HW 4

November 2, 2020

1. Let $f(x) = x^3$, p be the Lagrange interpolation polynomial of f using interpolation points x = 0, x = 1. On the interval [0, 1], find the point c that maximizes the interpolation error |f(c) - p(c)|, and find another point $s \in [0, 1]$ such that

$$f(c) - p(c) = f''(s)c(c-1)/2$$

- 2. Let $f(x) = e^x$, p be the Lagrange interpolation polynomial of f on interval [0,2] using interpolation points $x_0 = 0$, $x_1 = 1$, $x_2 = 2$, find an upper bound for the L^{∞} norm of f(x) p(x) on [0,2], using the error bound of Lagrange polynomial we covered in the lecture (Theorem 6.2 in textbook, Theorem 1.5 in lecture notes).
- 3. Suppose f is continuous and with continuous derivatives of order up to and including 5 on [a, b], and there are three distinct

points x_0 , x_1 , x_2 in [a, b]. Let $y_i = f(x_i)$, i = 0, 1, 2; $z_j = f'(x_j)$, j = 0, 2.

- (i) Find a polynomial p of degree at most 4, such that $p(x_i) = y_i$, i = 0, 1, 2; $p'(x_j) = z_j$, j = 0, 2.
- (ii) Use an argument similar to the error estimate of Hermite interpolation polynomial to show that for any $x \in [a, b]$, there is some number $s \in [a, b]$ such that

$$f(x) - p(x) = f^{(5)}(s)(x - x_0)^2(x - x_1)(x - x_2)^2/5!$$

- 4. Let $q_j = (1 x^2)^j$, $\varphi_j = q_j^{(j)}$, show that φ_j are orthogonal to each other in $L^2([-1,1])$. In other words, if $j \neq j'$, $\int_{-1}^1 \varphi_j \varphi_{j'} dx = 0$.
- 5. Find three distinct points x_0 , x_1 and x_2 in (-1,1), such that for any polynomial function f of degree 3, the best approximation of f under L^2 norm on [-1,1] of degree at most 2 coincides with the Lagrange interpolation polynomial of f using interpolation points x_0 , x_1 and x_2 .
- 6. Let f be a continuous function on [0,1], p_n be the polynomial of best approximation of degree no more than n under the L^2 norm. Then, after studying Theorem 9.5 in the textbook, which proved that $f p_n$ is zero at at least n + 1 distinct points in (0,1), find a function f such that $f p_2$ is zero at 4 distinct points in (0,1).