Dynamic of phytoplankton assemblages, as a response in the change of Water Quality in Lake Ahémé (BENIN)

Olodoi. Y^{1, *}, Abouy ¹, Kokouk ² and Cocquyt C³

Abstract— This study aims to assess seasonal and temporal changes in phytoplankton composition in Lake Ahémé. To achieve this, phytoplankton samples were collected in Lake Ahémé from September 2014 to September 2016. A total of 274 species were inventoried and the composition of algae includes Bacillariophyceae, Chlorophyceae, Cyanophyceae, Euglenophyceae, Conjugatophyceae, Trebouxiophyceae, Chrysophyceae, Dinophyceae, Xanthophyceae and Ulvophyceae. Bacillariophyceae were more abundant during the long wet season, the short dry season, and the long dry season, while Chlorophyceae dominated during the short wet season. The two-way analysis of variance (ANOVA) revealed significant seasonal variations in water physicochemical parameters such as conductivity, temperature, Total dissolved solids, pH, salinity, dissolved oxygen, turbidity, phosphates. Changes in phytoplankton structure were analyzed through similarity analysis (ANOSIM) and revealed that the heterogeneity observed in the spatial and seasonal distribution of phytoplankton of Lake Ahémé is linked with the dynamic of water inputs (freshwater, saltwater, nutrients). Redundancy analysis (RDA) revealed that phytoplankton community assemblages are mainly driven by two environmental gradients, one of anthropogenic origin, where the most influential factors were phosphates and DO. The second gradient is related to temperature, conductivity, and salinity.

Keywords—Dynamic, Heterogeneity, Phytoplankton, Pollution.

I. INTRODUCTION

Over the last few decades, wetland pollution is widely known to lead remarkable losses to human well-being and economic development consequences for communities, businesses, and countries [1]. Besides, the current population explosion mainly induces stress in aquatic ecosystems. Thus, human activities have often been reported as one of the main causes of stress observed in aquatic biodiversity especially, changes in diversity and abundance of phytoplankton. Phytoplankton is the basis of the aquatic food web and responds effectively to environmental variations that affect the biological activity and water quality [2].

Furthermore, eutrophication strongly limits the growth of fish species due to strong variations observed in the Physico-chemical parameters involved (nutrients, temperature, transparency, etc.) [3]. For example, dissolved

oxygen at low concentrations causes fish mortality and the growth of environmentally harmful pathogenic microorganisms [4]. In addition to environmental variables, the most expressive of habitats modification are biological variables because of their high capacity to integrate information as an indicator of aquatic environmental degradation episodes [5]. However, the eutrophication of lakes, known as an ecological problem affecting many ecosystems, hurts primary producers coastal (phytoplankton) which are the first organisms affected [6]. Frequent fluctuations in orthophosphates and nitrogen concentrations in the aquatic environment affect the algal composition and biomass [7]. Phytoplankton growth is therefore dependent on the availability or otherwise of one of the key factors favoring its development [8]. Similarly, phytoplankton can react very quickly to environmental variations such as water temperature, transparency, and nutrients, which often leads to dramatic changes in their

¹Laboratoire d'Ecologie et de Management des Ecosystèmes Aquatiques, Département de Zoology, Faculté des Sciences et Techniques, Université d'Abomey-Calavi, Abomey-Calavi, PO Box 526, République du Bénin

²Laboratoire de Botanique et d'Ecologie des Plantes, Faculté des Sciences, Université de Lomé, P. O. Box 1515, Lomé, Togo.

³Research Department, Meise Botanic Garden, Meise, Belgium

^{*}Corresponding author

structure and dynamics [9]. Also, the phytoplankton compartment is characterized by assemblages of species of varying morphology and physiology (size, modes of nutrition, and reproduction) that are widely recognized as an important group in the assessment of aquatic environment [10].

In Benin, Lake Ahémé is subject to anthropogenic stress when classified as an area of international interest and part of Ramsar 1017 [11]. Because of its size, productivity, and different uses, it offers extraordinary benefits by providing people with ecosystem goods and services (tourism, fishing, drinking water, etc.). Unfortunately, Lake Ahémé is under increasing threat due to numerous human activities (inappropriate fishing techniques, wastewater discharges, intensive agriculture, etc.) [12]. The strong demographic pressure often reported in this lake leads to eutrophication [13] [14] [15] [4] [11]. These authors also highlighted the problem of the filling up of Lake Ahémé and the change in its hydrological regime. This influences the biological communities of the lake by contributing to changes in their structure (diversity, density, and biomass). Thus, it is important to understand the mechanisms that control the dynamics of these microalgae and to assess their diversity as well as the structure of the different assemblages. Therefore, based on the phytoplankton composition in Lake Ahémé, it is necessary to study the dynamic of the phytoplankton and to identify the environmental factors that contribute to this composition, for bioassessment and better management of its resources. According to [16], in ecological studies, it is difficult to measure the effect of biodiversity on community productivity in natural ecosystems based on the control of environmental gradients because of the large number of variables that influence diversity. Thus, an alternative is the use of multivariate methods to statistically detect and control the direct and indirect effects of diversity and environmental variables on ecosystem functions [17]. Moreover, multivariate statistics are effective and informative statistical methods used for determining the main mechanisms of change in species composition and linking them to physical, chemical, or to some extent to their biological characteristics of the ecosystems studied [18] [19].

The main objective of this paper was to study and use phytoplankton assemblages to monitor water quality in Lake Ahémé. The goal was to identify abiotic factors and assess their influence on the diversity and structure of Lake Ahémé's phytoplankton.

II. MATERIALS AND METHODS

Physico-chemical and biological studies

The study was conducted on Lake Ahémé (Figure 1) located in southern Benin (6°20" 6°40" N, 1°55" 2°00" E) with a surface area of 78 km2 during low-tide periods and 100 km2 during flood periods.

Water sampling was carried out for the study of Physicochemical parameters and phytoplankton during the four seasons of the year (SDS: short dry season; LDS: long dry season; SWS: the short wet season and LWS: long wet season). The basic physical parameters of the water, namely temperature, pH, conductivity, salinity, total dissolved solids (TDS) and dissolved oxygen (DO), were measured in situ (at the 8 sampling sites S1 S2 S3 S4 S5 S6 S7 and S8) using the HANNA multi-sensor probe (HI-9829). Water transparency (SDD) and water depth were determined by using a Secchi disc. Turbidity was determined in situ using a turbidimeter (Eutech instruments). Nutrients have been measured in the laboratory. To determine water nutrient levels (nitrates (NO3-), nitrites (NO2-), phosphates (PO43-), 1.5 L water samples were collected and kept cool in the dark in the laboratory. Ammonium, nitrate, nitrites, and phosphates were measured with the spectrophotometer respectively using the method with 4-aminobenzene sulfonamide, sodium salicylate, Nessler reagent, ammonium molybdate, and ascorbic acid, as described by [20].

