PROPOSAL TUGAS AKHIR

IMPLEMENTASI DEEP LEARNING UNTUK KLASIFIKASI CITRA X-RAY PARU-PARU DALAM DETEKSI PNEUMONIA

ABDUR ROCHMAN

3130021021

PROGRAM STUDI S1 SISTEM INFORMASI FAKULTAS EKONOMI BISNIS DAN TEKNOLOGI DIGITAL UNIVERSITAS NAHDLATUL ULAMA SURABAYA 2024

ABSTRAK

Pneumonia adalah kondisi saat bagian paru-paru yaitu alveoli seseorang terisi nanah dan cairan sehingga penderita kesulitan bernafas. Penyakit pneumonia dapat dideteksi menggunakan citra x-ray paru-paru. Citra x-ray paru-paru adalah citra x-ray yang memberikan informasi kondisi paru-paru pasien. Dengan menggunakan citra x-ray ini, Diagnosa penyakit pneumonia dilakukan oleh dokter spesialis paru. Namun jumlah dokter spesialis paru di Indonesia terbatas. Keterbatasan ini berdampak pada lambatnya proses diagnosis dan penanganan pasien. Salah satu upaya untuk mengatasi keterbatasan dalam diagnosa penyakit pneumonia, pada penelitian ini dilakukan klasifikasi citra x-ray paru-paru menggunakan metode deep learning. Deep learning adalah cabang dari machine learning yang berfokus pada pengembangan algoritma berbasis jaringan saraf tiruan yang dirancang untuk belajar dan mengekstrasi pola atau representasi data secara otomatis. Metode deep learning yang efektif dalam pengolahan citra adalah Convolutional Neural Network (CNN). CNN mampu melakukan ekstraksi fitur dari citra secara lebih mendetail, menyimpan dan menjadikan acuan hasil pembelajaran yang telah dilakukan. Dalam penelitian ini digunakan model CNN untuk mengklasifikasikan citra Chest X-Ray paru-paru yaitu DenseNet201 dan Xception. Kedua model ini telah terbukti efektif dalam bidang klasifikasi citra medis karena kemampuannya dalam menangani vanishing gradient dan meningkatkan kemampuan generalisasi. Ada beberapa tahapan yang dilakukan dalam pedenkatan pendekatan ini ialah dibagi menjadi 3 tahapan besar yaitu tahap persiapan, impelemntasi, dan evaluasi yang mana setiap tahapan besar memiliki sub tahapan diantaranya tahapan persiapan (pengumpulan data, preprocessing, dan augmentasi data), tahapan implementasi (pembuatan model dan evaluasi model), dan terakhir adalah evaluasi (Tabel Perbandingan Klasifikasi Model DenseNet201 dan Xception). Penggunaan kedua model ini diharapkan dapat meningkatkan akurasi dalam mendiagnosis pneumonia.

Kata Kunci – Pneumonia, X-Ray, Deep Learning, DenseNet201, Xception

BAB 1

PENDAHULUAN

1.1 Latar Belakang

Pneumonia adalah sebuah kondisi dimana alveoli penderita dipenuhi nanah dan cairan sehingga penderita mengalami kesakitan saat bernafas dan oksigen yang masuk kedalam paru paru kurang (Rindrasari, 2018). Pneumonia termasuk penyakit yang menyebabkan kematian tertinggi didunia khususnya pada anak anak (Elvionita, Sari and Nuryastuti, 2023). Berdasarkan data *World Health Organization* (WHO) pada 2017, terdapat 25.481 kasus kematian anak anak karena infeksi pernafasan akut atau 17 persen dari seluruh kematian anak anak. Indonesia berada diperingkat ke-7 didunia sebagai negara yang memiliki kasus pneumonia tertinggi (Pranita and Sumartiningtyas, 2020). Pada pasien orang dewasa, kasus pneumonia paling banyak terjadi pada pasien dengan rentan umur 56 – 65 tahun. Hal ini terjadi karena pasien usia lanjut mengalami perubahan anatomi fisiologi akibat proses penuaan sehingga terjadi penurunan fungsional paru-paru, kemampuan untuk mengatasi penurunan complains paru dan peningkatan resistensi saluran napas terhadap infeksi dan penurunan daya tahan tubuh (Farida, Trisna and Nur, 2017).

Peran dokter spesialis paru tentu sangat dibutuhkan. Namun jumlah dokter spesialis paru di Indonesia masih terbatas. Berdasarkan data Perhimpunan Dokter Paru Indonesia (PDPI) pada 2020, tercatat berjumlah 1.206 orang. Jumlah ini belum seimbang dengan jumlah penduduk di Indonesia yang saat ini berjumlah sekitar 250 juta jiwa. Idealnya Indonesia memiliki minimal 2.500 dokter spesialis paru, dengan kata lain saat ini kekurangan 1.294 dokter paru (Manafe, 2020). Keterbatasan ini berdampak pada lambatnya proses diagnosis dan penanganan pasien. Selain itu, diagnosis yang dilakukan oleh dokter spesialis paru sering kali bersifat subjektif. Oleh karena itu dibutuhkanlah sistem yang mampu memberikan

diagnosis cepat,objektif dan akurat dalam meningkatkan kualitas pelayanan kesehatan, khsusnya dalam menangani penyakit pneumonia.

Identifikasi pneumonia biasanya melibatkan test klinis, analisis riwayat medis, dan test pecintraan seperti citra *chest x-ray* atau *computed tomography* (CT) (Huy and Lin, 2023). Citra *X-ray* adalah salah satu yang dapat memberikan gambaran kondisi paru-paru, mendeteksi adanya infeksi, peradangan, atau akumulasi cairan yang menjadi ciri khas pneumonia. Hasil dari citra medis *X-ray* akan didiagnosis oleh dokter spesialis untuk dilakukan tindakan teknis selanjutnya. Diagnosis pneumonia yang akurat menjadi faktor krusial untuk memastikan pengobatan yang efektif, sehingga dapat meningkatkan prognosis pasien (Soewu *et al.*, 2022). Dalam konteks penelitian ini, identifikasi pneumonia juga menjadi dasar pengembangan sistem prediksi berbasis deep learning yang diharapkan dapat mempercepat proses diagnosis dan meningkatkan akurasi deteksi penyakit paru-paru secara otomatis. Hal ini menunjukkan potensi besar teknologi kecerdasan buatan dalam mendukung praktik medis modern.

Dengan memanfaatkan kecerdasan buatan, berbagai penelitian telah dilakukan untuk membantu dalam meningkatkan analisis penyakit pneumonia. Salah satu upaya ialah dengan mendeteksi pasien yang terdampak pneumonia dengan cepat dan akurat menggunakan metode *deep learning*. *Deep learning* adalah cabang dari *machine learning* yang berfokus pada pengembangan algoritma berbasis jaringan saraf tiruan yang dirancang untuk belajar dan mengekstrasi pola atau representasi data secara otomatis, mirip dengan cara otak manusia bekerja (Heaton, 2018). Metode *deep learning* diharapkan dapat membantu dokter spesialis paru dan peneliti dalam mendeteksi pasien yang menderita pneumonia menggunakan gambar Citra *Chest X-Ray* yang bahkan cenderung samar dan memiliki kemiripan yang sama antar jenis penyakit pulmonary, seperti pneumonia, tuberkolosis, pneumotrax, pada paru paru pasien (Andreu *et al.*, 2004). Selain meminimalisir waktu dan tenaga medis dalam mendeteksi pasien, penggunaan machine learning dengan teknik deep learning juga mengurangi resiko human error dan mengurangi biaya perawatan.

Salah satu metode yang paling banyak digunakan untuk klasifikasi penyakit adalah *Convutional Neural Network* (CNN). Penelitian dengan menggunakan CNN antara lain penelitian oleh (Kong and Cheng, 2022) " *Classification and detection of COVID-19 X-Ray images based on DenseNet and VGG16 feature fusion*" didapatkan model yang diusulkan mencapai akurasi rata-rata 98.0% untuk klasifikasi biner dan 97.3% untuk klasifikasi tiga kategori dimana menggunakan arsitektur *DenseNet* dan *VGG16*. Kemudia pada penelitian (Upasana, Tewari and Singh, 2022) "*An Attention-based Pneumothorax Classification using Modified Xception Model*" mengenai mendeteki otomatis citra *X-ray* pneumotoraks, menghasilkan kesimpulan bahwa model *Xception* memiliki nilai akurasi yang baik dengan memiliki akurasi pelatihan 99.18% dan *validation accuracy* 87.53%.

Banyak pendekatan yang telah dikembangkan dan diterapkan untuk mendeteksi pneumonia, namun masih ada ruang untuk peningkatan kerja. Salah satu usulan untuk meningkatkan akurasi dan efisiensi dalam klasifikasi citra X-Ray adalah dengan mengimplementasikan metode DenseNet201 dan Xception. Kedua model ini telah terbukti efektif dalam bidang klasifikasi citra medis karena kemampuannya dalam menangani vanishing gradient dan meningkatkan kemampuan generalisasi. DenseNet201 dengan konektivitas yang lebih padat antar layer memungkinkan model untuk memanfaatkan informasi secara lebih efektif, sedangkan Xception dengan depthwise seperable mampu mengurangi jumlah parameter dan operasi yang diperlukan, sehingga membuat model lebih ringan dan cepat. Pengguna kedua model ini diharapkan dapat meningkatkan akurasi dalam mendiagnosis pneumonia.

1.2 Perumusan Masalah

Adapun rumusan masalah yang dapat diangkat dari penelitian ini yaitu: Bagaimana hasil akurasi, presision, sensitivity, dan Fscore dari klasifikasi citra *chest x-ray* paru-paru?

