Summary

Assignment 4_myusuf2

Solution 1.

	Task (Unit Shipping Cost)			Unit	Task	Monthly
	Warehouse (\$) 1	Warehouse (\$) 2	Warehouse (\$) 3	Production Cost (\$)	Warehouse D (Dummy)	Production Capacity
Plant A (Assignee)	22	14	30	600	0	100
Plant B (Assignee)	16	20	24	625	0	120
Monthly Demand	80	60	70		10	

Let D = A Dummy variable, the cost of assigning a dummy machine to a location is 0, and that this assignment doesn't exist.

Let Z represent the total shipping cost

Xij represents the number of truckloads shipped from Plant i to warehouse j We have 6 decision variables Xij to minimize Z

Objective Function:

Min: Min: $622 \times A1 + 614 \times A2 + 630 \times A3 + 641 \times B1 + 645 \times B2 + 649 \times B3 + 0 \times AD + 0 \times BD$;

Constraints:

```
xA1 + xA2 + xA3 + xAD = 100;

xB1 + xB2 + xB3 + xBD = 120;

xA1 + xB1 = 80;

xA2 + xB2 = 60;

xA3 + xB3 = 70;

xAD + xBD = 10;

Xij >= 0
```

The final solution has been solved by R program and that there is a total cost of \$132,790, the Dummy Warehouse will have no allocation from iether Plant A or Plant B

Solution 2

OBJECTIVE FUNCTION

Min Z = 1.52 X14 + 1.60 X15 + 1.40 X16 + 1.70 X24 + 1.63 X25 + 1.55 X26 + 1.45 X34 + 1.57 X35 + 1.30 X36 + 5.15 X47 + 5.69 X48 + 6.13 X49 + 5.63 X410 + 5.80 X411 + 5.12 X57 + 5.47 X58 + 6.05 X59 + 6.12 X510 + 5.71 X511 + 5.32 X67 + 6.16 X68 + 6.25 X69 + 6.17 X610 + 5.87 X611;

SUBJECT TO THE CONSTRAINTS

```
x14 + x15 + x16 = 93;

x24 + x25 + x26 = 88;

x34 + x35 + x36 = 95;

x47 + x57 + x67 = 30;

x48 + x58 + x68 = 57;

x49 + x59 + x69 = 48;

x410 + x510 + x610 = 91;

x411 + x511 + x611 = 48;

x412 + x512 + x612 = 2;

x14 + x24 + x34 - x47 - x48 - x49 - x410 - x411 - x412 = 0;

x15 + x25 + x35 - x57 - x58 - x59 - x510 - x511 - x512 = 0;

x16 + x26 + x36 - x67 - x68 - x69 - x610 - x611 - x612 = 0;x
```