Toward reliability evaluation of computational models of protein molecules and their interactions

Md Hossain Shuvo, Ph.D.

Assistant Professor

Department of Computer Science

Prairie View A&M University

CCSB@PVAMU

Proteins

How to obtain protein 3D structure?

Experimental approaches

- > X-ray crystallography
- ➤ Nucleic Magnetic Resonance
- > Cryo-Electron Microscopy

Drawbacks:

- > Expensive
- Extensive
- Leads to gap between sequence and structure

Dr. Christian Anfinsen Noble prize in 1972

"demonstrated that the amino acid sequence of a protein contained all of the information needed for the protein to reach the native conformation"

Computational protein structure prediction can help

3 Clark, 2008

Computationally predicted protein models may have error..

Protein model quality estimation

Protein model quality estimation

Model quality estimation

Estimation of protein model quality

When the experimental structure is not known/absent

Application: protein structure prediction

Helps in accurately guide the process of protein structure prediction

Application of deep learning in model quality estimation

Fundamental research questions

1

How to estimate the quality of predicted protein models?

- 1. **CSBJ**, 2025
- 2. ISMB 2020 also, in Bioinformatics Oxford Press 2020
- **3. JMB** 2023
- 4. Bioinformatics advances 2023
- **5. PLOS ONE** 2020
- 6. Proteins 2021

JMB: Journal of Molecular Biology

ISMB: International Society for Computational Biology

CSBJ: Computational and Structural Biotechnology Journal

2

How to apply quality estimation method to improve quality of predicted protein models?

Improving the quality of less accurate protein models

7. Nucleic Acids Research 2021

Key research objectives

In this talk...

Download full issue

Computational and Structural Biotechnology Journal

Volume 27, 2025, Pages 160-170

Research Article

EquiRank: Improved protein-protein interface quality estimation using protein language-model-informed equivariant graph neural networks

Md Hossain Shuvo a, Debswapna Bhattacharya b 🔉 🖾

https://github.com/mhshuvo1/EquiRank

Protein-protein interface of multimeric model

- # of chains/subunits > 1
- > A.K.A. protein complex
- Protein-protein interaction
- Catalyzes biological processes
- ➤ Interface quality → multimeric protein quality

Protein-protein interface quality estimation

➤ Estimation of protein-protein interface quality of computationally predicted protein multimer/protein complexes

When the experimental structure is not available/absent

Protein complex structure prediction

Helps in accurately guide the process of protein complex structure prediction

Research questions

Representation

1

How to better represent the interface of a protein complex?

Learning the representation

2

How to better learn the interface representation?

1. Representation: protein-protein interface

1. Representation: sequence-based embeddings using evolutionary information

UniRef: UniProt Reference Clusters

Mirdita et al., 2022

1. Representation: sequence-based embeddings using Protein Language Model

Captures the evolutionary patterns at scale

17 Lin et al., 2022

1. Representation: structure-based representations

Expressive set of structural embeddings for protein-protein interface

1. Representation: output representation of multimeric distance errors

1. Representation: output representation of multimeric orientation errors

Torsion angles: Ω , τ_{ij} , τ_{ji} Planar angles: λ_{ii} , λ_{ii}

Symmetric $\Omega_{ij} = c_{\alpha i} - c_{\beta i} - c_{\beta j} - c_{\alpha j}$

Asymmetric $\tau_{ij} = N_i - c_{\alpha i} - c_{\beta i} - c_{\beta j}$ $\tau_{ji} = N_j - c_{\alpha j} - c_{\beta j} - c_{\beta i}$ $\lambda_{ij} = c_{\alpha i} - c_{\beta i} - c_{\beta j}$ $\lambda_{ji} = c_{\alpha j} - c_{\beta i} - c_{\beta i}$

Multimeric orientations errors

Angular RMSD

$$z_{ij}(\overrightarrow{a}) = \sqrt{\left(\min\left(\left|a_{ij}^{\text{native}} - a_{ij}^{\text{model}}\right|, 2\pi - \left|a_{ij}^{\text{native}} - a_{ij}^{\text{model}}\right|\right)\right)^{2}}$$

Where, $\vec{a} \in \Omega$, τ_{ij} , τ_{ji} , λ_{ij} , λ_{ji}

How to learn a better mapping between the input and the output representations?

2. Learning the representation

Graph neural network

$$\mathbf{m}_{ij} = \phi_e(\mathbf{h}_i^l, \mathbf{h}_j^l, a_{ij})$$

$$\mathbf{m}_i = \sum_{j \in \mathcal{N}(i)} \mathbf{m}_{ij}$$

$$\mathbf{h}_i^{l+1} = \phi_h(\mathbf{h}_i^l, \mathbf{m}_i)$$

Permutation invariant

Graph attention network

PIQLE, published in Bioinformatics advances

Shuvo et al., 2023

Symmetry-aware graph neural network

New output representations

- Multimeric distance error
- Multimeric orientation errors

Equivariance

Symmetry-aware equivariant neural network

2. Learning the representation

Equivariance

- ➤ Let $f: X \rightarrow Y$ be a neural network function
- \triangleright \emptyset^x and \emptyset^y are the transformations on X and Y, respectively
- $\succ f$ is equivariant iff

$$f \circ \emptyset_g^x = \emptyset_g^y \circ f$$

23 Satorras *et al.*, 2022

Research outcome

Can we use graph representation for protein interface and learn the representation using a symmetry-aware graph neural networks?

