Lexical Analysis 1st Phase of Compiler Construction

Section 1.1 Lexical Analysis- Introduction

1.1 Lexical Analyzer

- Lexical Analyzer reads the source program character by character to produce tokens.
- Normally a lexical analyzer doesn't return a list of tokens at one shot, it returns a token when the parser asks a token from it.

Roles of the Lexical analyzer

Lexical analyzer performs following tasks:

- Helps to identify token in the symbol table
- Removes white spaces and comments from the source program
- Correlates error messages with the source program
- Helps you to expands the macros if it is found in the source program
- Read input characters from the source program

Tokens, Lexemes and Patterns

• **Token:** Token is a sequence of characters that can be treated as a single logical entity. Typical tokens are:

Identifiers 2) keywords 3) operators 4) special symbols 5)constants

- Lexeme: A lexeme is a sequence of characters in the source program that is matched by the pattern for a token.
- **Pattern:** A set of strings in the input for which the same token is produced as output. This set of strings is described by a rule called a pattern associated with the token.

Tokens, Lexemes and Patterns

Token	Lexeme (element of a kind)	Pattern
ID	x y n_0	letter followed by letters and digits
NUM	-123 1.456e- ⁵	any numeric constant
IF	if	if
LPAREN	((
LITERAL	``Hello"	any string of characters (except ``) between `` and ``

• Regular expressions are widely used to specify patterns.

Example

Tokens Generated

Lexeme	Token
int	Keyword
maximum	Identifier
(Operator
int	Keyword
X	Identifier
,	Operator
int	Keyword
Y	Identifier
)	Operator
{	Operator

```
#include <stdio.h>
int maximum(int x, int y){
    // This will compare 2 numbers
```

Туре	Examples
Comment	//This will compare 2 numbers
Pre-processor directive	#include <stdio.h></stdio.h>
Whitespace	/n /b /t

Non-Tokens

Terminology of Languages

- **Alphabet**: a finite set of symbols (ASCII characters)
- String:
 - Finite sequence of symbols on an alphabet
 - Sentence and word are also used in terms of string
 - ε is the empty string
 - |s| is the length of string s.
- Language: sets of strings over some fixed alphabet
 - \emptyset the empty set is a language.
 - {ε} the set containing empty string is a language
 - The set of well-formed C programs is a language
 - The set of all possible identifiers is a language.
- Operators on Strings:
 - Concatenation: xy represents the concatenation of strings x and y. $s \varepsilon = s / \varepsilon s = s$
 - $s^n = s s s ... s (n times)$ $s^0 = \varepsilon$

Operations on Languages

- Concatenation:
 - $L_1L_2 = \{ s_1s_2 | s_1 \in L_1 \text{ and } s_2 \in L_2 \}$
- Union
 - $L_1 \cup L_2 = \{ s \mid s \in L_1 \text{ or } s \in L_2 \}$
- Exponentiation:

•
$$\hat{\mathbf{L}}^0 = \{ \mathbf{\epsilon} \}$$
 $\mathbf{L}^1 = \mathbf{L}$ $\mathbf{L}^2 = \mathbf{L}\mathbf{L}$

$$L^1 = L$$

$$L^2 = LL$$

• Kleene Closure

•
$$L^* = \bigcup_{i=0}^{\infty} L^i$$

Positive Closure

•
$$L^+ = \bigcup_{i=1}^{\infty} L^i$$

Example

•
$$L_1 = \{a,b,c,d\}$$
 $L_2 = \{1,2\}$

- $L_1L_2 = \{a1,a2,b1,b2,c1,c2,d1,d2\}$
- $L_1 \cup L_2 = \{a,b,c,d,1,2\}$
- L_1^3 = all strings with length three (using a,b,c,d)
- L_1^* = all strings using letters a,b,c,d and empty string
- L_1^+ = doesn't include the empty string

Regular Expressions

- We use regular expressions to describe tokens of a programming language.
- A regular expression is built up of simpler regular expressions (using defining rules)
- Each regular expression denotes a language.
- A language denoted by a regular expression is called as a regular set.

Regular Expressions (Rules)

Regular expressions over alphabet Σ

Reg. Expr	Language it denotes
3	{8}
$a \in \Sigma$	{a}
$(\mathbf{r}_1) \mid (\mathbf{r}_2)$	$L(r_1) \cup L(r_2)$
$(\mathbf{r}_1) (\mathbf{r}_2)$	$L(r_1) L(r_2)$
$(r)^*$	$(L(r))^*$
(r)	L(r)

- $(r)^+ = (r)(r)^*$
- (r)? = $(r) \mid \epsilon$

Regular Expressions (cont.)

• We may remove parentheses by using precedence rules.

```
• * highest
```

- concatenation next
- lowest
- $ab^*|c$ means $(a(b)^*)|(c)$

• Ex:

- $\Sigma = \{0,1\}$
- $0|1 \Rightarrow \{0,1\}$
- $(0|1)(0|1) \Rightarrow \{00,01,10,11\}$
- $0^* = \{\epsilon, 0, 00, 000, 0000, \dots\}$
- $(0|1)^* =>$ all strings with 0 and 1, including the empty string

Regular Definitions

- To write regular expression for some languages can be difficult, because their regular expressions can be quite complex. In those cases, we may use regular definitions.
- We can give names to regular expressions, and we can use these names as symbols to define other regular expressions.
- A *regular definition* is a sequence of the definitions of the form:

 $d_1 \rightarrow r_1$ $d_2 \rightarrow r_2$

 $d_n \rightarrow r_n$

where d_i is a distinct name and

r_i is a regular expression over symbols in

Regular Definitions (cont.)

Ex: Identifiers in Pascal

```
letter \rightarrow A | B | ... | Z | a | b | ... | z
digit \rightarrow 0 | 1 | ... | 9
id \rightarrow letter (letter | digit ) *
```

• If we try to write the regular expression representing identifiers without using regular definitions, that regular expression will be complex.

```
(A|...|Z|a|...|z) ( (A|...|Z|a|...|z) | (0|...|9) ) *
```

Ex: Unsigned numbers in Pascal

```
digit \rightarrow 0 | 1 | ... | 9
digits \rightarrow digit +
opt-fraction \rightarrow ( . digits ) ?
opt-exponent \rightarrow ( E (+|-)? digits ) ?
unsigned-num \rightarrow digits opt-fraction opt-exponent
```

Notational Shorthand

• The following shorthand are often used:

$$r^+ = rr^*$$
 $r? = r \mid \varepsilon$
 $[a-z] = a \mid b \mid c \mid \dots \mid z$

Examples:
 digit → [0-9]
 digits → digit⁺
 optional_fraction → (. digits)?
 optional_exponent → (E (+ | -)? digit⁺)?
 num → digits optional_fraction optional_exponent

Recognition of Tokens

```
e.g.

stmt → if expr then stmt

if expr then stmt else stmt

| ε

expr → term relop term

| term

term → id

| num
```

Regular Definitions if → if then → then else → else relop → < | <= | = | <> | >= id → letter (letter | digit)* num →digits optional_fraction optional_exponent

Assumptions delim → blank | tab | newline

Transition Diagrams

$$| color | co$$

Transition Diagrams: Code

```
token nexttoken()
{ while (1) {
    switch (state) {
    case 0: c = nextchar();
                                                      Decides the
       if (c==blank || c==tab || c==newline) {
         state = 0:
                                                     next start state
         lexeme beginning++;
                                                        to check
       else if (c=='<') state = 1;
       else if (c=='=') state = 5;
       else if (c=='>') state = 6;
       else state = fail();
                                              int fail()
       break;
                                              { forward = token beginning;
     case 1:
                                                swith (start) {
                                                case 0: start = 9; break;
     case 9: c = nextchar();
                                                case 9: start = 12; break;
       if (isletter(c)) state = 10;
                                                case 12: start = 20; break;
       else state = fail();
                                                case 20: start = 25; break;
       break;
                                                case 25: recover(); break;
     case 10: c = nextchar();
                                                default: /* error */
       if (isletter(c)) state = 10;
       else if (isdigit(c)) state = 10;
                                                return start;
       else state = 11;
       break;
```

