

TEORIA DE MATERIAIS DE CONSTRUÇÃO

DIREÇÕES NOS CRISTAIS

a, b e c definem os eixos de um sistema de coordenadas em 3D. Qualquer linha (ou direção) do sistema de coordenadas pode ser especificada através de dois pontos: um deles sempre é tomado como sendo a origem do sistema de coordenadas, geralmente (0,0,0) por convenção;

TEORIA DE MATERIAIS DE CONSTRUÇÃO

DIREÇÕES NOS CRISTAIS

- Um vetor com comprimento conveniente é posicionado de tal modo que ele passa através da origem;
- O comprimento da projeção de vetor é medido em termos das dimensões da célula unitária a, b e c;
- Estes 3 números são multiplicados ou divididos por um fator comum;
- Os 3 índices, não separados por vírgulas, são colocados entre colchetes: [uvw].

TEORIA DE MATERIAIS DE CONSTRUÇÃO

DIREÇÕES NOS CRISTAIS

 São representadas entre colchetes=[uvw]

Família de direções:<uvw>

TEORIA DE MATERIAIS DE CONSTRUÇÃO

DIREÇÕES NOS CRISTAIS

Algumas direções da família de direções <100>

TEORIA DE MATERIAIS DE CONSTRUÇÃO

DIREÇÕES NOS CRISTAIS

 São representadas entre colchetes = [hkl]

 Se a subtração der negativa, coloca-se uma barra sobre o número

TEORIA DE MATERIAIS DE CONSTRUÇÃO

DIREÇÕES NOS CRISTAIS

 São representadas entre colchetes= [hkl]

 Quando passa pela origem

TEORIA DE MATERIAIS DE CONSTRUÇÃO

DIREÇÕES NOS CRISTAIS

 São representadas entre colchetes = [hkl]

Os números devem ser divididos ou multiplicados por um fator comum para dar números inteiros

TEORIA DE MATERIAIS DE CONSTRUÇÃO

DIREÇÕES PARA O SISTEMA CÚBICO

- A simetria desta estrutura permite que as direções equivalentes sejam agrupadas para formar uma família de direções:
- <100> para as faces
- <110> para as diagonais das faces
- <111> para a diagonal do cubo

TEORIA DE MATERIAIS DE CONSTRUÇÃO

DIREÇÕES PARA O SISTEMA CCC

- No sistema CCC os átomos se tocam ao longo da diagonal do cubo, que corresponde a família de direções
 <111>
- Então, a direção <111>
 é a de maior
 empacotamento
 atômico para o sistema
 CCC

TEORIA DE MATERIAIS DE CONSTRUÇÃO

DIREÇÕES PARA O SISTEMA CFC

- No sistema CFC os átomos se tocam ao longo da diagonal da face, que corresponde a família de direções <110>
- Então, a direção <110>
 é a de maior
 empacotamento
 atômico para o sistema
 CFC

TEORIA DE MATERIAIS DE CONSTRUÇÃO

PLANOS CRISTALINOS Por quê são importantes?

- · Para a determinação da estrutura cristalina: Os métodos de difração medem diretamente a distância entre planos paralelos de pontos do reticulado cristalino. Esta informação é usada para determinar os parâmetros do reticulado de um cristal.
- Para a deformação plástica: A deformação plástica (permanente) dos metais ocorre pelo deslizamento dos átomos, escorregando uns sobre os outros no cristal. Este deslizamento tende a acontecer preferencialmente ao longo de planos direções específicos do cristal.
- Para as propriedades de transporte: Em certos materiais, a estrutura atômica em determinados planos causa o transporte de elétrons e/ou acelera a condução nestes planos, e, relativamente, reduz a velocidade em planos distantes destes.

11

ESTRUTURA CRISTALINA TEORIA DE MATERIAIS DE CONSTRUÇÃO

PLANOS CRISTALINOS

- São representados de maneira similar às direções
- São representados pelos índices de Miller = (hkl)

 Planos paralelos são equivalentes tendos os mesmos índices

TEORIA DE MATERIAIS DE CONSTRUÇÃO

PLANOS CRISTALINOS

TEORIA DE MATERIAIS DE CONSTRUÇÃO

PLANOS CRISTALINOS

Planos (010)

 São paralelos aos eixos x e z (paralelo à face)

 Cortam um eixo (neste exemplo: y em 1 e os eixos x e z em ∞)

• $1/\infty$, 1/1, $1/\infty = (010)$

TEORIA DE MATERIAIS DE CONSTRUÇÃO

PLANOS CRISTALINOS

Planos (110)

São paralelos a um eixo (z)

