

RTC **応用指**菌

文档版本 09

发布日期 2018-11-30

6020株排機排用標為表

The state of the s

版权所有 © 深圳市海思半导体有限公司 2018。保留一切权利。

非经本公司书面许可,任何单位和个人不得擅自摘抄、复制本文档内容的部分或全部,并不得以任 何形式传播。

商标声明

(上) 、HISILICON、海思和其他海思商标均为深圳市海思半导体有限公司的商标。

本文档提及的其他所有商标或注册商标,由各自的所有人拥有。

注意

EM WORD COLSTON OF THE WAR WORD OF THE WOR 您购买的产品、服务或特性等应受海思公司商业合同和条款的约束,本文档中描述的全部或部分产 品、服务或特性可能不在您的购买或使用范围之内。除非合同另有约定,海思公司对本文档内容不 做任何明示或默示的声明或保证。

由于产品版本升级或其他原因,本文档内容会不定期进行更新。除非另有约定,本文档仅作为使用 指导,本文档中的所有陈述、信息和建议不构成任何明示或暗示的担保。

深圳市海思半导体有限公司

深圳市龙岗区坂田华为基地华为电气生产中心 地址: 邮编: 518129

网址: http://www.hisilicon.com

客户服务电话: +86-755-28788858

客户服务传真: +86-755-28357515

support@hisilicon.com 客户服务邮箱:

前言

i

概述

本文档主要介绍 RTC 的校准方案,确保 RTC 计时准确。

□ 说明

本文以 Hi3536 为例,未有特殊说明,Hi3521A/20DV300, Hi3531A, Hi3518EV20X/16CV200, Hi3519 V100, Hi3519V101, Hi3559V100, Hi3556V100, Hi3516CV300, Hi3531DV100, Hi3521DV100, Hi3536CV100, Hi3536DV100、Hi3520DV400、Hi3559AV100、Hi3559CV100、Hi3519AV100、Hi3556AV100、Hi3516CV500、Hi3516DV300、Hi3559V200、Hi3556V200、Hi3516EV200、Hi3516EV300、Hi3518EV300 与 Hi3536 完全一致。

产品版本

与本文档相对应的产品版本如下。

产品名称	产品版本
Hi3536	V100
Hi3521A	V100
Hi3520D	V300
Hi3531A	V100
Hi3518E	V200
Hi3518E	V201
Hi3516C	V200
Hi3519	V100
Hi3516C	V300
Hi3519	V101
Hi3559	V100
Hi3556	V100
Hi3531D	V100
Hi3521D	V100

产品名称	产品版本
Hi3536C	V100
Hi3536D	V100
Hi3520D	V400
Hi3559A	V100
Hi3559C	V100
Hi3519A	V100
Hi3556A	V100
Hi3516C	V500
Hi3516D	V300
Hi3559	V200
Hi3556	V200
Hi3516E	V200
Hi3516E	V300
Hi3518E	V300

读者对象

本文档(本指南)主要适用技术支持工程师

修订记录

修订记录累积了每次文档更新的说明。最新版本的文档包含以前所有文档版本的更新内容。

修订日期	版本	修订说明
2018-11-30	09	添加 Hi3516EV300/ Hi3516EV200/ Hi3518EV300 相关内容
2018-09-26	08	添加 Hi3559V200 和 Hi3556V200 相关内容
2018-05-07	07	添加 Hi3559A/C V100 相关内容
2017-10-18	06	第6次正式版本发布 第5章节,增加说明。 增加第6章节。

修订日期	版本	修订说明
2017-09-08	05	第 5 次正式版本发布
		5.1 和 5.2 小节涉及修改
2017-08-15	04	第 4 次正式版本发布
		添加 Hi3536D V100 的相关内容。
2017-07-14	03	第 3 次正式版本发布
		删除 1.3 小节。
		2.1 小节和 2.2 小节, 涉及更新。
		增加第6章节。
2017-04-10	02	第2次正式版本发布
		添加 Hi3536C V100 和 Hi3516AV200 的相关内容。
2016-12-01	01	第1次正式版本发布
2015-11-05	00B02	第 2 次临时版本发布
2015-01-19	00B01	第1次临时版本发布

目 录

前	言		i
1 栂	既述		1
	1.1 RTC 芯片分类		1
	1.2 RTC 工作模式		1
2 RT	TC 的硬件参考电路		7. 2
	2.2 选择晶体	(20)	2
	2.1 硬件参考电路 2.2 选择晶体 2.3 选择电容	- OV-	3
3 R7	TC 周完分频模式的实现	2001	5
	TC 固定分频模式的实现	,,00	
4 R'	TC 校正功能的实现		6
5 H	I_RTC 驱动使用说明	(S)	7
	5.1 狮痒		7
	5.2 使用		7
6 lir	5.2 使用 nux 内核标准 RTC 驱动使用说明		10
	6.2 使用	Z .	10
	6.2 使用		10
7	晶体相关指标测试方法		12
• нг	7.1 频偏测试		
	7.2 安全因子测试		13
	7.4 DL 测试		14
8 O	&A		16
J Q	8.1 振荡器不振	•••••	16
	8.2 振荡器的输出频率是 200K		
	8.3 振荡频率虽然是 32.768K 附近, 但是频率却不准		
			1

1 概述

1.1 RTC 芯片分类

常见的 RTC 芯片,大致可分为三类:

- 非集成 RTC: 只有 RTC 计时电路,不集成晶体、不集成温度补偿电路。这类芯片的计时精度主要取决于外接晶体的精度,而且受温度影响较大。通常在室温环境下,计时精度较高;随着温度升高或降低,计时偏差逐渐增大。
- 集成晶体的 RTC:将 RTC 计时电路与晶体集成,但没有温度补偿电路。这类芯片在室温环境下,计时精度更高。但仍然无法消除温度的影响。
- 集成 RTC: 将 RTC 计时电路、晶体、温度补偿电路(含温度传感器)都集成在一颗芯片中,出厂时进行调教。这类 RTC 的计时精度可以做到很高,且由于温补电路的作用,受环境温度的影响很小。

1.2 RTC 工作模式

内置 RTC 可支持固定分频模式:

与非集成 RTC 相同,内置 RTC 的时钟直接采用外部晶体与振荡电路产生的经过分频后的时钟,工作时分频比固定不变。这种工作模式下,RTC 计时精度取决于外接晶体的频率精度,而且受环境温度影响。在非集成 RTC 这类芯片适用的场景,可以选择内置 RTC 替代外置非集成 RTC, 节省一些器件成本。

Hi3536 RTC 无内置温度补偿电路,只支持工作在固定分频模式,若 RTC 时钟的频偏较大,可通过调节 RTC 的分频系数来微调 RTC 的时钟频率。对计时精度有严格要求的客户,建议选择集成晶体的 RTC,或者带有温度补偿的 RTC。

2 RTC 的硬件参考电路

2.1 硬件参考电路

RTC 的硬件参考电路如图 2-1 所示,主要涉及晶体和电容的选择。

图2-1 RTC 晶体的硬件参考电路

2.2 选择晶体

选择晶体需要注意以下几个指标:

- 标准负载电容(Load capacitance/CL): 晶体的标准负载电容,晶体对负载电容有 着严格的规定,只有实际负载电容和晶体的 SPEC 中的负载电容一致时,晶体频 率才能达到标称频率。
 - 芯片中的晶体振荡电路针对 CL=12.5pF 的晶体设计,且在 32.768K 晶体市场中, CL=12.5pF 的晶体为市场主流,请选用此规格晶体。如果想选用其他规格的晶体,需要按照影响 RTC 精度的因素选择匹配电容。
- 串联电阻(Series resistance/Rs/ESR):晶体的谐振腔等效串联电阻,当 ESR 越大,表示晶体越难以驱动。晶体规格中会指出 Rs 的典型值与最大值。
 - 芯片晶体振荡电路适用于 Rs 最大值<70 $K\Omega$ 的晶体,保证 RTC_XOUT 的电压幅度大于或等于 850mV,请选用满足此规格的晶体。

● 最大驱动级别(Max Drive Level/DL):表示晶体最大的振荡幅度,当振荡幅度超过一定幅度时,晶体容易发生损坏。

晶体选型约束,如表 2-1 所示。

表2-1 晶体选型约束表

参数	符号	规格			
		MIN	TYP	MAX	单位
串联电阻	ESR	-	-	70	ΚΩ
负载电容	CL	-	12.5	-	pF
Shunt Capacitance	C0	1	-	2	pF
Motional Capacitance	C1	2	-	6	fF

2.3 选择电容

实际 CL 的示意图如图 2-2 所示。

图2-2 实际 CL 的示意图

Pierce 振荡器中,一般将 CL1 与 CL2 取相同的值,可以通过以下公式来确定 CL1 与 CL2 的取值。

CL1=CL2=CL_SPEC*2-3~5pF

其中 CL_SPEC 为晶体规格书中规定的标准负载电容, 3~5pF 代表的 PCB 板可能引入的杂散电容。以 12.5pF 的晶体为例, CL1 与 CL2 一般取值为 12.5pF*2-3pF=22pF。因为杂散电容随 PCB 板设计不同而变化,故亦可确定 PCB 板以后,通过测试频偏来选取不同容值的 CL1 来获得最接近 32.768K 的输出频率,偏测试方法请参考第 7 章节"晶体相关指标测试方法"的相关内容。

3 RTC 固定分频模式的实现

RTC 在固定分频模式下不进行温度补偿。RTC 的时钟直接采用外部晶体与振荡电路产生的进行 327.xx 分频后的时钟,RTC 精度取决于外部晶振提供时钟的准确性。小数分频的分频系数可以调整。本方案与非集成 RTC 芯片具有类似精度。

固定分频模式配置比较简单,涉及的RTC内部寄存器有2个: 0x51和0x52。

0x51 和 0x52,这两个寄存器连在一起为一个 16bit 的寄存器,它们的值决定小数分频的分频系数,具体计算方法如下:

分频系数=327+(寄存器读取值/3052)

例如: 0x51 的值为 0x8, 0x52 寄存器的值为 0x1b, 它们连在一起的 16bit 的值为: 0x81b。 0x81b 的十进制为 2075, 分频系数=327+(2075/3052) =327+0.68=327.68。

小数分频的分频系数可以微调是为了使分频后的时钟更加接近 100Hz,这样 RTC 的精度会有所提高。调节分频系数通常应用在时间统一偏快或者偏慢的情况。例如,假设晶振的输出频率为 32767.00Hz,若使用默认分频系数 327.68,则分频后的时钟是99.97Hz,时钟会偏慢。若把分频系数设置为 327.67,则分频后的时钟为 100Hz,会改善时钟偏差的情况。

4 RTC 校正功能的实现

不支持 RTC 逻辑校正,若 RTC 时钟的频偏较大,可通过调节 RTC 的分频系数来微调 RTC 的时钟频率。

海思专有和保密信息 版权所有 © 深圳市海思半导体有限公司

5 HI_RTC 驱动使用说明

□ 说明

Hi3536DV100/Hi3559AV100/Hi3559CV100/Hi3519AV100/Hi3556AV100/Hi3516CV500/Hi3516DV3 00/Hi3559V200/Hi3556V200/Hi3516EV200/Hi3516EV300/Hi3518EV300 不支持 hi_rtc 驱动。

5.1 编译

在 RTC 目录下执行下述命令即可生成对应的驱动 hi35xx_rtc.ko、hi_rtc.ko 及示例程序 test。其中 hi35xx_rtc.ko、hi_rtc.ko 分别包括:

- hi35xx_rtc.ko: Hi3518EV20X/Hi3516CV200、Hi3519V100、Hi3519V101、 Hi3559V100、Hi3556V100和 Hi3516CV300
- hi_rtc.ko: Hi3521A/ Hi3520DV300、Hi3531A、Hi3536、Hi3521DV100、 Hi3531DV100、Hi3520DV400和 Hi3536CV100

cd rtc
make
cd test
make

5.2 使用

将 RTC 的驱动拷贝到单板:

- 对于 Hi3518EV20X/ Hi3516CV200、Hi3519V100、Hi3519V101、Hi3559V100、 Hi3556V100、Hi3516CV300,执行如下命令插入驱动模块: insmod hi35xx_rtc.ko
- 对于 Hi3521A、 Hi3520DV300、Hi3531A、Hi3536、Hi3521DV100、 Hi3531DV100、Hi3520DV400 和 Hi3536CV100, 执行如下命令插入驱动模块: insmod hi_rtc.ko

RTC 驱动提供的功能通过单板上运行的 test 示例程序说明,如图 5-1 所示。

图5-1 示例程序用法

```
Usage: ./test [options] [parameter1] ...
Options:
                                                 e.g '-s time 2012/7/15/13/37/59'
        -s(set)
                            Set time/alarm,
        -q(qet)
                            Get time/alarm,
                                                  e.g '-g alarm'
        -w(write)
                            Write RTC register, e.g '-w <reg> <val>'
        -r(ead)
                             Read RTC register,
                             Alarm ON/OFF',
        -a(alarm)
        -reset
                            RTC reset
                                                 e.g '-b ON'
        -b(battery monitor) battery ON/OFF,
        -f (requency)
                             frequency precise adjustment, e.g '-f <val>'
```

设置获取时间

```
通过如下命令可设置 RTC 时间:
```

./test -s time <year/month/day/hour/minute/second>

通过如下命令可获取 RTC 时间:

./test -g time

设置获取闹钟时间

通过如下命令可设置 RTC 闹钟时间:

./test -s alarm <year/month/day/hour/minute/second>

通过如下命令可获取 RTC 闹钟时间:

./test -g alarm

通过如下命令设置闹钟到期是否产生中断,驱动中断例程由用户根据需求自由补充。

./test -a ON/OFF

读取、设置 RTC 内部寄存器

通过如下命令可读取 RTC 内部寄存器,此功能多用于辅助调试。

./test -r <reg>

通过如下命令可设置 RTC 内部寄存器,此功能多用于辅助调试。

./test -w <reg> <value>

reg 取值,请参见各芯片的用户指南的实时时钟部分。

复位 RTC 模块

通过如下命令可复位 RTC 模块。

./test -reset

固定分频模式分频系数微调设置

通过如下命令可设置分频系数从而达到调整时钟的快慢效果。

./test -f <val>

< val>值为将要设置的分频系数的 10000 倍,例如要设置分频系数为 327.60,则 val=3276000。通过直接敲"./test -f"命令可以查看当前分频系数,因为计算误差的问题,获取的分频系数可能和设置的分频系数有细小的偏差。分频系数可以配置范围为: 327.60~327.70。

打开、关闭电池电量监测功能

通过如下命令可打开 RTC 电池电量监测功能。

./test -b ON

通过如下命令可关闭 RTC 电池电量监测功能。

./test -b OFF

注意

本特性仅支持: Hi3536、Hi3519V100、Hi3519V101、Hi3516AV200、Hi3516CV300 及 Hi3559V100/Hi3556V100、Hi3536CV100、Hi3531DV100、Hi3520DV400 和 Hi3521DV100

用户接口

请参看 hi_rtc.h 文件。

6 linux 内核标准 RTC 驱动使用说明

6.1 编译

Hi3536CV100/Hi3536DV100/Hi3559AV100/Hi3559CV100/Hi3519AV100/Hi3556AV100/Hi3516CV500/Hi3516DV300/Hi3559V200/Hi3556V200/Hi3516EV200/Hi3516EV300/Hi3500/Hi360/Hi360/Hi360/Hi360/Hi360/Hi360/Hi360/Hi360/Hi360/Hi360/Hi360/Hi360/

