Introduction to DGL

Quan Gan

AWS Shanghai AI Lab

October 14, 2019

$$h_{v}^{(k)} = \phi\left(h_{v}^{(k-1)}, h_{\mathcal{N}(v)}^{(k)}\right) \qquad h_{\mathcal{N}(v)}^{(k)} = f\left(\left\{h_{u}^{(k-1)} : u \in \mathcal{N}(v)\right\}\right)^{1}$$

¹Xu et al., How Powerful Are Graph Neural Networks?, ICLR 2019

$$h_{v}^{(k)} = \phi\left(h_{v}^{(k-1)}, h_{\mathcal{N}(v)}^{(k)}\right) \qquad h_{\mathcal{N}(v)}^{(k)} = f\left(\left\{h_{u}^{(k-1)} : u \in \mathcal{N}(v)\right\}\right)^{1}$$

¹Xu et al., How Powerful Are Graph Neural Networks?, ICLR 2019

$$h_{v}^{(k)} = \phi\left(h_{v}^{(k-1)}, h_{\mathcal{N}(v)}^{(k)}\right) \qquad h_{\mathcal{N}(v)}^{(k)} = f\left(\left\{h_{u}^{(k-1)} : u \in \mathcal{N}(v)\right\}\right)^{1}$$

¹Xu et al., How Powerful Are Graph Neural Networks?, ICLR 2019

$$h_{v}^{(k)} = \phi\left(h_{v}^{(k-1)}, h_{\mathcal{N}(v)}^{(k)}\right) \qquad h_{\mathcal{N}(v)}^{(k)} = f\left(\left\{h_{u}^{(k-1)} : u \in \mathcal{N}(v)\right\}\right)^{1}$$

¹Xu et al., How Powerful Are Graph Neural Networks?, ICLR 2019

A common case²

If $f(\cdot)$ is average:

$$h_{\mathcal{N}(v)}^{(k)} = \frac{1}{|\mathcal{N}(v)|} \sum_{u \in \mathcal{N}(v)} h_u^{(k-1)}$$

$$h_{v}^{(k)} = \sigma\left(W^{(k)}\left[h_{v}^{(k-1)} \| h_{\mathcal{N}(v)}^{(k)}\right]\right)$$

Sparse matrix multiplication, easy:

```
# code: PyTorch
# src: edge source node IDs (n_nodes,)
# dst: edge destination node IDs (n_nodes,)
# H: node repr matrix (n_nodes, in_dim)
# W: weights (in_dim * 2, out_dim)
A = torch.sparse.coo_tensor(
    torch.stack([dst, src], 0),
    torch.ones(n_nodes),
    (n_nodes, n_nodes))
in_deg = torch.sparse.sum(A, 1).to_dense()
H_N = A @ H / in_deg.unsqueeze(1)
H = torch.relu(torch.cat([H_N, H], 1) @ W)
```

²Hamilton et al., Inductive Representation Learning on Large Graphs, NIPS 2017

How about max pooling?

$$h_{\mathcal{N}(v)}^{(k)} = \max_{u \in \mathcal{N}(v)} h_u^{(k-1)}$$

$$h_v^{(k)} = \sigma \left(W^{(k)} \left[h_v^{(k-1)} || h_{\mathcal{N}(v)}^{(k)} \right] \right)$$

Only Tensorflow supports what we need natively:

With attention?³

If $f(\cdot)$ is a *weighted* summation:

$$\begin{split} \hat{\alpha}_{v,u}^{(k-1)} &= \textit{MLP}\left(\left[h_v^{(k-1)} \| h_u^{(k-1)}\right]\right) \\ \alpha_{v,u}^{(k-1)} &= \textit{softmax}_j\left(\hat{\alpha}_{v,u}^{(k-1)}\right) \\ h_{\mathcal{N}(v)}^{(k)} &= \sum_{u \in \mathcal{N}(v)} \alpha_{v,u}^{(k-1)} h_u^{(k-1)} \\ h_v^{(k)} &= \sigma\left(W^{(k)}\left[h_v^{(k-1)}; h_{\mathcal{N}(v)}^{(k)}\right]\right) \end{split}$$

Can't do it easily with vanilla PyTorch/MXNet. Possible in Tensorflow

³Velickovic et al., Graph Attention Networks, ICLR 2018

How about LSTM⁴⁵?

If $f(\cdot)$ is summation:

$$h_{\mathcal{N}(v)}^{(k)} = LSTM(h_{u_1}^{(k-1)}, \dots, h_{u_n}^{(k-1)})$$

where $u_i \in \mathcal{N}(v)$ are in some order

$$h_{v}^{(k)} = \sigma\left(W^{(k)}\left[h_{v}^{(k-1)} \| h_{\mathcal{N}(v)}^{(k)}\right]\right)$$

Very complicated:

```
# code: PyTorch
# src: edge source node IDs (n_nodes,)
# dst: edge destination node IDs (n_nodes,)
# t: timestamp of edges.
     LSTM will go through messages in the order
     of timestamps
# H: node repr matrix (n_nodes, in_dim)
# 1stm: LSTM module
# W: weights (in_dim * 2, out_dim)
from torch.nn.utils.rnn import pack_sequence
# Build adjacency list
adilist = []
for v in range (10):
    v mask = (dst == v)
    t v = t[v mask]
    N_v = src[v_mask]
    indices = t v.argsort()
    adjlist.append(N_v[indices])
# Pack input sequence
segs = [H[u] for u in adilist]
packed_seq = pack_sequence(seqs, False)
# Run LSTM and compute the new H
_, (H_N, _) = lstm(packed_seq)
H = torch.relu(torch.cat([H N. H]. 1) @ W)
```

⁴Fan et al., Metapath-guided Heterogeneous Graph Neural Network for Intent Recommendation, KDD 2019

⁵Zhang et al., HetGNN: Heterogeneous Graph Neural Network, KDD 2019

A common case

code: PvTorch

If $f(\cdot)$ is average:

$$h_{\mathcal{N}(v)}^{(k)} = \frac{1}{|\mathcal{N}(v)|} \sum_{u \in \mathcal{N}(v)} h_u^{(k-1)}$$

$$h_u^{(k)} = \left(|\mathcal{N}(k)| \left[h_u^{(k-1)} ||h_u^{(k)}| \right] \right)$$

$$h_{v}^{(k)} = \sigma \left(W^{(k)} \left[h_{v}^{(k-1)} \| h_{\mathcal{N}(v)}^{(k)} \right] \right)$$

```
# src: edge source node IDs (n_nodes,)
# dst: edge destination node IDs (n_nodes,)
# H: node repr matrix (n_nodes, in_dim)
# W: weights (in_dim * 2, out_dim)
A = torch.sparse_coo_tensor(
    torch.stack([dst, src], 0),
        torch.ones(n_nodes),
        (n_nodes, n_nodes))
in_deg = torch.sparse.sum(A, 1).to_dense()
H_N = A @ H / in_deg.unsqueeze(1)
H = torch.relu(torch.cat([H_N, H], 1) @ W)
```

```
# code: PyTorch + DGL
# G: DGL Graph
# H: node repr matrix (n_nodes, in_dim)
# W: weights (in_dim * 2, out_dim)
import dgl.function as fn
G.ndata['n'] = H
G.update_all(fn.copy_u('h', 'm'), fn.mean('m', 'h_n'))
H,N = G.ndata['h_n']
H = torch.relu(torch.cat([H N. H]. 1) @ W)
```

```
# code: PyTorch + DGL
# G: DGL Graph
# H: node repr matrix (n_nodes, in_dim)
# For popular models we also have PyTorch/MXNet NN Modules:
# from dgl.nn.pytorch import SAGEConv
conv = SAGEConv(in_dim * 2, out_dim, 'mean')
H = conv(G, H)
```

How about max pooling?

```
h_{\mathcal{N}(v)}^{(k)} = \max_{u \in \mathcal{N}(v)} h_u^{(k-1)}h_v^{(k)} = \sigma \left( W^{(k)} \left[ h_v^{(k-1)} || h_{\mathcal{N}(v)}^{(k)} \right] \right)
```

```
# code: PyTorch + DGL
# G: DGL Graph
H: node repr matrix (n_nodes, in_dim)
# W: weights (in_dim * 2, out_dim)
import dgl.function as fn
G.ndata['h'] = H
# NOT broadcasting source features to edges
G.update_all(fn.copy_u('h', 'm'), fn.max('m', 'h_n'))
H_N = G.ndata['h_n']
H = torch.relu(torch.cat([H N. H], 1) @ W)
```

With attention?

If $f(\cdot)$ is a weighted summation:

$$\begin{split} \hat{\alpha}_{v,u}^{(k-1)} &= \textit{MLP}\left(\left[h_v^{(k-1)} \| h_u^{(k-1)}\right]\right) \\ \alpha_{v,u}^{(k-1)} &= \textit{softmax}_j\left(\hat{\alpha}_{v,u}^{(k-1)}\right) \\ h_{\mathcal{N}(v)}^{(k)} &= \sum_{u \in \mathcal{N}(v)} \alpha_{v,u}^{(k-1)} h_u^{(k-1)} \\ h_v^{(k)} &= \sigma\left(W^{(k)}\left[h_v^{(k-1)}; h_{\mathcal{N}(v)}^{(k)}\right]\right) \end{split}$$

One can write his/her own message and aggregation functions:

```
# code: PyTorch + DGL
# G: DGI, Graph
# H: node repr matrix (n nodes, in dim)
# W: weights (in_dim * 2, out_dim)
def msg func(edges):
    h src = edges.src['h']
    h_dst = edges.dst['h']
    alpha_hat = MLP(torch.cat([h_dst, h_src], 1))
    return {'m': h_src, 'alpha_hat': alpha}
def reduce_func(nodes):
    # Incoming messages are batched along 2nd axis.
    # m has a shape of
    # (n_nodes_in_batch, in_degrees, msg_dims)
    m = nodes.mailbox['m']
    # alpha hat has a shape of
    # (n_nodes_in_batch, in_degrees)
    alpha hat = nodes.mailbox['alpha hat']
    alpha = torch.softmax(alpha_hat, 1)
    return {'h n': (m * alpha[:, None]).sum(1)}
import dgl.function as fn
G.ndata['h'] = H
G.update_all(msg_func, reduce_func)
H N = G.ndata['h n']
H = torch.relu(torch.cat([H N, H], 1) @ W)
```

With attention?

If $f(\cdot)$ is a weighted summation:

$$\begin{split} \hat{\alpha}_{v,u}^{(k-1)} &= \textit{MLP}\left(\left[h_v^{(k-1)} \| h_u^{(k-1)}\right]\right) \\ \alpha_{v,u}^{(k-1)} &= \textit{softmax}_j\left(\hat{\alpha}_{v,u}^{(k-1)}\right) \\ h_{\mathcal{N}(v)}^{(k)} &= \sum_{u \in \mathcal{N}(v)} \alpha_{v,u}^{(k-1)} h_u^{(k-1)} \\ h_v^{(k)} &= \sigma\left(W^{(k)}\left[h_v^{(k-1)}; h_{\mathcal{N}(v)}^{(k)}\right]\right) \end{split}$$

Built-in message/reduce functions are more time-/memory-efficient.

```
# code: PyTorch + DGL
# G: DGL Graph
# H: node repr matrix (n_nodes, in_dim)
# W: weights (in_dim * 2, out_dim)
# edge softmax uses built-ins in computation
from dgl.nn.pytorch import edge_softmax
import dgl.function as fn
def msg(edges):
    h src = edges.src['h']
    h_dst = edges.dst['h']
    return {'alpha': MLP(torch.cat([h_dst, h_src], 1))}
G.ndata['h'] = H
G.apply_edges(msg) # Edges now have a feature called 'alpha'
G.edata['alpha'] = edge softmax(G. G.edata['alpha'])
G. update all(
    fn.u mul e('h', 'alpha', 'm'), fn.sum('m', 'h n'))
H N = G.ndata['h n']
H = torch.relu(torch.cat([H N. H], 1) @ W)
```

How about LSTM?

If $f(\cdot)$ is summation:

$$h_{\mathcal{N}(v)}^{(k)} = LSTM(h_{u_1}^{(k-1)}, \dots, h_{u_n}^{(k-1)})$$

where $u_i \in \mathcal{N}(v)$ are in some order

$$h_{v}^{(k)} = \sigma\left(W^{(k)}\left[h_{v}^{(k-1)} \| h_{\mathcal{N}(v)}^{(k)}\right]\right)$$

```
# code: PyTorch + DGL
# G: DGL Graph
# t: timestamp of edges.
     LSTM will go through messages in the order
     of timestamps
 H: node repr matrix (n_nodes, in_dim)
# 1stm: LSTM module
# W: weights (in dim * 2, out dim)
def reduce func(nodes):
    indices = nodes.mailbox['t'].argsort(1)
   m = nodes.mailbox['m']
    m_ordered = m.gather(1, t[:, :, None].expand_as(m))
    return {'h n': lstm(m)}
import dgl.function as fn
G.ndata['h'] = H
G.update_all(fn.copy_u('h', 'm'), reduce_func)
H N = G.ndata['h n']
H = torch.relu(torch.cat([H N. H], 1) @ W)
```

How about updating partially⁶⁷?

