

Learning step sizes for unfolded sparse coding

Golden ratio

(Original size: 32.361×200 bp)

Pierre Ablin*, Thomas Moreau*, Mathurin Massias, Alexandre Gramfort

Univ. Paris-Saclay, INRIA, Parietal team, Saclay, France. * Contributed Equally

Solving sparse linear inverse problems

• **Objective:** Solve the Lasso for a fixed D and $x \sim \mathbb{P}$.

$$z^*(x) = \underset{z}{\operatorname{argmin}} F_x(z) = \frac{1}{2} ||x - Dz||_2^2 + \lambda ||z||_1$$

- Iterative algorithm: Use ISTA for each \boldsymbol{x}
- Deep Learning: Use a NN to learn a mapping

$$\Phi_{\Theta}^T: x \mapsto z^*(x); \quad \text{for } x \sim \mathbb{P}$$

Learned ISTA

[Gregor & Le Cun 2010]

ISTA: $z^{(t+1)} = \operatorname{ST}(z^{(t)} - \gamma D^{\top}(Dz^{(t)} - x), \gamma \lambda)$, where γ is the step size, usually chosen as 1/L.

LISTA: Let $W_z = I_m - \gamma D^\top D$; $W_x = \gamma D^\top$ and $\beta = \gamma$

$$z^{(t+1)} = ST(W_z z^{(t)} + W_x x, \lambda \beta)$$

Re-parametrization:

skjhfkjhdskjfdfh

$$W_z = I_m - \alpha W^\top D; \ W_x = \alpha W^\top$$

Learn parameters $\Theta = \{W^{(t)}, \boldsymbol{\alpha}^{(t)}, \boldsymbol{\beta}^{(t)}\}$

Supervised learning	Semi-supervised learning	Unsupervised learning
Ground truth available s_1, \ldots, s_N	Compute $s_i = \operatorname{argmin}_z F_{x_i}(z)$	Learn to solve the Lasso
$\sum_{i=1}^{N} (\Phi_{\Theta}^{T}(x_i) - s_i)^2$	$\sum_{i=1}^{N} (\Phi_{\Theta}^{T}(x_i) - s_i)^2$	$\sum_{i=1}^{N} F_{x_i}(\Phi_{\Theta}^T(x_i))$

Local smoothness constants

 $\| \mathbf{L} = \max \|Dz\|_2^2$ subject to $\|z\|_2 = 1$

$$F_x(z) = f_x(z^{(t)}) + \langle \nabla f_x(z^{(t)}), z - z^{(t)} \rangle + \frac{1}{2} \|D(z - z^{(t)})\|_2^2 + \lambda \|z\|_1$$

$$\leq f_x(z^{(t)}) + \langle \nabla f_x(z^{(t)}), z - z^{(t)} \rangle + \frac{L}{2} \|z - z^{(t)}\|_2^2 + \lambda \|z\|_1$$

 $L_S = \max \|Dz\|_2^2$ subject to $\|z\|_2 = 1$, $Supp(z) \subset S$.

ISTA with greater step-size: $\gamma = 1/L_s$

Theorem: The weights of a neural network trained to solve the lasso asymptotically only learn a step size.

$$\frac{\alpha^{(t)}}{\beta^{(t)}} W^{(t)} \xrightarrow[t \to \infty]{} \mathcal{L}$$

Improving ISTA step-size

Better step-sizes for ISTA

- Back-tracking line-search
- OISTA: Adapt step-sizes to Local smoothness constants L_S
- SLISTA: Learn only step-sizes with LISTA.

The step-sizes learned by SLISTA tend to be in $\left[\frac{1}{L_s}, \frac{2}{L_S}\right]$.

Varying the sparsity

SLISTA works better when z^* is sparse as this reduces L_S .

Golden ratio

(Original size: $32.361 \times 200 \text{ bp}$)

References

- Gregor, K. & Le Cun, Y. (2010) Learning Fast Approximations of Sparse Coding. ICML.
- Sparse Couing. ICML.

 Chan V. Liu I. Wara 7 % Vin M. (2019) Theoretical Linear Con