MSO202A: Assignment-III Solutions

1. Determine all $z \in \mathbb{C}$ for which the following series converge absolutely.

(a)
$$\sum \frac{z^n}{n^2}$$
 (b) $\sum \frac{z^n}{n!}$ (c) $\sum \frac{1}{n!} \frac{1}{z^n}$ (d) $\sum \frac{1}{2^n} \frac{1}{z^n}$

Soln: (a) Here $\lim_{n\to\infty} |a_n|/|a_{n+1}| = 1$. Taking |z| = 1, we find the series to be convergent too. Hence the series converges for $|z| \le 1$.

- (b) $\lim_{n\to\infty} |a_n|/|a_{n+1}| = \infty$ and hence it converges for all $z \in \mathbb{C}$.
- (c) Take w = 1/z where $z \neq 0$. Using (b), we see that it converges for all $w \in \mathbb{C}$ and hence it converges for all $z \in \mathbb{C} \setminus \{0\}$.
- (d) Take w = 1/z where $z \neq 0$. Now $\lim_{n\to\infty} |a_n|/|a_{n+1}| = 2$. Hence, it converges for |w| < 2. For |w| = 2, the *n*-th term is $e^{in\theta}$ which does not go to zero as $n \to \infty$. Hence, the series converges for |z| > 1/2.
- 2. Let $a_n = \frac{(-1)^n}{\sqrt{n}} + i\frac{1}{n^2}$ for $n = 1, 2, 3, \cdots$. Show that the series $\sum a_n$ converges but it does not converge absolutely.

Soln: We know that $\sum a_n$ converges iff $\sum x_n$ and $\sum y_n$ converges where $a_n = x_n + iy_n$. Now $\sum x_n = \sum (-1)^n / \sqrt{n}$ converges due to alternating series test and $\sum y_n = \sum 1/n^2$ converges. Hence $\sum a_n$ converges. Further, $|a_n|^2 = 1/n + 1/n^4 \ge 1/n$. Clearly, $\sum |a_n|^2$ diverges and hence $\sum |a_n|$ also diverges. (If $\sum |a_n|$ converges, then $|a_n| \le M$ for all n and $\sum |a_n|^2 \le M \sum |a_n|$ then converges too.)

- 3. The following series $\sum z^n$, $\sum z^n/n$ and $\sum z^n/n^2$ have radius of convergence 1. Show that the series
 - (a) $\sum z^n$ does not converge for any z such that |z|=1,
 - (b) $\sum z^n/n$ converges for all z for which $z \neq 1$ and |z| = 1 and
 - (c) $\sum z^n/n^2$ converges for all z such that |z|=1.

Soln: Use of ratio test gives radius of convergence to be 1.

- (a) For |z|=1, we have $\sum e^{in\theta}$ and the *n*-th term does not go to zero as $n\to\infty$, Hence, it does not converge for |z|=1.
- (b) (Dirichlet test: Suppose that the partial sums of the series $\sum a_n$ are uniformly bounded (although the series $\sum a_n$ may not converge). Then for any sequence $\{b_n\}$ that is of bounded variation and converges to zero, the series $\sum a_n b_n$ converges. In particular, the series $\sum a_n b_n$ converges if $\{b_n\}$ is a monotone sequence of real numbers approaching zero.)

Here for z=1, the series becomes $\sum 1/n$ which diverges. Let $z \neq 1$ and |z|=1, then $z=e^{i\theta}$ where $0<\theta<2\pi$. Then the series becomes $\sum e^{in\theta}/n=\sum \cos n\theta/n+i\sum \sin n\theta/n$. Now

$$\sum_{m=1}^{m} \cos n\theta = \operatorname{Re}\left(e^{i\theta} \frac{1 - e^{im\theta}}{1 - e^{i\theta}}\right)$$

Hence,

$$\left| \sum_{n=1}^{m} \cos n\theta \right| \le \frac{|1 - e^{im\theta}|}{|1 - e^{i\theta}|} \le \frac{2}{|1 - e^{i\theta}|} = \frac{1}{\sin \theta/2}$$

Further $\{1/n\}$ is monotone and $1/n \to 0$ as $n \to \infty$. Hence, $\sum \cos n\theta/n$ and similarly $\sum \sin n\theta/n$ converge by Dirichlet test. Hence, $\sum z^n/n$ converges for all z for which $z \neq 1$ and |z| = 1.

