Homework 4

Christopher Achenbach

Problems from 2.3

- 2. If a function is differentiable, then it is continuous.
- 3. If a function is integrable, then it is continuous.
- 11. If you fail, then you stop writing.

Problems from 2.4

- 1. Matrix A is invertible if and only if $det(A) \neq 0$.
- 4. $a \in \mathbb{Q}$ if and only if $5a \in \mathbb{Q}$.

Problems from 2.5

3.

p	q	$p \to q$	$\neg (p \to q)$
1	0	0	1
1	1	1	0
0	0	0	1
0	1	1	0

4.

p	q	$p \vee q$	$\neg (p \lor q)$	$\neg p$	$\neg (p \lor q) \lor (\neg p)$
1	0	1	0	0	0
1	1	1	0	0	0
0	0	0	1	1	1
0	1	1	0	1	1

6.

p	q	$\neg p$	$p \land \neg p$	$(p \land \neg p) \land q$
1	0	0	0	0
1	1	0	0	0
0	0	1	0	0
0	1	1	0	0

8.

p	q	r	$ \neg r $	$q \wedge \neg r$	$p \lor (q \land \neg r)$
1	1	1	0	0	1
1	1	0	1	1	1
1	0	1	0	0	1
0	0	0	1	0	0
0	1	1	0	0	0
0	1	0	1	1	1

11. Suppose p is false.

Suppose $(r \to s) \leftrightarrow (p \land q)$ is true.

 $(p \wedge q)$ must be false.

 $(r \to s)$ must be false.

Therefore, r is true, and s is false.