Comparison Among Several Sample

Professor: Hammou El Barmi Columbia University

- \bullet The one-way analysis of variance (ANOVA) is a generalization of the two sample t-test ($k \geq 2)$
- Assume the populations of interest have the following (unknown) population means and variances

	population 1	population 2	• • •	population k
mean	μ_1	μ_2		μ_k
variance	σ_1^2	σ_2^2		σ_k^2

- Goal: test whether $\mu_1 = \mu_2 = \cdots = \mu_k$
- We will compare these means without assuming any parametric relationships (regression does assume such a relationship).

Example:

- Suppose we have five medical treatments and ten subjects on each treatment.
- Goal: Compare the treatments in terms of their effectiveness
- If there were two treatments, what would we use?
- We will compare means among treatment groups.
- In the context of ANOVA, we say these five treatment make one factor with five levels and each level represents a treatment.

• To answer this question, random samples from each of the k-populations (each population corresponds to a level of the factor) leading to

	sample 1	sample 2	 sample k
size	n_1	<i>n</i> ₂	 n_k
sample	$Y_{11}, Y_{12}, \ldots, Y_{1n_1}$	$Y_{21}, Y_{22}, \ldots, Y_{2n_2}$	 $Y_{k1}, Y_{k2}, \ldots, Y_{kn_k}$
sample mean	$ar{Y}_{1ullet}$	$ar{Y}_{2ullet}$	 $ar{Y}_{kullet}$
sample variance	s_1^2	s_2^2	 s_k^2

• The sample means are $\bar{Y}_{1\bullet}, \bar{Y}_{2\bullet}, \dots, \bar{Y}_{k\bullet}$ and the average response over all the samples is

$$\bar{Y}_{\bullet \bullet} = \frac{\sum_{i=1}^{k} \sum_{j=1}^{n_i} Y_{ij}}{\sum_{i=1}^{k} n_i} = \frac{\sum_{i=1}^{k} n_i \bar{Y}_{i \bullet}}{n}$$

where

$$n=\sum_{i=1}^k n_i.$$

Assumptions

To carry out the comparison, we assume that level of the factor (i.e. at each treatment), there is a probability distribution for the response and that

- Each probability distribution is normal
- These probability distribution have the same variances. That is, $\sigma_1^2=\sigma_2^2=\cdots=\sigma_k^2$
- The responses for each treatment is a random sample from the corresponding distribution
- These samples are independent

- An F test is used to test $H_0: \mu_1 = \mu_2 = \ldots = \mu_k$ against $H_a: \text{Not } H_0$ (that is at least two means are not equal)
- The assumptions needed for the test are analogous to the pooled two sample t-test
- The F-test is computed from the ANOVA table which breaks the spread in the combined data SST (Total Sum of Squares) into two components (or sums of squares): within sum of squares (SSE) and the between sums of square (SSR)

$$SST = SSE + SSR$$

 The Between SS (often called the model Sum of Squares) measures the spread between the sample means

$$SSR = \sum_{i=1}^{k} n_i (\bar{Y}_{i\bullet} - \bar{Y}_{\bullet\bullet})^2$$

The within SS (often called Error Sum of Squares) is

$$SSE = \sum_{i=1}^{k} \sum_{j=1}^{n_i} (Y_{ij} - \bar{Y}_{i\bullet})^2$$

Each SS has its own degrees of freedom (df)

$$df(SST) = n - 1$$
 $df(SSR) = k - 1$ and $df(SSE) = n - k$

it is always the case that

$$df(SST) = df(SSR) + df(SSE)$$

 The mean square error for each source of variation is the corresponding SS divided by its df, that is,

$$MSR = \frac{SSR}{k-1}$$
 and $MSE = \frac{SSE}{n-k}$

The sums of squares and their dfs are neatly arranged into called the ANOVA table

Source	df	SS	MS	F
Model (Between Groups)	k-1	SSR	MSR= SSR/(k-1)	MSB/MSE
Error (Within Groups)	n-k	SSE	MSE = SSE/(n-k)	
Between Groups (Model)	n-1	SST		

