Devoir à la maison n° 4

À rendre le 8 octobre

I. Une formule d'inversion

Soit (u_n) une suite réelle. On pose, pour tout $n \in \mathbb{N}$, $v_n = \sum_{k=0}^n \binom{n}{k} u_k$. Montrer que, pour tout $n \in \mathbb{N}$, $\sum_{k=0}^n (-1)^{n-k} \binom{n}{k} v_k = u_n$.

II. Nombres de Catalan

On pose $C_0 = 1$ et l'on définit par récurrence, pour tout $n \in \mathbb{N}$, $C_{n+1} = \sum_{k=0}^{n} C_k C_{n-k}$.

- 1) Calculer C_1, C_2, C_3, C_4 et C_5 .
- 2) Montrer que pour tout $n \in \mathbb{N}$, $C_n \in \mathbb{N}^*$.
- 3) Montrer par récurrence simple que, pour tout $n \in \mathbb{N}$, $C_n \geqslant 2^{n-1}$.
- 4) Montrer par récurrence que, pour tout $n \in \mathbb{N}$, $C_n \geqslant 3^{n-2}$. On prendra un soin particulier à choisir le type de récurrence mise en œuvre.
- 5) Tenter de montrer par une récurrence similaire à celle de 4) que pour tout $n \in \mathbb{N}$, $C_n \geqslant 4^{n-2}$. À quel endroit ceci échoue-t-il?

— FIN —