Course 02402 Introduction to Statistics

Lecture 3: Random variables and continuous distributions

DTU Compute Technical University of Denmark 2800 Lyngby – Denmark

Overview

- Continuous random variables and distributions
- ensity and distribution functions
 - Mean, variance, and covariance
- Specific continuous distributions
- -> The uniform distribution
 - () The normal distribution
- The log-normal distribution
 - The exponential distribution
 - Calculation rules for random variables

Overview

- Continuous random variables and distributions
 - Density and distribution functions
 - Mean, variance, and covariance
- Specific continuous distributions
 - The uniform distribution
 - The normal distribution
 - The log-normal distribution
 - The exponential distribution
- Calculation rules for random variables

• The density function (probability density function, pdf) for a random variable is denoted by f(x).

- \bullet The density function (probability density function, pdf) for a random variable is denoted by f(x).
- The density function says something about the <u>frequency of the outcome</u> x for the random variable X.

- The density function (probability density function, pdf) for a random variable is denoted by f(x).
- ullet The density function says something about the frequency of the outcome x for the random variable X.
- The density function for a continuous random variable does <u>not</u> correspond directly to a probability. In fact, P(X = x) = 0 for all x.

- The density function (probability density function, pdf) for a random variable is denoted by f(x).
- ullet The density function says something about the frequency of the outcome x for the random variable X.
- The density function for a continuous random variable does *not* correspond directly to a probability. In fact, P(X = x) = 0 for all x.
- ullet The density function f(x) for the distribution of a continuous random variable satisfies that

$$f(x) \ge 0$$
 for all x and $\int_{-\infty}^{\infty} f(x) dx = 1$.

The density function

• The distribution function (cumulative density function, cdf) for a continuous random variable is denoted by F(x).

- The distribution function (cumulative density function, cdf) for a continuous random variable is denoted by F(x).
- The distribution function is defined by

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(t) dt.$$

- The distribution function (cumulative density function, cdf) for a continuous random variable is denoted by F(x).
- The distribution function is defined by

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(t) dt.$$
ce of this definition,

• Note that as a consequence of this definition,

$$f(x) = F'(x).$$

- The distribution function (cumulative density function, cdf) for a continuous random variable is denoted by F(x).
- The distribution function is defined by

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(t) dt.$$

• Note that as a consequence of this definition,

$$f(x) = F'(x).$$

• It's particularly useful to note that

$$P(a < X \le b) = F(b) - F(a) = \int_a^b f(x) dx.$$

The distribution function

The empirical cumulative distribution function (ecdf)

```
# Empirical cdf for sample of height data from Chapter 1
 x \leftarrow c(168, 161, 167, 179, 184, 166, 198, 187, 191, 179)
 plot(ecdf(x), verticals = TRUE, main = "")
    'True cdf' for normal distribution (with sample mean and variance)
 xp \leftarrow seq(0.9*min(x), 1.1*max(x), length = 100)
 lines(xp, pnorm(xp, mean(x), sd(x)), col = 2)
166-170
17-17
                       0.2
H6-18
                       0.0
                             160
                                     170
                                                   190
                                                          200
                                            180
```

Mean, continuous random variable, Definition 2.34

The mean/expected value of a continuous random variable:

$$\mu = \int_{-\infty}^{\infty} x f(x) \, dx$$

Mean, continuous random variable, Definition 2.34

The mean/expected value of a continuous random variable:

$$\mu = \int_{-\infty}^{\infty} x f(x) \, dx$$

Compare with the mean of a discrete random variable:

$$\mu = \sum_{x \in \mathcal{X}} x f(x)$$

Variance, continuous random variable, Definition 2.34

The variance of a continuous random variable:

$$\sigma^2 = \int_{-\infty}^{\infty} (x - \mu)^2 f(x) \, dx$$

Variance) continuous random variable, Definition 2.34

The variance of a continuous random variable:

$$\sigma^2 = \int_{-\infty}^{\infty} (x - \mu)^2 f(x) dx$$

Compare with the variance of a discrete random variable:

$$\sigma^2 = \sum_{\mathbf{x} \mid \mathbf{x}} (\underline{\mathbf{x} - \mu)^2 f(\mathbf{x})}$$

The moon and variance of a linear function of a grandom variable $\frac{x}{\sqrt{(aX+b)}} = \frac{\alpha E(x)+b}{\alpha^2 V(x)}$ [Exam Question 20x0der 20x02] $\frac{E(x)+b}{\sqrt{(aX+b)}} = \frac{\alpha^2 V(x)}{\alpha^2 V(x)}$ Vis the variance of the random variable.

