Integration: Tutorial Sheet 2

- 1. Evaluate the following indefinite integrals using partial fractions:
 - (i) $\int \frac{x}{x^2 9} dx$ (iii) $\int \frac{2x 4}{x^2 4x + 8} dx$
 - (ii) $\int \frac{x-2}{x^2-4x+3} dx$
- 2. Evaluate the following using integration by parts.
 - (i) $\int -4\ln(x) dx$ $\int (5x+1)(x-6)^4 dx$
 - (ii) $\int (-7x + 38) \cos(x) dx$ (v) $\int_{-1}^{1} (2x + 8)^3 (-x + 2) dx$
 - (iii) $\int_0^{\frac{\pi}{2}} (-6x + 45) \cos(x) dx \qquad \qquad \int \sin(x) e^x dx$

Formula:

If u and v are functions of x that have continuous derivatives, then

$$\int udv = uv - \int vdu$$

It is considered a rule of thumb to remember the acronym **LIPET** when performing integration by parts. This acronym will help you to determine what to use as u.

1

L -logarithms,

 ${f I}$ -inverse trigonometric functions,

P -polynomials (i.e. x, x^2),

E -exponentials (i.e. e^x , e^{3x}),

 ${f T}$ -trigonometric functions.

3. Evaluate the following:

(i)
$$\int x^2 - (2x)^2 dx$$

$$\int (31x^{32} + 4x^3 - 9x^4) dx$$
 (ii)
$$\int 8x^3 dx$$
 (v)
$$\int (4x^2 + 11x^3) dx$$

$$\int 5x^{-2} dx$$

- 4. The following questions are from previous past papers. Please be advised of the notes below.
 - (i) Use integration by parts to find $\int xe^x dx$
 - (ii) Use integration by parts to find $\int x ln(x) dx$
 - (iii) Use integration by parts to find $\int x \sinh(x) dx$
 - (iv) Use integration by parts to find $\int x\cos(x)dx$
 - (v) Use integration by parts to find $\int x \cosh(x) dx$
 - (vi) Use integration by parts to find $\int xe^x dx$
 - $\cosh(x)$ is both the derivative and integral of $\sinh(x)$
 - $\sinh(x)$ is both the derivative and integral of $\cosh(x)$
- 5. Evaluate the following definite integrals

(i)
$$\int_{1}^{2} (x^{2} - 1) dx$$
 (iv)
$$\int_{1}^{2} (y^{2} - y^{-2}) dy$$
 (ii)
$$\int_{0}^{\frac{\pi}{2}} \cos x dx$$
 (vi)
$$\int_{-3}^{1} (6x^{2} - 5x + 2) dx$$
 (iii)
$$\int_{0}^{\pi} \cos x dx$$

Hint:

$$\int \sqrt{t}(t-2)dt$$

$$\sqrt{t}(t-2) = t^{1/2} \times (t-2) = t^{3/2} - 2t^{1/2}$$

6. Evaluate the following definite integral

$$\int_{1}^{3} \frac{x}{3} dx$$

Solution

$$\int_{1}^{3} \frac{x}{3} dx = \left[\frac{x^{4}}{4} \right]_{1}^{3} = \frac{81}{4} - \frac{1}{4} = 20$$

7. Evaluate the following definite integral

$$\int_{1}^{3} \frac{x^2 - 4x + 3}{x - 3} dx$$

Solution

Factorize the numerator $x^2 - 4x + 3 = (x - 1)(x - 3)$

Treat it as an indefinite integral for time being.

$$\int \frac{x^2 - 4x + 3}{x - 3} dx = \int \frac{(x - 1)(x - 3)}{x - 3} dx = \int (x - 1) dx = \frac{x^2}{2} - x + c$$

$$\left[\frac{x^2}{2} - x\right]_1^3 = (4.5 - 3) - (0.5 - 1) = 2$$