

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents *will not* correct images,
please do not report the images to the
Image Problem Mailbox.

OPI DATE 11/11/91 APPLN. ID 55518 / 90

AOJP DATE 19/12/91 PCT NUMBER PCT/FR90/00285

PCT

DEMANDE INTERNATIONALE PUBLIEE EN VERTU DU TRAITE DE COOPERATION EN MATIERE DE BREVETS (PCT)

(51) Classification internationale des brevets 5 : A61F 2/44, A61B 17/60	A1	(11) Numéro de publication internationale: WO 91/16018 (43) Date de publication internationale: 31 octobre 1991 (31.10.91)
---	----	---

(21) Numéro de la demande internationale: PCT/FR90/00285

(22) Date de dépôt international: 19 avril 1990 (19.04.90)

(71)(72) Déposants et inventeurs: BREARD, Francis, Henri [FR/FR]; 13, rue Friant, F-75014 Paris (FR). GRAF, Henry [FR/FR]; 12, quai Jules-Courmont, F-69002 Lyon (FR).

(74) Mandataire: CABINET MALEMONT; 42, avenue du Président-Wilson, F-75116 Paris (FR).

(81) Etats désignés: AU, JP, SU.

Publité

avec rapport de recherche internationale.

650620

SUPPLE

(54) Titre: FLEXIBLE INTERVERTEBRAL STABILIZER, AND METHOD AND APPARATUS FOR DETERMINING OR CONTROLLING ITS TENSION BEFORE IT IS PLACED ON THE BACK BONE

(54) Titre: STABILISATEUR INTER-VERTEBRALE SOUPLE AINSI QUE PROCEDE APPAREILLAGE POUR LA DETERMINATION OU LE CONTROLE DE SA TENSION AVANT MISE EN PLACE SUR LE RACHIS

(57) Abstract

An intervertebral stabilizer comprising one or more flexible ligament(s) (1, 1a, 1b), each of which has a device for hooking onto two respective vertebrae and/or is linked to two securing elements (2, 3) such as screws (2, 3) with free heads (4) which can be implanted in respective vertebrae (V₁, V₂). A method and an apparatus for determining or controlling the tension in an intervertebral stabiliser before it is placed on the backbone are also described. The method, which is carried out after the implantation in each of said vertebrae (V₁, V₂) of a respective rigid rod extending outside the patient's body, involves, for each pair of neighbouring rods, immobilizing both said rods in an initial position and, if the pain to be eliminated by said stabilizer persists, altering the distance between said rods. Then, said rods are immobilized in their new positions and a new pain test is carried out. These operations may be repeated until said pain disappears, and the correct length of the ligament is deduced from the final distance between said rods.

(57) Abrégé La présente invention concerne un stabilisateur inter-vertébral qui comprend un ou plusieurs ligament(s) souple(s) (1, 1a, 1b) chacun muni de moyens d'accrochage à deux vertèbres respectives et/ou associé(s) à deux organes de retenue (2, 3), tels que des vis (2, 3) à tête libre (4) implantables chacune dans une vertèbre respective (V_1 , V_2). La présente invention a également pour objet un procédé, et l'appareillage associé, pour déterminer ou contrôler la tension d'un tel stabilisateur inter-vertébral avant sa mise en place sur le rachis. Ce procédé, mis en œuvre après implantation dans chacune des vertèbres concernées (V_1 , V_2), d'une tige rigide respective se prolongeant hors du corps du patient, consiste, pour chaque paire de tiges voisines, à immobiliser les deux tiges dans une position initiale et, en cas de persistance de la douleur dont la cause doit être supprimée par le stabilisateur, à modifier la distance entre les tiges, puis à immobiliser ces dernières dans leur nouvelle position relative et à effectuer à nouveau le test de douleur, ce cycle d'opérations étant éventuellement répété jusqu'à ce que la douleur disparaisse, la longueur à donner au ligament étant déduite de la distance alors atteinte entre les deux tiges.

UNIQUEMENT A TITRE D'INFORMATION

Codes utilisés pour identifier les Etats parties au PCT, sur les pages de couverture des brochures publiant vos demandes internationales en vertu du PCT

AT	Autriche	FI	Finlande	ML	Mali
AU	Australie	FR	France	MN	Mongolie
BB	Banlieue	GA	Gabon	MR	Mauritanie
BE	Belgique	GB	Royaume-Uni	MW	Madagascar
BF	Burkina Faso	GN	Guinée	NL	Pays-Bas
BG	Bulgarie	GR	Grèce	NO	Norvège
BJ	Bénin	HU	Hongrie	PL	Pologne
BR	Bresil	IT	Italie	RO	Roumanie
CA	Canada	JP	Japon	SD	Soudan
CF	République Centrafricaine	KP	République populaire démocratique du Corée	SE	Suède
CG	Congo	KR	République du Corée	SM	Singapour
CH	Suisse	LI	Liechtenstein	SU	Union soviétique
CI	Côte d'Ivoire	LK	Sri Lanka	TD	Tchad
CM	Cameroon	LU	Luxembourg	TC	Togo
DE	Allemagne	MC	Monaco	US	Etats-Unis d'Amérique
DK	Danemark	MG	Madagascar		
ES	Espagne				

Supple intervertebral stabiliser as well as process and apparatus
for determining or verifying its tension before installation on the
spinal column.

5 The present invention relates to an intervertebral stabiliser to be installed between at least between two vertebrae to correct defects in the spinal column.

Throughout the specification and claims, the words supple and flexible are utilised, however, different meanings are accorded to these two words. The word "supple" is related to objects that can change shape according to forces in all directions and keep that shape until other forces are applied: they can be easily folded and unfolded without breaking or damaging. The word "flexible" on the other hand is related to objects that can change their shape according to certain directions, however, will return to their initial position. They can be curved but can't fold and unfold.

10 Inter-vertebral stabilisers currently used to attenuate the often painful effects of diseases of the spinal column, such as scolioses, nucleus pulposus herniations or lumbar instabilities, take the form of metal plates or rods that are fixed to the vertebrae or to their spines, along the affected section of the spinal column, which has the drawback of completely immobilizing the vertebrae, hence of restricting or even completely preventing flexional or torsional movements of the patient's trunk.

