Data Infrastructure and Import

Content adapted from

https://osca.bioconductor.org/data-infrastructure.html

Background

Background

Common data infrastructure makes life easier

- Can switch between different tools more easily
- No need to convert between formats

What data do we need to analyse a scRNA-seq experiment?

What data do we start with?

Gene counts

	Cell 1	Cell 2	•••	Cell N
Gene 1	0	1	•••	0
Gene 2	1	3	•••	0
•••	•••	•••	•••	
Gene M	2	2		4

What data do we start with?

Information about the cells

	Barcode	Donor	•••	Treatment
Cell 1	ACTGTA	D1		Drug
Cell 2	TGCATA	D1		Control
•••	•••			
Cell N	CCTATA	D6		Drug

What data do we start with?

	ID	Symbol	•••	Chromosome
Gene 1	ENSG00000155816	FMN2	•••	1
Gene 2	ENSG00000229807	XIST	•••	X
	•••	•••	•••	•••
Gene M	ENSG00000139618	BRCA2		13

What data do we create in an analysis?

Log-normalized gene expression

	Cell 1	Cell 2		Cell N
Gene 1	0	0.6	•••	0
Gene 2	0.3	0.8	•••	0
•••	•••	•••	•••	
Gene M	0.35	0.67		2.1

What data do we create in an analysis?

Dimensionality reduction

	PCA 1	PCA 2	•••	PCA K
Cell 1	0.93	1.28		0.03
Cell 2	0.32	1.22		0.09
•••				
Cell N	-0.66	1.00		0.15

	t-SNE 1	t-SNE 2
Cell 1	1.24	8.93
Cell 2	-0.33	7.85

Cell N	0.46	3.41

Gene counts

	Cell 1	Cell 2	 Cell N
Gene 1	0	1	 0
Gene 2	1	3	 0
Gene M	2	2	4

Information about the cells

	Barcode	Donor	 Treatment
Cell 1	ACTGTA	D1	 Drug
Cell 2	TGCATA	D1	 Control
Coll N	CCTATA	D6	Drug

	ID	Symbol	 Chromosome
Gene 1	ENSG00000155816	FMN2	 1
Gene 2	ENSG00000229807	XIST	 X
•••			
Gene M	ENSG00000139618	BRCA2	13

Gene counts

	Cell 1	Cell 2	 Cel	N
Gene 1	0	1	 0	
Gene 2	1	3	 0	
Gene M	2	2	4	

Information about the cells

. Treatment	 Barcode	
. Drug	 ACTGTA	Cell 1
. Control	 TGCATA	Cell 2
Drug	CCTATA	Cell N
	 ССТАТА	

	ID	Symbol	 Chromosome
Gene 1	ENSG00000155816	FMN2	 1
Gene 2	ENSG00000229807	XIST	 X
Gene M	ENSG00000139618	BRCA2	13

Gene counts

	Cell 1	Cell 2	 Cel	N
Gene 1	0	1	 0	
Gene 2	1	3	 0	
Gene M	2	2	4	

Information about the cells

	Barcode	Donor	 Treatment
Cell 1	ACTGTA	D1	 Drug
Cell 2	TGCATA	D1	 Control
•••			
Cell N	CCTATA	D6	Drug
			3

	ID	Symbol	 Chromosome
Gene 1	ENSG00000155816	FMN2	 1
Conc 2	ENSG00000229807	XICT	 X
Gene M	ENSG00000139618	BRCA2	13

Gene counts

	Cell 1	Cell 2		Cel	N
Gene 1	0	1		0	
0	4	_		_	
Octio 2	'	J			
Gene M	2	2		4	

Information about the cells

	Barcode	Donor	 Treatment
Cell 1	ACTGTA	D1	 Drug
Cell 2	TGCATA	D1	 Control
Coll N	CCTATA	D6	Drug
			3

	ID	Symbol	 Chromosome
Gene 1	ENSG00000155816	FMN2	 1
Cone 2	ENSG00000229807	XICT	 X
Gene M	ENSG00000139618	BRCA2	13

Gene counts

	Cell 1	Cell 2	 Cel	N
Gene 1	0	1	 0	
Conc 2	1	0	 0	
Gene M	2	2	4	

Also have to coordinate derived data (log-normalized gene expression, PCA, t-SNE, etc.)

