Estamos suponiendo que en la categoría \mathcal{A} existen todos los límites pequeños (p.ej. productos, igualadores) y que \mathcal{B} es cerrada bajo isomorfismos.

Lema 7.10: Si \mathcal{B} es fuertemente cerrada en \mathcal{A} bajo igualadores, entonces \mathcal{B} es cerrada en \mathcal{A} bajo intersecciones de monomorfismos regulares.

Demostración. Sea $(h_i: Z \longrightarrow X)_{i \in I}$ una familia de monomorfismos regulares con $X \in Obj(\mathcal{B})$; queremos demostrar que su intersección está en \mathcal{B} . Para cada $i \in I$, sean $f_i, g_i: X \longrightarrow Y_i$ tales que

$$Z_i \xrightarrow{h_i} X \xrightarrow{g_i} Y_i$$

es un diagrama igualador. Entonces

$$\forall i \in I: \quad f_i \circ h_i = g_i \circ h_i. \tag{1}$$

Sea $Y = \Pi_{i \in I} Y_i, p_i : Y \longrightarrow Y_i$ el producto de la familia $(Y_i)_{i \in I}$ de objetos de \mathcal{A} - que existe por ser la categoría \mathcal{A} completa. Sean $f, g : X \longrightarrow Y$ los únicos morfismos tales que

$$\forall i \in I: \ p_i \circ f = f_i, \ p_i \circ g = g_i. \tag{2}$$

Por ser $\mathcal A$ completa, existe un monomorfismo igualador $h:W\longrightarrow X$ para f y g;

$$f \circ h = g \circ h. \tag{3}$$

Por ser \mathcal{B} fuertemente cerrada en \mathcal{A} bajo igualadores y como $X \in Obj(\mathcal{B})$, entonces $W \in Obj(\mathcal{B})$.

Si $i \in I$, entonces, de (2) y (3) se sigue que

$$f_i \circ h = (p_i \circ f) \circ h = (p_i \circ g) \circ h = g_i \circ h,$$

luego, por ser (Z_i,h_i) igualador de f_i,g_i , se tiene que existe $\omega_i:W\longrightarrow Z_i$ tal que

$$h = h_i \circ \omega_i, \quad i \in I.$$
 (4)

Si mostramos que $[W,((\omega)_{i\in I},h)]$ es una intersección de la familia de monomorfismos regulares $(h_i)_{i\in I}$, puesto que ya vimos que $W\in Obj(\mathcal{B})$, habremos acabado.

Sean pues para $i \in I$, $\omega_i' : U \longrightarrow Z_i$ y $h' : U \longrightarrow X$ monomorfismos tales que

$$\forall i \in I: \quad h_i \circ \omega_i' = h'. \tag{5}$$

Entonces, para toda $i \in I$, por (1),

$$f_i \circ h' = (f_i \circ h_i) \circ \omega_i' = (g_i \circ h_i) \circ \omega_i' = g_i \circ h', \tag{6}$$

por lo tanto,

$$f \circ h' = g \circ h'. \tag{7}$$

Como (W,h) es un igualador para f y g, existe un único morfismo $\phi:U\longrightarrow W$ tal que

$$h' = h \circ \phi \tag{8}$$

Veamos que ϕ es un morfismo conector entre los dos límites. Sea $i \in I$. Por (6), como (Z_i, h_i) es un igualador para f_i y g_i , existe un único morfismo de U en Z_i que con h_i factoriza a h'. Pero

$$h' = h \circ \phi = (h_i \circ \omega_i) \circ \phi = h_i \circ (\omega_i \circ \phi),$$

2

y también se tiene (5), luego, por unicidad concluimos que $\omega_i' = \omega_i \circ \phi$.

Recordatorio de algunas definiciones: si \mathcal{B} es una subcategoría de \mathcal{A} , entonces

- \mathcal{B} es **llena** ("full") si, para cualesquiera $X, Y \in Obj(\mathcal{B})$, todo morfismo en \mathcal{A} de X en Y es también un morfismo en \mathcal{B} , es decir, si \mathcal{B} contiene a dos objetos X y Y de \mathcal{A} , entonces contiene a todos los morfismos entre ellos.
- Si \mathcal{K} es una categoría pequeña y $\mathcal{D}:\mathcal{K}\longrightarrow\mathcal{A}$ es un diagrama, se dice que este es **inicial en** \mathcal{B} si

$$(\forall i \in Obj(\mathcal{K}))(\exists j \in Obj(\mathcal{K}))(\exists a : j \longrightarrow i \in Mor(\mathcal{K})) : \mathcal{D}(j) \in \mathcal{B}.$$

• \mathcal{B} es fuertemente cerrada en \mathcal{A} bajo \mathcal{K} -límites si para cualquier diagrama $\mathcal{D}: \mathcal{K} \longrightarrow \mathcal{A}$ inicial en \mathcal{B} se tiene que el límite $(X, (\alpha_i)_{i \in Obj(\mathcal{K})})$ para \mathcal{D} cumple que $X \in Obj(\mathcal{B})$.

