COASTAL ENGINEERING RESEARCH CENTER FORT BELVOIR VA F/6 8/3
TWO-DIMENSIONAL TESTS OF WAVE TRANSMISSION AND REFLECTION CHARA--ETC(U)
JUN 80 W N SEELI6
CERC-TR-80-1 NL AD-A089 603 UNCLASSIFIED 1 1 2 Ny 33 BUS

TR 80-1

Two-Dimensional Tests of Wave Transmission and Reflection Characteristics of **Laboratory Breakwaters** A 089603

by

William N. Seelig

TECHNICAL REPORT NO. 80-1 JUNE 1980

Approved for public release; distribution unlimited.

U.S. ARMY, CORPS OF ENGINEERS COASTAL ENGINEERING RESEARCH CENTER

> Kingman Building Fort Belvoir, Va. 22060

> > 26

AD

Reprint or republication of any of this material shall give appropriate credit to the U.S. Army Coastal Engineering Research Center.

Limited free distribution within the United States of single copies of this publication has been made by this Center. Additional copies are available from:

> National Technical Information Service ATTN: Operations Division 5285 Port Royal Road Springfield, Virginia 22161

Contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products.

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

	EPORT DOCUMENTATION	READ INSTRUCTIONS BEFORE COMPLETING FORM		
TR 80-1		2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER	
		V1) - 1089 6	03	
4. TITLE (and Subti		The second secon	5. TYPE OF REPORT & PERIOD COVERE	
TWO-DIMENS!	IONAL TESTS OF WAVE I	PRANSMISSION /	7 Technical Repart	
I ARODATODY	TION CHARACTERISTICS BREAKWATERS	OF /	6. PERFORMING ONG. REPORT NUMBER	
LABORATORI	DREAKWATERO	And the same of th		
7. AUTHOR(s)			8. CONTRACT OR GRANT NUMBER(+)	
William N.	Seelig		(12) 1896	
9. PERFORMING OF	RGANIZATION NAME AND ADDR	ESS	10. PROGRAM ELEMENT, PROJECT, TASK	
	of the Army		AREA & WORK UNIT NUMBERS	
Coastal Eng	gineering Research Ce ilding, Fort Belvoir,		F31538	
	OFFICE NAME AND ADDRESS		12. REPORT DATE	
	of the Army		Jun 89	
	gineering Research Co		13. NUMBER OF PAGES	
	ilding, Fort Belvoir,		187	
(3.3)			1	
(14) CEA	R	,	UNCLASSIFIED	
	• • • •	/	15a. DECLASSIFICATION/DOWNGRADING	
Approved fo	or public release; di	stribution unlimit	ed.	
Approved fo				
Approved fo	or public release; di			
Approved fo	or public release; di			
Approved fo	or public release; di			
Approved fo	or public release; di			
Approved fo	or public release; di			
Approved fo	or public release; di			
Approved fo	Or public release; di	ered in Block 20, if different fra	on Report)	
Approved fo	or public release; di	ered in Block 20, if different fra	on Report)	
Approved fo	or public release; distribution of the abetract enterest	ored in Block 20, if different from the second in Block 20, if different from the second in Block number, which is a second in Block number, where is a second in Block 20, if different from the second in Block 20, if different	sion	
Approved fo	Or public release; distribution of the elease; distributio	ored in Block 20, if different from the second in Block 20, if different from the second in Block number, which is a second in Block number, where is a second in Block 20, if different from the second in Block 20, if different	on Report)	
Approved fo	or public release; distribution of the abetract enterest	ored in Block 20, if different from the second in Block 20, if different from the second in Block number, which is a second in Block number, where is a second in Block 20, if different from the second in Block 20, if different	sion	
Approved for 17. DISTRIBUTION 18. SUPPLEMENTA	STATEMENT (of the ebetract enters) RY NOTES Breakwaters Wave reflection Waves	y and identify by block number. Wave transmis Wave transmis	sion coefficients	
Approved for 17. DISTRIBUTION 18. SUPPLEMENTA 19. KEY WORDS (Co.	STATEMENT (of the ebetract enterest ent	y and identify by block number, Wave transmis Wave transmis	sion sion coefficients	
Approved for 17. DISTRIBUTION 18. SUPPLEMENTA 19. KEY WORDS (Co. Monochrot were made for	STATEMENT (of the obstract enterinue on reverse side if necessarial waves whitnue on reverse side if necessarial are reflection waves whitnue on reverse side if necessarial are regular or reverse subaerial are	y and identify by block number, Wave transmis Wave transmis Wave transmis wave transmis	sion sion coefficients and reflection measurements water cross sections.	
Approved for 17. DISTRIBUTION 18. SUPPLEMENTA 19. KEY WORDS (Co. Monochrot were made for These two-dir	STATEMENT (of the obstract entering of the obs	y and identify by block number, Wave transmis Wave transmis Wave transmis wave transmission a and submerged break tests included smo	sion sion coefficients and reflection measurements water cross sections. both impermeable breakwaters	
Approved for 17. DISTRIBUTION 18. SUPPLEMENTA 19. KEY WORDS (Co. Monochro) Were made for These two-dirubble-mound	STATEMENT (of the obstract enterinue on reverse side if necessarians waves Breakwaters Wave reflection Waves Marious subaerial amensional laboratory breakwaters, and bre	y and identify by block number, Wave transmis Wave transmis Wave transmis vave transmission a and submerged break tests included smo	sion sion coefficients and reflection measurements water cross sections. both impermeable breakwaters with dolos units. Wave	
Approved for 17. DISTRIBUTION 18. SUPPLEMENTA 19. KEY WORDS (Co. Monochrol were made for These two-dirrubble-mound transmission	STATEMENT (of the obstract entering of the obs	y and identify by block number, Wave transmis Wave transmis Wave transmis vave transmission a and submerged break tests included smo	sion sion coefficients and reflection measurements water cross sections. both impermeable breakwaters with dolos units. Wave to breakwater freeboard	
Approved for 17. DISTRIBUTION 18. SUPPLEMENTA 19. KEY WORDS (Co. Monochro) were made for These two-dirrubble-mound transmission wave runup, and the second	STATEMENT (of the obstract entering of the obs	y and identify by block number, Wave transmis Wave transmis Wave transmis vave transmission a and submerged break tests included smo eakwaters armored w found to be related width; a method of	sion sion coefficients and reflection measurements water cross sections. both impermeable breakwaters with dolos units. Wave	

DD 1 2MI 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

UNCLASSIFIED 037050 LW SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

the state of the s

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

procedure was found to be an important tool for predicting the amount of transmission through permeable breakwaters. Suggested procedures for estimating transmission coefficients have been incorporated into the computer programs OVER and MADSEN (included as appendixes) and these programs may be used to predict wave transmission coefficients for nonbreaking, breaking, monochromatic, and irregular wave conditions.

PREFACE

This report presents the results of research conducted to develop methods for estimating wave transmission past submerged, subaerial, permeable, and impermeable breakwaters. The final prediction techniques are given in the form of computer programs, and the laboratory data used to develop and test the methods are included in appendixes to this report. These methods supplement Section 7.23 of the Shore Protection Manual (SPM). The work was carried out under the offshore breakwaters for shore stabilization program of the U.S. Army Coastal Engineering Research Center (CERC).

The report was prepared by William N. Seelig, Hydraulic Engineer, under the general supervision of Dr. R.M. Sorensen, Chief, Coastal Processes and Structures Branch. J. Ahrens and M. Titus provided a significant contribution to this report by their many useful suggestions and valuable laboratory assistance.

Comments on this publication are invited.

Approved for publication in accordance with Public Law 166, 79th Congress, approved 31 July 1945, as supplemented by Public Law 172, 88th Congress, approved 7 November 1963.

TED E. BISHOP
Colonel, Corps of Engineers
Commander and Director

Accession For

PTIS 6.2.11
DDC TAB
Unannounced
Justification

By

Distribution

Availability Codes

Availability Sales

Availability Sales

CONTENTS

	Pa Pa	ge
	CONVERSION FACTORS, U.S. CUSTOMARY TO METRIC (SI)	8
	SYMBOLS AND DEFINITIONS	9
I	INTRODUCTION	11
11	LITERATURE REVIEW	11
III	LABORATORY TESTING	13
	1. Laboratory Test Setup	13
	2. Methods of Generating Waves	13
		14
		15
	4. Data Reduction Methods	
	5. Breakwaters Tested	20
	6. Test Conditions	20
	7. Test Results	21
IV		22
	1. Wave Transmission and Reflection for Impermeable	
	Breakwaters	22
	2. Wave Transmission and Reflection for Permeable	
	Breakwaters	39
••	VADE - GOLLE - ERECTE	
V		58
	1. Causes of Physical Model Scale Effects	58
	2. Interpreting and Applying Laboratory Results to	
	Prototype Conditions	58
	Prococype conditions	50
VI	EXAMPLE OF ESTIMATING WAVE TRANSMISSION COEFFICIENTS	60
VII	SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS	62
AII	SUMMANI, CONCESSIONS, AND RECOMMENDATIONS	-
	LITERATURE CITED	64
PPENDIX		
	BREAKWATER GEOMETRIES	47
Α	BREAKWAIER GEOMETRIES	0 /
В	MATERIAL CHARACTERISTICS	77
С	TEST RESULTS (SINUSOIDAL BLADE MOTION)	80
D	TEST RESULTS (IRREGULAR WAVES)	89
b	TEST RESULTS (TRADOUBLE WAVES)	•
_	THE PROPERTY CONTRACT FORMS	A 7
E	TEST RESULTS (GRAPHICAL FORM)	93
F	DOCUMENTATION OF THE PROGRAM OVER	69
G	DOCUMENTATION OF THE COMPUTER PROGRAM MADSEN	75

CONTENTS--Continued

TABLES

1		Page 21
2	Empirical wave runup prediction coefficients for smooth impermeable slopes	26
3	Wave runup prediction coefficients using the Ahrens and McCartney (1975) method	28
4	Effect of relative depth on prediction of K_{Tt}	44
5	Porosity of various armor units	50
	FIGURES	
1	Plan view of wave tank	14
2	Determination of incident and reflected waves using the method of Goda and Suzuki (1976)	15
3	The spectral peakedness, Q_p , for various spectral shapes	17
4	Sample incident laboratory wave spectra	18
5	Sample laboratory wave records showing various levels of wave grouping	19
6	Percent of incident wave energy at the period of wave generator blade motion for sinusoidal wave generator blade motion	20
7	Definition of terms for wave transmission by overtopping	22
8	Wave reflection coefficients and fraction of wave energy dissipated for a 1 on 1.5 smooth slope with no wave transmission	23
9	Wave reflection coefficients for a breakwater with zero freeboard compared to a similar structure with no overtopping	23
10	Wave transmission and reflection coefficients for a smooth impermeable breakwater	
11	Wave runup on riprap	27
12	Wave runup prediction for rough structures using the Ahrens and McCartney (1975) method	28
13	Wave transmission coefficients for smooth impermeable breakwaters with 1 on 1.5 slopes	29
14	Wave transmission coefficients for vertical, smooth impermeable breakwaters using Goda's (1969) data	30

CONTENTS

FIGURES--Continued

		Page
15	The effect of the relative structure width on wave transmission of impermeable breakwaters	. 32
16	Wave transmission coefficients for BW14	32
17	Wave transmission coefficients for a breakwater tested by Saville (1963) with B/h = 0.88	33
18	Wave transmission coefficients for a breakwater tested by Saville (1963) with B/h = 3.2	. 33
19	Observed and predicted coefficients of wave transmission by overtopping	34
20	Percent of wave energy at the forcing wave period for wave transmission by overtopping of a smooth impermeable structure	34
21	Sample incident, reflected, and transmitted wave spectra	36
22	Spectral peakedness of incident, reflected, and transmitted wave spectra	37
23	Zero up-crossing analysis	37
24	Transmitted versus incident wave height distributions for a breakwater with $d_8/h = 0.8$	38
25	Transmitted versus incident wave height distributions for a breakwater with d ₈ /h = 1.0	38
26	Sample incident and transmitted joint distributions of wave height and period	39
27	Definition of terms for wave transmission for permeable breakwaters	40
28	Wave transmission and reflection coefficients for BW3	41
29	Sample observed and predicted reflection coefficients for permeable subaerial breakwaters	41
30	Wave transmission coefficients for a subaerial and a submerged breakwater	42
31	Observed and predicted transmission coefficients for BW3	45
32	Observed and predicted transmission coefficients for BW12	45
33	Observed and predicted transmission coefficients for BW4	46
34	Observed and predicted transmission coefficients for breaking and nonbreaking conditions	46

CONTENTS

FIGURES--Continued

		Pa	ıge
35	Observed and predicted transmission coefficients for a breakwater with dolos armor units		47
36	Wave transmission past a heavily overtopped breakwater with tribar armor units	•	48
37	Observed and predicted transmission coefficients for BW16		49
38	Example of the influence of porosity on the predicted coefficient of transmission for a rubble-mound breakwater	•	51
39	The relative importance of transmission by overtopping as a function of the incident wave height and the water depth-to-structure height ratio	•	51
40	Observed and predicted transmission coefficients for submerged permeable structures assuming \mathbf{K}_{Tt} = 0	•	52
41	Percent of wave energy at the forcing period for waves transmitted past a permeable breakwater	•	53
42	Sample incident, reflected, and transmitted wave spectra for BW16		54
43	Spectral peakedness of transmitted and reflected wave spectra versus incident spectral peakedness for a permeable breakwater	•	54
44	Comparison between incident and transmitted wave height distribution for a permeable breakwater	•	55
45	Autocorrelation of zero up-crossing wave heights for transmitted and incident wave records for a permeable breakwater	•	57
46	Sample joint distributions of wave height and period for an irregular wave condition and a permeable breakwater	•	57
47	Trapezoidal multilayered breakwater tested by Sollitt and Cross (1976)	•	59
48	Physical model results and correction factors determined from the analytical model of Madsen and White (1976)	•	59
49	Breakwater cross sections used in the example for estimating wave transmission coefficients	•	60
50	Predicted wave transmission coefficients		61
51	Predicted transmitted wave height as a function of breakwater crest height		61

CONVERSION FACTORS, U.S. CUSTOMARY TO METRIC (SI) UNITS OF MEASUREMENT

 $\mbox{U.S.}$ customary units of measurement used in this report can be converted to metric (SI) units as follows:

Multiply	by	To obtain		
inches	25.4	millimeters		
	2.54	centimeters		
square inches	6.452	square centimeters		
cubic inches	16.39	cubic centimeters		
feet	30.48	centimeters		
	0.3048	meters		
square feet	0.0929	square meters		
cubic feet	0.0283	cubic meters		
yards	0.9144	meters		
square yards	0.836	square meters		
cubic yards	0.7646	cubic meters		
miles	1.6093	kilometers		
square miles	259.0	hectares		
knots	1.852	kilometers per hour		
acres	0.4047	hectares		
foot-pounds	1.3558	newton meters		
millibars	1.0197×10^{-3}	kilograms per square centimeter		
ounces	28.35	grams		
pounds	453.6	grams		
•	0.4536	kilograms		
ton, long	1.0160	metric tons		
tón, short	0.9072	metric tons		
degrees (angle)	0.01745	radians		
Fahrenheit degrees	5/9	Celsius degrees or Kelvins ¹		

¹To obtain Celsius (C) temperature readings from Fahrenheit (F) readings, use formula: C = (5/9) (F -32).

To obtain Kelvin (K) readings, use formula: K = (5/9) (F -32) + 273.15.

SYMBOLS AND DEFINITIONS

	SIMBOLS AND DEFINITIONS
A	material identifier
\mathbf{A}_1	spectral coefficients
A ₂	spectral coefficients
a	empirical rough-slope runup coefficient
\mathtt{a}_I	incident wave amplitude at a spectral line
\mathbf{a}_R	reflected wave amplitude at a spectral line
В	breakwater top width
B_1	spectral coefficients
B ₂	spectral coefficients
b	empirical rough-slope runup coefficient
С	transmission by overtopping coefficient
c_1	empirical wave runup on smooth-slope coefficients
C ₂	empirical wave runup on smooth-slope coefficients
C ₃	empirical wave runup on smooth-slope coefficients
CF	physical model correction factor = (K_{Tt}) prototype/ (K_{Tt}) model
d	water depth
$\mathtt{d}_{\mathcal{B}}$	water depth at toe of a structure
d ₅₀	median material diameter
F	breakwater freeboard = h - d _g
f	wave frequency = 1/T
g	acceleration due to gravity
$\mathbf{H} \ \mathbf{or} \ \mathbf{H}_{I}$	incident wave height
H_{R}	reflected wave height
H _{rms}	root-mean-square (rms) wave height
н _в	significant wave height
$\mathbf{H}_{T'}$	transmitted wave height
Ħ	mean wave height
ID	a 10-digit identification code (year, month, day, hour, minute) assigned to each data collection run
j	spectral line number

SYMBOLS AND DEFINITIONS--Continued

	On the Contract of the Contrac
\mathbf{K}_{R}	reflection coefficient
\mathbf{K}_{T}	transmission coefficient = $\sqrt{K_{TO}^2 + K_{Tt}^2}$
\mathbf{K}_{TO}	wave transmission by overtopping coefficient
${f K}_{Tt}$	coefficient of wave transmission through a permeable breakwater
k	wave number = $2\pi/L$
L	wavelength
$L_{\mathcal{O}}$	deepwater wavelength
P	material porosity
p	probability
\mathtt{Q}_p	spectral-peakedness parameter
Q_{pi}	incident spectral-peakedness parameter
\mathtt{Q}_{pr}	reflected spectral-peakedness parameter
Q_{pt}	transmitted spectral-peakedness parameter
R	wave runup
r(H,H + 1)	autocorrelation of wave heights
r(H,T)	correlation of wave heights and periods
T	wave period
T_{p}	period of peak energy density
W ₅₀	median weight of material
Υ	specific weight
$\Delta \mathbf{f}$	band width
Δ l	gage spacing
η ₇₇₁₁₈	root-mean-square water level
θ	angle of seaward face of a breakwater
ν	kinematic viscosity of water
ξ	surf parameter = $\left(\tan \Theta / \sqrt{H/L_O}\right)$
ρ	autocorrelation of zero up-crossing wave heights ● for incident waves
	• for transmitted waves

TWO-DIMENSIONAL TESTS OF WAVE TRANSMISSION AND REFLECTION CHARACTERISTICS OF LABORATORY BREAKWATERS

by William N. Seelig

I. INTRODUCTION

The primary function of a breakwater is to reduce wave heights in an area being sheltered. Breakwaters are primarily used to protect harbors from excessive wave action, to prevent beach erosion, and to trap sediment for mechanical bypassing at an inlet or harbor entrance. A secondary use of breakwater design is to reduce the wave reflection from the structure. Reflected waves combined with incident waves can produce undesirable water motions that may be a nuisance to navigation or encourage scour at the toe of a structure.

Since the cost of building breakwaters is generally high, methods are needed to estimate transmitted and reflected wave heights to enable comparison of alternative structure designs. This report presents suggested methods for predicting transmission and reflection characteristics of breakwaters based on laboratory experiments, including the work of previous investigators. These methods supplement Section 7.23 of the Shore Protection Manual (SPM) (U.S. Army, Corps of Engineers, Coastal Engineering Research Center, 1977). The basic types of breakwaters considered are permeable and impermeable structures with crest elevations above the stillwater level (subaerial) and below the stillwater level (submerged). The other factors investigated include wave height, period, breakwater cross-section design, and material characteristics. Both monochromatic and irregular waves were tested.

Section II of this report presents a brief review of research conducted by previous investigators. Section III describes the laboratory setup and procedures; Sections IV, V, and VI present data analysis methods and definitions. The conditions tested are summarized in Section VII. Detailed descriptions of the breakwaters tested and materials used are given in Appendixes A and B; summary tables and figures of laboratory results are presented in Appendixes C, D, and E.

Laboratory results are used in this study to develop a method for predicting wave transmission by overtopping coefficients using the ratio of breakwater freeboard to wave runup (suggested by Cross and Sollitt, 1971) and the breakwater crest width (suggested by Saville, 1963). The wave transmission by overtopping prediction method is then combined with the model of wave transmission through permeable structures of Madsen and White (1976) and this combination package is verified with the laboratory results over a wide range of conditions. Prediction methods are summarized in the computer programs OVER and MADSEN (Apps. F and G). An example breakwater design is worked with the aid of the two computer programs to illustrate how the prediction methods can be used to compare alternative breakwater designs, and to illustrate the importance of various design parameters.

II. LITERATURE REVIEW

Some of the important sources of ideas and data used in preparing this report are summarized below in chronological order.

Saville (1963) tested a large number of similar rough structures with a 1 on 2 front-face slope for a proposed breakwater at Point Loma, California. Most of Saville's breakwater models had a crest elevation near the stillwater level, so wave transmission in most of the tests was primarily due to overtopping. Some of the breakwaters tested were first modeled in the large wave tank at the Coastal Engineering Research Center (CERC), then re-tested at a smaller scale to examine scale effects. Some tests were repeated with otherwise identical permeable and impermeable breakwaters to assess the influence of wave transmission through the permeable breakwaters and wave transmission by overtopping. The breakwater crest width was also varied over a wide range of values to determine the influence of width on the wave transmission coefficient. Since wave reflection coefficients were not measured, the burst method was used during testing to avoid laboratory effects caused by re-reflection of waves from the generator blade.

Lamarre (1967) measured wave transmission by overtopping for a structure with a comparatively narrow crest width and 1 on 1.5 structure slopes. Wave conditions and the height of the structure were varied.

Goda (1969) tested vertical, smooth impermeable structures for wave transmission by overtopping. The breakwater crest width was varied and a wide range of submerged and subaerial structure heights and a number of wave conditions were tested. Wave reflection coefficients were measured to determine the incident wave height acting on the structure. A nonlinear empirical equation was developed for predicting wave transmission coefficients. In this formula the transmission coefficient is a function of the ratio of the breakwater freeboard to the incident wave height and two empirical coefficients, where the coefficients are related to structure geometry and the relative water depth.

Davidson (1969) tested a 1 on 40 scale model of a breakwater proposed for Monterey Harbor, California. The breakwater had tribar armor units and experienced a combination of wave transmission over and through the structure.

Cross and Sollitt (1971) developed a semiempirical model for wave transmission by overtopping of subaerial breakwaters. The model was compared to Lamarre's (1967) data for a smooth impermeable structure with a 1 on 1.5 frontface slope. Cross and Sollitt's model suggests that wave transmission by overtopping is a nonlinear function of the ratio of breakwater freeboard to runup. Examination of Saville's (1963) data suggests that a linear model would form an upper envelope for wave transmission over rough structures.

Keulegan (1973) measured wave transmission through a number of vertical-faced permeable breakwaters using a wide variety of materials and wave conditions. Comparison of results led to development of a method for designing scale models that consider scale effects.

Sollitt and Cross (1976) tested wave transmission through a permeable rubble-mound breakwater and used this information to develop an analytical-empirical model.

Bottin, Chatham, and Carver (1976) tested 1 on 22 rubble-mound scale and concrete armor unit breakwaters proposed for Waianae Harbor, Hawaii. Wave transmission consisted of a combination of wave transmission by overtopping

and wave transmission through the structures. Wave reflection coefficients were not measured. Wave runup on dolos was observed.

Madsen and White (1976) developed a analytical-empirical model for the prediction of wave transmission and reflection coefficients for wave transmission through subaerial rubble-mound breakwaters. The model employs the long wave assumption, so predictions using their model are expected to be most reliable for shallow-water waves. Comparison of the Madsen and White model with physical model tests by Keulegan (1973) and Cross and Sollitt (1976) shows that the wave transmission coefficient can be predicted more reliably than the reflection coefficient.

The data from independant tests of wave transmission by overtopping conducted in this study, together with the results of Saville (1963), Lamarre (1967), Goda (1969), and Cross and Sollitt (1971), are used to develop a wave transmission by overtopping equation similar to one proposed by Cross and Sollitt (1971). The equation is then combined with the model of wave transmission through permeable breakwaters of Madsen and White (1976) to form a generalized model of wave transmission for breakwaters. This model is verified by comparing numerical and physical model results for a wide range of conditions.

III. LABORATORY TESTING

1. Laboratory Test Setup.

Laboratory tests were performed at CERC in a wave tank 4.57 meters wide, 42.7 meters long, and 1.22 meters deep. A part of the tank was divided by four walls to form two interior test flumes, each 61 centimeters wide; the remaining tank width contained a 1 on 12 absorber beach made of crushed stone with a median diameter of 2.9 centimeters (Fig. 1). This arrangement allowed two experiments to be performed simultaneously, and energy reflecting off of the test structures diffracts out of the test flume to minimize re-reflection of waves off of the generator blade.

The laboratory breakwaters were located between stations 5 and 10 meters along the flume and parallel-wire resistance gages were used to measure wave conditions in the flume. Gages placed at stations 1.40, 2.35, and 2.70 meters along the test flumes were used to document incident and reflected wave conditions. One or two gages placed landward were used to measure transmitted waves (Fig. 1).

A wave absorber consisting of a crushed gravel slope covered with a 0.6-meter-thick layer of hogshair was placed at the end of the test flume to absorb a majority of the transmitted wave energy. The test flume was terminated 3 meters before the end of the wave tank to allow water overtopping the test structure to escape from the flume through the absorber gravel. This arrangement prevented the buildup of water on the landward side of the test structure.

2. Methods of Generating Waves.

Waves in this facility were generated by a programable piston-type generator with a mean blade position 19 meters seaward of the entrance to the test flumes. A minicomputer was used to produce monochromatic waves of a specified wave height and period by moving the blade with a sinusoidal motion. Irregular waves

Figure 1. Plan view of wave tank setup.

were produced by using the CERC Data Acquisition System (DAS) to create a signal to move the blade. Irregular waves were made by summing 50 components of varying amplitude, period, and random phase to produce a wide variety of spectral shapes.

Data Collection.

The laboratory data collection scheme was designed after the CERC field wave data monitoring program. Data collection was performed automatically by the DAS in the following sequence:

- (a) Wave gages were calibrated.
- (b) Waves were produced for several minutes to allow tank startup transient conditions to die out.
- (c) Wave gages collected data at a sampling rate of 16 times a second over a 256-second sampling interval.
- (d) The 4,096 data points from each gage were then stored on magnetic tape for analysis.
- (e) A 10-digit identification code consisting of the year, month, day, hour, and minute of the data run was assigned (e.g., ID 7804260916 is a run made 1978, April, 26th day at 09:16).

4. Data Reduction Methods.

Laboratory data sorted on magnetic tape were analyzed on a CDC 6600 compute: using a variety of data reduction schemes. The mean water level and the least squares, best-fit linear trend in the data was first removed from each gage record. A Fourier analysis was then performed on each gage record using a fast Fourier transform (FFT) routine and cosine bell function that is part of the CERC wave analysis package.

Incident and reflected waves, which are mixed together in each of the gage records, were separated using the method of Goda and Suzuki (1976) shown in Figure 2. This technique gives an estimate of the incident and reflected wave amplitudes, \mathbf{a}_I and \mathbf{a}_R , at each spectral line for each gage pair. Using three gages in front of the structure gives three estimates of the incident and reflected wave amplitude spectra. Calculations show that in this study the three estimates of wave amplitudes seldom differed by more than 5 percent, so the average incident and reflected wave amplitudes at each spectral line, j, were taken as representative; i.e., $(\mathbf{a}_I)_j$ is the average incident wave amplitude at spectral line, j. The wave amplitude at each of the spectral lines was also determined for transmitted wave conditions; i.e., $(\mathbf{a}_T)_j$ is the average transmitted wave amplitude at spectral line, j.

where g equals acceleration due to gravity; d equals water depth; and T equals wave period.

Figure 2. Determination of incident and reflected waves using the method of Goda and Suzuki (1976).

Incident, reflected, and transmitted wave heights (\mathbf{H}_{I} , \mathbf{H}_{R} , \mathbf{H}_{T}) are defined as

$$H_{I} = 2 \int_{j=12}^{411} (a_{I})_{j}^{2}$$
 (1)

$$H_R = 2 \int_{j=12}^{411} (a_R)_{j}^{2}$$
 (2)

$$H_T = 2 \int_{j=12}^{411} (a_T)^{\frac{2}{j}}$$
 (3)

where H_I is the height of the wave moving landward toward the breakwater, H_R the height of the wave reflecting from the breakwater and moving seaward, and H_T the height of the wave transmitted past and in the lea of the breakwater.

Wave reflection and transmission coefficients, K_R and K_T , are defined as

$$K_{R} = \frac{H_{R}}{H_{T}} \tag{4}$$

and

$$K_{T} = \frac{H_{T}}{H_{T}} \tag{5}$$

Wave transmission by overtopping has a transmission coefficient defined as K_{TO} ; wave transmission through porous structures is given by a transmission coefficient K_{Tt} . The coefficient for total wave transmission over and through a structure, K_{T} , is

$$K_T = \sqrt{K_{Tt}^2 + K_{To}^2} \tag{6}$$

In the case of irregular waves the significant wave height, $H_{\rm S}$ (average of the highest one-third of the waves), is typically used to describe the wave conditions. To include the effects of wave reflection from the structure, significant height is defined as (Goda and Suzuki, 1976)

$$H_{8} = \sqrt{\frac{4 \eta_{2708}}{1 + \kappa_{R}^{2}}} \tag{7}$$

where n_{rms} is the average root-mean-square (rms) water level from the three seaward gages. The mean wave height, H, is defined as

$$\overline{H} = 0.625 \text{ H}_g = \sqrt{\frac{2.5 \text{ n}_{1900g}}{1 + \text{K}_R^2}}$$
 (8)

The wave period used to describe irregular wave conditions is the period of peak energy density, T_p . The spectral-peakedness parameter, Q_p (Goda, 1970), is used to characterize the spectral width for irregular wave conditions,

$$Q_{p} = \frac{1}{\Delta f} \frac{\sum_{j=1}^{36} f_{j} a_{j}^{4}}{\left(\sum_{j=1}^{36} a_{j}^{2}\right)^{2}}$$
(9)

where j is the band number (11 spectral lines are used to make each band), f_j the frequency midpoint of the band, and Δf the bandwidth frequency. a_j may be the incident, reflected, or transmitted wave amplitude associated with band, j, so that three values of Q_p (incident, reflected, and transmitted) are determined for each irregular wave run. Q_p was selected as the parameter to describe the spectral peakedness because it is an especially stable parameter not strongly influenced by the spectral techniques used to determine its value (Rye, 1977). The higher the value of Q_p , the more peaked a spectrum. For example, white noise has a Q_p value of 1.0, a Pierson-Moskowitz spectrum a value of 2.0, and JONSWAP values of Q_p vary between 3.0 and 9.0 with a value of 3.15 for the mean JONSWAP spectrum (Fig. 3). Values of Q_p associated with several incident wave spectra used in this study are illustrated in Figure 4.

Figure 3. The spectral peakedness, Q_p , for various spectral shapes.

Figure 4. Sample incident laboratory wave spectra.

