分类	等:	
密	级:	

学校代码: 10269

学 号: _51120601152_

East China Normal University 硕士学位论文 MASTER'S DISSERTATION

论文题目: 演化算法中基于差分进化的采样策略

院 系:	计算机科学与软件工程学院计算机系
专 业:	计算机科学与技术
研究方向:	演化计算
指 导 教 师:	周爱民 副教授
学位申请人:	董兵

Dissertation for Student ID: 51141201039

University Code: 10269

Master degree, 2017

East China Normal University

Title: The sampling strategy based on differential evolution in evolutionary algorithms

Department: Computer Science

Major: Computer Science and Technology

Research direction: Evolutionary Computation

Supervisor: A. Prof. Aimin Zhou

Candidate: Bing Dong

June, $2017 \cdot Shanghai$

华东师范大学学位论文原创性声明

郑重声明:本人呈交的学位论文《演化计算中基于差分进化的采样策略》,是在华东师范大学攻读硕士/博士(请勾选)学位期间,在导师的指导下进行的研究工作及取得的研究成果.除文中已经注明引用的内容外,本论文不包含其他个人已经发表或撰写过的研究成果.对本文的研究做出重要贡献的个人和集体,均已在文中作了明确说明并表示谢意.

作者签名:	日期:	年	月	日

华东师范大学学位论文著作权使用声明

《演化计算中基于差分进化的采样策略》系本人在华东师范大学攻读学位期间在导师指导下完成的硕士/博士(请勾选)学位论文,本论文的著作权归本人所有.本人同意华东师范大学根据相关规定保留和使用此学位论文,并向主管部门和学校指定的相关机构送交学位论文的印刷版和电子版;允许学位论文进入华东师范大学图书馆及数据库被查阅、借阅;同意学校将学位论文加入全国博士、硕士学位论文共建单位数据库进行检索,将学位论文的标题和摘要汇编出版,采用影印、缩印或者其它方式合理复制学位论文.

本学位论文属于(请勾选)

- ()1. 经华东师范大学相关部门审查核定的"内部"或"涉密"学位论文*,于 年 月 日解密,解密后适用上述授权.
 - ()2. 不保密, 适用上述授权.

导师签名:		本人			
		,	在	В	П

*"涉密"学位论文应是已经华东师范大学学位评定委员会办公室或保密委员会审定过的学位论文(需附获批的《华东师范大学研究生申请学位论文"涉密"审批表》方为有效),未经上述部门审定的学位论文均为公开学位论文.此声明栏不填写的,默认为公开学位论文,均适用上述授权.

董兵 硕士学位论文答辩委员会成员名单

姓名	职称	单位	备注
倪明康	教 授	华东师范大学数学系	主席
傅显隆	教 授	华东师范大学数学系	
刘兴波	副教授	华东师范大学数学系	

演化算法中基于差分进化的采样策略

中 文 摘 要

本文研究的是对于演化算法中采样策略的改进工作。演化计算是一种受生物进化启发的基于种群的启发式的优化算法。演化算法适用于解决各种问题,因为它并不需要复杂的假设条件。演化计算已经被广泛应用于工程、生物学、经济学、基因工程以及社会科学等。

分布估计算法是一种新型的演化算法。不同于传统的演化算法,分布估计算法中没有杂交变异操作。分布估计算法中主要由三个主要的步骤组成,即:建模,采样,选择。采样对于分布估计算法来说是至关重要的环节,它关系到能否产生更为优异的的子代种群。优异的子代种群对于最终求得最优解有着重大意义。

差分进化自从1995年被提出之后就受到研究者的广泛关注。差分进化是一种简单但却十分强大的随机优化算法,得益于它的诸多优点,它已经被广泛应用于各个领域。由于差分进化的易于实现,它被用于与其他的演化算法进行结合,并且已经多数学者提出了基于差分进化的混合算法。本文将差分进化的思想引入到分布估计算法的采样中,提高算法性能和运行效率。

