Derivative

- Pricing and Valuation of Forward Commitments
- Valuation of Contingent Claims
- Derivative Strategies

Pricing and Valuation of Forward Commitments

Summary

- Forward
 - Long and short
 - o Contract price 合同价格
 - Stock, bond, interest, currency
 - o Contract value(long) 合同价值
- General

$$V = S - P(Benefit) + PV(Cost) - PV(FP)$$

$$V_t = \frac{FP_t - FP}{(1+R_f)^{T-t}}$$

- Equity Forward
 - Stock price and dividend (discrete and continuous)
- Bond Forward
 - o Bond price and coupon
 - Quotes are full prices
- Bond Futures (clean -> full -> clean)
 - Clean and full price (full = clean + accrued interest)
 - Quotes are clean prices: quoted current price and conversion ratio CF
 - Compound using full price
 - $\text{O Clean -> full (+AI}_0) \text{ -> future full (} \times \left(1+R_f\right)^T \text{FVC}_\text{T}\text{) -> future clean (-AI}_T\text{)-> future quoted } \left(\frac{1}{\text{CF}}\right)$
- FRA Forward LIBOR
 - Forward loan interest rate
 - Contract period
 - Begin: contract price (forward rate)
 - End: contract value (new contract price, difference, discount)
 - Loan period
- Currency Forward
 - Currency exchange rate
- Interest Rate Swap LIBOR
 - Swap fixed rate
- Currency Rate Swap LIBOR
 - Two interest rate swaps, linked by exchange rate, exchange principle
- Equity Swap LIBOR
 - o Fixed and equity: interest rate swap
 - o Equity for equity: difference in return

Long and short

- Long: Party who buy the financial or physical asset
- Short: party who will sell the financial or physical asset

Contract Price

- Price of underlying asset
 - o Interest rate, discount, yield to maturity, LIBOR, exchange rate

Contract Value

• at the inception (V=0)

o Forward: no money exchange

o Future: margin

After

Negative value owe money

No-Arbitrage Principle

- No riskless profit to be gained by a combination of forward contract position with positions in other assets
- Assumes
 - Transaction costs are zero
 - o No restrictions on the short sales or on the use of short sale proceeds
 - Borrowing and lending can be done in unlimited amounts at the risk-free rate of interest
- Forward price = price that prevents profitable riskless arbitrage in frictionless markets

Cost-of-Carry Model

• Zero-coupon bond

$$\circ \quad FP = S_0 \times \left(1 + R_f\right)^T$$

Arbitrage

- Hints
 - Starts with nothing: no cash and no securities
 - o Buy low sell high: Buy under-priced assets and sell overpriced assets
 - o Take **opposite** positions in the spot and forward markets
- Cash and carry forward contract is overpriced
 - o Forward contract is trade higher than expected
 - Borrow money -> buy bond -> short forward (sell bond in the future)
 - Today
 - Borrow money
 - Buy bond
 - Short forward
 - o Future
 - Settle forward: deliver bond
 - Replay loan
- Reverse cash and carry forward contract is under-priced
 - o Forward contract is trade **lower** than expected
 - Borrow bond -> short (sell) bond -> lend money -> long forward
 - Today
 - Borrow bond
 - Sell bond
 - Lend money (invest)
 - Long forward
 - o Future

- Settle forward: buy bond
- Deliver bond to close short position
- Receive investment proceeds

Day Count and Compounding

- LIBOR-based
 - o FRA, swaps, caps, floors
 - o 360 day per year and simple interest
 - $0 1 + \frac{day}{365} \times R_{annnual}$
- · Equities, bonds, currencies, and stock options
 - o 365 days per year and periodic compounding interest

$$\circ \quad (1 + R_{annual})^{\frac{day}{365}}$$

- Equity indexes
 - o 365 day and continuous compounding

$$\circ e^{\frac{day}{365} \times R_{annual}}$$

Equity Forwards – Discrete Dividend

- Dividend
 - o PVD₀: present value of dividend at time zero
 - o FVD_T : future value of dividend at time T
- Contract Price 合同价格

$$\circ FP = (S_0 - PVD_0) \times (1 + R_f)^T$$

$$\circ \quad FP = S_0 \times \left(1 + R_f\right)^T - FVD_T$$

- Contact Value at t 合同价值
 - $FP_t = (S_t PVD_t) \times (1 + R_f)^{T-t}$ 新的平衡价格
 - 在时刻 t, 按照开始的方式重新计算合同价格
 - $V_t = \frac{FP_t FP}{(1+R_f)^{T-t}}$ 新的价格和合同里的价格之差的折现

$$\circ V_t = S_t - PVD_t - \frac{FP}{(1+R_f)^{T-t}}$$

■ 当前价格,未来分红的折现,未来购买价格 FP 的折现

Equity Forwards – Continuous Dividend

- Dividend yield δ
- Compound Risk free rate R_f
- Continuous risk-free rate $R_f^c = \ln(1 + R_f)$
- Contract Price 合同价格(都需要用连续利率)

$$\circ FP = S_0 \times e^{\left(R_f^c - \delta\right) \times T} = S_0 \times e^{-\delta \times T} \times e^{R_f^c \times T}$$

Contract Value at t

$$\begin{aligned} \circ & FP_t = S_t \times e^{\left(R_f^c - \delta\right) \times (T - t)} \\ \circ & V_t = (FP_t - FP) \times e^{-R_f^c \times (T - t)} = \\ \circ & V_t = S_t \times e^{-\delta \times (T - t)} - FP \times e^{-R_f^c \times (T - t)} \end{aligned}$$

