Overfitting and Model Tuning

Overfitting and Model Tuning

author: Son Nguyen

Reading Materials

► Max Kuhn. Chapter 4.

Prediction Problem

Given data of $X = [X_1, X_2, ..., X_d]$ and Y. Find the relation between X and Y.

Prediction Problem - Examples

► One Input Variable *X*

continuous

	V	
X	Υ	
13	4.0	
6	3.5	
14	3	
10	3.9	
7	2.7	
12	3.8	
1	1.5	

How are X and Y related?

Prediction Problem - Examples

eak9^{crieal}

Multiple Input Variables

X_1	X_2	 X ₃₅	Y
1	-1	 2	Tree
2.1	0	 6	Not a Tree
3	0	 8	Tree

How are X and Y related?

Prediction Problem

- ► If Y is continous, we have a regression problem.
- ▶ If Y is categorical, we have a classification problem.
- ▶ If Y is binary, we have a binary classification problem.

Prediction Problem - Examples

► This is a regression problem since *Y* is continuous.

X	Υ
13	4.0
6	3.5
14	3
10	3.9
7	2.7
12	3.8
1	1.5

Prediction Problem - Examples

▶ This is a binary classification Problem since *Y* is binary.

X_1	X_2	 X ₃₅	Y
1	-1	 2	Tree
2.1	0	 6	Not a Tree
3	0	 8	Tree

Overfitting

Consider the data:

Χ	Υ
13	4.0
6	3.5
14	3
10	3.9
7	2.7
12	3.8
1	1.5

- ▶ We will fit these data by polynomial model.
- ▶ In polynomial model, Y is a polynomial function of X.

Overfitting

- ▶ We will fit these data by **polynomial model**.
- \triangleright In polynomial model, Y is a polynomial function of X.

- ▶ In polynomial model, we need to specify the degree of the polynomial, *n*. Let try a few.
- ▶ If n = 1, we have a familiar **linear model**.
- Question: Does increasing n resuls in a better model?

ightharpoonup n = 1. (linear sodel)

ightharpoonup n=2.

Overfitting - Polynomial Model ightharpoonup n = 3.Error = 0.172425639158352 4.0 -3.5 -3.0 -> 2.5 -2.0 -10

ightharpoonup n = 4.

ightharpoonup n=5.

Question: What are the errors when n > 6?

- **Question**: What are the errors when n > 6?
- ► Answer: The errors are all zeros. (There are actually many solutions for each degree greater than 6.)

▶ **Question**: What is the best model?

- Question: What is the best model?
- ► **Answer**: We do not know. We need a validation dataset to validate the models.

► The errors we have seen are called **training errors**

- Let's validate these models with a validation dataset
- Validation Data

X	Υ
5	2.6
7	3.5
9	4.0
6	3.7
12	5.0
	J.0

ightharpoonup n = 1.

ightharpoonup n=2.

n = 3.

n = 4.

n = 5.

► Training Error vs. Validation Error

C- 2		Training Error	Validation Error
ander his	$\overline{n=1}$	0.4443277	3.726484
perfect hit	n = 2	0.4443277 0.2104958	2.304728
		0.1724256	1.955191 (Best!)
(0.08719074	2.515661
Cu4 }	n = 5	0.05131475	5.987636
over hit dala	<i>n</i> = 6	0	18.24475
· (μ			·

► Training Error vs. Validation Error

- As the degree n increases, the training errors decrease
- Model 6 (n = 6) is the best (perfect) in training but the worst in validation.
- ► The best model is the model with the best (lowest) error in **validation data**.

Overfitting - Polynomial Model ## - Model 4, 5 and 6 are overfitted - Model 1 and 2 are underfitted - Model 3 is the best model.

Overfitting in Regression

Overfitting in Classification

- In polynomial models, the larger n, the more complex/capable the model.
- Model complexity can be measured by the number of parameters/unknown of the model.

Linear model:

$$y = ax + b$$

▶ Question: How many unknowns/parameters in linear model?

▶ Linear model (n = 1):

$$y = ax + b$$

- Question: How many unknowns/parameters in linear model?
- **Answer**: Two unknowns/paramters: a and b

▶ Quadratic model (n = 2):

$$y = ax^2 + bx + c$$

- Three unknowns: a, b, and c.
- Quadratic model has more unknowns/parameters then linear model. Thus, quadratic model is more complex than linear model

► The mode complex the model, the easier it becomes overfitted!

Model Tuning

- ► We just "tuned" the the parameter n.
- The parameter *n* is called **tuning parameter**, or **hyperparameter**

Model Tuning

- Model tuning is the process of finding the **best** values for the tuning parameters of the model
- This is done through **trying out** many values for the tuning parameters then select the best values.

Model Training

- Model training is the process of finding the unknown/parameters of the model
- **Example**: Training linear model y = ax + b is to find a and b that best fit the data

Model Training vs. Model Tuning

- ► Model training finds the **parameters**
- ► Model tuning finds **hyperparameters**

Model vs. Family of Models

- ► The polynomial model is a **family** of models.
- Linear model is just **one** model
- A family of models has "tuning parameters".
- A single model, say, linear model, does not have tuning parameter
- Some model has multiple tuning parameters.

Data Splitting

- ▶ We need validation data for model tuning.
- ▶ **Question**: How can one of obtain validation data?

Data Splitting

- We need validation data for model tuning.
- Question: How can one of obtain validation data?
- ► Answer: We do not use the entire data to train models. We use a portion of it for training and save data for validation and testing.

Summary:

86 Hims: n=3 15 The best

100 cuts

5 Hims n=1 15 The best

100 kines n=2 15 The best

100 kines n=4 15 The best In summary: go with the majority and pick n= 3

Data Splitting: Train-Validation-Test

k-folds Cross Validation

Final Accuracy = Average(Round 1, Round 2, ...)

k-folds Cross Validation

k-folds Cross Validation and test