Phytoplankton was sampled with plankton net mesh $20\mu m$ and treated in the lab before mounting on Bürker counting cell using light microscopy (×400) and the Utermöhl method [21]. Phytoplankton were identified to the lowest practical taxonomic level according to the literature from [22] [23] [24] [25] [26] [27] [28] [29] [30].

Fig.1: Lake Ahémé and sites locations

Data treatment and analyses

To study the spatio-temporal variation of water physico-chemical characteristics in Lake Ahémé, two-factor analysis of variance (ANOVA) was carried out (followed by a post hoc Tukey's test) to test the effect of seasons and sites on the variation of physico-chemical water parameters. This two-way ANOVA has also tested the interaction between season and site, to see if the difference between sites depends on the seasons and vice versa.

The spatio-temporal patterns of the phytoplankton community have also been studied. To assess the degree of dissimilarity of the phytoplankton communities between the sites and the season, a non-metric multidimensional analysis (NMDS) based on Bray & Curtis similarity measure [31] was performed. When the points are arranged in a continuum, such that they emerging together, this corresponds to sites in which species composition is similar. On the other hand, points that are far from those ranged together correspond to dissimilar sites. Stress levels

of NMDS representation comprised between 0.1 and 0.25 indicate a satisfactory representation of the data. The analysis of similarity ANOSIM [32] has also been made based on [33] distance to test statistical differences in environmental and phytoplankton data among the samples (seasons and sites). The environmental data were log(x+1) transformed before processing. The similarity percentage analysis (SIMPER) was applied to phytoplankton species abundance, to allow for indexing the taxa responsible for the variation of the structure. All the above-listed analyses were undertaken using Past (V 3.14) software.

To measure the relationship between phytoplankton community and environmental variables, we sought to reduce a large number of species to a reasonable number by first calculating the average abundance of each species over the sampling period. The deciles of the species abundance averages were then exploited to group the species into ten groups, as shown in Table 1. The first groups were grouping the species with low abundance

while the last groups include species with high abundance. The species list and their different groups are illustrated in the annex (Table 5). Then, we performed a Redundancy Analysis (RDA) [34] on the abundance data of the groups obtained, elucidate their relationship with their environment. For data processing, the software CANOCO for Windows 4.5. was used.

Table 1: Values of the deciles of mean abundance and name of the created groups.

Decile of mean abundance	Group of species
8.33 (10%)	Group1
16.67 (20%)	Group2
20-42 (30%)	Group3
50-58 (40%)	Group4
62-117 (50%)	Group5
125-200 (60%)	Group6
208-375 (70%)	Group7
379-992 (80%)	Group8
1108-3850 (90%)	Group9
3865-488910 (100%)	Group 10

III. RESULTS

Physico-chemical characteristics

Spatio-temporal variation of water physico-chemical characteristics in the Lake Ahémé

The physical and chemical features of the water in Lake Ahémé are characterized by a range of variations (Table 2). In this ecosystem, depth values ranged between 1.05 m in LDS and 1.91 m in LWS, with significantly different (p< 0.05) only in SDS compared to those of LDS and SWS. The SDD value recorded in LDS was not significantly different (p > 0.05) to the one of LWS with values varying between 0.48 m in SWS and 0.73 m in SDS. Turbidity varied between 28.65 NTU in LDS and 380.53 NTU in SWS. The temperature was significantly different from one season to another (p< 0.05), with values ranging between 27.36°C in SDS and 29.83 °C inSWS, while the pH remains the same (p > 0.05), 6.85 in SWS and 7.47 in LDS. A significant difference was found for dissolved oxygen (DO) (p< 0.05) from one season to another and ranged between 2.67 mg/L (0.09-2.90) in SWS and 4.09 mg/L (2.84- 8.14) in LDS. A significant difference (p< 0.05), is observed in TDS variations and values are ranged between 0.46 g/L in SWS and 15 g/Lin LDS. Salinity and conductivity showed significant difference among the seasons (p< 0.05) with values ranged between 0.19PSU in SWS and 18.53PSU in LDS for salinity and 0.46 mS/cm in SWS and 29.43 mS/cm in LDS. Nitrates showed significant difference in SWS (p< 0.05) with values ranged from 25.94 µg/L in LDS to 459.92 μg/L in SDS. Nitrite and nitrate were significantly different in LDS (p<0.05). Their values varied between 19.74-71.50 µg/L and 25.94-459.92 µg/L, respectively. There was also a significant difference (p<0.05) in phosphate variations with values varied between 18.18 μg/L in LWS and 546.23 μg/L in SWS.

Table 2 : Water quality parameters in Lake Ahémé. LDS: long dry season, LWS: long wet season, SDS: short dry season, SWS: short wet season.

Variable	LDS	LWS	SDS	SWS
Depth(m)	1.05 ^a	1.91°	1.15 ^{ab}	1.68 ^b
SDD (m)	0.67 ^b	0.54^{a}	0.73°	0.48^{a}
Temperature (°C)	27.71°	29.15 ^a	27.36 ^b	29.83 ^d
DO (mg/L)	4.09^{b}	3.06°	3.53^{d}	2.67 ^a
рН	7.47	7.36	7.15	6.85
Salinity (PSU)	18.53 ^d	3.10 ^b	13.49°	0.19 ^a
Conductivity (ms/cm)	29.43 ^d	5.46 ^b	25.09°	0.46 a
TDS (g/L)	15.00 ^d	2.78 ^b	11.54°	0.46 ^a
Nitrite (µg/L)	19.74ª	25.37ª	23.29 ^b	71.50 ^a
Nitrate (μg/L)	25.94ª	48.00 ^a	459.92ª	255.51 ^b
Phosphate (µg/L)	50.09 ^b	18.18 ^a	60.11°	546.23 ^d

Turbidity (NTU) 28.65^a 369.95^b 344.38^c 380.53^d

 a,b,c,d for each parameter, the same-letter means as the exponents are not significantly different (p > 0.05). The letters a. b. c or d denote the significant difference between seasons and sites (multiple pair comparison): pairs with different letters (2 or 3 alphabetical letters together) do not differ significantly (P \leq 0.05).