本文将基于差分进化的采样策略和分布估计算法相结合,并且研究其在解决多目标以 及单目标问题上的性能表现。实现结果表明,这一研究对于提高分布估计算法性能有着重 大意义。

关键词: 分布估计算法, 差分进化, 演化算法, 特征向量

Differential Evolution Sampling Strategy in Evolution Algorithms

ABSTRACT

This paper mainly studies the differential evolution sampling strategy in evolutionary algorithms. Evolution algorithm is a kind of algorithm inspired by biological evolution. Evolutionary algorithms are utilized to solve diverse problems. As it does not need any complex assumption conditions. Evolutionary algorithms have been widely applied to engineer, biology, economy, gene engineer and social science.

Estimation of distribution algorithm is a novel evolutionary algorithm. Unlike traditional evolutionary algorithm, there is no crossover and mutation in EDA. EDA mainly consists of three steps, namely, modeling, sampling and selection. Sampling is crucial to EDA. Since it is significant to generate promising offspring generation, which will be useful to obtain the final solutions.

Differential evolution has attracted many researchers since proposed in 1995. Differential evolution is a simple but powerful random optimization algorithm. Due to the advantages of differential evolution, it has been widely applied to different areas. As it is easy to implement differential evolution, and it can combine with other evolutionary algorithm. Hence lots of researcher have proposed a number of hybrid algorithms based on differential evolution. This paper mainly study the sampling in EDA based on differential evolution.

This paper combine differential evolution sampling strategy with EDA. Moreover, we will study its performance on single object and multi-objective problems. And the experimental results have shown that it is significant to improve the performance of EDA.

Key words: estimation of distribution algorithm, differential evolution, evolutionary algorithm, eigenvector

目录

中文摘要	i
英文摘要	ii
1 <i>ራ</i> ቲ	1
1 绪论	1
1.1 研究的目的和意义	
1.2 本文所做的工作和内容安排	
2 理论基础	4
2.1 多目标优化问题	4
2.2 单目标优化问题	9
2.3 分布估计算法	11
2.4 差分进化	
3 基于采样策略对于连续多目标优化问题的研究	$oxed{\mathbb{Z}}$ 12
3.1 连续多目标优化问题	12
3.2 RM-MEDA算法	
3.3 基于差分进化的采样策略	
3.4 算法框架	
3.5 实验分析	
4 基于差分进化的分布估计算法	16
4.1 差分进化和分布估计算法的研究	
42 基于差分讲化采样的分布估计算法	10

4.3 实验框架	20
4.2 实验结果分析	18
5 总结与展望	2 5
5.1 本文工作总结	25
5.2 工作展望	
参考文献	27
致 谢	31

1 绪论

演化算法是隶属于演化计算的一种人工智能算法,是一种基于基因种群的启发式的优化算法。演化算法被广泛地应用于解决优化问题,包括单目标以及多目标优化问题 [1]。演化算法受1859 年达尔文提出的物种起源的启发,吸取其中的生物进化和自然选择的思想。现如今演化算法已经得到了众多研究学者的关注,演化算法已经分化成多个分支:遗传算法 [2],生物地理学优化 [3],遗传编程 [4],演化编程 [5],差分进化 [6]等等。演化算法被广泛地应用于工程实践和学术研究中。

1.1 研究目的和意义

分布估计算法是一种新兴的演化算法,它通过建立在概率模型中采样来产生新的种群个体,通过提取当前优秀中取得概率模型来指导下一步的搜索 [7] [8]。不同于传统的演化算法,在分布估计算法中不存在变异和交叉,通过使用一个精确地概率分布模型来提取统计信息。子代种群解集将会通过从建立的概率分布模型中采样产生,并且产生的解集会部分或者全部地取代父代中区解集。分布估计算法通过分布概率模型能够更好地进行全局搜索,提取全局统计信息。分布估计算法主要由三个步骤组成,即:建模,采样,选择。其中,采样环节是本文的重点,采样对于分布估计算法具有重大意义,提升采样的性能可以大大地提高算法的性能,更有可能产生更为优质的子代种群解集 [9]。

