

Statistics for Industry and Technology

Series Editor

N. Balakrishnan McMaster University Department of Mathematics and Statistics 1280 Main Street West Hamilton, Ontario L8S 4K1 Canada

Editorial Advisory Board

Max Engelhardt EG&G Idaho, Inc. Idaho Falls, ID 83415

Harry F. Martz Group A-1 MS F600 Los Alamos National Laboratory Los Alamos, NM 87545

Gary C. McDonald NAO Research & Development Center 30500 Mound Road Box 9055 Warren, MI 48090-9055

Kazuyuki Suzuki
Communication & Systems Engineering Department
University of Electro Communications
1-5-1 Chofugaoka
Chofu-shi
Tokyo 182
Japan

Advances in Degradation Modeling

Applications to Reliability, Survival Analysis, and Finance

M.S. Nikulin Nikolaos Limnios N. Balakrishnan Waltraud Kahle Catherine Huber-Carol *Editors*

Birkhäuser Boston • Basel • Berlin Editors
M.S. Nikulin
I'Institut de Mathématiques de Bordeaux, IMB
Université Victor Segalen Bordeaux 2
33076 Bordeaux Cedex
France
nikou@sm.u-bordeaux2.fr

N. Balakrishnan
Department of Mathematics and Statistics
McMaster University
1280 Main Street West
Hamilton, Ontario L8S 4K1
Canada
bala@univmail.cis.mcmaster.ca

Catherine Huber-Carol
Laboratoire de Statistique Théorique et
Appliquée
Université Paris Descartes et U780 INSERM
45 rue des Saints-Pères
75270 Paris Cedex 06
France
catherine.huber@parisdescartes.fr

Nikolaos Limnios Laboratoire de Mathématiques Appliquées Université de Technologie de Compiègne 60205 Compiègne Cedex France nikolaos.limnios@utc.fr

Waltraud Kahle Institut für Mathematische Stochastik Otto-von-Guericke-Universität D-39016 Magdeburg Germany waltraud.kahle@ovgu.de

ISBN 978-0-8176-4923-4 e-ISBN 978-0-8176-4924-1 DOI 10.1007/978-0-8176-4924-1

Library of Congress Control Number: 2009939145

Mathematics Subject Classification (2000): 60K10, 62Mxx, 90B25

© Birkhäuser Boston, a part of Springer Science+Business Media, LLC 2010

All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Birkhäuser Boston, c/o Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

Printed on acid-free paper

Birkhäuser Boston is part of Springer Science+Business Media (www.birkhauser.com)

William Q. Meeker in 2009

Contents

Pref	face	XVII	
Will	William Q. Meeker – Career and Accomplishments		
List	of Contributors	XXIX	
List	of Tables	XXXIII	
List	of Figures	XXXV	
—— Part	t I Review, Tutorials, and Perspective		
	<u> </u>		
	rends in the Statistical Assessment of Reliability	0	
	iam Q. Meeker	3	
1.1	Background and Purpose	3	
1.2	Traditional Reliability Data and Data Analysis	4	
1.3	Product Design and Reliability Budgeting	5	
1.4	Accelerated Testing	6	
1.5	Multiple Failure Modes	6	
1.6	Field and Warranty Data	8	
1.7	Degradation Reliability Data	8	
1.8	Recurrence Data	9	
1.9	The Next Generation of Reliability Data	10	
1.10	Software for Statistical Analysis of Reliability Data	11	
1.11	Use of Bayesian Methods in Reliability	12	
1.12	Concluding Remarks	14	
Refe	rences	14	
	egradation Processes: An Overview		
Moh	amed Abdel-Hameed	17	
2.1	Introduction	17	
2.2	Lévy and Pure Jump Processes	18	
	2.2.1 Lévy processes	18	
	2.2.2 Pure jump Markov processes	20	
2.3	Life Distributions and Dependence Between Random Variables	20	
	2.3.1 Classes of life distributions	20	
	2.3.2 Dependence between random variables	21	

tents

2.4	The Degradation Process and Properties of the Resulting Life	
	Distribution	21
	2.4.1 Non-stationary gamma degradation process	21
	2.4.2 Increasing Lévy and pure jump degradation processes	$\frac{1}{22}$
	2.4.3 Brownian motion like degradation processes	22
2.5	Maintenance Policies of Devices Subject to Degradation	23
-	ences	$\frac{23}{24}$
TUTCI	checs	24
	efect Initiation, Growth, and Failure – A General Statistical el and Data Analyses	
	ne B. Nelson	27
3.1	Introduction	27
3.2	An Application	28
3.3	A Population Model for Defect Initiation and Growth	30
3.4	Model Fitting by Computer	34
-	ences	37
100101		91
	operties of Lifetime Estimators Based	
	Varranty Data Consisting only of Failures	
	yuki Suzuki, Watalu Yamamoto, Takashi Hara, and Md. Mesbahul Alam	39
4.1	Introduction	39
4.2	A Model for Failure Data in Warranty Database	41
4.3	Maximum Likelihood Estimation	42
4.4	Properties of Maximum Likelihood Estimators	44
	4.4.1 Fisher information matrix	44
	4.4.2 One failure mode case	44
	4.4.3 Two failure modes case	44
4.5	Effect of Sales Amount on Precision	46
4.6	Conclusion	48
A	Gradients and Hessians of Log-Likelihood (4.3)	48
	A.1 Gradients	49
	A.2 Hessians	49
В	Expectation of the Elements of Hessians	51
С	Gauss-Hermite Quadrature	54
Refer	ences	55
Part	II Shock Models	
	ock Models	
	Gut and Jürg Hüsler	59
5.1	Introduction	59
5.2	Cumulative Shock Models	60
5.3	Extreme Shock Models	60
5.4	Mixed Shock Models	61
	5.4.1 An auxiliary result	62
	5.4.2 Some examples	63
5.5	More Realistic Model	63
	5.5.1 Delayed sums	64

	Contents	IX
	5.5.2 A generalized cumulative shock model	65
	5.5.3 A generalized extreme shock model	66
	5.5.4 A generalized mixed shock model	68
	5.5.5 Extreme shock models with varying threshold	69
	5.5.6 The exact distribution of ν	70
	5.5.7 The asymptotic distribution	71
5.6	An Extension to Markovian Shock Models	73
0.0	5.6.1 Cumulative shock models	74
	5.6.2 Extreme shock models	74
	5.6.3 Mixed shock models	75
Refer	ences	75
		10
	rametric Shock Models raud Kahle and Heide Wendt	77
6.1	Introduction	77
6.2		78
-	Modeling Degradation by Marked Point Processes	
6.3	Characteristics of the Degradation Process	82
	6.3.1 The counting process $(\Phi(t))$	82
	6.3.2 The sequence (X_n) and the degradation process (Z_t)	83
	6.3.3 The cumulative degradation at time t	84
	6.3.4 The first passage time Z^h	88
6.4	Maximum Likelihood Estimations	90
6.5	The Large Sample Case	97
6.6	Moment Estimates	99
6.7	Comparison of Maximum Likelihood and Moment Estimates	101
6.8	Conclusion	103
Refer	ences	103
7 Po	bisson Approximation of Processes with Locally Independent	
	ements and Semi-Markov Switching – Toward Application in	
	ability	
	Koroliuk, N. Limnios, and I.V. Samoilenko	105
7.1	Introduction	105
7.2	Main Results	107
7.3	Proof of Theorem 1	110
	ences	115
rterer	ences	110
	Some Shock Models of Degradation	
	m Finkelstein and Ji Hwan Cha	117
8.1	Introduction	117
8.2	Asymptotic Properties for Two Special Shock Models	119
8.3	Terminating and "Accumulating" Shocks	121
8.4	Concluding Remarks	124
Refer	rences	124

\mathbf{Part}	III	Degradation	Models
-----------------	-----	-------------	--------

	e Wiener Process as a Degradation Model: Modeling and meter Estimation	
	raud Kahle and Axel Lehmann	127
9.1	Introduction	127
9.2	Increments of the Degradation Process Are Observed	129
9.3	Observation of Failure Times	134
9.4	Observation of Both Degradation Increments and Failure Times	135
9.5	An Example	141
9.6	Simulation Study	144
Refere	ences	145
10 O	n the General Degradation Path Model: Review and Simulation	
	zeh Haghighi, Nazanin Nooraee, and Narges Nazeri Rad	147
10.1	Introduction	147
10.2	Degradation Model	148
10.2	10.2.1 Degradation model with noise	149
	10.2.2 Degradation model without measurement error	150
10.3	Simulation	151
	ences	154
	Closer Look at Degradation Models: Classical	
	Bayesian Approaches	
	a A. Freitas, Thiago R. dos Santos, Magda C. Pires, and	
	o A. Colosimo	157
11.1	Introduction	157
	11.1.1 Background and literature	157
	11.1.2 The problem	159
11.2	Train Wheel Degradation Data	161
11.3	Statistical Methods for Degradation Data Analysis	162
	11.3.1 Methods based on "classical" inference	162
	11.3.2 Bayesian inference	166
11.4	The Wheel Degradation Data Revisited	167
	11.4.1 Estimation of $F_T(t)$ using the approximate method	168
	11.4.2 Estimation of $F_T(t)$ using the analytical method	170
	11.4.3 Estimation of $F_T(t)$ using the two-stage method	171
	11.4.4 Estimation of $F_T(t)$ using the numerical method	172
	11.4.5 Comparison of the results generated by the methods based on	
	"classical" inference	172
	11.4.6 Bayesian inference	172
11.5	Conclusions	177
Refere	ences	178

