수열 축소

길이가 N인 수열이 주어지면 인접한 두 수의 차이를 이용해 길이가 N-1인 수열을 만듭니다. 만약 수열이 [5, 3, 7, 9, -2]라면 [(3-5), (7-3), (9-7), (-2-9)] => [-2, 4, 2, -11]로 수 열의 길이를 줄일 수 있습니다. 이런 과정을 길이축소작업이라 하겠습니다. N길이의 수열이 주어지면 M번의 길이축소작업을 한 결과를 구하는 프로그램을 작성하세요.

□ 입력설명

매개변수 nums에 N(3<=N<=30)길이의 수열이 주어지고, 매개변수 m에 M(M<N)이 주어집니다.

■ 출력설명

M번의 길이축소작업을 거친 수열을 반환합니다..

```
■ 매개변수 형식 1[5, 3, 7, 9, -2], 1
```

● 반환값 형식 1[-2, 4, 2, -11]

■ 매개변수 형식 2[5, 3, 7, 9, -2], 2

● 반환값 형식 1[6, -2, -13]

```
초기코드형식
function solution(nums, m){
    let answer;
    return answer;
}
console.log(solution([5, 3, 7, 9, -2], 1));
```

제곱수 정렬

길이가 N인 수열이 주어집니다. 수열의 원소를 제곱하여 오름차순 정열해 출력하는 프로그램을 작성하세요.

□ 입력설명

매개변수 nums에 N(3<=N<=100,000)길이의 수열이 주어집니다. 수열의 원소는 정수입니다.

■ 출력설명

각 원소를 제곱하여 오름차순 정렬한 배열은 반환합니다.

■ 매개변수 형식 1[-4, -1, 0, 3, 10]

● 반환값 형식 1[0, 1, 9, 16, 100]

■ 매개변수 형식 2[-7, -3, 2, 3, 11]

● 반환값 형식 2[4, 9, 9, 49, 121]

수열의 높이 조정

N길이의 수열이 주어집니다. 수열의 높이 조정은 수열의 원소값 중 가장 큰 원소에서 1을 빼가장 작은 원소에 더해주는 것을 말합니다. 가장 큰 원소와 가장 작은 원소가 여러개면 그 중 아무거나 선택하면 됩니다.

만약 수열이 [2, 1, 3, 7, 5]라면 1회의 높이조정을 거치면 [2, 2, 3, 6, 5]가 됩니다. N길이의 수열이 주어지면 높이조정을 m회 한 후 가장 큰 값과 가장 작은 값을 차를 출력하는 프로그램을 작성하세요.

□ 입력설명

매개변수 nums에 N(3<=N<=100,000)길이의 수열이 주어집니다. 수열의 원소는 1,000을 넘지 않습니다. 매개변수 m에 높이 조정 횟수인 M(1<=M<=10,000)이 주어집니다.

■ 출력설명

M회의 높이 조정을 마친 후 가장 높은곳과 가장 낮은 곳의 차이를 출력하세요. 단 m회의 높이조정을 하던 중 모든 값이 같아지면 높이조정을 중단하고 0을 반환합니다.

- 매개변수 형식 1[2, 1, 3, 7, 5], 2
- 반환값 형식 13
- 매개변수 형식 2 [69, 42, 68, 76, 40, 87, 14, 65, 76, 81], 50
- 반환값 형식 220

가장 높은 증가수열

길이가 N인 수열이 주어지면 이 수열에서 연속된 부분 증가수열을 찾습니다. 각 부분증가수열은 높이가 있습니다. 증가수열의 높이란 증가수열의 첫항과 마지막항의 차를 의미합니다. 수열이 주어지면 여러 증가수열 중 가장 높은 부분증가수열을 찾는 프로그램을 작성하세요. 만약 수열이 [5, 2, 4, 7, 7, 3, 9, 10, 11]이 주어지면 가장 높은 부분증가수열은 [3, 9, 10, 11]이고, 높이는 8입니다.

이웃하는 두 수가 같을 경우 증가수열로 보지 않습니다.

□ 입력설명

매개변수 nums에 N(3<=N<=100,000)길이의 수열이 주어집니다. 수열의 원소는 자연수입니다.

■ 출력설명

가장 높은 연속부분증가수열의 높이를 반환합니다.

