

# Machine Learning\* com Python

Parte 4 – Árvores de Decisão

#### Árvores de decisão

- DT: Decision Tree
- Método de aprendizagem supervisionada não paramétrico usado para classificação e regressão.
- Objetivo:
  - Criar um modelo que prevê o valor de uma variável de destino, aprendendo regras de decisão simples inferidas a partir dos recursos de dados.

## Exemplo de Árvore de Decisão Binária



#### Árvore de Decisão binária

- A representação do modelo DT é uma árvore binária.
  - cada nó pode ter zero, um ou dois nós filhos
- Um nó representa uma variável de entrada única (X) e um ponto de divisão nessa variável, assumindo que a variável é numérica.
- Os nós da folha (também chamados nós terminais) da árvore contêm uma variável de saída (y) que é usada para fazer uma previsão (resposta).
- Uma vez criada, uma árvore pode ser navegada com uma nova linha de dados após cada ramificação com as divisões até que uma

previsão final seja feita.

### Motivação

- Suponha que tenhamos uma distribuição de treino para duas classes representadas por círculos preto e quadrados azuis.
- É possível desenhar uma única linha de separação?

Talvez não!



#### Motivação

Precisamos de mais de uma linha, para dividir em

classes.



Precisamos de duas linhas aqui separando de acordo com o valor limiar de x e outro para o valor limiar de y.

Isto é o que a árvore de decisão tenta fazer.

- Criar uma árvore de decisão é, na verdade, um processo de dividir o espaço de entrada.
- Uma abordagem gulosa é usada para dividir o espaço chamado divisão binária recursiva.
  - todos os valores são alinhados e diferentes pontos de divisão são testados usando uma função de custo.
  - A divisão com o melhor custo é selecionada.



 Todas as variáveis de entrada e todos os possíveis pontos de divisão são avaliados e escolhidos de maneira gulosa com base na função de custo.

- Regressão

Classificação



#### Regressão:

 A função de custo que é minimizada para escolher pontos de divisão, onde o erro de soma quadrática em todas as amostras de treinamento que se enquadram no retângulo.



#### Classificação

- Duas funções principais
  - A função de custo de Gini é usada, o que fornece uma indicação de quão puros são os nós, onde a pureza do nó se refere a quão misturados os dados de treinamento são atribuídos a cada nó.
  - O conceito de entropia pode ser utilizado também (algoritmo ID3).

- Quanto parar?
- A divisão continua até que os nós contenham um número mínimo de exemplos de treinamento ou uma profundidade máxima de árvore seja atingida.
- Evitar overfitting



#### ALGORITMO ID3

#### **Iterative Dichotomiser 3**

- Vamos apenas pegar um conjunto de dados famoso no mundo de aprendizado de máquina, que é o problema de prever se jogamos ou não com base na condição climática.
  - Quatro valores X (outlook, temp, umidade e com vento) categóricos e um valor y (play Y ou N) categórico.
  - Precisamos aprender o mapeamento entre X e y.
- Problema de classificação binária → construir a árvore usando o algoritmo ID3

 Quatro valores X (outlook, temp, umidade e com vento) categóricos e um valor y (play Y ou N) categórico.

| Outlook    | Temp   | Umidade | Vento      | Jogar? |
|------------|--------|---------|------------|--------|
| Ensolarado | Quente | Alta    | Falso      | não    |
| Ensolarado | Quente | Alta    | Verdadeiro | Não    |
| Nublado    | Quente | Alta    | Falso      | Sim    |
| Chuvoso    | Ameno  | Alta    | Falso      | Sim    |
| Chuvoso    | Fresco | Normal  | Falso      | Sim    |
| Chuvoso    | Fresco | Normal  | Verdadeiro | Não    |
| Nublado    | Fresco | Normal  | Verdadeiro | Sim    |
| Ensolarado | Ameno  | Alta    | Falso      | Não    |
| Ensolarado | Fresco | Normal  | Falso      | Sim    |
| Chuvoso    | Ameno  | Normal  | Falso      | Sim    |
| Ensolarado | Ameno  | Normal  | Verdadeiro | Sim    |
| Nublado    | Ameno  | Alto    | Verdadeiro | Sim    |
| Nublado    | Quente | Normal  | Falso      | Sim    |
| Chuvoso    | Ameno  | Alto    | Verdadeiro | Não    |