Fixed-income Bond Forwards

- Coupon-paying bond
- Compared to equity
 - Divided -> coupon
 - Stock price -> Full price
- Contract Price 合同价格

$$FP = (S_0 - PVC_0) \times (1 + R_f)^T$$

$$FP = S_0 \times (1 + R_f)^T - FVC_T$$

• Contact Value at t (long position)

o
$$FP_t = (S_t - PVC_t) \times (1 + R_f)^{T-t}$$
 新的平衡价格
o $V_t = \frac{FP_t - FP}{(1+R_f)^{T-t}}$ 新的价格和合同里的价格之差的折现
o $V_t = S_t - PVC_t - \frac{FP}{(1+R_f)^{T-t}}$

Fixed-income Bond Futures

- Delivery option
 - o Allow the **short** an option to deliver any of several bonds
 - Valuable to short
 - CTD: The underlying deliverable bond in a US Treasury futures contract consists of a basket of bonds from which the short position can deliver the cheapest bond
 - MtM: Long and short positions are marked to market each day. Therefore, the contract's market value at the end of each day is zero.
- Conversion factor
 - Each bond is given a conversion factor to adjust the long's payment at delivery so more valuable bonds receive a larger payment
 - o Multipliers for futures price at settlement
 - Long pays: quotes futures price * conversion factor
- Prices 价格
 - o quoted in clean prices 报价的永远是 clean 价格
 - o calculated using full prices 计算永远是 full 价格
- At settlement buyer pays full price

- $\circ \quad \text{accrued interes (AI)} = \frac{\text{days since last coupon payment}}{\text{days between coupon payment}} \times \text{Coupon}$
- o full price = clean price + accured interst
- Contract Price

$$\circ FP = (S_0 + AI_0) \times (1 + R_f)^T - FVC_T - AI_T$$

- Begin: $full\ price = S_0 + AI_0$
- End: AI_T accured interst
- Quoted **futures** price $QFP = \frac{FP}{CF}$
- Contract Price Steps (clean -> full -> future full -> future clean -> QFP)
 - \circ S_0 : quoted clean price
 - \circ $S_0^{full} = S_0 + AI_0$ 变成 full price
 - o $FP^{full} = S_0^{full} \times (1 + R_f)^T FVC_T$ 未来的 full price o $FP = FP^{clean} = FP^{full} AI_T$ 未来的 clean price

 - $QFP = \frac{FP}{CF} = \frac{FP^{clean}}{CF}$ 未来的报价
 - Quoted futures price

Forward Rate Agreement (FRA) 远期贷款利率

- LIBOR 简单利率
 - o 30/360, simple interest, add-on rate
- FRA (contract + loan)
 - Long: borrow money in the future
 - Fixed rate payer is long LIBOR
 - o Time: $t_1 \times t_2$ FRA
 - o **interest** rate $R_1 \times R_2$
 - Contract period: 0 → t₁ 合同期间(期初决定利率,期末结算)
 - Time 0: determine the contract price
 - Time t_1 : determine the **new contract** price, contract value, and settle
 - Loan period: t₁ → t₂ 贷款期间(期初决定利率,期末支付利息)
 - Interest rate is **based** on t₁ 利率是基于时刻t₁
 - Interest is paid at **maturity** t₂ 利息是在时刻t₂支付
- Contract price 合同开始:确定合同价格(远期利率)
 - 在时刻 0 决定. 从时刻t₁到时刻t₂的利率

- Although an FRA can be done in conjunction with a LIBOR deposit, it is not a requirement
- o the forward rate **R**

$$\begin{array}{l} \circ & (\mathbf{1} + \mathbf{R_1} \times \mathbf{t_1}) \times \left(\mathbf{1} + \mathbf{R} \times (\mathbf{t_2} - \mathbf{t_1})\right) = \mathbf{1} + \mathbf{R_2} \times \mathbf{t_2} \\ \circ & \mathbf{R} \times (\mathbf{t_2} - \mathbf{t_1}) = \frac{1 + \mathbf{R_2} \times \mathbf{t_2}}{1 + \mathbf{R_1} \times \mathbf{t_1}} - 1 \end{array}$$

$$\circ R = \frac{\frac{1 + R_2 \times t_2}{1 + R_1 \times t_1} - 1}{t_2 - t_1}$$

- Interest at $t_2 P \times R \times (t_2 t_1)$ 支付期间
- Contract value at Maturity 合同结束时:确定合同价值(结算)
 - o Time is now $t = t_1$
 - $\circ\quad$ New forward price is $\mathrm{R}_{\mathrm{t}_{1}}$ (t $_{2}-t_{1}$ month LIBOR forward rate)
 - Annual interest rate gain is $R_{t_1} R$

 - o interest gain at time $t = t_2$ is $P \times (R_{t_1} R) \times (t_2 t_1)$ o contract value at $t = t_1$ is $P \times \frac{(R_{t_1} R) \times (t_2 t_1)}{1 + R_{t_1} \times (t_2 t_1)}$ discount using the LIBOR
- Contract value before Maturity 合同开始到合同结束前 $(0 \le t < t_1)$
 - Time is now $0 \le t < t_1$
 - Calculate new forward price R_t
 - Given LIBOR $t_1 t$ and LIBOR $t_2 t$
 - Use the same method to calculate new contract price R_t
 - o Annual interest rate gain is $R_t R$

 - $\begin{array}{l} \circ \quad \text{interest gain at time t} = t_2 \text{ is } P \times (R_t R) \times (t_2 t_1) \\ \circ \quad \text{contract value at t is } P \times \frac{(R_t R) \times (t_2 t_1)}{1 + LIBOR_{t_2 t} \times (t_2 t)} \text{ discount using the LIBOR} \\ \end{array}$

gure 39.3: Illustration of a 2 × 3 FRA

Currency Forward

- price/base currency, home/foreign currency
- - $\circ \quad F_T = S_0 \times \frac{(1+R_p)^T}{(1+R_b)^T} \text{ price currency per base currency}$
 - o Tuse 365 day
- Contract Value
 - $O V_t = \frac{F_t F}{(1 + R_p)^{T t}} \times contract \ size \ (price \ currency)$
 - o Long side, will buy foreign currency and get price currency

