MÉTODOS ESTADÍSTICOS. ANÁLISIS DE REGRESIÓN

Curso de nivelación Maestría en Estadística Aplicada

Facultad de Ciencias Económicas y Estadística

Lic. Noelia Castellana Lic. Mara Catalano

Presentación

Presentación

Docentes

- ✓ Lic. Mara Catalano
- ✓ Lic. Noelia Castellana

Días y horarios

- ✓ Viernes 07/06: 14 a 18
- ✓ Sábado 08/06: 9 a 13
- √ Viernes 21/06: 14 a 18
- ✓ Sábado 22/06: 9 a 13

- ✓ Viernes 28/06: 14 a 18
- ✓ Sábado 29/06: 9 a 13
- ✓ Viernes 05/07: 14 a 18
- ✓ Sábado 06/07: 9 a 13

Evaluación: Trabajo práctico grupal

Fecha de entrega 1° parte: 21/06/2019

Fecha de entrega 2° parte y exposición: 06/07/2019

Programa

Unidad 1

Estudios observacionales y experimentales. Tipo de variables y roles. Relaciones entre variables. Modelos estadísticos: lineales y no lineales. Introducción al análisis de regresión. Objetivos y usos.

□ Unidad 2

Regresión lineal simple. Análisis descriptivo preliminar. Estimación e inferencia. Partición de la suma de cuadrados total (ANOVA). Medidas descriptivas de la relación entre las variables en un modelo de regresión.

□ Unidad 3

Regresión lineal múltiple. Análisis descriptivo preliminar. Enfoque matricial. Estimación e inferencia. Partición de la suma de cuadrados total (ANOVA). Principio de la suma de cuadrados extra y su uso en pruebas de hipótesis. Multicolinealidad y sus efectos. Causas. Diagnósticos. Soluciones a la multicolinealidad.

Unidad 4

Comprobación de la adecuación del modelo. Definición de residuos y métodos gráficos correspondientes. Gráficos de regresión parcial y residuos parciales. Pruebas de hipótesis formales. Soluciones al incumplimiento de los supuestos.

□ Unidad 5

Modelos con regresores cuantitativos y cualitativos. Concepto de variables indicadoras. Modelos de regresión con una o más variables indicadoras. Usos de las variables indicadoras. Métodos de regresión por segmentos.

□ Unidad 6

Construcción de modelos de regresión: efectos de una especificación incorrecta del modelo. Criterios para evaluar submodelos. Técnicas para seleccionar las variables explicativas: todas las regresiones posibles y métodos de selección automáticos.

□ Unidad 7

Detección de valores atípicos y estudio de su influencia. Diagnósticos para detectar los valores atípicos. Matriz H y residuos estudentizados. Influencia sobre la ecuación de regresión estimada. Medidas de influencia.

Bibliografía

- NETER, J., KUTNER, M., NACHTSHEIM, C. y WASSERMAN, W.
 (2005) "Applied linear statistical models". Irwin
- MONTGOMERY, D. Y PECK, E. (2012) "Introduction to linear regression analysis". Wiley, NY.
- MONTGOMERY, D., PECK, E. Y VINING, G. (2004)
 "Introducción al análisis de regresión lineal". CECSA, México.

Unidad 1

Introducción

- Recolección de datos
 - Variables
 - Modelos estadísticos
 - Introducción al Análisis de Regresión

□ ¿Cómo se obtienen los datos **Hipótesis Objetivos** Disponibilidad Datos Presupuesto Diseño

¿Cómo se obtienen los datos

Estudios observacionales

- El investigador sólo observa
- Se observan las variables sin intervenir en el proceso que las genera
- Prospectivos
- Restrospectivos

Estudios experimentales

- El investigador interviene
- Se **controla** el proceso de generación de los datos

Ejemplo-Botellas de vidrio

En una planta industrial donde se fabrican botellas de vidrio se sospecha que la cantidad de botellas defectuosas por lote podría estar relacionada, entre otras causas, con:

- ✓ la temperatura del horno de fundición
- ✓ la proporción de arena que contiene la mezcla

¿Cómo es el proceso de fabricación del vidrio?

- 1) A partir de las **materias primas** (arena, piedra caliza, vidrio reciclado y carbonato de sodio) se genera una "**mezcla**" que es **fundida** en un horno a altas temperaturas.
- 2) El vidrio fundido se enfría y se corta en "gotas".
- 3) Las **gotas** se distribuyen en las **máquinas** que le dan la **forma de envase de** vidrio y se genera el lote.
- 4) Finalmente **el lote** pasa a través del **templador**, para fortalecer el vidrio.
- 5) Se realizan los controles de calidad.

Ejemplo-Botellas de vidrio

Para recolectar datos de las tres variables de interés se puede llevar a cabo tres tipos de estudios:

- Observacional retrospectivo
- Observacional prospectivo
- Experimental

Observacional retrospectivo:

Se revisan los registros de cada proceso del último año considerando las siguientes variables para cada lote de botellas :

- Cantidad de botellas defectuosas
- Temperatura del horno al que fue fundida la mezcla
- % de arena que contenía la mezcla

Observacional prospectivo:

Se decide **empezar a registrar** en detalle las características más relevantes del proceso durante los **próximos meses**, teniendo en cuenta para **cada lote** de botellas :

- Cantidad de botellas defectuosas
- Temperatura del horno al que fue fundida la mezcla
- √ % de arena que contenía la mezcla

Desventajas?

