

ALGAV

SPRINT 2

3DD GRUPO 20:

Diogo Tomás Rodrigues Ferreira, 1220829
Francisco Marçal Teixeira Osório, 1220846
Sérgio Daniel Freitas Moreira, 1220890
Rafael Duarte de Oliveira Ferraz, 1221104

11/2024

Índice

Índice de Figuras	3
Índice de Tabelas	4
Explicação do código base	5
Análise de Complexidade	6
Heurísticas	10
Heurística 1	10
Heurística 2	17
Conclusões	24

Índice de Figuras

Figura 1 - Gráfico Tempo Final vs. Número de Cirurgias	8
Figura 2 - Tempo gerar solução vs. Número de Cirurgias	8
Figura 3 - Predicado schedule_all_sugeries_heuristic	11
Figura 4 - Predicado heuristic_1	12
Figura 5 - Gráfico Tempo Final vs. Número de Cirurgias (Heurística 1)	16
Figura 6 - Tempo gerar solução vs. Número de Cirurgias (Heurística 1)	17
Figura 7 - Predicado heuristic_2	18
Figura 8 - Gráfico Tempo Final vs. Número de Cirurgias (Heurística 2)	22
Figura 9 - Tempo gerar solução vs. Número de Cirurgias (Heurística 2)	22

Índice de Tabelas

Tabela 1 - Resultados obtidos através do código base	. 6
Tabela 2 - Resultados obtidos heurística 1 e comparação com código base	13
Tabela 3 - Resultados obtidos heurística 2 e comparação com código base	18

Explicação do código base

O código base fornecido permite o escalonamento de cirurgias, considerando as agendas dos médicos.

Inicialmente, temos o predicado "agenda_staff/3", que associa os médicos aos horários que se encontram ocupados para um determinado dia. As horas de trabalho é definido pelo predicado "timetable/3", indicando para cada médico o tempo de trabalho para um determinado dia. Através do predicado "surgery/4", definimos os tempos de anestesia, de cirurgia e limpeza para um determinado tipo de cirurgia. Para além disso, através do predicado "surgery_id/2", associa-se um tipo de cirurgia a uma cirurgia. Com o predicado "assignment_surgery/2", é possível definir quais médicos podem realizar quais cirurgias, sendo que o predicado "agenda_operation_room/3" especifica a ocupação dos quartos.

Passando para a parte da gestão das agendas, utilizamos o predicado free_agenda0/2 para identificar os intervalos livres em uma agenda ocupada, enquanto o "adapt_timetable/4" ajusta esses intervalos de acordo com o horário de trabalho do médico. Além disso, o predicado "intersect_all_agendas/3" calcula a interseção das agendas, combinando as disponibilidades dos diferentes médicos. Desta forma é possível garantir que as cirurgias sejam agendadas apenas nos horários disponíveis.

Relativamente ao agendamento das cirurgias em si, utiliza-se o predicado "schedule_all_surgeries/3", que será responsável por marcar todas as cirurgias em um quarto, num dia específico. Este predicado copia as agendas, para armazenar as horas iniciais, e de seguida obtém os intervalos livres para os médicos e para os quartos. Por sua vez, o predicado "availability_operation/5" permite determinar quais os horários possíveis para uma cirurgia, tendo em conta a disponibilidade dos médicos e salas, enquanto os predicados "insert_agenda/3" e "insert_agenda_doctors/3" atualizam as agendas da sala e dos médicos, respetivamente.

Para obter a melhor solução possível temos o predicado "obtain_better_sol/5", que faz todas as combinações de cirurgias para encontrar uma solução que minimize o tempo total necessário para realizar todas as operações, utilizando assim o predicado "permutation/2," para testar todas as ordens possíveis de execução das cirurgias e avalia cada solução com o predicado "evaluate_final_time/3", que mede o tempo final da última cirurgia. Caso uma solução seja melhor que a solução atual, será atualizada através do predicado "update_better_sol/5", sendo assim obtida a solução.

