Introduction to Machine Learning

Linear Classifiers

Lisbon Machine Learning School, 2015

Shay Cohen

School of Informatics, University of Edinburgh E-mail: scohen@inf.ed.ac.uk

Slides heavily based on Ryan McDonald's slides from 2014

Linear Classifiers

- Go onto ACL Anthology
- Search for: "Naive Bayes", "Maximum Entropy", "Logistic Regression", "SVM", "Perceptron"
- ▶ Do the same on Google Scholar
 - "Maximum Entropy" & "NLP" 11,000 hits, 240 before 2000
 - "SVM" & "NLP" 15,000 hits, 556 before 2000
 - "Perceptron" & "NLP", 4,000 hits, 147 before 2000
- All are examples of linear classifiers
- ► All have become tools in any NLP/CL researchers tool-box in past 15 years
 - One the most important tools

Experiment

- Document 1 label: 0; words: ★ ⋄ ∘
- Document 2 − label: 0; words: * ♥ △
- Document 3 − label: 1; words: * △ ♠
- ▶ Document 4 label: 1; words: ⋄ △ ∘
- New document words: ★ ⋄ ○; label ?
- ▶ New document words: $\star \diamond \heartsuit$; label ?
- New document words: ★ ♦ ♠; label ?
- ▶ New document words: $\star \triangle \circ$; label ?

Why and how can we do this?

Experiment

- Document 1 − label: 0; words: * ⋄ ∘
- Document 2 − label: 0; words: * ♥ △
- ▶ Document 3 label: 1; words: * △ ♠
- ▶ Document 4 label: 1; words: ⋄ △ ∘
- ▶ New document words: $\star \triangle \circ$; label ?

Label 0

Label 1

$$P(0|\star) = \frac{\text{count}(\star \text{ and } 0)}{\text{count}(\star)} = \frac{2}{3} = 0.67 \text{ vs. } P(1|\star) = \frac{\text{count}(\star \text{ and } 1)}{\text{count}(\star)} = \frac{1}{3} = 0.33$$

$$P(0|\triangle) = \frac{\text{count}(\triangle \text{ and } 0)}{\text{count}(\triangle)} = \frac{1}{3} = 0.33 \text{ vs. } P(1|\triangle) = \frac{\text{count}(\triangle \text{ and } 1)}{\text{count}(\triangle)} = \frac{2}{3} = 0.67$$

$$P(0|\circ) = \frac{\text{count}(\circ \text{ and } 0)}{\text{count}(\circ)} = \frac{1}{2} = 0.5 \text{ vs. } P(1|\circ) = \frac{\text{count}(\circ \text{ and } 1)}{\text{count}(\circ)} = \frac{1}{2} = 0.5$$

Machine Learning

- Machine learning is well-motivated counting
- ► Typically, machine learning models
 - 1. Define a model/distribution of interest
 - 2. Make some assumptions if needed
 - 3. Count!!
- ▶ Model: $P(|abel|doc) = P(|abel|word_1, ... word_n)$
 - ▶ Prediction for new doc = $\arg \max_{|abe|} P(|abe||doc)$
- ► Assumption: $P(|abel|word_1,...,word_n) = \frac{1}{n} \sum_i P(|abel|word_i)$
- Count (as in example)

Lecture Outline

- Preliminaries
 - Data: input/output, assumptions
 - ► Feature representations
 - ► Linear classifiers and decision boundaries
- Classifiers
 - Naive Bayes
 - Generative versus discriminative
 - Logistic-regression
 - Perceptron
 - Large-Margin Classifiers (SVMs)
- Regularization
- Online learning
- Non-linear classifiers

Inputs and Outputs

- ▶ Input: $x \in \mathcal{X}$
 - e.g., document or sentence with some words $x = w_1 \dots w_n$, or a series of previous actions
- ▶ Output: $y \in \mathcal{Y}$
 - e.g., parse tree, document class, part-of-speech tags, word-sense
- ▶ Input/Output pair: $(x, y) \in \mathcal{X} \times \mathcal{Y}$
 - ightharpoonup e.g., a document x and its label y
 - ightharpoonup Sometimes x is explicit in y, e.g., a parse tree y will contain the sentence x

General Goal

When given a new input x predict the correct output y

But we need to formulate this computationally!

Feature Representations

- We assume a mapping from input x to a high dimensional feature vector
 - $lacktriangledown \phi(x): \mathcal{X}
 ightarrow \mathbb{R}^m$
- For many cases, more convenient to have mapping from input-output pairs (x,y)
 - $lackbox{\phi}(x,y): \mathcal{X} imes \mathcal{Y}
 ightarrow \mathbb{R}^m$
- Under certain assumptions, these are equivalent
- lacksquare Most papers in NLP use $\phi(x,y)$
- ▶ (Was?) not so common in NLP: $\phi \in \mathbb{R}^m$ (but see word embeddings)
- ▶ More common: $\phi_i \in \{1, ..., F_i\}$, $F_i \in \mathbb{N}^+$ (categorical)
- ▶ Very common: $\phi \in \{0,1\}^m$ (binary)
- ▶ For any vector $\mathbf{v} \in \mathbb{R}^m$, let \mathbf{v}_j be the j^{th} value

ightharpoonup x is a document and y is a label

$$\phi_j(x,y) = \left\{egin{array}{ll} 1 & ext{if } x ext{ contains the word "interest"} \ & ext{and } y = ext{"financial"} \ & ext{0} & ext{otherwise} \end{array}
ight.$$

We expect this feature to have a positive weight, "interest" is a positive indicator for the label "financial"

ightharpoonup x is a document and y is a label

$$\phi_j(x,y) = \left\{egin{array}{ll} 1 & ext{if x contains the word "president"} \ & ext{and $y=$"sports"} \ & ext{0} & ext{otherwise} \end{array}
ight.$$

We expect this feature to have a negative weight?

 $\phi_j(x,y)=\%$ of words in x containing punctuation and y= "scientific"

Punctuation symbols - positive indicator or negative indicator for scientific articles?

ightharpoonup x is a word and y is a part-of-speech tag

$$\phi_j(x,y) = \left\{egin{array}{ll} 1 & ext{if } x = ext{"bank" and } y = ext{ Verb} \ 0 & ext{otherwise} \end{array}
ight.$$

What weight would it get?

ightharpoonup x is a name, y is a label classifying the name

$$\phi_0(x,y) = \left\{ \begin{array}{ll} 1 & \text{if x contains "George"} \\ & \text{and y = "Person"} \\ 0 & \text{otherwise} \end{array} \right. \qquad \phi_4(x,y) = \left\{ \begin{array}{ll} 1 & \text{if x contains "George"} \\ & \text{and y = "Object"} \\ 0 & \text{otherwise} \end{array} \right. \\ \phi_1(x,y) = \left\{ \begin{array}{ll} 1 & \text{if x contains "Washington"} \\ & \text{and y = "Person"} \\ 0 & \text{otherwise} \end{array} \right. \qquad \phi_5(x,y) = \left\{ \begin{array}{ll} 1 & \text{if x contains "Washington"} \\ & \text{and y = "Object"} \\ 0 & \text{otherwise} \end{array} \right. \\ \phi_2(x,y) = \left\{ \begin{array}{ll} 1 & \text{if x contains "Bridge"} \\ & \text{and y = "Person"} \\ 0 & \text{otherwise} \end{array} \right. \\ \phi_6(x,y) = \left\{ \begin{array}{ll} 1 & \text{if x contains "Bridge"} \\ & \text{and y = "Object"} \\ 0 & \text{otherwise} \end{array} \right. \\ \phi_3(x,y) = \left\{ \begin{array}{ll} 1 & \text{if x contains "General"} \\ & \text{and y = "Person"} \\ 0 & \text{otherwise} \end{array} \right. \\ \phi_7(x,y) = \left\{ \begin{array}{ll} 1 & \text{if x contains "General"} \\ & \text{and y = "Object"} \\ 0 & \text{otherwise} \end{array} \right. \\ \phi_7(x,y) = \left\{ \begin{array}{ll} 1 & \text{if x contains "General"} \\ & \text{and y = "Object"} \\ 0 & \text{otherwise} \end{array} \right.$$

- ► x=General George Washington, y=Person $\rightarrow \phi(x,y) = \begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 0 & 0 \end{bmatrix}$
- $m{x}=$ George Washington Bridge, $m{y}=$ Object $ightarrow \phi(m{x},m{y})=$ [0 0 0 0 1 1 1 0]
- lacktriangledown lac

Block Feature Vectors

- **x**=General George Washington, y=Person $\rightarrow \phi(x,y) = [1 \ 1 \ 0 \ 1 \ 0 \ 0 \ 0]$
- **>** x=General George Washington, y=Object $ightarrow \phi(x,y)=[0\ 0\ 0\ 1\ 1\ 0\ 1]$
- $m{x}=$ George Washington Bridge, $m{y}=$ $m{\mathsf{Object}} o \phi(m{x},m{y}) = [0\ 0\ 0\ 1\ 1\ 1\ 0]$
- x=George Washington George, y=Object $\rightarrow \phi(x,y)=[0\ 0\ 0\ 1\ 1\ 0\ 0]$
- Each equal size block of the feature vector corresponds to one label
- ► Non-zero values allowed only in one block

Feature Representations - $\phi(x)$

- ▶ Instead of $\phi(x,y): \mathcal{X} imes \mathcal{Y} o \mathbb{R}^m$ over input/outputs (x,y)
- ▶ Let $\phi(x): \mathcal{X} \to \mathbb{R}^{m'}$ (e.g., $m' = m/|\mathcal{Y}|$)
 ▶ i.e., feature representation only over inputs x
- ▶ Equivalent when $\phi(x, y)$ includes y as a non-decomposable object
- ▶ Disadvantages to $\phi(x)$ formulation: no complex features over properties of labels
- Advantages: can make math cleaner, especially with binary classification

Feature Representations - $\phi(x)$ vs. $\phi(x,y)$

- $\begin{array}{l} \blacklozenge \ \phi(x,y) \\ & \blacktriangleright \ x = \text{General George Washington, } y = \text{Person} \rightarrow \phi(x,y) = \begin{bmatrix} 1 \ 1 \ 0 \ 1 \ 0 \ 0 \ 0 \end{bmatrix} \\ & \blacktriangleright \ x = \text{General George Washington, } y = \text{Object} \rightarrow \phi(x,y) = \begin{bmatrix} 0 \ 0 \ 0 \ 0 \ 1 \ 1 \ 0 \ 1 \end{bmatrix} \end{array}$
- $\phi(x)$ x=General George Washington $o \phi(x)=$ [1 1 0 1]
- ▶ Different ways of representing same thing
- In this case, can deterministically map from $\phi(x)$ to $\phi(x,y)$ given y

Linear Classifiers

- Linear classifier: score (or probability) of a particular classification is based on a linear combination of features and their weights
- Let $\omega \in \mathbb{R}^m$ be a high dimensional weight vector
- \triangleright Assume that ω is known
 - ▶ Multiclass Classification: $\mathcal{Y} = \{0, 1, ..., N\}$

$$egin{array}{ll} oldsymbol{y} &=& rg \max_{oldsymbol{y}} & oldsymbol{\omega} \cdot oldsymbol{\phi}(oldsymbol{x}, oldsymbol{y}) \ &=& rg \max_{oldsymbol{y}} & \sum_{j=0}^m oldsymbol{\omega}_j imes oldsymbol{\phi}_j(oldsymbol{x}, oldsymbol{y}) \end{array}$$

Binary Classification just a special case of multiclass

Linear Classifiers – $\phi(x)$

- $lackbox{ Define } |\mathcal{Y}|$ parameter vectors $oldsymbol{\omega_y} \in \mathbb{R}^{m'}$
 - \triangleright I.e., one parameter vector per output class y
- Classification

$$oldsymbol{y} = rg \max_{oldsymbol{y}} \ oldsymbol{\omega_y} \cdot oldsymbol{\phi(x)}$$

- $ightharpoonup \phi(x,y)$
 - lacktriangledown x=General George Washington, y=Person $o \phi(x,y)=$ [1 1 0 1 0 0 0 0]
 - $m{x}=$ General George Washington, $m{y}=$ Object $ightarrow \phi(m{x},m{y})=[0\ 0\ 0\ 1\ 1\ 0\ 1]$
 - ▶ Single $\omega \in \mathbb{R}^8$
- $ightharpoonup \phi(x)$
 - x=General George Washington $\rightarrow \phi(x) = \begin{bmatrix} 1 & 1 & 0 & 1 \end{bmatrix}$
 - ightharpoonup Two parameter vectors $\omega_0 \in \mathbb{R}^4$, $\omega_1 \in \mathbb{R}^4$

Linear Classifiers - Bias Terms

Often linear classifiers presented as

$$lackbox{$$

- Where b is a bias or offset term
- \blacktriangleright Sometimes this is folded into ϕ

$$x=$$
General George Washington, $y=$ Person o $\phi(x,y)=[1\ 1\ 0\ 1\ 1\ 0\ 0\ 0\ 0\ 0]$ $x=$ General George Washington, $y=$ Object o $\phi(x,y)=[0\ 0\ 0\ 0\ 1\ 1\ 0\ 1\ 1]$

$$\phi_4(x,y) = \left\{egin{array}{ll} 1 & m{y} = ext{``Person''} \ 0 & ext{otherwise} \end{array}
ight. \qquad \phi_9(x,y) = \left\{egin{array}{ll} 1 & m{y} = ext{``Object''} \ 0 & ext{otherwise} \end{array}
ight.$$

 \triangleright ω_4 and ω_9 are now the bias terms for the labels

Binary Linear Classifier

Let's say $\boldsymbol{\omega}=(1,-1)$ and $b_{\boldsymbol{y}}=1$, $\forall \boldsymbol{y}$

Then ω is a line (generally a hyperplane) that divides all points:

Multiclass Linear Classifier

Defines regions of space. Visualization difficult.

lacktriangleright i.e., lacktriangleright are all points (x,y) where lacktriangleright = $rg \max_{m{y}} \; m{\omega} \cdot \phi(x,y)$

Separability

ightharpoonup A set of points is separable, if there exists a ω such that classification is perfect

This can also be defined mathematically (and we will do that shortly)

Machine Learning – finding ω

We now have a way to make dcisions... If we have a ω . But where do we get this ω ?

- Supervised Learning
- lacktriangleright Input: training examples $\mathcal{T} = \{(oldsymbol{x}_t, oldsymbol{y}_t)\}_{t=1}^{|\mathcal{T}|}$
- ▶ Input: feature representation ϕ
- ightharpoonup Output: ω that maximizes some important function on the training set
 - lacksquare $\omega = \arg \max \mathcal{L}(\mathcal{T}; \omega)$
- Equivalently minimize: $\omega = \arg\min -\mathcal{L}(\mathcal{T}; \omega)$

Objective Functions

- \triangleright $\mathcal{L}(\cdot)$ is called the objective function
- Usually we can decompose \mathcal{L} by training pairs (x,y)
 - $riangleright \mathcal{L}(\mathcal{T};\omega) \propto \sum_{(m{x},m{y})\in\mathcal{T}} extit{loss}((m{x},m{y});\omega)$
 - loss is a function that measures some value correlated with errors of parameters ω on instance (x,y)
- ▶ Defining $\mathcal{L}(\cdot)$ and *loss* is core of linear classifiers in machine learning
- ▶ Example: $y \in \{1, -1\}$, f(x|w) is the prediction we make for x using w
- Loss is:

Supervised Learning – Assumptions

- Assumption: (x_t, y_t) are sampled i.i.d.
 - ▶ i.i.d. = independent and identically distributed
 - ▶ independent = each sample independent of the other
 - ▶ identically = each sample from same probability distribution
- ▶ Sometimes assumption: The training data is separable
 - Needed to prove convergence for Perceptron
 - Not needed in practice

Naive Bayes

Probabilistic Models

- Let's put aside linear classifiers for a moment
- Here is another approach to decision making
 - Probabilistically model P(y|x)
 - ▶ If we can define this distribution, then classification becomes
 - ightharpoonup arg max_y P(y|x)

Bayes Rule

▶ One way to model P(y|x) is through Bayes Rule:

$$P(y|x) = \frac{P(y)P(x|y)}{P(x)}$$

$$rg \max_{oldsymbol{y}} P(oldsymbol{y} | oldsymbol{x}) \propto rg \max_{oldsymbol{y}} P(oldsymbol{y}) P(oldsymbol{x} | oldsymbol{y})$$

- Since x is fixed
- ho P(y)P(x|y) = P(x,y): a joint probability
- Modeling the joint input-output distribution is at the core of generative models
 - Because we model a distribution that can randomly generate outputs and inputs, not just outputs
 - More on this later

Naive Bayes (NB)

- We need to decide on the structure of P(x,y)
- $P(x|y) = P(\phi(x)|y) = P(\phi_1(x), \dots, \phi_m(x)|y)$

Naive Bayes Assumption

(conditional independence)

$$[\phi_1(x), \ldots, \phi_m(x) | y) = \prod_i P(\phi_i(x) | y)$$

$$P(x,y) = P(y)P(\phi_1(x),\ldots,\phi_m(x)|y) = P(y)\prod_{i=1}^m P(\phi_i(x)|y)$$

Naive Bayes – Learning

- ▶ Input: $\mathcal{T} = \{(x_t, y_t)\}_{t=1}^{|\mathcal{T}|}$
- ▶ Let $\phi_i(x) \in \{1, ..., F_i\}$ categorical; common in NLP
- ▶ Parameters $\mathcal{P} = \{P(y), P(\phi_i(x)|y)\}$
 - ▶ Both P(y) and $P(\phi_i(x)|y)$ are multinomials

It is important that we assume that features are independent GIVEN y... they are typically not independent a-priory e.g. We assume that "basketball", "football" | SPORT are independent given SPORT, but obviously "basketball", "football" is dependent (via sport)

Maximum Likelihood Estimation

- ▶ What's left? Defining an objective $\mathcal{L}(\mathcal{T})$
- P plays the role of w
- What objective to use?
- Objective: Maximum Likelihood Estimation (MLE)

$$egin{aligned} \mathcal{L}(\mathcal{T}) &= \prod_{t=1}^{|\mathcal{T}|} P(oldsymbol{x}_t, oldsymbol{y}_t) = \prod_{t=1}^{|\mathcal{T}|} \left(P(oldsymbol{y}_t) \prod_{i=1}^m P(\phi_i(oldsymbol{x}_t) | oldsymbol{y}_t)
ight) \ \mathcal{P} &= rg \max_{\mathcal{P}} \ \prod_{t=1}^{|\mathcal{T}|} \left(P(oldsymbol{y}_t) \prod_{i=1}^m P(\phi_i(oldsymbol{x}_t) | oldsymbol{y}_t)
ight) \end{aligned}$$

Naive Bayes – Learning

MLE has closed form solution!! (more later) – count and normalize

$$\mathcal{P} = rg \max_{\mathcal{P}} \ \prod_{t=1}^{|\mathcal{T}|} \left(P(oldsymbol{y}_t) \prod_{i=1}^m P(\phi_i(oldsymbol{x}_t) | oldsymbol{y}_t)
ight)$$

$$P(y) = rac{\sum_{t=1}^{|\mathcal{T}|}[[y_t = y]]}{|\mathcal{T}|} \ P(\phi_i(x)|y) = rac{\sum_{t=1}^{|\mathcal{T}|}[[\phi_i(x_t) = \phi_i(x) ext{ and } y_t = y]]}{\sum_{t=1}^{|\mathcal{T}|}[[y_t = y]]}$$

[[X]] is the identity function for property XThus, these are just normalized counts over events in \mathcal{T} Intuitively makes sense!

Naive Bayes Example

- $\phi_i(x) \in 0, 1, \forall i$
- $lack ext{doc 1: } y_1 = 0, \ \phi_0(x_1) = 1, \ \phi_1(x_1) = 1$
- doc 2: $y_2 = 0$, $\phi_0(x_2) = 0$, $\phi_1(x_2) = 1$
- doc 3: $y_3 = 1$, $\phi_0(x_3) = 1$, $\phi_1(x_3) = 0$
- ▶ Two label parameters P(y = 0), P(y = 1)
- Eight feature parameters
 - 2 (labels) * 2 (features) * 2 (feature values)
 - lacksquare E.g., $oldsymbol{y}=0$ and $\phi_0(oldsymbol{x})=1$: $P(\phi_0(oldsymbol{x})=1|oldsymbol{y}=0)$
- ► We really have one label parameter and 2 * 2 * (2 1) feature parameters
- P(y=0) = 2/3, P(y=1) = 1/3
- $P(\phi_0(x) = 1|y = 0) = 1/2$, $P(\phi_1(x) = 0|y = 1) = 1/1$

Naive Bayes Document Classification

- ▶ doc 1: y_1 = sports, "hockey is fast"
- doc 2: y_2 = politics, "politicians talk fast"
- ▶ doc 3: y_3 = politics, "washington is sleazy"
- $\phi_0(x) = 1$ iff doc has word 'hockey', 0 o.w.
- $\phi_1(x) = 1$ iff doc has word 'is', 0 o.w.
- $\phi_2(x) = 1$ iff doc has word 'fast', 0 o.w.
- $\phi_3(x) = 1$ iff doc has word 'politicians', 0 o.w.
- $\phi_4(x) = 1$ iff doc has word 'talk', 0 o.w.
- $\phi_5(x) = 1$ iff doc has word 'washington', 0 o.w.
- $\phi_6(x) = 1$ iff doc has word 'sleazy', 0 o.w.

Your turn? What is P(sports)? What is $P(\phi_0(0) = 1|\text{politics})$?

Deriving MLE

$$\mathcal{P} = \underset{\mathcal{P}}{\operatorname{arg max}} \prod_{t=1}^{|\mathcal{T}|} \left(P(y_t) \prod_{i=1}^m P(\phi_i(x_t)|y_t) \right)$$

Deriving MLE (for handout)

$$\mathcal{P} = \underset{\mathcal{P}}{\operatorname{arg max}} \prod_{t=1}^{|\mathcal{T}|} \left(P(y_t) \prod_{i=1}^m P(\phi_i(x_t)|y_t) \right)$$

$$= \underset{\mathcal{P}}{\operatorname{arg max}} \sum_{t=1}^{|\mathcal{T}|} \left(\log P(y_t) + \sum_{i=1}^m \log P(\phi_i(x_t)|y_t) \right)$$

$$= \underset{P(y)}{\operatorname{arg max}} \sum_{t=1}^{|\mathcal{T}|} \log P(y_t) + \underset{P(\phi_i(x)|y)}{\operatorname{arg max}} \sum_{t=1}^{|\mathcal{T}|} \sum_{i=1}^m \log P(\phi_i(x_t)|y_t)$$

such that
$$\sum_{m{y}} P(m{y}) = 1$$
, $\sum_{j=1}^{F_i} P(\phi_i(m{x}) = j | m{y}) = 1$, $P(\cdot) \geq 0$

Deriving MLE

$$\mathcal{P} = \argmax_{P(\boldsymbol{y})} \sum_{t=1}^{|\mathcal{T}|} \log P(\boldsymbol{y}_t) + \argmax_{P(\phi_i(\boldsymbol{x})|\boldsymbol{y})} \sum_{t=1}^{|\mathcal{T}|} \sum_{i=1}^m \log P(\phi_i(\boldsymbol{x}_t)|\boldsymbol{y}_t)$$

Both optimizations are of the form

$$rg \max_{P} \sum_{v} \operatorname{count}(v) \log P(v)$$
, s.t., $\sum_{v} P(v) = 1$, $P(v) \ge 0$

For example:

$$rg \max_{P(m{y})} \sum_{t=1}^{|\mathcal{T}|} \log P(m{y}_t) = rg \max_{P(m{y})} \sum_{m{y}} \mathsf{count}(m{y}, \mathcal{T}) \log P(m{y})$$
 such that $\sum_{m{y}} P(m{y}) = 1$, $P(m{y}) \geq 0$

Deriving MLE

$$\arg \max_{P} \sum_{v} \operatorname{count}(v) \log P(v)$$

s.t.,
$$\sum_{v} P(v) = 1, P(v) \ge 0$$

Introduce Lagrangian multiplier λ , optimization becomes

$$\frac{\arg\max_{P,\lambda} \ \sum_{v} \operatorname{count}(v) \log P(v) - \lambda \left(\sum_{v} P(v) - 1\right)}{\text{deriv a } G}$$

Derivative:

Set to zero:

Final solution:

Deriving MLE (for handout)

$$\arg \max_{P} \sum_{v} \operatorname{count}(v) \log P(v)$$

s.t.,
$$\sum_{v} P(v) = 1, P(v) \ge 0$$

Introduce Lagrangian multiplier λ , optimization becomes

$$\operatorname{arg} \max_{P,\lambda} \sum_{v} \operatorname{count}(v) \log P(v) - \lambda \left(\sum_{v} P(v) - 1 \right)$$

Derivative w.r.t
$$P(v)$$
 is $\frac{\operatorname{count}(v)}{P(v)} - \lambda$

Setting this to zero
$$P(v) = \frac{\text{count}(v)}{\lambda}$$

Combine with
$$\sum_{v} P(v) = 1$$
. $P(v) \ge 0$, then $P(v) = \frac{\mathsf{count}(v)}{\sum_{v'} \mathsf{count}(v')}$

Put it together

$$\mathcal{P} = \operatorname*{arg\,max} \prod_{t=1}^{|\mathcal{T}|} \left(P(y_t) \prod_{i=1}^m P(\phi_i(x_t)|y_t) \right)$$

$$= \operatorname*{arg\,max} \sum_{t=1}^{|\mathcal{T}|} \log P(y_t) + \operatorname*{arg\,max} \sum_{t=1}^{|\mathcal{T}|} \sum_{i=1}^m \log P(\phi_i(x_t)|y_t)$$

$$P(y) = \frac{\sum_{t=1}^{|\mathcal{T}|} [[y_t = y]]}{|\mathcal{T}|}$$

$$P(\phi_i(x)|y) = \frac{\sum_{t=1}^{|\mathcal{T}|} [[\phi_i(x_t) = \phi_i(x) \text{ and } y_t = y]]}{\sum_{t=1}^{|\mathcal{T}|} [[y_t = y]]}$$