Experimental:

Se diseña un **experimento** en donde **en cada proceso de fundición** se tendrán en cuenta las **diferentes temperaturas** que el horno puede alcanzar (1475°C, 1500°C) y los **diferentes** % **de arena** que puede contener la mezcla (70%, 73%, 75%) dejando fija, en forma proporcional, los demás componentes.

Se tendrán entonces 6 combinaciones posibles

Experimental:

- Arena 70%- Temp 1475°C
- Arena 73%- Temp 1475°C
- Arena 75%- Temp 1475°C

- Arena 70%- Temp 1500°C
- Arena 73%- Temp 1500°C
- Arena 75%- Temp 1500°C

Durante 36 días a cada proceso diario se le asignará, en forma aleatoria, una combinación. Por lo tanto, cada combinación estará presente 6 veces en cada lote.

Luego para cada proceso, se registrará la cantidad de botellas defectuosas en el lote.

Ventajas?

Desventajas?

Unidad 1

Introducción

- Recolección de datos
- Variables
 - Modelos estadísticos
 - Introducción al Análisis de Regresión

Variables

Variables

Análisis de las variables en estudio

Univariado

- ✓ Medidas descriptivas
- ✓ Gráficos
- ✓ Intervalo de confianza
- ✓ Test de hipótesis

Multivariado

En este curso:

1 respuesta y p explicativas

Variables

Se pueden distinguir dos tipos de relaciones

Funcional

- La relación es exacta
- Modelo matemático

Estadística

- La relación no es perfecta
- Todos los puntos no caen sobre la curva que describe la relación
- Modelo estadístico

Variables - Ejemplo

Funcional

Circunferencia = $\pi \times diámetro$

 $Y = $50 \times X$

Y= total vendido

X= cantidad unidades vendidas

\$50= precio unitario

Fahrenheit = 9/5*Celsius + 32

Estadística

En un estudio realizado en la Facultad de Cs Económicas y Estadística se desea evaluar la relación entre la nota del parcial obtenida por un alumno y su nota final.

Para 11 alumnos se registra:

- -la nota del parcial
- -la nota del final

Variables - Ejemplo

Funcional

Fahrenheit = 9/5*Celsius + 32

Estadística

Alumnos según nota parcial y nota final

Gráficos de dispersión

Unidad 1

Introducción

- Recolección de datos
- Variables
- Modelos estadísticos
 - Introducción al Análisis de Regresión

Modelos estadísticos

¿Qué es un modelo?

Representación de lo que se percibe como el mecanismo que generan los datos.

Modelos estadísticos

Un modelo está constituido por:

- Ecuación matemática: que idealiza la relación
 entre las variables. Esta ecuación está compuesta por:
 - Variables
 - ✓ La forma en que las variables están relacionadas
- Especificaciones realizadas sobre algunas
 de las variables que intervienen en la ecuación.

Modelos estadísticos - Tipos

Lineales

Los **parámetros del modelo** están involucrados de manera **lineal**:

- ✓ Aparecen elevados a potencia uno
- ✓ No están divididos ni multiplicados por otros parámetros.

$$\boldsymbol{y}_{\scriptscriptstyle i} = \boldsymbol{\beta}_{\scriptscriptstyle 0} + \boldsymbol{\beta}_{\scriptscriptstyle 1} \boldsymbol{x}_{\scriptscriptstyle i} + \boldsymbol{\epsilon}_{\scriptscriptstyle i}$$

Los **variables del modelo** pueden estar involucradas de manera lineal y no lineal:

$$y_i = \beta_0 + \beta_1 x_i + \beta_2 x_i^2 + \varepsilon_i$$

$$y_i = \beta_0 + \beta_1 x_i + \beta_2 z + \beta_3 x z + \varepsilon_i$$

No lineales

Los **parámetros del modelo** están involucrados de manera **no lineal**:

- ✓ Pueden aparecen elevados a potencia diferente de uno
- ✓ Pueden estar divididos o multiplicados por otros parámetros.

$$y_i = \frac{1}{\beta_0 + \beta_1 x_i + \varepsilon_i}$$

Los **variables del modelo** pueden estar involucradas de manera lineal y no lineal:

$$y_i = \frac{1}{\beta_0 + \beta_1 x_i + \beta_2 x_i^2 + \epsilon_i}$$

Modelos estadísticos- Tipos

Modelos linealizable

Modelos no lineales que con una transformación se convierten en modelos lineales

$$y_i = \beta_0 e^{\beta_1 x_i} + \varepsilon_i$$

$$In(y_i) = In(\beta_0 e^{\beta_1 x_i} \epsilon_i) =$$

$$= In(\beta_0) + \beta_1 x_i + In(\epsilon_i) =$$

$$= \beta_0^* + \beta_1 x_i + \epsilon_i^*$$

Unidad 1

Introducción

- Recolección de datos
- Variables
- Modelos estadísticos
- Introducción al Análisis de Regresión

¿Qué es el análisis de regresión?

¿Qué es el análisis de regresión?

- Metodología estadística
- Estudia y modela la relación entre dos o más variables cuantitativas
- Diferencia entre roles de variables: respuesta y explicativa
- Utiliza la relación entre las variables cuantitativas de tal manera que una de las variables (respuesta) puede predecirse a través de los valores observados de la o las otras (explicativas).

