Introduction to density functional theory

Feliciano Giustino

Department of Materials, University of Oxford Department of Materials Science and Engineering, Cornell University

Organization of the DFT sessions

Betül Pamuk

Guru Khalsa

FG

Organization of the DFT sessions

Monday 10 June

11:00–11:45	Theory Lecture 1	45m	FG
11:55-12:40	Theory Lecture 2	45m	FG

14:00–16:00 Hands-on Session 1 2h Betül Pamuk, Guru Khalsa, FG

Tuesday 11 June

14:00–17:30 Hands-on Session 2 3h30m Betül Pamuk, Guru Khalsa, FG

Handouts

Tutorial Sheets

NSF/DOC	Quantum Science Summer S	Jod'
Introduction	e to density functiona	theory
	Tuberio 11	20.20
Story		
Login shell and compilation		
We will perform considerate on the Formal dual acries 12 con present at a case, in order to easy on Star Con- tension (on Obsert, Mar Practice).	re, and the limit outsending will be Code on their to establish a term	away pelasare 4 and 24 cores or commercial. We first open a
t de -X grang term pa et	a diguni mata a	
along types of templifier in the After energy year architecture com- secutive like:		
Opmor begins independent	Sensor 78	
He can commune the time what we and patting modules that we will now important to come paster modify as it.	of later on. The copy posts for I	Oliveing lettr the terrologic (in to
out in basher as ESE PRINTS - Allah or Albanda - Allah or Albanda - Allah or Albanda -		
From some un-the principl will be are but the content of a directory couper (AD-G)(1) and see those trails (bit size	Straig We can some source and a	
I seek personal measurement	of special constitutions.	
to the affect so will be using the tax and of all most electronic streets have		
The project matrice con the format as	eye, quarter expresses, erg	

Advanced PhD level

MSc and 1st year PhD level

Advanced PhD level

Theoretical foundations

- Part 1 Ab initio materials modelling
- Part 2 Many-body problem
- Part 3 Density-functional theory
- Part 4 Planewaves and pseudopotentials
- Part 5 Equilibrium structures
- Part 6 Band structures
- Part 7 DFT beyond the LDA

Part 1

Ab initio materials modelling

THE TOP PAPERS

Interview by R. Van Norden Nature 514, 550 (2014)

THE TOP PAPERS

Interview by R. Van Norden Nature 514, 550 (2014)

Impact of DFT

HK 1964 Hohenberg, Kohn, Phys. Rev. 136, B864 (1964)
KS 1965 Kohn, Sham, Phys. Rev. 140, A1133 (1965)
CA 1980 Ceperley, Alder, Phys. Rev. Lett. 45, 566 (1980)
PZ 1981 Perdew, Zunger, Phys. Rev. B 23, 5048 (1981)

PBE 1996 Perdew, Burke, Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996) Feliciano Giustino, QS3 School, Cornell, June 2018

Impact of DFT

The B3LYP papers ranked #7 and #8 in 2014 are now at \sim 75k cites

Predictive calculations of optical properties

Zacharias, Patrick, and FG, Phys. Rev. Lett. 115, 177401 (2015)

Predictive calculations of transport properties

Image from Thathachary et al, Nano Lett. 14, 626 (2014)

Poncé, Margine, and FG, Phys. Rev. B(R) 97, 121201 (2018)

Materials characterization via vibrational spectroscopy

Perez-Osorio, Milot, Filip, Patel, Herz, Johnston, and FG, J. Phys. Chem. C 119, 25703 (2015)

Computational materials discovery

Volonakis, Filip, Haghighirad, Sakai, Wenger, Snaith, and FG, J. Phys. Chem. Lett. 7, 1254 (2016)

Computational materials discovery

Volonakis, Filip, Haghighirad, Sakai, Wenger, Snaith, and FG, J. Phys. Chem. Lett. 7, 1254 (2016)

Predictive calculations of the superconducting critical temperature

Heil, Poncé, Lambert, Schlipf, Margine, and FG, Phys. Rev. Lett., 119, 087003 (2017)

Many-body effects in ARPES

Verdi, Caruso, and FG, Nat. Commun. 8, 15769 (2017)

17/88 Part 1/7 F Giustino

Transferability

We can use the same codes/methods for very different materials

Transferability

We can use the same codes/methods for very different materials

Simplicity

The Kohn-Sham equations are conceptually very similar to the Schrödinger equation for a single electron in an external potential

Transferability

We can use the same codes/methods for very different materials

Simplicity

The Kohn-Sham equations are conceptually very similar to the Schrödinger equation for a single electron in an external potential

Reliability

Often we can predict materials properties with high accuracy, sometimes even before experiments

Transferability

We can use the same codes/methods for very different materials

Simplicity

The Kohn-Sham equations are conceptually very similar to the Schrödinger equation for a single electron in an external potential

Reliability

Often we can predict materials properties with high accuracy, sometimes even before experiments

Software sharing

The development of DFT has become a global enterprise, e.g. open source and collaborative software development

Transferability

We can use the same codes/methods for very different materials

Simplicity

The Kohn-Sham equations are conceptually very similar to the Schrödinger equation for a single electron in an external potential

Reliability

Often we can predict materials properties with high accuracy, sometimes even before experiments

Software sharing

The development of DFT has become a global enterprise, e.g. open source and collaborative software development

Robust platform

Often the shortcomings of DFT can be cured by using more sophisticated approaches, which still use DFT as their starting point

How many papers using DFT will be published worldwide during the QS³ school?

- **A** Ten
- B At least four hundred
- C Ten thousand
- **D** More than a million
- E I have no idea

Part 2

Many-body problem

Many-body Schrödinger equation

20/88 Part 2/7 F Giustino

Materials = Electrons + Nuclei

Materials = Electrons + Nuclei

• Schrödinger equation for the H atom (nucleus at $\mathbf{r} = 0$)

$$-\frac{\hbar^2}{2m_e}\nabla^2\psi(\mathbf{r}) - \frac{e^2}{4\pi\epsilon_0}\frac{1}{|\mathbf{r}|}\psi(\mathbf{r}) = E_{\text{tot}}\psi(\mathbf{r})$$

Materials = Electrons + Nuclei

• Schrödinger equation for the H atom (nucleus at $\mathbf{r} = 0$)

$$-\frac{\hbar^2}{2m_e}\nabla^2\psi(\mathbf{r}) - \frac{e^2}{4\pi\epsilon_0}\frac{1}{|\mathbf{r}|}\psi(\mathbf{r}) = E_{\text{tot}}\psi(\mathbf{r})$$

wavefunctions of H

Feliciano Giustino, QS3 School, Cornell, June 2018

$$\psi(\mathbf{r}) \to \Psi = \Psi(\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3)$$

$$\psi(\mathbf{r}) \to \Psi = \Psi(\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3)$$

ullet Probability of finding electron #1 at the point ${f r}$

$$\operatorname{prob}(\mathbf{r}_1 = \mathbf{r}) = \int |\Psi(\mathbf{r}, \mathbf{r}_2, \mathbf{r}_3)|^2 d\mathbf{r}_2 d\mathbf{r}_3$$

$$\psi(\mathbf{r}) \to \Psi = \Psi(\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3)$$

 \bullet Probability of finding electron #1 at the point ${\bf r}$

$$\operatorname{prob}(\mathbf{r}_1 = \mathbf{r}) = \int |\Psi(\mathbf{r}, \mathbf{r}_2, \mathbf{r}_3)|^2 d\mathbf{r}_2 d\mathbf{r}_3$$

ullet Electron density at the point ${f r}$

$$n(\mathbf{r}) = \operatorname{prob}(\mathbf{r}_1 = \mathbf{r}) + \operatorname{prob}(\mathbf{r}_2 = \mathbf{r}) + \operatorname{prob}(\mathbf{r}_3 = \mathbf{r})$$

$$\psi(\mathbf{r}) \to \Psi = \Psi(\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3)$$

ullet Probability of finding electron #1 at the point ${f r}$

$$\operatorname{prob}(\mathbf{r}_1 = \mathbf{r}) = \int |\Psi(\mathbf{r}, \mathbf{r}_2, \mathbf{r}_3)|^2 d\mathbf{r}_2 d\mathbf{r}_3$$

ullet Electron density at the point ${f r}$

$$n(\mathbf{r}) = \operatorname{prob}(\mathbf{r}_1 = \mathbf{r}) + \operatorname{prob}(\mathbf{r}_2 = \mathbf{r}) + \operatorname{prob}(\mathbf{r}_3 = \mathbf{r})$$

• Electrons are indistinguishable

$$n({f r})=3\int |\Psi({f r},{f r}_2,{f r}_3)|^2\,d{f r}_2d{f r}_3$$
 Feliciano Giustino, US3 School, Cornell, June 2018

Many-body Schrödinger equation

22/88 Part 2/7 F Giustino

(kinetic energy + potential energy) $\Psi = E_{\text{tot}}\Psi$

(kinetic energy + potential energy) $\Psi = E_{\rm tot} \Psi$

kinetic energy, electrons and nuclei

$$-\sum_{i=1}^{N} \frac{\hbar^2}{2m_e} \nabla_i^2 - \sum_{I=1}^{M} \frac{\hbar^2}{2M_I} \nabla_I^2$$

(kinetic energy + potential energy)
$$\Psi = E_{\rm tot} \Psi$$

• kinetic energy, electrons and nuclei

$$-\sum_{i=1}^{N} \frac{\hbar^2}{2m_e} \nabla_i^2 - \sum_{I=1}^{M} \frac{\hbar^2}{2M_I} \nabla_I^2$$

potential energy, electron-electron repulsion

$$\frac{1}{2} \sum_{i \neq j} \frac{e^2}{4\pi\epsilon_0} \frac{1}{|\mathbf{r}_i - \mathbf{r}_j|}$$

(kinetic energy + potential energy) $\Psi = E_{\rm tot} \Psi$

• kinetic energy, electrons and nuclei

$$-\sum_{i=1}^{N} \frac{\hbar^2}{2m_e} \nabla_i^2 - \sum_{I=1}^{M} \frac{\hbar^2}{2M_I} \nabla_I^2$$

potential energy, electron-electron repulsion

$$\frac{1}{2} \sum_{i \neq j} \frac{e^2}{4\pi\epsilon_0} \frac{1}{|\mathbf{r}_i - \mathbf{r}_j|}$$

potential energy, nucleus-nucleus repulsion

$$\frac{1}{2} \sum_{I \neq J} \frac{e^2}{4\pi\epsilon_0} \frac{Z_I Z_J}{|\mathbf{R}_I - \mathbf{R}_J|}$$

• kinetic energy, electrons and nuclei

$$-\sum_{i=1}^{N} \frac{\hbar^2}{2m_e} \nabla_i^2 - \sum_{I=1}^{M} \frac{\hbar^2}{2M_I} \nabla_I^2$$

potential energy, electron-electron repulsion

$$\frac{1}{2} \sum_{i \neq j} \frac{e^2}{4\pi\epsilon_0} \frac{1}{|\mathbf{r}_i - \mathbf{r}_j|}$$