15 The present invention has for its objective the provision of an intervertebral stabiliser either implanted or capable of being implanted which will overcome the aforementioned difficulties.

20 In preferred aspects the present invention also aims at providing a process for determining or verifying tension of such inter-vertebral stabilisers according to the present invention and providing apparatus for carrying out these processes.

25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
105
110
115
120
125
130
135
140
145
150
155
160
165
170
175
180
185
190
195
200
205
210
215
220
225
230
235
240
245
250
255
260
265
270
275
280
285
290
295
300
305
310
315
320
325
330
335
340
345
350
355
360
365
370
375
380
385
390
395
400
405
410
415
420
425
430
435
440
445
450
455
460
465
470
475
480
485
490
495
500
505
510
515
520
525
530
535
540
545
550
555
560
565
570
575
580
585
590
595
600
605
610
615
620
625
630
635
640
645
650
655
660
665
670
675
680
685
690
695
700
705
710
715
720
725
730
735
740
745
750
755
760
765
770
775
780
785
790
795
800
805
810
815
820
825
830
835
840
845
850
855
860
865
870
875
880
885
890
895
900
905
910
915
920
925
930
935
940
945
950
955
960
965
970
975
980
985
990
995
1000
1005
1010
1015
1020
1025
1030
1035
1040
1045
1050
1055
1060
1065
1070
1075
1080
1085
1090
1095
1100
1105
1110
1115
1120
1125
1130
1135
1140
1145
1150
1155
1160
1165
1170
1175
1180
1185
1190
1195
1200
1205
1210
1215
1220
1225
1230
1235
1240
1245
1250
1255
1260
1265
1270
1275
1280
1285
1290
1295
1300
1305
1310
1315
1320
1325
1330
1335
1340
1345
1350
1355
1360
1365
1370
1375
1380
1385
1390
1395
1400
1405
1410
1415
1420
1425
1430
1435
1440
1445
1450
1455
1460
1465
1470
1475
1480
1485
1490
1495
1500
1505
1510
1515
1520
1525
1530
1535
1540
1545
1550
1555
1560
1565
1570
1575
1580
1585
1590
1595
1600
1605
1610
1615
1620
1625
1630
1635
1640
1645
1650
1655
1660
1665
1670
1675
1680
1685
1690
1695
1700
1705
1710
1715
1720
1725
1730
1735
1740
1745
1750
1755
1760
1765
1770
1775
1780
1785
1790
1795
1800
1805
1810
1815
1820
1825
1830
1835
1840
1845
1850
1855
1860
1865
1870
1875
1880
1885
1890
1895
1900
1905
1910
1915
1920
1925
1930
1935
1940
1945
1950
1955
1960
1965
1970
1975
1980
1985
1990
1995
2000
2005
2010
2015
2020
2025
2030
2035
2040
2045
2050
2055
2060
2065
2070
2075
2080
2085
2090
2095
2100
2105
2110
2115
2120
2125
2130
2135
2140
2145
2150
2155
2160
2165
2170
2175
2180
2185
2190
2195
2200
2205
2210
2215
2220
2225
2230
2235
2240
2245
2250
2255
2260
2265
2270
2275
2280
2285
2290
2295
2300
2305
2310
2315
2320
2325
2330
2335
2340
2345
2350
2355
2360
2365
2370
2375
2380
2385
2390
2395
2400
2405
2410
2415
2420
2425
2430
2435
2440
2445
2450
2455
2460
2465
2470
2475
2480
2485
2490
2495
2500
2505
2510
2515
2520
2525
2530
2535
2540
2545
2550
2555
2560
2565
2570
2575
2580
2585
2590
2595
2600
2605
2610
2615
2620
2625
2630
2635
2640
2645
2650
2655
2660
2665
2670
2675
2680
2685
2690
2695
2700
2705
2710
2715
2720
2725
2730
2735
2740
2745
2750
2755
2760
2765
2770
2775
2780
2785
2790
2795
2800
2805
2810
2815
2820
2825
2830
2835
2840
2845
2850
2855
2860
2865
2870
2875
2880
2885
2890
2895
2900
2905
2910
2915
2920
2925
2930
2935
2940
2945
2950
2955
2960
2965
2970
2975
2980
2985
2990
2995
3000
3005
3010
3015
3020
3025
3030
3035
3040
3045
3050
3055
3060
3065
3070
3075
3080
3085
3090
3095
3100
3105
3110
3115
3120
3125
3130
3135
3140
3145
3150
3155
3160
3165
3170
3175
3180
3185
3190
3195
3200
3205
3210
3215
3220
3225
3230
3235
3240
3245
3250
3255
3260
3265
3270
3275
3280
3285
3290
3295
3300
3305
3310
3315
3320
3325
3330
3335
3340
3345
3350
3355
3360
3365
3370
3375
3380
3385
3390
3395
3400
3405
3410
3415
3420
3425
3430
3435
3440
3445
3450
3455
3460
3465
3470
3475
3480
3485
3490
3495
3500
3505
3510
3515
3520
3525
3530
3535
3540
3545
3550
3555
3560
3565
3570
3575
3580
3585
3590
3595
3600
3605
3610
3615
3620
3625
3630
3635
3640
3645
3650
3655
3660
3665
3670
3675
3680
3685
3690
3695
3700
3705
3710
3715
3720
3725
3730
3735
3740
3745
3750
3755
3760
3765
3770
3775
3780
3785
3790
3795
3800
3805
3810
3815
3820
3825
3830
3835
3840
3845
3850
3855
3860
3865
3870
3875
3880
3885
3890
3895
3900
3905
3910
3915
3920
3925
3930
3935
3940
3945
3950
3955
3960
3965
3970
3975
3980
3985
3990
3995
4000
4005
4010
4015
4020
4025
4030
4035
4040
4045
4050
4055
4060
4065
4070
4075
4080
4085
4090
4095
4100
4105
4110
4115
4120
4125
4130
4135
4140
4145
4150
4155
4160
4165
4170
4175
4180
4185
4190
4195
4200
4205
4210
4215
4220
4225
4230
4235
4240
4245
4250
4255
4260
4265
4270
4275
4280
4285
4290
4295
4300
4305
4310
4315
4320
4325
4330
4335
4340
4345
4350
4355
4360
4365
4370
4375
4380
4385
4390
4395
4400
4405
4410
4415
4420
4425
4430
4435
4440
4445
4450
4455
4460
4465
4470
4475
