IN2120 Information Security Spring 2019

Lecture 10 Identity and Access Management

L10 - Id Man & AC

Audun Jøsang University of Oslo

IAM Identity and Access Management

IN2120 - UiO 2019

3

Outline

- Identity and access management concepts
- · Identity management models
- Access control models (security models)

L10 - Id Man & AC

IN2120 - UiO 2019

Identity and Access Management Scenario

Definition of IAM

- Identity and access management (IAM) is the security discipline that enables the right individuals to access the right resources at the right times for the right reasons.
- IAM addresses the mission-critical need to ensure appropriate access to resources across increasingly heterogeneous technology environments, and to meet increasingly rigorous compliance requirements.

Gartner, IT Glossary

http://blogs.gartner.com/it-glossary/identity-and-access-management-iam/

I 10 - Id Man & AC

IN2120 - UiO 2019

5

Concepts related to identity

- Entity
 - A person, organisation, agent, system, session, process, etc.
- Identity
 - A set of names / attributes of entity in a specific domain
 - An entity may have identities in multiple domains
 - An entity may have multiple identities in one domain
- Digital identity
 - Digital representation of names / attributes in a way that is suitable for processing by computers
- Names and attributes of entity
 - Can be unique or ambiguous within a domain
 - Transient or permanent, self-defined or defined by authority, interpretation by humans and/or by computers, etc

The concept of identity

I 10 - Id Man & AC

IN2120 - UiO 2019

Identity

- Etymology (original meaning of words)
 - "identity" = "same one as last time".
- "First-time" authentication is not meaningful
 - because there is no "previous time"
 - because the identity first must be created/registered
- Authentication requires a first-time registration of identity in the form of a name within a domain
- Registration can be take two forms:
 - pre-authentication, from previous identity, e.g. passport
 - creation of new identity, e.g. new-born baby

L10 - Id Man & AC IN2120 - UiO 2019 7 L10 - Id Man & AC IN2120 - UiO 2019

- An identity domain has a name-space of unique names
 - The same user can have separate identities in different domains

- Identity domain structures:
 - Silo domain with single authority, e.g. User Ids in company network
 - Distributed hierarchic domain: e.g. DNS (Domain Name System)
- · Federated identity domains
 - Identity domain can be used by many different Service Providers
 - Requires alignment of identity management between SPs

L10 - Id Man & AC IN2120 - UiO 2019

Silo identity management model

Taxonomy of Identity Management Architectures

Silo Id domains

- SP (Service Provider) = IdP (Identity Provider):
 SP controls name space and provides access credentials
- Unique identifier assigned to each entity
- Advantages
 - Simple to deploy, low initial cost for SPs
 - Potentially good privacy
- Disadvantages
 - Identity overload for users, poor usability, no business integration
 - Low acceptance of new services with separate Id & credentials
 - Users must provide same information to different service providers
 - For service providers: Barrier to service bundling and data collection

12

Identity Federation

- A set of agreements, standards and technologies that enable a group of SPs to recognise and trust user identities and credentials from different IdPs, CrPs and SPs.
- Four main types:
 - **1.Centralized Federation:** Centralised name space and management of credentials by single IdP/CrP.
 - **2. Distributed Identity with Centralised Authentication:**Distributed name spaces managed by multiple IdPs.
 Centralised credentials authentication by single CrP.
 - **3. Centralised Identity with Distributed Authentication:**Centralised name space managed by single IdP. Distributed mgmt. of credentials and authentication by multiple CrPs.
 - **4. Distributed Federation:** Distributed name spaces and management of credentials by multiple IdPs and CrPs.