• potential energy, nucleus-nucleus repulsion

$$\frac{1}{2} \sum_{I \neq J} \frac{e^2}{4\pi\epsilon_0} \frac{Z_I Z_J}{|\mathbf{R}_I - \mathbf{R}_J|}$$

• potential energy, electron-nucleus attraction

$$-\sum_{i:J}rac{e^2}{4\pi\epsilon_0}rac{Z_I}{|\mathbf{r}_i-\mathbf{R}_I|}$$
Feliciano Giustino, $i:J$ 3 School, Cornell, June 2018

Many-body Schrödinger equation

$$\begin{split} & \left[-\sum_{i} \frac{\hbar^2}{2m_e} \nabla_i^2 - \sum_{I} \frac{\hbar^2}{2M_I} \nabla_I^2 + \frac{1}{2} \sum_{i \neq j} \frac{e^2}{4\pi\epsilon_0} \frac{1}{|\mathbf{r}_i - \mathbf{r}_j|} \right. \\ & \left. + \frac{1}{2} \sum_{I \neq J} \frac{e^2}{4\pi\epsilon_0} \frac{Z_I Z_J}{|\mathbf{R}_I - \mathbf{R}_J|} - \sum_{i,I} \frac{e^2}{4\pi\epsilon_0} \frac{Z_I}{|\mathbf{r}_i - \mathbf{R}_I|} \right] \Psi = E_{\mathrm{tot}} \Psi \end{split}$$

$$\begin{split} & \left[-\sum_{i} \frac{\hbar^2}{2m_e} \nabla_i^2 - \sum_{I} \frac{\hbar^2}{2M_I} \nabla_I^2 + \frac{1}{2} \sum_{i \neq j} \frac{e^2}{4\pi\epsilon_0} \frac{1}{|\mathbf{r}_i - \mathbf{r}_j|} \right. \\ & \left. + \frac{1}{2} \sum_{I \neq J} \frac{e^2}{4\pi\epsilon_0} \frac{Z_I Z_J}{|\mathbf{R}_I - \mathbf{R}_J|} - \sum_{i,I} \frac{e^2}{4\pi\epsilon_0} \frac{Z_I}{|\mathbf{r}_i - \mathbf{R}_I|} \right] \Psi = E_{\mathrm{tot}} \Psi \end{split}$$

Hartree atomic units

- masses in units of $m_{
 m e}$ (electron mass)
- lengths in units of a_0 (Bohr radius)
- energies in units of $e^2/4\pi\epsilon_0 a_0$ (Hartree)

Many-body Schrödinger equation

$$\begin{bmatrix} -\sum_{i} \frac{\hbar^{2}}{2m_{e}} \nabla_{i}^{2} - \sum_{I} \frac{\hbar^{2}}{2M_{I}} \nabla_{I}^{2} + \frac{1}{2} \sum_{i \neq j} \frac{e^{2}}{4\pi\epsilon_{0}} \frac{1}{|\mathbf{r}_{i} - \mathbf{r}_{j}|} \\ + \frac{1}{2} \sum_{I \neq J} \frac{e^{2}}{4\pi\epsilon_{0}} \frac{Z_{I}Z_{J}}{|\mathbf{R}_{I} - \mathbf{R}_{J}|} - \sum_{i,I} \frac{e^{2}}{4\pi\epsilon_{0}} \frac{Z_{I}}{|\mathbf{r}_{i} - \mathbf{R}_{I}|} \end{bmatrix} \Psi = E_{\text{tot}} \Psi$$

Hartree atomic units

- masses in units of $m_{\rm e}$ (electron mass)
- lengths in units of a_0 (Bohr radius)
- energies in units of $e^2/4\pi\epsilon_0 a_0$ (Hartree)

$$\begin{split} & \left[-\sum_{i} \frac{1}{2} \nabla_{i}^{2} - \sum_{I} \frac{1}{2M_{I}} \nabla_{I}^{2} + \frac{1}{2} \sum_{i \neq j} \frac{1}{|\mathbf{r}_{i} - \mathbf{r}_{j}|} \right. \\ & \left. + \frac{1}{2} \sum_{I \neq I} \frac{Z_{I}Z_{J}}{|\mathbf{R}_{I} - \mathbf{R}_{J}|} - \sum_{i,I} \frac{Z_{I}}{|\mathbf{r}_{i} - \mathbf{R}_{I}|} \right] \Psi = E_{\text{tot}} \Psi \end{split}$$

Feliciano Giustino, QS3 School, Cornell, June 201

MBSE

MBSE in Hartree units

• $\Delta x \sim 0.1 \text{ Å}$

- $\Delta x \sim 0.1 \text{ Å}$
- a = 5.43 Å

- $\Delta x \sim 0.1 \text{ Å}$
- a = 5.43 Å
- $N_{\rm p} = (a^3/4)/(\Delta x)^3 \sim 40,000$

- $\Delta x \sim 0.1 \text{ Å}$
- a = 5.43 Å
- $N_{\rm p} = (a^3/4)/(\Delta x)^3 \sim 40,000$
- 8 valence electrons per unit cell

- $\Delta x \sim 0.1 \text{ Å}$
- a = 5.43 Å
- $N_{\rm p} = (a^3/4)/(\Delta x)^3 \sim 40,000$
- 8 valence electrons per unit cell
- $\Psi = 40,000^8$ complex numbers

- $\Delta x \sim 0.1 \text{ Å}$
- a = 5.43 Å
- $N_{\rm p} = (a^3/4)/(\Delta x)^3 \sim 40,000$
- 8 valence electrons per unit cell
- $\Psi = 40,000^8$ complex numbers

10²⁶ Terabytes

Set nuclear masses $M_I = \infty$:

$$\begin{split} \left[-\sum_{i} \frac{1}{2} \nabla_{i}^{2} - \sum_{I} \frac{1}{2M_{I}} \nabla_{I}^{2} + \frac{1}{2} \sum_{i \neq j} \frac{1}{|\mathbf{r}_{i} - \mathbf{r}_{j}|} \right. \\ \left. + \frac{1}{2} \sum_{I \neq J} \frac{Z_{I} Z_{J}}{|\mathbf{R}_{I} - \mathbf{R}_{J}|} - \sum_{i,I} \frac{Z_{I}}{|\mathbf{r}_{i} - \mathbf{R}_{I}|} \right] \Psi = E_{\text{tot}} \Psi \end{split}$$

Set nuclear masses $M_I = \infty$:

$$\label{eq:continuous_equation} \begin{split} \left[-\sum_{i} \frac{1}{2} \nabla_{i}^{2} - \sum_{I} \frac{1}{2M_{I}} \nabla_{I}^{2} + \frac{1}{2} \sum_{i \neq j} \frac{1}{|\mathbf{r}_{i} - \mathbf{r}_{j}|} \right. \\ \left. + \frac{1}{2} \sum_{I \neq J} \frac{Z_{I} Z_{J}}{|\mathbf{R}_{I} - \mathbf{R}_{J}|} - \sum_{i,I} \frac{Z_{I}}{|\mathbf{r}_{i} - \mathbf{R}_{I}|} \right] \Psi = E_{\text{tot}} \Psi \end{split}$$

Set nuclear masses $M_I = \infty$:

$$\begin{split} \left[-\sum_{i} \frac{1}{2} \nabla_{i}^{2} - \sum_{I} \frac{1}{2M_{I}} \nabla_{I}^{2} + \frac{1}{2} \sum_{i \neq j} \frac{1}{|\mathbf{r}_{i} - \mathbf{r}_{j}|} \right. \\ \left. + \frac{1}{2} \sum_{I \neq J} \frac{Z_{I} Z_{J}}{|\mathbf{R}_{I} - \mathbf{R}_{J}|} - \sum_{i,I} \frac{Z_{I}}{|\mathbf{r}_{i} - \mathbf{R}_{I}|} \right] \Psi = E_{\text{tot}} \Psi \end{split}$$

$$\left[-\sum_{i} \frac{\nabla_{i}^{2}}{2} + \sum_{i} V_{n}(\mathbf{r}_{i}) + \frac{1}{2} \sum_{i \neq j} \frac{1}{|\mathbf{r}_{i} - \mathbf{r}_{j}|} \right] \Psi = E \Psi$$

Electronic structure theory in a nutshell

• Independent particle Hamiltonian

$$\hat{H}_0(\mathbf{r}) = -\frac{1}{2}\nabla^2 + V_n(\mathbf{r})$$

• Independent particle Hamiltonian

$$\hat{H}_0(\mathbf{r}) = -\frac{1}{2}\nabla^2 + V_{\rm n}(\mathbf{r})$$

Independent particles + Coulomb

$$\left[\sum_{i} \hat{H}_{0}(\mathbf{r}_{i}) + \frac{1}{2} \sum_{i \neq j} \frac{1}{|\mathbf{r}_{i} - \mathbf{r}_{j}|} \right] \Psi(\mathbf{r}_{1}, \dots \mathbf{r}_{N}) = E \ \Psi(\mathbf{r}_{1}, \dots \mathbf{r}_{N})$$

Independent particle Hamiltonian

$$\hat{H}_0(\mathbf{r}) = -\frac{1}{2}\nabla^2 + V_{\rm n}(\mathbf{r})$$

Independent particles + Coulomb

$$\left[\sum_{i} \hat{H}_{0}(\mathbf{r}_{i}) + \frac{1}{2} \sum_{i \neq j} \frac{1}{|\mathbf{r}_{i} - \mathbf{r}_{j}|} \right] \Psi(\mathbf{r}_{1}, \dots \mathbf{r}_{N}) = E \ \Psi(\mathbf{r}_{1}, \dots \mathbf{r}_{N})$$

 If we neglect this electron-electron Coulomb repulsion, the electrons will not 'feel' each other —— joint probability of independent events

$$\Psi(\mathbf{r}_1, \mathbf{r}_2, \cdots, \mathbf{r}_N) = \phi_1(\mathbf{r}_1) \cdots \phi_N(\mathbf{r}_N)$$

Independent particle Hamiltonian

$$\hat{H}_0(\mathbf{r}) = -\frac{1}{2}\nabla^2 + V_{\rm n}(\mathbf{r})$$

• Independent particles + Coulomb

$$\left[\sum_{i} \hat{H}_{0}(\mathbf{r}_{i}) + \frac{1}{2} \sum_{i \neq j} \frac{1}{|\mathbf{r}_{i} - \mathbf{r}_{j}|}\right] \Psi(\mathbf{r}_{1}, \dots \mathbf{r}_{N}) = E \ \Psi(\mathbf{r}_{1}, \dots \mathbf{r}_{N})$$

 If we neglect this electron-electron Coulomb repulsion, the electrons will not 'feel' each other —— joint probability of independent events

$$\Psi(\mathbf{r}_1, \mathbf{r}_2, \cdots, \mathbf{r}_N) = \phi_1(\mathbf{r}_1) \cdots \phi_N(\mathbf{r}_N)$$

$$\hat{H}_0(\mathbf{r})\phi_i(\mathbf{r}) = \varepsilon_i\phi_i(\mathbf{r})$$

• Independent particle Hamiltonian

$$\hat{H}_0(\mathbf{r}) = -\frac{1}{2}\nabla^2 + V_{\rm n}(\mathbf{r})$$

• Independent particles + Coulomb

$$\left[\sum_{i} \hat{H}_{0}(\mathbf{r}_{i}) + \frac{1}{2} \sum_{i \neq j} \frac{1}{|\mathbf{r}_{i} - \mathbf{r}_{j}|} \right] \Psi(\mathbf{r}_{1}, \dots \mathbf{r}_{N}) = E \ \Psi(\mathbf{r}_{1}, \dots \mathbf{r}_{N})$$