Ejemplos

- √ ¿El consumo de grasas está relacionado con la cantidad de colesterol ?
- ✓ ¿Cómo influyen en la **nota final** de una materia las **notas parciales**, la cantidad de trabajos prácticos entregados, el número de clases a las que el alumno no asiste y el sexo?
- √¿Las ventas de un producto dependen de la inversión en publicidad realizada?

Relación no implica causalidad

Que la relación entre las variables sea muy fuerte no significa que una de ellas sea la causa de la otra.

Ejemplo: peso – altura n° de palabras de un libro – n° de páginas de un libro

■ Un poco de historia....

✓ A principios del siglo XIX: Legendre y Gauss presentaron publicaciones del método de mínimos cuadrados en aplicaciones en astronomía.

✓ A finales del siglo XIX, Francis Galton estudió la relación entre la altura de padres e hijos. Observó que las alturas de los hijos de padres altos tienden a ser altas pero no tan altas como la de sus padres, "regresaban" hacia la media. A este fenómeno lo llamó "regresión a la mediocridad" y es de aquí surgió el término regresión.

Objetivos y usos

- ✓ Describir el fenómeno que se está estudiando
- ✓ Estimar los parámetros de un modelo
- ✓ Predecir los valores de una variable en función de otras variables
- ✓ Controlar si la relación entre las variables sigue siendo la misma

□ SIMPLE: sólo considera una sola variable explicativa

□ MÚLTILPLE: considera más de una variable explicativa

Unidad 2

Regresión lineal simple.

- Análisis exploratorio.
 - Planteo formal del modelo.
 - Estimación y test de hipótesis.
 - Partición de la suma de cuadrados total (ANOVA).
 - Medidas descriptivas de la relación entre las variables en un modelo de regresión.
 - Evaluación de los supuestos.

Análisis exploratorio

Univarido:

Tabla de distribución de frecuencias Gráficos Medidas

■ Bivariado:

Gráfico de dispersión Coeficiente de correlación de Pearson

Ejemplo

Se desea evaluar la relación entre la **nota obtenida en el examen parcial** y la **nota obtenida en el examen final**. Los datos de 11 alumnos de un curso se presentan en la siguiente tabla:

Alumno	Nota final	Nota parcial	
1	76	70	
2	99	100	
3	66	65	
4	92	90	
5	69	70	
6	80	85	
7	71	70	
8	51	50	
9	50	50	
10	80	90	
11	75	81	

Ejemplo

>¿Cuál es la unidad análisis?

>¿Cuántas unidades se consideran?

≥¿Cuál es la variable respuesta "Y"?

≥¿Cuál es la variable explicativa "X"?

Análisis exploratorio: Ejemplo

Univariado:

	Mínimo	Máximo	Media	Desvío
Nota parcial	50	100	74,64	16,23
Nota final	50	99	73,55	14,92

Análisis exploratorio: Ejemplo

Bivariado:

Coef de regresión lineal
0.96

Gráfico de dispersión

Tendencia

A medida que la nota en el examen parcial aumenta, la nota en el examen final también .

Para una misma nota
obtenida en el examen
parcial, puede haber varios
resultados de notas
obtenidas en el examen final

Unidad 2

Regresión lineal simple.

- Análisis exploratorio.
- Planteo formal del modelo.
- Estimación y tests de hipótesis.
- Partición de la suma de cuadrados total (ANOVA).
- Medidas descriptivas de la relación entre las variables en un modelo de regresión.
- Evaluación de los supuestos.

Planteo formal del modelo

- □ Sean x_i (i=1,2,..,n) los distintos valores de la variable X.
- Estos valores son seleccionados por el investigador.
- Para cada uno de ellos existe una distribución de probabilidad de valores de la respuesta Y que está caracterizada por su Esperanza y Variancia.

Planteo formal del modelo

Representación pictórica de un modelo de regresión

Planteo formal delo modelo

Modelo de regresión

Es un medio formal para expresar los dos elementos esenciales de una relación estadística:

- ✓ La tendencia de la respuesta a variar con las variables explicativas de una manera sistemática
- ✓ Una dispersión de puntos alrededor de una curva de la relación estadística

Estas dos características se manifiestan en el modelo de regresión postulando que:

- ✓ Hay una distribución de probabilidad de Y para cada X=x
- ✓ La media de esa distribución varía de alguna manera sistemática con x.

Planteo formal del modelo - Ejemplo

Planteo formal del modelo - Ejemplo

Planteo formal del modelo - Ejemplo

La **nota final de un alumno**, dada su nota parcial, se puede escribir como:

$$y_i = E(y_i/x_i) + \varepsilon_i$$

la **nota final promedio** de todos los

alumnos que comparten esa nota parcial

cantidad aleatoria, que

indica esa discrepancia.

Planteo formal del modelo

Si la **relación** entre E(yi/xi) y xi es aproximadamente **lineal**, entonces se puede elegir la **ecuación de una recta** para modelar la relación.

$$y_i = E(y_i/x_i) + \varepsilon_i$$
 $_{i=1,2,...n}$

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i$$

y_i: valor de la variable respuesta para la unidad i

x_i: valor de la variable respuesta para la unidad i

 β_0 y β_1 : coeficientes de regresión (parámetros)

 ε_i : error aleatorio

Se supone que: $E(\varepsilon_i)=0$, $V(\varepsilon_i)=\sigma^2$ \forall i, y ε_i y ε_i no están correlacionados

Planteo formal del modelo

$$y_i = E(y_i/x_i) + \varepsilon_i$$

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i$$

Este modelo es:

- ✓ Simple: sólo hay una variable predictora
- ✓ Lineal en los parámetros: ningún parámetro aparece elevado a ningún exponente ni está multiplicado o dividido por otro parámetro
- ✓ Lineal en la variable predictora: la variable predictora aparece sólo a la primera potencia.