Covariance, Definition 2.58

The covariance between two random variables:

Let X and Y be two random variables. Then, the covariance between X and Y is

$$\mathsf{Cov}(X,Y) = E[(X - E[X])(Y - E[Y])]$$

Relationship between covariance and independence:

If two random variables are *independent*, their covariance is 0. The reverse is not

necessarily true! i.e. if covariance is 0, then the value do not prove Independence . Soo Example 2:61 (9.89)

Remark 2.59 (ov
$$(x,x)=V(x)$$
), See Example 2.61 (9.89)

Cov $(x,y)=Cov(y,x)$

Variance of a Linear Dembination of Two Random Variables revariance of $(ax+by)=a^{y}Var(x)+b^{y}Var(y)+2ab(x,y)$

of $(ax+by)=a^{y}Var(x)+b^{y}Var(y)+ab(x,y)$

Overview

- Continuous random variables and distributions
 - Density and distribution functions
 - Mean, variance, and covariance
- Specific continuous distributions
 - The uniform distribution
 - The normal distribution
 - The log-normal distribution
 - The exponential distribution
- Calculation rules for random variables

Specific continuous distributions

A number of statistical distributions exist (both continuous and discrete) that can be used to describe and analyze different types of problems.

Today, we'll take a closer look at the following continuous distributions:

- The uniform distribution
- The normal distribution
- The log-normal distribution
- The exponential distribution

Continuous distributions in R

R	Distribution
norm	The normal distribution
unif	The uniform distribution
lnorm	The log-normal distribution
exp	The exponential distribution

- **d** Probability density function, f(x).
- p Cumulative distribution function, F(x).
- q Quantile function.
- r Random numbers from the distribution.

Density of a uniform distribution (example)

Syntax:

 $X \sim U(\alpha, \beta)$

Syntax:

$$X \sim U(\alpha, \beta)$$

Density function:

$$f(x) = \frac{1}{\underline{\beta - \alpha}}$$
 for $\alpha \le x \le \beta$

Syntax:

$$X \sim U(\alpha, \beta)$$

Density function:

$$f(x) = \frac{1}{\beta - \alpha}$$
 for $\alpha \le x \le \beta$

Mean:

$$\mu = \frac{\alpha + \beta}{2}$$

Syntax:

$$X \sim U(\alpha, \beta)$$

Density function: 0
$$f(x) = \frac{1}{\beta - \alpha} \text{ for } \alpha \le x \le \beta$$

$$30 - 0 = 30$$

Mean:

$$\mu = rac{lpha + eta}{2}$$

Variance:

$$\sigma^2 = \frac{1}{12}(\beta - \alpha)^2$$

Example 1

Students attending a stats course arrive at a lecture between 8.00 and 8.30. It is assumed that the arival times can be described by a uniform distribution.

Question:

What is the probability that a randomly selected student arrives between 8.20 and 8.30?

Example 1

Students attending a stats course arrive at a lecture between 8.00 and 8.30. It is assumed that the arival times can be described by a uniform distribution.

Question:

What is the probability that a randomly selected student arrives between 8.20 and 8.30?

Answer:

$$10/30 = 1/3$$

Let $X \sim U(0,30)$ represent arrival time. Then:

$$P(20 \le X \le 30) = P(X \le 30) - P(X \le 20) = 1 - 2/3 = 1/3$$

Spring 2023

Example 1 (continued)

Question:

What is the probability that a randomly selected student arrives after 8.30?

Example 1 (continued)

Question:

What is the probability that a randomly selected student arrives after 8.30?