• The decision on whether to reject $H_0: \mu_1 = \mu_2 = \cdots = \mu_k$ is based on the

$$F = \frac{MSR}{MSE}$$

• We have $E(MSE) = \sigma^2$ and

$$E(\textit{MSR}) = \sigma^2 + \frac{\sum_{i=1}^{k} n_i (\mu_i - \tilde{\mu}_{\bullet})^2}{k-1}$$

where

$$\tilde{\mu} ullet = rac{\displaystyle\sum_{i=1}^{\kappa} n_i \mu_i}{n}.$$

Therefore when H_0 is true

$$\frac{E(MSR)}{E(MSE)} = 1$$

- Large values of F indicate large variability among the sample means relative to the spread of the data within the samples. That is, large values of of F suggest that H_0 is false
- We reject H_0 is $F > F(\alpha, k-1, n-k)$ or if $p value < \alpha$.
- For k = 2, the F test is equivalent to the pooled two-sample t-test

Example

- During cooking, doughnuts absorb fat in various amounts.
- A scientist wished to learn whether the amount absorbed depends on the type of fat.
- For each of 4 fats, 6 batches of 24 doughnuts were prepared. The data are grams of fat absorbed by batch.
- Let μ_i = population mean of fat i absorbed per batch of 24 doughnuts.
- The Scientist wishes to test H_0 : $\mu_1 = \mu_2 = \mu_3 = \mu_4$ against H_a : Not H_0 .

fat 1	fat 2	fat 3	fat 4
264	278	275	255
272	291	286	266
268	297	278	249
277	282	271	264
290	285	263	270
276	277	276	268

Example

```
> fat<-c(rep("fat1",6),rep("fat2",6),rep("fat3",6),rep("fat4",6))</pre>
> amount <-c (264, 272, 268, 277, 290, 276, 278, 291, 297, 282, 285, 277, 275, 286, 278, 271,
263,276,255,266,249,264,270,268)
> data<-data.frame(fat,amount)</pre>
> summary(data[,2][data[,1]=='fat1'])
  Min. 1st Qu. Median Mean 3rd Qu.
                                          Max.
 264.0 269.0 274.0 274.5 276.8
                                         290.0
 > summary(data[,2][data[,1]=='fat2'])
  Min. 1st Qu. Median Mean 3rd Qu.
                                          Max.
 277.0
         279.0 283.5 285.0 289.5
                                         297.0
> summary(data[,2][data[,1]=='fat3'])
  Min. 1st Qu. Median Mean 3rd Qu.
                                          Max.
 263.0 272.0 275.5 274.8 277.5
                                         286.0
> summary(data[,2][data[,1]=='fat4'])
  Min. 1st Qu. Median Mean 3rd Qu.
                                          Max.
         257.2 265.0
                         262.0 267.5
                                         270.0
 249.0
```

> boxplot(data[,2] data[,1])

Figure: Histogram and Box Plots

Example

- The ANOVA F-test checks whether all the population means are equal.
- Multiple comparisons are ofter used as a follow up to a significant ANOVA F-test to determine which population means are different.
- We will discuss Fisher's, Bonferroni's and Tukey's mehods for comparing all pairs of means

LSD method

Fisher's least significant difference method (LSD) is a two step process

- (1) Carry out the ANOVA F-test of $H_0: \mu_1 = \mu_2 = \cdots = \mu_k$. If H_0 is not rejected stop and conclude that there insufficient evidence to claim differences among the population means. If H_0 is rejected, go to step 2
- (2) Compare each pair of means using a pooled two sample t-test at the alpha level using $s_{pooled} = \sqrt{MSE}$ from the ANOVA table and df = df(SSE), that is test $H_0: \mu_i = \mu_j$ against $H_a: \mu_i \neq \mu_j$ for all pair (i,j) using

$$t = \frac{\bar{Y}_{i\bullet} - \bar{Y}_{j\bullet}}{\sqrt{\textit{MSE}}\sqrt{1/n_i + 1/n_j}}$$

and reject H_0 if $|t| > t_{n-k}(\alpha/2)$. of equivalently if

$$|\bar{Y}_{i\bullet} - \bar{Y}_{j\bullet}| > t_{n-k}(\alpha/2)\sqrt{MSE}\sqrt{1/n_i + 1/n_j}$$

- (3) The minimum absolute difference between $\bar{Y}_{i\bullet}$ and $\bar{Y}_{j\bullet}$ need to reject H_0 is the LSD, the quantity on the right hand side of the equation above
- (4) If $n_1 = n_2 = \cdots = n_k$

$$LSD = t_{n-k}(\alpha/2)\sqrt{MSE}\sqrt{2/n_1}$$

• In our example $s_{spooled} = \sqrt{MSE} = \sqrt{67} = 8.18, n - k = 20$ and if $\alpha = 0.05, t_{20}(0.025) = 2.086$. Since $n_1 = n_2 = n_3 = n_4 = 6$,

$$LSD = 2.086 \times 8.18 \times \sqrt{2/6} = 9.85.$$

- Any two sample means that differ by at least 9.85 in magnitude are significantly different at 5%.
- One way to get Fisher comparisons in R uses pairwise.t.test() with p.adjsut.method.
- The resulting summary of multiple comparisons is in terms of p-values for all pairwise two sample t-tests using the pooled standard deviation from the ANOVA using pool.sd=TRUE.

