

## FSM Mid-Internship Review



#### INTP23-ML-9:

### Piston Defect Detection using Computer Vision

### Ananya Mohapatra

National Institute of Science and Technology, Berhampur

Under Mentorship of Keivalya Pandya

**IITD-AIA FOUNDATION FOR SMART MANUFACTURING** 



## Objectives



#### **Objective 1: Performing Explanatory Data Analysis**

**Achieved:** Conducted a thorough exploratory analysis of the collected piston image dataset. Examined the distribution of defect types, analyzed image quality, and identified any data inconsistencies.

**Planned Deliverables:** Perform statistical analysis on the dataset, such as mean, standard deviation, and image resolution. Visualize the data distribution and correlations between features.

**Target completion: 100%** 

#### **Objective 2: Data Collection and Preparation**

**Achieved:** Collected a dataset of AC piston images with a diverse range of defect types. Preprocessed the images to ensure consistency and Complete data augmentation techniques. Completed data augmentation techniques to increase the dataset size and diversity.

Planned Deliverables: Complete data augmentation techniques to increase the dataset size and diversity.

**Target completion: 100%** 



## Objectives



#### **Objective 3: Model Development and Training**

**Achieved:** Developed a Convolutional Neural Network (CNN) architecture for piston defect detection. Trained the model using the piston dataset to learn the features and patterns of different defects.

**Planned Deliverables:** Fine-tune the CNN model using transfer learning to enhance its performance. Experiment with various hyperparameters and architectures to optimize accuracy.

Target completion: 80%



## Timeline - Gantt chart



| ID | Name                                          | Ju | ın 06, | 2023 |   |    | Jun 11, 2023 |    |    |    |    |    |    | Jun 18, 2023 |    |    |    |    |    |    | Jun 25, 2023 |    |    |    |    |    |   |
|----|-----------------------------------------------|----|--------|------|---|----|--------------|----|----|----|----|----|----|--------------|----|----|----|----|----|----|--------------|----|----|----|----|----|---|
|    |                                               | 6  | 7      | 8    | 9 | 10 | 11           | 12 | 13 | 14 | 15 | 16 | 17 | 18           | 19 | 20 | 21 | 22 | 23 | 24 | 25           | 26 | 27 | 28 | 29 | 30 | 1 |
| 1  | Numpy/Pandas                                  |    |        |      |   |    |              |    |    |    |    |    |    |              |    |    |    |    |    |    |              |    |    |    |    |    |   |
| 2  | Basics of CNN  Convoution Operation Padding   |    |        |      |   |    |              |    |    |    |    |    |    |              |    |    |    |    |    |    |              |    |    |    |    |    |   |
| 3  | PIL Library   OpenCV                          |    |        |      |   |    |              |    |    |    |    |    |    |              |    |    |    |    |    |    |              |    |    |    |    |    |   |
| 4  | Image Manipulation with PIL                   |    |        |      |   |    |              |    |    |    |    |    |    |              |    |    |    |    |    |    |              |    |    |    |    |    |   |
| 5  | Tensorflow Data Input Pipeline CNN            |    |        |      |   |    |              |    |    |    |    |    |    |              |    |    |    |    |    |    |              |    |    |    |    |    |   |
| 6  | Model Building using CNN                      |    |        |      |   |    |              |    |    |    |    |    |    |              |    |    |    |    |    |    |              |    |    |    |    |    |   |
| 7  | CNN Classifiers                               |    |        |      |   |    |              |    |    |    |    |    |    |              |    |    |    |    |    |    |              |    |    |    |    |    |   |
| 8  | KNN for Object Detection                      |    |        |      |   |    |              |    |    |    |    |    |    |              |    |    |    |    |    |    |              |    |    |    |    |    |   |
| 9  | Fundamental Concepts DL                       |    |        |      |   |    |              |    |    |    |    |    |    |              |    |    |    |    |    |    |              |    |    |    |    |    |   |
| 10 | Implementation DL Concepts                    |    |        |      |   |    |              |    |    |    |    |    |    |              |    |    |    |    |    |    |              |    |    |    |    |    |   |
| 11 | Build a Model Using CNN                       |    |        |      |   |    |              |    |    |    |    |    |    |              |    |    |    |    |    |    |              |    |    |    |    |    |   |
| 12 | Image Manipulation with OpenCV                |    |        |      |   |    |              |    |    |    |    |    |    |              |    |    |    |    |    |    |              |    |    |    |    |    |   |
| 13 | Implemented various functionalities of OpenCV |    |        |      |   |    |              |    |    |    |    |    |    |              |    |    |    |    |    |    |              |    |    |    |    |    |   |
| 14 | Exploratory Data Analysis (EDA)               |    |        |      |   |    |              |    |    |    |    |    |    |              |    |    |    |    |    |    |              |    |    |    |    |    |   |
| 15 | Tensorflow framework for deep learning.       |    |        |      |   |    |              |    |    |    |    |    |    |              |    |    |    |    |    |    |              |    |    |    |    |    |   |
| 16 | YOLO algorithm for object detection.          |    |        |      |   |    |              |    |    |    |    |    |    |              |    |    |    |    |    |    |              |    |    |    |    |    |   |
| 17 | Semantic segmentation U-Net architecture      |    |        |      |   |    |              |    |    |    |    |    |    |              |    |    |    |    |    |    |              |    |    |    |    |    |   |
| 18 | Model Building                                |    |        |      |   |    |              |    |    |    |    |    |    |              |    |    |    |    |    |    |              |    |    |    |    |    |   |
| 19 | Model Training using AC piston Dataset        |    |        |      |   |    |              |    |    |    |    |    |    |              |    |    |    |    |    |    |              |    |    |    |    |    |   |
| 20 | Checked the accuracy and loss of the model.   |    |        |      |   |    |              |    |    |    |    |    |    |              |    |    |    |    |    |    |              |    |    |    |    |    |   |
| 21 | Completed the abstract writing                |    |        |      |   |    |              |    |    |    |    |    |    |              |    |    |    |    |    |    |              |    |    |    |    |    |   |
| 22 | ResNet,AlexNet,MobileNet.                     |    |        |      |   |    |              |    |    |    |    |    |    |              |    |    |    |    |    |    |              |    |    |    |    |    |   |
| 23 | created model by using Resnet Pretrained mo   |    |        |      |   |    |              |    |    |    |    |    |    |              |    |    |    |    |    |    |              |    |    |    |    |    |   |
| 24 | object detection algorithms.                  |    |        |      |   |    |              |    |    |    |    |    |    |              |    |    |    |    |    |    |              |    |    |    |    |    |   |















