Lab Assignment - 1

Rohan Verma (1510110508)

February 15, 2017

1 Solve the following recurrences using Masters method

1.1 $T[n] = 4T[n/2] + n^2$

Comparing the recurrence with the form used for master method, a = 4, b = 2, c = 2 and $log_b a = log_2(2^2) = 2 = c$. Therefore, $T(n) = \theta(n^c log n) = \theta(n^2 log(n))$

1.2 T[n] = 2T[n/2] + c

Comparing the recurrence with the form used for master method, a=2, b=2, c=0 and $log_ba=log_2(2)=1>c$. Therefore, $T(n)=\theta(n^{log_ba})=\theta(n^1)$

1.3
$$T[n] = T[n/2] + T[n/4] + n^2$$

The given relation is not in a form on which master method can be applied.

1.4 T[n] = 2T[n/4] + logn

Comparing the relation with forms used in master method, a=2,b=4,f(n)=logn $n^{log_ba}=n^{log_42}=\sqrt{n}$ For large n, $\sqrt{n}>logn$

Therefore, $f(n) = log n = O(n^{1/2 - \epsilon})$ Here, $\epsilon > 0$ Hence, using master method, $T(n) = \theta(\sqrt{n})$

1.5
$$T[n] = 2T[n/4] + n!$$

$$a = 2, b = 4, f(n) = n!$$

$$n! = \prod_{i=0}^{n-1} (n-i)$$

$$log_b a = \frac{1}{2} \implies n^{log_b a} = \sqrt{n}$$
Since, $n! > n^{1/2} \implies n! = n^{1/2+\epsilon}$
Thus, using master method, $f(n) = \Omega(n^{1/2+\epsilon})$

$$\implies af(n/b) \le cf(n)$$

$$\implies 2(n/n)! \le cn!$$

$$\implies T(n) = \Theta(n!)$$

2 Solve the following recurrences using Recursion tree method

- **2.1** T[n] = T[n/3] + 2T[n/4] + n
- **2.2** T[n] = T[n-5] + 1/n
- **2.3** $T[n] = T[\sqrt{n}] + 1$
- **2.4** T[n] = 2T[n/2] + n/logn]
- **2.5** T[n] = T[n-1] + T[n/2] + n

[handwritten]

3 Give an algorithm to solve the following problem: Given n, a positive integer, determine whether n is the sum of all its divisors. Analyze the asymptotic runtime complexity of this algorithm. Write the code in C and plot the observations.

3.1 Algorithm

```
begin
take input n
initialize sumOfFactors:=0 and i:=1
while i < n do
if n mod i == 0 then
sumOfFactors = sumOfFactors + 1
end if
i = i + 1
end while
if n == sumOfFactors then
return true
else
return false
end if
```

3.2 Code

3.3 Complexity

The runtime complexity of this algorithm will be O(n) since, we have to check all numbers between 1 and n. The space complexity will be O(1) since we don't need any additional memory.

3.4 Results

The results were found to be increasing linearly with n.

Table 1: Increasing n by times 10	
1	0.000001
10	0.000000
100	0.000002
1000	0.000028
10000	0.000113
100000	0.001085
1000000	0.010230
10000000	0.093336
100000000	0.916945
1000000000	9.189980
100000000000	92.604395

 $\begin{array}{cccc} \text{Table 2: Increasing n by times 2} \\ 10000000 & 0.094203 \\ 20000000 & 0.185652 \\ 30000000 & 0.275933 \\ 40000000 & 0.371852 \\ 50000000 & 0.459668 \end{array}$

Consider the naive Monte Carlo algorithm for Primality testing presented in textbook, where Power(x, y) = x^y . What should be the value of t for the algorithms output to be correct with high probability? Write the code in C and analyze the observations.

5 Show the complexity for T[n] = T[
$$n/2 + 21$$
] + $\theta(n)$ is $\theta(nlog(n))$

[Handwritten]