGGATTG 450 ACCGACATGG GTGGATGCA GGAGCGTATC ACCTAGACC CACTCTCTCG 500 ACCGACATGG GTGGCATGCA GGAGCGTATC ACGTACCAGCC CACTCTCTCG 5500 TCTCTCGTTT CGCTCTGCAT CGCTCACGCA TGTTCGCCCG ACAGCACCAC 600 CAAGAAGGGT TCGATCACCT GTGTC 2) INFORMATION FOR SEQ ID NO: 493 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1211 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear 25 (ii) MOLECULE TYPE: Genomic DNA (vi) ORIGINAL SOURCE: (A) ORGANISM: Sporothrix schenckii (B) STRAIN: WSA-148 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 493 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 493 TCTCGTCCGT GGTGCTAAGG CCACTGACAC TGGTTCCCCC ATTACCATC CGGTGACCCG 100 ACCGGTGACCC CGGTACCCT GGTGCATCA TGAAGCGTAC CGGTGACCCG 100 ACCGGTGACCA AACATCGCCA AAGCCCACA TGGTTCCCCC ATTACCATC CGGTGACCCG 150 ACCGACACACA AACATCGCCA AGGCCCACG TGGTGGTAAG 250 ACCTGATCAAC AACATCGCCA AGGCCCACG TGGTTCCTCCG ATTACCATC CGGTGACCCG 150 ACCGGTGACCAC AACATCGCCA CAGGCCACG TGGTTCACCG 150 ACCGACACTC TCACTCACC CGGTGACCC CGGTGACCCG 150 ACCGACACTC TCACTCACC CGGTGACCC CCTCACCACG 150 ACCGACACTC TCACTCACC CGGTGACCC TCCTTCGCC CCTCACCACG 150 ACCGACACTC TCACTCACC CGGTGACCC CGGTGACCC CGGTGACCCC TGGTGGTAAC ACCTCACCC TGCTTCGC CCTCACCACG 150 ACCCCACACG AACATCGCCA AGGCCCACG TGGTTCACCAC TCACCACG 150 ACCCCACACC TCACGACC TCCCTCC CGGTGACCC CCTCGTGTT CACCGAGACCTCT TCACCGCAGACCTCT TCACCGCAGACCTCT TCACCGCAGACCTCT TCACCGCAGACCTCT TCACCGCAGACCTCT TCACCGCAGACCTCT TCACCGCAGACCTCT TCACCGCAGACCTCT TCACCGCAGACCTC TCCCCCCACGC TGGTGGTAAC ACCACCC TGCGTGACC AGGCCACCC TCCCCCCCCCC	5	CCCCCTCCCC	CAAGICGAAG	TOTOCOCTOTO	A CTCCTCCTCA	GATGAACGAG	
TCTTCCGTTT CACCCAGGGT ACGTTCGATC CCGCCCGTCC AACACGAATG 450 CCCTTCTCGG TGACAACCTG TTGCGCGTGC AGCGGGTTCG GAGGTGTTGTG 450 CCCTTCTCGG TCGTATCCCG TCCGCTGTCG GAGGTGTCTG 550 ACGCACATGG GTGGCATGCA GAGGCGTATC ACGTACGCC TCTTCTGCTT 550 TCTCTCGTTT CGCTCTGCAT CCCTCACGCA ACGCACCCAC 6605 CAAGAAGGGT TCGATCACCT GTGTC 76TTCGCCCG ACAGCACCAC 6605 2) INFORMATION FOR SEQ ID NO: 493 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1211 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear 25 (ii) MOLECULE TYPE: Genomic DNA (vi) ORIGINAL SOURCE: (A) ORGANISM: Sporothrix schenckii (B) STRAIN: WSA-148 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 493 TCTCGTCGGT GGTGCTAAGG CCACTGACAC TGGTTCCCC ATTACCATCC CCGTGGGCC CGGTACCCT GGTGGCAACAC TGGTTCCCC CAGGTACCAC TGAGGACCCCG TGGTGGCCG 100 ACGACGACG GGGTCCCAAC AGCACCAC AGCCGCTGAG GTTCTCTGTA CACGGCAC AGCGCTGACAC TGGTTGCTC CAGCCACG TGGTGGTAACG ACCGCTGAG GTTCTCTGAA GGTCGTCAAC ACCAGTCGAC CCTGGGTACCAC GAGTTCACCA AGCGCCCACG TGGTGGTAAC ACCAGTCAC AGCGCCCG GAGTCCCAC GAGGTCACCAC CGGTGGCCC TGGTGGTAAC ACCAGTCACAC CCTGGGTAAC ACCAGTCACAC CACCGCTGAG GTTCTCTGTA 200 40 GTGTCGGCGA GCGTACCCT GAGGGTAACG AAGACCGCC TGGTGGTAAC ACCAGTCAC AGCGCCC GAGGTCCCAC GAGGTCACCAC GAGGCCCCC GAGGTCACCAC GAGGCCCCC GAGGTCACCAC GAGGCCCCC GAGGCCCC GAGGCCCCC GAGGCCCC GCCCCCCC GCCCCCCC GCCCCCCCC	,	GTACTTCCGT	GACGACGAGG	GCCAGGACGT	CCTTCTCTTC	ATCCACAGGA	
TCGTGGTGAC TGAACACCTG TTGCGCGTGC AGCCGGTTCG GAGGTGTCTG CCCTTCTCGG TCGATACCCG CACCTCTCCG 500 ACCGACATGG GTGGCATGCA GGAGCGTATC ACGTACCAGCC CACTCTCTCGT 550 TCTCTCGTTT CGCTCTGCAT CGCTCACGCA TGTTCGCCC ACAGCACCAC 600 CAAGAAGGGT TCGATCACCT GTGTC (i) SEQUENCE CHARACTERISTICS: (a) LENGTH: 1211 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear (ii) SEQUENCE DESCRIPTION: SEQ ID NO: 493 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 493 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 493 TCTCGTCCGT GGTGCTAAGG CCACTGACAC TGGTTCCCC ATTACCATCC 50 CGGTGCCC CGGTACCCT GGTGCGATCA TGAACGTCAC CGGTGACCGG 150 ATGGACCTCC GAGTTCGTTG ACCAGTCGAC CACGCCTGAG GTTCTCTGTA 200 ATTGGTCTGT TTGGGGTGC CGGTGTTGGC CAGCCCTGGTGTAGA 250 ATTGGTCTGT TTGGGGTGC CGGTGTTGGC CAGCGCTGAG GTTCTCTGTA 200 GGAACCTCTG TCATTCAGC TGAGGGTAACG TGGTTTACCA CGGTGAGCG 300 GGAGCCTCTG TCATTCAGC TGAGGGTAAG ATCTGTACCA CGGTGTAGAG 400 GGAGACCTCTG TCATTCAGC TGACGGACCA AGGCCGACG AGGACCGT TGATACAACGAC AGGCCGACGGT TCACGCC GGTTTACCA GGGGGACCCT TGATGAACGTCC CGGTGAGAG 400 GGAGACCTCTG TCATTCAGCT TGACGGTGA AGGACCGTT TCATCAGCCG TGGTGGTAAG 250 GGTGCAGATG AACAGGCCA AGGCCCACGG TGGTGTTAAG 250 GGTGCAGATG AACAGGCCA CAGGCCACGG TGGTGGTAG 300 GGAGCCTCTG TCATTCAGCT TGACGGTGA TGAGGACGG AACAGCGTT TCATCAGGCG TGGTGGTAGA 350 GGTGCGAGATG ACCGCCACGG TGGTGTTACCA CGAAATTCCAGC TGGTGGTAGA 350 GGACCTCTG TCATTCAGCT TGACGGTGA TCCCTCAGCCC TGGTGGTTAG 450 GGTTGACTGT TCATTCAGCT TGACGGTGA TCCCCCTGGTGT TCATCAGGC 350 GGTTGACTGT TCATTCAGCT TGACGGTGA AGGACCGTGT TCATCAGC 350 GGTTGACTGT TCATTCAGCT TGACGTGAT TCCCTGACG AGGACGTGT TCATCAGC 350 GGTTGACTGT TCATTCAGCT TGACGTATT CCCCCCTGGTGTT TCATCAGGC 360 GGTTGACTGT TCATTCAGCT TGACGTATT CCCCCCCTGGTGTT TCATCAGGC 360 GGCCACGCC CTGGGTGAT CTCCTGAGG AGGAGGGCA GGTGTTTACC 350 GACCACTAG AGGACCACC TCCGGTGAT CCCCCCGCGTGA ATTACCT CCCCCCGCTGA AGGACCACC TCCCCCGCTGA AGGACCACC TCCCCCCGCG ACCACC TTCCCCCCGC GCCCACCC TCGCCCACC TCCCCCCCC GCCCACCC TCCCCCCCC GCCCCACCC TCCCCCCCCC GCCCACCC TCCCCCCCCC GCCCACCC TCCCCCCCC GCCCACCC TCCCCCCCCC GCCCACCC TCCCCCCCCC GCCCCACCC TCCCCCCCCCC		TCTTCCGTTT	CACCCAGGGT	ACGTTCGATC	CCGCCCGTCC	AICOACAACA	
CCCTTCGG TGGTATCCC TCCGCTGTCG GATACCAGCC CACTCTCTCG 10 ACCGACATGG GTGGCATGCA GGGCGTATC ACGTACGCCC TCTTCTGTT 550 TCTCTCGTTT CGCTCTGCAT CGCTCACGCA TGTTCGCCCG ACAGCACCAC 600 CAAGAAGGGT TCGATCACCT GTGTC 660 2) INFORMATION FOR SEQ ID NO: 493 20 (A) LENGTH: 1211 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear 25 (ii) MOLECULE TYPE: Genomic DNA (vi) ORIGINAL SOURCE: (A) ORGANISM: Sporothrix schenckii (B) STRAIN: WSA-148 30 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 493 TCTCGTCGGT GGTGCTAAGG CCACTGACAC TGGTTCCCC ATTACCATCC 50 CCGTCGGCCC CGGTACCCT GGTCGATCA TGAACGTCAC CGGTGACCCG 150 ATCACAGAAC GCGGTCCCAT CAAGACCGA AAGTTCCGTC CCATCACGC 150 TGAGGCTCCC GAGTTCGTTG ACCAGTCGAC CACCGCTGAG GTTCTCTCACG 250 ATTGGTACAA GGTCGTCGAT CTGCTTCTC CCTACCACCG 150 ATTGGTACAA GGTCGTCGAT CTGCTTCTC CCTACCACCG 350 ATTGGTCAAC AACATCGCA AGGCCCACG TGGTTACCC GTGTGTAAG 250 ATTGGTCGG GCGTCCCATC GAGGTACCCT TAACGTCCC CTTCTCACG 350 GCTCATCAAC AACATCGCA AGGCCCACG TGGTTACCC GTTTCACCG 350 GCTCATCAAC AACATCGCA AGGCCCACG TGGTTACTC CCGACACGGA 400 GTGTCGGGGG CCCTTCGT GAGGGTACC TCCACGCCGT GCTTCACCC 350 GGACCTCTG TCATTCAGCT TAACGGTCG TCCAGGCCG GGTTCTCACC GGTTTGACT TCATCCAGGA 400 GGGCCACACAC TCGCTCGACG AGGCCCACG TGGTTGACCG CCGTGTTTCACC GGTTTGACT TCATCAGCC TGGTGTCT TCCCCGTGTT TGCCTTCAC GCGTTCCACG GCTTCACCG 550 GTTTGACTGT CTCTTCATC GACCACATT TCCCTCACG GCCTTGTTC TCCCGTGTT TGCCTTCAC GCCACGCTGTT TCCCCACGC TGGTGTTCT TCCCCCACG TGCTTCACC GCCTCGTGTT TCCCCCACGC TGGTGTCCAC GCCCCGTGTT TCCCCCACGC TGGTTCACC GCCCCGCTGTT TCCCCCACG TGGTGTTCC TCCCCCACG TGGTTCACC GCCCCCCCC GCCCACCC TTCCCCCACC TCCCCCCCCCC		TCGTGGTGAC	TGACAACCTG	TTGCGCGTGC	AGCCGGTTCG	GAGGTGTCTG	
ACCGACATGG GTGGCATGCA GGAGCGTATC ACGTACGCCC TCTTCTGCTT TCCTCGTTT CGCTCTGCACT GTGTC 2) INFORMATION FOR SEQ ID NO: 493 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1211 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear (ii) MOLECULE TYPE: Genomic DNA (vi) ORIGINAL SOURCE: (A) ORGANISM: Sporothrix schenckii (B) STRAIN: WSA-148 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 493 TCTCGTCCGT GGTGGCTAAGG CCACTGACAC TGGTTCCCC ATTACCATCC CCGTCGGCCC CGGTACCCTC GGTGCACTA TGAACGTCAC CGGTGAACCG TGAGGCTCC GAGTTCGTTG ACCAGTCGAC AAGTTCCTCC TCTAGCCGC TGGTGTAAG ATTGGTCTGT TTGGCGGTGC TGGTTGTCC CCTTAGCCGC TGGTGTAAG GCTATCAAC AACATCCGCA AGGCCACC TGGTTCCTC GTGTACCAC GGTGACCG TGGTGTACCA AACACTCGT TGAACGTCA CGGTGAAGA GCGAC TAGTACCACC TGGTGTACCA GGTGACCAC TGGTGACCG TGGTGTACA ACCAGCGAC TGGTGTCCT CCTAGCCCC TGGTGTAAG 250 ATTGGTCTGT TTGGCGGTGC TGGTTGTC CCTTAGCCGC TGGTGTAAG 250 ATTGGTCTGT TTGGCGGTGC TGGTTGTCT CCTTAGCCGC TGGTGTAAG 250 ATTGGTCTGT TTGCCGCAT CAAGACCAC AGCGCTGAG GTTCTCGTGA 250 GCTCATCAAC AACATCCGCA AGGCCACC TGGTGACCG TGGTGTAAG 250 ATTGGTCTGT TTGCCGCAT CTGCTTGCTC CTTAGCCGC TGGTGTAAG 250 ATTGGTCTGT TTGCCGCAT CTGCTTGCTC CTTAGCCGC TGGTGTAAG 250 GTTCACATGA AACATCCGCA AGGCCACC TGGTGTACCAC GGAAAATCCAAG 400 GGAGACCTCTG TCATTCAGCT TGACGGTCAC TCCCGTGTC GCCTTGACCG GGTCAGATG AACAGCCCC CTGGTGCTG TCCCCGTGTC GCCTTGACC GCTTTCACCG GGTCAGATG AACAGCCCC CTGGTGCTG TCCCCGTGTC GCCTTGACC GCCTTGACC GCCTTGACC GCCTTGACC GCCTTGACC GCCTTGACC GCCTGACCT TCCCCGAGCAC TTCCAGCACC TGGTGACC GCCTTACCT GCCCGTGACC TCCAGCCC TGGTGATAC TCCCCCGCTC TCCGCCCTC TCCCCCCC TCGGCCACC TTCCCCCCTC TCCCCCCC GCCCACCC TTCCCCCCC TCGCCCCC TCCCCCCC TCCCCCCC TCCCCCCC TCCCCCC		CCCTTCTCGG	TCGTATCCCG	TCCGCTGTCG	GATACCAGCC	CACTCTCTCG	500
TCTCTGTTT CGCTCTGCAT CGCTCACGCA TGTTCGCCCG ACAGCACCAC 600 625 2) INFORMATION FOR SEQ ID NO: 493 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1211 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear 25 (ii) MOLECULE TYPE: Genomic DNA (vi) ORIGINAL SOURCE: (A) ORGANISM: Sporothrix schenckii (B) STRAIN: WSA-148 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 493 TCTCGTCCGT GGTGCTAAGG CCACTGACAC TGGTTCCCC ATTACCATCC 50 CCGTCGGCCC CGGTACCCT CAAGACCGAC AAGTTCCATC CCATCCAGC 150 ATGGCTCC CAGGTTCGTT CACGAGAC ATTGCTTCGTC CCTACGCCC 150 ATGGCTCCC GAGTTCGTT CACGAGAC AAGTTCCTC CCTACGCCC 150 ATGGCTCCT CAGGCTCCC GGTCCATC CCTACGCCC TGGTGTAAG 250 ATGGCTCTT TTGGCGTGC CGGTTCTGTC CCTACGCCC TGGTGTAAG 250 ATGGCTCTT TTGGCGTGC CGGTTCTGCT CTACCAGCA AAGACCGAC TGGTTCCCC ATTCACCAGC 150 GTTCTCTT TTGGCGTGC CGGTTCTGCT CTACGCCCG TGGTGTAAG 250 ATGGTCTGT TTGGCGTGC CGGTTCTGCT CTACCAGCA CGGTTACAC AGACCTCGT GGTTCTCCC GTCTTCACCG 350 GTTCTCTT TTGGCGTGC CGGTTCTGCT CCTACGCCC TGGTGTATC CGGTCAACAC TGGTTCCCC GTCTTCACCG 350 GTTCGATCA AACATCGCA AGGCCAACG TGGTTACCA CGGTTAACA ACATCGCA TGACGGTGAC ATCTGTACCA CGAAATGCAG 400 GAGACCTCTG TCATCTAACA TGACGGTGAC ATCTGTACCA CGAAATGCAG 400 GAGACCTCTG TCATCTAACA TGACGGTGAC TCCAAGGGCC CCGTTCACCC GTTTTCACCG 350 GTTCGATTA AACAATCGAT TGACGGTGAC ATCTGTAACA CGAAATGCAG 400 GAGACCTCTG TCATCTAACA TTCCGTGACG AGAGGGCCA GGTTGACG 500 GTTGACTG TCATCTAACA TTCCGTGACG AGAGGGCCA GGTTGACCG 500 GTTGACTG TCCCTGACTG AGAGACATTT TCCGCTTCAC CCAGGCCGT TCCAGGCC TTCACGCC TCCAAGGCC ATCTGATCAC CAGGCCAC TCCAAGGCC AACAATTT TCCGCTTCAC CCAGGCCGT TCCACGCC CCCCAAGAC TTCCAAGGAC ATTACCAACA 750 CCCGCAAGGC TCGCCCTCAAC TGGCTCAACAC TTCCACGCAC TCCAAGGCC AACAATTT TCCGCCTTCAC CCCAGGCCAC TCCAAGGCC AACAATTT TCCGCCTTCAC CCCAGGCCAC TCCAAGGCC AACAATTT TCCGCCTTCAC CCCAGGCCAC TCCAAGGCC AACAATTT TCCCGCCTTCAC CCCAGGCCAC TCCAACCC TCCAAGGCC AACAATTT TCCCTCCCCT TCGCCCAACCC TCCAAGGCCAC TCCAACCC TTCGCCCACC TCCAACCC TTCGCCCACC TCCAACCC TCCAACCC TTCGCCCACC TCCAACCC TTCGCCCAACC TCCAACCC TTCGCCCACC TCCAACCC TTCGCCCACC TCCAACCC TCCAACCC TCCAACCC TTCCAACCC TTCCAACCC TT	10	ACCGACATGG	GTGGCATGCA	GGAGCGTATC	ACGTACGCCC	TCTTCTGCTT	550
2) INFORMATION FOR SEQ ID NO: 493 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1211 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear 25 (ii) MOLECULE TYPE: Genomic DNA (vi) ORIGINAL SOURCE: (A) ORGANISM: Sporothrix schenckii (B) STRAIN: WSA-148 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 493 TCTCGTCCGT GGTGCTAAGG CCACTGACAC TGGTTCCCC ATTACCATCC CCGTCGGCCC CGGTACCCT GGTCGCATCA TGAACGTCAC GGTGACCCG 100 ATGGACGAGC GCGGTCCCAT CAAGACCGAC AAGTTCCATC GGTGACCCG 150 CTGGTATCAA GGTCGTCGTG CCGATCACTCGTCA GGTCTCGTCA 200 CTGGTATCAA GACATCGCA AGGCCACG AAGTTCCTCTCACGC 150 GCTCATCAAC AACATCGCA AGGCCACG TGGTTACCG GTCTTCACCG 300 GCTCATCAAC AACATCGCA AGGCCACG TGGTTACCC GTCTTCACCG 350 GTGTCGGCA GCGTACCGT GAGGATAACG ATCTGTACCA CGGTTCACGC 350 GAGACCTCTG TCATTCAACT TGACGGTGAC TCCAAGGACC ACCGCTCAGC CCGTTCACCG 350 GAGACCTCTG TCATTCAACT TGACGGTGAC TCCAAGGACG ACCGGTTCAC CCGGTGTGT 450 CGGTCAGATG AACAGCCCC CTGGTGCTC TCCCAGGCC GGTTTACCC 350 TTTTGACTTT TCCTTCTCT GGTCACGTGAC AACTCGCCAG GGATTGACCG 500 GTGTCAGCGC ACCGCT GACGGTACCG TGCCCCTTCACCC 350 TTTTGACTTT TCCTTCTCT GTACCAGTGAC TCCAAGGACG ATCTGTACCA CCGCTTCACCG 500 GTTCAGCGT TCCCTTTCATC GACAACATTT TCCCGTTCA CCAGGCCGT TGCCCGTTT 450 CCGCCAGGC TCGCCTCTACGCC CCGCCACCCC TTCCCCCTTCACC 350 TTTTGAATTA TTTCCTTTCTC GACAACATTT TCCGCTTCAC CCAGGCCGT 550 TTTTGAGTTG TCTCCTTCATC GACAACATTT TCCGCTTCAC CCAGGCCGT 650 TTTTGAGTTG TCTCCTTCATC GACAACATTT TCCGCCTTCAC CCAGGCCGT 650 GCCCACGCT CGCCTGGACA TGGTCTCAT GCCCCTTCACC GCCTTCACC 350 GATCTACACG ATCCCGCCC CCCCCCCC CCCCCCCCC TCCCCCTCTC TCCCCTGTACC 350 GACCACTAC ACCCCCCTAT TCCTCTCACC CCAGGCCACC TTCCCCCCTTCACC 350 GACCCCCTCA CCCCCCCC CCCCCCC CCCCCCCCC TCCCCCTCTCAC CCCCCTGTACC GACCACGCT TCCCCAGCC CCCCCCC CCCCCCCCC TCCCCCTCTCAC CCCCCCTCACC 350 GACCCTCAC TCCCAAGTCC CCTCTCACCC CCCCCTCTCAC CCCCCCTCTCCCCCCCC		TCTCTCGTTT	CGCTCTGCAT	CGCTCACGCA	TGTTCGCCCG	ACAGCACCAC	600
(i) SEQUENCE CHARACTERISTICS: (i) LENGTH: 1211 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear 25 (ii) MOLECULE TYPE: Genomic DNA (vi) ORIGINAL SOURCE: (A) ORGANISM: Sporothrix schenckii (B) STRAIN: WSA-148 30 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 493 TCTCGTCCGT GGTGCTAAGG CCACTGACAC TGGTTCCCCC ATTACCATCC CCGTGGCCC CGGTACCCTC GGTCGCATCA TGAACGTCC CCATCCACGG 100 ATGACGAGG CGGGTCCCAT CAAGACCGAC AAGATTCCGTC CCATCCACGG 150 ATTGGCTGCT TTGGCGGTC CGGTTTGGC AAGACGTGT TCTCTGTGA 200 CTGGTATCAA GGTCGTCGAT CTGCTTGCTC CCTACGCCG TGGTGGTAAG 250 ATTGGCTCT TTGGCGGTGC CGGTTTGGC AAGACGTGT TCATCCAGG 350 GCTCATCAAC AACATCGCA AGGCCACACG TGGTTACCCC GTCTTCACGC 350 GGTCAGCAAG AGCACCCC TGGCGTATCA TGAACGACGAC AAGATCCACG 350 GGTCAGCAAG ACACTCCCC TGGCGTTTCCC CGAAATGCAG 400 GGAGACCTCT TCATTCAGCT TGACGGTGAC TCCAAGGCCC GTCTTCACCG 350 GGTCAGCAATA AACACGCCA CGGTGACCACG TGGTTACCCC GAAATGCAG 400 GAGACCTCTG TCATTCAGCT TGACGGTGAC TCCAAGGCCC CGAAATGCAG 400 GAGACCTCTG TCATTCAGCT TGACGGTGAC TCCAAGGCCC CGAAATGCAG 400 GAGACCTCTG TCCTTCATC GACAACATTT CCCACTGCC CCAAATGCAG 400 GTCGGGGGT CCCCCTCTCT GGTCGTATC TCCCGCTGT TCCCTGGTTT TCCCGTTACCC GAAATGCAG 400 TTTTGAATTA TTTCCTTGTC GTACAGTTC TCCCTGCCG TGCCTTGACCG 550 GCCCACGCTC CCCGTGGACA TGGGTGATT TCCCCTCCACG CCCGGTTACCC GAAATGCAG 400 TTTTGAATTA TTTCCTTTGTC GACAACATTT CCCCTCCACG CCCTGGTTACC CCAGGTTACC TCCCCCGCTG CCCCGCTGACA TCCCCCCGCTG TCCCCCGCTG TCCCCCCCC CCCCAACACC TTCCCCCCCC TCCGCTGAC ATTACCACCA 750 GCCCACGCTC CCCCTCCCC CCCCCCC CCCCACCACC TTCGCCCATC TGGACGCCAC 850 GACCTCTACA GACCCCCAC TCCGCCCC CCCCCTTCT TGGCTTACC CCCGCTTACC GACCACTCC GCCCACCACC TCCGCCCC CCCCCTCTCC GGCTTACCCC GGCTTACCCC GCCCCCCC CCCCCCACCACC TTCGCCCATC TGGGCGCAC 850 GACCCTTCAA GACCCCCAC TCCGCTCCA CACATCCTC TGGGTGACA 1000 GTCGCCACAGCT TCCCAGGCC CCCCCCC CCCCCACCACC TTCGCCCAGC TTCCCCGCTG ACCCCCCCC CCCCCACCACC TCCGCCTCC TTCCCTCCAGG CCCCCCCCCC		CAAGAAGGGT	TCGATCACCT	GTGTC			625
(i) SEQUENCE CHARACTERISTICS: (i) LENGTH: 1211 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear 25 (ii) MOLECULE TYPE: Genomic DNA (vi) ORIGINAL SOURCE: (A) ORGANISM: Sporothrix schenckii (B) STRAIN: WSA-148 30 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 493 TCTCGTCCGT GGTGCTAAGG CCACTGACAC TGGTTCCCCC ATTACCATCC CCGTGGCCC CGGTACCCTC GGTCGCATCA TGAACGTCC CCATCCACGG 100 ATGACGAGG CGGGTCCCAT CAAGACCGAC AAGATTCCGTC CCATCCACGG 150 ATTGGCTGCT TTGGCGGTC CGGTTTGGC AAGACGTGT TCTCTGTGA 200 CTGGTATCAA GGTCGTCGAT CTGCTTGCTC CCTACGCCG TGGTGGTAAG 250 ATTGGCTCT TTGGCGGTGC CGGTTTGGC AAGACGTGT TCATCCAGG 350 GCTCATCAAC AACATCGCA AGGCCACACG TGGTTACCCC GTCTTCACGC 350 GGTCAGCAAG AGCACCCC TGGCGTATCA TGAACGACGAC AAGATCCACG 350 GGTCAGCAAG ACACTCCCC TGGCGTTTCCC CGAAATGCAG 400 GGAGACCTCT TCATTCAGCT TGACGGTGAC TCCAAGGCCC GTCTTCACCG 350 GGTCAGCAATA AACACGCCA CGGTGACCACG TGGTTACCCC GAAATGCAG 400 GAGACCTCTG TCATTCAGCT TGACGGTGAC TCCAAGGCCC CGAAATGCAG 400 GAGACCTCTG TCATTCAGCT TGACGGTGAC TCCAAGGCCC CGAAATGCAG 400 GAGACCTCTG TCCTTCATC GACAACATTT CCCACTGCC CCAAATGCAG 400 GTCGGGGGT CCCCCTCTCT GGTCGTATC TCCCGCTGT TCCCTGGTTT TCCCGTTACCC GAAATGCAG 400 TTTTGAATTA TTTCCTTGTC GTACAGTTC TCCCTGCCG TGCCTTGACCG 550 GCCCACGCTC CCCGTGGACA TGGGTGATT TCCCCTCCACG CCCGGTTACCC GAAATGCAG 400 TTTTGAATTA TTTCCTTTGTC GACAACATTT CCCCTCCACG CCCTGGTTACC CCAGGTTACC TCCCCCGCTG CCCCGCTGACA TCCCCCCGCTG TCCCCCGCTG TCCCCCCCC CCCCAACACC TTCCCCCCCC TCCGCTGAC ATTACCACCA 750 GCCCACGCTC CCCCTCCCC CCCCCCC CCCCACCACC TTCGCCCATC TGGACGCCAC 850 GACCTCTACA GACCCCCAC TCCGCCCC CCCCCTTCT TGGCTTACC CCCGCTTACC GACCACTCC GCCCACCACC TCCGCCCC CCCCCTCTCC GGCTTACCCC GGCTTACCCC GCCCCCCC CCCCCCACCACC TTCGCCCATC TGGGCGCAC 850 GACCCTTCAA GACCCCCAC TCCGCTCCA CACATCCTC TGGGTGACA 1000 GTCGCCACAGCT TCCCAGGCC CCCCCCC CCCCCACCACC TTCGCCCAGC TTCCCCGCTG ACCCCCCCC CCCCCACCACC TCCGCCTCC TTCCCTCCAGG CCCCCCCCCC							
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1211 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear 25 (ii) MOLECULE TYPE: Genomic DNA (vi) ORIGINAL SOURCE: (A) ORGANISM: Sporothrix schenckii (B) STRAIN: WSA-148 30 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 493 TCTCGTCCGT GGTGCTAAGG CCACTGACAC TGGTTCCCCC ATTACCATCC 50 CCGTCGGCCC CGGTACCCTC GGTCGCATCA TGAACGTCAC CGGTGACCCG 150 ATCGACGAGC GCGGTCCCAT CAAGACCGAC AAGTTCCGTC CCATCCACGC 150 ATTGGTCTGT TTGGCGGTGC CGGTGTACGAC CACCGCTGAG GTTCTCGTGA 200 GCTCATCAAC AACATCGCA AGGCCACGG TGGTTACCAC GTTGTGCTC CTACCACGC 350 GCTCATCAAC AACATCGCA AGGCCACGG TGGTTACCAC GTTCTCACGC 350 GCTCATCAAC AACATCGCA AGGCCACGG TGGTTCTCACC GTTCTCACCG 350 GAGACCTCTG TCATCCAGCT TGACGGTGAC TCCAAGGCCC CCTGAGTT TCATCCACG 400 GTGCCGCAG GCGTACCCGT TGACGGTGAC TCCAAGGCCC CCTGAGTT TCATCCACG 350 GTTGACTGT TCTCTCAGCT TGACGGTGAC TCCAAGGCCC CCTGAGTT 450 CGCTCAGATA AACACGCCA CGGTGTTCC TGCCCGTTG CCCGCTTGACCG 500 GTTTGACTGT TTTCCTTCAC GACACACTTT TCCCGTCCC TCCAGCCCG TGACGC 500 GTTTGACTGT TCCTCTCACC GCCACACCT TCCAGGCCACG TCCCTTCACCG 500 GTTTGACTGT TCTCTCACC GCACACACTT TCCCAGGCCA GCGTTACCA CAGCCCCGT GCCCTTGACCG 500 GTTTGACTGT TCCCTTCACC GCCACCACCT TCCCAGCCCG TCCCCCTTCACCG 500 GTTTGACTGT TCCCTCACCA TCCCGTCCACC TCCCCCCCC TCCCCCCCCCC	15	0 \ T1TD0D142 T	Tall =0" ==0				
20 (A) LENGTH: 1211 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear 25 (ii) MOLECULE TYPE: Genomic DNA (vi) ORIGINAL SOURCE: (A) ORGANISM: Sporothrix schenckii (B) STRAIN: WSA-148 30 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 493 TCTCGTCCGT GGTGCTAAGG CCACTGACAC TGGTTCCCCC ATTACCATCC 50 CCGTCGGCC CGGTACCCTC GGTCGCATCA TGAACGTCAC CCGTCACCG 150 ATCGACGAGC GCGGTCCCAT CAAGACCGAC AAGTTCCTCC CCATCCACCC 150 CTGGTATCAA GGTCGTTG ACCAGTCGAC CACCGCTGAG GTTCTCCACGC 150 GCTCATCAAC AACATCGCCA AGGCCCACCG TGGTTACCA GCTCTACACG CTGGTATCAA GACTACCACG TGGTTGCC CTACCAGC TGCTTCACCC 350 GCTCATCAAC AACATCGCCA AGGCCCACCG TGGTTACCAC GCTCTTCACCC 350 GGACCTCTG TCATTCAGCT GACGGTAC ACCGCTGAG CCCTGTGACAC CACCGCTGAG GTTTTCACCC 350 GGTCATCAAC AACATCGCCA AGGCCCACCG TGGTTACCA CGCATCACGC 350 GGACCTCTG TCATTCAGCT TGACGGTGAC TCCAAGGCCA CCCTGGTGT 450 GTTTGAATTA TTTCCTTCACC TGACGGTCC TGCCTTTCACCC 500 GTTTGAATTA TTTCCTTTCACC TGACGGTCC AGGAGGCCCA GGATGATACC TTTTGAATTA TTTCCTTTCTTC CACGGTGAC AGGAGGCCCA GGATGATACC GCCCACGCTC GCCGTGACAC TTCCGTTCAC CCAGGCCGT GCCTTTACCA GCCCACCC TTCCGCTTCA CCCCGCTGAC GCCCCCC GCCCACCC TTCCGCTTCA CCCCGCTGAC GCCCCCCC GCCCACCC TTCCGCTTCA CCCCGCTGAC GCCCCCCC GCCCACCC TTCCGCTTCA CCCCGCTGAC GCCCCCCC GCCCACCC TTCCGCTTCA CCCCGCTGAC GCCCCCCC GCCCACCC TTCCGCTTCA CCCCCCCCC GCCCCCCC GCCCACCC TTCCGCTTCA CCCCCCCC GCCCTGCAC 850 CCCCACGCACCC TCCCCCCC CCCCACCC TTCCCCCTTC GCCCTTCAC 900 ACCCCCTCAA GACCCCCC CCCCACACC TTCCCCCATC TCGCCTTCAC 900 ACCCCCTCAA GACCCCCC CCCCACACC TTCCCCCATC TCGCCTTCAC 900 ACCCCCTCAA GACCCCCC CCCACACC TTCCGCCTAC TTCCCCTTCGGC 900 ACCCCCTCAA GACCCCCC CCCCACACC TTCCGCCTAC TTCCCCTTCAGC 900 ACCCCCTCAA GACCCCCC CCCTCCACCC TTCCGCCTAC TTCCCCTTCAGC 900 ACCCCCTCAA GACCCCCC CCCCCCC CCACACC TTCCGCCTAC TTCCCCTTCAGC 900 ACCCCCTCAAGG GACCACCAC TTCCGCTCAA GACCCCCTCAAGG GCCACACC TTCCGCTCAAGG TTCCCTCAAGG GCCACCACC TTCCGCTCAAGG TTCCCTCAAGG CCCACACC TTCCGCTCAAGG TTCCCTCAAGG CCCACACC TTCCGCTCAAGG TTCCCTCAAGG TTCCCTCAAGG TTCCCTCAAGG TTCCCTCAAGG GCCAACCC TTCCGCTCAAGG TTCCCTCAAGG TTCCCTCAAGG GCCAACCCT TTCCCCAACCC TTCC		2) INFORMAT	ION FOR SEQ	1D NO: 493			
20 (A) LENGTH: 1211 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear 25 (ii) MOLECULE TYPE: Genomic DNA (vi) ORIGINAL SOURCE: (A) ORGANISM: Sporothrix schenckii (B) STRAIN: WSA-148 30 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 493 TCTCGTCCGT GGTGCTAAGG CCACTGACAC TGGTTCCCCC ATTACCATCC 50 CCGTCGGCC CGGTACCCTC GGTCGCATCA TGAACGTCAC CCGTCACCG 150 ATCGACGAGC GCGGTCCCAT CAAGACCGAC AAGTTCCTCC CCATCCACCC 150 CTGGTATCAA GGTCGTTG ACCAGTCGAC CACCGCTGAG GTTCTCCACGC 150 GCTCATCAAC AACATCGCCA AGGCCCACCG TGGTTACCA GCTCTACACG CTGGTATCAA GACTACCACG TGGTTGCC CTACCAGC TGCTTCACCC 350 GCTCATCAAC AACATCGCCA AGGCCCACCG TGGTTACCAC GCTCTTCACCC 350 GGACCTCTG TCATTCAGCT GACGGTAC ACCGCTGAG CCCTGTGACAC CACCGCTGAG GTTTTCACCC 350 GGTCATCAAC AACATCGCCA AGGCCCACCG TGGTTACCA CGCATCACGC 350 GGACCTCTG TCATTCAGCT TGACGGTGAC TCCAAGGCCA CCCTGGTGT 450 GTTTGAATTA TTTCCTTCACC TGACGGTCC TGCCTTTCACCC 500 GTTTGAATTA TTTCCTTTCACC TGACGGTCC AGGAGGCCCA GGATGATACC TTTTGAATTA TTTCCTTTCTTC CACGGTGAC AGGAGGCCCA GGATGATACC GCCCACGCTC GCCGTGACAC TTCCGTTCAC CCAGGCCGT GCCTTTACCA GCCCACCC TTCCGCTTCA CCCCGCTGAC GCCCCCC GCCCACCC TTCCGCTTCA CCCCGCTGAC GCCCCCCC GCCCACCC TTCCGCTTCA CCCCGCTGAC GCCCCCCC GCCCACCC TTCCGCTTCA CCCCGCTGAC GCCCCCCC GCCCACCC TTCCGCTTCA CCCCGCTGAC GCCCCCCC GCCCACCC TTCCGCTTCA CCCCCCCCC GCCCCCCC GCCCACCC TTCCGCTTCA CCCCCCCC GCCCTGCAC 850 CCCCACGCACCC TCCCCCCC CCCCACCC TTCCCCCTTC GCCCTTCAC 900 ACCCCCTCAA GACCCCCC CCCCACACC TTCCCCCATC TCGCCTTCAC 900 ACCCCCTCAA GACCCCCC CCCCACACC TTCCCCCATC TCGCCTTCAC 900 ACCCCCTCAA GACCCCCC CCCACACC TTCCGCCTAC TTCCCCTTCGGC 900 ACCCCCTCAA GACCCCCC CCCCACACC TTCCGCCTAC TTCCCCTTCAGC 900 ACCCCCTCAA GACCCCCC CCCTCCACCC TTCCGCCTAC TTCCCCTTCAGC 900 ACCCCCTCAA GACCCCCC CCCCCCC CCACACC TTCCGCCTAC TTCCCCTTCAGC 900 ACCCCCTCAAGG GACCACCAC TTCCGCTCAA GACCCCCTCAAGG GCCACACC TTCCGCTCAAGG TTCCCTCAAGG GCCACCACC TTCCGCTCAAGG TTCCCTCAAGG CCCACACC TTCCGCTCAAGG TTCCCTCAAGG CCCACACC TTCCGCTCAAGG TTCCCTCAAGG TTCCCTCAAGG TTCCCTCAAGG TTCCCTCAAGG GCCAACCC TTCCGCTCAAGG TTCCCTCAAGG TTCCCTCAAGG GCCAACCCT TTCCCCAACCC TTCC		4.5					
(B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear 25 (ii) MOLECULE TYPE: Genomic DNA (vi) ORIGINAL SOURCE: (A) ORGANISM: Sporothrix schenckii (B) STRAIN: WSA-148 30 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 493 TCTCGTCGGT GGGGCACAC CGGTCGCATCA TGAACGTCAC CGGTGACCGC 100 CCGTCGGCCC CGGTACCCTC GGTCGCATCA TGAACGTCAC CCATCCACGC 150 ATCGAACGAGG GCGGTCCCAT CAAGAACCGAC AAGTTCCGTC CCATCCACGC 150 ATTGGTATCAA GGTCGTCGAT CTGCTTGCTC CCTACGCCCG TGGTGGTAAG 250 ATTGGTCTGT TTGGCGGTG CGGTGTTGGC CACCGCTGAG GTTCTCGTGA 200 CTGGTACACA AACATCGCCA AGGCCCACG TGGTTACCAC GTCTACACG 350 ACCCACTACAC AACATCGCCA AGGCCCACG TGGTTACCAC GTCTCACCGC 350 GGTCATCAAC AACATCGCCA AGGCCCACG TGGTTACCAC GTCTCACCG 350 GGTCAGAGA AACATCGCCA AGGCCCACG TGGTGACCC GCCTGGTGTT 450 CGGTCAGATG AACAGCCCC CTGGTGCTC TCACCGGTGT 450 CGGTCAGACT TCCTTTCATC GACAACATTT TCCCGTTCA CCAGGTCACC GTTTGAGGTGT TCTCTTCATC GACAACATTT TCCCGCTG GCCTTGACCG 500 GTTCTCAGGTGT CTCCTTCATC GACAACATTT TCCCGCTCAC CCAGGCCGGT 650 TCTGAGGTGC TCCCTTCATC GGCTAACATTT CCCCCCCTT TCGTGTACCA GACACCCGT ACCCGCTGACA ATTACACACA ATTACACACA ATTACACACA ATTACACACA ATTACACACA ATTACACACA ATTACACACA ATTACACACA ATTACACACA ATTACACACCA TCCCGCCACACACC TCCCGCTGTAC GCCCGCCCC GGTGTACACA ATTACCACCA TCCCGCTGACA ATTACCACCA TCCCGCCCC GCCACACACC TCCCGCTTCAC CCAGGCCCGT 650 TCTGAGGTGT TCCCTTCATC GGCTGATT CCCTCCGCTT CCCGCTGAC ACCCCCCCCC GCCCACACACC TTCCCCCCTT TCGGTTACCA TCCCCCCCCC GCCCACCACCC TTCCCCCCT TCGGTTACCA TCCCCCCCCC GCCCACACACC TTCCCCCCATC TCGGTTACCA TCCCCCCCCC GCCCACACACC TTCCCCCCTT TCGGTTACA ACCCCCTTCA GCCCCCCC CCCCACACACC TTCCCCCCATC TCGCCCCCC CCCCACACACC TTCCCCCCATC TCGCCTTCCG 900 ACCCCCTCGA GACACCCCCC CCCCACCACCAC TTCCCCCCTT TCGGTTACA AACAGTCAA 1000 GTCGCTGCAG GACATACCG CCTTCTGGT TATGGACGG TTTCCTGAGG 1050 CCCGCAACACTACC GACACCCC TCCGCTCCA CCGCCCC CCCACACACC TTCCCCCACC TTCCCGCTG 900 ACCCCCTGAAGCT TCCCGGCCC CCCCCCCCCCCC CCCCACCACCCC TTCCCCCCCC	0.0						
(C) STRANDEDNESS: Double (D) TOPOLOGY: Linear (ii) MOLECULE TYPE: Genomic DNA (vi) ORIGINAL SOURCE: (A) ORGANISM: Sporothrix schenckii (B) STRAIN: WSA-148 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 493 TCTCGTCCGT CCGTTAGCG CCGGTACCCT GGTCGCATCA TGAACGTCACCG 100 CCGTCGGCCC CGGTACCCTC GAAGACCACAC AGACTCCACCG 150 TGAGGCTCCC GAGTCCTGT ACCAGTCACC CCGTCACCCC GGTCCCACCACCACACACACACACACACACACACACACAC	20						
(D) TOPOLOGY: Linear (ii)MOLECULE TYPE: Genomic DNA (vi)ORIGINAL SOURCE: (A) ORGANISM: Sporothrix schenckii (B) STRAIN: WSA-148 (Xi)SEQUENCE DESCRIPTION: SEQ ID NO: 493 TCTCGTCCGT GGTGCTAAGG CCACTGACAC TGGTTCCCCC ATTACCATCC CGGTGAGCAC CGGTGAGCAC CACCGCTGAG GTTCTCTGTAG ACCAGTCCAC CAGGTGACAC CACCGCTGAG GTTCTCTGTAG ACCAGTCCAC CAGGTGACAC CACCGCTGAG GTTCTCTGTAG ACCAGTCCAC CAGGTGACAC TGGTTCCGTC CCATCCACGC 150 ATGGGCTCCC GAGTTCGTTG ACCAGTCGAC CACCGCTGAG GTTCTCTGTAG 200 ATTGGTCTGT TTGGCGGTGC CGGTGTGCTC CATCCACGC TGGTGGTAAG 250 ATTGGTCATCAA AACATCCCCA AGCCCACG TGGTTACCCG TGGTGGTAAG 250 ATTGGTCGTCG GCGTCCCA GAGCCCACG TGGTTACCCG GTTCTCACCG 350 GCTCATCAAC AACATCCCCA AGCCCACG TGGTTACCCC GTCTTCACCCG 350 GAGACCTCTG TCATTCAGCT TGACGGTGAC TCCAAGGTCG CCCTTGACCGC 400 GAGACCTCTG CGGTACCCCT TGACGGTGAC TCCAAGGTCG CCCTTGACCG 500 GTTTGACTGT CGCCTGAGACA TCCGTGCTC TGCCCGTGTC CCCTTGACCGC 500 TTTTGAATTA TTTCCTTGC GTACAGTTC TCCAGGAGAGCCA GGATGGTATG 550 TTTTGAGGTGT TCTCTTCATC GACAACATTT TCCGCTTCAC CGGCCGGT 650 TCTGAGGTGGT CTCCCTCTCT GGTCGTATT CCCCCCCCCT TCGGCCGT CCCCCCCCCC			STRANDEDNE	reic acid			
(vi)ORIGINAL SOURCE: (A) ORGANISM: Sporothrix schenckii (B) STRAIN: WSA-148 (xi)SEQUENCE DESCRIPTION: SEQ ID NO: 493 TCTCGTCCGT GGTGCCAT CAGACACC TGGTTCCCCC ATTACCATCC CGGTGACCCC CGGTACCCCT CAGACACCAC AAGTTCCGTC CATCCAGCC 150 ATCGACGAGC GCGGTCCCAT CAGACACCAC AAGTTCCGTC CATCCAGCC 150 CTGGTATCAA GGTCGTCG ACCACTGACAC CGGTGACCCG 150 ATTGGTCTGT TTGGCGGTGC CGGTGTGCC CATCCAGGC 250 ATTGGTCTGT TTGGCGGTGC CGGTGTGCC CATCCAGGC 350 ATTGGTCTGT TTGGCGGTGC CGGTGTTGCC AAGACCGCC TGGTGGTAAG 250 ATTGGTCTGT TTGGCGGTGC CGGTGTTGCC AAGACCGCT TCATCCAGGA 300 GTGTCGGCGA GCGTCCCGT GAGGGTAACG ACCACTGTC GGTTCACCG 350 GAGACCTCTG CGGTACCCGT GAGGGTAACG ATCTGTACCA CGAAATCCACA AACACCCCA AGGCCCACCG TGGTTACCAC GGCCACCGG TGTTGACCG 350 GTTTGACTGT CGCTTCACC CCGGTGACC CCCTGGTGTT 450 GTTTGAGTGT CCGTGAGAC ACCACCTTC GCCCTTGACCG 500 GTTTGACTGT CGCTGAGCA AGGCCCAC CTGGTGCTC GCCTTGACCG 500 GTTTGAGTGT CGCTGAGCA AGGCCCAC CTGGTGCTC GCCTTGACCG 500 GTTCGAGGGT CTCCTTCATC GACACATTT TCCGTTCAC CGAGGCGGT 650 TCTGAGGGTG CTCAATTAC TCCGTGACG AGGAGGGCCA GGATGGTATG 550 TCTGAGGTGT CTCCTTCATC GACACATTT TCCGTTCAC CCAGGCCGT 650 TCTGAGGTGT CTCCCTTCT GGGTCGTATT CCCCTCCGCT TCGGTTACCA 700 GCCCACACGC CTCAATTACC TCCGTCAGG CCGTTCACCG GCCGTGACC 800 GTCCTTGAC ACCCCCC CGCCACCC TTCGCCTTCAC CCAGGCCGT 650 CACCGTAGG CTCAATTACC TCCGTCAGG CCGTTCACCG GCCGTTACCA 700 GCCCACAGG CTCAATTACC TCCGTCAG CCGTCTCACC GCCGTGAC 800 ACCCCCTCGA AGACCCCC TCGCGCCC CGCCCCTTCC GCGCTTACCA 700 GCCCACCACCA CTCCAAGCC CTCGTCACC CCCGCTTAC GCCCCTTCC GCGTTACCA 700 GCCCACACAC CTCCAAGTCC CGTATCCTG GCCCCTTCT TGGACCCAC 800 ACCCCCTCGA GACCCCC TCCGCTCA CCCCCTTAT TGCCGCTCAC 900 ACCCCCTCGA GACACTATCC CCTTCTGGCTCAC ACCCCCTTAT TGCCGTTACCA 700 GCCACCACAC TCCAAGTCC CTTCTGGGTGAC CCCCCCTTCG GCCCCCCCCCC							
(Vi)ORIGINAL SOURCE: (A) ORGANISM: Sporothrix schenckii (B) STRAIN: WSA-148 (xi)SEQUENCE DESCRIPTION: SEQ ID NO: 493 TCTCGTCGGCCC CGGTACCCCC GGTCGCATCA TGAACGTCCA CGGTGACCCG 100 ATCGACGAGG GCGGTCCCAT CAAGACCGAC AAGTTCCGTC CCATCCAGCC 150 CTGGTATCAA GGTCGTCGAT CTCGTTGCTC CCTACGCCG GTTCCTCGTGA 200 CTGGTATCAA GGTCGTCGAT CTGCTTGCTC CCTACGCCG TGGTGTAAG 250 ATTGGTCTGT TTGGCGGTG CGGTTGCTC CCTACGCCG TGGTGTAAG 250 ATTGGTCTGT TTGGCGGTGC CGGTTACCCG TGGTGTAAG 250 GCTCATCAAC AACATCGCCA AGGCCCACG TGGTTCACCG 350 GCTCATCAAC AACATCGCCA AGGCCCACG TGGTTACCACG 350 GGTGCGGAG GCGTACCCGT GAGGGTAACC ATCTGTACCA CGAAATGCAG 400 GAGACCTCTG TCATTCAGCT TACGGTGGT CCCTTGACCG GGTTTGACCG 350 GTTTGACTG CGCTGAGTACCCG TGGTGTCC CCCTTGACCG 350 GTTTGACTG CGCTGAGTACCCGT GAGGGTAAC ATCTGTACCA CGAAATGCAG 400 GTTTGACTG CGCTGAGTAC TCCGTGCT TGCCCGTTGT CCCTTGACCG 500 GTTTGACTG CGCTGAGTAC TCCGTCCG TGCCCGTTGT CGCTTGACCG 500 GTTTGACTG CGCTGAGTAC TCCGTCAC AGGAGGGCCA GGATGGTATG 550 TTTTGAATTA TTTCCTTGC GTACAGTTC CAAGAGGAGAAATTT TCCGTTCACC CCCGCAGGGG 650 TCTGAGGGT TCTCTTCATC GACAACATTT TCCGTTCACC CCAGGCCGGT 650 GCCCACCGCT CGCGTGGAA TGGGTCATT CCCTCCGCTG TCGGTTACCA 700 GCCCACGCTC GCCGTGGACA TGGGTCATT CCCTCCGCTG TCCGCTGACC 750 GATCTGACGG ATCCCGCCC CGCCACACC TTCGCCCATC TCGGCTGAC 750 GACCACTACG CCCGCGCC CGCCACACC TTCGCCCATC TGGACGCCAC 850 GACCACTACG AACCGCAC CCGCCCCCCTAT TGTCGGTGAC 900 ACCCCCCCAGG GACACCC TCCGGCCAGC CGGTCACCC TTCGCCCATC TGGACGCCAC 850 GACCACTACG AGACCGCAC CTCGGTCCAG CAGACCCCC TTCGCCTGAC 900 ACCCCCCCAGG GACACCC TCGCGCCAC CAGACCC TTCGCCCTCC AACAGTACACC 750 CCGCAAGCT TACAGTCG CCGTTCCAG CAGACCCC TTCGCCTAC 900 ACCCCCCCAG GACACCC TCCGCCCC CGCCCCCCCCCC							
(A) ORGANISM: Sporothrix schenckii (B) STRAIN: WSA-148 (xi)SEQUENCE DESCRIPTION: SEQ ID NO: 493 TCTCGTCCGT GGTGCTAAGG CCACTGACAC TGGTTCCCCC ATTACCATCC CGGTGACCCC CGGTACCCTC GGTCGCATCA TGAACGTCAC CGGTGACCCG 100 ATCGACGACC CGGTACCCTC CAAGACCGAC AAGTTCCGTC CCATCCACGC 150 TGAGGCTCCC GAGTTCGTTG ACCAGTCGAC CACCGCTGAG GTTCTCGTGA 200 CTGGTATCAAA GTCGTCGAT CTGCTTGCTC CCTACGCCCG TGGTGAAG 250 ATTGGTCTGT TTGGCGGTG CGGTGTTGGC AAGACCGTGT TCATCCAGGA 300 GCTCATCAAC AACATCGCA AGGCCCACGG TGGTTACTCC GTCTTCACCG 350 GGTGAGACCTCTG TCATTCACGCT TGACGGTGAC ACCGGTGAC CCGGTGAGAG 400 GTGTTGACTGT TCATTCAGCT TGACGGTGC TGCCCTGTC GCCTTGACCG 500 GTTTGACTGT CGCTGAGATAC TTCCGTGACC AGAAGACCCAC GGATGGTATG 550 TTTGAATTA TTCCTTTGTC GTACAGTTCC AAATCGAAGA ATTACCAACG 500 GCCCACGCCC GCGCGCCC GGCGTGTTT TCCGTCAC GGATGGTATG 550 TCTGAGGGT TCTCTTCATC GACAACATTT TCCGCCTTCAC CCAGGCCGGT 650 CCCGCAAGGG CTCAATTACC TCGGTCTGAT CCAGGAGGCT TCGGTTACCA 700 GCCCACGCTC GCCTTCT GGGTCGTAT CCAGGAGGCT TCGGTTACCA 700 GATCTGACGG ATCCCGCCC CGCCACCACC TTCGCCCATC TGGACCACCA 750 CACTGTGCTG TCCCAAGTCC GGTATCCTGA CCAGGAGGCT TCGGTTACCA 700 GACCCCTCGA CTCCAAGTCC CGCCCCCC GCCCACCACC TTCGCCCATC TCGGTTACCA 750 CACTGTGCTG TCCCAAGTCC CGCCCCCC GCCCACCACC TTCGCCCATC TGGACCCACC 850 CACTGTGCTG TCCCAAGTCC CGCTCCAGG CCGTTATCACC CCCGCTGAC 800 GACCACTACA AGACCGCCA TCCTCGTCCAG CCGCTCTCT TGGACGCCAC 950 ACCCCCTCAAGCT TCCCAAGTCG CGTATCCTCC AAGAGTACAA 1000 GTCGCTGCA GGCACACC TCCGCTCCAG CAGAACCTCC AAGAGTACAA 1000 GTCGCTGCAG GGCACACCC CCTCCTCAC CAGACCCACC TTCCCAGGC CTGTCGAGC 1000 CCGACAAGCT TACAGTCGA GGTCTCCAA GAATCCACCA AAGAGGTCAAAGCG TTCTCTGAGC 1100 CCGACAAGCT TACAGTCGA GGTCTCCAA GGCACCACC TTCCCCAGGC CTCTCCAGG CCACCCCT TTCCAGCC 1100 CCGACAAGCT TACAGTCGAG GGTCTCACT AGAGTCCAAGCG TTCTCCAGC 1100 CCGACAAGCT TACAGTCGAG GGTCTCCAA GGCTGATCCT AAGAGTACAA 11000 CCGATCTGAAG GACCCCAC CTTCCTTCAT GGTATCCAAG GCCACCTCT AAGAGTTCAA 1100 CCGATCTGAAG GACCCTACC CTTCCTTCAT GGTATCCAAG GCCACCTGCT 1150	25	(ii) MOLE	CULE TYPE: (Genomic DNA			
(A) ORGANISM: Sporothrix schenckii (B) STRAIN: WSA-148 (xi)SEQUENCE DESCRIPTION: SEQ ID NO: 493 TCTCGTCCGT GGTGCTAAGG CCACTGACAC TGGTTCCCCC ATTACCATCC CGGTGACCCC CGGTACCCTC GGTCGCATCA TGAACGTCAC CGGTGACCCG 100 ATCGACGACC CGGTACCCTC CAAGACCGAC AAGTTCCGTC CCATCCACGC 150 TGAGGCTCCC GAGTTCGTTG ACCAGTCGAC CACCGCTGAG GTTCTCGTGA 200 CTGGTATCAAA GTCGTCGAT CTGCTTGCTC CCTACGCCCG TGGTGAAG 250 ATTGGTCTGT TTGGCGGTG CGGTGTTGGC AAGACCGTGT TCATCCAGGA 300 GCTCATCAAC AACATCGCA AGGCCCACGG TGGTTACTCC GTCTTCACCG 350 GGTGAGACCTCTG TCATTCACGCT TGACGGTGAC ACCGGTGAC CCGGTGAGAG 400 GTGTTGACTGT TCATTCAGCT TGACGGTGC TGCCCTGTC GCCTTGACCG 500 GTTTGACTGT CGCTGAGATAC TTCCGTGACC AGAAGACCCAC GGATGGTATG 550 TTTGAATTA TTCCTTTGTC GTACAGTTCC AAATCGAAGA ATTACCAACG 500 GCCCACGCCC GCGCGCCC GGCGTGTTT TCCGTCAC GGATGGTATG 550 TCTGAGGGT TCTCTTCATC GACAACATTT TCCGCCTTCAC CCAGGCCGGT 650 CCCGCAAGGG CTCAATTACC TCGGTCTGAT CCAGGAGGCT TCGGTTACCA 700 GCCCACGCTC GCCTTCT GGGTCGTAT CCAGGAGGCT TCGGTTACCA 700 GATCTGACGG ATCCCGCCC CGCCACCACC TTCGCCCATC TGGACCACCA 750 CACTGTGCTG TCCCAAGTCC GGTATCCTGA CCAGGAGGCT TCGGTTACCA 700 GACCCCTCGA CTCCAAGTCC CGCCCCCC GCCCACCACC TTCGCCCATC TCGGTTACCA 750 CACTGTGCTG TCCCAAGTCC CGCCCCCC GCCCACCACC TTCGCCCATC TGGACCCACC 850 CACTGTGCTG TCCCAAGTCC CGCTCCAGG CCGTTATCACC CCCGCTGAC 800 GACCACTACA AGACCGCCA TCCTCGTCCAG CCGCTCTCT TGGACGCCAC 950 ACCCCCTCAAGCT TCCCAAGTCG CGTATCCTCC AAGAGTACAA 1000 GTCGCTGCA GGCACACC TCCGCTCCAG CAGAACCTCC AAGAGTACAA 1000 GTCGCTGCAG GGCACACCC CCTCCTCAC CAGACCCACC TTCCCAGGC CTGTCGAGC 1000 CCGACAAGCT TACAGTCGA GGTCTCCAA GAATCCACCA AAGAGGTCAAAGCG TTCTCTGAGC 1100 CCGACAAGCT TACAGTCGA GGTCTCCAA GGCACCACC TTCCCCAGGC CTCTCCAGG CCACCCCT TTCCAGCC 1100 CCGACAAGCT TACAGTCGAG GGTCTCACT AGAGTCCAAGCG TTCTCCAGC 1100 CCGACAAGCT TACAGTCGAG GGTCTCCAA GGCTGATCCT AAGAGTACAA 11000 CCGATCTGAAG GACCCCAC CTTCCTTCAT GGTATCCAAG GCCACCTCT AAGAGTTCAA 1100 CCGATCTGAAG GACCCTACC CTTCCTTCAT GGTATCCAAG GCCACCTGCT 1150		(vi)ORIG	INAL SOURCE	:			
(Xi) SEQUENCE DESCRIPTION: SEQ ID NO: 493 TCTCGTCGGT GGTGCTAAGG CCACTGACAC TGGTTCCCCC ATTACCATCC CCGTCGGCCC CGGTACCCTC GGTCGCATCA TGAACGTCAC CGGTGACCGG 100 ATCGACGAGC GCGGTCCCAT CAAGACCGAC AAGATCCGTC CCATCCACGC 150 TGAGGCTCCC GAGTTCGTTG ACCAGTCGAC CACCGCTGAG GTTCTCGTGA 200 CTGGTATCAA GGTCGTCGAT CTGCTTGCC CCTACGCCCG TGGTGGTAAG 250 ATTGGTCTGT TTGGCGGTGC CGGTGTTGGC AAGACCGAC TCCACGC GTGTTCACGG 350 GCTCATCAAC AACATCGCCA AGGCCACGG TGGTTACTCC GTCTTCACCG 350 GGTGAGACCTTG TCATCCAGCT TGACGGTGAC CCCTGGTGT TCATCCAGGA 400 GGGCCACGAG GCGTACCCGT TGACGGTGAC TCCAAGGCCG CCTTGACCG 500 GTTTGACTG CGCTGAGTAC TTCCCTCGGCCG GCTTTCACCG 500 GTTTGACTG TCATTCAGCT TGACGGTGCC CCCTGGTGT 450 CGGTCAGATG AACAGCCCC CTGGTGCTC TGCCCTTGACCG 500 TTTTGAATTA TTTCCTTGTC GTACAGTTCC AAATCGAAGA ATTACTAACT 600 TCTGAGGGT CTGCCCTTCT GGGTCGTAT TCCCCCTGTGT TCTCTCACCG GCCCCCACGCC CCCCCACGCC CCCCCCCCTGTCT TCCGCCTTCAC CCAGGCCCG TCCCCCCCGT TCCGTTACCA 750 CCCCCCAAGGG CTCAATTACC TCCGTCCAG CCCTTCACC TCGGTTACCA 750 CCCCCCAAGGG ATCCCGCCC CGCCACCACC TTCCGCCATC TCGGCCAC 850 GATCTGACGG ATCCCGCCC CGCCACCACC TTCCGCCATC TCGGCCCAC 850 GACCACTACG AGACCGCCC CGCCACCACC TTCCGCCATC TGGACGCCAC 850 GACCACTACG AGACCGCCC CGCCACCACC TTCCGCCTTCC GGACGCCAC 850 GACCACTACG AGACCGCCC CGCCACCACC TTCCGCCATC TGGACGCCAC 850 GACCACTACG AGACCGCCC CGCCACCACC TTCCGCCTTCC GACCGCCAC 850 GACCACTACG AGACCGCCC CGCCACCACC TTCCGCCATC TGGACGCCAC 850 GACCACTACG AGACCGCCC CGCCACCACC TTCCGCTCAC AAGAGTACAA 1000 GCGACACACAC TCCAAGTCG CCATCTCGG TATCCTAC CCAGCCCGCTTCCGAC AGACCACC TTCCGGCTCAC AAGAGTACAA 1000 GCGACACACAC TTCCAGGCC CCACCC TTCCTCAGC TTCCTGAGC 1100 CCGACAAGCT TACAGTCGAC GGTCTCTCA AGACCAGC TTCCTGAGC 1100 CCGACAAGCT TACAGTCGAC GGTCTCTCA AGACCAGC TTTCCTGAGC 1100					schenckii		
TCTCGTCCGT GGTGCTAAGG CCACTGACAC TGGTTCCCCC ATTACCATCC 50 CCGTCGGCCC CGGTACCCTC GGTCGCATCA TGAACGTCAC CGGTGACCCG 100 ATCGACGAGC GCGGTCCCAT CAAGACCGAC AAGATCCGTC CCATCCACGC 150 TGAGGCTCCC GAGTTCGTTG ACCAGTCGAC CACCGCTGAG GTTCTCGTGA 200 ATTGGTCTGT TTGGCGGTGCAC CTGCTTGCTC CCTACGCCCG TGGTGATAAG 250 ATTGGTCTGT TTGGCGGTGC CGGTGTTGGC AAGACCGTGT TCATCCAGGA 300 GCTCATCAAC AACATCGCCA AGGCCCACGG TGGTTACTCC GTCTCTCACCG 350 GAGACCTCTG TCATCCAGCT TGACGGTGAC ATCTGTACCAC GTCTTCACCG 350 GAGACCTCTG TCATCCAGCT TGACGGTGAC TCCAAGGTCG CCCTTGGTGT 450 GGTGAGATG AACATCGCC AGGGGTAACG ATCTGTACCA CGAAATGCAG 400 GAGACCTCTG TCATCCAGCT TGACGGTGAC TCCAAGGTCG CCCTTGACCG 500 GTTTGAACTGT CGCTGAGTAC TTCCGTGACG AGGAGGCCCA GGATGGTAT TCCGTGACG AGGAGGGCCA GGATGGTATG 550 TTTTGAATTA TTTCCTTGTC GTACAGTTCC AAATCGAAGA ATTACTAACT 600 TCTTGAAGGTG TCTCTTCATC GACAACATTT TCCGCTTCAC CCAGGCCGT 650 TCTTGACGGT TCTCTTCATC GACAACATTT TCCGTCTCAC CCAGGCCGT 650 GCCCACGCTC GCCCTTCT GGGTCCTATT CCCTCCCGTG TCGGTTACCA 700 GCCCACGCTC GCCCTTCT GGGTCCTATT CCCTCCCGTG TCGGTTACCA 750 GCCCACGCTG ATCCCGCCC CGCCACCACC TTCGCCCATC TCGGTTACCA 750 GACCACTACG ACCCCCC CGCCACCACC TTCGCCCATC TTCGCCATC CCCGCTGAC 850 GACCACTACG AGACCGCCC CGCCACCACC TTCGCCCATC TGGCCATC TGGACCACC 950 GACCACTACG AGACCGCCC CGCCACCACC TTCGCCCATC TGGCCGTGAC 950 GACCACTACG GACACATTC CCCTCCAGG CCGCTGAC 950 GACCACTACG AGACCGCCC CGCCACCACC TTCGCCCATC TGGCCCATC TGGCCGTGAC 950 GACCACTACG GACACCACC TCTCGAGG TTCTCTAC CCCGCTGTAC 950 GACCACTACG GACACATCT CCCATGCTGG ACCCCCCTAT TGTCCGTGAC 950 GACCACTACG GACACATCT CCCATCCTGG TATGCAGG CTGTCTGAGG 1050 CCGACAAGCT TACAGTCG CGTTCTCAC GGGTATCTCC AAGAGTACAA 1000 GCCGCTTCACGT CCCATCCTGG TATGCTGG TATGCAGG CTGTCTGAGG 1050 CCGCCACGCT TACAGTCG CGTTCCACC GGGTATCTAC CCCGCCTGTC TACGGTGAC TTCCTGAGG TTCCTGAGG TTCCTGAGG TTCCTGAGG TTCCTGAGG TTCCTCAGG TTCCTGAGG		(B)	STRAIN: WS	SA-148			
TCTCGTCCGT GGTGCTAAGG CCACTGACAC TGGTTCCCCC ATTACCATCC CCGTCGGCCC CGGTACCCTC GGTCGACAC TGAACGTCAC CGGTGACCCG 100 35 ATCGACGAGC GCGGTCCCAT CAAGACCGAC AAGTTCCGTC CCATCCACGC 150 TGAGGCTCCC GAGTTCGTTG ACCAGTCGAC CACCGCTGAG GTTCTCGTGA 200 CTGGTATCAA GGTCGTCGAT CTGCTTGCTC CCTACGCCCG TGGTGACACG TGGTACACAC ACACATCACCG TGGTGACCCG TGGTGACACACACACACACACACACACACACACACACACA	30	/v:\cecii	PMCE DECCET	OTTON GTO	T NO 400	,	
CCGTCGCCC CGGTACCCTC GGTCGCATCA TGAACGTCAC CGGTGACCCG 150 ATCGACGACG CGCGTCCCAT CAAGACCGAC AAGTTCCGTC CCATCCACGC 150 TGAGGCTCCC CAGTTCGTTG ACCAGTCGAC CACCGCTGAG GTTCTCGTGA 200 CTGGTATCAA GGTCGTCGAT CTGCTTGCTC CCTACGCCCG TGGTGGTAAG 250 ATTGGTCTGT TTGGCGGTGC CGGTGTTGGCC AAGACCGCTGT TCATCCAGGA 300 GCTCATCAAC AACATCGCCA AGGCCCACGG TGGTTACTCC GTCTTCACCG GAGAACCTCTT TCATCCAGCA ATCTGTACCA CGAAATGCAG 400 GGTGTCAGATG AACGACCCC CTGGTGGTAC TCCAAGGTCG CCCTGGTGTT 450 CGGTCAGATG AACGAGCCCC CTGGTGCTC TGCCCGTGTC GCCTTGACCG GCTTTACACCG GTTTTTGAATTA TTTCCTTGTC GTACAGTTCC AAATCGAAGA ATTACTAACT 600 TTTTGAATTA TTTCCTTTCC GTACAGTTCC AAATCGAAGA ATTACTAACT 600 GCCCACGCTC GCCGTGGACA TGGGTCTACC CCAGGCCGT TCGGTTACCA GCCCCACGCT TCGCCGTGTC CCCGCCGTGT TCCCGCCCC GCCCACGCT TCGGTCTCAC CCCGCCGTGT TCCCGCCCC CGCCCACCCT TCGGTCTCAC CCCGCCGTGC TCGGTTACCA 750 GCCCACGCTC GCCGTGGACA TGGGTCTGAC CCGTCTACC GCCCGTGAC GACCCCCCCCCC		(XI) SEQUI	ENCE DESCRI	PITON: SEQ J	LD NO: 493		
ATCGACGAGC GCGGTCCCAT CAAGACCGAC AAGTTCCGTC CCATCCACGC TGAGGCTCCC GAGTTCGTTG ACCAGTCGAC CACCGCTGAG GTTCTCGTGA CTGGTATCAA GGTCGTCGAT CTGCTTGTC CCTACGCCCG TGGTGGTAAG ATTGGTCTGT TTGGCGGTGC CGGTGTTGGC AAGACCGTGT TCATCCAGGA GCTCATCAAC AACATCGCCA AGGCCCACGG TGGTTACTCC GTCTTCACCG GTGTCGGCGA GCGTACCCGT GAGGGTAACG ATCTGTACCA CGAAATGCAG GAGACCTCTG TCATTCAGCT TGACGGTGAC TCCAAGGTCG CCCTGGTGTT 450 CGGTCAGATG AACGAGCCCC CTGGTGCTCG TGCCCGTGTC GCCTTGACCG GTTTGAATTA TTTCCTTGTC GTACAGTTCC AAATCGAGAG ATTACTAACT 600 TTTTGAATTA TTTCCTTGTC GTACAGTTCC AAATCGAGAG ATTACTAACT 600 GCCCACGGTC CTGCCCTTCT GGGTCGTATT CCCCTCCGCTG TCGGTTACCA 750 GCCCACGCTC GCCGTGGACA TGGGTCTGAT CCCTCCGCTG TCGGTTACCA 750 GCCCACGCTC GCCGTGGACA TGGGTCTGAT CCCTCCGCTG TCGGTTACCA 750 CCCGCAAGGG CTCAATTACC TCCGTCCAGG CCGTCTACGT GCCCGCTGAC 850 GATCTGACGG ATCCCGCCC CGCCACCACC TTCGCCCATC TGGACGCAC 850 GACCACTACG AGACCACCC TCCGTGTAC AACCCCATC TGGACGCCAC 850 GACCACTACG AGACCACCAC TCCGCCCC AAGAGTACAA 1000 GTCGCTGCAG GACACTATCG CCATCTGGG CAGAACCACC TTCCGCTGAC 900 CCCGCACAGCT TCCCAAGTCG CCATCTCAGG CCCCCTTACGT GCCCGCTGAC 900 GCCCACGACAGCT TCCCAAGTCG CCATCTCAGG CCCCCTTACGT TTCCGGTGAC 950 GCCCACCACCAC TCCCAAGCC TTCCCGCTG TTCCGTGAC 950 GCCCACCACCAC TCCCAAGCC TTCCCGTAT TGCCGCTAC 950 GCCCACCACCAC TCCCAAGCC CTCCAAGCTAC TTCCCGTGAG 1050 GCCCACCACCAC TCCCAAGCC CCCCCTTAT TGCCCGTG 950 GCCCACCACCAC TCCCAAGCC CCCCCTTATCTCA GGCCCACC AAGAGTACAA 1000 GCCCACTACA GGACCACC TCCCACCC TATCCTGAGC TTCCCTGAGC 1050 GCCCACCACCAC TCCCAAGCC TTCCCGCCC AAGAGTACAA 1000 GCCCACCACCAC TCCCAAGCC TTCCCGAGC TTCCCTGAGC 1050 CCGACAAGCT TACAGTCGA CGTCCTCTA AGACTCACC AAGAGTACAA 1000 GCCCACCACCAC TCCCACCC TTCCGCCC AAGAGTACAA 1000 GCCCACCACCAC TCCCACCC TATCCTGAGC TTCCCTGAGC 1150 CCGACCACTACA CCCCCCC GCCCCC TTCCCTGAGC TTCCCTGAGC 1150		TCTCGTCCGT	GGTGCTAAGG	CCACTGACAC	TGGTTCCCCC	ATTACCATCC	50
TGAGGCTCCC GAGTTCGTTG ACCAGTCGAC CACCGCTGAG GTTCTCGTGA CTGGTATCAA GGTCGTCGAT CTGCTTGCTC CCTACGCCCG TGGTGGTAAG 250 ATTGGTCTGT TTGGCGGTGC CGGTGTTGGC AAGACCGTGT TCATCCAGGA 300 GCTCATCAAC AACATCGCCA AGGCCCACGG TGGTTACTCC GTCTTCACCG 350 GAGACCTCTG TCATTCAGCT TGACGGTGAC TCCAAGGTCG CCTGGTGTT 450 CGGTCAGATG AACGAGCCCC CTGGTGCTC GCCTTGACCG 500 GTTTGACTG CGCTGAGTAC TTCCGTGACG AGGAGGCCA GGAATGCAG 400 GTTTGACTG CGCTGAGTAC TTCCGTGACG AGGAGGCCA GGATGGTATG 550 GTTTGACTG CGCTGAGTAC GTACAGTTCC AAATCGAAGA ATTACTAACT 600 GCCACGCTC GCCGTGACAACATTT TCCTTGACG GCCCACGCT CCCGCGTGT CCCGCCGTGT CCCGCCGTGT CCCGCCTGT CCCGCTGAC AAATCGAAGA ATTACTAACT 600 GCCACACGCT CCCGCTGACACATTT TCCGTTCAC CCAGGCCGGT 650 GCCCACGCC CCCGCCAAGGC CTCAATTACC TCCGTCAGG CCGTCTCAC TCGGTTACCA 750 GACCACACT TCCGCTCAG CCGCCCCC CGCCACCACC TTCGCCACC TGGACACACC TCCGCTGAC AGACGCCAC TTCGCCTACG GCCCGCTGAC 850 ACCCCCTCGA CTCCAAGTCC CGCCACCACC TTCGCCCACC TGGACCACC TCCGCTGC 900 ACCCCCTCGA GACCACCAC TCCGGTCCAG GACCACCAC TCCCAGCCAC CCCGCTGAC AGACGCCAC GCCCCCCCC CGCCACCACC TCCGCTCC AAGAGTACCA 1000 GTCGCTGCAG GACACATCTC CCAGTCCAG CAGACTCCTC AAGAGTACAA 1000 GTCGCTGCAG GACACTCTC CCAGTCCGT TACGACGAG CTGTCTGAGG CCAGCTGGT TACAGTCAGC TTCCGCCACC TTCCGCTGAC AGACGCACA 1000 CCGACAAGCT TACAGTCGAG CCAGTCTCC AAGAGTACAA 1000 CCGACAAGCT TACAGTCGAG CGTGCTCGTA AGACCACCG TTTCCTGAGC TTCCTGAGC		CCGTCGGCCC	CGGTACCCTC	GGTCGCATCA	TGAACGTCAC	CGGTGACCCG	100
CTGGTATCAA GGTCGTCGAT CTGCTTGCTC CCTACGCCCG TGGTGGTAAG ATTGGTCTGT TTGGCGGTGC CGGTGTTGGC AAGACCGTGT TCATCCAGGA 300 GCTCATCAAC AACATCGCCA AGGCCCACGG TGGTTACTCC GTCTTCACCG 350 GTGTCGCGA GCGTACCCGT GAGGGTAACG ATCTGTACCA CGAAATGCAG 400 GAGACCTCTG TCATCCAGCT TGACGGTGAC TCCAAGGTC CCCTGGTGTT 450 GCTTTGACTG CGGTCAGATG CTTTTGACTGT CGGTCACGA GGGCCACGA GGAGGGCCA GGATGGTATG 550 TTTTTGAATTA TTTCCTTGTC GTACAGTTCC AAATCGAAGA ATTACTAACT 600 TCTTGAGGTGT CTGCCCATCT GGGTCACAGTTC CCCCGCAGGGCCA GCAGGCCGGT 650 TCCTGAGGG CTGACCAGTTC CCCCGCAGGCCG TCGGCCGGT GCCCAGGCCGGT CCCCCAGGCCGGT CCCCCAGGCCGGT GCCCAGGCCGGT GCCCAGGCCGGT GCCCAGGCCGGT CCCCCCAGGCCGGT GCCCAGGCCGGT GCCCAGGCCGGT GCCCAGGCCGGT GCCCAGGCCGGT GCCCAGGCCGGT GCCCACCACC CCCCCCAGGCCGGT GCCCAGCCC CCCCCCACCACC CCCCCCCCCC	35	ATCGACGAGC	GCGGTCCCAT	CAAGACCGAC	AAGTTCCGTC	CCATCCACGC	_
ATTGGTCTGT TTGGCGGTGC CGGTGTTGGC AAGACCGTGT TCATCCAGGA 300 GCTCATCAAC AACATCGCCA AGGCCCACGG TGGTTACTCC GTCTTCACCG 350 GAGACCTCTG CATTCAGCT TGACGGTGACC TCCAAGGTCG CCCTGGTGTT 450 CGGTCAGATG AACGAGCCCC CTGGTGCTC TCCCAGGTCG CCCTTGACCG 500 GTTTGACTGT CGCTGAGTAC TTCCGTGACG AGGAGGCCA GGATGGTATG 550 TTTTGAATTA TTTCCTTGTC GTACAGTTCC AAATCGAAGA ATTACTAACT 600 TCTGAGGTGT TCTCTTCATC GACAACATTT TCCGCTTCAC CCAGGCCGGT 650 TCTGAGGTGT CTCCTCTCT GGGTCGTAT CCCTCCGCTG TCGGTTACCA 700 GCCCACGCTC GCCCTCCT GGGTCCTACT TCCGTCACC CCCGCTGAC ATTACCACCA 750 CCCGCAAGGG CTCAATTACC TCCGTCCAGG CCGTCTACGT GCCCGCTGAC 800 GATCTGACGG ATCCCGCCC CGCCACCACC TTCGCCCATC TGGACGCCAC 850 CACTGTGCTG ACCCCCCC CGCCACCACC TTCGCCCATC TGGACGCCAC 850 ACCCCCTCGA AGACCGCAC TCCGCGTCA CCCCGCTTACGT GCCCGCTGAC 900 ACCCCCTCGA AGACCGCAC CCGTATGCTG CCCCGCTTACGT TTTCGGTGAC 950 GACCACTACG AGACCGCCAC CCGTATCTCAC AAGAGTACAA 1000 GTCGCTGCAG GACATCATCG CCATTCTGGG TATGGACGAG CTGTCTGAGG 1050 CCGACAAGCT TACAGTCGAG CGTCTCAAT AGATCCACG TTTCCTGAGC 1050 CCGACAAGCT TACAGTCGAG CCTTCCACA GGCTATCCTC AAGAGTACAA 1000 CCGACAAGCT TACAGTCGAG CGTCTCATA AGATCCACG TTTCCTGAGC 1150 CCGACCAGAG GACACTATCG CTTCGTTCACT GGTTACAAG GCCAGCTGGT 1150 CCGACTACA GGCCACCACC CTTCGTTCACT AGCGGTGAGG 1150		CTCCTATCAA	CONCORROR	ACCAGTCGAC	CACCGCTGAG	GTTCTCGTGA	
GCTCATCAAC AACATCGCCA AGGCCCACGG TGGTTACTCC GTCTTCACCG GTGTCGCGCACGCACGCACGCACGCACGCACGCACGCACG		ATTCCTCTCTCT	TTGGCGGTGC	CIGCTIGCIC	A A C A C C C C C C C C C C C C C C C C	TGGTGGTAAG	
40 GTGTCGGCGA GCGTACCCGT GAGGGTAACG ATCTGTACCA CGAAATGCAG GAGACCTCTG TCATTCAGCT TGACGGTGAC TCCAAGGTCG CCCTGGTGTT 450 TGTGACTGT CGGTCAGATG AACGAGCCC CTGGTGCTC TGCCCGTGTC GCCTTGACCG GTTTGACTGT CGCTGAGTAC TTCCGTGACG AGGAGGGCCA GGATGGTATG 550 TTTTGAATTA TTTCCTTGTC GTACAGTTCC AAATCGAAGA ATTACTAACT 600 TCTGAGGTGT CCTGCCCTTCT GGCCCACGCT TCCGCTGT TCCGCTGT TCCGCTGT TCCGCTGT TCCGCTGT TCCGCAGGG CCCACGCCT GCCCACGCCT GCCCACGCC TCCGCAGGACA TGGGTCTATT CCCTCCGCTG TCGGTTACCA 750 GCCCACAGGG CTCAATTACC TCCGTCAGG CCGCTCACG TCCGCTGAC 800 ACCCCCTCGA CTCCAAGTCG CGCCACCACC TTCGCCCATC TGGACGCCAC 850 ACCCCCTCGA CTCCAAGTCG CGTATGCTG GCGTATCTAC CCCGCTGTCG 900 ACCCCCTCGA CTCCAAGTCG CGTATGCTG ACCCCCTTCT TGTCGGTGAC 950 GACCACTACG AGACCGCCAC TCGCGTCAG CAGATCCTC AAGAGTACAA 1000 GTCGCTGCAG GACATCATCG CCATTCTGGG TATGGACGAG CTGTCTGAGG 1050 CCGACAAGCT TACAGTCGAG GCCACTCTC AAGAGTACAA 1000 GTCGCTGCAG GACATCATCG CCATTCTGGG TATGGACGAG CTGTCTGAGG 1050 CCGACCAGCT TACAGTCGAG GGTCTCACT AGAGTACAA 1000 GTCGCTGCAG GACATCATCG CCATTCTGGG TATGGACGAG CTGTCTGAGC 1100 CCGACCACG CCGACCACC CCATTCTGAGG TATGGACGAG CTGTCTGAGG 1150 CGATCTGAAG GCCAGCTGGT 1150 CGATCTGAAG GCCACCTGCT AGCCGGTGAGG 1200 CGATCTGAAG GCCAGCTGGT 1150 CGATCTGAAG GCCACCTGCT AGCCGCAC AGCCACC CTGTCTGAAG GCCAGCTGGT 1150 CGATCTGAAG GCCACCTGCT AGCCACCACC CTTCCACCACC CTTCCACTC AGCCGCTGAC AGCCACCACC CTTCCACACC CTTCCACACCACC CTTCCACACC CTTCCACACCACC CTTCCACACC CTTCCACACC CTTCCACACC CTTCCACACC CTTCCACACC CTTC		GCTCATCAAC	AACATCCCCA	AGGCCCACGG	TCCTTACTCC	CTCATCCAGGA	
GAGACCTCTG CGGTCAGATG CGGTCAGATG AACGAGCCCC CTGGTGCTCG GTTTGACTGT CGCTGAGTAC TTCCGTGACCG GTTTGACTGT TTTTGAATTA TTTCCTTGTC TCTCTCATC GACAACATTT TCCGTGACA AAATCGAAGA ATTACTAACT CTCTGAGGTGT TCTGTCATC GACAACATTT TCCGTCAC GCCCACGCTC CTGCCCTTCT GGGTCGTATT CCCTCCGCTG TCCGCCACGCC CCCGCAAGGG CTCAATTACC GACACCACC TTCGCCCTCAC GACCCCCCC CGCCACCACC CCGCCACGCC CCGCCACGCCC CGCCACCACC TTCGCCCTTCAC CCCGCTGAC ACCCCCTCGA ACCCCCTCGA CTCCCAAGTCC CCGCACGCC CCGCCACCACC CTCCACGCC CCGCCACCACC CCGCCCCC CGCCACCACC CCCCCCTCTC CCCCCCTCGAC CCCCCTCGA CTCCCAAGTCC CCGCTCCAC CCCCCTCCAC CCCCCTCCAC CCCCCCTCCAC CCCCCCTCCAC CCCCCCTCCAC CCCCCCTCCAC CCCCCTCCAC CCCCCCTCC CCCCCTCCC CCCCCC	40	GTGTCGGCGA	GCGTACCCGT	GAGGGTAACG	ATCTGTACCA	CCADATCCAC	
CGGTCAGATG AACGAGCCC CTGGTGCTCG TGCCCGTGTC GCCTTGACCG GTTTGACTGT CGCTGAGTAC TTCCGTGACG AGGAGGGCCA GGATGGTATG TTTTGAATTA TTTCCTTGTC GTACAGTTCC AAATCGAAGA ATTACTAACT 600 45 TGTCAGTGCT TCTCTTCATC GACAACATTT TCCGCTTCAC CCAGGCCGGT 650 TCTGAGGTGT CTGCCCTTCT GGGTCGTATT CCCTCCGCTG TCGGTTACCA 700 GCCCACGCTC GCCGTGGACA TGGGTCTGAT GCAGGAGCGT ATTACCACCA 750 CCCGCAAGGG CTCAATTACC TCCGTCCAGG CCGTCTACGT GCCCGCTGAC 800 GATCTGACGG ATCCCGCCC CGCCACCACC TTCGCCCATC TGGACGCAC 850 ACCCCCTCGA CTCCAAGTCG CGTATGCTGG ACCCCCGTAT TGTCGGTGAC 900 ACCCCCTCGA CTCCAAGTCG CGTATGCTGG ACCCCCGTAT TGTCGGTGAC 950 GACCACTACG AGACCGCCAC TCGCGTCCAG CAGATCCTCC AAGAGTACAA 1000 GTCGCTGCAG GACATCATCG CCATTCTGGG TATGGACGAG CTGTCTGAGG 1050 CCGACAAGCT TACAGTCGAG CGTGCTCGTA AGATCCAGCG TTTCCTGAGC 1050 CCGACCAAGCT TACAGTCGAG GGTCTTCACT GGTATCCAGG GCCAGCTGGT 1150 CGATCTGAAG GACACTATCG CTTCGTTCAA GGCTATCCTG AGCGGTGAGG 1200		GAGACCTCTG	TCATTCAGCT	TGACGGTGAC	TCCAAGGTCG	CCCTGGTGTT	
GTTTGACTGT CGCTGAGTAC TTCCGTGACG AGGAGGGCCA GGATGGTATG TTTTGAATTA TTTCCTTGTC GTACAGTTCC AAATCGAAGA ATTACTAACT 600 45 TGTCAGTGCT TCTCTTCATC GACAACATTT TCCGCTTCAC CCAGGCCGGT 650 TCTGAGGTGT CTGCCCTTCT GGGTCGTATT CCCTCCGCTG TCGGTTACCA 700 GCCCACGCTC GCCGTGGACA TGGGTCTGAT GCAGGAGCGT ATTACCACCA 750 CCCGCAAGGG CTCAATTACC TCCGTCCAGG CCGTCTACGT GCCCGCTGAC 800 GATCTGACGG ATCCCGCCC CGCCACCACC TTCGCCCATC TGGACGCCAC 850 ACCCCCTCGA CTCCAAGTCG CGTATGCTGG ACCCCCGTTAC CCCGCTGCC 900 ACCCCCTCGA CTCCAAGTCG CGTATGCTGG ACCCCCGTTAC TGTCGGTGAC 950 GACCACTACG AGACCGCCAC TCGCGTCCAG CAGATCCTCC AAGAGTACAA 1000 GTCGCTGCAG GACATCATCG CCATTCTGGG TATGGACGAG CTGTCTGAGG 1050 CCGACAAGCT TACAGTCGAC CGTGCTCGTA AGATCCAGCG TTTCCTGAGC 1050 CCGACCACG CGGTCCACAC CGTGCTCAA GGCCACCTGGT 1150 CGATCTGAAG GACACTATCG CTTCGTTCAA GGCTATCCTG AGCGGTGAGG 1200		CGGTCAGATG	AACGAGCCCC	CTGGTGCTCG	TGCCCGTGTC	GCCTTGACCG	
TTTTGAATTA TTTCCTTGTC GTACAGTTCC AAATCGAAGA ATTACTAACT TGTCAGTGCT TCTCTTCATC GACAACATTT TCCGCTTCAC CCAGGCCGGT TCTGAGGTGT CTGCCCTTCT GGGTCGTATT CCCTCCGCTG TCGGTTACCA 700 GCCCACGCTC GCCGTGGACA TGGGTCTGAT GCAGGAGCGT ATTACCACCA 750 CCCGCAAGGG CTCAATTACC TCCGTCCAGG CCGTCTACGT GCCCGCTGAC 800 GATCTGACGG ATCCCGCCC CGCCACCACC TTCGCCCATC TGGACGCCAC 850 CACTGTGCTG TCCCGAGGTA TCTCTGAGCT GGGTATCTAC CCCGCTGTCG 900 ACCCCCTCGA CTCCAAGTCG CGTATGCTGG ACCCCCGTAT TGTCGGTGAC 950 GACCACTACG AGACCGCCAC TCGCGTCCAG CAGATCCTCC AAGAGTACAA 1000 GTCGCTGCAG GACATCATCG CCATTCTGGG TATGGACGAG CTGTCTGAGG 1050 CCGACAAGCT TACAGTCGAG CGTCTCGTA AGATCCAGCG TTTCCTGAGC 1100 CGATCTGAAG GACACTATCG CTTCGTTCAA GGCTATCCTG AGCGGTGAGG 1200		GTTTGACTGT	CGCTGAGTAC	TTCCGTGACG	AGGAGGCCA	GGATGGTATG	
TCTGAGGTGT CTGCCCTTCT GGGTCGTATT CCCTCCGCTG TCGGTTACCA 700 GCCCACGCTC GCCGTGGACA TGGGTCTGAT GCAGGAGCGT ATTACCACCA 750 CCCGCAAGGG CTCAATTACC TCCGTCCAGG CCGTCTACGT GCCCGCTGAC 800 GATCTGACGG ATCCCGCCC CGCCACCACC TTCGCCCATC TGGACGCCAC 850 CACTGTGCTG TCCCGAGGTA TCTCTGAGCT GGGTATCTAC CCCGCTGTCG 900 ACCCCCTCGA CTCCAAGTCG CGTATGCTGG ACCCCCGTAT TGTCGGTGAC 950 GACCACTACG AGACCGCCAC TCGCGTCCAG CAGATCCTCC AAGAGTACAA 1000 GTCGCTGCAG GACATCATCG CCATTCTGGG TATGGACGAG CTGTCTGAGG 1050 CCGACAAGCT TACAGTCGAG CGTCTCGTA AGATCCAGCG TTTCCTGAGC 1100 CGATCTGAAG GACACTATCG CTTCGTTCAA GGCTATCCTG AGCGGTGAGG 1200		TTTTGAATTA	TTTCCTTGTC	GTACAGTTCC	AAATCGAAGA	ATTACTAACT	
GCCCACGCTC GCCGTGGACA TGGGTCTGAT GCAGGAGCGT ATTACCACCA 750 CCCGCAAGGG CTCAATTACC TCCGTCCAGG CCGTCTACGT GCCCGCTGAC 800 GATCTGACGG ATCCCGCCC CGCCACCACC TTCGCCCATC TGGACGCCAC 850 CACTGTGCTG TCCCGAGGTA TCTCTGAGCT GGGTATCTAC CCCGCTGTCG 900 ACCCCCTCGA CTCCAAGTCG CGTATGCTGG ACCCCCGTAT TGTCGGTGAC 950 GACCACTACG AGACCGCCAC TCGCGTCCAG CAGATCCTCC AAGAGTACAA 1000 GTCGCTGCAG GACATCATCG CCATTCTGGG TATGGACGAG CTGTCTGAGG 1050 CCGACAAGCT TACAGTCGAG CGTCTCGTA AGATCCACCG TTTCCTGAGC 1100 CGACCGTTCA CGGTCGCGCA GGTCTTCACT GGTATCGAAG GCCAGCTGGT 1150 CGATCTGAAG GACACTATCG CTTCGTTCAA GGCTATCCTG AGCGGTGAGG 1200	45	TGTCAGTGCT	TCTCTTCATC	GACAACATTT	TCCGCTTCAC	CCAGGCCGGT	
CCCGCAAGGG CTCAATTACC TCCGTCCAGG CCGTCTACGT GCCCGCTGAC 800 GATCTGACGG ATCCCGCCCC CGCCACCACC TTCGCCCATC TGGACGCCAC 850 CACTGTGCTG TCCCGAGGTA TCTCTGAGCT GGGTATCTAC CCCGCTGTCG 900 ACCCCCTCGA CTCCAAGTCG CGTATGCTGG ACCCCCGTAT TGTCGGTGAC 950 GACCACTACG AGACCGCCAC TCGCGTCCAG CAGATCCTCC AAGAGTACAA 1000 GTCGCTGCAG GACATCATCG CCATTCTGGG TATGGACGAG CTGTCTGAGG 1050 CCGACAAGCT TACAGTCGAG CGTCCTCGTA AGATCCAGCG TTTCCTGAGC 1100 CGACCGTTCA CGGTCGCGCA GGTCTTCACT GGTATCGAAG GCCAGCTGGT 1150 CGATCTGAAG GACACTATCG CTTCGTTCAA GGCTATCCTG AGCGGTGAGG 1200		TCTGAGGTGT	CTGCCCTTCT	GGGTCGTATT	CCCTCCGCTG	TCGGTTACCA	
GATCTGACGG ATCCCGCCCC CGCCACCACC TTCGCCCATC TGGACGCCAC 850 CACTGTGCTG TCCCGAGGTA TCTCTGAGCT GGGTATCTAC CCCGCTGTCG 900 ACCCCCTCGA CTCCAAGTCG CGTATGCTGG ACCCCCGTAT TGTCGGTGAC 950 GACCACTACG AGACCGCCAC TCGCGTCCAG CAGATCCTCC AAGAGTACAA 1000 GTCGCTGCAG GACATCATCG CCATTCTGGG TATGGACGAG CTGTCTGAGG 1050 CCGACAAGCT TACAGTCGAG CGTGCTCGTA AGATCCAGCG TTTCCTGAGC 1100 CGACCGTTCA CGGTCGCGCA GGTCTTCACT GGTATCGAAG GCCAGCTGGT 1150 CGACCGTTCAAG GACACTATCG CTTCGTTCAA GGCTATCCTG AGCGGTGAGG 1200		GCCCACGCTC	GCCGTGGACA	TGGGTCTGAT	GCAGGAGCGT	ATTACCACCA	
CACTGTGCTG TCCCGAGGTA TCTCTGAGCT GGGTATCTAC CCCGCTGTCG 900 ACCCCCTCGA CTCCAAGTCG CGTATGCTGG ACCCCCGTAT TGTCGGTGAC 950 GACCACTACG AGACCGCCAC TCGCGTCCAG CAGATCCTCC AAGAGTACAA 1000 GTCGCTGCAG GACATCATCG CCATTCTGGG TATGGACGAG CTGTCTGAGG 1050 CCGACAAGCT TACAGTCGAG CGTGCTCGTA AGATCCAGCG TTTCCTGAGC 1100 CGACCGTTCA CGGTCGCGCA GGTCTTCACT GGTATCGAAG GCCAGCTGGT 1150 CGACCTGAAG GACACTATCG CTTCGTTCAA GGCTATCCTG AGCGGTGAGG 1200		CCCGCAAGGG	ATTCCCCCCCCC	TCCGTCCAGG	CCGTCTACGT	GCCCGCTGAC	
ACCCCCTCGA CTCCAAGTCG CGTATGCTGG ACCCCCGTAT TGTCGGTGAC 950 GACCACTACG AGACCGCCAC TCGCGTCCAG CAGATCCTCC AAGAGTACAA 1000 GTCGCTGCAG GACATCATCG CCATTCTGGG TATGGACGAG CTGTCTGAGG 1050 CCGACAAGCT TACAGTCGAG CGTGCTCGTA AGATCCAGCG TTTCCTGAGC 1100 CGACCGTTCA CGGTCGCGCA GGTCTTCACT GGTATCGAAG GCCAGCTGGT 1150 CGACCTGAAG GACACTATCG CTTCGTTCAA GGCTATCCTG AGCGGTGAGG 1200	50	CACTGTGCGG	TCCCGCCCC	TCTCTCACCACC	CCCTATIONAC	TGGACGCCAC	
GACCACTACG AGACCGCCAC TCGCGTCCAG CAGATCCTCC AAGAGTACAA 1000 GTCGCTGCAG GACATCATCG CCATTCTGGG TATGGACGAG CTGTCTGAGG 1050 CCGACAAGCT TACAGTCGAG CGTGCTCGTA AGATCCAGCG TTTCCTGAGC 1100 CGACCGTTCA CGGTCGCGCA GGTCTTCACT GGTATCGAAG GCCAGCTGGT 1150 CGATCTGAAG GACACTATCG CTTCGTTCAA GGCTATCCTG AGCGGTGAGG 1200	55	ACCCCCTCGA	CTCCAAGTA	CGTATCCTCC	VCCCCCTATE AGGINTON	TOTOGOTOTO	
GTCGCTGCAG GACATCATCG CCATTCTGGG TATGGACGAG CTGTCTGAGG 1050 CCGACAAGCT TACAGTCGAG CGTGCTCGTA AGATCCAGCG TTTCCTGAGC 1100 55 CAGCCGTTCA CGGTCGCGCA GGTCTTCACT GGTATCGAAG GCCAGCTGGT 1150 CGATCTGAAG GACACTATCG CTTCGTTCAA GGCTATCCTG AGCGGTGAGG 1200		GACCACTACG	AGACCGCCAC	TCGCGTCCAG	CAGATCCTCC	AACACTACAA	
CCGACAAGCT TACAGTCGAG CGTGCTCGTA AGATCCAGCG TTTCCTGAGC 1100 55 CAGCCGTTCA CGGTCGCGCA GGTCTTCACT GGTATCGAAG GCCAGCTGGT 1150 CGATCTGAAG GACACTATCG CTTCGTTCAA GGCTATCCTG AGCGGTGAGG 1200		GTCGCTGCAG	GACATCATCG	CCATTCTGGG	TATGGACGAG	СТСТСТСАСА	
CGATCTGAAG GACACTATCG CTTCGTTCAA GGCTATCCTG AGCGGTGAGG 1200		CCGACAAGCT	TACAGTCGAG	CGTGCTCGTA	AGATCCAGCG	TTTCCTGAGC	
CGATCTGAAG GACACTATCG CTTCGTTCAA GGCTATCCTG AGCGGTGAGG 1200	55 _.	CAGCCGTTCA	CGGTCGCGCA	GGTCTTCACT	GGTATCGAAG	GCCAGCTGGT	
	•	CGATCTGAAG	GACACTATCG	CTTCGTTCAA	GGCTATCCTG	AGCGGTGAGG	
		GTGACAGCCT	T				