 If we neglect this electron-electron Coulomb repulsion, the electrons will not 'feel' each other —— joint probability of independent events

$$\Psi(\mathbf{r}_1, \mathbf{r}_2, \cdots, \mathbf{r}_N) = \phi_1(\mathbf{r}_1) \cdots \phi_N(\mathbf{r}_N)$$

$$\hat{H}_0(\mathbf{r})\phi_i(\mathbf{r}) = \varepsilon_i\phi_i(\mathbf{r})$$

$$E = \varepsilon_1 + \dots + \varepsilon_N$$

$$n(\mathbf{r}) = 2 \int |\Psi(\mathbf{r}, \mathbf{r}_2)|^2 d\mathbf{r}_2$$

$$n(\mathbf{r}) = 2 \int |\Psi(\mathbf{r}, \mathbf{r}_2)|^2 d\mathbf{r}_2 = 2 \int |\phi_1(\mathbf{r})|^2 |\phi_2(\mathbf{r}_2)|^2 d\mathbf{r}_2$$

$$n(\mathbf{r}) = 2 \int |\Psi(\mathbf{r}, \mathbf{r}_2)|^2 d\mathbf{r}_2 = 2 \int |\phi_1(\mathbf{r})|^2 |\phi_2(\mathbf{r}_2)|^2 d\mathbf{r}_2 = 2 |\phi_1(\mathbf{r})|^2$$

$$n(\mathbf{r}) = 2 \int |\Psi(\mathbf{r}, \mathbf{r}_2)|^2 d\mathbf{r}_2 = 2 \int |\phi_1(\mathbf{r})|^2 |\phi_2(\mathbf{r}_2)|^2 d\mathbf{r}_2 = 2 |\phi_1(\mathbf{r})|^2$$

 Admissible wavefunctions must be antisymmetric w.r.t. exchange of space and spin variables — Slater determinant (spin-unpolarized)

$$\Psi(\mathbf{r}_1, \mathbf{r}_2) = \frac{1}{\sqrt{2}} \left[\phi_1(\mathbf{r}_1) \phi_2(\mathbf{r}_2) - \phi_1(\mathbf{r}_2) \phi_2(\mathbf{r}_1) \right]$$

$$n(\mathbf{r}) = 2 \int |\Psi(\mathbf{r}, \mathbf{r}_2)|^2 d\mathbf{r}_2 = 2 \int |\phi_1(\mathbf{r})|^2 |\phi_2(\mathbf{r}_2)|^2 d\mathbf{r}_2 = \frac{2 |\phi_1(\mathbf{r})|^2}{2}$$

 Admissible wavefunctions must be antisymmetric w.r.t. exchange of space and spin variables — Slater determinant (spin-unpolarized)

$$\Psi(\mathbf{r}_1, \mathbf{r}_2) = \frac{1}{\sqrt{2}} \left[\phi_1(\mathbf{r}_1) \phi_2(\mathbf{r}_2) - \phi_1(\mathbf{r}_2) \phi_2(\mathbf{r}_1) \right]$$

• Let us try the density again

$$n(\mathbf{r}) = 2 \int |\Psi(\mathbf{r}, \mathbf{r}_2)|^2 d\mathbf{r}_2$$

$$n(\mathbf{r}) = 2 \int |\Psi(\mathbf{r}, \mathbf{r}_2)|^2 d\mathbf{r}_2 = 2 \int |\phi_1(\mathbf{r})|^2 |\phi_2(\mathbf{r}_2)|^2 d\mathbf{r}_2 = \frac{2 |\phi_1(\mathbf{r})|^2}{2}$$

 Admissible wavefunctions must be antisymmetric w.r.t. exchange of space and spin variables — Slater determinant (spin-unpolarized)

$$\Psi(\mathbf{r}_1, \mathbf{r}_2) = \frac{1}{\sqrt{2}} \left[\phi_1(\mathbf{r}_1) \phi_2(\mathbf{r}_2) - \phi_1(\mathbf{r}_2) \phi_2(\mathbf{r}_1) \right]$$

Let us try the density again

$$n(\mathbf{r}) = 2 \int |\Psi(\mathbf{r}, \mathbf{r}_2)|^2 d\mathbf{r}_2 = \boxed{|\phi_1(\mathbf{r})|^2 + |\phi_2(\mathbf{r})|^2}$$
Feliciano Giustino, QS3 School, Cornell, June 2018

Mean-field approximation

$$\left[-\frac{1}{2}\nabla^2 + V_{\rm n}(\mathbf{r}) \right] \phi_i(\mathbf{r}) = \varepsilon_i \phi_i(\mathbf{r})$$

$$\left[-\frac{1}{2} \nabla^2 + V_{\rm n}(\mathbf{r}) \right] \phi_i(\mathbf{r}) = \varepsilon_i \phi_i(\mathbf{r})$$
$$n(\mathbf{r}) = \sum_i |\phi_i(\mathbf{r})|^2$$

$$\left[-\frac{1}{2} \nabla^2 + V_{\rm n}(\mathbf{r}) \right] \phi_i(\mathbf{r}) = \varepsilon_i \phi_i(\mathbf{r})$$

$$n(\mathbf{r}) = \sum_i |\phi_i(\mathbf{r})|^2$$

$$V_{\rm H}(\mathbf{r}) = \int d\mathbf{r}' \frac{n(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|}$$

$$\begin{split} \left[-\frac{1}{2} \nabla^2 + V_{\rm n}(\mathbf{r}) \right] \phi_i(\mathbf{r}) &= \varepsilon_i \phi_i(\mathbf{r}) \\ n(\mathbf{r}) &= \sum_i |\phi_i(\mathbf{r})|^2 \\ V_{\rm H}(\mathbf{r}) &= \int d\mathbf{r}' \frac{n(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} \\ \left[-\frac{1}{2} \nabla^2 + V_{\rm n}(\mathbf{r}) + V_{\rm H}(\mathbf{r}) \right] \phi_i^{\rm new}(\mathbf{r}) &= \varepsilon_i^{\rm new} \phi_i^{\rm new}(\mathbf{r}) \end{split}$$

$$\label{eq:linear_equation} \begin{split} \left[-\frac{1}{2} \nabla^2 + V_{\rm n}(\mathbf{r}) \right] \phi_i(\mathbf{r}) &= \varepsilon_i \phi_i(\mathbf{r}) \\ n(\mathbf{r}) &= \sum_i |\phi_i(\mathbf{r})|^2 &\longleftarrow \\ V_{\rm H}(\mathbf{r}) &= \int d\mathbf{r}' \frac{n(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} \\ \left[-\frac{1}{2} \nabla^2 + V_{\rm n}(\mathbf{r}) + V_{\rm H}(\mathbf{r}) \right] \phi_i^{\rm new}(\mathbf{r}) &= \varepsilon_i^{\rm new} \phi_i^{\rm new}(\mathbf{r}) &_ \end{split}$$

$$\begin{bmatrix} -\frac{1}{2}\nabla^2 + V_{\rm n}(\mathbf{r}) \end{bmatrix} \phi_i(\mathbf{r}) = \varepsilon_i \phi_i(\mathbf{r})$$

$$n(\mathbf{r}) = \sum_i |\phi_i(\mathbf{r})|^2 \qquad \longleftrightarrow \qquad V_{\rm H}(\mathbf{r}) = \int d\mathbf{r}' \frac{n(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|}$$

$$\begin{bmatrix} -\frac{1}{2}\nabla^2 + V_{\rm n}(\mathbf{r}) + V_{\rm H}(\mathbf{r}) \end{bmatrix} \phi_i^{\rm new}(\mathbf{r}) = \varepsilon_i^{\rm new} \phi_i^{\rm new}(\mathbf{r}) \qquad -$$

• This is Hartree's self-consistent field approximation (1928)

 The electron density can be used to determine the electrostatic field generated by the electrons

$$\left[-\frac{1}{2} \nabla^2 + V_{\rm n}(\mathbf{r}) \right] \phi_i(\mathbf{r}) = \varepsilon_i \phi_i(\mathbf{r})$$

$$n(\mathbf{r}) = \sum_i |\phi_i(\mathbf{r})|^2 \qquad \longleftarrow$$

$$V_{\rm H}(\mathbf{r}) = \int d\mathbf{r}' \frac{n(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|}$$

$$\left[-\frac{1}{2} \nabla^2 + V_{\rm n}(\mathbf{r}) + V_{\rm H}(\mathbf{r}) \right] \phi_i^{\rm new}(\mathbf{r}) = \varepsilon_i^{\rm new} \phi_i^{\rm new}(\mathbf{r}) \qquad \longrightarrow$$

- This is Hartree's self-consistent field approximation (1928)
 - © No need for the many-body wavefunction
 - © Requires iterative solution
 Feliciano Giustino, QS3 School, Cornell, June 201

• The Hartree approximation does not incorporate the **constraint** on the antisymmetry of the many-body wavefunction, $\Psi(\mathbf{r}_2, \mathbf{r}_1) = -\Psi(\mathbf{r}, \mathbf{r}_2)$

- The Hartree approximation does not incorporate the constraint on the antisymmetry of the many-body wavefunction, $\Psi(\mathbf{r}_2, \mathbf{r}_1) = -\Psi(\mathbf{r}_1 \mathbf{r}_2)$
- Incorporating this constraint in the mean-field equation leads to a new potential energy contribution, the Fock exchange

$$\left[-\frac{\nabla^2}{2} + V_{\rm n}(\mathbf{r}) + V_{\rm H}(\mathbf{r}) \right] \phi_i(\mathbf{r}) + \int d\mathbf{r}' \, V_{\rm X}(\mathbf{r}, \mathbf{r}') \, \phi_i(\mathbf{r}') = \varepsilon_i \, \phi_i(\mathbf{r})$$
$$V_{\rm X}(\mathbf{r}, \mathbf{r}') = -\sum_{j \in \text{occ}} \frac{\phi_j^*(\mathbf{r}') \phi_j(\mathbf{r})}{|\mathbf{r} - \mathbf{r}'|}$$

- The Hartree approximation does not incorporate the constraint on the antisymmetry of the many-body wavefunction, $\Psi(\mathbf{r}_2,\mathbf{r}_1)=-\Psi(\mathbf{r}_1\mathbf{r}_2)$
- Incorporating this constraint in the mean-field equation leads to a new potential energy contribution, the Fock exchange

$$\left[-\frac{\nabla^2}{2} + V_{\rm n}(\mathbf{r}) + V_{\rm H}(\mathbf{r}) \right] \phi_i(\mathbf{r}) + \int d\mathbf{r}' \, V_{\rm X}(\mathbf{r}, \mathbf{r}') \, \phi_i(\mathbf{r}') = \varepsilon_i \, \phi_i(\mathbf{r})$$
$$V_{\rm X}(\mathbf{r}, \mathbf{r}') = -\sum_{j \in {\rm occ}} \frac{\phi_j^*(\mathbf{r}') \phi_j(\mathbf{r})}{|\mathbf{r} - \mathbf{r}'|}$$

