WE CLAIM:

/	3	and a
	4	eleme
	5	from t
	6	
	7	
IJJ KI	8	•
	9	
j V	10	
	11	
	12	
	13	

1

2

3

1. A method of manufacturing a disk drive formed from a head disk
assembly (HDA) containing at least one magnetic disk with a magnetic surface
and a head stack assembly (HSA) that includes a transducer head with a write
element for writing data to the magnetic disk and a read element for reading data
from the magnetic disk, the method comprising the steps of:
mounting the HDA in a servo track writer and moving the HSA to
desired positions over the magnetic disk;
measuring a width of the read element with the servo track writer;
measuring a width of the write element with the servo track writer;
determining a track pitch based on the measured width of the read
element and the measured width of the write element; and
writing servo tracks onto the magnetic disk at the determined track
pitch.

2 card having a microprocessor that is placed in communication with the STW when the HDA is mounted in the STW and wherein the microprocessor 3

participates in the steps of measuring the widths of the read and write elements 4

2. The method of Claim 1 wherein the HDA carries a controller

3. The method of Claim 1 wherein the NDA is a bare HDA and 1

wherein the STW includes independent processing capability for performing the

steps of measuring the widths of the read and write elements.

P612

1

1	4. The method of Claim 1 wherein the HDA contains a plurality of
2	magnetic surfaces and corresponding transducer heads, wherein the measuring
3	steps are performed for each transducer head to establish a collection of width
4	measurements; and wherein the determining steps is accomplished based on
5	the collection of width measurements.
1	5. The method of Claim 1 wherein the steps of measuring the
2	width of the read element and the width of the write element are accomplished
3	by:
4	writing a calibration track with the write element;
5	positioning the read element to a first side of the calibration track;
6	gathering amplitude data by incrementally moving the read element
7	from the first side of the calibration track to a second
8	opposite side while reading data at each incremental
9	position; and
0	calculating the width of the read element and the width of the write
1	element based on the amplitude data.

1	6. The method of Claim 1 wherein the step of determining a track
2	pitch based on the measured width of the read element and the measured width
3	of the write element is accomplished by:
4	establishing a nominal pair of width values;
5	using a nominal track pitch when the measured widths are within
6	corresponding +/- limits of the nominal pair of width values;
7	using a narrower than nominal track pitch when the measured
8	width of the write elements is narrower than the - limit of the
9	nominal width value of the write element; and
10	using a wider than nominal track pitch when the measured width of
11	the write element is wider than the + limit of the nominal
12	width value of the write element.
1	

4

5

1

	\
2	at least one magnetic disk that includes a magnetic surface and a head stack
3	assembly (HSA) that includes a transducer head with a write element for writing
4	data to the magnetic disk and a read element for reading data from the magnetic
5	disk, the disk drive produced using the steps of:
6	measuring a width of the read element while the HDA is in a servo
7	track writer;
8	measuring a width of the write element while the HDA is in a servo
9	track writer;
10	determining a track pitch based on the measured width of the read
i 1	element and the measured width of the write element; and
12	writing servo tracks onto the magnetic disk at the determined track
13	pitch.
1	8. The disk drive of Claim 7 where the transducer head with a write
2	element for writing data to the magnetic disk and a read element for reading data
3	from the magnetic disk is a magneto-resistive transducer head.
1	9. The disk drive of Claim wherein the HDA contains a plurality of
2	magnetic surfaces and corresponding transducer heads, wherein the measuring
3	steps are performed for each transducer head to establish a collection of width

measurements; and wherein the determining steps is accomplished based on

,7. A disk drive comprising a head disk assembly (HDA) containing

the collection of width measurements.

1	1p. The disk drive of Claim 7 wherein the steps of measuring the
2	width of the read element and the width of the write element are accomplished
3	by:
4	writing a calibration track with the write element;
5	positioning the read element to a first side of the calibration track;
6	gathering amplitude data by incrementally moving the read element
7	from the first side of the calibration track to a second
8	opposite side while reading data at each incremental
9	position; and
10	calculating the width of the read element and the width of the write
11	element based on the amplitude data.
1	

	1	1,1. A method of measuring a width of a read element and a width
	2	of a write element contained within a disk drive formed from a head disk
	3	assembly (HDA) containing at least one magnetic disk with a magnetic surface
	4	and a head stack assembly (HSA) that includes a transducer head formed from
	5	the read and write elements, the method comprising the steps of
	6	writing a calibration track with the write element;
	7	positioning the read element to a first side of the calibration track;
7	8	gathering amplitude data by incrementally moving the read element
	9	from the first side of the calibration track to a second
	10	opposite side while reading data at each incremental
ři ři	11	position; and
= =	12	calculating the width of the read element and the width of the write
44	13	element based on the amplitude data.
14		\