데이터인프라 구축사업 AI컨설팅 수행계획서

도입 기업	기업명	㈜영신화학		대표자		박 일 욱		
	사업자 등록번호	505-81-31628		소재지		경북 경주시 외동읍 문산공단길 256		
	주요생산품	- 자동차부품 및 전자부품의 금속 열처리, 도금, 도장						
	사업 담당자	성명	김 우 정			직위	과장	
		휴대전화	010-3647-4779		I	E-Mail	nil ys42888@hanmail.net	
협약기간		2020. 10. 28 ~ 2020. 12. 27 (2개월)						
		정부지원	부지원금(90%) 민간부담금			그 (10%)		총 사업비(100%)
총사업비		20,000천원			2,220천원		22,220천원	
AI 서포터즈		구분	소속	기관		성명		직위
		AI 전문가			유선진			기술위원
		공정 전문가				안선관		기술위원

상기 도입기업과 전문가는 붙임과 같이 데이터인프라 구축사업 AI 컨설팅 수행계획 서를 제출하며, 기재한 사항에 따라 성실히 수행할 것임을 확인합니다.

2020년 10월 28일

도입기업 : ㈜영신화학

대 표: 박일욱(인)

AI 전문가:

유 선 진 정전문가 : 안 선

중소기업기술혁신협회장 귀하

1. 기업 현황

가. 기업 비즈니스 현황

□ 영신화학은 자동차 부품 전착도장 업체로 현대/기아차 매출비중이 99% 정도이며, 매출 37억 (2019년) 종업원 37명 규모의 기업으로 2020년 매출은 코로나 영향으로 20억 정도로 예상됨 지속적으로 품질개선을 위하여 생산현장의 환경을 개선하고 있으며 스마트공장 시스템(POP, F/PROOF)도 운영 중임

□ 주요 생산제품

나. 도입기업의 애로사항

- □ 각 생산 공정 설비별 데이터를 수집하여 시간별로 생산 조건값을 모니터링하고 있어서 시간으로 생산 조건 데이터는 확인이 가능하나 해당 시간별로 무슨 제품(LOT)이 생산되었는지확인이 불가함
- □ 생산 진행 LOT의 생산설비별 작업조건 및 도막측정 데이터의 연계관리 로 도막 측정 데이터 에 대한 공정 능력 분석을 통해 최적의 생산조건을 산출하여 모니터링 할 수 있는 기능 필요
- □ 생산된 제품(생산LOT별)의 공정별 생산조건의 실시간 파악
 - o 도입기업은 기 구축된 MES시스템을 통해 생산 공정 설비별 생산조건 데이터를 실시간 또는 작업자 입력을 통해 모니터링 하고 있으나, 생산이 완료된 제품의 실제 생산조건은 시스템으로 파악이 되고 있지 않음
 - o 이에 고객의 생산이력(품질) 데이터의 관리 강화에 따른 요구사항을 충족시키지 못함에 따라 고객의 당사에 대한 신뢰도 저하

- o 따라서 제품별(생산LOT별)로 각 공정 생산 조건값을 실시간으로 모니터링 할 수 있는 기능 필요하며, 이를 통해 제품이 생산된 실제 조건을 알 수 있는 시스템이 필요함
- □ 제품 최적 생산조건의 과학적 도출 필요
 - o 제품별 최적의 생산조건을 산출을 통해 생산 제품의 불량률 감소 및 품질관리체계 확립이 필 요함
 - 0 정보의 수집, 분석, 제어, 감시를 통한 경영자 및 작업자의 의사결정 지원 필요

다. 정부지원의 필요성

- □ AI컨설팅 필요성
 - o 생산 진행 LOT의 설비작업조건, 공정별 환경 데이터, 품질측정 데이터의 연계분석으로 최적의 생산 조건 값을 산출
 - 0 최적의 생산 조건 값을 기반으로 생산관리에 적용하여 최적의 제품생산 및 원가절감 기대
- □ 도입기업의 공정개선 지원필요
- o 도입기업은 자동차부품 중소업체로 1, 2차 벤더 보다 규모가 적고 인력 대부분이 생산직에 집중되어 있음. 다시 말해 대기업이나 중기업과 같이 혁신 또는 개선 TFT나 상시조직이 없어 공정애로를 해결하는데 제약이 있음.
- o 더불어 데이터관리와 분석수준은 생산과 품질의 목표 대비 실적에 초점을 두고 있어 공정개 선을 위한 데이터관리와 분석에는 전문성이 낮을 수밖에 없음.
- o 생산인력의 경우 기능적으로 특정 영역에 국한되어 작업을 하므로 설비운영 메커니즘의 이해부족 및 문제발생시 직접 대처가 안 됨.
- o 문제 발생시 유형은 생산성 저하, 후속공정 대기로 인한 생산시간 및 납기지연, 불량발생 등이 있으며 이는 종합적으로 원가경쟁력 저하와 대외 신뢰도 하락으로 이어지게 됨. 결국 1차 벤더나 완성차업체로부터 낮은 평가등급을 받아 지속적인 거래관계 형성이 어려울 수 있음.
- o 따라서 자원과 전문성의 한계에 있는 도입기업의 공정애로를 해결하기 위해서는 정부 지원 이 절대적으로 필요.

