Let  $f(x, y) = x^2 y^2 - x$ .

- (a) Find  $\nabla f$  at (2,1).
- (b) Write the equation for the tangent plane to the graph of f at (2,1,2).
- (c) Use a linear approximation to find the approximate value of f(1.9, 1.1).
- (d) Find the directional derivative of f at (2,1) in the direction of  $-\hat{\mathbf{i}} + \hat{\mathbf{j}}$ .

Problem 2

On the contour plot below, mark the portion of the level curve f=2000 on which  $\frac{\partial f}{\partial y} \geq 0$ .



(a) Find the critical points of

$$w = -3x^2 - 4xy - y^2 - 12y + 16x (1)$$

and say what type each critical point is.

(b) Find the point of the first quadrant  $x \ge 0, y \ge 0$  at which w is largest. Justify your answer.

Let  $u = \frac{y}{x}$ ,  $v = x^2 + y^2$ , w = w(u, v).

- (a) Express the partial derivatives  $w_x$  and  $w_y$  in terms of  $w_u$  and  $w_v$  (and x and y).
- (b) Express  $xw_x + yw_y$  in terms of  $w_u$  and  $w_v$ . Write the coefficients as functions of u and v.
- (c) Find  $xw_x + yw_y$  in case  $w = v^5$ .

(a) Find the Lagrange multiplier equations for the point of the surface

$$x^4 + y^4 + z^4 + xy + yz + zx = 6 (2)$$

at which x is largest. (Do not solve.)

(b) Given that x is largest at the point  $(x_0, y_0, z_0)$ , find the equation for the tangent plane to the surface at that point.

Suppose that  $x^{2} + y^{3} - z^{4} = 1$  and  $z^{3} + zx + xy = 3$ .

- (a) Take the total differential of each of these equations.
- (b) The two surfaces in part (a) intersect in a curve along which y is a function of x. Find  $\frac{dy}{dx}$  at (x,y,z)=(1,1,1).