Assemblages of the Phytoplankton community

nMDS showed that the distribution of the phytoplankton within sites, mostly in sites 4, 5, 7, and 8 is heterogeneous (Figure 2). The same trend is noticed between the communities within the seasons. Besides, the stress value

(0.2289) revealed that the representation of the sites is satisfactory. The sites 4, 5, 6, 1 seems to be similar to each other, while LDS seemed to be similar to LWS and SWS to LDS.

Fig.2: n-MDS diagram (n = 24, stress = 0.23) showing the similarity of species composition among sampling sites indicated by the distances between dots.

Oval : LDS ; Inv. triangle : LWS ; Fill triangle : SDS ; Fill square : SWS. Dot S1 ; Plus : S2 ; Square : S3 ; X : S4 ; O : S5 ; Star : S6 ; Triangle : S7 ; Dash : S8.

According to nMDS and ANOSIM, the taxonomic composition of phytoplankton strongly differed both within sites and seasons.

The two-way ANOSIM (Table 3) showed significant differences among the sites (R=0.36344, p=0.0006) and across the seasons (R=0.25306, p=0.0184) in Lake Ahémé. The post-hoc pairwise comparison also revealed significant differences within all sites between seasons mainly observed in LWS and SDS with a high dissimilarity

(96.04%). However, the phytoplankton communities of SWS and LDS did not differ from each other (R=0.159; p=0.0618). The results of the pairwise comparison (ANOSIM) showed that there were significant differences of phytoplankton communities in twenty of the twenty-eight scenarios with particular attention given to the following scenarios: S1 vs S5 (R=1, p=0.0279); S3 vs S5 (R=1; p=0.0298); S3 vs S8 (R=1; p=0.0252) and S5 vs S8 (R=1; p=0.0265).

Table 3: ANOSIM (Two-way) of Phytoplankton assemblages and similarity percentage (SIMPER) among seasons and sites. Only significant differences (p< 0.05) are mentionned. P is a probability and R is a statistical value of the ANOSIM test.

LDS: long dry season, LWS: long wet season, SDS: short dry season, SWS: short wet season. Si= Site i. S1: Site 1; S2: Site 2; S3: Site 3; S4: Site 4; S5: Site 5; S6: Site 6; S7: Site 7; S8: Site 8.

Pairwise comparison	Dissimilarity %	R	P
Season Factor			
SWS vs SDS	92.98	0.6027	0.0011
SWS vs SWS	94.46	0.6646	0.0003

SDS vs SWS	92.59	0.6613	0.0005
SDS vs LDS	92.55	0.5273	0.0015
LWS vs LDS	96.04	0.7868	0.0003
Average	92.15	0.5622	0.0001
Site Factor			_
S1 vs S3	94.38	0.8438	0.0259
S1 vs S4	96.59	0.9167	0.0293
S1 vs S5	98.13	1	0.0279
S2 vs S3	97.47	0.9896	0.0298
S2 vs S4	95.73	0.8646	0.0307
S2 vs S5	93.67	0.8021	0.03
S2 vs S6	90.6	0.6667	0,026
S3 vs S4	86.06	0.3854	0.0295
S3 vs S5	97.68	1	0.0298
S3 vs S6	93.29	0.9167	0.0284
S3 vs S7	91.49	0.5417	0.0281
S3 vs S8	96.49	1	0.0252
S4 vs S5	85.46	0.7396	0.0278
S4 vs S6	93.94	0.7813	0.0307
S4 vs S7	92.6	0.3333	0.0265
S4 vs S8	97.25	0.9896	0.0269
S5 vs S6	91.05	0,9167	0.0291
S5 vs S7	96.45	0,8646	0.0294
S5 vs S8	98.88	1	0.0265
S6 vs S8	85.18	0.6458	0.0294
Average	91.34	0.7013	0.0001

Fig.3: Contribution of the phytoplankton classes to the spatial and temporal assemblages of phytoplankton of Lake Ahémé.

Bacilla= Bacillariophyceae, Chloro= Chlorophyceae, Conjugato= Conjugatophyceae, Cyano= Cyanophyceae, Dino= Dinophyceae, Eugleno= Euglenophyceae, Trebou= Trebouxiophyceae, Ulvo= Ulvophyceae, Xantho= Xanthophyceae.

The SIMPER procedure identified four taxa that contributed the most to the differences in the assemblages (Figure 3), including thirty species of Bacillariophyceae (in which Entomoneis paludosa, Surirella robusta, Melosira sp., Cerataulina bicornis, Entomoneis alata, Nitzschia sp., Aulacoseira granulata, Cyclotella sp., Iconnella capronii, Coscinodiscus sp., Navicula sp. and Surirella sp.), four species of Cyanophyceae (Lyngbya sp., Mycrocystis sp., Synechococcus sp. and Oscillatoria sp.), two species of Chlorophyceae (Eudorina elegans and Pandorina morum) and one species of Euglenophyceae (Phacus contortus).

The average dissimilarity of Bacillariophyceae (Figure 3) was very high, amounting to 61.22% through the seasons and of 60.87% for the sites. When Chlorophyceae appeared to better contribute to the dissimilarity of assemblages through sites than through seasons, Bacillariophyceae, Cyanophyceae, Euglenophyceae, Conjugatophyceae and Trebouxiophyceae appeared to be more expressive to the dissimilarity through the seasons. Bacillariophyceae species such as Entomoneis paludosa, Aulacoseira sp., Gyrosigma sp., Surirella sp., Coscoinodiscus lacustris, Coscinodiscus sp., Gyrosigma accuminatum, Gyrosigma fasciola, Aulacoseira granulata, Nitzschia sp., Nitzschia linearis, Nitzschia reversa, Nitzschia closterium, Cyclotella sp. and Stephanodiscus rotula were mainly responsible to the variation of the phytoplankton assemblages at all the sites. However, taxa of Chlorophyceae (Eudorina elegans) and Cyanophyceae (Microcystis sp.) also characterized site S1, Cyanophyceae (Lyngbya limnetica, Planktolyngbya sp.) characterized sites S4 and S6; Chlorophyceae (Eudorina elegans, Pandorina morum) characterized sites S5, S7, and S8; Cyanophyceae (Anabaena sp., Synechococcus Lyngbya sp.), Chlorophyceae sp., (Oedogonium sp., Eudorina elegans) and Euglenophyceae (Euglena sp.) characterized sites S2 and S3. Based on seasons, the distribution of phytoplankton assemblages is mostly characterized by only Bacillariophyceae (Entomoneis paludosa, Aulacoseira granulata, Iconella capronii, Navicula sp.) in LWS and by Bacillariophyceae (Aulacoseira sp and Cerataulina bicornis) Chlorophyceae (Eudorina elegans) in SWS while the dry season is characterized by Bacillariophyceae (Entomoneis paludosa, Surirella robusta, Melosira sp., Nitzschia sp., Cyclotella sp. and Coscinodiscus sp.), Chlorophyceae (Eudorina elegans) and Cyanophyceae (Lyngbya sp., Microcystis sp., Planktolyngbya sp.).

