Package 'EpiNow2'

October 20, 2020

Title Estimate Real-Time Case Counts and Time-Varying Epidemiological

Description Estimates the time-varying reproduction number, rate of spread,

source tools (Abbott et al. (2020) <doi:10.12688/wellcomeopenres.16006.1>), and current best practices (Gostic et al. (2020) <doi:10.1101/2020.06.18.20134858>). It aims to help users avoid some of the limitations of naive implementations in a framework

and doubling time using a range of open-

Type Package

Version 1.2.1

Parameters

```
that is informed by community feedback and is under active development.
License MIT + file LICENSE
Encoding UTF-8
LazyData true
Imports cowplot, data.table, futile.logger (>= 1.4), future,
      future.apply, ggplot2, lubridate, methods, patchwork,
      progressr, purrr, R.utils (>= 2.0.0), Rcpp (>= 0.12.0), rlang
      (>= 0.4.7), rstan (>= 2.18.1), scales, stats, truncnorm,
Suggests countrycode, dplyr, EpiSoon, forecastHybrid, here,
      kableExtra, knitr, magrittr, rmarkdown, rnaturalearth,
      rstantools, spelling, tidyr, testthat
Additional_repositories https://epiforecasts.io/drat/
RoxygenNote 7.1.1
Biarch true
Depends R (>= 3.4.0)
LinkingTo BH (>= 1.66.0), Rcpp (>= 0.12.0), RcppEigen (>= 0.3.3.3.0),
      rstan (>= 2.21.1), StanHeaders (>= 2.21.0-5)
Language en-GB
NeedsCompilation yes
Author Sam Abbott [aut, cre] (<a href="https://orcid.org/0000-0001-8057-8037">https://orcid.org/0000-0001-8057-8037</a>),
      Joel Hellewell [aut] (<a href="https://orcid.org/0000-0003-2683-0849">https://orcid.org/0000-0003-2683-0849</a>),
      Robin Thompson [aut],
                                                       1
```

	Katelyn Gostic [aut],
	Katharine Sherratt [aut],
	Sophie Meakin [aut],
	James Munday [aut],
	Nikos Bosse [aut],
	Joe Hickson [aut],
	Paul Mee [ctb],
	Peter Ellis [ctb],
	Hamada S. Badr [ctb] (https://orcid.org/0000-0002-9808-2344),
	Michael DeWitt [ctb] (https://orcid.org/0000-0001-8940-1967),
	EpiForecasts [aut],
	Sebastian Funk [aut]
Моіт	atainar Sam Abhatt cam abhattalahtm ac uks

Maintainer Sam Abbott <sam.abbott@lshtm.ac.uk>

Repository CRAN

2

Date/Publication 2020-10-20 14:50:09 UTC

R topics documented:

adjust_infection_to_report	4
allocate_delays	5
bootstrapped_dist_fit	6
calc_CrI	7
calc_CrIs	8
calc_summary_measures	8
calc_summary_stats	9
clean_nowcasts	0
clean_regions	0
construct_output	1
copy_results_to_latest	1
country_map	2
create_clean_reported_cases	4
create_future_rt	4
create_initial_conditions	5
create_shifted_cases	6
create_stan_args	6
create_stan_data	8
dist_fit	0
dist_skel	1
epinow	2
estimates_by_report_date	5
estimate_infections	6
example_confirmed	1
extract_CrIs	2
extract_parameter	2
extract_parameter_samples	3
extract_static_parameter	3
fit model with nuts	4

Index

format_fit	36
gamma_dist_def	37
generation_times	38
get_dist	39
get_generation_time	39
get_incubation_period	40
get_raw_result	40
get_regional_results	41
get_regions	42
get_regions_with_most_reports	43
global_map	43
growth_to_R	45
incubation_periods	45
lognorm_dist_def	46
make_conf	47
map_prob_change	47
match_output_arguments	48
plot_estimates	49
plot_summary	50
process_region	51
process_regions	51
regional_epinow	52
regional_runtimes	54
regional_summary	55
report_cases	56
report_plots	58
report_summary	59
run_region	59
R_to_growth	61
sample_approx_dist	61
save_estimate_infections	63
save_forecast_infections	64
save input	64
setup_default_logging	65
setup_dt	65
setup_future	66
setup_logging	67
	68
simulate cases	68
stop_timeout	69
summarise_key_measures	70
summarise_results	71
theme_map	71
tune_inv_gamma	72
update_horizon	73
upuno_nonzon	13
	74

 fit_model_with_vb
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...

```
adjust_infection_to_report
```

Adjust from Case Counts by Infection Date to Date of Report

Description

Maps from cases by date of infection to date of report via date of onset.

Usage

```
adjust_infection_to_report(
  infections,
  delay_defs,
  reporting_model,
  reporting_effect,
  type = "sample",
  truncate_future = TRUE
)
```

Arguments

infections

data.table containing a date variable and a numeric cases variable.

delay_defs

A list of single row data.tables that each defines a delay distribution (model, parameters and maximum delay for each model). See lognorm_dist_def for an example of the structure.

reporting_model

A function that takes a single numeric vector as an argument and returns a single numeric vector. Can be used to apply stochastic reporting effects. See the examples for details.

reporting_effect

A numeric vector of length 7 that allows the scaling of reported cases by the day on which they report (1 = Monday, 7 = Sunday). By default no scaling occurs.

type

Character string indicating the method to use to transform counts. Supports either "sample" which approximates sampling or "median" would shift by the median of the distribution.

truncate_future

Logical, should cases be truncated if they occur after the first date reported in the data. Defaults to TRUE.

Value

A data.table containing a date variable (date of report) and a cases variable. If return_onset = TRUE there will be a third variable reference which indicates what the date variable refers to.

allocate_delays 5

Examples

```
# define example cases
cases <- EpiNow2::example_confirmed[, `:=`(cases = as.integer(confirm))]</pre>
# define a single report delay distribution
delay_def <- EpiNow2::lognorm_dist_def(mean = 5,</pre>
                                       mean\_sd = 1,
                                       sd = 3,
                                       sd_sd = 1,
                                       max_value = 30,
                                       samples = 1,
                                       to_log = TRUE)
# define a single incubation period
incubation_def <- EpiNow2::lognorm_dist_def(mean = EpiNow2::incubation_periods[1, ]$mean,</pre>
                                       mean_sd = EpiNow2::incubation_periods[1, ]$mean_sd,
                                             sd = EpiNow2::incubation_periods[1, ]$sd,
                                           sd_sd = EpiNow2::incubation_periods[1, ]$sd_sd,
                                             max_value = 30, samples = 1)
# simple mapping
report <- adjust_infection_to_report(cases, delay_defs = list(incubation_def, delay_def))</pre>
print(report)
# mapping with a weekly reporting effect
report_weekly <- adjust_infection_to_report(</pre>
                       cases, delay_defs = list(incubation_def, delay_def),
                       reporting_effect = c(1.1, rep(1, 4), 0.95, 0.95))
print(report_weekly)
# map using a deterministic median shift for both delays
report_median <- adjust_infection_to_report(cases, delay_defs = list(incubation_def, delay_def),
                                              type = "median")
print(report_median)
# map with a weekly reporting effect and stochastic reporting model
report_stochastic <- adjust_infection_to_report(</pre>
                      cases, delay_defs = list(incubation_def, delay_def),
                       reporting_effect = c(1.1, rep(1, 4), 0.95, 0.95),
                       reporting_model = function(n) {
                       out <- suppressWarnings(rnbinom(length(n), as.integer(n), 0.5))</pre>
                       out <- ifelse(is.na(out), 0, out)</pre>
                       })
print(report_stochastic)
```

allocate_delays

Allocate Delays into Required Stan Format

Description

Allocate Delays into Required Stan Format

6 bootstrapped_dist_fit

Usage

```
allocate_delays(delay_var, no_delays)
```

Arguments

delay_var List of numeric delays
no_delays Numeric, number of delays

Value

A numeric array

bootstrapped_dist_fit Fit a Subsampled Bootstrap to Integer Values and Summarise Distribution Parameters

Description

Fit a Subsampled Bootstrap to Integer Values and Summarise Distribution Parameters

Usage

```
bootstrapped_dist_fit(
  values,
  dist = "lognormal",
  samples = 2000,
  bootstraps = 10,
  bootstrap_samples = 250,
  max_value,
  verbose = FALSE
)
```

Arguments

values Numeric vector of integer values.

dist Character string, which distribution to fit. Defaults to lognormal ("lognormal")

but gamma ("gamma") is also supported.

samples Numeric, number of samples to take overall from the bootstrapped posteriors.

bootstraps Numeric, defaults to 1. The number of bootstrap samples (with replacement) of

the delay distribution to take.

bootstrap_samples

Numeric, defaults to 100. The number of samples to take in each bootstrap. When the sample size of the supplied delay distribution is less than 100 this is

used instead.

max_value Numeric, defaults to the maximum value in the observed data. Maximum delay

to allow (added to output but does impact fitting).

verbose Logical, defaults to FALSE. Should progress messages be printed

calc_CrI 7

Value

A list summarising the bootstrapped distribution

Examples

calc_CrI

Calculate Credible Interval

Description

Adds symmetric a credible interval based on quantiles.

Usage

```
calc_CrI(samples, summarise_by = c(), CrI = 0.9)
```

Arguments

samples A data.table containing at least a value variable
summarise_by A character vector of variables to group by.

CrI Numeric between 0 and 1. The credible interval for which to return values.
Defaults to 0.9.

Value

A data.table containing the upper and lower bounds for the specified credible interval

```
samples <- data.frame(value = 1:10, type = "car")
# add 90% credible interval
calc_CrI(samples)
# add 90% credible interval grouped by type
calc_CrI(samples, summarise_by = "type")</pre>
```

calc_CrIs

Calculate Credible Intervals

Description

Adds symmetric credible intervals based on quantiles.

Usage

```
calc_CrIs(samples, summarise_by = c(), CrIs = c(0.2, 0.5, 0.9))
```

Arguments

samples A data.table containing at least a value variable summarise_by A character vector of variables to group by.

CrIs Numeric vector of credible intervals to calculate.

Value

A data.table containing the summarise_by variables and the specified lower and upper credible intervals

Examples

```
samples <- data.frame(value = 1:10, type = "car")
# add credible intervals
calc_CrIs(samples)
# add 90% credible interval grouped by type
calc_CrIs(samples, summarise_by = "type")</pre>
```

calc_summary_measures Calculate All Summary Measures

Description

Calculate summary statistics and credible intervals from a data frame by group.

Usage

```
calc_summary_measures(
  samples,
  summarise_by = NULL,
  order_by = NULL,
  CrIs = c(0.2, 0.5, 0.9)
)
```

calc_summary_stats 9

Arguments

samples A data.table containing at least a value variable summarise_by A character vector of variables to group by.

order_by A character vector of parameters to order by, defaults to all summarise_by vari-

ables.

CrIs Numeric vector of credible intervals to calculate.

Value

A data.table containing summary statistics by group.

Examples

```
samples <- data.frame(value = 1:10, type = "car")
# default
calc_summary_measures(samples)
# by type
calc_summary_measures(samples, summarise_by = "type")</pre>
```

calc_summary_stats

Calculate Summary Statistics

Description

Calculate summary statistics from a data frame by group. Currently supports the mean, median and standard deviation.

Usage

```
calc_summary_stats(samples, summarise_by = c())
```

Arguments

samples A data.table containing at least a value variable summarise_by A character vector of variables to group by.