Information about the cells

	Barcode	Donor	 Treatment
Cell 1	ACTGTA	D1	 Drug
Cell 2	TGCATA	D1	 Control
CALLN	ССТАТА	De	Drug
	00171171		5.49

	ID	Symbol	 Chromosome
Gene 1	ENSG00000155816	FMN2	 1
Cone 2	ENSG00000229807	XICT	X
		7	 7.
Gene M	ENSG00000139618	BRCA2	13

SingleCellExperiment

The anatomy of a SingleCellExperiment

SingleCellExperiment

Each piece of (meta)data in the SingleCellExperiment is represented by a separate 'slot'

An analogy

- An SCE is a cargo ship
- Each 'slot' is a cargo box
- Certain cargo boxes (slots) expect certain types of cargo (data)

Illustrative dataset: 416B

Illustrative dataset: 416B

```
library(scRNAseq)
sce.416b <- LunSpikeInData(which="416b")</pre>
```

- Immortalized mouse myeloid progenitor cell line processed using SmartSeq2
- https://osca.bioconductor.org/lun-416b-cell-line-smart-seq2.html

Storing primary experimental data

Storing primary experimental data

Gene counts

	Cell 1	Cell 2	 Cell N
Gene 1	0	1	 0
Gene 2	1	3	 0
Gene M	2	2	4

SingleCellExperiment

Filling the assays slot

```
# Load the SingleCellExperiment package
library(SingleCellExperiment)
# Extract the count matrix from the 416b dataset
counts.416b <- counts(sce.416b)
# Construct a new SCE from the counts matrix
sce <- SingleCellExperiment(
   assays = list(counts = counts.416b))</pre>
```

Filling the assays slot

```
# Inspect the object we just created sce
```

Filling the assays slot

```
# Access the counts matrix from the assays slot
# WARNING: This will flood RStudio with output!
# 1. The general method
assay(sce, "counts")
# 2. The special method for the assay named "counts"
counts(sce)
# Tip: Limit the output to just a few samples & genes
counts(sce)[1:30, 1:2]
```

Adding to the assays slot

```
sce <- scater::logNormCounts(sce)
# Inspect the object we just updated
sce</pre>
```


SingleCellExperiment

Adding to the assays slot

```
sce <- scater::logNormCounts(sce)
# Inspect the object we just updated
sce</pre>
```

We overwrote our previous 'sce' by reassigning the results back to 'sce' (possible because this particular function returns a 'SingleCellExperiment' that contains the results in addition to the original data)

Some functions - especially those outside the single-cell oriented Bioconductor packages - do no, then need to do extra work

Adding more assays

```
# Access the logcounts matrix from the assays slot
# WARNING: This will flood RStudio with output!
# 1. The general method
assay(sce, "logcounts")
# 2. The special method for the assay named "logcounts"
logcounts(sce)
# Tip: Limit the output to just a few samples & genes
logcounts(sce)[1:30, 1:2]
```

Adding more assays

What if I want to add a custom assay?

```
# assign a new entry to assays slot
assay(sce, "counts_100") <- assay(sce, "counts") + 100</pre>
# List the assays in the object
assays(sce)
```

Storing metadata

Storing metadata

Information about the cells

	Barcode	Donor	 Treatment
Cell 1	ACTGTA	D1	 Drug
Cell 2	TGCATA	D1	 Control
Cell N	ССТАТА	D6	Drug

Information about the genes

	ID	Symbol		Chromosome	
Gene 1	ENSG00000155816	FMN2		1	
Gene 2	ENSG00000229807	XIST		X	
•••					
Gene M	ENSG00000139618	BRCA2		13	

Information about the experiment

- "Look at expression of genes A, B, and C"
- "There could be problems with samples from the first batch because of issue with FACS sort"

Storing metadata on the columns (cells)

Information about the cells

	Barcode	Donor	 Treatment
Cell 1	ACTGTA	D1	 Drug
Cell 2	TGCATA	D1	 Control
Cell N	CCTATA	D6	Drug