- (c) Here for |z|=1, the series converges absolutely and hence the series converges.
- 4. Find the radius of convergence of the power series $\sum a_n(z-a)^n$ for which
 - (a) $a_n = r^n/n^p$ where r and p are two positive real numbers
 - (b) $a_n = \frac{\sqrt{n+1} \sqrt{n}}{\sqrt{n^2 + n}}$
 - (c) $a_n = \frac{1}{2^{n-1}}$

Soln: Use of ratio test: (a) 1/r (b) 1 (c) 2

- 5. Find the radius of convergence of the following power series
 - (a) $\sum 2nz^n$
 - (b) $\sum n! z^{2n+1}$
 - (c) $\sum (-1)^n \frac{z^{2n}}{(2n)!}$

Soln: (a) Let $z^{2n} = w$, then the series becomes $2nw^n$ for which $R = \lim_{n \to \infty} |a_n|/|a_{n+1}| = 1$. Hence, radius of convergence of the original series is also 1.

- (b) Let $z^{2n} = w$, then the series becomes $z \sum n! w^n$ for which $R = \lim_{n \to \infty} |a_n|/|a_{n+1}| = 0$. Hence, the radius of convergence of the original series is also 0.
- (c) Let $z^{2n} = w$, then the series becomes $z \sum (-1)^n \frac{w^n}{(2n)!}$ for which $R = \lim_{n \to \infty} |a_n|/|a_{n+1}| = \infty$. Hence, the radius of convergence of the original series is also ∞ .
- 6. If R_1 and R_2 are the radii of convergence of the series $\sum a_n z^n$ and $\sum b_n z^n$ respectively, then show that $R \ge \min\{R_1, R_2\}$ is the radius of convergence of the series $\sum (a_n + b_n)z^n$.

Soln: Let $S = \min\{R_1, R_2\}$. If |z| < S, then $|z| < R_1$ and $|z| < R_2$. Hence, $\sum a_n z^n$ and $\sum b_n z^n$ converge absolutely for |z| < S. Now for |z| < S, we have

$$\sum |(a_n + b_n)z^n| \le \sum (|a_n| + |b_n|)|z|^n.$$

Thus, $\sum (a_n + b_n)z^n$ converges absolutely for |z| < S. Thus the radius of convergence R for $\sum (a_n + b_n)z^n$ must satisfy $R \ge S$. If $R_1 = R_2$, it may be possible that $R > R_1$ (choose $b_n = -a_n$), otherwise R = S.

7. Show that $\sum_{n=0}^{\infty} (n+1)^2 z^n = \frac{1+z}{(1-z)^3}$ for |z| < 1.

Soln: We have for |z| < 1:

$$\sum_{n=0}^{\infty} z^{n+1} = \frac{z}{1-z} \implies \sum_{n=0}^{\infty} (n+1)z^n = \frac{d}{dz} \left(\frac{z}{1-z}\right) = \frac{1}{(1-z)^2}.$$

Hence, for |z| < 1,

$$\sum_{n=0}^{\infty} (n+1)z^{n+1} = \frac{z}{(1-z)^2} \implies \sum_{n=0}^{\infty} (n+1)^2 z^n = \frac{d}{dz} \left(\frac{z}{(1-z)^2} \right) = \frac{1+z}{(1-z)^3}.$$

8. Find i^i and $\cosh(\text{Log }4)$. (Log stands for the principal branch of the logarithm)

Soln: We have

$$i^{i} = e^{i \log i} = e^{i(i\pi/2 + i2n\pi)} = e^{-(2n\pi + \pi/2)}$$

Here $\text{Log } 4 = \ln 4$ and hence

$$\cosh \operatorname{Log} 4 = \frac{e^{\ln 4} + e^{-\ln 4}}{2} = \frac{1}{2}(4 + 1/4) = 17/8$$

9. For $z_1, z_2 \in G = \{re^{i\theta} : r > 0, -\pi < \theta < \pi\}$, is it always true that $\text{Log}(z_1 z_2) = \text{Log } z_1 + \text{Log } z_2$? Find the conditions on z_1 and z_2 so that the equality holds.

Soln: Not true. For example, take $z_1 = z_2 = -i$. Then $z_1 z_2 = -1 \implies \text{Log}(z_1 z_2) = i\pi$. But $\text{Log}(z_1) = \text{Log}(z_2) = -i\pi/2$ and hence $\text{Log}(z_1) + \text{Log}(z_2) = -i\pi$.

