

לא לשכוח להפעיל הקלטה!

קלסיפיקציה ברשתות נוירונים

מה אנחנו צריכים כבר לדעת?

- למידה מפוקחת
- רגרסיה לוגיסטית ופונקציית מעבר
 - מבנה הרשת

מה נלמד בשיעור זה?

- ייצוג של הערכים בקלט ובפלט ✓
- יאתחול מטריצות המשקולות 3 שיטות: ✓
 - אתחול לאפס 🗖
 - אתחול לערכים רנדומליים 🗖
- (מתאים לרשתות בהם קיימת ReLU מתאים לרשתות בהם לרשתות אקטיבציה) He Initialization 🖵
 - ע פונקציות אקטיבציה ✓
 - ✓ היפר פרמטרים של רשת נוירונים
 - עהליך אימון הרשת ✓
 - Overfit and underfit ✓
 - עיפור המודל √
 - מעל"ה מדע חישובי פיזיקה

בעיות חישוביות הניתנות לפתרון בעזרת למידה מונחית

- <u>רגרסיה</u> הערכת הפונקציה בין הקלט לפלט.
- הפלט הוא מספר ממשי (או כמה מספרים).
- **קלסיפיקציה (סיווג)** ניבוי לאיזו קבוצה
 - שייכת כל דוגמא.
 - הפלט הוא התוית של הקבוצה.

ייצוג של הערכים בקלט ובפלט

• נתונים סטטיסטיים

ייצוג הקלט בבעיות קלסיפיקציה

input: הפיצ'רים הינם ערכים מספריים

output: ערכים שמבטאים את הסוג. ניתן להבדיל בין שני סוגים ויותר.

אברהם	מקרר	3000	8:00	לגיטימי	
אברהם	מסטיק	5	9:45	הונאה	
שרה	חנייה	40	10:02	לגיטימי	<u> </u>
שרה	חשבון חשמל	3000	15:33	לגיטימי	\
שרה	ספה	3000	9:01	לגיטימי	
יצחק	מכולת	25	18:45	לגיטימי	ן אַן \ [©]
יצחק	שעון יד	300	23:23	לגיטימי	אימון דוג מא
יצחק	מקרר	3000	8:00	הונאה	
רבקה	טלוויזיה	6600	17:02	לגיטימי	
רבקה	מזון לחתולים	30	02:30	לגיטימי	
					מודל
יעקב	קפה ומאפה	50	06:30	?	

קלסיפיקציה ברשתות נוירונים –ייצוג הפלט

- יהיו לנו בשכבת האאוטפוט מספר נוירונים כמספרהמחלקות.
- נגדיר את ה-target כך שכל נוירון יגיב ב-1 עבור מחלקה
 אחת, וב-0 עבור כל המחלקות האחרות.

ברשת שאומנה לזהות צבעים: אדום, כחול תכלת. כאשר נזין תמונה בצבע אדום נצפה לקבל בפלט את הערכים הבאים:

1	1	0	0
	0	1	0
	0	0	0

.4 3. 2.

ברשת שאומנה לזהות צבעים: אדום, כחול תכלת. כאשר נזין תמונה בצבע אדום נצפה לקבל בפלט את הערכים הבאים:

ברשת שאומנה לזהות צבעים: אדום, כחול תכלת. כאשר נזין תמונה בצבע ירוק נצפה לקבל בפלט את הערכים הבאים:

מעל"ה – מדע חישובי פיזיקה

ברשת שאומנה לדהות צבעים: אדום, כחול תכלת. כאשר נזין תמונה בצבע ירוק נצפה לקבל בפלט את הערכים הבאים:

	J.	۷.	1.
0	1	0	0
	0	1	0
	0	0	0

ייצוג הקלט בבעיות קלסיפיקציה

מספר הדוגמאות עבור כל מחלקה יהיה זהה.

