Laplace Transform Table

Properties and Rules

Function

Transform

Already know.

$$f(t) \hspace{1cm} F(s) = \int_{0^{-}}^{\infty} f(t)e^{-st}\,dt \hspace{1cm} \text{(Definition)}$$

$$a\,f(t) + b\,g(t) \hspace{1cm} a\,F(s) + b\,G(s) \hspace{1cm} \text{(Linearity)}$$

$$e^{zt}f(t) \hspace{1cm} F(s-z) \hspace{1cm} \text{(s-shift)}$$

$$f'(t) \hspace{1cm} sF(s) - f(0^{-})$$

$$f'(t)$$
 $sF(s) - f(0)$
 $f''(t)$ $s^2F(s) - sf(0^-) - f'(0^-)$

$$f^{(n)}(t)$$
 $s^n F(s) - s^{n-1} f(0^-) - \cdots - f^{(n-1)}(0^-)$

$$tf(t) -F'(s)$$

$$t^n f(t) (-1)^n F^{(n)}(s)$$

$$u(t-a)f(t-a)$$
 $e^{-as}F(s)$ (t-translation)

$$u(t-a)f(t)$$
 $e^{-as}\mathcal{L}(f(t+a))$ (t-translation)

Will learn in this session.

$$(f * g)(t) = \int_{0^{-}}^{t^{+}} f(t - \tau) g(\tau) d\tau \qquad F(s) G(s)$$

$$\int_{0^{-}}^{t^{+}} f(\tau) d\tau \qquad \frac{F(s)}{s} \qquad \text{(integration rule)}$$

Interesting, but not included in this course.

$$\frac{f(t)}{t} \qquad \qquad \int_{s}^{\infty} F(\sigma) \, d\sigma$$

Function Table

<u>Function</u>	<u>Transform</u>	Region of convergence
Already know.		
1	1/s	Re(s) > 0
e^{at}	1/(s-a)	Re(s) > a
t	$1/s^2$	Re(s) > 0
t^n	$n!/s^{n+1}$	Re(s) > 0
$\cos(\omega t)$	$s/(s^2+\omega^2)$	Re(s) > 0
$\sin(\omega t)$	$\omega/(s^2+\omega^2)$	Re(s) > 0
$e^{zt}\cos(\omega t)$	$(s-z)/((s-z)^2+\omega^2)$	Re(s) > Re(z)
$e^{zt}\sin(\omega t)$	$\omega/((s-z)^2+\omega^2)$	Re(s) > Re(z)
$\delta(t)$	1	$\operatorname{all} s$
$\delta(t-a)$	e^{-as}	$\operatorname{all} s$
$\cosh(kt) = \frac{e^{kt} + e^{-kt}}{2}$	$s/(s^2-k^2)$	Re(s) > k
$\sinh(kt) = \frac{e^{kt} - e^{-kt}}{2}$	$k/(s^2-k^2)$	Re(s) > k
$\frac{1}{2\omega^3}(\sin(\omega t)-\omega t\cos(\omega t))$	$\frac{1}{(s^2 + \omega^2)^2}$	Re(s) > 0
$\frac{t}{2\omega}\sin(\omega t)$	$\frac{s}{(s^2 + \omega^2)^2}$	Re(s) > 0
$\frac{1}{2\omega}(\sin(\omega t) + \omega t \cos(\omega t))$	$\frac{s^2}{(s^2+\omega^2)^2}$	Re(s) > 0
u(t-a)	e^{-as}/s	Re(s) > 0
$t^n e^{at}$	$n!/(s-a)^{n+1}$	Re(s) > a
Interesting, but not included in	this course.	
$\frac{1}{\sqrt{\pi t}}$	$\frac{1}{\sqrt{s}}$	Re(s) > 0
t^a	$\frac{\Gamma(a+1)}{c^{a+1}}$	Re(s) > 0

MIT OpenCourseWare http://ocw.mit.edu

18.03SC Differential Equations Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.