Code No: 133BC

R16

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech II Year I Semester Examinations, April/May - 2018 MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE (Common to CSE, IT)

Time: 3 Hours Max. Marks: 75

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 25 marks. Answer all questions in Part A.

Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

PART-A

(25 Marks) Construct the truth table for the following formula: 1.a) $\neg (P \lor (Q \land R)) \leftrightarrow ((P \lor Q) \land (P \lor R))$ [2] Explain duality law. [3] b) Give the formal definition for the composition of binary relations. c) [2] What are the properties of a group? d) [3] State addition principle and give an example of a problem solved by addition principle. e) [2] State pigeon-hole principle. f) [3] What is the general form of a first-order recurrence relation? g) [2] h) What is the generating function of 1,-1,1,-1,...[3] If a simple graph G contains n vertices and m edges, how many number of edges are i) present in Graph G' (complement of G). [2] How many edges are present in a complete graph with *n* vertices? Explain. i) [3] PART-B (**50 Marks**)

- 2.a) Show the following equivalence without constructing the truth table. $((P \land Q \land A) \rightarrow C) \land (A \rightarrow (P \lor Q \lor C)) \Leftrightarrow (A \land (P \leftrightarrow Q)) \rightarrow C$
 - b) Without constructing a truth table, show that $A \wedge E$ is not a valid consequence of $A \leftrightarrow B \quad B \leftrightarrow (C \wedge D) \quad C \leftrightarrow (A \vee E) \quad A \vee E$ [5+5]

OR

- 3.a) Obtain the principal disjunctive and conjunctive normal form of the following formula. $(P \to (Q \land R)) \land (\neg P \to (\neg Q \land \neg R))$
 - b) For the following formulas, let the universe be \mathbb{R} . Translate each of the following sentences into a formula (using quantifiers):
 - i) There is a smallest number.
 - ii) Every positive number has a square root. (Do not use the square root symbol; use only multiplication.) [5+5]

- 4.a) Consider the following Hasse diagram of a partially ordered set $\langle P,R\rangle$, where $P=\{x_1,x_2,x_3,x_4,x_5\}$. Find the least and greatest members in P if they exist. Also find the maximal and minimal elements of P. Find the upper and lower bounds of $\{x_2,x_3,x_4\}$, $\{x_2,x_4,x_5\}$ and $\{x_1,x_2,x_3\}$. Also indicate the LUB and GLB of these subsets if they exist.
 - b) Let $n \in N^+$ and $G_1, G_2, ..., G_n$ be groups, and consider $\prod_{i=1}^n G_i := G_1 \times G_2 \times ... \times G_n = \{(a_1, a_2, ..., a_n) : a_i \in G_i \ \forall i = 1, 2, ..., n\} \text{ with the operation } \dagger$ where if $x = (a_1, a_2, ..., a_n)$ and $y = (b_1, b_2, ..., b_n)$, then $x \dagger y = (a_1b_1, a_2b_2, ..., a_nb_n)$, where each product a_ib_i is performed according to the operation of the group G_i . Show that $\prod_{i=1}^n G_i$ is a group. [5+5]

OR

- 5.a) Find the transitive closure of the relation $R = \{(1,2), (2,3), (3,4), (4,1)\}$. Show R^i for all values of i that give new elements of the transitive closure.
 - b) Find all the subgroups of (i) $(Z_{12}, +_{12})$, and (ii) (Z_7, \times_7) . [5+5]
- 6. In the United States and Canada, a telephone number is a 10-digit number of the form NXX NXX XXXX where $N \in \{2,3,...,9\}$ and $X \in \{0,1,2,...,9\}$. How many telephone numbers are possible? The first three digits of a telephone number are called an area code. How many different area codes must a city with 23,000,000 phones have? A previous scheme for forming a telephone numbers required a format of NYX NXX XXXX where N and X are defined as above and Y is either a 0 or a 1. How many more phone numbers are possible under the new format than under the old format?

OR

- 7.a) How many four letter words can be formed using the letters a, a, a, b, b, c, c, c, c, d, d?
 - b) Expand $(2x y)^7$ using the Binomial Theorem.

[5+5]

- 8.a) Solve the recurrence relation $a_n = 2a_{n-1} + 3a_{n-2}$ for $n \ge 2$ where $a_0 = 2$ and $a_1 = 2$
 - b) Using generating function find a_n in terms of n if $a_0 = 1$, $a_1 = 2$ and $a_{n+2} = 5a_{n+1} 4a_n$ for $n \ge 0$.

OR

- 9.a) Solve the recurrence relation $T(n) = 4T(n-1) + 2^n$, with T(0) = 6.
 - b) Find the coefficient of x^{2005} in the generating function $\frac{1}{(1+5x)^2}$. [5+5]

10.a) Determine whether the given pair of graphs is isomorphic?

b) Determine whether the following graph has an Euler circuit or path.

[5+5]

- 11.a) How do you test the planarity of a graph? Explain.
 - b) What are the chromatic numbers of the graph G and H? [5+5]

