─ University of Idaho —

We showed last time

f(x) = f(x+y) - f(x)

+ O(a)

error ~ C.A

b=1

Error is a linear function of b.

Error ~ C.AP In general,

p: probe of convergence

log (a.b) = log a + log b logan = n loga

> log(Error) ~ lag(+ p. log(4) y pag(Error)

- w/ slope P

Los(A)

— University of Idaho —

Hence, for large h, the truncation error dominates the roundoff error, but for anall 4, the roundoff 3. The total error is O(4) + O(E/4). error dominates.

 $\frac{No + e}{D_{-} f(x) = \frac{f(x) - f(x - h)}{A}}$

backward difference or left-rior difference

 $t_0 + t_0 = t_0 + t_0 = t_0 + t_0$

central difference

メーな、メ

x-h x x+h

One can show f'(x) = D - f + O(h);

 $f'(x) = D_o f + O(4^2)$

$$E_X = f(x) = x^2 - 3x + 2 \Rightarrow p = 1, 2$$

$$Ex + f(x) = x^2 - 3 \Rightarrow p = \pm \sqrt{3}$$

☐ University of Idaho —

subjuterval [ath , b]. Determine on which tubinterval Consider the midpoint ath. The root is contained in either left subinterval [a, ath] or right ourumes values of opposite sign by computing f(atb) and comparing w|f(a) and f(b). Then

repeat.

Bisection method (assume f(a). f(b) < 0)

2. Xn = an + bn : current estimate of the root 4. n=0, $a_0=a_1$, $\theta_0=\theta$

if f(xn). f(an) < 0, then auxi = au, bux, = xu

y, else aux = Xu, bux, = by

yet n=4+1 and go to hime 2

	4(1)=-2 <0,
iversity of Idaho	$4(x) = x^{2} - 3$
	х Ц

$$E_X = x^{-2}$$
, $4(1) = -2 < 0$, $4(2) = 1>0$
There is a root P in $[1,2]$
 $p = \sqrt{3} = 1,73205$

3	1 p - Xu	0, 2321 0, 0179 0, 1071 0, 0776 0, 0133	
	£(xn)	0.0625 0.0625 -0.3597 -0.1523	tion method
	×	1.5 1.45 1.625 1.625 1.6875 1.1875	for the bisechism
	_g	よれなながれ	
-	a r	- # # # # # # # # # # # # # # # # # # #	Errer bou
	۶	0 7 11 10 3	- <u>U</u>

 $= \dots = \left(\frac{1}{2}\right)^{n} |b_{o} - a_{o}|$ [1p-xn/ <(1)4 16-a) | p-xn | < | bn-an | = = | bn-1 - qn-1 | N

— University of Idaho —

Ex Now many steps are needed to ensure that the error is less than 10-3?

A=1,
$$8=2$$
 | learn | $\leq (\frac{1}{2})^n | b-a| \leq 10^{-3}$

(1) n < 10-3

210=1024

3 optioms.