4480
4485
4490
4495
4500
4505
4510
4515
4520
4525
4530
4535
4540
4545
4550
4555
4560
4565
4570
4575
4580
4585
4590
4595
4600
4605
4610
4615
4620
4625
4630
4635
4640
4645
4650
4655
4660
4665
4670
4675
4680
4685
4690
4695
4700
4705
4710
4715
4720
4725
4730
4735
4740
4745
4750
4755
4760
4765
4770
4775
4780
4785
4790
4795
4800
4805
4810
4815
4820
4825
4830
4835
4840
4845
4850
4855
4860
4865
4870
4875
4880
4885
4890
4895
4900
4905
4910
4915
4920
4925
4930
4935
4940
4945
4950
4955
4960
4965
4970
4975
4980
4985
4990
4995
5000
5005
5010
5015
5020
5025
5030
5035
5040
5045
5050
5055
5060
5065
5070
5075
5080
5085
5090
5095
5100
5105
5110
5115
5120
5125
5130
5135
5140
5145
5150
5155
5160
5165
5170
5175
5180
5185
5190
5195
5200
5205
5210
5215
5220
5225
5230
5235
5240
5245
5250
5255
5260
5265
5270
5275
5280
5285
5290
5295
5300
5305
5310
5315
5320
5325
5330
5335
5340
5345
5350
5355
5360
5365
5370
5375
5380
5385
5390
5395
5400
5405
5410
5415
5420
5425
5430
5435
5440
5445
5450
5455
5460
5465
5470
5475
5480
5485
5490
5495
5500
5505
5510
5515
5520
5525
5530
5535
5540
5545
5550
5555
5560
5565
5570
5575
5580
5585
5590
5595
5600
5605
5610
5615
5620
5625
5630
5635
5640
5645
5650
5655
5660
5665
5670
5675
5680
5685
5690
5695
5700
5705
5710
5715
5720
5725
5730
5735
5740
5745
5750
5755
5760
5765
5770
5775
5780
5785
5790
5795
5800
5805
5810
5815
5820
5825
5830
5835
5840
5845
5850
5855
5860
5865
5870
5875
5880
5885
5890
5895
5900
5905
5910
5915
5920
5925
5930
5935
5940
5945
5950
5955
5960
5965
5970
5975
5980
5985
5990
5995
6000
6005
6010
6015
6020
6025
6030
6035
6040
6045
6050
6055
6060
6065
6070
6075
6080
6085
6090
6095
6100
6105
6110
6115
6120
6125
6130
6135
6140
6145
6150
6155
6160
6165
6170
6175
6180
6185
6190
6195
6200
6205
6210
6215
6220
6225
6230
6235
6240
6245
6250
6255
6260
6265
6270
6275
6280
6285
6290
6295
6300
6305
6310
6315
6320
6325
6330
6335
6340
6345
6350
6355
6360
6365
6370
6375
6380
6385
6390
6395
6400
6405
6410
6415
6420
6425
6430
6435
6440
6445
6450
6455
6460
6465
6470
6475
6480
6485
6490
6495
6500
6505
6510
6515
6520
6525
6530
6535
6540
6545
6550
6555
6560
6565
6570
6575
6580
6585
6590
6595
6600
6605
6610
6615
6620
6625
6630
6635
6640
6645
6650
6655
6660
6665
6670
6675
6680
6685
6690
6695
6700
6705
6710
6715
6720
6725
6730
6735
6740
6745
6750
6755
6760
6765
6770
6775
6780
6785
6790
6795
6800
6805
6810
6815
6820
6825
6830
6835
6840
6845
6850
6855
6860
6865
6870
6875
6880
6885
6890
6895
6900
6905
6910
6915
6920
6925
6930
6935
6940
6945
6950
6955
6960
6965
6970
6975
6980
6985
6990
6995
7000
7005
7010
7015
7020
7025
7030
7035
7040
7045
7050
7055
7060
7065
7070
7075
7080
7085
7090
7095
7100
7105
7110
7115
7120
7125
7130
7135
7140
7145
7150
7155
7160
7165
7170
7175
7180
7185
7190
7195
7200
7205
7210
7215
7220
7225
7230
7235
7240
7245
7250
7255
7260
7265
7270
7275
7280
7285
7290
7295
7300
7305
7310
7315
7320
7325
7330
7335
7340
7345
7350
7355
7360
7365
7370
7375
7380
7385
7390
7395
7400
7405
7410
7415
7420
7425
7430
7435
7440
7445
7450
7455
7460
7465
7470
7475
7480
7485
7490
7495
7500
7505
7510
7515
7520
7525
7530
7535
7540
7545
7550
7555
7560
7565
7570
7575
7580
7585
7590
7595
7600
7605
7610
7615
7620
7625
7630
7635
7640
7645
7650
7655
7660
7665
7670
7675
7680
7685
7690
7695
7700
7705
7710
7715
7720
7725
7730
7735
7740
7745
7750
7755
7760
7765
7770
7775
7780
7785
7790
7795
7800
7805
7810
7815
7820
7825
7830
7835
7840
7845
7850
7855
7860
7865
7870
7875
7880
7885
7890
7895
7900
7905
7910
7915
7920
7925
7930
7935
7940
7945
7950
7955
7960
7965
7970
7975
7980
7985
7990
7995
8000
8005
8010
8015
8020
8025
8030
8035
8040
8045
8050
8055
8060
8065
8070
8075
8080
8085
8090
8095
8100
8105
8110
8115
8120
8125
8130
8135
8140
8145
8150
8155
8160
8165
8170
8175
8180
8185
8190
8195
8200
8205
8210
8215
8220
8225
8230
8235
8240
8245
8250
8255
8260
8265
8270
8275
8280
8285
8290
8295
8300
8305
8310
8315
8320
8325
8330
8335
8340
8345
8350
8355
8360
8365
8370
8375
8380
8385
8390
8395
8400
8405
8410
8415
8420
8425
8430
8435
8440
8445
8450
8455
8460
8465
8470
8475
8480
8485
8490
8495
8500
8505
8510
8515
8520
8525
8530
8535
8540
8545
8550
8555
8560
8565
8570
8575
8580
8585
8590
8595
8600
8605
8610
8615
8620
8625
8630
8635
8640
8645
8650
8655
8660
8665
8670
8675
8680
8685
8690
8695
8700
8705
8710
8715
8720
8725
8730
8735
8740
8745
8750
8755
8760
8765
8770
8775
8780
8785
8790
8795
8800
8805
8810
8815
8820
8825
8830
8835
8840
8845
8850
8855
8860
8865
8870
8875
8880
8885
8890
8895
8900
8905
8910
8915
8920
8925
8930
8935
8940
8945
8950
8955
8960
8965
8970
8975
8980
8985
8990
8995
9000
9005
9010
9015
9020
9025
9030
9035
9040
9045
9050
9055
9060
9065
9070
9075
9080
9085
9090
9095
9100
9105
9110
9115
9120
9125
9130
9135
9140
9145
9150
9155
9160
9165
917