The Lex and Flex Scanner Generators

- Lex and its newer cousin flex are scanner generators
- Systematically translate regular definitions into C source code for efficient scanning
- Generated code is easy to integrate in C applications

Creating a Lexical Analyzer with Lex and Flex

Lex Specification

• A lex specification consists of three parts:

regular definitions, C declarations in % { % }

%

translation rules

%%

user-defined auxiliary procedures

• The *translation rules* are of the form:

```
p_1 { action_1 } p_2 { action_2 } p_n { action_n }
```

Regular Expressions in Lex

```
match the character x
X
         match the character.
"string" match contents of string of characters
         match any character except newline
         match beginning of a line
         match the end of a line
[xyz] match one character x, y, or z (use \setminus to escape -)
[^xyz] match any character except x, y, and z
[a-z] match one of a to z
         closure (match zero or more occurrences)
         positive closure (match one or more occurrences)
r+
         optional (match zero or one occurrence)
r?
         match r_1 then r_2 (concatenation)
r_1r_2
         match r_1 or r_2 (union)
r_1 \mid r_2
(r)
     grouping
r_1 \backslash r_2
         match r_1 when followed by r_2
         match the regular expression defined by d
{d}
```

Star operation (Kleene Closure)

$$a^* = \{a^0, a^1, a^2, a^3, a^4, \dots a^{\infty}\} = \{\epsilon, a, aa, aaa, aaaa, \dots a^{\infty}\}$$

Important Characteristics

- Value of * ranges from 0 to ∞ i.e. the elements of set a* will include $\{a^0, a^1, a^{2}, a^{3}, a^{4}, a^{5}, a^{\infty}\}$
- \triangleright a⁰ means zero number of a's and this is represented by ϵ .
- > * is represented in finite automata by a loop on that particular state; if value of a is 3 i.e. a³ loop iterates for 3 times.
- \triangleright If value of a is 0 i.e. a^0 loop will not iterate at all.

Positive Closure

$$a^+ = \{a^1, a^2, a^3, a^4, \dots, a^\infty\} = \{a, aa, aaa, aaaa, aaaa, \dots a^\infty\}$$

Important Characteristics

- > value of + ranges from 1 to ∞ *i.e.* the elements of set a^+ will include $\{a^1, a^2, a^3, a^4, a^5, a^6\}$
- \triangleright There is no a⁰ move i.e. ϵ is not part of this set.
- ➤ Value of a will start from 1 *i.e.* at least one will come which can be followed by 0 or more 1's.

m/c for a⁺

Concatenation Operation

Concatenation means joining (a.b)

Important Note: a.b \neq b.a *i.e.* order of join will change the design of automata

OR Operation

NFA for a+b (a/b)

Section 1.2 Introduction to Finite Automata

FINITE AUTOMATA

Automata means machine

Finite Automata consist of 5 tuples:

$$M = (Q, \Sigma, \delta, q_0, F)$$

- Q A finite set of states
- Σ A finite set of input alphabet
- δ A transition function
- q_0 The initial/starting state, q_0 is in Q
- F A set of final/accepting states, which is a subset of F

Types of Automata

There are two types of finite Automata:

- ➤ Deterministic Finite Automata (DFA)
- ➤ Non-deterministic finite Automata (NFA)

Deterministic Finite Automata

Deterministic Finite Automata is a Machine where corresponding to a every input of Σ , there can be only one output from every state.

Here $\Sigma = \{a, b\}$ and at every state there is one O/P from 'a' and one O/P from 'b'. None of the states have more then one output corresponding to a or b.

Non-Deterministic Finite Automata

Non-Deterministic Finite Automata is a machine where corresponding to a single input of Σ (a,b), there can be more than one output from a particular state.

Here state q_0 has two moves from a, one to q_1 and other to q_2 , like wise state q_2 has two moves on 'b' one self loop to q_1 and another to q_f

Types of NFA

There are two type of NFA

i. NFA without **ε** -move

ii. NFA with **\varepsilon** -move

NFA with ε-move

Consider the following NFA, here corresponding q_1 there is an ϵ -move.