매개변수 형식 1[5, 2, 4, 7, 7, 3, 9, 10, 11]

■ 반환값 형식 1

8

■ 매개변수 형식 2[8, 12, 2, 3, 7, 6, 20, 3]

■ 반환값 형식 2

14

가장 긴 수열

길이가 N인 수열이 주어지면 이 수열에서 연속으로 증가하거나, 또는 연속으로 작아지는 부분 수열 중 가장 길이가 긴 수열을 찾는 프로그램을 작성하세요.

만약 [5, 3, 6, 7, 9, 8, 5, 3, 1, 2]이 주어지면 우리가 찾는 가장 긴 수열은 [9, 8, 5, 3, 1] 입니다.

수열 [1, 2, <u>3, 3</u>, 4, 5, 6]과 같이 같은 값이 연속으로 있는 것은 증가 또는 감소로 보지 않기 때문에 가장 긴 수열은 [3, 4, 5, 6]이 됩니다.

□ 입력설명

매개변수 nums에 N(3<=N<=100,000)길이의 수열이 주어집니다. 수열의 원소는 자연수입니다.

■ 출력설명

가장 긴 수열의 길이를 반환합니다.

매개변수 형식 1[5, 3, 6, 7, 9, 8, 5, 3, 1, 2]

■ 반환값 형식 15

매개변수 형식 2[1, 2, 3, 3, 4, 5, 6, 7, 7]

■ 반환값 형식 2

5

바이토닉 수열

바이토닉 수열이란 수열이 증가했다가 감소하는 수열을 의미합니다. 길이가 N인 수열이 주어지면 이 수열이 바이토닉 수열인지 판별하는 프로그램을 작성하세요. 만약 [1, 2, 3, 4, 2, 1]이면 바이토닉 수열입니다. 하지만 [1, 2, 2, 3, 2, 1]과 같이 같은 값이 연속으로 있으면 바아토닉이 수열이라 하지 않습니다.

□ 입력설명

매개변수 nums에 N(3<=N<=30)길이의 수열이 주어집니다. 수열의 원소는 자연수입니다.

■ 출력설명

바이토닉 수열이면 "YES", 아니면 "NO"를 반환합니다.

■ 매개변수 형식 1

[1, 2, 3, 4, 5, 3, 1]

■ 반환값 형식 1

YES

■ 매개변수 형식 2

[1, 3, 4, 5, 5, 6, 4, 3]

■ 반환값 형식 2

NO

■ 매개변수 형식 2

[1, 2, 3, 4, 5]

■ 반환값 형식 2

NO

거리 두기

현수는 영화관에 도착했습니다. 영화상영 시간보다 약간 늦은 현수는 남은 좌석을 빨리 선택하고 영화를 보려고 합니다.

현수에게 일렬로된 좌석정보가 주어지면, 이미 앉아 있는 사람들 중 가장 가까운 사람과 최대한 멀리 떨어져 앉을 자석을 선택해야 합니다. 여러분이 도와주세요.

□ 입력설명

매개변수 nums에 길이가 N(3<=N<=100)인 수열을 통해 좌석의 정보가 주어집니다. 좌석정보는 1은 이미 사람이 앉은 좌석이고 0의 빈 좌석입니다.

■ 출력설명

현수가 이미 앉은 사람과 최대한 멀리 앉을 수 있는 거리를 반환합니다.

■ 입력예제 1

[1, 0, 0, 0, 1, 0, 0, 1, 0, 1]

■ 출력예제 1

2

출력설명

총 10개의 좌석이 왼쪽부터 0번 좌석으로 해서 9번 좌석까지 존재한다면 현수가 2번 좌석에 앉으면 가장 가까운 사람과의 거리가 2가 됩니다. 만약 6번 좌석에 앉으면 가장 가까운 사람과의 거리는 1입니다.

빈도수 구하기

길이가 N인 수열이 주어집니다. 자연수 K가 주어지면 수열의 원소 중 빈도수가 가장 많은 것 순으로 K개를 찾아주는 프로그램을 작성하세요.

□ 입력설명

매개변수 nums에 N(3<=N<=100,000)길이의 수열이 주어집니다. 매개변수 k에 자연수 K가 주어집니다. 수열의 원소는 정수입니다.

■ 출력설명

빈도수가 가장 많은 K개의 원소를 배열형태로 반환합니다. 빈도수가 같은 원소가 여러개일 경우 배열의 원소의 순서는 상관없습니다.

■ 매개변수 형식 1

[1, 1, 1, 2, 2, 3], 2

■ 반환값 형식 1

[1, 2]

□ 매개변수 형식 2

[3, 3, 3, 5, 1, 1, 1, 7, 2, 2], 3

■ 반환값 형식 2

[3, 1, 2]