

LONGITUDINAL TURBULENCE INTENSITIES OVER TERRAIN WITH ROUGHNESS CHANGES

1. NOTATION AND UNITS

		Units		
		SI	British	
d	height above ground of effective zero-plane to account for general height (and density) of ground obstacles in built-up or wooded areas (see Table 3.1)	m	ft	
g	peak factor			
$I_{u,zx}$	longitudinal turbulence intensity at height z above site and distance x downwind of change in terrain roughness, assuming site terrain is flat; $\sigma_{u,zx}/V_{zx}$			
K	wind speed profile factor at site; V_{zx}/V_{10_r} or \hat{V}_{zx}/V_{10_r}			
K_L	factor accounting for topographic effect on wind speed; $V_{z,hill}/V_z$			
V_{zx}	hourly-mean wind speed; wind speed averaged over 1 hour at height <i>z</i> above site and distance <i>x</i> downwind of change in terrain roughness, assuming site terrain is flat	m/s	mile/h	
\hat{V}_{zx}	expected (or mean) maximum gust speed averaged over τ seconds, occurring in period of 1 hour, at height z above site and distance x downwind of change in terrain roughness, assuming site terrain is flat	m/s	mile/h	
V_{10_r}	reference wind speed; hourly-mean value at $z = 10$ m over flat open country terrain ($z_0 \approx 0.03$ m) extending uniformly upwind for at least 50 km (≈ 30 miles)	m/s	mile/h	
x, x_1, x_2	distance (fetch) over which uniform terrain roughness extends upwind of site and upwind of first and second upwind changes in terrain roughness	km	mile	
z	height measured from effective zero-plane (height above ground = $z + d$)	m	ft	
z_0	surface roughness parameter (see Table 3.1)	m	ft	

 $\sigma_{u, zx}$ standard deviation of along-wind fluctuating component of wind m/s ft/s speed

Subscripts

1, 2 relate respectively to conditions upwind of first and second step changes in terrain roughness upwind from site

2. SCOPE AND BASIS OF THE DATA

2.1 Scope

Values of turbulence intensity may be required for the calculation of response to turbulence or to account for its influence on mean loading. This Item provides convenient "look-up" tables of longitudinal turbulence intensities, I_u , for various combinations of terrain roughness at the site and upwind.

The Item is intended to complement ESDU 84011⁵, which provides tables of wind speed factors, and the cases of single roughness changes covered by ESDU 84011 are also covered by the present Item. The present Item also includes Tables for a few commonly occurring cases of two upwind roughness changes. For cases not covered by the Tables, use of the computer program ESDUpac A9232⁷ is recommended. This program is provided on disk (Volume S/W1) and incorporates more definitive methods for the effects of upwind changes in terrain on turbulence properties than the more simplified procedures described in this Item.

The data in the Tables (Sections 6 and 7) apply for nominally flat terrain (ground slope less than 0.05). Where a site is located on a hill, escarpment or cliff, the use of the program A9232⁷ is recommended.

2.2 Basis of the Data

The data have been generated from the method given in ESDU 82026 and 83045 using some slight simplification introduced in ESDU 84011. For further background and details of the methods these sources^{3, 4} should be consulted.

The longitudinal turbulence intensity is defined as the ratio of the standard deviation of the along-wind fluctuating components of wind speed to mean hourly wind speed at the same height and for the same conditions, *i.e.*

$$I_{u,zx} = \sigma_{u,zx}/V_{zx}. \tag{2.1}$$

The gust speed, \hat{V}_{zx} , can be related to the hourly-mean wind speed and the turbulence intensity by

$$\hat{V}_{zx} = (1 + gI_{u,zx})V_{zx}. \tag{2.2}$$

ESDU 84011 relates the gust speed, \hat{V}_{zx} and the hourly-mean wind speed, V_{zx} to a reference wind speed by

$$V_{zx} = KV_{10_r} \text{ and } \hat{V}_{zx} = KV_{10_r},$$
 (2.3)

where a value of K appropriate to the required gust averaging time (3600 seconds for the hourly-mean wind speed) is used. The peak factor, g, is a function of both the averaging time and the height above ground,

but use of an averaging time of 1 second allows a single value of g to be used with sufficient accuracy to obtain turbulence intensities. Equation (2.2) can then be re-arranged to give

$$I_{u,zx} = \left(\frac{K_{1sec}}{K_{3600}} - 1\right) / 3.40. \tag{2.4}$$

Values of $I_{u,zx}$ derived from Equation (2.4) with the values of K given by ESDU 84011 are tabulated in Sections 6 and 7.

The turbulence intensity will depend, to a small extent, on the magnitude of the reference wind speed (or, more precisely, on the gradient wind speed at the edge of the atmospheric boundary layer). The values derived for this Item are compatible with the wind speed data in ESDU 84011 and can be applied for V_{10_r} greater than 10 m/s with little error.

The data from this Item have been compared with data from the original Harris-Deaves method (References 1 and 2) which can be applied for a single change of roughness. Differences up to 0.005 in I_u were found but generally the agreement was much closer.

The foregoing derivation of turbulence intensities applies for sites on flat terrain. For sites near the crest of hills, ridges, cliffs or escarpments, the wind speed is increased from that over corresponding flat terrain. However, it is justifiable to assume that the rapid distortion of the wind flow over such topography ($\phi \ge 0.05$) changes only the mean wind speed, V_{zx} , leaving the fluctuating component of wind speed, σ_u , largely unaffected.

The hourly-mean wind speed may then be related to the corresponding hourly-mean wind speed over flat terrain by

$$(V_{zx})_{hill} = V_{zx}K_L. (2.5)$$

Hence from Equation (2.1), assuming σ_u is unaffected,

$$\left(I_{u}\right)_{hill} = I_{u}/K_{L}. \tag{2.6}$$

Values of the speed-up factor, K_L , can be obtained using ESDU 91043⁶, or more conveniently, the program A9232⁷.

3. EFFECTS OF TERRAIN ROUGHNESS

In all cases estimates of the surface roughness parameter, z_0 , have to be made at the site and upwind of the site in the required direction or directions from which it is assumed the wind or the wind originates. Table 3.1 provides typical values based on terrain description. In most cases there will be several changes of terrain upwind of the site being considered but many cases can be approximated by one or two significant changes between terrains in the general categories of Table 3.1. The furthest upwind terrain considered should extend uniformly for at least 50 km (30 mile) to provide an initial equilibrium condition. Small patches of non-uniform terrain (e.g. woods or villages in otherwise open country) can be ignored provided that the upwind and downwind terrains are the same and the fetch downwind to the next significant change is at least equal to the extent of the patch³.

The height, z, at which turbulence intensity is obtained from the Tables is measured from the zero-plane displacement height, d, above the ground, so that height above ground is given by (z + d). Approximate values of d are given in Table 3.1 based on the assumption that the zero-plane is about one or two metres below the general height of the surrounding buildings or trees. For more detailed information see ESDU 82026^3 .

TABLE 3.1 Typical Values of Terrain Parameters z_0 and d

Terrain Description	$z_0(m)$	d (m)
City centres Forests	0.7	15 to 25
Small towns Suburbs of large towns and cities Wooded country (many trees)	0.3	5 to 10
Outskirts of small towns Villages Countryside with many hedges, some trees and some buildings	0.1	0 to 2
Open level country with few trees and hedges and isolated buildings; typical farmland	0.03	0
Fairly level grass plains with isolated trees Very rough sea in extreme storms (once-in-50-yr extreme)	0.01	0
Flat areas with short grass and no obstructions Runway area of airports Rough sea in annual extreme storms	0.003	0
Snow covered farmland Flat desert or arid areas Inland lakes in extreme storms	0.001	0

Values of the turbulence intensity giving the variation with height over flat terrain are provided in the Tables in Sections 6 and 7. Each Table applies for a particular site roughness with specified changes upwind. Index Tables on pages 6 and 15 guide the user to the appropriate Tables for no change or one change in roughness and for two changes in roughness, respectively. For sites on hills, escarpments or cliffs the topographic factor should be applied as in Section 3.3.

For cases not covered by the Tables and for more than two changes, the computer program A9232⁷ should be used. The effects of topography (on mean wind speed) are included in the program.

4. EXAMPLE

It is required to estimate the turbulence intensities at 15 m and 30 m above the ground at a flat site located in a small town near the coast when the wind is blowing off the sea. The corresponding reference hourly-mean design wind speed (50-year return period) for this case is assessed to be 22 m/s (corresponding to $z_{0_r} = 0.03$ and $z_r = 10$ m). The site location is illustrated in Sketch 4.1.

Sketch 4.1

From Table 3.1, for such a high wind speed, the sea roughness will be such that $z_{01} \approx 0.01$ m. For a small town, $z_0 \approx 0.3$ m and typically d = 7 m.

From the Index table in Section 6 the appropriate Table is Table 6.9 from which, interpolating for x = 0.5 km, the appropriate turbulence intensities are $I_u = 0.22$ at z = 8.0 m (z + d = 15 m) and $I_u = 0.21$ at z = 23 m (z + d = 30 m).