Value

A data.table containing the upper and lower bounds for the specified credible interval

```
samples <- data.frame(value = 1:10, type = "car")
# default
calc_summary_stats(samples)
# by type
calc_summary_stats(samples, summarise_by = "type")</pre>
```

10 clean_regions

clean_nowcasts

Clean Nowcasts for a Supplied Date

Description

This function removes nowcasts in the format produced by EpiNow2 from a target directory for the date supplied.

Usage

```
clean_nowcasts(date = NULL, nowcast_dir = ".")
```

Arguments

date Date object. Defaults to today's date

nowcast_dir Character string giving the filepath to the nowcast results directory. Defaults to

the current directory.

clean_regions

Clean Regions

Description

Clean Regions

Usage

```
clean_regions(reported_cases, non_zero_points)
```

Arguments

reported_cases A data frame of confirmed cases (confirm) by date (date), and region (region). non_zero_points

Numeric, the minimum number of time points with non-zero cases in a region required for that region to be evaluated. Defaults to 2.

Value

A dataframe of cleaned regional data

construct_output 11

construct_output

Construct Output

Description

Construct Output

Usage

```
construct_output(
   estimates,
   forecast = NULL,
   estimated_reported_cases,
   plots = NULL,
   summary = NULL,
   samples = TRUE
)
```

Arguments

estimates List of data frames as output by estimate_infections forecast A list of data frames as output by forecast_infections

estimated_reported_cases

A list of dataframes as produced by $estimates_by_report_date$.

plots A list of plots as produced by report_plots

summary A list of summary output as produced by report_summary

samples Logical, defaults to TRUE. Should samples be saved

Value

A list of output as returned by epinow

```
copy_results_to_latest
```

Copy Results From Dated Folder to Latest

Description

Copy Results From Dated Folder to Latest

Usage

```
copy_results_to_latest(target_folder = NULL, latest_folder = NULL)
```

12 country_map

Arguments

Character string specifying where to save results (will create if not present). target_folder Character string containing the path to the latest target folder. As produced by latest_folder

setup_target_folder.

country_map

Generate a country map for a single variable.

Description

This general purpose function can be used to generate a country map for a single variable. It has few defaults but the data supplied must contain a region_code variable for linking to mapping data. This function requires the installation of the rnaturalearth package.

Usage

```
country_map(
 data = NULL,
  country = NULL,
 variable = NULL,
  variable_label = NULL,
  trans = "identity",
 fill_labels = NULL,
  scale_fill = NULL,
  region_col_ne = "provnum_ne",
)
```

Arguments

data	Dataframe containing variables to be mapped. Must contain a region_code variable.
country	Character string indicating the name of the country to be mapped.
variable	A character string indicating the variable to map data for. This must be supplied.
variable_label	A character string indicating the variable label to use. If not supplied then the underlying variable name is used.
trans	A character string specifying the transform to use on the specified metric. Defaults to no transform ("identity"). Other options include log scaling ("log") and log base 10 scaling ("log10"). For a complete list of options see ggplot2::continous_scale.
fill_labels	A function to use to allocate legend labels. An example (used below) is scales::percent, which can be used for percentage data.
scale_fill	Function to use for scaling the fill. Defaults to a custom ggplot2::scale_fill_manual, which expects the possible values to be "Increasing", "Likely increasing", "Likely

decreasing", "Decreasing" or "Unsure".

country_map 13

```
region_col_ne Character string indicating the name of a column in the data returned by rnaturalearth::ne_states() that data$region_code corresponds to. Possibilities include provnum_ne, name, fips and others and will depend on which country you are mapping.

... Additional arguments passed to the scale_fill function
```

Value

A ggplot2 object containing a country map.

```
if(requireNamespace("rnaturalearth") & requireNamespace("scales")){
# Example 1
# if you know the provnum_ne codes you can use them directly
eg_data <- data.table::data.table(variable = c("Increasing",</pre>
                                                 "Decreasing",
                                                 "Unsure",
                                                 "Likely decreasing",
                                                 "Likely increasing"),
                                   region_code = c(5, 7, 6, 8, 9))
# make variable a factor so the ordering is sensible
eg_data$variable <- factor(eg_data$variable, levels = c("Decreasing", "Likely decreasing",</pre>
                                                          "Unsure", "Likely increasing",
                                                          "Increasing"))
country_map(data = eg_data, country = "Australia", variable = "variable")
# Example 2
# sometimes it will be more convenient to join your data by name than provnum_ne code:
us_data <- data.table::data.table(variable = c("Increasing",</pre>
                                                 "Decreasing",
                                                 "Unsure",
                                                 "Likely decreasing",
                                                 "Likely increasing"),
                                   region_code = c("California",
                                                    "Texas",
                                                    "Florida"
                                                    "Arizona"
                                                    "New York"))
# make variable a factor so the ordering is sensible in the legend
us_data$variable <- factor(us_data$variable, levels = c("Decreasing", "Likely decreasing",
                                                          "Unsure", "Likely increasing",
                                                          "Increasing"))
country_map(data = us_data, country = "United States of America",
            variable = "variable", region_col_ne = "name")
}
```

14 create_future_rt

create_clean_reported_cases

Create Clean Reported Cases

Description

Create Clean Reported Cases

Usage

```
create_clean_reported_cases(reported_cases, horizon, zero_threshold = 50)
```

Arguments

reported_cases A data frame of confirmed cases (confirm) by date (date). confirm must be

integer and date must be in date format.

horizon Numeric, defaults to 7. Number of days into the future to forecast.

zero_threshold Numeric defaults to 50. Indicates if detected zero cases are meaningful by using

a threshold of 50 cases on average over the last 7 days. If the average is above

this thresold then the zero is replaced with the

Value

A cleaned data frame of reported cases

create_future_rt

Construct the Required Future Rt assumption

Description

Construct the Required Future Rt assumption

Usage

```
create_future_rt(future_rt = "project", delay = 0)
```

Arguments

future_rt A character string or integer. This argument indicates how to set future Rt val-

ues. Supported options are to project using the Rt model ("project"), to use the latest estimate based on partial data ("latest"), to use the latest estimate based on data that is over 50% complete ("estimate"). If an integer is supplied then the Rt estimate from this many days into the future (or past if negative) past will be

used forwards in time.

delay Numeric mean delay

create_initial_conditions

Value

A list containing a logical called fixed and an integer called from

create_initial_conditions

Create Initial Conditions Generating Function

Description

Create Initial Conditions Generating Function

Usage

create_initial_conditions(data, delays, rt_prior, generation_time, mean_shift)

Arguments

data A list of data as produced by create_stan_data.

delays A list of delays (i.e incubation period/reporting delay) between infection and re-

port. Each list entry must also be a list containing the mean, standard deviation of the mean (mean_sd), standard deviation (sd), standard deviation of the standard deviation and the maximum allowed value for the that delay (assuming a lognormal distribution with all parameters excepting the max allowed value on

the log scale). To use no delays set this to list().

rt_prior A list contain the mean and standard deviation (sd) of the lognormally dis-

tributed prior for Rt. By default this is assumed to be mean 1 with a standard deviation of 1 (note in model these will be mapped to log space). To infer infec-

tions only using non-parametric backcalculation set this to list().

generation_time

A list containing the mean, standard deviation of the mean (mean_sd), standard deviation (sd), standard deviation of the standard deviation and the maximum

allowed value for the generation time (assuming a gamma distribution).

mean_shift Numeric, mean delay shift

Value

An initial condition generating function

16 create_stan_args

Description

Create a Data Frame of Mean Delay Shifted Cases

Usage

```
create_shifted_cases(
  reported_cases,
  mean_shift,
  prior_smoothing_window,
  horizon
)
```

Arguments

reported_cases A data frame of confirmed cases (confirm) by date (date). confirm must be

integer and date must be in date format.

mean_shift Numeric, mean delay shift

prior_smoothing_window

Numeric defaults to 7. The number of days over which to take a rolling average

for the prior based on reported cases.

horizon Numeric, defaults to 7. Number of days into the future to forecast.

Value

A dataframe for shifted reported cases

create_stan_args

Create a List of Stan Arguments

Description

Generates a list of arguments as required by rstan::sampling (when method = "exact) or rstan::vb (when method = "approximate). See create_stan_args() for the defaults and the relevant rstan functions for additional options.

create_stan_args 17

Usage

```
create_stan_args(
  model,
  data = NULL,
  init = "random",
  samples = 1000,
  stan_args = NULL,
  method = "exact",
  verbose = FALSE
)
```

Arguments

model A stan model object, defaults to packaged model if not supplied.

data A list of stan data as created by create_stan_data

init Initial conditions passed to rstan. Defaults to "random" but can also be a func-

tion (as supplied by create_intitial_conditions).

samples Numeric, defaults to 1000. The overall number of posterior samples to return

(Note: not the number of samples per chain as is the default in stan).

stan_args A list of stan arguments to be passed to rstan::sampling or rstan::vb (when

using the "exact" or "approximate" method). For method = approximate an additional argument trials indicates the number of attempts to make using variational inference before returning an error (as stochastic failure is possible).

The default for this is 5.

method A character string defaults to "exact". Also accepts "approximate". Indicates

the fitting method to be used this can either be "exact" (NUTs sampling) or "approximate" (variational inference). The exact approach returns samples from the posterior whilst the approximate method returns approximate samples. The approximate method is likely to return results several order of magnitudes faster

than the exact method.

verbose Logical, defaults to FALSE. Should verbose progress messages be returned.

Value

A list of stan arguments

```
# default settings
create_stan_args()

# approximate settings
create_stan_args(method = "approximate")
# increasing warmup
create_stan_args(stan_args = list(warmup = 1000))
```

18 create_stan_data

create_stan_data

Create Stan Data Required for estimate_infections

Description

Create Stan Data Required for estimate_infections

Usage

```
create_stan_data(
  reported_cases,
  shifted_reported_cases,
  horizon,
  no_delays,
  mean_shift,
  generation_time,
  rt_prior,
  estimate_rt,
  week_effect,
  stationary,
  fixed,
  break_no,
  future_rt,
  gp,
  family,
  delays
)
```

Arguments

reported_cases A data frame of confirmed cases (confirm) by date (date). confirm must be

integer and date must be in date format.

shifted_reported_cases

A dataframe of delay shifted reported cases

horizon Numeric, defaults to 7. Number of days into the future to forecast.

no_delays Numeric, number of delays mean_shift Numeric, mean delay shift

generation_time

A list containing the mean, standard deviation of the mean (mean sd), standard deviation (sd), standard deviation of the standard deviation and the maximum allowed value for the generation time (assuming a gamma distribution).