	Contents	XI
12 O	ptimal Prophylaxis Policy Under Non-monotone Degradation	
	Rasova and B.P. Harlamov	181
12.1	Setting of the Problem	181
12.2	Optimization Problem	183
12.3	Trajectories of Choice	184
12.4	Degradation Process of Diffusion Type	192
Refere	ences	194
19 D	stanianation Duagogas with Increasing Thresholds	
	eterioration Processes with Increasing Thresholds	195
5. Zac	Introduction	195 195
13.1 13.2	Preliminaries	193
13.3	The Reliability and Hazard in Case I	190
13.4	The Reliability and Hazard in Case II	199
13.4 13.5	Reliability and Hazard in Case III	200
13.6	Reliability and Hazard in Case IV	201
13.7	Exponential Deterioration	202
10.1	13.7.1 Case I with $K = 1$	202
	13.7.2 Case I with $K = 2$	203
	13.7.3 Case II with $K = 1$	204
	13.7.4 Case III, $K = 1$	206
	13.7.5 Case IV: Linear threshold	207
Refere	ences	208
	ailure Time Models Based on Degradation Processes	
	Lehmann	209
14.1	Introduction	209
	14.1.1 Models for degradation data	210
1.1.0	14.1.2 Models relating degradation and failure	213
14.2	Degradation—Threshold—Shock Models	214
	14.2.1 The general model	214
	14.2.2 Degradation—threshold models	216
	14.2.3 Degradation—shock models	217
	14.2.4 Likelihood function	218
140	14.2.5 Estimation of the survival function and the failure rate of T .	222
14.3	DTS Models with Covariates	222
	14.3.1 Maximum likelihood estimation	225
1 4 4	14.3.2 Semiparametric estimation	227
14.4	A DTS Model for Repairable Items	229
14.5	Application of DTS Models	230
Refere	ences	231
15 D	egradation and Fuzzy Information	
	ertl	235
15.1	Introduction	235
15.2	Material Degradation	236
15.3	Fuzzy Initial Conditions	237
15.4	Fuzzy Distribution of $q(0)$	238

XII	Contents

15.5 Refere	Application to Accelerated Life Testing	240 240
	New Perspective on Damage Accumulation, Marker Processes, Weibull's Distribution	
Nozer	D. Singpurwalla	241
16.1	The Hazard Potential	242
16.2	A Stochastic Process Model for Damage and Its Markers	243
16.3	Introduction	244
16.4	The Weibull Distribution in Material Failure: Some History	244
16.5	Preliminaries and Notation	244
16.6	The Weakest Link Principle and an Application	245
16.7	Weibull's Approximation and Analysis	246
16.8	Critique of Weibull's Analysis	247
16.9	The Theory of Extreme Values	248
16.10	Comments on Using the Weibull Distribution Motivated via WLP and	
D.C	EVT	248
Refere	ences	249
Part	IV Reliability Estimation and ALT	
Acce	eliability Estimation of Mechanical Components Using lerated Life Testing Models ce Guérin, M. Barreau, A. Charki, A. Todoskoff, S. Cloupet and	
	$gaud\ldots$	253
17.1	Introduction	253
17.2	Accelerated Life Testing Model	254
17.3	Regression Test Plan	256
	17.3.1 Introduction	256
	17.3.2 Parametric ALT model	257
	17.3.3 Generalized proportional hazard (GPH) model	257
	17.3.4 Semi-parametric ALT model	259
	17.3.5 Application to ball bearings	260
17.4	Reliability Test With Previous Accelerated Damage	266
	17.4.1 Principle	266
	17.4.2 Test plan definition	267
	17.4.3 Parametric model	268
	17.4.4 Nonparametric model	269
	17.4.5 Simulation example	270
17.5	Conclusions	272
	ences	273
	eliability Estimation from Failure-Degradation Data with	210
	riates	
V. Ba	ngdonavičius, I. Masiulaitytė, M.S. Nikulin	275
18.1	Introduction	275
18.2	Modelling Simultaneous Traumatic Events and Degradation Data Under Covariates	276
	O TOTAL I GOOD TO THE TOTA	210

	Contents	XIII
18.3	Estimation of Model Parameters	280
	18.3.1 The data	280
	18.3.2 Likelihood function construction	280
	18.3.3 Example 1: Time-scaled gamma process	281
	18.3.4 Example 2: Shock processes	284
	18.3.5 Example 3: Path models	286
	18.3.6 Modified loglikelihood	288
18.4	Estimation of Reliability Characteristics	288
	ences	289
10.4		
	symptotic Properties of Redundant Systems Reliability nators	
	agdonavičius, I. Masiulaitytė, M.S. Nikulin	293
19.1	Introduction	293
19.2	Point Estimators of the c.d.f. of Redundant Systems	294
13.2	19.2.1 Nonparametric estimation	294
	19.2.1 Nonparametric estimation	294
10.9		
19.3	Asymptotic Distribution of \hat{K}_j and Confidence Intervals for $K_j(t)$	296
	19.3.1 Nonparametric case	297
	19.3.2 Parametric case	302
19.4	Power of Goodness-of-Fit Tests	306
Refer	ences	310
	an Approach to System Reliability Demonstration Based on	
	elerated Test Results on Components	
Léo (Gerville-Réache and Vincent Couallier	311
20.1	Introduction	311
20.2	Global Reliability Demonstration from k "Zero-Failure" Component	919
	Testing Procedures	313
	20.2.1 Equal component test times	314
	20.2.2 Equal reliability targets	314
	20.2.3 Integrating failed demonstration procedures	315
20.3	Designing a Global Demonstration Test for the Reliability of a Series	
	System Under a Success Probability Constraint	316
	20.3.1 Basic principle of the demonstration test planning	316
	20.3.2 " n/j failures" demonstration test	318
20.4	Conclusion	319
Refer	ences	319
Part	V Survival Function Estimation	
91 D	tobust Versus Nonparametric Approaches	
	Survival Data Analysis	
	erine Huber	323
21.1	Introduction	324
21.1	Motivation for Robustness	324
21.2	21.2.1 Instability of usual tests and estimators	324 324
	21.2.1 Instability of usual tests and estimators	$\frac{324}{327}$
	21.2.2 DOIDINING OF LAHE ROBE	541

37737	A
XIV	Contents

01.9	Delinstrace Communication	200
21.3	Robustness Concepts	328
	21.3.1 Robust versus nonparametric approach	328
	21.3.2 Regularity of the parametric model	$\frac{329}{330}$
01.4	21.3.4 Measures of robustness	$\frac{330}{331}$
21.4	Robustness in Survival Analysis	
	21.4.1 Measure of robustness of Kaplan–Meier estimator	$\frac{331}{336}$
Dofon	ences	336
neiere	ences	550
	Iodelling Recurrent Events for Repairable Systems Under Worse	
	Old Assumption	
	abykina and V. Couallier	339
22.1	Introduction	339
22.2	A New Model of Imperfect Repair: The LEYP Model	342
	22.2.1 Some useful properties	344
22.3	Taking Covariates into Account	345
22.4	Statistical Estimation and Data Description	345
22.5	Numerical Example	347
	22.5.1 Data description	347
	22.5.2 Parameter estimation	350
	22.5.3 Predictions	352
22.6	Conclusion	353
Refere	ences	353
23 S	urvival Models for Step-Stress Experiments With Lagged Effects	
	annan, D. Kundu, and N. Balakrishnan	355
23.1	Introduction	355
23.2	Model Description	357
	23.2.1 Step-stress models with latency	357
23.3	Maximum Likelihood Estimators for the CRM	358
23.4	Least Squares Estimators	360
23.5	Data Analysis	361
23.6	Simulation Results	362
23.7	Conclusions	367
Refere	ences	368
04 D		
	stimation of Density on Censored Data	971
	lev	371
24.1	Introduction	371
24.2	Approximating of Parametric Set	374
24.3	Hellinger Distance	376
24.4	Main Result	378
reiere	ences	379

Part VI Competing Risk and Chaotic System

	Coward a Test for Departure of a Trajectory from a Neighborhood Chaotic System	
	$uValle\dots$	38
25.1	Introduction	38
	25.1.1 Terminology and the Lorenz attractor	38
	25.1.2 The alternative for the simulation	38
25.2	The Test Statistic and Supporting Theory	38
25.3	Computer Experiments	39
	25.3.1 Description of the computer experiments	39
25.4	Directions for Future Work	39
Refer	rences	39
	Probability Plotting with Independent Competing Risks	
Franc	cis G. Pascual and Christopher Gast	39
26.1	Introduction	3
	26.1.1 Competing risks	3
	26.1.2 Probability plotting	3
	26.1.3 Outline	3
26.2	Notation and Model Assumptions	3
	26.2.1 Distributions of individual risks	3
	26.2.2 Distribution of subject lifetime	4
	26.2.3 The likelihood function	4
26.3	The Kaplan-Meier Estimator And Probability Plotting	4
	26.3.1 Kaplan–Meier estimator	4
	26.3.2 Linearizing the Cdf under one risk	4
	26.3.3 Probability plotting and competing risks	4
26.4	Proposed Method	4
26.5	Applications	4
	26.5.1 Breast cancer study	4
	26.5.2 Shock absorber failure data	4
	26.5.3 Simulated data set	4
26.6	Conclusions	4
	rences	4
_00101		-
Inde	x	4

Preface

William Q. Meeker has made pioneering and phenomenal contributions to the general area of reliability and, in particular, to the topics of degradation and accelerated testing. His research publications and the numerous citations he has received over the past three decades provide an ample testimony to this fact.