1.3 Batasan Masalah

Batasan masalah yang digunakan pada penelitian yaitu:

- 1. Data klasifikasi jenis citra x-ray yang digunakan antara lain : x-ray normal dan x-ray pneumonia
- 2. Penelitian berfokus pada tingkat akurasi, presision, sensitivity, dan Fscore klasifikasi citra x-ray pneumonia
- 3. Model dari arsitektur cnn yang digunakan adalah DenseNet201 dan Xception

1.4 Tujuan Penelitian

Dari rumusan masalah yang dilakukan, maka tujuan dari penelitian ini yaitu: Untuk mengetahui hasil akurasi, presision, sensitivity, dan Fscore dari klasifikasi citra x-ray paru-paru

1.5 Manfaat Penelitian

Manfaat dari penelitian ini yaitu sebagai berikut:

a. Bagi Masyarakat

Hasil dari penelitian tersebut dapat digunakan untuk meningkatkan akurasi dan efisiensi dalam mendeteksi pneumonia melalui analisis citra *chest X-ray*, sehingga dapat mendukung tenaga medis dalam mendiagnosis penyakit lebih cepat dan tepat. Dengan pemanfaatan model dari *deep learning*, sistem dapat membantu mengurangi risiko kesalahan diagnosis serta mempercepat proses pengambilan keputusan. Terutama ditengah keterbatasan jumlah dokter spesialis paru yang sedikit. Hal ini diharapkan dapat berkontribusi pada penanganan yang lebih dini dan efektif, sehingga meningkatkan peluang kesembuhan pasien dan secara keseluruhan mendukung peningkatan kualitas layanan kesehatan Masyarakat.

b. Bagi Pembaca

Hasil dari penelitian ini diharapkan dapat menjadi rujukan atau refrensi bagi mahasiswa Sistem Informasi yang akan melakukan penelitian lanjutan dengan topik *deep learning*.

c. Bagi Penulis

Manfaat yang didapatkan oleh Penulis yakni berupa menambah wawasan pada bidang *deep learning* dan oleh data citra gambar. Selain itu juga pengalaman saat proses pengerjaan tugas akhir dimulai dari proses pengambilan data hingga menulis laporannya.

1.6 Relevansi

Relevansi pengerjaan penelitian ini berkaitan dengan beberapa mata kuliah seperti:

- 1. Sistem Cerdas : dalam mata kuliah Sistem Cerdas, konsep dan penerapan algoritma deep learning seperti DenseNet201 dan Xception menjadi dasar dalam mengembangkan model untuk mendeteksi pneumonia.
- 2. Statitiska : dalam mata kuliah Statistika berkontribusi pada analisis data, seperti pengolahan statistik deskriptif dan inferensial untuk mengevaluasi performa model yang dikembangkan.
- 3. Data Science : dalam mata kuliah Data Science menyediakan landasan dalam pengelolaan, pembersihan, dan pemrosesan dataset citra *chest X-ray* termasuk teknik eksplorasi data yang relevan.
- 4. Visualisasi Informasi : Visualisasi Informasi berperan dalam menyajikan hasil penelitian secara informatif melalui grafik atau diagram yang memudahkan menangkap sebuah informasi oleh pengguna, termasuk tenaga medis.

BAB II

TINJAU PUSTAKA

2.1 Studi Literatur

No	Judul	Pembahasan	Keterkaitan	Perbedaan
	An Alzheimer's	Menggabungkan	Mengunakan	Data yang
	disease	beberapa jenis model	transfer learning,	digunakan MRI,
	classification	DenseNet yaitu	menggunakan	Penggabungan 3
	model using	DenseNet 121,169, dan	Teknik	Jenis DenseNet
	transfer learning	201. Menggunakan	augmentasi data,	121,169, dan 201,
	Densenet with	transfer learning untuk	dan	dan menggunakan
	embedded	meningkatkan performa	menggunakan	Area Under the
1	healthcare	klasifikasi pada dataset	data citra medis.	Curve untuk
	decision support	Magnetic Resonance		evaluasi model.
	system (Saleh et	Imaging (MRI) yang		
	al., 2023).	lebih kecil, serta		
		penggunaan augmentasi		
		data untuk		
		meningkatkan performa		
		model.		
	Classification and	Menambahkan global	Penelitian sama-	Penelitian
	detection of	attention machine block	sama klasifikasi	COVID-19
	COVID-19 X-Ray	dan category attention	penyakit citra X-	mencakup deteksi
	images based on	block untuk	<i>Ray</i> paru-paru.	beberapa penyakit
	DenseNet and	mengekstraksi fitur-fitur	Menggunakan	(COVID-19,
	VGG16 feature	dalam. Jaringan residual	teknologi deep	pneumonia,
2	fusion (Kong	(ResNet) digunakan	learning yaitu	normal).
	and Cheng,	untuk segmentasi	DenseNet	Penelitian
	2022).	informasi gambar. Hasil	sebagai salah satu	COVID-19
	2022).	dari pelatihan model	arsitektur model	menggabungkan
		menunjukkan bahwa	dalam citra X-	fitur dari dua
		model yang diusulkan	Ray. Untuk	arsitektur untuk
			mengevaluasi	meningkatkan

No	Judul	Pembahasan	Keterkaitan	Perbedaan
		memiliki akurasi yang	performa model	akurasi. Penelitian
		tinggi.	menggunakan	COVID-19
			akurasi sebagai	memiliki
			indikator utama	pendekatan yang
			keberhasilan.	lebih kompleks
				dengan
				penambahan
				mekanisme
				attention untuk
				mengoptimalkan
				performa model.
				Penelitian
	FemurTumorNet:	Dengan menggunakan	Objek yang	Penyakit yang
	Bone tumor	Model DenseNet dapat	digunakan adalah	diklasifikasikan
	classification in	mengungguli akurasi	citra medis,	dan bagian tubuh
	the proximal	diagnosis manusia	model yang	yang menjadi
	femur using	dalam hal sensitivitas,	digunakan sama	objek penelitian
3	DenseNet model	spesitifitas, akurasi dan	yaitu <i>DenseNet</i>	berbeda seperti
	based on	skorf1. Hasil dari	untuk klasifikasi	muskuloskeletal.
	radiographs (Pan	penelitian menunjukkan	citra medis.	Penelitian
	et al., 2023).	bahwa model DenseNet		FemurTumorNet
		memiliki tingkat akurasi		hanya fokus pada
		yang tinggi.		DenseNet.
	Optimization and	Dengan menggunakan	penelitian	Penelitian
	fine-tuning of	metode transfer learning,	menggunakan	DenseNet lebih
	DenseNet model	untuk meningkatkan	citra medis X-Ray	luas cakupannya
	for classification	performa model dengan	dada.	seperti (COVID-
	of COVID-19	cara bobot yang telah	Menggunakan	19, PNEUMONIA
4	cases in medical	data dilatih sebelumnya.	DenseNet	dan NORMAL).
	imaging	Teknik fine-tuning	sebagai model	Hanya fokus pada
	(Chauhan,	termasuk early-stopping	utama dalam	DenseNet tanpa
	Palivela and	digunakan guna untuk	deep learning.	memperbandingk
	Tiwari, 2021).	meningkatkan akurasi	Memanfaatkan	an. Fine-tuning
		model. Hasil	transfer learning	menjadi bagian

No	Judul	Pembahasan	Keterkaitan	Perbedaan
		menunjukkan bahwa	untuk mengatasi	untuk
		optimizer adam dengan	keterbatasan	meningkatkan
		fungsi kerugian Cross	dataset medis.	performa model
		Entropy dan scheduler	Menggunakan	deep learning.
		StepLR memberikan	evaluasi akurasi	
		hasil akurasi yang	model untuk	
		tertinggi.	menentukan	
			keberhasilan	
			klasifikasi.	
	AI diagnostics in	Menggunakan Fitur	Menggunakan	Object yang
	bone oncology for	radiomik diekstraksi dari	model DenseNet.	digunakan kanker
	predicting bone	gambar CT dan seleksi	Menggunakan	metastasis tulang.
	metastasis in lung	fitur dilakukan	Transfer learning.	Penelitian Bone
	cancer patients	menggunakan Minimum	Evaluasi model	Oncology
	using DenseNet-	Redundancy Maximum	pada	menggunakan
	264 deep learning	Relevance (mRMR) dan	menggunakan	data CT dengan
	model and	Least Absolute	accuracy untuk	fitur radiomic.
5	radiomics (Zeng	Shrinkage and Selection	mengukur	Model yang
	et al., 2024).	Operator (LASSO).	performa	digunakan
		Model DenseNet-264	klasifikasi.	DenseNet-264.
		menunjukkan kinerja		Lebih
		yang unggul.		menonjolkan
				evaluasi Under
				the Curve (AUC)
				untuk mengukur
				performa.
	An in-depth	Menggunakan metode	Menggunakan	Menggunakan
	analysis of	transfer learning untuk	data citra medis.	citra
	Convolutional	menemukan lebih	Menggunakan	dermatoskopi.
6	Neural Network	banyak fitur.	transfer learning	Penelitian kulit
	architectures with	Mengevaluasi kinerja	sebagai metode	mencakup
	transfer learning	pendekatan yang	untuk	evaluasi lebih
	for skin disease	diusulkan dengan	meningkatkan	banyak arsitektur
		beberapa arsitektur CNN	kinerja model.	CNN diantara nya

No	Judul	Pembahasan	Keterkaitan	Perbedaan
	diagnosis (Sadik	popular diantara nya,	Menggunakan	ResNet50,
	et al., 2023).	ResNet50, InceptioV3,	model DenseNet	InceptioV3,
		Inception-ResNet dan	dan Xception.	Inception-ResNet
		DenseNet.	Menggunakan	dan <i>DenseNet</i> .
			augmentasi data.	
			Mengevaluasi	
			kinerja arsitektur	
			model CNN	
			untuk	
			menentukan	
			model yang	
			paling efektif.	
	An Attention-	Penggunaan radiografi	Menggunakan	Berfokus pada
	based	dada digunakan sebagai	citra X-Ray dada.	pneumotoraks.
	Pneumothorax	alat diagnosis yang	Menggunakan	Memoodifikasi
	Classification	signifikan untuk	arsitektur model	arsitektur seperti
	using Modified	mendeteksi gangguan	Xception.	menambahkan
	Xception Model	paru-paru.	Mmenggunakan	attention module.
	(Upasana, Tewari	Menggabungkan	transfer learning.	Penelitian
	and Singh, 2022).	jaringan Xception	Menggunakan	Pneumotoraks
7		dengan attention module	metrik evaluasi	berfokus pada
		untuk meningkatkan	untuk mengukur	pengembangan
		akurasi deteksi	tingkat	model.
		pneumotoraks pada	keberhasilan	Menggunakan
		gambar X-ray dada.	klasifikasi model.	metrik AUC
		Model yang diusulkan		sebagai evaluasi
		memperoleh akurasi		kinerja model.
		yang tinggi dan Area		
		AUC yang sangat baik.		
	Prediction of fetal	Penggunaan model	Menggunakan	Menggunakan
	brain gestational	Xception yang telah	arsitektur model	dataset MRI otak
8	age using	dilatih sebelumnya dan	CNN yaitu	janin.
	multihead	mekanisme multihead	Xception.	Memodifikasi
	attention with	attention (MHA)	Menggunakan	model Xception

