UNCLASSIFIED

AD NUMBER AD336461 **CLASSIFICATION CHANGES** TO: unclassified confidential FROM: LIMITATION CHANGES TO: Approved for public release, distribution unlimited FROM: Distribution authorized to U.S. Gov't. agencies and their contractors; Apr 1963. Other requests shall be referred to Ballistic Research Labs., Aberdeen Proving Ground, MD.

AUTHORITY

SECDEF Memo, 2 Aug 1960; USAARDC ltr, 24 Jan 1979

UNCLASSIFIED

AD _____

Reproduced by the

ARMED SERVICES TECHNICAL INFORMATION AGENCY ARLINGTON HALL STATION ARLINGTON 12, VIRGINIA

CLASSIFICATION CHANGED
TO UNCLASSIFIED
FROM CONFIDENTIAL
PER AUTHORITY LISTED IN

SEC. OF DEFENSE MEMO. 2 AUG. 60

UNCLASSIFIED

NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

NOTICE:

THIS DOCUMENT CONTAINS INFORMATION

AFFECTING THE NATIONAL DEFENSE OF

THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, TITLE 18,

U.S.C., SECTIONS 793 and 794. THE

TRANSMISSION OR THE REVELATION OF
ITS CONTENTS IN ANY MANNER TO AN
UNAUTHORIZED PERSON IS PROHIBITED

BY LAW.

33646 SCH WES 4078 34 FR DDC JUN 5 1963 **FUNDIN** TISIA D

The state of the s

REPORT No. 51
COPY No. 42

BALLISTIC ANALYSIS LABORATORY

PROJECT THOR
TECHNICAL REPORT No. 51
APRIL 1963

THE RESISTANCE OF

'ARIOUS NON-METALLIC MATERIALS

'C PERFORATION BY STEEL FRAGMENTS;

EMPIRICAL RELATIONSHIPS FOR

"RAGMENT RESIDUAL VELOCITY

AND RESIDUAL WEIGHT (U)

Contract DA-36-034-ORD-29RD Philadelphia Procurement District

ARMY MATERIEL COMMAND, M.S. Code No. 5025.11.57500

Ballistic Research Laboratories
Aberdeen Proving Ground, Maryland

GROUP -3
Downgraded at 12-year intervals;
not automatically declassified.

and the state of t

Reproduction of this document, in whole or in part, is prohibited except with permission of the originating office.

Department of Defense (DOD) agency-destroy in accordance with AR 380-5. Contractor-destroy in accordance with Industrial Security Manual or instructions furnished by the contracting officer.

ASTIA AVAILABILITY NOTICE Qualified requesters may obtain copies of this report from ASTIA.

This material contains information affecting the national defense of the United States within the meaning of the Espionage Laws, Title 18, U.S.C. Sccs. 793 and 794, the transmission or revelation of which in any marrier to an unauthorized person is prohibited by law.

The findings in this report are not to be construed as an official Department of the Army position.

A Company of the Comp

THE RESISTANCE OF VARIOUS NON-METALLIC MATERIALS TO PERFORATION BY STEEL PRAGMENTS; EMPIRICAL RELATIONSHIPS FOR TRAGMENT RESIDUAL VELOCITY AND RESIDUAL WEIGHT (U)

PROJECT THOR TECHNICAL REPORT NO. 51 APRIL 1963

Ballistic Analysis Laboratory Institute for Gooperative Research The John: Hopkins University 3506 Greenway Baltimore 18, Maryland

Contract DA-36-034-0RD-29RD Philadelphia Procurement District

AMC MS No. 5025,11,57500

Ballistic Research Laboratories Aberdeen Proving Ground, Maryland

THE RESISTANCE OF VARIOUS NON-METALLIC MATERIALS

TO PERFORATION BY STEEL FRACMENTS;

EMPIRICAL RELATIONSHIPS FOR FRAGMENT RESIDUAL

VÉLOCITY AND RESIDUAL WEIGHT (U)

PROJECT THOR TECHNICAL REPORT NO. 51

APRIL 1963

Ballistic Amalysis Leboratory Institute for Comparative Research The Johns Hopkins University 3506 Greenway Baltimore 18, Marvland

Contract DA-36-034-ORD-29RD Philadelphia Procurement District

AMC M8 No. 5025.11.57500

Ballistic Research Laboratories Aberdeen Proving Ground, Maryland

ABSTRACT

Perforation data for steel fragments impacting on each of seven nonmetallic materials have been collected and analysed. The experimental data are characterised by compact fragments weighing five to 825 grains, striking velocities as high as 12,000 feet per second, and obliquities of strike as high as 70 degrees. Empirical formulas of a given type have been fitted to the data for each target material, thereby relating fragment residual velocaity and residual weight, in separate equations, to important impact parameters.

The two sets of formulas, used jointly, serve as a basis for several extensions or applications such as 1) a comparison, for equal wright of target per unit area, of the resistance of target materials to perforation,

2) a calibration of the resistance of a target material to perforation in terms of the maximum thickness of a standard medium that the residual fragment can perforate, and 3) a determination of the effect of an intermediate barrier on the potential of a fragment to damage a primary target beyond the barrier.

-iii-

TABLE OF CONTENTS

																													Page	No.
ABSTRACT, .	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•		•	•	•	•		•		•	•	•	•	1	
Introduction	N.	•	•	•	•	•	•	•		•	•	•	•		•		•	•	•	•	•		•	•	•	•	•	•	1	
empirical r	el/	\TI	(C)	181	i I I	P S	•			•		•		•		٠	•	•	•	•	•	•	•	•	•	•	•	•	9	
REJULTS	•	•	•	•	•	•	•	•		•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	18	
adaptations	T) V	ľЛ	N	IR.	LB:	Ľ	Į T	2 4	AN	AL'	Y8:	rs	•	•	•	•			•		•				•	•	•	29	
MEASURING T	HE	MA	X.	MJ	JM	C/	P	AC:	T	¥ (o p	T	HB	RI	183	Į DI	UAI	L,												
	FR	DAS	M	IN'	. 1	'0 E	t I	PKI	r F	DR.	AT:	IO	N.	•	•	•	•						•		•	•	•	•	31	
Conc lusions		•	•		•		4	٠	•	•	•	•	•	•	•		•	•		•	•						•	•	37	
Appendices.		•		•		•	•	•		•	•	•		•	•	•	•	•	•	•	•	•	•	•		•	•		41	
DISTRIBUTIO	n I	.19	T					•																			•		245	

LIST OF APPENDICES

<u> </u>		'',')'
A	$Gr=\hat{\rho}^{h}$ Set I: V_{g} vs m_{g} for Selected Values of e	41
B	Graph Set II: $V_{\underline{r}}/V_{\underline{s}}$ and $m_{\underline{r}}/m_{\underline{s}}$ vs $V_{\underline{s}}$ for Selected Univer of	
	$\mathbf{m}_{\mathbf{g}}$ and θ	63
C	Graph Set III: $f(m_r, V_r)$ vs E for a Particular Combination	
	of $\mathbf{m_s}$, θ , $\mathbf{v_s}$	127
D	Graph Set IV: e(inches of 2024 T-3) vs E for Various	
	Combinations of m_g , θ , V_g	133
2	Graph Set V: e(inches of Maftex) vs E for Various	
	Combinations of m_g , θ , V_g	161
7	Graph Set VI: V_o vs E for Various Combinations of m_a and θ .	189
G	Graph Set VII: Impact Conditions for Fragment Shatter	199
H	Photographs of Targets After Impact	205
I	Experimental Data; Steel Fragments Impacting on Various	
	Target Materials	221

-vL-

LIST OF TABLES

Table		No.
1	Other Ballistic Analysis Laboratory Reports on Studies of	
	the Perforation of Target Materials by Fragments and	
	Projectiles	3
11	Description of Target Materials	6
III	Summary of Characteristics of Experimental Data	7
IV	Fragment Sizes and Dimensions	8
V	Constants for the Estimating Equations for Residual	
	Velocity (No Particular Fragment Shape Assumed)	22
VI	Constants for the Estimating Equations for Residual	
	Velocity (Compact Fragment Shape Assumed)	23
vii	Constants for the Estimating Equations for V	
	(No Particular Fragment Shape Assumed)	24
VIII	Constants for the Estimating Equations for V_{ϕ}	
	(Compact Fragment Shapa Assumed)	25
IX	Constants for the Estimating Equations for $m_{_{{f T}}}$	
	(No Particular Fragment Shape Assumed)	26
x	Constants for the Estimating Equations for $m_{_{{f T}}}$	
	(Compact Flagment Shape Assumed)	27
XI	Constants for the Estimeting Equations for m	
	(Compact Fragment Shape Assumed)	28
XII	Impact Conditions Corresponding to Photographs	206
XIII	Steel Fragments Impacting on Unbonded Nylon	222
XIV	Steel Fragments Impacting on Bonded Nylon	228
****	seral Passants Importing on lower	0.20

CONFIDENTIAL

avii.

LIST O	P TABLES	(continued)
--------	----------	-------------

Tablu		No.
IVX	Steel Fragments Impacting on Plexiglas, as Cast	232
XVII	Steel Fragments Impacting on stretched Ploxiglas	234
IIIVX	Steel Fragments Impacting on Doron	237
XIX	Steel Fragments Immedias on Bullet-Resistant Class	24.5

A gray

-v111-

LINT OF FIGURES

I Rut		No.
1	Thickniss of Target Material vs Areal Density of	
	Target	11
2	The Interaction of V Estimates with Estimates of	
	Impact Conditions for Fragment Shatter	21
S - 5	V vs m for Selected Values of a; Unbonded Nylon	42
5 - 8	V vs m for Selected Values of a; Bonded Nylon	45
9 - 11	V, vs m for Selected Values of e; Lexan	48
12 - 14	V vs m for Selected Values of e; Plexigles, as Cast	51
15 - 17	V vs m for Selected Values of %; Stretched Plexigles	54
9 - 20	V vs m for Selected Values of (; Doron	57
A - 23	V vs m for Selected Values of e B. R. Glass	60
14	V_/V_ and m_/m_ vs V_ for Selected /alues of m_ and	
	θ; Unbonded Nylon	64
3 4	ਾਂ/V and m/m vs V ਤੰਹੜ Selected 'alues of m and	
مُ	Bonded Nylon	73
1 - 30	The send making we was for Selected Values of making and	
	O. Company of the contract of	82
1 - 59	2 Land 1 /m vs V for Selected Values of m and	
	9. Pi- As Gast	91
0 - 68	V. / 10 vm . Ve for Selected Value of m and	
	9; Surgia, Proviglas	100
9 - 77	V_/V_ and A_ () for Selected Values of m_ and	
	e; Doron.	109

	TIRE OF FIGURES (coultings)	
Figure	Page No.	
78 - 86	V _r /V _s and m _r /m _s vs V _s for Selected Values of m _s	
87 - 90	and θ_1 B. R. Glass	,
0, - 00	of m _g , θ, V _g · · · · · · · · · · · · · · · · · · ·	3
91 - 117	e(inches of 2024T-3) vs E for Various Combinations	
	of mg, 0, Vg	*
118 - 144	e(inches of Maftex) vs E for Various Combinations	
	of m _e , θ, V _e	
145 - 153	V vs I for Various Combinations of m_a and θ 190)
154 - 158	Impact Conditions for Fragment Shatter 20)
159 - 176	Photographs of Targets after Impact	7

INTRODUCTION

for several years, this laboratory has been participating in programs sponsored by the Weapon Systems Laboratory, Ballistic Research Laboratories (BRL), to supply information for vulnerability analysts and weapon designers on the resistance of various materials to perforation by steel fragments and projectiles. All of these materials have military significance but do not necessarily constitute primary targets. These materials are representative of those used for body-armoring, transparencies, and special functions. Their use may be justified because they have some property or properties necessary or desirable for a given function or structural purpose. For example, bullet-resistant glass is a standard windshield material in sircraft; sircraft canopies are often made of Plexiglas, as cast or stratched; a packaged parachute contains a large number of folds of nylon cloth. These materials might offer considerable resistance to an impacting fragment. A vulnerability analyst must contend with the problem of determining the extent of protection afforded by these materials in situ even though the primary function of these materials may not be one of armoring.

A substantial amount of investigation is being made to devise light-weight armoring materials which offer more protection, - to personnel, for example. Several composites (combinations of two or more materials) as well as antirely new materials are being examined. For comparing the resistance of light-weight materials to perforation by fragments, it becomes necessary to establish a firm measure of the resistance of certain basic materials to perforation. This report should help to meet this made while suggesting a rational method for a comparison of materials in this particular

respect,

Several reports have been published by this laboratory dealing with the resistance of materials to perforation by fragments and projectiles.

The designations and titles of these reports are outlined in Table I. A recent report, Technical Report No. 47, is similar in scope and format to the present one, but deals with a sample of ten metallic materials while the present report evaluates the resistance to perforation of seven non-metallic materials.

The bulk of the experimental data required to furnish information on the resistance of these materials to perforation has been provided by ERL. Data from other sources such as a) Army Chemical Center, Edgewood, Md., b) Watertown Arsenal Laboratories, Watertown, Mass., c) Development and Proof Services, Aberdsen Proving Ground, Md., and d) Midwest Research Institute, Kansas City, Missouri have supplemented the basic sample; together, these data make this study possible.

A listing of the experimental data is given in Appendix I. Whereas morn than one set of homologous stool fragments was used in the experimental work, all of these fragments can properly be classified as compact and reasonably slike in shape. In a shapes of these fragments can be described simply as cylinders, cube-on-cylinders, or near-cylinders.

Studies in the realm of fragment and projectile impact are continuing at this laboratory. The resistance to perforation of composite materials, spaced materials, and new materials is being examined. The relationship of hole size in the target to impact parameters is receiving some attent; n as well as the weight, velocity, and spatial distributions and the number of particles formed from an impact. The influence of certain projectile

ARCE T

Other Ballistic Analysis Laboratory Reports on Studies of the Perforation

of Target Materials by Pragments and Projectiles

Classification	v	ပ	v	v	w	ပ	Þ
<u>Tfc16</u>	A Suggested Technique for Predicting the Performance of Armor-Piercing Projectiles Acting on Rolled Homoseneous Armor (U)	A Comparison of Various Materials in Their Resistance to Perforation by Steel Fragments; Empirical Relationships (U)	A Study of Residual Velocity Data for Steel Fragments Impacting on Four Materials; Empirical Relationships(U)	A Comparison of the Performance of Fraguents of Four Materials Impacting on Various Plates (U)	The Resistance of Two Mose-Comm Materials to Perforation by Steel Fragments; Empirical Relationships for Fragment Residual Velocity and Residual Weight (U)	The Resistance of Various Metallic Materials to Perforation by Steel Fragments; Empirical Relation- ships for Fragment Residual Velocity and Residual Weight (U)	The Calibration of a Collection Medium for the Deter- mination of Particle Velocity (V)
pare	Sept. 1954	July 1956	April 1958	May 1959	Jan. 1960	April 1961	July 1962
Report No.	16*	25*	364	41	54	47	20

Out of Pri

parameters on the performance of the projectile is being investigated. Impact data for bullets, flechettes, and other projectiles are being collected for study. In this respect, reference is made to a current Ballistic Research Laboratories Memorandum Report entitled "An Empirical Method for Pradicting Target Penatration and Residual Velocity for Small Bullets (U)". An important conclusion from this memorandum suggests that whenever the projectile remains essentially intact after impact, its performance seems to be directly related to the weight and the presented area of the entire projectile.

The objectives of this report are: 1) the consolidation, revision, and extension of information pertaining to perforation of seven non-metallic materials by steel fragments, 2) the development of empirical equations permitting estimates of the residual weight and velocity associated with the largest portion of steel fragment that perforates the target material, 3) the extension of those empirical equations to provide estimates of minimum velocities for which perforation is possible, 4) a comparison of the resistance of non-metallic materials to perforation by steel fragments, and 5) the determination of a measure of the maximum capacity of the residual fragment for additional perforation assuming, initially, the perforation of a non-metallic barrier target with known impact parameters.

The main tec'nnique of the work for this report is outlined as follows:

a. Obtain for each target material a small sample of approximately fifty data points spanning the impact conditions of interest. These data points should include a careful recording of all the important parameters describing the impact condition as well as measurements describing the result.

- b. Fit independent equations of a given type to the raw data to permit initial estimates of residual weight and residual velocity for the largest portion of fragment perforating the target.
- c. By comparing actual with calculated values for residual weight and actual with calculated values for residual velocity, determine impact conditions for which the variation between actual and calculated values is unduly large.
- d. Repeat steps b and c, efter the results of new impact conditions are included for testing, to provide a firmer basis for reporting.
- e. Provide graphical information which renders the equations more useful. Combine the information from empirical equations for several meterials onto a single set of graphs for the sake of comparison of target materials, while appropriately absorbing inequities in comparison due to differences in densities of the target materials.

This technique finally provides a practical set of formulas for each material for the prediction of a) minimum velocity for which perforation is possible with given fragment weight and shape, b) residual velocity and weight when perforation occurs, and c) impact conditions for which the fragment will shatter completely. These formulas are especially useful whenever good predictions are needed over broad ranges of impact parameters rather than when pin-point accuracy is needed for a few specialised sets of impact conditions. The termulas include the important impact parameters and are established with relatively modest experimental effort and expense.

The target materials selected for inclusion in this report are listed in Table II which follows. Table III summarizes the characteristics of the experimental data for each target material. Table IV provides the dimensions and weights of the fragments used in the experimental program.

Table II

		Desc	Descripcion of Turget Materials					
Destgoation	Militery Specification	Composition	Hearthcharer	Passile Streegth (psi)	Compression Strength (pet)	Shear Strength (ps1)	Rocksell Bardness	Density 1b/ft
Unbonded Nylon*	HIL-C-12369A,C (GMC)	ky <u>t</u> on 66	Deposit					43-50
Bondeo Tylon	HIL-C-12363A,C (QHC)	Nylon 66 Finzolic Butyral Resin (:0-1% by was)	Victory Plastics Co., elc.					9 9
Lexan	•	Polycarbosate Resin		9006-0008	00071		K70-2118	5-22
Cast Flexiglas II WA or Plexiglas 55	PIL-75425 Finish A	Cest Thermoplastic Amylin Resin	Roim & Gass, Jeistol, Pa.	10500-11000 (rupture)	7,000-1-600	90369200	H93	75
Stretched Plexiglas	MIT-9-23690A	Mathylmethacrylate Speet Material	Goodynar Atresaft Co.	0006		3300		2
Daron II, etc.	MIL-à-17855 Agr	Glass fabric base with polysscar rasis	1) Continental Dissend +4005-51000 Figur Corp., Beautr., bai. 2) Houlded Flastics, Eristol, Va., 3) Sendlew Corp., Caiff.	\$4,005-51000	00009	17105-17500	7/2	ଯ
		functional academ	Various	00001	20000	waty los	!	ž

Breaking strength: 1000 Ib; Ultimate elongation: 2

CONFIDENTIAL

- b. Fit independent equations of a given type to the raw data to permit initial estimates of residual weight and residual velocity for the largest portion of fragment perforating the target.
- a. By comparing actual with calculated values for residual weight and actual with calculated values for residual valocity, determine impact conditions for which the variation between actual and calculated values is unduly large.
- d. Repeat steps b and u, after the results of new impact conditions are included for testing, to provide a firmer basis for reporting.
- e. Provide graphical information which renders the equations more useful. Combine the information from empirical equations for several materials onto a single set of graphs for the sake of comparison of target materials, while appropriately absorbing inequities in comparison due to differences in densities of the target materials.

This technique finally provides a practical set of formulas for each material for the prediction of a) minimum velocity for which perforation is possible with given fragment weight and shape, b) residual velocity and weight when perforation occurs, and c) impact conditions for which the fragment will shatter completely. These formulas are especially useful whenever good predictions are needed over broad ranges of impact parameters rather than when pin-point accuracy is needed for a few specialized sets of impact conditions. The formulas include the important impact parameters and are established with relatively modest experimental effort and expense.

The target materials selected for inclusion in this report are listed in Table II which follows. Table III summarizes the characteristics of the experimental data for each target material. Table IV provides the dimensions and weights of the fragments used in the experimental program.

table III

Fragment Size Range Range R	5 - 207	5 - 825	5 - 240	5 - 475	5 - 475	2.5 - 630	15 - 475
Scribing Velocity Range V s (fps)	300 - 10000	1000 - 12000	1000 - 11500	200 - 9500	500 - 11000	500 - 11000	200 - 10000
Obliquity Lange 0 (degrees)	QZ - 0	R - 0	0 - 70	R :	R - 0	Q - 0	Q o
Areal Density Range E (1b/ft ²)	0.1 - 12.5	2.1 - 9.7	0.8 - 6.2	1.2 - 6.7	0.3 - 6.4	0.5 - 15.6	2.6 - 21.2
Target Thickness Range e (inches)	0.02 - 3.0	0.43 - 2.0	.125 - 1.0	.20 - 1.1	.05 - 1.0	.05 - 1.5	.20 - 1.65
Target Macerial	Unbonded Nylon	Bonded Nylon	Lexan	Plexiglas as Cast	Stretched Plexiglas	Doron	Bullet- Resistant Glass

EMI-IRICAL RELATIONSHIPS

The resistance of a material to perforation by steel fragments has been measured in many ways. Here, the assumption is made that this resistance can be related to the losses in weight and velocity sustained by the fragment during perforation. Accordingly, experimental data have been collected for steel fragments impacting on each material of a variety of non-metallic target materials. Those data cases where perforation was achieved were singled out for the analysis. Measurements of both the residual velocity and the residual weight were recorded. These measurements refer to the largest piece of the original fragment which perforates the target material.

