Integration

A2 Trial Examination

August 2010

Given that $\frac{dy}{dx} = e^{x-y}$ and y = 1 when x = 0, find the exact value of y when x = 1. [5]

[ln(2e-1)]

8 Show that
$$\int_0^{\frac{1}{2}\pi} x^2 \sin 2x \, dx = \frac{1}{8}\pi^2 - \frac{1}{2}$$
. [6]

- 10 (i) Express $\frac{x+4}{(x+1)^2(x+2)}$ in partial fractions. [5]
 - (ii) The finite region R is bounded by the curve $y = \frac{x+4}{(x+1)^2(x+2)}$, the x-axis, the y-axis and the line x=3. Find the area R, giving your answer in the form $p+\ln q$, where p and q are rational numbers to be found. [4]

$$\left[\frac{2}{x+2} - \frac{2}{x+1} + \frac{3}{(x+1)^2}; \ln\frac{25}{64} + \frac{9}{4}\right]$$

March 2010

The gradient of the curve y = f(x) is inversely proportional to the square root of x and the curve passes through (0, 3) and (4, 23). Find the equation [5] of the curve.

$$\left[y = 10\sqrt{x} + 3\right]$$

5 Show that
$$\int_0^{\frac{\pi}{2}} e^{2x} \sin x \, dx = \frac{1}{5} (2e^{\pi} + 1)$$
 [7]

- Given that $\frac{x^2 2x 9}{(2x 1)(x^2 + 3)} = \frac{A}{2x 1} + \frac{Bx + C}{x^2 + 3}$ (i) Determine the values of A, B and C.
 - (ii) Hence, evaluate $\int_{1}^{2} \frac{x^{2} 2x 9}{(2x 1)(x^{2} + 3)} dx$, giving your answer correct to two decimal places. [5]

[-3,2,0;-1.09]

[4]

August 2009

An engineer estimated the area of the vertical cross-section of water flowing under a bridge. For her model she measured the depth of water at 4 m intervals from one end of the bridge to the other end. Her results are given in the table.

-	Distance from one end (m)	0	4	8	12	16	20	24	description of the second
	Depth (m)	1.2	2.3	3.8	4.9	3.2	1.9	0.6	- Annie Anni

She used the trapezium rule to estimate the area of the cross-section.

Calculate the estimate she obtained.

[2]

[68]

3 Use integration by parts to find $\int 4xe^{-2x}dx$.

14

$$[-2xe^{-2x}-e^{-2x}+c]$$

4 Solve the differential equation $\frac{dy}{dx} = \sqrt{y} \sec^2 3x$ given that y = 1 when x = 0, expressing your answer in the form y = f(x). [5]

$$\left[y = \left(\frac{\tan 3x}{6} + 1\right)^2\right]$$

March 2009

Find the exact value of $\int_0^1 3x^2 e^x dx$.

[5]

[3e - 6]

Show that
$$\frac{dy}{dx} = \frac{24}{x(4\ln x + 3)^2}.$$
 [3]

(ii)

The diagram shows part of the curve with equation $y = \frac{2}{\sqrt{x(4 \ln x + 3)}}$.

The region shaded in the diagram is bounded by the curve and the lines x=1, x=e and y=0.

Find the exact volume of the solid produced when this shaded region is rotated 360° about the x – axis. [4]

 $\left[\frac{4\pi}{21}\right]$

- 8 (i) Find the quotient and remainder when $2x^3 + 3x^2 + 9x + 12$ is divided by $x^2 + 4$. [4]
 - (ii) Hence, express $\frac{2x^3 + 3x^2 + 9x + 12}{x^2 + 4}$ in the form $Ax + B + \frac{Cx + D}{x^2 + 4}$, where the values of the constants A, B, C and D are to be stated. [1]
 - (iii)Use the result in part (ii) to show that

$$\int_{1}^{3} \frac{2x^{3} + 3x^{2} + 9x + 12}{x^{2} + 4} dx = 14 + \frac{1}{2} \ln \left(\frac{13}{5} \right).$$
 [5]

[2x + 3, x; 2,3,1,0]

August 2008

5 Show that
$$\int_0^2 x e^{2x} dx = \frac{1}{4} (3e^4 + 1)$$
 [4]

Hence, find the exact value of

$$\int_0^2 x^2 e^{2x} \, dx \tag{3}$$

$$[\frac{1}{4}(5e^4-1)]$$

7 (i) Given that $I = \int_{-1}^{1} \frac{1}{1 + e^{-x}} dx$, show that the estimate of I obtained by using

the trapezium rule with three ordinates is 1(to the nearest integer). [3]

- (ii) By means of substitution $u = e^x$, show that the estimate obtained in (i) is a good estimate.
- 10 (i) Find the constants A, B and C in the identity $\frac{5x^2 + 4x 20}{(x+2)(x^2+4)} = \frac{A}{(x+2)} + \frac{Bx + C}{(x^2+4)}$ [3]

(ii) Find
$$\int_0^2 \frac{x}{x^2 + d} dx$$
 [2]