Accordingly, the present invention provides an inter-vertebral stabiliser adapted to be installed between at least two successive vertebrae comprising one or more supple ligaments and two retaining elements, each said retaining 5 element having a free head for fastening a said ligament thereto, and each said ligament being provided with fastening means for fastening it to a respective one of said retaining elements whereby, in use, said retaining elements are implanted into a respective said vertebrae and at least one said ligament is fastened to said retaining elements.

10 According to a further aspect, the present invention provides an inter-vertebral stabiliser installed between at least two successive vertebrae, characterised in that it comprises one or more supple ligaments, each said ligament being provided with fastening means fastening the ligament between said two vertebrae with two retaining elements, each of the two retaining 15 elements being implanted in a respective one of said vertebrae. In accordance with a still further aspect, the present invention provides an inter-vertebral stabiliser when installed between at least two successive vertebrae, said stabiliser comprising one or more supple ligaments, each ligament being provided with means for fastening it to the two respective vertebrae.

20 Advantageously, the or at least one supple ligament has the general form of a closed loop or, alternatively, is provided with a ring or a closed loop at each end thereof, whereby the ends of each ligament constitute said fastening means through which said ligament can be fastened by hanging to a spine or any other protrusion of a respective vertebra. When retaining elements are provided, each 25 of them, being preferably a screw, is advantageously formed with a free head for fastening a respective end of the corresponding ligament.

30 There is thus obtained a supple or semi-elastic inter-vertebral stabiliser which, according to its mode of implantation, on one side only or on both sides of the spines of the vertebrae concerned, on the front face or the rear face thereof, with a single ligament or with several ligaments chained together or even crossed with each other, makes it possible to compensate for all sorts of defects

1b

or deformations of the spinal column by permitting sufficient clearance between
the vertebrae not to hinder the patient in the flexional or torsional movements of
5 his trunk.

B
B
B

5
A
A

Apart from this main advantage, the inter-vertebral stabilizer according to the invention is extremely simple to install: it suffices to engage the end of each ligament around for example two vertebral spines or two screws pre-implanted in the vertebrae.

5 To prevent any slipping of the ligament once it has been put in place, if the case where retaining elements, such as screws, are used, provisions is also advantageously made for fitting onto each retaining element, a removable cap that is radially over-dimensioned in relation to the head of the retaining element. The same effect can be obtained by alternatively providing the head 10 of each retaining element with a lateral projection for retaining the ligament.

Before putting the stabilizer in place on the spinal column, its tension, i.e. the length at rest of the, or of each, ~~flexible~~ ^{Supple} ligament, will naturally have to be determined precisely in accordance with the seriousness of the 15 defect to be corrected and, for this purpose, the present invention proposes a process implemented after implanting, in each of the vertebrae concerned and at the point at which the corresponding ligament is to be fixed, a corresponding rigid rod extending out of the patient's body, this process being characterized in that it consists, for each pair of adjacent rods, in 20 immobilizing the two rods at a predetermined distance from one another and, in the event of persistence, after a given time period has elapsed, of the pain the cause of which the stabilizer is intended to remove, in modifying the distance between the rods by a certain pitch and then immobilizing them in their new relative positions and carrying out the pain test once again, this 25 cycle of operations being repeated, if necessary, until the said pain disappears, the length at rest to be given to the ligament then being deduced from the value of the distance then reached between the two rods.

This process can also be implemented for verifying and modifying the tension of one or more ligaments already in place on the spinal column, when the 30 patient experiences pain after a less or more long period of use.

Another object of the invention is to provide an apparatus for determining

the tension of an inter-vertebral stabilizer according to the invention before it is put into place on the spinal column, the said apparatus being characterized in that it comprises a set of at least two rods each having an end for implantation in the corresponding vertebra, these rods being associated at least with a rigid link of adjustable length designed to join them together at a point remote from their implantation ends.

According to a preferred embodiment, the implantation end of each rod is constituted by an element having a head onto which is removably fitted an extension piece forming the remaining portion of the rod, designed to receive the rigid length-adjustable link.

Once the operation of determining the tension of the inter-vertebral stabilizer has been completed, the end elements of the rods, which will preferably be screws, can be advantageously held in place in the vertebrae to form the ligament retaining elements, and the ligament, after being produced to the length calculated using the process according to the invention, can easily be engaged around the said screws by sliding along the extension pieces before they are removed.

The rigid length-adjustable link can, for its part, take various forms, the simplest being that of a thin bar and two collars that can be fitted respectively onto the two rods and are provided with means for slidably supporting the bar between them, a bar locking member being provided on each collar.

