

BVRIT HYDERABAD College of Engineering for Women Department of Information Technology

FACE RECOGNITION BASED ATTENDANCE SYSTEM USING MACHINE LEARNING

Under the guidance of:

Guide Name: Ms. J. Kavitha

Designation: Assistant Professor

Team 9

P. Mrunalini (19WH1A1206)

G. Raajitha (19WH1A1210)

P. Tejaswini (19WH1A1211)

R. Teja Sri (19WH1A1237)

Contents

- Abstract
- Introduction
- Problem Definition
- Literature Survey
- Proposed System
- Project Modules
- Performance Measures
- Implementation and Results
- Conclusion
- References

- Passwords were the only method available to identify individuals.
 Passwords became obsolete due to obtaining password information and hacking into accounts.
- The face recognition system is a high-speed and reliable technology. It is an advanced, automated, and sensible identification system that can identify a person by facial features.

•

- The management of the attendance can be a great burden, if it is done manually, so the smart and auto attendance management system is being utilized.
- Face recognition has set an important biometric feature, which can be easily acquirable and is non-intrusive, Face recognition based systems are relatively oblivious to various facial expression.
- It is a part of biometric identification that extracts the facial features of a face, and then stores it as a unique face print to uniquely recognize a person.
- Face recognition based attendance system consists of two categories: face identification and verification.

Problem Definition

- A facial recognition attendance system uses facial recognition technology to identify and verify a person using the person's facial features and automatically mark attendance.
- The software can be used for different groups of people such as employees, students, etc.
- The system records and stores the data in real-time and attendance will be marked if the detected face is found in the database.

Department of IT, BVRIT HYDERABAD

Literature Survey

S.No	Title of the Paper	Autor(s) Journal Details	Description
1.	Study and Analysis of Implementing a Smart Attendance Management System Based on Face Recognition Technique using OpenCV and Machine Learning	K. Mridha and N. T. Yousef	They used the Face Detection with OpenCV technique where the model compares the recording image with the existing images of the registered person and identify the person.
2.	Real Time Face Recognition using Effective Supervised Machine Learning Algorithms	P. Nagaraj, Rajesh Banala and A.V. Krishna Prasad	They used a machine learning algorithm called Haarcascade classifier.
3.	Deep Learning Convolutional Neural Network for Face Recognition	Rondik J.Hassan Adnan Mohsin Abdulazeez,	They did a research on different Face Recognition approaches and the datasets and algorithms that can be used

Proposed System

- Recognition of multiple faces in one screen.
- Marking attendance of multiple people at a time.

Project Modules

- Face Detection
- Face Encoding
- Face Recognition
- Marking Attendance

Libraries used

import cv2
import numpy as np
import face_recognition
import os
from datetime import datetime
from datetime import date
import pandas as pd

Creating attendance directories

```
if not os.path.isdir('Attendance'):
    os.makedirs('Attendance')
if f'Attendance-{datetoday}.csv' not in os.listdir('Attendance'):
    with open(f'Attendance/Attendance-{datetoday}.csv','w') as f:
        f.write('Name, Roll, Time')
```


Features Extraction (Numerical Encodings)

```
def findEncodings(images):
    encodeList =[]
    for img in images:
        img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
        encode = face_recognition.face_encodings(img)[0]
        encodeList.append(encode)
    return encodeList
```


Face Recognition

```
while True:
    success, img = cap.read()
    imgS = cv2.resize(img, (0, 0), None, 0.25, 0.25)
    imgS = cv2.cvtColor(imgS, cv2.COLOR BGR2RGB)
    facesCurFrame = face recognition.face locations(imgS)
    encodesCurFrame = face recognition.face encodings(imgS, facesCurFrame)
    for encodeFace, faceLoc in zip(encodesCurFrame, facesCurFrame):
       matches = face recognition.compare faces(encodeListKnown, encodeFace)
       faceDis = face recognition.face distance(encodeListKnown, encodeFace)
       print(faceDis)
       matchIndex = np.argmin(faceDis)
       if matches[matchIndex]:
           name = classNames[matchIndex].upper()
           print(name)
           y1, x2, y2, x1 = faceLoc
           v1, x2, v2, x1 = v1*4, x2*4, v2*4, x1*4
           cv2.rectangle(img, (x1, y1), (x2, y2), (0, 255, 0), 2)
           cv2.rectangle(img, (x1, y2-35), (x2, y2), (0, 250, 0), cv2.FILLED)
           cv2.putText(img, name, (x1+6, y2-6), cv2.FONT HERSHEY COMPLEX, 1, (255, 255, 255), 2)
           markAttendance(name)
```


Marking attendance

```
def markAttendance(name):
    username = name.split('_')[0]
    userid = name.split('_')[1]
    current_time = datetime.now().strftime("%H:%M:%S")
    df = pd.read_csv(f'Attendance/Attendance-{datetoday}.csv')
    if username not in list(df['Name']):
        with open(f'Attendance/Attendance-{datetoday}.csv','a') as f:
        f.write(f'\n{username},{userid},{current_time}')
```


webcam RAAJITHA MRUNALINI_1206

- Attendance > III Attendance-17_12_22.csv
 - 1 Name, Roll, Time
 - 2 TEJA SRI,1237,14:29:10
 - 3 MRUNALINI,1206,14:29:28
 - 4 RAAJITHA,1210,14:29:33

Performance Measure

- We used the library face_recognition which is built on deep learning techniques.
- This library gives the accuracy of 96% using a single training image

Conclusion

- A multi facial recognition based attendance system uses facial recognition technology to identify and verify multiple faces using the person's facial features and automatically mark attendance.
- We have completed recording and storing the data in real-time and attendance will be marked if the detected face is found in the database.

References

- K. Mridha and N. T. Yousef, "Study and Analysis of Implementing a Smart Attendance Management System Based on Face Recognition Technique using OpenCV and Machine Learning," IEEE, 2021.
- P. Nagaraj, Rajesh Banala and A.V. Krishna Prasad "Real Time Face Recognition using Effective Supervised Machine Learning Algorithms" CONSILIO, 2021.
- Rondik J.Hassan Adnan Mohsin Abdulazeez, "Deep Learning Convolutional Neural Network for Face Recognition: A Review," IJSAB, 2021.

THANK YOU