Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»

Факультет Программной инженерии и Компьютерной техники

Лабораторная работа по дисциплине «Информатика» №2 «Синтез помехоустойчивого кода»

Вариант №42

Выполнила:

Джунь Александра Васильевна

Группа Р3106

Проверил:

Балакшин Павел Валерьевич

Доцент, кандидат технических наук

Г. Санкт-Петербург 2025г.

Оглавление

Зада	ание	3
Осн	овные этапы вычисления:	4
	Рисунок 1	4
	Задание 1 - №38:	4
	Рисунок 2	4
	Рисунок 3	4
	Задание 2 - №65:	4
	Рисунок 4	
	Рисунок 5	
	, Задание 3 - №92:	
	Рисунок 6	5
	, Рисунок 7	
	, Задание 4 - №7:	
	Рисунок 8	
	, Рисунок 9	
	3адание 5 - №43:	
	Рисунок 10	
	Рисунок 11	
	Задание 6:	
Поп	олнительное задание №1:	
доп	Рисунок 12	
C	LOCK HOLIOTH SOBBITHT IN THE TOTAL HOLIOTE.	c

Задание:

- 1. Построить схему декодирования классического кода Хэмминга (7;4), которую представить в отчёте в виде изображения для задания №38, где r1=1, r2=0, i1=1, r3=0, i2=0, i3=1, i4=0.
- 2. Построить схему декодирования классического кода Хэмминга (7;4), которую представить в отчёте в виде изображения для задания №65, где r1=0, r2=0, i1=1, r3=0, i2=1, i3=0, i4=0.
- 3. Построить схему декодирования классического кода Хэмминга (7;4), которую представить в отчёте в виде изображения для задания №92, где r1=1, r2=0, i1=0, r3=0, i2=1, i3=1, i4=0.
- 4. Построить схему декодирования классического кода Хэмминга (7;4), которую представить в отчёте в виде изображения для задания №7, где r1=0, r2=1, i1=1, r3=1, i2=0, i3=0, i4=0.
- 5. Построить схему декодирования классического кода Хэмминга (15;11), которую представить в отчёте в виде изображения для задания №43, где r1=0, r2=1, i1=0, r3=1, i2=0, i3=1, i4=0, i5=1, i6=0, i7=1, i8=1, i9=0, i10=0, i11=1.
- 6. Дополнительное задание №1. Написать программу на любом языке программирования, которая на вход получает набор из 7 цифр «0» и «1», записанных подряд, анализирует это сообщение на основе классического кода Хэмминга (7,4), а затем выдает правильное сообщение (только информационные биты) и указывает бит с ошибкой при его наличии.

Основные этапы вычисления:

Схема декодирования классического кода Хэмминга (7;4) представлена на Рисунок 1.

Рисунок 1.

Задание 1 - №38:

Полученные данные отображены в таблице (Рисунок 2.).

r1	r2	i1	r3	i2	i3	i4
1	0	1	0	0	1	0

Рисунок 2.

$$S1=r1$$
 \bigoplus $i1$ \bigoplus $i2$ \bigoplus $i4=1$ \bigoplus 1 \bigoplus 0 \bigoplus $0=0$ (чётно)

$$S2 = r2 \oplus i1 \oplus i3 \oplus i4 = 0 \oplus 1 \oplus 1 \oplus 0 = 0$$
 (чётно)

$$S3 = r3 \oplus i2 \oplus i3 \oplus i4 = 0 \oplus 0 \oplus 1 \oplus 0 = 1$$
 (нечётно)

Полученный результат можно отобразить в таблице для более удобного поиска неверно записанного бита (Рисунок 3.).

	1	2	3	4	5	6	7	
2 ^X	r1	r2	i1	r3	i2	i3	i4	S
1	X	-	X	-	X	-	X	S1
2	-	X	X	-	-	X	X	S2
4	-	-	-	X	X	X	X	S3

Рисунок 3.

Ответ: ошибка в бите r3, правильный код: 1011010

Задание 2 - №65:

Полученные данные отображены в таблице (Рисунок 4.).

r1	r2	i1	r3	i2	i3	i4
0	0	1	0	1	0	0

Рисунок 4.

$$S1 = r1 \oplus i1 \oplus i2 \oplus i4 = 0 \oplus 1 \oplus 1 \oplus 0 = 0$$
 (чётно)

$$S2 = r2 \oplus i1 \oplus i3 \oplus i4 = 0 \oplus 1 \oplus 0 \oplus 0 = 1$$
 (нечётно)

$$S3 = r3 \oplus i2 \oplus i3 \oplus i4 = 0 \oplus 1 \oplus 0 \oplus 0 = 1$$
 (нечётно)

Полученный результат можно отобразить в таблице для более удобного поиска неверно записанного бита (Рисунок 5.).

	1	2	3	4	5	6	7	
2 ^X	rl	r2	i1	r3	i2	i3	i4	S
1	X	-	X	-	X	-	X	S1
2	-	X	X	-	-	X	X	S2
4	-	-	-	X	X	X	X	S3

Рисунок 5.

Ответ: ошибка в бите і3, правильный код: 0010110

Задание 3 - №92:

Полученные данные отображены в таблице (Рисунок 6.).

r1	r2	i1	r3	i2	i3	i4
1	0	0	0	1	1	0

Рисунок 6.

$$S1 = r1 \oplus i1 \oplus i2 \oplus i4 = 1 \oplus 0 \oplus 1 \oplus 0 = 0$$
 (чётно)

$$S2 = r2 \oplus i1 \oplus i3 \oplus i4 = 0 \oplus 0 \oplus 1 \oplus 0 = 1$$
 (нечётно)

S3 = r3
$$\oplus$$
 i2 \oplus i3 \oplus i4 =0 \oplus 1 \oplus 1 \oplus 0 = 0 (чётно)

Полученный результат можно отобразить в таблице для более удобного поиска неверно записанного бита (Рисунок 7.).

	1	2	3	4	5	6	7	
2 ^X	r1	r2	i1	r3	i2	i3	i4	S
1	X	-	X	-	X	-	X	S1
2	-	X	X	-	-	X	X	S2
4	-	-	-	X	X	X	X	S3

Рисунок 7.

Ответ: ошибка в бите r2, правильный код: 1100110

Задание 4 - №7:

Полученные данные отображены в таблице (Рисунок 8.).

r1	r2	i1	r3	i2	i3	i4
0	1	1	1	0	0	0

Рисунок 8.

 $S1 = r1 \oplus i1 \oplus i2 \oplus i4 = 0 \oplus 1 \oplus 0 \oplus 0 = 1$ (нечётно)

 $S2 = r2 \oplus i1 \oplus i3 \oplus i4 = 1 \oplus 1 \oplus 0 \oplus 0 = 0$ (чётно)

 $S3 = r3 \oplus i2 \oplus i3 \oplus i4 = 1 \oplus 0 \oplus 0 \oplus 0 = 1$ (нечётно)

Полученный результат можно отобразить в таблице для более удобного поиска неверно записанного бита (Рисунок 9.).

	1	2	3	4	5	6	7	
2^{X}	rl	r2	i1	r3	i2	i3	i4	S
1	X	1	X	1	X	-	X	S1
2	ı	X	X	1	-	X	X	S2
4	-	-	-	X	X	X	X	S3

Рисунок 9.

Ответ: ошибка в бите і2, правильный код: 0111100

Задание 5 - №43:

Полученные данные отображены в таблице (Рисунок 10.).

r1	r2	i1	r3	i2	i3	i4	r4	i5	i6	i7	i8	i9	i10	i11
0	1	0	1	0	1	0	1	0	1	1	0	0	1	0

Рисунок 10.

 $S1 = r1 \oplus i1 \oplus i2 \oplus i4 \oplus i5 \oplus i7 \oplus i9 \oplus i11 = 0 \oplus 0 \oplus 0 \oplus 0 \oplus 0 \oplus 1 \oplus 0 \oplus 0 = 1$ (нечётно)

 $S2 = r2 \oplus i1 \oplus i3 \oplus i4 \oplus i6 \oplus i7 \oplus i10 \oplus i11 = 1 \oplus 0 \oplus 1 \oplus 0 \oplus 1 \oplus 1 \oplus 1 \oplus 0 = 1$ (нечётно)

S3 = r3 \oplus i2 \oplus i3 \oplus i4 \oplus i8 \oplus i9 \oplus i10 \oplus i11 = 1 \oplus 0 \oplus 1 \oplus 0 \oplus 0 \oplus 0 \oplus 1 \oplus 0=1 (нечётно)

