IO – Exercicios Resolução

Felipe B. Pinto 61387 – MIEQB 2 de maio de 2023

Conteúdo

Questão 1	2 Qı	uestão 8						4
Questão 3	3							

Questão 1

Numa quinta de criação de animais pretende-se determinar a quantidade diária de milho, trigo e alfafa que cada animal deve receber de modo a serem satisfeitas certas exigências nutricionais. Na tabela seguinte são indicadas as quantidades de nutrientes presentes em cada quilograma de milho, trigo e alfalfa.

Nutrientes:	Milho kg	Trigo kg	Alfafa kg
Hidratos de Carbono (g)	90	20	40
Proteinas (g)	30	80	60
Vitaminas (mg)	10	20	60
Custo por kg (u m)	42	36	30

As quantidades diárias que cada animal necessita de hidratos de carbono, proteínas e vitaminas são pelo menos de 200 g, 180 g e 150 mg, respetivamente.

Q1 a.

Sabendo que se pretende minimizar os custos da alimentação de cada animal, formule este problema como um modelo de Programação Linear.

$$\min \text{Custo} = 42 \, x_1 + 36 \, x_2 + 30 \, x_3 \qquad x \in \mathbb{R}^3 : \begin{cases} x_i \ge 0 \, \forall \, x_i & \land \\ \land \, 90 \, x_1 + 20 \, x_2 + 40 \, x_3 & \land \\ \land \, 30 \, x_1 + 80 \, x_2 + 60 \, x_3 & \land \\ \land \, 10 \, x_1 + 20 \, x_2 + 60 \, x_3 & \end{cases}$$

Q1 b.

Indique uma solução admissível para o problema e o respetivo custo.

(100, 100, 100)

qualquer solução que resolve x

Q1 c.

Resolva o problema recorrendo ao solver do Microsoft Excel. Com base na solução ótima determinada, indique a quantidade de hidratos de carbono, proteínas e vitaminas que cada animal recebe.

Column1	1	2	3	Column2
Hidratos de Carbono	90	20	40	200.00
Proteinas	30	80	60	180.00
Vitaminas	10	20	60	157.14
Custo por Kg	42	36	30	120.86
х	1.14	0.00	2.43	

Questão 3

Uma empresa agrícola possui três terrenos onde pode fazer plantações. A empresa pretende plantar melão, batata-doce e tomate podendo cada um destes produtos ser plantado em mais do que um terreno. Sabendo que a empresa pretende saber que área deve plantar de cada tipo de plantação em cada terreno de modo a maximizar o lucro total, formule este problema como um modelo de Programação Linear.

Na tabela seguinte apresenta-se a área de cada terreno disponível para as plantações e a quantidade de água disponível para regar que pode ser utilizada.

Terreno	Área Diponível (ha)	Agua Disponível (m³/d)
1	500	1600
2	600	1800
3	300	1000

Na tabela seguinte indica-se para cada tipo de plantação: a área total máxima que pode ser plantada, o consumo diário de água por cada hectare de plantação e o correspondente lucro.

Tipo de Plantação	Area Máxima (ha)	Consumo Diário de agua (m³/ha)	Lucro por ha (u.m.)
Melão	700	5	7
Batata	500	4	5
Tomate	350	6	6

- i (1:Melão, 2:milho, 3:batata)
- x_i Terreno total ocupado pela plantação i
- $a_{i,j}$ Area do terreno j em que está dedicado a plantação i

$$\max \text{Lucro} = 7 * x_1 + 5 * x_2 + 6 * x_3$$

$$\begin{cases} x_i = \sum_{j=1}^3 a_{i,j} \wedge a_{i,j} \ge 0 \,\forall \, a_{i,j} \\ \wedge \sum_{i=1}^3 a_{i,1} \le 500 \wedge \sum_{i=1}^3 a_{i,2} \le 600 \wedge \sum_{i=1}^3 a_{i,3} \le 300 \quad \wedge \\ \wedge \sum_{i=1}^3 a_{1,i} \le 700 \wedge \sum_{i=1}^3 a_{2,i} \le 500 \wedge \sum_{i=1}^3 a_{3,i} \le 300 \quad \wedge \\ \wedge a_{1,1} * 5 + a_{2,1} * 4 + a_{3,1} * 6 \le 1600 \quad \wedge \\ \wedge a_{1,2} * 5 + a_{2,2} * 4 + a_{3,2} * 6 \le 1800 \quad \wedge \\ \wedge a_{1,3} * 5 + a_{2,3} * 4 + a_{3,3} * 6 \le 1000 \end{cases}$$

Questão 8

Uma empresa produz componentes de tipo A, B e C. Sabe-se que a empresa pretende maximizar o lucro resultante da venda das peças. Formule este problema como um modelo de Programação Linear que pode incluir variáveis inteiras e/ou binárias.

A tabela seguinte contém para cada componente: o lucro resultante da sua venda e o número de horas que deve ser processada em cada uma das máquinas.

	Componentes				
	A	В	С		
Lucro	10	50	100		
M1 (h)	1	2	3		
M2 (h)	2	1	1		

- Por exemplo, o fabrico de uma componente B requer 2 horas na máquina 1 e 1 hora na máquina 2 sendo o seu preço de venda de 50.
- Cada componente deve ser obrigatoriamente processada em duas máquinas e sabe-se que cada máquina não trabalha mais do que 40 horas.
- Para fabricar uma componente B é necessário gastar uma componente A enquanto que, para fabricar uma componente C é necessário gastar uma componente B. Deste modo, as componentes A e B gastas no fabrico de outras componentes não podem ser vendidas.
- *i* (1:A, 2:B, 3:C)
- x_i numero de Componentes i vendidas

Lucro =
$$10 * x_1 + 50 * x_2 + 100 * x_3$$

$$\begin{cases} x_i \ge 0 \,\forall \, x_i & \land \\ \land (x_1 + x_2 + x_3) * 1 + (x_2 + x_3) * 2 + x_3 * 3 \le 40 & \land \\ \land (x_1 + x_2 + x_3) * 2 + (x_2 + x_3) * 1 + x_3 * 1 \le 40 & \end{cases}$$