- Precisamos aprender o mapeamento entre X e y.
  - Problema de classificação binária → construir a árvore usando o algoritmo ID3
- Para criar uma árvore, precisamos ter um nó raiz primeiro e sabemos que nós são recursos / atributos (perspectiva, temperatura, umidade e ventoso),

 Determinar o atributo que melhor classifica os dados de treinamento; use este atributo na raiz da árvore.
 Repita este processo para cada ramo.

 Isso significa que estamos realizando uma pesquisa de cima para baixo e gulosa no espaço de possíveis

árvores de decisão.

| Outlook    | Temp   | Umidade | Vento      | Jogar? |
|------------|--------|---------|------------|--------|
| Ensolarado | Quente | Alta    | Falso      | não    |
| Ensolarado | Quente | Alta    | Verdadeiro | Não    |
| Nublado    | Quente | Alta    | Falso      | Sim    |
| Chuvoso    | Ameno  | Alta    | Falso      | Sim    |
| Chungasa   | France | Normal  | Falsa      | Cim    |

- Como escolhemos o melhor atributo?
  - Usamos o atributo com o maior ganho de informação em ID3
- Para definir precisamente o ganho de informação, começamos definindo uma medida comumente usada na teoria da informação, chamada entropia, que caracteriza a (im)pureza de uma coleção arbitrária de exemplos.

| Outlook    | Temp   | Umidade | Vento      | Jogar? |
|------------|--------|---------|------------|--------|
| Ensolarado | Quente | Alta    | Falso      | não    |
| Ensolarado | Quente | Alta    | Verdadeiro | Não    |
| Nublado    | Quente | Alta    | Falso      | Sim    |
| Chuvoso    | Ameno  | Alta    | Falso      | Sim    |
| Chungasa   | France | Normal  | Falsa      | Cim    |

- Entropia
  - É uma medida da quantidade de incerteza no conjunto de dados D, isto é, caracteriza os dados

$$H(D) = -\sum_{c \in C} p(c) \log_2 p(c)$$

Onde

- D é o conjunto de dados sobre o qual calculamos a entropia
- C é o conjunto de classes da resposta
  - No nosso exemplo C={não, sim}
- p(c) é a proporção de elementos na classe c dentro do conjunto S

Em ID3, a entropia é calculada para cada atributo restante. O atributo com a menor entropia é utilizado para dividir o conjunto D.

| Outlook    | Temp   | Umidade | Vento      | Jogar? |
|------------|--------|---------|------------|--------|
| Ensolarado | Quente | Alta    | Falso      | não    |
| Ensolarado | Quente | Alta    | Verdadeiro | Não    |
| Nublado    | Quente | Alta    | Falso      | Sim    |
| Chuvoso    | Ameno  | Alta    | Falso      | Sim    |
| Chungas    | Franco | Normal  | Falso      | Cim    |

- Para um problema de classificação binária
  - Se todos os exemplos forem positivos ou todos forem negativos, então a entropia será zero, ou seja, baixa.
  - Se metade dos exemplos são de classe positiva e metade são de classe negativa, então a entropia é um, ou seja, alta.

| Outlook    | Temp   | Umidade | Vento      | Jogar? |
|------------|--------|---------|------------|--------|
| Ensolarado | Quente | Alta    | Falso      | não    |
| Ensolarado | Quente | Alta    | Verdadeiro | Não    |
| Nublado    | Quente | Alta    | Falso      | Sim    |
| Chuvoso    | Ameno  | Alta    | Falso      | Sim    |
| Chungasa   | France | Normal  | Falsa      | Cim    |

