[1]

1	Using the particulate model of matter, state one reason for the following
	behaviour of solids, liquids and gases.
(a)	A liquid takes the shape of the container which it occupies.

		· ···
(b)	A solid cannot be compressed easily.	[2]
(c)	Particles of a gas diffuse faster than when it is in liquid or solid state.	[2]
		••••
		••••
1(a)	Particles in a liquid can <u>slide about/slide past each other</u> and	1
	hence fill the shapes of the container.	
(b)	A solid contains particles that are <u>very closely packed/have little</u>	1
	spaces between the particles	
	and <u>in fixed positions</u> hence cannot be compressed.	1
(c)	Particles of a gas <u>move faster</u>	1
	and more randomly/in all directions than particles of solid and	1

liquid, hence diffuse faster

2 Fig. 3.1 shows the arrangement of particles of a substance at 200 °C. The substance melts at 1400 °C and boils at 4000 °C.

Draw in the boxes below the arrangements of particles for this substance at the [2] given temperature. Fig. 3.1

3

3	(a)	Explain why a solid has a fixed shape while a liquid does not have a fixed shape.	[2]
	(b)	Explain why a solid has a fixed volume while a gas does not have a fixed volume.	[2]
3a	Par	ticles of a solid are held together by very strong forces of attraction . The forces	
	of a	ttraction between particles of liquid are weaker (Reject: weak) compared to those	
	in a	solid / Particles of a liquid are held together by strong forces of attraction . [1;	
	com	pare forces of attraction]	
			2
	Her	ce solid particles cannot move about freely / can only vibrate at fixed	
	pos	itions. Liquid particles can are not in fixed positions / slide over one another.	
	[1; 0	compare movement]	
3b	Par	ticles of a solid are held together by very strong forces of attraction. The forces	
	of a	ttraction between gas particles are very weak (accept: weak). [1; compare forces	
	of a	ttraction]	
			2
	Soli	d particles are very closely packed while particles of a gas are far apart . [1;	
	com	pare space between particles]	
	1		•

-190°C

4) The diagram shows the arrangement of atoms within a certain element **Y** at -230°C. The element melts at -219°C and boils at -183°C.

-177°C

-230ºC

(a) Draw in the following boxes the arrangement of atoms of the given temperature. [2]

(b) Describe and explain what happen to the **motion** and **arrangement** of particles when element **Y** changes from -177 °C to -220 °C.

[3] --

5) Table 9.1 shows the melting and boiling points of some substances.

	= :	
substance	melting point / °C	boiling point / °C
Р	– 100	– 56
Q	– 12	26
R	18	97
s	56	205

(a) Indicate the physical states of each of the substances at 27°C by placing the Q , R and S under the correct headings in the table below.				
	solid	liquid	gas	

(b)	Draw the arrangement of particles in substance ${\bf P}$ at – 57 °C and 0 °C respectively.				
	– 57 °C		0 °C		

(c) Substance S was heated from 100 °C to 180 °C. Predict what would happen to density of substance S . Explain your answer, with reference to its mass and volume.	the
[2]	

5	а	Solid: S Liquid: R Gas: P and Q	1m for every 2 correct answers.
	р	-57 °C (liquid) 0 °C (gas)	1m each No overlap No diff size of particles
	С	The density of substance S will decrease. When heated from 100 °C to 180 °C, the volume of the substance will increase but the mass will remain unchanged. Mass remains the same because the size of the particles will NEVER change and the number of particles remain the same too. (no particles can be created or destroyed in any process, chemical or physical.	1m 1m
		Volume changes because ONLY the VACUUM SPACE between the particles change.	

1 Refer to the graph for questions (a) to (d).

(a)	Name the processes occurring at (i) and (ii).
(b)	Describe the change in the arrangement of the molecules at (i).
(c)	Describe the change in the movement of the molecules at (ii).
	[2]
(d)	Why were there no observable changes in temperature at (i)?

1	(a)	(i) melting	1m
		(ii) boiling	1m
		Reject: melting point	
		Boiling point	
	(b)	At (i), the particles are initially arranged in orderly and packed	1m
		arrangement and held In fixed positions. As the particles gain	
		energy/temperature increase, the particles are closely packed but not	1m
		in an orderly/disorderly manner.	
		Accepted answers:	
		Arranged closely together in orderly arrangement(1m)	
		Orderly to disorderly arrangement(1m)	
	(c)	At (ii), the particles slide over one another/move in between each	1m
		other and throughout the liquid, as it gains energy, the particles move	1m
		in any direction (random) at high speed(rapidly).	1m
		Accepted answers:	
		Move freely and rapidly/ move fast and random (1m)	
	(d)	The heat energy taken in by the solid particles is used to overcome	1m
		the strong forces of attraction holding them in fixed positions.	
		Particles gain heat energy to overcome attractive forces and move	
		apart. Gain in heat energy does NOT increase kinetic energy of	
		particles during melting / boiling, so, temperature remains constant at	
		a fixed temperature because temperature is directly proportional to	
		the kinetic energy of the particles.	