Características del modelo

y_i es una variable aleatoria

La y_i es la suma de dos componentes:

- ✓ El término constante $\beta_0 + \beta_1 x_i$ SISTEMATICA
- ✓ El término aleatorio ε_{i} ALEATORIA
 - \Rightarrow y_i es una variable aleatoria.

La respuesta y_i se aproxima al valor de la función de regresión por la cantidad dada por el error ϵ_i

Características del modelo

Media de
$$y_i/x_i$$
: $E(y_i/x_i) = \beta_0 + \beta_1 x_i$

$$E(y_i/x_i) = E(\beta_0 + \beta_1 x_i + \epsilon_i) = \beta_0 + \beta_1 x_i + E(\epsilon_i) = \beta_0 + \beta_1 x_i$$

La media de y depende del valor de x.

Si
$$\beta_1 > 0 \rightarrow E(y_i/x_i)$$
 crece cuando x crece

Si $\beta_1 < 0 \rightarrow E(y_i/x_i)$ decrece cuando x decrece

Variancia de y_i/x_i : $V(y_i) = \sigma^2 \forall i$

$$V(y_i/x_i)=V(\beta_0+\beta_1x_i+\epsilon_i)=V(\epsilon_i)=\sigma^2$$

El modelo de regresión asume que las distribuciones de Y tienen la misma variancia independientemente del valor de X.

y; e y; no están correlacionados i≠i'

Como \mathcal{E}_i y $\mathcal{E}_{i'}$ están no correlacionados \Rightarrow y_i e y_{i'} tampoco.

Características del modelo

Interpretación de los parámetros

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i$$

 \checkmark β_1 : pendiente de la línea de regresión.

Indica el **cambio** en la **media** de la distribución de probabilidad de Y por **incrementos unitarios** en X.

- \checkmark β_0 : ordenada al origen de la línea de regresión.
- Cuando el alcance del modelo incluye a x=0, β_0 da la media de la distribución de probabilidad de Y en x=0.
- En caso contrario β_0 no tiene un significado particular como un término separado del modelo.

Unidad 2

Regresión lineal simple.

- Análisis exploratorio.
- Planteo formal del modelo.
- Estimación y tests de hipótesis.
- Partición de la suma de cuadrados total (ANOVA).
- Medidas descriptivas de la relación entre las variables en un modelo de regresión.
- Evaluación de los supuestos.

Unidad 2

Regresión lineal simple.

- Estimación y tests de hipótesis.
 - Estimación puntual de los parámetros del modelo
 - Estimación por IC y test de hipótesis de β_1 y β_0
 - Estimación puntual y por IC de la respuesta media y predicción de nueva observaciones

¿Cómo estimamos el modelo?

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i$$
 $i=1,2,...n$

Parámetros del modelo (desconocidos)

 β_0 y β_1 : coeficientes de regresión

σ²:variancia del error aleatorio

Para estimar el modelo primero necesitamos estimar sus parámetros

¿Cuál será la mejor recta de regresión?

¿Cuál será la mejor recta de regresión?

Método de mínimos cuadrados

Mejor recta de regresión

Aquella que diste lo menos posible de todos los puntos. Es decir, que la diferencia entre los valores observados y la recta sea mínima.

$$y_i - E(y_i/x_i) = y_i - (\beta_0 + \beta_1 x_i)$$
 MINIMA
Son desconocidos

Estimación puntual de los coeficientes de regresión

■ Método de mínimos cuadrados

Función a minimizar:
$$Q = \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2$$

Se hallan aquellos de valores β_0 y β_1 que minimizan Q: b_0 y b_1 .

$$b_0$$
 y b_1 son los estimadores de β_0 y β_1 $(\hat{\beta}_0 = b_0, \hat{\beta}_1 = b_1)$.

¿Cómo se obtienen?

- \checkmark Se **deriva** Q con respecto a β_0 y β_1
- ✓ Cada derivada se la iguala a cero
- \checkmark Se despeja b_0 y b_1

Estimación puntual de los coeficientes de regresión

Método de mínimos cuadrados

Estimador de β_0

$$\frac{\partial Q}{\partial \beta_0} = \frac{\partial \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2}{\partial \beta_0}$$

$$-2\sum_{i=1}^{n} (y_i - b_0 - b_1 x_i) = 0$$

$$\sum_{i=1}^{n} y_i = nb_0 + b_1 \sum_{i=1}^{n} x_i$$

Estimador de β_1

$$\frac{\partial Q}{\partial \beta_0} = \frac{\partial \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2}{\partial \beta_0}$$

$$\frac{\partial Q}{\partial \beta_1} = \frac{\partial \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2}{\partial \beta_1}$$

$$-2\sum_{i=1}^{n} (y_i - b_0 - b_1 x_i) = 0$$

$$-2\sum_{i=1}^{n} x_i (y_i - b_0 - b_1 x_i) = 0$$

$$\sum_{i=1}^{n} x_i y_i = nb_0 + b_1 \sum_{i=1}^{n} x_i$$
Ecuaciones normales
$$\sum_{i=1}^{n} x_i y_i = b_0 \sum_{i=1}^{n} x_i + b_1 \sum_{i=1}^{n} x_i^2$$

