(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 10 May 2002 (10.05.2002)

PCT

(10) International Publication Number WO 02/36824 A1

(51) International Patent Classification7: C12N 15/12, A01K 67/027, C07K 16/40 C12Q 1/68,

- (21) International Application Number: PCT/NZ01/00245
- (22) International Filing Date: 31 October 2001 (31.10.2001)
- (25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

507888 508662 31 October 2000 (31.10.2000) NZ 6 December 2000 (06.12.2000) NZ

- (71) Applicants and
- (72) Inventors: GEORGES, Michel, Alphonse, Julien [BE/BE]; 24 rue Vieux Tige, B-4161 Villers-aux-Tours (BE). COPPIETERS, Wouter, Herman, Robert [BE/BE]; Beckstraat 2, B-3401 Landen (BE). GRISART, Bernard, Marie-Josee, Jean [BE/BE]; 2 Rue Bordia, B-4218 Couthuin (BE). SNELL, Russell, Grant (NZ/NZ); 3/28 Tennyson Street, Balmoral, Auckland (NZ). REID, Suzanne, Jean [NZ/NZ]; ViaLactia Biosciences (NZ) Limited, P O Box 109-185, Newmarket, Auckland (NZ). FORD, Christine, Ann [NZ/NZ]; ViaLactia Biosciences (NZ) Limited, P O Box 109/185, Newmarket, Auckland (NZ). SPELMAN, Richard, John [NZ/NZ]; 340 Horotiu Road, R.D. 8, Hamilton (NZ).

- (74) Agents: CALHOUN, Douglas, C. et al.; Λ J Park, Huddart Parker Building, 6th Floor, Post Office Square, P.O. Box 949, 6015 Wellington (NZ).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL. PI, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, MŁ, MR, NE, SN, TD, TG).

Published:

with international search report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: MARKER ASSISTED SELECTION OF BOVINE FOR IMPROVED MILK PRODUCTION USING DIACYLGLYC-EROL ACYLTRANSFERASE GENE DGAT1

(57) Abstract: The present invention provides a method of genotyping bovine for improved milk production traits by determining the DGAT1 genotypic state of said bovine, wherein the DGAT1 gene and polymorphisms within said gene have been found to be associated with such improved milk production traits.

Marker Assisted Selection of Bovine for Improved Milk Production Using Diacylglycerol Acyltransferase gene DGAT1

FIELD OF THE INVENTION

This invention relates to an application of marker assisted selection of bovine for a quantitative trait loci (QTL) associated with milk production, particularly although by no means exclusively, by assaying for the presence of at least one allele which is associated with increased milk volume as well as improved milk composition. The present invention also relates to the gene associated with the QTL, various polymorphisms within the gene sequence, proteins encoded by these sequences as well as to the application of all of these in the farming industry.

BACKGROUND

10

25

30

35

The genetic basis of bovine milk production is of immense significance to the dairy industry. An ability to modulate milk volumes and content has the potential to alter farming practices and to produce products which are tailored to meet a range of requirements. In particular, a method of genetically evaluating bovine to select those which express desirable traits, such as increased milk production and improved milk composition, would be desirable.

To date, bovine genomics are poorly understood and little is known regarding the genes which are critical to milk production. While there have been reports of quantitative trait loci (QTLs) on bovine chromosome 14 postulated to be associated with milk production (Coppieters et al (1998)), the specific genes involved have not to date been identified.

Marker assisted selection, which provides the ability to follow a specific favourable genetic allele, involves the identification of a DNA molecular marker or markers that segregate with a gene or group of genes associated with a QTL. DNA markers have several advantages. They are relatively easy to measure and are unambiguous, and as DNA markers are co-dominant, heterozygous and homozygous animals can be distinctively identified. Once a marker system is established, selection decisions are able to be made very easily as DNA markers can be assayed at any time after a DNA containing sample has been collected from an individual infant or adult animal, or even earlier as it is possible to test embryos in vitro if such embryos are collected.

The applicants have now identified a gene responsible for the QTL effect on bovine chromosome 14 as well as a number of polymorphisms which are associated with distinct genetic merits of animals for milk composition and volume.

It is an object of the present invention to provide an application method for marker assisted selection of this bovine gene, and in particular, of the polymorphisms in the bovine gene which are associated with increased milk volume and altered milk composition; and/or to provide genetic markers for use in such a method; and/or to provide the nucleic acid and amino acid sequences of this gene and encoded polypeptide; and/or to provide animals selected using the method of the invention as well as milk produced by the selected animals; and/or to provide the public with a useful choice.

SUMMARY OF THE INVENTION

15

This invention relates to the discovery of the bovine Diacylglycerol-o-acyltransferase (DGAT1) gene and polymorphisms within the bovine DGAT1 gene which are associated with increased milk yield and altered milk composition.

More specifically, several polymorphisms in the bovine DGAT1 gene have been identified 20 distinguishing multiple DGAT1 alleles in different cattle breeds. These polymorphisms include: K232A (Bases 6829/30 AA-CG nucleic acid change and K-A amino acid change); Nt984+8(Base 7438 A-G nucleic acid change); Nt984+26(Base 7456 C-T nucleic acid change); Nt1470+85(Base 8402 C-T nucleic acid change); Nt191+435 (Base 626 T-G nucleic acid change); Nt191-3321 (Base 3512 T-G nucleic acid change); 25 Nt279+144 (Base 4040 T-C nucleic acid change); Nt279+1067 (Base 4963 A-G nucleic acid change); Nt279+1107 (Base 5003 G-A nucleic acid change); Nt358 (Base 5997 C-T nucleic acid change); Nt754+3 (Base 6892 G-A nucleic acid change); Nt897+32 (Base 7224/5 GG-AC nucleic acid change); Nt1251+42 (Base 7987 G-A nucleic acid change) as summarised in Table 1. In particular, DGAT1 alleles characterized by the K232A mutation have been identified as being associated with an increased milk volume and altered milk composition in animals dependent upon whether they are homozygous with or without the mutation or heterozygous carrying one mutated allele. More specifically, the presence of the K232A mutation results in a decrease in milkfat percentage, milkfat yield, solid fat content and milk protein percentage, while increasing milk volume and 35 milk protein yield.

PCT/NZ01/00245

The present invention thus relates to the use of the polymorphisms in a method of identification and selection of a bovine having at least one of said polymorphisms as well as to providing markers specific for such identification. Kits comprising said markers for use in marker selection also form part of the present invention as do animals so selected, the milk produced by such selected animals and products produced from such milk, particularly as such milk and milk products affect processing and/or health characteristics for consumers.

In particular, the present invention is directed to a method of genotyping cows or bulls for one or more of the polymorphisms disclosed herein, selected cows or bulls so genotyped and milk and semen from said selected cows and bulls respectively.

According to a further aspect the present invention is directed to the isolated DGAT1 nucleic acid and allelic nucleic acid molecules comprising polymorphisms as well as to the proteins encoded thereby and their polypeptide sequences. Antibodies raised against said proteins are also contemplated, as are vectors comprising the nucleic acid molecules, host cells comprising the vectors; and protein molecules expressed in said host cells; and the application of all of them in the farming industry.

In particular, such applications include methods for modulating milk production and/or composition in a lactating bovine by affecting DGAT1 activity, by reducing the activity of DGAT1 (e.g. by use of specific ribozymes, antisense sequences and/or antibodies, or by transgenic technology to produce a "knock out" bovine and/or bovine with introduced transgenes containing the DGAT1 gene and/or variations of this gene driven by various promoters).

BRIEF DESCRIPTION OF THE DRAWINGS

10

15

30

The invention will now be described with reference to the Figures of the accompanying drawings in which:

Figure 1: Shows a BAC contig spanning the BULGE13-BULGE09 interval relative to a schematic diagram of bovine chromosome 14 and a schematic diagram showing the location of the genetic markers. The most likely position of the QTL is shown as a bar on the FISH-anchored linkage map proximal to BTA14q. The BACs composing the contigs spanning the BULGE13-BULGE09 interval are shown as a series of horizontal lines. The symbols on each BAC indicate their individual STS content: solid circles

4

correspond to STS derived from BAC ends, open boxes to microsatellite markers, and solid triangles to gene-specific Comparative Anchored Tagged Sequences. The arrow heads mark the BACs from which the respective BAC end STS were derived. The length of the lines do not reflect the actual insert size of the corresponding BACs. The BAC contig was aligned with the orthologous human HSA8q24.3 genomic "golden path" sequence represented according to the Ensembl Human Genome Server (http://www.ensembl.org/): individual sequence contigs are shown in alternating light and dark; a horizontal line indicates a gap in the sequence assembly; genetic markers are indicated under the contig map; the lines and boxes above the contig map represent "curated", "predicted known" or "predicted novel" genes.

10

15

35

Figures 2a and 2b: Show the genomic sequence of the bovine DGAT1 gene. Figure 2a is the 31 base pair sequence upstream but adjacent to the ATG or translation start site and is 5'UTR. Figure 2b is the genomic sequence in the bovine DGAT1 gene from the ATG translation start site (base 1) through to genomic sequence flanking the gene at the 3' end. The significant features including intron/exon boundaries, polymorphic sites, polyadenylation signal, and alternate splicing site and some of the primer sequences used in the assays described herein, are indicated;

- Figure 3: Shows the genomic organization, four polymorphisms and haplotypes found in the bovine *DGAT1* gene. Leader and trailer sequences are shown in light grey, coding sequences in dark grey and intronic sequences as a hollow line. The positions of four of the identified polymorphisms are marked as shown on the gene, and detailed in the underlying boxes including the corresponding sequence traces All the sequence variations are summarised in Table 1. The four *DGAT1* haplotypes which were found in the Dutch and New-Zealand Holstein-Friesian population as defined by these polymorphisms are shown and referred to as "sHQ-D", "sHQ-NZ", "sHQ-NZ" for the fat increasing haplotypes and "shq" for the fat decreasing haplotype;
- 30 **Figure 4a:** Shows the corresponding full length amino acid sequence for DGAT1 sequence of Figure 2b including annotation of the amino acid substitution;
 - Figure 4b: Shows the amino acid sequence predicted as a result of alternate splicing with exon VIII;

Figure 5: Shows the multiple peptide alignment of a portion of the DGAT1 protein flanking the K232A substitution from Bos taurus, Bison bison, Ovis aries, Sus scrofa,

5

Homo sapiens, Cercopithecus aethiops, Mus musculus domesticus and Rattus norvegicus showing the evolutionary conservation of the lysine mutated in the bovine K232A polymorphism;

- Figure 6: A. Shows the frequency distribution of observed DGAT1 <u>SNP</u> haplotypes in the Dutch and New Zealand Holstein-Friesian dairy cattle populations. B-D. Shows the frequency distribution of the combined <u>microsatellite</u> (BULGE09-BULGE11) and <u>SNP</u> DGAT1 haplotypes. The HQ-D and HQ-NZ haplotypes are shown; and
- 10 Figure 7: Shows the lod score due to LD when including (+) or excluding (-) the four DGAT1 polymorphisms shown in Figure 3 in a combined linkage and LD multipoint maximum likelihood mapping method. The lod score corresponds to the log₁₀ of the ratio between the likelihood of the data assuming LD and linkage between the markers and the likelihood of the data assuming linkage in the absence of LD. The positions of the microsatellites and SNP markers utilized in the analysis are shown on the X-axis, while the position of the DGAT1 SNPs is marked by a red arrow at the top of the figure.

DETAILED DESCRIPTION OF THE INVENTION

It has been discovered for the first time that the DGAT1 gene in bovine is associated with the QTL on chromosome 14 which is linked with improved milk production traits. More particularly, a number of novel polymorphisms on the DGAT1 gene have been discovered. It is thought that one or more of these polymorphisms is responsible for these traits.

25

30

The method used for isolating genes which cause specific phenotypes is known as positional candidate cloning. It involves: (i) the chromosomal localisation of the gene which causes the specific phenotype using genetic markers in a linkage analysis; and (ii) the identification of the gene which causes the specific phenotype amongst the "candidate" genes known to be located in the corresponding region. Most of the time these candidate genes are selected from available mapping information in humans and mice.

, 35

The tools required to perform the initial localisation (step (i) above) are microsatellite marker maps, which are available for livestock species and are found in the public domain (Bishop et al., 1994; Barendse et al., 1994; Georges et al., 1995; and Kappes, 1997). The tools required for the positional candidate cloning, particularly the BAC libraries, (step (ii) above) are partially available from the public domain. Genomic

libraries with large inserts constructed with Bacterial Artificial Chromosomes (BAC) are available in the public domain for most livestock species including cattle. For general principles of positional candidate cloning, see Collins, 1995 and Georges and Anderson, 1996.

5

10

Recently, a quantitative trait locus (QTL) with major effect on milk solids composition, located at the centromeric end of bovine chromosome 14, has been reported (Coppieters et al., (1998)). This QTL was shown to effect milk fat content and in particular to significantly affect protein %, volume, protein yield and fat yield of milk. The linkage study as well as subsequent marker assisted segregation analyses allowed for the identification of thirteen Holstein-Friesian sires predicted to be heterozygous "Qq" for the corresponding QTL (Coppieters et al., (1998); Riquet et al., (1999)).

Linkage disequilibrium methods were applied to refine the map position of the QTL to a ≈ 5 cM interval bounded by microsatellite markers BULGE09 and BULGE30.

A bovine DGAT1 nucleotide sequence was determined by the applicants and is shown in Figures 2a and 2b with the corresponding amino acid sequences (long and short forms) being shown in Figures 4a and 4b respectively. Table 1 sets out all the polymorphisms located to date with reference to the sequence in Figure 2b. Some of the genetic polymorphisms identified in the bovine DGAT1 gene are reported in Figure 3. The nucleic acid and protein sequences of the DGAT1 alleles including the K232A mutation are shown in Figures 2a and 2b (SEQ ID NOs: 3 and 1), annotated to show the alternatively spliced forms. The cDNA sequence is also set out in SEQ ID NO: 4.

25

30

35

20

The sequence information in the Figures gives rise to numerous, and separate, aspects of the invention.

In one aspect, the invention provides a method of determining genetic merit of a bovine with respect to milk composition and volume which comprises the step of determining the bovine DGAT1 genotypic state of said bovine. In particular, this method is useful for genotyping and selecting cows and bulls having the desired genotypic state so that milk and semen may be collected from said cows and bulls respectively. Such semen would be useful for breeding purposes to produce bovine having the desired genotypic and, as a result, phenotypic state. In addition, cows genotyped by the methods of the present invention are also useful for breeding purposes, particularly for breeding with the selected bulls and/or to be artificially inseminated with the semen from selected

5

15

bulls. The embryos and offspring produced by such cows also form part of the present invention.

In one embodiment, the genotypic state is determined with respect to DNA obtained from said bovine.

Alternatively, said genotypic state is determined with reference to mRNA obtained from said bovine.

10 In yet a further embodiment, the genotypic state is determined with reference to the amino acid sequence of expressed bovine DGAT1 protein obtained from said bovine.

Conveniently, in said method, the genotypic state of DNA encoding bovine DGAT1 is determined, directly or indirectly.

Alternatively, in said method the genotypic state of at least one nucleotide difference from the nucleotide sequence encoding bovine DGAT1 is determined, directly or indirectly.

20 More specifically, in said method the genotypic state of bovine DGAT1 allele(s) characterised by one or more of the polymorphisms shown in Table 1 below, is determined, directly or indirectly.

Table 1: Table of polymorphisms in the bovine DGAT1 gene

Start codon (atg); the a residue is denoted as position 1

Base number relative to		substitution	Intron/exon
exonic sequence1	from start		#
Nt 191 + 435 626		T-G Intro CAGTGCTAGGGG CAGTGCGAGGGG	
Nt 191 + 3321 3512		T-G GCATTGCGCT GCATGGCGCT	Intron 1
Nt 279 + 144	4040	T-C Intron 2 TACCCTGGGAC TACCCCGGGAC	
Nt 279 +1067	4963	A-G CTCTTAGCAGC CTCTTGGCAGC	Intron 2
Nt 279 +1107	5003	G-A ACAGGCAACT ACAGACAACT	Intron 2
Nt 358	5997 C-T TGTCTCTGTTC TGTCTTTGTTC		Exon IV
Nt 692	6829	AA-GC GGTAAGAAGGCCAA (Q) GGTAAGGCGGCCAA (q)	K232A Exon
Nt 754 +3	6892	G-A GCGGTGAGGAT GCGGTAAGGAT	Intron VIII
Nt 897 +32 7224 GG-AC GGGGGGG		GG-AC GGGGGGGGGGACTCT GGGGGACGGGGACTCT	Intron X
Nt 984 +8	Nt 984 +8 7438 A-G GAG GAG		Intron XII *
Nt 984 +26	7456	C-T GGACGCGTGGG GGACGTGTGGG	Intron XII *
Nt1251 +42	7987	G-A GGTGGGGGTGG GGTGGAGGTGG	Intron XV
Nt 1470 +85	8402	C-T CTGGGCGCAGC CTGGGTGCAGC	3' flanking region *

The numbers given are for the actual nucleotide or in the case of two nucleotide substitutions to the first nucleotide in the variation (counting 5' to 3')

- Preferably, the invention is directed to a method of determining the genotypic state of bovine DGAT1 allele(s) by determining the presence of the K232A polymorphism, either directly or indirectly.
- There are numerous art standard methods known for determining whether a particular 20 DNA sequence is present in a sample. An example is the Polymerase Chain Reaction

^{*}More detail of these polymorphisms is given in Figure 2b.

¹ e.g. Nt 191 represents nucletode number 191 from the start site of the coding sequence, + 435 represents number of nucleotides from and including base 192 in the genomic sequence (intron 1) to the polymorphic nucleotide The polymorphic nucleotides are shaded

9

(PCR). A preferred aspect of the invention thus includes a step in which ascertaining whether a polymorphism(s) in the sequence of DGAT1 DNA is present, includes amplifying the DNA in the presence of primers based on the nucleotide sequence of the DGAT1 gene and flanking sequence, and/or in the presence of a primer containing at least a portion of a polymorphism as disclosed herein and which when present results in altered relative milk lipid and protein production, and milk volume.

5

10

15

20

35

A primer of the present invention, used in PCR for example, is a nucleic acid molecule sufficiently complementary to the sequence on which it is based and of sufficient length to selectively hybridise to the corresponding portion of a nucleic acid molecule intended to be amplified and to prime synthesis thereof under *in vitro* conditions commonly used in PCR. Likewise, a probe of the present invention, is a molecule, for example a nucleic acid molecule of sufficient length and sufficiently complementary to the nucleic acid molecule of interest, which selectively binds under high or low stringency conditions with the nucleic acid sequence of interest for detection thereof in the presence of nucleic acid molecules having differing sequences.

In another aspect, the invention provides a method for determining the genetic merit of bovine with respect to milk content and volume with reference to a sample of material containing mRNA obtained from the bovine. This method includes ascertaining whether a polymorphism(s) in the sequence of the mRNA encoding DGAT1 is present. The presence of such polymorphisms again indicates an association with altered relative milk lipid and protein production and milk volume.

Again, if an amplification method such as PCR is used in ascertaining whether a polymorphism(s) in the sequence of the mRNA encoding (DGAT1) is present, the method includes reverse transcribing the mRNA using a reverse transcriptase to generate a cDNA and then amplifying the cDNA in the presence of a pair of primers complementary to a nucleotide sequence encoding a protein having biological activity of wild type 30 DGAT1.

In a further aspect, the invention includes the use of a probe in the methods of genotyping according to the invention wherein the probe is selected from any 5 or more contiguous nucleotides of the DGAT1 sequence as shown in Figure 2b, which is therefore sufficiently complementary with a nucleic acid sequence encoding such bovine DGAT1, or its complement, so as to bind thereto under stringent conditions. Diagnostic kits containing such a probe are also included. Such probes may be selected from

10

15

20

25

30

ForAA (FAM): CGTTGGCCTTCTTA or DgatADGC (VIC): TTGGCCGCCTTACC. (SEQ ID NOs: 20 and 21 respectively.)

The invention further includes isolated nucleic acid molecules encoding the DGAT1 variant proteins i.e. those proteins encoded by SEQ ID NOs: 1 and 4 (Figure 2b), with or without one or more polymorphisms of SEQ ID Nos: 7 to 19 (Table 1), or a fragment or variant thereof. Particularly, the invention includes an isolated nucleic acid molecule comprising a DNA molecule having in whole or in part the nucleotide sequence identified in Figure 2b or which varies from the sequence due to the degeneracy of the genetic code, or a nucleic acid strand capable of hybridising with said nucleic acid molecule under stringent hybridisation conditions.

The invention includes isolated mRNA transcribed from DNA having a sequence which corresponds to a nucleic acid molecule of the invention.

The invention includes isolated DNA in a recombinant cloning vector and a prokaryotic or eukaryotic cell containing and expressing heterologous DNA of the invention.

The invention includes a transfected cell line which expresses a protein encoded by the nucleic acid molecules of the invention.

The invention also includes a primer composition useful for detection of the presence of DNA encoding DGAT1 and/or the presence of DNA encoding a variant protein. In one form, the composition can include a nucleic acid primer substantially complementary to a nucleic acid sequence encoding DGAT1. The nucleic acid sequence can in whole or in part be that identified in Figure 2b. Diagnostic kits including such a composition are also included.

The invention further provides a diagnostic kit useful in detecting DNA encoding a variant DGAT1 protein in bovine which includes first and second primers for amplifying the DNA, the primers being complementary to nucleotide sequences of the DNA upstream and downstream, respectively, of a polymorphism in the portion of the DNA encoding DGAT1 which results in altered relative milk lipid, solid fat content and protein production and milk volume, wherein at least one of the nucleotide sequences is selected to be from a non-coding region of the DGAT1 gene. The kit can also include a third primer complementary to a polymorphism, disclosed herein, located on the DGAT1 gene.

11

The invention includes a process for producing a protein of the invention, including preparing a DNA fragment including a nucleotide sequence which encodes the protein; incorporating the DNA fragment into an expression vector to obtain a recombinant DNA molecule which includes the DNA fragment and is capable of undergoing replication; transforming a host cell with the recombinant DNA molecule to produce a transformant which can express the protein; culturing the transformant to produce the protein; and recovering the protein from resulting cultured mixture.

Thus in a further aspect, the invention provides a purified protein having biological activity of DGAT1. The terms "isolated" and "purified" as used herein, each refer to a protein substantially free of cellular material or culture medium when produced by recombinant DNA techniques, or chemical precursors or other chemicals when chemically synthesised. In certain preferred embodiments, the protein having biological activity of DGAT1 comprises an amino acid sequence and variants shown in Figures 4a and 4b (SEQ ID NOs: 2, 5 and 6). Furthermore, proteins having biological activity of DGAT1 that are encoded by nucleic acids which hybridise under stringent conditions to a nucleic acid comprising a nucleotide sequence shown in Figure 2b (SEQ ID NOs: 1 and 4) are encompassed by the invention.

20

25

30

35

Proteins of the invention having DGAT1 activity can be obtained by expression of a nucleic acid coding sequence in a suitable host cell using techniques known in the art. Suitable host cells include prokaryotic or eukaryotic organisms or cell lines, for example, yeast, *E. coli*, insect cells and COS1 cells. The recombinant expression vectors of the invention can be used to express a protein having DGAT1 activity in a host cell in order to isolate the protein. The invention provides a method of preparing a purified protein of the invention comprising introducing into a host cell a recombinant nucleic acid encoding the protein, allowing the protein to be expressed in the host cell and isolating and purifying the protein. Preferably, the recombinant nucleic acid is a recombinant expression vector. Proteins can be isolated from a host cell expressing the protein and purified according to standard procedures of the art, including ammonium sulfate precipitation, column chromatography (eg. ion exchange, gel filtration, affinity chromatography, etc.) electrophoresis, and ultimately, crystallisation (see generally "Enzyme Purification and Related Techniques". *Methods in Enzymology*, 22, 233-577 (1971)).

Alternatively, the protein or parts thereof can be prepared by chemical synthesis using techniques well known in the chemistry or proteins such as solid phase synthesis (Merrifield, 1964), or synthesis in homogeneous solution (Houbenweyl, 1987).

It will of course be understood that a variety of substitutions of amino acids is possible while preserving the structure responsible for activity of the DGAT1 proteins disclosed herein. Conservative substitutions are described in the patent literature, as for example, in United States Patent No 5,264,558 or 5,487,983. It is thus expected, for example, that interchange among non-polar aliphatic neutral amino acids, glycine, alanine, proline, valine and isoleucine, would be possible. Likewise, substitutions 10 among the polar aliphatic neutral amino acids, serine, threonine, methionine, asparagine and glutamine could possibly be made. Substitutions among the charged acidic amino acids, aspartic acid and glutamic acid, could probably be made, as could substitutions among the charged basic amino acids, lysine and arginine. Substitutions among the aromatic amino acids, including phenylalanine, histidine, tryptophan and 15 tyrosine would also likely be possible. These sorts of substitutions and interchanges are well known to those skilled in the art. Other substitutions might well be possible. Of course, it would also be expected that the greater percentage of homology ie. sequence similarity, of a variant protein with a naturally occurring protein, the greater 20 the retention of activity.

A further advantage may be obtained through chimeric forms of the proteins, as known in the art. A DNA sequence encoding each entire protein, or a portion of the protein, could be linked, for example, with a sequence coding for the C-terminal portion of $E.\ coli$ β -galactosidase to produce a fusion protein.

25

30

35

The proteins of the invention, or portions thereof, have numerous applications in turn. By way of example, each protein can be used to prepare antibodies which bind to a distinct epitope in an unconserved region of the protein. An unconserved region of the protein is one which does not have substantial sequence homology to other proteins.

Still further, the invention includes an antibody to a bovine DGAT1 variant protein encoded by a nucleotide sequence of the present invention as well as a diagnostic kit containing such an antibody.

Conventional methods can be used to prepare the antibodies. For example, by using a DGAT1 peptide, polyclonal antisera or monoclonal antibodies can be made using

•

WO 02/36824

30

35

13

PCT/NZ01/00245

standard methods. A mammal, (eg. a mouse, hamster, or rabbit) can be immunised with an immunogenic form of the peptide which elicits an antibody response in the mammal. Techniques for conferring immunogenicity on a peptide include conjugation to carriers or other techniques well known in the art. For example, the peptide can be administered in the presence of adjuvant. The progress of immunisation can be monitored by detection of antibody titers in plasma or serum. Standard ELISA or other immunoassay can be used to assess the levels of antibodies. Following immunisation, antisera can be obtained and, if desired, polyclonal antibodies isolated from the sera.

To produce monoclonal antibodies, antibody producing cells (lymphocytes) can be harvested from an immunised animal and fused with myeloma cells by standard somatic cell fusion procedures, thus immortalising these cells and yielding hybridoma cells. Such techniques are well known in the art. For example, the hybridoma technique originally developed by Kohler and Milstein (Kohler, 1975) as well as other techniques such as the human B-cell hybridoma technique (Kozbor, 1983) and screening of combinatorial antibody libraries (Huse, 1989). Hybridoma cells can be screened immunochemically for production of antibodies specifically reactive with the peptide, and monoclonal antibodies isolated.

The term "antibody" as used herein is intended to include fragments thereof which are also specifically reactive with the target protein. Antibodies can be fragmented using conventional techniques and the fragments screened for utility in the same manner as described above for whole antibodies. For example, F(ab)2 fragments can be generated by treating antibody with pepsin. The resulting F(ab)2 fragment can be treated to reduce disulfide bridges to produce Fab' fragments.

Another method of generating specific antibodies, or antibody fragments, reactive against the target proteins is to screen expression libraries encoding immunoglobulin genes, or portions thereof, expressed in bacteria, with peptides produced from the nucleic acid molecules of the present invention. For example, complete Fab fragments, VH regions and FV regions can be expressed in bacteria using phage expression libraries. See for example Ward et al., Huse et al., and McCafferty et al. (Ward, 1989); Huse 1989; McCafferty, 1990). Screening such libraries with, for example, a DGAT1 protein can identify immunoglobulin fragments reactive with that DGAT1. Alternatively, the SCID-hu mouse developed by Genpharm can be used to produce antibodies, or fragments thereof.

