1. 3 geradores síncronos estão conectados em estrela em um barramento de forma que a tensão da rede seja igual a: 311,09 cos(377t + 60°) V. O barramento está formado por três condutores cuja impedância é 2 + j5Ω. Um motor trifásico com conexão delta está conectado nesse barramento, cuja impedância para cada enrolamento é igual a: 5,76 + j3,52Ω. A partir dessa configuração calcule:

- a) A corrente eficaz de linha (1,5 pontos)
- b) A potência reativa consumida pelo motor, quando se conecta no barramento uma carga equilibrada formada por três capacitores cujo valor de capacitância é 0,02 F (1,5 pontos)
- c) O fator de potência da carga, quando se trocam os três capacitores por um único capacitor com capacitância igual a 0,06 F(2 ponto)
- 2. Considerando a seguinte transformada de Laplace de f(t):

$$F(s) = \frac{4s^3 + 15s^2 + s + 30}{s^2 + 5s + 6}$$

- d) Calcule a transformada inversa (2,5 pontos)
- e) Verifique se os valores do teorema de valor final e inicial aplicados a F(s), coincidem com o valor inicial e final de f(t), explique sua resposta (2,5 pontos)

f(t)	F(s)	
$\delta(t)$	1	
u(t)	$\frac{1}{s}$	
e^{-at}	$\frac{1}{s+a}$	
t	$\frac{1}{s^2}$	
t^n	$\frac{n!}{s^{n+1}}$	
te^{-at}	$\frac{1}{(s+a)^2}$	
$t^n e^{-at}$	$\frac{n!}{(s+a)^{n+1}}$	
$\sin \omega t$	$\frac{\omega}{s^2 + \omega^2}$	
$\cos \omega t$	$\frac{s}{s^2 + \omega^2}$	
$\sin(\omega t + \theta)$	$\frac{s\sin\theta + \omega\cos\theta}{s^2 + \omega^2}$	
$\cos(\omega t + \theta)$	$\frac{s\cos\theta - \omega\sin\theta}{s^2 + \omega^2}$	
$e^{-at}\sin\omega t$	$\frac{\omega}{(s+a)^2+\omega^2}$	
$e^{-at}\cos\omega t$	$\frac{s+a}{(s+a)^2+\omega^2}$	
*Defined for $t \ge 0$; $f(t) = 0$, for $t < 0$.		
$\frac{df}{dt}$	$sF(s) - f(0^-)$	
$\frac{d^2f}{dt^2}$	$s^2 F(s) - s f(0^-) - f'(0^-)$	
$\frac{d^3f}{dt^3}$	$s^3F(s) - s^2f(0^-) - sf'(0^-) - f''(0^-)$	
$\frac{d^n f}{dt^n}$	$s^{n}F(s) - s^{n-1}f(0^{-}) - s^{n-2}f'(0^{-})$ $-\cdots - f^{(n-1)}(0^{-})$	
$\int_0^t f(x) dx$	$\frac{1}{s}F(s)$	
tf(t)	$-\frac{d}{ds}F(s)$	
$\frac{f(t)}{t}$	$\int_{s}^{\infty} F(s) ds$	

Connection	Phase voltages/currents	Line voltages/currents
Y-Y	$\mathbf{V}_{an} = V_p/0^{\circ}$	$\mathbf{V}_{ab} = \sqrt{3}V_p/30^{\circ}$
	$V_{bn} = V_p / -120^{\circ}$	$\mathbf{V}_{bc} = \mathbf{V}_{ab} / -120^{\circ}$
	$V_{cn} = V_p / + 120^{\circ}$	$\mathbf{V}_{ca} = \mathbf{V}_{ab} / + 120^{\circ}$
	Same as line currents	$\mathbf{I}_a = \mathbf{V}_{an}/\overline{\mathbf{Z}_Y}$
		$\mathbf{I}_b = \mathbf{I}_a / -120^\circ$
		$\mathbf{I}_c = \mathbf{I}_a / +120^\circ$
Y - Δ	$\mathbf{V}_{an} = V_p / 0^{\circ}$	$\mathbf{V}_{ab} = \overline{\mathbf{V}_{AB}} = \sqrt{3}V_p/30^\circ$
	$V_{bn} = V_p / -120^{\circ}$	$\mathbf{V}_{bc} = \mathbf{V}_{BC} = \mathbf{V}_{ab} / -120^{\circ}$
	$\mathbf{V}_{cn} = V_p / + 120^{\circ}$	$\mathbf{V}_{ca} = \mathbf{V}_{CA} = \mathbf{V}_{ab} / + 120^{\circ}$
	$\mathbf{I}_{AB}=\mathbf{V}_{AB}/\mathbf{Z}_{\Delta}$	$\mathbf{I}_a = \mathbf{I}_{AB}\sqrt{3}/-30^{\circ}$
	$\mathbf{I}_{BC} = \mathbf{V}_{BC}/\mathbf{Z}_{\Delta}$	$\mathbf{I}_b = \mathbf{I}_a / -120^{\circ}$
	$\mathbf{I}_{CA} = \mathbf{V}_{CA}/\mathbf{Z}_{\Delta}$	$\mathbf{I}_c = \mathbf{I}_a / + 120^{\circ}$
Δ – Δ	$\mathbf{V}_{ab} = V_p / 0^{\circ}$	Same as phase voltages
	$\mathbf{V}_{bc} = V_p / -120^{\circ}$	
	$\mathbf{V}_{ca} = V_p / + 120^{\circ}$	
	$\mathbf{I}_{AB} = \mathbf{V}_{ab}/\mathbf{Z}_{\Delta}$	$\mathbf{I}_a = \mathbf{I}_{AB} \sqrt{3/-30^\circ}$
	$\mathbf{I}_{BC} = \mathbf{V}_{bc}/\mathbf{Z}_{\Delta}$	$\mathbf{I}_b = \mathbf{I}_a / -120^{\circ}$
	$\mathbf{I}_{CA} = \mathbf{V}_{ca}/\mathbf{Z}_{\Delta}$	$\mathbf{I}_c = \mathbf{I}_a / +120^{\circ}$
Δ -Y	$\mathbf{V}_{ab} = V_p / 0^{\circ}$	Same as phase voltages
	$V_{bc} = V_p / -120^{\circ}$	
	$\mathbf{V}_{ca} = V_p / +120^{\circ}$	
	Same as line currents	$\mathbf{I}_a = \frac{V_p / -30^\circ}{\sqrt{3} \mathbf{Z}_Y}$
	Same as time currents	$\mathbf{I}_a = \sqrt{3}\mathbf{Z}_Y$
		$\mathbf{I}_b = \mathbf{I}_a / -120^{\circ}$
		$\mathbf{I}_c = \mathbf{I}_a / +120^{\circ}$

$$S = \sqrt{3}V_L(I_L)^* = |P| + j|Q|$$

$$|S| = \sqrt{3}V_LI_L$$

$$|P| = \sqrt{3}V_LI_L\cos\varphi$$

$$|Q| = \sqrt{3}V_LI_L\sin\varphi$$

$$\dot{Z}_{AB} = \dot{Z}_{BC} = \dot{Z}_{CA} = Z$$

$$\dot{Z}_A = \dot{Z}_B = \dot{Z}_C = \frac{Z}{3}$$