Análise de Complexidade

Para a análise de complexidade, utilizou-se o código fornecido e executou-se para as N cirurgias disponíveis, verificando-se os seguintes resultados:

Tabela 1 - Resultados obtidos através do código base

Nº de cirurgias	N ^o de soluções	Melhor escalonamento de atividades (incluindo cirurgias) da sala de operações	Tempo Final para a última Cirurgia (minutos)	Tempo para gerar as soluções
3	6	[(520, 579, so100000), (580, 639, so100001), (640, 714, so100003), (715, 804, so100002), (1000, 1059, so099999)]	804	0.010828018
4	24	[(520, 579, so100000), (580, 654, so100003), (655, 714, so100004), (715, 804, so100002), (805, 864, so100001), (1000, 1059, so099999)]	864	0.012715101
5	120	[(520, 579, so100000), (580, 639, so100004), (640, 714, so100005), (715, 804, so100002), (805, 879, so100003), (880, 939, so100001), (1000, 1059, so099999)]	939	0.06270504
6	720	[(520, 579, so100000), (580, 639, so100004), (640, 714, so100005), (715, 804, so100002), (805, 879, so100003), (880, 939, so100001), (940, 999, so100006), (1000,,)]	999	0.349401951
7	5040	[(520, 579, so100000), (580, 639, so100004), (640, 714, so100005), (715, 804, so100002), (805, 879, so100003), (880, 939, so100001), (940, 999,	1149	2.22795701

		so100006), (1000,,), (,)]		
8	40320	[(520, 579, so100000), (580, 639, so100004), (640, 699, so100008), (700, 789, so100002), (791, 865, so100003), (866, 925, so100001), (926, 985, so100006), (1000,,), (,)	1224	6.533469915
9	362880	[(520, 579, so100000), (580, 639, so100004), (640, 699, so100008), (700, 789, so100002), (790, 849, so100009), (850, 909, so100001), (910, 969, so100006), (1000,,), (,)]	1299	49.07390785
10	3628800	[(520, 579, so100000), (580, 639, so100004), (640, 699, so100008), (700, 759, so100009), (791, 865, so100003), (866, 925, so100001), (926, 985, so100006), (1000,,), (,)]	1374	511.4216359

De realçar que todos estes dados foram obtidos a partir da mesma máquina, para que não houvesse nenhuma discrepância entre os valores.

Através dos resultados anteriores é possível obter os dois gráficos seguintes:

Figura 1 - Gráfico Tempo Final vs. Número de Cirurgias

Figura 2 - Tempo gerar solução vs. Número de Cirurgias

O tempo final, reflete o desempenho do algoritmo (neste caso a melhor solução) relativamente à capacidade do mesmo, agendar as cirurgias de forma eficiente. Pela análise da *Figura 1*, é possível verificar que temos um crescimento linear, desta forma podemos dizer que temos um algoritmo eficiente, para a agendar as cirurgias.

Já o tempo de gerar solução, reflete o tempo que o algoritmo demorar para gerar a solução para o escalonamento das cirurgias. Pela análise da *Figura 2*, observa-se que um

crescimento exponencial, sendo assim pouco eficiente, neste parâmetro, mas o que é bastante normal uma vez que são realizadas todas as permutações possíveis, para encontrar a melhor solução. Desta forma, conclui-se que a complexidade do algoritmo é $O(N! \times N)$, pois para as N cirurgias, para obter o número das diferentes formas de ordenála é por N! e sendo que para cada uma é o algoritmo calcula o tempo necessário para concluir todas as cirurgias.

Para além disso, pode-se verificar que para mais de 10 cirurgias, este algoritmo não é uma boa solução, uma vez que demora bastante horas, ou mesmo dias para se puder obter a melhor solução.

Heurísticas

Heurística 1

Para o desenvolvimento desta heurística foi considerado que a próxima cirurgia é aquela que será possível para o médico que está disponível, o mais cedo possível, sendo que o necessário para estar disponível antecipadamente é ter tempo suficiente para concluir a cirurgia antecipadamente.

