知识点Z2.6

零状态响应

主要内容:

- 1. 零状态响应的初始值
- 2. 全响应的求解

基本要求:

掌握零状态的求解方法

Z2.6 零状态响应

1. 初始值的确定

$$y_{zs}(j)(0)=0, j=0,1,2,...n-1$$

- (1)由系数匹配法,从 $y_{zs}^{(j)}(0_{-})=0$ 求 $y_{zs}^{(j)}(0_{+})$;
- (2) 先求 $y_{zi}(i)(0_+)$, 再求 $y_{zs}(i)(0_+)=y(i)(0_+)-y_{zi}(i)(0_+)$ 。

2. 求解步骤

- (1)设定齐次解;
- (2)设定特解,代入方程求解;
- (3)代入初始值,求待定系数。

例2 描述某系统的微分方程为

$$y''(t) + 3y'(t) + 2y(t) = 2f'(t) + 6f(t)$$

已知 $y(0_{-})=2$, $y'(0_{-})=0$, $f(t)=\varepsilon(t)$,求该系统的零输入响应和零状态响应。

解: 先求零输入响应 $y_{zi}(t)$ (同例1)

$$y_{zi}$$
"(t) + $3y_{zi}$ '(t) + $2y_{zi}$ (t) = 0
 $y_{zi}(0_{+}) = y_{zi}(0_{-}) = y(0_{-}) = 2$
 y_{zi} '(0_{+}) = y_{zi} '(0_{-}) = y '(0_{-}) = 0

- (1)由特征根为-1, -2, 设定: $y_{zi}(t) = C_1 e^{-t} + C_2 e^{-2t}$
- (2)代入初始值,求系数 C_1 =4, C_2 = -2

$$y_{zi}(t) = 4e^{-t} - 2e^{-2t}, t > 0$$

再求零状态响应 $y_{zs}(t)$

$$y_{zs}$$
"(t) + $3y_{zs}$ '(t) + $2y_{zs}$ (t) = $2\delta(t) + 6\varepsilon(t)$
 $y_{zs}(0) = y_{zs}$ '(0) = 0

由系数匹配法:

$$y_{zs}(0_{+}) = y_{zs}(0_{-}) = 0$$

$$y_{zs}'(0_{+})-y_{zs}'(0_{-})=2$$
, $\mathbb{P}: y_{zs}'(0_{+})=2$

t>0时,

$$y_{zs}''(t) + 3y_{zs}'(t) + 2y_{zs}(t) = 6$$

- (1)设定齐次解为: $y_{zsh}(t) = D_1 e^{-t} + D_2 e^{-2t}$,
- (2)设定特解为: $y_{zsp}(t) = p$, 代入方程求得 p=3,

$$y_{zs}(t) = D_1 e^{-t} + D_2 e^{-2t} + 3$$

(3)代入初始值,求系数 $D_1 = -4$, $D_2 = 1$

$$y_{zs}(t) = -4e^{-t} + e^{-2t} + 3$$
, $t \ge 0$