

Responsi Metode Statistika (STA-1211)

PERTEMUAN 9

PEMBANDINGAN 2 POPULASI

Asisten: Laily Nissa Atul Mualifah

Selisih Rataan 2 Populasi

(σ diketahui)

Statistik Uji

$$z_h = \frac{\bar{x}_1 - \bar{x}_2 - \mu_0}{\sigma_{(\bar{x}_1 - \bar{x}_2)}} \text{ dimana } \sigma_{(\bar{x}_1 - \bar{x}_2)} = \sqrt{\left(\frac{\sigma_1^2}{n_1}\right) + \left(\frac{\sigma_2^2}{n_2}\right)}$$

Bentuk Hipotesis	Wilayah Penolakan H ₀
$H_0: \mu_1 - \mu_2 = \mu_0$ $H_1: \mu_1 - \mu_2 \neq \mu_0$	Tolak H $_0$ jika $ z_h >z_{\alpha/2}$
$H_0: \mu_1 - \mu_2 \ge \mu_0$ $H_1: \mu_1 - \mu_2 < \mu_0$	Tolak H_0 jika $z_h < -z_lpha$
$H_0: \mu_1 - \mu_2 \le \mu_0$ $H_1: \mu_1 - \mu_2 > \mu_0$	Tolak H $_0$ jika $z_h>z_{lpha}$

$$(\bar{x}_1 - \bar{x}_2) - z\alpha_{/2}\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}} < \mu_1 - \mu_2 < (\bar{x}_1 - \bar{x}_2) + z\alpha_{/2}\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$$

Selisih Rataan 2 Populasi

(σ tidak diketahui, $\sigma_1 = \sigma_2$)

Statistik Uji

$$t_h = \frac{\bar{x}_1 - \bar{x}_2 - \mu_0}{S_{(\bar{x}_1 - \bar{x}_2)}} \qquad ; \qquad s_{(\bar{x}_1 - \bar{x}_2)} = \sqrt{S_{gab}^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)} \qquad ; \qquad s_{gab}^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2} \qquad ; \qquad v = n_1 + n_2 - 2$$

Gunakan statistik uji z_h jika n besar dengan persamaan yang sama dengan t_h di atas

Bentuk Hipotesis	Wilayah Penolakan H ₀
$H_0: \mu_1 - \mu_2 = \mu_0$ $H_1: \mu_1 - \mu_2 \neq \mu_0$	Tolak H ₀ jika $ t_h > t_{\frac{\alpha}{2};v}$
$ \begin{array}{l} H_0: \mu_1 - \mu_2 \ge \mu_0 \\ H_1: \mu_1 - \mu_2 < \mu_0 \end{array} $	Tolak H_0 jika $\mathrm{t}_h < -t_{\alpha;v}$
β $H_0: \mu_1 - \mu_2 \le \mu_0$ $H_1: \mu_1 - \mu_2 > \mu_0$	Tolak H $_0$ jika t $_h > t_{lpha;v}$

Interval Kepercayaan
$$(\bar{x}_{1} - \bar{x}_{2}) - t\alpha_{/2}, v \sqrt{s_{gab}^{2} \left(\frac{1}{n_{1}} + \frac{1}{n_{2}}\right)} < \mu_{1} - \mu_{2} < (\bar{x}_{1} - \bar{x}_{2}) + t\alpha_{/2}, v \sqrt{s_{gab}^{2} \left(\frac{1}{n_{1}} + \frac{1}{n_{2}}\right)}$$

$$s_{gab}^{2} = \frac{(n_{1} - 1)s_{1}^{2} + (n_{2} - 1)s_{2}^{2}}{n_{1} + n_{2} - 2} \quad ; \quad v = n_{1} + n_{2} - 2$$

Selisih Rataan 2 Populasi

(σ tidak diketahui, $\sigma_1 \neq \sigma_2$)

Statistik Uji

$$t_h = \frac{\bar{x}_1 - \bar{x}_2 - \mu_0}{s_{(\bar{x}_1 - \bar{x}_2)}}$$

;
$$S_{(\bar{x}_1 - \bar{x}_2)} = \sqrt{\left(\frac{s_1^2}{n_1}\right) + \left(\frac{s_2^2}{n_2}\right)}$$

Gunakan statistik uji z_h jika n besar dengan persamaan yang sama dengan t_h di atas