The zero up-crossing method was also used to analyze wave records. method the height of an individual wave is defined as the difference in extreme water elevations (maximum level minus minimum level) between two successive points in time where the water level up-crosses the mean water level. The period associated with that wave is the time between up-crossings. This type of analysis is useful for examining wave characteristics such as wave height. period, or joint wave height-period distributions. Zero up-crossing results may also be used to describe wave grouping (Rye, 1974). A high level of wave grouping means that there is a strong probability that a wave of approximately the same height will follow the previous wave (i.e., large waves are followed by large waves and small waves are followed by small waves). In this study the autocorrelation of zero up-crossing wave heights is used to quantify the amount of wave grouping. The wave gage records seaward of the test structure are somewhat contaminated by reflected waves, depending on the amount of reflection. so the autocorrelation of incident wave heights, ρ_I , is taken as the average wave height autocorrelation of the three gage records seaward of the structure.

Autocorrelation of transmitted waves, $\rho_{I\!\!P}$, is taken as the average autocorrelation of any gage measuring transmitted waves. (Note that ρ may vary between 1.0 and -1.0.) A large positive value of ρ means that waves are strongly grouped. Values of ρ near zero mean that there is little relation between successive wave heights. A negative value of the autocorrelation implies that small waves follow large waves and vice versa. Several wave records measured in this study with various values of ρ are shown in Figure 5. Note that in all cases the water levels have been normalized by the significant wave height.

Figure 5. Sample laboratory wave records showing various levels of wave grouping.

For monochromatic wave tests, wave period, T, is defined as the period of wave generator blade motion. For most of the monochromatic wave conditions tested, 90 percent or more of the incident wave energy was found to be in the spectral band containing the blade frequency (Fig. 6). At a given value of wave steepness the amount of wave energy at higher harmonics of the blade frequency increases as the relative depth, d/gT^2 , decreases. This energy shift occurs because the waveform becomes more choidal and less sinusoidal in shape as d/gT^2 decreases and H/d increases.

Figure 6. Percent of incident wave energy at the period of wave generator blade motion for sinusoidal wave generator blade motion.

5. Breakwaters Tested.

Cross sections for 17 breakwaters were tested for wave transmission and reflection; the cross-section geometries are illustrated in Appendix A. Each of the structures was assigned the letters BW and a number to identify the structure. Breakwaters BW1 to BW12 were built and tested on the flat bottom of the flume. However, BW13 to BW17 were constructed with a 1 on 15 fronting slope 25 centimeters high and 3.75 meters long. The fronting slope was used to simulate a sloping bottom and allow higher waves to break on the structure being tested.

Most of the breakwaters tested were of rubble-mound construction, because this is the most common type built. However, BW1 and BW14 were smooth and impermeable. BW2 had an impermeable core, and BW8 and BW9 had dolos armor units and an impermeable cap. BW3, BW4, and BW15 were tested with and without a vertical, thin impermeable plate placed in the center of the structure to prevent transmission through the lower section of the breakwater. The symbol W is used to indicate tests where the impermeable plate was used; e.g., BW3 tested with a plate is designated as BW3W. Materials used to construct the breakwaters are described in Appendix B.

6. Test Conditions.

Each breakwater was built with a fixed geometry, then tested at various water depths and wave periods. A number of wave heights were generally examined for each wave period. Most of the experiments were run with monochromatic waves

produced by sinusoidal motion of the piston-type generator blade. The ranges of dimensionless water depths (water depth at the toe of the structure divided by structure height, d_8/h) tested with monochromatic waves are given in Table 1. Major emphasis was placed on $d/gT^2 = 0.016$ because laboratory waves at this value of relative depth are comparatively free from secondary and Benjamin-Fier waves.

Table 1. Range of conditions tested with monochromatic and irregular waves.

	mono chi c	macic and firego	
Breakwater	Monochro d ₈ h (range)	matic waves d gT ² (range)	Irregular wave testing ¹
	(Tunge)	(runge)	
BW1	0.6 to 1.2	0.0065 to 0.055	L
BW2	0.87	0.013 to 0.079	N
BW3	0.69 to 1.4	0.0038 to 0.037	N
BW 3W	0.69 to 1.3	0.0065 to 0.08	N
BW4	0.68 to 1.3	0.0065 to 0.055	L
BW4W	0.76 to 1.3	0.0065 to 0.055	L
BW5	0.92 to 2.3	0.0065 to 0.055	L
BW6	0.75 to 1.3	0.0056 to 0.055	L
BW7	0.98 to 1.63	0.0065 to 0.055	N
BW8	0.64 to 0.86	0.016	N
BW9	0.64 to 1.1	0.0065 to 0.055	L
BW10	0.68 to 1.1	0.0065 to 0.055	ι
BW11	0.51 to 0.75	0.0065 to 0.055	N
BW12	0.64 to 1.1	0.0065 to 0.055	N
BW13	1.1 to 1.8	0.0038 to 0.055	L
BW14	0.91 to 2.0	0.0038 to 0.055	L
BW15	0.61 to 1.4	0.0039 to 0.055	L
BW15W	0.91 to 1.5	0.0038 to 0.055	L
BW16	0.61 to 1.8	0.002 to 0.055	E
BW17	0.58 to 0.83	0.001 to 0.022	E

1Testing: E = extensive; L = limited; N = none.

Breakwaters BW16 and BW17 were tested extensively with a wide variety of irregular wave conditions. A limited number of irregular wave runs were also made for several other breakwaters (Table 1).

7. Test Results.

Test results for monochromatic and irregular wave conditions are presented in tabular form in Appendixes C and D; monochromatic results are presented in graphical form in Appendix E.

IV. ANALYSIS OF TEST RESULTS

This section provides an analysis of the wave transmission and reflection results of the model tests. Impermeable and permeable breakwaters were investigated, and a separate discussion is devoted to each type breakwater. The first part of this section describes observed trends in the values of the transmission and reflection coefficients as a function of the parameters varied in this study. The second part includes development, description, and evaluation of methods for predicting wave transmission coefficients. The third part discusses the effect of a breakwater on other wave characteristics, such as the wave height distribution and shape of the transmitted wave spectra. Since good models are not available for predicting wave reflection coefficients for breakwaters, it is recommended that the model tests be used directly to estimate breakwater wave reflection coefficients.

1. Wave Transmission and Reflection for Impermeable Breakwaters.

a. Observed Trends in Transmission and Reflection Coefficients. As a wave approaches an impermeable breakwater some of the wave energy is supplied to wave runup, some of the energy is dissipated, and the remaining wave energy moves seaward in the form of a reflected wave. If the runup exceeds the crest elevation of the breakwater, waves will be regenerated on the landward side of the structure. Figure 7 shows aspects of this process and defines some of the terms used in wave transmission by overtopping.

Figure 7. Definition of terms for wave transmission by overtopping.

Madsen and White (1976) found that low reflection coefficients and correspondingly large amounts of wave energy are dissipated on smooth nonovertopping structures. This observation has been verified using the data of Ahrens (1979) for breaking and nonbreaking waves. The data show that for the case of no overtopping the reflection coefficient decreases and a larger fraction of the wave energy is dissipated as the wave steepness increases (Fig. 8). More than 80 percent of the wave energy is dissipated by the smooth slope of 1 on 1.5 for the steepest waves tested. Note that the magnitude of the wave reflection coefficient is approximately the same for monochromatic and irregular waves, for a given value of wave steepness.

As the height of the breakwater is reduced the magnitude of the wave reflection coefficient decreases because much of the wave energy is transmitted by overtopping. For example, with a freeboard of zero (water level at the breakwater crest) BWl has reflection coefficients that are less than 20 percent of the reflection coefficient for a structure that is not overtopped for the steeper waves tested (Fig. 9). At values of small wave steepness the size of

Figure 8. Wave reflection coefficients and fraction of wave energy dissipated for a 1 on 1.5 smooth slope with no wave transmission (data from Ahrens, 1979).

Figure 9. Wave reflection coefficients for a breakwater with zero free-board compared to a similar structure with no overtopping.

the reflection coefficients for the breakwater and smooth impermeable slope is approximately the same because breakwater overtopping is small.

The wave reflection coefficient decreases as the wave height or steepness increases for a subaerial breakwater, but shows the opposite trend for a submerged breakwater (Fig. 10). There is a slight increase in the reflection coefficient as the wave height increases for the conditions tested.

The variation of the wave transmission coefficient for a smooth impermeable breakwater is the reverse of that found for the reflection coefficient. If the wave runup is less than the breakwater freeboard there is no wave transmission. As soon as the runup exceeds the crest of the breakwater, wave transmission by overtopping occurs. All other factors being fixed, as the wave height increases the size of the runup and the transmission by overtopping coefficient increase (Fig. 10); as the ratio of the water depth to structure height, d_g/h , approaches 1.0 the transmission coefficient increases. Even with zero freeboard $(d_g/h = 1)$ there is some increase in the wave transmission coefficient as wave steepness increases (Fig. 10). However, for a submerged breakwater of fixed geometry the wave transmission coefficient declines as wave height or steepness increases (Fig. 10).

b. Estimating Wave Transmission by Overtopping Coefficients. Wave transmission by overtopping is closely related to wave runup and overtopping of a breakwater. Weggel (1976) found that overtopping rates are a function of the ratio of the structure freeboard, F, to the runup, R, on a similar structure high enough to prevent overtopping (Fig. 7). Cross and Sollitt (1971) also recommend the dimensionless parameter, F/R, for predicting wave transmission by overtopping coefficients.

Several methods are available for estimating wave runup on smooth impermeable slopes; some of these methods are summarized in Stoa (1978). The runup prediction equation developed by Franzius (1965) gives the best estimate of wave runup for predicting wave transmission coefficients. The runup is given by

$$R = HC_1 \left(0.123 \frac{L}{H}\right)^{\left(C_2 \sqrt{H/d} + C_3\right)}$$
 (10)

. where L is the local wavelength determined from linear theory using

$$L = \frac{gT^2}{2\pi} \tanh\left(\frac{2\pi d}{L}\right) \tag{11}$$

and C_1 , C_2 , and C_3 are empirical coefficients. Franzius suggests values for the coefficients, but improved coefficients were obtained in this study using the data of Saville (1955) and Savage (1959) with a nonlinear error minimization computer routine. The recommended values of the empirical coefficients are given in Table 2. These values are linearly interpolated to estimate values of the coefficients for other slopes. An advantage of using equation (10) is that it includes effects of wave height, structure slope, wave steepness, and the ratio of water depth to wave height on wave runup.

The runup on rough slopes is also a complex function of many factors (Stoa, 1978). Madsen and White (1976) give an analytical-empirical model for estimating

H/gT²

Figure 10. Wave transmission and reflection coefficients for a smooth impermeable breakwater (BW1, $d/gT^2 = 0.016$, monochromatic waves).

Table 2. Empirical wave runup prediction coefficients for smooth impermeable slopes.

Front-face slope of breakwater	C ₁	С2	C ₃
Vertical	0.958	0.228	0.0578
1 on 0.5	1.280	0.390	-0.091
1 on 1.0	1.469	0.346	-0.105
1 on 1.5	1.991	0.498	-0.185
1 on 2.25	1.811	0.469	-0.080
1 on 3.0	1.366	0.512	0.040

runup on an impermeable rough slope armored with one layer of stone. Ahrens and McCartney (1975) present an empirical method for estimating the runup on two layers of riprap overlying a 0.2-meter thick underlayer (Fig. 11). In their method the runup is predicted as a nonlinear function of the surf parameter, ξ ,

$$\frac{R}{H} = \frac{a\xi}{1 + b\xi} \quad ; \quad \xi = \frac{\tan \Theta}{\sqrt{\frac{H}{L_O}}}$$
 (12)

where a and b are empirical coefficients with values of a = 0.956 and b = 0.398.

Both the Madsen and White and Ahrens and McCartney prediction methods tend to give high or conservative estimates of wave runup for predicting wave transmission coefficients. However, Hudson (1958) made numerous observations of runup over a wide range of breakwater conditions; the Ahrens and McCartney empirical curve (eq. 1) was fitted to the Hudson data to give the recommended runup coefficients of a=0.692 and b=0.504 (Table 3). These coefficients gave a lower prediction of runup than that given for riprap (Fig. 12). The equation

$$\frac{R}{H} = \frac{0.692 \xi}{1 + 0.504 \xi} \tag{13}$$

is recommended for predicting runup on stable permeable and impermeable stone breakwaters until a more comprehensive model becomes available. Coefficients for dolos were also estimated using Bottin, Chatham, and Carper's (1976) data for breaking and nonbreaking waves (Table 3). Stoa (1978) provides additional information on runup; runup data for nonbreaking waves on breakwaters are provided in Jackson (1968).

Runup predictions were made for the conditions tested, and observed wave transmission by overtopping coefficients, K_{TO} , were plotted as a function of F/R (Fig. 13). This figure shows the case of breakwaters with a slope of 1 on 1.5. The upper part of Figure 13 shows results from BW1 for tests that had a

Figure 11. Wave runup on riprap (after Ahrens and McCartney 1975).

Table 3. Wave runup prediction coefficients using the Ahrens and McCartney (1975) method.

Armor unit	No. of layers	Permeability 1	2 8	2 b	d gT ² (range)	$\frac{H}{gT^2}$ (range)	Cot ⁰ (range)	Source
Rubble	2	1	0.956	0.398	0.0036 to 0.059	0.0004 to 0.013	2.5 to 5.0	Ahrens and McCartney (1975) ³ (large-scale tests)
Rubble	0	Р	0.692	0.504	0.0088 to 0.08	0.0004 to 0.02	1.25 to 5.0	Hudson (1958)
Rubble	2	1	0.775	0.361	5		2.5	Gunbak (1979) ⁶
Dolos	2	I	0.988	0.703	0.009 to 0.002	0.0002 to 0.006	2.0	Bottin, Chatham, and Carver (1976)

lp = permeable; I = impermeable.

 $^{2}R/H = a\xi/(1+b\xi); \xi = \tan \theta/\sqrt{H/L_{o}}.$

³Revised a and b.

4Means of observations.

⁵Conditions unknown.

 $^{6}1.2 < \xi < 4.8.$

Figure 12. Wave runup prediction for rough structures using the Ahrens and McCartney (1975) method.

Figure 13. Wave transmission coefficients for smooth impermeable breakwaters with 1 on 1.5 slopes.

breakwater crest width-to-structure height ratio of B/h = 0.4. The lower part of the figure gives test results from Lamarre (1967), who tested structures with smaller values of B/h. Although there is some scatter in these data sets, it appears that the wave transmission coefficient decreases approximately linearly as F/R increases and that this linear trend is found for submerged as well as subaerial breakwaters. Most of the scatter occurs where the crest elevation is at the stillwater level (F/R = 0) for BWI, with small waves having significantly lower wave transmission coefficients than are present in the linear trend. Fortunately, small waves are generally not of interest for design purposes. The few irregular waves tested with BWI suggest that wave transmission coefficients for irregular waves follow the same trend as for monochromatic waves. The mean wave height, taken as 63 percent of the significant wave height, should be used in equation (12) to determine the effective runup for predicting wave transmission coefficients for irregular wave conditions.

Comparison of the upper and lower parts of Figure 13 suggests that the structure tested by Lamarre (1967) with a smaller relative crest width has slightly higher wave transmission coefficients than found for BWl.

Results from laboratory tests by Goda (1969) for breakwaters with vertical faces (Fig. 14) have the same trends as observed for breakwaters with 1 on 1.5 slopes.

Figure 14. Wave transmission coefficients for vertical, smooth impermeable breakwaters using Goda's (1969) data.

The recommended formula for predicting the wave transmission by overtopping coefficient for the range $0.006 \le d/gT^2 \le 0.03$ is

$$K_{TO} = C\left(1 - \frac{F}{R}\right) \tag{14}$$

where C is an empirical coefficient and the minimum and maximum values of K_{TO} are 0.0 and 1.0, respectively. The recommended value of C is given by

$$C = 0.51 - \frac{0.11 \text{ B}}{\text{h}}$$
; $0 \le \frac{\text{B}}{\text{h}} \le 3.2$ (15)

for smooth impermeable structures tested over the range $0 \le B/h \le 0.86$ and rough impermeable breakwaters tested over the range $0.88 \le B/h \le 3.2$ (Fig. 15). However, for submerged breakwaters tested with 1 on 15 fronting slopes, equation (14) underestimates the wave transmission coefficient. For example, equation (14) underestimates the wave transmission coefficient for BW14 when submerged and the error increases as the breakwater becomes relatively more submerged (Fig. 16). The data from BW14 and from Saville (1963) show that for submerged breakwaters with $0.88 \le B/h \le 3.2$ and with a 1 on 15 fronting slope equation (14) should be adjusted to

$$K_{TO} = C\left(1 - \frac{F}{R}\right) - (1 - 2C)\frac{F}{R}$$
; $\frac{F}{R} < 0$ and 1 on 15 fronting slope (16)

Figures 17 and 18 illustrate the observed and predicted wave transmission coefficients for two of the rough impermeable breakwaters tested by Saville (1963) for two values of crest width. Figure 17 shows the case of a structure with a crest width-to-structure height ratio of 0.88; Figure 18 shows the same information for a much wider structure with a width-to-height ratio of 3.2. A scatter plot of observed and predicted transmission coefficients using Saville's (1963) data indicates the level of ability to predict K_{TO} (Fig. 19).

The above discussion shows that the breakwater freeboard and wave runup have a major influence on the magnitude of the wave transmission by overtopping coefficient. Breakwater crest width has a much smaller effect and only large changes in breakwater crest width could be used to reduce the size of the transmission coefficient for a given design situation.

Wave transmission by overtopping coefficients may be predicted for impermeable structures using the computer program OVER (App. F) which applies methods described in this section.

c. Influence of a Breakwater on Other Wave Characteristics. The magnitude of the wave transmission by overtopping coefficient, \mathbf{K}_{TO} , is generally the most important parameter to determine for the design of an impermeable breakwater used to reduce wave height. However, in addition to reducing the average wave height, the breakwater may also alter other characteristics of the waves, such as spectral shape or wave height distributions. Since these additional wave characteristics may be considered in some design problems, they are briefly discussed below.

The case of monochromatic waves incident on the structure is the condition most often used to test wave transmission of laboratory breakwaters in previous studies. This type of wave is similar to swell wave conditions in the prototype where the incident wave height and period are approximately constant. Spectral analysis of water level records for gages landward of the breakwater indicates that a significant part of the wave energy of transmitted waves may be at harmonic frequencies of the forcing wave (Saville, 1963; Goda, 1969). The fraction of wave energy at the forcing period (Fig. 20) shows the same trend

Figure 15. The effect of the relative structure width on wave transmission of impermeable breakwaters.

Figure 16. Wave transmission coefficients for BW14.

Figure 17. Wave transmission coefficients for a breakwater tested by Saville (1963) with B/h = 0.88.

Figure 18. Wave transmission coefficients for a breakwater tested by Saville (1963) with B/h = 3.2.

Figure 19. Observed and predicted coefficients of wave transmission by overtopping (Saville, 1963; impermeable breakwaters).

Figure 20. Percent of wave energy at the forcing wave period for wave transmission by overtopping of a smooth impermeable structure (monochromatic waves).

as was found for the transmission coefficient, K_{TO} (lower half of Fig. 10). Comparison of Figures 10 and 20 suggests that the amount of wave energy found at the forcing period will increase as the transmission by overtopping coefficient increases.

The case of irregular waves is where the incident wave energy is distributed over a range of wave frequencies (several measured incident laboratory wave records and computed wave spectra are shown in Figs. 4 and 5). Tests with irregular waves indicate that the shapes of the incident and reflected wave spectra are approximately the same (two examples are given in Fig. 21). The approximately constant spectral shape is shown by the spectral-peakedness parameter, Q_p , where the value for the reflected waves, Q_{pr} , is approximately equal to the incident spectral peakedness, Q_{pi} (Fig. 22). The shape of the transmitted spectrum may be approximately equal to or sharper than the incident spectrum (Fig. 22) with the spectral-peakedness parameter of the transmitted waves, Q_{pt} , greater than or equal to Q_{pi} (Fig. 22). Secondary waves may appear in the transmitted wave spectrum at harmonics of the period of peak energy density, T_p , (Fig. 21).

A zero up-crossing analysis (Fig. 23) was performed on the wave records to allow statistical examination of individual wave heights and periods. Since reflected waves contaminate the incident wave conditions, an analysis was performed for the record from each gage, then results averaged to minimize the influence of reflection. Cumulative height distributions were then prepared for incident and transmitted waves. The cumulative curves were put into dimensionless form by dividing by the observed rms wave height, H_{1770s}, and the dimensionless heights at various probability levels, p, determined (p = 0.01, 0.02, 0.05, . . . 0.60). A plot of these dimensionless heights for transmitted versus incident waves indicates the shape of the transmitted wave height distribution as a function of the incident wave height distribution. For the case of a breakwater with the water depth at the crest level $(d_g/h = 1.0 \text{ or } F = 0)$ the transmitted wave height distribution is approximately the same as the incident height distribution (Fig. 24). If the water level is below the crest elevation $(d_8/h = 0.80$, positive freeboard), the transmitted wave height distribution is skewed toward larger waves (Fig. 25). This means that the larger transmitted waves are bigger than predicted by the transmission coefficient, K_{TO} . For example, at the 5-percent level, transmitted waves are 30 percent larger than expected from the overall transmission coefficient and at the 1-percent level 100 percent larger.

The above observations are consistent with the wave transmission by overtopping model given by equation (14). At zero freeboard the transmission coefficient is approximately constant, so all waves in a distribution will transmit the same amount and the distribution will remain unchanged. However, for subaerial breakwaters the larger waves will have smaller F/R ratios and transmit more efficiently than small waves, so that the transmitted wave distribution is skewed toward large waves.

The joint distributions of wave heights and periods observed in the laboratory illustrate the same overall trends found in the field. Larger waves have a mean period approximately equal to the period of peak energy density in the spectrum, T_p (Goda, 1978), with the average wave period decreasing for smaller wave heights (Fig. 26). The correlation between

Figure 21. Sample incident, reflected, and transmitted wave spectra.

Figure 22. Spectral peakedness of incident, reflected, and transmitted wave spectra.

Figure 23. Zero up-crossing analysis.

distributions for a breakwater with

 $d_{S}/h = 1.0.$

distributions for a breakwater with $d_{\rm g}/h = 0.8$.

Figure 26. Sample incident and transmitted joint distributions of wave height and period.

heights and periods (Goda, 1978) was observed to be $0.13 \le r(H,T) \le 0.26$ for the incident wave conditions tested with approximately the same values for transmitted waves. The major difference between observed and transmitted joint distributions of height and periods is that the mean period of smaller waves is lower for the transmitted waves (Fig. 26) than for the incident waves.

2. Wave Transmission and Reflection for Permeable Breakwaters.

a. Observed Trends in Transmission and Reflection Coefficients. As a wave approaches and interacts with a rough permeable breakwater the sequence of action is similar to that for an impermeable breakwater, but with important differences. First, some of the wave energy moves through the permeable breakwater and this flow through the porous medium may dissipate a significant amount of wave energy. Second, because the breakwater absorbs some of the wave energy and water, the runup and reflection coefficients on a rough permeable breakwater are less than for the same wave condition on a similar smooth impermeable structure. If the runup level exceeds the height of the structure, wave transmission by both overtopping and transmission through the structure will contribute to the overall transmission coefficient, K_T (Fig. 27).

Figure 27. Definition of terms for wave transmission for permeable breakwaters.

The relative water depth, d/gT^2 , is one of the most important parameters controlling the reflection coefficient, K_R (Fig. 28), with the reflection coefficient increasing as d/gT^2 decreases. The wave steepness, H/gT^2 , and the ratio of water depth to structure height, d_s/h , have less influence. In general, the reflection coefficients for rough permeable breakwaters are much less than for similar smooth impermeable breakwaters (Fig. 10). Since no comprehensive model is currently available for predicting reflection coefficients, laboratory model results should be used to estimate K_R . A rough estimate of the reflection coefficient for permeable subaerial breakwaters may be obtained using the method of Madsen and White (1976) (computer program MADSEN in App. G). Typical comparisons between predictions and laboratory measurements are shown in Figure 29.

The wave transmission coefficient, K_T , is primarily a function of wave steepness for a given permeable breakwater design and hydraulic conditions where there is no transmission by overtopping (Fig. 28). Since the wave steepness increases the amount of energy dissipated on the face and inside the breakwater increases (Madsen and White, 1976), the transmission coefficient decreases. However, as soon as the wave runup level exceeds the breakwater crest, wave transmission by overtopping occurs and the transmission coefficient increases with increasing steepness. Figure 30 (lower part) shows the case where no overtopping occurs and K_T decreases (low steepness waves), then K_T increases with increasing steepness where transmission by overtopping and transmission through a breakwater occur simultaneously. In the case of a submerged breakwater the wave transmission coefficient decreases as the wave steepness increases (upper part of Fig. 30).

b. Estimation of the Coefficient of Wave Transmission Through Permeable Breakwaters Using the Madsen and White Model. The advantages of the Madsen and White (1976) model for predicting transmission coefficients are that the model is completely self-contained and it can be used to predict coefficients over a wide range of conditions. Parameters that can be varied include the breakwater height, breakwater width, breakwater slope, the size and relative location of various layers in the breakwater, and the size and porosity of materials used in the breakwater. Another advantage of the model is that it can be used to

reflection coefficients for permeable subaerial breakwaters. Sample observed and predicted Figure 29. Wave transmission and reflection coefficients for BW3 ($d_g/h = 0.69$).

Figure 28.

Figure 30. Wave transmission coefficients for a subaerial and a submerged breakwater.

predict coefficients for any size breakwater, useful when designing or assessing scale effects in small-scale physical models (see Sec. V).

The Madsen and White model was designed for manual use, but because of the many calculations and iterations necessary, manual calculation is tedious. The model was automated as a part of this study in a FORTRAN computer program, MADSEN (App. G) to simplify use of the model. Advantages of the computer program are that only a few input cards are required to model even a breakwater with complex geometry and the program computer cost is very low. The program includes all the generality in the original model, and the wave transmission by overtopping model developed in Section IV,1 is also incorporated. Since the Madsen and White (1976) technique is complex, reference is made to their publication for details of the model. A brief summary of the major steps in the model and computer program is given below; additional information on the computer program is given in Appendix G.

- (1) Determine the breakwater cross-sectional geometry and material characteristics of diameter and porosity.
- (2) Estimate the energy dissipation on the seaward face of the breakwater assuming it is rough and impermeable. This is done by solving Madsen and White's equation (127) implicitly using their Figures 15, 16, and 17 and applying a correction factor from their Table 2.
- (3) Assume as a first approximation that the head across the breakwater is equal to runup determined from step 2 above.
- (4) Transform the trapezoidal breakwater into a hydraulically equivalent rectangular breakwater (see Sec. 4.2 of Madsen and White).
- (5) Estimate the coefficient of transmission through the structure, K_{Tt} , using Madsen and White's Figures 2 and 3 and implicitly solving their equation (57).
- (6) Obtain a revised estimate of the head across the breakwater using Madsen and White's equation (161). (Repeat steps 4, 5, and 6 until a converged solution is obtained.)
- (7) Estimate wave runup on the breakwater using the method of Ahrens and McCartney (1975) and the coefficients given in Table 3 of this study.
- (8) Calculate the transmission by overtopping coefficient, K_{TO} , using equations (14) and (15) in this study.
- (9) Calculate the transmission coefficient, ${\rm K}_T$, using ${\rm K}_{Tt}$ from step 5 and ${\rm K}_{TO}$ from step 8 and

$$\mathbf{K}_T = \sqrt{\mathbf{K}_{Tt}^2 + \mathbf{K}_{To}^2}$$

Madsen and White compared the model predictions to physical model results from Keulegan (1973) for rectangular breakwaters composed of one rock type, and from Sollitt and Cross (1976) for a multilayered trapezoidal breakwater made of riprap. There was good agreement between analytical and physical model results for predicting the wave transmission coefficient for long nonbreaking waves. However, the following questions need to be answered to determine the range of usefulness of the Madsen and White model:

- (1) How useful is the model for predicting transmission coefficients for relatively short waves?
 - (2) Can the model be used if waves are breaking?
 - (3) Can the model be used for breakwaters with concrete armor units?
 - (4) Can the model be used for irregular waves?
- (5) How sensitive is the model to porosity of the materials? (Porosity is an input parameter and although it probably does not vary over a very wide range, its value will probably not be known accurately in a design situation.)

Each of these areas is discussed below.

(1) The case of the relative wavelength. In many of the laboratory tests the wave period was varied to cover the range from shallow-water long waves to deepwater short waves. Comparison of laboratory data and MADSEN computer program predictions shows excellent correspondence for shallow-water waves; e.g., at $d/gT^2 = 0.0065$ (Table 4). As the relative depth becomes larger (the wavelength becomes shorter), the computer program slightly overpredicts the observed transmission coefficient (Fig. 31). This means that the prediction method is conservative. Although the absolute value of the overprediction is small, the percent overprediction may be large (Table 4).

Table 4. Effect of relative depth on prediction of KTt. Pct. Relative gT2 depth error Observed Predicted 0.0065 0.34 0.33 - 3 Shallow 0.016 0.46 0.44 -4 Transitional 0.055 0.13 0.21 +60 Doep B:30 cm hs: 70 cm I on 1.5 Slope I on 1.5 Stope ⑻ 0.5 1.0 m **BW12**

¹BW12, $d_g/h = 0.64$, $H/gT^2 \approx 0.0015$.

The ability of the model to predict wave transmission coefficients for a breakwater constructed entirely of armor stone is shown in Figure 32; wave transmission coefficients for a breakwater with a front-face slope of 1 on 2.6 are shown in Figure 33.

(2) The case of waves breaking on the breakwater. It was difficult in the laboratory to generate long waves that would break on a rough permeable structure without any overtopping. However, several tests that met these conditions were run using nonsurging, breaking waves (Galvin, 1968). These laboratory tests show that for breaking and nonbreaking waves the coefficient of transmission decreases gradually as the incident steepness increases (Fig. 34); no difference was evident between \mathbf{K}_{Tt} for breaking and nonbreaking waves. The same trend is observed in Bottin, Chatham, and Carver's (1976) data for a breakwater with dolos armor units. Comparison of observed and predicted coefficients of transmission through the structure shows good agreement for the few breaking wave conditions tested (Fig. 34). These few tests suggest that the Madsen and White (1976) model can be used for breaking as well as nonbreaking waves.

mission coefficients for BW12.

Figure 34. Observed and predicted transmission coefficients for breaking and non-breaking conditions (BW4).

Observed and predicted transmission coefficients for BW4.

Figure 33.

(3) The case of breakwaters with concrete armor units. The friction factor and porous media flow factors for concrete armor units are unknown, but they are assumed to be similar to the properties of stone with an effective median diameter, d_{50} , of

$$d_{50} = \left(\frac{W_{50}}{Y}\right)^{1/3} \tag{17}$$

Figure 35 shows observed and predicted transmission coefficients for a breakwater with two layers of dolos armor units. There is excellent prediction of transmission coefficients for long shallow-water waves with the Madsen and White (1976) model overpredicting transmission coefficients for waves with greater relative depth. This is the same trend found in prediction of transmission coefficients for rubble-mound breakwaters.

Figure 35. Observed and predicted transmission coefficients for a breakwater with dolos armor units (BW9).