Statistical methods have become critical in analyzing reliability and survival data. Highly reliable products have necessitated the development of accelerated testing and degradation models and their analyses. This volume has been put together in order to (i) review some of the recent advances on accelerated testing and degradation, (ii) highlight some new results and discuss their applications, and (iii) suggest possible directions for future research in these topics.

With these specific goals in mind, many authors were invited to write a chapter for this volume. These authors are not only experts in lifetime data analysis, but also form a representative group from former students, colleagues, and other close professional associates of William Meeker. All contributions have been peer reviewed and organized into 26 chapters. For the convenience of readers, the volume has been divided into the following six parts:

- Review, Tutorials, and Perspective
- Shock Models
- Degradation Models
- Reliability Estimation and ALT
- Survival Function Estimation
- Competing Risk and Chaotic Systems

It needs to be emphasized here that this volume is not a proceedings, but a carefully and deliberately planned volume comprising chapters consistent with the editorial goals and purposes mentioned above.

Our thanks go to all the authors who have contributed to this volume. Thanks are also due to Mrs. Debbie Iscoe for the excellent typesetting of the entire volume. Special thanks go to Ms. Regina Gorenshteyn and Mr. Tom Grasso (Editor, Birkhäuser, Boston) for their interest and support for this project.

The volume was difficult, it is clear, but Leah (Project Manager at Integra Software Services), Brian, Tom, and Dubby helped us very much to prepare this nice volume!

XVIII Preface

Like us, all the authors who contributed to this volume have great admiration for the work and accomplishments of William Meeker and therefore provided us with hearty cooperation during the preparation of this volume. It is a great pleasure and honor for all of us to dedicate this volume to William Meeker.

June 2009

M.S. Nikulin Nikolaos Limnios N. Balakrishnan Waltraud Kahle Catherine Huber-Carol

William Q. Meeker – Career and Accomplishments

William Meeker received his B.S. degree in industrial management from Clarkson College of Technology in 1972 and M.S. degree in operations research and Ph.D. degree in administrative and engineering systems, both from Union College (Schenectady, New York) in 1973 and 1975, respectively. Soon after getting his Ph.D., he joined as an assistant professor in the Department of Statistics at Iowa State University, Ames. After getting promoted to the ranks of associate professor and professor in 1978 and 1981, respectively, he was appointed there as a distinguished professor of liberal arts and sciences in 1996, and he has been there in this position since. During this period, he also held visiting positions at Global Research Center of General Electric Company (Schenectady, New York), Quality Theory and Systems Department of Bell Laboratories (Holmdel, New Jersey), Louisiana State University (Baton Rouge, Louisiana), and University of Waterloo (Waterloo, Ontario, Canada). He is also a faculty affiliate at Los Alamos National Laboratory (Nevada) since 1999.

At Iowa State University, William Meeker has made invaluable contributions. Since 1989, he has been a principal investigator at the Center for Nondestructive Evaluation. He excelled in teaching a wide array of courses and in fact received the Iowa State University Teaching Excellence Award in 1989 and 1991 for his efforts. He has guided 71 M.S. projects and 11 Ph.D. dissertations and is supervising six graduate students at present.

William Meeker has provided distinguished service to the statistical community at large by his activities in various capacities for professional societies. These include secretary-treasurer of ASA Business and Economics Section (1981–1982), member of Advisory Board of ASA Section on Physical and Engineering Sciences (1984–1986), member of ASA Committee on Publications (1987–1989), member of ASA Ad Hoc Committee for Journal of Computational and Graphical Statistics (1987–1990), president of the Iowa Chapter of ASA (1989–1991), chair of the IMS Committee on Statistical Tables (1990–1994), member of ASQC Publications Management Board (1991–1993), chair of Technometrics Management Committee (1991–1993), COPSS visiting lecturer (1991–1995), member of ASA Journals Management Committee (1992–1993), representative of Iowa Chapter to ASA Council of Chapters (1995–1997), member of the ISI Committee for Statistics in Business and Industry (1997–2005), member of NSF SCREMS Proposal Review Panel (1998, 2005), program chair of Spring Research Conference (1999), member of ASA Fellows Committee (2001–2003), member of NSF Statistics Research Proposal Review Panel (2001), member of NSF CAREER Proposal

Review Panel (2002), member of NRC Panel on Operational Test Design and Evaluation of the Interim Armored Vehicle (2001–2003), chair of ASA Task Force on Journals Marketing (2003), member of ASA Task Force on Electronic Publications (2002–2004), member of ASA Publications Committee (1998–2002), chair of ASA Publications Committee (2003–2006), and member of NSF Research Experiences for Undergraduates Proposal Review Panel (2006).

In addition, William Meeker has provided tremendous service to many research journals in various capacities. Included in this list are associate editor of *Technometrics* (1979–1986), editor of *Technometrics* (1987–1989), editorial board member of *Selected Tables in Mathematical Statistics* (1981–1989), co-editor of *Selected Tables in Mathematical Statistics* (1990–1994), editorial board member of *International Statistical Review* (1995–1999), editorial board member of *Lifetime Data Analysis* (2001–2009), advisory editor of *Quality Technology & Quality Management* (2003–2009), and guest editor of *Journal of Statistical Planning and Inference* Special Issue on Accelerated Testing (JSPI, 2009).

William Meeker has received numerous distinctions and awards throughout his career. He has been elected a fellow of the American Statistical Association and the American Society for Quality, and an elected member of the International Statistical Institute. Some other notable awards include ASA Outstanding Statistical Application (2001), Frank Wilcoxon Prize for the best practical application paper in *Technometrics* (1987, 1995, 1999), W.J. Youden Prize for the best expository paper in *Technometrics* (1996, 1998, 1999, 2002), William G. Hunter Award from the Statistics Division of the ASQ (2003), and ASQ Shewhart Medal (2006). Moreover, his book *Statistical Methods for Reliability* (co-authored with L. Escobar), published in 1998 by John Wiley & Sons, received the Professional/Scholarly Publishing Division of the Association of American Publishers Award for Excellence and Innovation in Engineering.

William Meeker, through his pioneering and phenomenal research in the area of reliability over the last 35 years, has influenced deeply the trend of research in this area and has provided guidance, inspiration, and encouragement to numerous young researchers. For his exemplary career and immense contributions, he was chosen "Statistician of the Year" in 2006 by the Chicago Chapter of the ASA. It is our sincere hope and wish that he will continue his contributions to the area of reliability and the statistical profession in general with renewed vigor and energy.

This volume includes a number of chapters on the topics of degradation and accelerated testing written by experts who know and appreciate William Meeker and all his contributions!

Books and Booklets

- Meeker, W.Q., Cornwell, L., and Aroian, L.A. (1981), The Product of Two Normally Distributed Random Variables. Volume 7 of Selected Tables in Mathematical Statistics. Providence, Rhode Island: American Mathematical Society.
- Meeker, W.Q., and Hahn, G.J. (1985), How To Plan An Accelerated Life Tests— Some Practical Guidelines. Volume 10 in the American Society for Quality Control Basic References in Quality Control: Statistical Techniques. Milwaukee, Wisconsin: American Society for Quality Control.

- 3. Hahn, G.J., and Meeker, W.Q. (1991), Statistical Intervals: A Guide for Practitioners. New York: John Wiley and Sons.
- 4. Meeker, W.Q., and Escobar, L.A. (1998), Statistical Methods for Reliability Data. New York: John Wiley and Sons.