L10 - Id Man & AC IN2120 - UiO 2019 13

Federation model types

- · Aadhaar (India) and google+ are centralised because
 - they control and manage the domain's name space of identities,
 - they always verify the authentication credentials in their federations.
- Facebook and Twitter have distributed identities and centralised credentials because
 - they do not manage identities which are ordinary email addresses,
 - they always verify the authentication credentials in their federations.
- The ID-portal Norway has centralised Id and distributed authentication because
 - identities are national id-numbers, managed by the government
 - multiple private credentials providers verify credentials for authentication
- OpenID and eduroam are distributed because
 - multiple Id-providers control and manage name spaces for identities
 - the same Id-providers also verify the credentials for authentication

Identity Federation Types

Federation types	Centralised Identity	Distributed Identity	
Centralised Authentication	Centralised AADHAAR Google	Distributed Id Centralised Cr H Gle + facebook twitter	
Distributed Authentication	Centralised Id Distributed Cr ID-porten ID-porten Hele	Distributed FEIDE eduroam	

Identity Federation Players

- User
 - Needs identities and credentials to access multiple SPs.

- Needs to know identity of users, and needs assurance of user authenticity.
- Identity Provider (IdP)
 - Controls name space of identities.
 Issues/registers identities for users.
- Credentials Provider (CrP)
 - Issues/registers credentials for users.
 Performs authentication of users.
- Broker

L10 - Id Man & AC

- Intermediary between players (not always used)

Federation protocols

- Authentication by one IdP/CrP/SP is communicated as a security assertions (cryptographic token) to other SPs that trust and accept the assertion of authenticity.
- Usually based on the SAML protocol
 - Security Assertions Markup Language
- Involves multiple players
 - User, IdP, CrP, SP, and sometimes a broker

L10 - Id Man & AC IN2120 - UiO 2019 17

Advantage/Disadvantage of Federation

- Advantages
 - Improved usability
 - Allows SPs to bundle services and collect user info
 - Strengthen privacy through pseudonym identities
- Disadvantages
 - High technical and legal complexity
 - High trust requirements between parties
 - · Each federation partner can potentially compromise security
 - Privacy issues,
 - Massive data collection is a threat to data privacy
 - Limited scalability,
 - Limited by political and economical constraints
 - An Identity federation can become a new form of silo

L10 - Id Man & AC IN2120 - UiO 2019 18

SAML protocol profile: Browser Post Security token via front-channel Federation circle of trust

OpenID Connect Characteristics

- Based on OpenID and OAuth 2.0 specifications
- SPs establish federation agreements with IdPs
- Beware of abuse of term "authorization"
 - The OpenId Connect standard uses "authorization" in the meaning of authentication and access control
- OpenID Connect used in the Norwegian HelseID
 - IAM for the Norwegian health sector
 - Health professionals register OpenIds that are independent of their national person numbers
 - Mapping between OpenIds and person number exists but is protected

FEIDE (Felles Elektronisk Identitet)

- FEIDE is a distributed federation with centralised broker for the Norwegian national education sector.
- Users register username and password with own home organisation
- Users authenticate to web-services via FEIDE's centralized login service
- The Service Provider receives user attributes from the user's Home Institution
- The Service Providers never sees the user's password/credential, it only receives user attributes that it need to know in order to provide the service.

(continued)

- EDUROAM has formal agreements with the public and private locations around Europe for network access
- Home Institutions (universities) are responsible for keeping user data and credentials correct and up-to-date
- · Networks provide Internet access.

L10 - Id Man & AC IN2120 - UiO 2019 26

FEIDE (continued)

- FEIDE has formal agreements with the universities and schools before they are connected
- Home Institutions (universities and schools) are responsible for keeping user data correct and up-to-date
- Service Providers decide themselves what services their own users and other users should be able to access via FEIDE's central log-in service.

L10 - Id Man & AC IN2120 - UiO 2019 27 L10 - Id Man & AC IN2120 - UiO 2019 28

Scenario

- 1. User requests access to service
- 2. Service Provider sends authentication request to FEIDE, and displays FEIDE login form to user.
- 3. User enters name and password in FEIDE login form, which are sent for validation to Home Institution of user.
- 4. Home Institution confirms authentic user and provides user attributes to FEIDE which forwards these to SP
- Service Provider analyses user attributes and provides service according to policy

I 10 - Id Man & AC IN2120 - UiO 2019 29

Service

Provider

Scenario

- BankID (AAL 4) 5.
- Buypass (AAL 4)
- MinID (AAL 3)