Advantageously, the apparatus according to the invention further comprises an instrument for determining the length at rest of the ligament, which is formed by two crossed legs articulated on one another at their middle, the ends of the legs located on the same side of the articulation each having a substantially semi-circular contacting portion, which is applied onto the head of the corresponding retaining element. In this way, it is possible to determine between the other ends of the two legs of this instrument the length required for the ligament to be implanted, which can be measured using a graduated rule.

Embodiments of the inter-vertebral stabilizer according to the invention, together with a process and an apparatus for determining their tension, will now be described in greater detail, but non limitatively, with reference to the accompanying drawings, wh rein:

- figure 1 shows a side view in partial cross-section of the inter-vertebral stabilizer according to the first embodiment of the invention;
- figure 2 is a front view of an inter-vertebral stabilizer according to the second embodiment of the invention;
- 5 - figures 2a and 2b show alternative embodiments of the stabilizer of figure 2;
- figures 3a, 3b and 3c illustrate one of the ligament retaining elements of the stabilizer of figure 1;
- 0 - figures 4a and 4b show, in longitudinal cross-sectional view and in front view respectively, one of the ligament retaining elements of the stabilizer of figure 2;
- figure 5 is a side view, in partial cross-section, of the apparatus according to the invention, represented in use on two adjacent vertebrae;
- 5 - figure 6 is a cross-sectional view along line VI-VI of figure 5;
- figure 7 illustrates, in its position of use, a supplementary accessory of this apparatus, designed to determine the length at rest of the ligament; and
- figure 8 represents the apparatus of figure 5 as used for the insertion of the ~~stabilizer~~^{supple} ligament around the retaining elements.

Figure 1 represents two adjacent vertebrae, V1, V2, of a patient's spinal column, linked by an inter-vertebral stabilizer according to the invention, which is composed of a ~~flexible~~^{supple} ligament 1 in the form of a closed loop and of two screws 2,3 each implanted in a corresponding vertebra to retain ligament 1 between them, said ligament being simply engaged around the widened cylindrical heads 4 of the screws, emerging from the vertebrae. Ligament 1 is an artificial ligament made of "Dacron" (registered trade-mark) or of any other ~~flexible~~^{supple} plastics material. ~~having a high traction flexibility~~

As more clearly shown in the longitudinal cross-sectional and front views of figures 3b and 3c, the head 4 of each screw comprises an axial blind hole 5 having a hexagonal cross-section, in which a hexagonal key can be engaged in order to implant the screw in the corresponding vertebra.

After ligament 1 has been put into place around the screws thus implanted, hole 5 of each of said screws is closed using a flat circular cap or plug 6, shown alone in figure 3a, said cap, the diameter of which is substantially

larger than that of head 4 of the screw, being screwed by means of a central pin 7 with a threaded end into a threaded bore 8 opening in the bottom of hole 5. To accomplish this screwing operation, use is made of a special key cooperating with two slots, 9,9a, formed on the periphery of each cap 6. Alternatively, each cap 5 may be provided with a central hexagonal bore and screwed on the head 4 of the corresponding screw by using a hexagonal key engaged in this bore. By projecting radially right around the corresponding heads 4 of the screws, the two caps 6 preclude any likelihood of ligament 1 slipping off the said heads, as illustrated in figure 1.

The caps 6 are particularly useful when the inter-vertebral stabilizer according to the invention comprises several supplementary ^{supple} ~~flexible~~ ligaments, such as illustrated at 1a and 1b in figure 1, chained together with first ligament 1, on the vertebrae preceding and following the two designated by V1,V2, with the help of the same number of supplementary retaining screws.

In the case illustrated in figure 2, in which only one ligament 1 in the form of a closed loop will have to be interposed between only two successive vertebrae V1,V2, the head 4 of each screw 2 or 3 can be provided alternatively with a lateral projection 10 of suitable height, as represented in profile and in front view in figures 4a and 4b. In this case, it will be necessary first of all to implant the two screws 2,3 by orientating their projections 10 opposite one another so that ligament 1 can be then slid without any impediment around their heads 4, after which the screws will be given an additional half-turn to place projections 10 in their ligament retaining positions, as shown in figure 2.

The inter-vertebral stabilizer according to the invention makes it possible, according to its positioning, to combat numerous painful diseases affecting the spinal column. The stabilizer shown in figures 1 and 2 is put into place on the rear face of vertebrae V1,V2 and on one side only of their spines A1,A2. However, depending on the type of disease to be treated, it is possible to use two stabilizers according to the invention, mounted on either side of vertebral spines A1,A2 or crossed between the two vertebrae V1,V2, on the front or rear face thereof. In all cases, however, it is necessary to determine the tension of the stabilizer, i.e. the length at rest of its ligament 1, accurately before it is installed, as a function of the seriousness of the defect to be corrected.

For this purpose, the present invention proposes a process and an apparatus for its implementation, which will now be described with reference to figures 5 to 8.

As it can be seen, the basic accessories of this apparatus are two rigid rectilinear rods, 11,12, which are fixed in the respective vertebrae V1,V2 by their ends which, in the preferred embodiment represented in figure 5, are formed by screws 2,3 of what is to become the stabilizer. Each screw is implanted in the way described above after a local surgical incision has been made in the patient's back in front of each vertebra for uncovering it. Each rod 11,12 is completed by a cylindrical extension piece 13 having a threaded end 14, which is fitted onto the head 4 of the corresponding screw by screwing into its threaded bore 8 after removal of cap 6. For this purpose, the free opposite end of each extension piece 13 is provided with a hexagonal head 23 suitable for receiving a tightening key. It will also be noted that each extension piece 13 has a root 13a which flares progressively until its diameter is substantially equal to that of the head of screw 4 onto which it is fitted.

The two rods 11,12 being thus implanted so as to extend out from the patient's back D, they are joined in the vicinity of their free ends 14 by a rigid link 15 of adjustable length and, by means of the latter, the distance between the rods is adjusted to a value that is predetermined as a function of the nature and the seriousness, previously diagnosed, of the defect to be corrected on the spinal column.