- Ganho de informação IG(A)
  - É uma medida da diferença da entropia antes do conjunto
     D ser dividido pelo atributo A, isto é, indica em quanto a incerteza de D é reduzida ao dividir D usando o atributo A

$$IG(A,D) = H(D) - \sum_{t \in T} p(t)H(t)$$

#### Onde

- H(D) é a entropia do conjunto D
- T são os subconjuntos criados ao dividir D pelo atributo
   A
- p(t) é a proporção entre o número de elementos no subconjunto t e o número de elementos em S
- H(t) é a entropia do subconjunto t

| Outlook    | Temp   | Umidade | Vento      | Jogar?  |
|------------|--------|---------|------------|---------|
| Outlook    | lemp   | Omidade | Vento      | Jogai : |
| Ensolarado | Quente | Alta    | Falso      | não     |
| Ensolarado | Quente | Alta    | Verdadeiro | Não     |
| Nublado    | Quente | Alta    | Falso      | Sim     |
| Chuvoso    | Ameno  | Alta    | Falso      | Sim     |
| Chungasa   | France | Normal  | Falso      | Cim     |

- Vamos aplicar essas métricas ao nosso conjunto de dados para dividir os dados (obtendo o nó raiz)
- Passos:
  - 1. compute a entropia para o conjunto de dados
  - 2. para cada atributo / recurso:
    - 1. Entropia é calculada para todos os valores categóricos
    - 2. Obter entropia de informação média para o atributo atual
    - 3. O Ganho é calculado para o atributo atual
  - 3. Escolha o atributo de maior ganho.
  - 4. Repita até conseguirmos a árvore que desejamos.

Vamos ver um exemplo para entender melhor

C = {Sim, Não}

 Calcule a entropia para o conjunto de dados:

$$H(D) = -\sum_{c \in C} p(c) log_2 p(c)$$

No conjunto D (ao lado) temos:

Total de elementos = 14 
Total com Sim = 9 
$$p_{sim} = -\frac{9}{14}log_2\frac{9}{14}\approx 0.41$$
 
Total com Não = 5 
$$p_{não} = -\frac{5}{14}log_2\frac{5}{14}\approx 0.53$$

$$H(D) = p_{sim} + p_{não} = 0.94$$

| Outlook    | Temp   | Umidade | Vento      | Jogar? |
|------------|--------|---------|------------|--------|
| Ensolarado | Quente | Alta    | Falso      | não    |
| Ensolarado | Quente | Alta    | Verdadeiro | Não    |
| Nublado    | Quente | Alta    | Falso      | Sim    |
| Chuvoso    | Ameno  | Alta    | Falso      | Sim    |
| Chuvoso    | Fresco | Normal  | Falso      | Sim    |
| Chuvoso    | Fresco | Normal  | Verdadeiro | Não    |
| Nublado    | Fresco | Normal  | Verdadeiro | Sim    |
| Ensolarado | Ameno  | Alta    | Falso      | Não    |
| Ensolarado | Fresco | Normal  | Falso      | Yes    |
| Chuvoso    | Ameno  | Normal  | Falso      | Sim    |
| Ensolarado | Ameno  | Normal  | Verdadeiro | Sim    |
| Nublado    | Ameno  | Alto    | Verdadeiro | Sim    |
| Nublado    | Quente | Normal  | Falso      | Sim    |
| Chuvoso    | Ameno  | Alto    | Verdadeiro | Não    |

 Calcular a entropia e ganho de informação para cada atributo

$$E_{outlook=Ensolarado} = -\frac{2}{5}log_2\frac{2}{5} - \frac{3}{5}log_2\frac{3}{5} \approx 0.971$$

$$E_{outlook=Nublado} = -1log_2 1 - 0log_2 0 \approx 0$$

$$E_{outlook=Chuvoso} = -\frac{3}{5}log_2\frac{3}{5} - \frac{2}{5}log_2\frac{2}{5} \approx 0.971$$

Entropia média para Outlook

$$H_{D,outlook} = \frac{5}{14} \cdot 0.971 + \frac{4}{14} \cdot 0 + \frac{5}{14} \cdot 0.971 = 0.693$$