A list contain the mean and standard deviation (sd) of the lognormally dis-

tributed prior for Rt. By default this is assumed to be mean 1 with a standard deviation of 1 (note in model these will be mapped to log space). To infer infec-

tions only using non-parametric backcalculation set this to list().

rt_prior

create_stan_data 19

estimate_rt Logical, should Rt be estimated.

week_effect Logical, defaults TRUE. Should weekly reporting effects be estimated.

stationary Logical, defaults to FALSE. Should Rt be estimated with a global mean. When

estimating Rt this should substantially improve run times but will revert to the global average for real time and forecasted estimates. This setting is most appropriate when estimating historic Rt or when combined with breakpoints.

fixed Logical, should the gaussian process be used for non-parametric change over

time.

break_no Numeric, number of breakpoints

future_rt A character string or integer. This argument indicates how to set future Rt val-

ues. Supported options are to project using the Rt model ("project"), to use the latest estimate based on partial data ("latest"), to use the latest estimate based on data that is over 50% complete ("estimate"). If an integer is supplied then the Rt estimate from this many days into the future (or past if negative) past will be

used forwards in time.

gp List controlling the Gaussian process approximation if set to list() then Rt

is assumed to be constant unless other settings introduce variation. If set must contain the basis_prop (number of basis functions based on scaling the time points) which defaults to 0.3 and must be between 0 and 1 (increasing this increases the accuracy of the approximation and the cost of additional compute. Must also contain the boundary_scale (multiplied by half the range of the input time series). Increasing this increases the accuracy of the approximation at the cost of additional compute. See here: https://arxiv.org/abs/2004.11408 for more information on setting these parameters. Must also contain the lengthscale_alpha and lengthscale_beta. These tune the prior of the lengthscale. Principled values can be obtained using tune_inv_gamma which optimises based on the desired truncation (which should be based on the scale of the observed data). The default is tuned to have 98% of the density of the distribution between 2 and 21 days. Finally the list must contain alpha_sd the standard deviation for the alpha

parameter of the gaussian process. This defaults to 0.1.

family A character string indicating the reporting model to use. Defaults to negative

binomial ("negbin") with poisson ("poisson") also supported.

delays A list of delays (i.e incubation period/reporting delay) between infection and re-

port. Each list entry must also be a list containing the mean, standard deviation of the mean (mean_sd), standard deviation (sd), standard deviation of the standard deviation and the maximum allowed value for the that delay (assuming a lognormal distribution with all parameters excepting the max allowed value on

the log scale). To use no delays set this to list().

Value

A list of stan data

20 dist_fit

dist_fit Fit an Integer Adjusted Exponential, Gamma or Logno tions	ıormal distribu-
--	------------------

Description

Fit an Integer Adjusted Exponential, Gamma or Lognormal distributions

Usage

```
dist_fit(
  values = NULL,
  samples = NULL,
  cores = 1,
  chains = 2,
  dist = "exp",
  verbose = FALSE
)
```

Arguments

values	Numeric vector of values
samples	Numeric, number of samples to take
cores	Numeric, defaults to 1. Number of CPU cores to use (no effect if greater than the number of chains).
chains	Numeric, defaults to 2. Number of MCMC chains to use. More is better with the minimum being two.
dist	Character string, which distribution to fit. Defaults to exponential ("exp") but gamma ("gamma") and lognormal ("lognorma") are also supported.
verbose	Logical, defaults to FALSE. Should verbose progress messages be printed.

Value

A stan fit of an interval censored distribution

dist_skel 21

dist_skel

Distribution Skeleton

Description

This function acts as a skeleton for a truncated distribution defined by model type, maximum value and model parameters. It is designed to be used with the output from get_dist.

Usage

```
dist_skel(n, dist = FALSE, cum = TRUE, model, params, max_value = 120)
```

Arguments

n	Numeric vector, number of samples to take (or days for the probability density).
dist	Logical, defaults to FALSE. Should the probability density be returned rather than a number of samples.
cum	Logical, defaults to TRUE. If dist = TRUE should the returned distribution be cumulative.
model	Character string, defining the model to be used. Supported options are exponential ("exp"), gamma ("gamma"), and log normal ("lognorm")
params	A list of parameters values (by name) required for each model. For the exponential model this is a rate parameter and for the gamma model this is alpha and beta.
max_value	Numeric, the maximum value to allow. Defaults to 120. Samples outside of this range are resampled.

Value

A vector of samples or a probability distribution.

```
## Exponential model
# sample
dist_skel(10, model = "exp", params = list(rate = 1))
# cumulative prob density
dist_skel(1:10, model = "exp", dist = TRUE, params = list(rate = 1))
# probability density
```

22 epinow

```
dist_skel(1:10, model = "exp", dist = TRUE,
          cum = FALSE, params = list(rate = 1))
## Gamma model
# sample
dist_skel(10, model = "gamma", params = list(alpha = 1, beta = 2))
# cumulative prob density
dist_skel(0:10, model = "gamma", dist = TRUE,
          params = list(alpha = 1, beta = 2))
# probability density
dist_skel(0:10, model = "gamma", dist = TRUE,
          cum = FALSE, params = list(alpha = 2, beta = 2))
## Log normal model
# sample
dist_skel(10, model = "lognorm", params = list(mean = log(5), sd = log(2)))
# cumulative prob density
dist_skel(0:10, model = "lognorm", dist = TRUE,
          params = list(mean = log(5), sd = log(2)))
# probability density
dist_skel(0:10, model = "lognorm", dist = TRUE, cum = FALSE,
          params = list(mean = log(5), sd = log(2)))
```

epinow

Real-time Rt Estimation, Forecasting and Reporting

Description

This function wraps the functionality of estimate_infections and forecast_infections in order to estimate Rt and cases by date of infection, forecast into these infections into the future. It also contains additional functionality to convert forecasts to date of report and produce summary output useful for reporting results and interpreting them.

Usage

```
epinow(
  reported_cases,
  samples = 1000,
  horizon = 7,
  generation_time,
  delays = list(),
  CrIs = c(0.2, 0.5, 0.9),
  return_output = FALSE,
  output = c("samples", "plots", "latest"),
```

23 epinow

```
target_folder = NULL,
  target_date,
  forecast_args = NULL,
  logs = tempdir(),
 id = "epinow",
  verbose = FALSE,
)
```

Arguments

reported_cases A data frame of confirmed cases (confirm) by date (date). confirm must be

integer and date must be in date format.

Numeric, defaults to 1000. Number of samples post warmup. samples

horizon Numeric, defaults to 7. Number of days into the future to forecast.

generation_time

A list containing the mean, standard deviation of the mean (mean_sd), standard deviation (sd), standard deviation of the standard deviation and the maximum

allowed value for the generation time (assuming a gamma distribution).

delays A list of delays (i.e incubation period/reporting delay) between infection and re-

port. Each list entry must also be a list containing the mean, standard deviation of the mean (mean_sd), standard deviation (sd), standard deviation of the standard deviation and the maximum allowed value for the that delay (assuming a lognormal distribution with all parameters excepting the max allowed value on

the log scale). To use no delays set this to list().

CrIs Numeric vector of credible intervals to calculate.

Logical, defaults to FALSE. Should output be returned, this automatically upreturn_output

dates to TRUE if no directory for saving is specified.

output A character vector of optional output to return. Supported options are samples ("samples"), plots ("plots"), the run time ("timing"), copying the dated folder

into a latest folder (if target_folder is not null

• set using "latest"), and the stan fit ("fit"). The default is to return samples and plots alongside summarised estimates and summary statistics. This argument uses partial matching so for example passing "sam" will lead to

samples being reported.

target_folder Character string specifying where to save results (will create if not present).

target_date Date, defaults to maximum found in the data if not specified.

forecast_args A list of arguments to pass to forecast_infections. Unless at a minimum

a forecast_model is passed tin his list then forecast_infections will be

bypassed.

logs Character path indicating the target folder in which to store log information.

> Defaults to the temporary directory if not specified. Default logging can be disabled if logs is set to NULL. If specifying a custom logging setup then the code for setup_default_logging and the setup_logging function are a sensible

place to start.

24 epinow

A character string used to assign logging information on error. Used by regional_epinow to assign epinow errors to regions.

verbose

Logical, defaults to FALSE. Should verbose debug progress messages be printed.

Corresponds to the "DEBUG" level from futile.logger. See setup_logging for more detailed logging options.

Additional arguments passed to estimate_infections. See that functions documentation for options.

Value

A list of output from estimate_infections, forecast_infections, report_cases, and report_summary.

```
# construct example distributions
generation_time <- get_generation_time(disease = "SARS-CoV-2", source = "ganyani")</pre>
incubation_period <- get_incubation_period(disease = "SARS-CoV-2", source = "lauer")</pre>
reporting_delay <- bootstrapped_dist_fit(rlnorm(100, log(6), 1), max_value = 30)
# example case data
reported_cases <- EpiNow2::example_confirmed[1:40]</pre>
# estimate Rt and nowcast/forecast cases by date of infection
out <- epinow(reported_cases = reported_cases, generation_time = generation_time,</pre>
              delays = list(incubation_period, reporting_delay),
              stan_args = list(cores = ifelse(interactive(), 4, 1),
              control = list(adapt_delta = 0.95)))
out
# optional forecasting using EpiSoon plug-in
if(requireNamespace("EpiSoon")){
   if(requireNamespace("forecastHybrid")){
   # report Rt along with forecasts
  out <- epinow(reported_cases = reported_cases, samples = 200,</pre>
                 generation_time = generation_time,
                 delays = list(incubation_period, reporting_delay),
                 forecast_args = list(
                     forecast_model = function(y, ...){
                     EpiSoon::forecastHybrid_model(
                          y = y[max(1, length(y) - 21):length(y)],
                          model_params = list(models = "aefz", weights = "equal"),
                          forecast_params = list(PI.combination = "mean"), ...)}
                          ),
                 stan_args = list(warmup = 200, cores = ifelse(interactive(), 4, 1)))
   out
}
```

```
estimates_by_report_date
```

Estimate Cases by Report Date

Description

Estimate Cases by Report Date

Usage

```
estimates_by_report_date(
  estimates,
  forecast,
  delays,
  CrIs = c(0.2, 0.5, 0.9),
  target_folder = NULL,
  samples = TRUE
)
```

Arguments

estimates List of data frames as output by estimate_infections forecast A list of data frames as output by forecast_infections

delays A list of delays (i.e incubation period/reporting delay) between infection and report. Each list entry must also be a list containing the mean, standard deviation

port. Each list entry must also be a list containing the mean, standard deviation of the mean (mean_sd), standard deviation (sd), standard deviation of the standard deviation and the maximum allowed value for the that delay (assuming a lognormal distribution with all parameters excepting the max allowed value on

the log scale). To use no delays set this to list().

CrIs Numeric vector of credible intervals to calculate.

target_folder Character string specifying where to save results (will create if not present).

samples Logical, defaults to TRUE. Should samples be saved

Value

A list of samples and summarised estimates of estimated cases by date of report

estimate_infections $Estimate\ Infections,\ the\ Time-Varying\ Reproduction\ Number\ and\ the$ $Rate\ of\ Growth$

Description

This function uses a non-parametric approach to reconstruct cases by date of infection from reported cases. It can optionally then estimate the time-varying reproduction number and the rate of growth.

Usage

```
estimate_infections(
  reported_cases,
  model = NULL,
  samples = 1000,
  stan_args = NULL,
  method = "exact",
  family = "negbin",
  generation_time,
  CrIs = c(0.2, 0.5, 0.9),
  delays = list(),
  horizon = 7,
  gp = list(basis_prop = 0.3, boundary_scale = 2, lengthscale_alpha = 4.5,
    lengthscale_beta = 21.5, alpha_sd = 0.1),
  rt_prior = list(mean = 1, sd = 1),
  week_effect = TRUE,
  use_breakpoints = TRUE,
  stationary = FALSE,
  future_rt = "project",
  burn_in = 0,
  prior_smoothing_window = 7,
  future = FALSE,
  max_execution_time = Inf,
  return_fit = FALSE,
  verbose = FALSE
)
```

Arguments

reported_cases A data frame of confirmed cases (confirm) by date (date). confirm must be integer and date must be in date format.

model A compiled stan model. By default uses the internal package model.

samples Numeric, defaults to 1000. Number of samples post warmup.

stan_args A list of stan arguments to be passed to rstan::sampling or rstan::vb (when using the "exact" or "approximate" method). For method = approximate an

additional argument trials indicates the number of attempts to make using

variational inference before returning an error (as stochastic failure is possible). The default for this is 5.

method

A character string defaults to "exact". Also accepts "approximate". Indicates the fitting method to be used this can either be "exact" (NUTs sampling) or "approximate" (variational inference). The exact approach returns samples from the posterior whilst the approximate method returns approximate samples. The approximate method is likely to return results several order of magnitudes faster than the exact method.

family

A character string indicating the reporting model to use. Defaults to negative binomial ("negbin") with poisson ("poisson") also supported.

generation_time

A list containing the mean, standard deviation of the mean (mean_sd), standard deviation (sd), standard deviation of the standard deviation and the maximum allowed value for the generation time (assuming a gamma distribution).