SingleCellExperiment

Filling the colData slot

```
# Extract the sample metadata from the 416b dataset
colData.416b <- colData(sce.416b)</pre>
# Add some of the sample metadata to our SCE
colData(sce) <- colData.416b[, c("phenotype", "block")]</pre>
# Inspect the object we just updated
sce
# Access the sample metadata from our SCE
colData(sce)
# Access a specific column of sample metadata from our SCE
sce$block
```

Adding to the colData slot

```
# Example of function that adds extra fields to colData
sce <- scater::addPerCellQC(sce.416b)
# Access the sample metadata from our updated SCE
colData(sce)</pre>
```

Using colData for subsetting

What if I want to subset the data to certain cells?

```
# E.g., subset data to just wild type cells
# Remember, cells are columns of the SCE
sce[, sce$phenotype == "wild type phenotype"]
```

Storing metadata on the rows (features/genes)

	ID	Symbol	 Chromosome
Gene 1	ENSG00000155816	FMN2	 1
Gene 2	ENSG00000229807	XIST	 X
Gene M	ENSG00000139618	BRCA2	13

SingleCellExperiment

Adding to the rowData slot

```
# Access the feature metadata from our SCE
# It's currently empty!
rowData(sce)

# Example of function that adds extra fields to rowData
sce <- scater::addPerFeatureQC(sce)
# Access the feature metadata from our updated SCE
rowData(sce)</pre>
```

Adding to the rowData slot

What if I want to add the chromosome of each gene?

```
# Download the relevant Ensembl annotation database
# using AnnotationHub resources
library(AnnotationHub)
ah <- AnnotationHub()</pre>
query(ah, c("Mus musculus", "Ensembl", "v97"))
```

Adding to the rowData slot

```
# Annotate each gene with its chromosome location
ensdb <- ah[["AH73905"]]
chromosome <- mapIds(ensdb, keys=rownames(sce),</pre>
    keytype="GENEID", column="SEQNAME")
rowData(sce)$chromosome <- chromosome</pre>
# Access the feature metadata from our updated SCE
rowData(sce)
```

Using rowData for subsetting

What if I want to subset the data to certain features?

```
# E.g., subset data to just genes on chromosome 3
# NOTE: which() needed to cope with NA chromosome names
sce[which(rowData(sce)$chromosome == "3"), ]
```

Storing other metadata

Information about the experiment

- "Look at expression of genes A, B, and C"
- "There could be problems with samples from the first batch because of issue with FACS sort"

SingleCellExperiment

Adding to the metadata slot

```
# Access the metadata from our SCE
# It's currently empty!
metadata(sce)
# The metadata slot is Vegas - anything goes
metadata(sce) <- list(</pre>
  favourite genes=c("Shh", "Nck1", "Diablo"),
  analyst=c("Pete"))
# Access the metadata from our updated SCE
metadata(sce)
```

Storing single-cell-specific data

Background

So far, we've covered:

- 'assays' (primary data)
- 'colData' (cell metadata)
- 'rowData' (feature metadata)
- 'metadata' (experiment-level metadata)

So why do we need SingleCellExperiment?

For single-cell data, we commonly also have:

- Dimensionality reduction results (e.g., t-SNE, UMAP)
- Special or 'alternative' types of features (e.g., spike-in RNAs, antibody-derived sequencing tags)

SingleCellExperiment is an extension of SummarizedExperiment

Storing dimensionality reduction results

0.15

Dimensionality reduction

_				
	PCA 1	PCA 2		PCA K
Cell 1	0.93	1.28		0.03
Cell 2	0.32	1.22		0.09
•••				

	t-SNE 1	t-SNE 2
Cell 1	1.24	8.93
Cell 2	-0.33	7.85
•••		
Cell N	0.46	3.41

1.00

Cell N

-0.66

Adding to the reducedDims slot

What if I want to store a dimensionality reduced version of the data?

```
# E.g., add the PCA of logcounts
# NOTE: We'll learn more about PCA later
sce <- scater::runPCA(sce)
# Inspect the object we just updated
sce
# Access the PCA matrix from the reducedDims slot
reducedDim(sce, "PCA")</pre>
```