A heurística, inicia-se pelo predicado "heuristic_1/5", registando o tempo inicial da execução e removendo qualquer agenda armazenada anteriormente para os médicos e quartos. Depois disso recupera-se a agenda do quarto para o dia, e organiza-se as disponibilidades dos médicos. Posteriormente, começa-se a agendar as cirurgias através do predicado "schedule_all_surgeries_heuristic/3", percorrendo-se todas as cirurgias e para cada uma, encontra-se o horário disponível mais cedo para os médicos ("find_earliest_available_doctor/4"), agendando cada uma através do predicado "schedule_surgery_heuristic/3" sendo que após todas as cirurgias serem agendadas atualiza-se a disponibilidade dos médicos.

No final, calcula-se o tempo de execução, e envia-se a solução, tempo de execução e o tempo em que a última cirurgia acaba.

```
schedule_all_surgeries_heuristic([], _, _).
schedule all surgeries heuristic([OpCode|Rest], Room, Day) :-
    surgery_id(OpCode, OpType),
    surgery(OpType, _, TSurgery, _),
    % Find earliest available time slot
    availability_operation(OpCode, Room, Day, LPossibilities, _),
    schedule_first_interval(TSurgery, LPossibilities, (TinS, TfinS)),
    % Update schedules
    retract(agenda_operation_room1(Room, Day, Agenda)),
    insert_agenda((TinS, TfinS, OpCode), Agenda, Agenda1),
    assertz(agenda_operation_room1(Room, Day, Agenda1)),
   % Update doctors schedules
    findall(Doctor, assignment surgery(OpCode, Doctor), LDoctors),
    insert_agenda_doctors((TinS, TfinS, OpCode), Day, LDoctors),
    % Update availabilities
    retractall(availability(_, Day, _)),
    findall(_, (
        agenda_staff1(D, Day, L),
       free_agenda0(L, LFA),
        adapt_timetable(D, Day, LFA, LFA2),
        assertz(availability(D, Day, LFA2))
    ), _),
    % Continue with next surgery
    schedule_all_surgeries_heuristic(Rest, Room, Day).
```

Figura 3 - Predicado schedule_all_sugeries_heuristic

```
heuristic_1(Room, Day, AgOpRoomBetter, LAgDoctorsBetter, TFinOp) :-
   get time(Ti),
   retractall(agenda_staff1(_, _, _)),
   retractall(agenda_operation_room1(_, _, _)),
   retractall(availability(_, _, _)),
   findall( , (agenda_staff(D, Day, Agenda),assertz(agenda_staff1(D, Day, Agenda))), _),
   agenda operation room(Room, Day, Agenda),
   assert(agenda operation room1(Room, Day, Agenda)),
   % Setup initial availabilities
   findall(_, (
       agenda_staff1(D, Day, L),
       free_agenda0(L, LFA),
       adapt_timetable(D, Day, LFA, LFA2),
       assertz(availability(D, Day, LFA2))
   ), _),
   % Get all surgeries
   findall(OpCode, surgery_id(OpCode, _), LOC),
   % Schedule each surgery
   schedule_all_surgeries_heuristic(LOC, Room, Day),
   % Get final schedule
   agenda_operation_room1(Room, Day, FinalAgenda),
   findall(Doctor, assignment_surgery(_, Doctor), LDoctors1),
   remove_equals(LDoctors1, LDoctors),
   list_doctors_agenda(Day, LDoctors, LAgendas),
   % Calculate final time
   reverse(FinalAgenda, ReversedAgenda),
   evaluate_final_time(ReversedAgenda, LOC, FinalTime),
   AgOpRoomBetter = FinalAgenda,
   LAgDoctorsBetter = LAgendas,
   TFinOp = FinalTime,
   get_time(Tf),
   T is Tf-Ti,
   write('Final Result with Heuristic:'), nl,
   write('AgOpRoomBetter= '), write(AgOpRoomBetter), nl,
   write('LAgDoctorsBetter= '), write(LAgDoctorsBetter), nl,
   write('TFinOp com a heuristica= '), write(TFinOp), nl,
   write('Tempo de geracao da solucao= '), write(T), write(' seconds'), nl.
```