(iii) Use the substitute
$$x = 2 \tan \theta$$
 to find $\int_0^2 \frac{1}{x^2 + 4} dx$, [4]

(iv) Use the answers to parts (i), (ii) and (iii) above to show that

$$\int_0^2 \frac{5x^2 + 4x - 20}{(x+2)(x^2+4)} dx = a \ln 2 - b\pi, \text{ where } a \text{ and } b \text{ are positive integers.}$$

Find a and b. [5]

[-1, 6, -8; $\frac{1}{2} \ln 2$; $\pi/8$; $2 \ln 2 - \pi$]

March 2008

6. i) Show that
$$\int_1^e x \ln x \, dx = \frac{1}{4} (e^2 + 1)$$
. [4]

ii) Hence evaluate
$$\int_{1}^{e} x(\ln x)^{2} dx$$
 correct to 3 decimal places. [3]

[1.597]

August 2007

3. Use the trapezium rule, with 4 intervals, to estimate the value of $\int_{1}^{3} \ln x \, dx$, giving your answer correct to 4 significant figures. [4]

[1.282]

- 8. (i) Express $\frac{1}{y^2 y}$ in partial fractions. [3]
 - (ii) Given the differential equation $\frac{1}{2} \left(\frac{dy}{dx} \right) + xy = xy^2$ and that when x = 0, y = 2, find y in terms of x. [5]

$$\left[\frac{1}{y-1} - \frac{1}{y}; y = \frac{2}{2 - e^{x^2}}\right]$$

9. Using integration by parts show that $\int_0^{\frac{\pi}{3}} x \sin 6x \, dx = -\frac{\pi}{18}.$ [5]

Hence, show that
$$\int_0^{\pi} x^2 \cos 6x \, dx = \frac{\pi}{54}.$$
 [3]

[2.218]

March 2007

1. Evaluate $\int_0^1 \frac{x^2}{\sqrt{4-x^2}} dx$ using the trapezium rule with 5 intervals. (4)

[0.186]

5. Find the exact value of $\int_0^{\frac{\pi}{2}} e^{2x} \sin x \, dx \,. \tag{7}$

$$\left\lceil \frac{1}{5} (2e^{\pi} + 1) \right\rceil$$

August 2006

- 2. Use integration by parts to show that the exact value of $\int_{1}^{e} (\ln x)^{2} dx$ is e-2. [4]
- 6. Given that $\frac{x^2+4}{x^2+2x}$ can be written as $A+\frac{B}{x}+\frac{C}{x+2}$.

Find the values of A, B and C. [5]

Hence evaluate $\int_{1}^{4} \frac{x^2 + 4}{x^2 + 2x} dx.$ [4]

[1,2,-4;3]

- 7. The curve $y = x \sqrt{(1 + x)}$ cuts the x-axis at two points.
 - (i) Find the coordinates of these two points of intersection.
- [3]

[6]

(ii) Use the substitution u = 1 + x to find the area enclosed by the curve and the x-axis.

$$\left[(0,0), (-1,0); \frac{4}{15} \right]$$

March 2006

- 9. The equation of a curve is given as $y = x^2e^{2x}$.
 - (i) Find the exact value of $\frac{dy}{dx}$ at the point x = 2.

- [4]
- (ii) Use integration by parts to find the exact area between the graph of y and the x-axis from x = 0 to x = 2. [5]

$$\left[12e^4; \frac{5}{4}e^4 - \frac{1}{4}\right]$$

August 2005

5. By means of the substitution $x = \tan \theta$ or otherwise, find the exact value of

$$\int_0^\infty \frac{x^2}{(1+x^2)^2} dx.$$
 [7]

$$\left\lceil \frac{\pi}{4} \right\rceil$$

8. The sketch below shows the curve with equation $y = x^2 \ln(2x)$

(i) Find the exact coordinates of the stationary point.

[5]

(ii) Find the x-coordinate of the point where the curve cuts the x-axis.

Hence calculate the area of the shaded region.

[5]

$$\left[\left(\frac{1}{2\sqrt{e}}, -\frac{1}{8e} \right); \frac{1}{2}; \frac{1}{3} \ln 2 - \frac{7}{72} \right]$$

March 2005

2. Find the exact value of $\int_{1}^{e} (\ln x)^2 dx$.

[4]

[e-2]

Evaluate $\int_{0}^{1} \frac{1}{1+x^{2}} dx \text{ using}$

(i) the trapezium rule with 5 intervals,

[4]

(ii) integration with the substitution $x = \tan \theta$.

[3]

[0.784; 0.785]

- 8 Given that $f(x) = 2x^3 + 9x^2 + 10x + 3$ and one of the roots of the equation f(x) = 0 is -3,
 - (i) factorise f(x) completely. [2]
 - (ii) Express $\frac{10}{f(x)}$ in partial fractions. [3]
 - (iii) Evaluate $\int_{0}^{1} \frac{10}{f(x)} dx$, giving your answer in the form of ln k,

where k is a rational number. [4]

$$\left[(x+3)(2x+1)(x+1); \frac{1}{x+3} - \frac{5}{x+1} + \frac{8}{2x+3}; \ln \frac{27}{8} \right]$$