Answer:

0

Let $X \sim U(0,30)$ represent arrival time. Then:

$$P(X > 30) = 1 - P(X \le 30) = 1 - 1 = 0$$

[1] 0

Kahoot! 1-2

Density of a normal distribution (example)

Syntax:

$$X \sim N(\mu, \sigma^2)$$

Density function:

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$
 for $-\infty < x < \infty$

Syntax:

$$X \sim N(\mu, \sigma^2)$$

Density function:

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$
 for $-\infty < x < \infty$

Mean:

 $\mu = \mu$

Syntax:

$$X \sim N(\mu, \sigma^2)$$

Density function:

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$
 for $-\infty < x < \infty$

Mean:

$$\mu = \mu$$

Variance:

$$\sigma^2 = \sigma^2$$

Density of a standard normal distribution

N(0,12)

Density of two normal distributions (example)

Density of three normal distributions (example)

The standard normal distribution

The standard normal distribution:

$$Z \sim N(0, 1^2)$$

The normal distribution with mean 0 and variance 1.

The standard normal distribution

The standard normal distribution:

$$Z \sim N(0, 1^2)$$

The normal distribution with mean 0 and variance 1.

Standardization:

An arbitrary normal distributed variable $X \sim N(\mu, \sigma^2)$ can be *standardized* by

$$Z = \frac{X - \mu}{\sigma} - S$$

Measurement error:

A scale has a measurement error, Z, that can be described by the standard normal distribution, i.e.

$$Z \sim N(0, 1^2).$$

That is, the mean measurement error is $\underline{\mu=0}$ with standard deviation $\underline{\sigma=1}$ gram. The scale is used to measure the weight of a product.

Measurement error:

A scale has a measurement error, Z, that can be described by the standard normal distribution, i.e.

$$Z \sim N(0, 1^2)$$
.

That is, the mean measurement error is $\mu=0$ with standard deviation $\sigma=1$ gram. The scale is used to measure the weight of a product.

Question a):

What is the probability that the scale yields a measurement which is at least 2 grams smaller than the true weight of the product?

Spring 2023

Measurement error:

A scale has a measurement error, Z, that can be described by the standard normal distribution, i.e.

$$Z \sim N(0, 1^2).$$

That is, the mean measurement error is $\mu=0$ with standard deviation $\sigma=1$ gram. The scale is used to measure the weight of a product.

Question a):

What is the probability that the scale yields a measurement which is at least 2 grams smaller than the true weight of the product?

Answer:

$$P(Z \le -2) = 0.02275$$

pnorm(-2); pnorm(q=-2, mean =0, sd=1)

Answer:

pnorm(-2)

[1] 0.023

Question b):

What is the probability that the scale yields a measurement which is at least 2 grams larger than the true weight of the product?

Question b):

What is the probability that the scale yields a measurement which is at least 2 grams larger than the <u>true</u> weight of the product?

Answer:

 $P(Z \ge 2) = 0.02275$

1 - pnorm(2)

Question c):

What is the probability that the scale is off by at most ± 1 gram?

Question c):

What is the probability that the scale is off by at most ± 1 gram?

Answer:

$$P(|Z| \le 1) = P(-1 \le Z \le 1) = P(Z \le 1) - P(Z \le -1) = 0.683$$

pnorm(1) - pnorm(-1)

dnorm(z)

Income distribution:

It is assumed that the annual salary distribution of elementary school teachers can be described using a normal distribution with mean $\mu=290$ (in DKK thousand) and standard deviation $\sigma=4$ (DKK thousand).

Income distribution:

It is assumed that the annual salary distribution of elementary school teachers can be described using a normal distribution with mean $\mu=290$ (in DKK thousand) and standard deviation $\sigma=4$ (DKK thousand).

Question a):

What is the probability that a randomly selected teacher earns more than DKK 300.000?

Question a):

What is the probability that a randomly selected teacher earns more than DKK 300.000?

Question a):

What is the probability that a randomly selected teacher earns more than DKK 300.000?

Answer:

(Same income distribution):

It is assumed that the annual salary distribution of elementary school teachers can be described using a normal distribution with mean $\mu=290$ (DKK thousand) and standard deviation $\sigma=4$ (DKK thousand).

(Same income distribution):

It is assumed that the annual salary distribution of elementary school teachers can be described using a normal distribution with mean $\mu=290$ (DKK thousand) and standard deviation $\sigma=4$ (DKK thousand).

"Opposite question"

Give a salary interval (symmetric around the mean) which covers 95% of all teachers' salary.

(Same income distribution):

It is assumed that the annual salary distribution of elementary school teachers can be described using a normal distribution with mean $\mu = 290$ (DKK thousand) and standard deviation $\sigma = 4$ (DKK thousand).

"Opposite question"

Give a(salary interval)(symmetric around the mean) which covers 95% of all teachers' salary.

Quantile — the specific values

Answer:

Kahnatl 3-5

The log-normal distribution

A lognormal distribution is a cont. Ptob distribution of a random variable in which logorithm is normally distributed. Thus, if the random variable X has a lognormal distribution, Log-normal distribution LN(1,1) then $Y = \ln(X)$ has a normal

A variable strat is known as never taking on negative values is normally assigned a signormal distribution rather than a normal distribution.

Syntax:
$$\mathcal{N}(\mathcal{U}, \mathcal{O}^{\mathcal{T}})$$
 $X \sim LN(\alpha, \beta^2)$ (with $\beta > 0$)

Syntax:

$$X \sim LN(\alpha, \beta^2)$$
 (with $\beta > 0$)

Density function:

$$f(x) = \left\{ \begin{array}{ll} \frac{1}{\beta\sqrt{2\pi}}x^{-1}e^{-(\ln(x)-\alpha)^2/2\beta^2} & x>0 \\ 0 & \text{otherwise} \end{array} \right.$$

Syntax:

$$X \sim LN(\alpha, \beta^2)$$
 (with $\beta > 0$)

Density function:

$$f(x) = \left\{ \begin{array}{ll} \frac{1}{\beta\sqrt{2\pi}}x^{-1}e^{-(\ln(x)-\alpha)^2/2\beta^2} & x>0 \\ 0 & \text{otherwise} \end{array} \right.$$

Mean:

$$\mu = e^{\alpha + \beta^2/2}$$

Syntax:

$$X \sim LN(\alpha, \beta^2)$$
 (with $\beta > 0$)

Density function:

$$f(x) = \left\{ \begin{array}{ll} \frac{1}{\beta\sqrt{2\pi}}x^{-1}e^{-(\ln(x)-\alpha)^2/2\beta^2} & x>0 \\ 0 & \text{otherwise} \end{array} \right.$$

Mean:

$$\mu = e^{\alpha + \beta^2/2}$$

Variance:

$$\sigma^2 = e^{2\alpha + \beta^2} (e^{\beta^2} - 1)$$

The log-normal distribution

Log-normal and normal distributions:

A log-normal distributed variable $Y \sim LN(\alpha, \beta^2)$ can be transformed into a normal distributed variable:

$$X=\ln(Y)$$

is normal distributed with mean α and variance β^2 , i.e. $X \sim N(\alpha, \beta^2)$.

$$Z = \frac{\ln(Y) - \alpha}{\beta}$$

is standard normal distributed, i.e. $Z \sim N(0, 1)$.

Dec Exam question 2018 Dec 02402_Question VII 1 (16)

The exponential distribution

The exponential distribution, Def. 2.48 & Theo. 2.49

Syntax:

Often used to model the time elapsed between events.

 $X \sim \mathsf{Exp}(\lambda)$

with $\lambda > 0$.

Density function:

$$f(x) = \begin{cases} \lambda e^{-\lambda x} & x \ge 0 \\ 0 & \text{otherwise} \end{cases}$$

Mean:

Variance:

$$\sigma^2 = \frac{1}{\lambda^2}$$

The exponential distribution

- The exponential distribution is a special case of the gamma distribution.
- The exponential distribution is used to describe lifespan and waiting times.
- The exponential distribution can be used to describe (waiting) time between Poisson events.

Connection between the exponential and Poisson distributions

Poisson: Discrete events per unit

Exponential: Continuous distance between events

$$t_1$$
 t_2

Queuing model – Poisson process

The time between customer arrivals at a post office is exponentially distributed with mean $\mu=2$ minutes.

Queuing model - Poisson process

The time between customer arrivals at a post office is exponentially distributed with mean $\mu=2$ minutes.

