Lab 1: Implementing Combinational Logic in the MAX10 FPGA

Part 1:

- I decided to use the key buttons as input to the design. If both key buttons were off or pressed, then the LEDR[1] would be off. However, if one key button was pressed, while the other button was not pressed, then the LEDR[1] would turn on. Figure 1, LEDR1 is assigned to the combinational logic for this design.

```
assign LEDR[1] = (\simKEY[0]&KEY[1]) | (\simKEY[1]&KEY[0]);
```

Figure 1: part1.v

- A test bench module was given in the lab manual, and I modified the count register as a sequence of 2 bits, and is assigned to the key button inputs. There are 4 possible inputs and in Figure 2 displays the expected outputs.

```
{sim:/tb_part1/LEDR[1]}
VSIM 8> run

# in = 00, out = 0
run

# in = 01, out = 1
run

# in = 10, out = 1
VSIM 9> run

# in = 11, out = 0
```

Figure 2: printed tb_part1.v input and outputs

Part 2:

- Figure 3 displays the 16 different possible inputs and outputs of this design. We took advantage of Karnaugh maps to help produce the sum of products for each output.
 Figure 4 shows the 10 calculated combinational logic equations.
- The testbench was similar, except for adjusting the count to be assigned to the switch inputs and setting the display output to the 2 seven segment displays. Figure 5 shows the expected outputs.

	Lo3x2H														Hex [1]								
COJWZ [13WZ[53WZ] SWEO]					[6]	[5]	124	3/2	33	[2]	En	E	53	163	[5]	ku	36	37	2	17			
0	0	0	0	0	1	0	10	1	0	0	0	1	0	-1	0	10	0	0	0	0			
1	0	0	0	1	1	1	1		1	0	10	1	1	-1	0	0		0	0	0			
2	0	0	1	0	0		-1	5	0.		1.	0	0	1:	0	10		0	0	0			
3	0	0	١	1	0	1			0	0	1	0	0	1.1	0	1	0	0	0	0			
4	0	١	0	0	0	10		.\	1	0		0	١	1	0		0	0	0	0			
5	0	1	0	1	0		0	.1	0	0		1	0	1	1		0	0	0	0			
Le	0	1	1	0	()	0	0	0		0	1	0	1		0	0	0	0	0			
7	0	1	1	1		1		1	7		0	0	10	- 1		0	0	0	0	0			
9	1	0	0	0		0	0	0	0		0	0	1.8	0		0	0	0	0	1			
9	1	0	D	1		0	0		1	1	0	0	1	10	1	0	0	0	0	0			
10	1	0	1	0		1	0	0		5	0	10	0	0	1	1	1	1	0	1			
11	1	0	1		1	1	1,	1.		1	0	1	0	1	١	1	1	1	0	0			
12	1	1	0		0	0		1	0	0	1	1	0	0	1	1	1	1	0	0			
13	1	1	0		1	0	1.1	1	1	0	10)	0	0	1	1	1	1	0	0			
14	1	1	1		0	0	0	1	1	1	1	5	0	1	1	1		1/1	0	1			
15	1	1	1		1	0	0		1	0	1	0	11	0	1	1		1	10)			

Figure 3: Truth table

Figure 4: Karnaugh maps and output equations

```
sim:/tb part2/HEX1
VSIM 5> run
# in = 0000, HEX1 = z1000000, HEX0 = z1000000
# in = 0001, HEX1 = z1000000, HEX0 = z1111001
# in = 0010, HEX1 = z1000000, HEX0 = z0100100
run
# in = 0011, HEX1 = z1000000, HEX0 = z0110000
# in = 0100, HEX1 = z1000000, HEX0 = z0011001
run
# in = 0101, HEX1 = z1000000, HEX0 = z0010010
run
# in = 0110, HEX1 = z1000000, HEX0 = z0000010
# in = 0111, HEX1 = z1000000, HEX0 = z1111000
run
# in = 1000, HEX1 = z1000000, HEX0 = z0000000
run
# in = 1001, HEX1 = z1000000, HEX0 = z0011000
# in = 1010, HEX1 = z1111001, HEX0 = z1000000
run
# in = 1011, HEX1 = z1111001, HEX0 = z1111001
run
# in = 1100, HEX1 = z1111001, HEX0 = z0100100
# in = 1101, HEX1 = z1111001, HEX0 = z0110000
run
# in = 1110, HEX1 = z1111001, HEX0 = z0011001
VSIM 6> run
# in = 1111, HEX1 = z1111001, HEX0 = z0010010
```

Figure 5: printed tb_part2.v input and outputs