WO 02/36824

The polyclonal, monoclonal or chimeric monoclonal antibodies can be used to detect the proteins of the invention, portions thereof or closely related isoforms in various biological materials. For example, they can be used in an ELISA, radioimmunoassay or histochemical tests. Thus, the antibodies can be used to quantify the amount and location of a DGAT1 protein of the invention, portions thereof or closely related isoforms in a sample in order to determine the role of DGAT1 proteins. Using methods described hereinbefore, polyclonal, monoclonal antibodies, or chimeric monoclonal antibodies can be raised to non-conserved regions of DGAT1 and used to distinguish a particular DGAT1 from other proteins.

14

PCT/NZ01/00245

10

15

20

25

30

35

The polyclonal or monoclonal antibodies can be coupled to a detectable substance or reporter system. The term "coupled" is used to mean that the detectable substance is physically linked to the antibody. Suitable detectable substances include various enzymes, prosthetic groups, fluorescent materials, luminescent materials and radioactive materials. Examples of suitable enzymes include horseradish peroxidase, alkaline phosphatase, β-galactosidase, and acetylcholinesterase; examples of suitable prosthetic group complexes include streptavidin/biotin and avidin/biotin; examples of suitable fluorescent materials include umbelliferone, fluorescein, fluorescein isothiocyanate, rhodamine, dichlorotriazinylamine fluorescein, dansyl chloride and phycoerythrin; an example of a luminescent material includes luminol; and examples of suitable radioactive material include ¹²⁵I; ¹³¹I, ³⁵S and ³H. In a preferred embodiment, the reporter system allows quantitation of the amount of protein (antigen) present.

Such an antibody-linked reported system could be used in a method for determining whether a fluid or tissue sample of a bovine contains a deficient amount or an excessive amount of the relevant DGAT1 protein. Given a normal threshold concentration of such a protein, test kits can be developed.

The availability of such antibodies gives rise to further applications. One is a diagnostic kit for identifying cells comprising an antibody (such as a monoclonal antibody) which binds to a protein comprising an amino acid sequence shown in Figure 4a and 4b; means for detecting the antibody when bound to the protein, unreacted protein or unbound antibody; means for determining the amount of protein in the sample; and means for comparing the amount of protein in the sample with a standard. In some embodiments of the invention, the detectability of the antibody which binds to a specific DGAT1 protein is activated by the binding (eg. change in fluorescence spectrum, loss of

15

radioisotopic label). The diagnostic kit can also contain an instruction manual for use of the kit.

Antibody-based diagnostics are of course not the only possibility. A further diagnostic kit comprises a nucleotide probe complementary to the sequence, or an oligonucleotide fragment thereof, shown in Figure 2a and 2b, for example, for hybridisation with mRNA from a sample of cells; means for detecting the nucleotide probe bound to mRNA in the sample with a standard. In a particular aspect, the kit of this aspect of the invention includes a probe having a nucleic acid molecule sufficiently complementary with a sequence identified in Figure 2a and 2b, or its complement, so as to bind thereto under stringent conditions. "Stringent hybridisation conditions" takes on its common meaning to a person skilled in the art. Appropriate stringency conditions which promote nucleic acid hybridisation, for example, 6x sodium chloride/sodium citrate (SSC) at about 45°C are known to those skilled in the art, including in Current Protocols in Molecular Biology, John Wiley & Sons, NY (1989). Appropriate wash stringency depends on degree of homology and length of probe. If homology is 100%, a high temperature (65°C to 75°C) may be used. If homology is low, lower wash temperatures must be used. However, if the probe is very short (<100bp), lower temperatures must be used even with 100% homology. In general, one starts washing at low temperatures (37°C to 40°C), and raises the temperature by 3-5°C intervals until background is low enough not to be a major factor in autoradiography. The diagnostic kit can also contain an instruction manual for use of the kit.

10

15

20

25

30

35

One of the major applications of the present invention is in the marker assisted selection of bovines having a polymorphism in the DGAT1 gene and which are associated with improved milk production traits. The invention therefore provides a diagnostic kit which can be used to determine the DGAT1 genotype of bovine genetic material, for example. One kit includes a set of primers used for amplifying the genetic material. A kit can contain a primer including a nucleotide sequence for amplifying a region of the genetic material containing one of the polymorphisms described herein. Such a kit could also include a primer for amplifying the corresponding region of the normal DGAT1 gene, i.e. the sequence without polymorphisms. Usually, such a kit would also include another primer upstream or downstream of the region of interest complementary to a coding and/or non-coding portion of the gene. These primers are used to amplify the segment containing the mutation, i.e. polymorphism, of interest.

PCT/NZ01/00245 WO 02/36824

5

10

20

25

30

35

In particular, the invention is directed to the use of the polymorphisms in the DGAT1 gene in the genotyping of cows and bulls as well as to cows and bulls selected by such genotyping which have one or more of said polymorphisms in the DGAT1 gene. Such bulls so selected are of valuable breeding stock and the invention is also directed to the semen produced by such selected bulls for breeding purposes. Cows so selected are also useful as breeding stock as are their offspring. In addition, such cows may produce valuable dairy herds as the milk produced by such cows is produced in greater volumes than equivalent non-selected cows, and/or has an altered composition in that it comprises less milkfat and more milk protein. Such milk and products made therefrom also form part of the invention. It is also noted that the milk from these selected cows will be valuable as the fat content is not only decreased but is also characterised by being softer. Without being bound by theory, it is thought that this increased fat softness is due to the fatty acid composition being such that there is less saturated and more unsaturated fat in the milk of selected cows. Thus it is anticipated 15 that products made from such milk will have processing advantages, such as in the production of more spreadable butter, as well as having a health benefit on consumers, as generally unsaturated fats are considered to be more "healthy" than saturated fats. The protein composition of milk produced by such selected cows is also altered. In particular, such milk comprises an altered protein yield compared to milk for nonselected cows and the casein:whey ratio is also altered which makes such milk valuable for cheese production.

Thus, the present invention involves genotyping bovine, both cows and bulls, for the DGAT1 polymorphisms disclosed herein, selected cows and bulls so genotyped, milk and semen produced by the selected cows and bulls so genotyped, offspring produced by the selected bovine, including embryos and cells (including cell lines) useful for cloning said selected bovine.

The actual genotyping is carried out using primers that target specific polymorphisms as described herein and that could function as allele-specific oligonucleotides in conventional hybridisation, Taqman assays, OLA assays, etc. Alternatively, primers can be designed to permit genotyping by microsequencing.

One kit of primers can include first, second and third primers, (a), (b) and (c), respectively. Primer (a) is based on a region containing a DGAT1 mutation such as described above. Primer (b) encodes a region upstream or downstream of the region to be amplified by primer (a) so that genetic material containing the mutation is amplified,

by PCR, for example, in the presence of the two primers. Primer (c) is based on the region corresponding to that on which primer (a) is based, but lacking the mutation. Thus, genetic material containing the non-mutated region will be amplified in the presence of primers (b) and (c). Genetic material homozygous for the DGAT1 gene will thus provide amplified products in the presence of primers (b) and (c). Genetic material homozygous for the mutated gene will thus provide amplified products in the presence of primers (a) and (b). Heterozygous genetic material will provide amplified products in both cases.

The present invention also contemplates the modulation of milk production and content in non-human animals by modulating the activity of the DGAT1 protein. In particular, this aspect of the invention includes a method of modulating milk production and/or milk content in a lactating bovine, the method comprising administering to the bovine an effective amount of a nucleic acid molecule substantially complementary to at least a portion of mRNA encoding the bovine DGAT1 variant proteins and being of sufficient length to sufficiently reduce expression of said DGAT1, i.e. by use of antisense nucleic acids.

20

25

30

Antisense nucleic acids or oligonucleotides (RNA or preferably DNA) can be used to inhibit DGAT1 production in a bovine if this is considered desirable e.g. in order to produce a bovine capable of improved milk production, i.e. increased milk volume and decreased milkfat content. Antisense oligonucleotides, typically 15 to 20 bases long, bind to the sense mRNA or pre mRNA region coding for the protein of interest, which can inhibit translation of the bound mRNA to protein. The cDNA sequence encoding DGAT1 can thus be used to design a series of oligonucleotides which together span a large portion, or even the entire cDNA sequence. These oligonucleotides can be tested to determine which provides the greatest inhibitory effect on the expression of the protein (Stewart 1996). The most suitable mRNA target sites include 5'- and 3'- untranslated regions as well as the initiation codon. Other regions might be found to be more or less effective.

Alternatively, an antisense nucleic acid or oligonucleotide may bind to DGAT1 coding sequences.

In yet another embodiment, the invention provides a method of modulating milk production and/or milk content in a lactating bovine, including administering to the bovine an effective amount of a nucleic acid molecule having ribozyme activity and a

18

nucleotide sequence substantially complementary to at least a portion of mRNA encoding a bovine DGAT1 and being of sufficient length to bind selectively thereto to sufficiently reduce expression of said DGAT1.

- Rather than reducing DGAT1 activity in the bovine by inhibiting gene expression at the nucleic acid level, activity of the relevant DGAT1 protein may be directly inhibited by binding to an agent, such as, for example, a suitable small molecule or a monoclonal antibody.
- Thus, the invention also includes a method of inhibiting the activity of bovine DGAT1 in a lactating bovine so as to modulate milk production and/or milk solids content, comprising administering an effective amount of an antibody to the relevant DGAT1.

The invention still further includes a method of modulating milk production and/or milk solids content by raising an autoantibody to a bovine DGAT1 in the bovine. Raising the autoantibody can include administering a protein having DGAT1 activity to the bovine.

In still a further embodiment, nucleic acids which encode DGAT1 proteins can be used to generate transgenic animals. A transgenic animal (eg. a mouse) is an animal having cells that contain a transgene, which transgene is introduced into the animal or an ancestor of the animal at a prenatal, eg. an embryonic stage. A transgene is DNA which is integrated into the genome of a cell from which a transgenic animal develops. In one embodiment, a bovine cDNA, comprising the nucleotide sequence shown in Figure 2b, or an appropriate variant or subsequence thereof, can be used to generate transgenic animals that contain cells which express the relevant DGAT1. Likewise, variants can be used to generate transgenic animals. "Knock out" animals can also be generated.

25

30

35

Methods for generating transgenic animals, particularly animals such as mice, have become conventional in the art are described, for example, in US Patent Nos. 4,736,866 and 4,870,009. In such methods, plasmids containing recombinant molecules are microinjected into mouse embryos. In particular, the plasmids can be microinjected into the male pronuclei of fertilised one-cell mouse eggs; the injected eggs transferred to pseudo-pregnant foster females; and the eggs in the foster females allowed to develop to term. (Hogan, 1986). Alternatively, an embryonal stem cell can be transfected with an expression vector comprising nucleic acid encoding a DGAT1 protein, and cells containing the nucleic acid can be used to form aggregation chimeras with embryos

19

from a suitable recipient mouse strain. The chimeric embryos can then be implanted into a suitable pseudopregnant female mouse of the appropriate strain and the embryo brought to term. Progeny harbouring the transfected DNA in their germ cells can be used to breed uniformly transgenic mice.

5

10

15

20

25

30

35

Such animals could be used to determine whether a sequence related to an intact DGAT1 gene retains biological activity of the encoded DGAT1. Thus, for example, mice in which the murine DGAT1 gene has been knocked out and containing the nucleic acid sequence identified in Figure 2b or fragment or variant thereof could be generated. The animals could be examined with reference to milk production and content.

The pattern and extent of expression of a recombinant molecule of the invention in a transgenic mouse is facilitated by fusing a reporter gene to the recombinant molecule such that both genes are co-transcribed to form a polycistronic mRNA. The reporter gene can be introduced into the recombinant molecule using conventional methods such as those described in Sambrook et al., (Sambrook, 1989). Efficient expression of both cistrons of the polycistronic mRNA encoding the protein of the invention and the reporter protein can be achieved by inclusion of a known internal translational initiation sequence such as that present in poliovirus mRNA. The reported gene should be under the control of the regulatory sequence of the recombinant molecule of the invention and the pattern and extent of expression of the gene encoding a protein of the invention can accordingly be determined by assaying for the phenotype of the reporter gene. Preferably the reporter gene codes for a phenotype not displayed by the host cell and the phenotype can be assayed quantitatively. Examples of suitable reporter genes include lacZ(β-galactosidase), neo (neomycin phosphotransferase), CAT (chloramphenicol acetyltransferase) dhfr (dihydrofolate reductase), aphIV (hygromycin phosphotransferase), lux (luciferase), uidA (β-glucuronidase). Preferably, the reporter gene is lacZ which codes for β-galactosidase. β-galactosidase can be assayed using the lactose analogue X-gal (5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside) which is broken down by β-galactosidase to a product that is blue in colour.

Still further transgenic applications of the invention arise from knocking out the endogenous gene encoding DGAT1 in mammals and replacing this with a transgene, in order to obtain a desired effect. This is particularly true in cattle raised for milk production. For example, additional copies of the gene encoding DGAT1 can be inserted as a transgene, or the endogenous gene associated with a high level expression promoter in a transgene. It may also prove advantageous to substitute a defective gene

15

rather than delete the entire sequence of DNA encoding for a protein having DGAT1 activity. A method of producing a transgenic bovine or transgenic bovine embryo is described in United States Patent No. 5,633,076, issued 27 May 1997, for example.

These transgenic animals of the invention can again be used to investigate the molecular basis of DGAT1 action. For example, it is expected that mutants in which one or more of the conserved cysteine residues has been deleted would have diminished activity in relation to a DGAT1 protein in which all such residues are retained. Further, deletion of a proteolytic cleavage site would likely result in a mutant lacking biological activity of DGAT1.

Transgenic animals of the invention can also be used to test substances for the ability to prevent, slow or enhance DGAT1 activity. A transgenic animal can be treated with the substance in parallel with an untreated control transgenic animal. Substances which could be tested in this way include proteins extracted from foods ingested by the animal. For example, proteins extracted from pastoral grasses and other fodder can be tested to determine their effect on DGAT1 activity, including to determine whether breed-specific effects can be induced.

- Thus, in further aspects, the invention provides transgenic non-human animals. These include by way of example only a transgenic bovine having a genome lacking a gene encoding a protein having biological activity of DGAT1 (or indeed any DGAT1 activity at all); a transgenic mouse having a genome containing a gene encoding a bovine protein having biological activity of any DGAT1; and a transgenic bovine having a gene encoding a bovine protein having biological activity of a bovine DGAT1 and heterologous nucleotide sequence antisense to the gene. The transgenic bovine can include a gene encoding a nucleic acid sequence having ribozyme activity and in transcriptional association with the nucleotide sequence antisense to the gene.
- The invention further provides a transgenic bovine having a genome which includes additional copies of a gene encoding a protein having biological activity of DGAT1 or copies of a gene encoding a protein having biological activity of DGAT1 under control of a high expression promoter.
- 35 These are but a selection of the applications of this invention. Others will be apparent to those persons skilled in this art and are in no way excluded. To the contrary, the

invention extends to cover not only the specific teaching provided but also all variations and modifications which are within the skill and contemplation of the addressee.

The invention will now be defined by specific examples which are illustrative only and are not intended to limit the invention in any way.

EXPERIMENTAL

1. Location of the gene responsible for the observed QTL

10

15

20

25

30

35

5

Construction of a BAC contig spanning the BULGE9-BULGE30 interval.

In order to clone the gene(s) responsible for the observed QTL effect, a BAC contig spanning the corresponding marker interval was constructed. This was accomplished by screening a BAC library by filter hybridisation with the microsatellite markers available for proximal BTA14q, as well as with human cDNA clones mapping to the orthologous chromosome segment on the human RH transcript map: 8q23.3-ter (Riquet et al., (1999)). The ends of the isolated BACs were sequenced, sequence tagged sites (STS) developed from the corresponding sequences, and mapped onto a bovine x hamster whole genome radiation hybrid panel. This STS content mapping approach lead to the construction of the BAC contig shown in Figure 1.

DGAT1 maps to the BULGE9-BULGE30 interval and is a strong positional candidate for the QTL.

A murine gene encoding a protein with Diacylglycerol-o-acyltransferase (DGAT1) activity was identified (Cases et al., (1998)) and shown to completely inhibit lactation when knocked out in the mouse (Smith et al., (2000)). This gene was reported in the human to map to HSA8qter (Cases et al., (1998)), ie. in the region orthologous to that containing the bovine QTL. Screening the publicly available databases with the published murine and human DGAT1 cDNA sequences allowed identification of (i) a human BAC clone containing the human DGAT1 gene (AF205589), and (ii) three bovine Expressed Sequence Tags (AW446908; AW446985; AW652329) jointly covering approximately two thirds of the bovine gene. Aligning the human DGAT1 genomic sequences with the human and bovine cDNA sequences allowed the corresponding intron-exon boundaries to be identified. Primers were developed to PCR amplify a portion of the bovine DGAT1 gene. Screening the BACs composing the BULGE9-BULGE30 contig clearly indicated that the bovine DGAT1 gene was contained in a

PCT/NZ01/00245

subset of the BACs allowing us to accurately position the DGAT1 gene in the contig of Figure 1.

These results demonstrated that the map position of DGAT1 coincided with the most likely position of the chromosome 14 QTL as determined by linkage and linkage disequilibrium analyses. Knowing that the QTL primarily affects fat content, knowing the enzymatic activity of DGAT1 and the effect of a DGAT1 knock-out on lactation, this gene was considered to be a very strong positional candidate for the corresponding QTL.

10 Organisation of the bovine DGAT1 gene

5

15

The organisation of the bovine DGAT1 gene was determined by sequence analysis of one of the DGAT1 containing BACs. Primers were designed based on the available bovine, murine and human cDNA sequences which were either used for direct sequencing of the BAC clone or to generate PCR products corresponding to different parts of the bovine DGAT1 gene from this BAC which were then subjected to cycle-sequencing. All available sequences were then merged using the Phred / Phrap software (Ewing et al., (1998); Ewing & Green, (1998); Gordon et al., (1998)) to yield the consensus sequence shown in Figures 2a and b.

RT-PCR, 5' and 3' RACE experiments were performed on mRNA isolated from bovine 20 mammary gland and the obtained PCR products subjected to cycle sequencing. Comparison of the genomic and cDNA sequences showed that the bovine DGAT1 gene spans 8.6 Kb and comprises 17 exons measuring 121.8 bp on average (range: 42 - 436 bp) and allowed intron-exon boundaries to be identified (Figures 2a, 2b and 3). The cDNA sequence is also set out in SEQ ID NO: 4. While the first two introns are 25 respectively 3.6 and 1.9 Kb long, the remaining 14 introns are only 92.4 bp long on average (range: 70 - 215 bp). All introns conform to the GT-AG rule and are strictly conserved between human and bovine. The bovine DGAT1 gene is transcribed in a mRNA comprising >31 bp of 5' UTR sequence (Figure 2a), 1470 bp coding for a protein of 489 amino-acids, and 275 bp of 3' UTR sequence including a canonical AATAAA 30 polyadenylation signal. The human and bovine DGAT1 nucleotide (coding) and protein sequences are respectively 89.5% and 92.5% identical (Figures 2a, 2b, 4a and 4b). In addition, an alternative splicing variant is predicted in the bovine for exon VIII (Figure The corresponding bovine cDNAs are predicted to encode proteins comprising respectively 489 and 467 (alternative splicing variant) amino-acid residues (Figures 4a 35 and 4b).

23

The predicted "Q" and "q" QTL alleles differ by a non conservative lysine to alanine aminoacid substitution in the DGAT1 gene.

Assuming that DGAT1 is indeed the QTL, it is predicted that the identified "Q" and "q" QTL alleles will correspond to functionally distinct DGAT1 alleles, ie. will differ at one or more mutations causing these alleles to be functionally different. To test this hypothesis, the structure of the DGAT1 gene in individuals predicted to be of different QTL genotypes: "QQ", "Qq" and "qq" was examined. More specifically, the DGAT1 gene from:

- (i) two sires with " H^{Q-D}/hq " genotype as well as two of their " $H^{Q-D}/HQ-D$ " offspring, two of their "hq/hq" offspring and one " H^{Q-D}/hq " offspring, and
 - (ii) one "HQ-NZ/hq" sire with one of its "HQ-NZ/HQ-NZ" offspring

was analysed wherein HOD corresponds to the Dutch Q haplotype and HOD corresponds to the New Zealand Q haplotype, and primer pairs were designed that allowed for the amplification from genomic DNA of (i) the coding portion of exon I, (ii) exon II, and (iii) the chromosome regions spanning exons III to XVII. The corresponding PCR products from the selected individuals were cycle-sequenced and the resulting sequences examined with the Polyphred software.

Additional sequencing analysis, as described above, on DNA from a range of breeds revealed additional polymorphisms included in Table 1 (see Methods section for breeds). Four such polymorphisms were investigated further:

25

10

(i) K232A: a substitution of a ApA by a GpC dinucleotide in exon VIII (respectively positions 694 and 695 counting from the start codon in the cDNA). The substitution of these two adjacent nucleotides results in a non conservative lysine (hydrophylic basic amino acid) to alanine (hydrophobic amino acid) substitution in the DGAT1 protein. The lysine residue affected by this polymorphism is conserved in the human and murine DGAT1 sequences. Together with the resulting change in the electrical charge of the protein, this strongly suggests that this amino-acid substitution is likely to result in a functional difference between the two corresponding alleles and to be at least partly responsible for the observed QTL effect.

35

30

(ii) Nt984+8 (Base 7438 A-G): A A to G substitution in intron 12, eight base pairs downstream of exon XII. Following standard nomenclature, this polymorphism will be

referred to as Nt984+8(A-G). This polymorphism cannot be predicted as such to modify the functionality of the corresponding alleles although an effect on the splicing mechanism cannot be excluded given its proximity to the intron-exon boundary.

5 (iii) Nt984+26(Base 7456 C-T): A C to T substitution in intron 12, 26 base pairs downstream of exon XII. Following standard nomenclature, this polymorphism will be referred to as Nt984+26(Base 7456 C-T). Again, this polymorphism cannot be predicted as such to modify the functionality of the corresponding alleles although an effect on the splicing mechanism cannot be excluded given its proximity to the intron-exon boundary.

(iv) Nt1470+85(Base 8402 C-T): A C to T substitution in the 3' UTR. Following standard nomenclature, this polymorphism will be referred to as Nt1470+85(Base 8402 C-T). Again, this polymorphism cannot be predicted as such to modify the functionality of the corresponding alleles although an effect on polyadenylation or mRNA stability cannot be excluded.

Conclusion

15

- These four polymorphisms were shown to assort into three distinct <u>SNP</u> haplotypes referred to as sH^{Q-D} , sH^{Q-NZ} and sh^q because in the sequenced samples they coincided respectively with <u>microsatellite</u> haplotypes μH^{Q-D} , μH^{Q-NZ} and μh^q . The base pair compositions of these three SNP haplotypes are shown in Figure 3.
- Because the sHO-NZ and sha marker haplotypes share the G residue at the DGAT1 25 Nt984+8(Base 7438 A-G) site, the causality of this polymorphism in the determinism of For the three remaining polymorphic sites, however, the the QTL could be excluded. DGAT1 haplotypes associated with marker haplotypes sHQ-N and sHQ-NZ proved identical to each other while different from the sha DGAT1 haplotype. Either of these three polymorphisms could therefore be responsible for the observed QTL effect. 30 Nt984+26(Base 7456 C-T) and Nt1470+85(Base 8402 C-T) polymorphisms are a priori more likely to be neutral with respect to DGAT1 activity because of their respective location in an intron and the 3' UTR and likewise the other non coding or neutral polymorphism shown in Table 1. A direct effect of the K232A mutation on DGAT1 activity, however, is very plausible. Indeed, the corresponding lysine residue is conserved amongst all examined mammals (i.e. human, mouse, rat, pig, sheep, bison) demonstrating its functional importance (Figure 5). The evolutionary conservation of

25

this lysine residue also demonstrates that the K residue characterizing the sH^{Q-D} and sH^{Q-NZ} marker haplotypes is more than likely the ancestral state and that it is the A residue characterizing the sh^q haplotypes that corresponds to a more recently evolved state.

5

10

15

20

25

30

35

2. Genotype Testing and Analysis I

This summarises the genotype testing and subsequent analysis of Holstein-Friesian animals sourced from New Zealand and Holland which were tested for the presence of the K232A polymorphism. Reference to allele "Q" corresponds to the K residue and allele "q" to the A residue (as shown in Figure 3 and Table 1).

An oligonucleotide ligation assay (OLA) was developed as described in the method section below that allows for efficient genotyping of the four *DGAT1* polymorphisms simultaneously. This OLA-test was used to genotype a previously described (Farnir et. al., 2000) "grand-daughter design" (i.e. series of paternal half-brother pedigrees) comprising 1,818 Dutch Holstein-Friesian sires as well as a "daughter design" (i.e. series of paternal half-sister pedigrees) comprising 529 New Zealand Holstein-Friesian cows selected according to phenotype as described below. The marker linkage phase for each individual was determined as described below.

Fig. 6 summarizes the frequency distribution of DGATI haplotypes encountered in the Dutch and New Zealand populations respectively. Four distinct SNP haplotypes were identified. Three of these correspond to the sH^{Q-D} , sH^{Q-NZ} and sh^q that were previously identified by sequencing, and jointly account for 99% and 98% of the chromosomes in the Dutch and New-Zealand populations respectively. A fourth minor haplotype was found accounting for the remaining 1% and 2% of the chromosomes. As this haplotype codes for a K residue at position 232 it was assumed to correspond to a fat increasing " Q^p " allele and was therefore referred to as sH^{Q-M} (Fig. 3). The observation that the K residue is found on three distinct DGATI haplotypes while the A residue is found on a unique DGATI haplotype is in agreement with K being the more ancient state.

The sHQ-D and sHQ-NZ SNP haplotypes (coding for a K residue at position 232) appear to be in strong linkage disequilibrium (LD) with the flanking microsatellite markers BULGE09 and BULGE11, as they are in essence associated with unique microsatellite haplotypes corresponding respectively to the previously defined μ HQ-D and μ HQ-NZ haplotypes (Fig. 6C&D). In sharp contrast, the shq haplotype (coding for an A residue at

5

10

20

25

30

26

position 232) is nearly evenly distributed across more than ten distinct microsatellite haplotypes (Fig. 6B).

These observations are in excellent agreement with the results of the combined linkage and LD analysis (Fernier et. al., 2000). These studies indeed predicted (i) that in the Dutch population the vast majority (estimates ranging from 81% to 92%) of "Q" allele (= K) would reside on the μH^{Q-D} microsatellite haplotype, (ii) that in the New Zealand population a large fraction (estimates ranging from 36% to 51%) of "Q" alleles would reside on haplotype μH^{Q-NZ} (we now see that the remainder correspond mainly to the μH^{Q-D} microsatellite haplotype) and (iii) that in both populations the "q" alleles (= A) would correspond to multiple marker haplotypes, corresponding to h^q .

Figure 7 illustrates the gain in LD signal that could be obtained in the Dutch Holstein-Friesian grand-daughter design when adding the DGAT1 polymorphisms to the previously available markers for proximal BTA14q and performing a joint linkage and LD multipoint analysis (Fernier et. al., 2000) using the sires "daughter yield deviations" (DYD (Van Raden and Wiggans, 1991) corresponding to half breeding values) for milk fat percentage as phenotype. It can be seen that the lod score attributable to LD essentially doubles (from 3.7 to 7.8), and maximizes exactly at the position of the DGAT1 gene. This result strongly supports the causal involvement of the DGAT1 gene in the QTL effect. The corresponding ML estimates of the "Q" to "q" allele substitution effect ($\alpha/2$) (as defined in Falconer and Mackay, 1996), residual standard deviation (σ), population frequency of the "Q" allele (f_Q), number of generations to coalescence (g) and heterogeneity parameter (ρ) were respectively 0.11% ($\alpha/2$), 0.06% (σ), 0.20 (f_Q), 5 (g) and 0.84 (ρ).