2) INFORMATION FOR SEQ ID NO: 494

```
(i) SEQUENCE CHARACTERISTICS:
```

- (A) LENGTH: 1133 bases
- (B) TYPE: Nucleic acid
- (C) STRANDEDNESS: Double
- (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: Genomic DNA

10

5

- (vi)ORIGINAL SOURCE:
 - . (A) ORGANISM: Stephanoascus ciferrii
 - (B) STRAIN: ATCC 52550
- 15 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 494

	TCTTGTTAGA	GGCACCCCAG	TCAAGGACAC	TGGTGCTCCA	ATTACCATTC	50
	CAGTTGGTAA	CGGCACTTTG	GGCCGTATCG	TCAACGTTCT	CGGTGAGCCA	100
	ATTGATGAGC	GTGGACCAGT	CAAGGCTGAC	AAGTTCAGAC	CTATTCACGC	150
20	TGAGCCACCA	ACCTTCGCTG	ACCAGTCCAC	CTCTGCCGAG	GTTCTTGAGA	200
	CCGGTATTAA	GGTTGTCGAC	TTGCTTGCCC	CTTATGCCAG	AGGTGGTAAG	250
	ATTGGTCTTT	TCGGTGGTGC	CGGTGTCGGT	AAGACTGTGT	TCATTCAGGA	300
	GCTTATTAAC	AACATTGCTA	AGGCCCACGG	TGGTTACTCT	GTCTTCACTG	350
	GTGTCGGTGA	GCGAACTCGT	GAAGGTAACG	ATTTGTACCA	CGAAATGATG	400
25	GAGACCGGTG	TCATCAACCT	TGAGGGTGAC	TCCAAGGTGT	CTCTTGTGTT	450,
	CGGTCAGATG	AACGAGCCTC	CAGGAGCCCG	TGCCCGTGTT	GCCTTGACCG	500
	GTTTGACCAT	TGCCGAGTAC	TTCAGAGATG	AGGAGGCCA	GGATGTCTTG	550
	TTGTTCATTG	ACAACATTTT	CCGATTCACC	CAGGCCGGTT	CTGAGGTCTC	600
	TGCCTTGTTG	GGTCGTATCC	CATCTGCCGT	CGGTTACCAA	CCAACCTTGG	650
30	CTACTGATAT	GGGTGGTCTT	CAAGAACGTA	TTACCACCAC	TCAAAAGGGT	700
	TCCGTCACCT	CTGTCCAGGC	TGTCTACGTC	CCAGCTGACG	ATTTGACTGA	750
	TCCTGCCCCA	GCTACCACCT	TCGCCCATTT	GGACGCCACC	ACCGAATTGT	800
	CCCGATCTAT	CTCTGAGTTG	GGTATCTACC	CAGCTGTCGA	CCCTCTTGGT	850
	TCCAAGTCCC	GTCTTTTGGA	TGCCTCCGTC	GTCGGCCAAG	AGCACTACGA	900
35	CGTTGCCGCC	AACGTCCAAC	AGACCTTGCA	GGCCTACAAG	TCTCTCCAGG	950
	ATATCATTGC	CATTTTGGGT	ATGGACGAAT	TGTCTGAGGC	TGATAAGCTC	1000
	ACTGTCGAGC	GTGCTCGTAA	GATGCAGAGA	TTCCTTTCTC	AGCCATTCAC	1050
	CGTCGCTGAG	GTCTTCACTG	GTCTCGAGGG	TAGACTCGTT	TCTTTGAAGG	1100
	ACACCATCCG	ATCCTTCAAG	GAGATCCTTG	ACG		1133
40						

2) INFORMATION FOR SEQ ID NO: 495

- 45 (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 608 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear

- (ii) MOLECULE TYPE: Genomic DNA
- (vi)ORIGINAL SOURCE:
 - (A) ORGANISM: Trichophyton mentagrophytes
- 55 (B) STRAIN: WSA-225
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 495
- GGAGTTGATT GTAAGTCATT TGAAACCCAG CCCCAAGAAA CAGAAGCTAG 50
 GCGAAAATTG GACAATTGAG CAATTTAGCC ATTGGAGAAA AGAAATTTCG 100

		GTTTTTATAG				•	150
		CTGGTGTCGG					200
		CAGGAGACCC					250
		CTTCGGCCAG					300
5		CTGGTTTGAC					350
		GAGTTTCTTA					400
		GAAATTCATG					450
		CATTTTCCGT					500
							550
10		GGTATGCAGG	AACGTATTAC	CACCACCAAG	AAGGGATCCA		600
	TTACCTCC						608

- 15 2) INFORMATION FOR SEQ ID NO: 496
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 794 bases
 - (B) TYPE: Nucleic acid
- 20 (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: Genomic DNA
- 25 (vi)ORIGINAL SOURCE:

30

- (A) ORGANISM: Wangiella dermatitidis
- (B) STRAIN: WSA-229
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 496

	GTTTATTCAA	GAACTCATTG	TGGGTGGCAT	TCTCATAATG	TTTCGGCCAC	50
	AATTACTGAT	TGAAAATAGA	ACAACATTGC	AAAGGCTCAT	GGTGGTTACT	100
	CCGTGTTCAC	TGGTGTCGGC	GAGCGAACTC	GTGAGGGTAA	CGACTTGTAC	150
	CACGAAATGC	AGGAGACCTC	TGTCATTCAG	CTCGATGGCG	AGTCCAAGGT	200
35	CGCGCTGGTG	TTTGGTCAAA	TGAACGAACC	TCCTGGTGCT	CGTGCTCGTG	250
	TTGCTCTGAC	TGGGTAAGTT	GTTCCTTCGC	TTCTTGCGCG	TATCCACATC	300
	CCCATCTTGA	GAATACGTCT	GCCACCATGT	CATGTGATGT	TGGGCTGGTT	350
	CTGGTTTTTG	GGAGGCCCTC	AAGTTCAATT	TTTGGATGAC	AGCACCAGCT	400
	TTACAAGATT	ATGCTAACTT	AATGGAGTCT	TACGGTGGCT	GAGTTCTTCA	450
40	GGGATGAGGA	GGGACAGGAT	GGTAAGTTTG	ATAACAATCT	CGTCGGTGTC	500
	AATATCGACG	GCGTACTCTT	CGCATCAAAA	AACCAAAGAG	GTGGTTTGGT	550
	GTGAGAAGTG	CGCCGGAAAT	AATGGCAACC	ACGTGACAAT	GACCACGTGT	600
	GGGGCTCCCG	TGCTAACACG	TGACAGTCTT	GCTCTTCATC	GACAACATTT	650
	TCCGATTCAC	TCAASCCGGT	TCTGARGTGT	CTGCCTTGCT	TGGTCGTATT	700
45	CCATCTGCCG	TCGGTTACCA	ACCCACACTC	GCCGTCGACA	TGGGTCTCAT	750
	GCAGGAACGT	ATCACCACCA	CCCGGAAGGG	ATCCATCACA	TCTG	794

- 50 2) INFORMATION FOR SEQ ID NO: 497
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1148 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: Genomic DNA
- 60 (vi)ORIGINAL SOURCE:

PCT/CA00/01150 WO 01/23604

ORGANISM: Yarrowia lipolytica (A)

STRAIN: ATCC 38295 (B)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 497

_						
	TCTTGTCCGA	GGCACCGCCG	TCGCTGACAC	CGGTGCTCCC	ATCACTATCC	50
	CCGTCGGCCG	AGGTACCCTT	GGTCGAATCA	TCAACGTCTG	TGGTGAGCCC	100
	ATTGACGAGC	GAGGACCCAT	CGAGGCTTCC	AAGTACCTCC	CCATCCACGC	150
	TGACCCCCCT	ACCTTCGCTG	AGCAGTCTAC	CTCCGCTGAG	GTTCTCGAGA	200
10	CCGGTATTAA	GGTCGTCGAC	CTCCTCGCCC	CTTACGCCCG	AGGTGGTAAG	250
	ATTGGTCTCT	TCGGTGGTGC	CGGTGTCGGT	AAGACTGTCT	TCATCCAGGA	300
	GCTGATTAAC	AACATTGCCA	AGGCCCATGG	TGGTTTCTCC	GTTTTCTGCG	350
	GTGTCGGTGA	GCGAACCCGA	GAGGGTAACG	ATCTTTACCG	AGAGATGAAG	400
	GAGACTGGTG	TCATCAACCT	CGAGGGTGAG	TCTAAGGTCA	CCCTCGTCTT	450
15	CGGTCAGATG	AACGAGCCTC	CCGGAGCCCG	TGCCCGAGTC	GCCCTTACTG	500
	GTCTGACCAT	TGCCGAGTAC	TTCCGAGACG	AGGAGGGTCA	GGATGTGTTG	550
	CTCTTCGTTG	ACAACATTTT	CCGATTCACC	CAGGCCGGTT	CCGAGGTGTC	600
	CGCTCTGCTT	GGTCGAATTC	CCTCCGCTGT	CGGTTACCAG	CCCACTCTGG	650
	CCACCGATAT	GGGTGCCCTC	CAGGAGCGAA	TTACCACCAC	CCAGAAGGGT	700
20	TCCGTCACTT	CCGTCCAGGC	CGTCTACGTG	CCTGCCGATG	ATTTGACCGA	750
	TCCTGCTCCC	GCCACCACCT	TCGCCCATCT	TGACGCCACC	ACCGTCCTGT	800
	CCCGAGGTAT	TTCCGAGCTG	GGTATCTACC	CCGCTGTCGA	TCCCCTTGAT	850
	TCCAAGTCTC	GACTTCTGGA	TATCGATGTT	GTCGGAAAGG	AGCACTACGA	900
	TGTTGCTTCC	AACGTCCAGC	AGACCCTCCA	GGCTTACAAG	TCTCTCCAGG	950
25	ATATCATTGC	CATTCTTGGT	ATGGATGAGC	TGTCCGAGCA	GGACAAGCTG	1000
	ACCGTCGAGC	GAGCTCGAAA	GATCCAGCGA	TTCCTGTCTC	AGCCCTTCAC	1050
	CGTCGCCGAG	GTTTTCACCG	GTATTGAGGG	ACGACTTGTC	TCTCTCAAGG	1100
	ACACTGTCCG	ATCCTTCAAG	GAGATCCTTG	ACGGTAAGCA	CGATGCTC	1148

30

35

5

2) INFORMATION FOR SEQ ID NO: 498

- (i) SEQUENCE CHARACTERISTICS:
 - LENGTH: 966 bases (A)
 - (B)
 - TYPE: Nucleic acid STRANDEDNESS: Double (C)
 - TOPOLOGY: Linear (D)
- (ii) MOLECULE TYPE: Genomic DNA 40
 - (vi)ORIGINAL SOURCE:
 - ORGANISM: Aspergillus fumigatus (A)
 - STRAIN: WSA-172 (B)

45

	GCGCTATTGT	CGTTGTTGCT	GCCTCCGACG	GTCAGATGTA	GGTGGAACAT	50
	CTTGGGAAAT	ACGTCGTAAA	ACACGTCGCT	TACGTTTTCG	CGAATAGGCC	100
50	CCAGACTCGT	GAGCATTTGC	TGCTCGCCCG	CCAGGTTGGT	GTCCAGAAGA	150
	TCGTTGTCTT	CGTCAACAAA	ATCGATGCTA	TTGATGATCC	GGAGATGCTG	200
	GAACTGGTCG	AACTCGAGAT	GCGTGAGCTG	CTGAACAGCT	ACGGTTTCGA	250
	GGGTGAAGAG	ACTCCGATCA	TTTTCGGTTC	CGCTCTCTGT	GCTCTCGAAG	300
	GACGCCGTGA	CGACATCGGT	AAAGACAGAA	TTGAGCAGCT	TATGAACGCT	350
55	GTCGACACCT	GGATCCCCAC	TCCTCAGCGT	GACCTCGACA	AACCTTTCTT	400
	GATGTCTGTC	GAGGAAGTGT	TCTCTATCGC	CGGCCGTGGT	ACCGTGGCTT	450
	CTGGTCGTGT	CGAGCGTGGT	ATCTTGAAGA	AGGACTCTGA	GGTTGAGATT	500
	GTTGGAGGCT	CCTTCGAACC	CAAGAAGACC	AAAGTCACCG	ACATTGAAAC	550
	CTTCAAGAAG	AGCTGTGATG	AATCGCGTGC	TGGTGACAAC	TCTGGTCTCC	600
60	TCCTGCGTGG	TATCCGACGT	GAAGACGTCA	AGCGTGGTAT	GGTCATTGCT	650

PCT/CA00/01150 WO 01/23604

	GTTCCCGGCA	GCACCAAGGC	TCACGACAAG	TTCCTCGTCT	CCATGTACGT	700
	CCTGACCGAG	GCGGAGGGTG	GTCGTCGTAC	TGGCTTCGGT	GCCAACTACC	750
		CTTCATCCGT				800
	AGATCTTCCG	AGAGATTAGC	GATATATGCT	AATGATTCAT	CAGACGAGGC	850
;	TGCTGACCTC	AGCTTCCCTG	ACGGCGACCA	ATCTCGCAGA	GTTATGCCTG	900
	GTGACAACGT	CGAGATGATC	CTGAAGACCC	ACCACCCTGT	TGCTGCTGAG	950
	GCTGGTCAAC	GCTTCA				966

10

5

- 2) INFORMATION FOR SEQ ID NO: 499
 - (i) SEQUENCE CHARACTERISTICS:
 - LENGTH: 846 bases (A)
 - (B) TYPE: Nucleic acid
 - STRANDEDNESS: Double (C)
 - (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: Genomic DNA

20

15

- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Blastoschizomyces capitatus
 - (B) STRAIN: ATCC 10663
- 25 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 499

	TGGTGCTATT	ATTGTTGTTG	CTGCTTCTGA	TGGTCAAATG	CCCCAAACCC	50
	GTGAGCACTT	GCTTCTTGCT	CGTCAAGTTG	GTGTTAAGCA	CATTGTTGTT	100
	TTCGTTAACA	AGATTGATAC	TATTGATGAT	CCTGAAATGT	TGGAACTTGT	150
30	CGAAATGGAA	ATGAGAGAAC	TTCTTTCTTC	TTACGGTTTT	GATGGCGATA	200
	ACACCCCTGT	CATTATGGGT	TCTGCTCTCT	GTGCTCTTGA	AGGTCGTGAA	250
	CCAGAAATTG	GTGAACAAAG	AATCAACCAA	CTCCTTGATG	CTATCGATGA	300
	ATACATTCCT	ACCCCAGTTC	GTGATATGGA	CCAACCTTTC	TTGATGCCAC	350
	TTGAAGGTGT	TTTCTCTATT	CCAGGTCGTG	GTACTGTTGC	CACTGGACGT	400
35	GTCTATCGTG	GTACTTTGAA	GAGAGGTGAA	GAAGTTGAAG	TTGTTGGCTA	450
	CAATGATGCT	CCAATCAAGA	CCACCGTTAC	TGGTATTGAA	ATGTTCAAGA	500
	AGGAACTTGA	TCAAGCTCAA	GCTGGTGACA	ACGCTGGTAT	TCTTTTGAGA	550
	GGTGTTAAGC	GTGAAGACCT	TAAGCGTGGT	ATGGTTGTTG	CTAAACCAGG	600
	TACCGTTAAG	CCACACACCA	AGTTCCTTGC	CTCCATCTAT	GTTTTGACTA	650
40	AGGAAGAAGG	TGGCAGACAC	TCTGGCTTTG	GTCTTAACTA	CAGACCTCAA	700
	CTTTTCCTTG	GTTCTGCTGA	TGTTACCACT	GTCTTGACCT	TCCCAGAGGG	750
	TGTTGACCAA	AGCACTCAAG	TCATGCCAGG	TGACAACACT	GAAATGGTTT	800
	GCGAACTTGT	TCACCCAGTT	GCTGTCGAAC	AAGGCCAACG	TTTCAA	846

45

50

- 2) INFORMATION FOR SEQ ID NO: 500
- (i) SEQUENCE CHARACTERISTICS:
 - LENGTH: 846 bases (A)
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
- 55 (ii) MOLECULE TYPE: Genomic DNA
 - (vi)ORIGINAL SOURCE:
 - (A) ORGANISM: Candida rugosa
 - (B) STRAIN: ATCC 96275

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 500

	GGTGCCATTA	TTGTTGTTGC	TGCCTCTGAT	GGACAGATGC	CCCAGACCCG	50
	TGAGCATCTT	TTGCTTGCCC	GCĈAAGTCGG	TATGCAAAAG	GTCGTTGTGT	100
5	TTGTTAACAA	GATTGATACC	ATTGATGACC	CTGAAATGCT	TGATCTTGTC	150
	GAGATGGAGA	TGCGTGAACT	GTTGAATGAA	TATGACTTCG	ATGGAGATAA	200
	CTCTCCTGTC	ATTATGGGCT	CTGCTCTTGC	TGCTCTTGAG	GACAAGAACC	250
	CCGAGATTGG	TAAGGACCGT	ATCATGCAGC	TCTTGGACGC	TGTTGATGAA	300
	TGGATCCCTA	CCCCCGAGCG	TGACCTTGAC	AAGCCTTTCA	TGATGCCTAT	350
10	TGAGGCCTCT	TTCTCCATTT	CTGGTCGTGG	TACTGTTGCC	ACTGGCCGTG	400
	TCGAGCGTGG	TATTCTCAAG	AAGGGTGAGG	AAGTCGAGAT	CGTTGGTTTC	450
	AACAAGCAGC	CCCTGAAATC	TGTTGTTACT	GGTATTGAAA	TGTTCAAGAA	500
	GGAACTTGAT	CAGGCCCAGG	GCGGTGATAA	TGCTGGTATC	TTGCTTCGTG	550
	GTATTCGTCG	TGAGGACTTG	CAGCGTGGTA	TGGTTTTGGC	CAAGCCTGGA	600
15	ACTGTTAAGG	CTCACACCAA	GTTCCTTTCC	TCCATCTACG	TTCTCTCCAA	650
	GGAAGAGGGC	GGCCGTCACT	CTCCTTTCGG	TATGAACTAT	CGTCCCCAGA	700
	TGTTCGTTTC	TGCAGCTGAT	GTCACCGTTA	CTCTTACTTT	CCCTGAGGGT	750
	GTTGAACAGC	ACACTCAGGT	CTTCCCTGGT	GAGAACACCG	AGATGGTTGG	800
	CGAGCTCGTT	CACCCTACTG	CTATTGAGGT	TGGTCAACGC	TTCAAC	846
20						

2) INFORMATION FOR SEQ ID NO: 501

- 25 (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 944 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear

(ii) MOLECULE TYPE: Genomic DNA

(vi)ORIGINAL SOURCE:

- (A) ORGANISM: Coccidioides immitis
- 35 (B) STRAIN: Silveira
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 501

	AGTTGTCGTC	GTTGCTGCTT	CAGACGGTCA	AATGTATGCA	ACCGAGAGCA	50
40	CTCCCGGATC	TTGGTTTAAA			CCTCAAACTC	100
	GAGAGCATTT	ACTTCTCGCC	CGTCAGATCG	GTATCCAAAA	AATCGTCGTC	150
	TTCGTGAACA	AGGTTGATGC	CATCGAGGAC		TGGAGCTTGT	200
	TGAATTGGAG	ATGCGTGAAC	TCCTAACCAG	CTACGGTTTC	GAGGGTGAAG	250
	AAACTCCCAT	CATTTTTGGC	TCTGCTCTCT	GTGCCCTCGA	AGGAAGACAA	300
45	CCCGAGATCG	GTGTTACCAA			CCGTCGACAC	350
	CTGGATTCCC	ACTCCTCAGC	GTGAGACTGA	CAAGCCCTTC	TTGATGTCCA	400
	TTGAGGAAGT	GTTCTCTATT	TCCGGACGAG	GAACCGTTGT	CTCCGGCCGT	450
	GTGGAGCGTG	GTATCCTCAA	GAAGGACTCC	GAAGTTGAAA	TTGTCGGCGG	500
•	TTCGCCCGAG	CCAATCAAAA	CCAAGGTTAC	CGATATCGAA	ACCTTTAAGA	550
50	AGTCTTGCGA	CGAGTCTCGC	GCTGGTGATA		GCTCCTACGA	600
	GGCGTTAAGC	GTGAAGATAT	TAGCCGTGGC	ATGGTCGTCG	CTGTACCAGG	650
	AAGTGTCAAG	GCCCATACTG	AATTCTTAGT	TTCGCTTTAC	GTCCTCACCG	700
	AAGCTGAGGG	TGGGCGCAAA	TCTGGATTCA	GCAGCAAGTA	CCGCCCACAG	750
	ATGTTCATTC	GCACTGCCGG	TATGTAATAC	TGTGATAATT	TCGTTGACAT	800
55	GGTACTGATT	GAATTCTATA	GACGAAGCGG	CTCAGCTCAG	CTGGCCCGGA	850
	GAAGATCAAG	ACAAGATGGC			AAATGATTTG	900
	CACCACCTTG	CACCCAGTTG	CCGCCGAGGC	TGGCCAGCGA	TTCA	944

2) INFORMATION FOR SEQ ID NO: 502

```
(i) SEQUENCE CHARACTERISTICS:
                 LENGTH: 849 bases
 5
           (B)
                 TYPE: Nucleic acid
           (C)
                 STRANDEDNESS: Double
                 TOPOLOGY: Linear
           (D)
       (ii) MOLECULE TYPE: Genomic DNA
10
       (vi)ORIGINAL SOURCE:
           (A)
                ORGANISM: Fusarium oxysporum
           (B)
                 STRAIN: WSA-212
15
       (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 502
    GCTATCATCG TCGTTGCTGC CTCCGATGGA CAGATGCCCC AGACCCGTGA
                                                                    50
    ACACTTGCTC CTCGCTCGTC AGGTCGGTGT CCAGCGAATT GTCGTCTTCG
                                                                   100 -
    TCAACAAGGT CGATGCCATT GATGACCCCG AGATGCTTGA GCTCGTCGAG
                                                                   150
    ATGGAGATGC GCGAGCTTCT TAACACCTAC GGCTTCGAAG GCGACGACAC
20
                                                                   200
    TCCCGTCATC ATGGGCTCTG CTCTTATGTC TCTCCAGAAC CAGCGCCCCG
AGATTGGCAC CGAGAAGATC GATGAGCTCC TTGCTGCCGT CGACGAGTGG
                                                                   250
                                                                   300
    ATCCCAACCC CCGAGCGTGA CCTTGACAAG CCCTTCCTTA TGTCCGTCGA
                                                                   350
    GGATGTCTTC TCCATTGCCG GCCGTGGTAC CGTCGTGTCT GGCCGTGTGG
                                                                   400
25
    AGCGTGGTAT TCTGAAGCGT GATCAGGAGA TCGAGCTTGT CGGAAAGGGG
                                                                   450
    CAGGAGGTTA TCAAGACCAA GGTTACCGAC ATTGAGACCT TCAAGAAGTC
                                                                   500
    TTGTGAGCAG TCCCAGGCTG GTGACAACTC TGGTCTCCTC ATCCGAGGTG
                                                                   550
    TTCGCCGTGA GGATGTCCGC CGTGGTATGG TTGTCTGCGC TCCTGGCACC
                                                                   600
    GTCAAGTCTC ATACCCAGTT TCTCGCTTCC CTCTACGTCC TCACCAAGGA
                                                                   650
    GGAGGGTGGC CGACACCCG GTTTCCAGGA GCACTACCGA CCCCAGCTCT
30
                                                                   700
    ATCTCCGAAC TGCAGATGAG TCCATTGACC TGACTTTCCC CGAGGGTACT
                                                                   750
    GAGGATGCCT CCAGTAAGAT GGTCATGCCT GGTGACAACA CCGAGATGGT
                                                                   800
    TGTCACCATG GGTCACCCCA ATGCCATCGA GGTTGGTCAG CGATTCAAC
                                                                   849
35
    2) INFORMATION FOR SEQ ID NO: 503
        (i) SEQUENCE CHARACTERISTICS:
40
           (A)
                LENGTH: 1064 bases
                 TYPE: Nucleic acid
           (B)
           (C)
                 STRANDEDNESS: Double
           (D)
                 TOPOLOGY: Linear
       (ii) MOLECULE TYPE: Genomic DNA
45
       (vi)ORIGINAL SOURCE:
                ORGANISM: Histoplasma capsulatum
           (A)
                 STRAIN: G186A5
50
       (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 503
    TGGTGCTATT GTCGTTGTTG CTGCTGCTGA CGGCCAAATG TAAGACGCCG
    CGAGGGACTG CTGAGGGTTT TATGCTTTTT AGGCCCCCTT GTTTCTGAGA
```

50 100 GCATGATGAT ACTAATATTC GGAAACGTAT CTATTAGGCC TCAAACACGT 55 . 150 GAGCATTTGC TCCTTGCCCG ACAGGTCGGT GTCCAAAAGA TCGTCGTTTT 200 CGTGAACAAA GTCGACGCCC TTGAGGACAA GGAGATGTTG GAGCTTGTCG 250 AGTTAGAAAT GAGAGAGCTC TTAAACACCT ACGGCTTCGA GGGTGAAGAG 300 ACACCCATCA TCTTTGGTTC TGCCCTTTGC GCCATGGAAG GCCGTGAGCC 350 60 TGAGTTGGGA GAAAAGAAAA TTGATGAATT GCTGGAGGCT GTTGATACTT 400

5	GAGGAAGTAT TGAGCGCGGT GCTCCACCCC TCCTGTGACG TATCAAGCGT GCGTCAAGGC GCTGAGGGTG GTTCATCCGC TTCTTTTTT	CATCAGGACG AGTCTAGAGC GAAGATATCC CCACGACAAG GTCGCCGAAC ACAGCTGGTA CCTTTTCCTC CGAAATTAAC	CGGCCGTGGA AGGATTCAGA AAGGTAACTG TGGGGACAAC GCCGTGGTAT TTCTTGGTGT	AACCTTTCTT ACCGTTGCCT AGTCGAGCTA ATATCGAAAC TCCGGTCTTT GGTAGTTGCC CGATGTATGT CAGAACTATC GGACCCCTTT TTTCTGTTTC GATTATAGAC GCAAACTCGT	GATGTCCGTT' CCGGTCGTGT ATTGGGGGCG TTTCAAGAAA TATTGCGTGG GTTCCTGGCA CCTGACCGAA GTCCTCAAAT TCATAATCCT CTTTCAACTC GAAGCCGCCC TATGCCTGGT	4'50 500 550 600 650 700 750 800 850 900 950
		AGATGATCCT			CTGCTGAGGC	1050
15	CGGCCAGCGA	TTCA				1064

2) INFORMATION FOR SEQ ID NO: 504

20 (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 982 bases
- (B) TYPE: Nucleic acid
- (C) STRANDEDNESS: Double
- (D) TOPOLOGY: Linear

(ii) MOLECULE TYPE: Genomic DNA

(vi)ORIGINAL SOURCE:

25

55

- (A) ORGANISM: Paracoccidioides brasiliensis
- 30 (B) STRAIN: ATCC 32071

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 504

	TGGTGCTATC	GTCGTTGTTG	CTGCCTCTGA	CGGCCAAATG	TAGGGATTTT	50
35	GCAAGACTGG	TGAAAAAATC	TAAAGAAAAT	AGAAAAGATT	GTGCTGATGT	
<i></i>	TTGGTATCAG	GCCCCAAACA				100
			CGCGAGCATC	TGCTTCTTGC	CAGACAAGTC	150
	GGTGTTCAGA	AAATCGTTGT	TTTCGTCAAC	AAGGTCGATG	CTGTAGAGGA	200
	TAAGGAGATG	TTGGAGCTTG	TCGAATTGGA	GATGAGAGAG	CTCTTGACCA	250
	CCTATGGGTT	CGAGGGTGAG	AAGACACCTA	TCATCTTTGG	TTCTGCGCTC	300
40	TGTGCTATGG	AGGGCCGTCA	GCCCGAGTTG	GGAGAGCAGA	AAATTGATGA	350
	ATTACTCGAG	GCTGTGGATA	CTTGGATCCC	TACGCCACAG	CGTGATACTG	400
	ACAAGCCCTT	CCTGATGTCC	ATTGAGGAGG	TGTTCTCTAT	CTCTGGACGA	450
	GGAACCGTTG	CCTCCGGCCG	CGTTGAGCGT	GGTATCCTCA	AGAAGGACTC	500
	CGAAGTTGAA	ATTATTGGCG	GCGGTGTTCC	CACAATCCTG	ACCAAGGTGA	550
45	CTGATATCGA	AACCTTCAAG	AAGTCTTGCG	ACGAGTCCAG	AGCCGGGGAC	600
	AACTCCGGCC	TCTTGTTGCG	CGGTGTCAAG	CGTGAGGATA	TCCGCCGTGG	650
	TATGGTCGTT	GCAGTTCCCG	GAAGCGTCAA	AGCACATGAC	AGATTCTTGG	700
	TGTCGATGTA	CGTTCTGACC	GAGGCTGAGG	GTGGTCGCCG	CACTGGCTTC	750
	GGTCAGAACT	ATCGTCCTCA	AATGTTCATC	CGCACAGCTG	GTACGTTCAT	800
50	TCTTTCACTA	TATTCCTATA	TGCATAGCCC	GATCCTCCCA	TTAACTAATT	850
	GACACAGACG	AGGCTGCTGA	ACTCAGCTGG	CCTGATGGAG	ACGACGAAGC	900
	CAAAATGGTC	ATGCCCGGTG	ACAATGTTGA	AATGGTCCTG	AAGTCACACC	950
	GCCCGGGGCC	GCTGAGGCTG	GACAGCGATT	CA		982
	•					202

2) INFORMATION FOR SEQ ID NO: 505

(i) SEQUENCE CHARACTERISTICS:

60 (A) LENGTH: 931 bases

- (B) TYPE: Nucleic acid
- (C) STRANDEDNESS: Double
- (D) TOPOLOGY: Linear
- 5 (ii) MOLECULE TYPE: Genomic DNA
 - (vi)ORIGINAL SOURCE:
 - (A) ORGANISM: Penicillium marneffei
 - (B) STRAIN: ATCC 58950

10 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 505

	CGCTGTTGTT	GTCGTCGCTG	CTTCTGATGG	TCAAATGTAA	CATATCCACG	50
	AGCTGCCAAT	TATGGACACT	GCTGATAAGA	ATAGGCCCCA	AACCCGTGAG	100
15	CACTTGCTCC	TCGCCCGTCA	GGTCGGTGTT	CAAAAGATCG	TCGTCTTCGT	150
	CAACAAGGTT	GATGCCGTCG	AGGACCCCGA	GATGTTGGAA	CTTGTCGAAT	200
	TGGAAATGCG	TGAACTCTTG	ACCACCTACG	GTTTCGAGGG	TGAAGAGACC	250
	CCTATCATTT	TCGGATCCGC	TCTTTGCGCC	TTGGAAGGCC	GCAAGCCCGA	300
	GATTGGCGAA	CAGAAGATTG	ACGAGCTCAT	GAACGCCGTT	GATACCTGGA	350
20	TCCCCACCCC	CCAGCGTGAC	CTTGACAAGC	CCTTCTTGAT	GTCCGTTGAG	400
	GAAGTTTTCT	CCATCTCTGG	TCGTGGTACC	GTTGCATCTG	GTCGTGTTGA	450
	GCGTGGTATT	TTGCGCAAGG	ATTCTGAGGT	TGAGATTATC	GGATACCAGA	500
	AGAACCCTAT	CAAGACCAAG	GTTACCGACA	TTGAGACCTT	CAAGAAGTCT	550
	TGCGATGAAT	CTCGTGCTGG	TGACAACTCT	GGCTTGCTTC	TCCGTGGTAT	600
25	CAAGCGTGAG	GACATTCGTC	GTGGTATGGT	TATCGCTGCT	CCTGGAACCA	650
	CCAAGGCTCA	TGACAACTTC	TTGGTCTCCA	TGTATGTCTT	GACTGAGGCT	700
	GAAGGTGGTC	GTCGTACTGG	ATTCGGCGCC	AACTACCGTC	CTCAAGCTTT	750
	CATCCGTACT	GCCGGTATGT	TCCCTTTCAA	AGTCAATTAA	TGAGCGATTT	800
	GCTAACGAGT	TATAGATGAG	GCTGCTACTC	TCAGCTTCCC	CGGTGACGAT	850
30	CAGTCCAAGC	AGGTCATGCC	CGGTGACAAC	GTTGAGATGA	TCTTGAAGAC	900
	ACACCGTCCC	GTTGCCGCCG	AAGCTGGTCA	G		931

- 35 2) INFORMATION FOR SEQ ID NO: 506
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 846 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: Genomic DNA
- 45 (vi) ORIGINAL SOURCE:

40

50

- (A) ORGANISM: Pichia anomala
- (B) STRAIN: ATCC 18205
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 506

TGGTGCTATT ATTGTTGTTG CTGCTTCTGA TGGTCAAATG CCTCAAACCA 50 GAGAACATTT RTTATTGGCT AGACAAGTTG GTGTTCAACA CATTGTTGTC 100 TTTGTTAACA AAGTTGATAC TATTGATGAC CCAGAAATGT TGGAATTAGT 150 TGAAATGGAA ATGAGAGAAT TGTTAAGTAC TTATGGTTTT GATGGTGATA 200 ACGTCCCAGT TGTTATGGGT TCTGCTTTAT GTGCCTTGGA AGGTCGTGAA 55 250 GAAGAAATTG GTGTCAAAGC TATTGATAAA TTATTAGCTG CTGTTGATGA 300 ATATATCCCA ACCCCACAAA GAGATTTAGA AAAACCATTC TTGATGGGTG 350 TTGAAGATGT CTTYTCAATC TCAGGTAGAG GTACCGTTGT TACTGGTCGT 400 GTTGAACGTG GTAACTTGAA GAAAGGTGAT GAAGTTGAAA TTGTTGGTTT 450 60 AAACAAAACT CCATTGAAAA CTACTGTYAC NGGTATTGAA ATGTTCAAAA 500

WO 01/23604				PCT/CA00	/01150
ላ አርያለ አጥጥርርያለ	ריכא א כיכיייא יייכי	CCTCCTTCTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	3 0m0m00m3 m	CCCC CCCC	

AAGAATTGGA	CCAAGCTATG	GCTGGTGATA	ACTGTGGTAT	CTTATTACGT	550
GGTATCAAAA	GAGATGACAT	YAAAAGAGGT	ATGGTTATTG	CTAAAACCGG	600
	GCTCACACTA				650
AAGAAGAAGG	TGGTCGTCAC	TCAGGTTTTG	GTGAACATTA	CAGACCTCAA	700
TTATTCATCA	GAACTGGTGA	TGTTACCGTT	GTTTTAACCT	TYCCAGAAGG	750
	TCTCAACAAA				800
GTGAATTGGT	TCACCCAACT	GCTTTAGAAG	CTGGTCAAAG	ATTCAA	846

10

5

- 2) INFORMATION FOR SEQ ID NO: 507
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 964 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: Genomic DNA

20

55

- (vi)ORIGINAL SOURCE:
 - (A) ORGANISM: Trichophyton mentagrophytes
 - (B) STRAIN: WSA-225
- 25 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 507

GGAGCTGTTG	TCGTTGTCGC	AGCTTCTGAC	GGTCAAATGT	AATTGAATGC	50
CCGCCCAGAC	GGATGAAAGG	ATTTGACGTT	TCTAACATCA	GTCTAGGCCT	100
CAGACCAGAG	AACATTTGCT	CCTTGCCCGC	CAGGTCGGTG	TCCAGAAGCT	150
GGTCGTTTTC	GTTAACAAGG	TCGATGCCGT	TGAGGACCCA	GAGATGTTGG	200
AGCTTGTCGA	ACTTGAAATG	CGTGAACTCC	TCAGCCACTA	CAGTTTTGAG	250
GGTGAGGAGA	CCCCCATCAT	TTTTGGCTCT	GCTCTCTGTG	CCCTCGAGTC	300
CCGTCGACCT	GAGCTTGGTG	TCGAGAAGAT	TGACGAGCTA	TTGAACGCCG	350
TCGACACCTG	GATCCCCACC	CCCGAGCGCG	CCACTGATAA	GCCTTTCCTC	400
ATGTCCATTG	AGGAAGTGTT	CTCTATCTCT	GGTCGTGGTA	CCGTCGTCTC	450
CGGTCGTGTT	GAGCGTGGTA	TCCTCAAGAA	GGATTCCGAC	GTCGAAATTG	500
TTGGTGGCTC	TACCACCCCT	ATCAAGACCA	AGGTCACAGA	TATCGAAACC	550
TTCAAGAAGT	CCTGCGATGA	ATCTCGAGCT	GGTGACAACT	CTGGTCTCCT	600
TCTCCGAGGT	ATCAAGCGTG	AGGACTTGAA	GCGTGGAATG	GTTGTTGCTG	650
CCCCCGGATC	CACCAAGGCT	CACACCGACT	TCATGGTCTC	CCTCTACGTC	700
CTGACTGAGG	CTGAGGGTGG	TCGTTCCAAC	GGCTTCACCC	ACAAGTACCG	750
CCCTCAAATG	TTCATCCGTA	CTGCTGGTAT	GTAACCAAAG	TTTCCGCTAT	800
TTACTAAGTA	GATCATTGCT	AACTTGTATT	CCCTTCCGTA	GACGAAGCCG	850
CATCTTTCAG	CTGGCCTGGA	GAAGACCAAG	ACAAGAAGGC	TATGCCTGGT	900
GACAACGTCG	AGATGATTTG	CAAAACCCTC	CACCCCATTG	CTGCCGAGGC	950
TGGCCAACGA	TTCA				964
	CCGCCCAGAC CAGACCAGAG GGTCGTTTTC AGCTTGTCGA GGTGAGGAGA CCGTCGACCT TCGACACCTG ATGTCCATTG CGGTCGTGTT TTGGTGGCTC TTCAAGAAGT TCTCCGAGGT CCCCCGGATC CTGACTGAGG CCTCAAATG TTACTAAGTA CATCTTTCAG GACAACGTCG	CCGCCCAGAC CAGACCAGAG CAGACCAGAG CAGACCAGAG GATGAAAAGG GGTCGTTTTC ACCACCAT CCGTCGACCT TCGACACCT ATGTCCATTG CGGTCGTGTT CGGTCGTGTT CGGTCGTGTT TTGGTGGCTC TTCAAGAAGT TCTCCGAGGT TCTCCGAGGT CCCCCGGATC CCCCCGGATC CTGACTGAGG CCCCCAGGT CTGACTGAGG CCCCCAGGT CTGACTGAGG CCCCCGGATC CTGACTGAGG CCCTCAAATG TTCATCCGTA TTACTAAGTA GATCATTGCT CATCTTTCAG GACAACGTCG AGATGATTTG	CCGCCCAGAC GGATGAAAGG ATTTGACGTT CAGACCAGAG AACATTTGCT CCTTGCCCGC GGTCGTTTTC GTTAACAAGG TCGATGCCGT AGCTTGTCGA ACTTGAAATG CGTGAACTCC GGTGAGGAGA CCCCCATCAT TTTTGGCTCT CCGTCGACCT GAGCTTGGTG TCGAGAAGAT TCGACACCTG GATCCCCACC CCCGAGCGCG ATGTCCATTG AGGAAGTGTT CTCTATCTCT CGGTCGTGTT GAGCGTGGTA TCCTCAAGAA TTGGTGGCTC TACCACCCCT ATCAAGACCA TTCAAGAAGT CCTGCGATGA ATCTCGAGCT TCTCCGAGGT ATCAAGCGT AGGACTTGAA CCCCCGGATC CACCAAGGCT CACACCGACT CTGACTGAGG CTGAGGGTGG TCGTTCCAAC CCCTCAAATG TTCATCCGTA CTGCTGGTAT TTACTAAGTA GATCATTGCT AACTTGTATT CATCTTTCAG CTGGCCTGGA GAAGACCCACG GACAACGTCG AGATGATTTG CAAAACCCTC	CCGCCCAGAC CAGACCAGAG AACATTTGCT CCTTGCCCGC CAGGTCGGTG GGTCGTTTTC GTTAACAAGG TCGATGCCGT TGAGGACCCA AGCTTGTCGA ACTTGAAATG CGTGAACTCC CCGTCGACCT GAGCTTGGTG TCGAGAAGAT TCGACACCTG CCGTCGACCT GAGCTTGGTG CCGTCGACCT GAGCTTGGTG CCGTCGACCT CGACCACCC CCCGAGCGCG CCACTGATAA ATGTCCATTG CGGTCGTGTT CAGCACCCC CCCGAGCGCG CCACTGATAA CGGTCGTGTT CACCACCCC CCCGAGCGCG CCACTGATAA CGGTCGTGTT CTCTCAAGAA CCTCCACC CCTCAAGAA CCTCCCACC CCCCGAGCCC CCCGAGCCC CCACTGATAA CCCCCT ATCAAGAAC CCTCCAAGAC TTCACCACCCCT CCTCCAAGAC CCCCCGGATC CACCAAGCCT CACCACCGACT CCCCCGGATC CACCAAGCCT CCCCCGGATC CTGACTGAC CCCCCAAGCCT CCCCCCGATC CTGACTGAC CCCCCCGATC CTGACTGAC CCCCCCGATC CTGACTGAC CCCCCCGATC CTGACTGAC CCCCCCGATC CACCCCCT CCCCCGCATC CCCCCGGATC CACCCCCT CCCCCGGATC CACCCCCT CCCCCGCATC CCCCCGGATC CACCCCCT CCCCCGCATC CCCCCGGATC CACCCCCT CCCCCCGATC CCCCCCGATC CCCCCCGATC CCCCCCGGATC CACCCCCT CCCCCGGATC CCCCCCGGATC CACCCCCT CCCCCCCC CCCCCCCC CCCCCCCC CCCCCC	CCGCCCAGAC GGATGAAAGG ATTTGACGTT TCTAACATCA GTCTAGGCCT CAGACCAGAG AACATTTGCT CCTTGCCCGC CAGGTCGGTG TCCAGAAGCT GGTCGTTTTC GTTAACAAGG TCGATGCCGT TGAGGACCCA GAGATGTTGG AGCTTGTCGA ACTTGAAATG CGTGAACTCC TCAGCCACTA CAGTTTTGAG GGTGAGGAGA CCCCCATCAT TTTTGGCTCT GCTCTCTGTG CCCTCGAGTC CCGTCGACCT GAGCTTGGTG TCGAGAAGAT TGACGAGCTA TTGAACGCCG TCGACACCTG GATCCCCACC CCCGAGCGCG CCACTGATAA GCCTTTCCTC ATGTCCATTG AGGAAGTGTT CTCTATCTCT GGTCGTGGTA CCGTCGTCTC CGGTCGTGTT GAGCGTGGTA TCCTCAAGAA GGATTCCGAC GTCGAAATTG TTGGTGGCTC TACCACCCCT ATCAAGAA GGATTCCGAC GTCGAAATTG TTCAAGAAGT CCTGCGATGA ATCTCGAGCT GGTGACAACT CTGGTCTCCT TCTCCGAGGT ATCAAGCCA AGGTCACAGA TATCGAAACC TCTCCGAGGT CACCACGACT TCATGGTCTC CCTCTACGTC CCCCCGGATC CACCAAGGCT CACACCGACT TCATGGTCTC CCTCTACGTC CTGACTGAGG CTGAGGGTGG TCGTTCCAAC GGCTTCACCC ACAAGTACCG CCTCAAATG TTCATCCGTA CTGCTGGTAT CCCTCCTACGTC CTGACTGAGA GATCATTGCT AACTTGTATT CCCTTCCGTA GACGAAGCCG CATCTTCAG GATCATTGCT AACTTGTATT CCCTTCCGTA GACGAAGCCG CATCTTCAG CTGGCCTGGA GAAGACCAAG TATCCGCTAT TTACTAAGTA GATCATTGCT AACTTGTATT CCCTTCCGTA GACGAAGCCG CATCTTCAG CTGGCCTGGA GAAGACCAAG TATCCCGTAT TTACTAAGTA GATCATTGCT AACTTGTATT CCCTTCCGTA GACGAAGCCG CATCTTCAG CTGCCTGGA GAAGACCAAG TATGCCTGGT GACAACGTCG AGATGATTTG CAAAACCCTC CACCCCATTG CTGCCGAGGC

- 50 2) INFORMATION FOR SEQ ID NO: 508
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 844 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: Genomic DNA
- 60 (vi)ORIGINAL SOURCE:

(A) ORGANISM: Yarrowia lipolytica

(B) STRAIN: ATCC 38295

```
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 508
```

	GGTGCTATCA	TTGTCGTTGC	TGCTGGAGAC	GGTTCCAAGC	CCCAGACCCG	50
	AGAGCATCTG	CTGCTTGCTC	GACAGGTCGG	TGTCCAGAAC	CTGGTTGTGT	100
	TTGTTAACAA	GGTTGATCAG	ATTGATGATA	AGGAGATTCT	TGAGCTCGTT	150
	GACATGGAGA	TGCGAGATCT	GCTGACCCAG	TACGGTTTTG	ATGGTGACAA	200
10	CACCCCCGTT	GTCATGGGCT	CTGCTCTGTG	CGCTCTTGAG	GGCAAGCAGA	250
	AGGATATTGG	AGAGGACGCC	ATCATGGCCC	TTATGGATGC		300
	CACATCCCTA	CCCCTAACCG	TGACCTTGAG	AAGCCCTTCC	TGATGCCCGT	350
15	TGAGGACGTT	TTCTCCATCT	CTGGCCGAGG	AACTGTTGTT	ACTGGCCGAG	400
	TCGAGCGAGG	AAACCTGAAG	AAGGGTGAGG	AAATCGAGAT	TGTTGGCTAC	450
	AACAACAAGC	CCATCAAGGC	TGTTGTTACC	GGTATTGAGA	TGTTCAAGAA	500
	GGAGCTCGAG	TCCGCCATGG	CCGGTGACAA	CGCCGGTATC	CTGCTCCGAG	550
	GTATCAAGCG	AGACGAGATC	AAGCGAGGTA	TGGTCATGTG	CAAGCCTGGC	600
	ACCGTCAACG	CCCACACCAA	GTTCCTTGCT	TCTCTTTACA	TCATCCCCAC	650
	CGAGGAGGGT	GGTCGAACCA	GCTCTTTCGG	CGCCAACTAC	CGACCCCAGA	700
20.	TGTTCATCCG	AACTTCTTCC	GTCACCGCCA	CTCTCACCTT	CCCCGAGGGT	750
	ACCGACGAGT	CCCAGACCGT	CAACCCCGGT	GACAACACTG	AGATGGTTCT	800
	CGAGCTTGTT	CACCCTACCG	CCATTGAGGT	CAACCAGCGA	TTCA	844

25

30

5

2) INFORMATION FOR SEQ ID NO: 509

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1067 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: Genomic DNA

- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Babesia bigemina
 - (B) STRAIN: Suarez-2
- 40 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 509

	CTTGGACAAG	CTGAAGAGCG	AGCGTGAGCG	TGGTATCACC	ATTGACATTA	50
	CCCTGTGGAA	GTTCGAAACT	GGCAAGTACT	ACTACACCGT	CATTGACGCC	100
45	CCCGGTCACC	GTGACTTCAT	TAAGAACATG	ATTACGGGTA	CCTCCCAGGC	150
	CGATGTTGCT	ATGCTTGTCG	TGCCCGCCGA	GGCTGGTGGT	TTCGAAGCTG	200
	CCTTCTCTAA	GGAAGGTCAG	ACCCGTGAGC	ACGCTCTTTT	GGCCTTCACC	250
	CTTGGTGTCA	AGCAGATCAT	TTGCGCCATC	AACAAGATGG	ACAAGTGCGA	300
50	CTACAAGGAG	GACCGTTACA	GCGAAATCCA	GAAGGAAGTT	CAGGGTTACC	350
	TGAAGAAGGT	CGGTTACAAC	ATCGAGAAGG	TGCCTTTCGT	CGCCATCTCC	400
	GGTTTCATGG	GTGACAACAT	GGTTGAGCGC	TCCACCAACA	TGCCGTGGTA	450
	CAAGGGCAAG	ACCTTGGTCG	AGGCCCTCGA	CATGATGGAG	CCCCGAAGA	500
	GGCCCGTCGA	CAAGCCCCTG	CGTCTTCCCC	TCCAGGGTGT	GTACAAGATC	550
55	GGTGGTATCG	GTACCGTCCC	TGTCGGTCGT	GTGGAGACTG	GTCAGCTCAA	600
	GGCCGGTATG	GTCCTCACCT	TCGCCCCCAA	CCCGATCACT	ACTGAGTGCA	650
	AATCCGTCGA	AATGCACCAC	GAAGTTATCG	ATGTTGCCAG	CCCTGGTGAC	700
	AACGTTGGTT	TCAACGTGAA	GAACGTGTCC	ACCTCTGACA	TCCGCACTGG	750
	TCACGTCGCT	TCTGACTCCA	AGAACGACCC	CGCCAAGGCC	GCCGTGTCCT	800
	TCACCGCCCA	GGTCATCATC	TTGAACCACC	CTGGTACCAT	CAAGGCCGGT	850
	TACTCCCCTG	TGGTTGACTG	CCACACTGCC	CACATCTCGT	GCAAATTCGA	900
60	CGAGATCACC		ACAAGCGTAC			950

