Possibly useful relations (feel free to detach this page):

· ·	1 0 /
$\vec{v}_{avg} = \Delta \vec{x} / \Delta t$	$L = I\omega$
	$E = I\omega$ $\tau = \Delta L$
$\vec{a}_{avg} = \Delta \vec{v} / \Delta t$	$ au = rac{\Delta L}{\Delta t} \ P = rac{F}{A}$
$v = v_0 + at$	$P = \frac{1}{A}$
$v_{avg} = \frac{v_0 + v}{2}$	$P_{gauge} = P - P_{atm}$
$x = x_0 + v_0 t + \frac{1}{2} a t^2$	$P_{gauge} = P - P_{atm}$ $\rho = \frac{M}{V}$
$v^2 = v_0^2 + 2a(x - x_0)$	$Q = \frac{\Delta V}{\Delta t} = Av$
$R = \frac{v_0^2}{a} \sin 2\theta$	$Q = rac{\Delta P \pi r^4}{8nL}$
ž	Power = PQ
$h = \frac{v_0^2}{2g}\sin^2\theta$	$A \cdot v = \text{constant}$
$ec{F}_{net} = m ec{a}$	$P + \rho gy + \frac{1}{2}\rho v^2 = \text{constant}$
$ec{F}_{BA} = -ec{F}_{AB}$	=
$ec{W}=mec{g}$	$F_B = \rho g V_{displaced}$
$\vec{g} = 9.80 \mathrm{m/s^2}$ downward	$F_{ST} = \gamma L$
$0 \le f_s \le \mu_s N$	$P = \frac{4\gamma}{r}$
$f_k = \mu_k N$	$h = rac{r}{2\gamma} \ h = rac{2\gamma}{ ho gr}$
$egin{aligned} f_k &= \mu_k N \ rac{F}{A} &= Y rac{\Delta L}{L} \end{aligned}$	$N_R = rac{ ho v L}{\eta} = rac{2 ho v r}{\eta}$
$\vec{F}_k = -\vec{k}\vec{x}$	$x_{rms} = \sqrt[7]{2Dt}$
$W = Fd\cos\theta$	$x(t) = A\cos\omega t \text{ and } x_{max} = A$
$W_{net} = -\Delta PE = \Delta KE$	$v(t) = -A\omega \sin \omega t$ and $v_{max} = A\omega$
$KE = \frac{1}{2}mv^2$	$a(t) = -A\omega^2 \cos \omega t$ and $a_{max} = A\omega^2$
$PE_k = \frac{1}{2}kx^2$	$E = \frac{1}{2}kx^2 + \frac{1}{2}mv^2 = \frac{1}{2}kx^2_{max} = \frac{1}{2}mv_{max}^2$
$PE_q = mgh$	
$KE_i + PE_i + W_{nc} = KE_f + PE_f$	$v = \sqrt{T/\mu} \text{ with } \mu = \frac{m}{L}$
$P = \frac{W}{\Delta t}$	spring: $\omega = \sqrt{k/m}$
$T = \overline{\Delta t}$	pendulum: $\omega = \sqrt{g/\ell}$
$ \begin{aligned} &\text{Eff} = \frac{W_{out}}{E_{in}} \\ &F_G = G \frac{mM}{r^2} \end{aligned} $	$y(x,t) = A\cos(\omega t \pm kx)$ with – for left-moving wave
$F_G = G \frac{mM}{r^2}$	$\omega = \frac{2\pi}{T}$ and $k = \frac{2\pi}{\lambda}$
$G = 6.67 \times 10^{-11} \mathrm{N \cdot m^2 / kg^2}$	$v = \lambda f = \frac{\omega}{k}$
$ec{I} = ec{F}_{avg} \Delta t$	
$ec{p}=mec{v}$	$v_{sound} = 331 \mathrm{m/s} \sqrt{\frac{T}{273 K}}$
$ec{F}_{net} = rac{\Delta ec{p}}{\Delta t}$	string: $\lambda_n = \frac{2L}{n}$, $f_n = \frac{nv}{2L}$ with $n = 1, 2, 3, \dots$
$v_1 - v_2 = v_2' - v_1'$	open-open: $\lambda_n = \frac{2L}{n}$, $f_n = \frac{nv}{2L}$ with $n = 1, 2, 3, \dots$
$\theta = \frac{s}{r}$	open-closed: $\lambda_n = \frac{4L}{n}$, $f_n = \frac{nv}{4L}$ with $n = 1, 3, 5, \dots$
$v = r\omega$	open-open: $\lambda_n = \frac{2L}{n}$, $f_n = \frac{nv}{2L}$ with $n = 1, 2, 3,$ open-closed: $\lambda_n = \frac{4L}{n}$, $f_n = \frac{nv}{4L}$ with $n = 1, 3, 5,$ $f_{obs} = f_{src} \frac{v}{v \pm v_{src}}$ with $-f_{ore}$ for src moving towards obs
$f = \frac{1}{T}$ and $\omega = 2\pi f = \frac{2\pi}{T}$	$f_{obs} = f_{src} \frac{v \pm v_{obs}}{v}$ with + for obs moving towards src
$a_c = \frac{v^2}{r} = r\omega^2$	$f_{t-1} = f_{t-1} - f_{t-1} $
	$f_{beat} = f_1 - f_2 $ $I = \frac{P}{A} = \frac{P}{4\pi r^2}$
$F_c = m \frac{v^2}{r} = m r \omega^2$	$\beta = 10 \log \frac{I}{I_0}$ in dB with $I_0 = 10^{-12} \mathrm{W/m^2}$
$KE_{trans} = \frac{1}{2}mv^2$	
$KE_{rot} = \frac{1}{2}\tilde{I}\tilde{\omega}^2$	$1 \text{ atm} = 10^5 \text{ Pa} = 760 \text{ mm} \cdot \text{Hg}$
$I_{point} = \bar{M}R^2$	$\rho_{water} = 10^3 \text{kg/m}^3$
$I_{disk} = \frac{1}{2}MR^2$	1 cal = 4.186 J and 1 Cal = 1000 cal
$I_{sphere} = \frac{2}{5}MR^2$	$\cos \theta = \text{adjacent/hypotenuse}$
$\tau = rF\sin\theta = r_{\perp}F$	$\sin \theta = \text{opposite/hypotenuse}$
$\omega = \Delta\theta/\Delta t$	$\tan \theta = \sin \theta / \cos \theta$
$\alpha = \Delta\omega/\Delta t$	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
$\tau = I\alpha$	