線形作用素

竹田航太

2020年8月14日

概要

線形作用素, 行列について必要なことをまとめる. 執筆中.

1 行列

1.1 自己共役

Definition 1.1. 自己共役,正定値を定義する.

- $A \in M_n(\mathbb{C})$ が自己共役 $(self\text{-}adjoint) \stackrel{def}{\Leftrightarrow} A^* = A$ 自己共役行列全体の集合を $M_n(\mathbb{C})_{sa}$ とかく.
- $A \in M_n(\mathbb{C})_{sa}$ が正定値 (positive-definite) $\stackrel{def}{\Leftrightarrow} x^*Ax > 0 \ (\forall x \neq 0 \in \mathbb{C}^n)$ 同様に全体の集合を $M_n(\mathbb{C})_+$ とかく.
- $A \in M_n(\mathbb{C})_{sa}$ が半正定値 (positive-definite) $\stackrel{def}{\Leftrightarrow} x^*Ax \geq 0 \ (\forall x \in \mathbb{C}^n)$ 同様に全体の集合 $extit{$M_n(\mathbb{C})_{+=}$}$ とかく.

Theorem 1.2. $A \in M_n(\mathbb{C})_{sa}$ とする.

(1) Aの固有値は全て実数

Theorem 1.3 (正定値行列の特徴づけ). $A \in M_n(\mathbb{C})_{sa}$ に対して以下は同値

- (1) $A \in M_n(\mathbb{C})_+$
- (2) A の固有値は正
- (3) 正の対角行列でユニタリ対角化できる
- (4) $\exists S \in M_n(\mathbb{C}), S : 正則 s.t. A = S^*S$

Theorem 1.4. $A \in M_n(\mathbb{C})_{sa}$ に対して以下は同値

- (1) $A \in M_n(\mathbb{C})_{+=}$
- (2) A の固有値は非負
- (3) 非負の対角行列でユニタリ対角化できる

(4)
$$\exists S \in M_n(\mathbb{C}) \text{ s.t. } A = S^*S$$

Theorem 1.5. $A \in M_n(\mathbb{C})_+$ の固有値は全て正であり det(A) > 0 が成り立つので,A は正則であり, $A^{-1} \in M_n(\mathbb{C})_+$.

1.2 逆行列

Lemma 1.6. $P, I \in M_n(\mathbb{C})$ で I は単位行列. I + P: 可逆とする. このとき以下が成り立つ.

$$(I+P)^{-1} = I - (I+P)^{-1}P$$

Proof.

$$LHS = (I + P)^{-1}(I + P - P) = I - (I + P)^{-1}P = RHS$$

Lemma 1.7. $P \in M_{n \times m}(\mathbb{C}), Q \in M_{m \times n}(\mathbb{C}), I_n(I_m)$ をそれぞれ n(m) 次単位行列とする. $I_n + PQ, I_m + QP$: 可逆とする. このとき以下が成り立つ.

$$(I + PQ)^{-1}P = P(I + QP)^{-1}$$

Proof.

$$P + PQP = P(I + QP) = (I + PQ)P$$

より右の等式で左から $(I+PQ)^{-1}$, 右から $(I+QP)^{-1}$ をかけると従う .

Lemma 1.8. $P,Q \in M_n(\mathbb{C})$: 可逆とする. このとき以下が成り立つ.

$$(PQ)^{-1} = Q^{-1}P^{-1}$$

 $Proof. \ I_n$ を n 次単位行列として $(PQ)Q^{-1}P^{-1}=I_n, \ Q^{-1}P^{-1}(PQ)=I_n$

Theorem 1.9. $A \in M_n(\mathbb{C}), B \in M_{n \times m}(\mathbb{C}), C \in M_{m \times n}(\mathbb{C}), D \in M_m(\mathbb{C})$ として、 $A, D, D + CA^{-1}B$: 可逆とする。このとき以下が成り立つ。

$$(A + BD^{-1}C)^{-1} = A^{-1} - A^{-1}B(D + CA^{-1}B)^{-1}CA^{-1}$$

Proof.

$$(A + BD^{-1}C)^{-1} = (A(I + A^{-1}BD^{-1}C))^{-1}$$

$$\stackrel{1.8}{=} (I + A^{-1}BD^{-1}C)^{-1}A^{-1}$$

$$\stackrel{1.6}{=} \{I - (I + A^{-1}BD^{-1}C)^{-1}A^{-1}BD^{-1}C\}A^{-1}$$

$$= A^{-1} - (I + A^{-1}BD^{-1}C)^{-1}A^{-1}BD^{-1}CA^{-1}$$

$$\stackrel{1.7}{=} A^{-1} - A^{-1}B(I + D^{-1}CA^{-1}B)^{-1}D^{-1}CA^{-1}$$

$$\stackrel{1.8}{=} A^{-1} - A^{-1}B(D + CA^{-1}B)^{-1}CA^{-1}$$

*等号の上の数字は Lemma の番号

Theorem 1.10. $P \in M_n(\mathbb{C})_+$ (正定値), $R \in M_m(\mathbb{C})_+$, $B \in M_{n \times m}(\mathbb{C})$ とする. このとき $(BPB^* + R)$ は可逆で以下が成り立つ.