NB is a linear classifier

- ▶ Let $\omega_{m{y}} = \log P(m{y})$, $\forall m{y} \in \mathcal{Y}$
- ▶ Let $\omega_{\phi_i(x),y} = \log P(\phi_i(x)|y)$, $\forall y \in \mathcal{Y}, \phi_i(x) \in \{1, \dots, F_i\}$
- lacksquare Let ω be set of all ω_* and $\omega_{*,*}$

$$\mathop{\arg\max}_{\boldsymbol{y}} \ P(\boldsymbol{y}|\phi(\boldsymbol{x})) \quad \propto \quad \mathop{\arg\max}_{\boldsymbol{y}} \ P(\phi(\boldsymbol{x}),\boldsymbol{y}) = \mathop{\arg\max}_{\boldsymbol{y}} \ P(\boldsymbol{y}) \prod_{i=1}^{m} P(\phi_{i}(\boldsymbol{x})|\boldsymbol{y}) =$$

where
$$\psi_* \in \{0,1\}$$
, $\psi_{i,j}(x) = [[\phi_i(x) = j]]$, $\psi_{n'}(y) = [[y = y']]$

NB is a linear classifier (for handout)

- ▶ Let $\omega_{m{y}} = \log P(m{y})$, $\forall m{y} \in \mathcal{Y}$
- ▶ Let $\omega_{\phi_i(x),y} = \log P(\phi_i(x)|y)$, $\forall y \in \mathcal{Y}, \phi_i(x) \in \{1, \dots, F_i\}$
- lacksquare Let ω be set of all ω_* and $\omega_{*,*}$

$$\underset{m{y}}{\operatorname{arg \, max}} \ P(m{y}|m{\phi}(m{x})) \quad \propto \quad \underset{m{y}}{\operatorname{arg \, max}} \ P(m{\phi}(m{x}), m{y}) = \underset{m{y}}{\operatorname{arg \, max}} \ P(m{y}) \prod_{i=1}^{m} P(m{\phi}_i(m{x})|m{y})$$

it is linear classifier: show it by concatenating the "sums over y' and j"

$$\begin{array}{ll}
\mathbf{y} & \mathbf{y} & \mathbf{i} = 1 \\
\operatorname{arg\,max} & \log P(\mathbf{y}) + \sum_{i=1}^{m} \log P(\phi_i(\mathbf{x})|\mathbf{y}) \\
\operatorname{arg\,max} & \mathbf{\omega}_{\mathbf{y}} + \sum_{i=1}^{m} \mathbf{\omega}_{\phi_i(\mathbf{x}),\mathbf{y}} \\
\mathbf{y} & \mathbf{y} &$$

$$= \operatorname{arg\,max}_{\boldsymbol{y}} \sum_{\boldsymbol{y}'} \boldsymbol{\omega}_{\boldsymbol{y}} \psi_{\boldsymbol{y}'}(\boldsymbol{y}) + \sum_{i=1}^m \sum_{j=1}^{F_i} \boldsymbol{\omega}_{\phi_i(\boldsymbol{x}),\boldsymbol{y}} \psi_{i,j}(\boldsymbol{x})$$

where
$$\psi_* \in \{0,1\}$$
, $\psi_{i,j}(x) = [[\phi_i(x) = j]]$, $\psi_{m{y}'}(y) = [[y = y']]$

Smoothing

- doc 1: $y_1 = \text{sports}$, "hockey is fast"
- doc 2: y_2 = politics, "politicians talk fast"
- ▶ doc 3: y_3 = politics, "washington is sleazy"
- ▶ New doc: "washington hockey is fast"
- Both 'sports' and 'politics' have probabilities of 0
- Smoothing aims to assign a small amount of probability to unseen events
- E.g., Additive/Laplacian smoothing

$$P(v) = \frac{\mathsf{count}(v)}{\sum_{v'} \mathsf{count}(v')} \implies P(v) = \frac{\mathsf{count}(v) + \alpha}{\sum_{v'} (\mathsf{count}(v') + \alpha)}$$

Discriminative versus Generative

- Generative models attempt to model inputs and outputs
 - e.g., NB = MLE of joint distribution P(x, y)
 - ▶ Statistical model must explain generation of input
- Occam's Razor: why model input?
- Discriminative models
 - Use $\mathcal L$ that directly optimizes P(y|x) (or something related)
 - ▶ Logistic Regression MLE of P(y|x)
 - Perceptron and SVMs minimize classification error
- Generative and discriminative models use P(y|x) for prediction
- lacktriangle Differ only on what distribution they use to set ω

Define a conditional probability:

exponencial is based on max-entropy models: TODO How?

$$P(y|x) = \frac{e^{\omega \cdot \phi(x,y)}}{Z_x}$$

$$P(y|x) = rac{e^{\omega \cdot \phi(x,y)}}{Z_x}, \qquad ext{where } Z_x = \sum_{y' \in \mathcal{Y}} e^{\omega \cdot \phi(x,y')}$$

Note: still a linear classifier

$$\begin{array}{rcl} \arg\max_{\boldsymbol{y}} \; P(\boldsymbol{y}|\boldsymbol{x}) & = & \arg\max_{\boldsymbol{y}} \; \frac{e^{\boldsymbol{\omega} \cdot \boldsymbol{\phi}(\boldsymbol{x},\boldsymbol{y})}}{Z_{\boldsymbol{x}}} \\ & = & \arg\max_{\boldsymbol{y}} \; e^{\boldsymbol{\omega} \cdot \boldsymbol{\phi}(\boldsymbol{x},\boldsymbol{y})} \\ & = & \arg\max_{\boldsymbol{y}} \; \boldsymbol{\omega} \cdot \boldsymbol{\phi}(\boldsymbol{x},\boldsymbol{y}) \end{array}$$

$$P(y|x) = rac{e^{\omega \cdot \phi(x,y)}}{Z_x}$$

conditional loglikelihood

- ightharpoonup Q: How do we learn weights ω
- A: Set weights to maximize log-likelihood of training data:

$$egin{array}{lll} oldsymbol{\omega} &=& rg \max_{oldsymbol{\omega}} \ \mathcal{L}(\mathcal{T}; oldsymbol{\omega}) \ &=& rg \max_{oldsymbol{\omega}} \ \prod_{t=1}^{|\mathcal{T}|} P(oldsymbol{y}_t | oldsymbol{x}_t) = rg \max_{oldsymbol{\omega}} \ \sum_{t=1}^{|\mathcal{T}|} \log P(oldsymbol{y}_t | oldsymbol{x}_t) \end{array}$$

In a nutshell we set the weights ω so that we assign as much probability to the correct label y for each x in the training set

$$P(y|x) = rac{e^{\omega \cdot \phi(x,y)}}{Z_x}, \qquad ext{where } Z_x = \sum_{y' \in \mathcal{Y}} e^{\omega \cdot \phi(x,y')}$$
 $\omega = rg \max_{oldsymbol{\omega}} \ \sum_{t=1}^{|\mathcal{T}|} \log P(y_t|x_t) \ (*)$

- ► The objective function (*) is concave (take the 2nd derivative)
- ▶ Therefore there is a global maximum
- ▶ No closed form solution, but lots of numerical techniques
 - ► Gradient methods (gradient ascent, conjugate gradient, iterative scaling)
 - Newton methods (limited-memory quasi-newton)

Gradient Ascent

Gradient Ascent

- lacksquare Let $\mathcal{L}(\mathcal{T}; oldsymbol{\omega}) = \sum_{t=1}^{|\mathcal{T}|} \log \left(e^{oldsymbol{\omega} \cdot oldsymbol{\phi}(x_t, y_t)} / Z_x
 ight)$
- Want to find $\arg \max_{\omega} \mathcal{L}(\mathcal{T}; \omega)$
 - ▶ Set $\omega^0 = O^m$
 - ▶ Iterate until convergence

$$\boldsymbol{\omega}^{i} = \boldsymbol{\omega}^{i-1} + \alpha \triangledown \mathcal{L}(\mathcal{T}; \boldsymbol{\omega}^{i-1})$$

- m lpha > 0 and set so that $\mathcal{L}(\mathcal{T}; m \omega^i) > \mathcal{L}(\mathcal{T}; m \omega^{i-1})$
- ightharpoons $orall \mathcal{L}(\mathcal{T}; oldsymbol{\omega})$ is gradient of \mathcal{L} w.r.t. $oldsymbol{\omega}$
 - \triangleright A gradient is all partial derivatives over variables w_i
 - ▶ i.e., $\nabla \mathcal{L}(\mathcal{T}; \boldsymbol{\omega}) = (\frac{\partial}{\partial \omega_0} \mathcal{L}(\mathcal{T}; \boldsymbol{\omega}), \frac{\partial}{\partial \omega_1} \mathcal{L}(\mathcal{T}; \boldsymbol{\omega}), \dots, \frac{\partial}{\partial \omega_m} \mathcal{L}(\mathcal{T}; \boldsymbol{\omega}))$
- lacktriangle Gradient ascent will always find ω to maximize $\mathcal L$

Gradient Descent

- lacksquare Let $\mathcal{L}(\mathcal{T}; oldsymbol{\omega}) = -\sum_{t=1}^{|\mathcal{T}|} \log \left(e^{oldsymbol{\omega} \cdot \phi(oldsymbol{x}_t, oldsymbol{y}_t)}/Z_x
 ight)$
- Want to find $\arg \min_{\omega} \mathcal{L}(\mathcal{T}; \omega)$
 - ▶ Set $\omega^0 = Q^m$
 - ▶ Iterate until convergence

$$\omega^i = \omega^{i-1} - \alpha \nabla \mathcal{L}(\mathcal{T}; \omega^{i-1})$$

- $\alpha > 0$ and set so that $\mathcal{L}(\mathcal{T}; \omega^i) < \mathcal{L}(\mathcal{T}; \omega^{i-1})$
- ightharpoonup $abla \mathcal{L}(\mathcal{T}; \omega)$ is gradient of \mathcal{L} w.r.t. ω
 - A gradient is all partial derivatives over variables w_i
 - ▶ i.e., $\nabla \mathcal{L}(\mathcal{T}; \boldsymbol{\omega}) = (\frac{\partial}{\partial \boldsymbol{\omega}_0} \mathcal{L}(\mathcal{T}; \boldsymbol{\omega}), \frac{\partial}{\partial \boldsymbol{\omega}_1} \mathcal{L}(\mathcal{T}; \boldsymbol{\omega}), \dots, \frac{\partial}{\partial \boldsymbol{\omega}_m} \mathcal{L}(\mathcal{T}; \boldsymbol{\omega}))$
- Gradient descent will always find ω to minimize \mathcal{L}

The partial derivatives

 $lackbox{Need to find all partial derivatives } \frac{\partial}{\partial \omega_i} \mathcal{L}(\mathcal{T}; oldsymbol{\omega})$

$$\begin{split} \mathcal{L}(\mathcal{T}; \boldsymbol{\omega}) &= \sum_{t} \log P(\boldsymbol{y}_{t} | \boldsymbol{x}_{t}) \\ &= \sum_{t} \log \frac{e^{\boldsymbol{\omega} \cdot \boldsymbol{\phi}(\boldsymbol{x}_{t}, \boldsymbol{y}_{t})}}{\sum_{\boldsymbol{y}' \in \mathcal{Y}} e^{\boldsymbol{\omega} \cdot \boldsymbol{\phi}(\boldsymbol{x}_{t}, \boldsymbol{y}')}} \\ &= \sum_{t} \log \frac{e^{\sum_{j} \omega_{j} \times \boldsymbol{\phi}_{j}(\boldsymbol{x}_{t}, \boldsymbol{y}_{t})}}{Z_{\boldsymbol{x}_{t}}} \end{split}$$

Partial derivatives - some reminders

1.
$$\frac{\partial}{\partial x} \log F = \frac{1}{F} \frac{\partial}{\partial x} F$$

▶ We always assume log is the natural logarithm log_e

2.
$$\frac{\partial}{\partial x}e^F = e^F \frac{\partial}{\partial x}F$$

3.
$$\frac{\partial}{\partial x} \sum_t F_t = \sum_t \frac{\partial}{\partial x} F_t$$

4.
$$\frac{\partial}{\partial x} \frac{F}{G} = \frac{G \frac{\partial}{\partial x} F - F \frac{\partial}{\partial x} G}{G^2}$$

The partial derivatives

$$rac{\partial}{\partial oldsymbol{\omega}_i} \mathcal{L}(\mathcal{T};oldsymbol{\omega}) =$$