Book Chapters

- Meeker, W.Q. (1979), Nites Rest Inc.—A Box-Jenkins Time Series Analysis Case Study. Chapter 12 in *Forecasting, Time Series, and Regression: An Applied Ap*proach, edited by Bruce L. Bowerman and Richard T. O'Connell, Duxbury Press, North Scituate, MA.
- 2. Meeker, W.Q., and Escobar, L.A. (1994), Maximum Likelihood Methods for Fitting Parametric Statistical Models to Censored and Truncated Data. Chapter 8 in *Probabilistic and Statistical Methods in the Physical Sciences*, edited by John Stanford and Stephen Vardeman, New York: Academic Press.
- Meeker, W.Q., and Escobar, L.A. (1999), Accelerated Life Tests: Concepts and Data Analysis. Chapter 10 in A Systems Approach to Service Life Prediction of Organic Coatings, edited by D.R. Bauer and J.W. Martin, Washington: American Chemical Society.
- Meeker, W.Q., Escobar, L.A., Doganaksoy, N., and Hahn, G.J. (1999), Reliability Concepts and Data Analysis. Section 48 in the *Juran's Handbook on Quality*, 5th Edition, edited by J. M. Juran and A. B. Godfrey, New York: McGraw Hill.
- Meeker, W.Q., Escobar, L.A., and Chan, V. (2002), Using Accelerated Tests to Predict Service Life in Highly-Variable Environments. Chapter 19 in Service Life Prediction Methodology and Metrologies, edited by J. W. Martin and D.R. Bauer, Washington: American Chemical Society.
- 6. Meeker, W.Q., Escobar, L.A., and Zayac, S.A. (2003), Use of Sensitivity Analysis to Assess the Effect of Model Uncertainty in Analyzing Accelerated Life Test Data. Chapter 6 in Case Studies in Reliability and Maintenance, edited by W.R. Blischke and D.N.P. Murthy, New York: John Wiley & Sons.
- Meeker, W.Q., and Escobar, L.A. (2003), Use of Truncated Regression Methods to Estimate the Shelf Life of a Product from Incomplete Historical Data. Chapter 12 in Case Studies in Reliability and Maintenance, edited by W.R. Blischke and D.N.P., Murthy, New York: John Wiley & Sons.
- 8. Doganaksoy, N., Hahn, G.J., and Meeker, W.Q. (2005), Assuring Product Reliability and Safety, a chapter in *Statistics A Guide to the Unknown*, 4th Edition, edited by Roxy Peck and others, Brooks-Cole and the American Statistical Association.
- Pascual, F.G., Meeker, W.Q., and Escobar, L.A. (2006), Accelerated Life Test Models and Data Analysis. Chapter 19 in *Handbook for Engineering Statistics*, New York: Springer.
- 10. Gu, X., Stanley, D., Byrd, W., Dickens, B., Vaca-Trigo, I., Meeker, W. Q., Nguyen, Chin, J., and Martin, J. (2009), Linking Accelerated Laboratory Test with Outdoor Performance Results for a Model Epoxy Coating System. In Service Life Prediction of Polymeric Materials, edited by Jonathan Martin, Rose A. Ryntz, Joannie Chin, Ray A. Dickie, New York: Springer.
- 11. Vaca-Trigo, I., and Meeker, W.Q. (2009), A Statistical Model for Linking Field and Laboratory Exposure Results for a Model Coating. In Service Life Prediction of

Polymeric Materials, edited by Jonathan Martin, Rose A. Ryntz, Joannie Chin, Ray A. Dickie, New York: Springer.

Refereed Publications

- 1. Meeker, W., Hahn, G., and Feder, P. (1975), A Computer Program for Evaluating and Comparing Experimental Designs and Some Applications. *The American Statistician*, **29**, No. 1, 60–64.
- Meeker, W.Q., and Nelson, W. (1975), Optimum Accelerated Life Tests for Weibull and Extreme Value Distributions. *IEEE Transactions on Reliability*, 24, No. 5, 321–332.
- Meeker, W.Q., and Nelson, W. (1976), Weibull Percentile Estimates and Confidence Limits from Singly Censored Data by Maximum Likelihood. *IEEE Transactions on Reliability*, 25, No. 11, 20–24.
- Hahn, G., Meeker, W.Q., and Feder, P. (1976), The Evaluation and Comparison of Experimental Designs for Fitting Regression Relationships. *Journal of Quality Technology*, 8, No. 3, 140–157.
- 5. Kamen, A., Schmee, J., and Meeker, W.Q. (1976), Propriety of Using Percentages in Reporting Anticariogenic Studies. *Journal of Dental Research*, **55**, No. 4, 703.
- Meeker, W.Q., and Nelson, W. (1976), Tables for the Weibull and Extreme Value Distributions. The Relia-Com Review, 1, No. 3, 1–5.
- Meeker, W.Q., Hahn, G.J., and Feder, P.I. (1977), New Bias Evaluation Features of EXPLOR-A Program for Assessing Experimental Design Properties. *The American Statistician*, 31, No. 2, 95–96.
- Meeker, W.Q., and Hahn, G.J. (1977), Asymptotically Optimum Over-Stress Tests to Estimate the Survival Probability at a Condition with a Low Expected Failure Probability (with discussion). *Technometrics*, 19, No. 4, 381–399.
- 9. Meeker, W.Q., and Nelson, W. (1977), Confidence Limits for the Weibull Distribution from Censored Data. *Technometrics*, **19**, No. 4, 473–476.
- 10. Hahn, G.J., Feder, P.I., and Meeker, W.Q. (1978), Evaluating the Effect of Incorrect Specification of a Regression Model, Part I: Basic Concepts and Example. *Journal of Quality Technology*, **10**, No. 2, 61–72.
- 11. Meeker, W.Q. (1978), Sequential Tests of Independence for 2x2 Contingency Tables. *Biometrika*, **65**, No. 1, 85–90.
- Nelson, W., and Meeker, W.Q. (1978), Theory for Optimum Accelerated Life Tests for the Weibull and Extreme Value Distributions. *Technometrics*, 20, No. 2, 171–177.
- 13. Hahn, G.J., Feder, P.I., and Meeker, W.Q. (1978), Evaluating the Effect of Incorrect Specification of a Regression Model, Part II: Further Example and Discussion. *Journal of Quality Technology*, **10**, No. 3, 93–98.
- 14. Meeker, W.Q. (1978), TSERIES-A User-Oriented Computer Program for Time Series Analysis. *American Statistician*, **32**, No. 3, 111–112.
- 15. Meeker, W.Q., and Hahn, G.J. (1978), A Comparison of Accelerated Test Plans to Estimate the Survival Probability at a Design Stress. *Technometrics*, **10**, No. 3, 245–247.
- Meeker, W.Q., and Hahn, G.J. (1980), Prediction Intervals for the Ratios of Normal Distribution Sample Variances and Exponential Distribution Sample Means. Technometrics, 22, No. 3, 357–366.

- 17. Meeker, W.Q. (1981), A Conditional Sequential Test for the Equality of Two Binomial Proportions. *Applied Statistics*, **30**, No. 2, 109–115.
- 18. Meeker, W.Q., and Duke, S.D. (1981), CENSOR-A User-Oriented Computer Program for Life Data Analysis. *The American Statistician*, **35**, No. 2, 112.
- 19. Hahn, G.J., and Meeker, W.Q. (1982), Pitfalls and Practical Considerations in Product Life Analysis, Part 1: Basic Concepts and Dangers of Extrapolation. *Journal of Quality Technology*, **14**, No. 3, 144–152.
- Hahn, G.J., and Meeker, W.Q. (1982), Pitfalls and Practical Considerations in Product Life Analysis, Part 2: Mixtures of Product Populations and More General Models. *Journal of Quality Technology*, 14, No. 4, 177–185.
- 21. Meeker, W.Q., and Hahn, G.J. (1982), Sample Sizes for Prediction Intervals. *Journal of Quality Technology*, **14**, No. 4, 201–206.
- 22. Meeker, W.Q. (1984), A Comparison of Accelerated Life Test Plans for Weibull and Lognormal Distributions and Type I Censored Data. *Technometrics*, **26**, 157–171.
- 23. Hahn, G.J., and Meeker, W.Q. (1984), An Engineer's Guide to Books on Statistics and Data Analysis. *Journal of Quality Technology*, **16**, No. 3, 196–218.
- Escobar, L.A., and Meeker, W.Q. (1986), Optimum Accelerated Life Tests with Type II Censored Data. Journal of Statistical Computation and Simulation, 23, 273–297.
- Escobar, L.A., and Meeker, W.Q. (1986), Elements of the Fisher Information Matrix for the Smallest Extreme Value Distribution and Censored Data. Applied Statistics, 35, 80–86.
- 26. Meeker, W.Q. (1986), Planning Life Tests in which Units are Periodically Inspected for Failure. *IEEE Transactions on Reliability*, **35**, 571–578.
- Meeker, W.Q. (1987) Limited Failure Population Life Tests: Application to Integrated Circuit Reliability. *Technometrics*, 29, 151–165.
- 28. Ostrouchov, G., and Meeker, W.Q. (1988), Accuracy of Approximate Confidence Bounds from Interval Censored Weibull and Lognormal Data. *Journal of Statistical Computation and Simulation*, **29**, 43–76.
- Vander Weil S., and Meeker, W.Q. (1990), Accuracy of Approximate Confidence Bounds Using Censored Weibull Regression Data from Accelerated Life Tests. *IEEE Transactions on Reliability*, 39, 346–351.
- Weston, S.A., and Meeker, W.Q. (1991), Coverage Probabilities of Nonparametric Simultaneous Confidence Bands for a Survival Function. *Journal of Statistical Computation and Simulation*, 32, 83–97.
- 31. Meeker, W.Q., Escobar, L.A., and Hill, D.A. (1992), Sample Sizes for Estimating the Weibull Distribution Hazard Function from Censored Samples. *IEEE Transactions on Reliability*, **41**, 133–138.
- 32. Escobar, L.A., and Meeker, W.Q. (1992), Assessing Local Influence in Regression Analysis with Censored Data. *Biometrics*, **48**, 507–528.
- 33. Kernan, W.J., and Meeker, W.Q. (1992), A Statistical Test to Assess Changes in Spontaneous Behavior of Rats Observed with a Computer Recognition System. *Journal of Biopharmaceutical Statistics*, 2, 115–135.
- 34. Hahn, G.J., and Meeker, W.Q. (1993) The Assumptions of Statistical Inference. *The American Statistician*, **47**, 1–11.
- 35. Lu, C.J., and Meeker, W.Q. (1993), Using Degradation Measures to Estimate a Time-to-Failure Distribution. *Technometrics*, **35**, 161–174.
- 36. Meeker, W.Q., and Escobar, L.A. (1993), A Review of Recent Research and Current Issues in Accelerated Testing. *International Statistical Review*, **61**, 147–168.