קלסיפיקציה ברשתות נוירונים –ייצוג הפלט – שיטה 2

- ת output יהיה וקטור עם המימדים: (m,). □ output מספר הדגימות m
 - כל מחלקה תיוצג ע"י ערך שאופייני לה:□
 - 0 = Iris-setosa ○
 - 1 = Iris-versicolor o
 - 2 = Iris-virginica o

פונקציות מעבר

ייצוג הפלט בבעיות קלסיפיקציה – פונקציות מעבר

בשביל לפתור בעיות לא ליניאריות, בשכבות הביניים יהיו פונקציות מעבר לא ליניאריות (פונקציה לוגיסטית logsig או טנגנס היפרבולי tansig).

Name \$	Plot	Function, $f(x)$
Identity		מתאים בשכבה אחרונה לבעיות רגרסיה
Binary step		$\left\{egin{array}{ll} 0 & ext{if } x < 0 \ 1 & ext{if } x \geq 0 \end{array} ight.$
Logistic, sigmoid, or soft step		$\sigma(x) = rac{1}{1 + e^{-x}}^{ ext{[1]}}$ לבעיות קלסיפיקציה
Hyperbolic tangent (tanh)		$ anh(x)=rac{e^x-e^{-x}}{e^x+e^{-x}}$ מתאים בשכבה אחרונה לבעיות קלסיפיקציה 1+/-
Rectified linear unit (ReLU) ^[7]		$egin{aligned} lpha & ext{if } x \leq 0 & ext{and the first section} \ x & ext{if } x > 0 & ext{and the first section} \ x & ext{if } x > 0 & ext{and the first section} \ = \max\{0,x\} = x 1_{x>0} & ext{vector of the first section} \end{aligned}$

https://en.wikipedia.org/wiki/Activation_function

softmax פונקציות מעבר – פונקצית

- אחד הפירושים של הפלט של נוירוני שכבת הפלט הוא ההסתברות של כל מחלקה.
 - אולם אם נשתמש בפונקצית מעבר סיגמואידית, שום דבר לא מגביל את סכום ההסתברויות ל-1.
 - דרך להתמודד עם בעיה זו היא להשתמש
 בפונקצית המעבר softmax:

$$y_i = \frac{e^{z_i}}{\sum_{j \in group} e^{z_j}}$$

:cross-entropy פונקצית השגיאה נקראת

$$C = -\sum_{j} t_{j} \log y_{j}$$
target value

היפר פרמטרים

layers
hidden units
learning rates
activation functions

תרגיל כיתה 1 – כיוון היפר פרמטרים

https://playground.tensorflow.org/ הכנסו לאתר

אמנו את הרשת ל-4 סוגי הבעיות, רשמו את ההיפר פרמטרים הטובים ביותר:

PROBLEM TYPE	מספר התכונות FEATURES	מספר השכבות	Learning rate	Activation
**				
@				

תהליך אימון הרשת

בניית רשת - שלבי עבודה

- ייבוא נתונים ✓
- ✓ הכנת נתונים
- נורמליזציה -
- חלוקה לסט אימון/ולידציה/בדיקה
 - יצירת רשת מסוג קלסיפיקציה ✓
- אימון הרשת עם נתוני הדגימות שלנו ✓
 - :הערכת ביצועים על סט הבחינה ✓
- תישוב פונקציית השגיאה על סט הבחינה.
 - חישוב אחוז ההצלחה על סט הבחינה.
 - ד Troubleshooting ✓

Train - אימון

21

בדיקה - Test

1. ייבוא נתונים

1. Import Data

מבוסס על פרויקט לדוגמא: 7-2-NN-CL-1.ipynb

```
from sklearn.datasets import load_iris
iris = load_iris()
X = iris.data
y = iris.target
```

```
[3] print(X.shape, y.shape)
(150, 4) (150,)
```

```
[4] print(y)
```