Using the same Dutch Holstein-Friesian population, the additive effect of the *DGAT1* K232A polymorphism on milk yield and composition was examined. The sons DYDs for milk yield (kgs), protein yield (kgs), fat yield (kgs), protein percentage and fat percentage, were analysed using a mixed model including (i) a regression on the number of K alleles in the genotype (0, 1 or 2), and (ii) a random polygenic component estimated using an individual animal model and accounting for all known pedigree relationships. Table 2 below, reports the obtained results. It can be seen that the K232A mutation has an extremely significant effect on the five analysed dairy traits. The proportion of the trait variance explained by this polymorphism in this population ranges from 8% (protein yield) to 51% (fat percentage), corresponding to between 10% (protein yield) and 64% (fat percentage) of the genetic variance (= QTL + polygenic).

Note that the proportion of the variance explained by the full model $(1-r^2_{error})$ is of the order of 70% for the yield traits and 80% for the percentage traits, which is in agreement with the known reliabilities of the corresponding DYDs (Van Raden and Wiggans, 1991). An interesting feature of this QTL effect is that the "q" to "Q" substitution increases fat yield, while decreasing milk and protein yield, despite the strong overall positive correlation characterizing the three yield traits.

Table 2:

Effect of the DGAT1 K232A mutation on sire's daughter yield deviations (DYDs)

for milk yield and composition.

Trait	α/2	Г ² QTL	p-value on	Γ ² polygenic	r ² error
Milk yield (Kgs)	-158 Kgs	0.18	5.00E-35	0.49	0.32
Fat yield (Kgs)	5.23 Kgs	0.15	1.57E-29	0.55	0.30
Protein yield (Kgs)	-2.82 Kgs	0.08	1.70E-15	0.65	0.26
Fat %	0.17 %	0.51	4.33E-122	0.29	0.19
Protein %	0.04 %	0.14	5.05E-28	0.66	0.20

10

15

20

25

(i) α/2: QTL allele substitution effect on DYD (half breeding value), corresponding in the mixed model to the regression coefficient on the number of K alleles in the DGAT1 K232A genotype, and to α/2, where α is defined according to ref. Falconer and Mackay, 1996. (ii) r^2qm : proportion of the trait variance explained by the DGAT1 K232A polymorphism. (iii) p-value qm: statistical significance of the DGAT1 K232A effect. (iv) r^2qmq : proportion of the trait variance explained by the random, polygenic effect in the mixed model. (v) r^2qmq : proportion of the trait variance unexplained by the model.

The two previous analyses examined the effect of the *DGAT1* polymorphism on estimated breeding values. By definition, this phenotype will only account for the additive component of the *DGAT1* effect, and justifies the use of a regression on the number of *K* alleles in the mixed model. To evaluate the dominance relationship between the *DGAT1* alleles, the effect of the *K232A* genotype on the lactation values (first yield deviations (Van Raden and Wiggans, 1991)) of the cows composing the New Zealand daughter design were analysed. This was achieved by using a mixed model including (i) a fixed effect corresponding to the *K232A* genotype, and (ii) a random polygenic component accounting for all known pedigree relationships ("animal model"). Very significant effects of *K232A* genotype on all examined yield and composition traits were found in this population as well (Table 3, below), accounting for between 1% (protein yield) and 31% (fat percentage) of the trait variance. The observed dominance deviations, *d*, corresponding to the difference between the genotypic value of the *KA*

genotype and the midpoint between the AA and KK genotypic values (Falconer and Mackey, 1996) are shown in Table 3 below. Genotypic values of the heterozygous genotype are systematically in between alternate homozygotes. None of the d-values proved to be significantly different from zero, indicating an absence of dominance. Average K to A QTL allele substitution effects, a (Falconer and Mackey, 1996), were computed from the estimates of a- and d-values, as well as the population frequencies The predicted substitution effects are in good of the K and A alleles (Table 3). agreement with those computed from the grand-daughter design: the K allele increases fat yield, fat % and protein %, while decreasing milk and protein yield. The absolute values of a estimated from the grand-daughter and daughter design are in perfect agreement for fat and protein %, while for the yield traits estimates are larger in the grand-daughter design when compared to the daughter design. The exact reasons for this are being explored. It could be due to the fact that the sire population in the grand-daughter design is not representative of the cow population in general, or to intrinsic differences between the Dutch and New-Zealand populations and/or environment.

Table 3:

Effect of the DGAT1 K232A mutation on cows' lactation values

for milk yield and composition.

Trait	а	đ	α	r ² qrl	p-val on	r ² polygenic	Г ² елгог
Milk yield (Kgs)	-144 Kgs	-42 Kgs	-161 Kgs	0.03	1.05E-8	0.54	0.43
Fat yield (Kgs)	7.82 Kgs	-0.89	7.46 Kgs	0.09	1.77E-20	0.46	0.45
Protein yield (Kgs)	-2.34	-0.76	-2.64	0.01	4.35E-2	0.37	0.42
	Kgs	Kgs	Kgs				
Fat %	0.41%	0.03 %	0.42%	0.31	2.5E-108	0.49	0.20
Protein %	0.08%	0.03 %	0.08%	0.04	1.60E-20	0.72	0.24

(i) a: half the difference between the genotypic values of the KK and AA genotypes (Falconer and Mackey, 1996). (ii) d: dominance deviation (Falconer and Mackey, 1996): deviation of the KA genotypic value from the midpoint between the AA and KK genotypic values; none of these proved to be significantly different from zero. (iii) α: average K to A substitution effect, computed as "a + d(q-p)" (Falconer and Mackey, 1996), where q is the allelic frequency of K (=0.7) and p of A (=0.3) (iv) r²qn: proportion of the trait variance explained by the DGAT1 K232A polymorphism. (v) p-val qn: statistical significance of the DGAT1 K232A effect. (vi) r²polygenic: proportion of the trait variance explained by the random, polygenic effect in the mixed model. (vii) r²error: proportion of the trait variance unexplained by the model.

25

10

15

20

Pedigree material and phenotypes. The pedigree material used for the association studies comprised a "grand-daughter design" (Weller et. al., 1990) counting 1,818 Holstein-Friesian bulls sampled in the Netherlands, as well as a "daughter-design" (Weller et. al., 1990) counting 529 Holstein-Friesian cows sampled in New Zealand. The phenotypes of the sires were "daughter yield deviations" (DYD: unregressed weighted averages of the daughter's lactation performances adjusted for systematic environmental effects and breeding values of the daughter's dams and expressed as deviations from the population mean (Van Raden and Wiggans, 1991)) obtained directly from CR-Delta (Arnhem – The Netherlands). The phenotypes of the cows were "lactation values" (first lactation yield deviations (YD), i.e. weighted average lactation performances expressed as deviations from the population mean, adjusted for management group, permanent environmental effects and herd-sire interaction effects (Van Raden and Wiggans, 1991)) obtained directly from Livestock Improvement Corporation (Hamilton – New Zealand).

15

10

Combined linkage and linkage disequilibrium analysis and association studies. The maximum likelihood procedure for combined linkage and linkage disequilibrium analysis is described in detail in Farnir, 2000. The association study in the grand-daughter design was performed using the following model:

20

25

30

$$y_i = \mu + \beta x_i + a_i + e_i$$

where y_i is the DYD of son i, μ is the overall population mean, β is a fixed regression coefficient estimating the A to K allele substitution effect, x_i is an indicator variable corresponding to the number of K alleles in the K232A genotype, a_i is a random polygenic component accounting for all known pedigree relationships ("animal model" Lynch and Walsh, 1997) and e_i is a random residual. The association study in the daughter design was performed using the model:

$$y_i = \mu + g_i + a_i + e_i$$

where y_i is the lactation value of cow i, g_i is a fixed effect corresponding to the *DGAT1* genotype (*KK*, *KA*, or *AA*), a_i is a random polygenic component accounting for all known pedigree relationships ("animal model" Lynch and Walsh, 1997) and e_i is a random residual. In both instances, maximum likelihood solutions for β , g_i , a_i , e_i , σ^2_a , σ^2_e were obtained using the MTDFREML program (Boldman et al, 1997).

3. Genotype Testing and Analysis II

This summarises the genotype testing and subsequent analysis of Holstein-Friesian, Jersey and Ayrshire animals in a separate population from those presented in genotype testing and analysis I, above.

Progeny tested sires

Each year Livestock Improvement Corporation (New Zealand) progeny test some 200-300 bulls per year. This entails the bulls being genetically evaluated on the basis of 50-85 daughters per sire. The sires are evaluated for milk fat, milk protein, milk volume and 20 non-production traits. Semen has been retained from all progeny tested sires since the early 1970s. DNA was extracted from the semen and genotyped for the K232A DGAT1 polymorphism using the 7900 Taqman system (see Methods section below).

15

20

25

5

10

Statistical analysis was undertaken on this dataset using Restricted Maximum Likelihood (REML) and the average information algorithm (Johnson and Thompson, 1995). The linear model included the fixed effects of DGAT1 (3 classes; 0, 1 and 2 copies of the Q allele i.e. the K residue) and a covariate corresponding to the proportion of overseas genetics. The random effect was animal with a relationship matrix based on all known relationships. Daughter yield deviations (DYDs), weighted averages of a sire's daughter's lactation performances expressed as deviations from the population mean (van Raden and Wiggans 1991) were used as the phenotypic measurement. The phenotypes were weighted by a weighting factor based on the variance of the DYD for a son being:

Var DYD =
$$\frac{1 + (n-1)\frac{1}{4}h^2}{n} \sigma_p^2$$

where Var DYD is the variance of son's DYD; n is the number of daughters contributing to the DYD; h² is the heritability, which was taken as 0.35 for yield traits.

The dataset was analysed separately for the 3 major breeds; Holstein-Friesian, Jersey and Ayrshire.

Seventeen hundred and thirteen Holstein-Friesian sires were included in the analysis. The effect of the DGAT1 polymorphism was extremely significant for the three milk production traits (Table 4). With each additional Q allele the level of milk fat production increases by approximately 6 kg per lactation, milk protein production decreases by approximately 2.5 kg per lactation and milk volume decreases by approximately 125 litres per lactation.

Table 4:

Effect of the DGAT1 polymorphism on milk production in the Holstein-Friesian bull population (kilograms per lactation).

	Fat	Protein	Milk
qq	0	0	0
Qq	6.86	-2.13	-128
QQ	11.83	-4.80	-266
st. error	0.87	0.68	24

The effects for the Jersey and Ayrshire breeds were less significant than those of the Holstein-Friesian breed but were consistent in direction of effects.

15

20

25

30

10

Daughters for milk components

Data collection was integrated with LIC's herd testing service using a sample of 102 herds involved in LIC's Sire Proving Scheme (SPS) in 1995. In addition to milk volume from herd testing, the concentrations of fat, crude protein (total nitrogen), casein, whey and lactose were determined. The data was collected from over 3,000 cows born in 1996 and first calving in the 1998 spring season, these being predominantly the daughters of approximately 220 SPS bulls. The milk characteristics were measured at three herd tests on each cow, with each herd having a herd test in each of the Sept/Oct, Nov/Dec and Jan/Feb periods. The Milkoscan FT120, which employs Fourier transform infrared spectrophotometry with enhanced milk calibrations (Foss Electric Application Note Nos. 95, P/N 492280 and 102, P/N 578377), was used to determine the milk component concentrations.

Nine hundred and twelve daughters were genotyped for the DGAT1 polymorphism using the OLA system. Analysis was undertaken using SAS (Statistics, Version 5, 1985) fitting a general linear model. The model included sire and maternal grandsire as fixed effects, DGAT1 polymorphism (3 classes; 0, 1 and 2 copies of the Q allele), covariates including 16ths of Holstein-Friesian, Jersey, Ayrshire and other, proportion of overseas

10

15

20

25

genetics within the Holstein-Friesian, Jersey and Ayrshire breeds. Yield deviations that were pre-adjusted for herd, stage of lactation among other fixed effects were used (Johnson et al 2000).

The DGAT1 polymorphism is statistically significant for Lactose, casein, beta-casein and whey yield and also for casein and beta-casein percent as outlined in Table 5.

Table 5: Effect of the DGAT1 polymorphism on milk components.

Trait	qq	Qq	QQ	p-value
Lactose yield*	48	23	0	<0.0001
Casein yield*	11.0	5.8	0	0.01
Casein %	-0.13	-0.06	0	<0.0001
Whey yield*	6.86	2.31	0	<0.0001
β-casein yield*	3.98	2.19	0	0.05
β -casein %	-0.43	• -0.23	0	0.0001

^{*} Units = g/day for lactose, casein and whey yield and g/litre for β -casein yield

Daughters for solid fat content

Six hundred and ninety-two daughters were phenotyped for solid fat content. Solid fat content of the milkfat is a characteristic which has a major influence on the functionality of milkfat products, and in particular has a significant effect on the hardness of butter (MacGibbon & McLennan, 1987). The solid fat content at 10°C (SFC 10) was used for comparison of the properties of the milkfat as it relates well to the sectility hardness measurement of butter, a major functional property. Thus the performance of milkfat products may be predicted from the characteristics of the milk produced. The solid fat content (SFC) of the extracted fat was determined by pulsed nuclear magnetic resonance (NMR) and expressed as percentage solid fat (MacGibbon & McLennan, 1987). As the milkfat was melted to remove any thermal history, prior to recrystallization under standard conditions, the SFC simply reflects the chemical composition of the milkfat.

The 692 daughters were a subset of the 912 daughters that were phenotyped and genotyped for the results presented in Table 2. The solid fat content measures were

collected over 2 lactations. Breeding values were calculated using an animal model similar to that of Johnson et al 2000.

The same statistical model was fitted for solid fat content as was for the milk component analysis. The DGAT1 polymorphism has a statistically significant effect (p-value <0.0001) on solid fat content, increasing it by approximately by 1% for each addition of the Q allele.

This effect was further confirmed in 50 daughters (predominantly Holstein-Friesian) that were farmed at one location and measured for SFC on the same day. The estimated effect for of the DGAT1 polymorphism on SFC was to increase it by approximately 2% per addition of each Q allele. This finding was significant at the five percent threshold level.

The genetic standard deviation for SFC is 2.25 (D Johnson personal communication) and thus the effect of DGAT1 is approximately 0.5 of a genetic standard deviation.

4. Relative Transcript Levels of the Splice Variant

5

10

20 Real time PCR experiments were conducted using reverse transcribed mRNA isolated from lactating bovine mammary gland(s) (see experimental methods). These experiments revealed that the alternatively spliced transcript as shown on Figure 2b, was approximately 100 fold less abundant than the full length transcript.

METHODS SECTION

In order to identify other polymorphisms within the bovine DGAT1 gene, DNA was isolated from sperm, PCR amplified and then using primers designed from the sequence shown in Figures 2a and 2b and/or the cDNA sequence (SEQ ID NO: 4) direct sequenced on an ABI 3100. The breeds examined were:

Ayrshire, Angler, Belgian Blue, Blond D'Aquitaine, Brown Swiss, Charolais, Red Devon,
Devon, Dexter, Friesian, Guernsey, Belted Galloway, Gelbvieh, Hereford, Jersey,
Limousin, Longhorn, Maine Anjou, MRI (Meuse-rhine-yssel), Murray Grey, Piedmontese,
Romangola, Sahiwal, Santa Gertrudis, Scottish Highland, Shorthorn, South Devon,
Sussex, Swedish Red, Simmental, Wagyu, Welsh Black, Angus, and Zebu.

15 All the polymorphisms discovered are listed in Table 1, above.

The majority of the primers are also listed in Figure 2b or contained in the cDNA sequence (SEQ ID NO: 4).

20 Experimental method for the OLA analysis of four SNP's in DGAT1

PCR amplification of the regions containing the polymorphisms

Protocol for the PCR amplification of exon VIII, <u>intron XII</u> and 3' UTR, the regions containing the four polymorphisms that were initially described in the DGAT1 gene.

0	
4	J

5

Component	For 1 sample	Final concentration
HotStar Qiagen Buffer (10 x)	1.5 µl	0.7 μΜ
Primer 17F at 100µM	الر 0.07	0.7μΜ
18R at 10 μM	ابر 0.07	0.5 μM
Primer 6F at 100µM	0.05μ1	0.5 μМ
AW 446985dn1 at 100μM	0.05ш	0.5 μΜ
Primer InsUp1	0.05µ1	0.5 μΜ
14R2	0.05µl	10%
DMSO	1 µl	300 шМ
dNTP 10mM	0.3 μΙ	0.1 Ü/µl
HotStarQiagen Taq (CatNr 203205:5U/µl)	0.2 μl	,,
H2O	1.66 μ1	
DNA (5 ng/μl)	5 μ l	
Total	10 μ1	

Primer sequences are given in the following table as well as the genomic region targeted by them.

SNP targeted	Primer name	Primer sequence	5 'base position
Exon VIII SNP (DG 1)	17F	CCTGAGCTTGCCTCTCCCACAGT	6579 .
	18R	CCAGGAGTCGCCGCAGCAGGAAG	7058
Exon XII SNPs	6F .	CCGGCCATCCAGAACTCCATGAAG	7280
(DG 2 and DG3)	AW446985 dn1	TAGAACTCGCGGTCTCCAAAC	7605
	InsUp1	TGGCTGTCACTCATCGGGCA	8222
3'UTR SNP (DG4)	14R2	TTGCACAGCACTTTATTGACACA	8566

PCR amplification was performed on MJ PTC100 or PTCT200 cyclers using the following steps:

Step	Temperature	Time	Comment
1° Activation of the enzyme	94 °C	12 minutes	One times
2° Denaturation	92 °C	1 minute	Repeat step 2 to 4, 35
3° Hybridisation	60°C	1 minute 30 seconds	times
4° Elongation	72°C	1 minute 30 seconds	
5° Inactivation of the enzyme	99°C	45 minutes	

5

10

Oligonucleotide Ligation Assay (OLA)

The oligonucleotides used in the OLA multiplex reaction are given in the table below. The detection of each mutation relies on the use of two fluorescent-labelled oligonucleotide (SNPx_FAM and SNPx_HEX) and one common 3' and 5' phosphorylated, non-labelled oligonucleotide (SNPx_2P)

Locus	Oligo	Sequence	5' base position	Number of spacer phosphoramidites	Size of the ligation producta
DG1	SNP1_FAM SNP1_HEX SNP1_2P	AGC TIT GGC AGG TAA GGC AGC TIT GGC AGG TAA GAA GGC CAA CGG GGG AG	6813 6813 6831	0	32
DG2	SNP2_FAM SNP2_HEX SNP2_2P	GCT GGC GGT GAG TGA GCT GGC GGT GAG TGG CCT GCT GGG TGG GGA	7424 7424 7439	3	39
DG3	SNP3_FAM . SNP3_HEX SNP3_P	GCT GGG TGG GGA CGC GCT GGG TGG GGA CGT GTG GGG GCG GGT GG	7442 7442 7457	0	29
DG4	SNP4_FAM SNP4_HEX SNP4_2P	TGC CCC AAC CTG GGT TGC CCC AAC CTG GGC GCA GCA GGA GGA GGC	8388 8388 8403	2	36

^a The size of the ligation products is the sum of the number of nucleotides of the two ligated oligonucleotides plus 3 bases equivalents per spacer phosphoramidites molecule, present at the 5' end of the common oligonucleotide.

15

For each SNP a mixture of the three oligonucleotides was prepared first, following the dilution guidelines in the table below.

SNP mixture	Oligonucleotide to mix	Quantity	Final concentration
DG1 (oligo. mixture)	SNP1_FAM 10 µM	10 μl	1 μΜ
	SNP1_HEX 10 µM	20μ1	2 μΜ
	SNP1_2P 10 μM	20µl	2 μΜ
•	H ₂ O	50 μl	
DG2 (oligo. mixture)	SNP2_FAM 10 µM	10 μΙ	1 μΜ
,	SNP2_HEX 10 µM	20µ1	2 μΜ
	SNP2_2P 10 μM	20μ1	2 μΜ
	H ₂ O	50 µl	1
DG3 (oligo, mixture)	SNP3_FAM 10 µM	10 μ1	1 μM
, ,	SNP3_HEX 10 µM	20µl	2 μΜ
• •	SNP3_2P 10 µM	20µ1	2 μΜ
	H ₂ O	50 μl	·
DG4 (oligo, mixture)	SNP4_FAM 10 µM	10 μἰ	1 μΜ
, , ,	SNP4_HEX 10 µM	30 д	3 μΜ
	SNP4_2P 10 μM	لىر 20	2 μΜ
	H ₂ O	140 با	· ·

The ligation reaction for one sample was performed as follow:

Component	Quantity persample
DG1 oligonucleotide mixture (35, 70 and 70 nM)	0.7 µl
DG2 oligonucleotide mixture ^a (12.5, 25 and 25 nM)	0.25 ய
	0.25 µl
DG3 oligonucleotide mixture* (12.5, 25 and 25 nM)	0.25 யி
(,,	2 µl
DG4 oligonucleotide mixture ^a (12.5, 37.5 and 25 nM)	2 ді
DMSO	1ր1
Incubation buffer of the Tsc DNA ligase (Roche, Cat Nr 1 939 807 or	8.55 µl
1 939 815)	5 μl
Tsc DNA ligase	
H ₂ O	· .
Multiplex PCR (see above)	
Total	20 µl

a The final concentration of the oligonucleotides in the ligation reaction is given between parenthesis (SNPx_FAM, SNPx_HEX and SNPx_2P respectively)

The sample was submitted to the following temperature cycling program in a MJ PTC100 or PTC 200 PCR machine.

Step	Temperature	Time	Comment
1° Initial denaturation step	98 °C	2 minutes	One times
2° Dénaturation	94 °C	30 seconds	Repeat step 2 to 3, 30
3° Hybridisation and ligation	45°C	3 minutes	times
5° Inactivation of the enzyme	99°C	45 minutes	

Following the LCR, 20 µl of H₂O was added to the ligation reaction. To 0.5 µl of the diluted ligation reaction, either 2 µl of loading buffer was added, or 2µl loading buffer containing TAMRA350 internal line size standard.

The loading buffer was composed as follows: 1 part of blue dextran (50mg/ml)/ EDTA (25mM) and 6 parts of formamide

37

The TAMRA350 containing loading buffer was composed as follows: 3 parts TAMRA350 (Applied Biosystems 401736; 8nM), 10 parts of Blue dextran (50 mg/ml)/EDTA (25 mM) and 60 parts of formamide.

TAMRA containing samples was placed alternately with TAMRA free samples when loaded onto the sequencing gel, in order to ease the identification of the lanes on the gel image.

The samples may require further dilution in order to avoid a too intense fluorescent signal on the sequencer. It is also very likely that from one primer batch to another, oligonucleotides concentrations will need adjustment.

The samples were denatured for 5 minutes at 95°C before loading. The samples were then loaded onto a 6% denaturing acrylamide gel on sequencer ABI 373 or a 4% gel on sequencer ABI 377.

In addition to the OLA assays referred to above, genotyping of the DGAT1 polymorphism was carried out by utilizing two different techniques for detection of PCR products.

Gel-based Genotyping Assay

20 Primer sequences 5' to 3', genomic sequence position in brackets:

DGAT1 21:

GTAGCTTTGGCAGGTAAGAA (6811)

DGAT1 22:

GGGGCGAAGAGGAAGTAGTA (6984)

DGAT1 23:

TGGCCCTGATGGTCTACACC (6613)

DGAT1 24B:

GGGCAGCTCCCCCGTTGGCCGC (6850)

25

The final reaction conditions were 1X Gold PCR buffer, 2.5mM MgCl₂ (Applied Biosystems), 200µM each dNTP (Roche), 600nM DGAT1 21 and DGAT1 22, 400nM DGAT1 23 and DGAT1 24B (Invitrogen), 10% dimethylsulphoxide (Sigma), 3µl DNA template and 2.5 units AmpliTaq Gold DNA polymerase (Applied Biosystems) in a total volume of 50µl.

Cycling conditions were a 94°C initial denaturation for 5 minutes, then 35 cycles of denaturation at 94°C for 30 seconds, annealing at 56°C for 30 seconds, extension at 72°C for 20 seconds followed by one extension cycle of 72°C for 2 minutes.

PCT/NZ01/00245

38

Primer positions around polymorphism (in bold) on genomic sequence from 6587 to 6986.

DGAT123 TGGC CCTGATGGTC TACACC

5 TGCCTCTCCC ACAGTGGGCT CCGTGCTGGC CCTGATGGTC TACACCATCC

TCTTCCTCAA GCTGTTCTCC TACCGGGACG TCAACCTCTG GTGCCGAGAG

10
CGCAGGGCTG GGGCCAAGGC CAAGGCTGGT GAGGGCTGCC TCGGGCTGGG

GCCACTGGGC TGCCACTTGC CTCGGGACCG GCAGGGGCTC GGCTCACCCC

15

DGAT1 21 GTAGCT TTGGCAGGTA AGAA
CGACCCGCCC CCTGCCGCTT GCTCGTAGCT TTGGCAGGTA AGAAGGCCAA
CGCCGGTT

20 CGGGGGAGCT GCCCAGCGCA CCGTGAGCTA CCCCGACAAC CTGACCTACC GCCCCTCGA CGGG DGAT1 24B

25

35

GCTAGCCCCG CCCTCCCTTC CAGATCTCTA CTACTTCCTC TTCGCCCCCA

AT GATGAAGGAG AAGCGGGG DGAT1 22

The Q allele has polymorphic sequence AA and is detected by the DGAT1 21 + 22 primers, producing a band of 174bp. The q allele has polymorphic sequence GC and is detected by the DGAT123 + 24 primers, producing a band of 238bp.

The primers DGAT123 and DGAT122 also successfully PCR the DGAT1 gene producing a product of 372bp in all reactions. Therefore, a QQ homozygote would have bands at 372bp and 174bp, a qq homozygote would have bands at 372bp and 238bp and a Qq heterozygote would have all 3 bands at 372bp, 238bp and 174bp.

39

18µl of PCR product was separated on a 1.2% agarose TAE gel, stained with ethidium bromide and scored independently by two investigators on the basis of the number and size of bands present.

TaqMan Allelic Discrimination Genotyping Assay

5 Primer sequences 5' to 3', genomic sequence position in brackets:

DGAT1forAD: TTCTCCTACCGGGACGTCAA (6651)

ReverseNZ: CCGCGGTAGGTCAGGTTGTC (6890)

Probe sequences 5' to 3', genomic sequence position in brackets:

10 ForAA (FAM): CGTTGGCCTTCTTA (6838)

DGAT1ADGC (VIC): TTGGCCGCCTTACC (6836)

Both probes use MGB (minor groove binder) as a non-fluorescent quencher.

The final reaction conditions are 1x Universal PCR Mastermix (Applied Biosystems), 500nM each primer (Invitrogen), 70nM ForAA (FAM) probe, 300nM DGAT1ADGC (VIC) probe (Applied Biosystems) and 2µl of a 1/20 dilution of DNA template in a total volume of 10µl.

Cycling conditions were 50°C for 2 minutes, 95°C initial denaturation for 10 minutes, then 37 cycles of denaturation at 94°C for 15 seconds, annealing and extension 60°C for 1 minute.

Primer positions around polymorphism (in bold) on genomic sequence from 6587 to 6986.

25 TGCCTCTCCC ACAGTGGGCT CCGTGCTGGC CCTGATGGTC TACACCATCC

DGAT1forAD TTCTCC TACCGGGACG TCAA
TCTTCCTCAA GCTGTTCTCC TACCGGGACG TCAACCTCTG GTGCCGAGAG

CGCAGGGCTG GGGCCAAGGC CAAGGCTGGT GAGGGCTGCC TCGGGCTGGG

GCCACTGGGC TGCCACTTGC CTCGGGACCG GCAGGGGCTC GGCTCACCCC

30

ForAA(FAM) A T TCTTCCGGTTGC

CGACCCGCCC CCTGCCGCTT GCTCGTAGCT TTGGCAGGTA AGAAGGCCAA DGAT1ADGC (VIC) CCAT TCCGCCGGTT

5 CGGGGGAGCT GCCCAGCGCA CCGTGAGCTA CCCCGACAAC CTGACCTACC

← CTGTTG GACTGGATGG

10

15

20

GCTAGCCCCG CCCTCCCTTC CAGATCTCTA CTACTTCCTC TTCGCCCCCA

A 240bp product is produced in this reaction. When the Q allele (AA) is present the FAM-labelled probe binds and fluoresces at 518nm. When the q allele (GC) is present the VIC-labelled probe binds and fluoresces at 554nm. After cycling is complete, the plate is scanned on the ABI7900 Sequence Detection System, the fluorescence from each well detected, and a scattergraph is drawn. The scattergraph separates out into 3 clumps with Q homozygotes in the upper left hand corner, q homozygotes in the lower right hand corner and Qq heterozygotes in between. Each clump is circled and the software automatically determines the genotype for each sample. On each plate there are controls with 8 wells each of known Q homozygotes, q homozygotes, Qq heterzygotes and no template controls.

