Screening Tests for the LASSO

Hanxiao Liu hanxiaol@cs.cmu.edu

November 3, 2015

Outline

- LASSO
 - Primal & Dual form
 - Primal-dual correspondence
- Safe Test for LASSO
 - Static case (example: sphere test)
 - Dynamic case
- Better safe test based on duality gap
 - Geometric illustration
 - Convergence
- Empirical Results

LASSO

$$X \in \mathbb{R}^{n \times p}$$
 where $p \gg n$

$$\min_{\beta \in \mathbb{R}^p} \ \frac{1}{2} \|X\beta - y\|_2^2 + \lambda \|\beta\|_1 \qquad (1)$$

 Commonly used for high-dimensional feature selection

Today's topic—screening tests

- Rules to early discard irrelevant features prior to starting a LASSO solver without affecting the final opt solution.
- The "chicken-and-egg problem"?

LASSO Dual

Primal:
$$\min_{\beta \in \mathbb{R}^p, z \in \mathbb{R}^n} \frac{1}{2} \|y - z\|_2^2 + \lambda \|\beta\|_1 \text{ s.t. } z = X\beta$$
 (2)

Dual:
$$\max_{u \in \mathbb{R}^n} \min_{\beta, z} \ \underbrace{\frac{1}{2} \|y - z\|_2^2 + \lambda \|\beta\|_1 + u^\top (z - X\beta)}_{\text{Lagrangian } \mathcal{L}(\beta, z, u)}$$
(3)

 $\mathsf{Dual}\ \mathsf{Objective}\ g(u)$

$$\implies \max_{u} \left[\min_{z} \left(\frac{1}{2} \| y - z \|_{2}^{2} + u^{\top} z \right) - \lambda \max_{\beta} \left(\frac{u^{\top} X}{\lambda} \beta - \| \beta \|_{1} \right) \right]$$

$$\tag{4}$$

$$\implies \max_{u} \frac{1}{2} \|y\|_{2}^{2} - \frac{1}{2} \|u - y\|_{2}^{2} - \lambda \mathbb{I}_{\left\{\left\|\frac{X^{\top}u}{\lambda}\right\|_{\infty} \le 1\right\}}$$
 (5)

$$\xrightarrow{\theta = \frac{u}{\lambda}} \max_{\theta \in \mathbb{R}^n} \frac{1}{2} \|y\|_2^2 - \frac{\lambda^2}{2} \left\| \theta - \frac{y}{\lambda} \right\|_2^2 \quad \text{s.t.} \quad \left\| X^\top \theta \right\|_{\infty} \le 1 \quad (6)$$

Karush-Khun-Tucker Condition

Primal-dual correspondence

Key observation:
$$|x_j^{ op} \hat{\theta}| < 1 \implies \hat{\beta}_j = 0$$

(11)

Safe Test

$$|x_j^{\top}\hat{\theta}| < 1 \implies \hat{\beta}_j = 0$$

- ullet Challenge: dual solution $\hat{ heta}$ is unknown
- Workaround: relaxation

Let \mathcal{C} be a set containing $\hat{\theta}$ and define $\mu_{\mathcal{C}}(x_j) := \sup_{\theta \in \mathcal{C}} |x_j^{\top} \theta|$. Obviously $|x_j^{\top} \hat{\theta}| \leq \mu_{\mathcal{C}}(x_j)$.

Safe Test

$$\mu_{\mathcal{C}}(x_j) < 1 \implies \hat{\beta}_j = 0$$
 (12)

The test is useful when

- **1** $\mu_{\mathcal{C}}(x_i)$ can be evaluated efficiently.
- **2** \mathcal{C} is small—thus leading to small $\mu_{\mathcal{C}}(x_j)$.

Goal: Find C satisfying both conditions above.

Sphere Tests

Parametrize $\mathcal C$ as a closed ℓ_2 -ball $B\left(c,r\right)=\{\theta:\|\theta-c\|_2\leq r\}.$

$$\mu_{\mathcal{C}}(x_j) = \mu_{B(c,r)}(x_j) = \sup_{\theta \in B(c,r)} |x_j^\top \theta| = |c^\top x_j| + r||x_j||_2 \quad (13)$$

- Q: How to find B(c,r) that contains $\hat{\theta}$ without knowing $\hat{\theta}$?
- A: Any dual-feasible θ' defines a ball over $\hat{\theta}$

$$\|\hat{\theta} - \underbrace{\frac{y}{\lambda}}_{c}\|_{2} \le \underbrace{\|\theta' - \frac{y}{\lambda}\|_{2}}_{r} \tag{14}$$

