XGBoost: A Scalable Tree Boosting System

COMP7404 Project Group 32 Presentation

Group Members

Kunyu Wang 3036372992

Ruixi Liu 3036371223

TABLE OF CONTENT

- 1. TREE BOOSTING
- 2. SPLIT FINDING ALGORITHMS
- 3. SYSTEM DESIGN
- 4. END TO END EVALUATIONS

TREE BOOSTING

Regression Tree

- Pick one feature on each split
- Divide the samples into "pure" leaf nodes
- · One score in each leaf node

tree1

tree2

Use Computer
Daily

N

to male?

to male?

N

to male?

N

to male?

to male?

N

to male?

to

Regression Tree Ensemble

Sum up the predicted score from each tree

TREE BOOSTING

Model: Additive functions

- $\hat{y}_i = \phi(x_i) = \sum_{k=1}^K f_k(x_i), f_k \in F$
- $F = \{f(x) = w_{a(x)}\}, q: \mathbb{R}^m \to T, w \in \mathbb{R}^T$
- K trees
- q: the structure of each tree to map an example to the leaf index
- T: the number of leaf nodes in each tree
- w: leaf weights, or predicted scores

Objective (Regularization):

- $\min L(\phi) = \sum_{i} l(\hat{y_i}, y_i) + \sum_{k} \Omega(f_k)$ $where \Omega(f_k) = \gamma T + \frac{1}{2} \lambda ||w||^2$
- We penalize the complexity of the model, the tree size T and the weights w

GRADIENT TREE BOOSTING

- Optimization: Boosting
 - At t iteration (tree), $\hat{y}_i^{(t)} = \hat{y}_i^{(t-1)} + f_t(x_i)$
 - Objective: $L^{(t)} = \sum_{i=1}^{n} l\left(y_i, \hat{y}_i^{(t-1)} + f_t(x_i)\right) + \Omega(f_t)$
 - Second-order approximation:

$$L^{(t)} \cong \sum_{i=1}^n \left[l\left(y_i, \widehat{\boldsymbol{y}}_i^{(t-1)}\right) + g_i f_t(\boldsymbol{x}_i) + \frac{1}{2} h_i f_t^2(\boldsymbol{x}_i) \right] + \Omega(f_t)$$
 where gi and hi are the first and second order gradient statistics.

- Leave the constant term:
 - $\tilde{L}^{(t)} = \sum_{i=1}^{n} \left[g_i f_t(x_i) + \frac{1}{2} h_i f_t^2(x_i) \right] + \Omega(f_t)$

GRADIENT TREE BOOSTING

- Treat each leaf node as a group:
 - $I_i = \{i | q(x_i) = j\}$: the instance set of leaf j

•
$$\tilde{L}^{(t)} = \sum_{j=1}^{T} [(\sum_{i \in I_j} g_i) w_j + \frac{1}{2} (\sum_{i \in I_j} h_i + \lambda) w_j^2] + \gamma T$$

- By Calculus,
 - we can get the optimal w_i^*
 - Substitute the wj, we can have an optimal value $\tilde{L}^{(t)}$
- Use it as Split Criteria,
 - When we split one node, the loss reduction is expressed as

$$L_{split} = \tilde{L}^{(t)}(parent) - \tilde{L}^{(t)}(left\ child) + \tilde{L}^{(t)}(right\ child)$$

$$\mathcal{L}_{split} = \frac{1}{2} \left[\frac{\left(\sum_{i \in I_L} g_i\right)^2}{\sum_{i \in I_L} h_i + \lambda} + \frac{\left(\sum_{i \in I_R} g_i\right)^2}{\sum_{i \in I_R} h_i + \lambda} - \frac{\left(\sum_{i \in I} g_i\right)^2}{\sum_{i \in I} h_i + \lambda} \right] - \gamma$$

- Basic Exact Greedy Algorithm:
 - · Grow a tree from the root
 - At each internal node, we enumerate all the possible splits on all the features
 - Improvement:
 - · Sort the feature values firstly
 - In python, we can use np.cumsum to accumulate the gradient statistics efficiently

- Approximate Algorithm:
 - Not to check all the possible points for split, we only consider candidates.
 - How to find candidates: Weighted Quantile Sketch
 - Variants:
 - **Global Variant:** propose all the candidate splits in the initial phase of tree construction
 - Local Variant: re-propose candidates after each split

- Sparsity-aware Split Finding:
 - Background: sometimes we face a sparse input
 - Onehot encoding of categorical variables
 - Missing values in data
 - · Zero values of feature
 - Solution: Assign a default direction at each split for the missing values

- How to get the default direction:
 - We only consider non-missing values
 - Enumerate non-missing values of each feature
 - If loss is reduced the most (or gain most) with a split, then, all
 missing values go to the opposite direction

```
for k=1 to m do  | // enumerate missing value goto right | G_L \leftarrow 0, H_L \leftarrow 0 | for <math>j in sorted(I_k, ascent order by \mathbf{x}_{jk}) do  | G_L \leftarrow G_L + g_j, H_L \leftarrow H_L + h_j | G_R \leftarrow G - G_L, H_R \leftarrow H_L + H_j | score \leftarrow \max(score, \frac{G_L^2}{H_L + \lambda} + \frac{G_R^2}{H_R + \lambda} - \frac{G^2}{H + \lambda}) | end | // enumerate missing value goto left | G_R \leftarrow 0, H_R \leftarrow 0 | for <math>j in sorted(I_k, descent order by \mathbf{x}_{jk}) do  | G_R \leftarrow G_R + g_j, H_R \leftarrow H_R + h_j | G_L \leftarrow G - G_R, H_L \leftarrow H - H_R | score \leftarrow \max(score, \frac{G_L^2}{H_L + \lambda} + \frac{G_R^2}{H_R + \lambda} - \frac{G^2}{H + \lambda}) | end | end | Output: Split and default directions with max gain
```

Experiments:

Settings:

- 1. Python, i7-9750H CPU, 6 cores, 12 logical processors
- 2. Dataset:
 - 1. Allstate insurance claim dataset
 - predict the likelihood of an insurance claim (i.e. claim or not)
 - 3. Sample Size: 10K
 - 4. Features: 4226¹, most are sparse features (onehot encoded)

^{1:} Original paper has 4227 features. After our verification, for the 10K samples randomly selected from the whole dataset, one categorical feature lack missing value level (i.e. Cat6 ='?'). It should have been 7 levels but our selected data only has 6 levels.

- Our attempts to reproduce the results:
 - KEY: Parallel Learning (Feature Parallel):
 - For each feature in split finding process, we follow the same algorithm to calculate the max split gain (loss reduction)
 - We can use different threads in CPU to process different features parallelly

Failure:

Difficulty in python:

Python has Global Interpreter Lock (GIL), which ensures that **only one thread** can execute **Python bytecode** at any given moment.

Solutions:

- We use numba (@jit(nogil=True)) to unlock the GIL's restriction.
 Numba is a Just-In-Time (JIT) compiler for Python that optimizes numerical computations by converting Python functions into high-performance machine code
- Column Blocks structure (see later introduction): each column is sorted by the feature values
- Approximate Algorithm Improvement: use binary search to find the location of the threshold value

Conclusion:

- Parallel learning decreases the time cost for tree construction.
- 2. Sparse aware algorithm shows high efficiency.

Problem left:

The increasing trend of sparse algorithm may be because of the **high thread management overhead of** Python and more **memory cost** for non-missing mask. It can be improved with low level languages.

Verify by original codes:

System Design

Column Block for Parallel Learning

 Problem: Sorting data is the most time-consuming step in tree learning, and traditional methods require repeated sorting.

• Block Structure Design:

- (1) Data is stored in Compressed Sparse Column (CSC) format, with each column pre-sorted by feature values.
- (2) The block structure requires only a single preprocessing step before training and is reused in subsequent iterations.

Algorithm Adaptation:

- (1) Exact Greedy Algorithm: Stores the full dataset in a single block.
- (2) Approximate Algorithm: Partitions data into multiple blocks

Column Block for Parallel Learning

Time Complexity Optimization:

Exact Greedy Algorithm:

Original space-aware algorithm: $O(Kd\|\mathbf{x}\|_0 \log n)$

Optimized: $O(Kd\|\mathbf{x}\|_0 + \|\mathbf{x}\|_0 \log n)$

Approximate Algorithm:

Original binary search: $O(Kd\|\mathbf{x}\|_0 \log q)$

(q = number of candidates, typically 32-100).

Optimized: $O(Kd\|\mathbf{x}\|_0 + \|\mathbf{x}\|_0 \log B)$

(eliminates the logq factor; B = block size).

Cache-aware Access

- Problem: Direct read/write dependencies lead to performance degradation.
- · For the exact greedy algorithm:

Allocate an internal buffer for each thread to prefetch gradient statistics in batches.

For the approximate algorithm:

Define the block size as the max-number of examples contained in a block.

Too small blocks: Low thread workload and poor parallel efficiency.

Too large blocks: Gradient statistics exceed cache capacity, causing cache misses.

Blocks for Out-of-core Computation

Objective:

Utilize disk space beyond memory capacity to process data exceeding memory limits, enabling scalable learning.

• Block Compression:

Blocks are compressed column-wise and decompressed on-the-fly by an independent thread when loaded into main memory.

· For row indices:

Subtract the row index by the starting index of the block. Store each offset using a 16-bit integer. Achieves a compression ratio of approximately 26% to 29%.

END TO END EVALUATIONS

DataSets:

Dataset	n	т	Task
Allstate	10 M	4227	Insurance claim classification
Higgs Boson	10 M	28	Event classification
Yahoo LTRC	473K	700	Learning to Rank
Criteo	1.7 B	67	Click through rate prediction

END TO END EVALUATIONS

Classification:

Method	Time per Tree (sec)	Test AUC
XGBoost	0.6328	0.8124
scikit-learn	28.51	0.8302
R.gbm	1.032	0.6224

END TO END EVALUATIONS

Learning to Rank:

Method	Time per Tree (sec)	NDCG@10
XGBoost	0.813	0.7839
pGBRT [22]	2.576	0.7915

- Single-machine scenario: XGBoost is significantly faster than competitors in classification and ranking tasks.
- Out-of-core scenario: Compression and sharding techniques enable single machines to handle large-scale data efficiently.