Frequentist approach (p value)

- 1. Stating a hypothesis
- 2. Collecting data
- 3. Computing a summary statistic
- 4. Test hypothesis (no)->test/infer how frequently we would observe data by chance akine if the null hypothesis is true
 - a. P value how likely you are to observe that difference IF the null hypothesis is true
- Precision: repeated estimates give similar results (dots end up in similar place on target)
- Accuracy: how close they are to the true value

Probability

- (P) of an event is the number of times the event will occur (a) divided by the total number of possible events (n)
 - P=a/n
- Product rule: multiply 2 individual probabilities tg is equal to the product of their individual probabilities
- Sum rule: the probability of 2 or more mutually exclusive events occurring is equal to the sum of their individual probabilities
- conditional probability: probability of an event given that another event has happened
 - Notated by |
 - Used whenever considering events that are not independent

Statistical measures and distributions

- Tests of difference
 - Parametric
 - Non parametric
- Means
 - Arithmetic mean
 - Harmonic mean
 - Geometric mean
- Variation
 - Sample variance
 - Stdv (sqrt of variance)
 - Standard error (standard deviation divided by n)

Probability distribution

- Binomial: when plotted out=binomial density function
 - N: number of trials
 - X: number of successes
 - P
 - Q

Max likelihood approach

- 1. Collecting data
- 2. Developing model with parameters
- 3. Inputting raw data into model
- 4. Computing likelihood of data for all possible parameter values

Bayesian approach

- Incorporates prior info to compute a probability estimate
- Directly yields probability of hypothesis being true (posterior probability)

4.3 Problems with P values

- More difficult to interpret via frequentist approach
 - Do not measure the probability that the hypothesis is true
 - Interpreted as the chance that if the null hypothesis is true, you will get a similar or more extreme result if you repeat the experiment many times.
- Overstates strength of evidence
 - If P value is low but not significant: researchers may not reject null hypothesis
 - File drawer effect: negative results often end up unpublished

Solutions to listed problems

- Bayes factor: can replace P value to quantify strength of hypothesis
- Supplement P values with estimates of confidence in the P value and assume that it is not a false positive
- Supplement p value by reporting effect sizes and confidence

5-Maximum likelihood

- Max likelihood (ML): estimates parameter value that maximizes the probability of obtaining the observed data under a given model-use max amount of info from data
- Advantages
 - Model based=easy comparison
 - Use data in raw form (not summary statistics)
 - Accurate and precise
- Disadvantages: require large sample sizes
 - Smaller sample sizes will produce biased and less precise results

6. Bayesian approaches and markov chain monte carlo

- Bayesian inference differences:
 - Probabilities defined and interpreted differently: yield more direct probability answer easier to interpret than a P value
 - P=0.95=95% probability that hypothesis is true
 - Can include prior data when estimating the posterior probability that a hypothesis is correct (ex. Multiplying the likelihood function by the prior information) examples include:
 - Can be used in estimating effective population size when population census size is known

- Models that incorporate mutation dynamics
- Advantage: facilitates decision making when we want to integrate all available knowledge
- Disadvantage: can be strongly influenced by prior data=less objective
 - 2 ppl can use diff prior info=each get different results HOWEVER we can quantify effects of different priors

6.1 Markov chain Monte Carlo (MCMC) EXAMPLE: FIG A7

- Method for simulating random samples from a probability distribution
 - Way to get an estimate of posterior mean and interval parameters
 - Used to sample from posterior distribution of a parameter to generate probability estimate of said parameter
 - Uses **markov chain**: generates series of random variables whose future state depends only on the current state at any point in the chain
- Combines:
 - Markov chain model (chain of random steps
 - Monte carlo process: draw a random number necessary at each step
 - **Burn in:** first few thousands of steps, later discarded to reduce influence of the starting point
 - Once burnt in=converged simulation: independent of starting point
 - Disadvantages
 - We don't know if we did enough burn in steps (to avoid bias)
 - Difficult to code=errors likely/hard to detect

7. Approximate bayesian computation (ABC)

- Uses prior data to output approx posterior probability distribution
 - Posterior approximated by summarizing the data using multiple summary statistics
 - Steps: (also called summary statistic matching)
 - 1. Replace (summarize) raw observed data with multiple summary statistics
 - 2. Compute the same summary statistics for population models under consideration
 - 3. Match observed summary stats to those from simulated populations to choose population parameter that is best fit
- Advantages
 - Use nearly all info from data
 - Not as computationally demanding than bayesian methods
 - Take hours-days vs weeks
 - Can be used in large datasets
 - Allow comparisons of most demographic scenarios that can be simulated
 - Estimate key parameters of model (ex.bottleneck minimum effective size)
 - Define priors

- Disadvantages
 - Question accuracy
 - Compatibility issues

8. Parameter estimation, accuracy, and precision-Which estimator and approach perform best?

- Performance depends on question, sample size, sample characteristics of parameter being estimated, and effect size.
 - Efficiency: refers to ability to extract info from the data and achieve high accuracy and precision
 - Accuracy: tendency to yield estimates near the true population parameter value
 - Genomics can improve accuracy
 - SNPs: improve inbreeding estimation=detect inbreeding depression (precise estimation)
 - Loci on chromosomes
- Use different estimators when assessing a given question:
 - Mean and median
 - Moment basedad likelihood based estimators
- Random and representative sampling: important so estimate is biased