Difference between DFA and NFA

Deterministic Finite Automata

- Deterministic Finite Automata is a Machine where corresponding to a every input of Σ , there can be only one output from every state.
- DFA will not have ε-move

Non-Deterministic Finite Automata

- Non-Deterministic Finite Automata is a machine where corresponding to a single input of Σ (a,b), there can be more than one output from a particular state.
- NFA can have E-move

Section 1.3 Thomson's Construction

Thompson's Construction

We have three operations on Regular Expressions:

- i) Star operation
- ii) Concatenation
- iii) OR operation

For each operation we have defined rules to build a NFA with E-move

Thompson's Construction for Star Operation

$$\mathbf{a}^* = \{ \mathbf{\epsilon}, \mathbf{a}, \mathbf{aa}, \mathbf{aaa}, \mathbf{aaaa}, \dots \}$$

NFA for a*

NFA for a* using Thomson's Construction:

Thompson's Construction for Star Operation

NFA for a* using Thomson's Construction:

Thompson's Construction for Star Operation

NFA for a* using Thomson's Construction:

N number of a's $q_0 \rightarrow q_1 \rightarrow q_2 \rightarrow q_1$ > $q_1 \rightarrow q_2 \rightarrow q_1$ loops for N times where N varies from 2 to∞

Thompson's Construction for Concatenation Operation

NFA for ab using Thomson's Construction

Thompson's Construction for OR Operation

NFA for a+b (a/b) using Thomson's Construction

Thompson's construction for aa*b

Question 1

Thompson's for a:

 q_0 q_f

Thompson's for b:

 q_0 q_f

Thompson's for a*:

Thompson's construction for aa*b

Question 1

Thompson's Construction for aa*b:

Question 2

Thompson's construction for a*b(a/b)

Thompson's for 3 3 a*: q_0 q_1 3 b Thompson's for b: 3 \mathbf{q}_1 Thompson's for a/b: q_0

Thompson's construction for a*b(a/b)

Question 2

NFA using Thompson's Construction

Thompson's construction for (a/b/c)

Question 3

Three ε out moves moves from a state are not allowed

Final Output

Thompson's construction for ab(a/b)*

Question 4

Thompson's construction for ab(a/b)*

Question 4

3

Give the Thompson's construction for ab(a/b)*

Question 4

NFA using Thompson's Construction

Section 1.4 Subset Construction

How to work with ε-Closure Function

Steps for ε -Closure function:

- First step is to take ε -Closure of the start state, for *e.g.* if the start state is 0 so take ε -Closure(0).
- \triangleright ϵ -Closure(n) will include set of all the states which can be traversed from state n without consuming any input *i.e.* through ϵ move only.
- Most Imp.- "ε-Closure of a state will include that state itself in the set", *i.e.* ε-Closure(n) will include n in its set of states.

Start with the start state: state 0 ϵ -closure(0):{0,1,2,4,7} = A

State	a	b
A		
(0,1,2,4,7)		

Start with the start state:

$$\epsilon$$
-closure(0):{0,1,2,4,7} = A
(A, a)= ({0,1,2,4,7}, a) = {0,a} U{1,a} U{2,a} U{4,a} U{7,a} = \Phi U \Phi U{3} U \Phi U{8}

= ε -closure (3) \cup ε -closure (8)

State	a	b
A		
(0,1,2,4,7)		

(A, a) = ε -closure (3) \cup ε -closure (8)	
$= \{1,2,3,4,6,7\} \cup \{8\}$	
$= \{1,2,3,4,6,7,8\} = B$	

State	a	b
A	В	
(0,1,2,4,7)	(1,2,3,4,6,7,8)	

$(A, b) = (\{0,1,2,4,7\}, b)$
$=\{0,b\} \cup \{1,b\} \cup \{2,b\} \cup \{4,b\} \cup \{7,b\}$
$= \Phi \cup \Phi \cup \Phi \cup \{5\} \cup \Phi$
$= \varepsilon$ -closure (5)

State	a	b
A	В	
(0,1,2,4,7)	(1,2,3,4,6,7,8)	

$(A, b) = \varepsilon$ -closure (5)	
$= \{1,2,4,5,6,7\} = C$	

State	a	b
A	В	С
(0,1,2,4,7)	(1,2,3,4,6,7,8)	(1,2,4,5,6,7)

