Cálculo Diferencial e Integral I

LEA, LEM, LEAN, MEAer, MEMec

 $2^{\rm o}$ Semestre de 2006/2007

7^a Aula Prática

1. (Exercício 3.18 de [2]) Suponha que para todo o $n \in \mathbb{N}_1$, a função f verifica a condição

 $f\left(-\frac{1}{n}\right) = 1 - f\left(\frac{1}{n}\right).$

Se existirem os limites laterais $f(0^-)$ e $f(0^+)$ quanto valerá a sua soma? Se existir $\lim_{x\to 0} f(x)$ qual será o seu valor? Justifique as respostas.

2. (Exercício 3.26 de [2]) Considere $f: \mathbb{R} \to \mathbb{R}$, definida por

$$f(x) = \frac{x + |x|}{2} d(x),$$

onde $d: \mathbb{R} \to \mathbb{R}$ designa a função de Dirichlet.

- a) Indique o contradomínio de f. A função é majorada? E minorada?
- b) Estude $\lim_{x\to-\infty} f(x)$ e $\lim_{x\to+\infty} f(x)$.
- c) Em que pontos é f contínua?
- 3. (Exercício 3.27 de [2]) Seja $f: \mathbb{R} \to \mathbb{R}$, contínua no ponto 1, dada por

$$f(x) = \begin{cases} 0, & \text{se } x \le -1, \\ \arcsin x, & \text{se } -1 < x < 1, \\ K \operatorname{sen}\left(\frac{\pi}{2}x\right), & \text{se } x \ge 1. \end{cases}$$

- a) Determine K.
- b) Estude f do ponto de vista da continuidade.
- c) Indique o contradomínio de f e se tem supremo, ínfimo, máximo, mínimo.
- d) Quais são os limites $\lim_{x\to-\infty} f(x)$ e $\lim_{x\to+\infty}$, caso existam?
- 4. (Exercício 3.34 de [2]) Considere a função $\varphi : \mathbb{R} \to \mathbb{R}$ definida por:

$$\varphi(x) = \begin{cases} \arctan \frac{1}{x} & \text{se } x < 0\\ 1 + e^{1-x} & \text{se } x \ge 0 \end{cases}$$

- a) Mostre que φ é contínua em qualquer ponto de $\mathbb{R} \setminus \{0\}$.
- b) Calcule os limites laterais de φ no ponto 0, e indique, justificando, se φ é contínua, contínua à direita ou contínua à esquerda nesse ponto (por definição, uma função é contínua à esquerda (direita) num ponto a do seu domínio D sse a sua restrição a $]-\infty,a]\cap D$ ($[a,+\infty[\cap D)$ é contínua em a).

- c) Calcule $\lim_{x\to+\infty} \varphi(x)$ e $\lim_{x\to-\infty} \varphi(x)$.
- d) Indique, justificando, o contradomínio de φ .
- 5. (Exercício 3.29 de [2])
 - a) Estude, quanto à continuidade em cada ponto do seu domínio, as funções definidas em $\mathbb{R} \setminus \{0\}$ pelas fórmulas:

$$\varphi(x) = e^{-\frac{1}{x^2}}, \qquad \psi(x) = x \sin \frac{1}{x} - \cos \frac{1}{x}.$$

- b) Indique, justificando, se cada uma das funções φ e ψ é prolongável por continuidade ou descontínua no ponto 0.
- c) Mostre que ϕ e ψ são funções limitadas.
- 6. (Exercício 3.32 de [2]) Considere a função f definida (no conjunto dos pontos para os quais a expressão $\frac{\sqrt{x}}{x-1}$ designa um número real) pela fórmula

$$f(x) = \frac{\sqrt{x}}{x - 1}.$$

- a) Indique, sob a forma de uma reunião de intervalos disjuntos, o domínio de f.
- b) Calcule

$$\lim_{x \to +\infty} f(x) \quad \lim_{x \to 1^-} f(x) \quad \lim_{x \to 1^+} f(x).$$

- c) Justificando a resposta, indique o contradomínio de f.
- d) Dê exemplos de sucessões (u_n) e (v_n) , de termos no domínio de f tais que (u_n) e $(f(v_n))$ sejam convergentes e (v_n) e $(f(u_n))$ sejam divergentes.
- 7. (Exercício 3.33 de [2]) Considere as funções f e g definidas em $]0,+\infty[$ pelas expressões

$$f(x) = \log \log(1+x)$$
 $g(x) = \sqrt{x} \cdot \operatorname{sen} \frac{1}{x^2}$