Cortam dois eixos (x e y)

• 1/1, 1/1, $1/\infty = (110)$

TEORIA DE MATERIAIS DE CONSTRUÇÃO

PLANOS CRISTALINOS

Planos (111)

- Cortam os 3 eixos cristalográficos
- 1/1, 1/1, 1/1 = (111)

TEORIA DE MATERIAIS DE CONSTRUÇÃO

PLANOS CRISTALINOS

 Quando as intercessões não são óbvias desloca-se o plano até obter as intercessões corretas

ESTRUTURA CRISTALINA TEORIA DE MATERIAIS DE CONSTRUÇÃO

PLANOS NO SISTEMA CÚBICO

 A simetria do sistema cúbico faz com que a família de planos tenham o mesmo arranjamento e densidade

 Deformação em metais envolve deslizamento de planos atômicos. O deslizamento ocorre mais facilmente nos planos e direções de maior densidade atômica

TEORIA DE MATERIAIS DE CONSTRUÇÃO

PLANOS DE MAIOR DENSIDADE ATÔMICA NO SISTEMA CCC

A família de planos {110}
no sistema CCC é o de
maior densidade atômica

TEORIA DE MATERIAIS DE CONSTRUÇÃO

PLANOS DE MAIOR DENSIDADE ATÔMICA NO SISTEMA CFC

A família de planos {111}
no sistema CFC é o de
maior densidade atômica

TEORIA DE MATERIAIS DE CONSTRUÇÃO

DIREÇÕES E PLANOS PARA O SISTEMA HC

TEORIA DE MATERIAIS DE CONSTRUÇÃO

DENSIDADE ATÔMICA LINEAR E PLANAR

(b)

ESTRUTURA CRISTALINA TEORIA DE MATERIAIS DE CONSTRUÇÃO

DETERMINAÇÃO DA ESTRUTURA CRISTALINA POR DIFRAÇÃO DE RAIOS X

 Raios X tem comprimento de onda similar a distância interplanar

• 0,1 nm

TEORIA DE MATERIAIS DE CONSTRUÇÃO

DETERMINAÇÃO DA ESTRUTURA CRISTALINA POR DIFRAÇÃO DE RAIOS X

O FENÔMENO DA DIFRAÇÃO:

"Quando um feixe de raios X é dirigido à um material cristalino, esses raios são difratados pelos planos dos átomos ou íons dentro do cristal"

TEORIA DE MATERIAIS DE CONSTRUÇÃO

60

DETERMINAÇÃO DA ESTRUTURA CRISTALINA POR DIFRAÇÃO DE RAIOS X

Difração (revisão ?)

Difração é um fenômeno de interferência

TEORIA DE MATERIAIS DE CONSTRUÇÃO

DIFRAÇÃO DE RAIOS X LEI DE BRAGG

 $n\lambda = 2 d_{hkl}.sen_{\theta}$

 λ é comprimento de onda N é um número inteiro de ondas d é a distância interplanar θ o ângulo de incidência

ESTRUTURA CRISTALINA TEORIA DE MATERIAIS DE CONSTRUÇÃO

DISTÂNCIA INTERPLANAR (d_{hkl})

• É uma função dos índices de Miller e do parâmetro de rede

$$d_{hkl} = a$$
 $(h^2+k^2+l^2)^{1/2}$

TEORIA DE MATERIAIS DE CONSTRUÇÃO

O DIFRATOMÊTRO DE RAIOS X

- T= fonte de raio X
- S= amostra
- C= detector
- O= eixo no qual a amostra e o detector giram

TEORIA DE MATERIAIS DE CONSTRUÇÃO

DIFRATOGRAMA

65

Ex: Espectro de difração para A1

Uma amostra desconhecida é analisada e seus picos comparados com os de materiais conhecidos e tabelados, permitindo assim a identificação do material.

TEORIA DE MATERIAIS DE CONSTRUÇÃO

ANISOTROPIA

Algumas propriedades físicas dependem da direção cristalográfica na qual as medições são realizadas (direcionalidade).

ISOTROPIA

As propriedades medidas são independentes da direção

Materiais policristalinos: a magnitude da propriedade medida representa uma média dos valores direcionais;

Material com textura: materiais policristalinos que possuem uma orientação cristalográfica preferencial.

TEORIA DE MATERIAIS DE CONSTRUÇÃO

MATERIAL POLICRSTALINO

(d)

TEORIA DE MATERIAIS DE CONSTRUÇÃO

LAMINAÇÃO – "ROLL-CASTING"

TEORIA DE MATERIAIS DE CONSTRUÇÃO

Texturas de deformação e de recristalização