$(B, a) = (\{1,2,3,4,6,7,8\}, a)$
$= \{1,a\} \cup \{2,a\} \cup \{a,a\} \cup \{4,a\} \cup \{6,a\} \cup \{7,a\} \cup \{8,a\}$
$= \Phi \cup \{3\} \cup \Phi \cup \Phi \cup \{8\} \cup \Phi$
$=$ ε -closure (3) \cup ε -closure (8)
= {1,2,3,4,6,7,8}=B (Slide No. 55)

State	a	b
A (0,1,2,4,7)	B (1,2,3,4,6,7,8)	C (1,2,4,5,6,7)
В	В	

$(\mathbf{B}, \mathbf{b}) = (\{1,2,4,5,6,7,8\}, \mathbf{b})$
$=\{1,b\} \cup \{2,b\} \cup \{4,b\} \cup \{5,b\} \cup \{6,b\} \cup \{7,b\} \cup \{8,b\}$
$= \Phi \cup \Phi \cup \{5\} \cup \Phi \cup \Phi \cup \Phi \{9\}$
$=$ ε -closure (5) \cup ε -closure (9)

State	a	b
A (0,1,2,4,7)	B (1,2,3,4,6,7,8)	C (1,2,4,5,6,7)
В	В	

(B, b) = ε -closure (5) U ε -closure (9)	
$= \{1,2,4,5,6,7,9\} = D$	

State	a	b
A (0,1,2,4,7)	B (1,2,3,4,6,7,8)	C (1,2,4,5,6,7)
В	В	D (1,2,4,5,6,7,9)

$(C, a) = (\{1,2,4,5,6,7\}, a)$
$= \{1,a\} \cup \{2,a\} \cup \{4,a\} \cup \{5,a\} \cup \{6,a\} \cup \{7,a\}$
$= \Phi \cup \{3\} \cup \Phi \cup \Phi \cup \Phi \cup \{8\}$
$=$ ε -closure (3) \cup ε -closure (8)
$= \{1,2,3,4,6,7,8\} = B \text{ (Slide no. 55)}$

State	a	b
A	В	C
(0,1,2,4,7)	(1,2,3,4,6,7,8)	(1,2,4,5,6,7)
В	В	D
		(1,2,4,5,6,7,9)
C	В	

(C, b)=
$$(\{1,2,4,5,6,7\}, b)$$

= $\{1,b\} \cup \{2,b\} \cup \{4,b\} \cup \{5,b\} \cup \{6,b\} \cup \{7,b\}$
= $\Phi \cup \Phi \cup \{5\} \cup \Phi \cup \Phi$
= ϵ -closure (5) = $\{1,2,4,5,6,7\}$ =C (Slide no. 57)

State	a	b
A	В	С
(0,1,2,4,7)	(1,2,3,4,6,7,8)	(1,2,4,5,6,7)
В	В	D
		(1,2,4,5,6,7,9)
С	В	С

$(\mathbf{D}, \mathbf{a}) = (\{1,2,4,5,6,7,9\}, \mathbf{a})$
$= \{1,a\} \cup \{2,a\} \cup \{4,a\} \cup \{5,a\} \cup \{6,a\} \cup \{7,a\} \cup \{9,a\}$
$= \Phi \cup \{3\} \cup \Phi \cup \Phi \cup \Phi \cup \{8\} \cup \Phi$
$=$ ε -closure (3) \cup ε -closure (8)
= {1,2,3,4,6,7,8}=B (Slide no. 55)

State	a	b
A	В	С
(0,1,2,4,7)	(1,2,3,4,6,7,8)	(1,2,4,5,6,7)
В	В	D
		(1,2,4,5,6,7,9)
С	В	С
D	В	

(D, b)=
$$(\{1,2,4,5,6,7,9\}, b)$$

= $\{1,b\}\cup\{2,b\}\cup\{4,b\}\cup\{5,b\}\cup\{6,b\}\cup\{7,b\}\cup\{9,b\}$
= $\Phi\cup\Phi\cup\{5\}\cup\Phi\cup\Phi\cup\Phi\cup\Phi$
= ϵ -closure (5)= $\{1,2,4,5,6,7\}$ =C (Slide no. 57)

