TRANSFER-MOLD TYPE INSULATED TYPE

PS51277-A

INTEGRATED POWER FUNCTIONS

- DC input, three-phase AC output inverter
- 600V, 15Arms (Input current)

INTEGRATED DRIVE, PROTECTION AND SYSTEM CONTROL FUNCTIONS

- IGBTs driver circuit
- Control supply under-voltage (UV) protection
- Input interface: 5~15V line CMOS/TTL compatible, Schmitt Trigger receiver circuit

APPLICATION

AC100~200V Active-Converter for PFC (Power Factor Correction), of Air-conditioner and so on.

TRANSFER-MOLD TYPE INSULATED TYPE

MAXIMUM RATINGS (Tj = 25° C, unless otherwise noted)

MAIN CIRCUIT PART

Symbol	Parameter	Conditions	Ratings	Unit
Vi	Supply Voltage	Applied between : S-R	264	Vrms
Vi(surge)	Supply Voltage (surge)	Applied between : S-R, Surge value, Non-operating	500	V
Vo	Output Voltage	Applied between : P-N	450	V
VO(surge)	Output Voltage (surge)	Applied between : P-N, Surge value, Non-operating	500	V
VCES	Collector-Emitter Voltage	_	600	V
VRRM	Repetitive Peak Reverse Voltage	_	600	V
li	Input Current (100% Load)	Tc \leq +90°C, Vi = 200V, Vo = 300V, fPWM = 20kHz	15	Arms
li(125%)	Input Current (125% Load)	Tc \leq +90°C, Vi = 200V, Vo = 300V, fPWM = 20kHz, 1 min Non-repetitive	18.7	Arms
l ² t	I ² t for Fu sing	Value for 1msec of Surge Current	75	A ² s
Tj	Junction Temperature	(Note 1)	-20~+125	°C

Note 1 : The maximum junction temperature rating of the power chips integrated within the DIP-PFC is 150°C (@ Tc ≤ 100°C) however, to ensure safe operation of the DIP-PFC, the average junction temperature should be limited to Tj(ave) ≤ 125°C (@ Tc ≤ 100°C).

CONTROL (PROTECTION) PART

Symbol	Parameter	Condition	Ratings	Unit
VD	Control supply voltage	Applied between : VD-GND	20	٧
VIN	Control input voltage	Applied between : VIN-GND	0~VD+0.5	V

TOTAL SYSTEM

Symbol	Parameter	Condition	Ratings	Unit
Tc	Module case operation temperature	(Note 2)	-20~+100	°C
Tstg	Storage temperature		−40~+125	°C
Viso	Isolation voltage	60Hz, Sinusoidal, AC 1 minute, connection pins to heat-sink plate	1500	Vrms

Note 2 : TC MEASUREMENT POINT

TRANSFER-MOLD TYPE INSULATED TYPE

THERMAL RESISTANCE

Symbol Parameter	D	O and distant	Limits			Unit
	Condition		Тур.	Max.		
Rth(j-c)Q	Junction to case thermal	Inverter IGBT part	_	_	2.05	°C/W
Rth(j-c)F	resistance	Inverter FWDi part	_	_	2.50	°C/W
Rth(c-f)	Contact thermal resistance	Case to fin, (per 1 module) thermal grease applied	_	_	0.067	°C/W

ELECTRICAL CHARACTERISTICS (Tj = 25° C, unless otherwise noted) **INVERTER PART**

Cumahaal	Dovometer	Dovernotor			Limits		
Symbol	Parameter Condition		Min.	Тур.	Max.	Unit	
VCE(sat)	Collector-emitter saturation voltage	VD = 15V, VIN = 5V, IC = 30A		_	2.0	2.6	V
VF	Forward voltage	IF = 30A		_	1.6	2.2	V
ton					0.23	_	μs
trr		VCC = 300V, VD = 15V IC = 20A, Tj = 125°C, VIN = 5V \leftrightarrow 0V Inductive load		_	0.14	_	μs
tc(on)	Switching times			_	0.14	_	μs
toff				_	0.43	_	μs
tc(off)					0.23	_	μs
loco	Collector-emitter cut-off	\/o= C00\/	Tj = 25°C	_	_	1	mA
ICES	current	VCE = 600V T _j = 125°C	_	_	10	IIIA	
IR	Reverse current	VR = 600V	T _j = 25°C		_	1	mA
IK	Reverse current	VK = 000 V	Tj = 125°C	_	_	10	IIIA
Irr	FWDi reverse recovery current	VCC = 300V, VD = 1	15V, IC = 20A, Tj = 25°C	_	13	_	Α

