Cloud Programming: Lecture7 – Query Processing on MapReduce

National Tsing-Hua University 2015, Spring Semester

Outline

- Role of relational databases in today's organizations
 - Where does MapReduce fit in?
- MapReduce algorithms for processing relational data
 - How do I perform a join, etc.?
- Evolving roles of relational databases and MapReduce
 - What's in store for the future?

*Slides provided from
Jimmy Lin @ University of Maryland

Big Data Analysis

- Peta-scale datasets are everywhere:
 - Facebook has 2.5 PB of user data + 15 TB/day (4/2009)
 - eBay has 6.5 PB of user data + 50 TB/day (5/2009)
 - · ...
- A lot of these datasets are (mostly) structured
 - Query logs
 - Point-of-sale records
 - User data (e.g., demographics)
 - ...
- How do we perform data analysis at scale?
 - Relational databases and SQL
 - MapReduce (Hadoop)

Relational Databases vs. MapReduce

Relational databases:

- Multipurpose: analysis and transactions; batch and interactive
- Data integrity via ACID transactions
- Lots of tools in software ecosystem (for ingesting, reporting, etc.)
- Supports SQL (and SQL integration, e.g., JDBC)
- Automatic SQL query optimization

MapReduce (Hadoop):

- Designed for large clusters, fault tolerant
- Data is accessed in "native format"
- Supports many query languages
- Programmers retain control over performance
- Open source

Database Workloads

- OLTP (online transaction processing)
 - Typical applications: e-commerce, banking, airline reservations
 - User facing: real-time, low latency, highly-concurrent
 - Tasks: relatively small set of "standard" transactional queries
 - Data access pattern: random reads, updates, writes (involving relatively small amounts of data)
- OLAP (online analytical processing)
 - Typical applications: business intelligence, data mining
 - Back-end processing: batch workloads, less concurrency
 - Tasks: complex analytical queries, often ad hoc
 - Data access pattern: table scans, large amounts of data involved per query

One Database or Two?

- Downsides of co-existing OLTP and OLAP workloads
 - Poor memory management
 - Conflicting data access patterns
 - Variable latency
- Solution: separate databases
 - User-facing OLTP database for high-volume transactions
 - Data warehouse for OLAP workloads
 - How do we connect the two?

OLTP/OLAP Architecture

OLTP/OLAP Integration

- OLTP database for user-facing transactions
 - Retain records of all activity
 - Periodic ETL (e.g., nightly)
- Extract-Transform-Load (ETL)
 - Extract records from source
 - Transform: clean data, check integrity, aggregate, etc.
 - Load into OLAP database
- OLAP database for data warehousing
 - Business intelligence: reporting, ad hoc queries, data mining, etc.
 - Feedback to improve OLTP services

Business Intelligence

- Premise: more data leads to better business decisions
 - Periodic reporting as well as ad hoc queries
 - Analysts, not programmers (importance of tools and dashboards)

• Examples:

- Slicing-and-dicing activity by different dimensions to better understand the marketplace
- Analyzing log data to improve OLTP experience
- Analyzing log data to better optimize ad placement
- Analyzing purchasing trends for better supply-chain management
- Mining for correlations between otherwise unrelated activities

OLTP/OLAP Architecture: Hadoop?

OLTP/OLAP/Hadoop Architecture

ETL Bottleneck

- Reporting is often a nightly task:
 - ETL is often slow: why?
 - What happens if processing 24 hours of data takes longer than 24 hours?
- Hadoop is perfect:
 - Most likely, you already have some data warehousing solution
 - Ingest is limited by speed of HDFS
 - Scales out with more nodes
 - Massively parallel
 - Ability to use any processing tool
 - Much cheaper than parallel databases
 - ETL is a batch process anyway!

Outline

- Role of relational databases in today's organizations
 - Where does MapReduce fit in?
- MapReduce algorithms for processing relational data
 - How do I perform a join, etc.?
- Evolving roles of relational databases and MapReduce
 - What's in store for the future?