Estimación puntual de los coeficientes de regresión

■ Método de mínimos cuadrados

Estimador de β_0

$$\mathbf{b}_0 = \overline{\mathbf{y}} - \mathbf{b}_1 \overline{\mathbf{x}}$$

Estimador de β_1

$$b_1 = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i=1}^{n} (x_i - \overline{x})^2}$$

$$b_{1} = \frac{\sum_{i=1}^{n} x_{i} y_{i} - n \overline{x} \overline{y}}{\sum_{i=1}^{n} x_{i}^{2} - n \overline{x}^{2}}$$

Estimación puntual de los coeficientes de regresión

Propiedades de los estimadores mínimos cuadrados

- ✓ Insesgados: $E(b_0) = \beta_0$ y $E(b_1) = \beta_1$
- De variancia mínima entre todos los estimadores lineales insesgados.

Estimación puntual de los coeficientes de regresión - Ejemplo

Estimación puntual de los coeficientes de regresión

$$\checkmark$$
 b₁ = 0,886

A medida que la nota obtenida en el parcial aumenta en 1 punto, la nota final **promedio** aumenta en 0,886 puntos.

O bien..

A medida que la nota obtenida en el parcial aumenta en 10 puntos, la nota final **promedio** aumenta en 8,86 puntos.

$$\sqrt{b_0} = 7,418$$

La nota final promedio para un alumno que obtuvo 0 puntos en la nota parcial es 7,418 puntos. ¿Tiene sentido interpretarlo?

Estimación puntual de la variancia de y

□ Estimador de σ^2 =Var(ϵ_i)=Var(γ_i)

$$\hat{\sigma}^2 = \frac{\sum_{i=1}^{n} (y_i + \hat{y}_i)^2}{(n-2)} = \frac{\sum_{i=1}^{n} e_i^2}{n-2} = \frac{SCE}{n-2} = CME$$

Recordemos...

$$s^{2} = \frac{\sum_{i=1}^{n} (y_{i} - \overline{y})^{2}}{n-1}$$

Se pierden 2 grados de libertad por las **estimaciones** de β_0 y β_1

Cada tiene su propia distribución de probabilidad y por lo tanto, su propio estimador de la media

- Propiedades de el estimador de la variancia
- ✓ Insesgado: $E(\hat{\sigma}^2) = \sigma^2$

Estimación puntual de la variancia de y - Ejemplo

Estimación de la variancia de y

$$\hat{\sigma}^2 = CME = 17,63$$

Unidad 2

Regresión lineal simple.

- Estimación y tests de hipótesis.
 - Estimación puntual de los parámetros del modelo
 - Estimación por IC y test de hipótesis de β_1 y β_0
 - Estimación puntual y por IC de la respuesta media y predicción de nueva observaciones

Para realizar intervalos de confianza (IC) y pruebas de hipótesis se necesita un supuesto sobre la forma de la distribución de los ε_i.

$$\epsilon_{i} \sim N(0, \sigma^{2})$$

$$y_{i} \sim N(\beta_{0} + \beta_{1}x_{i}, \sigma^{2})$$

Respecto a β_0

Distribución muestral de bo

Se refiere a los **diferentes valores de b**₀ obtenidos extrayendo muestras de tamaño n, manteniendo constantes los valores de X de muestra a muestra.

$$\checkmark$$
 b₀~N(β₀,V(b₀))
$$V(b_0) = σ^2 \left[\frac{1}{n} + \frac{\overline{x}^2}{\sum_{i=1}^{n} (x_i - \overline{x})^2} \right]$$

Respecto a β_0

Intervalo de confianza

$$IC_{\beta_0,(1-\alpha)100\%} = \left(b_0 - t_{n-2,1-\frac{\alpha}{2}}s(b_0), b_0 + t_{n-2,1-\frac{\alpha}{2}}s(b_0)\right)$$

donde
$$s(b_0) = \sqrt{\hat{V}(b_0)} = \sqrt{CME \left[\frac{1}{n} + \frac{\overline{x}^2}{\sum_{i=1}^{n} (x_i - \overline{x})^2} \right]}$$

Respecto a β_0

Prueba de hipótesis

Hipótesis:
$$H_0$$
) $\beta_0 = 0$ H_A) $\beta_0 \neq 0$

Estadística de prueba:
$$t = \frac{b_0}{s(b_0)}^{H_0} \sim t_{n-2}$$

Regla de decisión: rechazo H_0 si $\left|t_{obs}\right| > t_{n-2;1-\frac{\alpha}{2}}$ o valor $p \le 0,05$

Respecto a β_1

Distribución muestral de b₁

✓ Se refiere a los **diferentes valores de b**₁ obtenidos extrayendo muestras de tamaño n, manteniendo constantes los valores de X de muestra a muestra.

$$b_1 \sim N(\beta_1, V(b_1))$$

$$V(b_1) = \frac{\sigma^2}{\sum_{i=1}^{n} (x_i - \overline{x})^2}$$

Respecto a β_1

Intervalo de confianza

$$IC_{\beta_{1},(1-\alpha)100\%} = \left(b_{1} - t_{n-2,1-\frac{\alpha}{2}}s(b_{1}),b_{1} + t_{n-2,1-\frac{\alpha}{2}}s(b_{1})\right)$$

donde
$$s(b_1) = \sqrt{V(b_1)} = \sqrt{\frac{CME}{\sum_{i=1}^{n} (x_i - \overline{x})^2}}$$