2. 적용 공정 현황

가. 스마트공장 구축 현황

- □ MES (생산공정 POP 및 F/PROOF 관리)
 - o 사업기간 : 2013.8.14. ~ 2014.02.13. (생산현장 디지털화 사업)
 - o 구축금액: 111,626,000원. 공급기업: 유림정보시스템
 - o 활용현황 :
 - 자재/구매관리
 - . 원자재(도료, 약품): 입고LOT관리, 현장 투입 선입/선출 관리,
 - . 사급제품 : 입고, 입고LOT 자동등록 관리
 - . 수입검사 : 입고제품에 대한 수입검사 실시 (검사실적 등록)
 - 전착도장 생산 LINE
 - . 생산지시 ; 관리기준에 따른 제품별 전압 자동제어
 - . 생산실적 : LOT별 전착완료 실적 자동 등록
 - . 각 공정별 센서 연동 생산 조건값 자동수집 모니터링
 - . 공정검사 : Bluetooth연결 도막측정값 자동입력
 - 출하/납품관리
 - . 최종검사 : Bluetooth연결 도막측정값 자동입력, 검사성적서 출력
 - . 출하등록 : 업체별 출하내역 등록 (생산 LOT별), 단가정보 입력으로 기간/업체별 수량/금액 관리

나. 스마트화 수준

- □ 기초수준(Level 2) MES
- 0 영신화학은 자동차 부품 전착도장 업체 임
- 0 전착도장업체 필요한 자재/구매, 생산, 품질, 개발, 설비관리 프로세스에 대한 시스템 관리
- 0 현재 구축된 시스템은 전착도장 관리에 필요한 공정별 생산조건 및 환경 모니터링 운영
- o 2014년 스마트공장 신규 구축 및 지속적인 업그레이드를 통하여 기본적인 스마트화 기술 도입 상태

다. 제조 데이터 현황

- □ 제품(LOT)별 생산이력을 활용한 최적의 생산조건 값 데이터
 - 0 데이터 추출 공정:

0 데이터 수집 절차 :

- 센서를 활용한 실시간 공정별 환경(온도, 전압, 전류, 통전시간 등) 데이터 수집
- 검사공정의 도막두께 측정 데이터 수집
- 품질 및 실시간 공정 설비 환경 Data 비교분석 --> 최적 생산조건값 데이터 추출 --> 전착전압, 통전시간 Control 필요

o 문제점 :

각 생산 공정 설비별 데이터를 수집하여 시간별로 생산조건 값을 모니터링하고 있어 시간별로 생산조건 데이터는 확인이 가능하나 해당 시간별로 어떤 제품이 생산되었는지는 확인이불가 함

Ⅲ 세부 추진계획

1. 사업 개요

구분	내용
컨설팅 대상 공정	 ✓ 전착도장공정 - 전압: 제품표면에 도막의 투께 산포발생에 영향 - 통전시간: 도막의 두께 및 부착성 영향 - 도료함유량: 전착도료의 고용분 비율 영향 - 전착조 온도: 도막의 두께에 영향 - 행거박리상태: 행거 사용 횟수에 따라 통전률 상이
적용 AI 기술	품질 및 실시간 공정 설비 환경 Data 비교분석> 최적 생산조건 값 데이터 추출> 전착전압, 통전시간 Control 알고리즘
솔루션 검토 대상 (안)	품질, 공정 설비환경 Data 비교분석 및 최적 생산조건 값 산출 기술 - 선형회귀 분석 - 단층 퍼셉트론 모델 - 홉필드 네트워크 모델 - CNN(Convolutional Neural Network) 알고리즘
컨설팅 범위 (공정)	전착도장공정의 최적 생산을 위한 - 품질 및 실시간 공정 설비 환경 Data 비교분석 - 최적 생산조건 값 데이터 추출 - 통전전압, 통전시간, 건조온도 Control
정보보안 기밀유지 방안	해당 기업에서 취득한 정보는 관련자 (AI전문가, 공정전문가, 공급기업) 외에는 유출 방지를 위하여 비밀유지 각서를 통하여 정보보안, 기밀유지 함