- The Fock potential enforces Pauli's principle by making sure that
 - same-spin electrons repel each other
 - opposite-spin electrons attract each other

- The Hartree approximation does not incorporate the **constraint** on the antisymmetry of the many-body wavefunction, $\Psi(\mathbf{r}_2, \mathbf{r}_1) = -\Psi(\mathbf{r}_1, \mathbf{r}_2)$
- Incorporating this constraint in the mean-field equation leads to a new potential energy contribution, the Fock exchange

$$\left[-\frac{\nabla^2}{2} + V_{\rm n}(\mathbf{r}) + V_{\rm H}(\mathbf{r}) \right] \phi_i(\mathbf{r}) + \int d\mathbf{r}' \, V_{\rm X}(\mathbf{r}, \mathbf{r}') \, \phi_i(\mathbf{r}') = \varepsilon_i \, \phi_i(\mathbf{r})$$
$$V_{\rm X}(\mathbf{r}, \mathbf{r}') = -\sum_{j \in {\rm occ}} \frac{\phi_j^*(\mathbf{r}') \phi_j(\mathbf{r})}{|\mathbf{r} - \mathbf{r}'|}$$

- The Fock potential enforces Pauli's principle by making sure that
 - same-spin electrons repel each other
 - opposite-spin electrons attract each other
- The Fock potential is non-local

• So far we assumed that electrons are independent, that is **uncorrelated**

$$\operatorname{prob}(\mathbf{r}_1,\mathbf{r}_2) = \operatorname{prob}(\mathbf{r}_1) \times \operatorname{prob}(\mathbf{r}_2)$$

• So far we assumed that electrons are independent, that is **uncorrelated**

$$\operatorname{prob}(\mathbf{r}_1,\mathbf{r}_2) = \operatorname{prob}(\mathbf{r}_1) \times \operatorname{prob}(\mathbf{r}_2)$$

• This is not true since electrons do repel each other, therefore the 'true' wavefunction cannot be expressed as a Slater determinant

$$\Psi_{\text{true}}(\mathbf{r}_1, \mathbf{r}_2) \neq \frac{1}{\sqrt{2}} \left[\phi_1(\mathbf{r}_1) \phi_2(\mathbf{r}_2) - \phi_1(\mathbf{r}_2) \phi_2(\mathbf{r}_1) \right]$$

• So far we assumed that electrons are independent, that is uncorrelated

$$\operatorname{prob}(\mathbf{r}_1, \mathbf{r}_2) = \operatorname{prob}(\mathbf{r}_1) \times \operatorname{prob}(\mathbf{r}_2)$$

 This is not true since electrons do repel each other, therefore the 'true' wavefunction cannot be expressed as a Slater determinant

$$\Psi_{\text{true}}(\mathbf{r}_1, \mathbf{r}_2) \neq \frac{1}{\sqrt{2}} \left[\phi_1(\mathbf{r}_1) \phi_2(\mathbf{r}_2) - \phi_1(\mathbf{r}_2) \phi_2(\mathbf{r}_1) \right]$$

 Since the Slater determinant is really useful for practical calculations, we keep it and we describe correlations by adding a fictitious potential

$$\left[-\frac{1}{2} \nabla^2 + V_{\rm n} + V_{\rm H} + V_{\rm X} + V_{\rm c} \right] \phi_i = \varepsilon_i \, \phi_i$$

correlation

We want to study the many-body wavefunction of a unit cell of $\rm Sr_2RuO_4$. We discretize the volume using 100,000 mesh points.

How many terabytes would we need to store this wavefunction?

A Less than 1 TB

B 10 TB

C 10^{784} TB

D Infinity

E How much is a terabyte?

Part 3

Density-functional theory

Density Functional Theory = theory about the energy of electrons being a functional of their density

Density Functional Theory = theory about the energy of electrons being a functional of their density

Feliciano Giustino, QS3 School, Cornell, June 2018

$$\hat{H} \Psi = E \Psi$$

$$\hat{H} \Psi = E \Psi \longrightarrow E = \int d\mathbf{r}_1 \dots d\mathbf{r}_N \ \Psi^* \hat{H} \Psi$$

$$\hat{H} \Psi = E \Psi \longrightarrow E = \int d\mathbf{r}_1 \dots d\mathbf{r}_N \ \Psi^* \hat{H} \Psi$$

So for a generic quantum state we have

$$\Psi(\mathbf{r}_1,\ldots,\mathbf{r}_N) \longrightarrow E$$
 $E = E[\Psi(\mathbf{r}_1,\ldots,\mathbf{r}_N)]$

$$\hat{H} \Psi = E \Psi \longrightarrow E = \int d\mathbf{r}_1 \dots d\mathbf{r}_N \ \Psi^* \hat{H} \Psi$$

So for a generic quantum state we have

$$\Psi(\mathbf{r}_1,\ldots,\mathbf{r}_N) \longrightarrow E$$
 $E = E[\Psi(\mathbf{r}_1,\ldots,\mathbf{r}_N)]$

In 1964 Hohenberg and Kohn noted that, for the lowest-energy state, the total energy is a **functional** of the **density**

$$n(\mathbf{r}) \longrightarrow E$$
 $E = E[n(\mathbf{r})]$

Hohenberg-Kohn theorem

37/88 Part 3/7 F Giustino

 $n(\mathbf{r})$

37/88 Part 3/7 F Giustino

37/88 Part 3/7 F Giustino

37/88 Part 3/7 F Giustino

Feliciano Giustino, QS3 School, Cornell, June 201

Hohenberg-Kohn theorem

HK theorem

In the ground-state the electron density $n_0({\bf r})$ uniquely determines the total energy E_0

Hohenberg-Kohn theorem

HK theorem

In the ground-state the electron density $n_0({\bf r})$ uniquely determines the total energy E_0

HK variational principle

Any $n(\mathbf{r}) \neq n_0(\mathbf{r})$ yields $E > E_0$.

The HK theorem states that, in the ground state, the total energy of many electrons is a functional of their density, $E=E[n({\bf r})].$

What is this functional?

The HK theorem states that, in the ground state, the total energy of many electrons is a functional of their density, $E = E[n(\mathbf{r})]$.

What is this functional?

The energy functional is unknown

The scream by E. Munch (1910)
Feliciano Giustino, QS3 School, Cornell, June 2018

39/88 Part 3/7 F Giustino

E[n] =

$$E[n] = \underbrace{\int d\mathbf{r} \, n(\mathbf{r}) V_{n}(\mathbf{r})}_{\text{External potential}}$$

39/88 Part 3/7 F Giustino

$$E[n] = \underbrace{\int d\mathbf{r} \, n(\mathbf{r}) V_{\mathrm{n}}(\mathbf{r})}_{\text{External potential}} + \underbrace{\frac{1}{2} \int d\mathbf{r} \, d\mathbf{r}' \, \frac{n(\mathbf{r}) n(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|}}_{\text{Hartree energy}}$$

$$E[n] = \int d\mathbf{r} \, n(\mathbf{r}) V_{n}(\mathbf{r}) + \underbrace{\frac{1}{2} \int d\mathbf{r} \, d\mathbf{r}' \, \frac{n(\mathbf{r}) n(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|}}_{\text{Hartree energy}} + \text{Everything Else}$$

$$E[n] = \underbrace{\int d\mathbf{r} \, n(\mathbf{r}) V_{\mathrm{n}}(\mathbf{r})}_{\text{External potential}} + \underbrace{\frac{1}{2} \int d\mathbf{r} \, d\mathbf{r}' \, \frac{n(\mathbf{r}) n(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|}}_{\text{Hartree energy}} + \underbrace{\text{Everything Else}}_{}$$

Kohn and Sham (1965) proposed to

(1) Express the electron density as if we had a system of independent electrons

$$n(\mathbf{r}) = \sum_{i \in \text{occ}} |\phi_i(\mathbf{r})|^2$$

$$E[n] = \underbrace{\int d\mathbf{r} \, n(\mathbf{r}) V_{\mathrm{n}}(\mathbf{r})}_{\text{External potential}} + \underbrace{\frac{1}{2} \int d\mathbf{r} \, d\mathbf{r}' \, \frac{n(\mathbf{r}) n(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|}}_{\text{Hartree energy}} + \underbrace{\text{Everything Else}}_{}$$

Kohn and Sham (1965) proposed to

(1) Express the electron density as if we had a system of independent electrons

$$n(\mathbf{r}) = \sum_{i \in \text{occ}} |\phi_i(\mathbf{r})|^2$$

(2) Take out the kinetic energy of these electrons from the "everything else"

Everything Else =
$$-\sum \int d\mathbf{r} \, \phi_i^*(\mathbf{r}) \frac{\nabla^2}{2} \phi_i(\mathbf{r}) + \text{Unknown Terms}$$

Kohn-Sham equations

40/88 Part 3/7 F Giustino

Total energy

$$E[n] = \int d\mathbf{r} \, n(\mathbf{r}) V_{\rm n}(\mathbf{r}) + \frac{1}{2} \int d\mathbf{r} d\mathbf{r}' \frac{n(\mathbf{r}) n(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} - \sum_{\mathbf{r}} \int d\mathbf{r} \, \phi_i^*(\mathbf{r}) \frac{\nabla^2}{2} \phi_i(\mathbf{r}) + E_{xc}[n]$$

Total energy

$$E[n] = \int d\mathbf{r} \, n(\mathbf{r}) V_{\rm n}(\mathbf{r}) + \frac{1}{2} \int d\mathbf{r} d\mathbf{r}' \frac{n(\mathbf{r}) n(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} - \sum_{i} \int d\mathbf{r} \, \phi_{i}^{*}(\mathbf{r}) \frac{\nabla^{2}}{2} \phi_{i}(\mathbf{r}) + E_{xc}[n]$$

We find the lowest energy state by looking for stationary points of ${\cal E}[n]$

$$\begin{cases} \frac{\delta E}{\delta n} = 0 \\ \langle \phi_i | \phi_j \rangle = \delta_{ij} \end{cases}$$

Total energy

$$E[n] = \int d\mathbf{r} \, n(\mathbf{r}) V_{\rm n}(\mathbf{r}) + \frac{1}{2} \int d\mathbf{r} d\mathbf{r}' \frac{n(\mathbf{r}) n(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} - \sum_{i} \int d\mathbf{r} \, \phi_{i}^{*}(\mathbf{r}) \frac{\nabla^{2}}{2} \phi_{i}(\mathbf{r}) + E_{xc}[n]$$

We find the lowest energy state by looking for stationary points of $\boldsymbol{E}[n]$

$$\begin{cases} \frac{\delta E}{\delta n} = 0 \\ \langle \phi_i | \phi_j \rangle = \delta_{ij} \end{cases}$$

This leads to the Kohn-Sham equations

$$\left[-\frac{1}{2} \nabla^2 + V_{\rm n}(\mathbf{r}) + V_{\rm H}(\mathbf{r}) + V_{xc}(\mathbf{r}) \right] \phi_i(\mathbf{r}) = \varepsilon_i \phi_i(\mathbf{r})$$

Total energy

$$E[n] = \int d\mathbf{r} \, n(\mathbf{r}) V_{\rm n}(\mathbf{r}) + \frac{1}{2} \int d\mathbf{r} d\mathbf{r}' \frac{n(\mathbf{r}) n(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} - \sum_{i} \int d\mathbf{r} \, \phi_{i}^{*}(\mathbf{r}) \frac{\nabla^{2}}{2} \phi_{i}(\mathbf{r}) + E_{xc}[n]$$

We find the lowest energy state by looking for stationary points of E[n]

$$\begin{cases} \frac{\delta E}{\delta n} = 0 \\ \langle \phi_i | \phi_j \rangle = \delta_{ij} \end{cases}$$

This leads to the Kohn-Sham equations

$$\left[-\frac{1}{2} \nabla^2 + V_{\rm n}(\mathbf{r}) + V_{\rm H}(\mathbf{r}) + V_{xc}(\mathbf{r}) \right] \phi_i(\mathbf{r}) = \varepsilon_i \phi_i(\mathbf{r})$$

We consider the homogeneous electron gas (uniform gas of electrons in a positive compensating background)

$$n(\mathbf{r}) = \text{constant}$$

$$E_x^{\text{HEG}} = -\frac{3}{4} \left(\frac{3}{\pi}\right)^{\frac{1}{3}} n^{\frac{4}{3}} V$$

We consider the homogeneous electron gas (uniform gas of electrons in a positive compensating background)

$$n(\mathbf{r}) = \text{constant}$$

$$E_x^{\rm HEG} = -\frac{3}{4} \left(\frac{3}{\pi}\right)^{\frac{1}{3}} n^{\frac{4}{3}} V$$

$$E_x^{\mathrm{LDA}} = \int\limits_V rac{E_x^{\mathrm{HEG}}[n(\mathbf{r})]}{V} d\mathbf{r}$$

We consider the homogeneous electron gas (uniform gas of electrons in a positive compensating background)

$$n(\mathbf{r}) = \text{constant}$$

$$E_x^{\rm HEG} = -\frac{3}{4} \left(\frac{3}{\pi}\right)^{\frac{1}{3}} n^{\frac{4}{3}} V$$

$$E_x^{\text{LDA}} = \int_V \frac{E_x^{\text{HEG}}[n(\mathbf{r})]}{V} d\mathbf{r} = -\frac{3}{4} \left(\frac{3}{\pi}\right)^{\frac{1}{3}} \int_V n^{\frac{4}{3}}(\mathbf{r}) d\mathbf{r}$$

We consider the homogeneous electron gas (uniform gas of electrons in a positive compensating background)

$$n(\mathbf{r}) = \text{constant}$$

$$E_x^{\rm HEG} = -\frac{3}{4} \left(\frac{3}{\pi}\right)^{\frac{1}{3}} n^{\frac{4}{3}} V$$

$$E_x^{\mathrm{LDA}} = \int\limits_V \frac{E_x^{\mathrm{HEG}}[n(\mathbf{r})]}{V} \, d\mathbf{r} = -\frac{3}{4} \left(\frac{3}{\pi}\right)^{\frac{1}{3}} \int\limits_V n^{\frac{4}{3}}(\mathbf{r}) d\mathbf{r}$$

$$V_x^{\mathrm{LDA}} = \frac{\delta E_x^{\mathrm{LDA}}}{\delta n} = - \Big(\frac{3}{\pi}\Big)^{\frac{1}{3}} n^{\frac{1}{3}}(\mathbf{r})$$

Self-consistent field calculations (SCF)

42/88 Part 3/7 F Giustino

How many terabytes would we need in DFT to study wavefunctions in a unit cell of Sr_2RuO_4 ?

A 10 TB

B 10^{784} TB

C 1 MB

D 250 MB

E I need coffee

Part 4

Planewaves and pseudopotentials

$$-\frac{1}{2}\nabla^2\phi_i(\mathbf{r}) + V_{\text{tot}}(\mathbf{r})\phi_i(\mathbf{r}) = \varepsilon_i\phi_i(\mathbf{r})$$

$$-\frac{1}{2}\nabla^2\phi_i(\mathbf{r}) + V_{\text{tot}}(\mathbf{r})\phi_i(\mathbf{r}) = \varepsilon_i\phi_i(\mathbf{r})$$

2nd order PDE \rightarrow for every y and z we need two boundary conditions on x

$$-\frac{1}{2}\nabla^2\phi_i(\mathbf{r}) + V_{\rm tot}(\mathbf{r})\phi_i(\mathbf{r}) = \varepsilon_i\phi_i(\mathbf{r})$$

2nd order PDE \rightarrow for every y and z we need two boundary conditions on x

Localized system

atom, molecule, quantum dot, nanowire, nanoslab

$$\phi_i(x, y, z) = 0$$
 for $x = -\infty$, $\phi_i(x, y, z) = 0$ for $x = +\infty$

$$-\frac{1}{2}\nabla^2\phi_i(\mathbf{r}) + V_{\rm tot}(\mathbf{r})\phi_i(\mathbf{r}) = \varepsilon_i\phi_i(\mathbf{r})$$

2nd order PDE \rightarrow for every y and z we need two boundary conditions on x

• Localized system atom, molecule, quantum dot, nanowire, nanoslab $\phi_i(x,y,z) = 0$ for $x = -\infty$, $\phi_i(x,y,z) = 0$ for $x = +\infty$

• Extended system

$$\phi_i(x+a,y,z) = \phi_i(x,y,z), \qquad \nabla \phi_i(x+a,y,z) = \nabla \phi_i(x,y,z)$$

$$-\frac{1}{2}\nabla^2\phi_i(\mathbf{r}) + V_{\rm tot}(\mathbf{r})\phi_i(\mathbf{r}) = \varepsilon_i\phi_i(\mathbf{r})$$

2nd order PDE \rightarrow for every y and z we need two boundary conditions on x

Localized system

atom, molecule, quantum dot, nanowire, nanoslab

$$\phi_i(x, y, z) = 0$$
 for $x = -\infty$, $\phi_i(x, y, z) = 0$ for $x = +\infty$

Extended system

solid, liquid

$$\phi_i(x+a,y,z) = \phi_i(x,y,z), \qquad \nabla \phi_i(x+a,y,z) = \nabla \phi_i(x,y,z)$$

Periodic (BvK) boundary conditions

amorphous SiO_2

DFT calculations for solids, liquids, interfaces, and nanostructures are performed using BvK boundary conditions

amorphous SiO₂

a

A convenient way of handling the KS wavefunctions is by expanding them in a basis of planewaves \longrightarrow standard Fourier transform

A convenient way of handling the KS wavefunctions is by expanding them in a basis of planewaves \longrightarrow standard Fourier transform

1D case
$$\phi(x) = \sum_{n=-\infty}^{+\infty} c_n e^{i2\pi nx/a}$$

0.2 0.2 -0.6

x in units of a

A convenient way of handling the KS wavefunctions is by expanding them in a basis of planewaves ----- standard Fourier transform

1D case
$$\phi(x) = \sum_{n=-\infty}^{+\infty} c_n e^{i2\pi nx/a}$$

BvK conditions built in

$$\phi(x+a) = \phi(x)$$

$$\nabla \phi(x+a) = \nabla \phi(x)$$

In 2D and 3D we replace $2\pi/a$ by the primitive vectors of the reciprocal lattice

$$\mathbf{b}_1 = 2\pi \frac{\mathbf{a}_2 \times \mathbf{a}_3}{\mathbf{a}_1 \cdot \mathbf{a}_2 \times \mathbf{a}_3}$$

Reciprocal lattice vectors

$$G = m_1b_1 + m_2b_2 + m_3b_3$$
, with m_1, m_2, m_3 integers

Example: graphene

In 2D and 3D we replace $2\pi/a$ by the primitive vectors of the reciprocal lattice

$$\mathbf{b}_1 = 2\pi \frac{\mathbf{a}_2 \times \mathbf{a}_3}{\mathbf{a}_1 \cdot \mathbf{a}_2 \times \mathbf{a}_3}$$

Reciprocal lattice vectors

$$G = m_1 \mathbf{b}_1 + m_2 \mathbf{b}_2 + m_3 \mathbf{b}_3$$
, with m_1, m_2, m_3 integers

Example: graphene

Planewave in 2D or 3D

$$\phi_i(\mathbf{r}) = \sum_{\mathbf{G}} c_i(\mathbf{G}) \exp(i\mathbf{G} \cdot \mathbf{r})$$

$$\phi_i(\mathbf{r}) = \sum_{\mathbf{G}} c_i(\mathbf{G}) \exp(i\mathbf{G} \cdot \mathbf{r})$$

By replacing in the KS equations we obtain

$$\frac{|\mathbf{G}|^2}{2}c_i(\mathbf{G}) + \sum_{\mathbf{G}'} V_{\text{tot}}(\mathbf{G} - \mathbf{G}')c_i(\mathbf{G}') = \varepsilon_i c_i(\mathbf{G})$$

$$\phi_i(\mathbf{r}) = \sum_{\mathbf{G}} c_i(\mathbf{G}) \exp(i\mathbf{G} \cdot \mathbf{r})$$

By replacing in the KS equations we obtain

$$\frac{|\mathbf{G}|^2}{2}c_i(\mathbf{G}) + \sum_{\mathbf{G}'} V_{\text{tot}}(\mathbf{G} - \mathbf{G}')c_i(\mathbf{G}') = \varepsilon_i c_i(\mathbf{G})$$

How many planewave G-vectors should we include in the expansion?

$$\phi_i(\mathbf{r}) = \sum_{\mathbf{G}} c_i(\mathbf{G}) \exp(i\mathbf{G} \cdot \mathbf{r})$$

By replacing in the KS equations we obtain

$$\frac{|\mathbf{G}|^2}{2}c_i(\mathbf{G}) + \sum_{\mathbf{G}'} V_{\text{tot}}(\mathbf{G} - \mathbf{G}')c_i(\mathbf{G}') = \varepsilon_i c_i(\mathbf{G})$$

How many planewave G-vectors should we include in the expansion?

$$\phi_i(\mathbf{r}) = \sum_{\mathbf{G}} c_i(\mathbf{G}) \exp(i\mathbf{G} \cdot \mathbf{r})$$

By replacing in the KS equations we obtain

$$\frac{|\mathbf{G}|^2}{2}c_i(\mathbf{G}) + \sum_{\mathbf{G}'} V_{\text{tot}}(\mathbf{G} - \mathbf{G}')c_i(\mathbf{G}') = \varepsilon_i c_i(\mathbf{G})$$

How many planewave G-vectors should we include in the expansion?

$$E_{\rm cut} = \frac{\hbar^2 |\mathbf{G}_{\rm max}|^2}{2m_{\rm e}}$$

planewaves kinetic energy cutoff

Atomic wavefunctions of silicon (DFT/LDA)

Atomic wavefunctions of silicon (DFT/LDA)

Only valence electrons important for bonding

Atomic wavefunctions of silicon (DFT/LDA)