Teorema 0.1. (Implicación 6) \Rightarrow 1) del Teorema de Caracterización de Subcategorías Epireflexivas) Sea \mathcal{A} una categoría completa, bien potenciada y co-bien potenciada y sea \mathcal{B} una sub-categoría de \mathcal{A} llena y cerrada bajo isomorfismos. Si

- 6) : B es fuertemente cerrada en A bajo productos e igualadores, y
- 1) : \mathcal{B} es fuertemente cerrada en \mathcal{A} bajo K-límites para cualquier categoría pequeña \mathcal{K} , entonces $6) \Rightarrow 1$).

Demostración.

Sea $\mathcal{D}: \mathcal{K} \longrightarrow \mathcal{A}$ un diagrama inicial en \mathcal{B} ; construyamos un límite para este y mostremos que el objeto del que parte el límite es un objeto de \mathcal{B} .

Sea

$$S := \{ j \in Obj(\mathcal{K}) | \mathcal{D}(i) \in Obj(\mathcal{B}) \},\$$

y sea $(X, (p_i : X \longrightarrow \mathcal{D}(i))_{i \in S})$ un producto en \mathcal{A} de la familia $(\mathcal{D}(i))_{i \in S}$. ¿A qué se refieren? Sólo sé la definición de producto de monomorfismos con un mismo codominio, no producto de objetos.

Por hipótesis, $X \in Obj(\mathcal{B})$. Sea la familia

$$\Lambda = \{(a, a') \in Mor(\mathcal{K}) \times Mor(\mathcal{K}) | a: j \longrightarrow i, a': j' \longrightarrow i, con j, j' \in S\}.$$

Nótese que, por ser el diagrama \mathcal{D} inicial en \mathcal{B} , para toda $i \in Obj(\mathcal{K})$ existe una pareja $(a, a') \in \Lambda$ de flechas con codominio i (puede ser a = a'). Para cada $\lambda = (a: j \longrightarrow i, a': j' \longrightarrow i) \in \Lambda$, sea (f_i, Y_i) un igualador de los morfismos $D(a) \circ p_j$ y $D(a') \circ p(j')$.

Entonces, como $X \in Obj(\mathcal{B})$, por hipótesis se sigue que

$$\forall i: Y_i \in Obj(\mathcal{B}). \tag{9}$$

Sea ahora $(Z,((g_{\lambda})_{\lambda\in\Lambda},f))$ una intersección de los monomorfismos f_i .

Según el Lema 7.10, (9) implica que

$$Z \in Obj(\mathcal{B}).$$

Para todo $i \in Obj(\mathcal{K})$, vamos a constuir un morfismo $\alpha_i : Z \longrightarrow \mathcal{D}(i)$ como sigue:

• Si $i \in S$, entonces

$$\alpha_i := p_i \circ f : Z \longrightarrow \mathcal{D}(i). \tag{10}$$

• Si $i \notin S$, es decir, si $\mathcal{D}(i) \notin Obj(\mathbb{B})$, por hipótesis existen un \mathcal{K} -objeto $j \in S$ y un \mathcal{K} morfismo $a: j \longrightarrow i$. Defínase entonces

$$\alpha_i := \mathcal{D}(a) \circ p_i \circ f : Z \longrightarrow \mathcal{D}(i). \tag{11}$$

Mostremos que la definición (11) de α_i cuando $i \notin S$ no depende de la elección de j, es decir, que si existe otro $j' \in S$ y otro morfismo $a' : j' \longrightarrow i$, entonces

$$\mathcal{D}(a) \circ p_j \circ f = \mathcal{D}(a') \circ p_{j'} \circ f.$$

¿Cómo? Supongo que tengo que usar que, para toda $\lambda \in \Lambda$, (f_{λ}, Y) es igualador de las composiciones marcadas.

Si mostramos que $(Z, (\alpha_i)_{i \in Obj(\mathcal{K})})$ es un límite para el diagrama $\mathcal{D} : \mathcal{K} \longrightarrow \mathcal{A}$, puesto que ya expusimos a Z como un objeto de \mathcal{B} , habremos terminado. Me falta esto...