

Wireless Communications Principles

Signal representation basics

The Time and Frequency Domains

Representation of the signal in the time domain:

Representation of the signal in terms of a Fourier series:

 The signal can be approximated as a sum of sinewaves of appropriate frequencies, amplitudes and phases.

Time- and Frequency-Domain Representation of a Signal

- A continuous-time signal can be defined both in the time- or the frequency-domain.
- The frequency-domain representation X(f) is obtained from its time-domain representation x(t) via the Fourier transform:

$$X(f) = \int_{-\infty}^{\infty} x(t)e^{-j2\pi ft} dt$$

• The time-domain representation x(t) is obtained from the frequency domain representation X(f) via the inverse Fourier transform: $x(t) = \int_{-\infty}^{\infty} X(f)e^{j2\pi ft} \, df$

Time- and Frequency-Domain Representation of a System

- A linear time-invariant system can also be represented both in the time-domain or the frequency-domain.
- It is represented in the time-domain by the impulse
 response h(t), i.e. the response of the system to an impulse.
- It is represented in the **frequency-domain** by the **frequency response** H(f), i.e. the response of the signal to a complex exponential with frequency f.
- The impulse response and the frequency response are Fourier transform pairs, that is

$$h(t) = \int_{-\infty}^{\infty} H(f)e^{j2\pi ft} df \leftrightarrow H(f) = \int_{-\infty}^{\infty} h(t)e^{-j2\pi ft} dt$$

Fourier Transform Properties

Properties

Time-Domain

Frequency-Domain

Linearity

Delay

Modulation

Convolution

Multiplication

$$c_1 x_1(t) + c_2 x_2(t)$$

$$x(t-t_0)$$

$$e^{j2\pi f_0 t}x(t)$$

$$\int_{-\infty}^{\infty} x_1(t) x_2(t/t) d\tau$$

$$x_1(t)x_2(t)$$

$$c_1 X_1(f) + c_2 X_2(f)$$

$$e^{-j2\pi f t_0}X(f)$$

$$X(f-f_0)$$

$$X_1(f)X_2(f)$$

$$\int_{-\infty}^{\infty} X_1(\emptyset) X_2 X_2 (f \emptyset) d\theta$$

Notes:

$$x_1(t) \leftrightarrow X_1(f)$$

$$x_2(t) \leftrightarrow X_2(f)$$

Fourier Transform Pairs

Note: Π stands for rectangular function. Λ stands for triangular function.

x(t)	X(f)
$\Pi\left(\frac{t}{\tau}\right)$	$ au\sin au f$
2W sinc $2Wt$	$\Pi\left(\frac{f}{2W}\right)$
$\Lambda\left(\frac{t}{\tau}\right)$	$\tau \operatorname{sinc}^2 \tau f$
$\exp(-\alpha t)u(t), \alpha > 0$	$\frac{1}{\alpha + j2\pi f}$
$t \exp(-\alpha t)u(t), \alpha > 0$	$\frac{1}{(\alpha + j2\pi f)^2}$
$\exp(-\alpha t), \alpha > 0$	$\frac{2\alpha}{\alpha^2 + (2\pi f)^2}$
$e^{-\pi(t/\tau)^2}$	$ au e^{-\pi(f \tau)^2}$
$\delta(t)$	1
1	$\delta(f)$
$\delta(t-t_0)$	$\exp(-j2\pi f t_0)$
$\exp(j2\pi f_0 t)$	$\delta(f-f_0)$
$\cos 2\pi f_0 t$	$\frac{1}{2}\delta(f-f_0) + \frac{1}{2}\delta(f+f_0)$
$\sin 2\pi f_0 t$	$\frac{\frac{1}{2}\delta(f - f_0) + \frac{1}{2}\delta(f + f_0)}{\frac{1}{2j}\delta(f - f_0) - \frac{1}{2j}\delta(f + f_0)}\right\}$

Euler

Signals in Time Domain

 For a signal, s(t), in time domain. If s(t) is the voltage across the unit resistance

✓ The Signal
$$E_s = \int_{-\infty}^{\infty} |s(t)|^2 dt$$
 Energy: with unit (joule)

✓ The Signal Power:
$$P_s = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} |s(t)|^2 dt$$
 with unit (watt)

 $\checkmark s(t)$ is an energy-type signal if and only if

$$E_s = \int_{-\infty}^{\infty} |s(t)|^2 dt < \infty.$$

✓ If E_s is infinite, s(t) is a power-type signal

7

Energy and Energy Spectral Density

Energy of a signal s(t) with spectrum S(f):

$$E_{s} = \int_{-\infty}^{\infty} |s(t)|^{2} dt = \int_{-\infty}^{\infty} s(t)s^{*}(t)dt = \int_{-\infty}^{\infty} s(t) \left[\int_{-\infty}^{\infty} S^{*}(f)e^{-j2\pi ft}df \right]dt$$
$$= \int_{-\infty}^{\infty} S^{*}(f) \left[\int_{-\infty}^{\infty} s(t)e^{-j2\pi ft}dt \right]df = \int_{-\infty}^{\infty} S^{*}(f)S(f)df = \int_{-\infty}^{\infty} |S(f)|^{2} df$$

• Energy spectral density is defined as: $U_s(f) = |S(f)|^2$

The energy spectral density tells us where the energy is distributed in frequency domain. Then, the energy of a signal can be calculated according to its energy spectral density, as $E_S = \int_{-\infty}^{\infty} U_S(f) df$

Parseval's Theorem:
$$E_s = \int_{-\infty}^{\infty} |s(t)|^2 dt = \int_{-\infty}^{\infty} |S(f)|^2 df$$

A signal's energy can be calculated based on its waveform function or its energy spectral density (ESD)

Power and Power Spectrum

• Power of power-type signal *s*(*t*):

$$\begin{cases}
s_T(t) = \begin{cases} s(t) & -T/2 < t < T/2 \\ 0 & otherwise
\end{cases}$$

$$P_{s} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} |s(t)|^{2} dt = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} |s_{T}(t)|^{2} dt$$
$$= \lim_{T \to \infty} \frac{1}{T} \int_{-\infty}^{\infty} |S_{T}(f)|^{2} df = \int_{-\infty}^{\infty} \lim_{T \to \infty} \frac{1}{T} |S_{T}(f)|^{2} df$$

Power spectral density or simply power spectrum is defined as:

$$G_s(f) = \lim_{T \to \infty} \frac{1}{T} |S_T(f)|^2$$

- The power spectrum also tells where the energy or power of the signal is distributed over frequency.
- If the power spectrum of a signal is given, the power of the signal can be calculated as

$$P_{s} = \int_{-\infty}^{\infty} G_{s}(f) df$$

Signal Bandwidth

• Bandwidth of signal s(t): the amount of **positive** frequency spectrum that signal s(t) occupies.

 Signal bandwidth provides a measure of the extent of significant spectral content of the signal for positive frequencies.

Baseband (Low-Pass) Signal Bandwidth

When the spectrum of a signal is symmetric with a main lobe bounded by nulls (frequencies at which the spectrum is zero), we may use the main lobe as a basis for defining the signal bandwidth.

Passband (Modulated) Signal Bandwidth

 $f_{\rm c}$ --carrier frequency for modulation

Read

Chapter 2 in one of these...

... or a similar chapter on signals and systems basics in communications book – you can skim through if you feel confident about the material