AC	CCCAAGAC	CATCAAGAAC	GGCGACGCCG	CTATGGTCGT	CCTGAAGCCG	1000
TG	CAAGCCCA	TGGTCGTCGA	GGCCTTCACT	GAATACGCTC	CCCTTGGTCG	1050
TT'	TCGCCGTG	CGTGACG	_			1067

5

10

- 2) INFORMATION FOR SEQ ID NO: 510
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1049 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
- 15 (ii) MOLECULE TYPE: Genomic DNA
 - (vi)ORIGINAL SOURCE:
 - (A) ORGANISM: Babesia bovis
 - (B) STRAIN: Suarez-3

20

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 510

GTGAACGTGA	ACGTGGTATT	ACTATTGATA	TTACCTTATG	GAAGTTCGAG	50
ACCACCAAGT	ACTACTACAC	CGTCATTGAT	GCCCCTGGTC	ACCGTGACTT	100
CATCAAGAAC	ATGATTACGG	GTACTTCTCA	AGCCGATGTT	GCTATGCTTG	150
TTGTACCAGC	TGAGGCTGGT	GGTTTCGAGG	CCGCTTTCTC	CAAGGAAGGA	200
CAGACCCGTG	AGCACGCTCT	TTTGGCTTTC	ACCCTTGGTG	TCAAACAGAT	250
CATCTGTGCC	ATTAACAAGA	TGGACAAGTG	CGACTACAAG	GAGGACCGTT	300
ACAGTGAAAT	CCAGAAGGAA	GTCCAGGGTT	ACCTCAAGAA	GGTCGGTTAC	350
AATATTGAGA	AGGTGCCCTT	CGTTGCCATC	TCCGGTTTCA	TGGGAGACAA	400
CATGGTTGAG	CGTTCCACCA	ACATGCCCTG	GTATAAGGGA	AAGACATTGG	450
TCGAGGCCCT	TGATCAGATG	GAACCCCCAA	AGAGGCCCGT	TGACAAGCCA	500
CTTCGTCTTC	CCCTCCAGGG	TGTCTACAAG	ATCGGTGGTA	TCGGTACCGT	550
CCCCGTCGGT	CGTGTTGAAA	CTGGTATGTT	GAAGGCTGGT	ATGATTCTAA	600
CCTTTGCTCC	TAACCCAATC	ACCACTGAAT	GCAAATCCGT	TGAAATGCAC	650
CACGAAACCG	TTGAGGTTGC	TTACCCCGGT	GACAACGTCG	GTTTCAACGT	700
AAAGAACGTT	TCTACTTCTG	ACATTCGCAG	TGGTCACGTT	GCCTCTGATT	` 750
CTAAGAACGA	CCCTGCCAAG	GCTGCTGTTT	CCTTCACTGC	CCAGGTCATT	800
GTGCTCAACC	ACCCTGGTAC	CATTAAGGCC	GGTTACTGCC	CCGTCGTCGA	850
TTGCCACACC	GCTCACATTT	CATGTAAATT	CGAAGAGATC	ACCAGCCGTA	900
TGGACAAGCG	TACCGGTAAA	TCTCTTGAGG	AAAACCCCAA	GACCATCAAG	950
AACGGTGACG	CTGCCATGGT	TGTGCTCAAG	CCAATGAAGC	CCATGGTTGT	1000
CGAATCCTTC	ACTGAGTATG	CTCCTCTTGG	TCGTTTCGCT	GTTCGTGAC	1049
	ACCACCAAGT CATCAAGAAC TTGTACCAGC CAGACCCGTG CATCTGTGCC ACAGTGAAAT AATATTGAGA CATGGTTGAG TCGAGGCCCT CTTCGTCTTC CCCCGTCGGT CCTTTGCTCC CACGAAACCG AAAGAACGTT CTAAGAACGA GTGCTCAACC TTGCCACACC TGGACAACCG AACGGTGACGG AACGGTGACG	CATCAAGAAC ATGATTACGG TTGTACCAGC TGAGGCTGGT CAGACCCGTG AGCACGCTCT CATCTGTGCC ATTAACAAGA ACAGTGAAAT CCAGAAGGAA AATATTGAGA AGGTGCCCTT CATGGTTGAG CGTTCCACCA TCGAGGCCCT TGATCAGATG CTTCGTCTTC CCCTCCAGGG CCCCGTCGGT CGTGTTGAAA CCTTTGCTCC TAACCCAATC CACGAAACCG TTGAGGTTGC AAAGAACGTT TCTACTTCTG CTAAGAACGA CCCTGCCAAG GTGCTCAACC ACCCTGGTAC TTGCCACACC GCTCACATTT TGGACAAGCG TACCGGTAAA AACGGTGACG CTGCCATGGT	ACCACCAAGT ACTACTACAC CGTCATTGAT CATCAAGAAC ATGATTACGG GTACTTCTCA TTGTACCAGC TGAGGCTGGT GGTTTCGAGG CAGACCCGTG AGCACGCTCT TTTGGCTTTC CATCTGTGCC ATTAACAAGA TGGACAAGTG ACAGTGAAAT CCAGAAGGAA GTCCAGGGTT AATATTGAGA AGGTGCCCTT CGTTGCCATC CATGGTTGAG CGTTCCACCA ACATGCCCTG TCGAGGCCCT TGATCAGATG GAACCCCCAA CTTCGTCTTC CCCTCCAGGG TGTCTACAAG CCCCGTCGGT CGTGTTGAAA CTGGTATGTT CCTTTGCTCC TAACCCAATC ACCACTGAAT CACGAAACCG TTGAGGTTGC TTACCCCGGT AAAGAACGT TCTACTTCTG ACATTCGCAG CTAAGAACGA CCCTGCCAAG GCTGCTGTTT GTGCTCAACC ACCCTGGTAC CATTAAGGCC TTGCCACACC GCTCACATT CATGTAAATT TGGACAAGCG TACCGGTAAA TCTCTTGAGG AACGGTGACG CTGCCAAG GCTGCTCAAG	ACCACCAAGT ACTACTACAC CGTCATTGAT GCCCCTGGTC CATCAAGAAC ATGATTACGG GTACTTCTCA AGCCGATGTT TTGTACCAGC TGAGGCTGGT GGTTTCGAGG CCGCTTTCTC CAGACCCGTG AGCACGCTCT TTTGGCTTTC ACCCTTGGTG CATCTGTGCC ATTAACAAGA TGGACAAGTG CGACTACAAG ACAGTGAAAT CCAGAAGGAA GTCCAGGGTT ACCTCAAGAA AATATTGAGA AGGTGCCCTT CGTTGCCATC TCCGGTTTCA CATGGTTGAG CGTTCCACCA ACATGCCCTG GTATAAGGGA TCGAGGCCCT TGATCAGATG GAACCCCCAA AGAGGCCCGT CTTCGTCTTC CCCTCCAGGG TGTCTACAAG ATCGGTGGTA CCCCGTCGGT CGTGTTGAAA CTGGTATGTT GAAGGCTGGT CCTTTGCTCC TAACCCAATC ACCACTGAAT GCAAATCCGT CACGAAACCG TTGAGGTTGC TTACCCCGGT GACAACGTCG AAAGAACGT TCTACTTCTG ACATTCGCAG TGGTCACTGC GTGCTCAACC ACCCTGAAG GCTGCTGTTT CCTTCACTGC GTGCTCAACC ACCCTGGTAC CATTAAGGCC GGTTACTGCC TTGCCACAC ACCCTGGTAC CATTAAGGCC GGTTACTGCC TTGCCACACC TACCGGTAAA TCTCTTGAGG AAAACCCCAA AACGGTGGC TTGGCCACACC TTCCCGTTAAAATT CGAAGAGATC TGGACAAGCG TACCGGTAAA TCTCTTGAGG AAAACCCCAA AACGGTGAC TTGGCACACC TTCCCCTAAA TCTCTTGAGG AAAACCCCCAA AACGGTGAC TACCGGTAAA TCTCTTGAGG AAAACCCCCAA AACGGTGACC TTCCCCTAAAATT CATGTAAATT CGAAGAAGCC TACCGGTAAA TCTCTTGAGG AAAACCCCCAA AACGGTGACC TTCCCATGGT TGTGCTCAAG CCCAATGAAGC	ACCACCAAGT ACTACTACAC CGTCATTGAT GCCCCTGGTC ACCGTGACTT CATCAAGAAC ATGATTACGG GTACTTCTCA AGCCGATGTT GCTATGCTTG TTGTACCAGC TGAGGCTGGT GGTTTCGAGG CCGCTTTCTC CAAGGAAGGA CAGACCCGTG AGCACGCTCT TTTGGCTTTC ACCCTTGGTG TCAAACAGAT CATCTGTGCC ATTAACAAGA TGGACAAGTG CGACTACAAG GAGGACCGTT ACAGTGAAAT CCAGAAGGAA GTCCAGGGTT ACCTCAAGAA GGTCGGTTAC AATATTGAGA AGGTGCCCTT CGTTGCCATC TCCGGTTTCA TGGGAGACAA CATGGTTGAG CGTTCCACCA ACATGCCCTG GTATAAGGGA AAGACATTGG TCGAGGCCCT TGATCAGAAG ACATGCCCTA AGAGGCCCGT TGACAAGCCA CCTCGTCTTC CCCTCCAGGG TGTCTACAAG ATCGGTGGTA TCGGTACCGT CCCCGTCGGT CGTGTTGAAA CTGGTATGTT GAAGGCCAGT TGACAAGCCA ACCCCCAA ACCCCCAA ACCGTGGT ATGATTCTAA CCTTTGCTCC TAACCCAATC ACCACTGAAT GCAAATCCGT TGAAATGCAC CACGAAACCG TTGAGGTTGC TTACCCCGGT GACAACGTCG GTTTCAACGT AAGAACGTT TCTACTTCTG ACATTCGCAG TGGTCACGTT GCCTCTGATT CTAAGAACGA CCCTGCCAAG GCTGCTGTTT CCTTCACTGC CCAGGTCATT CTAAGAACGA CCCTGGTAC CATTAAGGCC GCTCACATT CATGTAAATT CGAAGAGATC ACCACGTAA TCGGTAGAT ACCACGTAA TCGGTACGT TGGCCACACC TTGACAAGC CATTAAGGCC GGTTACTGC CCAGGTCATT CTACGCAC ACCCTGGTAA TCTCTTGAGG AAAACCCCAA GACCATCAAG AACCGTCG TACCGGTAAA TCTCTTGAGG AAAACCCCAA GACCATCAAG AACCGTAAG TACCGGTAAA TCTCTTGAGG AAAACCCCAA GACCATCAAG AACCGTGAACGTCG TTGCCACATT CATGTAAAATT CGAAGAGATC ACCAGCCGTA TGGACAAGGC TACCGGTAAA TCTCTTGAGG AAAACCCCAA GACCATCAAG AACCGGTGAC TTGCCACATGAT TCTCTTGAGG AAAACCCCAA GACCATCAAG AACCGGTGAC TTGCCACATGAT TCTCTTGAGG AAAACCCCAA GACCATCAAG AACCGGTGAC TTGCCACGTT TTGCCACACGTT TCTCTTGAGG AAAACCCCAA GACCATCAAG AACCGGTGAC TTGCCACGTT TTGCCACACGTT TTGCCACACG TTGTTTAAATT CGAAGAGATC ACCAGCCGTA TTGCACAGGC TTGCTCTAAG CCAATCAAG AAACCCCAA GACCATCAAG AACCGGTGAC TTGCCACGTT TTGCCACGTT TTGCCACGTT TTGCCACGT TTGTCTTAAGGC CCAATGAAG CCAATCAAG AACCGCAA GACCATCAAG AACCGGTGACACGTT TTGCCACGTT TTGCCACGT TTGCCACGTT TTGCCACGTT TTGCCACGTT TTGCCACGTT TTGCCACGTT TTGCCACGTT TTGCCACGTT TTGCCACGTT TTGCCACGT TTGCTTTGAGG CCAATGAAG CCATTCAAG AACCGCAA GACCATCAAG AACCGCAA GACCATCAAG AACCGCAACGTC

45

50

- 2) INFORMATION FOR SEQ ID NO: 511
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1070 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
- 55 (ii) MOLECULE TYPE: Genomic DNA
 - (vi)ORIGINAL SOURCE:
 - (A) ORGANISM: Crithidia fasciculata
 - (B) STRAIN: ATCC 11745

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 511

						• _
	TGGACAAGCT	GAAGGCGGAG	CGCGAGCGCG	GTATCACGAT	CGATATTGCC	50 ⁻
	CTGTGGAAGT	TCGAGTCGCC	CAAGTCCGTG	TTCACGATCA	TCGATGCCCC	100
5	CGGCCACCGC	GACTTCATCA	AGAACATGAT	CACCGGCACC	TCCCAGGCCG	150
	ATGCCGCCAT	TCTGATGATT	GACTCGACCC	AGGGTGGCTT	CGAGGCTGGC	200
	ATCTCCAAGG	ACGGCCAGAC	CCGCGAGCAC	GCCCTGCTTG	CCTTCACGCT	250
	GGGCGTGAAG	CAGATGGTTG	TGTGCTGCAA	CAAGATGGAC	GACAAGACGG	300
	TGCAGTACGC	CCAGGCCCGC	TACGAGGAGA	TCAGCAAGGA	GGTCGGCGCG	350
10	TACCTGAAGC	GCGTGGGCTA	CAACCCGGAG	AAGGTGCGCT	TCATCCCGAT	400
	CTCGGGCTGG	CAGGGCGACA	ACATGATCGA	GAAGTCCGAC	AACATGTCGT	450
	GGTACAAGGG	TCCCACGCTG	CTGGAGGCGC	TCGACCTGCT	GGAGGCCCCC	500
	GTGCGTCCGG	TGGACAAGCC	GCTGCGCCTG	CCCCTGCAGG	ACGTGTACAA	550
	GATCGGCGGT	ATCGGCACTG	TGCCCGTGGG	CCGTGTGGAG	ACCGGCGTGA	600
15	TGAAGCCGGG	CGACGTTGTG	GTGTTCGCGC	CTGCCAACGT	GACGACCGAG	650
	GTGAAGTCGA	TCGAGATGCA	CCACGAGCAG	CTGGCTGAGG	CCGTGCCCGG	700
	CGACAACGTG	GGCTTCAACG	TGAAGAACGT	GTCCGTGAAG	GATATCCGCC	750
	GTGGTAACGT	GTGCGGCAAC	ACGAAGAGCG	ACCCCCGAA	GGAGGCGGCC	800
	GACTTCACTG	CCCAGGTGAT	CGTGCTGAAC	CACCCGGCC	AGATCAGCAA	850
20	CGGCTACGCG	CCGGTGCTGG	ACTGCCACAC	GAGCCACATC	GCGTGCAAGT	900
	TCGCGGACAT	CGAGTCCAAG	ATCGACCGCC	GCTCTGGCAA	GGAGCTGGAG	950
	AAGAGCCCGA	AGGCCATCAA	GTCCGGCGAT	GCGGCCATCG	TGAAGATGAT	1000
	CCCGCAGAAG	CCGATGTGCG	TGGAGGTGTT	CAACGACTAC	CCGCCGCTGG	1050
	GCCGCTTCGC	TGTCCGCGAT	-	•		1070
25						
_						

2) INFORMATION FOR SEQ ID NO: 512

- 30 (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1052 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear

35 (;;) NOT BOTH B. ((;;))

(ii) MOLECULE TYPE: Genomic DNA

- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Entamoeba histolytica
- 40 (B) STRAIN: HM1-IMMS
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 512

	GCTGAAAGAG	AAAGAGGAAT	TACTATTGAT	ATTTCATTAT	GGAAATTCGA	50
45	AACATCTAAA	TACTACTTCA	CTATTATTGA	TGCCCCAGGT	CAYAGAGATT	100
	TCATTAAGAA	CATGATTACT	GGAACTTCAC	AAGCTGATGT	TGCCATCCTT	150
	ATTGTTGCTG	CTGGTACTGG	WGAATTTGAA	GCTGGTATTT	CAAAGAATGG	200
	ACAAACCAGA	GAACAYATTC	TTCTTTCATA	CACTCTTGGA	GTTAAACAAA	250
	TGATTGTTGG	WGTTAACAAG	ATGGATGCTA	TTCAATATAA	ACAAGAAAGA	300
50	TATGAAGAAA	TTAAGAAAGA	AATTAGTGCA	TTCCTTAAGA	AGACWGGATA	350
	TAATCCAGAC	AAGATTCCAT	TTGTCCCAAT	TTCAGGATTC	CAAGGAGATA	400
	ATATGATTGA	ACCATCAACC	AACATGCCAT	GGTACAAAGG	ACCAACATTA	450
	ATTGGAGCAC	TTGATTCAGT	CACACCACCA	GAAAGACCAG	TTGATAAACC	500
	ACTTAGACTT	CCACTTCAAG	ATGTTTAYAA	GATTTCAGGT	ATTGGAACTG	550
55	TACCATGTGG	AAGAGTTGAA	ACTGGAGTTC	TTAGACCAGG	AACTATTGTT	600
	CAATTTGCAC	CATCAGGAGT	TTCATCTGAA	TGTAAATCAG	TTGAAATGCA	650
	TCACACAGCA	CTTGCTCAAG	CTATTCCAGG	TGATAATGTT	GGATTCAATG	700
	TTAGAAAYTT	AACAGTTAAA	GATATTAAGA	GAGGAAATGT	AGCATCAGAT	750
	GCTAAGAATC	AACCAGCTGT	TGGATGTGAA	GATTTCACTG	CTCAAGTCAT	800
60	TGTCATGAAC	CATCCAGGAC	AAATTAGAAA	GGGATATACA	CCAGTTCTTG	850

	ATTGCCATAC	ATCACACATT	GCATGTAAAT	TCGAAGAATT	ATTAAGCAAG	900
	ATTGATAGAA	GAACAGGTAA	ATCCATGGAA	GGAGGAGAAC	CAGAATATAT	909) 950
	TAAGAATGGA	GATTCAGCAC	TTGTTAAGAT	TGTTCCAACT	AAACCACTTT	1000
	GTGTTGAAGA	ATTTGCTAAA	TTCCCACCAT	TGGGAAGATT	TGCTGTTAGA	1050
5	GA					1052

- 2) INFORMATION FOR SEQ ID NO: 513
- 10 (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1082 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
- 15 (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: Genomic DNA
 - (vi)ORIGINAL SOURCE:
- 20 (A) ORGANISM: Giardia lamblia
 - (B) STRAIN: Faubert-1
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 513

25	GACGAGCGCG	AGCGCGGGAT	САССАТСААС	ATCGCGCTCT	GGAAGTTCGA	50
	GACGAAGAAG	TACATCGTCA	CGATCATCGA	CGCCCCGGGC	CACCGCGACT	
	TCATCAAGAA					100
		CATGATCACG	GGGACGTCCC	AGGCCGACGT	CGCGATCCTC	150
	GTCGTCGCGG	CGGGCCAGGG	CGAGTTCGAG	GCCGGGATCT	CGAAGGACGG	200
	CCAGACGCGC	GAGCACGCGA	CCCTTGCGAA	CACGCTCGGG	ATCAAGACGA	250
30	TGATCATCTG	CGTCAACAAG	ATGGACGACG	GCCAGGTCAA	GTACTCGAAG	300
	GAGCGCTACG	ACGAGATCAA	GGGCGAGATG	ATGAAGCAGC	TCAAGAACAT	350
	CGGCTGGAAG	AAGGCCGAGG	AGTTCGACTA	CATCCCGACG	TCCGGCTGGA	400
	CCGGGGACAA	CATCATGGAG	AAGTCCGACA	AGATGCCCTG	GTACGAGGGC	450
	CCGTGCCTGA	TCGACGCGAT	CGACGGGCTC	AAGGCCCCGA	AGCGCCCGAC	500
35	CGACAAGCCC	CTCCGCCTCC	CGATCCAGGA	CGTCTACAAG	ATCTCGGGCG	550
	TCGGGACCGT	CCCCGCGGGC	CGCGTCGAGA	CGGGCGAGCT	CGCGCCCGGG	600
	ATGAAGGTCG	TCTTCGCCCC	GACGTCCCAG	GTCTCGGAGG	TCAAGTCCGT	650
	CGAGATGCAC	CACGAGGAGC	TCAAGAAGGC	CGGGCCCGGG	GACAACGTCG	700
	GCTTCAACGT	CCGCGGGCTC	GCCGTCAAGG	ACCTCAAGAA	GGGCTACGTC	750
40	GTCGGGGACG	TGACGAACGA	CCCGCCCGTC	GGCTGCAAGA	GCTTCACCGC	800
	CCAGGTCATC	GTCATGAACC	ACCCGAAGAA	GATCCAGCCC	GGCTACACGC	850
	CCGTCATCGA	CTGCCACACC	GCGCACATCG	CGTGCCAGTT	CCAGCTCTTC	900
	CTCCAGAAGC	TCGACAAGCG	CACGCTCAAG	CCCGAGATGG	AGAACCCGCC	950
	CGACGCAGGC	CGCGGCGATT	GCATCATCGT	CAAGATGGTC	CCCCAGAAGC	1000
45	CCCTGTGCTG	CGAGACGTTC	AACGACTACG	CGCCCCTCGG	CCGCTTCGCC	1050
	GTCCGCGACA	TGCGCCAAAC	CGTTGCCGTC	GG		1082

- 50 2) INFORMATION FOR SEQ ID NO: 514
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1098 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: Genomic DNA
- 60 (vi)ORIGINAL SOURCE:

ORGANISM: Leishmania tropica STRAIN: ATCC 30816 (A)

(B)

```
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 514
```

	ACGCGTGGGT	GCTCGACAAG	CTGAAGGCGG	AGCGCGAGCG	CGGCATCACG	50
	ATCGACATTG	CGCTGTGGAA	GTTCGAGTCG	CCCAAGTCCG	TGTTCACGAT	100
	CATCGATGCG	CCCGGCCACC	GCGACTTCAT	CAAGAACATG	ATCACGGGCA	150
	CGTCGCAGGC	GGACGCCGCC	ATCCTGATGA	TCGACTCGAC	GCATGGTGGC	200
10	TTCGAGGCTG	GCATCTCGAA	GGACGGCCAG	ACCCGCGAGC	ACGCGCTGCT	250
	TGCCTTCACT	CTTGGCGTGA	AGCAGATGGT	GGTGTGCTGC	AACAAGATGG	300
	ACGACAAGAC	GGTGACGTAC	GCGCAGTCGC	GCTACGATGA	GATCAGCAAG	350
	GAGGTGGGCG	CGTACCTGAA	GCGCGTGGGC	TACAACCCGG	AGAAGGTGCG	400
	CTTCATCCCG	ATCTCGGGCT	GGCAGGGCGA	CAACATGATC	GAGAAGTCGG	450
15	ACAACATGCC	GTGGTACAAG	GGTCCCACGC	TGCTGGACGC	GCTCGACATG	500
	CTGGAGCCGC	CGGTGCGCCC	GGTGGACAAG	CCGCTGCGCC	TGCCCCTGCA	550
	GGACGTGTAC	AAGATCGGCG	GTATCGGGAC	GGTGCCCGTG	GGGCGCGTGG	600
	AGACCGGCAT	CATGAAGCCG	GGCGACGTGG	TGACGTTCGC	GCCCGCCAAC	650
	GTGACGACTG	AGGTGAAGTC	GATCGAGATG	CACCACGAGC	AGCTGGCGGA	700
20	GGCGCAGCCC	GGCGACAACG	TCGGCTTCAA	CGTGAAGAAC	GTGTCGGTGA	750
	AGGACATCCG	CCGTGGTAAC	GTGTGCGGCA	ACTCGAAGAA	CGACCCGCCG	008
	AAGGAGGCGG	CCGACTTCAC	GGCGCAGGTG	ATCGTGCTGA	ACCACCCCGG	850
	CCAGATCAGC	AACGGCTACG	CGCCGGTGCT	GGACTGCCAC	ACGAGCCACA	900
	TTGCGTGCCG	CTTCGCGGAA	ATCGAGTCCA	AGATCGACCG	CCGCTCCGGC	950
25	AAGGAGCTGG	AGAAGAACCC	CAAGGCGATC	AAGTCTGGCG	ATGCCGCGAT	1000
	CGTGAAGATG	GTGCCGCAGA	AGCCGATGTG	CGTGGAGGTG	TTCAACGACT	1050
	ACGCGCCGCT	GGGCCGCTTT	GCCGTGCGCG	ACATGCGCCA	AACCGTTG	1098

30

35

5

2) INFORMATION FOR SEQ ID NO: 515

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1104 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: Genomic DNA

- (vi)ORIGINAL SOURCE:
 - (A) ORGANISM: Leishmania aethiopica
 - (B) STRAIN: ATCC 50119
- 45 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 515

	TACGCGTGGG	TGCTCGACAA	GCTGAAGGCG	GAGCGCGAGC	GCGGCATCAC	50
	GATCGACATT	GCGCTGTGGA	AGTTCGAGTC	GCCCAAGTCC	GTGTTCACGA	100
	TCATCGATGC	GCCCGGCCAC	CGCGACTTCA	TCAAGAACAT	GATCACGGGC	150
50	ACGTCGCAGG	CGGACGCCGC	CATCCTGATG	ATCGACTCGA	CGCATGGTGG	200
	CTTCGAGGCT	GGCATCTCGA	AGGACGGCCA	GACCCGCGAG	CACGCGCTGC	250
	TTGCCTTCAC	TCTTGGCGTG	AAGCAGATGG	TGGTGTGCTG	CAACAAGATG	300
	GACGACAAGA	CGGTGACGTA	CGCGCAGTCG	CGCTACGAGG	AGATCAGCAA	350
	GGAGGTGGGC	GCGTACCTGA	AGCGCGTGGG	CTACAACCCG	GAGAAGGTGC	400
55	GCTTCATCCC	GATCTCGGGC	TGGCAGGGCG	ACAACATGAT	CGAGAAGTCG	450
	GACAACATGC	CGTGGTACAA	GGGTCCCACG	CTGCTGGACG	CGCTCGACAT	500
	GCTGGAGCCG	CCGGTGCGCC	CGGTGGACAA	GCCGCTGCGC	CTGCCCCTGC	550
			GGTATCGGGA			600
	GAGACCGGCA	TCATGAAGCC	GGGCGACGTG	GTGACGTTCG	CGCCCGCCAA	650
60	CGTGACGACT	GAGGTGAAGT	CGATCGAGAT	GCACCACGAG	CAGCTGGCGG	700

	AGGCGCAGCC	CGGCGACAAC	GTCGGCTTCX*	ÄCĞTĞAAĞAA	CGTGTCGGTG	· -750
	AAGGACATCC	GCCGTGGCAA	CGTGTGCGGC	AACTCGAAGA	ACGACCCGCC	7 50 8 0 0
	GAAGGAGGCG	GCCGACTTCA	CGGCGCAGGT	GATCGTGCTG	AACCACCCCG	850
	GCCAGATCAG	CAACGGCTAC	GCGCCGGTGC	TGGACTGCCA	CACGAGCCAC	900
5	ATTGCGTGCC	GCTTCGCGGA	AATCGAGTCC	AAGATCGACC	GCCGCTCCGG	950
	CAAGGAGCTG	GAGAAGAACC	CCAAGGCGAT	CAAGTCTGGC	GATGCCGCGA	1000
	TCGTGAAGAT	GGTGCCGCAG	AAGCCGATGT	GCGTGGAGGT	GTTCAACGAC	1050
	TACGCGCCGC	TGGGCCGCTT	TGCCGTGCGC	GACATGCGCC	AAACCGTTGC	1100
	CGTC					1104

10

2) INFORMATION FOR SEQ ID NO: 516

- 15 (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1106 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear

20

- (ii) MOLECULE TYPE: Genomic DNA
- (vi)ORIGINAL SOURCE:
 - (A) ORGANISM: Leishmania tropica
- 25 (B) STRAIN: ATCC 30815
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 516

	TACGCGTGGG	TGCTCGACAA	GCTGAAGGCG	GAGCGCGAGC	GCGGCATCAC	50
30	GATCGACATT	GCGCTGTGGA	AGTTCGAGTC	GCCCAAGTCC	GTGTTCACGA	100
	TCATCGATGC	GCCCGGCCAC	CGCGACTTCA	TCAAGAACAT	GATCACGGGC	150
	ACGTCGCAGG	CGGACGCCGC	CATCCTGATG	ATCGACTCGA	CGCATGGTGG	200
	CTTCGAGGCT	GGCATCTCGA	AGGACGGCCA	GACCCGCGAG	CACGCGCTGC	250
	TTGCCTTCAC	KCTTGGCGTG	AAGCAGATGG	TGGTGTGCTG	CAACAAGATG	300
35	GACGACAAGA	CGGTGACGTA	CGCGCAGTCG	CGCTACGATG	AGATCAGCAA	350
	GGAGGTGGGC	GCGTACCTGA	AGCGCGTGGG	CTACAACCCG	GAGAAGGTGC	400
	GCTTCATCCC	GATCTCGGGC	TGGCAGGGCG	ACAACATGAT	CGAGAAGTCG	450
	GACAACATGC	CGTGGTACAA	GGGTCCCACG	CTGCTGGACG	CGCTCGACAT	500
	GCTGGAGCCG	CCGGTGCGCC	CGGTGGACAA	GCCGCTGCGC	CTGCCCCTGC	550
40	AGGACGTGTA	CAAGATCGGC	GGTATCGGGA	CGGTGCCCGT	GGGGCGCGTG	600
	GAGACCGGCA	TCATGAAGCC	GGGCGACGTG	GTGACGTTCG	CGCCCGCCAA	650
	CGTGACGACT	GAGGTGAAGT	CGATCGAGAT	GCACCACGAG	CAGCTGGCGG	700
	AGGCGCAGCC	CGGCGACAAC	GTCGGCTTCA	ACGTGAAGAA	CGTGTCGGTG	750
	AAGGACATCC	GCCGTGGTAA	CGTGTGCGGC	AACTCGAAGA	ACGACCCGCC	800
45	GAAGGAGGCG	GCCGACTTCA	CGGCGCAGGT	GATCGTGCTG	AACCACCCCG	850
	GCCAGATCAG	CAACGGCTAC	GCGCCGGTGC	TGGACTGCCA	CACGAGCCAC	900
	ATTGCGTGCC	GCTTCGCGGA	AATCGAGTCC	AAGATCGACC	GCCGCTCCGG	950
	CAAGGAGCTG	GAGAAGAACC	CCAAGGCGAT	CAAGTCTGGC	GATGCCGCGA	1000
	TCGTGAAGAT	GGTGCCGCAG	AAGCCGATGT	GCGTGGAGGT	GTTCAACGAC	1050
50	TACGCGCCGC	TGGGCCGCTT	TGCCGTGCGC	GACATGCGCC	AAACCGTTGC	1100
	CGTCGG					1106

55 2) INFORMATION FOR SEQ ID NO: 517

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1099 bases
 - (B) TYPE: Nucleic acid
- 60 (C) STRANDEDNESS: Double

(D) TOPOLOGY: Linear

- (ii) MOLECULE TYPE: Genomic DNA
- 5 (vi)ORIGINAL SOURCE:
 - (A) ORGANISM: Leishmania donovani
 - (B) STRAIN: ATCC 50212
- (xi)SEQUENCE DESCRIPTION: SEQ ID NO: 517

T O						
	TACGCGTGGG	TGCTCGACAA	GCTGAAGGCG	GAGCGCGAGC	GCGGCATCAC	50
	GATCGACATT	GCGCTGTGGA	AGTTCGAGTC	GCCCAAGTCC	GTGTTCACGA	100
	TCATCGATGC	GCCCGGCCAC	CGCGACTTCA	TCAAGAACAT	GATCACGGGC	150
	ACGTCGCAGG	CGGACGCCGC	CATCCTGATG	ATCGACTCGA	CGCATGGTGG	200
15	CTTCGAGGCT	GGCATCTCGA	AGGACGCCA	GACCCGCGAG	CACGCGCTGC	250
	TTGCCTTCAC	GCTTGGCGTG	AAGCAGATGG	TGGTGTGCTG	CAACAAGATG	300
	GACGACAAGA	CCGTGACGTA	CGCGCAGTCG	CGCTACGATG	AGATCAGCAA	350
	GGAGGTGGGC	GCGTACCTGA	AGCGCGTGGG	CTACAACCCG	GAGAAGGTGC	400
	GCTTCATCCC	GATCTCGGGC	TGGCAGGGCG	ACAACATGAT	CGAGAGGTCG	450
20	GACAACATGC	CGTGGTACAA	GGGTCCCACG	CTGCTGGACG	CGCTCGACAT	500
	GCTGGAGCCG	CCGGTGCGCC	CGGTGGACAA	GCCGCTGCGC	CTGCCCCTGC	550
	AGGACGTGTA	CAAGATCGGC	GGTATCGGGA	CTGTGCCCGT	GGGCCGCGTG	600
	GAGACCGGCA	TCATGAAGCC	GGGCGACGTG	GTGACGTTCG	CGCCCGCCAA	650
	CGTGACGACT	GAGGTGAAGT	CGATCGAGAT	GCACCACGAG	CAGCTGGCGG	700
25	AGGCGCAGCC	CGGCGACAAC	GTCGGCTTCA	ACGTGAAGAA	CGTGTCGGTG	750
	AAGGACATCC	GCCGTGGCAA	CGTGTGCGGC	AACTCGAAGA	ACGACCCGCC	800
	GAAGGAGGCG	GCCGACTTCA	CGGCGCAGGT	GATCGTGCTG	AACCACCCCG	850
	GCCAGATCAG	CAACGGCTAC	GCGCCGGTGC	TGGACTGCCA	CACGAGCCAC	900
	ATTGCGTGCC	GCTTCGCGGA	AATCGAGTCC	AAGATCGACC	GCCGCTCCGG	950
30	CAAGGAGCTG	GAGAAGAACC	CCAAGGCGAT	CAAGTCTGGC	GATGCCGCGA	1000
	TCGTGAAGAT	GGTGCCGCAG	AAGCCGATGT	GCGTGGAGGT	GTTCAACGAC	1050
	TACGCGCCGC	TGGGCCGCTT	TGCCGTGCGC	GACATGCGCC	AAACCGTTG	1099

35

40

- 2) INFORMATION FOR SEQ ID NO: 518
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1098 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: Genomic DNA

- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Leishmania infantum
 - (B) STRAIN: MOU
- 50 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 518

	TACGCGTGGG	TGCTCGACAA	GCTGAAGGCG	GAGCGCGAGC	GCGGCATCAC	50
	GATCGACATT	GCGCTGTGGA	AGTTCGAGTC	GCCCAAGTCC	GTGTTCACGA	100
	TCATCGATGC	GCCCGGCCAC	CGCGACTTCA	TCAAGAACAT	GATCACGGGC	150
55	ACGTCGCAGG	CGGACGCCGC	CATCCTGATG	ATCGACTCGA	CGCATGGTGG	200
	CTTCGAGGCT	GGCATCTCGA	AGGACGGCCA	GACCCGCGAG	CACGCGCTGC	250
	TTGCCTTCAC	GCTTGGCGTG	AAGCAGATGG	TGGTGTGCTG	CAACAAGATG	300
	GACGACAAGA	CCGTGACGTA	CGCGCAGTCG	CGCTACGATG	AGATCAGCAA	350
	GGAGGTGGGC	GCGTACCTGA	AGCGCGTGGG	CTACAACCCG	GAGAAGGTGC	400
60	GCTTCATCCC	GATCTCGGGC	TGGCAGGGCG	ACAACATGAT	CGAGAGGTCG	450

WO 01/23604	PCT/CA00/01150
W O 01/25007	1 C1/CA00/01130

	GACAACATGC	CGTGGTACAA	GGGTCCCACG	CTGCTGGACG	CGCTCGACAT	50 / 0
	GCTGGAGCCG	CCGGTGCGCC	CGGTGGACAA	GCCGCTGCGC	CTGCCCCTGC	5 5 0
	AGGACGTGTA	CAAGATCGGC	GGTATCGGGA	CTGTGCCCGT	GGGCCGCGTG	600
	GAGACCGGCA	TCATGAAGCC	GGGCGACGTG	GTGACGTTCG	CGCCCGCCAA	650
5	CGTGACGACT	GAGGTGAAGT	CGATCGAGAT	GCACCACGAG	CAGCTGGCGG	700
	AGGCGCAGCC	CGGCGACAAC	GTCGGCTTCA	ACGTGAAGAA	CGTGTCGGTG	750
		GCCGTGGCAA				800
		GCCGACTTCA				850
	GCCAGATCAG	CAACGGCTAC	GCGCCGGTGC	TGGACTGCCA	CACGAGCCAC	900
10	ATTGCGTGCC	GCTTCGCGGA	AATCGAGTCC	AAGATCGACC	GCCGCTCCGG	950
	CAAGGAGCTG	GAGAAGAACC	CCAAGGCGAT	CAAGTCTGGC	GATGCCGCGA	1000
	TCGTGAAGAT	GGTGCCGCAG	AAGCCGATGT	GCGTGGAGGT	GTTCAACGAC	1050
	TACGCGCCGC	TGGGCCGCTT	TGCCGTGCGC	GACATGCGCC	AAACCGTT	1098

15

20

30

- 2) INFORMATION FOR SEQ ID NO: 519
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1071 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
- 25 (ii) MOLECULE TYPE: Genomic DNA
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Leishmania enriettii
 - (B) STRAIN: ATCC 50120

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 519

	CTCGACAAGC	TGAAGGCGGA	GCGCGAGCGC	GGCATCACGA	TCGACATTGC	50
	GCTGTGGAAG	TTCGAGTCGC	CCAAGTCTGT	GTTCACGATC	ATCGATGCGC	100
35	CCGGCCACCG	CGACTTCATC	AAGAACATGA	TCACCGGCAC	GTCGCAGGCC	150
	GACGCCGCCA	TCCTGATGAT	CGACTCGACC	CAGGGCGGCT	TCGAGGCTGG	200
	CATCTCGAAG	GACGGCCAGA	CCCGCGAGCA	CGCGCTGCTC	GCCTTCACGC	250
	TTGGTGTGAA	GCAGATGGTG	GTGTGCTGCA	ACAAGATGGA	CGACAAGACG	300
	GTGCAGTACT	CGCAGGCGCG	CTACGAGGAG	ATCAGCAAGG	AGGTGGGCGC	350
40	GTACCTGAAG	CGCGTCGGCT	ACAACCCGGA	GAAGGTGCGC	TTCATCCCGA	400
	TCTCGGGCTG	GCAGGGCGAC	AACATGATCG	ACAAGTCGGA	CAGCATGCCG	450
	TGGTACAAGG	GGCCCACGCT	GCTGGACGCG	CTCGACATGC	TGGAGGCGCC	500
	GGTGCGCCCG	GTGGACAAGC	CGCTGCGCCT	GCCCCTGCAG	GACGTGTACA	550
	AGATCGGCGG	TATCGGGACG	GTGCCCGTGG	GCCGCGTGGA	GACCGGCATC	600
45	ATGAAGCCTG	GCGACGTGGT	GACGTTTGCG	CCCGCCAACG	TGACGACGGA	650
	GGTGAAGTCG	ATCGAGATGC	ACCACGAGCA	GCTGGCGGAG	GCGGTGCCCG	700
	GCGACAACGT	CGGCTTCAAC	GTGAAGAACG	TGTCGGTGAA	GGACATCCGC	750
•	CGTGGTAACG	TGTGCGGCAA	CTCGAAGAAC	GACCCGCCGA	AGGAGGCGGC	800
	CGACTTCACG	GCGCAGGTGA	TCGTGCTGAA	CCACCCTGGC	CAGATCAGCA	850
50	ACGGCTACGC	GCCGGTGCTG	GACTGCCACA	CGAGCCACAT	CGCGTGCCGC	900
	TTCGCGGATA	TCGAGTCCAA	GATCGACCGC	CGCTCTGGCA	AGGAGCTGGA	950
	GAAGAACCCC	AAGGCGATCA	AGTCCGGCGA	TGCGGCCATC	GTGAAGATGG	1000
	TGCCGCAGAA	GCCGATGTGC	GTGGAGGTGT	TCAACGACTA	CCCGCCGCTG	1050
	GGGCGCTTCG	CTGTGCGCGA	C			1071
55						

- 2) INFORMATION FOR SEQ ID NO: 520
- 60 (i) SEQUENCE CHARACTERISTICS:

```
(A)
     LENGTH: 1071 bases
(B)
     TYPE: Nucleic acid
```

- (C) STRANDEDNESS: Double

(D) TOPOLOGY: Linear

5

(ii) MOLECULE TYPE: Genomic DNA

(vi) ORIGINAL SOURCE:

- (A) ORGANISM: Leishmania gerbilli
- 10 (B) STRAIN: ATCC 50121

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 520

	CTCGACAAGC	TGAAGGCGGA	GCGCGAGCGC	GGCATCACGA	TCGACATTGC	50
15	GCTGTGGAAG	TTCGAGTCGC	CCAAGTCCGT	GTTCACGATC	ATCGATGCGC	100
	CCGGCCACCG	CGACTTCATC	AAGAACATGA	TCACGGGCAC	GTCGCAGGCG	150
	GACGCCGCCA	TCCTGATGAT	CGACTCGACG	CATGGTGGCT	TCGAGGCTGG	200
	CATCTCGAAG	GACGGCCAGA	CCCGCGAGCA	CGCGCTGCTT	GCCTTCACTC	250
	TTGGCGTGAA	GCAGATGGTG	GTGTGCTGCA	ACAAGATGGA	CGACAAGACG	300
20	GTGACGTACG	CGCAGTCGCG	CTACGATGAG	ATCAGCAAGG	AGGTGGGCGC	350
	GTACCTGAAG	CGCGTGGGCT	ACAACCCGGA	GAAGGTGCGC	TTCATCCCGA	400
	TCTCGGGCTG	GCAGGGCGAC	AACATGATCG	AGAAGTCGGA	CAACATGCCG	450
	TGGTACAAGG	GTCCCACGCT	GCTGGACGCG	CTCGACATGC	TGGAGCCGCC	500
	GGTGCGCCCG	GTGGACAAGC	CGCTGCGCCT	GCCCCTGCAG	GACGTGTACA	550
25	AGATCGGCGG	TATCGGGACG	GTGCCCGTGG	GCCGCGTGGA	GACCGGCATC	600
	ATGAAGCCGG	GCGACGTGGT	GACGTTCGCG	CCCGCCAACG	TGACGACTGA	650
	GGTGAAGTCG	ATCGAGATGC	ACCACGAGCA	GCTGGCGGAG	GCGCAGCCCG	700
	GCGACAACGT	CGGCTTCAAC	GTGAAGAACG	TGTCGGTGAA	GGACATCCGC	750
	CGTGGTAACG	TGTGCGGCAA	CTCGAAGAAC	GACCCGCCGA	AGGAGGCGGC	800
30	CGACTTCACG	GCGCAGGTGA	TCGTGCTGAA	CCACCCGGC	CAGATCAGCA	850
•	ACGGCTATGC	GCCGGTGCTG	GACTGCCACA	CGAGCCACAT	TGCGTGCCGC	900
	TTCGCGGAAA	TCGAGTCCAA	GATCGACCGC	CGCTCCGGCA	AGGAGCTGGA	950
	GAAGAACCCC	AAGGCGATCA	AGTCTGGCGA	TGCCGCGATC	GTGAAGATGG	1000
	TGCCGCAGAA	GCCGATGTGC	GTGGAGGTGT	TCAACGACTA	CGCGCCGCTG	1050
35	GGCCGCTTTG	CCGTGCGCGA	C			1071

2) INFORMATION FOR SEQ ID NO: 521

40

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1114 bases
 - TYPE: Nucleic acid (B)
 - STRANDEDNESS: Double (C)
- 45 (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: Genomic DNA

(vi)ORIGINAL SOURCE:

- 50 (A) ORGANISM: Leishmania hertigi
 - (B) STRAIN: ATCC 50125

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 521

55	TCGTTCAAGT	ACGCGTGGGT	GCTCGACAAG	CTGAAGGCGG	AGCGCGAGCG	50
	CGGTATCACG	ATCGACATTG	CGCTGTGGAA	GTTCGAGTCG	CCCAAGTCGG	100
	TGTTCACGAT	CATCGATGCG	CCCGGCCACC	GCGACTTCAT	CAAGAACATG	150
	ATCACCGGCA	CGTCGCAGGC	GGATGCTGCC	ATTCTGATGA	TCGATTCGAC	200
	GCAGGGTGGC	TTCGAGGCTG	GCATCTCGAA	GGACGGCCAG	ACGCGCGAGC	250
60.	ACGCGCTGCT	GGCCTTCACG	CTGGGCGTGA	AGCAGATGGT	тстстсстсс	300

PCT/CA00/01150 WO 01/23604

	AACAAGATGG	ACGACAAGAC	GGTGCAGTAC	GCGCAGGCGC	GCTACGAGGA	359/
	GATCAGCAAG	GAGGTGGGCG	CGTACCTGAA	GCGCGTGGGC	TACAACCCGG	400
	AGAAGGTGCG	CTTCATCCCG	ATCTCGGGCT	GGCAGGGCGA	CAACATGATC	450
	GAGAAGTCCG	ACAACATGTC	GTGGTACAAG	GGTCCCACGC	TGCTGGAGGC	500
5	GCTGGACATG	CTGGAGGCGC	CGGTGCGCCC	GGTGGACAAG	CCGCTGCGCC	550
	TGCCCCTGCA	GGACGTGTAC	AAGATCGGCG	GCATTGGCAC	GGTGCCGGTG	600
	GGCCGTGTGG	AGACCGGCAT	CATGAAGCCC	GGCGACGTGG	TGACGTTCGC	650
	GCCCGCCAAC	GTGACGACGG	AGGTGAAGTC	GATCGAGATG	CACCACGAGC	700
	AGCTGCAGGA	GGCTGTGCCC	GGCGACAACG	TCGGCTTCAA	CGTGAAGAAC	750
10	GTGTCGGTGA	AGGACATCCG	CCGTGGTAAC	GTGTGTGGCA	ACTCGAAGAA	800
	CGACCCGCCG	AAGGAGGCGG	CTGACTTCAC	GGCGCAGGTG	ATCGTGCTGA	850
	ACCACCCCGG	CCAGATCAGC	AACGGCTACG	CGCCGGTGCT	GGACTGCCAC	900
	ACCAGCCACA	TCGCGTGCCG	CTTCGCGGAC	ATCGAGTCGA	AGATCGACCG	950
	CCGCTCCGGC	AAGGAGCTGG	AGAAGAACCC	CAAGTCCATC	AAGTCCGGCG	1000
15	ACGCCGCCAT	CGTGAAGATG	GTGCCGCAGA	AGCCGATGTG	CGTGGAGGTG	1050
	TTCAACGACT	ACCCGCCGCT	GGGCCGCTTT	GCGGTGCGCG	ACATGCGCCA	1100
	AACCGTTGCC	GTCG				1114

20

25

2) INFORMATION FOR SEQ ID NO: 522

- (i) SEQUENCE CHARACTERISTICS:
 - LENGTH: 1106 bases
 - (B) TYPE: Nucleic acid
 - STRANDEDNESS: Double (C)
 - (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: Genomic DNA

30

(vi)ORIGINAL SOURCE:

- ORGANISM: Leishmania major (A)
- (B) STRAIN: ATCC 50122
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 522 35

	TACGCGTGGG	TGCTCGACAA	GCTGAAGGCG	GAGCGCGAGC	GCGGCATCAC	50
	GATCGACATT	GCGCTGTGGA	AGTTCGAGTC	GCCCAAGTCC	GTGTTCACGA	100
	TCATCGATGC	GCCCGGCCAC	CGCGACTTCA	TCAAGAACAT	GATCACGGGC	150
40	ACGTCGCAGG	CGGACGCCGC	CATTCTGATG	ATCGACTCGA	CGCATGGCGG	200
	CTTCGAGGCT	GGCATCTCGA	AGGACGGCCA	GACCCGCGAG	CACGCGCTGC	250
	TTGCCTTCAC	TCTTGGCGTG	AAGCAGATGG	TGGTGTGCTG	CAACAAGATG	300
	GACGACAAGA	CGGTGACGTA	CGCGCAGTCR	CGCTACGATG	AGATCAGCAA	350
	GGAGGTGGGC	GCGTACCTGA	AGCGCGTGGG	CTACAACCCG	GAGAAGGTGC	400
45	GCTTCATCCC	GATCTCGGGC	TGGCAGGGCG	ACAACATGAT	CGAGAAGTCG	450
	GACAACATGC	CGTGGTACAA	GGGTCCCACG	CTGCTGGACG	CGCTCGACAT	500
	GCTGGAGCCG	CCGGTGCGCC	CGGTGGACAA	GCCGCTGCGC	CTGCCCCTGC	550
	AGGACGTGTA	CAAGATCGGC	GGTATCGGGA	CGGTGCCCGT	GGGCCGCGTG	600
	GAGACCGGCA	TCATGAAGCC	GGGCGACGTG	GTGACGTTCG	CGCCCGCCAA	650
50	CGTGACGACT	GAGGTGAAGT	CGATCGAGAT	GCACCACGAG	CAGCTGGCGG	700
	AGGCGCAGCC	CGGCGACAAC	GTCGGCTTCA	ACGTGAAGAA	CGTGTCGGTG	750
	AAGGACATCC	GCCGTGGTAA	CGTGTGCGGC	AACTCGAAGA	ACGACCCGCC	800
	GAAGGAGGCG	GCCGACTTCA	CGGCGCAGGT	GATCGTGCTG	AACCACCCCG	850
	GCCAGATCAG	CAACGGCTAT	GCGCCGGTGC	TGGACTGCCA	CACGAGCCAC	900
55	ATTGCGTGCC	GCTTCGCGGA	AATCGAGTCC	AAGATCGACC	GCCGCTCCGG	950
	CAAGGAGCTG	GAGAAGAACC	CCAAGGCGAT	CAAGTCTGGC	GATGCCGCGA	1000
	TCGTGAAGAT	GGTGCCGCAG	AAGCCGATGT	GCGTGGAGGT	GTTCAACGAC	1050
	TACGCGCCGC	TGGGCCGCTT	TGCCGTGCGC	GACATGCGCC	AAACCGTTGC	1100
	CGTCGG					1106

```
2) INFORMATION FOR SEQ ID NO: 523
 5
        (i) SEQUENCE CHARACTERISTICS:
            (A)
                 LENGTH: 1105 bases
            (B)
                  TYPE: Nucleic acid
            (C)
                  STRANDEDNESS: Double
            (D)
                  TOPOLOGY: Linear
10
       (ii) MOLECULE TYPE: Genomic DNA
       (vi)ORIGINAL SOURCE:
            (A)
                ORGANISM: Leishmania amazonensis
15
            (B)
                  STRAIN: ATCC 50131
       (xi) SEQUENCE DESCRIPTION: SEO ID NO: 523
     TACGCGTGGG TGCTCGACAA GCTGAAGGCG GAGCGCGAGC GCGGCATCAC
                                                                      50
20
     GATCGACATT GCGCTGTGGA AGTTCGAGTC GCCGAAGTCC GTGTTCACGA
                                                                      100
     TCATCGATGC GCCCGGCCAC CGCGACTTCA TCAAGAACAT GATCACGGGC
ACGTCGCAGG CGGACGCGGC CATCCTGATG ATCGACTCGA CGCATGGTGG
                                                                      150
                                                                      200
     CTTCGAGGCT GGCATCTCGA AGGACGGCCA GACCCGCGAG CACGCGCTGC
                                                                      250
     TTGCCTTCAC TCTTGGCGTG AAGCAGATGG TGGTGTGCTG CAACAAGATG
                                                                      300
     GACGACAAGA CGGTGATGTA CGCGCAGTCG CGCTACGATG AGATCAGCAA
25
                                                                      350
     GGAGGTGAGC GCGTACCTGA AGCGCGTGGG CTACAACCCG GAGAAGGTGC
                                                                      400
     GCTTCATCCC GATCTCGGGG TGGCAGGGCG ACAACATGAT CGACAAGTCG
                                                                      450
     GACAACATGC CGTGGTACAA GGGTCCCACG CTGCTGGACG CGCTCGACAT
                                                                      500
     GCTGGAGCCG CCGGTGCGCC CGGTGGACAA GCCGCTGCGC CTGCCCCTGC
                                                                      550
     AGGACGTGTA CAAGATCGGC GGTATCGGGA CGGTGCCCGT GGGCCGCGTG
30
                                                                      600
     GAGACCGGGA TCATGAAGCC GGGCGACGTG GTGACGTTCG CGCCCGCCAA
                                                                      650
     CGTGACGACT GAGGTGAAGT CGATCGAGAT GCACCACGAG CAGCTGGCGG
                                                                      700
     AGGCGCAGCC CGGCGACAAC GTCGGCTTCA ACGTGAAGAA CGTGTCGGTG
                                                                      750
     AAGGACATCC GCCGTGGTAA CGTGTGCGGC AACTCGAAGA ACGACCCGCC
                                                                      800
    GAAGGAGGC GCCGACTTCA CGGCGCAGGT GATCGTGCTG AACCACCCCG
GCCAGATCAG CAACGGCTAC GCGCCGGTGC TGGACTGCCA CACGAGCCAC
35
                                                                     850
                                                                     900
     ATCGCGTGCC GCTTCGCGGA GATCGAGTCC AAGATCGACC GCCGCTCCGG
                                                                      950
     CAAGGAGCTG GAGAAGAACC CCAAGGCGAT CAAGTCTGGC GACGCCGCGA
                                                                    1000
     TCGTGAAGAT GGTGCCGCAG AAGCCGATGT GCGTGGAGGT GTTCAACGAC
                                                                    1050
     TACGCGCCGC TGGGCCGCTT TGCCGTGCGC GACATGCGCC AAACCGTTGC
40
                                                                     1100
     CGTCG
                                                                     1105
45
     2) INFORMATION FOR SEQ ID NO: 524
        (i) SEQUENCE CHARACTERISTICS:
           (A)
                 LENGTH: 1098 bases
                 TYPE: Nucleic acid
           (B)
                 STRANDEDNESS: Double
50
           (C)
                 TOPOLOGY: Linear
       (ii) MOLECULE TYPE: Genomic DNA
       (vi)ORIGINAL SOURCE:
55
                 ORGANISM: Leishmania mexicana
           (A)
                 STRAIN: ATCC 50156
           (B)
       (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 524
```

	TACGCGTGGG	TGCTCGACAA	GCTGAAGGCG	GAGCGCGAGC	GCGGCATCAC	50
	GATCGACATT	GCGCTGTGGA	AGTTCGAGTC	GCCGAAGTCC	GTGTTCACGA	100 '
	TCATCGATGC	GCCCGGCCAC	CGCGACTTCA	TCAAGAACAT	GATCACGGGC	150
	ACGTCGCAGG	CGGACGCGGC	CATCCTGATG	ATCGACTCGA	CGCATGGTGG	200
5	CTTCGAGGCT	GGCATCTCGA	AGGACGGCCA	GACCCGCGAG	CACGCGCTGC	250
	TTGCCTTCAC	TCTTGGCGTG	AAGCAGATGG	TGGTGTGCTG	CAACAAGATG	300
	GACGACAAGA	CGGTGATGTA	CGCGCAGTCG	CGCTACGATG	AGATCAGCAA	350
	GGAGGTGAGC	GCGTACCTGA	AGCGCGTGGG	CTACAACCCG	GAGAAGGTGC	400
	GCTTCATCCC	GATCTCGGGG	TGGCAGGGCG	ACAACATGAT	CGACAAGTCG	450
10	GACAACATGC	CGTGGTACAA	GGGTCCCACG	CTGCTGGACG	CGCTCGACAT	500
	GCTGGAGCCG	CCGGTGCGCC	CGGTGGACAA	GCCGCTGCGC	CTGCCCCTGC	550
	AGGACGTGTA	CAAGATCGGC	GGTATCGGGA	CGGTGCCCGT	GGGCCGCGTG	600
	GAGACCGGGA	TCATGAAGCC	GGGCGACGTG	GTGACGTTCG	CGCCCGCCAA	650
	CGTGACGACT	GAGGTGAAGT	CGATCGAGAT	GCACCACGAG	CAGCTGGCGG	700
15	AGGCGCAGCC	CGGCGACAAC	GTCGGCTTCA	ACGTGAAGAA	CGTGTCGGTG	750
	AAGGACATCC	GCCGTGGTAA	CGTGTGCGGC	AACTCGAAGA	ACGACCCGCC	800
	GAAGGAGGCG	GCCGACTTCA	CGGCGCAGGT	GATCGTGCTG	AACCACCCCG	850
	GCCAGATCAG	CAACGGCTAC	GCGCCGGTGC	TGGACTGCCA	CACGAGCCAC	900
	ATCGCGTGCC	GCTTCGCGGA	GATCGAGTCC	AAGATCGACC	GCCGCTCCGG	950
20	CAAGGAGCTG	GAGAAGAACC	CCAAGGCGAT	CAAGTCTGGC	GACGCCGCGA	1000
	TCGTGAAGAT	GGTGCCGCAG	AAGCCGATGT	GCGTGGAGGT	GTTCAACGAC	1050
	TACGCGCCGC	TGGGCCGCTT	TGCCGTGCGC	GACATGCGCC	AAACCGTT	1098

25

30

- 2) INFORMATION FOR SEQ ID NO: 525
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1081 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: Genomic DNA

- (vi)ORIGINAL SOURCE:
 - (A) ORGANISM: Leishmania tarentolae
 - (B) STRAIN: II WT
- 40 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 525

	GCTGAAGGCG	GAGCGCGAGC	GCGGCATCAC	GATCGACATT	GCGCTGTGGA	50
	AGTTCGAGTC	GCCCAAGTCG	GTGTTCACGA	TCATCGATGC	GCCCGGCCAC	100
	CGCGACTTCA	TCAAGAACAT	GATCACGGGC	ACGTCGCAGG	CGGACGCGGC	150
45	CATCCTGATG	ATCGACTCGA	CGCACGGTGG	GTTCGAGGCT	GGCATCTCGA	200
	AGGACGGGCA	GACGCGCGAG	CACGCGCTGC	TTGCCTTCAC	TCTTGGCGTG	250
	AAGCAGATGG	TTGTGTGCTG	CAACAAGATG	GACGACAAGA	CGGTGATGTA	300
	CGCGCAGTCG	CGCTACGATG	AGATCAGCAA	GGAGGTGGGC		350
		.				
	AGCGCGTGGG	CTACAACCCG	GAGAAGGTGC	GCTTCATCCC	GATCTCGGGC	400
50	TGGCAGGGCG	ACAACATGAT	CGAGAAGTCG	GACAACATGC	CGTGGTACAA	450
,	GGGTCCCACG	CTGCTGGACG	CGCTCGACAT	GCTGGAGGCG	CCGGTGCGCC	500
	CGGTGGACAA	GCCGCTGCGC	CTGCCCCTGC	AGGACGTGTA	CAAGATCGGC	550
	GGCATCGGCA	CGGTGCCCGT	GGGCCGCGTG	GAGACCGGCA	TCATGAAGCC	600
	GGGCGACGTG	GTGACGTTCG	CGCCCGCGAA	CGTGACGACG	GAGGTGAAGT	650
55	CGATCGAGAT	GCACCACGAG	CAGCTGGCGG	AGGCGCAGCC	CGGCGACAAC	700
	GTCGGCTTCA	ACGTGAAGAA	CGTGTCGGTG	AAGGACATCC	GCCGTGGGAA	750
	CGTGTGCGGT	AACTCGAAGA	ACGACCCGCC	GAAGGAGGCC	GCCGACTTCA	800
	CGGCGCAGGT	GATCGTGCTG	AACCACCCCG	GCCAGATCAG	CAACGGCTAC	850
	GCGCCGGTGC	TGGACTGCCA	CACGAGCCAC	ATCGCGTGCC	GGTTCGCGGA	900
60	CATCGAGTCC	AAGATTGACC	GCCGCTCCGG	CAAGGAGCTG	GAGAAGAACC	950

CCAAGGCGAT CAAGTCCGGC GATGCCGCGA TCGTGAAGAT GGTGCCGCAG 1000 AAGCCGATGT GCGTGGAGAT GTTCAACGAC TACGCGCCGC TTGGCCGCTT 1050 TGCTGTGCGC GACATGCGCC AAACCGTTGC C 1081

5

10

- 2) INFORMATION FOR SEQ ID NO: 526
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1102 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
- 15 (ii) MOLECULE TYPE: Genomic DNA
 - (vi)ORIGINAL SOURCE:
 - (A) ORGANISM: Leishmania tropica
 - (B) STRAIN: ATCC 50129

20

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 526

	AAATACGCGT	GGGTGCTCGA	CAAGCTGAAG	GCGGAGCGCG	AGCGCGGCAT	50
	CACGATCGAC	ATTGCGCTGT	GGAAGTTCGA	GTCGCCCAAG	TCCGTGTTCA	100
25	CGATCATCGA	TGCGCCCGGC	CACCGCGACT	TCATCAAGAA	CATGATCACG	150
	GGCACGTCGC	AGGCGGACGC	CGCCATCCTG	ATGATCGACT	CGACGCATGG	200
	TGGCTTCGAG	GCTGGCATCT	CGAAGGACGG	CCAGACCCGC	GAGCACGCGC	250
	TGCTTGCCTT	CACKCTTGGC	GTGAAGCAGA	TGGTGGTGTG	CTGCAACAAG	300
	ATGGACGACA	AGACGGTGAC	GTACGCGCAG	TCGCGCTACG	ATGAGATCAG	350
30	CAAGGAGGTG	GGCGCGTACC	TGAAGCGCGT	GGGCTACAAC	CCGGAGAAGG	400
	TGCGCTTCAT	CCCGATCTCG	GGCTGGCAGG	GCGACAACAT	GATCGAGAAG	450
	TCGGACAACA	TGCCGTGGTA	CAAGGGTCCC	ACGCTGCTGG	ACGCGCTCGA	500
	CATGCTGGAG	CCGCCGGTGC	GCCCGGTGGA	CAAGCCGCTG	CGCCTGCCCC	550
	TGCAGGACGT	GTACAAGATC	GGCGGTATCG	GGACGGTGCC	CGTGGGGCGC	600
35	GTGGAGACCG	GCATCATGAA	GCCGGGCGAC	GTGGTGACGT	TCGCGCCCGC	650
	CAACGTGACG	ACTGAGGTGA	AGTCGATCGA	GATGCACCAC	GAGCAGCTGG	700
	CGGAGGCGCA	GCCCGGCGAC	AACGTCGGCT	TCAACGTGAA	GAACGTGTCG	750
	GTGAAGGACA	TCCGCCGTGG	TAACGTGTGC	GGCAACTCGA	AGAACGACCC	800
	GCCGAAGGAG	GCGGCCGACT	TCACGGCGCA	GGTGATCGTG	CTGAACCACC	850
40	CCGGCCAGAT	CAGCAACGGC	TACGCGCCGG	TGCTGGACTG	CCACACGAGC	900
	CACATTGCGT	GCCGCTTCGC	GGAAATCGAG	TCCAAGATCG	ACCGCCGCTC	950
	CGGCAAGGAG	CTGGAGAAGA	ACCCCAAGGC	GATCAAGTCT	GGCGATGCCG	1000
	CGATCGTGAA	GATGGTGCCG	CAGAAGCCGA	TGTGCGTGGA	GGTGTTCAAC	1050
	GACTACGCGC	CGCTGGGCCG	CTTTGCCGTG	CGCGACATGC	GCCAAACCGT	1100
45	TG				•	1102

2) INFORMATION FOR SEQ ID NO: 527

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1105 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
- 55 (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: Genomic DNA
 - (vi) ORIGINAL SOURCE:
- 60 (A) ORGANISM: Neospora caninum

(B) STRAIN: Suarez-4

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 527

5	GGACRAACTT	AAAGCTGAAC	GTGAGCGTGG	TATCACCATT	GATATCTCCC	50
	TGTGGAAATT	TGAGACCAGC	AAGTACTATG	TTACCATCAT	TGATGCCCCA	100
	GGACACAGAG	ACTTCATCAA	AAACATGATT	ACAGGCACAT	CCCAGGCTGA	150
	CTGTGCTGTC	CTGATTGTTG	CTGCTGGTGT	TGGTGAATTT	GAAGCCGGTA	200
	TCTCCAAGAA	CGGGCAGACC	CGTGAGCATG	CCCTTNTGGC	TTACACCCTG	250
10	GGTGTGAAAC	AACTAATTGT	TGGCGTTAAC	AAAAKGGATT	CCACTGAGCC	300
	ACCCTATAGC	CARAAGAGAT	ACGARGAAAT	TGTTAAGGAA	GTCAGCMCCT	350
	AYNTTAAAAA	AATTGGYTAC	AACCCCGACA	CAGTANCATT	TGKGCCAATT	400
	TNTGGCTGGA	ATGGTGACAA	CATGCTGGAN	CCAAGTGCTA	ATATGCCATG	450
	GTTCAAGGGA	TGGAAAGTCM	CCCGTAAGGA	CGGCAATGCC	AGKGGAACCM	500
15	CCCTGCTTGA	AGCTYTGGAT	TGCATTYTGC	CACCAAYTTG	CCCAACTGAC	550
	AAACCCTTGC	GTTTGCCTYT	CCAGGATGTC	TATAAAATTG	GKGGTATTGG	600
	TACTGTCCCT	GTGGGTCGTG	TGGAGACTGG	TGTTCTCAAA	CCTGGCATGG	650
	TGGTCACCTT	TGCTCCAGTC	AATGTAACAA	CTGAAGTGAA	GTCTGTAGAA	700
	ATGCACCATG	AAGCATTGAG	TGAAGCCCTT	CCTGGGGACA	ATGTGGGCTT	750
20	CAATGTCAAG	AACGTGTCTG	TCAAAGATGT	CCGTCGTGGC	AATGTGGCTG	800
	GTGACAGCAA	AAATGATCCA	CCCATGGAAG	CTGCTGGCTT	CACAGCTCAG	850
	GTGATTATTT	TGAACCATCC	AGGCCAAATC	AGTGCTGGAT	ATGCACCTGT	900
	GCTGGATTGT	CACACAGCTC	ACATTGCTTG	CAAGTTTGCT	GAGCTGAAGG	950
	AGAAGATTGA	TCGTCGTTCT	GGGAAAAAGC	TGGAAGATGG	CCCTAAATTC	1000
25	TTGAAATCTG	GTGACGCTGC	CATCGTTGAT	ATGGTTCCTG	GCAAGCCCAT	1050
	GTGTGTCGAG	AGCTTCTCTG	ATTATCCTCC	CCTGGGCCGT	TTTGCTGTGC	1100
	GTGAC					1105

30

2) INFORMATION FOR SEQ ID NO: 528

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 935 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: Genomic DNA

40

- (vi)ORIGINAL SOURCE:
 - (A) ORGANISM: Trichomonas vaginalis
 - (B) STRAIN: ATCC 30001
- 45 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 528

	GCACATCCCA	GGCTGATGCT	GCTATCCTTG	TCATCGACTC	CACACTCGGT	50
	GGYTTCGAAG	CCGGTATCGC	TGAACAAGGC	CAGACACGTG	AACACGCTCT	100
	TCTTGCCTTC	ACACTCGGCA	TCAAGCAGGT	CATTGTCGCC	GTCAACAAGA	150
50	TGGATGACAA	GACAGTCAAC	TACAACAAGG	CYCGTTTCGA	CGAAATCACA	200
		CACGCATCCT				250
	CCGCTTCGTC	CCAATCTCCG	GCTGGGCTGG	CGACAACATG	ACAGAGAAGT	300
	CTCCAAACAT	GCCATGGTAC	AATGGCCCAT	ACCTTCTTGA	AGCCCTCGAT	350
•	TCCCTTCAGC	CACCAAAGCG	CCCATTCGAC	AAGCCACTCC	GTCTTCCACT	400
55	CCAGGATGTC	TACAAGATCA	ACGGTATCGG	TACAGTTCCA	GTCGGCCGTG	450
		CACAATGAAG				500
		CTGAAGTTAA				550
	AGAGGCTCTT	CCAGGTGACA	ACATCGGCTT	CAACGTCAAG	AACGTTTCCA	600
		CAAGCGTGGC				650
60	CCAGTCGAAT	GCGCTTCCTT	CACAGCTCAR	ATGATCATCT	CCAACCACCC	700

	AGGCAAGATC	CACGCCGGCT	ACCAGCCAGT	TTTCGACTGC	CACACAGCTC	750 /
	ACATCGCCTG	CAAGTTCGAC	AAGCTCATCC	AGCGTATCGA	TCGTCGCCAC	800/
	GGCAAGAAGG	CTACAGAGAA	CCCAGAATAC	ATTCAGAAGG	ATGATGCCGC	85Ó
	TATCGTCGAG	GTTGTCCCAT	CCAAGCCACT	CGTCGTCGAG	TCCTTCCAGG	900
,	AGTACCCACC	ACTCGGCCGT	TTCGCCATCC	GTGAT		935

- 2) INFORMATION FOR SEQ ID NO: 529
- 10

5

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1065 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
- 15 (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: Genomic DNA
 - (vi) ORIGINAL SOURCE:
- 20 (A) ORGANISM: Trypanosoma brucei subsp. brucei
 - (B) STRAIN: EATRO795
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 529

25	AAGCTGAAGG	CTGAGCGCGA	ACGTGGTATC	ACGATCGACA	TTGCACTGTG	50
	GAAATTCGAG	TCACCCAAGT	CTGTCTTCAC	TATTATTGAT	GCTCCTGGGC	100
	ACCGTGACTT	CATCAAGAAC	ATGATCACCG	GCACATCGCA	AGCCGACGCA	150
	GCCATCCTCA	TCATTGCCTC	TGCGCAGGGT	GAGTTCGAGG	CTGGTATCTC	200
	CAAGGATGGA	CAGACCCGCG	AGCACGCGTT	GCTGGCCTTC	ACTTTGGGTG	250
30	TGAAGCAGAT	GGTTGTGTGC	TGCAACAAGA	TGGACGACAA	GACTGTGAAC	300
	TACGGACAGG	AGCGGTATGA	CGAGATTGTG	AAGGAGGTGT	CTGCTTACAT	350
	CAAGAAGGTT	GGGTACAACG	TGGAGAAGGT	GCGCTTCGTC	CCCATCTCCG	400
	GATGGCAGGG	CGACAACATG	ATTGAGAAAT	CCGAGAAGAT	GCCATGGTAC	450
	AAGGGTCCAA	CGCTCCTGGA	GGCACTAGAC	ATGCTGGAGC	CACCAGTGCG	500
35	TCCGAGCGAC	AAGCCCCTGC	GTCTGCCACT	GCAGGACGTG	TACAAGATCG	550
	GTGGTATTGG	CACCGTGCCC	GTTGGTCGTG	TGGAGACCGG	CGTGATGAAG	600
	CCTGGTGATG	TGGTGACGTT	TGCCCCCGCC	AACGTGACGA	CCGAGGTGAA	650
	ATCGATCGAG	ATGCACCACG	AGCAGCTCGC	TGAGGCGACC	CCCGGTGACA	700
	ACGTCGGCTT	TAACGTGAAG	AACGTTTCTG	TAAAGGACAT	CCGCCGTGGC	750
40	AACGTCTGCG	GTAACACCAA	GAACGACCCC	CCAAAGGAGG	CCGCCGACTT	800
	CACGGCACAG	GTGATCATCC	TGAACCACCC	CGGACAGATT	GGAAACGGTT	850
	ATGCGCCCGT	GCTGGACTGC	CACACATCGC	ACATTGCCTG	CAAGTTCGCG	900
	GAGATCGAGT	CGAAGATCGA	CCGTCGCTCT	GGCAAGGAGC	TGGAGAAGGC	950
	TCCCAAGTCG	ATCAAGTCTG	GCGACGCCGC	GATCGTGCGC	ATGGTGCCGC	1000
45	AGAAGCCTAT	GTGCGTGGAG	GTCTTCAACG	ACTACGCGCC	ACTCGGCCGC	1050
	TTTGCCGTGC	GTGAC				1065

- 50 2) INFORMATION FOR SEQ ID NO: 530
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1297 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: Genomic DNA
- 60 (vi)ORIGINAL SOURCE:

(A) ORGANISM: Crithidia rasciculata

(B) STRAIN: ATCC 11745

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 530

	TTCGCGGAGG	GCGTGCCGCC	GGTGCTGACG	GCGCTGGACG	TGACGGAGGA	50
	CCTCGGCCGC	GACGAGCCGC	TGACGCTGGA	GATTGTGCAG	CACTTGGACG	100
	CGAACACCGG	CCGCTGCATT	GCCATGCAGA	CGACGGATCT	GCTGAAGCTG	150
	AAGTCGAAGG	TTGTGTCGAC	GGGCGGCAAC	ATCTCCGTGC	CGGTTGGCCG	200
10	CGAGACGCTG	GGCCGCATCT	TCAACGTGCT	CGGCGACGCG	ATCGACCAGC	250
	GCGGTGTGGT	GGGCGAGAAG	ATGCGCATGC	CGATCCACGC	CGAGGCGCCG	300
	AAGCTGGCGG	ACCAGGCCGC	GGAGGACGCG	ATTCTGACGA	CCGGCATCAA	350
	GGTGATCGAC	CTGATTCTGC	CGTACTGCAA	GGGTGGCAAG	ATCGGGCTGT	400
	TCGGCGGTGC	TGGTGTGGC	AAGACTGTGA	TCATCATGGA	GCTGATCAAC	450
15	AACGTGGCCA	AGGGCCACGG	TGGTTTCTCC	GTGTTCGCCG	GCGTTGGCGA	500
	GCGCACCCGC	GAGGGCACGG	ATCTGTACCT	GGAGATGATG	CAGTCGAAGG	550
	TCATTGACCT	GAAGGGCGAG	TCGAAGTGCG	TGCTGGTGTA	CGGCCAGATG	600
	AACGAGCCCC	CGGGTGCGCG	TGCGCGTGTT	GCGCAGTCTG	CGCTGACGAT	650
	GGCGGAGTAC	TTCCGTGACG	TGGAGGGCCA	GAACGTGCTG	CTGTTCATCG	700
20	ACAACATCTT	CCGCTTCACC	CAGGCCAACT	CCGAGGTGTC	CGCCCTGCTG	750
	GGCCGCATTC	CCGCCGCCGT	GGGCTACCAG	CCGACGCTTG	CCGAGGATCT	800
	TGGTATGCTG	CAGGAGCGCA	TTACGTCGAC	GACGAAGGGC	TCGATTACGT	850
	CTGTGCAGGC	CGTGTACGTG	CCGGCCGATG	ATATCACGGA	TCCGGCGCCG	900
	GCGACGACCT	TCTCGCACCT	GGATGCGACG	ACGGTGCTGG	ACCGCGCGGT	950
25	TGCCGAGTCT	GGCATCTACC	CCGCCGTGAA	CCCGCTGGAG	TGCGCGTCGC	1000
	GTATCATGGA	CCCCGATGTG	ATCGACGTGG	ACCACTACAA	CGTTGCGCAG	1050
	GATATCGTGC	AGATGCTGAC	CAAGTACAAG	GAGCTGCAGG	ATATCATTGC	1100
	CGTGCTGGGT	ATCGACGAGC	TGAGCGAGGA	GGACAAGCTT	GTGGTGGACC	1150
	GCGCTCGCAA	GGTGACGCGC	TTCCTGTCGC	AGCCGTTCCA	GGTGGCCGAG	1200
30	GTGTTCACCG	GCATGACGGG	CCACTACGTG	CAGCTGGAGG	ACACAGTGGA	1250
	GTCGTTCTCT	GGCCTGCTGA	TGGGCTCGTA	CGACCAGATC	CCGGAGA	1297