2 (a) Table 8.1 shows the possible changes in the particles of a substance when the substance

undergoes changes in physical states.

Use a tick ($\sqrt{\ }$) to indicate the changes that occur during change of state.

[2]

Table 8.1

		Put a tick ($\sqrt{\ }$)
(i)	attractive forces between particles	
(ii)	distance between particles	
(iii)	mass of particles	
(iv)	motion of particles	
(v)	size of particles	

(b) Table 8.2 shows the melting point and boiling point of bromine.

Table 8.2

substance	melting point / °C	boiling point / °C
bromine	-7	59

Based on the particulate model of matter, draw the at 10°C in the box below.	arrangement of bromine [1]

(ii)		particulate model of matter, describe what happens to the temperature increases from – 10 °C to – 7 °C.	e bromine particles
			[2]
		a melting point of 113 0 C and a boiling point of 184 0 C. ows a graph of temperature against time when iodine is h	neated from 100 ⁰ C
(i)	_	rmation provided above, label on Fig. 8.3 on the temper e melting and boiling point of iodine.	ature axis the
	Temperatu	ure / ⁰ C	[2]
	remperate	A	
	200		
		RS	
		PO	
		P Q Q	
		Time	
	100		Time / s
	100	Fig. 8.3	Time / 3
(ii)	Briefly expl	lain why there is no change in temperature between P and Q.	

2(a)	1, II, IV all correct	1,1
(b)(i)		1
(ii)	From -10 $^{\circ}$ C to -7° C, particles gain energy and vibrate faster. At -7° C, the melting point of bromine, the bromine particles will have gained enough thermal energy to overcome the very strong attractive forces and slide past each other to become liquid particles. Temperature remains constant throughout the whole process during change of state. This is because Particles gain heat energy to overcome attractive forces and move apart. Gain in heat energy does NOT increase kinetic energy of particles during melting / boiling, so, temperature remains constant at a fixed temperature because temperature is directly proportional to the kinetic energy of the particles.	1
(c)(i)	184	Temp – 113 °C 1m 184 °C 1m
(ii)	They gain enough thermal energy to break away the forces of attraction between particles. Particles gain heat energy to overcome attractive forces and move apart. Gain in heat energy does NOT increase kinetic energy of particles during melting / boiling, so, temperature remains constant at a fixed temperature because temperature is directly proportional to the kinetic energy of the particles.	1

3 The melting and boiling points of four substances are given in the following table.

substance	melting point / °C	boiling point / °C
Α	15	150
В	- 25	75
С	135	280
D	- 150	-10

(a) At room temperature, which substance will be in the solid state?		
		[1]
(b)	If all four substances were heated from 0 °C to 100 °C, which substance will change from liquid to gas?	
		[1

(e)

(c) On the axes below, sketch the heating curve of substance **C** when it is heated from 0 °C to 300 °C. Indicate on the y-axis the melting and boiling points of substance **C**.

When substance **B** at 90 °C is placed in a beaker of ice, its compressibility decreases. Explain why.

Would you expect the density of substance **A** at 10 °C to be higher, lower or the same as the density at 20 °C? Explain your answer.

[3]

[2]

(f) Draw the arrangement of the particles of substance **D** at 0 °C.

[1]

0-	0	
3a	Substance C [1]	
3b	Subtstance B [1]	
3c	Temp / °C	
	300 -	
	280 -	
	125	
	•	
	0 ' Time	
3d	Substance B at 90 °C will condense into a liquid [1] when placed in a beaker of	
	ice.	
	Liquid particles are closely packed together whereas gas particles are far apart.	
	Elquid particles are closely packed together whereas gas particles are fair apart.	
	[1]	
	Hence, its compressibility decrease.	
3e	At 10 °C, the substance is a solid whereas at 20 °C, it exists as a liquid. [1]	
	Solid particles are more closely packed as compared to a liquid. [1]	
	Hence, within the same volume, the density of solid particles is higher than the	
	Therice, within the same volume, the density of solid particles is higher than the	
	density of liquid particles. [1]	
3f		
	Drawing of gas particles	