% dprove (G, D_0, D_1) is true if list D_0 is an ending of list D_1 % such that assuming the elements of D_1 lets you derive G. dprove(true, D, D). $dprove((A \& B), D_1, D_3) \leftarrow$ $dprove(A, D_1, D_2) \wedge dprove(B, D_2, D_3).$ $dprove(G, D, [G|D]) \leftarrow assumable(G).$

$$dprove(G, D, [G|D]) \leftarrow assumable(G).$$

 $dprove(H, D_1, D_2) \leftarrow$

 $(H \Leftarrow B) \land dprove(B, D_1, D_2).$

 $conflict(C) \leftarrow dprove(false, [], C).$