Allgemeines

1.1 Binomische Formeln

$$(a+b)^{2} = a^{2} + 2ab + b^{2}$$
$$(a-b)^{2} = a^{2} - 2ab + b^{2}$$
$$a^{2} - b^{2} = (a+b) \cdot (a-b)$$

1.2 Potenzgesetze

$$\begin{array}{ll} a^m \cdot a^n = a^{m+n} & \frac{a^n}{b^n} = \left(\frac{a}{b}\right)^n \\ a^n \cdot b^n = (ab)^n & (a^n)^m = a^{mn} \\ \frac{a^n}{a^m} = a^{n-m} & a^{-n} = \frac{1}{a^n} \\ log_b(1) = 0 \end{array}$$

1.3 Logarithmus-Gesetze

$$x = log_a(y) \Leftrightarrow y = a^x$$

 $log(x) + log(y) = log(xy)$
 $log(x) - log(y) = log(\frac{x}{y})$
 $log_a(x) = \frac{log_b(x)}{log_b(a)}$
 $log(u^r) = r \cdot ln(u)$

$$ln(1) = 0$$
 $ln(e^x) = x$
 $ln(e) = 1$ $e^{ln(x)} = x$

1.4 Komplexe Zahlen

$$(a+bi)\pm(c+di) = (a\pm c)+(c\pm d)i$$

 $(a+bi)\cdot(c+di) = (ac-bd)+(ad+bc)i$

$$\frac{a+bi}{c+di} = \frac{ac+bd}{c^2+d^2} + \frac{cb-ad}{c^2+d^2}i$$

Integralrechnung

eFoo u.ä. muss vorher substituiert wer-

Funktion	Aufleitung			
С	$c \cdot x$			
x^a , $a \neq -1$	$\frac{x^{a+1}}{a+1}$			
$x^{-1}, x \neq 0$	ln(x)			
e^{x}	e^{x}			
a^{\times}	$\frac{a^{\times}}{\ln(a)}$			
sin(x)	-cos(x)			
cos(x)	sin(x)			

2.1 Partielle Integration

Wenn *u* und *v* zwei differenzierbare Funktionen sind, dann gilt: $\int u' \cdot v = (u \cdot v) - \int u \cdot v'$

2.2 Substitutionsregel

$$\int f(g(x)) \cdot g'(x) dx = \int f(y) dy$$

$$\int \frac{1}{5x - 7} dx = ?$$

$$z = 5x - 7$$

$$\frac{dz}{dx} = 5$$

$$\frac{dz}{5} = dx$$

$$\int \frac{1 \cdot dz}{z \cdot 5} = \frac{1}{5} \int \frac{1}{z} dz$$

$$= \frac{1}{5} ln(z)$$

$$= \frac{1}{5} ln(5x - 7)$$

Ableitung

typische Ableitungen

$$\begin{array}{lll} (x)' = 1 & (e^x)' = e^x \\ (ax)' = a & (e^{ax})' = ae^{ax} \\ (ax^2)' = 2ax & (a^x)' = a^x * log(a) \\ (\frac{1}{x})' = -\frac{1}{x^2} & ln(x)' = \frac{1}{x} \\ (\sqrt{x})' = \frac{1}{2\sqrt{x}} & (\sin x) = \cos x \\ (ax^b)' = abx^{b-1} & (\cos x) = -\sin x \\ & (\tan x) = \frac{1}{(\cos x)^2} \end{array}$$

3.2 Verknüpfungsfunktionen gilt: $\int_{-\infty}^{x} w(t)dt = F(x) = P(X \le x)$ Summenregel:

(f(x) + g(x))' = f(x)' + g(x)'Produktregel: (f(x)g(x))' = f(x)'g(x) + g(x)'f(x)Quotientenregel: $\left(\frac{f(x)}{g(x)}\right)' = \frac{f(x)'g(x) - g(x)'f(x)}{g(x)^2}$

Kettenregel:

(f(g(x)))' = f(g(x))'g(x)'

Stochastik

 $\Omega = \{...\}$ beschreibt den Ereignisraum und somit die Menge aller möglichen Ausgänge des Zufallsexperiments.