差分进化算法是一种有效并且简单的演化算法 [6,10]。差分进化算法通过利用种群中的距离和方向信息来指导搜索的过程。差分进化算法通过提取种群中的差分信息来指导下一步搜素并且可以加快解集收敛的速度。得益于这一点,受到差分进化算法思想的启发,我们提出基于差分进化的采样策略(Differential Evolution based Sampling, DES)。DES对于提高种群的多样性,加速种群解集收敛都有着重大的意义。

1.2 本文所做的工作和内容安排

针对分布估计算法的采样,差分进化的思想被引入到采样策略中,用于提高分布估计算法的性能。我们针对单目标和多目标优化问题,来验证DES对于提高演化算法性能的意义。在多目标优化问题上,DES被用于改进基于平滑模型的分布估计算法(A Regularity Model-based Estimation of Distribution Algorithm, RM-MEDA) [11]中的采样策略,提高算法性能。在单目标优化问题上,基于差分进化和分布估计算法的混合算法

(DE/DEA) [12],通过改进DE/EDA中的差分进化算法,并且同时提出一种基于特征向量的改进的差分进化和分布估计算法的混合算法(EDA/DE-EIG),研究其对于提高分布估计算法对于解决单目标优化问题上算法性能和速度提升的意义。

论文内容安排如下:

第一章 绪论,介绍演化算法以及本文的研究目的和论文安排。

第二章 理论基础,介绍分布估计算法和差分进化的基本概念以及相应的算法框架。

第三章 提出基于差分进化的采样策略以及相应的算法框架。

第四章 将基于差分进化的采样策略应用到多目标优化问题上面,并给出相应的算法框架和实验结果分析。

第五章 将基于差分进化的采样策略应用到单目标优化问题上,并给出相应的算法框架和试验结果分析。

第六章 论文总结和展望。

2 理论基础

本章主要介绍演化算法中对于多目标优化问题以及单目标优化问题的相关定义,同时分别简要地介绍分布估计算法和差分进化算法的理论知识和算法框架。

2.1 多目标优化问题

在科学研究和工程应用中,在对于设计和策略的解决方案中往往涉及到对于对个目标的优化问题,这就是本文中所说的多目标优化问题(Multiobjective Optimization,MOP)。拿一个我们日常生活中买车的例子,如图所示,在买车的时候我们既要考虑到价格同时也要考虑到舒适性,这就可以理解成一种多目标优化问题。

为了不失一般性,在本文中,在本文中我们假设每个问题都是最小化问题,则MOP可以由以下数学公式表达:

min
$$F(x) = (f_1(x), \dots, f_m(x))$$

s.t $x \in \Omega$ (2.1)

其中, $x=(x_1,\cdots,x_n)^T\in R^n$ 是决策变量向量, $\Omega=\Pi_{i=1}^n[a_i,b_i]\subset R^n$ 表示可能的搜索空间区域, $f_i:R^n\to R, i=1,\cdots,m$ 是一个连续的目标函数,F(x)则是相应的目标函数向量。

在MOP中,多个目标相互之间往往是冲突的,从而导致无法在满足所有约束条件下使得所有目标函数都能够达到全局最优解,但是存在一组Pareto最优解 [13]。对于此,做出以下定义: 令 $a,b \in R^n$,当 $a_i \leq b_i \land a \neq b$,且 $i=1,\cdots,n$,则称a 支配b。向量 $x^* \in \Omega$ 即是 2.1 Pareto最优解,如果不存在 $x \in \Omega$ 使得F(X)支配 $F(x^*)$ 。 $F(x^*)$ 被称为Pareto最优目标向量。所有的Pareto最优解的集合就是Pareto最优解集(PS),对应的最优向量的集合则成为Pareto前端(PF)。

2.2 单目标优化问题

本文研究的单目标优化问题针对的是连续空间的全局优化问题,一般即是求得最小值或者最大值。全局优化问题是应用数学和数值分析的一个分支,用于解决在一定条件下求

得一个或者一组函数的最优解[14]。同样,对于全局优化问题在本文中做出以下定义:

$$minf(x)$$

$$s.t.x \in [a_i, b_i]^n$$
(2.2)

其中 $x = (x_1, x_2, \dots, x_n)^T \in \mathbb{R}^n$ 是决策变量向量, $[a_i, b_i]^n$ 是搜索空间区域, $f: \mathbb{R}^n \to \mathbb{R}$ 则是目标函数。

2.3 分布估计算法

分布估计算法(Estimation of Distribution Algorithm, EDA),也被称为基于概率模型的遗传算法(Probabilistic Model-based Genetic Algorithm, PMGA),是一种通过建模和采样来搜索最优解的随机优化方法 [7]。分布估计算法虽然属于演化算法,但是和传统的演化算法却有着较大的不同之处。传统的算法通过变量之间隐含的分布关系来产生新的子代种群,然而分布估计算法是通过概率模型建立的精确地分布来产生新的种群 [15]。

2.3.1 算法框架

分布估计算法主要由三个步骤组成:建模,采样和选择。传统的分布估计算法的算法框架如Algorithm 1所示。

Algorithm 1: 分布估计算法

- 1 初始化: 建立随机初试种群Pop(t), t 是相应的种群代数。
- 2 while not terminate do
- $\mathbf{3}$ **建模**:根据种群Pop(t)中的统计信息建立概率模型p(x)。
- **采样**:通过从建立的概率模型p(x)中采样产生一个新的解集Q。
- **5 选择**:根据某个条件从 $Q \cup Pop(t)$ 中挑选后代组建下一代种群Pop(t+1)。
- 6 t = t + 1
- 7 end

2.4 差分进化

差分进化(Differential Evolution, DE)自从由Storn于1995年提出,就得到了广大学者的关注并且发展迅速 [6]。自从20 是90年代以来,差分进化算法就在多数科学工程领域得到广泛的应用 [16]。究其原因,可以总结如下:

- 与传统的演化算法相比,差分进化更简单也更容易实施。算法的代码往往只需要几行代码即可,因此它可以很好地应用于其他的领域。尽管粒子群优化算法(Particle Swarm Optimization, PSO)的代码也比较简单,但是差分进化算法在大多数问题上的表现都比粒子群优化算法要更加优秀 [17,18]。
- 另一方面,差分进化中的控制参数和其他的演化算法相比,控制参数更少。在经典的差分进化中,一般只有控制参数Cr,缩放因子F以及种群大小NP三个参数。对于F和Cr的自适应规则的研究,在不给算法带来额外的负担的条件下,对于算法性能的提升意义重大 [19,20]。

差分进化是一个基于种群的启发式优化算法。和其他的演化算法类似,差分进化也包含三个基本的操作:变异,交叉以及选择。差分进化通过变异操作产生变异向量,然后通过交叉操作产生交叉向量,最后在交叉向量和种群中选择个体进入下一代种群中。

2.4.1 算法框架

```
Algorithm 2: 差分进化
```

```
2 while not terminate do
      v_{i,G} = x_{r1,G} + F \cdot (x_{r2,G} + x_{r3,G})
      if rand_{j}(0,1) \leq CR or j = j_{rand} then
 4
         u_{i,j,G} = v_{i,j,G}
 5
 6
      else
 7
       u_{i,j,G} = x_{i,j,G}
      end
 8
      if f(u_{i,G}) \leq f(x_{i,G}) then
 9
10
         x_{i,G+1} = u_{i,G}
      else
11
       | x_{i,G+1} = x_{i,G}
12
      end
13
14 end
```

其中F是缩放因子,CR是交叉概率因子。 $v_{i,G}$ 是变异向量, $u_{i,G}$ 是试验向量, $x_{i,G+1}$ 是目标向量。r1,r2和r3是从[1,N]中挑选出来的整数,且它们也不同于i。

2.4.2 差分变异策略

1. DE/rand/1策略

$$v_{i,G} = x_{r_{1,G}} + F \cdot (x_{r_{2,G}} + x_{r_{3,G}}) \tag{2.3}$$

2. DE/best/1策略

$$v_{i,G} = x_{best,G} + F \cdot (x_{r1,G} + x_{r2,G}) \tag{2.4}$$

3. DE/rand/2策略

$$v_{i,G} = x_{r1,G} + F \cdot (x_{r2,G} - x_{r3,G}) + F \cdot (x_{r4,G} - x_{r5,G})$$
(2.5)

4. DE/best/2策略

$$v_{i,G} = x_{best,G} + F \cdot (x_{r1,G} - x_{r2,G}) + F \cdot (x_{r3,G} - x_{r4,G})$$
(2.6)

5. DE/current-to-best/1

$$v_{i,G} = x_{r1,G} + F \cdot (x_{best,G} - x_{i,G}) + F \cdot (x_{r1,G} - x_{r2,G})$$
(2.7)

6. DE/current-to0rand/1

$$u_{i,G} = x_{i,G} + K \cdot (x_{r1,G} - x_{i,G}) + F' \cdot (x_{r2,G} - x_{r3,G})$$
(2.8)

其中 $x_{best,G}$ 是指当前种群中的最优个体, $x_{i,G}$ 为目标向量(父代种群个体), $u_{i,G}$ 是父代种群个体对应的变异向量。不同的策略往往针对不同类型的问题更为有效,一般来说,DE/rand/1是最常用的策略。

2.4.3 主要的差分进化算法

差分进化算法自从提出之后,就受到了工业界以及学术界的广泛关注,各种各样基于差分进化的算法都涌现出来。下面就演化计算中广泛流行的几种差分进算法进行介绍。

JADE [21]是一种新型的差分进化算法,在JADE中提出了一种新的变异策略"DE/current-to-pbest",它通过使用一种自适应的方式来进行种群的更新,从而提高算法的自适应性。对于种群中的每一个目标向量,JADE都会对F和CR进行更新,同时这些信息也将用于更新F和CR,从而作用于新的种群。

CoDE(Composite DE) [?]算法通过结合三个不同的后代产生策略和三个常用的参数设置,后代产生策略和参数设置会随机组合在一起来产生新的解集。这个算法虽然比较简

图 1: 连续多目标问题决策空间中个体的分布情况

单,但却十分有效,在CEC2005所有的测试题上经过运算,和其他差分进化算法相比都有着不小的提高。

3 基于采样策略对于连续多目标优化问题的研究

在本章中,我们基于RM-MEDA算法提出了一种基于差分进化的采样策略来解决连续多目标问题。通过采取差分进化中的变异策略,将种群在隐空间中进行转化,从而产生新的种群。

3.1节给出了连续多目标问题的相关背景知识,3.2节主要介绍RM-MEDA算法框架以及相应的背景知识,3.3节详细介绍基于差分进化的采样策略,3.4节主要讲述通过基于差分进化的采样策略来改进RM-MEDA 算法,3.5节是实验结果的分析。

3.1 连续多目标问题

在第二章中,已经介绍过多目标问题的相关定义。多目标问题在很多工程领域都普遍存在,通常来说,多目标问题中的各个目标之间往往都是相互冲突的在一般条件下,根据Karush-Kuhn-Tucker 可以推导出:连续多目标问题在决策空间中的Pareto set 是一个连续分段的(m-1)维的流形体(m是目标数)。对于一个成功的多目标演化算法(multiobjective estimation of distribution algorithm,MOEA)来说,独立的个体应该是在决策空间中分散在Pareto set附近,如图 ??所示。

3.2 基于采样策略的多目标分布估计算法

根据连续多目标问题以上的特性,基于规律模型的多目标分布算法(RM-MEDA)算

法被提出用于解决连续多目标问题。其通过在每一次迭代中,通过Local PCA [?]在决策空间中的区域建立概率分布模型,然后通过使用拉丁采样得到新的子代种群。RM-MEDA 采用基于非劣排序的方法 [?]来挑选个体来产生新的种群。RM-MEDA 经提出后,就收到了广泛的关注。本小节基于RM-MEDA算法,提出了一种基于差分进化的采样策略,用于进一步提升RM-MEDA 中采样环节。

3.2.1 RM-MEDA算法

对于连续多目标问题,在决策空间中,种群体中的个体如果越接近Pareto set,则越容易进行问题的求解。因此,假设种群中的个体为随机向量 $\xi \in R^D$ 的观测值, ξ 的中央部分就是Pareto set。并且因为在连续多目标问题中,Pareto set是一个m-1维的流体,那么 ξ 则可以由公式 3.1表示:

$$\xi = \zeta + \epsilon \tag{3.1}$$

 ζ 相当于是均匀分布在m-1维流体附近的个体, ϵ 是均值为0的n维的噪音向量。

RM-MEDA算法是基于分布估计算法的框架,主要也是包括建模、采样、选择三个环节。算法??则是RM-MEDA的主要的算法框架。

Algorithm 3: RM-MEDA 算法框架

- 1 初始化一个随机种群Pop(0),并且设置t=0。
- 2 while 没有达到停机条件 do
- \mathbf{z} **建模**:建立一个概率模型 ξ 来表示在随机种群Pop(t)中的个体。
- $\mathbf{4}$ **、 采样**:通过上述的概率模型进行采样得到新的解集Q。
- **5 选择**:从Q[]Pop(t)中挑选出N个个体来组成一个新的种群Pop(t+1)。
- 6 t = t + 1
- 7 end
- 8 返回最终的种群解集Pop(t)。

3.2.2 RM-MEDA中存在的问题和解决方法

在RM-MEDA中,通过使用Local PCA将种群分成k个聚类。如图 2所示,在每一个聚类之中, N^k 用来表示聚类中的Pareto set,而 M^k 则用来覆盖每个聚类中的Pareto set。 为了能够覆盖聚类中的Pareto set,RM-MEDA通过设置一个缩放比例用来覆盖聚类中的Pareto set。但是这个缩放比例依赖于问题,,这个缩放比例依赖于具体的问题,对于不同的问题,其表现也不禁相同。如果缩放比例设置过大,则对于实际的Pareto set则显

M^1 N^2 M^3

Pareto Set

图 2: 通过缩放比例来覆盖Pareto setp

图 3: 通过缩放比例来覆盖Pareto setp

得多余;如果设置的缩放比例过小,又不足以覆盖实际的Pareto set。因此,如何设置一个合适的Pareto set也成为了一个比较困难的问题。

3.2.3 基于差分进化的采样策略

为了避免在RM-MEDA中通过设置缩放比例来进行采样,我们提出了一种新型的基于 差分进化的采样策略。通过改进rand-1-bin变异策略,这个变异策略的公式如 3所示:

$$X = X_{r_1} + rand \cdot (X_{r_2} - X_{r_3}) + F \cdot (X_{r_2} - X_{r_3})$$
(3.2)

其中 X_{r_1} , X_{r_2} , X_{r_3} 是种群中的随机个体, r_1 , r_2 , r_3 则是从1到NP(NP是种群的大小)之间选择的三个互不相同的整数。F是变异策略中的缩放因子,rand是0到1之间符合均匀分布的随机数。

图 3诠释了在二维空间中这个变异策略是如何实现的。向量 $rand \cdot (X_{r_2} - X_{r_3}) + F \cdot (X_{r_2} - X_{r_3})$ 对于增加种群的多样性具有重要意义。

对于种群中的每一个聚类中,DES将决策空间中的个体转化到隐空间中,通过上述变异策略产生新的个体,再将个体转换到正常的决策空间中。通过在隐空间中执行变异策略,可以有效地提取种群中的统计信息。DES的算法框架如4所示:

Algorithm 4: DES

1 对于每个给定的聚类求得相应的协方差矩阵C并进行分解操作:

$$C = EDE^T$$

E是协方差矩阵C的特征向量矩阵,D是由特征值组成的对角矩阵。

2 对于聚类中每一个个体x,将其映射到隐空间中:

$$y = x \cdot R$$
.

R是特征向量矩阵E中前(m-1)个主要成分。

3 在隐空间中对于种群个体进行变异操作:

$$y' = y_{r_1} + rand \cdot (y_{r_2} - y_{r_3}) + F \cdot (y_{r_2} - y_{r_3})$$

4 将y'映射到原始的决策空间

$$x' = y' \cdot R^T.$$

5 返回产生的新的个体

$$x'' = x' + \varepsilon'$$

where ε' is the Gaussian noise subjects to the distribution $\mathcal{N}(0, \sigma_{\tau}I)$ $(\tau \in \{1, 2, \dots, K\}$ is a randomly generated integer).

将DES引入到RM-MEDA算法中来采样,那么DES-RM-MEDA算法框架如算法 5所示。

3.3 实验分析

3.3.1 实验设置

本章节主要针对ZZJ中的10个测试题做实验比较。

$$IGD(P^*, P) = \frac{\sum_{v \in P^*} d(v, P)}{P^*}$$
 (3.3)

Algorithm 5: DES-RM-MEDA

- 1 Initialize a population Pop(0), and set t=0.
- 2 while not terminate do
- **Modeling:** Build the probabilistic model δ in order to model the distribution of the solutions in Pop(t).
- **Reproduction:** Partition the population into different clusters C_i according to the probabilistic model. For each cluster, use DES to generate a set of candidate solutions Q_i . Set $Q = \bigcup_i Q_i$.
- **Selection**: Select N solutions from $Q \bigcup Pop(t)$ to construct a new population Pop(t+1).
- $6 \mid t = t + 1$
- 7 end
- 8 Return the solutions in Pop(t).

其中,d(v,P)是v到P中任意一点的最小欧氏距离。如果 P^* 足够大到可以表示Pareto front,那么 $IGD(P^*,P)$ 就可以用来测量P的多样性和收敛性。 $IGD(P^*,P)$ 的值越小,则P距离 P^* 越近。

RM-MEDA和DES-RM-MEDA都是使用Matllab进行编程实现并且是在同一台计算机上运行程序。在这篇论文中的试验参数如下:

- 初始化种群: 这两个算法中的初始种群是随机生成的。
- 种群大小:对于测试集(F3, F7, F9)每一代的种群大小设置成100,对于其他的测试题,每一代种群大小设置为200.
- 决策向量的大小: 决策向量的大小在这两个算法都设置成30。
- 聚类数量:聚类的数量设置成5。
- 缩放因子F: 缩放因子F设置为0.4。
- 运行次数:对于算法中每一个测试题将单独运行30次。
- 迭代次数: The number of generation is set to 100 for instances (F1, F2, F5, F6), 200 for instances F4 and F8, and 1000 for instances F3, F7 and F9.

