Years spanning model

$$\frac{1}{|S|} \cdot \sum_{\sigma \in S} \left(\sum_{m \in M} \left[\sum_{y \in Y} (N_{y,m,\sigma} \cdot c_{y,m}) + \sum_{ip \in I^{P}} (P_{m,ip} \cdot d^{P} \cdot e^{H}_{m}) + \right. \right.$$

$$\sum_{ir \in I^{R}} \left[\sum_{m'=0}^{m} (f_{m',ir,\sigma} - R_{m',ir,\sigma}) \right] \cdot e^{H}_{m} \cdot H_{m}])$$

$$(1)$$

subject to:

$$L_{y} \cdot N_{y,m,\sigma} + L_{y,m}^{lnst} \ge \sum_{ip \in I^{P}} (P_{m,ip} \cdot d_{y}^{P}) + \sum_{ir \in I^{R}} (R_{m,ir,\sigma} \cdot d_{y,ir}^{R}) + \epsilon_{\sigma,m,y} \qquad \forall \sigma \in S, \forall m \in M, \forall y \in Y \quad (2)$$

$$N_{y,m,\sigma} + N_{y,m}^{lnst} \ge \rho_{\sigma,m,y}$$
 $\forall \sigma \in S, \forall m \in M, \forall y \in Y$ (3)

$$\sum_{m'=0}^{m-1} f_{m',ir,\sigma} \ge \sum_{m'=0}^{m} R_{m',ir,\sigma}$$

$$\forall \sigma \in S, \forall m \in M, \forall ir \in I^R$$
 (4)

$$P_{m,ip} \le \sum_{m'=0}^{m-GMIN} P_{m',(ip-1)} - \sum_{m'=0}^{m-1} P_{m',ip} \qquad \forall m \in M, \forall ip \in I^{P}$$
 (5)

$$P_{m,ip} \ge \sum_{m'=0}^{m-GMAX} P_{m',(ip-1)} - \sum_{m'=0}^{m-1} P_{m',ip}$$
 $\forall m \in M, \forall ip \in I^P$ (6)

$$N_{y,m,\sigma} \le A_{y,m}$$
 $\forall \sigma \in S, \forall m \in M, \forall y \in Y$ (7)

Years model Explanation

- (1) The objective takes an average cost of all scenarios by counting up the cost per month. Each month has a cost for vessels chartered (by type), the energy lost due to planned maintenance, and the energy lost due to unrepaired failures
- (2) For each vessel type the available time (based on charters and spare time from installation) needs to surpass the estimated total time all tasks take
- (3) Ensures enough vessels are assigned to a given month (based on feedback from that month)
- (4) For any type of reactive task, the amount of tasks performed cannot exceed the amount of failures of that type (with a 1 month delay before a failure can be solved)
- (5) Ensures planned tasks are not scheduled too close together by counting up the turbines that were last visited G^{MIN} or more months ago and subtracting all that were revisited later
- (6) Ensures planned tasks are not scheduled too far apart, in similar manner as the previous constraint
- (7) Limits the maximum amount of vessels chartered based on normal availability and vessels used for installation

Years model notation overview

Sets:

- S: Scenarios
 - M. Months
- Y: Vessel types
- I^P: Indices for the planned tasks (first time a turbine is visited is index 1, second time is index 2, etc...)
- I^R: Types of failures reactive tasks

Decision variables:

- $N_{y,m,\sigma}$: The amount of vessels of type y chartered in month m in scenario σ
- P_{m,ip}: Planned tasks in iteration ip in month m
- $R_{m,ir,\sigma}$: Reactive tasks of type ir in month m and scenario σ

Parameters:

- $lackbox{0}{} c_{y,m}$: The cost of chartering a vessel of type y in month m
- \bullet d^P : The duration of a preventive task
- e^H_m: The energy produced by a single turbine per hour in month m
- f_{m,ir,σ}: The amount of failures of type ir in month m in scenario σ
- Hm: The number of hours in month m

Parameters (cont):

