Planche de topologie : exercices corrigés

Antoine Moreau 21 juillet 2017

Résumé

I Suites numériques

Exercice I.1:

Donner une condition nécessaire et suffisante sur une suite réelle $(u_n)_n$ pour qu'il existe une permutation σ de \mathbb{N} telle que $(u_{\sigma(n)})_{n\in\mathbb{N}}$ soit ultimement monotone.

* * *

Exercice I.2:

Déterminer le nombre de chemins permettant de joindre deux sommets opposés d'un cube -une étape est définie par le franchissement d'une arète.

* * *

Exercice I.3:

Soient (u_n) et (v_n) deux suites réelles telles que 0 soit une valeur d'adhérence de (u_nv_n) . Montrer que 0 est une valeur d'adhérence de (u_n) ou de (v_n) .

* * *

Exercice I.4:

Soit (x_n) une suite d'un espace vectoriel normé -le résultat est vrai dans un espace topologique quelconque, telle $que(x_{2n})$, (x_{2n+1}) et (x_{3n}) convergent. Montrer que (x_n) converge.

* * *

II Séries numériques

EXERCICE II.1:

Déterminer la nature des séries dont le terme général est donné ci-dessous :

$$-n^{\frac{1}{n}} - \frac{(-1)^n}{\sqrt[n]{n!}}$$

* * *

EXERCICE II.2:

Montrer que les séries dont le terme général est donné ci-dessous sont convergentes, et calculer leurs sommes.

- 1. $\ln(1 \frac{1}{n^2})$
- 2. $\frac{1}{n}$ lorsque n est un carré; $\frac{1}{n^2}$ sinon.

* * *

EXERCICE II.3:

Soit $(a_n)_{n\in\mathbb{N}}$ une suite de réels positifs tels que : $\sum a_n$ converge.

- 1. Soit α un réel strictement supérieur à $\frac{1}{2}$. Montrer que la série $\sum \frac{\sqrt{a_n}}{n^{\alpha}}$ converge.
- 2. Que dire du cas où : $\alpha = \frac{1}{2}$?

* * *

EXERCICE II.4:

Soit (u_n) une suite décroissante de réels positifs qui tend vers 0.

- 1. Montrer que les séries $\sum u_n$ et $\sum n(u_n u_{n+1})$ sont de même nature.
- 2. Montrer de plus que lorsque ces séries convergent, elles ont même somme.

* * *

Exercice II.5:

Donner la nature, lorsque cela est possible, de la série de terme général $n! \prod_{k=1}^{n} \sin(\frac{x}{k})$, où x est un réel quel-conque.

* * *

Exercice II.6:

1. Montrer que si une série $\sum x_n$ d'éléments d'un espace de Banach est absolument convergente, alors elle est commutativement convergente, c'est-à-dire :

Pour toute permutation σ de \mathbb{N} , la série $\sum x_{\sigma(n)}$ est convergente, de somme $\sum_{n=0}^{\infty} x_n$.

On se propose maintenant de démontrer la réciproque de ce résultat dans le cas des séries réelles. Soit (u_n) une suite réelle telle que la série de terme général u_n soit semi-convergente.

- 2. Démontrer le théorème de réarrangement de Riemann : Pour tout réel α , il existe une permutation σ de $\mathbb N$ telle que la série de terme général $u_{\sigma(n)}$ soit convergente de somme α .
- 3. Montrer qu'il existe une permutation σ de $\mathbb N$ telle que la suite des sommes partielles de la série de terme général $u_{\sigma(n)}$ n'admette pas de limite dans $\mathbb R \bigcup \{+\infty, -\infty\}$.

* * *

Exercice II.7:

- 1. Soit (q_n) une suite croissante d'entiers strictement supérieurs à 1. Montrer que la série de terme général $\frac{1}{\prod_{j=0}^n q_j}$ converge vers un élément de]0,1], que nous noterons $\varphi((q_n)_{n\in\mathbb{N}})$.
- 2. A titre d'exemple, soit k un entier naturel non nul. On constate que 1/k est élément de]0,1]. Décomposer ce nombre en somme d'une telle série.
- 3. Montrer que l'application φ de l'ensemble S des suites croissantes de $\mathbb{N}\setminus\{0,1\}$ dans]0,1] définie à la question 1. est bijective.

L'antécédent par φ d'un élément x de [0,1] est appelé développement de x en série de Engel.

- 4. A quelle condition sur (q_n) le réel $\varphi((q_n))$ est-il rationel? On appelle nombre Egyptien l'inverse d'un entier naturel non nul.
- 5. Montrer que tout rationel de]0, 1] s'écrit d'une unique manière comme somme d'une suite finie de nombres Egyptiens distincts.
- 6. Déduire de la question 4 l'irrationalité d'un réel bien connu en analyse.

* * *

Exercice II.8 (Convergence et densité pour une suite d'entiers naturels) :

Soit A un ensemble d'entiers naturels. On dit que A admet une densité naturelle sus $\mathbb N$ si et seulement si :

$$\left(\frac{\sharp A\cap \llbracket 1,n\rrbracket}{n}\right)_n \text{ admet une limite en } +\infty.$$

Lorsque cette limite existe, nous l'appelons densité de A, et la notons d(A).

Soit maintenant $(a_n)_n$ une suite strictement croissante d'entiers natuels non nuls. Montrer que si la série $\sum \frac{1}{a_k}$ converge, alors l'ensemble des termes de (a_k) admet, dans \mathbb{N} , une densité naturelle égale à 0.

* * *

EXERCICE II.9 (CRITÈRE DE CONDENSATION DE CAUCHY) :

- 1. Soit $(u_n)_n$ une suite de réels décroisssante qui tend vers 0 en $+\infty$. Montrer que, pour tout entier p strictement supérieur à 1, la série $\sum u_n$ converge si et seulement si la série $\sum p^n u_{p^n}$ converge.
- 2. Soit $(u_n)_n$ une suite de réels positifs telle que $\sum u_n$ diverge. Montrer que $\sum \min(u_n, 1/n)$ diverge.

* * *

Exercice II.10:

Déterminer la nature de la série des entiers naturels qui s'écrivent, en base 10, sans le chiffre 9.

* * *

EXERCICE II.11:

Soient (a_n) une suite d'éléments d'un espace de Banach telle que $\left(\sum_{k=0}^n a_k\right)_{n\in\mathbb{N}}$ soit bornée, et (ϵ_n) une suite réelle décroissante qui converge vers 0.

- 1. Montrer que la série de terme général $a_n \epsilon_n$ converge. Cette règle est appelée critère de convergence d'Abel.
- 2. Démontrer, en utilisant la question précédente, le critère spécial des séries alternées.

* * *