Laboratorio N.2

Introduccion a Los Metodos Estadisticos Generacion de Estimadores

Diana Carolina Arias Sinisterra Cod. 1528008 Kevin Steven Garcia Chica Cod. 1533173 Cesar Andres Saavedra Vanegas Cod. 1628466

Universidad Del Valle

Facultad De Ingenieria Estadistica Octubre 2017

${\rm \acute{I}ndice}$

1.	Situación 1
	1.1. Punto a
	1.2. Punto b
	1.3. Punto c
2.	Situación 2
	2.1. Punto a
	2.2. Punto b
	2.3. Punto c
3.	Situación 4
	3.1. Punto a
	3.2. Punto b
	3.3. Punto c
4.	Situación 5
	4.1. Punto a
5.	Situación 7
	5.1. Punto a
	5.2. Punto b

1. Situación 1

1.1. Punto a.

Un estimador maximo verosimil de λ para una funcion Poisson(λ) esta dado por.

$$f_{(x)}(x) = \frac{\exp^{-\lambda} \lambda^X}{X!}$$

$$L(x,\lambda) = \prod_{i=1}^{n} \frac{\exp^{\lambda} \lambda^{X}}{X!}$$

$$L(x,\lambda) = \frac{\exp^{\lambda n} \lambda^{\sum X}}{X!}$$

$$Ln(L(x,\lambda)) = Ln(\frac{\exp^{\lambda n} \lambda^{\sum X}}{X!})$$

$$L(x,\lambda) = (-\lambda n) + Ln(\lambda^{\sum X_i}) - (Ln^{\sum X_i})$$

$$L(x,\lambda) = -(\lambda n) + \sum_{i=1}^{n} x_i Ln(\lambda) - (Ln^{\sum X_i})$$

$$\frac{dL(x;\lambda)}{d\lambda} = \frac{d}{d\lambda}(-\lambda n + \sum x_i Ln(\lambda) - (Ln\sum x_i))$$

$$L(x,\lambda) = \frac{\sum x_i}{\lambda} - n$$
$$\frac{\sum x_i}{\lambda} - n = 0$$

$$\frac{\sum x_i}{\lambda} = n$$

$$\hat{\lambda} = \frac{\sum x_i}{n}$$

Donde $\hat{\lambda}$ es un estimador maximo verosimil e insesgado para la funcion de distribucion poisson.

$$\hat{\lambda} = \bar{x}$$

1.2. Punto b.

En un estimador insesgado puesto que la esperanza es igual al parametro;

$$E[\hat{\lambda}] = E\left[\frac{\sum x_i}{n}\right]$$

$$E[\hat{\lambda}] = \frac{1}{n}E\left[\sum x_i\right]$$

$$E[\hat{\lambda}] = \frac{1}{n}(\sum)E[x]$$

$$E[\hat{\lambda}] = E[x]$$
$$\hat{\lambda} = \bar{x}$$

Donde $\hat{\lambda}$ es un estimador insesgado para la funncion poisson de parametro (λ) .

La varianza esta dada por:

$$Var[\hat{\lambda}] = var[\frac{\sum x_i}{n}]$$

$$Var[\hat{\lambda}] = \frac{1}{n^2}var[\sum x_i]$$

$$Var[\hat{\lambda}] = \frac{1}{n}var[x_i]$$

$$Var[x_i] = \frac{\lambda}{n}$$

1.3. Punto c.

Para clacular la probabilidad de que en un dia particular se reciban maximo 2 quejas, es decir $P[x < 2|\hat{y} = 3]$ a partir de la muestra que que cuenta con una media de $\hat{y} = 3$ se usa la funcion de densidad de la distribucion de poisson con parametro $\lambda = 3$.

$$\begin{split} P[x \leq 2] &= \frac{\exp^{-\lambda} \lambda^{X}}{X!} \\ P[x \leq 2] &= \frac{\exp^{-3} 3^{0}}{0!} + \frac{\exp^{-3} 3^{1}}{1!} + \frac{\exp^{-3} 3^{2}}{2!} \\ P[x \leq 2] &= 0.4231 \end{split}$$

Por lo cual la probabilidad que la tiene oficina de recibir como maximo dos que
jas en un dia es del $42.31\,\%$