Ganho de informação para Outlook

$$G(D, outlook) = H(D) - H_{D, outlook} = 0.94 - 0.693 = 0.247$$

| Outlook    | Temp   | Umidade | Vento      | Jogar? |
|------------|--------|---------|------------|--------|
| Ensolarado | Quente | Alta    | Falso      | não    |
| Ensolarado | Quente | Alta    | Verdadeiro | Não    |
| Nublado    | Quente | Alta    | Falso      | Sim    |
| Chuvoso    | Ameno  | Alta    | Falso      | Sim    |
| Chuvoso    | Fresco | Normal  | Falso      | Sim    |
| Chuvoso    | Fresco | Normal  | Verdadeiro | Não    |
| Nublado    | Fresco | Normal  | Verdadeiro | Sim    |
| Ensolarado | Ameno  | Alta    | Falso      | Não    |
| Ensolarado | Fresco | Normal  | Falso      | Sim    |
| Chuvoso    | Ameno  | Normal  | Falso      | Sim    |
| Ensolarado | Ameno  | Normal  | Verdadeiro | Sim    |
| Nublado    | Ameno  | Alto    | Verdadeiro | Sim    |
| Nublado    | Quente | Normal  | Falso      | Sim    |
| Chuvoso    | Ameno  | Alto    | Verdadeiro | Não    |

 Calcular a entropia e ganho de informação para cada atributo

$$\begin{split} E_{temp=Quente} &= -\frac{2}{4}log_2\frac{2}{4} - \frac{2}{4}log_2\frac{2}{4} \approx 1 \\ E_{temp=Ameno} &= -\frac{4}{6}log_2\frac{4}{6} - \frac{2}{6}log_2\frac{2}{6} \approx 0.918 \\ E_{temp=Fresco} &= -\frac{3}{4}log_2\frac{3}{4} - \frac{1}{4}log_2\frac{1}{4} \approx 0.811 \end{split}$$

Entropia média para temp

$$H_{D,temp} = \frac{4}{14} \cdot 1 + \frac{6}{14} \cdot 0.918 + \frac{4}{14} \cdot 0.231 = 0.911$$

Ganho de informação para Outlook

$$G(D, temp) = H(D) - H_{D,temp} = 0.94 - 0.911 = 0.029$$

| Outlook    | Temp   | Umidade | Vento      | Jogar? |
|------------|--------|---------|------------|--------|
| Ensolarado | Quente | Alta    | Falso      | não    |
| Ensolarado | Quente | Alta    | Verdadeiro | Não    |
| Nublado    | Quente | Alta    | Falso      | Sim    |
| Chuvoso    | Ameno  | Alta    | Falso      | Sim    |
| Chuvoso    | Fresco | Normal  | Falso      | Sim    |
| Chuvoso    | Fresco | Normal  | Verdadeiro | Não    |
| Nublado    | Fresco | Normal  | Verdadeiro | Sim    |
| Ensolarado | Ameno  | Alta    | Falso      | Não    |
| Ensolarado | Fresco | Normal  | Falso      | Sim    |
| Chuvoso    | Ameno  | Normal  | Falso      | Sim    |
| Ensolarado | Ameno  | Normal  | Verdadeiro | Sim    |
| Nublado    | Ameno  | Alto    | Verdadeiro | Sim    |
| Nublado    | Quente | Normal  | Falso      | Sim    |
| Chuvoso    | Ameno  | Alto    | Verdadeiro | Não    |

 Calcular a entropia e ganho de informação para cada atributo

$$E_{umidade=Alta} = -\frac{3}{7}log_2\frac{3}{7} - \frac{4}{7}log_2\frac{4}{7} \approx 0.985$$

$$E_{umidade=Normal} = -\frac{6}{7}log_2\frac{6}{7} - \frac{1}{7}log_2\frac{1}{7} \approx 0.591$$