2. הכנת הנתונים

נירמול הנתונים

```
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
```

חלוקת סט הנתונים ל-3 חלקים

```
# train - 70%, temp - 30%
X_train, X_temp, y_train, y_temp = train_test_split(X_scaled, y, test_size=0.3, random_state=42)
# takes the temporary set and splits it equally into validation and test sets
# train - 70%, val 15%, test 15%
X_val, X_test, y_val, y_test = train_test_split(X_temp, y_temp, test_size=0.5, random_state=42)
```

שימו לב: על מנת לחלק את הנתונים ל 3 חלקים יש להריץ את פקודת החלוקה

פעמיים

- train+val,test חלוקה •
- train,val לוקה של train+val •

מעל"ה – מדע חישובי פיזיקה

2. הכנת הנתונים – חלוקת הנתונים ל 3 חלקים

Training Dataset

מדגם הנתונים המשמש לאימון המודל

תוצאה שלב זה: סט משקלות וערכי הטייה

Validation Dataset

מדגם הנתונים משמש לבחינת המודל המאומן ובמידת הצורך שינוי המודל ע"י: הוספת שכבות, הוספת ניורונים בכל שכבה, שינוי מספר ה features

Test Dataset

מדגם נתונים שמספק את האישור הסופי לבחירת המודל המאומן לאחר שאומת עם סט הולידציה

4. הכנת הנתונים – חלוקת הנתונים ל 3 חלקים

https://towardsdatascience.com/train-validation-and-test-sets-72cb40cba9e7

3. יצירת רשת מסוג קלסיפיקציה

הגדרת מבנה הרשת: מספר השכבות וכמה ניורונים בכל שכבה הגדרת פונקציית האקטיבציה בכל אחת מהשכבות

- מה מבנה הרשת:
- א. כמה נוירונים בשכבת הקלט
 - ב. כמה שכבות חבויות?
- ג. כמה נוירונים בכל שכבה חבויה
 - ד. כמה נוירונים בשכבת הפלט

מה מבנה הרשת:

א. כמה נוירונים בשכבת הקלט

ב. כמה שכבות חבויות?

ג. כמה נוירונים בכל שכבה חבויה - 64 ו 64

ד. כמה נוירונים בשכבת הפלט

4. אימון הרשת עם נתוני הדגימות שלנו

4. אימון הרשת עם נתוני הדגימות שלנו – מאפיינים לאחר ההרצה

```
i=0
for layer in model1.layers:
    i=i+1
    weights, biases = layer.get_weights()
    print("w", str(i), weights.shape, ";b", str(i), biases.shape)

w 1 (4, 64) ;b 1 (64,)
w 2 (64, 64) ;b 2 (64,)
```

history1.history['accuracy'] ורציות:

דיוק סט האימון בכל האיטרציות:

history1.history['loss']

w 3 (64, 3); b 3 (3,)

הטעות סט האימון בכל האיטרציות:

Over fitting / Under fitting – אימון הרשת עם נתוני הדגימות שלנו 4.

Over fitting / Under fitting – אימון הרשת עם נתוני הדגימות שלנו -4.

Under fitting /Over fitting – אימון הרשת עם נתוני הדגימות שלנו 4.4

Over fitting	Under fitting	
התאמת יתר	תת התאמה	
המודל שלנו מתאים מצוין לנתוני האימון אך מתקשה לסווג נתונים חדשים כישלון בהכללה	המודל שלנו אינו מתאים לנתוני האימון וגם מתקשה לסווג נתונים חדשים	תיאור הבעיה
טעות סט האימון נמוכה טעות סט הולידציה גבוהה	טעות סט האימון גבוהה טעות סט הולידציה גבוהה	מאפייני ערך הטעות
 יש צורך להגדיל מספר דוגמאות צמצום פיצ'רים (תכונות) צמצום מורכבות המודל (להקטין את מספר הניורונים). עצירה מוקדמת בשלב האימון Early stopping (ברירת foolbox) Regularization .5 	1. אין צורך להגדיל מספר דוגמאות 2. הוספת פיצ'רים (תכונות) 2. העלאת מורכבות המודל (להגדיל את מספר הניורונים).	איך אני נמנע מהבעיה הזו?