The model also does a good job of predicting the coefficient of transmission through a permeable breakwater armored with tribars tested by Davidson (1969) (Fig. 36). However, the effective transmission by overtopping coefficient, C, is larger than would be expected from Figure 15 for B/h = 0.30. Fortunately, the observed transmission coefficient appears to be approaching a value of approximately 0.48, the limiting value of the overtopping wave transmission coefficient for this breakwater predicted from equations (14) and (15). The relatively high porosity of artificial armor units apparently increases the size of the wave transmission by overtopping coefficient over a limited range of wave heights for this case where the stillwater level is above the core and close to the breakwater crest (D. Davidson, Chief, Wave Research Branch, U.S. Army Waterways Experiment Station, personal communication, 1979).

Figure 36. Wave transmission past a heavily overtopped breakwater with tribar armor units (laboratory data from Davidson, 1969).

(4) The case of irregular waves. Laboratory tests with a wide variety of spectral shapes suggest that there is little difference in the transmission coefficient from one spectral type to another. The overall transmission coefficient, K_T , is approximately the same for a monochromatic test as for an equivalent irregular wave test with the period of peak energy density, T_p , and mean incident wave height, H, used to characterize the irregular wave conditions. Figure 37 shows observed and predicted transmission coefficients for a rubble-mound breakwater tested with monochromatic and irregular waves. The ability of the computer program MADSEN to predict transmission coefficients for irregular waves is at the same level as for monochromatic waves for the conditions tested.

Figure 37. Observed and predicted transmission coefficients for BW16.

(5) The case of porosity of the breakwater. Porosity of each of the materials must be known in order to use the computer program MADSEN. However, in many design situations the value of porosity may be poorly known. Typical values of porosity, P, are given in Table 5. The recommended method of determining the influence of porosity on the predicted transmission coefficient is to run the program MADSEN at various values of porosity keeping all other parameters fixed. Figure 38 shows predicted transmission coefficients over a range of wave steepnesses for three different values of porosity. For this example, the absolute change in K_{Tt} produced by a given change in P is largest for waves of small steepness. The largest percent change in \mathbf{K}_{Tt} for a given change in P occurs for the steepest waves tested. In general, the same trend will be observed for any breakwater; the value of K_{Tt} will increase as porosity increases for a given set of conditions. However, the magnitude of change of K_{Tt} is a complex function of all of the parameters in a design (breakwater geometry, water depth, wave height and period, etc.). A sensitivity analysis with the use of the program MADSEN, similar to the analysis shown in Figure 38, is recommended if the porosity of proposed materials is poorly known.

Table 5. Porosity of various armor units (from U.S. Army, Corps of Engineers, Coastal Engineering Research Center, 1977).

Engineering Research Center, 1377).			
Armor unit	No. of layers	Placement	Porosity (P)
Quarrystone (smooth)	2	Random	0.38
Quarrystone (rough)	2	Random	0.37
Quarrystone (rough)	>3	Random	0.40
Cube (modified)	2	Random	0.47
Tetrapod	2	Random	0.50
Quadripod	2	Random	0.49
llexapod	2	Random	0.47
Tribar	2	Random	0.54
Dolos	2	Random	0.63
Tribar	1	Uniform	0.47
Quarrystone	Graded	Random	0.37

c. Wave Transmission for Submerged Permeable Breakwaters. The coefficient of wave transmission over a submerged permeable breakwater, K_{TO} , may be estimated by the methods given in Section IV,2. However, no generalized model is currently available for determining the coefficient of wave transmission through the structure, K_{Tt} . Saville's (1963) data for similar permeable and impermeable structures show that the total coefficient, K_{T} , approaches the transmission by overtopping coefficient, K_{TO} , and transmission through the breakwater becomes less important as the structure becomes more submerged and the incident wave height increases (Fig. 39). At $d_8/h \ge 1.2$, the data from breakwaters BW3, BW3W, BW4, and BW4W show that the coefficients of transmission through the structure are approximately zero, so that $K_{TO}/K_T = 1.0$. An upper estimate of the coefficient of transmission through the structure, K_{Tt} , for a submerged breakwater

Figure 38. Example of the influence of porosity on the predicted coefficient of transmission for a rubble-mound breakwater.

Figure 39. The relative importance of transmission by overtopping as a function of the incident wave height and the water depth-to-structure height ratio (after Saville, 1963).

can be made using the program MADSEN with $d_8/h=1.0$. As a lower estimate, $K_{Tt}=0.0$ can be assumed. Laboratory results from BW13, BW15, BW15W, and BW16 show that even using $K_{Tt}=0$, methods in Section IV,1,b tend to give conservative estimates of the transmission coefficient for submerged permeable breakwaters (Fig. 40).

Figure 40. Observed and predicted transmission coefficients for submerged permeable structures assuming K_{Tt} = 0.

d. Influence of a Permeable Breakwater on Other Wave Characteristics. Wave energy shifts to higher harmonics are found in the transmitted wave records for monochromatic wave tests, as determined for overtopped impermeable breakwaters (Fig. 41). The energy shift is primarily a function of incident wave steepness and the ratio of the water depth to structure height. The largest shifts of energy to higher harmonics occur for steep waves where the structure crest is near to the stillwater level (Fig. 41).

Figure 41. Percent of wave energy at the forcing period for waves transmitted past a permeable breakwater (monochromatic waves).

In the case of irregular waves the higher frequency parts of the reflected and transmitted spectra tend to be dampened out, so relatively more wave energy is found at lower frequencies than in the incident spectrum (Fig. 42). This means that on the average the spectral peakedness, $Q_{\mathcal{D}}$, of reflected and transmitted spectra is greater than or equal to the spectral peakedness of incident spectra (Fig. 43).

A zero up-crossing analysis of wave records shows that on the average the wave height distribution shape is approximately the same for incident and transmitted waves for the irregular conditions tested for a permeable breakwater (Fig. 44).

The amount of wave grouping or the tendancy of large waves to follow large waves and small waves to follow small waves is characterized by the autocorrelation of zero up-crossing wave heights, ρ (see Sec. III,4). Results from BW16 show that the autocorrelation transmitted waves is less than or equal to that for incident waves in the case of irregular waves incident on a permeable breakwater (Fig. 45).

The joint distribution of transmitted wave heights and periods for an irregular wave condition is similar to that found for smooth impermeable breakwaters. There is a tendancy for lower transmitted waves to have average periods less than found in the incident joint height-period distribution (Fig. 46). Both the incident and transmitted larger wave heights have average periods approximately equal to the period of peak energy density.

Run 10 Code = 7806200831

20.7

Figure 42. Sample incident, reflected, and transmitted wave spectra for BW16 ($d_{\rm S}/h$ = 0.76).

Figure 44. Comparison between incident and transmitted wave height distribution for a permeable breakwater (BW16).

Figure 44. Comparison between incident and transmitted wave height distribution for a permeable breakwater (BW16).--Continued

Figure 45. Autocorrelation of zero up-crossing wave heights for transmitted and incident wave records for a permeable breakwater.

Figure 46. Sample joint distributions of wave height and period for an irregular wave condition and a permeable breakwater.

V. MODEL SCALE EFFECTS

1. Causes of Physical Model Scale Effects.

Wave energy dissipation and resulting reduction of wave height produced by a breakwater are due to a combination of laminar and turbulent energy loss as well as wave modification. Little information is available on scale effects of wave transmission by overtopping, but scale effects are probably small. This is illustrated by Saville (1963) who tested wave transmission by overtopping for similar breakwaters that differed by a scale of 10. There was little systematic difference between the results of tests run at the two scales, with the small-scale tests being slightly conservative.

Wave transmission through permeable breakwaters is controlled primarily by laminar and turbulent energy loss of flow through the structure (Wilson and Cross, 1972; Keulegan, 1973; Madsen and White, 1976). In the protoytpe the wave height reduction is due largely to turbulent effects, but in a model laminar and turbulent losses may be important so that a model underpredicts the coefficient of transmission through a breakwater. The size of the scale effect is a complex function of model design, water depth, and wave height and period.

2. Interpreting and Applying Laboratory Results to Prototype Conditions.

The recommended method of estimating scale effects of transmission through permeable breakwaters is to use the computer program MADSEN to predict transmission coefficients for the model and prototype. The physical model correction factor, CF, is defined as the expected coefficient of wave transmission through the structure in the prototype divided by the coefficient of wave transmission through the structure at the model scale. CF is determined by first running the program MADSEN with prototype conditions to determine \mathbf{K}_{Tt} (MADSEN prototype). The program is then run at the model scale to determine \mathbf{K}_{Tt} (MADSEN scale model). CF is defined as

$$CF = \frac{K_{Tt} \text{ (MADSEN prototype)}}{K_{Tt} \text{ (MADSEN scale model)}}$$
 (18)

The coefficient for wave transmission through the structure measured in the physical scale model should then be multiplied by CF to estimate the prototype coefficient.

For example, assume that the laboratory breakwater tested by Sollitt and Cross (1976) is a 1 on 10-scale Froude model of a prototype structure (Fig. 47). There was no transmission by overtopping. The program MADSEN was run at both model and prototype scales and the results together with the physical model measurements are shown in Figure 48. The MADSEN program output shows that the physical model was probably underpredicting the prototype coefficient because the scale model has proportionally more laminar energy loss than the prototype. Even in this large 1 on 10-scale Froude physical model, the prototype \mathbf{K}_{Tt} is expected to be as much as 20 percent higher than in the scale model over the range of conditions tested.

Figure 47. Trapezoidal multilayered breakwater tested by Sollitt and Cross (1976) (prototype).

Figure 48. Physical model results and correction factors determined from the analytical model of Madsen and White (1976).

VI. EXAMPLE OF ESTIMATING WAVE TRANSMISSION COEFFICIENTS

* * * * * * * * * * * * * * * * * EXAMPLE PROBLEM * * * * * * * * * * * * * * * *

GIVEN: T = 7.9 seconds

 $d_s = 3.56$ meters

Breakwater top width, B = 1.53 meters

Breakwater seaward slope, $tan \theta = 0.667$ (1 on 1.5)

FIND: The influence of incident wave height and structure height on the transmission coefficient for the permeable breakwater shown in the upper part of Figure 49 (change the structure height by varying the thickness of horizontal layer 1). Also, compare the predicted transmitted wave heights to heights for a similar smooth impermeable structure (lower part of Fig. 49).

SOLUTION: The computer program MADSEN (App. G) is used to predict wave transmission coefficients for the permeable structure and the program OVER (App. F) is used to predict coefficients for the smooth impermeable breakwater. The transmission coefficient for the permeable structure decreases as wave steepness increases, until overtopping occurs when the transmission coefficient increases with steepness (Fig. 50). The transmission coefficient decreases as structure height increases and the initiation of overtopping occurs at a larger value of the incident wave height as the structure height increases. The similar shaped smooth impermeable breakwater has larger values of the transmission coefficient for the steeper waves examined (Fig. 50) because the runup is higher on the smooth structure. However, there is no transmission for the impermeable structure for the small waves where the runup does not reach the breakwater crest. The predicted transmitted wave height as a function of breakwater crest height is given in Figure 51 for two values of the incident wave height.

Figure 49. Breakwater cross sections used in the example for estimating wave transmission coefficients.

Predicted transmitted wave height as a function of breakwater crest height. Figure 51.

Predicted wave transmission

coefficients.

VII. SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

The primary conclusions from the tests of wave transmission and reflection of laboratory breakwaters conducted for this study are:

- 1. A simple formula for predicting wave transmission by overtopping coefficients together with the model of Madsen and White (1976) for transmission through permeable structures can be used to obtain estimates of wave transmission coefficients.
- 2. Limited tests with breaking waves suggest that the methods can be used for breaking or nonbreaking conditions.
- 3. Tests with irregular waves show that the transmission coefficient for irregular waves is approximately the same as for a similar monochromatic wave test. The mean wave height and period of peak energy density are the parameters recommended to describe irregular waves.
- 4. Irregular wave tests indicate that for permeable or submerged break-waters the incident and transmitted wave height distributions have similar shape. However, smooth impermeable subaerial breakwaters have height distributions biased toward the larger heights for irregular waves because large waves transmit more efficiently than small waves.
- 5. Transmitted and reflected spectra for irregular waves generally have equal or higher spectral peakedness than incident spectra.
- 6. Joint wave height-period distributions have similar dimensionless shapes for incident and transmitted wave records.
- 7. There is a tendancy for wave heights to be less grouped after they have transmitted past a breakwater.
- 8. Transmitted wave energy may appear at higher order harmonics of the incident waves for monochromatic wave tests. However, the tendancy for energy shifts decreases as the wave transmission coefficient increases.
- 9. Additional work is necessary to develop generalized models for predicting wave reflection coefficients and wave transmission through the crests of breakwaters armored with relatively porous materials, such as concrete armor units.

The recommended steps for design of a breakwater for wave transmission are:

- 1. Use the computer programs MADSEN and OVER to estimate transmission coefficients for preliminary breakwater design. Alternative designs can be tested by varying parameters such as:
 - (a) structure height
 - (b) crest width
 - (c) seaward and landward breakwater slopes
 - (d) water depth
 - (e) number, thickness, location, and diameter of materials
 - (f) porosity
 - (g) permeability
 - (h) wave height
 - (i) wave period

- 2. A sensitivity analysis is recommended on those input parameters that are poorly known. For example, if there is some uncertainty in the value of the design water level, predictions should be made over the range of expected water levels keeping all other factors fixed. Comparison between the predictions at different levels will indicate the importance of water level.
 - 3. Estimate reflection coefficients from model results.
- 4. If possible, final breakwater design should be made with the use of physical models. The program MADSEN can be used to assist in designing and interpreting physical laboratory models and results for permeable breakwaters.

Copies of the program decks for the program MADSEN and OVER described in Appendixes F and G may be obtained from the Automatic Data Processing Coordinator, Coastal Engineering Research Center, Fort Belvoir, Virginia 22060.

LITERATURE CITED

- AHRENS, J., and McCARTNEY, B.L., "Wave Period Effect on the Stability of Riprap," Proceedings of Civil Engineering in the Oceans/III, American Society of Civil Engineers, 1975, pp. 1019-1034 (also Reprint 76-2, U.S. Army, Corps of Engineers, Coastal Engineering Research Center, Fort Belvoir, Va., NTIS A029 726).
- AHRENS, J., "Irregular Wave Runup," Proceedings of the Coastal Structures '79 Conference, American Society of Civil Engineers, 1979, pp. 998-1019.
- BOTTIN, R., CHATHAM, C., and CARVER, R., "Waianae Small-Boat Harbor, Oahu, Hawaii, Design for Wave Protection," TR H-76-8, U.S. Army Engineer Waterways Experiment Station, Vicksburg, Miss., May 1976.
- CROSS, R. and SOLLITT, C., "Wave Transmission by Overtopping," Technical Note No. 15, Massachusetts Institute of Technology, Ralph M. Parsons Laboratory, July 1971.
- DAVIDSON, D., "Stability and Transmission Tests of Tribar Breakwater Section Proposed for Monterey Harbor, California," MP H-69-11, U.S. Army Engineer Waterways Experiment Station, Vicksburg, Miss., Sept. 1969.
- FRANZIUS, L., "Wirkung und Wirtschaftlichkeit von Rauhdeckwerden im Hinblick auf den Wellenauflauf," Mitteilungen des Franzius-Instituts fur Grund-und Wasserbau der TH Hannover, Heft 25, 1965, pp. 149-268 (in German).
- GALVIN, C.J., Jr., "Breaker Type Classification on Three Laboratory Beaches," Journal of Geophysical Research, Vol. 73, No. 12, June 1968, pp. 3651-3659.
- GODA, Y., "Reanalysis of Laboratory Data on Wave Transmission Over Breakwaters," Report of the Port and Harbour Research Institute, Vol. 18, No. 3, Sept. 1969.
- GODA, Y., "Numerical Experiments on Wave Statistics with Spectral Simulation," Report of the Port and Harbour Research Institute, Vol. 9, No. 3, 1970.
- GODA, Y., "The Observed Joint Distribution of Periods and Heights of Sea Waves," Proceedings of the 16th Conference on Coastal Engineering, 1978.
- GODA, Y., and SUZUKI, Y., "Estimation of Incident and Reflected Waves in Random Wave Experiments," Proceedings of the 15th Coastal Engineering Conference, Vol. 1, Ch. 48, 1976, pp. 828-845.
- GUNBAK, A., "Rubble Mound Breakwaters," Report No. 1, Division of Port and Ocean Engineering, The University of Trondheim, Trondheim, Norway, 1979.
- HUDSON, R., "Design of Quarry-Stone Cover Layers for Rubble-Mound Breakwaters," Research Report No. 22, U.S. Army Engineer Waterways Experiment Station, Vicksburg, Miss., July 1958.
- JACKSON, R.A., "Design of Cover Layers for Rubble-Mound Breakwaters Subjected to Nonbreaking Waves," Research Report No. 2-11, U.S. Army Engineer Waterways Experiment Station, Vicksburg, Miss., June 1968.

- KEULEGAN G.H., "Wave Transmission Through Rock Structures," Research Report No. H-73-1, U.S. Army Engineer Waterways Experiment Station, Vicksburg, Miss., Feb. 1973.
- LAMARRE, P., "Water-wave Transmission by Overtopping of an Impermeable Breakwater," M.S. Thesis, Massachusetts Institute of Technology, Sept. 1967.
- MADSEN, O.S., and WHITE, S.M., "Reflection and Transmission Characteristics of Porous Rubble-Mound Breakwaters," MR 76-5, U.S. Army, Corps of Engineers, Coastal Engineering Research Center, Fort Belvoir, Va., Mar. 1976.
- RYE, H., "Wave Group Formation Among Storm Waves," Proceedings of the 12th Conference on Coastal Engineering, 1974, pp. 164-183.
- RYE, H., "The Stability of Some Currently Used Wave Parameters," Coastal Engineering, Vol. 1, 1977, pp. 17-30.
- SAVAGE, R.P., "Laboratory Data on Wave Runup on Roughened and Permeable Slopes," TM-109, U.S. Army, Corps of Engineers, Beach Erosion Board, Washington, D.C., Mar. 1959.
- SAVILLE, T., Jr., "Laboratory Data on Wave Runup and Overtopping on Shore Structures," TM-64, U.S. Army, Corps of Engineers, Beach Erosion Board, Washington, D.C., Oct. 1955.
- SAVILLE, T., Jr., "Hydraulic Model Study of Transmission of Wave Energy by Low-Crested Breakwater: Ship Mooring Study, West Coast of Point Loma, San Diego, California," unpublished Memorandum for Record, U.S. Army, Corps of Engineers, Beach Erosion Board, Washington, D.C., Aug. 1963.
- SOLLITT, C.K., and CROSS, R.H., "Wave Reflection and Transmission at Permeable Breakwaters," TP 76-8, U.S. Army, Corps of Engineers, Coastal Engineering Research Center, Fort Belvoir, Va., July 1976.
- STOA, P.N., "Reanalysis of Wave Runup on Structures and Beaches," TP 78-2, U.S. Army, Corps of Engineers, Coastal Engineering Research Center, Fort Belvoir, Va., Mar. 1978.
- U.S. ARMY, CORPS OF ENGINEERS, COASTAL ENGINEERING RESEARCH CENTER, Shore Protection Manual, 3d ed., Vols. I, II, and III, Stock No. 008-022-00113-1, U.S. Government Printing Office, Washington, D.C., 1977, 1,262 pp.
- WEGGEL, J.R., "Wave Overtopping Equation," Proceedings of the 15th Coastal Engineering Conference, American Society of Civil Engineers, July 1976, pp. 2737-2755 (also Reprint 77-7, U.S. Army, Corps of Engineers, Coastal Engineering Research Center, Fort Belvoir, Va., NTIS A042 678).
- WILSON, K., and CROSS, R., "Scale Effects in Rubble-Mound Breakwaters," Proceedings of the 13th Coastal Engineering Conference, American Society of Civil Engineers, Vol. 3, 1972, pp. 1873-1884.

APPENDIX A

BREAKWATER GEOMETRIES

Each of the breakwaters tested is assigned an identifying code (e.g., BW1). This appendix includes a cross-section drawing and a brief description of each of the breakwaters. Note that breakwaters 1 to 12 (Figs. A-1 to A-14) were tested on a flat tank bottom; breakwaters 13 to 17 (Figs. A-15 to A-19) had a 1 on 15 fronting slope 3.75 meters long. Materials used in construction of the structures are identified by a circled letter; material characteristics are discussed in Appendix B.

Figure A-1. Breakwater 1 cross section.

BW1 is a smooth impermeable structure tested for wave transmission by overtopping and reflection. Note that simultaneous measurements of wave runup were being made on a smooth 1 on 1.5 slope in an adjacent flume by Ahrens (1978) while the breakwater tests were underway (see Fig. 1).

Figure A-2. Breakwater 2 cross section.

BW2 is similar to a casson breakwater that has been rehabilitated by adding rock armor units. The major emphasis of these tests was to examine the effects of wave period and height on transmission and reflection. Armor material was randomly placed.

Figure A-3. Breakwater 3 cross section.

BW3 has an armor two units thick of angular stone. A moderate amount of fitting was used in placing the armor, especially near the crest. Core material was placed by dumping.

Figure A-4. Breakwater 3W cross section.

BW3W is similar to BW3, except that a 5-millimeter-thick metal plate was installed in the center of the structure. The caulked plate extended from the bottom to within one armor unit of the crest (54 centimeters high).

Figure A-5. Breakwater 4 cross section.

BW4 is similar to BW3, except with a 1 on 2.6 front-face slope.

Figure A-6. Breakwater 4W cross section.

BW4W is similar to BW4, but includes a 54-centimeter-high impermeable pla^{\dagger} in the center of the structure.

Figure A-7. Breakwater 5 cross section.

BW5, geometrically similar to the upper part of BW3, is typical of a breakwater built in relatively shallow water. The armor unit size is large compared to the structure height and the core size relatively small.

Figure A-8. Breakwater 6 cross section.

BW6 was made of three triangular, fine wire containers filled with core material.

Figure A-9. Breakwater 7 cross section.

BW7 is geometrically similar to the core of BW3. The material was held in a fine wire structure to prevent motion of the stone.

Figure A-10. Breakwater 8 cross section.

BW8 uses dolos artificial units as part of the armor material on both the front and back of the structure near the crest. Stone was used in the lower parts of the armor. A moderate amount of fitting was used in placing the armor units. An impermeable cap was installed toward the seaward side of the crest.

Figure A-11. Breakwater 9 cross section.

BW9 is similar to BW8, except that armor units have been arranged so that all of the dolos units are on the seaward side of the structure.

Figure A-12. Breakwater 10 cross section.

BW10 was made with an armor one unit thick of well-fitted rectangular rock. The material was placed with one surface parallel to the structure face.

Figure A-13. Breakwater 11 cross section.

BWll was made of two fine-wire rectangular baskets that enclosed core-type stone. The primary purpose of this structure was to examine the wave transmission and reflection characteristics of permeable material.

Figure A-14. Breakwater 12 cross section.

BW12 is a structure with no core similar in geometry to breakwaters 8 and 9.

Figure A-15. Breakwaters 13 and 15 cross section.

BW13 and BW15 were tested with a l on 15 fronting slope 3.75 meters. Note that these structures are the same geometry as BW5 (built on a flat tank bottom).

Figure A-16. Breakwater 14 cross section.

 $BW14,\ a$ smooth impermeable structure, has the same outside dimensions as permeable breakwaters $BW5,\ BW13,\ and\ BW15.$

Figure A-17. Breakwater 15W cross section.

BW15W has the same dimensions and materials as BW13 and BW15, except that a 22-centimeter-high metal plate 5 millimeters thick has been installed in the center of the structure. This plate prevents transmission through the lower part of the structure.

Figure A-18. Breakwater 16 cross section.

BW16 is a one-ninth scale Froude model of a proposed submerged breakwater for Imperial Beach, California.

Figure A-19. Breakwater 17 cross section.

BW17 is a vertical permeable structure, similar to BW11, with the rock retained by a thin wire mesh.

APPENDIX B

MATERIAL CHARACTERISTICS

Materials used to construct permeable breakwaters are discussed in this appendix. Each material is identified by a circled letter and shown on the breakwaters where it was used in Appendix A. Figure B-1 includes photos of samples of the various materials (material F, not shown, is similar to A and B). Some basic parameters, such as weights, diameters, and porosities, are shown in Table B-1. The weight distribution of each of the materials is given in Figure B-2.

Figure B-1. Photos of construction materials.

Table B-1. Material characteristics.

| Material | Description | W ₈₅ ¹
(g) | W ₅₀ ²
(g) | W ₁₅ ³ (g) | d ₅₀ 4
(cm) |
|----------|---------------|-------------------------------------|-------------------------------------|----------------------------------|---------------------------|
| A | Angular stone | 2,520 | 1,530 | 990 | 8.3 |
| В | Angular stone | 4,680 | 3,690 | 2,900 | 11.1 |
| С | Angular stone | 180 | 68 | 31 | 2.9 |
| D | Dolos | 405 | 3 90 | 390 | |
| E | Flat stone | 13,200 | 11,200 | 8,100 | 16.1 |
| F | Angular stone | 7,600 | 4,900 | 2,500 | 12.2 |

¹Weight at which 85 percent by weight of the material is heavier than.

²Weight at which 50 percent by weight of the material is heavier than.

³Weight at which 15 percent by weight of the material is heavier than.

 4 Representative diameter corresponding to ${\rm W}_{50}$.

Figure B-2. Weight distribution of the construction materials.

APPENDIX C
TEST RESULTS (SINUSOIDAL BLADE MOTION)

| ID DICM) T(8) HICM) HE KN D/GT2 M/GT2 SINE BLADE MOTI | DN ID D(CH) T(8) H(CH) KT KR D/GTZ H/GTZ |
|--|--|
| BREAMMATER 1 | |
| 7803240831. 90. 2.39 1.1 .888 .880 .016 .0002
7803240849. 90. 2.39 4.7 .876 .876 .016 .0008
7803240914. 90. 2.39 19.3 .714 .714 .016 .0034 | 78032408en. 90. 2.39 2.2.876.016.0004
7803240858. 90. 2.39 9. 608. 608. 100. 100.
7803240942. 85. 2.32 1.3 898. 608. 016. 0002 |
| 7803241712. 85. 2.32 2.6 .918 .918 .016 .0005
7803241712. 85. 2.32 11.3 .648 .646 .016 .0021
7803241755. 80. 2.25 .0 .849 .649 .016 .0002
7803241113. 80. 2.25 3.8 .700 .700 .016 .0008 | 7803241003, 85, 2,32 %,4 ,881 ,881 ,016 ,0010 7803241020, 85, 2,32 24,5 ,555 ,555 ,016 ,0046 7803241105, 80, 2,25 1,9 ,848 ,848 ,016 ,0004 7803241122, 80, 2,25 7,8 ,611 ,011 ,016 ,0016 |
| 7803241130. 80. 2.25 16.2 .564 .016 .0033
7603271112. 75. 3.42 2.9 .264 .264 .007 .0003
7803271055. 75. 3.42 13.0 .264 .264 .007 .0011
7803241202. 75. 2.18 1.1 .291 .831 .016 .0002 | 7803271119, 75, 3,42 1,4 ,240 ,240 ,007 ,0001 |
| 7803241222. 75. R.1A 4.7 .441 .441 .016 .0010 7803271143. 75. 1.1A 3.6 .275 .275 .055 .0026 7803271129. 75. 1.1A 13.8 .373 .373 .055 .0101 7803271325. 70. R.11 7.4 .259 .259 .016 .0017 | 7803241739, 75, 2-18 9.8 .543 .543 .016 .0021
7803271336, 75, 1-18 8.0 .369 .369 .055 .059
7803271334, 75, 2-11 5.3 .089 .089 .016 .0012
7803271318, 70, 2-11 9.9 .349 .049 .016 .0023 |
| 7403271311. 70. 2.11 13.8 .441 .441 .010 .0031 7403271256. 70. 2.11 23.2 .452 .452 .016 .0053 7403271429. 65. 2.03 11.4 .220 .220 .016 .0028 7403271413. 65. 2.03 18.5 .409 .405 .016 .0046 | 7803271436, 65, 2,03 8,6,073,073,016,0040 7803271436, 65, 2,03 8,6,073,073,016,0021 7803271421, 65, 2,03 14,6,328,328,016,0036 7803271405, 65, 2,03 22,0,452,452,016,0054 |
| 78G32A1132. 60. 3.06 8.1 .016 .016 .007 .0009 78G32A1150. 60. 3.06 13.4 .789 .0016 .007 .0015 78G32A1150. 60. 3.06 13.4 .789 .007 .0024 .007 .0024 .007 .0024 .007 .0024 .007 .0024 .007 .0024 .007 .007 .007 .007 .007 .007 .007 .00 | 7803281142, 60, 3,06 10,7 ,087 ,087 ,007 ,0012 7803281258, 60, 3,06 10,8 331 ,331 ,007 ,0018 7803281122, 60, 1,95 6,5 ,001 ,001 ,016 ,0017 7803281107, 60, 1,95 12,4 ,088 ,088 ,016 ,0033 |
| 78032A1059, 60, 1.95 15.8 .193 .193 .016 .0042 78032A1522, 60, 1.95 23.5 .417 .417 .016 .0063 78032A1507, 60, 1.05 8.2 .054 .084 .056 .0076 78032A1533, 60, 1.05 14.6 .122 .122 .056 .0130 78032A1553, 60, 1.05 14.6 .122 .122 .056 .0130 78032A1553, 60, 1.05 14.6 .122 .122 .056 .0130 | 7803281314, 60, 1,95 22,7 ,444 ,444 ,016 ,0061 7803281314, 60, 1,05 5,9 ,003 ,003 ,056 ,0055 7803281300, 60, 1,05 12,4 ,145 ,145 ,056 ,0115 7803281608, 55, 1,87 11,1 ,051 ,051 ,016 ,0012 |
| 7803281600. 55. 1.87 16.2 .294 .234 .016 .0047 7803290958. 50. 1.78 11.8 .001 .001 .016 .0038 7803290930. 50. 1.78 15.0 .018 .018 .016 .0048 7803291259. 45. 2.65 14.8 .012 .012 .007 .0021 7803291142. 45. 1.69 15.8 .062 .062 .016 .0055 | 7803281552. 55. 1.87 20.7 .304 .304 .016 .0060 7803290940. 50. 1.78 13.3 .011 .011 .016 .0043 7803291331. 45. 2.65 13.3 .009 .009 .007 .0019 7803291232. 45. 1.69 14.4 .043 .043 .016 .0051 |
| 1.45.4511459 439 1944 1343 6005 9004 9014 9012 | 7803291134. 45. 1.69 15.7 .089 .089 .016 .0056 |
| BREAKHATER 2 | |
| 7711021130, 61, 2.18 4.4 .307 .377 .013 .0009 7711021147, 61, 2.18 17.1 .244 .276 .013 .0020 7711021211, 61, 2.18 17.1 .244 .240 .013 .3037 7711041009, 61, 1.47 1.3 .627 .622 .016 .0003 7711021016, 61, 1.97 2.5 .480 .480 .016 .0007 | 7711021155, 61, 2.18 9.1 .276 .276 .013 .0020
7711021200, 61, 2.18 16.9 .239 .239 .013 .0036
7711081000, 61, 1.97 .9 .669 .689 .016 .0002
7711081021, 61, 1.97 1.8 .567 .567 .016 .0005
7711083852, 61, 1.97 2.6 .489 .489 .016 .0005 |
| 77110A0902. 61. 1.97 3.7 .424 .420 .016 .0010
77110A0911. 61. 1.97 5.2 .353 .353 .016 .0014
77110A0914. 61. 1.97 10.3 .253 .253 .016 .0027
77110A0929. 61. 1.97 10.5 .253 .256 .016 .0027
77110A094A. 61. 1.97 18.4 .260 .260 .016 .0048 | 7711021026. bl. 1.97 |
| 7711021056. 61: 1.97 18.8 .266 .246 .016 .0049 7711021230. 61: 1.66 2.3 .476 .476 .023 .6009 7711021238. 61: 1.66 2.3 .476 .349 .023 .0017 7711021232. 61: 1.66 9.8 .244 .023 .0030 | 7711021223. 61. 1.66 2.3 .469 .469 .023 .0009 7711021242. 61. 1.66 4.6 .349 .349 .023 .0017 7711021244. 61. 1.66 9.6 .241 .241 .023 .0036 7711081029. 61. 1.61 2.2 .336 .336 .003 |
| 77110A1037. 01. 1.31 3.1 .203 .203 .030 .0018
77110A1054. 01. 1.31 5.3 .228 .228 .036 .0032
77110A1111. 01. 1.31 6.0 .227 .227 .036 .0036
77110A1127. 01. 1.31 14.0 .145 .145 .036 .0088 | 7711081046 61 1.31 4.2 .756 .256 .036 .0025 7711081103 61 1.31 5.7 .220 .220 .036 .0034 7711081119 61 1.31 8.3 .191 .191 .036 .0049 7711081139 61 1.31 8.3 .194 .164 .036 .0049 |
| 7711021318. 61. 1.06 7.6 .106 .196 .056 .0069
77110P1332. 61. 1.06 16.6 .081 .081 .056 .0151
7711081145. 6159 2.3 .216 .216 .079 .0050
7711081201. 6159 3.1 .156 .156 .079 .0066 | 7711021310. 61. 1.06 0.0 194 .194 .056 .0062
7711021326. 61. 1.06 17.3 .104 .104 .056 .0157
7711081153. 6189 4.1 .166 .166 .079 .0053
7711081200. 6189 6.1 .148 .148 .079 .0079 |
| 7711081217. 61. 499 6.4 1184 1134 1079 0108 | |
| BREAKMATER 3 | 99.a35.cas 68 5 44 53 6 546 546 ALC |
| 7712231329, 93, 2:46 16:9 ; 841 :841 :616 :0026 7712231129, 91; 3:77 2:0 ; 817 :817 :007 :0006 7712231115; 91: 3:77 6:5 :785 :785 :007 :0006 7712231201; 91: 2:40 :63 :845 :845 :616 :0016 7712231201; 91: 2:40 :63 :845 :845 :616 :0017 7712231209; 91: 2:40 :19:7 :845 :845 :016 :0017 7712231209; 91: 2:40 :19:7 :845 :845 :016 :0017 7712231239; 91: 2:40 :19:7 :845 :845 :016 :0017 | 7712311307, 95, 2,46 12.0 ,809 ,809 ,016 ,0020
7712231105, 95, 2,46 23,7 ,854 ,854 ,016 ,0016
7712231122, 91, 3,77 4,2 ,804 ,814 ,007 ,003
7712231120, 91, 2,67 4,0 ,830 ,630 ,013 ,0006
7712231200, 91, 2,40 3,0 ,651 ,851 ,016 ,0005
77122312153, 91, 2,40 13,7 ,938 ,838 ,016 ,0004
7712231215, 91, 2,02 6,1 ,838 ,838 ,023 ,0015 |
| 7712231226. 91. 2.02 11.6 .636 .630 .023 .0029
7712231253. 91. 2.02 22.0 .787 .787 .023 .0035
7712230726. 85. 3.65 1.5 .832 .832 .007 .0001 | 7712231233, 91, 2,02 16,4 ,846 ,846 ,023 ,0041 7712231300, 91, 1,60 24,0 ,713 ,715 ,036 ,0096 7712230733, 85, 3,65 3,6 703 ,793 ,007 ,0002 |

7717191134. 45. 2.65

7712141141. 45. 1.88

enchica.