35 2) INFORMATION FOR SEQ ID NO: 531

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1298 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear

(ii) MOLECULE TYPE: Genomic DNA

45 (vi) ORIGINAL SOURCE:

40

- (A) ORGANISM: Leishmania tropica
- (B) STRAIN: ATCC 30816

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 531

50						
	CTTCTCGGAG	GGCGTGCCGC	CCGTGCTGAC	GGCGCTGGAT	GTGACGGAGG	50
	ACCTTGGCCG	CGATGAGCCG	CTGACGCTGG	AGATCGTGCA	GCACTTGGAC	100
	GCGAACACGG	GCCGCTGCAT	TGCGATGCAG	ACGACGGACC	TGCTGAAGCT	150
	GAAGTCGAAG	GTCGTGTCGA	CCGGCGGCAA	CATCTCTGTG	CCGGTGGGCC	200
55	GTGAGACGCT	GGGCCGCATC	TTCAAYGTTC	TGGGCGACGC	GATCGACCAG	250
	CGCGGCCCCG	TGGGCGAGAA	GATGCGCATG	GCGATCCACG	CCGAGGCCCC	300
	GAAGCTGGCG	GATCAGGCCG	CGGAGGACAC	GATCCTGACG	ACCGGCATCA	350
	AGGTGATCGA	CCTGATTCTG	CCCTACTGCA	AGGGTGGCAA	GATCGGCCTG	400
	TTCGGCGGTG	CCGGTGTGGG	CAAGACTGTG	ATCATCATGG	AGCTGATCAA	450
60	CAACGTCGCG	AAGGGCCACG	GCGGTTTCTC	CGTGTTTGCC	GGCGTTGGCG	500

	AGCGCACGCG	CGAGGGCACG	GACCTGTACC	TGGAGATGAT	GCAGT C GAAG	5 <i>5\$</i>
	GTGATTGACC	TGAAGGGCGA	GTCGAAGTGY	GTGCTTGTGT	ATGGGCAGAT	600
	GAACGAGCCC	CCGGGTGCGC	GCGCGCGCGT	TGCGCAGTCT	GCGCTGACGA	650
	TGGCGGAGTA	CTTCCGCGAC	GTGGAGGGCC	AGAACGTGCT	GCTGTTCATC	700
5	GACAACATCT	TCCGCTTCAC	GCAGGCGAAC	TCCGAGGTGT	CTGCGCTGCT	750
	GGGCCGCATT	CCGGCCGCCG	TGGGCTACCA	GCCGACGCTT	GCGGAGGATC	800
	TTGGTATGCT	GCAGGAGCGC	ATCACGTCGA	CAACGAAGGG	GTCGATCACG	850
	TCCGTGCAGG	CCGTGTACGT	GCCAGCGGAT	GATATCACGG	ATCCCGCGCC	900
•	CGCGACGACG	TTCTCGCACC	TGGACGCGAC	GACTGTGCTG	GACCGCGCGG	950
10	TGGCGGAGTC	GGGCATCTAC	CCTGCCGTGA	ACCCGCTGGA	GTGCGCGTCG	1000
	CGTATCATGG	ACCCTGATGT	GATCGATGTG	GACCACTACA	ACGTTGCGCA	1050
	GGATATCGTG	CAGATGCTGA	CCAAGTACAA	GGAGCTGCAG	GATATCATTG	1100
	CGGTGCTTGG	CATCGACGAG	CTGAGCGAGG	AAGACAAGGT	TGTTGTGGAC	1150
	CGCGCGCGCA	AGGTGACCCG	GTTCCTGTCG	CAGCCGTTCC	AGGTTGCGGA	1200
15	GGTGTTCACG	GGCATGACGG	GCCACTACGT	GCAGCTGGTC	GACACGGTGG	1250
	AGTCGTTCTC	TGGCCTGCTG	ATGGGGTCGT	ACGACCAGAT	CCCGGAGA	1298

20 2) INFORMATION FOR SEQ ID NO: 532

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1297 bases
- (B) TYPE: Nucleic acid
- (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: Genomic DNA
- 30 (vi)ORIGINAL SOURCE:

25

- (A) ORGANISM: Leishmania aethiopica
- (B) STRAIN: ATCC 50119

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 532

35 TTCTCGGAGG GCGTGCCGCC CGTGCTGACG GCGCTGGATG TGACGGAGGA 50 CCTTGGCCGC GATGAGCCGC TGACGCTGGA GATCGTGCAG CACTTGGACG 100 CGAACACCGG CCGCTGCATT GCGATGCAGA CGACGGACCT GCTGAAGCTG 150 AAGTCGAAGG TTGTGTCGAC CGGCGGCAAC ATCTCTGTGC CGGTGGGCCG 200 40 TGAGACGCTG GGCCGCATCT TCAACGTTCT GGGCGACGCG ATCGACCAGC 250 GCGGCCCGT GGGCGAGAG ATGCGCATGG CGATCCACGC CGAGGCCCCA 300 AAGCTGGCGG ATCAGGCCGC GGAGGACACG ATCCTGACGA CCGGCATCAA 350 GGTGATCGAC CTGATTCTGC CCTACTGCAA GGGTGGCAAG ATCGGCCTGT 400 TCGGCGGTGC CGGTGTGGGC AAGACTGTGA TCATCATGGA GCTGATCAAC 450 AACGTCGCGA AGGGCCACGG TGGTTTCTCC GTGTTTGCCG GCGTTGGCGA 45 500 GCGCACGCGC GAGGGCACGG ACCTGTACCT GGAGATGATG CAGTCGAAGG 550 TGATTGACCT GAAGGGCGAG TCGAAGTGCG TGCTTGTGTA CGGGCAGATG 600 AACGAGCCCC CGGGTGCGCG CGCGCGCGTT GCGCAGTCTG CGCTGACGAT 650 GGCGGAGTAC TTCCGCGACG TGGAGGGCCA GAACGTGCTG CTGTTCATCG 700 ACAACATCTT CCGCTTCACG CAGGCGAACT CCGAGGTGTC TGCGCTGCTG 50 750 GGCCGCATTC CAGCCGCCGT GGGCTACCAG CCGACGCTTG CGGAGGATCT 800 TGGTATGCTG CAGGAGCGCA TCACGTCGAC AACGAAGGGG TCGATCACGT 850 CCGTGCAGGC CGTGTACGTG CCAGCGGATG ATATCACGGA TCCCGCGCCC 900 GCGACGACGT TCTCGCACCT GGACGCGACG ACTGTGCTGG ACCGCGCGGT 950 55 GGCGGAGTCG GGCATCTACC CTGCCGTGAA CCCGCTGGAG TGCGCGTCGC 1000 GTATCATGGA CCCCGACGTG ATCGATGTGG ACCACTACAA CGTTGCGCAG 1050 GATATCGTGC AGATGCTGAC CAAGTACAAG GAGCTGCAGG ATATCATTGC 1100 GGTGCTTGGC ATCGACGAGC TGAGCGAGGA AGACAAGGTT GTTGTGGACC 1150 GCGCGCGCAA GGTGACCCGG TTCCTGTCGC AGCCGTTCCA GGTTGCGGAG 1200 60 GTGTTCACGG GCATGACGGG CCACTACGTG CAGCTGGTCG ACACGGTGGA 1250

```
5 2) INFORMATION FOR SEQ ID NO: 533
```

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1298 bases
 - (B) TYPE: Nucleic acid
- (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: Genomic DNA
- 15 (vi) ORIGINAL SOURCE:

10

20

- (A) ORGANISM: Leishmania donovani
- (B) STRAIN: ATCC 50212
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 533

20						
	CTTCTCGGAG	GGCGTGCCGC	CCGTACTGAC	GGCGCTGGAT	GTGACGGAGG	50
	ACCTTGGCCG	CGATGAGCCG	CTGACGCTGG	AGATCGTGCA	GCACTTGGAT	100
	GCGAACACCG	GCCGCTGCAT	TGCGATGCAG	ACGACGGACC	TGCTGAAGCT	150
	GAAGTCGAAG	GTTGTGTCGA	CCGGCGGCAA	CATCTCTGTG	CCGGTGGGCC	200
25	GTGAGACGCT	GGGCCGCATC	TTCAACGTTC	TGGGCGACGC	GATCGACCAG	250
	CGCGGCCCCG	TGGGCGAGAA	GATGCGCATG	GCGATCCACG	CCGAGGCCCC	300
	GAAGCTGGCG	GACCAGGCCG	CGGAGGACAC	GATCCTGACG	ACCGGCATCA	350
	AGGTGATCGA	CCTCATTCTG	CCCTACTGCA	AGGGCGGCAA	GATCGGCCTG	400
	TTCGGCGGTG	CCGGTGTGGG	CAAGACTGTG	ATCATCATGG	AGCTGATCAA	450
30	CAACGTCGCG	AAGGGCCACG	GTGGCTTCTC	CGTGTTTGCC	GGCGTTGGCG	500
	AGCGCACGCG	CGAGGGCACG	GACCTATACC	TGGAGATGAT	GCAGTCGAAG	550
	GTGATTGACC	TGAAGGGCGA	GTCGAAGTGC	GTGCTTGTGT	ACGGGCAGAT	600
	GAACGAGCCC	CCGGGTGCGC	GCGCGCGCGT	TGCGCAGTCT	GCGCTGACGA	650
	TGGCGGAGTA	CTTCCGCGAC	GTGGAGGGCC	AGAACGTGCT	GCTGTTCATC	700
35	GACAACATCT	TCCGCTTCAC	GCAGGCGAAC	TCCGAGGTGT	CTGCGCTGCT	750
	GGGCCGCATT	CCGGCCGCCG	TGGGCTACCA	GCCGACGCTT	GCCGAGGATC	800
	TTGGTATGCT	GCAGGAGCGC	ATCACATCGA	CGACGAAGGG	GTCGATCACG	850
	TCCGTGCAGG	CCGTGTACGT	GCCGGCGGAT	GATATCACGG	ATCCCGCGCC	900
	CGCGACGACG	TTCTCGCACC	TGGACGCGAC	GACTGTGCTG	GACCGCGCGG	950
40	TGGCGGAGTC	GGGCATCTAC	CCTGCCGTGA	ACCCGCTGGA	GTGCGCGTCG	1000
	CGTATCATGG	ACCCCGATGT	GATCGATGTG	GACCACTACA	ACGTTGCGCA	1050
	GGATATCGTG	CAGATGCTGA	CCAAGTACAA	GGAGCTGCAG	GATATCATTG	1100
	CGGTGCTTGG	CATCGACGAG	CTGAGCGAGG	AGGACAAGGT	TGTGGTGGAC	1150
	CGCGCGCGCA	AGGTGACCCG	GTTCCTGTCG	CAGCCGTTCC	AGGTTGCGGA	1200
45	GGTGTTCACG	GGCATGACGG	GCCACTACGT	GCAGCTGGCC	GACACGGTGG	1250
	AGTCGTTCTC	TGGCCTGCTG	ATGGGGTCGT	ACGACCAGAT	CCCGGAGA	1298

- 50 2) INFORMATION FOR SEQ ID NO: 534
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1298 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: Genomic DNA
- 60 (vi)ORIGINAL SOURCE:

(A) ORGANISM: Leishmania infantum

(B) STRAIN: MOU

5

40

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 534

	CTTCTCGGAG	GGCGTGCCGC	CCGTACTGAC	GGCGCTGGAT	GTGACGGAGG	50
	ACCTTGGCCG	CGATGAGCCG	CTGACGCTGG	AGATCGTGCA	GCACTTGGAT	100
	GCGAACACCG	GCCGCTGCAT	TGCGATGCAG	ACGACGGACC	TGCTGAAGCT	150
	GAAGTCGAAG	GTTGTGTCGA	CCGGCGGCAA	CATCTCTGTG	CCGGTGGGCC	200
10	GTGAGACGCT	GGGCCGCATC	TTCAACGTTC	TGGGCGACGC	GATCGACCAG	250
	CGCGGCCCCG	TGGGCGAGAA	GATGCGCATG	GCGATCCACG	CCGAGGCCCC	300
	AAAGCTGGCG	GACCAGGCCG	CGGAGGACAC	GATCCTGACG	ACCGGCATCA	350
	AGGTGATCGA	CCTCATTCTG	CCCTACTGCA	AGGGCGGCAA	GATCGGCCTG	400
	TTCGGCGGTG	CCGGTGTGGG	CAAGACTGTG	ATCATCATGG	AGCTGATCAA	450
15	CAACGTCGCG	AAGGGCCACG	GTGGCTTCTC	CGTGTTTGCC	GGCGTTGGCG	500
	AGCGCACGCG	CGAGGGCACG	GACCTATACC	TGGAGATGAT	GCAGTCGAAG	550
	GTGATTGACC	TGAAGGGCGA	GTCGAAGTGC	GTGCTTGTGT	ACGGGCAGAT	600
	GAACGAGCCC	CCGGGTGCGC	GCGCGCGCGT	TGCGCAGTCT	GCGCTGACGA	650
	TGGCGGAGTA	CTTCCGCGAC	GTGGAGGGCC	AGAACGTGCT	GCTGTTCATC	700
20	GACAACATCT	TCCGCTTCAC	GCAGGCGAAC	TCCGAGGTGT	CTGCGCTGCT	750
	GGGCCGCATT	CCGGCCGCCG	TGGGCTACCA	GCCGACGCTT	GCCGAGGATC	800
	TTGGTATGCT	GCAGGAGCGC	ATCACATCGA	CGACGAAGGG	GTCGATCACG	850
	TCCGTGCAGG	CCGTGTACGT	GCCGGCGGAT	GATATCACTG	ATCCCGCGCC	900
	CGCGACGACG	TTCTCGCACC	TGGACGCGAC	GACTGTGCTG	GACCGCGCGG	950
25	TGGCGGAGTC	GGGCATCTAC	CCTGCCGTGA	ACCCGCTGGA	GTGCGCGTCG	1000
	CGTATCATGG	ACCCCGATGT	GATCGATGTG	GACCACTACA	ACGTTGCGCA	1050
	GGATATCGTG	CAGATGCTGA	CCAAGTACAA	GGAGCTGCAG	GATATCATTG	1100
	CGGTGCTTGG	CATCGACGAG	CTGAGCGAGG	AGGACAAGGT	TGTGGTGGAC	1150
	CGCGCGCGCA	AGGTGACCCG	GTTCCTGTCG	CAGCCGTTCC	AGGTTGCGGA	1200
30	GGTGTTCACG	GGCATGACGG	GCCACTACGT	GCAGCTGGCC	GACACGGTGG	1250
	AGTCGTTCTC	TGGCCTGCTG	ATGGGGTCGT	ACGACCAGAT	CCCGGAGA	1298

35 2) INFORMATION FOR SEQ ID NO: 535

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1301 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear

(ii) MOLECULE TYPE: Genomic DNA

- 45 (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Leishmania gerbilli
 - (B) STRAIN: ATCC 50121

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 535

50						
	GCACTTCTCG	GAGGGCGTGC	CGCCCGTGCT	GACGGCGCTG	GATGTGACGG	50
	AGGACCTTGG	CCGCGATGAG	CCGCTGACGC	TGGAGATCGT	GCAGCACTTG	100
	GACGCGAACA	CCGGCCGCTG	CATTGCGATG	CAGACGACGG	ACCTGCTGAA	150
	GCTGAAGTCG	AAGGTTGTGT	CGACCGGTGG	CAACATCTCT	GTGCCGGTGG	200
55	GCCGTGAGAC	GCTGGGCCGC	ATCTTCAACG	TTCTGGGCGA	TGCGATCGAC	250
	CAGCGCGGCC	CCGTGGGCGA	GAAGATGCGC	ATGGCGATCC	ACGCCGAGGC	300
	CCCGAAGCTG	GCGGATCAGG	CCGCGGAGGA	CACGATCCTG	ACGACCGGCA	350
	TCAAGGTGAT	CGACCTGATT	CTGCCCTACT	GCAAGGGTGG	CAAGATCGGY	400
	CTGTTCGGCG	GTGCCGGTGT	GGGCAAGACT	GTGATCATCA	TGGAGCTGAT	450
60	CAACAACGTC	GCGAAGGGCC	ACGGTGGTTT	CTCCGTGTTT	GCCGGCGTTG	500

	GCGAGCGCAC	GCGCGAGGGC	ACGGACCTGT	ACCTGGAGAT	GATGCAGTCG	550
	AAGGTGATTG	ACCTGAAGGG	CGAGTCGAAG	TGCGTGCTTG	TGTACGGGCA	609/
	GATGAACGAG	CCCCCGGGTG	CGCGCGCGCG	CGTTGCGCAG	TCTGCGCTGA	650
	CGATGGCGGA	GTACTTCCGC	GACGTGGAGG	GCCAGAACGT	GCTGCTGTTC	700
5	ATCGACAACA	TCTTCCGCTT	CACGCAGGCG	AACTCCGAGG	TGTCCGCGCT	750
	GCTGGGCCGC	ATTCCGGCCG	CCGTGGGCTA	CCAGCCGACG	CTTGCGGAGG	800
	ATCTTGGTAT	GCTGCAGGAG	CGCATCACGT	CGACAACGAA	GGGGTCGATC	850
	ACGTCCGTGC	AGGCCGTGTA	CGTGCCAGCG	GATGATATCA	CGGATCCCGC	900
	GCCCGCGACG	ACGTTCTCGC	ACCTTGACGC	GACGACTGTG	CTGGACCGCG	950
10	CGGTGGCGGA	GTCGGGCATC	TACCCTGCCG	TGAACCCGCT	GGAGTGCGCG	1000
	TCGCGTATCA	TGGACCCCGA	TGTGATCGAT	GTGGACCACT	ACAACGTTGC	1050
	GCAGGATATC	GTGCAGATGC	TGACCAAGTA	CAAGGAGCTG	CAGGACATCA	1100
	TTGCGGTGCT	TGGCATCGAC	GAGCTGAGCG	AGGAAGACAA	GGTTGTGGTG	1150
	GACCGCGCGC	GCAAGGTGAC	CCGGTTCCTG	TCGCAGCCGT	TCCAGGTTGC	1200
15	GGAGGTGTTC	ACGGGCATGA	CGGGCCACTA		GTCGACACGG	1250
	TGGAGTCGTT	CTCTGGCTTG	CTGATGGGGT	CGTACGACCA	GATCCCGGAG	1300
	A					1301

20

25

2) INFORMATION FOR SEQ ID NO: 536

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1298 bases
- (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: Genomic DNA

30

(vi)ORIGINAL SOURCE:

- (A) ORGANISM: Leishmania hertigi
- (B) STRAIN: ATCC 50125
- 35 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 536

	CTTCGCGGAG	GGCGTGCCGC	CGGTGCTGAC	GTCGCTGGAT	GTGACGGAGA	50
	ACCTCGGCCG	CGATGAGCCG	CTGACGCTGG	AGATTGTGCA	GCACTTGGAC	100
	GCGAACACCG	GTCGCTGCAT	TGCGATGCAG	ACGACGGACC	TGCTGAAGCT	150
40	GAAGTCGAAG	GTCGTGTCGA	CCGGTGGCAA	CATCTCTGTG	CCTGTTGGCC	200
	GCGAGACGCT	GGGTCGCATC	TTCAACGTGC	TTGGCGATGC	GATTGACCAG	250
	CGCGGCCCTG	TGGGTGAGAA	GATGCGCATG	GCGATCCACG	CCGAGGCGCC	300
	GAAGCTGGCG	GATCAGGCGG	CAGAGGACAC	GATCCTGACG	ACCGGCATCA	350
	AGGTGATCGA	TCTTATTCTG	CCGTACTGCA	AGGGTGGTAA	GATCGGTCTG	400
45	TTCGGTGGTG	CCGGTGTAGG	CAAGACTGTG	ATTATTATGG	AGCTGATCAA	450
	TAACGTGGCG	AAGGGCCACG	GTGGGTTTTC	CGTGTTTGCT	GGCGTGGGCG	500
	AGCGCACGCG	CGAGGGCACT	GACCTGTACC	TGGAGATGAT	GCAGTCGAAG	550
	GTGATTGACC	TGAAGGGCGA	ATCAAAGTGC	GTGCTTGTGT	ACGGACAGAT	600
	GAACGAGCCC	CCGGGTGCGC	GTGCGCGCGT	TGCGCAGTCT	GCGCTGACGA	650
50	TGGCCGAGTA	CTTCCGCGAT	GTGGAGGGCC	AGAACGTGCT	GCTGTTCATT	700
	GACAACATCT	TCCGCTTCAC	GCAGGCGAAC	TCCGAGGTGT	CTGCGCTGCT	750
	GGGTCGCATT	CCTGCCGCCG	TGGGCTACCA	GCCGACGCTT	GCGGAGGATC	800
	TGGGCATGCT	GCAGGAGCGC	ATTACGTCGA	CGACGAAGGG	CTCGATTACG	850
	TCTGTGCAGG	CCGTGTACGT	GCCTGCGGAT	GATATCACGG	ACCCGGCGCC	900
55 _.	CGCGACGACG	TTCTCGCACC	TGGACGCGAC	GACTGTGCTG	GACCGTGCGG	950
	TGGCAGAGTC	GGGCATTTAC	CCTGCGGTGA	ACCCGCTGGA	GTGCGCGTCG	1000
	CGTATCATGG	ACCCCGATGT	GATCGATGTG	GACCACTACA	ACGTTGCGCA	1050
	GGATATCGTG	CAGATGCTGA	CCAAGTACAA	GGAGCTGCAG	GATATCATTG	1100
	CCGTGCTTGG	TATCGACGAG	CTGAGCGAGG	AGGACAAGGT	TGTGGTGGAC	1150
60	CGCGCGCGCA	AGGTGACCCG	GTTCCTGTCG	CAGCCGTTCC	AGGTTGCGGA	1200

GGTGTTCACT GGCATGACGG GTCACTACGT TCAGCTGGAG GACAGGGTGG 1250
AGTCGTTCTC TGGCCTACTG ATGGGGTCAT ACGACCAGAT CCCGGAGA 1298

5

10

- 2) INFORMATION FOR SEQ ID NO: 537
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1297 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: Genomic DNA

15

- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Leishmania major
 - (B) STRAIN: ATCC 50122
- 20 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 537

	CTTCTCGGAG	GGCGTGCCGC	CCGTGCTGAC	GGCGCTGGAT	GTGACGGAGG	50
	ACCTTGGCCG	TGATGAGCCG	CTGACGCTGG	AGATCGTGCA		100
	GCGAACACCG	GCCGCTGCAT	TGCGATGCAG	ACGACGGACC	TGCTGAAGCT	150
25	GAAGTCGAAG	GTTGTGTCGA	CCGGCGGCAA	CATCTCTGTG	CCGGTGGGCC	200
	GTGAGACGCT	GGGCCGCATC	TTCAACGTTC	TGGGCGATGC	GATCGACCAG	250
	CGCGGCCCCG	TGGGCGAGAA	GATGCGCATG	GCGATCCACG	CCGAGGCCCC	300
	GAAGCTGGCG	GATCAGGCCG	CAGAGGACAC	GATCCTGACG	ACCGGCATCA	350
	AGGTGATCGA	CTTGATCCTG	CCCTACTGCA	AGGGTGGCAA	GATCGGCCTG	400
30	TTCGGCGGTG	CCGGTGTGGG	CAAGACTGTG	ATCATCATGG	AGCTGATCAA	450
	CAATGTCGCG	AAGGGCCACG	GTGGTTTCTC	CGTGTTTGCC	GGCGTTGGCG	500
	AGCGCACGCG	CGAGGGCACG	GACCTGTACC	TGGAGATGAT	GCAGTCGAAG	550
	GTGATTGACC	TGAAGGGCGA	GTCGAAGTGC	GTGCTTGTGT	ACGGGCAGAT	600
	GAACGAGCCC	CCGGGTGCGC	GCGCGCGCGT	TGCGCAGTCT	GCGCTGACGA	650
35	TGĢCGGAGTA	CTTCCGCGAC	GTGGAGGGCC	AGAACGTGCT	GCTGTTCATC	700
	GACAACATCT	TCCGCTTCAC	GCAGGCGAAC	TCCGAGGTGT	CCGCGCTGCT	750
	GGGCCGCATT	CCGGCCGCCG	TGGGCTACCA	GCCGACGCTT	GCGGAGGATC	800
	TTGGTATGCT	GCAGGAGCGC	ATCACGTCGA	CAACGAAGGG	GTCGATCACG	850
	TCCGTGCAGG	CCGTGTACGT	GCCAGCGGAT	GATATCACGG	ATCCCGCGCC	900
40	CGCGACGACG	TTCTCGCACC	TGGATGCGAC	GACTGTGCTG	GACCGCGCGG	950
·	TGGCGGAGTC	GGGCATCTAC	CCTGCCGTGA	ACCCGCTGGA	GTGCGCGTCG	1000
	CGTATCATGG	ACCCCGATGT	GATCGATGTG	GACCACTACA	ACGTTGCGCA	1050
	GGATATCGTG	CAGATGCTGA	CCAAGTACAA	GGAGCTGCAG	GACATCATTG	1100
	CGGTGCTTGG	CATCGACGAG	CTGAGCGAGG	AAGACAAGGT	TGTGGTGGAC	1150
45	CGCGCGCGCA	AGGTGACCCG	GTTCCTGTCG	CAGCCGTTCC	AGGTTGCGGA	1200
	GGTGTTCACG	GGCATGACGG	GCCACTACGT	GCAGCTGGTC	GACACGGTGG	1250
	AGTCGTTCTC	TGGCCTGCTG	ATGGGGTCGT	ACGACCAGAT	CCCGGAG	1297

50

55

- 2) INFORMATION FOR SEQ ID NO: 538
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1297 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: Genomic DNA

(vi)ORIGINAL SOURCE:

- (A) ORGANISM: Leishmania amazonensis
- (B) STRAIN: ATCC 50131
- 5 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 538

	TTCTCGGAGG	GCGTGCCGCC	CGTGCTGACG	GCGCTGGATG	TGACGGAGGA	50
	CCTTGGCCGC	GATGAGCCGC	TGACGCTGGA	GATCGTGCAG	CACCTGGACG	100
	CGAACACCGG	CCGCTGCATT	GCGATGCAGA	CGACGGACCT	GTTGAAGCTG	150
10	AAGTCGAAGG	TTGTGTCGAC	CGGCGGCAAC	ATCTCTGTGC	CGGTGGGCCG	200
	TGAGACGCTG	GGCCGCATCT	TCAACGTGCT	GGGCGACGCG	ATCGACCAGC	250
	GCGGCCCCGT	GGGTGAGAAG	ATGCGCATGG	CGATCCACGC	CGAGGCCCCG	300
	AAGCTGGCGG	ATCAGGCCGC	GGAGGACACG	ATCCTGACGA	CCGGCATCAA	. 350
	GGTGATCGAC	CTGATTCTGC	CCTACTGCAA	GGGTGGCAAG	ATCGGCCTGT	400
15	TTGGTGGCGC	CGGTGTGGGC	AAGACCGTGA	TCATCATGGA	GTTGATTAAC	450
	AACGTCGCGA	AGGGCCACGG	TGGTTTCTCG	GTGTTTGCCG	GCGTTGGCGA	500
	GCGCACGCGC	GAGGGCACGG	ACCTGTACCT	GGAGATGATG	CAGTCGAAGG	550
	TGATTGACCT	GAAGGGCGAG	TCGAAGTGCG	TGCTTGTGTA	CGGGCAGATG	600
	AACGAGCCCC	CGGGTGCGCG	CGCGCGCGTT	GCGCAGTCTG	CGCTGACGAT	650
20	GGCGGAGTAC	TTCCGAGACG	TGGAGGGCCA	GAATGTGCTG	CTGTTCATCG	700
	ACAACATCTT	CCGCTTCACG	CAGGCGAACT	CCGAGGTGTC	TGCGCTGCTG	750
	GGCCGCATTC	CGGCCGCCGT	GGGCTACCAG	CCGACGCTTG	CGGAGGATCT	800
	TGGTATGCTG	CAGGAGCGCA	TCACGTCGAC	GACGAAGGGG	TCGATCACGT	850
	CCGTGCAGGC	CGTGTACGTG	CCTGCGGATG	ATATCACGGA	TCCGGCGCCC	900
25	GCGACGACGT	TCTCGCACCT	GGACGCGACG	ACTGTGCTGG	ACCGCGCGGT	950
•	GGCGGAGTCG	GGGATCTACC	CTGCCGTGAA	CCCGCTGGAG	TGCGCGTCGC	1000
	GTATCATGGA	CCCCGATGTG	ATCGACGTGG	ACCACTACAA	CGTTGCGCAG	1050
	GATATCGTGC	AGATGCTGAC	CAAGTACAAG	GAGCTGCAGG	ATATCATTGC	1100
	GGTGCTTGGT	ATCGACGAGC	TGAGCGAGGA	GGACAAGGTC	GTGGTGGACC	1150
30	GCGCGCGCAA	GGTGACCCGG	TTCCTGTCGC	AGCCGTTCCA	GGTTGCGGAG	1200
	GTGTTCACGG	GCATGACGGG	CCACTACGTG	CAGCTGGCCG	ACACGGTGGA	1250
	GTCGTTCTCT	GGGCTGCTGA	TGGGGTCGTA	CGACCAGATC	CCGGAGA	1297

35

40

- 2) INFORMATION FOR SEQ ID NO: 539
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 27 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Single
 - (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: DNA

45

- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 539
- CCITACATCC TBGTYGCICT IAACAAG

27

50

- 2) INFORMATION FOR SEQ ID NO: 540
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 23 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Single
 - (D) TOPOLOGY: Linear
- 60 (ii) MOLECULE TYPE: DNA

	(xi)	SEQUE	NCE DESC	RIPTION:	SEQ	ID	NO:	540		
5	GGDGCI	ICYT	CRTCGWAI'	TC CTG						23
	2) INFO	RMATIC	N FOR SE	Q ID NO:	541					
10	(i)	(A) (B) (C)	NCE CHAR LENGTH: TYPE: Nu STRANDED TOPOLOGY	23 bases cleic ac NESS: Si	id ngle					
15	(ii)	MOLEC	ULE TYPE	: DNA				_		
	(xi)	SEQUE	NCE DESC	RIPTION:	SEQ	ID	NO:	541		
20	GTKGAA	ATGT	TCCGCAAG	CT GCT						23
	2) INFO	RMATIC	N FOR SE	Q ID NO:	542					
25 30	(i)	(A) (B) (C)	ENCE CHAR LENGTH: TYPE: Nu STRANDED TOPOLOGY	24 bases cleic ac NESS: Si	id ngle					
	(ii)	MOLEC	ULE TYPE	: DNA						
	(xi)	SEQUE	ENCE DESC	RIPTION:	SEQ	ID	NO:	542		
35	CGGAAR	TAGA	ACTGSGGA	.CG GTAG						24
40	2) INFO	RMATIO	ON FOR SE	EQ ID NO:	543					
45	(i)	(A) (B)	ENCE CHAF LENGTH: TYPE: Nu STRANDEL TOPOLOGY	23 bases cleic ac NESS: Si	id ngle					
	(ii)	MOLE	CULE TYPE	: DNA						
50	(xi)	SEQUI	ENCE DESC	CRIPTION:	SEQ	ID	NO:	543		
	ATCTTA	.GTAG	TTTCTGCT	GC TGA						23
55	2) INFC	RMATI	on for si	EQ ID NO	: 544	·				
60	(i)	SEQUI (A) (B)	ENCE CHAI LENGTH: TYPE: Ni		id	35				

	WO 01/23604	PCT/CA00/01150
	(C) STRANDEDNESS: Single(D) TOPOLOGY: Linear	
5	(ii) MOLECULE TYPE: DNA	
5	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 544	
	AYGTTGTCGC CMGGCATTMC CAT	23
10		
	2) INFORMATION FOR SEQ ID NO: 545	
15	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 26 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear 	
20	(ii) MOLECULE TYPE: DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 545	-
25	TACATCCTBG TYGCICTIAA CAAGTG	
	2) INFORMATION FOR SEQ ID NO: 546	
30	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 23 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear 	
35	(ii) MOLECULE TYPE: DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 546	
40	CCRCGICCGG TRATGGTGAA GAT	23
	2) INFORMATION FOR SEQ ID NO: 547	
45	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 23 bases(B) TYPE: Nucleic acid	
50	<pre>(C) STRANDEDNESS: Single (D) TOPOLOGY: Linear</pre>	
	(ii) MOLECULE TYPE: DNA	
~ ~	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 547	
55	GTACAGTTGC TTCAGGACGT ATC	23
60	2) INFORMATION FOR SEQ ID NO: 548	

5	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 21 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear	
	(ii)	MOLECULE TYPE: DNA	•
10	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 548	
	ACGTTC	GATT TCATCACGTT G	21
15			
	2) INFO	RMATION FOR SEQ ID NO: 549	
20	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 24 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear	
	(ii)	MOLECULE TYPE: DNA	
25	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 549	
	GAACGT	GATA CTGACAAACC TTTA	24
30			
	2) INFO	RMATION FOR SEQ ID NO: 550	
35	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear	
40	(ii)	MOLECULE TYPE: DNA	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 550	
45	GAAGAA	AGAAC ACCAACGTTG	20
	2) INFO	DRMATION FOR SEQ ID NO: 551	
50	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear	
55	(ii)	MOLECULE TYPE: DNA	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 551	
60	GAAGAA	AAAAA TCTTCGAACT GGCTA	25

 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 19 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear 	
(ii) MOLECULE TYPE: DNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 552	
TACACGGCCG GTGACTACG	19
2) INFORMATION FOR SEQ ID NO: 553	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear 	
(ii) MOLECULE TYPE: DNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 553	•
GGCCGTGTTG AACGTGGTCA AATCA	25
2) INFORMATION FOR SEQ ID NO: 554	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 24 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear 	
(ii) MOLECULE TYPE: DNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 554	
GTTCCTTACA TCGTTGTTTT TCTC	24
2) INFORMATION FOR SEQ ID NO: 555	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 24 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear 	
	(A) LENGTH: 19 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear (ii) MOLECULE TYPE: DNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 552 TACACGGCCG GTGACTACG 2) INFORMATION FOR SEQ ID NO: 553 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear (ii) MOLECULE TYPE: DNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 553 GGCCGTGTTG AACGTGGTCA AATCA 2) INFORMATION FOR SEQ ID NO: 554 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 24 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear (ii) MOLECULE TYPE: DNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 554 GTTCCTTACA TCGTTGTTT TCTC 2) INFORMATION FOR SEQ ID NO: 555 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 24 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single

	WO 01/2	23604	PCT/CA00/01150
	(ii)	MOLECULE TYPE: DNA	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 555	
5	TCTCGA	ACTT TCTCTATGTA TGCA	24
10	2) INFO	RMATION FOR SEQ ID NO: 556	
15	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 21 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear	
	(ii)	MOLECULE TYPE: DNA	
20	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 556	
20	CGGCGC	NATC YTSGTTGTTG C	21
25	2) INFO	RMATION FOR SEQ ID NO: 557	
30	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 22 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear	
	(ii)	MOLECULE TYPE: DNA	
35	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 557	
	CCMAGG	CATR ACCATCTCGG TG	22
40	2) INFO	RMATION FOR SEQ ID NO: 558	
45	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear	
50	(ii)	MOLECULE TYPE: DNA	
50	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 558	-
	TCITTY	AART AYGCITGGGT	20
55			
	2) INFO	RMATION FOR SEQ ID NO: 559	
60	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 23 bases 339	

	WO 01/23604	PCT/CA00/01150
	(B) TYPE: Nucleic acid(C) STRANDEDNESS: Single(D) TOPOLOGY: Linear	
5	(ii) MOLECULE TYPE: DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 559	
10	CCGACRGCRA YIGTYTGICK CAT	23
	2) INFORMATION FOR SEQ ID NO: 560	
15	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 23 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear 	
20	(ii) MOLECULE TYPE: DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 560	
25	GAYTTCATYA ARAAYATGAT YAC	23
30	2) INFORMATION FOR SEQ ID NO: 561 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 23 bases (B) TYPE: Nucleic acid	
35	(C) STRANDEDNESS: Single (D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: DNA	
40	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 561 ACIGTICGGC CRCCCTCACG GAT	23
45	2) INFORMATION FOR SEQ ID NO: 562	
50 [°]	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear 	
	(ii) MOLECULE TYPE: DNA	
55	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 562	
	CARATGRAYG ARCCICCIGG IGYIMGIATG	30

	WO 01/2	23604 PCT/CA00/01150	
	2) INFO	RMATION FOR SEQ ID NO: 563	
5	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 26 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear	
10	(ii)	MOLECULE TYPE: DNA	
10	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 563	
	GGYTGR	TAIC CIACIGCIGA IGGCAT	26
15			
	2) INFO	RMATION FOR SEQ ID NO: 564	
20	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 29 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear	
25	(ii)	MOLECULE TYPE: DNA	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 564	
30	TAYGGI	CARA TGAAYGARCC ICCIGGIAA	29
	2) INFO	RMATION FOR SEQ ID NO: 565	
35·	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 26 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear	
40	(ii)	MOLECULE TYPE: DNA	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 565	
45	GGYTGR	RTAIC CIACIGCIGA IGGDAT	26
50	•	DRMATION FOR SEQ ID NO: 566 SEQUENCE CHARACTERISTICS: (A) LENGTH: 26 bases	
55		(B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear	
	(ii)	MOLECULE TYPE: DNA	
60	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 566	
		341	

5	2) INFORMATION FOR SEQ ID NO: 567	
10	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 26 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear 	
	(ii) MOLECULE TYPE: DNA	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 567	
	TCRTCIGCIG GIACRTAIAY IGCYTG	26
20.	2) INFORMATION FOR SEQ ID NO: 568	
25	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 23 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear 	
20	(ii) MOLECULE TYPE: DNA	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 568	
	RTIATIGGIG CIGTIRTIGA YGT	23
35		
	2) INFORMATION FOR SEQ ID NO: 569	
40	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 23 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear 	
45	(ii) MOLECULE TYPE: DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 569	
50	RTIRTIGGIS CIGTIRTIGA TAT	23
	2) INFORMATION FOR SEQ ID NO: 570	
55 60	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 23 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear 	
90		

	WO 01/23604 PC 1/CA00/01150	
	(ii) MOLECULE TYPE: DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 570	
5	RTIRYIGGIC CIGTIRTIGA YGT	23
10	2) INFORMATION FOR SEQ ID NO: 571	
15	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 23 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear 	
	(ii) MOLECULE TYPE: DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 571	
20	RTIRTIGGIC CIGTIRTIGA TGT	23
25	2) INFORMATION FOR SEQ ID NO: 572	
30	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear 	
	(ii) MOLECULE TYPE: DNA	
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 572	
	RTIRTIGGIS CIGTIRTIGA	20
40	2) INFORMATION FOR SEQ ID NO: 573	
45	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear 	
50	(ii) MOLECULE TYPE: DNA	
50 _.	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 573	
	CCICCIACCA TRTARAAIGC	20
55		
	2) INFORMATION FOR SEQ ID NO: 574	
60	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 23 bases343	

	WO 01/2	/23604					PCT/CA00/01150		
		(B) (C) (D)	STRANDEDNESS:	Single					
5	(ii)	MOLE	CULE TYPE: DNA						
	(xi)	SEQU	ENCE DESCRIPTION	ON: SEQ	ID	NO:	574		
10	ATIGCI	ATGG	AYGGIACIGA RO	G .					23
	2) INFO	RMATI	ON FOR SEQ ID I	NO: 575					
15	(i)	(A) (B)	STRANDEDNESS:	ses acid Single					
20	(ii)	MOLE	CULE TYPE: DNA						
	(xi)	SEQU	ENCE DESCRIPTION	ON: SEQ	ID	NO:	575		
25	TIACCA	TTTC	AGTACCTTCT GG	TAA					25
	2) INFO	RMATI	ON FOR SEQ ID 1	NO: 576					
30 35	(i)	(A) (B)	TYPE: Nucleic STRANDEDNESS:	ses acid Single					
•	(ii)	MOLE	CULE TYPE: DNA						
	(xi)	SEQU	ENCE DESCRIPTION	ON: SEQ	ID	NO:	576		
40	AACTTC	RTCA	AGAAGGTYGG TT	CACAA					26
45	2) INFO	RMATI	ON FOR SEQ ID	NO: 577					
50	(i)	(A) (B)	TYPE: Nucleic STRANDEDNESS:	ses acid Single					
	(ii)	MOLE	CULE TYPE: DNA						
55	(xi)	SEQU	ENCE DESCRIPTION	ON: SEQ	ID	NO:	577		•
	CATGAT	TGAA	CCATCCACCA					•	20

	WO 01/23604 2) INFORMATION FOR SEQ ID NO: 578	PCT/CA00/01150
5	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear 	
10	(ii) MOLECULE TYPE: DNA	
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 578	
	CATGATTGAA GCTTCCACCA	20
15		
	2) INFORMATION FOR SEQ ID NO: 579	
20	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear 	
25	(ii) MOLECULE TYPE: DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 579	
30	GAAGGCCGTG CTGGTGAGAA	20
	2) INFORMATION FOR SEQ ID NO: 580	
35	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear 	
40	(ii) MOLECULE TYPE: DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 580	
45	GCTAAACCAG CTACAATCAC TCCAC	25
	2) INFORMATION FOR SEQ ID NO: 581	·
50 55	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 22 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear 	
	(ii) MOLEÇULE TYPE: DNA	
60	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 581	
50	345	

	WO 01/23604 ACATCGGTGC ATTATTACGT GG	PCT/CA00/01150	<i>k</i> 2
5	2) INFORMATION FOR SEQ ID NO: 582		
10	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 28 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear 		
	(ii) MOLECULE TYPE: DNA		
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 582		
	TTTCAACTTC GTCGTTGACA CGAACAGT		28
20	2) INFORMATION FOR SEQ ID NO: 583		
25	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 35 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear 		
30	(ii) MOLECULE TYPE: DNA		
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 583		
	CAACTGCTTT TTGGATATCT TCTTTAATAC CAACG		35
35	•		
	2) INFORMATION FOR SEQ ID NO: 584		
40	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear 		
45	(ii) MOLECULE TYPE: DNA		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 584		
50	ACATGACACA TCTAAAACAA		20
	2) INFORMATION FOR SEQ ID NO: 585		
55 60	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear 		

	WO 01/23604	PCT/CA00/01150
	(ii) MOLECULE TYPE: DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 585	
5	ACCACATACT GAATTCAAAG	20
10	2) INFORMATION FOR SEQ ID NO: 586	
15	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear 	
	(ii) MOLECULE TYPE: DNA	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 586	
20	CAGAAGTATA CGTATTATCA	20
25	2) INFORMATION FOR SEQ ID NO: 587	
30	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 20 bases(B) TYPE: Nucleic acid(C) STRANDEDNESS: Single(D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: DNA	
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 587	
	CGTATTATCA AAAGACGAAG	20
40	2) INFORMATION FOR SEQ ID NO: 588	
45	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear 	
50	(ii) MOLECULE TYPE: DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 588	
	TCTTCTCAAA CTATCGTCCA	20
55		
	2) INFORMATION FOR SEQ ID NO: 589	
60	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 bases 347	
	コエノ ・	

	WO 01/23604	PCT/CA00/01150
	(B) TYPE: Nucleic acid(C) STRANDEDNESS: Single(D) TOPOLOGY: Linear	
5	(ii) MOLECULE TYPE: DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 589	
10	GCACGAAACT TCTAAAACAA	20
	2) INFORMATION FOR SEQ ID NO: 590	
15	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear 	
20	(ii) MOLECULE TYPE: DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 590	
25	TATACGTATT ATCTAAAGAT	20
30	2) INFORMATION FOR SEQ ID NO: 591 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 bases	
35	(B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: DNA	
40	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 591 TCCTGGTTCT ATTACACCAC	20
45	2) INFORMATION FOR SEQ ID NO: 592	
50	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear 	
	(ii) MOLECULE TYPE: DNA	
55	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 592	
	CAAAGCTGAA GTATACGTAT	20

2) INFORMATION FOR SEQ ID NO: 593 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear (ii) MOLECULE TYPE: DNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 593 TTCACTAACT ATCGCCCACA 20 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear 25 (ii) MOLECULE TYPE: DNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 594 ATTGGTATCC ATGACACTTC 20 2) INFORMATION FOR SEQ ID NO: 595 (i) SEQUENCE DESCRIPTION: SEQ ID NO: 594 ATTGGTATCC ATGACACTTC 2) INFORMATION FOR SEQ ID NO: 595 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear (ii) MOLECULE TYPE: DNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 595 45 TTAAAGCAGA CGTATACGTT 20 2) INFORMATION FOR SEQ ID NO: 596 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (C) STRANDEDNES		WO 01/23604 PCT/CA00/01150	
(A) LENGTH: 20 bases (B) TYPE: Nucleic acid (C) STRANDENNESS: Single (D) TOPOLOGY: Linear (ii) MOLECULE TYPE: DNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 593 TTCACTAACT ATCGCCCACA 20 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear 25 (ii) MOLECULE TYPE: DNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 594 ATTGGTATCC ATGACACTTC 20 2) INFORMATION FOR SEQ ID NO: 595 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 bases (B) TYPE: Nucleic acid (C) STRANDENNESS: Single (C) STRANDENNESS: Single (D) TOPOLOGY: Linear (II) MOLECULE TYPE: DNA (XI) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 bases (B) TYPE: Nucleic acid (C) STRANDENNESS: Single (D) TOPOLOGY: Linear (II) MOLECULE TYPE: DNA (XI) SEQUENCE DESCRIPTION: SEQ ID NO: 595 2) INFORMATION FOR SEQ ID NO: 596 (I) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 bases (B) TYPE: Nucleic acid (C) STRANDENNESS: Single (D) TOPOLOGY: Linear (II) MOLECULE TYPE: DNA (XI) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 bases (B) TYPE: Nucleic acid (C) STRANDENNESS: Single (D) TOPOLOGY: Linear (II) MOLECULE TYPE: DNA (XI) SEQUENCE DESCRIPTION: SEQ ID NO: 596		2) INFORMATION FOR SEQ ID NO: 593	
TTCACTAACT ATCGCCCACA TTCACTAACT ATCGCCCACA 20 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear 21 (ii) MOLECULE TYPE: DNA (xi) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear 21 22 (ii) MOLECULE TYPE: DNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 594 ATTGGTATCC ATGACACTTC 22 23 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear (ii) MOLECULE TYPE: DNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 595 45 TTAAAGCAGA CGTATACGTT 20 21 INFORMATION FOR SEQ ID NO: 596 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear (ii) MOLECULE TYPE: DNA (xi) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear (iii) MOLECULE TYPE: DNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 596	5	(A) LENGTH: 20 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single	
TTCACTAACT ATCGCCACA TTCACTAACT ATCGCCCACA 20 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear 25 (ii) MOLECULE TYPE: DNA (xi) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear 20 ATTGGTATCC ATGACACTTC 20 2) INFORMATION FOR SEQ ID NO: 595 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear (ii) MOLECULE TYPE: DNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 595 45 TTAAAGCAGA CGTATACGTT 20 2) INFORMATION FOR SEQ ID NO: 596 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear (ii) MOLECULE TYPE: DNA (xi) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear (ii) MOLECULE TYPE: DNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 596		(ii) MOLECULE TYPE: DNA	
2) INFORMATION FOR SEQ ID NO: 594 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear 25 (ii) MOLECULE TYPE: DNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 594 ATTGGTATCC ATGACACTTC 20 2) INFORMATION FOR SEQ ID NO: 595 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear (ii) MOLECULE TYPE: DNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 595 45 TTAAAGCAGA CGTATACGTT 20 2) INFORMATION FOR SEQ ID NO: 596 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear (ii) MOLECULE TYPE: DNA (XI) SEQUENCE DESCRIPTION: SEQ ID NO: 596 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear (ii) MOLECULE TYPE: DNA (XI) SEQUENCE DESCRIPTION: SEQ ID NO: 596	10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 593	
2) INFORMATION FOR SEQ ID NO: 594 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear 25 (ii) MOLECULE TYPE: DNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 594 ATTGGTATCC ATGACACTTC 20 2) INFORMATION FOR SEQ ID NO: 595 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear (ii) MOLECULE TYPE: DNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 595 45 TTAAAGCAGA CGTATACGTT 20 2) INFORMATION FOR SEQ ID NO: 596 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear (ii) MOLECULE TYPE: DNA (xi) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear (ii) MOLECULE TYPE: DNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 596		TTCACTAACT ATCGCCCACA	20
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear 25 (ii) MOLECULE TYPE: DNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 594 ATTGGTATCC ATGACACTTC 20 2) INFORMATION FOR SEQ ID NO: 595 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear (ii) MOLECULE TYPE: DNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 595 45 TTAAAGCAGA CGTATACGTT 20 2) INFORMATION FOR SEQ ID NO: 596 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear (II) MOLECULE TYPE: DNA (XI) SEQUENCE DESCRIPTION: SEQ ID NO: 596 (I) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (II) MOLECULE TYPE: DNA (XI) SEQUENCE DESCRIPTION: SEQ ID NO: 596	15		
(A) LENGTH: 20 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear 25 (ii) MOLECULE TYPE: DNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 594 ATTGGTATCC ATGACACTTC 20 2) INFORMATION FOR SEQ ID NO: 595 35 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear 40 (ii) MOLECULE TYPE: DNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 595 45 TTAAAGCAGA CGTATACGTT 20 2) INFORMATION FOR SEQ ID NO: 596 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear (ii) MOLECULE TYPE: DNA (xi) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear (ii) MOLECULE TYPE: DNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 596		2) INFORMATION FOR SEQ ID NO: 594	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 594 ATTGGTATCC ATGACACTTC 2) INFORMATION FOR SEQ ID NO: 595 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear (ii) MOLECULE TYPE: DNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 595 2) INFORMATION FOR SEQ ID NO: 596 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (C) STRANDEDNESS: Single (I) TOPOLOGY: Linear (ii) MOLECULE TYPE: DNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 596	20	(A) LENGTH: 20 bases(B) TYPE: Nucleic acid(C) STRANDEDNESS: Single	
ATTGGTATCC ATGACACTTC 2) INFORMATION FOR SEQ ID NO: 595 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear (ii) MOLECULE TYPE: DNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 595 45 TTAAAGCAGA CGTATACGTT 2) INFORMATION FOR SEQ ID NO: 596 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear (ii) MOLECULE TYPE: DNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 596	25	(ii) MOLECULE TYPE: DNA	
2) INFORMATION FOR SEQ ID NO: 595 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear (ii) MOLECULE TYPE: DNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 595 2) INFORMATION FOR SEQ ID NO: 596 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear (ii) MOLECULE TYPE: DNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 596		(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 594	
35 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear 40 (ii) MOLECULE TYPE: DNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 595 45 TTAAAGCAGA CGTATACGTT 20 2) INFORMATION FOR SEQ ID NO: 596 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear (ii) MOLECULE TYPE: DNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 596	30	ATTGGTATCC ATGACACTTC	20
(A) LENGTH: 20 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear (ii) MOLECULE TYPE: DNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 595 45 TTAAAGCAGA CGTATACGTT 20 2) INFORMATION FOR SEQ ID NO: 596 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear (ii) MOLECULE TYPE: DNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 596		2) INFORMATION FOR SEQ ID NO: 595	
(ii) MOLECULE TYPE: DNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 595 45 TTAAAGCAGA CGTATACGTT 20 2) INFORMATION FOR SEQ ID NO: 596 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear (ii) MOLECULE TYPE: DNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 596		(A) LENGTH: 20 bases(B) TYPE: Nucleic acid(C) STRANDEDNESS: Single	
2) INFORMATION FOR SEQ ID NO: 596 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear (ii) MOLECULE TYPE: DNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 596	40	(ii) MOLECULE TYPE: DNA	
2) INFORMATION FOR SEQ ID NO: 596 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear (ii) MOLECULE TYPE: DNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 596		(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 595	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear (ii) MOLECULE TYPE: DNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 596	45	TTAAAGCAGA CGTATACGTT	20
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear (ii) MOLECULE TYPE: DNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 596			
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear (ii) MOLECULE TYPE: DNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 596		2) INFORMATION FOR SEQ ID NO: 596	
(ii) MOLECULE TYPE: DNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 596		(A) LENGTH: 20 bases(B) TYPE: Nucleic acid(C) STRANDEDNESS: Single	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 596			
60			
▼ • ₽	60	349	

5	2) INFORMATION FOR SEQ ID NO: 597	
10	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear 	
	(ii) MOLECULE TYPE: DNA	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 597	
	ATTGGTATCA AAGAAACTTC	20
20	2) INFORMATION FOR SEQ ID NO: 598	
25	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear 	
2.0	(ii) MOLECULE TYPE: DNA	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 598	
	AATTACACCT CACACAAAAT	20
35		
	2) INFORMATION FOR SEQ ID NO: 599	
40	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear 	
45	(ii) MOLECULE TYPE: DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 599	
50	CGGTGAAGAA ATCGAAATCA	20
	2) INFORMATION FOR SEQ ID NO: 600	
55	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear 	
60		

	WO 01/23604	PC1/CA00/01150
	(ii) MOLECULE TYPE: DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 600	
5	ATGCAAGAAG AATCAAGCAA	20
10	2) INFORMATION FOR SEQ ID NO: 601	
15	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear 	
10	(ii) MOLECULE TYPE: DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 601	
20	GTTTCACGTG ATGATGTACA	20
٠		
25	2) INFORMATION FOR SEQ ID NO: 602	
30	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single	·
	(D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: DNA	
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 602	
	AAGTTGAAGT TGTTGGTATT	20
40	2) INFORMATION FOR SEQ ID NO: 603	
45	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear 	
50	(ii) MOLECULE TYPE: DNA	
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 603	
	GGTATTAAAG ACGAAACATC	2
55		
	2) INFORMATION FOR SEQ ID NO: 604	
60	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 bases 351	

	WO 01/23604 PC 1/CA00/01150	
	(B) TYPE: Nucleic acid(C) STRANDEDNESS: Single(D) TOPOLOGY: Linear	
5	(ii) MOLECULE TYPE: DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 604	
10	GGTGATGAAG TAGAAATCGT	20
	2) INFORMATION FOR SEQ ID NO:605	
15	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear 	
20	(ii) MOLECULE TYPE: DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 605	
25	GAAATGTTCC GTAAATTATT	20
30	2) INFORMATION FOR SEQ ID NO:606 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 bases (B) TYPE: Nucleic acid	
35	(C) STRANDEDNESS: Single (D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: DNA	
40	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 606 ATTAGACTAC GCTGAAGCTG	20
45	2) INFORMATION FOR SEQ ID NO: 607	
50	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 821 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear 	
	(ii) MOLECULE TYPE: Genomic DNA	
55	(vi) ORIGINAL SOURCE:(A) ORGANISM: Enterococcus faecalis(B) STRAIN: ATCC 29212	
60	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 607	
30	352	

	CGGAGCTATC	TTAGTAGTTT	CTGCTGCTGA	TGGTCCTATG	CCTCAAACAC	5 .
	GTGAACATAT	CTTATTATCA	CGTAACGTTG	GTGTACCATA	CATCGTTGTA	100
	TTCTTAAACA	AAATGGATAT	GGTTGATGAC	GAAGAATTAT	TAGAATTAGT	150
	AGAAATGGAA	GTTCGTGACT	TATTATCAGA	ATACGATTTC	CCAGGCGATG	200
5	ATGTTCCAGT	TATCGCAGGT	TCTGCTTTGA	AAGCTTTAGA	AGGCGACGAG	250
	TCTTATGAAG	AAAAAATCTT	AGAATTAATG	GCTGCAGTTG	ACGAATATAT	300
	CCCAACTCCA	GAACGTGATA	CTGACAAACC	ATTCATGATG	CCAGTCGAAG	350
	ACGTATTCTC	AATCACTGGA	CGTGGTACTG	TTGCTACAGG	ACGTGTTGAA	400
	CGTGGTGAAG	TTCGCGTTGG	TGACGAAGTT	GAAATCGTTG	GTATTAAAGA	450
10	CGAAACATCT	AAAACAACTG	TTACAGGTGT	TGAAATGTTC	CGTAAATTAT	500
	TAGACTACGC	TGAAGCAGGC	GACAACTTCG	GTGCTTTATT	ACGTGGTGTA	550
	GCACGTGAAG	ATATCGAACG	TGGACAAGTA	TTAGCTAAAC	CAGCTACAAT	600
	CACTCCACAC	ACAAAATTCA	AAGCTGAAGT	ATACGTATTA	TCAAAAGAAG	650
	AAGGCGGACG	TCACACTCCA	TTCTTCACTA	ACTACCGTCC	TCAATTCTAC	700
15	TTCCGTACAA	CAGACGTTAC	TGGTGTTGTA	GAATTGCCAG	AAGGTACTGA	750
	AATGGTAATG	CCTGGTGATA	ACGTTGCTAT	GGACGTTGAA	TTAATTCACC	800
	CAATCGCTAT	CGAAGACGGA	A			821

20

25

- 2) INFORMATION FOR SEQ ID NO: 608
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 751 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: Genomic DNA

30

- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Enterococcus faecium
 - (B) STRAIN: ATCC 19434
- 35 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 608

	CGGAGCTATC	TTGGTAGTTT	CTGCTGCTGA	CGGCCCAATG	CCTCAAACTC	50
	GTGAACACAT	CCTATTGTCT	CGTCAAGTTG	GTGTTCCTTA	CATCGTTGTA	100
	TTCTTGAACA	AAGTAGACAT	GGTTGATGAC	GAAGAATTAC	TAGAATTAGT	150
40	TGAAATGGAA	GTTCGTGACC	TATTAACAGA	ATACRAATTC	CCTGGTGRCG	200
	ATGTTCCTGT	AGTTGCTGGA	TCAGCTTTGA	AAGCTCTAGA	AGGCGACGCT	250
	TCATACGAAG	AAAAAATTCT	TGAATTAATG	GCTGCAGTTG	ACGAATACAT	300
	CCCAACTCCA	GAACGTGACA	ACGACAAACC	ATTCATGATG	CCAGTTGAAG	350
	ACGTGTTCTC	AATTACTGGA	CGTGGTACTG	TTGCTACAGG	TCGTGTTGAA	400
45	CGTGGACAAG	TTCGCGTTGG	TGACGAAGTT	GAAGTTGTTG	GTATTGCTGA	450
	AGAAACTTCA	AAAACAACAG	TTACTGGTGT	TGAAATGTTC	CGTAAATTGT	500
	TAGACYACGC	TGAAGCTGGA	GACRACATTG	GTGCTTTACT	ACGTGGTGTT	550
	GCACGTGAAG	ACATCCAACG	TGGACAAGTT	TTAGCTAAAC	CAGGTACAAT	600
	CACACCTCRT	ACAAAATTCT	CTGCAGAAGT	ATACGTGTTG	ACAAAAGAAG	650
50	AAGGTGGACG	TCATACTCCA	TTCTTCACTA	ACTACCGTCC	ACAATTCTAC	700
	TTCCGTACAA	CTGACGTAAC	AGGTGTTGTT	GAATTACCAG	AAGGAACTGA	750
	A					751

- 2) INFORMATION FOR SEQ ID NO: 609
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 751 bases
- 60 (B) TYPE: Nucleic acid

PCT/CA00/01150 WO 01/23604

STRANDEDNESS: Double (C)

- (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: Genomic DNA

5 (vi) ORIGINAL SOURCE:

- (A) ORGANISM: Enterococcus gallinarum
- STRAIN: ATCC 49573 (B)
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 609 10

	CGGTGCGATC	TTAGTAGTAT	CTGCTGCTGA	CGGTCCTATG	CCTCAAACTC	50
	GTGAACACAT	CTTGTTATCA	CGTAACGTTG	GCGWACCATA	CATCGTTGTT	100
	TTCTTGAACA	AAATGGATAT	GGTTGAYGAC	GAAGAATTGC	TAGAATTAGT	150
15	TGAAATGGAA	GTTCGTGACC	TATTGTCTGA	ATATGACTTC	CCAGGCGACG	200
	ATGTTCCTGT	AATCGCCGGT	TCTGCTTTGA	AAGCTCTTGA	AGGAGATCCT	250
	TCATACGAAG	AAAAAATCAT	GGAATTGATG	GCTGCAGTTG	ACGAATACGT	300
	TCCAACTCCA	GAACGTGATA	CTGACAAACC	ATTCATGATG	CCAGTCGAAG	350
	ACGTATTCTC	AATCACTGGA	CGTGGTACTG	TTGCTACAGG	CCGTGTTGAA	400
20	CGTGGACAAG	TTCGCGTTGG	TGATGAAGTA	GAAATCGTTG	GTATTGCTGA	450
	CGAAACTGCT	AAAACAACTG	TAACAGGTGT	TGAAATGTTC	CGTAAATTGT	500
	TAGACTATGC	TGAAGCAGGG	GATAACATTG	GTGCATTGCT	ACGTGGGGTT	550
	GCTCGTGAAG	ACATCCAACG	TGGACAAGTA	TTGGCTAAAG	CTGGTACRAT	600
	CACACCTCAT	ACAAAATTCA	AAGCTGAAGT	TTATGTTTTG	ACAAAAGAAG	650
25	AAGGTGGRCG	TCACACTCCA	TTCTTCACTA	ACTACCGTCC	TCAGTTCTAC	700
	TTCCGTACAA	CTGACGTAAC	TGGTGTTGTT	GAATTACCAG	AAGGAACTGA	750
	A´					751

- 30 2) INFORMATION FOR SEQ ID NO: 610
 - (i) SEQUENCE CHARACTERISTICS:
 - LENGTH: 891 bases (A)
 - (B)
 - TYPE: Nucleic acid STRANDEDNESS: Double (C)
 - TOPOLOGY: Linear (D)
 - (ii) MOLECULE TYPE: Genomic DNA

(vi) ORIGINAL SOURCE:

35

- ORGANISM: Haemophilus influenzae Rd (A)
- STRAIN: KW20 (B)
- ACCESSION NUMBER: extracted from U32739 (C)
- 45 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 610

	AATATGATTA	CTGGTGCGGC	ACAAATGGAT	GGTGCTATTT	TAGTAGTAGC	50
	AGCAACAGAT	GGTCCTATGC	CACAAACTCG	TGAACACATC	TTATTAGGTC	100
50	GCCAAGTAGG	TGTTCCATAC	ATCATCGTAT	TCTTAAACAA	ATGCGACATG	150
	GTAGATGACG	AAGAGTTATT	AGAATTAGTC	GAAATGGAAG	TTCGTGAACT	200
	TCTATCTCAA	TATGACTTCC	CAGGTGACGA	TACACCAATC	GTACGTGGTT	250
•	CAGCATTACA	AGCGTTAAAC	GGCGTAGCAG	AATGGGAAGA	AAAAATCCTT	300
	GAGTTAGCAA	ACCACTTAGA	TACTTACATC	CCAGAACCAG	AACGTGCGAT	350
55	TGACCAACCG	TTCCTTCTTC	CAATCGAAGA	TGTGTTCTCA	ATCTCAGGTC	400
	GTGGTACTGT	AGTAACAGGT	CGTGTAGAAC	GAGGTATTAT	CCGTACAGGT	450
	GATGAAGTAG	AAATCGTCGG	TATCAAAGAT	ACAGCGAAAA	CTACTGTAAC	500
	GGGTGTTGAA	ATGTTCCGTA	AATTACTTGA	CGAAGGTCGT	GCAGGTGAAA	550
	ACATCGGTGC	ATTATTACGT	GGTACCAAAC	GTGAAGAAAT	CGAACGTGGT	600
60	CAAGTATTAG	CGAAACCAGG	TTCAATCACA	CCACACACTG	ACTTCGAATC	650

	AGAAGTGTAC	GTATTATCAA	AAGATGAAGG	TGGTCGTCAT	ACTCCATTCT	700
	TCAAAGGTTA	CCGTCCACAA	TTCTATTTCC	GTACAACAGA	CGTGACTGGT	750.
	ACAATCGAAT	TACCAGAAGG	CGTGGAAATG	GTAATGCCAG	GCGATAACAT	800
	CAAGATGACA	GTAAGCTTAA	TCCACCCAAT	TGCGATGGAT	CAAGGTTTAC	850
5	GTTTCGCAAT	CCGTGAAGGT	GGCCGTACAG	TAGGTGCAGG	C	891

2) INFORMATION FOR SEQ ID NO: 611

10

20

50

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 818 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
- 15 (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: Genomic DNA
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Staphylococcus epidermidis
 - (B) STRAIN: ATCC 14990
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 611

25	CGGCGGTATC	TTAGTTGTAT	CTGCTGCTGA	CGGTCCAATG	CCACAAACTC	50
	GTGAACACAT	CTTATTATCA	CGTAACGTTG	GTGTACCAGC	ATTAGTTGTA	100
	TTCTTAAACA	AAGTTGACAT	GGTAGACGAC	GAAGAATTAT	TAGAATTAGT	150
	TGAAATGGAA	GTTCGTGACT	TATTAAGCGA	ATATGACTTC	CCAGGTGACG	200
	ATGTACCTGT	AATCGCTGGT	TCTGCATTAA	AAGCATTAGA	AGGCGATGCT	250
30	GAATACGAAC	AAAAAATCTT	AGACTTAATG	CAAGCAGTTG	ATGATTACAT	300
	TCCAACTCCA	GAACGTGATT	CTGACAAACC	ATTCATGATG	CCAGTTGAGG	350
	ACGTATTCTC	AATCACTGGT	CGTGGTACTG	TTGCTACAGG	CCGTGTTGAA	400
	CGTGGTCAAA	TCAAAGTTGG	TGAAGAAGTT	GAAATCATCG	GTATGCACGA	450
	AACTTCTAAA	ACAACTGTTA	CTGGTGTAGA	AATGTTCCGT	AAATTATTAG	500
35	ACTACGCTGA-	AGCTGGTGAC	AACATCGGTG	CTTTATTACG	TGGTGTTGCA	550
	CGTGAAGACG	TACAACGTGG	TCAAGTATTA	GCTGCTCCTG	GTTCTATTAC	600
	ACCACACACA	AAATTCAAAG	CTGAAGTATA	CGTATTATCT	AAAGATGAAG	650
	GTGGACGTCA	CACTCCATTC	TTCACTAACT	ATCGCCCACA	ATTCTATTTC	700
	CGTACTACTG	ACGTAACTGG	TGTTGTAAAC	TTACCAGAAG	GTACAGAAAT	7 50
40	GGTTATGCCT	GGCGACAACG	TTGAAATGAC	AGTTGAATTA	ATCGCTCCAA	800
	TCGCTATCGA	AGACGGAA				818

45 2) INFORMATION FOR SEQ ID NO: 612

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 825 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: Genomic DNA
- 55 (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Salmonella choleraesuis subsp. choleraesuis serotype Parathyphi A
 - (B) STRAIN: ATCC 9150
- 60 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 612

	GGCGCGATCC	TGGTTGTTGC	TGCGACTGAC	GGCCCGATGC	CGCAGACCCG	5ø
	TGAGCACATC	CTGCTGGGTC	GTCAGGTAGG	CGTTCCGTAC	ATCATCGTGT	100
	TCCTGAACAA	ATGCGACATG	GTTGATGACG	AAGAGCTGCT	GGAACTGGTT	150
5	GAAATGGAAG	TTCGTGAACT	TCTGTCTCAG	TACGACTTCC	CGGGCGACGA	200
	CACGCCGATC	GTTCGTGGTT	CTGCTCTGAA	AGCGCTGGAA	GGCGACGCAG	250
	AGTGGGAAGC	GAAAATCATC	GAACTGGCTG	GCTTCCTGGA	TTCTTACATC	300
	CCGGAACCAG	AGCGTGCGAT	TGACAAGCCG	TTCCTGCTGC	CGATCGAAGA	350
	CGTATTCTCC	ATCTCCGGTC	GTGGTACCGT	TGTTACCGGT	CGTGTAGAAC	400
10	GCGGTATCAT	CAAAGTGGGC	GAAGAAGTTG	AAATCGTTGG	TATCAAAGAG	450
	ACTCAGAAGT	CTACCTGTAC	TGGCGTTGAA	ATGTTCCGCA	AACTGCTGGA	500
	CGAAGGCCGT	GCCGGTGAGA	ACGTAGGTGT	TCTGCTGCGT	GGTATCAAAC	550
	GTGAAGAAAT	CGAACGTGGT	CAGGTACTGG	CTAAGCCGGG	CACCATCAAG	600
	CCGCACACCA	AGTTCGAATC	TGAAGTGTAC	ATTCTGTCCA	AAGATGAAGG	650
15	CGGCCGTCAT	ACTCCGTTCT	TCAAAGGCTA	CCGTCCGCAG	TTCTACTTCC	700
	GTACTACTGA	CGTGACTGGC	ACCATCGAAC	TGCCGGAAGG	CGTAGAGATG	750
	GTAATGCCGG	GCGACAACAT	CAAAATGGTT	GTTACCCTGA	TCCACCCGAT	800
	CGCAATGGAC	GACGGTCTGC	GTTTC			825
			•			

20

25

2) INFORMATION FOR SEQ ID NO: 613

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 778 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
- 30 (ii) MOLECULE TYPE: Genomic DNA
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Serratia ficaria
 - (B) STRAIN: ATCC 33105

35

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 613

	GGCGCTATCC	TGGTTGTTGC	TGCGACTGAC	GGCCCAATGC	CTCAGACCCG	50
	TGAGCACATC	CTGCTGGGTC	GYCAGGTTGG	CGTTCCTTTC	ATCATCGTRT	100
40	TCATGAACAA	ATGCGACATG	GTTGATGATG	AAGAGCTGCT	GGAACTGGTA	150
	GAAATGGAAG	TTCGCGAACT	GCTGTCCGCT	TACGACTTCC	CTGGCGATGA	200
	CCTGCCGGTG	ATTCGCGGTT	CCGCGCTGAA	AGCGCTGGAA	GGCGAAGCCG	250
	AGTGGGAAGC	TAAAATCATC	GAGCTGGCTG	AMCMSCTGGA	TACTTACATC	300
	CCAGAACCAG	AGCGCGCTAT	CGACAAGCCG	TTCCTGCTGC	CAATCGAAGA	350
45	CGTATTCTCC	ATCTCCGGTC	GTGGTACCGT	GGTTACCGGT	CGTGTTGAGC	400
	GCGGTATCAT	CAAAGTTGGC	GAAGAAGTTG	AAATCGTTGG	TATCAAAGAC	450
	ACCGTCAAGT	CTACCTGTAC	CGGCGTTGAA	ATGTTCCGCA	AACTGCTGGA	500
	CGAAGGCCGT	GCCGGTGAGA	ACGTAGGTGT	TCTGCTGCGT	GGTATCAAGC	550
	GTGAAGACAT	CGAACGTGGT	CAGGTTCTGG	CTAAACCAGG	TTCCATCAAG	600
50	CCGCACACCC	AGTTCGATTC	AGAAGTGTAC	ATCCTGAGCA	AAGAAGAAGG	650
	TGGTCGTCAC	ACKCCATTCT	TCAAAGGCTA	CCGTCCACAG	TTCTACTTCC	700
	GTACTACTGA	CGTGACCGGT	ACCATCGAAC	TGCCAGAAGG	CGTTGAGATG	750
	GTAATGCCTG	GCGACAACGT	GAACATGA			778

55

60

2) INFORMATION FOR SEQ ID NO: 614

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 653 bases

- (B) TYPE: Nucleic acid
- (C) STRANDEDNESS: Double
- (D) TOPOLOGY: Linear
- 5 (ii) MOLECULE TYPE: Genomic DNA
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Enterococcus malodoratus
 - (B) STRAIN: ATCC 43197

10

35

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 614

	GTGCGATCTT	AGTAGTATCA	GCTACTGATG	GTCCAATGCC	TCAAACTCGT	50
	GAACACATTT	TGTTATCACG	TCAAGTTGGT	GTTAAGCACT	TGATCGTTTT	100
15	CTTGAACAAA	GTAGATTTAG	TTGATGACGA	AGAATTGATC	GACTTAGTTG	150
	AAATGGAAGT	ACGTGAATTA	CTTTCTGAAT	ATGGTTTCCC	AGGTGATGAT	200
	ATTCCAGTGC	TTAAAGGTTC	TGCTTTGAAA	GCATTAGAAG	GCGATCCAGA	250
	ACAAGAACAA	GTTATTCTTG	ATTTGATGGA	TACCGTTGAT	GAATATATCC	300
	CAACACCTGA	ACGTGACAAT	GACAAACCGT	TCTTGTTACC	AGTTGAGGAT	350
20	GTTTTCTCGA	TCACAGGACG	TGGTACTGTA	GCTTCTGGTC	GTATCGACCG	400
	TGGCGAAGTT	AAAGTCGGCG	ATGAAATTGA	AATCATCGGG	ATCAAACCTG	450
	AAGTTCAAAA	AGCAATCGTT	ACTGGACTTG	AAATGTTCCG	TAAAACATTG	500
	GATTATGGTG	AAGCTGGCGA	TAACGTTGGG	GTTCTATTAC	GTGGGATTAC	550
	ACGTGATGAA	ATCGAACGTG	GCCAAGTATT	AGCTAAACCA	GGTTCAATCA	600
25	CACCACATAC	TAAGTTCAAA	GCCGAAGTAT	ATGTGTTGAC	GAAAGAAGAA	650
	GGT					653

