# CS2020 – Data Structures and Algorithms Accelerated

Lecture 21 – DP, the True Form

stevenhalim@gmail.com



#### Outline

- What are we going to learn in this lecture?
  - Review (DP for TSP from previous lecture)
  - Presentation of several classical problems solvable with DP technique (not natural to be viewed as a graph problem)
    - 1-D Range Sum (Isn't this a math problem?)
    - 0-1 Knapsack, a pseudo-polynomial algorithm
    - String Alignment (DP on **String**, can we run DP on string?)
    - Outline of TUTOR (PS10)
  - Troughout lecture:
    - Discussion of distinct states (vertices on implicit DAG)
       & its space complexity
    - Discussion of overlapping transitions (edges on implicit DAG)
       & its time complexity

# Can you write recursive function involving vertices of a bipartite graph?

- 1. Why not?
- 2. Always cannot, because \_\_\_\_\_
- 3. Sometimes it is possible, sometimes it is not possible, because

0 0 0 1 2 3

# For those who have read & attempt NOI 2011: TOUR, list down the necessary DS/algorithm to solve this problem (each clicker can select up to 5)

- 1. Adjacency Matrix
- 2. Adjacency List
- 3. No DS, Implicit Graph
- 4. DFS
- Backtracking
- 6. BFS
- 7. Dijkstra's
- 8. Bellman Ford's
- 9. DP
- 10. Bitmask



# And how about the other problem: TUTOR

- I haven't download
   PS10.pdf ☺
- I have solved TOUR (only)
- 3. I have solved TUTOR (only)
- 4. I have solved both TOUR and TUTOR



# TSP Review/Clarifications

- Let's go back to Lecture 20 slides/TSPDemo.java
  - "backtracking v1" is not that slow if I turn off the I/O part
    - But it is still very slow for n > 11
  - We have not discussed "backtracking v2"
    - And the example of "wrong" DP states (memo1)
      - Although it runs "very fast"
    - Plus one bug fix in that backtracking v2 (please take a note)
  - We will do experiment with "DP\_TSP" function
    - Turning off the memo check to convert this recursive function back to simple backtracking and see the difference in speed

# 1-D Max Range Sum

- Given a (1D) array of integers of size N
  - Example:
    - arr =  $\{2, -4, 8, 5, -9, 7\}$
- Determine the range sum from index i to index j? RS(i, j)
  - Examples: (note: 0-based indexing)
    - RS(0, 5) = 2 4 + 8 + 5 9 + 7 = 9
    - RS(2, 3) = 8 + 5 = 13
    - RS(3, 5) = 5 9 + 7 = 3
- 1D Max Range Sum: Find value of **i** and **j** so that **RS(i, j)** is maximum
  - For this example, i = 2 and j = 3, because RS(2, 3) = 13 is the maximum possible over all ranges

# Quick Survey: 1-D Max Range Sum

- 1. I have not seen this problem before
- 2. I have seen this problem before
- 3. I have solved (coded a solution for) this problem before
- 4. On top of no 3, I also know the 2-D variant



# 1D Max Range Sum: Naïve Solution

```
maxRangeSum \leftarrow arr[0] // pick one val as current best
best_i ← -1
best_j \leftarrow -1
for each i \in [0..N-2]
  for each j \in [i+1..N-1]
    sum ← 0
    for k = i to j
       sum \leftarrow sum + arr[k]
    if sum > maxRangeSum
      maxRangeSum ← sum
      best_i ← i
      best_j ← j
```

#### The Naïve Solution runs in...

- 1. O(N)
- 2. O(N log N)
- 3.  $O(N^2)$
- 4.  $O(N^2 \log N)$
- 5.  $O(N^3)$
- 6. O(N!), like TSP



#### Can we use DP?

- Optimal substructures?
  - Yes, for example we can write this recurrence:
    RS(i, j) = arr[i] + RS(i + 1, j)
- Overlapping subproblems?
  - Yes, for example we can have this situation:
     Both RS(i, b) and RS(a, j) where i < a < b < j</li>
     has to compute RS(a, b)
    - Example: both RS(0, 10) and RS(5, 15) has compute RS(5, 10)