DGL does not confine itself in full-graph updates; one can send messages on, and receive message along, *some of* the edges at a time.

```
# code: PyTorch + DGL
# An extremely simplified version of Know-Evolve, where
# messages are sent/received in the order of edge timestamps.
# H: node repr matrix (n_nodes, in_dim)
# T: numpy array of edge timestamps
def msg_func(edges):
    return {'m': MLP_msg(edges.src['h'])}
def reduce func (nodes):
    h_old = nodes.data['h']
    h_n = nodes.mailbox['m'].sum(1)
    return {'h': MLP_reduce(torch.cat([h_old, h_n], 1))}
G.ndata['h'] = H
distinct T = np.sort(np.unique(T))
for t in distinct T:
    eid = np.where(T == t)
    G.send_and_recv(eid, msg_func, reduce_func)
H output = G.ndata['h']
```

⁶Trivedi et al., *Know-Evolve: Deep Temporal Reasoning for Dynamic Knowledge Graphs*, ICML 2017

⁷Tai et al., *Improved Semantic Representations From Tree-Structured Long Short-Term Memory Networks* (TreeLSTM), ACL 2015

How about heterogeneous graphs⁸?

- DGL supports heterogeneous graphs whose nodes and edges are typed and may have type-specific features.
- One can perform message passing on one edge type at a time.

```
# code: PvTorch + DGL
# xs: node features for each node type
# ws: weights for each edge type
# g: DGL heterogeneous graph
for i. ntype in enumerate(g.ntypes):
    g.nodes[ntvpe].data['x'] = xs[i]
# intra-type aggregation
for i. (srctype, etype, dsttype) in enumerate(g, canonical etypes):
    g.nodes[srctvpe].data['h'] = g.nodes[srctvpe].data['x'] @ ws[etvpe]
    g[srctvpe, etvpe, dsttvpe].update_all(
        fn.copy u('h', 'm'), fn.mean('m', 'h %d'))
# inter-type aggregation
for ntvpe in g.ntvpes:
    g.nodes[ntvpe].data['h'] = sum(
        g.nodes[ntvpe].data[h name]
        for h_name in g.nodes[ntype].data.keys()
        if h name.startswith('h '))
```

⁸Schlichtkrull et al., Modeling Relational Data with Graph Convolutional Networks

How about heterogeneous graphs?

- DGL supports heterogeneous graphs whose nodes and edges are typed and may have type-specific features.
- One can also perform message passing on multiple edge types, further aggregating the outcome of per-edge-type aggregation with an *cross-type reducer*.

```
# code: PyTorch + DGL
# xs: node features for each node type
# ws: weights for each edge type
# g: DGL heterogeneous graph
for i, ntype in enumerate(g.ntypes):
    g.nodes[ntype].data['x'] = xs[i]

funcs = {}
for i, (srctype, etype, dsttype) in enumerate(g.canonical_etypes):
    g.nodes[srctype].data['h\lambda' \lambda' \lambda'
```

How about scaling to larger graphs?

- Full-graph updates become infeasible on large graphs with millions of nodes and billions of edges.
- We usually sample a batch of nodes at a time to compute their representations for loss computation.
- Furthermore, for each node, we can choose to receive messages from only a few nodes.

Figure taken from Chen et al., Stochastic Training of Graph Convolutional Networks with Variance Reduction, ICML 2018

Scaling to larger graphs (with NodeFlow)

For each minibatch of nodes, we explicitly construct another graph containing the dependency between nodes on each message passing layer.

Scaling to larger graphs (with NodeFlow)

```
# code: MXNet + DGL
from dgl.contrib.sampling import NeighborSampler
# initialize the model and cross entropy loss
model = GCNSampling(in feats, n hidden, n classes, L.
                    mx.nd.relu, dropout, prefix='GCN')
model initialize()
loss_fcn = gluon.loss.SoftmaxCELoss()
for nf in NeighborSampler (
        g. batch size, num neighbors.
        neighbor_type='in', shuffle=True,
        num hops=L. seed nodes=train nid):
    nf.copv from parent()
    with mx.autograd.record():
        # forward
        pred = model(nf)
        batch nids = (
             nf.laver_parent_nid(-1)
             .astvpe('int64'))
        batch_labels = labels[batch_nids]
        # cross entropy loss
       loss = loss_fcn(pred, batch_labels)
       loss = loss.sum() / len(batch nids)
    loss.backward()
```

What's more?

- Check out our repository: https://github.com/dmlc/dgl
 - We have lots of PyTorch and MXNet examples!
 - In 0.4 we also released DGL-KE, a subpackage for training knowledge graph embeddings.
- Check out our documentation: https://docs.dgl.ai
- Discussion forum: https://discuss.dgl.ai