- 30 2) INFORMATION FOR SEQ ID NO: 615
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 829 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: Genomic DNA
- 40 (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Enterococcus durans
 - (B) STRAIN: ATCC 19432
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 615

45						
	CCATTCTAGT	TGTATCTGCA	ACAGATGGAC	CAATGCCACA	AACACGTGAA	50
	CATATTTTAT	TGTCACGTCA	AGTAGGTGTT	AAATATTTGA	TCGTCTTCTT	100
	GAACAAAATC	GACTTAGTAG	ATGATGAAGA	ATTGATTGAT	CTTGTCGAAA	150
	TGGAAGTTCG	TGAATTATTA	AGCGAATATG	GTTTCCCAGG	TGACGATACA	200
50	CCAGTCATCA	AAGGTTCAGC	ATTAAAAGCT	TTACAAGGAG	ATCCTGATGC	250
	AGAAGCAGCT	ATCATGGAAT	TGATGGATAC	TGTTGATGAA	TATATCCCAA	300
	CACCAGAACG	TGATACAGAC	AAACCATTAT	TGTTACCAGT	GGAAGATGTC	350
	TTCTCAATCA	CAGGTCGTGG	GACTGTTGCT	TCAGGTCGTA	TCGATCGTGG	400
	TGCAGTTCGT	GTAGGTGATG	AAATCGAAAT	CGTCGGTATC	AAACCTGAAA	450
55	CACAAAAAGC	TGTTGTAACT	GGGGTCGAAA	TGTTCCGCAA	GACATTAGAC	500
	TATGGTGAAG	CAGGAGATAA	CGTTGGGGTA	TTGTTACGTG	GTATCCAACG	550
	TGAAGATATC	GAACGTGGAC	AAGTAATCGC	AAAACCAGGT	TCAATCACAC	600
	CACATACAAA	ATTCAAAGCA	GAAGTGTACG	TATTGACAAA	AGAAGAAGGT	650
	GGACGTCATA	CACCATTCTT	CAATAACTAT	CGTCCACAAT	TCTACTTCCG	700
60	TACAACTGAC	GTAACTGGAA	CAATCGTTTT	ACCTGGAGGC	ACTGAAATGG	750

WO 01/23604	PCT/CA00/01150

	TTATGCCTGG AGATAACGTA ACGATCGACG TTGAATTGAT CCATCCAGTT GCCATCGAAA ACGGAACAAC TTTCTCTAT	8 9⁄ 0 829
5	2) INFORMATION FOR SEQ ID NO: 616	
10	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 669 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear 	
15	 (ii) MOLECULE TYPE: Genomic DNA (vi) ORIGINAL SOURCE: (A) ORGANISM: Enterococcus pseudoavium (B) STRAIN: ATCC 49372 	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 616	
25	GGTGCAATTT TAGTAGTATC TGCTACTGAT GGCCCAATGC CACAAACACG TGAACATATC TTGTTATCAC GTCAAGTAGG GGTTAAACAC TTAATCGTCT TCTTGAACAA AGTTGATTTA GTTGATGATG AAGAATTGAT CGATTTAGTT GAAATGGAAG TTCGGGAATT GCTTTCTGAA TATGGTTTCC CAGGCGATGA TATTCCAGTA CTTAAAGGTT CTGCTTTGAA AGCTTTAGAA GGCGATCCTG AACAAGAACA AGTAATCCTT GACTTGATG ATACGGTTGA TGAATACATC CCAACGCCTG AACGTGATAC TGACAAACCA TTCTTGTTAC CAGTCGAAGA	50 100 150 200 250 300 350
30	TGTCTTCTCA ATCACAGGAC GTGGTACGGT TGCATCTGGT CGTATCGATC GTGGGGAAGT TAAAGTCGGT GATGAAGTTG AAATCATCGG GATCAAACCT GAAGTGCAAA AAGCTGTCGT AACTGGACTA GAAATGTTCC GTAAGACATT GGATTACGGT GAAGCTGGCG ATAACGTTGG GGTTCTATTA CGTGGGATTA CTCGTGATGA AATCGAACGT GGACAAGTAT TAGCTAAACC AGGTTCAATC	400 450 500 550 600
35	ACTCCACATA CGAAATTCAG TGCAGAAGTT TATGTATTGA CGAAAGAAGA AGGTGGCCGT CATACGCCA	650 669
40	2) INFORMATION FOR SEQ ID NO: 617 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 835 bases (B) TYPE: Nucleic acid	
45	(C) STRANDEDNESS: Double(D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
50	(vi) ORIGINAL SOURCE:(A) ORGANISM: Enterococcus dispar(B) STRAIN: ATCC 51266	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 617	
55	CGGGGCAATT TTAGTTGTAT CTGCAACTGA TGGCCCAATG CCACAAACAC GTGAACACAT TTTGTTAGCT CGTCAAGTAG GGGTTAAATA TTTAATCGTC TTCTTGAACA AAACAGATTT AGTTGATGAT GAAGAATTAT TGGAACTAGT TGAAATGGAA GTTCGTGAAT TATTAAATGA ATACAATTTC CCTGGCGATG ATATTCCTGT TATTCGCGGA TCTGCTTTAA AAGCATTAGA AGGCGATCCA	50 100 150 200
60	GAACAAGAAG AAGTAATTAT GAACTTGATG GATACTGTGG ATGAATATAT 358	250 300

	CCCAACTCCA	GAACGTGACA	ATGATAAACC	ATTCTTGTTA	CCAGTGGAAG	35 0/
		AATTACTGGT				400
	CGTGGTAAAG	TCAACGTTGG	TGATGAAATT	GAAATTATCG	GAATTAAACC	450
		AAAGCTGTTG			·	500
5	TGGATTATGG	TGAAGCTGGT	GATAACGTTG	GGGTCTTATT	ACGTGGGATT	550
	ACTCGTGATG	AAGTAGAACG	TGGTCAAGTA	TTAGCAAAAC	CAGGTTCCAT	600
		ACCAAATTTA				650
	AAGGTGGACG	TCATACTCCT	TTCTTTAATA	ACTATCGTCC	TCAATTTTAT	700
		CTGATGTGAC	·-			750
10	AATGGTAATG	CCTGGTGATA	ATGTAACAAT	TGAAGTTGAA	TTGATTCATC	800
	CAATCGCCGT	TGAAAAAGGG	ACTACTTTCT	CAATT		835

- 15 2) INFORMATION FOR SEQ ID NO: 618
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 673 bases
 - (B) TYPE: Nucleic acid
- 20 (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: Genomic DNA
- 25 (vi) ORIGINAL SOURCE:

30

45

55

- (A) ORGANISM: Enterococcus avium
- (B) STRAIN: ATCC 14025
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 618

GGTGCAATCC TAGTAGTATC AGCTACTGAT GGTCCAATGC CGCAAACACG 50 TGAACATATT TTGCTATCAC GGCAAGTGGG TGTTAAACAC TTAATCGTAT 100 TTTTAAACAA AGTTGATTTA GTCGATGATG AAGAATTGAT CGATCTAGTT 150 GAAATGGAAG TCCGTGAATT ACTTTCTGAA TATGGTTTCC CAGGTGACGA 200 35 TATTCCAGTT CTCAAAGGTT CAGCTTTGAA AGCATTAGAA GGCGATCCTG 250 AACAAGAACA AGTAATCCTT GATTTAATGG ATACAGTTGA CGAATATATC 300 CCAACTCCAG AACGTGACAC TGACAAGCCA TTCTTGTTAC CAGTCGAAGA 350 TGTATTTTCT ATCACTGGTC GTGGGACTGT AGCGTCTGGA CGGATTGATC 400 GTGGTGAAGT TAAAGTCGGC GATGAAGTTG AAATCATCGG GATCAAACCT 450 40 GAAATTCAAA AAGCAGTCGT AACTGGACTT GAAATGTTCC GTAAAACTTT 500 AGATTATGGT GAAGCTGGCG ATAACGTTGG GGTTCTATTA CGTGGGATTA 550 CACGTGATGA AATCGAACGT GGTCAAGTCT TAGCTAAACC AGGTTCAATC 600 ACACCACATA CAAAATTCAG TGCAGAAGTT TACGTATTGA CGAAAGAAGA 650 AGGTGGACGT CATACACCAT CTT 673

2) INFORMATION FOR SEQ ID NO: 619

- 50 (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1713 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: Genomic DNA
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Saccharomyces cerevisiae
- 60 (C) ACCESSION NUMBER: K00428

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 619

	TTTCATATTT	TTAAGGATTT	TGTTTTAGCA	CCCATCCGAC	CTCAGTCAAT	50
5	ATATCCTTTC	GCGACCAGGC	TTTCCTCCCT	TTTGCTGCTA	ACTGGTTACA	100
	GATTTTCCTA	TTTTTGGTCA	TTTTTATCTT	TGAAACTGAT	TAAGCTGAAA	150
	AAATTTGAGC	TTCTTTGTTG	TAAACTATTT	TGTGCTTTCA	GTTTTATTCT	200
	AGCTCGACAA	AGGTAACAGA	CAAAAATGTC	AGCTTTATTA	CCAAGATTAC	250
	TCACAAGAAC	AGCTTTTAAA	GCTTCTGGGA	AACTTCTGAG	GCTCTCTTCA	300
10	GTAATTTCTA	GGACCTTTTC	TCAAACTACT	ACTTCCTATG	CAGCTGCTTT	350
	TGATCGTTCC	AAACCGCATG	TAAATATAGG	TACGATCGGC	CATGTTGATC	400
	ATGGGAAGAC	AACTTTAACC	GCAGCCATTA	CGAAAACGTT	AGCCGCAAAA	450
	GGTGGTGCCA	ACTTCTTGGA	CTATGCTGCC	ATCGATAAGG	CTCCGGAAGA	500
	AAGAGCTCGT	GGTATTACAA	TTTCTACTGC	ACACGTGGAA	TACGAAACGG	550
15	CCAAGAGACA	TTATTCTCAC	GTCGACTGTC	CAGGCCACGC	TGATTACATC	600
	AAGAATATGA	TTACCGGTGC	TGCTCAAATG	GATGGTGCTA	TCATTGTTGT	650
	AGCTGCTACC	GATGGACAAA	TGCCCCAAAC	TAGAGAACAT	TTACTTTTGG	700
	CCAGACAAGT	TGGTGTCCAA	CATATTGTCG	TTTTTGTTAA	CAAGGTTGAT	750
	ACCATTGATG	ATCCAGAAAT	GTTAGAGTTA	GTCGAAATGG	AAATGAGAGA	800
20	ACTTTTAAAC	GAATATGGGT	TTGACGGTGA	TAATGCTCCA	ATTATCATGG	850
	GTTCTGCCCT	TTGCGCTTTG	GAAGGTCGCC	AACCTGAAAT	TGGGGAGCAG	900
	GCCATCATGA	AACTTTTGGA	TGCAGTGGAT	GAGTATATTC	CTACACCTGA	950
	AAGAGATTTG	AACAAGCCTT	TCTTGATGCC	CGTTGAAGAT	ATCTTCTCTA	1000
	TCTCCGGTAG	AGGTACTGTG	GTCACTGGTC	GTGTGGAAAG	GGGTAATTTA	1050
25	AAGAAAGGTG	AGGAATTGGA	AATTGTTGGT	CACAACTCCA	CCCCATTGAA	1100
	AACAACAGTT	ACTGGTATTG	AAATGTTTAG	AAAGGAATTG	GACTCTGCTA	1150
	TGGCAGGTGA	CAATGCCGGT	GTTTTACTTA	GAGGTATCAG	GAGAGATCAA	1200
	TTGAAGAGAG	GTATGGTCTT	AGCTAAGCCA	GGTACCGTTA	AAGCCCATAC	1250
	AAAGATTCTA	GCCTCTTTGT	ACATTTTATC	CAAAGAGGAA	GGTGGTAGAC	1300
30	ATTCTGGGTT	TGGTGAAAAC	TACAGACCAC	AAATGTTTAT	AAGAACAGCT	1350
	GATGTTACAG	TTGTGATGAG	ATTTCCTAAG	GAGGTTGAAG	ATCATTCTAT	1400
	GCAAGTTATG	CCAGGTGACA	ATGTTGAAAT	GGAATGTGAT	TTGATCCATC	1450
	CTACCCCATT	AGAAGTTGGT	CAACGTTTCA	ATATCAGAGA	GGGTGGAAGA	1500
	ACTGTTGGTA	CCGGTCTAAT	CACACGTATT	ATTGAATAGA	CTTATTGATG	1550
35	CAACTGGAGT	ATATTTCTAT	ATATTCTGTT	CATTTCCCCT	CTCATAATAT	1600
	ATACTTGTTT	CGTTAAAATT	TTATACGTGT	AAATAAAGTG	CCATAAATTT	1650
	TTCAGCTTTA	CTTTTGGTAG	AGTCCTGCTA	GCACTAGATT	TTACAATTTC	1700
	ATGTGCACAC	ACC				1713

40

45

55

2) INFORMATION FOR SEQ ID NO: 620

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 18 bases
- (B) TYPE: Nucleic acid
- (C) STRANDEDNESS: Single
- (D) TOPOLOGY: Linear
- 50 (ii) MOLECULE TYPE: DNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 620

ATTGGTGCAT TGCTACGT

18

2) INFORMATION FOR SEQ ID NO: 621

60 (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 751 bases
- (B) TYPE: Nucleic acid
- (C) STRANDEDNESS: Double
- (D) TOPOLOGY: Linear

5

- (ii) MOLECULE TYPE: Genomic DNA
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Enterococcus faecium
- 10 (B) STRAIN: ATCC 19434
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 621

	TGGTGCAATC	TTAGTTGTTT	CTGCAACTGA	CGGTCCGATG	CCTCAAACAC	50
15	GTGAACACAT	TTTATTGTCA	CGCCAAGTTG	GTGTAAAATA	CCTGATTGTT	100
	TTCTTGAACA	AAGTTGATTT	AGTCGATGAT	GAAGAATTGA	TCGATTTGGT	150
	AGAAATGGAA	GTTCGCGAGT	TATTGAGCGA	ATATGGTTTC	CCAGGCGATG	200
	ACACTCCTGT	GATCAAAGGT	TCCGCATTAA	AAGCATTGCA	AGGCGATCCA	250
	GATGCTGAAG	CTGCTATTAT	GGAATTGATG	GATACAGTAG	ATGAATATAT	300
20	CCCAACACCA	GAACGTGATA	CAGATAAACC	ATTACTATTG	CCAGTGGAAG	350
	ACGTCTTCTC	AATTACAGGT	CGAGGAACTG	TTGCCTCAGG	TCGTATTGAT	400
	CGTGGTGCTG	TTCGTGTCGG	TGATGAGGTA	GAGATCGTAG	GGATCAAACC	450
	TGAAACACAA	AAAGCAGTTG	TAACAGGTGT	AGAAATGTTC	CGTAAAACGT	500
	TAGATTACGG	GGAAGCTGGG	GATAACGTAG	GCGTGTTGTT	ACGGGGGATC	550
25	CAACGTGACG	ATATCGAACG	TGGACAAGTA	CTTGCTAAAC	CAGGTTCCAT	600
	TACTCCACAT	ACAAAATTCA	AAGCAGAAGT	GTACGTGTTG	ACAAAAGAAG	650
	AAGGTGGACG	TCATACTCCA	TTCTTCAACA	ACTATCGTCC	ACAGTTCTAC	700
	TTCCGCACAA	CTGATGTTAC	AGGAACAATC	ACATTGCCAG	AAGATACAGA	750
	A					751
~ ^						

30

- 2) INFORMATION FOR SEQ ID NO: 622
- 35 (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 750 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear

- (ii) MOLECULE TYPE: Genomic DNA
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Saccharomyces cerevisiae
- 45 (B) STRAIN: ATCC 13264
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 622

	GTCAAATGGG	ACGAATCCAG	ATTCCAAGAA	ATTGTCAAGG	AAACCTCCAA	50
50	CTTTATCAAG	AAGGTTGGTT	ACAACCCAAA	GACTGTTCCA	TTCGTCCCAA	100
	TCTCTGGTTG	GAACGGTGAC	AACATGATTG	AAGCTACCAC	CAACGCTCCA	150
	TGGTACAAGG	GTTGGGAAAA	GGAAACCAAG	GCCGGTGTCG	TCAAGGGTAA	200
	GACTTTGTTG	GAAGCCATTG	ACGCCATTGA	ACAACCATCT	AGACCAACTG	250
	ACAAGCCATT	GAGATTGCCA	TTGCAAGATG	TTTACAAGAT	TGGTGGTATT	300
55	GGTACTGTGC	CAGTCGGTAG	AGTTGAAACC	GGTGTCATCA	AGCCAGGTAT	350
	GGTTGTTACT	TTCGCCCCAG	CTGGTGTTAC	CACTGAAGTC	AAGTCCGTTG	400
	AAATGCATCA	CGAACAATTG	GAACAAGGTG	TTCCAGGTGA	CAACGTTGGT	450
	TTCAACGTCA	AGAACGTTTC	CGTTAAGGAA	ATCAGAAGAG	GTAACGTCTG	500
	TGGTGACGCT	AAGAACGATC	CACCAAAGGG	TTGCGCTTCT	TTCAACGCTA	550
60	CCGTCATTGT	TTTGAACCAT	CCAGGTCAAA	TCTCTGCTGG	TTACTCTCCA	600

GTTTTGGATT	GTCACACTGC	TCACATTGCT	TGTAGATTCG	ACGAATTGTT	65/0
GGAAAAGAAC	GACAGAAGAT	CTGGTAAGAA	GTTGGAAGAC	CATCCAAAGT	760
TCTTGAAGTC	CGGTGACGCT	GCTTTGGTCA	AGTTCGTTCC	ATCTAAGCCA	750

5

10

- 2) INFORMATION FOR SEQ ID NO:623
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1269 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
- 15 (ii) MOLECULE TYPE: Genomic DNA
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Cryptococcus neoformans
 - (B) STRAIN: ATCC 44104

20

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 623

	TCTTGAAAGC	TTAAGGCCGA	GCGAGAGCGA	GGTATCACCA	TCGACATTGC	50
	TCTTTGGAAG	TTCGAGACCC	CCAGGTACCA	GGTCACCGTC	ATTGACGCCC	100
25	CCGGTCACCG	AGACTTCATC	AAGAACATGA	TCACCGGTAC	CTCCCAGGCT	150
	GACTGTGCCA	TCCTCATCAT	TGCCACCGGT	ATCGGTGAGT	TCGAGGCCGG	200
	TATCTCCAAG	GACGGTCAGA	CCCGAGAGCA	CGCCCTCCTC	GCCTTCACCC	250
	TCGGTGTCAG	GCAGCTCATT	GTTGCTTGCA	ACAAGATGGA	CACCTGCAAG	300
	TGGTCCGAGG	ACCGATTCAA	CGAAATCGTC	AAGGAGACCA	ACGGTTTCAT	350
30	CAAGAAGGTT	GGTTACAACC	CCAAGGCTGT	CCCCTTCGTC	CCCATCTCTG	400
	GTTGGCACGG	TGACAACATG	TTGGAGGAGA	CCACCAAGTC	AGTGAATCCG	450
	CTTCTACGTG	ATGAGATGTT	TTTCTGACTT	TCCGTGCAGC	ATGCCCTGGT	500
	ACAAGGGATG	GACCAAGGAG	ACCAAGTCTG	GTGTTTCCAA	GGGTAAGACC	550
	CTCCTCGAGG	CCATCGACGC	CATCGAGCCC	CCTACCCGAC	CCACCGACAA	600
35	GCCCCTCCGT	CTCCCTCTCC	AGGACGTCTA	CAAGATCGGT	GGTATCGGCA	650
	CAGTCCCTGT	CGGCCGAGTC	GAGACCGGTG	TCATCAAGGC	CGGTATGTTG	700
	TCTCATCTCT	CTTGTCTCGT	AACATGCGTC	TCGTAACATG	CGCTTACTTC	750
	ATTTTCAGGT	ATGGTCGTCA	AGTTCGCCCC	CACCAACGTC	ACCACTGAAG	800
	TCAAGTCCGT	TGAGATGCAC	CACGAGCAGA	TCCCCGAGGG	TCTTCCCGGA	850
40.	GACAACGTTG	GTTTCAACGT	CAAGAACGTT	TCCATCAAGG	ACATCCGACG	900
	AGGTAACGTC	TGTGGTGACT	CCAAGAACGA	CCCCCCTATG	GAGGCTGCTT	950
	CTTTCAACGC	CCAGGTTATC	GTCCTTAACC	ACCCTGGTCA	GATCGGTGCC	1000
	GGTTACACCC	CCGTTCTCGA	CTGTCACACT	GCCCGTAAGC	CTGACCCAAT	1050
	ACCTCCAACA	TACCTTTGAA	GCTGACCCTT	TCTAGACATT	GCCTGCAAGT	1100
45	TTGCTGAGTT	GATCGAGAAG	ATTGACCGAC	GAACCGGTAA	GGTCATGGAG	1150
	GCCGCCCCA	AGTTCGTCAA	GTCTGGTGAC	GCCGCCATTG	TCAAGCTTGT	1200
	TGCCCAGAAG	CCCCTCTGTG	TTGAGACCTA	CGCCGACTAC	CCCCCTCTTG	1250
	GTCGATTCGC	CGTCCGAGA				1269

50

- 2) INFORMATION FOR SEQ ID NO: 624
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 753
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
- 60 (ii) MOLECULE TYPE: Genomic DNA

	(VI) ORIGINAL SOURCE:	
	(A) ORGANISM: Candida albicans	
_	(B) STRAIN: ATCC 36801	
5	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 624	
	TCTGTCAAAT GGGACAAAAA CAGATTTGAA GAAATCATCA AGGAAACCTC	50
	CAACTTCGTC AAGAAGGTTG GTTACAACCC AAAGACTGTT CCATTCGTTC	100
10	CAATCTCTGG TTGGAATGGT GACAACATGA TTGAACCATC CACCAACTGT	150
	CCATGGTACA AGGGTTGGGA AAAGGAAACC AAATCCGGTA AAGTTACTGG	200
	TAAGACCTTG TTAGAAGCTA TTGACGCTAT TGAACCACCA ACCAGACCAA	250
	CCGACAAACC ATTGAGATTG CCATTGCAAG ATGTTTACAA GATCGGTGGT	300
	ATTGGTACTG TGCCAGTCGG TAGAGTTGAA ACTGGTATCA TCAAAGCCGG	350
15	TATGGTTGTT ACTTTCGCCC CAGCTGGTGT TACCACTGAA GTCAAATCCG	400
	TTGAAATGCA TCACGAACAA TTGGCTGAAG GTGTTCCAGG TGACAATGTT	450
	GGTTTCAACG TTAAGAACGT TTCCGTTAAA GAAATTAGAA GAGGTAACGT	500
	TTGTGGTGAC TCCAAGAACG ATCCACCAAA GGGTTGTGAC TCTTTCAATG	550
	CCCAAGTCAT TGTTTTGAAC CATCCAGGTC AAATCTCTGC TGGTTACTCT	600
20	CCAGTCTTGG ATTGTCACCC TGCCCACATT GCTTGTAAAT TCGACACTTT	650
	GGTTGAAAAG ATTGACAGAA GAACTGGTAA GAAATTGGAA GAAAATCCAA	700
	AATTCGTCAA ATCCGGTGAT GCTGCTATCG TCAAGATGGT CCCAACCAAA	750
	CCA	753
25		
	2) INFORMATION FOR SEQ ID NO: 625	
	2) INFORMATION FOR SEQ ID NO: 625	
	(i) SEQUENCE CHARACTERISTICS:	
30	(A) LENGTH: 26 bases	
J U	(B) TYPE: Nucleic acid	
	(C) STRANDEDNESS: Single	
	(D) TOPOLOGY: Linear	
35	(ii) MOLECULE TYPE: DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 625	
	CGTTGAAGAC ACGACCCAAA GTATCC	26
40		
	2) INFORMATION FOR SEQ ID NO: 626	
45	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 26 bases	
	(B) TYPE: Nucleic acid	
•	(C) STRANDEDNESS: Single	
	(D) TOPOLOGY: Linear	
50		
	(ii) MOLECULE TYPE: DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 626	
55	TACCACCTTT TAAGTAAGGT GCTAAT	26
	2) INFORMATION FOR SEQ ID NO: 627	
60	a, in outility to the bag is not but	

	WO 01/2	23604	PCT/CA00/01150
5	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 26 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear	
	(ii)	MOLECULE TYPE: DNA	
10	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 627	
10	ATTGTC	TATA AAAATGGCGA TAAGTC	26
15	2) INFO	RMATION FOR SEQ ID NO: 628	
20	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 26 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear	
	(ii)	MOLECULE TYPE: DNA	
25	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 628	
	AAAATG	GCGA TAAGTCACAA AAAGTA	26
30	2) INFO	RMATION FOR SEQ ID NO: 629	
35	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear	
40	(ii)	MOLECULE TYPE: DNA	
40	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 629	
	AAGTTC	CATC TCAACAAGGT CAATA	25
45			
	2) INFO	RMATION FOR SEQ ID NO: 630	
50	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 22 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear	·
55 _.	(ii)	MOLECULE TYPE: DNA	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 630	
60	CGGAGC'	TATC CTAGTCGTTT CA	22

	2) INFO	NOITAMS	FOR SEQ I	D NO:	631						
5	(i)	(A) LE (B) TY (C) ST	E CHARACT NGTH: 26 PE: Nucle RANDEDNES POLOGY: L	bases ic aci S: Sin							
10	(ii)	MOLECUI	E TYPE: D	NA							
	(xi)	SEQUENC	E DESCRIP	TION:	SEQ	ID	NO:	631			
15	CAGACC	AACY GA	IAARCCAT	TRAGA	T						26
20	2) INFO	NOITAMS	FOR SEQ I	D NO:	632						
20	(i)	(A) LE (B) TY	CE CHARACT ENGTH: 23 PE: Nucle RANDEDNES	bases ic aci	.d				•		
25		(D) TC	POLOGY: L	inear	J						
	(ii)	MOLECUI	E TYPE: D	NA							
30	(xi)	SEQUENC	CE DESCRIP	TION:	SEQ	ID	NO:	632			
	CCCTTT	GGTG GF	RTCSTKCTT	GGA							23
35	2) INFO	RMATION	FOR SEQ I	D NO:	633						
40	(i)	(A) LE (B) TY (C) ST	CE CHARACT ENGTH: 26 YPE: Nucle TRANDEDNES OPOLOGY: L	bases ic aci S: Sir	id						
	(ii)	MOLECUI	LE TYPE: D	NA							
45	(xi)	SEQUENC	CE DESCRIP	TION:	SEQ	ID	NO:	633			
	CAGACC	AACY GA	AIAARCCIT	TRAGA	ΔT						26
50	2) INFO	RMATION	FOR SEQ I	D NO:	634						
55	(i)	(A) LE (B) TY (C) ST	CE CHARACT ENGTH: 26 YPE: Nucle TRANDEDNES DPOLOGY: I	bases ic aci S: Sir	id						
60	(ii)	MOLECUI	LE TYPE: I	ANG							

	WO 01/23604 PC 1/CA00/01150	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 634	
	AACACYGTCA GRRCIATTGC YATGGA	26
5		
	2) INFORMATION FOR SEQ ID NO: 635	
10	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 26 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear 	
15	(ii) MOLECULE TYPE: DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 635	
20	AAACCRGTIA RRGCRACTCT IGCTCT	26
	2) INFORMATION FOR SEQ ID NO: 636	
25	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 23 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear 	
30	(ii) MOLECULE TYPE: DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 636	
35	ACTGGYGTTG AIATGTTCCG YAA	23
40	2) INFORMATION FOR SEQ ID NO: 637 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 23 bases (B) TYPE: Nucleic acid	
45	(C) STRANDEDNESS: Single (D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 637	
50	ACGTCAGTIG TACGGAARTA GAA	23
55	2) INFORMATION FOR SEQ ID NO: 638	
60	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 26 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single	

	WO 01/2	23604	PCT/CA00/01150
		(D) TOPOLOGY: Linear	
	(ii)	MOLECULE TYPE: DNA	
5	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 638	
	CCAATG	CCAC AAACICGTGA RCACAT	. 26
10	2) INFO	RMATION FOR SEQ ID NO: 639	
15	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 28 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear	
20	(ii)	MOLECULE TYPE: DNA	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 639	
	TTTACG	GAAC ATTTCWACAC CWGTIACA	28
25			
	2) INFO	RMATION FOR SEQ ID NO: 640	
, 3 0	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 23 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear	
35	(ii)	MOLECULE TYPE: DNA	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 640	
40	TCCATG	GTIT WYGGICARAT GAA	23
	2) INFO	RMATION FOR SEQ ID NO: 641	
45	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 26 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear	
50	(ii)	MOLECULE TYPE: DNA	
		SEQUENCE DESCRIPTION: SEQ ID NO: 641	
55		CCWA CIGCIGAIGG CATACG	26
	* 011 11111	CIGOLGIAGO CRIRCO	20
60	2) INFO	RMATION FOR SEQ ID NO: 642	

	WO 01/	/23604	PCT/CA00/01150
5	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 23 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear	~
	(ii)	MOLECULE TYPE: DNA	
10	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 642	
10	GGCGTI	GGIG ARCGIACICG TGA	23
15	2) INFO	RMATION FOR SEQ ID NO: 643	
20	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 23 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear	
	(ii)	MOLECULE TYPE: DNA	
25	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 643	
	ACTGGI	GTIG ARATGTTCCG YAA	23
30	2) INFO	RMATION FOR SEQ ID NO: 644	
35	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 23 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear	
40	(ii)	MOLECULE TYPE: DNA	
40	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 644	
	ACGTCI	GTIG TICKGAARTA GAA	23
45			
	2) INFO	RMATION FOR SEQ ID NO: 645	
50	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 23 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear	
55	(ii)	MOLECULE TYPE: DNA	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 645	
60	ACGTCI	GTIG TICKGAARTA RAA	23
		368	

	2) INFO	RMATI	ON FOR SE	Q ID NO:	646						
5	(i)	(A) (B)	STRANDED	23 bases cleic ac: NESS: Sin	id						
10	(ii)	MOLE	CULE TYPE	: DNA							
	(xi)	SEQU	ENCE DESCI	RIPTION:	SEQ	ID	NO:	646			
15	ATCGAC.	AAGC	CITTCYTIA	AT GSC							23
20	2) INFO	RMATI	ON FOR SE	Q ID NO:	647						
	(i)	(A) (B) (C)	ENCE CHARA LENGTH: 2 TYPE: Nuc STRANDEDM	26 bases Cleic ac: NESS: Si	id						
25		(D)									
	(ii)	MOLE	CULE TYPE	: DNA							
30			ENCE DESCI			ID	NO:	647			
	ACGTCC	GTSG	TRCGGAAGT	ra gaaci	rg						26
35	2) INFO	RMATI	ON FOR SE	Q ID NO:	648						
40	(i)	(A) (B)	TYPE: Nuc	26 bases cleic ac: NESS: Sin	id						
	(ii)	MOLE	CULE TYPE	: DNA							
45	(xi)	SEQUI	ENCE DESC	RIPTION:	SEQ	ID	NO:	648			
	ACGTCS	GTSG	TRCGGAAG	ra gaact	rg				·		26
50	2) INFO	RMATI	on for sec	Q ID NO:	649						
55	(i)	(A) (B)	ENCE CHARA LENGTH: 2 TYPE: Nuc STRANDEDN TOPOLOGY:	26 bases cleic ac: NESS: Sin	id						
60	(ii)	MOLE	CULE TYPE:	: DNA							

	WO 01/2	23604								PCT/C	A00/0115)
	(xi)	SEQUE	ENCE DES	CRIPT	'ION:	SEQ	ID :	NO:	649			
	GTCCTA	rgcc	TCARACW	CGI	GAGCA	C						26
5												
	2) INFO	RMATI	ON FOR S	EQ II	NO:	650						
10	(i)	(A) (B)	STRANDE	23 b uclei DNESS	ases c aci : Sin	d		٠				
15	(ii)	MOLE	CULE TYP	E: DN	IA							
	(xi)	SEQUI	ENCE DES	CRIPI	CION:	SEQ	ID	NO:	650			
20	TTACGG	AACA	TYTCAAC	ACC	IGT							23
	2) INFO	RMATI	ON FOR S	EQ II	NO:	651						
25	(i)	(A) (B)	ENCE CHA LENGTH: TYPE: N STRANDE TOPOLOG	25 b uclei DNESS	ases .c aci S: Sir	.d						
30	(ii)	MOLE	CULE TYP	E: D1	JA							
	(xi)	SEQU	ENCE DES	CRIPT	rion:	SEQ	ID	NO:	651			
35 [.]	TGACGA	.CCAC	CITCYTC	YTT	YTTCA							25
40	·	SEQU (A) (B)	ON FOR S ENCE CHA LENGTH: TYPE: N	RACTI 27 l	ERISTI Dases Lc aci	cs:						
45		(C)	STRANDE TOPOLOG			ıgıe						
	(ii)	MOLE	CULE TYP	E: DI	AV							
50	(xi)	SEQU	ENCE DES	CRIP:	rion:	SEQ	ID	NO:	652			
50	CCWAYA	GTIY	KICCICO	CYTC	YCTIA	ATA						27
55	2) INFO	RMATI	ON FOR S	SEQ I	D NO:	653						
60	(i)	SEQU (A) (B) (C)	TYPE: N	20 l Jucle:	bases ic ac	id ngle	70					

	WO 01/23604	PCT/CA00/01150
	(D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: DNA	
5	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 653	
	GAYTTCATIA ARAAYATGAT	20
10		
10	2) INFORMATION FOR SEQ ID NO: 654	
15	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear 	
0.0	(ii) MOLECULE TYPE: DNA	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 654	
	TACAARATYK GIGGTATYGG	20
25		·
	2) INFORMATION FOR SEQ ID NO: 655	
30	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear 	
35	(ii) MOLECULE TYPE: DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 655	
40	CCRATACCIC MRATYTTGTA	20
	2) INFORMATION FOR SEQ ID NO: 656	
45	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 22 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear 	
50	(ii) MOLECULE TYPE: DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 656	
55	AATTAATGGC TGCAGTTGAY GA	22
60	2) INFORMATION FOR SEQ ID NO: 657	

	WO 01/23604	PCT/CA00/01150
5	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 22 bases(B) TYPE: Nucleic acid(C) STRANDEDNESS: Single(D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: DNA	
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 657	
10	TTGTCCACGT TCGATRTCTT CA	22
15	2) INFORMATION FOR SEQ ID NO: 658	
20	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 23 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear 	
	(ii) MOLECULE TYPE: DNA	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 658	
	GATYTAGTCG ATGATGAAGA ATT	23
30	2) INFORMATION FOR SEQ ID NO: 659	·
35	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 23 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear 	
40	(ii) MOLECULE TYPE: DNA	
40	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 659	
	GCTTTTTGIG TTTCWGGTTT RAT	23
45		
	2) INFORMATION FOR SEQ ID NO: 660	
50 _.	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 23 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear 	
55	(ii) MOLECULE TYPE: DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 660	
60	GTAGAATTGA GGACGGTAGT TAG	23
50	372	

	2) INFO	RMATI	ON FOR S	EQ ID NO:	661					
5	(i)	(A) (B)	LENGTH: TYPE: NO STRANDEI	RACTERIST 23 bases ucleic ac DNESS: Si Y: Linear	id ngle					
10	(ii)	MOLE	CULE TYPI	E: DNA						
	(xi)	SEQUI	ENCE DES	CRIPTION:	SEQ	ID NO: 6	661			
15	GTAGAA	YTGT	GGWCGATA	ART TRT						23
20	2) INFO	RMATIO	ON FOR SI	EQ ID NO:	662					
	(i)	(A) (B)	LENGTH: TYPE: No STRANDE	RACTERIST 832 base ucleic ac DNESS: Do	s id uble					
25	(ii)	(D)		Y: Linear E: Genomi		Ą				
30		ORIGI (A) (B)		RCE: M: <i>Coryne</i> ATCC 270		erium di <u>r</u>	phth	eriae		
	(xi)	SEQUI	ENCE DESC	CRIPTION:	SEQ	ID NO:	662			
35	GTGAGCZ GCTCTGZ CGAGATO	ACGT 1 AACA 1 GGAG 1	ICTGCTCG(AGTGCGAC ATCCRTGA(CT CGCCAG AT GGTTGA GC TGCTCG	GTCG ATGAT GCTGA	GCGTTCCT GAGGAAAT GCAGGATT	TTA TCA TAC	CCTCAGACCC CATCCTCGTT TCGAGCTCGT GACGAAGAGG CGACGAGAAG	10 15 20	0 0
40	TGGACCC AGACCCC TCTTCAC GGCTCCC	CAGT (AGAG (CCAT (CTGA)	CCATCATC(CGTGAGAC(CACCGGCC(AGGTCAAC(GA CCTCAT CG ACAAGO GC GGTACO GA GGACGT	CGAG CATT CGTTG CGAG	GCTTGCKA CCTCATGO TTACCGGO ATCATCGO	ATG CCT CCG GTA	ATTCATCC ATCGAGGACA TGTTGAGCGT TCCGCGAGAA AAGCTTCTCG	30 35 40 45	0 0 0 0
45	ACTACA CGCGAA CCCTCA GTGGCC	CCGA (GACG (CACC (GCCA (GGCTGGCGA PTGAGCGT(GAGTTCGA(CACCCCAT	AC AACTGI GG CCAGGI GG GCTCTG TC TTCGAC	GGTC TGTT STCTA CAACT	TGCTTCTC GTTAAGCC CGTTCTGT ACCGCCCA	CCG CAG TCC ACA	TGGCGTTAAG GCGCTTACAC AAGGACGAGG GTTCTACTTC GCACCGAGAT	50 55 60 65 70 75	0 0 0 0
50	GGTCAT	GCCT (GCGACAA		TGTC	CGTCACC		ATCCAGCCTG	80 83	0
55	2) INFO	RMATI	ON FOR S	EQ ID NO:	663					
•	(i)	(A)	LENGTH:	RACTERIST 1192 bas ucleic ac	es					
60		(C)		ONESS: Si	ngle	73				

(D) TOPOLOGY: Linear

(ii) MOLECULE TYPE: Genomic DNA

5 (vi) ORIGINAL SOURCE:

- (A) ORGANISM: Candida catenulata
- (B) STRAIN: ATCC 10565
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 663

	()	JUI102 JUI113	LL LLOIN. DEQ	12 1.0. 005		
10						
	AACGGCGAGC	AAGACTTGGT	GTTGGAGGTT	TCTCAGCACT	TGGGTGAGAA	50
	CACCGTGCGT	ACCATTGCCA	TGGACGGTAC	CGAGGGTTTG	GTGAGAGGTA	100
	CCGCTGTCAC	TGACACCGGT	GCTCCCATCT	CGGTCCCCGT	TGGTCAGGGT	150
	ACCTTGGGCC	GGATCATCAA	CGTTGTCGGT	GAGCCCATCG	ACGAGCGTGG	200
15	TCCCATCCAG	TGCAAGCAGA	GAAACCCCAT	TCACGCCGAG	CCCCCGTCTT	250
	TCACCGAGCA	GTCCGTCGAG	GCTGAGGTGT	TGGAGACCGG	TATCAAGGTT	300
	GTCGACTTGT	TGGCTCCCTA	CGCCCGTGGT	GGTAAGATTG	GTCTTTTCGG	350
	TGGTGCCGGT	GTCGGTAAGA	CCGTGTTCAT	CCAGGAGTTG	ATTAACAACA	400
	TTGCCAAGGC	CCACGGTGGT	TTCTCCGTGT	TCACTGGTGT	CGGTGAGCGT	450
20	ACTCGTGAGG	GTAACGACTT	GTACCGTGAA	ATGAAGGAGA	CCGGTGTCAT	500
	CAACTTGGAG	GGCGACTCCA	AGGTGGCCTT	GGTGTTCGGT	CAGATGAACG	550
	AGCCCCCGGG	GGCTCGTGCC	CGTGTCGCCT	TGACCGGTTT	GACCATTGCC	600
	GAGTACTTCC	GTGACGAGGA	AGGCCAGGAC	GTGTTGTTGT	TCGTTGACAA	650
	CATTTTCAGA	TTCACCCAGG	CCGGTTCCGA	GGTGTCGGCG	TTGTTGGGTC	700
25	GTATCCCCTC	CGCCGTCGGT	TACCAGCCCA	CTTTGGCCAC	CGACATGGGT	750
	TTGTTGCAGG	AGAGAATTAC	CACCACCAAG	AAGGGTTCCG	TCACCTCTGT	800
	GCAGGCCGTG	TACGTCCCTG	CCGATGACTT	GACTGACCCT	GCCCCCGCCA	850
	CCACTTTCGC	TCACTTGGAC	GCCACCACCG	TGTTGTCGCG	TGGTATCTCC	900
	GAGTTGGGTA	TCTACCCCGC	CGTCGACCCC	TTGGACTCCA	AGTCGAGATT	950
30	GTTGGACGTC	GAGGTTGTTG	GCCAGGAGCA	CTACGACGTC	GCCACCGGTG	1000
	TCCAGGAGTG	CTTGCAGGCC	TACAAGTCGT	TGCAGGACAT	CATTGCCATT	1050
	TTGGGTATGG	ACGAGTTGTC	CGAGCAGGAC	AAGTTGACCG	TCGAGAGAGC	1100
	CCGTAAGATC	CAGCGTTTCT	TGTCGCAGCC	CTTCGCTGTC	GCCGAGGTTT	1150
	TCACTGGTAT	CCCCGGTAGA	TTGGTGAGAT	TGCAGGACAC	CG	1192

2) INFORMATION FOR SEQ ID NO: 664

40 (i) SEQUENCE CHARACTERISTICS:

35

45

- (A) LENGTH: 29 bases
- (B) TYPE: Nucleic acid
- (C) STRANDEDNESS: Single
- (D) TOPOLOGY: Linear

(ii) MOLECULE TYPE: DNA

- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 664
- 50 AAYATGATIA CIGGIGCIGC ICARATGGA

2) INFORMATION FOR SEQ ID NO: 665

55 (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1377 bases
- (B) TYPE: Nucleic acid
- (C) STRANDEDNESS: Double
- 60 (D) TOPOLOGY: Linear

(ii) MOLECULE TYPE: Genomic DNA

- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Saccharomyces cerevisiae
 - (C) ACCESSION NUMBER: extracted from X00779
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 665

10	ATGGGTAAAG	AGAAGTCTCA	CATTAACGTT	GTCGTTATCG	GTCATGTCGA	50
20	TTCTGGTAAG	TCTACCACTA		GATTTACAAG	TGTGGTGGTA	100
	TTGACAAGAG	AACCATCGAA	AAGTTCGAAA	AGGAAGCCGC	TGAATTAGGT	150
	AAGGGTTCTT	TCAAGTACGC	TTGGGTTTTG	GACAAGTTAA	AGGCTGAAAG	200
	AGAAAGAGGT	ATCACTATCG	ATATTGCTTT	GTGGAAGTTC	GAAACTCCAA	250
15	AGTACCAAGT	TACCGTTATT	GATGCTCCAG	GTCACAGAGA	TTTCATCAAG	300
	AACATGATTA	CTGGTACTTC	TCAAGCTGAC	TGTGCTATCT	TGATTATTGC	350
	TGGTGGTGTC	GGTGAATTCG	AAGCCGGTAT	CTCTAAGGAT	GGTCAAACCA	400
	GAGAACACGC	TTTGTTGGCT	TTCACCTTGG	GTGTTAGACA	ATTGATTGTT	450
	GCTGTCAACA	AGATGGACTC	CGTCAAATGG	GACGAATCCA	GATTCCAAGA	500
20	AATTGTCAAG	GAAACCTCCA	ACTTTATCAA	GAAGGTTGGT	TACAACCCAA	550
	AGACTGTTCC	ATTCGTCCCA		GGAACGGTGA	CAACATGATT	600
	GAAGCTACCA	CCAACGCTCC	ATGGTACAAG	GGTTGGGAAA	AGGAAACCAA	650
	GGCCGGTGTC	GTCAAGGGTA	AGACTTTGTT	GGAAGCCATT	GACGCCATTG	700
	AACAACCATC	TAGACCAACT	GACAAGCCAT	TGAGATTGCC	ATTGCAAGAT	750
25	GTTTACAAGA	TTGGTGGTAT	TGGTACTGTG	CCAGTCGGTA	GAGTTGAAAC	800
	CGGTGTCATC	AAGCCAGGTA	TGGTTGTTAC	TTTTGCCCCA	GCTGGTGTTA	850
	CCACTGAAGT	CAAGTCCGTT	GAAATGCATC	ACGAACAATT	GGAACAAGGT	900
	GTTCCAGGTG	ACAACGTTGG	TTTCAACGTC	AAGAACGTTT	CCGTTAAGGA	950
•	AATCAGAAGA	GGTAACGTCT	GTGGTGACGC	TAAGAACGAT	CCACCAAAGG	1000
30	GTTGCGCTTC	TTTCAACGCT	ACCGTCATTG	TTTTGAACCA	TCCAGGTCAA	1050
	ATCTCTGCTG	GTTACTCTCC	AGTTTTGGAT	TGTCACACTG	CTCACATTGC	1100
	TTGTAGATTC	GACGAATTGT	TGGAAAAGAA	CGACAGAAGA	TCTGGTAAGA	1150
	AGTTGGAAGA	CCATCCAAAG	TTCTTGAAGT	CCGGTGACGC	TGCTTTGGTC	1200
	AAGTTCGTTC	CATCTAAGCC	AATGTGTGTT	GAAGCTTTCA	GTGAATACCC	1250
35	ACCATTAGGT	AGATTCGCTG	TCAGAGACAT	GAGACAAACT	GTCGCTGTCG	1300
	GTGTTATCAA	GTCTGTTGAC	AAGACTGAAA	AGGCCGCTAA	GGTTACCAAG	1350
	GCTGCTCAAA	AGGCTGCTAA	GAAATAA			1377

40

5

- 2) INFORMATION FOR SEQ ID NO: 666
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1536 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: Genomic DNA

50

- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Saccharomyces cerevisiae
 - (C) ACCESSION NUMBER: extracted from M12082
- 55 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 666

	ATGGTTTTGC	CAAGACTATA	TACTGCTACA	TCCCGTGCTG	CTTTTAAAGC	50
	AGCCAAACAA	TCCGCTCCGC	TTCTATCCAC	TTCGTGGAAA	AGATGTATGG	100
	CCTCAGCTGC	TCAATCTACT	CCAATCACCG	GTAAAGTTAC	CGCTGTCATT	150
60	GGTGCCATTG	TTGACGTTCA	TTTTGAACAA	TCAGAGTTGC	CCGCTATTTT	200

PCT/CA00/01150 WO 01/23604

	GAACGCTTTA	GAAATTAAAA	CACCTCAAGG	TAAGTTGGTT	TTGGAAGTTG	2/50
	CTCAACATTT	GGGTGAAAAC	ACTGTCAGAA	CCATTGCTAT	GGATGGTACC	300
	GAAGGTTTGG	TCCGTGGTGA	AAAGGTTCTT	GACACTGGTG	GCCCTATCTC	350
	CGTCCCAGTT	GGGAGAGAAA	CTTTAGGGAG	AATCATCAAC	GTTATCGGTG	400
5	AACCTATTGA	TGAAAGAGGT	CCAATTAAGT	CCAAACTAAG	AAAGCCAATT	450
	CACGCAGACC	CTCCTAGTTT	TGCAGAACAA	TCTACTTCGG	CTGAAATTTT	500
	GGAAACAGGT	ATCAAAGTCG	TCGATCTATT	AGCTCCTTAT	GCCAGAGGTG	550
	GTAAGATTGG	TCTTTTCGGT	GGTGCAGGTG	TCGGTAAGAC	TGTGTTCATT	600
	CAAGAATTGA	TTAACAATAT	CGCCAAGGCC	CATGGTGGTT	TTTCCGTTTT	650
10	CGCCGGTGTT	GGTGAAAGGA	CCAGAGAGGG	TAATGACTTG	TACCGTGAAA	700
	TGAAGGAAAC	TGGAGTCATT	AACTTGGAAG	GTGAATCCAA	GGTCGCCTTA	750
	GTTTTCGGTC	AAATGAACGA	ACCTCCAGGA	GCCAGAGCCA	GAGTCGCTTT	800
	AACTGGTTTG	ACGATCGCTG	AATATTTCAG	AGATGAAGAA	GGTCAAGACG	850
	TCTTGTTGTT	TATCGACAAT	ATCTTTAGAT	TTACTCAAGC	TGGTTCAGAA	900
15	GTCTCTGCCC	TTTTGGGTCG	TATTCCATCT	GCCGTCGGTT	ATCAACCAAC	950
	TTTGGCCACT	GATATGGGTC	TCTTACAAGA	AAGAATTACC	ACCACAAAGA	1000
	AGGGTTCTGT	CACTTCTGTG	CAAGCCGTTT	ATGTTCCAGC	CGATGATTTA	1050
	ACAGATCCGT	CTCCGTCCAC	ATCTTTTGCC	CATTTGGACG	CATCATCCGT	1100
	CTTGTCAAGA	GGTATTTCAG	AATTAGGTAT	TTACCCTGCA	GTGGATCCAT	1150
20	TGGATTCTAA	ATCAAGGTTA	TTGGATGCCG	CCGTTGTCGG	TCAAGAACAT	1200
	TATGACGTCG	CCTCCAAGGT	TCAAGAAACT	TTACAGACCT	ATAAATCTTT	1250
	ACAAGATATC	ATTGCTATTT	TGGGTATGGA	TGAATTGTCC	GAACAAGATA	1300
	AACTAACTGT	CGAAAGGGCA	AGAAAGATTC	AAAGATTCTT	ATCTCAACCA	1350
	TTTGCTGTCG	CCGAAGTCTT	TACTGGTATC	CCAGGTAAAT	TAGTGAGATT	1400
25	AAAGGACACC	GTTGCCTCGT	TCAAAGCCGT	TTTGGAAGGT	AAATACGATA	1450
	ATATACCAGA	ACATGCTTTC	TATATGGTTG	GTGGTATTGA	AGATGTTGTT	1500
	CGTAAAGCTG	AAAAGTTAGC	CCGTGAAGCC	AACTAG		1536

30

2) INFORMATION FOR SEQ ID NO: 667

- (i) SEQUENCE CHARACTERISTICS:
 - LENGTH: 1293 bases (A)
 - (B)
 - TYPE: Nucleic acid STRANDEDNESS: Double (C)
 - TOPOLOGY: Linear (D)
- (ii) MOLECULE TYPE: Genomic DNA

40

- (vi)ORIGINAL SOURCE:
 - (A) ORGANISM: Trypanosoma cruzi
 - STRAIN: Y (B)
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 667 45

	CGGAAGGCGT	GCCGCCGGTG	TTAACTGCTT	TGGATGTGGT	GGAAAAACTT	50
	GGCCGTGACG	AGCCCTTGAC	ACTTGAAATT	GTACAGCACT	TGGACGCCCA	100
	CACCGGCCGT	TGCATTGCGA	TGCAGACGAC	AGATCTGCTT	AAGCTGAAAT	150
50	CGAAGGTAGT	CTCGAGTGGC	GGGAACATTT	CTGTGCCTGT	GGGTCGGGAG	200
	ACACTTGGCA	GAATCTTCAA	TGTGCTGGGC	GATGCCATTG	ACCAGCGCGG	250
	CCATGTTGGA	GAGAAGCAAC	GCATGCCTAT	TCACGCTGTG	GCACCAAAGT	300
	TGGCGGATCA	GGCGGCAGAG	GACACCATTC	TCACAACGGG	TATCAAGGTG	350
	ATTGATCTGA	TTTTGCCCTA	CTGCAAGGGT	GGGAAGATTG	GTCTTTTTGG	400
55	TGGTGCTGGC	GTGGGCAAGA	CGGTTATTAT	CATGGAACTT	ATTAACAACG	450
	TTGCCAAGGG	CCATGGTGGG	TTCTCCGTCT	TTGCGGGTGT	TGGTGAACGC	500
	ACGCGTGAGG	GGACGGATCT	TTACCTGGAG	ATGATGCAAT	CCAAAGTTAT	550
	TGACCTGAAG	GGTGACTCGA	AGTGTGTGTT	GGTGTATGGT	CAGATGAACG	600
	AGCCTCCGGG	TGCCCGTGCT	CGTGTGGCGC	AGTCTGCCTT	GACAATGGCC	650
60	GAGTACTTCC	GTGATGTGGA	AGGGCAAGAC	GTGTTGCTTT	TTATCGACAA	700

WO 01/23604	PCT/CA00/01150

	CATTTTCCGC	TTTACGCAGG	CAAACTCTGA	GGTGTCAGCG	CTGTTGGGTC	7/ 50
	GTATTCCCGC	TGCCGTCGGC	TACCAGCCTA	CCCTTGCTGA	GGATCTTGGG	4 00
	CAGTTGCAGG	AGCGCATTAC	GTCCACGACA	AAAGGTTCCA	TTACCTCTGT	850
	GCAGGCTGTG	TACGTGCCAG	CCGATGATAT	TACCGACCCT	GCGCCAGCAA	900
5	CGACCTTTTC	CCACCTCGAT	GCCACGACGG	TGCTGGACCG	TGCCGTTGCC	950
	GAATCCGGCA	TTTACCCCGC	TGTCAACCCA	CTGGAGTGTG	CCTCGCGTAT	1000
	CATGGACCCG	GATGTAATCA	GCGTTGACCA	CTACAACGTG	GCGCAGGATG	1050
	TGGTGCAGAT	GCTTACCAAG	TACAAGGAGC	TGCAGGATAT	CATTGCGGTG	1100
	CTTGGCATTG	ATGAGCTCAG	TGAGGAGGAT	AAACTTATCG	TGGACCGTGC	1150
10	GCGTAAGGTG	ACAAAGTTTC	TCTCCCAGCC	TTTCCAGGTG	GCGGAGGTGT	1200
			TACGTGCAGC			1250
	TTTTCCGGCC	TGTTGATGGG	CACATATGAT	CAGGTGCCGG	AGA	1293

15

20

- 2) INFORMATION FOR SEQ ID NO: 668
 - (i) SEQUENCE CHARACTERISTICS:
 - LENGTH: 1191 bases (A)
 - TYPE: Nucleic acid (B)
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: Genomic DNA

25

- (vi) ORIGINAL SOURCE:
 - ORGANISM: Corynebacterium glutamicum ACCESSION NUMBER: X77034 (A)
 - (C)
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 668 30

	GTGGCAAAGG	CGAAGTTCGA	GCGTACCAAG	CCCCACGTAA	ACATCGGCAC	50
	CATCGGTCAC	GTTGACCACG	GTAAGACCAC	CACCACCGCG	GCTATCACCA	100
	AGGTTCTGGC	TGACACTTAC	CCTGAGCTCA	ACGAGGCTTT	CGCCTTCGAC	150
35	TCCATCGATA	AGGCTCCTGA	GGAGAAGGAG	CGTGGCATCA	CGATCAACAT	200
	CTCCCACGTT	GAGTACCAGA	CTGAAAAGCG	CCACTACGCA	CACGTTGACG	250
	CTCCAGGCCA	CGCCGACTAC	ATCAAGAACA	TGATTACCGG	CGCTGCTCAG	300
	ATGGACGGCG	CAATCCTCGT	TGTTGCTGCT	ACCGACGGCC	CAATGCCTCA	350
	GACCCGTGAG	CACGTTCTTC	TTGCTCGCCA	GGTTGGCGTT	CCTTACATCC	400
40	TCGTTGCTCT	TAACAAGTGC	GACATGGTTG	AGGATGAGGA	AATCATCGAG	. 450
	CTCGTCGAGA	TGGAAGTTCG	TGAACTTCTT	GCTGAGCAGG	ACTACGACGA	500
	AGAGGCTCCA	ATTGTTCACA	TCTCCGCTCT	GAAGGCTCTT	GAGGGCGACG	550
	AGAAGTGGGG	CAAGCAGATC	CTTGAGCTCA	TGCAGGCTTG	CGATGACAAC	600
•	ATCCCTGACC	CAGTTCGTGA	GACCGACAAG	CCATTCCTCA	TGCCTATCGA	650
45	GGACATCTTC	ACCATCACCG	GTCGTGGCAC	CGTTGTTACC	GGTCGTGTTG	700
	AGCGCGGTAC	CCTGAACGTG	AACGATGATG	TTGACATCAT	CGGCATCAAG	750
	GAGAAGTCCA	CCTCCACCAC	CGTTACCGGT	ATCGAGATGT	TCCGTAAGCT	800
	TCTTGACTCC	GCTGAGGCTG	GCGACAACTG	TGGTCTGCTT	CTCCGTGGTA	850
	TCAAGCGCGA	AGATGTTGAG	CGTGGCCAGG	TTATCGTTAA	GCCAGGCGCT	900
50	TACACCCCTC	ACACCGAGTT	CGAGGGCTCT	GTCTACGTTC	TGTCCAAGGA	950
	TGAAGGTGGC	CGCCACACCC	CATTCTTCGA	CAACTACCGT	CCTCAGTTCT	1000
	ACTTCCGCAC	CACCGACGTT	ACCGGTGTTG	TGAAGCTTCC	AGAGGGCACC	1050
	GAGATGGTCA	TGCCTGGCGA	CAACGTCGAC	ATGTCCGTCA	CCCTGATCCA	1100
	GCCTGTCGCT	ATGGACGAGG	GCCTGCGTTT	CGCTATCCGC	GAAGGCTCCC	1150
55	GCACCGTTGG	CGCTGGTCGT	GTCACCAAGA	TCATCAAGTA	A	1191

2) INFORMATION FOR SEQ ID NO: 669

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1383 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: Genomic DNA
- (vi) ORIGINAL SOURCE:
- (A) ORGANISM: Escherichia coli
 - (C) ACCESSION NUMBER: extracted from V00267
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 669

	3 magama ama	C N N N C N C C C C C	CCAGGTAATC	GGCGCCGTAG	TTGACGTCGA	50
15	ATGGCTACTG			CGATGCTCTT	GAGGTGCAAA	100
	ATTCCCTCAG	GATGCCGTAC	CGCGCGTGTA		CGGCGGCGGT	150
	ATGGTAATGA	GCGTCTGGTG	CTGGAAGTTC	AGCAGCAGCT		
	ATCGTACGTA	CCATCGCAAT	GGGTTCCTCC	GACGGTCTGC	GTCGCGGTCT	200
	GGATGTAAAA	GACCTCGAAC	ACCCGATTGA	AGTCCCGGTA	GGTAAAGCGA	250
20	CTCTGGGCCG	TATCATGAAC	GTACTGGGTG	AACCGGTCGA	CATGAAAGGC	300
	GAGATCGGTG	AAGAAGAGCG	TTGGGCGATT	CACCGCGCAG	CACCTTCCTA	350
	CGAAGAGCTG	TCAAACTCTC	AGGAACTGCT	GGAAACCGGT	ATCAAAGTTA	400
	TCGACCTGAT	GTGTCCGTTC	GCTAAGGGCG	GTAAAGTTGG	TCTGTTCGGT	450
	GGTGCGGGTG	TAGGTAAAAC	CGTAAACATG	ATGGAGCTCA	TTCGTAACAT	500
25	CGCGATCGAG	CACTCCGGTT	ACTCTGTGTT	TGCGGGCGTA	GGTGAACGTA	550
	CTCGTGAGGG	TAACGACTTC	TACCACGAAA	TGACCGACTC	CAACGTTATC	600
	GACAAAGTAT	CCCTGGTGTA	TGGCCAGATG	AACGAGCCGC	CGGGAAACCG	650
	TCTGCGCGTT	GCTCTGACCG	GTCTGACCAT	GGCTGAGAAA	TTCCGTGACG	700
	AAGGTCGTGA	CGTTCTGCTG	TTCGTTGACA	ACATCTATCG	TTACACCCTG	750
30	GCCGGTACGG	AAGTATCCGC	ACTGCTGGGC	CGTATGCCTT	CAGCGGTAGG	800
	TTATCAGCCG	ACCCTGGCGG	AAGAGATGGG	CGTTCTGCAG	GAACGTATCA	850
	CCTCCACCAA	AACTGGTTCT	ATCACCTCCG	TACAGGCAGT	ATACGTACCT	900
	GCGGATGACT	TGACTGACCC	GTCTCCGGCA	ACCACCTTTG	CGCACCTTGA	950
	CGCAACCGTG	GTACTGAGCC	GTCAGATCGC	GTCTCTGGGT	ATCTACCCGG	1000
35	CCGTTGACCC	GCTGGACTCC	ACCAGCCGTC	AGCTGGACCC	GCTGGTGGTT	1050
•	GGTCAGGAAC	ACTACGACAC	CGCGCGTGGC	GTTCAGTCCA	TCCTGCAACG	1100
	TTATCAGGAA	CTGAAAGACA	TCATCGCCAT	CCTGGGTATG	GATGAACTGT	1150
	CTGAAGAAGA	CAAACTGGTG	GTAGCGCGTG	CTCGTAAGAT	CCAGCGCTTC	1200
	CTGTCCCAGC	CGTTCTTCGT	GGCAGAAGTA	TTCACCGGTT	CTCCGGGTAA	1250
40	ATACGTCTCC	CTGAAAGACA	CCATCCGTGG	CTTTAAAGGC	ATCATGGAAG	1300
-20	GCGAATACGA	TCACCTGCCG	GAGCAGGCGT	TCTACATGGT	CGGTTCCATC	1350
	GAAGAAGCTG	TGGAAAAAGC		TAA		1383
	OLITOPITO CIO	10011111100				

45

50

5

10

- 2) INFORMATION FOR SEQ ID NO: 670
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1410 bases(B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: Genomic DNA

55

- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Helicobacter pylori
 - (B) STRAIN: NCTC 11638
 - (C) ACCESSION NUMBER: extracted from AF004014

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 670

	ATGAAAGCGA	TGGAAGGTAA	AATCATTCAG	GTTTTAGGCC	CGGTGGTAGA	50
	TGTGGAGTTT	GAATCCTATC	TGCCGGCGAT	TTTTGAAGCA	CTAGACATTA	100
5	ATTTTGAAGT	TAATGGCGTT	CAAAAATCTT	TAGTTTTAGA	GGTGGCAGCC	150
	CATTTGGGTG	GTAATCGGGT	GCGAGCGATT	GCTATGGATA	TGACAGAAGG	200
	CTTAGTGCGT	AACCAAGCCG	TCAAAGCTCG	TGGCAAAATG	ATTGAAGTGC	250
	CTGTGGGCGA	AGAAGTGTTA	GGGCGTATTT	TTAATGTTGT	GGGCGAGAGC	300
	ATTGATAATT	TAGAGCCGCT	TAAGCCGTCC	TTAACTTGGC	CCATTCACAG	350
10	AAAAGCCCCT	AGTTTTGAGC	AGCAAAGCAC	TAAAACAGAA	ATGTTTGAAA	400
	CCGGTATTAA	AGTCATTGAC	TTGCTCGCGC	CTTATTCTAA	GGGCGGTAAA	450
	GTAGGCTTGT	TTGGTGGGGC	TGGCGTAGGC	AAAACGGTGA	TCATTATGGA	500
	GCTTATCCAC	AATGTGGCTT	ATAAGCATAA	CGGGTATTCG	GTGTTTGCAG	550
	GTGTGGGGGA	GCGCACCAGA	GAAGGGAACG	ATCTGTATTT	TGAGATGAAA	600
15	GAAGGGGGCG	TTTTAGACAA	AGTTGCGTTG	TGCTATGGGC	AAATGAATGA	650
	GCCACCAGGT	GCAAGGAATC	GCATCGCATT	CACCGGCTTG	ACGATGGCGG	700
	AGTATTTCCG	TGATGAAAAG	GGCTTAGATG	TGTTGATGTT	TATTGATAAC	750
	ATCTTTAGAT	ACGCTCAAAG	CGGTGCGGAA	ATGAGCGCGC	TATTAGGCCG	800
	TATCCCTTCA	GCGGTGGGGT	ATCAGCCCAC	GCTAGCCGGG	GAAATGGGGA	850
20	AACTTCAAGA	GCGTATCGCT	TCCACTAAAA	ATGGCTCTAT	CACTTCGGTT	900
	CAAGCGGTGT	ATGTGCCAGC	AGACGACTTG	ACTGACCCAG	CCCCTGCTTC	950
	GGTGTTTGCG	CATTTAGATG	CGACTACGGT	GTTGAATAGA	AAGATCGCTG	1000
	AAAAAGGGAT	TTATCCGGCG	GTGGATCCTT	TGGATTCCAC	TTCAAGGATT	1050
	TTAAGCCCTC	AAATGATTGG	CGAGAAGCAC	TATGAAATCG	CCACCGGTAT	1100
25	CCAGCAAGTT	TTGCAAAAAT	ACAAGGATTT	GCAAGATATT	ATTGCGATTT	1150
	TGGGATTGGA	CGAATTGAGC	GAAGAGGATA	AAAAAACGGT	TGAAAGGGCC	1200
	AGAAAAATTG	AGAAGTTTTT	ATCCCAGCCG	TTTTTTGTGG	CTGAAGTGTT	1250
	TACAGGAAGT	CCCGGTAAGT	ATGTGACTCT	CCAAGAGACT	TTAGAGGGCT	1300
	TTGGAGGGAT	TTTAGAGGGC	AAATACGATC	ACATTCCTGA	AAACGCGTTT	1350
30	TACATGGTGG	GCAGCATTCA	AGAGGTTTTA	GAAAAAGCTA	AAAACATGAA	1400
	AAATTCCTAA					1410

- 35 2) INFORMATION FOR SEQ ID NO: 671
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1401 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: Genomic DNA
- 45 (vi) ORIGINAL SOURCE:

- (A) ORGANISM: Clostridium acetobutylicum
- (B) STRAIN: DSM 792
- (C) ACCESSION NUMBER: extracted from AF101055
- 50 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 671

	ATGCCAGAAC	ATGTAGGTAA	AATTGTTCAG	GTAATAGGAC	CTGTTGTGGA	50
	TATTAAATTT	GATGCAGAGA	ACCTTCCTGA	CATCTATAAT	TCCATAGAAA	100
	TAGATATGGG	AGATAATAAA	AAACTCATTG	CTGAAGTTGA	ACAACATGTA	150
55	GGAGATGACA	TAGTAAGAAC	AATAGCAATG	GAAGGTACTG	ACGGATTAAA	200
	AAGAGGAATG	GAAGCAGTTA	ACACTGGTAA	ACCAATATCT	GTACCAGTTG	250
	GAGAAAATGT	TTTAGGACGT	CTTTTTAATG	TTTTAGGTCA	GACAATAGAT	300
	GAAGCAGGAG	ACATGAATGC	TGATAAGTAT	TATCCAATTC	ATAGACCAGC	350
	TCCAACCTTT	GAAGAACAAT	CAGTTCAACC	AGAAATGTTT	GAAACAGGTA	400
60	TTAAGGTTAT	AGATTTACTT	GCTCCATATC	AAAAGGGTGG	AAAAATCGGT	450

	WO 01/23604				PCT/C	A00/01150
		GTGCCGGTGT	ጥርርጥን እ እ እ ር እ	ርጥጥርጥጥል ጥጥር		\$ 00
		GCAAAAGAAC				550
	GAGAAAGAAC	AAGAGAAGGT	AATGACCTTT	ATTATGAAAT	GAAAGATTCA	600
		ATAAAACAGC				650
5		ATGAGAGTTG				700
		AGGTCAAGAT CTGGTTCAGA				750 800
		TATCAGCCAA				850
		ATCAACAAAA				900
10		CTGATGACCT				950
		GCAACAACAG				1000
		AGTTAGTCCT GAGAAGAGCA				1050 1100
		TATCAAGAAC				1150
15		AGATGAGGAT	•			1200
		TATCTCAAGC				1250
		TTTGTACCTG				1300
		TAAGTGTGAT				1350
20	GGAACAATAG A	AAGATGTAAA	AGAAAAAGCT	AAAAAAAIGA	IGGAAAGCTA	1400 1401
20	A					7.101
	· 2\TNEODMATT	ON FOR SEQ	TD NO. 672			
25	Z/INFORMI	TON FOR SEQ	1D NO. 672			
	(i) SEQU	JENCE CHARAC	CTERISTICS:			
		LENGTH: 15				
	(B)	TYPE: Nucl	eic acid			
30	(D)	TOPOLOGY:				
30	(1)	10101001.	Dincar			
	(ii) MOLE	ECULE TYPE:	Genomic DNA	J		
	(wi) ORIO	SINAL SOURCE	₹•			
35	(A)		Cytophaga 1	lytica		
	(B)	STRAIN: DS		4		
	(C)	ACCESSION	NUMBER: M22	2535		
	(xi) SEOU	JENCE DESCRI	PTION: SEO	ID NO: 672		
40	(312) 322					
	_	TTACAGGTAA			-	50
		CAAGCAGGGG				100
		AGCAGATGGA ACACAGTAAG				150 200
45		GCAGAGGTTA				250
20		CGTTTACGGA				300
	GATGGTCTTG	GGAATTTACC	AAAATCTGGT	AAAGATGGTT	TGCCAATACA	350
		CCAAAATTTG				400
E 0		TAAAGTAATT				450
50		TATTTGGAGG AACAACATTG				500 550
		TGAGCGTACT				600
		GTATTATTAA				650
	AGAAGGTGGT	TGGGATTTAT	CTAAAGTTGA	TAAATCTGTA	ATGAAAGATT	700
55	CTAAAGCAAC	CTTTGTATTT	GGACAAATGA	ATGAGCCACC	AGGAGCACGT	750

800

850

900

950

1000

GCACGTGTTG CATTATCTGG TTTAACTATT GCAGAATATT TCCGTGATGG

AGCAGGTGAA GGTCAAGGTA AAGATGTACT TTTCTTTGTG GATAACATTT

TCCGTTTTAC ACAAGCTGGT TCTGAGGTAT CTGCATTACT TGGTCGTATG

CCATCTGCGG TAGGTTACCA ACCAACATTA GCAACAGAAA TGGGTGCTAT

GCAAGAGCGT ATTACATCAA CAAAAAGAGG TTCTATTACA TCTGTACAGG

	CGGTTTACGT	ACCTGCGGAT	GATTTAACGG	ATCCAGCACC	GGCAACTACC	1Ø50
	TTTGCTCACT	TAGATGCAAC	AACGGTATTG	TCTCGTAAAA	TTGCAGAGTT	1100
		CCAGCGGTAG				1150
	CTCCAGAAAT	TTTAGGAAAA	GATCACTACT	CTTGTGCACA	ACGTGTAAAA	1200
5	GAGTTGTTAC	AACGTTATAA	AGAATTACAA	GATATTATTG	CTATCCTTGG	1250
	TATGGAAGAA	TTATCTGAGG	AAGATAAAAT	GGCAGTTGGT	AGAGCAAGAC	1300
	GTGTACAACG	TTTCTTATCT	CAGCCTTTCC	ACGTAGCAGA	GCAATTTACA	1350
	GGTCTTAAAG	GTGTTTTAGT	AGATATCAAG	GATACTATTA	AAGGATTTAA	1400
	TATGATTATG	GATGGTGAAT	TAGATCACTT	ACCAGAATCT	GCATTTAACC	1450
10	TTAAAGGTAC	TATTGAAGAA	GCTATAGAAG	CAGGAGAAAA	AATGCTTGCT	1500
	GAAGCATAA					1509

- 15 2) INFORMATION FOR SEQ ID NO: 673
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 819 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: Genomic DNA
- 25 (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Ehrlichia risticii
 - (B) STRAIN: HRC-IL
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 673

	CCTAAAATAT	ATGATGCATT	ATATGTAAAA	CTAGATAATG	AAAATTTGTG	50
	TTTAGAAGTT	TCACAAATTA	TTGGAGATAA	TGTTGTTAGA	TGTATTGCAA	100
	TGGGAGCTAC	TTATGGATTA	AATCGTGGTT	TAGAAGTAGT	TTGTTCAGGA	150
	AATCCAATTC	AGGTTCCTGT	AGGTGAACAA	GTTTTAGGTA	GAATGTTTAA	200
35	TGTTGTTGGT	AAAACAATTG	ACAATCTTGA	ATCTTTAGAT	GATAAAAATA	250
	TAAAAATGAT	GCCAATTCAT	CGAAATCCAC	CATCATTTGA	AGAGCAATCC	300
	AATGAAATTG	AAATTTTTGA	AACAGGCATT	AAAGTTATTG	TAATTATTAAT	350
	TCCATATGCT	AAAGGTGGTA	AGATTGGATT	ATTTGGTGGA	GCAGGGGTTG	400
	GGAAAACGGT	TCTTGTTCAA	GAATTAATTC	ACAATATCGC	AAAAGGTCAT	450
40	GGTGGTCTAT	CTGTTTTTGC	TGGAGTTGGT	GAAAGAACTC	GTGAAGGTAA	500
	TGACTTGTAT	TATGAAATGA	TTGAAGGTGG	AGTTATAGAT	AAAACAGCCT	5 50
	TAGTGTTTGG	GCAAATGAAT	GAACCTCCTG	GCGCAAGAAT	GCGCGTAGCA	600
	TTAACTGCTT	TAACAATGGC	TGAATATTTC	CGTGATGTTC	AAAACCAAGA	650
	TGTTTTGTTA	TTTATTGATA	ATATCTTTAG	ATTTACACAA	GCTGGTAGTG	700
45	AAGTTTCAGC	ATTATTAGGA	AGAATGCCAT	CTGCTGTTGG	TTATCAACCA	750
	ACTTTGGCAT	ATGAAATGGG	ATTGTTACAA	GAAAGAATCA	CTTCCACTAA	800
	AAGTGGTTCT	ATAACATCT				819

50

20

30

- 2) INFORMATION FOR SEQ ID NO: 674
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 840 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: Genomic DNA

(vi)ORIGINAL SOURCE:

- (A) ORGANISM: Vibrio cholerae
- (B) STRAIN: ATCC 25870
- 5 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 674

	AGAGCGAAGT	ACCAAGTGTT	TACGATGCTC	TGAATGTTGT	GGATTCCAAA	50.
	GAACGTCTGG	TTCTGGAAGT	TCAACAGCAG	CTAGGCGGTG	GCGTGATTCG	100
	CGCTATCGTT	ATGGGTAGCT	CGGATGGTTT	ACGTCGTGGA	ATGACAGTAC	150
10	AAAACACTGG	CGCTCCAATT	TCAGTACCAG	TAGGTACTAA	AACCCTAGGT	200
	CGTATCATGA	ACGTGCTTGG	TGATGCGATT	GACGAACGTG	GCGACATTGG	250
	CGCAGAAGAG	GTGTACTCGA	TTCACCGTCC	TGCTCCAAGC	TACGAAGAAC	300
	AGTCTAGTGC	AACTGAACTT	TTGGAAACGG	GTGTTAAGGT	TATCGACCTG	350
	ATCTGTCCGT	TTGCGAAAGG	CGGTAAAATC	GGTCTGTTCG	GTGGTGCGGG	400
15	TGTAGGTAAG	ACCGTTAACA	TGATGGAACT	TATCAACAAC	ATCGCGCTAC	450
	AGCACTCAGG	TTTGTCAGTA	TTTGCTGGGG	TAGGTGAGCG	TACTCGTGAG	500
	GGTAACGACT	TCTACCACGA	AATGCAGGAA	GCGGGCGTTG	TAAACGTTGA	550
	ACAACCAGAA	CTGTCGAAAG	TAGCGATGGT	TTACGGTCAG	ATGAACGAGC	600
	CACCAGGCAA	CCGTCTGCGT	GTAGCACTGA	CTGGTCTGAC	TATGGCGGAA	650
20	AAGTTCCGTG	ATGAAGGCCG	TGACGTACTG	CTGTTTATCG	ACAACATCTA	700
	CCGTTACACC	CTAGCGGGAA	CGGAAGTATC	TGCTCTGCTT	GGCCGTATGC	750
	CTTCAGCGGT	AGGTTACCAA	CCAACACTGG	CTGAAGAGAT	GGGTGTTCTG	800
	CAAGAACGTA	TCACGTCAAC	CAAAAAAGGT	TCTATCACCT		840

25

30

- 2) INFORMATION FOR SEQ ID NO: 675
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 828 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
- 35 (ii) MOLECULE TYPE: Genomic DNA
 - (vi)ORIGINAL SOURCE:
 - (A) ORGANISM: Vibrio cholerae
 - (B) STRAIN: ATCC 25870

40

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 675

	CGGCGGTATC	CTAGTTGTAG	CGGCAACTGA	CGGTCCAATG	CCACAAACTC	50
	GTGAGCACAT	CCTGCTGGGT	CGCCAAGTAG	GTATTCCTTA	CATCATCGTA	100
45	TTCATGAACA	AGTGTGACAT	GGTTGACGAT	GAAGAGCTTC	TAGAGCTGGT	150
	AGAGATGGAA	GTTCGTGAGC	TGCTGTCTGA	GTACGATTTC	CCAGGTGATG	200
	ACCTGCCAGT	AATCCAAGGT	TCAGCACTAG	GCGCGCTAAA	CGGCGAAGCA	250
	CAGTGGGAAG	CGAAGATTGT	TGAGCTAGCA	GAAGCACTGG	ATACTTAYAT	300
	TCCAGAGCCA	GAGCGTGCAG	TAGACATGGC	ATTCCTGATG	CCAATCGAAG	350
50	ACGTATTCTC	AATCCAAGGT	CGTGGTACAG	TAGTAACTGG	CCGTATCGAG	400
	CGCGGCATCC	TGAAAGTGGG	TGACGAAGTA	GCGATCGTTG	GTATCAAAGA	450
	GACAGTAAAA	ACGACCTGTA	CAGGTGTAGA	GATGTTCCGT	AAGCTGCTTG	500
	ACGAAGGTCG	TGCAGGTGAG	AACGTAGGTG	CACTRCTACG	TGGTACTAAG	550
	CGTGAAGAAG	TAGAGCGTGG	TCAAGTACTG	GCGAAGCCAG	GTTCAATCAC	600
55	ACCACACACT	AAGTTCGAAT	CAGAAGTATA	CGTACTGTCA	AAAGATGAAG	650
	GTGGCCGTCA	TACTCCATTC	TTCAAAGGTT	ACCGTCCACA	GTTCTACTTC	700
	CGTACAACTG	ACGTAACAGG	CAGCATTGAG	CTACCAGARG	GCGTAGAAAT	750
	GGTAATGCCA	GGCGACAACG	TGAAGATGGT	TGTAGACCTG	ATTGCACCAA	800
	TCGCGATGGA	CGAAGGTCTA	CGCTTCGC			828

60.