Representation

1

Graph (node + edge + output representations)

Learning the representation

2

Equivariant Graph Neural Network (EGNN)

Research Outcome

EquiRank: improved proteinprotein interface quality estimation using proteinlanguage-model-informed equivariant graph neural networks

Flowchart of EquiRank

 $EquiRank_{score}$ is the probabilistic combination of estimated multimeric distance and orientation error

Datasets

	Dataset	Num. targets	Num. decoys	Correct (DockQ ≥ 0.23)	Incorrect (DockQ < 0.23)
Training	VoroIF_GNN_train	1,097	14,400	42%	52%
	CASP13	20	2,386	17.24%	82.76%
	CASP14	10	1,329	15.95%	84.05%
Testing	VoroIF_GNN_test	235	2,845	42%	58%
	CASP15	26	6,850	45.37%	54.63%
	Dockground v1	23	2,500	10.72%	89.28%
Validation	VoroIF_GNN_validati on	235	2,814	40.96%	59.14%

CASP: Critical Assessment of Protein Structure Prediction

Dockground v1: Dockground version 1

Evaluation metrices

Ground truth

DockQ score

 \triangleright DockQ = [0, 1]

1

Ability to Rank

- Reproducibility of ranking w.r.t. ground truth DockQ scores
- ☐ Spearman Correlation between the DockQ and predicted interface quality scores.
- ☐ Higher correlation indicates better reproducibility
- □ Top-N Success Rate (N = 1, 5, 10, 15, 20, 25, 30)

$$SR(N) = \frac{S(N)}{K} \times 100$$

 \Box Top-N Hit Rate (N = 1, 5, 10, 15, 20, 25, 30)

$$HR(N) = \frac{H(N)}{M} \times 100$$

27

☐ Higher Rates indicates better performance

2

Ability to Distinguish

- High quality protein complex models
- \square DockQ cutoff = 0.80
- ☐ Receiver Operating Characteristics Area Under the Curve
- ☐ Higher AUC is better

Basu and Wallner, 2016

Competing methods

- > Graph Neural Network-based methods
 - 1. PIQLE
 - 2. EuDockScore
 - 3. VoroIF_GNN
 - 4. DProQA
 - 5. GDockScore
 - 6. DeepRank-GNN-esm
 - 7. GNN-DOVE
- Transformer-based method
 - 8. AlphaFold-Multimer
- Convolutional Neural Network-based methods
 - 9. TRScore
 - 10. DOVE_ATOM20
 - 11. DOVE_ATOM40
 - 12. DOVE_GOAP
 - 13. DOVE_ATOM_GOAP

Matthew et al., 2024 Shuvo et al., 2023 Olechnovič and Venclovas, 2023 Chen et al., 2023 McFee and Kim, 2023 Xu and Bonvin, 2023 Wang et al., 2021 Evans et al., 2022 Guo et al., 2022 Wang et al., 2020

Results

Ability to Rank: Reproducibility of DockQ ranking

Spearman correlation coefficient between predicted and DockQ scores

EquiRank is better in reproducing ground truth ranking

Ability to Rank: Top-N Success Rate

Percentage of targets with at least one acceptable model among top-N ranked models

VoroIF_GNN_test → total decoys: 2,845 Correct: 42% Incorrect: 58%)

Dockground v1→ total decoys: 2,500 Correct: 10.72% Incorrect: 89.28%

Ability to Rank: Top-N Hit Rate

Fraction of acceptable models among top-ranked models relative to all acceptable models in the dataset

VoroIF_GNN_test → total decoys: 2,845 Correct: 42% Incorrect: 58%)

Dockground v1→ total decoys: 2,500 Correct:

10.72% Incorrect: 89.28%

Ability to Distinguish: Distinguishing high-quality complex models

Area Under the ROC curve with DockQ threshold = 0.80

EquiRank is better in distinguishing high-quality protein complex models

Ablation studies (on VoroIF_GNN_validation)

Protein Language Model embeddings and EGNN contributes to the improved model quality estimation performance

Conclusion and future works

- > Application of an Ensemble 6 Equivariant Graph Neural Networks
- > EquiRank is better than other competing methods in terms of reproducibility and distinguishability
- > EquiRank demonstrates consistent performance on datasets having diverse quality
- > Protein-language-model-informed equivariant neural network contributes to improved performance

In the future...

- Improve the generalizability of the multimeric quality estimation method
 - Hyperparameter optimization of the underlying model
- > Improve the reproducibility of ground truth scores
- > Application of multimeric model quality estimation to improve the predicted multimeric protein complex models
- > Development of an integrated framework for multimeric protein model quality estimation

Thank You!

Toward reliability evaluation of computational models of protein molecules and their interactions

https://github.com/mhshuvo1/EquiRank

Md Hossain Shuvo, Ph.D.

mhshuvo@pvamu.edu