Visual Classification Models

Since our project idea is to identify shoes using image recognition, it would be beneficial for us to use a Convolutional Neural Network (CNN) since they are effective at learning features from visual data. As a result, the models listed below are all CNNs which have their own unique benefits and drawbacks. The model we'll be implementing depends on whether we want to prioritise accuracy, efficiency or a bit of both.

Model	Pros	Cons
ResNet	Strong accuracyVery popular in image classification	Its large model size may impact memory and processing speed on mobile devices
DenseNet	 Effective at capturing minute details in images Moderate model size with good accuracy 	Might require more memory compared to less complex models
EfficientNet	 Different variants of the model are available based on the resources available Achieves high accuracy in various scenarios 	May require more computational resources compared to less complex models
MobileNetV2	 Lightweight and optimised for mobile devices Balances accuracy and efficiency Good for real-time applications 	Accuracy may suffer compared to more complex models
Vision Transformers (ViTs)	 Good performance in image classification tasks Can capture fine details in images 	 Requires more training data than other models for it to be effective May be computationally demanding compared to other models
InceptionV3	 Achieves good accuracy with moderate computational requirements 	Model size and complexity might impact performance on mobile devices
SqueezeNet	Extremely lightweight with small memory requirements	Accuracy may be compromised due to lightweight model size