The partial derivatives 1 (for handout)

$$\frac{\partial}{\partial \omega_{i}} \mathcal{L}(\mathcal{T}; \omega) = \frac{\partial}{\partial \omega_{i}} \sum_{t} \log \frac{e^{\sum_{j} \omega_{j} \times \phi_{j}(\boldsymbol{x}_{t}, \boldsymbol{y}_{t})}}{Z_{\boldsymbol{x}_{t}}}$$

$$= \sum_{t} \frac{\partial}{\partial \omega_{i}} \log \frac{e^{\sum_{j} \omega_{j} \times \phi_{j}(\boldsymbol{x}_{t}, \boldsymbol{y}_{t})}}{Z_{\boldsymbol{x}_{t}}}$$

$$= \sum_{t} \left(\frac{Z_{\boldsymbol{x}_{t}}}{e^{\sum_{j} \omega_{j} \times \phi_{j}(\boldsymbol{x}_{t}, \boldsymbol{y}_{t})}}\right) \left(\frac{\partial}{\partial \omega_{i}} \frac{e^{\sum_{j} \omega_{j} \times \phi_{j}(\boldsymbol{x}_{t}, \boldsymbol{y}_{t})}}{Z_{\boldsymbol{x}_{t}}}\right)$$

The partial derivatives

Now,
$$\frac{\partial}{\partial \omega_i} \frac{e^{\sum_j \omega_j \times \phi_j(x_t, y_t)}}{Z_{x_t}} =$$

The partial derivatives 2 (for handout)

Now.

$$\begin{array}{ll} \frac{\partial}{\partial \omega_{i}} \frac{e^{\sum_{j} \omega_{j} \times \phi_{j}(\boldsymbol{x}_{t}, \boldsymbol{y}_{t})}}{Z_{\boldsymbol{x}_{t}}} & = & \frac{Z_{\boldsymbol{x}_{t}} \frac{\partial}{\partial \omega_{i}} e^{\sum_{j} \omega_{j} \times \phi_{j}(\boldsymbol{x}_{t}, \boldsymbol{y}_{t})} - e^{\sum_{j} \omega_{j} \times \phi_{j}(\boldsymbol{x}_{t}, \boldsymbol{y}_{t})} \frac{\partial}{\partial \omega_{i}} Z_{\boldsymbol{x}_{t}}} \\ & = & \frac{Z_{\boldsymbol{x}_{t}} e^{\sum_{j} \omega_{j} \times \phi_{j}(\boldsymbol{x}_{t}, \boldsymbol{y}_{t})} \phi_{i}(\boldsymbol{x}_{t}, \boldsymbol{y}_{t}) - e^{\sum_{j} \omega_{j} \times \phi_{j}(\boldsymbol{x}_{t}, \boldsymbol{y}_{t})} \frac{\partial}{\partial \omega_{i}} Z_{\boldsymbol{x}_{t}}}{Z_{\boldsymbol{x}_{t}}^{2}} \\ & = & \frac{e^{\sum_{j} \omega_{j} \times \phi_{j}(\boldsymbol{x}_{t}, \boldsymbol{y}_{t})}}{Z_{\boldsymbol{x}_{t}}^{2}} (Z_{\boldsymbol{x}_{t}} \phi_{i}(\boldsymbol{x}_{t}, \boldsymbol{y}_{t}) - \frac{\partial}{\partial \omega_{i}} Z_{\boldsymbol{x}_{t}}) \\ & = & \frac{e^{\sum_{j} \omega_{j} \times \phi_{j}(\boldsymbol{x}_{t}, \boldsymbol{y}_{t})}}{Z_{\boldsymbol{x}_{t}}^{2}} (Z_{\boldsymbol{x}_{t}} \phi_{i}(\boldsymbol{x}_{t}, \boldsymbol{y}_{t}) - \frac{\partial}{\partial \omega_{i}} Z_{\boldsymbol{x}_{t}}) \\ & - \sum_{\boldsymbol{y}' \in \mathcal{Y}} e^{\sum_{j} \omega_{j} \times \phi_{j}(\boldsymbol{x}_{t}, \boldsymbol{y}')} \phi_{i}(\boldsymbol{x}_{t}, \boldsymbol{y}')) \end{array}$$

because

$$\frac{\partial}{\partial \omega_{i}} Z_{\mathbf{x}_{t}} = \frac{\partial}{\partial \omega_{i}} \sum_{\mathbf{y}' \in \mathcal{Y}} e^{\sum_{j} \omega_{j} \times \phi_{j}(\mathbf{x}_{t}, \mathbf{y}')} = \sum_{\mathbf{y}' \in \mathcal{Y}} e^{\sum_{j} \omega_{j} \times \phi_{j}(\mathbf{x}_{t}, \mathbf{y}')} \phi_{i}(\mathbf{x}_{t}, \mathbf{y}')$$

The partial derivatives

The partial derivatives 3 (for handout)

From before.

$$\begin{array}{lcl} \frac{\partial}{\partial \omega_{i}} \frac{e^{\sum_{j} \omega_{j} \times \phi_{j}(\boldsymbol{x}_{t}, \boldsymbol{y}_{t})}}{Z_{\boldsymbol{x}_{t}}} & = & \frac{e^{\sum_{j} \omega_{j} \times \phi_{j}(\boldsymbol{x}_{t}, \boldsymbol{y}_{t})}}{Z_{\boldsymbol{x}_{t}}^{2}} (Z_{\boldsymbol{x}_{t}} \phi_{i}(\boldsymbol{x}_{t}, \boldsymbol{y}_{t}) \\ & & - \sum_{\boldsymbol{y}' \in \mathcal{Y}} e^{\sum_{j} \omega_{j} \times \phi_{j}(\boldsymbol{x}_{t}, \boldsymbol{y}')} \phi_{i}(\boldsymbol{x}_{t}, \boldsymbol{y}')) \end{array}$$

Sub this in,

$$egin{array}{lll} rac{\partial}{\partial oldsymbol{\omega}_i} \mathcal{L}(\mathcal{T}; oldsymbol{\omega}) &=& \sum_t (rac{Z_{oldsymbol{x}_t}}{e^{\sum_j \omega_j imes \phi_j(oldsymbol{x}_t, oldsymbol{y}_t)}}) (rac{\partial}{\partial oldsymbol{\omega}_i} rac{e^{\sum_j \omega_j imes \phi_j(oldsymbol{x}_t, oldsymbol{y}_t)}}{Z_{oldsymbol{x}_t}}) \ &=& \sum_t rac{1}{Z_{oldsymbol{x}_t}} \left(Z_{oldsymbol{x}_t} \phi_i(oldsymbol{x}_t, oldsymbol{y}_t) - \sum_{oldsymbol{y}' \in \mathcal{Y}} e^{\sum_j \omega_j imes \phi_j(oldsymbol{x}_t, oldsymbol{y}')} \phi_i(oldsymbol{x}_t, oldsymbol{y}'))) \ &=& \sum_t \phi_i(oldsymbol{x}_t, oldsymbol{y}_t) - \sum_t \sum_{oldsymbol{y}' \in \mathcal{Y}} P(oldsymbol{y}' | oldsymbol{x}_t) \phi_i(oldsymbol{x}_t, oldsymbol{y}') \ &=& \sum_t \phi_i(oldsymbol{x}_t, oldsymbol{y}_t) - \sum_t \sum_{oldsymbol{y}' \in \mathcal{Y}} P(oldsymbol{y}' | oldsymbol{x}_t) \phi_i(oldsymbol{x}_t, oldsymbol{y}') \end{array}$$

FINALLY!!!

After all that.

$$rac{\partial}{\partial oldsymbol{\omega}_i} \mathcal{L}(\mathcal{T}; oldsymbol{\omega}) \;\; = \;\; \sum_t \phi_i(x_t, y_t) - \sum_t \sum_{oldsymbol{y}' \in \mathcal{Y}} extstyle P(oldsymbol{y}' | oldsymbol{x}_t) \phi_i(x_t, oldsymbol{y}')$$

And the gradient is:

$$\nabla \mathcal{L}(\mathcal{T}; \boldsymbol{\omega}) = (\frac{\partial}{\partial \omega_0} \mathcal{L}(\mathcal{T}; \boldsymbol{\omega}), \frac{\partial}{\partial \omega_1} \mathcal{L}(\mathcal{T}; \boldsymbol{\omega}), \dots, \frac{\partial}{\partial \omega_m} \mathcal{L}(\mathcal{T}; \boldsymbol{\omega}))$$

▶ So we can now use gradient ascent to find ω !!

Logistic Regression Summary

► Define conditional probability

$$P(y|x) = \frac{e^{\omega \cdot \phi(x,y)}}{Z_x}$$

Set weights to maximize log-likelihood of training data:

$$oldsymbol{\omega} = rg \max_{oldsymbol{\omega}} \sum_t \log P(oldsymbol{y}_t | oldsymbol{x}_t)$$

► Can find the gradient and run gradient ascent (or any gradient-based optimization algorithm)

$$rac{\partial}{\partial \omega_i} \mathcal{L}(\mathcal{T}; \omega) = \sum_t \phi_i(x_t, y_t) - \sum_t \sum_{y' \in \mathcal{V}} extstyle P(y'|x_t) \phi_i(x_t, y')$$

Logistic Regression = Maximum Entropy

More here: https://purenanya.wordpress.com/2012/09/05/logistic-regression-and-the-maximum-entropy-modeling-

- Max Ent: maximize entropy subject to constraints on features: $P = \arg \max_{P} H(P)$ under constraints
 - ▶ Empirical feature counts must equal expected counts
- Quick intuition

Matching
1st
moments
(only
average)
other
according
occams
razor

Partial derivative in logistic regression

$$rac{\partial}{\partial oldsymbol{\omega}_i} \mathcal{L}(\mathcal{T}; oldsymbol{\omega}) = \sum_t \phi_i(oldsymbol{x}_t, oldsymbol{y}_t) + \sum_t \sum_{oldsymbol{y}' \in \mathcal{Y}} P(oldsymbol{y}' | oldsymbol{x}_t) \phi_i(oldsymbol{x}_t, oldsymbol{y}')$$

First term is empirical feature counts and second term is expected counts

Derivative set to zero maximizes function

Therefore when both counts are equivalent, we optimize the logistic regression objective!

Perceptron

Perceptron

Choose a ω that minimizes error

$$\mathcal{L}(\mathcal{T}; oldsymbol{\omega}) = \sum_{t=1}^{|\mathcal{T}|} 1 - [[oldsymbol{y}_t = rg \max_{oldsymbol{y}} \ oldsymbol{\omega} \cdot oldsymbol{\phi}(oldsymbol{x}_t, oldsymbol{y})]]$$

$$oldsymbol{\omega} = rg \min_{oldsymbol{\omega}} \sum_{t=1}^{|I|} 1 - [[oldsymbol{y}_t = rg \max_{oldsymbol{y}} \ oldsymbol{\omega} \cdot oldsymbol{\phi}(oldsymbol{x}_t, oldsymbol{y})]]$$
 $[[oldsymbol{p}]] = \left\{egin{array}{ll} 1 & oldsymbol{p} ext{ is true} \ 0 & ext{otherwise} \end{array}
ight.$

- ► This is a 0-1 loss function
 - When minimizing error people tend to use hinge-loss
 - ▶ We'll get back to this

Aside: Min error versus max log-likelihood

- ► Highly related but not identical
- ightharpoonup Example: consider a training set $\mathcal T$ with 1001 points

$$1000 \times (\boldsymbol{x}_i, \boldsymbol{y} = 0) = [-1, 1, 0, 0]$$
 for $i = 1 \dots 1000$
 $1 \times (\boldsymbol{x}_{1001}, \boldsymbol{y} = 1) = [0, 0, 3, 1]$

- Now consider $\omega = [-1, 0, 1, 0]$
- \triangleright Error in this case is $0 so \omega$ minimizes error

$$[-1,0,1,0] \cdot [-1,1,0,0] = 1 > [-1,0,1,0] \cdot [0,0,-1,1] = -1$$

 $[-1,0,1,0] \cdot [0,0,3,1] = 3 > [-1,0,1,0] \cdot [3,1,0,0] = -3$

► However, log-likelihood = -126.9 (omit calculation)

Aside: Min error versus max log-likelihood

- ► Highly related but not identical
- ightharpoonup Example: consider a training set \mathcal{T} with 1001 points

$$1000 \times (\boldsymbol{x}_i, \boldsymbol{y} = 0) = [-1, 1, 0, 0]$$
 for $i = 1 \dots 1000$
 $1 \times (\boldsymbol{x}_{1001}, \boldsymbol{y} = 1) = [0, 0, 3, 1]$

- Now consider $\omega = [-1, 7, 1, 0]$
- ▶ Error in this case is $1 so \omega$ does not minimize error

$$[-1,7,1,0] \cdot [-1,1,0,0] = 8 > [-1,7,1,0] \cdot [-1,1,0,0] = -1$$

 $[-1,7,1,0] \cdot [0,0,3,1] = 3 < [-1,7,1,0] \cdot [3,1,0,0] = 4$

- ► However, log-likelihood = -1.4
- Better log-likelihood and worse error

Aside: Min error versus max log-likelihood

- ► Max likelihood ≠ min error
- Max likelihood pushes as much probability on correct labeling of training instance
 - Even at the cost of mislabeling a few examples
- Min error forces all training instances to be correctly classified
 - Often not possible
 - Ways of regularizing model to allow sacrificing some errors for better predictions on more examples

Perceptron Learning Algorithm

```
Training data: \mathcal{T} = \{(x_t, y_t)\}_{t=1}^{|\mathcal{T}|}
1. \omega^{(0)} = 0; i = 0
2. for n: 1..N
3. for t: 1..T
4. Let y' = \arg\max_{y'} \omega^{(i)} \cdot \phi(x_t, y')
5. if y' \neq y_t
6. \omega^{(i+1)} = \omega^{(i)} + \phi(x_t, y_t) - \phi(x_t, y')
7. i = i + 1
8. return \omega^i
```

Perceptron: Separability and Margin

- Given an training instance (x_t, y_t) , define:
 - $\quad \mathbf{\bar{y}}_t = \mathbf{\mathcal{Y}} \{\mathbf{y}_t\}$
 - ightharpoonup i.e., $\bar{\mathcal{Y}}_t$ is the set of incorrect labels for x_t
- ▶ A training set \mathcal{T} is separable with margin $\gamma > 0$ if there exists a vector \mathbf{u} with $\|\mathbf{u}\| = 1$ such that:

$$\mathbf{u} \cdot \phi(x_t, y_t) - \mathbf{u} \cdot \phi(x_t, y') \ge \gamma$$

for all
$$oldsymbol{y}' \in ar{\mathcal{Y}}_t$$
 and $||oldsymbol{\mathsf{u}}|| = \sqrt{\sum_j oldsymbol{\mathsf{u}}_j^2}$

Assumption: the training set is separable with margin γ

Perceptron: Main Theorem

▶ **Theorem**: For any training set separable with a margin of γ , the following holds for the perceptron algorithm:

mistakes made during training
$$\leq \frac{R^2}{\gamma^2}$$

where
$$R \geq ||\phi(x_t,y_t) - \phi(x_t,y')||$$
 for all $(x_t,y_t) \in \mathcal{T}$ and $y' \in \bar{\mathcal{Y}}_t$

- ► Thus, after a finite number of training iterations, the error on the training set will converge to zero
- ▶ Let's prove it! (proof taken from Collins '02)

Perceptron Learning Algorithm

```
Training data: \mathcal{T} = \{(x_t, y_t)\}_{t=1}^{|\mathcal{T}|}

1. \omega^{(0)} = 0; \ i = 0

2. for n: 1..N

3. for t: 1..\mathcal{T}

4. Let y' = \arg\max_{y'} \omega^{(i)} \cdot \phi(x_t, y')

5. if y' \neq y_t

6. \omega^{(i+1)} = \omega^{(i)} + \phi(x_t, y_t) - \phi(x_t, y')

7. i = i + 1

8. return \omega^i
```

- $oldsymbol{\omega}^{(k-1)}$ are the weights before k^{th} mistake
- Suppose k^{th} mistake made at the t^{th} example, $(\boldsymbol{x}_t, \boldsymbol{y}_t)$
- $m{y}' = rg \max_{m{y}'} m{\omega}^{(k-1)} \cdot m{\phi}(m{x}_t, m{y}')$
- $\mathbf{y}' \neq \mathbf{y}_t$
- $\begin{array}{ll} \bullet & \boldsymbol{\omega}^{(k)} = \\ \boldsymbol{\omega}^{(k-1)} + \phi(\boldsymbol{x}_t, \boldsymbol{y}_t) \phi(\boldsymbol{x}_t, \boldsymbol{y}') \end{array}$

Perceptron Learning Algorithm (for handout)

```
Training data: \mathcal{T} = \{(\boldsymbol{x}_t, \boldsymbol{y}_t)\}_{t=1}^{|\mathcal{T}|}
    1. \omega^{(0)} = 0: i = 0
    for n: 1..N
    3 for t · 1 T
                Let \boldsymbol{y}' = \operatorname{arg\,max}_{\boldsymbol{y}'} \boldsymbol{\omega}^{(i)} \cdot \boldsymbol{\phi}(\boldsymbol{x}_t, \boldsymbol{y}')
                   if y' \neq y_t
                                 \boldsymbol{\omega}^{(i+1)} = \boldsymbol{\omega}^{(i)} + \phi(\boldsymbol{x}_t, \boldsymbol{y}_t) - \phi(\boldsymbol{x}_t, \boldsymbol{y}') \quad \blacktriangleright \quad \boldsymbol{y}' \neq \boldsymbol{y}_t
                              i = i + 1
    8. return \omega^i
```

- lacksquare $\omega^{(k-1)}$ are the weights before k^{th} mistake
- \triangleright Suppose k^{th} mistake made at the t^{th} example, (x_t, y_t)
- $\mathbf{y}' = \operatorname{arg\,max}_{\mathbf{y}'} \boldsymbol{\omega}^{(k-1)} \cdot \boldsymbol{\phi}(\mathbf{x}_t, \mathbf{y}')$
- $\sim \omega^{(k)} =$ $\boldsymbol{\omega}^{(k-1)} + \boldsymbol{\phi}(\boldsymbol{x}_t, \boldsymbol{y}_t) - \boldsymbol{\phi}(\boldsymbol{x}_t, \boldsymbol{y}')$

Now:
$$\mathbf{u} \cdot \boldsymbol{\omega}^{(k)} = \mathbf{u} \cdot \boldsymbol{\omega}^{(k-1)} + \mathbf{u} \cdot (\phi(\boldsymbol{x}_t, \boldsymbol{y}_t) - \phi(\boldsymbol{x}_t, \boldsymbol{y}')) \ge \mathbf{u} \cdot \boldsymbol{\omega}^{(k-1)} + \gamma$$

- Now: $\omega^{(0)} = 0$ and $\mathbf{u} \cdot \omega^{(0)} = 0$, by induction on k, $\mathbf{u} \cdot \omega^{(k)} > k\gamma$
- Now: since $\mathbf{u} \cdot \boldsymbol{\omega}^{(k)} < ||\mathbf{u}|| \times ||\boldsymbol{\omega}^{(k)}||$ and $||\mathbf{u}|| = 1$ then $||\boldsymbol{\omega}^{(k)}|| > k\gamma$
- Now:

$$\begin{split} ||\omega^{(k)}||^2 &= ||\omega^{(k-1)}||^2 + ||\phi(x_t, y_t) - \phi(x_t, y')||^2 + 2\omega^{(k-1)} \cdot (\phi(x_t, y_t) - \phi(x_t, y')) \\ ||\omega^{(k)}||^2 &\leq ||\omega^{(k-1)}||^2 + R^2 \\ &\qquad (\text{since } R \geq ||\phi(x_t, y_t) - \phi(x_t, y')|| \\ &\qquad \text{and } \omega^{(k-1)} \cdot \phi(x_t, y_t) - \omega^{(k-1)} \cdot \phi(x_t, y') \leq 0) \end{split}$$

Perceptron Learning Algorithm

- We have just shown that $||\omega^{(k)}|| \ge k\gamma$ and $||\omega^{(k)}||^2 < ||\omega^{(k-1)}||^2 + R^2$
- ▶ By induction on k and since $\omega^{(0)} = 0$ and $||\omega^{(0)}||^2 = 0$
- ▶ Therefore,
- and solving for k
- Therefore the number of errors is bounded!

Perceptron Learning Algorithm (for handout)

- We have just shown that $||\omega^{(k)}|| \ge k\gamma$ and $||\omega^{(k)}||^2 \le ||\omega^{(k-1)}||^2 + R^2$
- By induction on k and since $\omega^{(0)} = 0$ and $||\omega^{(0)}||^2 = 0$

$$||\omega^{(k)}||^2 \le kR^2$$

Therefore,

$$k^2 \gamma^2 \le ||\omega^{(k)}||^2 \le kR^2$$

▶ and solving for k

$$k \le \frac{R^2}{\gamma^2}$$

Therefore the number of errors is bounded!

Perceptron Summary

- ▶ Learns a linear classifier that minimizes error
- Guaranteed to find a ω in a finite amount of time
- Perceptron is an example of an Online Learning Algorithm
 - $ightharpoonup \omega$ is updated based on a single training instance in isolation

$$\pmb{\omega}^{(i+1)} = \pmb{\omega}^{(i)} + \pmb{\phi}(\pmb{x}_t, \pmb{y}_t) - \pmb{\phi}(\pmb{x}_t, \pmb{y}')$$

Averaged Perceptron

```
Training data: \mathcal{T} = \{(\boldsymbol{x}_t, \boldsymbol{y}_t)\}_{t=1}^{|\mathcal{T}|}
  1. \omega^{(0)} = 0: i = 0
 2. for n: 1..N
 3. for t:1..T
      Let oldsymbol{y}' = rg \max_{oldsymbol{u}'} oldsymbol{\omega}^{(i)} \cdot \phi(oldsymbol{x}_t, oldsymbol{y}')
 5.
               if u' \neq u_{t}
                   \omega^{(i+1)} = \omega^{(i)} + \phi(x_t, y_t) - \phi(x_t, y')
 7.
      else
      \omega^{(i+1)} = \omega^{(i)}
 7. i = i + 1
 8. return (\sum_i \omega^{(i)}) / (N \times T)
```

Margin

Training

Denote the value of the margin by γ

Testing

Maximizing Margin

- ightharpoonup For a training set \mathcal{T}
- Margin of a weight vector ω is smallest γ such that

$$oldsymbol{\omega} \cdot \phi(oldsymbol{x}_t, oldsymbol{y}_t) - oldsymbol{\omega} \cdot \phi(oldsymbol{x}_t, oldsymbol{y}') \geq \gamma$$

lacktriangleright for every training instance $(x_t,y_t)\in\mathcal{T}$, $y'\inar{\mathcal{Y}}_t$

Maximizing Margin

- Intuitively maximizing margin makes sense
- More importantly, generalization error to unseen test data is proportional to the inverse of the margin

$$\epsilon \propto \frac{R^2}{\gamma^2 \times |\mathcal{T}|}$$

- Perceptron: we have shown that:
 - If a training set is separable by some margin, the perceptron will find a ω that separates the data
 - ▶ However, the perceptron does not pick ω to maximize the margin!

Support Vector Machines (SVMs)

Maximizing Margin

Let $\gamma > 0$

$$\max_{||\boldsymbol{\omega}||=1} \gamma$$

$$egin{aligned} \omega \cdot \phi(m{x}_t, m{y}_t) - \omega \cdot \phi(m{x}_t, m{y}') &\geq \gamma \ &orall (m{x}_t, m{y}_t) \in \mathcal{T} \ & ext{and} \ m{y}' \in ar{\mathcal{Y}}_t \end{aligned}$$

- ▶ Note: algorithm still minimizes error if data is separable
- $ightharpoonup ||\omega||$ is bound since scaling trivially produces larger margin

$$\beta(\omega \cdot \phi(x_t, y_t) - \omega \cdot \phi(x_t, y')) \ge \beta \gamma$$
, for some $\beta \ge 1$

Let $\gamma > 0$

Max Margin:

$$\max_{||\boldsymbol{\omega}||=1} \gamma$$

such that:

$$egin{aligned} \omega \cdot \phi(x_t, y_t) - \omega \cdot \phi(x_t, y_t) &\geq \gamma \ &orall (x_t, y_t) \in \mathcal{T} \ & ext{and } y' \in ar{\mathcal{Y}}_t \end{aligned}$$
 Change of variable: $u = w_{\mathcal{A}}$

 $||\omega|| = 1$ iff $||\mathbf{u}|| = 1/\gamma$

Min Norm (step 1):

$$\max_{||\mathbf{u}||=1/\gamma} \ \gamma$$

$$egin{aligned} \omega{\cdot}\phi(x_t,y_t){-}\omega{\cdot}\phi(x_t,y') &\geq \gamma \ &orall (x_t,y_t) \in \mathcal{T} \ & ext{and } y' \in ar{\mathcal{Y}}_t \end{aligned}$$

Let $\gamma > 0$

Max Margin:

$$\max_{||\boldsymbol{\omega}||=1}^{-\epsilon}$$

such that:

$$egin{aligned} \omega{\cdot}\phi(m{x}_t,m{y}_t){-}\omega{\cdot}\phi(m{x}_t,m{y}') &\geq \gamma \ &orall (m{x}_t,m{y}_t) \in \mathcal{T} \ & ext{and} \ m{y}' \in ar{\mathcal{Y}}_t \end{aligned}$$

Change variables:
$$u = \frac{w}{\gamma}$$
?

$$||\pmb{\omega}||=1 \text{ iff } ||\mathbf{u}||=\gamma$$

Min Norm (step 2):

$$\max_{||\mathbf{u}||=1/\gamma} \gamma$$

$$\gamma \mathsf{u} \cdot \phi(m{x}_t, m{y}_t) - \gamma \mathsf{u} \cdot \phi(m{x}_t, m{y}') \geq \gamma$$
 $orall (m{x}_t, m{y}_t) \in \mathcal{T}$ and $m{y}' \in ar{\mathcal{Y}}_t$

Let $\gamma > 0$

Max Margin:

$$\max_{||oldsymbol{\omega}||=1}^{\infty}$$

such that:

$$egin{aligned} \omega{\cdot}\phi(x_t,y_t){-}\omega{\cdot}\phi(x_t,y') &\geq \gamma \ &orall (x_t,y_t) \in \mathcal{T} \ & ext{and} \ y' \in ar{\mathcal{Y}}_t \end{aligned}$$

Change variables:
$$u = \frac{w}{\gamma}$$
?
 $||\omega|| = 1$ iff $||\mathbf{u}|| = \gamma$

Min Norm (step 3):

$$\max_{||\mathbf{u}||=1/\gamma} \gamma$$

such that:

$$egin{aligned} \mathsf{u} \cdot \phi(x_t, y_t) - \mathsf{u} \cdot \phi(x_t, y') &\geq 1 \ &orall (x_t, y_t) \in \mathcal{T} \ & ext{and} \ y' \in ar{\mathcal{Y}}_t \end{aligned}$$

But γ is really not constrained!

Let $\gamma > 0$

Max Margin:

$$\max_{||\boldsymbol{\omega}||=1}^{-c}$$

such that:

$$egin{aligned} \omega{\cdot}\phi(m{x}_t,m{y}_t){-}\omega{\cdot}\phi(m{x}_t,m{y}') &\geq \gamma \ &orall (m{x}_t,m{y}_t) \in \mathcal{T} \ & ext{and} \ m{y}' \in ar{\mathcal{Y}}_t \end{aligned}$$

Change variables:
$$u = \frac{w}{\gamma}$$
?

$$||\pmb{\omega}||=1 \text{ iff } ||\mathbf{u}||=\gamma$$

Min Norm (step 4):

$$\max_{\boldsymbol{u}} \ \frac{1}{||\boldsymbol{u}||} = \min_{\boldsymbol{u}} ||\boldsymbol{u}||$$

such that:

$$\mathbf{u} \cdot \phi(x_t, y_t) - \mathbf{u} \cdot \phi(x_t, y') \geq 1$$
 $orall (x_t, y_t) \in \mathcal{T}$ and $y' \in ar{\mathcal{Y}}_t$

But γ is really not constrained!

Let $\gamma > 0$

Max Margin:

$$\max_{||\boldsymbol{\omega}||=1}$$

such that:

$$egin{aligned} \omega{\cdot}\phi(x_t,y_t){-}\omega{\cdot}\phi(x_t,y') &\geq \gamma \ &orall (x_t,y_t) \in \mathcal{T} \ & ext{and } y' \in ar{\mathcal{Y}}_t \end{aligned}$$

Min Norm:

$$\min_{\boldsymbol{u}} \quad \frac{1}{2}||\boldsymbol{u}||^2$$

such that:

$$\mathbf{u} \cdot \phi(x_t, y_t) - \mathbf{u} \cdot \phi(x_t, y') \geq 1$$
 $orall (x_t, y_t) \in \mathcal{T}$ and $y' \in ar{\mathcal{V}}_t$

▶ Intuition: Instead of fixing $||\omega||$ we fix the margin $\gamma=1$

$$\omega = \underset{\omega}{\operatorname{arg\,min}} \ \frac{1}{2} ||\omega||^2$$

$$egin{aligned} \omega \cdot \phi(x_t, y_t) - \omega \cdot \phi(x_t, y') &\geq 1 \ &orall (x_t, y_t) \in \mathcal{T} ext{ and } y' \in ar{\mathcal{Y}}_t \end{aligned}$$

- Quadratic programming problem a well-known convex optimization problem
- ► Can be solved with many techniques [Nocedal and Wright 1999]

What if data is not separable? (Original problem: will not satisfy the constraints!)

$$\omega = \operatorname*{arg\,min}_{\boldsymbol{\omega}, \boldsymbol{\xi}} \ \frac{1}{2} ||\boldsymbol{\omega}||^2 + C \sum_{t=1}^{|\mathcal{T}|} \frac{\boldsymbol{\xi}_t}{t}$$

such that:

$$egin{aligned} \omega \cdot \phi(x_t, y_t) - \omega \cdot \phi(x_t, y') &\geq 1 - egin{aligned} \xi_t \end{aligned} \geq 0 \ &orall (x_t, y_t) \in \mathcal{T} ext{ and } y' \in ar{\mathcal{Y}}_t \end{aligned}$$

 ξ_t : trade-off between margin per example and $\|\omega\|$ Larger C = more examples correctly classified If data is separable, optimal solution has $\xi_i = 0$, $\forall i$

$$\omega = \underset{\omega,\xi}{\operatorname{arg\,min}} \frac{\lambda}{2} ||\omega||^2 + \sum_{t=1}^{|\mathcal{T}|} \xi_t \qquad \lambda = \frac{1}{C}$$

such that:

$$oldsymbol{\omega} \cdot \phi(x_t, y_t) - oldsymbol{\omega} \cdot \phi(x_t, y') \geq 1 - \xi_t$$

Can we have a more compact representation of this objective function?

$$oldsymbol{\omega} \cdot \phi(oldsymbol{x}_t, oldsymbol{y}_t) - \max_{oldsymbol{y}'
eq oldsymbol{y}_t} oldsymbol{\omega} \cdot \phi(oldsymbol{x}_t, oldsymbol{y}') \geq 1 - \xi_t$$

$$\xi_t \geq 1 + \underbrace{\max_{oldsymbol{y}'
eq oldsymbol{y}_t} \ oldsymbol{\omega} \cdot oldsymbol{\phi}(oldsymbol{x}_t, oldsymbol{y}') - oldsymbol{\omega} \cdot oldsymbol{\phi}(oldsymbol{x}_t, oldsymbol{y}_t)}_{}$$

negated margin for example

$$\xi_t \geq 1 + \underbrace{\max_{oldsymbol{y}'
eq oldsymbol{y}_t} \ \omega \cdot \phi(x_t, oldsymbol{y}') - \omega \cdot \phi(x_t, oldsymbol{y}_t)}_{ ext{negated margin for example}}$$

- ▶ If $\|\omega\|$ classifies (x_t, y_t) with margin 1, penalty $\xi_t = 0$
- (Objective wants to keep ξ_t small and $\xi_t = 0$ satisfies the constraint)
- lacksquare Otherwise: $\xi_t = 1 + \max_{m{y}'
 eq m{y}_t} \ m{\omega} \cdot \phi(m{x}_t, m{y}') m{\omega} \cdot \phi(m{x}_t, m{y}_t)$
- (Again, because that's the minimal ξ_t that satisfies the constraint, and we want ξ_t smallest as possible)
- ▶ That means that in the end ξ_t will be:

$$egin{aligned} \xi_t = \max\{0, 1 + \max_{oldsymbol{y}'
eq oldsymbol{y}_t} oldsymbol{\omega} \cdot \phi(oldsymbol{x}_t, oldsymbol{y}') - oldsymbol{\omega} \cdot \phi(oldsymbol{x}_t, oldsymbol{y}_t) \} \end{aligned}$$

(If an example is classified correctly, $\xi_t = 0$ and the second term in the max is negative.)

$$\omega = \underset{\boldsymbol{\omega}, \xi}{\operatorname{arg\,min}} \ \frac{\lambda}{2} ||\boldsymbol{\omega}||^2 + \sum_{t=1}^{|\mathcal{T}|} \xi_t$$

such that:

$$\xi_t \geq 1 + \max_{oldsymbol{y}'
eq oldsymbol{y}_t} oldsymbol{\omega} \cdot \phi(oldsymbol{x}_t, oldsymbol{y}') - oldsymbol{\omega} \cdot \phi(oldsymbol{x}_t, oldsymbol{y}_t)$$

Hinge loss equivalent

$$\omega = \underset{\omega}{\operatorname{arg\,min}} \ \mathcal{L}(\mathcal{T}; \omega) = \underset{\omega}{\operatorname{arg\,min}} \ \sum_{t=1}^{|\mathcal{T}|} loss((\boldsymbol{x}_t, \boldsymbol{y}_t); \omega) \ + \ \frac{\lambda}{2} ||\omega||^2$$

$$=rg\min_{oldsymbol{\omega}} \left(\sum_{t=1}^{|\mathcal{T}|} \mathsf{max} \left(0, 1 + \max_{oldsymbol{y}'
eq oldsymbol{y}_t} oldsymbol{\omega} \cdot oldsymbol{\phi}(oldsymbol{x}_t, oldsymbol{y}') - oldsymbol{\omega} \cdot oldsymbol{\phi}(oldsymbol{x}_t, oldsymbol{y}') - oldsymbol{\omega} \cdot oldsymbol{\phi}(oldsymbol{x}_t, oldsymbol{y}_t)
ight) + rac{\lambda}{2} ||oldsymbol{\omega}||^2$$

Summary

What we have covered

- Linear Classifiers
 - Naive Bayes
 - Logistic Regression
 - Perceptron
 - Support Vector Machines

What is next

- Regularization
- Online learning
- Non-linear classifiers

Regularization

Fit of a Model

- Two sources of error:
 - Bias error, measures how well the hypothesis class fits the space we are trying to model
 - Variance error, measures sensitivity to training set selection
 - Want to balance these two things

Overfitting

- ▶ Early in lecture we made assumption data was i.i.d.
- Rarely is this true
 - ► E.g., syntactic analyzers typically trained on 40,000 sentences from early 1990s WSJ news text
- ▶ Even more common: T is very small
- This leads to overfitting
- ► E.g.: 'fake' is never a verb in WSJ treebank (only adjective)
 - lacktriangle High weight on " $\phi(x,y)=1$ if x=fake and y=adjective"
 - Of course: leads to high log-likelihood / low error
- Other features might be more indicative
- ▶ Adjacent word identities: 'He wants to X his death' → X=verb

Regularization

In practice, we regularize models to prevent overfitting

$$\underset{\boldsymbol{\omega}}{\operatorname{arg\,max}} \ \mathcal{L}(\mathcal{T};\boldsymbol{\omega}) - \lambda \mathcal{R}(\boldsymbol{\omega})$$

- Where $\mathcal{R}(\omega)$ is the regularization function
- \triangleright λ controls how much to regularize
- Common functions
 - L2: $\mathcal{R}(\omega) \propto \|\omega\|_2 = \|\omega\| = \sqrt{\sum_i \omega_i^2}$ smaller weights desired
 - ▶ L0: $\mathcal{R}(\omega) \propto \|\omega\|_0 = \sum_i [[\omega_i > 0]]$ zero weights desired
 - Non-convex
 - Approximate with L1: $\mathcal{R}(\omega) \propto \|\omega\|_1 = \sum_i |\omega_i|$

Logistic Regression with L2 Regularization

Perhaps most common classifier in NLP

$$\mathcal{L}(\mathcal{T}; oldsymbol{\omega}) - \lambda \mathcal{R}(oldsymbol{\omega}) = \sum_{t=1}^{|\mathcal{T}|} \log \left(e^{oldsymbol{\omega} \cdot oldsymbol{\phi}(oldsymbol{x}_t, oldsymbol{y}_t)} / Z_{oldsymbol{x}}
ight) - rac{\lambda}{2} \|oldsymbol{\omega}\|^2$$

▶ What are the new partial derivatives?

$$rac{\partial}{\partial w_i}\mathcal{L}(\mathcal{T}; oldsymbol{\omega}) - rac{\partial}{\partial w_i}\lambda\mathcal{R}(oldsymbol{\omega})$$

- We know $\frac{\partial}{\partial w_i} \mathcal{L}(\mathcal{T}; \boldsymbol{\omega})$
- ▶ Just need $\frac{\partial}{\partial w_i} \frac{\lambda}{2} \|\omega\|^2 = \frac{\partial}{\partial w_i} \frac{\lambda}{2} \left(\sqrt{\sum_i \omega_i^2}\right)^2 = \frac{\partial}{\partial w_i} \frac{\lambda}{2} \sum_i \omega_i^2 = \lambda \omega_i$

Hinge-loss formulation: L2 regularization already happening!

$$\begin{split} \boldsymbol{\omega} &= & \arg\min_{\boldsymbol{\omega}} \ \mathcal{L}(\mathcal{T}; \boldsymbol{\omega}) + \lambda \mathcal{R}(\boldsymbol{\omega}) \\ &= & \arg\min_{\boldsymbol{\omega}} \ \sum_{t=1}^{|\mathcal{T}|} \underset{\boldsymbol{\omega}}{loss}((\boldsymbol{x}_t, \boldsymbol{y}_t); \boldsymbol{\omega}) + \lambda \mathcal{R}(\boldsymbol{\omega}) \\ &= & \arg\min_{\boldsymbol{\omega}} \ \sum_{t=1}^{|\mathcal{T}|} \max(0, 1 + \max_{\boldsymbol{y} \neq \boldsymbol{y}_t} \ \boldsymbol{\omega} \cdot \boldsymbol{\phi}(\boldsymbol{x}_t, \boldsymbol{y}) - \boldsymbol{\omega} \cdot \boldsymbol{\phi}(\boldsymbol{x}_t, \boldsymbol{y}_t)) + \lambda \mathcal{R}(\boldsymbol{\omega}) \\ &= & \arg\min_{\boldsymbol{\omega}} \ \sum_{t=1}^{|\mathcal{T}|} \max(0, 1 + \max_{\boldsymbol{y} \neq \boldsymbol{y}_t} \ \boldsymbol{\omega} \cdot \boldsymbol{\phi}(\boldsymbol{x}_t, \boldsymbol{y}) - \boldsymbol{\omega} \cdot \boldsymbol{\phi}(\boldsymbol{x}_t, \boldsymbol{y}_t)) + \frac{\lambda}{2} \|\boldsymbol{\omega}\|^2 \\ &\qquad \qquad \uparrow \ \mathsf{SVM} \ \mathsf{optimization} \ \uparrow \end{split}$$