- Arnold, B.C., Beaver, R., Groeneveld, R.A., and Meeker, W.Q. (1993), The Non-truncated Marginal of a Truncated Bivariate Normal Distribution. *Psychometrika*, 58, 471–488.
- 38. Meeker, W.Q., and Escobar, L.A. (1994), An Algorithm to Compute the cdf of the Product of Two Normal Random Variables. *Communications in Statistics*, **23**, 271–280.
- Meeter, C.A., and Meeker, W.Q. (1994), Optimum Accelerated Life Tests with Nonconstant Scale Parameter. Technometrics, 36, 71–83.
- Escobar, L.A., and Meeker, W.Q. (1994), Fisher Information Matrix for the Extreme Value, Normal, and Logistic Distributions and Censored Data. Applied Statistics, 43, 533–540.
- 41. Garrigoux, C.G., and Meeker, W.Q. (1994), A Reliability Model for Planning In-Service Inspections for Components Subject to Degradation Failure. *Pakistan Jour*nal of Statistics, 10, 79–98.
- 42. Garrigoux, C.G., and Meeker, W.Q. (1995), Assessing the Effect of In-Service Inspections on the Reliability of Degrading Components. In: *Recent Advances in Life-Testing and Reliability*, N. Balakrishnan (Editor), CRC Press, Boca Raton.
- 43. Meeker, W.Q., and LuValle, M.J. (1995), An Accelerated Life Test Model Based on Reliability Kinetics. *Technometrics*, **37**, 133–146.
- Meeker, W.Q., and Escobar, L.A. (1995), Teaching About Approximate Confidence Regions Based on Maximum Likelihood Estimation. The American Statistician, 49, 48–53.
- Meeker, W.Q., and Hamada, M. (1995), Statistical Tools for the Rapid Development & Evaluation of High-Reliability Products. *IEEE Transactions on Reliability*, 44, 187–198.
- 46. Moore, D.S., Cobb, G.W., Garfield, J., and Meeker, W.Q. (1995), Statistics Education Fin de Siècle. *The American Statistician*, **49**, 250–260.
- 47. Escobar, L.A., and Meeker, W.Q. (1995), Planning Accelerated Life Tests with Two or More Factors. *Technometrics*, **37**, 411–427.
- 48. Olin, B.D., and Meeker, W.Q., (1996), Applications of Statistics in Nondestructive Evaluation (with discussion). *Technometrics*, **38**, 95–112.
- 49. Cannon, A.R., and Meeker, W.Q. (1996), Statistical Tests for Signals in Categorical Temporal Data. *Biometrical Journal.* **38**, 39–59.
- Lu, C.J., Meeker, W.Q., and Escobar, L.A. (1996), A Comparison of Degradation and Failure-Time Analysis Methods of Estimating a Time-to-Failure Distribution. Statistica Sinica, 6, 531–546.
- 51. Marasinghe, M., Meeker, W.Q., Cook, D., and Shin, T. (1996), Using Graphics and Simulation to Teach Statistical Concepts. *American Statistician*, **50**, 342–351.
- 52. Field, D., and Meeker, W.Q. (1996), Optimizing Product Design Based on Time to Failure Distributions. *Quality and Reliability Engineering International*, **12**, 429–438.
- 53. Pascual, F.G., and Meeker, W.Q. (1997), Regression Analysis of Fatigue Data with Runouts Based on a Model with Nonconstant Standard Deviation and a Fatigue Limit Parameter. *Journal of Testing and Evaluation*, **25**, 292–301.
- Liu, S., Lu, J.C., Kolpin, D.W., and Meeker, W.Q. (1997), Analysis of Environmental Data with Censored Observations. *Environmental Science and Technology*, 31, 3358–3362.

- Escobar, L.A., and Meeker, W.Q. (1998), The Asymptotic Covariance Matrix for Maximum Likelihood Estimators with Models based on Location-Scale Distributions Involving Censoring, Truncation, and Explanatory Variables. Statistica Sinica, 8, 221–237.
- 56. Sarkar, P., and Meeker, W.Q. (1998), A Bayesian On-Line Change Detection Algorithm with Process Monitoring Applications. *Quality Engineering*, **10**, 539–549.
- Meeker, W.Q., Escobar, L.A., and Lu, C.J. (1998), Accelerated Degradation Tests: Modeling and Analysis. *Technometrics*, 40, 89–99.
- 58. Meeker, W.Q., and Escobar, L.A. (1998), Pitfalls of Accelerated Testing. *IEEE Transactions on Reliability*, 47, 114–118.
- Pascual, F.G., and Meeker, W.Q. (1998), Planning Life Tests with a Limited Number of Test Positions. *Journal of Testing and Evaluation*, 26, 434–443.
- Escobar, L.A., and Meeker, W.Q. (1999), Statistical Prediction Based on Censored Life Data. Technometrics, 41, 113–124.
- 61. Hahn, G.J., Doganaksoy, N., and Meeker, W.Q. (1999), Reliability Improvement. *Quality Progress*, **32**, 133–139.
- 62. Pascual, F.G., and Meeker, W.Q. (1999), Estimating Fatigue Curves with the Random Fatigue-Limit Model (with discussion). *Technometrics*, 41, 277–302.
- Chan, V., and Meeker W.Q. (1999), A Failure-Time Model for Infant Mortality and Wearout Failure Modes. *IEEE Transactions on Reliability*, 48, 678–682.
- Doganaksoy, N., Hahn, G.J., and Meeker, W.Q. (2000), Product Life Analysis: A Case Study. Quality Progress, 33, 115–122.
- Jeng, S.L., and Meeker W.Q. (2000), Comparisons of Weibull Distribution Approximate Confidence Intervals Procedures for Type I Censored Data. *Technometrics*, 42, 135–148.
- Escobar, L.A., and Meeker, W.Q. (2001), A Note on the Asymptotic Equivalence of the Fisher Information Matrices for Type I and Type II Censored Data from Location–Scale Families. Communications in Statistics, 30, 2211–2225.
- 67. Jeng, S.L., and Meeker W.Q. (2001), Parametric Simultaneous Confidence Bands for Cumulative Distributions from Censored Data. *Technometrics*, **43**, 450–461.
- Meeker, W.Q., Doganaksoy, N., and Hahn, G.J. (2001), Using Degradation Data for Product Reliability Analysis. Quality Progress, 34, 60–65.
- Meeker, W.Q., and Escobar, L.A. (2002), Software for Reliability Data Analysis and Test Planning. Brazilian Journal of Statistics, 15, 169–200.
- Nordman, D., and Meeker, W.Q. (2002), Weibull Prediction Intervals for a Future Number of Failures. Technometrics, 44, 15–23.
- 71. Doganaksoy, N., Hahn, G.J., and Meeker, W.Q. (2002), Reliability Analysis by Failure Mode. *Quality Progress*, **35**, 47–52.
- 72. Wu, H., and Meeker, W.Q. (2002), Early Detection of Reliability Problems Using Information from Warranty Data Bases. *Technometrics*, 44, 120–133.
- Doganaksoy, N., Hahn, G.J., and Meeker, W.Q. (2003), Speedier Reliability Analysis. Quality Progress, 36, 58–64.
- 74. Escobar, L.A., Meeker, W.Q., Kugler, D.L., and Kramer, L.L. (2003), Accelerated Destructive Degradation Tests: Data, Models, and Analysis. In: *Mathematical and Statistical Methods in Reliability*, B.H. Lindqvist and K.A. Doksum (Editors.) World Scientific Publishing Company.
- 75. Meeker, W.Q., and Escobar, L.A. (2004), Reliability: The Other Dimension of Quality. Quality Technology & Quality Management, 1, 1–25.