Pseudization: make wavefunctions smooth by removing the nodes

Reverse-engineer the pseudo-potential potential which yields the pseudo-wavefunction as solution of the atomic Schrödinger equation

$$-\frac{1}{2}\frac{d^2}{dr^2}u_{3s}^{\rm PS} + V_{3s}^{\rm PS}u_{3s}^{\rm PS} = E_{3s}u_{3s}^{\rm PS} \quad ----- \quad V_{3s}^{\rm PS} = E_{3s} + \frac{1}{2u_{3s}^{\rm PS}}\frac{d^2u_{3s}^{\rm PS}}{dr^2}$$

Reverse-engineer the pseudo-potential potential which yields the pseudo-wavefunction as solution of the atomic Schrödinger equation

$$-\frac{1}{2}\frac{d^2}{dr^2}u_{3s}^{PS} + V_{3s}^{PS}u_{3s}^{PS} = E_{3s}u_{3s}^{PS} \longrightarrow V_{3s}^{PS} = E_{3s} + \frac{1}{2u_{3s}^{PS}}\frac{d^2u_{3s}^{PS}}{dr^2}$$

Feliciano Giustino, QS3 School, Cornell, June 2018

In $\mbox{crystalline}$ solids we label electronic states by their $\mbox{Bloch wavevector}$ \mbox{k}

Bloch theorem
$$\phi_{i\mathbf{k}}(\mathbf{r}) = e^{i\mathbf{k}\cdot\mathbf{r}}u_{i\mathbf{k}}(\mathbf{r})$$
 with $u_{i\mathbf{k}}(\mathbf{r}+\mathbf{R}) = u_{i\mathbf{k}}(\mathbf{r})$

In $\mbox{crystalline}$ solids we label electronic states by their \mbox{Bloch} wavevector \mbox{k}

Bloch theorem
$$\phi_{i\mathbf{k}}(\mathbf{r}) = e^{i\mathbf{k}\cdot\mathbf{r}}u_{i\mathbf{k}}(\mathbf{r})$$
 with $u_{i\mathbf{k}}(\mathbf{r}+\mathbf{R}) = u_{i\mathbf{k}}(\mathbf{r})$

$$n(\mathbf{r}) = \sum_{i \in \text{occ}} |\phi_i(\mathbf{r})|^2 \longrightarrow \sum_{i \in \text{occ}} \int_{\text{BZ}} \frac{d\mathbf{k}}{\Omega_{\text{BZ}}} |u_{i\mathbf{k}}(\mathbf{r})|^2 \simeq \frac{1}{N_{\mathbf{k}}} \sum_{\mathbf{k} \in \text{BZ}} \sum_{i \in \text{occ}} |u_{i\mathbf{k}}(\mathbf{r})|^2$$

In $\mbox{\it crystalline}$ solids we label electronic states by their $\mbox{\it Bloch}$ wavevector k

Bloch theorem
$$\phi_{i\mathbf{k}}(\mathbf{r}) = e^{i\mathbf{k}\cdot\mathbf{r}}u_{i\mathbf{k}}(\mathbf{r})$$
 with $u_{i\mathbf{k}}(\mathbf{r}+\mathbf{R}) = u_{i\mathbf{k}}(\mathbf{r})$

$$n(\mathbf{r}) = \sum_{i \in \text{occ}} |\phi_i(\mathbf{r})|^2 \longrightarrow \sum_{i \in \text{occ}} \int_{\text{BZ}} \frac{d\mathbf{k}}{\Omega_{\text{BZ}}} |u_{i\mathbf{k}}(\mathbf{r})|^2 \simeq \frac{1}{N_{\mathbf{k}}} \sum_{\mathbf{k} \in \text{BZ}} \sum_{i \in \text{occ}} |u_{i\mathbf{k}}(\mathbf{r})|^2$$

Brillouin zone of fcc crystal (e.g. Si, Cu)

DFT codes use a uniform discretization of this volume and reduce the number of ${\bf k}$ -vectors using the crystal symmetry operations

What is a pseudopotential?

- A An effective atomic potential describing nucleus & core electrons
- **B** A potential describing the pseudo spin
- **C** A false potential
- **D** The potential in the Kohn-Sham equations of DFT
- **E** This question is too easy

Part 5

Equilibrium structures

In order to find the equilibrium structures of materials

- 1) We determine the potential energy surface of the ions
- 2) We look for the minima of this surface \longrightarrow zero net forces on the ions

Clamped nuclei approximation

58/88 Part 5/7 F Giustino

Clamped nuclei approximation

Clamped nuclei approximation

Back to the complete many-body Schrödinger equation for electrons & nuclei

$$\left[-\sum_i \frac{\nabla_i^2}{2} - \sum_I \frac{\nabla_I^2}{2M_I} - \sum_{i,I} \frac{Z_I}{|\mathbf{r}_i - \mathbf{R}_I|} + \frac{1}{2} \sum_{i \neq j} \frac{1}{|\mathbf{r}_i - \mathbf{r}_j|} + \frac{1}{2} \sum_{I \neq J} \frac{Z_I Z_J}{|\mathbf{R}_I - \mathbf{R}_J|}\right] \Psi = E_{\text{tot}} \Psi$$

Here
$$\Psi = \Psi(\mathbf{r}_1, \dots, \mathbf{r}_N, \mathbf{R}_1, \dots, \mathbf{R}_M)$$

Back to the complete many-body Schrödinger equation for electrons & nuclei

$$\left[-\sum_i \frac{\nabla_i^2}{2} - \sum_I \frac{\nabla_I^2}{2M_I} - \sum_{i,I} \frac{Z_I}{|\mathbf{r}_i - \mathbf{R}_I|} + \frac{1}{2} \sum_{i \neq j} \frac{1}{|\mathbf{r}_i - \mathbf{r}_j|} + \frac{1}{2} \sum_{I \neq J} \frac{Z_I Z_J}{|\mathbf{R}_I - \mathbf{R}_J|}\right] \Psi = E_{\text{tot}} \Psi$$

Here
$$\Psi = \Psi(\mathbf{r}_1, \dots, \mathbf{r}_N, \mathbf{R}_1, \dots, \mathbf{R}_M)$$

Example: the wavefunction of an electron vs. the wavefunction of the Pb nucleus

Born and Oppenheimer (1927) proposed the following approximation

Born and Oppenheimer (1927) proposed the following approximation

Factorize the electron-nuclear wavefunction

$$\Psi(\mathbf{r}_1,\ldots,\mathbf{r}_N,\mathbf{R}_1,\ldots,\mathbf{R}_M)\simeq\Psi_{\mathbf{R}}(\mathbf{r}_1,\ldots,\mathbf{r}_N)\,\chi(\mathbf{R}_1,\ldots,\mathbf{R}_M)$$

Born and Oppenheimer (1927) proposed the following approximation

Factorize the electron-nuclear wavefunction

$$\Psi(\mathbf{r}_1,\ldots,\mathbf{r}_N,\mathbf{R}_1,\ldots,\mathbf{R}_M)\simeq\Psi_{\mathbf{R}}(\mathbf{r}_1,\ldots,\mathbf{r}_N)\,\chi(\mathbf{R}_1,\ldots,\mathbf{R}_M)$$

• Find the electronic part as the ground state of Schrödinger equation with the nuclei clamped at ${f R}_1,\ldots,{f R}_M$

$$\left[-\sum_{i} \frac{\nabla_{i}^{2}}{2} + \sum_{i} V_{n}(\mathbf{r}_{i}; \mathbf{R}) + \frac{1}{2} \sum_{i \neq j} \frac{1}{|\mathbf{r}_{i} - \mathbf{r}_{j}|} \right] \Psi_{\mathbf{R}} = E(\mathbf{R}_{1}, \dots, \mathbf{R}_{M}) \Psi_{\mathbf{R}}$$

Born and Oppenheimer (1927) proposed the following approximation

Factorize the electron-nuclear wavefunction

$$\Psi(\mathbf{r}_1,\ldots,\mathbf{r}_N,\mathbf{R}_1,\ldots,\mathbf{R}_M)\simeq\Psi_{\mathbf{R}}(\mathbf{r}_1,\ldots,\mathbf{r}_N)\,\chi(\mathbf{R}_1,\ldots,\mathbf{R}_M)$$

 Find the electronic part as the ground state of Schrödinger equation with the nuclei clamped at $\mathbf{R}_1, \dots, \mathbf{R}_M$

$$\left[-\sum_{i} \frac{\nabla_{i}^{2}}{2} + \sum_{i} V_{n}(\mathbf{r}_{i}; \mathbf{R}) + \frac{1}{2} \sum_{i \neq j} \frac{1}{|\mathbf{r}_{i} - \mathbf{r}_{j}|}\right] \Psi_{\mathbf{R}} = E(\mathbf{R}_{1}, \dots, \mathbf{R}_{M}) \Psi_{\mathbf{R}}$$

Replace the result in the complete MBSE of the previous slide

$$\left[-\sum_{I} \frac{\nabla_{I}^{2}}{2M_{I}} + \frac{1}{2} \sum_{I \neq J} \frac{Z_{I}Z_{J}}{|\mathbf{R}_{I} - \mathbf{R}_{J}|} + E(\mathbf{R}_{1}, \dots, \mathbf{R}_{M}) \right] \chi = E_{\text{tot}} \chi$$

Schrödinger equation for nuclei Feliciano Giustino, QS3 School, Cornell, June 2018

Potential energy surface

$$\underbrace{-\sum_{I} \frac{\nabla_{I}^{2}}{2M_{I}}}_{\text{Kinetic Energy}} \chi + \underbrace{\left[\frac{1}{2} \sum_{I \neq J} \frac{Z_{I}Z_{J}}{|\mathbf{R}_{I} - \mathbf{R}_{J}|} + E(\mathbf{R}_{1}, \dots, \mathbf{R}_{M})\right]}_{\text{Potential Energy}} \chi = E_{\text{tot}} \chi$$

$$\underbrace{-\sum_{I} \frac{\nabla_{I}^{2}}{2M_{I}} \chi}_{\text{Kinetic Energy}} \chi + \underbrace{\left[\frac{1}{2} \sum_{I \neq J} \frac{Z_{I}Z_{J}}{|\mathbf{R}_{I} - \mathbf{R}_{J}|} + E(\mathbf{R}_{1}, \dots, \mathbf{R}_{M})\right]}_{\text{Potential Energy}} \chi = E_{\text{tot}} \chi$$

Potential energy surface

$$U(\mathbf{R}_1, \dots, \mathbf{R}_M) = \frac{1}{2} \sum_{I \neq J} \frac{Z_I Z_J}{|\mathbf{R}_I - \mathbf{R}_J|} + E(\mathbf{R}_1, \dots, \mathbf{R}_M)$$

Potential energy surface

$$\underbrace{-\sum_{I} \frac{\nabla_{I}^{2}}{2M_{I}} \chi + \underbrace{\left[\frac{1}{2} \sum_{I \neq J} \frac{Z_{I}Z_{J}}{|\mathbf{R}_{I} - \mathbf{R}_{J}|} + E(\mathbf{R}_{1}, \dots, \mathbf{R}_{M})\right]}_{\text{Kinetic Energy}} \chi = E_{\text{tot}} \chi$$

Potential energy surface

$$U(\mathbf{R}_1,\ldots,\mathbf{R}_M) = \frac{1}{2} \sum_{I \neq J} \frac{Z_I Z_J}{|\mathbf{R}_I - \mathbf{R}_J|} + E(\mathbf{R}_1,\ldots,\mathbf{R}_M)$$

Glue resulting from the negative charge of the electrons

$$-\sum_{I}\frac{\nabla_{I}^{2}}{2M_{I}}+U(\mathbf{R}_{1},\ldots,\mathbf{R}_{M})$$

$$-\sum_{I} \frac{\nabla_{I}^{2}}{2M_{I}} + U(\mathbf{R}_{1}, \dots, \mathbf{R}_{M})$$

$$\downarrow$$

$$M_{I} \frac{d^{2}\mathbf{R}_{I}}{dt^{2}} = \mathbf{F}_{I} = -\frac{\partial U}{\partial \mathbf{R}_{I}}$$

Newton's equation for nuclei

Feliciano Giustino, QS3 School, Cornell, June 2018

Simplest case of structural optimization: N₂ diatomic molecule

	DFT/LDA	Experiment	Rel. Error
bond length (Å)	1.102	1.098	0.4%
binding energy (eV)	11.46	9.76	17%

Note Nitrogen is $[1s^2]2s^2p^3$, therefore it has a spin S=3/2 after the Hund's first rule. As the above calculations are spin-unpolarized, the energy at infinity is higher than twice the energy of one N atom.

