

NPTEL ONLINE CERTIFICATION COURSES

Blockchain and its applications **Prof. Sandip Chakraborty**

Department of Computer Science & Engineering Indian Institute of Technology Kharagpur

Lecture 38: Consensus Scalability

CONCEPTS COVERED

Blockchain Scalability

KEYWORDS

- PoW vs PBFT
- Scalability
- Consensus Finality

Blockchain Consensus Protocols

- Permissioned Blockchain
 - Byzantine Agreement
 - PBFT

PoW vs PBFT

- PoW
 - Open environment, works over a large number of nodes
 - Scalable in terms of number of nodes
 - Transaction throughput is low
- PBFT
 - Closed, not scalable in terms of number of nodes
 - High transaction throughput

PoW Scalability

- Two magic numbers in PoW
 - Block frequency 10 minutes
 - Block size 1 MB / 8MB

- For Bitcoin:
 - Let's assume, block size = 1 MB.
 - Average transaction size = 380.04 bytes
 - Number of transactions per block = 1048576/380.04

PoW Scalability

- Two magic numbers in PoW
 - Block frequency 10 minutes
 - Block size 1 MB / 8MB

- For Bitcoin:
 - With 10 minutes (600 seconds) as block mining time,
 - 2759.12 transactions in 600 seconds
 - 4.6 transactions per second

PoW Scalability

- Two magic numbers in PoW
 - Block frequency 10 minutes
 - Block size 1 MB / 8MB

- Bitcoin Transaction throughput 4.6 transactions per second
 - Visa supports around 1736 transactions per second

Tuning Bitcoin PoW Scalability

		SO	S1	S2	S3	S4
	Scenario#	The current Bitcoin Scenario	Increasing Block Size to 377.5MB	Increase Only Block Generation Time to 1.5s	TB = TR	TB scaled by same factor as Block Size Increase
	Adjustment	Default	B = 377.5	TB = 1.6s	TR = 14s	B = 2MB
A	Bitcoin Block Size (B) in Bytes	1,048,576	395,808,000	1,048,576	1,048,576	2,097,152
В	Block Generation Time (TB) in Seconds	600	600	1.589522193	14	28
С	Average Transaction (Tx) Size in Bytes	380	380	380	380	381
D	Average Transactions per Block = A/C	2,759.41	1,041,600.00	2,759.41	2,759.41	5,504.34
Е	Blockchain Transactions per Second (TPS) = D/B	4.6	1736.0	1736.0	197.1	196.6

Currently, there are estimated to be 10,198 nodes in the Bitcoin network

https://towardsdatascience.com/the-blockchain-scalability-problem-the-race-for-visa-like-transaction-speed-5cce48f9d44

Performance vs Scalability

node scalability

Vukolić, Marko. "The quest for scalable blockchain fabric: Proof-of-work vs. BFT replication." International Workshop on Open Problems in Network Security. Springer, Cham, 2015.

PoW vs PBFT - Consensus Finality

- If a correct node p appends block b to its copy of blockchain before appending block b', then no correct node q appends block b' before b to its copy of the blockchain (Vukolic, 2015)
- PoW is a randomized protocol does not ensure consensus finality
 - Remember the forks in Bitcoin blockchain
- BFT protocols ensure total ordering of transactions
 - Ensures consensus finality

PoW Consensus vs BFT Consensus

	PoW consensus	BFT consensus		
Node identity	open,	permissioned, nodes need		
management	entirely decentralized	to know IDs of all other nodes		
Consensus finality	no	yes		
Scalability	excellent	limited, not well explored		
(no. of nodes)	(thousands of nodes)	(tested only up to $n \leq 20$ nodes)		
Scalability	excellent	excellent		
(no. of clients)	(thousands of clients)	(thousands of clients)		
Performance	limited	excellent		
(throughput)	(due to possible of chain forks)	(tens of thousands tx/sec)		
Performance	high latency	excellent		
(latency)	(due to multi-block confirmations)	(matches network latency)		
Power	very poor	good		
consumption	(PoW wastes energy)			
Tolerated power	$\leq 25\%$ computing power	≤ 33% voting power		
of an adversary				
Network synchrony	physical clock timestamps	none for consensus safety		
assumptions	(e.g., for block validity)	(synchrony needed for liveness)		
Correctness	no	yes		
proofs				

Vukolić, Marko. "The quest for scalable blockchain fabric: Proof-of-work vs. BFT replication." International Workshop on Open Problems in Network Security. Springer, Cham, 2015.

Conclusion

• Scalability is a major issue in Blockchain consensus

In the next lecture, we'll discuss different scalable blockchain protocols