Splice Variant Gene Expression

To determine the relative gene expression of the splice variants created by insertion/deletion of 66bp around the polymorphic site by alternate exon usage, RNA was extracted from mammary tissue and reverse transcribed using oligodT primer using a first strand cDNA synthesis kit (Invitrogen). Real time PCR to determine relative quantities of each variant was then carried out.

30

Primer sequences 5' to 3', genomic sequence position in brackets:

DGAT1forRT66: TCTCCTACCGGGACGTCAAC (6652)

DGAT1revRT66: GAGATCGCGGTAGGTCAGGTT (6964)

DGAT1forRTless66: GCTGCTTTGGCAGATCTCTACTACTT (6711)

35 DGAT1revRTless66: AAGCGCTTTCGGATGCG (7038)

WO 02/36824

25

35

CC

Probe sequences 5' to 3', genomic sequence position in brackets: DGAT1with66 (FAM): CCGTGAGCTACCC (6857)

DGAT1less66 (VIC): CTTCGCCCCCACCCT (6976)

Both probes use MGB (minor groove binder) as a non-fluorescent quencher.

Final reaction conditions were 1X Universal PCR Mastermix (Applied Biosystems), 60nM each primer (Invitrogen), 60nM each probe (Applied Biosystems) and 1µl of template cDNA in a total volume of 10µl.

Cycling conditions were 50°C for 2 minutes, 95°C initial denaturation for 10 minutes, then 37 cycles of denaturation at 94°C for 15 seconds, annealing and extension 60°C for 1 minute.

Primer positions around 66bp insertion (in italics) on cDNA sequence. The start of the cDNA sequence is equivalent to position 6479 on the genomic sequence, with the last base of the cDNA equivalent to position 7428 of the genomic sequence.

CCGTGGCCTT TCTCCTCGAG TCTATCACTC CAGTGGGCTC CGTGCTGGCC

20 DGAT1forRT66 TCTCCT ACCGGGACGT CTGATGGTCT ACACCATCCT CTTCCTCAAG CTGTTCTCCT ACCGGGACGT

CAAC__ DGAT1forRTless66 GCTGCTT CAACCTCTGG TGCCGAGAGC GCAGGGCTGG GGCCAAGGCC AAGGCTGCTT

TGGCAG DGAT1with66(FAM) C CGTGAGCTAC TGGCAGGTAA GAAGGCCAAC GGGGGAGCTG CCCAGCGCAC CGTGAGCTAC

ATCTCTAC TACTT 30 CCCGACAACC TGACCTACCG CGATCTCTAC TACTTCCTCT TCGCCCCCAC ◆ TTGG ACTGGATGGC GCTAGAGDGAT1revRT66 CT TCGCCCCCAC

CCTGTGCTAC GAGCTCAACT TCCCCGCTC CCCCGCATC CGAAAGCGCT GCGTAG GCTTTCGCGA CCT DGAT1less66 (VIC)

TCCTGCTGCG GCGACTCCTG GAGATGCTGT TCCTCACCCA GCTCCAGGTG A DGAT1revRTless66

42

GGGCTGATCC AGCAGTGGAT GGTCCCGGCC ATCCAGAACT CCATGAAGCC

5 CTTCAAGGAC ATGGACTACT CCCGCATCGT GGAGCGCCTC CTGAAGCTGG

This reaction detects the presence of the insertion splice variant by creating a 145bp product which binds the FAM probe only. The deletion splice variant is detected by a 92bp product that binds the VIC probe only.

10

15

The cDNA for each alternate splice variant was cloned into pGemT (Promega). A dilution series of the same, known amount, of each variant plasmid DNA was used to create a standard curve that established the linearity of the PCR reaction over a range of DNA concentrations. The threshold cycle number of the sample variants was converted back to a DNA amount by linear regression and the amounts of each variant present compared.

The presence of an alternate spice variant raises the possibility of an alternate function that is at this stage unknown.

20

It will be appreciated that it is not intended to limit the invention to the above examples only, many variations, which may readily occur to a person skilled in the art, being possible without departing from the scope thereof as defined in the accompanying claims.

25

30

INDUSTRIAL APPLICATION

The present invention is directed to a method of genotyping bovine for improved milk production traits. In particular, such traits include increased milk volume and milk protein content and decreased milkfat content and solid fat content. It is anticipated that herds of bovine selected for such a trait will produce milk which will be more easily processed and such milk and products made therefrom may provide health benefits to consumers, as well as producing an increased milk yield.

REFERENCES

20

- CASES, S.; SMITH, S.J.; ZHENG,Y-W.; MYERS, H.M.; LEAR, S.R.; SANDE, E.; NOVAK, S.; COLLINS, C.; WELCH, C.B.; LUSIS, A.J.; ERICKSON, S.K.; FARESE, R.V. JR (1998). Identification of a gene encoding an acyl CoA:diacylglycerol acyltransferase, a key enzyme in triacylglycerol synthesis. *Proceedings of the National Academy of Sciences*, USA. 95(22):13018-23.
- 10 COPPIETERS, W.; RIQUET, J.; ARRANZ, J.-J.; BERZI, P.; CAMBISANO, N.; GRISART, B.; KARIM, L.; MARCQ, F.; SIMON, P.; VANMANSHOVEN, P.; WAGENAAR, D.; GEORGES, M. (1998) A QTL with major effect on milk yield and composition maps to bovine chromosome 14. Mammalian Genome 9: 540-544.
- DELOUKAS et al (1998) A physical map of the 30,000 human genes. Science 282, 744-746
 - EWING, B.; HILLIER, L.; WENDL, M.C.; GREEN, P. (1998). Base-calling of automated sequencer traces using Phred. I. Accuracy assessment. *Genome Research* 8(3):175-185.
 - EWING, B.; GREEN, P. (1998). Base-calling of automated sequencer traces using Phred. II. Error probabilities. *Genome Research* 8(3):186-194.
- GORDON, D.; ABAJIAN, C.; GREEN, P. (1998). Consed: a graphical tool for sequence finishing. *Genome Research* 8(3): 195-202.
 - RIQUET, J.; COPPIETERS, W.; CAMBISANO, N.; ARRANZ, J.-J.; BERZI, P.; DAVIS, S.; GRISART, B.; FARNIR, F.; KARIM, L.; MNI, M.; SIMON, P.; TAYLOR, J.; VANMANSHOVEN, P.; WAGENAAR, D.; WOMACK, J.E.; GEORGES, M. (1999). Identity-by-descent fine-mapping of QTL in outbred populations: application to milk production in dairy cattle. *Proceedings of the National Academy of Sciences, USA* **96**: 9252-9257.
- FARNIR, F.; GRISART, B.; COPPIETERS, W.; RIQUET, J.; BERZI, P.; CAMBISANO, N.; KARIM, L.; MNI, M.; SIMON, P.; WAGENAAR, D.; GEORGES, M. (2000). Simultaneous mining of linkage and linkage disequilibrium to fine-map QTL in outbred half-sib pedigrees: revisiting the location of a QTL with major effect on milk production on bovine chromosome 14. *Ph.D Thesis, University of Liege* 2000.

10

15

25

30

35

SMITH, S.J.; CASES, S.; JENSEN, D.R.; CHEN, H.C.; SANDE, E.; TOW, B.; SANAN, D.A.; RABER, J; ECKEL, R.H.; FARESE, R.V. JR (2000). Obesity resistance and multiple mechanisms of triglyceride synthesis in mice lacking DGAT. *Nature Genetics* 25(1):87-90.

BARENDSE, W.; ARMITAGE, S.M.; KOSSAREK, L.M.; SHALOM, A.; KIRKPATRICK, B.W.; RYAN, A.M.; CLAYTON, D.; LI, L.; NEIBERGS, H.L.; ZHANG, N.; GROSSE, W.M.; WEISS, J.; CREIGHTON, P.; McCARTHY, F.; RON, M.; TEALE, A.J.; FRIES, R.; McGRAW, R.A.; MOORE, S.S.; GEORGES, M.; SOLLER, M.; WOMACK, J.E.; HETZEL, D.J.S. (1994). A genetic linkage map of the bovine genome. *Nature Genet.* 6: 227-235.

BISHOP, M.D.; KAPPES, S.M.; KEELE, J.W.; STONE, R.T.; SUNDEN, S.L.F.; HAWKINS, G.A.; SOLINAS TOLDO, S.; FRIES, R.; GROSZ, M.D.; YOO, J.; BEATTIE, C.W. (1994). A genetic linkage map for cattle. *Genetics* **136**: 619-639.

COLLINS, F.S. (1995). Positional cloning moves from perditional to traditional. *Nature Genet.* **9**: 347-350.

20 GEORGES, M.; ANDERSSON, L. (1996). Livestock genomics comes of age. *Genome Research.* **6**: 907-921.

GEORGES, M; NIELSEN, D.; MACKINNON, M.; MISHRA, A.; OKIMOTO, R.; PASQUINO, A.T.; SARGEANT, L.S.; SORENSEN, A.; STEELE, M.R.; ZHAO, X.; WOMACK, J.E.; HOESCHELE, I. (1995). Mapping quantitative trait loci controlling milk production by exploiting progeny testing. *Genetics* **139**: 907-920.

HOUBENWCYL (1987). Methods of Organic Chemistry, ed. E. Wansch. Vol. 15 I and II. Thieme, Stuttgart.

HUSE et al. (1989). Science 246: 1275-1281.

KAPPES, S.M.; KEELE, J.W.; STONE, R.T.; McGRAW, R.A.; SONSTEGARD, T.S.; SMITH, T.P.L.; LOPEZ-CORRALES, N.L.; BEATTIE, C.W. (1997) A Second-Generation Linkage Map of the Bovine Genome. *Genome Research* 7: 235-249.

KOHLER and MILSTEIN (1975). Nature. 256: 495-497.

KOZBOR et al. (1983). Immunol. Today 4: 72.

MERRIFIELD (1964). J. Am. Chem. Assoc. 85: 2149-2154.

5

McCAFFERTY et al. (1990) Nature 348: 552-554.

SAMBROOK, J.; FRITSCH, E.F.; MANIATIS, T. (1989). *Molecular Cloning: A Laboratory Manual*. Cold Spring Harbour Lab Press, Cold Spring Harbour, New York.

10

STEWART, A.J.; CANITROT, Y.; BARACCHINI, E.; DEAN, N.M.; DEELEY, R.G. and COLE, S.P.C. (1996). Reduction of expression of the multidrug resistance protein (MRP) in human tumour cells by antisense phophorothioate oligonucleotudes. *Biochem. Pharmacol.* **51**: 461-469.

15

VAN RADEN, P. M., AND G. R. WIGGANS, 1991 Derivation, calculation, and use of National Animal Model Information. J. Dairy Sci. **74**: 2737-2746.

JOHNSON, D.L.; THOMPSON, R. 1995. Restricted maximum likelihood estimation of variance components for univariate animal models using sparse matrix techniques and average information. *J. Dairy Sci.* 78: 449-456.

JOHNSON D.L., S.F. PETCH, A.M. WINKELMAN AND M. BRYANT 2000 Genetics of milk characteristics in New Zealand dairy cattle Proceedings of New Zealand Society of Animal Production 60:318-319.

MACGIBBON A.K.H. & MCLENNAN W. D. 1987. Hardness of New Zea-land patted butter: seasonal and regional variations. New Zealand Journal of Dairy Science and Technology, 22: 143-156.

FALCONER D.S. and MACKAY T.F.C. Introduction to Quantitative Genetics, 4th Edition. Longman Scientific and Technical, New York, 1996.

WELLER, J.I. et. al. Power of daughter and granddaughter designs for determining linkage between marker loci and quantitative trait loci in dairy cattle. J. Dairy Sci. <u>73</u>, 2525-2537, (1990).

LYNCH M and WALSH B (1997). Genetics and analysis of quantitative traits. Sinuaer Associates, Inc. Sunderland, Massachusetts.

SAS Institute Inc. 1985 SAS Users Guide: Statistics, Version 5 edition, Cary, N.C. 956p.

BOLDMAN K.G.; KRIESE L.A., VAN VLECK L.D.; VAN TASSELL C.P.; KACHMAN S.D. A manual for the use of MTDFREML, 1997.

http://aiipl.arsusda.gov/curtvt/mtdfreml.html.

SEQUENCE LISTING

```
5
     <110> REID, SUZANNE J
           FORD, CHRISTINE A
           GEORGES, MICHEL A J
10
           COPPIETERS, WOUTER H R
           GRISART, BERNARD M J J
15
           SNELL, RUSSELL G
           SPELMAN, RICHARD J
20
     <120> MARKER ASSISTED SELECTION OF BOVINE FOR IMPROVED MILK COMPOSITION
25
      <130> P452508 CJE
      <160>
           21
30
      <170>
           PatentIn version 3.1
35
      <210> 1
      <211> 11771
40
      <212>
             DNA
      <213>
             Bos taurus
45
      <220>
      <221>
             CDS
50
      <222>
             (1)..(191)
             Exon 1 CDS, determined by alignment with an amino acid sequence d
             educed from the cDNA
55
      <220>
60
      <221>
             misc signal
      <222>
             (1)..(4)
      <223>
             these bases correspond to bases 4 to 7 of the Kozak recognition s
65
             equence. See DGAT1 cDNA for the complete recognition sequence.
```

<220> 5 <221> CDS <222> (3809) . . (3896) Exon 2, determined by alignment with an amino acid sequence deduc <223> 10 ed from the cDNA <220> 15 CDS <221> (5840)..(5880) <222> Exon 3, determined by alignment with an amino acid sequence deduc 20 <223> ed from the cDNA 25 <220> <221> CDS <222> (5960)..(6045) 30 Exon 4, determined by alignment with an amino acid sequence deduc <223> ed from the cDNA 35 <220> <221> CDS 40 <222> (6138)..(6190) Exon 5, determined by alignment with an amino acid sequence deduc <223> ed from the cDNA 45 <220> <221> CDS 50 <222> (6406)..(6511) Exon 6, determined by alignment with an amino acid sequence deduc <223> ed from the cDNA 55 <220> 60 <221> CDS (6601)..(6714) <222> Exon 7, determined by alignment with an amino acid sequence deduc 65 ed from the cDNA

```
<220>
 5
     <221>
            CDS
     <222>
            (6815)..(6889)
            Exon 8, determined by alignment with an amino acid sequence deduc
     <223>
10
            ed from the cDNA
      <220>
15
      <221>
            variation
            (6824)..(6889)
      <222>
            this sequence is deleted from the alternately spliced transcript.
20
      <223>
      <220>
25
      <221>
            CDS
             (6960)..(7063)
      <222>
            Exon 9, determined by alignment with an amino acid sequence deduc
30
      <223>
             ed from the cDNA
35
      <220>
      <221> CDS
      <222>
             (7154)..(7192)
40
             Exon 10, determined by alignment with an amino acid sequence dedu
      <223>
             ced from the cDNA
45
      <220>
      <221>
             CDS
50
      <222>
             (7271) . . (7312)
             Exon 11, determined by alignment with an amino acid sequence dedu
             ced from the cDNA
55
      <220>
      <221>
             CDS
60
      <222>
             (7386)..(7430)
             Exon 12, determined by alignment with an amino acid sequence ded
      <223>
             uced from the cDNA
65
```

<220>

```
<220>
      <221> CDS
 5 < <222>
             (7505) .. (7617)
             Exon 13, determined by alignment with an amino acid sequence dedu
      <223>
             ced from the cDNA
10
      <220>
      <221>
             CDS
15
             (7705) .. (7770)
      <222>
      <223>
             Exon 14, determined by alignment with an amino acid sequence dedu
             ced from the cDNA
20
      <220>
25
      <221>
             CDS
      <222>
             (7858) . . (7945)
             Exon 15, determined by alignment with an amino acid sequence dedu
30
             ced from the cDNA
      <220>
35
      <221>
             CDS
      <222>
             (8027) .. (8089)
40
             Exon 16, determined by alignment with an amino acid sequence dedu
      <223>
             ced from the cDNA
45
      <220>
      <221>
             CDS
             (8162)..(8314)
      <222>
50
      <223>
             Exon 17 CDS, determined by alignment with an amino acid sequence
             deduced from the cDNA
55
      <220>
      <221>
            misc_feature
60
      <222>
             (8315)..(8317)
             translation stop codon
```

```
<221> polyA_site
     <222> (8572)..(8578)
5
     <223>
     <220>
10
     <221> variation
     <222>
            (626)..(626)
     <223> thymidine (T) to guanine (G) substitution polymorphism
15
     <220>
20
     <221> variation
     <222> (3512)..(3512)
     <223> thymidine (T) to guanine (G) substitution polymorphism
25
      <220>
30
      <221> variation
      <222>
            (4040)..(4040)
      <223> thymidine (T) to cytosine (G) substitution polymorphism
35
      <220>
40
      <221> variation
      <222>
             (4963)..(4963)
            adenine (A) to guanine (G) substitution polymorphism
45
     <223>
      <220>
50
      <221>
            variation
      <222>
            (5003)..(5003)
55
            guanine (G) to adenine (A) substitution polymorphism
      <223>
      <220>
60
      <221> variation
             (5997)..(5997)
      <222>
65
      <223> cytosine (C) to thyamine (T) substitution polymorphism
```

```
<220>
5
     <221> variation
     <222>
            (6829)..(6830)
            adenine (A) -adenine (A) to guanine (G) -cytosine (C) substitution p
     <223>
10
            olymorphism
            AA corresponds to the Q allele
            GC corresponds to the q allele
15
     <220>
     <221> variation
20
            (6892)..(6892)
     <222>
            guanine (G) to adenine (A) substitution polymorphism
     <223>
25
     <220>
     <221> variation
30
     <222>
            (7224)..(7225)
            guanine (G)-guanine (G) to adenine (A)-cytosine (C) substitution
      <223>
            polymorphism
            GG-AC
35
      <220>
40
     <221> variation
      <222>
            (7438)..(7438)
            adenine (A) to guanine (G) substitution polymorphism
      <223>
45
      <220>
50
      <221>
            variation
      <222> (7456)..(7456)
      <223> cytosine (C) to thymidine (T) substitution polymorphism
55
      <220>
60
      <221> variation
      <222> (7987)..(7987)
      <223> guanine (G) to adenine (A) substitution polymorphism
65
```

```
<220>
     <221> variation
•5
     <222> (8402)..(8402)
     <223> ctosine (C) to thymidine (T) substitution polymorphism
10
     <220>
     <221> misc_feature
15
     <222>
            (9434)..(9434)
     <223> ambiguous nucleotide
20
     <220>
     <221> misc_feature
25
     <222>
            (9496)..(9496)
      <223> ambiguous nucleotide
30
     <220>
     <221> misc_feature
35
     <222>
           (10402)..(10417)
      <223> ambiguous nucleotides
40
      <220>
      <221> primer_bind
45
      <222> (6579)..(6601)
      <223> Primer 17F
             CCTGAGCTTGCCTCTCCCACAGT
50
      <220>
      <221> primer_bind
55
      <222> (7036)..(7058)
      <223> Primer 18R
             CCAGGAGTCGCCGCAGCAGGAAG
60
             reverse primer
      <220>
65
      <221> primer_bind
```

```
<222> (7280)..(7303)
     <223> Primer 6F
            CCGGCCATCCAGAACTCCATGAAG
 5
     <220>
10
     <221> primer_bind
     <222> (7585)..(7605):
     <223> Primer AW446985 dnl
15
            TAGAACTCGCGGTCTCCAAAC
            reverse primer
20
     <220>
     <221> primer_bind
     <222> (8222)..(8244)
25
     <223> Primer InsUpl
            TGGCTGTCACTCATCATCGGGCA
30
     <220>
     <221> primer_bind
35
     <222> (8566)..(8589)
     <223> Primer 14R2
            TTGCACAGCACTTTATTGACACA
40
     <220>
     <221> primer_bind
45
     <222> (6813)..(6830)
     <223> Primer SNP1 FAM
            AGC TTT GGC AGG TAA GGC
50
     <220>
55
     <221> primer_bind
     <222> (6813)..(6830)
     <223> Primer SNP1_HEX
60
            AGC TTT GGC AGG TAA GAA
     <220>
```

<221> primer_bind

```
(6831)..(6844)
     <222>
     <223> Primer SNP1_2P
            GGC CAA CGG GGG AG
5
     <220>
10
     <221> primer_bind
     <222> (7424)..(7438)
     <223> Primer SNP2_FAM
            GCT GGC GGT GAG TGA
15
     <220>
20
     <221> primer_bind
     <222> (7424)..(7438)
25
     <223> Primer SNP2_HEX
            GCT GGC GGT GAG TGG
30
     <220>
     <221> primer_bind
     <222> (7439)..(7453)
35
     <223> Primer SNP2_2P
CCT GCT GGG TGG GGA
40
     <220>
     <221> primer_bind
45
     <222> (7442)..(7456)
     <223> Primer SNP3_FAM
            GCT GGG TGG GGA CGC
50
     <220>
     <221> primer_bind
55
     <222> (7442)..(7456)
     <223> Primer SNP3 HEX
            GCT GGG TGG GGA CGT
60
     <220>
```

65

<221> primer_bind

```
<222> (7457)..(7470)
     <223> Primer SNP3_P
            GTG GGG GCG GGT GG
 5
     <220>
10
     <221> primer_bind
     <222>
            (8388)..(8402)
     <223> Primer SNP4_FAM
15
            TGC CCC AAC CTG GGT
     <220>
20
     <221> primer_bind
     <222> (8388)..(8402)
25
      <223>
            Primer SNP4_HEX
            TGC CCC AAC CTG GGC
30
     <220>
      <221> primer_bind
      <222>
            (8403)..(8417)
35
      <223>
            Primer SNP4_2P
            GCA GCA GGA GGC
40
     <220>
      <221> primer_bind
45
            (6811)..(6830)
      <222>
      <223>
            Primer Dgat 21
            GTAGCTTTGGCAGGTAAGAA
50
      <220>
      <221> primer_bind
55
      <222>
            (6965)..(6984)
      <223> Primer Dgat 22
            GGGGCGAAGAGGAAGTAGTA
60
            reverse primer
      <220>
65
```

<221> primer_bind

```
(6613)..(6632)
     <222>
     <223>
            Primer Dgat 23
            TGGCCCTGATGGTCTACACC
5
     <220>
10
     <221> primer_bind
            (6829)..(6850)
     <222>
     <223> Primer Dgat 24B
            GGGCAGCTCCCCCGTTGGCCGC
15
            reverse primer
20
     <220>
     <221> primer_bind
      <222>
            (6651)..(6670)
25
      <223>
            Primer DgatforAD
            TTCTCCTACCGGGACGTCAA
30
      <220>
      <221> primer_bind
35
      <222> (6871)..(6890)
      <223> Primer ReverseNZ
            CCGCGGTAGGTCAGGTTGTC
40
            reverse primer
      <220>
45
      <221> primer_bind
             (6825)..(6838)
      <222>
50
      <223> Probe ForAA (FAM)
             CGTTGGCCTTCTTA
55
      <220>
      <221> primer bind
60
      <222>
             (6823)..(6836)
             Probe DgatADGC (VIC)
      <223>
             TTGGCCGCCTTACC
```

<220> <221> primer_bind 5 <222> (6651) . . (6670) Primer DgatforAD <223> TTCTCCTACCGGGACGTCAA 10 <220> 15 <221> primer_bind <222> (6878) .. (6972) <223> Primer DgatrevAD 20 AAGTAGTAGAGATCGCGGTAGGTCA reverse primer 25 <220> primer_bind <221> <222> (6825) .. (6838) 30 <223> Probe ForAA (FAM) CGTTGGCCTTCTTA 35 <220> <221> primer_bind 40 <222> (6823)..(6836) Probe DgatADGC (VIC) <223> TTGGCCGCCTTACC 45 <220> 50 <221> primer_bind <222> (6652)..(6671) Primer DgatforRT66 TCTCCTACCGGGACGTCAAC 55 <223> 60 <220> <221> primer_bind 65 <222> (6874)..(6964)

<223> Primer DgatrevRT66

GAGATCGCGGTAGGTCAGGTT reverse primer

5																	
	<220>																
	<221>	prime	r_bi	nd													
10	<222>	(6711	.) (6972)												
15	<223>	This	prim .ce v	er w aria	as d .nt.	esig The	ned corr	to s espo	elec ndin	tive g bi	ly b ndin	ind g si	and te i	ampl n th	is ge	enomi	ic s
20	<220>													(
	<221>	prime	er bi	.nd													
	<222>	(7022	_		3)												
25	<223>		er Do	atre CGGA	vRT1		6										,
30																	
	<220>																
25	<221>	prime	er_bi	ind													
35	<222>	(6857	7)	(6870))												
40	<223>	Probe CCGT	_			(FAM	1)										
	<220>																
45	<221>	prime	er_bi	ind						•							
	<222>	(697)	_ 6)	(6990))												
50	<223>	Probe				(VIC	5)										
55												-					
	<400> atg gg Met Gl	gc gac	cgc Arg	ggc Gly 5	ggc Gly	gcg Ala	ggc Gly	ggc ggc	tcc Ser 10	cgg Arg	cgc Arg	cgg Arg	agg Arg	acg Thr 15	ggg ggg		48
60	tcg cg Ser Ar	g cct g Pro	tcg Ser 20	atc	cag Gln	ggc Gly	ggc Gly	agt Ser 25	ggg ggg	ccc Pro	gcg Ala	gca Ala	gcg Ala 30	gaa Glu	gag Glu	Þ	96
65	gag gt Glu Va	g cgg al Arg 35	gat Asp	gtg Val	ggc Gly	gcc Ala	gga Gly 40	Gly ggg	gac Asp	gcg Ala	ccg Pro	gtc Val 45	cgg Arg	gac Asp	aca Thr		144

