Fractals and the Mandelbrot set

Nicholas Tomlin

Brown University

MATH 1040

An iterated pattern that displays some level of self-similarity:

Koch curve

- Koch curve
- Sierpinski triangle

- Koch curve
- Sierpinski triangle
- Julia and Mandelbrot sets

- Koch curve
- Sierpinski triangle
- Julia and Mandelbrot sets

Definition (Fractal)

An object whose Hausdorff dimension exceeds its topological dimension.

Definition (Fractal)

An object whose Hausdorff dimension exceeds its topological dimension.

Note that the above definition does not account for space-filling fractals, such as the Hilbert curve.

Definition (Fractal)

An object whose Hausdorff dimension exceeds its topological dimension.

Note that the above definition does not account for space-filling fractals, such as the Hilbert curve.

Hausdorff dimension is a measure of the local size of a space with respect to distance between points. It is conjectured that Hausdorff dimension is equivalent to Minkowski-Bouligand dimension for strictly self-similar fractals.

Hausdorff dimension is a measure of the local size of a space with respect to distance between points. It is conjectured that Hausdorff dimension is equivalent to Minkowski-Bouligand dimension for strictly self-similar fractals.

Definition (Minkowski-Bouligand dimension)

If a self-similar set of size 1 can be divided into N congruent sets of size ϵ , then the Minkowski-Bouligand dimension

$$D = \frac{\log(N)}{\log(1/\epsilon)}.$$

Examples of Hausdorff dimension:

Examples of Hausdorff dimension:

1 The Hausdorff dimension of a line is 1

Examples of Hausdorff dimension:

- 1 The Hausdorff dimension of a line is 1
- The Hausdorff dimension of a square is 2

Examples of Hausdorff dimension:

- 1 The Hausdorff dimension of a line is 1
- The Hausdorff dimension of a square is 2
- The Hausdorff dimension of a cube is 3

Examples of Hausdorff dimension:

- 1 The Hausdorff dimension of a line is 1
- The Hausdorff dimension of a square is 2
- The Hausdorff dimension of a cube is 3

This makes sense, because we can divide a line into 2 congruent segments each of length 1/2. Then the Hausdorff dimension $D = \frac{\log(2)}{\log(2)} = 1$ is the same as the topological dimension. Equality holds because the straight line is <u>not</u> a fractal.

Proving the Sierpinski triangle is a fractal

Proving the Sierpinski triangle is a fractal

We can divide the Sierpinski triangle into 3 congruent sets each of size 1/2, so the Hausdorff dimension is

$$D = \frac{\log(3)}{\log(2)} \approx 1.585$$

which is greater than the topological dimension 1. Hence the Sierpinski triangle is a fractal.

Definition (Mandelbrot set)

The set of complex numbers S such that $\forall c \in S$, the sequence defined by

$$z_{n+1} = z_n^2 + c$$
$$z_0 = 0$$

is bounded as $n \to \infty$.

Definition (Mandelbrot set)

The set of complex numbers S such that $\forall c \in S$, the sequence defined by

$$z_{n+1} = z_n^2 + c$$
$$z_0 = 0$$

is bounded as $n \to \infty$.

For example, c=-1 produces the sequence $-1,0,-1,0,-1,0,\ldots$ which is bounded. Therefore -1 is a member of the Mandelbrot set.

Red = z_5 , Yellow = z_8 , Green = z_{12} Light Blue = z_{15} , Dark Blue = z_{25} , Black = z_{100} .

Theorem (Shishikura)

The Mandelbrot set and its border have Hausdorff dimension 2.

Theorem (Shishikura)

The Mandelbrot set and its border have Hausdorff dimension 2.

Since the Mandelbrot set has topological dimension 2, the set itself is not a fractal. However, the border of the Mandelbrot set has topological dimension 1 and Hausdorff dimension 2, so the border of the Mandelbrot set is a fractal.

Theorem (Shishikura)

The Mandelbrot set and its border have Hausdorff dimension 2.

Since the Mandelbrot set has topological dimension 2, the set itself is not a fractal. However, the border of the Mandelbrot set has topological dimension 1 and Hausdorff dimension 2, so the border of the Mandelbrot set is a fractal.