9. Performance evaluation

- Quantification of the accuracy, precision, power, and robustness of a statistical estimation
- Use stat methods without risking making bad management decisions BUT its never conducted thoroughly
- 4 steps:
 - 1. Generate test dataset with known parameter value for a parameter of interest
 - 2. Estimate parameter
 - 3. Repeat steps 1 and 2 1,000 times
 - 4. Compute proportion of 1,000 estimates that give the true parameter most accurately and precisely

10. Coalescent and genealogical information (Box A2 gives example)

- Box A3 shows it being used in frequentist, likelihood and bayesian approaches
- Colesce: fuse, unite, come together
 - Process of tracing backward thru time and join haplotypes from different individuals in same parent or ancestor
 - Why use it?
 - Estimate population genetic parameters and infer demographic status
 - Yields a distribution of times to the most recent common ancestor between gene copies in a genealogy
 - Can be used w frequentist, ML, bayesian approaches to:
 - Generate expected distribution of allele frequencies to test parameters

- Allows us to see genealogical info, from DNA sequences, at a locus
- Singletons: rare allele found as a single copy
- Must sample many genes to get accurate+precise estimates of populations demographic history

Chapter 5: random mating populations/Hardy-Weinberg principle

Models

- essential to understanding genetics of natural pops. Models:
 - Make us define parameters that need to be considered
 - Allow us to test hypotheses
 - Allow us to generalize results
 - Allow us to predict how a system will operate in the future
- Should be as simple as possible bc they need to be able to be tested and rejected (easier with a simple model), and simple models are more general and therefore more applicable to wider number of situations
- Hardy-Weinberg (HW) equilibrium: allele and genotype frequencies will remain the same from generation to generation
 - Based on Mandelian segregation for diploid organisms that are reproducing sexually in combination with principles of probability
- Assumptions when making our model:
 - 1. Random mating
 - 2. No mutation
 - 3. Infinite population size (no genetic drift, no loss of genetic material over time)
 - 4. No natural selection
 - 5. No immigration/gene flow
 - Consequences of making these assumptions:
 - This population will not evolve (all alleles have equal probability of inheritance)
 - Genotype frequencies will be in binomial (HW) proportions
 - HW allows us to describe a pop by frequencies of alleles at a locus rather than the many diff genotypes that can occur at a single locus
- HW proportions
 - Heterozygote = Aa (N12); homozygote = AA(N11) or aa (N22); total individuals = N
 - Allele frequencies are:
 - p = freq(A) = (2N
 - HW proportions are not applicable to real life— there's too much variation and we make too many assumptions in this model to account for all of them

- Chi-square test can be used to determine if the observed difference in expected HW genotypes is greater than what we would expect by chance alone
- Small sample sizes introduce systematic bias when trying to predict genotypes the less individuals, the less chances of different genotypes, but this doesn't reflect the actual population
- HW principle can be used to to estimate allele frequencies at loci in which there is not a unique relationship between phenotype and genotype

Chapter 5

Mendels laws of inheritance

- 1. Dominance and uniformity
- 2. Segregation
- 3. Independent assortment

Basics

- Allele
- Genotype

Models

- Conceptual
- Mathematical
- Pros
- Cons

Hardy weinberg

- Conditions
 - Random mating
 - No mutation
 - Infinite population size (no genetic drift)
 - No natural selection
 - No immigration/gene flow
 - All of these factors result in
- Used in practical applications
 - Determine probability
 - Compare observed and expected
 - If they're not what we would expect:
 - Alternate modes of inheritance at play (sex linkage)
- Limitations
 - Small sample size: don't use chi-squared test when any expected number is less than 5

Alleles and distinguishing genotype from phenotype

Sex linkage

- Responsible for the greater occurrence of recessive disorders and recessive traits observed in heterogametic sex (males, XY). many sex determining mechanisms that exist
- Pseudoautosomal regions (PAR): regions on sex determining chromosomes that carry functional genes present on both variations of the sex chromosome
 - Relatively small in humans and fruit flies compared to other species

 Sometimes genotypes of either sex need to be examined individually to help identify PAR

Genetic variation ->equation

- Average expected heterozygosity
 - Calculated by subtracting homozygosity from 1.0 at n loci within a population provides the best estimate of genetic variation
- Total # of alleles at a locus is a good measure of genetic variation and can be used to complement H

Discussion questions:

- 1. Is statistically power actually a good power analysis
 - Statistical power: ability to reject the null hypothesis, based on effect size, a value, and sample size
 - Power analysis: analyzing power of the stats
 - Ex. "i think the effect size will be this, how many samples do i need to maximize that effect"
 - Used when researchers dont get stat significant result
 - Should be done before
- 2. HW proportions and equations-isnt it the same
 - Expectations of HW vs equilibrium state
 - Were not testing for that condition bc its impossible
- 3. Does this mean that the question "which multiple testing correction methods should be used" is redundant? Or does it matter what data you have or conclusions/hypothesis you have (what is the point in correction)
 - a. Doesn't matter how you try to correct p values->didnt find the relationship they were looking for
 - b. You can use either data correction method regardless
- 4. What are some ways basenyan model can be applied to research