5		c gga gac g p Gly Asp V					191
3	gtagcggtgc	gcgtgacccc	taacctttga	cccctgatac	ggggcccctg	cgacccaacc	. 251
	tggtggccca	ggcctgtcgg	cggcagctcg	ggctcgagtc	cgagagtctg	gcgcctggac	311
10	cttggtgcac	agctgtgccc	ctcgggcctc	cacggggaaa	cttagcggga	ggttgggggc	371
	ggagggtctc	ctgcccggaa	cacccaggta	cgggggccga	ggggagggca	gcggctcaac	431
15	ttctagacgc	cctccctctg	ccttcctttg	gtgggttctg	aagctttccc	agggtgagcc	491
10	cactacgcac	agtgtcctct	acctggaagg	agatacaggg	gtccttcctg	agggctatga	551
	ggggtgcctt	gtgggttgat	aaagctcccg	ggggaggagg	gtggaccggc	ggagaacaga	611
20	ggcagggąca	gtgctagggg	atttctcatc	cctcgcagac	cctccagaga	atggtcttca	671
	caaaggtccc	tcatccgtca	cccggcgatt	gactggccta	ggatcctgct	tattaccagc	731
25	acaaatggct	gctctagggt	caaagtgggt	cctgtaatgg	gaccctcacc	cctggttggg	791
	gtacagggga	ggagttggaa	gtgcgcacac	ccacaggtgg	gcgccctgct	tagctgaagg	851
	actgatggga	aggagttggg	ggagcaagct	gcggctgaaa	gggaggatct	gacccacgtg	911
30	ggcatcagct	aagtcctgct	ggctgcctcc	aggcgttccc	tttgccatcc	tccacgcccc	971
	tccccgggg	cctgaccttc	atcctggtca	agggctctca	ggggctctgg	ttttgggatc	1031
35	agctccagag	ctagaggtta	tcaaggagga	agtgggcaac	aggtcagtca	gcaaggattt	1091
	gctatcttca	ctgggtgctg	tggggagggg	agggacaagg	gcagttgggg	tgcaggcact	1151
	gtccctgccc	ttggggggca	cacagttcac	ctgagagata	agatagccgc	agccctgaag	1211
40	agtgagagca	aaggtcaggc	acagagttca	ggatgacacc	aggggagggt	ggctctgtga	1271
	ggggcactgg	cttcctacag	gccccaggtg	gtcctgaggg	ggcggctgca	aaggccagga	1331
45	ggcccacagg	cccctctgcc	cactcctggg	gaactggatt	tggggtcact	ttgtatgagg	1391
	tgggggcggg	taccagcttt	gggccaagct	gtcaccctgg	atgggccatc	acttgcctgc	1451
•	tctgtatagg	ccagatggcc	agaagctgct	cctgtcctgt	tgatggccca	tcctcgaggt	1511
50	ctggaccctc	gggaagagga	gcagttggtg	gcagggatgg	gccaccggag	accctcctga	1571
	cctccaggac	acgcagctgt	gtgtgcctgt	ccccaagcca	catgccacat	ggctaggggc	1631
55	ctcctggggc	agggctgggc	attggtctgg	ctactcttgg	tatcgcctat	ggcttccctg	1691
	cctcccagtc	atcatcctcc	cacctctgcc	tccctgcctg	ttcctctctt	tctcctcagg	1751
	cccttccgga	catttcctgc	tcacctaggt	ctgggcaggc	ggggtcaggt	gccgggtgtg	1811
60	agctcactcc	ttccggcagc	aaggtgtagc	tatgtgccgg	aaggaaggcc	gctgctgttg	1871
	cctcgcctct	gagtgcatcc	cttccaggtc	ctccacactc	ccctgtgccc	cgacacctgg	1931
65 ′	tgcgtccttc	agccattggt	tcatgtgtcc	tccaggcaca.	gctttctagt	ccagagcctc	1991
	taggctgggt	gcaggaagtg	ctgaggaagt	ggcagccggg	aggcgagctg	gcaccctgtc	2051

	cctccttgtt	ctgtccgtcc	ctgcccctgg	accgtatggc	cccgcatgtg	tgatccccac	2111
	ttggggctgt	gcctctgggc	aagttgggaa	gcttggtgag	cctcattttc	atgtgcccgc	2171
5	ctcccagtac	tgatgtgcag	gttgaatgag	gtgccaactg	taatgagttg	gaatggccct	2231
	gctggctggg	tgggactggg	gagcaggtgg	gggccgctgg	ggggcacaga	ggcacaccca	2291
. ^	gtgcctcagt	cagggagagg	gtgacagaga	agctctgggt	gaggccccac	ctccactctg	2351
10	gccatggctg	ctgccctttg	gtccactgca	gtgaactgtg	ccatggggct	ggacctctgt	2411
	ggggattggt	gggcagtggg	ctttcttccc	gcttggggcc	tctgacctct	gggggcaggg	2471
15	cgctgcccgg	gtgggacagt	cggaaggctg	gtagagggac	ctgaggggtc	tgtgtggtgg	2531
	ctgggggcag	gcctcaggaa	tttgacagca	gggatctgga	aaagctttaa	taacattatt	2591
20	tgttgtcagg	attgggaaat	gctcccctcc	cccctccccc	tctttcatct	tagagactgc	2651
20	tgcacatctg	gtcagtgtgg	tcttcttggt	ggcccccaag	gtggcagggg	tcacactgtt	2711
	atgaaaccgt	cccctgggta	tgtggtgcag	acatgcacat	gcagatggtg	attggcaggt	2771
25	tgtagcatga	ggtggctttg	ggacggttcc	agtgacagtg	agtgggctgg	atctgggggg	2831
	ttctgggcag	gtccatcaag	cggatacccc	cacagactgt	cctcttggga	tagttgggcc	2891
30	tgggagccct	gcttgccttg	ccaaaaggca	ggcgcagagt	catgaagaag	agggcttggg	2951
50	ggctcagagc	cccactgtgt	gtgcagccca	gggtggacct	ggaggaggtg	cgtgggcagg	301,1
	ctgggccggc	cggggcgggg	ggtgggggg	cctggtgtga	aagggaccca	gggccagact	3071
35	gtcagcgctg	cctggctgag	gatgctggca	ccctgtcctc	cccagccgtc	tgtctcctgg	3131
	gtgcagccat	ctgagtgctg	accccagccg	cccctggagg	ctggctgttc	tcctgtgccc	3191
10	tattgctggg	gacatgtgtc	cacaggaggg	aaagggaagc	cccggcctct	ccccttacaa	3251
70	aactggaggc	cttgctcaat	gccctggatg	gcctcctggt	ggcagggtgg	ttggtgggag	3311
	gtggggctgc	ťgcttagaac	ccgccagcgg	gcctgggcct	gggctgagct	gcacccctcc	3371
1 5	acctctgcct	ccagctgagg	gttggcttcc	atctccacca	ggcccagcac	tgggcacagg	3431
	gctctcagag	gcaggctctg	aaagtcccct	gctggcttct	gcagtggact	ccaggcgccg	3491
50	agcccccagg	gggctcgcat	tgcgctcacc	ctgcgaagcc	acgtgaaggc	tgggtcctcc	3551
50	cctccggaag	ggccaaatgc	agggcatggg	tggtttgaat	ggtggcccct	gggctccccg	3611
	gagggaccag	ctgctgtgag	ggccgccccc	tccccacttc	cgtcttgcat	caccagetee	3671
55	tgtggcactc	cccacgcccc	gtcccccagt	gggagcggca	ggcccccggt	ggctctgccc	3731
	gcggagggg	atgtgtgggc	ggcggggtgg	ccttgctgcc	agatgctctg	ccccgagtgt	3791
50	ccgtctccgc				t tcc ctg t p Ser Leu P		3842
55		c ttc agc a y Phe Ser A 80					3890
	atg ctg gt	acgtagag tg	acaccttg ga	gcaagggt cc	tgacggcc gg	ggggccat	3946

Met Leu

5	gggctcttct	ccaggggtag	gtgtctgtac	ttgtgtagct	gtggtgaatg	gagctctgtg	. 4006
	ctggcggtgg	gggtccctgg	agcagccgta	ccctgggacc	ctaccgggag	catgctcatg	4066
	ccgtccctgc	tgaatcccag	gagatgcctg	cagagggcag	cctgggagcc	tctgagctgg	4126
10	ggtctgcgcc	ccagggggca	ctggagtctc	cccagggggc	gagagagagt	aggcagggat	4186
	ggtctggtgg	ccctgggtgg	gggatggctg	ctccgtgggc	ccaggccctc	cctggcagca	4246
15	caggtgagtg	gtcttggggg	tccacgtaga	acttcctctt	ctgttccaaa	ttgccctcat	4306
	gggtgcggca	tgcctgggtg	aacctggggg	agcagggtga	ggacatgctt	ctcagcccag	4366
	cccacagete	caggccacac	tctgcaggac	tctggcccct	ccctcagccc	tggagggagc	4426
20	aggactggag	tcctgtgtcc	gccttgctct	gacctggccg	aggccactgc	tgtggggccc	4486
	cagcaggcct	gcccagcaga	aggtggagtg	cagggacccc	aggggcagcc	ttcagggtgg	4546
25	ggcagggtga	ggcccgactg	ggcccagccc	caccgctcag	tgctgatgtg	gcgcgaggcc	4606
20	ttegeceete	cagctgacgt	gtctgcctgc	cctgggtgtg	gctccagagg	ctgcctgtgt	4666
	accaggggcc	cccacgcttc	tgtttgtggt	tctgggcagt	cccctgggga	gcggtgggg	4726
30	ctgtgtgcca	gtccagaccc	agtagtccac	gcgtcctggt	ctctggaggc	cgtggctggt	4786
	ccaggactgt	ggcaaggtgg	tcgtgcaggg	caggccctca	gcagcctgtc	tgttctcctg	4846
35	cagcccccag	cctcctggcc	ctttggtgca	cccacaaagc	teccectee	cccaggagct	4906
-	ggggccgcct	gctgcgtcct	ctcggcagcc	tgggcttcca	ggtggctggg	cctcttagca	4966
	gctccaactc	ttgcctgtgg	tgggctctca	ggacaggcaa	ctgccagtcg	gcagacattg	5026
40	caggaccacg	tgtgtcctgg	taagctggct	ggttaggtgt	ttagctgggg	gatggtgtgg	5086
	caggtggccc	ctgcatctct	gagcctgtca	cctcctcggg	aagccttctg	ggtgggggac	5146
45	tccacccatg	tcgcctggag	aagcatcact	tttccacaga	gccttctgca	acccccgtgg	5206
	ggcctgagcc	tggggtgggg	gaggtggtgg	cccctgctcc	tgcagaggcc	agccaggcat	5266
	ctggccccag	gccactggca	agagctcgtt	gtgttggggg	atctgtcctt	tgctgctgct	5326
50	gcaggagcgg	ccgaggcagg	cgggggcgtg	agtaggggtg	gagacccagg	cccagcttcc	5386
	ccagcccctc	aggaccggcc	tgctctttcc	caccacccca	ccaagtgcgt	gggcacaccc	5446
55	cgcctgtgag	gatgggcccg	gttggcaggg	cggagccctg	ggagggtggc	agtgcgccgg	5506
	gcaggcttgg	acttcactgg	ggcttggggt	tgtcgctgtg	gccaggggcg	ctgacccgct	5566
	tggtgggacg	gacggccgct	gggcagcagg	tttcttctgc	cacggtggca	caggcacctg	5626
60	gggttgtggt	tggctccagg	cgggcggggg	ctgcgtgccc	ctgcgcaggc	acataggccg	5686
	tgggtgggga	gtctcagage	ttggcgtgag	gtcccacagg	gctgggcctg	caggatggag	5746
65	gccactgtcc	tgagctgcag	gtgctggcag	gagctggggt	gggcgttctg	gggccgtggc	5806
	tgacagcgtt	atgtccctct	ctctctatcg		a agc aac go 1 Ser Asn A		5860

	95 100	-
5	ttt cta gag aac ctc atc aa gtgagtgggc cccggcctgc cccagcccct Phe Leu Glu Asn Leu Ile Lys 105	5910
	gccacctcac ccctcgccta cacagaccet cacccacctg cgtctgcag g tat ggc Tyr Gly	5966
10	atc ctg gtg gac ccc atc cag gtg gtg tct ctg ttc ctg aag gac ccc Ile Leu Val Asp Pro Ile Gln Val Val Ser Leu Phe Leu Lys Asp Pro 110 115 120 125	6014
15	tac age tgg cca get ctg tgc ctg gtc att g gtgagetggg tgcccaggag Tyr Ser Trp Pro Ala Leu Cys Leu Val Ile 130 · 135	6065
20	gcctcaggcc ggcggtgggt gggacagggc tgatctgggc ctgaacctgc cctgggttgc	6125
	ttctgtcctc ag tg gcc aat atc ttt gcc gtg gct gcg ttc cag gtg gag Val Ala Asn Ile Phe Ala Val Ala Ala Phe Gln Val Glu 140 145	6175
25	aag cgc ctg gcc gtg gtaagcagtg ccctcacgcc ctcccctgac ttgcctcaag Lys Arg Leu Ala Val 150	6230
20	gtccttacca gtcgggctta gggcgggcca ccagctggtc ccactgtgct tcagggtttt	6290
30	gggcctttcg tggccttcct gagaggggct gcacctcagg cctggtggct cttcctcagg	6350
35	gaggteetet gaecagggag gggggteeet ggetgaeget etgeteecae eecag gga Gly	6408
	gct ctg acg gag cag gcg ggg ctg ctg ctg cac ggg gtc aac ctg gcc Ala Leu Thr Glu Gln Ala Gly Leu Leu His Gly Val Asn Leu Ala 155 160 165 170	64 56
40	acc att ctc tgc ttc cca gcg gcc gtg gcc ttt ctc ctc gag tct atc Thr Ile Leu Cys Phe Pro Ala Ala Val Ala Phe Leu Leu Glu Ser Ile 175 180 185	6504
45	act cca g gtgggcccca cccccgccc cgcccccgcc cacgctgtct cggccacggg Thr Pro	6561
50	cagegegggg ggegtggeet gagettgeet eteceaeag tg gge tee gtg etg Val Gly Ser Val Leu 190	6614
55	gcc ctg atg gtc tac acc atc ctc ttc ctc aag ctg ttc tcc tac cgg Ala Leu Met Val Tyr Thr Ile Leu Phe Leu Lys Leu Phe Ser Tyr Arg 195 200 205	6662
60	gac gtc aac ctc tgg tgc cga gag cgc agg gct ggg gcc aag gcc aag Asp Val Asn Leu Trp Cys Arg Glu Arg Arg Ala Gly Ala Lys Ala Lys 210 225 220 225	6710
	gct g gtgagggctg cctcgggctg gggccactgg gctgccactt gcctcgggac Ala	6764
65	cggcaggggc tcggctcacc cccgacccgc cccctgccgc ttgctcgtag ct ttg Ala Leu	6819

5	gca ggt aag aag gcc aac ggg gga gct gcc cag cgc acc gtg agc tac Ala Gly Lys Lys Ala Asn Gly Gly Ala Ala Gln Arg Thr Val Ser Tyr 230 235 240	6867
	ccc gac aac ctg acc tac cgc g gtgaggatcc tgccgggggc tggggggact Pro Asp Asn Leu Thr Tyr Arg 245 250	6919
10	gcccggcggc ctggcctgct agccccgccc tcccttccag at ctc tac ttc Asp Leu Tyr Tyr Phe 255	6973
15	ctc ttc gcc ccc acc ctg tgc tac gag ctc aac ttc ccc cgc tcc ccc Leu Phe Ala Pro Thr Leu Cys Tyr Glu Leu Asn Phe Pro Arg Ser Pro 260 265 270	7021
20	cgc atc cga aag cgc ttc ctg ctg cgg cga ctc ctg gag atg Arg Ile Arg Lys Arg Phe Leu Leu Arg Arg Leu Leu Glu Met 275 280 285	7063
	gtgaggcggg gcctcgcggg ccagggtggg cgggcctgcc ggcacccggc accggggctc	7123
25	agctcactgt ccgcttgctt ccttccccag ctg ttc ctc acc cag ctc cag gtg Leu Phe Leu Thr Gln Leu Gln Val 290	717,7
30	ggg ctg atc cag cag gtacgtgccc gggggggggg	7232
35	ctggggccgt tggggagctg actctgcgct ttttgcag tgg atg gtc ccg gcc atc Trp Met Val Pro Ala Ile 300 305	7288
J.J	cag aac tcc atg aag ccc ttc aag gtgagcaggc aggcctggca gggtgggttc Gln Asn Ser Met Lys Pro Phe Lys 310	7342
40	cggggtcagg gctgagggag ccagctgtgc cctgtgccca cag gac atg gac tac Asp Met Asp Tyr . 315	7397
45	tcc cgc atc gtg gag cgc ctc ctg aag ctg gcg gtgagtgacc tgctgggtgg Ser Arg Ile Val Glu Arg Leu Leu Lys Leu Ala 320 325	7450
50	ggacgcgtgg gggcgggtgg ggctgttctg gcacctggca cccactcccc acag gtc Val	7507
55	ccc aac cac ctc atc tgg ctc atc ttc ttc tac tgg ctc ttc cac tcc Pro Asn His Leu Ile Trp Leu Ile Phe Phe Tyr Trp Leu Phe His Ser 330 335 340 345	7555
	tgc ctg aac gcc gtg gct gag ctc atg cag ttt gga gac cgc gag ttc Cys Leu Asn Ala Val Ala Glu Leu Met Gln Phe Gly Asp Arg Glu Phe 350 355 360	7603
60	tac egg gac tgg tg gtgggtggee ttgeegggge gggggtggtg ggggeeeeeg Tyr Arg Asp Trp Trp 365	7657
65	ctggggctgg ggccggagcc cctgcccact ctgccccgcc cccgcag g aac tcc gag Asn Ser Glu	7714

	tcc atc acc tac ttc tgg cag aac tgg aac atc cct gtt cac aag tgg Ser Ile Thr Tyr Phe Trp Gln Asn Trp Asn Ile Pro Val His Lys Trp 370 375 380 385	7762
5	tgc atc ag gtgggtgtgc gcctgggggc ggggggttgg ggggtgggac Cys Ile Arg	7810
10	ggggtcgcgt ggcccgggcg cccagcccac tgccgcctcc cccgcag a cac ttc tac His Phe Tyr 390	7867
15	aag ccc atg ctc cgg cgg ggc agc agc aag tgg gca gcc agg acg gca Lys Pro Met Leu Arg Arg Gly Ser Ser Lys Trp Ala Ala Arg Thr Ala 395 400 405	7915
20	gtg ttt ctg gcc tcc gcc ttc ttc cac gag gtcagtgcac tgagggcgcg Val Phe Leu Ala Ser Ala Phe Phe His Glu 410 415	7965
	ccctgcccct ggtgggggtg ggggtggggg tgggggctcg ctgacgcccc tctcccctca	8025
25	g tac ctg gtg agc atc ccc ctg cgc atg ttc cgc ctc tgg gcc ttc acc Tyr Leu Val Ser Ile Pro Leu Arg Met Phe Arg Leu Trp Ala Phe Thr 420 425 430	8074
30	ggc atg atg gcg cag gtgagcagcc ctggaccccc gctccgcccc gccccgcgag Gly Met Met Ala Gln 435	8129
	cgcagaggct cactcccgtc ctgtgtcccc ag atc ccg ctg gcc tgg ata gtg Ile Pro Leu Ala Trp Ile Val 440 445	8182
35	ggc cgc ttc ttc cgc ggc aac tac ggc aac gcg gcc gtg tgg ctg tca Gly Arg Phe Phe Arg Gly Asn Tyr Gly Asn Ala Ala Val Trp Leu Ser 450 455 460	8230
40	ctc atc atc ggg cag ccg gtg gcc gtc ctg atg tac gtc cac gac tac Leu Ile Ile Gly Gln Pro Val Ala Val Leu Met Tyr Val His Asp Tyr 465 470 475	8278
45	tac gtg ctc aac cgt gag gcg ccg gca gcc ggc acc tgagcgcctc Tyr Val Leu Asn Arg Glu Ala Pro Ala Ala Gly Thr 480 485	8324
	caggetggce cectegtggg tgttggaetg etitgeegeg etgeetgegg etggaetaga	8384
50	gcctgcccca acctgggcgc agcaggagga ggcctggctg gtggaagctg cctcctggcc	8444
50	tccaccagge ctctgcctga agggettect cctgccaggg gagagcagge ccgacgcagt	85.04
	tctggcccct gggaggtgcc catgctctgg aaaccctaca gatctcgccc aagggtctga	8564
55	atgtgtcaat aaagtgctgt gcacagtgag ctccctcagc ctccagggca cagggctggc	8624
	aggagggggc ggccctccca cgtggggcca tgctgtggga aggaggcccc agcgcctgga	8684
60	gaggagetgg ggetgtggtg accetecetg ceteacaggg etetgtggte agacgtettg	8744
00	ccctgcaagg tggagactcc atgctccaag gccccctgtg cctgaggtct gcacacaagt	8804
	ggattcaact tgggtcaggc cagaggctaa ggtgtggaag aaggttgaga atcaggctga	8864
65	cttgaacggc agcaaagact ccaaggcaag gctgcagaag tctcaaaagc tatgcgcaca	8924
	gtococtgct ggggtgctca cotgggctgg gctotggget gcttggacaa agcaggtggc	8984

66

ctggctcagc cctcaccgag ggccttcctt gggggcagag gttggcctga tgccaggggc 9044 tccccgtttt tccaggccct cagcaggtag ttgggtgtgg ccctcatgat accttggtcc 9104 5 cagageteeg ecaeteaaaa agettggeag tgaggeaagg geaacceegg getgtteece 9164 cetetactgg etetgeegee tgggttggaa accetgagge tgtgeeagge aggtgtacee 9224 10 tgacagccag ccatggccca gtaagatggg tgcccgaggt ggtacctggg cagcggaccc 9284 agctgtgctg c'eccegecce aaccagaage egetetagee catggtggte gtetgggega 9344 gacaggctgg ttggctaggc actgtttggt ctacagcagg tgtaggcagc gtctccctga 9404 15 cccctgcctt ctaggaagcc accaccctgn gccctactca tcagcaagga cagcgagcag 9464 ggctgagctg ggggtgcgtg ggctgctacg gnccccgcac cttcatcaca tgcacctctg 9524 20 cacccctgc tgcctgactc aagagtgggg ggggggtcc tgtgcttcct tcattccaga 9584 cccacggtgc tgacccagtg cacccacctg gtccgctagt gctgacctgg ccacagggct 9644 cctgtgggcc cacgctgatc ccgccctggt cccttcataa agaactcttg agcacatgca 9704 25 gcccagggga gccaggaggc tccagtgtgc tgtgtccatc tgcctccctt cagccccttc 9764 cgagacactg cgcatcatgc cccctccac ccccacccac actggcagga ggaacacaca 9824 30 gggagaccac acacagagct cgttgtttat aaatctctgc ctggctcatc ggtctgtttg 9884 tccatgtata tatctgcata tctctatgga aggggaaagg gggactcgtg taaaaaatcca 9944 aaatacaatt ctatgaacac ctgcatcctg gtcagtctga gtgtggccgt gaagcccagg 10004 35 tgagetgtgg etcacaggge taggeeeteg gtgetggeeg ggggeeacte eccaececet 10064 ctcccccct ccgccagcca ggggaccagg ctcctggaca ccaggcctgc ccaaggcctg 10124 40 ctctcctcct ggggcttcta cgagacagtg gggtccttgg ctttgggggg ttctgagccc 10184 gtcagcaggg agatggtggg gtcatctctt atatttcgtc tccctcggag aagtaggagc 10244 cctccccag ctcqaaqagc accgqcaggt cgctgctccc cacgtccacg gagcccgggt 10304 45 ccaggagcag caggggctgg gcggtgtagt gcaccagctg cttccctagg ggtgcgactg 10364 50 ecceggeece agecaceeeg ectaegeaeg etggeeagge tgetgteeag gtegggeagg 10484 ctcatgtcgg gcaccgtaac cgaggggctg aacagctgca gggaagaggg gcgggtcaga 10544 ctgccctgga agcggggcgg gctgggcgcg gggcgggcag ggttagactc acatccagca 10604 55 gggtgctggt gtccacgctg aagccatggc ttgtcagcat ggtctgcagg ttgtccaggt . 10664 tggagtccat ggcgtccaag tggtcgctga gctcggtcct ggccagagga aggggagcag 10724 60 gtgacgtggc atccaggcac ccccaggtgc agtcctgccg gcccttaagc ccagctgcca 10784 gcctgccctg cgcaggctca cgggaggccc tgaggtgggg ccctgggcct gggacacttg 10844 gccaccggtg gtggctcagg ctccctcatc accgtgaggc cccgtaaggc agcacgtcag 10904 65 gctgggccgg ctaagacatc agggggctga gttcagggct cagaagggcc cggggcccca 10964

	gcttctc	agg	ttcagcaacg	cctgcccttc	acactggagg	acagcaggag	ggtggagctg	11024
	tgctcgg	cca	ggctgggcca	gcctacccca	gcatgcgcca	ggatagatta	ggcctgcccc	11084
5	ctcgagg	agg	ccaggcagta	cctcggggtg	ctgcctcagg	ccccagaggt	gggtggggag	11144
	cctgttc	aca	ggctgggcag	gggtctgctc	agaggctggg	gaggggccca	agctctggcg	11204
10	gagccct	cct	ccctccccag	tgggacagcg	ctaaccctgg	ctggactcgg	ccatgcagag	11264
10	aggagga	ggg	gcaggggaag	aggcgggcga	ccccagacat	ctttggagtg	cgagccaaac	11324
	tgcaaga	tag	aaagacaaga	gcccccctct	gcgggtgggg	cccagcgagt	ccaagccccc	11384
15	caccccg	ttc	acccacctct	ggggtggtag	gacagacaga	ccaggcggcc	cggggagggc	11444
	ggctcag	ggg	gcaggggtgc	ccgccacgtg	cctggttccc	acggtgcagg	ggctgcggga	11504
20	ccccctg	gct	ggcatgtctc	cctccccagc	tccatgctct	gggccaggtc	ggccagtttc	11564
20	ccccago	aaa	tcccatgccg	agggcctgag	ggccatgcgt	gtccagcccg	gcactgtcct	11624
	tgtcgga	ıggc	ccctgcgctt	ccagagaccg	aagggcgcct	ggaaggcact	cacttgtcta	11684
25	ggcaggc	gac	gctgaggcac	ttctcgggag	ccgaggcggg	gagggtcgac	ggatagcggc	11744
	cccgagt	gat	ccgatagaag	cttcgta				11771
30	<210>	2						
00	<211>	489						
	<212>	PRT						•
35	<213>		taurus					
40	<220>							
	<221>	mis	c feature					
	<222>		15)(8317)					
45	<223>	tra	nslation st	op codon				
	<220>							
50	<221>	mis	c_feature					
	<222>	(94	.34)(9434)					
	<223>	amb	oiguous nucl	.eotide				
55	<220>						•	
	<221>	mis	c_feature					
60	<222>	(94	96)(9496)					
	<223>	amb	oiguous nucl	eotide				
6 E	<220>							
65	<221>	mis	sc_feature					

<222> (10402)	(10417)
---------	--------	---------

<223> ambiguous nucleotides

- 5 <400> 2
 - Met Gly Asp Arg Gly Gly Ala Gly Gly Ser Arg Arg Arg Thr Gly 1 5. 10 15
- 10
 Ser Arg Pro Ser Ile Gln Gly Gly Ser Gly Pro Ala Ala Ala Glu Glu
 20
 25
 30
- 15. Glu Val Arg Asp Val Gly Ala Gly Gly Asp Ala Pro Val Arg Asp Thr 35 40 45
- Cys His Arg Leu Gln Asp Ser Leu Phe Ser Ser Asp Ser Gly Phe Ser 65 70 75 80
 - Asn Tyr Arg Gly Ile Leu Asn Trp Cys Val Val Met Leu Ile Leu Ser 85 90 95
- 30 Asn Ala Arg Leu Phe Leu Glu Asn Leu Ile Lys Tyr Gly Ile Leu Val 100 105 110
- 35 Asp Pro Ile Gln Val Val Ser Leu Phe Leu Lys Asp Pro Tyr Ser Trp 115 120 125
- Pro Ala Leu Cys Leu Val Ile Val Ala As
n Ile Phe Ala Val Ala Ala 40 130 . 135 140
- Phe Gln Val Glu Lys Arg Leu Ala Val Gly Ala Leu Thr Glu Gln Ala 145 150 150 155 160 45
 - Gly Leu Leu His Gly Val Asn Leu Ala Thr Ile Leu Cys Phe Pro 165 170 175
- 50
 Ala Ala Val Ala Phe Leu Leu Glu Ser Ile Thr Pro Val Gly Ser Val
 180
 185
 190
- 55 `Leu Ala Leu Met Val Tyr Thr Ile Leu Phe Leu Lys Leu Phe Ser Tyr 195 200 205
- Arg Asp Val Asn Leu Trp Cys Arg Glu Arg Arg Ala Gly Ala Lys Ala 60 210 215 220
- Lys Ala Ala Leu Ala Gly Lys Lys Ala As
n Gly Gly Ala Ala Gl
n Arg $225 \hspace{1cm} 230 \hspace{1cm} 235 \hspace{1cm} 240$
 - Thr Val Ser Tyr Pro Asp Asn Leu Thr Tyr Arg Asp Leu Tyr Tyr Phe

69

250 255 245 Leu Phe Ala Pro Thr Leu Cys Tyr Glu Leu Asn Phe Pro Arg Ser Pro 265 260 Arg Ile Arg Lys Arg Phe Leu Leu Arg Arg Leu Leu Glu Met Leu Phe 280 275 10 Leu Thr Gln Leu Gln Val Gly Leu Ile Gln Gln Trp Met Val Pro Ala 15 Ile Gln Asn Ser Met Lys Pro Phe Lys Asp Met Asp Tyr Ser Arg Ile 20 Val Glu Arg Leu Leu Lys Leu Ala Val Pro Asn His Leu Ile Trp Leu Ile Phe Phe Tyr Trp Leu Phe His Ser Cys Leu Asn Ala Val Ala Glu 25 345 Leu Met Gln Phe Gly Asp Arg Glu Phe Tyr Arg Asp Trp Trp Asn Ser 360 30 Glu Ser Ile Thr Tyr Phe Trp Gln Asn Trp Asn Ile Pro Val His Lys 35 Trp Cys Ile Arg His Phe Tyr Lys Pro Met Leu Arg Arg Gly Ser Ser 395 390 40 Lys Trp Ala Ala Arg Thr Ala Val Phe Leu Ala Ser Ala Phe Phe His Glu Tyr Leu Val Ser Ile Pro Leu Arg Met Phe Arg Leu Trp Ala Phe 45 . 425 Thr Gly Met Met Ala Gln Ile Pro Leu Ala Trp Ile Val Gly Arg Phe 435 440 50 Phe Arg Gly Asn Tyr Gly Asn Ala Ala Val Trp Leu Ser Leu Ile Ile 55 Gly Gln Pro Val Ala Val Leu Met Tyr Val His Asp Tyr Tyr Val Leu 475 60 Asn Arg Glu Ala Pro Ala Ala Gly Thr <210> 3 65

<211> 31

<212> DNA .