5. REFERENCES

1.	DEAVES, D.M.	Computations of wind flow over changes in surface roughness. J. Wind. Engng. Indust. Aerodyn., Vol. 7, pp. 65-94, 1981.
2.	DEAVES, D.M.	Terrain-dependence of longitudinal r.m.s. velocities in the neutral atmosphere. J. Wind Engng. Indust. Aerodyn., Vol. 8, pp. 259-274, 1981.
3.	ESDU	Strong winds in the atmospheric boundary layer. Part 1: mean-hourly wind speeds. Item No. 82026, ESDU International, London, 1982.
4.	ESDU	Strong winds in the atmospheric boundary layer. Part 2: discrete gust speeds. Item No. 83045, ESDU International, London, 1983.
5.	ESDU	Wind speed profiles over terrain with roughness changes. Item No. 84011, ESDU International, London, 1984.
6.	ESDU	Mean wind speeds over hills and other topography. Item No. 91043, ESDU International, London, 1991.
7.	ESDU	Computer program for wind speeds and turbulence properties: flat or hilly sites in terrain with roughness changes. Item No. 92032 and ESDUpac A9232 (on disk in Volume S/W1), ESDU International, London, 1992.

6. TURBULENCE INTENSITIES FOR NO CHANGE OR ONE CHANGE IN ROUGHNESS

Roughness Changes

Providing there are no significant roughness changes within about 50 km upwind of the site, the turbulence intensity can be taken as the equilibrium value (given by the column headed $x \ge 600\,$ km) in any Table listed in the Index Table below appropriate to the given site roughness, z_0 . For example, for $z_0 = 0.003\,$ m, Table 6.27 or Table 6.28 could be used.

Single Change in Terrain Roughness

The required values of turbulence intensity may be obtained from the Tables appropriate to z_0 and z_{01} which may be located through the Index Table below. Values of I_u at intermediate values of x can be obtained by linear interpolation with respect to $\log x$.

Index to Tables for One Roughness Change

Upwind z ₀₁ (m)	Site z_0 (m)								
	0.7	0.3	0.1	0.03	0.01	0.003	0.001		
0.7 0.3 0.1 0.03 0.01 0.003 0.001	* 6.1 6.2 6.3 6.4 6.5	6.6 * 6.7 6.8 6.9 6.10 6.11	6.12 6.13 * 6.14 6.15 6.16 6.17	6.18 6.19 6.20 * 6.21 6.22 6.23	6.24 6.25 6.26 *	6.27 6.28 *	6.29 6.30 *		

^{*} For the cases marked with an asterisk there are no roughness changes.

Two Changes in Terrain Roughness

See Section 7.

TABLE 6.1 Site Roughness $z_0 = 0.7$ m Upwind Roughness $z_{01} = 0.3$ m

TABLE 6.2 Site Roughness $z_0 = 0.7$ m Upwind Roughness $z_{01} = 0.1$ m

x(km)	0.1	0.3	1	3	10	30	>600
z (m)				-			
2	0.57	0.60	0.62	0.64	0.66	0.68	0.70
4	0.37	0.38	0.40	0.42	0.43	0.45	0.46
6	0.31	0.32	0.34	0.36	0.37	0.38	0.39
8	0.28	0.29	0.31	0.32	0.34	0.35	0.36
10	0.26	0.27	0.29	0.30	0.32	0.33	0.34
15	0.23	0.25	0.26	0.27	0.29	0.30	0.31
20	0.22	0.23	0.24	0.26	0.27	0.28	0.29
30	0.19	0.21	0.22	0.24	0.25	0.26	0.27
40	0.18	0.20	0.21	0.22	0.24	0.24	0.26
50	0.17	0.18	0.20	0.21	0.23	0.23	0.25
60	0.17	0.17	0.20	0.21	0.22	0.23	0.24
70	0.16	0.16	0.19	0.20	0.21	0.22	0.23
80	0.16	0.16	0.18	0.20	0.21	0.21	0.23
90	0.16	0.16	0.17	0.19	0.20	0.21	0.22
100	0.15	0.15	0.16	0.18	0.20	0.21	0.22
120	0.15	0.15	0.15	0.17	0.19	0.20	0.21
	0.13	0.14	0.13	0.16	0.18	0.19	0.20
140			0.14	0.15	0.17	0.19	0.19
160	0.14	0.14				0.18	0.19
180	0.13	0.13	0.13	0.15	0.17		
200	0.13	0.13	0.13	0.14	0.16	0.17	0.18
250	0.12	0.12	0.12	0.13	0.14	0.16	0.17
300	0.11	0.11	0.11	0.12	0.13	0.14	0.16
350	0.10	0.10	0.10	0.11	0.12	0.14	0.15
400	0.10	0.10	0.10	0.10	0.11	0.13	0.14

TABLE 6.3 Site Roughness $z_0 = 0.7$ m Upwind Roughness $z_{01} = 0.3$ m

x(km)	0.1	0.3	1	3	10	30	>600
z (m)							
2	0.53	0.56	0.59	0.62	0.65	0.67	0.70
4	0.33	0.35	0.38	0.40	0.42	0.44	0.46
6	0.28	0.30	0.32	0.34	0.36	0.37	0.39
8	0.25	0.27	0.29	0.31	0.33	0.34	0.36
10	0.23	0.25	0.27	0.29	0.31	0.32	0.34
15	0.20	0.22	0.24	0.26	0.28	0.29	0.31
20	0.19	0.21	0.23	0.24	0.26	0.27	0.29
30	0.16	0.19	0.21	0.22	0.24	0.25	0.27
40	0.15	0.17	0.19	0.21	0.23	0.24	0.26
50	0.15	0.16	0.19	0.20	0.22	0.23	0.25
60	0.14	0.14	0.18	0.19	0.21	0.22	0.24
70	0.14	0.14	0.17	0.19	0.20	0.22	0.23
80	0.13	0.13	0.16	0.18	0.20	0.21	0.23
90	0.13	0.13	0.15	0.18	0.19	0.20	0.22
100	0.13	0.13	0.14	0.17	0.19	0.20	0.22
120	0.12	0.12	0.13	0.16	0.18	0.19	0.21
140	0.12	0.12	0.12	0.15	0.17	0.19	0.20
160	0.11	0.11	0.11	0.14	0.16	0.18	0.19
180	0.11	0.11	0.11	0.13	0.15	0.17	0.19
200	0.11	0.11	0.11	0.12	0.15	0.17	0.18
250	0.10	0.10	0.10	0.11	0.13	0.15	0.17
300	0.09	0.09	0.09	0.10	0.12	0.14	0.16
350	0.09	0.09	0.09	0.09	0.11	0.13	0.15
400	0.08	0.08	0.08	0.08	0.10	0.12	0.14

TABLE 6.4 Site Roughness $z_0 = 0.7$ m Upwind Roughness $z_{01} = 0.01$ m

x(km)	0.1	0.3	1	3	10	30	>600
z (m)							
2	0.50	0.53	0.56	0.60	0.63	0.66	0.70
4	0.31	0.33	0.36	0.39	0.41	0.43	0.46
6	0.25	0.28	0.30	0.33	0.35	0.37	0.39
8	0.23	0.25	0.27	0.29	0.32	0.34	0.36
10	0.21	0.23	0.25	0.28	0.30	0.31	0.34
15	0.19	0.20	0.23	0.25	0.27	0.28	0.31
20	0.17	0.19	0.21	0.23	0.25	0.27	0.29
30	0.14	0.17	0.19	0.21	0.23	0.25	0 27
40	0.13	0.15	0.18	0.20	0.22	0.23	0.26
50	0.13	0.14	0.17	0.19	0.21	0.22	0.25
60	0.12	0.12	0.16	0.18	0.20	0.22	0.24
70	0.12	0.12	0.15	0.18	0.20	0.21	0.23
80	0.12	0.12	0.14	0.17	0.19	0.21	0.23
90	0.11	0.11	0.13	0.16	0.19	0.20	0.22
100	0.11	0.11	0.12	0.16	0.18	0.20	0.22
120	0.11	0.11	0.11	0.14	0.17	0.19	0.21
140	0.10	0.10	0.10	0.13	0.16	0.18	0.20
160	0.10	0.10	0.10	0.12	0.15	0.18	0.19
180	0.09	0.09	0.09	0.11	0.14	0.17	0.19
200	0.09	0.09	0.09	0.11	0.14	0.16	0.18
250	0.08	0.08	0.08	0.09	0.12	0.14	0.17
300	0.08	0.08	0.08	0.08	0.11	0.13	0.16
350	0.07	0.07	0.07	0.07	0.10	0.12	0.15
400	0.07	0.07	0.07	0.07	0.09	0.11	0.14