No	Judul	Pembahasan	Keterkaitan	Perbedaan
	Xception (Hasan	digunakan untuk	transfer learning.	dengan MHA.
	et al., 2024).	memprediksi usia	Menggunakan	Menggunakan
		gestasi dari gambar MRI	metrik evaluasi	Mean Absolute
		otak janin. Penelitian ini	untuk mengukur	Error (MAE)
		menunjukkan bahwa	tingkat	untuk
		model yang diusulkan	keberhasilan	mengevaluasi
		dapat membantu klinisi	klasifikasi model.	hasil regresi.
		dalam memprediksi usia		
		gestasi dengan akurasi		
		tinggi.		
	Boosted dipper	Algoritma Boosted	Menggunakan	Menggunakan
	throated	Dipper Throated	arsitektur model	dataset ISIC yang
	optimization	(BDTO) adalah teknik	CNN Xception.	terdiri dari citra
	algorithm-based	optimasi yang	Menggunakan	kulit.
	Xception neural	terinspirasi dari perilaku	augmentasi data.	Menggunakan
	network for skin	burung Dipper Throated		optimasi model
	cancer diagnosis:	yang dapat menentukan		Xception dengan
	An optimal	parameter dan bobot		algoritma BDTO.
	approach (Tang	optimal untuk arsitketur		
	and Rashid	CNN Xception.		
	Sheykhahmad,	Sedangkan dataset		
9	2024).	International Skin		
		Imaging Collaboration		
		(ISIC) digunakan untuk		
		meningkatkan kualitas		
		dan keragaman gambar,		
		serta menggunakan		
		augmentasi data. Metode		
		ini menunjukkan kinerja		
		yang lebih baik		
		dibandingkan dengan		
		pendekatan kontemporer		
		lainnya.		

No	Judul	Pembahasan	Keterkaitan	Perbedaan
	Concatenated	Menggunakan	Menggunakan	Jenis penyakit
	Xception-	pendekatan hibrida	arsitektur model	yang
	ResNet50 — A	antara dua model	CNN yaitu	diklasifikasikan
	novel hybrid	Xception dan ResNet50	Xception.	berbeda kanker
	approach for	model dilatih dan diuji	Menerapkan	kulit.
	accurate skin	menggunakan teknik	penghindaran	Menggunakan
10	cancer prediction	sliding window untuk	overvitting dan	pendekatan
	(Panthakkan et al.,	memastikan kinerja	augmentasi data.	hibrida antara dua
	2022).	yang konsisten dan		model Xception
		menghindari overfitting.		dan ResNet50.
		Model yang diusulkan		
		mencapai akurasi yang		
		tinggi.		

Tabel 2. 1 Studi Literatur

2.2 Dasar Teori

2.2.1 Pneumonia

Pneumonia adalah salah satu jenis penyakit paru paru yang disebabkan oleh bakteri,virus,jamur atau parasit. Pneumonia memiliki sebuah kondisi dimana alveoli penderita dipenuhi nanah dan cairan sehingga penderita mengalami kesakitan saat bernafas dan oksigen yang masuk kedalam paru paru kurang (Rindrasari, 2018). Pasien yang mengidap pneumonia biasanya mengalami gejala berupa sesak napas, batuk berdahak, demam ataupun menggigil. Pneumonia biasanya ditularkan dengan berbagai cara antara lain melalui batuk dan bersin (Sartiwi et al., n.d).

Pneumonia merupakan masalah kesehatan yang signifikan di Indonesia, berdasarkan data Riskesdas (2013) terjadi peningkatan prevalansi pneumonia pada semua umur, terutama pada balita yang cukup tinggi yaitu 4,5 per 100 balita. Hal ini dari 4,5 per 100 balita menderita penyakit pneumonia. Sementara itu, menurut laporan WHO pada tahun 2017 menunjukkan, 15% kematian anak dibawah umur

5 tahun disebabkan oleh pneumonia. Berdasarkan survey Balitbangkes 2016 jumlah anak yang menderita pneumonia di Indonesia diperkirakan melebihi dari 800.000 anak. Pada pasien dewasa, kasus pneumonia paling banyak terjadi pada rentan umur 56-65 tahun. Kondisi ini dipengaruhi oleh perubahan anatomi dan fisiologi akibat proses penuaan, seperti penurunan elesitisitas jaringan paru-paru, melemahnya sistem kekebalan tubuh. Faktor-faktor tersebut dapat menyebabkan penurunan kemampuan paru-paru untuk terkena infeksi paru-paru, sehingga lansia rentan terhadap penumonia.

Pneumonia juga dapat dipengaruhi oleh berbagai faktor lain seperti kebiasaan merokok, paparan polusi udara, serta kondisi lingkungan yang tidak higienis (Nurin, 2024). Selain itu seseorang dengan penyakit seperti diabetes, penyakit jantung, atau gangguan sistem imun lebih rentan terjangkit pneumonia (CDC, 2023). Pencegahan penyakit ini dapat dilakukan dengan menerapkan gaya hidup sehat seperti menjaga kebersihan tangan, menghindari kontak dengan orang yang terinfeksi, serta menjalani vaksinasi, seperti vaksin pneumokokus dan influenza. Langkah-langkah pencegahan ini sangat penting untuk mengurangi risiko terkena pneumonia, terutama bagi kelompok rentan seperti anak-anak, lansia, dan individu dengan penyakit kronis (Pittara, 2022).

2.2.2 Chest X-Ray

Chest X-Ray (CXR) adalah suatu proyeksi pecintraan medis yang menggunakan radiasi untuk menghasilkan gambar dari organ atau struktur didalam dada. Termasuk seperti paru-paru, jantung, tulang rusuk dan pembuluh darah. Chest X-Ray alat yang sangat umum digunakan untuk mendiagnosis berbagai kondisi seperti infeksi paru-paru, gagal jantung, kanker paru-paru dan masalah yang lainnya (Chest X-rays – The Heart Clinic, 2015).

Citra paru-paru dapat dikategorikan normal apabila citra tersebut tidak ada bercak, teksturnya terlihat halus, serta ukuran paru-paru sesuai dengan anatomi yang normal. Sebaliknya, citra paru-paru dianggap abnormal apabila citra tersebut memiliki bercak, teksturnya tidak terlihat halus, serta perubahan bentuk atau ukuran paru-paru berubah. Perubahan tersebut dapat diketahui dari intensi piksel pada objek paru-paru (Wikanargo and Thenata, 2018).

Gambar 2. 1 Chest X-Ray Paru-Paru

2.2.3 Citra Digital

Citra digital adalah sebuah reprentasi dari suatu objek yang disimpan dalam suatu bentuk elektronik yang dapat diolah oleh komputer. Citra digital digambarkan sebagai fungsi(x,y) dengan x dan y merupakan koordinat pada sebuah bidang datar yang mempresentasikan kumpulan pixel dalam dua dimensi (Gonzalez and Woods, 2008). Secara umum citra digital dibagi menjadi tiga, yaitu citra biner, citra *grayscale* dan citra RGB. Citra biner hanya terdiri dari dua nilai, yaitu hitam dan putih, yang mewakili objek dan latar belakang. Citra *grayscale* terdiri dari nilai intensitas abu-abu yang menggambarkan perbedaan kecerahan, sedangkan citra RGB menggabungkan tiga komponen warna dasar, yaitu merah (Red), hijau (Green), dan biru (Blue), untuk membentuk warna yang lebih kompleks (Sulistiyani Ratna, Setyawan Arianto and Komarudin, 2016).

Terdapat banyak metode pengolahan gambar yang dapat digunakan, salah satunya adalah augmentasi gambar. Augmentasi merupakan sebuah metode untuk

memperbanyak data gambar untuk training dengan membuat perubahan untuk memperoleh gambar training yang serupa tetapi berbeda. Memotong gambar dengan cara yang berbeda dapat memberikan posisi gambar yang berbeda, sehingga dapat mengurangi ketergantungan model pada posisi dimana objek muncul. Teknik augemntasi juga dapat memeberi penyusaian terhadap kecerahan, warna, serta faktor-faktor lain untuk mengurangi sensitivitas model terhadap warna. Melalukan flip ke kiri dan ke kanan pada gambar umumnya tidak mengubah kategori dari objek. Sehingga, metode ini adalah salah satu metode augmentasi gambar yang sering digunakan (Zhang *et al.*, 2021).

2.2.4 Grayscale

Grayscale adalah format representasi citra yang menggunakan satu chanel untuk setiap piksel dengan nilai kecerahan yang bervariasi dari 0 hingga 255. Nilai ini menggambarkan intensitas Cahaya yaitu, 0 mewakili hitam (tanpa cahaya) dan 255 mewakili putih (intensitas cahaya maksimum) (Gonzalez and Woods, 2002). Dalam aplikasi pemrosesan citra *grayscale* sering digunakan karena informasi warna tidak selalu relevan, terutama pada jenis citra seperti *X-Ray*. Dimana analisis lebih berfokus pada pola intensitas daripada kombinasi warna.

Penggunaan citra *grayscale* memiliki peran penting dalam pengolahan citra medis seperti *X-Ray* paru-paru. Citra *X-Ray* umumnya sudah berupa *grayscale* secara *default*, karena tujuan utama dari citra tersebut adalah untuk menunjukkan detail struktur internal tubuh berdasarkan distribusi intensitas cahaya yang melewati jaringan tubuh. Dengan menggunakan format *grayscale*, analisis fitur seperti pola abnormal, perbedaan densitas jaringan, atau identifikasi anomali menjadi lebih mudah dilakukan (Ramdhan, Bustomi and Faridawati, 2014). Selain itu, penggunaan citra grayscale membantu menyederhanakan algoritma pemrosesan, termasuk metode peningkatan kontras seperti *Contrast Limited Adaptive Histogram Equalization* (CLAHE), karena metode ini hanya berfokus pada distribusi intensitas piksel tanpa memperhatikan informasi warna.

2.2.5 Contrast Limited Adaptive Histogram Equalization (CLAHE)

Pre-processing bertujuan untuk meningkatkan kualitas citra, sehingga memudahkan dan mempercepat kinerja sistem dalam mengenali citra X-Ray paruparu. Proses ini sangat penting untuk memastikan bahwa citra yang digunakan oleh model deep learning memiliki kualitas yang optimal. Tanpa pre-processing yang tepat sistem dapat kesulitan untuk mengidentifikasi fitur-fitur penting dala citra. Salah satu metode pre-processing citra untuk meningkatkan kontras gambar adalah CLAHE.

