UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE CIÊNCIAS E TECNOLOGIA DEPARTAMENTO DE ENGENHARIA ELÉTRICA

DISCIPLINA: CIRCUITOS ELÉTRICOS I Data: _____

DISCIPLINA. CIRCUITOS ELETRICOS I	Data
Aluno(a):	

Avaliação 1º Estágio

1 - Para o circuito da figura 1, complete os espaços na tabela de modo que a LKC e a

LKT sejam satisfeitas. O Elemento "E" é uma resistência de $2,5\Omega$. (3.0)

Matrícula:

Elemento	Tensão	Corrente	Potência
	(V)	(A)	(W)
A			15
В	10		
С		0	
D	8		
E			10
F			
G	2		
Н		2	
Ι		3	

Figura 1

- 2 Para o circuito da figura 2, determine:
- 2.1 As equações de corrente dos nós essenciais relativas a análise pelo método das tensões de nó. O nó cuja tensão de nó é "v_e" deve ser definido como nó de referência (1.0);

va:			
v _b :			
v _c :			
·			

2.2 – As Expressões para cada uma das correntes que integram as equações do item 2.1 em termos das respectivas tensões dos nós essenciais (1.5);

ia:	; i _b :	; i _c :	;
i_d :	; i _e :	i_g :	

Figura 2

- 2.3 Os valores das tensões de nó v_a , v_b , v_c , e v_d . Os valores dos resistores são: $R1=R5=10\Omega$, $R2=R4=20\Omega$, $R3=5\Omega$ e $R6=2\Omega$ (1.0)
- 2.4 A resistência equivalente vista pelas fontes de corrente de 2A e 4A, se as mesmas estiverem fornecendo energia. (0.5)
- 3 Para o circuito da figura 2, considerando os valores dos resistores indicados no item 2.3, responda:
- 3.1 Determine o circuito equivalente Thévenin e circuito equivalente Norton, visto dos terminais do resistor R6; (2.5)
- 3.2 O resistor R6 dissipa máxima potência? Justifique (0.5)

UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE CIÊNCIAS E TECNOLOGIA DEPARTAMENTO DE ENGENHARIA ELÉTRICA

DISCIPLINA: CIRCUITOS ELETRI	COS I	Data:
Aluno(a):		

Avaliação 1º Estágio

1 – Para o circuito da figura 1, complete os espaços na tabela de modo que a LKC e a LKT sejam satisfeitas. O Elemento "E" é uma + ve -

resistência de $2,5\Omega$. (3.0)

Elemento	Tensão	Corrente	Pot.(W)
	(V)	(A)	
A			15
В	10		
С		0	
D	8		
Е			10
F			
G	2		
Н		2	
I		3	

Figura 1

- 2 Para o circuito da figura 2, determine:
- 2.1 As equações de corrente dos nós essenciais relativas a análise pelo método das tensões de nó. O nó cuja tensão de nó é "v_e" deve ser definido como nó de referência (1.0);

v _a :	 	
V _b :		
v _c :		
V _d :		

2.2 – As Expressões para cada uma das correntes que integram as equações do item 2.1 em termos das respectivas tensões dos nós essenciais (1.5);

1a:	; 1 _b :	; 1 _c :	;
:			
Id.	, le.	, Ig.	

- 2.3 Os valores das tensões de nó v_a , v_b , v_c , e v_d .Os valores dos resistores são: $R1=R5=10\Omega$, $R2=R4=20\Omega$, $R3=5\Omega$ e $R6=2\Omega$ (1.0)
- 2.4 A resistência equivalente vista pelas fontes de corrente de 2A e 4A, se as mesmas estiverem fornecendo energia. (0.5)
- 3 Para o circuito da figura 2, considerando os valores dos resistores indicados no item 2.3, responda:
- 3.1 Determine o circuito equivalente Thévenin e circuito equivalente Norton, visto dos terminais do resistor R6; (2.5)
- 3.2 O resistor R6 dissipa máxima potência? Justifique (0.5)

UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE CIÊNCIAS E TECNOLOGIA DEPARTAMENTO DE ENGENHARIA ELÉTRICA

DISCIPLINA: CIRCUITOS ELÉTRICOS I Data:	
---	--

DISCIPLINA. CIRCUITOS ELETRICOS I	Data.	
Aluno(a):		

Avaliação 1º Estágio

1 – Para o circuito da figura 1, complete os espaços na tabela de modo que a LKC e a

LKT sejam satisfeitas. O Elemento "E" é uma resistência de $2,5\Omega$. (3.0)

Matrícula:_

Elemento	Tensão	Corrente	Potência
	(V)	(A)	(W)
A			15
В	10		
С		0	
D	8		
Е			10
F			
G	2		
Н		2	
Ι		3	

Figura 1

- 2 Para o circuito da figura 2, determine:
- 2.1 As equações de corrente dos nós essenciais relativas a análise pelo método das tensões de nó. O nó cuja tensão de nó é "ve" deve ser definido como nó de referência (1.0);

va:			
v _b :		 	
v _c :			
Vd:			

2.2 – As Expressões para cada uma das correntes que integram as equações do item 2.1 em termos das respectivas tensões dos nós essenciais (1.5);

i _a :	;	i _b :;	i _c :;	,
ia·		i _o · ·	i _a ·	

- 2.3 Os valores das tensões de nó va, vb, vc, e vd. Os valores dos resistores são: $R1=R5=10\Omega$, $R2=R4=20\Omega$, $R3=5\Omega$ e $R6=2\Omega$ (1.0)
- 2.4 A resistência equivalente vista pelas fontes de corrente de 2A e 4A, se as mesmas estiverem fornecendo energia. (0.5)
- 3 Para o circuito da figura 2, considerando os valores dos resistores indicados no item 2.3, responda:
- 3.1 Determine o circuito equivalente Thévenin e circuito equivalente Norton, visto dos terminais do resistor R6; (2.5)
- 3.2 O resistor R6 dissipa máxima potência? Justifique (0.5)