In Technical Report A. ... (see Table I), a method is described for obtaining empirical equations from residual velocity data to relate residual velocity to important impact parameters. The type of equation proposed is:

$$V_r = V_a - 10^{\alpha} (eA)^{\alpha} m_a^{\beta} (sec \theta)^{\gamma} V_a^{\lambda}$$
,

where $V_{\underline{r}}$ is the fragment residual velocity in fps,

- $\boldsymbol{V}_{\underline{\boldsymbol{n}}}$ is the fragment striking velocity in fps,
- e is the target thickness in inches,
- A is the average presented area of the fragment in square inches,
- m is the weight of the original fragment in grains,
- θ is the angle between the trajectory of the fragment and the normal to the target material, and
- c, α , β , γ , λ are constants determined separately for each material. The derived values of the constants specifying the estimating

equation for fragment residual velocity for each material are tabulated in Tables V and VI of the Results Section.

The exponential form of this equation is simple, yet it includes the important impact parameters. The form has the additional merit of being convertible into a corresponding logarithmic form which is useful because of its linearity.

For a comparison of the resistances of targut materials to perforation by fragments, it has been found useful to replace a, the thickness
parameter, by another variable, E, in the estimating equation. The new
variable refers to the areal density of the target material and is measured
in pounds per square foot (see Figure 1). It is obtained by multiplying the
target thickness in feet by the density of the target material in pounds per
cubic foot. By altering the formulas so that the thickness parameter is
replaced by the areal density parameter, it becomes possible to compare the
resistances of target materials to perforation on the basis of equal weight
of target per unit area. For such a comparison, refer to the section
entitled "Measuring the Maximum Capacity of the Residual Fragment for
Perforation".

The criterion for goodness of fit of the estimating equation is the magnitude of σ defined below. If $\left|\Delta V_{T}\right|_{1}$ is the magnitude of the error made in estimating the fragment residual velocity in the i-th set of N sets of experimental conditions, then

$$\sigma^2 = \frac{\sum_{i=1}^{N} |\Delta V_r|_1^2}{N}.$$

Thickness of Target Materials vs Areal Density of Target

Fig. 1

CONFIDENTIAL

It is understood that the selection of fit for each target material is made to correspond with the lowest obtainable value of σ . The value of σ for each residual velocity estimating equation is given in Table V of the Results Section.

In order to obtain an empirical formula for estimating residual valuable valuable for steel fragments impacting on each target material, the basic formula is converted into the associated common logarithmic form:

 $\log(V_g-V_g)=c+\alpha\log(eA)+\beta\log m_g+\gamma\log\sec\theta+\lambda\log V_g\;.$ With this linear form, the method of least squares is employed to determing a satisfactory set of values for c, α , β , γ , λ . Admittedly, this procedure minimises S, defined below, rather than σ , where

$$s^{2} = \frac{\sum_{i=1}^{N} \left[\log(\Delta V)_{i} - \log(\overline{\Delta V})_{i} \right]^{2}}{N}$$

and $(\Delta V)_1$ is the fragment loss in velocity as determined from the estimating equation and $(\overline{\Delta V})_1$ is the actual fragment loss in velocity, both numbers referring to the i-th experimental set of impact conditions. This method of calculating the constants has proved to be entirely satisfactory. It is often possible, by slight alterations of the constants, to improve the fit of the estimating equation. Experience has shown, however, that the minor improvements obtainable do not justify the effort.

For the type of equation assumed, it is possible to solve for V_g when V_T is zero. This striking velocity shall be designated V_O . The constants which define the V_O equation for each target material are specified in Tables VII and VIII of the Results Section. The significance of V_O has been established in pravious reports by this laboratory where V_O has been found

to be a good analytical approximation to the protection velocity; the latter is defined to be the highest striking velocity below the ballietic limit for which the probability of perforation is zero. In other words, the V_o values are estimates of the limiting striking velocities for which the target always prevents perforation by the fragment. A set of graphs featuring V_o values for each target material is included in Appendix A.

In an analogous manner, an empirical equation is developed for each target material for estimating fragment residual weight. The form of the equation fitted to the data for each target material is

$$m_{g} - m_{g} = 10^{\circ} (aA)^{\alpha} m_{g}^{\beta} (sec \theta)^{\gamma} V_{g}^{\lambda}$$
,

where the only new symbol is $m_{_{\! I}}$, the weight in grains of the largest portion of steel fragment perforating the target. To accommudate a similar least squares treatment on the associated logarithmic equation, the assumption is made that the minimum loss in fragment weight is one-tenth of a grain rather than zero grains. The criterion of goodness of fit is σ^2 defined below. If $\left|\Delta m_{_{\! I}}\right|_1$ is the magnitude of the error in estimating the fragment residual weight in the i-th set of N sets of experimental conditions, then

$$\left(\sigma^{+}\right)^{2} = \frac{\sum_{i=1}^{N} \left| \Delta m_{i} \right|_{i}^{2}}{N}.$$

The values of the constants specifying the equation for estimating fragment residual weight for each target material are given in Tables IX and X of the Results Section.

With low striking velocities, the loss in weight of a fragment during perforation is small and is usually ignored. In such cases, the residual velocity, alone, serves as a good measure of the resistance of the

target to perforation and the capacity of the residual fragment for perforating another target. As the striking velocity increases, the break-up of the
fragment becomes more and more pronounced until, finally, this aspect of the
impact has to be taken into account. The residual weight of the fragment
must be determined as well as the residual velocity before a proper estimate
of the capacity of the fragment for perforating another target is possible.

Fragment recovery after impact is accomplished by the use of a bank of fiberboard (Maftex) sheets. The residual fragment is located within this bank and weighed; the depth of penetration of the particle into the Maftex is recorded. More refined techniques and other recovery meterials are in use, but recovery in Maftex was adopted as the most practical method for this study. The weight of the residual fragment tegether with the depth of penetration into Maftex suggest a striking velocity on the Maftex which serves as a rough check on the residual velocity recorded for the fragment. Even this simple recovery technique is tedious and time-consuming, but for the objectives of this report, the derived information was deemed important enough to outweigh these disadvantages.

In many experimental cases, the weight of the largest piece of residual fragment approximates the total weight of fragment perforating the barrier target. At any rate, the capacity of a fragment to perforate a primary target beyond an initial barrier can be conservatively estimated by considering only the largest piece of fragment which perforates the barrier. This approach is justified whenever the hypothetical primary target is one for which damage from the impact of small, slow-moving particles is not anticipated, i.e., damage to such a target will essentially be that caused by the largest, fastest particle that impacts on it. Examples of such tough

primary targets are the internal components of guided missiles and aircraft.

These components are often large and difficult to protect, so they contribute heavily to the vulnerability of the target complex.

On the other hand, when a large, hypothetical, primary target is extremely vulnerable to impact, even from a small, slow fragment, then a solution based on the largest, fastest fragment is helpful but incomplete. A typical high-speed impact may result in one main fragment particle, several smaller fragment particles, and, possibly, hundreds of spall particles of variable size issuing from the rear surface of the target. If any one of many of these particles can kill the primary target, then it becomes necessary to account for the total number, sizes, and velocities of these particles before a proper measure of the demage resulting from the impact of the original fragment can be made.

In the laboratory, it is more practical to keep track of the largest portion of residual fragment than to recover every portion of residual fragment regardless of size. Ideal information would provide the weight, speed, and direction of each particle of the original fragment that successfully perforates the target material as well as the weight, speed, and direction of every spall particle.

* * * * *

Sets of graphs for estimating both fragment residual velocity and residual weight are presented in Appendix B. The use of double ordinates in these graphs requires some explanation. Two sets of thickness contours are to be found on each graph of this type. The thickness contours drawn with solid lines refer to the left-hand ordinate; the dashed contours refer to the right-hand ordinate. Thus, for a given graph and a given striking

velocity, two ratios are found. The contours are shown only where both ratios are non-negative. The dotted lines on these graphs suggest the the associated residual velocities apply to a particle of insignificant weight (no more than one or two grains).

No commitment is made on the spall particles which are formed from the plate meterial. Limited observations of spall patterns reveal wide experimental fluctuations in the number, sise, and velocity of the spall particles from one round to the next where the same impact conditions are employed.

The previous remarks emphasize the need for using the empirical equations for residual weight and residual velocity jointly. In this way, it becomes apparent where the results are valid. The double-ordinate graphs clearly display the regions of validity, i.e., where both $m_{_{\rm F}}$ and $V_{_{\rm F}}$ are non-negative.

An alternate form of the estimating equation for predicting frag-

(1)
$$m_{g} - m_{T} = 10^{k} e^{\alpha} m_{g}^{\beta} (sec \theta)^{\gamma} v_{g}^{\lambda}$$
.

The omission of the parameter A, the average presented area of the fragment, implies that fragments of a fixed shape are under consideration.

In a manner similar to that used in developing a $V_{\rm o}$ equation from the estimating equation for predicting residual velocity, an auxiliary equation is developed for predicting conditions for which the fragment shatters completely upon impact.

Let $m_{_{\rm T}}=0$ in equation (1). Let the value of $m_{_{\rm S}}$ corresponding to this condition be called $m_{_{\rm C}}$. Then

(2)
$$m_0 = k$$
 $\alpha/(1-\beta)$ $\gamma/(1-\beta)$ $\lambda/(1-\beta)$

Equation (2) produces estimates of impact conditions for which the fragment shatters on impact. For discrete sets of values of e, θ , and V_g , values of m_0 are generated. Each set of values of m_0 , e, θ , and V_g satisfying equation (2) defines an impact condition for which the fragment is expected to disintegrate during the perforation of the target. Before this result can be accepted, it must be ascertained that $V_g \geq V_0$ corresponding to the remaining values of the parameters e, m_g , and θ .

To illustrate, a graph is provided corresponding to the impact condition of $e=0.5^{\circ}$, $\theta=60^{\circ}$, with Bullet-Resistant Glass as the target. In Figure 2, the V_{o} contour for this condition is shown as well as the "shatter contour". These contours divide the m_{g} , V_{g} plane into three regions: 1) no perforation, 2) perforation with $m_{g} \geq 0$, and 3) perforation where $m_{g} = 0$. This figure emphasizes the fact that the predictions of impact conditions for which the fragment will shatter are valid only when target perforation is anticipated.

Values of the constants defining the m_o equation for each of several target materials are given in Table XI. With two of the seven target materials, these constants are not given since the fragment break-up data for these two target materials were inadequate to establish such equations. For such materials, the higher striking velocities necessary to establish the values for these constants could not be achieved with available experimental facilities.

RESULTS

The empirical formulas developed from the experimental data on each of the non-metallic targets for the purpose of estimating residual velocity are of the form:

$$V_r = V_g - 10^6 (eA)^G m_g^\beta (sec \theta)^7 V_g^\lambda$$
.

The values of c, α , β , γ , and λ are tabulated in Table V for each of the non-metallic targets. In addition, the sample size N of experimental data and the value of σ are displayed.

For fragments of a given shape, these formulas can be simplified by removal of the impact parameter A to the form:

$$V_{x} = V_{y} - 10^{\alpha h} e^{\alpha} m_{y}^{\beta h} (sec \theta)^{\gamma} V_{y}^{\lambda}$$
,

since for any fragment shape approximating that of a regular convex polyhedron, the average presented area is nearly directly proportional to the two-thirds power of the mass.

Note that whenever a form of the estimating equation is desired which omits the impact parameter A, then some assumption has to be made about the shape of the fragments under consideration. When the fragments under consideration are similar in configuration to those used in the experimental work for this report, it can be assumed that the simplified equations, graphs, and conclusions based on the master estimating equations are valid. In fact, extrapolated predictions from these equations for bullets with lead, steel, and tungsten carbide cores show good agreement with experimental results.

If the fragments under consideration have large length-to-diameter ratios.

like some flechettes, then these estimating equations may not apply. The experimental data which have been used to fix the estimating equations involve compact fragments, i.e., fragments with length-to-diameter ratios close to unity. The simplified equations for non-compact fragments would be different from those used here since some new relationship between average impact area and fragment weight would be appropriate.

The values of c*, α , β *, γ , and λ for the equations associated with compact fragments are tabulated in Table VI.

The ${\bf V_o}$ formulas derived from the empirical residual velocity formulas are of the form:

$$v_a = 10^{c_1} (eA)^{\alpha_1} m_a^{\beta_1} (sec \theta)^{\gamma_1}$$
.

The values for c_1 , α_1 , β_1 , and γ_1 for each target material are tabulated in Table VIV.

For fragments of a given shape, these formulas can be simplified, as before, to the form:

$$v_{\alpha} = 10^{\frac{\alpha_{1}^{*}}{1}} \cdot \alpha_{1}^{\alpha} \cdot \alpha_{2}^{\beta_{1}^{*}} \cdot \alpha_{2}^{\beta_{1}^{*}} \cdot \alpha_{2}^{\beta_{1}^{*}} \cdot \alpha_{2}^{\beta_{1}^{*}}$$

The values of α_1^* , α_1^* , β_1^* , and γ_1^* for the equations associated with compact fragments are tabulated in Table VIII.

The empirical formulas developed from the experimental data for the purpose of estimating fragment residual weight are of the form:

$$m_r = m_g - 10^G (eA)^G m_g^\beta (sec \theta)^T v_g^{\lambda}$$
.

The values of c, α , β , γ , and λ are tabulated in Table IX for each

-20-

target material. In addition, the sample size N^{\pm} of experimental data used to obtain the residual weight equation and the associated value of σ^{\pm} are noted.

For fragments of a given shape, these formulas can be simplified by removal of the impact parameter A, as before, to the form:

$$m_{r} = m_{s} - 10^{c^{\frac{1}{2}}} e^{\alpha} m_{s}^{\beta^{\frac{1}{2}}} (\sec \theta)^{7} V_{s}^{\lambda}$$

The resulting values of c^* , α , β^* , γ , and λ for the equations associated with compact fragments are tabulated in Table X.

The Interaction of V_o Estimates with Estimates of Impact Conditions for Fragment Shatter

Obliquity # # 50°

Fig. 2

Table V

Constants for the Estimating Equations for Residual Velocity

(No Particular Fragment Shape Assumed)

ر. •
; 6)7
360
۳.
(e.k.) ^Q
10e
, ,
ı
> ^M
Equation:
1 of
Form

Target Material	U	8	В	7	4	24	В
Unbonded Mylon	5.816	0.835	-0.654	0.996	-0.162	339	33
Bonded Mylon	4.672	1.144	96.0	0.743	0.392	96	Ď.
Lexan	2.908	0.720	-0.657	0.773	ĵ.	72	3
Piexiglas as Cast	5.243	1.044	-1.035	1.073	0.242	97	283
Stretched Plexiglas	3.605	1.112	-0.903	0.715	989.0	92	9,
Doron	7.600	1.021	-1.014	0.917	-0.362	230	3
Bullet-Resistant Glass	3.743	0.705	6.72	0.690	0.465	8	69

this VI

onstants for the Estimating Equations for Residual Velocity

Compact Pragment Shape Assumed)

*
e 0)7
<u>\$</u>
*c.
- 10°
•
Þ
f Equation:
a of

;	*		*		
Target Material	9	8	Э	7	
Unbonded Mylon	4.051	0.835	-0.097	0.390	9
Bondad Hylon	4.672	1.:4	996-0-	0.743	0
Lexan	1.387	0.720	-0.177	6.773	
Plexiglas as Cast	3.035	1.064	0.338	1.073	
Stretched Plexiglas	1.255	1.112	-0.161	0.715	0.0
Doron	5.443	17071	-0.334	0.917	9
Bullet-Resistant Glass	2.254	0.705	-0.253	C.690	0.4

Table VII

Constants for the Estimating Equations for V

to Particular Fragment Shape Assumed)

orm of Equation: $V_o = 10^{-1}$ (eA) $\frac{G_1}{m_b}$ (sec θ)

Target Material	C ₁	a,	Å	7,1
Unbonded Mylon	5.006	67.0	-0.563	0.85
Bonded Mylon	7.689	1.863	-1.593	1.22
Lexan	7.329	1.814	-1.652	1.94
Plexiglas as Cast	6.913	1.377	-1.364	1.41
Stretched Plexiglas	11.468	3.537	-2.871	1.27
Doron	5.581	0.750	-0.745	0.67
Bullet-Resistant Glass	5.991	1.316	-1.351	1.28

Table WITT

Constants for the Estimating Equations for V

ompact Pragment Shape Assumed)

7,	. 6
_	<u>#</u>
" ď	1
ۍ. چ	4
ŭ	21
	>°
	Equation:
	o£
	Ē

Target Material	* 5"	ፍ	* d -	7,
Unbonded Mylon	3.486	0.719	780°₽ −	0.85
Bonded Mylon	3.709	1.883	-0.338	1.2
Lexan	3.495	1.814	5997-0-	1.9
Plexiglas as Cast	4.002	1.377	-1.366	1.61
Stretched Plexiglas	3.992	3.537	-0.513	2.2
Doron	3.997	0.750	-0.265	0.67
Bullet-Resistant Glass	4.209	1.316	-0.473	1.28

Table IX

Constants for the Estimating Equations for \mathbf{n}

(No Particular Fragment Shape Assumed)

Form of Equation: $\mathbf{n}_{\mathbf{r}} = \mathbf{n}_{\mathbf{s}} - 10^{\circ} (\epsilon \mathbf{A})^{\circ} \mathbf{n}_{\mathbf{s}}^{\beta} (\epsilon \epsilon \theta)^{\gamma} \mathbf{v}_{\mathbf{s}}^{\lambda}$

Target Material	U	8	d	7	1	***	* 6
Unbonded Mylon*	-7.538	-0.067	0.903	-0.351	1.11	3	•
Bonded Fylon*	-13.601	0.035	0.775	0.045	3.451	65	138
Lexan	-6.275	0.480	0.465	1.17	1.765	104	27
Plexiglas as Cast	-2.342	1.402	-0.137	9.674	1.324	170	53
Stretched Plexiglas	-5.344	0.437	97.0	0.620	1.683	75	53
Doron	-10.404	0.215	0.363	0.706	2.906	96	19
Bullet-Resistant Glass	-5.926	0.305	0.429	0.747	1.819	85	13

Higher striking velocities then those now obtainable in the laboratory would be required to produce the nacessary inform

Table X

Constants for the Estimating Equations for m.

(Compact Pragment Shape Assumed)

Form of Equation: $m_s = m_s - 10^c$ $e^{ct} m_s^{\pm}$ (sec θ) V_s

Tarost Material	* _U	8	*6	7	۲
Unbonded Mylon*	-7.396	-0.067	0.859	-0.351	1.517
Bonded Mylon*	-13.676	0.035	0.799	0.045	3.451
Lexan	-7.288	0.480	0.785	1.17	1.765
Plexiglas as Cast	-5.305	1.402	0.797	0.674	1.324
Stretched Plexiglas	-6.267	0.437	0.460	0.620	1.683
Doron	-10.958	0.215	0.485	90.70	2.905
Bullet-Resistant Glass	-6.571	0.305	0.632	0.747	1.819

to break up considerably upon impact. Higher striking velocities than those now obtainable in the laboratory would be required to produce the necessary information to establish a satisfactory set of constants of the magnetical constants. * Within the limitations of the experimental data, this meterial did not cause the steel fragments

Table XI

Constants for the Estimating Equations for s

(Compact Pragment Shape Assumed)

Form of Equation: $\mathbf{a}_0 = 10^k \, \mathrm{e}^{G'} \left(\sec \theta \right)^T \, \mathrm{v}_2^k$

Target Material	14	້ອ	£.	τ
Unbonded Kylon*	•	•	•	
Bonded Hylon*	•	•	ı	1
Lexan	-33.881	2.230	5.441	8.205
Plexiglas as Cast	-26.163	716.9	3.326	6.529
Stretched Plexiglas	-11.904	0.809	1.148	3.116
Deron	-21.143	0.418	1.375	5.658
Bullet-Resistant Glass	-17.875	0.629	2.031	4.949

to break up considerably upon impact. Righer striking velocities than those now obtainable in the laboratory would be required to produce the necessary information to extablish a satisfactory set of constants * Within the Limitations of the experimental data, this material did not cause the steel fragments for the m equations for this material. PROPERTY OF STREET

ADAPTATIONS TO VUINERABILITY ANALYSES

The vulnerability analyst, calculating the offects of a hypothetical fragmenting weapon as used against some primary target, usually relies on experimental evidence from fragments fired singly against facsimile or mock-up targets. The target is considered as an assembly of sets of vital components shielded by structural "shell" members or other components. Firings are conducted to determine the level and extent of damage required to "defeat" or "kill" each vital component under various kill criteria. These firings provide the basis for an empirical formula relating the conditional probability of killing each vital component, given a hit, to some appropriate function of the weight and velocity of the impacting fragment.

Assuming that such a relationship is established, one can proceed with the analysis when the impact weight and velocity of the fragment are known. If the fragment impinges first on some barrier target, then it is important to be able to estimate the losses sustained by the fragment in both weight and velocity during the perforation of this barrier.

The advent of guided missiles and other space targets has forced vulnerability analysts to consider higher and higher impact velocities. With these higher striking velocities, the fragment tends to break up more and more while is is perforating the target. While the significance of fragment break-up for various specific conditions of impact has been acknowledged for some time, there has hitherto been little quantitative evidence to account for this aspect of impact on non-metallic targets.

The present study makes it possible to account more fully for the effect of barrier targets, as represented by any one of the seven non-metallic

materials, on the original fragment. The appropriate estimating equations can be used to provide estimates of the effective fragment residuel weight and velocity for a hypothetical impact situation. The analyst can then evaluate any suitable function of fragment weight and velocity to determine the probability of killing a particular component. It is, of course, the responsibility of the analyst to determine the function of fragment weight and velocity to be used with each component type. The function that is chosen will depend on the type of component and the criterion for damage. Finally, the corresponding probability of killing or incapacitating the primary target is obtained.

In graph Set III of Appendix G, for a fixed combination of $\mathbf{m}_{_{\! H}}$, θ , and $\mathbf{V}_{_{\! H}}$, four different functions of $\mathbf{m}_{_{\! H}}$ and $\mathbf{V}_{_{\! H}}$ are plotted against target areal density. These graphs serve to show that the ordering of the contours for the target materials varies with the function of $\mathbf{m}_{_{\! H}}$ and $\mathbf{V}_{_{\! H}}$ being used. Therefore, any comparison of the resistance of target materials to perforation, using as a basis some selected function of $\mathbf{m}_{_{\! H}}$ and $\mathbf{V}_{_{\! H}}$, is weakened by this arbitrary selection. Nevertheless, some particular function of $\mathbf{m}_{_{\! H}}$ and $\mathbf{V}_{_{\! H}}$ may be entirely appropriate as a measure of the probability of killing a given component.