- Recall: $\max_{\theta \in \mathbb{R}^n} \frac{1}{2} \|y\|_2^2 \frac{\lambda^2}{2} \|\theta \frac{y}{\lambda}\|_2^2 \text{ s.t. } \underbrace{\|X^\top \theta\|_{\infty} \leq 1}_{\theta \in \Delta_X}$
- A trivial feasible point: $\theta' = \frac{y}{\lambda_{\max}}$ where $\lambda_{\max} := \|X^\top y\|_{\infty}^{-1}$.

$$\implies c = \frac{y}{\lambda}, \quad r = \|y\| \left| \frac{1}{\lambda} - \frac{1}{\lambda_{\text{max}}} \right| \tag{15}$$

 $^{^1 {\}rm ln}$ fact, θ' obtained in this manner is the dual solution when $\lambda=\lambda_{\rm max}$, corresponding to all-zero primal solution.

Dynamic Safe Tests

To iteratively apply safe tests as the algorithm proceeds

- Recall $\forall heta' \in \Delta_X$ defines an ℓ_2 -ball containing $\hat{ heta}$
- Let $\theta_k \in \Delta_X$ be a dual-feasible point at iteration k, $\left\{\theta_k\right\}_{k \in \mathbb{N}}$ defines a sequence of balls $\left\{B\left(\frac{y}{\lambda}, \left\|\theta_k \frac{y}{\lambda}\right\|_2\right)\right\}_{k \in \mathbb{N}}$
- Each ball defines a safe test

How θ_k is defined via β_k ?

- $\theta_k := \prod_{\Delta_X \cap \operatorname{span}(\rho_k)} \left(\frac{y}{\lambda}\right)$ where $\rho_k := y X\beta_k$
- Intuition
 - **①** Dual opt: $\hat{\theta} = \Pi_{\Delta_X} \left(\frac{y}{\lambda} \right)$
 - ② Primal-dual correspondence: $\hat{\theta} \in \operatorname{span}(\hat{\rho})$ where $\hat{\rho} := y X\hat{\beta}$

Mind the Duality Gap

Can we better bound $\hat{\theta}$ by also leveraging primal info?

$$orall \left(eta, heta
ight) \in \mathbb{R}^p imes \Delta_X$$
, we claim

$$\hat{R}(\beta) \le \left\| \hat{\theta} - \frac{y}{\lambda} \right\| \le \check{R}(\theta) \tag{16}$$

where

- $\check{R}(\theta) = \|\theta \frac{y}{\lambda}\|$ (dual optimality)
- $\hat{R}(\beta) = \frac{1}{\lambda} \sqrt{(\|y\|^2 \|y X\beta\|^2 2\lambda \|\beta\|_2)_+}$ (duality gap)

weak duality

$$\frac{1}{2}||y||^2 - \frac{\lambda^2}{2}||\theta - \frac{y}{\lambda}||^2 \le \frac{1}{2}||y - X\beta||^2 + \lambda||\beta||_1 \tag{17}$$

Therefore, $\hat{\theta}$ lies in an annulus, i.e. $A\left(\frac{y}{\lambda}, \check{R}\left(\theta\right), \hat{R}\left(\beta\right)\right)$

Geometric Illustration

$$=A\left(\frac{y}{\lambda},\widecheck{R}_{\lambda}(\theta),\widehat{R}_{\lambda}(\beta)\right)$$

Recall
$$\hat{R}\left(\beta\right) \leq \left\|\hat{\theta} - \frac{y}{\lambda}\right\| \leq \check{R}\left(\theta\right)$$

¹[Fercoq et al., 2015]

Fine-grained Analysis

Two geometrical observations

$$\bullet \left[\theta, \hat{\theta}\right] \subseteq A\left(\frac{y}{\lambda}, \check{R}\left(\theta\right), \hat{R}\left(\theta\right)\right)$$

Proof.

$$\begin{array}{ll} \text{Convexity of polyhedron } \Delta_X \implies \text{convexity of } \Delta_X \cap B\left(\frac{y}{\lambda}, \check{R}\left(\theta\right)\right) \\ \implies \text{convexity of } \Delta_X \cap A\left(\frac{y}{\lambda}, \check{R}\left(\theta\right), \hat{R}\left(\beta\right)\right) \text{ containing } \theta, \; \hat{\theta} \end{array} \quad \Box$$

$$vecAngle\left(\theta - \hat{\theta}, \frac{y}{\lambda} - \hat{\theta}\right) \ge 90^{\circ}$$

