ME-503- Mechanical Measurement & control

Unit-I:Basic Concepts of Measurement: General measurement system; Experimental test plan: variables, parameters, noise and interference, replication and repetition; Calibration: Static calibration, dynamic calibration, static sensitivity, range, accuracy, precision and bias errors, sequential and random tests; Presenting data: Rectangular coordinate format, semi-log, full-log formats. Measurement System Behavior: General model for a dynamic measurement system and its special cases: zero order, first order, and second order system, determination of time constant and settling time, phase linearity.

Unit-II: Statistics: Least square regression analysis and data outlier detection; Normal distribution and concept of standard deviation of the mean in finite data set, Uncertainty Analysis: Measurement errors; error sources: calibration, data acquisition, data reduction; Design stage uncertainty analysis; combining elemental errors; Bias & Precision errors; Error propagation, Higher order uncertainty analysis.

Unit-III: Temperature Measurement: Temperature standards, Temperature scales; Thermometry based on thermal expansion: Liquid in glass thermometers, Bimetallic Thermometers; Electrical resistance thermometry: Resistance Temperature Detectors, Thermistors; Thermoelectric Temperature Measurement: Temperature measurement with thermocouples, thermocouple standards. Pressure and Velocity Measurement: Relative pressure scales, pressure reference instruments, barometer, manometer, deadweight tester, pressure gauges and transducers, total and static pressure measurement in moving fluids Flow measurement: Pressure differential meters: Orifice meter, Venturi meter, roto-meter.

Unit-IV: Strain Measurement: Stress and strain, resistance strain gauges, gauge factor, strain gauge electrical circuits, multiple gauge bridge, bridge constant, apparent strain and temperature compensation, bending compensation. Motion, Force and Torque Measurement: Displacement measurement: Potentiometers, Linear variable differential transformers, rotary variable differential transformer; Velocity measurement: moving coil transducers; angular velocity measurement: electromagnetic techniques, stroboscopic measurement; Force measurement: load cells, piezoelectric load cells; Torque measurement: measurement of torque on rotating shafts, Power estimation from rotational speed and torque.

Unit-V: Introduction to control systems: Examples of control systems. Open loop and closed loop control, Mathematical modeling of dynamic systems: Transfer function, impulse response function, block diagram of closed loop system, block diagram reduction, Transient and steady state response analyses: First order systems, unit step and unit impulse response of first order systems, second order systems, unit step and unit impulse response of second order systems, transient response specifications, modeling of mechanical systems, modeling of electrical systems, signal flow graphs, modeling of fluid systems, liquid level systems, hydraulic systems, modeling of thermal systems.

References:

- 1. Nakra and Chowdhry; Measurement and Control; TMH
- 2. Figiola RS & Beasley DE; Theory and Design for Mechanical Measurements; 3e John Wiley
- 3. Katsuhiko Ogata; Modern Control Engineering, 4e Pearson Education, New Delhi
- 4. Gopal; Control Systems Principles and Design; Tata McGraw Hill, New Delhi.
- 5. Backwith and Buck; Mechanical Measurements.
- 6. Swahney; Metrology and Instrumentation;

List of Experiment (Expandable)(Measurement & control):

- 1- Study of various temperature measuring devices; thermo couple, RTD, gas thermo meters. 2- Measuring velocity of fluid flow by Ventura meter/ orifice meter/ pitot-tube.
- 3- Measuring torque and power generated by a prime mover by using pony brake dynamometer.
- 4- Study of various pressure measuring devices like manometers, mercury in glass pressure gauge.
- 5- To develop a measuring device for fluid level measurement.