TABLE 6.5 Site Roughness $z_0 = 0.7$ m Upwind Roughness $z_{01} = 0.003$ m

TABLE 6.6 Site Roughness $z_0 = 0.3$ m Upwind Roughness $z_{01} = 0.7$ m

				_			
x(km)	0.1	0.3	<u> </u>	3	10	30	>600
z (m)		_					
2	0.45	0.45	0.44	0.43	0.43	0.42	0.41
4	0.37	0.36	0.35	0.35	0.34	0.34	0.33
6	0.33	0.33	0.32	0.32	0.31	0.31	0.30
8	0.31	0.31	0.30	0.30	0.29	0.29	0.28
10	0.30	0.30	0.29	0.29	0.28	0.28	0.27
15	0.28	0.28	0.27	0.27	0.26	0.26	0.25
20	0.27	0.27	0.26	0.26	0.25	0.25	0.24
30	0.26	0.25	0.25	0.24	0.24	0.23	0.23
40	0.25	0.24	0.24	0.23	0.23	0.22	0.22
50	0.25	0.24	0.23	0.22	0.22	0.22	0.21
60	0.24	0.23	0.22	0.22	0.21	0.21	0.20
70	0.23	0.23	0.22	0.21	0.21	0.20	0.20
80	0.23	0.23	0.22	0.21	0.20	0.20	0.19
90	0.22	0.22	0.21	0.21	0.20	0.20	0.19
100	0.22	0.22	0.21	0.20	0.20	0.19	0.18
120	0.21	0.21	0.21	0.20	0.19	0.18	0.18
140	0.20	0.20	0.20	0.19	0.19	0.18	0.17
160	0.19	0.19	0.19	0.19	0.18	0.17	0.17
180	0.19	0.19	0.19	0.18	0.18	0.17	0.16
200	0.18	0.18	0.18	0.18	0.17	0.17	0.16
250	0.17	0.17	0.17	0.17	0.16	0.16	0.14
300	0.16	0.16	0.16	0.16	0.16	0.15	0.14
350	0.15	0.15	0.15	0.15	0.15	0.14	0.13
400	0.14	0.14	0.14	0.14	0.14	0.14	0.12

TABLE 6.7 Site Roughness $z_0 = 0.3$ m Upwind Roughness $z_{01} = 0.1$ m

x(km)	0.1	0.3	1	3	10	30	>600
z (m)							
2	0.36	0.37	0.38	0.39	0.40	0.41	0.41
4	0.28	0.29	0.30	0.31	0.32	0.32	0.33
6	0.25	0.26	0.27	0.28	0.29	0.29	0.30
8	0.24	0.25	0.26	0.26	0.27	0.27	0.28
10	0.23	0.24	0.24	0.25	0.26	0.26	0.27
15	0.21	0.22	0.23	0.23	0.24	0.24	0.25
20	0.20	0.21	0.22	0.22	0.23	0.23	0.24
30	0.19	0.19	0.20	0.21	0.21	0.22	0.23
40	0.18	0.18	0.19	0.20	0.21	0.21	0.22
50	0.17	0.17	0.19	0.19	0.20	0.20	0.21
60	0.17	0.17	0.18	0.19	0.19	0.20	0.20
70	0.16	0.16	0.17	0.18	0.19	0.19	0.20
80	0.16	0.16	0.17	0.18	0.18	0.19	0.19
90	0.16	0.16	0.16	0.17	0.18	0.18	0.19
100	0.15	0.15	0.16	0.17	0.17	0.18	0.18
120	0.15	0.15	0.15	0.16	0.17	0.17	0.18
140	0.14	0.14	0.14	0.15	0.16	0.17	0.17
160	0.14	0.14	0.14	0.14	0.15	0.16	0.17
180	0.13	0.13	0.13	0.14	0.15	0.15	0.16
200	0.13	0.13	0.13	0.13	0.14	0.15	0.16
250	0.12	0.12	0.12	0.12	0.13	0.14	0.14
300	0.11	0.11	0.11	0.11	0.12	0.13	0.14
350	0.10	0.10	0.10	0.10	0.11	0.12	0.13
400	0.10	0.10	0.10	0.10	0.11	0.11	0.12
-00							

TABLE 6.8 Site Roughness $z_0 = 0.3$ m Upwind Roughness $z_{01} = 0.03$ m

x(km)	0.1	0.3	1	3	10	30	>600
z (m)							
2	0.32	0.34	0.36	0.37	0.39	0.40	0.41
4	0.25	0.27	0.28	0.29	0.31	0.32	0.33
6	0.22	0.24	0.25	0.26	0.28	0.29	0.30
8	0.21	0.22	0.24	0.25	0.26	0.27	0.28
10	0.20	0.21	0.23	0.24	0.25	0.26	0.27
15	0.18	0.19	0.21	0.22	0.23	0.24	0.25
20	0.17	0.18	0.20	0.21	0.22	0.23	0.24
30	0.16	0.17	0.18	0.20	0.21	0.21	0.23
40	0.15	0.16	0.18	0.19	0.20	0.21	0.22
50	0.15	0.15	0.17	0.18	0.19	0.20	0.21
60	0.14	0.14	0.16	0.17	0.18	0.19	0.20
70	0.14	0.14	0.15	0.17	0.18	0.19	0.20
80	0.13	0.13	0.15	0.16	0.17	0.18	0.19
90	0.13	0.13	0.14	0.16	0.17	0.18	0.19
100	0.13	0.13	0.13	0.15	0.17	0.17	0.18
120	0.12	0.12	0.12	0.14	0.16	0.17	0.18
140	0.12	0.12	0.12	0.13	0.15	0.16	0.17
160	0.11	0.11	0.11	0.13	0.14	0.16	0.17
180	0.11	0.11	0.11	0.12	0.14	0.15	0.16
200	0.11	0.11	0.11	0.12	0.13	0.14	0.16
250	0.10	0.10	0.10	0.10	0.12	0.13	0.14
300	0.09	0.09	0.09	0.09	0.11	0.12	0.14
350	0.09	0.09	0.09	0.09	0.10	0.11	0.13
400	0.08	0.08	0.08	0.08	0.09	0.11	0.12

TABLE 6.9 Site Roughness $z_0 = 0.3$ m Upwind Roughness $z_{01} = 0.01$ m

TABLE 6.10 Site Roughness $z_0 = 0.3$ m Upwind Roughness $z_{01} = 0.003$ m

<u>x(km)</u>	0.1	0.3	1	_3	10	30	>600
z (m)							
2	0.28	0.30	0.32	0.35	0.37	0.39	0.41
4	0.21	0.23	0.25	0.27	0.29	0.31	0.33
6	0.18	0.20	0.22	0.24	0.26	0.28	0.30
8	0.17	0.19	0.21	0.23	0.25	0.26	0.28
10	0.16	0.18	0.20	0.22	0.23	0.25	0.27
15	0.15	0.16	0.18	0.20	0.22	0.23	0.25
20	0.13	0.15	0.17	0.19	0.21	0.22	0.24
30	0.12	0.14	0.16	0.18	0.19	0.21	0.23
40	0.12	0.12	0.15	0.17	0.18	0.20	0.22
50	0.11	0.11	0.14	0.16	0.18	0.19	0.21
60	0.11	0.11	0.13	0.16	0.17	0.18	0.20
70	0.10	0.10	0.12	0.15	0.17	0.18	0.20
80	0.10	0.10	0.11	0.14	0.16	0.17	0.19
90	0.10	0.10	0.11	0.14	0.16	0.17	0.19
100	0.10	0.10	0.10	0.13	0.15	0.17	0.18
120	0.09	0.09	0.09	0.12	0.15	0.16	0.18
140	0.09	0.09	0.09	0.11	0.14	0.15	0.17
160	0.08	0.08	0.08	0.10	0.13	0.15	0.17
180	0.08	0.08	0.08	0.09	0.12	0.14	0.16
200	0.08	0.08	0.08	0.09	0.11	0.14	0.16
250	0.07	0.07	0.07	0.08	0.10	0.12	0.14
300	0.06	0.06	0.06	0.07	0.09	0.11	0.14
350	0.06	0.06	0.06	0.06	0.08	0.10	0.13
400	0.06	0.06	0.06	0.06	0.08	0.10	0.12
400	0.00	0.00	0.00	0.00	0.00	0.10	0.12

TABLE 6.11 Site Roughness $z_0 = 0.3$ m Upwind Roughness $z_{01} = 0.001$ m

x(km)	0.1	0.3	1	3	10	30	>600
z (m)		_					
2	0.26	0.28	0.31	0.34	0.36	0.38	0.41
4	0.19	0.22	0.24	0.26	0.28	0.30	0.33
6	0.17	0.19	0.21	0.23	0.26	0.27	0.30
8	0.16	0.18	0.20	0.22	0.24	0.26	0.28
10	0.15	0.17	0.19	0.21	0.23	0.25	0.27
15	0.13	0.15	0.17	0.19	0.21	0.23	0.25
20	0.11	0.14	0.16	0.18	0.20	0.22	0.24
30	0.11	0.12	0.15	0.17	0.19	0.20	0.23
40	0.10	0.11	0.14	0.16	0.18	0.19	0.22
50	0.10	0.10	0.13	0.15	0.17	0.19	0.21
60	0.10	0.10	0.12	0.15	0.17	0.18	0.20
70	0.09	0.09	0.11	0.14	0.16	0.18	0.20
80	0.09	0.09	0.10	0.13	0.16	0.17	0.19
90	0.09	0.09	0.09	0.13	0.15	0.17	0.19
100	0.08	0.08	0.09	0.12	0.15	0.16	0.18
120	0.08	0.08	0.08	0.11	0.14	0.16	0.18
140	0.07	0.07	0.07	0.10	0.13	0.15	0.17
160	0.07	0.07	0.07	0.09	0.12	0.15	0.17
180	0.07	0.07	0.07	0.08	0.11	0.14	0.16
200	0.07	0.07	0.07	0.08	0.11	0.13	0.16
250	0.06	0.06	0.06	0.07	0.09	0.12	0.14
300	0.06	0.06	0.06	0.06	0.08	0.11	0.14
350	0.05	0.05	0.05	0.05	0.08	0.10	0.13
400	0.05	0.05	0.05	0.05	0.07	0.09	0.12