Futures Contracts

- Futures
 - Trade on exchange
 - Exchange has a clearinghouse
 - Split each trade and act as the counterparty
 - Safeguard: post margin and settle daily
- Market to market
 - Adjust marginal balance each day for the change in the value of the contract from the previous trading day, based on the settlement price
- Similar
 - No value at initiation
- Difference: MtM
 - Market to market: value after adjustment is zero
 - Do not accumulate value changes over the term of the contract
 - Future price at any point
 - Makes the value of a new contract equal to zero
 - Value stay away from zero only between the times at which the account is marked to market
 - Value of futures contract = current futures price previous mark-tomarket

Interest Rate Swaps - Swap Rate - LIBOR

- **Parties**
 - o Fixed-rate payer (long): pay float and receive fixed 支付固定收浮动
 - o Float (short): pay fixed and receive float
 - o a swap contract through either a portfolio of underlying instruments or a portfolio of forward contracts.
- One IRS = n − 1 FRA 一个等价于多个远期利率协议
- Floating side 面值回归
 - 浮动方支付的现值永远是名义本金. 面值回归
 - $FV_{floating} = NP \times (1 + R_{floating}) \rightarrow$ $PV = \frac{FV_{floating}}{1 + R_{floating}} = NP$
- Floating Rate 每期利率浮动 LIBOR
 - o Based on LIBOR rate
 - o Discount factor $Z_t = \frac{1}{1 + LIBOR_t \times t} (t = \frac{days}{360})$
- Swap fixed Rate 固定互换利率
 - o fixed rate / swap rate / swap fixed rate
 - $PV = \sum_{t} \frac{c}{1 + LIBOR_{t} \times t} + \frac{1}{1 + LIBOR_{t} \times t} = \sum_{t} C \times Z_{t} + Z_{t} = 1 \rightarrow C = \frac{1 Z_{t}}{\sum_{t} Z_{t}}$ $\mathbf{SFR_{periodic}} = \frac{1 Z_{t}}{\sum_{t} Z_{t}}$ 每期的利率

 - SFR_{annual} = SFR_{periodic} × #periods 年华利率
- Contract Value on settlement days (fixed-rate payer) 新和旧的 SFR 之差
 - $\circ \quad V_t = (\sum_{i>t} Z_{i-t}) \times \sum_{i>t} (SFR_{new} SFR_{old}) \times \frac{days}{360} \times Principal$
 - Use new discount rate

- For future periods
- Discount factor for the remaining periods
- $\circ V_{t} = (\sum_{i>t} Z_{i-t}) \times \sum_{i>t} (SFR_{periodic} SFR_{periodic}) \times Principal$
- Contract Value PV fixed and floating 老方法
 - o $PV(\text{fixed}) = \sum_{i>t} Z_{i-t} \times SFR_{old} \times \frac{days}{360} \times Principal$
 - 以前支付的钱,在新的折旧利率下的值
 - o $PV(\text{floating}) = Z_{i-1} \times \left(1 + f_1 \times \frac{days}{360}\right) \times Principal$
 - 用以前浮动利率来算 coupon
 - 用新的利率来折旧

Currency Swaps

- 原则
 - 当成两个独立的<mark>利率互换</mark>,把双方通过<mark>汇率</mark>匹配一起,要交换本金
 - 互相作为交易对手, 收本国货币的固定利率
 - Two currency swaps, there are two yield curves and two swap fixed rates, one for each currency
 - o Principal amount must be adjusted for the current exchange rate
- Combination
 - o Pay fixed and receive fixed 最复杂
 - Pay fixed and receive floating
 - Pay floating and receive fixed
 - o Pay floating and receive floating 不需要定价
- 步骤
 - 交换本金
 - 支付利息
 - 。 返回本金
- 2种货币, 先当成 2个 IRS, 然后连接
 - 。 对于一种货币
 - 知道浮动利率 LIBOR. 算出等价的**固定利率**
 - 这就是借款人需要**定期**支付的利息
 - 然后把 2 种货币连接起来, 互相交换
 - 每种货币自己是收到固定利率,floater payer fixed receiver,然后互相作为对手
- Contract Price Base currency 出借浮动利率,收到固定利率 fixed rate receiver
 - Lend principal in base currency
 - o Receive **fixed cash** flow in base currency 算出SFR_b
 - Receive principal in base currency
- Contract Price Price currency 出借浮动利率. 收到固定利率 fixed rate receiver
 - Lend principal in price currency
 - \circ Receive **fixed cash** flow in price currency SFR_n
 - o Receive principal in price currency
- Contract Price Link
 - o Price currency 支付 base 汇率利息,收到自己的利息

- Receive SFR_p, pay SFR_b
- o Base currency 支付对方,收到自己
 - Receive SFR_b, pay SFR_p
- Contract Value
 - 会给定新的折现利率和汇率
 - 对于每种货币,先分别算出余下的现金流(<mark>利息和本金</mark>),用新的利率 折旧,计算出价值
 - $V_t = \sum_{i>t} Z_{i-t} \times SFR \times \frac{days}{360} \times Principal + Z_{T-i} \times Principal$
 - 折旧Z的时间点是支付时间和当前时间之差
 - 不用算新的 SFR、假定不变
 - 最后按照新的汇率把一种货币价值转换成另一种货币价值

