MSBD 5004 Mathematical Methods for Data Analysis Homework 5

Due date: Nov 28, Thursday

1. Let $T: \mathbb{R}^3 \to \mathbb{R}^2$ be a linear transformation. If T satisfies

$$T\begin{bmatrix}1\\0\\-1\end{bmatrix}=\begin{bmatrix}2\\3\end{bmatrix}, \text{ and } T\begin{bmatrix}2\\1\\3\end{bmatrix}=\begin{bmatrix}-1\\0\end{bmatrix},$$

then find

$$T\begin{bmatrix} 8\\3\\7 \end{bmatrix}$$
.

2. Find the Jacobian matrix of the following vector-valued multi-variable functions.

- (a) $f: \mathbb{R}^n \to \mathbb{R}^m$ is defined by f(x) = Ax b, where $x \in \mathbb{R}^n$, $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^n$.
- (b) $f: \mathbb{R}^n \to \mathbb{R}^n$ is defined by $f(\boldsymbol{x}) = \boldsymbol{x} \boldsymbol{x}^T \boldsymbol{a}$, where $\boldsymbol{x} \in \mathbb{R}^n$, $\boldsymbol{a} \in \mathbb{R}^n$.

3. Let $f: \mathbb{R}^2 \to \mathbb{R}$, $g: \mathbb{R}^2 \to \mathbb{R}^2$, $g(x,y) = (x^2y, x-y)$ and $h = f \circ g = f(g(x,y))$. Find $\frac{\partial h}{\partial x}|_{x=1,y=2}$ if $\frac{\partial f}{\partial x}|_{x=2,y=-1} = 3$ and $\frac{\partial f}{\partial y}|_{x=2,y=-1} = -2$. (Hint: use the chain rule)

4. Let $f(t) = f_1(t) * f_2(t)$ be the convolution of two functions $f_1(t)$ and $f_2(t)$ on \mathbb{R} , i.e.,

$$f(t) = \int_{-\infty}^{+\infty} f_1(t-s) f_2(s) ds$$

Let a, a_1, a_2 be real numbers.

(i) Prove the following identity:

$$f_1(t-a) * f_2(t) = f_1(t) * f_2(t-a) = f(t-a).$$

(ii) Prove the following identity:

$$f_1(t - a_1) * f_2(t - a_2) = f(t - a_1 - a_2).$$

5. Let V_1 and V_2 be two Hilbert spaces with the inner products $\langle \cdot, \cdot \rangle_{V_1}$ and $\langle \cdot, \cdot \rangle_{V_2}$, respectively. Let $T \in \mathcal{L}(V_1, V_2)$, i.e., $T : V_1 \to V_2$ be a bounded linear operator.

(a) Let $S: V_2 \to V_1$ be an operator satisfying $\langle T\boldsymbol{x}, \boldsymbol{y} \rangle_{V_2} = \langle \boldsymbol{x}, S\boldsymbol{y} \rangle_{V_1}$ for any $\boldsymbol{x} \in V_1$ and $\boldsymbol{y} \in V_2$. Prove that S is a bounded linear operator. (Consequently, S is the adjoint of T, i.e., $S = T^*$)

- (b) Prove that $(T^*)^* = T$.
- (c) Prove that $||T|| = ||T^*||$.
- 6. Consider the vector space ℓ_{∞} equipped with the norm $||\cdot||_{\infty}$. Define the operator $T:\ell_{\infty}\to\ell_{\infty}$ by $T(\{x_n\}_{n\in\mathbb{N}})=\{y_n\}_{n\in\mathbb{N}}$ where $y_n=x_{n+1}$.
 - (a) Prove that T is a linear operator.
 - (b) Prove that T is a bounded operator.
 - (c) Prove that ||T|| = 1.