AutoML: Gaussian Processes

Gaussian Process Training

Bernd Bischl Frank Hutter Lars Kotthoff Marius Lindauer Joaquin Vanschoren

Training of a Gaussian Process

- To make predictions for a regression task by a Gaussian process, one needs to perform matrix computations.
- Here, the main difficulty is how to do **model selection**, i.e., how to choose the best covariance function and how to tune the hyperparameters.
- There is a multitude of possible families of covariance functions, each coming with a number of hyperparameters to be chosen.
- We will refer to the model selection as **training** of a Gaussian process.

Training a GP via the Maximum Likelihood I

• Let us assume $y = f(\mathbf{x}) + \epsilon$, $\epsilon \sim \mathcal{N}\left(0, \sigma^2\right)$, where $f(\mathbf{x}) \sim \mathcal{G}\left(\mathbf{0}, k\left(\mathbf{x}, \mathbf{x}' \mid \boldsymbol{\theta}\right)\right)$.

• Noticing that $y \sim \mathcal{N}\left(\mathbf{0}, K + \sigma^2 I\right)$, we can find the marginal log-likelihood (or evidence):

$$log p(\boldsymbol{y} \mid \boldsymbol{X}, \boldsymbol{\theta}) = log \left[(2\pi)^{-n/2} |\boldsymbol{K}_y|^{-1/2} \exp\left(-\frac{1}{2} \boldsymbol{y}^{\top} \boldsymbol{K}_y^{-1} \boldsymbol{y}\right) \right]$$
$$= -\frac{1}{2} \boldsymbol{y}^{\top} \boldsymbol{K}_y^{-1} \boldsymbol{y} - \frac{1}{2} log |\boldsymbol{K}_y| - \frac{n}{2} log 2\pi.$$

with $K_y := K + \sigma^2 I$ and θ denoting the parameters of the covariance function (i.e., the hyperparameters).

Training a GP via the Maximum Likelihood II

Recalling that the increase of the length-scale reduces the model flexibility, the three terms of the marginal likelihood can be interpreted as follows.

- ullet The data fit $-\frac{1}{2}oldsymbol{y}^Toldsymbol{K}_y^{-1}oldsymbol{y}$. The data fit tends to decrease by increasing the length-scale.
- The complexity penalty $-\frac{1}{2}\log |K_y|$, which depends on the covariance function. This term also decreases with the increase of the length-scale (the model gets less complex as the length-scale grows).
- The normalization constant $-\frac{n}{2}\log 2\pi$.

Training a GP: Example I

To visualize the said ideas, let us consider a zero-mean Gaussian process with a squared exponential kernel:

$$k(\mathbf{x}, \mathbf{x}') = \exp\left(-\frac{1}{2\ell^2} ||\mathbf{x} - \mathbf{x}'||^2\right).$$

- eals Recall that the model becomes smoother and less complex as the length-scale ℓ increases.
- $\mathbf{\hat{v}}$ We will show how each of the following terms behaves if the value of ℓ increases:
 - the data fit $-\frac{1}{2} \boldsymbol{y}^{\top} \boldsymbol{K}_{y}^{-1} \boldsymbol{y}$,
 - the complexity penalty $-\frac{1}{2} \log |{m K}_y|$,
 - ▶ the overall value of the marginal likelihood $log p(y \mid X, \theta)$.

Training a GP: Example II

1 The left plot depicts how the data fit, the complexity penalty (a higher value means less penalization), and the overall marginal likelihood behave for increasing values of the length-scale.

Training a GP: Example III

- **1** The left plot depicts how the data fit, the complexity penalty (a higher value means less penalization), and the overall marginal likelihood behave for increasing values of the length-scale.
- $\mathbf{\hat{v}}$ A small ℓ leads to a good fit, but, to a high complexity penalty.

Training a GP: Example IV

- **1** The left plot depicts how the data fit, the complexity penalty (a higher value means less penalization), and the overall marginal likelihood behave for increasing values of the length-scale.
- $\$ A large ℓ results in a poor fit.

Training a GP: Example V

- **1** The left plot depicts how the data fit, the complexity penalty (a higher value means less penalization), and the overall marginal likelihood behave for increasing values of the length-scale.
- \P The maximizer of the log-likelihood ($\ell=0.5$) balances the complexity and data the fit.

Training a GP via the Maximum Likelihood I

To choose the hyperparameters by maximizing the marginal likelihood, we need to find the partial derivatives of the likelihood w.r.t. the hyperparameters:

$$\frac{\partial}{\partial \theta_{j}} \log p(\boldsymbol{y} \mid \boldsymbol{X}, \boldsymbol{\theta}) = \frac{\partial}{\partial \theta_{j}} \left(-\frac{1}{2} \boldsymbol{y}^{\top} \boldsymbol{K}_{y}^{-1} \boldsymbol{y} - \frac{1}{2} \log |\boldsymbol{K}_{y}| - \frac{n}{2} \log 2\pi \right)
= \frac{1}{2} \boldsymbol{y}^{\top} \boldsymbol{K}^{-1} \frac{\partial \boldsymbol{K}}{\partial \theta_{j}} \boldsymbol{K}^{-1} \boldsymbol{y} - \frac{1}{2} \operatorname{tr} \left(\boldsymbol{K}^{-1} \frac{\partial \boldsymbol{K}}{\partial \boldsymbol{\theta}} \right)
= \frac{1}{2} \operatorname{tr} \left((\boldsymbol{K}^{-1} \boldsymbol{y} \boldsymbol{y}^{\top} \boldsymbol{K}^{-1} - \boldsymbol{K}^{-1}) \frac{\partial \boldsymbol{K}}{\partial \theta_{j}} \right)$$

Above, we used the following identities:

$$\frac{\partial}{\partial \theta_j} \boldsymbol{K}^{-1} = -\boldsymbol{K}^{-1} \frac{\partial \boldsymbol{K}}{\partial \theta_j} \boldsymbol{K}^{-1} \text{ and } \frac{\partial}{\partial \boldsymbol{\theta}} log |\boldsymbol{K}| = \operatorname{tr} \left(\boldsymbol{K}^{-1} \frac{\partial \boldsymbol{K}}{\partial \boldsymbol{\theta}} \right)$$

Training a GP via the Maximum Likelihood II

- ullet The complexity and the runtime of training a Gaussian process is dominated by the computational task of inverting K.
- Standard methods require $\mathcal{O}(n^3)$ time (!) for inverting an $n \times n$ matrix.
- Once K^{-1} is known, the computation of the partial derivatives requires only $\mathcal{O}(n^2)$ time per hyperparameter.
- Thus, the computational overhead of computing derivatives is small, and using a gradient based optimizer is advantageous.

Training a GP via the Maximum Likelihood III

Workarounds to make GP estimation feasible for big data include:

- Using kernels that yield sparse K: cheaper to invert.
- Subsampling the data to estimate θ ; $\mathcal{O}(m^3)$ for subset of size m.
- Combining estimates on different subsets of size m: Bayesian committee; $\mathcal{O}(nm^2)$.
- Exploiting low-rank approximations of K by using only a representative subset (enducing points) of m training data X_m :Nyström approximation $K \approx K_{nm}K_{mm}^-K_{mn}$, with $\mathcal{O}(nmk+m^3)$ for a rank-k-approximate inverse of K_{mm} .
- ullet Utilizing structure in $oldsymbol{K}$ induced by the kernel: exact solutions but complicated maths, not applicable for all kernels.

... this is still an active area of research.