Wilson's Theorem

Learning Objectives. By the end of class, students will be able to:

- \bullet Characterize when a is its own inverse modulo a prime.
- Prove Wilson's Theorem and its converse.

Reading Strayer, Section 2.4

Turn in Does this match with your conjecture from Exercise 5? If not, what is the difference?

Lemma 1. Let p be a prime number and $a \in \mathbb{Z}$. Then a is its own inverse modulo m if and only if $a \equiv \pm 1 \pmod{p}$.

Proof Let p be a prime number and $a \in \mathbb{Z}$. Then a is its own inverse modulo m if and only if $a^2 \equiv 1 \pmod{p}$ if and only if $p \mid a^2 - 1 = (a - 1)(a + 1)$. Since p is prime, $p \mid a - 1$ or a + 1 by ??. Thus, $a \equiv \pm 1 \pmod{p}$.

Corollary 1. Let p be a prime. Then $x^2 \equiv 1 \pmod{p}$ if and only if $x \equiv \pm 1 \pmod{p}$.

Remark 1. It is important to note why we require p is prime. ?? is only true for primes:

ullet 8 | ab is true when 8 | a, 8 | b, 4 | a and 2 | b, or 2 | a and 4 | b.

Let a = 2k + 1 for some integer k. Then

$$a^2 = 4k^2 + 4k + 1 = 4k(k+1) + 1.$$

Since either k or k+1 is even, $a^2=8m+1$ for some $m\in\mathbb{Z}$. Thus, $a^2\equiv 1\pmod 8$ for all odd integers $a\in\mathbb{Z}$.

- When $a \equiv 1 \pmod{8}$, then $8 \mid (a-1)$.
- When $a \equiv 3 \pmod{8}$, then 8k = a 3 for some $k \in \mathbb{Z}$. Thus $2 \mid (a 1)$ and $4 \mid (a + 1)$.
- When $a \equiv 5 \pmod{8}$, then 8k = a 5 for some $k \in \mathbb{Z}$. Thus $4 \mid (a 1)$ and $2 \mid (a + 1)$.
- When $a \equiv 7 \pmod{8}$, then $8 \mid (a+1)$.

Theorem 1 (Wilson's Theorem). Let p be a prime number. Then

$$(p-1)! \equiv -1 \pmod{p}.$$

Proof When p=2, $(2-1)!=1\equiv -1\pmod 2$. Now consider p an odd prime. By $\ref{eq:posterior}$, each $a=1,2,\ldots,p-1$ has a unique multiplicative inverse modulo p. says the only elements that are their own multiplicative inverse are 1 and p-1. Thus (p-2)! is the product of 1 and $\frac{p-3}{2}$ pairs of a,a' where $aa'\equiv 1\pmod p$. Therefore,

$$(p-2)! \equiv 1 \pmod{p}$$
$$(p-1)! \equiv p-1 \equiv -1 \pmod{p}.$$

Wilson's Theorem is normally stated as above, but the converse is also true. It can also be a (very ineffective) prime test.

Proposition (Converse of Wilson's Theorem). Let n be a positive integer. If $(n-1)! \equiv 1 \pmod{n}$, then n is prime.

Learning outcomes:

Author(s): Claire Merriman

Proof Let a and b be positive integers where ab = n. It suffices to show that if $1 \le a < n$, then a = 1. If a = n, then b = 1. If $1 \le a < n$, then $a \mid (n-1)!$ by the definition of factorial. Then $(n-1)! \equiv -1 \pmod{n}$ implies $a \mid (n-1)! + 1$ by transitivity of division. Thus, $a \mid (n-1)! + 1 - (n-1)! = 1$ by linear combination and a = 1. Therefore, the only positive factors of n are 1 and n, so n is prime.

In-class Problem 1 (Part of Strayer, Chapter 2 Exercise 47) Let p be an odd prime. Use (a) $\left(\left(\frac{p-1}{2}\right)!\right) \equiv$

$$(-1)^{(p+1)/2} \pmod{p}$$
 to show

(b) If
$$p \equiv 1 \pmod{4}$$
, then $\left(\left(\frac{p-1}{2}\right)!\right)^2 \equiv -1 \pmod{p}$

(c) If
$$p \equiv 3 \pmod{4}$$
, then $\left(\left(\frac{p-1}{2}\right)!\right)^2 \equiv 1 \pmod{p}$

Solution: (b) Let p be a prime with $p \equiv 1 \pmod{4}$. Then p = 4k + 1 for some $k \in \mathbb{Z}$. From part (a),

$$\left(\left(\frac{p-1}{2} \right)! \right) \equiv (-1)^{(p+1)/2} \equiv (-1)^{(4k+1+1)/2} \equiv (-1)^{2k+1} \equiv -1 \pmod{p}.$$

(c) Let p be a prime with $p \equiv 3 \pmod{4}$. Then p = 4k + 3 for some $k \in \mathbb{Z}$. From part (a),

$$\left(\left(\frac{p-1}{2} \right)! \right) \equiv (-1)^{(p+1)/2} \equiv (-1)^{(4k+3+1)/2} \equiv (-1)^{2k+2} \equiv 1 \pmod{p}.$$