There are c = 4(4-1)/2 = 6 comparisons of two fats

Comparison	Absolute difference in means	Exceeds LSD	p-value
1 versus 2	10.50	Yes	0.038
1 versus 3	0.33	No	0.944
1 versus 4	12.50	Yes	0.015
2 versus 3	10.17	Yes	0.044
2 versus 4	23.00	Yes	9.3×10^{-5}
3 versus 4	12.83	Yes	0.013

There are three groups here $\{4\},\{1,3\}$ and $\{2\}$

Bonferroni Comparisons

- If the F-test indicates that a factor is significant, then any pair of means that differ by at least LSD are considered to be different.
- This is the least conservative of all the procedures, because no adjustment is made for multiple comparisons (so when doing lots of comparisons this makes Type I errors likely)
- The Bonferroni method controls the FER by reducing the individual comparison rate
- The FER is guaranteed to be no larger than a pre-specified amount say α by setting the individual error rate for each of the k(k-1)/2 comparisons of interest equal to

$$\alpha = \frac{\alpha}{k(k-1)/2}$$

• To implement the Bonferroni adjustment in R use p.adjust.method="bonf"

Bonferroni Comparisons

Tukey Comparisons

- The LSD and Bonferroni methods comprise the ends of the spectrum of multiple comparisons methods
- Among multiple comparisons procedure, the LSD method is the most likely to find differences whether real of due to variation while Bonferroni is often the most conservative method
- The Bonferroni method is conservative but tend to work well when the number of comparisons is small, say 4 or less
- \bullet For r > 4, Bonferroni starts to get much more conservative than necessary

Tukey Comparisons

- Another multiple comparisons procedure is Tukey's method (a.k.a. Tukey's
 Honest Significance Test). The function TukeyHSD() creates a set of confidence
 intervals on the differences between means with the specified family-wise
 probability of coverage.
- The general form is TukeyHSD(fit, conf.level = 0.95). Here fit is a fitted model object (e.g., an aov.fit) and conf.level is the confidence level.
- Tukey's method is designed for equal sample sizes but can be used for different sample sizes too.
- The method rejects the equality of a pair of means based on the studentized range distribution. To implement this method at α , reject $H_0: \mu_i = \mu_j$ when

$$|\bar{Y}_{iullet} - \bar{Y}_{jullet}| > rac{q(1-lpha,k,n-k)}{\sqrt{2}}\sqrt{\textit{MSE}}\sqrt{rac{1}{n_i} + rac{1}{n_j}}$$

where $q(1-\alpha,k,n-k)$ is the α th level critical value of the studentized range distribution

Tukey Comparisons

- We discuss three different parametrizations for describing the variation in means.
- Which of these methods is used depends on what we want the resulting parameters to mean and on the nature of constraints we may wish to impose on the model
- Method 1: Factor effects method (center point method):
 - let

$$\mu_{ullet} = rac{1}{k} \sum_{i=1}^{k} \mu_i \quad \text{and} \quad \alpha_i = \mu_i - \mu_{ullet} \quad (\Rightarrow \sum_{i=1}^{k} \alpha_i = 0)$$

- ANOVA model : $\mu_i = \mu_{\bullet} + \alpha_i, i = 1, 2, \dots, k$
- Regression Model

$$Y_{ij} = \mu_{\bullet} + \alpha_i + \epsilon_{ij}$$

with

$$\begin{bmatrix} \mu_1 \\ \mu_2 \\ \mu_3 \\ \vdots \\ \mu_{k-1} \\ \mu_k \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 & \dots & 0 \\ 1 & 0 & 1 & \dots & 0 \\ 1 & 0 & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & 0 & 0 & \dots & 1 \\ 1 & -1 & -1 & \dots & -1 \end{bmatrix} \begin{bmatrix} \mu_{\bullet} \\ \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_{k-1} \end{bmatrix} = X_1 \beta$$

• Interesting hypotheses: $H_0: \mu_1 = \mu_2 = \ldots = \mu_k \Leftrightarrow H_0: \alpha_1 = \alpha_2 = \ldots = \alpha_{k-1} = 0$ or $H_0: C\beta = \mathbf{0}$ where $C = [\mathbf{0}, I_{k-1}]$