After the two rods have been thus immobilized in this initial position, the incisions in the patient's back are closed up and the patient is made to undergo a test which consists in verifying whether, at the end of a given period, possibly one to two days, the patient still experiences pain in the affected area of the spinal column. If this is the case, the spacing between rods 11,12 is slightly modified, generally for bringing them closer to one another (compression), by acting on the length of link 15, and the pain test is repeated over substantially the same period of time as before.

This dual operation will be repeated if necessary, preferably with a constant pitch of change in the spacing of rods 11, 12, until the patient no longer experiences any pain in the back. Once this result has been achieved, the length

at rest required for the ligament to be implanted between the vertebrae is measured or calculated with maximum accuracy.

In practice, the maximum number of successive cycles of verifying operations leading to the elimination of pain will be three and, if the pain proves to persist after these three cycles of operations, this will mean that the defect that causes it is not present in the pair of vertebrae tested and the process according to the invention will then have to be applied to the following pair of vertebrae or successively on the following pair(s) of vertebrae, until the pain disappears.

Of course, when several ~~successive~~ ligaments are to be chained together, such as 1, 1a and 1b (figure 1), over a long section of the spinal column, the above described process will be applied simultaneously to all the successive vertebrae to be treated, using as many rods 11,12 as there are vertebrae and joining them two by two using length adjustable links such as 15.

This link, which is more clearly represented in figure 6, is in fact formed here by a thin cylindrical bar 16 retained on two collars 17,18, each of which is fixed to a corresponding rod 11, 12 by means of a lock screw 19. Bar 16 is more precisely housed so as to be able to slide freely in a groove 20 of each of collars 17,18 and is locked therein, after the spacing of the rods has been adjusted, by head 21 of lock screw 19 of the corresponding collar. Alternatively, of course, link 15 can take the form of a device with threaded rods with reversed screw pitches, which could even be fitted with a system for directly measuring the spacing between rods 11,12.

The length to be allocated to the ligament can be derived, by a trigonometrical calculation, from the distance d measured, for example near link 15, between rods 11,12 immobilized in the right position. According to an additional feature of the invention, however, it is possible, as an alternative, to measure directly the length to be allocated to ligament 1 between heads 4 of screws 2,3 by using an instrument which will now be described, together with its mode of use, with reference to figure 7.

As it can be seen, this instrument 24 for determining the length of the ligament takes the general form of a "pair of scissors" and is more specifically, formed by two legs, 25,26, of the same length, which cross in their middle and

are articulated on one another at their point of crossing by means of a lock screw 30. On the same side of this articulation 30, the ends of the two legs 25,26 carry a contacting piece, 28 or 29, which is substantially semi-circular and has an inner diameter slightly greater than that of the heads 4 of retaining screws 2,3. These contacting pieces 28 and 29 are facing each other and their inner arcuate face is flush with the inner side of the corresponding leg 25 or 26 of instrument 24. At their opposite ends, legs 25,26 are each provided with a ring, 31,32, to accommodate a finger.

To measure the length of the ligament using the said instrument 24, an incision is first made in the patient's back as far as vertebrae V1, V2 are uncovered. Then, after having loosened screw 30 and by holding instrument 24 in one hand by means of rings 31,32, each of contacting pieces 28 or 29 is placed on a respective rod 11 or 12 and the instrument is caused to slide along these rods until the contacting pieces are bearing on the ends of heads 4 of screws 2,3. Screw 30 is then re-tightened and, using a graduated rule 33, the distance between the free ends 25a, 26a of legs 25,26 of instrument 24 is measured and the value of the length required for the ligament to be implanted between retaining screws 2,3 is thus obtained directly.

After this length measurement, ligament 1 or each of ligaments 1, 1a, 1b to be implanted is prepared from a tubular artificial ligament which is flattened and sewn back on itself. After link 15 has been removed, the ligament thus formed into a loop is passed around the two extension pieces 13 and slid along them up to screws 2,3, around the heads 4 of which it is then engaged with the help, if necessary, of a special semi-cylindrically shaped tool 22, as shown in figure 8. Extension pieces 13 are then removed, caps 6 are screwed onto the heads of screws 2,3 (figure 1) or the latter are orientated in such a way as to place their projections 10 in ligament retaining position (figure 2); then the incisions in the patient's back is definitively closed up.

It goes without saying that numerous modifications can be made in the intervertebral stabilizer and in the apparatus that have just been described.

For instance, according to an alternative embodiment, shown on figure 2a, of the stabilizer of Figure 2, the ligament 1c is in the form of a single segment 40 to each end of which a metallic ring 41 or 42 is attached, with which the

ligament can be fastened by hanging over the head 4 of a respective retaining screw 2 or 3.

According to another alternative embodiment shown on figure 2b, the ligament 1d of the stabilizer, having the form of a closed loop, is passed through himself for defining a first end loop 43 which is engaged around the spine A₁ of a respective vertebra V₁. At its second end, the ligament 1d is placed around spine A₂ of the lower vertebra V₂, then re-passed through himself for forming a second end loop 45 after insertion of a locking pin 44. Spines A₁ and A₂ here play the role of the retaining screws 2,3, but it goes without saying that ligament 1d of figure 2b can also be associated with such screws, as those 1 and 1c of figures 2 and 2a. Inversely, ligaments 1 and 1c of figures 2 and 2a can be fastened by an hanging connection directly over spines A₁ and A₂ of vertebrae V₁ and V₂, without the use of retaining screws, as the ligament 1d of figure 2b. Of course, a chained arrangement of a plurality of ligaments, as the one shown on figure 1, may also be obtained with the embodiments of figures 2a and 2b, by means of pre-implanted retaining screws or by direct fastening over the spines of the vertebrae concerned.

For their part, screws 2,3 could be replaced by any other retaining element capable of being implanted in a vertebra and provided with a free head for fastening a ligament end thereover.

Furthermore, rods 11, 12 of the apparatus of the present invention can be made in a single piece, the two-piece form of embodiment described above being preferable, however, when ligament retaining elements, such as screws, are used because, in this case, it precludes the need to reimplant said retaining elements after the preliminary operation for determining the tension of the stabilizer.