2) INFORMATION FOR SEQ ID NO: 676

- 5 (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1298 bases

 - (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear

10

- (ii) MOLECULE TYPE: Genomic DNA
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Leishmania enriettii
- 15 (B) STRAIN: ATCC 50120
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 676

	CTTCTCGGAT	GGCGTGCCGC	CGGTGCTGAC	GGCGCTGGAC	GTGACGGAGG	50
20	AACTCGGGCG	CGACGAGCCG	CTGACGCTAG	AGATCGTGCA	ACACTTGGAC	100
	GCGCACACCG	GCCGCTGCAT	TGCGATGCAG	ACGACGGACC	TACTGAAGCT	150
	GAAGTCGAAG	GTCGTGTCGA	CCGGCGGGAA	CATCTCTGTG	CCTGTGGGCC	200
	GCGAGACGCT	TGGCCGCATC	TTCAACGTAC	TGGGCGACGC	GATTGACCAG	250
	CGCGGCCCCG	TGGGCGAGAA	GATGCGCATG	GCGATCCACG	CGGAGGCGCC	300
25	GAAGCTGGCG	GACCAGGCGG	CGGAGGACAC	GATCCTGACG	ACCGGCATCA	350
	AAGTGATCGA	TCTGATCCTG	CCGTACTGCA	AGGGCGGCAA	GATCGGTCTG	400
	TTCGGCGGTG	CCGGTGTGGG	GAAGACTGTG	ATCATCATGG	AGCTGATCAA	450
	CAACGTCGCG	AAGGGCCACG	GTGGCTTCTC	CGTGTTCGCC	GGCGTTGGGG	500
	AGCGCACCCG	CGAGGGGACG	GATCTGTACC	TGGAGATGAT	GCAATCGAAG	550
30	GTGATCGACC	TGAAAGGTGA	GTCGAAGTGT	GTGCTTGTGT	ACGGGCAGAT	600
	GAACGAGCCC	CCGGGTGCGC	GCGCGCGCGT	TGCGCAGTCT	GCGCTGACGA	650
	TGGCCGAGTA	CTTCCGCGAC	GTGGAGGGCC	AGAACGTGCT	GCTGTTCATC	700
	GACAACATCT	TCCGCTTCAC	GCAGGCGAAC	TCCGAGGTGT	CAGCGCTGCT	750
	GGGCCGCATC	CCCGCCGCTG	TGGGCTACCA	ACCGACGCTT	GCGGAGGATC	800
35	TCGGCATGTT	GCAGGAGCGC	ATCACGTCGA	CGACGAAGGG	GTCGATCACG	850
	TCTGTGCAGG	CGGTGTACGT	GCCTGCGGAT	GATATCACGG	ATCCCGCGCC	900
	GGCGACGACA	TTCTCGCACC	TGGACGCGAC	GACGGTGCTG	GACCGCGCGG	950
•	TGGCGGAGTC	TGGCATCTAC	CCCGCGGTCA	ACCCACTGGA	GTGCGCGTCG	1000
	CGTATCATGG	ACCCTGATGT	GATCGACGTG	GATCACTACA	ACGTTGCGCA	1050
40	GGACATTGTT	CAGATGCTGA	CCAAGTACAA	GGAGCTGCAG	GATATCATTG	1100
	CGGTGCTTGG	TATCGACGAG	CTGAGCGAGG	AGGACAAGGT	TGTGGTGGAC	1150
	CGTGCGCGCA	AGGTGACCCG	GTTCCTGTCA	CAGCCGTTCC	AGGTTGCGGA	1200
	GGTGTTTACT	GGCATGACAG	GCCATTACGT	ACAGCTGAGC	GACACGGTGG	1250
	AGTCGTTCTC	CGGTTTGCTG	ATGGGGTCGT	ACGACCAGAT	TCCGGAGA	1298

2) INFORMATION FOR SEQ ID NO: 677

- 50 (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1083 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear

55

- (ii) MOLECULE TYPE: Genomic DNA
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Babesia microtti
- 60 (B) STRAIN: Persing-1

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 677

	CAAGCTCAAG	TCTGAGCGTG	AGAGAGGTAT	TACTATTGAC	ATTACTCTCT	50
5	GGAAATTTGA	GACCCAGAAA	TACGAGTACA	CTGTCATAGA	CGCACCTGGT	100
	CATCGTGACT	TTATCAAAAA	TATGATTACT	GGGACTTCAC	AAGCCGACGT	150
	TGCTATGCTT	GTCGTTCCTG	CTGAATCTGG	CGGATTCGAG	GCTGCTTTTT	200
	CCAAAGAAGG	TCAGACCCGT	GAACACGCCT	TACTAGCCTT	CACACTTGGC	250
	GTCAAACAGA	TGATTGTTGC	TATTAACAAA	ATGGATTCTT	GTCAGTACAA	300
10	GGAGGATCGT	TATATGGAAA	TTTTCAAGGA	AGTACAGCAG	TACTTGAAGA	350
	AGGTGGGTTA	CAAAGTTGAA	AGCGTGCCGT	TTGTTGCTAT	TTCAGGATTC	400
	CACGGTGACA	ACATGGTTGA	AAAATCTACT	AACATGCCTT	GGTATAAGGG	450
	TAAGACCCTC	GTAGAGGCAC	TTGATCAAAT	GGAGCCTCCA	AAACGTCCGG	500
	TCGAAAAACC	TCTTAGATTG	CCCCTGCAGT	CAGTCTATAA	AATTGGAGGT	550
15	ATTGGTACGG	TACCAGTCGG	A:AGGGTCGAA	ACAGGACAAC	TGAAAGCAGG	600
	AATGATCATT	ACTTTTGCCC	CCACTGGTTT	GACCACTGAA	TGTAAATCTG	650
	TTGAAATGCA	TCACGAGGTT	GTGGAAGTGG	CTAGCCCCGG	TGATAACGTT	700
	GGATTTAATG	TCAAGAATGT	GTCTGTTAAG	GATATTAAGA	GAGGAAATGT	750
	GGCTTCGGAT	TCGAAAAATG	ACCCAGCCAA	GGAAGCTACC	TCTTTCTCTG	800
20	CACAAGTCAT	TGTACTCAAT	CACCCTGGTA	CCATCAAGGC	CGGTTACTCA	850
	CCTGTGGTTG	ATTGCCATAC	TGCCCACATT	GCTTGCAAAT	TCGAATCTCT	900
	AGACACTAGG	ATTGACAAGC	GTACTGGCAA	GACTTTGGAA	GAAAATCCTA	950
	AGACTATTAA	GAATGGTGAC	GCTGCCATGG	TGACTATGAA	ACCAAATAAA	1000
	CCCATGGTTG	TGGAAACTTT	CACCGACTAC	GCCCCGTTGG	GCCGGTTCGC	1050
25	CGTGCGTGAT	ATGCGCCAAA	CCGTTGCCGT	CGG		1083

2) INFORMATION FOR SEQ ID NO: 678

30

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 551 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
- 35 (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: Genomic DNA
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Cryptococcus neoformans
 - (B) STRAIN: Lev-12
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 678

45	TGTGCTCATT	CAGCAGCTCA	ጥጥ እ ለ ለ እ ለ ለ ጥ	TGCCAAGGCT	CACCCTCCTT	50
40	IGIGCICATI	CAGGAGCICA	IIVVCWVCVI	IGCCMAGGCI	CACGGIGGII	50
	ACTCTGTCTT	CACTGGTGTC	GGTGAGCGAA	CTCGTGAGGG	TAACGACTTG	100
	TACCACGAAA	TGAGGGAGAC	TGGTGTTATC	AACCTTGAGG	GTGACTCCAA	150
	GGTCGCTCTT	GGTGAGTTCT	TTTTTTTTTTT	CAGGCTAATT	AGTCGATGAC	200
	GTGGGCCCTG	ACTAAAACTG	TTTCTTCCAG	TCTTCGGTCA	GATGAACGAG	250
50	CCCCCTGGAG	CCCGTGCCCG	AGTTGCCCTT	ACTGGTTTGA	CCATTGCCGA	300
	GTACTTCCGT	GACGAGGAAG	GCCAGGATGT	GTTGCTTTTC	ATTGACAACA	350
	TTTTCCGATT	CACCCAGGCC	GGTTCCGAGG	TGTCTGCCTT	GCTCGGTCGT	400
	ATCCCCTCTG	CCGTCGGTTA	CCAGCCCACT	CTTTCCACCG	ACATGGGTGG	450
·	TATGCAGGAG	CGAATGTAGG	TTGCATTCTC	TGTGATTTTA	CGGCAAGCCT	500
55	TGACTTTTTT	TTTCTAGTAC	CACCACCAAG	AAGGGTTCCA	TTACCTCCGT	550
	C					551

^{60 2)} INFORMATION FOR SEQ ID NO: 679

5	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 552 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear 				
	(ii) MOLECULE TYPE: Genomic DNA				
10	(vi) ORIGINAL SOURCE:(A) ORGANISM: Cryptococcus neoformans(B) STRAIN: ATCC 44104				
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 679				
20	TGTGCTCATT CAGGAGCTCA TTAACAACAT TGCCAAGGCC CACGGTGGTT ACTCCGTCTT CACCGGTGTC GGTGAGCGAA CTCGTGAGGG TAACGACTTG TACCACGAAA TGAGGGAGAC TGGTGTTATC AACCTTGAGG GTGACTCCAA	50 100 150			
20	GGTCGCTCTT GGTGAGTTCT TTTTTTTGGG AGCTAATTAG TCGATGACGT GGGCCCTGAC CAAAACCGTT TCTTTCAGTC TTCGGTCAGA TGAACGAGCC CCCTGGAGCC CGTGCCCGAG TTGCTCTTAC TGGTTTGACC ATTGCCGAGT	200 250 300			
	ACTTCCGTGA CGAGGAAGGC CAGGATGTGT TGCTTTTCAT TGACAACATT TTCCGATTCA CCCAGGCCGG TTCCGAGGTG TCTGCCTTGC TCGGTCGTAT	350 400			
25	CCCCTCTGCC GTCGGTTACC AGCCCACTCT TTCCACCGAT ATGGGTGGTA TGCAAGAGCG AATGTAAGTT GCATTTTTTG TGATTTTACG GCAAGTCTTG ACTTACATTT TTTTCTAGCA CCACCACCAA GAAGGGTTCC ATTACCTCCG TC	450 500 550 552			
30	ANTINATIVE TRANSPORTE TO MA COA				
	2) INFORMATION FOR SEQ ID NO: 680				
35	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1018 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear 				
40	(ii) MOLECULE TYPE: Genomic DNA				
30	(vi) ORIGINAL SOURCE:(A) ORGANISM: Cunninghamella bertholletiae(B) STRAIN: ATCC 42115				
45	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 680				
50	TCTCCCTGCT ATTTTAAACG CTCTTGAAGT TAAGGATCAT GCTGGTGGTC GTCTTGTTCT TGAAGTTGCT CAACACTTGG GTGAAAACAC TGTACGTACT ATTGCTATGG ATGGTACTGA AGGTAAGTTT ATTTTTAGAT GATCATAAAT AATTGATCAT AATGATAAAA AAAAAAGAAG AAGAAGAACA GGATGTATAT	50 100 150 200			
	AATGGTTAAT AAATAATATT TTCATATTGK ATATAACTAT TTAATCTGTT TTTTTTTCTT CATGATTATA TATATATATG TMCTAATATC TAATATGAAC CTTTTTTATA AAATTAATCA GGTCTTGTCC GTGGTCAAAA GGTTGTTGAT	250 300 350 400			
55	ACTGGTGCTC CTATTACCAT TCCTGTTGGT AAGGAAGTTC TTGGTCGTAT CATCAACGTT ATTGGTGAAC CCATTGATGA ACGTGGTCCT ATTAAGGCCA AGTCTCACCG TGCTATTCAC GCTGAAGCTC CAGAATTCGT TGATCAATCT CCTACTCCCG AAATTCTTGA AACTGGTATT AAGGTTGTCG ATTTATTAGC	450 500 550			
60	TCCTTATGCT CGTGGTGGTA AGATTGGTCT TTTCGGTGGT GCTGGTGTAG GTAAAACTGT CTTGATTCAA GAACTTATTA ACAACATTGC TAAAGCCCAT GGTGGTTACT CTATTTTCTG TGGTGTTGGT GAACGTACTC GTGAAGGTAA	600 650 700			
	385				

	WO 01/23604		PCT/CA0	0/01150
5	CGATTTATAC CACGAAATGA TGGAAACTGG ACTCCAAGTG TGCTCTTGTA TTCGGTCAAA CGTGCCCGTG TTGCTTTAAC TGGTTTAACC TGAAGAAGGT CAAGATGTGT TACTTTTCAT CTCAAGCTGG TTCTGAAGTA TCTGCCCTTT GTAGGTTACC AACCCACTTT ATCTACTGAT TATTACTACT ACCAAGAA	TGAACGAACC ATTGCTGAAT TGATAACATT TAGGTCGTAT	TCCTGGTGCT ACTTCCGTGA TTCCGTTTCA TCCATCTGCT	750 800 850 900 950 1000
10	2) INFORMATION FOR SEQ ID NO: 681			
15	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 23 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear 			
20	(ii) MOLECULE TYPE: DNA			
20	(xi) SEQUENCE DESCRIPTION: SEQ	ID NO: 681		
	GGISSITTYG GIISIGGIAA RAC			23
25				
	2) INFORMATION FOR SEQ ID NO: 682	}		
30	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 26 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear 			
35	(ii) MOLECULE TYPE: DNA			
	(xi) SEQUENCE DESCRIPTION: SEQ	ID NO: 682		
40	GTIACIGGYT CYTCRAARTT ICCICC			. 26
	2) INFORMATION FOR SEQ ID NO: 683	}		
4 5	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 26 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear 			
50	(ii) MOLECULE TYPE: DNA			
	(xi) SEQUENCE DESCRIPTION: SEQ) ID NO: 683		
55	GTIACIGGIT CISWIAWRTC ICCICC			26
	= = = = = = = = = = = = = = = = =			•
60	2) INFORMATION FOR SEQ ID NO: 684	1		

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 3267 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: Genomic DNA
- (vi) ORIGINAL SOURCE:

5

- (A) ORGANISM: Candida tropicalis
- (C) ACCESSION NUMBER: M64984
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 684

15	ATGGCTGGTG	CTTTAGAAAA	CGCAAGAAAA	GAAATTAAAC	GTCTTTCATT	50
	AGATGACACC	AATGAATCCC	AATATGGTCA	AATCTATTCT	GTTTCCGGTC	100
	CGGTTGTTAT	TGCCGAAAAC	ATGATTGGAT	GTGCCATGTA	CGAATTGGTT	150
	AAAGTTGGTC	ATGATAATTT	AGTTGGGGAA	GTTATTAGAA	TTAATGGTGA	200
	TAAAGCAACC	ATTCAAGTTT	ATGAAGAAAC	TGCAGGGGTC	ACTGTTGGTG	250
20	ATCCAGTTTT	AAGAACTGGT	AAACCATTAT	CTGTTGAATT	AGGTCCTGGT	300
	TTAATGGAAA	CTATTTATGA	TGGTATTCAA	AGACCTTTAA	AAGCCATTAA	350
,	AGATGAATCC	CAATCTATTT	ATATCCCAAG	AGGTATTGAT	GTTCCTGCTT	400
	TATCAAGAAC	TGTTCAATAT	GATTTCACTC	CAGGTCAATT	GAAAGTTGGT	450
	GATCATATCA	CTGGTGGGGA	CATTTTTGGT	TCTATTTATG	AAAACTCTTT	500
25	ATTGGATGAC	CATAAGATTT	TGTTACCTCC	AAGAGCAAGA	GGTACTATTA	550
	CTTCTATTGC	TGAAGCCGGT	TCTTATAATG	TTGAAGAACC	AGTTTTGGAA	600
	GTTGAATTTG	ATGGTAAGAA	ACATAAATAC	TCTATGATGC	ATACATGGCC	650
	AGTTAGAGTT	CCAAGACCAG	TTGCTGAAAA	ATTGACTGCT	GATCATCCAT	700
	TGTTGACCGG	TCAAAGAGTC	TTGGATTCTT	TATTCCCATG	TGTTCAAGGT	750
30	GGTACTACTT	GTATCCCAGG	GGCTTTTGGT	TGTGGTAAAA	CTGTTATTTC	800
	TCAATCTTTG	TCCAAATTCT	CCAACTCTGA	TGTTATTATC	TATGTTGGTT	850
	GTTTCACTAA	AGGTACTCAA	GTCATGATGG	CTGATGGTGC	CGACAAATCT	900
	ATTGAATCTA	TTGAAGTTGG	TGACAAAGTC	ATGGGTAAAG	ATGGTATGCC	950
	AAGAGAAGTT	GTTGGCTTAC	CAAGAGGTTA	TGATGATATG	TACAAGGTTC	1000
35	GTCAACTTTC	TAGTACTAGA	CGTAATGCTA	AATCCGAAGG	CTTGATGGAT	1050
	TTCACTGTTT	CTGCTGATCA	TAAACTTATC	TTGAAAACTA	AACAAGATGT	1100
	CAAGATTGCT	ACACGTAAAA	TTGGTGGCAA	CACCTATACT	GGTGTTACTT	1150
	TCTATGTTTT	GGAAAAGACT	AAGACTGGTA	TTGAATTAGT	TAAAGCCAAG	. 1200
	ACTAAAGTTT	TCGGTCATCA	TATCCATGGT	CAAAATGGCG	CTGAAGAAAA	1250
40	AGCTGCTACT	TTTGCTGCTG	GCATTGACTC	TAAAGAATAC	ATTGATTGGA	1300
	TCATTGAAGC	TAGAGATTAT	GTACAAGTTG	ATGAAATTGT	CAAGACCAGC	1350
	ACCACTCAAA	TGATCAACCC	AGTTCATTTT	GAATCTGGTA	AACTCGGTAA	1400
	CTGGTTACAC		AAAACAAATC			1450
	ACTTGTTGGG		GGTATTGGAA			1500
45	ACCATGAACT		TGTTAAATTA		TTATGAACTA	1550
	CTCTTCAAAA		CTTGTTCTTC			1600
			GAATTTTTCA			1650
		GTGATTTCAC		TTTACCGATG		1700
			GTGCAGCTGC			1750
50	TGTGGAATGC		CTTGGTTTCA			1800
			TATTGCTGTT			1850
			TTGATGCTGC			1900
			GTTGTTAGAA			1950
			TCATTCTTTG			2000
55			ATGCTGCTGG	-	- · · · ·	2050
			GCTCCACTTG			2100
			TCCAGTTGTC			2150
			TCAAATCTGC			2200
			GATCATCAAT			2250
60	TIGGIGCACA	ACTGTGGTGA	ACGTGGTAAT	GAGATGGCTG	AAGTTTTGAT	2300

WO 01/23604	PCT/CA00/01150

	GGAATTCCCA TGAAACGTAC AGAGAAGCTT TCAAGGTAAG	GAATTGTTTA CACTTTGGTT CTATTTATAC AATGTTTCTA	CTGAAATTTC GCCAATACTT TGGTATTACA TGATTGCTGA	TGGTAGAAAA CTAATATGCC TTGGCTGAAT TTCTTCTTCA	GAACCAATTA AGTCGCTGCC ATTTCAGAGA CGTTGGGCTG	2350 2400 2450 2500
5	AAGCTTTGAG GGTTTCCCAG CGGTAAAGCC TTGTTGCTGC ACTTCTACTT	AGAAATTTCT CTTATTTGGG ACTGCTTTGG TGTTTCTCCA TGGGTATTAC	GGTAGATTGG TGCTAAATTG GTTCACCAGA GCTGGTGGTG TCAAGTTTTC	GTGAAATGCC GCTTCTTTCT TAGAGTTGGT ATTTCTCTGA TGGGGGTTGG	TGCTGATCAA ATGAGCGTGC TCAGTTTCTA TCCAGTTACT ATAAGAAATT	2550 2600 2650 2700 2750
10	GGCCCAAGA AATACACCAA CCACAATTGA GGAACAAGTT AGATTACTTT	AAACATTTCC TGTTTTGAAC GAGACAAAAT GTTCAATTAG AGATGTTGCT	CATCTATTAA AAATACTATG TAGAGAAATT TTGGTAAATC ACCTTGATTA	CACCAGTGTT ATTCCAACTA TTATCTAATG TGCATTGTCT AAGAAGATTT	TCTTATTCTA TCCAGAATTC CTGAAGAATT GATTCTGATA CTTGCAACAA	2800 2850 2900 2950 3000
15 20	AATGGTTATT TATGATGAGA CCAATGGTGC CATGCTGTTT AGGTGAAAAA CTGAAGCTTC	CTTCATATGA GCATTTATTT TCAATGGTCT CTTCAGCTAA GAATTTGGAG AGAATAA	TGCATTCTGT CATATTATGA AAATTAGCTG ATTCTTTGAA ATTTATTAAC	CCAATTTGGA TGAAGCACAA AAAGTACTAG CCATCAAGAG CACTATCTCC	AGACTTTTGA AAAGCAATTG TGATGTTAAA GTCAAAAAGA GAAAGATTTG	3050 3100 3150 3200 3250 3267
						ں ہے د

2) INFORMATION FOR SEQ ID NO: 685

25 (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1782 bases
- (B) TYPE: Nucleic acid
- (C) STRANDEDNESS: Double
- 30 (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: Genomic DNA
 - (vi) ORIGINAL SOURCE:

- (A) ORGANISM: Enterococcus hirae
 - (B) STRAIN: ATCC 9790
 - (C) ACCESSION NUMBER: D17462
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 685

TTGCAAATTG	GAAAAATCAT	AAAAGTCTCC	GGTCCTCTCG	TTATGGCAGA	50
AAATATGTCA	GAAGCAAGTA	TTCAAGACAT	GTGTTTAGTG	GGAGATTTAG	100
GAGTCATCGG	CGAAATCATT	GAGATGCGTC	AAGATGTGGC	GTCTATTCAA	150
GTATATGAAG	AAACTTCAGG	AATTGGTCCC	GGAGAACCTG	TTCGTTCCAC	200
TGGGGAAGCA	CTATCTGTTG	AGCTAGGACC	AGGAATCATT	TCACAAATGT	250
TTGACGGGAT	TCAAAGACCA	CTGGATACAT	TTATGGAAGT	GACTCAAAGT	300
AACTTCTTAG	GACGTGGGGT	CCAATTACCA	GCTTTAGATC	ATGAGAAACA	350
ATGGTGGTTT	GAAGCGACAA	TCGAAGAAGG	AACAGAAGTA	AGTGCTGGAG	400
ACATCATTGG	GTACGTGGAT	GAAACGAAGA	TCATTCAGCA	CAAAATCATG	450
GTCCCTAATG	GTATCAAAGG	AACTGTACAA	AAAATTGAAT	CTGGATCATT	500
TACGATCGAT	GATCCGATTT	GTGTGATCGA	AACGGAACAA	GGCTTAAAAG	550
AGCTGACGAT	GATGCAAAAA	TGGCCAGTAC	GTCGTGGTCG	ACCAATCAAA	600
CAAAAATTAA	ATCCAGATGT	ACCGATGATC	ACCGGTCAAA	GGGTCATTGA	650
CACGTTTTTC	CCAGTAACTA	AAGGAGGAGC	GGCAGCCGTT	CCAGGTCCGT	700
TTGGTGCAGG	GAAGACAGTT	GTGCAACACC	AGATTGCTAA	GTGGTCGGAC	750
GTAGATCTAG	TGGTTTACGT	TGGTTGTGGG	GAACGAGGAA	ATGAAATGAC	800
GGATGTCGTC	AATGAATTTC	CTGAACTGAT	CGATCCAAAT	ACAGGCGAGT	850
CTTTGATGGA	ACGAACTGTG	TTGATCGCTA	ATACATCGAA	CATGCCAGTA	900
GCTGCTCGAG	AAGCTTCTAT	TTATACGGGA	ATCACGATTG	CCGAGTACTT	950
CCGTGACATG	GGGTATGATG	TAGCAATCAT	GGCAGATTCC	ACTTCTCGTT	1000
	AAATATGTCA GAGTCATCGG GTATATGAAG TGGGGAAGCA TTGACGGGAT AACTTCTTAG ATGGTGGTTT ACATCATTGG GTCCCTAATG TACGATCGAT AGCTGACGAT CAAAAATTAA CACGTTTTTC TTGGTGCAGG GTAGATCTAG GGATGTCGTC CTTTGATGGA GCTGCTCGAG	AAATATGTCA GAAGCAAGTA GAGTCATCGG CGAAATCATT GTATATGAAG AAACTTCAGG TGGGGAAGCA CTATCTGTTG TTGACGGGAT TCAAAGACCA AACTTCTTAG GACGTGGGGT ATGGTGGTTT GAAGCGACAA ACATCATTGG GTACGTGGAT GTACCATAGG TACGATCGAT GATCCGATTT AGCTGACGAT GATCCAAAAA CAAAAATTAA ATCCAGATGT CACGTTTTTC CCAGTAACTA TTGGTGCAGG GAAGACAGTT GTAGATCTAG TGGTTTACGT GTAGATCTAG TGGTTTACGT GGATGTCGTC AATGAATTTC CTTTGATGGA ACGAACTGTG GCTGCTCGAG AAGCTTCTAT	AAATATGTCA GAAGCAAGTA TTCAAGACAT GAGTCATCGG CGAAATCATT GAGATGCGTC GTATATGAAG AAACTTCAGG AATTGGTCCC TGGGGAAGCA CTATCTGTTG AGCTAGGACC TTGACGGAT TCAAAGACCA CTGGATACAT AACTTCTTAG GACGTGGGGT CCAATTACCA ATGGTGGTTT GAAGCGACAA TCGAAGAAGG ACATCATTGG GTACGTGGAT GAAACGAAGA GTCCCTAATG GTATCAAAGG AACTGTACAA TACGATCGAT GATCCGATTT GTGTGATCGA AGCTGACGAT GATCCAAAAATTAA ATCCAGATGT ACCGATGATC CACGTTTTC CCAGTAACTA AAGGAGGAGC GTAGATCTACGA TGGTCAACAC GTAGATCTAG GAAGACAGTT GTGCAACACC GTAGATCTAG TGGTTTACGT TGGTTGTGGG GGATGTCGTA AATGAATTTC CTGAACTGAT CTTTGATCGA ACGAACTGTG TTGATCGCTA GCTGCTCGAG AAGCTTCTAT TTATACGGGA	AAATATGTCA GAAGCAAGTA TTCAAGACAT GTGTTTAGTG GAGTCATCGG CGAAATCATT GAGATGCGTC AAGATGTGGC GTATATGAAG AAACTTCAGG AATTGGTCCC GGAGAACCTG TGGGGAAGCA CTATCTGTTG AGCTAGGACC AGGAATCATT TTGACGGGAT TCAAAGACCA CTGGATACAT TTATGGAAGT AACTTCTTAG GACGTGGGGT CCAATTACCA GCTTTAGATC ATGGTGGTTT GAAGCGACAA TCGAAGAAGG AACAGAAGTA ACATCATTGG GTACGTGGAT GAAACGAAGA TCATTCAGCA GTCCCTAATG GTATCAAAGG AACTGTACAA AAAATTGAAT TACGATCGAT GATCCGATTT GTGTGATCGA AACGGAACAA AGCTGACGAT GATGCAAAAA TGGCCAGTAC GTCGTGGTCG CAAAAATTAA ATCCAGATGT ACCGATGATC ACCGGTCAAA CACGTTTTTC CCAGTAACTA AAGGAGGAC GGCAGCCGTT TTGGTGCAGG GAAGACAGT GTGCAACACC AGATTGCTAA GTAGATCTAG TGGTTTACGT TGGTTGTGGG GAACGAGGAA GGATGTCGTC AATGAATTTC CTGAACTGAT CGATCCAAAT CTTTGATGGA ACGAACTGTG TTGATCGCTA ATACATCGAA GCTGCTCGAG AAGCTTCTAT TTATACGGGA ATCACGATTG	AAATATGTCA GAAGCAAGTA TTCAAGACAT GTGTTTAGTG GGAGATTTAG GAGTCATCGG CGAAATCATT GAGATGCGTC AAGATGTGCC GTCTATTCAA GTATATGAAG AAACTTCAGG AATTGGTCCC GGAGAACCTG TTCGTTCCAC TGGGGAAGCA CTATCTGTTG AGCTAGGACC AGGAATCATT TCACAAATGT TTGACGGGAT TCAAAGACCA CTGGATACAT TTATGGAAGT GACTCAAAGT AACTTCTTAG GACGTGGGGT CCAATTACCA GCTTTAGATC ATGAGAAACA ATGGTGGTTT GAAGCGACAA TCGAAGAAGG AACAGAAGTA AGTGCTGGAG ACATCATTGG GTACGTGGAT GAAACGAAGA TCATTCAGCA CAAAATCATG GTCCCTAATG GTATCAAAGG AACTGTACAA AAAATTGAAT CTGGATCATT TACGATCGAT GATCCGATTT GTGTGATCGA AACAGAACAA GGCTTAAAAG AGCTGACGAT GATCCAAAAA TGGCCAGTAC GTCGTGGTCG ACCAATCAAA CAAAAATTAA ATCCAGATGT ACCGATGATC ACCGGTCAAA GGGTCATTGA CACGTTTTTC CCAGTAACTA AAGGAGGAC GGCAGCCGTT CCAGGTCCGT TTGGTGCAGG GAAGACAGTT GTGCAACAC AGATTGCTAA GTGGTCGGAC GTAGATCTAG TGGTTTACGT TGGTTGTGGG GAACGAGGAA ATGAAATGAC GGATGTCGTC AATGAATTC CTGAACTGAT CGATCCAAAT ACAGGCGAGT CTTTGATGGA ACGAACTGT TTGATCGCTA ATACATCGAA CATGCCAGTA GCTGCTCGAG AACCTGTG TTGATCGCTA ATACATCGAA CATGCCAGTA GCTGCTCGAG AAGCTTCTAT TTATACGGGA ATCACGATTG CCGAGTACTT

	GGGCAGAAGC	ACTGCGTGAA	ATGAGCGGAC	GTTTAGAAGA	AATGCCTGGT	1050
	GATGAAGGTT	ATCCCGCTTA	TCTGGGCTCT	CGTCTAGCTG	AATACTATGA	1100
	ACGTTCAGGA	CGTGTCATTG	CTCTAGGCTC	TGACCAACGT	GAGGGCAGTA	1150
	TCACTGCCAT	CAGTGCGGTT	TCTCCTTCTG	GTGGAGATAT	CTCTGAACCA	1200
5	GTGACTCAAA	ATACCTTACG	TGTGGTGAAG	GTTTTCTGGG	GATTAGATTC	1250
	TAGTCTTGCT	CAAAAAAGAC	ATTTTCCATC	GATTAACTGG	ATCCAAAGTT	1300
	ACTCATTATA	TTCAACAGAA	GTTGGCAGAT	ATATGGATCA	AATCTTACAA	1350.
	CAGGATTGGT	CTGATATGGT	AACTGAAGGC	ATGCGGATCT	TGCAAGAAGA	1400
	AGAACAATTA	AATGAAATCG	TGCGCTTGGT	AGGGATCGAT	TCGCTTTCTG	1450
10	ATAACGATCG	CTTGACCCTT	GAAGTAGCAA	AATCGATTCG	AGAAGACTAT	1500
	TTACAACAAA	ATGCTTTTGA	TGATGTAGAT	ACGTTTACTT	CAAGAGAAAA	1550
	ACAATTCAAC	ATGTTGAAAG	TTATTTTGAC	TTTTGGGAAA	GAAGCTCGAA	1600
	AAGCCTTATC	GTTGGGAGCG	TACTTCAATG	AAATCATGGA	AGGTACAGTA	1650
	GCGGTCAGAG	AACGCATTAG	TCGGAGCAAG	TATATTCCAG	AAGAAGAGTT	1700
15	AGCCAAAATT	AGTAGTATAA	ATGAAGAAAT	CAAAGAAACG	ATCCAATTGA	1750
	TTGTTTCAGA	AGGAGGGATG	ACCGATGATT	AA		1782

- 20 2) INFORMATION FOR SEQ ID NO: 686
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1781 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: Genomic DNA
- 30 (vi) ORIGINAL SOURCE:

- (A) ORGANISM: Chlamydia pneumoniae
- (B) STRAIN: CWL 029
- (C) ACCESSION NUMBER: Genome project
- 35 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 686

	CAGGGACATG	TTATAGAAGC	TTATGGAAAC	TTGTTACGTG	TACGCTTTGA	50
	CGGATATGTT	AGACAAGGTG	AAGTTGCATA	TGTCAACGTA	GATAATACCT	100
	GGTTAAAAGC	AGAAGTGATT	GAAGTTGCTG	ATCAAGAAGT	CAAGGTTCAG	150
40	GTATTTGAAG	ATACACAAGG	CGCGTGTCGA	GGAGCTCTTG	TTACGTTTTC	200
	AGGACATCTT	TTAGAAGCCG	AGTTAGGGCC	TGGCTTGCTT	CAGGGCATTT	250
	TCGATGGACT	TCAAAATCGT	CTTGAGGTGC	TAGCTGAAGA	TAGTTCTTTC	300
	TTGCAGAGAG	GCAAGCATGT	TAATGCTATT	TCTGATCATA	ATTTATGGAA	350
	TTATACTCCC	GTAGCTTCTG	TTGGGGATAC	TTTAAGACGA	GGAGATCTTC	400
45	TAGGAACAGT	ACCTGAAGGA	CGATTTACTC	ATAAGATTAT	GGTTCCTTTT	450
	TCTTGCTTTC	AAGAGGTTAC	CCTGACTTGG	GTAATTTCTG	AAGGAACCTA	500
	TAATGCTCAT	ACTGTGGTCG	CAAAAGCTCG	AGATGCTCAG	GGTAAAGAAT	550
	GTGCCTTTAC	TATGGTGCAA	AGATGGCCGA	TCAAACAAGC	TTTTATTGAA	600
	GGAGAGAAGA	TCCCTGCGCA	TAAGATTATG	GATGTGGGTT	TGCGAATCTT	650
50	AGATACGCAA	ATTCCAGTAT	TGAAGGGGGG	AACTTTCTGT	ACCCCAGGAC	700
	CTTTTGGTGC	AGGGAAAACA	GTCTTACAAC	ACCATCTTTC	TAAGTACGCT	750
	GCTGTAGATA	TTGTGATTTT	GTGTGCGTGC	GGAGAGCGTG	CTGGTGAAGT	800
	TGTTGAGGTA	TTACAAGAGT	TCCCTCATCT	TATCGACCCC	CATACCGGAA	850
	AGTCTTTAAT	GCACAGAACA	TGTATTATTT	GTAACACATC	ATCCATGCCT	900
55	GTGGCTGCCC	GAGAGTCTTC	GATCTATTTA	GGAGTGACGA	TTGCAGAATA	950
	CTATCGCCAG	ATGGGACTAG	ATATTCTGCT	TTTAGCTGAT	TCTACATCCC	1000
	GATGGGCACA	AGCCCTTAGA	GAGATTTCGG	GACGTCTTGA	AGAAATCCCT	1050
	GGAGAGGAAG	CATTTCCTGC	ATACCTGTCT	TCTAGAATAG	CTGCTTTTTA	1100
	TGAGCGAGGA	GGAGCTATCA	CCACGAAAGA	TGGTTCTGAA	GGATCTTTAA	1150
60	CTATATGTGG	TGCGGTGTCT	CCTGCAGGAG	GAAACTTTGA	AGAACCAGTC	1200

WO 01/23604 PC	CT/CA00/01150
----------------	---------------

	ACTCAATCTA	CATTAGCTGT	AGTCGGAGCG	TTCTGTGGTC	TTTCAAAAGC	1250
	ACGAGCTGAC	GCACGTAGGT	ATCCTTCAAT	AGACCCTTTG	ATTTCTTGGT	1300
	CAAAATATTT	GAACCAGGTA	GGACAAATTT	TAGAAGAGAA	GGTTTCAGGC	1350
	TGGGGTGGTG	CTGTGAAAAA	AGCAGCACAG	TTTCTAGAGA	AAGGTTCAGA	1400
5	AATCGGCAAG	CGTATGGAAG	TTGTCAGTGA	AGAAGGGGTT	TCTATGGAAG	1450
	ACATGGAAAT	CTACTTAAAG	GCAGAACTTT	ATGATTTTTG	TKATCTCCAG	1500
	CAGAACGCAT	TCGATCCTGT	GGACTGTTAT	TGTCCTTTTG	AGAGACAGAT	1550
	AGAGTTATTT	TCATTAATCA	GTCGTATTTT	TGATGCTAAA	TTTGTTTTTG	1600
	ATAGTCCTGA	TGATGCAAGA	AGCTTTTTCC	TTGAGCTGCA	GAGCAAGATT	1650
10	AAGACATTAA	ATGGCCTGAA	ATTTCTTTCA	GAGGAATATC	ATGAGAGTAA	1700
	AGAGGTCATA	GTTAGACTGT	TGGAAAAAAC	AATGGTACAA	ATGGCGTAAG	1750
	GATATGCAAA	CAATCTACAC	AAAAATAACT	G		1781

15

- 2) INFORMATION FOR SEQ ID NO: 687
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1758 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: Genomic DNA

25

- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Halobacterium salinarum
 - (C) ACCESSION NUMBER: S56356
- 30 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 687

	ATGAGTCAAG	CTGAAGCAAT	CACTGACACC	GGCGAAATCG	AGAGCGTGAG	50
•	CGGTCCGGTC	GTGACCGCCA	CGGGCCTCGA	CGCGCAGATG	AACGACGTCG	100
	TCTACGTGGG	CGACGAGGGT	CTGATGGGCG	AGGTCATCGA	GATCGAAGGC	150
35	GACGTAACCA	CCATCCAGGT	CTACGAGGAG	ACGTCCGGCA	TCGGGCCGGG	200
	CCAGCCCGTC	GACAACACGG	GCGAACCGCT	CACCGTGGAC	CTGGGCCCGG	250
	GGATGCTGGA	CTCCATCTAC	GATGGTGTGC	AGCGTCCACT	GGACGTCCTC	300
	GAAGACGAGA	TGGGGGCGTT	CCTCGATCGC	GGTGTTGACG	CACCCGGCAT	350
	CGACCTCGAC	ACCGACTGGG	AGTTCGAGCC	CACCGTCGAG	GCGGGCGACG	400
40	AGGTCGCGGC	CGGCGATGTC	GTCGGCACCG	TCGACGAAAC	GGTCAGCATC	450
	GAACACAAGG	TTCTGGTGCC	CCCCCGCAGT	GACGGCGGCG	AAGTCGTCGC	500
	CGTCGAATCC	GGCACGTTCA	CCGTCGACGA	CACGGTCGTC	GAGTTGGACA	550
	CCGGCGAGGA	GATCCAGATG	CACCAGGAGT	GGCCGGTCCG	CCGCCAGCGC	600
	CCCACCGTCG	ACAAGCAGAC	GCCGACGGAG	CCGCTGGTGT	CCGGCCAGCG	650
45	CATCCTCGAC	GGCCTGTTCC	CGATCGCGAA	AGGCGGGACG	GCCGCGATCC	700
	CGGGGCCGTT	CGGGTCCGGG	AAGACGGTCA	CCCAGCAGTC	CCTCGCGAAG	750
	TTCGCCGACG	CGGACATCGT	TGTCTACATC	GGCTGTGGTG	AGCGCGGCAA	800
	CGAGATGACG	GAAGTCATCG	AGGACTTCCC	GGAGCTGCCC	GACCCCCAGA	850
	CCGGGAACCC	GCTGATGGCC	CGCACCACGC	TCATCGCGAA	CACGTCGAAC	900
50	ATGCCGGTTG	CCGGGCGTGA	GTCCTGCATT	TACACGGGAA	TCACCATCGC	950
	GGAGTACTAC	CGCGACATGG	GCTACGACGT	GGCGCTGATG	GCCGACTCCA	1000
	CCTCGCGGTG	GGCGGAGGCC	ATGCGGGAGA	TCTCCTCGCG	ACTCGAGGAG	1050
	ATGCCCGGCG	AGGAGGGGTA	TCCCGCGTAC	CTGGCCGCCC	GCCTCTCGGA	1100
	GTTCTACGAG	CGCGCCGGCT	ACTTCGAGAA	CTTCAACGGG	ACCGAGGGCT	1150
55	CCATCTCGGT	CATCGGTGCG	GTGTCGCCGC	CCGGCGGGGA	CTTCTCCGAG	1200
	CCGGTCACCC	AGAACACGCT	GCGCATCGTG	AAGACGTTCT	GGGCGCTTGA	1250
	CTCGGACCTC	GCCGAGCGCC	GGCACTTCCC	GGCGATCAAC	TGGGACGAGT	1300
	CCTACAGCCT	CTACAAGGAC	CAACTCGACC	CGTGGTTCAC	GGACAACGTC	1350
	GTCGACGACT	GGGCCGAGCA	GCGCCAGTCG	GCGGTCGACA	TCCTCGACGA	1400
60	GGAATCCGAA	CTCGAAGAGA	TCGTGCAGCT	CGTCGGGAAG	GACGCGCTGC	1450

CCGAGGACCA	GCAGCTCACG	CTGGAAGTCG	CGCGGTACAT	CCGCGAGGCG	1,500
TGGCTCCAGC	AGAACGCGCT	CCACGACGTG	GATCGCTACT	GCCCGCCCGA	1550
GAAGACGTAC	GCCATCCTCT	CCGGCATCAA	GACGCTTCAC	GAGGAGTCCT	1600
TTGAGGCGTT	GGACGCCGGT	GTGCCAGTCG	AGGAGATCAC	GTCGATCGAC	1650
GCCGCGCCGC	GCCTGAATCG	TCTCGGCACG	ACGCCCGACG	ACGAGCACGA	1700
GGCGGAGGTC	GCGGAGATCA	AACAGCAGAT	TACCGAGCAG	CTTCGGGAGC	1750
TCTACTGA					1758

10

15

5

- 2) INFORMATION FOR SEQ ID NO: 688
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 3118 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: Genomic DNA

- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Human
 - (C) ACCESSION NUMBER: L09234
- 25 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 688

	GAATTCCGGC	AGCTGACTAG	TCTTGTGATT	GGGGTCCTGG	GCTGATAAAA	50
	TCATTCCAAA	TGACGAGCAC	ATTGATAAAG	ACGTCCGATG	AGGACCGGGA	100
	GTCCAAATTC	GGCTTTGTTT	TTGCCGTATC	TGGACCTGTG	GTGACAGCTG	150
30	AACGAATGGC	CGGTTCTGCT	ATGTACGAAC	TGGTGCGTGT	CGGTTATTAT	200
	GAACTGGTCG	GAGAGATCAT	CCGGTTGGAG	GGTGACATGG	CAACAATCCA	250
	AGTATACGAA	GACACCTCAG	GTGTGACAGT	AGGCGATCCC	GTGCTGCGCA	300
	CAGGCAAGCC	GCTGTCCGTG	GAACTGGGAC	CCGGAATCAT	GGGCAGCATC	350
	TTCGACGGTA	TCCAGCGACC	GCTGAAGGAT	ATCAATGAAC	TGTCAAATAG	400
35	TATCTACATC	CCGAAAGGTG	TCAATGTGCC	TGCCCTGAGT	CGCACTGCAC	450
	AGTGGGACTT	CAGTCCCGTC	AGTGTCAAGG	TTGGAAGCCA	CATTACTGGT	500
	GGTGACCTGT	ACGGTTTGGT	CCACGAAAAT	ACTCTGGTGA	AACACAAGTT	550
	GCTGCTGCCG	CCCCGTGCCA	AGGGAACTGT	CACGTACATT	GCAGAACCTG	600
	GAAACTACAC	AGTTGATGAT	GTTGTCCTGG	AGACAGAATT	TGACGGCGAG	650
40	CGATCAAAGT	TCACCATGCT	GCAAGTGTGG	CCTGTACGTC	AGCCCAGGCC	700
	TGTTACAGAA	AAGTTGCCAG	CTAACTACCC	CCTCCTTACT	GGCCAGCGTG	750
	TGCTCGACTC	CCTATTCCCG	TGTGTCCAGG	GTGGAACAAC	AGCTATTCCT	800
	GGGGCCTTCG	GATGTGGCAA	GACTGTAATA	TCACAGTCTT	TGTCAAAATA	850
	CTCAAACTCC	GATGTAATTA	TCTATGTAGG	TTGTGGTGAG	CGAGGTAATG	900
45	AAATGTCAGA	AGTACTCAGG	GATTTCCCGC	AGTTGTCGTT	GGAGATTGAT	950
	GGTGTGACTG	AATCAATCAT	GAAGAGAACA	GCCCTGGTCG	CAAACACATC	1000
	AAACATGCCT	GTGGCTGCTC	GAGAAGCATC	TATCTACACA	GGTATTACAC	1050
	TGTCAGAATA	CTTCAGGGAC	ATGGGTTACA	ATGTATCCAT	GATGGCTGAC	1100
	TCAACTTCAC	GATGGGCCGA	AGCTCTTCGA	GAAATCTCAG	GTCGATTGGC	1150
50	TGAAATGCCT	GCCGACAGCG	GTTATCCCGC	CTACCTAGGT	GCACGACTTG	1200
	CCAGTTTCTA	CGAGCGTGCC	GGCCGTGTGA	AGTGCTTGGG	TAACCCAGAC	1250
	AGGGAGGGCT	CCGTGAGTAT	AGTGGGCGCC	GTGTCGCCGC	CCGGTGGAGA	1300
		CCCGTGACGA				1350
		CAAGAAACTT				1400
55		CGTACAGTAA			ACTTCTACGA	1450
		CCAGAGTTTG			AAGGAGATTT	1500
			TCTGAAATTG		CGGTAAAGCT	1550
		AAACTGACAA				1600
		CTGCAACAGA				1650
60	CATTCTACAA	GACAGTAGGA	ATGCTGAAAA	ATATGATTGC	TTTCTACGAT	1700

ATGTCTCGGC	ATGCAGTTGA	ATCTACTGCT	CAGAGCGAGA	ACAAGATCAC	17 5/ 0
TTGGAATGTT	ATTAGAGATT	CTATGGGCAA	TATTCTGTAT	CAGCTTTCCT	1800
CCATGAAATT	CAAGGATCCA	GTCAAGGATG	GAGAAGCGAA	GATCAAGGCA	1850
GACTTTGAGC	AGCTTCATGA	AGACATTCAG	CAAGCCTTCA	GGAACCTGGA	1900
GGATTAAAGT	GGTAGCTGCC	AGTGGTTCTC	TCGGTGCAGT	TGTCACATTT	1950
GGCAAGCTCT	GTAGGGTTGC	CGAGTGGCAT	CGGTGCTAGA	CACCTGAGCA	2000
TTCCTTTGCC	ACATAAAGAC	TAAAGCAGGT	GGAATTTCAG	TTGTAAAAAG	2050
CTGGTTCCAT	TGGTGCTAAG	ATTATGTTGT	GCCCTTTTCT	GCTTCTCACA	2100
TTCCAACAGA	GGAATTTACT	TCCAGTTTTC	TTCCATTTTC	CTCCTCATTT	2150
TAAGTGTCGG	TACAGAGGCA	ATAATCTGAT	AACTCTGTAC	CGTCACTTAC	2200
AAGCAGGGAG	AATTTGTAAT	TATTACAAAT	CCCATTATCT	CTGTGCACCA	2250
CAGCCTTGTA	AATTCATTTG	TCCCAGGACT	CCCTCTTGTG	TGTACGTGAG	2300
ATTGCCGTCT	GTATGTATGT	ACACACCGTA	CTGCAGTATT	TGAAGTCAGT	2350
CAGAAGGTGA	ATTACACCAC	TTACTCATTG	TGTCACGTAG	CAAGTGTGCA	2400
AACTGCCATC	CATTGTCCTA	TTTATTCACA	TAACTAGTTT	TCTTTGCATT	2450
TCCAGTGTTG	CAAATTGTGT	TTAGAAAATT	ATGCCATCGA	GACTGGTCGA	2500
ACCTCACATT	GTAACTCAGT	ATTTACACAC	ACGTTTACTT	GCTACAGAAA	2550
TGTAGAAAAA	ATAATTGTTG	TATATTGAAA	GTACAAGTGA	CAAAGTTGCA	2600
TTTAAAATGG	TGAATGTATT	TTATATTTCT	TTTGTAGACA	CAAGAGTTAA	2650
TGCATTTTGC	TTAATGGAGA	TGTATGTAAA	CCTAAAATAG	CAGTTTGTGC	2700
ACAAATTATG	TATATGTGAA	ATGGAGATGG	TTTCTAATTT	GCTGATTGAT	2750
TGCCAGTATT	AATTTAAACA	ACTGTAGTTG	TGGGATGTAG	TGGGAAGATT	2800
TTTTTTTTCC	TATAAAATTG	GTGGATGTAT	GTGTCGGAGA	TTTTGATTGT	2850
ATGTGTAAAA	TAGTGATCCC	AGTAACTGTA	AAGCTTTAGA	ATACAGTTAC	2900
TGACTGTATA	GTTGTACAGG	TGTTGTTACT	TTTAAGAATT	TATTGACACA	2950
AAGGTGAAAG	TCTATTATTG	TATTGTAATG	TTTAAAGCAT	TTAAGGTTTA	3000
AAAATCCTAC	TTCTGTGTAT	AAATGTTACC	ATTCCTCATA	TAACATAACT	3050
GTGTAGAAAT	ACAGTCAACT	TCATGTTCAT	TAGCATTTCA	CTGTTGTCAC	3100
ATAAATTATG	CCCGGAAT				3118
					_
	TTGGAATGTT CCATGAAATT GACTTTGAGC GGATTAAAGT GGCAAGCTCT TTCCTTTGCC CTGGTTCCAT TTCCAACAGA TAAGTGTCGG AAGCAGGGAG CAGCCTTGTA ATTGCCGTCT CAGAAGGTGA AACTGCCATC TCCAGTGTTG ACCTCACATT TGTAGAAAAA TTTAAAATGG TGCATTTTGC ACAAATTATG TGCCAGTATT TTTTTTTTCC ATGTGTAAAA TGACTGTAAAA TGACTGTAAAA TGACTGTATA AAGGTGAAAG AAAATCCTAC GTGTAGAAAT	TTGGAATGTT ATTAGAGATT CCATGAAATT CAAGGATCCA GACTTTGAGC AGCTTCATGA GGATTAAAGT GGTAGCTGCC GGCAAGCTCT GTAGGGTTGC TTCCTTTGCC ACATAAAGAC CTGGTTCCAT TGGTGCTAAG TTCCAACAGA GGAATTTACT TAAGTGTCGG TACAGAGGCA AAGCAGGGAG AATTTGTAAT CAGACTGTA AATTCATTTG ATTGCCGTCT GTATGTATGT CAGAAGGTGA ATTACACCAC AACTGCCATC CATTGTCCTA TCCAGTGTTG CAAATTGTGT ACCTCACATT GTAACTCAGT TGTAGAAAAA ATAATTGTTG TTTAAAATGG TGAATGTATT TGCATTTTCC TAATGGAGA ACAAATTATG TATATGTGAA TGCCAGTATT AATTTAAACA TTTTTTTTCC TATAAAATTG ATGTGTAAAA TAGTGATCCC TGACTGTATA GTTGTACAGG AAGGTGAAAG TCTATTATTG AAAATCCTAC TTCTGTGTAT GTGTAGAAAAT ACAGTCAACT	CCATGAAATT CAAGGATCCA GTCAAGGATG GACTTTGAGC AGCTTCATGA AGACATTCAG GGATTAAAGT GGTAGCTGCC AGTGGTTCTC GGCAAGCTCT GTAGGGTTGC CGAGTGGCAT TTCCTTTGCC ACATAAAGAC TAAAGCAGGT CTGGTTCCAT TGGTGCTAAG ATTATGTTGT TTCCAACAGA GGAATTTACT TCCAGTTTTC TAAGTGTCGG TACAGAGGCA ATAATCTGAT AAGCAGGGAG AATTTGTAAT TATTACAAAT CAGCCTTGTA AATTCATTTG TCCCAGGACT ATTGCCGTCT GTATGTATGT ACACACCGTA CAGAAGGTGA ATTACACCAC TTACTCATTG AACTGCCATC CATTGTCCTA TTTATTCACA TCCAGTGTTG CAAATTGTGT TAGAAAATT ACCTCACATT GTAACTCAGT ATTTACACAC TGTAGAAAAA ATAATTGTTG TATATTGAAA TTTAAAATGG TGAATGTATT TTATATTTCT TGCATTTTCC TTAATGGAGA TGTATGTAAA ACAAATTATG TATATGGAGA TGTATGTAAA ACAAATTATG TATATGGAGA ACTGTAGTTG TTTTTTTTCC TATAAAATTG GTGGATGTAT TTTTTTTTCC TATAAAATTG GTGGATGTAT ATGTGTAAAA TAGTGATCC AGTAACTGTA TGACTGTATA GTTGTACAGG TGTTGTTACT AAGGTGAAAG TCTATTATTG TATTTGTAATG AAAATCCTAC TTCTGTGTAT AAATGTTACC GTGTAGAAAT ACAGTCAACT TCATGTTCAT	TTGGAATGTT ATTAGAGATT CTATGGGCAA TATTCTGTAT CCATGAAATT CAAGGATCCA GTCAAGGATG GAGAAGCGAA GACTTTGAGC AGCTTCATGA AGACATTCAG CAAGCCTTCA GGATTAAAGT GGTAGCTGCC AGTGGTTCTC TCGGTGCAGT TTCCTTTGCC ACATAAAGAC TAAAGCAGGT GGAATTCAG CTGGTTCCAT TGGTGCTAAG ATTATGTTGT GCCCTTTTCT TTCCAACAGA GGAATTTACT TCCAGTTTCC TAAGTGTCGG TACAGAGGCA ATAATCTGAT AACTCTGTAC AAGCAGGGGA AATTTGTAAT TATTACAAAT CCCATTATCT CAGCCTTGTA AATTCATTTG TCCAGGACT CCCTCTTGTG ATTGCCGTC GTATGTATGT ACACACCGTA CTGCAGTATT CAGAAGGTGA ATTACACAC TTACTCATTG TGCCAGTATT TTAAAAATT CAAATTTGTTGT TTCCAGTAGT ATTACACAC CATTGTCCTA TTTATTCACA TAACTAGTTT TGTAGAAAAA ATAATTGTTG TATATTCACA ACGTTTACTT TGTAGAAAAA ATAATTGTTG TATATTGAAA GTACAAGTGA ATTACACAC ACGTTTACTT TTTAAAAATGG TGAATGTATT TTATATTCACA ACGTTTACTT TGCCAGTATT TAATATGAAA CCTCAAATTAG TGAATGTATT TTATATTCT TTTTTAGACA ACGTTTACTT TGCCAGTATT AATTTAAAAAT ATGCCATTAGAAATTATG TGAATGTAT TTATATTCT TTTTTTAGAAATTAG TGAATGTATT TTATATTCT TTTTTTAGACA ACGTTTACTT TGCCAGTATT AATTTAAAAATT GTGAATTATT TTTTTTTTCC TATAAAAATTG GTGGAATGTAT TTTTTTTTTT	TTGGAATGTT ATTAGAGATT CTATGGGCAA TATTCTGTAT CAGCTTTCCT CCATGAAATT CAAGGATCCA GTCAAGGATG GAGAAGCGAA GATCAAGGCA GACTTTGAGC AGCTTCATGA AGACATTCAG CAAGCCTTCA GGAACCTGGA GGAATAAAGT GGTAGCTGCC AGTGGTCTCT CGGTGCAGT TGTCACATTT GGCAAGCTCT GTAGGGTTGC CACATAAAGAC TAAAGCAGGT GGAATTCAG CACCTGAGCA CACCTGAGCA CACATAAAGAC TAAAGCAGGT GGAATTCAG CACCTGAGCA CTGCATTCCAT TGGTGCTAAG ATTATGTTGT GCCCTTTCT GCTTCTCACA TTCCAACAGA GGAATTTACT TCCAGTTTC TTCCATTTC CTCCTCATT TAAGTGTCGG TACAGAGGCA ATAATCTGAT AACTCTGTAC CGTCACTTAC AAGCAGGGGA AATTTGTAAT TAATTACAAAAT CCCATTATCT CTGTGCACCA AATCACTTT TCCCAGGACT CCCCTCTTGT TGTACACACAC TAACCACCGTA CTGCAGTATT TGAAGTCAGT AATCACACCA TTACCACACCGTA CTGCAGTATT TGAAGTCAGT CAAATTGTGT TTAAAAAAT ATAATTGTTG TAGAAAAATT ATGCCATCGA GACTGGACAAAATTATG TAAATTCATT TAATTTCACA TAACCACCACACTACACACAC

2) INFORMATION FOR SEQ ID NO: 689

- 35 (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1836 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear

40 (ii) MOLECULE TYPE: Genomic DNA

- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Plasmodium falciparum
- (B) STRAIN: 3D7

- (C) ACCESSION NUMBER: L08200
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 689

!	50	ATGACAAAAG	TTGCTGTTGA	AAAAGAGGAA	CCAGGAGTTG	TTTATAAGGT	50
		GGCTGGTTCA	TTAGTTATTG	CTGAGAATAT	GAGTGGAACT	CGTATGTACG	100
		AGTTAGCTAA	AGTAGGATGG	AATAAATTGG	TTGGAGAAAT	TATTAGATTA	150
		GAAGGGAATT	ATGCATATAT	ACAAGTTTAT	GAAGATACTT	CAGGTTTATC	200
		TGTAGGAGAC	CCTGTTATAA	AAACAGGAAA	TGCTTTATCA	GTCGAATTGG	250
	55	GTCCTGGTAT	TTTAGATAAT	ATTTATGATG	GTATTCAAAG	ACCATTAGAA	300
		AGAATAGCAA	ATGTGTGTGG	TGATGTATAT	ATATATAAAG	GTATTGATAT	350
		GACATCTTTA	GATCATGATA	AACAATGGCA	ATTTTATGCT	GATAAGAAAT	400
		TAAAATTAAA	TGATATTGTT	ACTGGTGGAG	ATATCTTTGG	ATTTGTTGAT	450
		GAAAATAAAT	TATTTAAAGA	ACACAAAATT	ATGGCTCCAC	CTAATGCTAA	500
	60	AGGGAGGCTT	ACATATATTG	CTCCAGATGG	ATCATATACT	TTAAAAGATA	550

	AAATATTTGA	ATTAGAATAT	CAAGGAAAAA	AATATACATA	TÖGTTTATCT	600
	CATTTATGGC	CTGTTCGTGA	TCCTAGACCT	GTTTTAGAAA	AGGTAACAGG	650
	GGATACTTTA	TTATTAACAG	GGCAAAGAGT	TTTAGATTCG	TTATTTCCAA	700
	CAGTTCAAGG	AGGTACTTGT	GCTATTCCTG	GTGCATTTGG	TTGTGGAAAA	750
5	ACTTGTGTTT	CTCAGGCCTT	ATCAAAATAT	TCTAATAGTG	AAGTTATTAT	800
	ATATGTAGGA	TGTGGTGAAA	GAGGTAATGA	AATGGCTGAA	ATTTTATCCG	850
	ACTTTCCTGA	ATTAACTACT	AAAGTAGATA	ATGAAGATGT	AGGTATTATG	900
	CAAAGAACGT	GTTTAGTTGC	TAATACTTCT	AACATGCCTG	TCGCTGCAAG	950
	AGAAGCTAGT	ATTTATACAG	GTATTACTTT	ATGTGAATAT	TTCCGTGATA	1000
10	TGGGTTATAA	TGCTACCATG	ATGGCTGATA	GTACAAGTAG	ATGGGCAGAA	1050
	GCCTTAAGAG	AAATTTCAGG	ACGTTTAGCT	GAAATGCCTG	CAGATAGTGG	1100
	TTATCCAGCT	TATTTAGGTG	CTAGATTAGC	TTCCTTTTAT	GAACGTGCAG	1150
	GAAAAGTCAA	ATGTATTGGT	TCTCCATCTC	GTATAGGATC	CATTACAATT	1200
	GTGGGTGCTG	TGTCTCCACC	AGGTGGTGAT	TTCTCTGACC	CTGTAACTAC	1250
15	AGCAACCATG	TCTATTGTTC	AAGCATTTTG	GGGGTTAGAT	AAAAAACTAG	1300
	CTCAAAGAAA	ACATTTCCCT	TCTGTTAATT	GGTCTACATC	CTTTTCAAAG	1350
	TATGTCAGAC	AATTAGAACA	ATACTTTGAT	AATTTTGATC	AAGATTTCTT	1400
	ATCTTTAAGA	CAAAAAATTA	GTGATATTTT	ACAACAAGAA	AGTGACTTGA	1450
	ATGATATTGT	TCAACTAGTA	GGAAAGGATT	CATTATCAGA	AGACCAAAAA	1500
20	GTTGTTATGG	AAGTAGCCAA	AATTATTAGA	GAAGATTTTC	TTCAACAAAA	1550
	TGCATTTAGC	GATTATGATT	ATATGTGCCC	ATTACAAAAA	ACAGTTGGTA	1600
	TGATGAGAAT	TATTTGCCAC	TTTTATGCTC	AATGCTTAAG	AACATTACAA	1650
	GAATATGACT	CAAGAGAAAG	AAAAATTGGT	TGGGGATCTA	TATATAATAC	1700
	ATTAAGACCA	ACTATAAATA	AAATTACACA	TATGAAATTT	GAAAACCCAA	1750
25	AAAATTCAGA	TGAATATTTC	AAAAAGTATT	TTAAGGCACT	TGAAGAAGAA	1800
	ATAACAGTAG	GTTTAAGAAA	CTTGATGGAA	AAATGA		1836

- 30 2) INFORMATION FOR SEQ ID NO: 690
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 3216 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: Genomic DNA
- 40 (vi) ORIGINAL SOURCE:

- (A) ORGANISM: Saccharomyces cerevisiae
- (B) STRAIN: X2180-1A
- (C) ACCESSION NUMBER: J05409
- 45 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 690

	ATGGCTGGTG	CAATTGAAAA	CGCTCGTAAG	GAAATAAAAA	GAATCTCATT	50
	AGAAGACCAT	GCTGAATCTG	AATATGGTGC	CATCTATTCT	GTCTCTGGTC	100
	CGGTCGTCAT	TGCTGAAAAT	ATGATTGGTT	GTGCCATGTA	CGAATTGGTC	150
50	AAGGTCGGTC	ACGATAACCT	GGTGGGTGAA	GTCATTAGAA	TTGACGGTGA	200
	CAAGGCCACC	ATCCAAGTTT	ACGAAGAAAC	TGCAGGCCTT	ACGGTCGGTG	250
	ACCCTGTTTT	GAGAACAGGT	AAGCCTCTGT	CGGTAGAATT	GGGTCCTGGT	300
	CTGATGGAAA	CCATTTACGA	TGGTATTCAA	AGACCTTTGA	AAGCCATTAA	350
	GGAAGAATCG	CAATCGATTT	ATATCCCAAG	AGGTATTGAC	ACTCCAGCTT	400
55	TGGATAGGAC	TATCAAGTGG	CAATTTACTC	CGGGAAAGTT	TCAAGTCGGC	450
•	GATCATATTT	CCGGTGGTGA	TATTTACGGT	TCCGTTTTTG	AGAATTCGCT	500
	AATTTCAAGC	CATAAGATTC	TTTTGCCACC	AAGATCAAGA	GGTACAATCA	550
	CTTGGATTGC	TCCAGCTGGT	GAGTACACTT	TGGATGAGAA	GATTTTGGAA	600
	GTTGAATTTG	ATGGCAAGAA	GTCTGATTTC	ACTCTTTACC	ATACTTGGCC	650
60	TGTTCGTGTT	CCAAGACCAG	TTACTGAAAA	GTTATCTGCT	GACTATCCTT	700

	መርመመል አ ()አ ()ር	11111111111111111111111111111111111111		mammaaamaa	TOTAL SOCI	m# 0
			TTGGATGCTT			7/50
			TGCTTTTGGT			800
			CCAATTCTGA		TATGTCGGGT	850
_			GTTTTAATGG		TATTGAATGT	900
5			TAATAAGGTC			950
			CCAGAGGAAG			1000
			GCCCACAAAA		TCGTGAAGTG	1050
			GTGTAATGCG		TGGTTGTTAG	1100
	AACACCTCGT		GTTTGTCTCG			1150
10	ATTTTGAAGT	TATTACTTTT	GAGATGGGCC	AAAAGAAAGC	CCCCGACGGT	1200
			GGAAGTTTCA			1250
	GGGGCCTGAG	AGAGCCAACG	AATTAGTAGA	ATCCTATAGA	AAGGCTTCAA	1300
	ATAAAGCTTA	TTTTGAGTGG	ACTATTGAGG	CCAGAGATCT	TTCTCTGTTG	1350
	GGTTCCCATG	TTCGTAAAGC	TACCTACCAG	ACTTACGCTC	CAATTCTTTA	1400
15	TGAGAATGAC	CACTTTTTCG	ACTACATGCA	AAAAAGTAAG	TTTCATCTCA	1450
	CCATTGAAGG	TCCAAAAGTA	CTTGCTTATT	TACTTGGTTT	ATGGATTGGT	1500
	GATGGATTGT	CTGACAGGGC	AACTTTTTCG	GTTGATTCCA	GAGATACTTC	1550
	TTTGATGGAA	CGTGTTACTG	AATATGCTGA	AAAGTTGAAT	TTGTGCGCCG	1600
	AGTATAAGGA	CAGAAAAGAA	CCACAAGTTG	CCAAAACTGT	TAATTTGTAC	1650
20	TCTAAAGTTG	TCAGAGGTAA	TGGTATTCGC	AATAATCTTA	ATACTGAGAA	1700
			TTGGCTTAGG			1750
			TCTACGGACA		TCGTGAAACA	1800
			TTCTGATGGC			1850
			CAATTCATAC			1900
25			GGCTTAGTAG			1950
	GCTAAGGTTG	ACATGAATGG	CACCAAACAT	AAAATTAGTT	ATGCTATTTA	2000
			TGCTTAACGT			2050
			CCCGCCGCTG			2100
			AGAATTGAAG			2150
30		GATGATTCTG			AACCAGGTTG	2200
			AGAGGTAATG			2250
		AGTTATATAC			AACCAATTAT	2300
		ACTTTGGTCG			GTTGCAGCCA	2350
			GGTATCACTC			2400
35			GATTGCAGAC		GATGGGCTGA	2450
			GTCGTTTGGG			2500
			GCTAAGTTGG			2550
			TTCCCCAGAT			2600
			CCGGTGGTGA			2650
40			CAAGTCTTTT			2700
20	GCTCDAAGAA	ACCATTTCCC	ATCTATCAAC	A CATCTGTTT	CTTACTCCAA	2750
			AGTTTTATGA			2800
			AAGGAAATTC			2850
					ATAGTGATAA	2900
45			CTTTAATCAA			2950
4 J			GCTTTCTGTC			3000
			GTATCATGAC			3050
			AACTAGCTGA			3100
			TTTTTTGAAC			3150
50			ATTGTTGAGC			3200
50	TGAATCTACC		ATTGTTGAGC	MCINICHAG	VWWQWIIIQC	3200
	IGHAICIACC	GALIAN				3210

55 2) INFORMATION FOR SEQ ID NO: 691

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1860 bases
 - (B) TYPE: Nucleic acid
- (C) STRANDEDNESS: Double

- (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: Genomic DNA
- 5 (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Schizosaccharomyces pombe
 - (B) STRAIN: 972 h-
 - (C) ACCESSION NUMBER: S47814
- 10 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 691