CLAHE merupakan sebuah metode dengan memberikan nilai batas pada histogram. Nilai batas ini disebut dengan clip limit yang menyatakan batas maksimum tinggi suatu histogram. Dengan menggunakan CLAHE kontras citra dapat diperbaiki terutama pada area dengan kontras rendah. Metode ini sangat berguna untuk citra medis seperti *X-Ray* yang seringkali memiliki detail yang sulit terlihat karena kontras yang rendah. Metode ini bertugas membagi citra menjadi beberapa bagian kecil dan masing-masing bagian dihitung histogramnya secara terpisah. Proses ini dilakukan untuk menghindari efek noise yang berlebihan di area dengan kontras tinggi.

Proces CLAHE terdiri dari dua tahap, yaitu pada tahap pertama membagi citra kedalam beberapa bagian dengan ukuran yang sama dan merata. Pada tahap kedua menghitung nilai histogram masing-masing bagian sehingga mendapatkan nilai *clip limit* dari citra tersebut. Dengan begitu, area yang memiliki kontras rendah dapat ditingkatkan tanpa merusak detail yang ada pada area dengan kontras tinggi. Cara menghitung clip limit suatu histogram dapat didefinisikan dengan persamaan berikut (Koonsanit *et al.*, 2017).

$$\delta = \frac{QR}{C} \left(1 + \frac{a}{100} \left(gr_{max} - 1 \right) \right) \tag{2.1}$$

Keterangan:

$$\delta$$
 = clip limit

 $Q \times R$ = luas citra dimensi citra

C = nilai komponen warna

a = clip factor (batas limit suatu histogram)

 gr_{max} = nilai gradien maksimum

Histogram diatas nilai *clip limit* dianggap kelebihan (*exceess*) piksel yang akan didistribusikan kepada area sekitar di bawah *clip limit*, sehingga histogram merata (). Ilustrasi distribusi *excess* piksel dapat dilihat pada gambar 2.2.

Gambar 2. 2 Distribusi excess pixel pada histogram

2.2.6 Convutional Neural Network (CNN)

CNN adalah salah satu metode dari deeplearning yang digunakan dalam klasifikasi citra gambar. Pada dasarnya, CNN tidak jauh berbeda dengan neural network biasanya yang memiliki bobot, bias dan fungsi aktivasi. CNN mengatur neuron dalam bentuk tiga dimensi yaitu lebar, panjang dan tinggi. Secara umum, arsitektur CNN terdiri dari tiga *layer* utama yaitu *convutional layer*, *pooling layer* dan *fully connected layer (Sewak, Karim and Pujari, 2018)*. Berikut merupakan ilustrasi arsitektur metode CNN yang ditunjukkan pada Gambar 2.3.

Gambar 2. 3 Arsitektur Convolutional Neural Network (CNN)

a. Convolutional Layer

Fungsi utama dari *convolution layer* adalah mengekstraksi fitur dari citra input. Proses konvolusi adalah mengalikan sebuah gambar dengan sebuah convolution kernel atau filter yang dinyatakan dalam bentuk matrik dengan ukuran yang biasanya lebih kecil dari ukuran gambar. *Convolutional layer* membutuhkan input yang kemudian mengaplikasikan *convotional kernel* dan memberikan sebuah hasil berupa feature map sebagai output yang diilustrasikan pada Gambar 2.4 (Zhang *et al.*, 2021). Operasi konvolusi apabila input dan kernel berukuran dua dimensi ditulis pada persamaan (2.2).

$$FM_{a,b,l} = bias + \sum_{c}^{C} \sum_{d}^{D} Z_{c,d,l} \quad X_{a+c-1,b+d-1,l}$$
 (2.2)

dimana:

 $FM_{a,b,l}$ = feature map pada pixel ke-a,b pada citra ke-l

bias = *bias* pada *feature map*

 $Z_{c,d,l}$ = bobot pada pada convolutional kernel ke-c,d pada citra ke-l

X = input

a = 1,2,...,A. A merupakan panjang pixel pada feature map

b = 1,2,...,B. B merupakan lebar pixel pada feature map

c = 1,2,...,C. C meruapakan panjang pixel pada convolutional kernel

d = 1,2,...,D. D merupakan lebar pixel pada *convolutional kernel*

l=1,2,...,L. L merupakan citra yang digunakan

Gambar 2. 4 Ilustrasi Convolutional Layer

Dalam perhitungan output, kernel digeser untuk setiap pixel. Demi meningkatkan efisiensi komputasi, kernel digeser lebih dari satu pixel. Banyaknya pixel yang digeser dalam input disebut stride yang ditampilkan pada Gambar 2.5.

Stride 1

Stride 2

Gambar 2. 5 Perbedaan Antara Stride 1 dan Stride 2

Salah satu masalah yang terjadi akibat pengaplikasian *convutional layer* adalah kehilangan informasi *pixel* yang terletak pada bagian tepi gambar. Solusi yang mudah adalah menambah *pixel* tambahan dipinggiran gambar, sehingga memperbesar dimensi gambar. Biasanya, *pixel* tambahan bernilai 0 yang diilustrasikan pada Gambar 2.6.

Gambar 2. 6 Ilustrasi Padding Berukuran 1x1

Jika input data mengandung banyak *chanel*, maka perlu dibentuk *kernel* konvolusi yang memiliki *chanel* sebanyak *chanel* input sehingga dapat dilakukan korelasi silang. Apabila diasumsikan jika banyaknya *chanel* input adalah c_i , maka kernel konvolusi harus sebanyak c_i juga. Korelasi silang dihitung dengan menjumlahkan operasi konvolusi untuk setiap *chanel*, sehingga didapatkan output berdimensi dua yang diilustrasikan pada gambar 2.7.

Gambar 2. 7 Ilustrasi Padding Berukuran 1x1

Terlepas dari banyaknya input *chanel*, sejauh ini menghasilkan output dengan *chanel* tunggal. Akan tetapi, arsitektur CNN yang popular pada umumnya memiliki output dengan banyak *chanel*. Hal ini dilakukan untuk menyimpan lebih banyak informasi ketika *pooling* dilakukan.

b. Pooling Layer

Pooling layer berada setelah convolution layer dan tidak memiliki parameter. Pooling layer bersifat deteminstik sehingga fungsi yang bisa digunakan adalah maksimum dan mean untuk mengurangi input data (Zhang et al., 2021). Operasi ini masing-masing dinamakan max pooling dan average pooling. Fungsi max pooling disajikan pada persamaan berikut (Hafemann, Sabourin and Oliveira, 2017).

$$Pool_{a,b,I} = max_{i,j}(FM_{(a+i),(b+j),l})$$
(2.3)

FM = feature map

Pool = hasil *pooling layer*

a = 1,2,...,A. A merupakan panjang pixel

 $b = 1, 2, \dots, B$. B merupakan lebar pixel

c = 1,2,...,C. C merupakan citra yang digunakan

Ilustrasi operasi *max pooling* dan *average pooling* yang dapat dilihat pada gambar. *Pooling layer* terdiri dari sebuah filter dengan ukuran dan *stride* tertentu yang akan secara bergantian bergeser pada seluruh area *feature map*.

Gambar 2. 8 Pooling Layer

c. Fully Connected Layer

Fully connected layer merupakan bagian terakhir dari arsitektur CNN yang digunakan untuk melakukan transformasi dimensi data agar dapat diklasifikasikan secara linear. Layer ini mengkoneksasikan semua neuron disatu layer dan kesemua neuron layer lainnya (Zhang et al., 2021). Citra digital yang memiliki dua atau tiga dimensi akan diubah menjadi suatu vector (data berdimensi satu) sebelum masuk ke fully connected layer karena input layer ini adalah suatu vektor. Fully connected layer memiliki fungsi aktivasi, output layer dan loss function. Berikut merupakan ilustrasi fully connected layer tanpa menggunakan hidden layer yang akan ditunjukkan pada gambar 2.9.

Gambar 2. 9 Ilustrasi Fully Connected Layer

Metode CNN menggunakan fungsi aktivasi pada *convolutional layer* sebelum *pooling layer* adalah fungsi aktivasi ReLu yang tercantum pada persamaa (2.5) Sedangkan fungsi aktivasi yang digunakan pada layer terakhir adalah fungsi aktivasi sigmoid yang tercantum pada persamaan (2.4), jika kelas klasifikasi yang digunakan adalah biner.

2.2.7 Fungsi Aktivasi Sigmoid

Fungsi aktivasi sigmoid merupakan fungsi aktivasi yang memiliki nilai pada *range* 0 sampai 1 (Zhang *et al.*, 2021). Fungsi aktivasi sigmoid digunakan untuk kelas biner pada klasifikasi yang digunakan pada output layer. Perhitungan fungsi sigmoid ditunjukkan pada persamaan (2.4) sebagai berikut.

$$p(y_k) = \frac{1}{1 + e^{-r}} \tag{2.4}$$

dimana:

r = output setiap neuron output layer tanpa fungsi aktivasi $p(y_k) =$ output setiap neuron *output layer* setelah dimasukkan dalam fungsi aktivasi

Berikut merupakan Ilustrasi fungsi sigmoid ditunjukkan pada gambar 2.10.