#### DP Formulation v1

- Distinct States:
  - Two parameters: i and j
  - This is the most natural formulation
  - Space complexity:  $O(N * N) = O(N^2)$
- Overlapping Transitions:
  - RS(i, j) = arr[i]; if i == j (last item)
  - RS(i, j) = arr[i] + RS(i + 1, j); if i!= j
  - Time complexity:  $O(N^2 \times 1) = O(N^2)$
- This is not the most efficient way...

#### DP Formulation v2

- Distinct States:
  - One parameter: i → non trivial
  - Space complexity: O(N)
- Overlapping Transitions:
  - preprocess(i) = arr[i]; if i == 0 (first item)
  - preprocess(i) = arr[i] + preprocess(i 1); if i > 0
  - Time complexity:  $O(N \times 1) = O(N)$  for all  $i \in [0 .. N]$
- Then how to compute RS(i, j)?
  - RS(i, j) = preprocess(j); if i == 0
  - RS(i, j) = preprocess(j) preprocess(i 1); if i > 0
  - This is O(1)

# 1D Max Range Sum: DP Solution v2

```
maxRangeSum \leftarrow arr[0]
best_i ← -1
best_j \leftarrow -1
for each i \in [0..N-1]
  preprocess(i)
for each i \in [0..N-2]
  for each j \in [i+1..N-1]
    if RS(i, j) > maxRangeSum
      maxRangeSum ← sum
      best_i ← i
      best_j ← j
// usual implementation: bottom up (topological order)
```

## Bottom Up versus Top Down

#### Top Down

- Before entering recursion, check if this state has been computed, if it is, do not recompute
- Before exiting the recursion, store the computation result in a table

#### Bottom Up

- Prepare a table that will store the values of each sub problems
- Find a topological order to fill the table so that all smaller sub problems necessary to solve a bigger sub problem have been computed before

#### The DP Solution v2 runs in...

- 1. O(N)
- 2. O(N log N)
- 3.  $O(N^2)$
- 4.  $O(N^2 \log N)$
- 5.  $O(N^3)$
- 6. O(N!), like TSP



#### So

- 1. That is a pretty impressive improvement, show me the next DP problem
- 2. Eh wait... I know an even better solution for 1D Max Range Sum



# 0-1 Knapsack

- Problem Definition:
  - Given a set of items
    - Each item has associated weight and value
    - See the figure on the right
  - Determine which items that we should take (0-1) such that:
    - The total weight is **less than or equal to** the limit of the knapsack
    - The total value is as large as possible



# Quick Survey: 0-1 Knapsack

- 1. I have not seen this problem before
- 2. I have seen this problem before
- 3. I have solved (coded a solution for) this problem before
- 4. On top of no-3, I also know the other variant: the fractional knapsack



# Given this 0-1 Knapsack instance, which items that we should take to maximize the value while satisfying the knapsack constraint?

- Everything, tot weight = 20kg, tot value = 19\$
- 2. Everything but the green box, tot weight = 8kg, tot value = 15\$
- 3. Green, blue, and grey box, tot weight = 15kg, tot value = 8\$





# 0-1 Knapsack: Naïve Solution

- Here, we use similar idea as in TSP, using integer to represent set of boolean
- Suppose N = 2

$$- set = 0_{10} = 00_2$$

$$- set = 1_{10} = 01_2$$

$$- set = 2_{10} = 10_2$$

$$- set = 3_{10} = 11_2$$

#### The Naïve Solution runs in...

- 1.  $O(N^2)$
- 2.  $O(N^2 \log N)$
- 3.  $O(N^3)$
- 4.  $O(2^N)$
- 5.  $O(N * 2^N)$
- 6. O(N!), like TSP



