Linguaggi e Computabilità

UniShare

Davide Cozzi @dlcgold

Gabriele De Rosa @derogab

Federica Di Lauro @f_dila

Indice

1	\mathbf{Intr}	$\operatorname{oduzione}$															2
	1.1	Definizioni	 														2

Capitolo 1

Introduzione

Questi appunti sono presi a lezione. Per quanto sia stata fatta una revisione è altamente probabile (praticamente certo) che possano contenere errori, sia di stampa che di vero e proprio contenuto. Per eventuali proposte di correzione effettuare una pull request. Link: https://github.com/dlcgold/Appunti.

Grazie mille e buono studio!

1.1 Definizioni

- un linguaggio è un insieme di stringhe che può essere generato mediante un dato meccanismo con delle date caratteristiche; un linguaggio può essere riconosciuto, ovvero dando in input una stringa un meccanismo può dirmi se appartiene o meno ad un linguaggio. I meccanismi che generano linguaggi si chiamano grammatiche, quelli che li riconoscono automi. I linguaggi formali fanno parte dell'informatica teorica (TCS)
- si definisce alfabeto come un insieme finito e non vuoto di simbolo (come per esempio il nostro alfabeto o le cifre da 0 a 9). Solitamente si indica con Σ o Γ
- si definisce **stringa** come una sequenza finita di simboli (come per esempio una parola o una sequenza numerica). La stringa vuota è una sequenza di 0 simboli, e si indica con ε o λ
- si definisce **lunghezza di una stringa** il numero di simboli che la compone (ovviamente contando ogni molteplicità). Se si ha $w \in \Sigma^*$ è una stringa w con elementi da Σ^* (insieme di tutte le stringhe di tutte le lunghezze possibili fatte da Σ), allora |w| è la lunghezza di w, inoltre $|\varepsilon| = 0$.

• si definisce **potenza di un alfabeto** Σ^k come l'insieme di tutte le sequenze (espressi come stringhe e non simboli) di lunghezza $k \in \mathbb{N}$, k > 0 ottenibili da quell'alfabeto (se Σ^2 si avranno tutte le sequenza di 2 elementi etc...). Se ho k = 1 si ha $\Sigma^1 \neq \Sigma$ in quanto ora ho stringhe e non simboli. Se ho k = 0 ho $\Sigma^0 = \varepsilon$. Dato k ho $|\Sigma|$ che è la cardinalità dell'insieme Σ (e non la sua lunghezza come nel caso delle stringhe); sia $w \in \Sigma^k = a_1, a_2, ..., a_k, a_i \in \Sigma$ e $|\Sigma| = q$ ora:

$$|\Sigma^k| = q^k$$

• si definisce Σ^* come **chiusura di Kleene** che è l'unione infinita di Σ^k ovvero

$$\Sigma * = \Sigma^0 \cup \Sigma^1 \cup ... \cup \Sigma^k$$

• si ha che Σ^+ è l'unione per k > 1 di Σ^k ovvero:

$$\Sigma + = \Sigma^1 \cup \Sigma^2 \cup \dots \cup \Sigma^k = \Sigma^* - \Sigma^0$$

per esempio, per l'insieme $\{0,1\}$ si ha:

$$\Sigma^* = \{\varepsilon, 0, 1, 00, 01, 10, 100, 000, \ldots\}$$

• quindi un **linguaggio** L è un insieme di stringhe e:

$$L \subset \Sigma^*$$

si hanno sottoinsiemi particolari, come l'insieme vuoto, che resta però un linguaggio, il **linguaggio vuoto** e $\emptyset \in \Sigma^k$, $|\emptyset| = 0$ che è diverso dal linguaggio che contiene la stringa vuota $|\varepsilon| = 1$ (che conta come una stringa). Inoltre $\Sigma^* \subseteq \Sigma^*$ che ha lunghezza infinita. Posso concatenare due stringhe con un punto: $a \cdot b \cdot c = abc$ e $a \cdot \varepsilon = a$. Ovviamente la stringa concatenata è lunga come la somma delle lunghezze delle stringhe che la compongono. Vediamo qualche esempio di linguaggio:

- il linguaggio di tutte le stringhe che consistono in n 0 seguiti da n 1:

$$\{\varepsilon, 01, 0011, 000111, \ldots\}$$

- l'insieme delle stringhe con un uguale numero di 0 e di 1:

$$\{\varepsilon, 01, 10.0011, 0101.1001, ..\}$$

- l'insieme dei numeri binari il cui valore è un numero primo:

$$\{\varepsilon, 10, 11, 101, 111, 1011, ...\}$$

- Σ^* è un linguaggio per ogni alfabeto Σ
- \emptyset , il linguaggio vuoto, e $\{\varepsilon\}$ sono un linguaggio rispetto a qualunque alfabeto