 $A, B, C, ... \subseteq \Omega$ beschrieben ein Ereignisse des Zufallsexperimentes.

 $P:\Omega\to\mathbb{R}$ ist eine Abbildung, welche jedem Ereignis eine Wahrscheinlichkeit zuordnet.

Eine Wahrscheinlichkeitsverteilung listet

alle möglichen Ausgänge des Zufallsexperiments und ihre Wahrscheinlichkeiten auf.

4.1 Gesetze/Axiome/...

P(A) > 0 für alle $A \subset \Omega$

$$P(\Omega) = 1$$

$$P(A_1 \cap A_2) = P(A_1) \cdot P(A_2), A_1 \cap A_2 = \emptyset$$

$$P(A_1 \cup A_2) = P(A_1) + P(A_2), A_1 \cap A_2 = \emptyset$$

$$P(\Omega \setminus A) = 1 - P(A)$$

$$P(\emptyset) = 0$$

$$A \subseteq B \iff P(A) \le P(B)$$

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

$$= \frac{P(B|A) \cdot P(A)}{P(B)}$$

$$= P(A \cap B) = P(B) \cdot P(A|B)$$

$$= P(A) \cdot P(B|A)$$

$$P_B(A) = P(A|B)$$

4.2 Dichtefunktion

 $w: \mathbb{R} \to \mathbb{R}$ ist eine integrierbare, nicht negative Funktion.

Let
$$\int_{-\infty}^{x} w(t)dt = F(x) = P(X \le x)$$

4.3 Verteilungsfunktion

 $F: \mathbb{R} \to [0,1]$ heißt Verteilungsfunktion. Verteilungsfunktion ist Aufleitung der Dichtefunktion.

F ist rechtsseitig stetig und es gilt:

$$\lim_{x \to -\infty} F(x) = 0$$

$$\lim_{x \to \infty} F(x) = 1$$

$$P(X \ge x) = 1 - P(X \le x)$$

$$= \int_{x}^{\infty} w(t)dt$$

$$P(a \le X \le b) = P(X \le b) - P(X \le a)$$

$$= F(b) - F(a)$$

$$= \int_{a}^{b} w(t)dt$$

4.4 Formeln

E = Erwartungswert, V = Varianz

$$E(X) = \sum_{x \in X(\Omega)} x \cdot P(X = x)$$

$$E(X) = \int_{-\infty}^{\infty} x \cdot w(x) dx$$

$$V(X) = \sum_{x \in X(\Omega)} (x - E(X))^{2} \cdot P(X = x)$$

$$= \emptyset$$

$$= (\sum_{x \in X(\Omega)} x^{2} \cdot P(X = x)) - E(X)^{2}$$

$$= (\sum_{x \in X(\Omega)} x^{2} \cdot P(X = x)) - E(X)^{2}$$

$$= (\sum_{x \in X(\Omega)} x^{2} \cdot P(X = x)) - E(X)^{2}$$

$$= (\sum_{x \in X(\Omega)} x^{2} \cdot P(X = x)) - E(X)^{2}$$

$$= (\sum_{x \in X(\Omega)} x^{2} \cdot P(X = x)) - E(X)^{2}$$

$$= (\sum_{x \in X(\Omega)} x^{2} \cdot P(X = x)) - E(X)^{2}$$

$$= (\sum_{x \in X(\Omega)} x^{2} \cdot P(X = x)) - E(X)^{2}$$

$$= (\sum_{x \in X(\Omega)} x^{2} \cdot P(X = x)) - E(X)^{2}$$

$$= (\sum_{x \in X(\Omega)} x^{2} \cdot P(X = x)) - E(X)^{2}$$

$$= (\sum_{x \in X(\Omega)} x^{2} \cdot P(X = x)) - E(X)^{2}$$

$$= (\sum_{x \in X(\Omega)} x^{2} \cdot P(X = x)) - E(X)^{2}$$

$$= (\sum_{x \in X(\Omega)} x^{2} \cdot P(X = x)) - E(X)^{2}$$

$$= (\sum_{x \in X(\Omega)} x^{2} \cdot P(X = x)) - E(X)^{2}$$

$$= (\sum_{x \in X(\Omega)} x^{2} \cdot P(X = x)) - E(X)^{2}$$

$$= (\sum_{x \in X(\Omega)} x^{2} \cdot P(X = x)) - E(X)^{2}$$

$$= (\sum_{x \in X(\Omega)} x^{2} \cdot P(X = x)) - E(X)^{2}$$

$$= (\sum_{x \in X(\Omega)} x^{2} \cdot P(X = x)) - E(X)^{2}$$

$$= (\sum_{x \in X(\Omega)} x^{2} \cdot P(X = x)) - E(X)^{2}$$

$$= (\sum_{x \in X(\Omega)} x^{2} \cdot P(X = x)) - E(X)^{2}$$

$$= (\sum_{x \in X(\Omega)} x^{2} \cdot P(X = x)) - E(X)^{2}$$

$$= (\sum_{x \in X(\Omega)} x^{2} \cdot P(X = x)) - E(X)^{2}$$

$$= (\sum_{x \in X(\Omega)} x^{2} \cdot P(X = x)) - E(X)^{2}$$

$$= (\sum_{x \in X(\Omega)} x^{2} \cdot P(X = x)) - E(X)^{2}$$

$$= (\sum_{x \in X(\Omega)} x^{2} \cdot P(X = x)) - E(X)^{2}$$

$$= (\sum_{x \in X(\Omega)} x^{2} \cdot P(X = x)) - E(X)^{2}$$

$$= (\sum_{x \in X(\Omega)} x^{2} \cdot P(X = x)) - E(X)^{2}$$

$$= (\sum_{x \in X(\Omega)} x^{2} \cdot P(X = x)) - E(X)^{2}$$

$$= (\sum_{x \in X(\Omega)} x^{2} \cdot P(X = x)) - E(X)^{2}$$

$$= (\sum_{x \in X(\Omega)} x^{2} \cdot P(X = x)) - E(X)^{2}$$

$$= (\sum_{x \in X(\Omega)} x^{2} \cdot P(X = x)) - E(X)^{2}$$

$$= (\sum_{x \in X(\Omega)} x^{2} \cdot P(X = x)) - E(X)^{2}$$

$$= (\sum_{x \in X(\Omega)} x^{2} \cdot P(X = x)) - E(X)^{2}$$

$$= (\sum_{x \in X(\Omega)} x^{2} \cdot P(X = x)) - E(X)^{2}$$

$$= (\sum_{x \in X(\Omega)} x^{2} \cdot P(X = x)) - E(X)^{2}$$

$$= (\sum_{x \in X(\Omega)} x^{2} \cdot P(X = x)) - E(X)^{2}$$

$$= (\sum_{x \in X(\Omega)} x^{2} \cdot P(X = x)) - E(X)^{2}$$

$$= (\sum_{x \in X(\Omega)} x^{2} \cdot P(X = x)) - E(X)^{2}$$

$$= (\sum_{x \in X(\Omega)} x^{2} \cdot P(X = x)) - E(X)^{2}$$

$$= (\sum_{x \in X(\Omega)} x^{2} \cdot P(X = x)) - E(X)^{2} \cdot P(X = x)$$

$$= (\sum_{x \in X(\Omega)} x^{2} \cdot P(X = x)) - E(X)^$$

p-Quantile:

Sortieren, $n \cdot p$, Einsetzen & Index ten Zeitraum. suchen, Formel anwenden:

$$\widetilde{X}_p = \begin{cases} \frac{1}{2}(x_{np} + x_{np+1}) & \text{falls } n \text{ ganzz.} \\ x_{\lceil np \rceil} & \text{falls } n \text{ nicht ganzz.} \end{cases}$$

4.5 Verschiedene Verteilungen

4.5.1 Gleichverteilung

Die Gleichverteilung ist die einfachste Verteilung. Jede Möglichkeit hat die gleiche Wahrscheinlichkeit. Ein Würfel ist gleichverteilt mit $P(x_i) = \frac{1}{6}$.

$$P(X=x_i)=\frac{1}{N}$$

Dabei ist $N = |\Omega|$ und X eine Zufallsvariable, welche gleichverteilt ist.