True if $Arg(z_1z_2) = Arg(z_1) + Arg(z_2)$

10. Show that $|\cos z|^2 = \cos^2 x + \sinh^2 y$. Hence prove that cos function is not bounded in \mathbb{C} . Also, find the zeros of $\cos z$.

Soln: We have

$$\cos z = \frac{1}{2}(e^{iz} + e^{-iz}) \implies |\cos z|^2 = (\cos z)(\overline{\cos z}) = \frac{1}{4}(e^{iz} + e^{-iz})(e^{-i\overline{z}} + e^{i\overline{z}})$$

Simplifying, we find

$$4|\cos z|^2 = e^{-2y} + e^{i2x} + e^{-i2x} + e^{2y} \implies |\cos z|^2 = \frac{1}{2}(\cos 2x + \cosh 2y) = \cos^2 x + \sinh^2 y$$

Note that $\sinh^2 y \ge (e^{2y} - 2)/4$ and hence $\sinh^2 y \to \infty$ as $y \to \infty$. Hence, cos function is unbounded.

Now $\cos z = 0 \implies \cos x = 0$, $\sinh y = 0 \implies y = 0$, $x = (n + 1/2)\pi$, $n \in \mathbb{Z} \implies z = (n + 1/2)\pi$, $n \in \mathbb{Z}$

11. Show that $\tan(z_1 + z_2) = \frac{\tan z_1 + \tan z_2}{1 - \tan z_1 \tan z_2}$

Soln: Using

$$\sin(z_1 + z_2) = \frac{e^{i(z_1 + z_2)} - e^{-i(z_1 + z_2)}}{2i} = \frac{e^{iz_1}e^{iz_2} - e^{-iz_1}e^{-iz_2}}{2i}$$

we can show that $\sin(z_1 + z_2) = \sin z_1 \cos z_2 + \cos z_1 \sin z_2$. Similarly, $\cos(z_1 + z_2) = \cos z_1 \cos z_2 - \sin z_1 \sin z_2$. Thus

$$\tan(z_1 + z_2) = \frac{\sin(z_1 + z_2)}{\cos(z_1 + z_2)} = \frac{\sin z_1 \cos z_2 + \cos z_1 \sin z_2}{\cos z_1 \cos z_2 - \sin z_1 \sin z_2} = \frac{\tan z_1 + \tan z_2}{1 - \tan z_1 \tan z_2}$$

12. Show that $\sin \bar{z}$ and $\cos \bar{z}$ are not analytic functions on any domain.

Soln: We know $\sin z = (e^{iz} - e^{-iz})/2i$ and hence (writing z = x + iy)

$$\sin \bar{z} = u(x,y) + iv(x,y) = \frac{e^y e^{ix} - e^{-y} e^{-ix}}{2i} = \frac{e^y e^{ix} - e^{-y} e^{-ix}}{2i} = \sin x \cosh y - i \cos x \sinh y$$

Hence, $u = \sin x \cosh y$ and $v = -\cos x \sinh y$. Now $u_x = \cos x \cosh y$ and $v_y = -\cos x \cosh y$ and $u_x \neq v_y$. Since, the CR equations are not satisfied anywhere, $\sin \bar{z}$ is not an analytic function on any domain.

Similar resonings holds for $\cos \bar{z}$ too.

13. Find all solutions z of (a) $\cos z = 2$ (b) $\sin \theta \sin z = 1$ where $\theta \in \mathbb{R}$ (c) $|\cot z| = 1$ Soln: (a) Here

$$\cos z = 2 \implies e^{2iz} - 4e^{iz} + 1 = 0 \implies e^{iz} = 2 \pm \sqrt{3} \implies iz = \log(2 \pm \sqrt{3})$$

Thus

$$iz = \ln(2 \pm \sqrt{3}) + i2k\pi \implies z = -i\ln(2 \pm \sqrt{3}) + 2\pi k, \quad k \in \mathbb{Z}.$$

(b) Note that $\theta \neq 0$. Now from $\sin(x+iy) = \csc \theta$, we get $\sin x \cosh y = \csc \theta$ and $\cos x \sinh y = 0$. If $\sinh y = 0 \implies y = 0$, then $\sin x = \csc \theta$ which has no solution unless $x = \pm \pi/2$. If $\theta \neq \pm \pi/2 \implies \cos x = 0 \implies x = (k+1/2)\pi$, $k \in \mathbb{Z}$. If $\sin \theta > 0$, then $x = 2m\pi + \pi/2$, $m \in \mathbb{Z}$ and hence $\cosh y = \csc \theta \implies e^y = \tan \theta/2$ or $\cot \theta/2$ or $e^y = \tan(\theta/2 + n\pi)$ or $\cot(\theta/2 + n\pi)$. Hence $y = \pm \ln(\tan(2n\pi + \theta)/2)$. Thus, for $\sin \theta > 0$:

$$z = (2m + 1/2)\pi \pm i \ln (\tan(2n\pi + \theta)/2), \quad m, n \in \mathbb{Z}$$

