

Diagrama de Atividades (UML)

O que é um Diagrama de Atividades?

Representação gráfica de fluxos de atividades em um sistema ou processo

Mostra a sequência de ações e decisões

Útil para modelar processos de negócio e lógica de software

Objetivo principal

Mapear o fluxo de trabalho (workflow)

Facilitar a comunicação entre analistas, desenvolvedores e usuários

Identificar gargalos, paralelismos e dependências

Elementos básicos

Atividade: representa uma ação ou tarefa

Decisão: ponto onde há escolha de caminhos

Merge: junção de fluxos alternativos

Fork/Join: paralelismo e sincronização

Início e Fim: estados iniciais e finais do fluxo

Notação de Início e Fim

Início: representado por um círculo sólido

Fim: círculo com borda dupla ou círculo preenchido com contorno

Atividades

Retângulos arredondados que indicam ações

Devem ser descritas com verbos no infinitivo

Validar login

Calcular total

Emitir relatório

Decisões e Condições

Losango indica ponto de decisão

Cada saída deve ter uma condição

Conectores de Fluxo

Setas mostram a ordem de execução

Podem incluir condições ou rótulos

Sempre indicam direção clara do processo

Paralelismo

Fork: divide um fluxo em atividades paralelas

Join: sincroniza atividades paralelas antes de continuar

Partições (swimlanes)

Representam responsabilidades dentro do processo

Organizam atividades por atores, departamentos ou sistemas

Cada partição é uma "faixa" onde ficam as atividades daquele responsável

Exemplo prático

Processo de login:

Usuário (partição 1):

- 1. Início
- 2. Inserir usuário e senha

Sistema (partição 2):

- 1. Validar credenciais
- 2. Decisão:
 - Correto → Acessar sistema
 - ∘ Incorreto → Exibir mensagem e retornar à entrada
- 3. Fim

Exemplo prático

Processo de login:

Semelhanças com Fluxogramas

Ambos mostram fluxo de atividades

Usam símbolos gráficos simples (setas, caixas, decisões)

Facilitam entendimento visual

Diferenças de Fluxogramas

Diagramas de Atividades fazem parte da UML

Permitem paralelismo, sincronização e partições

Integram-se com outros diagramas de software

Comparação com Casos de Uso

Casos de Uso: mostram o que o sistema faz, sob a perspectiva do usuário

Atividades: mostram como o fluxo acontece internamente

Podem ser usados em conjunto

Vantagens do Diagrama de Atividades

Fácil de entender mesmo para não técnicos

Identifica falhas de processo antes da implementação

Ajuda na documentação e padronização

Diagrama único (visão geral)

Útil quando o sistema é pequeno ou médio.

Mostra todo o fluxo principal do início ao fim.

Facilita a comunicação com usuários que precisam de uma visão ampla.

Problema: se o sistema for complexo, pode virar um "mapa confuso" com muitas atividades e decisões.

Diagramas por módulos

Mais indicado em sistemas grandes ou complexos.

Cada processo ou funcionalidade vira um diagrama separado.

Exemplo de divisão em módulos:

- Login e autenticação
- Gestão de pedidos
- Pagamentos
- Relatórios

Vantagem: cada diagrama fica simples e legível.

Facilita manutenção e treinamento (analista ou dev só olha o módulo que precisa).

Divisão ideal

Começar com um diagrama de alto nível (macroprocesso).

Depois, quebrar em subdiagramas (detalhando cada atividade complexa em outro diagrama).

Exemplo prático de camadas:

- Visão geral: fluxo do cliente desde o login até o pagamento concluído.
- Subdiagramas:
 - Diagrama detalhado só de "Login"
 - Diagrama detalhado só de "Processar pagamento"
 - Diagrama detalhado só de "Gerar relatório"

Conclusão

Diagrama de Atividades é essencial para:

- Modelar processos
- Apoiar análise e design de sistemas
- Complementar outros diagramas UML

Partições ajudam a distribuir responsabilidades

É uma ferramenta poderosa para comunicação entre equipes