

Universidad Nacional de Rosario

Tesina de grado

PARA LA OBTENCIÓN DEL GRADO DE LICENCIADO EN CIENCIAS DE LA COMPUTACIÓN

Titulo de tu Tesina

Autor: Director: Federico Badaloni Ariel

Departamento de Ciencias de la Computación Facultad de Ciencias Exactas, Ingeniería y Agrimensura Av. Pellegrini 250, Rosario, Santa Fe, Argentina

18 de septiembre de 2020

Resumen

El resumen de tu tesina.

Índice general

Ín	dice general	IV
1	Introducción 1.1. Objetivos	1 1
2	Titulo del capitulo	3
	2.1. Teoría de Juegos	3
	2.2. Juego Ficticio	3
	2.3. Propiedad del Juego Ficticio	3
Bi	ibliografía	5
\mathbf{A}	Titulo del Apendice	7
	A 1 Titulo de la seccion	7

Capítulo 1

Introducción

1.1. Objetivos

Intro de tu tesina. Ejemplo de cita [1]

Ejemplo de Tabla 1.1

	m=8		m = 16		m=24		m = 32						
k	1	2	3	1	2	3	1	2	3	1	2	3	\bowtie
SA	1.68	1.69	1.69	1.68	1.69	1.68	1.68	_a	_a	1.68	_a	_a	
TuSA	1.31	1.31	1.31	1.31	1.31	1.31	1.31	_a	_a	1.31	_a	_a	
TwSA	1.62	2.13	2.40	0.81	1.07	1.29	0.55	_a	_a	0.41	_a	_a	
ANS	1.25	1.25	1.25	1.25	1.25	1.25	1.35	1.35	1.34	1.34	1.34	1.34	
ANS2	0.86	0.91	1.16	0.88	0.88	0.88	_b	_b	_b	_b	_b	_b	D
ANS2b	0.75	0.75	0.75	0.78	0.78	0.78	1.05	1.05	1.07	1.05	1.05	1.07	Ż
EF	1.46	2.28	3.90	0.70	1.04	1.75	0.49	0.77	1.37	0.39	0.64	1.20	Α
EFS	1.41	2.14	3.92	0.67	0.97	1.59	0.48	0.71	1.24	0.38	0.59	1.10	
BYP	4.18	10.13	14.82	3.56	5.32	8.23	3.62	5.16	6.36	3.67	4.99	5.83	
BYPS	1.60	_a	_a	0.35	1.56	1.93	0.25	0.42	1.60	0.19	0.35	0.48	
BYPSb	1.43	_a	_a	0.30	1.36	1.84	0.20	0.35	1.42	0.18	0.28	0.40	
BYPSc	1.16	_a	_a	0.37	1.10	1.42	0.42	0.63	1.18	0.15	0.65	0.84	
SA	1.47	1.47	1.47	1.47	1.47	1.47	1.47	_a	_a	1.47	_a	_a	
TuSA	1.14	1.14	1.14	1.14	1.14	1.14	1.14	_a	_a	1.14	_a	_a	
TwSA	0.83	1.17	1.53	0.48	0.62	0.79	0.33	_a	_a	0.26	_a	_a	
ANS	1.09	1.09	1.09	1.09	1.09	1.09	1.17	1.17	1.17	1.17	1.17	1.17	Eı
ANS2	0.75	0.75	0.76	0.75	0.75	0.75	_b	_b	_b	_b	_b	_b	English
ANS2b	0.65	0.65	0.65	0.66	0.66	0.66	0.91	0.91	0.91	0.91	0.91	0.91	sh
BYP	1.19	2.29	3.24	0.77	1.33	1.87	0.54	0.92	1.31	0.49	0.80	1.08	
BYPS	1.37	_a	_a	0.27	1.43	1.42	0.16	0.28	1.44	0.17	0.20	0.28	
BYPSb	1.19	_a	_a	0.24	1.25	1.23	0.14	0.25	1.27	0.15	0.18	0.25	
BYPSc	1.04	_a	_a	0.20	1.10	1.07	0.15	0.23	1.12	0.13	0.18	0.24	

^a Algorithm not designed to work in this case.

Cuadro 1.1: Search times (in seconds) of algorithms for single approximate pattern matching with up to k mismatches ran 100 times with different patterns.

^b Same as ANS2b.

Capítulo 2

Titulo del capitulo

2.1. Teoría de Juegos

[TODO: Juegos en forma normal] [TODO: Juegos en forma bimatricial]

2.2. Juego Ficticio

Presentaremos ahora, la definición de Juego Ficticio Simultaneo (SFP) que usan Berger, Shapley, Monderer y Sela [1] [2] [TODO: citar shapley:counter] [3], [4].

Definición 2.2.0.1. Sea (A, B) un juego en forma bimatricial de $n \times m$.

Alternativamente, Brandt, Fischer y Harrenstein utilizan una definición equivalente que resulta más comoda para estudiar velocidades de convergencia:

Definición 2.2.0.2. Sea (A, B) un juego en forma bimatricial de $n \times m$.

Esta definición es a su vez muy similar a la que utiliza Robinson [5]

2.3. Propiedad del Juego Ficticio

Bibliografía

- [1] U. Berger. «Brown's original fictitious play». En: Journal of Economic Theory 135 (feb. de 2007), págs. 572-578. DOI: 10.1016/j.jet.2005.12.010.
- [2] U. Berger. «Learning in games with strategic complementarities revisited». En: Journal of Economic Theory 143 (nov. de 2008), págs. 292-301. DOI: 10.1016/j.jet.2008.01.007.
- [3] D. Monderer y A. Sela. «Fictitious play and- no-cycling conditions». En: (jul. de 1997).
- [4] D. Monderer y L. Shapley. «Fictitious Play Property for Games with Identical Interests». En: *Journal of Economic Theory* 68 (feb. de 1996), págs. 258-265. DOI: 10.1006/jeth.1996.0014.
- [5] J. Robinson. «An Iterative Method of Solving a Game». En: Annals of Mathematics. Second Series 54 (sep. de 1951). DOI: 10.2307/1969530.

Apéndice A

Titulo del Apendice

A.1. Titulo de la seccion