Figura 4 - Predicado heuristic_1

Para obter os resultados utilizou-se os mesmos dados que foram fornecidos no código base, sendo que foram obtidos os seguintes resultados, comparando com o código base:

Tabela 2 - Resultados obtidos heurística 1 e comparação com código base

Nº de cirurgia s	Melhor solução	Tempo Final para a última Cirurgia (minutos	Tempo Final para a última Cirurgia Usando a Heurísti ca (minutos)	Tempo para gerar as soluções	Tempo para geração a solução da heurística	Soluçã o com a Heurís tica
3	[(520, 579, so100000) , (580, 639, so100001) , (640, 714, so100003) , (715, 804, so100002) , (1000, 1059, so099999)]	804	865	0.0108280 18	0.0002629 756927490 23	[(520, 579, so1000 00), (580, 639, so1000 01), (640, 729, so1000 02), (791, 865, so1000 03), (1000, 1059, so0999 99)]
4	[(520, 579, so100000) , (580, 654, so100003) , (655, 714, so100004) , (715, 804, so100002) , (805,	864	1200	0.0127151 01	0.0002667 903900146 48	[(520, 579, so1000 00), (580, 639, so1000 01), (640, 729, so1000 02), (791,

	864, so100001) , (1000, 1059, so099999)					865, so1000 03), (1000, 1059, so0999 99), (1141, 1200, so1000 04)]
5	[(520, 579, so100000), (580, 639, so100004), (640, 714, so100005), (715, 804, so100002), (805, 879, so100003), (880, 939, so100001), (1000, 1059, so099999)]	939	1200	0.0627050	0.0003669 261932373 04	[(520, 579, so1000 00), (580, 639, so1000 01), (640, 729, so1000 02), (791, 865, so1000 03), (1000, 1059, so0999 99), (1060, 1134, so1000 05), (1141, 1200, so1000 04)]
6	[(520, 579, so100000) , (580, 639, so100004) , (640,	999	1200	0.3494019 51	0.0003960 132598876 95	[(520, 579, so1000 00), (580, 639, so1000 01),

	714, so100005) , (715, 804, so100002) , (805, 879, so100003) , (880, 939, so100001) , (940, 999, so100006) , (1000,,)]					(640, 729, so1000 02), (791, 865, so1000 03), (866, 925, so1000 06), (1000, 1059, so0999 99), (1060, 1134, so1000 05), (1141,,)]
7	[(520, 579, so100000), (580, 639, so100004), (640, 714, so100005), (715, 804, so100002), (805, 879, so100003), (880, 939, so100001), (940, 999, so100006)	1149	1290	2.2279570 1	0.0005550 384521484 37	[(520, 579, so1000 00), (580, 639, so1000 01), (640, 729, so1000 02), (791, 865, so1000 03), (866, 925, so1000 06), (1000, 1059, so0999 99), (1060,

```
, (1000, ..., 1134, ...), (..., so1000 05), (1141, ..., ...), (..., ...),
```

Através dos resultados anteriores é possível obter os seguintes gráficos:

Figura 5 - Gráfico Tempo Final vs. Número de Cirurgias (Heurística 1)

Figura 6 - Tempo gerar solução vs. Número de Cirurgias (Heurística 1)

Os resultados foram obtidos até 7 cirurgias, uma vez que para a oitava cirurgia, não havia disponibilidade para realizar a operação pelos médicos respetivos, não sendo possível agendar mais.

Esta heurística apresenta uma complexidade de O(n), onde n é o número de cirurgias, essencialmente devido ao predicado "schedule_all_surgeries_heuristic/3", onde é realizado um loop por todas as cirurgias.

Heurística 2

Na segunda heurística, vai ser usado o algoritmo "longest first", ou seja, vai ser priorizada a cirurgia que mais tempo demora a ser concluída, e depois a segunda mais longa, e sempre assim.

Para isso, desenvolveu-se o predicado "heuristic_2/4". Este predicado começa por marcar o tempo de início de execução e por limpar quaisquer marcações feitas e por ordenar todas as cirurgias, da mais longa para a mais curta, assim temos as cirurgias com maior prioridade no início da fila. Em seguida, começando pela primeira da lista, vê-se se há disponibilidade dos médicos responsáveis pela tal. Verifica-se se estes estão disponíveis e se isso se verificar, marca-se a cirurgia, senão, repete-se o processo para a próxima cirurgia na lista.