Respecto a β_1

Prueba de hipótesis

Hipótesis:
$$H_0$$
) $\beta_1 = 0$ H_A) $\beta_1 \neq 0$

Test de Regresión

Estadística de prueba:
$$t = \frac{b_1}{s(b_1)}^{H_0} \sim t_{n-2}$$

Regla de decisión: rechazo H_0 si $|t_{obs}| > t_{n-2;1-\frac{\alpha}{2}}$ o valor $p \le 0,05$

Intervalo de confianza – Test de hipótesis

Respecto a β_1

□ Prueba de hipótesis Hipótesis: H_0) $\beta_1 = 0$ H_A) $\beta_1 \neq 0$

Casos en los que no se rechaza H₀

Casos en los que se rechaza H₀

Intervalo de confianza - Ejemplo

Intervalos de confianza

$$IC_{\beta_0,95\%} = (7,418 - 2,262.6,235; 7,418 + 2,262.6,235)$$

= $(-0,686; 21,521)$

Con una confianza del 95% es de esperar que cuando x=0 la media de y se encuentre entre -0,686 y 21,521.

$$\mathbf{IC}_{\beta_1,95\%} = (0,886 - 2,262.0,081; 0,886 + 2,262.0,081)$$

$$= (0,703; 1,069)$$

Con una confianza del 95% es de esperar que la pendiente de la recta de regresión se encuentre entre 0,703 y 1,069.

Test de hipótesis - Ejemplo

Prueba de hipótesis

Hipótesis:
$$H_0$$
) $\beta_0 = 0$ H_A) $\beta_0 \neq 0$

$$t_{obs} = 1,19 < t_{9;0,975} = 2,262 \Rightarrow \text{no rechazo H}_0$$

Hipótesis:
$$H_0$$
) $\beta_1 = 0$ H_A) $\beta_1 \neq 0$

Test de Regresión

$$t_{obs} = 10,87 > t_{9;0,975} = 2,262 \Rightarrow rechazo H_0$$

Unidad 2

Regresión lineal simple.

- Estimación y tests de hipótesis.
 - Estimación puntual de los parámetros del modelo
 - Estimación por IC y test de hipótesis de β_1 y β_0
 - Estimación puntual y por IC de la respuesta media y predicción de nueva observaciones

¿Cómo estimamos la recta de regresión?

Estimador puntual de la media de y

$$\hat{E}(y_i/x_i) = \hat{\beta}_0 + \hat{\beta}_1 x_i = b_0 + b_1 x_i$$

Predictor puntual de y

$$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i = b_0 + b_1 x_i$$

¿Cómo estimamos la recta de regresión? - Ejemplo

Estimación de la media de y

$$\hat{E}(y_i/x_i) = 7,418 + 0,886x_i$$

Predicción de y

$$\hat{y}_i = 7,418 + 0,886x_i$$

¿Cómo estimamos la recta de regresión?: Ejemplo

¿Cuál es la recta de regresión estimada para este ejemplo?

Intervalo de confianza

lacksquare Distribución muestral de $\hat{\mathsf{E}}(\mathsf{y}_{\scriptscriptstyle\mathsf{i}}/\mathsf{x})$

$$\hat{E}(y_i/x) \sim N(E[\hat{E}(y_i/x)],V[\hat{E}(y_i/x)])$$

$$E[\hat{E}(y_i/x)] = E[b_0 + b_1x_i] = \beta_0 + \beta_1x$$

$$V[\hat{E}(y_i/x)] = V[b_0 + b_1x_i] = \sigma^2 \left[\frac{1}{n} + \frac{(x - \overline{x})^2}{\sum_{i=1}^{n} (x_i - \overline{x})^2} \right]$$

Intervalo de confianza

 $lue{}$ Intervalo de confianza de E(y/x)

$$IC_{E(y/x),(1-\alpha)100\%} = \left(\hat{E}(y/x) \pm t_{n-2,1-\frac{\alpha}{2}} s(\hat{E}(y/x))\right)$$

donde
$$s(\hat{E}(y/x)) = \sqrt{V(\hat{E}(y/x))} = \sqrt{CME \left[\frac{1}{n} + \frac{(x-\overline{x})^2}{\sum_{i=1}^{n} (x_i - \overline{x})^2}\right]}$$

Estimación puntual y por intervalo de confianza — Ejemplo

¿Qué **nota final** se espera obtener **en promedio** cuando se obtuvo en la prueba parcial 70 puntos?

$$\hat{E}(y/70) = 7,418 + 0,886.70 = 69,438$$

$$IC_{E(y/70),95\%} = (66,448;72,427)$$

Intervalo de predicción

 \Box Intervalo de predicción de \hat{y}_i/X

$$IP_{\hat{y}/x,(1-\alpha)100\%} = \left((\hat{y}/x) \pm t_{n-2,1-\frac{\alpha}{2}} s((\hat{y}/x)) \right)$$

donde
$$s((\hat{y}/x)) = \sqrt{V((\hat{y}/x))} = \sqrt{CME \left[1 + \frac{1}{n} + \frac{(x - \overline{x})^2}{\sum_{i=1}^{n} (x_i - \overline{x})^2}\right]}$$

Predicción puntual y por intervalo — Ejemplo

¿Qué **nota final** se espera obtener cuando se obtuvo en la prueba parcial 70 puntos?

$$y/70 = 7,418 + 0,886.70 = 69,438$$

$$IP_{y/70,95\%} = (59,480;79,395)$$

Intervalos - Ejemplo

Bandas de confianza del 95%

Bandas de predicción del 95%

Unidad 2

Regresión lineal simple.

