The 19th ACM/IEEE International Symposium on Empirical Software Engineering and Measurement (ESEM 2025)

Can User Feedback Help Issue Detection? An Empirical Study on a One-billion-user Online Service System

Shuyao Jiang¹, Jiazhen Gu¹, Wujie Zheng^{2,3}, Yangfan Zhou², Michael R. Lyu¹

- 1. Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong, China
 - 2. College of Computer Science and Artificial Intelligence, Fudan University, Shanghai, China
 - 3. Tencent Inc., Shenzhen, China

User Feedback and Issue Detection

- User feedback in large-scale online service systems
 - Describe user experience with the systems
 - An important data resource for service maintenance (e.g., issue detection)
- Challenges of user feedback for issue detection
 - User feedback is abundant but noisy
 - Hard to identify severe issues automatically

How user feedback help issue detection?

Research Questions

RQ1: What proportion of feedback actually reports issues?

RQ2: Does feedback amount indicate issue severity?

• RQ3: Can certain features (e.g., sentiment, text length, historical behaviors) of a feedback item indicate issue severity?

RQ4: Are feedback topics stable over time?

Target System and Dataset

- Target service system: WeChat
 - A popular social media platform serving over one billion users
 - Contains diverse online services (e.g., chat, work, entertainment)

- User feedback dataset
 - Six online services from WeChat ecosystem
 - All feedback collected within one year (a total of 50,378,766 items)

TABLE I
SIX SERVICES OF OUR TARGET SOCIAL MEDIA PLATFORM.

Service	Functionality	User Scale	
WeChat	Instant Messaging	10^{9}	
WeChat-Work	Workplace Communication	10^{8}	
WeChat-info	Content Subscription	10^{8}	
WeChat-Pay	Mobile Payment	10^{8}	
WeChat-Game	Mobile Game	10^{8}	
WeChat-Reading	Reading	10 ⁸	

RQ1: Proportion of Issue-relevant Feedback

- Step 1: Manual analysis
 - Randomly select 10,000 feedback items for manual analysis
 - A large amount (4,450) is *irrelevant* to system issues
- Step 2: Model training
 - Train a binary classifier using a labeled dataset of the 10,000 feedback items
 - BERT + TextCNN (F1 = 88.71%)
- Step 3: Prediction for the entire feedback dataset

TABLE II

TOTAL AMOUNT OF FEEDBACK ITEMS AND ISSUE-RELEVANT FEEDBACK
ITEMS COLLECTED FROM SIX SERVICES IN ONE YEAR.

Service	# Feedback	# Issue-relevant	Percentage
WeChat	16,405,550	10,916,729	66.54%
WeChat-Work	20,406,139	2,232,664	10.94%
WeChat-Info	7,771,103	1,289,212	16.59%
WeChat-Pay	2,306,460	652,204	28.28%
WeChat-Game	2,897,146	1,752,791	60.50%
WeChat-Reading	592,368	174,179	29.40%

Answer to RQ1: Only 10.94% ~ 66.54% of user feedback was issue-relevant, revealing the necessity of automated filtering to remove noise.

RQ2: Feedback Amount vs. Issue Severity

- Does more feedback mean more severe issues?
- Analysis from the issue-tracking system
 - An **issue ticket** describes a known issue with its *severity level* (1~5, 1 is the most severe)
 - We analyzed all 509 issue tickets in one year and their related user feedback

Answer to RQ2: While severe issues generally attract more feedback, some critical issues were reported by a few users, limiting reliance on volume-based prioritization.

RQ3: Feedback Features vs. Issue Severity

Feature 1: Sentiment

Negative sentiment

- Step 1: Sentiment analysis
 - Calculate a sentiment score for each feedback text
 - Groups: Negative / Neutral / Positive
- Step 2: Significance test (Z-test)
 - Is feedback in the **negative group** more likely to indicate severe issues?
 - If Z>1.65, yes

TABLE IV
PROPORTIONS OF FEEDBACK ITEMS INDICATING SEVERE ISSUES IN
DIFFERENT SENTIMENT GROUPS AND THE Z-TEST RESULTS.

Service	Sentiment			Z value		
	Neg.	Neu.	Pos.	NegNeu.	NegPos.	
WeChat	24.2%	22.5%	19.6%	0.432	1.215	
WeChat-Work	31.7%	24.6%	32.5%	1.308	-0.196	
WeChat-Info	24.2%	20.8%	28.3%	0.874	-1.037	
WeChat-Pay	19.6%	12.5%	14.7%	2.114	1.388	
WeChat-Game	39.2%	28.8%	17.5%	2.410	5.267	
WeChat-Reading	25.8%	23.3%	20.0%	0.636	1.520	

^{*} Neg.: Negative group, Neu.: Neutral group, Pos.: Positive group

The sentiment of feedback has no significant correlation with issue severity.

RQ3: Feedback Features vs. Issue Severity

Feature 2: **Text Length**

Long feedback texts

- Step 1: Text length analysis
 - Count the number of characters for each feedback text
 - Groups: Short / Medium / Long
- Step 2: Significance test (Z-test)
 - Is feedback in the **long-text group** more likely to indicate severe issues?

TABLE V
PROPORTIONS OF FEEDBACK ITEMS INDICATING SEVERE ISSUES IN
DIFFERENT TEXT-LENGTH GROUPS AND THE Z-TEST RESULTS.

Service	Text-length			Z value	
	S.	M.	L.	LM.	LS.
WeChat	20.6%	24.0%	26.8%	0.615	1.611
WeChat-Work	25.2%	45.1%	37.1%	-1.388	2.755
WeChat-Info	22.8%	27.8%	28.8%	0.083	1.319
WeChat-Pay	13.0%	25.0%	18.9%	-1.207	1.727
WeChat-Game	29.4%	25.8%	31.4%	1.155	0.462
WeChat-Reading	21.3%	21.5%	27.5%	1.376	1.543

^{*} S.: Short-text group, M.: Medium-text group, L.: Long-text group

The text length of feedback has no significant correlation with issue severity.

RQ3: Feedback Features vs. Issue Severity

Feature 3: User Historical Behaviors

Users who reported severe issues before

Report severe issues again

- Historical behavior analysis
 - Among 159 users who reported severe issues, 80 users have submitted multiple feedback
 - 9 users have reported multiple severe issues, averaging 3 issues per user

User historical behaviors can indicate issue severity to some extent.

Answer to RQ3: Text-based features (sentiment, text length) showed negligible correlation with issue severity, but historical user behavior (e.g., prior severe-issue reports) can offer some predictive value.

RQ4: Feedback Topic Stability Over Time

- Existing feedback analysis relies on machine learning methods
 - The stability of feedback topics affects the performance of Al-based analysis
- Feedback topic similarity analysis
 - Collect issue-relevant feedback from 8 service versions
 - Vectorize feedback texts
 - Measure the Wasserstein Distance between versions

Answer to RQ4: Feedback topic distributions remained stable across service versions and time intervals, validating the feasibility of machine learning for longitudinal analysis.

Summary of Key Findings

High noise in feedback → Filtering needed

Amount ≠ severity → Need for better prioritization

Text features are poor predictors → Explore user behavior

Topics are stable → AI-based analysis is feasible

Implications for Practice

- Improve feedback interface design
 - e.g., guided categorization

Apply LLMs for large-scale feedback learning

- Combine feedback with system KPIs
 - Multiple data sources for better issue detection

Shuyao Jiang (Ph.D. Candidate)

The Chinese University of Hong Kong

syjiang21@cse.cuhk.edu.hk

Pre-print

Homepage

Thank you!