7.1 .058 .058

9.5 .034 .034 .013 .0027

.007 .0010

BREAKHATEH 4

3.0 .442 .642 .007 .0000 9.4 .783 .783 .007 .0007 75011A1430, 69, 3,65 7501151420. 85. 3.65 1.4 .875 .676 .037 7801181406. R5. 3.65 6.4 R01 .601 .007 .0005 7801181350. 85. 3.65 13.6 .782 .782 .007 .0010 7801181456. 85. 2.32 2.9 .861 .661 .016 .0005 7801181814. 65. 3.65 7801181359. 65. 3.65 1.4 .994 .904 .016 .0003 7801181503, 85. 2.32 547, 547, 8.51 1.44 444 8.1 .824 .016 7801181444 65. 2.32 12.8 .762 016 0024 7801181450. 85. 2.32 6.1 .804 7801181437. 85. 2.32 19.1 .609 .609 .616 .2030 7801181515. 85. 1.26 5.3 .920 .920 .655 .034 7831181516. 65. 1.25 7401191040, 85, 1,26 13.6 .A12 .F12 7801191113, 80, 2,25 13,6 ,812 ,812 ,615 ,016 ,016 ,7801191113, 80, 2,25 13,5 ,685 ,645 ,016 ,016 ,7801191136, 80, 2,25 13,5 ,685 ,685 ,616 ,016 ,016 ,7801201156, 75, 2,18 13, ,853 ,853 ,615 ,016 ,003 ,7801201150, 75, 2,18 15,6 ,608 ,675 ,016 ,0012 ,7801201170, 75, 2,18 15,6 ,608 ,678 ,016 ,0012 ,7801191248, 74, 3,42 4,5 ,752 ,752 ,006 ,0004 ,7801191331, 74, 2,18 15,5 ,787 ,787 ,016 ,0012 ,7801191317, 74, 2,18 15,5 ,559 ,559 ,016 ,0012 ,7801191337, 74, 2,18 15,5 ,559 ,559 ,016 ,0032 ,7801191433, 72, 1,18 5,0 ,631 ,653 ,0037 ,7801191418, 72, 1,18 15,2 ,462 ,482 ,653 ,0097 . ^ 55 1.5 .800 .616 .0003 7801191106. 80. 2.25 7801191128. 80. 2.25 1.5 .Pen .800 .C16 .0C63 7801191128. 80. 2.25 6.3 .776 .776 .016 .C013 7801191128. 80. 2.25 19.9 .610 .610 .016 .C014 7801201133. 75. 2.18 2.7 .792 .792 .016 .C006 7801201133. 75. 2.18 11.3 .683 .683 .616 .C024 7801191241. 74. 3.42 .988 .588 .006 .0001 7801191255. 74. 3.42 14.3 .588 .588 .000 .0012 7801191324. 74. 2.18 11.1 .647 .642 .016 .0006 7601191310. 74. 2.18 11.1 .647 .642 .063 .0015 .0024 7801191392 72. 1.18 2.5 .742 .073 .0016 .0026 7801191439. 72. 1.18 2.3 .762 .762 .053 .0017
7801191427. 72. 1.18 9.1 .562 .562 .053 .0067
7801200959. 70. 2.11 1.7 .728 .728 .016 .0004
7801201613. 70. 2.11 6.8 .569 .589 .010 .0016 7801191016. 70. 1.10 13.2 .462 .462 .653 .0597 7801191016. 70. 2.11 4.9 .607 .607 .016 .0011 7801201023. 70. 2.11 9.4 .500 .560 .016 .0022 7801201025. 70. 2.11 19.4 .487 .487 .016 .0044 7801201021. 65. 2.03 3.9 .468 .468 .016 .0010 7801201030. 70. 2.11 13.4 .524 .524 .010 .0051 7801201215. 05. 2.03 1.9 .553 .553 .016 .0005 7801201227. 65. 2.03 7.9 .457 .457 .016 .0020 7801201239. 65. 2.03 15.0 .455 .458 .016 .0039 7801201253. 65. 2.03 11.5 .448 .448 .016 .0028 7501201245, 65. 2.03 22.1 .452 .452 .016 .0055 7501201317, 60. 3.06 8.5 .404 .404 .007 .0009 7801201311. 00. 3.06 6.1 .444 .444 .007 .0007 7801201317. 60. 3.06 8.5 .404 .404 .007 .0009
7801201350. 60. 3.06 16.1 .433 .433 .007 .0018
7801201350. 60. 1.95 4.6 .356 .356 .016 .0012
7801201450. 60. 1.95 9.6 .284 .284 .016 .0026
7801201450. 60. 1.05 2.0 .293 .293 .055 .0019
7801201450. 60. 1.05 7.3 .164 .164 .055 .0069
7801201455. 60. 1.05 13.5 .153 .153 .055 .0125
7801211403. 55. 1.87 2.5 .402 .402 .016 .0007
7801211409. 55. 1.87 3.7 .335 .335 .016 .0011
7801211428. 55. 1.87 3.7 .276 .276 .016 .0017
7801211428. 55. 1.87 3.7 .276 .276 .016 .0017
7801211428. 55. 1.87 3.8 .257 .276 .016 .0054
7801211428. 55. 1.87 3.4 .204 .204 .016 .0054
7801211428. 49. 1.85 3.8 .257 .257 .015 .0014 7801201383. 60. 3.06 11.7 .402 .402 .007 .0013 7801201384. 60. 1.95 3.5 .407 .407 .016 .0009 7801201357. 60. 1.95 6.5 .315 .315 .016 .0017 7801201411. 00. 1.95 14.0 .201 .201 .010 .0038 7801201444 60 1 145 4.2 204 204 005 0039
7801201431 60 1 165 115 115 115 115 105 0010
7801201357 55 1 168 17 465 465 016 0008
7801201314 55 1 187 26 465 465 016 0008
7801211415 55 1 187 56 475 275 000 7801211430. 49. 1.85 8.2 .185 .165 .015 .0024 7801211612. 49. 1.85 17.5 .120 .120 .015 .0052 7801211606. 49. 1.85 12.3 .136 .130 .015 .0037 17.5 .120 .120 .015 .0052 4.8 .227 .227 .007 .0007 7801211631. 45. 2.65 1.6 .393 .393 .007 .0002 79(1211638. 45. 2.65 7801211644. 45. 2.65 10.7 .151 .151 .007 .0016 7801211659. 45. 1.09 2.0 .279 .270 .016 .0007 7801211651. 45. 2.65 15.9 .130 .130 .007 .0023 7801211717. 45. 1.69 6.3 .149 .149 .016 .0023 7801211717. 45. 1.69 19.1 .096 .096 .016 .0066 7801211729. 45. .91 9.7 .033 .033 .055 .0120 7801211659. 45. 1.09 7801211711. 45. 1.09 13.5 .105 .105 .016 .0048 7801211723. 45. . 9 1 4.6 .037 .037 .055 .0057

BREAKWATER 4m

780:181148. 85. 3.65 1.3 .857 .657 .007 .0001 780:181152. 65. 3.65 6.1 .804 .604 .007 .0005 7801181155. 85. 3.65 .6 .866 .866 .007 .0000 2.9 .634 .634 .007 .0002 9.1 .764 .784 .007 .0007 1.3 .694 .690 .010 .0002 5.9 .27 .627 .010 .0011 7801181140. 45. 3.65 7801181124. 65. 3.65 7801181247. 65. 2.32 78-1181118. 45. 3.65 13.5 .776 .776 .007 .0010 .660 .016 .0005 1201181214. 85. 2.32 7901191201. 35. 2.32 18.2 .744 .744 .016 .0035 7801141259. 85. 1.26 3.9 .084 .048 .055 .0025 7801181258. 85. 1.26 11.9 .432 .832 .055 .0076 7801181245. 85. 1.26 4.0 ,925 ,925 ,055 ,0039 7801181041. 80. 2.25 1.3 .909 .909 .016 .0003 7801181013. 80. 2.25 6.0 .783 .783 .016 .0012 7801181013. 80. 2.25 18.5 .591 .591 .016 .0037 7801180809. 76. 3.42 4.0 .727 .727 .007 .0003 7801181634. 80. 2.25 2.8 .834 .836 .016 .0006 7A011A1020. 80. 2.25 13.0 .661 .661 .010 .0026 7001147034 76. 3.42 .9 .974 .974 .007 .0001 78011403615. - 3.42 13.4 .556 .556 .007 .0012 7801140842. 2.18 2.6 .779 .779 .016 .0006 78(1180859. 76. 2.18 1.3 .846 .846 .016 .0003 7801180836. 76. 2.18 5.4 .736 .736 .016 .0012 7861180454, 75, 1:18 2:2 848 846 .055 .0016 7861180418, 75, 1:18 10:2 814 .614 .055 .0075 7801171318, 70: 2:11 1:9 .656 .658 .016 .0004 7801171334, 70: 2:11 7:3 .526 .526 .016 .0017 7801180823. 76. 2.18 10.0 .477 .577 .016 .0034 7801160902. 76. 1.18 4.4 .766 .766 .0032 7801181914. 76. 1.18 15.0 .498 .492 .055 .0110 7801171524. 70. 2.11 5.1 .571 .571 .016 .0012 7801171324. 70. 2.11 3.1 .471 .571 .016 .012 7801171336. 70. 2.11 9.7 .490 .490 .016 .0022 780117139-2, 70, 2,11 13,3 ,477 ,477 ,016 ,0030 780117139-3, 65, 2,03 2,3 ,387 ,187 ,016 ,0060 780117129-9, 65, 2,03 15,8 ,385 ,385 ,016 ,0021 78011713 1, 65, 2,03 15,8 ,385 ,385 ,016 ,0039 7801171018, 60, 3,06 2,1 ,385 ,385 ,007 ,0002 7801171349, 70, 2.11 19.2 .453 .453 .016 .0044 7801171242, 65, 2.03 4.6 .333 .333 .016 .0011 7601171242, 65, 2.03 11.8 .357 .350 .016 .0029 7431171337. 65. 2.03 19.6 .403 .413 .016 .0046 7431171337. 65. 3.66 4.2 .894 .296 .007 .0065 74 1171637. 60. 3.66 8.5 .852 .252 .007 .0009 78::171-3: 60. 3.06 6.1 .260 .2An .007 .6007 76311710-44 60. 3.06 11.8 278 278 200 007 0013 76311710-44 60. 1.95 1.6 346 346 016 0004 74 :171051 00 3.00 10.3 .526 .520 .007 .0016 74 :17:15. 00 1.99 3.2 .274 .270 .016 .0009 74 : 1:17: 00 1.95 0.5 .273 .203 .016 .0017 7801171111 60 1.95 4.5 .211 .233 .016 .0012 7801171124 60 1.95 9.6 .195 .193 .010 .0026 1.45 13.6 . 3757 7861171134. 60. 1.95 19.1 .246 .246 .016 .0051 .200 .010 .216 6'. 1.65 .241 .241

THE PARTY OF THE PARTY OF THE PERSON OF THE PARTY OF THE

- Salah

| ID D(CM) T(B) H(CM) KT KR D/GT2 H | /GT2 TO DIEMS T(S) H(CM) KT KR D/GT2 H/GT2 |
|---|---|
| BREAKWATER | 4# |
| 7801171209. 60. 1.09 5.8 .187 .147 .056 .7801171157. 60. 1.05 11.7 .119 .119 .056 .7801170922. 56. 1.88 1.8 .327 .327 .016 .7801170935. 56. 1.88 3.6 .221 .221 .016 | 0108 7801171151: 60: 1:05 12:9 :124 :174 :056 :0119 .0005 7801170929: 56: 1:88 2:6 :267 :267 :016 :0008 .0010 7801170941: 56: 1:88 5:4 :177 :177 :016 :0016 |
| 7801170947, 56, 1,88 8,0 ,141 ,141 ,016 , 7801171800, 56, 1,88 17,6 ,149 ,149 ,016 , | .0051 7801170841. 50. 1.78 5.6 .022 .072 .016 .0018 |
| 7801170848, 50, 1.78 8.5 .051 .051 .016 . 7831170801, 50, 1.78 18.1 .065 .065 .016 . | |
| | |
| BREAKHATE | |
| 7802011222, 75, 3,42 3,1 ,879 ,879 ,007 , 7802011222, 75, 3,42 13,4 ,818 ,818 ,007 , | |
| 7802011124, 75, 2,18, 5,3,494,4974,016, 7802011250, 75, 2,18,19,5 **** **** ,016, | 0011 7802011138. 75. 2.18 10.6 **** **** ,01n ,0023 |
| 7802011243. 75. 1.18 9.3 .970 .970 .055 . | £000. 600, 978. 978. 6.5 90. \$.60 .879.006 .000 .0003 |
| 7801311330, 60, 3,09 5,6 ,855 ,855 ,006 , 7801311220, 60, 1,97 ,8 **** **** ,016 , | |
| 7801311252, 40, 1,07 3.6 **** **** .016 . | P100. 610. 1PP. 1PP. 4.7 TP.1 .00 .5021121087 P000, |
| 7802021213, 45, 8,01 3,6,040, 000, 011, 7802091231, 45, 2,01 14,6,611,611,011 | |
| 7802021117. 45. 1.69 3.0 **** *** .016 . | 0011 7802021324, 45, 1.69 4.3 .989 .989 .016 .0015 |
| 7802021137. 45. 1.69 | |
| 7802021033. 45. 1.18 4.1 .901 .901 .033 . | 0030 7802021044. 45. 1.18 4.5 .867 .867 .033 .0048 |
| 7802021050, 45, 1,18 8,4 ,839 ,839 ,033 ,
7802021006, 45, ,91 5,5 ,920 ,920 ,055 , | .0068 7802021018. 4541 9.3 .744 .744 .055 .0115 |
| 7802021337. 31. 1.39 1.4 .530 .550 .016 .
7802021355. 31. 1.39 3.8 .409 .409 .016 . | |
| 7802021414. 31. 1.30 8.5 .375 .375 .016 | |
| BREAKWATE | R 6 |
| 7807071045. 75. 3.42 .9.792 .792 .007 | |
| 7802071102, 75, 3,42 6,2 ,689 ,689 ,007 ,
7802071220, 75, 2,60 2,2 ,805 ,805 ,011 , | .0003 7802071227. 75. 2.60 4.5 .760 .760 .011 .0007 |
| 7802071235, 75, 2.00 9.2 .716 .710 .011 .
7802070946, 75, 2.18 1.3 .851 .851 .016 . | |
| 7802011000, 75, 2.18 3.5 .704 .794 .016 | 1000 100, 100, 100, 100, 100, 100, 100, |
| 7802071019, 75, 2,18, 7,1, ,737, ,737, ,015, ,7802071035, 75, 2,18, 14,2, ,683, ,683, ,016, | |
| 7802071156. 75. 1.40 10.9 .755 .755 .039 . | ,0057 7802071205. 75. 1.40 14.8 .747 .747 .039 .0077 |
| 7802771117. 75. 1.18 2.2 .821 .821 .055 . 7802071129. 75. 1.18 14.2 .711 .711 .055 . | |
| 7802061147, 60. 3.06 3.3 .525 .525 .007 | ,0004 780,7061158. 60. 3.06 10.3 .487 .487 .007 .0011 |
| 7802060155. 60. 2.32 5.3 .463 .463 .011 . 7802061014. 60. 1.95 3.8 .408 .408 .016 . | |
| 7802061032. 60. 1.95 14.4 .467 .467 .016 | 0040 7807361040. 60. 1.95 10.8 .439 .439 .016 .0055 |
| 7602061218, 60, 1,25 2,5 ,365 ,365 ,039 ,
7602061250, 60, 1,25 6,6 ,39; ,391 ,039 , | |
| 7502041051, 60, 1.05 2.1 .280 .880 .050 . 7502081110, 60, 1.05 7.4 .297 .897 .055 | |
| 7402081204, 45. 2.46. 1.6 .550 .550 .000 | 0002 7802081213. 45. 2.86 3.1 .469 .469 .006 .0004 |
| 702071217, 45, 2,26, 5,3 ,378 ,378 ,006 , 7802051032, 45, 2,65, 1,0 ,664 ,604 ,007 , | |
| 7807081045, 45. 2.65 4.4 430 .430 .007 | ,000 780,071435. 45. 2.65 10.0 .271 .271 ,007 ,0015 |
| 7802071451. 45. 2.65 13.4 .234 .856 .007 . 7802080852. 45. 1.44 3.5 .426 .027 .017 . | |
| 7802071422. 45. 1.69 14.7 .257 .237 .016 . | .0053 |
| 7802081659, 45, .91 5.8 .167 .167 .055 | 0071 7802081107, 45, .91 8.3 .137 .137 .055 .0102 |
| TARNASH8
 Tarnash8 | |
| 7802121422, 45, 2.65 .7 .556 .559 .007 . 7802121434, 45, 2.65 2.9 .408 .408 .007 . | |
| - 7802121447. 45. 2.65 13.8 .378 .378 .007 . | 0020 7802121344, 45, 1.64 1.1 .457 .457 .016 .0004 |
| 7802121408. 45. 1.44 4.4 .245 .241 .016 | 0035 7862121414. 45. 1.44 14.1 .324 .374 .016 .0050 |
| 7802121455, 45, .91 1.7 .132 .132 .055 .
7802121506, 45, .91 9.4 .091 .091 .055 . | ON21 7802121501. 45. 491 4.4 408 4085 4055 4054 |
| 7405151614. 60. 3.06 8.0 .767 .767 .007 | 1000 TOC2121625. On. 3.00 15.0 .700 .700 .007 .0017 |
| 7802171545. h0. 1.95 1.2 .885 .865 .016 . 7802171557. 60. 1.95 9.5 .811 .011 .016 . | |
| 7802121632. 00. 1.05 1.9 .911 .911 .050 | 0016 7602121639. 00. 1.05 5.7 .755 .755 .056 . 053 |
| 7602121645, 00, 1,05 tu,0 .768 .768 .056 . 7802131012, 75, 3,42 2,8 .807 .807 .807 .007 | |
| 7002131030. 75. 3.42 12.7 .743 .743 .007 | 2001 7802130914, 75. 2.18 1.3 .927 .927 .916 .0003 |

