Rule-based semantic interpretation for Universal Dependencies

Jamie Findlay, Saeedeh Salimifar, Ahmet Yıldırım, and Dag Haug

University of Oslo

UD Workshop, GURT/SyntaxFest March 11, 2023

Goals

- ► The *Universal Natural Language Understanding* project aims to build a system which can
 - 1. create rich, logic-based representations (specifically, DRSs); and
 - 2. do this for as many languages as possible.
- Takes advantage of the universalism/cross-linguistic coverage of Universal Dependencies.
- Aims to avoid/postpone the need for language-specific (e.g. lexical) resources.

Semantic representations

Mary says John likes goats.

```
x e_1
person(x)
Name(x, "Mary")
say(e_1)
Agent(e_1, x)
Topic(e_1, b_2)
       e_2 y z
       person(y)
       Name(y, "John")
      goat(z)
       love(e_2)
       Experiencer(e_2, y)
       Source(e_2, z)
```

 b_1 :

Discourse Representation Structures (DRSs)

- discourse referents + conditions on discourse referents
- ▶ DRSs can be embedded inside other DRSs (also under negation, disjunction, modal operators, ...)
- ► Translateable to first-order logic for use with theorem provers.

The Parallel Meaning Bank

▶ One good reason for choosing DRS representations is the Groningen Parallel Meaning Bank (Bos et al. 2017), which contains DRS representations for sentences in English, German, Dutch and Italian.

Manchester United defeated Fulham.

b1 REF x1	% Manchester~United [017]
bl Name x1 "manchester~united"	% Manchester~United [017]
b1 PRESUPPOSITION b3	% Manchester~United [017]
b1 team "n.01" x1	% Manchester~United [017]
b3 REF e1	% defeated [1826]
b3 REF t1	% defeated [1826]
b3 Agent e1 x1	% defeated [1826]
b3 Co-Agent e1 x2	% defeated [1826]
b3 TPR t1 "now"	% defeated [1826]
b3 Time e1 t1	% defeated [1826]
b3 defeat "v.01" e1	% defeated [1826]
b3 time "n.08" t1	% defeated [1826]
b2 REF x2	% Fulham [2733]
b2 Name x2 "fulham"	% Fulham [2733]
b2 PRESUPPOSITION b3	% Fulham [2733]
b2 team "n.01" x2	% Fulham [2733]
	% . [3334]

Glue semantics for composition

$$\begin{array}{ccc} \mathbf{grin} & \lambda y. & e & \\ & grin(e) & \\ & Agent(e,y) & \end{array} : E(\hat{*} \ \mathrm{nsubj}) \multimap T(\hat{*}) \\ \\ \mathbf{chrisjen} & \lambda P. & \frac{x}{person(x)} & \\ & Name(x, "Chrisjen") & + P(x) : [E(\hat{*}) \multimap T(\uparrow)] \multimap T(\uparrow) \end{array}$$

Pipeline

Examples of rules

Based on POS

```
coarsePos = PROPN -> \X.(([], [Name(X, ':LEMMA:')])) : e(!) -o t(!) \lambda X. \underbrace{ Name(X, ": LEMMA:")} : E(\hat{*}) \multimap T(\hat{*})
```

Based on deprel

```
relation = nsubj; ^ {coarsePos = VERB} ->
\Q.\V.\F.(Q(\X.(V(\E.(([], [nsubj(E,X)]) + F(E)))))) :
((e(!) -o t(^)) -o t(^)) -o (x(^) -o x(^))
```

$$\lambda Q \lambda V \lambda F. Q(\lambda X. (V(\lambda E. \underbrace{-nsubj(E, X)}] + F(E)))) : [[(E(\hat{*}) \multimap T(\uparrow)] \multimap T(\uparrow)] \multimap X(\uparrow) \multimap X(\uparrow)$$

$$(x \equiv \langle \langle v, t \rangle, t \rangle)$$

$(x = \langle \langle v, \iota \rangle, \iota \rangle)$

Based on features

$$\lambda V \lambda F. V(\lambda E. \boxed{ \begin{array}{c} T \\ time(T) \\ T = `now' \\ Time(E,T) \end{array}} + F(E)) : X(\hat{*}) \multimap X(\hat{*})$$

Language parametrisation

- ► Always aiming for universal rules, but . . .
- ► Some structural differences emerge from typological parameters.
 - ► E.g. negative concord: one negation or two?
- ▶ Some structural differences emerge from lexical facts.
 - ► E.g. quantifiers: universal or existential? (every vs. some)

Language parametrisation

```
"eng": {
 1
        "stanza lang code": "en".
 2
        "stanza_processors": "tokenize, mwt, pos, lemma, depparse",
 3
        "rules":["rules.dat"],
 4
        "typological features": {
 5
 6
            "negative concord" : "no".
            "sequence_of_tense": "yes",
 7
            "grammatical_gender": "no"
 8
          1.
 9
        "lexical items": {
10
            "future_aux": "will",
11
            "definite_det": "(the|this|that)",
12
            "indefinite det": "(a|some)".
13
            "universal_quantifier": "(every|each)",
14
            "infinitive_marker": "to",
15
            "conjunction": "and",
16
17
            "disjunction": "or"
          },
18
        "chop_rules":["chopRules.dat"],
19
        "templates": ["templates.dat"]
20
      }
21
```

Post-processing

- Output of rule-system is underspecified; language-specific information added when available, such as
 - Translation of UD relations to thematic roles

Jim loves Naomi.

