Report: Earth Observation – Land Use Classification Report

Objective

The Ministry of Environment has commissioned an AI-based audit of the **Delhi Airshed**. The task involves identifying land use patterns and pollution sources by developing a machine learning pipeline using **remote sensing data**. The entire pipeline comprises:

- 1. Spatial filtering of Sentinel-2 satellite images
- 2. Land cover label assignment from ESA WorldCover 2021
- 3. Supervised classification using a CNN (ResNet18)

Q1. Spatial Reasoning & Data Filtering

Filtered Images: M (e.g., 9216 \rightarrow 8403)

Interactive Map: Satellite visualization with grid overlay

Tasks Performed:

Description	Output
Loaded Delhi-NCR shapefile (EPSG:4326), reprojected to EPSG:32644	✓
Overlaid a 60×60 km grid using shapely.box()	q1_matplotlib_plot.png
Marked grid cell centers using geemap	q1_geemap_satellite.html
Parsed image filenames for center coordinates	✓
Filtered images within grid bounds using spatial index	q1_filtered_images.csv
Output Summary:	
• Original Image Count: N (depends on data)	

Q2. Label Construction & Dataset Preparation

Tasks Performed:

Description	Output
Extracted 128×128 patches from land_cover.tif at image centers	✓
Assigned labels using mode class value in patch	✓
Mapped ESA codes to 11 standardized land cover classes	✓
Handled edge cases: patch shape mismatch, no-data-only patches	•
Performed a 60/40 random train-test split	✓
Visualized class balance	q2_class_distribution.png

Labeling Logic:

- Used rasterio and Window() to extract patches
- Skipped patches with only no-data values
- Assigned most frequent valid pixel class (mode)

Q3. Model Training & Supervised Evaluation (10 Marks)

Model & Training:

- Architecture: ResNet18 (pretrained on ImageNet)
- Input: 128×128 Sentinel-2 RGB patches
- Output: One of 11 land use classes
- Optimizer: Adam, LR = 1e-4, Epochs = 5

Evaluation:

Metric	Value
Custom F1 Score (macro)	~0.54
TorchMetrics F1 Score (macro)	~0.54

Visual Outputs:

Output

Description

q3 confusion matrix.png Confusion matrix between predicted vs actual

q3_model_results.csv Per-image predictions

q3_correct_predictions.png First 5 correct predictions

q3_incorrect_predictions.png First 5 incorrect predictions

Insights & Observations

- Class imbalance exists some classes like "Built-up" and "Cropland" dominate.
- Model performance (F1 ~0.54 macro) is acceptable for a 5-epoch baseline.
- ResNet18 is sufficient for quick training; deeper networks could improve accuracy.
- **Misclassifications** occur primarily between visually similar land classes (e.g., Cropland vs. Grassland).

Project Structure

kotlin

CopyEdit

EARTH-OBSERVATION-DELHI/

	q2_labeled_dataset.csv
	— q2_class_distribution.png
	— q3_confusion_matrix.png
	q3_model_results.csv
	q3_correct_predictions.png
ı	a incorrect predictions.png

Conclusion

This project demonstrates the feasibility of using **open satellite imagery** and **AI pipelines** to conduct **land use audits** in a scalable, reproducible manner. With better ground-truth data and model tuning, this workflow can support real-world environmental monitoring tasks.