Relationship between phytoplankton and environmental variables

The RDA results showed that the first two components accounted for 86.1% of the taxon-environment relationship whilst also accounting for 43.9 % of the variance in the phytoplankton taxon, with correlation coefficients of 0.873 and 0.736 for first and second axis, respectively (Table 4). Based on the environmental input variables listed in table 2, forward screening revealed that DO, phosphate, salinity, conductivity, and temperature were important to describe trends in the occurrence and abundance of phytoplankton taxa in Lake Ahémé. Figure 4 shows that phosphate, salinity, and conductivity are explained by the first RDA while DO and temperature are explained by the second RDA axis. Also, groups 1, 2, 3, 4, 5, 6, 7, 8, and 9 are observed with low values of phosphates, salinity, and conductivity, as opposed to group 10 which are observed when these values are high. Groups 2,3,5,7 and 8 are most commonly observed when the temperature is high and the DO values are very low. This last characteristic seems to separate them from groups 1, 4, 5, 6, and 9 which are observed with average values of DO. As for group 10, it is especially observed when the values of phosphates, salinity, conductivity, and temperature are generally high but with low values of DO. Moreover, three categories of groups were observed and characterized by a specifically abiotic factor. The first category that is characterized by high temperature, high conductivity, and high rates of phosphates include essentially Bacillariophyceae, Chlorophyceae, Cyanophyceae, and Euglenophyceae. The second and third categories shared the same composition of taxa (Bacillariophyceae, Cyanophyceae, Chlorophyceae, Conjugatophyceae, Dinophyceae, Euglenophyceae, Ulvophyceae) except for Xanthophyceae and Trebouxyophyceae included respectively in each of these categories. Besides, the second category is characterized by low salinity, low phosphates and high DO levels, while the third category is characterized by the same variations in salinity and phosphate as the previous categories but with very low DO levels.

Table 4 : Synthesis statistics of RDA outputs for individual and interactive relationships between species and environment in Lake Ahémé.

0.392 0.873	2 0.047 0.736	3 0.037 0.706	0.027

0.873	0.736	0.706	0.602
	0.750	0.706	0.603
39.2	43.9	47.7	50.3
76.8	86.1	93.4	98.6

Fig.4: Diagram of RDA for physical and chemical variables (red segment) and phytoplankton groups (blue segment) during the four seasons in Lake Ahémé.

IV. DISCUSSION

In general, environmental conditions in Lake Ahémé experienced seasonal fluctuations during the study period. The values obtained for the depth (1.05-1.91 m) are very similar to those obtained by [35] and [13] (0-2.5 m and 0-2.35 m) respectively,in the same ecosystem. Transparency values are low compared to those obtained by [36] in the same lake. Conversely, turbidity is relatively high (28.65-380.53 NTU) and this is due to precipitation which, following rainwater runoff, contributes to the loading of

water bodies with various suspended solids such as silt, clay, organic and inorganic matter, etc. These values are higher than those obtained by [4] (75-98 NTU) in the same ecosystem. This divergence is believed to be due to the influence of human activities, which is becoming more and more pronounced in this ecosystem. However, the values obtained for temperature (27.36°C–29.83°C) are consistent with those reported by [35] and [4]. Dissolved oxygen, with values between 2.67 mg/L and 4.09 mg/L, is consistent with the variations obtained by [4] for the same parameter. According to [37], water with a dissolved

oxygen content of less than 3 mg/L is classified as polluted. The low oxygen levels were recorded during the short wet season and show that Lake Ahémé is polluted during this period. Also, these low values indicate a high demand for dissolved oxygen in the decomposition process of organic matter. This results in deoxygenation of the environment, which leads disturbances (anoxia/asphyxia) at the lake level [15]. Furthermore, salinity, conductivity and total dissolved solids evolved according to the same trends during the study. [4], obtained low values compared to those recorded in this study. This could be linked to the hydrodynamics of the environment (exchanges with the marine environment) which affect the balance of biocenosis, now selective. In so doing, the species group together in assemblages and are dominated by marine and estuarine affinity species [38]. The values of nitrates (25.94-459.92 µg/L), nitrites (19.74-71.50 µg/L) and orthophosphates (18.18-546.23 µg/L) observed are very high compared to those recorded by [39] in the Adzopé water body in Côte d'Ivoire. These nitrogen and phosphorus compounds, which are increasingly induced in large quantities in aquatic environments by human activities, cause blooms of phytoplankton organisms and consequently eutrophication.

During the study period, the highest phytoplankton density was recorded in the long wet season (LWS) while the lowest diversity was obtained during the short wet season (SWS). These results are in accordance with those of [40] which found high phytoplankton density in the rainy season in the Lake Bia in Côte d'Ivoire. In contrast [10] and [41] recorded respectively in Lake Taabo (Côte d'Ivoire) and the Douala Estuary (Cameroun), the lowest phytoplankton diversity in the rainy season. This difference is the result of environmental conditions that vary in each habitat. Besides, the phytoplankton community in Lake showed significant heterogeneity in their Ahémé assemblages. This can be explained by the different water parameters at each site and by the ecological flexibility of the species [42] Moreover, it can be seen from similarities analysis (ANOSIM), that seasons have a large effect on the distribution and composition of the phytoplankton community. As a consequence, SIMPER revealed that species such as Cerataulina bicornis, Surirella sp, Entomoneis alata, Entomoneis paludosa, Iconella capronii, Stephanodiscus rotula, Coscinodiscus sp., Nitschia linearis and Nitzschia sigma for the Bacillariophyceae, Eudorina elegans, Pandorina morum and Phacotus lenticularis for the Chlorophyceae, Synechococcus sp. and Planktolyngbya sp. for the Cyanophyceae are the major taxa characterizing the observed heterogeneity in Lake Ahémé. However, several factors may explain the observed dissimilarity in the phytoplankton community in Lake Ahémé. Thus, traditional fishing called "acadjas" leads to the siltation of Lake Ahémé [14] [15] and contributes to the disruption of its ecological balance, then having harmful effects on biodiversity. Besides, the intrusion of marine waters during high tide [12] could also explain this variability.

