

Computer Systems B COMS20012

Introduction to Operating Systems and Security

Physical Memory

- Physical addresses are P bits long
 - Maximum amount of addressable physical memory is 2^p
- OS161's MIPS is 32 bits
 2³² physical addresses
 Maximum of 4GB memory
- Modern CPU support large amount of addressable memory

 - X86_64Physical 52 bitsVirtual 48 bits
- Far exceed current RAM technology
 - This won't be true forever;)

Physical Memory

- Is finite
- Need to be shared between all processes
- Need to be carefully managed to avoid processes stepping on each other toes

Classic OS solution: hide complexity through an abstraction

Virtual Memory the basic

- The kernel provide a virtual memory for each process
- Virtual memory hold code, data and stack(s) for a process
- If virtual memory addresses are V bits
 - Amount of addressable virtual is 2^v
 On OS161/MIPS V=32
- Running processes see only virtual memory
 - Program counter and stack pointer hold virtual addresses
 - Pointers to variable are virtual addresses
 - Jumps/branches refers to virtual addresses
- Each process is isolated in its virtual memory and cannot address other processes virtual memory

Why virtual memory?

- Isolates process from each other
- Potential to support virtual memory larger than physical memory
- Total size of virtual memories can be greater than the physical memory
 - Provide greater support for multiprocessing