Under fitting /Over fitting תרגיל כיתה 2 – כיוון היפר פרמטרים

Generalization Vs. Complexity

- https://playground.tensorflow.org/ הכנסו לאתר
- .underfitting ו-overfitting מה הם היפר-פרמטרים במצב של ,

5. הערכת ביצועי הרשת – מדדי הערכה

מציגה את הסיווג הנכון והלא נכון בצורה גרפית וכמטריצה

מתוך 6 הדוגמאות של פרח האירוס מסוג 1 כמה זוהו כפרח

?1 אירוס מסוג

```
[[6 0 0]
[0 5 5]
[0 0 7]]
```

Predicted

```
9 5 5]
9 0 7]]
```

5 .א

ב. 10

6.ג

7.т

מתוך 6 הדוגמאות של פרח האירוס מסוג 1 כמה זוהו כפרח

```
[[6 0 0]
[0 5 5]
[0 0 7]]
Predicted
```

```
?1 אירוס מסוג
א. 5
ב. 10
ג. 6
ד. 7
```

מתוך 10 הדוגמאות של פרח האירוס מסוג 2 כמה זוהו כפרח

```
[[6 0 0]
[0 5 5]
[0 0 7]]
Predicted
```

```
?2 אירוס מסוג
```

- 5 .א
- ב. 10
 - 6.ג
 - 7.т

מתוך 10 הדוגמאות של פרח האירוס מסוג 2 כמה זוהו כפרח

?2 אירוס מסוג

```
[[6 0 0]
[0 5 5]
ב. 10
```

Predicted

[0 0 7]]

6.ג

7 .т

5. הערכת ביצועי הרשת – מדדי הערכה

f1_score ,recall ,precision :חישוב מדדי הערכה

```
TP_0 = conf_matrix[0,0]
TN_0 = conf_matrix[1,1] + conf_matrix[2,2] + conf_matrix[1,2] + conf_matrix[2,1]
FP_0 = conf_matrix[1,0] + conf_matrix[2,0]
FN_0 = conf_matrix[0,1] + conf_matrix[0,2]

#Calculate Precision, Recall, F1 Score for each category
Precision = np.zeros(3)
Recall = np.zeros(3)
```

חישוב המדדים לקטגוריה 0

```
F1_Score = np.zeros(3)

# YOUR CODE HERE - START
# -- 0 --
Precision[0] = TP_0/(TP_0+FP_0)
Recall[0] = TP_0/(TP_0+FN_0)
F1_Score[0] = 2*(Precision[0]*Recall[0]) / (Precision[0]+Recall[0])
```

6. שיפור המודל

<u>שינויים שניתן לעשות לשיפור המודל</u>

- נתונים נוספים: לפעמים, המודל צריך עוד דוגמאות ללמוד מהן.
- איזון בנתונים: ייצוג שווה של דגימות מכל סוג
- שינוי ארכיטקטורת הרשת: הוספה או הפחתת שכבות / נוירונים בכל שכבה.
 - שינוי קצב למידה, סוג האופטימיזציה, גודל ה
 batch, פונקציות אקטיבציה שונות.
 - early- שינוי מספר האיטראציות וטכניקת stopping.

6. שיפור המודל – Early stopping

<u>עצירה מוקדמת בשלב האימון</u>

- הנתונים מחולקים ל 3 חלקים:
 - Training set —
 - Validation set
 - Test set —
- האימון יעשה רק על סט האימון, והבחינה הסופית תעשה רק על סט הבחינה.
- בתהליך האימון, נבדוק לא רק את שגיאת האימון, אלא גם את השגיאה על סט הולידציה.
- אם השגיאה על סט הולידציה עלתה x פעמים רצוף, נעצור את אימון הרשת, ונשמור את הנתונים (את המשקלות והסיפים) שהיו <u>לפני</u> העלייה.

6. שיפור המודל – Early stopping

early-stopping תרגיל – הוספת מנגנון