Este processo repete-se até acabar o dia, até marcar todas as cirurgias, ou não houver mais médicos disponíveis.

Por fim, calcula-se o tempo de execução, e envia-se a solução, tempo de execução e o tempo em que a última cirurgia acaba.

```
heuristic_2(Room,Day,AgOpRoomBetter,LAgDoctorsBetter,TFinOp):-
    get_time(Ti),
    retractall(agenda_staff1(_,_,_)),
    retractall(agenda_operation_room1(_,_,_)),
    retractall(availability(_,_,_)),
    % Get all surgeries
    findall(OpCode-Duration,(surgery_id(OpCode,Type),surgery(Type,_,Duration,_)),Pairs),
    % Sort by duration
    keysort(Pairs, Sorted),
    % Longest First
    reverse(Sorted, LongestFirst),
    pairs_keys(LongestFirst,SortedOpCodes),
    findall( ,(agenda staff(D,Day,Agenda),assertz(agenda staff1(D,Day,Agenda))), ),
    agenda operation room(Room, Day, Agenda),
    assert(agenda_operation_room1(Room,Day,Agenda)),
    findall(_,(agenda_staff1(D,Day,L),free_agenda0(L,LFA),
        adapt_timetable(D,Day,LFA,LFA2),
        assertz(availability(D,Day,LFA2))),_),
    % Schedule surgeries
    availability all surgeries(SortedOpCodes,Room,Day),
    % Get final schedules
    agenda operation room1(Room, Day, AgOpRoomBetter),
    findall(Doctor,assignment_surgery(_,Doctor),LDoctors1),
    remove equals(LDoctors1, LDoctors),
    list_doctors_agenda(Day,LDoctors,LAgDoctorsBetter),
    % Calculate final time
    reverse(AgOpRoomBetter, ReversedAgenda),
    evaluate_final_time(ReversedAgenda,SortedOpCodes,TFinOp),
   % Calculate execution time
    get time(Tf),
   T is Tf-Ti,
   write('TFinOp com a heurística: '),write(TFinOp),nl,
   write('Solucao com a heuristica: '),write(AgOpRoomBetter),nl,
    write('Tempo de geracao da solucao com a heurística: '),write(T),write(' seconds'),nl.
```

Figura 7 - Predicado heuristic_2

De seguida, estão representados os dados obtidos na mesma máquina e para os mesmos dados:

Tabela 3 - Resultados obtidos heurística 2 e comparação com código base

Nº de cirurgia s	Melhor solução	Tempo Final para a última	Tempo Final para a última	Tempo para gerar as soluções	Tempo para geração a	Soluçã o com a
------------------------	-------------------	------------------------------------	------------------------------------	---------------------------------------	----------------------------	----------------------