| ID DICH) TES) HECH) KT | SINE BLADE MOTION KR D/GTZ M/GTZ | ID DECMO TERO HECMO HT KN DIGTE HIGTE |
|--|------------------------------------|--|
| | BREAKWATEH 7 | |
| 7502:30922- 75- 2-18 2-6 -916 | .014 .016 .0006 | 7802130952- 75- 2-16 5-2 -8-7 -8-7 -016 -0011 |
| 702130943. 75. R.18 10.5 .844
702131841. 75. 1.18 2.2 .854 | .455 .055 .0016 | 7802131946 75. 2:18 14.3 .870 .870 .016 .0031 7802131948 75. 1:18 5.7 .861 .861 .055 .0042 |
| 7802131050. 75. 1.18 14.9 .800 | | |
| | BREAKWATER 8 | |
| 7002141450, 45, 1,69, 1,5, 276 | 4500. 610. 151. | 7802141429, 45, 1,69 3,1,193,193,016,0011
7802141447, 45, 1,69 9,7,094,094,016,0035 |
| 7*12141455. 45. 1.49 13.6 .071
7*02151043. 40. 1.45 3.8 .251 | 071 .016 .0049 | 7802151024, 60, 1.95 1.9 .334 .334 .016 .0005 7802151033, 60, 1.95 8.0 .188 .188 .016 .0021 |
| 7802151651. 00. 1.95 15.8 .159 | 150 .016 .0042 | 7802151058. 60. 1.95 20.9 .205 .205 .016 .0056 |
| | BREAKWATER 9 | |
| | .460 .007 .0001
.885 .007 .0005 | 7802161321, 45, 2,65 1.5 391 391 007 0002 7802161357, 45, 2,65 7.2 169 169 007 0010 |
| 7802141346. 45. 2.65 11.8 .117 | | 7802281407. 45. 1.69 1.3 .322 .322 .016 .0005 7802160914. 45. 1.69 3.1 .197 .197 .016 .0011 |
| 7802241417. 45. 1.69 4.0 .194 | .196 .016 .0014 | 7802281427, 45, 1,69 5,7 ,159 ,159 ,016 ,0020 |
| 7802281448. 45. 1.09 12.4 .044 | .122 .016 .0024
.096 .016 .0045 | 7802281438. 45. 1.69 8.4 .125 .125 .016 .0030 .7802281458. 45. 1.69 17.8 .075 .075 .016 .0064 |
| 7802281513. 45. 1.69 24.6 .051
7802161150. 4591 2.0 .028 | 057 .016 .0088
057 .057 .0085 | 7802161353. 4591 .7 .040 .040 .055 .0009
7802161:38. 4591 9.5 .007 .007 .055 .0117 |
| 7Au2211014. 00. 3.u. 1.5 .unn | .450 .007 .0002
.250 .007 .0009 | 7802211021. 60. 3.06 3.5 .345 .345 .007 .0064
7802211036. 60. 3.06 11.2 .216 .216 .007 .0012 |
| 7832211044. 00. 3.06 15.2 .261 | .261 .007 .0017 | 7807210916. 60. 1.95 1.8 .349 .349 .016 .0005 |
| 79-7210939. 60. 1.95 7.7 .183 | 1500. 010. 581. | 7802210931. 60. 1.95 5.3 .214 .214 .016 .0014
7802210946. 60. 1.95 11.1 .157 .157 .016 .0050 |
| 7802211000 000 1.95 15.8 0154
7802211059 000 1.95 4.0 054 | .054 .056 .0043 | 7802211107. 60. 1.05 1.5 113 113 075 0714
7802211107. 60. 1.05 7.6 082 082 050 0070 |
| 7862220954. 75. 3.42 2.4 .650 | | 7002220946. 75. 3.42 1.4 624 624 007 0001
7802221001. 75. 3.42 6.3 528 528 007 0005 |
| 76(22219)9. 75. 3.42 13.7 .487
76(2229916. 75. 2.18. 2.6 .741 | 741 .010 .0012 | 7802224909, 75. 2.18 1.3 .775 .775 .016 .0003 7802224924, 75. 2.18 5.3 .660 .660 .016 .0011 |
| 74-2220931. 75. 2.18 10.7 .583
74-2221417. 75. 1.18 3.1 .633 | .583 .016 .0023 | 7802220938. 75. 2.18 15.7 .555 .555 .016 .0034
7802221024. 75. 1.18 7.3 .526 .526 .055 .0053 |
| 7802221034, 75. 1.18 14.6 .419 | . 413 .055 .0103 | 100 100 100 100 100 100 100 100 100 100 |
| | BREAKWATER 10 | |
| 7805061141. 75. 3.42 1.3 .643
7863061157. 75. 3.42 6.2 .584 | .645 .007 .0001 | 7803061149. 75. 3.42 2.9 .630 .630 .007 .0003 7803061205. 75. 3.42 13.6 .498 .498 .007 .0012 |
| 7863661213. 75. 3.42 20.4 .479 | .475 .007 .0018 | 7803061047. 75. 2.18 1.3 .830 .830 .016 .0005 |
| - 78:3061110. 75. 2.18 11.5 .675 | .675 .016 .0025 | 7403061103. 75. 2.18 5.2 613012012013013013013013013013013013013. |
| 7403061126. 75. 2.18 22.8 .535
7603061231. 75. 1.18 7.9 .642 | .642 .055 .0058 | 7803041727. 75. 1.18 3.1 .726 .726 .005 .0025 .7803031305. 60. 3.06 1.1 .498 .498 .007 .0001 |
| 7803031322. 00. 3.06 3.8 .361
7803031340. 00. 3.06 19.5 .439 | .435 .007 .0021 | 7803031348. 60. 3.06 24.9 .451 .451 .007 .0012 |
| 7903031916. 60. 1.95. 4.2.302
7903031952. 60. 1.95 16.0. 5504 | .302 .010 .0011 | 7803031025. 60. 1.95 8.3 249 249 016 0022
7803031208. 60. 1.95 21.8 406 406 016 0059 |
| 7803031225. 60. 1.05 2.1 .184 | .184 .056 .0019 | 7803031241, 60, 1.05 3.6 .145 .145 .056 .0031 7803031255, 60, 1.05 14.1 .181 .181 .056 .0131 |
| 7863021210 45 2.65 .7 .363
7863021210 45 2.65 3.2 .253 | .393 .007 .0001 | 7803021203: 45: 2:65 1:5 343 343 007 0002 7803021217: 45: 2:65 7:2 157 157 007 0010 |
| 7803021224. 45. 2.65 14.6 .106 | .100 .007 .0021 | 7803021059. 45. 1.69 1.0 .337 .337 .016 .0004 |
| 7803021128, 45, 1.69 4.3 .165 | 0100 .000 .0015
0100 .004 | 7803021133, 45, 1.69 9,6 .100 .100 .016 .0018 7803021147, 45, 1.69 17,0 .060 .060 .016 .0061 |
| | BHEAKWATER 11 | |
| | .676 .007 .0001 | 7803131311, 45, 2,65 1,5,607,607,007,0002 |
| 79 3131334. 45. 2.05 13.5 .297 | .297 .007 .0019 | 78031313134 45. 2.65 6.6 78. 780 7000 0010 7803131146. 45. 1.69 2.4 .99000 0010 0010 |
| 79 5151247. 45. 1.00 14.1 .324 | .324 .016 .0018 | 7803131239, 45, 1.69 10.9 .336 .336 .016 .0039 7803131254, 45, 1.69 15.7 .309 .309 .016 .0056 |
| 74 3131350. 4591 7.8 .153 | 1500 .055 .0151
151 .055 .076 | 7803131349, 45, .91 5.0 .182 .182 .650 780000 7803131808, 45, .91 8.0 .145 .145 .145 .145 |
| 7753131440. 31. 1.94 .8 .707
7853131455. 31. 1.94 3.8 .494 | .707 .008 .0002
.493 .008 .0010 | 7803131848. \$1. 1.94 1.7 .605 .605 .008 .0005 .7803131503. \$1. 1.94 10.5 .315 .315 .008 .0028 |
| 77 3131510. 31. 1.53 1.1 .472 | .472 .013 .0005 | 7A03131517. 31. 1.53 2.0 .400 .400 .013 .0110 .7803141021. 31. 1.53 13.1 .25. 425. 613.0057 |
| 74-3141428. 31. 1.41 .8 .387 | .347 .010 .0004 | 7803141038. 31. 1.41 1.0 .307 .367 .010 .0008 |
| | .337 .016 .0016
.375 .023 .0005 | 7803141052. 31. 1.41. 7.0 .273 .273 .016 .0036
7803141107. 31. 1.16. 1.4 .317 .317 .023 .0011 |

```
SINE BLADE MOTION
            10
                              D(CH) T(S) H(CH) KT
                                                                                            KR D/GTZ M/GTZ
                                                                                                                                                       10
                                                                                                                                                                        D(CH) T(S) H(CH) KT
                                                                                                                                                                                                                                      KR D/GT2 H/GT2
                                                                                                  BREAKHATER 11
                                                               3.0 .274 .278 .023 .0023
.000. 120. 884 .884 .000
  78,5141114. 31. 1.16
                                                                                                                                                   7803141121. 31. 1.16 7.8 .225 .225 .023 .0059
7803141137. 31. 1.00 1.0 .215 .213 .031 .0016
7803141152. 31. 1.00 5.4 .195 .195 .031 .0055
  7853141130. 31. 1.00
7853141144. 31. 1.00
                                                               3.4 .205 .205 .031 .0037
                                                                                                  BREAKWATER 12
  7803171001. 75. 3.42 1.3 .751 .751 .007 .0001 7803170910. 75. 3.42 2.8 .738 .738 .007 .0002 7863170927. 75. 3.42 13.5 .569 .569 .007 .0012
                                                                                                                                                  7803170902, 75, 3.42 1.3 .762 .762 .007 .0001 7803170919, 75, 3.42 6.2 ,659 .659 .007 .0005 7803170824, 75, 2.18 1.4 .890 .890 .016 .0012 7803170834, 75, 2.18 16.3 .884 .864 .016 .0035 7803170844, 75, 2.18 16.3 .884 .864 .016 .0035 7803170944, 75, 1.18 7.5 .856 .055 .055
 78-3170-27. 75. 3.42 13.5 .569 .569 .007 .0012 78.3176-32. 75. 2.18 2.7 .644 .664 .016 .0004 78.3176-32. 75. 2.18 11.4 .712 .712 .014 .0024 78.3176-37. 75. 1.18 13.5 .732 .732 .055 .0024 78.3176-37. 75. 1.18 14.4 .509 .509 .055 .0104 78.3171311. 60. 3.06 25.2 .483 .493 .007 .0011 78.3171311. 60. 3.06 25.2 .483 .493 .007 .0012 78.3171135. 60. 1.95 16.6 .341 .341 .016 .0045 78.3171136. 60. 1.05 .9 .266 .341 .341 .016 .0045 78.3171013. 60. 1.05 .9 .266 .341 .341 .016 .0045 78.3171013. 60. 1.05 .9 .266 .341 .341 .016 .0045 78.3171013. 60. 1.05 .9 .266 .373 .753 .007 .0008 7803160923. 45. 2.65 .60 .753 .753 .007 .0008
                                                                                                                                                  7803160954. 45. 2.65 11.7 .340 .340 .007 .0017 7803160849. 45. 1.69 1.8 .608 .608 .016 .0006 7803160906. 45. 1.69 8.2 .306 .306 .016 .0029
    7803160945. 45. 2.65 6.0 .433 .433 .007 .0009
    7803160842. 45. 1.69
                                                                 .9 .727 .727 .016 .0003
3.7 .455 .455 .016 .0013
   7803160858, 45. 1.69
   7803160913. 45. 1.69 10.6 .280 .280 .015 .0015
7803161810. 45. .91 3.1 .079 .079 .055 .0038
                                                                                                                                                                                                . 91
                                                                                                                                                                                                                1.1 .134
                                                                                                                                                                                                                                           .134 .055
                                                                                                                                                   7803161003. 45.
                                                                                                                                                   7803161017. 45.
                                                                                                                                                                                                   .91
                                                                                                                                                                                                                8.0 .057
                                                                                                                                                                                                                                          .057 .055 .0099
                                                                                                 BREAKWATER 13
7804211138. 60. 3.66 .9 .932 .032 .007 .0001 7804211138. 60. 3.06 4.2 .870 .870 .007 .0005 7804211138. 60. 3.06 13.6 .885 .865 .007 .0015 7804211032. 60. 1.95 3.2 .947 .947 .016 .0009 7604211003. 60. 1.95 13.6 .856 .859 .016 .0036 7804211203. 60. 1.05 1.6 .884 .884 .056 .0015 7804211219. 60. 1.05 6.4 .898 .899 .056 .0059 7804201436. 45. 3.31 2.5 .866 .806 .004 .0002 7804201436. 45. 3.31 2.1 .704 .704 .004 .0010 7804201930. 45. 2.65 4.5 .915 .007 .0007 7804201930. 45. 2.65 18.8 .769 .769 .007 .0027 7804201320. 45. 2.65 18.8 .769 .769 .007 .0027 7804201320. 45. 2.11 4.5 .849 .849 .849 .010 .0010
                                                                                                                                                  7804211146. 60. 3.06
7804211129. 60. 3.06
                                                                                                                                                                                                             2.0 ,893 .893 .007 .0002
9.1 .860 .860 .007 .0010
1.5 .951 .951 .016 .0004
                                                                                                                                               7804211024. 60. 1.95
 7804210900, 45, 2.65 18.8 ,769 ,769 ,007 ,0027 7804201320, 45, 2.11 41, 864 ,849 ,849 ,010 ,0010 7804201324; 45, 2.11 11.8 ,836 ,835 ,010 ,0027 7804201524, 45, 1.69 12.8 ,705 ,705 ,016 ,0040 7804201520, 45, 1.69 12.8 ,705 ,705 ,016 ,0040 7804201536, 45, 1.14 1.5 ,805 ,805 ,035 ,0012 7804210927, 45, 91 2.1 ,881 ,881 ,055 ,0026 7804210927, 45, 91 7.8 ,607 ,607 ,005 ,0096 7504201057, 35, 3006 15, 737 ,737 ,004 ,0009 740420130, 35, 3606 18.6 ,549 ,569 ,004
   7504201057, 35, 3.06 1.5 .737 .737 .004 .0002
7404201130, 35, 3.06 8.0 .564 .569 .004 .0009
7824200959, 35, 1.95 1.1 .791 .791 .009 .0003
7804201015, 35, 1.95 4.8 .655 .655 .009 .0013
  7904201015. 35. 1.95
                                                                                                                                                 7804201210- 35- 1-95 10.3 -600 -600 -009 -0028 7804201210- 35- 1-25 2-5 -549 -549 -023 -0016
  7804201034. 35. 1.95 19.8 .444 .444 .009 .0053
                                                                                                                                                 780u201210. 35. 1.25 2.5 .549
780u201203. 35. 1.25 4.7 .497
 7504261157. 35. 1.25. 4.6. 497. 497. 023.0030
7804261149. 35. 1.25. 11.5. 390. 390. 023. 0075
7804261224. 35. 1.05. 5.1. 358. 358. 032. 0047
                                                                                                                                                                                                                4.7 .497
                                                                                                                                                                                                                                          497 .023 .0031
                                                                                                                                                                                                                                                        .032
                                                                                                                                                  7804201217, 35, 1.05
                                                                                                                                                                                                                3.1 .384
                                                                                                                                                                                                                                           .384
                                                                                                                                                                                                                                                                       .0029
                                                                                                                                                  7604201231. 35. 1.05 11.1 .311 .311 .032 .0103
                                                                                                BREAKWATER 14
7804240907. 65. 2.03 2.7 .966 .060 .016 .0007
7824240825. 65. 2.03 8.3 .987 .987 .016 .0021
                                                                                                                                                 780u240816, 65, 2.03 5.8 .979 .079 .016 .0014
780u240833. 65, 2.03 11.8 .977 .010 .016 .0029
                                                                                                                                               7804240A33. 65. 2.03 11.6 .997 .997 .016 .0029
7804241015. 60. 3.06 2.8 .900 .900 .007 .0003
7804241034. 60. 3.06 13.4 .939 .939 .007 .0015
780424018. 60. 1.95 2.3 .904 .904 .016 .0006
780424034. 61. 1.95 6.5 .984 .904 .016 .0017
780424034. 61. 1.95 13.7 .968 .988 .016 .0037
7704241044. 61. 1.05 15.7 .968 .988 .016 .0037
7704241044. 61. 1.05 15.7 .981 .981 .056 .0014
7804241243. 55. 1.87 2.7 .927 .927 .016 .0008
7804241243. 55. 1.87 2.7 .927 .927 .016 .0008
7804241304. 55. 1.87 10.8 .901 .901 .016 .0032
7804250A55. 50. 1.78 15.2 .993 .993 .016 .0008
 7804241007. 60. 3.06
7804241024. 60. 3.06
                                                             .9 .946 .940 .007 .0001
8.9 .966 .900 .007 .0010
7804241024. 60. 3.66 8.9 .900 .000 .007 .0010 7604240909. 66. 1.98 1.1 .961 .01 .010 .0003 7404240909. 66. 1.98 4.6 .974 .974 .016 .0012 7804240907. 60. 1.95 4.6 .974 .991 .016 .0025 7804240947. 60. 1.95 18.9 .892 .016 .0025 7804241551. 60. 1.95 18.9 .892 .892 .016 .0051 7804241555. 55. 1.87 1.3 .889 .889 .016 .0004 7804250802. 55. 1.87 5.4 .934 .934 .016 .0004 7804250802. 55. 1.87 15.0 .880 .880 .016 .0004 7804250802. 55. 1.78 15.0 .880 .880 .016 .0004 7804250802. 55. 1.78 15.0 .880 .880 .016 .0002 7804250804. 50. 1.78 3.5 .950 .950 .016 .0012 7804250804. 50. 1.78 11.6 .890 .800 .016 .0037
  7804256926. 5C. 1.78 11.6 .P2A .B20 .010 .0037
                                                                                                                                                 78cu250934. 50. 1.78 15.2 .043 .043 .016
                                                                                                                                                 .0049
                                                             4.4 .922 .922 .007 .0007
   80425:122. 45. 2.65
                                                                                                                                                                                                                                                                      .0015
 73047:1141. 45. 2.05 1.01 .713 .713 .007 .0020
760425:011. 45. 1.09 1.0 .034 .034 .016 .0004
                                                                                                                                                 76(4251150. 45. 2.65 19.7 .005
76:425152. 45. 1.69 2.1 .952
7604251039. 45. 1.69 8.9 .713
                                                                                                                                                                                                                                                                      .0029
                                                             1.0 .934 .934 .016 .0004
                                                                                                                                                                                                                                                                      .0008
  7804251030. 45. 1.69
                                                                                                                                                 7800251039. 45. 1.09 8.9 .713 .713 .010 .0032 7804251038. 45. 1.09 18.3 .510 .510 .010 .0005
                                                                           .981 .981 .016 .0016
                                                                ...
                                                                                                                                                                                                                                                                     .0032
 7804241448. 45. 1.00 12.0 .840 .610
                                                                                                       .010 .0046
```

| SINE BLADE MOTI
ID D(CM) T(S) H(CM) KT KR D/GT2 H/GT2
BREAKHATER 14 | TD D(CM) T(8) H(CM) KT KR D/GT2 H/GT2 |
|--|--|
| 7804251236. 4591 1.9 .879 .879 .055 .0023 7804251254. 4591 5.6 .729 .729 .855 .0069 7804251316. 4591 8.9 .530 .530 .055 .0110 7804251316. 4591 8.9 .530 .530 .055 .0110 7804251307. 40. 1.59 4.0 .670 .500 .016 .0016 7804251407. 40. 1.59 4.0 .670 .500 .016 .0039 7804251407. 35. 1.49 11.7 .410 .410 .016 .0054 7804251049. 35. 3.06 12-2 .390 .390 .004 .0013 7804251049. 35. 3.06 21-2 .437 .437 .004 .0023 7804261045. 35. 1.49 13.7 .437 .437 .004 .0023 7804261042. 35. 1.49 \$.3 .397 .397 .016 .0024 7804261222. 35. 1.50 14.8 .354 .354 .3021 .0069 7804261222. 35. 1.50 14.8 .354 .354 .021 .0069 7804261222. 35. 1.50 14.8 .354 .354 .0010 .0024 7804261229. 30. 2.17 13.7 .439 .439 .007 .0050 7804261213. 30. 2.17 13.7 .439 .439 .007 .0050 | 7804251342- 40. 1.59 2.1 .852 .852 .016 .0008 7804251342- 40. 1.59 7.1 .564 .564 .016 .0029 7804251426- 40. 1.59 17.6 .438 .473 .016 .0053 7804251426- 40. 1.59 17.6 .438 .473 .016 .0071 7804251448- 55. 1.49 23.9 .280 .280 .016 .0017 7804251448- 55. 1.49 23.9 .280 .280 .016 .0110 7804261040- 35. 3.06 17.0 .452 .452 .004 .0019 7804261013- 35. 1.49 18417 .417 .016 .0008 7804261013- 35. 1.49 1.8 .417 .417 .016 .0008 7804261236- 30. 2.17 7.7 .246 .246 .007 .0017 7804261221- 30. 2.17 17.5 .440 .440 .007 .0038 |
| 7804261158. 30. 1.38 11.2 .330 .330 .016 .0060
BREAKWATER 15 | 7804261205. 30. 1.38 14.8 .326 .376 .016 .0079 |
| 7805021015. 45. 2.80 | 7805021108. 45. 2.80 14.8 40.8 .805 .006 .0019 7805021108. 45. 1.69 1.0 .908 .908 .016 .009 7805021148. 45. 1.69 4.2 .890 .890 .016 .0015 7805021148. 45. 1.69 8.7 .821 .821 .016 .0031 7805021204. 45. 1.69 18.3 .827 .827 .016 .0065 7805021234. 45. 1.69 18.3 .827 .827 .016 .0055 7805021234. 4591 2.4 .850 .850 .055 .0030 7805021329. 4591 3.9 .866 .866 .055 .0048 7805021329. 46. 2.80 5.9 .788 .788 .005 .0066 7805021348. 40. 2.80 12.1 .729 .729 .005 .0016 7805030732. 40. 2.80 22.80 5.9 .588 .588 .005 .0016 7805030905. 40. 2.50 1.5 .864 .864 .007 .0002 7805030956. 40. 2.50 1.5 .864 .864 .007 .0002 7805030956. 40. 2.50 1.5 .864 .864 .007 .0002 |
| 7805030750. 40. 1.59 2.8 .813 .813 .010 .0011 7805030750. 40. 1.59 20.8 .827 .627 .010 .0044 7805030750. 40. 1.59 20.0 .484 .484 .010 .0081 7805031052. 4086 3.2 .755 .755 .055 .0044 78050310137. 4056 .730 .055 .007 78050310137. 4056 .730 .516 .516 .055 .0102 7805041022. 35. 2.80 3.0 .713 .713 .005 .0004 7805041022. 35. 2.80 12.6 .610 .010 .005 .0016 7805041027. 35. 2.80 12.6 .610 .010 .005 .0016 7805041226. 35. 2.80 20.6 .501 .801 .005 .0027 7805041226. 35. 2.80 3.0 .0104 .714 .007 .0002 7805041226. 35. 2.34 3.2 .714 .714 .007 .0002 7805041226. 35. 2.34 3.2 .716 .714 .007 .0002 7805041226. 35. 2.34 3.2 .716 .714 .007 .0002 7805041226. 35. 2.34 3.2 .716 .714 .007 .0002 7805041226. 35. 2.34 3.5 .716 .716 .007 .0002 7805041249. 35. 2.34 14.3 .567 .567 .007 .0012 7805041149. 35. 1.49 14.3 .567 .567 .007 .0022 7805041149. 35. 1.49 14.3 .746 .790 .016 .005 | 7805030748, 40. 1.59 15.0 .501 .561 .016 .0061 7805031143, 4086 |
| 7805041118. 35. 1.49 | 7805040146 35 1 49 22 3 359 359 016 0102 7805040219 30 2.80 2.6 538 538 004 0003 7805040219 30 2.80 10 6 557 557 004 0014 7805051222 30 2.17 1.7 674 674 007 0004 780505155 30 2.17 1.7 674 674 007 0004 780505155 30 2.17 6.3 543 543 007 0014 780505044 30 2.17 6.3 543 543 007 0014 780505044 30 2.17 15.9 510 510 007 0034 7805050440 30 2.17 15.9 510 510 007 0034 7805050440 30 1.38 1.1 566 566 016 0006 780505044 30 1.38 4.9 425 425 016 0026 780505044 30 1.38 4.9 425 425 016 0026 78050504 25 1.98 37 455 362 016 0026 78050816 28 25 1.98 37 573 573 007 007 0025 7805081612 25 1.98 9.5 417 417 007 0025 |
| 780508097, 25, 1.26 3.0 460 460 016 0019 7805080928, 25, 1.26 9.3 311 311 016 0006 7805080936, 25, 1.26 9.3 311 311 016 0006 780509136, 20, 1.77 80 331 334 007 0026 7805090845, 20, 1.13 7, 371 371 016 0006 7805090855, 20, 1.13 27 271 271 016 0022 7805090913, 20, 1.13 5.6 168 198 016 0045 88EAKAATER 15 | 7805080919, 25, 1,26 6,3 ,346 ,346 ,016 ,0040 7805080941, 25, 1,26 13,7 ,297 ,297 ,016 ,0086 7805091028, 20, 1,27 5,5 ,405 ,405 ,407 ,0016 ,7805091044, 20, 1,27 11,9 ,309 ,509 ,007 ,0016 ,780509093, 20, 1,13 1,2 ,355 ,335 ,016 ,0010 ,780509093, 20, 1,13 1,2 ,355 ,335 ,016 ,0010 ,780509093, 20, 1,13 7,8 ,176 ,176 ,016 ,0002 |
| 780427103. 50. 2.18 10.7 .877 .817 .011 .0023
7804271055. 50. 1.78 1.1 .864848 .016 .0004
7804271040. 50. 1.78 5.6 .824 .016 .0018 | 78cu2715up. 50. 1.78 2.3 .468 .668 .016 .0007 |

THE CONTRACTOR OF THE STATE OF

| 10 D(CM) T(8) H(CM) KT | SINE BLADE MOTION
KR D/GTZ H/GTZ
BREAKWATER 15W | ID DICH) T(S) HICH) KT KR D/GTZ H/GTZ |
|--|--|--|
| 7804271133. 45. 1.69 16.9 .802
7804271251. 45. 1.69 16.9 .813
7804271252. 4591 3.3 .859
7804281307. 40. 1.59 1.9 .835
7804281324. 40. 1.59 18.7 .491
7804281256. 35. 3.00 17.6 .476
7804281142. 35. 1.95 14.9 .558
7804281247. 35. 1.49 3.4 .594
7804281247. 35. 1.49 16.7 .436
7804271417. 30. 2.17 4.4 .464
7804271417. 30. 2.17 4.4 .464 | .860 .007 .0007
.811 .007 .0020
.859 .016 .0011
.808 .016 .0032
.615 .016 .0060
.859 .055 .0043
.835 .016 .0068
.664 .016 .0029
.491 .016 .0075
.476 .004 .0019
.556 .009 .0040
.430 .016 .0077
.428 .021 .0091
.444 .007 .0010
.476 .007 .0038 | 7804271207, 45, 2.65 7804271219, 45, 2.65 7804271219, 45, 2.65 7804271111, 45, 1.69 7804271127, 45, 1.69 7804271127, 45, 1.69 7804271244, 45, 2.61 7804271259, 45, 91 7804271244, 45, 91 7804271244, 45, 91 7804281259, 40, 1.59 7804281259, 40, 1.59 7804281316, 40, 1.59 7804281316, 40, 1.59 78042813151, 35, 3.06 78042813151, 35, 3.06 7804281316, 40, 1.59 7804281316, 40, 1.59 78042813151, 35, 3.06 78042813151, 35, 3.06 78042813151, 35, 3.06 7804281316, 35, 1.30 7804281316, 35, 1.30 7804281316, 35, 1.30 7804281328, 35, 1.49 7804281316, 35, 1.30 7804281316, 35, 1.30 7804281328, 35, 1.49 7804281339, 35, 1.49 7804281339, 35, 1.49 7804281349, 35, 1.49 7804281359, 35, 1.49 7804281359, 35, 1.49 7804281359, 35, 1.49 7804281359, 35, 1.49 7804281359, 35, 1.49 7804271442, 30, 2.17 7804271442, 30, 2.17 7804271349, 30, 1.38 7804271349, 30, 1.38 7804271349, 30, 1.38 7804271349, 30, 1.38 7804271349, 30, 1.38 7804271349, 30, 1.38 7804271349, 30, 1.38 7804271349, 30, 1.38 7804271349, 30, 1.38 7804271349, 30, 1.38 7804271349, 30, 1.38 7804271349, 30, 1.38 7804271349, 30, 1.38 7804271349, 30, 1.38 7804271349, 30, 1.38 7804271349, 30, 1.38 |
| 7805110706. 60. 4.83 | 8RFAKWATER 16 *826 *003 *0000 *766 *003 *0000 *793 *003 *0008 *917 *007 *0003 *918 *007 *0010 *958 *016 *0015 *715 *016 *0018 *706 *016 *0071 *953 *056 *0038 *766 *003 *0001 *764 *003 *0001 *764 *003 *0001 *764 *003 *0010 *972 *007 *0004 *948 *007 *0013 *909 *007 *0026 *909 *007 *0010 *943 *016 *0075 *909 *007 *0012 *908 *000 *0008 | 7805110715, 60, 4,83 2,8 ,794 ,794 ,003 ,0001 7805110735, 60, 4,83 12.6 ,758 ,758 ,003 ,0006 7805110840, 60, 3,06 |
| 7805141327. 45. 4.38 12.7 .768 7805141311. 45. 2.65 12.9 .816 7805141350. 45. 2.65 25.7 .574 7805141350. 45. 2.65 25.7 .574 7805170837. 35. 4.06 15.4 .406 7805221032. 35. 3.10 .9 .871 7805221032. 35. 3.10 .9 .871 7805221032. 35. 3.10 11.1 .516 7805170921. 35. 2.34 1.0 .769 7805170937. 35. 2.34 4.0 .656 7805170937. 35. 2.34 4.0 .657 78 | Th6 | 7805141340. 45. 4.38 17.7 .678 .078 .002 .0009 7805141400. 45. 2.65 18.3 .702 .702 .702 .0027 7805170815, 35. 4.00 2.0 .562 .562 .002 .00027 7805170847. 35. 4.00 11.1 .552 .552 .002 .0007 7805170911. 35. 4.00 20.9 .437 .437 .002 .0013 7805220955, 35. 3.10 2.2 .739 .739 .004 .0002 7805221013. 35. 3.10 10.1 .478 .478 .004 .0007 7805170930. 35. 2.34 2.0 .725 .755 .007 .004 .0017 7805170930. 35. 2.34 2.0 .725 .725 .007 .0004 78051710930. 35. 2.34 3.0 .725 .775 .007 .0004 78051710930. 35. 2.34 11.0 .542 .542 .007 .0012 7805221347. 35. 1.05 2.8 .583 .583 .013 .0010 7805221347. 35. 1.05 2.8 .583 .583 .013 .0010 7805221347. 35. 1.05 2.8 .8 .8 .004 .0007 .00017 7805171205. 35. 1.05 2.8 .003 .0003 .0003 .0003 .7805221347. 35. 1.05 2.8 .004 .0005 .0006 .0005 .0006 .0005 .000 |

And the same a surface and complete the same and the same

.0047

Company of the Compan

10:110

APPENDIX D
TEST RESULTS (IRREGULAR WAVES)

| IMREGULAM MAVES ID D(CM) T(8) H(CM) KT KM D/GT2 M/GT2 QP | ID D(CM) T(S) M(CM) RT KR D/GT2 M/GT2 GP |
|---|--|
| BREAKMATER 1 | |
| 7803281353, 40. 1.00 15.8 .163 .103 .024 .0063 3.33 7803281013, 40. 1.02 16.9 .176 .176 .025 .0066 4.01 7803281013, 40. 3.32 11.3 .039 .039 .006 .0011 2.64 7803281051, 40. 3.32 11.3 .039 .039 .006 .0011 2.64 7803270934, 75. 1.34 15.6 .319 .319 .043 .0089 2.28 7803270932, 75. 1.56 16.5 .347 .347 .031 .0069 4.37 7803271013, 75. 3.38 7.5 .253 .253 .007 .0007 3.24 7803271032, 75. 2.00 11.5 .356 .356 .007 .0029 2.85 | 7803281403, 60. 1.46 17.2 .151 .151 .029 .0082 5.54 7803281422. 60. 3.08 6.2 .035 .035 .006 .0007 3.97 7803281441. 60. 2.05 12.8 .008 .068 .015 .0051 3.77 7803281500, 60. 2.02 15.5 .160 .160 .015 .0051 3.75 7803270943. 75. 1.45 16.7 .355 .355 .036 .0081 5.82 7803271004. 75. 3.32 11.1 .303 .303 .007 .0010 3.94 7803271002. 75. 1.33 12.5 .291 .291 .043 .0072 2.64 7803271001. 75. 1.33 13.3 .305 .005 .003 .0070 1.76 |
| BRF AKMATER 4 | |
| 7801191338, 74, 2.12 13.3 ,543 ,543 ,017 ,0030 5.11 7801191354, 74, 2.03 16.1 ,405 ,425 ,016 ,0040 4.56 7801191410, 74, 1.44 14.6 ,501 ,501 ,036 ,0072 7.58 7801240817, 00 2.23 15.0 ,231 ,231 ,012 ,0031 4.54 7801240834, 00 .1.53 15.0 ,193 ,193 ,026 ,0065 5.62 7801211312, 00 2.21 714.6 ,729 ,229 ,014 ,0033 5.15 7801211312, 00 2.017 17.0 ,233 ,233 ,015 ,0042 4.37 7801211359, 00 1.44 14.6 ,188 ,188 ,189 ,0072 7.42 7801211320, 45, 1.30 12.4 ,011 ,003 ,0030 3.62 7801211320, 45, 1.30 12.4 ,071 ,071 ,027 ,0075 6.53 | 7801191346, 7407 15.6, 488 .488 .080 .0169 5,39 7801191404, 74, 1.55 15.6, 488 .484 .032 .0068 6.05 7801240808, 60, 212 14.7, 226 .226 .014 .0033 5.14 7801240825, 60, 1.38 17.4, 237 .237 .032 .0093 4.59 7801240843, 60, 1.44 14.6, 187 .187 .030 .0072 7.26 780121320, 60, 223 14.8, 228 .228 .012 .0030 4.82 7801211325, 60, 1.38 15.4, 209 .209 .032 .0030 4.82 7801211325, 45. 2.12 12.1 .013 .010 .0027 4.46 7801211755, 45. 2.12 12.1 .013 .014 .020 .0065 8.30 7801211350, 45. 1.70 12.4, 109 .004 .016 .0044 9.99 |
| BREAKWATER 4M | |
| 7801181004, 80. 1.38 17.4 .658 .658 .043 .0093 4.49 7801191019, 85, 1.82 17.0 .765 .766 .026 .0052 8.64 7801191041, 85. 1.44 15.2 .786 .786 .042 .0075 9.85 7801180945, 76. 1.02 16.4 .551 .551 .074 .0161 5.35 | 7801191004. 85. 1.53 16.7 .755 .755 .037 .0073 6.30 7801191026. 85. 1.94 15.3 .768 .768 .023 .0041 4.82 7801180938. 76. 1.30 15.7 .518 .518 .046 .0095 5.24 |
| BREAKWATER S | WARRANA WE |
| 7802010942. 75. 1.88 15.1 .769 .769 .022 .0044 2.13 7802010912. 75. 1.19 16.7 .846 .846 .054 .0120 .7127 7902010935. 75. 2.44 9.8 .803 .803 .013 .0017 2.54 7802010957. 75. 1.45 9.8 .807 .807 .036 .0046 2.03 7802011421. 75. 1.45 9.8 .807 .807 .036 .0046 2.03 7802011421. 75. 1.46 15.3 .823 .823 .022 .0044 2.23 7801310757. 50. 2.64 12.5 .777 .777 .009 .0018 2.15 7801311023. 60. 1.55 15.2 .815 .025 .0065 3.87 7801311006. 600 1.16 13.4 .663 .663 .005 .0102 1.59 7801311100. 600 2.64 12.6 .804 .804 .009 .0018 2.19 780131131. 600 .135 15.3 .815 .025 .0065 3.75 780131131. 600 .135 15.3 .815 .025 .0065 3.75 780131131. 600 .155 15.2 .808 .808 .804 .009 .0018 2.19 7801311313. 600 .135 15.3 .815 .025 .0065 3.75 780131131. 600 .155 15.2 .768 .788 .010 .0088 4.77 7801391154. 600 1.16 13.4 .652 .858 .045 .0102 1.63 7802020832. 45. 2.12 12.2 .798 .798 .010 .0088 4.77 78020204947. 45. 2.35 15.8 .665 .045 .006 .0029 3.53 7802020904. 45. 2.35 15.8 .665 .045 .008 .007 .007 8.55 | 7802010901. 75. 1.19 16.8 .844 .844 .054 .0121 2.18 7802010924. 75. 2.46 9.0 .843 .843 .013 .0017 2.50 7802010947. 75. 1.45 9.6 .825 .825 .036 .0047 2.03 7802010010. 75. 1.34 17.7 .885 .825 .026 .0047 2.03 7802011010. 75. 1.34 17.7 .885 .825 .022 .048 .0111 8.90 7802011107. 75. 1.88 15.3 .826 .826 .022 .0048 .224 7801311011. 60. 1.26 15.8 .792 .792 .039 .0102 2.70 7801311034. 60. 1.97 17.0 .814 .814 .016 .0045 2.70 7801311034. 60. 1.97 17.0 .814 .814 .016 .0045 2.76 78013111142. 60. 1.97 17.1 .810 .810 .016 .0045 2.76 7801311142. 60. 1.97 17.1 .810 .810 .010 .016 .0045 2.78 7801311142. 60. 1.97 17.1 .810 .810 .010 .006 .0017 1.91 7801311142. 60. 1.97 17.1 .810 .810 .010 .006 .0045 2.78 7802020832 .85 2.12 12.3 .842 .842 .842 .010 .0028 4.90 7802020832 .85 2.12 12.3 .842 .842 .800 .000 .0030 4.59 7802020852 .45. 183 14.4 .735 .735 .009 .0030 4.59 7802020852 .4591 8.0 .708 .050 .055 .0099 2.58 |
| RREAKHATER 6 | The property of the tree to th |
| 7A02071316, 75, .91 13.3 .677 .677 .092 .0164 5.A6 7802071332, 75, 1.82 16.2 .683 .683 .023 .0090 8.69 7A0207138A, 75, 1.44 18.6 .A66 .880 .037 .0072 6.31 7A020A0225, 600 1.3A 15.1 .403 .4A3 .036 .0091 5.38 7802090239, 600 1.3A 15.1 .403 .4A3 .036 .0091 5.38 7802090239, 600 1.3A 15.1 .808 .808 .026 .0067 6.A2 7802041115, 45, 2.12 12.3 .2AA .2A6 .010 .0028 8.54 7802041134, 45, 1.37 15.6 .26A .2A6 .024 .0085 4.85 7802041154, 45, 1.3A 12.6 .23A .230 .027 .0076 6.61 | 7802071324. 7530 16.1 .648 ./.8 .045 .0097 5.23 7802071339. 75. 1.53 17.5 .93434 .033 .0076 5.29 7802080216. 60. 1.62 18.0 .38080 .023 .0054 5.42 7802080232. 60. 2.03 18.3 .405 .405 .015 .0045 4.87 7802080246. 60. 1.30 15.0 .342 .342 .036 .0091 8.01 7802081125. 45. 2.23 16.2 .276 .276 .009 .0033 5.69 7802081144. 45. 1.53 14.4 .223 .223 .020 .0063 5.05 |
| BREAKWATER 9 | |
| 760221344. 75. 1.33 13.4 .428 .428 .051 .0090 5.46 780221341. 75. 2.03 16.3 .431 .431 .019 .0040 8.46 7802221357. 75. 2.03 16.3 .394 .394 .037 .0070 8.46 7802221357. 75. 1.44 14.3 .394 .394 .037 .0070 8.74 7802231026. 75. 1.45 16.0 .393 .393 .036 .0078 6.02 7802231055. 75. 3.24 7.1 .555 .555 .007 .0007 8.33 740224140. 75. 2.00 11.0 .821 .421 .017 .0028 1.56 7402271158. 60. 3.75 15.9 .151 .151 .008 .021 2.09 7802271214. 60. 1.63 17.2 .136 .136 .023 .0066 3.37 7402241301. 45. 1.66 21.7 .001 .001 .017 .0080 8.46 7502241322. 45. 3.32 18.3 .167 .107 .004 .0013 3.93 7802241342. 45. 3.56 18.3 .187 .147 .004 .0013 3.03 | 7802221333. 75. 1.30 15.9 .a0a .a04 .043 .0096 a.91 7802221349. 75. 1.53 16.6 .401 .a01 .033 .0072 5.96 7802231016. 75. 1.38 15.8 .364 .364 .043 .0090 2.11 7802231035. 75. 1.38 15.8 .372 .372 .029 .0006 3.52 7802240953. 75. 1.33 12.3 .361 .361 .043 .0071 2.40 7802241013. 75. 1.33 12.3 .361 .361 .043 .0071 2.40 7802241013. 75. 1.34 13.3 .417 .417 .043 .0076 1.45 7802271205. 60. 1.46 16.6 .120 .120 .029 .0079 6.11 7802271205. 60. 1.46 16.6 .120 .120 .029 .0079 2.10 7802271205. 45. 1.60 19.0 .104 .104 .016 .0076 2.16 7802271332. 45. 2.05 16.2 .008 .008 .011 .0039 2.41 |
| 7603060930, 75¢ 1.34 16.0 .408 .043 .0091 2.15 7603060948, 75: 1.72 17.0 .418 .418 .026 .0059 4.15 7503061000, 75¢ 2.61 .6.7 .625 .625 .011 .0010 3.67 7603061025, 75; 2.00 11.0 .475 .475 .019 .0026 1.79 | 7803060939, 75, 1.85 16.2 .447 .447 .036 .0079 6.25 7803060957, 75, 2.64 10.3 .552 .552 .011 .0015 8.59 780306106, 75, 1.33 12.5 .405 .405 .403 .0072 2.37 7803061035, 75, 1.34 13.0 .458 .438 .443 .0074 1.46 |