2. Situación 2

$$f(y, \lambda, \gamma) = \lambda e^{-\lambda(y-\gamma)}$$

2.1. Punto a.

Estimacion de λ y γ por maxima verosimilitud:

Empezamos con la estimación de λ :

$$L(\lambda, \gamma | y1, ...yn) = \prod_{i=1}^{n} (\lambda e^{-\lambda(y-\gamma)}) = \lambda^n e^{-\lambda \sum_{i=1}^{n} (y_i - \gamma)} = \lambda^n e^{-\lambda(\sum_{i=1}^{n} y_i - n\gamma)} = \lambda^n e^{-\lambda \sum_{i=1}^{n} y_i + n\lambda \gamma}$$
$$Ln(L(\lambda, \gamma | y1, ...yn) = nLn(\lambda) + n\lambda \gamma - \lambda \sum_{i=1}^{n} y_i$$

$$\frac{\partial (Ln(L(\lambda,\gamma|y_1,..y_n)))}{\partial \lambda} = \frac{n}{\lambda} + n\gamma - \sum_{i=1}^{n} y_i$$

Entonces:

$$\frac{n}{\lambda} + n\gamma - \sum_{i=1}^{n} y_i = 0$$

$$\frac{n}{\lambda} = \sum_{i=1}^{n} y_i - n\gamma$$

$$\frac{1}{\lambda} = \bar{y} - \gamma$$

En conclusion:

$$\hat{\lambda} = \frac{1}{\bar{y} - \gamma}$$

Ahora, la estimación para γ sera:

$$\frac{\partial (Ln(L(\lambda,\gamma|y1,..yn)))}{\partial \gamma} = n$$

 $\frac{\partial (Ln(L(\lambda,\gamma|y1,...yn)))}{\partial \gamma} = n$ Podemos ver que en la derivada parcial se nos desaparece el parametro de interes γ , sabemos que lo que se quiere con este metodo es maximizar la funcion de verosimilitud. Entonces, observando nuestra funcion de verosimilitud, tenemos:

$$L(\lambda, \gamma | y1, ..yn) = \lambda^n e^{-\lambda \sum_{i=1}^n y_i + n\lambda \gamma}$$

Tomando todas las variables en la anterior expresion como constantes excepto γ , para maximizar dicha funcion, γ debe ser lo mas pequeno posible, ya que con ello, el exponente $-\lambda \sum_{i=1}^{n} y_i + n\lambda \gamma$ es mas pequeno y por tanto la exponencial va a ser mayor, haciendo maxima toda la expresion. En conclusion:

$$\hat{\gamma} = y_(1) = \min[y1, y2, y3, ..., yn]$$

2.2. Punto b.

Si observamos detalladamente la funcion de densidad, vemos que una funcion de una distribucion

exponencial con $x = y - \gamma$

Haciendo la sustitución anterior tenemos:

$$f(y, \lambda, \gamma) = \lambda e^{-\lambda(y-\gamma)} = \lambda e^{-\lambda x}$$

Como denotamos $x = y - \gamma$, despejando y, nos queda $y = x + \gamma$

Estimacion para el promedio:

 $E[y] = E[x + \gamma] = E[x] + E[\gamma]$; como x es exponencial $E[x] = \frac{1}{\lambda}$ y como γ es constante, $E[\gamma] = \gamma$ Entonces:

$$E[y] = \frac{1}{\lambda} + \gamma$$

Por la propiedad de la invarianza, reemplazando nuestro estimador para λ :

$$E[y] = \frac{1}{\frac{1}{\bar{y} - \gamma}} + \gamma = \bar{y} - \gamma + \gamma = \bar{y}$$

En conclusion:

$$E[y] = \bar{y}$$

Estimacion para la varianza:

 $V[y] = V[x + \gamma] = V[x] + V[\gamma]$; como x es exponencial $V[x] = \frac{1}{\lambda^2}$ y como γ es constante, $V[\gamma] = 0$ Entonces:

$$V[y] = \frac{1}{\lambda^2}$$

Teniendo en cuenta la propiedad de la invarianza, reemplazando nuestro estimador para λ tenemos:

 $V[y] = \frac{1}{(\frac{1}{\bar{y}-\gamma})^2}$, observamos que depende de γ , como el estimador para γ es maximo verosimil, tambien se puede aplicar la propiedad de la invarianza, entonces, reemplazando tenemos:

$$V[y] = \frac{1}{(\frac{1}{\bar{y}-y_{(1)}})^2} = (y-y_{(1)})^2$$

En conclusion:

$$V[y] = (y - y_{(1)})^2$$

Estimacion para la mediana:

 $Me[y] = Me[x+\gamma] = Me[x] + Me[\gamma]$; como γ es constante, $Me[\gamma] = \gamma$. Por otra parte, la mediana de x debemos hallarla.