$t_{h} = \frac{\bar{x}_{1} - \bar{x}_{2} - \mu_{0}}{S_{(\bar{x}_{1} - \bar{x}_{2})}} \quad ; \quad S_{(\bar{x}_{1} - \bar{x}_{2})} = \sqrt{\left(\frac{s_{1}^{2}}{n_{1}}\right) + \left(\frac{s_{2}^{2}}{n_{2}}\right)} \quad ; \quad v = \frac{\left(\frac{s_{1}^{2}}{n_{1}} + \frac{s_{2}^{2}}{n_{2}}\right)^{2}}{\left[\left(\frac{s_{1}^{2}}{n_{1}}\right)^{2}\right] + \left[\left(\frac{s_{2}^{2}}{n_{2}}\right)^{2}\right]}$

Bentuk Hipotesis

$H_0: \mu_1 - \mu_2 = \mu_0$ $H_1: \mu_1 - \mu_2 \neq \mu_0$

 $H_0: \mu_1 - \mu_2 \ge \mu_0$ $H_1: \mu_1 - \mu_2 < \mu_0$

Wilayah Penolakan H₀

Tolak H_0 jika $t_h > t_{\alpha:v}$

Tolak
$$H_0$$
 jika $|t_h| > t_{\frac{\alpha}{2};v}$

Tolak H_0 jika $t_h < -t_{\alpha;v}$

$$v = \frac{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^2}{\left[\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right]^2}$$

Tolak t_0 jika $t_h > t_{\alpha;v}$

Selisih Rataan 2 Contoh Berpasangan

$$t_h = \frac{\bar{d} - \mu_0}{\sqrt{n}}$$

$$v = n - 1$$

Gunakan statistik uji z_h jika n besar dengan persamaan yang sama dengan t_h di samping

Bentuk Hipotesis	Wilayah Penolakan H ₀
$H_0 : \mu_D = \mu_0$ $H_1 : \mu_D \neq \mu_0$	Tolak H $_0$ jika $ t_h > t_{\frac{\alpha}{2};v}$
$H_0: \mu_D \ge \mu_0$ $H_1: \mu_D < \mu_0$	Tolak H_0 jika $\mathrm{t}_h < -t_{\alpha;v}$
$H_0 : \mu_D \le \mu_0$ $H_1 : \mu_D > \mu_0$	Tolak H_0 jika $\mathrm{t}_h > t_{lpha;v}$

$$\bar{d} - t\alpha_{/2,(n-1)} \frac{S_d}{\sqrt{n}} < \mu_D < \bar{d} + t\alpha_{/2,(n-1)} \frac{S_d}{\sqrt{n}}$$

Selisih Proporsi 2 Populasi

Statistik Uji

$$z_h = \frac{\hat{p}_1 - \hat{p}_2 - p_0}{\sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2}}}$$

Bentuk Hipotesis	Wilayah Penolakan H ₀
$H_0: p_1-p_2 = p_0$ $H_1: p_1-p_2 \neq p_0$	Tolak H_0 jika $ z_h >z_{lpha/2}$
$H_0: p_1-p_2 \ge p_0$ $H_1: p_1-p_2 < p_0$	Tolak ${ m H_0}$ jika $z_h < -z_lpha$
$H_0: p_1-p_2 \le p_0$ $H_1: p_1-p_2 > p_0$	Tolak H $_0$ jika $z_h>z_{lpha}$

$$(\hat{p}_{1} - \hat{p}_{2}) - z\alpha_{/2} \sqrt{\frac{\hat{p}_{1}(1 - \hat{p}_{1})}{n_{1}} + \frac{\hat{p}_{2}(1 - \hat{p}_{2})}{n_{2}}} < p_{1} - p_{2} < (\hat{p}_{1} - \hat{p}_{2}) + z\alpha_{/2} \sqrt{\frac{\hat{p}_{1}(1 - \hat{p}_{1})}{n_{1}} + \frac{\hat{p}_{2}(1 - \hat{p}_{2})}{n_{2}}}$$

Suatu perusahaan vitamin ingin melihat pengaruh vitaminnya yang diklaim dapat menurunkan berat badan minimal sebesar 0,5 kg dalam sebulan. Untuk itu dipilih 10 sukarelawan. Data sebelum dan sesudah pemberian vitamin dalam sebulan adalah sebagai berikut:

	1	2	3	4	5	6	7	8	9	10
sebelum	58	69	56	67	55	56	62	67	67	56
sesudah	55	70	56	65	53	55	64	65	67	54

apakah klaim perusahaan tersebut benar?