<213> Bos taurus

5

<220>

<221> misc_signal

10 <222> (29)..(31)

4223> bases 1 to 3 of the Kozak recognition sequence. See the genomic s equence from the start codon for bases 4 to 7 of the Kozak recogn ition sequence or the DGAT1 cDNA for the complete recognition sequence.

20 <400> 3. acttggccgc ggcggggtgc gaactaaggc c

31

<210> 4

25 <211> 1732

<212> DNA

30 <213> Bos taurus

<220> 35

<221> misc_feature

<222> (1)..(3)

40 <223> translation start codon

<220> 45

<221> misc_feature

<222> (1468)..(1470)

50 <223> translation stop codon

<220>

55 <221> variation

<222> (689)..(755)

60 <223> this sequence is deleted in the alternately spliced transcript

<220> 65

<221> variation

```
<222> (358)..(358)
     <223> cytosine (C) to thyamine (T) substitution polymorphism
 5
     <220>
     <221> variation
10
     <222> (694)..(695)
      <223> adenine (A)-adenine (A) to guanine(G)-cytosine (C) substitution p
            {\tt olymorphism}
            AA corresponds to the Q allele
15
            GC corresponds to the q allele
20
      <220>
      <221> primer_bind
            (616)..(635)
      <222>
25
            Primer DgatforAD
      <223>
             TTCTCCTACCGGGACGTCAA
30
      <220>
      <221> primer_bind \cdot
35
      <222> (743)..(767)
      <223> Primer DgatrevAD
             AAGTAGTAGAGATCGCGGTAGGTCA
             reverse primer
40
      <220>
45
      <221> primer_bind
      <222>
            (690)..(703)
      <223> Primer ForAA (FAM)
50
             CGTTGGCCTTCTTA
             reverse primer
55
      <220>
      <221> primer_bind
      <222>
             (688)..(709)
60
      <223>
             Primer DgatADGC (VIC)
             TTGGCCGCCTTACC
             reverse primer
65
```

```
<220>
     <221>
            primer bind
5
     <222>
             (617)..(636)
     <223>
            Primer DgatforRT66
             TCTCCTACCGGGACGTCAAC
10
     <220>
             primer_bind
      <221>
15
      <222>
             (739) .. (760)
      <223>
             Primer DgatrevRT66
             GAGATCGCGGTAGGTCAGGTT
20
             reverse primer
      <220>
25
      <221> primer bind
      <222>
             (676) . . (767)
30
             Primer DgatforRTless66
             GCTGCTTTGGCAGATCTCTACTACTT
             This primer selectively binds and amplifies a contigious sequence
              characteristic of the splice variant & generated by the deletion
              bases 689 to 755 of this sequence.
35
      <220>
40
      <221>
            primer_bind
      <222>
             (817) .. (833)
      <223>
             Primer DgatrevRTless66
45
             AAGCGCTTTCGGATGCG
      <220>
50
      <221>
             primer_bind
      <222>
             (722)..(734)
55
      <223> Primer Dgatwith66 (FAM)
             CCGTGAGCTACCC
60
      <220>
      <221> primer_bind
      <222>
             (771)..(785)
65
      <223>
             Primer Dgatless66 (VIC)
             CTTCGCCCCCACCCT
```

5	atgggcgacc	gcggcggcgc	gggcggctcc	cggcgccgga	ggacggggtc	gcggccttcg	60
	atccagggcg	gcagtgggcc	cgcggcagcg	gaagaggagg	tgcgggatgt	gggcgccgga	120
10	ggggacgcgc	cggtccggga	cacagacaag	gacggagacg	tagacgtggg	cagcggccac	180
10	tgggacctga	ggtgtcaccg	cctgcaggat	tccctgttca	gttctgacag	tggcttcagc	240
	aactaccgtg	gcatcctgaa	ttggtgtgtg	gtgatgctga	tcttaagcaa	cgcacggtta	__ 300
15	tttctagaga	acctcatcaa	gtatggcatc	ctggtggacc	ccatccaggt	ggtgtctctg	360
	ttcctgaagg	acccctacag	ctggccagct	ctgtgcctgg	tcattgtggc	caatatcttt	420
20	gccgtggctg	cgttccaggt	ggagaagcgc	ctggccgtgg	gagctctgac	ggagcaggcg	480
20	gggctgcṫgc	tgcacggggt	caacctggcc	accattctct	gcttcccagc	ggccgtggcc	540
	tttctcctcg	agtctatcac	tccagtgggc	tccgtgctgg	ccctgatggt	ctacaccatc	600
25	ctcttcctca	agctgttctc	ctaccgggac	gtcaacctct	ggtgccgaga	gcgcagggct	660
	ggggccaagg	ccaaggctgc	tttggcaggt	aagaaggcca	acgggggagc	tgcccagcgc	720
30	accgtgagct	accccgacaa	cctgacctac	cgcgatctct	actacttcct	cttcgccccc	780
50	accctgtgct	acgagctcaa	cttcccccgc	tececegea	tccgaaagcg	cttcctgctg	840
	cggcgactcc	tggagatgct	gttcctcacc	cagctccagg	tggggctgat	ccagcagtgg	900
35	atggtcccgg	ccatccagaa	ctccatgaag	cccttcaagg	acatggacta	ctcccgcatc	960
	gtggagcgcc	tectgaaget	ggcggtcccc	aaccacctca	tctggctcat	cttcttctac	1020
40	tggctcttcc	actectgeet	gaacgccgtg	gctgagctca	tgcagtttgg	agaccgcgag	1080
40	ttctaccggg	actggtggaa	ctccgagtcc	atcacctact	tctggcagaa	ctggaacatc	1140
	cctgttcaca	agtggtgcat	cagacacttc	tacaagccca	tgctccggcg	gggcagcagc	1200
45	aagtgggcag	ccaggacggc	agtgtttctg	gcctccgcct	tcttccacga	gtacctggtg	1260
	agcatccccc	tgcgcatgtt	ccgcctctgg	gccttcaccg	gcatgatggc	gcagatcccg	1320
50	ctggcctgga	tagtgggccg	cttcttccgc	ggcaactacg	gcaacgcggc	cgtgtggctg	1380
00	tcactcatca	togggcagce	ggtggccgtc	ctgatgtacg	tccacgacta	ctacgtgctc	1440
	aaccgtgagg	cgccggcagc	cggcacctga	gcgcctccag	gctggccccc	tcgtgggtgt	1500
55	tggactgctt	tgccgcgctg	cctgcggctg	gactagagcc	tgccccaacc	tgggcgcagc	1560
	aggaggaggc	ctggctggtg	gaagctgcct	cctggcctcc	accaggcctc	tgcctgaagg	1620
60	gcttcctcct	gccaggggag	agcaggcccg	acgcagttct	ggcccctggg	aggtgcccat	1680
50	gctctggaaa	ccctacagat	ctcgcccaag	ggtctgaatg	tgtcaataaa	ga	1732

<210> 5 65 <211> 489

65

											74							
	<212	> E	PRT															
	<213	> E	Bos t	auru	ıs						٠							
5	ĺ																	•
	<220	>																
10	<221	7 <.	/ARIA	ANT														• '
10.	<222	!>	(232)	(2	232)						,							
15	<223	â	ases resi	7224 idue	0£ t	25 of the t	f the	e ger slati	nomic	: sec	nenc	ce (n don).	neasu Lys	red	from (K)	norphi n the corre	adeı	nine
20	<400)> !	5,							٠								
	Met 1	Gly	Asp	Arg	Gly 5	Gly	Ala	Gly	Gly	Ser 10	Arg	Arg	Arg	Arg	Thr 15	Gly		
25	Ser	Arg	Pro	Ser 20	Ile	Gln	Gly	Gly	Ser 25	Gly	Pro	Ala	Ala	Ala 30	Glu	Glu		
30	Glu	Val	Arg 35	Asp	Val	Gly	Ala	Gly 40	Gly	Asp	Ala	Pro	Val 45	Arg	Asp	Thr		
35	Asp	Lys 50	Asp	Gly	Asp	Val	Asp 55	Val	Gly	Ser	Gly	His 60	Trp	Asp	Leu	Arg		
40	Cys 65	His	Arg	Leu	Gln	Asp 70	Ser	Leu	Phe	Ser	Ser 75	Asp	Ser	Gly	Phe	Ser 80		
	Asn	Tyr	Arg	Gly	Ile 85	Leu	Asn	Trp	Cys	Val 90	Val	Met	Leu	Ile	Leu 95	Ser		
45	Asn	Ala	Arg	Leu 100	Phe	Leu	Glu	Asn	Leu 105	Ile	Lys	Tyr	Gly	Ile 110	Leu	Val		
50	Asp	Pro	Ile 115		Val	Val	Ser	Leu 120		Leu	Lys	Asp	125	Tyr	Ser	Trp		
55	Pro	Ala 130		Cys	Leu	Val	Ile 135	Val	Ala	Asn	Ile	Phe 140	Ala	Val	Ala	Ala		
60	Phe 145	Gln	Val	Glu	Lys	Arg 150		Ala	Val	Gly	Ala 155	Leu	Thr	Glu	Gln	Ala 160		

Gly Leu Leu His Gly Val Asn Leu Ala Thr Ile Leu Cys Phe Pro $165 \\ {\rm 170} \\ {\rm 175}$

Ala Ala Val Ala Phe Leu Leu Glu Ser Ile Thr Pro Val Gly Ser Val 180 $$ 185 $$ 190 $$

5	Leu	Ala	Leu 195	Met	Val	Tyr	Thr	Ile 200	Leu	Phe	Leu	Lys	Leu 205	Phe	Ser	Tyr
	Arg	Asp 210	Val	Asn	Leu	Trp	Cys 215	Arg	Glu	Arg	Arg	Ala 220	Gly	Ala	Lys	Ala
10	Lys 225	Ala	Ala	Leu	Ala	Gly 230	Lys	Lys	Ala	Asn	Gly 235	Gly	Ala	Ala	Gln	Arg 240
15	Thr	Val	Ser	Tyr	Pro 245	Asp	Asn	Leu	Thr	Tyr 250	Arg	Asp	Leu	Tyr	Туг 255	Phe
20	Leu	Phe	Ala	Pro 260	Thr	Leu	Суз	Tyr	Glu 265	Leu	Asn	Phe	Pro	Arg 270	Ser	Pro
25	Arg	Ile	Arg 275	Lys	Arg	Phe	Leu	Leu 280	Arg	Arg	Leu	Leu	Glu 285	Met	Leu	Phe
	Leu	Thr 290	Gln	Leu	Gln	Val	Gly 295		Ile	Gln	Gln	Trp 300	Met	Val	Pro	Ala
30	Ile 305		Asn	Ser	Met	Lys 310	Pro	Phe	Lys	Asp	Met 315	Asp	Tyr	Ser	Arg	Ile 320
35	Val	Glu	Arg	Leu	Leu 325	Lys	Leu	Ala	Val	Pro 330		His	Leu	Ile	Trp 335	Leu
40	` Ile	Phe	Phe	Tyr 340	Trp	Leu	Phe	His	Ser 345		Leu	Asn	Ala	Val 350	Ala	Glu
45	Leu	Met	Gln 355	Phe	Gly	Asp	Arg	Glu 360	Phe	Tyr	Arg	Asp	Trp 365	Trp	Asn	Ser
	Glu	Ser 370		Thr	Tyr	Phe	Trp 375		Asn	Trp	Asn	Ile 380	Pro	Val	His	Lys
50	Trp 385		Ile	Arg	His	Phe 390	Tyr	Lys	Pro	Met	Leu 395	Arg	Arg	Gly	Ser	Ser 400
55	Lys	Trp	Ala	Ala	Arg 405		Ala	Val	Phe	Leu 410		Ser	Ala	Phe	Phe 415	His
60	Glu	Tyr	Leu	Val 420		Ile	Pro	Leu	Arg 425		Phe	Arg	Leu	Trp 430	Ala	Phe
65	Thr	Gly	Met 435		Ala	Gln	Ile	Pro 440		Ala	Trp	Ile	Val 445	Gly	Arg	Phe
	Phe	Ara	G1v	Asn	Tvr	Glv	Asn	Ala	Ala	Val	Tro	Leu	Ser	Leu	Ile	Ile

76 450 455 460 Gly Gln Pro Val Ala Val Leu Met Tyr Val His Asp Tyr Tyr Val Leu Asn Arg Glu Ala Pro Ala Ala Gly Thr 485 <210> 6 <211> 467 <212> PRT <213> Bos taurus <400> 6 Met Gly Asp Arg Gly Gly Ala Gly Gly Ser Arg Arg Arg Thr Gly Ser Arg Pro Ser Ile Gln Gly Gly Ser Gly Pro Ala Ala Ala Glu Glu Glu Val Arg Asp Val Gly Ala Gly Gly Asp Ala Pro Val Arg Asp Thr Asp Lys Asp Gly Asp Val Asp Val Gly Ser Gly His Trp Asp Leu Arg Cys His Arg Leu Gln Asp Ser Leu Phe Ser Ser Asp Ser Gly Phe Ser Asn Tyr Arg Gly Ile Leu Asn Trp Cys Val Val Met Leu Ile Leu Ser Asn Ala Arg Leu Phe Leu Glu Asn Leu Ile Lys Tyr Gly Ile Leu Val Asp Pro Ile Gln Val Val Ser Leu Phe Leu Lys Asp Pro Tyr Ser Trp 115 120

10 15 20 25 30 35 40 45 50 55 Pro Ala Leu Cys Leu Val Ile Val Ala Asn Ile Phe Ala Val Ala Ala 135 60 Phe Gln Val Glu Lys Arg Leu Ala Val Gly Ala Leu Thr Glu Gln Ala Gly Leu Leu His Gly Val Asn Leu Ala Thr Ile Leu Cys Phe Pro 65

											11					
	Ala	Ala	Val	Ala 180	Phe	Leu	Leu	Glu	Ser 185	Ile	Thr	Pro	Val	Gly 190	Ser	Val
5	Leu	Ala	Leu 195	Met	Val	Tyr	Thr	Ile 200	Leu	Phe	Leu	Lys	Leu 205	Phe	Ser	Tyr
10	Arg	Asp 210	Val	Asn	Leu	Trp	Cys 215	Arg	Glu	Arg	Arg	Ala 220	Gly	Ala	Lys	Ala
15	Lys 225	Ala	Ala	Leu	Ala	Asp 230	Leu	Tyr	Tyr	Phe	Leu 235	Phe	Ala	Pro	Thr	Leu 240
	Cys	Tyr	Glu	Leu	Asn 245	Phe	Pro	Arg	Ser	Pro 250	Arg	Ile	Arg	Lys	Arg 255	Phe
20	Leu	Leu	Arg	Arg 260	Leu	Leu	Glu	Met	Leu 265	Phe	Leu	Thr	Gln	Leu 270	Gln	Val
25	Gly	Leu	Ile 275	Gln	Gln	Trp	Met	.Val 280	Pro	Ala	Ile	Gln	Asn 285	Ser	Met	Lys
30	Pro	Phe 290	Lys	Asp	Met	Asp	Tyr 295	Ser	Arg	Ile	Val	Glu 300	Arg	Leu	Leu	Lys
35	Leu 305	Ala	Val	Pro	Asn	His 310	Leu	Ile	Trp	Leu	Ile 315	Phe	Phe	Tyr	Trp	Leu 320
	Phe	His	Ser	Cys	Leu 325	Asn	Ala	Val	Ala	Glu 330	Leu	Met	Gln	Phe	Gly 335	Asp
40	Arg	Glu	Phe	Tyr 340	Arg	Asp	Trp	Trp	Asn 345	Ser	Glu	Ser	Ile	Thr 350	Tyr	Phe
45	Trp	Gln	Asn 355	Trp	Asn	Ile	Pro	Val 360	His	Lys	Trp	Cys	Ile 365	Arg	His	Phe
50	Tyr	Lys 370		Met	Leu	Arg	Arg 375	Gly	Ser	Ser	Lys	Trp 380	Ala	Ala	Arg	Thr
55	Ala 385	Val	Phe	Leu	Ala	Ser 390		Phe	Phe	His	Glu 395	Tyr	Leu	Val	Ser	Ile 400
	Pro	Leu	Arg	Met	Phe 405	-	Leu	Trp	Ala	Phe 410		Gly	Met	Met	Ala 415	Gln
60	Ile	Pro	Leu	Ala 420	Trp	Ile	Val	Gly	Arg 425	Phe	Phe	Arg	Gly	Asn 430	Tyr	Gly
65	Asn	Ala	Ala 435		Trp	Leu	Ser	Leu 440	Ile	Ile	Gly	Gln	Pro 445		Ala	Val

```
Leu Met Tyr Val His Asp Tyr Tyr Val Leu Asn Arg Glu Ala Pro Ala
         450
                            455
5
     Ala Gly Thr
     465
10
     <210> 7
     <211> 12
     <212> DNA
15
     <213> Bos taurus
20
     <220>
     <221> variation
     <222> (7)..(7)
25
     <223> thymidine (T) to guanine (G) substitution polymorphism
30 <400> 7
                                                                         12
     cagtgctagg gg
     <210> 8
35
     <211> 10
      <212> DNA
40
     <213> Bos taurus
      <220>
45
      <221> variation
      <222>
50
      <223> thymidine (T) to guanine (G) substitution polymorphism
      <400> 8
55
                                                                         10
      gcattgcgct
      <210> 9
60
      <211> 11
      <212> DNA
      <213> Bos taurus
65
```

```
<220>
     <221> variation
5
     <222> (6)..(6)
     <223> thymidine (T) to cytosine (G) substitution polymorphism
10
     <400> 9
                                                                         11
     taccctggga c
15
     <210> 10
     <211> 11
     <212> DNA
20
     <213> Bos taurus
25
     <220>
     <221> variation
     <222> (6)..(6)
30
     <223> adenine (A) to guanine (G) substitution polymorphism
35
     <220>
      <221> variation
      <222> (6)..(6)
40
            adenine (A) to guanine (G) substitution polymorphism
      <223>
4Ś
      <400> 10
                                                                          11
      ctcttagcag c
      <210> 11
50
      <211> 10
      <212> DNA
55
      <213> Bos taurus
      <220>
60
      <221> variation
      <222> (5)..(5)
65
      <223> guanine (G) to adenine (A) substitution polymorphism
```

```
<400> 11
      acaggcaact
                                                                                 10
 5
      <210> 12
      <211> 11
10
      <212> DNA
      <213> Bos taurus
15
      <220>
      <221> variation
20
      <222> (6)..(6)
      <223> cytosine (C) to thyamine (T) substitution polymorphism
25
      <400> 12
      tgtctctgtt c
                                                                                 11
30
      <210> 13
      <211> 14
35
      <212> DNA
      <213> Bos taurus
40
      <220>
      <221> variation
45
      <222> (7)..(8)
      <223> adenine (A)-adenine (A) to guanine(G)-cytosine (C) substitution p
             {\tt olymorphism}
             AA corresponds to the Q allele
50
             \operatorname{\mathsf{GC}} corresponds to the \operatorname{\mathsf{q}} allele
      <400> 13
55
      ggtaagaagg ccaa
                                                                                 14
      <210> 14
60
      <211> 11
      <212> DNA
      <213> Bos taurus
65
```

```
<220>
     <221> variation
 5
     <222> (6)..(6)
     <223> guanine (G) to adenine (A) substitution polymorphism
10
     <400> 14
                                                                         11
     gcggtgagga t
15
     <210> 15
     <211> 16
     <212> DNA
20
     <213> Bos taurus
25
     <220>
     <221> variation
     <222> (6)..(7)
30
      <223> guanine (G)-guanine (G) to adenine (A)-cytosine (C) substitution
            polymorphism
            GG-AC
35
     <400> 15
                                                                         16
     ggggggggg gactct
40
     <210> 16
     <211> 11
45
     <212> DNA
      <213> Bos taurus
50
     <220>
     <221> variation
55
     <222> (6)..(6)
      <223> adenine (A) to guanine (G) substitution polymorphism
60
      <400> 16
                                                                         11
     gagtgacctg c
65
      <210> 17
```

```
<211> 11
     <212> DNA
 5
     <213> Bos taurus
     <220>
10
     <221> variation
     <222> (6)..(6)
15
     <223> cytosine (C) to thymidine (T) substitution polymorphism
     <400> 17
20
                                                                         11
     ggacgcgtgg g
     <210> 18
25
     <211> 11
     <212> DNA
     <213> Bos taurus
30
     <220>
35
     <221> variation
     <222> (6)..(6)
     <223> guanine (G) to adenine (A) substitution polymorphism
40
     <400> 18
                                                                         11
     ggtgggggtg g
45
     <210> 19
     <211> 11
50
     <212> DNA
      <213> Bos taurus
55
     <220>
     <221> variation
60
      <222> (6)..(6)
      <223> ctosine (C) to thymidine (T) substitution polymorphism
65
      <400> 19
```

			8	33		
	ctgggc	gcag	c		11	
5	<210>	20				
J	<211>	14				
	<212>	DNA				
10	<213>	Bos	taurus	•		
		•				
15	<400> cgttgg		ctta	·	14	
	<210>	21				
20	<211>	14				
	<212>	DNA				
25	<213>	Bos	taurus			

PCT/NZ01/00245

14

35

30

<400> 21 ttggccgcct tacc

WO 02/36824

CLAIMS:

- 1. A method of determining genetic merit of a bovine with respect to milk composition and volume which comprises the step of determining the DGAT1 genotypic state of said bovine.
- 2. A method as claimed in claim 1, wherein the genotypic state is determined with respect to DNA, mRNA and/or protein obtained from said bovine by direct or indirect methods.

10

25

5

- 3. A method as claimed in claim 1, wherein the genotypic state is determined by the presence of at least one nucleotide difference from the nucleotide sequence encoding bovine DGAT1 (SEQ ID NO: 1) either by direct or indirect methods.
- 4. A method as claimed in claim 3, wherein the genotypic state is determined by the presence of one or more polymorphisms of SEQ ID NOs: 7 to 19 either by direct or indirect methods.
- A method as claimed in claim 4, wherein the genotypic state is determined by
 detecting the presence of the K232A polymorphism (SEQ ID NO: 13), either by direct or indirect mehtods.
 - 6. A method of selecting a bovine having a desired DGAT1 genotypic state comprising determining the genotypic state according to any one of claims 1 to 5 and selecting said bovine on the basis of said determination.
 - 7. A bovine selected by the method of claim 6.
- 8. A method of identifying a bovine which possesses a genotype indicative of altered milk production traits, said method comprising:

obtaining a nucleic acid sample from said bovine and identifying a polymorphism selected from the group comprising SEQ ID NOs: 7 to 19 of the bovine DGAT1 gene,

wherein the presence of said polymorphism is associated with altered milk 35 production traits.

WO 02/36824

85

PCT/NZ01/00245

9. A method as claimed in claim 8, wherein said altered milk production traits comprise an increase in milk volume and/or an increased protein to fat ratio of the milk composition or a decrease in milk volume and/or an increase in fat content of the milk composition.

5

- 10. A method as claimed in claim 8, wherein the polymorphism is K232A (SEQ ID NO: 13), wherein the presence or absence of an alanine is associated with the altered milk production traits as claimed in claim 9.
- 10 11. A method as claimed in claim 8, further comprising the step of amplifying said bovine DGAT1 gene sequence.
 - 12. A method as claimed in claim 11, wherein primers selected from the group consisting of (SEQ ID NOs: 20 and 21) are used in said amplification.

15

13. A primer suitable for use in detecting a polymorphism selected from the group comprising SEQ ID NOs: 7 to 19 of the bovine DGAT1 gene, said primer consisting of a nucleotide sequence having about at least 12 contiguous bases of SEQ ID NOs. 1, 3 or 4.

20

- 14. A bovine identified by the method of any one of claims 8 to 12.
- 15. A bovine as claimed in claim 7 or 14, comprising a bull.
- 25 16. Semen produced by a bovine as claimed in claim 15.
 - 17. A bovine as claimed in claim 7 or 14, comprising a cow.
 - 18. Milk produced by a bovine as claimed in claim 17.

30

35

19. Milk as claimed in claim 18, comprising one or more altered characteristics selected from the group consisting of increased % protein; increased total protein content; increased protein to fat ratio; decreased total fat content; increased fat softness; increase unsaturated fat content; increased or decreased solid fat content; and increased or decreased total volume; when compared to milk produced by a nongenotyped bovine.

20. Milk as claimed in claim 18, which has a decreased solid fat content, and increased fat softness and is advantageous for use in dairy product processing plants.

86

- 5 21. A dairy product made from the milk as claimed in any one of claims 18 to 20.
 - 22. A dairy product made from the milk as claimed in claim 20, wherein said product provides a beneficial health effect.
- 10 23. The use of the DGAT1 gene sequence (SEQ ID NOs: 1, 3 and 4) or a fragment or variant thereof, in the identification of one or more molecular DNA markers useful in genotyping and/or selecting a bovine according to the methods of any one of claims 1 to 6 and 8 to 12.
- 15 24. The use of one or more polymorphism sequences selected from the group consisting of SEQ ID NOs: 7 to 19 in a method of identification and selection of a bovine having at least one of said polymorphisms in its DGAT1 gene.
- 25. The use of a probe in the methods of genotyping according to any one of claims
 1 to 6 and 8 to 12, wherein the probe is selected from any 5 or more contiguous
 nucleotides of the DGAT1 sequence of SEQ ID NOs: 1, 3 or 4, which is sufficiently
 complementary with said nucleic acid sequence so as to bind thereto under stringent
 conditions.
- 25 26. A kit for genotyping a bovine with respect to milk composition and volume associated with DGAT1, comprising a primer or probe as claimed in claim 13 or 25.
 - 27. An isolated nucleic acid molecule having the sequence of SEQ ID NOs: 1 or 4 with or without one or more polymorphisms selected from the group consisting of SEQ ID Nos: 7 to 19, or a fragment or variant thereof.

30

35

28. An isolated nucleic acid molecule comprising a DNA molecule having in whole or in part the nucleotide sequence of SEQ ID NOs: 1, 3 or 4 or which varies from the sequence due to the degeneracy of the genetic code, or a nucleic acid strand capable of hybridising with said nucleic acid molecule under stringent hybridisation conditions.

- 29. An isolated mRNA transcribed from DNA having a sequence which corresponds to a nucleic acid molecule as claimed in claim 27 or 28.
- 30. A recombinant cloning vector comprising the DNA molecule of claim 27 or 28.

5

- 31. A prokaryotic or eukaryotic cell containing the cloning vector of claim 30.
- 32. A transfected cell line which expresses a protein encoded by the nucleic acid molecule of claim 27 or 28.