Similarly, weather conditions, thermostability and geographic distribution are key factors in explaining the dynamics of phytoplankton in aquatic ecosystems [43]. In SWS, the frequency of precipitation and the water level in the reservoir contributed to the dominance of the group of Chlorophyceae. The increase in water levels in the flooded areas of the lake has induced nutrient transport and consequently the effects of biogeochemical cycles and phytoplankton biomass [44].

Finally, changes in the phytoplankton biomass of Lake Ahémé are mainly induced by human activities, in the same way as the hydrological properties that control the variation and distribution of nutrients in the lake. Abiotic factors play a fundamental role in the organization of aquatic life. Depending on the season, these factors undergo fluctuations that induce changes in water levels. According to [45], the environmental factors most recognized as regulators of phytoplankton structure are physical (mixing of water masses, light, temperature, turbulence and salinity) and chemical (nutrients). In coastal ecosystems, changes in composition and structure of the phytoplankton compartment are generally observed in space and time due to abiotic gradients and grazing intensity [46] [47].

The phytoplankton structure in Lake Ahémé is guided by water quality variables such as temperature, DO, phosphates, salinity and conductivity, which best explains their spatial and temporal dynamics. The synthesis resulting from the analysis of the RDA leads us to question the taxonomic composition of each of these assemblages. As a result, the phytoplanktonic composition of the tenth group consisting of Bacillariophyceae, Chlorophyceae, Cyanophyceae and Euglenophyceae is due to high temperatures, high conductivity and high phosphate levels. Besides, the diatom Entomoneis paludosa, which is the most abundant species in this study, is detected by high temperature, high conductivity and high phosphate levels. These results are consistent with those of [48] and [49] who found that Entomoneis paludosa is an epipelic diatom that grows in rivers with high salinity and high electrolyte Bacillariophyceae, concentrations. Cvanophyceae. Euglenophyceae, Euglenophyceae and Dinophyceae are known in the literature as indicators of pollution [50] [51]. However, their occurrence and dynamic in Lake Ahémé are driven by phosphates, the key nutrient for phytoplankton productivity in Lake Ahémé.

May-Jun, 2020 | Available: https://ijeab.com/

V. CONCLUSION

The purpose of this study was to examine phytoplankton response to environmental changes in Lake Ahémé. Different ecological factors influenced phytoplankton abundance and structure, such as phosphorus, which was very important in the abundance of the Bacillariophyceae class. Several algal assemblages over the seasons and between sites indicate, to some extent, a type of water quality. Changes in water quality of Lake Ahémé were observed throughout the study period, inducing variations in phytoplankton assemblages. Thus, some environmental gradients could be predicted by the presence of certain algae species and the preferences and/or tolerances of habitat related to specific environmental conditions.

VI. ACKNOWLEDGMENT

The authors would like to thank the Organization for Women in Science for the Developing World (OWSD) and the Belgian National Focal Point of the Global Taxonomy Initiative (CEBioS programme of the Royal Belgian Institute of Natural Sciences) for their help and support for this study.

REFERENCES

- [1] Smith, M.E., Manoylov, K.M. (2013). Changes in Diatom Biodiversity in Lake Sinclair ,Baldwin County, Georgia, USA. *J. Water Resour. Prot*, 5, 732–742.
- [2] Hamilton, P. B., Lavoie, I. & Poulin, M. (2012). Spatial, seasonal and inter-annual variability in environmental characteristics and phytoplankton standing stock of the temperate, lowland Rideau River, Ontario, Canada. River Research and Applications, 28: 1551–1566.
- [3] Benoît-Chabot, V. (2014). Les facteurs de sélection des bioindicateurs de la qualité des écosystèmes aquatiques: élaboration d'un outil d'aide à la décision. Université de Sherbrooke.
- [4] Dèdjiho, A., Mama, D., Tomètin, L., Nougbodé, I., Sohounhloué, D., Boukari, M. (2013). Évaluation de la qualité physico-chimique de certains tributaires d'eaux usées du lac Ahémé au Bénin. J. Appl. Biosci, 70, 5608–5616.
- [5] Nyakoojo, C., Byarujali, S.M. (2010). Temporal distribution of phytoplankton in Lake Nyamusingiri in the Albertine Rift Valley, Uganda. *Afr. J. Ecol*, 48, 865–870.
- [6] Chikhaoui, M.A., Hlaili, A.S., Mabrouk, H.H. (2008). Réponses saisonnières du phytoplancton aux rapports d'enrichissements N:Si:P dans la lagune de Bizerte (Sud-Ouest de la Méditerranée). Comptes Rendus – Biol, 331, 389–408.
- [7] Farahani, F., Korehi, H., Mollakarami. S., Shandari, S., Zaferani, S. G., Shashm, Z. M.(2006). Phytoplankton diversity and nutrients at the Jajerood River in Iran Pak. *Journal of Biological Science*, 9: 1787–1790.

