Proposition 4.3.7. Soit f est une application continue sur [-a, a], alors :

- si f est paire, $\int_{-a}^{a} f(x) dx = 2 \int_{0}^{a} f(x) dx$
- si f est impaire, $\int_{a}^{a} f(x) dx = 0$.

Si f est une application continue sur \mathbb{R} , périodique de période $T \in \mathbb{R}$, alors

$$\int_{\alpha+T}^{\beta+T} f(x) \, \mathrm{d}x = \int_{\alpha}^{\beta} f(x) \, \mathrm{d}x$$