Equity Swaps

- Contract Price
 - o SFR
- Float pay for equity
 - o No need
- Fixed pay for Equity
 - o Fixed rate payer: value is discounted cash flow
 - Equity index value $V_1 = V_0 \times (1 + R) \rightarrow R = \frac{V_1}{V_0}$
- Equity for equity
 - o A for B
 - \circ Returns are R_A and R_B
 - o Value for A is $V_0 \times (R_B R_A)$

Valuation of Contingent Claims

Summary

Binomial Model - Valuation

- o Two approaches
 - expectation approach and arbitrage approach
- Stock Option
 - One-period and two periods
 - European and American Options
- Call-Put Parities
 - C+PV(X)=P+S, synthetic and arbitrage
- Interest Rate Option
 - Up and down probability are 0.5
- o Arbitrage Approach
 - Hedge ratio (number of stocks per option)

• BSM

- Stock
- Stock with dividend
- Currencies

Black Model

- Futures
- Interest Rate Option
- Swaps: swaptions interest rate swap
- Option Greeks and Implied Volatility
- Dynamic Hedging Delta Neutral (1/delta)
- Gamm Risk

Binomial Model Valuation

- Returns
 - o Up return R_u
 - o Down return R_d
 - \circ Risk free return R_f

Move Factor

- o Up factor $U = 1 + R_u$
- o Down factor $D = 1 + R_d$
- Risk free factor $1 + R_f$
- o If only give up or down, then
 - $\mathbf{U} \times \mathbf{D} = \mathbf{1}$

Probability

- $\bigcirc \quad \text{Move up } \mathbf{p_u} = \frac{R_f R_d}{R_u R_d} = \frac{1 + R_f D}{U D}$
- o Move up $p_d = 1 p_u$
- Stock Price
 - Initial stock price S₀
 - Up price $S^+ = S_0 \times U$
 - o Down price $S^- = S_0 \times D$
- Option Value Call option
 - \circ Up price $C^+ = \max(0, S^+ K)$

- o Down price $C^- = \max(0, S^- K)$
- Option Value Put option
 - Up price $P^+ = \max(0, K S^+)$
 - O Down price $P^- = \max(0, K S^-)$
- Weighted future Value

$$\circ \quad V = \mathrm{p_u} \times \mathrm{V^+} + p_d \times V^-$$

Value

$$\circ V_0 = \frac{V}{(1+R_f)^t}$$

Call-Put Parity

•
$$C - P = S - PV(K) = S - \frac{K}{(1+R_f)^T}$$

- T = actual days / 365
- PV(K) + C = S + P
- Fiduciary call PV(K) + C
 - Hold a bond and call option -> can gain more in up
- Protective put S + P
 - Hold a stock and a call option -> can loss less in down
- Synthetic Replication
- Arbitrage
 - o Buy low sell high
 - Market vs replication

European and American Options

- European Options
 - o Compute option value at the **last** node and then discount
- American Options
 - o Compute option value at every node, and decide whether to exercise
- Early Exercise: dividend-paying call and deep-in-the-money put
 - Call option
 - No dividend -> not valuable
 - Dividend -> possible (right before the dividend pay-out)
 - o Put
 - Deep in the money (close to zero) -> valuable
- Early Exercise: capture intrinsic value
 - Capture intrinsic value and ignore time value
 - Intrinsic value can be invested at risk free rate, but interest earned is usually less than time value
 - Deep-in-the-money put, upside is limited, and intrinsic interest can exceed time value

Binomial Model - Arbitrage Approach - Hedge Ratio

- Portfolio Delta = 0 w.r.t stock price
 - o $\Delta Call > 0$, $\Delta put < 0$, $\Delta stock = 1$
 - Call: Δportfolio = Δ call h Δ stock = 0 → h = $\frac{\Delta$ call}{\Deltastock = Δ

- Put: Δportfolio = Δput + hΔstock = 0 → h = $\frac{-\Delta put}{\Delta stock}$ = $-\Delta$
- o Call is better than put (earn premium than pay premium)
- Call option (buy option sell stock or short option buy stock)

$$\circ \quad h = \frac{C^+ - C^-}{S^+ - S^-}$$

- Arbitrage
 - o ending portfolio value is the same regardless of up or down move
- if option is overpriced
 - o begin
 - borrow money V₀ 借钱
 - buy stock and sell option 买股票,卖期权
 - portfolio value is $V_0 > 0$
 - ending
 - portfolio value $V^+ > 0$
 - pay $V_0 \times (1 + R_f)^T$
 - profit is $V^+ V_0 \times (1 + R_f)^T$
 - o Present value

$$\qquad \text{Profit} \, \frac{V^+ - V_0 \times (1 + R_f)^T}{(1 + R_f)^T} = \frac{V^+}{(1 + R_f)^T} - V_0 = \frac{h \times S^+ - C^+}{(1 + R_f)^T} - (h \times S_0 - C_0)$$

Arbitrage Pricing

$$\circ \quad \frac{h \times S^+ - C^+}{(1 + R_f)^T} - (h \times S_0 - C_0) = 0 \to C_0 = h \times S_0 + \frac{h \times S^+ - C^+}{(1 + R_f)^T}$$

Status	Stock	#stocks	Option	Portfolio Value	Present value
			Value	(long stock short option)	
Initial	S_0	h	C_0	$h \times S_0 - C_0$	$V_0 = h \times S_0 - C_0$
up	S ⁺	h	C+	$h \times S^+ - C^+$	$V_0 = h \times S_0 - C_0$ $PV^+ = \frac{h \times S^+ - C^+}{}$
					$\left(1+R_f\right)^T$
down	S ⁻	h	C-	$h \times S^ C^-$	$h \times S^ C^-$
					$PV = \frac{1}{\left(1 + R_f\right)^T}$