MEASURING THE MAXIMUM CAPACITY OF THE RESIDUAL FRAGMENT FOR PERFORATION

Establishing minimum requirements for perforation of these nonmetallic materials is needed, but this knowledge is hardly useful in estimating the capacity for additional perforation when these minimum requirements are exceeded. A technique for measuring this capacity for additional perforation will be discussed in this section. This technique was first described in Tachnical Report No. 47.

Usually, the non-metallic materials are not themselves primary targets, so their perforation by fragments is of interest mainly in the sense of the resulting changes in the characteristics of the fragment during perforation. The two outstanding characteristics which determine the capacity of a fragment for perforation are the weight and velocity of the fragment. Thus, it is important to be able to estimate the losses in both fragment weight and velocity during perforation. When these factors are properly estimated, it becomes possible to make a first-order approximation of the maximum capacity of the residual fragment for perforation. With the advent of fragment break-up, it becomes necessary to compromise in this matter by assuming that this capacity can be estimated by considering only the largest piece of fragment which perforates the target material along with the associated residual valocity. This compromise still provides a useful measure of the capacity of the residual fragment for perforation, since the largest portion of the residual fragment is the only portion that matters for the tough primary target. These tough primary targets exist and are of major concarn to vulnerability analysts and designers of weapons.

By means of the empirical formulas developed for relating fragment residual velocity and residual weight to the main import parameters, one can

make satisfactory estimates of the values for these two parameters. Admittedly, spall (particles of target material) and particles of residual fragment
other than the largest particle issuing from the target material at time of
impact are not considered. Usually, the most lethal element resulting from
an impact for which there is a perforation is the largest particle of
residual fragment. This is the particle which most regularly penetrates
deepest into the recovery target behind the target material in the experimental work.

The empirical formulas feature a single exponent for the product of target thickness and average presented area of the fragment. This, in effect, suggests that if certain results are anticipated for a given impact condition, than the same results should be expected for, say, an impact situation where the target thickness is halved and the fragment shape is altered so that the average presented area is doubled. As long as the product of target thickness and fragment presented area remains constant, the same results are expected. This assumption has been found tenable at least for those fragment shapes which are not distantly removed from compact shapes.

Initial efforts to compare the resistance of target materials to perforation used either fragment residual velocity or residual weight as the basis for the comparison. Neither basis is entirely satisfactory. For example, how does one compare the relative capacity for perforation of 1) a small residual fragment with high velocity and 2) a large residual fragment with low velocity?

For the condition that the original target materials are perforated, a more useful comparison of the resistance of these materials to perforation can be obtained by examining the capacity of the residual fragment to

perforate a calibrating material. The latter may be arbitrarily selected.

For purposes of calibration, the simplest aspect (normal impact) is assumed for the impact of the residual fragment on the calibrating material regardless of the angle of impact of the fragment on the barrier target.

The impact parameters which determine the capacity of a steel fragment for perforation of a given medium include the fragment weight, velocity, shape, and the angle of obliquity. Estimates of values for the first two parameters are provided by the espirical formulas. The shape of the largest portion of a recidual fragment is usually similar to the shape of the original fragment whenever the residual fragment is of appreciable size. There is a tendency for the fragment to be squashed and thereby rendered less compact.

When there is considerable break-up of the fragment during the parforation of the initial target material, the residual fragment may have a
shape other than that which could reasonably be called compact. In such
cases, the residual fragment may have an average presented area (assuming
random orientation) several times that of a compact fragment of the same
weight. It is also of importance to recognize that, for a non-compact fragment, there is a greater interval between the minimum and the maximum oresented areas than for a compact fragment of the same weight. This implies a
greater possible variation in performance for the non-compact, residual fragment against a given primary target.

Furthermore, recovered portions of fragments after impact reveal, in many cases, a shredded appearance suggesting much less unity than the original fragment possesses. Such a particle appears more susceptible to further break-up on impact with a second target than a fresh, unfired particle of the same weight. This increased susceptibility to break-up no doubt

results in a lower capacity for additional perforation.

The importance of each particle formed from an impact of a fragment upon some barrier target depends on the vulnerability of the primary target to particle impact. If the primary target is extremely sensitive to such impact, it is important to know how many particles are formed, and the weight and velocity of each particle. If the primary target is one which is not likely to be damaged by the impact of small, slow particles, then these particles can be ignored.

The present report deals primarily with the characteristics of the largest particle of fragment origin resulting from impact on a barrier target. From the point of view of protecting the primary target, if the primary target can withstand the impact of the largest, fastast-moving particle of fragment origin, then it is reasonable to assume that the primary target can withstand the impact of all particles formed from the initial impact.

A hasis is now offered for measuring the maximum capacity of the largest particle of residual fragment for perforation of a second medium. The maximum thickness of this medium which can possibly be perforated by the largest portion of residual fragment striking the calibrating medium at normal impact will be used as the measure. To arrive at this measure, estimates of the fragment residual weight and velocity are required. To favor the performence of this residual fragment, it will be assumed that this particle has the same capacity for perforation as a fresh, unfired fragment of the same weight.

Sats of graphs, relating maximum thickness of calibrating material that can possibly be perforated to areal density of the non-metallic target materials for each of twenty-seven combinations of fragment weight, velocity,

and angle of obliquity are displayed in Appendix D. An aluminum alloy, 2024T-3, has been selected as a calibrating material since much experimental work in ballistic impact has been performed on this well-known structural material.

In Appendix E, a similar set of graphs is presented using Maftex as the calibrating material. Technical Report No. 50 (see Table 1) provides a comprehensive treatment of the resistance of Maftex to penetration by fragments of any one of several materials.

Under the assumptions which have been clearly stated, it is a simple matter to use these graphs to compare the resistance of the non-metallic meterials to perforation by steel fragments. For a given value of areal density, the "best" target material is that one for which the least thickness of calibrating medium is needed to stop the residual fragment.

If the change in shape of the residual fragment and the weakened condition are taken into account, lower estimates of maximum thicknesses of the calibrating medium will result. For purposes of comparison of the resistance of the initial target materials to perferation, this would not be necessary. The proposed technique does tend to over-estimate this maximum thickness. Certainly if the distortion, change in shape, and weakened condition of the residual fragment are taken into account, some lesser thickness of calibrating material will be found to be equally adequate in stopping the residual fragment.

On each graph in Appendices D and E, each of the non-metallic target materials is represented by a separate contour. One might ask, how do these non-metallic target materials compare with metallic materials in this matter?

In anticipation of this question, an appropriate contour for 2024T-3 Aluminum

Alloy has been properly inserted on each of these graphs.

Taken together, Technical Report No. 47 and the present report provide the basis for a broad comparison of the resistance of various materials to perforation by steel fragments. The separation of materials into two categories, metallic and non-metallic, represents an arbitrary method of classifying materials. Insofar as resistance to perforation is concerned, it appears that some non-metallic materials show to advantage, for certain impact situations, over metallic materials normally considered as armor. There are, understandably, many other factors to consider in the salection of a material for some particular function.

CONCLUSIONS

- 1. Fragment shatter (complete disintegration) upon impact on non-matallic targets is not likely unless the impact condition is an extreme one, e.g., thick target, high obliquity, small fragment, and striking velocity in excess of 8000 fps.
- 2. Fragment break-up is not as critical a consideration for intermediate striking velocities with non-metallic targets as with metallic targets. This being the case, the fragment residual velocity, alone, can serve adequately as a criterion in the comparison of the resistance of such target materials to ballistic impact.
- 3. With Bonded and Unbonded Nylon, used in moderate thicknesses corresponding to their military functions, it is virtually impossible to locate impact conditions which produce serious fragment break-up during the perforation.
- 4. For remarks concerning the comparative resistance of the seven non-metallic target materials, two different sets of graphs apply.
 - 41. The first set of graphs estimates the thickness of calibrating medium needed to stop the fragment which has impacted on a known target material with given areal density. With such graphs, the "bast" target material is that one for which the least thickness of calibrating medium is required to stop the residual fragment. Whether the calibrating material is 2024T-3 or Maftex, the following observations have been made from such graphs:
 - a) At low velocities (~ 3000 fps), Unbonded Nylon offers the greatest protection of the non-metallic target materials, surpassing even the resistance

offered by 2024T-3, a typical armoring material.

- b) At intermediate velocities (\sim 6000 fps), a surprising feature is that all the materials considered offer essentially the same resistance to perforation.
- c) At high velocities (~ 9000 fps) and for small fragments, Doron and Bullet-Resistant Glass seem to show some superiority over the other non-metallic target materials. As the fragment size increases, this superiority tends to vanish.
- d) At low velocity the resistance of Stretched Plexiglas is similar to that of Plexiglas as cast; however, with increasing fragment velocity, Stretched Plexiglas shows to increasing advantage over Plexiglas, as cast.
- e) Whereas Unbonded Nylon offers more resistance to perforation than Bonded Nylon at low velocities, the reverse is true at high velocities.
- f) Among the transparencies, Bullet-Resistant Glass appears to offer the most resistance, in general.
- g) For certain impact conditions, 2024T-3 Aluminum Alloy, a typical metallic target material, appears to offer less resistance than one or another of the non-metallic materials. In fact, only at high velocity and low obliquity, is it demonstrated that the aluminum alloy shows a clear advantage over the non-metallic target materials.

- 4". The second set of graphs relates $V_{\rm C}$ to areal density of target. Again, a contour for 2024T-3 Aluminum Alloy has been inserted on each such graph to compare the non-metallic target materials with a representative metal. On the basis of the positions of the contours on these graphs, the following conclusions may be drawn:
 - a) For impact conditions with low areal density of target ($< 5 \text{ lb/ft}^2$), Unbonded Nylon and Doron offer generally the most resistance to perforation; their resistance is comparable to that of 2024T-3 Aluminum Alloy for such conditions.
 - b) For impact conditions with high areal density of target (8-15 lb/ft²), there is little evidence to guide the selection of an outstanding target material. This would suggest, that for such a range of areal density, the target material selected for a given function would be selected on the basis of other considerations, rather than resistance to perforation.
 - a) Plexiglas, as east, exhibits somewhat more resistance than Stretched Plexiglas for impact conditions with low areal density of target; as the areal density increases, this slight superiority disappears.
 - d) Bonded Nylon offers a slight advantage in resistance over Unbonded Nylon at impact conditions of high areal density; otherwise, the Unbonded Nylon is definitely superior.
 - a) Generally, Lexan offers the least resistance co perforation of all the materials tested.

Appendix A

Graph Set I: Vo vs mg for Selected Values of a

Figs. 3-23

Note: $V_{\rm O}$ is the value of striking velocity, $V_{\rm g}$, obtained from the empirical formulas by setting the residual velocity, $V_{\rm g}$, equal to zero. The significance of the $V_{\rm O}$ values has been established in previous reports by this laboratory where $V_{\rm O}$ has been found to be a good analytical approximation to the protection velocity; the latter is defined to be the highest striking velocity below the bellistic limit for which the probability of perforation is zero. In other words, the $V_{\rm O}$ values are estimates of the limiting striking velocities for which the target always prevents perforation by the fragment.

Dashed contours in this set represent thicknesses of target material exceeding those used in the BRL experimental work for that target material.

Obliquity: 0°

Fragment:

Target Material: Unbonded Nylon

Shape: Compact

Moterial: Steel

Fig. 3
CONFIDENTIAL

Obliquity: 60°

Fragment:

Target Material: Unbonded Nylon

Shape: Compact

Material: Steel

CONFIDENTIAL

Obliquity: 70°

Fragment:

Target Material: Unbonded Nylon

Shape: Compact

Material: Steel

Fig. 5

Obliquity: 0°

Fragment:

Target Material: Bonded Nylon

Shape: Compact

Material: Steel

Fig. 6

Obliquity: 60°

Fragment:

Target Material: Bonded Nylon

Shape: Compact

Material: Steel

Fig. 7

Obliquity: 70°

Fragment:

Target Material: Bonded Nylon

Shape: Compact

Material: Steel

Fig. 8

Obliquity: 0°

Fragment:

Target Material: Lexan

Shape: Compact

Material: Steel

Fig. 9

Obliquity: 60°

Fragment:

Target Material: Lexan

Shape: Compact

Material: Steel

Fig. 10

Obliquity: 70°

Fragment:

Target Material: Lexan

Shape: Compact

Material: Steel

CONFIDENTIAL

Obliquity:

Fragment:

Target Material: Plexiglas, as Cast

Shape: Compact

Material: Steel

Obliquity:

Fragment:

Target Material: Plexiglas, as Cast

Shape: Compact

Material: Steel

CONFIDENTIAL

Obliquity: 70°

Fragment:

Target Material: Plexiglas, as Cast

Shape: Compact

Material: Steel

Fig. 14

Obliquity: 0°

Fragment:

Target Material: Stretched Plexiglas

Shape: Compact

Material: Steel

Fig. 15

Obliquity: 60° Fragment:

Target Material: Stretched Plexiglas Shape: Compact

Material: Steel

CONFIDENTIAL

Obliquity: 70°

Fragment:

Target Material: Stretched Plexiglas

Shape: Compact

Material: Steel

Fig. 17

Obliquity: 0°

Fragment:

Target Material: Daron

Shape: Compact

Material: Steel

Fig. 18

Obliquity: 60°

Fragment:

Target Material:

Doron

Shape: Compact

Material: Steel

Fig. 19

Vo vs Fragment Weight for

Selected Targe: Thicknesses

Obliquity: 70°

Fragment:

Target Material: Doron

Shape : Compact

Material: Steel

Fig. 20

Obliquity: 0°

Fragment:

Target Material: Bullet-Resistant Glass

Shape: Compact

Material: Steel

Fig. 21

Obliquity: 60°

Fragment:

Target Material: Bullet-Resistant Glass

Shape: Compact

Material: Steel

Fig. 22

Obliquity: 70°

Fragment:

Target Material: Bullet-Resistant Glass

Shape: Compact

Material: Steel

Fig. 23

Obliquity: 60°

Fragment:

Target Material: Bullet-Resistant Glass

Shape: C npact

Material: Steel

Fig. 22

Appendix B

Graph Set II: $\frac{V_T}{V_s}$ and $\frac{m_T}{m_s}$ vs V_s for Selected Values of m_s and θ

Figs. 24-86

Note: The use of double ordinates in these graphs requires some explanation. Two sets of thickness contours are to be found on each graph of this type. The thickness contours drawn with solid lines refer to the left-hand ordinate; the dashed contours refer to the right-hand ordinate. Thus, for a given graph and a given striking velocity, two ratios are found. The contours are shown only where both ratios are positive. The dotted lines on these graphs suggest that the associated residual velocities apply to a particle of insignificant weight. These remarks emphasize the need for using the empirical equations for residual velocity and residual weight jointly. In this way it becomes apparent where the estimates are valid, i.e., where both estimates are positive.

CONFIDENTIAL

CONFIDENTIAL

Target: Unbonded Nylon

Obliquity: 0

Fragment Size: 100 grains

CONFIDENTIAL

CONFIDENTIAL

0.8

ö

0.0

E E

J §

0.2

Target: Unbonded

Obliquity: 70°

CONFIDENTIAL

>|>

CONFIDENTIAL

E E

P.t. 31

Target: Unbonded Nylon

Obliquity: 60° Frogment Size: 300 grains

CONFIDENTIAL

Target: Bonded Nylon

Obliquity: 0

CONFIDENTIAL

CONFIDENTIAL

CONFIDENTIAL

6.0

9.0

EE

0.2

Target: Bonded Nyion

Frogment Size: 100 Obliquity: 60.

grains

0

V, for Selected Target Thicknesses 2 ĚÉ and

Target: Bonded Nylon

Frogram Size: 300 grains Obliquity: 0

CONFIDENTIAL

CONFIDENTIAL

CONFIDENTIAL

CONFIDENTIAL

Obliquity: 70°

Fragment Size: 30 gra

EE

連続を表す 20mmの 1mmの 1mm

Torget: Lesson

Obliquity: 0° Frogment Size: 100 grains

CONFIDENTIAL

CONFIDENTIAL

CONFIDENTIAL

V, for Selected Target Thicknesses 3 ÉÉ ond Z

Target: Plexiglos, as Cast

Obliquity: 0°

Fragment Size: 30 grains

CONFIDENTIAL

CONFIDENTIAL

CONFIDENTIAL

CONFIDENTIAL

CONFIDENTIAL

for Selected Target Thicknesses >" \$ Ĕ|Ĕ **Bug** >|>

Target: Pleniglas, as Obliquity: O*

Fragment Size: 300 grains

Selected Target Thicknesses 草 5 ĖĖ **D**ub >|>"

Target: Plexiglos, as Cost

Obliquity: 70°

Fragment Size: 300 grains

CONFIDENTIAL

CONFIDENTIAL

CONFIDENTIAL

CONFIDENTIAL

obliquity: 0

Frayment Size: 100 grains

CONFIDENTIAL

-107-

CONFIDENTIAL

CONFIDENTIAL

CONFIDENTIAL

CONFIDENTIAL

國際國際的表別 (1878年)

CONFIDENTIAL

CONFIDENTIAL

- 医臓機 強導機関のようです。

CONFIDENTIAL

ö

0.2

Target: Doron Obliquity: 70

Frogment Size: 300 grains

CONFIDENTIAL

CONFIDENTIAL

CONFIDENTIAL

CONFIDENTIAL

CONFIDENTIAL

Appendix C

Graph Set III: $f(m_r, V_r)$ vs f for a Particular Combination of m_g , θ , V_g

Figs. 87-90

Note: Within this set of graphs, a contour for a particular material is shown only for those values of the abscissa for which $\mathbf{m_r}$ and $\mathbf{V_r}$ are both non-negative. Furthermore, the contours are not significantly extrapolated beyond the interval of thicknesses of target material employed in the basic BRL experiments.

 $f\left(m_{_{\Gamma}},v_{_{\Gamma}}\right) \text{ vs E}$ for Various Combinations of $m_{_{B}},\Theta,\text{and }V_{_{B}}$

 m_s = 100 grains θ = 60 degrees V_s = 6000 fps

		#		*
Unbonded Nylon		3.31	Stretched Plexiglas	 2.01
Bonded Nylon	*******	2.66	Doron	 1.23
Lexan		2.06	B. R. Gloss	 1.00
Cast Plexiglas		2.01		

The State of Material Thickness Balasina sa a tiple Thickness of B.B. Siese

F1s. 87

 $f\left(m_{r},v_{r}\right) \text{ vs } E$ for Various Combinations of m_{s} , Θ , and V_{s}

mis* 100 grains

8 = 60 degrees

V_s = 6000 fps

		*		*
Unbonded Nylon		3.31	Stretched Plexigion	 2.01
Bonded Nylon	• • • • • • • • • • • • • • • • • • • •	2.66	Doron	 1.23
Lexan		2.06	B. R. Glass	 1.00
Cast Plexiglas		2.01		

Ratio of Majerial Thickness Relative to a Unit Thickness of B.R.Glass

Fig. 88

 $f\left(m_{r},v_{r}\right) \text{ vs E}$ for Various Combinations of m_{s} , Θ , and V_{s}

 m_x = 100 grains θ = 60 degrees V_s = 6000 fps

		#		#
Unbonded Nylon		3.31	Stretched Plexiglas	 2.01
Bonded Nylon		2.66	Doron	 1.23
Lexan		2.06	B. R. Glass	 1.00
Cast Plexialas		2.01		

Retio of Material Thickness Relative to a Unit Thickness of B.R. Gless

P18. 89 CONFIDENTIAL

f(m_r, v_r) vs E for Various Combinations of m, , Θ , and V_s

m_s = 100 grains

9 = 60 degrees V_s = 6000 fps

	*		#
Unbonded Nylon	 3.31	Stretched Plexigion	 2.01
Bonded Nylon	 2.66	Doron	 1.23
Lexan	 2.06	B. R. Glass	 1.00
Cast Plexialas	 2.01		

Appendix D

Graph Set IV: e (inches of 2024T-3) vs E for Various Combinations of m, 0, and V

Figs. 91-117

Note: The ordinate represents an estimate of the maximum thickness of calibrating material that can possibly be perforated by the largest portion of the residual fragment after the original fragment has impacted initially on one of the given targets. The assumption is made that the residual fragment strikes the calibrating material at normal impact and that, furthermore, the shape of the original fragment is retained despite any loss in weight.

On each graph in this appendix there appears a value of e₀. This value is an estimate of the maximum thickness of the calibrating material that the original fragment can perforate, assuming normal impact and no intermediate barrier.

The contours are limited on these graphs to 3.0" of 2024T-3. This represents the maximum thickness of this material that has been considered in BRL single-target firings. In fact, there is no instance to date of a perforation of 3.0" of 2024T-3 in BRL experimental work with compact fragments.

