Chapter 4 Digital Transmission

Review of Analog and Digital Signals

- Analog Signal
 - An continuously varying electromagnetic wave that may be propagated over a variety of media (e.g., twisted pair or coaxial cable, atmosphere), depending on spectrum.
- Digital Signal
 - An sequence of voltage pulses that may be transmitted over a wire medium, e.g., a constant positive voltage level may represent binary 0 and a constant negative voltage level may represent binary 1.
- Advantages of digital signal over analog signal
 - Cheaper in price
 - Less susceptible to noise interference
- Disadvantages of digital signal over analog signal
 - Suffer more from attenuation
 - Pulses become rounded and smaller
 - Leads to loss of information

Review Q: Why we have to convert information to either a digital signal or an analog signal?

Figure 4.1 Line coding

Q: Why we have to convert data to digital signal for transmission?

Line Coding?

Line coding is the process of converting binary data, a sequence of bits, to a digital signal.

 Considering points: signal level versus data level, dc components, self-synchronization

Figure 4.2 Signal element versus data element

a. One data element per one signal element (r = 1)

c. Two data elements per one signal element (r = 2)

b. One data element per two signal elements $\left(r = \frac{1}{2}\right)$

d. Four data elements per three signal elements $\left(r = \frac{4}{3}\right)$

Figure 4.3 Effect of lack of synchronization

a. Sent

b. Received

Figure 4.4 Line coding schemes

Figure 4.5: Unipolar NRZ scheme

$$V^2 + \frac{1}{2} (0)^2 = \frac{1}{2} V^2$$

Normalized power

Figure 4.6: Polar schemes (NRZ-L and NRZ-I)

Figure 4.8 Polar biphase: Manchester and differential Manchester schemes

Figure 4.7: Polar schemes (RZ)

Figure 4.8: Polar biphase

No inversion: Next bit is 1 • Inversion: Next bit is 0

Figure 4.9: Bipolar schemes: AMI and pseudoternary

Figure 4.10: Multilevel: 2B1Q

Figure 4.11: Multilevel: 8B6T

Figure 4.12: Multilevel: 4D-PAMS scheme

Figure 4.13: Multi-transition MLT-3 scheme

Table 4.1: Summary of line coding schemes

Category	Scheme	Bandwidth (average)	Characteristics
Unipolar	NRZ	B = N/2	Costly, no self-synchronization if long 0s or 1s, DC
Polar	NRZ-L	B = N/2	No self-synchronization if long 0s or 1s, DC
	NRZ-I	B = N/2	No self-synchronization for long 0s, DC
	Biphase	B = N	Self-synchronization, no DC, high bandwidth
Bipolar	AMI	B = N/2	No self-synchronization for long 0s, DC
	2B1Q	B = N/4	No self-synchronization for long same double
Multilevel			bits
	8B6T	B = 3N/4	Self-synchronization, no DC
	4D-PAM5	B = N/8	Self-synchronization, no DC
Multitransition	MLT-3	B = N/3	No self-synchronization for long 0s

Block Coding

Figure 4.14: Block coding concept

Figure 4.15: Using block coding 4B/5B with NRZ-I line coding scheme

Block Coding 예 4-bit blocks 5-bit blocks 0000 00000 0001 00001 01001 0100 01010 **Division** mB1111 11101 division 11110 m bits m bits *m* bits 0 1 0....1 0 0 0 1 1 1 0....0 Subsitution *m*B to *n*B substitution n bits n bits n bits 0 0 0001 0 1 0101 0 1 1....111 Ex) 4B5B: Fast Ethernet Line **Line Coding** & FDDI coding Lecture note-19

Table 4.2 4B/5B mapping codes

Invalid code

Data Sequence	Encoded Sequence	Control Sequence	Encoded Sequence
0000	11110	Q (Quiet)	00000
0001	01001	I (Idle)	11111
0010	10100	H (Halt)	00100
0011	10101	J (Start delimiter)	11000
0100	01010	K (Start delimiter)	10001
0101	01011	T (End delimiter)	01101
0110	01110	S (Set)	11001
0111	01111	R (Reset)	00111
1000	10010	Invalid code	
1001	10011		
1010	10110		
1011	10111		
1100	11010		
1101	11011		
1110	11100		
1111	11101		

Figure 4.16 Substitution in 4B/5B block coding

Figure 4.13 Multitransition: MLT-3 scheme

a. Typical case

b. Worse case

3 레벨의 신호 (+, 0, -) 과 3 가지 규칙을 사용하여 부호화

다음 비트가 0 이면 레벨 변화가 없다 다음 비트가 1 이고 현재 레벨이 0 이 아니면 다음 레벨은 0 다음 비트가 1 이고 현재 레벨이 0 이면 다음 레벨은 최근 0 이 아니었던 레벨의 역

c. Transition states

 Table 4.1
 Summary of line coding schemes

Category	Scheme	Bandwidth (average)	Characteristics	
Unipolar	NRZ	B = N/2	Costly, no self-synchronization if long 0s or 1s, DC	
Unipolar	NRZ-L	B = N/2	No self-synchronization if long 0s or 1s, DC	
	NRZ-I	B = N/2	No self-synchronization for long 0s, DC	
	Biphase	B = N	Self-synchronization, no DC, high bandwidth	
Bipolar	AMI	B = N/2	No self-synchronization for long 0s, DC	
Multilevel	2B1Q	B = N/4	No self-synchronization for long same double bits	
	8B6T	B = 3N/4	Self-synchronization, no DC	
	4D-PAM5	B = N/8	Self-synchronization, no DC	
Multiline	MLT-3	B = N/3	No self-synchronization for long 0s	

Figure 4.15 Using block coding 4B/5B with NRZ-I line coding scheme

4-2 ANALOG-TO-DIGITAL CONVERSION

We have seen in Chapter 3 that a digital signal is superior to an analog signal. The tendency today is to change an analog signal to digital data. In this section we describe two techniques, pulse code modulation and delta modulation.

Topics discussed in this section:

Pulse Code Modulation (PCM)

Delta Modulation (DM)

Figure 4.21 Components of PCM encoder

Figure 4.27: Components of a PCM decoder

Figure 4.22 Three different sampling methods for PCM

Amplitude

a. Ideal sampling

Amplitude

b. Natural sampling

Amplitude

c. Flat-top sampling

the Nyquist theorem $\rightarrow f_s = 2f$ (Nyquist rate) the sampling and the subsequent recovery of the signal

Figure 4.24: Recovery of a sine wave with different sampling rates.

4.3 Transmission Mode

Figure 4.32-33 Parallel and Serial

'"ansmission

Lecture note-32

Figure 4.34 Asynchronous transmission

Asynchronous here means "asynchronous at the byte level," but the bits are still synchronized; their durations are the same.

Figure 4.35 Synchronous transmission

In synchronous transmission, we send bits one after another without start or stop bits or gaps. It is the responsibility of the receiver to group the bits.