Gambar 2. 10 Distribusi Fungsi Sigmoid

2.2.8 Fungsi Aktivasi Rectified Linear Unit (ReLu)

Fungsi aktivasi ReLu merupakan fungsi aktivasi yang menghilangkan vanishing gradient yang cukup populer digunakan (Zhang et al., 2021). Fungsi ReLu digunakan sebagai non-linearitas telah menunjukkan kemungkinan pelatihan CNN tanpa memerlukan unsupervised pre-training. Perhitungan fungsi ReLu ditunjukkan pada persamaan berikut.

$$f(FM_{a,b,l}) = \max(0, FM_{a,b,l}) = \begin{cases} FM_{a,b,l}, jika \ FM_{a,b,l} \ge 0\\ 0, \quad jika \ FM_{a,b,l} < 0 \end{cases}$$
(2.5)

dimana:

 $FM = feature\ map$

a = 1,2,...,A. A merupakan panjang *pixel*

b = 1, 2, ..., B. B merupakan lebar *pixel*

l = 1, 2, ..., L. L merupakan citra yang digunakan

2.2.6.3 Loss Function

Loss function adalah nilai error antara nilai aktual dengan nilai yang akan diprediksi. Loss function biasanya berupa nilai non-negatif dimana jika bernilai

lebih kecil akan menghasilkan prediksi yang lebih akurat (Zhang et al., 2021). Terdapat banyak metode untuk mengukur nilai error pada deep learning. Pada klasifikasi yang memiliki dua kelas perhitungan loss yang digunakan adalah binary-crossentropy. Perhitungan binary-crossentropy ditunjukkan pada persamaan berikut.

$$Loss = -\frac{1}{N} \sum_{i=1}^{N} [y_k \times \log(p(y_k)) + (1 - y_k) \times \log(1 - p(y_k))]$$
 (2.6)

dimana:

N = jumlah data

 y_k = nilai target berupa nilai 0 dan 1

 $p(y_k)$ =predicted value didapatkan dari persamaan (2.4)

2.2.9 Optimasi Parameter Adaptive Moment Estimation (ADAM)

Optimasi parameter digunakan untuk meminumkan nilai loss sehingga loss merupakan kunci dalam optimasi parameter bias dan bobot. Optimasi parameter yang digunakan dalam penelitian ini yaitu optimasi parameter ADAM. ADAM menggunakan gradient, lalu estimasi momen pertama dan kedua serta mengoreksi dengan bias correction. Penyelesaian gradient pada network ini menggunakan chain rule untuk mendapatkan partial derivative (Bishop, 2006). Dalam mengoptimasi parameter dengan menggunakan Adam, hal pertama yang harus dilakukan adalah menghitung gradient dari loss function terhadap parameter yaitu bias dan pembobot, sehingga berikut persamaan yang digunakan.

$$g_t = \frac{\partial Loss}{\partial \theta} \tag{2.7}$$

Hal kedua setelah menghitung gradient dari loss function adalah menghitung Momentum term dan RMSProp term, sehingga berikut persamaan yang digunakan.

Momentum term:

$$m_t = \beta_1 \times m_{t-1} + (1 - \beta_1)g_t \tag{2.8}$$

Dimana:

 β_1 = koefisien untuk momentum

RMSProp term:

$$v_t = \beta_1 \times v_{t-1} + (1-2)g_t^2 \tag{2.9}$$

Dimana:

 β_2 = koefisien untuk estimasi kedua

Hal ketiga setelah menghitung Momentum term dan RMSProp term adalah menghitung Bias correction, sehingga berikut persamaan yang digunakan

Bias correction:

$$\widehat{m}_t = \frac{m_t}{1 - \beta_1^t}, \widehat{v}_t = \frac{v_t}{1 - \beta_2^t} \tag{2.10}$$

Langkah terakhir ialah menghitung parameter update, sehingga berikut persamaan yang digunakan.

Dimana:

 β_1^t = iterasi saat ini dan koefisien momentum

 β_2^t = iterasi saat ini dan koefisien untuk estimasi kedua

Parameter update:

$$\theta_{t+1} = \theta_t - \eta \, \frac{\hat{m}_t}{\sqrt{\hat{v}_t + \epsilon}} \tag{2.11}$$

Dimana:

 η = Learning rate,

 ϵ = Stabilizer untuk menghindari pembagian dari nol.

2.2.10 Transfer Learning

Transfer Learning adalah salah satu metode dari deep learning dengan memanfaatkan model yang sudah dilatih terhadap suatu dataset besar untuk menyelesaikan permasalahan lain. Teknik ini digunakan untuk mempercepat proses training dan meningkatkan kualitas model. Dengan menggunakan pre-trained model dapat menghemat sumber daya komputasi dan waktu yang diperlukan untuk melatih model dari awal (Patterson and Gibson, 2017). Contoh pre-trained model adalah ResNet, VGGNet, InceptionV3, DenseNet, EfficentNet dan MobilNet. Model-model ini telah dilatih pada dataset skala besar dan kompleks sehingga memiliki kemampuan yang baik untuk berbagai tugas pengenalan pola dan klasifikasi. Setiap model memiliki arsitektur yang unik dan kelebihan masingmasing yang dapat dipilih berdasarkan kebutuhan spesifik dari permasalahan yang dihadapi.

Salah satu dataset yang sering digunakan untuk melatih *pre-trained* model adalah *ImageNet*. Dataset ini berisi sekitar 1,2 juta gambar dengan 1.000 kelas yang berbeda, mencakup berbagai objek dan scene (Iswari, 2021). Dengan dilatih pada dataset yang besar, *pre-trained* model seperti *DenseNet* dan *Xception* mampu menangkap fitur-fitur yang sangat beragam. Sehingga dapat diterapkan pada berbagai aplikasi dari pengenalan objek hingga segmentasi gambar. Penggunaan *pre-trained* model memungkinkan transfer pengetahuan dari satu domain ke domain lain. Meningkatkan efisiensi dan efektivitas dalam pengembangan model deep learning.

Selain efisiensi dan kemampuan generalisasi yang baik, *Transfer Learning* juga memungkinkan pengembangan model dengan dataset yang relatif kecil. Ketika dataset yang tersedia terbatas pelatihan model dari awal bisa menjadi tantangan besar (Hosna *et al.*, 2022). Dalam situasi ini, *pre-trained* model dapat bertindak sebagai dasar yang kuat, di mana model hanya perlu disesuaikan atau di *fine-tune* pada dataset spesifik yang lebih kecil.

a. Ekstraksi Fitur

Ekstraksi fitur adalah proses penting dalam pemrosesan citra yang bertujuan untuk mengambil informasi signifikan atau pola yang merepresentasikan karakteristik utama dari sebuah citra. Proses ini bertujuan untuk mereduksi dimensi data mentah dengan tetap mempertahankan informasi penting yang dapat digunakan untuk analisis atau klasifikasi. Dalam *deep learning* ekstraksi fitur dilakukan secara otomatis oleh lapisan-lapisan dalam model CNN (Huang *et al.*, 2016). Salah satu metode yang umum digunakan dalam *transfer learning* adalah memanfaatkan model *pre-trained*, seperti *DenseNet*, *ResNet*, atau *Xception*, *VGGNet* yang sudah dilatih pada dataset besar seperti *ImageNet*. Model ini berfungsi sebagai base model untuk melakukan ekstraksi fitur dari data baru.

Pada transfer learning, lapisan-lapisan dalam model pre-trained sering kali dibekukan dengan mengatur properti False. Hal ini bertujuan untuk menjaga parameter yang telah dipelajari dari dataset awal sehingga model dapat berfungsi sebagai ekstraktor fitur. Fitur-fitur yang telah diekstraksi kemudian dapat digunakan untuk custom layers yang dirancang khusus untuk tugas tertentu, seperti klasifikasi binary atau multi-kelas. Ekstraksi fitur otomatis ini memungkinkan, memanfaatkan keunggulan model pre-trained tanpa perlu melatih ulang seluruh model, sehingga menghemat waktu dan sumber daya komputasi (He et al., 2015).

b. Task Specifics Layers

Task specific layers adalah lapisan yang ditambahkan ke model deep learning yang sudah dilatih sebelumnya untuk menyesuaikan model tersebut dengan tugas atau masalah tertentu (Rahman, Baras and Chellappa, 2025). Dalam konteks transfer learning model pre-trained seperti DenseNet, VGGNet, atau ResNet digunakan untuk melakukan ekstraksi fitur dari data baru. Fitur-fitur yang telah dipelajari dari dataset besar seperti ImageNet digunakan untuk memahami polapola dasar dalam data, seperti tepi, tekstur, atau bentuk. Namun, untuk

menyelesaikan tugas tertentu, seperti klasifikasi citra atau deteksi objek, model memerlukan lapisan tambahan yang dirancang khusus untuk tugas tersebut.

Lapisan yang ditambahkan ini sering disebut sebagai *task specific layers*, yang bertujuan untuk mengambil fitur yang telah diekstraksi oleh model *pre-trained* dan memanfaatkan informasi tersebut untuk memecahkan masalah spesifik. Keuntungan utama dari penggunaan *task specific layers* adalah memungkinkan model untuk memanfaatkan data yang telah dipelajari dari data besar tanpa memerlukan pelatihan ulang pada seluruh model, sehingga menghemat waktu dan sumber daya komputasi (Rahman, Baras and Chellappa, 2025).

2.2.11 Model DenseNet201

DenseNet201 adalah salah satu metode deep learning dari CNN yang terdiri dari 201 lapisan, yang diperkenalkan oleh Gao Huang dkk, pada tahun 2017 (Virnodkar et al., 2022). Jaringan ini dikenal karena menggunakan dense connections yang terdiri dari dense blocks dan transition layers. Dense blocks yang terdiri dari Bottleneck Layers, berfungsi sebagai komponen utama dalam jaringan model. Mode koneksi padat didalam dense blocks memungkinkan setiap lapisan terhubung langsung dengan lapisan lainnya, sehingga informasi dapat tersalurkan dengan optimal dan ukuran keluaran tetap konsisten diseluruh lapisan. DenseNet mengatur jumlah channels melalui bottleneck layers, transition layers dan growth layer (Huang et al., 2016). Pendeketan ini tidak hanyak dapat mengurangi jumlah parameter dan mengatasi masalah overfitting akan tetapi juga dapat secara signifikan menurunkan beban komputasi. Secara keseluruhan arsitektur DenseNet201 yang digunakan dapat dilihat pada Gambar 2.11.

Salah satu keunggulan utama dari *DenseNet201* adalah kemampuannya dalam memitigasi masalah vanishing gradient yang sering menjadi tantangan dalam *deep learning*. Dengan menghubungkan setiap lapisan langsung ke setiap lapisan lainnya dalam *dense blocks DenseNet* memastikan bahwa gradien dapat mengalir lebih

mudah melalui jaringan selama proses pelatihan. Ini berarti bahwa informasi penting tidak hilang saat melalui banyak lapisan dan pelatihan dapat berlangsung lebih efisien dan efektif (Kong and Cheng, 2022).

DenseNet201 juga memberikan penawaran seperti efisiensi parameter yang tinggi. Karena dense connections memungkinkan reuse fitur dari lapisan sebelumnya, sehingga jumlah parameter yang diperlukan jauh lebih sedikit dibandingkan dengan arsitektur jaringan konvolusi tradisional (Devi, Chatrapati and Sandhya, 2024). Ini tidak hanya mengurangi kebutuhan akan sumber daya komputasi yang besar tetapi juga membantu dalam menghindari overfitting, terutama ketika bekerja dengan dataset yang lebih kecil.

