EE669: VLSI Technology

Apurba Laha
Department of Electrical Engineering
IIT Bombay 400076

Email: <u>laha@ee.iitb.ac.in</u>, Tel: **022 25769408**

Office hour: Friday 10:00 – 11.00 AM, EE Annex, Room: 104

Power of III-V (compound) semiconductor

Some astonishing numbers

Population by Rural Urban Residence – India - 2011

Persons:

• Total : 1,210,193,422

• Rural: 833,087,662

• Urban: 377,105,760

Rural Urban Distribution Persons (in %):

• Total : 100.0 %

• Rural: 68.84 %

Urban: 31.16 %

Approximate number electronic gadgets1.6 billion

Each gadget wastes approx. 5 watts of power per day at the adaptor (during conversion)

- ☐ Total waste per day: 8 Giga watt
- □ Total waste per year: ~3 T Watt ONLY due to power conversion in electronic gadgets

Source: Census 2011 – Provisional Population Total - India

How are we going to address this serious issue

Average efficiency 40–50%

Efficiency: 80-90%

Switch Mode Power Supply

Efficiency > 95%

About 32 billion kilowatthours (kWh) per year, could be saved in the United States by replacing all linear power supplies. Source: Wikipedia

GaN based power converter

Differences between MOSFETs and HEMTs

HEMTs

- ➤ Operate in the microwave range (300MHZ-300GHz)
- Heterojunction is used as the channel

MOSFETs

Operation in the UHF range (300MHZ-3Ghz)

Doped region is used as the channel

Operation principles (2 DEG)

- Discontinuity through the conduction band of the two semiconductors determines a charge transfer, creating a triangular potential.
- Electrons are confined in the triangular potential in discrete quantum state.
- Mobility of the electrons in 2DEG is higher than in a bulk.

How do HEMTs work?

- ➤ HEMT's take advantage of 2DEG which is created at the AlGaAs/GaAs heterojunction.
- The 2DEG is confined at the heterojunction and free to move parallel to the channel.
- This results in a higher electron mobility
- Good for large gain and high frequency characteristics.

Energy band diagram for AlGaAs/GaAs heterojunction at thermal equilibrium

You don't even require the doping in GaN based heterostructure!!!

Asia Pacific GaN semiconductor device market by application

- Automotive
- Consumer electronics
- Defense and aerospace
- Healthcare
- Information & communication technology
- Industrial and power
- Others

Nobelpriset i fysik 2014

Isamu Akasaki Meijo University, Nagoya, Japan Nagoya University, Japan

Hiroshi Amano Nagoya University, Japan

Shuji Nakamura University of California, Santa Barbara, CA, USA

Outline

- **➤ Why III-Nitride semiconductor??**
- > AlGaN/GaN heterostructure: Advantages and Disadvantages
- Issues with growth of epitaxial layers
- MBE growth of GaN, AlGaN/GaN heterostructure on various substrates
- ➤ Nanowires: Promising solution to circumvent the challenges in heterostructure growth
- New horizon yet to be explored
- Summary

Materials Properties Comparison

		11 5 15	MILL III	2/1/2		
Material	μ	3	Eg	BFOM	JFM	Tmax
				Ratio	Ratio	/ \
Si	1300	11.4	1.1	1.0	1.0	300 C
GaAs	5000	13.1	1.4	9.6	3.5	300 C
SiC	260	9.7	2.9	3.1	60	600 C
GaN	1500	9.5	3.4	24.6	80	700 C
	1/4					7

BFOM = Baliga's figure of merit for power transistor performance $[K^*\mu^*E_g^3]$ JFM = Johnson's figure of merit for power transistor performance (Breakdown, saturation electron velocity product) $[E_{br}^*V_{sat}/2\pi]$

Source: UCSB

Structure of GaN

The (0001) and (0001) surfaces of GaN are **nonequivalent** and differ in their chemical and physical properties. Crystallographic polarity along these axes results spontaneous polarization.

Polarization in GaN/AlGaN heterostructure

Looking at band structure of AlGaN/GaN HEMT

- > Discontinuity at the conduction band of the two semiconductors determines a charge transfer, creating a triangular potential.
- > Electrons are confined in the triangular potential in discrete quantum state.
- Mobility of the electrons in 2DEG is higher than in a bulk.

Heart of HEMT: 2DEG

For high power, high frequency HEMTs based on Al_xGa_(1-x)N/GaN:

- \rightarrow high x_{AI} ,
- coherently strained,
- trap free AlGaN/GaN heterojuction,
- (abrupt + smooth on an atomic level)

Al_xGa_(1-x)N GaN

Substrate(Al₂O₃/SiC)

2DEG (density and mobility)

- X_{AI}
- interface roughness
- alloy scattering
- dislocation, etc.

Sheet carrier concentration of the 2DEG confined at a Ga-face GaN/AlGaN/GaN interface for different thickness of the AlGaN barrier.

Ambacher et al. J. App. Phys. 85, 3222 (1999)

- √ high breakdown voltage,
- √ high currents

2DEG: Influence of the Al-composition

For $x_{AI} > 0.2$: $\mu_{300} \sim 1/x_{AI}$

interface problems

- strain induced defectshigher impurity incorporationalloy ordering/clustering

charge increases due to n_s ~ x_{Al} - spontaneous polarization and piezoelectric effects

> For $x_{AI} < 0.2$: $\mu_{300} \sim X_{AI}$

- better confinement of the **2DEG** at higher $x_{\Delta I}$
- \checkmark low $x_{\Delta I} = low n_s$: less efficient screening of defects

AlGaN/GaN HEMTs transistor don't need doping to obtain a high electron density.

Optimum Al conc. 25-30%