State	a	b
A	В	С
(0,1,2,4,7)	(1,2,3,4,6,7,8)	(1,2,4,5,6,7)
В	В	D
		(1,2,4,5,6,7,9)
C	В	C
D	В	С

State	a	b	
A	В	С	
(0,1,2,4,7)	(1,2,3,4,6,7,8)	(1,2,4,5,6,7)	
В	В	D	
		(1,2,4,5,6,7,9)	
С	В	С	
D	В	С	

Final Output

- ➤ Here state A is start state since set 'A' has state '0' in its subset which is start state in the NFA with Thompson's construction.
- ➤ D is final state since the set D has state '9' which is final state in the NFA with Thompson's Construction

ϵ -closure(T)

```
push all states of T onto stack
initialize \epsilon-closure(T) to T
while (stack is not empty) do
        begin
        pop t, the top element, off stack;
        for (each state u with an edge from t to u labelled \epsilon do
                 begin
                 if (u is not in \epsilon-closure(T)) do
                         begin
                         add u to \epsilon-closure(T)
                         push u onto stack
                         end
                 end
        end
```

Converting a NFA into a DFA (subset construction)

```
put \varepsilon-closure(\{s_0\}) as an unmarked state into the set of DFA (DS)
while (there is one unmarked S_1 in DS) do
                                                                \varepsilon-closure(\{s_0\}) is the set of all states can be accessible
   begin
                                                                from s_0 by \varepsilon-transition.
           mark S<sub>1</sub>
                                                           set of states to which there is a transition on
           for each input symbol a do
                                                            a from a state s in S_1
              begin
                 S_2 \leftarrow \varepsilon-closure(move(S_1,a))
                 if (S_2 \text{ is not in DS}) then
                        add S<sub>2</sub> into DS as an unmarked state
                 transfunc[S_1,a] \leftarrow S_2
              end
         end
```

- a state S in DS is an accepting state of DFA if a state s in S is an accepting state of NFA
- the start state of DFA is ε -closure($\{s_0\}$)

Section 1.5 RE to DFA through Syntax Tree Method or Direct Method

Converting Regular Expressions Directly to DFAs

- Important state
- We may convert a regular expression into a DFA (without creating a NFA first).
- First we augment the given regular expression by concatenating it with a special symbol #.
 - $r \rightarrow (r)\#$ augmented regular expression
- Then, we create a syntax tree for this augmented regular expression.
- In this syntax tree, all alphabet symbols (plus # and the empty string) in the augmented regular expression will be on the leaves, and all inner nodes will be the operators in that augmented regular expression.
- Then each alphabet symbol (plus #) will be numbered (position numbers).

From Regular Expression to DFA Directly: Syntax Tree of (a|b)*abb#

From Regular Expression to DFA Directly: Annotating the Tree

- *nullable*(*n*): the subtree at node *n* generates languages including the empty string
- *firstpos*(*n*): set of positions that can match the first symbol of a string generated by the subtree at node *n*
- *lastpos*(*n*): the set of positions that can match the last symbol of a string generated by the subtree at node *n*
- *followpos*(*i*): the set of positions that can follow position *i* in the tree

From Regular Expression to DFA Directly: Annotating the Tree

Node n	nullable(n)	firstpos(n)	lastpos(n)
Leaf ε	true	Ø	Ø
Leaf i	false	<i>{i}</i>	<i>{i}</i>
$egin{array}{ccccc} & & & & & & & & & & & & & & & & &$	$nullable(c_1) \ ext{or} \ nullable(c_2)$	$firstpos(c_1)$ U $firstpos(c_2)$	$lastpos(c_1) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
$egin{array}{cccccccccccccccccccccccccccccccccccc$	$nullable(c_1) \ ext{and} \ nullable(c_2)$	if $nullable(c_1)$ then $firstpos(c_1) \cup$ $firstpos(c_2)$ else $firstpos(c_1)$	if $nullable(c_2)$ then $lastpos(c_1) \cup lastpos(c_2)$ else $lastpos(c_2)$
*	true	$firstpos(c_1)$	$lastpos(c_1)$