Gambar 2. 11Arsitektur DenseNet201

2.2.12 Model *Xception*

Xception adalah arsitektur model dari CNN open source yang diteliti dan dikembangkan oleh Google. Nama Xception sendiri merupakan singkatan dari Extreme version of Inception yang berarti Versi yang lebih ekstrem dari Inception atau bisa diartikan versi yang lebih intens dari model yang sebelumnya dibuat oleh google. Model ini menggabungkan beberapa inovasi dari Inception dan

mengembangkan pendekatan baru untuk meningkatkan kinerjanya. *Xception* dirancang untuk memberikan fleksibilitas dan performa tinggi dalam berbagai tugas klasifikasi gambar, sehingga yang menjadikannya salah satu model populer dalam bidang klasifikasi gambar (Chollet, 2017).

Xception memiliki lapisan konvolusi yang menggabungkan *pointwise convolution* yang kemudian diikuti oleh *deptwhise convolution*. Kombinasi ini memungkinkan *Xception* untuk menghemat jumlah parameter dan meningkatkan efisiensi komputasi sekaligus mempertahankan akurasi. Dari kombinasi tersebut terbukti memberikan kinerja yang lebih baik dalam melakukan klasifikasi gambar pada berbagai dataset besar seperti *ImageNet* (Chollet, 2017).

Arsitektur *Xception* sendiri memiliki lapisan yang terdiri dari 36 lapisan *konvolusi* yang menjadi dasar jaringan ekstraksi fitur. Ke-36 lapisan *konvolusi* tersebut disusun kedalam 14 modul, dimana semuanya memiliki koneksi *residual linear* disekitarnya kecuali untuk modul pertama dan terakhir. Selain itu *Xception* sendiri memiliki arsitektur yang memudahkan dalam memodifikasi pada parameter-parameter yang dimilikinya (Carnagie *et al.*, 2022). Spesifik lengkap tentang jaringan *Xception* dapat dilihat Gambar 2.12.

Gambar 2. 12 Arsitektur Xception

2.2.13 Evaluasi Ketetapan Klasifikasi

Evaluasi model klasifikasi digunakan untuk menentukan model terbaik dengan cara Melihat kemungkinan kesalahan klasifikasi yang dilakukan oleh suatu model. Model klasifikasi akan menghasilkan nilai *output* dalam bentuk dikrit maupun kontinu. Nilai *diskrit* akan memprediksi label kelas dari testing, sedangkan *kontinu* akan mempresentasikan estimasi dari Probabilitas kelas prediksi (Tharwat, 2018). Dalam mengukur ketepatan klasifikasi, perlu diketahui jumlah data pada setiap kelas prediksi dan kelas aktual yang terdiri TP (*True Possitive*), TN (*True Negative*), FP (*False Positive*) dan FN (*False Negative*). True Positive (TP) adalah jumlah kasus di mana model berhasil memprediksi dengan benar bahwa data termasuk ke dalam kelas positif ketika label sebenarnya adalah pumlah kasus di mana model berhasil memprediksi dengan benar bahwa data termasuk ke dalam kelas negatif ketika label sebenarnya negatif dan model juga memprediksi negatif. False Positive

(FP) atau dikenal sebagai kesalahan tipe I terjadi ketika model salah memprediksi data sebagai kelas positif padahal label sebenarnya adalah negatif. Sedangkan False Negative (FN) atau kesalahan tipe II terjadi ketika model salah memprediksi data sebagai kelas negative, label sebenarnya adalah positif (Choi *et al.*, 2024). Berkut merupakan *confusion matrix* yang memuat keempat nilai tersebut.

Kelas Aktual	Kelas Prediksi		
Kelas Aktual	Positif	Negatif	
Positif	TP	FN	
Negatif	FP	TN	

Tabel 2. 2 Confusion Matrix

Kinerja klasifikasi dapat diukur dengan menggunakan accuracy, precision, recall, dan Fscore. Accuracy adalah banyak pengamatan yang terklasifikasi secara tepat. Precision adalah banyak pengamatan yang tepat terprediksi positif dari keseluruhan dengan hasil prediksi positif. Recall adalah banyaknya pengamatan yang tepat diklasifikasikan sesuai kategorinya. Fscore didapatkan dari nilai kombinasi antara precision dan recall. Dalam mengidentifikasi penyakit pada bidang medis diperlukan diagnosis yang tepat sebanyak mungkin sehingga hal yang perlu diperhatikan adalah proporsi penyakit yang teridentifikasi benar pada semua kasus penyakit. Oleh karena itu pada bidang medis sebaiknya menggunakan sensitivity (Chen, 2019). Perhitungan accuracy, precision, recall dan Fscore dapat dilakukan dengan menggunakan persamaan.

$$accuracy = \frac{TN + TP}{TN + TP + FN + FP} \tag{2.12}$$

$$precision = \frac{TP}{TP + FP} \tag{2.13}$$

$$recall = \frac{TP}{TP + FN} \tag{2.15}$$

$$fscore = \frac{2(precision \times recall)}{precision + recal}$$
 (2.16)

2.2.14 Python

Python adalah bahasa pemrograman computer serbaguna yang sering digunakan untuk membangun situs website, software atau aplikasi, mengotomasikan tugas dan melakukan analisis data. Bahasa pemrograman ini termasuk bahasa tujuan umum. Fleksibilitasnya memungkinkan pengguna untuk menciptakan berbagai jenis program dimulai dari pengolahan data, pengembangan kecerdasan buatan, hingga mengotomasikan dalam bidang industri. Python juga memiliki sintaks yang sederhana dan mudah dipahami sehingga sangat cocok bagi pemula yang baru mulai belajar pemrograman (Sharma et al., 2020).

Popularitas *python* terus meningkat berkat sifatnya yang mudah dipahami dan ekosistem yang luas. Berdasarkan survei pengembangan *Stack Overflow* tahun 2022, python menempati peringkat keempat sebagai bahasa pemrograman terpopuler. Hampir 50% responden mengaku menggunakan *python* untuk menyelesaikan tugas-tugas harian mereka. Dalam bidang pengembangan perangkat lunak *python* banyak digunakan banyak digunakan untuk pengolahan data, pembelajaran mesin dan pengembangan antarmuka *Application Programming Interface* (API). Bahkan python menjadi bahasa pemrograman dasar untuk *framework* seperti *Django* dan *Flask* yang memudahkan pengembangan aplikasi berbasis web (Marchand, 2022).

Nama *python* sendiri memiliki latar belakang yang unik. Ketika Guido van Rossum menciptakan bahasa ini pada akhir 1980-an ia terinspirasi dari acara komedi Inggris *Monty Python's Flying Circus* yang ia tonton saat itu. Menurutnya nama tersebut terdengar singkat,menarik, dan sedikit misterius. Hal ini mencerminkan filosofi *python* sebagai bahasa pemrograman yang sederhana dan mudah dipahami namun kuat (Rossum, 1996).

2.2.15 TensorFlow

TensorFlow adalah sebuah framework open source yang dirancang untuk komputasi dan machine learning. Dikembangkan oleh tim Google Brain pada tahun 2015. TensorFlow menawarkan fleksibilitas tinggi dalam membangun model machine learning dan deep learning. Framework ini mendukung operasi berbagai operasi matematika kompleks yang digunakan dalam pembuatan modeling seperti regresi, klasifikasi, pengenalan pola. TensorFlow memiliki arsitektur yang memungkinkan komputasi lintas platform dari perangkat mobile hingga kluster komputasi dasar menjadikannya pilihan populer dikalangan.

Salah satu fitur utama *TensorFlow* adalah kemampuannya untuk memanfaatkan grafik aliran data. Grafik ini memberitahu perhitungan dalam bentuk *nodes* dan *edges*, dimana *nodes* operasi matematika dan *edges* adalah data *tensor* yang mengalir diantara *nodes*. Pendekatan ini memungkinkan optimalisasi efisien, terutama untuk tugas-tugas yang memerlukan pemrosesan data besar secara paraler. *TensorFlow* mendukung berbagai bahasa pemrograman yang dapat memudahkan integrasi dengan sistem yang sudah ada seperti *Python*, *C*++, dan *javascript* (Abadi *et al.*, 2015).

Framework ini terus berkembang dengan adanya fitur seperti TensorFlow Lite untuk pengembangan aplikasi pada perangkat mobile seperti TensorFlow.js untuk implementasi pada aplikasi berbasis web, TensorFlow Extended (TFX) untuk manajemen alur kerja machine learning secara end-to-end. Dengan ekosistem yang luas dan komunitatif TensorFlow salah satu framework yang digunakan dalam pengembangan model kecerdasan buatan. Keunggulannya dalam skalabilitas dan fleksbilitas menjadikannya alat yang sangat efektif untuk menangani permasalahan data yang kompleks (TensorFlow, no date).

2.2.16 Google Colab

Google Colab adalah sebuah platform pemrograman berbasis cloud yang dikembangkan oleh oleh Google. Google Colab memberikan layanan menjalankan kode Python langsung dibrowser tanpa memerlukan pengaturan lingkungan lokal. Dengan integrasi google drive, google colab mempermudah kolaborasi antar pengguna yang memungkinkan berbagai dan mengedit notebook secara bersamaan. Colab mendukung berbagai aplikasi termasuk data, visualisasi, pengembangan model *deep learning* dan *machine learning* yang menjadikannya populer dikalangan peneliti dan praktis data (Carneiro *et al.*, 2018).

Colab menawarkan akses gratis ke sumber daya komputasi yang kuat seperti GPU dan TPU, yang dapat digunakan untuk mempercepat pelatihan model dalam deep learning dan machine learning. Google Colab juga menyediakan akses mudah ke berbagai library python populer seperti TensorFlow, NumPy, dan Matplotlib tanpa memerlukan instalasi manual. Google Colab juga dapat mengintegrasikan dengan layanan cloud lain seperti google cloud storage sehingga memperluas kemampuannya untuk mengelola data besar (Scholar and Bagane, 2024).

BAB 3

METODOLOGI PENELITIAN

3.1 Tahapan Penelitian

Pada tahapan penelitian ini, akan dijelaskan mengenai alur penelitian yang digunakan dalam pengerjaan tugas akhir. Tahapan penelitian ini memberi pedoman berupa alur penelitian yang dilakukan selama penelitian berlangsung.

