$$X = \begin{bmatrix} x_0 & x_1 & 0 & 0 \\ 0 & 0 & x_0 & x_1 \end{bmatrix}$$

$$\hat{X} = \begin{bmatrix} x_0 & x_1 & 0 & 0 \\ 0 & 0 & x_0 & x_1 \\ x_1 & -x_0 & 0 & 0 \\ 0 & 0 & x_1 & -x_0 \end{bmatrix}$$

 \hat{X} is orthogonal when the signal x is constrained to have unit energy. Some of the properties of \hat{X} are discussed in Bershad.⁵ Then (2) becomes

$$y = \{ U_{nm} \} \hat{X} \ a \} \tag{6}$$

and

$$\langle yy_t \rangle = \{U_{nm}\} \hat{X} \langle aa_t \rangle \hat{X}^{-1} \{U_{nm}\}^{-1}$$
 (7)

since the \hat{X} are deterministic and $\hat{X}_t = \hat{X}^{-1}$. For any channel $\langle a a_t \rangle$ is fixed a priori and can always be written as

$$\langle aa_{i} \rangle = Q \begin{bmatrix} \lambda_{1} & & & \\ & \lambda_{2} & & \\ & & \ddots & \\ & & \lambda_{mn} \end{bmatrix} Q^{-1} \quad 0 \leq \lambda_{i} \leq \lambda_{j}, \quad i < j \quad (8)$$

since $\langle a \, a_t \rangle$ is a positive definite symmetric matrix. Hence (7) becomes

$$\langle yy_t \rangle = \{U_{nm}\}\hat{X}Q\begin{bmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_{nn} \end{bmatrix}Q^{-1}\hat{X}^{-1}\{U_{nm}\}^{-1}, \quad (9)$$

but the eigenvalues of R

$$R = \hat{X}Q \begin{bmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_{mn} \end{bmatrix} Q^{-1}\hat{X}^{-1}$$
 (10)

are $\lambda_1, \lambda_2, \dots, \lambda_{mn}$ since (10) constitutes a similarity transformation. Finally, by use of a theorem⁶ on truncated matrices, the eigenvalues of (10), λ_i , and of (9), λ'_i , are related as follows:

$$\lambda_{m-j} \leq \lambda'_{m-j} \leq \lambda_{mn-j} \quad \text{for} \quad j = 0, 1, \dots, m. \tag{11}$$

That is to say, the m eigenvalues of the truncated matrix are less than the corresponding m largest of R but greater than the corresponding m smallest. The usefulness of (11) depends upon the

N. J. Bershad, "On the Optimum Design of Multipath Signals," AF Cambridge Research Labs., Bedford, Mass., Tech. Rept. (to be published).
 R. Courant and D. Hilbert, "Methods of Mathematical Physics," Interscience Publishers, New York, N. Y., vol. I, p. 33; 1953.

difference between λ_0 and λ_{mn} of $\langle a \, a_{\ell} \rangle$. Suppose the eigenvalues of $\langle a \, a_{\ell} \rangle$ are close together, then those of ϕ_{yy} must also be close together since $\lambda_{mn} - \lambda_0 = \epsilon$, $\epsilon > 0$ implies $\lambda_m' - \lambda_0' \leq \epsilon$. However, since the eigenvalues of $\langle a \, a_{\ell} \rangle$ are independent of the signal x, this must also be the maximum difference (for fixed signal energy) between the largest and smallest eigenvalues of ϕ_{yy} . Hence if the channel is "good" in the sense that $\langle a \, a_{\ell} \rangle$ has almost equal eigenvalues, it makes little difference what signal of a given energy is transmitted. This is an interesting generalization of the results for the purely additive Gaussian channel. If, on the other hand, the eigenvalues of $\langle a \, a_{\ell} \rangle$ are widely separated, then signal shaping may allow control of the eigenvalues of ϕ_{yy} within the limits defined by (11).

To add a comment with respect to the assumed optimum distribution of eigenvalues for ϕ_{yy} , suppose that ϕ_{yy} has the optimum set of eigenvalues. Then, it is easily shown that ϕ_{yy} is a scalar multiple of the identity matrix.

ACKNOWLEDGMENT

The author is indebted to J. N. Pierce of the Air Force Cambridge Research Labs, for his many interesting and helpful discussions on the topic.

> N. J. BERSHAD Data Science Lab. Air Force Cambridge Research Labs. Bedford, Mass.