#### Can we use DP technique on top of the naïve solution to make it more efficient?

- 1. Yes, of course
- 2. No, that naïve solution does not have recurrence



0 of 54

# 0-1 Knapsack: DP Solution (1)

#### Distinct states:

- Instead of considering all items at a time let's consider one item at a time
  - Give id to each item, from 0 to N-1
  - Example: (4, 12), (2, 1), (10, 4), (2, 2), (1, 1)
- For each item, we can take or ignore it
- But this parameter id alone is not enough
- We need another parameter:
  - The current weight w\_left
- Space Complexity: O(N \* |W|)



# 0-1 Knapsack: DP Solution (2)

- Overlapping transitions:
  - knapsack(N, w left) = 0 // all items have been considered
  - knapsack(id, 0) = 0 // we cannot carry anything else
  - knapsack(id, w\_left) = max(
     knapsack(id + 1, w\_left),
     // that is, we ignore this item id
     value[id] + knapsack(id + 1, w\_left weight[id]) )
     // or take item id, but only if weight[id] <= w\_left</pre>
  - Time Complexity = O(N \* |W| \* 1) = O(N \* |W|)
    - This is called pseudo-polynomial
- See UVa10130.java (top-down implementation)
  - http://uva.onlinejudge.org/external/101/10130.html

5 minutes break

These slides are originally from A/P Sung Wing Kin, Ken

#### **DP ON STRING**

# Quick Survey: String Alignment

- 1. I have not seen this problem before, this is from a level 3 module?
- I have seen this problem before
- I have solved (coded a solution for) this problem before
- On top of no 3, I also know its speed up techniques and variants



# String Edit Problem (1)

- Given two strings A and B, edit A to B with the minimum number of edit operations:
  - Replace a letter with another letter
  - Insert a letter
  - Delete a letter
- e.g.

```
- A = ACAATCC A_CAATCC
- B = AGCATGC AGCA_TGC
01001010
```

– Edit distance = 3, sum of all '1' above

# String Edit Problem (2)

- Instead of minimizing the number of edge operations, we can associate a cost function to the operations and minimize the total cost
  - Such cost is called edit distance
- For the previous example, the cost is as follows:

– Edit distance = 3

|   | 1 | Α | C | G | Η |
|---|---|---|---|---|---|
|   |   | 1 | 1 | 1 | 1 |
| Α | 1 | 0 | 1 | 1 | 1 |
| С | 1 | 1 | 0 | 1 | 1 |
| G | 1 | 1 | 1 | 0 | 1 |
| Т | 1 | 1 | 1 | 1 | 0 |

# String Alignment Problem (1)

- Instead of using string edit, in computational biology, people like to use string alignment
- We use similarity function, instead of cost function, to evaluate the goodness of the alignment

e.g. we give 2 points for match; -1 point for mismatch,
 insert, or delete

$$\delta(C,G) = -1$$

|   |    | Α  | С  | G | T        |
|---|----|----|----|---|----------|
| 1 |    | Υ_ | 7- | 7 | 7-       |
| A | -  | 2  | -1 | 1 | -1       |
|   | 1  | /  | 5  | 1 | 1        |
| C | 7  | 7  | 2  | \ | -        |
| G | -1 | -1 | -1 | 2 | -1<br>-1 |

# String Alignment Problem (2)

- Consider two strings ACAATCC and AGCATGC
- One of their alignment is



- In the above alignment,
  - Space ('\_') is introduced to both strings
  - There are 5 matches, 1 mismatch, 1 insert, and 1 delete

# String Alignment Problem (3)

This alignment has similarity score 7

```
A_CAATCC
AGCA_TGC
```

- Note that the alignment above has maximum score
  - Such alignment is called the optimal alignment
- String alignment problem tries to find the alignment with the maximum similarity score!
- String alignment problem is also called the global alignment problem

# To Test Your Understanding... What is the global alignment score of "STEVEN" and "SEVEN"?

2 points for match; -1 point for mismatch, insert, or delete

- 1. -1
- 2. 9
- 3. 5
- 4. 6
- 5. 7, of course 7!!
  This is a trick question!



