CASE STUDY: GenTech

Agenda

Introduction	(3)
Project Charter	4
Process Map	5
Outperformance	11
Recommendations	(20)

Introduction

- **Company Background:** Gentech, a \$60 billion multinational, operates in over 100 countries with 150,000 employees, offering software, hardware, and integrated business solutions.
- **Business Challenge:** Due to rising competition, Gentech has seen an 18% revenue drop over two years. The CEO aims to regain market leadership by improving operational efficiency.
- **Objective:** A 15% reduction in the cycle time for proposal creation is targeted to enhance responsiveness to customer needs and improve competitiveness.
- **Operational Focus:** The Proposal Creation Process, involving multiple hand-offs and dependencies, is identified as a critical area for improvement.
- Lean Six Sigma Approach: Gentech's task force, led by VP Grace Monroe and supported by Lean Six Sigma Black Belt Jeff Hugh, will analyze and streamline the process using data-driven insights from ERP systems to validate and address inefficiencies.

Executive

Sponsor

PROJECT CHARTER

Business Problem	Specific & Measurable: Gentech has faced an 18% reduction in revenue due to inefficiencies in the supply chain and increased competition, specifically within the proposal creation process. Objective: Reduce cycle time and improve process efficiency to regain competitiveness. Root Cause: The process includes non-standard practices, excessive approvals, and redundant tasks that extend cycle time. Solution: Streamline the process using data analysis and Lean Six Sigma tools.
Objective	Means: Re-engineer the proposal creation process through Lean Six Sigma. Outcome: Achieve a 15% reduction in proposal creation cycle time to facilitate faster client engagement. Quantified Improvement: 15% reduction in cycle time. Timeline: 6 months, following the DMAIC methodology
Scope	Included: All brands (X Series Servers, Z Series Servers, ESW, Consulting Services, SWG) and all regions (South America, EMEA, Japan, North America, Asia Pacific).Not Included: Content of proposals or sales strategies; focus strictly on the creation process.

Mr. Elliot Smith, CEO of GreenTech

5

PROJECT CHARTER

	DMAIC APPROACH	BASELINE	TARGET
DEFINE	Outline the problem scope and determine the current baseline for cycle time in proposal creation.	Operational Metric : Current cycle time as gathered from ERP data	15% reduction in cycle time from the baseline.
MEASURE	Use ERP data for timestamp information, identifying each step's duration and the total cycle time.		
ANALYSE	Examine root causes for delays, focusing on hand-offs, approvals, and inefficiencies.	Pro	ojected Savings
IMPROVE	Develop targeted solutions to streamline hand-offs, reduce redundant approvals, and standardize steps.		n reduced cycle time, enhanced proposal nue growth from quicker client engagement.
CONTROL	Implement a control plan to monitor cycle time post-improvement and ensure sustained result		

Process Map

281,053.33 281,053.33 signifies that for every 1,000,000

opportunities, there are 281,053 defects.

2.08

This sigma level indicates a low level of process capability.

A 2 Sigma level roughly corresponds to a defect rate of around 30%, meaning that approximately 3 in every 10 opportunities result in a defect.

Seller Avg_Days Thomas 26.505209 Caitlin 26.508895 26.646721 Wendy Roger 26.657266 Tamara 26.998918 27.047570 Hali 27,105014 Yui Matsuyama 27.163292 Alison 27.199666 Pablo 27.243146

101°

Seller Avg_Days 27.511041 Henry Carlos 27.761791 27.860694 Amy 27.867919 0mar Martha 27.885560 Ozil 41,122558 43.498055 Jose Devin 47.217113 Sam 47.771448 William 50.811591

BSS	Avg_Days
41	24.519896
51	25.039807
47	25.081633
57	25.280962
49	25.545018
56	25.618089
54	25.731859
60	25.843033
46	27.015912
53	27.088259

BSS	Avg_Days
66	36.989108
80	37.246174
14	38.195932
62	38.431333
4	38.746251
64	39.504450
17	39.662971
38	40.493528
58	45.394965
65	46.777533

Outperformance: Brands & geography

Visualizations

Statistical Tests

ANOVA- Geography

 H_0 : $\mu_{AP} = \mu_{JPN} = \mu_{SA} = \mu_{NA} = \mu_{EMEA}$ H_1 : There exists at least one pair of regions (i, j) such that $\mu_{Geo.} \neq \mu_{Geo.}$

sum_sq df F PR(>F) C(Geo) 5.546682e+05 4.0 1548.764504 0.0 Residual 6.714601e+06 74995.0 NaN NaN

Interpretation: Reject the Ho and conclude that there are statistically significant differences in average time across geographic regions.

ANOVA- Brands

sum_sq df F PR(>F)
C(Brand) 4.890115e+03 4.0 12.620974 2.883794e-10
Residual 7.264379e+06 74995.0 NaN NaN

Interpretation: Reject the Ho and conclude that there are statistically significant differences in average time across brands.

Outperformance: Brands & geography

Visualizations

Statistical Tests

ANOVA- Geography & Brand

	sum_sq	df	F	PR(>F)
C(Brand)	4.574486e+03	4.0	12.78107	2.119650e-10
C(Geo)	5.543526e+05	4.0	1548.85583	0.000000e+00
Residual	6.710026e+06	74991.0	NaN	NaN

Interpretation: Both Brand and Geo have significant effects on avg time, with Geo having a much stronger impact. The very low p-values indicate these factors are statistically significant predictors of average time.

Outperformance: Seller & BSS

Outperformance: Seller & BSS

Correlation: Bid Complexity& Cycle Time

Cycle Time	Correlation with Bid Size	P value
STS1	0.141999	0.0
ZQT2	0.161702	0.0
ZQT3	0.67436	0.0
ZQT4	0.689486	0.0
ZQT5	0.165499	0.0
ZQT6	0.20883	0.0
ZQT7	0.672442	0.0
ZQT8	0.185336	0.0

Here we considered the Bid Size as Bid complexity. The higher the bid the higher the complexity.

Interpretation: High positive correlation b/w Bid size and ZQT7 (Seller approval of quote), ZQT4(Reviewing the case with PM), ZQT3(Checking info with the seller for cases)

ZQT7

ZQT4

ZQT3

ZQT2

ZQT5

STSX

STS1

Potential Issues in Process

Potential Issues in Process

- Checking if the BSS agent can handle the bid (Time Stamp 3)
- Checking to see if the correct information is included (Time Stamp 4)
- Any changes to the original request would require a reconfiguration by the Product Design team. Once the configuration has been approved (Time Stamp 7)

Potential Issues in Process

Problems Outside Of Process Map:

North America accounts for 40% of bids over 35 days

Japan accounts for just over 2%

Solution:

Use Japan as a benchmark
Investigate further into North
America

Recommendation & Control Plan

- Implement an automated system to keep process on track using KPI's
- Standardized frameworks for bids to ensure completeness and help align BSS agents with correct bids
- No more sending bids directly to BSS
- Seller approves BSS request sent to design team to ensure the configuration is correctly outlined, negating the need for reconfigurations.

Recommendation & Control Plan

 Implement KPI measures to ensure steps are being followed in a timely manor

 Use automated systems to not allow BSS to be sent bids personally

 Implement SOP and standardized frameworks to ensure paperwork is filled out completely and correctly.

Team Members

MATT NORDWICK

SYLVIA LIU

MARY JOHN

PRATHEEK NS

