Homework 1

M1522.000900 Data Structure (2019 Fall)

2013-12815 Dongjoo Lee

Question 1.

- (1) a. Check reflective: $a + a = 2 \cdot a \in R_1$
 - $\therefore R_1$ is reflective.
 - **b.** Check symmetric: if $(a, b) \in R1$, then, $a + b = 2 \cdot n \in \mathbb{N}$.

$$a+b = b+a = 2 \cdot n \in R_{1.}$$

- $\therefore R_1$ is symmetric.
- **c. Check transitive:** if $(a, b) \in R1$ and $(b, c) \in R1$, then,
 - [case 1] if a is even, then b is even and c is even.
 - thus, (a + c) is even --- (i)
 - [case 2] if a is odd, then b is odd and c is odd.
 - thus, (a + c) is even --- (ii)
 - From (i)&(ii), $(a, c) \in R_1$
 - $\therefore R_1$ is transitive.

$\therefore R_1$ is an equivalence relation.

- (2) a. Check reflective: $a + a = 2 \cdot a \notin R_2$
 - $\therefore R_2$ is not reflective.
 - $\therefore R_2$ is *not* an equivalence relation.
- (3) **a. Check reflective:** $a \times a = a2 > 0$, thus, $(a, a) \in R_3$
 - $\therefore R_3$ is reflective.
 - b. Check symmetric:
- if $(a, b) \in R_3$, then, $a \times b > 0$

$$a \times b = b \times a > 0$$
, thus, $(b, a) \in R_3$

- $\therefore R_3$ is symmetric.
- **c.** Check transitive: if $(a, b) \in R_3$ and $(b, c) \in R_3$, then,

$$(a \times b) > 0$$
 and $(b \times c) > 0$

- [case 1] if a > 0, then, b > 0 and c > 0
 - thus, $(a \times c) > 0$ --- (i)
- [case 2] if a < 0, then, b < 0 and c < 0
 - thus, $(a \times c) > 0$ --- (ii)
- From (i)&(ii), $(a, c) \in R_3$
- $\therefore R_3$ is transitive.

$\therefore R_3$ is an equivalence relation.

- (4) a. Check reflective: $a / a = 1 \in R4$
 - $\therefore R_4$ is reflective.
 - **b.** Check symmetric: if $(a, b) \in R_4$, then, $a/b = n \in \mathbb{N}$
 - b/a = 1/n is not always integer, thus, $b/a \notin R4$
 - $\therefore R_4$ is not symmetric

$\therefore R_4$ is not an equivalence relation.

- (5) a. Check reflective: $a a = 0 \in R_5$
 - $\therefore R_5$ is reflective.
 - **b. Check symmetric:** if $(a,b) \in R_5$, then, $a-b=n \in \mathbb{N}$).
 - $b-a=-n\in R5$
 - $\therefore R_5$ is symmetric.
 - **c.** Check transitive: if $(a, b) \in R_5$ and $(b, c) \in R_5$, then,
 - $(a b) = n \in \mathbb{N}$ and $(b c) = m \in \mathbb{N}$ $(a - b) + (b - c) = (a - c) = (n + m) \in R_5$
 - $\therefore R_5$ is transitive.

$\therefore R_5$ is an equivalence relation.

- (6) **a. Check reflective:** $|a a| = 0 \le 2$, thus, $(a, a) \in R6$
 - $\therefore R_6$ is reflective.
 - **b.** Check symmetric: if $(a, b) \in R_6$, then, $|a b| \le 2$
 - $|a b| = |b a| \le 2$, thus, $(b, a) \in R_6$
 - $\therefore R_6$ is symmetric.
 - **c. Check transitive:** if $(a, b) \in R_6$ and $(b, c) \in R_6$, then,
 - $|a-b| \le 2$ and $|b-c| \le 2$
 - [counter case] when a = -1, b = 1, c = 3, then,
 - $|a c| = |-1 3| = 4 \notin R_6$
 - $\therefore R_6$ is not transitive.

$\therefore R_6$ is not an equivalence relation.

Question 2.

- (1) **a. Check antisymmetric:** if $(a,b) \in R_1$, then, $(b,a) \notin R_1$.
 - $\therefore R_1$ is antisymmetric.
 - **b. Check transitive:** if $(a,b) \in R_1$ and $(b,c) \in R_1$, then,
 - a is grandfather of c, thus, $(a, c) \notin R_1$
 - $\therefore R_1$ is not transitive.

$\therefore R_1$ is not a partial ordering.

(2) **a. Check antisymmetric:** if $(a, b) \in R_2$, then, $(b, a) \notin R_1$.

 $\therefore R_2$ is antisymmetric.

b. Check transitive: if $(a,b) \in R_2$ and $(b,c) \in R_2$, then,

a is ancestor of c, thus, $(a, c) \in R_2$

 $\therefore R_2$ is transitive.

 $\therefore R_2$ is a partial ordering.

(3) **a. Check antisymmetric:** if $(a, b) \in R_3$, then, $(b, a) \notin R_3$.

 $\therefore R_3$ is antisymmetric.

b. Check transitive: if $(a, b) \in R_3$ and $(b, c) \in R_3$, then,

a is older than c, thus, $(a, c) \in R3$

 $\therefore R_3$ is transitive.

