

Fig. 2.A

Transcription Initiation site.

 $lpha_{\mathrm{S1}}$ casein sequence, promoler or 3^{l} untranslated region.

The boxes represent the exons in the $\alpha\text{--}glucosidase$ sequence, the thin line represents he intron sequences.

The numbers above the boxes are the exon numbers

= polyadeny lation signal. βĄ

ATG = translation initiation site. TAG = translation stop codon

Fig. 3A.

= pKUN vector sequence = intron α -glu = exon α -glu

= pKUN vector sequence -= intron α -glu □ = exon α-glu

= pKUN vector sequence -= intron α-glu 🛚 = exon α-glu

Fig. 8.

Fig. 9.

Fig. 10.

Fig. 11. A.

AU 1M AmSO 110 kD 76 kD 76 kD 0.0000 0 M AmSO 0 M AmSO 110 kD 0 M AmSO 110 kD 11

Fig. 11. B.

Fig. 11. C.

Transgenic and non-transgenic whey on a Butyl column

Fig. 11. D.

Fig. 13. A.

Fig. 14.

_____12099801:1_UV1_280nm

_____12099801:1_pH

_x _ x _ x 12099801:1_Cond%

12099801:1_Fractions

Fig. 15.

______ 12099802:11_UV1_280nm

_____ 12099802:11_pH

12099802:11_Fractions

Fig. 16.

_____ 12099803:12_UV1_280nm

----- 12099803:12_pH

-x-x-x- 12099803:12_Cond%

12099803:12_Fractions

Fig. 17.

_____ 12099804:13_UV1_280nm

---- 12099804:13_pH

× × × 12099804:13_Cond%

12099804:13_Fractions

Fig. 18.

_____ 121099805:1_UV1_280nm

----- 121099805:1_pH

-x × × 121099805:1_Cond%

121099805:1_Fractions

Fig. 19.

______ 121099806:1_UV1_280nm

---- 121099806:1_pH

× × × 121099806:1_Cond%

121099806:1_Fractions

Fig. 20.

hatypei01:1_Cond%

hatypei01:1_Fractions

Fig. 21.

_____ hatypei02:11 _UV1_280nm

_____ hatypei02:11_pH

-x-x-- hatypei02:11_Cond%

hatypei02:11 _ Fractions

Fig. 22.

-x -x -x hatypei03:12_Cond%

hatypei03:12_Fractions

Fig. 23.

Fig. 24.

Ŋ

8 11 1

Fig. 26.

XK16/15 80°C cHT type I 10mM Napi pH 6.5 ; QFF eluate Run 02249901/02259901/02269901

1. fr.2-4 2. fr.5-8 3. fr.9-11 1066570 5. fr.2-4 5. fr.2-8 6. fr.5-8 7. fr.9-11 1066570 6. fr.3-8 6. fr.3-Flowthrough

fractions

Sample loaded on CHT