

T-Rex2: Towards Generic Object Detection via Text-Visual Prompt Synergy

蒋擎

3-29

Paradigm Shift in Object Detection

Text Prompt v.s. Visual Prompt

Text Prompt v.s. Visual Prompt

Text Prompt

- describe objects in natural language
- require modality alignment, suffers from long-tailed data shortage
- fall short in describe object that are hard to describe in language

Text Prompt v.s. Visual Prompt

Visual Prompt

- describe objects through visual examples
- less effective at capturing the general concept

require many examples to convey a general concept

T-Rex2: Visual-Text Prompt Synergy

T-Rex2: Method

Visual Prompt Encoder: Deformable Cross Attention

$$B = \operatorname{Linear}(\operatorname{PE}(b_1, \dots b_K); \theta_B) : \mathbb{R}^{K \times 4D} \to \mathbb{R}^{K \times D}$$

$$P = \operatorname{Linear}(\operatorname{PE}(p_1, \dots p_K); \theta_P) : \mathbb{R}^{K \times 2D} \to \mathbb{R}^{K \times D}$$

$$Q = \begin{cases} \operatorname{Linear}\left(\operatorname{CAT}\left([C; C'], [B; B']\right); \varphi_B\right), \operatorname{box} \\ \operatorname{Linear}\left(\operatorname{CAT}\left([C; C'], [P; P']\right); \varphi_P\right), \operatorname{point} \end{cases}$$

$$Q'_j = \begin{cases} \operatorname{MSDeformAttn}(Q_j, b_j, \{\boldsymbol{f}_i\}_{i=1}^L), \operatorname{box} \\ \operatorname{MSDeformAttn}(Q_j, p_j, \{\boldsymbol{f}_i\}_{i=1}^L), \operatorname{point} \end{cases}$$

$$V = \operatorname{FFN}(\operatorname{SelfAttn}(Q'))[-1]$$

Text Prompt Encoder: CLIP

Modality Alignment: Contrastive Learning

$$\mathcal{L}_{align} = -\frac{1}{K} \sum_{i=1}^{K} \log \frac{\exp(v_i \cdot t_i)}{\sum_{j=1}^{K} \exp(v_i \cdot t_j)}$$

DINO-based End-to-End model

T-Rex2: Training Strategy

Text Prompt

Settings	Detection Data	Grounding Data
Input	category names	short phrases
Negative Sample	category names (80)	global dict (80)

Visual Prompt

• "Current image prompt, current image detect": for each category in a training set image, we randomly choose between one to all available GT boxes to use as visual prompts. We convert these GT boxes into their center point with a 50% chance for point prompt training.

T-Rex2: Data Engine

Text Prompt Data Engine

Image classification data

Image caption data

Visual Prompt Data Engine

T-Rex2: Experiments

• Q1: Whether the category coverage of Text Prompt and Visual Prompt follows the distribution in the figure?

 Q2: Whether Text Prompt and Visual Prompt can benefit with each other?

T-Rex2: Metrics and Benchmarks

Text Prompt Metric (AP)

 We use all the category names of the benchmark as text prompt inputs.

Visual Prompt Metric (AP)

- Visual-G: Generic visual prompt
- Visual-I: Interactive visual prompt

Evaluation benchmarks (Zero-Shot):

COCO (80 cates)

Visual-I

- LVIS (1203 cates): frequent: common: rare = 405:461:337 for val, 389:345:70 for minival
- ODinW (35 datasets)
- Roboflow100 (100 datasets)

T-Rex2: Metrics and Benchmarks

Visual Prompt Metric (AP)

- Visual-G: Generic visual prompt
- **Visual-I**: Interactive visual prompt

Evaluation benchmarks (Zero-Shot):

• COCO (80 cates)

Visual-I

- LVIS (1203 cates): frequent: common: rare = 405:461:337 for val, 389:345:70 for minival
- ODinW (35 datasets)
- Roboflow100 (100 datasets)

T-Rex2: **Answer for Q1** (category coverage)

Zero-Shot Generic Object Detection

			COCO-Val	LVIS								ODinW		Roboflow100
Method	Prompt	Backbone	Zero-Shot	Zero-Shot								Zero-Shot		Zero-Shot
Method	Type	Backbone	val-80		miniv	al-804		val-1203				35val		100val
			AP	AP	AP_f	AP_c	AP_r	AP	AP_f	AP_c	AP_r	AP_{avg}	AP_{med}	AP_{avg}
GLIP-T [19]	Text	Swin-T	46.7	26.0	31.0	21.4	20.8	17.2	25.5	12.5	10.1	19.6	5.1	-
GLIP-L [19]	Text	Swin-L	49.8	37.3	41.5	34.3	28.2	26.9	35.4	23.3	17.1	23.4	11.0	8.6
Grounding DINO [24]	Text	Swin-T	48.4	27.4	32.7	23.3	18.1	1	-	-	1.00	22.3	11.9	-
Grounding DINO [24]	Text	Swin-L	52.5	33.9	38.8	30.7	22.2	-	-	=	-	26.1	18.4	=
DetCLIPv2 [47]	Text	Swin-T		40.4	40.0	41.7	36.0	.=:	-	=	-	85	-	-
DetCLIPv2 [47]	Text	Swin-L	-	44.7	43.7	46.3	43.1	141	-	-	-	-	-	-
DINOv [17]	Visual-G	Swin-T	-	-	-	-	-	-	-	=	-	14.9	5.4	=
DINOv [17]	Visual-G	Swin-L	-		-	-	-	1-1		-	1-	15.7	4.8	-
T-Rex2	Text	Swin-T	45.8	42.8	46.5	39.7	37.4	34.8	41.2	31.5	29.0	18.0	4.7	8.2
T-Rex2	Visual-G	Swin-T	38.8	37.4	41.8	33.9	29.9	34.9	41.1	30.3	32.4	23.6	<u>17.5</u>	<u>17.4</u>
T-Rex2	Text	Swin-L	52.2	54.9	56.1	54.8	49.2	45.8	50.2	43.2	42.7	22.0	7.3	10.5
T-Rex2	Visual-G	Swin-L	46.5	47.6	49.5	46.0	45.4	45.3	49.5	42.0	43.8	27.8	20.5	18.5

common and frequent case rare and novel case

Text prompt better Visual prompt better

Text prompt v.s. Visual prompt on LVIS

• Text prompt is good at common and frequent object, while visual prompt succeed in rare and novel scenarios.

T-Rex2: **Answer for Q2** (benefits of synergy)

Training Strategy	Prompt	COCO-Val Zero-Shot	S-Val -Shot			
Strategy	Type	AP	AP	AP_r	AP_c	AP_f
Text Prompt Only	Text	46.4	32.8	32.1	32.0	34.0
Visual Prompt Only	Visual-G	14.0	15.3	8.6	11.3	22.8
W/O Contrastive	Text	44.4	32.2	28.2	28.9	37.6
Alignment	Visual-G	38.7	30.2	29.4	26.9	38.7
W/ Contrastive	Text	45.8(+1.4)	34.8(+2.6)	29.0(+0.8)	31.5(+2.6)	41.2(+3.6)
Alignment	Visual-G	38.8(+0.1)	34.9(+4.7)	32.4(+3.0)	30.3(+3.4)	41.1(+2.4)

• W/O training with text prompt, visual prompts only have limited generic detection capability.

epoch

During the training process, the visual samples vary significantly from iter to iter, making it difficult to learn a common representation, whereas text prompt only needs to optimize the same embedding.

T-Rex2: Answer for Q2 (benefits of synergy)

Training	Prompt	COCO-Val Zero-Shot	LVIS-Val Zero-Shot						
Strategy	Type	AP	AP	AP_r	AP_c	AP_f			
Text Prompt Only	Text	46.4	32.8	32.1	32.0	34.0			
Visual Prompt Only	Visual-G	14.0	15.3	8.6	11.3	22.8			
W/O Contrastive	Text	44.4	32.2	28.2	28.9	37.6			
Alignment	Visual-G	38.7	30.2	29.4	26.9	38.7			
W/ Contrastive	Text	45.8(+1.4)	34.8(+2.6)	29.0(+0.8)	31.5(+2.6)	41.2(+3.6)			
Alignment	Visual-G	38.8(+0.1)	34.9(+4.7)	32.4(+3.0)	30.3(+3.4)	41.1(+2.4)			

- W/O training with text prompt, visual prompts only have limited generic detection capability.
- Naïve joint training without explicit alignment can improve visual prompt but harm text prompt.

object query needs to bridge the distance between itself and both the visual prompt and the text prompt. But the visual prompt is not aligned with the text prompt, which makes optimization difficult.

T-Rex2: Answer for Q2 (benefits of synergy)

Training	Prompt	COCO-Val Zero-Shot	LVIS-Val Zero-Shot						
Strategy	Type	AP	AP	AP_r	AP_c	AP_f			
Text Prompt Only	Text	46.4	32.8	32.1	32.0	34.0			
Visual Prompt Only	Visual-G	14.0	15.3	8.6	11.3	22.8			
W/O Contrastive	Text	44.4	32.2	28.2	28.9	37.6			
Alignment	Visual-G	38.7	30.2	29.4	26.9	38.7			
W/ Contrastive	Text	45.8(+1.4)	34.8(+2.6)	29.0(+0.8)	31.5(+2.6)	41.2(+3.6)			
Alignment	Visual-G	38.8(+0.1)	34.9(+4.7)	32.4(+3.0)	30.3(+3.4)	41.1(+2.4)			

- W/O training with text prompt, visual prompts only have limited generic detection capability.
- Naïve joint training without explicit alignment can improve visual prompt but harm text prompt.
- With the proposed contrastive alignment, both prompt modalities can gain improvement.

Text prompt serve as anchor, which aggregates visual prompt

Visual prompts act as a continuous source of refinement for text prompts.

T-Rex2: **More Analysis**

Inference Speed

Backbone	backbone	encoder	visual prompt encoder	text prompt encoder	decoder	FPS	Interactive FPS
Swin-T	0.0318	0.0240	0.0120	0.0103	0.0180	10.41	33.33
Swin-L	0.1220	0.0929	0.0261	0.0116	0.0240	3.62	19.96

Ablation of Data Engines

	Prompt	Training	Data	COCO-Val	LVIS-Minival			
Model		Data		Zero-Shot	Zero-Shot			
	Type	Data	Size	AP	AP	AP-R	AP-C	AP-F
Grounding DINO-T	Text	O365, GoldG		48.1	25.6	14.14	19.6	32.2
Grounding DINO-T	Text	O365, GoldG, Cap4M	5.4M	48.4	27.4	18.1	23.3	32.7
T-Rex2-T	Text	O365, GoldG	1.4M	46.1	34.9	32.7	32.9	37.1
T-Rex2-T	Text	O365, GoldG, Bamboo	2.5M	45.7	38.7	35.3	39.4	38.8
T-Rex2-T	Text	O365, GoldG, OpenImages, Bamboo, CC3M, LAION	6.5M	46.4	39.3	35.4	40.5	39.0
T-Rex2-T	Visual-G	O365, OpenImages, HierText, CrowdHuman	2.4M	41.1	38.1	25.8	34.4	43.7
T-Rex2-T	Visual-G	O365, OpenImages, HierText, CrowdHuman, SA-1B	3.1M	38.8	37.4	29.9	33.9	41.8
T-Rex2-T	Visual-I (Box)	O365, OpenImages, HierText, CrowdHuman	2.4M	41.1	40.6	40.3	43.5	38.1
T-Rex2-T	Visual-I (Box)	O365, OpenImages, HierText, CrowdHuman, SA-1B	3.1M	56.6	59.3	64.4	63.5	54.6

T-Rex2: Applications 1 Interactive Object Detection

Scenarios: Counting, Annotation

T-Rex2: Applications 2 Open Vocabulary Object Detection

T-Rex2: Applications 3 Generic Object Detection

Interactive visual prompt: box prompt

static image

video object detection

video + tracking

Conclusion

Visual prompt and text prompt together can lead to generic object detection

Paper: https://arxiv.org/pdf/2403.14610.pdf

Homepage: https://deepdataspace.com/home

Demo: https://deepdataspace.com/playground/ivp

Github: https://github.com/IDEA-Research/T-Rex

HuggingFace: https://huggingface.co/spaces/Mountchicken/T-Rex2