		Cirurgia (minutos)	Cirurgia Usando a Heurísti ca (minutos		solução da heurística	Heurís tica
3	[(520, 579, so100000) , (580, 639, so100001) , (640, 714, so100003) , (715, 804, so100002) , (1000, 1059, so099999)]	804	850	0.0108280 18	0.0001878 738403320 31	[(520, 579, so1000 00), (580, 654, so1000 03), (655, 744, so1000 02), (791, 850, so1000 01), (1000, 1059, so0999 99)]
4	[(520, 579, so100000), (580, 654, so100003), (655, 714, so100004), (715, 804, so100002), (805, 864, so100001), (1000, 1059, so099999)]	864	864	0.0127151 01	0.0002369 880676269 53	[(520, 579, so1000 00), (580, 639, so1000 04), (640, 714, so1000 03), (715, 804, so1000 02), (805, 864, so1000

```
01),
                                                                       (1000,
                                                                       1059,
                                                                      so0999
                                                                        99)]
         [(520,
         579,
       so100000)
         , (580,
                                                         [(520, 579,
          639,
                                                         so100000),
       so100004)
                                                         (580, 654,
                                                         so100005),
         , (640,
          714,
                                                         (655, 714,
       so100005)
                                                         so100004),
         , (715,
                                                         (791, 865,
                                                                       0.0002
                                           0.0627050
          804,
                                                         so100003),
                                                                      489089
5
                                                4
                      939
                                 1149
       so100002)
                                                                      965820
                                                         (866, 925,
                                                         so100001),
                                                                         31
         , (805,
          879,
                                                           (1000,
       so100003)
                                                           1059,
         , (880,
                                                         so099999),
          939,
                                                           (1060,
       so100001)
                                                            1149,
        , (1000,
                                                         so100002)]
         1059,
       so099999)
           ]
         [(520,
                                                         [(520, 579,
         579,
                                                         so100000),
       so100000)
                                                         (580, 639,
         , (580,
                                                         so100006),
          639,
                                                         (640, 714,
       so100004)
                                                         so100005),
                                                         (791, 865,
         , (640,
                                           0.3494019
                                                         so100003),
                                                                       0.0003
          714,
                                               51
                                                         (866, 925,
                                                                      688335
6
       so100005)
                      999
                                 1290
                                                         so100001),
                                                                      418701
         , (715,
                                                                         17
                                                           (1000,
          804,
                                                           1059,
       so100002)
                                                         so099999),
         , (805,
                                                           (1141,
                                                           1200,
          879,
                                                         so100004),
       so100003)
                                                          (1201, ...,
         , (880,
                                                             ...)]
          939,
```

```
so100001)
         , (940,
          999,
       so100006)
       , (1000, ...,
          ...)]
         [(520,
          579,
       so100000)
         , (580,
          639,
                                                           [(520, 579,
       so100004)
                                                          so100000),
                                                           (580, 669,
         , (640,
                                                          so100007),
          714,
                                                           (670, 759,
       so100005)
                                                          so100002),
         , (715,
                                                           (791, 850,
          804,
                                                          so100006),
                                                                         0.0002
                                            2.2279570
       so100002)
                                                           (851, 910,
                                                                         930164
7
                                                 1
                      1149
                                  1275
         , (805,
                                                          so100001),
                                                                         337158
                                                             (1000,
                                                                            2
          879,
                                                             1059,
       so100003)
                                                          so099999),
         , (880,
                                                             (1060,
          939,
                                                             1134,
       so100001)
                                                          so100005),
         , (940,
                                                           (1141, ...,
          999,
                                                           ...), (..., ...)]
       so100006)
       , (1000, ...,
         ...), (...,
          ...)]
```

Mais uma vez, com os resultados anteriores contruiu-se os gráficos seguintes:

Figura 8 - Gráfico Tempo Final vs. Número de Cirurgias (Heurística 2)

Figura 9 - Tempo gerar solução vs. Número de Cirurgias (Heurística 2)

Também nesta heurística, os resultados foram obtidos até 7 cirurgias, uma vez que para a oitava cirurgia, não havia disponibilidade para realizar a operação pelos médicos respetivos, não sendo possível agendar mais.

A complexidade desta heurística é refletida essencialmente pela ordenação das cirurgias pela sua duração, da mais demorada para a menos demorada. Sendo assim, o

algoritmo apresenta uma complexidade O(n * log(n)), sendo também algo percetível pelo Figura 6.

Conclusões

Pelas análises anteriores, podem se tirar algumas conclusões. Desta forma, é possível verificar que as duas heurísticas se destacam em relação á *better solution* a nível de tempo de execução, tornando-as ideias para situações onde o tempo de processamento é essencial. Porém, as soluções obtidas pelas duas heurísticas são menos precisas, ou seja, tempos finais superiores para a última cirurgia, relativamente ao *better solution*.

Desta forma, as heurísticas são ideais para cenários com restrições de tempo e grande número de cirurgias, apesar de ter menos precisão, sendo a segunda heurística parece mais eficiente. No entanto, para cenários onde a precisão é prioritária, o algoritmo do *better solution* é preferível, apesar de ter um custo superior de tempo.