Working Scenario

Two tables:

- User demographics (gender, age, income, etc.)
- User page visits (URL, time spent, etc.)
- Analyses we might want to perform:
 - Statistics on demographic characteristics
 - Statistics on page visits
 - Statistics on page visits by URL
 - Statistics on page visits by demographic characteristic
 - **-** ...

Relational Algebra

Primitives

- Projection (π)
- Selection (σ)
- Cartesian product (×)
- Set union (\cup)
- Set difference (–)
- Rename (ρ)

Other operations

- Join (⋈)
- Group by... aggregation
- ...

Projection

Projection in MapReduce

Easy!

- Map over tuples, emit new tuples with appropriate attributes
- No reducers, unless for regrouping or resorting tuples
- Alternatively: perform in reducer, after some other processing
- Basically limited by HDFS streaming speeds
 - Speed of encoding/decoding tuples becomes important
 - Relational databases take advantage of compression
 - Semistructured data? No problem!

Selection

Selection in MapReduce

Easy!

- Map over tuples, emit only tuples that meet criteria
- No reducers, unless for regrouping or resorting tuples
- Alternatively: perform in reducer, after some other processing
- Basically limited by HDFS streaming speeds
 - Speed of encoding/decoding tuples becomes important
 - Relational databases take advantage of compression
 - Semistructured data? No problem!

Group by... Aggregation

- Example: What is the average time spent per URL?
- In SQL:
 - SELECT url, AVG(time) FROM visits GROUP BY url
- In MapReduce:
 - Map over tuples, emit time, keyed by url
 - Framework automatically groups values by keys
 - Compute average in reducer
 - Optimize with combiners

Relational Joins

Types of Relationships

One-to-Many

One-to-One

Join Algorithms in MapReduce

- Reduce-side join
- Map-side join
- In-memory join
 - Striped variant
 - Memcached variant

Reduce-side Join

- Basic idea: group by join key
 - Map over both sets of tuples
 - Emit tuple as value with join key as the intermediate key
 - Execution framework brings together tuples sharing the same key
 - Perform actual join in reducer
 - Similar to a "sort-merge join" in database terminology
- Two variants
 - 1-to-1 joins
 - 1-to-many and many-to-many joins

Reduce-side Join: 1-to-1

Map

Reduce

Note: no guarantee if R is going to come first or S

Reduce-side Join: 1-to-many

Map

Reduce

Reduce-side Join: V-to-K Conversion

In reducer...

Reduce-side Join: many-to-many

In reducer...

What's the problem?

Map-side Join: Basic Idea

Assume two datasets are sorted by the join key:

A sequential scan through both datasets to join (called a "merge join" in database terminology)

Map-side Join: Parallel Scans

- If datasets are sorted by join key, join can be accomplished by a scan over both datasets
- How can we accomplish this in parallel?
 - Partition and sort both datasets in the same manner
- In MapReduce:
 - Map over one dataset, read from other corresponding partition
 - No reducers necessary (unless to repartition or resort)
- Consistently partitioned datasets: realistic to expect?

Map-side Join: In-Memory Join

Assume two datasets are sorted by the join key:

Store R in all mapper memory, and sequential scan through S (called a "hash join" in database terminology)

In-Memory Join

- Basic idea: load one dataset into memory, stream over other dataset
 - Works if R << S and R fits into memory
 - Called a "hash join" in database terminology
- MapReduce implementation
 - Distribute R to all nodes
 - Map over S, each mapper loads R in memory, hashed by join key
 - For every tuple in S, look up join key in R
 - No reducers, unless for regrouping or resorting tuples

In-Memory Join: Variants

Striped variant:

- R too big to fit into memory?
- **Divide R** into R_1 , R_2 , R_3 , ... s.t. each R_n fits into memory
- Perform in-memory join: $\forall n$, $R_n \bowtie S$
- Take the union of all join results

Memcached join:

- Load R into memcached
- Replace in-memory hash lookup with memcached lookup

Memcached

Caching servers: 15 million requests per second, 95% handled by memcache (15 TB of RAM)

Database layer: 800 eight-core Linux servers running MySQL (40 TB user data)

Source: Technology Review (July/August, 2008)