(gunakan taraf nyata 5%).

#0 (MD) 70,57 #1: MD < 0,5 Staff & Wy: th X = 0.05 — \$\frac{7}{2},253

tithe kritis: tx, v=n-1=9 to,05.0

a = 1.5 a = 1.5

resimpula: Ho D-value = P(T< 3, 253)

	1	2	3	4	5	6	7	8	9	10
sebelum	58	69	56	67	55	56	62	67	67	56
sesudah	55	70	56	65	53	55	64	65	67	54
d	3	(-1)	0	2	2	1	-2	2	0	2

$$\frac{\sum_{i=1}^{10} d_i}{n} = \frac{9}{10} = 0.9 \quad ; S_d = \sqrt{\frac{\sum_{i=1}^{10} (d^i - \bar{d})^2}{n-1}} = 1.5951$$

Syntax R:

Norm-INV

HIPOTESIS

 $H_0: \mu_D \ge \mu_0$ $H_1: \mu_D < \mu_0$

 $H_0: \mu_D \ge 0.5$ $H_1: \mu_D < 0.5$

WILAYAH PENOLAKAN H₀

 $t_{\alpha,v} = t_{0.05,9} = 1.8331$ Fungsi Excel: T. INV (0.95;9)

Tolak H₀ jika t_h< $-t_{\alpha;v}$ atau p-value < 0.05

esimpulan to v 0,793 >-1,8331

karena $t_h(0.793) > -t_{\alpha;v}(-1.8381)$ dan p-value(0.7759) > 0.05 Maka **Tidak Tolak Ho**, pada tingkat kepercayaan 95% maka tidak cukup bukti untuk menyatakan bahwa klaim vitamin dapat menurunkan berat badan minimal sebesar 0,5 kg dalam sebulan salah (vitamin dapat menurunkan berat badan lebih dari 0,5 kg dalam sebulan).

STATISTIK UJI

$$t_h = \frac{\mu_{\rm D} - \mu_0}{s/\sqrt{n}}$$
; $v = n - 1$
 $t_h = \frac{0.9 - 0.5}{1.5951/\sqrt{10}} = 0.793$

$$P(T < t_h) = 0.7759$$

Fungsi Excel:

T.DIST(0.793;9;TRUE)

Contoh Soal

Suatu pemungutan suara dilakukan oleh penduduk di suatu kota dan sekitarnya untuk mengetahui pendapat mereka tentang rencana pembangunan gedung pertemuan. Ternyata 120 diantara 200 penduduk kota dan 240 diantara 500 penduduk sekitar kota setuju dengan pembangunan tersebut. Ujilah hipotesis bahwa selisih persentase penduduk kota dan sekitar kota yang setuju dengan pembangunan gedung tidak melebihi 3%. Gunakan taraf nyata 0.02.

Solusi

 $H_0: p_1 - p_2 \le 0.03$

Tolak H_0 jika z_h

0.6 - 0.48 - 0.03

0.48(1-0.48)0.6(1-0.6)500

 $P(Z > Z_h) = 0.0145$

Fungsi Excel:

1-NORM.DIST(2.1833;0;1;TRUE)

 t_0 karena z_h (2.1833) > z_{α} (2.0537)

Maka **Tolak Ho**, pada tingkat kepercayaan 98% maka cukup bukti untuk menyatakan bahwa selisih persentase penduduk kota dan sekitar kota yang setuju dengan e membengunan gedung melebihi 3%

Contoh Soal with Jewel

Seorang psikolog melakukan penelitian terkait hubungan antara pelecehan di masa anak-anak dan tindakan kriminal di masa remaja. Penelitian dilakukan terhadap 8 remaja yang mengalami pelecehan ketika masa pra-sekolah dan 20 remaja yang tidak mengalami pelecehan di masa pra-2 sekolah. Ringkasan data yang diperoleh disajikan dalam tablel.

Mengalami Pelecehan	Rata-rata Jumlah Tindak Kriminal	Simpangan Baku
lya	2.48	1.94
Tidak	1.57	1.31

Berdasarkan hasil tersebut apakah dapat diklaim bahwa remaja yang mengalami pelecehan di masa anak-anak lebih banyak melakukan tindakan kriminal (gunakan taraf nyata 5%)? Asumsikan bahwa data dari kedua kelompok remaja tersebut menyebar normal dan ragamnya tidak sama.