2. 추진 계획

가. 사업 추진 목적

2-1. 제조현장 내 AI 솔루션 도입을 활용한 제조혁신 방안

- □ 제조공정의 데이터를 수집·분석·활용하고 인공지능(AI)솔루션 개발을 지원하는 데이터 인 프라 구축
- □ 중소기업의 인공지능(AI) 활용을 지원하는 플랫폼 구축
- □ 중소기업의 컴퓨터 수치제어(CNC) 머신, 프레스 등 핵심설비의 데이터셋 구축과 인공지능(AI) 솔루션 도입을 위한 전문가 컨설팅과 솔루션 실증을 통한 도입
- □ 제조데이터, 5G+인공지능(AI) 스마트공장, 디지털 클러스터 등 고도화 전략 연구를 통한 체제 구축

2-2. 생산된 제품의 공정별 생산조건 데이터의 실시간 추출 인프라 구축

2-3. AI를 활용한 제품의 공정별 최적 생산조건의 도출

□ 제품 불량 시 불량의 원인을 파악하기 위해서는 해당 제품의 공정별 생산조건 값에 대한 분석이 필요함

2-4. 도입기업의 애로사항 개선에 따른 기대효과

- □ 시간당 생산량 증가
- 2020년 8월까지 월평균 생산량은 3,484,000개로 일평균 생산량은 134,000개임
- 본 과제 수행을 통해 일평균 생산량 145,000개 달성(2020년 당사의 품질목표는 140,000개임)

□ 공정 불량률의 개선

- 2019년 제품 공정 불량PPM은 24PPM임
- 본 과제 수행을 통해 공정 불량 21PPM 달성 (2020년 당사의 품질목표는 23PPM임)

□ 생산된 제품의 공정별 생산조건 데이터 추출비용의 절감

- 현재 제품의 실제 생산조건 산출을 위해 소요되는 평균 시간은 관리자(부장급)가 작업 시에 5 시간임
- 월 평균 3회 이상 생산조건 산출 작업이 진행되고 있으며, 이 작업시간 만큼의 비용 절감이 가능함

□ 납기 준수율 개선

- 2020년 8월까지 월평균 납품건수는 1,000건으로 그중 납품 준수건수는 900건 수준임
- 본 과제 수행을 통해 월평균 납품 준수건수를 930건으로 개선 (2020년 당사의 목표 납품 준수 건수는 920건/월 임)

나. 컨설팅 추진 전략

□ 제조현장내 AI 솔루션 컨설팅

- o 산업별 정보제공
- 0 전문 인력의 지원
- 0 공정 프로세스의 연결수립/지원
- 0 제조 전문적인 의견 제공
- o 진단작업의 수행
- o Action Plan의 개발
- o 시스템 구축 및 사용 방법의 개선
- 0 조직의 변화 계획수립 및 관리
- 0 관리자와 현장작업자의 훈련과 개발
- o 기술의 카운슬링의 제공

□ AI 솔루션 컨설팅 전략

0 목적

불량 발생을 최소화하는 작업 환경조건(Recipe)을 구하는 주요 범위로는 원인 DATA수집, 축적, 패턴분석 기능을 AI 및 빅데이타 방법론을 통해 최적의 생산조건(Recipe)을 추적 도출 함.

- o 대상 : AI 기술을 적용할 대상공정 및 설비개요
 - 1) 대상설비 : 전착설비 일부공정
 - 2) 대상설비 수량: 전착도장라인 설비, UF장치, 순수제조장치, 보일러, 계측기 등 10여대
 - 3) 생산량 3,484,000개/월, 평균가동율 78%
 - 4) 주요수집 데이터 : 온도, 전압, 전류, 통전시간 등
- o 전문가 역할
 - 1) 공정전문가
 - 전착설비에서 이상 징후와 관련 된 데이터의 정의
 - 관련 데이터의 적합성 검토
 - 장비에서 추출되는 최적화 작업조건(Recipe) 정의
 - 2) AI 전문가
 - 공정전문가가 제시한 원인 데이터에 대한 AI 가능성 및 적합도 검토
 - 해당 데이터를 기반으로 한 AI 모델링 방법론 검토
 - 일정기간 테스트 데이터를 통한 머시인 런닝 후 시사점 제시

다. 사업 추진의 혁신성

□ 정량적 목표

- 일평균 생산량(2020년 9월까지 일평균 대비 7.6% 증가)
- 공정 불량률(2020년 9월까지 공정 불량률 대비 9.5% 감소)
- 작업공수(2020년 9월까지 월평균 대비 100% 개선)
- 납기 준수율(2020년 9월까지 월평균 납기 준수율 대비 3.2 % 증가)

