## p. 178

2: Show that the elementary 1-cycles, mentioned in section 8.1, generates  $Z_1(K)$  for any complex K.

Solution: Suppose K is a simplicial complex. Let  $\lambda = \sum \lambda_i(u_i, v_i) \in Z_1(K)$ . We wish to show that there exist elementary 1-cycles  $\sigma_1, \ldots, \sigma_n$  such that  $\lambda = \sum \sigma_i$ .

We can assume without loss of generality that the  $\lambda_i$  are positive since otherwise we can replace  $\lambda_i(u_i, v_i)$  by  $(-\lambda_i)(v_i, u_i)$ . Furthermore, suppose  $(u_i, v_i) \neq (u_j, v_j)$  for all  $i \neq j$ .

Denote  $\delta_i := (u_i, v_i)$ . Then starting from some  $\delta_{i_0}$ , since  $0 = \partial \lambda = \sum \lambda_j (v_j - u_j)$ , we have that there must exist some  $i_1$  with  $u_{i_1} = v_{i_0}$ . Then append  $\delta_{i_0}, \delta_{i_1}$  which we will let denote the path  $u_{i_0}, v_{i_0}, v_{i_1}$ . Now, inductively, we can continue to do so until we eventually get some  $\delta_{i_k}$  such that  $\delta_{i_k} = \delta_{i_s}$  for some  $0 \le s < k$ . Then  $\delta_{i_s}, \delta_{i_{s+1}}, \ldots, \delta_{i_{k-1}}$  is a closed chain, and we have effectively removed the vertices in this chain from  $\partial \lambda$  since  $\partial \sum \delta_{i_h} = \sum (v_{i_h} - u_{i_h}) = v_{i_{k-1}} - u_{i_s}$ , and since  $(v_{i_{k-1}}, v_{i_k}) = (u_{i_k}, v_{i_k}) = \delta_{i_k} = \delta_{i_s} = (u_{i_s}, v_{i_s})$ , we have  $v_{i_{k-1}} = u_{i_s}$ , so  $\partial \sum \delta_{i_h} = 0$ , and further we thus have that the curve  $u_{i_s}, v_{i_s}, v_{i_{s+1}}, \ldots, v_{i_{k-1}}$  is a closed oriented polygonal curve in K. Furthermore, if it were not simple, then for some  $i_s \le j < l \le i_{k-1}$ , we would have  $\delta_j = \delta_l$ , however, by construction,  $\delta_{i_{k-1}}$  was the first repeated  $\delta$  in the chain  $\delta_{i_0}, \ldots, \delta_{i_{k-1}}$ , so this is not possible. Hence the curve is also simple. Taking a remaining  $\delta \notin \delta_{i_s}, \ldots, \delta_{i_{k-1}}$  and repeat the procedure, we receive another chain. Now, since there is only a finite number of  $\delta$  in  $\lambda$ , this procedure must end at some point.

Denoting the chains in the end by  $\sigma_1, \ldots, \sigma_N$ , we get  $\lambda = \sum \sigma_{i=1}^N$  by construction, so  $\lambda$  is a sum of elementary 1-cycles.

Hence  $Z_1(K)$  is generated by elementary cycles.

**5:** As for problem 4, but this time orient all the triangles compatibly, with the exception of one of them which is given the 'wrong' orientation.

Solution: We can orient the triangles as follows:



Here, all triangles are oriented compatibly except for the bottom-right one, which has the 'wrong' orientation.

Suppose we gave it the opposite orientation. Then the boundary of each edge of a triangle would cancel with the edge of another, so the boundary would be 0. Now, switching the orientation of the bottom-right triangle back, give it an orientation  $\{v_0, v_1, v_2\}$  with  $v_0 < v_1 < v_2$ , which is the wrong orientation. Then we have that in the 'right' orientation, the edges  $[v_2, v_1]$ ,  $[v_1, v_0]$  and  $[v_0, v_2]$  with orientation, got cancelled, so there are neighboring edges  $[v_1, v_2]$ ,  $[v_0, v_1]$  and  $[v_2, v_0]$ . Thus these do not get cancelled in the 'wrong' orientation either, so since all other edges still get cancelled, letting A denote the collection of oriented triangles in the compatible orientations, we end up with the sum of the oriented triangles being  $\sum A + (v_2, v_1, v_0) - (v_0, v_1, v_2) = \sum A + 2(v_2, v_1, v_0)$ , so the boundary becomes

 $\partial \sum A + \partial \left( 2(v_2, v_1, v_0) \right) = 2(v_2, v_1) + 2(v_1, v_0) + 2(v_0, v_2) = 2\partial \left[ v_0, v_2, v_1 \right], \text{ i.e. twice the boundary of the wrong triangle.}$