加试(A卷)参考答案

July 20, 2023

二. (本题满分 40 分) 设整数 $n \ (n > 1)$ 恰有 k 个互不相同的素因子, 记 n 的所有正约数之和为 $\sigma(n)$. 证明: $\sigma(n) \mid (2n - k)!$.

证法1. 设 $n = \prod_{i=1}^k p_i^{\alpha_i}$ 为 n 的标准分解.

记
$$m_i = 1 + p_i + \dots + p_i^{\alpha_i}$$
 $(i = 1, 2, \dots, k)$, 则 $\sigma(n) = \prod_{i=1}^k m_i$.
我们证明对于 $i = 1, 2, \dots, k$, 有
$$2n - k \ge km_i.$$
 (1)

事实上, 对于 $i = 1, 2, \dots, k$,

$$\begin{split} m_i &= p_i^{\alpha_i} \left(1 + \frac{1}{p_i} + \dots + \frac{1}{p_i^{\alpha_i}} \right) \le p_i^{\alpha_i} \left(1 + \frac{1}{2} + \dots + \frac{1}{2^{\alpha_i}} \right) \\ &= p_i^{\alpha_i} \left(2 - \frac{1}{2^{\alpha_i}} \right) \le 2p_i^{\alpha_i} - 1. \end{split}$$

所以,

$$m_i + 1 \le 2p_i^{\alpha_i} = \frac{2n}{\prod\limits_{\substack{j=1 \ i \ne j}}^k p_j^{\alpha_j}} \le \frac{2n}{2^{k-1}} \le \frac{2n}{k},$$

最后一步是因为 $2^{k-1} \geq 1 + \binom{k-1}{1} = k$, $(k \geq 2)$ 以及 $2^0 \geq 1$. 故 (1) 成立. 由 (1), 对于每个 $i=1,2,\cdots,k$, 在 $1,2,\cdots,2n-k$ 中至少有 k 个 m_i 的倍数. 从而 $1,2,\cdots,2n-k$ 中可找

由 (1), 对于每个 $i=1,2,\cdots,k$, 在 $1,2,\cdots,2n-k$ 中至少有 k 个 m_i 的倍数. 从而 $1,2,\cdots,2n-k$ 中可找到两两不同的正整数 t_1,t_2,\cdots,t_k , 它们分别是 m_1,m_2,\cdots,m_k 的倍数. 因此 $\sigma(n)=\prod_{i=1}^k m_i$ 整除 (2n-k)!.

证法2. 设 $n = \prod_{i=1}^k p_i^{\alpha_i}$ 为 n 的标准分解.

令 $S_j = \sum_{i=1}^{j} m_i$, $(j = 1, 2, \dots, k)$, $S_0 = 0$. 我们证明以下两个结论:

- (1) $\sigma(n) \mid S_k!;$
- $(2) S_k \le 2n k.$

结论 (1) 的证明: 对于 $i=1,2,\cdots,k$, 连续 m_i 个整数 $S_{i-1}+1,\,S_{i-1}+2,\,\cdots,\,S_i$ 中必存在 m_i 的倍数, 故 $(S_{i-1}+1)(S_{i-1}+2)\cdots S_i$ $\in \mathbb{Z}$

从而
$$\prod_{i=1}^k \frac{(S_{i-1}+1)(S_{i-1}+2)\cdots S_i}{m_i} \in \mathbb{Z}$$
, 这等价于 $\sigma(n) \mid S_k!$.

结论 (2) 的证明: 对 $i = 1, 2, \dots, k$, 有

$$m_{i} = p_{i}^{\alpha_{i}} \left(1 + \frac{1}{p_{i}} + \dots + \frac{1}{p_{i}^{\alpha_{i}}} \right) \leq p_{i}^{\alpha_{i}} \left(1 + \frac{1}{2} + \dots + \frac{1}{2^{\alpha_{i}}} \right)$$
$$= p_{i}^{\alpha_{i}} \left(2 - \frac{1}{2^{\alpha_{i}}} \right) \leq 2p_{i}^{\alpha_{i}} - 1. \tag{2}$$

记 $\lambda_i=p_i^{\alpha_i},\,(i=1,2,\cdots,k),\,$ 则 $\lambda_i\geq 2.$ 反复使用 "若 $a,b\geq 2,\,$ 则 $ab\geq a+b$ ",可得

$$n = \prod_{i=1}^{k} \lambda_i \ge \sum_{i=1}^{k} \lambda_i,$$

结合 (2) 得

$$S_k = \sum_{i=1}^k m_i \le \sum_{i=1}^k (2\lambda_i - 1) = 2\sum_{i=1}^k \lambda_i - k \le 2n - k.$$

由结论 (1), (2), 原题得证.