Towards Independent Subspace Analysis in Controlled Dynamical Systems

Zoltán Szabó, András Lőrincz

Neural Information Processing Group, Department of Information Systems, Eötvös Loránd University, Budapest, Hungary

ICA Research Network 2008

Acknowledgements:

Tools to Integrate-1 (Independent Subspace Analysis)

- Cocktail party problem
- Generalization of ICA:
 - multidimensional components,
 - groups of 'people/music bands'
- Hidden, independent, multidimensional processes NO CONTROL.

Tools to Integrate-2 (D-optimal Identification of Dynamical Systems)

- Problem: estimate the parameters of a fully observable controlled dynamical system by the 'optimal' choice of the control.
 - 'Parameters': dynamics, noise.
 - \bullet 'Optimal': in information theoretical sense \to D-optimality.
- Synonyms: active learning, optimal experimental design.
- For ARX models: QP in Bayesian framework.
- Controlled dynamical system FULLY OBSERVABLE.

Motivation

- Goal: integrate the former methodologies
 - hidden multidimensional sources,
 - optimal design in controlled systems.

Motivation

- Goal: integrate the former methodologies
 - hidden multidimensional sources,
 - optimal design in controlled systems.
- EEG data analysis: recognition + prediction, e.g., epileptic

Motivation

- Goal: integrate the former methodologies
 - hidden multidimensional sources,
 - optimal design in controlled systems.
- EEG data analysis: recognition + prediction, e.g., epileptic

EU-FP7: interested in partnership

Contents

- Independent Subspace Analysis
- D-optimal ARX Identification
- D-optimal Hidden ARX Identification
- Illustrations

Independent Subspace Analysis (ISA/MICA)

 ISA equations: Observation x is linear mixture of independent multidimensional components:

$$\mathbf{x}(t) = \mathbf{A}\mathbf{s}(t),$$

 $\mathbf{s}(t) = [\mathbf{s}^1(t); \dots; \mathbf{s}^M(t)],$

where

- $\mathbf{s}^m(t) \in \mathbb{R}^{d_m}$ are i.i.d. sampled random variables in time,
- $I(\mathbf{s}^1, \dots, \mathbf{s}^M) = 0$,
- mixing matrix $\mathbf{A} \in \mathbb{R}^{D \times D}$ is invertible, with $D := dim(\mathbf{s})$.
- Goal: $\hat{\mathbf{s}}$. Specially for $\forall d_m = 1$: ICA.
- Ambiguities: permutation, linear (/orth.) transformation.

D-optimal ARX Identification

Observation equation (ARX model; u: control, e: noise):

$$s(t+1) = Fs(t) + Bu(t+1) + e(t+1).$$

- Task: 'efficient' estimation of
 - system parameters: $\Theta = [F, B, parameters(e)]$, or
 - o noise: e

by the 'optimal' choice of control **u**.

Optimality (D-optimal/'InfoMax'):

$$J_{par}(\mathbf{u}_{t+1}) := I(\Theta, \mathbf{s}_{t+1} | \mathbf{s}_t, \mathbf{s}_{t-1}, \dots, \mathbf{u}_{t+1}, \mathbf{u}_t, \dots) o \max_{\mathbf{u}_{t+1} \in U}, \text{ or } \\ J_{noise}(\mathbf{u}_{t+1}) := I(\mathbf{e}_{t+1}, \mathbf{s}_{t+1} | \mathbf{s}_t, \mathbf{s}_{t-1}, \dots, \mathbf{u}_{t+1}, \mathbf{u}_t, \dots) o \max_{\mathbf{u}_{t+1} \in U}.$$

 Result (Póczos & Lőrincz, 2008): In the Bayesian setting, optimization of J can be reduced to QP.

D-optimal Hidden ARX Identification

State (s) + observation (x) equation:

$$s(t+1) = Fs(t) + Bu(t+1) + e(t+1),$$
 (1)

$$\mathbf{x}(t) = \mathbf{A}\mathbf{s}(t). \tag{2}$$

- Assumptions: I(e¹,...,e^M) = 0 hidden non-Gaussian independent multiD components
- Trick: reduce the problem to the fully observable case (d-dep. CLT) + ISA:
 - $x(t+1) = [AFA^{-1}]x(t) + [AB]u(t+1) + [Ae(t+1)],$
 - \mathbf{x} 'fully observable tool' \rightarrow [AFA⁻¹], [AB], Ae,
 - Ae ISA \rightarrow A} \Rightarrow F, B, e.
- Note: for higher order ARX systems the same idea holds.

Databases, Performance Measure, Questions

Databases (3D-geom, ABC, celebrities):

- Performance measure: Amari-index $(r) \in [0, 1]$, 0-perfect.
- Questions:
 - **1** Dependence on $\delta_u = |U_{\text{control}}|$,
 - ② Dependence on $J = deg(\mathbf{B}_{control}[z])$,
 - **3** Dependencies on $I = deg(\mathbf{F}_{AR}[z])$ and λ :

$$\mathbf{F}_{\mathsf{AR}}[z] = \prod_{i=0}^{l-1} (\mathbf{I} - \lambda \mathbf{O}_i z) \quad (|\lambda| < 1, \lambda \in \mathbb{R}, \mathbf{O}_i : \mathsf{RND} \mathsf{ orth.}).$$

Illustrations: Dependence on $\delta_u = |U_{\text{control}}|$

Decline of the estimation error: power-law $[r(T) \propto T^{-c} \ (c > 0)]$

Illustration: 3D-geom

observation:

Illustration: 3D-geom

observation:

estimated innovation (input of ISA):

Illustration: 3D-geom

observation:

estimated innovation (input of ISA):

Hinton-diagram, estimated components:

Illustration: Dependencies on $J = deg(\mathbf{B}_{control}[z])$, $I = deg(\mathbf{F}_{AR}[z])$

Precise even for J = 50; I = 50 (\nearrow , $\lambda \searrow$)

Summary

- Integration of two methodologies:
 - hidden independent multidimensional sources,
 - optimal design in controlled dynamical systems.
- Numerical experiences:
 - Decline of the estimation error follows power-law.
 - Robust against:
 - the order of the AR process,
 - temporal memory of the control.
- Possibility to apply ICA, ISA, ... in controlled systems.

TYFYA!

References

B. Póczos and A. Lőrincz.

D-optimal Bayesian interrogation for parameter and noise identification of recurrent neural networks.

2008.

(submitted; available at http://arxiv.org/abs/0801.1883).

V. V. Petrov.

Central limit theorem for m-dependent variables.

In Proceedings of the All-Union Conference on Probability Theory and Mathematical Statistics, pages 38–44, 1958.

Z. Szabó.

Separation Principles in Independent Process Analysis.

PhD thesis, Eötvös Loránd University, Budapest, 2008. (submitted; available at nipg.inf.elte.hu: Download).