Entropia média para Umidade

$$H_{D,umidade} = \frac{7}{14} \cdot 0.985 + \frac{7}{14} \cdot 0.591 = 0.788$$

Ganho de informação para Umidade

$$G(D, umidade) = H(D) - H_{D, umidade} = 0.94 - 0.788 = 0.152$$

| Outlook    | Temp   | Umidade | Vento      | Jogar? |
|------------|--------|---------|------------|--------|
| Ensolarado | Quente | Alta    | Falso      | não    |
| Ensolarado | Quente | Alta    | Verdadeiro | Não    |
| Nublado    | Quente | Alta    | Falso      | Sim    |
| Chuvoso    | Ameno  | Alta    | Falso      | Sim    |
| Chuvoso    | Fresco | Normal  | Falso      | Sim    |
| Chuvoso    | Fresco | Normal  | Verdadeiro | Não    |
| Nublado    | Fresco | Normal  | Verdadeiro | Sim    |
| Ensolarado | Ameno  | Alta    | Falso      | Não    |
| Ensolarado | Fresco | Normal  | Falso      | Sim    |
| Chuvoso    | Ameno  | Normal  | Falso      | Sim    |
| Ensolarado | Ameno  | Normal  | Verdadeiro | Sim    |
| Nublado    | Ameno  | Alta    | Verdadeiro | Sim    |
| Nublado    | Quente | Normal  | Falso      | Sim    |
| Chuvoso    | Ameno  | Alta    | Verdadeiro | Não    |

 Calcular a entropia e ganho de informação para cada atributo

$$E_{vento=Verdadeiro} = -\frac{6}{8}log_2\frac{6}{8} - \frac{2}{8}log_2\frac{2}{8} \approx 0.811$$

$$E_{vento=Falso} = -\frac{3}{6}log_2\frac{3}{6} - \frac{3}{6}log_2\frac{3}{6} \approx 0.1$$

Entropia média para Vento

$$H_{D,vento} = \frac{8}{14} \cdot 0.811 + \frac{6}{14} \cdot 1 = 0.892$$

Ganho de informação para Vento

$$G(D, vento) = H(D) - H_{D,vento} = 0.94 - 0.892 = 0.048$$

| Outlook    | Temp   | Umidade | Vento      | Jogar? |
|------------|--------|---------|------------|--------|
| Ensolarado | Quente | Alta    | Falso      | não    |
| Ensolarado | Quente | Alta    | Verdadeiro | Não    |
| Nublado    | Quente | Alta    | Falso      | Sim    |
| Chuvoso    | Ameno  | Alta    | Falso      | Sim    |
| Chuvoso    | Fresco | Normal  | Falso      | Sim    |
| Chuvoso    | Fresco | Normal  | Verdadeiro | Não    |
| Nublado    | Fresco | Normal  | Verdadeiro | Sim    |
| Ensolarado | Ameno  | Alta    | Falso      | Não    |
| Ensolarado | Fresco | Normal  | Falso      | Yes    |
| Chuvoso    | Ameno  | Normal  | Falso      | Sim    |
| Ensolarado | Ameno  | Normal  | Verdadeiro | Sim    |
| Nublado    | Ameno  | Alta    | Verdadeiro | Sim    |
| Nublado    | Quente | Normal  | Falso      | Sim    |
| Chuvoso    | Ameno  | Alta    | Verdadeiro | Não    |

• Escolha o atributo de maior ganho.

**OUTLOOK** 

Entropia \_\_\_\_\_: 0.693

Ganho de informação: 0.247

**TEMPERATURA** 

Entropia \_\_\_\_\_: 0.911

Ganho de informação: 0.029

**UMIDADE** 

Entropia \_\_\_\_\_: 0.788

Ganho de informação: 0.152

**VENTO** 

Entropia \_\_\_\_\_: 0.892

Ganho de informação: 0.048



 Então, concluímos que nosso nó raiz é o Outlook e a árvore começa



| Outlook    | Temp   | Umidade | Vento      | Jogar? |
|------------|--------|---------|------------|--------|
| Ensolarado | Quente | Alta    | Falso      | Não    |
| Ensolarado | Quente | Alta    | Verdadeiro | Não    |
| Nublado    | Quente | Alta    | Falso      | Sim    |
| Chuvoso    | Ameno  | Alta    | Falso      | Sim    |
| Chuvoso    | Fresco | Normal  | Falso      | Sim    |
| Chuvoso    | Fresco | Normal  | Verdadeiro | Não    |
| Nublado    | Fresco | Normal  | Verdadeiro | Sim    |
| Ensolarado | Ameno  | Alta    | Falso      | Não    |
| Ensolarado | Fresco | Normal  | Falso      | Sim    |
| Chuvoso    | Ameno  | Normal  | Falso      | Sim    |
| Ensolarado | Ameno  | Normal  | Verdadeiro | Sim    |
| Nublado    | Ameno  | Alta    | Verdadeiro | Sim    |
| Nublado    | Quente | Normal  | Falso      | Sim    |
| Chuvoso    | Ameno  | Alta    | Verdadeiro | Não    |