10

- 33. A diagnostic kit useful in detecting a DNA molecule as claimed in claim 27 or 28, comprising a first and second primer for amplifying the DNA, the primers being complementary to nucleotide sequences of the DNA upstream and downstream, respectively, of a polymorphism in the portion of the DNA encoding DGAT1 which results in altered relative milk lipid and protein production and milk volume, wherein at least one of the nucleotide sequences is selected to be from a non-coding region of the DGAT1 gene.
- 34. A kit as claimed in claim 33, further comprising a third primer complementary to a polymorphism selected from the group consisting of of SEQ ID NO: 7 to 19 located on the DGAT1 gene.
 - 35. A process for producing a protein encoded by a DNA molecule of claim 27 or 28, comprising the steps:
- 25 a) preparing a DNA fragment including a nucleotide sequence which encodes the protein;
 - b) incorporating the DNA fragment into an expression vector to obtain a recombinant DNA molecule which includes the DNA fragment and is capable of undergoing replication;
- 30 c) transforming a host cell with the recombinant DNA molecule to produce a transformant which can express the protein;
 - d) culturing the transformant to produce the protein; and
 - e) recovering the protein from resulting cultured mixture.
- 35 36. A purified protein having an amino acid sequence of SEQ ID NOs: 2, 5 or 6 or a fragment or variant thereof having biological activity of DGAT1.

88

- 37. An antibody raised against the protein as claimed in claim 36.
- 38. A method for the modulation of milk production and content in a bovine by modulating the activity of the DGAT1 protein.

5

39. A method as claimed in claim 38, comprising administering to the bovine an effective amount of a nucleic acid molecule substantially complementary to at least a portion of mRNA encoding the bovine DGAT1 protein and being of sufficient length to sufficiently reduce expression of said DGAT1.

10

- 40. An isolated antisense nucleic acid molecule for use in a method as claimed in claim 39.
- 41. A method of modulating milk production and/or milk content in a lactating bovine, including administering to the bovine an effective amount of a nucleic acid molecule having ribozyme activity and a nucleotide sequence substantially complementary to at least a portion of mRNA encoding a bovine DGAT1 and being of sufficient length to bind selectively thereto to sufficiently reduce expression of said DGAT1.

20

- 42. A method of inhibiting the activity of bovine DGAT1 in a lactating bovine so as to modulate milk production and/or milk solids content, comprising administering an effective amount of an antibody to the relevant DGAT1.
- 25 43. A method of modulating milk production and/or milk solids content by raising an autoantibody to a bovine DGAT1 in the bovine.
 - 44. A transgenic animal having cells that contain a transgene, which transgene is introduced into the animal or an ancestor of the animal at a prenatal stage, wherein said transgene comprises a bovine cDNA comprising the nucleotide sequence of SEQ ID NO: 4 or an appropriate variant or subsequence thereof.
 - 45. A transgenic non-human animal wherein said endogenous DGAT1 gene has been knocked out and replaced with a transgene.

35

30

46. A transgenic non-human animal, wherein additional copies of the gene encoding DGAT1 are inserted as a transgene.

47. A transgenic non-human animal as claimed in claim 45 comprising a transgenic bovine having a genome lacking a gene encoding a protein having biological activity of DGAT1.

5

- 48. A transgenic non-human animal comprising a mouse having a genome containing a gene encoding a bovine protein having biological activity of DGAT1.
- 49. A transgenic bovine having a gene encoding a bovine protein having biological activity of bovine DGAT1 and heterologous nucleotide sequence antisense to the gene.
 - 50. A transgenic bovine having a genome which includes additional copies of a gene encoding a protein having biological activity of DGAT1 or copies of a gene encoding a protein having biological activity of DGAT1 under control of a high expression promoter.

FIGURE 1

<222> (29)..(31)

<223> bases 1 to 3 of the Kozak recognition sequence. See the genomic s equence from the start codon for bases 4 to 7 of the Kozak recogn ition sequence or the DGAT1 cDNA for the complete recognition sequence.

acttggccgc ggcggggtgc gaactaaggc c

FIGURE 2a

<210> 1

<211> 11771

<212> DNA

<213> Bos taurus

<220>

<221> CDS

<222> (1)..(191)

<223> Exon 1 CDS, determined by alignment with an amino acid sequence d educed from the cDNA

<220>

<221> misc_signal

<222> (1)..(4)

<223> these bases correspond to bases 4 to 7 of the Kozak recognition s equence. See DGAT1 cDNA for the complete recognition sequence.

<220>

<221> CDS

<222> (3809)..(3896)

<223> Exon 2, determined by alignment with an amino acid sequence deduced from the cDNA $\,$

<220>

<221> CDS

<222> (5840)..(5880)

<223> Exon 3, determined by alignment with an amino acid sequence deduced from the cDNA $\,$

FIGURE 2b

4/34

```
<220>
<221> CDS
<222>
      (5960)..(6045)
<223> Exon 4, determined by alignment with an amino acid sequence deduc
       ed from the cDNA
<220>
<221> CDS
<222>
      (6138) .. (6190)
<223> Exon 5, determined by alignment with an amino acid sequence deduc
      ed from the cDNA
<220>
<221>
      CDS
<222> (6406)..(6511)
<223> Exon 6, determined by alignment with an amino acid sequence deduc
       ed from the cDNA
<220>
<221>
<222>
       (6601) .. (6714)
<223> Exon 7, determined by alignment with an amino acid sequence deduc
       ed from the cDNA
<220>
<221> CDS
       (6815)..(6889)
<223>
       Exon 8, determined by alignment with an amino acid sequence deduc
       ed from the cDNA
```

```
<220>
<221> variation
<222> (6824)..(6889)
<223> this sequence is deleted from the alternately spliced transcript.
<220>
<221> CDS
<222> (6960)..(7063)
<223> Exon 9, determined by alignment with an amino acid sequence deduc
       ed from the cDNA
<220>
<221> CDS
 <222> (7154)..(7192)
 <223> Exon 10, determined by alignment with an amino acid sequence dedu
       ced from the cDNA
 <220>
 <221> CDS
 <222> (7271)..(7312)
 <223> Exon 11, determined by alignment with an amino acid sequence dedu
       ced from the cDNA
<220>
 <221> CDS
 <222> (7386)..(7430)
 <223> Exon 12, determined by alignment with an amino acid sequence ded
```

FIGURE 2b continued

uced from the cDNA

<220>	
<221>	CDS
<222>	(7505)(7617)
<223>	Exon 13, determined by alignment with an amino acid sequence deduced from the \mathtt{cDNA}
<220>	
<221>	CDS
<222>	(7705) (7770)
<223>	Exon 14, determined by alignment with an amino acid sequence deduced from the $\ensuremath{\text{cDNA}}$
<220>	
<221>	CDS
<222>	(7858) . : (7945)
<223>	Exon 15, determined by alignment with an amino acid sequence deduced from the cDNA
<220>	
<221>	CDS
<222>	
<223>	Exon 16, determined by alignment with an amino acid sequence deduced from the cDNA
<220>	
<221>	CDS
<22,2>	(8162)(8314)
<223>	Exon 17 CDS, determined by alignment with an amino acid sequence deduced from the cDNA

```
<220>
<221> misc feature
<222> (8315)..(8317)
<223> translation stop codon
<220>
<221> polyA_site
<222> (8572)..(8578)
<223>
<220>
<221> variation
<222> (626)..(626)
<223> thymidine (T) to guanine (G) substitution polymorphism
<220>
<221> variation
<222> (3512)..(3512)
<223> thymidine (T) to guanine (G) substitution polymorphism
<220>
<221> variation
<222> (4040)..(4040)
<223> thymidine (T) to cytosine (G) substitution polymorphism
<220>
<221> variation
<222> (4963)..(4963)
<223> adenine (A) to guanine (G) substitution polymorphism
```

8/34

```
<220>
<221> variation
<222> (5003)..(5003)
<223> guanine (G) to adenine (A) substitution polymorphism
<220>
<221> variation
<222> (5997)..(5997)
<223> cytosine (C) to thyamine (T) substitution polymorphism
<220>
<221> variation
<222> (6829)..(6830)
<223> adenine (A)-adenine (A) to guanine(G)-cytosine (C) substitution p
       olymorphism
       AA corresponds to the Q allele
       GC corresponds to the q allele
<220>
<221> variation
<222> (6892)..(6892)
<223> guanine (G) to adenine (A) substitution polymorphism
<220>
<221> variation
<222> (7224)..(7225)
<223> guanine (G)-guanine (G) to adenine (A)-cytosine (C) substitution
       polymorphism
       GG-AC
```

```
<220>
<221> variation
<222> (7438)..(7438)
<223> adenine (A) to guanine (G) substitution polymorphism
<220>
<221> variation
<222> (7456)..(7456)
<223> cytosine (C) to thymidine (T) substitution polymorphism
<220>
<221> variation
<222> (7987)..(7987)
<223> guanine (G) to adenine (A) substitution polymorphism
<220>
<221> variation
<222> (8402)..(8402)
<223> ctosine (C) to thymidine (T) substitution polymorphism
<220>
<221> misc_feature
<222> (9434)..(9434)
<223> ambiguous nucleotide
<220>
<221> misc_feature
<222> (9496)..(9496)
<223> ambiguous nucleotide
```

<220>	
<221>	misc_feature
<222>	(10402)(10417)
<223>	ambiguous nucleotides
<220>	
<221>	primer_bind
<222>	(6579)(6601)
<223>	Primer 17F CCTGAGCTTGCCTCTCCCACAGT
<220>	
<221>	primer_bind
<222>	(7036)(7058)
<223>	Primer 18R CCAGGAGTCGCCGCAGCAGGAAG reverse primer
<220>	
<221>	primer_bind
<222>	(7280)(7303)
<223>	Primer 6F CCGGCCATCCAGAACTCCATGAAG
1000	
<220>	
	primer_bind
	(7585)(7605)
<223>	Primer AW446985 dn1 TAGAACTCGCGGTCTCCAAAC

reverse primer

<220>	
<221 _{>}	primer_bind
<222>	(8222)(8244)
<223>	Primer InsUpl TGGCTGTCACTCATCATCGGGCA
<220>	
<221>	primer_bind
<222>	(8566)(8589)
<223>	Primer 14R2 TTGCACAGCACTTTATTGACACA
<220>	
<221>	primer_bind
<222>	(6813)(6830)
<223>	Primer SNP1_FAM AGC TTT GGC AGG TAA GGC
<220>	
<221>	primer_bind
<222>	(6813)(6830)
<223>	Primer SNP1_HEX AGC TTT GGC AGG TAA GAA
<220>	
<221>	primer_bind
<222>	
<223>	Primer SNP1_2P GGC CAA CGG GGG AG

<220>	
<221>	primer_bind
<222>	(7424)(7438)
<223>	Primer SNP2_FAM GCT GGC GGT GAG TGA
<220>	•
<221>	primer_bind
<222>	(7424) (7438)
<223>	Primer SNP2_HEX GCT GGC GGT GAG TGG
<220>	
<221>	primer_bind
<222>	(7439)(7453)
<223>	Primer SNP2_2P CCT GCT GGG TGG GGA
<220>.	
<221>	primer_bind .
<222>	(7442)(7456)
<223>	Primer SNP3_FAM GCT GGG TGG GGA CGC
<220>	
<221>	primer_bind
<222>	(7442) (7456)
<223>	Primer SNP3_HEX GCT GGG TGG GGA CGT

<220> <221> primer_bind <222> (7457)..(7470) <223> Primer SNP3_P GTG GGG GCG GGT GG <220> <221> primer_bind <222> (8388)..(8402) <223> Primer SNP4_FAM TGC CCC AAC CTG GGT <220> <221> primer_bind <222> (8388)..(8402) <223> Primer SNP4_HEX TGC CCC AAC CTG GGC <220> <221> primer_bind <222> (8403)..(8417) <223> Primer SNP4_2P GCA GCA GGA GGA GGC <220> <221> primer_bind <222> (6811)..(6830)

<223> Primer Dgat 21

GTAGCTTTGGCAGGTAAGAA

<220>	
<221>	primer_bind
<222>	(6965)(6984)
<223>	Primer Dgat 22 GGGGCGAAGAGGAAGTAGTA reverse primer
<220>	
<221>	primer_bind .
<222>	(6613)(6632)
<223>	Primer Dgat 23 TGGCCCTGATGGTCTACACC
<220>	
<221>	primer_bind
<222>	(6829)(6850)
<223>	Primer Dgat 24B GGGCAGCTCCCCGTTGGCCC reverse primer
<220>	
<221>	primer_bind
<222>	(6651)(6670)
<223>	Primer DgatforAD TTCTCCTACCGGGACGTCAA
<220>	٠,
<221>	primer_bind
<222>	(6871)(6890)
<223>	Primer ReverseNZ CCGCGGTAGGTCAGGTTGTC

reverse primer

<220> <221> primer_bind <222> (6825)..(6838) <223> Probe ForAA (FAM) CGTTGGCCTTCTTA <220> <221> primer_bind <222> (6823)..(6836) <223> Probe DgatADGC (VIC) TTGGCCGCCTTACC <220> <221> primer_bind <222> (6651)..(6670) <223> Primer DgatforAD TTCTCCTACCGGGACGTCAA <220> <221> primer_bind <222> (6878)..(6972) <223> Primer DgatrevAD AAGTAGTAGAGATCGCGGTAGGTCA reverse primer <220> <221> primer bind <222> (6825)..(6838) <223> Probe ForAA (FAM)

CGTTGGCCTTCTTA

<220>	
<221>	primer_bind
<222>	(6823)(6836)
<223>	Probe DgatADGC (VIC) TTGGCCGCCTTACC
<220>	
<221>	primer_bind
<222>	(6652)(6671)
<223>	Primer DgatforRT66 TCTCCTACCGGGACGTCAAC
<220>	
<221>	primer bind
	(6874)(6964)
<223>	Primer DgatrevRT66 GAGATCGCGGTAGGTCAGGTT reverse primer
<220>	
<221>	primer_bind
<222>	(6711)(6972)
<223>	Primer DgatforRTless66, GCTGCTTTGGCAGATCTCTACTACTT This primer was designed to selectively bind and amplify the cDNA splice variant. The corresponding binding site in this genomic s equence comprises bases 6711 to 6715, 6815 to 6823 and 6960 to 6972.
<220>	
<221>	primer_bind '
<222>	(7022)(7038)
<223>	Primer DgatrevRTless66 AAGCGCTTTCGGATGCG

FIGURE 2b continued

reverse primer

<220>	
<221> primer_bind	
<222> (6857)(6870)	
<223> Probe Dgatwith66 (FAM) CCGTGAGCTACCC	
.<220>	
<221> primer_bind	
<222> (6976)(6990)	
<pre><223> Probe Dgatless66 (VIC) CTTCGCCCCCACCCT</pre>	
CITCGCCCCACCCI	
<400> 1	4.0
atg ggc gac cgc ggc ggc ggc ggc ggc tcc cgg cgc cgg agg acg ggg Met Gly Asp Arg Gly Gly Ala Gly Gly Ser Arg Arg Arg Arg Thr Gly 1 5 15	48
tcg cgg cct tcg atc cag ggc ggc agt ggg ccc gcg gca gcg gaa gag Ser Arg Pro Ser Ile Gln Gly Gly Ser Gly Pro Ala Ala Ala Glu Glu 20 25 30	96
gag gtg cgg gat gtg ggc gcc gga ggg gac gcg ccg gtc cgg gac aca Glu Val Arg Asp Val Gly Ala Gly Gly Asp Ala Pro Val Arg Asp Thr 35 40 45	L44
gac aag gac gga gac gta gac gtg ggc agc ggc cac tgg gac ctg ag Asp Lys Asp Gly Asp Val Asp Val Gly Ser Gly His Trp Asp Leu Arg 50 55 60	191
gtagcggtgc gcgtgacccc taacctttga cccctgatac ggggcccctg cgacccaacc 2	251
tggtggccca ggcctgtcgg cggcagctcg ggctcgagtc cgagagtctg gcgcctggac 3	311
cttggtgcac agctgtgccc ctcgggcctc cacggggaaa cttagcggga ggttgggggc 3	371
ggagggtetc etgeceggaa cacceaggta eggggeega ggggagggea geggeteaac 4	31
ttetagacge cotecetetg cetteetttg gtgggttetg aagettteee agggtgagee 4	91
cactacgcac agtgtcctct acctggaagg agatacaggg gtccttcctg agggctatga 5	551
ggggtgcctt gtgggttgat aaagctcccg ggggaggagg gtggaccggc ggagaacaga 6	511
ggcaggggca gtgctagggg atttctcatc cctcgcagac cctccagaga atggtcttca 6	71
caaaggtccc teatccgtca cccggcgatt gactggccta ggatcctgct tattaccage 7	31
acaaatggct gctctagggt caaagtgggt cctgtaatgg gaccctcacc cctggttggg 7	01

gtacagggga	ggagttggaa	gtgcgcacac	ccacaggtgg	gcgccctgct	tagctgaagg	851
actgatggga	aggagttggg	ggagcaagct	gcggctgaaa	gggaggatct	gacccacgtg	911
ggcatcagct	aagtcctgct	ggctgcctcc	aggcgttccc	tttgccatcc	tocacécco	971
tcccccgggg	cctgaccttc	atcctggtca	agggctctca	ggggctctgg	ttttgggatc	1031
agctccagag	ctagaggtta	tcaaggagga	agtgggcaac	aggtcagtca	gcaaggattt	1091
gctatcttca	ctgggtgctg	tggggagggg	agggacaagg	gcagttgggg	tgcaggcact	1151
gtccctgccc	ttggggggca	cacagttcac	ctgagagata	agatagccgc	agccctgaag	1211
agtgagagca	aaggtcaggc	acagagttca	ggatgacacc	aggggagggt	ggctctgtga	1271
ggggcactgg	cttcctacag	gccccaggtg	gtcctgaggg	ggcggctgca	aaggccagga	1331
ggcccacagg	cccctctgcc	cactcctggg	gaactggatt	tggggtcact	ttgtatgagg	1391
tgggggcggg	taccagettt	gggccaagct	gtcaccctgg	atgggccatc	acttgcctgc	1451
tctgtatagg	ccagatggcc	agaagctgct	cctgtcctgt	tgatggccca	tcctcgaggt	1511
ctggaccctc	gggaagagga	gcagttggtg	gcagggatgg	gccaccggag	accetectga	1571
cctccaggac	acgcagctgt	gtgtgcctgt	ccccaagcca	catgccacat	ggctaggggc	1631
ctcctggggc	agggctgggc	attggtctgg	ctactcttgg	tatcgcctat	ggcttccctg	1691
cctcccagtc	atcatcctcc	cacctctgcc	tecctgcctg	ttcctctctt	tctcctcagg	1751
cccttccgga	catttcctgc	tcacctaggt	ctgggcaggc	ggggtcaggt	gccgggtgtg	1811
agctcactcc	ttccggcagc	aaggtgtagc	tatgtgccgg	aaggaaggcc	gctgctgttg	1871
cctcgcctct	gagtgcatcc	cttccaggtc	ctccacactc	ccctgtgccc	cgacacctgg	1931
tgcgtccttc	agccattggt	tcatgtgtcc	tccaggcaca	gctttctagt	ccagagcctc	1991
taggctgggt	gcaggaagtg	ctgaggaagt	ggcagccggg	aggcgagctg	gcaccctgtc	2051
cctccttgtt	ctgtccgtcc	ctgcccctgg	accgtatggc	cccgcaţgtg	tgatccccac	2111
ttggggctgt	gcctctgggc	aagttgggaa	gcttggtgag	cctcattttc	atgtgcccgc	2171
ctcccagtac	tgatgtgcag	gttgaatgag	gtgccaactg	taatgagttg	gaatggccct	2231
gctggctggg	tgggactggg	gagcaggtgg	gggccgctgg	ggggcacaga	ggcacaccca	2291
gtgcctcagt	cagggagagg	gtgacagaga	agctctgggt	gaggccccac	ctccactctg	2351
gccatggctg	ctgccctttg	gtccactgca	gtgaactgtg	ccatggggct	ggacctctgt	2411
ggggattggt	gggcagtggg	ctttcttccc	gcttggggcc	tctgacctct	gggggcaggg	2471
cgctgcccgg	gtgggacagt	cggaaggctg	gtagagggac	ctgaggggtc	tgtgtggtgg	2531
ctgggggcag	gcctcaggaa	tttgacagca	gggatctgga	aaagctttaa	taacattatt	2591

tgttgtcagg attgggaaat geteecetee ecceteecee tettteatet tagagaetge	2651
tgcacatctg gtcagtgtgg tcttcttggt ggcccccaag gtggcagggg tcacactgtt	2711
atgaaaccgt cccctgggta tgtggtgcag acatgcacat gcagatggtg attggcaggt	2771
tgtagcatga ggtggctttg ggacggttcc agtgacagtg agtgggctgg atctgggggg	2831
ttctgggcag gtccatcaag cggatacccc cacagactgt cctcttggga tagttgggcc	2891
tgggagccct gcttgccttg ccaaaaggca ggcgcagagt catgaagaag agggcttggg	2951
ggeteagage eccaetgtgt gtgeageeca gggtggaeet ggaggaggtg egtgggeagg	3011
ctgggccggc cggggcgggg ggtggggggg cctggtgtga aagggaccca gggccagact	3071
gtcagcgctg cctggctgag gatgctggca ccctgtcctc cccagccgtc tgtctcctgg	3131
gtgcagccat etgagtgctg accccagccg cccctggagg etggctgtte tectgtgccc	3191
tattgctggg gacatgtgtc cacaggaggg aaagggaagc cccggcctct ccccttacaa	3251
aactggaggc cttgctcaat gccctggatg gcctcctggt ggcagggtgg ttggtgggag	3311
gtggggctgc tgcttagaac ccgccagcgg gcctgggcct gggctgagct gcacccctcc	3371
acctctgcct ccagctgagg gttggcttcc atctccacca ggcccagcac tgggcacagg	3431
geteteagag geaggetetg aaagteeeet getggettet geagtggaet eeaggegeeg	3491
agececeagg gggetegeat tgegeteace etgegaagee aegtgaagge tgggteetee	3551
cctccggaag ggccaaatgc agggcatggg tggtttgaat ggtggcccct gggctccccg	3611
gagggaccag ctgctgtgag ggccgccccc tecccacttc cgtcttgcat caccagctcc	3671
tgtggcactc cccacgcccc gtcccccagt gggagcggca ggcccccggt ggctctgccc	3731
gcggaggggg atgtgtgggc ggcggggtgg cettgctgcc agatgctctg cecegagtgt	3791
ccgtctccgc tctccag g tgt cac cgc ctg cag gat tcc ctg ttc agt tct Cys His Arg Leu Gln Asp Ser Leu Phe Ser Ser 65 70 75	3842
gac agt ggc ttc agc aac tac cgt ggc atc ctg aat tgg tgt gtg gtg Asp Ser Gly Phe Ser Asn Tyr Arg Gly Ile Leu Asn Trp Cys Val Val 80 85 90	3890
atg ctg gtacgtagag tgacaccttg gagcaagggt cctgacggcc ggggggccat Met Leu	3946
gggetettet ccaggggtag gtgtetgtae ttgtgtaget gtggtgaatg gagetetgtg	4006
ctggcggtgg gggtccctgg agcagccgta ccctgggacc ctaccgggag catgctcatg	4066
ccgtccctgc tgaatcccag gagatgcctg cagagggcag cctgggagcc tctgagctgg	4126
ggtctgcgcc ccagggggca ctggagtctc cccagggggc gagagagagt aggcagggat	4186

ggtctggtgg	ccctgggtgg	gggatggctg	ctccgtgggc	ccaggccctc	cctggcagca	4246
caggtgagtg	gtcttggggg	tccacgtaga	acttcctctt	ctgttccaaa	ttgccctcat	4306
gggtgcggca	tgcctgggtg	aacctggggg	agcagggtga	ggacatgctt	ctcagcccag	4366
cccacagete	caggccacac	tctgcaggac	tctggcccct	ccctcagccc	tggagggagc	4426
aggactggag	tcctgtgtcc	gccttgctct	gacctggccg	aggccactgc	tgtggggccc	4486
cagcaggcct	gcccagcaga	aggtggagtg	cagggacccc	aggggcagcc	ttcagggtgg	4546
ggcagggtga	ggcccgactg	ggcccagccc	caccgctcag	tgctgatgtg	gcgcgaggcc	4606
ttcgcccctc	cagctgacgt	gtctgcctgc	cctgggtgtg	gctccagagg	ctgcctgtgt	4666
accaggggcc	cccacgcttc	tgtttgtggt	tctgggcagt	cccctgggga	gcggtggggg	4726
ctgtgtgcca	gtccagaccc	agtagtccac	gcgtcctggt	ctctggaggc	cgtggctggt	4786
ccaggactgt	ggcaaggtgg	tcgtgcaggg	caggccctca	gcagcctgtc	tgttctcctg	4846
cagcccccag	cctcctggcc	ctttggtgca	cccacaaagc	tccccctcc	cccaggagct	4906
, ggggccgcct	gctgcgtcct	ctcggcagcc	tgggcttcca	ggtggctggg	cctcttagca	4966
gctccaactc	ttgcctgtgg	tgggctctca	ggacaggcaa	ctgccagtcg	gcagacattg	5026
caggaccacg	tgtgtcctgg	taagctggct	ggttaggtgt	ttagctgggg	gatggtgtgg	5086
caggtggccc	ctgcatctct	gagcctgtca	cctcctcggg	aagccttctg	ggtgggggac	5146
tccacccatg	tcgcctggag	aagcatcact	tttccacaga	gccttctgca	acccccgtgg	5206
ggcctgagcc	tggggtgggg	gaggtggtgg	cccctgctcc	tgcagaggcc	agccaggcat	5266
ctggccccag	gccactggca	agagctcgtt	gtgttggggg	atctgtcctt	tgctgctgct	5326
gcaggagcgg	ccgaggcagg	cgggggcgtg	agtaggggtg	gagacccagg	cccagcttcc	5386
ccagcccctc	aggaccggcc	tgctctttcc	caccacccca	ccaagtgcgt	gggcacaccc	5446
cgcctgtgag	gatgggcccg	gttggcaggg	cggagccctg	ggagggtggc	agtgcgccgg	5506
gcaggcttgg	acttcactgg	ggcttggggt	tgtcgctgtg	gccaggggcg	ctgacccgct	5566
tggtgggacg	gacggccgct	gggcagcagg	tttcttctgc	cacggtggca	caggcacctg	5626
gggttgtggt	tggctccagg	caaacaaaaa	ctgcgtgccc	ctgcgcaggc	acataggccg	5686
tgggtgggga	gtctcagagc	ttggcgtgag	gtcccacagg	gctgggcctg	caggatggag	5746
gccactgtcc	tgagctgcag	gtgctggcag	gagctggggt	gggcgttctg	gggccgtggc	5806
tgacagcgtt	atgtccctct	ctctctatcg		u Ser Asn A		5860
	g aac ctc a u Asn Leu I 105	tc aa gtga le Lys	gtgggc cccg	geetge ceca	gcccct	5910

gecaceteae ecetegeeta cacagaceet cacecacetg egtetgeag g tat gge Tyr Gly	5966
atc ctg gtg gac ccc atc cag gtg gtg tct ctg ttc ctg aag gac ccc Ile Leu Val Asp Pro Ile Gln Val Val Ser Leu Phe Leu Lys Asp Pro 110 115 120 125	6014
tac age tgg cca gct ctg tgc ctg gtc att g gtgagctggg tgcccaggag Tyr Ser Trp Pro Ala Leu Cys Leu Val Ile 130 135	6065
gcctcaggcc ggcggtgggt gggacagggc tgatctgggc ctgaacctgc cctgggttgc	6125
ttctgtcctc ag tg gcc aat atc ttt gcc gtg gct gcg ttc cag gtg gag Val Ala Asn Ile Phe Ala Val Ala Ala Phe Gln Val Glu 140	6175
aag cgc ctg gcc gtg gtaagcagtg ccctcacgcc ctcccctgac ttgcctcaag Lys Arg Leu Ala Val 150	6230
gtccttacca gtcgggctta gggcgggcca ccagctggtc ccactgtgct tcagggtttt	6290
gggcctttcg tggccttcct gagaggggct gcacctcagg cctggtggct cttcctcagg	6350
gaggteetet gaccagggag gggggteeet ggetgaeget etgeteeeae eeeag gga Gly	6408
gct ctg acg gag cag gcg ggg ctg ctg ctg cac ggg gtc aac ctg gcc Ala Leu Thr Glu Gln Ala Gly Leu Leu His Gly Val Asn Leu Ala 155 160 165 170	6456
acc att ctc tgc ttc cca gcg gcc gtg gcc ttt ctc ctc gag tct atc Thr Ile Leu Cys Phe Pro Ala Ala Val Ala Phe Leu Leu Glu Ser Ile 175 180 185	6504
act cca g gtgggeeeca eeeeegeeee egeeeeegee eaegetgtet eggeeaeggg Thr Pro	6561
cagcgegggg ggcgtggcet gagettgeet eteceacag tg gge tee gtg etg Val Gly Ser Val Leu 190	6614
gcc ctg atg gtc tac acc atc ctc ttc ctc aag ctg ttc tcc tac cgg Ala Leu Met Val Tyr Thr Ile Leu Phe Leu Lys Leu Phe Ser Tyr Arg 195 200 205	6662
gac gtc aac ctc tgg tgc cga gag cgc agg gct ggg gcc aag gcc aag Asp Val Asn Leu Trp Cys Arg Glu Arg Arg Ala Gly Ala Lys Ala Lys 210 215 220 225	6710
gct g gtgagggctg cctcgggctg gggccactgg gctgccactt gcctcgggac Ala	6764
cggcaggggc tcggctcacc cccgacccgc cccctgccgc ttgctcgtag ct ttg	6819

gea ggt aag aag gee aac ggg gga get gee eag ege ace gtg age tac Ala Gly Lys Lys Ala Asn Gly Gly Ala Ala Gln Arg Thr Val Ser Tyr 230 235 240	6867
ccc gac aac ctg acc tac cgc g gtgaggatcc tgccgggggc tggggggact Pro Asp Asn Leu Thr Tyr Arg 245 . 250	6919
gcccggcggc ctggcctgct agccccgccc tcccttccag at ctc tac tac ttc Asp Leu Tyr Tyr Phe 255	6973
ctc ttc gcc ccc acc ctg tgc tac gag ctc aac ttc ccc cgc tcc ccc Leu Phe Ala Pro Thr Leu Cys Tyr Glu Leu Asn Phe Pro Arg Ser Pro 260 265 270	7021
cgc atc cga aag cgc ttc ctg ctg cgg cga ctc ctg gag atg Arg Ile Arg Lys Arg Phe Leu Leu Arg Arg Leu Leu Glu Met 275 280 285	7063
gtgaggcggg gcctcgcggg ccagggtggg cgggcctgcc ggcacccggc accggggctc	7123
ageteactgt eegettgett eetteeceag etg tte etc acc eag etc eag gtg Leu Phe Leu Thr Gln Leu Gln Val 290	7177
ggg ctg atc cag cag gtacgtgccc gggggggggg	7232
ctggggccgt tggggagctg actctgcgct ttttgcag tgg atg gtc ccg gcc atc Trp Met Val Pro Ala Ile 300 305	
cag aac too atg aag ooc tto aag gtgagcaggo aggootggoa gggtgggtto	
Gln Asn Ser Met Lys Pro Phe Lys 310	7342
Gln Asn Ser Met Lys Pro Phe Lys	7342 7397
Gln Asn Ser Met Lys Pro Phe Lys 310 cggggtcagg gctgagggag ccagctgtgc cctgtgccca cag gac atg gac tac Asp Met Asp Tyr	7397
Gln Asn Ser Met Lys Pro Phe Lys 310 cggggtcagg gctgagggag ccagctgtgc cctgtgccca cag gac atg gac tac Asp Met Asp Tyr 315 tcc cgc atc gtg gag cgc ctc ctg aag ctg gcg gtgagtgacc tgctgggtgg Ser Arg Ile Val Glu Arg Leu Leu Lys Leu Ala	7397
Gln Asn Ser Met Lys Pro Phe Lys 310 cggggtcagg gctgagggag ccagctgtgc cctgtgccca cag gac atg gac tac Asp Met Asp Tyr 315 tcc cgc atc gtg gag cgc ctc ctg aag ctg gcg gtgagtgacc tgctgggtgg Ser Arg Ile Val Glu Arg Leu Leu Lys Leu Ala 320 ggacgctgg gggcggtgg ggctgttctg gcacctggca cccactcccc acag gtc	7397 7450

