Jump-Starting Multivariate Time Series Anomaly Detection for Online Service Systems

Minghua Ma, Shenglin Zhang, Junjie Chen, Jun Xu, Dan Pei, et. al.

Service Reliability is Important

Real-World Revenue Loss

A study of 584 U.S. based data center professionals found that

91% of data centers
have experienced an
unplanned data center
outage in the past
24 months.²

[Evolven: GAD COHEN]

With Cloud Foundry Blackout
Intuit Service Outages Leave Frustrated
Veriz Customers In Their Wake
RIM outage costs — Inline Banking Upgrade
could top \$100 million ontributed to Bank of
America Outage
Yahoo Mail suffers outage; users

Univariate Time Series (UTS) Anomaly Detection

Univariate Time Series (UTS) Anomaly Detection

Univariate Time Series (UTS) Anomaly Detection

Value /

Building anomaly detectors for a single time series

Not feasible for thousands of monitoring time series

May lead to alert storms [SEIP20]

Thur.

Fri.

Time

Multivariate Time Series (MTS) Anomaly Detection

Capture status of the overall service system

Intuitive & effective & efficient

[KDD18, KDD19, KDD20, KDD21, AAAI19, AAAI21, NeurIPS20]

Multivariate Time Series (MTS) Anomaly Detection

Capture status of the overall service system

Intuitive & effective & efficient

[KDD18, KDD19, KDD20, KDD21, AAAI19, AAAI21, NeurIPS20]

Deep learning based approaches (LSTM, LSTM-VAE, ConvLSTM...)

Initialization Time

Software change (concept drift) -> Anomaly detection -> Initialize

Deep Learning Based Approaches: Long Initialization Time

Deep Learning Based Approaches: Long Initialization Time

Approach	S 1	S2	S 3	Avg.	Days
MSCRED [AAAI19]	7	13	-	10	
OmniAnomaly [KDD19]	17	15	17	16.3	
LSTM-NDT [KDD18]	69	36	-	52.5	
Donut* [www18]	102	110	99	103.6	

^{*} denotes UTS anomaly detector, which can be used for MTS by combining it with majority vote

Inappropriate for newly deployed or updated systems

Incremental Retraining

Incremental Retraining Cannot Ensure Satisfactory Performance

Non-robustness and considerable training cost

Outline

The drawback of deep learning based approaches

→ Long initialization time

Our key idea of compressed sensing and its challenges

JumpStarter approach

Evaluation

Key Idea: Compressed Sensing (CS)

- CS can reconstruct time series with low energy components.
- Anomalies are always high energy components.
- CS uses a fixed-length window to initialize.

First attempt to use CS for multivariate time series anomaly detection

Two Strawman Solutions Using CS

Examples of CS-based anomaly detection when the MTS is reconstructed as a whole matrix (a) or as separate UTS (b)

Problem of Random Gaussian Sampling

• The sampled matrix: guarantee Restricted Isometry Property (RIP)

Sampling from anomalies can degrade the detection performance

1 ime

JumpStarter **

Jump-Starting Multivariate Time Series

Anomaly Detection

for Online Service Systems

JumpStarter Offline Processing

Shape-Based Clustering

- Strawman (a) cannot deal with different shapes of time series
- Shape-based distance [sigmod 15] + hierarchical clustering

Shape-Based Clustering

- Strawman (a) cannot deal with different shapes of time series
- Shape-based distance [sigmod15] + hierarchical clustering

An example of clustering the MTS into three clusters

#	Cluster of Univariate Time Series	Explanation
1	rx-pkts-eth0, rx-bytes-eth0	# received packets/bytes
2	tcp-insegs, tcp-outsegs, tx-pkts-eth0	TCP network metrics
3	cpu-ctxt, cpu-user, cpu-system, cpu-nice	CPU utilization metrics

JumpStarter Online Processing

Domain-specific insights:

- Anomalies are usually outliers in an observation window.
- The value of time series has time locality.

JumpStarter Online Processing

Compressed Sensing Reconstruction

- Multivariate time series: $\mathbf{X}_t = [\mathbf{x}_t^1, \mathbf{x}_t^2, ..., \mathbf{x}_t^n]^T$
- Compressed sensing reconstruction: $AX'_t = B$, calculating X'_t
 - A is calculated as: $\mathbf{A} = \phi(\mathbf{D} \otimes \mathbf{D^T})$, D is the transform of \mathbf{X}_t
 - B is the sampling result
- Calculation: CVXPY (convex optimization tool) [JMLR16]
- Anomaly score: measuring the differences between \mathbf{x}_t and \mathbf{x}'_t
- Choosing threshold: Extreme Value Theory (EVT) [KDD17]

JumpStarter Initialization Time: 20 mins

A learning-based approach has to *explicitly* learn the probability distribution of a multivariate time series

Our JumpStarter: the reconstructed multivariate time series *implicitly* inherits the normal behavior

Outline

The drawback of deep learning based approaches

→ Long initialization time

Our key idea of compressed sensing and its challenges

→ Reconstruction & Sampling

JumpStarter approach

→ Shape-Based Clustering & Outlier-Resistant Sampling

Evaluation

→ Company A (28 service systems) & Company B (30 service systems)

Evaluation: Accuracy

Average F1 Score of JumpStarter and baseline approaches

Evaluation: Efficiency

The initialization time (IT) and detection time (DT) comparison

Approach	RRCF	LESINN	MSCRED	Omni- Anomaly	JumpStarter
IT (min)	20	20	>86400	>86400	20
DT (ms)	41.24	118.63	122.82	191.86	127.13

Case Study

Conclusion

To adapt to frequent changes in online service systems, multivariate time series, anomaly detection should be robust and can be quickly initialized.

JumpStarter adopts the Compressed Sensing technique

- Reconstruction challenge → Shape-based clustering
- Sampling challenge → Outlier-resistant sampling

Evaluation

- Real-world online service systems of two Internet companies
- Achieving an average F1 score of 94.1%, initialization time 20 minutes
- https://github.com/NetManAlOps/JumpStarter

Thanks

mmh16@mails.tsinghua.edu.cn