- 4 基于采样策略对于全局单目标优化问题的研究
- 4.1 单目标优化问题

- 5 总结与展望
- 5.1 本文工作总结
- 5.2 工作展望

参考文献

- [1] D. Simon, Evolutionary optimization algorithms. John Wiley & Sons, 2013.
- [2] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, "A fast and elitist multiobjective genetic algorithm: NSGA-II," Evolutionary Computation, IEEE Transactions on, vol. 6, no. 2, pp. 182–197, 2002.
- [3] D. Simon, "Biogeography-based optimization," *IEEE transactions on evolutionary computation*, vol. 12, no. 6, pp. 702–713, 2008.
- [4] W. Banzhaf, P. Nordin, R. E. Keller, and F. D. Francone, Genetic programming: an introduction, 1998.
- [5] X. Yao and Y. Liu, "Fast evolutionary programming." in *Evolutionary Programming*, 1996, pp. 451–460.
- [6] R. Storn and K. Price, Differential evolution-a simple and efficient adaptive scheme for global optimization over continuous spaces. ICSI Berkeley, 1995, vol. 3.
- [7] P. Larranaga and J. A. Lozano, Estimation of distribution algorithms: A new tool for evolutionary computation. Springer Science & Business Media, 2002, vol. 2.
- [8] M. Pelikan, D. E. Goldberg, and F. G. Lobo, "A survey of optimization by building and using probabilistic models," *Computational optimization and applications*, vol. 21, no. 1, pp. 5–20, 2002.
- [9] A. Z. Bing Dong and G. Zhang, "Sampling in latent space for a multiobjective estimation of distribution algorithm," 2016.
- [10] R. Storn and K. Price, "Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces," *Journal of global optimization*, vol. 11, no. 4, pp. 341–359, 1997.
- [11] Q. Zhang, A. Zhou, and Y. Jin, "RM-MEDA: A regularity model based multiobjective estimation of distribution algorithm," *IEEE Transactions on Evolutionary Computation*, vol. 12, no. 1, pp. 41–63, 2008.

- [12] J. Sun, Q. Zhang, and E. P. Tsang, "DE/EDA: A new evolutionary algorithm for global optimization," *Information Sciences*, vol. 169, no. 3, pp. 249–262, 2005.
- [13] Q. Zhang and H. Li, "MOEA/D: A multiobjective evolutionary algorithm based on decomposition," Evolutionary Computation, IEEE Transactions on, vol. 11, no. 6, pp. 712–731, 2007.
- [14] R. Horst, P. M. Pardalos, and N. Van Thoai, Introduction to global optimization. Springer Science & Business Media, 2000.
- [15] Towards a new evolutionary computation: advances on estimation of distribution algorithms. Springer Science & Business Media, 2006, vol. 192.
- [16] S. Das and P. N. Suganthan, "Differential evolution: a survey of the state-of-the-art," Evolutionary Computation, IEEE Transactions on, vol. 15, no. 1, pp. 4–31, 2011.
- [17] S. Rahnamayan, H. R. Tizhoosh, and M. M. Salama, "Opposition-based differential evolution," *IEEE Transactions on Evolutionary computation*, vol. 12, no. 1, pp. 64–79, 2008.
- [18] S. Das, A. Abraham, U. K. Chakraborty, and A. Konar, "Differential evolution using a neighborhood-based mutation operator," *IEEE Transactions on Evolutionary Computation*, vol. 13, no. 3, pp. 526–553, 2009.
- [19] J. Brest, S. Greiner, B. Boskovic, M. Mernik, and V. Zumer, "Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems," *IEEE transactions on evolutionary computation*, vol. 10, no. 6, pp. 646–657, 2006.
- [20] A. K. Qin, V. L. Huang, and P. N. Suganthan, "Differential evolution algorithm with strategy adaptation for global numerical optimization," *IEEE transactions on Evolu*tionary Computation, 2009.
- [21] J. Zhang and A. C. Sanderson, "JADE: adaptive differential evolution with optional external archive," *Evolutionary Computation, IEEE Transactions on*, vol. 13, no. 5, pp. 945–958, 2009.

6 附录

致 谢