Assignment #2 Matt Langlois - 7731813 October 25

Question 1

- a) 20, 15, 10, 5, 3, 7, 13, 12, 19, 16, 35, 25, 40, 38
- b) 3, 7, 5, 12, 13, 10, 16, 19, 15, 25, 38, 40, 35, 20
- c) Searches for the largest value in a binary tree.

```
findMax(Node n) {
    if (n.hasRightChild()) {
        return findMax(n.rightChild());
    }
    return n;
}
```

d) Insert element: 21

e) Case 1: Replace 15 with the left most node of the right subtree. Then remove the leftmost node of the right subtree.

Case 2: Replace 15 with the right most node of the left subtree. Any children of the right most node become children of the right most node's parent.

Question 2

a) Step 1: Replace node with the last node in the heap

Step 2: Downheap while the children are larger

Step 3: Downheap while the children are larger

Step 4: Downheap to become a leaf node

b) Insert element 3 at the left most position on the empty row. No further changes are required as the $7 \ge 3$ property of the max heap is satisfied

c) Step 1: Insert at left most node in the empty row

Step 2: Upheap 15 until max heap property $parent \ge child$ is met

16 14	10	8	<u>15</u>	9	3	2	4	1	7	
---------	----	---	-----------	---	---	---	---	---	---	--

Step 3: Upheap once more to satisfy the max-heap property.

4

d) Calculate the height of a 2000 element heap:

$$h(n) = \lfloor log_2(n) \rfloor$$
$$h(2000) = \lfloor log_2(2000) \rfloor$$
$$h(2000) = 10$$

... the height of a 2000 node heap is 10.

Question 3

Step 1: Heapify the contents of the array into a max-heap

Step 2: Upheap while the parents are smaller

Step 3: Upheap while the parents are smaller

Step 4: Upheap while the parents are smaller

Heap: 20 32 21 3 9 17 8 12 5 2

Step 5: Upheap while the parents are smaller

Step 6: Form a max heap

Max-heap: 32 | 20 | 21 | 12 | 9 | 17 | 8 | 3 | 5 | 2

Step 7: Remove the max from the heap and add it to the front of the sorted sequence

Heap: 2 20 21 12 9 17 8 3 5

Sorted Sequence: $\boxed{32}$

Step 8: Form a max-heap with the remaining elements

Max-heap: 21 20 17 12 9 2 8 3 5

Sorted Sequence: 32

Step 9: Remove the max from the heap and add it to the front of the sorted sequence

Heap: $\boxed{5} \ | \ 20 \ | \ 17 \ | \ 12 \ | \ 9 \ | \ 2 \ | \ 8 \ | \ 3$

Sorted Sequence: 21 | 32

Step 10: Form a max-heap with the remaining elements

Max-heap: 20 | 12 | 17 | 5 | 9 | 2 | 8 | 3

Sorted Sequence: 21 | 32

Step 11: Remove the max from the heap and add it to the front of the sorted sequence

Heap: 3 | 12 | 17 | 5 | 9 | 2 | 8

Sorted Sequence: $\boxed{20}$ | 21 | 32

Step 12: Form a max-heap with the remaining elements

Max-heap: 17 | 12 | 8 | 5 | 9 | 2 | 3

Sorted Sequence: 20 | 21 | 32

Step 13: Remove the max from the heap and add it to the front of the sorted sequence

Heap: 3 | 12 | 8 | 5 | 9 | 2

Sorted Sequence: <u>17</u> 20 21 32

Step 14: Form a max-heap with the remaining elements

Max-heap: 12 | 9 | 8 | 5 | 3 | 2

Sorted Sequence: 17 | 20 | 21 | 32

Step 15: Remove the max from the heap and add it to the front of the sorted sequence

Heap: 2 9 8 5 3

Sorted Sequence: <u>12</u> 17 20 21 32

Step 16: Form a max-heap with the remaining elements

Max-heap: 9 5 8 2 3

Sorted Sequence: 12 | 17 | 20 | 21 | 32

Step 17: Remove the max from the heap and add it to the front of the sorted sequence

Heap: 3 | 5 | 8 | 2

Sorted Sequence: <u>9</u> 12 17 20 21 32

Step 18: Form a max-heap with the remaining elements

Max-heap: 8 5 3 2

Sorted Sequence: 9 | 12 | 17 | 20 | 21 | 32

Step 19: Remove the max from the heap and add it to the front of the sorted sequence

Heap: 2 5 3

Sorted Sequence: <u>8</u> 9 12 17 20 21 32

Step 20: Form a max-heap with the remaining elements

Max-heap: 5 2 3

Sorted Sequence: 8 9 12 17 20 21 32

Step 21: Remove the max from the heap and add it to the front of the sorted sequence

Heap: 3 2

Sorted Sequence: 5 8 9 12 17 20 21 32

Step 22: Form a max-heap with the remaining elements

Max-heap: 3 2

Sorted Sequence: 5 | 8 | 9 | 12 | 17 | 20 | 21 | 32

Step 23: Remove the max from the heap and add it to the front of the sorted sequence

Max-heap: 2

Sorted Sequence: <u>3</u> 5 8 9 12 17 20 21 32

Step 24: Take the final element and add it to the sorted sequence to complete the heapsort

Sorted Sequence: 2 3 5 8 9 12 17 20 21 32

Sorted sequence after heapsort is complete:

