ALGEBRA Chapter 3

2th
Session II

ECUACIONES EXPONENCIALES

HELICO MOTIVATING

¿Qué son las ecuaciones trascendentales?

Las ecuaciones trascendentales son aquellas ecuaciones donde no participa las expresiones algebraicas, las ecuaciones de este tipo más conocidas son:

☐ Exponenciales: Ejemplos:

$$3^{x+1} - 3^{x-1} = 24$$

Ejemplos: $sen x - cos x = \frac{1}{2}$ Trigonométricas:

□Logarítmicas: **Ejemplos:**

$$\log x + \log 2x = 1$$

HELICO PRACTICE CHAPTHER 3

1. Calcula el valor de x, si

$$7^{16^{x-1}} = 7^{8^{x+2}}$$

RESOLUCIÓN

$$7^{16^{x-1}} = 7^{8^{x+2}}$$

$$16^{x-1} = 8^{x+2}$$

$$(2^4)^{x-1} = (2^3)^{x+2}$$

$$2^{4x-4} = 2^{3x+6}$$

$$4x - 4 = 3x + 6$$

$$\begin{bmatrix} a^x = a^y \to x = y \\ \forall a \in \mathbb{R} - \{-1; 0; 1\} \end{bmatrix}$$

2. Obtenga el valor de x.

$$\left(\frac{1}{5}\right)^{x+\frac{1}{3}} = \frac{1}{125}$$

RESOLUCIÓN

$$\left(\frac{1}{5}\right)^{x+\frac{1}{3}} = \frac{1}{125}$$

$$\left(\frac{1}{5}\right)^{x+\frac{1}{3}} = \left(\frac{1}{5}\right)^{3}$$

$$x + \frac{1}{3} = 3 \quad \rightarrow x = \frac{8}{3}$$

$$\checkmark \frac{1}{125} = \left(\frac{1}{5}\right)^3$$

$$a^x = a^y \rightarrow x = y$$

$$\forall a \in \mathbb{R} - \{-1; 0; 1\}$$

3. Calcula el valor de x, si

$$3^{x+1} + 3^{x+2} + 3^{x+3} = 351$$

RESOLUCIÓN

$$3^{x} \cdot 3^{1} + 3^{x} \cdot 3^{2} + 3^{x} \cdot 3^{3} = 351$$

$$3^{x} (3^{1} + 3^{2} + 3^{3}) = 351$$

$$3^{x} (39) = 351$$

$$3^{x} = 3^{2}$$

$$x = 2$$

$$x^{n+m} = x^n \cdot x^m$$

$$a^x = a^y \to x = y$$

$$\forall a \in \mathbb{R} - \{-1; 0; 1\}$$

4. Halle el valor de x en

$$8^{4^{5x}} = 16^{3^{5x}}$$

RESOLUCIÓN

$$(2^3)^{4^{5x}} = (2^4)^{3^{5x}}$$

$$2^{3.4^{5x}} = 2^{4.3^{5x}}$$

$$3.4^{5x} = 4.3^{5x}$$

$$\frac{4^{5x}}{4} = \frac{3^{5x}}{3} \to 4^{5x-1} = 3^{5x-1}$$
$$5x - 1 = 0$$

$$a^x = a^y \rightarrow x = y$$

$$\forall a \in \mathbb{R} - \{-1; 0; 1\}$$

Si
$$A \neq B$$

$$A^{x} = B^{y} \to x = 0$$
$$y = 0$$

$$x = \frac{1}{5}$$

5. Determine el valor de x en

$$x^{x^{x}...^{x^{n}}} = n \Longrightarrow x = \sqrt[n]{n}$$

6. Resuelva e indique el valor de x.

$$x^{x} = \frac{1}{\sqrt[3]{3}}$$

RESOLUCIÓN

$$x^{x} = \frac{1}{\sqrt[3]{3}} \to x^{x} = \sqrt[3]{\frac{1}{3}}$$

$$\frac{\sqrt[n]{x}}{\sqrt[n]{y}} = \sqrt[n]{\frac{x}{y}} , y \neq 0$$

$$(\sqrt[n]{a})^m = a^{\frac{m}{n}}; m, n \in \mathbb{Z}; n \ge 2$$

$$a^a = b^b \rightarrow a = b$$

$$\rightarrow x^{x} = \frac{1}{3} \quad \boxed{x}$$

7. Determine el valor de x en

$$x^{x^6} = \sqrt[3]{2}$$

RECORDEMOS

$$(a^n)^m = (a^m)^n$$

$$a^a = b^b \rightarrow a = b$$

RESOLUCIÓN

Elevamos a la sexta

$$(x^{x^6})^6 = (\sqrt[3]{2})^6$$

$$(x^6)^{x^6} = (2^{\frac{1}{3}})^6$$

$$(x^6)^{x^6} = (2)^2$$

$$\rightarrow x^6 = 2$$

$$x = \sqrt[6]{2}$$

8. Luego de hallar el valor de x de $27^{27^{x+1}} = 3^{9^8}$ indique el número de alumnos enfermos por sarampión en el aula de 2.°A. (x denota el número de alumnos enfermos de sarampión)

RESOLUCIÓN

$$(3^3)^{27^{x+1}} = 3^{9^8}$$

$$3^{3 \cdot 27^{x+1}} = 3^{9^8}$$

$$3.3^{3x+3} = (3^2)^8 \rightarrow 3^{3x+4} = 3^{16}$$

$$\rightarrow 3x + 4 = 16$$

$$x = 4$$

El número de enfermos es 4 alumnos