

آزمایشگاه معماری کامپیونر

نیمسال اول ۱۴۰۰

قوانین آزمایشگاه

است.

حداکثر جلسات غیبت ۱ جلسه و تاخیر بیش از ۱۰ دقیقه مجاز

نمىباشد.

تعداد جلسات آزمایشگاه ۱۲ جلسه میباشد که در هر جلسه یک سناریو مطرح شده و توصیف میگردد.

تعداد اعضای گروه ۲ نفره میباشد. یس از گروهبندی نام خود را اعلام فرمایید.(آزمایش اول به صورت تک نفره انجام میشود)

ابزار مورد استفاده جهت توصیف و شبیهسازی سختافزار:

محاسيم MODELSIM

ISE Design Suite 14.x

گزارشکار نویسی و تحویل به موقع. تا حد ممكن سعى شود اصول لازم برای گزارش مهندسی رعایت شود (به بهترین گزارش نمره تشویقی تعلق میگیرد.) مطابق قوانین دانشگاه هرگونه کپی برداری ممنوع میباشد و صورت مشاهده، نمرهی هر دو طرف صفر در نظر گرفته میشود.

زمان تحویل آزمایش به صورت

پیشفرض در ساعت آزمایشگاه

نحوه نمرهدهی

۱۵٪	پیش گزارش و گزارش آزمایش
۴۵٪	انجام کامل آزمایش و تحویل در اسکایپ
۱۵٪	آپلود و تحویل به موقع
۱۵ [%]	کیفیت انجام آزمایش و پیادهسازی
10%	حضور فعال در کلاس

نحوه ارسال پروژهها

فایل پروژه به صورت زیپ شده و با فرمت نامگذاری زیر در سامانه کورسز بارگزاری شود.

نامخانوادگی۱ شماره دانشجویی– نامخانوادگی۲شماره دانشجویی– شماره آزمایش 1–XX–XX

VHDL چیست؟

امروزه از این زبان به عنوان یک زبان دارای استاندارد صنعتی برای توصیف سیستمهای دیجیتال استفاده میشود.

سطوح انتزاع

- استفاده از سطوح انتزاع باعث میشود تا توصیف سیستمهای پیچیده قابل انجام شود.
- بالاترین سطح انتزاع، سطح رفتاری (Behavioral) است که سیستم را درقالب اینکه چگونه رفتار میکند توصیف میکند و به اجزا و ارتباطات میان آنها اهمیتی نمیدهد.
- سطح ساختاری (Structural)، سیستم را در قالب مجموعهای از اجزا، گیتها و ارتباطلات میانشان تعریف میکند، توصیف ساختاری را با توصیف شماتیک و ارتباطات میان گیتها مقایسه میکنند.

سطوح انتزاع

- VHDL این امکان را فراهم میسازد تا سیستم دیجیتال در سطح ساختار یا رفتاری تعریف شود.
- سطح رفتاری را میتوان به دو مدل جریان
 داده و الگوریتمی تعریف کرد.
- جریان داده، قابلیت تعریف همزمانی و اجرا موازی را فراهم میسازد.
- الگوریتمی، قابلیت تعریف عبارات ترتیبی و اجرا ترتیبی را فراهم میکند.

توصيف VHDL

Ports HDL Entity Interface (Entity declaration

Body

(Architecture)

Sequential, combinational Processes

Subprograms

- یک سیستم دیجیتال در VHDL از Philip از Tity سایر تشکیل میشود که میتواند شامل سایر Entity میشود. هر Entity توسط یک توصیف Entity و بدنه Architecture تعریف میشود.
- میتوان گفت Entity واسط دنیای خارجی است
 که در آن سیگنالهای ورودی/خروجی تعریف
 میشود.
- در بدنه Architecture توصیف Entity صیگیرد و ترکیبی از entityهای متصل، پروسسها و اجزا است که همگی به شکل همزمان با یکدیگر کار میکنند.

A——out

مفهوم ENTITY

تعریف قطعه نام قطعه بیان سیگنالهای ورودی و خروجی و نام هریک انجام تعریف با کلمه کلیدی Entity


```
entity and_gate is

port (
    A : in std_logic;
    B : in std_logic;

and_result : out std_logic
);
end and_gate;
```



```
ENTITY entity name IS
   PORT
      port name : signal mode signal type;
      port name : signal mode signal type;
      ...);
END entity name;
```



```
entity HA is

port (
    A,B : in std_logic;
    S,C: out std_logic
    );
end HA;
```


توصيف قطعه

°توصیف قطعه در داخل محیطی بنام Architecture انجام می شود.

هر قطعه یک تعریف دارد اما می تواند چندین توصیف داشته باشد.