CrIs

Numeric vector of credible intervals to calculate.

delays

A list of delays (i.e incubation period/reporting delay) between infection and report. Each list entry must also be a list containing the mean, standard deviation of the mean (mean_sd), standard deviation (sd), standard deviation of the standard deviation and the maximum allowed value for the that delay (assuming a lognormal distribution with all parameters excepting the max allowed value on the log scale). To use no delays set this to list().

horizon

Numeric, defaults to 7. Number of days into the future to forecast.

gp

List controlling the Gaussian process approximation if set to list() then Rt is assumed to be constant unless other settings introduce variation. If set must contain the basis_prop (number of basis functions based on scaling the time points) which defaults to 0.3 and must be between 0 and 1 (increasing this increases the accuracy of the approximation and the cost of additional compute. Must also contain the boundary_scale (multiplied by half the range of the input time series). Increasing this increases the accuracy of the approximation at the cost of additional compute. See here: https://arxiv.org/abs/2004.11408 for more information on setting these parameters. Must also contain the lengthscale_alpha and lengthscale_beta. These tune the prior of the lengthscale. Principled values can be obtained using tune_inv_gamma which optimises based on the desired truncation (which should be based on the scale of the observed data). The default is tuned to have 98% of the density of the distribution between 2 and 21 days. Finally the list must contain alpha_sd the standard deviation for the alpha parameter of the gaussian process. This defaults to 0.1.

rt_prior

A list contain the mean and standard deviation (sd) of the lognormally distributed prior for Rt. By default this is assumed to be mean 1 with a standard deviation of 1 (note in model these will be mapped to log space). To infer infections only using non-parametric backcalculation set this to list().

week_effect
use_breakpoints

Logical, defaults TRUE. Should weekly reporting effects be estimated.

Logical, defaults to TRUE but only active if a breakpoint variable is present in the input data. Breakpoints should be defined as 1 if present and otherwise 0. By default breakpoints are fit jointly with a global non-parametric effect and so

represent a conservative estimate of breakpoint changes. To specify a random walk define breakpoints every n days (so every 7 days for a weekly random walk) and disable the gaussian process using gp = list().

stationary

Logical, defaults to FALSE. Should Rt be estimated with a global mean. When estimating Rt this should substantially improve run times but will revert to the global average for real time and forecasted estimates. This setting is most appropriate when estimating historic Rt or when combined with breakpoints.

future_rt

A character string or integer. This argument indicates how to set future Rt values. Supported options are to project using the Rt model ("project"), to use the latest estimate based on partial data ("latest"), to use the latest estimate based on data that is over 50% complete ("estimate"). If an integer is supplied then the Rt estimate from this many days into the future (or past if negative) past will be used forwards in time.

burn_in

Numeric, defaults to 0. The number of initial Rt estimates to discard. This argument may be used to reduce spurious findings when running estimate_infections on a partial timeseries (as the earliest estimates will not be informed by all cases that occurred only those supplied to estimate_infections). The combined delays used will inform the appropriate length of this burn in but 7 days is likely a sensible starting point.

prior_smoothing_window

Numeric defaults to 7. The number of days over which to take a rolling average for the prior based on reported cases.

future

Logical, defaults to FALSE. Should stan chains be run in parallel using future. This allows users to have chains fail gracefully (i.e when combined with max_execution_time). Should be combined with a call to future::plan

max_execution_time

Numeric, defaults to Inf (seconds). If set will kill off processing of each chain if not finished within the specified timeout. When more than 2 chains finish successfully estimates will still be returned. If less than 2 chains return within the allowed time then estimation will fail with an informative error.

return_fit

Logical, defaults to FALSE. Should the fitted stan model be returned.

verbose

Logical, defaults to FALSE. Should verbose debug progress messages be printed. Corresponds to the "DEBUG" level from futile.logger. See setup_logging for more detailed logging options.

```
incubation_period <- get_incubation_period(disease = "SARS-CoV-2", source = "lauer")</pre>
reporting_delay <- list(mean = log(5), mean_sd = log(2),
                        sd = log(2), sd_sd = log(1.5), max = 30)
# Note: all examples below have been tuned to reduce the runtimes of examples
# these settings are not suggesed for real world use.
# run model with default setting
def <- estimate_infections(reported_cases, generation_time = generation_time,</pre>
                           delays = list(incubation_period, reporting_delay),
                        stan_args = list(warmup = 200, control = list(adapt_delta = 0.8),
                                             cores = ifelse(interactive(), 4, 1)))
plots <- report_plots(summarised_estimates = def$summarised, reported = reported_cases)</pre>
plots$summary
# run the model using the approximate method (variational inference)
approx <- estimate_infections(reported_cases, generation_time = generation_time,
                               delays = list(incubation_period, reporting_delay),
                               method = "approximate")
plots <- report_plots(summarised_estimates = approx$summarised, reported = reported_cases)</pre>
plots$summary
# run the model with default settings using the future backend
## (combine with a call to future::plan to make this parallel).
def_future <- estimate_infections(reported_cases, generation_time = generation_time,</pre>
                                   delays = list(incubation_period, reporting_delay),
                                   stan_args = list(warmup = 200,
                                                    control = list(adapt_delta = 0.9),
                                                    cores = ifelse(interactive(), 4, 1)))
plots <- report_plots(summarised_estimates = def_future$summarised, reported = reported_cases)</pre>
plots$summary
# run model with Rt fixed into the future using the latest estimate
fixed_rt <- estimate_infections(reported_cases, generation_time = generation_time,</pre>
                                 delays = list(incubation_period, reporting_delay),
                                 stan_args = list(warmup = 200,
                                                   control = list(adapt_delta = 0.9),
                                                   cores = ifelse(interactive(), 4, 1)),
                                 future_rt = "latest")
plots <- report_plots(summarised_estimates = fixed_rt$summarised, reported = reported_cases)</pre>
plots$summary
# run the model with default settings on a later snapshot of
# data (use burn_in here to remove the first week of estimates that may
# be impacted by this most).
snapshot_cases <- EpiNow2::example_confirmed[80:130]</pre>
snapshot <- estimate_infections(reported_cases, generation_time = generation_time,</pre>
                                 delays = list(incubation_period, reporting_delay),
                                 stan_args = list(warmup = 200,
                                                   control = list(adapt_delta = 0.9),
```

```
cores = ifelse(interactive(), 4, 1)),
                                 burn_in = 7)
plots <- report_plots(summarised_estimates = snapshot$summarised, reported = snapshot_cases)</pre>
plots$summary
# run model with stationary Rt assumption (likely to provide biased real-time estimates)
stat <- estimate_infections(reported_cases, generation_time = generation_time,</pre>
                             delays = list(incubation_period, reporting_delay),
                       stan_args = list(warmup = 200, cores = ifelse(interactive(), 4, 1),
                                               control = list(adapt_delta = 0.9)),
                             stationary = TRUE)
plots <- report_plots(summarised_estimates = stat$summarised, reported = reported_cases)</pre>
plots$summary
# run model with fixed Rt assumption
fixed <- estimate_infections(reported_cases, generation_time = generation_time,</pre>
                              delays = list(incubation_period, reporting_delay),
                       stan_args = list(warmup = 200, cores = ifelse(interactive(), 4, 1),
                                               control = list(adapt_delta = 0.9)),
                              gp = list())
plots <- report_plots(summarised_estimates = fixed$summarised, reported = reported_cases)</pre>
plots$summary
# run model with no delays
no_delay <- estimate_infections(reported_cases, generation_time = generation_time,</pre>
                                 stan_args = list(warmup = 200,
                                                   cores = ifelse(interactive(), 4, 1),
                                                   control = list(adapt_delta = 0.9)))
plots <- report_plots(summarised_estimates = no_delay$summarised, reported = reported_cases)</pre>
plots$summary
# run model with breakpoints
bkp <- estimate_infections(reported_cases_bp, generation_time = generation_time,</pre>
                            delays = list(incubation_period, reporting_delay),
                            stan_args = list(warmup = 200,
                                             cores = ifelse(interactive(), 4, 1),
                                             control = list(adapt_delta = 0.9)))
plots <- report_plots(summarised_estimates = bkp$summarised, reported = reported_cases)</pre>
plots$summary
# run model with breakpoints but with constrained non-linear change over time
# rhis formulation may increase the apparent effect of the breakpoint but needs to be tested using
# model fit criteria (i.e LFO).
cbkp <- estimate_infections(reported_cases_bp, generation_time = generation_time,</pre>
                            delays = list(incubation_period, reporting_delay),
                            gp = list(basis_prop = 0.3, boundary_scale = 2,
                                      lengthscale_mean = 20, lengthscale_sd = 1),
                            stan_args = list(warmup = 200,
```

example_confirmed 31

```
cores = ifelse(interactive(), 4, 1),
                           control = list(adapt_delta = 0.9)))
plots <- report_plots(summarised_estimates = cbkp$summarised, reported = reported_cases)</pre>
plots$summary
# breakpoint effect
cbkp$summarised[variable == "breakpoints"]
# run model with breakpoints but otherwise static Rt
# This formulation may increase the apparent effect of the breakpoint but needs to be tested using
# model fit criteria (i.e LFO).
fbkp <- estimate_infections(reported_cases_bp, generation_time = generation_time,
                            delays = list(incubation_period, reporting_delay),
                            stan_args = list(warmup = 200,
                                              cores = ifelse(interactive(), 4, 1),
                                              control = list(adapt_delta = 0.9)),
                            gp = list())
plots <- report_plots(summarised_estimates = fbkp$summarised, reported = reported_cases)</pre>
plots$summary
# breakpoint effect
fbkp$summarised[variable == "breakpoints"]
# run model without Rt estimation (just backcalculation)
backcalc <- estimate_infections(reported_cases, generation_time = generation_time,</pre>
                               delays = list(incubation_period, reporting_delay),
                                stan_args = list(warmup = 200,
                                                 cores = ifelse(interactive(), 4, 1),
                                                 control = list(adapt_delta = 0.9)),
                               rt_prior = list())
# plot just infections as report_plots does not support the backcalculation only model
plot_estimates(estimate = backcalc$summarised[variable == "infections"],
               reported = reported_cases, ylab = "Cases")
```

example_confirmed

Example Confirmed Case Data Set

Description

An example data frame of observed cases

Usage

example_confirmed

Format

A data frame containing cases reported on each date.

32 extract_parameter

extract_CrIs

Extract Credible Intervals Present

Description

Extract Credible Intervals Present

Usage

```
extract_CrIs(summarised)
```

Arguments

summarised

A data frame as processed by calc_CrIs

Value

A numeric vector of credible intervals detected in the data frame.

Examples

extract_parameter

Extract Samples for a Parameter from a Stan model

Description

Extract Samples for a Parameter from a Stan model

Usage

```
extract_parameter(param, samples, dates)
```

Arguments

param Character string indicating the parameter to extract samples Extracted stan model (using rstan::extract)

dates A vector identifying the dimensionality of the parameter to extract. Generally

this will be a date

Value

A data frame containing the parameter name, date, sample id and sample value

```
extract_parameter_samples
```

Extract Parameter Samples from a Stan Model

Description

Extract Parameter Samples from a Stan Model

Usage

```
extract_parameter_samples(stan_fit, data, reported_dates, reported_inf_dates)
```

Arguments

stan_fit A fit Stan model as returned by rstan:sampling

data A list of the data supplied to the rstan::sampling call.

reported_dates A vector of dates to report estimates for.

reported_inf_dates

A vector of dates to report infection estimates for.

