AN INTRODUCTION TO LINEAR AC-DC POWER SUPPLIES

Yasser Jemli

WHAT IS AN AC-DC POWER SUPPLY?

- An AC-DC power supply converts AC electricity from a wall outlet into DC electricity that a sensitive electronic device can use
- Alternating current: AC stands for alternating current Which means the current
 constantly changes direction, Main electricity is an AC supply, and Tunisia mains supply
 is about 230 V. It has a frequency of 50Hz (50 hertz), which means it changes direction
 and back again 50 times a second. It's better for transporting current over long distances
 , which is why we use it for mains electricity.
- Direct current: DC stands for direct current which means the current only flows in one direction.Batteries and electronic devices like TVs, computers and DVD players use DC electricity -once an AC current enters a device, it's converted to DC A typical battery supplies around 1.5 volts of DC.

EXAMPLES OF AC-DCPOWER SUPPLIES

Go!

LAPTOP POWER ADAPTER

PHONE CHARGER

DESKTOP PC POWER SUPPLY

USING AN OSCILLOSCOPE

An oscilloscope is an instrument which allows us to view changes in voltage over time

Go!

USING AN OSCILLOSCOPE

Go to proteus isis

- Time is on the x-axis
- Voltage is on the y-axis
- Each horizontal or vertical line is an increment of either unit.

DIRECT CURRENT (DC)

The direction of current is always the same because the voltage always remains greater than 0

Go!

Alternating Current (AC) The direction of the current is always switched periodically, and the voltage is also switched. $\Delta t = 0s$

ALTERNATING CURRENT (AC)

The direction of current is constantly changing because the voltage is constantly passing through OV Remember V & 1 are proportional

Go!

THIS IS THE SIMULATION

First steps With ISIS
The simulation file on Github is : AC -DC Lineair Power Supply First Simulation .pdsprj

Questions?

STARTING

- The Voltage available at a wall outlet is much too high and is always changing Polarity, making it useless for sensitive electronics.
- The first step is to reduce the voltage using a transformer
- A transformer is a device that allows us to convert an AC voltage to a higher or lower level.
- Transformers can only be used with AC
- They operate on the basis of an electromagnetic theory called mutual inductance
- Mutual inductance is the main operating principle of generators, motors, and transformers.
- Any electrical device having components that tend to interact with another magnetic field also follows the same principle.
- The interaction is usually brought about by a mutual induction where the current flowing in one coil generates a voltage in a secondary coil.

TRANSFORMER OPERATION

- A step-Down Transformer has more primary windings than the secondary side.
- Picture 2 : This is the effect of a step-Down transformer.
- NOte that only the amplitude (the voltage) has been reduced, not the frequency.

THIS IS THE SIMULATION

Step-Down Transformer Simulation
The simulation file on Github is: Step-Down Transformer .pdsprj

EXAMPLES OF TRANSFORMERS

E-Core

Toroidal Transformer high frequency transformers

NEXT

- Though we have successfully reduced the voltage, we still have the problem of the voltage fluctuating from positive to negative.
- To "force" the current to only flow in one direction we construct a bridge rectifier circuit, using 4 diodes
- Diode bridge is an arrangement of four diodes in a bridge circuit configuration that provides the same polarity of output for either polarity of input
- The most common application for Diode bridge is a conversion of an alternating-current (AC) input into a direct-current (DC) output

EFFECT OF A BRIDGE RECTIFIER

- A bridge rectifier basically takes the absolute value of the AC waveform
- Now, instead of the current constantly reversing, it now has only one direction.
- Voltage drops: it must not be forgotten that the current flowing in a bridge rectifier will pas through two diodes, as a result the output voltage will have been dropped by this amount.
- This drop will be a minimum of \Rightarrow 1.4V
- In the current waveform, we can observe that the voltage constantly dips to very low voltages (including OV), which is problematic.

THIS IS THE SIMULATION

Bridge Rectifiers Simulation
The simulation file on Github is: Bridge rectifier .pdsprj

EXAMPLES OF TRANSFORMERS

4 discrete diodes

GBU-type bridge

High power bridge

THE THIRD STEP

- To fix the previous problem , we use filter capacitors
- As the capacitor discharges it's voltage also decreases
- Bu using a higher capacitance, the capacitor can provide a greater voltage for a longer time

THIS IS THE SIMULATION

smoothing Simulation The simulation file on Github is: Filterpdsprj

EXAMPLES OF CAPACITORS

Electrolytic

Bulk (Electrolytic)

Solid Polymer

FINAL STEP

- Looking back : this power supply is called an unregulated power supply
- The voltage it produces depends on the demand of the load and the capacitance provided
- Also, the output +voltage is highly dependent on the input voltage across the transformer
- Ideally we want the output of the power supply to remain constant regardless of the load, and fluctuations from the voltage source
- To accomplish this, we can use integrated circuit called a "voltage regulator" which does exactly what its name implies
- Let's say we need steady 5.0V supply
- The voltage regulator will take care of any fluctuations in voltage, provided the input voltage never dips below the desired output voltage (V out+ 2V).

TO-222

*YOU GOT IT RIGHT!!

Some part names of common voltage regulators:

-LM78xx -LM723

-LM317 -L200

-LM338 -LT1085

TO-3C