 $e_{2024T-3} \ \ \text{vs E}$ for Various Combinations of $m_{_{8}}$, Θ , and $V_{_{8}}$

8 = 0 degrees V₂ = 3000 fps m_a = 30 grains e (inches of B.R. Giass) .031 .016 0.45 0.40 0.35 P(inches of 2024T-3) 0.30 0.25 Dural 0.20 0.15 0.10 0.05 e. • 0.47 2.0 E(Ib/ft2) Stretched Plexiglos -Unbonded Nylon 3.31 Doron Bonded Nylon 1.00 2.06 B. R. Glass Lexan Cast Plexigias

F18. 91
CONFIDENTIAL

^{*}Retio of Moterial Thickness Relative to a Unit Thickness of B.R. Glass

 $e_{2024T\text{--}3} \ \ \text{vs E}$ for Various Combinations of m_s , θ , and V_s

 $m_s = 100$ grains $\theta = 0$ degrees $V_s = 3000$ fps

	#			*
Unbonded Nylon	 3.31	Stretched Plexigla	8	2.01
Bonded Nylon	 2.66	Doron		1.23
Lexan	 2.06	B. R. Glass		1.00
Cast Plexigias	 2.01			

There at Material Thickness Relative to a Unit Thickness of B.R. Glass

P18. 92
CONFIDENTIAL

Lexan

Cast Plexiglas

 $e_{2024T-3}$ vs E for Various Combinations of m_s , θ , and V_s

0 = 0 degrees V_a = 3000 fps m. = 300 grains e(inches of B.R. Giass) .016 1,35 1,20 1.05 (inches of 2024T-3) 0.90 0.78 0.60 0.45 0.30 Dural-0.15 e. -|1.10" 4.0 10.0 2.0 E(Ib/ft2) Stretched Plexiglas Unbonded Nylon Doron Bonded Nylon

*Ratio of Material Thickness Relative to a Unit Thickness of B.R.Glass

B. R. Glass

1.00

Fig. 93

 $e_{2024T-3} \ \ \text{vs E}$ for Various Combinations of m_{ϵ} , θ , and V_{ϵ}

 $m_a = 30$ grains $\theta = 60$ degrees $V_a = 3000$ fps

	*			*
Unbonded Nylon	 3.31	Stretched Plexiglas		2.01
Bonded Nylon		Doron		1.23
Lexan	 2.06	B. R. Glass		1.00
Cost Disvining	 2.01			

Manage of Material Thickness Relative to a Unit Thickness of B.R. Gir.

F18. 94

 $e_{20241-3}$ vs E for Various Combinations of m_s , θ , and V_s

V_s = 3000 tips m_s = 100 grains 0 = 60 degrees e(inches of B.R. Glass) .016 0.90 0.60 0.70 linches of 2024T-39 0.60 0.50 0.40 0.30 0.20 Dural 0.10 0.73 1.0 2.0 E(Ib/ft²) Stretched Plexiglas Unbonded Nylon Bonded Nylon Doron Lexan B. R. Glass 1.00

*Retio of Material Thickness Relative to a Unit Thickness of B.R. Gless

Cast Plexiglas

F18. 95

e_{20 14T-2} vs E

for Various Combinations of ma, Θ , and V_{u}

m. = 300 grains

0 = 60 degrees

V. = 3000 fps

.016	•										_		_						_	
		.03	\		.06	5	Ť	76	_	, té	·		3	12		54(T	Т	78	9	4
1.35						+		1								+	+	H		_
1.20						+	-	<u> </u>				14 646				+	+	H		
1.05			 	ij	1/1	1	+	<u> </u>								+	+			
0.90			~ ;		-		7.7	13			-			-		+	+	H		
0,76			\	-	>	7	+			<u>`````````````````````````````````````</u>		N.		-		+	+	H		-9.14
0.60			a			-	+	-								+	+	H		
0.45		·- 	i. 				+			-	•	- 4	1			7	-	+		
0.50							+	i Dui	. . .		-	<u> </u>		18			+			
0.15		1.10"	<u> </u>		-	-	+	7		·	\dagger		-		T V		+		1	• •
م ا		L U		<u>.</u>	0	7 .\	سلدا	1.0 y		.l -/#*	2.0		دـــــــــــــــــــــــــــــــــــــ	40	<u>ئىس</u> ل	7.	0	K	 	-

Unbonded Nylon Bonded Nylon Lexan

Cast Plexiglas

Stretched Plexiglas ---- 2.

Doron ------ 1.23

R. Glass ----- 1.00

*Ratio of Materic Salckness Bilative to a Unit Thickness of 2.8. Glass

· y. 96

CONFIDENTIAL

 $e_{2024T-3}$ vs E for Various Combinations of $m_{\text{\tiny 6}}$, θ , and $\text{V}_{\text{\tiny 3}}$

m_s = 30 grains

0 = 70 degrees

V. = 3000 fps

	#		#
Unbonded Nylon	 3.51	Stretched Plexiglos	 2.01
Bonded Nylon	 2.66	Doron	 1.23
Lexon	 2.06	B. R. Glass	 1.00
Cast Plexiglas	 2.01		

Ratio of Material Thickness Relative to a Unit Thickness of B.R.Gless

 $e_{2024T-3} \ \ \text{vs E}$ for Various Combinations of m_{\bullet} , θ , and V_{\bullet}

 $m_a = 100$ grains $\theta = 70$ degrees $V_s = 3000$ fps

	#			#
Unbonded Nylon	 3.31	Stretched Plexigla	8	2.01
Bonded Nylon	 2.66	Doron		1.23
Lexan	 2.06	B. R. Glass		1.00
Cast Plexiglas	 2.01			

^{*}Ratio of Majerial Thickness Relative to a Unit Thickness of B.R.Glass

 $e_{20.74\,T-8}$ vs E for Various Combinations of m_{c} , θ , and V_{s}

6 = 70 degrees V_s = 3000 fps m_s = 300 grains e(inchas of B.R. Glass) 312 1.35 1.20 1.05 e(inches of 2024T-3) 0.90 0.75 0.60 Durol 0.45 0.30 0.15 1.10 E(16/ft2)

	 			T
Unbonded Nylon	 3.31	Stretched Plexiglas		2.01
Bonded Nylon	 2.66	Doron		1.23
Lexan	 2.06	B. R. Glass	· · · · · · · · · · · · · · · · · · ·	1.00
Cast Plexiglas	 2.01			

Retio of Material Thickness Relative to a Unit Thickness of B.R. Glass

 $e_{2024T-3} \ \ \text{vs E}$ for Various Combinations of m_{\star} , θ , and \forall_{\star}

 $m_a = 30$ grains $\theta = 0$ degrees $V_a = 6000$ fps

		#			#
Unbonded Nylon		3.31	Stretched Plexiglas —		2.01
Bonded Nylon	• • • • • • • • •	2.66	Doron	••••••	1.23
Lexan		2.06	B. R. Glass -	··· ···	1.00
Cost Disvioles		201			

TREtio of Material Thickness Relative to a Unis Thickness of B.R. Glass

 $e_{2024T\text{--}3} \ \, \text{vs E}$ for Various Combinations of $m_{_{\rm H}}$, Θ , and $V_{_{\rm S}}$

 m_s = 100 grains θ = 0 degrees V_s = 6000 fps

		#		#
Unbonded Nylon		3.31	Stretched Plexiglas ————	- 2.01
Bonded Nylon	• • • • • • • • • • • • • • • • • • • •	2.66	Doron	- 1.23
Lexan		2.06	B. R. Glass	1.00
Cast Plexialas		2.01		

[&]quot;Ratio of Material Thickness Relative to a Unit Thickness of B.A. Glass

 $e_{2024T\text{--}3}$ vs E for Various Combinations of m_{\bullet} , θ , and V_{\bullet}

m_a = 300 grains

0 *O degrees

V. = 6000 fps

	*		#
Unbonded Nylon	 3.31	Stretched Plexiglos ——··	2.01
Bonded Nylon	 2.66	Doron	1.23
Lexon	 2.06	B. R. G!ass	1.00
Cast Plexigios	 2.0i		

^{*}Retio of Material Thickness Relative to a Unit Thickness of S.R. Class

 $e_{2024T-3} \ \ \text{vs E}$ for Various Combinations of m_s , θ , and V_s

m_e = 30 grains O ≈ 60 degrees V_s = 6000 fps e(inches of B.R.Glass) 016 .031 0.90 0.80 0.70 (inches of 2024T-3) 0.60 0.50 0.40 0.30 0.20 0.10 e. •|1.00 E(Ib/ft2) Unbonded Nylon Stretched Plexiglas ---Bonded Nylon Doron Lexan 2.06 B. R. Glass

*Retio of Material Thickness Relative to a Unit Thickness of 8.R.Glass

Cast Plexiglas

 $$e_{2024T\text{--}3}$$ vs E for Various Combinations of m_{s} , Θ , and V_{s}

 $m_s = 100$ gmins $\theta = 60$ degrees $V_s = 6000$ fps

	*			*
Unbonded Nylon	 3.31	Stretched Plexigios		2.01
Bonded Nylon	 2.66	Doron		1.23
Lexan	 2.06	B. R. Gloss	*****	1.00
Cost Plexicales	 2.01			

^{*}Ratio of Material Thickness Relative to a Unit Thickness of B.R. Glass

 $e_{2024T-3} \ \ \text{vs E}$ for Various Combinations of m_{\bullet} , θ , and V_{\bullet}

 m_s = 300 grains θ = 60 degrees V_s = 6000 fps

^{*}Retio of Material Thickness Relative to a Unit Thickness of B.R. Glass

Fig. 105

 $e_{2024T-3}$ vs E for Various Combinations of m_{\bullet} , θ , and V_{\bullet}

m_s ² 30 grains

0 4 70 degrees

V_s = 6000 fps

		#		#
Unbonded Nylon		3.31	Stretched Plexiglas	 2.01
Bonded Nylon	• • • • • • • •	2.66	Doron	 1.23
Lexan		2.06	B. R. Glass	 1.00
Cast Plexigias		2.01		

Retto of Material Thickness Relative to a Unit Thickness of B.R. Glass

 $e_{2024\,T\text{--}3}$ vs E for Various Combinations of $m_{\text{\tiny 8}}$, Θ , and $V_{\text{\tiny 8}}$

m_s= 100 grains

Θ = 70 degrees

V_s = 6000 fps

		#		#
Unbonded Nylon		3.3!	Stretched Plexiglas	 2.01
Bonded Nylon	• • • • • • • • •	2.66	Doron	 1.23
Lexan		2.06	B. R. Glass	 1.00
Cost Plexicias		2 01		

Retio of Material Thickness Relative to a Unit Thickness of B.R.Gless F15. 107

 $e_{2024T-3}$ vs E for Various Combinations of m_s , θ , and V_s

m_s = 300 grains

0 = 70 degrees

V_c = 6000 fps

e (inches of B.R. Gloss)

		#		#
Unbonded Nylon		3.31	Stretched Plexigias	2.01
Bonded Nylon	••••••	2.66	Doron	1.23
Lexon		2.06	B. R. Giass	1.00
Cost Plexiding		2 Qi		

Ratio of Material Thickness Relative to a Unit Thickness of B.R.Giass

 $e_{2024T-3}$ vs E for Various Combinations of m_{s} , θ , and V_{s}

 $m_s = 30$ grains $\theta = 0$ degrees $V_s = 9000$ fps

		#		#
Unbonded Nylon		3.31	Stretched Plexiglas	- 2.01
Bonded Nylon	• • • • • • • • •	2.66	Doron	- 1.23
Lexan		2.06	B. R. Gloss -···-	1.00
Cast Plexiglas		2.01		

Retio of Motoriol Thickness Relative to a Unit Thickness of B.R.Glass

e_{2024T-3} vs E for Various Combinations of m_{ϵ} , θ , and V_{ϵ}

m_s = 100 grains

6 = 0 degrees V_s = 9000 fps

		#		*
Unbonded Nylon		3.31	Stretched Plexiglas	 2.01
Bonded Nylon		2.66	Doron	 1.23
Lexan	•	2.06	B. R. Glass	 1.00
Cast Plexialas		2.01		

Fig. 110

CONFIDENTIAL

 $e_{2024\,T\cdot\cdot3}$ vs E for Various Combinations of m_{\star} , θ , and V_{a}

 m_a = 300 grains θ = 0 degrees V_a = 9000 fps

		#		*
Unbonded Nylon		3.31	Stretched Plexiglas	 2.01
Bonded Nylon	• • • • • • • • •	2.66	Doron	 1.23
Lexan		2.06	B. R. Glass	 1.00
Cast Plexiglas	- · - · -	2.01		

[&]quot;Ratio of Material Thickness Relative to a Unit Thickness of B.R.Gless

 $e_{2024T-3}$ vs E for Various Combinations of $m_{_{\rm E}}$, θ , and $V_{_{\rm B}}$

 m_x = 30 grains θ = 60 degrees V_x = 9000 fps

		#		#
Unbonded Nyion		3.31	Stretched Plexigios	 2.01
Bonded Nylon		2.66	Doron	 1.23
Lexan		2.06	B. R. Glass	 1.00
Cast Plexialas	- · - · -	2.01		

 $e_{2024\,T\text{--}3}$ vs E for Various Combinations of m_s , θ , and V_s

 m_s = 100 grains θ = 60 degrees V_s = 9000 fps

		#		*
Unbonded Nylon		3.31	Stretched Plexiglas	 2.01
Bonded Nylon	• • • • • • • • • • • • • • • • • • • •	2.66	Doron	 1.23
Lexan		2.06	B. R. Glass	 1.00
Cost Plexicles		2 01		

^{*}Ratio of Material Thickness Relative to a Unit Thickness of B.R.Glass

Pig. 113 CONFIDENTIAL

 $e_{2024T-3} \ \ \text{vs E}$ for Various Combinations of m_{\bullet} , Θ , and V_{\bullet}

m_s = 300 grains

0 = 60 degrees

V. = 9000 fps

	#		*
Unbonded Nylon	 3.31	Stretched Plexiglas	- 2.01
Bonded Nylon	 2.66	Doron	- 1.23
Lexan	 2.06	B. R. Glass	. 1.00
Cast Plexialas	 201		

^{*}Ratio of Material Thickness Relative to a Unit Thickness of B.R.Glass

 $e_{2024T-3} \ \ \text{vs E}$ for Various Combinations of m_{\bullet} , θ , and V_{\bullet}

 m_a = 30 grains θ = 70 degrees V_a = 9000 fps

	#		#
Unbonded Nylon	 3.31	Stretched Plexiglas	 2.01
Bonded Nylon	 2.66	Doron	 1.23
Lexan	 2.06	B. R. Glass	 1.00
Cast Plexialas	 2.01		

Ratio of Material Thickness Relative to a Unit Thickness of B.R. Giass

Fig. 115

V. * 9000 fps

 $e_{2024T-3}$ vs E for Various Combinations of m_s , θ , and V_s

0 = 70 degrees

e (inches of B.R.Gloss) .078 .031 .055 .016 2.25 2.00

m_s = 100 grains

	#		*
Unbonded Nylon	 3.31	Stretched Plexiglas -	 2.01
Bonded Nylon	 2.66	üoron -	 1.23
Lexan	 2.06	B. R. Gloss	 1.00
Cost Blayloine	 2.01		

 $e_{2024T\text{--}3}$ vs E for Various Combinations of m_c , θ , and V_s

 m_s = 300 grains θ = 70 degrees V_s = 9000 fps

		#			#
Unbonded Nylon		3.31	Stretched Plexiglat		2.01
Bonded Nylon	• • • • • • • • •	2.66	Doron		1.23
Lexan		2.06	B. R. Glass		1.00
Cast Piexinias		2 (1)			

Retio of Material Thickness Relative to a Unit Thickness of B.R.Glass

P18. 117
CONFIDENTIAL

Appendix E

Graph Set V: a (inches of Maftex) vs ${\bf E}$ for Various Combinations of ${\bf m_a},~\theta$, and ${\bf V_a}$

Figs. 118-144

Note: The ordinate represents an estimate of the maximum thickness of calibrating material that can possibly be perforated by the largest portion of the residual fragment after the original fragment has impacted initially on one of the given targets. The assumption is made that the rasidual fragment strikes the calibrating material at normal impact and that, furthermore, the shape of the original fragment is retained despite any loss in weight.

On each graph in this appendix there appears a value of \mathbf{e}_0 . This value is an estimate of the maximum thickness of the calibrating material that the original fragment can perforate, assuming normal impact and no intermediate barrier.

The contours are limited on these graphs to 72" of Maftex. This represents the maximum thickness of this material that has been considered in BRL single-target firings. In fact, there is no instance to date of a penetration of more than 72" of Maftex in BRL experimental work with compact fragments.

 $e_{\text{MAFTEX}} \quad \text{vs E}$ for Various Combinations of m_{e} , θ , and V_{e}

 m_s = 30 grains Θ = 0 degrees V_s = 3000 fps elinches of B.R.Glass)

		*		#
Unbonded Nylon		3.31	Stretched Plexigios	 2.01
Bonded Nylon	• • • • • • • • •	2.66	Doron	 1.23
Lexan		2.06	B. R. Glass	 1.00
Cast Plexiglas		2.01		

^{*}Ratio of Material Thickness Rejutive to a Unit Thickness of B.R. Gioss

 $e_{\text{MAFTEX}} \quad \text{vs E}$ for Various Combinations of m_{s} , θ , and V_{s}

 m_s * 100 grains θ * 0 degrees V_s * 3000 fps

	*		#
Unbonded Nylon	 3.3i	Stretched Plexiglos	 10.5
Bonded Nylon	 2.66	Doron	 1.23
Lexan	 2.06	B. R. Glass	 1.00
Cast Plexigias	 2.01		

[&]quot;Ratio of Material Thickness Relative to a Unit Thickness of B.R. Glass

 $e_{\text{MAFTEX}} \quad \text{vs E}$ for Various Combinations of m_s , θ , and V_s

 m_s = 300 grains θ = 0 degrees V_s = 3000 fps

	#		*
Unbonded Nylon	 3.31	Stretched Plexiglas	 2.01
Bonded Nylon	 2.66	Doron	 1.23
Lexan	 2.06	B. R. Gloss	 1.00
Cast Plexialas	 2.01		

^{*}Retio of Material Thickness Relative to a Unit Thickness of B.R. Gless

F18. 120 CONFIDENTIAL

 $e_{\text{MAFTEX}} \quad \text{vs } E$ for Various Combinations of $m_{\text{\tiny 6}}$, θ , and $V_{\text{\tiny 8}}$

 m_s 30 grains θ = 60 degrees V_s = 3000 fps

		#		#
Unbonded Nylon		3.31	Stretched Plexiglas ————	- 2.01
Bonded Nylon	• • • • • • • • • • • • • • • • • • • •	2.66	Doron	- 1.23
Lexan	*************	2.06	B. R. Glass	. 1.00
Cost Plexicles	*	2.01		

Retio of Material Thickness Relative to a Unit Thickness of B.R.Giess

F18. 121 CONFIDENTIAL

 e_{MAFTEX} vs E for Various Combinations of $m_{\text{\tiny B}}$, θ , and $V_{\text{\tiny B}}$

m_s = 100 grains 0 = 60 degrees V_s = 3000 fps e(inches of B.R.Glass) .016 .031 12 10 Durat e. 415.8 E (15/ft2) Unbonded Nylon Stretched Plexiglas ---- 2.01 Bonded Nylon Doron Lexon - 2.06 B. R. Glass Cast Plexiglas

F18. 122
CONFIDENTIAL

*Ratio of Material Thickness Relative to a Unit Thickness of B.R. Siess

vs E e MAFTEX for Various Combinations of m., θ , and V_s

m_e = 300 grains

Θ = 60 degrees V_s = 3000 fps

		Ħ		×
Unbonded Nylon		3.31	Stretched Plexiglas	 2.01
Bonded Nylon	*******	2.66	Doron	 1.23
Lexan		2.06	B. R. Glass	 1.00
Cast Plexiglas		2.01		

Fig. 123 CONFIDENTIAL

 $e_{\text{MAFTEX}} \quad \text{vs E}$ for Various Combinations of m_{\bullet} , Θ , and V_{\bullet}

V. = 3000 fps 6 = 70 degrees m_s = 30 grains e(inches of B.R.Gioss) .031 .016 13.50 12.00 10.50 9.00 7.50 6.00 4.50 Dural 3.00 1.50 0. 111.5 E(15/ft2) Stretched Plexiglos -Unbonded Nylon Doron Bonded Nylon B. R. Glass Lexan Cast Plexiglas

F18. 124
CONFIDENTIAL

^{*}Retio of Material Thickness Relative to a Unit Thickness of B.R. Giese

e_{MAFTEX} vs E for Various Combinations of m_s , θ , and V_s

m_s = 100 grains

Θ = 70 degrees V_s = 3000 fps

		#		#
Unbonded Nylon		3.31	Stretched Plexiglas	- 2.01
Bonded Nylon		2.66	Doron	- 1.23
Lexan	-	2.06	B. R. Glass	1.00
Cost Planisies		9.01		

 e_{MAFTEX} vs E for Various Combinations of $m_{\text{\tiny A}}$, θ , and $V_{\text{\tiny A}}$

 m_s = 300 grains θ = 70 degrees V_s = 3000 fps

		#		#
Unbonded Nylon		3.31	Stretched Plexiglos	 2.01
Banded Nylon	• • • • • • • • • • • • • • • • • • • •	2.66	Doron	 1.23
Lexan		2.06	B. R. Glass	 1.00
Cost Plexicias		9.01		

Ratio of Material Thickness Relative to a Unit Thickness of B.R. Glass

 $e_{\text{MAFTEX}} \quad \text{vs E}$ for Various Combinations of m_s , θ , and V_s

 $m_e = 30$ grains $\theta = 0$ degrees $V_s = 6000$ fps

^{*}Rosio of Material Thickness Relative to a Unit Thickness of B.R. Gloss

F18. 127
CONFIDENTIAL

 e_{MAFTEX} vs E for Various Combinations of $m_{\text{\tiny 8}}$, θ , and $V_{\text{\tiny 8}}$

V₂ = 6000 fps 8 = 0 degrees m_s 100 grains e(inches of B.R.Gioss) .016 45 40 35 30 25 50 15 Durol 10 E(16/f12) Stretched Plexiglas Unbonded Nylon Bonded Nylon Doron B. R. Gloss Lexan

Cast Plexiglas

PLS. 128
CONFIDENTIAL

^{*}Railo of Material Thickness Relative to a Unit Thickness of E.R. Class

e MAFTEX VS E for Various Combinations of m., θ , and V_{\bullet}

m_s = 300 grains

e = 0 degrees V_s = 6000 fps

	*			*
Unbonded Nylon	 3.31	Stretched Plexigla	8	2.01
Bonded Nylon	 	Doron		1.23
Lexan	 2.06	B. R. Glass	-4	1.00
Cost Plexicias	 2.01			