If $\sin \theta < 0$, then $x = (2m+1)\pi + \pi/2$ and $\cosh y = -\csc \theta = \csc (\pi + \theta) \implies e^y = \tan \theta/2$. Hence, $e^y = \tan(\theta + \pi)/2$ or $\cot(\theta + \pi)/2$ or $e^y = \tan(\theta/2 + n\pi + \pi/2)$ or $\cot(\theta/2 + n\pi + \pi/2)$. Hence $y = \pm \ln(\tan(2n\pi + \pi + \theta)/2)$. Thus, for $\sin \theta < 0$:

$$z = (2m + 1 + 1/2)\pi \pm i \ln(\tan(2n\pi + \pi + \theta)/2), \quad m, n \in \mathbb{Z}$$

Note that both the solutions can be combined to arrive at

$$z = (m + 1/2)\pi \pm i \ln \tan(n\pi + \theta)/2$$

where m and n are integers. Further, m and n are both even or odd depending on $\sin \theta > 0$ or $\sin \theta < 0$.

(c) Given $|\cot z| = 1$. Clearly, $z \neq 0$. Now

$$|\tan z| = 1 \implies |\sin z| = |\cos z| \implies |e^{iz} + e^{-iz}| = |e^{iz} - e^{-iz}| \implies |e^{2iz} + 1|^2 = |e^{2iz} - 1|^2$$

Thus

$$(e^{2iz} + 1)(e^{-2i\bar{z}} + 1) = (e^{2iz} - 1)(e^{-2i\bar{z}} - 1) \implies e^{2iz} = -e^{-2i\bar{z}} \implies e^{4ix} = -1$$
$$\implies 4ix = i(\pi + 2n\pi) \implies z = \frac{n\pi}{2} + \frac{\pi}{4} + iy, \quad y \in \mathbb{R}, \quad n \in \mathbb{Z}$$

14. Express in the form a+ib: (a) log Log i (b) $(-3)^{\sqrt{2}}$ (c) i^{-i}

Soln: (a) $\log \text{Log i} = \log(i\pi/2) = \ln \pi/2 + i(\pi/2 + 2n\pi)$

(b)
$$(-3)^{\sqrt{2}} = e^{\sqrt{2}\log - 3} = e^{\sqrt{2}(\ln 3 + i(2n+1)\pi} = e^{\sqrt{2}\ln 3} \left(\cos \sqrt{2}(2n+1)\pi + i\sin \sqrt{2}(2n+1)\pi\right) = 3^{\sqrt{2}} \left(\cos \sqrt{2}(2n+1)\pi + i\sin \sqrt{2}(2n+1)\pi\right)$$

(c)
$$i^{-i} = e^{-i\log i} = e^{-i(i\pi/2 + 2n\pi)} = e^{\pi/2 + 2n\pi}$$

15. Show that (a) $\sin^{-1} z = -i \log(iz + \sqrt{1-z^2})$ (b) $\cot^{-1} z = \frac{i}{2} \log(z-i)/(z+i)$ (c) $\cosh^{-1} z = \log(z + \sqrt{z^2 - 1})$

Soln: (a) $\sin^{-1} z = w \implies z = \sin w \implies (e^{iw} - e^{-iw}) = 2iz \implies e^{iw} = iz + (1 - z^2)^{1/2}$. Since z is a complex variable, $(1 - z^2)^{1/2}$ is the complex square-root function. This is a

multi-valued function with two possible values that differ by an overall minus sign. Hence, we do not explicitly write out the \pm sign.

(b)
$$\cot^{-1} z = w \implies z = \cos w / \sin w \implies (e^{iw} + e^{-iw}) / (e^{iw} - e^{-iw}) = z/i \implies e^{2iw} = (z+i)/(z-i) \implies 2iw = \log(z+i)/(z-i)$$

(c)
$$\cosh^{-1} z = w \implies w = \cosh z \implies e^w = z + (z^2 - 1)^{1/2}$$