SVMs vs. Logistic Regression

$$\begin{array}{lcl} \boldsymbol{\omega} & = & \displaystyle \operatorname*{arg\,min}_{\boldsymbol{\omega}} \ \mathcal{L}(\mathcal{T}; \boldsymbol{\omega}) + \lambda \mathcal{R}(\boldsymbol{\omega}) \\ \\ & = & \displaystyle \operatorname*{arg\,min}_{\boldsymbol{\omega}} \ \sum_{t=1}^{|\mathcal{T}|} loss((\boldsymbol{x}_t, \boldsymbol{y}_t); \boldsymbol{\omega}) + \lambda \mathcal{R}(\boldsymbol{\omega}) \end{array}$$

 $\mathsf{SVMs/hinge-loss:} \ \mathsf{max} \ (0, 1 + \mathsf{max}_{\boldsymbol{y} \neq \boldsymbol{y}_t} \ (\boldsymbol{\omega} \cdot \boldsymbol{\phi}(\boldsymbol{x}_t, \boldsymbol{y}) - \boldsymbol{\omega} \cdot \boldsymbol{\phi}(\boldsymbol{x}_t, \boldsymbol{y}_t)))$

$$\boldsymbol{\omega} = \operatorname*{arg\,min}_{\boldsymbol{\omega}} \ \sum_{t=1}^{|\mathcal{T}|} \mathsf{max} \ (0, 1 + \operatorname*{max}_{\boldsymbol{y} \neq \boldsymbol{y}_t} \ \boldsymbol{\omega} \cdot \boldsymbol{\phi}(\boldsymbol{x}_t, \boldsymbol{y}) - \boldsymbol{\omega} \cdot \boldsymbol{\phi}(\boldsymbol{x}_t, \boldsymbol{y}_t)) + \frac{\lambda}{2} \|\boldsymbol{\omega}\|^2$$

Logistic Regression/log-loss: $-\log \left(e^{\omega \cdot \phi(x_t,y_t)}/Z_x \right)$

$$\omega = \operatorname*{arg\,min}_{\omega} \sum_{t=1}^{|\mathcal{T}|} -\log \left(\mathrm{e}^{\omega \cdot \phi(x_t, y_t)} / Z_x \right) + \frac{\lambda}{2} \|\omega\|^2$$

Generalized Linear Classifiers

$$oldsymbol{\omega} = rg \min_{oldsymbol{\omega}} \ \mathcal{L}(\mathcal{T}; oldsymbol{\omega}) + \lambda \mathcal{R}(oldsymbol{\omega}) = rg \min_{oldsymbol{\omega}} \ \sum_{t=1}^{|\mathcal{T}|} loss((oldsymbol{x}_t, oldsymbol{y}_t); oldsymbol{\omega}) + \lambda \mathcal{R}(oldsymbol{\omega})$$

Which Classifier to Use?

- ► Trial and error
- ► Training time available
- ▶ Choice of features is often more important

Online Learning

Online vs. Batch Learning

$Batch(\mathcal{T});$

- ▶ for 1 ... N
 - lacktriangledown $\omega \leftarrow \operatorname{update}(\mathcal{T}; \omega)$
- ightharpoonup return ω

E.g., SVMs, logistic regression, NB

Online(\mathcal{T});

- ▶ for 1 ... N
 - ▶ for $(x_t, y_t) \in \mathcal{T}$ ▶ $\omega \leftarrow \mathsf{update}((x_t, y_t); \omega)$ ▶ end for
- end for
- ightharpoonup return ω

E.g., Perceptron $\omega = \omega + \phi(x_t, y_t) - \phi(x_t, y)$

Online vs. Batch Learning

- Online algorithms
 - ► Tend to converge more quickly
 - Often easier to implement
 - Require more hyperparameter tuning (exception Perceptron)
 - More unstable convergence
- Batch algorithms
 - Tend to converge more slowly
 - Implementation more complex (quad prog, LBFGs)
 - Typically more robust to hyperparameters
 - More stable convergence

Gradient Descent Reminder

- lacksquare Let $\mathcal{L}(\mathcal{T}; oldsymbol{\omega}) = \sum_{t=1}^{|\mathcal{T}|} \mathit{loss}((oldsymbol{x}_t, oldsymbol{y}_t); oldsymbol{\omega})$
 - Set $\omega^0 = O^m$
 - ► Iterate until convergence

$$oldsymbol{\omega}^i = oldsymbol{\omega}^{i-1} - lpha
abla \mathcal{L}(\mathcal{T}; oldsymbol{\omega}^{i-1}) = oldsymbol{\omega}^{i-1} - \sum_{t=1}^{|\mathcal{T}|} lpha
abla ext{loss}((oldsymbol{x}_t, oldsymbol{y}_t); oldsymbol{\omega}^{i-1})$$

- m lpha > 0 and set so that $\mathcal{L}(\mathcal{T}; m \omega^i) < \mathcal{L}(\mathcal{T}; m \omega^{i-1})$
- Stochastic Gradient Descent (SGD)
 - ightharpoonup Approximate $orall \mathcal{L}(\mathcal{T}; \omega)$ with single $orall \mathit{loss}((x_t, y_t); \omega)$

Stochastic Gradient Descent

- lacksquare Let $\mathcal{L}(\mathcal{T}; oldsymbol{\omega}) = \sum_{t=1}^{|\mathcal{T}|} \mathit{loss}((oldsymbol{x}_t, oldsymbol{y}_t); oldsymbol{\omega})$
- ightharpoonup Set $\omega^0 = O^m$
- iterate until convergence

▶ sample
$$(x_t, y_t) \in \mathcal{T}$$
 // "stochastic"

▶ $\omega^i = \omega^{i-1} - \alpha \triangledown loss((x_t, y_t); \omega)$

ightharpoonup return ω

In practice

Need to solve $\triangledown loss((\boldsymbol{x}_t, \boldsymbol{y}_t); \boldsymbol{\omega})$

- ▶ Set $\omega^0 = O^m$
- ▶ for 1...*N*

$$\qquad \qquad \mathsf{for} \; (x_t, y_t) \in \mathcal{T} \\ \qquad \qquad \qquad \omega^i = \omega^{i-1} - \alpha \triangledown \mathit{loss}((x_t, y_t); \omega)$$

ightharpoonup return ω

Online Logistic Regression

- Stochastic Gradient Descent (SGD)
- \blacktriangleright loss $((x_t, y_t); \omega) =$ log-loss
- $ightharpoonup riangle loss((x_t, y_t); \omega) = riangle (-\log (e^{\omega \cdot \phi(x_t, y_t)}/Z_{x_t}))$
- ► From logistic regression section:

$$egin{aligned} igtriangledown \left(-\log \ \left(\mathrm{e}^{oldsymbol{\omega} \cdot \phi(oldsymbol{x}_t, oldsymbol{y}_t)} / Z_{oldsymbol{x}_t}
ight)
ight) = -\left(\phi(oldsymbol{x}_t, oldsymbol{y}_t) - \sum_{oldsymbol{y}} oldsymbol{P}(oldsymbol{y} | oldsymbol{x}) \phi(oldsymbol{x}_t, oldsymbol{y})
ight) \end{aligned}$$

▶ Plus regularization term (if part of model)

Online SVMs

- Stochastic Gradient Descent (SGD)
- $ightharpoonup loss((x_t,y_t);\omega) = \text{hinge-loss}$

$$riangle loss((oldsymbol{x}_t, oldsymbol{y}_t); oldsymbol{\omega}) = riangle \left(\max \left(0, 1 + \max_{oldsymbol{y}
eq oldsymbol{y}_t} oldsymbol{\omega} \cdot \phi(oldsymbol{x}_t, oldsymbol{y}) - oldsymbol{\omega} \cdot \phi(oldsymbol{x}_t, oldsymbol{y}_t)
ight)
ight)$$

Subgradient is:

$$egin{aligned} & \triangledown \left(\mathsf{max} \left(0, 1 + \max_{\boldsymbol{y} \neq \boldsymbol{y}_t} \, \boldsymbol{\omega} \cdot \phi(\boldsymbol{x}_t, \boldsymbol{y}) - \boldsymbol{\omega} \cdot \phi(\boldsymbol{x}_t, \boldsymbol{y}_t) \right) \right) \\ & = \begin{cases} 0, & \text{if } \boldsymbol{\omega} \cdot \phi(\boldsymbol{x}_t, \boldsymbol{y}_t) - \mathsf{max}_{\boldsymbol{y}} \, \boldsymbol{\omega} \cdot \phi(\boldsymbol{x}_t, \boldsymbol{y}) \geq 1 \\ \phi(\boldsymbol{x}_t, \boldsymbol{y}) - \phi(\boldsymbol{x}_t, \boldsymbol{y}_t), & \text{otherwise, where } \boldsymbol{y} = \mathsf{max}_{\boldsymbol{y}} \, \boldsymbol{\omega} \cdot \phi(\boldsymbol{x}_t, \boldsymbol{y}) \end{cases}$$

Plus regularization term (required for SVMs)

Perceptron and Hinge-Loss

SVM subgradient update looks like perceptron update

$$oldsymbol{\omega}^i = oldsymbol{\omega}^{i-1} - lpha egin{cases} 0, & ext{if } oldsymbol{\omega} \cdot oldsymbol{\phi}(oldsymbol{x}_t, oldsymbol{y}_t) - ext{max}_{oldsymbol{y}} oldsymbol{\omega} \cdot oldsymbol{\phi}(oldsymbol{x}_t, oldsymbol{y}) \geq \mathbf{1} \ oldsymbol{\phi}(oldsymbol{x}_t, oldsymbol{y}_t) - oldsymbol{\phi}(oldsymbol{x}_t, oldsymbol{y}_t), & ext{otherwise, where } oldsymbol{y} = ext{max}_{oldsymbol{y}} oldsymbol{\omega} \cdot oldsymbol{\phi}(oldsymbol{x}_t, oldsymbol{y}_t) \end{pmatrix}$$

Perceptron

$$oldsymbol{\omega}^i = oldsymbol{\omega}^{i-1} - lpha egin{cases} 0, & ext{if } oldsymbol{\omega} \cdot \phi(oldsymbol{x}_t, oldsymbol{y}_t) - ext{max}_{oldsymbol{y}} oldsymbol{\omega} \cdot \phi(oldsymbol{x}_t, oldsymbol{y}) \geq oldsymbol{0} \ \phi(oldsymbol{x}_t, oldsymbol{y}_t) - \phi(oldsymbol{x}_t, oldsymbol{y}_t), & ext{otherwise, where } oldsymbol{y} = ext{max}_{oldsymbol{y}} oldsymbol{\omega} \cdot \phi(oldsymbol{x}_t, oldsymbol{y}_t) \geq oldsymbol{0} \ \phi(oldsymbol{x}_t, oldsymbol{y}_t) - \phi(oldsymbol{x}_t, oldsymbol{y}_t), & ext{otherwise, where } oldsymbol{y} = ext{max}_{oldsymbol{y}} oldsymbol{\omega} \cdot \phi(oldsymbol{x}_t, oldsymbol{y}_t) \end{pmatrix}$$

where $\alpha=1$, note $\phi(x_t,y)-\phi(x_t,y_t)$ not $\phi(x_t,y_t)-\phi(x_t,y)$ since '-' (descent)

Perceptron = SGD with no-margin hinge-loss

$$\max \left(0, 1 + \max_{oldsymbol{y}
eq oldsymbol{y} t} oldsymbol{\omega} \cdot \phi(x_t, oldsymbol{y}) - oldsymbol{\omega} \cdot \phi(x_t, oldsymbol{y}_t)
ight)$$

Margin Infused Relaxed Algorithm (MIRA)

Batch (SVMs):

$$\min \; \frac{1}{2} ||\omega||^2$$

such that:

$$m{\omega}\cdot \phi(m{x}_t,m{y}_t) - m{\omega}\cdot \phi(m{x}_t,m{y}') \geq 1$$
 $orall (m{x}_t,m{y}_t) \in \mathcal{T}$ and $m{y}' \in ar{\mathcal{Y}}_t$

Online (MIRA):