Adding to the reducedDims slot

What if I want to store a dimensionality reduced version of the data?

```
# E.g., add a t-SNE representation of logcounts
# NOTE: We'll learn more about t-SNE later
sce <- scater::runTSNE(sce)
# Inspect the object we just updated
sce
# Access the t-SNE matrix from the reducedDims slot
reducedDim(sce, "TSNE")</pre>
```

Adding to the reducedDims slot

What if I want to store a dimensionality reduced version of the data?

```
# E.g., add a 'manual' UMAP representation of logcounts
# NOTE: We'll Learn more about UMAP Later and a
        simpler way to compute it.
u <- uwot::umap(t(logcounts(sce)), n component=2)</pre>
# Add the UMAP matrix to the reducedDims slot
# Access the UMAP matrix from the reducedDims slot
reducedDim(sce, "UMAP") <- u</pre>
# List the dimensionality reduction results stored in # the
object
reducedDims(sce)
```

Storing 'alternative experiments'

Adding an alternative experiment

```
# Extract the ERCC SCE from the 416b dataset
ercc.sce.416b <- altExp(sce.416b, "ERCC")
# Inspect the ERCC SCE
ercc.sce.416b
# Add the ERCC SCE as an alternative experiment to our SCE
altExp(sce, "ERCC") <- ercc.sce.416b
# Inspect the object we just updated
sce
# List the alternative experiments stored in the object
altExps(sce)
```

Why use alternative experiments?

```
# Subsetting the SCE by sample also subsets the
# alternative experiments
sce.subset <- sce[, 1:10]
ncol(sce.subset)
ncol(altExp(sce.subset))</pre>
```

Storing size factors

SingleCellExperiment

Adding size factors

```
# Extract existing size factors (these were added
# when we ran scater::logNormCounts(sce))
sizeFactors(sce)
# 'Automatically' replace size factors
sce <- scran::computeSumFactors(sce)</pre>
sizeFactors(sce)
# 'Manually' replace size factors
sizeFactors(sce) <- scater::librarySizeFactors(sce)</pre>
sizeFactors(sce)
```

Importing your data to construct a

SingleCellExperiment

Importing your data to construct a SingleCellExperiment

```
I ran CellRanger
  DropletUtils::read10xCounts()
I ran scPipe
 f scPipe::create sce by dir()
I got a bunch of files (e.g., .csv or .mtx files)
 General file importer
     utils::read.delim()
   o data.table::fread()
 Specialist file importer
      scater::readSparseCounts()
     Matrix::readMM()
 Lots of duct tape and swearing
```

I ran CellRanger

Download and extract example data

```
# Download example data processed with CellRanger
# Aside: Using BiocFileCache means we only download the
         data once
library(BiocFileCache)
bfc <- BiocFileCache()</pre>
pbmc.url <-
"http://cf.10xgenomics.com/samples/cell-vdj/3.1.0/vdj v1 h
s_pbmc3/vdj_v1_hs_pbmc3_filtered_feature bc matrix.tar.gz"
pbmc.data <- bfcrpath(bfc, pbmc.url)</pre>
# Extract the files to a temporary location
untar(pbmc.data, exdir=tempdir())
```

Typical CellRanger output files

```
# List the files we downloaded and extracted
# These files are typically CellRanger outputs
pbmc.dir <- file.path(tempdir(),
    "filtered_feature_bc_matrix")
list.files(pbmc.dir)</pre>
```

Import CellRanger outputs as a SingleCellExperiment

```
# Import the data as a SingleCellExperiment
library(DropletUtils)
sce.pbmc <- read10xCounts(pbmc.dir)
# Inspect the object we just constructed
sce.pbmc</pre>
```

Some polish

```
# Store the CITE-seq data in an alternative experiment
sce.pbmc <- splitAltExps(sce.pbmc, rowData(sce.pbmc)$Type)
# Inspect the object we just updated
sce.pbmc</pre>
```

