Duke University — CEE 421L. Matrix Structural Analysis Introduction to Stiffness Matrix Assembly for Trusses Method 1: Element by Element

- bar numbers
- un-restrained structural coordinates are the global degrees of freedom
- angles θ imply the element coordinate numbering system

Element 1

Element coordinates 3 & 4 correspond to structural coordinates 1& 2.

Element 2

Element coordinates 3 & 4 correspond to structural coordinates 1& 2.

Element 3

Element coordinates 1 & 2 correspond to structural coordinates 1 & 2.

$$\mathbf{K}_{3} = \left(\frac{EA}{L}\right)_{3} \begin{bmatrix} c_{3}^{2} & c_{3}s_{3} & \dots \\ c_{3}s_{3} & s_{3}^{2} & \dots \\ \dots & \dots & \dots \\ \dots & \dots & \dots \end{bmatrix}$$

Assemble the structural stiffness matrix, K_s , for the two structural coordinates.

$$\mathbf{K_s} = \begin{bmatrix} \left(\frac{EA}{L}\right)_1 c_1^2 + \left(\frac{EA}{L}\right)_2 + \left(\frac{EA}{L}\right)_3 c_3^2 & \left(\frac{EA}{L}\right)_1 c_1 s_1 + \left(\frac{EA}{L}\right)_3 c_3 s_3 \\ \left(\frac{EA}{L}\right)_1 c_1 s_1 + \left(\frac{EA}{L}\right)_3 c_3 s_3 & \left(\frac{EA}{L}\right)_1 s_1^2 + \left(\frac{EA}{L}\right)_3 s_3^2 \end{bmatrix}$$

Duke University — CEE 421L. Matrix Structural Analysis Introduction to Stiffness Matrix Assembly for Trusses Method 2: Coordinate by Coordinate — column by column

- bar numbers
- un-restrained structural coordinates are the global degrees of freedom
- angles β should be acute, if possible, so that $\cos \beta \ge 0$ and $\sin \beta \ge 0$.

Coordinate 1

Forces required for $d_1 = 1$ (only).

$$\mathbf{K_{s11}} = \left(\frac{EA}{L}\right)_1 \cos^2 \beta_1 + \left(\frac{EA}{L}\right)_2 + \left(\frac{EA}{L}\right)_3 \cos^2 \beta_2$$

$$\mathbf{K_{s21}} = \left(\frac{EA}{L}\right)_1 \cos \beta_1 \sin \beta_1 - \left(\frac{EA}{L}\right)_3 \cos \beta_2 \sin \beta_2$$

Coordinate 2

Forces required for $d_2 = 1$ (only).

$$\mathbf{K_{s22}} = \left(\frac{EA}{L}\right)_1 \sin^2 \beta_1 + \left(\frac{EA}{L}\right)_3 \sin^2 \beta_2$$

$$\mathbf{K_{s12}} = \left(\frac{EA}{L}\right)_1 \cos \beta_1 \sin \beta_1 - \left(\frac{EA}{L}\right)_3 \cos \beta_2 \sin \beta_2$$

$$\mathbf{K_s} = \begin{bmatrix} \left(\frac{EA}{L}\right)_1 \cos^2 \beta_1 + \left(\frac{EA}{L}\right)_2 + \left(\frac{EA}{L}\right)_3 \cos^2 \beta_2 & \left(\frac{EA}{L}\right)_1 \cos \beta_1 \sin \beta_1 - \left(\frac{EA}{L}\right)_3 \cos \beta_2 \sin \beta_2 \\ \left(\frac{EA}{L}\right)_1 \cos \beta_1 \sin \beta_1 - \left(\frac{EA}{L}\right)_3 \cos \beta_2 \sin \beta_2 & \left(\frac{EA}{L}\right)_1 \sin^2 \beta_1 + \left(\frac{EA}{L}\right)_3 \sin^2 \beta_2 \end{bmatrix}$$

What are the off-diagonal terms if $\beta_1 = \beta_2$? Does this make sense?