TABLE 6.12 Site Roughness $z_0 = 0.1$ m Upwind Roughness $z_{01} = 0.7$ m

x(km)	0.1	0.3	1	3	10	30	>600
z (m)							
2	0.36	0.34	0.33	0.32	0.31	0.30	0.28
4	0.32	0.30	0.29	0.28	0.27	0.26	0.25
6	0.30	0.29	0.27	0.26	0.25	0.25	0.23
8	0.29	0.28	0.26	0.25	0.24	0.24	0.22
10	0.28	0.27	0.26	0.25	0.24	0.23	0.21
15	0.27	0.26	0.25	0.24	0.23	0.22	0.20
20	0.26	0.25	0.24	0.23	0.22	0.21	0.20
30	0.26	0.24	0.23	0.22	0.21	0.20	0.19
40	0.26	0.24	0.22	0.21	0.20	0.19	0.18
50	0.25	0.24	0.21	0.20	0.20	0.19	0.17
60	0.24	0.24	0.21	0.20	0.19	0.18	0.17
70	0.23	0.23	0.21	0.20	0.19	0.18	0.16
80	0.23	0.23	0.21	0.19	0.18	0.17	0.16
90	0.22	0.22	0.21	0.19	0.18	0.17	0.16
100	0.22	0.22	0.21	0.19	0.18	0.17	0.15
120	0.21	0.21	0.21	0.19	0.17	0.16	0.15
140	0.20	0.20	0.20	0.19	0.17	0.16	0.14
160	0.19	0.19	0.19	0.18	0.17	0.15	0.14
180	0.19	0.19	0.19	0.18	0.16	0.15	0.13
200	0.18	0.18	0.18	0.18	0.16	0.15	0.13
250	0.17	0.17	0.17	0.17	0.16	0.14	0.12
300	0.16	0.16	0.16	0.16	0.15	0.14	0.11
350	0.15	0.15	0.15	0.15	0.14	0.13	0.11
400	0.14	0.14	0.14	0.14	0.14	0.13	0.10

TABLE 6.13 Site Roughness $z_0 = 0.1$ m Upwind Roughness $z_{01} = 0.3$ m

TABLE 6.14 Site Roughness $z_0 = 0.1$ m Upwind Roughness $z_{01} = 0.03$ m

<u>x (km)</u>	0.1	0.3	_1	3	10	30	>600
z(m)							
2	0.24	0.25		0.27	0.27	0.28	0.28
4	0.21	0.22	0.22	0.23	0.24	0.24	0.25
6	0.20	0.20	0.21	0.22	0.22	0.23	0.23
8	0.19	0.19	0.20	0.21	0.21	0.22	0.22
10	0.18	0.19	0.19	0.20	0.21	0.21	0.21
15	0.17	0.18	0.18	0.19	0.20	0.20	0.20
20	0.17	0.17	0.18	0.18	0.19	0.19	0.20
30	0.16	0.16	0.17	0.17	0.18	0.18	0.19
40	0.15	0.15	0.16	0.17	0.17	0.17	0.18
50	0.15	0.15	0.16	0.16	0.17	0.17	0.17
60	0.14	0.14	0.15	0.16	0.16	0.16	0.17
70	0.14	0.14	0.14	0.15	0.16	0.16	0.16
80	0.13	0.13	0.14	0.15	0.15	0.16	0.16
90	0.13	0.13	0.13	0.14	0.15	0.15	0.16
100	0.13	0.13	0.13	0.14	0.15	0.15	0.15
120	0.12	0.12	0.12	0.13	0.14	0.14	0.15
140	0.12	0.12	0.12	0.12	0.13	0.14	0.14
160	0.11	0.11	0.11	0.12	0.13	0.13	0.14
180	0.11	0.11	0.11	0.11	0.12	0.13	0.13
200	0.11	0.11	0.11	0.11	0.12	0.12	0.13
250	0.10	0.10	0.10	0.10	0.11	0.11	0.12
300	0.09	0.09	0.09	0.09	0.10	0.10	0.11
350	0.09	0.09	0.09	0.09	0.09	0.10	0.10
400	0.08	0.08	0.08	0.08	0.09	0.09	0.10

TABLE 6.15 Site Roughness $z_0 = 0.1$ m Upwind Roughness $z_{01} = 0.01$ m

x(kmi)	0.1	0.3	1	3	10	30	>600
z(m)							
2	0.22	0.23	0.24	0.25	0.26	0.27	0.28
4	0.19	0.20	0.21	0.22	0.23	0.24	0.25
6	0.17	0.19	0.20	0.21	0.22	0.22	0.23
8	0.17	0.18	0.19	0.20	0.21	0.21	0.22
10	0.16	0.17	0.18	0.19	0.20	0.21	0.21
15	0.15	0.16	0.17	0.18	0.19	0.20	0.20
20	0.14	0.15	0.16	0.17	0.18	0.19	0.20
30	0.14	0.14	0.16	0.16	0.17	0.18	0.19
40	0.13	0.13	0.15	0.16	0.17	0.17	0.18
50	0.13	0.13	0.14	0.15	0.16	0.17	0.17
60	0.12	0.12	0.14	0.15	0.15	0.16	0.17
70	0.12	0.12	0.13	0.14	0.15	0.16	0.16
80	0.12	0.12	0.12	0.14	0.15	0.15	0.16
90	0.11	0.11	0.12	0.13	0.14	0.15	0.16
100	0.11	0.11	0.11	0.13	0.14	0.15	0.15
120	0.11	0.11	0.11	0.12	0.13	0.14	0.15
140	0.10	0.10	0.10	0.11	0.13	0.13	0.14
160	0.10	0.10	0.10	0.11	0.12	0.13	0.14
180	0.09	0.09	0.09	0.10	0.11	0.12	0.13
200	0.09	0.09	0.09	0.10	0.11	0.12	0.13
250	0.08	0.08	0.08	0.09	0.10	0.11	0.12
300	0.08	0.08	0.08	0.08	0.09	0.10	0.11
350	0.07	0.07	0.07	0.07	0.08	0.09	0.10
400	0.07	0.07	0.07	0.07	0.08	0.09	0.10

TABLE 6.16 Site Roughness $z_0 = 0.1$ m Upwind Roughness $z_{01} = 0.003$ m

x(km)	0.1	0.3	1	3	10	30	>600
z (m)							
2	0.20	0.21	0.23	0.24	0.26	0.27	0.28
4	0.17	0.18	0.20	0.21	0.22	0.23	0.25
6	0.16	0.17	0.18	0.20	0.21	0.22	0.23
8	0.15	0.16	0.18	0.19	0.20	0.21	0.22
10	0.14	0.16	0.17	0.18	0.19	0.20	0.21
15	0.13	0.15	0.16	0.17	0.18	0.19	0.20
20	0.13	0.14	0.15	0.16	0.18	0.19	0.20
30	0.12	0.13	0.14	0.16	0.17	0.18	0.19
40	0.12	0.12	0.14	0.15	0.16	0.17	0.18
50	0.11	0.11	0.13	0.14	0.15	0.16	0.17
60	0.11	0.11	0.12	0.14	0.15	0.16	0.17
70	0.10	0.10	0.12	0.13	0.15	0.15	0.16
80	0.10	0.10	0.11	0.13	0.14	0.15	0.16
90	0.10	0.10	0.10	0.12	0.14	0.15	0.16
100	0.10	0.10	0.10	0.12	0.13	0.14	0.15
120	0.09	0.09	0.09	0.11	0.13	0.14	0.15
140 *	0.09	0.09	0.09	0.10	0.12	0.13	0.14
160	0.08	0.08	0.08	0.09	0.11	0.13	0.14
180	0.08	0.08	0.08	0.09	0.11	0.12	0.13
200	0.08	0.08	0.08	0.08	0.10	0.12	0.13
250	0.07	0.07	0.07	0.07	0.09	0.10	0.12
300	0.06	0.06	0.06	0.07	0.08	0.10	0.11
350	0.06	0.06	0.06	0.06	0.08	0.09	0.10
400	0.06	0.06	0.06	0.06	0.07	0.08	0.10

TABLE 6.17 Site Roughness $z_0 = 0.1$ m Upwind Roughness $z_{01} = 0.001$ m

					-		
x(km)	0.1	0.3	1	3	10	30	>600
z(m)							
2	0.18	0.20	0.22	0.24	0.25	0.26	0.28
4	0.16	0.17	0.19	0.20	0.22	0.23	0.25
6	0.14	0.16	0.17	0.19	0.20	0.22	0.23
8	0.13	0.15	0.17	0.18	0.19	0.21	0.22
10	0.13	0.14	0.16	0.17	0.19	0.20	0.21
15	0.12	0.13	0.15	0.16	0.18	0.19	0.20
20	0.11	0.13	0.14	0.16	0.17	0.18	0.20
30	0.11	0.12	0.14	0.15	0.16	0.17	0.19
40	0.10	0.10	0.13	0.14	0.16	0.17	0.18
50	0.10	0.10	0.12	0.14	0.15	0.16	0.17
60	0.10	0.10	0.11	0.13	0.14	0.16	0.17
70	0.09	0.09	0.10	0.13	0.14	0.15	0.16
80	0.09	0.09	0.10	0.12	0.14	0.15	0.16
90	0.09	0.09	0.09	0.11	0.13	0.14	0.16
100	0.08	0.08	0.09	0.11	0.13	0.14	0.15
120	0.08	0.08	0.08	0.10	0.12	0.13	0.15
140	0.07	0.07	0.07	0.09	0.11	0.13	0.14
160	0.07	0.07	0.07	0.09	0.11	0.12	0.14
180	0.07	0.07	0.07	0.08	0.10	0.12	0.13
200	0.07	0.07	0.07	0.07	0.10	0.11	0.13
250	0.06	0.06	0.06	0.06	0.09	0.10	0.12
300	0.06	0.06	0.06	0.06	0.08	0.09	0.11
350	0.05	0.05	0.05	0.05	0.07	0.09	0.10
400	0.05	0.05	0.05	0.05	0.06	0.08	0.10