4.5.2 Binominialverteilung

Ein Bernoulli-Experiment ist ein Experiment, welches nur zwei mögliche Ausgänge A und B hat. Eine Binominialverteilung ist eine Aneinanderreihung von Bernoulli-Experimenten. Dabei muss der Ereignisraum unabhängig sein. Ein Experiment kann beliebig oft, n-Mal, wiederholt werden.

$$X = B(n, p)$$

$$\Omega = \{A, B\}^n$$

$$P(A) = p$$

$$P(B) = 1 - p = q$$

Es ist ein LaPlace-Experiment, wenn p = q gilt.

$$P(X = k) = \binom{n}{k} \cdot p^{k} \cdot (1 - p)^{n-k}$$
$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

4.5.3 Hypergeometrische Verteilung

= gewünscht, M = gewünschte Eigen-

$$P(X = k) = \frac{\binom{M}{k} \cdot \binom{N-M}{n-k}}{\binom{N}{n}}$$

4.5.4 Poisson-Verteilung

Die Poisson-Verteilung eignet sich für seltene Ereignisse in einem fest definier-

$$X = P(\lambda)$$

$$\Omega = \{x \in \mathbb{R} | x \ge 0\}$$

$$P(X = k) = \frac{\lambda^k \cdot e^{-\lambda}}{k!}$$

Die Poisson-Verteilung kann, wenn n > 150 und p < 0.1, eine Binominialverteilung annähren.

$$X = B(n, p)$$
$$\lambda = n \cdot p$$

$$P(X = k) \sim \frac{\lambda^k \cdot e^{-\lambda}}{k!}$$

Normalverteilung

 $N(\mu, \sigma^2)$ ist eine Normalverteilung. Für $\mu = 1$ und $\sigma = 1$ ist es eine Standardnormalverteilung.

$$w(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}$$

$$P(a \le x \le b) = \Phi(\frac{b-\mu}{\sigma}) - \Phi(\frac{a-\mu}{\sigma})$$

Für Φ siehe Standardnormalverteilungstabelle.

Wenn
$$\Phi(-x)$$
, dann $1 - \Phi(x)$

Wenn gilt, dass $X = N(\mu, \sigma^2)$ und Z =N(0,1), dann folgt $\frac{X-\mu}{2}$.

 X_B ist binominal verteilt. Wenn np(1 - $|p| \geq 9$, dann $F_B(x) \sim \Phi\left(\frac{x+0.5-np}{\sqrt{np(1-p)}}\right)$ X_P ist possionverteilt. Wenn $\lambda > 9$, dann $F_P(x) \sim \Phi\left(\frac{x+0.5-\lambda}{\sqrt{\lambda}}\right)$.

4.7 Tabelle Erwartungswert/Varianz

		,	
		E(x)	V(x)
B(n	ı, p)	n · p	$n \cdot p(1-p)$
H(n	, M, N)	$n \cdot \frac{M}{N}$	$n \cdot \frac{M}{N} (1 - \frac{M}{N}) \frac{N-n}{N-1}$
$P(\lambda$	()	λ	λ
N(x	()	μ	σ^2

Konfidenzintervall

 $Vertrauensgrad = 1 - \alpha$

4.8.1 Normalverteilung

$$\left[\frac{k}{n}-Z_{\left(1-\frac{\alpha}{2}\right)}\frac{\sigma}{\sqrt{n}};\frac{k}{n}+Z_{\left(1-\frac{\alpha}{2}\right)}\frac{\sigma}{\sqrt{n}}\right]$$

z Werte in Normalverteilungstabelle nachschlagen.

4.8.2 T-Verteilung

Keine Varianz gegeben. Stichprobe muss vorhanden sein.

$$\bar{x} = \underset{n}{\text{arithmetisches Mittel}} = \frac{\sum x}{n}$$

$$\sigma = \sqrt{\frac{\sum (x - \bar{x})^2}{n - 1}}$$

 $[\bar{x} - t_{(1-\frac{\alpha}{2};n-1)} \frac{\sigma}{\sqrt{n}}; \bar{x} + t_{(1-\frac{\alpha}{2};n-1)} \frac{\sigma}{\sqrt{n}}]$ T Werte in T-Verteilungstabelle nachschlagen.

Numerik

Lagrange'sches Interpolationspolynom

n = Anzahl der Stützstellen

$$p(x) = \sum_{i=0}^{n-1} y_i \cdot L_i(x)$$

$$L_i(x) = \prod_{j=0, j\neq i}^{n-1} \frac{x - x_j}{x_i - x_j}$$

Newton'sches Inter- 5.5 QR-Zerlegung 5.2 polationspolynom

n = Anzahl der Stützstellen

$$p(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)(x - a_0(x - x_0)(x - x_0)(x - x_0) + a_0(x - x_0)(x - x_0)$$

Auflösen nach a für die einzelnen Fak-

toren: $\overline{v}_0 = a_0$ $y_1 = a_0 + a_1(x_1 - x_0)$ $y_2 = a_0 + a_1(x_2 - x_0) + a_2(x_2 - x_0)(x_2 - x_1)$

5.2.1 Newton-Verfahren Nullstellen

Voraussetzung: Muss stetig sein (hinschreiben!)

stetig = an jeder Stelle definiert Allgemeine Formel: $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$

Newton-Cotes-Formeln

a = untere Grenze b = obere Grenze

 $\alpha_{i,n}$ Tabelle:

$$h=\frac{b-a}{n}$$

$$x_i = a + i \cdot h$$

$$p_n(x) = h \cdot \sum_{i=0}^n \alpha_{i,n} \cdot f(x_i)$$

Sekanten-Verfahren

Nur bei stetigem Intervall bestimmen

- 1. Startwerte bestimmen: x_0 und x_1 2. $x_{n+1} = x_n \frac{x_n x_{n-1}}{f(x_n) f(x_{n-1})} \cdot f(x_n)$

Es seien $a_1, a_2, ..., a_n \in \mathbb{R}^m$ die Spaltenvektoren von A.

 $p(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)(x - x_0)$ e Vektoren $u_1, u_2, ..., u_n \in \mathbb{R}^m$ sind die Gram-Schmidt orthogonalisierten Vektoren.

$$u_{1} = \frac{1}{|a_{1}|} a_{1}$$

$$u'_{i} = a_{i} - \sum_{j=1}^{i-1} \langle u_{j}, a_{i} \rangle \cdot u_{j}$$

$$u_{i} = \frac{u'_{i}}{|u'_{i}|}$$

$$Q = (u_1, u_2, ..., u_n)$$
$$Q^{-1} \cdot A = R$$

5.6 LU-Zerlegung

L Matrizen sind Einheitsmatrizen plus: Step 1: L1 Matrix aufbauen:

$$x \in \{1, 2\}$$

 $L_{x,1} = -\frac{A(x,1)}{A(1,1)}$

Step 2:
$$\tilde{A} = L1 \cdot A$$

Step 3: L2 Matrix aufbauen:

$$L_{3,2} = -\frac{\tilde{A}(3,2)}{\tilde{A}(2,2)}$$

Step 4:
$$U = L2 \cdot \tilde{A}$$

Step 5: $L = L_1^{-1} \cdot L_2^{-1}$ (=Vorzeichen außerhalb Diagonale ändern.)

5.6.1 Lösung von PLUx = b

Wir berechnen zunächst ein y, welches ein Zwischenergebnis ist. Die Schritte sind sehr einfach, da L und U Dreiecksmatrizen sind.

$$P = Einheitsmatrix$$

$$Ly = P^T b \text{ mit } P^T = P^{-1}$$

 $Ux = y$

5.7 Jacobi-Verfahren

Seien $A \in \mathbb{R}^{m \times n}$ mit m > n und rg(A) = Voraussetzungen: (Schwach) gonaldominant und Diagonalelemente nicht null. Gegeben ist ein lineares Gleichungssystem mit n Variablen und n Gleichungen. $a_{11} \cdot x_1 + \cdots + a_{1n} \cdot x_n = b_1$ $a_{21} \cdot x_1 + \cdots + a_{2n} \cdot x_n = b_2$

> $a_{n1} \cdot x_1 + \cdots + a_{nn} \cdot x_n = b_n$ Um dieses zu lösen, wird die i-te Gleichung nach der i-ten Variablen x_i auf-

$$x_i^{(m+1)}:=rac{1}{a_{ii}}\left(b_i-\sum_{j
eq i}a_{ij}\cdot x_j^{(m)}
ight)$$
 , $i=1,\ldots,n$

und diese Ersetzung, ausgehend von einem Startvektor $x^{(0)}$, iterativ wiederholt.