From Regular Expression to DFA Directly: Syntax Tree of (a|b)*abb#

From Regular Expression to DFA Directly: Example

Node	followpos
1	{1, 2, 3}
2	{1, 2, 3}
3	{4}
4	{5}
5	{6}
6	-

From RE to DFA Directly

	Let $\{1,2,3\} = A$				
A,a	$(\{1,2,3\},a)$	followpos (1) U followpos(3)	{1,2,3,4}	В	
A,b	$(\{1,2,3\},b)$	followpos (2)	{1,2,3}	A	
В,а	$(\{1,2,3,4\},a)$	followpos (1) U followpos(3)	{1,2,3,4}	В	
B,b	$(\{1,2,3,4\},b)$	followpos (2) U followpos(4)	{1,2,3,5}	С	
C,a	$(\{1,2,3,5\},a)$	followpos (1) U followpos(3)	{1,2,3,4}	В	
C,b	$(\{1,2,3,5\},b)$	followpos (2) U followpos(5)	{1,2,3,6}	D	
D,a	$(\{1,2,3,6\},a)$	followpos (1) U followpos(3)	{1,2,3,4}	В	
D,b	$(\{1,2,3,6\},b)$	followpos (2)	{1,2,3}	A	

Node Name	Symbol	followpos
1	a	{1, 2, 3}
2	ь	{1, 2, 3}
3	a	{4}
4	ь	{5}
5	ь	{6}
6	#	-

State	a	b
A	В	A
В	В	С
C	В	D
D	В	A

From Regular Expression to DFA Directly: Example

Node	followpos
1	{1, 2, 3}
2	{1, 2, 3}
3	{4}
4	{5}
5	{6}
6	-

Different DFA's for (a|b)*abb

State	a	b
A	В	С
В	В	D
С	В	С
D	В	Е
E	В	С

State	a	b
A	В	A
В	В	С
С	A	D
D	В	A

From Regular Expression to DFA Directly: followpos

```
for each node n in the tree do

if n is a cat-node with left child c_1 and right child c_2 then

for each i in lastpos(c_1) do

followpos(i) := followpos(i) \cup firstpos(c_2)
end do

else if n is a star-node

for each i in lastpos(n) do

followpos(i) := followpos(i) \cup firstpos(n)
end do

end if
end do
```

From Regular Expression to DFA Directly: Algorithm

```
s_0 := firstpos(root) where root is the root of the syntax tree
Dstates := \{s_0\} and is unmarked
while there is an unmarked state T in Dstates do
         mark T
         for each input symbol a \in \Sigma do
                  let U be the set of positions that are in followpos(p)
                            for some position p in T,
                            such that the symbol at position p is a
                  if U is not empty and not in Dstates then
                            add U as an unmarked state to Dstates
                  end if
                  Dtran[T,a] := U
         end do
end do
```

Section 1.6 Minimization of DFA

Minimization the following DFA, if possible

Question 1

Using final and non final state

•Divide the entire set of states into two subsets: Set of final States and set of non final states.

• Consider each sub-set as a separate entity and identify if they need to be split further or can they be combined together

Question 1

	State	a	b
\rightarrow	A	В	C
	В	В	D
	С	В	С
	D	В	Е
*	Е	В	С

Draw the transition table corresponding to the given DFA

Question 1

Divide the states into two subsets- final and non-final

Set of non Final States (NF): {A,B,C, D} Set of Final States (F): {E}

	State	a	b
\rightarrow	A	В	C
	В	В	D
	C	В	C
	D	В	Е
*	Е	В	C

Question 1

Check O/P of all clubbed states (A,B,C,D) with Σ =a

	State	a	b
\rightarrow	A	В	C
	В	В	D
	C	В	C
	D	В	Е
*	Е	В	C

 $NF = \{A,B,C,D\}$ $F = \{E\}$

Question 1

Check O/P of all clubbed states (A,B,C,D) with Σ =b

Question 1

Check O/P of all clubbed states (A,B,C) with Σ =a

	State	a	b
\rightarrow	A	В	C
	В	В	D
	C	В	C
	D	В	Е
*	Е	В	C

 $NF = (\{A,B,C\}, \{D\})$

NO SPLIT

Question 1

Check O/P of all clubbed states (A,B,C) with Σ =b

NF= ({A,C}, {B} {D})

Split into two since {A,C} goes to state {C} while {B} goes to State {D} which is already separated.