Table of Generators for Bose-Chaudhuri Codes

This communication presents a table of the polynomials which are the generators of all possible nontrivial Bose-Chaudhuri codes of length up to 255 bits. This group of codes was first presented by Bose and Chaudhuri,¹ and is a group of cyclic codes for which the packing density is predetermined. The shortest of these codes are good approximations to close-packed codes, and have the advantage of using a relatively small amount of equipment to encode and decode.

The polynomials are represented in octal form, with the coefficients represented by either one or zero as determined by the binary number represented by the octal number listed. For example, the third entry in the table lists the generator as 721, which in binary form is 111010001, and therefore the generator for a Bose-Chaudhuri code of length 15 bits, of which 7 are information symbols, is $x^3 + x^7 + x^6 + x^4 + 1$. Also listed in the table are n the number of bits in a code word; k the number of information bits in the code word; and t the maximum number of random errors which can be corrected using the code listed. Additional properties may be of interest if the code is used only for error detection, in which case any 2t errors will be detected, and any burst of errors of length n-k or less will also be detected.

This table was derived in the manner described by W. W. Peterson,² and it was checked by insuring that the fundamental polynomial was a factor of all succeeding polynomials.

Manuscript received March 16, 1964.

R. C. Bose and D. K. Ray-Chaudhuri, "On a class of error correcting binary group codes," Information and Control, vol. 3, pp. 68-79; September, 1960.

W. Peterson, "Error Correcting Codes," M.I.T. Technology Press, Cambridge, Mass., and John Wiley and Sons, Inc., New York, N. Y.; 1961.

n	k	t	g(x)	n	k	t	g(x)
7	4	1	13	255	171	11	15416214212342356077061630637
15	11	1	23		163	12	7500415510075602551574724514601
31	7	2	721		155	13	3757513005407665015722506464677633
	5	3	2467		147	14	1642130173537165525304165305441011711
	26	1	45		139	15	461401732060175561570722730247453567445
	21 16	2 3	3551 107657		131	18	2157133314715101512612502774421420241 65471
	11	5	5423325		123	19	1206140522420660037172103265161412262 72506267
63	6 57	7 1	313365047 103		115	21	6052666557210024726363640460027635255
	51 45	$\frac{2}{3}$	12471 1701317		107	22	6313472737 2220577232206625631241730023534742017
	39 36	4 5	166623567 1033500423		99	23	$\begin{array}{c} 6574750154441 \\ 1065666725347317422274141620157433225 \end{array}$
	30	6	157464165547				2411076432303431
	24 18	7 10	17323260404441 1363026512351725		91	25	6750265030327444172723631724732511075 550762720724344561
	16 10	11 13	6331141367235453 472622305527250155		87	26	1101367634147432364352316343071720462 06722545273311721317
	7	15	5231045543503271737		79	27	6670003563765750002027034420736617462
127	120 113	$\frac{1}{2}$	211 41567		71	29	$1\overline{0}15326711766541342355 \ 2402471052064432151555417211233116320$
	106 99	$\frac{3}{4}$	11554743 3447023271		63	30	5444250362557643221706035 1075447505516354432531521735770700366
	92 85	5 6	624730022327 130704476322273		55	31	6111726455267613656702543301 7315425203501100133015275306032054325
	78	7	26230002166130115		1		414326755010557044426035473617
	71	9	6255010713253127753		47	42	2533542017062646563033041377406233175
	64 57	10 11	1206534025570773100045 335265252505705053517721		45	43	$\begin{array}{c} 123334145446045005066024552543173 \\ 1520205605523416113110134637642370156 \end{array}$
	50 43	13 14	54446512523314012421501421 17721772213651227521220574343		37	45	$3670024470762373033202157025051541 \\ 5136330255067007414177447245437530420$
	36	15	3146074666522075044764574721735 403114461367670603667530141176155		29	47	735706174323432347644354737403044003 3025715536673071465527064012361377115
	29 22	21 23	123376070404722522435445626637647043		29	41	34224232420117411406025475741040356
	15 8	27 31	22057042445604554770523013762217604353 7047264052751030651476224271567733130217		21	55	5037 1256215257060332656001773153607612103
255	247 239	1 2	435 267543				$\begin{array}{c} 1256215257060332656001773153607612103 \\ 22734140565307454252115312161446651 \\ 3473725 \end{array}$
	231	3	156720665		13	59	4641732005052564544426573714250066004
	223 215	4 5	75626641375 23157564726421		İ		33067744547656140317467721357026134 460500547
	207 199	6 7	16176560567636227 7633031270420722341		9	63	1572602521747246320103104325535513461 41623672120440745451127661155477055
	191 187	8 9	7653051270420722541 2663470176115333714567 52755313540001322236351				61677516057

John P. Stenbit Aerospace Corp. Los Angeles, Calif.