Normal

























































```
X
                                                                                                                 • Detect.ipynb - AC Piston - Visual Studio Code
      Piston_Defect_detection.ipynb
                                     Detect.ipynb
                                                                                                                             ∰ D III ···
       Detect.ipynb > M+Applying Data Augmentation to Train Dataset
      + Code + Markdown | ▶ Run All 

Clear All Outputs ⊗ Go To S Restart | 

Run All S Outline ···
                                                                                                                            A Python 3.10.6
               input shape=(BATCH SIZE,IMAGE SIZE,IMAGE SIZE,CHANNELS)
               n classes = 3
وړ
               model=models.Sequential([
                   resize and rescale,
$
                   data_augmentation,
                   layers.Conv2D(32,(3,3),activation='relu',input_shape=input_shape),
                   layers.MaxPooling2D((2,2)),
layers.Conv2D(64,kernel size=(3,3),activation='relu'),
                   layers.MaxPooling2D((2,2)),
                   layers.Conv2D(64,kernel_size=(3,3),activation='relu'),
layers.MaxPooling2D((2,2)),
                   layers.Conv2D(64,(3,3),activation='relu'),
Д
                   layers.MaxPooling2D((2,2)),
                   layers.Conv2D(64,(3,3),activation='relu'),
                   layers.MaxPooling2D((2,2)),
                   layers.Conv2D(64,(3,3),activation='relu'),
                   layers.MaxPooling2D((2,2)),
                   layers.Flatten(),
(8)
                   layers.Dense(64,activation='relu'),
                   layers.Dense(n_classes,activation='softmax'),
203
               1)
                                     Q Search
```











# Thank You

amb120@nist.edu