${\bf Convex\ Optimization:}$

CVX 101

Ian Quah (itq)

October 11, 2017

Week 2: Convex Sets

Affine sets

- Defn: Contains the line through any two distinct points in a set
- Proof: Affine set contains line through any two points Given:
 - 1) $\{x|Ax = b\}$ (Set constructor)
 - 2) $x = \theta x_1 + (1 \theta)x_2$ with $\theta \in \mathbf{R}$ (Definition of affine)
 - 3) $Ax_1 = b$ and $Ax_2 = b$ (Two points chosen arbitrarily)

$$Ax = A(\theta x_1 + (1 - \theta)x_2)$$
 (Fact 2)

$$Ax = \theta Ax_1 + A(1 - \theta)x_2$$

$$Ax = \theta b + (1 - \theta)b$$

$$= b$$
(Fact 3)

• Conversely, any affine set can be expressed as solution set of system of linear equations

Convex sets

• Line segment: between x_1 and x_2 : all points

$$x = \theta x_1 + (1 - \theta)x_2$$
, with $0 \le \theta \le 1$

• Convex sets: contains line segment between any two points in the set

$$x_1, x_2 \in \mathcal{C}, 0 \le \theta \le 1 \implies \theta x_1 + (1 - \theta)x_2 \in \mathcal{C}$$

Convex combination and convex hulls

• Convex combination of $x_1, ..., x_k$: any point x of the form

$$x = \theta_1 x_1 + \dots + \theta_k x_k$$
 with
$$1)\theta_1 + \dots + \theta_k = 1$$

$$2)\theta_i \ge 0$$

• Convex hull conv S: set of all convex combinations of points in S

E.g. Consider a square with dots on all 4 sides. The area within the set is the convex hull of the set S (which contains all 4 dots), as we can represent any point WITHIN the area as some convex combination of the 4 points (or less, if a θ is 0)

Convex cone

• Conic (nonnegative) combination of x_1, x_2 : any point x of the form

$$x = \theta_1 x_1 + \theta_2 x_2$$
 with

$$\theta_1, \theta_2 \geq 0$$

- Convex cone: set that contains all conic combinations of points in the set
- visually: a pie slice. Lies in a plane even in high dimensions, since we have 3 points

Hyperplanes and halfspaces

- hyperplane: set of the form $\{x|a^Tx=b\}$ with $a\neq 0$
- halfspace: set of the form $\{x|a^Tx\leq b\}$ with $a\neq 0$ such that a is the normal vector
- hyperplanes are affine and convex, whereas halfspaces are convex
- Proof: Verifying why the halfspace is convex and NOT affine
 - 1) $\{x|a^Tx \leq b\}$ (Set constructor)
 - 2) $x = \theta x_1 + (1 \theta)x_2$ with $\theta \in \mathbf{R}$ (Definition of affine)
 - 3) $x = \theta x_1 + (1 \theta)x_2$ with $0 \le \theta \le 1$ (Definition of convex)
 - 4) $a^T x_1 \leq b$ and $a^T x_2 \leq b$ (Two points chosen arbitrarily)

WTS:
$$a^T x \le b$$

$$a^T = a^T (\theta x_1 + (1 - \theta) x_2)$$
 (By definition in 2/3)

$$= \theta a^T x_1 + (1 - \theta) a^T x_2$$

$$\le \theta b + (1 - \theta) b$$
 (Explanation 1)

$$\le b$$

1) We can put in the inequality, because both are non-negative. At this point, we cannot use 2 anymore, because if we chose any number larger than 1, we would end up with a negative now. Thus, it cannot be affine but is instead convex

Euclidean Ball and Ellipsoids

 \bullet Euclidean ball: center \mathbf{x}_c and radius r:

$$B(x_c, r) = \{x | ||x - x_c||_2 \le r$$
 (1)

$$= \{x_c + ru| ||u||_2 \le 1\} \tag{2}$$

- 1) any point that is within r from the center is contained
- 2) any point that is some multiple of the radius, where that multiple is between 0 and 1 is contained
- Ellipsoid: set of the form

$$E(x_c, r) = \{x | (x - x_c)^T P^{-1} (x - x_c) \le 1\}$$
(1)

$$= \{x_c + Au | ||u||_2 \le 1\}$$
 (2)

- 1) $P \in S_{++}^n$ i.e P symmetric positive definite
- 2) A is square and non-singular, and can be thought of as a transformation on the unit ball, u The ellipsoid is a generalization of the Euclidean ball. If $P = r^2 I$, we have that they are equal

Polyhedra or Polytope

• Solution set of finitely many linear inequalities and equalities

$$Ax \prec b, Cx = d$$

Where $A \in \mathbb{R}^{mxn}$, $C \in \mathbb{R}^{pxn}$, and \prec is componentwise inequality

• Is the intersection of finite number of halfspaces and hyperplanes

Positive Semidefinite Cone

- S^n is set of symmetric n x n matrices
- $S^n_+ = \{X \in S^n | X \succeq 0\}$: positive semidefinite n x n matrices

$$X \in \mathbf{S}^n_{\perp} \iff z^T X z \ge 0 \forall z$$

Note, that a linear combination of

 S^n_+ is a convex cone

• $S_{++}^n = \{X \in S^n | X \succ 0\}$: positive definite n x n matrices

Operations that preserve Convexity

• Can always work:

arbitrary
$$x_1, x_2 \in \mathcal{C}, 0 \leq \theta \leq 1 \implies \theta x_1$$
 and $(1 - \theta)x_2$ is in the set

- Show that C is obtained from simple convex sets (hyperplanes, halfspaces, norm balls, ..) by operations that preserve convexity
 - intersection
 - affine functions
 - perspective function
 - linear-fractional functions

Preserving Convexity: Intersection

• Intersection of any number of convex functions is convex

eg:
$$S = \{x \in \mathbf{R}^m | abs(p(t)) \le 1 \text{ for } abs(t) \le \frac{\pi}{3}\}$$

where $p(t) = x_1 \cos t + x_2 \cos 2t + ... + x_m \cos mt$ for m = 2

• Intuition behind example

Repheasing S:

$$S_t = \{x \in \mathbf{R}^m | |p(t)| \le 1\}$$

- S_t is a single point. It is the intersection of two parallel halfspaces (which are linear, as they are a linear combination of cos bla) with opposite orientations (hyperslab)
- As we modify t, we see that the slab produced by the two parallel lines rotates, and changes width.
- Thus, S is the intersection of those slabs.

Preserving Convexity: Affine Function

- Suppose f: $\mathbb{R}^n \to \mathbb{R}^m$ is affine $(f(x) = Ax + b \text{ with } A \in \mathbb{R}^{mxn}, b \in \mathbb{R}^m)$
 - The image of a convex set under f is convex

$$S \subseteq \mathbf{R}^n$$
 convex $\implies f(S) = \{f(x) | x \in S\}$ convex

- The inverse image $f^{-1}(C)$ of a convex set under f is convex

$$C \subseteq \mathbf{R}^m$$
 convex $\implies f^{-1}(C) = \{x \in \mathbf{R}^n | f(x) \in C\}$ convex

- Examples
 - scaling, translation, projection
 - solution set of linear matrix inequality $\{x|x_1A_1+...+x_mA_m\succeq B\}$ with $A_i, B\in \mathbf{S}^P$
 - hyperbolic cone $\{x|x^TPx \leq (c^Tx)^2, c^Tx \geq 0\}$ (with $P \in S_+^n$)