Question 2

Part A

Each left division is α of the size of the array.

Each right division is $1-\alpha$ of the size of the array

Each level will have at most n swaps.

The maximum number of levels will be the amount of $1-\alpha$ splits, therefore the maximum height is $\log_{\left(\frac{1}{1-\alpha}\right)}n$.

Because each level will have at most n swaps, and there will be at most $\log_{\left(\frac{1}{1-\alpha}\right)}n$, the

upper bound of quick sort with α partition where $0 < \alpha < \frac{1}{2}$ is:

$$n\log_{\left(\frac{1}{1-\alpha}\right)}n$$

Total: at most $n\log_{\left(\frac{1}{1-\alpha}\right)}n$

Part B

Induction Proof for the upper-bound of quicksort with constant alpha

Consider the base case:

$$n = 2$$

The actual run time is:

$$T(2) = 1$$

Theoretical upper-bound of the run time is:

$$2 log_{(\frac{1}{1-\alpha})} 2$$

By comparing the actual and theoretical upper-bound run time:

$$actual < theoretical \\ 1 < 2\log_{\left(\frac{1}{1-\alpha}\right)} 2$$

$$\frac{1}{2} < \log_{\left(\frac{1}{1-\alpha}\right)} 2$$

$$\left(\frac{1}{2}\right)^{\left(\frac{1}{1-\alpha}\right)} < 2$$

$$\therefore 0 < \alpha < \frac{1}{2}$$

$$\therefore \frac{1}{1-\alpha} > 1$$

$$\therefore \left(\frac{1}{2}\right)^{\left(\frac{1}{1-\alpha}\right)} < 1 < 2$$

$$QED$$

Therefore base case is true.

By induction hypothesis, assume the upper-bound

$$k \log_{\left(\frac{1}{1-\alpha}\right)} k$$
 is true for: $0 < k \le n$

Now consider n = k + 1

In order to prove true, consider the worst case run time, which is the first partition splitting only one element:

actual:

$$T(k+1) = T(1) + T((k+1) - 1) + k$$

$$= k + 1 + T(k)$$

$$= k + 1 + k \log_{\left(\frac{1}{1-\alpha}\right)} k$$

theoretical:

$$(k+1)\log_{\left(\frac{1}{1-\alpha}\right)}(k+1)$$

And by comparing the actual with the theoretical upper-bound run-time:

$$k+1+k\left(\log_{\left(\frac{1}{1-\alpha}\right)}k\right) < (k+1)\left(\log_{\left(\frac{1}{1-\alpha}\right)}(k+1)\right)$$

$$\therefore k+1+k\left(\log_{\left(\frac{1}{1-\alpha}\right)}k\right) < k+1+k\left(\log_{\left(\frac{1}{1-\alpha}\right)}k\right) + \left(\log_{\left(\frac{1}{1-\alpha}\right)}k\right)$$

$$\therefore k+1+k\left(\log_{\left(\frac{1}{1-\alpha}\right)}k\right) + \left(\log_{\left(\frac{1}{1-\alpha}\right)}k\right) < (k+1)\left(\log_{\left(\frac{1}{1-\alpha}\right)}(k+1)\right)$$

$$k+1+k\left(\log_{\left(\frac{1}{1-\alpha}\right)}k\right) + \left(\log_{\left(\frac{1}{1-\alpha}\right)}k\right) < (k+1)\left(\log_{\left(\frac{1}{1-\alpha}\right)}(k+1)\right)$$

$$(k+1)+(k+1)\left(\log_{\left(\frac{1}{1-\alpha}\right)}k\right) < (k+1)\left(\log_{\left(\frac{1}{1-\alpha}\right)}(k+1)\right)$$

$$(k+1)\left(1+\left(\log_{\left(\frac{1}{1-\alpha}\right)}k\right) < (k+1)\left(\log_{\left(\frac{1}{1-\alpha}\right)}(k+1)\right)$$

$$1+\left(\log_{\left(\frac{1}{1-\alpha}\right)}k\right) < \log_{\left(\frac{1}{1-\alpha}\right)}(k+1)$$

$$1 < \log_{\left(\frac{1}{1-\alpha}\right)}\left(\frac{k+1}{k}\right)$$

$$1 < \frac{k+1}{k}$$

$$QED$$

Therefore the, by induction, the upper bound run-time is:

$$n\log_{\left(\frac{1}{1-\alpha}\right)}n$$