6.2 使用

将内核烧写到单板后,启动单板,执行下面命令:

ls /dev/rtc0

能够查看到 RTC 设备,表示内核 RTC 驱动正确加载 内核 RTC 驱动支持 ioctl 系统调用。

表6-1 内核标准 RTC 驱动 ioctl 指令功能描述

指令	功能描述
RTC_ALM_READ	读取闹钟时间
RTC_ALM_SET	读取时间与日期
RTC_SET_TIME	设置时间与日期
RTC_PIE_ON	开 RTC 全局中断
RTC_PIE_OFF	关 RTC 全局中断
RTC_AIE_ON	使能 RTC 闹钟中断
RTC_AIE_OFF	禁止 RTC 闹钟中断
RTC_UIE_ON	使能 RTC 更新中断
RTC_UIE_OFF	禁止 RTC 更新中断

指令	功能描述
RTC_IRQP_SET	设置中断的频率

设置获取时间

- 通过如下命令可设置 RTC 时间: ioctl(fd, RTC_SET_TIME, &rtc_tm);
- 通过如下命令可获取 RTC 时间: ioctl(fd, RTC_RD_TIME, &rtc_tm);

用户接口

请参看内核 Documentation 目录下 rtc.txt 文件。

了 晶体相关指标测试方法

7.1 频偏测试

- 用频率计通过同轴电缆连接专门的时钟测试脚(TEST_CLK)在 uboot 下,配置寄存器,将管脚复用为 CLK_TEST 功能,并选择 32.768KHz 时钟信号输出,测试 RTC 频率。
- 强烈建议:不要在晶振引脚上用示波器直接测量(一个典型无源探头的电容值在 10pF之内,输入阻抗大约为 10MΩ。两个值都会大大影响晶体振荡器的运行方式)。
- 当测得的频率过高时,负载电容的值必须增加,当测得的频率太低时,就要减少负载电容的值。如果晶振的频率偏差被指定为±30ppm,则室温下,32768Hz 时钟频率的准确度应为±0.9Hz。

注意

在单板设计时需要将 test_clk 管脚引出测试点,方便后续晶体指标测试。

7.2 安全因子测试

增加一个与晶振串联的电阻 RQ,如图 7-1 所示。增加 RQ 的值,直到晶体恰好不起振,的 RQ 电阻最大值 RQ_{max} (RQ_{max} 的值应该由 SMD 电阻进行验证,不建议用可调电位器)。

图7-1 安全因子测试示意图

$$SF = \frac{OA}{ESR} = \frac{RQ_{\text{max}} + ESR}{ESR}$$

表7-1 安全因子约束限定条件

T R	
	体振荡电路振荡裕度 (OA) 和安全因子。
振荡裕度 OA =RQ _{max} + ESR	COLOR
安全因子 (SF):	
$SF = \frac{OA}{ESR} = \frac{RQ_{\text{max}} + ESR}{ESR}$	559A
表7-1 安全因子约束限定条件	Hi 3
安全因子(SF)	限定条件
SF<2	不安全
2≤SF<3	适用
3≤SF<5	安全
SF≥5	非常安全

注意: 要求安全因子至少大于3

例:晶体 ESR 为 60K,如果串联的额外电阻 RQmax 为 120K,则刚刚达到安全级别。

7.3 起振时间测试

一般情况下,对于 RTC 振荡电路而言,介于几百毫秒到几秒钟之间的启动时间均为正 常值,晶体振荡器的启动时间取决于不同的因素:

频率越低启动时间就越长(相对 24MHz 系统时钟)。

- 负载电容越大,启动时间就越长。
- 晶体 ESR 越高启动时间就越长(晶体选型时关注)。
- 振荡裕度 (OA)越大, 启动快(也就是说安全因子越大, 启动越快)。
- 晶体寄生电感越大,起振时间越长。

