获得的答案

Definition of complexity strings K(x):-

If x be binary string, then the minimal description and descriptive complexity of x's are d(x) and K(x) respectively. Turing machine M and small string w we get minimal description is $\langle M, w \rangle$. From several of such shorter strings we select lexicographically among them then we can get descriptive complexity of such strings K(x) = |d(x)|.

Now we must prove that K(x) is not a computable function.

Let y_n be the lexicographical first-string s that satisfies n < K(y). Let M be the Turing machine such that if the input is n, the binary strings that are generated are x_0, x_1, x_2, x_3

The Turing machine M computes $K(x_i)$ and if K(x) > n, then the Turing Machine will generate x_i as the output and the machine will halt.

If the machine does not halt, the machine will examine the next lexicographical string x_{i+1} .

The Turing machine M will come across a string x which satisfies K(x) > n because K is unbounded.

For input n, the output generated is y_n but the length of the input n is $\log_2(n)$. So, $K(n) < \log_2(n) + c$, where c is the constant.

So, for all n, $n < K(y_n)$, so it can be said that $n < \log_2(n) + c$ but this is false, if n is large.

This is a contradiction because M cannot compute K(x) so, it is not a computable function.