$$(P^{-1} + B^*R^{-1}B)^{-1}B^*R^{-1} = PB^*(BPB^* + R)^{-1}$$

Proof. Lemma を使う.

$$(P^{-1} + B^*R^{-1}B)^{-1}B^*R^{-1} \stackrel{1.8}{=} (I + PB^*R^{-1}B)^{-1}PB^*R^{-1}$$

$$\stackrel{1.7}{=} PB^*(I + R^{-1}BPB^*)^{-1}R^{-1}$$

$$\stackrel{1.8}{=} PB^*(BPB^* + R)^{-1}$$

*等号の上の数字は Lemma の番号

Example 1.11 (Kálmán filter). y:観測データ,C:対称正定値,R:対称正定値,H 観測 operator とすると

$$(I + CH^*R^{-1}H)x^a = x^f + CH^*R^{-1}y \Leftrightarrow x^a = x^f + CH^*S^{-1}(y - Hx^f)$$

Proof. 左の式の両辺に左から $(I+CH^*R^{-1}H)^{-1}=(C^{-1}+H^*R^{-1}H)^{-1}C^{-1}$ をかける

$$\begin{split} x^a &= (I + CH^*R^{-1}H)^{-1}x^f + (C^{-1} + H^*R^{-1}H)^{-1}C^{-1}CH^*R^{-1}y \\ &\stackrel{1.9,1.10}{=} \{I - CH^*(R + H^*CH)^{-1}H\}x^f + CH^*(HCH^* + R)^{-1}y \\ &= x^f + CH^*S^{-1}(y - Hx^f) \end{split}$$

2 線形作用素

Definition 2.1 (自己共役作用素). $A \in B(H)$ に対して,

$$A$$
 が自己共役作用素 $\stackrel{def}{\Leftrightarrow} \forall x, y \in H, \langle Ax, y \rangle = \langle x, Ay \rangle$

自己共役作用素全体の集合を $B_{sa}(H)$ とかく.

Definition 2.2 (正作用素). $A \in B_{sa}(H)$ に対して

$$A$$
 が正作用素 $\stackrel{def}{\Leftrightarrow} \forall x \in H, \langle Ax, x \rangle \geq 0$ $\Leftrightarrow \exists T \in B(H) \ s.t. \ A = T^*T$ $\Leftrightarrow \sigma(A) \subset [0, \infty)$

Theorem 2.3 (コンパクト作用素). $T \in B(H)$ がに対して TB(0,1) が全有界であるとき T はコンパクト作用素であるという. ただし, $B(0,1) \coloneqq \{x \in H; \|x\| \le 1\}$ は H の閉単位球.

Theorem 2.4 (コンパクト自己共役作用素のスペクトル分解). H: 可分 Hilbert 空間とする. $A \in B_{sa}(H) \cap K(H)$ とすると, $\sigma(A) \setminus \{0\} = \sigma_p(A) \setminus \{0\}$ である. さらに A の固有値の列 $(\lambda_n)_{n=1}^{\infty}$ と対応する固有ベクトルからなる H の正規直交基底 $(e_n)_{n=1}^{\infty}$ が存在して,

$$A = \sum_{n=1}^{\infty} \lambda_n e_n \otimes e_n^* = \sum_{n=1}^{\infty} \lambda_n P_n$$

が作用素ノルムでの収束の意味で成り立つ. ただし, $e_n\otimes e_n^*=P_n$ は $Ker(\lambda_n I-T)$ への射影.

Theorem 2.5 (コンパクト作用素の特異値分解).

Definition 2.6 (Schatten p class). Schatten p クラスを

$$C_p(H) := \{ T \in K(H); (\sum_n s_n(T)^p)^{1/p} < \infty \}$$

で定める. 特に $C_2(H)$ を Hilbert Schmidt クラス, $C_1(H)$ をトレースクラスという.

Definition 2.7 (トレース). $A \in B(H)_+$ に対してトレースを $Tr(A) := \sum_n \langle Ae_n, e_n \rangle$ とおくと (e_n) の取り方によらない.

Definition 2.8 (トレースクラス). $A \in B(H)$ に対して $||A||_{C_1} = Tr(|A|)$ であり、この値が有限のとき Tr(A) も有限.

Lemma 2.9. $T \in B(H)$ に対して $Tr(T^*T) < \infty \Rightarrow T \in K(H)$

Theorem 2.10 (Hilbert Schmidt class). $T \in B(H)$ に対して $Tr(T^*T) < \infty \Leftrightarrow T \in C_2(H)$ である。さらにこのとき $Tr(T^*T) = \|T\|_{HS}^2 = \|T\|_{C_2}^2$ が成り立つ。また $Tr(T^*T) = \sum_n \|T_n e_n\|^2 = \sum_{n,m} |\langle T_n e_n, e_m \rangle|^2$ などもわかる。

Theorem 2.11 (class の関係). $C_1(H) \subset C_2(H) \subset K(H)$