Memcached Join

- Memcached join:
 - Load R into memcached
 - Replace in-memory hash lookup with memcached lookup
- Capacity and scalability?
 - Memcached capacity >> RAM of individual node
 - Memcached scales out with cluster
- Latency?
 - Memcached is fast (basically, speed of network)
 - Batch requests to amortize latency costs

Which join to use?

speed comparison

- In-memory join > map-side join > reduce-side join
 - Why?
- Limitations of each?
 - In-memory join: memory
 - Map-side join: sort order and partitioning
 - Reduce-side join: general purpose

Processing Relational Data: Summary

- MapReduce algorithms for processing relational data:
 - Group by, sorting, partitioning are handled automatically by shuffle/sort in MapReduce
 - Selection, projection, and other computations (e.g., aggregation), are performed either in mapper or reducer
 - Multiple strategies for relational joins
- Complex operations require multiple MapReduce jobs
 - Example: top ten URLs in terms of average time spent
 - Opportunities for automatic optimization

Outline

- Role of relational databases in today's organizations
 - Where does MapReduce fit in?
- MapReduce algorithms for processing relational data
 - How do I perform a join, etc.?
- Evolving roles of relational databases and MapReduce
 - What's in store for the future?

Need for High-Level Languages

- Hadoop is great for large-data processing!
 - But writing Java programs for everything is verbose and slow
 - Analysts don't want to (or can't) write Java
- Solution: develop higher-level data processing languages
 - Hive: HQL is like SQL
 - Pig: Pig Latin is a bit like Perl

Hive and Pig

- Hive: data warehousing application in Hadoop
 - Query language is HQL, variant of SQL
 - Tables stored on HDFS as flat files
 - Developed by Facebook, now open source
- Pig: large-scale data processing system
 - Scripts are written in Pig Latin, a dataflow language
 - Developed by Yahoo!, now open source
 - Roughly 1/3 of all Yahoo! internal jobs
- Common idea:
 - Provide higher-level language to facilitate large-data processing
 - Higher-level language "compiles down" to Hadoop jobs

Hive: Example

- Hive looks similar to an SQL database
- Relational join on two tables:
 - Table of word counts from Shakespeare collection
 - Table of word counts from the bible

SELECT s.word, s.freq, k.freq FROM shakespeare s
JOIN bible k ON (s.word = k.word) WHERE s.freq >= 1 AND k.freq >= 1
ORDER BY s.freq DESC LIMIT 10;

the	25848	62394
1	23031	8854
and	19671	38985
to	18038	13526
of	16700	34654
а	14170	8057
you	12702	2720
my	11297	4135
in	10797	12445
is	8882	6884

Source: Material drawn from Cloudera training VM

Hive: Behind the Scenes

SELECT s.word, s.freq, k.freq FROM shakespeare s

JOIN bible k ON (s.word = k.word) WHERE s.freq >= 1 AND k.freq >= 1

ORDER BY s.freq DESC LIMIT 10;

(Abstract Syntax Tree)

 $(TOK_QUERY\ (TOK_FROM\ (TOK_JOIN\ (TOK_TABREF\ shakespeare\ s)\ (TOK_TABREF\ bible\ k)\ (= (.\ (TOK_TABLE_OR_COL\ s)\ word)\ (.\ (TOK_TABLE_OR_COL\ k)\ word))))\ (TOK_INSERT\ (TOK_DESTINATION\ (TOK_DIR\ TOK_TMP_FILE))\ (TOK_SELECT\ (TOK_SELEXPR\ (.\ (TOK_TABLE_OR_COL\ s)\ freq)))\ (TOK_SELEXPR\ (.\ (TOK_TABLE_OR_COL\ s)\ freq)))\ (TOK_SELEXPR\ (.\ (TOK_TABLE_OR_COL\ s)\ freq)\ 1)))\ (TOK_ORDERBY\ (TOK_TABSORTCOLNAMEDESC\ (.\ (TOK_TABLE_OR_COL\ s)\ freq))))\ (TOK_LIMIT\ 10))))$

(one or more of MapReduce jobs)