43/34	
tac egg gac tgg tg gtgggtggec ttgeegggge gggggtggtg ggggeeeeeg Tyr Arg Asp Trp Trp 365	7657
ctggggctgg ggccggagcc cctgcccact ctgccccgcc cccgcag g aac tcc gag Asn Ser Glu	7714
tcc atc acc tac ttc tgg cag aac tgg aac atc cct gtt cac aag tgg Ser Ile Thr Tyr Phe Trp Gln Asn Trp Asn Ile Pro Val His Lys Trp 370 375 380 385	7762
tgc atc ag gtgggtgtgc gcctgggggc ggggggttgg ggggtgggac Cys Ile Arg	7810
ggggtcgcgt ggcccgggcg cccagcccac tgccgcctcc cccgcag a cac ttc tac His Phe Tyr 390	7867
aag ccc atg ctc cgg cgg ggc agc agc aag tgg gca gcc agg acg gca Lys Pro Met Leu Arg Arg Gly Ser Ser Lys Trp Ala Ala Arg Thr Ala 395 400 405	7915
gtg ttt ctg gcc tcc gcc ttc ttc cac gag gtcagtgcac tgagggcgcg Val Phe Leu Ala Ser Ala Phe Phe His Glu 410 415	7965
ccctgcccct ggtgggggtg ggggtggggg tgggggctcg ctgacgcccc tctcccctca	8025
g tac ctg gtg agc atc ccc ctg cgc atg ttc cgc ctc tgg gcc ttc acc Tyr Leu Val Ser Ile Pro Leu Arg Met Phe Arg Leu Trp Ala Phe Thr 420 425 430	8074
ggc atg atg gcg cag gtgagcagcc ctggaccccc gctccgcccc gccccgcgag Gly Met Met Ala Gln 435	8129
cgcagagget cactecegte etgtgteece ag ate eeg etg gee tgg ata gtg Ile Pro Leu Ala Trp Ile Val 440 445	8182
ggc cgc ttc ttc cgc ggc aac tac ggc aac gcg gcc gtg tgg ctg tca Gly Arg Phe Phe Arg Gly Asn Tyr Gly Asn Ala Ala Val Trp Leu Ser 450 455 460	8230
ctc atc atc ggg cag ccg gtg gcc gtc ctg atg tac gtc cac gac tac Leu Ile Ile Gly Gln Pro Val Ala Val Leu Met Tyr Val His Asp Tyr 465 470 475	8278
tac gtg ctc aac cgt gag gcg ccg gca gcc ggc acc tgagcgcctc Tyr Val Leu Asn Arg Glu Ala Pro Ala Ala Gly Thr 480 485	8324
caggetggee ecetegtggg tgttggaetg etttgeegeg etgeetgegg etggaetaga	8384
gcctgcccca acctgggcgc agcaggagga ggcctggctg gtggaagctg cctcctggcc	8444
tccaccagge ctctgcctga agggettect cctgccaggg gagagcagge ccgacgcagt	8504
totggcccct gggaggtgcc catgetetgg aaaccctaca gatctcgccc aagggtetga	8564

WO 02/36824 PCT/NZ01/00245

24/34

atgtgtcaat	aaagtgctgt	gcacagtgag	ctccctcagc	ctccagggca	cagggctggc	8624
aggaggggc	ggccctccca	cgtggggcca	tgctgtggga	aggaggcccc	agcgcctgga	8684
gaggagctgg	ggctgtggtg	accetecetg	cctcacaggg	ctctgtggtc	agacgtcttg	8744
ccctgcaagg	tggagactcc	atgctccaag	gcccctgtg	cctgaggtct	gcacacaagt	8804
ggattcaact	tgggtcaggc	cagaggctaa	ggtgtggaag	aaggttgaga	atcaggctga	8864
cttgaacggc	agcaaagact	ccaaggcaag	gctgcagaag	tctcaaaagc	tatgcgcaca	8924
gtcccctgct	gggġtgctca	cctgggctgg	gctctgggct	gcttggacaa	agcaggtggc	8984
ctggctcagc	cctcaccgag	ggccttcctt	gggggcagag	gttggcctga	tgccaggggc	9044
tccccgtttt	tccaggccct	cagcaggtag	ttgggtgtgg	ccctcatgat	accttggtcc	9104
cagageteeg	ccactcaaaa	agcttggcag	tgaggcaagg	gcaaccccgg	gctgttcccc	9164
cctctactgg	ctctgccgcc	tgggttggaa	accctgaggc	tgtgccaggc	aggtgtaccc	9224
tgacagccag	ccatggccca	gtaagatggg	tgcccgaggt	ggtacctggg	cagcggaccc	9284
agctgtgctg	ccccgcccc	aaccagaagc	cgctctagcc	catggtggtc	gtctgggcga	9344
gacaggctgg	ttggctaggc	actgtttggt	ctacagcagg	tgtaggcagc	gtctccctga	9404
cccctgcctt	ctaggaagcc	accaccctgn	gecetactea	tcagcaagga	cagcgagcag	9464
ggctgagctg	ggggtgcgtg	ggctgctacg	gnccccgcac	cttcatcaca	tgcacctctg	9524
caccccctgc	tgcctgactc	aagagtgggg	gggggggtcc	tgtgcttcct	tcattccaga	9584
cccacggtgc	tgacccagtg	cacccacctg	gtccgctagt	gctgacctgg	ccacagggct	9644
cctgtgggcc	cacgctgatc	ccgccctggt	cccttcataa	agaactcttg	agcacatgca	9704
gcccagggga	gccaggaggc	tccagtgtgc	tgtgtccatc	tgcctccctt	cagccccttc	9764
cgagacactg	cgcatcatgc	cccctccac	ccccacccac	actggcagga	ggaacacaca	9824
gggagaccac	acacagagct	cgttgtttat	aaatctctgc	ctggctcatc	ggtctgtttg	9884
tccatgtata	tatcțgcata	tctctatgga	aggggaaagg	gggactcgtg	taaaaatcca	9944
aaatacaatt	ctatgaacac	ctgcatcctg	gtcagtctga	gtgtggccgt	gaagcccagg	10004
tgagctgtgg	ctcacagggc	taggccctcg	gtgctggccg	ggggccactc	cccaccccct	10064
ctcccccct	ccgccagcca	ggggaccagg	ctcctggaca	ccaggcctgc	ccaaggcctg	10124
ctctcctcct	ggggcttcta	cgagacagtg	gggtccttgg	ctttgggggg	ttctgagccc	10184
gtcagcaggg	agatggtggg	gtcatctctt	atatttcgtc	tccctcggag	aagtaggagc	10244
cctccccag	ctcgaagagc	accggcaggt	cgctgctccc	cacgtccacg	gagcccgggt	10304
ccaggagcag	caggggctgg	gcggtgtagt	gcaccagctg	cttccctagg	ggtgcgactg	10364

ggtcagggtg	ccaataaaac	cggggggggg	ggtggggnnn	nnnnnnnn	nnnccccccc ·	10424
						10484
	agccaccccg					10404
ctcatgtcgg	gcaccgtaac	cgaggggctg	aacagctgca	gggaagaggg	gcgggtcaga	10544
ctgccctgga	agcggggcgg	gctgggcgcg	gggcgggcag	ggttagactc	acatccagca	10604
gggtgctggt	gtccacgctg	aagccatggc	ttgtcagcat	ggtctgcagg	ttgtccaggt	10664
tggagtccat	ggcgtccaag	tggtcgctga	gctcggtcct	ggccagagga	aggggagcag	10724
gtgacgtggc	atccaggcac	ccccaggtgc	agtcctgccg	gcccttaagc	ccagctgcca	10784
gcctgccctg	cgcaggctca	cgggaggccc	tgaggtgggg	ccctgggcct	gggacacttg	10844
gccaccggtg	gtggctcagg	ctccctcatc	accgtgaggc	cccgtaaggc	agcacgtcag	10904
gctgggccgg	ctaagacatc	agggggctga	gttcagggct	cagaagggcc	cggggcccca	10964
gcttctcagg	ttcagcaacg	cctgcccttc	acactggagg	acagcaggag	ggtggagctg	11024
tgctcggcca	ggctgggcca	gcctacccca	gcatgcgcca	ggatagatta	ggcctgcccc	11084
ctcgaggagg	ccaggcagta	cctcggggtg	ctgcctcagg	ccccagaggt	gggtggggag	11144
cctgttcaca	ggctgggcag	gggtctgctc	agaggctggg	gaggggccca	agctctggcg	11204
gagccctcct	ccctccccag	tgggacagcg	ctaaccctgg	ctggactcgg	ccatgcagag	11264
aggaggaggg	gcaggggaag	aggcgggcga	ccccagacat	ctttggagtg	cgagccaaac	11324
tgcaagatag	aaagacaaga	gccccctct	gcgggtgggg	cccagcgagt	ccaagccccc	11384
caccccgttc	acccacctct	ggggtggtag	gacagacaga	ccaggcggcc	cggggagggc	11444
ggctcagggg	gcaggggtgc	ccgccacgtg	cctggttccc	acggtgcagg	ggctgcggga	11504
cccctggct	ggcatgtctc	cctccccagc	tccatgctct	gggccaggtc	ggccagtttc	11564
ccccagcaaa	tcccatgccg	agggcctgag	ggccatgcgt	gtccagcccg	gcactgtcct	11624
tgtcggaggc	ccctgcgctt	ccagagaccg	aagggcgcct	ggaaggcact	cacttgtcta	11684
ggcaggcgac	gctgaggcac	ttctcgggag	ccgaggcggg	gagggtcgac	ggatagcggc	11744
cccgagtgat	ccgatagaag	cttcgta				11771

WO 02/36824 PCT/NZ01/00245

27/34

<222>		(232)	(2	(32)											
<223>	ā	ses resi	7224 .due	0f t	25 of the t	the rans	e ger slati	omic	seq start	coc	e (m ion).	ieasi Lys	red ine	from	morphism at b n the adenine corresponds .ele.
<400>	. :	5							•						
Met G 1	lу	Asp	Arg	Gly 5	Gly	Ala	Gly	Gly	Ser 10	Arg	Arg	Arg	Arg	Thr 15	Gly
Ser A	Arg	Pro	Ser 20	Ile	Gln	Gly	Gly	Ser 25	Gly	Pro	Ala	Ala	Ala 30	Glu	Glu
Glu V	/al	Arg 35	Asp	Val	Gly	Ala	Gly 40	Gly	Asp	Ala	Pro	Val 45	Arg	Asp	Thr
Asp I	ys 50	Asp	Gly	Asp	Val	Asp 55	Val	Gly	Ser	Gly	His 60	Trp	Asp	Leu	Arg
Cys H 65	lis	Arg	Leu	Gln	Asp 70	Ser	Leu	Phe	Ser	Ser 75	Asp	Ser	Gly	Phe	Ser 80
Asn T	fyr	Arg	Gly	Ile 85	Leu	Asn	Trp	Суз	Val 90	Val	Met	Leu	Ile	Leu 95	Ser
Asn A	Ala	Arg	Leu 100	Phe	Leu	Glu	Asn	Leu 105	Ile	Lys	Tyr	Gly	Ile 110	Leu	Val

<221> VARIANT

Pro Ala Leu Cys Leu Val Ile Val Ala Asn Ile Phe Ala Val Ala Ala 130 135 140

Asp Pro Ile Gln Val Val Ser Leu Phe Leu Lys Asp Pro Tyr Ser Trp

120

115 .

Phe Gln Val Glu Lys Arg Leu Ala Val Gly Ala Leu Thr Glu Gln Ala 145 150 155 160

FIGURE 4a

Ala Ala Val Ala Phe Leu Leu Glu Ser Ile Thr Pro Val Gly Ser Val 185 Leu Ala Leu Met Val Tyr Thr Ile Leu Phe Leu Lys Leu Phe Ser Tyr Arg Asp Val Asn Leu Trp Cys Arg Glu Arg Arg Ala Gly Ala Lys Ala Lys Ala Ala Leu Ala Gly Lys Lys Ala Asn Gly Gly Ala Ala Gln Arg Thr Val Ser Tyr Pro Asp Asn Leu Thr Tyr Arg Asp Leu Tyr Tyr Phe Leu Phe Ala Pro Thr Leu Cys Tyr Glu Leu Asn Phe Pro Arg Ser Pro 265 Arg Ile Arg Lys Arg Phe Leu Leu Arg Arg Leu Leu Glu Met Leu Phe 280 Leu Thr Gln Leu Gln Val Gly Leu Ile Gln Gln Trp Met Val Pro Ala Ile Gln Asn Ser Met Lys Pro Phe Lys Asp Met Asp Tyr Ser Arg Ile Val Glu Arg Leu Leu Lys Leu Ala Val Pro Asn His Leu Ile Trp Leu Ile Phe Phe Tyr Trp Leu Phe His Ser Cys Leu Asn Ala Val Ala Glu 345 Leu Met Gln Phe Gly Asp Arg Glu Phe Tyr Arg Asp Trp Trp Asn Ser 360 Glu Ser Ile Thr Tyr Phe Trp Gln Asn Trp Asn Ile Pro Val His Lys Trp Cys Ile Arg His Phe Tyr Lys Pro Met Leu Arg Arg Gly Ser Ser

FIGURE 4a continued

410

Lys Trp Ala Ala Arg Thr Ala Val Phe Leu Ala Ser Ala Phe Phe His

Glu Tyr Leu Val Ser Ile Pro Leu Arg Met Phe Arg Leu Trp Ala Phe 420 425 430

Thr Gly Met Met Ala Gln Ile Pro Leu Ala Trp Ile Val Gly Arg Phe 435 440 445

Phe Arg Gly Asn Tyr Gly Asn Ala Ala Val Trp Leu Ser Leu Ile Ile 450 455 460

Gly Gln Pro Val Ala Val Leu Met Tyr Val His Asp Tyr Tyr Val Leu 465 470 480

Asn Arg Glu Ala Pro Ala Ala Gly Thr 485

FIGURE 4a continued

<400> 6

Met Gly Asp Arg Gly Gly Ala Gly Gly Ser Arg Arg Arg Arg Thr Gly 1 5 10 15

Ser Arg Pro Ser Ile Gln Gly Gly Ser Gly Pro Ala Ala Ala Glu Glu 20 25 30

Glu Val Arg Asp Val Gly Ala Gly Gly Asp Ala Pro Val Arg Asp Thr 35 40 45

Asp Lys Asp Gly Asp Val Asp Val Gly Ser Gly His Trp Asp Leu Arg 50 55 60

Cys His Arg Leu Gln Asp Ser Leu Phe Ser Ser Asp Ser Gly Phe Ser 65 70 75 80

Asn Tyr Arg Gly Ile Leu Asn Trp Cys Val Val Met Leu Ile Leu Ser 85 90 95

Asn Ala Arg Leu Phe Leu Glu Asn Leu Ile Lys Tyr Gly Ile Leu Val 100 105 110

Asp Pro Ile Gln Val Val Ser Leu Phe Leu Lys Asp Pro Tyr Ser Trp 115 120 125

Pro Ala Leu Cys Leu Val Ile Val Ala Asn Ile Phe Ala Val Ala Ala 130 . 135 140

Phe Gln Val Glu Lys Arg Leu Ala Val Gly Ala Leu Thr Glu Gln Ala 145 150 155 160

Gly Leu Leu His Gly Val Asn Leu Ala Thr Ile Leu Cys Phe Pro 165 170 175

Ala Ala Val Ala Phe Leu Leu Glu Ser Ile Thr Pro Val Gly Ser Val 180 $$185\$

Leu Ala Leu Met Val Tyr Thr Ile Leu Phe Leu Lys Leu Phe Ser Tyr 195 200 205

Arg Asp Val Asn Leu Trp Cys Arg Glu Arg Arg Ala Gly Ala Lys Ala 210 215 220

Lys Ala Ala Leu Ala Asp Leu Tyr Tyr Phe Leu Phe Ala Pro Thr Leu 225 230 235 240

FIGURE 4b

WO 02/36824 PCT/NZ01/00245

31/34

Cys Tyr Glu Leu Asn Phe Pro Arg Ser Pro Arg Ile Arg Lys Arg Phe 245 250 255

Leu Leu Arg Arg Leu Leu Glu Met Leu Phe Leu Thr Gln Leu Gln Val 260° 265° 270°

Gly Leu Ile Gln Gln Trp Met Val Pro Ala Ile Gln Asn Ser Met Lys 275 280 285

Pro Phe Lys Asp Met Asp Tyr Ser Arg Ile Val Glu Arg Leu Leu Lys 290 295 300

Leu Ala Val Pro Asn His Leu Ile Trp Leu Ile Phe Phe Tyr Trp Leu 305 . 310 315 320

Phe His Ser Cys Leu Asn Ala Val Ala Glu Leu Met Gln Phe Gly Asp 325 330 335

Arg Glu Phe Tyr Arg Asp Trp Trp Asn Ser Glu Ser Ile Thr Tyr Phe 340 345 350

Trp Gln Asn Trp Asn Ile Pro Val His Lys Trp Cys Ile Arg His Phe 355 360 365

Tyr Lys Pro Met Leu Arg Arg Gly Ser Ser Lys Trp Ala Ala Arg Thr 370 385

Ala Val Phe Leu Ala Ser Ala Phe Phe His Glu Tyr Leu Val Ser Ile 385 390 395 400

Pro Leu Arg Met Phe Arg Leu Trp Ala Phe Thr Gly Met Met Ala Gln
405 410 415

Ile Pro Leu Ala Trp Ile Val Gly Arg Phe Phe Arg Gly Asn Tyr Gly 420 425 430

Asn Ala Ala Val Trp Leu Ser Leu Ile Ile Gly Gln Pro Val Ala Val
435 440 445

Leu Met Tyr Val His Asp Tyr Tyr Val Leu Asn Arg Glu Ala Pro Ala 450 455 460

Ala Gly Thr 465

LALMVYTILELKLESYRDVNLWCRERRAGAKAKAALAGKKANGGAAQRTVSYPDNLTYRDLYYELFAPTLCY Cercopithecus aethiops:LALMVHTILFLKLFSYRDVNLWC--RR--ARAKAASAGKRASSAAAPHTVSYPDNLTYRDLYYFLFAPTLCY FALASYSIIFLKLSSYRDVNLWCRQRR--VKAKAVSAGKKVSGAAAQNTVSYPDNLTYRDLYYFIFAPTLCY LALMVYTILFIKLESYRDVNLWCRERRAGAKAKAALAGKKANGGAAQRTVSYPDNLTYRDLYYFLFAPTLCY LALMVYTILFIKLFSYRDVNLWCRERRAGAKAKAALAGKKANGGAAQRTVSYPDNLTYRDLYYFLFAPTLCY LALMVYAILFIKLFSYRDVNLWCRERRATAKAKAASAGKKANGGAAQHSVSYPDNLTYRDLYYFLLAPTLCY LALMAHTILFLKLFSYRDVNSWC--RR--ARAKAASAGKKASSAAAPHTVSYPDNLTYRDLYYFLFAPTLCY M. musculus domesticus:FALASYSIMFLKLYSYRDVNLWCRQRR--VKAKAVSTGKKVSGAAAQQAVSYPDNLTYRDLYYFIFAPTLCY Rattus norvegicus: Homo sapiens: Bison bison: Ovis aries: Sus scrofa: Bos taurus:

34/34

FIGURE 7

International application No.

PCT/NZ01/00245

A.	CLASSIFICATION OF SUBJECT MATTER				
	C12Q 1/68, C12N 15/12, A01K 67/027, C07				
According to	International Patent Classification (IPC) or to both	n national classification and IPC			
В.	FIELDS SEARCHED				
	mentation searched (classification system followed by	classification symbols)			
WPIDS, CA	SEE BELOW				
Documentation	searched other than minimum documentation to the ex	tent that such documents are included in	he fields searched		
	, BIOSIS, DNA DATABASES (GENBANK,				
	base consulted during the international search (name o		· ·		
cow, cattle, i	NBANK, EMBL, BIOSIS, CA, MEDLINE, A nilk	GRICOLA: diacylglycerol acyltra	nsferase, dgat1, bovine,		
C.	DOCUMENTS CONSIDERED TO BE RELEVANT	r			
Category*	Citation of document, with indication, where ap	propriate, of the relevant passages	Relevant to claim No.		
X	EMBL Accession No AF059202 15 Octobe	r 1998	27-33, 35-37		
	Oelkers P et al Homo sapiens ACAT related gene product 1 mRNA, complete cds				
37					
X	EMBL Accession No AF236018 12 August 2000 27-33, 35-37 Joyce CW et al Cercopithecus aethiops diacyl-glycerol acyltransferase				
	mRNA, complete cds	,			
					
X Further documents are listed in the continuation of Box C See patent family annex					
* Specia	al categories of cited documents:				
	nent defining the general state of the art which is ensidered to be of particular relevance	priority date and not in conflict with understand the principle or theory un			
"E" earlie	r application or patent but published on or after "X		e claimed invention cannot		
	ternational filing date nent which may throw doubts on priority claim(s)	inventive step when the document is	taken alone		
	ich is cited to establish the publication date of "Y er citation or other special reason (as specified)	document of particular relevance; the be considered to involve an inventive			
"O" docum	nent referring to an oral disclosure, use,	combined with one or more other succombination being obvious to a personal			
"P" docum	ition or other means nent published prior to the international filing "& out later than the priority date claimed				
Date of the act	ual completion of the international search	Date of mailing of the international sear			
5 February 2	2002 ling address of the ISA/AU	Authorized officer	3 FEB 2002		
	PATENT OFFICE				
PO BOX 200,	WODEN ACT 2606, AUSTRALIA	TERRY MOORE	•		
	: pct@ipaustralia.gov.au (02) 6285 3929	Telephone No : (02) 6283 2632	,		
					

International application No.
PCT/NZ01/00245

C (Continuat	ion). DOCUMENTS CONSIDERED TO BE RELEVANT	
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	EMBL Accession No AF078752 11 November 1998 Cases S et al Mus musculus diacylglycerol acyltransferase (Dgat) mRNA, complete cds	27-33, 35-3
x	Smith CJ et al "Obesity resistance and multiple mechanisms of triglyceride synthesis in mice lacking Dgat" (2000) Nature Genetics 25(1), pages 87-90 Sce the whole document.	44-46
	•	

International application No.

PCT/NZ01/00245

Box I	Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)
This inter	national search report has not been established in respect of certain claims under Article 17(2)(a) for the following
1.	Claims Nos:
	because they relate to subject matter not required to be searched by this Authority, namely:
2.	X Claims Nos: 1-50 in part and claims 7 and 14-22 in full.
	because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
Į.	See the explanation in the supplemental box.
	*
3.	Claims Nos:
	because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule
Вох П	6.4(a) Observations where unity of invention is lacking (Continuation of item 3 of first sheet)
This Inte	mational Searching Authority found multiple inventions in this international application, as follows:
1.	As all required additional search fees were timely paid by the applicant, this international search report covers all
**	As all required additional search lees were unlerly paid by the applicant, this international search report covers an searchable claims
2.	As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3.	As only some of the required additional search fees were timely paid by the applicant, this international search
	report covers only those claims for which fees were paid, specifically claims Nos.:
4.	No required additional search fees were timely paid by the applicant. Consequently, this international search
	report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark	on Protest The additional search fees were accompanied by the applicant's protest.
	No protest accompanied the payment of additional search fees.

International application No.

PCT/NZ01/00245

Supplem	ental	Box
---------	-------	-----

(To be used when the space in any of Boxes I to VIII is not sufficient)

Continuation of Box No: Box I(2)

Claims 1-50 have not been searched in full because the applicant, although invited to furnish the sequence listing in computer readable form, failed to do so. As such the claims were not searched with regard to the sequences disclosed in the specification. The claims have simply been searched using prior art human and mouse DGAT1 gene sequences located in the EMBL and GENBANK databases.

Claims 7 and 14-22 have not been searched in full because the scope of the claims is unclear. The claims include within their scope bovines that are not the products of the invention and whose pre-existing genotype is simply further characterised using the DGAT1 gene. It is impossible to determine which bovines would fall within the scope of these claims and as such a meaningful search cannot be conducted.