- Meeker, W.Q., and Escobar, L.A. (2004), Discussion of "Failure Augmentation Method: An Information Maximization Approach to Categorical Response Optimization". Technometrics, 46, 15–16.
- 77. Chan, V., Lahiri, S.N., and Meeker, W.Q. (2004), Block Bootstrap Estimation of the Distribution of Cumulative Outdoor Degradation. *Technometrics*, **46**, 215–224.
- 78. Meeker, W.Q., Hahn, G.J., and Doganaksoy, N. (2004), Planning Life Tests for Reliability Demonstration. *Quality Progress*, **37**, 80–82.
- 79. Jeng, S.L., Lahiri, S.N., and Meeker W.Q. (2005), Asymptotic Properties of Bootstrap Likelihood Ratio Statistics for Time Censored Data. *Statistica Sinica*, **15**, 35–57.
- McKane, S.W., Escobar, L.A., and Meeker, W.Q. (2005), Sample Size and Number of Failure Requirements for Demonstration Tests with Log-Location-Scale Distributions and Type II Censoring. *Technometrics*, 47, 182–190.
- 81. Meeker, W.Q., Hahn, G.J., and Doganaksoy, N. (2005), Planning Reliability Assessment. *Quality Progress*, **38**, 90–93.
- 82. Zhang, Y., and Meeker, W.Q. (2005), Bayesian Life Test Planning for the Weibull Distribution with Given Shape Parameter. *Metrika*, **61**, 237–249.
- 83. Zhang, Y., and Meeker, W.Q. (2005), Bayesian Optimum Planning for Accelerated Life Tests. *Technometrics*, **48**, 49–60.
- 84. Doganaksoy, N., Hahn, G.J., and Meeker, W.Q. (2006), How to Analyze Reliability Data for Repairable Products. *Quality Progress*, **39**, 93–95.
- 85. Escobar, L.A., and Meeker, W.Q. (2006), A Review of Accelerated Test Models. Statistical Science, 21, 552–577.
- 86. Chan, V., and Meeker, W.Q. (2007), Estimation of Degradation-Based Reliability in Outdoor Environments, *Communications in Statistics*, **37**, 408–424.
- 87. Doganaksoy, N., Hahn, G.J., and Meeker, W.Q. (2007), Reliability Assessment by Use-Rate Acceleration, *Quality Progress*, **39**, 74–76.
- 88. Hong, Y., Meeker, W.Q., and Escobar, L.A. (2008), Avoiding Problems With Normal Approximation Confidence Intervals for Probabilities. *Technometrics*, **50**, 64–68.
- 89. Zuo, J., Meeker, W.Q., and Wu, H. (2008), Analysis of Window-Observation Recurrence Data. *Technometrics*, **50**, 128–143.
- Hong, Y., Meeker, W.Q., and Escobar, L.A. (2008), The Relationship Between Confidence Intervals for Failure Probabilities and Life Time Quantiles. *IEEE Transactions on Reliability*, 57, 260–266.
- 91. Ma, H., and Meeker, W.Q. (2008), Optimum Step-Stress Accelerated Life Test Plans for Log-Location-Scale Distributions. *Naval Research Logistics*, **55**, 551–562.
- 92. Doganaksoy, N., Hahn, G.J., and Meeker, W.Q. (2008), The Pros of Proactive Product Servicing. *Quality Progress*, **40**, 60–62.
- 93. Shi, Y., Escobar, L.A., and Meeker, W.Q. (2009), Planning Accelerated Destructive Degradation Tests. *Technometrics*, **51**, 1–13.
- 94. Hong, Y., Meeker, W.Q., and McCalley, J.D. (2009), Prediction of Remaining Life of Power Transformers Based on Left Truncated and Right Censored Lifetime Data. *Annals of Applied Statistics*, **3**, No. 2, 857–879.
- 95. Meeker, W.Q., Escobar, L.A., and Hong, Y. (2009), Using Accelerated Life Tests Results to Predict Field Reliability. *Technometrics*, **51**, No. 2, 146–161.
- 96. Escobar, L.A., Hong, Y., and Meeker, W.Q. (2009), Simultaneous Confidence Bands and Regions for Log-Location-Scale Distributions with Censored Data. *Journal of Statistical Planning and Inference*, **139**, No. 9, 3231–3245.

97. JSPI (2009), Special Issue on Degradation, Damage, Fatigue and Accelerated Life Models in Reliability Testing. *Journal of Statistical Planning and Inference*, **139**, No. 5, 1575–1820. Edited by Luis A. Escobar, Fabrice Guerin, William Q. Meeker and Mikhail Nikulin.

List of Contributors

Mohamed Abdel-Hameed

Department of Statistics College of Business and Economics United Arab Emirates University United Arab Emirates mohameda@uaeu.ac.ae

G. Babykina

Cemagref 50 Avenue de Verdun 33620 Cestas Cedex, France genia.babykina@cemagref.fr

V. Bagdonavičius

Vilnius University Vilnius, Lithuania Vilijandas.Bagdonavicius@maf.vu.lt

N. Balakrishnan

Department of Mathematics and Statistics McMaster University, Canada bala@univmail.cis.mcmaster.ca

M. Barreau

Institut des Sciences et Techniques de l'Ingénieur d'Angers LASQUO EA3858 F-49000 Angers France mihaela.barreau@univ-angers.fr

D. Bigaud

Institut des Sciences et Techniques de l'Ingénieur d'Angers France

Ji Hwan Cha

Ewha Womans University Seoul, Korea jhcha@ewha.ac.kr

A. Charki

Institut des Sciences et Techniques de l'Ingenieur d'Angers LASQUO EA3858 Angers F-49000 France abderafi.charki@univ-angers.fr

S. Cloupet

Institut des Sciences et Techniques de l'Ingenieur d'Angers LASQUO EA3858 Angers F-49000 France sylvain.cloupet@univ-angers.fr

Enrico A. Colosimo

Department of Statistics Federal University of Minas Gerais, Brazil enricoc@est.ufmg.br

Vincent Couallier

IMB University of Bordeaux 146 rue Léo Saignat 33076 Bordeaux, France couallier@sm.u-bordeaux2.fr

Thiago R. dos Santos

Department of Statistics Federal University of Minas Gerais Brazil

Maxim Finkelstein

University of the Free State Bloemfontein Republic of South Africa and Max Planck Institute for Demographic Research Rostock, Germany FinkelM.SCIQufs.ac.za

Marta A. Freitas

Department of Industrial Engineering Federal University of Minas Gerais, Brazil marta@dep.ufmg.br

Christopher Gast

Axio Research Acquisition Co. LLC 2601 4th Avenue Suite 200 Seattle, WA 98121 USA cmgast@gmail.com

Léo Gerville-Réache

Université de Bordeaux UMR 5251 Bordeaux F-33000, France leo.gerville@u-bordeaux2.fr

Fabrice Guérin

Institut des Sciences et Techniques de l'Ingenieur d'Angers LASQUO EA3858 Angers F-49000 France fabrice.guerin@istia.univ-angers.fr

Allan Gut

Dept. of Mathematics Uppsala University Box 480, SE-751 06 Uppsala, Sweden allan.gut@math.uu.se

Firoozeh Haghighi

University of Tehran
Department of Mathematics,
Statistics, and Computer Sciences
Tehran, Iran
haghighi@khayam.ut.ac.ir

Takashi Hara

Department of Systems Engineering University of Electro-Communications 1-5-1 Chofugaoka, Chofu Tokyo 182-8585 Japan

B.P. Harlamov

Institute of Problems of Mechanical Engineering Russian Academy of Science St. Petersburg, Russia b.p.harlamov@gmail.com

Catherine Huber

Université Paris Descartes 45 rue des Saints-Pères 75 270 Paris Cedex 06 and U780 INSERM 94 800 Villejuif, France catherine.huber@parisdescartes.fr

Jürg Hüsler

Dept. of Statistics University of Bern Sidlerstrasse 5 CH-3012 Bern, Switzerland huesler@stat.unibe.ch

Waltraud Kahle

Otto-von-Guericke-University Magdeburg, Germany waltraud.kahle@ovgu.de

N. Kannan

Department of Management Science and Statistics The University of Texas at San Antonio San Antonio, Texas, USA nandini.kannan@utsa.edu

V.S. Koroliuk

Institute of Mathematics Ukrainian National Academy of Science Kiev, Ukraine korol@imath.kiev.ua

D. Kundu

Department of Mathematics and Statistics Indian Institute of Technology Kanpur Pin 208016, India kundu@iitk.ac.in

Axel Lehmann

Hochschule für Technik Wirtschaft und Kultur Leipzig University of Applied Sciences Department of Computer Science Mathematics and Natural Sciences 04251 Leipzig, Germany lehmann@imn.htwk-leipzig.de

