Dummit & Foote Ch. 1.4: Matrix Groups

Scott Donaldson

Mar. 2023

1. (3/16/23)

Prove that $|GL_2(\mathbb{F}_2)| = 6$.

Proof. Matrices in $GL_2(\mathbb{F}_2)$ have the form $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$, where $a, b, c, d \in \{0, 1\}$. There are 16 possible matrices of this form (2 options for each entry over 4 entries, $2^4 = 16$).

From the definition of GL_2 , we discount matrices with determinant 0. A 2×2 matrix has determinant 0 when ad - bc = 0, that is, ad = bc. This happens only when ad = bc = 1 or ad = bc = 0. There is only one matrix where ad = bc = 1, $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$. Matrices with determinant 0 have one of a, d and b, c equal to 0. They are the matrices with all zero entries (1), with three zero entries (4), and with two zero entries (a and b, or a and c, or b and d, or c and d) (4).

This leaves us with 16-1-1-4-4=6 matrices with nonzero determinants, so the order of $GL_2(\mathbb{F}_2)=6$.

2. (3/16/23)

Write out all the elements of $GL_2(\mathbb{F}_2)$ and compute the order of each element.

- $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$: 1 (identity)
- $\bullet \ \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} : 2$
- $\bullet \ \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} : 2$
- $\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$: 3

•
$$\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$$
: 3

$$\bullet \ \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} : 2$$

3. (3/16/23)

Show that $GL_2(\mathbb{F}_2)$ is non-abelian.

Proof. To prove that $GL_2(\mathbb{F}_2)$ is non-abelian, we need only show that it contains two non-commuting elements.

two non-commuting elements.
$$\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \times \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}.$$
 However,
$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \times \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}.$$
 These products are not equal, so $GL_2(\mathbb{F}_2)$ is non-abelian. \square

4. (3/18/23)

Show that if n is not prime then $\mathbb{Z}/n\mathbb{Z}$ is not a field.

Proof. Let n be a composite positive integer and let a divide n with a > 1. We will show that a does not have a multiplicative inverse in $\mathbb{Z}/n\mathbb{Z}$, and therefore $\mathbb{Z}/n\mathbb{Z}$ is not a field.

We will show that there is no integer c such that $ac = 1 \mod n$. Since a divides n, let $ab = n = 0 \mod n$. So $a(b+1) = ab + a = n + a = a \mod n$. That is, for the pair of consecutive integers b and b+1, we have ab = 0 < 1 and a(b+1) = a > 1. Then there is no integer c strictly between b and b+1 such that $ac = 1 \mod n$. For any larger integers, we note that $abk = nk = 0 \mod n$, and $a(bk+1) = abk + a = nk + a = a \mod n$, and therefore there is no integer c among all of \mathbb{Z}^+ with ac = 1. Therefore, since a has no multiplicative inverse, $\mathbb{Z}/n\mathbb{Z}$ is not a field.

5. (3/18/23)

Show that $GL_n(F)$ is a finite group if and only if F has a finite number of elements.

Proof. Let F be a field with $m < \infty$ elements and, for some n > 1, let $GL_n(F)$ be the general linear group of degree n on F. The total possible number of $n \times n$ matrices with entries from F is m^{n^2} . Since the number of elements in $GL_n(F)$ is at most this value, it is a finite group (in 6. we will show that it is strictly less than).

To prove the converse, we will show that, if F is an infinite field, then $GL_n(F)$ must not be a finite group. Let F be an infinite field. For every $x \in F$

(excluding x = 0), we can construct an $n \times n$ matrix whose diagonal entries are x and all other entries are 0. By definition, the determinant of such a matrix is the product of the diagonal entries, $x^n \neq 0$. Therefore such a matrix belongs to $GL_n(F)$. This is a bijection between F and $GL_n(F)$, and so they have the same cardinality, that is, $GL_n(F)$ must not be a finite group.

Thus, $GL_n(F)$ is a finite group if and only if F has a finite number of elements.

6. (3/19/23)

If |F| = q is finite prove that $|GL_n(F)| < q^{n^2}$.

Proof. An element of $GL_n(F)$ is an invertible $n \times n$ matrix whose entries come from F. For each entry, there are q possibilities, and there are n^2 total entries, so there are q^{n^2} possible such matrices (before discounting those with determinant = 0). It is guaranteed that some number of $n \times n$ matrices have determinant 0; for example, the matrix whose entries are all 0 obviously has determinant 0. So the number of elements of $GL_n(F)$ is always strictly less than q^{n^2} .

7. (3/19/23)

Let p be a prime. Prove that the order of $GL_2(\mathbb{F}_p)$ is $p^4 - p^3 - p^2 + p$.

Proof. From 5. and 6., there are $p^{2^2} = p^4$ possible 2×2 matrices, and the order of $GL_2(\mathbb{F}_p)$ is strictly less than this number. Let us count the ways in which an element of $GL_2(\mathbb{F}_p)$ might have a determinant equal to 0.

A 2×2 matrix in $GL_2(\mathbb{F}_p)$ has the form $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$, with $a,b,c,d \in F_p$. The determinant of a 2×2 matrix is ad - bc. First, consider the cases in which $a,b,c,d \neq 0$. Setting the determinant equal to 0, we can see that d must equal bc/a. So there are p-1 choices for a,b,c, and d is fixed based on the other entries. Then there are $(p-1)^3$ matrices with 4 nonzero entries with determinant equal to 0.

Next, consider 2×2 matrices with one entry equal to 0, for example, $\begin{pmatrix} a & b \\ c & 0 \end{pmatrix}$. The determinant of this matrix is $a \cdot 0 - bc = bc$. In order for this to equal 0, at least one of either b or c must equal zero. Then there are no matrices with exactly 1 zero entry with determinant equal to 0.

Now consider 2×2 matrices with two entries equal to 0. Such matrices have the form $\begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} a & 0 \\ c & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 0 \\ c & d \end{pmatrix}$, or $\begin{pmatrix} 0 & b \\ 0 & d \end{pmatrix}$. There are p-1 possible choices for both of the nonzero entries, so there are $4(p-1)^2$ matrices with exactly 2 nonzero entries with determinant equal to 0.

Matrices with three entries equal to 0 have the form $\begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & b \\ 0 & 0 \end{pmatrix}$,

$$\begin{pmatrix} 0 & 0 \\ c & 0 \end{pmatrix}$$
, or $\begin{pmatrix} 0 & 0 \\ 0 & d \end{pmatrix}$. There are $4(p-1)$ such matrices.

Finally, there is the single matrix with all 0 entries, $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$. So, the total number of elements of $GL_2(\mathbb{F}_p)$ is:

$$p^{4} - (p-1)^{3} - 4(p-1)^{2} - 4(p-1) - 1 =$$

$$p^{4} - (p^{3} - 3p^{2} + 3p - 1) - (4p^{2} - 8p + 4) - (4p - 4) - 1 =$$

$$p^{4} - p^{3} + 3p^{2} - 3p + 1 - 4p^{2} + 8p - 4 - 4p + 4 - 1 =$$

$$p^{4} - p^{3} + (3 - 4)p^{2} + (-3 + 8 - 4)p + (1 - 4 + 4 - 1) =$$

$$p^{4} - p^{3} - p^{2} + p$$

as desired. \Box

8. (3/21/23)

Show that $GL_n(F)$ is non-abelian for any $n \geq 2$ and F.

Proof. To show that $GL_n(F)$ is non-abelian, we need to show that it contains two elements that are noncommutative. By definition of general linear groups, $GL_n(F)$ consists of invertible $n \times n$ matrices whose entries come from the field F. Further, by definition of fields, F contains an additive identity 0 and a multiplicative identity 1. Therefore, if we consider only matrices in $GL_n(F)$ whose entries are 0 or 1 and whose product's entries are 0 or 1 (in \mathbb{Z}), these are elements of every $GL_n(F)$ regardless of which F we choose.

Let A be the transpose of the identity matrix and let B be equal to the identity matrix with the final two columns swapped:

$$A = \begin{pmatrix} 0 & 0 & \cdots & 0 & 1 \\ 0 & 0 & \cdots & 1 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 1 & \cdots & 0 & 0 \\ 1 & 0 & \cdots & 0 & 0 \end{pmatrix}, B = \begin{pmatrix} 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & 1 \\ 0 & 0 & \cdots & 1 & 0 \end{pmatrix}.$$

The upper-left entry of AB is the dot product of the first row of A with the first column of B, that is, $0 \cdot 0 + 0 \cdot 0 + \ldots + 1 \cdot 1 = 1$.

The upper-left entry of BA is the dot product of the first row of B with the first column of A, that is, $1 \cdot 0 + 0 \cdot 0 + \ldots + 0 \cdot 1 = 0$.

Because AB and BA do not contain exactly the same entries, they are not equal matrices. Therefore, A and B do not commute. Further, because for every $n \geq 2$ and every field F, $GL_n(F)$ contains the elements A and B, $GL_n(F)$ is non-abelian.