Sabemos que la mediana esta definida como el punto que nos acumula una probabilidad de 0.5, entonces para hallarla se hace el siguiente procedimiento:

 $Me[x] = \int\limits_{\gamma}^{M} \lambda e^{-\lambda x} dx = 0.5$ Podemos ver que el limite superior lo denotamos como M, el cual es la

la mediana. y el limite inferior debemos hallarlo.

como $x = y - \gamma$ y $0 < \gamma < y < \infty$ por lo tanto $0 < x < \infty$

La integral quedaria:

$$Me[x] = \int_{0}^{M} \lambda e^{-\lambda x} dx = 0.5$$

$$=\lambda \int_{0}^{M} e^{-\lambda x} dx = 0.5$$

Sea $u = -\lambda x$, $du = -\lambda dx$

$$= -\frac{\lambda}{\lambda} \int_{0}^{M} e^{u} du = 0.5$$

$$= -[e^{-\lambda x} - 1] = 0.5$$

$$= 1 - e^{-\lambda x} = 0.5$$

$$= e^{-\lambda M} = 0.5$$

$$= -\lambda M = Ln(0.5)$$

$$M = -\frac{Ln(0.5)}{\lambda}$$

Entonces:

$$Me[x] = -\frac{Ln(0.5)}{\lambda}$$

Por tanto:

$$Me[y] = Me[x] + \gamma = -\frac{Ln(0.5)}{\lambda} + \gamma$$

Ahora, aplicando la propiedad de la invarianza. Reemplazando nuestros estimadores, nos queda:

$$Me[y] = -\frac{Ln(0.5)}{\frac{1}{\bar{y}-y_{(1)}}} + y_{(1)} = y_{(1)} - (\bar{y} - y_{(1)})Ln(0.5)$$

En conclusion:

$$\hat{Me}[y] = y_{(1)} - (\bar{y} - y_{(1)}) Ln(0.5)$$

2.3. Punto c.

Universidad Del Valle

7

3. Situación 4

3.1. Punto a.

$$f(y;\theta) = e^{-(y-\theta)}; y > \theta$$

ESTIMACION POR MOMENTOS:
$$M_1' = \mu_1'$$

 $M_1' = \frac{1}{n} \sum_{i=1}^n y_i = \bar{y}$
 $\mu_1' = E[Y] = \int_{\theta}^{\infty} y f(y) \cdot dy$
 $= \int_{\theta}^{\infty} y e^{-(y-\theta)} \cdot dy = \int_{\theta}^{\infty} y e^{-y} e^{\theta} \cdot dy = e^{\theta} \int_{\theta}^{\infty} y e^{-y} \cdot dy$

Aplicando integración por partes:
$$u = y$$
, $dv = e^{-y}$, $du = dy$ y $v = -e^{-y}$ Nos queda:
$$E[Y] = e^{\theta}[-ye^{-y} + \int\limits_{\theta}^{\infty} e^{-y} \cdot dy] = e^{\theta}[-ye^{-y} - e^{-y}|_{\theta}^{\infty}]$$
$$= e^{\theta}(\theta e^{-\theta} + e^{-\theta}) = \theta e^{\theta}e^{-\theta} + e^{\theta}e^{-\theta} = \theta + 1$$

Entonces, por el metodo de los momentos obtenemos el siguiente estimador:

$$\mu_1' = \theta + 1 = \bar{y} = M_1'$$
$$\hat{\theta} = \bar{y} - 1$$

ESTIMACION POR EL METODO DE MAXIMA VEROSIMILITUD:

- 3.2. Punto b.
- Punto c. 3.3.