Proof.

$$\forall \theta' \in \left[\theta, \hat{\theta}\right] \text{ we have } \|\frac{y}{\lambda} - \hat{\theta}\| \leq \|\frac{y}{\lambda} - \theta'\| \text{ as } \hat{\theta}, \theta' \in \Delta_X \text{ and } \\ \hat{\theta} = \Pi_{\Delta_X}\left(\frac{y}{\lambda}\right). \text{ However, suppose } vecAngle\left(\theta - \hat{\theta}, \frac{y}{\lambda} - \hat{\theta}\right) < 90^\circ, \\ \text{contradiction occurs by setting } \theta' := \Pi_{\left[\theta, \hat{\theta}\right]}\left(\frac{y}{\lambda}\right).$$

Geometric Illustration

$$= B\left(\frac{y}{\lambda}, \widehat{R}_{\lambda}(\beta)\right)^{c} \cap B\left(\frac{\frac{y}{\lambda} + \theta}{2}, \underbrace{\widecheck{R}_{\lambda}(\theta)}{2}\right)$$

$$\text{Recall } vecAngle\left(\theta-\hat{\theta},\frac{y}{\lambda}-\hat{\theta}\right) \geq 90^{\circ}$$

¹[Fercoq et al., 2015]

Safe Tests Refined

Two convex relaxation schemes

Sphere
$$C_{relaxed} = B\left(\theta, \underbrace{\sqrt{\check{R}(\theta)^2 - \hat{R}(\beta)^2}}_{\tilde{r}(\theta,\beta)}\right)$$
 (18)

Dome
$$C_{relaxed} = conv (darkBlueRegion)$$
 (19)

¹[Fercoq et al., 2015]

Convergence

Proposition

Let $G(\beta, \theta)$ be the LASSO duality gap, $\forall (\beta, \theta) \in \mathbb{R}^p \times \Delta_X$ we have $\tilde{r}(\beta, \theta)^2 \leq \frac{2}{\lambda^2} G(\beta, \theta)$

$$\underbrace{\frac{1}{2}\|y\|^2 - \frac{\lambda^2}{2}\|\theta - \frac{y}{\lambda}\|^2}_{\text{dual obj}} + G(\beta, \theta) = \underbrace{\frac{1}{2}\|y - X\beta\|^2 + \lambda\|\beta\|_1}_{\text{primal obj}} \tag{20}$$

$$\underbrace{\frac{2}{\lambda^2}G(\beta, \theta) = \underbrace{\|\theta - \frac{y}{\lambda}\|^2}_{=\hat{R}(\theta)^2} - \underbrace{\frac{1}{\lambda^2}\left(\|y\|^2 - \|y - X\beta\|^2 - 2\lambda\|\beta\|_1\right)}_{\leq \hat{R}(\beta)^2}$$

(21)

$$\geq \tilde{r} (\beta, \theta)^2 \tag{22}$$

 $\implies \lim_{k\to\infty} \tilde{r}\left(\beta_k, \theta_k\right) = 0$. Convergence of domes is also implied.

Experiment Results (a)

Proportion of active variables v.s. (1) num of iterations (2) λ

¹[Fercoq et al., 2015]

Experiment Results (b)

Leukemia

$$\frac{p}{n} = \frac{7129}{72} \approx 99.0$$

20NewsGroup

$$\frac{p}{n} = \frac{10094}{961} \approx 10.5$$

$$\frac{p}{n} = \frac{47236}{20242} \approx 2.3$$

¹[Fercog et al., 2015]

Conclusion

Summary

- LASSO primal & dual
- Safe rules discard irrelevant variables prior to optimization
- Refined safe rules based on duality gap

Additional Note

 Safe rules can be applied to other models as well, e.g. support vector machines [Ogawa et al., 2013]

Reference I

El Ghaoui, L., Viallon, V., and Rabbani, T. (2010). Safe feature elimination in sparse supervised learning technical report no. Technical report, UCB/EECS-2010-126, EECS Department, University of California, Berkeley.

Fercoq, O., Gramfort, A., and Salmon, J. (2015). Mind the duality gap: safer rules for the lasso. arXiv preprint arXiv:1505.03410.

Ogawa, K., Suzuki, Y., and Takeuchi, I. (2013). Safe screening of non-support vectors in pathwise svm computation. In *Proceedings of the 30th International Conference on Machine Learning*, pages 1382–1390.

Xiang, Z. J., Wang, Y., and Ramadge, P. J. (2014). Screening tests for lasso problems. arXiv preprint arXiv:1405.4897.