Value

A list of dataframes each containing the posterior of a parameter

```
extract_static_parameter
```

Extract Samples from a Parameter with a Single Dimension

Description

Extract Samples from a Parameter with a Single Dimension

Usage

```
extract_static_parameter(param, samples)
```

Arguments

param Character string indicating the parameter to extract samples Extracted stan model (using rstan::extract)

Value

A data frame containing the parameter name, sample id and sample value

34 fit_model_with_vb

fit_model_with_nuts Fit

Fit a Stan Model using the NUTs sampler

Description

Fit a Stan Model using the NUTs sampler

Usage

```
fit_model_with_nuts(
   args,
   future = FALSE,
   max_execution_time = Inf,
   verbose = FALSE
)
```

Arguments

args List of stan arguments

future Logical, defaults to FALSE. Should future be used to run stan chains in parallel.

max_execution_time

Numeric, defaults to Inf. What is the maximum execution time per chain in seconds. Results will still be returned as long as at least 2 chains complete

successfully within the timelimit.

verbose Logical, defaults to FALSE. Should verbose progress information be returned.

Value

A stan model object

fit_model_with_vb

Fit a Stan Model using Variational Inference

Description

Fit a Stan Model using Variational Inference

Usage

```
fit_model_with_vb(args, future = FALSE, verbose = FALSE)
```

Arguments

args List of stan arguments

future Logical, defaults to FALSE. Should future be used to run stan chains in parallel. verbose Logical, defaults to FALSE. Should verbose progress information be returned.

forecast_infections 35

Value

A stan model object

 $forecast_infections$

Forecast Infections and the Time-Varying Reproduction Number

Description

This function provides optional tools for forecasting cases and Rt estimates using the timeseries methods (via the EpiSoon package). It requires the EpiSoon package. Installation instructions for the EpiSoon package are available here.

Usage

```
forecast_infections(
   infections,
   rts,
   gt_mean,
   gt_sd,
   gt_max = 30,
   ensemble_type = "mean",
   forecast_model,
   CrIs = c(0.2, 0.5, 0.9),
   horizon = 14,
   samples = 1000
)
```

Arguments

infections	A data frame of cases by date of infection containing the following variables: date, mean, sd
rts	A data frame of Rt estimates by date of infection containing the following variables: date, mean, sd
gt_mean	Numeric, the mean of the gamma distributed generation time.
gt_sd	Numeric, the standard deviation of the gamma distributed generation time.
gt_max	Numeric, the maximum allowed value of the gamma distributed generation time.
ensemble_type	Character string indicating the type of ensemble to use. By default this is an unweighted ensemble ("mean") with no other types currently supported.
forecast_model	An uninitialised forecast model function to be passed to EpiSoon::forecast_rt. Used for forecasting future Rt and case co An example of the required structure is: function(ss,y){bsts::AddSemilocalLinearTrend(ss,y = y)}.
CrIs	Numeric vector of credible intervals to calculate.
horizon	Numeric, defaults to 14. The horizon over which to forecast Rts and cases.
samples	Numeric, the number of forecast samples to take.

36 format_fit

Value

A list of data.tables. The first entry ("samples") contains raw forecast samples and the second entry ("summarised") contains summarised forecasts.

Examples

```
if(requireNamespace("EpiSoon")){
   if(requireNamespace("forecastHybrid")){
# example case data
reported_cases <- EpiNow2::example_confirmed[1:40]</pre>
generation_time <- get_generation_time(disease = "SARS-CoV-2", source = "ganyani")</pre>
incubation_period <- get_incubation_period(disease = "SARS-CoV-2", source = "lauer")
reporting_delay <- EpiNow2::bootstrapped_dist_fit(rlnorm(100, log(6), 1), max_value = 15)</pre>
# estimate Rt and infections from data
out <- estimate_infections(reported_cases, generation_time = generation_time,</pre>
                            delays = list(incubation_period, reporting_delay),
                            gp = list(), samples = 100,
                            stan_args = list(cores = ifelse(interactive(), 4, 1),
                                             warmup = 100, chains = 4))
# forecast Rt and infections from estimates
forecast <- forecast_infections(</pre>
    infections = out$summarised[variable == "infections"],
    rts = out$summarised[variable == "R"],
    gt_mean = out$summarised[variable == "gt_mean"]$mean,
    gt_sd = out$summarised[variable == "gt_sd"]$mean,
    gt_max = 30,
     forecast_model = function(y, ...){
       EpiSoon::forecastHybrid_model(y = y[max(1, length(y) - 21):length(y)],
       model_params = list(models = "aefz", weights = "equal"),
       forecast_params = list(PI.combination = "mean"), ...)},
     horizon = 14.
     samples = 1000)
forecast$summarised
 }
```

format_fit

Format Posterior Samples

Description

Format Posterior Samples

gamma_dist_def 37

Usage

```
format_fit(posterior_samples, horizon, shift, burn_in, start_date, CrIs)
```

Arguments

posterior_samples

A list of posterior samples as returned by extract_parameter_samples

horizon Numeric, forecast horizon

shift Numeric, the shift to apply to estimates

burn_in Numeric, number of days to discard estimates for

start_date Date, earliest date with data

CrIs Numeric vector of credible intervals to calculate.

Value

A list of samples and summarised posterior parameter estimates

gamma_dist_def	Generate a Gamma Distribution Definition Based on Parameter Esti-
	mates

Description

Generates a distribution definition when only parameter estimates are available for gamma distributed parameters. See rgamma for distribution information.

```
gamma_dist_def(
    shape,
    shape_sd,
    scale,
    scale_sd,
    mean,
    mean_sd,
    sd,
    sd_sd,
    max_value,
    samples
)
```

38 generation_times

Arguments

shape	Numeric, shape parameter of the gamma distribution.
shape_sd	Numeric, standard deviation of the shape parameter.
scale	Numeric, scale parameter of the gamma distribution.
scale_sd	Numeric, standard deviation of the scale parameter.
mean	Numeric, log mean parameter of the gamma distribution.
mean_sd	Numeric, standard deviation of the log mean parameter.
sd	Numeric, log sd parameter of the gamma distribution.
sd_sd	Numeric, standard deviation of the log sd parameter.
max_value	Numeric, the maximum value to allow. Defaults to 120. Samples outside of this range are resampled.
samples	Numeric, number of sample distributions to generate.

Value

A data.table defining the distribution as used by dist_skel

Examples

generation_times

Literature Estimates of Generation Times

Description

Generation time estimates. See here for details: https://github.com/epiforecasts/EpiNow2/blob/master/data-raw/generation-time.R

```
generation_times
```

get_dist 39

Format

A data. table of summarising the distribution

Description

Get a Literature Distribution

Usage

```
get_dist(data, disease, source, max_value = 30)
```

Arguments

data	A data.table in the format of generation_times.
disease	A character string indicating the disease of interest.
source	A character string indicating the source of interest.

max_value Numeric, the maximum value to allow. Defaults to 30 days.

Value

A list defining a distribution

Examples

```
get_dist(EpiNow2::generation_times, disease = "SARS-CoV-2", source = "ganyani")
```

```
get_generation_time Get a Literature Distribution for the Generation Time
```

Description

Extracts a literature distribution from generation_times

Usage

```
get_generation_time(disease, source, max_value = 30)
```

Arguments

disease	A character string indicating the disease of interest.
source	A character string indicating the source of interest.

max_value Numeric, the maximum value to allow. Defaults to 30 days.

40 get_raw_result

Value

A list defining a distribution

Examples

```
get_generation_time(disease = "SARS-CoV-2", source = "ganyani")
```

get_incubation_period Get a Literature Distribution for the Incubation Period

Description

Extracts a literature distribution from incubation_periods

Usage

```
get_incubation_period(disease, source, max_value = 30)
```

Arguments

disease A character string indicating the disease of interest.

Source A character string indicating the source of interest.

max_value Numeric, the maximum value to allow. Defaults to 30 days.

Value

A list defining a distribution

Examples

```
get_incubation_period(disease = "SARS-CoV-2", source = "lauer")
```

get_raw_result

Get a Single Raw Result

Description

Get a Single Raw Result

```
get_raw_result(file, region, date, result_dir)
```

get_regional_results 41

Arguments

file Character string giving the result files name.

region Character string giving the region of interest.

date Target date (in the format "yyyy-mm-dd).

result_dir Character string giving the location of the target directory

Value

An R object read in from the targeted .rds file

Description

Get Combined Regional Results

Usage

```
get_regional_results(
  regional_output,
  results_dir,
  date,
  samples = TRUE,
  forecast = FALSE
)
```

Arguments

regional_output

A list of output as produced by regional_epinow and stored in the regional

list.

results_dir A character string indicating the folder containing the EpiNow2 results to extract.

date A Character string (in the format "yyyy-mm-dd") indicating the date to extract

data for. Defaults to "latest" which finds the latest results available.

samples Logical, defaults to TRUE. Should samples be returned.

forecast Logical, defaults to FALSE. Should forecast results be returned.

Value

A list of estimates, forecasts and estimated cases by date of report.

42 get_regions

Examples

```
# construct example distributions
generation_time <- get_generation_time(disease = "SARS-CoV-2", source = "ganyani")</pre>
incubation_period <- get_incubation_period(disease = "SARS-CoV-2", source = "lauer")</pre>
reporting_delay <- EpiNow2::bootstrapped_dist_fit(rlnorm(100, log(6), 1), max_value = 30)
# example case vector from EpiSoon
cases <- EpiNow2::example_confirmed[1:30]</pre>
cases <- data.table::rbindlist(list(</pre>
 data.table::copy(cases)[, region := "testland"],
 cases[, region := "realland"]))
# run multiregion estimates
regional_out <- regional_epinow(reported_cases = cases,</pre>
                                 samples = 100,
                                 generation_time = generation_time,
                                 delays = list(incubation_period, reporting_delay),
                                 stan_args = list(warmup = 100,
                                                   cores = ifelse(interactive(), 4, 1)),
                                 output = c("regions"))
summary_only <- get_regional_results(regional_out$regional, forecast = FALSE, samples = FALSE)</pre>
names(summary_only)
all <- get_regional_results(regional_out$regional, forecast = TRUE)</pre>
names(all)
```

get_regions

Get Folders with Nowcast Results

Description

Get Folders with Nowcast Results

Usage

```
get_regions(results_dir)
```

Arguments

results_dir A character string giving the directory in which results are stored (as produced by regional_rt_pipeline).

Value

A named character vector containing the results to plot.

Description

Get Regions with Most Reported Cases

Usage

```
get_regions_with_most_reports(reported_cases, time_window = 7, no_regions = 6)
```

Arguments

```
reported_cases A data frame of confirmed cases (confirm) by date (date), and region (region).

time_window Numeric, number of days to include from latest date in data. Defaults to 7 days.

Numeric, number of regions to return. Defaults to 6.
```

Value

A character vector of regions with the highest reported cases

global_map

Generate a global map for a single variable.

