Grade received 100% To pass 80% or higher

Go to next item

Key Concepts on Deep Neural Networks

Latest Submission Grade 100%

1. W	hat is the "cache" used for in our implementation of forward propagation and backward propagation?	1/1 point
C) It is used to cache the intermediate values of the cost function during training.	
) It is used to keep track of the hyperparameters that we are searching over, to speed up computation.	
	We use it to pass variables computed during backward propagation to the corresponding forward	
6	propagation step. It contains useful values for forward propagation to compute activations. We use it to pass variables computed during forward propagation to the corresponding backward	
	propagation step. It contains useful values for backward propagation to compute derivatives.	
	 Correct Correct, the "cache" records values from the forward propagation units and sends it to the backward propagation units because it is needed to compute the chain rule derivatives. 	
	following which	
	mong the following, which ones are "hyperparameters"? (Check all that apply.)	1 / 1 point
~	a number of layers L in the neural network	
	⊙ Correct	
~	$oldsymbol{i}$ size of the hidden layers $oldsymbol{n}^{[l]}$	
	⊙ Correct	
V	anumber of iterations	
	○ Correct	
] weight matrices $W^{[l]}$	
	activation values $a^{[l]}$	
V	$oxed{a}$ learning rate $lpha$	
	○ Correct	
] bias vectors $b^{[l]}$	
3. W	hich of the following statements is true?	1/1 point
) The earlier layers of a neural network are typically computing more complex features of the input than the deeper layers.	
•	The deeper layers of a neural network are typically computing more complex features of the input than the earlier layers.	
	○ Correct	
	ectorization allows you to compute forward propagation in an L -layer neural network without an explicit for-loop rany other explicit iterative loop) over the layers $i=1,2,,L$. True/False?	1/1 point
•) False	
C) True	
	Correct Forward propagation propagates the input through the layers, although for shallow networks we may just write all the lines $(a^{[2]}=g^{[2]}(z^{[2]}),z^{[2]}=W^{[2]}a^{[1]}+b^{[2]},)$ in a deeper network, we cannot avoid a for loop iterating over the layers: $(a^{[i]}=g^{[i]}(z^{[i]}),z^{[i]}=W^{[i]}a^{[i]}-1]+b^{[i]},)$.	
fo	ssume we store the values for $n^{[l]}$ in an array called layer_dims, as follows: layer_dims = $[n_x, 4.3.2, 1]$. So layer 1 has ur hidden units, layer 2 has 3 hidden units and so on. Which of the following for-loops will allow you to initialize ur parameters for the model?	1/1 point
C		
	for i in range(1, len(layer_dims)/2):	
	<pre>parameter['W' + str(i)] = np.random.randn(layer_dims[i], layer_dims[i-1]) * 0.01 parameter['b' + str(i)] = np.random.randn(layer_dims[i-1], 1) * 0.01</pre>	
	for i in range(1, len(layer_dims)/2):	

Which of the following statements are True? (Check all that apply). $lacksquare W^{[3]}$ will have shape (1, 3) \bigodot Correct Yes. More generally, the shape of $W^{[l]}$ is $(n^{[l]},n^{[l-1]}).$ \bigcirc Correct Yes. More generally, the shape of $b^{[l]}$ is $(n^{[l]},1)$. $\ \ \ \ \ b^{[2]}$ will have shape (1, 1) $\ \ \ \ b^{[1]}$ will have shape (3, 1) $\ensuremath{m W}^{[2]}$ will have shape (3, 4) \bigodot $\mathbf{Correct}$ Yes. More generally, the shape of $W^{[l]}$ is $(n^{[l]},n^{[l-1]}).$ $lacksquare b^{[1]}$ will have shape (4, 1) Yes. More generally, the shape of $b^{[l]}$ is $(n^{[l]},1)$. $lacksquare W^{[1]}$ will have shape (4, 4) \bigodot correct Yes. More generally, the shape of $W^{[l]}$ is $(n^{[l]},n^{[l-1]}).$ $lacksquare b^{[2]}$ will have shape (3, 1) \bigodot Correct Yes. More generally, the shape of $b^{[l]}$ is $(n^{[l]},1).$ $\ \ \ \ \ b^{[3]}$ will have shape (3, 1) 10. Whereas the previous question used a specific network, in the general case what is the dimension of W^{[]], the weight matrix associated with layer l? 1/1 point

Ocrrect True