No	분야	핵심지표 (KPI)	단위	현재	목표	가중치	비고
1	P	일평균 생산량 증가	개	134,000	145,000	20%	7.6% 증가
2	Q	공정 불량률 감소 (월평균)	PPM	23	21	30%	9.5% 감소
3	С	작업공수(절감률) 생산조건 산출시간	시간/ 월	15	0	30%	100% 개선
4	D	납기 준수율 (월평균)	%	90	93	20%	3.2% 증가
	합 계						

□ 정성적 목표

- 품질향상으로 인한 생산성 증가
- 원자재 사용감소로 인한 원가 절감
- 도료 절감으로 인한 산업폐수 감소
- 데이터 분석에 의한 현장 업무 표준화 및 관리체계 개선
- 정보의 수집, 분석 및 생산 공정의 제어, 감시를 통한 경영진 의사 결정 지원

3. 컨설팅 계획 및 방법

가. 대상 공정에 대한 세부 컨설팅 계획

[현황파악]

□ 생산 된 제품(생산Lot별)의 공정별 생산조건의 실시간 파악 필요

- o 기 기축 된 MES를 통해 생산공정 설비별 생산조건 데이터를 실시간 또는 작업자 입력을 통해 모니터링 하고 있으나, 생산이 완료 된 제품의 실제 조건은 시스템으로 파악이되고 있지 않음.
- o 따라서 제품별(제품Lot별)로 각 생산 조건값을 실시간으로 모니터링 할 수 있는 기능이 필요하며, 이를 통해 제품이 생산 된 실제 조건을 알 수 있는 시스템이 필요함
- o 고객의 생산이력(품질) 데이터의 관리 강화 요구에 따른 요구사항을 충족시키지 못함에 따라 고객의 신뢰도가 저하 됨.

□ 제품 최적 생산조건(Recipe)의 도출이 필요

- o 제품별 최적의 생산조건을 산출을 통해 생산 제품의 불량률 감소 및 품질관리 체계 확립이 요구 됨
- o 생산정보의 수집, 분석, 제어, 모니터링을 통한 경영자 ac 작업자의 의사결정 지원 필요

□ 생산환경 개선을 위한 AI 컨설팅 지원 필요

o AI 컨설팅을 통해 해결하고자 하는 문제점과 개선 요구 사항을 기술하고 불량 요인을 자동 분류하는 기능이 필요

[컨설팅 계획]

- o 대상 : AI 기술을 적용할 대상공정 및 설비개요
 - 1) 대상설비 : 전착설비 일부공정
 - 2) 대상설비 수량: 전착도장라인 설비, UF장치, 순수제조장치, 보일러, 계측기 등 10여대
 - 3) 생산량 3,484,000개/월, 평균가동율 78%
 - 4) 주요수집 데이터 : 온도, 전압, 전류, 통전시간 등

0 전문가 역할

- 1) 공정전문가
- 전착설비에서 이상 징후와 관련 된 데이터의 정의
- 관련 데이터의 적합성 검토
- 장비에서 추출되는 최적화 작업조건(Recipe) 정의
- 2) AI 전문가

- 공정전문가가 제시한 원인 데이터에 대한 AI 가능성 및 적합도 검토
- 해당 데이터를 기반으로 한 AI 모델링 방법론 검토
- 일정기간 테스트 데이터를 통한 머시인 런닝 후 시사점 제시

[컨설팅 세부계획]

- o 스마트 AI 컨설팅 운영 사업소개 및 대표/직원 면담
- 0 스마트화 추진방안 협의 및 공정파악
- o 우수 AI 스마트공장 벤치마킹
- o AI 추진방안 협의 및 공정파악
- o 스마트화 추진 개선방안 분석을 위한 업무 Process 확인
- 0 스마트화 추진을 위한 수준진단 체크
- o 품질혁신의 제고방안
- 0 빅데이타 셋 전처리
- 0 스마트공장 제조 데이터 분석 통계 방법론 연구
- 0 스마트공장 제조/주문 데이터 빅데이타 시각화 실행
- 0 스마트공장 제조/주문 데이터 빅데이타 시각화 분석 및 원인 도출
- 0 스마트 제조 빅데이타 도입(안) 도출

[단계별 AI 및 빅데이타 추진절차]

