

An End-to-End Transformer Model for Crowd Localization

Dingkang Liang¹, Wei Xu², Xiang Bai¹

¹ Huazhong University of Science and Technology; ² Beijing University of Posts and Telecommunications

MOTIVATION

- Crowd localization aims to provide the location of each instance.
- The regression-based methods, directly regressing the coordinates, are more straightforward than the detection-based and map-based methods.

➤DETR shows terrible performance in the crowd localization task, attributed to the intrinsic limitation of the matcher. Due to lack of context, the *L*1 distance easily causes the ambiguous match pair.

CONTRIBUTION

- ➤We propose an end-to-end Crowd Localization TRansformer framework named CLTR, which formulates the crowd localization as a point set prediction task.
- ➤ We introduce the KMO-based Hungarian bipartite matching, which takes the context from nearby heads as an auxiliary matching cost. As a result, the matcher can effectively reduce the ambiguous points and generate more reasonable matching results.

METHOD

The overview of our CLTR. First, the input image I is fed to the CNN-based backbone to extract the features F. Second, the features F are added position embedding, resulting in F_p , fed to the transformer-encoder layers, outputting F_e . Third, we define $N \times$ trainable embeddings Q_h as query, F_e as key, and transformer decoder takes the Q_h and F_e as input to generate the decoded feature F_d . Finally, the F_d can be decoupled to the point coordinate and corresponding confidence score.

 \triangleright (a) A pair of GT and predictions. (b) The L1-based Hungarian generate unsatisfactory matching results. (c) The proposed KMO-based Hungarian models the context as the matching cost, generating more reasonable matching results.

$$L_m(y_i, \hat{y}_j) = \|y_i^p - \hat{y}_j^p\|_1 - \hat{C}_j, i \in M, j \in N,$$

➤ Merely taking the *L*1 with confidence will generate unsatisfactory matching results on specific cases.

$$L_{m}^{k}(y_{i}, \hat{y}_{j}) = \|y_{i}^{p} - \hat{y}_{j}^{p}\|_{1} + \|y_{i}^{k} - \hat{y}_{j}^{k}\|_{1} - \hat{C}_{j},$$

$$y_{i}^{k} = \frac{1}{k} \sum_{k=1}^{k} d_{i}^{k}, \qquad \hat{y}_{j}^{k} = \frac{1}{k} \sum_{k=1}^{k} \hat{d}_{j}^{k},$$

The proposed KMO-based matcher, revisiting the label assignment from a context view, turns to find the whole optimum.

RESULTS

Method _	V	alidation se	et		Test set	
	P(%)	R(%)	F(%)	P(%)	R(%)	F(%)
Faster RCNN* [29] TinyFaces* [11] TopoCount* [1]	96.4 % 54.3% -	3.8% 66.6 % -	7.3% 59.8 % -	95.8% 52.9% 69.5%	3.5% $61.1%$ $68.7%$	6.7% $56.7%$ $69.1%$
GPR [7] RAZ_Loc [19] AutoScale_loc [46] Crowd-SDNet [44] GL [39] CLTR (ours)	61.0% 69.2% 70.1% - - 73.9 %	52.2% 56.9% 63.8% - - 71.3 %	56.3% 62.5% 66.8% - - 72.6 %	55.8% $66.6%$ $67.3%$ $65.1%$ $80.0%$ $69.4%$	49.6% $54.3%$ $57.4%$ $62.4%$ $56.2%$ $67.6%$	52.5% $59.8%$ $62.0%$ $63.7%$ $66.0%$ $68.5%$

Localization performance on NWPU dataset.

Method	Output Position	Valida	tion set	Test set	
	Information	MAE	MSE	MAE	MSE
MCNN 48	×	218.5	700.6	232.5	714.6
CSRNet 16	X	104.8	433.4	121.3	387.8
CAN [22]	X	93.5	489.9	106.3	386.5
SCAR 9	X	81.5	397.9	110.0	495.3
BL [27]	X	93.6	470.3	105.4	454.2
SFCN 43	X	95.4	608.3	105.4	424.1
DM-Count [41]	×	70.5	357.6	88.4	388.6
RAZ_loc [19]	✓	128.7	665.4	151.4	634.6
AutoScale_loc 46	✓	97.3	571.2	123.9	515.5
TopoCount 1	✓	-	-	107.8	438.5
GL [39]	✓	-	-	79.3	346.1
CLTR (ours)	✓	61.9	246.3	74.3	333.8

Counting performance on NWPU dataset.

VISUALIZATIONS

Some examples from the NWPU dataset. From left to right, there are images, GT points, predicted points, and localization results.

ACKNOWLEDGEMENT

This work was supported by National Key R&D Program of China (Grant No. 2018YFB1004602).