Gambar 3. 1 Flowchart Tahapan Penelitian

3.1.1 Persiapan

a. Pengumpulan Data Pneumonia

Pada proses ini merupakan tahapan yang digunakan untuk pengambilan data yang dibutuhkan dalam pengembangan model klasifikasi gambar. Dataset yang digunakan mencakup data citra *X-Ray* pneumonia dan *X-Ray* normal. Populasi penelitian ini berasal dari data sekunder yang diperoleh pada platform kaggle. Sampel penelitian ini berjumlah 5.863 gambar *X-Ray* berformat JPEG.

b. Preprocessing

Tahap *preprocessing* data terhadap data citra merupakan tahap awal yang penting untuk dilakukan sebelum melakukan proses pengenalan citra. Tahap ini bertujuan untuk mempersiapkan data citra agar dapat diolah dengan baik oleh model pengenalan citra.

1. Pengurangan data citra

Pengurangan data citra merupakan suatu proses dari preprocessing data yang bertujuan untuk menyederhanakan dataset tanpa mengurangi representasi atau kualitas informasi yang relavan. Proses ini dilakukan untuk memastikan dalam pengembangan model lebih terfokus dan efisien, baik dari segi waktu pemrosesan maupun kebutuhan sumber daya komputasi. Pengurangan data citra dilakukan secara manual dengan mengurangi jumlah data menjadi 1000 data untuk setiap label.

2. Menerapkan CLAHE pada data citra

CLAHE merupakan langkah yang digunakan meningkatkan kontras gambar sehingga fitur penting dalam citra menjadi lebih terlihat dan dapat diolah dengan baik oleh model. CLAHE bekerja dengan menyesuaikan histogram lokal pada setiap gambar, menghindari peningkatan kontras yang secara berlebihan pada data (Koonsanit *et al.*, 2017).

3. Augmentasi pada citra

Augmentasi data pada citra dilakukan untuk meningkatkan variasi dataset tanpa menambah jumlah gambar asli secara langsung. Augmentasi citra dilakukan menggunakan berbagai metode. Augmentasi citra yang tepat akan meningkatkan performa model pengenalan citra.

c. Pembagian Dataset

Dalam penelitian ini, terdapat 2000 data citra *X-Ray* yang dibagi menjadi tiga kelompok yaitu, data latih, data uji, dan data validasi. Data tersebut diambil secara acak dari keseluruhan dataset citra *X-Ray*. Sebanyak 1400 data *X-Ray* digunakan sebagai data latih untuk membangun sistem. Sebanyak 300 data validasi digunakan selama pelatihan untuk memonitor kinerja model. Sebanyak 300 data digunakan untuk data uji untuk mengevaluasi kinerja akhir model setelah pelatihan selesai.

3.1.2 Implementasi

a. Pembuatan Model

Dalam tahap pembuatan model ini, model yang digunakan adalah *DenseNet201* dan *Xception*. Berikut adalah tahapan pembuatan model *DenseNet201* dan *Xception*.

1. Model DenseNet201

Model *DenseNet201* adalah yang terdiri dari 201 lapisan, yang mempunyai dense connections yang terdiri dari dense blocks dan transition layers. Setiap lapisan terhubung langsung dengan lapisan lainnya, sehingga informasi dapat tersalurkan dengan optimal dan ukuran keluaran tetap konsisten diseluruh lapisan (Huang et al., 2016). Terdapat beberapa tahap untuk pembuatan model *DenseNet201* antara lain, model menggunakan *ImageNet* dengan memanfaatkan pretrained untuk membantu model dalam mengklasifikasikan, karena model tidak perlu lagi untuk mempelajari fitur-

fitur dasar dari awal yang memerlukan dataset banyak. Menambahkan *freze* model yang memiliki fungsi agar lapisan Model yang sudah dilatih sebelumnya tidak akan diperbarui selama pelatihan, hal ini dilakukan untuk mencegah overfitting. Menambahkan kompilasi model yang digunakan untuk optimalisasi model seperti fungsi *loss*, kompilasi, pelatihan model, dan metrik evaluasi (Cobilla *et al.*, 2023).

Gambar 3. 2 Alur Pembuatan Model DenseNet201

2. Model *Xception*

Model Xception adalah model memiliki lapisan konvolusi yang menggabungkan pointwise convolution yang kemudian diikuti oleh deptwhise convolution, yang memiliki kelebihan menghemat jumlah dan meningkatkan efisiensi komputasi parameter sekaligus mempertahankan akurasi (Chollet, 2017). Terdapat beberapa tahap untuk pembuatan model Xception antara lain, model menggunakan ImageNet dengan memanfaatkan pretrained untuk membantu model dalam mengklasifikasikan, karena model tidak perlu lagi untuk mempelajari fiturfitur dasar dari awal yang memerlukan dataset banyak. Menambahkan freze model yang memiliki fungsi agar lapisan Model yang sudah dilatih sebelumnya tidak akan diperbarui selama pelatihan, hal ini dilakukan untuk mencegah *overfitting*. Menambahkan kompilasi model yang digunakan untuk optimalisasi model seperti fungsi *loss*, kompilasi, pelatihan model (Cobilla *et al.*, 2023).

Gambar 3. 3 Alur Pembuatan Model Xception

b. Evaluasi Model

Kinerja klasifikasi Model DenseNet201 dan Model Xception diukur dengan menggunakan *accuracy*, *precision*, *sensitivity*, dan *Fscore* yang diambil dari dataset testing. Untuk mengetahui nilai dari *accuracy*, *precision*, *sensitivity*, dan *Fscore* dapat diketahui dari nilai TN, TP, FN, dan FP yang diperoleh dari *confusion matrix* (hart *et al.*, 2024). Perhitungan *accuracy*, *precision*, *recall* dan *Fscore* dapat dilakukan dengan menggunakan persamaan berikut.

$$akurasi = \frac{TN + TP}{TN + TP + FN + FP} \tag{3.1}$$

$$presisi = \frac{TP}{TP + FP} \tag{3.2}$$

$$recall = \frac{TP}{TP + TN} \tag{3.3}$$

$$fs_1core = \frac{2(precision \times recall)}{precision + recall}$$
(3.3)

Akurasi ini memiliki tingkat nilai diagnosa yaitu:

- Akurasi antara 0.90 dan 1.00 diklasifikasikan sebagai berikut "excellent classification" (klasifikasi sangat baik).
- Akurasi antara 0.80 dan 0.90 diklasifikasikan sebagai berikut "good classification" (klasifikasi baik).
- Akurasi antara 0.70 dan 0.80 diklasifikasikan sebagai berikut "fair classification" (klasifikasi cukup).
- Akurasi antara 0.60 dan 0.70 diklasifikasikan sebagai berikut "poor classification" (klasifikasi kurang baik).
- Akurasi antara 0.50 dan 0.60 diklasifikasikan sebagai berikut "failure" (gagal).

3.1.3 Evaluasi

a. Tabel Perbandingan Klasifikasi Model DenseNet201 dan Xception

Perbandingan kinerja model CNN dengan arsitektur *DenseNet201* dan *Xception* dapat dilihat dari hasil kinerja klasifikasi yang terbaik, dengan membandingkan nilai akurasi,presission, recall, dan fscore pada tabel *confusion matrix* yang diperoleh dari hasil klasifikasi terbaik.

3.2 Jadwal Kegiatan

No	KEGIATAN	Bulan I				Bulan II				Bulan III				Bulan IV			
110	KLOIIIII	Ι	II	III	IV	I	II	III	IV	I	II	III	IV	Ι	II	III	IV
1	Pengumpulan																
	Data																
	Pneumonia																
2	Preprocessing																
	Data																
3	Pembagian																
	dataset																
4	Permodelan																
	Model																
	Klasifikasi																
5	Evaluasi																
	Model																
6	Perbandingan																
	Model																

Tabel 3. 1 Tabel Kegiatan

DAFTAR PUSTAKA

Abadi, M. et al. (2015) TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems. Available at: www.tensorflow.org.

Andreu, J. *et al.* (2004) 'Radiological manifestations of pulmonary tuberculosis', *European Journal of Radiology*, 51(2), pp. 139–149. Available at: https://doi.org/10.1016/j.ejrad.2004.03.009.

Bishop, C.M.. (2006) *Pattern recognition and machine learning*. Springer Science + Business Media.

Carnagie, J.O. *et al.* (2022) 'Essential Oil Plants Image Classification Using Xception Model', in *Procedia Computer Science*. Elsevier B.V., pp. 395–402. Available at: https://doi.org/10.1016/j.procs.2022.08.048.

Carneiro, T. *et al.* (2018) 'Performance Analysis of Google Colaboratory as a Tool for Accelerating Deep Learning Applications', *IEEE Access*, 6, pp. 61677–61685. Available at: https://doi.org/10.1109/ACCESS.2018.2874767.

CDC (2023) *Risk Factors for Pneumonia* | *Pneumonia* | *CDC*. Available at: https://www.cdc.gov/pneumonia/risk-factors/index.html?form=MG0AV3 (Accessed: 21 December 2024).

Chauhan, T., Palivela, H. and Tiwari, S. (2021) 'Optimization and fine-tuning of DenseNet model for classification of COVID-19 cases in medical imaging', *International Journal of Information Management Data Insights*, 1(2). Available at: https://doi.org/10.1016/j.jjimei.2021.100020.

Chen, X. (2019) *Image enhancement effect on the performance of convolutional neural networks*. Available at: www.bth.se.

Chest X-rays – The Heart Clinic (2015). Available at: https://heartclinics.org/terminology/chest-x-rays/ (Accessed: 8 December 2024).

Choi, Y. et al. (2024) TP / FP / FN / TN: Learn about true positives, false positives, false negatives, and true negatives to evaluate ML model performance · Testing with Kolena. Available at: https://docs.kolena.com/metrics/tp-fp-fn-tn/?form=MG0AV3 (Accessed: 23 December 2024).

Chollet, F. (2017) 'Xception: Deep learning with depthwise separable convolutions', in *Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017*. Institute of Electrical and Electronics Engineers Inc., pp. 1800–1807. Available at: https://doi.org/10.1109/CVPR.2017.195.

Cobilla, R. et al. (2023) 'Classification of the Type of Brain Tumor in MRI Using Xception Model', in 2023 International Conference on Electronics, Information, and

Communication, ICEIC 2023. Institute of Electrical and Electronics Engineers Inc. Available at: https://doi.org/10.1109/ICEIC57457.2023.10049979.

