太戈编程练习题

(请选手务必仔细阅读本页内容)

一、题目概况

中文题目名称	纯种	线段覆盖	手机看小说	丢三落四
英文题目与子目录名	pure	cover	reader	missing
可执行文件名	pure	cover	reader	missing
输入文件名	pure.in	cover.in	reader.in	missing.in
输出文件名	pure.out	cover.out	reader.out	missing.out
每个测试点时限	1 秒	1 秒	1秒	1 秒
测试点数目	10	10	10	10
每个测试点分值	10	10	10	10
附加样例文件	无	无	无	无
结果比较方式	全文比较,过滤末行后空行,不过滤中间行行末空格			
题目类型	传统	传统	传统	传统
运行内存上限	256M	256M	256M	256M

二、提交源程序文件名

二、提交源程序文件名			24 10	X
对于 C++语言	pure.cpp	cover.cpp	reader.cpp	missing.cpp
		NNN	etiger.V	Y.

纯种

(pure.cpp)

时空限制:1s/256M,测试数据共10组

【问题描述】

当一个正整数是某个单一质数的次方,被称为纯种数,例如 $8=2^3$ 和 $81=3^4$ 都是纯种数。然而 6是一个杂种数,因为它包含 2 和 3 两个质数因子,这类只包含 2 和 3 质数的杂种数叫做 23 杂种数。请你判断正整数 n 是不是 23 杂种数?

【输入格式】

输入文件为 pure.in

输入一行为正整数 n。

【输出格式】

输出文件为 pure.out

输出Yes或No。

【输入输出样例 1】

pure.in	pure.out
8	No

【输入输出样例1说明】8=23是纯种数,不是23杂种数。

【输入输出样例 2】

pure.in	pure.out
12	Yes

【输入输出样例 2 说明】12=22*3 是 23 杂种数。

【输入输出样例 2】

pure.in	pure.out
30	No

【输入输出样例 2 说明】30=2*3*5 不是 23 杂种数 , 因为多了 5。

【数据规模与约定】

50%数据, n<=109

100%数据, n<=10¹⁸

线段覆盖

(cover.cpp)

时空限制:1s/256M,测试数据共10组

【问题描述】

老师在一维坐标轴上画线段,他不小心多画了一条,现在他需要删掉其中一条。 她想知道,在删去一条线段以后,剩下的 N-1 条线段最多能覆盖到多少长度?

注意: 重叠部分只算一次。

【输入格式】输入文件 cover.in

输入的第一行是一个正整数 N。后面的 N 行每行两个整数 Ai, Bi 表示第 i 条线段的左右端点坐标。

【输出格式】输出文件 cover.out

输出一行一个数,表示其中 N-1 条线段能最大覆盖区间长度。

【输入输出样例 1】

cover.in	cover.out		
3 5 9	7		
1 4			
3 7			
【说明】删掉第三条线段,另外两条覆盖了(9-5)+(4-1)=4+3=7 的区间长度。			
【数据规模与约定】	->> 4/1/1/3		
1号数据:N=3			
2 号数据:N=5			
3 号数据:N=10			
对于所有数据: N<=100,0<=Ai<=Bi<=1000			
	N		

【数据规模与约定】

手机看小说

(reader.cpp/c/pas)

时空限制:1s/256M,测试数据共10组

【问题描述】

作为一个网络小说爱好者,你专门买了一部超大屏幕的手机用来读小说。手机的电量初始时是满的,一共有 m 格电,每格电可以使用 1 分钟,也就是说,从满电开始连续使用 m 分钟后手机就会自动关机。已知最近你有 n 分钟时间可能用于读小说,对于这 n 分钟里的每一分钟时间,你可以选择用于看小说,若第 i 分钟用于看小说的话,在第 i 分钟这 1 分钟里你可以看 d[i]页内容。当然,你也可以选择在第 i 分钟这 1 分钟里不读小说,而选择给手机充电,每充电 1 分钟电量会增加 1 格,充满电到 m 格电以后电量就保持 m 格电不变了。但是你对于充电有几个习惯:

- 1.你不会一边充电一边读小说。充电时你不会碰手机,而是闭目养神,思考人生。
- 2.一旦开始充电,一定要连续充电直到充满电为止,中间不会间断。
- 3.第 n 分钟结束的瞬间,你的手机必须是满电状态,不可以缺电。

请问在这 n 分钟里, 你最多可以阅读几页小说?

【输入格式】输入文件 reader.in

输入第一行为正整数 n 和 m, n<=10000, m<=500。接着共行共 n 个非负整数代表 d[i],均不超过 1000。

【输出格式】输出文件 reader.out

输出一个整数。

【输入输出样例 1】

- 155 (155-17)		
reader.in	reader.out	
5 2 5 3 4 2 10	9	

【说明】五分钟的对应安排,读书,充电,读书,充电,充电。

【数据规模与约定】

对于 10%数据, n=3

对于 10%数据, m=1

对于 10%数据,所有 d[i]=1

对于 40%数据, n<=500, m<=100

对于 100%数据, n<=10000 / m<=500

丢三落四

(missing.cpp/c/pas)

时空限制: 1s/256M, 测试数据共10组

【问题描述】

你家共有 n 个物品,编号 1 到 n, 第 i 件物品的体积为 v[i]。马上要放假了,你准备去旅游,于是你拿出一个行李箱,容量为 m。你打算用这些物品正正好好把行李箱填满到 j 的体积(j<=m),你最希望知道共有几种填满的方案。但是,你最了解你自己了: 你是一个丢三落四的年轻人,你应该假设有某件物品已经找不到了。当然了,具体是哪一件找不到你也根本说不上来。所以你真正想知道的是以下 n*m 个独立的问题:

假设 1 号物品已经找不到了,用剩下的物品恰好凑成体积分别为 j=1,2,..,m 有几种方案?

假设 2 号物品已经找不到了,用剩下的物品恰好凑成体积分别为 j=1,2,..,m 有几种方案?

假设 3 号物品已经找不到了,用剩下的物品恰好凑成体积分别为 i=1,2,...,m 有几种方案?

... ...

假设 n 号物品已经找不到了,用剩下的物品恰好凑成体积分别为 j=1,2,..,m 有几种方案?

【输入格式】输入文件 missing.in 第一行两个整数 n 和 m,表示 n 个物品,行李箱总容积为 m。第二行一共 n 个数,分别表示每个物品的体积 v[i]。

【输出格式】输出文件 missing.out 输出 n 行 m 列,第 i 行第 j 个数表示第 i 件物品消失时,在剩余的 n-1 个物品中任意选择,恰好体积和为 j 的方案数。由于方案数可能很大,你只需要输出方案数除以 2020 的余数即可。注意: 行末不允许有空格。

【输入输出样例 1】

missing.in	missing.out
3 2	1 1
3 2 1 1 2	1 1
	2 1

【说明】如果不选 1 号物品,只能选 2 号或 3 号物品,那么体积和分别为 1 和 2,所以体积和为 1 有 1 种方案,体积和为 2 有 1 种方案。

如果不选 2 号物品,只能选 1 号或 3 号物品,那么体积和分别为 1 和 2,所以体积和为 1 有 1 种方案,体积和为 2 有 1 种方案。

如果不选 3 号物品,只能单独选 1 号、2 号物品,或者两个都选,那么体积和分别为 1、1、2,所以体积和为 1 有 2 种方案,体积和为 2 有 1 种方案。

【数据规模与约定】

对于 30%数据, n,m<=100

对于 100%数据 n,m<=2000, 1<=v[i]<=m