| IRREGULA
ID D(CM) T(B) H(CM) HT KR D/GT2
SREAKHA | H/GTZ OP | 10 D(CM) | T(8) H(CH) K | T KR L.GT2 H/ | GTZ OP |
|---|---|--|--|--|--|
| 7803031003, 60: 1.95 2:1 381 381 014 7803031101: 60: 1.51 16:2 0191 0191 027 7803031120, 60: 3.12 7:0 385 385 385 006 7803031139, 60: 1.14 12:2 0190 0190 004 7803031139, 60: 3.24 14:0 286 286 026 027 7803021431, 45: 3.12 6:7 213 213 005 7803021431, 45: 3.12 6:7 213 213 005 7803021431, 45: 3.12 6:7 213 213 005 7803021431, 45: 3.12 6:7 213 213 005 7803021430, 45: 3.21 12:5 008 008 008 | 7 .0072 4.44 7
0 .0000 3.24 7
0 .0000 2.35 7
0 .0014 2.69 7
0 .0007 2.41 7 | 803031110.
803031129.
803031148.
803020021.
803021422.
803021440. | 50. 1.64 16.9
50. 3.32 11.2
50. 3.66 11.3
55. 2.21 15.4
55. 1.67 16.1
55. 3.28 10.9 | .229 .229 .026
.215 .215 .023
.268 .268 .006
.232 .232 .005
.000 .000 .000
.002 .002 .016
.155 .155 .004
.126 .126 .004 | .0064 3.64
.0010 3.50
.0009 2.12
.0052 2.38
.0059 4.17 |
| ### ################################## | .0048 2.50 7
.0061 3.46 7
.0043 2.70 7 | 804211315. | 0. 2.84 7.8 | .773 .773 .026
.767 .767 .008
.608 .608 .003 | .0010 3.23 |
| ###################################### | 3 .0036 2.49 7
3 .0009 5.67 7
4 .0029 2.33 7
2 .0012 2.03 | 804260904. 3 | 55. 2.78 9.9 | .201 .201 .015
200 .352 .352
200 .012 | .0015 4.66 |
| 7805010809. 50. 1.23 10.3 .500 .590 .034 7805010844. 50. 1.57 17.8 .653 .653 .021 7805031237. 35. 1.03 18.2 .340 .340 .011 7805031230. 35. 2.01 .7 .476 .476 .070 7805031315. 35. 4.49 12.5 .367 .362 .001 7805031334. 35. 3.10 10.3 .355 .355 .001 7805081126. 20. 1.40 10.3 .355 .154 .014 7805081126. 20. 3.12 6.7 .286 .280 .002 | 0110 2.00 7
1.0074 3.24 7
3.0070 3.25 7
5.0015 4.19 7
7.0006 1.57 7
3.0038 2.29 7 | /805031228 1805031247 1805031246 1805031326 1805081115 1805081134 1805081134 1805081135 1805081155 180508155 180508155 180508155 180508155 180508155 180508155 180508155 180508155 180508155 180508155 180508155 180508155 180508155 180508155 180508155 180508155 18050815 | 35. 1.55 17.1
35. 2.61 6.4
35. 2.08 12.3
35. 4.74 17.3
20. 2.29 14.6
20. 1.65 16.3
20. 3.24 10.4 | .652 .652 .024
.370 .374 .015
.510 .510 .005
.383 .383 .008
.361 .361 .002
.160 .169 .004
.157 .157 .007 | .0073 3.72
.0006 3.06
.0029 2.10
.0006 1.99
.0026 2.26
.0061 3.89 |
| 7804280947, 35. 2.10 15.2 .374 .374 .001
7804281014. 35. 1.58 17.2 .325 .325 .014
7804281633. 35. 2.78 9.5 .484 .001 | NTER 15W
3 .0035 2.42 7
3 .0070 3.13 7
5 .0013 4.29 7 | /804281003. :
/804281024. : | 35. 1.45 16.1
35. 2.84 6.3 | .196 .196 \002
.347 .347 .017
.486 .488 .004
.356 .35: .008 | .0078 3.74
.0008 5.21 |
| 7804281653. 35. 4.20 13.1 .363 .343 .000
BREAKWI | 2 .0005 1.92 7 | | | 200. 125. 525. | |
| 7A06300A2A. 45. 2.03 16.2 .501 .501 .011 7A06300847. 45. 1.55 17.3 .517 .517 .015 7A06300927. 45. 1.55 17.3 .517 .511 .015 7A06300927. 45. 1.55 18.2 .4949015 7A06301027. 45. 3.05 6.3 .654 .658 .005 7A06301027. 45. 3.05 6.3 .654 .658 .005 7A06301024. 45. 3.05 6.3 .654 .658 .006 7A06301120. 45. 4.27 12.8 .497 .497 .006 7A06301120. 45. 4.27 13.0 .524 .524 .006 7A06301121. 45. 4.27 13.0 .524 .524 .006 7A06261300. 40. 2.55 15.3 .406 .406 .006 7A06261321. 40. 3.75 15.3 .406 .406 .006 7A06261321. 40. 3.75 15.3 .406 .406 .007 7A06261339. 40. 3.48 16.3 .509 .309 .017 7A06270809. 40. 3.48 16.4 .407 .407 .407 | .0073 4.16 7 .0073 4.05 7 .0073 5.26 7 .0075 3.62 7 .0007 3.62 7 .0007 3.65 7 .0004 2.34 7 .0007 1.36 7 .0007 1.36 7 .0002 2.65 7 .0012 2.65 7 .0012 2.67 7 .0012 2.67 7 .0076 4.12 7 .0076 4.12 7 .0076 3.99 7 .0075 3.20 7 .0075 3.20 7 .0075 3.20 7 .0073 3.20 7 .0073 3.20 7 .0073 3.20 7 .0073 3.20 7 .0073 3.20 7 .0073 3.20 7 .0073 3.20 7 .0073 3.20 7 .0073 3.20 7 .0073 3.20 7 .0073 3.20 7 | 806300936 (806301001 (806301001 (806301001 (806301001 (806301001 (806301000 (806301000 (806301000 (80630100 (80630100 (80630100 (80630100 (80630100 (80630100 (80630100 (8063010 (8063010 (8063010 (8063010 (8063010 (8063010 (8063010 (8063010 (8063010 (8063010 (8063010 (8063010 (8063010 (8063010 (8063010 (8063010 (806300) (806300 (806300 (806300 (806300 (806300 (806300 (806300 (8063 | 45. 1.55 17.7
45. 1.58 18.4
45. 1.54 18.6
45. 3.05 6.3
85. 2.72 9.8
85. 2.75 9.8
85. 1.43 13.2
85. 1.72 17.9
85. 3.78 18.0
80. 2.75 15.4
80. 2.75 15.4
80. 1.40 16.5
80. 1.58 17.0 | .500 .500 .011
.515 .515 .019
.496 .496 .018
.505 .505 .017
.551 .651 .005
.589 .589 .006
.614 .614 .006
.614 .614 .006
.486 .486 .022
.406 .466 .016
.476 .476 .003
.491 .491 .003
.491 .491 .003
.414 .414 .005
.414 .414 .005
.416 .416 .016
.578 .578 .005 | -0075 3,93
-0075 3,76
-0071 3,79
-0007 3,71
-0014 3,54
-0013 3,73
-0006 2,29
-0006 4,71
-0008 4,71
-0018 2,63
-0012 2,40
-0012 2,40
-0012 2,40
-0012 2,40
-0012 3,93
-0012 3,15
-0018 3,93 |
| 7906279024 40. 3.16 9.4 519 501 6510 001 7806279022 40. 2.75 9.5 6516 6510 002 7806279030 40. 1.14 12.8 801 351 003 7806279050 40. 4.20 14.1 450 435 003 7806271035 40. 4.20 14.1 450 435 003 7806271135 40. 4.01 17.9 388 388 003 7806271136 40. 2.75 18.3 438 42 412 003 7806271136 40. 2.75 18.3 438 42 412 003 780627136 40. 1.40 15.6 488 40. 002 780627136 40. 1.58 10.8 412 412 014 7806271254 40. 1.58 10.8 411 411 014 7806271354 40. 1.58 10.8 411 411 014 7806271354 40. 1.58 10.8 401 411 411 014 7806271313 40. 2.84 8.7 587 587 007 7806271319 40. 2.72 56 603 603 007 7806271319 40. 2.72 56 603 603 007 7806271319 40. 2.72 56 603 603 007 7806271319 40. 2.72 56 603 603 007 7806271319 40. 2.72 56 603 603 007 | 0010 5.53 7 0010 5.53 7 0010 5.53 7 0010 7.36 7 | #80A270913. #80A271093. #80A271093. #80A271020. #80A271083. #80A271120. #80A271203. #80A271203. #80A271204. #80A271350. #80A271350. #80A271350. | 200 2.75 9.5 200 10.14 12.9 200 4.20 14.3 200 4.20 17.9 200 2.75 18.5 200 1.40 15.5 200 1.40 15.5 200 1.58 16.5 200 2.75 8.3 200 2.75 8.3 200 2.75 8.3 200 2.75 8.3 | 512 .512 .005
368 .368 .031
428 .428 .003
400 .400 .003
417 .412 .005
445 .405 .021
4401 .401 .016
547 .401 .016
547 .54 .005
608 .608 .008
548 .412 .005
608 .608 .008
548 .412 .005
608 .608 .008
548 .387 .031
631 .631 .031 | 0013 4:10
0101 2:38
0101 2:37
0008 1:79
0011 2:13
0011 2:14
0020 2:09
0081 3:73
0061 3:73
0067 2:91
00720 4:39
0011 4:14
0000 4:39
0017 2:23
0092 2:23
0092 2:23 |
| 7800280285. 40. 4.20 10.0 .438 .430 .00
7800280505. 35. 4.20 12.5 .372 .372 .37
7800280824. 35. 4.20 12.3 .384 .304 .00
7808280842. 35. 4.00 10.0 .386 .300 .00 | .0007 1.92 7 | #06260#15. | 55. 4.20 12.4
55. 4.00 16.1 | \$00.000.000.000.000.000.000.000.000.000 | .0007 1.90 |

.0012

.011

15.2 .324

And the state of t

| unit tikk, | | | | | | |
|------------------------------|----|-------|------|-------|----|-----------------|
| Administration of the second | 10 | n(CP) | T(8) | H(CH) | ĸŦ | THREGULAR WAVES |
| | | | | | | BREAKWATER 17 |

| TO N(CM) T(B) H(CM) KT KA D/GT2 H/GT2 QR | ID D(CM) T(S) H(CM) KT KR D/(| T2 H/GT2 QP |
|---|--|---------------------------------|
| BREAKWATER 17 | | |
| | | |
| 7809221211. 40. 1.97 15.6 .317 .317 .011 .0041 2.85 | 780A221220. 40. 1.97 15.4 .322 .322 | |
| 7808221729. 40. 4.20 17.7 .336 .330 .002 .0010 2.73 | 7808221238. 40. 4.20 17.6 .340 .340 | |
| 7A3P221246. 40. 4.20 17.7 .343 .343 .002 .0010 2.80
7A0*1A0A20. 35. 2.00 14.1 .353 .353 .009 .0036 2.89 | 7808180758. 35. 2.56 14.3 .356 .356 .7808180828. 35. 2.00 14.1 .352 .352 . | |
| | 780A1A6A47. 35. 1.62 14.9 .319 .319 | 014 .0058 3.89 |
| 75.0718.0837. 55. 1.40 15.1 .322 .322 .018 .0079 3.95 | 7808180900. 55. 1.63 15.9 .305 .305 . | 013 .0061 3.44 |
| 7508180915. 35: 1:03 15:0 .307 .307 .013 .0060 3.53 | 7804140924. 35. 1.6% 15.6 .312 .312 . | |
| 7808180933, 35, 2.78, 7.6, 431, 4431, 005, 0010 4,18
7808180951, 35, 2.78, 7.6, 433, 443, 005, 0010 4,12 | 7808180942. 35. 2.78 7.6 .432 .432 .
7808181003. 35. 2.78 5.0 .407 .407 . | |
| 7404141111. 35. 2.61 4.9 .458 .458 .005 .0007 6.19 | 7808181022. 35. 2.61 4.9 .458 .458 | |
| 7808141032. 35. 1.97 10.6 .341 .341 .009 .0028 2.39 | 780A1A1040. 35. 1.97 10.6 .345 .345 | 04.5 8500. 700. |
| 78.5 ASOn. 900. 818. ASE. 1.47 10.6 .348 .009 .001 2.43 .780 .780 .780 .780 .780 .780 .780 .780 | 7808210847. 35, 2.00 12.7 .367 .367
7808210905. 35, 2.00 12.5 .368 .368 | 20.5 \200. P00. |
| 7608210915. 35. 4.27 16.8 .319 .319 .002 .0009 2.19 | 7808210924. 35. 4.27 16.7 .320 .320 | |
| 7808210932. 35. 4.27 16.6 .322 .322 .002 .0009 2.07 | 7807130022. 35. 2.56 15.8 .320 .320 . | ,005 .0025 3.01 |
| 7607131245. 35. 2.56 15.7 .319 .319 .005 .0024 2.91 | 7807131754. 35. 2.56 15.6 .321 .321 | |
| 7807131317. 35. 1.63 17.5 .302 .013 .0067 3.59
7807131338. 35. 1.63 17.6 .366 .300 .013 .0068 3.59 | 7807131328, 35, 1.65 17.4 .296 .296 .
7807131415, 35, 2.84 5.8 .446 .446 | |
| 7407131433, 35, 8,74 8.9 ,360 ,340 ,005 ,0012 4,24 | 7807131445. 35. 2.78 8.4 .382 .382 | |
| 7807240759. 50. 2.06 17.8 .280 .280 .007 .0043 2.96 | 78072A0912. 30. 2.06 17.9 .279 .279 | ,007 .0043 2.94 |
| 780724080. 30. 2.06 17.7 .274 .278 .007 .0043 2.97 | 7807260830. 30. 1.47 18.9 .274 .274 | |
| 7837265959, 30. 1.47 18.0 .275 .275 .014 .0089 #.37
7837265957, 30. 1.66 19.7 .280 .240 .011 .0073 3.82 | 7807260847. 30. 1.47 18.6 .268 .268
7807260905. 30. 1.66 19.6 .281 .281 | |
| 74.7260914. 50. 1.66 19.8 .282 .282 .011 .0075 3.91 | 7807260924. 30. 2.69 7.1 .378 .378 | |
| 7407260932. 30. 2.84 7.0 .379 .379 .004 .0009 4.16 | 7807260941. 30. 2.69 7.0 .378 .378 | |
| 7837263951. 30. 2.84 9.8 .347 .347 .004 .0012 3.46
7837261010. 30. 2.84 9.8 .386 .350 .004 .0012 3.46 | 7807261020: 30, 2.84 9.8 .349 .349 .
7807261020: 30, 2.05 14.1 .314 .314 | |
| 7407261028. 30. 2.05 14.6 .292 .292 .007 .0035 2.51 | 7807261057. 30. 2.05 14.5 .293 .293 | 007 .0015 2.48 |
| 7807241047. 50. 4.20 15.5 .201 .201 .002 .0019 1.91 | 7807261050. 30. 4.20 15.0 .281 .281 | 40.5 P000. 500. |
| 79072A1105. 30. 4.20 15.4 .288 .288 .002 .0009 1.89 | 78072A1118. 30. 2.06 14.0 .300 .300 | |
| 7437241127, 31, 2.06 14.1 .301 .300 .007 .0034 2.80
7837241145, 30, 1.47 15.0 .283 .245 .014 .0071 3.73 | 7807261136. 30. 2.06 14.2 .296 .296
7807261154. 30. 1.47 15.0 .287 .287 | |
| 7807261304. 30. 1.47 14.8 .285 .295 .014 .0070 3.34 | 7807261314. 30. 2.06 16.1 .297 .297 | .007 .0039 3.35 |
| 7467261327. 30. 2.06 10.5 .295 .295 .007 .0039 3.39 | 7807261331. 30. 2.06 16.2 .296 .296 | .007 .0059 3.38 |
| 7807241342, 30, 2.91 7.8 384, 344, 004, 004, 004, 004 | 7807261351. 30. 2.72 7.8 .351 .351
7807261409. 30. 2.69 5.2 .397 .397 | |
| 78072A1359, 30, 2.69 7.8 .352 .352 .004 .0011 4.64
7807251020, 30, 1.47 15.7 .205 .205 .014 .0074 4.26 | 7807251029, 30, 1.47 15.9 .293 .293 | |
| 7407241434, 30. 1.96 17.0 .304 .304 .011 .0063 3.66 | 7807251046. 50. 1.66 17.1 .302 .302 | . '1 .0063 3.61 |
| 7837251655. 30. 1.06 17.4 .300 .300 .011 .0064 4.19 | 7807251105. 30. 2.67 5.6 .427 .427 | .004 .0005 4.05 |
| 7AJ7251214. 30. 2.54 5.7 .422 .422 .004 .0007 4.19
7AJ7251232. 30. 2.72 8.6 .359 .359 .004 .0012 4.62 | 7807251223. 30. 2.84 5.6 .424 .424
7807251242. 50. 2.72 8.6 .358 .358 | |
| 7607251253. 30. 2.72 8.6 .357 .357 .004 .0012 4.65 | 7807251303. 30. 2.05 12.2 .315 .315 | |
| 7857241312. 30. 2.05 12.5 .309 .309 .007 .0030 2.24 | 7807251320. 30. 2.05 12.4 .313 .313 | .007 .0050 2.19 |
| 7607451331. 30. 1.67 14.1 .305 .305 .006 .0037 2.94 | 7807251341, 30, 1,47 14.1 .299 .299 7807251400, 30, 4.34 17.5 .296 .296 | |
| 7807251350. 50. 4.2n 14.0 .302 .502 .002 .0008 2.71
7807251409. 30. 4.34 17.5 .30n .3np .002 .0009 2.95 | 7807251417. 30. 4.34 17.6 .298 .298 | |
| 7807251427, 30. 1.47 16.1 .747 .242 .014 .0076 3.44 | 7807251435. 30. 1.46 16.1 .293 .293 | |
| 7807241844. 30. 1.46 16.1 .203 .203 .014 .0077 4.12 | 7807270700. 30, 2.60 4.7 .408 .408 | .004 .0007 6.71 |
| 7807270710. 30. 2.69 5.0 .410 .410 .004 .0007 6.72
7807270728. 30. 2.05 10.2 .352 .352 .007 .0025 2.40 | 7807270719. 30. 2.05 10.3 .348 .348
7807270737. 30. 2.05 10.4 .350 .350 | -007 -0025 2-37 |
| 7507270746. 30. 4.57 11.6 .324 .328 .001 .0006 1.48 | 7807270755. 30. 4.34 10.8 .321 .321 | |
| 7837290814. 30. 4.27 15.3 .301 .301 .002 .0009 2.05 | 7807270A25. 30. 4.27 14.9 .304 .304 | 51.5 8000, 500. |
| 7407270432, 30, 4.27 15.2 .300 .300 .002 .0009 1.98 | 7807241253, 25, 1,55 16,8 ,266 .260 | |
| 7507281302. 25. 2.21 17.6 .269 .269 .005 .0036 2.94
7437281403. 25. 4.49 13.2 .293 .293 .001 .0007 1.87 | 7807281311. 25. 2.23 17.5 .275 .275
7807281412. 25. 4.41 13.3 .291 .291 | |
| 7607276916. 25. 2.15 13.6 .294 .294 .003 .0016 2.35 | 7807270924. 25. 2.75 13.1 .293 .293 | *003 *DL18 5*59 - |
| 7467276933. 25. 2.75 13.1 .243 .243 .003 .0018 2.35 | 7807270942. 25. 1.45 13.5 .279 .279 | |
| 7807270951, 25, 1.45 13.8 .280 .284 .012 .0067 3.73
7807271009, 25, 1.45 14.2 .300 .300 .012 .0069 2.89 | 7807271000. 25. 1.45 13.7 .260 .260
7807271018. 25. 1.45 14.4 .298 .298 | |
| 78.1271676, 25. 2.24 14.3 299 .299 .005 .0029 2.92 | 7847271030. 25. 2.75 7.6 .333 .353 | .003 .0010 4.79 |
| 790721:445, 25. 2.75 7.5 .333 .533 .003 .0010 4.86 | 7807271116. 25. 2.75 4.9 .500 .380 | .003 .0007 5.12 |
| 7637271158, 25, 2,75, 5.0 .374 .378 .003 .0007 5.18
7937271218, 25, 2,75, 7,5, .335 .335 .003 .0010 4,76 | 7807271207. 25. 2.75 5.0 .380 .380 7807271258. 25. 1.50 9.9 .308 .308 | |
| 7807271247. 25. 1.5n 10.1 .31A .31B .011 .0046 2.50 | 7807271256. 25. 1.50 10.1 .311 .311 | |
| 7437271305, 25, 4.57 10.3 .304 .304 .001 .0005 1.45 | 7807271315. 25. 4.57 10.3 .305 .305 | .001 .0005 1.43 |
| 7407271324. 25. 4.57 10.1 .312 .312 .001 .0005 1.44 | 7807271334. 25. 4.41 14.1 .293 .293 | |
| 7807271343, 25, 4,41 14,1 ,265 ,295 ,001 ,0007 1,74
7838221335, 20, 1,54 13,5 ,279 ,279 ,009 ,0358 3,97 | 7807271351. 25. 4.27 14.1 .297 .297
7808221314. 20. 1.54 13.8 .275 .275 | .009 .0059 4.01 |
| 7407221323, 20, 1,55 14.0 ,275 ,275 ,008 ,0059 4,00 | 7808221355. 20. 1.52 14.4 .284 .284 | .009 .0neu 3.0u |
| 7-5-221342, 27. 1.53 14.4 .287 .287 .009 .0063 2.95 | 780#221350. 20. 1.53 14.5 .290 .290 | .004 .0063 2.47 |
| 7474271359, 20, 3,05 5,6 444 404 4002 ,0006 5,67 | 7808230743. 20. 3.05 5.6 .494 .494 7808230811. 20. 3.20 8.1 .408 .408 | -05.7 4000. 500. |
| 7636230751, 20, 3,05 5,5 ,501 ,501 ,002 ,0006 5,61 7635230820, 20, 3,16 8,1 ,381 ,581 ,002 ,0008 5,75 | 7A0A230A2A. 20. 3.24 A.1 .404 .471 | |
| 7804250406. 20. 1.41 10.4 .514 .514 .004 .0029 1.52 | 7808240755. 20. 1.91 10.4 .206 .204 | .000 .0029 1.55 |
| 7404290404, 20. 1.97 10.5 .244 .280 .005 .002# 1.54 | 7808290814. 20. 2.21 14.1 .274 .274 | .004 .0024 1.44 |
| 780F290F23, 20, 2,21 14.1 ,277 ,277 ,004 ,0029 P.01
76CF291155, 20, 2,29 11.1 ,351 ,351 ,004 ,0022 2,24 | 7808240831. 20. 2.21 14.6 .274 .274
7808241204. 20. 2.29 11.0 .352 .352 | .000031 F.00
.004 .0031 F.27 |
| 78.5 1600. 400. 746. 746. 7.11 PS.5 .05 .05 .012 PS.59 | 7808201722. 20. 1.54 12.4 .312 .312 | 16.1 5540. 604 |
| 7204241231. 20. 1.54 12.3 .310 .510 .009 .0053 3.70 | 7808261234. 20. 1.54 12.4 .3CA .3NB | .004 .0053 3.74 |
| 7605291745. 20. 2.23 12.9 .324 .325 .004 .0026 7.90 | 7808291257, 20, 2,23 13,0 ,325 ,325
7808291315, 20, 3,20 7,2 ,303 ,363 | |
| 7804291305, 20, 2,23 12,8 ,327 ,327 ,004 ,0026 2,95
7804291323, 20, 3,24 | | ,002 .0007 3.75 |
| 7608261384, 20, 3.16 4.8 .881 .881 .002 .0005 4.64 | 780A241352, 20, 3.16 4.8 .437 .437 | .002 .0005 4.84 |
| 7808281801, 20, 3,16 4,8 ,843 ,843 ,002 ,0005 4,56 | 7808291411. 20. 2.29 9.2 .352 .352 | |
| 7809291429, 20, 072, 7,3 75,4, 20, 001, 0001, 0001, 0001, 0001, 0001, 0002, 1,72 | 7808291437, 20, 4.57 8.7 .326 .326
7808291456, 20, 2.27 12.1 .296 .296 | .004 .0024 1.70 |
| THE PERSON NAME AND THE PERSON NAME AND PARTY IS A | The state of the s | |

APPENDIX E
TEST RESULTS (GRAPHICAL FORM)