^{*}Retto of Material Thickness Relative to a Unit Thickness of B.R.Glass

 $e_{\text{MAFTEX}} \quad \text{vs E}$ for Various Combinations of $m_{\text{\tiny 6}}$, θ , and $V_{\text{\tiny 6}}$

 m_s = 30 grains θ = 60 degrees V_s = 6000 fps

		#		*
Unbonded Nylon		3.31	Stretched Plexiglas	 2.01
Bonded Nylon	• • • • • • • • •	2.66	Doron	 1.23
Lexan		2.06	B. R. Gloss	 i.oc
Cast Plexiglas		2.01		

Retio of Material Thickness Relative to a Unit Thickness of B.R. Glees

 e_{MAFTEX} vs E for Various Combinations of m_{\bullet} , θ , and V_{\bullet}

 m_s = 100 grains Θ = 6000 fps

Fig. 131

CONFIDENTIAL

^{*}Retia of Material Thickness Relative to a Unit Thickness of B.R. Glass

 $e_{\text{MAFTEX}} \quad \text{vs E}$ for Various Combinations of $m_{\text{\tiny A}}, \Theta, \text{and } V_{\text{\tiny A}}$

 m_s = 300 grains θ = 60 degrees V_s = 6000 fps

		#		#
Unbonded Nylon		3.3!	Stretched Plexiglos	 2.01
Bonded Nylon			Doron	 1.23
Lexan	-	2.06	B. R. Glass	 1.00
Cost Plexicias		2.01		

Tratic of Material Thickness Relative to a Unit Thickness of B.R. Siess

 $e_{\text{MAFTEX}} \quad \text{vs E}$ for Various Combinations of m_s , θ , and V_s

in. = 30 grains 0 = 70 d

θ = 70 degrees V_s = 6000 fps

	₩.		#
Unbonded Nylon	 3.31	Stretched Plexiglas	 2.01
Bonded Nylon	 2.66	Doron	 1.23
Lexan	 2.06	B. R. Gloss	 1.00
Cast Plexiglas	 2.01		

Retlo of Material Thickness Relative to a Unit Thickness of B.R.Giess

 e_{MAFTEX} vs E for Various Combinations of m_{\star} , θ , and V_{\star}

m_a = 100 grains 0 = 70 degrees V_c = 6000 fps e(inches of B.R.Gloss) .016 .031 .055 45 40 35 30 25 50 15 Dural 10 e. . 40.5 E(Ib/ff²) Unbonded Nylon Stretched Plexiglas ----Bonded Nylon Doron Lexan B. R. Glass

*Retio of Material Thickness Relative to a Unit Thickness of B.R. Gloss

Cast Plexiglas

vs E e_{MAFTEX} for Various Combinations of m_s , θ , and V_s

m_s * 300 grains

6 = 70 degrees V_a = 6000 fps

		*		#
Unbonded Nylon		3.31	Stretched Plexiglas	 2.01
Bonded Nylon	• • • • • • • • •	2.66	Doron	 1.23
Lexan		2.06	B. R. Glass	 1.00
Cast Plexialas		2.01		

 $e_{\text{MAFTEX}} \quad \text{vs E}$ for Various Combinations of $m_{\text{\tiny L}}$, θ , and $V_{\text{\tiny L}}$

 m_s = 30 grains θ = 0 degrees V_s = 9000 fps

	₩			*
Unbonded Nylon	3.31	Stretched Plexigio	98	2.01
Bonded Nylon	2.66	Doron		1.23
Lexan	2.06	B. R. Glass		1.00
Cast Plexiglas	2.01			

^{*}Ratio of Material Thickness Relative to a Unit Thickness of B.R. Glass

 e_{MAFTEX} vs E for Various Combinations of m_{ϵ} , θ , and V_{a}

 m_4 100 grains θ =0 degrees V_s =9000 fps

Retto of Material Thickness Relative to a Unit Thickness of R.R. Glass

e_{MAFTEX} vs E for Various Combinations of m_s, θ , and V_s

*Rotio of Material Thickness Relative to a Unit Thickness of B.R. Glass

F18. 138
CONFIDENTIAL

 $e_{\text{MAFTEX}} \quad \text{vs } E$ for Various Combinations of m_{s} , θ , and V_{s}

	#		#
Unbonded Nylon	 3.31	Stretched Plexiglas	 2.01
Bonded Nylon	 2.66	Doron	 1.23
Lexan	 2.06	B. R. Glass	 1.00
Cost Plexicios	 2.01		

^{*}Rotto of Material Thickness Relative to a Unit Thickness of R.R. Glass

P1g. 139 CONFIDENTIAL m_e = 100 grains

vs E **e**_{MAFTEX} for Various Combinations of m_* , θ , and V_*

0 = 60 degrees

V_s = 9000 fps e(inches of B.R.Giosa) 72 64 56 48 40 32 24 18 e. > 72 " E(16/412)

		#		#
Unbonded Nylon		3.31	Stretched Plexiglas	 2.01
Bonded Nylon	••••••	2.66	Doron	 1.23
Lexan		2.06	B. R. Glass	 1.00
Cost Plexicies		9.01		

e MAFTEX VS E for Various Combinations of ms, θ , and V_{s}

m₂ = 300 grains

0 = 60 degrees V_a = 9000 fps

		#		*
Unbonded Nylon		3.31	Stretched Plexiglan	 2.01
Bonded Nylon		2.66	Doron	 1.23
Lexan	-	2.06	B. R. Glass	 1.00
Cast Plexiglas		2.01		

Fig. 141

CONFIDENTIAL

 e_{MAFTEX} vs E for Various Combinations of m_{\bullet} , Θ , and V_{\bullet}

m_s = 30 grains 0 = 70 degrees V_s = 9000 fps e(inches of B.R.Gloss) .016 .031 45 40 35 Dural e(inches of Maftes) 30 25 20 15 IQ 2.0 10.0 15.0 E(Ib/ft²) Unbonded Nylon 3.31 Stretched Plexiglas Bonded Nylon Doron Lexon B. R. Glass Cast Plexigias

Fig. 142

^{*}Ratio of Malerial Thickness Relative to a Unit Thickness of B.R. Gless

 $e_{\text{MAFTEX}} \quad \text{vs E}$ for Various Combinations of $m_{\text{\tiny A}}$, θ , and $V_{\text{\tiny A}}$

 m_s = 100 grains θ = 70 degrees V_s = 9000 fps

Ratio of Material Thickness Relative to a Unit Thickness of B.R.Giass

F18. 143
CONFIDENTIAL

 $e_{\text{MAFTEX}} \quad \text{vs E}$ for Various Combinations of m_{s} , Θ , and V_{s}

 m_s = 300 grains

Θ = 70 degrees

V_s = 9000 fps

	*		#
Unbonded Nylon	 3.31	Stretched Plexigios	 2.01
Bonded Nylon	 2.66	Doron	 1.23
Lexan	 2.06	B. R. Glass	 1.00
Cast Plexiales	 2 01		

^{*}Ratio of Material Thickness Relative to a Unit Thickness of B.R.Gless

CONFIDENTIAL

-189-

Appendix F

Graph Set VI: V_o versus E for Various Combinations of m_a and θ

Figs. 145-153

CONFIDENTIAL

CONFIDENTIAL

CONFIDENTIAL

V₀ vs E for Various

Combinations of m_s and θ

θ: 60 m_s: 300 grains

CONFIDENTIAL

CONFIDENTIAL

CONFIDENTIAL

CONFIDENTIAL

-199-

Appendix G

Graph Set VII: Impact Conditions for Fragment Shatter

Figs. 154-158

Note: No graphs for Bonded and Unbonded Nylon appear within this Graph Set. The limitations of the experimental data for these materials were such that extreme cases of fragment break-up are not in evidence. Still higher striking velocities would be needed to produce the break-up data necessary to warrant predictions of impact conditions on this material for which the fragment will shatter.

impact Conditions For Fragment Shatter

i)Thickness contours shown only where perforation is anticipated.

Fig. 154

Impact Conditions For Fragment Shatter

Target Material: Plexiglas, as Cast Shatter Criterion: c'= m_r/m_s = 0 ---- Extrapolated

1) Thickness contours shown only where perforation is anticipated.

Fig. 155

Impact Conditions For Fragment Shatter

Target Material: Stretched Plexiglas
Shatter Criterion: c'= m_r/m_s = 0 ---- Extrapolated

notes: i) Thickness contours shown only where perforation is anticipated.

Fig. 156

Impact Conditions For Fragment Shatter

Target Material: Doron Shatter Criterion: c'= m_r/m_e = 0 ---- Extrapolated

I) Thickness contours shown only where perforation is anticipated. 2) Blocked area shows main region of experimentation. 0.00 8=60° 8.70 1000 800 600 400 300 200 . 80 100-90 E 20 15 10

Fig. 157

Shotter Velocity , V. (1000fps)

Impact Conditions For Fragment Shatter

Fig. 158

Appendix H

Photographs of Targets After Impact

Figs. 159 - 176

ABLE XII

0.196 Hole Size (in²) 3.19 0.08 6.4 6.9 **4.**0 25.5 Vr (fes) 3566 1010 1708 2855 5192 2442 **360** 7950 3740 3575 (fos) 5300 9619 7125 9000 5257 10 T Impact Conditions Corresponding to Photographs ٤ 2 2 3 8 8 92 3 25 (inches) 0.908 0.93 0.93 0.27 0.5 1.6 1.0 1.0 BRL No. 110 129 5 110 107 128 2 22 Stretched Flexiglas Stretched Plexigles Stretched Plexiglas Bullet-Rusistant Glass Bullet-Resistant Target Material Lexan Doron Lexan 169-170 167-168 171-172 173-174 175-176 159-160 161-162 163-164 165-166 Figure No.

Fig. 159

Nylon

Fig. 160

-209-

Lexan

Fig. 161
CONFIDENTIAL

Lexan

Fig. 162

[exan

Fig. 163

Pt. 164

Stretched Plexiglas

Figs. 165, 166, 167

Stretched Plexiglas

Mgs. 163, 169, 170

Doron

Fig. 171

Fig. 172

Bullet-Resistant Glass

-217-

Fig. 173

Bullet-Resistant Glass

Fig. 174

Bullet-Resistant Class

Fig. 175

Bullec-Resistant Glass

Fig. 176

Appendix I

Experimental Data; Steel Fragments

Impacting on Various Target Materials

Tables XIII-XIX

Table XIII : Steel Fregments Impacting on Unbonded Hylon

Datum No.	Material Thickness e(inches)	Fragment Weight m _e (grains)	Obliquity O(degrees)	Striking Velocity V _a (fps)	Residual Velocity V _E (£ps)	Residuel Weight m _g (grains)	Hole Area (sq. in.)
1	.02	.85	0	325	0	•	-
2	.02	.85	0	553	428	•	•
ä	.02	.85	0	68 2	498	•	•
4	,02	2.10	0	550	. 0	•	•
5	,02	2.10	U	1025	900	•	•
6	.02	2.10	Q	1 235	1132	•	•
7	.02	16.09	9	559	294	•	•
8	.02	16.09	0	700	485	•	•
9	.02	16.09	0	818	757	•	•
10	.02	16.09	Ó	917	814	•	•
11	.02	16.09	0	1002	914 0		-
12	.025	17.00	0	518	ŏ	:	-
13	.050	.85	0	550 650	ŏ		•
14	.050	16.09	ŏ	821	578	•	
15	.030	16.09 16.09	ŏ	1004	163	•	•
16 17	.050 .070	.85	ő	750		•	•
18	.070	.83	ŏ	1027	622	•	•
19	.070	.85	ŏ	1 598	1279		•
20	.070	.85	ŏ	افلا	1110	•	•
21	.070	,85	ŏ	3000	2816	•	•
22	.070	.85	Ŏ	3474	3335	•	•
22 23	,070	2.10	Ö	765	0	•	•
24	.070	2.10	٥	1263	816	-	•
25	,070	2.10	Ò	2406	2213	•	•
26	.070	2.10	0	2712	2467	•	•
27	.070	16.09	0	700	0	•	•
28	,070	16.09	Ō	902	628	•	•
29	.070	16.09	0	1209	1070	•	•
30	.070	16.09	0	1588	1507 0	-	•
31	.074	17.00	0	654	ŏ	•	-
32	.100	.85	0	800 800	ŏ	-	-
33	.100	16.09	0	1003	814	-	•
34	.100	16.09	ŏ	1207	1023	-	•
35	.100	16.09 16.09	ŏ	1306	1381		•
36	.120	2.65	30	992	Ö	•	•
37 38	.120	2.65	60	1038	ŏ	•	•
39	.120	16.00	ŏ	800	Ŏ		•
40	. 1 20	16.00	ŏ	1145	692	•	•
41	.120	16.00	Ŏ	2111	1558	•	-
42	.120	16.09	Ò	838	0	•	•
43	.120	16.09	0	1013	668	•	•
44	.120	16.09	0	124(1023	•	•
45	.120	16.09	0	1434	1233	•	•
46	.130	1.35	0	1191	0	•	•
47	.130	1.35	30	1239	0	•	-
48	.130	1.35	45	1355	0	•	-
49	.130	1.35	60	1398	0	-	•
50	.130	2.65	0	1030	0	-	-

Table XIII : Steel Fragments Impacting on Unbonded Mylon

Datum No.	Material Thickness a(inches)	Fragment Weight m _g (grains)	Obliquity O(degrees)	Striking Velocity V _a (fps)	Residual Velocity V _r (fpe)	Residuel Geight M _r (grains)	Hole Area (eq. in.)
51	.130	2,65	45	990	0	•	_
52	.148	17.00	Ö	958	ŏ		•
53	.150	.85	0	1050	Ŏ	•	•
34	.150	.85	Û	201 2	1488	•	•
\$\$.150	.85	0	3381	2914	•	•
36	.150	.85	0	4325	3891	•	•
\$7	.150	.85	0	3004	4513	•	•
58	.130	2.10	0	1065	0	•	•
59 60	.150 .150	2.10 2.10	0	129 8 2321	749 1 9 76	•	•
61	.150	2.10	ŏ	2993	2603	•	•
62	.150	2.10	ŏ	3394	2895	•	-
ii	.130	16.09	ŏ	900	2073	-	•
ŭ.	.130	16.09	ŏ	1142	831	-	•
45	.130	16.09	ŏ	1716	1393		-
11	.130	16.09	Ŏ	1852	1695	•	•
67	.150	16.09	Ó	1955	1016	•	•
44	. 200	16.09	0	950	0	•	•
49	.200	16.09	0	1158	563	•	•
70	.200	16.09		1425	979	•	•
71	. 210	147.00	30	902	0	146.0	•
72	.218	5.65	30	1189	0	•	•
73 74	.210	3.85	45	1202	9	•	•
73	.218 .218	3.83 17.00	6 0 30	1297 1046	0	•	-
76	.218	17.00	43	1103	ŏ	•	-
"	.218	17.00	60	1073	ŏ	-	•
78	.218	44.00	30	993	ŏ	-	
79	. 220	2.10	Ŏ	1400	ō		
80	. 220	2.10	Ó	1812	991	•	
81	.220	2.10	0	2792	1979	•	•
82	. 220	2.10	0	3166	2561	•	•
63	.220	2.10		1102	2441		
84	. 229	\$.85	45	1255	0	•	•
83 86	.229	44.00	45	994	0	-	•
87	. 229 . 248	44.00 3.00	45 70	1012 5440	0 3574	•	•
88	. 248	30.00	70 70	3965	3374 4444	4.9 29.9	•
89	. 248	30.00	70	7279	3693	17.6	-
90	.248	30.00	70	9800	7197	18.7	-
91	. 249	15.00	ŏ	9075	81 28	13.0	•
92	. 249	15.00	0	9727	•	12.0	•
93	. 249	60.00	0	8731	7974	47.0	•
94	. 250	.85	0	1960	0	•	•
95	. 250	.85	0	2253	1008	•	•
96	. 250	.85	0	28 30	1906	-	-
97	.230	.85	0	3197	2373	-	•
98 99	. 250 . 250	.85	0	4112	3368	•	•
100	. 250	.85 .85	0	4843	4089	-	•
100	. 2.30	.03	v	5295	4506	-	•

Table XIII : Steel Fragments Impacting on Unbunded Mylon

Datum	Hayarın Thickness	irani. Haryht	Objia itv	Striking Vaccoity	Residual Velocity	Residual Weight	Mole Area
No.	e(Inches)	m A	T' grees	V _a (Pa)	V _x (fps)	m (grains)	(eq. in.)
	, 250	ab s	•,	1897	0		_
	. 2.70	, , , , , , , , , , , , , , , , , , ,	ő	21.08	1035	-	·
) <u></u>	2.10	Ď	2697	1392	-	-
104	250	2.10	ŏ	2956	2051	•	_
105	. 250	2,10	ŏ	3772	2522	•	•
106	. 250	2.10	ŏ	4267	2612	•	•
107	.250	2.10	ŏ	4778	3286	-	•
108	, 250	2.10	Ŏ	5307	3670		
100	. 266	5.65	ŏ	1270	0	•	•
110	, 266	17.00	ŏ	1230	ŏ		•
iii	, 266	44,00	Ď	1062	ŏ	•	•
112	.266	147.00	Õ	950	ŏ	144.0	•
113	. 266	207 00	Ŏ	935	Ŏ	204.0	•
114	. 280	2.65	ن	4430	Õ	•	•
115	. 280	3,65	45	1716	Ò	•	•
1.5	.230	2.65	60	1680	Ó	•	•
117	. 290	2 69	.30	1624	Ó	•	•
118	.290	5.85	36	1320	Ò	•	•
119	.290	5.85	45	1338	0	•	•
1 20	. 290	5.83	60	1450	0	•	•
121	, 290	7.00	30	1169	Ó	•	•
122	. 290	17.00	45	1254	0	•	•
123	, 290	17.00	60	1303	0	•	•
1 24	, 290	44.00	30	1082	0	•	•
125	. 298	30.00	Ü	1032	0	29.9	•
120	. 298	240.00	0	900	0	239.0	•
127	300 ،	.83	0	1714	0	•	•
1 28	. 300	.85	0	2074	1053	•	•
129	.300	.85	0	2573	1627	•	•
130	.300	.83	0	2993	2244	-	-
131	,300	.85	0	3529	2690	•	•
132	.300	.85	Ō	38.67	3156	•	•
133	.300	.85	.0	4238	3480	•	•
134	.300	.85	45	1691	0	•	•
135	, 300	.83	45	1853	671	•	•
136	.300	.85	45	2222	1123	•	•
137	.300	.85	45	3408	2570	•	•
138	. 300	.85	45	5078	41 23	•	•
139	.300	.85	45	34 24	4438	•	•
140	.300	.83	60	2232	0	•	•
141	.300	.85	60	24 79	1027	•	•
142	.300 .300	.85 .85	60 60	2520	1 15 4	•	•
143 144	.300	.85	60	2646 2886	1418 1299	••	-
	.300	.85 .85	60	2666 3609	2334	•	•
145 146	.300	.es .85	60 60	3609 3734	2334 2306	•	•
146	.300	.85 .85	60	3734 4064	2506 2679	-	-
148	.300	.85	60	4190	2508	-	-
149	.300	.85	60	4578	2814	•	-
150	.300	.83	60	4917	3229	-	•
	. 300		•••	7741	J-1/		

-225-

EXPERIMENTAL DATA

Table XIII : Steel Fragmonts Impacting on Unbondeu Hylon

Datum	Material Thiskness	Fragment Weight	Obliquity 0(dagraes)	Striking Velocity	Residual Velocity	Residual Weight	Hole Area (eq. in.)
No.	e(Inahes)	m _e (grains)	o/deft.cau}	V _n (fpa)	Y _E (fpa)	m _r (grains)	(mg. in.)
151	.300	0.85	60	5096	3138	•	•
152	.300	1,34	0	2012	0	•	•
153	.300	1.35	30	2031	0	•	•
1,54	.300	1.35	45	2051	0	•	•
155	.300	1.35	60	2095	0	•	•
156	.300 .300	2.01 2.01	0	1563 1983	1144	:	:
157 158	.300	2.01	ŏ	22,)1	1526	-	· i
159	.300	2,01	Ď	3327	9746	•	
160	.300	2.01	Ü	3873	33.10	•	• {
161	.300	2.01	Ō	4428	74 XQ	-	• N
162	.300	2.01	0	5429	4752	•	* **
163	.300	2.01	0	3764 6022	3098 4691	•· -	• "`
164 165	,300 ,300	2.01 2.10	ŏ	160)	987		
166	.300	2.10	ŏ	2315	1242	.	•
167	.300	2.10	Ō	2969	2080	•	
168	.300	2.10	0	3854	2082	•	•
169	.300	2.10	0	4329	3597	•	•
170	.300 .300	2.10 16.00	0	3086 900	1219	-	-
171 171	.300	16,00	ŏ	1596	679	•	•
173	.300	16,00	Ô	2397	1967	•	•
174	.300	16.00	Ō	3372	2062	•	•
175	.300	16.00	0	4898	4163	•	•
176	.300	16.09	0	1150 1294	619	•	•
177 178	, 300 , 300	16.09 16.09	ő	254.5	2293	-	
179	.300	16.09	ő	4147	3796	•	•
180	.300	54.20	0	990	0	•	
181	,300	225.00	0	550	3	-	•
182	. 300	225.00	0	964 1166	650 1008		•
1 83 184	, 300 , 306	225.00 44.00	45	1113	1000	•	•
183	.396	44.00	45	1128	ő	•	•
186	,306	44.00	60	1137	0	•	•
187	.363	5.85	0	1435	0	•	•
188	.363	5.85	30 45	1482	0	•	•
189 190	.363 .363	5.83 5.85	60	1482 16 5 4	ŏ	-	-
191	.363	17.00	ő	1340	0	4 •	•
192	.363	17.00	30	1322	0) •	•
193	.363	17.00	45	1399	0 🔏	A.	•
194	. 363	17.00	60	1413	0 1	. <i>\</i> .	•
195 196	.363 .363	44.00 207.09	0	1152 956	0 7	2060	•
197	.382	44.00	30	1188	ŏ	20010	•
198	.382	44,00	30	1197	ō		•
199	.382	44.00	45	1197	0		•
200	.382	44,00	45	1202	0		•
			CONFIDE	NTIAL			