Description

This general purpose function can be used to generate a global map for a single variable. It has few defaults but the data supplied must contain a country variable for linking to mapping data. This function requires the installation of the rnaturalearth package.

```
global_map(
  data = NULL,
  variable = NULL,
  variable_label = NULL,
  trans = "identity",
  fill_labels = NULL,
  scale_fill = NULL,
  ...
)
```

44 global_map

Arguments

data Dataframe containing variables to be mapped. Must contain a country variable. variable A character string indicating the variable to map data for. This must be supplied. variable_label A character string indicating the variable label to use. If not supplied then the underlying variable name is used. trans A character string specifying the transform to use on the specified metric. Defaults to no transform ("identity"). Other options include log scaling ("log") and log base 10 scaling ("log10"). For a complete list of options see ggplot2::continous_scale. fill labels A function to use to allocate legend labels. An example (used below) is scales::percent, which can be used for percentage data. scale_fill Function to use for scaling the fill. Defaults to a custom ggplot2::scale_fill_manual, which expects the possible values to be "Increasing", "Likely increasing", "Likely decreasing", "Decreasing" or "Unsure". Additional arguments passed to the scale_fill function

Value

A ggplot2 object containing a global map.

```
if(requireNamespace("rnaturalearth") & requireNamespace("scales")){
# Example 1 - categorical data
# If values are "Increasing", "Likely increasing" etc (see ?EpiNow2::theme_map),
# then the default fill scale works
eg_data <- data.table::data.table(variable = c("Increasing",
                                                "Decreasing",
                                                "Unsure",
                                                "Likely decreasing",
                                                "Likely increasing"),
                                   country = c("France".
                                               "Germany"
                                               "United Kingdom",
                                               "Spain",
                                               "Australia") )
# make variable a factor so the ordering is sensible in the legend
eg_data$variable <- factor(eg_data$variable, levels = c("Decreasing", "Likely decreasing",
                                                         "Unsure", "Likely increasing",
                                                         "Increasing"))
global_map(eg_data, variable = "variable", variable_label = "Direction\nof change")
# Example 2 - numeric data
# numeric data requires scale_fill and a global viridis_palette specified
eg_data$second_variable <- runif(nrow(eg_data))</pre>
viridis_palette <- "A"</pre>
global_map(eg_data, variable = "second_variable", scale_fill = scale_fill_viridis_c)
}
```

growth_to_R 45

growth_to_R	Cor
growth_to_R	Cor

Convert Growth Rates to Reproduction numbers.

Description

See here for justification.

Usage

```
growth_to_R(r, gamma_mean, gamma_sd)
```

Arguments

r Numeric, rate of growth estimates

gamma_mean Numeric, mean of the gamma distribution

gamma_sd Numeric, standard deviation of the gamma distribution

Value

Numeric vector of reproduction number estimates

Examples

```
growth_to_R(0.2, 4, 1)
```

incubation_periods

Literature Estimates of Incubation Periods

Description

Incubation period estimates. See here for details: https://github.com/epiforecasts/EpiNow2/blob/master/data-raw/incubation-period.R

Usage

```
incubation_periods
```

Format

A data. table of summarising the distribution

46 lognorm_dist_def

lognorm_dist_def	Generate a Log Normal Distribution Definition Based on Parameter Estimates
------------------	--

Description

Generates a distribution definition when only parameter estimates are available for log normal distributed parameters. See rlnorm for distribution information.

Usage

```
lognorm_dist_def(mean, mean_sd, sd, sd_sd, max_value, samples, to_log = FALSE)
```

Arguments

mean	Numeric, log mean parameter of the gamma distribution.
mean_sd	Numeric, standard deviation of the log mean parameter.
sd	Numeric, log sd parameter of the gamma distribution.
sd_sd	Numeric, standard deviation of the log sd parameter.
max_value	Numeric, the maximum value to allow. Defaults to 120. Samples outside of this range are resampled.
samples	Numeric, number of sample distributions to generate.
to_log	Logical, should parameters be logged before use.

Value

A data.table defining the distribution as used by dist_skel

make_conf 47

			_
ma	kρ	CO	nt

Format Credible Intervals

Description

Format Credible Intervals

Usage

```
make_conf(value, CrI = 90, reverse = FALSE)
```

Arguments

value List of value to map into a string. Requires, point, lower, and upper.

CrI Numeric, credible interval to report. Defaults to 90

reverse Logical, defaults to FALSE. Should the reported credible interval be switched.

Value

A character vector formatted for reporting

Examples

```
value <- list(median = 2, lower_90 = 1, upper_90 = 3)
make_conf(value)</pre>
```

map_prob_change

Categorise the Probability of Change for Rt

Description

Categorises a numeric variable into "Increasing" (< 0.05), "Likely increasing" (< 0.2), "Unsure" (< 0.8), "Likely decreasing" (< 0.95), "Decreasing" (<= 1)

Usage

```
map_prob_change(var)
```

Arguments

var

Numeric variable to be categorised

Value

A character variable.

Examples

```
var <- seq(0.01, 1, 0.01)
var
map_prob_change(var)</pre>
```

match_output_arguments

Match Input Output Arguments with Supported Options

Description

Match Input Output Arguments with Supported Options

Usage

```
match_output_arguments(
  input_args = c(),
  supported_args = c(),
  logger = NULL,
  level = "info"
)
```

Arguments

input_args A character vector of input arguments (can be partial). supported_args A character vector of supported output arguments.

logger A character vector indicating the logger to target messages at. Defaults to no

logging.

level Character string defaulting to "info". Logging level see documentation of fu-

tile.logger for details. Supported options are "info" and "debug"

Value

A logical vector of named output arguments

plot_estimates 49

plot_estimates

Plot Estimates

Description

Plot Estimates

Usage

```
plot_estimates(
   estimate,
   reported,
   ylab = "Cases",
   hline,
   obs_as_col = TRUE,
   max_plot = 10
)
```

Arguments

estimate	A data.table of estimates containing the following variables: date, type (must contain "estimate", "estimate based on partial data" and optionally "forecast"),
reported	A data.table of reported cases with the following variables: date, confirm.
ylab	Character string, defaulting to "Cases". Title for the plot y axis.
hline	Numeric, if supplied gives the horizontal intercept for a indicator line.
obs_as_col	Logical, defaults to TRUE. Should observed data, if supplied, be plotted using columns or as points (linked using a line).
max_plot	Numeric, defaults to 10. A multiplicative upper bound on the number of cases shown on the plot. Based on the maximum number of reported cases.

Value

A ggplot2 object

```
# define example cases
cases <- EpiNow2::example_confirmed[1:40]

# set up example delays
generation_time <- get_generation_time(disease = "SARS-CoV-2", source = "ganyani")</pre>
```

50 plot_summary

```
incubation_period <- get_incubation_period(disease = "SARS-CoV-2", source = "lauer")</pre>
reporting_delay <- EpiNow2::bootstrapped_dist_fit(rlnorm(100, log(6), 1), max_value = 30)
# run model
out <- EpiNow2::estimate_infections(cases, generation_time = generation_time,</pre>
                                    delays = list(incubation_period, reporting_delay),
                                   stan_args = list(cores = ifelse(interactive(), 4, 1)))
# plot infections
plot_estimates(
 estimate = out$summarised[variable == "infections"],
 reported = cases,
 ylab = "Cases", max_plot = 2) + ggplot2::facet_wrap(~type, scales = "free_y")
# plot reported cases estimated via Rt
plot_estimates(estimate = out$summarised[variable == "reported_cases"],
               reported = cases,
               ylab = "Cases")
# plot Rt estimates
plot_estimates(estimate = out$summarised[variable == "R"],
               ylab = "Effective Reproduction No.",
               hline = 1)
```

plot_summary

Plot a Summary of the Latest Results

Description

Plot a Summary of the Latest Results

Usage

```
plot_summary(summary_results, x_lab = "Region", log_cases = FALSE, max_cases)
```

Arguments

summary_results

A data.table as returned by summarise_results (the data object).

x_lab A character string giving the label for the x axis, defaults to region.log_cases Logical, should cases be shown on a logged scale. Defaults to FALSE

max_cases Numeric, no default. The maximum number of cases to plot.

Value

A ggplot2 object

process_region 51

process_region

Process regional estimate

Description

Process regional estimate

Usage

```
process_region(
  out,
  target_region,
  timing,
  return_output = TRUE,
  return_timing = TRUE,
  complete_logger = "EpiNow2.epinow"
)
```

Arguments

out List of output returned by epinow

target_region Character string indicating the region being evaluated

timing Output from Sys.time

return_output Logical, defaults to FALSE. Should output be returned, this automatically up-

dates to TRUE if no directory for saving is specified.

return_timing Logical, should runtime be returned

complete_logger

Character string indicating the logger to output the completion of estimation to.

Value

A list of processed output

process_regions

Process all Region Estimates

Description

Process all Region Estimates

```
process_regions(regional_out, regions)
```

52 regional_epinow

Arguments

regional_out A list of output from multiple runs of regional_epinow A character vector identifying the regions that have been run regions

Value

A list of all regional estimates and successful regional estimates

regional_epinow

Real-time Rt Estimation, Forecasting and Reporting by Region

Description

Estimates Rt by region. See the documentation for epinow for further information. The progress of producing estimates across multiple regions is tracked using the progressr package. Modify this behaviour using progressr::handlers and enable it in batch by setting R_PROGRESSR_ENABLE=TRUE as an environment variable.

Usage

```
regional_epinow(
  reported_cases,
  target_folder = NULL,
  target_date,
  non_zero_points = 2,
  output = c("regions", "summary", "samples", "plots", "latest"),
  return_output = FALSE,
  summary_args = list(),
  logs = tempdir(),
)
```

Arguments

reported_cases A data frame of confirmed cases (confirm) by date (date), and region (region).

Character string specifying where to save results (will create if not present). target_folder

target_date Date, defaults to maximum found in the data if not specified.

non_zero_points

Numeric, the minimum number of time points with non-zero cases in a region

required for that region to be evaluated. Defaults to 2.

output

A character vector of optional output to return. Supported options are the individual regional estimates ("regions"), samples ("samples"), plots ("plots"), copying the individual region dated folder into a latest folder (if target_folder is not null - set using "latest"), the stan fit of the underlying model ("fit"), and an overall summary across regions ("summary"). The default is to return regional_epinow 53

samples and plots alongside summarised estimates and summary statistics. If target_folder is not NULL then the default is also to copy all results into a latest folder.

return_output Logical, defaults to FALSE. Should output be returned, this automatically up-

dates to TRUE if no directory for saving is specified.

summary_args A list of arguments passed to regional_summary. See the regional_summary

documentation for details.

logs Character path indicating the target folder in which to store log information.

Defaults to the temporary directory if not specified. Default logging can be disabled if logs is set to NULL. If specifying a custom logging setup then the code for setup_default_logging and the setup_logging function are a sensible

place to start.

Pass additional arguments to epinow. See the documentation for epinow for

details.

Value

A list of output stratified at the top level into regional output and across region output summary output

```
# construct example distributions
generation_time <- get_generation_time(disease = "SARS-CoV-2", source = "ganyani")</pre>
incubation_period <- get_incubation_period(disease = "SARS-CoV-2", source = "lauer")</pre>
reporting_delay <- list(mean = log(10), mean_sd = log(2),
                         sd = log(2), sd_sd = log(1.1), max = 30)
# uses example case vector
cases <- EpiNow2::example_confirmed[1:40]</pre>
cases <- data.table::rbindlist(list(</pre>
 data.table::copy(cases)[, region := "testland"],
 cases[, region := "realland"]))
# run epinow across multiple regions and generate summaries
# samples and warmup have been reduced for this example
out <- regional_epinow(reported_cases = cases,</pre>
                        samples = 100,
                        generation_time = generation_time,
                        delays = list(incubation_period, reporting_delay),
                        stan_args = list(warmup = 100,
                                          cores = ifelse(interactive(), 4, 1)))
```

54 regional_runtimes

regional_runtimes

Summarise Regional Runtimes

Description

Summarise Regional Runtimes

Usage

```
regional_runtimes(
  regional_output = NULL,
  target_folder = NULL,
  target_date = NULL,
  return_output = FALSE
)
```

Arguments

regional_output

A list of output as produced by regional_epinow and stored in the regional

list.

target_folder Character string specifying where to save results (will create if not present).

target_date A character string giving the target date for which to extract results (in the format

"yyyy-mm-dd"). Defaults to latest available estimates.

return_output Logical, defaults to FALSE. Should output be returned, this automatically up-

dates to TRUE if no directory for saving is specified.