Question 1

Check O/P of all clubbed states (A,C) with Σ =a

NO SPLIT

Check O/P of all clubbed states (A,C) with Σ =b

	State	a	b
\rightarrow	A	В (C
	В	В	D
	C	В	C
	D	В	Е
*	Е	В	C

Question 1

NO SPLIT

$$NF = ({A,C}, {B})$$

{D})

Both A and C state go to same group $\{A,C\}$ on $\Sigma=b$

Since subset {A,C} remain as single combined state till end, both states will be joined together as a single state

Minimization the following DFA, if possible

Question 2

Question 2

Draw the transition table corresponding to the given DFA

Question 2

Divide the states into two subsets- final and non-final

 \rightarrow

State	a	b
A	В	F
В	G	C

*

 $\mathbf{C} \quad | \mathbf{A} \quad | \mathbf{C}$

 \mathbf{D}

 $|\mathbf{C}|$

 $\mid \mathbf{E} \mid$

H F

F

 $\mathbf{C} \mid \mathbf{G}$

G

 $\mathbf{G} \quad \mathbf{E}$

H G G

Set of Non Final States	(NF): {A,B,D,E,F,G,H}
Set of Final States (F):	{C }

Question 2

Check O/P of all clubbed states (A,B,D,E,F,G,H) with Σ =a

Question 2

Check O/P of all clubbed states (A,B,E,G,H) with Σ =a

	State	a	b
\rightarrow	A	B	F
	B	G	C
*	C	A	C
	D	C	G
	E	H	F
	F	C	G
	G	G	E
	H	G	C

NO SPLIT

Question 2

Check O/P of all clubbed states (A,B,E,G,H) with Σ =b

Question 2

Check O/P of all clubbed states (A,E) with Σ =a

	State	a	b
\rightarrow	A	B	F
	В	G	C
*	C	A	C
	D	C	G
	E	H	F
	F	C	G
	G	G	E
	Н	G	C

Question 2

Check O/P of all clubbed states (A,E) with Σ =b

State b a B F \mathbf{C} B G A \mathbf{C} G D \mathbf{E} F \mathbf{H} \mathbf{G} F \mathbf{C}

G

G

 \mathbf{E}

G

H

*

Question 2

NO SPLIT

Check O/P of all clubbed states (B,H) with Σ =a

	State	a	b
\rightarrow	A	В	F
	В	G	C
*	C	A	C
	D	C	G
	E	H	F
	F	C	G
	G	G	E
	H	G	C

Question 2

Check O/P of all clubbed states (B,H) with Σ =b

	State	a	b	NO SPLIT
\rightarrow	A	В	F	
	В	G	C	$NF = \{A,E\},\{G\},\{B,H\},\{D,F\}$
*	C	A	C	A,E
	D	C	G	B,H
	E	H	F	b D,F
	F	C	G	G
	G	G	E	C
	H	G	$\left(\mathbf{C}\right)$	

Question 2

Check O/P of all clubbed states (D,F) with Σ =a

	State	a	b	NO SPLIT
\rightarrow	A	В	F	$NF = \{A,E\}, \{G\}, \{B,H\}, \{D,F\}$
	В	G	C	
*	C	A	C	A,E
	D	\mathbf{C}	G	B,H
	E	H	F	
	F	$\left(\mathbf{C}\right)$	G	G a D,F
	G	G	E	
	H	G	C	

Question 2

Check O/P of all clubbed states (D,F) with Σ =b

	State	a	b	NO SPLIT
\rightarrow	A	В	F	$NF = \{A,E\}, \{G\}, \{B,H\}, \{D,F\}$
	В	\mathbf{G}	$\mid \mathbf{C} \mid$	
*	C	A	C	A,E D,F
	D	C	G	B,H b
	E	H	F	
	F	C	G	G
	G	G	E	C
	H	G	C	

Thanks