

UNIVERSITY OF GHANA

(All rights reserved)

BSc. (ENG) MATERIALS SCIENCE AND ENGINEERING END OF SECOND SEMESTER EXAMINATIONS: 2015/2016

SCHOOL OF ENGINEERING SCIENCES

DEPARTMENT OF MATERIALS SCIENCE AND ENGINEERING

MTEN 332: PHYSICAL PROPERTIES OF POLYMERS (2 CREDITS)

TIME ALLOWED: TWO (2) HOURS

Answer ALL Questions

Question 1

- a) Which of the following provides an absolute measure of the molecular weight of polymers: (i) viscometry, (ii) cryometry, (iii) osmometry, (iv) light-scattering photometry, (v) Gel permeation chromatography?
- b) The following table lists molecular weight data for a polypropylene material. Compute
 - (i) the number-average molecular weight $(\overline{M_n})$,
 - (ii) the weight-average molecular weight $(\overline{M_w})$, and
 - (iii) the degree of polymerization.

Table 1

Molecular Weight Range (g/mol)	x_i	w_i
8,000–16,000	0.05	0.02
16,000–24,000	0.16	0.10
24,000–32,000	0.24	0.20
32,000–40,000	0.28	0.30
40,000–48,000	0.20	0.27
48,000–56,000	0.07	0.11

Examiner: Dr. S. ASARE Page 1 of 4

Sketch cis and trans structures for

(ii) chloroprene.

d) If the density of a polymer is 0.85 g/cc and the molar volume is 1,176,470 cc, what is the molar weight?

Hint: Atomic masses: C=12, H=1

$$\overline{M_n} = \sum x_i M_i$$
 Equation 1

$$\overline{M_w} = \sum w_i M_i$$
 Equation 2

 x_i is the fraction of the total number of molecular chains that lie within the size range i w_i is the weight fraction of molecules that lie within the size range i M_i is the mean molecular weight within the size range i

25 Marks

Question 2

- a) Define the following:
 - (i) Relative viscosity of a polymer solution
 - (ii) Specific viscosity of a polymer solution
 - (iii) Reduced viscosity of a polymer solution
 - (iv) Intrinsic viscosity of a polymer solution
- b) If the values of K and a in the Mark-Houwink equation are 1×10^{-2} cm³/g and 0.5, respectively, what is the average molecular weight (M) of a polymer whose solution has an intrinsic viscosity (LVN) of 150 cc/g?

$$LVN = KM^{\alpha}$$
 Equation 3 (Mark-Houwink equation)

- c) Show that, the relative viscosity of a polymer solution can simply be obtained from a ratio of measured flow times for the polymer solution (t) and solvent (t_o) .
- d) Write chemical structures for polyethylene, polyproplyene, poly(vinylchloride) and polystyrene.

25 Marks

Question 3

- a) Draw a log modulus-temperature plot for an amorphous polymer. What are the five regions of viscoelasticity, and where do they fit? To which regions do the following belong at room temperature: chewing gum, rubber bands, Plexiglas®?
- b) The density (ρ) and associated percent crystallinity for two polytetrafluoroethylene materials are as follows:

$\rho(g/cm^3)$	Crystallinity (%)
2.144	51.3
2.215	74.2

- (i) Compute the densities of totally crystalline (ρ_c) and totally amorphous (ρ_a) polytetrafluoroethylene.
- (ii) Determine the percent crystallinity of a specimen having a density (ρ_s) of 2.26 g/cm³.
- c) Sketch typical stress-strain curves to 600% elongation for unvulcanized and vulcanized natural rubber.
- d) Define the terms: Young's modulus, tensile strength, chain entanglements, and glass-rubber transition.

Hint:

% crystallinity (by weight) =
$$\frac{\rho_c(\rho_s - \rho_a)}{\rho_s(\rho_c - \rho_a)} \times 100$$
 equation 4

25 Marks

Question 4

- a) Make comparisons of thermoplastic and thermosetting polymers
 - (i) on the basis of mechanical characteristics upon heating and
 - (ii) according to possible molecular structures.
- b) Show the synthesis of polyamide 610 from the monomers.
- c) With the help of a diagram, briefly explain the effect of molecular weight on the following physical properties of polymers: impact strength, tensile strength and melt viscosity.

Examiner: Dr. S. ASARE

LIBRARY

LIBRARY

d) The permeability coefficient of a type of small gas molecule in a polymer is dependent on absolute temperature according to the following equation:

$$P_{M} = P_{M_0} exp\left(-\frac{Q_p}{RT}\right)$$
 equation 5

where P_{M_0} and Q_p are constants for a given gas-polymer pair.

Consider the diffusion of hydrogen through a poly(dimethyl siloxane) (PDMSO) sheet 20 mm thick. The hydrogen pressures at the two faces are 10 kPa and 1 kPa, which are maintained constant. Compute the diffusion flux [in (cm³ STP)/cm²s] at 350 K.

For this diffusion system:

$$P_{M_0} = 1.45x10^{-8} (cm^3 STP)(cm)/cm^2 . s. Pa$$

 $Q_p = 13.7 \ kJ/mol$

Also, assume a condition of steady state diffusion.

Hint:

$$J(Diffusion flux) = -P_M \frac{\Delta P}{\Delta x}$$
 equation 6

25 Marks

Examinef: Dr. S. ASARE

Page 4 cf 4