It should further be pointed out that the screws or other retaining elements 2,3, their caps 6 and rods 11,12 will preferably be made from a bio-compatible metallic alloy.

THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS.

1. An inter-vertebral stabiliser adapted to be installed between at least two successive vertebrae comprising one or more supple ligaments and two retaining elements, each said retaining element having a free head for fastening a said ligament thereto, and each said ligament being provided with fastening means for fastening it to a respective one of said retaining elements whereby, in use, said retaining elements are implanted into a respective said vertebrae and at least one said ligament is fastened to said retaining elements.
2. An inter-vertebral stabiliser installed between at least two successive vertebrae, characterised in that it comprises one or more supple ligaments, each said ligament being provided with fastening means fastening the ligament between said two vertebrae with two retaining elements, each of the two retaining elements being implanted in a respective one of said vertebrae.
3. The inter-vertebral stabiliser according to claim 1 or claim 2, characterised in that the or at least one supple ligament has the general form of a closed loop, the ends of which constitute said fastening means.
4. The inter-vertebral stabiliser according to claim 1 or claim 2, characterised in that the or at least one supple ligament is provided, at each end thereof, with a ring or a closed loop constituting said fastening means.
5. The inter-vertebral stabiliser according to claim 1, characterised in that each of the retaining elements is provided with a removable cap, radially over-dimensioned in relation to the head of the retaining element, on which it can be fitted.
6. The inter-vertebral stabiliser according to claim 1, characterised in that the head of each retaining element is provided with a lateral projection for retaining the ligament.

RALIAZ

7. An inter-vertebral stabiliser when installed between at least two successive vertebrae, said stabiliser comprising one or more supple ligaments, each ligament being provided with means for fastening it to the two respective vertebrae.
8. Process for determining or verifying the tension of an inter-vertebral stabiliser according to any one of claims 1 to 7, before its installation on the spinal column, this process, which is implemented after the implantation, in each of the vertebrae concerned and at the point at which the corresponding ligament is to be fixed, of a corresponding rigid rod extending out of the patient's body, being characterised in that it consists, in the case of each pair of adjacent rods, in immobilising the two rods at a predetermined distance from one another and, in the event where the pain, the cause of which is to be removed by the stabiliser, is persisting after a given time period has elapsed, in modifying the distance between the rods by a certain pitch, and then in immobilising the latter in their new relative positions and in carrying out the pain test once again, this cycle of operations being repeated, if necessary, until the said pain disappears, the length at rest to be given to the ligament then being deduced from the value of the distance then attained between the two rods.
9. Apparatus for implementing the process according to claim 8, for determining or verifying the tension of an inter-vertebral stabiliser according to one of claims 1 to 8, before it is put into place on the spinal column, characterised in that it comprises a set of at least two rods each having an end for implanting in the respective vertebra, the said rods being associated with at least one rigid link of adjustable length designed to join them at a point remote from their implantation ends.
10. The apparatus according to claim 9, characterised in that the implantation end of each rod is constituted by the corresponding retaining element of the ligament of the said stabiliser and each of the rods is completed by a removable extension piece fitting onto the head of said retaining element.

11. The apparatus according to claim 10, characterised in that the said length-adjustable rigid link comprises a thin bar and two collars that can be fitted respectively on the two rods and are provided with means for supporting the bar slidingly between them, an element for locking the bar being provided on each collar.
12. The apparatus according to any one of claims 9 to 11, characterised in that it comprises an instrument for determining the length at rest of the ligament, which is formed by two crossed legs articulated on one another at their middle, the ends of the legs located on the same side of the articulation each having a substantially semi-circular contacting portion.

DATED this 2nd day of May, 1994

FRANCIS HENRI BREARD and HENRY GRAF

WATERMARK PATENT & TRADEMARK ATTORNEYS
THE ATRIUM
290 BURWOOD ROAD
HAWTHORN VICTORIA 3122
AUSTRALIA

SKP/RJD/BB} (Doc. 33) AU5551890.WPC

TITLE:

~~Supple~~

~~Plastic~~ inter-vertebral stabilizer together with process and apparatus for determining its tension before installation on the spinal column

5

ABSTRACT OF THE DISCLOSURE

10

The present invention relates to an inter-vertebral stabilizer comprising one or more ~~flexible~~ ^{supple} ligaments (1,1a,1b), each of them being provided with means for fastening it to two respective vertebrae and/or associated with two retaining elements (2,3), such as screws, each of which is suitable for being implanted in a respective vertebra (V1,V2).

The present invention also relates to a process, and the associated apparatus, for determining or verifying the tension of such an inter-vertebral stabiliser before it is put into place on the spinal column. This process consists in implanting, in each of the vertebrae concerned (V1,V2), a corresponding rigid rod extending outside the patient's body and, in each pair of adjacent rods, in immobilizing the two rods in an initial position and, in the event where the pain, the cause of which is to be removed by the stabilizer, is persisting, in modifying the distance between the rods, then in immobilizing the latter in their new relative positions and in repeating the pain test, this cycle of operations being repeated, if necessary, until the said pain disappears, the length to be allocated to the ligament being deduced from the distance then attained between the two rods.

