NT 9-13, NT-17

NT-9) i) 3x=2(mod 14)

9cd (3,14) = |

Z= 3x (mod 14) 3-1 (mod vy)

14 = 3.4 + 3

3=2.1+1 1=3-(14-3.4)

1=5.3-1.14

5.3 mod 11 =

3-12=5.2=10 X=10

30 = 2 (mod 14)

1i) 3x=2 (mod 15)

gal (3,15)=3

2=3x(ml 15)

No solutions, 2\$ 50,36,9,123

iii) 3x = 6 (mod 15)

6 = 3x (mod 15)

x= 2(mod 5)

x=2,7,123

iv) 37x=51(mod 100)

51 = 37x (mod 100)

x=23

37.23 = 851 = 51 (mod 100)

NT-10)	Sum of square of Zold			
Λ,	Nz	กริงกร	(n,2+n2) mal 4	
[9	82	2	
3	11	130	2	
5	15	114	2	
7	15	274	2	
q	17	370	7	
	19	482	2	
13	21	610	2	

	''	ial 4
	(
2 (1 0	
ξ	9	
4	16	

Squares and 4 are always I on O. The sum of two odds squared are always 2.

If x is odd, x3 is odd and x15 odd. Odd + odd = Even. Even + 1 = odd.

$$NT-12$$
) i) $32=2^5$ $\mathcal{O}(2^5)=2^4(2-1)=16$

ii)
$$\mathcal{P}(100) = \mathcal{P} = (2^2.5) = 2(2-1)(5-1) = 8$$

$$(iv) p(35) = 5.7 = (5-1)(7-1) = 24$$

$$V) = P(77) = 7.11 = (7-1)(11-1) = 60$$

NT-17) The cases when g(3n) = 3p(n) when 3|n. We me looking to see which numbers g(n-n) = ng(n) occurs when g(n-n) = ng(n-n).