Structural optimization of bulk crystals: Silicon

Structural optimization of bulk crystals: Silicon

	DFT/LDA	Experiment	Rel. Error
lattice parameter (Å)	5.40	5.43	0.6%
cohesive energy (eV)	5.30	4.62	15%

In which of the following systems the Born-Oppenheimer approximation breaks down?

- A Organic-inorganic lead halide perovskites
- **B** Sulfur hydride high-temperature superconductors
- **C** Diamond
- **D** Graphene
- **E** What is the Born-Oppenheimer approximation?

Part 6

Band structures

Band structures

Example: graphene

direct lattice

reciprocal lattice

$$\phi_{i\mathbf{k}}(\mathbf{r}) = e^{i\mathbf{k}\cdot\mathbf{r}}u_{i\mathbf{k}}(\mathbf{r})$$
 with $u_{i\mathbf{k}}(\mathbf{r})$ periodic

$$-\frac{1}{2}\nabla^2\phi_{i\mathbf{k}}(\mathbf{r}) + V_{\text{tot}}(\mathbf{r})\phi_{i\mathbf{k}}(\mathbf{r}) = \varepsilon_{i\mathbf{k}}\phi_{i\mathbf{k}}(\mathbf{r})$$

k-dependent KS eigenvalue

Example: simplified tight-binding model of graphene

Example: DFT/LDA band structures of common semiconductors

Example: DFT/LDA band structure and Density of States of copper

Feliciano Giustino, QS3 School, Cornell, June 2018

Example: DFT/LDA Fermi surface and wavefunctions of copper

Example: Elpasolite Cs₂InAgCl₆

Volonakis et al, J. Phys. Chem. Lett., 8, 772 (2017)

74/88 Part 6/7 F Giustino

Are band structures real?

Are band structures real?

ARPES spectrum of diamond and DFT/LDA bands

Experiment by Prof. T. Yokoya Okayama University

Feliciano Giustino, QS3 School, Cornell, June 2018

The DFT total energy can be rewritten as

$$E[n] = \underbrace{\sum_{i} \frac{d\mathbf{k}}{\Omega_{\text{BZ}}} f_{i\mathbf{k}} \, \varepsilon_{i\mathbf{k}}}_{\text{band structure term}} - \underbrace{\left[E_{\text{H}} + \int d\mathbf{r} \, V_{xc}(\mathbf{r}) n(\mathbf{r}) - E_{xc} \right]}_{\text{double counting term}}$$

The DFT total energy can be rewritten as

$$E[n] = \underbrace{\sum_{i} \frac{d\mathbf{k}}{\Omega_{\text{BZ}}} f_{i\mathbf{k}} \, \varepsilon_{i\mathbf{k}}}_{\text{band structure term}} - \underbrace{\left[E_{\text{H}} + \int d\mathbf{r} \, V_{xc}(\mathbf{r}) n(\mathbf{r}) - E_{xc} \right]}_{\text{double counting term}}$$

- If the double-counting term could be neglected, the eigenvalues would give the change of total energy upon adding or removing one electron
- The KS levels can be thought of as very rough approximations to addition or removal energies

- DFT/LDA typically underestimates the band gaps of insulators and semiconductors
- Major challenge in materials design

Which of the following statements is true?

- f A DFT band structures are generally good for sp semiconductors
- **B** DFT predicts accurate band gaps in semiconductors and insulators
- **C** DFT performs poorly for metals
- **D** The DFT band gap problem has to do with pseudopotentials
- **E** The Kohn-Sham eigenvalues correspond to electron addition or removal energies

Part 7

DFT beyond the LDA

Perdew, Burke & Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

Within the LDA the XC energy is approximated using the local density

$$E_{xc}^{\mathrm{LDA}} = \int d\mathbf{r} \, n(\mathbf{r}) \, \epsilon_{xc}^{\mathrm{HEG}}[n(\mathbf{r})]$$

 Generalized gradient approximations (GGA) like PBE incorporate also information about the density gradient

$$E_{xc}^{\text{GGA}} = \int d\mathbf{r} f[n(\mathbf{r}), \nabla n(\mathbf{r})]$$

Perdew, Burke & Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

From Table 1 of Perdew, Burke, Ernzerhof, PRL 1996

Feliciano Giustino, QS3 School, Cornell, June 2018

- 3d transition metal and 4f rare earth
- LDA and PBE underestimate on-site Coulomb energy
- DFT+U adds Hubbard-like correction to remedy this deficiency
- Important for strongly-correlated materials
 Feliciano Giustino, QS3 School, Cornell, June 2018

Anisimov, Zaanen & Andersen, Phys. Rev. B 44, 943 (1991)

Figure from: Cococcioni & De Gironcoli, PRB 2005

Anisimov, Zaanen & Andersen, Phys. Rev. B 44, 943 (1991)

- Computationally efficient
- Hubbard U often used as an adjustable parameter
- Results can be very sensitive to U

83/88 Part 7/7 F Giustino

PBE0 Perdew, Burke & Ernzerhof, J. Chem. Phys. 105 (1996)HSE Heyd, Scuseria & Ernzerhof, J. Chem. Phys. 118, 8207 (2003)

PBE0 Perdew, Burke & Ernzerhof, J. Chem. Phys. 105 (1996)HSE Heyd, Scuseria & Ernzerhof, J. Chem. Phys. 118, 8207 (2003)

Improve upon semilocal GGA by including fully non-local Fock exchange

$$E_x^{\text{HF}} = -\sum_{j \in \text{occ}} \int d\mathbf{r}_1 d\mathbf{r}_2 \frac{\phi_i^*(\mathbf{r}_1)\phi_j^*(\mathbf{r}_2)\phi_i(\mathbf{r}_2)\phi_j(\mathbf{r}_1)}{|\mathbf{r}_1 - \mathbf{r}_2|}$$

PBE0 Perdew, Burke & Ernzerhof, J. Chem. Phys. 105 (1996)
 HSE Heyd, Scuseria & Ernzerhof, J. Chem. Phys. 118, 8207 (2003)

Improve upon semilocal GGA by including fully non-local Fock exchange

$$E_x^{\text{HF}} = -\sum_{j \in \text{occ}} \int d\mathbf{r}_1 d\mathbf{r}_2 \frac{\phi_i^*(\mathbf{r}_1)\phi_j^*(\mathbf{r}_2)\phi_i(\mathbf{r}_2)\phi_j(\mathbf{r}_1)}{|\mathbf{r}_1 - \mathbf{r}_2|}$$

PBE0 prescription

$$E_{xc}^{\text{PBE0}} = \frac{3}{4}E_x^{\text{PBE}} + \frac{1}{4}E_x^{\text{F}} + E_c^{\text{PBE}}$$

PBE0 Perdew, Burke & Ernzerhof, J. Chem. Phys. 105 (1996)
 HSE Heyd, Scuseria & Ernzerhof, J. Chem. Phys. 118, 8207 (2003)

Improve upon semilocal GGA by including fully non-local Fock exchange

$$E_x^{\text{HF}} = -\sum_{j \in \text{occ}} \int d\mathbf{r}_1 d\mathbf{r}_2 \frac{\phi_i^*(\mathbf{r}_1)\phi_j^*(\mathbf{r}_2)\phi_i(\mathbf{r}_2)\phi_j(\mathbf{r}_1)}{|\mathbf{r}_1 - \mathbf{r}_2|}$$

PBE0 prescription

$$E_{xc}^{\text{PBE0}} = \frac{3}{4}E_x^{\text{PBE}} + \frac{1}{4}E_x^{\text{F}} + E_c^{\text{PBE}}$$

Requires the evaluation of the non-local Fock exchange potential (expensive)

$$V_{\rm X}(\mathbf{r}, \mathbf{r}') = -\sum_{j \in occ} \frac{\phi_j(\mathbf{r})\phi_j^*(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|}$$

Feliciano Giustino, QS3 School, Cornell, June 2018

PBE0 Perdew, Burke & Ernzerhof, J. Chem. Phys. 105 (1996)HSE Heyd, Scuseria & Ernzerhof, J. Chem. Phys. 118, 8207 (2003)

HSE prescription: separate short-range and long-range coulomb interactions

$$E_{xc}^{\mathrm{HSE}} = \left[\frac{3}{4}E_x^{\mathrm{PBE},\mathrm{sr}} + \frac{1}{4}E_x^{\mathrm{F},\mathrm{sr}}\right] + E_x^{\mathrm{PBE},\mathrm{lr}} + E_c^{\mathrm{PBE}}$$

PBE0 Perdew, Burke & Ernzerhof, J. Chem. Phys. 105 (1996)
 HSE Heyd, Scuseria & Ernzerhof, J. Chem. Phys. 118, 8207 (2003)

• HSE prescription: separate short-range and long-range coulomb interactions

$$E_{xc}^{\mathrm{HSE}} = \left[\frac{3}{4}E_x^{\mathrm{PBE},\mathrm{sr}} + \frac{1}{4}E_x^{\mathrm{F},\mathrm{sr}}\right] + E_x^{\mathrm{PBE},\mathrm{lr}} + E_c^{\mathrm{PBE}}$$

• The separation is carried our by breaking the Coulomb potential in two parts

PBE0 Perdew, Burke & Ernzerhof, J. Chem. Phys. 105 (1996)HSE Heyd, Scuseria & Ernzerhof, J. Chem. Phys. 118, 8207 (2003)

Band gaps

Typically PBE underestimates band gaps while Hartree-Fock overestimates. Mixing PBE and HF yields values closer to experiments.


```
PBE0 Perdew, Burke & Ernzerhof, J. Chem. Phys. 105 (1996)HSE Heyd, Scuseria & Ernzerhof, J. Chem. Phys. 118, 8207 (2003)
```

Band gaps

Typically PBE underestimates band gaps while Hartree-Fock overestimates. Mixing PBE and HF yields values closer to experiments.

