WHAT IS CLAIMED IS:

1	1. A method for distributing data in a data network, wherein the data
2	network connects a plurality of nodes and at least a portion of the plurality of the nodes
3	form a multicast group, wherein one of the nodes in the multicast group is designated a
4	rendezvous node, the method comprising:
5	maintaining a data store containing a group state at each of the nodes in the
6	multicast group;
7	receiving state updates at the rendezvous node;
8	updating the group state in the data store at the rendezvous node with the
9	state updates;
10	propagating the state updates, using a reliable protocol, from the
11	rendezvous node to the other nodes in the multicast group; and
12	updating the group state in the data stores at the other nodes in the
13	multicast group.
1	2. The method of claim 1 wherein a joining node, that is a node of the
2	plurality of nodes, is added to the multicast group, the joining node having a data store,
3	the method further comprising steps of:
4	propagating the group state to the joining node; and
5	updating the data store at the joining node with the group state.
,	apairing the data store at the joining node with the group state.
1	3. The method of claim 2 wherein the step of propagating the group
2	state comprises a step of propagating the group state to the joining node from a selected
3	node in the multicast group.
1	4. The method of claim 3 wherein the step of propagating the group
2	state comprises a step of propagating the group state to the joining node from a selected
3	node in the multicast group that is closest to the joining node.
,	hode in the muticast group that is crosest to the joining hode.
1	5. The method of claim 3 wherein the step of propagating the group
2	state comprises a step of propagating the group state to the joining node from a selected
3	node in the multicast group, wherein the selected node is determined from a network
. 4	routing protocol.

1	o. A processing agent for processing data at a node in a data network,
2	wherein the data network connects a plurality of nodes and at least a portion of the
3	plurality of the nodes form a multicast group, wherein one of the nodes in the multicast
4	group is designated a rendezvous node, the processing agent comprising:
5	a state memory; and
6	a protocol processor having logic to couple to a selected node in the data
7	network, and having logic to transmit and receive data with other processing agents in the
8	data network over a data channel using a reliable protocol, the protocol processor couples
9	to the state memory and has logic to store and retrieve the data to and from the state
10	memory, respectively.
. 1	7. The processing agent of claim 6 wherein the selected node is a
2	selected node in the multicast group and wherein the protocol processor further
3	comprises:
4	logic to receive data from at least a first processing agent in the multicast
5	group over the data channel;
6	logic to update the state memory with the data; and
7	logic to transmit the data over the data channel to at least a second
. 8	processing agent associated with the multicast group.
1	8. The processing agent of claim 6 further comprising a packet
2	forwarding engine, the packet forwarding engine coupled to the protocol processor, the
3	state memory and the selected node, the packet forwarding engine comprising:
4	logic to retrieve the data from the state memory;
5	logic to receive data packets transmitted on the data network;
6	logic to process the received data packets based on the retrieved data from
7	the state memory to form an output data stream; and
8	logic to transmit the output data stream on the data network.
1	9. The processing agent of claim 8 wherein the packet forwarding
2	engine has logic to process the received data packets based on priority information
3	obtained from the retrieved data from the state memory.
. 1	10. A method for operating a processing agent coupled to a selected
2	node in a data network, wherein the data network connects a plurality of nodes and at

3	least a portion of the plurality of the nodes, including the selected node, form a multicast
4	group, wherein one of the nodes in the multicast group is designated a rendezvous node,
5	the method comprising steps of:
6	receiving data over a data channel;
7	updating a state memory with the data; and
8	propagating the data over the data channel to other processing agents in the
9	multicast group using a reliable protocol.
1	11. The method of claim 10 wherein a joining node, that is a child peer
2	to the selected node, joins the multicast group, the method further comprising steps of:
3	receiving an indication that the joining node has joined the multicast
4	group; and
5	propagating data from the state memory to the joining node over the data
6	channel using a reliable protocol.
1	12. The method of claim 10 further comprising the steps of:
2	receiving a query from a requestor in the data network, regarding data in
3	the state memory; and
4	transmitting at least a portion of the data in the state memory to the
5	requestor over the data channel in response to the query.
1	13. A data network for transmitting data, wherein the data network
2	connects a plurality of nodes and at least a portion of the plurality of the nodes form a
3	multicast group, wherein one of the nodes in the multicast group is designated a
4	rendezvous node, the data network comprising:
5	a plurality of processing agents, each of the processing agents having a
6	state memory, wherein each processing agent is coupled to a corresponding node in the
7	multicast group;
8	means for receiving data at the processing agent coupled to the rendezvous
9	node;
10	means for updating the state memory of the processing agent coupled to
11	the rendezvous node with the data;
12	means for propagating the data from the state memory of the processing
13	agent coupled to the rendezvous node to all other processing agents in the multicast
14	group; and

15	means for updating the state memories of all other processing agents in the
16	multicast group with the data.
1	14. The method of claim 13 wherein a joining node, that is a node of
2	the plurality of nodes, is added to the multicast group, the joining node having a data
3	store, the method further comprising steps of:
4	propagating the data to the joining node using a reliable protocol; and
5	updating the data store at the joining node with the data.
1	15. The method of claim 13 wherein the means for propagating
2	comprises logic at each of the processing agents to implement a data channel using a
3	reliable protocol.