TABLE 6.18 Site Roughness $z_0 = 0.03$ m Upwind Roughness $z_{01} = 0.7$ m

		-, -					
x(km)	0.1	0.3	1	3	10	30	>600
z (m)							
2	0.32	0.30	0.28	0.26	0.25	0.24	0.21
4	0.30	0.28	0.26	0.24	0.23	0.22	0.20
6	0.29	0.27	0.25	0.23	0.22	0.21	0.19
8	0.28	0.26	0.24	0.23	0.21	0.20	0.18
10	0.27	0.25	0.24	0.22	0.21	0.20	0.18
15	0.26	0.25	0.23	0.21	0.20	0.19	0.17
20	0.26	0.24	0.22	0.21	0.20	0.18	0.17
30	0.26	0.23	0.21	0.20	0.19	0.18	0.16
40	0.26	0.23	0.21	0.19	0.18	0.17	0.15
50	0.25	0.24	0.20	0.19	0.18	0.17	0.15
60	0.24	0.24	0.21	0.18	0.17	0.16	0.14
70	0.23	0.23	0.21	0.18	0.17	0.16	0.14
80	0.23	0.23	0.21	0.18	0.16	0.15	0.13
90	0.22	0.22	0.21	0.18	0.16	0.15	0.13
100	0.22	0.22	0.21	0.18	0.16	0.15	0.13
120	0.21	0.21	0.21	0.18	0.16	0.14	0.12
140	0.20	0.20	0.20	0.18	0.16	0.14	0.12
160	0.19	0.19	0.19	0.18	0.16	0.14	0.11
180	0.19	0.19	0.19	0.18	0.15	0.13	0.11
200	0.18	0.18	0.18	0.18	0.15	0.13	0.11
250	0.17	0.17	0.17	0.17	0.15	0.13	0.10
300	0.16	0.16	0.16	0.16	0.14	0.12	0.09
350	0.15	0.15	0.15	0.15	0.14	0.12	0.09
400	0.14	0.14	0.14	0.14	0.13	0.12	0.08

TABLE 6.19 Site Roughness $z_0 = 0.03$ m Upwind Roughness $z_{01} = 0.3$ m

x(km)	0.1	0.3	_1	3	10	30	>600
z (m)							
2	0.28	0.27	0.26	0.25	0.24	0.23	0.21
4	0.26	0.25	0.24	0.23	0.22	0.21	0.20
6	0.25	0.24	0.23	0.22	0.21	0.20	0.19
8	0.25	0.23	0.22	0.21	0.20	0.20	0.18
10	0.24	0.23	0.22	0.21	0.20	0.19	0.18
15	0.23	0.22	0.21	0.20	0.19	0.18	0.17
20	0.23	0.22	0.20	0.20	0.19	0.18	0.17
30	0.23	0.21	0.20	0.19	0.18	0.17	0.16
40	0.22	0.21	0.19	0.18	0.17	0.17	0.15
50	0.21	0.21	0.19	0.18	0.17	0.16	0.15
60	0.20	0.20	0.19	0.17	0.16	0.16	0.14
70	0.20	0.20	0.19	0.17	0.16	0.15	0.14
80	0.19	0.19	0.19	0.17	0.15	0.15	0.13
90	0.19	0.19	0.19	0.17	0.15	0.14	0.13
100	0.18	0.18	0.18	0.17	0.15	0.14	0.13
120	0.18	0.18	0.18	0.17	0.15	0.14	0.12
140	0.17	0.17	0.17	0.16	0.15	0.13	0.12
160	0.17	0.17	0.17	0.16	0.14	0.13	0.11
180	0.16	0.16	0.16	0.16	0.14	0.13	0.11
200	0.16	0.16	0.16	0.15	0.14	0.13	0.11
250	0.14	0.14	0.14	0.14	0.13	0.12	0.10
300	0.14	0.14	0.14	0.14	0.13	0.11	0.09
350	0.13	0.13	0.13	0.13	0.12	0.11	0.09
400	0.12	0.12	0.12	0.12	0.12	0.11	0.08

TABLE 6.20 Site Roughness $z_0 = 0.03$ m Upwind Roughness $z_{01} = 0.1$ m

x(km)	0.1	0.3	1	3	10	30	>600
z(m)							
2	0.25	0.24	0.24	0.23	0.23	0.22	0.21
4	0.23	0.22	0.22	0.21	0.21	0.20	0.20
6	0.22	0.21	0.21	0.20	0.20	0.20	0.19
8	0.21	0.21	0.20	0.20	0.19	0.19	0.18
10	0.21	0.20	0.20	0.19	0.19	0.19	0.18
15	0.20	0.19	0.19	0.19	0.18	0.18	0.17
20	0.20	0.19	0.18	0.18	0.18	0.17	0.17
30	0.19	0.18	0.18	0.17	0.17	0.16	0.16
40	0.18	0.18	0.17	0.17	0.16	0.16	0.15
50	0.17	0.17	0.17	0.16	0.16	0.15	0.15
60	0.17	0.17	0.17	0.16	0.15	0.15	0.14
70	0.16	0.16	0.16	0.16	0.15	0.14	0.14
80	0.16	0.16	0.16	0.15	0.15	0.14	0.13
90	0.16	0.16	0.16	0.15	0.14	0.14	0.13
100	0.15	0.15	0.15	0.15	0.14	0.13	0.13
120	0.15	0.15	0.15	0.13	0.14	0.13	
140	0.13	0.14					0.12
			0.14	0.14	0.13	0.13	0.12
160	0.14	0.14	0.14	0.14	0.13	0.12	0.11
180	0.13	0.13	0.13	0.13	0.13	0.12	0.11
200	0.13	0.13	0.13	0.13	0.12	0.12	0.11
250	0.12	0.12	0.12	0.12	0.12	0.11	0.10
300	0.11	0.11	0.11	0.11	0.11	0.10	0.09
350	0.10	0.10	0.10	0.10	0.10	0.10	0.09
400	0.10	0.10	0.10	0.10	0.10	0.09	0.08

TABLE 6.21 Site Roughness $z_0 = 0.03$ m Upwind Roughness $z_{01} = 0.01$ m

x(km)	0.1	0.3	1	3	10	30	>600
z (m)							
2	0.19	0.19	0.20	0.20	0.21	0.21	0.21
4	0.17	0.18	0.18	0.19	0.19	0.19	0.20
6	0.16	0.17	0.17	0.18	0.18	0.18	0.19
8	0.16	0.16	0.17	0.17	0.18	0.18	0.18
10	0.15	0.16	0.16	0.17	0.17	0.17	0.18
15	0.15	0.15	0.16	0.16	0.16	0.17	0.17
20	0.14	0.15	0.15	0.16	0.16	0.16	0.17
30	0.14	0.14	0.14	0.15	0.15	0.15	0.16
40	0.13	0.13	0.14	0.14	0.15	0.15	0.15
50	0.13	0.13	0.13	0.14	0.14	0.14	0.15
60	0.12	0.12	0.13	0.13	0.14	0.14	0.14
70	0.12	0.12	0.12	0.13	0.13	0.14	0.14
80	0.12	0.12	0.12	0.12	0.13	0.13	0.13
90	0.11	0.11	0.11	0.12	0.13	0.13	0.13
100	0.11	0.11	0.11	0.12	0.12	0.13	0.13
120	0.11	0.11	0.11	0.11	0.12	0.12	0.12
140	0.10	0.10	0.10	0.11	0.11	0.11	0.12
160	0.10	0.10	0.10	0.10	0.11	0.11	0.11
180	0.09	0.09	0.09	0.10	0.10	0.11	0.11
200	0.09	0.09	0.09	0.09	0.10	0.10	0.11
250	0.08	0.08	0.08	0.08	0.09	0.09	0.10
300	0.08	0.08	0.08	0.08	0.08	0.09	0.09
350	0.07	0.07	0.07	0.07	0.08	0.08	0.09
400	0.07	0.07	0.07	0.07	0.07	0.08	0.08