- 1. User requests service access
- 2. Service Provider sends authentication request to Idportal, and displays ID-portal login form to user.
- User selects credentials provider, enters name and password in login form, which are sent for validation to credentials provider of user.
- 4. Credentials provider confirms authentic user and provides user attributes to ID-portal which forwards these to SP
 - Service Provider analyses user attributes and provides service according to policy

I 10 - Id Man & AC

IN2120 - UiO 2019

Introduction to Logical Access Control

Physical Access Control: (not the theme today)

Logical Access Control: (this lecture)

Basic concepts

- Access control security models:
 - How to define which subjects can access which objects with which access modes?
- Three classical approaches
 - Discretionary Access Control (DAC)
 - Mandatory access control (MAC)
 - Role-Based Access Control (RBAC)
- Advanced approach for distributed environments:
 - Attribute-Based Access Control (ABAC)
 - Generalisation of DAC, MAC and RBAC

L10 - Id Man & AC IN2120 - UiO 2019 33

DAC / MAC from the Orange Book (TCSEC)

TCSEC (1985) specifies two AC security models

- Discretionary Access Control (DAC)
 - aka. Name-Based Access Control
 - AC policy based on user/group names
 - e.g. John has (r,w) access to HR-files

- aka. Label-Based Access Control
- AC policy based on security labels
- e.g. secret-clearance needed to access secret-classified document
 Subject →

← Object

IN2120 - UiO 2019

Access modes

- Modes of access:
 - Authorizations specify the access permissions of subjects (users) when accessing objects (resources)
- If you are authorized to access a resource, what are you allowed to do to the resource?
 - Example: possible access permissions include
 - · read observe
 - write observe and alter
 - execute neither observe nor alter
 - · append alter

I 10 - Id Man & AC

IN2120 - UiO 2019

0.4

DAC – Discretionary Access Control (Name-Based Access Control)

- Access authorization is specified and enforced based on the name/identity of subjects/objects.
- Typically implemented as ACL (Access Control Lists)
- DAC is discretionary in the sense that the owner of the resource can decide at his/her discretion who is authorized for access
- Operating systems using DAC:
 - Windows and Linux

L10 - Id Man & AC

DAC principles

- AC Matrix
 - General list of authorizations
 - Impractical, too many empty cells
- Access Control Lists (ACL)
 - Associated with an object
 - Represent columns from AC Matrix
 - Tells who can access the object

Object names Columns→ 01 02 О3 ↓Rows 04 **S1** r.w Х Subject names S2 r,w S3 Х S4 r,w

AC Matrix

		01
 AC lists → 	S1	r,w
	S2	r
	S3	ı
	S4	r,w

O2
-
-
х
х

	O3
S1	Х
S2	r
S3	-
S4	Х

S3 S4

S1

S2

I 10 - Id Man & AC

IN2120 - UiO 2019

04

r.w

Capabilities

- Focus on the subjects:
 - access rights stored with subjects
 - Represents rows of AC Matrix
- Must be impossible for users to create fake capabilities
- Subjects may grant own capabilities to other subjects. Subjects may grant the right to grant rights.
- Challenges:
 - How to check who may access a specific object?
 - How to revoke a capability?
- Similar to SAML security token

	01	O2	О3	04
S1	r,w	-	Х	r

	01	02	О3	04
S2	r	1	r	r,w

	01	02	О3	04
S3	-	Х	1	1

	01	02	О3	04
S4	r,w	Х	Х	х

ACL in Unix

Each file and directory has an associated ACL

-read: from a file

-write: to a file

-execute: a file

- ◆Three access operations: ◆ Access applied to a directory:
 - read: list contents of dir
 - write: create or rename files in dir
 - execute: search directory
- •Permission bits are grouped in three triples that define read, write, and execute access for owner, group, and others,
- •A '-' indicates that the specific access right is not granted.
- •rw-r--r-- means: read and write access for the owner, read access for group, and for others (world).
- •rwx----- means: read, write, and execute access for the owner, no rights for group and no rights for others