N. Limnios

Laboratoire de Mathématiques Appliquées Université de Technologie de Compiègne 60205 Compiègne Cedex France nikolaos.limnios@utc.fr

M. LuValle

OFS Laboratories Somerset, NJ USA mjl@ofsoptics.com

I. Masiulaitytė

Vilnius University Vilnius, Lithuania

Md. Mesbahul Alam

Department of Systems Engineering University of Electro-Communications 1-5-1 Chofugaoka Chofu Tokyo 182-8585, Japan

William Q. Meeker

Department of Statistics and Center for Nondestructive Evaluation Iowa State University Ames, Iowa 50010 USA wqmeeker@iastate.edu

Narges Nazeri Rad

University of Tehran Department of Mathematics, Statistics, and Computer Sciences Tehran, Iran

Wayne B. Nelson

Consultant Schenectady, NY USA WNconsult@aol.com

M.S. Nikulin

IMB

Victor Segalen University Bordeaux, France nikou@sm.u-bordeaux2.fr

Nazanin Nooraee

University of Tehran
Department of Mathematics
Statistics and Computer Sciences
Tehran, Iran

Francis G. Pascual

Department of Statistics Washington State University Pullman, WA 99164 USA jave@wsu.edu

Magda C. Pires

Department of Statistics Federal University of Minas Gerais Brazil

S.S. Rasova

Institute of Problems of Mechanical Engineering Russian Academy of Science St. Petersburg Russia

I.V. Samoilenko

Institute of Mathematics Ukrainian National Academy of Science Kiev, Ukraine

Nozer D. Singpurwalla

The George Washington University Washington, D.C. 20052 USA nozer@gwu.edu

V. Solev

Steklov Institute of Mathematics at St. Petersburg nab. Fontanki 27 St.Petersburg 191023 Russia solev@pdmi.ras.ru

Kazuyuki Suzuki

Department of Systems Engineering University of Electro-Communications 1-5-1 Chofugaoka Chofu Tokyo 182-8585 Japan suzuki@se.uec.ac.jp

A. Todaskoff

Institut des Sciences et Techniques de l'Ingenieur d'Angers LASQUO EA3858 Angers F-49000 France

Watalu Yamamoto

Department of Systems Engineering University of Electro-Communications 1-5-1 Chofugaoka Chofu Tokyo 182-8585, Japan watalu@se.uec.ac.jp

R. Viertl

Institute of Statistics and Probability Theory Vienna University of Technology 1040 Wien, Austria R. Viertl@tuwien.ac.at

Filia Vonta

Department of Mathematics and Statistics University of Cyprus P.O. Box 20537 CY-1678 Nicosia Cyprus and Department of Mathematics National Technical University of Athens Athens, Greece vonta@ucy.ac.cy vonta@math.ntua.gr

Heide Wendt

Otto-von-Guericke-University Magdeburg, Germany

S. Zacks

Binghamton University Department of Mathematical Sciences Binghamton, NY 13902-6000 USA shelly@math.binghamton.edu

List of Tables

3.1	Dendrite age and size data	29
3.2	ML estimates of parameters and confidence limits for dendrite data	35
4.1	Information available from warranty database	41
4.2	Parameter setting for examining properties of estimators (one failure	
	mode)	45
4.3	Asymptotic variances of estimators (one failure mode)	45
4.4	Changes in the asymptotic variances with change in observational	
	period, $t = 1, 3, 5 \ (m_a = 2.0) \ \dots$	45
4.5	Changes in the Asymptotic variances with change in observational	
	period, $t = 1, 3, 5 \ (m_a = 1.0) \ \dots$	45
4.6	Changes in the asymptotic variances with change in observational	
	period, $t = 1, 3, 5 \ (m_a = 0.7) \ \dots$	46
4.7	Parameter setting for examining properties of estimators (two failure	
	modes)	46
4.8	Asymptotic variances of parameters (two failure modes)	46
6.1	Empirical moments of maximum likelihood (MLE) and moment (ME)	
	estimators $(\theta_0^Y = (2.4, 0.5, 1.2))$	102
6.2	Empirical moments of maximum likelihood (MLE) and moment (ME)	
	estimators $(\theta_0^Y = (2.4, 0.5, 1.2))$	102
9.1	Mean-squared errors of maximum likelihood estimators in 1000	
	simulation runs	145
11.1	Pseudo failure distances	168
11.2	Interval and point estimates obtained by each method	170
11.3	Bayesian estimates of the quantities of interest and 95% HPD regions	
	(prior: Weibull distribution)	175
11.4	Bayesian estimates of the quantities of interest and 95% HPD regions	
	(prior: lognormal distribution)	175
17.1	Ball bearing parameters	261
17.2	Simulation parameters	261
17.3	Simulation results $(N \text{ in hours}) \dots \dots \dots \dots$	261
17.4	MLE estimations of model parameters	262
17.5	Mean and standard deviation of MLE estimations after 20	
	repeatings	262

XXXIV List of Tables

17.6	Mean and standard deviation of MLE estimations after 20 repeatings
	for different censoring times
17.7	Simulation data
17.8	Mean and standard deviation of MLE estimations after 20
	repeatings
19.1	Confidence level for finite samples $(n_1 = n_2 = 100) \dots$
19.2	Confidence level (parametric estimation) for finite samples
	$(n_1 = n_2 = 100) \dots $
19.3	Significance level
19.4	Power of the test
19.5	Significance level
19.6	Power of the test
19.7	Significance level
19.8	Power of the test
20.1	Ten component demonstration tests with confidence 70%. Equal test
	times $TT = 10,000$ hours provide different objective values for the
	T10% targets
20.2	Ten component demonstration tests with confidence 70%. Equal
	reliability targets require different test times
20.3	Component demonstration times and minimum true $t_{10\%}$ for
	guaranteeing a 50% global probability of success for $0/1$ and $3/1$
	demonstration plans
22.1	Raw pipes data format
22.2	Raw failure data format
22.3	Distribution of the number of failures
22.4	Estimation results
23.1	Estimates and confidence intervals for the control group
23.2	Estimates and confidence intervals for the test group
23.3	$\tau_1 = 100, \tau_2 = 150, \theta_1 = 1/100, \theta_2 = 1/50 \dots$
23.4	Known Ratio
23.5	$\tau_1 = 100, \tau_2 = 150, \theta_1 = 1/100, \theta_2 = 1/25 \dots$
23.6	Known ratio
23.7	$\tau_1 = 100, \tau_2 = 125, \theta_1 = 1/100, \theta_2 = 1/50 \dots$
23.8	Known ratio
23.9	$\tau_1 = 100, \tau_2 = 125, \theta_1 = 1/100, \theta_2 = 1/25 \dots$
23.10	Known ratio
25.1	Discovery rates for reconstruction procedures 1,2, and 3
26.1	Maximum likelihood results for the cancer data set
26.2	Maximum likelihood results for the shock absorber data set
26.3	Maximum likelihood results for a simulated data set assuming that
	risk 1 and risk 2 are independent and distributed, respectively,
	lognormal with $\mu_1=6$ and $\sigma_1=1$ and Weibull with $\mu_2=5$ and
	$\sigma_2 = 0.7$

List of Figures

3.1	Display of dendrite size data	29
3.2	Blister size $Y_i(t)$ over time t	30
3.3	Dendrite size $Y_i(t)$ over time t	31
3.4	Basic model with areas below 0 for the population fraction not	
	initiated	32
3.5	Basic model with initiation time and failure time distributions	33
4.1	Effect of number of sold products N_t and observational period t on	
	$\sqrt{AVar\left(\frac{\hat{m_a}}{m_a}\right)}$	47
4.2	Effect of number of sold products N_t and observational period t on	
	$\sqrt{AVar\left(\frac{\hat{\eta_a}}{\eta_a}\right)}$	47
5.1	Realization of a sequence of shocks with strengthening and	
	weakening load limits, depending on the values X_i . Here	
	$\nu = 38, W = 18, N_{+}(\nu) = 5, N_{-}(\nu) = 3 \dots$	70
6.1	A realization of $\Phi(t)$ and $Z(t)$	79
6.2	Mean cumulative degradation process for different markings of	
	$(T_n) \dots \dots$	85
6.3	Density of the first passage time Z^h for different η	89
6.4	Distribution function of Z^h for different $X_0 \ldots \ldots$	91
6.5	Confidence estimates for $\theta^X = (p, \delta)$ and different η	98
6.6	Confidence estimates for $\theta^Y = (\mu, \beta)$ and $\theta^T = (\alpha, \gamma)$	99
9.1	Sample for observations of process increments for the case $n=2$,	
	$m_1=3, m_2=2\ldots\ldots\ldots$	130
9.2	Confidence estimates for (μ, σ^2)	142
9.3	Confidence estimates for (μ, σ^2)	143
9.4	Confidence estimates for (μ, h)	143
9.5	Confidence estimates for (σ^2, h)	144
10.1	Simulated observed paths for 20 units. Above left ($\sigma = 0.01$), above	
	right ($\sigma = 0.0055$), and Bottom ($\sigma = 0.0025$) [model (10.2)]	152
10.2	True survival function (solid line) versus the nonparametric estimator	
	of survival function for $n = 20, 50, 100 \text{ [model (10.2)]} \dots$	152
10.3	Simulated sample paths without measurement error [model (10.8)]	153

