МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ

ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ВЯТСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

Институт математики и информационных систем Факультет автоматики и вычислительной техники Кафедра электронных вычислительных машин

Отчёт по лабораторной работе №2
по дисциплине
«Информатика»
«Арифметические операции в системах счисления»

Выполнил студент гр. ИВТб-1301-05-00 ______/Черкасов А. А./ Проверил доцент кафедры ЭВМ _____/Коржавина А.С./

Киров

1 Цель

Цель лабораторной работы: закрепить на практике знания о выполнении арифметических операций сложения и умножения чисел в позиционных и непозиционных системах счисления.

Задание

- 1. В каждом варианте даны 2 пары чисел $(X_1 \text{ и } Y_1, X_2 \text{ и } Y_2)$. Выполнить перевод чисел из десятичной системы счисления в двоичную систему счисления (2CC), выполнить сложение и умножение чисел. Проверить полученные результаты.
- 2. В каждом варианте даны 2 пары чисел (X_3 и Y_3 , X_4 и Y_4). Выполнить перевод чисел из десятичной системы счисления в 16СС. Выполнить сложение шестнадцатеричных чисел в соответствии с вариантом. Проверить полученные результат.
- 3. Выполнить перевод в систему остаточных классов в соответствии с вариантом. В каждом варианте даны 2 числа (А и В) и соответствующие им базисы. Выполнить сложение и умножение чисел.
 - Проверить полученные результат.
- 4. Выполнить перевод в троичную симметричную систему счисления в соответствии с вариантом. В каждом варианте даны 2 числа. Выполнить сложение чисел.
 - Проверить полученные результат.
- 5. Выполнить перевод в двоично-десятичную систему счисления в соответствии с вариантом. В каждом варианте даны 2 пары чисел. Представить первую пару чисел в коде 8421 (код с естественными весами), вторую пару в коде 8421+3. Выполнить сложение чисел. Проверить полученные результат.

Решение

1. 87 + 73 и $87 \cdot 73$ в 2СС. Перевод 87 и 73:

$$87 = 43 \cdot 2 + 1, \Rightarrow b_0 = 1,$$

$$43 = 21 \cdot 2 + 1, \Rightarrow b_1 = 1,$$

$$21 = 10 \cdot 2 + 1, \Rightarrow b_2 = 1,$$

$$10 = 5 \cdot 2 + 0, \Rightarrow b_3 = 0,$$

$$5 = 2 \cdot 2 + 1, \Rightarrow b_4 = 1,$$

$$2 = 1 \cdot 2 + 0, \Rightarrow b_5 = 0,$$

$$1 = 0 \cdot 2 + 1, \Rightarrow b_6 = 1$$

$$73 = 36 \cdot 2 + 1, \Rightarrow b_0 = 1,$$

$$36 = 18 \cdot 2 + 0, \Rightarrow b_1 = 0,$$

$$18 = 9 \cdot 2 + 0, \Rightarrow b_2 = 0,$$

$$9 = 4 \cdot 2 + 1, \Rightarrow b_3 = 1,$$

$$4 = 2 \cdot 2 + 0, \Rightarrow b_4 = 0,$$

$$2 = 1 \cdot 2 + 0, \Rightarrow b_5 = 0,$$

$$1 = 0 \cdot 2 + 1, \Rightarrow b_6 = 1$$

• Сложение:

Проверка: $1 \cdot 2^7 + 1 \cdot 2^5 = 87 + 73 = 160$

• Умножение:

Проверка:
$$2^{12} + 2^{11} + 2^7 + 2^6 + 2^3 + 2^2 + 2^1 + 2^0 = 87 \cdot 73 = 6351$$

7.3 + 8.6 и $7.3 \cdot 8.6$. Перевод целых частей чисел в 2СС аналогичен.

$$7_{10} = 0111_2$$
$$8_{10} = 1000_2$$

Перевод дробной части чисел.

$$0.3 \cdot 2 = 0.6, \implies b_{-1} = 0,$$

 $0.6 \cdot 2 = 1.2, \implies b_{-2} = 1,$
 $0.2 \cdot 2 = 0.4, \implies b_{-3} = 0,$
 $0.4 \cdot 2 = 0.8, \implies b_{-4} = 0,$
 $0.8 \cdot 2 = 1.6, \implies b_{-5} = 1,$
 $0.6 \cdot 2 = 1.2, \implies b_{-6} = 1,$
 $0.2 \cdot 2 = 0.4, \implies b_{-7} = 0,$
 $0.4 \cdot 2 = 0.8, \implies b_{-8} = 0,$
...

$$7.3_{10} = 0111.0[1001]_2$$

 $8.6_{10} = 1000.[1001]_2$

• Сложение:

• Умножение целых частей:

• Умножение дробных частей:

$$7.3_{10} \cdot 8.6_{10} = 111110.00100100_2$$

Проверка:
$$2^5 + 2^4 + 2^3 + 2^2 + 2^1 + 2^{-3} + 2^{-6} = 62.140625$$
 и $7.3 \cdot 8.6 = 62.78$

2. 105 + 120:

• Перевод в 2СС аналогичен 1-й задаче:

$$105_{10} = 01101001_2$$
$$120_{10} = 01111000_2$$

• Перевод из 2CC в 16CC разбивкой битов на группs по 4:

$$0110_2 = 6_{16}|1001_2 = 9_{16} = 69_{16}$$
$$0111_2 = 7_{16}|1000_2 = 8_{16} = 78_{16}$$

• Сложение $105_{10} + 120_{10}$ в 16СС:

Проверка: $14 \cdot 16^1 + 1 \cdot 16^0 = 105_{10} + 120_{10} = 225_{10}$ $88_{10} + 80_{10}$:

• Перевод в 2СС:

$$88_{10} = 01011000_2$$
$$80_{10} = 01010000_2$$

• Перевод из 2СС в 16С:

$$0101_2 = 5_{16}|1001_2 = 8_{16} = 58_{16}$$
$$0101_2 = 5_{16}|0000_2 = 0_{16} = 50_{16}$$

• Сложение:

Проверка: $10 \cdot 16^1 + 8 \cdot 16^0 = 88_{10} + 80_{10} = 168_{10}$

- 3. $108_{10} + 112_{10}$ в системе остаточных классов:
 - Перевод 108_{10} и 112_{10} в систему с остатками $\{5, 7, 11, 13\}$:

108 mod
$$5 = 3$$

108 mod $7 = 3$
108 mod $11 = 9$
108 mod $13 = 4$
 $B_1 = \{3, 3, 9, 4\}$

$$112 \mod 5 = 2$$
 $112 \mod 7 = 0$
 $112 \mod 11 = 2$
 $B_2 = \{2, 0, 2, 8\}$
 $112 \mod 13 = 8$

• Сложение:

$$\begin{array}{c}
+ & \{3, 3, 9, 4\} \\
\hline
\{2, 0, 2, 8\} \\
\hline
\hline
\{5, 3, 11, 12\} \\
\hline
\{0, 3, 0, 12\}
\end{array}$$

Проверка:

$$108_{10} + 112_{10} = 220_{10} \rightarrow B_{res} = \{0, 3, 0, 12\}$$
 $B_{res} = B_1 + B_2$

- 4. $111_{10} + 118_{10}$ в троичной симметричной СС:
 - Перевод в троичную симметричную СС:

$$111 = 37 \cdot 3 + 0, \Rightarrow t_0 = 0,$$

$$37 = 12 \cdot 3 + 1, \Rightarrow t_1 = p,$$

$$12 = 4 \cdot 3 + 0, \Rightarrow t_2 = 0,$$

$$4 = 1 \cdot 3 + 1, \Rightarrow t_3 = p,$$

$$1 = 0 \cdot 3 + 1, \Rightarrow t_4 = p$$

 $111_{10} = pp0p0_3 \Rightarrow 118_{10} = ppp0p_3$

• Сложение:

$$+ \frac{pp0p0}{ppp0p}$$

Проверка: $111_{10} + 118_{10} = 1 \cdot 3^5 - 1 \cdot 3^3 + 1 \cdot 3^2 + 1 \cdot 3 + 1 \cdot 3^0 = 229_{10}$

- $5. 125_{10} + 73_{10}$ в кодировке 8421:
 - Перевод чисел:

$$125_{10} \Rightarrow 0001|0010|0101_{8421}$$
$$73_{10} \Rightarrow 0000|0111|0011_{8421}$$

• Сложение:

$$+ \frac{0001|0010|0101_{8421}}{0000|0111|0011_{8421}} \\ \hline \frac{0001|1001|1000_{8421}}{1|6|9_{10}}$$

Проверка:
$$125_{10} + 73_{10} = 169_{10}$$

$$95_{10} + 74_{10}$$
 в кодировке $8421+3$:

• Перевод:

$$95_{10} \Rightarrow 1100|1000_{8421+3}$$

 $74_{10} \Rightarrow 1010|0111_{8421+3}$

• Сложение:

$$+ \frac{1100|1000_{8421+3}}{1010|0111_{8421+3}} \\ \hline \frac{0001|0110|1111}{0100|1001|1100_{8421+3}}$$

Выводы

В ходе лабораторной работы были выполнены различные операции с числами в различных системах счисления, что позволило закрепить знания о переводах между системами, а также о выполнении арифметических операций.