Cholesky-Zerlegung 5.8

Voraussetzung: symmetrische Matrix & Determinante jeder Teilmatrix > 0

$$\begin{split} A &= \begin{pmatrix} g_{11}^2 & g_{11}g_{21} & g_{11}g_{31} \\ g_{11}g_{21} & g_{21}^2 + g_{22}^2 & g_{21}g_{31} + g_{22}g_{32} \\ g_{11}g_{31} & g_{21}g_{31} + g_{22}g_{32} & g_{31}^2 + g_{32}^2 + g_{33}^2 \end{pmatrix} \\ G &= \begin{pmatrix} g_{11} & 0 & 0 \\ g_{21} & g_{22} & 0 \\ g_{31} & g_{32} & g_{33} \end{pmatrix} \quad G^T = \begin{pmatrix} g_{11} & g_{21} & g_{31} \\ 0 & g_{22} & g_{32} \\ 0 & 0 & g_{33} \end{pmatrix} \end{split}$$

Matrixnormen

$$\begin{vmatrix} x_1 \\ \vdots \\ x_n \end{vmatrix} = \sqrt{x_1^2 + \dots + x_n^2}$$
...

• Umstellen durch Integration und $e^{\ln(x)}$ -Trick nach v

6.2 Anfangswertproblem

Wir haben unsere aufgelöste DGL: y = $C_1 \cdot ...$ Beim AWP haben wir eine Zusatzbedingung, die ähnlich zu y(0) = 2ist. AWP löst sich, indem wir einsetzen und zur Konstante umformen.

6.3 DGL 2. Ordnung

Eine DGL kann eine Störfunktion enthalten. Störfunktionen sind für den inhomogenen Teil der Lösung verantwortlich. Jeder Teil, welcher nicht abhängig von $y^{(n)}$ ist, ist eine Störfunktion. $y(t) = y_h(t) + y_p(t)$

6.3.1 Charakteristisches Poly-

Umformen der Ableitungen: $v^{(n)} = \lambda^n$ Anschließend werden die Lösungen für λ bestimmt.

Einfache Nullstelle:

$$e^{\lambda \cdot x}$$

k-fache Nullstelle:

$$x^{k-1}e^{\lambda x}$$

Komplexe Nullstelle:

$$(a \pm bi) \rightarrow e^{ax} \cdot sin(b), e^{ax} \cdot cos(b)$$

Bsp.:
$$y_h(t) = C_1 \cdot e^{2x} + C_2 \cdot e^{4x}$$

Bei inhomogenen DGL muss ein Ansatz gefunden werden, der zur Lösung führt, wenn man ihn samt Ableitungen in die ursprüngliche DGL einsetzt.

Differentialgleichung $_{y = \{Ansatz\}}$

6.1 DGL 1. Ordnung

6.1.1 Variation der Konstanten

• Alle Ableitungen y' umformen: $y' = \frac{dy}{dx}$

- 1. Aufstellen des Ansatzes für
- 2. Ableiten und Einsetzen als homogenen Teil der DGL.
- 3. Parameter des Ansatzes ausrechnen und als y_p angeben.

Sin-Cos-Tan Tabelle

x	0	$\frac{1}{6}\pi$	$\frac{1}{4}\pi$	$\frac{1}{3}\pi$	$\frac{1}{2}\pi$	$\frac{2}{3}\pi$	$\frac{3}{4}\pi$	$\frac{5}{6}\pi$	π	$\frac{7}{6}\pi$
Grad	0	30	45	60	90	120	135	150	180	210
sin	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$
cos	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	1/2	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1	$-\frac{\sqrt{3}}{2}$
tan	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	$\pm \infty$	$-\sqrt{3}$	-1	$-\frac{\sqrt{3}}{3}$	0	$\frac{\sqrt{3}}{3}$