10.4	Parametric estimators of $S(t)$ and its 90% confidence intervals [model
	$(10.8)] \dots \dots$
10.5	The comparison between parametric (dotted line) and nonparametric
	(solid line) estimators of $S(t)$ for different sample sizes [model
	$(10.8)]\dots$
11.1	Plot of the wheel degradation data
11.2	Probability plots for the pseudo failure distances
11.3	Comparison of the parametric and nonparametric (Kaplan–Meier)
	estimates of $R_T(t)$ at each evaluation point
11.4	Point estimates (MTTF, $t_{0.10}, t_{0.50}$) and confidence intervals obtained
	by each method of degradation data analysis ("classical" inference).
	Weibull distribution
11.5	Point estimates (MTTF, $t_{0.10}, t_{0.50}$) and confidence intervals obtained
	by each method of degradation data analysis ("classical" inference).
	Lognormal distribution
11.6	Point estimates of $R(300,000)$ and confidence intervals obtained by
	each method of degradation data analysis ("classical" inference).
	Weibull and lognormal distributions
11.7	Histograms of the posterior distributions for R(300,000), $t_{0.10}$, and
	the mean covered distance, respectively. Weibull model
11.8	Histograms of the posterior distributions for R(300,000), $t_{0.10}$ and,
	the mean covered distance, respectively. Lognormal model
12.1	A trivial solution
12.2	A trivial solution of the second kind
12.3	Trajectories of choice with moving on SO^e and on NW
12.4	Derivative of $G_r(a)$ with respect to r as $r=0$ for different drift
13.1	The reliability function $R_1(t; 15, 10, 15)$
13.2	The hazard function $\Lambda_1(t; 15, 10, 15)$ with $\mu = 2$ and $\lambda = 1$
13.3	Reliability function $R_2(t; \tau_1, \tau_2, \boldsymbol{\beta})$ with $K = 2 \dots$
13.4	The reliability function $R_1^*(t; k, \beta_0, \beta_1)$
13.5	The reliability function $R_c(t; \gamma_0, \beta_0, \beta_1)$
13.6	The reliability function $R_L(t;\beta)$
14.1	Wiener process degradation model
14.2	Gamma process degradation model
14.3	Failure rates of Inverse Gaussian distribution $(x^* = h) \dots$
14.4	Failure rates of the distribution (14.7)
14.5	Wiener process DTS model with exponential timescale
14.6	Gamma process DTS model with exponential timescale
15.1	Degradation of a quality parameter $q(t)$
15.2	Solutions of Equation (15.4)
15.3	Fuzzy-valued function
15.4	Fuzzy distribution function
17.1	Definition of time transformation function
17.2	Definition of the studied test plan
17.3	Record of failure times
17.4	Reliability functions by the different ALT models $(N \text{ in hours})$
17.5	Reliability function by parametric model $(N \text{ in hours})$
17.6	Reliability function by GPH model (N in hours)

17.7	Reliability function by semi-parametric model $(N \text{ in hours}) \dots$	264
17.8	Reliability functions by parametric model with censoring at 1,000	
	hours (a) and 300 hours (b)	265
17.9	Reliability functions by GPH model with censoring at 1,000 hours (a)	
	and 300 hours (b)	265
17.10	Reliability functions by semi-parametric model with censoring at	
	1,000 hours (a) and 300 hours (b)	265
17.11	Example of error propagation	266
17.12	Principle of test plan with previous accelerated damage	267
17.13	Definition of test plan with previous accelerated damage	268
17.14	Definition of pdf under different stresses	268
17.15	Estimation of the reliability function by parametric and nonparametric models	271
19.1	Graphs of the trajectories of the nonparametric estimators \hat{F}_1, \hat{K}_i	
10.1	(Weibull distribution)	295
19.2	Graphs of the trajectories of the nonparametric estimators \hat{F}_1, \hat{K}_i	200
	(loglogistic distribution)	296
20.1	Probability of failure of a "zero-failure" demonstration with 70%	
	confidence and $\beta = 2.08$	317
22.1	Conditional intensities of two sets of simulated times (plain lines),	
	ROCOF function (thick dashed line), initial intensity (thin dashed	
	line) for $\alpha = 1.5$ and $\delta = 1$. $\lambda(t) = (1 + \alpha i)e^{-2.1}\delta t^{\delta - 1}$	343
22.2	Conditional intensities of two sets of simulated times (plain lines),	
	ROCOF function (thick dashed line), initial intensity (thin dashed	
	line) for $\alpha = 1.5$ and $\delta = 1.5$. $\lambda(t) = (1 + \alpha i)e^{-2.1}\delta t^{\delta-1}$	343
22.3	Data collection schema	346
22.4	Observation and prediction schema	347
22.5	Bar chart of installation dates	348
22.6	Bar chart of replacement dates	348
22.7	Mean annual failure rate per pipe during 1976–1985: black, 1986–1995: darkgrey, 1996–2006: lightgrey	349
22.8	Mean annual failure rate per km of length during 1976–1985: black,	010
22.0	1986–1995: darkgrey, 1996–2006: lightgrey	349
22.9	Number of monthly failures over the period 1976–2006, the failures of	040
22.5	the year 1996 in black	350
22.10	Cumulat number of observed failures (in grey), predicted failures	550
22.10	using the complete model (plain black line) and the reduced model	
	(dotted line)	352
22.11	Prediction error in 10-day periods (real failures – predicted failures)	302
22.11	calculated using the complete model (plain line) and reduced model	
	(dotted line)	353
23.1	Cumulative hazard functions of cumulative exposure and cumulative	000
20.1	risk models	359
23.2	Empirical and predicted CH functions: test group	362
23.3	Sampling distribution of the MLE of a	365
23.4	Sampling distribution of the MLE of b	365
23.5	Sampling distribution of the MLE of θ_1	366
23.6	Sampling distribution of the MLE of θ_2	366

XXXVIII List of Figures

25.1	Revealing projection for Lorenz attractor	386
25.2	Null and alternative overlay in revealing projection	387
25.3	Large neighborhood of attractor in parameters for NULL plus	201
25.4	alternative overlay	391
25.4	and computational null distributions, points below line are rejections	
	of null hypothesis	393
26.1	Plot of the KM estimate of the cumulative distribution function F with	999
20.1	pointwise confidence intervals for the cancer data set	405
26.2	Lognormal probability plot of survival times for deaths due to cancer	100
	with estimates of the cdf assuming that cancer is the only risk, Other	
	is the only risk, and cancer and Other are independent lognormal and	
	Weibull, respectively	405
26.3	Weibull probability plot of survival times for deaths due to Other	
	with estimates of the cdf assuming that cancer is the only risk, Other	
	is the only risk, and cancer and Other are independent lognormal and	
20.4	Weibull, respectively	406
26.4	Probability plots for the cancer data set with pointwise confidence	
	intervals for failure-time cdf F assuming independent lognormal	
	cancer deaths and Weibull other deaths. Plot (a) is for deaths due to cancer. Plot (b) is for deaths due to other causes	407
26.5	Probability plots for the cancer data set with pointwise confidence	401
20.0	intervals for failure-time $\operatorname{cdf} F$ assuming independent lognormal risks.	
	Plot (a) is for deaths due to cancer. Plot (b) is for deaths due to	
	other causes	408
26.6	Plot of the KM estimate of the cumulative distribution function ${\cal F}$ with	
	pointwise confidence intervals for the shock absorber data set	408
26.7	Probability plots for the shock absorber data set with pointwise	
	confidence intervals for failure-time cdf F assuming independent	
	Weibull M1 failures and lognormal M2 failures. Plot (a) is for failures	400
26.8	due to mode M1. Plot (b) is failures due to mode M2 Probability plots for the shock absorber data set with pointwise	409
20.0	confidence intervals for failure-time $\operatorname{cdf} F$ assuming independent	
	Weibull failure times. Plot (a) is for failures due to mode M1. Plot	
	(b) is failures due to mode M2	410
26.9	Probability plots for the simulated data set (lognormal risk 1, Weibull	
	risk 2) with pointwise confidence intervals for failure-time cdf F	
	assuming independent lognormal risks. Plot (a) is for failures due to	
	risk 1. Plot (b) is failures due to risk 2	411
26.10	Probability plots for the simulated data set (lognormal risk 1, Weibull	
	risk 2) with pointwise confidence intervals for failure-time cdf F	
	assuming independent lognormal risk 1 failures and Weibull risk 2 failures. Plot (a) is for failures due to risk 1. Plot (b) is failures due	
	to risk 2	412
	VQ 11Q11 =	