- [8] Baek, S.H., Kim, D., Son, M., Yun, S.M., Kim, Y.O. (2015). Seasonal distribution of phytoplankton assemblages and nutrient-enriched bioassays as indicators of nutrient limitation of phytoplankton growth in Gwangyang Bay, Korea. Estuar. *Coast. Shelf Sci*, 163, 265–278.
- [9] Pinckney, J.L., Paerl, H.W., Tester, P., Richardson, T.L. (2001). The Role of Nutrient Loading and Eutrophication in Estuarine Ecology. *Environmental Health Perspectives*. 109(5), 699-706.
- [10] Groga, N., Ouattara, A., Koulibaly, A., Dauta, A., Amblard, C., Laffaille, P., Gourene, G. (2014). Dynamic and structure of phytoplankton community and environment in the lake Taabo (Côte d'Ivoire). *Int. Res. J. Public Environ. Heal*, 1, 70–86.
- [11] Dedjiho, C.A., Alassane, A., Chouti, W., Sagbo, E., Changotade, O., Mama, D., Boukari, M., Sohounhloue, D. (2014). Negative Impacts of the Practices of Acadjas on the Aheme Lake in Benin. *Journal of Environmental Protection*, 5, 301-309.
- [12] Amoussou, E., 2004. Systèmes traditionnels de gestion durable du lac Ahémé au Bénin,https://www.researchgate.net/publication/237266059.
- [13] Amoussou, E. (2010). Variabilité pluviométrique et dynamique hydro-sédimentaire du bassin versant du complexe fluvio-lagunaire Mono-Ahémé-Couffo (Afrique de l'Ouest). PhD Thesis, Histoire. Université de Bourgogne, Français. <NNT: 2010DIJOL001>. <tel-00493898v2> HAL.
- [14] Badahoui, A., Fiogbe, E.D., Boko, M. (2010). Les causes de la dégradation du lac Ahémé et ses chenaux. Int. J. Biol. Chem. Sci, 4, 882–897.
- [15] Mama, D. (2010). Méthodologie et résultats du diagnostic de l'eutrophisation du lac Nokoue (Bénin). Thèse de Doctorat. Université d'Abomey-Calavi.
- [16] Wardle, D.A. (2001). No observational evidence for diversity enhancing productivity in Mediterranean shrublands. Oecologia 129:620–621.
- [17] Kahmen, A., Perner, J., Audorff, V., Weisser, W., Buchmann, N. (2005). Effects of plant diversity, community composition and environmental parameters on productivity in montane European grasslands. *Oecologia*, 142, 606–615.
- [18] Stevenson, R.J., Smol, J.P. (1999). Use of algae in environmental assessments, Freshwater Algae of North America: Ecology and Classification. *Elsevier Inc.* doi:10.1016/B978-0-12-741550-5.50024-6
- [19] Cáceres, C., Rivera, A., González, S., Anadón, R. (2016). Phytoplankton community structure and dynamics in the North Atlantic subtropical gyre. *Prog. Oceanogr*, doi:10.1016/j.pocean.2016.12.003
- [20] Rodier, J., Legube, B., Merlet, N. (2009). Analyse de l'eau. 9ème edition. Dunod: Paris, France. Rosenberg.
- [21] Utermöhl, H. (1958). Zur Vervollkommnung der quantitativen Phytoplankton Methodik. Mitt Int Ver Theor Angew Limnol, 9:1–39.
- [22] Bourrelly, P. (1968). Les algues d'eau douce. I. Les algues jaunes et brunes [Freshwater Algae. I. Yellow Algae and Brown Algae]. Paris: Boubée.
- [23] Bourrelly P. (1972). (Tome I) les algues d'eau douces :

- initiation à la systématique- les algues vertes. Édition N. Boubée et Cie.572p.
- [24] Bourrelly P. (1981). (Tome II) les algues d'eau douces : initiation à la systématique– les algues jaunes et brunes. Édition N. Boubée et Cie.517p.
- [25] ILtIS, A. (1980). Les algues. Flore et Faune aquatiques de l'Afrique sahelo-soudanienne. J.R. Durand et C. Levêque (éditeurs), ORStOM; t1, 9-61.
- [26] Barsanti, L., Gualtieri, P. (2006). Algae: Anatomy, Biochemistry, and Biotechnology, CRC. ed.
- [27] Rumeau A. & Coste M. (1988). Initiation à la systématique des diatomées d'eau douce. Pour l'utilisation pratique d'un indice diatomique générique. Bulletin Français de Pêche et de Pisciculture, 309 : 1-69.
- [28] Compère, P. (1967). "Algues du Sahara et de la région du Lac Tchad [Algae from the Sahara and Lake Chad Region]." Bulletin du Jardin Botanique National de Belgique, 37: 109– 288.
- [29] Rodriguez, S., Vergon, J.-P. (1996). Guide pratique de détermination générique des algues macroscopiques d'eau douce, Ministère de l'Environnement - DIREN Franche-Comté, Besançon, 110 p.
- [30] Couté, A., & Bernard, C. (2001). Les cyanobactéries toxiques. *Toxines d'algues dans l'alimentation*, 21-37.
- [31] Warwick, R.M., Clarke, K.R. (1991). A comparison of some methods for analysing changes in benthic community structure. *J. Mar. Biol. Assoc*, 71, 225–244.
- [32] Clarke, K., Green, R. (1988). Statistical design and analysis for a "biological effects" study. *Mar. Ecol. Prog. Ser*, 46, 213–226.
- [33] Bray, J. R. & Curtis, J. T. (1957). An ordination of upland forest communities of southern Wisconsin. *Ecological Monographs*, 27: 325–349
- [34] ter Braak, C. J. and Smilauer, P. (2002). CANOCO Reference Manual and CanoDraw for Windows User's Guide: Software for Canonical Community Ordination (version 4.5). Microcomputer Power, Ithaca, NY, USA, 500 pp.
- [35] Oyédé, L.M., Lang, J., Tsawlassou, G. (1988). Un exemple de sédimentation biodétritique Holocène en climat tropical humide: le lac Ahémé (Bénin Afrique de l'Ouest). *Journal* of African Earth Sciences, 7(5/6): 835-855.
- [36] Maslin, J.-L. & Bouvet, Y. (1986): Le lac Ahémé (Bénin): Présentation du milieu, caractéristiques mésologiques, nature des fonds et distribution des peuplements malacologiques. *Oïkos*, 46: 192-202.
- [37] Beaux, J. F (1998). L'environnement repères pratiques. Nathan, ISBN 209-18243-3,. 64-71.
- [38] Villanueva, M.S. (2004). Biodiversité et relations trophiques dans quelques milieux estuariens et lagunaires de l'Afrique de l'ouest: adaptations aux pressions environnementales, Thèse de doctorat, Institut National Polytechnique de Toulouse, 272p.
- [39] Adon, M.P. (2013). Variations spatiale et saisonnière du phytoplancton de la retenue d'eau d'adzopé (côte d'ivoire): composition, structure, biomasse et production primaire. Thèse de doctorat, Université de Nangui-Abrogoua, Côte d'Ivoire.

