

Comparing methods for MHC peptide binding using PSSM, SMM, and ANN

Kamilla Kjærgaard Jensen, s112819 Marie Louise Jespersen, s152153 Patrick Zecchin, s150701

Introduction

Overview

MHC peptide complex

Position Specific Scoring Matrix (PSSM)

Stabilization Matrix Method (SMM)

Input vector: Sparse encoding

Length = peptide length * 20

SMM – gradient descent

Input vector: Sparse encoding Length = peptide length * 20

Step 3: Calculate E

Gradient descent
$$E_{\text{per target}} = \frac{1}{2} \cdot (O - t)^2 + \frac{\lambda}{N} \sum_{l} w_{l}^2$$

Step 4: Update weights

$$\frac{\partial E}{\partial w_i} = (O - t) \cdot I_i + \frac{2 \cdot \lambda}{N} \cdot w_i$$
$$\Delta w_i = -\varepsilon \cdot \frac{\partial E}{\partial w_i}$$

Gradient descent

SMM – Monte Carlo

Input vector: Sparse encoding Length = peptide length * 20

e length * 20 Monte Carlo

Step 3: Calculate E

Step 4: Update weights

$$P(accept) = \min\left(1, \left(e^{\frac{-\Delta E}{T}}\right)\right)$$

If $\Delta E \leq 0$

Accept move

If $\Delta E > 0$

- Pick a random number $i (0 \le i \le 1)$
- Accept if $\Delta E \leq i$

$$E = \frac{1}{2} \cdot \sum_{i} (O_i - t_i)^2 + \lambda \cdot \sum_{l} w_i^2$$

Update weights if the move is accepted

SMM - output

Input vector: Sparse encoding Length = peptide length * 20

Artificial Neural Network (ANN)

Input vector: Sparse or BLOSUM encoding Length = peptide length * 20

Step 1: Input vector Input = 180 1. round: random weights Step 2: Calculate output of next neuron (H or O) $o = \sum x_i \cdot w_i \quad O = g(o)$ Step 3: Calculate E

Step 4: Update weights

$$\Delta w_{j} = -\varepsilon \cdot \frac{\partial E}{\partial w_{j}}; \Delta v_{jk} = -\varepsilon \cdot \frac{\partial E}{\partial v_{jk}}$$

$$\frac{\partial E}{\partial w_{j}} = (O - t) \cdot g'(o) \cdot H_{j}$$

$$\frac{\partial E}{\partial v_{jk}} = g'(h_{j}) \cdot I_{k} \cdot (O - t) \cdot g'(o) \cdot w_{j}$$

$$E = \frac{1}{2} \cdot (O - t)^2$$

ANN – forward and back

Input vector: Sparse or BLOSUM encoding Length = peptide length * 20

1. round: random weigths

Forward

Step 2: Calculate output of next neuron (H or O)

$$o = \sum x_i \cdot w_i \ O = g(o)$$

1 (Bias)

Input = 180

Step 1: Input vector

Back propagation

Step 4: Update weights

$$\begin{split} \Delta w_{j} &= -\varepsilon \cdot \frac{\partial E}{\partial w_{j}}; \Delta v_{jk} = -\varepsilon \cdot \frac{\partial E}{\partial v_{jk}} \\ &\frac{\partial E}{\partial w_{j}} = (O - t) \cdot g'(o) \cdot H_{j} \\ &\frac{\partial E}{\partial v_{o}} = g'(h_{j}) \cdot I_{k} \cdot (O - t) \cdot g'(o) \cdot w_{j} \end{split}$$

 $E = \frac{1}{2} \cdot (O - t)^2$

Step 3: Calculate E

ANN – early stopping

Optimal early stopping, A0201

Cross-validation

Program

ANN

PSSM and **SMM**

Optimal parameters

Expected:

- Small dataset: large β
- Large dataset: small β

Uexpected:

- Small dataset: small β
 - Sequence variance in dataset
 - Restricted binding motif

$$p_{ia} = \frac{\alpha \cdot f_{ia} + \beta \cdot g_{ia}}{\alpha + \beta}$$

Optimal parameters

- Large λ
 - Small dataset
 - Gradient descent based SMM

$$E_{per target} = \frac{1}{2} \cdot (O - t)^2 + \frac{\lambda}{N} \cdot \sum_{i} w_i^2$$

$$E = \frac{1}{2} \cdot \sum_{i} (O_i - t_i)^2 + \lambda \cdot \sum_{i} w_i^2.$$

Optimal parameters

- Small dataset: large amount of cycles
 - Low information content
- BLOSUM encoding: small amount of cycles
 - High information content

Performance comparison

- Very low performance: small datasets
 - Not enought data to learn
- PSSM/SMM
 - Large increase in performace with the size of the datasets

Performance comparison

ANN

- Good performance on all datasets
- BLOSUM encodig generally best
- Sparse vs. BLOSUM: no pattern in dataset size

Performance comparison

- SMM underformance
 - Sparse vs. BLOSUM
 - Number of itereations for Monte Carlo
 - Divide by variance in sequences Hobohm

Conclusion

- ANN > PSSM > SMM
- Performance generally better on larger datasets

Thank you for your attention