Value

A data.table of region run times

regional_summary 55

```
delays = list(incubation_period, reporting_delay),
samples = 100, stan_args = list(warmup = 100),
output = c("region", "timing"))
```

regional_runtimes(regional_output = regional_out\$regional)

regional_summary

Generate Regional Summary Output

Description

Generate Regional Summary Output

Usage

```
regional_summary(
  regional_output = NULL,
  reported_cases,
  results_dir = NULL,
  summary_dir = NULL,
  target_date = NULL,
  region_scale = "Region",
  all_regions = TRUE,
  return_output = FALSE,
  max_plot = 10
)
```

Arguments

regional_output

A list of output as produced by regional_epinow and stored in the regional

nst.

reported_cases A data frame of confirmed cases (confirm) by date (date), and region (region).

results_dir An optional character string indicating the location of the results directory to

extract results from.

summary_dir A character string giving the directory in which to store summary of results.

target_date A character string giving the target date for which to extract results (in the format

"yyyy-mm-dd"). Defaults to latest available estimates.

region_scale A character string indicating the name to give the regions being summarised.

all_regions Logical, defaults to TRUE. Should summary plots for all regions be returned

rather than just regions of interest.

return_output Logical, defaults to FALSE. Should output be returned, this automatically up-

dates to TRUE if no directory for saving is specified.

max_plot Numeric, defaults to 10. A multiplicative upper bound on the number of cases

shown on the plot. Based on the maximum number of reported cases.

report_cases

Value

A list of summary measures and plots

Examples

```
# example delays
generation_time <- get_generation_time(disease = "SARS-CoV-2", source = "ganyani")</pre>
incubation_period <- get_incubation_period(disease = "SARS-CoV-2", source = "lauer")</pre>
reporting_delay <- EpiNow2::bootstrapped_dist_fit(rlnorm(100, log(6), 1), max_value = 30)
# example case vector from EpiSoon
cases <- EpiNow2::example_confirmed[1:30]</pre>
cases <- data.table::rbindlist(list(</pre>
 data.table::copy(cases)[, region := "testland"],
 cases[, region := "realland"]))
# run basic nowcasting pipeline
out <- regional_epinow(reported_cases = cases,</pre>
                       generation_time = generation_time,
                        delays = list(incubation_period, reporting_delay),
                        samples = 50, output = "region",
                        stan_args = list(warmup = 50,
                                         control = list(adapt_delta = 0.95)),
                                         logs = NULL)
regional_summary(regional_output = out$regional,
                 reported_cases = cases)
```

report_cases

Report case counts by date of report

Description

Report case counts by date of report

```
report_cases(
  case_estimates,
  case_forecast = NULL,
  delays,
  type = "sample",
  reporting_effect,
  CrIs = c(0.2, 0.5, 0.9)
)
```

report_cases 57

Arguments

case_estimates A data.table of case estimates with the following variables: date, sample, cases

case_forecast A data.table of case forecasts with the following variables: date, sample, cases.

If not supplied the default is not to incorporate forecasts.

delays A list of delays (i.e incubation period/reporting delay) between infection and re-

port. Each list entry must also be a list containing the mean, standard deviation of the mean (mean_sd), standard deviation (sd), standard deviation of the standard deviation and the maximum allowed value for the that delay (assuming a lognormal distribution with all parameters excepting the max allowed value on

the log scale). To use no delays set this to list().

type Character string indicating the method to use to transform counts. Supports

either "sample" which approximates sampling or "median" would shift by the

median of the distribution.

reporting_effect

A data.table giving the weekly reporting effect with the following variables: sample (must be the same as in nowcast), effect (numeric scaling factor for each weekday), day (numeric 1 - 7 (1 = Monday and 7 = Sunday)). If not

supplied then no weekly reporting effect is assumed.

CrIs Numeric vector of credible intervals to calculate.

Value

A list of data.tables. The first entry contains the following variables sample, date and cases with the second being summarised across samples.

```
# define example cases
cases <- EpiNow2::example_confirmed[1:40]</pre>
# set up example delays
generation_time <- get_generation_time(disease = "SARS-CoV-2", source = "ganyani")</pre>
incubation_period <- get_incubation_period(disease = "SARS-CoV-2", source = "lauer")
reporting_delay <- EpiNow2::bootstrapped_dist_fit(rlnorm(100, log(6), 1), max_value = 30)
out <- EpiNow2::estimate_infections(cases, samples = 100,</pre>
                                     generation_time = generation_time,
                                     delays = list(incubation_period, reporting_delay),
                                     stan_args = list(warmup = 100,
                                                     cores = ifelse(interactive(), 4, 1)),
                                     estimate_rt = FALSE)
reported_cases <- report_cases(case_estimates =</pre>
                                 out$samples[variable == "infections"][,
                                 cases := as.integer(value)][, value := NULL],
                                delays = list(incubation_period, reporting_delay),
                                type = "sample")
```

58 report_plots

```
print(reported_cases)
```

report_plots

Report plots

Description

Report plots

Usage

```
report_plots(
  summarised_estimates,
  reported,
  target_folder = NULL,
 max_plot = 10
)
```

Arguments

summarised_estimates

A data.table of summarised estimates containing the following variables: variable, median, bottom, and top. It should contain the following estimates: R,

infections, reported_cases_rt, and r (rate of growth).

A data.table of reported cases with the following variables: date, confirm. reported

Character string specifying where to save results (will create if not present). target_folder

Numeric, defaults to 10. A multiplicative upper bound on the number of cases max_plot

shown on the plot. Based on the maximum number of reported cases.

Value

A ggplot2 object

```
# define example cases
cases <- EpiNow2::example_confirmed[1:40]</pre>
# set up example delays
generation_time <- get_generation_time(disease = "SARS-CoV-2", source = "ganyani")</pre>
incubation_period <- get_incubation_period(disease = "SARS-CoV-2", source = "lauer")</pre>
reporting_delay <- EpiNow2::bootstrapped_dist_fit(rlnorm(100, log(6), 1), max_value = 30)
# run model
out <- EpiNow2::estimate_infections(cases, samples = 100,</pre>
                                      generation_time = generation_time,
```

report_summary 59

report_summary

Provide Summary Statistics for Estimated Infections and Rt

Description

Provide Summary Statistics for Estimated Infections and Rt

Usage

```
report_summary(summarised_estimates, rt_samples, target_folder = NULL)
```

Arguments

summarised_estimates

A data.table of summarised estimates containing the following variables: variable, median, bottom, and top. It should contain the following estimates: R, infections, and r (rate of growth).

rt_samples

A data.table containing Rt samples with the following variables: sample and

value.

target_folder

Character string specifying where to save results (will create if not present).

Value

A data.table containing formatted and numeric summary measures

run_region

Run epinow with Regional Processing Code

Description

Run epinow with Regional Processing Code

60 run_region

Usage

```
run_region(
   target_region,
   reported_cases,
   target_folder,
   target_date,
   return_output,
   output,
   complete_logger,
   progress_fn,
   ...
)
```

Arguments

target_region Character string indicating the region being evaluated

reported_cases A data frame of confirmed cases (confirm) by date (date), and region (region).

target_folder Character string specifying where to save results (will create if not present).

target_date Date, defaults to maximum found in the data if not specified.

return_output Logical, defaults to FALSE. Should output be returned, this automatically up-

dates to TRUE if no directory for saving is specified.

output A character vector of optional output to return. Supported options are the indi-

vidual regional estimates ("regions"), samples ("samples"), plots ("plots"), copying the individual region dated folder into a latest folder (if target_folder is not null - set using "latest"), the stan fit of the underlying model ("fit"), and an overall summary across regions ("summary"). The default is to return samples and plots alongside summarised estimates and summary statistics. If target_folder is not NULL then the default is also to copy all results into a

latest folder.

complete_logger

Character string indicating the logger to output the completion of estimation to.

progress_fn Function as returned by progressr::progressor. Allows the use of a progress

bar.

Pass additional arguments to epinow. See the documentation for epinow for

details.

Value

A list of processed output as produced by process_region

R_to_growth 61

R_to_growth

Convert Reproduction Numbers to Growth Rates

Description

See here for justification.

Usage

```
R_to_growth(R, gamma_mean, gamma_sd)
```

Arguments

R Numeric, Reproduction number estimates
gamma_mean Numeric, mean of the gamma distribution
gamma_sd Numeric, standard deviation of the gamma distribution

Value

Numeric vector of reproduction number estimates

Examples

```
R_to_growth(2.18, 4, 1)
```

sample_approx_dist

Approximate Sampling a Distribution using Counts

Description

Approximate Sampling a Distribution using Counts

```
sample_approx_dist(
  cases = NULL,
  dist_fn = NULL,
  max_value = 120,
  earliest_allowed_mapped = NULL,
  direction = "backwards",
  type = "sample",
  truncate_future = TRUE
)
```

62 sample_approx_dist

Arguments

cases A dataframe of cases (in date order) with the following variables: date and cases.

dist_fn Function that takes two arguments with the first being numeric and the second being logical (and defined as dist). Should return the probability density or a

sample from the defined distribution. See the examples for more.

max_value Numeric, maximum value to allow. Defaults to 120 days

earliest_allowed_mapped

A character string representing a date ("2020-01-01"). Indicates the earliest allowed mapped value.

direction Character string, defato "backwards". Direction in which to map cases. Supports

either "backwards" or "forwards".

Character string indicating the method to use to transform counts. Supports either "sample" which approximates sampling or "median" would shift by the

median of the distribution.

truncate_future

type

Logical, should cases be truncated if they occur after the first date reported in the data. Defaults to TRUE.

Value

A data. table of cases by date of onset

```
cases <- EpiNow2::example_confirmed</pre>
cases <- cases[, cases := as.integer(confirm)]</pre>
print(cases)
# total cases
sum(cases$cases)
delay_fn <- function(n, dist, cum) {</pre>
               if(dist) {
                 pgamma(n + 0.9999, 2, 1) - pgamma(n - 1e-5, 2, 1)
                 as.integer(rgamma(n, 2, 1))
                }
onsets <- sample_approx_dist(cases = cases,</pre>
                               dist_fn = delay_fn)
# estimated onset distribution
print(onsets)
# check that sum is equal to reported cases
total_onsets <- median(</pre>
   purrr::map_dbl(1:100,
```

save_estimate_infections

save_estimate_infections

Save Estimated Infections

Description

Save Estimated Infections

Usage

```
save_estimate_infections(
  estimates,
  target_folder = NULL,
  samples = TRUE,
  return_fit = TRUE
)
```

Arguments

estimates List of data frames as output by estimate_infections

target_folder Character string specifying where to save results (will create if not present).

samples Logical, defaults to TRUE. Should samples be saved

return_fit Logical, defaults to FALSE. Should the fitted stan model be returned.

save_input

save_forecast_infections

Save Forecast Infections

Description

Save Forecast Infections

Usage

```
save_forecast_infections(forecast, target_folder = NULL, samples = TRUE)
```

Arguments

forecast A list of data frames as output by forecast_infections

target_folder Character string specifying where to save results (will create if not present).

samples Logical, defaults to TRUE. Should samples be saved

save_input Save Observed Data

Description

Save Observed Data

Usage

```
save_input(reported_cases, target_folder)
```

Arguments

reported_cases A data frame of confirmed cases (confirm) by date (date). confirm must be

integer and date must be in date format.

target_folder Character string specifying where to save results (will create if not present).

setup_default_logging 65

```
setup_default_logging Setup Default Logging
```

Description

Setup Default Logging

Usage

```
setup_default_logging(
  logs = tempdir(),
  mirror_epinow = FALSE,
  mirror_epinow_fit = FALSE,
  target_date = NULL
)
```

Arguments

logs

Character path indicating the target folder in which to store log information. Defaults to the temporary directory if not specified. Default logging can be disabled if logs is set to NULL. If specifying a custom logging setup then the code for setup_default_logging and the setup_logging function are a sensible place to start.

mirror_epinow

Logical, defaults to FALSE. Should internal logging be returned from epinow to the console.

mirror_epinow_fit

Logical, defaults to FALSE. Should internal logging be returned from internal

fitting functions to the console.

target_date

Date, defaults to maximum found in the data if not specified.