### Needleman-Wunsch DP Algorithm (1)

- Consider two strings S[1..n] and T[1..m]
- Define V(i, j) be the score of the optimal alignment between the prefixes S[1..i] and T[1..j]
- Base Cases:
  - V(0, 0) = 0
  - V(0, j) = V(0, j-1) + δ(\_, T[j]) for j ∈ [1..m]
    - Insert j times
  - V(i, 0) = V(i-1, 0) + δ(S[i], \_) for i ∈ [1..n]
    - Delete i times

## Needleman-Wunsch DP Algorithm (2)

• Recurrences: For i>0, j>0

$$V(i,j) = \max \begin{cases} V(i-1,j-1) + \mathcal{S}(S[i],T[j]) & \text{Match/mismatch} \\ V(i,j) + \mathcal{S}(S[i],\_) & \text{Delete} \\ V(i,j-1) + \mathcal{S}(\_,T[j]) & \text{Insert} \end{cases}$$

 In the alignment, the last pair must be either match/mismatch, delete, insert

# Example (1) – Base Cases

Usually implemented bottom-up

|   |    | Α  | G  | С  | Α  | Т  | G  | С  |
|---|----|----|----|----|----|----|----|----|
| _ | 0  | -1 | -2 | -3 | -4 | -5 | -6 | -7 |
| Α | -1 |    |    |    |    |    |    |    |
| С | -2 |    |    |    |    |    |    |    |
| Α | -3 |    |    |    |    |    |    |    |
| Α | -4 |    |    |    |    |    |    |    |
| Т | -5 |    |    |    |    |    |    |    |
| С | -6 |    |    |    |    |    |    |    |
| С | -7 |    |    |    |    |    |    |    |

### Example (2) – Recurrences

Because the topological order is easy: row-by-row, left-to-right



# Example (3) – Complete DP Table

Can you find the implicit DAG?



No OP/ Replace





Insert

|   |          |             |               |      | 1  |     |               |                |
|---|----------|-------------|---------------|------|----|-----|---------------|----------------|
|   | _        | Α           | G             | C    | Α  | Τ   | G             | C              |
| _ | Q+       | 1+          | - <b>-2</b> ← | 3    | -4 | 5+  | - <b>-6</b> ← | 7              |
| Α | -1       | 2 -         | 1             | - 0← | 1  | 2   | 3             | <b>4</b>       |
| С | -2       | - 🕶         |               | 3+   |    |     | - O <b>-</b>  |                |
| Α | _<br>_3_ | - O-        | - O           | 2    | 5  | 4 . | - 3 +         | - 2            |
| Α | -4       | - <b>\_</b> | _             | 1    | 4  | 4 ← | - 3 ←         | - 2            |
| Т | -5       | -2          | -2            | Ó    | •  | 6+  | - 5 ţ         | <sup>-</sup> 4 |
| С |          |             | -3            |      | 2  | -5- | 5 5           | 7              |
| С | -7       |             | -4            |      | 1  | 4   | 4             | 7              |

# **Analysis**

- Distinct States:
   We need to fill in all entries in an n×m matrix
- Space Complexity = O(nm)
- Overlapping Transitions: Each entries can be computed in O(1) time, by looking at three other entries ©
  - That clearly overlaps...
- Time Complexity = O(nm \* 1) = O(nm)
- See StringAlignmentDemo.java

#### Overview of TUTOR

- What are the possible parameters of this problem?
  - Which subset of them are needed to get distinct states?
- What are the possible actions of this problem?
  - Can you write a recurrence based on these actions?
  - Are they cyclic?
  - Are they overlapping?

#### **DP...**

- 1. Looks very easy
- 2. Looks easy
- 3. Neutral
- 4. Looks hard
- 5. Looks very hard



# Summary

- We have seen 3 examples of DP problems that are not natural to be seen as graph problems
- We can write recurrences on them and since those recurrences share overlapping subproblems, we can use DP technique
- We have seen two ways to implement DP recurrences, top-down and bottom-up
- We will see two more examples at recitation later