Phase	Task	내 역
	비즈니스 이해 및 범위 설정	프로세스 이해, 프로젝트 범위 설정
1. Planning	프로젝트 정의 및 계획수립	데이터 분석 프로젝트 정의, 프로젝트 수행계획 수립
	프로젝트 위험계획 수립	데이터 분석 위험 식별, 위험대응 계획 수립
	필요 데이터 정의	데이터 정의, 데이터 획득방안 수립
2. Preparing	데이터 스토아 설계	정형데이터 스토아 설계, 비정형데이터 스토아 설계
	데이터 수집 및 정합성 점검	데이터 수집 및 저장, 데이터 정합성 점검
	분석용 데이터 준비	비즈니스 룰 확인, 분석용 데이터셋 준비
	텍스트 분석	텍스트 데이터 확인 및 추출, 텍스트 데이터 분석
2 Analyzina	탐색적 분석	탐색적 데이터 분석, 데이터 시각화
3. Analyzing	모델링	데이터 분할, 데이터 모델링, 모델적용 및 운영방안 수립
	모델 평가 및 검증	모델 평가, 모델 검증
	모델 적용 및 운영방안 수립	모델적용 및 운영방안 수립
	설계 및 구현	시스템 분석 및 설계, 시스템 구현
4 Davelening	시스템 테스트 및 운영	시스템 테스트, 시스템 운영계획
4. Developing	모델 발전계획 수립	모델 발전 계획
	프로젝트 평가 및 보고	프로젝트 성과 평가, 프로젝트 종료

나. AI 기술 적용 계획

□ AI 및 빅데이타를 도입한 스마트공장 생산(설비)관리

- 0 취득한 파라메터를 통한 품질관리
 - 취득한 파라메터(도막두께, 전압, 통전시간, 온도 등)을 통한 안정적인 품질유지관리 및 통계적 품질관리
- o 제품 불량관리
 - 불량 원인별 불량현황
 - 불량처리 유형 / 불량보고서 작성가능
- 0 장비 실시간 모니터링 및 관리
 - 전착장비의 센서, 접점 등에서 자동신호 취득
 - 관리자에게 장비상태 상황을 실시간으로 명확하게 전달
- o Fool Proof System(안돈시스템)
 - 센서, 접점 등에서 자동신호 취득
 - 경광등, 시스템내의 알람, 문자로 작업오류를 실시간으로 전달 받음
- 0 자동실적 및 비가동 항목별 집계
 - 생산정보 및 생산실적 집계 정확성 확보
 - 사용자PC, Tablet PC, Kiosk 입력을 통한 Papless 실현
 - 비가동 항목별 집계
 - Touch PC를 이용한 비가동 사유 입력 및 집계
- o 종합 가동율 리포트
 - 집계 된 장비 가동 이력을 통해 단위 기간별 가동율 분석
 - 가동율 공식을 바탕으로 유/무인 가동율 분석
 - 장비 가동이력 칸트 차트화
 - 장비별 가동이력 확인을 통한 현장관리

o AI 접근법

- ✓ 머신런닝은 명시적으로 프로그램 명령을 따를 필요없이 역량을 개발하고 시간이 지남에 따라 성능이 개선되는 통계적 모델의 능력이다. 대부분의 인지기술은 머신러닝과 이의 더 복잡한 자손인 딥런링에 기반한다. 여기에는 컴퓨터 시각과 자연어 처리(NLP)가 포함 된다
- √ 딥런닝은 추상적인 변수의 많은 계층을 가진 신경망이 수반 된 머신런닝의 복잡한 형태

이다. 딥런닝 모델은 화상 및 음성인식에 탁월하지만 인간이 해석하기가 어렵거나 불가능하다. 새로운 기술이 기업의 딥런닝 프로젝트 개시를 쉽게 만들어 주고 있으며 인지 기술 중 가장 큰 급등을 하고 있다.

- √ 자연어 처리는 독해가 가능하고, 자연스러운 형식과, 문법적으로 정확한 형태로 글에서 의미와 의도를 뽑아내거나 생성하는 능력이다. NLP는 가상 비서와 챗봇을 위한 음성 기반의 인터페이스를 가동하는데, 데이터 집합을 조회하는데도 사용되고 있다.
- √ 컴퓨터 시각은 시각적 요소에서 의미와 의도를 추출하는 능력으로 문자(디지털화된 문서의 경우) 혹은 이미지에서 얼굴, 물체, 장면, 활동과 같은 내용을 범주화할 수 있다. 부품 인식의 배경 기술-컴퓨터 시각-은 소비자 일상 생활의 일부분임. 일부 휴대전화는 소유자가 단지 이를 바라보기만 하면 얼굴 인식을 통해 로그인을 할 수 있도록 허용함. 컴퓨터 시각기술은 무인 자동차를 '운전'하고 계산원 없는 아마존고 매장이 작동하도록 해줌.