I ran scPipe

Download and extract example data

```
# Download example data processed with scPipe
library(BiocFileCache)
bfc <- BiocFileCache()</pre>
sis seq.url <-
"https://github.com/LuyiTian/SIS-seq script/archive/master
.zip"
sis seq.data <- bfcrpath(bfc, sis seq.url)</pre>
# Extract the files to a temporary location
unzip(sis seq.data, exdir=tempdir())
```

Typical scPipe outputs

```
# List (some of) the files we downloaded and extracted
# These files are typical scPipe outputs
sis_seq.dir <- file.path(tempdir(),
    "SIS-seq_script-master", "data", "BcorKO_scRNAseq",
    "RPI10")
list.files(sis_seq.dir)</pre>
```

Import scPipe outputs as a SingleCellExperiment

```
# Import the data as a SingleCellExperiment
library(scPipe)
sce.sis_seq <- create_sce_by_dir(sis_seq.dir)
# Inspect the object we just constructed
sce.sis_seq</pre>
```

I got a bunch of files

Download example data

```
# Download example bunch o' files dataset
library(BiocFileCache)
bfc <- BiocFileCache()</pre>
lun counts.url <-</pre>
"https://www.ebi.ac.uk/arrayexpress/files/E-MTAB-5522/E-MT
AB-5522.processed.1.zip"
lun counts.data <- bfcrpath(bfc, lun counts.url)</pre>
lun coldata.url <-</pre>
"https://www.ebi.ac.uk/arrayexpress/files/E-MTAB-5522/E-MTA
B-5522.sdrf.txt"
lun coldata.data <- bfcrpath(bfc, lun coldata.url)</pre>
```

Extract example data

```
# Extract the counts files to a temporary location
lun_counts.dir <- tempfile("lun_counts.")
unzip(lun_counts.data, exdir=lun_counts.dir)</pre>
```

Typical (actually, not too bad) bunch o' files

```
# List the files we downloaded and extracted
list.files(lun_counts.dir)
```

Import the count matrix and tidy it up

```
# Import the count matrix (for 1 plate)
lun.counts <- read.delim(</pre>
  file.path(lun_counts.dir, "counts_Calero 20160113.tsv"),
  header=TRUE,
  row.names=1,
  check.names=FALSE)
# Store the gene lengths for later
gene.lengths <- lun.counts$Length
# Convert the gene counts to a matrix
lun.counts <- as.matrix(lun.counts[, -1])</pre>
```

Import the sample metadata (skipping the tidying)

```
# Import the sample metadata
lun.coldata <- read.delim(lun coldata.data,</pre>
  check.names=FALSE, stringsAsFactors=FALSE)
library(S4Vectors)
lun.coldata <- as(lun.coldata, "DataFrame")</pre>
# Match up the sample metadata to the counts matrix
m <- match(
  colnames(lun.counts),
  lun.coldata$`Source Name`)
lun.coldata <- lun.coldata[m, ]</pre>
```

Construct the feature metadata

```
# Construct the feature metadata
lun.rowdata <- DataFrame(Length = gene.lengths)</pre>
```

Bring in the duct tape to stick everything together

```
# Construct the SingleCellExperiment
lun.sce <- SingleCellExperiment(</pre>
  assays = list(assays = lun.counts),
  colData = lun.coldata,
  rowData = lun.rowdata)
# Inspect the object we just constructed
lun.sce
```

Summary and recommendations

SingleCellExperiment

Summary and recommendations

- - + Keep experimental data, metadata, and derived data in-sync
 - ♣ Interoperability with 70+ single-cell-related Bioconductor packages
 - + Convenient to share with collaborators for further analysis
- But I need to use Seurat, scanpy, etc. for a certain step
 - Extract the bit needed (e.g., counts matrix, PCA) from the SCE
 - https://osca.bioconductor.org/interoperability.html (in-progress)

Importing your data to construct a SingleCellExperiment

```
I got the data from SCORE
  sce <- readRDS("path/to/SCE.rds")</pre>
I ran CellRanger
 f DropletUtils::read10xCounts()
I ran scPipe
 f scPipe::create_sce_by_dir()
I got a bunch of files (e.g., .csv or .mtx files)
 General file importer
     utils::read.delim()
      data.table::fread()
 Specialist file importer
      scater::readSparseCounts()
      Matrix::readMM()
```

Where we're at

