INTRODUCTION

Data Analysis involves several activities and assumptions:

- Data Set -> set of measurements of one or more attributes.
- Software items to be comparable eg: compare modules.
- We wish to determine the characteristics and relationships between attributes values.

INTRODUCTION

• Purpose of data analysis:

To make any patterns or relationships more visible and to make judgments about attributes.

ANALYZING THE RESULTS OF EXPERIMENTS

- Relevant data is collected, analyzed
- Items to consider in choosing the analysis techniques:
- > Nature of data
- > Purpose of experiment
- > Type of experimental design

NATURE OF DATA

- Sampling, population and data distribution
- Distribution of software measurements
- Statistical inference and hypothesis testing

SAMPLING, POPULATION AND DATA DISTRIBUTION

- Understand data as a sample from a larger population of all data gathered.
- From sample data, make decision about measured differences using statistical techniques
- Eg: In an experiment if we measure each subject once, the sample size is number of subjects.
- <u>Sample statistics</u>: describe and summarize measures obtained from a finite group of subjects
- <u>Population parameters</u>: represent values obtained if all possible subjects were measured.

We can measure the productivity of a group of programmers before and after training

DISTRIBUTION OF SOFTWARE MEASUREMENTS

- Techniques to assess whether distribution is normal:
- ➤ Robust statistical methods: yield meaningful results whether data is normal or not.
- Non parametric statistical techniques: take into account that data is not normal, and allow us to test various hypothesis about data set.

STATISTICAL INFERENCE AND HYPOTHESIS TESTING

- Statistical inference is the process of drawing conclusions about the population from observations about a sample
- Depends on data distribution
- Determine if a sample is a good representation of larger population based on two possible outcomes:

- Null Hypothesis H0:No real difference between treated subject and untreated ones.
- <u>Alternative Hypothesis H1</u>:measured difference indicate real treatment effects of independent variable.

• Two errors:

- * Type II error: accepting H0 when it is actually false.
- * Type I error: incorrectly rejecting Null hypothesis.

PURPOSE OF EXPERIMENT

- To confirm a theory
- To explore a relationship

CONFIRMING A THEORY

- Explore truth of a theory
- Uses ANOVA-analysis of variance.
- Consider two populations, one that uses old technique and the one that uses new.
- Perform statistical test.
- Analyze variance between 2 sets of data to see if they come from one population or two.
- Student's test: to compare groups
- F statistic: for more than 2 groups

EXPLORING A RELATIONSHIP

- Among data points describing one variable or across multiple variables.
- Three techniques:
- 1. Box plot
- 2. Scatter plot
- 3. Correlation analysis

TECHNIQUES

- Box plot:
- Depict summary of range of a set of data. shows where most of data is clustered and where any outlier data may be.
- Scatter plot:
- Depict relationship between two variables by viewing their relative positions of pairs of data points.
- Correlation analysis:
- Uses statistical methods to confirm whether there is a true relationship between two attributes.

BOX PLOTS

- Uses median, quartile to define central location and spread of values.
- Three summary statistics:

EXAMPLE

System	KLOC	MOD	FD
Α	10	15	36
В	23	43	22
С	26	61	15
D	31	10	33
E	31	43	15
F	40	57	13
G	47	58	22
н	52	65	16
1	54	50	15
j	67	60	18
ĸ	70	50	10
L	75	96	34
М	83	51	16
N	83	61	18
P	100	32	12
Q	110	78	20
R	200	48	21

• Examine all systems whose MOD values are outliers in box plot, since these are the ones most likely to be fault prone->D,L,A

SCATTER PLOTS

- Box plot hides expected behavior and shows us what is unusual.
- Graph all data to see what patterns may be.
- Relationship between one and other attributes.
- Used for planning purposes.

CONTROL CHARTS

- Help us to check whether data is in the acceptable bounds.
- We can decide to take action to prevent problems before they occur.
- Calculate the mean, standard deviation and two control limits.
- Upper control limit is equal to two std deviations above mean.
- Lower control limit is equal to two std deviations below mean.

Component number	Preparation hours/ inspection hours
1	1.5
2	2.4
3	2.2
4	1.0
5	1.5
6	1.3
7	1.0
Mean	1.6
Standard deviation	0.5
Upper control limit (UCL)	2.6
Lower control limit (LCL)	0.4