CONTROL (PROTECTION) PART

Cumple of	Davanatar	Parameter Condition		Limits			Unit
Symbol	rarameter			Min.	Тур.	Max.	Offic
VD	Control supply voltage	Applied between :	VD-GND	13.5	15.0	16.5	V
ID	Circuit current Applie	Applied between :	VD = 15V, VIN = 5V	_	0.8	3.0	mA
	Circuit current	VD-GND	VD = 15V, VIN = 0V	_	0.7	3.0	IIIA
lin	Control input current	VD = 15V, VIN = 5V		_	0.3	0.45	mA
Vth(on)	ON threshold voltage	Applied between :	VIN CND	_	3.0	3.7	V
Vth(off)	OFF threshold voltage	Applied between : VIN-GND		1.3	2.0	_	V
UVDt	Supply circuit under-voltage	1 Ti < 125°C	Trip level	10.3	_	12.5	V
UVDr	protection		Reset level	10.8	_	13.0	V

TRANSFER-MOLD TYPE INSULATED TYPE

MECHANICAL CHARACTERISTICS AND RATINGS

Symbol Parameter	Darameter	Dovernotor Condition		Limits		
	Condition		Тур.	Max.	Unit	
_	Mounting torque	Mounting screw : M4	0.98	1.18	1.47	N⋅m
_	Weight		_	54	_	g
_	Heat-sink flatness	(Note 3)	-50	_	100	μm

Note 3: Measurement point of heat-sink flatness

RECOMMENDED OPERATION CONDITIONS

Symbol	Parameter	O and distant		1.1-14		
		Condition		Тур.	Max.	Unit
Vi	Supply voltage	Applied between : S-R		_	264	Vrms
VD	Control supply voltage	Applied between : VD-GND	13.5	15.0	16.5	V
ΔVD	Control supply variation		-1	_	1	V/μs
fPWM	PWM input frequency	Tc ≤ 100°C, Tj ≤ 125°C	_	20	_	kHz
VIN(on)	Input ON threshold voltage	- Applied between : VIN-GND -		4.0~VD		V
VIN(off)	Input OFF threshold voltage			0~1.0		

TRANSFER-MOLD TYPE INSULATED TYPE

Fig. 2 THE DIP-PFC INTERNAL CIRCUIT

TRANSFER-MOLD TYPE INSULATED TYPE

DIP-PFC Wiring Guidelines

Because DIP-PFC switches large current at a very high speed, considerable large surge voltage is generated easily between P and N terminals. Please pay attention to the following items:

- The area of P-Co-N shown in Fig. 3 should be as small as possible because the rectangle shaped switching current flows on this route. In addition, please add a bypass condenser Co' with good frequency response such as a polypropylene film condenser closely to the P and N terminals.
- The two IGBT emitters are connected to the VNO terminal of LVIC inside the DIP-PFC. If the internal wiring inductance shown as L1 and L2 in Fig. 4 is too large, large surge voltage will be generated by di/dt. Especially, the lower the temperature, the faster the switching speed, therefore the larger the di/dt. This surge voltage applies to the VNO and N terminals, which is possible to destruct LVIC.
- In order to suppress the surge voltage, the external wiring method shown in Fig. 4 is recommended. To reduce the parasitic wiring inductance, the wiring of the external terminals of N(N-1) and N(N-2) should be made as short as possible.
- Please mount a fast clamp diode (EG01Y@Sanken) between N and control GND terminals to prevent control GND potential variation from the minus voltage of N terminal.

