

Based on 1905.05776 in collaboration with M. Campos, M. Fairbairn, and T. You

Direct Detection

Experiments lose sensitivity at low dark matter masses due to small nuclear recoils

Direct Detection

Experiments lose sensitivity at low dark matter masses due to small nuclear recoils

Direct Detection

Experiments lose sensitivity at low dark matter masses due to small nuclear recoils

Collider Experiments

In traditional beam dump experiments like **MiniBooNe**, the accelerated protons are directed at a fixed target with a detector collinear with the beam.

Using the Atmosphere

In our scenario, the protons come from **cosmic rays**, the flux of which is measured by balloon experiments like AMS

- Consider production of the dark matter from pions and eta mesons
- Opens new low mass window for direct detection experiments

- Consider production of the dark matter from pions and eta mesons
- Opens new low mass window for direct detection experiments

Cosmic Ray Dark Matter (CRDM)

Recently a small sub field has developed exploring these ideas

Cappiello et al.

Effect of elastic collisions on CR spectrum

Bringmann et al.

Elastic Proton-DM Collisions

Ema et al.

Elastic collisions of electrons with DM

Cappiello et al.

Elastic CRDM at neutrino experiments

Alvey et al.

Inelastic CRDM production