- Análisis exploratorio.
- Planteo formal del modelo.
- Estimación y tests de hipótesis.
- Partición de la suma de cuadrados total (ANOVA).
- Medidas descriptivas de la relación entre las variables en un modelo de regresión.
- Evaluación de los supuestos.

- El enfoque del Análisis de la Variancia (ANOVA)
 para el Análisis de Regresión
 - Consiste en particionar la variabilidad total de la respuesta en distintas componentes.
 - ✓ La variación total de la respuesta Y se piensa como la desviación de cada y_i respecto de la media . \overline{y}
 - Se utiliza como una medida de la variación de las observaciones, sin tener en cuenta la variable explicativa X.

$$y_i - \overline{y} = (y_i - \hat{y}_i) + (\hat{y}_i - \overline{y})$$

Desviación total Desviación de cada observación respecto al valor ajustado

Desviación de cada valor ajustado respecto a la media

Variabilidad

Total

Variabilidad residual no

explicada por la regresión

$$\begin{split} \sum_{i=1}^{n} \left(y_{i} - \overline{y} \right)^{2} &= \sum_{i=1}^{n} \left[\left(y_{i} - \hat{y}_{i} \right) + \left(\hat{y}_{i} - \overline{y} \right) \right]^{2} = \\ &= \sum_{i=1}^{n} \left[\left(y_{i} - \hat{y}_{i} \right)^{2} + \left(\hat{y}_{i} - \overline{y} \right)^{2} + 2 \left(y_{i} - \hat{y}_{i} \right) \left(\hat{y}_{i} - \overline{y} \right) \right] = \\ &= \sum_{i=1}^{n} \left(y_{i} - \hat{y}_{i} \right)^{2} + \sum_{i=1}^{n} \left(\hat{y}_{i} - \overline{y} \right)^{2} + 2 \sum_{i=1}^{n} \left(y_{i} - \hat{y}_{i} \right) \left(\hat{y}_{i} - \overline{y} \right) = \\ &= \sum_{i=1}^{n} \left(y_{i} - \hat{y}_{i} \right)^{2} + \sum_{i=1}^{n} \left(\hat{y}_{i} - \overline{y} \right)^{2} + 2 \sum_{i=1}^{n} \hat{y}_{i} \left(y_{i} - \hat{y}_{i} \right) - 2 \overline{y} \sum_{i=1}^{n} \left(y_{i} - \hat{y}_{i} \right) = \\ &= \sum_{i=1}^{n} \left(y_{i} - \hat{y}_{i} \right)^{2} + \sum_{i=1}^{n} \left(\hat{y}_{i} - \overline{y} \right)^{2} \end{split}$$

Variabilidad explicada

por la regresión

Cuadro ANOVA

Fuente de variación	Suma de cuadrados	Grados de libertad	Cuadrados medios	E(CM)
Regresión ajustada	$SCR_{m} = \sum_{i=1}^{n} (\hat{y}_{i} - \overline{y})^{2}$	1	$SCR_m = CMR_m$	$\sigma^2 + \beta_1^2 \sum_i (x_i - x)^2$
Error	$SCE = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$	n-2	$CME = \frac{SCE}{n-2}$	σ^2
Total corregido	$SCT_{m} = \sum_{i=1}^{n} (y_{i} - \overline{y})^{2}$	n-1		

Test de regresión a partir del análisis de la variancia

Hipótesis:
$$H_0$$
) $\beta_1 = 0$ H_A) $\beta_1 \neq 0$

Estadística de prueba:
$$F = \frac{CMR_m}{CME} \sim_{H_0} F_{1,n-2}$$

Distribución F de Fisher- Snedecor

Regla de decisión: rechazo H_0 si $F_{obs} > F_{n-2;\alpha}$ o valor $p \le 0,05$

 $\dot{\mathbf{z}}$ Por qué no es $\frac{\alpha}{2}$?

Tests de Regresión

 Relación entre la estadística t y la estadística F de los dos test de regresión

$$t^2 = F$$

ANOVA - Ejemplo

Fuente de variación	Suma de Cuadrados	Grados de libertad	Cuadrado medio	F
Regresión ajustada	2068,06	1	2068,06	117,3
Error	158,66	9	1 <i>7,</i> 63	
Total ajustado	2226,72	10		

Hipótesis:
$$H_0$$
) $\beta_1 = 0$ H_A) $\beta_1 \neq 0$ $t^2 = (10,83)^2$

Decisión: $F_{obs} = 117,3 > F_{1,9,0.05} = 5,12$

Conclusión: En base a la evidencia muestral y con un nivel de significación de 0.05 es de esperar que la nota parcial aporte significativamente a la explicación de la nota final

Unidad 2

Regresión lineal simple.

- Análisis exploratorio.
- Planteo formal del modelo.
- Estimación y tests de hipótesis.
- Partición de la suma de cuadrados total (ANOVA).
- Medidas descriptivas de la relación entre las variables en un modelo de regresión.
- Evaluación de los supuestos.