Devi, B.S., Chatrapati, K.S. and Sandhya, N. (2024) 'Enhanced Sugarcane Disease Detection Using DenseNet201 and DenseNet264 with Transfer Learning and Finetuning', *Frontiers in Health Informatics*, 13(3). Available at: www.healthinformaticsjournal.com.

Elvionita, C., Sari, I.P. and Nuryastuti, T. (2023) 'Evaluation the Rationality of Clinical Outcomes of Antibiotic Use and Patterns of Bacterial Resistance to Antibiotics in Children with Pneumonia', *Majalah Farmaseutik*, 19(1). Available at: https://doi.org/10.22146/farmaseutik.v19i1.76103.

Farida, Y., Trisna, A. and Nur, D. (2017) Study of Antibiotic Use on Pneumonia Patient in Surakarta Referral Hospital Studi Penggunaan Antibiotik Pada Pasien Pneumonia di Rumah Sakit Rujukan Daerah Surakarta, Journal of Pharmaceutical Science and Clinical Research.

Gonzalez, R.C.. and Woods, R.E.. (2002) Digital image processing. Prentice Hall.

Gonzalez, R.C.. and Woods, R.E.. (2008) Digital image processing. Prentice Hall.

Hafemann, L.G., Sabourin, R. and Oliveira, L.S. (2017) 'Learning features for offline handwritten signature verification using deep convolutional neural networks', *Pattern Recognition*, 70, pp. 163–176. Available at: https://doi.org/https://doi.org/10.1016/j.patcog.2017.05.012.

hart, gordon et al. (2024) Confusion Matrix: How to create and interpret confusion matrices to evaluate ML model performance · Testing with Kolena. Available at: https://docs.kolena.com/metrics/confusion-matrix/ (Accessed: 5 January 2025).

Hasan, M.A. *et al.* (2024) 'Prediction of fetal brain gestational age using multihead attention with Xception', *Computers in Biology and Medicine*, 182. Available at: https://doi.org/10.1016/j.compbiomed.2024.109155.

He, K. et al. (2015) 'Deep Residual Learning for Image Recognition'. Available at: http://arxiv.org/abs/1512.03385.

Heaton, J. (2018) 'Ian Goodfellow, Yoshua Bengio, and Aaron Courville: Deep learning', *Genetic Programming and Evolvable Machines*, 19(1–2), pp. 305–307. Available at: https://doi.org/10.1007/s10710-017-9314-z.

Hosna, A. *et al.* (2022) 'Transfer learning: a friendly introduction', *Journal of Big Data*, 9(1). Available at: https://doi.org/10.1186/s40537-022-00652-w.

Huang, G. *et al.* (2016) 'Densely Connected Convolutional Networks'. Available at: http://arxiv.org/abs/1608.06993.

Huy, V.T.Q. and Lin, C.-M. (2023) 'An Improved Densenet Deep Neural Network Model for Tuberculosis Detection Using Chest X-Ray Images', *IEEE Access*, 11, pp. 42839–42849. Available at: https://doi.org/10.1109/ACCESS.2023.3270774.

Iswari, R.A. (2021) 'KLASIFIKASI PNEUMONIA PADA GAMBAR X-RAY PARU-PARU MENGGUNAKAN CONVOLUTIONAL NEURAL NETWORK'.

Kong, L. and Cheng, J. (2022) 'Classification and detection of COVID-19 X-Ray images based on DenseNet and VGG16 feature fusion', *Biomedical Signal Processing and Control*, 77. Available at: https://doi.org/10.1016/j.bspc.2022.103772.

Koonsanit, K. et al. (2017) 'Image enhancement on digital x-ray images using N-CLAHE', in 2017 10th Biomedical Engineering International Conference (BMEiCON), pp. 1–4. Available at: https://doi.org/10.1109/BMEiCON.2017.8229130.

Manafe, D. (2020) *Covid-19 Masih Panjang, Indonesia Kekurangan 1.294 Dokter Paru*. Available at: https://www.beritasatu.com/news/674573/covid19-masih-panjang-indonesia-kekurangan-1294-dokter-paru (Accessed: 1 January 2025).

Marchand, W.R. (2022) *The Rising Popularity of Python - https://pythoncircle.com*. Available at: https://pythoncircle.com/post/763/the-rising-popularity-of-python/?form=MG0AV3 (Accessed: 25 December 2024).

Nurin, F. (2024) *9 Faktor Risiko Pneumonia yang Perlu Anda Waspadai*. Available at: https://hellosehat.com/pernapasan/pneumonia/faktor-risiko-pneumonia/?form=MG0AV3 (Accessed: 21 December 2024).

Pan, C. *et al.* (2023) 'FemurTumorNet: Bone tumor classification in the proximal femur using DenseNet model based on radiographs', *Journal of Bone Oncology*, 42. Available at: https://doi.org/10.1016/j.jbo.2023.100504.

Panthakkan, A. *et al.* (2022) 'Concatenated Xception-ResNet50 — A novel hybrid approach for accurate skin cancer prediction', *Computers in Biology and Medicine*, 150. Available at: https://doi.org/10.1016/j.compbiomed.2022.106170.

Patterson, J. and Gibson, A. (2017) *Deep Learning: A Practitioner's Approach*. O'Reilly Media. Available at: https://books.google.co.id/books?id=qrcuDwAAQBAJ.

Pittara (2022) *Pencegahan Pneumonia - Alodokter*. Available at: https://www.alodokter.com/pneumonia/pencegahan?form=MG0AV3 (Accessed: 21 December 2024).

Pranita, E. and Sumartiningtyas, H.K.N. (2020) *Indonesia Peringkat Ketujuh Kematian Balita akibat Pneumonia di Dunia, Apa Sebabnya? Halaman all - Kompas.com.* Available at: https://www.kompas.com/sains/read/2020/11/09/173300723/indonesia-

peringkat-ketujuh-kematian-balita-akibat-pneumonia-di-dunia-apa?page=all (Accessed: 1 January 2025).

Rahman, T., Baras, A.S. and Chellappa, R. (2025) 'Evaluation of a Task-Specific Self-Supervised Learning Framework in Digital Pathology Relative to Transfer Learning Approaches and Existing Foundation Models', *Modern Pathology*, 38(1). Available at: https://doi.org/10.1016/j.modpat.2024.100636.

Ramdhan, A., Bustomi, M.A. and Faridawati (2014) 'KLASIFIKASI CITRA RONTGEN PARU PARU DENGAN EKSTRAKSI FITUR HISTOGRAM DAN METODE NAIVE BAYES'.

Rindrasari, R. (2018) *KLASIFIKASI KELAS RISIKO PASIEN PNEUMONIA MENGGUNAKAN METODE SUPPORT VECTOR MACHINE-GENETIC ALGORITHM (SVM-GA) HYBRID*.

Rossum, G. van (1996) Foreword for 'Programming Python' (1st ed.) | Python.org. Available at: https://www.python.org/doc/essays/foreword/ (Accessed: 25 December 2024).

Sadik, R. *et al.* (2023) 'An in-depth analysis of Convolutional Neural Network architectures with transfer learning for skin disease diagnosis', *Healthcare Analytics*, 3. Available at: https://doi.org/10.1016/j.health.2023.100143.

Saleh, A.W. *et al.* (2023) 'An Alzheimer's disease classification model using transfer learning Densenet with embedded healthcare decision support system', *Decision Analytics Journal*, 9. Available at: https://doi.org/10.1016/j.dajour.2023.100348.

Sartiwi, W. *et al.* (no date) 'Jurnal Abdimas Saintika LATIHAN BATUK EFEKTIF PADA PASIEN PNEUMONIA DI RSUD SAWAHLUNTO'. Available at: https://jurnal.syedzasaintika.ac.id.

Scholar, M.T. and Bagane, M. (2024) 'Google Colab: The Free Cloud Platform Powering Machine Learning', 12, p. 1.

Sewak, M., Karim, Md.R. and Pujari, P. (2018) *Practical Convolutional Neural Networks: Implement advanced deep learning models using Python*. Packt Publishing.

Sharma, A. et al. (2020) 'Python: The Programming Language of Future'.

Soewu, T. et al. (2022) 'Lung Cancer Detection using Image Processing', in 2022 5th International Conference on Contemporary Computing and Informatics (IC3I), pp. 1206–1211. Available at: https://doi.org/10.1109/IC3I56241.2022.10072589.

Sulistiyani Ratna, S., Setyawan Arianto, F. and Komarudin, M. (2016) *PENGOLAHAN CITRA*; *DASAR DAN CONTOH PENERAPANNYA*.

Tang, X. and Rashid Sheykhahmad, F. (2024) 'Boosted dipper throated optimization algorithm-based Xception neural network for skin cancer diagnosis: An optimal approach', *Heliyon*, 10(5). Available at: https://doi.org/10.1016/j.heliyon.2024.e26415.

TensorFlow (no date). Available at: https://www.tensorflow.org/ (Accessed: 25 December 2024).

Tharwat, A. (2018) 'Classification assessment methods', *Applied Computing and Informatics*, 17(1), pp. 168–192. Available at: https://doi.org/10.1016/j.aci.2018.08.003.

Upasana, C., Tewari, A.S. and Singh, J.P. (2022) 'An Attention-based Pneumothorax Classification using Modified Xception Model', in *Procedia Computer Science*. Elsevier B.V., pp. 74–82. Available at: https://doi.org/10.1016/j.procs.2022.12.403.

Virnodkar, S.S. *et al.* (2022) 'CaneSat dataset to leverage convolutional neural networks for sugarcane classification from Sentinel-2', *Journal of King Saud University - Computer and Information Sciences*, 34(6), pp. 3343–3355. Available at: https://doi.org/10.1016/j.jksuci.2020.09.005.

Wikanargo, M.A. and Thenata, A.P. (2018) 'IMAGE SEGMENTATION OF CHEST X-RAYS FOR ABNORMALITY PATTERN RECOGNATION IN LUNGS USING FUZZY C-MEANS METHOD', *Jurnal Terapan Teknologi Informasi*, 2(2), pp. 101–111. Available at: https://doi.org/10.21460/jutei.2018.22.98.

Zeng, T. *et al.* (2024) 'AI diagnostics in bone oncology for predicting bone metastasis in lung cancer patients using DenseNet-264 deep learning model and radiomics', *Journal of Bone Oncology*, 48. Available at: https://doi.org/10.1016/j.jbo.2024.100640.

Zhang, A. et al. (2021) Dive into Deep Learning — Dive into Deep Learning 1.0.3 documentation. Available at: https://d2l.ai/ (Accessed: 12 December 2024).