Examples

```
setup_default_logging()
```

setup_dt

Convert to Data Table

Description

Convert to Data Table

```
setup_dt(reported_cases)
```

setup_future

Arguments

reported_cases A data frame of confirmed cases (confirm) by date (date). confirm must be integer and date must be in date format.

Value

A data table

setup_future

Set up Future Backend

Description

A utility function that aims to streamline the set up of the required future backend with sensible defaults for most users of regional_epinow. More advanced users are recommended to setup their own future backend based on their available resources.

Usage

```
setup_future(
  reported_cases,
  strategies = c("multiprocess", "multiprocess"),
  min_cores_per_worker = 4
)
```

Arguments

reported_cases A data frame of confirmed cases (confirm) by date (date), and region (region).

strategies

A vector length 1 to 2 of strategies to pass to future::plan. Nesting of parallisation is from the top level down. The default is to set up nesting parallisation with both using future::multiprocess. For single level parallisation use a single strategy or future::plan directly. See ?future::plan for options.

min_cores_per_worker

Numeric, the minimum number of cores per worker. Defaults to 4 which assumes 4 MCMC chains are in use per region.

Value

Numeric number of cores to use per worker. If greater than 1 pass to stan_args = list(cores = "output from setup future") or use future = TRUE. If only a single strategy is used then nothing is returned.

setup_logging 67

setup_logging

Setup Logging

Description

Sets up futile.logger logging, which is integrated into EpiNow2. See the documentation for futile.logger for full details. By default EpiNow2 prints all logs at the "INFO" level and returns them to the console.

Usage

```
setup_logging(
  threshold = "INFO",
  file = NULL,
  mirror_to_console = FALSE,
  name = "EpiNow2"
)
```

Arguments

threshold

Character string indicating the logging level see (?futile.logger for details of the

available options). Defaults to "INFO".

file

Character string indicating the path to save logs to. By default logs will be written to the console.

mirror_to_console

Logical, defaults to FALSE. If saving logs to a file should they also be duplicated

in the console.

name

Character string defaulting to EpiNow2. This indicates the name of the logger to setup. The default logger for EpiNow2 is called EpiNow2. Nested options include: Epinow2.epinow which controls all logging for epinow and nested functions, EpiNow2.epinow.estimate_infections (logging in estimate_infections), and EpiNow2.epinow.estimate_infections.fit (logging in fitting functions).

Value

Nothing

```
# set up info only logs with errors only
# for logging related to epinow (or nested) calls
# (info logs are enabled by default at all levels.)
setup_logging("Info", name = "EpiNow2")
setup_logging("ERROR", name = "EpiNow2.epinow")
```

68 simulate_cases

Description

Setup Target Folder for Saving

Usage

```
setup_target_folder(target_folder = NULL, target_date)
```

Arguments

```
target_folder Character string specifying where to save results (will create if not present).
target_date Date, defaults to maximum found in the data if not specified.
```

Value

A list containing the path to the dated folder and the latest folder

simulate_cases

Simulate Cases by Date of Infection, Onset and Report

Description

Simulate Cases by Date of Infection, Onset and Report

```
simulate_cases(
   rts,
   initial_cases,
   initial_date,
   generation_interval,
   rdist = rpois,
   delay_defs,
   reporting_effect,
   reporting_model,
   truncate_future = TRUE,
   type = "sample"
)
```

stop_timeout 69

Arguments

rts A dataframe of containing two variables rt and date with rt being numeric and

date being a date.

initial_date Date, (i.e as.Date("2020-02-01")). Starting date of the simulation.

generation_interval

Numeric vector describing the generation interval probability density

rdist A function to be used to sample the number of cases. Must take two arguments

with the first specifying the number of samples and the second the mean. De-

faults to rpois if not supplied

delay_defs A list of single row data.tables that each defines a delay distribution (model,

parameters and maximum delay for each model). See lognorm_dist_def for

an example of the structure.

reporting_effect

A numeric vector of length 7 that allows the scaling of reported cases by the day on which they report (1 = Monday, 7 = Sunday). By default no scaling occurs.

reporting_model

A function that takes a single numeric vector as an argument and returns a single numeric vector. Can be used to apply stochastic reporting effects. See the

examples for details.

truncate_future

Logical, should cases be truncated if they occur after the first date reported in

the data. Defaults to TRUE.

type Character string indicating the method to use to transform counts. Supports

either "sample" which approximates sampling or "median" would shift by the

median of the distribution.

Value

A dataframe containing three variables: date, cases and reference.

Description

Timeout Error

Usage

stop_timeout(fit)

Arguments

fit A stan fit object

Value

Nothing

```
summarise_key_measures
```

Summarise rt and cases

Description

Summarise rt and cases

Usage

```
summarise_key_measures(
  regional_results = NULL,
  results_dir = NULL,
  summary_dir = NULL,
  type = "region",
  date = "latest"
)
```

Arguments

regional_results

A list of dataframes as produced by get_regional_results

results_dir Character string indicating the directory from which to extract results.

summary_dir Character string the directory into which to save results as a csv.

type Character string, the region identifier to apply (defaults to region).

date A Character string (in the format "yyyy-mm-dd") indicating the date to extract

data for. Defaults to "latest" which finds the latest results available.

Value

A list of summarised Rt, cases by date of infection and cases by date of report

summarise_results 71

summarise_results

Summarise Real-time Results

Description

Summarise Real-time Results

Usage

```
summarise_results(
  regions,
  summaries = NULL,
  results_dir = NULL,
  target_date = NULL,
  region_scale = "Region"
)
```

Arguments

regions	An character string containing the list of regions to extract results for (must all have results for the same target date).
summaries	A list of summary data frames as output by epinow
results_dir	An optional character string indicating the location of the results directory to extract results from.
target_date	A character string indicating the target date to extract results for. All regions must have results for this date.
region_scale	A character string indicating the name to give the regions being summarised.

Value

A list of summary data

theme_map

Custom Map Theme

Description

Custom Map Theme

72 tune_inv_gamma

Usage

```
theme_map(
  map = NULL,
  continuous = FALSE,
  variable_label = NULL,
  trans = "identity",
  fill_labels = NULL,
  scale_fill = NULL,
  breaks = NULL,
  ...
)
```

Arguments

map ggplot2 map object

continuous Logical defaults to FALSE. Is the fill variable continuous.

variable_label A character string indicating the variable label to use. If not supplied then the

underlying variable name is used.

trans A character string specifying the transform to use on the specified metric. De-

faults to no transform ("identity"). Other options include log scaling ("log") and

log base 10 scaling ("log10"). For a complete list of options see ggplot2::continous_scale.

fill_labels A function to use to allocate legend labels. An example (used below) is scales::percent,

which can be used for percentage data.

scale_fill Function to use for scaling the fill. Defaults to a custom ggplot2::scale_fill_manual,

which expects the possible values to be "Increasing", "Likely increasing", "Likely

decreasing", "Decreasing" or "Unsure".

breaks Breaks to use in legend. Defaults to ggplot2::waiver.

... Additional arguments passed to the scale_fill function

Value

A ggplot2 object

tune_inv_gamma

Tune an Inverse Gamma to Achieve the Target Truncation

Description

Tune an Inverse Gamma to Achieve the Target Truncation

```
tune_inv_gamma(lower = 2, upper = 21)
```

update_horizon 73

Arguments

Numeric, defaults to 2. Lower truncation bound.

upper

Numeric, defaults to 21. Upper truncation bound.

Value

A list of alpha and beta values that describe a inverse gamma distribution that achieves the target truncation.

Examples

```
tune_inv_gamma(lower = 2, upper = 21)
```

Description

This function makes sure that a forecast is returned for the user specified time period beyond the target date.

Usage

```
update_horizon(horizon, target_date, reported_cases)
```

Arguments

horizon Numeric, defaults to 7. Number of days into the future to forecast.

target_date Date, defaults to maximum found in the data if not specified.

reported_cases A data frame of confirmed cases (confirm) by date (date). confirm must be

integer and date must be in date format.

Value

Numeric forecast horizon adjusted for the users intention

Index

* datasets	<pre>format_fit, 36</pre>
example_confirmed, 31	
generation_times, 38	<pre>gamma_dist_def, 37</pre>
incubation_periods, 45	$generation_times, 38$
	get_dist,39
<pre>adjust_infection_to_report, 4</pre>	${\tt get_generation_time}, 39$
allocate_delays, 5	${ t get_incubation_period, 40}$
	${\sf get_raw_result}, 40$
bootstrapped_dist_fit, 6	<pre>get_regional_results, 41</pre>
cala CmI 7	get_regions,42
calc_CrI, 7	<pre>get_regions_with_most_reports, 43</pre>
calc_CrIs, 8	global_map, 43
calc_summary_measures, 8	growth_to_R,45
calc_summary_stats, 9	
clean_nowcasts, 10	incubation_periods,45
clean_regions, 10	1 1 1 0 16
construct_output, 11	lognorm_dist_def,46
copy_results_to_latest, 11	make earf 47
country_map, 12	make_conf, 47
create_clean_reported_cases, 14	map_prob_change, 47
create_future_rt, 14	match_output_arguments, 48
create_initial_conditions, 15	plot_estimates, 49
create_shifted_cases, 16	plot_summary, 50
create_stan_args, 16	process_region, 51
create_stan_data, 18	process_regions, 51
dist_fit, 20	process_regions, 51
dist_skel, 21	R_to_growth, 61
u13t_3ke1, 21	regional_epinow, 52
epinow. 22	
	_
	_ ,
	<pre>sample_approx_dist, 61</pre>
	<pre>save_estimate_infections, 63</pre>
<pre>fit_model_with_nuts, 34</pre>	save_forecast_infections, 64
<pre>fit_model_with_vb, 34</pre>	save_input, 64
<pre>forecast_infections, 35</pre>	setup_default_logging, 65
<pre>fit_model_with_vb, 34</pre>	regional_runtimes, 54 regional_summary, 55 report_cases, 56 report_plots, 58 report_summary, 59 run_region, 59 sample_approx_dist, 61 save_estimate_infections, 63 save_forecast_infections, 64 save_input, 64

INDEX 75

```
setup_dt, 65
setup_future, 66
setup_logging, 67
setup_target_folder, 68
simulate_cases, 68
stop_timeout, 69
summarise_key_measures, 70
summarise_results, 71
theme_map, 71
tune_inv_gamma, 72
update_horizon, 73
```