Training data:
$$\mathcal{T} = \{(\boldsymbol{x}_t, \boldsymbol{y}_t)\}_{t=1}^{|\mathcal{T}|}$$
1. $\boldsymbol{\omega}^{(0)} = 0; \ i = 0$
2. for $n: 1..N$
3. for $t: 1..\mathcal{T}$
4. $\boldsymbol{\omega}^{(i+1)} = \arg\min_{\boldsymbol{\omega}^*} \|\boldsymbol{\omega}^* - \boldsymbol{\omega}^{(i)}\|$
such that:
$$\boldsymbol{\omega} \cdot \boldsymbol{\phi}(\boldsymbol{x}_t, \boldsymbol{y}_t) - \boldsymbol{\omega} \cdot \boldsymbol{\phi}(\boldsymbol{x}_t, \boldsymbol{y}') \geq 1$$
 $\forall \boldsymbol{y}' \in \overline{\mathcal{Y}}_t$
5. $i = i+1$
6. return $\boldsymbol{\omega}^i$

MIRA has much smaller optimizations with only $|\bar{\mathcal{Y}}_t|$ constraints

Quick Summary

Linear Classifiers

- Naive Bayes, Perceptron, Logistic Regression and SVMs
- Generative vs. Discriminative
- Objective functions and loss functions
 - ▶ Log-loss, min error and hinge loss
 - Generalized linear classifiers
- Regularization
- Online vs. Batch learning

Non-linear Classifiers

Non-Linear Classifiers

- Some data sets require more than a linear classifier to be correctly modeled
- Decision boundary is no longer a hyperplane in the feature space
- A lot of models out there
 - K-Nearest Neighbours
 - Decision Trees
 - Neural Networks
 - ▶ Kernels

Kernels

▶ A kernel is a similarity function between two points that is symmetric and positive semi-definite, which we denote by:

$$K(x_t, x_r) \in \mathbb{R}$$

▶ Let M be a $n \times n$ matrix such that ...

$$M_{t,r} = K(\boldsymbol{x}_t, \boldsymbol{x}_r)$$

- ▶ ... for any *n* points. Called the Gram matrix.
- Symmetric:

$$K(\boldsymbol{x}_t, \boldsymbol{x}_r) = K(\boldsymbol{x}_r, \boldsymbol{x}_t)$$

▶ Positive definite: for all non-zero **v** and any set of xs that define a Gram matrix:

$$\mathbf{v}M\mathbf{v}^T \geq 0$$

Kernels

▶ Mercer's Theorem: for any kernel K, there exists an ϕ , in some \mathbb{R}^d , such that:

$$K(x_t, x_r) = \phi(x_t) \cdot \phi(x_r)$$

Since our features are over pairs (x, y), we will write kernels over pairs

$$\mathcal{K}((x_t,y_t),(x_r,y_r)) = \phi(x_t,y_t)\cdot\phi(x_r,y_r)$$

Kernel Trick: General Overview

- Define a kernel, and do not explicitly use dot product between vectors, only kernel calculations
- In some high-dimensional space, this corresponds to dot product
- In that space, the decision boundary is linear, but in the original space, we now have a non-linear decision boundary
- Let's do it for the Perceptron!

Kernel Trick – Perceptron Algorithm

```
Training data: \mathcal{T} = \{(x_t, y_t)\}_{t=1}^{|\mathcal{T}|}

1. \omega^{(0)} = 0; i = 0

2. for n: 1..N

3. for t: 1..T

4. Let y = \arg\max_y \omega^{(i)} \cdot \phi(x_t, y)

5. if y \neq y_t

6. \omega^{(i+1)} = \omega^{(i)} + \phi(x_t, y_t) - \phi(x_t, y)

7. i = i + 1

8. return \omega^i
```

- ▶ Each feature function $\phi(x_t, y_t)$ is added and $\phi(x_t, y)$ is subtracted to ω say $\alpha_{u,t}$ times
 - $m{\alpha}_{m{y},t}$ is the # of times during learning label $m{y}$ is predicted for example t
- ► Thus,

$$\omega = \sum_{t,y} \alpha_{y,t} [\phi(x_t, y_t) - \phi(x_t, y)]$$

Kernel Trick - Perceptron Algorithm

▶ We can re-write the argmax function as:

$$oldsymbol{y}* = rg \max_{oldsymbol{y}^*} oldsymbol{\omega}^{(i)} \cdot oldsymbol{\phi}(oldsymbol{x}, oldsymbol{y}^*)$$

=

=

We can then re-write the perceptron algorithm strictly with kernels

Kernel Trick – Perceptron Algorithm (for handout)

▶ We can re-write the argmax function as:

$$y* = \underset{y^*}{\operatorname{arg max}} \omega^{(i)} \cdot \phi(x, y^*)$$

$$= \underset{y^*}{\operatorname{arg max}} \sum_{t,y} \alpha_{y,t} [\phi(x_t, y_t) - \phi(x_t, y)] \cdot \phi(x, y^*)$$

$$= \underset{y^*}{\operatorname{arg max}} \sum_{t,y} \alpha_{y,t} [\phi(x_t, y_t) \cdot \phi(x_t, y^*) - \phi(x_t, y) \cdot \phi(x, y^*)]$$

$$= \underset{y^*}{\operatorname{arg max}} \sum_{t,y} \alpha_{y,t} [K((x_t, y_t), (x_t, y^*)) - K((x_t, y), (x, y^*))]$$

► We can then re-write the perceptron algorithm strictly with kernels

Kernel Trick – Perceptron Algorithm

```
Training data: \mathcal{T} = \{(x_t, y_t)\}_{t=1}^{|\mathcal{T}|}

1. \forall y, t \text{ set } \alpha_{y,t} = 0

2. for n:1..N

3. for t:1..T

4. Let y^* = \arg\max_{y^*} \sum_{t,y} \alpha_{y,t} [ \frac{\mathsf{K}((x_t, y_t), (x_t, y^*)) - \mathsf{K}((x_t, y), (x_t, y^*)) ]}{\mathsf{K}((x_t, y_t), (x_t, y^*))}

5. if y^* \neq y_t

6. \alpha_{y^*,t} = \alpha_{y^*,t} + 1
```

Given a new instance x

$$\boldsymbol{y}^* = \argmax_{\boldsymbol{y}^*} \sum_{t, \boldsymbol{y}} \alpha_{\boldsymbol{y}, t} [K((\boldsymbol{x}_t, \boldsymbol{y}_t), (\boldsymbol{x}, \boldsymbol{y}^*)) - K((\boldsymbol{x}_t, \boldsymbol{y}), (\boldsymbol{x}, \boldsymbol{y}^*))]$$

▶ But it seems like we have just complicated things???

Kernels = Tractable Non-Linearity

- ► A linear classifier in a higher dimensional feature space is a non-linear classifier in the original space
- Computing a non-linear kernel is often better computationally than calculating the corresponding dot product in the high dimension feature space
- ▶ Thus, kernels allow us to efficiently learn non-linear classifiers

Linear Classifiers in High Dimension

$$\Re^2 \longrightarrow \Re^3$$

 $(x_1, x_2) \longmapsto (z_1, z_2, z_3) = (x_1^2, \sqrt{2}x_1x_2, x_2^2)$

Example: Polynomial Kernel

- $\phi(x) \in \mathbb{R}^M, d \geq 2$
- $\qquad \qquad \mathsf{K}(x_t,x_s) = (\phi(x_t)\cdot\phi(x_s) + 1)^d$
 - ► O(M) to calculate for any d!!
- ▶ But in the original feature space (primal space)

• Consider
$$d = 2$$
, $M = 2$, and $\phi(x_t) = [x_{t,1}, x_{t,2}]$

$$\begin{aligned} (\phi(x_t) \cdot \phi(x_s) + 1)^2 &= ([x_{t,1}, x_{t,2}] \cdot [x_{s,1}, x_{s,2}] + 1)^2 \\ &= (x_{t,1}x_{s,1} + x_{t,2}x_{s,2} + 1)^2 \\ &= (x_{t,1}x_{s,1})^2 + (x_{t,2}x_{s,2})^2 + 2(x_{t,1}x_{s,1}) + 2(x_{t,2}x_{s,2}) \\ &+ 2(x_{t,1}x_{t,2}x_{s,1}x_{s,2}) + (1)^2 \end{aligned}$$

which equals:

$$[(x_{t,1})^2,(x_{t,2})^2,\sqrt{2}x_{t,1},\sqrt{2}x_{t,2},\sqrt{2}x_{t,1}x_{t,2},1] + [(x_{s,1})^2,(x_{s,2})^2,\sqrt{2}x_{s,1},\sqrt{2}x_{s,2},\sqrt{2}x_{s,1}x_{s,2},1]$$

feature vector in high-dimensional space

feature vector in high-dimensional space

Popular Kernels

Polynomial kernel

$$K(x_t, x_s) = (\phi(x_t) \cdot \phi(x_s) + 1)^d$$

 Gaussian radial basis kernel (infinite feature space representation!)

$$\mathcal{K}(x_t, x_s) = exp(rac{-||\phi(x_t) - \phi(x_s)||^2}{2\sigma})$$

- ► String kernels [Lodhi et al. 2002, Collins and Duffy 2002]
- ► Tree kernels [Collins and Duffy 2002]

Kernels Summary

- ► Can turn a linear classifier into a non-linear classifier
- Kernels project feature space to higher dimensions
 - Sometimes exponentially larger
 - Sometimes an infinite space!
- ▶ Can "kernelize" algorithms to make them non-linear
- (e.g. support vector machines)

Wrap up and time for questions

Summary

Basic principles of machine learning:

- ► To do learning, we set up an objective function that tells the fit of the model to the data
- We optimize with respect to the model (weights, probability model, etc.)
- Can do it in a batch or online fashion

What model to use?

- One example of a model: linear classifiers
- ▶ Can kernelize these models to get non-linear classification

References and Further Reading

- A. L. Berger, S. A. Della Pietra, and V. J. Della Pietra. 1996.
 A maximum entropy approach to natural language processing. <u>Computational Linguistics</u>, 22(1).
- C.T. Chu, S.K. Kim, Y.A. Lin, Y.Y. Yu, G. Bradski, A.Y. Ng, and K. Olukotun. 2007.

Map-Reduce for machine learning on multicore. In $\underline{\text{Advances in Neural Information}}$ Processing Systems.

- M. Collins and N. Duffy. 2002. New ranking algorithms for parsing and tagging: Kernels over discrete structures, and the voted perceptron. In Proc. ACL.
- M. Collins. 2002. Discriminative training methods for hidden Markov models: Theory and experiments with perceptron algorithms. In Proc. EMNLP.
- K. Crammer and Y. Singer. 2001.
 On the algorithmic implementation of multiclass kernel based vector machines.
 JMLR.
- K. Crammer and Y. Singer. 2003.
 Ultraconservative online algorithms for multiclass problems. <u>JMLR</u>.

- K. Crammer, O. Dekel, S. Shalev-Shwartz, and Y. Singer. 2003. Online passive aggressive algorithms. In <u>Proc. NIPS</u>.
- K. Crammer, O. Dekel, J. Keshat, S. Shalev-Shwartz, and Y. Singer. 2006. Online passive aggressive algorithms. JMLR.
- Y. Freund and R.E. Schapire. 1999. Large margin classification using the perceptron algorithm. <u>Machine Learning</u>, 37(3):277–296.
- T. Joachims. 2002.
 Learning to Classify Text using Support Vector Machines. Kluwer.
- J. Lafferty, A. McCallum, and F. Pereira. 2001.
 Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In Proc. ICML.
- H. Lodhi, C. Saunders, J. Shawe-Taylor, and N. Cristianini. 2002.
 Classification with string kernels. Journal of Machine Learning Research.
- G. Mann, R. McDonald, M. Mohri, N. Silberman, and D. Walker. 2009. Efficient large-scale distributed training of conditional maximum entropy models. In Advances in Neural Information Processing Systems.
- A. McCallum, D. Freitag, and F. Pereira. 2000.

Maximum entropy Markov models for information extraction and segmentation. In Proc. ICML.

- R. McDonald, K. Crammer, and F. Pereira. 2005.
 Online large-margin training of dependency parsers. In Proc. ACL.
- K.R. Müller, S. Mika, G. Rätsch, K. Tsuda, and B. Schölkopf. 2001. An introduction to kernel-based learning algorithms. <u>IEEE Neural Networks</u>, 12(2):181–201.
- J Nocedal and SJ Wright. 1999. Numerical optimization, volume 2. Springer New York.
- ► F. Sha and F. Pereira. 2003. Shallow parsing with conditional random fields. In <u>Proc. HLT/NAACL</u>, pages 213–220.
- C. Sutton and A. McCallum. 2006.
 An introduction to conditional random fields for relational learning. In L. Getoor and B. Taskar, editors, <u>Introduction to Statistical Relational Learning</u>. MIT Press.
- B. Taskar, C. Guestrin, and D. Koller. 2003. Max-margin Markov networks. In Proc. NIPS.
- ▶ B. Taskar. 2004.

Learning Structured Prediction Models: A Large Margin Approach. Ph.D. thesis, Stanford.

- I. Tsochantaridis, T. Hofmann, T. Joachims, and Y. Altun. 2004. Support vector learning for interdependent and structured output spaces. In <u>Proc.</u> ICML.
- ► T. Zhang. 2004. Solving large scale linear prediction problems using stochastic gradient descent algorithms. In Proceedings of the twenty-first international conference on Machine learning.