- a) Estude f e g quanto à continuidade.
- b) Calcule $\lim_{x\to+\infty} f(x)$ e $\lim_{x\to+\infty} g(x)$.
- c) Indique, justificando, se cada uma das funções é prolongável por continuidade ao ponto 0.
- d) Indique, justificando, o contradomínio de f.
- 8. (Exercício 3.36 de [2]) Seja f, a função real definida por,

$$f(x) = \begin{cases} -e^{\frac{1}{x}}, & \text{se } x < 0, \\ \log \frac{1}{1+x^2}, & \text{se } x > 0. \end{cases}$$

- a) Calcule $\lim_{x\to-\infty} f(x)$ e $\lim_{x\to+\infty} f(x)$.
- b) Justifique que f é contínua em todo o seu domínio.
- c) Mostre que f é prolongável por continuidade ao ponto 0.
- d) Sendo g a função que resulta de f por prolongamento por continuidade ao ponto 0, justifique que g tem máximo e mínimo em qualquer intervalo da forma $[-\varepsilon, \varepsilon]$, com $\varepsilon > 0$. Indique, justificando, o valor de $\max\{g(x): x \in [-\varepsilon, \varepsilon]\}$.
- 9. (Exercício 3.40 de [2])
 - a) Sendo $g:[0,+\infty[\to\mathbb{R}$ contínua no seu domínio, mostre que a função

$$\varphi(x) = g(1 - x^2)$$

tem máximo e mínimo.

- b) Se na alínea a) considerássemos g definida e contínua em $]0, +\infty[$ poderíamos continuar a garantir para φ a existíncia de máximo e mínimo? Justifique.
- 10. (Exercício 3.43 de [2]) Sejam $a,b\in\mathbb{R}$ e $g:]a,b[\to\mathbb{R}$ uma função contínua em]a,b[tal que

$$\lim_{x \to a} g(x) = -\lim_{x \to b} g(x) = -\infty.$$

Mostre que existe uma e uma só função contínua h definida em [a,b] tal que

$$h(x) = \operatorname{arctg}[g(x)^2], \ x \in]a, b[$$

e determine o seu contradomínio. Justifique a resposta.

- 11. (Exercício III.11 de [1]) Mostre que a equação sen³ $x + \cos^3 x = 0$ tem pelo menos uma raiz no intervalo $]0, \pi[$.
- 12. (Exercício III.15 de [1]) Considere uma função f, contínua em \mathbb{R} , e suponha que existem e são finitos os limites $\lim_{x\to +\infty} f(x)$ e $\lim_{x\to -\infty} f(x)$.
 - a) Prove que f é limitada.
 - Supondo que o produto dos dois limites indicados é negativo, indique justificando, o máximo da função

$$g(x) = \frac{1}{1 + [f(x)]^2}.$$

- 13. (Exercício IV.1 de [1]) Calcule as derivadas das funções:
 - a) $\operatorname{tg} x x$,
 - b) $\frac{x + \cos x}{1 \sin x}$,

- c) $e^{\arctan x}$,
- d) $e^{\log^2 x}$,
- e) $\sin x \cdot \cos x \cdot \operatorname{tg} x$,
- f) $x^2(1 + \log x)$,
- g) $\cos(\arcsin x)$,
- h) $(\log x)^x$,
- i) $x^{\sin 2x}$,
- j) $\sqrt{1-x^2}$,
- $\mathbf{k}) \ \frac{1}{\sqrt{1-e^x}}.$
- 14. Derive:
 - a) $\operatorname{arctg} x^4 (\operatorname{arctg} x)^4$,
 - b) $(\operatorname{sen} x)^x$,
 - c) $\log \log x$,
 - d) $\frac{\operatorname{sen}\operatorname{sen}x}{\operatorname{sen}x}$,
 - e) $(\operatorname{arctg} x)^{\operatorname{arcsen} x}$.
- 15. (Exercício IV.3 de [1]) para cada uma das seguintes funções determine o domínio de diferenciabilidade e calcule as respectivas derivadas:
 - a) x|x|,
 - b) $e^{-|x|}$,
 - c) $\log |x|$,
 - d) $e^{x-|x|}$.

 $\underline{\text{Outros exercícios}}\text{: }3.19,\,3.21,\,3.22,\,3.23,\,3.28,\,3.34,\,3.37,\,3.38,\,3.42\;\text{de [2]}.$

- [1] J. Campos Ferreira. Introdução à Análise Matemática, Fundação Calouste Gulbenkian, $8^{\rm a}$ ed., 2005.
 - [2] Exercícios de Análise Matemática I e II, IST Press, 2003.