Binominal Interest Rate Trees

- risk neutral
 - o probability of move up and move down are 0.5
- interest rate at each node: one-period forward rate

Interest Rate Options 利率期权

- LIBOR Arrears
 - o interest rate is determined at the beginning 利率开始决定
 - o interest is paid at the end, but interest can be changed using option 利率计算利息,期权可以改变利息
 - o interest is discounted using the beginning interest rate 利率用来折旧
- call option cap
 - o payoff = notional principal \times max(0, reference rate ecercise rate)
 - o Borrower has an interest rate cap 借款利息不会高于行权值
- put option

- o payoff = notional principal \times max(0, ecercise rate reference rate)
- lender has an interest rate floor 投资利息不会低于行权值
- just change stock price -> interest (interest rate * principal)
 - 把股票价格换成利息即可

BSM Assumptions

- Continuous time
- Asset price follow geometric Brownian motion process
- Asset return follows a lognormal distribution
- Logarithmic continuously compounded return is normally distributed
- Volatility of asset return is constant and known
- Markets are frictionless
 - No tax, no transaction cost, no restrictions on short sales
 - Continuous trading, no arbitrate
- The asset yield is constant
- Options are European options

Stock Options

- $C P = S X \times e^{-r \times T}$
- $C_0 = S \times N(d_1) X \times e^{-r \times T} \times N(d_2)$ 用钱买股票
 - o Buy N(d₁) stocks using $X \times e^{-r \times T} \times N(d_2)$ of borrowed funds
 - A short position in $N(d_2)$ bonds
 - 借钱买股票或者发行债券买股票
 - N(d₁) 到期前股票大于行权价格的概率
 - N(d₂) 到期日股票大于行权价格的概率
 - N(x)是累计概率分布
- $P_0 = C_0 S X \times e^{-r \times T} = X \times e^{-r \times T} \times N(-d_2) S \times N(-d_1)$
 - o Short $N(-d_1)$ stocks, and long $N(-d_2)$ bonds
 - 卖股票买债券,出借钱

•
$$d_1 = \frac{\ln\left(\frac{S}{X \times e^{-r \times T}}\right) + \frac{\sigma^2}{2}T}{\sigma\sqrt{T}} = \frac{\ln\frac{S}{X} + \left(r + \frac{\sigma^2}{2}\right) \times T}{\sigma\sqrt{T}}$$

- $d_2 = d_1 \sigma \sqrt{T}$
- $N(-d_1) = 1 N(d_1)$

Stock Options with Dividend

- $C P = S \times e^{-\delta \times T} X \times e^{-r \times T}$
- $C_0 = S \times e^{-\delta \times T} \times N(d_1) X \times e^{-r \times T} \times N(d_2)$ $P_0 = X \times e^{-r \times T} \times N(-d_2) S \times e^{-\delta \times T} \times N(-d_1)$

$$\bullet \quad \mathbf{d}_1 = \frac{\ln\left(\frac{S \times e^{-\delta \times T}}{X \times e^{-r \times T}}\right) + \frac{\sigma^2}{2}T}{\sigma \sqrt{T}} = \frac{\ln\frac{S}{X} + \left(r - \delta + \frac{\sigma^2}{2}\right) \times T}{\sigma \sqrt{T}}$$

- 因此
 - \circ 把S替换成 $S \times e^{-\delta T}$
 - 在计算 d_1 时,r替换成 $r \delta$

Currencies Options – pricing currency and interest on base currency

- Exchange rates
 - \circ Spot rate is S_0
 - o Future rate is X
- Derive Process
 - In the future, use *X* to exchange 1 base currency
 - X price currency worth $X \times e^{-r_p \times T}$ now
 - o 1 base currency worth $e^{-r_b \times T}$ in base currency, and it worth $S_0 \times e^{-r_b \times T}$ in price currency now
- $C_0 = S \times e^{-r_b \times T} \times N(d_1) X \times e^{-r_p \times T} \times N(d_2)$ $P_0 = X \times e^{-r_p \times T} \times N(-d_2) S \times e^{-r_b \times T} \times N(-d_1)$
- 技巧
 - \circ 可以把 r_p 当成分红,但其实是 interest earned on the foreign currency

Status	Price/home	Base/foreign	Notes
Now	$S_0 \times e^{-r_b \times T}$	$e^{-r_b \times T}$	推导
	$X \times e^{-r_p \times T}$		
future	X	1	给定

Future Options – Black Model

- The price is the **future** price $S = F_T \times e^{-r \times T}$
- $C_0 = S \times N(d_1) X \times e^{-r \times T} \times N(d_2) = e^{-r \times T} (F_T \times N(d_1) X \times N(d_2))$ $d_1 = \frac{\ln\left(\frac{F \times e^{-r \times T}}{X \times e^{-r \times T}}\right) + \frac{\sigma^2}{2}T}{\sigma\sqrt{T}} = \frac{\ln\frac{F_T}{X} + \frac{\sigma^2}{2} \times T}{\sigma\sqrt{T}}$
- 技巧:可以把分红利率考虑成 risk free rate r

Interest Rate Options – actual/365 convention

- Options on forward rates (FRA)
- FRA uses 30/360, but options on FRA uses actual/365 convention
- m × n forward
- $C_0 = e^{-r \times T} (S \times N(d_1) X \times N(d_2)) \times \frac{actual}{365} \times notional principal$
 - o $actual\ period = \frac{actual}{365} = \frac{(n-m)\times 30}{365}$ the loan periods
 - $T = \frac{n \times 30}{360}$ to the beginning of the time

IRO - Combinations

- Long interest rate call and a short interest rate put -> long FRA
 - A forward contract: fixed rate payer
- A series of interest rate call options with different maturities and the same exercise price -> interest rate cap
- Interest rate floor: a series of interest rate put
- Cap and floor with the same exercise rate -> payer swap