0 적합한 AI기술의 일반적인 내용

- ✓ AI는 불량 조건의 범주를 벗어나지 않을 경우 가능한 결과를 결정할 수 있으며 장애 패턴 이나 수명을 기준으로 설비 운행에서 장비 또는 공정을 분리해야 하는 경우 정확한 결정을 내릴 수 있다. 센서는 설비 및 전착 성능을 모니터링하고 사물들의 인터넷을 통해 데이터를 인지 분석 허브로 다시 전송할 수 있음.
- √ 여러 파일 간의 관계에 대한 깊은 이해를 돕고 작업자가 제품의 불량 공정을 유지하는 데 도움이 된다. 이 때문에 의사는 비슷한 증상과 경우를 가진 다른 제품을 더 잘 분류할 수 있다. Colleaga.ore(인공지능 플랫폼을 기반으로 구축됨)과 같은 커뮤니티 사이트를 통해 의료 전문가에게 보다 쉽게 접근할 수 있는 공식일수록 보다 효과적인 방법임.
- √ 추적 시스템은 정규화 되지 않은 온라인 생산 응용 프로그램을 필터링하는데 매우 유용할 수 있지만 적합한 키워드 문구를 기반으로 품질기준을 최적화하지 않으면 자격을 갖춘 불량품을 제외할 수 있다. AI는 적무 적합도를 결정하기 위해 기준서의 기본 단어를 뛰어 넘음으로써 올바른 기준을 더 똑똑한 프로세스로 만드는데 도움을 주며 추론 및 인간 입력에 기반한 상황을 추가한다. 그것은 다양한 입력으로부터 수집된 표준, 스킬 셋 및 성격특성의 유형에 기초하여 우량품을 위한 최상의 기준을 모으는 알고리즘을 생성할 수 있음.

0 상용 AI 솔루션의 유사 적용 사례

1) 인공지능으로 스마트 팩토리를 위한 데이터까지 관리

- 불량 이미지 및 정보를 데이터 베이스로 관리
- 향후 데이터 관리를 위해 분석용 이미지 데이터 저장
- 불량 유형에 대한 분류 기능 제공
- 빅데이터 스마트 팩토리 변화 용이

2) 인공지능으로 쉽고 간편한 SET-UP

- 간편한 Image 기반 Reecheck 시스템
- 인공지능을 통한 진석/가성 분류
- 95% 이상 신뢰도로 불량 유형 판정
- 5배 이상 빨라진 티칭 시간
- 모든 위치에 ROI 설정하고 검사
- Threshold 설정하는 번거로움 제거
- → 기존 5시간 이상 티칭을 1시간 이내로 수행
- 레시피 설정 간소화
 - CAD데이터부터 대부분 정보를 자동 로디
 - 골든 이미지 획득 부분 및 스펙 설정 외 다른 작업 불필요
 - 최초 트레이닝 외 추가 설정 불필요 데이터 서버 ADAMS or 단순 저장 Data

3) 품질 개선 효과

- 검사 결과를 즉시 확인할 수 있으므로 이상 상태에 대한 즉시 대처 가능
- 주요 불량과 비주요 불량에 대한 선택적 관리로 품질과 수율의 밸런스 조정 가능
- 인공지능 기반의 검사로 365일 일정한 품질 유지
- Human Error, 작업자에 따른 품질 편차 문제 해소
- All-In-One Type의 장비로 이송 중 발생하는 필요한 불량 원천 차단

다. AI 솔루션 구축 계획

□ AI솔루션 도입 계획

- o 도입기업의 주요 공정은 자동차 부품의 전착공정이며, 컨설팅 범위는 불량발생 빈도를 최소화하는 환경조건을 구하는 주요 범위로는 원인 DATA 수집, 축적, 패턴분석 그리고 고장 발생시점을 알리는 Warning 또는 Alarming 기능을 AI 및 빅데이터 방법론을 통해 최적의 생산환경을 추적하여 도출함.
- o AI 기술을 적용할 대상 공정 및 설비의 데이터 집계, 분석, 추출, 시각화
 - 대상설비 : 전착설비 일부공정
 - 대상설비 수량 : 전착도장라인 설비, UF장치, 순수제조장치, 보일러, 계측기 등 10여대
 - 생산량 3,484,000개/월, 평균가동율 78%
 - 주요수집 데이터 : 온도, 전압, 전류, 통전시간 등
- o AI 솔루션 도입(안) 정리
 - 전착 설비에서 이상 징후와 관련된 DATA의 정의
 - 관련 DATA의 적합성(타당성) 검토
 - 센서에서 추출되는 데이터의 생산 조건 최적화 정의
 - 공정 전문가가 제시한 원인 DATA에 대한 AI적용 가능성 및 적합도 검토
 - 해당 DATA기반으로 한 AI모델링 방법론 검토
 - 일정기간 Test DATA를 통해 머신러닝 후 시사점 제시
- o 공급기업 3배수 선택 후 도입기업과 사업 연계 협의
- o 사업 활성화 및 기술 검증 사업 연계 방안을 도입/공급기업과 협의 및 결정