- ε_{σ,m,y}: Feedback parameter that enforces leighway
 in the amount of vessel time available to month m
- ρ_{σ,m,y}: Feedback parameter that enforces a minimum amount of a certain vessel assigned to month m
- L_y: The amount of hours a vessel of type y is available if chartered for a month
- $L_{y,m}^{lnst}$. Leftover hours vessels of type y are available in month m based on the installation schedule
- N^{Inst}_{y,m}: Amount of vessels of type y used by the installation schedule in month m that can also partially help out with maintenance operations
- d_y^P: The duration of a preventive task for vessel type
 y
- $d_{y,ir}^R$: The duration of a reactive task ir for vessel type y
- G^{MIN} & G^{MAX}: The minimum and maximum amounts of months between two planned maintenance tasks
- A_{y,m}: The number of maximum available vessels of type y in month m

Months spanning model

$$\min_{\substack{s_i \in \mathbb{R} \geq 0 \\ a_{v,i}^F, a_{v,i}^I, a_{v,i,i'}^I \in \{0,1\}}} \sum_{i \in I} c_i \cdot (s_i + \max_{y \in Y} (s_{y,i} + d_{y,i}))$$
(8)

subject to:

$$\sum_{i \in I} a_{v,i}^F \le 1 \qquad \forall v \in V \tag{9}$$

$$a_{v,i}^{F} + \sum_{i' \in I - \{i\}} a_{v,i',i} = a_{v,i}^{L} + \sum_{i' \in I - \{i\}} a_{v,i,i'} \qquad \forall v \in V, \forall i \in I$$
 (10)

$$\sum_{v \in V_{y}} (a_{v,i}^{F} + \sum_{i' \in I - \{i\}} a_{v,i',i}) \ge \rho_{y,i} \qquad \forall y \in Y, \forall i \in I^{Maint}$$

$$(11)$$

$$s_{i'} + s_{y,i'} - s_i - s_{i,y} \ge (M + d_{y,i}) \cdot a_{v,i,i'} - M \qquad \qquad \forall y \in Y, \forall v \in V_y, \\ \forall i, i' \in I | i \ne i' \qquad (12)$$

$$s_i + \max_{y \in Y} (s_{y,i} + d_{y,i}) \le T \qquad \forall i \in I^{Maint}$$
 (13)

$$a_{v,i}^F + \sum_{i' \in I - \{i\}} a_{v,i',i} = a_{v,i}^{Inst} \qquad \forall v \in V, \forall i \in I^{Inst}$$
 (14)

$$s_i = s_i^{lnst} \qquad \forall I \in I^{lnst}$$
 (15)

Months model Explanation

- (8) Objective is to minimise costs of tasks being uncompleted (the $+\max$ bit is optional as it's about constants)
- (9) Ensures every vessel has at most one first task
- (10) Ensures that a vessel follows a path without brances
- (11) Ensures every task has enough resourses assigned to it
- (12) Ensures the starting times of consecutive tasks are separated by at least the duration of the first task
- (13) Ensures all tasks are finished on time
- (14) Forces every installation task to be assigned as in the installation schedule
- (15) Forces every installation task to be started as in the installation schedule

5/6

Months model notation overview

Sets:

- Y: Vessel types
- V: Individual vessels
- $V_y \subseteq V$: Vessels of type $y \in Y$
- I^{Inst}: Installation tasks completed this month by vessels that are also available for maintenance tasks
- I^{Maint}: Maintenance tasks to be scheduled this month
- I = I^{Inst} ∪ I^{Maint}: Tasks to be completed in this month

Decision variables:

- s_i : Start time of task i
- a^F_{v,i} & a^L_{v,j}: Binary variables, 1 for the first and last task i of vessel v respectively
- a_{v,i,i'}: Binary variable which is 1 if vessel v performs task i' after task i'

Parameters:

- c_i: The cost per hour of a task not being completed
- s_{y,i}: The start time offset between task i starting and vessel type y being used for it
- d_{y,i}: The duration of task i for vessel type y
- ρ_{y,i}: The amount of vessels of type y required for task i
- M: A large number
- T: The end time of the month
- s_i^{lnst} : Start time of task $i \in I^{lnst}$, as in the installation schedule
- $a_{v,i}^{Inst}$: Binary assignment variable of task $i \in I^{Inst}$, as in the installation schedule

6/6