274.0833

```
In our example, to carry out the analysis we use the following
> a<-gl(4,6)  #this creates the level (4 levels repeated 6 times each)
> lm(data[,2]~ a, contrasts = list(a = "contr.sum"))  # this fit the model
Call:
lm(formula = data[, 2]~ a, contrasts = list(a = "contr.sum"))
Coefficients:
(Intercept)  a1   a2  a3
```

10.9167

0.4167

0.7500

```
Coefficients:
              Estimate Std. Error t value Pr(>|t|)
(Intercept) 274.0833     1.6698 164.143 < 2e-16 ***
a1
                0.4167 2.8922 0.144 0.88689
            10.9167 2.8922 3.775 0.00119 **
a2
a3
              0.7500 2.8922 0.259 0.79804
Signif. codes: 0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.? 0.1 ? ? 1
Residual standard error: 8.18 on 20 degrees of freedom
Multiple R-squared: 0.5438, Adjusted R-squared: 0.4754
F-statistic: 7.948 on 3 and 20 DF, p-value: 0.001104
The fitted model is
                                \hat{Y}_{ii} = 274.0833 + \hat{\alpha}_i
where \hat{\alpha}_1 = 0.4167, \hat{\alpha}_2 = 10.9167, \hat{\alpha}_3 = 0.7500 and \hat{\alpha}_4 = -\hat{\alpha}_1 - \hat{\alpha}_2 - \hat{\alpha}_3 = -12.0834
```

> summary(lm(data[,2]~a, contrasts = list(a = "contr.sum")))

Reference cell method

- Define $\mu^* \equiv \mu_1$ (reference cell) and $\alpha_i^* = \mu_i \mu^*$ ($\alpha_1^* = 0$ by definition).
- ANOVA model: $\mu_i = \mu^* + \alpha_i^*, i = 1, 2, ..., k$.
- Regression model:

$$Y_{ij} = \mu^* + \alpha_i + \epsilon_{ij}$$

with

$$\begin{bmatrix} \mu_1 \\ \mu_2 \\ \mu_3 \\ \vdots \\ \mu_k \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & \dots & 0 \\ 1 & 1 & 0 & \dots & 0 \\ 1 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & 0 & 0 & \dots & 1 \end{bmatrix} \begin{bmatrix} \mu^* \\ \alpha_2^* \\ \alpha_3^* \\ \vdots \\ \alpha_k^* \end{bmatrix} = X_2 \beta$$

• Interesting hypotheses:

$$H_0: \mu_1=\mu_2=\ldots=\mu_k \Leftrightarrow H_0: \alpha_2^*=\alpha_3^*=\ldots=\alpha_k^*=0$$
 or $H_0: C\beta=\mathbf{0}$ where $C=[\mathbf{0},I_{k-1}]$

The reference mean here is the mean of fat1. The model is

$$\hat{Y} = \left\{ \begin{array}{ll} 274.5, & \text{if fat 1} \\ 274.5 + 10.5 = 285 & \text{if fat 2} \\ 274.5 + 0.3 = 274.83 & \text{if fat 3} \\ 274.5 - 12.5 = 222 & \text{if fat 4} \end{array} \right.$$

```
> summary(lm(data[,2]~factor(data[,1])))
Call:
lm(formula = data[, 2] ~ factor(data[, 1]))
Residuals:
    Min
              1Q Median
                              30
                                      Max
-13.0000 -6.6250 0.6667 4.5000 15.5000
Coefficients:
                    Estimate Std. Error t value Pr(>|t|)
(Intercept)
                 274.5000 3.3396 82.196 <2e-16 ***
factor(data[, 1])fat2 10.5000 4.7229 2.223 0.0379 *
factor(data[, 1])fat3 0.3333 4.7229 0.071 0.9444
factor(data[, 1])fat4 -12.5000 4.7229 -2.647 0.0155 *
Signif. codes: 0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.? 0.1 ? ? 1
Residual standard error: 8.18 on 20 degrees of freedom
Multiple R-squared: 0.5438, Adjusted R-squared: 0.4754
F-statistic: 7.948 on 3 and 20 DF, p-value: 0.001104
```

Cell mean method (here the cell means are the parameters)

- ANOVA model: $\mu_i = \mu_i$.
- Regression model:

$$Y_{ij} = \mu_i + \epsilon_{ij}$$

with

$$\begin{bmatrix} \mu_1 \\ \mu_2 \\ \mu_3 \\ \vdots \\ \mu_k \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & \dots & 0 \\ 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & 1 \end{bmatrix} \begin{bmatrix} \mu_1 \\ \mu_2 \\ \mu_3 \\ \vdots \\ \mu_k \end{bmatrix} = X_3 \beta$$

• Interesting hypotheses: $H_0: \mu_1 = \mu_2 = \ldots = \mu_k \Leftrightarrow H_0: = \alpha_3^* = \ldots = \alpha_k^* = 0$ or $H_0: C\beta = \mathbf{0}$ where $C = I_k$

```
> summary(lm(data[,2]~factor(data[,1])-1))
Call:
lm(formula = data[, 2] ~ factor(data[, 1]) - 1)
Residuals:
    Min
              10 Median
                              30
                                      Max
-13.0000 -6.6250 0.6667 4.5000 15.5000
Coefficients:
                    Estimate Std. Error t value Pr(>|t|)
factor(data[, 1])fat1
                      274.50
                                  3.34 82.20 <2e-16 ***
factor(data[, 1])fat2 285.00
                                  3.34 85.34 <2e-16 ***
factor(data[, 1])fat3 274.83
                                  3.34 82.30 <2e-16 ***
factor(data[, 1])fat4 262.00
                                  3.34 78.45 <2e-16 ***
Signif. codes: 0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.? 0.1 ? ? 1
Residual standard error: 8.18 on 20 degrees of freedom
Multiple R-squared: 0.9993, Adjusted R-squared: 0.9991
F-statistic: 6742 on 4 and 20 DF, p-value: < 2.2e-16
```

Inference for a contrast of the level means

 A contrast L is defined as a linear combination of the level means where the coefficient add up to zero. That is

$$L = \sum_{i=1}^k c_i \mu_i$$
 where $\sum_{i=1}^k c_i = 0$

- Examples:
 - $0 L = \mu_2 \mu_1$

 - $L = (\mu_1 + \mu_2)/2 (\mu_3 + \mu_4)/2$

Inference for a contrast of the level means

ullet We estimate $L=\sum_{i=1}^k c_i \mu_i$ by

$$\hat{L} = \sum_{i=1}^k c_i \, \bar{Y}_{i\bullet}$$

We have

$$E(\hat{L}) = \sum_{i=1}^k c_i E(\bar{Y}_{i\bullet}) = \sum_{i=1}^k c_i \mu_i = L$$
 (\hat{L} is an unbiased estimator of L)

and

$$Var(\hat{L}) = \sum_{i=1}^{k} c_i^2 Var(\bar{Y}_{i\bullet}) = \sigma^2 \sum_{i=1}^{k} \frac{c_i^2}{n_i}$$

This implies that

$$SE(\hat{L}) = \sqrt{MSE} \sqrt{\sum_{i=1}^{k} \frac{c_i^2}{n_i}}$$

Inference for a contrast of the level means

• A $100(1-\alpha)\%$ confidence interval for L is

$$\hat{L} \pm t_{n-k}(\alpha/2)SE(\hat{L})$$

• To test $H_0: L=0$ against $H_a: L\neq 0$, the test statistic is

$$t = \frac{\hat{L} - 0}{SE(\hat{L})}$$

and we reject H_0 is

$$|t| > t_{n-k}(\alpha/2)$$

Same technique works for linear combinations. Later we will look at multiple contrasts.

Nonparametric Technique to ANOVA

- Suppose we have k population with medians $\eta_1, \eta_2, \cdots, \eta_k$.
- Test

 $H_0: \eta_1 = \eta_2 = \ldots = \eta_k$ against $H_a:$ at least two of these medians are not equal

- We apply the Kruskal-Wallis test. And to do so we pool the responses from all groups and rank them; then we apply one way ANOVA to the ranks, not to the original observations.
- If $R_{i\bullet}=$ sum of the ranks corresponding to the data from ith sample, the Kruskal-Wallis test statistic is

$$KW = \frac{12}{n(n+1)} \sum_{i=1}^{k} \frac{R_{i\bullet}^2}{n_i} - 3(n+1)$$

and we reject H_0 if $KW > \chi^2_{k-1}(\alpha)$ or if $p-value < \alpha$.

Nonparametric Technique to ANOVA

```
> kruskal.test(data[,2]~data[,1])
Kruskal-Wallis rank sum test
data: data[, 2] by data[, 1]
Kruskal-Wallis chi-squared = 13.249, df = 3, p-value = 0.004128
```