			1	:Nigatil	HERE IN SALVA			
	श्चान	MIII	: Ste	el Fragments	Im inting on	Unbanded B	ylon	
TON TOWA	Notevijul Viti Gjrann Vitigo noo)	Prag Wei. Mg()4	ant ht aire)	Obliquity O(dagress)	locity (Residuel Valouity V _i (fys)	Residual Weight m _y (grains)	Hole Area (uq. in.)
. 11	.342	· .*	00 65	60	1390	* O'	•	•
	,4 JO	į	JA 63	45	5 3 4 3	₹0	•	•
. الكسمة	./.60	t	835 835	60	3(17)		•	•
n et	. 466		ربيج 5د لا .	.0	21130		•	•
ĝi, , Pr⊶a	,470		. 833 . 815	10	2049	\	•	•
864 867	,470 ,480	î		~~~	2373 2772	`. ă	•	-
108	.480	i.		30	2474	Ŏ	-	
309	.480		3	45	2174	•	•	•
276	,538	3	دھ 8,	3	1//5	", ζ	•	•
À	, 337	Ţ	.5 2	30	1778	f.O		•
1)	, 538	7.	.8.	43	1910	Ü	•	•
• 7	. 532	زز	3:10	60	7044	Ō	•	-
	, 111		ili 🗀	0		Ó	•	•
4.7	.332		.co	30) •	3	15	•
114	(53)	17	. 3 6:	43 70	1 . 1		•	•
#\ <i>7</i> 216	, 532 , 532			, no		÷'	-	
119	.332	16.7	.ი≨ი	å	4,4	•	146.0	-
210	.552	207	April 1	õ	,	.)	106.0	•
iii	361	44	. Pio	30	1		•	•
111	. 10.	64.	. 2 70	30			•	•
123	4561	41.	Į.	:• *	1.74	1	•	•
ğΑ	a (j. 61	$ullet^{i}$	> 13G	4.9	A 1 *	1.	•	•
112	*201	4	£.00	10	4.		•	•
116	.660		6.5	6 0 43	311		•	•
227 228	.67C .6**	i	.35 .65	45	11		•	•
119	• •		85	70	18		•	
130	, fe .	Ý	.00	õ	13.		•	•
P 11	10.5	7	00	30	1 6	\$ #	•	•
33.	, •		1,00	Á!	1.)		•	•
213	.6/7	ł	7.01	60	4		•	•
1.75	. 680	Ι,	1.35	0	16.3	•	•	•
434	.080	1,	1.35	30			•	•
77	.660		1.33	⊕1 Δ	•	,	•	•
1 837 834	.700 .700		2.42 2.53	30		ů	•	•
139	.713		4.5 5.81	30	• •	ž	•	-
1.5	.713	- 4	3.5°	30	•	ń	•	-
Y 4:	.713	<u>.</u>	5.3	45		5	•	•
\ 40	:32	7.	7.60	30		ā	•	•
/ 🦓 3	.198		5.44	0		4	•	•
1 12	755	111	7	Ō		(1	•	-
7 743	.798		7.00	45	41.1		•	•
246	.778	1 :	7.53	60 ,	١ ، ، ، ، ، ، ، ، ، ، ، ، ، ، ، ، ، ، ،	9		•
247	.798		\$ 65°	n	1995	์ 0	-	•
7 248	, 798	[:)	نارا . زرا	1.	4 277	ij	•	•

CONFIDENT

-227 -

EXPERIMENTAL DATA

Table XIII : Steel Fragments Impacting on Unbonded Mylon

Datum No.	Material Thickness e(inches)	Pragment Weight m _s (grains)	Obliquity #(degrees)	Striking Velocity V _A (fps)	Residual Velocity V _r (fps)	Residual Weight m _r (grains)	Hole Arus (eq. in.)
251	.840	5.85	45	2410	٥	•	•
252	.840	44.00	30	1642	0	•	•
253	.840	44.00	36	1663	0	•	•
254	.84	44.00	45	1679	0	•	-
255	.944	17.00	Ó	2070	0	•	-
256	.944	17.00	30	2116	0	•	•
257	.944	17.00	45	2240	0	•	•
258	.944	17.00	60	2336	0	•	•
2.59	.944	5.85	30	2479	0	•	•
260	.944	5.85	45	2727	٥	•	•
261	,944	44,00	30	.788	ŋ	•	
202	.944	44.00	30	1822	U	•	•
263	.944	44.00	45	1857	n	•	•
264	1.089	5.85	0	2615	45	•	•
265	1.099	17.00	Ö	2232	٥		•
266	1.089	17.00	30	2229	Ó	•	•
267	1.089	17.00	45	2351	C	•	•
264	1.089	17.00	60	2694	0	•	•
269	1.089	44,00	Ō	1906	n	•	•
270	1.089	147.00	Ó	1532	0	144.0	•
271	1.089	207.00	0	14/5	Č	2.74.0	•
272	1.145	5.85	30	2641	Ö	•	•
273	1.244	5.00	Ö	5370	3111	4,9	•
274	1,244	10.00	60	5070	770	9.9	•
275	1.244	15.00	43	10000	4733	12.0	•
276	1.244	00	60	10742	3642	1,2	•
277	1.244	15.00	70	10790	2768	12.2	•
278	1,244	30,00	60	8800	2925	18.7	
279	1.244	30,00	70	9500	1064	14.0	•
280	1.244	60,00	60	9760	4034	48.1	•
261	1.244	60.00	70	8940	•	40.1	•
282	1.244	240.00	70	6020	2511	239.5	•
283	2.488	15.00	30	9115	2314	12.0	•
284	2.488	30.00	0	10000	3855	•	•
285	2,488	30.00	45	10850	1531	19.0	•
286	2,488	60.00	60	9500	0	•	-
287	2,488	60.00	70	11000	Ō	•	=
288	2,511	15.00	0	9625	3395	14.0	-
269	4.511	60.00	tj	3286	2106	49.0	•
290	3.781	13.00	Ó	7000	Ó	•	-
291	3,781	60.00	Ō	5000	0	•	•
292	3.781	240,00	Ó	2500	0	•	•
293	7,757	240.00	Ō	7500	Ó	•	•

Table XIV : Steel Fragments Impacting on Bonded Hylon

Datum No.	Paterial Thickness e(inches)	Pragment Weight m _e (grains)	Obliquity O(dugr ess)	Striking Velocity V _g (Ips)	Residual Velocity V _r (fps)	Residual Waight m _r (grains)	Hole Area (sq. in.)
1	.23	5.0	60	8 900	6337	4.4	•
ż	.23	1.0	70	1365	4908	3.8	•
5	.23	15.0	60	8600	7047	9.7	-
Ă	.23	15.0	70	9300	61 90	2.9	•
Š	,34	5.0	60	8000	3855	4.5	-
í	.34	5.0	70	5650	2105	4.9	•
Ž	,34	15.0	60	8750	5970	9.2	•
. i	.34	15.0	70	8350	5255	5.6	•
9	.43	10.0	0	2831	0	9.5	•
10	.43	10.0	0	4209	3265	9.5	•
11	.43	10.0	45	4381	4973	9.5	•
12	,43	10.0	60	4940	2635	2.5	
13	,43	10.0	79 0	· 5728 3990	3383 3274	9.5 14.5	
14	,43	15.0	43	4453	3403	14.5	
15	.43	19.0	40	4976	3271	14.5	
16	.43	13.0 15.0	60	10053	5868	•	•
17	.43	15.0	70	5873	3145	10.0	•
18	. 43 .43	15.0	70	8048	3425		•
19	;ÃŜ	٥,٥٤	ŏ	2809	2318	29.5	•
20 21	.43	30.0	ō	9817	8000	7.6	•
22	.43	30.0	Ď	10202	8517.	3.0	•
23	,43	30.0	45	3458	2820	29.5	•
24	,43	30.0	60	3878	2805	29.5	•
23	,43	30.0	70	5086	3226	24.0	•
24	.43	30.0	70	11032	5964	0.5	•
27	,43	0.00	0	2436	1972	59.0	•
28	.43	60.0	45	3379	2731	59.0	•
29	.43	60.0	60	4490	3449	59.0	•
30	.43	60 .u	70	5046	3492	59.0	•
31	.43	60.0	70	9450	5804	15.3	•
32	,43	120.0	.0	2571	2196	119.0 119.0	:
33	.43	120.0	45	2903	2333 2738	119.0	-
34	,43	120.0	60 70	1537 1974	2736 2874	119.0	-
33	. ላ 3	240.0	ő	1210	2006	239.0	
36	.43	240.0	45	2400	21 63	239.0	
37	.43 .43	240.0	60	2876	2380	239.0	•
38 39	.43	240.0	70	3374	2511	239.0	_
40	.54	15,0	70	10460	•	0	•
41	.55	5.0	Ö	2810	2068	4.2	•
42	.55	5,0	0	6300	4188	4.7	•
43	.55	5.0	0	9004	6004	4.1	-
44	. 55	30.0	70	3650	4747	15.8	-
45	.66	10.0	0	8500	6083	9.1	-
46	.66	60.0	/0	8B 70	4740	12.1	-
47	.67	30 G	0	8630	7003	26.2	-
48	. 67	30.0	60	88 60	4915	22.2	•
49	. 6 7	30.0	70	10475	4432	1.4	•
50	.773	240.0	70	9500	6152	49.2	•

EXFERIMENTAL DATA

Table XIV : Steel Fragments Impacting on Bonded Hylon

Datum Ho.	Material Thickness e(inches)	Fragment Weight M _a (grains)	Obliquity O(degrees)	Striking Velocity V _g (fps)	Residual Velocity V _r (fos)	Residual Waight m _g (grains)	Hote Area (sq.in.)
51	.8	5.0	0	11799	3596		•
52	.8	10.0	ŏ	3800	3756	9.5	
53		15.0	Ŏ	3471	3323	10.0	•
54	, 8	15.0	0	9489	5613	2.0	•
55	.8	30.0	0	5011	3485	29.5	-
56	.8	30.0	0	10492	7582	2.0	•
57	.8	30.0	60	6057	2849	22.0	•
50	. 👨	3 0 ,0	70	11000	•	0	•
59	.8	60.0	Ð	4046	3003	59.0	-
60	.8	60.0	60	4960	2983	59.0	•
61	.8	60,0	40	9380	3594	23.3	•
62	,\$	60.0	70	6171	2675	59.0	-
63	.8	60.0	70	8696	1663	10.0	•
•	ı.	120.0	60	4084	2519	119.0	•
65	•	120.0	70	5281	2522	119.0	•
66	, ģ	240.0	0	3025	2399	239.0	•
67	ı ğ	240.0	60	3525	2564	239.0	•
*		240.0	70	4076	2602	239.0	•
69	1.0	17.0	0	2420	0	•	•
70	1.0	17.0	30	2594	0	•	•
71	1.0	17.0	45	2736	0	•	•
72	1.0	17.0	60	3201	0	•	•
73	1.0	44.0	0	2045	Ŏ	•	•
74	1.0	44.0	30	2076	0	•	•
75	1.0	44,0	45	2177	Ö	•	•
76	1.0	44.0	6 0 0	2463	Ö	•	:
77 7 8	1.0 1.0	207.0 207.0	30	1473 1501	ŏ	•	
79	1.0	207.0	45	1632	ŏ		•
80	1.0	207.0	60	1770	ŏ	-	-
81	1.0	823.0	ő	1105	ŏ	-	
82	i.ŏ	825.0	зŏ	1145	ŏ	-	-
83	1.0	825.0	45	1265	ŏ	•	_
84	1.0	825.0	60	1414	ŏ		•
63	2.0	17.0	Ö	3895	ŏ	•	
86	2.0	17.0	30	4257	Ō	•	•
87	2.0	17.0	45	4876	ñ	•	•
88	2.0	44.0	0	3016	0	•	
89	2.0	44.0	30	3138	0	•	-
90	2.0	44.0	45	3359	0	•	-
91	2.0	44.0	60	4206	0	•	•
92	2.0	207.0	0	2113	0	•	•
93	2.0	207.0	30	2193	0	•	•
94	2.0	207.0	45	2281	0	•	-
95	2.0	207.0	60	2676	0	•	-
96	2.0	825.0	30	1646	Ō	•	-
97	2.0	825.0	45	1786	0	•	•
98	2.0	825.0	60	1930	0	•	-

Table XV : Steel Fragments Impacting on Lexen

			•	•			
Datum	Material Thickness	Fragment Wolght	Obliquity	Striking	Residual	Residual Weight	Hole Area
	e(inches)	me agent	Oditions)	10 10()()	Velocity V _r (fps)	warkur	Area .
No.	a(Incuas)	m _e (grains)	af oak.eem)	v _a (zpa)	A. (Thm)	a _r (grains)	(ed. ru.)
1	.125	5.0	0	11605	98 20	4.5	.35
2	.125	5.0	69	5245	4252	4.5	,02
3	.125	5.0	70	3251	2421	4.9	.01
4	.125	5.0	70	5747	4418	4.5	.04
5	.125	10.0	0	8356	•	9.5	.39
6	.125	30.0	60	830	175	29.9	•
7	.125	30.0	60	1362	902	29.9	.06
8	. 1.25	30.0	60	4050	3425	28.5	.15
9	.125	30.0	70	201.6	1367	29.9	.09
10	.125	30.0	70	5053	4104	26.5	.25
11	.125	60.0	0	2240	911	59.9	.01
12	.128	10.0	Š	1684	1197	9.5	.03
13	. 1 28	30.0	Ŏ	1309	1143	29.5	.06
14	. 1.28	60.0	Ď	1402	1275	59.5	.00
15	,128	120.0	Ŏ	1279	1183	119.5	.08
16	.130	15.0	45	10635	9326	14.5	.16
17	.135	15.0	Ŏ	10198	9195	14.5	.14
18	. 225	30.0	Ŏ	1314	915	29.5	.54
19	. 238	120.0	Ö	1379	1174	119.5	.85
20	. 250	5.0	60	4612	2975	4.5	.02
21	. 250	5.0	70	5711	3254	•	.01
21	, 250	30,0	60	4597	3398	28.5	.04
23	. 250	30.0	70	5121	2570	20.5	.23
24	. 258	10.0	0	1373	•	9.5	.02
25	. 258	10.0	Ó	1740	•	9.5	.02
26	. 258	10.0	0	1999	1333	9.5	.02
27	. 273	60.0	Ö	1297	920	39.5	.07
28	.450	15.0	70	7950	3292	3.3	.20
29	.300	5.0	0	2160	1176	4.9	•
30	. 500	5.0	60	3570	/56	4.9	•
31	.500	5.0	60	5333	2672	4.5	.02
32	.500	30.0	0	1297	570	29.9	.05
33	.500	30.0	0	1480	1189	29.9	•
34	, 500	30,0	0	1 700	861	29.9	•
35	.500	30.0	0	11064	8583	18.5	.17
36	. 300	30.0	60	6050	2534	28.0	.15
37	. 500	30.0	70	8117	2615	7.5	.51
38	. 500	60.0	60	9550	6649	5.0	.74
39	. 300	60.0	70	5967	-	•	.48
40	.500	60.0	70	8730	3463	22.8	1.23
41	.500	60.0	70	8959	4412	14.0	.77
42	.500	120.0	70	4190	2349	119.0	.44
43	.500	120.0	70	9271	3388	1.0	2.04
44	.500	240.0	60	9550	7618	•	1.77
45	.500	240.0	70	5831	3726	239.0	1.53
46	. 500	240.0	70	9471	6432	49.5	2.68
47	.520	15.0	0	1 500g	•	•	•
48	.520	15.G	60	2800	•	•	•

E: Estimated

Table XV: Steel Fragments Impacting on Lexan

Йасим Но.	Material Thickness e(inches)	Fragmont Weight Ma (grains)	Obliquity 0 (degrees)	Striking Valocity V _a (fps)	Residuel Velocity V _r (fps)	Residuel Weight m _r (graine)	Hole Area (eq. in.)
49	.520	15.0	60	3260	1120	_	_
50	.520	30,0	õ	1400	700	_	-
51	. ع 20 د .	30.0	ه.	2400	,	-	_
52	.320		80	2655	790	_	_
32		30.0	70	3000	750	•	-
33	.520	30.0				•	•
54	.520	30.0	70	3150	850	110.5	•
55	.540	120.0	0	1242	796	119.5	0.11
56	. 543	30.0	0	1961	1266	29.5	0.04
57	.545	70.0	0	2728	1540	9.5	0.01
56	.554	240.0	Ō	1017	587	239.5	•
59	1.000	30.0	0	1 500 B	0		•
60	1.000	30.0	0	2470	1728	29.9	.01
61	1,000	30.0	Ó	4984	2524	28.0	.05
62	1.000	30.0	0	8847	5442	25.5	.04
43	1,000	30.0	€0	4000R	O	•	•
44	1,000	30.0	40	4370	1156	•	•
65	1.000	30.0	70	8000E	0	-	•
66	1.000	60,0	45	6006	2240	56.5	.73
ěž	1.000	60,0	45	8659	4412	37.5	.36
ii	1,000	60,0	70	8990	2385	0.1	•
69	1.000	120,0	60	6012	2783	112.2	.59
70	1.000	120.0	60	9341	1970	71.0	.91
71	1.000	240.0	Ÿ	1100K	· · · · ·	239.0	•
72	1.000	240.0	ŏ	1534	1252	239.0	0.15
74			ŏ	1600	1056	239.0	V.13
73	1.000	240.0	ŏ	9087	6839		-
74	1.000	240.0				239.0	
75	1.000	240.0	70	8856	5918	137.0	1.11
76	2,000	30.0	0	4100g	0	•	•

E: Estimated

Table XVI : Steel Fragments Impacting on Cast Plexiglas

Datum	Material Thickness	Fragment Weight	Joliquity	Striking Velocity	Residual Valocity	Rosidual Weight	Hole Area
No.	a(inches)	(grains)	0(dagrees)	V (fps)	V _r (2pa)	m (grains)	(aq. in.)
				-		444	
1	,225	240.0	70	1939	1050	239.5	•
	,234	240.0	70	5830	4839	•	•
3	.236	30.0	70	2056	0	29.0 29.5	-
•	.237	30.0	45	672	. •	• •	-
5	.239	30.0	45	4869	4355 0	29.0	-
6	.240	30.0	80	4512	974	119.5	-
7	. 240	120.0	0	1141		119.0	-
8	. 240	120.0	_0	4853	4581	4.5	0.07
9	. 250	5.0	70	4366	1570 2020	14.7	0.38
10	. 250	15.0	70	4931		29.5	0130
11	.250	30.0	45	1017	407 4 <i>31</i> 5	47.5	
12	. 250	30.0	45	4869		29.0	
13	. 250	30.0	70	2556	665 277 6		·
14	. 250	30.0	70	4773		119.0	
15	,250	120.0	70	1944	1134 4886	117.0	-
16	. 250	120.0	70	5953	7007	239.5	-
17	. 250	240.0	_0	268	3163	239.0	-
18	. 254	240.0	70	3770		237.0	-
19	. 256	120.0	70	5884	4700 1255	29.5	-
20	. 257	30.0	Q	1695	801	239.5	-
21	.257	240.0	0	1193	5685	239.0	-
22	. 257	240.0	0	5826	236	239.5	-
23	.257	240.0	70 0	1115 833	689	29.5	-
24	. 258	30.0			4314	47.3	
25	. 258	30.0	n 0	5103 6 39	280	119.5	•
26	.263	120.0	ŏ	5227	2740	6.3	0.01
27	.486	5.0	0	4373	2650	14.9	0.03
28	.486	15.0	60	4605	718	14.8	0.32
29	.486	15.0	45	4018	2310	29.3	0.11
30	.486	30.0	45	1888	474	•	•
31	.492 .492	30.0 30.0	45	4896	3861		•
32 33	.492	240.0	45	869	193	239.5	•
34	.495	30.0	75	1064	0	29.0	•
33	.495	30.0	70	4793	1565		•
36	.495	60.0	Ŏ	687	309	59.0	•
37	.495	120.0	Ď	1198	896	119.0	
38	.500	30.0	Ŏ	5220	4140	-	•
39	.500	30.0	70	3082	0	•	•
40	,500	30.0	70	6166	2687	•	•
41	.500	60.0	0	4911	4277	•	•
42	.500	60.0	70	2209	376	59.0	•
43	.300	60.0	70	5034	2878	•	•
44	,500	120.0	ō	5785	5185	•	•
45	.500	120.0	70	5798	2524	•	•
46	,500	240,0	0	776	139	239,0	•
47	.500	240.0	Ò	5910	5310		•
48	.500	250.0	45	869	193	239.0	•
49	.500	240.0	45	5464	4553	•	•
50	,500	240.0	70	1969	483	239.0	•