# H3dema Aprendizagem de máquina

## Algoritmo ID3

| Outlook    | Temp   | Umidade | Vento      | Jogar? |
|------------|--------|---------|------------|--------|
| Ensolarado | Quente | Alta    | Falso      | não    |
| Ensolarado | Quente | Alta    | Verdadeiro | Não    |
| Ensolarado | Ameno  | Alta    | Falso      | Não    |
| Ensolarado | Fresco | Normal  | Falso      | Sim    |
| Ensolarado | Ameno  | Normal  | Verdadeiro | Sim    |
| Chuvoso    | Ameno  | Alta    | Falso      | Sim    |
| Chuvoso    | Fresco | Normal  | Falso      | Sim    |
| Chuvoso    | Fresco | Normal  | Verdadeiro | Não    |
| Chuvoso    | Ameno  | Normal  | Falso      | Sim    |
| Chuvoso    | Ameno  | Alta    | Verdadeiro | Não    |

## Python

- Biblioteca scikit-learn
  - sklearn.tree.DecisionTreeClassifier
    - criterion=entropy





## ÍNDICE DE GINI

# Índice de GINI para uma variável binária

• O índice de GINI dá uma ideia de quão boa é uma divisão pela forma como as classes são misturadas nos dois grupos criados pela divisão.

$$GINI = 1 - \sum_{i=0}^{1} p_i^2$$

p<sub>i</sub> é a frequência relativa de cada classe em cada nó

# Índice de Gini para uma variável com k classes

• O índice de GINI para k classes é semelhante, basta somar das devidas proporções para as k classes

$$GINI = 1 - \sum_{i=0}^{\infty} p_i^2$$

p<sub>i</sub> é a frequência relativa de cada classe em cada nó

#### Índice de GINI

- Quando o índice é igual a zero, o nó é puro.
- Quando ele se aproxima do valor um, o nó é impuro
  - aumenta o número de classes uniformemente distribuídas neste nó

## Algoritmo

- 1. compute o índice de GINI para o conjunto de dados
- 2. para cada atributo:
  - 1. Calcule o índice de GINI para todos os valores categóricos
  - 2. Obter entropia média para o atributo atual
  - 3. Calcular o ganho de GINI
- 3. Escolha o atributo com o melhor de ganho do GINI
- 4. Repita até conseguirmos a árvore que desejamos.

## Python

- Biblioteca scikit-learn
  - sklearn.tree.DecisionTreeClassifier
    - criterion=gini # default



#### Python - Gini



#### PRUNING

#### Overfitting

- A definição de overfitting é:
  - uma árvore de decisão d faz sobre-ajustamento aos dados se existir uma árvore d' tal que: d tem menor erro que d' no conjunto de treino mas d' tem menor erro na população".

Gama (2004)

## Overfitting

- Para saber qual é o número ótimo de nós, representa-se graficamente o percentual de erro no conjunto de treinamento e teste versus o número de nós da árvore.
- Quando o erro no conjunto de teste começar a crescer, verifica-se o número de nós nesse ponto.



### Overfitting

- Solução:
  - prunning
- A podagem pode ser dada de duas circunstâncias:
  - Pode ser usada para parar o crescimento da árvore mais cedo, chamada de pré-podagem ou poda descendente ou
  - Pode acontecer com a árvore já completa, chamada de pós-podagem ou poda ascendente.