20
25
(FIGURE 1)

55518190

FIG.1

FIG.3a

FIG.3b

FIG.3c

FIG.2

FIG.4a

FIG.4b

FIG. 2a

FIG. 2b

FIG.5

FIG.6

FIG.8

FIG.7

INTERNATIONAL SEARCH REPORT

International Application No. PCT/FR 90/00285

I. CLASSIFICATION OF SUBJECT MATTER (if several classification symbols apply, indicate all) ⁶

According to International Patent Classification (IPC) or to both National Classification and IPC

Int.Cl. ⁵ A 61 F 2/44, A 61 B 17/60

II. FIELDS SEARCHED

Minimum Documentation Searched ⁷

Classification System	Classification Symbols
Int.Cl.	A 61 F, A 61 B

Documentation Searched other than Minimum Documentation
to the Extent that such Documents are included in the Fields Searched ⁸

III. DOCUMENTS CONSIDERED TO BE RELEVANT⁹

Category ¹⁰	Citation of Document, ¹¹ with indication, where appropriate, of the relevant passages ¹²	Relevant to Claim No. ¹³
X	US, A, 4743260 (BURTON) 10 May 1988 see the whole document	1-5
Y	—	7-10
Y	FR, A, 2275679 (CROCK et al.) 16 January 1976 see page 4, lines 18-35; figures 4-6	7-10
X	EP, A, 0140790 (PEZE) 8 May 1985 see abstract ; figure 3	1
A	FR, A, 1240313 (JUDET) 25 July 1960 see figures	— 1-4
A	WO, A, 88/07357 (KLUGER) 6 October 1988	—

- Special categories of cited documents: ¹⁰
- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

- "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- "G" document member of the same patent family

IV. CERTIFICATION

Date of the Actual Completion of the International Search

12 October 1990 (12.10.90)

Date of Mailing of this International Search Report

30 October 1990 (30.10.90)

International Searching Authority

European Patent Office

Signature of Authorized Officer

ANNEX TO THE INTERNATIONAL SEARCH REPORT
ON INTERNATIONAL PATENT APPLICATION NO.

FR 9000285
SA 36737

This annex lists the patent family members relating to the patent documents cited in the above-mentioned international search report. The members are as contained in the European Patent Office EDP file on 23/10/90. The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
US-A- 4743260	10-05-88	None		
FR-A- 2275679	16-01-76	GB-A-	1519139	26-07-78
EP-A- 0140790	08-05-85	FR-A,B	2553993	03-05-85
		JP-A-	60111651	18-06-85
		US-A-	4697582	06-10-87
FR-A- 1240313		None		
WO-A- 8807357	06-10-88	DE-A-	3711091	13-10-88
		EP-A-	0316371	24-05-89

RAPPORT DE RECHERCHE INTERNATIONALE

Demande internationale N° PCT/FR 90/00285

I. CLASSEMENT DE L'INVENTION (si plusieurs symboles de classification sont applicables, les indiquer tous)*

Selon la classification internationale des brevets (CIB) ou à la fois selon la classification nationale et le CIB

CIB⁵: A 61 F 2/44, A 61 B 17/60

II. DOMAINES SUR LESQUELS LA RECHERCHE A PORTÉ

Documentation minimale consultée *

Système de classification	Symboles de classification
CIB ⁵	A 61 F, A 61 B

Documentation consultée autre que la documentation minimale dans la mesure où de tels documents font partie des domaines sur lesquels la recherche a porté *

III. DOCUMENTS CONSIDÉRÉS COMME PERTINENTS **

Catégorie *	Identification des documents cités,** avec indication, si nécessaire, des passages pertinents †‡	N° des revendications traitées †‡
X	US, A, 4743260 (BURTON) 10 mai 1988 voir le document en entier	1-5
Y	--	7-10
Y	FR, A, 2275679 (CROCK et al.) 16 janvier 1976 voir page 4, lignes 18-35; figures 4-6	7-10
	--	
X	EP, A, 0140790 (PEZE) 8 mai 1985 voir résumé; figure 3	1
	--	
A	FR, A, 1240313 (JUDET) 25 juillet 1960 voir figures	1-4
	--	
A	WO, A, 88/07357 (KLUGER) 6 octobre 1988	

* Catégories spéciales de documents cités: ***

- ** A = document définissant l'état général de la technique, non considéré comme particulièrement pertinent
- ** E = document antérieur, mais publié à la date de dépôt international ou après cette date
- ** L = document pouvant porter un doute sur une revendication de priorité ou cité pour déterminer la date de publication d'une autre création ou pour une raison spéciale (telle qui indique)
- ** O = document se référant à une divulgation orale, à un usage, à une exposition ou tous autres moyens
- ** P = document publié avant la date de dépôt international, mais postérieurement à la date de priorité revendiquée

** T = document ultérieur publié postérieurement à la date de dépôt international ou à la date de priorité et n'appartenant pas à l'état de la technique pertinent, mais cité pour comprendre le principe ou la théorie constituant la base de l'invention

** X = document particulièrement pertinent: l'invention revendiquée ne peut être considérée comme nouvelle ou comme imposant une activité inventive

** Y = document particulièrement pertinent: l'invention revendiquée ne peut être considérée comme imposant une activité inventive lorsque le document est associé à un ou plusieurs autres documents de même nature, cette combinaison étant évidente pour une personne du métier.

** S = document qui fait partie de la même famille de brevets

IV. CERTIFICATION

Date à laquelle la recherche internationale a été effectivement achevée

12 octobre 1990

Date d'expédition du présent rapport de recherche internationale

3 OCT 1990

Administration chargée de la recherche internationale

OFFICE EUROPEEN DES BREVETS

Signature du fonctionnaire autorisé

M. J. D. S. J. C. J. Z. Y. K.

**ANNEXE AU RAPPORT DE RECHERCHE INTERNATIONALE
RELATIF A LA DEMANDE INTERNATIONALE NO.**

FR 9000285
SA 36737

La présente annexe indique les membres de la famille de brevets relatifs aux documents brevets cités dans le rapport de recherche internationale vous ci-dessous.
Lesdits membres sont tirés au fichier informatique de l'Office européen des brevets à la date du 23/10/90.
Les renseignements fournis sont donnés à titre indicatif et n'engagent pas la responsabilité de l'Office européen des brevets.

Document brevet cité du rapport de recherche	Date de publication	Membre(s) * de la famille de brevet(s)	Date de publication
US-A- 4743260	10-05-88	Aucun	
FR-A- 2275679	16-01-76	GB-A- 1519139	26-07-78
EP-A- 0140790	08-05-85	FR-A, B 2553993 JP-A- 60111651 US-A- 4697582	03-05-85 18-06-85 06-10-87
FR-A- 1240313		Aucun	
WO-A- 8807357	06-10-88	DE-A- 3711091 EP-A- 0316371	13-10-88 24-05-89