 $S4 = r4 \oplus i5 \oplus i6 \oplus i7 \oplus i8 \oplus i9 \oplus i10 \oplus i11 = 1 \oplus 0 \oplus 1 \oplus 1 \oplus 0 \oplus 0 \oplus 1 \oplus 0 = 0$ (чётно)

Ī		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
	2^x	r1	r2	i1	r3	i2	i3	i4	r4	i5	i6	i7	i8	i9	i10	i11	S
	1	X	-	X	-	X	-	X	-	X		X	-	X	-	X	S1
	2	-	X	X	-	-	X	X	-	-	X	X	-	-	X	X	S2
	4	-	-	-	X	X	X	X	-	-	-	-	X	X	X	X	S3
	8	-	-	-	-	-	•	-	X	X	X	X	X	X	X	X	S4

Рисунок 11.

Ответ: ошибка в бите i4, правильный код: 010101110110010

Задание 6:

Информационных сообщений, передаваемых в сообщении: (38 + 65 + 92 + 7 + 43)*4 = 980

Если число проверочных разрядов равно r, то общее количество бит в сообщении вычисляется по формуле 2^{r-1} , информационных бит -2^r -1-r.

Найдем r, для которого выполняется неравенство 2^{r-1} -1-(r-1)<980< 2^r -1-r. Если подставить r=10, то неравенство выполняется, значит r=10 подходит:

$$2^9$$
-1-10 = 1013 < 980 < 2036 = 2^{10} - 1 - 11

Найду коэффициент избыточности: $r/(i+r) = 10/(10+980) \approx 0.01(!)$

Ответ: r = 10, коэффициент избыточности $\approx 0.01(!)$

Дополнительное задание №1:

1. Написать программу на любом языке программирования, которая на вход получает набор из 7 цифр «0» и «1», записанных подряд, анализирует это сообщение на основе классического кода Хэмминга (7,4), а затем выдает правильное сообщение (только информационные биты) и указывает бит с ошибкой при его наличии. Для ввода кода, который нужно проверить использую input(), далее создаю массив symbols. Если введенная строка больше 7 символов или содержит символы кроме 0 и 1, то выводится предложение «Строка должна быть набором из 7 символов и содержать только 0 или 1». Если условие соблюдается, то дальше собираются синдромы последовательности, в моем случае их 3, потом из них составляется один синдром. Далее находится бит, в котором содержится ошибка, а после выводится правильное сообщение, состоящее из информационных битов.

```
string-input()#принимаем значение с консоли

symbols=['rl', 'r2', 'il', 'r3', 'i2', 'i3', 'i4' #создаем список с проверочными и изначальными битами

if len(string)!=7 or bool(set(string)-{'l','0'}):#условие на длину

print("Строка должна быть набором из 7 символов и содержать только 0 или 1")

else:

array= list(map(int,list(string)))#членим введенное число на биты

s1- (array[0] + array[2] + array[4] + array[6])%2#сумма 1

s2- (array[1] + array[2] + array[5] + array[6])%2#сумма 3

s3- (array[3] + array[4] + array[5] + array[6])%2#сумма 3

syndrome-[s1,s2,s3]#из трех сумм формируется синдром для проверки наличия ошибки

if syndrome != [0,0]:#проверка базового наличия ошибки (если 000 - ошибки нет)

num=int(".join(map(str.syndrome(::-1]),2)#переводим в 10сс, чтобы найти индекс ошибки +1, тк начинается с нуля

print("Найдена ошибка в символе", symbols[num 1])#выводим ошибку

array[num 1]-1-array[num 1]#замена неверного бита

rez="'.join(map(str.garray))

print("Правильное сообщение: {rez[2]}{rez[4]}{rez[5]}{rez[6]}*")#выдает верный ответ без проверочных битов

print("Правильное сообщение: {rez[0]}{rez[1]}{rez[2]}{rez[3]}{rez[4]}{rez[5]}{rez[6]}*")#выдает верный ответ с проверочными битами

else: print("Cooбщение передано без ошибки")
```

Рисунок 12.

Список использованных источников:

- 1) Информатика. Лекция 2 / Балакшин П. В. [Электронный ресурс] Режим доступа: https://cloud.mail.ru/public/nxcb/kfFLJ5kdA (дата обращения 20.09.2025)
- 2) Информатика / Балакшин П. В. Соснин В. В. Машина Е. А. [Электронный ресурс] Режим доступа: ...\Черновик методического пособия Информатика.pdf (дата обращения: 20.09.2025)