

EXAMEN PARCIAL PYTHON

GBI6-2021II: BIOINFORMÁTICA

Apellidos, Nombres <--- CAMBIE POR LOS QUE CORRESPONDA A SUS DATOS Jose Chair Martinez 03-08-2022

Color de texto

REQUERIMIENTOS PARA EL EXAMEN

Utilice de preferencia Jupyter de Anaconda, dado que tienen que hacer un control de cambios en cada pregunta.

Para este examen se requiere dos documentos:

- 1. Archivo miningscience.py donde tendrá dos funciones:
- 2. Archivo 2022I_GBI6_ExamenPython donde se llamará las funciones y se obtendrá resultados.

Ejercicio 0 [0.5 puntos]

Realice cambios al cuaderno de jupyter:

- · Agregue el logo de la Universidad
- · Coloque sus datos personales
- · Escriba una tabla con las características de su computador

Ejercicio 1 [2 puntos]

Cree el archivo miningscience.py con las siguientes dos funciones:

i. download_pubmed : para descargar la data de PubMed utilizando el ENTREZ de Biopython. El parámetro de entrada para la función es el keyword . · outatas al publicad

ii. science_plots : la función debe 🗵 & Buneato

- utilizar como argumento de entrada la data descargada por download_pubmed
- ordenar los conteos de autores por país en orden ascedente y Confor los curboso por Pois y
- seleccionar los cinco más abundantes. Con esta selección debe graficar un pie_plot , Como guía para el conteo por países puede usar el ejemplo de MapOfScience (https://github.com/CSBbook/CSB/blob/master/regex/solutions/MapOfScience solution.ipynb). - Coulous

iii Cree un docstring para cada función. — Te ope from [4]

Luego de crear las funciones, cargue el módulo miningscience como msc e imprima docstring función.

In [1]:

Escriba agui su código para el ejercicio 1
import mining science-goi
import miningscience-goi as msc.
help (msc. chownland-pubmed)
help (msc. science-plots)

Ejercicio 2 [2 puntos]

Utilice dos veces la función download_pubmed para:

2 ky word

- Descargar la data, utilizando los keyword de su preferencia.
- · Guardar el archivo descargado en la carpeta data.

Para cada corrida, imprima lo siguiente:

'El número artículos para KEYWORD es: XX' # Que se cargue con inserción de texto o valor que correspondea KEYWORD y XX

In [2]:

Escriba aqui su código para el ejercicio 2

• paper= msc, download-pubmed ("Eumenince")

print ("El numero cle ortíalos para fumenince es s", leu (poper))

• artic = msc, dowload-pubmed ("termite")

print ("El número de artíalos para termite es s", leu (artic))

Ejercicio 3 [1.5 puntos]

Utilice dos veces la función science_plots para:

- Visualizar un pie_plot para cada data descargada en el ejercicio 2.
- Guardar los pie_plot en la carpeta img

scriba aquí su código para el ejercicio 3 Eumenince = mec. scionce-ploto (paper) with open ("Ing / Gomeninae pug", "w") as Jpg:

termite = msc. science-plots control with open ("ing / tornite, png", "w") as 1996

Ejercicio 4 [1 punto]

Interprete los resultados de las figuras del ejercicio 3

En el primer disegrana de posto se preden chaerica los cinco pales con mas poblicacios referentes atteneros especies Eumentinos, donde el porcentas mato alto de actives con linestigaciosos respecto a auspos atteneros especies Eumentinos, donde el porcentas mato alto de actives con linestigaciosos respecto a auspos atteneros especies de Connectinos, ha una China con 41,5%, Escriba la respuesta del ejercicio 5. o por su nombre cientifico Eumeninos, ha una China con 41,5%, segudo de Atematica con 29,2% y en terrer logar bresit aux el 15,4%

Ejercicio 5 [2 puntos] & Newlos eurona > gluco reogeneses

Para algún gen de las enzimas que intervienen en la ruta metabolica de la gluconeogenesis (Lista de genes por tipología (https://www.genome.jp/pathway/map00010+C00068)), realice lo siguiente:

- 1. Una búsqueda en la página del NCBI nucleotide (https://www.ncbi.nlm.nih.gov/nucleotide/).
- 2. Descargue el Accession List de su búsqueda y guarde en la carpeta data .
- 3. Cargue el Accession List en este notebook y haga una descarga de las secuencias de los quince primeros IDs de la accesión. - Solo 15
- 4. Arme un árbol filogenético para los resultados del paso 3.
- 5. Guarde su arbol filogénetico en la carpeta img
- 6. Interprete el árbol del paso 4.

```
In [3]:
```

```
# Escriba agus su codigo para el ejercicio 6

with spant toute/sequence.seq") as file:

text = five. read ()

text = txt. split ('\w')

howlie = Cution . relan (db = "nulleute" retipe = "gh", retinade = "text", id = text)

reads = SeGIO. pare ("anto juguano gh", "genboure")

cho taluncere = rocal program files (x30) (plantollier) dustaline, esc 1

clus taluncere = clus taluncommandine (dustaluncere, luftle = "Data sequence truck")

assert os, patan . Is be (clustolancere), "clustolancere, luftle = "Data sequence truck")

assert os, patan . Is be (clustolancere), "clustolancere contacte is missing or nest travel

stiloot, statere = clustolancianere)

Clustolatory = Alignium real ("bata/sequence, alin) dostal")

with open ("bota/sequence, alin", "r") as alin"

aligniment = Alignio, real (lalin, "clustol")

the e = Constacte - boild

the e = Constacte - boild
```

Escriba aquí la interpretación del árbol

Ejercicio 6 [1 punto]

- districtor: District ('ide tily)

 district motion: Allevitor. get_district (olganisal)

 ous histor: District tree constructor (olganisal)

 tree: constructor. boill tree (align in ext)

 tree: vooled: tree

 tree: vooled: voole
- 1. Cree en GitHub un repositorio de nombre GBI6_ExamenPython . 19 screhg (1 mg/orbol.) 2. Cree un archivo Readme.md que debe tener lo siguiente:
- · Datos personales
- · Características del computador
- · Versión de Python/Anaconda y de cada uno de los módulos/paquetes y utilizados
- · Explicación de la data utilizada
- · Un diagrama de procesos del módulo miningscience
- Asegurarse que su repositorio tiene las carpetas data e 1mg con los archivos que ha ido guardando en las preguntas anteriores.
- Realice al menos 1 control de la versión (commits) por cada ejercicio (del 1 al 5), con un mensaje que inicie como:

Carlitos Alimaña ha realizado el ejercicio 1 Carlitos Alimaña ha realizado el ejercicio 2

In []:

GBI6 – BIOINFORMÁTICA [2022I] Examen Final [Python]

Nombre [Apellido, Nombre]:

Construya las funciones del módulo miningscience.py

Este comando no ayuda a horcer articles en plones a través de ma pulabres clave un

Entrez. email = "godaporo. moises@gmail.com" bosq = Entez. read (Entez. esearch (db = "pobmed", term= keyword, use history = ey"))

weben v = bosq ["water"]

query - key = bosq ["Querykey"]

handle = Entrez effetch (db = "pubmed", rettyp = "medline", retmade = "kext", retstoit=0

retmax = \$43, weben = weben, query - key = query - key)

data = houdle . read ()

data exp = re. sub (r'/n\s {6}, ", data)

Nombre [Apellido, Nombre]:

```
def science_plots( dec

""""

Esta forción me ayuda a contar los países de autores que produjeron

articulos relacionados ala polobra clure que bos que """"

Correc = re.sub ("' 15 [\w. - %+-]+ [\w.-]+\). [a-zA-z] {3,29',11'}

dac)

Coord = re.sub (r'\.oldol,',',', correc)
```

homb = He. Sub (r'1.0\d.', 11, word)

X = homb [1:] . Split ('PHID-')

Countries_ A = []

From PMID in X?

9 = PMID. split ('In')

For For file ing:

w= file. split ('')

if w[o] == "AD':

e = file. split (',')

Countme_ A. append (e [-1])

α=0

Countries_B = Cos leu (Coontries_A)

For Us in Countries_A:

bytes (Us, encoding = "Otfe")

if Us != "1".

ω = Us

if ω (o) == ' ' "

ω = re.sob (r' 1/s', ", ω)

if ω (-1) = ' '.

ω = re.sob (r' 1/s', "', ω)

ω = re.sob (r' 1/s', "', ω)

α = re.sob (r' 1/s', "', ω)

INVESTIGACIÓN | Parroquia Muyuna, kilometra 7 via a Alto Tena INNOVACIÓN | Tena Napo Ecuador | Tell. (00) 370 0040 (06) 299 9160

www.ikiam.edu.ec

```
Countres - C = Countres - B
    h = Contres - all
     f = leu (h)
     Countries Court = TO) * f
     tor elen inho
         0=0
          for comp in Countries_ C :
               if elen = = str (comp) s
          counter es count CK ] = d
              K=K+1
       Countries = b = c3
        Counter = []
         0=0
        For Unein Countres court
           It str (lie) != 0';
               counter-appear (live)
               m = contres- all [0]
               Countries - Dappend (m)
              0 = 0+1
table - D = pa. Data frame (& 'Country's Countres - D, 'Num' auth! : would 3)
Order = table_ Dosort - values (by = Enou-outh ), as reading = [folse])
  taken = Order : loc [0:5)
   soma = taken Chum_ outi). som to ()
   (v = taken. iloc [:, 0]
   Su=pd. semes (10)
   1 = taken, iloc [3,5]
   Sa = pa, senes (1)
   5 = 29. tols+ ()
 prom = C)
 for nomber ins:
  Xa = ( number / souce ) = 100
table B = Pd. Datofrove ( of "country"; So, "corcert"; pron ?)
  figs, and = plt. subplots ()
  ax 1. pie (prom, labels = 4, actopot = 0%1, 1f%?",
     plt. swelig ( 1 mg/ Giotia depre was Spg1, dpl=sod) se > return (table-B)
         Shadow = true, startangle = 90)
    axi.ax6('equal')
    pl+ . show()
```