L10 - Id Man & AC

IN2120 - UiO 2019

MAC – Mandatory Access Control

- Access authorization is specified and enforced with security labels
 - Security clearance for subjects
 - Classification levels for objects
- MAC compares subject and object labels
- MAC is mandatory in the sense that users do not control access to the resources they create.
- A system-wide set of **AC policy rules** for subjects and objects determine modes of access
- OS with MAC:
 - SE Linux supports MAC

MAC principles: Labels

- Security Labels can be assigned to subjects and objects
 - Can be strictly ordered security levels, e.g. "Confidential" or "Secret"
 - Can also be partially ordered categories, e.g. {Sales-dep, HR-dep}
- Dominance relationship between labels
 - ($L_A \ge L_B$) means that label L_A dominates label L_B
- · Object labels are assigned according to sensitivity
- Subject labels are determined by security clearance
- Access control decisions are made by comparing the subject label with the object label according to specific model
- MAC is typically based on Bell-LaPadula model (see later)

L10 - Id Man & AC IN2120 - UiO 2019 41

Bell-LaPadula (MAC model) SS-Property: No Read Up

L10 - Id Man & AC

IN2120 - UiO 2019

43

Bell-LaPadula: The classical MAC model

SS-property (Simple Security): No Read Up

- A subject should not be able to read files with a higher label than its own label, because otherwise it could cause unauthorized disclosure of sensitive information.
- So you should only be able to read documents with an equal or lower label as your security clearance level.

*-Property (Star Property): No Write Down

- Subjects working on information/tasks at a given level should not be allowed to write to a lower level, because otherwise it could create unauthorized information flow.
- So you should only be able write to files with an equal or higher label as your security clearance level.

L10 - Id Man & AC IN2120 - UiO 2019 42

Bell-LaPadula (MAC model) *-Property: No Write Down

Labels in Bell La Padula

- Users have a clearance level LSM (Subject Max level)
- Users log on with a current clearance level L^SC (Subject Current level) where L^SC \leq L^SM
- Objects have a sensitivity level L^O (Object)
- SS-property allows read-access when $L^{SC} \ge L^{O}$
 - Label L^{SC} dominates label L^O
- *-property allows write-access when L^{SC} ≤ L^O
 - Label L^O dominates label L^{SC}
- Simultaneous read- and write-access requires LSC = LO

I 10 - Id Man & AC

IN2120 - UiO 2019

45

Partial Ordering of MAC Labels

Example: Define a label L = (h, c) where h and c are label-parameters which take values from sets H and C h ∈ hierarchical set H = {Secret, Unclassified} = {S, U} c ⊆ category set C = {Development, Marketing, ∅} = {D, M, ∅}

Definition of Label Dominance

- Labels defined as: L = (h, c), h∈H and c⊆C
 H: set of hierarchical levels, C: set of categories
 - Subject current label: LSC = (hSC, cSC),
 - Object label: $L^{O} = (h^{O}, c^{O})$
- Dominance: $L^{SC} \ge L^O$ iff $(h^O \le h^{SC}) \land (c^O \subseteq c^{SC})$
 - In case $L^{SC} = L^{O}$ then also $L^{SC} \ge L^{O}$ and $L^{O} \ge L^{SC}$
- Non-dominance cases: L^{SC} ≥ L^O
 - ($h^O > h^{SC}$) \land ($c^O \subset c^{SC}$); insufficient hierarchic level
 - (h^O ≤ h^{SC}) \wedge (c^O $\not\subset$ c^{SC}); insufficient category set
 - (h^O > h^{SC}) ∧ (c^O $\not\subset$ c^{SC}); insufficient level and category

Combined MAC & DAC

- Combining MAC and DAC access control:
 - It can be useful to combine MAC and DAC access control
 - · MAC policy is applied first,
 - · DAC policy applied subsequently in case of positive MAC
 - · Access granted only if both MAC and DAC decisions are positive

– Advantage:

- MAC ensures that users with insufficient clearance label in terms of level and category can not access resources with a dominant classification label
- DAC makes it possible to enforce 'need to know' to limit access that would otherwise be granted under the MAC policy

L10 - Id Man & AC IN2120 - UiO 2019 4

RBAC Flexibility

User's change frequently, roles don't

RBAC can be configured to do MAC and/or DAC

RBAC: Role Based Access Control

- A user has access to an object based on the assigned role.
- Roles are defined based on job functions.
- Permissions are defined based on job authority and responsibilities within a job function.
- Operations on an object are invocated based on the permissions.
- The object is concerned with the user's role and not the user

I 10 - Id Man & AC

IN2120 - UiO 2019

52

RBAC Privilege Principles

- Roles are engineered based on the principle of least privilege .
- A role contains the minimum amount of permissions to instantiate an object.
- A user is assigned to a role that allows her to perform only what's required for that role.
- All users with the same role have the same permissions.

L10 - Id Man & AC IN2120 - UiO 2019 51 L10 - Id Man & AC IN2120 - UiO 2019

ABAC and XACML

ABAC = Attribute Based Access Control

- ABAC specifies access authorizations and approves access through policies combined with attributes. The policy rules can apply to any type of attributes (user attributes, resource attribute, context attributed etc.).
- XACML used to express ABAC attributes and policies.

XACML = eXtensible Access Control Markup Language

- The XACML standard defines a language for expressing access control attributes and policies implemented in XML, and a processing model describing how to evaluate access requests according to the rules defined in policies.
- XACML attributes are typically structured in ontologies

L10 - Id Man & AC IN2120 - UiO 2019 53

Attribute Based Access Control

- ABAC makes AC decisions based on Boolean conditions on attribute values.
- Subject, Object, Context, and Action consist of attributes
 - Subject attributes could be: Name, Sex, DOB, Role, etc.
 - Each attributes has a value, e.g.:
 - (Name (subject) = Alice), (Sex(subject) = F), (Role(subject) = HR-staff), (AccessType(action) = {read, write}),
 (Owner(object) = HR), (Type(object) = salary)
- The AC logic analyses all (attribute = value) tuples that are required by the relevant policy.
 - E.g. permit if:
 [Role(subject) = HR-staff) and (AccessType(action) = read) and (Owner(object) = HR)] and (Time(query) = office-hours)]

I 10 - Id Man & AC

IN2120 54/iO 2019

Global Consistence

- ABAC systems require an XML terminology to express all possible attributes and their values,
- Must be consistent across the entire domain,
 - e.g. the attribute Role and all its possible values, e.g.
 (Role(subject) = HR-staff), must be known and interpreted by all systems in the AC security domain.
- Requires standardization:
 - e.g. for access to medical journals, medical terms must be interpreted in a consistent way by all systems
 - current international work on XML of medical terms
- Consistent interpretation of attributes and values is a major challenge for implementing ABAC.

ABAC: + and -

On the positive side:

- ABAC is much more flexible than DAC, MAC or RBAC
 - DAC, MAC and RBAC can be implemented with ABAC
- Can use any type of access authorization policies combined with an unlimited number of attributes
- Suitable for access control in distributed environments
 - e.g. national e-health networks

On the negative side:

- Requires defining AC concepts in terms of XML and ontologies which is much more complex than what is required in traditional DAC, MAC or RBAC systems.
- Political alignment and legal agreements are required for ABAC in distributed environments.

L10 - Id Man & AC IN2120 - UiO 2019 57

End of lecture

Meta-policies i.c.o. inconsistent policies

- · Sub-domain authorities defined their own policies
- · Potential for conflicting policies
 - E.g. two different policies could dictate different access decisions
- Meta-policy rules needed in case the ABAC logic detects policy rules that lead to conflicting decisions
- Meta-policy takes priority over all other policies, e.g.
 - Meta-Policy Deny Override: If one policy denies access, but another policy approves access, then access is denied. This is a conservative meta-policy.
 - Meta-Policy Approve Override: If one policy denies access, but another policy approves access, then access is approved.
 - This is a lenient meta-policy.