鉴于以上因素的影响,测试启动时间前,优先测试安全因子和频偏。

用示波器量测 RTC_Xout 波形,捕获波形第一个上升沿,量测从第一个上升沿到输出稳定频率的时间,如图 7-2 所示。

图7-2 起振时间示意图

7.4 DL 测试

Hi3536 芯片晶体振荡电路内部限制了 RTC_XIN 与 RTC_XOUT 管脚振荡的振荡幅度,可以通过以下公式估计电路工作时的实际 Drive Level,并确定此值小于晶体规格中规定的最大 Drive Level。

$DL_actual = 0.35*Rs_max*(~\pi *f*Vpp_{XOUT}*CL)^2/2$

其中:

- Rs_max 为晶体规格书中的串联电阻的最大值。
- f 为晶体的谐振频率。

- Vppxout 为示波器测量的 RTC_XOUT 管脚的 peak to peak 电压。
- CL 为晶体规格书的标准负载电容。

Ш 说眼

由于测试电压时示波器探头的寄生电阻和电容效应,会导致测试结果存在偏差,因此以上公式只是较简单的估算 DL 的方法,如果有需求,可以找晶体厂商进行更精确测试。

8 Q&A

8.1 振荡器不振

【现象】

32.768K 时钟无输出, RTC 计时电路中的秒寄存器值恒定不变。

【分析】

使用示波器探头观察 RTC_XIN 管脚振荡波形,引起不同的振荡波形的情况有以下几种:

- 如果无振荡波形,可能是晶体损坏。
- 如果有 32K 左右频率正弦波,且 peak to peak 幅度小于 600mV,则可能是因为 CL1 与 CL2 过大,导致振荡电路驱动不足,从而幅度偏小,振荡波形无法通过后 续的施密特触发器。
- 如果有 200K 左右频率的正弦波,且 peak to peak 幅度小于 600mV,则可能是因为 CL1 与 CL2 偏小,导致振荡电路振荡到 200K 频点,且由于 200K 频点振幅较小, 所以无法通过后续的施密特触发器。

【解决】

- 如果确定晶体损坏,请更换晶体。
- 如果为 32K 左右频率正弦波、幅度不够、请检查 CL1 与 CL2 是否偏大、并更换 正确的电容。
- 如果为200K左右频率正弦波,幅度不够,请检查CL1与CL2是否偏小,并更换 正确的电容。

8.2 振荡器的输出频率是 200K

【现象】

32.768K 时钟输出频率接近 200K, RTC 计时电路中的秒寄存器值每秒钟增加 6。

【分析】

59A V100ROO1CO2SPCO20Kit.HHttl. Little

因为 32.768K 晶体存在 6.1 倍频的谐振点,如果晶体有异常,则可能振荡到 6 倍频附近。

【解决】

建议首先检查 CL1 与 CL2 是否偏小;如果 CL1 于 CL2 为正确值,但振荡频率仍然为 200K,则可以在电路中添加如图 8-1 所示的 Rd,Rd 取值为 $1/(2\pi \times 32768 \times CL2)$,Rd 与 CL2 可以形成一个 RC 滤波器,降低 6.1 倍频处的环路增益。

图8-1 200K 振荡解决方案电路

注意:一般情况不建议增加 Rd,如果采用增加 Rd 的方法,需要确定 RTC_XOUT 管脚信号幅度不会过小。

8.3 振荡频率虽然是 32.768K 附近, 但是频率却不准

【现象】

32.768K 时钟输出频率偏离 32.768K。

【分析】

振荡电路振荡频率主要由晶体和负载电容共同保证,晶体本身确定了频率的大致范围(即图 8-2 所示中的 0 偏差对应的频率),而实际负载电容的大小则确定了频率的偏移量(即图 8-2 所示中的实际频率偏离 0 的值)。

【解决】

如果频率偏离了 32.768K, 首先需要确认晶体管脚弯折不会对内部晶体部分施加应力, 并确定焊接过程中的温度符合 datasheet 规范; 其次, 检查 CL1 与 CL2 取值是否正确, 并更换正确的电容。