	3 magaaaaa a		GGCCAAGAAG	CCTATCACCA	GCCTCNNNNN	50
				TATTTTCAGC	GTTTCTGGTC	100
		CATGAAAACC TGCAGCCAAT		GTTCGATGTA	CGAACTCGTT	150
	CTGTCGTTGT			GTAATTCGTA	TCCATCAAGA	200
15		ATGAAGAACT		GTCCGGTCTC	ACTGTTGGTG	250
		ATTCAAGTAT		CTGTTGAATT	ACTGTTGGTG	300
		ACGCACTGGA		•		350
	TTAGCTGAGA		TGGTATCCAA	CGTCCGTTAA	AGCAAATTTT	400
		CAAAGTATTT		AGGTATTAAT	ACAGAATCAC	
20		GCATAAGTGG		CAAATAAGGA	TTTACGCATT	450
	GGCGATCATG			GGTTCTGTAT	TTGAAAACTC	500
	TCTTTTCAAT	GATCATAAAA		CCCTAGAGCC	CGTGGTACCG	550
	TCACATATAT		GGATCATACC		AAAACTTCTT	600
	GAAGTCGAGT		GAAACATTCT	TTTAGTATGT	TGCATACTTG	650
25	GCCTGTCCGT	GCTGCTCGTC		CAACTTAACT	GCTAATCAAC	700
	CTTTATTGAC	TGGTCAACGT		CGTTATACCC	CTGTGTTCAA	750
	GGTGGCACTA				AAACAGTTAT	800
	TTCACAATCT		ACTCTAATTC	TGATTTGATT	GTTTACGTCG	850
	GTTGTGGTGA		GAAATGGCAG		GGATTTCCCA	900
30	GAACTAACAA		TGGTAAACCA	GAGCCCATTA		950
	TACATTGGTA	GCCAACACTT		TGTCGCTGCT	CGTGAAGCTT	1000
	CCATTTATAC	CGGTATTACA	CTTGCTGAAT	ATTATCGTGA	TCAAGGTAAG	1050
	AACGTTTCAA	TGATGGCTGA	TTCTACATCT	CGTTGGGCTG	AAGCTTTGCG	1100
	TGAAATTTCT	GGTCGTTTGG	CTGAGATGCC	TGCCGATTCT	GGTTATCCCG	1150
35	CTTATTTGGG	TGCCAAATTG	GCTTCTTTTT	ACGAACGTGC	TGGTCGTGCT	1200
	CGTTGCTTGG	GAAGTCCTGA	CCGTGAAGGA	ACAGTTTCAA	TTGTTGGAGC	1250
	TGTTTCTCCT	CCGGGTGGTG	ATTTTTCTGA	TCCTGTTACT	AGTGCAACCT	1300
	TGGGAATTGT	TCAAGTCTTC	TGGGGTTTGG	ACAAGAAATT	GGCCCAACGT	1350
	AAACACTTTC	CCTCAATCAA	CACCTCTCTT	TCCTATTCTA	AATACATCAA	1400
40	TGCTTTGCAA		AGGAAAGAGT	TCCAGGCTTT	AATACTCTTC	1450
	GTGATCAAAT	CAAACAGATC	ATTCAACAAG	AAGATTCCAT	GTTGGAAATT	1500
	ATTCAGTTGG	TTGGTAAGTC		GAAACGGATA	AAGTTACTTT	1550
	GGACATAGCC	GGTATTATTA	AGAATGACTT	CTTACAACAA	AACGGTTATT	1600
	CTGATTACGA	•		AGACTTATCA	TATGATGCGA	1650
45	AACATGATTG		AAAGGCTAAA	AGTGCCGTTG	AAACTGGTAG	1700
10	CGTTCCTTGG		AAGAAAGTAC	TTCAGATATC	TTTTATGAGT	1750
	TAACCTCGAT		AACCCTAATG	AAGGCGAGAA		1800
			CAAGAAGATT			1850
	GACTGAGTAA					1860
50	0.10101101141					
50						

2) INFORMATION FOR SEQ ID NO: 692

- 55 (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1833 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear

(ii) MOLECULE TYPE: Genomic DNA

(vi) ORIGINAL SOURCE:

5

- (A) ORGANISM: Trypanosoma congolense
- (B) STRAIN: IL3000
- (C) ACCESSION NUMBER: Z25814
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 692

10	ATGACGAGCG	ATAAAAACCC	TTACAAAACA	GAGCAGCGCA	TGGGGGCCGT	50
	GAAGGCCGTC	TCCGGGCCAG	TTGTCATTGC	TGAAAACATG	GGCGGTAGCG	100
	CTATGTATGA	GCTTGTGCAG	GTAGGTTCCT	TCCGGTTAGT	GGGCGAGATC	150
	ATTCGTCTAG	AGGGCGATAC	CGCCACTATT	CAGGTCTATG	AGGAAACAGG	200
	TGGCCTCACT	GTCGGAGACC	CGGTGTACTG	TACGGGTAAG	CCTCTTTCGC	250
15	TTGAGCTTGG	ACCTGGAATC	ATGTCTGAAA	TATTTGACGG	TATCCAGCGG	300
	CCTCTTGACA	CCATCTACCG	CATGGTGGAA	AACGTGTTTA	TCCCCAGGGG	350
	CGTTCAGGTG	AAGTCACTCA	ATGACCAGAA	ACAGTGGGAC	TTTAAGCCAT	400
	GCCTGAAGGT	TGGAGATCTT	GTGTCTGGTG	GTGATATCAT	TGGCTCAGTG	450
	GTGGAGAACT	CTCTCATGTA	CAATCACAGC	ATTATGATTC	CGCCCAATGT	500
20	GCGGGGCCGT	GTTACTTCCA	TTGTTCCTTC	AGGAAATTAC	ACCCTCCAAG	550
	ATGACATTAT	TGAATTGGAA	TATAATGGGA	CAGTGAAATC	ACTAAAACTT	600
	ATGCATCGCT	GGCCAGTACG	GACCCCGCGT	CCTGTGGCGT	CAAAAGAATC	650
		CCGCTTCTCA		TGTGCTCGAT	GCTCTCTTTC	700
	CATCCGTCCA	GGGTGGAACA	TGCGCCATCC	CTGGCGCGTT	TGGATGCGGA	750
25	AAGACGGTTA	TCAGTCAGGC	TCTTTCGAAG	TTCTCCAACA	GCGACGCTGT	800
	TATCTATGTC	GGCTGCGGCG	AGCGTGGGAA	TGAGATGGCA	GAGGTGCTCA	850
		CACACTCACC		ATGGTCGTGA	GGAGTCCATC	900
	ATGAAGCGTA	CCTGCCTGGT	GGCAAACACC	TCAAATATGC	CTGTCGCTGC	950
	TCGTGAGGCG	TCTATTTACA	CTGGCATCAC	TTTAGCTGAG	TATTATCGTG	1000
30	ATATGGGCAA	GCACATTGCT	ATGATGGCCG	ACTCTACCTC	TCGATGGGCT	1050
		GTGAGATCTC		GCTGAAATGC	CCGCTGATGG	1100
	TGGTTACCCT	GCGTACCTCA	GTGCGCGTCT	TGCTTCCTTC	TACGAGCGTG	1150
	CGGGGCGCGT	GACATGCATC	GGTGGGCCAA	AACGCGAGGG	CTCAGTAACC	1200
	ATCGTTGGTG	CCGTTTCTCC	TCCTGGAGGT	GACTTTTCTG		1250
35	GTCCGCTACG	CTTGGTATTG	TGCAAGTCTT	TTGGGGTCTT		1300
	TTGCGCAACG			ATTGGCTCAT	TTCCTATTCA	1350
		ATGCTTTGGA		AACACGCTTG		1400
	CATGCGCCTG	CGGTCAGTTG	CTGCGGAGAT	CCTTCAGCGT		1450
	TGCAAGAAAT	TGTTCAACTT		ACTCACTTTC		1500
40	AAAATTATTC		TAAGGTTATT	CGTGAAGAGT		1550
	GAATGCCTTT	· · · - -	ACAAGTATTG	CCCGCCGTAC		1600
	GGATGCTACG	TAACATTGTC		AGGAGAGCCA		1650
		CTGGGGAACT	TAAGATTACG	TGGAACTACA		1700
			GTTTAACTGA			1750
45		GGAGGCCAAC		ACAGAAAACA	AAATGAGGAA	1800
	ATTGTCAGCG	CATTCGCCTC	GCTGCTGCAA	TAA		1833

- 50 2) INFORMATION FOR SEQ ID NO: 693
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1758 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: Genomic DNA
- 60 (vi) ORIGINAL SOURCE:

(A) ORGANISM: Thermus thermophilus

(B) STRAIN: HB8

(C) ACCESSION NUMBER: D63799

5 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 693

	₯ <i>Ლ</i> ~₯ <i>Ლ~~</i> ₯₯ <i>~</i>	CCCTC A TCCA	GAAGATCGCG	GGCCCGGCGG	TC N TC C C C N N	50
	GGGCATGCTC	GGGGCCCGCA	TGTACGACAT	CTGCAAGGTG	GGCGAAGAGG	50 100
	GCCTCGTGGG	CGAGATCATC	CGCCTGGACG	GGGACACGGC	CTTCGTCCAG	150
10	GTCTACGAGG	ACACCTCGGG	CCTAAAGGTG			
10	GGGCCTTCCC		AGCTCGGCCC	GGGGAGCCCG	TGGTCTCCAC	200
	ACGACGGCAT	TTGGCGGTGG CCAGCGCCCC	CTGGAGCGCA	CGGGATGCTG	AACGGCATCT	250
				TCCGGGAGAA		300
	TACATCACCC	GGGGCGTGGT	GGTCCACGCC	CTGGACCGGG	AGAAGAAGTG	350
1 =	GGCCTGGACG	CCCATGGTCA	AGCCCGGGGA	CGAGGTGCGG	GGGGGTATGG	400
15	TCCTGGGCAC	GGTGCCCGAG	TTCGGCTTCA	CCCACAAGAT	CCTGGTACCC	450
	CCGGACGTGC	GGGGCCGGGT	CAAGGAGGTG	AAGCCCGCCG	GGGAGTACAC	500
	CGTGGAGGAG	CCGGTGGTGG	TCCTCGAGGA	CGGCACCGAG	CTCAAGATGT	550
	ACCACACCTG	GCCCGTTCGC	CGGGCGAGGC	CCGTGCAAAG	GAAGCTTGAC	600
20	CCCAACACCC	CCTTCCTCAC	GGGGATGCGC	ATCCTGGACG	TCCTCTTCCC	650
20	CGTGGCCATG		CCGCCATCCC	TGGGCCCTTC	GGCAGCGGCA	700
	AGACCGTGAC	CCAGCAGTCC	CTGGCCAAGT	GGTCCAACGC	CGACGTGGTG	750
	GTCTACGTGG	GCTGCGGGGA	GCGGGGGAAC	GAGATGACCG	ACGTGCTCGT	800
	GGAGTTCCCC	GAGCTCACCG	ACCCCAAGAC	GGGTGGGCCC	TTGATGCACC	850
0.5	GCACCGTCCT		ACCTCCAACA	TGCCCGTGGC	CGCCCGCGAG	900
25	GCCAGCATCT	ACGTGGGCGT	GACCATCGCC	GAGTACTTCC		950
	CTTCTCCGTG	GCCCTCATGG	CCGACTCCAC	GAGCCGCTGG		1000
	TGCGCGAGAT	CTCTAGCCGC	CTCGAGGAGA	TGCCCGCCGA		1050
	CCGCCCTACC	TCGCCGCCAG	GCTCGCCGCC	TTCTACGAGC		1100
	GGTCATCACC	CTGGGCGGCG	AGGAGGGGC	GGTGACCATC		1150
30	TCTCCCCGCC	GGGCGGCGAC	ATGTCCGAGC	CCGTGACCCA		1200
	AGGATCGTGG		GCGGCTTGAC	GCCTCCCTGG		1250
	CCACTTCCCC	GCCATCAACT	GGAACGGCTC	CTACAGCCTC	TTCACCTCCG	1300
	CCCTTGACCC	CTGGTACCGG	GAGAACGTGG	CCGAGGACTA		1350
	CGCGACGCCA	TCTCCGAGCT	TTTGCAGCGG	GAGGCGGCC	TCCAGGAGAT	1400
35	CGTCCAGCTC	GTGGGGCCGG	ACGCCCTCCA	GGACGCCGAG	CGCCTCGTCA	1450
	TTGAGGTGGG	CCGGATCATC	CGCGAGGACT	TCCTGCAGCA		1500
	CACGAGGTGG	ACGCCTACTG	CTCCATGAAG	AAGGCCTACG		1550
	GATGATCCTC		AGGAGGCGGA	GGCGGCCATC		1600
	TTTCCATAGA	CGAGATCCTG	CAGCTCCCCG	TTCTGGAGCG		1650
40	GCCCGCTACG	TGAGCGAGGA	GGAGTTCCCC	GCCTACTTTG		1700
	GAAGGAGATC	CAGGGGGCCT	TCAAGGCTGG	CCTAAAGGGG	GAGAGATGGA	1750
	CCTTCTGA					1758

45

50

2) INFORMATION FOR SEQ ID NO: 694

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 21 bases

(B) TYPE: Nucleic acid

(C) STRANDEDNESS: Single

(D) TOPOLOGY: Linear

(ii) MOLECULE TYPE: DNA

55

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 694

CGGCGCIATC YTSGTTGTTG C

21

	2) INFO	RMATION FOR SEQ ID NO: 695	
5	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear	
10	(ii)	MOLECULE TYPE: DNA	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 695	
15	GTTTCA	CGTG ATGACGTACA	20
	2) INFO	RMATION FOR SEQ ID NO: 696	
20	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 26 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear	
25	(ii)	MOLECULE TYPE: DNA	
·	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 696	
30	ATIGGI	CAYR TIGAYCAYGG IAARAC	26
	2) INFO	RMATION FOR SEQ ID NO: 697	
35 40	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 23 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear	
	(ii)	MOLECULE TYPE: DNA	
4.5	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 697	
45	CCIACI	GTIC KICCRCCYTC RCG	23
50	2) INFO	RMATION FOR SEQ ID NO: 698	
55	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 1185 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
	(ii)	MOLECULE TYPE: Genomic DNA	
60	(vi)	ORIGINAL SOURCE:	

(A) ORGANISM: Escherichia coli

- (C) ACCESSION NUMBER: extracted from J01690
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 698

```
5
    GTGTCTAAAG AAAAATTTGA ACGTACAAAA CCGCACGTTA ACGTTGGTAC
    TATCGGCCAC GTTGACCACG GTAAAACTAC TCTGACCGCT GCAATCACCA
CCGTACTGGC TAAAACCTAC GGCGGTGCTG CTCGTGCATT CGACCAGATC
                                                                    100
    CCGTACTGGC TAAAACCTAC GGCGGTGCTG CTCGTGCATT CGACCAGATC
                                                                   150
    GATAACGCGC CGGAAGAAAA AGCTCGTGGT ATCACCATCA ACACTTCTCA
                                                                  200
                                                                   250
    CGTTGAATAC GACACCCGA CCCGTCACTA CGCACACGTA GACTGCCCGG
10
    GGCACGCCGA CTATGTTAAA AACATGATCA CCGGTGCTGC TCAGATGGAC
    GGCGCGATCC TGGTAGTTGC TGCGACTGAC GGCCCGATGC CGCAGACTCG
                                                                   350
    TGAGCACATC CTGCTGGGTC GTCAGGTAGG CGTTCCGTAC ATCATCGTGT
                                                                  400
    TCCTGAACAA ATGCGACATG GTTGATGACG AAGAGCTGCT GGAACTGGTT
                                                                   450
    GAAATGGAAG TTCGTGAACT TCTGTCTCAG TACGACTTCC CGGGCGACGA
                                                                   500
15
    CACTCCGATC GTTCGTGGTT CTGCTCTGAA AGCGCTGGAA GGCGACGCAG
                                                                   550
    AGTGGGAAGC GAAAATCCTG GAACTGGCTG GCTTCCTGGA TTCTTATATT
                                                                   600
    CCGGAACCAG AGCGTGCGAT TGACAAGCCG TTCCTGCTGC CGATCGAAGA
    CGTATTCTCC ATCTCCGGTC GTGGTACCGT TGTTACCGGT CGTGTAGAAC
    GCGGTATCAT CAAAGTTGGT GAAGAAGTTG AAATCGTTGG TATCAAAGAG
ACTCAGAAGT CTACCTGTAC TGGCGTTGAA ATGTTCCGCA AACTGCTGGA
                                                                  750
20
                                                                  800
    CGAAGGCCGT GCTGGTGAGA ACGTAGGTGT TCTGCTGCGT GGTATCAAAC
                                                                  850
                                                                  900
    GTGAAGAAAT CGAACGTGGT CAGGTACTGG CTAAGCCGGG CACCATCAAG
    CCGCACACCA AGTTCGAATC TGAAGTGTAC ATTCTGTCCA AAGATGAAGG
                                                                  950
    CGGCCGTCAT ACTCCGTTCT TCAAAGGCTA CCGTCCGCAG TTCTACTTCC
                                                                  1000
25
    GTACTACTGA CGTGACTGGT ACCATCGAAC TGCCGGAAGG CGTAGAGATG
    GTAATGCCGG GCGACAACAT CAAAATGGTT GTTACCCTGA TCCACCCGAT
                                                                  1100
    CGCGATGGAC GACGGTCTGC GTTTCGCAAT CCGTGAAGGC GGCCGTACCG
                                                                   1150
    TTGGCGCGGG CGTTGTTGCT AAAGTTCTGG GCTAA
                                                                   1185
```

- 2) INFORMATION FOR SEQ ID NO: 699
- 35 (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 26 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Single
 - (D) TOPOLOGY: Linear

(ii) MOLECULE TYPE: DNA

- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 699
- 45 GTIACIGGYT CYTYRARRTT ICCICC

2) INFORMATION FOR SEQ ID NO: 700

50

30

40

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 24 bases
 - (B) TYPE: Nucleic acid
- (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: DNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 700

60

	WO 01/2	/23604 PCT/CA00/0	1150
	TIRTIGA	SAYGT CGARTTCCCT CARG	24
		•	
5	2) INFOR	RMATION FOR SEQ ID NO: 701	
10	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 21 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear	
	(ii)	MOLECULE TYPE: DNA	
15	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 701	
	GTGTTC	CACGA TCATCGATGC G	21
20	2) INFO	DRMATION FOR SEQ ID NO: 702	
25	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear	
2.0	(ii)	MOLECULE TYPE: DNA	
30	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 702	
	CTCTCG	GATAT CCGCGAAGCG	20
35			
	2) INFO	ORMATION FOR SEQ ID NO: 703	
40	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear	
45	(ii)) MOLECULE TYPE: DNA	
	(xi)) SEQUENCE DESCRIPTION: SEQ ID NO: 703	
50	TATGGA	AAATT CGAAACATCT .	20
	2) INFO	ORMATION FOR SEQ ID NO: 704	
55	(i)) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear	
60		400	

	WO 01/2	23604	PCT/CA00/01150
	(ii)	MOLECULE TYPE: DNA	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 704	
5	AGTGCT	CCAA TTAATGTTGG	20
10	2) INFO	RMATION FOR SEQ ID NO: 705	
15	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear	
17	(ii)	MOLECULE TYPE: DNA	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 705	
20	GTACAG	TTCC AATACCTGAA	20
25	2) INFO	RMATION FOR SEQ ID NO: 706	
30	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear	
	(ii)	MOLECULE TYPE: DNA	
35	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 706	
	TGAAAT	CTTC ACATCCAACA	20
40	2) INFO	RMATION FOR SEQ ID NO: 707	
45	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear	
۳۵	(ii)	MOLECULE TYPE: DNA	
50	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 707	
	TWACCA	ATTTC AGTACCTTCT GGTAA	25
55			
	2) INFO	DRMATION FOR SEQ ID NO: 708	
60	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 26 bases	

26

- (B) TYPE: Nucleic acid
- (C) STRANDEDNESS: Single
- (D) TOPOLOGY: Linear
- 5 (ii) MOLECULE TYPE: DNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 708

TCRTCCATIC CIARIATIGC IATIAT

10

2) INFORMATION FOR SEQ ID NO: 709

- 15 (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1656 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
- TOPOLOGY: Linear 20
 - (ii) MOLECULE TYPE: Genomic DNA
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Borrelia burgdorferi
- 25 (C) ACCESSION NUMBER: extracted from AE001122
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 709

	ATGAATGAAG	TTTTATTTGT	AAAGACTGCT	GGTAGGAATT	TAAAAGCAGA	50
30	AGTAATTCGT	ATTAGGGGCA	ATGAAGTTGA	TGCACAGGTT	TTTGAATTGA	100
	CAAAAGGGAT	ATCTGTTGGA	GACCTAGTTG	AATTTACAGA	CAAACTTTTA	150
	ACAGTTGAAC	TCGGACCAGG	GCTTTTAACT	CAAGTATATG	ATGGGCTTCA	200
	AAATCCTTTG	CCTGAATTGG	CTATTCAATG	TGGATTTTTT	TTAGAAAGGG	250
	GAGTATATTT	AAGGCCCTTG	AATAAAGATA	AAAAGTGGAA	TTTTAAAAAA	300
35	ACCTCCAAAG	TTGGAGATAT	CGTTATTGCA	GGAGATTTTT	TAGGTTTTGT	350
	AATTGAGGGA	ACTGTTCACC	ATCAAATAAT	GATTCCATTT	TATAAAAGGG	400
	ATTCTTATAA	AATTGTGGAG	ATTGTAAGTG	ATGGCGACTA	TTCGATTGAT	450
	GAGCAAATTG	CTGTAATTGA	AGATGATTCT	GGTATGAGGC	ATAATATTAC	500
	AATGTCTTTT	CATTGGCCTG	TTAAAGTTCC	TATTACTAAT	TATAAGGAAC	550
40	GCCTTATTCC	TAGTGAACCT	ATGTTGACTC	AAACTAGAAT	TATAGATACA	600
	TTTTTCCCAG	TTGCCAAAGG	TGGAACTTTT	TGCATTCCGG	GTCCTTTTGG	650
	AGCAGGAAAA	ACGGTTCTTC	AGCAGGTTAC	AAGTCGAAAT	GCTGATGTTG	700
	ATGTAGTGAT	TATTGCAGCT	TGTGGTGAGC	GAGCAGGAGA	AGTGGTAGAA	750
	ACTCTTAAAG	AATTTCCCGA	ATTAATGGAT	CCAAAAACCG	GCAAATCTTT	800
45	AATGGACAGG	ACTTGTATTA	TTTGTAATAC	ATCTTCAATG	CCAGTTGCAG	850
	CTAGAGAAGC	TTCTGTTTAT	ACTGCTATTA	CTATTGGTGA	GTATTACAGG	900
	CAAATGGGCC	TTGATATTCT	TCTTTTGGCA	GATTCAACTT	CAAGATGGGC	950
	TCAAGCAATG	AGAGAAATGT	CTGGACGCCT	TGAGGAAATT	CCTGGCGAGG	1000
	AGGCTTTTCC	GGCATATCTT	GAGTCTGTTA	TTGCTTCCTT	TTATGAAAGG	1050
50	GCAGGTATTG	TAGTTCTTAA	TAATGGGGAT	ATTGGATCTG	TAACAGTTGG	1100
	TGGCTCTGTA	AGTCCTGCTG	GTGGTAATTT	TGAAGAGCCA	GTTACTCAAG	1150
	CAACTTTAAA	AGTTGTAGGA	GCATTTCACG	GGCTTACAAG	AGAAAGGTCT	1200
	GATGCTAGGA	AATTTCCAGC	TATTAGTCCT	CTTGAATCTT	GGAGTAAATA	1250
	TAAAGGCGTT	ATTGATCAAA		ATATGCAAGA	TCTTTTTTGG	1300
55	TGAAAGGTAA	TGAAATTAAT	CAAATGATGA	AAGTTGTTGG	AGAAGAAGGC	1350
	ATAAGTAACG	ATGATTTTTT	AATTTATTTA	AAATCCGAGC	TACTTGATTC	1400
	GTGCTATTTG	CAGCAAAATT	CATTTGATTC	TATTGATGCT	GCTGTTAGTT	1450
•		AAATTATATG	TTTGATATAG	TTTATAACAT	TCTTAAAACT	1500
	AACTTTGAGT	TTTCTGATAA	ACTTCAAGCA	AGAGATTTTA	TAAATGAGTT	1550
60	AAGGCAAAAT	CTTTTAGACA	TGAATCTTTC	TTCTTTTAAG	GATCATAAGT	1600

WO 01/23604	PCT/CA00/01150

TTAATAAATT GGAGCATGCT TTGGGTGAAT TGATAAATTT TAAAAAGGTA

	TTAATAAATT ATTTAG	GGAGCATGCT	TTGGGTGAAT	TGATAAATTT	TAAAAAGGTA	1650 1656
5						
	2) INFORMAT	ION FOR SEQ	ID NO: 710			
	(i) SEQ (A)	UENCE CHARAC LENGTH: 18				
10	(B)	TYPE: Nucl	leic acid			
	(C) (D)	STRANDEDNE TOPOLOGY:				
	(D)	TOPOLOGI:	ninear			
	(ii) MOL	ECULE TYPE:	Genomic DNA	Ŧ		
15	(vi) ORI	GINAL SOURCE	3:			
	(A)	ORGANISM:	Treponema p	oallidum		
	(B)				. 75000500	
20	(C)	ACCESSION	NUMBER: ext	racted from	1 AE000520	
	(xi) SEQ	UENCE DESCRI	PTION: SEQ	ID NO: 710		
		ACGATGTGGT				
0.5		GCCGAGGGCC				
25		AGCATCGCTC				
		TGCAAGTATA AGCTTGCGTC				
		CATTTATGAC				
		GCGCCTTCTT				
30	TGGCTCCGTA	CGCTGGGATT	TTCGTCCTCA	TTGTAACGAG	CGCGGTGAGG	400
		GGGGATTCCG				
		CTTCTGTTGT				
		CTATCTTCGT				
35		ACGCACTGAT GTCGTGCGCG				
33		ACTGGACAGC				
		GGCGGCTATT				
	ACGCAGCATG	CCGTTGCCAA	GTGGTGTGAT	GCAGATATTA	TCGTGTACAT	800
	CGGCTGCGGA	GAGCGGGGCA	ACGAGATGAC	AGACGTGCTC	TCTGAATTTC	850
40	CCAAACTCAT	CGATCCGCGC	ACAGGACGCT	CTCTTATGGA	GCGGACGATT	900
		ATACGTCCAA				950
		ATTACCCTTG GGCTGATTCT				
		GCATGGAAGA				1050 1100
45	CCTTCCGACG	CGTCTTGCAG	AATTTTATGA	GCGCGCAGGA	CGCGTGGAAA	1150
	CCTGTGTGGC	GCGCGAGGGC	TCTGTGAGCA	TCATTGGTGC	TGTTTCTCCC	1200
	CTGGGTGGAG	ATTTCTCTGA	GCCGGTGACG	CAGCACACAA	AGCGCTTCAT	1250
	CCGTTGCTTT	TGGGCCTTGG	ATCGTGAACT	TGCACACGCG	CGTCATTACC	1300
50		GTGGATAGAT				1350
50		GTAAGTATGA				1400
		CTGAGAAAGG TGCGCTGCCT				1450 1500
		AAGGTGGCTT				1550
		TGTCCCGAAA				1600
55	ATTTTCACGA	ACGTGCCGTG	GTGCTGCTGC	GTGCAGGTAT	TTCGCTTTCT	1650
	GCGCTGTCCC	AGCTTTCGTG	CCGGGAGCTC	ATCGTACGTA	TGAAAACTAC	1700
	GTACGGGAAT	GAGGATGTAC	ACAAGATGCA	GAAAGTGTAC	GACACGATGT	1750
	GCACTGAGTT GGGGAGAAAG	TGACCAACTG	AGTGTGTGTG	CTGCCGCGCG	CACACAAGGG	1800
60	DAMADADDD	ICGMAIGA				1818

2) INFORMATION FOR SEQ ID NO: 711

- 5 (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1779 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear

10

55

- (ii) MOLECULE TYPE: Genomic DNA
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Chlamydia trachomatis
- 15 (B) STRAIN: MoPn
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 711

100 100		CAGGGCTATG	TCGTAGAAGC	TTACGGAAAT	TTATTGCGGG	TGCATTTTGA	50
GTTTTTGAGG AAACTCAAGG AATTTCTCGA GGCGCTTTGG TAACTTTTTC 200 CGGCATTTA TTAGAAGCGG AACTTGGCCC CGGTCTATTG CAAGGTATTT 250 TTGACGGACT TCAGAATCGC TTAGAGGGTAT TGGCAGATAC AAGCTTGTTC 300 TTGATACGCAA AAGGCTTCTG TCGGGGATGT TCTATCTCGG GGAGATGGC 400 TTGGTACAGT AAAGGAAGGG CGGTTTGATC ATAAAAATCAT GGTCCTTTC 450 TCTTGTTTTG AGGAAGTGAC CGGTTTGATC ATAAAAATCAT GGTCCTTTC 450 CACTGTGAT ACCGTTATTG CTAAAGGACG TACTGCTTCA GGAGAGATTA 500 GGGGAAAAGG TACCGCTCTCA TGAAAGGACG TTTTTTTAGAA 600 GGGGAAAAGG TACCGCTCTC TAAAGGACG ACCATTTTTT AATGCCAT TAAACAGGC TTTTTTAGAA 600 GCTTTTGGTC AGGAAGACC GTTTTACAGC ACCATTTTTT AATGCAGAGT TCCCGCAGTT TAAACAGGC TTCCAGGGC 700 ACTGTTTGAT CCTAAGGACC TTATACAG ACCTTTTTTT AATGCAGAGT TCCCGCATTT GAAAGACC AGGAAAGACC GTTTTTACAG ACCATTTTTT TAAGAGAAGG ACCTTTTTATT GAAGAACCC CATTTTTTT TCCAGGGGC 850 AGTCTTTGAT GCAAAGACC TGTATATTT GAAGAACAGCC CATTACCCT CATTACAGC ACCATTTATC TAAGAGAGGG 800 35 TGTAGAAATT CCTCAAGGACT TCCCCGCATTT GACAGATCC CATACGGGGC 700 GATGGGCTCA ATGGGCTC CATTTATTT GACAGATCCT CATACGCG 850 AGTCTTTGAT GCAAAGACC TGTATATTT GACAGATCCT CATACGCC 800 GATGGGCTCA AGGACTCCTC CATTTATTT GACAGATCCT CATACGCC 800 GATGGGCTCA AGGACTCCTC CATTTTTTT GGTATTACATC TCCAGCAGTA 950 GAGAGAAGAG CTTTCCCAGC CATTTTTTCT TTCCATGCCT 900 GATGGCACA CTTTTCCCAGC CATTTTTTCT TTCCAGCC TCCGAATTAGA AGAATCCCT TCCAGACG AAATTTCAG GGCGATTAGA AGAATCCTC ACCAAGCAA CTTTTACTGT TCCAGGC CATATTTGGC TCCCGACGAG GAAATTTTCA GGCGATTAGA AGAATCCTT 1000 TGAGCGAGAT GCCGTTTCT CCCGCCAGAG GAAATTTTCA GGCGATTAGA AGAACCTCTT 1200 TGAGCAGAAT CCCTTTCT TCCAGGC TTCCTGAATA GCACCTCTTA 1100 TGAGCGAGAT CCCTTCTCT TTCCTGGC TTCTCTAGGC TTCTCTAAGG AAATTGGAG AAATTGGAG AAATTTCAA AGAACCTCT TTCTTTGAAA AGCCTTCTTT TCTTTGAAAA AGCTTTTTAATAAAAA AGCTTCTCTT TCTTTGAGA AAATGAAAAA AGCTTCTCTTT TCTTTGAAAA AGCTTCTCTT TTCTTTGAAAA AGCTTCTTT TCTTTTGAAAA AGCTTCTTTT TAGAGAAAAAACCTTTT TTAATTTT TAGAGAAAAAAAACCTTTTTTAATAAAAAA AGCTTCTTTTT TAGAGAAAAAAACCTTTTTTAATTTT TAGAGAAAAAAAAAA	20	TGGGCATGTG	CGTCAAGGAG	AAGTGGCCTA	TGTCAGCGTG	GATGATACTT	100
CGGGCATTTA TTAGAAGCGG AACTTGGGCC CGGTCTATTG CAAGGTATTT TTAGACAGACT TCAGAATCGC TTAGACGGACT TCAGAATCGC TTAGACGGACT TCAGAATCGC TTAGACGGACT TCAGAATCGC TTAGACAGGACG GGGATATGT TAGACGCATT TGGCCACATAC AAGCTTTGTTC TTATACGCAA AAGCTTCTG TCGGGGATGT TCTATCTCGG GGAGATGTC 400 TTGGTACAGT AAAGGAAGGG CGGTTTGATC ATAAAATCAT GGTTCCTTTC CACTGTTGAT ACCGTTATTG CTAAAGGACG TACTGTTCTC AGGAGATTA 500 CACTGTTGAT ACCGTTCTA TATACCTTGG GTACTTCTT CAGGAGATTA 500 CACTGTTGAT ACCGTCTCA TGAAATCAT GGTCATTTCTT CAGGAGTTAT 650 AGGACAAAGGG TACCCGTCTCA TGAAATTATG GATGTTTGGT ACCGAGGTATT 650 AGGATACTCAG ATCCCGTCTT TAAAGGAGG ACCTTTTTGT ACCAGGGC 700 CTTTTGGTG AGGAAAGACC GTTTTACAGC ACCATTTATT TACGAGAGT TCTCAGGGGC 700 GCTGTAGATA TCGTAGACT TCCCGCCTT GAAAGGAGC ACCATTTATC TAAGAATAT 750 GCTGTAGAATT CTTCAGGAGT TCCCGCCTTT GACAGGAGCAGC CTGGAGAGGGG 850 AGTCTTTGAT GAGAGCC CATTTATTG GTAATACATC TAAGCAGAGT 800 GTAGCAGCTA GAGAGTCCTC CATTTATTT GTAATACATC TAACGGGGC 850 AGTGGGCTCA AGCGTTTGC AGGATTTT ATTGGCTACC CATACGGGGC 850 AGTGGGCTCA AGCGTTTCC CATTTTTTT GTAATACCAT TCCACGGGC 850 AGGGGAAGAAG CTTTCCCAGC CTATTTTTT ATTGGCTGAC TCGACATCTA 1000 GGAGAAGAAG CTTTCCCAGC CTATTTTGCT TCCAGACT TCCACAGCAACCT 1050 ACACAAGCAA CTTTTACGG GAAATTTCAG GGCGATTTAA AGACACCTTA 1100 ACACAAGCAA CTTTTACTG TCCAGGCC TCCCCAGAGA GAAATTTTAG AGACCTCTTAAGAC CTATCTGGGC TCCCCGCAGGAG GAAATTTTAG AGACCTGTT 1200 ACACAAGCAA CTTTACTGT TCTTGGGGC TCCCGCAGTAG ACCCTCTTGA 1150 ACACAAGCAT CCGGTTGAAAAAA AGCTTCTCTT TTACTTGAAAAACGCT TCCAGACAGAACAC TCTTTTACTG TCGACAACCGT TTCCAGGA AGACCTGTT TAGAGAAAAACCCT TCCAGACAGAAACCCT TCCAGACAACCCT TCCAGACAACCCTT TTCCTAGAAAAACCCT TCCAGACAACCCT TCCAGACAACCCTT TCCAGACAACCCTT TCCAGACAACCCTT TCCAGACAACCCT TCCAGACAACCCTT TCCAGACAACCCT TCCAGACACAACCCT TCCACAACCACCAACACCAACACACAACACACAACACACAACAC		GGTTGAAAGC	GGAAATTATA	GAAGTTGTGG	GAGATGAGGT	TAAAGTCCAA	150
TTGACGGACT TCAGAATCGC TTAGAGGTAT TGGCAGATAC AAGCTTGTTC 300 TTGAAAAAGAG GGGAGTATGT TAATGCCATT TGTCGGAAA CTGTATGGGC 350 TTATACGCAA AAGGCTTCTG TCGGGGATT TCTATCTCGG GGAGATGTC 400 TTGGTACAGT AAAGGAAGGG CGGTTTGATC ATAAAATCAT GGTTCCTTTC 450 TCTTGTTTTG AGGAAGTGAC TATCACTTGG GTACTTCTTC CAGGAGATTA 500 CACTGTTGAT ACCGTTATTG CTAAAGGACG TACTGCTTCA GGAGCCGAGC 550 GGGGAAAAGG TACCGCTCTA TGAAATTATG GATGTTGGT TACGGAGCAGAC TTATCACAGGC TTTTTTAGAA 600 GGGGAAAAGG TACCCCGTCT TAAAGGAGGA AACTTTTTGT ACTCCAGGC 700 CTTTTGGTC AGGAAAGACC GTTTTACAGC ACCATTTATT AACTCCAGGC 700 CTTTTGGTA TCGTAGTTTT GTGTGCTTTT TAAGGAGAGAC CTTTATCAGG CACTTTATCA ACCATTATC AGGACAGAC 750 GCTGTAGAAT TCGTAGTTTT GTGGTGCTTT GAGAGACCAG CTGGAGAGAGAC 750 GTAGCAGATA TCGTAGTTTT GTGGTGCTTT GAGAGACCAG CTGGAGAGAGT 800 GTAGCAGCTA GAGAGCCC CATTTATTTT GTAATACACT CTCCAGGGC 850 AGTCTTTGAT GAATAGGACC TGTATTATTT GTAATACACT TTCCATGCCT 900 GTAGCAGCTA AAGGGTCCC CATTTATTTT GTAATACACT TTCCATGCCT 900 GATGGGCTCA AGCTTTAAGG GAAATTTCAG GGCAATCAT TAGCAGAATA 950 GATGGGCACA AGCTTTAAGG GAAATTCAG GGCGATTAGA AGAAATCCCT 1050 GATGGGAAAAG CTTTCCCAGC CTATTTTGT ATTGCCGTAC CAGCAATCA 1000 GATGGCAGCA GGGGCTGTGA AAATGAAAGA TGGATCCGGA GAAATTCCT 1050 ACACAAGCAA CTTTACTGT TGTTGGGGG TTCTCAGAATA GCCTCCTTGA 1150 CTAACTGTGG GCGGTGTGA AAATGAAAGA TGGATCCGAA AATGAAAAA AGCTTCTCAT TGACCAGAAAA AGCCCTGTT 1200 ACACAAGCAA CTTTACTGT TGTTGGGGG TTCTTGAAGA AATGACAGA 1350 TGGGGAGATT CCGTTAAAAA AGCTTCTCTT TTGATCGAGA AATTCCAGGA 1350 AATTGGTAAG CGAATACGAG GGACTGTT TAGAGAAAAA AGCTCCAGAA 1400 AATTGGTAAG CGAATACGAG GGACTGTTT TAGAGAAAAA AGTTCCAGGA 1450 AATTGGTAAG CGAATACGAG GGACTGTTT TAGAGAAAAA AGCTTCTTTT TAGAAGAAAA AGTTCCAGAA 1450 AATTGGTCAGA TAGACCGT TCTTGAAAA AGCTTCTTTT TAGAGACAAAA AGTTCCAGAA 1450 AATTGTCAGA TAATACAAA AGCTTCTTTT TAGAGACTAC AAGAACAGCT TCCTTTAAAAA AGCTTCTTTT TAGAGACTACA AAGTAAAATT 1650 AAAACGCTGA AATGCTCGG AGTTTTTTTTTTTTTTTTT		GTTTTTGAGG	AAACTCAAGG	AATTTCTCGA	GGCGCTTTGG	TAACTTTTTC	200
TTGAAAAGAG GGGAGTATGT TAATGCCATT TGTCGGGAAA CTGTATGGGC 350 TTATACGCAA AAGGCTTCTG TCGGGGATGT TCTATCTCG GGAGATGTGC 400 TTGGTACAGT AAAGGAAGGG CGGTTTGATC ATAAAATCAT GGTTCCTTTC 450 TCTTGTTTTG AAAGGAAGGG CGGTTTGATC GTCATTTCTTC CAGGAGATTA 500 CACTGTTGAT ACCGTTATTG CTAAAGGACG TACTGCTTCA GGAGCCGAGC 550 TTGAATTTAC AATGGTTCAG AAATGGCCCA TTAAACAGGC TTTTTTAGAA 600 GGGGAAAAGG TACCGCTCTCA TGAAATTATG GATGTTTGGT TACGAGTATT 650 AGATACTCAG ATCCCCGTCT TAAAGGAGG AACTTTTTTT ACCAGTATAT 650 GCTGTAGATA TCGTAGTTTT GTTGTCAGAGAGAGATTA TAACAGGC TTAAACAGGC TTTTTTAGAA 750 GCTGTAGATA TCGTAGTTTT GTTGTCAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAG		CGGGCATTTA	TTAGAAGCGG	AACTTGGGCC	CGGTCTATTG	CAAGGTATTT	250
TTATACGCAA AAGGCTTCTG TCGGGGATGT TCTATCTCGG GGAGATGTGC 400 TTGGTACAGT AAAGGAAGGG CGGTTTGATC ATAAAATCAT GGTTCCTTTC 450 CACTGTTGATT AGCAAGTGAC TATCACTTGG GTCATTTCTT CAGGAGATTA 500 CACTGTTGAT ACCGTTATTG CTAAAAGGACG TCATTCTCT CAGGAGATTA 500 GGGGAAAAGG TACCGTCTCA TGAAATTATG GATGTTGGGT TACCAGGGC 7550 AGATACTCAG ATCCCCCGTCT TAAAAGGACG TTTTTTTGT ACCAGGAGTTT 650 CTTTTGGTGC AGGAAAGACC GTTTTACAGC ACCATTTTTGT ACCAGGGC 700 CTTTTGGTGC AGGAAAGACC GTTTTACAGC ACCATTTATC TAAGGTAGCA 750 GCTGTAGATA TCGTAGTTTT GTGTGCTTCA GACAGATCCT TAAAGGAGG CTGGAGAGGT 800 35 TGTAGAAATT CTTCAGGAGT TCCCGCATTT GACAGACCAC CTATCAGGGC 750 GTGCAGCTA GACAGACCC TGTATTATTT GTAATACATC TAAGCAGAGCT 800 GTAGCAGCTA GAGAGCCCT CATTTATTT GTAATACATC TCCATGCCT 900 GTAGCAGCTA ATGGGGTCC CATTTATTT GTAATACATC TCCATGCCT 900 GATGGGCTCA AGCTTTAAGG GAAATTTCAG GGCGATTAGA AGAAATCCT 1050 GATGGGAAGAG CTTTCCCAGC CTATTTGGCT TCTCGAATAGA AGAAATCCT 1050 GAGGAGAAGA CTTTCCCAGC CTATTTGGC TCCGAATTAGA AGAAATCCT 1050 CTATCTGTGG AGCGGTTGC AAATGAAAAA TGGACATAGA AGAAATCCT 1050 ACCAAAGCAA CTTTACTGT TGTTGGGGC TCCTGAAGA AGAAATCCT 1050 ACCAAAGCAA CTTTACTGT TGTTGGGGC TCCTGAAGA AGAAATCCT 1050 ACCAAAGCAA CTTTACTGT TGTTGGGGC TCCTGAGA AAATCGGAA AGAAATCCT 1050 ACCAAAACAT CCGTTAAAAA AGCTTCTAT TGATCCGATG ATTCTAGGC 1250 ACCAAAACAT CCGTTAAAAA AGCTTCTAT TGATCCGATG ATTCAAGGC 1250 AAATGGAAAA CCTTTTAGAA TCCTTCTAT TGATCCGATG ATTCAAGAAAA AGTTCCAAGA 1400 AATTGGTAAG CGAATTAGAAG TTGTTGGGGA AGAAATTTCG TCTAAGAAAAA AGTTCCAAGA 1450 AATTGGTAAG CGAATAGAAG TTGTTGGGGA AGAAGGATT TCTTAAGAG AAACGCTGT TCTTTTGAAA TCAGAGAAAAA AGTTCCAAGA 1450 AATTGGTAAG CGAATAGAAG TTGTTGGGGA AGAAGGATT TTACTTACAG 1500 CAAAACGCTT TCGATGCAG GGACTTTAT TGCTCTTTG TTACTTACAG 1500 CAAAACGCTT TCGATGCAG GGACTTTAT TGCTCTTTG TTACTTACAG 1500 AAACGCTGA TAATGCAGA GGTCTTTAT TTCTTTTT TAGAGCTTCA AAACGCTTA AAACGCTGA ATTCCTTTTT TAGAAACCAA AAACGCTGA ATTACAAAAAA ATTCCTTTTT TAGAAACTAT AAAGAAAAATT 1650 AAAACGCTGA TAATACAATT TAGAAACCAA AATGCTACA AAAGACTACA AAACGCTGA ATTAAAAAAAATT TAGAAAAAAAAAA		TTGACGGACT	TCAGAATCGC	TTAGAGGTAT	TGGCAGATAC	AAGCTTGTTC	300
TTGGTACAGT AAAGGAAGGG CGGTTTGATC ATAAAATCAT GGTTCCTTTC TCTTGTTTG AGGAAGTGAC TATCACTTGG GTCATTTCTT CAGGAGATTA 500 TTGAATTACA ACCGTTATTG CTAAAGGACG TACTGCTTCA GGAGCCGAGC TTGAATTACA AATGGTTCAG AAATGGCCCA TTAAACAGGC TTTTTTAGAA 600 GGGGAAAAGG TACCCCGTCT TAAAGGACG ACATTTTTG ACGAGTATT 650 AGATACTCAG ATCCCCGTCT TAAAGGACG ACATTTTGT ACTGAGAGATA TCGTAGATTT GTGTGCT GGAGACCAGC CTGAGAGATA TCGTAGTTTT GTGTGCT GGAGACCAGC CTGAGAGATA TCGTAGTTTT GTGTGCTTGT GGAGACCAG CTGGAGAGGC 850 AGTCTTTGAT GCATAGGACC TGTATTACAGC ACCATTTACT TAACTATGCA 750 GTTAGAAAATT CTCTCAGGAGT TCCCCGCATTT GACAGACCAG CTGGAGAGGT 800 AGTCTTTGAT GCATAGGACC TGTATTATTT GTAATACATC TTCCATGCCT 900 GTAGCAGCTA GAGAGTCCT CATTTATTT GTAATACATC TTCCATGCCT 900 GTAGCAGCTA ATGGGGTTCC CATTTATTTT GTAATACATC TCGACGAATA 950 TTACCGTCAA ATGGGGTTCC CATTTATTTT ATTGGCTGACACTAA ACGCTACTAA 1000 GGAGAAGAAG CTTTCCCAGC CTATTTTGTT ATTGCTGAATAG AGAAATCCCT 1050 GGAGAAGAAG CTTTCCCAGC CTATTTTGGC TCCCGAATAG AGAAATCCCT 1050 CTATCTGTGG AGCGGTTCT CCCGCAGAG GAAATTTTGA AGACACTTTAA 1100 TGAGCGAGC GGGCTGGA AAATGAAAGA TGGATCGGAA GGCTCCTTGA 1150 CCACAAGCAA CTTTACTGT TGTTGGGGC TTCCGAATAG CAGCCTGTT 1200 ACACAAGCAA CTTTACTGT GCGGAGATTTTACA AGACCTGTT 1200 TGGGGAGAT CCGTTAAAAA AGCTTCTCTT TTCTGTGGGC TTTCTAAGGC 1250 TTGGGGAGAT CCGTTAAAAA AGCTTCTCTT TTCTTGTGGGC TTTCTAAGGC 1250 AAATGGTAAG CGAATAGAAG TTCTTCTAT TGATCCGATG ATTTCATGGT 1300 AATTGGTAAG CGAATAGAAG TTCTTCTAT TTAGACAAAAAA AGTTCCAGAA 1450 AATTGGTAAG CGAATAGAAG TTCTTCTGT TTCTTTTTTT TAGAGACAAAA AGTTCCAGAA 1450 AATTGGTAAG CGAATAGAAG TTCTTCTGT TTCTTTTTTT TAGAGACAAAA AGTTCCAGAA 1450 AATTGGTAAG CGAATAGAAG TTCTTCTGT TTCTTTTTTTTTT	25	TTGAAAAGAG	GGGAGTATGT	TAATGCCATT	TGTCGGGAAA	CTGTATGGGC	350
TCTTGTTTTG AGGAAGTGAC CACTGTTGAT ACCGTTATTG CTAAAGGACG TACTGCTTCA GGAGCCGAGC 30 TTGAATTTAC AATGGTTCAG AAATGGCCA TTAAACAGGC TTTTTTAGAA GGGGAAAAGG TACCCGTCTA TGAAATTATG GATGTTGGGT TACGAGTATT 650 AGATACTCAG ACCGTCTCA TGAAATTATG GATGTTGGGT TACGAGGATAT 650 AGATACTCAG ACCCGTCT TAAAGGGAGG AACTTTTTGT ACTCCAGGGC 700 CTTTTGGTGC AGGAAAGACC GTTTTACAGC ACCATTTATC TAAGTATGCA 750 GCTGTAGAAAT TCTCAGGAGT TCCCGCATTT GACAGACCGAG CTGGAGAGGT 800 AGTCTTTGAT GCATAGGACC TGTATATATT GTAATACATC TACGAGGGT 800 AGTCTTTGAT GCATAGGACC TGTATTATTT GTAATACATC TTCCATGCCT 900 AGTGGCACAA ATGGGGTTCC CATTTATTT GTAATACATC TTCCATGCCT 900 GTAGCAGCTA AGCTTTAAGG GAAATTTCAG GGCGATTAGA AGAAATCCCT 1050 40 GGAGAAGAAG CTTTCCCAGC CTATTTGGCG TCTCGAATAG CAGCTTTTAA GGAGAAGAAG CTTTCCCAGC CTATTTGGCG TCTCGAATAG CAGCTTTTAA CCTACTGTGG AGCGGTTCT CCCGCAGGG GAAATTTTGA AGAGCACTT 1100 TGAGCGAGA CTTTACTGT TGTTGGGGC TCTCGAATAG CAGCTTTTTA 1100 ACCACAGCAA CTTTACTGT TGTTGGGGC TCTCGAATAG AGACCCTGT 1200 ACCACAGCAA CTTTACTGT TGTTGGGGC TCTCGAATAG AGACCCTGT 1200 ACCACAGCAA CTTTACTGT TGTTGGGGC TCTCGAATAG AGACCCTGT 1200 ACCACAGCAA CTTTACTGT GCGGAGATT TCTGTGGGC TTTCTAAGGC 1250 TGGGGAGATT CCGTTAAAAA AGCTTCTCTT TGAACCAGAAAAA AGTTCCAGGA 1350 AATTGGTAAG CGAATAGAAG TTCTTCTGT TCTTTAGAAG AAACGCTGA 1350 AAATGGTAAG CAAAACGCT TCGAATAGAAG TTCTTCTTT TAGAGAAAAAA AGTTCCAGAA 1450 AATTGGTAAG CAAATAGAAG TTCTTCTGT TTCTTAGAAG AAAGGCAGA 1450 AATTGGTAAG CAAATAGAAG TTCTTCTGT TTCTTAGAAG AAGGACCAGA 1450 AATTGGTAAG CAAATAGAAG TTCTTGTTAT TTGTTCCAGA TTCCTTTACAG 1500 AAAACGCTT TCGATGCAGA GGACTGTTAT TGTCCTTTTT TACTTCAGA TTACTTACAG 1500 AAAACGCTT TCGATGCAAA ATTCCTTTTT TAGACCTACAAATTCTG TTACTTACAG 1500 AAAACGCTT TCGATGCAAA ATTCCTTTTT TAGACCTTCAAAT TCTTTTTTGAAA TCAGAGTTTT TAGACCTTACAAAT 1550 AAAACGCTAA ATTGTCAAAA ATTCCTTTTT TAGACCTACAAATT 1550 AAAACGCTAA ATGGTCAAAA ATTCCTTTCT TAGAACCTAA AAGTAAAATT 1660 ATTGTCCAAAA ATGGTCCAAAA ATTCCTTTTT TAGACCTACA AAGTAAAATT 1650 AAAACGCTAA ATGGTCAAAA ATTCCTTTTT TAGACCTACA AAGTAAAATT 1650 AAAACGCTAA ATGGTCAAAA ATTCCTTTCT TAGAACCAA AAGTAAAATT 1650 AAAACGCTAA ATGGTCAAAA ATTCCTTTCT TAGAA		TTATACGCAA	AAGGCTTCTG	TCGGGGATGT	TCTATCTCGG	GGAGATGTGC	400
CACTGTTGAT ACCGTTATTG CTAAAGGACG TACTGCTTCA GGAGCCGAGC TTGAATTTAC AATGGTTCAG AAATGGCCCA TTAAACAGGC TTTTTTAGAA 600 GGGGAAAAGG TACCGTCTCA TGAAATTATG GATGTTTGGT TACGAGTATT 650 AGATACTCAG ATCCCCGTCT TAAAGGAGG AACTTTTTGT ACTACAGGC 700 CTTTTGGTGC AGGAAAGACC GTTTTACAGC ACCATTTATC TAAGATATGCA 750 GCTGTAGATA TCGTAGTTTT GTGTGCTTTGT GAGAGACCAGC CTGGAGAGGT 800 35 TGTAGAAATT CTTCAGGAGT TCCCGCATTT GACAGACCCAGCC CATACGGGC 850 AGTCTTTGAT GCATAAGGACC TGTATTATTT GTAATACACC CATACGGGC 850 GTAGCAGCTA GAGAGCCCTC CATTTATTTT GTAATACACT TTCCATGCCT 900 GATGGCCTCA AGCTTTAAGG GAAATTTCAG GGCGATTAACA TAGCAGAATA 950 GATGGGCTCA AGCTTTAAGG GAAATTTCAG GGCGATTAGA AGAAATCCCT 1050 GAGGAAGAGA CTTTCCCAGC CTATTTGGCG TCTCGAATAG CAGCTTTTA 1100 GGAGGAAGAG CGGCGTGGA AAATGAAAGA TGGATCGAA AGAAATCCCT 1050 ACACAAGCAA CTTTACTGT TGTTGGGGC TCTCGAATAG CAGCTTTTA 1100 ACACAAGCAA CTTTACTGT TGTTGGGGC TTTCTGTGGGC TTTCTAAGG 1250 ACACAAGCAA CTTTACTGT TGTTGGGGCT TTCTGTGGGC TTTCTAAGG 1250 ACACAAGCAA CTTTACTGT TGTTGGGGC TTTCTGTGGGC TTTCTAAGG 1250 ACACAAGCAA CTTTATCTGT TGTTGGGGC TTTCTTTGAAG AGACCTGTT 1200 ACACAAGCAA CTTTATCTGT TGTTGGGGC TTTCTTTGAAG AGACCTGT 1200 ACACAAGCAA CTTTATCTGT TGTTGGGGC TTTCTTTGAAG AGACCTGT 1200 ACACAAGCAA CTTTATCTGT TGTTGGGGC TTTCTTTGAAG AAGGACAGA 1350 AATTGGTAAG CGAATAGAAG TTGTTTGGGGA AGAAGGCAT TCTATGGAA AAGGACAGA 1400 AATTGGTAAG CGAATAGAAG TTGTTTGGGGA AGAAGGGATT TCTATGGAA AAGGACAGA 1450 AATTGGTAAG CGAATAGAAG TCTTTTGGAA AGAAGGGATT TCTATGGAAG 1450 ATATAGAAAT CTTTTTGAAA TCAGAGTTGT ATGATTTCTG TTACTAGA AAGGACAGA 1450 ATTGTCCAGA TACCTCGG AGTTTTT TAGCTCTAGA AAGAACAGCA TCTTTTTTGAAA ACCTTTCTTT TAGCACTAGA TCTTTTTTGAAA ACCTTTTTTT TAGCACTAGA TTTCTTTTT TAGCACAAAATT 1550 AAAACGCTGA ATGGTCCAAAA ATTCCTTTCT TAGAGACTAAAAT 1660 ATTGTCCAGA TTATAAAAAAAAAAAAAAAAAAAAAAAAA		TTGGTACAGT	AAAGGAAGGG	CGGTTTGATC	ATAAAATCAT	GGTTCCTTTC	450
TTGAATTTAC AATGGTTCAG AAATGGCCCA TTAAACAGGC TTTTTTAGAA GGGGAAAGG TACCGTCTCA TGAAATTATG GATGTTGGT TACGAGTATT 650 AGATACTCAG ATCCCCGTCT TAAAGGAGG AACTTTTTGT ACTCCAGGGC 700 CTTTTGGTGC AGGAAAGACC GTTTTACAGC ACCATTTATC TAAGTATGCA 750 GCTGTAGAATT CCTTCAGGAGT TCCCGCATTT GAGAGCAGG CTGGAGAGGGT 800 35 TGTAGAAATT CTTCAGGAGT TCCCGCATTT GACAGACCC CATACGGGC 850 AGTCTTTGAT GCATAGGACC CATTTATTT GTAATACATC TCCATGCCT 900 GTAGCAGCTA ATGGGGTTGC ATGTTTTTTT GTAATACATC TCCATGCCT 900 GATGGGCTCA AGCTTTAAGG GAAATTTCAG GGCGATTAGTA TAGCAGAATA 950 GATGGGCTCA AGCTTTAAGG GAAATTTCAG GGCGATTAGA AGAAATCCCT 1050 AGACAGAAGA CTTTACCAGC CTATTTGGCG TCCCGCAGTAG AGAAATCCCT 1050 ACCAAAAGCAA CTTTATCTGT TTCCCAGC CTATTTGGCG TCCCGCAGTAG AGAAATTTCAG GGCGATTAGA AGACCCTTTA 1100 ACCACAAGCAA CTTTATCTGT TTCTTGTAGAA TGGATCGGAA AGCCCTTTTA 1100 ACCACAAACGCTT CGAATACAAA AGCTTCTCTAT TGAGACAAAAA AGTTCCAGGA 1350 AATTGGTAAG CGAATAGAAG TCGTTTATTTTTTTTTTT		TCTTGTTTTG	AGGAAGTGAC	TATCACTTGG	GTCATTTCTT	CAGGAGATTA	500
GGGGAAAAGG TACCGTCTCA TGAAATTATG GATGTTGGGT TACGAGTATT AGATACTCAG ATCCCCGTCT TAAAGGGAGG AACTTTTTGT ACTCCAGGGC 700 CTTTTGGTGC AGGAAAGACC GTTTTACAGC ACCATTTATC TAAGTATGCA 750 GCTGTAGAAAT CCTTCAGGAGT TCCCGCATTT GACAGAGCC CTGGAGAGGT 800 35 TGTAGAAATT CTTCAGGAGT TCCCGCATTT GACAGACCC CTGGAGAGGT 800 GTAGCAGCTA GAGAGCCC CATTTATTT GTAATACATC TTCCATGCCT 900 GTAGCAGCTA ATGGGGTTGC ATGTTTTTTT GTAATACATC TTCCATGCCT 900 GATGGGCTCA AGCTTTAAGG GAAATTTCAG GGCGATTAGA AGAAATCCCT 1050 GAGGAGAGAG CTTTCCCAGC CTATTTGGCG TCTCGAATAG AGAAATCCCT 1050 TGAGCGAGGC GGGGCTGTGA AAATGAAAGA TGGATCGGAA GGCTCTTTA 1100 CTATCTGTGG AGCGGTTCT CCCGCAGGAG GAAATTTTGA AGAAATCCT 1200 ACACAAGCAA CTTTATCTGT TGTTGGGGC TTCCTGAATAG AGAACCCTTT 1200 ACACAAGCAA CTTTATCTGT TGTTGGGGC TTCTGTGGGC TTTCTAAGGC 1250 ACACAGCAAT CCGTTAAAAA AGCTTCTCTT TGATCCGATG ATTCCAGGA 1350 AATTGGTAAG CGAATAGAAG TTGTTGGGGA AGAAGGAAAAA AGTTCCAGGA 1400 AATTGGTAAG CGAATAGAAG TTGTTGGGGA AGAAGGAAT TCCAGAGATT TAGAAAAAA AGTTCCAGAA 1450 AATTGGTAAG CGAATAGAAG TCTTTTGGAGA GGACTGTT TTCTTAGAAG AAGGACAAA 1550 CAAAACGCTT TCGATGCAGA GGACTGTTT TGTTCTTTG ATCGTCAAAT 1550 AGAGCTTTTT TCTTTAAAAA ACTTCTTTTT TAGAACAAAA ATTCCTTTTG AACACAAAAAT 1550 AAAACGCTGA ATGGTCAAAA ATTCCTTTCT TAGAAGACAAAAT 16600 ACAAACGCTA ATGGTCAAAA ATTCCTTTCT TAGAAGACTTA AAGAAAAAT 16600 ACAAACGCTT TCAAAAA ATTCCTTTCT TAGAAGACTTA AAGAAAAAT 1650 AAAACGCTGA ATGGTCAAAA ATTCCTTTCT TAGAAGACTTA AAGAAAAAT 16600 ACAAACGCTA TATAAAACTAT TAGAAAACCAA AATGGTCAAG ACGGCGTAGC 1700 ACAAACGCTA ATGGTCAAAA ATTCCTTTCT TAGAAGACTTA AAGAAAAATT 1650 AAAACGCTGA ATGGTCAAAA ATTCCTTTCT TAGAAGACTATA AAGAAAAATT 16600 ACAAACGCTGA ATGGTCAAAAA ATTCCTTTCT TAGAAGCAAAAATT 16600 ACAAACGCTT TATAAACCTAT TAGAAAACCAA AATGGTCAAG ACGGCGTAGG 17700 ACAAACGCTGA ATGGTCAAAAA ATTCCTTTCT TAGAAGACTATA AAGAAAAATT 16500 ACAAACGCTGA ATGGTCAAAAA ATTCCTTTCT TAGAAGACTATA AAGAAAAATT 16500 ACAAACGCTGA ATGGTCAAAAA ATTCCTTTCT TAGAAGACTATA AAGAAGAGCA ATCCCTTTTCT TAGAAGACTAAC AGAAAAAATT 16500 ACAAACGCTGA ATGGTCAAAAA ATTCCTTTCT TAGAAGACTAAC ACGAAGAGCT 1700		CACTGTTGAT	ACCGTTATTG	CTAAAGGACG	TACTGCTTCA	GGAGCCGAGC	550
AGATACTCAG ATCCCCGTCT TAAAGGAGG AACTTTTTGT ACTCCAGGGC 700 CTTTTGGTGC AGGAAAGACC GTTTTACAGC ACCATTTATC TAAGTATGCA 750 GCTGTAGATA TCGTAGTTTT GTGTGCTTTTT GAGAGACCAGC CTGGAGAGGT 800 35 TGTAGAAATT CTTCAGGAGT TCCCGCATTT GACAGATCCT CATACGGGGC 850 AGTCTTTGAT GCATAGGACC TGTATTATTT GTAATACATC TTCCATGCCT 900 GTAGCAGCTA GAGAGTCCT CATTTATTT GTAATACATC TTCCATGCCT 900 GATGGGCTCA ATGGGGTTGC ATGTTTTTTT ATTGGCTGAC TCGACATCTA 1000 GATGGGCTCA AGCTTTAAGG GAAATTTCAG GGCGATTAGA AGAAATCCCT 1050 40 GGAGAAGAAG CTTTCCCAGC CTATTTGGCG TCTCGAATAG AGAAATCCCT 1050 CTATCTGTGG AGCGGTTTCT CCCGCAGGAG GAAATTTGA AGAGCCTGTT 1200 CTATCTGTGG AGCGGTTTCT CCCGCAGGAG GAAATTTTGA AGAGCCTGTT 1200 ACACAAGCAA CTTTATCTGT TGTTGGGGC TTCTGTGGGC TTTCTAAGGC 1250 TAGAGCAGAT GCTAGACGGT ATCCTTCTAT TGATCCGATG ATTTCATGGT 1300 45 CTAAGTACTT GGATTCTGTG GCGGAGATTT TAGAGAAAAA AGTTCCAGGA 1350 AATTGGTAAG CGAATAGAAG TTGTTGGGGA AGAAGGGATT TCTATGGGT 1300 AATTGGTAAG CGAATAGAAG TTGTTGGGGA AGAAGGGATT TCTATGGAG 1450 AATTGGTAAG CGAATAGAAG TTGTTGGGGA AGAAGGGATT TCTATGGAG 1450 AATAGAAACCTT TCGATGCAGA GGACTGTTAT TGTCCTTTTT TAGAGAAAAAA AGTTCCAGGA 1400 AATTGCCAGA TAATGCTCG GGACTGTTAT TGTCCTTTTT TAGAGAGAAAA TCCTTTTTG 1500 AGAACTGTT TCTTTAATGA GTCATATTTT TAGAGACTACA TTCTTTTTTTTTT	30	TTGAATTTAC	AATGGTTCAG	AAATGGCCCA	TTAAACAGGC	TTTTTTAGAA	600
CTTTTGGTGC AGGAAAGACC GTTTTACAGC ACCATTTATC TAAGTATGCA GCTGTAGATAT TCGTAGTTTT GTGTGCTTGT GGAGAGCGAG CTGGAGAGGT 800 35 TGTAGAAATT CTTCAGGAGT TCCCGCATTT GACAGACC CATACGGGGC 850 AGTCTTTGAT GCATAGGACC TGTATTATTT GTAATACATC TCCATGCCT 900 GTAGCAGCTA AGGGTTCC CATTTATTTT GTAATACATC TCCATGCCT 900 GATGGGCTCA AGGGTTGC ATGTTTTTTT ATTGGCGAATACATC TCGACAATCA 950 GATGGGCTCA AGCTTTAAGG GAAATTTCAG GGCGATTAGA AGAAATCCCT 1050 40 GGAGAAGAAG CTTTCCCAGC CTATTTGGCG TCTCGAATAG AGAAATCCCT 1050 CTATCTGTGG AGCGGTTGA AAATGAAAGA TGGATCGAA AGAAATCCCT 1050 CTATCTGTGG AGCGGTTTCT CCCGCAGGAG GAAATTTGA AGACCTGTT 1200 ACACAACAA CTTTATCTGT TGTTGGGGCT TTCTGTGGGC TTTCTAAGGC 1250 TAGAGCAGAT GCTAGACGGT ATCCTCTAT TGATCCGATG ATTTCATGGT 1300 45 CTAAGTACTT GGATTCTGT GCGGAGATTT TAGAGAAAAA AGTTCCAGGA 1350 AAATGGTAAG CGAATAGAAG TTGTTGGGGA AGAAGACAGA 1400 AATTGGTAAG CGAATAGAAG TTGTTGGGGA AGAAGGGATT TCTATGGAG 1550 AAAACGCTT TCGATGCAGA GGACTGTTAT TGTCCTTTG TTGTTGGAG 1450 AAAACGCTA TTCTTTAAAGA AGCTTCTCTT TTGTTAGAG AAGAGACAAA 1400 AATTGTCCAGA TCTTTTTGAAA TCAGAGTTGT ATGATTCTG TTACTTACAG 1500 CAAAACGCTT TCGATGCAGA GGACTGTTAT TGTCCTTTG ATCGTCAAAA 1550 AAAACGCTA ATGCTCGG AGTTTCTTTT TAGAGCATCA AAGTAAAATT 1650 AAAACGCTA ATGCTCGG AGTTTCTTTT TAGAGCATCA AAGTAAAATT 1650 AAAACGCTA ATGCTCAAAA ATTCCTTTCT GAAGACTAC AAAGAGACTT AAAACGCTA ATGCTCAAA ATTCCTTTCT GAAGACTAC AAAGAGGGGCT 1700 AGAACTGATC TATAAACTAT TAGAAAACAA AATGGTGCAG ACGGCGTAGG 1750		GGGGAAAAGG	TACCGTCTCA	TGAAATTATG	GATGTTGGGT	TACGAGTATT	650
GCTGTAGATA TCGTAGTTTT GTGTGCTTGT GGAGAGCGAG CTGGAGAGGT 850 35 TGTAGAAATT CTTCAGGAGT TCCCGCATTT GACAGATCCT CATACGGGGC 850 AGTCTTTGAT GCATAGGACC TGTATTATTT GTAATACATC TTCCATGCCT 900 GTAGCAGCTA GAGAGTCCTC CATTTATTTG GGTATTACTA TAGCAGAATA 950 TTACCGTCAA ATGGGGTTGC ATGTTTTGTT ATTGGCTGAC TCGACATCTA 1000 GATGGGCTCA AGCTTTAAAGG GAAATTTCAG GGCGATTAGA AGAAATCCCT 1050 40 GGAGAAGAAG CTTTCCCAGC CTATTTGGCG TCTCGAATAG CAGCTTTTTA 1100 TGAGCGAGGC GGGGCTGTGA AAATGAAAGA TGGATCGGAA GGCTCCTTGA 1150 CTATCTGTGG AGCGGTTTCT CCCGCAGGAG GAAATTTTGA AGAGCCTGTT 1200 ACACAAGCAA CTTTATCTGT TGTTGGGGCT TTCTGTGGGC TTTCTAAGGC 1250 TAGAGCAGAT GCTAGACGGT ATCCTTCTAT TGATCCGATG ATTTCATGGT 1300 45 CTAAGTACTT GGATTCTGT GCGGAGATTT TAGAGAAAAA AGTTCCAGGA 1350 TGGGGAGATT CCGTTAAAAA AGCTTCTCGT TTCTTAGAAG AAAGGACCAGA 1400 AATTGGTAAG CGAATAGAAG TTGTTGGGGA AGAAGGGATT TCTATGGAG 1450 ATATAGAAAAT CTTTTTGAAA TCAGAGTTGT TTCTTTTG TTCTTTTG TTCTTTTG TTCTTTTG TTCTTTTTG TTCTTTTTG TTCTTTTTTTT		AGATACTCAG	ATCCCCGTCT	TAAAGGGAGG	AACTTTTTGT	ACTCCAGGGC	700
TGTAGAAATT CTTCAGGAGT TCCCGCATTT GACAGATCCT CATACGGGGC AGTCCTTTGAT GCATAGGACC TGTATTATTT GTAATACATC TTCCATGCCT 900 GTAGCAGCTA GAGAGTCCTC CATTTATTT GGTAATACATC TTCCATGCCT 900 GTAGCAGCTA GAGAGTCCTC CATTTATTT GGTATTACTA TAGCAGAATA 950 TTACCGTCAA ATGGGGTTGC ATGTTTTGTT ATTGGCTGAC TCGACATCTA 1000 GATGGGCTCA AGCTTTAAAGG GAAATTCAG GGCGATTAGA AGAAATCCCT 1050 GGAGAAGAAG CTTTCCCAGC CTATTTGGCG TCCGAATAG CAGCTTTTTA 1100 TGAGCGAGGC GGGGCTGTGA AAATGAAAGA TGGATCGGAA GGCTCCTTGA 1150 CTATCTGTGG AGCGGTTCT CCCGCAGGAG GAAATTTTGA AGAGCCTGTT 1200 ACACAAGCAA CTTTATCTGT TGTTGGGGCT TTCTGTGGGC TTTCTAAGGC 1250 TAGAGCAGAT GCTAGACGGT ATCCTTCTAT TGATCCGATG ATTTCATGGT 1300 45 CTAAGTACTT GGATTCTGTG GCGGAGATTT TAGAGAAAAA AGTTCCAGGA 1350 TGGGGAGATT CCGTTAAAAA AGCTTCTCGT TTCTTAGAAG AAGGAGCAGA 1400 AATTGGTAAG CGAATAGAAG TTGTTGGGGA AGAAGGATT TCTATGGAAG 1450 ATATAGAAAT CTTTTTGAAA TCAGAGTTGT ATGATTCTG TTACTTACAG 1500 CAAAACGCTT TCGATGCAGA GGACTGTTAT TGTCCTTTTG ATCGTCAAAT 1550 AGAGCTTTTT TCTTTAATGA GTCATATTT TAGCTCTAGA TTCTGTTTTG 1600 ATTGTCCAGA TAATGCTCGG AGTTTCTTTT TAGCTCTAGA TTCTGTTTTG 1600 AAAACGCTGA ATGGTCAAAA ATTCCTTTCT GAAGACCTAC AAGTAAAATT 1650 AAAACGCTGA ATGATCAAAA ATTCCTTTCT GAAGACCTAC AAGAACGCTT TATAAACTAT TAGAAACCAA AATGGTGCAG ACGGCGTTAGG		CTTTTGGTGC	AGGAAAGACC	GTTTTACAGC	ACCATTTATC	TAAGTATGCA	750
AGTCTTTGAT GCATAGGACC TGTATTATTT GTAATACATC TTCCATGCCT 900 GTAGCAGCTA GAGAGTCCTC CATTTATTTG GGTATTACTA TAGCAGAATA 950 TTACCGTCAA ATGGGGTTGC ATGTTTTGTT ATTGGCTGAC TCGACATCTA 1000 GATGGGCTCA AGCTTTAAGG GAAATTTCAG GGCGATTAGA AGAAATCCCT 1050 GGAGAAGAAG CTTTCCCAGC CTATTTGGCG TCTCGAATAG CAGCTTTTTA 1100 TGAGCGAGGC GGGGCTGTGA AAATGAAAGA TGGATCGGAA GGCTCCTTGA 1150 CTATCTGTGG AGCGGTTTCT CCCGCAGGAG GAAATTTTGA AGAGCCTGTT 1200 ACACAAGCAA CTTTATCTGT TGTTGGGGC TTTCTGAGGC 1250 TAGAGCAGAT GCTAGACGGT ATCCTTCTAT TGATCCGATG ATTTCATGGT 1300 45 CTAAGTACTT GGATTCTGTG GCGGAGATTT TAGAGAAAAA AGTTCCAGGA 1350 TGGGGAGATT CCGTTAAAAA AGCTTCTCGT TTCTTAGAAG AAGGAGCCAGA 1400 AATTGGTAAG CGAATAGAAG TTGTTGGGGA TTCTTTGGAAG 1450 CAAAACGCTT TCGATGCAGA GGACTGTT TGTCCTTTTG TTACTTACAG 1550 AGAGCTTTTT TCTTTAATGA GTCATATTTT TAGCTCTTAGA TTCTTTTTG 1600 ATTGTCCAGA TAATGCTCGG AGTTTCTTTT TAGAGCTTCA AAGTAAAATT 1650 AAAACGCTGA ATGGTCAAAA ATTCCTTTCT GAAGACTATC AGAAGGGCT 1700 AGAAGTGATC TATAAACTAT TAGAAACCAA AATGGTGCAG ACGCCGTAGG 1750		GCTGTAGATA	TCGTAGTTTT	GTGTGCTTGT	GGAGAGCGAG	CTGGAGAGGT	800
GTAGCAGCTA GAGAGTCCTC CATTTATTTG GGTATTACTA TAGCAGAATA TTACCGTCAA ATGGGGTTGC ATGTTTTGTT ATTGGCTGAC TCGACATCTA GATGGGCTCA AGCTTTAAGG GAAATTTCAG GGCGATTAGA AGAAATCCCT 40 GGAGAAGAAG CTTTCCCAGC CTATTTGGCG TCTCGAATAG CAGCTTTTTA 1100 TGAGCGAGGC GGGGCTGTGA AAATGAAAGA TGGATCGGAA GGCTCCTTGA 1150 CTATCTGTGG AGCGGTTTCT CCCGCAGGAG GAAATTTTGA AGAGCCTGTT 1200 ACACAAGCAA CTTTATCTGT TGTTGGGGC TTCTGTGGGC TTTCTAAGGC 1250 TAGAGCAGAT GCTAGACGGT ATCCTTCTAT TGATCCGATG ATTTCATGGT 1300 45 CTAAGTACTT GGATTCTGTG GCGGAGATTT TAGAGAAAAA AGTTCCAGGA 1350 TGGGGAGATT CCGTTAAAAA AGCTTCTCGT TTCTTAGAAG AAGGAGCAGA 1400 AATTGGTAAG CGAATAGAAG TTGTTGGGGA AGAAGGGATT TCTATGGAAG 1450 ATATAGAAAT CTTTTTGAAA TCAGAGTTGT ATGATTCTG TTACTTACAG 1500 CAAAACGCTT TCGATGCAGA GGACTGTTAT TGTCCTTTTG ATCGTCAAAT 1550 AGAGCTTTTT TCTTTAATGA GTCATATTTT TAGCTCTAGA TTCTGTTTTG 1600 ATTGTCCAGA TAATGCTCGG AGTTTCTTTT TAGAGCTTCA AAGTAAAATT 1650 AAAACGCTGA ATGGTCAAAA ATTCCTTTCT GAAGACCTATC AGAAGGGCT 1700 AGAAGTGATC TATAAACTAT TAGAAAGCAA AATGGTGCAG ACGGCGTAGG 1750	35	TGTAGAAATT	CTTCAGGAGT	TCCCGCATTT	GACAGATCCT	CATACGGGGC	850
TTACCGTCAA ATGGGGTTGC ATGTTTTGTT ATTGGCTGAC TCGACATCTA GATGGCTCA AGCTTTAAGG GAAATTCAG GGCGATTAGA AGAAATCCCT 40 GGAGAAGAAG CTTTCCCAGC CTATTTGGCG TCTCGAATAG CAGCTTTTTA 1100 TGAGCGAGGC GGGGCTGTGA AAATGAAAGA TGGATCGGAA GGCTCCTTGA 1150 CTATCTGTGG AGCGGTTTCT CCCGCAGGAG GAAATTTTGA AGAGCCTGTT 1200 ACACAAGCAA CTTTATCTGT TGTTGGGGCT TTCTGTGGGC TTTCTAAGGC 1250 TAGAGCAGAT GCTAGACGGT ATCCTTCTAT TGATCCGATG ATTTCATGGT 1300 45 CTAAGTACTT GGATTCTGTG GCGGAGATTT TAGAGAAAAAA AGTTCCAGGA 1350 TGGGGAGATT CCGTTAAAAA AGCTTCTCGT TTCTTAGAAG AAGGAGCAGA 1400 AATTGGTAAG CGAATAGAAG TTGTTGGGGA AGAAGGGATT TCTATGGAAG 1450 ATATAGAAAT CTTTTTGAAA TCAGAGTTGT ATGATTCTG TTACTTACAG 1500 CAAAACGCTT TCGATGCAGA GGACTGTTAT TGTCCTTTTG ATCGTCAAAT 1550 AGAGCTTTTT TCTTTAATGA GTCATATTTT TAGCTCTAGA TTCTGTTTTG 1600 ATTGTCCAGA TAATGCTCGG AGTTTCTTTT TAGAAGCTTCA AAGTAAAATT 1650 AGAAGTGATC TATAAACTAT TAGAAAGCAA AATGGTGCAG ACGGCGTAGG 1750		AGTCTTTGAT	GCATAGGACC	TGTATTATTT	GTAATACATC	TTCCATGCCT	
GATGGGCTCA AGCTTTAAGG GAAATTTCAG GGCGATTAGA AGAAATCCCT 40 GGAGAAGAAG CTTTCCCAGC CTATTTGGCG TCTCGAATAG CAGCTTTTTA 1100 TGAGCGAGGC GGGGCTGTGA AAATGAAAGA TGGATCGGAA GGCTCCTTGA 1150 CTATCTGTGG AGCGGTTTCT CCCGCAGGAG GAAATTTTGA AGAGCCTGTT 1200 ACACAAGCAA CTTTATCTGT TGTTGGGGCT TTCTGTGGGC TTTCTAAGGC 1250 TAGAGCAGAT GCTAGACGGT ATCCTTCTAT TGATCCGATG ATTTCATGGT 1300 45 CTAAGTACTT GGATTCTGTG GCGGAGATTT TAGAGAAAAA AGTTCCAGGA 1350 TGGGGAGATT CCGTTAAAAA AGCTTCTCGT TTCTTAGAAG AAGGAGCAGA 1400 AATTGGTAAG CGAATAGAAG TTGTTGGGGA AGAAGGGATT TCTATGGAAG 1450 ATATAGAAAT CTTTTTGAAA TCAGAGTTGT ATGATTCTG TTACTTACAG 1500 CAAAACGCTT TCGATGCAGA GGACTGTTAT TGTCCTTTTG ATCGTCAAAT 1550 AGAGCTTTTT TCTTTAATGA GTCATATTTT TAGCTCTAGA TTCTGTTTTG 1600 ATTGTCCAGA TAATGCTCGG AGTTTCTTTT TAGAGCTTCA AAGTAAAATT 1650 AAAACGCTGA ATGGTCAAAA ATTCCTTTCT GAAGACTATC AGAAGGGGCT 1700 AGAAGTGATC TATAAACTAT TAGAAAGCAA AATGGTGCAG ACGGCGTAGG 1750		GTAGCAGCTA	GAGAGTCCTC	CATTTATTTG	GGTATTACTA	TAGCAGAATA	950
40 GGAGAAGAAG CTTTCCCAGC CTATTTGGCG TCTCGAATAG CAGCTTTTTA TGAGCGAGGC GGGGCTGTGA AAATGAAAGA TGGATCGGAA GGCTCCTTGA CTATCTGTGG AGCGGTTTCT CCCGCAGGAG GAAATTTTGA AGAGCCTGTT ACACAAGCAA CTTTATCTGT TGTTGGGGCT TTCTGTGGGC TTTCTAAGGC TAGAGCAGAT GCTAGACGGT ATCCTTCTAT TGATCCGATG ATTTCATGGT 1300 45 CTAAGTACTT GGATTCTGTG GCGAGATTT TAGAGAAAAA AGTTCCAGGA 1350 TGGGGAGATT CCGTTAAAAA AGCTTCTCGT TTCTTAGAAG AAGGAGCAGA 1400 AATTGGTAAG CGAATAGAAG TTGTTGGGGA AGAAGGGATT TCTATGGAAG 1450 ATATAGAAAT CTTTTTGAAA TCAGAGTTGT ATGATTCTG TTACTTACAG 1500 CAAAACGCTT TCGATGCAGA GGACTGTTAT TGTCCTTTTG ATCGTCAAAT 1550 AGAGCTTTTT TCTTTAATGA GTCATATTTT TAGAGCTTCA AAGTAAAATT 1650 AAAACGCTGA ATGGTCAAAA ATTCCTTTCT GAAGACTATC AGAAGGGGCT 1700 AGAAGTGATC TATAAACTAT TAGAAAGCAA AATGGTGCAG ACGGCGTAGG 1750		TTACCGTCAA	ATGGGGTTGC	ATGTTTTGTT	ATTGGCTGAC	TCGACATCTA	1000
TGAGCGAGGC GGGGCTGTGA AAATGAAAGA TGGATCGGAA GGCTCCTTGA CTATCTGTGG AGCGGTTTCT CCCGCAGGAG GAAATTTTGA AGAGCCTGTT ACACAAGCAA CTTTATCTGT TGTTGGGGC TTCTGTGGGC TTCTAAGGC TAGAGCAGAT GCTAGACGGT ATCCTTCTAT TGATCCGATG ATTTCATGGT 1300 45 CTAAGTACTT GGATTCTGTG GCGGAGATTT TAGAGAAAAA AGTTCCAGGA 1350 TGGGGAGATT CCGTTAAAAA AGCTTCTCGT TTCTTAGAAG AAGGAGCAGA 1400 AATTGGTAAG CGAATAGAAG TTGTTGGGGA AGAAGGGATT TCTATGGAAG 1450 ATATAGAAAT CTTTTTGAAA TCAGAGTTGT ATGATTTCTG TTACTTACAG 1500 CAAAACGCTT TCGATGCAGA GGACTGTTAT TGTCCTTTTG ATCGTCAAAT 1550 AGAGCTTTTT TCTTTAATGA GTCATATTTT TAGCTCTAGA TTCTGTTTTG 1600 ATTGTCCAGA TAATGCTCGG AGTTTCTTTT TAGAGCTTCA AAGTAAAATT 1650 AAAACGCTGA ATGGTCAAAA ATTCCTTTCT GAAGACTATC AGAAGGGGCT 1700 AGAAGTGATC TATAAACTAT TAGAAAGCAA AATGGTGCAG ACGGCGTAGG 1750		GATGGGCTCA	AGCTTTAAGG	GAAATTTCAG	GGCGATTAGA	AGAAATCCCT	1050
CTATCTGTGG AGCGGTTTCT CCCGCAGGAG GAAATTTTGA AGAGCCTGTT 1200 ACACAAGCAA CTTTATCTGT TGTTGGGGCT TTCTGTGGGC TTTCTAAGGC 1250 TAGAGCAGAT GCTAGACGGT ATCCTTCTAT TGATCCGATG ATTTCATGGT 1300 45 CTAAGTACTT GGATTCTGTG GCGGAGATTT TAGAGAAAAA AGTTCCAGGA 1350 TGGGGAGATT CCGTTAAAAA AGCTTCTCGT TTCTTAGAAG AAGGAGCAGA 1400 AATTGGTAAG CGAATAGAAG TTGTTGGGGA AGAAGGGATT TCTATGGAAG 1450 ATATAGAAAT CTTTTTGAAA TCAGAGTTGT ATGATTCTG TTACTTACAG 1500 CAAAACGCTT TCGATGCAGA GGACTGTTAT TGTCCTTTTG ATCGTCAAAT 1550 AGAGCTTTTT TCTTTAATGA GTCATATTTT TAGAGCTTCA AAGTAAAATT 1650 AAAACGCTGA ATGGTCAAAA ATTCCTTTCT GAAGACTATC AGAAGGGGCT 1700 AGAAGTGATC TATAAACTAT TAGAAAGCAA AATGGTGCAG ACGGCGTAGG 1750	40	GGAGAAGAAG	CTTTCCCAGC	CTATTTGGCG	TCTCGAATAG	CAGCTTTTTA	1100
ACACAAGCAA CTTTATCTGT TGTTGGGGCT TTCTGTGGGC TTTCTAAGGC 1250 TAGAGCAGAT GCTAGACGGT ATCCTTCTAT TGATCCGATG ATTTCATGGT 1300 45 CTAAGTACTT GGATTCTGTG GCGGAGATTT TAGAGAAAAA AGTTCCAGGA 1350 TGGGGAGATT CCGTTAAAAA AGCTTCTCGT TTCTTAGAAG AAGGAGCAGA 1400 AATTGGTAAG CGAATAGAAG TTGTTGGGGA AGAAGGGATT TCTATGGAAG 1450 ATATAGAAAT CTTTTTGAAA TCAGAGTTGT ATGATTCTG TTACTTACAG 1500 CAAAACGCTT TCGATGCAGA GGACTGTTAT TGTCCTTTTG ATCGTCAAAT 1550 AGAGCTTTTT TCTTTAATGA GTCATATTTT TAGCTCTAGA TTCTGTTTTG 1600 ATTGTCCAGA TAATGCTCGG AGTTTCTTTT TAGAGCTTCA AAGTAAAATT 1650 AAAACGCTGA ATGGTCAAAA ATTCCTTTCT GAAGACTATC AGAAGGGGCT 1700 AGAAGTGATC TATAAACTAT TAGAAAGCAA AATGGTGCAG ACGGCGTAGG 1750		TGAGCGAGGC	GGGGCTGTGA	AAATGAAAGA	TGGATCGGAA	GGCTCCTTGA	1150
TAGAGCAGAT GCTAGACGGT ATCCTTCTAT TGATCCGATG ATTTCATGGT 1300 45 CTAAGTACTT GGATTCTGTG GCGGAGATTT TAGAGAAAAA AGTTCCAGGA 1350 TGGGGAGATT CCGTTAAAAA AGCTTCTCGT TTCTTAGAAG AAGGAGCAGA 1400 AATTGGTAAG CGAATAGAAG TTGTTGGGGA AGAAGGGATT TCTATGGAAG 1450 ATATAGAAAT CTTTTTGAAA TCAGAGTTGT ATGATTCTG TTACTTACAG 1500 CAAAACGCTT TCGATGCAGA GGACTGTTAT TGTCCTTTTG ATCGTCAAAT 1550 AGAGCTTTTT TCTTTAATGA GTCATATTTT TAGCTCTAGA TTCTGTTTTG 1600 ATTGTCCAGA TAATGCTCGG AGTTTCTTTT TAGAGCTTCA AAGTAAAATT 1650 AAAACGCTGA ATGGTCAAAA ATTCCTTTCT GAAGACTATC AGAAGGGGCT 1700 AGAAGTGATC TATAAACTAT TAGAAAGCAA AATGGTGCAG ACGGCGTAGG 1750		CTATCTGTGG	AGCGGTTTCT	CCCGCAGGAG	GAAATTTTGA	AGAGCCTGTT	1200
45 CTAAGTACTT GGATTCTGTG GCGGAGATTT TAGAGAAAAA AGTTCCAGGA 1350 TGGGGAGATT CCGTTAAAAA AGCTTCTCGT TTCTTAGAAG AAGGAGCAGA 1400 AATTGGTAAG CGAATAGAAG TTGTTGGGGA AGAAGGGATT TCTATGGAAG 1450 ATATAGAAAT CTTTTTGAAA TCAGAGTTGT ATGATTCTG TTACTTACAG 1500 CAAAACGCTT TCGATGCAGA GGACTGTTAT TGTCCTTTTG ATCGTCAAAT 1550 AGAGCTTTTT TCTTTAATGA GTCATATTTT TAGCTCTAGA TTCTGTTTTG 1600 ATTGTCCAGA TAATGCTCGG AGTTTCTTTT TAGAGCCTTCA AAGTAAAATT 1650 AAAACGCTGA ATGGTCAAAA ATTCCTTTCT GAAGACTATC AGAAGGGGCT 1700 AGAAGTGATC TATAAACTAT TAGAAAGCAA AATGGTGCAG ACGGCGTAGG 1750		ACACAAGCAA	CTTTATCTGT	TGTTGGGGCT	TTCTGTGGGC	TTTCTAAGGC	
TGGGGAGATT CCGTTAAAAA AGCTTCTCGT TTCTTAGAAG AAGGAGCAGA 1400 AATTGGTAAG CGAATAGAAG TTGTTGGGGA AGAAGGGATT TCTATGGAAG 1450 ATATAGAAAT CTTTTTGAAA TCAGAGTTGT ATGATTTCTG TTACTTACAG 1500 CAAAACGCTT TCGATGCAGA GGACTGTTAT TGTCCTTTTG ATCGTCAAAT 1550 AGAGCTTTTT TCTTTAATGA GTCATATTTT TAGCTCTAGA TTCTGTTTTG 1600 ATTGTCCAGA TAATGCTCGG AGTTTCTTTT TAGAGCTTCA AAGTAAAATT 1650 AAAACGCTGA ATGGTCAAAA ATTCCTTTCT GAAGACTATC AGAAGGGGCT 1700 AGAAGTGATC TATAAACTAT TAGAAAGCAA AATGGTGCAG ACGGCGTAGG 1750		TAGAGCAGAT	GCTAGACGGT	ATCCTTCTAT	TGATCCGATG	ATTTCATGGT	1300
AATTGGTAAG CGAATAGAAG TTGTTGGGGA AGAAGGGATT TCTATGGAAG 1450 ATATAGAAAT CTTTTTGAAA TCAGAGTTGT ATGATTCTG TTACTTACAG 1500 CAAAACGCTT TCGATGCAGA GGACTGTTAT TGTCCTTTTG ATCGTCAAAT 1550 AGAGCTTTTT TCTTTAATGA GTCATATTTT TAGCTCTAGA TTCTGTTTTG 1600 ATTGTCCAGA TAATGCTCGG AGTTTCTTTT TAGAGCTTCA AAGTAAAATT 1650 AAAACGCTGA ATGGTCAAAA ATTCCTTTCT GAAGACTATC AGAAGGGGCT 1700 AGAAGTGATC TATAAACTAT TAGAAAGCAA AATGGTGCAG ACGGCGTAGG 1750	45	CTAAGTACTT	GGATTCTGTG	GCGGAGATTT	TAGAGAAAAA	AGTTCCAGGA	1350
ATATAGAAAT CTTTTTGAAA TCAGAGTTGT ATGATTTCTG TTACTTACAG 1500 CAAAACGCTT TCGATGCAGA GGACTGTTAT TGTCCTTTTG ATCGTCAAAT 1550 AGAGCTTTTT TCTTTAATGA GTCATATTTT TAGCTCTAGA TTCTGTTTTG 1600 ATTGTCCAGA TAATGCTCGG AGTTTCTTTT TAGAGCTTCA AAGTAAAATT 1650 AAAACGCTGA ATGGTCAAAA ATTCCTTTCT GAAGACTATC AGAAGGGGCT 1700 AGAAGTGATC TATAAACTAT TAGAAAGCAA AATGGTGCAG ACGGCGTAGG 1750		TGGGGAGATT	CCGTTAAAAA	AGCTTCTCGT	TTCTTAGAAG	AAGGAGCAGA	1400
CAAAACGCTT TCGATGCAGA GGACTGTTAT TGTCCTTTTG ATCGTCAAAT 1550 AGAGCTTTTT TCTTTAATGA GTCATATTTT TAGCTCTAGA TTCTGTTTTG 1600 ATTGTCCAGA TAATGCTCGG AGTTTCTTTT TAGAGCTTCA AAGTAAAATT 1650 AAAACGCTGA ATGGTCAAAA ATTCCTTTCT GAAGACTATC AGAAGGGGCT 1700 AGAAGTGATC TATAAACTAT TAGAAAGCAA AATGGTGCAG ACGGCGTAGG 1750		AATTGGTAAG	CGAATAGAAG	TTGTTGGGGA	AGAAGGGATT	TCTATGGAAG	
50 AGAGCTTTTT TCTTTAATGA GTCATATTTT TAGCTCTAGA TTCTGTTTTG 1600 ATTGTCCAGA TAATGCTCGG AGTTTCTTTT TAGAGCTTCA AAGTAAAATT 1650 AAAACGCTGA ATGGTCAAAA ATTCCTTTCT GAAGACTATC AGAAGGGGCT 1700 AGAAGTGATC TATAAACTAT TAGAAAGCAA AATGGTGCAG ACGGCGTAGG 1750		ATATAGAAAT	CTTTTTGAAA	TCAGAGTTGT	ATGATTTCTG	TTACTTACAG	
ATTGTCCAGA TAATGCTCGG AGTTTCTTTT TAGAGCTTCA AAGTAAAATT 1650 AAAACGCTGA ATGGTCAAAA ATTCCTTTCT GAAGACTATC AGAAGGGGCT 1700 AGAAGTGATC TATAAACTAT TAGAAAGCAA AATGGTGCAG ACGGCGTAGG 1750		CAAAACGCTT	TCGATGCAGA	GGACTGTTAT	TGTCCTTTTG	ATCGTCAAAT	
AAAACGCTGA ATGGTCAAAA ATTCCTTTCT GAAGACTATC AGAAGGGGCT 1700 AGAAGTGATC TATAAACTAT TAGAAAGCAA AATGGTGCAG ACGGCGTAGG 1750	50	AGAGCTTTTT	TCTTTAATGA	GTCATATTTT	TAGCTCTAGA	TTCTGTTTTG	1600
AGAAGTGATC TATAAACTAT TAGAAAGCAA AATGGTGCAG ACGGCGTAGG 1750	-	ATTGTCCAGA	TAATGCTCGG	AGTTTCTTTT	TAGAGCTTCA	AAGTAAAATT	
		AAAACGCTGA	ATGGTCAAAA	ATTCCTTTCT	GAAGACTATC	AGAAGGGGCT	
TATGCAAACA ATATATACAA GAATTACGG 1779		AGAAGTGATC	TATAAACTAT	TAGAAAGCAA	AATGGTGCAG	ACGGCGTAGG	
		TATGCAAACA	ATATATACAA	GAATTACGG			1779