Table XVI : Steel Fragments Impacting on Cast Plaxigles

			-	• -		•	
	Material	Pr agment		Striking	Residual	Residual	Hole
Datum	Thickness	Weight	Obliquity	Velocity	Velocity	Weight	Area
Ж.	e(inches)	m_(grains)				m (Stains)	(sq. in.)
770 a	B(TUQUAS)	ma (Brazum)	o(magadas)	V _e (fps)	Y _r (fpa)	m. (Brazum)	/-d. ru.)
51	,500	240,0	70	5712	4189	•	•
32	.625	30.0	Ö	1348	520	29.0	_
53	.625	30.0	ŏ	3483	3541	•	
54	.625	30.0	70	3900	820		•
35	.625	30.0	70	5034	1425		_
56	.625	60.0	ő	1048	410	59.0	_
57	.625	60.0	ŏ	4450	3400	37.0	_
58	.625	60.0	70	3437	949		:
						•	•
59	.625	60.0	70	5162	1601	***	•
60	.625	240.0	0	869	722	239.0	•
61	.625	240.0	.0	5830	4920	•	•
62	.625	240.0	70	1892	1789	•	•
63	.625	240.0	70	5835	4140		•
44	.732	40.0	70	9017	3160	14.0	•
65	.735	60.0	60	3868	960	5 9 .9	0.64
66	.744	240.0	70	3937	1507	239.5	•
67	.750	30.0	0	3800	3356	25,08	0.07
68	.750	60.0	60	6020	2823	47.2	•
69	.730	240.0	70	6010	2166	20.3	
70	.968	240.0	70	9346	3410	74.7	
71	.975	30.0	Ŏ	2124	18	•	•
72	.986	240.0	Ŏ	879	ŏ	239.0	•
13	.969	240.0	7 0	3387	ŏ		•
74	.992	120.0	ő	9187	6000	36.1	9,26
73	.995	30.0	ŏ	3417	2993		Atzo
76	.997	240.0	×	9913	7910	120.0	0.32
77	1.000	15.0	o o	5550	1407		
78	1,000	30.0	ŏ	8200	5129	14.9	•
79						13 1	0.02
	1.000	30.0	60 60	8480	4309	0.1	•••
80	1.000	60.0		5960	*	0	2.50
81	1.000	60.0	70	9325	2072	0.1	•
82	1.000	120.0	70	5721	0	•	7.55
83	1.000	120.0	70	8620	2197	0.5	•
84	1.000	120.0	70	9374	3230	25.5	•
85	1.000	240.0	٥	2006	1444		•
86	1.000	240.0	70	3831	883	•	•
87	1.000	240.0	70	5080	758	220.0	•
88	1.000	240.0	70	6060	650	12.3	•
89	1.000	240.0	70	6110	2335	•	•
90	1.000	475.0	70	3800	2145	474.0	•
91	1.000	475.0	70	4710	1775	457.9	•
92	1.007	60.0	45	4701	1045	54.2	1.09
93	1.010	15.0	Ö	5517	970	14.5	0.03
94	1.010	30.0	Ŏ	5221	1850	28.0	0.08
95	1.011	30.0	70	8992	0	Ö	1.93
96	1,012	240.0	'n	4650	3130	209.6	2,24
97	1.025	60.0	ő	8702	3610	22.5	0.05
98	1.050	60.0	7Š	8968	0	0	0.03
	4.TZ	~~!~			1,7	~	-

E: Estimated

Table MVII : Steel Fragments Impacting on Stretched Plexiglas

Datum No.	Material Thickness e(inches)	Fragment Weight m _g (grains)	Obliquity O(degraes)	Striking Velocity V _e (fpe)	Residual Velocity V _r (fps)	Rosidual Waight M _E (grains)	Hole Area (sq. in.)
1	0.05	5	70	2875	2395	4.5	0.08
ž	0.05	15	45	1299	1199	14.5	Ü.06
3	0.05	240	70	5887	5077	239.0	1.16
4	0.05	475	70	4876	4662	474.0	1.08
3	0.14	5	0	723	357	4.5	0,01
•	0.14	5	0	881	874	4.5	0.01
7	0.14	15	0	792	632	14,5	0.03
8	0.14	15	0	8824	5700R	8.0	0.23
•	0.14	30	0	1409	1256	29.0	0.07
10	0.14	30	0	6070	5260	26.0	0.33
11	0.14	30	70	2017	1412	29.5	0.30
12	0.14	30	70	2101	1980	29.5	0.30
13	0.14	30	70	5836	4497	29.0	0.57
14 15	0.14	60	70	1143	680	59.0	0.35
16	0.14 0.26	60	70	5472	3969	59.0	0.95
17	0.26	5 15	0	1140	473	4.5	0.01
ie	0.26	13	ŏ	600Z 1119	0 933	14.5	•
19	0.26	30	60	2078	1214	14.5	0.03
20	0.26	30	60	6394	3805	29.5 26.0	0.28 0.83
21	0.26	ŧ,		678	80	20.0	0.15
2,2	0.26	60	ŏ	4726	3840	59.5	0.43
23	0.26	120	30	1188	958	119.5	0.26
24	0,26	120	30	5118	4358	116.3	0.82
25	0.26	240	Ŏ	1652	1359	239.5	0.37
26	0.26	240	Ó	6149	5717	234.5	1.21
27	0.33	5	10	4439	1305	4.5	•
28	0.33	3	70	5852	1423	4.5	•
29	0.33	5	70	5955	1906	4.5	•
30	0.33	15	70	5017	1603	14.5	•
31	0.33	15	70	5527	2945	14.5	•
32 33	0.33	15	70	5596	1800E	14.0	•
34	0.33	15	70	7755	3229	6.5	•
35	0.33 0.33	15 30	70 70	9931	3545	1.5	*
36	0.33	30	70 70	2949 9690	1006	29.5	0,60
37	0.33	120	45	2742	5384 1232	3.5	2.26
38	0.33	120	45	6239	4975	119.5	0.51
23	0.33	240	60	1107	717	108.0 239.5	1.76 0.80
40	0.33	240	70	4836	3863	238.0	1.28
41	0.351	5	70	3400	-	-50,0	1.40
42	0.356	30	70	8975	4047	4.5	-
43	0.357	5	70	3700	*	-	-
44	0.357	30	70	740		•	
45	0.337	30	70	2000	•	•	•
46	0.357	30	70	5670	1786	25.3	•
47	0.361	240	70	1450	741	239.0	•
48	0.40	15	70	3386	Ü	-	0.40
49 50	0.40	15	70	8858	1000R	5,5	1.92
3 U	0.40	30	70	5706	3090	27,5	•

E: Estimated

-235-

EXPERIMENTAL DATA

Table XVII : Steel Fragments Impacting on Stretched Flexiglas

	Hatorial	Fragment		Striking	Rosidual	Rosidual	Hole
Detum	Thickness	Weight	Obliquity	Valocity		Woight	Area
No.	e(inches)	m (grains)	A(dogrees)	V _e (fps)	V _r (fm)	m _r (grains)	(eq. in.)
51	0.40	30	70	7328	3515	13.5	•
52	0.40	30	70	11290	•	0	•
53	0.40	60	60	2676	1507	39.3	0.73
54	0.40	60	60	8993	6600	58.0	4.10
55	0.40	120	70	2691	1242	119.5	1,45
56	0,40	120	70	6032	2677	105.0	5,34
57	0.40	240	70	2726	1838	239.0	3,98
58	0.40	240	70	6158	4115	180.0	5,28
59	0.407	30	70	5800	2487	28.1	•
60	0,409	240	70	1380	435	239.0	•
61	0.410	5	70	2650	•	•	•
62	0.410	5	70	3300	•	•	•
63	0.410	5	70	3450	•	•	•
64	0.410	3	10	3700		•	
65	0,410	5	70	3835	•	-	-
66	0.414	30	70	2600	-	•	-
47	0.506	240	70	1970	849	239.0	•
68	0.507	30	70	\$700	•	•	•
69	0.508	30	70	?# <u>50</u>	•	•	•
70	0.514	5	70	4450	•		•
71	0.55	5	G	3352	1422	4.5	0.03
72	0.35	5	0	A# 64	4720	4.5	0.01
73	0.55	5	70	6405	•	•	0.36
74	0.55	3	70	8743	•	•	0.42
75	0.55	15	60	2980	804	14.5	0.16
76	0.55	15	60	3207	650	14.5	0.18
77	0.55	15	(Ú	8161	2212	9.5	1.46
78	0.55	30	0	1989	-	29.5	0.12
79	0.55	30	0	2029	1116	29.5	0,12
80	0.55	30	70	4300	•	•	•
81	0.55	30	70	4382	-	•	0,99
52	0.55	30	70	4852	•	•	1.36
63	0.55	30	70	6000	OR	•	•
84	0.55	30	70	#319	5943	4.0	•
85	0.55	30	70	y 4 18	•	1.0R	3,10
86	0.55	60	45	2193	1212	59,5	0.31
87	0.55	60	45	9147	6470	26.0	2,47
88	0.55	240	70	2000R	0	•	•
89	0.601	30	70	4393	•	•	•
90	0.605	. 5	70	5400	•		•
D1	0.609	240	70	2825	1400	239.0	•
92	0.619	30	70	9025	2527	3.8	•
93	0.728	30	70	5900	•	•	•
94	0.728	240	70	4170	1456	233.0	•
35	5.729	30	70	8850	1802	1,5	•
96	0.720	475	70	1140	•	•	•
7	0.733	5	0	4775	1279	4.9	•
8	0.908	60	70	7950	1708	0.4	-
19	0.910	475	70	2810	1119	474.0	-

8: Batimated

-236-

EXPERIMENTAL DATA

Table XVII: Steel Fragments Impacting on Stretched Plexigles

Datum No.	Material Thickness e(inches)	Fragment Weight m _e (grains)	Obliquity 8(degrees)	Striking Velocity V _s (fps)	Residual Velocity V _g (fps)	Residual Weight m _r (grains)	liole Area (sq. in.)
100	0.922	240	70	6100	2172	181.0	•
101	0.930	5	Ô	5800	1010	4.9	•
102	0.930	\$	Ö	6196	2094	4.9	•

EXPERIMENTAL DATA

Table XVIII : Steel Fragments Impacting on Doron

Datum	Material Thickness	Fragment Weight	Obliquity	Striking Velocity	Residual Velocity	Residual Weight	Hole Area
No,	e(inches)	m _e (grains)	θ(degraes)	V _a (fpa)	V _r (fps)	m _r (grains)	(Aq. in.)
1	.055	2.65	0	977	0	•	•
2	,055	2.65	30	1035	Ŏ	•	•
3	.056	2.65	45	1269	0	•	•
4	.058	2.65	60	1301	0	•	•
Š	.075	15.00	<u>o</u>	1215	921	14.5	•
6	.075	15.00	0	1231	939	•	•
7	.075	30.00	o o	1997	1801	29.5	•
8 9	.075	30.00	0	2018 3888	1836 3592	-	-
10	.075 .075	30.00 30.LJ	ŏ	3917	3657	•	•
11	.075	30.00	60	2473	2082	29.5	-
12	,075	30.00	60	2497	2122	-713	
13	.075	30.00	60	4130	3581	•	•
14	.075	30.00	70	3968	3240	29.5	•
ĩŝ	.075	60.00	70	3715	3052		•
16	.091	17.00	45	886	0	•	•
17	.091	44.00	60	871	0	•	•
18	.091	147.00	30	517	0	•	•
19	.092	5.85	60	1301	. 0		•
20	.092	15.00	Ō	2040	1635	14.5	•
21	.092	13.00	0	2063	1670	•	•
22	.092	15.00	70	3577	2631	•	•
23 24	.092 .092	15.00	70 30	3 608 761	2686 0	•	•
25	.092	17.00 17.00	60	1033	ŏ	•	•
26	.092	30.00	60	3987	3159	29.5	
27	.072	30.00	60	4013	3214	•7.7	_
28	.092	30.00	75	3881	3051		•
29	.092	30.00	70	3910	3106	•	
30	.092	44.00	30	635	0	•	-
31	.092	44.00	45	672	0	•	•
32	.092	60.00	60	2696	2210	•	•
33	.092	60.00	60	2715	2240	•	•
34	.092	60.00	70	3538	2726	•	•
35	.092	60.00	70	3557	2761	•••	•
36	,092	120.00	60 60	3036	2455 2482	119.5	-
37 38	.092 .092	120 .0 0 120 . 00	70	3071 3895	3231	•	•
39	.092	120.00	70 70	3929	3263	-	-
40	.092	240.00	60	2164	1944	239.5	-
41	.092	240.00	60	2180	1966		•
42	.092	240.00	60	3176	2882	•	•
43	.092	240.00	60	3198	2907		-
44	.093	5.85	45	1191	0	•	•
45	.096	5.85	0	959	0	-	•
46	.096	5.85	30	1000	0	•	•
47	.096	17.00	o	930	Ú	-	-
48	.099	44.00	<u>o</u>	; "a	U	-	-
49	.102	0.85	Ö	1705	7:50	•	•
50	. 102	0.85	Ç.	2000	750	•	-

	₹ 4 1 1	XVIII : 80	ecl Fragmants	Impacting	on Doron		
	No orial	Fragment		Striking	Residual	Rosi dual	fio1e
Dayum	Filicands	Weight	Obliquity	Valocicy	Velocity	Weight	Area
No.	e(inches)		O(degrous)	V (fps)	V (fps)	m (grains)	(eq. in.)
				• • •		8	4-4-
51	. 102	0.85	٥	2500	1485	•	•
52	. 102	0.83	0	2969	2039	•	•
53	. 102	0.85	0	3000	2085	•	•
54	. 102	0.85	0	3092	2189	•	•
53	. 102	0.85	0	3500	2630	•	•
36	. 102	0.85	0	4000	3140	•	•
57	. 102	0.85	Q	4500	3631	•	•
.58	. 102	0.85	Ō	5000	4109	•	•
59	. 102	0.85	Ó	5190	4249	•	•
60	. 102	147.00	0	606	Ó	•	•
61	. 108	0.85	0	1920	Ů	-	•
62	. 108	0.85	0	4063	3072	•	•
63	. 108	0.85	.0	5418	4361	•	•
44	. 108	0.83	45	2304	0	•	•
65	. 108	0.85	45	3345	2148	•	•
66	. 108	0.85	45	3007	3771	•	•
67 68	. 108	0.85	60	2701	745	•	•
69	. 108 . 108	0.85	60 60	3130	1081	•	•
70	, 108	0.83 2.10	0	3932	2566	-	•
71	.108	2.10	ŏ	1778 399 2	0 2839	•	•
72	.108	2.10	Ö	3772 3439	4176	-	•
73	.108	2.10	45	2361	71/0	•	-
14	.108	2.10	45	4014	2450	:	•
73	.108	2.10	45	3691	3534	-	-
76	.108	2.10	60	3081	0	_	-
17	.108	2.10	60	4079	1616	-	-
78	.108	2.10	60	3032	3041	•	-
79	. 109	2.65	0	1490	0	•	
80	. 114	5.85	Ŏ	1259	ŏ	•	•
81	.114	17.00	Ō	993	Ŏ	•	
82	.118	2.65	60	2151	Ŏ		•
83	. 120	3.85	30	1152	0	•	•
84	. 120	17.00	30	979	0	•	•
85	. 120	44.00	30	772	0	•	•
56	.122	2.65	30	1610	0	•	•
87	.122	17.00	60	1231	0	•	•
88	.123	5.85	45	1321	0	•	•
89	.124	2.65	45	1861	Ō	•	•
90	.124	3.85	60	1527	0	•	•
91	.124	44.00	45	797	0	•	•
92 93	. 144	17.00	0	1079	0	•	•
94	. 145	3.85	0	1409	0	•	•
93	.150 .150	17.00	30 6 0	1152	0	20.04	•
96	.150	30.00 30.00	6 0	3201	•	28.84	•
97	.150	30.00	70	5993 3827	-	23.30	•
98	.150	44.00	30	3827 845	0	£8.89	•
99	.151	5.85	30	1349	0	•	-
100	.151	7.20	0	737	ő	-	•

	Table	XVIII : 80	eel Fragments	Impacting	on Doron		
	Materiai	Fragment		Striking	Residual	Re: i dual	Hola
Datum	Thickness	Weight	Obliquity	Velocity	Velocity	Weight	AFGA
No.	e(inches)	m_(grains)	θ(degroes)	ບູ((pa)	V _r (fps)	m (grains)	(eq. in.)
		•		•	•	•	
101	.151	7.20	0	4439	4211	•	•
102	.151	7.20	45	757	0	•	•
103	.151	7.20	45	4450	4290	•	•
104	.151	7.20	60	887	0	•	•
105	. 151	7,20	60	5063	4162	•	•
106	.152	5,85	45	1503	Ö	-	
107	, 152	17,00	60	1418	ŏ		_
108	.152	44.00	45	918	ŏ	-	-
109	.152	147.00	30	653	ŏ	_	-
110	, 152	207,00	Õ	628	ŏ	_	<u>.</u>
111	.154	5.85	60		ŏ	•	•
				1823	v		•
112	.154	15.00	70	3868	•	14.0	•
113	.154	17,00	45	1270	0	•	•
114	. 154	30.00	70	3405	*	29.0	•
115	.192	5.85	Ģ	1794	٥	•	•
116	. 192	17,00	0	1382	0	•	•
117	. 193	2.65	0	2426	0	•	•
118	. 193	2.65	30	2388	0	•	-
119	. 193	2.65	45	2979	Ò	•	•
120	.193	15.00	Ġ	2671	1827	14.5	•
121	.193	15,00	Ö	2695	1870	•	
122	.193	30.00	70	4890	2844		_
123	.193	30,00	70	4931	2896		
124	. 193	60,00	60	2795	1907	-	•
125	, 193	60.00	60	2795	1882	•	_
126	. 193	60,00	70	3739	1223	•	
127	. 193	60.00	70	3755	1235	_	_
128	. 193	120.00	Ö	3148	2917	119.5	
129	. 193	120,00	ŏ	3179	2950		_
130	. 193	120,00	70	3977	2380	-	-
	. 193	120.00	70	4004	2610	-	-
131		2.65	60	3528	0	_	_
!32	. 194	147.00	0	772	ŏ		_
133	. 194	740,00			-	•	•
134	,195		70	3073	2359	•	•
135	. 195	240.00	70	3104	2381	•	•
136	. 195	240,00	70	6191	4828	•	•
137	. 196	44.00	.0	1062	0	-	•
138	,210	5.85	45	1936	0	•	•
1 39	.210	17.00	30	1355	0	•	•
140	,210	44.00	30	1114	0	•	•
141	.213	۵،85	30	1741	Ō		•
142	,213	17.00	60	1791	0	-	-
143	.214	17.00	45	1588	0	•	•
144	.214	44.00	45	1185	0	•	•
145	. 245	5.85	0	2052	0	•	•
146	.250	5.00	0	5000	3385	4.7	•
147	.250	30.00	0	3879	3121	•	-
148	. 250	30.00	60	3897	2535	•	-
149	. 250	30.00	60	6350	5986	2,7	•
150	.250	60.00	60	8756	5769	2.0	-
		****		0, 30	2143	~	-

EXPERIMENTAL DATA

Table XVIII : Steel Fragments Impacting on Doron

Datum Thickness Weight Obliquity Velocity Velocity No. a(inches) $m_{\mu}(grains)$ $\mathcal{J}(degrees)$ $V_{\mu}(fps)$ $V_{\mu}(fps)$	ty Weight Area s) m _r (grains) (mq. in.)
No. a(inches) m_(grains) J(degrees) V_(fps) V_(fps	s) m _g (grains) (sq. in.)
151 .230 120.0 0 3832 1682	119.5
132 .250 240.0 0 3959 3745	239.5 -
153 .250 240.0 45 2427 2033	239.5 -
134 .250 240.0 60 5396 4517	●
155 .252 207.0 0 657 0	• "
156 .262 2.65 0 3339 0	• •
157 .266 2.65 30 3170 0	• •
138 .266 2.65 45 3398 0	• •
159 .269 5.85 45 2597 0	•
160 .270 30.0 60 8153 -	5,69 -
161 .270 30.0 70 8137 -	0.93
162 .270 60.0 70 8110 - 163 .270 120.0 70 5034 -	7.56
163 ,270 120.0 70 5034 - 164 .288 17.0 0 1766 0	109.51 -
165 .288 44.0 0 1409 0	•
146 .301 7.20 0 971 0	: :
167 .302 7.20 0 4699 4230	
148 .302 7.20 43 194) 0	
169 .302 7.20 45 4610 4272	
170 .302 7.20 60 2552 0	•
171 .302 7.20 60 4833 4098	
172 .317 3.85 0 2624 0	•
173 .318 207.0 0 1004 0	•
174 .340 17.0 60 2651 0	
175 .342 5.85 30 2448 0	•
176 .342 17.0 30 1886 0	•
177 .346 17.0 45 2254 0	• •
178 ,378 207.0 0 1066 0	•
179 .384 17.0 0 2273 0	•
150 .387 147.0 0 1229 0	•
181 ,463 15.0 0 5421 -	8.07 -
182 .463 30.0 0 4905 -	28.61 -
183 .463 30.0 60 3900 0	•
184 .482 44.0 30 1937 0	•
185 .483 44.0 0 1952 0	•
186 .486 825.0 0 869 0	•
187 .490 17.0 0 2992 0 188 .490 17.0 30 2626 0	•
	-
	•
190 .490 17.0 60 5453 0 191 .491 44.0 45 2375 0	: :
192 .491 400.0 0 1009 0	• •
193 .493 44.0 60 3468 0	
194 .497 207.0 45 1445 0	
195 .497 600.0 0 930 0	
194 .499 600.0 45 1030 0	•
197 .500 10.0 0 4650 2412	9.9
198 .500 30.0 0 4579 2698	• •
199 .500 30.0 45 4700 2166	•
200 .500 30.0 45 5830 2908	13.2