Exchange fraction

Widespread practice of using the mixing fraction as an adjustable empirical parameter. Loss of predictive power.


```
    PBE0 Perdew, Burke & Ernzerhof, J. Chem. Phys. 105 (1996)
    HSE Heyd, Scuseria & Ernzerhof, J. Chem. Phys. 118, 8207 (2003)
```

Band gaps

Typically PBE underestimates band gaps while Hartree-Fock overestimates. Mixing PBE and HF yields values closer to experiments.

Exchange fraction

Widespread practice of using the mixing fraction as an adjustable empirical parameter. Loss of predictive power.

Correlation

The correlation energy is still described at the PBE level. Misses van der Waals effects and dynamical renormalization effects.

GW method

Hedin & Lundqvist, Solid State Physics 23, 1 (1969) Hybertsen & Louie, Phys Rev B 34, 5390 (1986)

KS
$$-\frac{1}{2}\nabla^2\phi_i(\mathbf{r}) + \left[V_{\mathrm{n}}(\mathbf{r}) + V_{\mathrm{H}}(\mathbf{r})\right]\phi_i(\mathbf{r}) + \boxed{V_{xc}(\mathbf{r})}\phi_i(\mathbf{r}) = \varepsilon_i\phi_i(\mathbf{r})$$

GW method

Hedin & Lundqvist, Solid State Physics 23, 1 (1969) Hybertsen & Louie, Phys Rev B 34, 5390 (1986)

$$\begin{aligned} \mathsf{KS} & & -\frac{1}{2}\nabla^2\phi_i(\mathbf{r}) + \left[V_\mathrm{n}(\mathbf{r}) + V_\mathrm{H}(\mathbf{r})\right]\phi_i(\mathbf{r}) + \underbrace{V_{xc}(\mathbf{r})}\phi_i(\mathbf{r}) = \varepsilon_i\phi_i(\mathbf{r}) \\ & & \downarrow \\ \mathsf{GW} & & -\frac{1}{2}\nabla^2\phi_i(\mathbf{r}) + \left[V_\mathrm{n}(\mathbf{r}) + V_\mathrm{H}(\mathbf{r})\right]\phi_i(\mathbf{r}) + \underbrace{\int d\mathbf{r}'\Sigma(\mathbf{r},\mathbf{r}',\varepsilon_i)}\phi_i(\mathbf{r}') = \varepsilon_i\phi_i(\mathbf{r}) \end{aligned}$$

GW method

Hedin & Lundqvist, Solid State Physics 23, 1 (1969) Hybertsen & Louie, Phys Rev B 34, 5390 (1986)

$$\begin{aligned} \mathsf{KS} & -\frac{1}{2} \nabla^2 \phi_i(\mathbf{r}) + \left[V_\mathrm{n}(\mathbf{r}) + V_\mathrm{H}(\mathbf{r}) \right] \phi_i(\mathbf{r}) + \underbrace{V_{xc}(\mathbf{r})}_{} \phi_i(\mathbf{r}) = \varepsilon_i \phi_i(\mathbf{r}) \\ & \downarrow \\ \mathsf{GW} & -\frac{1}{2} \nabla^2 \phi_i(\mathbf{r}) + \left[V_\mathrm{n}(\mathbf{r}) + V_\mathrm{H}(\mathbf{r}) \right] \phi_i(\mathbf{r}) + \underbrace{\int d\mathbf{r}' \Sigma(\mathbf{r}, \mathbf{r}', \varepsilon_i)}_{} \phi_i(\mathbf{r}') = \varepsilon_i \phi_i(\mathbf{r}) \\ & \Sigma = GW \\ & \uparrow \\ \mathsf{Screened Coulomb interaction} \end{aligned}$$

Many-body perturbation theory

Hedin & Lundqvist, Solid State Physics 23, 1 (1969) Hybertsen & Louie, Phys Rev B 34, 5390 (1986)

Feliciano Giustino, QS3 School, Cornell, June 2018

Ready to start DFT calculations?

$$\left[-\sum_{i} \frac{\nabla_{i}^{2}}{2} + \sum_{i} V_{n}(\mathbf{r}_{i}) + \frac{1}{2} \sum_{i \neq j} \frac{1}{|\mathbf{r}_{i} - \mathbf{r}_{j}|} \right] \Psi = E \Psi$$

$$\left[-\sum_{i} \frac{\nabla_{i}^{2}}{2} + \sum_{i} V_{n}(\mathbf{r}_{i}) + \frac{1}{2} \sum_{i \neq j} \frac{1}{|\mathbf{r}_{i} - \mathbf{r}_{j}|} \right] \Psi = E \Psi$$

In order to prove the HK theorem we rewrite the energy more compactly

$$E = \int d\mathbf{r} \, n(\mathbf{r}) V_{\rm n}(\mathbf{r}) + \langle \Psi | \hat{U} | \Psi \rangle, \qquad \hat{U} = -\sum_{i} \frac{\nabla_{i}^{2}}{2} + \frac{1}{2} \sum_{i \neq j} \frac{1}{|\mathbf{r}_{i} - \mathbf{r}_{j}|}$$

$$\left[-\sum_{i} \frac{\nabla_{i}^{2}}{2} + \sum_{i} V_{n}(\mathbf{r}_{i}) + \frac{1}{2} \sum_{i \neq j} \frac{1}{|\mathbf{r}_{i} - \mathbf{r}_{j}|} \right] \Psi = E \Psi$$

In order to prove the HK theorem we rewrite the energy more compactly

$$E = \int d\mathbf{r} \, n(\mathbf{r}) V_{\rm n}(\mathbf{r}) + \langle \Psi | \hat{U} | \Psi \rangle, \qquad \hat{U} = -\sum_{i} \frac{\nabla_{i}^{2}}{2} + \frac{1}{2} \sum_{i \neq j} \frac{1}{|\mathbf{r}_{i} - \mathbf{r}_{j}|}$$

Now we want to show the following

Theorem

In the ground-state, the electron density $n({\bf r})$ uniquely determines the external potential $V_{\rm n}({\bf r})$

Proof of the Hohenberg-Kohn theorem

• Assume there are two potentials V_1 and V_2 for the same density [For clarity we temporarily suppress the subscript 'n' in V_n]

- Assume there are two potentials V_1 and V_2 for the same density [For clarity we temporarily suppress the subscript 'n' in $V_{\rm n}$]
- By solving the MBSE for each potential we find the lowest-energy states E_1 , Ψ_1 and E_2 , Ψ_2 , respectively

- Assume there are two potentials V_1 and V_2 for the same density [For clarity we temporarily suppress the subscript 'n' in V_n]
- By solving the MBSE for each potential we find the lowest-energy states E_1 , Ψ_1 and E_2 , Ψ_2 , respectively
- Since Ψ_1 is the ground state of V_1 we have

$$\int nV_1 + \langle \Psi_1 | \hat{U} | \Psi_1 \rangle = E_1$$

- Assume there are two potentials V_1 and V_2 for the same density [For clarity we temporarily suppress the subscript 'n' in V_n]
- By solving the MBSE for each potential we find the lowest-energy states E_1 , Ψ_1 and E_2 , Ψ_2 , respectively
- Since Ψ_1 is the ground state of V_1 we have

$$\int nV_1 + \langle \Psi_1 | \hat{U} | \Psi_1 \rangle = E_1$$

$$\int nV_2 + \langle \Psi_1 | \hat{U} | \Psi_1 \rangle > E_2$$

- Assume there are two potentials V_1 and V_2 for the same density [For clarity we temporarily suppress the subscript 'n' in V_n]
- By solving the MBSE for each potential we find the lowest-energy states E_1 , Ψ_1 and E_2 , Ψ_2 , respectively
- Since Ψ_1 is the ground state of V_1 we have

$$\int nV_1 + \langle \Psi_1 | \hat{U} | \Psi_1 \rangle = E_1$$

$$\int nV_2 + \langle \Psi_1 | \hat{U} | \Psi_1 \rangle > E_2$$

The difference gives

$$\int n(V_1 - V_2) > E_1 - E_2$$

- Assume there are two potentials V_1 and V_2 for the same density [For clarity we temporarily suppress the subscript 'n' in V_n]
- By solving the MBSE for each potential we find the lowest-energy states E_1 , Ψ_1 and E_2 , Ψ_2 , respectively
- Since Ψ_1 is the ground state of V_1 we have

$$\int nV_1 + \langle \Psi_1 | \hat{U} | \Psi_1 \rangle = E_1$$

$$\int nV_2 + \langle \Psi_1 | \hat{U} | \Psi_1 \rangle > E_2$$

The difference gives

$$\int n(V_1 - V_2) > E_1 - E_2$$

ullet By repeating the same argument starting from Ψ_2 we have

$$\int n(V_2 - V_1) > E_2 - E_1$$

- Assume there are two potentials V_1 and V_2 for the same density [For clarity we temporarily suppress the subscript 'n' in $V_{\rm n}$]
- By solving the MBSE for each potential we find the lowest-energy states E_1 , Ψ_1 and E_2 , Ψ_2 , respectively
- Since Ψ_1 is the ground state of V_1 we have

$$\int nV_1 + \langle \Psi_1 | \hat{U} | \Psi_1 \rangle = E_1$$

$$\int nV_2 + \langle \Psi_1 | \hat{U} | \Psi_1 \rangle > E_2$$

The difference gives

$$\int n(V_1 - V_2) > E_1 - E_2$$

ullet By repeating the same argument starting from Ψ_2 we have

$$\int n(V_2 - V_1) > E_2 - E_1$$

• The sum of the last two equations yields the contradiction 0 > 0

03/09 Part 7/7 F Giustino

Total energy

 $-2.90 \; \mathrm{Ha}$

-78.9 eV

Kinetic energy + electron-nucleus interaction $-3.89~\mathrm{Ha}~-105.8~\mathrm{eV}$

Total energy

 $-2.90 \; \mathrm{Ha}$

-78.9 eV

Kinetic energy
$$+$$
 electron-nucleus interaction $-3.89~\mathrm{Ha}~-105.8~\mathrm{eV}$ Hartree energy $+2.05~\mathrm{Ha}~+55.8~\mathrm{eV}$

Total energy

-2.90 Ha -78.9 eV

Kinetic energy + electron-nucleus interaction $-3.89~\mathrm{Ha}~-105.8~\mathrm{eV}$

Hartree energy $+2.05~\mathrm{Ha}~+55.8~\mathrm{eV}$

Exchange energy -1.02 Ha -27.8 eV

Total energy -2.90 Ha -78.9 eV

${\sf Kinetic\ energy\ +\ electron-nucleus\ interaction}$	$-3.89 \; \mathrm{Ha}$	$-105.8~\mathrm{eV}$
Hartree energy	$+2.05~\mathrm{Ha}$	$+55.8~\mathrm{eV}$
Exchange energy	$-1.02 \; {\rm Ha}$	$-27.8~\mathrm{eV}$
Correlation energy	$-0.04 \; \mathrm{Ha}$	-1.1 eV

Total energy

-2.90 Ha -78.9 eV