2) INFORMATION FOR SEQ ID NO: 712

60 (i) SEQUENCE CHARACTERISTICS:

```
LENGTH: 965 bases
            (B)
                TYPE: Nucleic acid
                STRANDEDNESS: Double
            (C)
            (D)
                TOPOLOGY: Linear
5
      (ii) MOLECULE TYPE: Genomic DNA
      (vi) ORIGINAL SOURCE:
            (A) ORGANISM: Enterococcus faecalis
            (B)
                STRAIN: V583
10
      (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 712
    GTGCAAATTG GAAAAATTGT CAAAGTTTCA GGTCCTTTGA TTTTAGCTGA
                                                                   50
15
    AAACATGTCA GATGCTAGTA TCCAAGACAT TTGTCATGTA GGAGATTTAG
                                                                  100
    GCGTTATCGG AGAGATTATT GAAATGCGAG GCGACGTCGC TTCGATTCAA
                                                                  150
    GTATATGAAG AAACAACAGG CATTGGACCA GGAGAACCAG TTATTTCAAC
                                                                  200
    AGGAGAACCA TTATCTGTTG AATTAGCCCC AGGTTTAATT GCCGAAATGT
                                                                  250
    TTGATGGTAT TCAACGACCA TTGGATACAT TTCAAGAAGT AACCCACAGT
                                                                  300
    AACTTTTTAG GCCGTGGCGT TAAAATTGAT GCGTTAGATC GTGAGAAAAA
                                                                  350
20
    ATGGACGTTT GAACCAACTG TGGCAGTTGG TGAAGAAGTG TCGGCAGGTG
                                                                 400
    ACATCGTCGG TGTGGTTCAA GAAACACCGA TTATTCAACA TAAAATTATG
                                                                  450
    GTGCCTTTCG GCGTTTCAGG AACGATTGCC GAAATTAAAG CAGGTGACTT
                                                                  500
    TGCCATTGAT GAAACAGTTT ACTCAGTGGA AACGGCTAAA GGAACGGAAA
                                                                  550
    GTTTTAGCAT GATGCAAAAA TGGCCCGTTC GGCGGGGACG TCCCATTTTA
                                                                  600
25
    GAAAAACTAA GTCCCAAAGT ACCGATGGTG ACCGGACAAC GCGTAATTGA
                                                                  650
    TACCTTTTTC CCAATTACGA AAGGCGGAGC GGCAGCAGTT CCAGGACCAT
                                                                  700
    TTGGCGCTGG AAAAACAGTC GTTCAGCACC AAATTGCTAA GTGGGCCGAT
                                                                  750
    GTCGACTTAG TCGTTTACGT TGGTTGTGGG GAACGCGGGA ATGAAATGAC
                                                                  800
    AGATGTTTTA AATGAATTTC CAGAATTAAT TGACCCAACA ACTGGTGAGT
30
                                                                  850
    CTTTGATGAA TCGGACGATT TTAATTGCGA ATACGTCAAA TATGCCGGTA
                                                                  900
    GCGGCACGGG AAGCCTCGAT TTATACAGGG ATTACCATTG CAGAATATTT
                                                                 950
    CCGTGATATG GGTTA
                                                                  965
35
    2) INFORMATION FOR SEQ ID NO: 713
        (i) SEQUENCE CHARACTERISTICS:
            (A) LENGTH: 1737 bases
40
                 TYPE: Nucleic acid
            (B)
               STRANDEDNESS: Double
            (C)
               TOPOLOGY: Linear
            (D)
      (ii) MOLECULE TYPE: Genomic DNA
45
       (vi) ORIGINAL SOURCE:
            (A) ORGANISM: Methanosarcina barkeri
                 ACCESSION NUMBER: extracted from J04836
50
       (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 713
    GTGGAAGTAA AAGGTGAAAT TTATCGTGTG TCTGGGCCTG TCGTCACCGC
                                                                   50
    CATCGGCTTG CAGGCAAAAA TGTATGACCT GGTCAAAGTC GGTAATGAAG
                                                                  100
55
    GTTTAATGGG TGAAGTCATT CAGATATTAG GGCCCAAGAC CATCATCCAG
                                                                  150
    GTATATGAAG AGACCGCAGG TATCAAGCCA GGGGAACCCT GTGTATCTAC AGGGTCGTCT CTGTCCGTAG AACTTGGTCC GGGTCTTCTT TCCAGTATTT
                                                                  200
                                                                  250
    ATGACGGGT TCAAAGGCCT CTGCACGTCC TGCTTGAAAA AATGGGTAGC
                                                                  300
```

350

400

TTCATCCAGA GAGGTGTCAG CGCAGATGGG CTTGATCATA AGAAACTCTG

	TAATTGGTGT	TGTACAGGAA	ACCGTGAATA	TTGAACATAA	GATCATGGTG	45/b
	CCTCCTGATA	TCTCAGGTAC	AATTTCCGAC	ATAAAGAGCG	GAAACTTTAC	500
	GGTAGTAGAC	ACAATCTGTA	CTCTGACTGA	TGGGACCGAA	TTGCAGATGA	550
	TGCAGAGGTG	GCCTGTTCGA	AGACCCAGAC	CTGTGAAGGC	AAAACTTACT	600
5	CCAACCAGGC	CTCTGGTTAC	AGGAATGAGA	ATCCTTGATG	GGCTTTTCCC	650
	TGTGGCAAAA	GGCGGAACAG	CTGCAATCCC	CGGACCTTTC	GGATCGGGAA	700
	AGACCGTAAC	TCAGCAGTCG	CTTGCAAAAT	GGAGTGATAC	CGAAATTGTG	750
	GTCTACATCG	GTTGTGGTGA	GCGTGGAAAC	GAAATGGCAG	ATGTTCTGAG	800
	CGAATTCCCT	GAACTCGAAG	ATCCGCAGAC	CGGGCGCCCA	CTTATGGAGC	850
10	GTACTGTTCT	TATCGCTAAC	ACTTCAAACA	TGCCTGTGGC	CGCAAGAGAA	900
	GCATCTGTGT	ATACCGGAAT	CACCATTGCA	GAATACTACC	GTGACATGGG	950
	ATTAGATGTA	TCCCTTATGG	CAGACTCCAC	CTCAAGGTGG	GCAGAAGCCA	1000
	TGAGAGAAAT	CTCTTCCCGT	CTGGAAGAAA	TGCCTGGTGA	AGAAGGTTAC	1050
	CCAGCATACC	TGTCTGCAAG	ACTGGCCGAA	TTCTACGAGC	GTGCCGGGGT	1100
15	TGCGGAGAGT	CTTTGCGGCG	AAACAGGTTC	CATTACTGTT	ATTGGAGCAG	1150
	TATCTCCACC	TGGCGGTGAC	TTCTCAGAGC	CTGTTACACA	GAATACCCTG	1200
	CGTATCGTAA	AAGTGTTCTG	GGCTCTCGAT	GCCAAACTAT	CTCAGAGGCG	1250
	TCACTTCCCG	GCCATCAACT	GGCTGAACAG	TTACAGTCTG	TATAAGGACA	1300
	GTCTTAATGA	CTGGTTTGCA	GATAATGTGG	CTCCTGATTA	TGTGCCTTTG	1350
20	AGGGAAAGAG	CAATGGAAAT	GCTCCAGACA		TGCAGGAAAT	1400
	CGTGCAGCTT	GTAGGTTCCG	ATGCTCTGCC	AGACGACCAG	CAGCTTCTGC	1450
	TTGAAATCAC	CCGTATGCTT	AGGGAAATTT	TCCTGCAGCA	GAATGCATTC	1500
	CACCCAGTAG	ATGCATACAG	CCCGTTCGAT	CAGCAGTACA	AGATCCTTAA	1550
	GGCAATCATG	AAATGGGGAG	ACGCTGCGAT	GGATGCCTTG	AAATCAGGTG	1600
25	TTCCCGTAAC	TGAAATTATC	AAGCTTGAAT	CCAAAAATGT	GCTTGCTAAG	1650
	GTCAAGTACG	AAGAGAAGTT	TGATGAGTCT	ATGAATGCTG	TCCTGGCACA	1700
	GATGGATAAA	GAGTTTGCAT	CCCTGAGAGG	TAGGTAA		1737

30
2) INFORMATION FOR SEQ ID NO: 714

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1785 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: Genomic DNA
- (vi) ORIGINAL SOURCE:

35

- (A) ORGANISM: Methanosarcina jannaschii
- (C) ACCESSION NUMBER: extracted from U67477
- 45 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 714

	ATGAAAAGAG	AGGTTGAGAA	TATGCCAGTT	GTTGGTAAGA	TTATTAAAAT	50
	CGCAGGGCCT	GTTGTAGTTG	CAGAGGGAAT	GAAAGGAGCT	CAGATGTATG	100
	AGGTCGTTAA	AGTAGGAGAA	GAGAAATTGA	CTGGAGAAAT	CATTCAGTTG	150
50	CACGATGATA	AAGCAGTTAT	TCAGGTTTAT	GAAGAAACAT	CTGGAATTAA	200
	ACCAGGAGAG	CCAGTTGTTG	GTACTGGAGC	TCCATTGTCT	GTTGAATTAG	250
	GGCCAGGGAT	GTTAAGAGCT	ATGTATGATG	GTATTCAGAG	GCCTTTAACA	300
	GCAATTGAAG	AGAAAACAGG	TTCAATCTTT	ATCCCAAGAG	GAGTTGATGT	350
	CCCTGCATTA	CCAAGAGATA	TAAAATGGGA	ATTTAAACCA	GTGGTAAATG	400
5 5	AAGGAGATTA	TGTTGAAGAA	GGAGACATAA	TTGGAACTGT	TGATGAAACT	450
	CCTTCAATAG	TTCATAAAAT	CTTAGTTCCA	ATTGGTGTTA	AAGGAAAAAT	500
	TGTTGAAATA	AAAGAGGGTA	AATTTACAGT	TGAAGAGACA	GTTGCAGTTG	550
	TAGAAACAGA	AAATGGAGAA	AGGAAAGAAA	TTACAATGAT	GCAAAAATGG	600
	CCAGTAAGAA	AACCAAGACC	ATATAAAGAG	AAACTACCTC	CAGAAATTCC	650
60	ATTAATTACA	GGGCAAAGAG	TTGAAGACAC	TTTCTTTACA	TTAGCAAAAG	700

	GAGGAACAGC	AGCAATTCCA	GGTCCATTCG	GTTCAGGAAA	AACGGTTACT	750
	CAGCATCAGT	TGGCAAAGTG	GTCTGACGCT	GATGTCGTTG	TTTATATCGG	800
	ATGTGGAGAA	AGAGGAAACG	AGATGACAGA	GGTTATTGAA	GAGTTCCCAC	850
	ACTTAGAAGA	TATTAGAACT	GGAAACAAAT	TAATGGATAG	AACTGTATTA	900
5	ATAGCCAACA	CATCAAACAT	GCCTGTCGCT	GCAAGGGAAG	CATCTGTCTA	950
	TACAGGAATT	ACAATTGCAG	AGTACTTCAG	AGATATGGGT	TATGGAGTTT	1000
	TATTAACAGC	AGATTCAACA	TCAAGATGGG	CAGAGGCAAT	GAGAGAAATT	1050
	TCAGGTAGAT	TGGAAGAAAT	GCCAGGGGAA	GAAGGGTATC	CAGCATACTT	1100
	AGCTTCAAGA	TTGGCTCAGT	TCTATGAAAG	AGCTGGAAGA	GTTATAACCT	1150
10	TAGGGAAAGA	TAACAGACAA	GGATTCGTTT	GTATCGTTGG	AGCTGTTTCA	1200
	CCACCAGGAG	GGGACTTCTC	AGAACCAGTT	ACATCAAACA	CACTAAGGAT	1250
	AGTTAAGGTA	TTCTGGGCGT	TAGATGCAAA	CTTGGCAAGA	AGAAGACACT	1300
	TCCCAGCTAT	CAACTGGTTG	CAGAGTTATT	CATTATACAT	TGATGATGTT	1350
	ACAGAGTGGT	GGAACACAAA	TACTGGTCCA	GATTGGAGAC	AATTAAGAGA	1400
15	TGAAGCAATG	AGCTTATTAC	AAAAAGAGGC	AGAGTTGCAA	GAGATTGTTC	1450
	AGTTAGTTGG	GCCTGATGCA	TTGCCAGATA	GGGAGAGAGT	TATTTTAGAA	1500
	GTTGCAAGAA	TGTTGAGGGA	GGATTTCTTA	CAGCAAGATG	CGTTTGATGA	1550
	GGTAGATACC	TACTGTCCTC	CAATGAAACA	GTACTTAATG	TTAAAGATAA	1600
	TTATGACATT	CTACCAAGAA	GCATTGAAGG	CAGTTGAAAG	AGGAGTTGAA	1650
20	CCAGCTAAGA	TTTTAGGAGT	TTCAGTTAAG	CAAGATATTG	CAAGAATGAA	1700
	ATACATCCCA	CACGATGAGT	TTATAAATGT	TAAATCAAAA	GAAATAATGG	1750
	AGAAAATTAA	GAATGAATTA	GGTTCATTAA	ACTAA		1785

25

30

2) INFORMATION FOR SEQ ID NO: 715

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1354 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: Genomic DNA

- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Porphyromonas gingivalis
 - (B) STRAIN: W83
- 40 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 715

	TGAGCGAGGT	GATCAAGGTG	ATCGGCAAAA	ATGCTTATGT	GCAGGTTTTC	50
	GAAAGTACTC	GCGGTATGCA	CGTAGGAGAT	GAGGCAGAGT	TTACCGGCAG	100
	TATGCTTGAG	GTAACGCTCG	GCCCCGGTAT	GCTTTCGAAG	AACTACGACG	150
45	GTCTGCAACA	CGACTTGGAC	AAGATGGACG	GGATCTTCCT	CAAACGAGGC	200
	GATTATACTC	CCGCTCTCGA	TGACGACAAG	CTGTGGGACT	TCAAGCCTTT	250
	GGCCAATGTG	AACGACAATG	TGATCGCAGG	CTCATGGCTC	GGAGAGGTGA	300
	CGGAAAATTT	CCAACCGCAC	AAGATCATGG	TACCTTTCGT	TTTCGAAGGC	350
	AATTACAAGG	TGAAGAGTCT	GGCCAAAGCC	GGTTCGTACA	AAGTGAACGA	400
50	TGTGATCGCT	GTGGTAACGG	ATCAGGACGG	GAAAGACCAC	AATGTAACCA	450
	TGGTGCAGAA	ATGGCCGGTG	AAACGTGCTA	TCACTTGCTA	TCGCGAGAAG	500
	CCGCGTCCTT	TCAAACTGCT	CGAAACGGGT	ATCCGTATCA	TCGACACTTT	550
	CAACCCCATC	GTAGAGGGTG	GTACGGGATT	TATCCCCGGT	CCTTTCGGTA	600
	CGGGAAAGAC	GGTGCTCCAG	CATGCTATCT	CGAAGCAGGC	GGAAGCCGAT	650
55	ATCGTGATCA	TTGCAGCCTG	TGGCGAGCGT	GCAAACGAGG	TTGTGGAGAT	700
	CTTTGCGGAA	TTCCCCCACC	TGAATGACCC	CCACACGGGA	CGTAAATTGA	750
	TGGAACGTAC	CATTATTATT	GCTAATACGT	CGAATATGCC	TGTGGCTTCG	800
	CGTGAGGCAT	CCGTATATAC	GGCCATGACG	ATAGCCGAGT	ACTATCGCTC	850
	CATGGGCCTT	CGCGTGCTGA	TGATGGCAGA	CTCCACTTCG	CGTTGGGCAC	900
60	AGGCTCTGCG	TGAGATGTCT	AACCGTCTGG	AAGAGCTTCC	CGGACCGGAT	950

			AGCTATCGTA			1,000 1050
			ACGGTTCGGC			· 1050
			GGTAACCTCA			1100
	ACCAAGAAAG	TGGCTCGCTG	CTTCTATGCT	TTGGAGCAGA	ATCGTGCCGA	1150
5	CCGCAAACGT	TATCCGGCTG	TAAACCCCAT	CGATAGTTAC	TCGAAGTACA	1200
	TCGAATATCC	CGAATTCGAG	AGCTATATAT	CGAACCACAT	CAGTTTACTC	1250
	ATTATATTCA	ACAGAAGTTG	GCAGATATAT	GGATCAAATC	TTACAGCAGA	1300
	CTGGACTACT	AAGGTGAATG	AGCTGAAGAT	GCGCTTGCAT	CAGGGTAAAG	1350
	AAAT					1354

10

2) INFORMATION FOR SEQ ID NO: 716

- 15 (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1788 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear

- (ii) MOLECULE TYPE: Genomic DNA
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Streptococcus pneumoniae
- 25 (B) STRAIN: Type 4
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 716

			TAAAAGTATC		GTTATTGCAT	50
30	CAGGTATGCA	GGAGGCTAAT	ATTCAAGATA	TTTGCCGTGT	AGGTAAGCTA	100
	GGGTTAATCG	GTGAAATTAT	TGAAATGAGA	AGAGATCAGG	CATCTATCCA	150
	AGTCTATGAA	GAAACATCTG	GTCTTGGTCC	GGGAGAACCT.	GTTGTTACAA	200
	CTGGAGAACC	TCTCTCGGTT	GAATTAGGGC	CAGGATTGAT	TTCTCAAATG	250
	TTTGATGGCA	TACAACGCCC	ATTAGATCGA	TTTAAATTGG	CTACTCATAA	300
35	TGATTTTCTA	GTTCGTGGGG	TAGAAGTTCC	AAGTTTGGAT	AGAGATATTA	350
	AGTGGCATTT		ATAGCAATTG	GTCAAAAAGT		400
	GATATTCTTG	GAACTGTCAA	GGAAACCGAG	GTAGTTAATC	ATAAAATTAT	450
	GGTTCCTTAT	GGAGTATCTG	GAGAAGTCGT	TTCTATTGCA	TCTGGCGATT	500
	TTACAATTGA	TGAAGTTGTA	TATGAAATAA	AAAAATTGGA	CGGTAGTTTC	550
40	TATAAAGGAA	CGCTTATGCA	AAAATGGCCT	GTCCGCAAGG	CGCGTCCTGT	600
	TTCTAAACGT		AAGAACCATT		CAACGAGTTA	650
	TTGATGCATT	CTTTCCAGTA	ACCAAAGGGG	GAGCTGCAGC	AGTTCCTGGA	700
	CCGTTTGGAG	CAGGAAAGAC	AGTTGTACAA	CACCAAGTAG	CTAAATTTGC	750
	CAATGTTGAT	ATTGTTATTT	ATGTCGGTTG	TGGAGAACGT	GGAAATGAAA	800
45	TGACGGATGT	ACTGAATGAG	TTTCCTGAGT	TGATTGACCC	TAATACCGGA	850
	CAATCAATTA	TGCAACGGAC	AGTTCTGATT	GCTAATACTT	CAAATATGCC	900
	TGTTGCTGCT	CGTGAGGCTT	CAATTTATAC	AGGAATTACC	ATGGCTGAGT	950
	ATTTTCGTGA	TATGGGCTAC	TCTGTCGCCA		TTCAACTTCA	1000
	CGTTGGGCAG	AAGCGCTACG	TGAAATGTCA	GGACGTCTAG	AAGAAATGCC	1050
50		GGTTATCCTG	CTTATCTGGG	AAGTCGTATC	GCTGAATATT	1100
	ATGAAAGAGC	AGGACGTTCT	CAGGTTCTAG		ACGTGAAGGA	1150
	ACGATTACTG	CTATTGGAGC	TGTATCGCCA	CCTGGTGGAG	ATATTTCAGA	1200
	ACCAGTTACT	CAAAACACTT	TACGGATTGT	GAAAGTTTTT	TGGGGGCTTG	1250
	ATGCTCCGTT	GGCACAGCGA	CGTCATTTTC	CTGCAATTAA	CTGGCTTACA	1300
55	TCTTATTCAC	TATATAAAGA	CAGTGTGGGC	ACTTATATAG	ATGGTAAAGA	1350
	GAAGACAGAT	TGGAATAGTA	AAATAACTCG	TGCGATGAAC	TACTTACAAC	1400
	GGGAATCTAG	TTTAGAGGAA	ATTGTTCGTC	TTGTTGGAAT	TGATTCTCTG	1450
			GATGGAAATT			1500
			TTGATTCGGT			1550
60	CAAAACAAGA	AGCAATGCTA	AGTAATATTC	TCACTTTTGC	TGATCAGGCA	1600

5	AATCATGCTT TAGAGTTGGG TTCTTACTTT ACAGAGATTA TGGAAGGTAC CGTGGCAGTT CGAGACCGTA TGGCGAGAAG TAAATATGTT TCAGAAGATA GATTAGATGA AATCAAAATT ATATCAAATG AGATTACACA TCAAATTCAT TTGATATTAG AAACAGGAGG TCTATAAATG AGTGTTAT	1650 1700 1750 1788
	2) INFORMATION FOR SEQ ID NO: 717	٠
10	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 823 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear 	
15	(ii) MOLECULE TYPE: Genomic DNA	
20	<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: Burkholderia mallei (B) STRAIN: GB8</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 717	
25	CGATCCTGGT GTGCTCGGCC GCTGACGGCC CGATGCCGCA AACGCGTGAG CACATCCTGC TGGCGCGTCA GGTCGGTGTG CCGTACATCA TCGTGTTCCT GAACAAGTGC GACATGGTGG ACGACGCGGA GCTGCTCGAG CTGGTCGAAA TGGAAGTGCG CGAACTGCTG TCGAAGTACG ACTTCCCGGG CGACGACACG CCGATCATCA AGGGTTCGGC GAAGCTGGCG CTGGAAGGCG ACAAGGGCGA	50 100 150 200 250
30	GCTGGGCGAA GTGGCGATCA TGAACCTGGC CGACGCGCTG GACACGTACA TCCCGACGCC GGAGCGTGCG GTCGACGGCG CGTTCCTGAT GCCGGTGGAA GACGTGTTCT CGATCTCGGG CCGTGGTACG GTGGTGACGG GCGCGGCGTG ATCAAGGTTG GCGAGGAAAT CGAAATCGTC GGTATCAAGG CGACGGCGAA GACGACCTGC ACGGCCGTGG AAATGTTCCG CAAGCTGCTG GACCAGGGTC AGGCGGCGA CAACGTCGGT ATCCTGCTGC GCGCACAAA	300 350 400 450 500 550
35	GCGTGAAGAC GTGGAGCGCG GCCAGGTTCT GGCGAAGCCG GGTTCGATCA CGCCGCACAC GCACTTCACG GCAGAAGTGT ACGTGCTGAG CAAGGACGAA GGCGGCCGCC ACACGCCGTT CTTCAACAAC TACCGTCCGC AGTTCTACTT CCGTACGACG GACGTGACGG GCTCGATCGA GCTGCCGAAG GACAAGGAAA TGGTGATGCC GGGCGACAAC GTGTCGATCA CGGTGAAGCT GATCGCGCCG	600 650 700 750 800
40	ATCGCGATGG AAGAAGGTCT GCG	823
45	2) INFORMATION FOR SEQ ID NO: 718	
50	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 824 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear 	
	(ii) MOLECULE TYPE: Genomic DNA	
55	(vi) ORIGINAL SOURCE:(A) ORGANISM: Burkholderia pseudomallei(B) STRAIN: 1026B	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 718	
60	GCGATCCTGG TGTGCTCGGC CGCTGACGGC CCGATGCCGC AAACGCGTGA	50

	GCACATCCTG	CTGGCGCGTC	AGGTCGGTGT	GCCGTACATC	ATCGTGTTCC	\1 00
	TGAACAAGTG	CGACATGGTG	GACGACGCGG	AGCTGCTCGA	GCTGGTCGAA	150
	ATGGAAGTGC	GCGAACTGCT	GTCGAAGTAC	GACTTCCCGG	GCGACGACAC	200
	GCCGATCATC	AAGGGTTCGG	CGAAGCTGGC	GCTGGAAGGC	GACAAGGGCG	250
5	AGCTGGGCGA	AGTGGCGATC	ATGAACCTGG	CCGACGCGCT	GGACACGTAC	300
_	ATCCCGACGC	CGGAGCGTGC	GGTCGATGGC	GCGTTCCTGA	TGCCGGTGGA	350
	AGACGTGTTC	TCGATCTCGG	GCCGTGGTAC	GGTGGTGACG	GGTCGTGTCG	400
	AGCGCGGCGT	GATCAAGGTT	GGCGAGGAAA	TCGAAATCGT	CGGTATCAAG	450
	GCGACGGCGA	AGACGACCTG	CACGGGCGTG	GAAATGTTCC	GCAAGCTGCT	500
10	GGATCAGGGT	CAGGCGGGCG	ACAACGTCGG	TATCCTGCTG	CGCGGCACGA	550
_	AGCGTGAAGA	CGTGGAGCGC	GGCCAGGTTC	TGGCGAAGCC	GGGTTCGATC	600
	ACGCCGCACA	CGCACTTCAC	GGCTGAAGTG	TACGTGCTGA	GCAAGGACGA	650
	AGGCGGCCGC	CACACGCCGT	TCTTCAACAA	CTACCGTCCG	CAGTTCTACT	700
	TCCGTACGAC	GGACGTGACG	GGCTCGATCG	AGCTGCCGAA	GGACAAGGAA	750
15	ATGGTGATGC	CGGGCGACAA	CGTGTCGATC	ACGGTGAAGC	TGATCGCGCC	800
	GATCGCGATG	GAAGAAGGTC	TGCG			824

- 20 2) INFORMATION FOR SEQ ID NO: 719
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 800 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: Genomic DNA
- 30 (vi) ORIGINAL SOURCE:

25

(A) ORGANISM: Clostridium beijerincki (deposited as

Clostridium butyricum)

- (B) STRAIN: ATCC 8260
- 35 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 719

	TGTATCAGCA	GCAGATGGTC	CAATGCCACA	AACAAGAGAA	CATATACTAC	50
	TAGGATCAAG	AGTTGGTATC	CAATATATCG	TAGTATTCTT	AAATAAAGCA	100
	GATATGGTAG	ACGATCCAGA	ATTATTAGAA	TTAGTAGAAA	TGGAAGTAAG	150
40	AGAATTATTA	AGCGAATATG	ACTTCCCAGG	AGACGATATT	CCAGTAATAA	200
	CAGGATCAGC	ATTAAAAGCA	TTAGAAAATC	CAACAGATGA	AGAAGCAATT	250
	AAGCCAATCA	TGGATTTAAT	GGAAGCAGTA	GATAGCTATA	TCCCAACTCC	300
	AGAAAGAGCA	ACAGATAAGC	CATTCTTAAT	GCCAATCGAA	GATGTATTCA	350
	CAATTACAGG	AAGAGGAACA	GTTGCAACAG	GAAGAGTTGA	AGCTGGAGTA	400
45	CTTCATGTAG	GAGATGAAGT	AGAAATCGTT	GGATTAACAG	AAGAAAAGAA	450
	GAAAGTTGTA	GTAACTGGAA	TCGAAATGTT	CAGAAAGTTA	TTGGATGAAG	500
	CACAAGCTGG	AGATAACATC	GGAGCATTAT	TAAGAGGAGT	TCAAAGAACT	550
	GATATTGAAA	GAGGTCAAGT	TTTATCAAAA	CCAAATTCAG	TACACCCTCA	600
	CACTAAATTT	GTAGGTCAAG	TATACGTACT	TAAAAAAGAA	GAAGGTGGAA	650
50	GACATACTCC	ATTCTTTGAT	GGATACAGAC	CACAATTCTA	TTTCAGAACA	700
	ACAGACGTTA	CAGGRTCAAT	CAAGTTACCA	GATGGAATGG	AAATGGTAAT	750
	GCCTGGAGAT	CACATTGATA	TGAATGTTGA	ATTAATCACT	CCAATCGCAA	800

55
2) INFORMATION FOR SEQ ID NO: 720

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 799 bases
- 60 (B) TYPE: Nucleic acid

- (C) STRANDEDNESS: Double
- (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: Genomic DNA

5

- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Clostridium innocuum
 - (B) STRAIN: ATCC 14501
- 10 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 720

	GGTGCTATCC	TGGTTGTTGC	TGCATCTGAT	GGTCCTATGC	CTCAGACTCG	50
	TGAGCACATC	CTGCTTGCTC	GTCAGGTAGG	TGTTCCTTAC	ATCGTTGTAT	100
	TCCTGAACAA	ATGCGACATG	GTTGATGACG	AAGAACTGAT	CGACCTTGTT	150
15	GAAATGGAAG	TACGTGAGCT	GTTAAGCGAG	TACGGATTCG	ACGGAGATAA	200
	CGCTCCGGTT	ATCCGTGGTT	CTGCACTGAA	GGCTCTGGAA	GGTGACGACA	250
	AATACGTTGG	CGCTATCAAA	GAACTGATGG	ATGCAGTTGA	TGAATTCATC	300
	CCAGATCCAA	CTCGTGAAAC	TGACAAACCA	TTCCTGATGT	CTGTAGAAGA	350
	CGTTATGACA	ATCACAGGAC	GTGGTACAGT	TGCTACAGGA	CGTGTTGAGC	400
20	GTGGGGTAGT	AAAACTGGGA	GAAGAAGTTG	AAATCGTTGG	TATCAAGGAT	450
	ACTCAGAAAA	CTGTTGTTAC	CGGACTGGAA	ATGTTCCGTA	AGCAGCTGGA	500
	CTTCGCAGAA	TCCGGAGACA	ACATCGGTGC	TCTGCTGCGT	GGTATCAACC	550
	GTGACCAGAT	TCAGCGTGGA	CAGGTTCTTG	CTAAACCAGG	ATCCGTACAT	600
	CCACACACAA	AGTTCAAGGC	TCAGGTTTAT	GTATTAACAA	AAGAAGAAGG	650
25	TGGACGTCAC	ACTCCATTCG	TTTCTAACTA	CCGTCCTCAG	TTCTACTTCC	700
	GTACAACTGA	CGTAACTGGT	GTTATTACAT	TACCGGAAGG	AACTGAAATG	750
	GTTATGCCTG	GTGACAACGT	TGAAATGAAC	GTTGAGCTGA	TTGCTCCAA	799

30

- 2) INFORMATION FOR SEQ ID NO: 721
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 789 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: Genomic DNA

40

- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Clostridium novyi
 - (B) STRAIN: ATCC 19402
- 45 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 721

	TTGTATCAGC	AGCAGATGGT	CCAATGCCAC	AAACAAGAGA	ACACATCCTA	50
	TTAGCATCAA	GAGTAGGAGT	TAACCACATA	GTAGTATTCT	TAAACAAAGC	100
	AGACCAAGTA	GATGATCCAG	AATTACTAGA	ATTAGTAGAA	ATGGAAGTAA	150
50	GAGAATTATT	AAGCGAATAC	GGATTTGACG	GAGACGAATG	TCCAGTAGTA	200
	GTAGGATCAG	CATTAAAAGC	AATCGAAGAA	GGGGATGACC	AATGCATCCT	250
	AGACTTAATG	AAAGCTGTAG	ATGAATATAT	CCCAACTCCA	GAAAGAGCAA	300
	CAGATCAACC	ATTCTTAATG	CCTGTAGAAG	ATGTATTTAC	AATTACAGGA	350
	AGAGGAACAG	TTGCAACAGG	AAGAGTTGAA	AGAGGAGTAC	TACACGTAGG	400
55	AGATGAAGTA	CAAATCGTAG	GAATGAAAGA	AGAAATCGGA	AAGACAACAA	450
	TCACAGGAGT	AGAAATGTTC	AGAAAGATGT	TAGATGAAGC	AATGGCTGGA	500
	GATAACATCG	GAGCATTATT	AAGAGGAGTA	CAAAGAGACG	AAATCGAAAG	550
	AGGTCAAGTA	CTAGCAAAAC	CAGGTTCAGT	AACACCTCAC	AAAAAATTCG	600
	TAGGTCAAGT	TTACGTATTA	AAGAAAGAAG	AAGGTGGAAG	ACACACTCCA	650
60	TTCTTTAACG	GATACAGACC	ACAATTCTAC	TTCAGAACAA	CAGACGTAAC	700

	AGGATCAATC GCTTTACCAG AAGGAGTAGA AATGGTAATG CCAGGAGACC ATATAGACAT GAACGTAGAA TTAATCACAC CAGTAGCAA	750 789
5	2) INFORMATION FOR SEQ ID NO: 722	
10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 798 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
15	(ii) MOLECULE TYPE: Genomic DNA(vi) ORIGINAL SOURCE:(A) ORGANISM: Clostridium septicum(B) STRAIN: ATCC 12464	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 722	
25	GTTCAGCAGC AGACGGTCCA ATGCCACAAA CAAGAGAACA TATACTACTA GCATCAAGAG TTGGTGTTGA CTATATCGTA GTATTCTTAA ACAAGGCAGA TATGGTAGAT GACGAAGAAT TATTAGAATT AGTAGAAATG GAAGTTAGAG AATTATTATC AGAATACAAC TTCCCAGGAG ATGATATTCC AGTAATCAAG GGATCAGCTT TAGTAGCATT AGAAAACCCA ACAGATGAAA AATCAATCGC TCCAATCTTA GAATTAATGG AAGCAGTAGA TAGCTACATT CCAACACCAG AAAGAGCAAC AGATAAGCCA TTCTTAATGC CAGTAGAAGA TGTATTCACA	50 100 150 200 250 300 350
30	ATAACTGGTA GAGGAACAGT TGCAACAGGA AGAGTTGAAA GAGGAGTTCT TCATGTAGGA GACGAAGTAG AAATCGTTGG ATTATCAGAA GAAAGCAGAA AAGTAGTAGT AACAGGAATA GAAATGTTCA GAAAGTTACT AGACGAAGCA CAAGCTGGAG ATAATGTTGG AGTACTTTTA AGAGGTGTTC AAAGAACAGA TATCGAAAGA GGTCAAGTAT TAGCAAAGAC TGGATCAGTT AAGCCACACA	400 450 500 550 600
35	GCAAGTTCGT AGGTCAAGTA TACGTACTTA AGAAAGAAGA AGGTGGAAGA CATACTCCAT TCTTCGATGG ATACAGACCA CAATTCTACT TCAGAACAAC AGACGTTACT GGATCAATCA AATTACCAGA CGGAATGGAA ATGGTTATGC CAGGAGACCA CATTGATATG AACGTTGAAT TAATCACTCA AGTAGCAA	650 700 750 798
40	2) INFORMATION FOR SEQ ID NO: 723	
45	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 799 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
50	(ii) MOLECULE TYPE: Genomic DNA	
	(vi) ORIGINAL SOURCE:(A) ORGANISM: Clostridium tertium(B) STRAIN: ATCC 14573	
55	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 723	
60	GTTCAGCAGC AGATGGTCCA ATGCCTCAAA CAAGAGAACA CATACTACTA GCTTCAAGAG TTGGTGTTGA CTACATAGTT GTTTTCTTAA ACAAGGCAGA TATGGTAGAT GACGAAGAAT TATTAGAATT AGTTGAAATG GAAGTAAGAG AATTATTATC AGAATACAAC TTCCCAGGAG ATGATATTCC AGTAATAAAG	50 100 150 200

WO 01/23604	PCT/CA00/01150
W O 01/23004	FC1/CA00/01130

		TACAAGCATT				250
	TCCAATCCTT	GAGTTAATGG	AAGCTGTAGA	TAGCTACATT	CCAACTCCAG	300
	AAAGAGCAAC	AGATAAGCCA	TTCTTAATGC	CAGTAGAAGA	TGTATTCACA	350
•	ATCACTGGTA	GAGGAACAGT	TGCTACAGGA	AGAGTTGAAA	GAGGAGTTCT	400
5	TCACGTAGGA	GACGAAGTAG	AAATCGTTGG	ATTATCAGAA	GACAGCAGAA	450
	AAGTAGTAGT	AACAGGAATA	GAAATGTTCA	GAAAGTTACT	AGACGAAGCG	500
	CAAGCTGGAG	ACAACGTAGG	AGTTCTTTTA	AGAGGAGTTC	AAAGAACTGA	550
	CATCGAAAGA	GGTCAAGTTT	TAGCAAAAGT	TGGATCAGTT	AAGCCACACA	600
	AGAAATTTGT	AGGTCAAGTA	TACGTACTTA	AAAAAGAAGA	AGGTGGAAGA	650
10	CATACTCCAT	TCTTCGATGG	ATACAGACCA	CAATTCTACT	TCAGAACAAC	700
	AGAYGTTACT	GGTTCAATCA	AGTTACCAGA	TGGAATGGAA	ATGGTTATGC	750
	CAGGAGACCA	CATTGATATG	AACGTTGAAT	TAATCACTCA	AGTAGCTAT	799

15

20

- 2) INFORMATION FOR SEQ ID NO: 724
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 801 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: Genomic DNA

25

- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Clostridium tetani
 - (B) STRAIN: ATCC 19406
- 30 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 724

	TAGTAAGTGC	AGCAGATGGT	CCAATGCCAC	AAACAAGAGA	ACACATACTA	50
	TTAGCATCCA	GAGTTGGAGT	TGAGCACATA	GTAGTATTCT	TAAATAAAGC	100
	AGACCAAGTA	GATGACGCAG	AGTTAATCGA	ATTAGTAGAA	ATGGAAGTAA	150
35	GGGAATTAAT	GAACGAATAC	GGATTCCCAG	GAGATGACGC	ACCAGTAGTA	200
	GTAGGATCCG	CATTAAAAGC	ATTAGAAAAT	CCAGAAGATG	ATGCAGCAAC	250
	ACAATGCATA	ATGGACTTAA	TGGCAGCAGT	AGATGAATAT	ATACCAACAC	300
	CAGAAAGAGC	AACAGATAAG	CCATTCTTAA	TGCCAGTAGA	AGATATCTTC	350
	ACAATCACAG	GAAGAGGAAC	AGTTGCAACA	GGAAGAGTAG	AAAGAGGAAT	400
40	TCTAAAAGTA	GGAGACGAAA	TAGAAATCGT	AGGATTAAGT	GATGAAAGCA	450
	AGAAATCAGT	AATCACAGGA	ATAGAAATGT	TCAGAAAACT	ATTAGATGAA	500
	GCACAAGCAG	GAGATAACAT	CGGAGCATTA	TTAAGAGGTG	TTCAAAGAGA	550
	TGAAATCCAA	AGAGGTCAAG	TATTAGCAGC	AACAGGATCA	GTAAAACCAC	600
	ATAAGAGTTT	TACAGGTCAA	GTATATGTAT	TAAAGAAAGA	AGAAGGAGGA	650
45	AGACACACTC	CATTCTTTAA	CGGATACAGA	CCACAATTCT	ACTTTAGAAC	700
	AACAGACGTA	ACAGGTTCAA	TCGCACTACC	AGAAGGAGTA	GAAATGGTAA	750
	TGCCAGGAGA	CCACATAGAC	ATGAAGGTAG	AATTAATAAC	AAGAGTAGCA	800
	A					801

50

- 2) INFORMATION FOR SEQ ID NO: 725
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 633 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
- 60 (ii) MOLECULE TYPE: Genomic DNA

(vi) ORIGINAL SOURCE:

- (A) ORGANISM: Enterococcus malodoratus
- (B) STRAIN: ATCC 43197

5

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 725

	TATGCCTCAA	ACTCGTGAAC	ACATCTTGTT	ATCTCGTAAC	GTTGGTGTTC	50
	CTTACATCGT	TGTATTCTTA	AACAAAATGG	ATATGGTTGA	TGATGAAGAA	100
10	TTACTAGAAT	TAGTTGAAAT	GGAAGTTCGT	GACTTATTGT	CAGAATACGA	150
	CTTCCCAGGC	GACGACACTC	CAGTTATCGC	TGGTTCAGCT	TTGAAAGCTT	200
	TAGAAGGCGA	TGCTTCATAC	GAAGAAAAA	TCTTAGAATT	AATGGCTGCT	250
	GTTGATGAAT	ATATCCCAAC	ACCAGTTCGT	GATACTGACA	AACCATTCAT	300
	GATGCCAGTC	GAAGATGTAT	TCTCAATCAC	TGGTCGTGGA	ACTGTTGCAA	350
15	CTGGTCGTGT	TGAACGTGGA	CAAGTTCGCG	TTGGTGACGA	AGTTGAAATC	400
•	GTTGGTATTG	CTGAAGCAAC	TGCTAAAACA	ACTGTTACAG	GTGTTGAAAT	450
	GTTCCGTAAA	TTGTTAGATT	ACGCTGAAGC	AGGCGATAAC	ATTGGTGCAT	500
	TGTTACGTGG	TGTTGCACGT	GAAGACATCC	AACGTGGACA	AGTATTGGCT	550
	AAACCAGCTT	CAATCACTCC	ACATACAAAA	TTCTCTGCAG	AAGTTTACGT	600
20	TTTAACTAAA	GAAGAAGGCG	GACGTCATAC	TCC		633

2) INFORMATION FOR SEQ ID NO: 726

25

35

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 623 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
- 30 (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: Genomic DNA
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Enterococcus sulfureus
 - (B) STRAIN: ATCC 49903
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 726

40	CACGTGAACA	CATCTTGTTA	TCTCGTAACG	TAGGTGTTCC	TTACATCGTT	50
10		ACAAAATGGA				100
		GAAGTTCGTG	-			150
	ATGACACTCC	AGTTGTTGCA	GGTTCTGCTT	TGAAAGCTTT	AGAAGGCGAC	200
	GCTTCTTACG	AAGAAAAAT	CATGGAATTA	ATGGCTGCAG	TTGACGAGTA	250
45	CATCCCAACT	CCAACTCGTG	ACACTGACAA	ACCATTCATG	ATGCCAGTTG	300
	AGGATGTATT	CTCAATCACT	GGACGTGGTA	CTGTTGCTAC	AGGTCGTGTT	350
	GAACGTGGAC	AAGTTCGCGT	TGGTGACGTT	GTAGATATCG	TTGGTATCGC	400
	TGACGAAACT	GCTCAAACAA	CTGTAACAGG	TGTTGAAATG	TTCCGTAAAT	450
	TATTAGACTA	CGCTGAAGCA	GGCGATAACA	TCGGTGCTTT	ATTACGTGGT	500
50	GTTGCTCGTG	AAGACATCCA	ACGTGGACAA	GTTTTAGCTA	AACCAGCTTC	550
	AATCACTCCA	CATACAAAAT	TCTCTGCTGA	AGTATACGTA	TTAAGCAAAG	600
	AAGAAGGTGG	ACGTCATACT	CCA			623

- 2) INFORMATION FOR SEQ ID NO: 727
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 646 bases
- 60 (B) TYPE: Nucleic acid

- (C) STRANDEDNESS: Double
- (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: Genomic DNA

5

- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Lactococcus garvieae
 - (B) STRAIN: ATCC 49156
- 10 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 727

	CGGTCCTATG	CCTCAAACTC	GTGAACACAT	CTTGTTATCA	CGTAACGTTG	50
	GCGTACCATA	CATCGTTGTT	TTCTTGAACA	AAATGGATAT	GGTTGATGAC	100
	GAAGAATTGC	TAGAATTAGT	TGAAATGGAA	GTTCGTGACC	TATTGTCTGA	150
15	ATATGACTTC	CCAGGCGACG	ATGTTCCTGT	AATCGCTGGT	TCTGCTTTGA	200
	AAGCTCTTGA	AGGAGATCCT	TCATACGAAG	AAAAAATCAT	GGAATTGATG	250
	GCTGCAGTTG	ACGAATACGT	TCCAACTCCA	GAACGTGATA	CTGACAAACC	300
	ATTCATGATG	CCAGTCGAAG	ACGTATTCTC	AATCACTGGA	CGTGGTACTG	350
	TTGCTACAGG	CCGTGTTGAA	CGTGGACAAG	TTCGCGTTGG	TGATGAAGTA	400
20	GAAATCGTTG	GTATTGCTGA	CGAAACTGCT	AAAACAACTG	TAACAGGTGT	450
	TGAAATGTTC	CGTAAATTGT	TAGACTATGC	TGAAGCAGGG	GATAACATTG	500
	GTGCATTGCT	ACGTGGGGTT	GCTCGTGAAG	ACATCCAACG	TGGACAAGTA	550
	TTGGCTAAAG	CTGGTACAAT	CACACCTCAT	ACAAAATTCA	AAGCTGAAGT	600
	TTATGTTTTG	ACAAAAGAAG	AAGGTGGACG	TCACACTCCA	TTCTTC	646
O.E.						

25

30

- 2) INFORMATION FOR SEQ ID NO: 728
 - (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 823 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
- 35 (ii) MOLECULE TYPE: Genomic DNA
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Mycoplasma pirum
 - (B) STRAIN: ATCC 25960D

40

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 728

	GAGCAATTTT	AGTTGTTTCT	GCAACTGATG	GTCCAATGCC	TCAAACTCGT	50
	GAACATATCT	TATTAGCACG	CCAAGTTGGT	GTTCCTAAAA	TGGTTGTTTT	100
45	CTTAAACAAA	TGTGATGTTG	CTTCTGATCC	AGAAATGCAA	GAATTAGTTG	150
	CTGAAGAAGT	AAAAGACTTA	TTAAAATCTT	ATGGTTTTGA	TGGTGACAAT	200
	ACTCCAATTA	TTCGTGGTTC	AGCATTAGAA	GCATTAAATG	GTAAACCTGA	250
	ATGAGAAGAA	AAAATTAAAG	AATTAATGAA	GGCAGTGGAT	GACACTATTC	300
	CTGATCCAGT	TCGTGATACT	GAAAAGCCAT	TCTTGTTACC	AATTGAAGAC	350
50	GTAATGACAA	TTACAGGTCG	TGGTACTGTT	GTTACAGGTC	GTGTAGAACG	400
	TGGTACTCTA	AAATTAAATG	ATGAAGTTGA	AATTGTTGGT	TTAGGTGAAA	450
	CATTTAAATC	TGTTGTAACA	GGTATTGAAA	TGTTCCGTAA	AGAATTAGAT	500
	GAAGCTCGTG	CTGGTGACAA	TGCTGGTATT	TTACTTCGTG	GTGTTGACCG	550
	TGGTCAAGTA	CAACGTGGTC	AAGTTCTTGC	TAAACCAGGT	TCTATTACTC	600
55	CTCATACTAA	ATTTAAAGCT	GAAATTTATG	CTTTGAAAAA	AGAAGAAGGT	650
	GGTCGTCATA	CTGCTTTCTT	AAACGGTTAT	CGTCCTCAAT	TCTATTTCAG	700
	AACAACTGAT	GTTACAGGTT	CTATTAAATT	AAAAGATGGA	ACTGAAATGG	750
	TTATGCCTGG	TGACAATACT	GAAATCACTG	TAGAATTAAT	TTCACCAATT	800
	GCTTGTAAAA	AGGAAGTAAG	TTT			823

CACCAA ECONO A COMO COMO COMO COMO CACAA A MOCCO MICAAA COMO COMO CACAA A COMO COMO CACAA A COMO

2) INFORMATION FOR SEQ ID NO: 729 5 (i) SEQUENCE CHARACTERISTICS: LENGTH: 826 bases (A) (B) TYPE: Nucleic acid STRANDEDNESS: Double (C) (D) TOPOLOGY: Linear 10 (ii) MOLECULE TYPE: Genomic DNA (vi) ORIGINAL SOURCE: ORGANISM: Mycoplasma salivarium (A) STRAIN: ATCC 23064 15 (xi) SEOUENCE DESCRIPTION: SEO ID NO: 729 50 GGAGCAATCT TAGTTGTTGC TGCAACTGAT GGTGCGATGC CTCAAACTCG 100 TGAACACGTT TTACTTGCAA AACAAGTTGG TGTTCCTAAA ATCGTTGTTT 20 TCTTAAACAA AATCGATATG TTCAAGCCAG AAGAAAGAGC CGAAATGGTT 150 GAAATGGTTG AAATGGACAT TCGTGACTTA TTAAACAAAT ACGACTTTGA 200 TGGTGACAAT ACTCCTATTA TTGCTGGTTC AGCATTAAAA GCATTACAAG 250 GTGATCCAGA ATATGAAAAG AATATTCTAG AACTTATGGA TGCAGTAGAC 300 ACATACATTG ATGAACCTAC TCGTGATAAA GATAAACCAT TCTTAATGGC 350 25 TGTAGAAGAC GTATTTACAA TTACTGGTCG TGGAACTGTT GCTACTGGTA 400 GAGTAGAACG TGGTACATTA CATCTAAATG ATGAAGTTGA AATCGTTGGT 450 CTACGTCCAA CAATTAAAAC TGTTGTTACT GGAATTGAAA TGTTCCGTAA 500 AAATTTAAAA GAAGCTCAAG CTGGAGATAA TGCAGGACTT TTACTACGTG 550 GAATTGATAG AGATCAAGTA GAACGTGGAC AAGTTTTGGC CAAACCAAAA 600 30 AGTATTATTC CTCACACAGA ATTTGAAGCT GCTGTGTATG TTCTAAAAGC 650 TGAAGAAGGT GGACGTCACA CTCCATTCTT TGAACACTAT AAACCACAAT 700 TTTACTTTCG TACAACCGAC GTTACTGGTG GAATTAAATT CAAACCTGGA 750 CGTGAAATGG TTATGCCTGG CGAAAATGTT GAATTTACAG TTACTTTAAT 800 826 TGCTCCTATT GCAGTTGAAG AAGGAA 35 2) INFORMATION FOR SEQ ID NO: 730 40 (i) SEQUENCE CHARACTERISTICS: LENGTH: 810 bases (A) TYPE: Nucleic acid (B) STRANDEDNESS: Double (C) TOPOLOGY: Linear 45 (D) (ii) MOLECULE TYPE: Genomic DNA (vi) ORIGINAL SOURCE: 50 (A) ORGANISM: Neisseria polysaccharea (B) STRAIN: ATCC 43768 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 730 TGGTATGTTC CGCAGCYGAY GGYCCTATGC CTCAAACTCG CGAACACATC 50 55 CTGYTGGCTC GCCAAGTAGG YGTACCTTAC ATCATCGTRT TCATGAACAA 100 ATGCGACATG GTTGACGATG CCGAGCTGTT GGAACTGGTT GAAATGGAAA 150 TCCGYGACCT GYTGTCMAGC TACGACTTCC CMGGCGACGA CTGCCCAATC 200 250 GTACAAGGTT CTGCACTGAA AGCTTTGGAA GGYGAYGCTG GTTACGAAGA GAAAATCTTC GAAYTGGCTG CTGCTTTGGA CAGCTACATC CCAACTCCTG 300 60

					•	
	AGCGTGCTGT	GGACAAACCK	TTCYTGYTGC	CTATCGAAGA	CGTRTTCTCT	350
	ATCTCTGGYC	GYGGTACMGT	AGTAACYGGY	CGTGTAGAGC	GCGGTRTCAT	400
	CCACGTTGGT	GACGAGATYG	AAATCGTAGG	TCTGAAAGAA	ACCCAAAAAA	450
	CCACTTGTAC	CGGCGTTGAA	ATGTTCCGCA	AACTGCTGGA	CGAAGGTCAA	500
5	GCWGGTGACA	ACGTAGGCGT	ATTGYTGCGT	GGTACCAARC	GTGAAGACGT	550
	AGAGCGTGGT	CAAGTATTGG	CYAAACCAGG	YACCATYACT	CCSCACACCA	600
	AATTCAAAGC	AGAAGTATAC	GTACTGAGCA	AAGAAGAGGG	TGGTCGYCAC	650
	ACTCCATTCT	TCGCYAACTA	CCGYCCMCAA	TTCTACTTCC	GTACYACTGA	700
	CGTAACYGGT	GCAGTTACTT	TGGAAGAAGG	TGTAGAAATG	GTAATGCCAG	750
10	GTGAGAACGT	AACCATTACY	GTAGAACTGA	TTGCGCCTAT	CGCTAGGAAG	800
	AAGGTCTGCG					. 810

- 15 2) INFORMATION FOR SEQ ID NO: 731
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 813 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: Genomic DNA
- 25 (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Salmonella choleraesuis subsp. choleraesuis serotype Enteritidis
 - (B) STRAIN: ATCC 13076
- 30 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 731

	CTGGTTGTTG	CTGCGACTGA	CGGCCCGATG	CCGCAGACCC	GTGAGCACAT	50
	CCTGCTGGGT	CGTCAGGTAG	GCGTTCCGTA	CATCATCGTG	TTCCTGAACA	100
	AATGCGACAT	GGTTGATGAC	GAAGAGCTGC	TGGAACTGGT	TGAAATGGAA	150
35	GTTCGYGAAC	TGCTGTCTCA	GTACGACTTC	CCGGGCGACG	ACACTCCGAT	200
	CGTTCGTGGT	TCTGCTCTGA	AAGCGCTGGA	AGGCGACGCA	GAGTGGGAAG	250
	CGAAAATCAT	CGAACTGGCT	GGCTTCCTGG	ATTCTTACAT	CCCGGAACCA	300
	GAGCGTGCGA	TTGACAAGCC	GTTCCTGCTG	CCGATCGAAG	ACGTATTCTC	350
	CATCTCCGGT	CGTGGTACCG	TTGTTACCGG	TCGTGTAGAA	CGCGGTATCA	400
40	TCAAAGTGGG	CGAAGAAGTT	GAAATCGTTG	GTATCAAAGA	GACTCAGAAG	450
	TCTACCTGTA	CTGGCGTTGA	AATGTTCCGC	AAACTGCTGG	ACGAAGGCCG	500
	TGCCGGTGAG	AACGTAGGTG	TTCTGCTGCG	TGGTATCAAA	CGTGAAGAAA	550
	TCGAACGTGG	TCAGGTACTG	GCTAAGCCGG	GCACCATCAA	GCCGCACACC	600
	AAGTTCGAAT	CTGAAGTGTA	CATTCTGTCC	AAAGATGAAG	GCGGCCGTCA	650
45	CACTCCGTTC	TTCAAAGGCT	ACCGTCCGCA	GTTCTACTTC	CGTACTACTG	700
	ACGTGACTGG	CACCATCGAA	CTGCCGGAAG	GCGTAGAGAT	GGTAATGCCG	. 750
	GGCGACAACA	TCAAAATGGT	TGTTACCCTG	ATCCACCCGA	TCGCAATGGA	800
	CGACGGTCTG	CGT				813

50

55

- 2) INFORMATION FOR SEQ ID NO: 732
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 812 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
- 60 (ii) MOLECULE TYPE: Genomic DNA