 $\therefore R_3$ is a partial ordering.

(4) **a. Check antisymmetric:** when a is sister of b, then, $(a, b) \in R_4$ and $(b, a) \in R_4$, but $a \neq b$.

 $\therefore R_4$ is not antisymmetric.

 $\therefore R_4$ is not a partial ordering.

(5) **a. Check antisymmetric:** $\langle a, b \rangle \in R_5$ and $\langle b, a \rangle \in R_5$, but, $a \neq b$.

 $\therefore R_5$ is not antisymmetric.

 $\therefore R_5$ is *not* a partial ordering.

(6) **a. Check antisymmetric:** there is no (a, b) that $\langle a, b \rangle \in R_6$ and $\langle b, a \rangle \in R_6$.

 $\therefore R_6$ is antisymmetric

b. Check transitive: $< 2, 1 > \in R_6 \text{ and } < 1, 3 > \in R_6 \text{ and } < 2, 3 > \in R_6$

 $\therefore R_6$ is transitive

 $\therefore R_6$ is a partial ordering.

Question 3.

(1) To move n disks from L to R, there is process,

a. move (n-1) disks from L to M,

b. move n_{th} disk from L to R,

c. move (n-1) disks from M to R.

And there's no difference *from wherever to wherever* in terms of the number of movements. So, we can define,

$$T(n) = \begin{cases} 2 \cdot T(n) + 1 & (x > 0) \\ 1 & (n = 0) \end{cases} \cdots (i)$$

$$T(10) = 2 \cdot T(9) + 1 = \cdots = 1023$$

- (2) Follows (i) above.
- (3) Expand the equation by using (i), with adding 1 to both sides,

$$T(n) + 1 = 2 \cdot (T(n-1) + 1)$$

 $T(n-1) + 1 = 2 \cdot (T(n-2) + 1)$
 $T(n-2) + 1 = 2 \cdot (T(n-3) + 1)$
......
 $T(2) + 1 = 2 \cdot (T(1) + 1)$

Set $a_n = T(n) + 1$, then, a_n is geometric sequence.

$$a_n = a_1 \cdot 2^{n-1}$$

= $(T(1) + 1) \cdot 2^{n-1}$
= $2^n \cdots (ii)$

by (ii), $T(n) = 2^n - 1(n > 1)$ and equation holds when n = 1, therefore,

$$\therefore T(n) = 2^n - 1$$

Question 4.

From (i) to (iv), by multiply 2^k in both sides,

$$\begin{array}{lll} 2^{0}\times S\left(2^{i}\right) &= 2^{1}\cdot S\left(2^{i-1}\right) + 2^{i} & \cdots (i)' \\ 2^{1}\times S\left(2^{i-1}\right) &= 2^{2}\cdot S\left(2^{i-2}\right) + 2^{i} & \cdots (ii)' \\ 2^{2}\times S\left(2^{i-2}\right) &= 2^{3}\cdot S\left(2^{i-3}\right) + 2^{i} & \cdots (iii)' \\ \cdots \cdots \cdots \\ 2^{i-1}\times S\left(2^{1}\right) &= 2^{i}\cdot S\left(2^{0}\right) + 2^{i} & \cdots (iv)' \end{array}$$

By summing up from (i)' to (iv)',

$$S(2^{i}) = 2^{i} \cdot S(1) + i \cdot 2^{i}$$

= $i \cdot 2^{i} + 2^{i}$
= $(i + 1) \cdot 2^{i}$

 $2^i=n, \ S(n)=n\cdot (lg(n)+1) \ (n>1),$ and equation holds when n=1, therefore,

$$\therefore S(n) = n(lg(n) + 1)$$

(2) From given equation,

$$S(2) = 2S(1) + 2 = 2 \cdot 1 + 2 = 4$$

From closed-form solution, at n=2

$$S(2) = 2 \cdot (\lg(2) + 1) = 2 \cdot 2 = 4$$

 $\therefore S(n)$ holds for n=2

(3) Assuming $S(2^k) = 2^k(k+1)$ is true. if $n = 2^{k+1}$, then,

$$S(2^{k+1}) = 2 \cdot S(2^k) + 2^{k+1}$$

$$= 2 \cdot 2^k \cdot (k+1) + 2^{k+1} \cdots by (1), when n = 2^k, S(n) = 2^k \cdot (k+1)$$

$$= (k+2) \cdot 2^{k+1}$$

 \therefore S(n) also holds for $n = 2^{k+1}$

Question 5.

<Basis>

$$T(2) = 2 \cdot lg2 = 2$$

$$T(n)$$
 holds for $n = 2 \cdots (i)$

<Inductive step>

Assuming
$$n = 2^k$$
, $T(n) = n \cdot lgn$ is true. If $n = 2^{k+1}$, then,

$$T(2^{k+1}) = 2 \cdot T(2^k) + 2^{k+1}$$

= $2 \cdot k \cdot 2^k + 2^{k+1} \cdots by$ assumtion, $T(2^k) = 2^k lg 2^k = k \cdot 2^k$
= $(k+1) \cdot 2^{k+1}$

$$T(n) = n \lg n$$
 also holds for $n = k + 1 \cdots (ii)$

<Proof>

By
$$(i)\&(ii)$$
, $T(n) = n \lg n \ (n \ge 2)$