Question:

One customer has just arrived. What is the probability that no other customers will arrive during the next 2 minutes?

Queuing model – Poisson process

The time between customer arrivals at a post office is exponentially distributed with mean $\mu = 2$ minutes.

Question:

One customer has just arrived. What is the probability that no other customers will arrive during the next 2 minutes?

(or) the next customer will arouve after 2 minutes on later?

Answer:

 $X \sim \text{Exp}(1/2)$ represents waiting time until next customer.

$$P(X > 2) = 1 - P(X \le 2)$$

Question:

One customer has just arrived. Use the Poisson distribution to calculate the probability that no other costumers will arrive during the next two minutes.

Question:

One customer has just arrived. Use the Poisson distribution to calculate the probability that no other costumers will arrive during the next two minutes.

Answer:

$$\lambda_{2min} = 1, P(X = 0) = \frac{e^{-1}}{1!} 1^0 = e^{-1}$$

dpois(0,1) lambda

[1] 0.37

$$\int (x) = \frac{\lambda^{x} e^{-\lambda}}{\alpha!}$$

fa) = the probability of x occurances in an interval

> = expected value or mean number of occurances in an interval

e = 2.71828

exp(-1)

[1] 0.37

Kahoot!6-7

Overview

- Continuous random variables and distributions
 - Density and distribution functions
 - Mean, variance, and covariance
- Specific continuous distributions
 - The uniform distribution
 - The normal distribution
 - The log-normal distribution
 - The exponential distribution
- Calculation rules for random variables

These rules work for both continuous and discrete random variables!

X is a random variable, a and b are constants.

These rules work for both continuous and discrete random variables!

X is a random variable, a and b are constants.

Mean rule:

$$\mathsf{E}(aX+b) = a\mathsf{E}(X) + b$$

These rules work for both continuous and discrete random variables!

X is a random variable, a and b are constants.

Mean rule:

$$\mathsf{E}(aX+b) = a\mathsf{E}(X) + b$$

Variance rule:

$$Var(aX + b) = a^2 Var(X)$$

X is a random variable with mean 4 and variance 6.

Question:

Calculate the mean and variance of Y = -3X + 2

X is a random variable with mean 4 and variance 6.

Question:

Calculate the mean and variance of Y = -3X + 2

Answer:

$$E(Y) = -3E(X) + 2 = -3 \cdot 4 + 2 = -10$$

$$Var(Y) = (-3)^2 Var(X) = 9 \cdot 6 = 54$$

 X_1, \ldots, X_n are *independent* random variables.

 X_1, \ldots, X_n are *independent* random variables.

Mean rule:

$$E(a_1X_1 + a_2X_2 + \dots + a_nX_n)$$

= $a_1E(X_1) + a_2E(X_2) + \dots + a_nE(X_n)$

 X_1, \ldots, X_n are *independent* random variables.

Mean rule:

$$= \underbrace{a_1\mathsf{E}(X_1) + a_2X_2 + \dots + a_nX_n}_{\mathsf{E}(X_1)} + a_2\mathsf{E}(X_2) + \dots + a_n\mathsf{E}(X_n)$$

Variance rule:

$$\forall \operatorname{ar}(a_1 X_1 + a_2 X_2 + \dots + a_n X_n)$$

$$= (a_1^2 \operatorname{Var}(X_1) + \dots + a_n^2 \operatorname{Var}(X_n))$$

Airline Planning

The weight of each passenger on a flight is assumed to be normal distributed $X \sim N(70, 10^2)$.

A plane, which can take $\underline{55}$ passengers, may not have a load exceeding 4000 kg (only the weight of the passengers is considered load).

Airline Planning

The weight of each passenger on a flight is assumed to be normal distributed $X \sim N(70, 10^2)$.

A plane, which can take 55 passengers, may not have a load exceeding 4000 kg (only the weight of the passengers is considered load).

Question:

Calculate the probability that the plain is overloaded

Airline Planning

The weight of each passenger on a flight is assumed to be normal distributed $X \sim N(70, 10^2)$.

A plane, which can take 55 passengers, may not have a load exceeding 4000 kg (only the weight of the passengers is considered load).

