ADJUSTABLE PRECISION ZENER SHUNT REGULATOR

ISSUE 5 - DECEMBER 2002

DEVICE DESCRIPTION

The ZR431 is a three terminal adjustable shunt regulator offering excellent temperature stability and output current handling capability up to 100mA. The output voltage may be set to any chosen voltage between 2.5 and 20 volts by selection of two external divider resistors.

The devices can be used as a replacement for zener diodes in many applications requiring an improvement in zener performance. **ZR431**

FEATURES

- Surface mount SOT223 and SOT23 packages
- TO92 package
- 2%, 1 % and 0.5% tolerance
- Max. temperature coefficient 55 ppm/°C
- Temperature compensated for operation over the full temperature range
- Programmable output voltage
- 50μA to 100mA current sink capability
- Low output noise

APPLICATIONS

- Shunt regulator
- Series regulator
- Voltage monitor
- Over voltage/ under voltage protection
- Switch mode power supplies

SCHEMATIC DIAGRAM

ABSOLUTE MAXIMUM RATING

Cathode Voltage (Vz) 20V Power Dissipation (Tamb=25°C,Tjmax=150°C)
Cathode Current 150mA SOT23 330mW

Operating Temperature -40 to 85°C TO92 780mW

Storage Temperature -55 to 125°C SOT223 2W

Recommended Operating Conditions

 $\begin{array}{ccc} & & \text{Min} & \text{Max} \\ \text{Cathode Voltage} & & \text{Vref} & 20\text{V} \\ \text{Cathode Current} & & 50\mu\text{A} & 100\text{mA} \\ \end{array}$

ELECTRICAL CHARACTERISTICS TEST CONDITIONS (Unless otherwise stated):Tamb=25°C

PARAMETER	SYMBOL	VALUE				
		MIN	TYP	MAX	UNITS	CONDITIONS
Reference Voltage 2% 1% (1)0.5%	V _{ref}	2.45 2.475 2.487		2.55 2.525 2.513	V	I _L =10mA (Fig1), V _Z =V _{ref}
Deviation of Reference Input Voltage over Temperature	V_{dev}		8.0	17	mV	I_L =10mA, V_Z = V_{ref} T_a =full range (Fig1)
Ratio of the change in Reference Voltage to the Change in Cathode Voltage	$\frac{\Delta V_{ref}}{\Delta V_Z}$		-1.85	-2.7	mV/V	V_Z from V_{ref} to 10V I_Z =10mA (Fig2)
			-1.0	-2.0	mV/V	V_Z from 10V to 20V I_Z =10mA (Fig2)
Reference Input Current	I _{ref}		0.12	1.0	μΑ	R1=10k, R2=O/C, I _L =10mA (Fig2)
Deviation of Reference Input Current over Temperature	ΔI_{ref}		0.04	0.2	μΑ	R1=10k, R2=O/C, I _L =10mA T _a =full range (Fig2)
Minimum Cathode Current for Regulation	I _{Zmin}		35	50	μΑ	V _Z =V _{ref} (Fig1)
Off-state Current	I _{Zoff}			0.1	μΑ	$V_Z=20V$, $V_{ref}=0V$ (Fig3)
Dynamic Output Impedance	R _Z			0.75	Ω	V _Z =V _{ref} (Fig1), f=0Hz

⁽¹⁾ 0.5% SOT23 only.

For definitions of reference voltage temperature coefficient and dynamic output impedance see NOTES following DC TEST CIRCUITS

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

APPLICATION CIRCUITS

DC TEST CIRCUITS

Fig 1 – Test Circuit for V_z=V_{ref}

Fig 2 – Test Circuit for V_z>V_{ref}

Fig 3 - Test Circuit for Off State current

NOTES

Deviation of reference input voltage, $V_{\text{dev},}$ is defined as the maximum variation of the reference input voltage over the full temperature range.

The average temperature coefficient of the reference input voltage, V_{ref} is defined as:

$$V_{ref}(ppm/^{\circ}C) = \frac{V_{dev} \times 1000000}{V_{ref}(T1-T2)}$$

The dynamic output impedance, Rz, is defined as:

$$R_Z = \frac{\Delta V_Z}{\Delta I_Z}$$

When the device is programmed with two external resistors, R1 and R2, (fig 2) , the dynamic output impedance of the overall circuit, R', is defined as:

$$R' = R_z (1 + \frac{R1}{R2})$$

CONNECTION DIAGRAMS

ORDERING INFORMATION

Part Number	Package	Tol. %	Part Mark
ZR431C01	TO92	1.0	ZR43101
ZR431C	TO92	2.0	ZR431
ZR431G01	SOT223	1.0	ZR43101
ZR431G	SOT223	2.0	ZR431
ZR431F005	SOT23	0.5	43R
ZR431F01	SOT23	1.0	43B
ZR431F	SOT23	2.0	43A

