

Cairo University

Faculty of Computers and Artificial Intelligence

Data Compression

Third year (2022-2023)

(Fall 2022)

Sheet 2

Variable length coding

Question-1

Calculate the entropy of the following Stream of Alphabets (18 characters), then apply Huffman Coding algorithm to compress them. Compare Huffman coding compression output (bits/symbol) with Entropy (neglect the overhead).

XXX YYY ZZZ XYZ ZYX XZY

Question-2

Apply Huffman coding on the following Characters (each character is originally stored in one byte):

abccbabaccab

- design Huffman table and huffman code for each symbol
- what is the length of the compressed file

Question-3

Symbol	Code
I	01
S	1111
С	110
T	1110
R	10
Others	00

Others	code
Н	01100011
L	10011001
0	11101110
U	11111111
Е	01010101

Decode the output stream and get the original one.

What is the accurate compression ration achieved given that each original symbol consists of 8 bits and each table entry consists of 2 bytes?

Question-4

Compress the following stream of characters using Adaptive Huffman algorithm

A C D D C C C. Short codes of : A=00, C=10, D=11. (assign "1" to right branch and "0" to left branch of the tree). Highlight ALL Swap actions.

Question-5

Compress the following stream of alphabets:

abcccbba

- •Using standard Huffman coding
- •Using adaptive Huffman coding
- •Comment on your results

Question-6

Decode the following stream of bits using Adaptive Huffman algorithm

SDSFFHS. Short codes of: S=00, D=10, F=11, H=01. (assign "1" to right branch and "0" to left branch of the tree