A NEW APPROACH TO EXTRACT MEANINGFUL CLINICAL INFORMATION FROM MEDICAL NOTES

by: Awanish Ranjan & Rabindra Bista

Department of Computer Science and Engineering
Kathmandu University
Dhulikhel, Nepal

rbista@ku.edu.np, awa.ran@gmail.com

December 06, 2017

Outline

- Introduction
- Literature Review
- Research Methodology
- Computational Framework
- Results & Discussion
- Conclusion & Future Work
- Application Areas

Introduction

- Medical Notes
 - "Pt presents with hyperlipidemia and strong family hx of CAD. Keeps active with job, kids, and softball, but no routine cardio exercise."
- Unstructured Data
 - Can't be used as direct input for further processing
- Structured Data
 - Regular pattern and used for further processing

Introduction (cont..)

- Natural Language Processing techniques to solve this problem
- Domain
 - English Language
 - Health care data
 - Medical notes text files
 - Extracted information
 - Diagnosis, Procedure, Drug, Vital and Habits

Objectives

- Propose a new approach to extract meaningful data from clinical notes
 - Extract meaningful clinical information from notes
 - Store the information for future use
 - Compare the effectiveness of the proposed system with some existing system

Literature Review

- MedEX Xu, H. et.al [2009]
 - Structured data extraction
 - Input Clinical Text:
 - "acetaminophen
 - 325-650 mg po/pr q4 -6h prn"
- Structured Output:
 - Drugname: acetaminophen
 - Strength: 325-650 mg, Route: pc/pr
 - Frequency: q4 -6h
 - Necessity: pm
- Limited to Drug Data only

Literature Review (cont..)

- Other relevant systems
 - cTAKES Sovava, K.G. et. al [2010]
 - YTEX Glara, V. et. al. [2011]
 - MetaMap Aronson, et. al. [2001]
 - MEDLEE Friedman et. al [1994]
- Problems with existing system
 - Less Accuracy
 - Too specific
 - Lot of third party dependencies

Research Framework

Computational Framework

Computational Framework (cont..)

- Input Medical notes, text files
- 1. Sentence Detector- ["FBS & hgA1c both slightly improved, but still prediabetes (HgA1c = 5.8%).", "But did instruct on diet/exercise."]

2. Preprocessing

- Abbreviation handling: dx -> diagnosis
- Punctuation handling: don't" -> do not
- Lower case conversion
- ASCII character removal

Computational Framework (cont..)

- 3. Tokenizer: 'FBS', '&', 'hgA1c', 'both'
- 4. Parts-Of-Speech (POS) Tagging:
 - ('FBS', 'NNS') ('&', 'CC') ('hgA1c', 'NNP') ('both', 'DT') ('slightly', 'RB') ('improved', 'VBN')
- 5. Noun-Verb (NN-VB) Extractor
 - Noun phrases NN, NNS, NNP, NNPS
 - Verb phrases VB, VBD, VBG, VBN, VBP, VBZ

Computational Framework (cont..)

6. Named Entity Recognition

- Detection of elements Diagnosis, Procedure,
 Drug, Vital, Habit
- Medical corpus building, training and matching

Medical Corpus

6.1 Medical corpus

- Training Data Collection
 - 15000 medical notes as training data
 - Health care data

Medical Corpus (cont..)

Manual Annotation

States her labs were normal but just needs to loose ~20#'s. States she use to ba able to loose
START:vital> wt <END> fairly easy but struggles as she gets older. Pt is a RN, works night shift at St rancis. Tries to take aerobics and zumba classes 3x/week. Discussed kcal and carb intake,
START:habit> exercise <END> goals, sleep. Pt is to track intake and <START:habit> exercise <END> using \myfitnesspal\" and f/u x 1 month via phone for wt check."

Pt presents with PMHx of START:diagnosis diabetes SEND ~> 20 yrs. START:vital HgbA1c SEND way above goal. Pt is on an START:drug insulin pump SEND and is followed by his endo q 3 months. It states he struggles with elevated START:vital FBS SEND. Pt states that he usually always enters his carb intake and will use his bolus before meals. Pt has been through Diabetes Education many times and feels comfortable counting carbs. Pt is an Atheletic director and works long hours, eats big meal for dinner and will drink a few beers. Discussed using Carelink to download pump, and talking to doctor re wearing CGM. Will refer pt to Medtronics Rep who has worked with pt and endo in the past to adjust pump settings to get START:vital FBS SEND w/in goal range.

It presents with <START:diagnosis> diabetes<END>, currently on <START:drug> Janumet <END>. Wants
:o get her <START:vital> HgbA1c <END> less than 6.1. Has been using \myyfitnesspal\" to track intake.

Medical Corpus (cont..)

- Corpus File Generation
 - Different files for different corpus
- Redundancy Handling

```
diabetes
    diabetes
    hydrocephalus
     shunt malfunction
    diabetes
    diabetes
    diabetic
     diabetes
                       Redundant information
     diabetes
1.0
    diabetes
    diabetes
    diabetes
12
    hvperlipidemia
```

Entity Detection

id	set_id	note_id	sent_id	detected_element	element_type	updated_date
121445	set2	Note_Number-221:	Sent_Number-4:	exercise	habit	2017-09-01 10:57:53
121433	set2	Note_Number-221:	Sent_Number-2:	chol	vital	2017-09-01 10:57:53
121377	set2	Note_Number-217:	Sent_Number-5:	lab	procedure	2017-09-01 10:57:53
121368	set2	Note_Number-217:	Sent_Number-2:	chol	vital	2017-09-01 10:57:53
121354	set2	Note_Number-215:	Sent_Number-3:	nrts	procedure	2017-09-01 10:57:53
121341	set2	Note_Number-213:	Sent_Number-4:	chewing	habit	2017-09-01 10:57:53
121315	set2	Note_Number-211:	Sent_Number-2:	chewing	habit	2017-09-01 10:57:53
121289	set2	Note_Number-210:	Sent_Number-4:	diab	diagnosis	2017-09-01 10:57:52
121283	set2	Note_Number-210:	Sent_Number-3:	diab	diagnosis	2017-09-01 10:57:52

Additional Components

6.2 Negation Handling

Negative words, no, none, free etc

6.3 Bigram Analysis

- Bigram Generation
- Bigram Detection

6.4 Stemming

- Porter Stemmer
- Stemmed Corpus file
- Stemmed NER

Results & Discussions

Types of Test Results

		Condition		
		Present	Absent	
Test	Positive	True Positive (TP)	False Positive (FP)	
	Negative	False Negative (FN)	True Negative (TN)	

Results & Discussions (cont..)

Accuracy Parameters

•
$$Total\ Accuracy = \frac{TP + TN}{TP + FP + TN + FN}$$

•
$$Precision = \frac{TP}{TP+FP}$$

•
$$Recall = \frac{TP}{TP + FN}$$

•
$$F - Score = \frac{2*Precision*Recall}{Precision + Recall}$$

Results – Varying Corpus Size (cont..)

Accuracy Vs. Training Data Size

Results — Varying Test Data

4 different test set

Results — Comparison with MedEX

Conclusion

- Able to extract meaningful information
- Results saved in database
- Accuracy improved
- Contribution to the knowledge
 - Medical Corpus 15000+ notes.
 - Integrating the techniques of negation handling, bigram analysis and stemming in same system
 - More generalization
 - Improved accuracy

Future Works

- Corpus size can be increased
- Can be extended to detect other medical information and further parts of speech
- To build a learning system which will allow to add more undetected true positive elements in corpus
- Can be extended to work on speech and visual data
- Trigram & further n-gram analysis
- Other accuracy parameters like Specificity

Application Areas

- Extracting information from
 - Family history
 - Discharge summary
- Automatic reporting during inter-department transfer
- Overall reporting
- Developing standards
- Machine learning
 - Prediction systems
 - Suggestion systems

References

- 1. Xu, H.; Stenner, S.P.; Doan, S.; Johnson, K.B.; Waitman, L.R.; Denny, J.C. (2009, October 21). *MedEx: a medication information extraction system for clinical narratives*. Journal of the American Medical Informatics Association (JAMIA) pp. 19-24
- 2. Savova G.K.; Masanz, J.J.; Ogren, V.P.; Zheng, J.; Sohn, S.; Kipper-Schuler, C.K.; Chute, G.C. (2010, June 29). *Mayo clinical Text Analysis and Knowledge Extraction System (cTAKES): architecture, component evaluation and applications.* Journal of the American Medical Informatics Association (JAMIA) pp. 507-513.
- 3. Garla, V.; Re, L.V. III; Dorey-Stein, Z.; Kidwai, F.; Scotch, M.; Womack, J.; Justice, A.; Brandt, C. (2011, April 22). *The Yale cTAKES extensions for document classification: architecture and application.* Journal of the American Medical Informatics Association (JAMIA) pp. 1-7
- 4. Aronson, A.R. (2001). Effective Mapping of Biomedical Text to the UMLS Metathesaurus: The MetaMap Program. AMIA
- 5. Friedman, C.; Alderson P.O.; Austin J.H.M.; Cimino J.J.; Johnson S.B. (1994, April). *A General Natural-Language Test Processing for Clinical Radiology.* Journal of the American Medical Informatics Association, Volume 1 Number 2.

Queries??

Thank You!!