Hydrodynamique — TD 3

La pluie

Dans ce TD, on s'intéresse à la chute des gouttes de pluie, en particulier leur déformation et leur taille critique. Nous allons par exemple chercher à comprendre pourquoi les gouttes de pluie sont toujours au plus millimétriques.

FIGURE 1 – Explosion d'une grosse goutte de pluie au cours de sa chute.

Question préliminaire : Dessiner la forme que prend selon vous une petite goutte de pluie en chute libre dans l'air.

Vitesse de chute d'une goutte de pluie

- 1. On considère une goutte d'eau supposée sphérique. Rappeler la forme de la force de friction avec l'air en fonction de la vitesse dans le régime de faible et grande vitesse.
- 2. Déduire de la question précédente la vitesse limite V_0 de la goutte en chute libre. On donne la viscosité de l'air : $\eta \simeq 18 \times 10^{-6}$ Pa.s à $20\,^{\circ}$ C.

Écoulement autour de la goutte

3. Question préliminaire. On considère une fonction ϕ solution de l'équation de Laplace $\nabla^2 \phi = 0$ de la forme $\phi(\mathbf{r}) = f(r)Y_\ell^m(\theta, \varphi)$, où Y_ℓ^m est une harmonique sphérique. Montrer que l'on peut chercher f sous la forme $f = Ar^{\alpha}$ et donner α .

Indication: on rappelle qu'en coordonnées sphériques le laplacien a pour expression

$$\nabla^2 = \frac{1}{r} \left(\frac{\partial^2(r)}{\partial r^2} \right) - \frac{L^2}{r^2},\tag{1}$$

avec $L^2Y_\ell^m = \ell(\ell+1)Y_\ell^m$.

- 4. On considère l'écoulement autour d'une sphère de rayon R se déplaçant dans l'air à une vitesse $-\mathbf{V}_0$. On cherche un écoulement potentiel $\mathbf{v} = \nabla \phi$ dans le référentiel de la goutte. Quelle est la signification physique d'un écoulement potentiel? Quelle est l'équation satisfaite par ϕ ?
- 5. Dans ce problème simplifié, le fluide s'écoulant autour de la goutte (supposée rigide) est idéal (non-visqueux). Préciser alors les conditions aux limites sur la sphère, et loin de celle-ci.

6. En déduire que ϕ peut se mettre sous la forme

$$\phi(r,\theta,\varphi) = V_0 r \cos\theta + \sum_{\ell m} c_{\ell,m} \frac{Y_\ell^m}{r^{\ell+1}},\tag{2}$$

où l'on a pris l'axe z parallèle à $\textbf{\textit{V}}_0.$ On rappelle que $Y_1^0(\theta,\varphi) \propto \cos\theta.$

- 7. Écrire la condition aux limites en r = R. En déduire que seul $c_{1,0}$ est non nul puis donner l'expression du champ de vitesse dans le fluide.
- 8. Calculer le champ de pression dans l'air que l'on note $p(r, \theta, \varphi)$. Exprimer la pression à la surface de la goutte. Que dire du champ de pression autour de la goutte?

Déformation de la goutte

La goutte n'est pas rigide et se déforme sous l'effet du champ de pression extérieur.

- 9. Quels sont les phénomènes physiques déterminant la forme de la goutte? En déduire par analyse dimensionnelle un nombre sans dimension caractérisant l'amplitude de la déformation
- 10. On paramètrise la surface de la goutte en coordonnées sphériques par l'équation $r(\theta)$. Dans la limite des petites déformations, la forme de la goutte peut être obtenue par la minimisation de la fonctionnelle :

$$G = 2\pi\gamma \int d\theta r \sin\theta \sqrt{r^2 + \left(\frac{dr}{d\theta}\right)^2} + \frac{2\pi}{3} \int d\theta \sin\theta \left(p(R,\theta) + \Lambda\right) r^3, \tag{3}$$

où Λ est un multiplicateur de Lagrange dont on justifiera la présence. Donner la signification physique de chacun des termes de cette fonctionnelle.

11. Montrer que G peut se mettre sous la forme :

$$G = 2\pi\gamma \int I(r, \dot{r}, \theta) d\theta \tag{4}$$

avec:

$$I = r\sin(\theta)\sqrt{r^2 + \dot{r}^2} + \frac{1}{3}r^3\sin(\theta)\left(\lambda - \frac{9}{8}(\sin(\theta))^2\frac{\epsilon}{R}\right)$$
 (5)

Donner l'expression de ϵ et la signification de λ .

- 11. Ecrire l'équation satisfaite par $r(\theta)$. En cherchant l'expression de la surface de la goutte sous la forme $r = R + \epsilon q$ (où $\epsilon \ll 1$) et en se restreignant aux ordres 0 et 1, trouver l'équation satisfaite par q.
- 12. On cherche q sous la forme $q = q_0 + q_1 \cos 2\theta$. Les paramètres q_0 et q_1 ne sont pas indépendants l'un de l'autre et ne dependent pas de θ . Quelle contrainte physique permet d'obtenir une relation simple entre q_0 et q_1 ? Montrer ainsi que $q_1 = 3q_0$.
- 13. Utiliser la minimisation de l'énergie pour trouver la déformation $q(\theta)$ de la goutte.

Taille maximale d'une goutte

14. Déduire des questions précédentes la taille maximale d'une goutte de pluie.