Swaptions - option on interest rate swap

- On option that give the holder the right to enter an interest rate swap
- Payer swaption

- o Option to be a fixed-rate payer 支付固定收浮动
- o A call option on floating swap 浮动利率上涨好
- A put option on a coupon bond 债券看跌
- Receiver swaption
 - o Option to be a fixed-rate receiver 支付浮动收到固定
 - o A call option on a coupon bond
 - o A put option on floating swap 浮动利率下降好
- Swaption
 - An option on a series of cash flows (annuity)
 - One for each settlement date of the swap, equal to the difference between exercise rate on the swaption and the market swap fixed rate
- Payer swaption 未来现金流之差,再折现
- pay = $PVA \times (SFR \times N(d_1) X \times N(d_2)) \times AP \times notional principal$
 - o $PVA = \sum_{i} Discount \ Factor_{i}$ present value of such an annuity, 折现之和
 - $\circ \quad AP = actual \ period = \frac{1}{\textit{\#settlement period per year}}$
 - o SFR current market swap annual fixed rate
 - o Discount using risk-free rate
 - Swaption time to expire is m for a m*n forward rate
- X exercise rate specified in the payer swaption
- receiver = $PVA \times (X \times N(-d_2) SFR \times N(-d_1)) \times AP \times notional principal$

Equivalencies

- Convert Rule
 - Swaption: payer -> call
 - Swaption: receiver -> put
 - Swap: payer -> S
 - Swap: receiver -> -S
- payer swap (S)
 - a long payer swaption (c)
 - o a short receiver swaption (-p)
 - o with the same exercise rates
- receiver swap (-s)
 - long receiver swaption (p)
 - o a short payer swaption (-c)
 - o with the same exercise rates
- long callable bond
 - a long option-free bond
 - a short receiver swaption

Option Greeks - Delta - Slope

- $\Delta = \frac{\Delta \text{option price}}{\Delta \text{stock price}}$
- Call: positive, put: negative
- Call-put parity

$$\circ \quad \Delta_{\text{call}} - \Delta put = 1$$

• $\Delta_{\text{call}} = e^{-\delta \times T} \times N(d_1), \Delta_{put} = -e^{-\delta \times T} \times N(-d_1)$

$$\circ \quad \Delta_{\text{call}} - \Delta put = e^{-\delta \times T}$$

- Call
 - \circ Deep out of money: $\Delta = 0$
 - Deep in the money: $\Delta = 1$
 - At the money: $\Delta \approx 0.5$
- put
 - Deep out of money: $\Delta = 0$
 - Deep in the money: $\Delta = -1$
- Call option with no dividend
 - Stock price increase, out -> in, then delta 0->1
- · Put option with no dividend
 - O Stock price increase, in -> out, then delta -1 -> 0

Option Greeks - Gamma - Curvature - Convex - Positive

- Rate of change in delta
- Convex: always positive
- Moneyless
 - At the money -> largest
 - o Deep in- or out- money -> 0
- $\Delta P \approx \Delta \times \Delta S + \frac{1}{2} \times Gamma \times \Delta S^2$

Option Greeks - Vega - Positive

- Change in volatility
- 高波动、高收益

Option Greeks - Rho

- Change in risk free rate
- Call: positive
- Put: negative

Option Greeks - Theta - Negative

- Passage of time (0 -> current time t) 开始到当前时刻
- time-to-maturity (current time t -> exercise date T) 当前到行权
- Time decay
 - Speculative value decline

- It is negative, value decrease
- Deep in-the-money put option may actually increase in value
- Notes
 - Option value and time-to-maturity: positive
 - Long maturity has higher value
 - Option value and passage of time: negative
 - As time passes and option approaches maturity, value decay

Sensitivity Factor (Greek)	Input	Calls	Puts
Delta	Asset price (S)	Positively related Delta > 0	Negatively related Delta < 0
Gamma	Delta	Positive Gamma > 0	Positive Gamma > 0
Vega	Volatility (σ)	Positively related Vega > 0	Positively related Vega > 0
Rho	Risk-free rate (r)	Positively related Rho > 0	Negatively related Rho < 0
Theta	Time to expiration (T)	Time value \rightarrow \$0 as call \rightarrow maturity Theta < 0	Time value \rightarrow \$0 as put \rightarrow maturity Theta $< 0*$
	Exercise price (X)	Negatively related	Positively related

Dynamic Hedging - Delta-neutral

- Hege stock price risk
 - o portfolio value does not change when stock price change
 - o one option contract = 100 options
- Call option
 - Combine a stock with a short position in call
 - 1 stock should **sell** $\frac{1}{\Delta \text{call}} = \frac{1}{N(d_1)}$ option
 - Positive Gamma Risk
- Put options
 - Combine a stock with a long position in put
 - \circ 1 stock should **buy** $-\frac{1}{\Delta \text{put}} = -\frac{1}{\Delta \text{call}-1} = \frac{-1}{N(d_1)-1}$ option
 - because put delta is negative
 - Negative Gamma Risk
- Drawback
 - o Risk free only for small change in stock price
 - Must be continually rebalanced to maintain the hedge
 - Significant transaction costs

Gamma Risk

- BSM assumptions hold -> no abrupt change -> no gamma risk
- Gamma risk: risk of abruptly jump in price
 - o Leaving a delta-hedged portfolio unhedged
- Long stock and short call
 - Stock price drop abruptly
 - o Stock: Delta 1, gamma: 0

o Portfolio: negative gamma

Implied Volatility

- Derived from market price
- If future implied volatility increase, option value will increase
- Gauge market perceptions

Derivative Strategies

Summaries

- Application
 - o Hedge Modify risk and return
 - Swap: exchange 交换
 - Future: change 改变
 - Synthetic Asset
 - C P = S PV(X)
- Strategy
 - Covered call
 - Protective put
 - o Bull spread
 - o Bear spread
 - Straddle
 - o Collar
 - o Calendar spread

Hedge - Risk and Return Profile

- Interest rate swaps
 - Modify duration
 - o payer swap value = floating rate value fixed rate value
 - \circ Duration_{fixed} > Duration_{floating}
 - Payer swap has negative duration
 - o If future interest will increase?
 - Interest increase, price decrease, decrease duration, use payer swap
- interest rate future 改变(long 增加 Duration, short 减少 Duration)
 - o modify **duration** of a portfolio
 - o future interest rate decline -> buy future -> increase duration
 - o sell future -> decrease duration
- Currency swaps
 - Use the **relative advantage** in borrowing from own market than foreign market
- Currency Futures
 - o Hedge an asset or liability in a foreign currency
 - US company has a euro liability, worry about euro appreciating
 - Purchase euro futures
- Equity Swaps 互换风险
 - o Exchange equity return for another asset return
 - Reduce equity exposure
 - Temporarily without liquidating holdings
 - Total return swap (TRS)
- Stock Index Futures
 - Change the exposure of equities
 - Rotate out equities
 - Short future contracts

- Rotate money out of bonds and into equities
 - Long future contracts
- Foreign Currency Options
 - Hedge existing asset or liability denominated in a foreign currency
 - o US company has a euro liability, worry about euro appreciating
 - Long call options on euros
 - o **Options** are better than futures in managing downside risk
 - The only risk the premium paid

Synthetic with Options

- C p = S PV(k)
- Synthetic Stock
 - Long call + short put = long stock
 - Long put + short call = Short stock
 - At the money: Strike price = current market price
- Synthetic Puts and calls
 - Long stock + long put = Long call
 - Long call + short stock = Long put

Synthetic with Forwards/Futures

- Synthetic Stock using
 - risk-free asset + long futures = long stock
 - 无风险资产+购买远期=股票
- Synthetic Cash/Risk-free
 - Long stock + short futures = risk-free asset
 - 持有股票+卖掉远期=无风险资产

Hedging – Discussion

- Fixed-income duration
 - Use interest rate swap or futures
- Reduce equity exposure
 - Both a short futures and a synthetic short (with options)

Option Strategy - Covered call (等价于-put)

- Covered call = Long stock + short call
- Properties
 - Stock price increase -> sell stock -> earn income
 - Stock price decrease -> Earn premium
- When to use
 - o Price slower increase 看涨
 - o Limit gain 止盈
 - o Continuous write 连续发行,增加 total return
- Objective
 - o Income generation out-of-money call -> premium
 - Write Out of money call

- If the price of the underlying will remain flat (will not increase above the call exercise price). The option premium is considered to be income
- However, the investor gives up all gains above the exercise price.
- o Improve the market in-the-money call Premium > (S-K)
 - Stock seller can sell at a better price with in-the-money call
 - Premium > (S-K)
 - Stock price at 50 with exercise price 45, but trading for 8
 - premim:8 = Intrinsic value: 5, time value: 3
 - earn time value
- Target price realization out-of-money
 - Stock price at 50, strike at 55, premium 2
 - Continue revise price
- Profit & Loss
 - o Initial investment $S_0 C_0$
 - Value at expiration $S_T \max(0, S_T X) = \min(X, S_T)$ 最小值
 - o Profit at expiration $min(X, S_T) (S_0 C_0)$
 - o Maximum gain $X (S_0 C_0) = C_0 + X S_0$ 被行权
 - $S_T = X$
 - Maximum loss S₀ C₀ 也是初始成本,全部亏光
 - $S_T = 0$
 - Breakeven point S₀ C₀ 就是初始成本, 0 利润
 - $S_{\rm T} = S_0 C_0$

Option Strategy - Protective Put (等价于 call)

- Protective put = Long stock + long put
- Long put -> Insurance policy
 - Deductible: S₀ X (exercise the put) 可亏损金额
 - o Premium: P₀
 - o Reduce premium by increasing deductible
 - Deductible 越大,发生的概率就越小,因此便宜
 - o Reduce premium by buy OTM put
- Profit & Loss
 - o Initial investment $S_0 + P_0$
 - Value at expiration $S_T + \max(0, X S_T) = \max(X, S_T)$ 最大值
 - o Profit at expiration $max(X, S_T) (S_0 + P_0)$
 - Maximum gain $S_T (S_0 + P_0) = +\infty$ 不行权
 - o Maximum loss $S_0 + P_0 X$ 行权,初始成本全部亏了,不过有 X 收入
 - $S_T = 0$
 - o Breakeven price $S_0 + P_0$ 就是初始成本,0 利润
 - $S_T = S_0 + P_0$
- Risk
 - o Premium reduce total return
 - o Consistently insuring will reduce return

•

Delta

- Δ stock = Δ forward = 1
- Δ covered call = $1 \Delta call = -\Delta$ put
- Δ protective put = $1 + \Delta put = \Delta call$

Cash-Secured Puts 看涨

- Hold cash + short put
- Receive premium, but takes the downside
- Same with covered call
- S-C = P+PV(X)

Spread

- Long and short of the same type of option
- 对一种期权的买和卖
- They differ in exercise price or maturity
- Bull spreads
 - Higher price in the future
 - o Calls or puts where 买入低行权价格,卖出高行权价格
 - long option exercise price < short option exercise price
- bear spreads
 - Lower price in the future
 - o Calls or puts where 买入高行权价格,卖出低行权价格
 - long option exercise price > short option exercise price

Bull Call Spread - pay premium and earn price

- buy a lower exercise price call and write a higher price call
- limited upside and limited downside
- gain when price increase
- exercise price: X_L < X_H 买低卖高
- premium: $C_L > C_H$ 行权价格越高越便宜
- Initial investment C_L − C_H
- Value at expiration $\max(0, S_T X_L) \max(0, S_T X_H)$
- Profit at expiration
- Maximum gain X_H − X_L − (C_L − C_H) 都行权
- Maximum loss C_L C_H初始成本全部亏了,都不行权
- Breakeven price X_L + C_L − C_H − 个行权, 一个不行权

Bear Call Spread – earn premium

- buy a higher exercise price call and write a lower price call
- Limited upside and downside
- Gain when price decrease
- exercise price: X_L < X_H 卖低买高
- premium: $C_L > C_H$ 行权价格越高越便宜
- the counterparty to bull call spread

Bear Put Spread

- buy a higher exercise price put and write a lower price put
- limited upside
- exercise price: X_L < X_H 买高卖低
- premium: *P_L* < P_H 行权价格越高越贵
- Initial cost P_H P_L 期权费
- Value at expiration $max(0, X_H S_T) max(0, X_L S_T)$
- Profit at expiration
- Maximum gain X_H − X_L − (P_H − P_L) 都行权
- Maximum loss $P_H P_L$ 初始成本全部亏了,都不行权
- Breakeven price X_H − (P_H − P_L)个行权, 一个不行权

Spreads 技巧(会画图)

- Bull 买低卖高
 - o inverted Z style
 - o long low, short high
- bear 买高卖低
 - o Z style
 - Long high, short low
- earn stock return, reduce cost 顺势赚回报
 - o bull call, bear put
- earn premium, reduce risk 逆势赚期权费
 - o bull put, bear call
- bull call earn stock return
 - o long low, short high
 - o earn stock return, reduce cost
- bull put
 - o long low, short high
 - o earn premium, reduce risk
- bear put earn stock return
 - o long high, short low
 - o earn stock return, reduce cost
- bear call
 - o long high, short low
 - o earn premium, reduce risk

	Call	Put	Notes
Bull	Long low & Earn return	Long low & Earn premium	Long low short high, inverted Z-payoff
			curve
Bear	Long high & Earn premium	Long high & Earn return	Long high short low,
			Z-payoff curve
	Earn return & reduce cost	Earn premium & reduce	
		risk	

Risks of spreads

- upside and downside are limited
- chopping off the tails

Collar (stock + p - c) 和 bull call 图形一样

- combines protective put and covered call -> similar to a spread
- decrease the volatility of investment returns
- own stock, buy a protective put, and sell a call to offset the put premium
- if the two premiums are equal -> zero-cost collar
- usually put strike is less than put strike $X_L < X_H$
- put a band around the possible returns of a long stock returns
- stock price
 - $\circ > X_H \rightarrow loss$
 - \circ $\langle X_L \rightarrow gain (protective put)$
 - Others
- $X_L = X_H = X \rightarrow locked in profit or loss of X S_0$
- Initial cost $S_0 + P C$ 期权费
- Value at expiration $S_T + max(0, X_L S_T) max(0, S_T X_H)$
- Profit at expiration
- Maximum gain X_H − S₀ − (P − C) call 行权
 - Stock return
- Maximum loss $S_0 X_L + P C$ 初始成本全部亏了,put 行权
- Breakeven price S₀ + P C 都不行权,覆盖成本

Straddle

- Expect a large price move but unsure of the direction
- Neutral on market direction, but expect large volatility
- Long straddle
 - Long call and long put on the same stock with the same strike price

- Loss if price does not change much
- Short straddle
 - Short call and short put on the same stock with the same strike price
 - Gain if price does not change much
- Long straddle
 - Initial cost *P* + *C* 期权费
 - Value at expiration $\max(0, X S_T) + \max(0, S_T X)$
 - Profit at expiration
 - Maximum gain unlimited
 - Maximum loss *P* + *C*初始成本全部亏了
 - Breakeven prices $S_0 + P + C$ 或者 $S_0 (P + C)$

Calendar Spread

- Two call option on the same stock with the same exercise price but different maturities
- Long calendar spread
 - Short near-dated and long longer-dated call
 - Longer-dated premium > short-dated premium -> initial outflow
 - Stock price will be flat in near term but is poised to break out in the longer term
 - the expectation is that a price move is not **imminent**. That is, the expectation is for an upward price move but after a lag.
 - The trader attempts to capture the decay in time value by selling the near-dated call option and buying the long-dated call option with the same strike price. If the price does not move up immediately as the trader expects, the near-dated call option will expire worthless and the trader will capture the time value.

Investment Objective

- Market direction
 - Strong bullish (bearish) -> long calls (puts)
 - Average bullish (bearish) -> long calls and short puts (write calls and buy puts)
 - Weak bullish (bearish) -> write puts (calls)
- Future volatility
 - Increased volatility -> long straddle

		Direction		
		bullish	Neutral	bullish
Volatility	High	Buy calls	Buy straddle	Buy puts
	Average	Buy calls & write puts	Spreads	Buy puts & write calls
	low	Write puts	Write straddle	Write calls

Breakeven Price Analytics

• The annual volatility needed to break even over the number of trading days

$$\sigma_{\rm annual} = \frac{\% \Delta P}{\sqrt{t}} = \% \Delta P \times \sqrt{\frac{252}{trading\ days\ until\ maturity}}$$

$$\circ \ \% \Delta P = \frac{|break\ even\ price-current\ price|}{current\ price}$$

$$\circ \ t = \frac{trading\ days\ until\ maturity}{252}$$