Table XV	TTT: Steel	Fragments	Impacting	on Doven

	faota	. WATTT: ace	AT AT SMOTTER	tubers could	011 001411		
	Material	Fragment		Striking	Residual	kesidual	Hole
Datum	Thickness	Weight	Obliquity	Velocity	Velocity	inight .	Arga
No.	e(inches)	m (graine)	O(degrees)	V _a (fpa)	V _r (fp#)	m (grains)	(eq. in.)
					44.44		
201	. 500	30.0	60	7102	1475	4 4.	•
202	.500	30.0	60	7960	•	6.65	•
203	.500	30.0	60	10578		0	•
204	.500	60.0	0	3198	2189	•	-
205	.500	60.0	.0	5894	3744	•	•
206	.500	60.0	60	7193	3421	44 4	•
207	.500	60.0	60	7607	4000	20.5	-
208	.500	60.0	60	7975	4597	8.4	•
209	.500	60.0	70	6195	0	A A4	-
210	.500	60.0	70	8184	•	2.96	-
211	.500	60.0	70	8700	-	0	•
212	.500	120.0	0	3862	-	108.52	•
213	.500	120.0	.0	3881	2761	•	•
214	.500	120.0	45	3598	2251	•	•
215	.500	120.0	70	5889	0	•	•
216	.500	240.0	.0	3743	2950	•	•
217	.500	240.0	45	3645	2646	•	•
218	.500	240.0	60	3366	3516	•	•
219	.500	240.0	70	4719	2145	-	•
220	. 506	400.0	45	1110	0	•	•
221	. 625	240.0	70	7830	4836	•	•
222	./39	400.0	45	1497	0	•	•
223	.742	400.0	60	1938	0	•	
224	.744	207.0	0	1646	0	•	-
225	.750	30.0	O	5229	•	27.72	-
226	.750	60.0	0	6037	-	46.08	•
227	.750	120.0	45	3043	•	102.61	•
228	. 750	240.0	0	3529	•	224.71	•
229	.740	240.0	60	4229	•	221.50	•
230	. 750	240.0	70	5685	3	4	-
23.	. 152	400.0	0	1456	Ö	•	•
232	.752	0.00	٥	1384	0	•	•
233	.755	207.0	0	1762	0	•	•
234	.755	207.0	49	1873	0	•	-
235	.757	17.0	0	4530	0	•	•
236	.757	44.0	0	31 12	0	•	•
237	,763	600.0	45	1493	0	•	•
238	.963	207.0	45	2351	0	•	•
239	.966	402.0	0	1765	0	•	-
240	.966	600.0	0	1564	0	•	•
241	.998	44.0	30	4145	0	•	•
242	1.000	30.0	0	4769	0	•	•
243	1.000	30.0	0	6999	1999	•	•
244	1.000	30,0	45	7718	2013	-	•
245	1.000	30.0	60	105906	0	•	•
246	1.000	60.0	0	5088	-	41.67	•
247	1.000	60.0	Ö	7376	2627	•	-
248	1.000	60,0	60	8929	4829	•	•
249	1.000	60.0	70	100008	•	0	•
250	1.000	120.0	Ō	5010	-	79.74	
-30	E 44	010	-	2010	-	76417	-

E: Estimated

-242-

PEPERIHENTAL DATA

	Table	XVIII 18te	el Fragments	Impacting	on Doron		40.00
Datum No.	Materiil Thickness a(inches)	Fragment Wright m _a (grains)	Obliquity O(degrees)	Striking Valocity V _e (fpa)	Residual Volocity V _r (fpe)	Residual Weight a _r (prains)	Area (eq. in.)
251	1,000	120.0	70	75001	0		•
252	1.000	240.0	60	5940	2542	152.0	•
253	1.000	240.0	70	9847		8,50	•
254	1.000	475.0	60	5147	•	474.0	•
255	1.024	44.0	Ö	4175	0	•	•
256	1,400	10.0	Ŏ	8834	2950	•	•
257	1.430	30.0	Ö	110003	•	6	
258	1,448	600.0	ŏ	2135	0	·	•
259	1,460	400.0	ā	2540	Ŏ	•	•

B: Estimated

MEGI 'IMENTAL BAT

.. de XIX . . Steel Prague: to Impairing on Pullet Resistant Class

٠	Material Til Ing a	Projement Hough	Obligarity	Str tiling Value Lty	Residual Velocity	Residual Waight	Hole Ares
**	et frakeri	m _s (Brains)	Continue	V _a ctps)	V _r (fpa)	m, (grains)	(eq. in.)
1	. 419	30.0	<u>o</u>	\$411	127	29.5	•
7	11.1	20.0	0	4831	3788	•	•
	. (10	60.0	.0	567 6	4428	•	-
4	. 218	60.0	45	6734	579/	•	•
3	. 118	60.0	70	82 8	4375	•	•
j	418	340 .0	Ŏ	709	0	239.5	•
- 1	. 21 6 . 716	\$40.0	.0	3866	5186	•	-
	.10	240.0	45	\$812	4898	•	•
	. 118	840.0 840.0	70 70	2150	1013	279.5	•
11	.235	440.0	70	5846 5000 K	3347	•	•
**	.225	15.0 30.0	70	3500 R	9	•	•
12 13	.23	3.0	45	3300 E 5392	0		-
14	:::	10.0	66	5376	1210 1 005	3.5	.03
ij	;35	30.5	~~~	4811	3840	7.2 27.0	.11 .63
16	.23	30.0	ŏ	9496	7200	1.8	.36
įį	.25	30.0	43	999	843	29.5	• >0
ii	:25	30.0	45	7106	3232	4713	
19	,23	30.0	70	7015	2936	•	_
30	.23	60.0	63	919	345	59.5	-
äi	, 23	240.0	ď	141	~3	239.0	-
<u>;;</u>	, 254	24° 0	45	64.33	5342	437.0	-
11 23	2008		0	332	476	59.5	_
1	, 236	40.6	45	589	361	59.5	•
73	.238	60.0	70	3308	2286	2712	-
26	. 263	30.0	ÁŠ	5674	3009		_
27	. 263	30.0	70	5703	3274	-	-
28	.495	30.0	Ö	1064	ō	29.5	_
29	.500	30.0	70	3082	ŏ	.7.,	_
20	,500	10.0	70	8125	2941	-	.055
31	1,000	60.0	70	8740	3366	1.0	196
32	.527	10.0	45	2653	0	•	-
33	.53	30.0	Ü	4745	1820	27.0	.03
34	.53	19.0	/0	8775	•	0	.01
23	.53	60.0	Ö	1096	163	59.5	
36	.53	60.0	45	5340	2053	24.0	.10
37	, 53	60.0	70	4610	•	0	
38	.53	60.0	70	8733	•	0	.22
39	.53	60.0	70	9268	•	0	•
40	.53	120.0	Q	3475	2005	116.5	.05
41	.53	120.0	70	5320	•	0	2.83
42	.53	120.0	70	6333	•	Ó	.29
43	.53	240.0	n	3758	2585	232.0	.14
44	.53	240.0	٥	4717	3130	228.0	.11
45	.53	240.0	Q	3891	4160	93.1	. 25
46	.53	240.0	70	8379	1000	25.7	.91
47	.534	240.0	٥	756	0	239.0	•
48	.538	120.0	0	5925	3985	-	•
49	.542	30.0	0	2480	540	29.0	•
50	.542	60.0	45	3575	1498	-	•

-244-

EXPERIMENTAL DATA

Table NIR : Steel Fragments Impacting on Suitet Resistant Glass

Datum No.	Haterial Thickness e(inches)	Fragment Weight w _m (grains)	Obliquity O(degraes)	Striking Velocity V _a (fps)	Memiduml Velocity V _r (fps)	Residual Weight m _e (grains)	Hole Area (aq. in.)
51	1.000	30.0	0	8875	6153	20.8	.601
52	1.000	30.0	45	6777	2888	0.2	10
53	1.000	60.0	.0	8850	-	. • .	.035
54	1.000	60.0	60	8580	2970	0.3	•
35	1.020	15.0	0	3500	0	•	•
56	1.080	30.0	0	5167	738	0	.37
57	1.020	60.0	0	3450	0	•	.27
56	1.020	120.0	Ō	4040	1055	118.8	•
59	1.020	180.0	45	3850	532	•	••
60	1.020	120.0	60	3560	0		•
61	1.020	240.0	0	5229	2290	200.0	2,41
62	1.020	240.0	60	4330	Ō	•	•
63	1.080	240.0	70	4560	0	•	•
64	1.56	470.0	70	6500R	0	•	. •
65	1.56	475.0	.0	3150	914	443.1	.59
66	1.56	473.0	60	3010 R	Ģ	• .	•
67	1.56	477.0	Ģ	1630	0	476.9	.25
60	1.50	30.0	Ó	7268	790	Ģ	.33
69	1.50	60.0	45	8.935	•	Ō	.77
70	1.58	120.0	Q	4663	•	0	.71
? <u>1</u>	1.58	120.0	.0	9661	•	51.9	2.05
72	1.56	340.0	60	8322		1.3	3.73
73	1.58	240.0	70	8965	1950	Ō.	2,65
74	1.60	30.0	0	6160	•	0.3	. 243
73	1.60	60.0	0	8890	761	40.4	.785
76	1.(-	^^^.0	60	9373	14	•	3.19
77	1 .	.0	0	59 78	248	•	•
78	1.623	ون.٥	Q.	4811	0	•	•
79	1.625	240.0	0	3939	780	•	-
10	1.625	240.0	45	2700	324	-	-
81	1.625	240.0	45	362 9	2060	•	-

E: Estimated

DISTRIBUTION LIST

No. of		No. of	Constant market
Cosins	Organization	Copies	Ornentiation
5	Handquarters	1	Director
•	U. S. Army Material Command		Dev & Proof Marviess
	Attn: AMURD-RE-CH (L.S. Cross)		Attn: Mr. V.G. Place
	AMCRD-R8-PK (Mr. Statoon)		Aberdeen Proving Ground, Md
	AMUMM-AI (Mr. R. Cory)		_
	Washington 25, D. C.	10	Commander
			Armed Services Took Info Agey
1	Director		Attn: TIPER
	Advanced Ass Project Agey		Ariington Hall Station
	Attn: Mr. Franklin		arlington 12, Va
	Department of Dafonse		A Atan Annani
	Mashington 25, D. C.	1	fremanding Constal
			U.S. Army Hobility Com
16	Commending Officer		28251 Van Dyke Ave
	Ballistic Research Labo		Contorline, Michigan
	Attn: Mr. R. G. Bernier, WSL(1)		Commendan Afficas
	Hr. J. J. Bellay, WEL(1)	1	Commanding Officer
	Hr. H. Peaker, WBL(1)		U.S. Army Transp Res Com
	Hr. D. C. Mardison, WSL(1)		Attn: Library
	Hr. A. Hoffman, TbL(1)		Port Bustie, Virginia
	Mr. D. Dunn, TAL(1)	3	Summer Alan General
	Reports Dist Set (10)	,	Quantading General Redetens Scientific Info Ctr
	Aberdeen Proving Ground, Hd		Attn: Chief, Boswant 444
4	Defence Res Hember		Redstone Aramal, Alabama
•	Canadian Joint Staff		Management of seminary & sequences
	2450 Massachusetts Ave. IN	1	Commanding Officer
	Washington 8, D.C.	•	Watertown Arsenal
	VIA: Headquarters		Attn: Vatertown Arsonal Lab
	U.S. Army Material Com		Armer Section
	Attm: AMERD-RE-PE		
	Hr. Statoon		We ben to use TR., Make.
	Washington 25, D.C.	1	V.S. Army Material Res Agey
		-	Yetertown 72, Hereschusette
4	deientific Info Off		
•	Defence Aup Staff	1	Commanding General
	British Embassy		U.S. Army Weapons Com
	3100 Massachusetts Ave, HV		Rock Islano Arsonal
	Washington S, D.C.		Rock Island Illinois
	VIA: Noadquarters		
	U.S. Army Materiel Com	ì	Commanding General
	ALENI ANCHI-RI-PR		U.S. Army Combat Day Com
	Hr, Statson		Port Melvoir, Virginia
	Vachington 25, N.C.		
		1	Director
1	Direntor		MABA
	Weapon Systams Evaluation Group		Haraball Space Flight Ctr
	Office, San of Def		Attn: Library Section
	Washington 25, D.C.		Redstone Armenal, Alabama
1	Off Chief of Res and Dev	1	Commanding Officer
	Department of the Army		U.S. Army Art & Com Day Aggy
	Washington 25, D.C.		Attn: Libratian
	•		Fort Sill, Ohlehoma
1	Commanding Officer		-
	Attn: Tech full Branch	3	Common dema Metterny
	Aberdeen Frowing Ground, Md.		Picatinny Arsenal
			Feltman Ren & Eng labs
			Attn: Hr. F. Saxe, SHUPA-EM2 (2)
			PLASTEC
			Popper The lotary

DISTRIBUTION LIST (Cont.)

No. of Copies	Organization	No. of Coptes	Grandantion
1	Commending Officer	1	Chief
	Frankford Arsenal	-	Bureau of Nev Weapons
	Artn: Library, Br 0270, Blde 40		Department of the Nevy
	Philadelphia 17, Pemasylvania		Attn: DIS-33
	8		Machington 25, D.C.
1	Commander Pield Command	1	Commander ·
	Defense Atomia Support Aguy	•	Neval Air New Ctr
	Attm: PCDR/4		Attn: WR-4
	7.0. Ben \$100		Johnsville, Pennsylvania
	Andle Base		_
	Ylpndnesdne' M' M'	1	Commander
			Naval Ord Lab
1	Commending Ceneral		White Oak
	U.S. Army Com & Dov Exp GLr		Silver Springs, M.
	Port Ord, California	1	Commender
	m dans a ca	•	Reval Ord Lab
1	Commanding General		Gerena, Galifornia
	USA Chemical Res & Day Labo Attn: Blockysias Div		•
	Hr. George Stewart	1	Gounander
	tigemed Aremal, No.		U.S. Naval Ord Took Sta
			Attn: Code 4033
1	Commanding Officer		China Lake, Colifornia
	U.S. Army Transp Material Con	2	Commender
	Attn: Sicon	•	U.S. Haval Weapons Lab
	11th and Spruce Streets		Attn: Code T & Code M-1
	St. Louis, Missouri		Dahlgram, Virginia
1	Commanding Officer	_	
	U.S. Army He tok Labo	1	Commendar
	Attn: Mr. A. Aleset		U.S. Naval Ros Lab
	Hatick, Massachusetts		Attn: Library Amacostia, Maryland
•	Annough a Allien		
1	Commending Officer Harry Diamond Labs	1	Commander
	Attn: Tech Info Office		U.S. Navy Ruclear Ord Eval Unit
	Branch 012		Attn: Code 40
	Washington 25, D. C.		Rittland Air Porce Base, N. H.
1	D	1	Office of Naval Res
	Director	•	Navy Department
	Research Analysis Corp 6933 Arlington Road		Attn: MASS (So Let Br)
	Bethesda, Maryland		Washington 25, D. C.
			Mantas Busantusand Ros
1	Director	1	Marine Experimental Sta
	Army Research Office		Squadron 1955-1 Quantico, Virginia
	Arlington Hall Station		Andres - A T T T T T T T T T T T T T T T T T T
	Arlington, Virginia	1	Commander
1	Commanding Officer	=	AF Space Weapons Ctr
•	Philadelphia Proc Dist		Rirtland Air Porce Base, N. M.
	U.S. Army		
	Attn: OD, R & D Br	1	Cummender
	128 North Broad Streat		Air Proving Ground Center
	Philadelphia, Pennsylvania		Auth: PGAPI Balin Air Force Base, Fla.
			DELL MAK FOTCE DESET LTS!

DISTRIBUTION LIST (Cont.)

Mn. of Copies	Gre intention	No. of Copies	Gramitation
2	Gormander Fo.eign Twoh Div Air Force Systems Gom '18nd' Attn: Major Henderson Nr. F. Schmidt Wright-Patterson AFS, Chio	i	Arthur D. Little, Inc. 35 Acors Park Cambridge, Messachusetts VIA: Boston Proc Dist U.S. Army Roston Army Base Boston 10, Massachusetts
1	Commander H.Q. Ogden Air Materiel Arau Attn: 00055 Hill Air Forca Bass, Utah	1	AVCO Mig. Corp. Res & Advanced Dav Attn: Library Milmington, Massachusetts VIA: Commending Officer
1	Rend Corporation Dept of the Air Force Attn: Library 1700 Main Street Santa Monica, Collifornia	•	Baston Proc Dist U.S. Army Baston Army Sase Beston 10, Heasehupetts
2	Attn: K.M. Krunnhagen Attn: K.M. Krunnhagen Amm B. Chese, Librarian at Downey, California	1	Sell Relicopter Gorp. P. O. Box ASS Port Morth 1, Taxas VIA: Bureau New Weapons Rep Reging Airpiese Occ7eny
	VIA: Duragu Nev Waspuno nay	•	P.O. Non 1707 Seattle 14, Washington
1	Aeronutronic Div of Ford Motor Co Res Lab Hiterials Dept Ford Road Aten: Mr. E. H. Jaffe Newport Bunch, California VIA: CDU Lieison Officer (Col. R.A. Rewley)	1	VIA: AF Plant Rep Conveir Div of Gen Bym Gorp. P.O. Box 1930 Pomone, Galifornia VIA: Res Rep Army Missile Com Conveir Div of Gen Bym Corp.
l	Aircraft Armaments, Inc. Attn: Livery Cockeyeville, Maryland VIA: Philadelphia Proc Dist U.S. Army 116 North Broad Street Thiladelphia 2, Pannaylvania	ı	San Diago Div Mail Zone 6-157 Attn: Chief Librarian San Diago 12, California VIA: Bur Nav Weapon Rep Cornell Aeronautical Lab Buffalo, New York
1	Applied Physics Laboratory The Johns Hopkins University S621 Georgia Avenus Attn: Library Silver Springs, Perpland Via: Bur day Wespure Kar		VIA: Commanding Officer New York Proc Bist U.S. Army 770 Broadway New York 3, New York
1	Armoun assearch Foundation 33rd and Dearborn Selects Attn: Liberator of Documents Chicago, siling is VIA: Cound on officer Colored Army Attorne Chicago for process Chicago for Tilings Chicago for Tilings	1	General Electric Company Missile & Arm dept Lukasida Avenue Burlington, Verront VIA: Boston From Dist U.S. Army Roston Army Base Roston 10, Massachusetts

BISTRIBUTION LIST (Cont.

No. of Copies	Organization	Ma, af Capies	Organization
		•	
2	General Blastris Company	1	Martin Company
	Radnor, Pennsylvania		Attn: Hr. V. Portar
	VIA: Philadulphia Pros Dist		Orlando, Florida Via: Birmingham Proc Dist
	U.S. Army		U.S. Army
	128 Horth Broad Street		2120 North Seventh Ave
1	Philadelphia 2, Fernaryvenia		Birmingham, Alabama
	General Motorn Porp	1	McBonnell Aircraft Company
	Delense Ree Lab		Rox 516
	Manta Bathera, California VIA: Los Angeles Proc Dist		St. Louis 66, Missouri
	55 South Grand Ave		VIA: U.S. AF Plant Rep
	Pasadona 2, Galifornia		
	. manney of warstness	1	Herth American Aviation Corp
2	Goodyear Aircraft Corp	•	Los Angeles 43, California
_	Attn: Robert Shumeker		VIA: Bur New Weapon Rep
	Rd Pargo		
	1210 Hessilion Road	1	Karranios
	Akren 19, Ohio	-	500 East Grangathorpe Ave
	VIA: Bur Nav Weapon Rep		Anaheim, California
			VIA: Les Angeles Pros Dist
1	Grunnan Aireraft Eng Gorp		U.B. Army
	Bothpene, Long Island, New York		55 South Grand Ave
•	VIA: Bur Hey Weapons Rep		Pacadena 1, California
1	G. T. Schjeldshi Company	*	Raythaan Company
•	e/s Ras Henagement Corp		Minetie Systems Div
	Attn: Hr. Robert D. Ladd		Attn: Hr. Bud Hurd
	VIA: Commending Officer		Spring Stares
	Military Dist Washington		Lexington 73, Massachusatts
	Washington 25, D. C.		VIA: Reston Proc Dist
	. •		U.S. Army
1	Mughes Aircraft Company		Scaton Army Base
	Attn: Library		Anaton 10, Massachusetts
	tulierton, Galifornia		•
	VIA: Los Angeles Proc Dist	ı	Republic Aviation Corp
	U.S. Acmy		Scientifia Research taff
	35 Boulh Grand Ave		Farmingdale, New York
	rasadena 2, Galifornia		VIA: U.S. AP Plant nep
1	Institute for Cooperative Rea	l	Safatae Glass Company
	The Johns Hopkins University		Attn: Mr. Ernest Pascatore
	Actn: H. R. Warffold, Die		4717 Stenton Ave
	34th and Charles Streets		Philadelphia 44, Pennsylvania
	Baltimore 18, Maryland		VIA: Philadelphia Proc Dist
_			U.S. Army
1	Lincoln Laboratory		125 North Broad Street
	Massachusetts Inst of Tach		Philadelphia 2, Pa.
	Attn: Mr. V. Hermann	_	A44
	Room 41-219	1	Sikorsky Aircraft
	Cambridge, Newsonusetts		Div of United Aircraft Corp
	VIA: Roston Proc Dist		Attn: Mr. E. P. Retsenberger
	U.S. Army		South Avenue
	Hoston Fray Base		Reidgeport, Connecticut
	Bosto: 10, Massachusetts		VIA: Bur New Weapon Rep
1	Lockheed Missile and Space Div	1	Space Technology Lab Inc
	Attn: Mr. A. E. Papasoni		Attn: ldbrary
	P.O. Box 504		box 95001,
	Sunnyvale, California		tos Angoles 45, Gelifornia
	VIA: Bur Hav Weepens Rep		VIA: Commander
	- ,		Rallistic Systems Div
			AF Unit Post Office
			tos Angeles 45, Calif.

-244-

No. of Ne. af **Granisation** Contac Orandard T..... Contas Stanford Research Institute Attn: Library Menlo Park, Galifornia VIA: Commending Officer San Francisco Proc Dist U.S. Army 1615 Clay Street P.O. Box 1629 Oakland 12, California Amediow Incorporated Attn: Mr. D.C.S. Flips 6986 Bandini Rivd Los Angeles 22, Unitformia VIA: Los Angeles Pros Dist U.S. Army 55 Bouth firmed Ave Pasedone 2, Calif. Sylvania Blootrical System Waltham 34, Massachusetts VIAt Assess Pres Biss U.S. AFRY Nosten Alay Sace Sesten 10, Massachusetts University Of Desver Industrial Res Inst Attn: Library Donver 10, Colorado VIA: Commending Officer St. Louis Pres pice U.S. Army 4300 Goodfullew Blwd. St. Louis 20, Masouri U.S. Rubber Company Res Dept Mayne, New Jersey VIA: New York Proc Dist U.S. Army 770 Broadway New York 3, H. Y. Vertol Division The Boeing Company Morton, Pennsylvania VIA: Bur of Dur Wenpon Age Heyes International Corp. Attn: Mr. J. F. Hank Birmingham, Alahama VIA: USAF Birmingham Contr Ngmt Off P.O. Bux 2583 Birminghom, Als.