WAVE TRANSMISSION AND REFLECTION COEFFICIENTS

BREAKWATER 1 D/(GT2)=0.016

WAVE TRANSMISSION AND REFLECTION COEFFICIENTS

BREAKWATER 2 DS/HS= 0.87

WAVE TRANSMISSION AND REFLECTION COEFFICIENTS

BREAKWATER 3 D/(GT2)=0.016

SYMBOL D/GT2

0 0.0065 0.0131 + 0.0161 × 0.0226 0.0364

WAVE TRANSMISSION AND REFLECTION COEFFICIENTS

BREAKWATER 3 DS/HS= 1.14

SYMBOL D/GT2

0 0.0038

0.0066

+ 0.0131

× 0.0162

0.0229

+ 0.0368

WAVE TRANSMISSION AND REFLECTION COEFFICIENTS

BREAKWATER 3 DS/HS= 0.69

WAVE TRANSMISSION AND REFLECTION COEFFICIENTS

BREAKWATER 3 DS/HS= 1.38

SYMBOL D/GT2

□ 0.0065

□ 0.0130
+ 0.0161
× 0.0226
• 0.0366

WAVE TRANSMISSION AND REFLECTION COEFFICIENTS

BREAKWATER 3 DS/HS= 1.29

SYMBOL D/GT2

0 0.0066 0.0131 + 0.0162 × 0.0230 • 0.0365

WAVE TRANSMISSION AND REFLECTION COEFFICIENTS

BREAKWATER 3 DS/HS= 0.92

WAVE TRANSMISSION AND REFLECTION COEFFICIENTS

BREAKWATER 3W D/(GT2)=0.016

SYMBOL D/GT2

0 0.0037

0.0065
+ 0.0130
× 0.0161
+ 0.0226

WAVE TRANSMISSION AND REFLECTION COEFFICIENTS

BREAKWATER 3W DS/HS= 1.29

SYMBOL D/0T2

0 0-0066

0-0132
+ 0-0163
× 0-0228
+ 0-0368
+ 0-0555

WAVE TRANSMISSION AND REFLECTION COEFFICIENTS

BREAKWATER 3W DS/HS= 1.15

SYMBOL D/GT2 0.0065 0 4 + X 4 +

WAVE TRANSMISSION AND REFLECTION COEFFICIENTS BREAKWATER 3W DS/HS= 0.93

SYMBOL D/GT2 0 0-0038 0-0066 + 0-0131

WAVE TRANSMISSION AND REFLECTION COEFFICIENTS

BREAKWATER 3W DS/HS= 0.69

WAVE TRANSMISSION AND REFLECTION COEFFICIENTS

BREAKWATER 4 D/(GT2)=0.016

- 0.0065 0.0161 0.0546 Ø

WAVE TRANSMISSION AND REFLECTION COEFFICIENTS BREAKWATER 1.29 DS/HS=

SYMBOL D/GT2

- **Ø**

WAVE TRANSMISSION AND REFLECTION COEFFICIENTS BREAKWATER DS/HS= 0.90

- 0.0065 0.0161 0.0555

WAVE TRANSMISSION AND REFLECTION COEFFICIENTS 0.68 BREAKWATER DS/HS=

WAVE TRANSMISSION AND REFLECTION COEFFICIENTS

BREAKWATER 4W D/(GT2)=0.016

- 0-0065 0-0161 0-0546 0

WAVE TRANSMISSION AND REFLECTION COEFFICIENTS 1.29 BREAKWATER 4 W DS/HS=

SYMBOL D/GT2

- 0-0066 0-0162 0-0553

WAVE TRANSMISSION AND REFLECTION COEFFICIENTS BREAKWATER DS/HS= 1.14 **4W**

0-0065 0-0161 0-0555 0

WAVE TRANSMISSION AND REFLECTION COEFFICIENTS BREAKWATER 0.91 4W DS/HS=

WAVE TRANSMISSION AND REFLECTION COEFFICIENTS

BREAKWATER 5 D/(GT2)=0.016

SYMBOL D/GT2

0 -0065 0 -0161 + 0 -0550

WAVE TRANSMISSION AND REFLECTION COEFFICIENTS

BREAKWATER 5 DS/HS= 2.27

SYMBOL D/GT2 □ 0-0114 □ 0-0161 + 0-0330 × 0-0555

WAVE TRANSMISSION AND REFLECTION COEFFICIENTS

BREAKWATER 5 DS/HS= 1.36

WAVE TRANSMISSION AND REFLECTION COEFFICIENTS

BREGKWATER 6 D/(GT2)=0.016

SYMBOL D/GT2

0 0.0065

0.0113
+ 0.0161
× 0.0390
0.0549

WAVE TRANSMISSION AND REFLECTION COEFFICIENTS

BREAKWATER 6 DS/HS= 1.25

0 0-0065 • 0-0114 + 0-0161 × 0-0392 • 0-0555

WAVE TRANSMISSION AND REFLECTION COEFFICIENTS

BREAKWATER 6 DS/HS= 1.00

- 0-0056 0-0065 0-0171
- 0-0161 0-0555

WAVE TRANSMISSION AND REFLECTION COEFFICIENTS BREAKWATER DS/HS= 0.75 6

WAVE TRANSMISSION AND REFLECTION COEFFICIENTS

BREAKWATER 7 D/(GT2)=0.016

SYMBOL D/GT2

- 0-0065 0-0161 0-0550 Ø

WAVE TRANSMISSION AND REFLECTION COEFFICIENTS BREAKWATER 7 DS/HS= 1.63

SYMBOL D/012

- 0-0065 0-0161 0-0555

WAVE TRANSMISSION AND REFLECTION COEFFICIENTS BREAKWATER DS/HS= 7 1.30

- 0-0065 0-0161 0-0555

WAVE TRANSMISSION AND REFLECTION COEFFICIENTS BREAKWATER 7 DS/HS= 0.98

WAVE TRANSMISSION AND REFLECTION COEFFICIENTS

BREAKWATER 8 D/(GT2)=0.016

WAVE TRANSMISSION AND REFLECTION COEFFICIENTS

BREAKWATER 9 D/(GT2)=0.016

SYMBOL D/GT2 0-0065 0-0161 0-0550 O

WAVE TRANSMISSION AND REFLECTION COEFFICIENTS BREAKWATER DS/HS= 9 1.07

- 0-0065 0-0161 0-0555

WAVE TRANSMISSION AND REFLECTION COEFFICIENTS BREAKWATER 0.86 9 DS/HS=

0

0-0065 0-0162 0-0555

WAVE TRANSMISSION AND REFLECTION COEFFICIENTS BREAKWATER 9 DS/HS= 0.64

WAVE TRANSMISSION AND REFLECTION COEFFICIENTS

BREAKWATER 10 D/(GT2)=0.016

- 0-0065 0-0161 0-0550 O

WAVE TRANSMISSION AND REFLECTION COEFFICIENTS **BREAKWATER** DS/HS= 10 1.14

- 0.0065 0.0161 0.0555 O

WAVE TRANSMISSION AND REFLECTION COEFFICIENTS BREAKWATER 10 DS/HS= 0.91

WAVE TRANSMISSION AND REFLECTION COEFFICIENTS

BREAKWATER 11 D/(GT2)=0.016

0.0065 0.0161 0.0555 **©**

WAVE TRANSMISSION AND REFLECTION COEFFICIENTS BREAKWATER 11 DS/HS= 0.75

- 0-0083 0-0133 0-0157 0-0231 0-0311 O

WAVE TRANSMISSION AND REFLECTION COEFFICIENTS BREAKWATER 11 DS/HS= 0.51

WAVE TRANSMISSION AND REFLECTION COEFFICIENTS

BREAKWATER 12 D/(GT2)=0.016

- 0-0065 0-0161 0-0550 Ø

WAVE TRANSMISSION AND REFLECTION COEFFICIENTS BREAKWATER 12 DS/HS= 1.07

0 -0065 0 -0161 + 0 -0555

WAVE TRANSMISSION AND REFLECTION COEFFICIENTS

BREAKWATER 12 DS/HS= 0.86

- 0-0065 0-0161 0-0555

WAVE TRANSMISSION AND REFLECTION COEFFICIENTS BREAKWATER 12 DS/HS= 0.64

WAVE TRANSMISSION AND REFLECTION COEFFICIENTS

BREAKWATER 13 D/(GT2)=0.016

0-0065 0-0161 0-0555

WAVE TRANSMISSION AND REFLECTION COEFFICIENTS BREAKWATER 13 DS/HS= 1.82

SYMBOL D/GT2
0-0042
0-0065
0-0103

× 0.0161 0.0353

WAVE TRANSMISSION AND REFLECTION COEFFICIENTS

BREAKWATER 13 DS/HS= 1.36

0.0038 0.0094 + 0.0229 × 0.0324

WAVE TRANSMISSION AND REFLECTION COEFFICIENTS

BREAKWATER 13 DS/HS= 1.06

WAVE TRANSMISSION AND REFLECTION COEFFICIENTS

BREAKWATER 14 D/(GT2)=0.016

0-0065 0-0161 0-0555 0

WAVE TRANSMISSION AND REFLECTION COEFFICIENTS DS/HS= 1.82 BREAKWATER 14

SYMBOL D/GT2

- 0.0065 0.0161 0.0555

WAVE TRANSMISSION AND REFLECTION COEFFICIENTS BREAKWATER DS/HS= 1.36 14

SYMBOL D/GT2 0.0038 0.0094 0.0161 0.0211

WAVE TRANSMISSION AND REFLECTION COEFFICIENTS BREAKWATER DS/HS= 1.06 14

WAVE TRANSMISSION AND REFLECTION COEFFICIENTS

BREAKWATER 15 D/(GT2)=0.016

SYMBOL D/GT2

- 0.0059 0.0161 0.0555

WAVE TRANSMISSION AND REFLECTION COEFFICIENTS BREAKWATER 15 DS/HS= 1.36

0.0052 0.0065 + 0.0161 × 0.0552

WAVE TRANSMISSION AND REFLECTION COEFFICIENTS

BREAKWATER 15 DS/HS= 1.21

SYMBOL D/GT2

0 0.0046

0.0065
+ 0.0161

WAVE TRANSMISSION AND REFLECTION COEFFICIENTS

BREAKWATER 15 DS/HS= 1.06

- 0.0039 0.0065 0.0161
- **⊙**

WAVE TRANSMISSION AND REFLECTION COEFFICIENTS BREAKWATER 15 0.91 DS/HS=

WAVE TRANSMISSION AND REFLECTION COEFFICIENTS

BREAKWATER 15W D/(GT2)=0.016

SYMBOL D/GT2

0 0.0065
0.0161
+ 0.0555

WAVE TRANSMISSION AND REFLECTION COEFFICIENTS

BREAKWATER 15W DS/HS:= 1.36

WAVE TRANSMISSION AND REFLECTION COEFFICIENTS

BREAKWATER 15W DS/HS= 1.06

WAVE TRANSMISSION AND REFLECTION COEFFICIENTS

BREAKWATER 16 D.(GT2)::0.016

SYMBOL D/0T2 0 -0026

0.0026 0.0065 + 0.0181 × 0.0555

WAVE TRANSMISSION AND REFLECTION COEFFICIENTS

BREAKWATER 16 DS/HS= 1.82

WAVE TRANSMISSION AND REFLECTION COEFFICIENTS

BREAKWATER 16 DS/HS= 1.67

0.0025 0.0065 + 0.0161

WAVE TRANSMISSION AND REFLECTION COEFFICIENTS

BREAKWATER 16 DS/HS= 1.52

0.0024 0.0022 + 0.0024 × 0.0065

WAVE TRANSMISSION AND REFLECTION COEFFICIENTS

BREAKWATER 16 DS/HS= 1.36

0.0022 0.0037 + 0.0065 × 0.0131 0.0161

WAVE TRANSMISSION AND REFLECTION COEFFICIENTS

BREAKWATER 16 DS/HS= 1.06

WAVE TRANSMISSION AND REFLECTION COEFFICIENTS

BREAKWATER 16 DS/HS= 0.91

0.0019 0.0037 + 0.0130 × 0.0161

WAVE TRANSMISSION AND REFLECTION COEFFICIENTS

BREAKWATER 16 DS/HS: 0.76

SYMBOL 0/0T2

0.0017 0.0037 0.0065

WAVE TRANSMISSION AND REFLECTION COEFFICIENTS

BREAKWATER 16 DS/HS= 0.61

WAVE TRANSMISSION AND REFLECTION COEFFICIENTS

BREAKWATER 17 D/(GT2)=0.016

SYMBOL D/GT2

0 0.0010

0.0013

+ 0.0019

x 0.0025

0.0037

0.0065

x 0.0146

z 0.0161

y 0.0227

WAVE TRANSMISSION AND REFLECTION COEFFICIENTS

BREAKWATER 17 DS/HS= D.83

0.0010 0.0019 + 0.0037 × 0.0065 0.0130 + 0.0161

WAVE TRANSMISSION AND REFLECTION COEFFICIENTS

BREAKWATER 17 DS/HS= 0.75

- 0.0010 0 0.0019 0.0037 0.0065 0.0161

WAVE TRANSMISSION AND REFLECTION COEFFICIENTS BREAKWATER 17 DS/HS= 0.58

APPENDIX F

DOCUMENTATION OF THE PROGRAM OVER (752X6R1CYO)

- 1. Purpose. This FORTRAN program estimates wave transmission by overtopping coefficients and transmitted wave heights for smooth impermeable breakwaters. The method can be used for subaerial and submerged breakwaters with structure seaward-face slopes from vertical to 1 on 3. It is recommended for values of $d_g/(gT^2) \leq 0.03$.
- 2. <u>Mathematical Method and Procedure</u>. The program uses the methods developed in this report. The procedure is to estimate wave runup on smooth impermeable slopes, R, using the equation

$$R = HC_1 \left(\frac{0.123 \text{ L}}{H} \right)^{\left(C_2 \sqrt{H/d} + C_3 \right)}$$

where C_1 , C_2 , and C_3 are empirical coefficients related to the structure slope, H is incident wave height, d is water depth, and L is the local wavelength. Runup on rough slopes is estimated using

$$R = \frac{Ha\xi}{(1 + b\xi)}$$

where a and b are empirical coefficients and $\boldsymbol{\xi}$ is the surf parameter given by

$$\xi = \frac{\tan \Theta}{\int_{\overline{L}_O}^{\overline{H}}}$$

where Θ is the angle of the front face of the breakwater and $L_{\mathcal{O}}$ is the deepwater wavelength.

A wave transmission by overtopping coefficient, C, is estimated from

$$C = 0.51 - \frac{0.11 \text{ B}}{h}$$

where B is the breakwater crest width and h the structure height. The transmission by overtopping coefficient, K_{TO} , is determined from

$$K_{T_O} = C\left(1 - \frac{F}{R}\right)$$

where F is the breakwater freeboard. For submerged breakwaters with a 1 on 15 fronting slope the equation

$$K_{TO} = C\left(1 - \frac{F}{R}\right) - (1 - 2C)\left(\frac{F}{R}\right)$$

is used.

The transmitted wave height, H_T , is given by

$$H_T = K_{TO} H$$

- 3. Program Variables. A description of all program variables is presented in Table F-1.
- 4. Input. A description and an example of the imput parameters are given in Table $\overline{F-2}$. Note that all measurements are in metric units.
- 5. Output. Program output includes a summary table of input information together with the predicted ratio of the breakwater freeboard to wave runup, the wave transmission by overtopping coefficient, and the predicted transmitted wave height. An example output corresponding to the input is shown in Table F-3.
- 6. Program Listing. A listing of the program is shown in Table F-4. The subroutine LENGTH finds the value of d/L given d/L $_{\mathcal{O}}$ by using linear wave theory.

Table F-1. Variables used in the program OVER.

| Variable | Description | | | | | |
|------------|--|--|--|--|--|--|
| AC | a; rough-slope runup coefficient | | | | | |
| ВС | b; rough-slope rumup coefficient | | | | | |
| В | breakwater crest width (meter) | | | | | |
| ВН | B/h | | | | | |
| С | transmission by overtopping coefficient = 0.51 - 0.11 B/h | | | | | |
| CA, CB, CC | runup coefficient lookup tables | | | | | |
| C1, C2, C3 | smooth-slope runup coefficients (a function of slope) | | | | | |
| • • | $R/H = C_1(0.123 \text{ L/H})^{(C_2\sqrt{H/d}+C_2)}$ | | | | | |
| DGT2 | $d_g/(gT^2)$ | | | | | |
| DL | d _g /L | | | | | |
| DLO | d _g /L _O | | | | | |
| DS | structure water depth, dg | | | | | |
| F | breakwater freeboard = h - dg | | | | | |
| FR | F/R | | | | | |
| Н | incident wave height, H | | | | | |
| HGT2+ | H/(gT ²) | | | | | |
| HMAX | depth-limited maximum wave height = 0.78 dg | | | | | |
| HS | structure height, h _g | | | | | |
| НТ | transmitted wave height | | | | | |
| I | counter index | | | | | |
| I FRONT | flag to indicate the presence of a fronting slope (IFRONT = 5 for fronting slope of 1 on 15) | | | | | |
| KTO | wave transmission by overtopping coefficient | | | | | |
| L | wavelength | | | | | |
| N | number of wave conditions of interest | | | | | |
| P | linear interpolation factor to find C1, C2, C3 | | | | | |
| R | predicted smooth-slope runup | | | | | |
| RH | R/H | | | | | |
| SURF | the surf parameter = tan $9/\sqrt{H/L_0}$ | | | | | |
| T | wave period (second) | | | | | |
| TANA | lookup table of structure slopes corresponding to CA, CB, CC | | | | | |
| TANT | tangent of the seaward face of the breakwater = tan 0 | | | | | |

Table F-2. Input to the program OVER.

| Card | Format | Description |
|-------------------------------------|--------|---|
| 1 | 12 | number of breakwaters |
| 2 | 12 | number of wave conditions of interest equals 1 if breakwater has a 1 on 15 fronting slope seaward of the structure |
| | 4X | |
| | F10.5 | <pre>tangent of breakwater seaward slope breakwater crest width (m) breakwater structure height (m) water depth at toe of the structure (m) rough-slope runup parameter, a (a = 0 for smooth slopes) rough-slope runup parameter, b</pre> |
| 3
one card per
ave condition) | F10.5 | wave period (s) ●incident wave height (in) |

(repeat card types 2 and 3 for each breakwater)

| | 1 <u>-</u> 1 | Samp | le input | | | |
|------|--------------------|----------|----------|---------------|------------------------------|-------------|
| 14.0 | 0.667 | 1.53 | 4.6 | 3.56 | 0. | 0. |
| 7.9 | 0.2 | | | | | |
| 7.9 | 0.4 | | | | | |
| 7.9 | 0.6 | | | | | |
| 7.9 | 0.8 | | | | | |
| 7.9 | 1.0 | | B =
→ | 1.53 m
 ← | | |
| 7.9 | 1.2 | | | (| 1.5 | |
| 7.9 | 1.4 | ∇ | | 1 7 | $\int_{1}^{1} \tan \theta =$ | . 0 667 |
| 7.9 | 1.6 d _s | = 3.56 m | h = | 4.6 m | tan 6 - | 0.007 |
| 7.9 | 1.8 | 1 | | 1 | θ / | |
| 7.9 | 2.0 | | | | -,(\ | |
| 7.9 | 2.2 | | | | | |
| 7.9 | 2.4 | | | | | |
| 7.9 | 2.6 | | | | | |
| 7.9 | 2.8 | | | | | |

Table F-3. Sample output from the program OVER.

PREDICTION OF MAVE TRANSMISSION COEFFICIENTS FOR AN IMPERMEABLE BHEAKWATER

NUMBER OF WAVE CONDITIONS # 14
IFRONT # 0
TAN(SLOPE)# .667
BHEAKWATER TOP WIDTH(M)# 1.530
STRUCTURE HEIGHT(M)# 4.600
WATER DEPTH(M)# 3.560
FREEBOARD(M)# 1.040
COEFFICIENT OF OVERTOPPING C# .473

C1=1.9910 C2= .49H0 C3=-.1850

| T(SEC) | D/GT2 | н(м) | H/612 | нун | F/H | KTU | HT (M) |
|--------|--------------------|-------|--------|-------|-------|-------|--------|
| 7.900 | .0058 | -200 | .00033 | 1.594 | 3.261 | 0.000 | 0.000 |
| 7.400 | .0058 | .400 | .00065 | 1.899 | 1.369 | 0.000 | 0.000 |
| 7.900 | .0058 | •600 | .00098 | 2.079 | 834 | 074 | .047 |
| 7.900 | .0058 | . 800 | .00131 | | 592 | 193 | .155 |
| 7.900 | .0058 | 1.000 | .00164 | - | 456 | .257 | 257 |
| 7.900 | .0058 | 1.200 | .00196 | - | .371 | 298 | .357 |
| 7.900 | 0058 | 1.400 | .00229 | | 313 | 325 | .455 |
| 7.900 | .005A | 1.600 | 60365 | | .272 | 345 | 552 |
| 7.900 | .005A | 1.800 | 100200 | | 240 | 360 | .648 |
| 7.900 | - • - ₋ | 2.000 | .00327 | | -216 | 371 | 743 |
| 7.900 | | 2.200 | .00360 | | 196 | 360 | .837 |
| 7.900 | - | 2.400 | 00345 | - | 181 | 368 | 951 |
| 7.900 | | 2.600 | 00425 | | 168 | 394 | 1.025 |
| 7.400 | | 2.800 | 00456 | | 157 | 399 | 1.116 |

Table F-4. Listing of the program OVER.

```
PRUGHAM OVER (INPUT. OUTPUT. TAPES = INPUT. TAPE 6 = OUTPUT)
  1
                                              REAL LOKTO
                                              DIMENSION TANA(A)+CA(6)+CB(6)+CC(6)
                                              DATA TANA/10.02.11.0.6670.44400.333/
DATA CA/0.95801.28001.46901.99101.61101.366/
  5
                                              DATA CH/.228. 390. 346. 498. 469. 512/
                                              DATA CC/.0578...091.-.105.-.185.-.080..040/
                                              HEAD(5+1) NB#
                                              DO 100 IB##1.NR#
                                              READ(5.1) N. IFRIGHT. TANT. B. HS. DS. AC. BC
10
                                              PUHMAT(212.6%.7F10.5)
                               C N . NUMBER UP HAVE CONDITIONS
                               C IFRONT = 1 FOR 1/15 FRONTING SLOPE
C TANT = TANGENT OF FRONT HREAKMATER SLOPE ANGLE
                               C H STHUCTURE WIDTH AT THE CREST (M)
C HS STRUCTURE HEIGHT (M)
15
                               C DS = MATER DEPTH AT THE OF STRUCTURE (M)
C AC = ARRENS HOUGH SLUPE RUNUP COEFFICIENT (BO FOR SMOUTH SLOPES)
                               C BC . AMRENS ROUGH SLUPE MUNUP COEFFICIENT
                                              FERSODS
Pû
                                              BHER/HS
                                              C=0.51=0.11=BH
                                              WRITE (6.2) H. IFRONT. TANT. B. HS. DS. F. C
                                              FORMATCINION OF WAVE TRANSMISSION COEFFICIENTS FOR CO.
25
                                                                        IAN IMPERMEABLE BREAKWATER ( . / / . IX . INUMBER OF WAVE CONDIT
                                           **IUMS = (+13+ /+1x+ (1FRUNT = (+12+/+1x+ (1TAN(SLOPE) = (+F6.3+/+1x+ (BREAK

***ATER TUP WIDTH(M) = (+F6.3+/+1x+ (STRUCTUHE MEIGHT(M) & (+F6.3+/+1x+ (FREEHDARD(M) = (+F6.3+/+1x+ (+F6.3+/+1
                                              IF(AC.LT.0.001) GO TU 21
30
                                              DR.JA (55.6) AC. BC
                                              FORMATCIA: TRUNUP COEFFICIENTS FOR ROUGH SLUPE RUNUP ACE (.F. 2.
                                            + ( BC=(.F6.2)
                                              GU TU 25
35
                                 21
                                              IF (TANT GT . TANACI) . OR . TANT . LT . TANA(I+1) GU TO 3
                                              PE(TANA(I)=TANT)/(TANA(I)=TANA(I+1))
                                              6146A(1)-(CA(1)-CA(1+1))+P
                                              C2=CH(I)=(CH(I)=CH(I+1))=P
                                              C3=CC(I)=(CC(I)=CC(I+1))*P
40
                                              CONTINUE
                                              IF(TANT,GT.10.) C1=CA(1)
IF(TANT,GT.10.) C2=CB(1)
IF(TANT,GT.10.) C3=CC(1)
                                              IF(TANT.LT.0.333) C1=CA(6)
IF(TANT.LT.0.333) C2=CB(6)
45
                                              IF (TANT.LT.0.333) C3#CC(6)
                                              ##ITL(6.7) C1.C2.C3
                                              FURMAT(1x+ (C1= (+F6,4+/+1x+ (C2= (+F6,4+/+1x+ (C3= (+F6,4+//)
50
                                 23
                                              HHITE(6.14)
                                              FORMAT(/+1X+ [ T(SEC) D/GT2 H(M) H/GT2 R/H
                                                                                                                                                                       F/R
                                                                                                                                                                                    KTO
                                                                                                                                                                                                      HT(M) (.
                                            +/)
                                             00 4 I=1.N
                                              READ(5.5) TOH
                                              FUHMAT (2F10.5)
55
                                              OLU=US/(1.56+T+T)
                                              CALL LENGTH (DLO.DL)
```

The sales of the s

The state of the s

and the state of the state of

```
Table F-4. Listing of the program OVER.--Continued
```

```
L=DS/DL
                         MGT28H/(9.84T4T)
                         DGT2BDS/(0.88TeT)
HHEC1*(0.123eL/H)**(C2*SQRT(H/DS)*C3)
SUHFRTANT/SQRT(H/(1.56*TeT))
 60
                         IF (AC.GT.0.001) HHMAC+SURF/(1.+BC+SURF)
                         REKHON
 65
                         FHEF/R
                         RTORCE(1, =FR)

IF (IFRONT, EU, 1, AND, F, LT, 0, ) RTORCE(1, =FR)=(1, =2, =C)=FR

IF (FR, GT, 1, ) RTORO,
70
                         #RITE (6:12) T.DGTZ.H.MGTZ.RH.FR.KTO.HT
FUMMAT(1X.F6.3.F7.4.F6.3.F7.5.4F6.3)
                         CUNTINUE
                  100 CONTINUE
                         STUP
75
                         END
                         SUBROUTINE LENGTH (DLG. DL)
  1
                         HEAL LU.LONEN.LOD
                         L0=1.0/0L0
                         LODES . N/DLG
                         NBI
                         PI=3.14159
                         ARGED. 0=PI/LD
                         LONE "SLUDSTANH(ARG)
                         N= 4+1
                         DIFFEAHS (LONE Wald)
10
                        IF(N=200) 3.4.4
IF(DIFF=0.0005) 2.2.5
LD=(LDNFW+LD)/2.0
                  5
                        GU TU 1
15
                        DL=1.0/LDNEW
                         MMITE(8.100) DECODE
                       FUHMAT (44H SUBROUTINE LENGTH DID NOT CONVENGE, D/LO .
                                                                                                      .F10.5.
                       1 MHD/L = .F10.5)
DL=1.0/LDNEW
                        RETURN
50
                        END
```

APPENDIX G

DOCUMENTATION OF THE COMPUTER PROGRAM MADSEN

The computer program MADSEN (CERC program number 752X1R1CPO) is used to predict wave transmission through rubble-mound breakwaters using methods developed by Madsen and White (1976). (Note: Equations and figures referenced from that publication are identified by the symbol MW.) A wave transmission by overtopping model is also included as discussed in the text of this report. The program is organized as shown in Figure G-1. Whenever possible the variable names used are a close approximation to the symbols used by Madsen and White (1976). Table G-1 lists important variable names, corresponding symbols used in Madsen and White, and gives a description including references to defining equations in Madsen and White (1976). A description of each of the program subroutines is given below:

SUBROUTINE READI - This routine reads standard lookup tables corresponding to MW Figures 2, 3, 15, 16, and 17 from Madsen and White (1976). Lookup tables with a combination linear and logarithmic interpolation were selected to avoid having to use Bessel functions with complex arguments. The 53 standard lookup table cards are given in Table G-2.

SUBROUTINE REFL - This routine determines reflection coefficients from rough impermeable slopes to account for energy dissipation on the breakwater face (see Ch. III of Madsen and White, 1976). MW equation (127) is solved iteratively and the final result corrected by the corresponding correction factor from MW Table 2 (a linear fit to these points is used). Lookup tables from MW Figures 15, 16, and 17 are employed in this routine.

| Read standard lookup tables (53 cards), CALL READI |
|--|
| Read number of breakwaters to analyze, NCOMP |
| For each NCOMP read breakwater geometry |
| For each period, NT, read wave heights, HII |
| For each wave height loop to 100 |
| Determine dissipation on BW face, CALL REFL |
| Iterate of ΔH_e and ΔH_T to find ℓ_e using MN equations (172) and (161)— |
| Find equivalent breakwater (Sec. IV,2, eq. 158), CALL EQBW |
| Find internal transmission and reflection coefficients, (Sec. II), CALL INTER |
| Reestimate ΔH_{e} from MW equation (161) |
| Determine transmission and reflection coefficients, K_{Tt} and K_R , from MW equations (175) and (176) |
| Find wave transmission by overtopping coefficient, K_{TO} |
| Print results |
| 100 CONTINUE |
| 199 CONTINUE |
| 200 CONTINUE |
| STOP |
| END |
| SUBROUTINES |
| 53 standard lookup cards |
| Input cards (see Table G-4) |

Figure G-1. General program organization.

Table G-1. Program variables.

| Symbol
(Madsen and
White, 1976) | Variables | Description |
|---------------------------------------|-----------|--|
| \mathbf{a}_i | A | incident wave amplitude |
| RII | RII | reflection coefficient (Sec. III) |
| ΔH_T | DHT | head (MW eq. 160) |
| $\Delta H_{m{e}}$ | DHE | equivalent head (MW eq. 159) |
| d _r , | DR | reference diameter |
| $\beta_{m{r}}$ | BETAR | reference beta |
| ν | NU | kinematic viscosity |
| d | D | diameter (cm) |
| \mathtt{a}_I | ΑI | equals RII a; (MW eq. 146) |
| RI | ♥
RI | internal reflection coefficient (Sec. II) |
| TI | TI | internal transmission coefficient (Sec. II) |
| Т | ктт | coefficient of wave transmission for transmission through the structure (MW eq. 175) |
| | кто | transmission by overtopping coefficient |
| | КТ | total wave transmission coefficient equals $\sqrt{\text{KTT}^2 + \text{KTO}^2}$ |
| R | KR | reflection coefficient (eq. 176) |
| n | N | porosity |
| S _* | SS | $(n/0.45)^2$ |
| $nk_{\mathcal{O}}\ell$ | NKL | equivalent |
| ℓ_e | LE | equivalent BW width (eq. 158) |
| $h_{\mathcal{O}}$ | НО | water depth |
| т | T | wave period |
| f/S _* | FS | |
| λ | LAMBDA | |
| $k_{\mathcal{O}}$ | ко | 2π/L |
| | TS | lookup tables |

Table G-1. Program variables.--Continued

| Symbol
(Madsen and
White, 1976) | Variables | Description |
|---|-----------|--|
| | RS | lookup tables |
| | FST | lookup tables |
| | RUT | lookup tables |
| | RT | lookup tables |
| | GSS | lookup tables |
| | FUS | lookup tables |
| | TX | lookup tables |
| | RX | lookup tables |
| F_S | FS | (Fig. 17) |
| $\ell_{\mathcal{S}}$ | LS | slope length |
| L | L | wavelength |
| | NM | number of materials (maximum of 10) |
| | NL | number of layers (maximum of 10) |
| $^{\Delta 	extsf{h}} j$ | TH | level thickness |
| $\frac{\Delta h_{j}}{h_{O}}$ | DH | relative thickness |
| | NR | reference porosity = 0.45 |
| $\frac{\Delta h_{j}}{h_{O}} \frac{1}{\left(\sum \frac{\beta_{i}}{p_{r}} \ell_{i}\right)^{1/2}}$ | SUM2 | |
| $\sum \frac{\beta_i}{\beta_r} \ell_i$ | SUM1 | |
| - | TOPW | width of top of structure |
| ℓ_n | LL | length of materials in horizontal layers |
| | F | breakwater freeboard |
| | R | wave runup |

Table G-2. Standard lookup tables to be read by READI.

```
.85 .83 .901,502,192.333.233,463.96
     .85 .83 .901.492.192.303.195.423.90
     .65 .83 .901.492.162.293.103.283.70
     .85 .83 .901.472.102.222.943.073,40
     .85 .83 .901.462.052.142.742.803.00
     .85 .63 .901.451.9A2.032.502.502.60
     .85 .83 .901.441.891.922.282.222.20
     .85 .83 .901,421.801.792,021.911.83
    .65 .83 .901,401.701.681,791,631.60
10
     .A5 .83 .901.361.611.521.571.3A1.24
     .65 .83 .901,301.501.401.371.171.00
11
12 1.001.242.032.492.693.283.355.744.00
13 1.001.231.942.322,502.682,973.203.34
14 1.001.221.852.162.312.562.832.732.80
15 1.001.201.762.032.142.282.322.342.36
16 1.001.191.701.901.982.042.042.021.97
17 1.001.191.611.781.821.821,791.731.65
18 1.001.181.541.681.671.651.581.491.38
19 1.001.181.481.571.541.471.371.271.18
20 1.001.171.431.481.421.521.211.08 .97
21 1.001.161.371.381.311.181.05 .93 .80
22 1.001.161.321.291.191.06 .93 .80 .67
25 1.001.00 .98 .93 .83 .75 .76 .78 .75 .66 .60 .61 .66 .60 .54 .48 .48 26 1.001.00 .97 .90 .75 .65 .66 .69 .65 .53 .46 .48 .50 .47 .38 .32 .34 .38 .40 .37 .27 .21 .24 .24 .38 .40 .37 .27 .21 .24 .24 .38 .40 .37 .27 .21 .24
28 1.001.00 .95 .83 .67 .46 .52 .55 .4A .53 .25 .30 .37 .29 .18 .15 .16
29 1.00 .99 .94 .79 .57 .40 .45 .50 .43 .26 .18 .24 .28 .20 .13 .06 .14 30 1.00 .99 .93 .75 .51 .34 .40 .45 .58 .15 .20 .24 .20 .08 .02 .13
31 1.00 .99 .92 .72 .44 .28 .36 .42 .33 .16 .07 .17 .22 .18 .07 .02 .13 32 1.00 .99 .91 .70 .40 .23 .35 .88 .36 .42 .33 .10 .00 .99 .91 .70 .40 .23 .33 .36 .30 .12 .05 .17 .20 .18 .07 .02 .13
33 1.00 .98 .90 .67 .35
                            .18 .31 .35 .27
                                                .10 .05 .17 .20 .18 .07 .02 .13
    .80 .66 .57
                   .50 .46
                            .42 .38 .36 .34
34
35
     .67
         .50 .41
                   .34 .30
                            ,26 ,22 ,18 ,16
     .58 .41 .32
                   .26 .21
                            •17 •13 •11 •08
     50 33 26
45 30 22
     .50
                   .19 .16
                            .12 .99 .07 .05
.08 .07 .04 .03
38
                   .16 .12
39
     .41 .26 .18 .13 .09
                            .07 .05 .03 .02
                            .05 .03 .02 .02
40
     .37 .23 .16 .11 .0A
41
                            .04 .03 .02 .01
     .33 .21 .13 .09
                       .06
42
                            .03 .03 .02 .01
     .31 .18 .12 .08 .05
43
     .29
         .17 .11 .07 .04
                            -03 .02
                                     .01 .01
                   .56 .58
                            .59 .58 .56 .53
     .25 .40 .49
                            .65 .63 .62 .60
45
     .35 .52 .60 .65 .66
                   .71 .71 .09 .67 .67 .66
46
     .44 .60 .68
         .67 .73
     .50
                   .74 .73
                            .72 .71 .70 .70
47
                   .77 .76
48
     .57
         .71 .75
                            .74 .73 .73 .73
                   .78 .77
                            .76
     .60 .73 .78
                                  76 .76 .76
                   .19 .78 .78
                                   7 .77 .77
50
     .63 .76 .60
                            .79 .79 .79 .79
     .66 .78 .81 .80 .79
51
     .68
         .80 .82 .81 .80
                            .80 .80 .80 .80
     ,71
          18, 18, 18, 18, 18, 58, 68, 18,
```

CAL STREET

SUBROUTINE INTER - Internal wave transmission and reflection coefficients for the equivalent breakwater found in EQBW are solved in this routine. MW equations (57) and (37) are solved implicitly using R_{c} = 170 and interpolation of MW Figures 2 and 3, when nkl is greater than 0.1. If nkl is greater than 0.9 the coefficients cannot be solved, so another equivalent breakwater with smaller reference diameter stone is determined.