#### Processo de podagem

- 1. Percorre a árvore em profundidade.
- 2. Para cada nó de decisão calcular:
  - 1. erro no nó
  - 2. soma dos erros nos nós descendentes
- 3. Se o erro do nó é menor ou igual à soma dos erros dos nós descendentes então o nó é transformado em folha

## Pós-podagem

- Na pós-podagem a árvore é gerada no tamanho máximo
- Então a árvore é podada aplicando métodos de evolução confiáveis.
- A sub-árvore com o melhor desempenho será a escolhida.
- Este processo pode ser computacionalmente ineficiente pelo fato de gerar uma árvore muito grande e depois esta mesma árvore é reduzida a uma árvore mínima.

## Pré-podagem

- Para interromper o crescimento da árvore, verifica-se se a divisão é confiável ou não.
- Caso seja confiável, devemos parar o crescimento da árvore.
- É mais rápida porém menos eficiente que a póspodagem
  - risco de interromper o crescimento da árvore ao selecionar uma árvore sub-ótima.

#### O que o sklearn oferece?

3 parâmetros de remoção

- max\_leaf\_nodes
  - Reduzir o número de nós de folhas
- min\_samples\_leaf
  - Restringir o tamanho da folha de amostra
  - O tamanho mínimo da amostra nos nós terminais pode ser fixado em 30, 100, 300 ou 5% do total
- Profundidade máxima (max\_depth)
  - Reduza a profundidade da árvore para construir uma árvore generalizada
  - Defina a profundidade da árvore para 3, 5, 10, dependendo da verificação nos dados de teste

# CONCLUSÃO

#### Vantagens

- Simples de entender e interpretar. Árvores podem ser visualizadas.
- Requer pouca preparação de dados. Outras técnicas geralmente requerem a normalização de dados, variáveis dummy precisam ser criadas e valores em branco a serem removidos. No entanto, observe que este módulo não suporta valores ausentes.
- O custo de usar a árvore (ou seja, prever dados) é logarítmico no número de pontos de dados usados para treinar a árvore.
- Capaz de lidar com dados numéricos e categóricos. Outras técnicas são geralmente especializadas na análise de conjuntos de dados que possuem apenas um tipo de variável. Veja algoritmos para mais informações.
- Capaz de lidar com problemas de várias saídas.
- Usa um modelo de caixa branca. Se uma determinada situação é observável em um modelo, a explicação para a condição é facilmente explicada pela lógica booleana. Em contraste, num modelo de caixa preta (por exemplo, numa rede neural artificial), os resultados podem ser mais difíceis de interpretar.
- Possível validar um modelo usando testes estatísticos. Isso torna possível explicar a confiabilidade do modelo.
- Funciona bem, mesmo que suas suposições sejam de algum modo violadas pelo verdadeiro modelo do qual os dados foram gerados.

## Desvantagens

- As funções de aprendizado da árvore de decisão podem criar árvores super complexas que não generalizam bem os dados. Isso é chamado overfitting.
  - Mecanismos como poda, definição do número mínimo de amostras necessárias em um nó folha ou configuração da profundidade máxima da árvore são necessários para evitar esse problema.
- As árvores de decisão podem ficar instáveis porque pequenas variações nos dados podem resultar na geração de uma árvore completamente diferente. Esse problema é atenuado pelo uso de árvores de decisão em um ensemble.
- O problema de aprender uma árvore de decisão ótima é conhecido por ser NP-completo sob vários aspectos de otimalidade e até mesmo para conceitos simples. Consequentemente, os algoritmos práticos de aprendizagem da árvore de decisão são baseados em algoritmos heurísticos, como o algoritmo guloso, em que decisões locais ótimas são tomadas em cada nó. Tais algoritmos não podem garantir o retorno da árvore de decisão ótima globalmente. Isso pode ser atenuado pelo treinamento de várias árvores em um aprendiz conjunto, onde os recursos e amostras são amostrados aleatoriamente com a substituição.
- Existem conceitos que são difíceis de aprender porque as árvores de decisão não as expressam facilmente, como problemas de XOR, paridade ou multiplexadores.
- Os alunos da árvore de decisão criam árvores tendenciosas se algumas classes dominam. Portanto, recomenda-se equilibrar o conjunto de dados antes de se ajustar à árvore de decisão.