Medidas descriptivas de asociación

Coeficiente de determinación

$$R^2 = \frac{SCR_m}{SCT_m} = 1 - \frac{SCE}{SCT_m}$$

$$0 \le R^2 \le 1$$

- ✓ Proporción de la variación total de Y que es explicada por la relación lineal entre X e Y o por la regresión.
- ✓ Cuanto más cercano sea a 1→ mayor es la asociación lineal entre X e Y

Medidas descriptivas de asociación

□ Coeficiente de correlación

$$r = \frac{\displaystyle\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\displaystyle\sum_{i=1}^{n} (x_i - \overline{x})^2} \sum_{i=1}^{n} (y_i - \overline{y})^2} = b_1 \frac{\sqrt{\displaystyle\sum_{i=1}^{n} (x_i - \overline{x})^2}}{\sqrt{\displaystyle\sum_{i=1}^{n} (y_i - \overline{y})^2}} - 1 \le r \le 1$$

✓ Medida cuantitativa de la fuerza y la dirección de la relación lineal entre las variables X e Y.

En regresión simple:

✓ Lleva el mismo signo que la pendiente de la recta de regresión ajustada

Medidas descriptivas de asociación – Ejemplo

$$R^2 = \frac{2068,06}{2226,72} = 0,93$$

✓ El 93% de la variabilidad total de Y que es explicada por la relación lineal entre la nota parcial y la nota final.

$$r = \sqrt{0.93} = 0.96$$

✓ Existe una relación lineal fuerte y positiva entre la nota parcial y la nota final.

Unidad 2

Regresión lineal simple.

- Análisis exploratorio.
- Planteo formal del modelo.
- Estimación y tests de hipótesis.
- Partición de la suma de cuadrados total (ANOVA).
- Medidas descriptivas de la relación entre las variables en un modelo de regresión.
- Evaluación de los supuestos.

Supuestos

Distribución normal de errores

Media de errores igual a cero

Variancia de errores constante

Errores no correlacionados

Linealidad de la variable regresora

Residuos

Residuo ordinario

$$\mathbf{e}_{_{\mathbf{i}}}=\mathbf{y}_{_{\mathbf{i}}}-\mathbf{\hat{y}}_{_{\mathbf{i}}}$$

- Diferencia entre el valor observado y el valor estimado
- Estimador del error aleatorio

$$\varepsilon_{i} = \mathbf{y}_{i} - \mathbf{E}(\mathbf{y}_{i})$$

 Si el modelo es apropiado, los residuos van a reflejar las propiedades de los errores.

Es por ello que se analizan los residuos para evaluar si se cumplen los supuestos que se hacen sobre los errores

Residuos - Ejemplo

Residuo ordinario

Residuos

Residuo estandarizado o semiestudentizado

$$e_i^* = \frac{e_i - e}{\sqrt{CME}} = \frac{e_i}{\sqrt{CME}}$$

CME =
$$\frac{\sum (e_i - e)^2}{n-2} = \frac{SCE}{n-2}$$

- Estos residuos tienen media cero y la variancia es aprox. 1
- □ Un residuo estandarizado grande |e;|>3 muestra un valor atípico

Distribución normal de errores

Gráfico probabilístico normal de e_i*

Test de Anderson-Darling (e_i)

H₀) Los errores tienen distribución normal H₁) Los errores no tienen distribución normal

Si los puntos se ajusta a la recta

Regla decisión: Si valor $p>\alpha$

Sugiere que los errores tienen distribución Normal

Distribución normal de errores - Ejemplo

Gráfico probabilístico normal de e_i*

Test de Anderson-Darling (e_i)

H₀) Los errores tienen distribución normal H₁) Los errores no tienen distribución normal

Los puntos se ajusta a la recta

El valor p=0,9949>0,05

Sugiere que los errores tienen distribución Normal

Media de los errores igual a 0 y variancia constante

Gráfico de e_i* vs valores ajustados

Si los puntos caen dentro de una banda horizontal alrededor del cero

Sugiere que los errores tienen media cero y variancia constante

Media de los errores igual a 0 y variancia constante - Ejemplo

Gráfico de e_i* vs valores ajustados

Los puntos caen dentro de una banda horizontal alrededor del cero

Sugiere que los errores tienen media cero y variancia constante

Errores no correlacionados

Gráfico de ei* vs secuencia temporal

Si los puntos no muestran un patrón, se presentan aleatoriamente

Test de Durbin- Watson (e;)

H₀) Los errores no están correlacionados

H₁) Los errores están correlacionados

Regla decisión: Si valor p>α

Sugiere que los errores no están correlacionados

Errores no correlacionados - Ejemplo

Gráfico de ei* vs secuencia temporal

Test de Durbin- Watson (e_i)

H₀) Los errores no están correlacionados H₁) Los errores están correlacionados

Los puntos muestran un patrón poco claro

El valor p=0,0115<0,05

Sugiere que los errores están correlacionados

Linealidad de la regresora

Gráfico de ei* vs variable explicativa

Si los puntos no muestran un patrón, se presentan aleatoriamente

Sugiere que la relación propuesta entre Y y X es correcta

Linealidad de la regresora - Ejemplo

Gráfico de ei* vs variable explicativa

Los puntos no muestran un patrón, se presentan aleatoriamente

Sugiere que la relación propuesta entre Y y X es correcta