- ► Also (to come):
 - ► Idioms/multiword expressions
 - Anaphora resolution

Neural network DRS parsing

Number of		PMB 2.2.0 PMB 3		3.0.0	3.0.0 PMB 4.0.0				
parameters	Encoder	Decoder	dev	test	dev	test	dev	test	eval
139,636,648	No-PT, 6x768-6	6×768-6	86.65	87.65	89.78	89.16	89.05	89.48	87.32
139,636,648	No-PT, 6x768-12	6×768-12	86.45	87.8	89.64	89.48	89.03	89.45	87.51
102,389,160	No-PT, 8x512-8	8×512-8	86.87	87.26	89.46	89.64	89.06	89.61	87.38
55,775,144	bert_base_uncased	8×512-8	87.17	88.45	89.69	89.78	89.1	89.79	87.2
55,775,144	bert_base_cased	8×512-8	87.51	88.23	89.96	89.89	89.19	89.9	88.18
133,633,960	bert_base_uncased	12×768-12	87.41	88.18	89.57	89.66	89.4	90.26	87.36
133,633,960	bert_base_cased	12×768-12	87.53	89.23	89.78	90.32	88.07	89.04	86.9
134,421,160	bert_large_uncased	12×768-12	86.93	88.56	89.08	88.65	88.71	89.6	87.29
134,421,160	bert_large_cased	12×768-12	86.9	88.27	89.39	90.03	88.81	90.12	87.42
${\approx}106 \text{ million}$	Prior	86.1	88.7	88.4	89.3				

Is rule-based parsing hopeless?

	Raw comparison			Structural only			Covered	Total	Proportion
Language	F1	Rec	Prec	F1	Rec	Prec	sentences	sentences	covered
German (de)	30.78	30.85	31.21	59.58	57.39	63.48	434	547	0.79
English (en)	46.69	48.07	46.28	63.42	63.92	64.32	874	1048	0.83
Italian (it)	30.68	30.55	31.40	58.88	57.25	61.92	429	461	0.93
Dutch (nl)	28.63	29.07	28.84	58.41	56.84	61.59	399	491	0.81

Figure: Raw comparison

Figure: Structural only

(Dis)graceful degradation

- Neural nets do well on the PMB data, but the sentences in these data are all very short.
- ▶ We annotated two Wikipedia texts from the GUM-UD corpus in the PMB. These have much longer sentences.

(Dis)graceful degradation

Now the advantage of neural approaches drops off almost entirely. (cf. Yao & Koller 2022; Donatelli & Koller 2023)

Figure: F1 scores on the GUM data

➤ As our rule coverage improves, we can only expect the UD scores to improve.

Conclusion

- Ongoing project to develop a rule-based semantic interpretation system for UD.
- Universal base with highly modular additions.
- Compositional system, with concomitant advantages for scaling with sentence length.

References

- Bos, Johan, Valerio Basile, Kilian Evang, Noortje J Venhuizen & Johannes Bjerva. 2017. The Groningen meaning bank. In *Handbook of linguistic annotation*, 463–496. Springer.
- Donatelli, Lucia & Alexander Koller. 2023. Compositionality in computational linguistics. *Annual Review of Linguistics* 9. 463–481. https://doi.org/10.1146/annurev-linguistics-030521-044439.
- Findlay, Jamie Y. & Dag T. T. Haug. 2021. How useful are Enhanced Universal Dependencies for semantic interpretation? In *Proceedings of the Sixth International Conference on Dependency Linguistics* (Depling, SyntaxFest 2021), 22–34. Sofia: Association for Computational Linguistics. https://aclanthology.org/2021.depling-1.3.
- Yao, Yuekun & Alexander Koller. 2022. Structural generalization is hard for sequence-to-sequence models. In *Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing*, 5048–5062. Abu Dhabi, United Arab Emirates: Association for Computational Linguistics. https://aclanthology.org/2022.emnlp-main.337.

What about Enhanced UD?

▶ EUD provides semantically richer starting point.

- ▶ But cross-linguistic coverage much sparser.
 - ▶ Only (usefully) present in 31/213 UD treebanks (Findlay & Haug 2021).

Features: morphosyntactic or semantic?

- ▶ UD feature annotations scrupulously kept to the word level: problematic when features of *phrases* emerge non-compositionally.
- ▶ But e.g. Tense given a semantic definition:

Tense is a feature that specifies the time when the action took/takes/will take place, in relation to a reference point.

► And yet:

