Math 645: Problem set #6

1. Consider the system

$$x' = -y + x(1 - x^2 - y^2) \sin\left(\frac{1}{\sqrt{x^2 + y^2}}\right),$$

$$y' = x + y(1 - x^2 - y^2) \sin\left(\frac{1}{\sqrt{x^2 + y^2}}\right).$$
 (1)

Show that this system has infinitely many periodic orbits (limit cycles). Determine which ones are stable.

- 2. Consider the Hamiltonian system with Hamiltonian $H(x,y) = y^2 + W(x)$ and assume that x_0 is an inflection point for W(x). Sketch the corresponding phase diagram in a nieghborhood of $(x_0,0)$ (it is called a "cusp").
- 3. Consider the system given in cylindrical coordinates by

$$r' = r(1-r),$$

$$\theta' = 1,$$

$$z' = -z.$$
(2)

This system has exactly one periodic orbit. Determine it and compute the Poincaré map for the half-plane y = 0, x > 0 perpendicular to the periodic orbit. Show that the periodic orbit is asymptotically stable.

4. Show that $(2\cos(2t),\sin(2t))^T$ is periodic orbit for the system

$$x' = -4y + x \left(1 - x^2/4 - y^2\right),$$

$$y' = x + y \left(1 - x^2/4 - y^2\right),$$
(3)

and show that it is stable.

5. Consider the system given, in polar coordinates by

$$r' = r(1 + a\cos(\theta) - r^2),$$

$$\theta' = 1.$$
(4)

where |a| < 1.

- (a) Show that there exists $0 < r_- < r_+$ such that the annular region $N = \{r_- < r < r_+\}$ is forward invariant.
- (b) Show that the line $S = \{\theta = 0\}$ is a global section and let $P: S \to S$ denote the corresponding Poincaré map.
- (c) Use the Poincaré map and the mean value theorem to show the existence of a periodic orbit. What is the period?

- (d) Show that the Floquet multipliers of the periodic orbit are 1 and $e^{-4\pi}$ and thus the orbit is asymptotically stable. *Hint:* To compute $\int_0^{2\pi} r^2 dt$ use the differential equation to set $r^2 = 1 + a\cos\theta r'/r$.
- (e) Conclude that there the periodic orbit found above is actually the only one.
- 6. Consider the system

$$x' = x - rx - ry + xy,$$

$$y' = y + rx - ry - x^{2},$$
(5)

where $r = \sqrt{x^2 + y^2}$. Show that this system can be written in polar coordinates as

$$r' = r(1-r),$$

$$\theta' = r(1-\cos\theta),$$
(6)

Show that there are two critical points (0,0) (unstable source) and (1,0) (saddle node). Use this information and Poincaré-Bendixson Theorem to show that every solution x(t) which does not pass through the origin satisfy $\lim_{t\to\infty} x(t) = (1,0)$, but that (1,0) is not stable.

7. Consider the system

$$x' = \lambda x - y - xr^2 + \lambda \frac{x^3}{r^3},$$

$$y' = X + \lambda y - yr^2 + \lambda \frac{x^2 y}{r^3},$$
(7)

where $r = \sqrt{x^2 + y^2}$. Show that the system has a periodic orbit. *HInt:* Find a invariant annulus region.