Question:

Calculate the probability that the plain is overloaded

What is Y = Total passenger weight?

Airline Planning

The weight of each passenger on a flight is assumed to be normal distributed $X \sim N(70, 10^2)$.

A plane, which can take 55 passengers, may not have a load exceeding 4000 kg (only the weight of the passengers is considered load).

Question:

Calculate the probability that the plain is overloaded

What is Y = Total passenger weight?

We need the mean & variance of the plane's load.

What is Y?

Definitely NOT: Y

V one passenger's weight? 70.

What is Y = Total passenger weight?

 $Y = \sum_{i=1}^{55} X_i$, where $X_i \sim N(70, 10^2)$ (and assumed to be independent)

 $40 + 20 + ... + 20 \times 55$ $E(x_1) + E(x_2) + ... + E(x_5)$

What is Y = Total passenger weight?

$$Y = \sum_{i=1}^{55} X_i$$
, where $X_i \sim N(70, 10^2)$ (and assumed to be independent)

Mean and variance of Y:

$$E(Y) = \sum_{i=1}^{55} E(X_i) = \sum_{i=1}^{55} 70 = 55 \cdot 70 = 3850$$

$$E(X) = \frac{70}{55} = 100$$

$$E(X) = \frac{70}{55} = 100$$

$$E(X) = \frac{70}{55} = 100$$

$$Var(Y) = \sum_{i=1}^{55} Var(X_i) = \sum_{i=1}^{55} 100 = 55 \cdot 100 \neq 5500$$

$$Var(X_1) + Var(X_2) + \cdots - Var(X_{55}) BL Coneful! it is not theorem
100 + 100 + 10 Not Not$$

What is Y = Total passenger weight?

$$Y = \sum_{i=1}^{55} X_i$$
, where $X_i \sim N(70, 10^2)$ (and assumed to be independent)

Mean and variance of Y:

$$E(Y) = \sum_{i=1}^{55} E(X_i) = \sum_{i=1}^{55} 70 = 55 \cdot 70 = 3850$$

$$Var(Y) = \sum_{i=1}^{55} Var(X_i) = \sum_{i=1}^{55} 100 = 55 \cdot 100 = 5500$$

Y is normal distributed, so we may find P(Y > 4000) using:

[1] 0.022

M=3850 9=4000

What is Y?

Definitely NOT: $Y = 55 \cdot X$

What is Y?

Definitely NOT: $Y = 55 \cdot X$

Mean and variance of WRONG Y:

$$E(Y) = 55 \cdot 70 = 3850$$

$$Var(Y) = 55^{2}Var(X) = 55^{2} \cdot 100 = 550^{2}$$

What is Y?

Definitely NOT: $Y = 55 \cdot X$

Mean and variance of WRONG Y:

$$E(Y) = 55 \cdot 70 = 3850$$

$$Var(Y) = 55^{2} Var(X) = 55^{2} \cdot 100 = 550^{2}$$

Wrong *Y* is also normal distributed. Finding P(Y > 4000) using WRONG *Y*:

$$1 - pnorm(4000, mean = 3850, sd = 550)$$

[1] 0.39

What is Y?

Definitely NOT: $Y = 55 \cdot X$

Assume price of biker vous and inderended Rice follow normal dist N(70,10°). We sell 55 bikes each mouth. What is the probability that revenue exceeds 4000 events?

Mean and variance of WRONG Y:

$$\mathsf{E}(Y) = 55 \cdot 70 = 3850$$

$$\mathsf{Var}(Y) = 55^2 \mathsf{Var}(X) = 55^2 \cdot 100 = 550^2$$

Wrong Y is also normal distributed. Finding P(Y > 4000) using WRONG Y:

$$1 - pnorm(4000, mean = 3850, sd = 550)$$

[1] 0.39

In this case, the price of

Spring 2023

Consequence of wrong calculation:

A LOT of wasted money for the airline company!!!

Overview

- Continuous random variables and distributions
 - Density and distribution functions
 - Mean, variance, and covariance
- Specific continuous distributions
 - The uniform distribution
 - The normal distribution
 - The log-normal distribution
 - The exponential distribution

Calculation rules for random variables