- [40] Ouattara, A., Podoor, N., Gourène, G. (2001). Études préliminaires de la distribution spatio-temporelle du phytoplancton dans un système fluvio-lacustre africain (Bassin Bia; Côte d'Ivoire). Hydroécologie Appliquée, 13, 113–132.
- [41] Fonge, A., Chuyong, B., Tening, A., Fobid, A., Numbisi, N. (2013). Seasonal occurrence, distribution and diversity of phytoplankton in the Douala Estuary, Cameroon. *African J. Aquat. Sci*, 38, 123–133.
- [42] Silva-Bedoya, L.M., Ramírez-Castrillón, M., Osorio-Cadavid, E. (2014). Yeast diversity associated to sediments and water from two Colombian artificial lakes. *Brazilian J. Microbiol.* 45, 135–142.
- [43] Tundisi, J.G., Matsumura-Tundisi, T., Abe, D.S. (2007). Climate monitoring before and during limnological studies: a needed integration. *Braz. J. Biol*, 67, 795–796.
- [44] Tundisi, J.G., Tundisi, T.M. (2012). Limnology. CRC Press.
- [45] Brogueira, J.M., Oliveira, M., Cabeçadas, G. (2010). Phytoplankton community structure defined by key environmental variables in Tagus estuary, Portugal. *Mar. Environ.Res*, 64, 616.
- [46] Bonilla, S., Villeneuve, V., Vincent, W.F. (2005). Benthic and planktonic algal communities in a high arctic lake: pigment structure and contrasting responses to nutrient enrichment. *J. Phycol*, 41, 1120–1130.
- [47] Costa, L.S., Huszar, V.L., Ovalle, A.R. (2009). Phytoplankton functional groups in a tropical estuary: hydrological control and nutrient limitation. *Estuar. Coasts*, 32(3), 508–521.
- [48] Dalu, T., Taylor, J., Richoux, N., Froneman, W. (2015). A re-examination of the type material of Entomoneis paludosa (W Smith) Reimer and its morphology and distribution in African waters. *Fottea, Olomouc*, 15, 11–25.
- [49] Bahls, l. (2012): Entomoneis paludosa. In Diatoms of the United States. http://westerndiatoms.colorado.edu/taxa/species.
- [50] Houari, A. (2009). République algérienne démocratique et populaire. Hassiba ben bouali chlef. Master Thesis, Université Hassiba Ben Bouali Chlef, Algérie.
- [51] Descy, J.P., Darchambeau, F., Lambert, T., Stoyneva-Gaertner, M.P., Bouillon, S., Borges, A.V. (2017). Phytoplankton dynamics in the Congo River. *Freshw. Biol.* 62, 87–101.

Annexe

Table 5: List of species per group Species

Groups	Species	Groups	Species	Groups	Species	Groups	Species
Group1	Anabaena spiroides	Group3	Diatoma mesodon	Group6	Navicula phyllepta	Group9	Gyrosigma fasciola
Group1	Asterionella sp.	Group3	Hantzschia amphioxys	Group6	Bacillaria sp.	Group9	Tetraedron minimum
Group1	Aulacoseira islandica	Group3	Ctenophora pulchella	Group6	Scrippsiella trochoideae	Group9	Pleurosigma angulatum
Group1	Closterium acutum	Group3	Microcystis aeruginosa	Group7	Monoraphidium contortum	Group9	Euglena geniculata
Group1	Coelastrum microporum	Group3	Encyonema silesiacum	Group7	Scenedesmus sp.	Group9	Euglena gracilis
Group1	Coelastrum sp.	Group3	Micrasterias americana	Group7	Ankystrodesmus sp.	Group 10	Anabaena sp.
Group1	Coscinodiscus lineatus	Group3	Navicula reinhardtii	Group7	Anomoeonis serians	Group 10	Pandorina morum
Group1	Cymbella turgidula	Group3	Navicula yarrensis	Group7	Stephanodiscus sp.	Group 10	Nitzschia linearis
Group1	Gomphonema clavatum	Group3	Phacus succicus	Group7	Phacus orbicularis	Group 10	Stigeoclonium sp.
Group1	Prestauroneis protracta	Group3	Pleurosigma delicatulum	Group7	Crucigenia crucifera	Group 10	Oedogonium sp.
Group1	Lyngbya martensiana	Group3	Scenedesmus obtusus	Group7	Stephanodiscus hantzschii	Group 10	Euglena sp.
Group1	Merismopedia punctata	Group3	Selenastrum sp.	Group7	Navicula distans	Group10	Stephanodiscus rotula
Group1	Merismopedia tenuissima	Group3	Surirella biseriata	Group7	Oxillatoria sp.	Group10	Synechococcus sp.
Group1	Monoraphidium sp.	Group3	Nitzschia nana	Group7	Surirella hybrida	Group 10	Nitzschia closterium
Group1	Oocystis sp.	Group4	Diploneis didyma	Group7	Surirella fastuosa	Group 10	Phacotus lenticularis
Group1	Pediastrum boryanum	Group4	Microspora sp.	Group7	Pinnularia lata	Group 10	Gyrosygma sp.
Group1	Pediastrum tetras	Group4	Nitzschia pellucida	Group7	Euglena oxyuris	Group 10	Microcystis sp.
Group1	Pinnularia dactylus	Group4	Pinnularia pulchella	Group7	Nitzschia circumsuta	Group 10	Surirella sp.
Group1	Pinnularia gigas	Group4	Staurastrum pingue	Group7	Synedra acus	Group 10	Aulacoseira granulata
Group1	Pinnularia limosa	Group4	Trachelomonas klebsi	Group7	Anabaena affinis	Group10	Navicula sp.
Group1	Pleurosigma formosum	Group4	Tryblionella debilis	Group7	Closterium sp.	Group10	Iconella capronii
Group1	Pleurosigma rigidum	Group4	Ulnaria ulna	Group7	Mastogloia smithii	Group 10	Coscinodiscus sp.
Group1	Scenedesmus dimorphus	Group4	Campylodiscus fastuosus	Group7	Amphora ovalis	Group 10	Planktolyngbya sp.

ISSN: 2456-1878

https://dx.doi.org/10.22161/ijeab.53.37

International Journal of Environment, Agriculture and Biotechnology, 5(3) May-Jun, 2020 | Available: https://ijeab.com/

Group1	Scenedesmus granulatus	Group4	Lepocinclis ovum	Group7	Epithémia sp.	Group 10
Group1	Scenedesmus serratus	Group4	Rhizoclonium tortuosum	Group7	Pleurosygma sp.	Group 10
Group1	Scrippsiella sp.	Group4	Asterococcus sp.	Group7	Trachelomonas superba	Group 10
Group1	Selenastrum bribraianum	Group4	Pinnularia borealis	Group7	Stephanopyxis palmeriana	Group 10
Group1	Staurastrum cingulum	Group4	Eunotia sepentina	Group7	Placoneis amphibola	Group 10
Group1	Staurastrum dilatatum	Group4	Eunotia sp.	Group7	Phacus longicauda	Group10
Group1	Staurastrum muricatum	Group4	Kirchneriella irregualis	Group7	Achnanthès sp.	Group10
Group1	Staurastrum setigerum	Group4	Phacus gigas	Group7	Anomoeoneis sp.	Group10
Group1	Terpsinoe brebissonii	Group4	Navicula radiosa	Group8	Pinnularia dactylus	Group 10
Group1	Tetracystis chlorococcoides	Group4	Licmophora abreviata	Group8	Eudorina sp.	Group 10
Group1	Tetraedron triangulare	Group4	Gonphonema sp.	Group8	Mougeotia scalaris	
Group1	Trachelomonas bacillifera	Group5	Spirogyra sp.	Group8	Chroococus sp.	
Group1	Tribonema vulgare	Group5	Spirulina major	Group8	Navicula peregrinopsis	
Group1	Triceratium castellatum	Group5	Chaetoceros sp.	Group8	Cymbella mexicana	
Group1	Anabaenopsis circularis	Group5	Nitzschia palea	Group8	Plagiotropis lepideptora	
Group2	Cosmarium punctulatum	Group5	Eunotia pectinalis	Group8	Coscinodiscus centralis	
Group2	Tabularia sp.	Group5	Pseudo-Nitzschia sp.	Group8	Cocconeis placentula	
Group2	Lepocinclis marssonii	Group5	Cosmarium sp.	Group8	Lyngbya majuscula	
Group2	<i>Ulotrix</i> sp.	Group5	Caloneis sp.	Group8	Bacillaria pascillifer	
Group2	Caloneis undulata	Group5	Pinnularia macilenta	Group8	Nitzschia scalaris	
Group2	Campylodiscus simulans	Group5	Cymbella cuspida	Group8	Closterium lunula	
Group2	Closterium lanceolatum	Group5	Cymbella silesiaca	Group8	Dictyosphaerium sp.	
Group2	Crucigenia quadrata	Group5	Pediastrum sp.	Group8	Synedra sp.	
Group2	Crucigenia rectangularis	Group5	Phacus caudatus	Group8	Actinastrum hantzschii	
Group2	Fragilaria vaucheria	Group5	Denticula sp.	Group8	Euglena acus	
Group2	Hantzschia sp.	Group5	Closterium closteroides	Group8	Euglena allorgei	

ISSN: 2456-1878

Entomoneis alata
Aulacoseira sp.
Lyngbya sp.
Cyclotella sp.
Nitzschia sp.

Pinnunavis elegantoides Cerataulina bicornis Surirella robusta Eudorina elegans Entomoneis paludosa

Group2	Lyngbya rigidula	Group5	Navicula blanda	Group8	Alexandrium tamarense
Group2	Mougeotia sp.	Group5	Nitzschia obtusa	Group8	Tetraplektron torsum
Group2	Nitzschia gracilis	Group5	Caloneis silicula	Group8	Diploneis sp.
Group2	Nitzschia heufleuriana	Group5	Euglena tripteris	Group8	Cocconeis sp.
Group2	Oscillatoria nigoviridis	Group5	Selenastrum gracile	Group8	Synechocystis sp.
Group2	Phacus helikoides	Group5	Nitzschia vermicularis	Group8	Entomoneis sp.
Group2	Pinnularia cardinalis	Group5	Pinnularia major	Group8	Pleurosigma salinarum
Group2	Pleurotaenium sp.	Group5	Microcystis wesenbergii	Group8	Melosira nummuloides
Group2	Scenedesmus verrucosus	Group5	Pinnularia viridis	Group8	Phacus sp.
Group2	Staurastrum avicula	Group5	Trachelomonas oblonga	Group8	Terpsinoe musica
Group2	Tetracystis algae	Group5	Hyalotheca sp.	Group9	Coscinodiscus lacustris
Group3	Ceratium hirundinella	Group5	Eunotia serra	Group9	Gomphonema parvalum
Group3	Caloneis schumanniana	Group5	Nitzschia panduriformis	Group9	Pinnularia sp.
Group3	Fragilaria sp.	Group5	Rhopalodia gibba	Group9	Coscinodiscus wailesii
Group3	Gyrosigma scalproides	Group6	Trachelomonas caudata	Group9	Neidium sp.
Group3	Lepocinclis sp.	Group6	Nitzschia intermedia	Group9	Diatoma sp.
Group3	Navicula protracta	Group6	Campylodiscus sp.	Group9	Oscillatoria lacustris
Group3	Nitzschia triblyonella	Group6	Ulothryx zonata	Group9	Stigeoclonium subsecundum
Group3	Synechococcus maximus	Group6	Gomphoneis sp.	Group9	Phacus contortus
Group3	Tabellaria floculosa	Group6	Navicula amphibola	Group9	Stephanodiscus niagarae
Group3	Tetracystis sp.	Group6	Rhopalodia musculus	Group9	Pinnularia interrupta
Group3	Trachelomonas globularis	Group6	Tabellaria sp.	Group9	Gyrosigma attenuatum
Group3	Trachelomonas hispida	Group6	Plagiotropis sp.	Group9	Mallomonas sp.
Group3	Trachelomonas sp.	Group6	Trachelomonas armata	Group9	Cyclotella radiosa
Group3	Volvox sp.	Group6	Tryblionella angustata	Group9	Chaetoceros neogracilis
Group3	Merismopedia sp.	Group6	Closterium gracile	Group9	Nitzschia reversa

International Journal of Environment, Agriculture and Biotechnology, 5(3) May-Jun, 2020 | Available: https://ijeab.com/

Group3	Spirulina subsalsa	Group6	Closteriopsis longissimum	Group9	Craticula cuspidata
Group3	Lyngbya giganteum	Group6	Cerataulinasp.	Group9	Closterium venus
Group3	Pediastrum duplex	Group6	Gomphonema intricatum	Group9	Gyrosigma accuminatum
Group3	Oscillatoria limosa	Group6	Denticula pelagica	Group9	Amphora pediculus
Group3	Ceratium sp.	Group6	Gyrosigma hyppocampus	Group9	Nitzschia sigma
Group3	Epithemia argus	Group6	Pleurosigma estuarii	Group9	Lyngbya limnetica