4. Situación 5

4.1. Punto a.

$$f(x;\theta) = \frac{2\theta^2}{x^3}; \theta < x < \infty$$

$$\begin{split} M1' &= \sum_{i=1}^n \frac{x_i}{n} = \bar{x} \\ \mu_1' &= ? \\ \mu_1' &= E[X] = \int_{\theta}^{\infty} x f(x) \cdot dx \\ E[X] &= \int_{\theta}^{\infty} x \frac{2\theta^2}{x^3} \cdot dx = \int_{\theta}^{\infty} \frac{2\theta^2}{x^2} \cdot dx \\ E[X] &= 2\theta^2 \int_{\theta}^{\infty} \frac{1}{x^2} \cdot dx = 2\theta^2 [-\frac{1}{x}|_{\theta}^{\infty}] = 2\theta^2 (\frac{1}{\theta}) = 2\theta \\ \mu_1' &= E[X] = 2\theta = \bar{X} = M1' \\ \hat{\theta} &= \frac{\bar{X}}{2} \end{split}$$

En conclusion, el estimador por el metodo de los momentos para θ de la funcion de densidad $f(x;\theta)=\frac{2\theta^2}{x^3}; \theta < x < \infty$ es $\hat{\theta}=\frac{\bar{X}}{2}$

5. Situación 7

Sean $Y_1, Y_2, Y_3, ..., Y_n$ una muestra aleatoria extraida de una población con función de densidad:

$$f(y) = \frac{1}{2\theta + 2}; -1 < Y < 2\theta + 1$$

Donde; f(y) Uniforme $(a = -1, b = 2\theta + 1)$

5.1. Punto a.

Un estimador maximo verosimil para θ y σ^2 son:

Para θ :

$$\begin{split} L(y;\theta) &= \prod_{i=1}^n \big(\frac{1}{2\theta+2}\big) \\ L(y;\theta) &= \big(\frac{1}{2\theta+2}\big)^n \\ Ln(L(y;\theta)) &= Ln\big(\big(\frac{1}{2\theta+2}\big)^n\big) \\ L(y;\theta) &= n\big[Ln\big(\big(\frac{1}{2\theta+2}\big)\big] \\ L(y;\theta) &= n\big[Ln(1) - Ln(2\theta+2)\big] \\ L(y;\theta) &= n\big[-Ln(2\theta+2)\big] \\ \frac{dL(y;\theta)}{\theta} &= \frac{d}{\theta}\big(n\big[-Ln(2\theta+2)\big)\big] \\ \hat{\theta} &= \frac{n}{\theta+1} \end{split}$$

Donde el parametro es el limite superior de la variacion de la funcion de distribucion.

$$\therefore \hat{\theta} = Maximo = [Y_1, Y_2, Y_3, ..., Y_n]$$

Para σ^2 :

Como sabemos que f(y) es uniforme con a=-1 y $b=2\theta+1$, tenemos que la varianza es:

$$\sigma^{2} = Var(Y) = \frac{(b-a)^{2}}{12}$$

$$Var(Y) = \frac{(2\theta+1-(-1))^{2}}{12}$$

$$Var(Y) = \frac{(2\theta+2)^{2}}{12}$$

$$Var(Y) = \frac{4\theta^{2}+8\theta+4}{12} = \frac{4(\theta^{2}+2\theta+1)}{12} = \frac{\theta^{2}+2\theta+1}{3}$$

$$Var(Y) = \frac{(\theta+1)^{2}}{3}$$
Por la propiodad de la inversionza de los

Por la propiedad de la invarianza de los estimadores maximo verosimiles, tenemos que una estimación para σ^2 sera:

10

$$\hat{\sigma^2} = \frac{(Y_{(n)} + 1)^2}{3}$$

5.2. Punto b.

La estimación por momentos para θ sera:

$$M_1'=\bar{Y}$$

$$\mu_1'=E[Y]=?$$

$$E[Y]=\frac{(a+b)}{2} \ , \ \text{ya que f(y) tiene distribucion uniforme}$$

Introduccion a los Metodos Estadisticos

$$\begin{split} E[Y] &= \frac{(-1 + (2\theta + 1))}{2} \\ E[Y] &= \frac{(2\theta)}{2} \\ E[Y] &= \theta \\ \text{Entonces: } M_1' &= \bar{Y} = \theta = \mu_1' \\ \text{Por tanto: } \hat{\theta} &= \bar{Y} \end{split}$$