□ AI솔루션 도입 방법 및 진행 절차

0 사업 활성화 및 기술검증 사업 연계 방안을 도입/공급기업과 협의 및 결정

- 1) 부품전착 앞단생산 설비의 생산 데이터를 통해 후 작업 설비의 불량을 예측
- 2) 부품전착 생산 설비의 데이터를 통해 후 작업 공정(FA) 불량에 영향을 미치는 인자 파악
- 3) 부품전착 투입된 자재들의 정보를 통해 후 작업 공정(FA)의 불량을 예측
 - 작업자 판단 Miss로 인한 불량 부품전착, 후공정 투입 감지
 - AOI장비 판정 결과, 불량인 부품전착과 양품인 부품전착 간의 AOI장비 데이터의 패턴 차이 확인 가능
 - 장비 검사 결과 NG인 보드는 작업자의 최종 판단을 거친 후 FA투입되지 않으나 작업자 최종 판단이 Miss된 경우 FA 투입될 수 있음. 장비 검사 결과 NG인 부품전착 비율이 높음.
 - 이러한 Miss Case를 AOI장비 검사 데이터를 통해 후공정 투입되지 않도록 감지 가능할 것으로 기대
 - 불량/양품 부품전착의 AOI장비 데이터 검사 패턴 차이점 발견
- 4) 부품전착 최적의 생산조건 산출
 - 작업자의 판단 Miss로 인한 전압 및 통전시간 제어 방지
 - 각 조건에서 생산된 제품의 도막 두께의 측정을 통해 도막 기준치에 가장 근접한 생산 조건 값 산출
 - 산출 결과 각 제품의 최적의 생산조건 값 확인 가능
 - 기준 설정된 값과 최적의 생산조건 산출된 값의 비교 과정을 거쳐 작업자가 생산 제어 값을 최종 판단하여 실제 생산에 적용
 - 생산조건 변경 시의 도막 측정데이터 비교 분석
 - 지속적인 생산 진행 및 AI 최적의 생산조건이 산출되어 생산현장에 적용됨
 - 최종적으로 산출된 최적의 생산조건으로 설비 자동 제어

0 프로세스 적용

0 프로세스 적용 데이터

구 분	진행 내용			
기능	최적의 생산조건 산출 - 각 설비별 생산조건 데이터를 수집하여 생산 LOT별로 저장한다. - 각 생산 LOT별로 측정된 도막두께 검사값과 생산 조건 데이터를 매칭한다. - 도막 검사 기준값에 근접한 데이터를 산출한다.			
데이터 (주요 데이터 강조처리)				
수집 방식	Log File to DB : 3가지 DB Table에 누적 수집 주기 부품전착 생산 직-			
수집 기간	2020. 11. 07 이후 일일 수집 건수 0.4M~7M			

□ AI솔루션 도입 진행 절차

- o 공정 분석 및 데이터셋 구성
 - 대상 기업 설비·공정 특성 분석
 - AI적용을 위한 데이터셋 적절성 검토
- 0 데이터 특성 추출
- 분석 정확도를 높이기 위해 데이터 특정 도출 및 가공·정제
- o AI모델 개발
 - 성과 목표, 제약사항 등을 고려한 AI모델 개발
 - 알고리즘 학습을 위한 고성능 인프라 연계
- 0 학습 및 테스트
 - AI모델 트레이닝(모델링·평가·보완작업) 수행
 - 개발된 AI모델의 현장적용을 통한 정확도 검증

라. 기타 사항

0 추가 제안 및 반영 사항

목표	상세내용			
데이터 수집/분석	- 공정/설비별 정확한 Data Gathering으로 실시간 생산정보현황 조회 - 현장 데이터 수집 및 분석의 리드타임 감소			
고객 대응 체계 개선	- 고객사의 생산 및 품질 관련 데이터 요구에 따른 대응 체제 확보 - 공정 데이터의 정확하고 신속한 수집 및 분석이 가능함에 따라 문제 발생 시 이에 대한 명확한 원인 규명 및 재발 방지 - 공정, 창고실물(생산품) 정보의 불일치 개선			
품질관리 강화	- 한도견본 관리의 개선을 토해 공정의 관리항목에 대한 판단 오류 해소 - 공정 이상 발생 시 설비 제어를 통해 불량제품 생산 사전 차단			
내부 역량 강화	- DAQ를 이용한 재공 현황 및 LOT관리 개선 - 업무 프로세스 정립으로 내부 생산성 향상 - 공장 전체의 MES구축을 통해 통합 시스템 관리			

4. 사업 활성화 및 기술검증 사업 연계 방안

가. 사업활성화 방안

□ 제품의 실제 생산조건 실시간 산출에 따른 제조 효율의 개선

- 0 한도견본 관리의 개선을 통해 공정의 관리항목에 대한 판단 오류 해소
- 0 공정 이상 발생 시 설비 제어를 통해 불량제품 생산 사전 차단
- 0 제품의 최적 생산조건을 산출함으로 불량률 감소
- 0 제품의 생산조건을 실시간 관리함으로써 품질비용의 절감 가능
- 0 수작업에 의존하던 실제 생산조건 산출시간을 줄임으로써 인건비 절감

□ 제품의 최적 생산조건 도출에 따른 대외 신인도 제고 및 매출 상승

- 0 제품의 생산조건을 관리할 수 있는 데이터 인프라를 갖춤으로써 대외신인도 상승
- o DAQ를 이용한 재공현황 및 LOT관리 개선
- 0 업무 프로세스 정립으로 내부 생산성 향상
- 0 품질관리 능력의 개선에 따른 매출의 상승
- 0 동종업계 벤치마킹 대상으로 효과적인 대외 홍보 가능
- 0 우수한 품질관리 인프라를 보유함으로써 직원의 자긍심 개선

나. AI 솔루션 기술검증 사업 연계 방안

□ AI 솔루션 기술검증 사업 연계 방안 작성 지원

- o 제조데이터·AI 기술 및 솔루션을 기업별 제조현장에 적용하여 PoC(Proof of Concept)를 통한 기술 검증 및 현장적용 지원
 - 문제점 파악 및 분석
 - 효율화 방안 협의 및 공동 작업
 - 모기업 SQ 인증 가이드라인 절차 반영
 - 사업계획의 적정성
 - 사업비의 적정성
 - 공급기업의 추진 능력 및 조직 구성
 - 기대효과 및 성과관리

0 공급기업 선정을 위한 사업 연계 방안을 제안 요청 시 작성 지원

- 1. 사업개요
- 가. 추진배경 및 필요성
- 나. 서비스 내용
- 다. 사업 범위
- 라. 기대효과 및 성과지표
- 2. 업무 및 시스템 현황
- 가. 업무 현황
- 나. 정보시스템 현황
- 3. 사업 추진방안
- 가. 추진목표
- 나. 추진전략
- 다. 추진체계
- 라. 추진일정
- 마. 추진방안
- 4. 제안요청 내용
- 가. 제안요청 개요
- 나. 용어 정의
- 다. 목표시스템 개념도

Ⅲ 추진일정

구분	내 용	컨설팅 예정일
1주차	0. 착수 및 현황분석	2020.10.28
2주차	 ○. 문제 정의 및 분석 대상 검토 - 대상기업 공정 및 설비 분석 - AI 적용을 위한 데이터셋 적절성 검토 ▷ 전체 공정분석, 데이터 유형 및 추출방법 정의, 도입가능 AI솔루션 리뷰, 솔루션 분석 대상 검토, 성과지표 검토 	2020.11.11.
3주차	이. 데이터 특성 추출- 데이터의 신뢰성을 높이기 위해 데이터 특징도출 및 가공.정제 : Data 성격 및 분석방법 협의, 공급기업 AI 접근방법 타당성 검토	2020.11.18
4주차	o. AI 모델링 방법론 및 테스트 시나리오 검토 - 공급사 AI 추진 제안서 검토	2020.11.23
5주차	0. 중간보고회	2020.12.02
6주차	o. AI 모델 개발- 성과목표 및 제약사항을 고려한 AI 모델 개발- 알고리즘 학습을 위한 연계	2020.12.10
7주차	o. 학습 및 테스트- AI 모델 트레이닝 수행- 개발 된 AI 모델의 현장 적용을 통한 신뢰도향상 및 검증실시	2020.12.17
8주차	0. 상세추진 계획서 협의 및 보완	2020.12.21
9주차	0. 완료보고회	2020.12.28

V 기대효과

가. 정량적 목표

No	분야	핵심지표 (KPI)	단위	현재	목표	가중치	비고
1	P	일평균 생산량 증가	개	134,000	145,000	20%	7.6% 증가
2	Q	공정 불량률 감소 (월평균)	PPM	23	21	30%	9.5% 감소
3	С	작업공수(절감률) 생산조건 산출시간	시간/ 월	15	0	30%	100% 개선
4	D	납기 준수율 (월평균)	%	90	93	20%	3.2% 증가
	합 계						

나. 정성적 목표

- 품질향상으로 인한 생산성 증가
- 원자재 사용감소로 인한 원가 절감
- 도료 절감으로 인한 산업폐수 감소
- 데이터 분석에 의한 현장 업무 표준화 및 관리체계 개선
- 정보의 수집, 분석 및 생산 공정의 제어, 감시를 통한 경영진 의사 결정 지원