Architecture beh of part_name is

Begin

محل نوشتن كد توصيف قطعه

End beh;

توصيف گيت AND

```
architecture beh of and_gate is
begin
and_result <= A and B;
end beh;</pre>
```


گیت AND

```
library ieee;
use ieee.std_logic_1164.all;
entity and_gate is
 port (
   A : in std_logic;
   B : in std_logic;
   and_result : out std_logic
end and_gate;
architecture beh of and_gate is
begin
 and_result <= A and B;</pre>
end beh;
```



```
library ieee;
use ieee.std_logic_1164.all;
entity and 4_input is
 port (
  A : in std_logic;
  B : in std_logic;
  C : in std_logic;
  D : in std_logic;
  and4_result : out std_logic
end;
architecture structure of and_4_input is
component and gate is
 port (
  A : in std_logic;
  B : in std_logic;
  and2_result : out std_logic
end component;
 signal w1,w2: std_logic;
begin
 and_gate_instance0: and_gate port map(A => A, B => B, and2_result => w1);
 and_gate_instance1: and_gate port map(A => C, B => D, and2_result => w2);
 and_gate_instance2: and_gate port map(A => w1, B => w2, and4_result =>
and_result);
end structure;
```

۴AND ورودی با استفاده از گیت AND دو ورودی

- VHDL دار ای Keywordهایی است که نمیتوان آنها را به عنوان نام سیگنال و شناسه تعریف کرد.
 - کلمات کلیدی و شناسههای تعریف شده توسط کاربر Case insensitive هستند.
 - استفاده از (——) باعث میشود تا نوشتههای بعد از آن توسط کامپایلر نادیده گرفته شوند.
- VHDL همیشه روی نوع اشیاء حساس است و نیاز دارد که نوع تمامی اشیاء توسط کاربر تعریف شود.

Full adder

- - - - half adder


```
Library IEEE;
USE IEEE.std_logic_1164;
Entity and gate is
Port (
        A, B: in std_logic;
        C : out std_logic
End Entity and gate;
Architecture gatelevel of and_gate is
Begin
C \le A and B;
End gatelevel;
```



```
Library IEEE;
USE IEEE.std_logic_1164;
Entity or_gate is
Port (
         A, B: in std_logic;
         C: out std_logic
End Entity or_gate;
Architecture gatelevel of or_gate is
Begin
C \le A \text{ or } B;
End gatelevel;
```

$$A \rightarrow C$$


```
Library IEEE;
USE IEEE.std_logic_1164;
Entity xor_gate is
Port (
         A, B: in std_logic;
         C: out std_logic
End Entity xor_gate;
Architecture gatelevel of xor_gate is
Begin
C \leq A \text{ xor B};
End gatelevel;
```

$$A \rightarrow B \rightarrow C$$


```
Library IEEE;
USE IEEE.std_logic_1164;
Entity xor_gate is
Port (
         A, B: in std_logic;
         C : out std_logic
End Entity xor_gate;
Architecture gatelevel of xor_gate is
Begin
C \le A xor B;
End gatelevel;
```

```
Library IEEE;
USE IEEE.std_logic_1164;
Entity and gate is
Port (
         A, B: in std_logic;
         C : out std_logic
End Entity and_gate;
Architecture gatelevel of and_gate
is
Begin
C \leq A and B;
End gatelevel;
```



```
Library IEEE;
USE IEEE.std_logic_1164;
Entity half_adder is
Port (
        in1, in2: in std_logic;
        out1, out2 : out std_logic
End Entity half_adder;
Architecture structure of half_adder is
        component xor_gate is
        port(
                  A, B: in std_logic;
                      :out srd_logic
        End Component xor_gate
```



```
component and_gate is
port(

A, B: in std_logic;
C :out srd_logic
);
End Component and_gate

Begin

xor_gate_instance0: xor_gate port map (A=>in1, B=>in2, C=>out1);
and_gate_instance0: and_gate port map (A=>in1, B=>in2, C=>out2);
End structure;
```



```
library ieee;
use ieee.std_logic_1164.all;
entity and_gate_tb is
end and_gate_tb;
architecture tb of and_gate_tb is
  signal a, b : std_logic; -- inputs
  signal and_result : std_logic; -- outputs
begin
  -- connecting testbench signals with half_adder.vhd
  UUT : entity work.and_gate port map (a => a, b => b, and_result =>
and_result);
a <= '0', '1' after 20 ns, '0' after 40 ns, '1' after 60 ns;
  b <= '0', '1' after 40 ns;
end tb;
```


تکلیف شماره یک

قسمت اول: تعریف قطعات زیر و نوشتن تست بنچ (تک بیتی)

گیت OR ورودی گیت AND ورودی گیت 2 XOR تعریف یک نیم جمع کننده

قسمت دوم:

۴ OR ورودی با استفاده از گیت OR دو ورودی تعریف یک تمام جمع کننده با استفاده از نیم جمع کننده