HIPOTESIS

$$H_0: \mu_1 - \mu_2 \le \mu_0$$

 $H_1: \mu_1 - \mu_2 > \mu_0$

$$H_0: \mu_1 - \mu_2 \le \mu_0$$

 $H_1: \mu_1 - \mu_2 > \mu_0$
 $H_1: \mu_1 - \mu_2 \ge 0$
 $H_1: \mu_1 - \mu_2 \ge 0$

STATISTIK UJI

$$t_h = \frac{\bar{x}_1 - \bar{x}_2 - \mu_0}{s_{(\bar{x}_1 - \bar{x}_2)}}$$

STATISTIK UJI

$$t_h = \frac{\bar{x}_1 - \bar{x}_2 - \mu_0}{s_{(\bar{x}_1 - \bar{x}_2)}}$$
 $t_h = \frac{2.48 - 1.57 - 0}{0.7458} = 1.2202$

$$P(T>1.2202)=0.1252 > 0.05$$

WILAYAH PENOLAKAN H₀

$$t_{\alpha,v} = t_{0.05,10} = 1.8125$$

Tolak H₀ jika $t_h > t_{\alpha,v}$

Kesimpulan

karena t_h (1.2202) $< t_{0.05,10}$ (1.8125)

Maka **Tidak Tolak Ho**, pada tingkat kepercayaan 95% maka tidak cukup bukti untuk menyatakan bahwa remaja yang mengalami pelecehan di masa anak-anak lebih banyak melakukan tindakan criminal.

Seorang psikolog melakukan penelitian terkait hubungan antara pelecehan di masa anak-anak dan tindakan kriminal di masa remaja. Penelitian dilakukan terhadap 52 remaja yang mengalami pelecehan ketika masa pra-sekolah dan 67 remaja yang tidak mengalami pelecehan di masa pra-sekolah. Ringkasan data yang diperoleh disajikan dalam table di samping.

Mengalami Pelecehan	Rata-rata Jumlah Tindak Kriminal	Simpangan Baku
lya	2.48	1.94
Tidak	1.57	1.31

Berdasarkan hasil tersebut apakah dapat diklaim bahwa remaja yang mengalami pelecehan di masa anak-anak lebih banyak melakukan tindakan kriminal (gunakan taraf nyata 5%)? Asumsikan bahwa data dari kedua kelompok remaja tersebut menyebar normal dan **ragamnya sama**.

$$n_{1} = 52$$

$$n_{2} = 67$$

$$\bar{x}_{1} = 2.48$$

$$\bar{x}_{2} = 1.57$$

$$S_{1} = 1.94$$

$$S_{2} = 1.31$$

$$s_{gab}^{2} = \frac{(n_{1} - 1)s_{1}^{2} + (n_{2} - 1)s_{2}^{2}}{n_{1} + n_{2} - 2}$$

$$= \frac{(52 - 1)(1.94)^{2} + (67 - 1)(1.31)^{2}}{52 + 67 - 2}$$

$$= \frac{51 \times 3.7636 + 66 \times 1.7161}{117}$$

$$s_{gab}^{2} = 2.6086$$

$$s_{(\bar{x}_{1} - \bar{x}_{2})} = \sqrt{s_{gab}^{2} \left(\frac{1}{n_{1}} + \frac{1}{n_{2}}\right)}$$

$$= \sqrt{2.6086 \left(\frac{1}{52} + \frac{1}{67}\right)} = 0.2985$$

HIPOTESIS

$$H_0: \mu_1 - \mu_2 \le 0$$

 $H_1: \mu_1 - \mu_2 > 0$

STATISTIK UJI

$$z_h = \frac{\bar{x}_1 - \bar{x}_2 - b_0}{s_{(\bar{x}_1 - \bar{x}_2)}}$$

$$z_h = \frac{2.48 - 1.57 - 0}{0.2985} = 3.0486$$

WILAYAH PENOLAKAN H₀

$$z_{\alpha} = z_{0.05} = 1.645$$

Tolak H_0 jika $z_h > z_\alpha$

Kesimpulan

karena z_h (3.0486) > $z_{0.05}$ (1.645)

Maka **Tolak Ho**, pada tingkat kepercayaan 95% maka cukup bukti untuk menyatakan bahwa remaja yang mengalami pelecehan di masa anak-anak lebih banyak melakukan tindakan criminal.

Inspiring Innovation with Integrity in Agriculture, Ocean and Biosciences for a Sustainable World