SUBROUTINE EQBW - This routine determines the rectangular breakwater corresponding to the multilayered trapezoidal breakwater using the methods described in MW Section IV,2. The initial reference diameter is taken as one-half the armor diameter and reference porosity is defined as 0.435.

SUBROUTINE LENGTH - Finds the relative depth given the ratio of water depth to deepwater wavelength.

- 1. Program Use. The following steps are required to use the program MADSEN:
- (a) Assign each of the materials used in the various layers of the breakwater a consecutive number making the armor "material number 1." Determine the diameter of each material from

$$d_{50} = \left(\frac{W_{50}}{Y}\right)^{1/3}$$

where W_{50} is the median weight and γ the specific weight. Also estimate the material porosity.

- (b) Divide the breakwater into horizontal layers. A new layer occurs any time there is a change vertically in any material type of slope (see Fig. G-2 for an example problem). Make the layer next to the seabed "layer number 1." Find the thickness of each layer and determine the average horizontal length of each material in each layer. Remove the outer layer of armor from the seaward face of the breakwater before making length calculations, because energy dissipation on the front face is determined separately in the program.
- (c) Estimate the kinematic viscosity of water as a function of water temperature (Table G-3).
- (d) Estimate breakwater water runup parameters, a and b. At the present time the values of a = 0.692 and b = 0.504 are recommended based on the laboratory data of Hudson (1958).
- (e) Put the information into the required input format (Table G-4). Input cards for the example breakwater (Fig. G-2) are shown in Table G-5.
 - (f) Sample output for the example problem is shown in Table G-6.
- 2. Computer Program. A listing of the computer program MADSEN is given in Table $G-\overline{7}$.

Figure G-2. Sample breakwater input information required.

Table G-3. Kinematic viscosity of water.

| Water temperature | Kinematic viscosity of water |
|-------------------|------------------------------|
| (c*) | (m ² /s) |
| 0 | 0.0000018 |
| 10 | 0.0000013 |
| 20 | 0.0000010 |
| 30 | 0.0000008 |

Table G-4. Format of input information.

| | lable G-4. Format | or input information. |
|-----------|--|---|
| Card type | Format | Description |
| standard | | 53 standard input cards (see Table G-3) |
| 1 | 12 | number of breakwater configurations or water depths to test |
| 2 | 20A4 | title card |
| 3 | 312, 4X, 7F10.5 | number of wave conditions to test |
| | | number of materials |
| | | number of horizontal layers |
| | | structure height (m) |
| | | water depth (m) |
| | | kinematic viscosity (m^2/s) |
| | | width of top of breakwater (m) |
| | | front slope of breakwater = tan (θ) |
| | | wave runup parameter a = 0.692 |
| | | wave runup parameter b = 0.504 |
| 4 | 10X, 2F10.5 (one card per material) | material diameter (m) (armor 1st) |
| | | material porosity |
| 5 | 10X, 7F10.5
(one card per
horizontal layer) | layer thickness (m) |
| | | mean length of each material type in the
layer (put in consecutive order, material
1 (armor lst), etc.) |
| 6 | 2F10.5 | wave period (s) |
| | (wave condition card;
one card per wave
condition) | wave heights (m) |

NOTE.--Repeat card types 2 to 6 for each water depth or breakwater configuration to be tested.

Table G-5. Sample input to program MADSEN.

| EXAMPLE | wid Priced | | | | | | |
|--------------|--------------|-------|--------------|---------|-------|-------|-------|
| 18 3 3 | e. | D. 7 | \$ 4006000° | 6.50 | 0.607 | V04.0 | 275.0 |
| MAT | 457.0 | 0.57 | | | | | • |
| MAT | F . 5 3 R | 0.57 | | | | | |
| MAT & | 50 H 9 | 0.57 | | | | | |
| LA | \$ 5.50 | 4.53 | 0 X 0 | C 7 • 2 | | | |
| LAY > | G . 7 A | 4.53 | 2.5 | 0 •) | | | |
| LAY 3 | 0.47 | 5.0.5 | υ • τ | 3.60 | | | |
| S. | | | | | | | |
| 0.5 | ÷. | | | | | | |
| 5.0 | 0 | | | | | | |
| |
 | | | | | | |
| . 0 | 1.75 | | | | | | |
| | | | | | | | |
| 10.0 | -
• • | | | | | | |
| 10,0 | , , , | | | | | | |
| 10.0 | ر.
- | | | | | | |
| 10.0 | <u>ح</u> | | | | | | |
| 10.0 | 1.75 | | | | | | |
| 10.01 | 0.0 | | | | | | |
| 0°02 | | | | | | | |
| ر ر د | | | | | | | |
| 20.0 | 1.0 | | | | | | |
| 20.0 | † • 5 | | | | | | |
| 20.0 | 1.15 | | | | | | |
| 20.02 | 1.0 | | | | | | |

Table G-6. Sample output.

EXAMPLE PROBLEM

COMPUTATIONS OF HAVE TRANSMISSION THROUGH A POROUS BREAKHATER

```
NUM OF WAVE CONDITIONS
                                        18
NUM OF MATERIALS=
NUM OF HORIZONTIAL LAYERSA
STRUCTURE HEIGHT (M)=
                                    6.000
WATER DEPTH (M)=
                                    4.800
KINEMATIC VISCOSITY (MZ/SEC)= .00000930
SW TOP WIDTH (M)=
                                    2.520
TANH OF FRONT SLOPF®
RUNUP COEFFICIENTS
TANH OF FRONT SLOPF# .6670
RUNUP COEFFICIENTS A# .692 B# .500
MATERIAL CHARACTERISTICS (MARE ARMOR MATERIAL NUMBER 1)
                              .729 POROSITY#
MATERIALS 1 DIAMETER (M)S
MATERIAL 2 DIAMETER (M) 338 POROSITY
                                                  .370
MATERIAL# 5 DIAMETER (M)#
                                .042 POROSITY=
MORIZONTIAL LAYER CHARACTERISTICS (MAKE LAYER NEXT TO SEABED LAYER NUMBER 1)
                                                     MATERIALE
                                                                  4.5
                                                                        2.5
HORIZUNTIAL LAYERS
                      1 THICHNESS (M)= 3.550 LENGTHS (H) #
                                                                               6,4
HORIZONTIAL LAYERS 2 THICHNESS (M) = .780 LENGTHS (M) =
                                                                               0.0
                     3 THICHNESS (H)=
                                           .470 LENGTHS (14)=
HORIZONTIAL LAVERS
 H(M)
         T(SEC)
                  H/(G*T*T)
                                          D/(G+T+T/) KTT
                                                                    ,392
                                 H/L
                                                                            X F
                                                                                  HT(H)
                                                             KIR
 .100
                     000409
                                 .00335
                                              .0196
             5.00
                                                       .392 0.000
                                                                            .26
                                                                                   .057
                                               .0196
                                                                    .213
                                                                            .28
                     1 in 0 2 0 n .
                                                                                   .106
 .500
             5.00
                                  .01674
                                                      .213 J. 0a0
 1.000
             5.00
                     .0040A2
                                               .0190
                                                       .151 0.0ng
                                                                    .151
                                                                            .27
                                                                                   .151
                                  105549
 1.500
                                                                    .135
                                                                            .27
                     .096122
                                               .0196
                                                       ,131
              5.00
                                  115023
                                                            .035
                                                                                   .205
                                                                    .149
                                                                                   .868
 1.750
                                  .05860
                                                       .155
                                                                            ,28
                     .007143
                                               .0196
                                                             .OAC
             5.00
                                               .0146
                                                                    ,159
                                                                                   .337
                     .008163
 2.000
             5.00
                                  .06697
                                                       .115
                                                             .125
                                                                            .65
                                               .0049
                                                                    .401
                                                                            .50
                                                                                   .040
                     .nonina
                                  .00151
                                                       .401 0.000
  .100
            10.00
                                              .0049
                     .000510
                                  .00753
  .500
                                                       000.0 S65.
                                                                    505
                                                                            .54
                                                                                   .101
            10.00
                                                                   135
                                              .0049
 1.000
                                                       .135 v.oad
                                                                            .62
            10.00
                     .001650
                                  .01507
                                                                                   ,229
                                                      .100
                                                                            . 65
 1.500
                                               .0019
            10.00
                     .001531
                                  .02260
                                                             .115
                                                                    185
 1.750
                     .0017A6
                                               .0049
                                                       .08A
            10,00
                                  .02637
                                                             .159
                                                                            ,64
                                                                                   .318
                                                                   185
                                                                            .54
 2.000
                     1002041
                                                             .175
                                                       .080
            10.00
                                  •03013
                                               .0049
                                                                                   .413
  .100
                     .000026
            20.00
                                               .0012
                                                       .3A1 0.000
                                                                            .55
                                                                                   .038
                                  .00073
                                                                    .186
                                                       .186 0.000
                                                                                   .093
  .500
            20.00
                     .000126
                                  .00567
                                               $100.
                                                                            .65
                                                                    127
                                                      .127
                                                                            . 70
 1.000
                     .000255
                                  .00735
                                               .0012
                                                                                   ,127
            20.00
                                                             .010
                                                                    ,182
                                                                            .71
 1.500
            50.00
                      .0003a5
                                  .01102
                                               .4012
                                                       .098
                                                             .154
                                                                                   .214
                                                      .087
                                                                    214
                                                                                   . 175
 1.750
            20.00
                     .000440
                                  .01286
                                               .0012
                                                             .195
                                                                            .12
 2,000
            20.00
                     .000510
                                  .01470
                                               .0012
                                                       . 081
                                                             .227
                                                                                   .482
```

KTT . WAVE TRANSMISSION THROUGH THE STRUCTURE

MTD - WAVE TRANSMISSION BY OVERTOPPING COEFFICIENT

CT - TOTAL HAVE FRANSMISSING COEFFICIENT

KR - WAVE MEFLECTION COEFFICIENT

HT . TRANSMITTED HAVE HETGHT

Table G-7. Listing of the computer program MADSEN.

```
PROGRAM MADSEN(INPUT.OUTPUT.TAPESDINPUT.TAPE6=OUTPUT.TAPE3)
1
                   COMMON/MAD81/NM.NL.D(11).N(11).LL(11.11).TH(11)
                   COMMON/SEEL/NKL.FS
                   REAL NKL
                   DIMENSION IBUF(1).TITLE(20).NUM(10)
                   REAL LONGET HE NOLE - NEOLL - MTO - KTT
                   DATA NUM/1.2.3.4.5.6.7.8.9.10/
                   PI=3.14150
                   CALL READI
                   READ(5,590) NOMP
10
             590
                  FORMAT(312,4x.7F10.5)
                   DO 200 1J=1.NCOMP
            C READ INPUT INFORMATION
                   READ(5.171) (TITLE(JJM).JJM=1.20)
             171 FORMAT (2044)
15
                   HRITE(6:172) (TTTLE(JJM):JJM#1:20)
             172 FORMAT(1H1.10x.7044)
                   HEAD(5.590) NT.NM.NL.HS.HD.NU.TOPH.TANB.RA.RB
                   FEHSOHU
20
                   IF(P4.LE.O.) RABO.692
                   IF(RH.LE.O.) RBm.504
hrite(6.971) nt.nm.nl.ms.mo.nu.topw.tang.ra.rg
                  25
                  * INUM OF MATERIALSE (+17X+13+/+5X+
                        INUM OF HORIZONTIAL LAYERS= (+6x+15+/+5x+ (STRUCTURE HEIGHT (M)
                  #= [+AX+F10.3./+5X+ [MATER DEPTH (M)#[+11X+F10.3./+5X+

+ [KINEMATIC VISCOSITY (M2/SEC)=[+F11.9+ /+5X+[BH TOP WIDTH (M)#[+
                  #10x,f10,3./.5x, ITANB OF FRONT SLOPE=1.9x.F3,4./.5x, [RUNUP COEFFICE
30
                  *ENTS A# (+F6.3+ ( 8# (+F6.3)
                   DO 09 Im1.11
                   DO 98 J#1-11
              98
                   LL(T+J)=0.
                   CONTINUE
35
                   #RITE(6.283)
              283 FORMAT(5x. MATERIAL CHARACTERISTICS (MAKE ARMOR MATERIAL NUMBER 1)
                  +1./1
                   DO A 121.NM
                   READ(5.7) D(I).N(I)
                   FORMAT (10x, 7F10.5)
40
                   WRITE(6-177) 1.0(1).N(1)
              177
                   FORMATISX. (MATERIAL #1.13. I DIAMETER (M) # (. F 6.3. I POROSITY#1. F6.3)
                   CONTINUE
                   (MM. JEHL. (ML) MUN) (BRS. 6)37184
                 FORMAT(//+5X+ [HORIZONTIAL LAYER CHARACTERISTICS (+/+5X+
45
                  * ICMAKE LAYER NEXT TO BEABED LAYER NUMBER 1) [ . / .
                  # 52x+ (MATERIAL#
                                      1.7(11,5x),/,63x,6(12,4x),/)
                   00 33 JE1.NL
                   REAM(5.7) TH(J).(LL(I.J).IR1.NM)
                   HRITE(6-178) J.TH(J) - (LL(1-J) - IB1 - NM)
50
              178 FORMAT (5x. [HORIZONTIAL LAYER= 1.13. [ THICHNESS (M)= [. Fo.3. [ LENGTH
                  *S (M)=[.7F6.1./.60x.7F6.1)
                   CONTINUE
                   NMENM+1
55
                   D(NH)=D(1)
                   N(Nm)=0.01
                   NL#NL+1
                   TH(NL)=10000000.
                   LL (NM+NL)=3,+D(1)
                   ##1TE (6.942)
60
              947 FURMAT(//, 6x, (H(M)
# KTU KT KR
                                          T(SEC)
                                                    H/(G+7*7)
                                                                H/L
                                                                         D/(G+T+T/) KTT
                  . 410
                                   ΚR
                                       HT(M) ()
                   DO 199 IKE1.NT
                   READ(5+A) TOH
                   FORMATEPFIO.53
65
                   4=H+0.5
                   DR=n(1)+0.5
```

A STATE OF THE PARTY OF THE PAR

and the state of the same

```
Table G-7. Listing of the computer program MADSEN. -- Continued
                     IF(A.LT.0.00001) GO TO 100
                     IF(TANBLE,00) RU TO 37
CALL REFL(A.MS.m(1).MO.TANB.T.RII.RU.L)
70
                     ATERIT#A
                     DHT=2. +RU#A
               52
                     IFL G=0
              C ASSUME DHEADHT AND ITERATE ON THE EQUILIVANT BH
                     ICOHNTEO
75
                     THOSTHO
                     ICOUNTEICOUNT+1
               10
                     CALL EURA (DHE . DHT . LF . MO. HS . TANB . NR . DR . TOPW)
                     CALL INTER(NR.T.LE. HO. AI. NU. DR. TI. RI. L. IFLAG)
                     IFITFLAG.EQ.11 MR#DR#0.95
80
                     IF(TFLAG.EG.1) GD TO 22
                     DHE=(1.+AI)*RII+/
                     IF(TCOUNT.LT.4) GO TO 10
                     KRER1+R11
                     KTTSTIFRIT
85
                     IF(TANB.LF.O.) CALL INTER(N(1)+T+TOPH+HO+A+NU+D(1)+KTT+KR+L+IFLAG)
               37
                     IF(TFLAG.EQ.1) DR#DR#0.5
                     IF(TFLAG.EG.1) GO TO 37
                     SUNFETANB/SORT(M/(1.564T4T))
                     HHERASSIRF/(1.+#8#5UMF)
 90
                     HEHERH
                     FREF/R
                     C=0.51 -0.11*TOP#/HS
                     KTU=L+(1.+FR)
                      IF((10PW/H5),GT.0.8A.AND.F.LT.0.) KTD#C+(1.4FR)4(1.42.4C)*FR
 95
                     IF(KTO,GT.1.) KTUE1.
IF(FH.GT.1.0) KTUE0.
                     HGT > E A = 2 . / (9 . 80 + T = T)
                      ML=3.0A/L
                      UGT >= HO/(9.80 = T = T)
100
                     FLAGESH
                      KTESHRT(KTT##7+K10##2)
                      JF(KT.GT.1.0) KT=1.0
                      HTBHSKT
                      WRITE(6.981) H. T. HGTZ. HL. DGTZ. KTT. KTO. KT. KR. HT
105
                     FORMAT( 5x, F6.3. F10.2. F10.6, F10.5. F10.4.3 F6.3 F6.2. F7.3)
                981
                     CONTINUE
                100
                     CONTINUE
                199
                      ##ITE(6.201)
                     FORWATE // . 2x : INT1 . MAVE TRANSMISSION THROUGH THE STRUCTURE (. / .
110
                201
                     * 2x . KTO * HAVE TRANSMISSION BY OVERTOPPING COEFFICIENT ( ) / 2x . KT = TOTAL MAVE TRANSMISSION COEFFICIENT ( ) / 2x .
                     . IND . WAVE REFLECTION COEFFICIENT!
                                 . TRANSMITTED WAVE HEIGHT!)
                     */+2x+ [HT
                     CONTINUE
                200
115
                      STOP
                      FND
                      SUBQUUTTNE REFLICATION OF TANBOT RITORULL
  1
                      COMMON/MADS/FST(9+11) . RUT(9+11) . RT(17+11) . TX(9+10) . RX(9+10)
                      DIMFNSION FSS(11) + RUS(11) + HS(11)
                      RFAL I . LSL . LS
  5
               C OF # MODEL CORRECTION FACTOR TO ACCOUNT FOR MODEL SLOPE EFFECTS
                      CF=1.28=0.578*TANB
                      1F(TANH.LT.0.4) CF#1.02
                      IF (TANH.GT.O.68) CF=0.89
               C FIND HAVE LENGTH L
                      HOLD#HO/(1,5697#1)
 10
                      CALL LENGT (HOLO. HOL)
                      LEHO/HOL
                      LS=HU/TANR
                      IF(HS.LT.HO) LSEMS/TAND
LSLE(S/L
 15
                      IF([St.LT.0.8) GO TO 105
TMIN#SGRT(6.283+(L8/0.8)/(9.8*TANM(6.283*MO/(L8/0.8))))
                      WHITE (6.101) THIN
                101 FORMAT(///. IX. (WARNING-THE MINIMUM WAVE PERSOD TO BE ANALYZED BY T
```

AND SHARE STORY

Table G-7. Listing of the computer program MADSEN.--Continued

```
*HIS PROGRAM IS (.F6.2. | SEC FOR THIS CONDITION!)
20
                     LSL=0.799
              105 I=(1.5L+10.+1.)
C INTERPOLATE INPUT TABLE FOR THIS LSL VALUE
                     1=(1.SL+10.+
                     114 SL#20.+1.
                     00 3 J=1+11
FSS(J)=FST(I+J)+(FST(I+1+J)=FST(I+J))*(L$L=(I={})*0,1}/0.1
25
                     RUS(J)=RUT([.J)+(RUT([+1.J)=RUT([.J))*(LSL*([.1)*0,1)/0.1
RS(J)=RT([].J)+(RT([[.1.J)=RT([[.J))*(LSL*([].1)*0.05)/0.05
              C GUESS PHI AND ITERATE
                     PH1=5.0
30
                     M= 0
                     JEPHI
               6
                     FAC=(ALOG(PHI+1.)=ALUG(J+1.))/(ALOG(J+2.)=ALOG(J+1.))
FS=FSS(J+1)+
FAC=(FSS(J+2)=FSS(J+1))
                     F5=F55(J+1)+
                      RUSQUS(J+1)+
35
                                                 FAC*(RUS(J+2)=RUS(J+1))
                      KIL=RS(J+1)+(RS(J+2)=RS(J+1))*FAC
                      ARG=0.29*(0/HO)**0.2*(RU*2.*A/(HO*TANB))**0.3*F8
                      PHINED, 5*ATAN(ARG) *57, 29578
                      M= 4 1
                      DELMARS(PHINEPHI)
40
                      1F(M.GT.20) GO 10 9
                      PHI #PHIN
                      IF (PHT.LT.0.01) PMI=0.01
                      IF (PHI.GT. 9.99) PHIE 9.99
                      IF (MLL.GT.0.05) GO TO 6
45
                      HII=HII+CF
                      RETURN
                      END
  ŧ
                      SUBROUTINF READT
                      COMMON/MADS/FST/9-113-RUT(9-113-RT(57-113-TX(9-103-RX(9-10)
                      FORMAT (3x . 17F4 . 2)
                177
                      DU 1 M=1.11
                      HEAD(5.177) (FST(N+M)+N=1+9)
  5
                1
                      DO 2 ME1.1
                2
                      HEAD(5.177) (RUT(N.M).NE1.9)
                      DO 3 M=1+11
HEAD(5+177) (RT(N+M)+N#1+17)
                1
                      00 4 ME1+10
 10
                      READ(5+177) (TX(N+M)+N#1+9)
                4
                      DO 5 M#1+10
                      READ(5+177) (Rx(N+M)+N=1+9)
                5
                      RETURN
                      END
 15
                      SUBRUITINE EURWICHE. OHT.LE.HO.HS.TANB.NR.DR.TOPH)
  ŧ
                      COMMON/MARSI/NM.NL.D(11).N(11). L(11.11).TH(11)
                      DIMENSION BETA(11) + DH(11)
                      REAL NOLOLEONR
                      NH20.435
  5
                      BETAK=2.7+(1.=NR)/(NR++3+DR)
                      DO $1 IELONM
                21
                      Bf7A(1)=2,7+(1, mN(1))/(N(1)++3+D(1))
                      THI=U.
                      TH2=0.
 10
                      UN a J=1.NL
                      THI=THI+TH(J)
                      NYLEJ
                      DH(J)=TH(J)/HD
                      IF(TH1.GT.HO) DH(J)#(HO+TH2)/HO
IF(TH1.GT.HO) GN TO S
 15
                       (L)HT+SHT#SHT
                       SUMETO.
                      DO 16 JEI .NYL
                      SUM: TO U-174-2
SUM: TO DO 17 ISI: NM
SUM: ESUM: BETA(!) /BETARTE(!:J)
 50
                17
                      SUMPRSUM2+DH(J)/(SORT(SUM1))
                      LE= ( . / (SUM2##2) #DHE/DHT
```

Table G-7. Listing of the computer program MADSEN. -- Continued

```
RETURN
25
                    END
                    SUMPHUTINE INTER(NOTOLOHUOAONUODOTIORIONLOIFLAG)
 1
                    COMMUNISEEL/NKL.FS
                    COP MUN/MADS/FST(9+11) . RUT(9+11) . RT(17+11) . TX(9+10) . RX(9+10)
                    DIMENSION TS(10) +RS(10)
 5
                    REAL MIKE . NU. KO . LAMBDA . N
                    55=14/0.45)**2
                    * 7= 7. #3.14159/WL
                    NKL=!+*(!+L
                    #ETA=2.74(1.4N)/(N4434U)
                    LAMRDAST.
10
                    F=U.
                    hC=170.
                    ICEn
                    FNEF
15
                    10=10+1
                    U=A+SURT(9.80/HO)/(1.+LAMBDA)
                    RESHADING
                    F=n;(KO+L)+(SQRT(1,+(1,+RC/RL)*(16,+BETA*A*L/(3,*3,14159*HO)))=1,)
                    LAMRUA=KO+L+F/(2.*N)
20
                    IF ( 10 . GT . 10) GO TO 5
                    IF((AHS(FN=F)/F).GT.0.02) GO TO 2
T1=1./(1.+LAMHOA)
               5
                    RITLAMBDA/(1.+LAMBDA)
                    FS=F/S5
25
                    +R171(6.397) F.FS.U.HD
               397 FORMAT (20X. (F.FS. U. RD= [. 4E13.5)
                    IF (NKL.GT.0.9) TFLAG#1
IF (NKL.GT.0.9) RETURN
                    IF (MKL.LT.O.1) RETURN
30
                    IF(F5.GT.35.) FS#35.
                    J=NKL+10.
                     IEFS
              C INTERPUTATE MADSEN CURVES 2 AND 3
                    DO 4 Ma1.10
                    hS(4)=RX(J.M)+(RX(J+1.M)=RX(J.M))+(NKL=0.1+J)/0.1
35
                    TS(w)=[x(J.M)+(Tx(J.)+M)=[x(J.M))=(NKL+n.1+J)/0.1
                    IF(FS.LF.1.0) TT=TS(1)+ALOG10(FS)+(TS(10)=TS(1))
                     IF (F5.LF.1.0) RT=R5(1)+ALUG10(F5)+(RS(10)=HS(1))
                     IF(F5.GF.10.) TJ=TS(10)*(35.mFS)/25.
IF(F5.GF.10.) RT=RS(10)+(1.mRS(10))+(FSm10.)/25.
40
                    IF(F5_LF_1_0_0RTFS_GE_10_0) RETURN
HIERS(])+(HS(]+1)+RS(]))+(ALUG(FS)+ALUG(I+1_))/(ALUG(I+1_)+ALUG(I+1_))
                    *1.))
                     Ti=+5(I)+(T5(I+1)=T5(I))+(ALOG(F5)=ALOG(I+1.))/(ALOG(I+1.)=ALOG(I+
45
                    +1.27
                    RETHIN
                     END
                     SUBBUILTINE LENGT ( DLO.DL)
                     HEAL LO.LINEW.LOD
                     LDET. O/DLO
                     LODE1.0/010
                     N=1
                     P1=3.14159
                     ARGEZ. 0+PI/LD
                     LONE -= LOD+ TANH (ARG)
                     VEN+1
10
                     DIFFEASS (LONEWOLD)
                     IF(N=201) 3.4.4
                     IF(n1FF=0.0005) 2+2.5
                     LOW (LONEW+LO)/2.0
                     60 TO 1
15
                     DL=1.0/LDNEW
                     #41+E(6+100) DLO+DL
                    FORMAT(44H SUBROUTINE LENGTH DID NOT CONVERGE. D/LO #
               100
                                                                                      ·F10.5.
                    1 8HU/L =
                                  +F10.5)
                     DLB1.0/LDNEW
20
                     HETUHN
                     END
```

| Seelig, William N. | Seelig, William N. |
|--|---|
| Two-dimensional tests of wave transmission and reflection characteristics of laboratory breakwaters / by William N. Seelig - Fort Belvoir, Va.: U.S. Coastal Engineering Research Center; Springfield, Va.: available from National Technical Information Service, 1980. [187] p.: 111.: 27 cm (Technical report - U.S. Coastal Engineering Research Center; no. 80-1) Includes bibliographical references. Appendixes. This report presents the results of research conducted to develop methods for estimating wave transmission past submerged, subaerial, permeable, and impermeable breakwaters. The final prediction techniques are given in the form of computer programs; laboratory data used to develop and test the methods are included as appendixes. 1. Breakwaters. 2. Wave reflection. 3. Wave transmission. I. Title. II. Series: U.S. Coastal Engineering Research Center. Technical report no. 80-1. TOCOM 100 100 100 100 100 100 100 100 100 10 | Two-dimensional tests of wave transmission and reflection characteristics of laboratory breakwaters / by William N. Seelig - Fort Belvoir, Va.: U.S. Coastal Engineering Research Center; Springfield, Va.: available from National Technical Information Service, 1980. [187] p.: ill.: 27 cm (Technical Information Service, 1980. Includes bibliographical references. Appendixes. This report presents the results of research conducted to develop methods for estimating wave transmission past submerged, subaerial, permeable, and impermeable breakwaters. The final prediction techniques are given in the form of computer programs; laboratory data used to develop and test the methods are included as appendixes. 1. Breakwaters. 2. Wave reflection. 3. Wave transmission. 1. Title. II. Series: U.S. Coastal Engineering Research Center. Technical report no. 80-1. TC203 1. TC203 |
| Seelig, William N. Two-dimensional tests of wave transmission and reflection characteristics of laboratory breakwaters / by William N. Seelig - Fort Belvoir, Va.: U.S. Coastal Engineering Research Center; Springfield, Va.: available from National Technical Information Service, 1980. [187] p.: ill.: 27 cm. (Technical Information Service, 1980. [187] p.: ill.: 27 cm. (Technical Information Service, 1980. Includes bibliographical references. Appendance. Appendance. This report presents the results of research conducted to develop methods for estimating wave transmission past submerged, subacrial, permeable, and impermeable breakwaters. The final prediction techniques are given in the form of computer programs; laboratory data used to develop and test the methods are included as appendixes. 1. Breakwaters. 2. Wave reflection. 3. Wave transmission. I. Title. II. Series: U.S. Coastal Engineering Research Center. Technical report no. 80-1. TC203 US981tr no. 80-1. | Seelig, William N. Two-dimensional tests of wave transmission and reflection characteristics of laboratory breakwaters / by William N. Seelig - Fort Belvoir, Va.: U.S. Coastal Engineering Research Center; Springfield, Va.: available from National Technical Information Service, 1980. [187] p.: iil.: 27 cm (Technical report - U.S. Coastal Engineering Research Center; no. 80-1) Includes bibliographical references. Appendixes. This report presents the results of research conducted to develop methods for estimating wave transmission past submerged, subserial, permeable, and impermeable breakwaters. The final prediction techniques are given in the form of computer programs; laboratory data used to develop and test the methods are included as appendixes. 1. Breakwaters. 2. Mave reflection. 3. Mave transmission. I. Title. II. Series: U.S. Coastal Engineering Research Center. Technical report no. 80-1. TC203 USBitr no. 80-1. |

AND THE PARTY OF T