Hive: Behind the Scenes

```
STAGE DEPENDENCIES:
Stage-1 is a root stage
Stage-2 depends on stages: Stage-1
                                                                                                                     Stage: Stage-2
Stage-0 is a root stage
                                                                                                                       Map Reduce
STAGE PLANS:
Stage: Stage-1
  Map Reduce
   Alias -> Map Operator Tree:
                                                                                                                                 type: int
      TableScan
                                                                                                                             sort order: -
       alias: s
                                                                                                                             tag: -1
       Filter Operator
        predicate:
           expr: (freq >= 1)
           type: boolean
        Reduce Output Operator
                                                                                                                                 type: int
         key expressions:
             expr: word
                                                                                                                                 type: int
             type: string
         sort order: +
                                                                                                                         Extract
         Map-reduce partition columns:
                                              Reduce Operator Tree:
                                                                                                                          Limit
             expr: word
                                                  Join Operator
             type: string
                                                   condition map:
         taq: 0
                                                      Inner Join 0 to 1
         value expressions:
                                                   condition expressions:
                                                                                                                             table:
             expr: freq
                                                    0 {VALUE. col0} {VALUE. col1}
             type: int
                                                    1 {VALUE._col0}
             expr: word
                                                   outputColumnNames: _col0, _col1, _col2
             type: string
                                                   Filter Operator
                                                    predicate:
                                                                                                                     Stage: Stage-0
      TableScan
                                                       expr: ((_col0 >= 1) and (_col2 >= 1))
                                                                                                                       Fetch Operator
       alias: k
                                                       type: boolean
                                                                                                                        limit: 10
       Filter Operator
                                                    Select Operator
        predicate:
                                                     expressions:
           expr: (freq >= 1)
                                                         expr: col1
          tvpe: boolean
                                                         type: string
        Reduce Output Operator
                                                         expr: col0
         key expressions:
                                                         type: int
             expr: word
                                                         expr: col2
             type: string
                                                         type: int
         sort order: +
                                                      outputColumnNames: _col0, _col1, _col2
         Map-reduce partition columns:
                                                     File Output Operator
             expr: word
                                                       compressed: false
             type: string
                                                       GlobalTableId: 0
         tag: 1
                                                       table:
         value expressions:
                                                         input format: org.apache.hadoop.mapred.SequenceFileInputFormat
             expr: freq
                                                         output format: org.apache.hadoop.hive.ql.io.HiveSequenceFileOutputFormat
```

type: int

```
Alias -> Map Operator Tree:
 hdfs://localhost:8022/tmp/hive-training/364214370/10002
   Reduce Output Operator
     key expressions:
        expr: _col1
     value expressions:
        expr: _col0
        type: string
        expr: col1
        expr: _col2
Reduce Operator Tree:
   File Output Operator
     compressed: false
     GlobalTableId: 0
       input format: org.apache.hadoop.mapred.TextInputFormat
       output format: org.apache.hadoop.hive.gl.io.HivelgnoreKeyTextOutputFormat
```

Pig: Example

Task: Find the top 10 most visited pages in each category

Visits

Url Info

User	Url	Time
Amy	cnn.com	8:00
Amy	bbc.com	10:00
Amy	flickr.com	10:05
Fred	cnn.com	12:00

Url	Category	PageRank
cnn.com	News	0.9
bbc.com	News	0.8
flickr.com	Photos	0.7
espn.com	Sports	0.9

Pig Query Plan

Pig Script

```
visits = load '/data/visits' as (user, url, time);
gVisits = group visits by url;
visitCounts = foreach gVisits generate url, count(visits);
urlinfo = load '/data/urlinfo' as (url, category, pRank);
visitCounts = join visitCounts by url, urlInfo by url;
gCategories = group visitCounts by category;
topUrls = foreach gCategories generate top(visitCounts, 10);
store topUrls into '/data/topUrls';
```

Pig Script in Hadoop

Parallel Databases ↔ MapReduce

- Lots of synergy between parallel databases and MapReduce
- Communities have much to learn from each other
- Bottom line: use the right tool for the job!