song recommendation: Velmungan

aus winner

Agenda

- 1. Introduction to prefix sum
- 2. Questions en prefix sum

Question

Given Narray elements and Q quertes. For each query calculate sum of all elements in range [L, R]

quenes

L	മ	ans			
4	8	9			
3	ጉ	01			
1	3	12			
7	7	- 9			
O	4	14			

Brute force logic

For q quertes find sum for range c, R

Code

Given Indian cricket team score for Pirst 10 overs of batting. After every over the score is given below

Overs	1	2	3	4	5	Ь	7	8	9	Ιb
Score board	2	8	14	29	31	49	65	79	88	97

aute 1

Totals runs scored in 7th over:

total end of 7th over- total at end of 6th over 65-49=16 runs

Auiz 2

How many runs were scored from 6th to 10th over? total at end of 10th over - total at end of 5th over 97-31 = 66

Autz 3

How many mus were seared by gnot 10th over? total score ait end of 10th over - total at (10-1) over 97 - 88 = 9

aviz 4

How many runs were scored from 3rd to 6th over? Score [6] - Score [3-1] = 49-8 = 41 autz 5

How many runs were scored from 4th to 9th over? 8 were [9] - Swre [4-1] = 88-14=74

General Formula [ith to jth over]

Score [j] - Score [i-1] // constant calculation

Observation

1. Scoreboard has cummulative score. So it can calculate range sum in O(1)
operation

How to calculate value for prefix sum?

Definition

ps lij - sum of Individual elements from o to P

arr = 2 5 -1 7 1

PS = 2 7 6 13 14

Auiz 6

Calculate the prefix sum array of following array

Brute Force

Observation & oftenization prefix sum array

PSCIJ = PSCI-1) + arr CiJ

pseudo code

How	to	answer			the			queris		
	0	l	2	3	4	5	Ь	7	8	9
an :	-3	b	2	4	5	2	8	-9	3	l
psum =	-3	3	5	9	14	16	24	15	18	19

quenes

L	٤	ans			
4	8	13-9-9			
3	ጉ	15-5=10			
1	3	9-(-3)=(2			
7	7	15-24 = -9			
D	4	14			

Generalize equation to find sum

T.c = O(n+q)

S.C= D(N)

det query sum (av, avr, n) &

P8 [N]; P8 CO] = MY CO];

For Ci=1; i<n; i+1)

P8 Ci] = P8 Ci-1) + AYY Ci]

0 (n)

0(n)

for (1=0; (<q; (++)))

LIR 11 (npnt

(+ (1==0))

print (pscRT);

3

else &

print (pscRT - psc1-17);

T. C = O(D)

105+105 = 2×105

Advantage:

No additional space

Desadvantage:

You lose the

psendo code

Question 2

Given an array of size N and a queries with start and end lindex. For every query, return the sum of all even indexed elements from L to E

Example

queny

し	R	ans
1	3	1 (am (z))
2	5	144 = 5
0	4	7
3	3	ь

Brute Force

For every guery,
get L, R and Pterate
to get even Pudex
sum

T. C = O(n * W)

Observation

should we calculate the prefix sum of entire array?

No, calculate prefix sum for even Index values

Hent:

Auiz 7

Construct the prefix sum for even Endex elemente for the given array

$$avv = \begin{bmatrix} 2 & 4 & 3 & 1 & 5 \\ 4 & 3 & 1 & 5 \end{bmatrix}$$

0	t	2	3	4		
2	2	5	5	10		
Pse						

L	P	sum
1	4	8
O	4	0)

void sum Of Even Index Carr, a, n) & T.C = O(n+w)

T.C = O(n+w) S.C = O(n)

anestion 2

Extension sum of all odd Endexed elements

Question 3

Given an array of stee N, count the number of special ludex in the array.

Note: Special Endex are those removing which sum of even Endexed elements. Es equal to sum of odd Endexed elements.

$$anv = \begin{bmatrix} 4 & 3 & 2 & 7 & 6 & -2 \\ 0 & 1 & 2 & 3 & 4 & 5 \end{bmatrix}$$

explanation

ĺ	array after removing						Se	ક્ષ	
0	3	2	7	6	-2		8	8 🗸	<u> </u>
١	4	2	7	Ь	-2		9	8 🗴	
2	4	3	7	Ь	-2		g	9 🗸	
3	4	3	2	6	-2		4	9 ×	
4	4	3	2	ጉ	-2		4	(o 🔀	
	0	1	2	3	4				

aniz 8

What will be the sum of elements at ODD Pudex in the resulting array after removing

element at Index 2?

1+10 = 11

auiz 9

Sum of elements at odd lindex after removing lindex 3?

Observation

Before Podex 3 So remains so = 3

After Index Z 80 becomes de = -1-2+8

aut 10

Sum of elements at even Index after removing Index 3?

Observation

8um of odd Index elements after removing 3 = 8um of odd 4911 Co,2] + 8um of even from [4,9]

8 um of even Endex elements after removing 3 = Sum of even till (0,2) + 8 um of odd from (4,9) Step 1: Calculate pso and pse

after removing endex z

even sny	odd sum
Se Co, 27 + So [4,9]	80 Co, 2) + Se [4,9]
3+5=8	3 + 12 = 15

Step 2:

Eterate through each value of P, check of Se = = So to count Epectal Endex

l = 0

else

psendo code

```
Ent count Special Endex ( arr, n) &
    1 calculate Pse
    1 calculate Pso
    11 count special endex
    for (9=0; P< n; P++) &
        Put se, so:
        lf (l==0) {
         8e = Psoln-17 - Psol97;
          So = Pse Cn-17 - Pse Cij;
       else &
         Se = Pse Cl-17 + Psocn-17 - Psocio
            11 Se till e-1 + 80 Citi, n]
         So = Pso Ci-1] + Pse Cn-1] - Pse CP);
             ((so till P-1 + Se [i+1, n]
       (f (30 == Se) &
           count ++;
```

return count;

Next class

Carry Forward Subarray