TABLE 6.22 Site Roughness $z_0 = 0.03$ m Upwind Roughness $z_{01} = 0.003$ m

				_		20	
x(km)	0.1	0.3	1	_3	_10	30	>600
z (m)							
2	0.17	0.18	0.19	0.19	0.20	0.21	0.21
4	0.15	0.16	0.17	0.18	0.18	0.19	0.20
6	0.14	0.15	0.16	0.17	0.18	0.18	0.19
8	0.14	0.15	0.16	0.16	0.17	0.18	0.18
10	0.14	0.14	0.15	0.16	0.17	0.17	0.18
15	0.13	0.14	0.15	0.15	0.16	0.16	0.17
20	0.13	0.13	0.14	0.15	0.15	0.16	0.17
30	0.12	0.12	0.13	0.14	0.15	0.15	0.16
40	0.12	0.12	0.13	0.13	0.14	0.15	0.15
50	0.11	0.11	0.12	0.13	0.14	0.14	0.15
60	0.11	0.11	0.12	0.13	0.13	0.14	0.14
70	0.10	0.10	0.11	0.12	0.13	0.13	0.14
80	0.10	0.10	0.11	0.12	0.12	0.13	0.13
90	0.10	0.10	0.10	0.11	0.12	0.13	0.13
100	0.10	0.10	0.10	0.11	0.12	0.12	0.13
120	0.09	0.09	0.09	0.10	0.11	0.12	0.12
140	0.09	0.09	0.09	0.10	0.11	0.11	0.12
160	0.08	0.08	0.08	0.09	0.10	0.11	0.11
180	0.08	0.08	0.08	0.09	0.10	0.10	0.11
200	0.08	0.08	0.08	0.08	0.09	0.10	0.11
250	0.07	0.07	0.07	0.07	0.08	0.09	0.10
300	0.06	0.06	0.06	0.07	0.08	0.08	0.09
350	0.06	0.06	0.06	0.06	0.07	0.08	0.09
400	0.06	0.06	0.06	0.06	0.07	0.07	0.08

TABLE 6.23 Site Roughness $z_0 = 0.03$ m Upwind Roughness $z_{01} = 0.001$ m

x(km)	0.1	0.3	1	3	10	30	>600
z (m)							
2	0.15	0.17	0.18	0.19	0.20	0.21	0.21
4	0.14	0.15	0.16	0.17	0.18	0.19	0.20
6	0.13	0.14	0.15	0.16	0.17	0.18	0.19
8	0.13	0.14	0.15	0.16	0.17	0.17	0.18
10	0.12	0.13	0.14	0.15	0.16	0.17	0.18
15	0.12	0.13	0.14	0.15	0.15	0.16	0.17
20	0.11	0.12	0.13	0.14	0.15	0.16	0.17
30	0.11	0.11	0.13	0.13	0.14	0.15	0.16
40	0.10	0.10	0.12	0.13	0.14	0.14	0.15
50	0.10	0.10	0.11	0.12	0.13	0.14	0.15
60	0.10	0.10	0.11	0.12	0.13	0.13	0.14
70	0.09	0.09	0.10	0.12	0.12	0.13	0.14
80	0.09	0.09	0.09	0.11	0.12	0.13	0.13
90	0.09	0.09	0.09	0.11	0.12	0.12	0.13
100	0.08	0.08	0.09	0.10	0.11	0.12	0.13
120	0.08	0.08	0.08	0.09	0.11	0.11	0.12
140	0.07	0.07	0.07	0.09	0.10	0.11	0.12
160	0.07	0.07	0.07	0.08	0.10	0.11	0.11
180	0.07	0.07	0.07	0.08	0.09	0.10	0.11
200	0.07	0.07	0.07	0.07	0.09	0.10	0.11
250	0.06	0.06	0.06	0.06	0.08	0.09	0.10
300	0.06	0.06	0.06	0.06	0.07	0.08	0.09
350	0.05	0.05	0.05	0.05	0.07	0.08	0.09
400	0.05	0.05	0.05	0.05	0.06	0.07	0.08
	0.00					• •	

TABLE 6.24 Site Roughness $z_0 = 0.01$ m Upwind Roughness $z_{01} = 0.3$ m

x(km)	0.1	0.3	1	3	10	30	>600
z (m)							
2	0.27	0.25	0.23	0.22	0.21	0.20	0.18
4	0.25	0.24	0.22	0.21	0.20	0.19	0.17
6	0.25	0.23	0.21	0.20	0.19	0.18	0.16
8	0.24	0.22	0.21	0.20	0.18	0.18	0.16
10	0.24	0.22	0.21	0.19	0.18	0.17	0.15
15	0.23	0.21	0.20	0.19	0.18	0.17	0.15
20	0.23	0.21	0.19	0.18	0.17	0.16	0.14
30	0.23	0.20	0.19	0.18	0.16	0.15	0.14
40	0.22	0.21	0.18	0.17	0.16	0.15	0.13
50	0.21	0.21	0.18	0.16	0.15	0.14	0.13
60	0.20	0.20	0.18	0.16	0.15	0.14	0.12
70	0.20	0.20	0.18	0.16	0.14	0.14	0.12
80	0.19	0.19	0.18	0.16	0.14	0.13	0.12
90	0.19	0.19	0.18	0.16	0.14	0.13	0.11
100	0.18	0.18	0.18	0.16	0.14	0.13	0.11
120	0.18	0.18	0.18	0.16	0.14	0.12	0.11
140	0.17	0.17	0.17	0.16	0.14	0.12	0.10
160	0.17	0.17	0.17	0.16	0.13	0.12	0.10
180	0.16	0.16	0.16	0.15	0.13	0.12	0.09
200	0.16	0.16	0.16	0.15	0.13	0.11	0.09
250	0.14	0.14	0.14	0.14	0.13	0.11	0.08
300	0.14	0.14	0.14	0.14	0.12	0.11	0.08
350	0.13	0.13	0.13	0.13	0.12	0.10	0.07
400	0.12	0.12	0.12	0.12	0.11	0.10	0.07
400	0.12	0.12	0.12	0.12	V.11	0.10	0.07

TABLE 6.25 Site Roughness $z_0 = 0.01$ m Upwind Roughness $z_{01} = 0.1$ m

x(km)	0.1	0.3	_ 1	3	10	30	>600
z (m)							
2	0.23	0.22	0.21	0.20	0.20	0.19	0.18
4	0.22	0.21	0.20	0.19	0.19	0.18	0.17
6	0.21	0.20	0.19	0.19	0.18	0.17	0.16
8	0.21	0.20	0.19	0.18	0.18	0.17	0.16
10	0.20	0.20	0.19	0.18	0.17	0.17	0.15
15	0.20	0.19	0.18	0.17	0.17	0.16	0.15
20	0.20	0.18	0.18	0.17	0.16	0.16	0.14
30	0.19	0.18	0.17	0.16	0.15	0.15	0.14
40	0.18	0.18	0.17	0.16	0.15	0.14	0.13
50	0.17	0.17	0.16	0.15	0.14	0.14	0.13
60	0.17	0.17	0.16	0.15	0.14	0.13	0.12
70	0.16	0.16	0.16	0.15	0.14	0.13	0.12
80	0.16	0.16	0.16	0.15	0.13	0.13	0.12
90	0.16	0.16	0.16	0.15	0.13	0.12	0.11
100	0.15	0.15	0.15	0.14	0.13	0.12	0.11
120	0.15	0.15	0.15	0.14	0.13	0.12	0.11
140	0.14	0.14	0.14	0.14	0.13	0.11	0.10
160	0.14	0.14	0.14	0.14	0.12	0.11	0.10
180	0.13	0.13	0.13	0.13	0.12	0.11	0.09
200	0.13	0.13	0.13	0.13	0.12	0.11	0.09
250	0.12	0.12	0.12	0.12	0.11	0.10	0.08
300	0.11	0.11	0.11	0.11	0.11	0.10	0.08
350	0.10	0.10	0.10	0.10	0.10	0.09	0.07
400	0.10	0.10	0.10	0.10	0.10	0.09	0.07

TABLE 6.26 Site Roughness $z_0 = 0.01$ m Upwind Roughness $z_{01} = 0.03$ m

z (m)	0.1	0.3	1	3	10	30	>600
2	0.20	0.20	0.19	0.19	0.19	0.18	0.18
4	0.19	0.19	0.18	0.18	0.18	0.17	0.17
6	0.18	0.18	0.18	0.17	0.17	0.17	0,16
8	0.18	0.18	0.17	0.17	0.17	0.16	0.16
10	0.18	0.17	0.17	0.17	0.16	0.16	0.15
15	0.17	0.17	0.16	0.16	0.16	0.15	0.15
20	0.17	0.16	0.16	0.16	0.15	0.15	0.14
30	0.16	0.16	0.15	0.15	0.15	0.14	0.14
40	0.15	0.15	0.15	0.14	0.14	0.14	0.13
50	0.15	0.15	0.15	0.14	0.14	0.13	0.13
60	0.14	0.14	0.14	0.14	0.13	0.13	0.12
70	0.14	0.14	0.14	0.13	0.13	0.13	0.12
80	0.13	0.13	0.13	0.13	0.13	0.12	0.12
90	0.13	0.13	0.13	0.13	0.12	0.12	0.11
100	0.13	0.13	0.13	0.13	0.12	0.12	0.11
120	0.12	0.12	0.12	0.12	0.12	0.11	0.11
140	0.12	0.12	0.12	0.12	0.11	0.11	0.10
160	0.11	0.11	0.11	0.11	0.11	0.10	0.10
180	0.11	0.11	0.11	0.11	0.11	0.10	0.09
200	0.11	0.11	0.11	0.11	0.10	0.10	0.09
250	0.10	0.10	0.10	0.10	0.10	0.09	0.08
300	0.09	0.09	0.09	0.09	0.09	0.09	0.08
350	0.09	0.09	0.09	0.09	0.09	0.08	0.07
400	0.08	0.08	0.08	0.08	0.08	0.08	0.07

TABLE 6.27 Site Roughness $z_0 = 0.003$ m Upwind Roughness $z_{01} = 0.3$ m

x(km)	0.1	0.3	1	3	10	30	>600
2 (m)							
2	0.25	0.23	0.21	0.20	0.18	0.17	0.15
4	0.24	0.22	0.20	0.19	0.18	0.17	0.14
6	0.24	0.22	0.20	0.19	0.17	0.16	0.14
8	0.24	0.22	0.20	0.18	0.17	0.16	0.14
10	0.23	0.21	0.19	0.18	0.17	0.16	0.14
15	0.23	0.21	0.19	0.17	0.16	0.15	0.13
20	0.22	0.20	0.18	0.17	0.16	0.15	0.13
30	0.23	0.20	0.18	0.16	0.15	0.14	0.12
40	0.22	0.20	0.17	0.16	0.15	0.13	0.12
50	0.21	0.20	0.17	0.15	0.14	0.13	0.11
60	0.20	0.20	0.17	0.15	0.14	0.13	0.11
70	0.20	0.20	0.18	0.15	0.13	0.12	0.10
80	0.19	0.19	0.18	0.15	0.13	0.12	0.10
90	0.19	0.19	0.18	0.15	0.13	0.12	0.10
100	0.18	0.18	0.18	0.15	0.13	0.11	0.10
120	0.18	0.18	0.18	0.15	0.13	0.11	0.09
140	0.17	0.17	0.17	0.15	0.13	0.11	0.09
160	0.17	0.17	0.17	0.15	0.12	0.11	0.08
180	0.16	0.16	0.16	0.15	0.12	0.10	0.08
200	0.16	0.16	0.16	0.15	0.12	0.10	0.08
250	0.14	0.14	0.14	0.14	0.12	0.10	0.07
300	0.14	0.14	0.14	0.14	0.12	0.10	0.06
350	0.13	0.13	0.13	0.13	0.11	0.09	0.06
400	0.12	0.12	0.12	0.12	0.11	0.09	0.06

TABLE 6.28 Site Roughness $z_0 = 0.003$ m Upwind Roughness $z_{01} = 0.03$ m

x(km)	0.1	0.3	1	3	10	30	>600
z (m)							
2	0.19	0.19	0.18	0.17	0.17	0.16	0.15
4	0.19	0.18	0.17	0.17	0.16	0.15	0.14
6	0.18	0.17	0.17	0.16	0.16	0.15	0.14
8	0.18	0.17	0.16	0.16	0.15	0.15	0.14
10	0.17	0.17	0.16	0.16	0.15	0.14	0.14
15	0.17	0.16	0.16	0.15	0.14	0.14	0.13
20	0.17	0.16	0.15	0.15	0.14	0.14	0.13
30	0.16	0.16	0.15	0.14	0.13	0.13	0.12
40	0.15	0.15	0.14	0.13	0.13	0.12	0.12
50	0.15	0.15	0.14	0.13	0.12	0.12	0.11
60	0.14	0.14	0.14	0.13	0.12	0.12	0.11
70	0.14	0.14	0.14	0.13	0.12	0.11	0.10
80	0.13	0.13	0.13	0.13	0.12	0.11	0.10
90	0.13	0.13	0.13	0.13	0.11	0.11	0.10
100	0.13	0.13	0.13	0.12	0.11	0.10	0.10
120	0.12	0.12	0.12	0.12	0.11	0.10	0.09
140	0.12	0.12	0.12	0.12	0.11	0.10	0.09
160	0.11	0.11	0.11	0.11	0.10	0.09	0.08
180	0.11	0.11	0.11	0.11	0.10	0.09	0.08
200	0.11	0.11	0.11	0.11	0.10	0.09	0.08
250	0.10	0.10	0.10	0.10	0.09	0.08	0.07
300	0.09	0.09	0.09	0.09	0.09	0.08	0.06
350	0.09	0.09	0.09	0.09	0.08	0.08	0.06
400	0.08	0.08	0.08	0.08	0.08	0.07	0.06

TABLE 6.29 Site Roughness $z_0 = 0.001$ m Upwind Roughness $z_{01} = 0.1$ m

	0 1	0.3	1	3	10	30	>600
x(km)	0.1	0.3		 -	10		,,,,,,
z(m) 2	0.21	0.20	0.18	0.17	0.16	0.15	0.14
4	0.21	0.19	0.18	0.17	0.16	0.15	0.13
6	0.20	0.19	0.17	0.16	0.15	0.14	0.13
,š	0.20	0.19	0.17	0.16	0.15	0.14	0.12
10	0.20	0.18	0.17	0.16	0.15	0.14	0.12
15	0.19	0.18	0.16	0.15	0.14	0.13	0.12
20	0.19	0.17	0.16	0.15	0.14	0.13	0.11
30	0.19	0.17	0.15	0.14	0.13	0.12	0.11
40	0.18	0.18	0.15	0.14	0.13	0.12	0.10
50	0.17	0.17	0.15	0.13	0.12	0.11	0.10
60	0.17	0.17	0.15	0.13	0.12	0.11	0.10
70	0.16	0.16	0.15	0.13	0.12	0.11	0.09
80	0.16	0.16	0.15	0.13	0.11	0.10	0.09
90	0.16	0.16	0.15	0.13	0.11	0.10	0.09
100	0.15	0.15	0.15	0.13	0.11	0.10	0.08
120	0.15	0.15	0.15	0.13	0.11	0.09	0.08
140	0.14	0.14	0.14	0.13	0.11	0.09	0.07
160	0.14	0.14	0.14	0.13	0.11	0.09	0.07
180	0.13	0.13	0.13	0.13	0.11	0.09	0.07
200	0.13	0.13	0.13	0.12	0.10	0.09	0.07
250	0.12	0.12	0.12	0.12	0.10	0.09	0.06
300	0.11	0.11	0.11	0.11	0.10	0.08	0.06
350	0.10	0.10	0.10	0.10	0.09	0.08	0.05
400	0.10	0.10	0.10	0.10	0.09	0.08	0.05

TABLE 6.30 Site Roughness $z_0 = 0.001$ m Upwind Roughness $z_{01} = 0.03$ m

x(km)	0.1	0.3	1	3	10	30	>600
z (m)							
2	0.19	0.18	0.17	0.16	0.15	0.15	0.14
4	0.18	0.17	0.16	0.16	0.15	0.14	0.13
6	0.18	0.17	0.16	0.15	0.14	0.14	0.13
8	0.18	0.17	0.16	0.15	0.14	0.14	0.12
10	0.17	0.16	0.15	0.15	0.14	0.13	0.12
15	0.17	0.16	0.15	0.14	0.14	0.13	0.12
20	0.17	0.16	0.15	0.14	0.13	0.13	0.11
30	0.16	0.16	0.14	0.13	0.13	0.12	0.11
40	0.15	0.15	0.14	0.13	0.12	0.12	0.10
50	0.15	0.15	0.14	0.12	0.12	0.11	0.10
60	0.14	0.14	0.14	0.12	0.11	0.11	0.10
70	0.14	0.14	0.14	0.12	0.11	0.10	0.09
80	0.13	0.13	0.13	0.12	0.11	0.10	0.09
90	0.13	0.13	0.13	0.12	0.11	0.10	0.09
100	0.13	0.13	0.13	0.12	0.11	0.09	0.08
120	0.12	0.12	0.12	0.12	0.10	0.09	0.08
140	0.12	0.12	0.12	0.11	0.10	0.09	0.07
160	0.11	0.11	0.11	0.11	0.10	0.09	0.07
180	0.11	0.11	0.11	0.11	0.10	0.08	0.07
200	0.11	0.11	0.11	0.11	0.09	0.08	0.07
250	0.10	0.10	0.10	0.10	0.09	0.08	0.06
300	0.09	0.09	0.09	0.09	0.08	0.07	0.06
350	0.09	0.09	0.09	0.09	0.08	0.07	0.05
400	0.08	0.08	0.08	0.08	0.08	0.07	0.05

7. TURBULENCE INTENSITIES FOR TWO CHANGES IN ROUGHNESS

It is not possible to present comprehensive tables for several changes but some typical cases for two changes of roughness are given in Tables 7.1 to 7.7 and are indexed in the Index Table below. For cases not covered by the Tables the computer program ESDUpac A9232⁷ should be used.

Each block of the Tables for two roughness changes gives value of I_u for varying fetches, x, downstream of the second roughness change and for a specified fetch, x_1 , of intermediate terrain. Values for other values of x and x_1 can be interpolated linearly with respect to $\log x$ and $\log x_1$.

For small values of x_1 , the tabulated values tend towards those for a single roughness change from z_{02} to z_0 as x and z increase.

Index to Tables for Two Roughness Changes

Upwind	terrain	Site z_0 (m)					
z ₀₂ (m)	z_{01} (m)	0.7	0.3	0.03	0.003		
0.03 0.03	0.7 0.3	* 7.1	*	7.5	7.7		
0.003 0.003 0.003	0.7 0.3 0.03	* 7.2	7.3 * 7.4	7.6			

^{*} For cases marked with an asterisk there is only one roughness change. The appropriate Tables may be located in the Index Table in Section 6.

TABLE 7.1 Site Roughness z_0 = 0.7 m; Upwind Roughness z_{01} = 0.3 m and z_{02} = 0.03 m

x ₁ -	0.1	km						x ₁ •	0.3	km				
x(km)	0.1	0.3	1	3	10_	30		x(km) z(m)	0.1	0.3	1	3	_10	30
z(m) 24 68 10 150 30 400 50 60 70 90 120 120 120 120 250 330 400	0.53 0.33 0.28 0.25 0.23 0.20 0.17 0.15 0.14 0.13 0.13 0.13 0.11 0.11 0.11	0.55 0.35 0.29 0.26 0.25 0.20 0.19 0.16 0.14 0.13 0.13 0.13 0.11 0.11 0.11	0.58 0.38 0.32 0.29 0.27 0.24 0.20 0.18 0.16 0.16 0.15 0.11 0.11 0.11 0.11 0.10	0.61 0.40 0.34 0.29 0.22 0.21 0.20 0.19 0.18 0.17 0.16 0.14 0.13 0.12 0.11 0.10 0.09	0.64 0.42 0.36 0.33 0.26 0.24 0.22 0.21 0.20 0.19 0.18 0.15 0.15 0.15 0.13	0.67 0.44 0.37 0.32 0.27 0.25 0.22 0.22 0.21 0.20 0.19 0.18 0.17 0.15 0.15 0.15		z(m) 4 6 8 10 15 20 30 40 50 60 70 100 120 140 180 250 300 400 250 300 400 300 400 300 400 300 400 4	0.54 0.34 0.28 0.26 0.24 0.21 0.10 0.15 0.14 0.13 0.13 0.13 0.12 0.11 0.11 0.11 0.10	0.56 0.36 0.30 0.27 0.25 0.21 0.19 0.18 0.16 0.15 0.14 0.13 0.12 0.11 0.11 0.11 0.10	0.59 0.38 0.32 0.29 0.27 0.24 0.19 0.19 0.18 0.15 0.15 0.11 0.11 0.11 0.11 0.11 0.10	0.62 0.40 0.34 0.31 0.29 0.24 0.22 0.21 0.19 0.18 0.17 0.16 0.15 0.12 0.11 0.13 0.12 0.11	0.64 0.42 0.36 0.33 0.31 0.28 0.24 0.23 0.22 0.21 0.20 0.19 0.18 0.17 0.16 0.15 0.13 0.13	0.67 0.44 0.37 0.34 0.32 0.29 0.27 0.25 0.24 0.22 0.21 0.20 0.19 0.18 0.17 0.15 0.15 0.14 0.13 0.12
x, =	l ka	2						x ₁ =	3 km	1				
x(km) z(m)	0.1	0.3	1	3	10	30	•	x(km) z(m)	0.1	0.3	1	3	10	30
46 8 10 10 10 10 10 10 10 10 10 10	0.56 0.36 0.30 0.27 0.25 0.21 0.19 0.16 0.16 0.16 0.11 0.11 0.11 0.11 0.10 0.09 0.09	0.57 0.37 0.28 0.22 0.20 0.19 0.17 0.16 0.15 0.14 0.14 0.11 0.11 0.11 0.11 0.10 0.09	0.60 0.38 0.32 0.29 0.27 0.25 0.23 0.21 0.20 0.18 0.16 0.15 0.15 0.11 0.11 0.11 0.10 0.11 0.10 0.10	0.62 0.40 0.31 0.29 0.24 0.22 0.21 0.20 0.19 0.18 0.17 0.16 0.13 0.12 0.11 0.09 0.08	0.65 0.42 0.36 0.33 0.21 0.22 0.22 0.22 0.20 0.19 0.17 0.15 0.15 0.15 0.11	0.67 0.44 0.37 0.34 0.29 0.27 0.22 0.22 0.22 0.20 0.19 0.19 0.17 0.17 0.15 0.13		2 46 8 10 15 20 40 50 60 70 80 90 120 140 160 200 250 350 400	0.58 0.37 0.31 0.28 0.22 0.20 0.19 0.17 0.16 0.15 0.14 0.14 0.13 0.12 0.10 0.09	0.59 0.38 0.29 0.27 0.24 0.23 0.19 0.17 0.17 0.16 0.15 0.14 0.13 0.12 0.10 0.09 0.08	0.61 0.33 0.30 0.25 0.24 0.22 0.21 0.10 0.17 0.16 0.15 0.14 0.13 0.12 0.10 0.09	0.63 0.41 0.34 0.31 0.29 0.25 0.23 0.22 0.21 0.19 0.18 0.17 0.15 0.15 0.14 0.13 0.12	0.65 0.42 0.36 0.33 0.21 0.26 0.24 0.23 0.21 0.20 0.19 0.19 0.17 0.17 0.17 0.11 0.10	0.67 0.44 0.37 0.34 0.29 0.27 0.25 0.24 0.22 0.22 0.21 0.20 0.19 0.19 0.17 0.17 0.15 0.14 0.13 0.12
-	10 k					2.0			30 k			2	10	20
x(km) z(m) 2	0.1	0.3	0.62	0.64	0.65	30 0.67		x(km) z(m) 2	0.61	0.62	0.64	0.65	0.66	0.68
4 6 8 10 20 30 40 50 60 70 80 100 120 140 160 250 350 350 400	0.38 0.329 0.27 0.25 0.21 0.20 0.19 0.18 0.17 0.17 0.16 0.14 0.14 0.14 0.14 0.13 0.12 0.10	0.39 0.30 0.28 0.22 0.22 0.19 0.18 0.17 0.17 0.15 0.14 0.13 0.12 0.12	0.41 0.34 0.29 0.25 0.23 0.21 0.21 0.19 0.18 0.17 0.16 0.15 0.15 0.11 0.12 0.12	0.42 0.35 0.30 0.27 0.25 0.22 0.21 0.20 0.19 0.18 0.17 0.16 0.15 0.14 0.13 0.11	0.43 0.33 0.31 0.26 0.22 0.21 0.20 0.19 0.17 0.15 0.14 0.12 0.11	0.44 0.34 0.32 0.29 0.27 0.25 0.24 0.22 0.21 0.21 0.20 0.19 0.18 0.17 0.15 0.14 0.13		4 6 8 10 15 20 30 60 70 80 100 120 120 250 350 400	0.39 0.30 0.28 0.22 0.21 0.20 0.19 0.18 0.17 0.16 0.16 0.15 0.11 0.11	0.41 0.31 0.29 0.25 0.23 0.21 0.20 0.19 0.18 0.17 0.16 0.16 0.15 0.11 0.11	0.42 0.32 0.30 0.27 0.25 0.22 0.21 0.21 0.20 0.18 0.16 0.16 0.15 0.14 0.13 0.12	0.43 0.36 0.33 0.28 0.26 0.22 0.21 0.20 0.19 0.16 0.16 0.15 0.14 0.12	0.44 0.37 0.32 0.29 0.27 0.25 0.21 0.21 0.20 0.18 0.18 0.18 0.15 0.15 0.15	0.45 0.38 0.35 0.32 0.29 0.28 0.26 0.24 0.23 0.22 0.21 0.20 0.19 0.18 0.17 0.16 0.14 0.13 0.12

TABLE 7.2 Site Roughness z_0 = 0.7 m; Upwind Roughness z_{01} = 0.3 m and z_{02} = 0.003 m

$x_1 = 0.1 \text{ km}$	$x_1 = 0.3 \text{ km}$
x(km) 0.1 0.3 1 3 10 30 z(m)	x(km) 0.1 0.3 1 3 10 30 z(m)
2 0.47 0.50 0.54 0.58 0.62 0.65 4 0.29 0.31 0.34 0.37 0.40 0.43 6 0.24 0.26 0.28 0.31 0.34 0.36 8 0.21 0.23 0.26 0.28 0.31 0.33	2 0.49 0.51 0.54 0.58 0.62 0.65 4 0.30 0.32 0.35 0.37 0.40 0.43 6 0.25 0.26 0.29 0.31 0.34 0.36 8 0.22 0.24 0.26 0.28 0.31 0.33
10 0.19 0.21 0.24 0.26 0.29 0.31 15 0.17 0.19 0.21 0.24 0.26 0.28 20 0.15 0.17 0.20 0.22 0.24 0.26 30 0.13 0.16 0.18 0.20 0.22 0.24 40 0.12 0.14 0.17 0.19 0.21 0.23	10 0.20 0.22 0.24 0.26 0.29 0.31 15 0.18 0.19 0.21 0.24 0.26 0.28 20 0.17 0.18 0.20 0.22 0.24 0.26 30 0.15 0.16 0.18 0.20 0.22 0.24 40 0.13 0.15 0.17 0.19 0.21 0.23
40 0.12 0.14 0.17 0.19 0.21 0.23 50 0.11 0.12 0.16 0.18 0.20 0.22 60 0.11 0.11 0.15 0.17 0.20 0.21 70 0.10 0.10 0.13 0.17 0.19 0.21 80 0.10 0.10 0.12 0.16 0.18 0.20	50 0.12 0.13 0.16 0.18 0.20 0.22 60 0.11 0.12 0.16 0.17 0.20 0.21 70 0.10 0.11 0.14 0.17 0.19 0.21 80 0.10 0.10 0.13 0.16 0.18 0.20
90 0.10 0.10 0.11 0.16 0.18 0.20 100 0.10 0.10 0.11 0.14 0.18 0.19 120 0.09 0.09 0.09 0.13 0.17 0.18 140 0.09 0.09 0.09 0.12 0.16 0.18	90 0.10 0.10 0.12 0.16 0.18 0.20 100 0.10 0.10 0.11 0.15 0.18 0.19 120 0.09 0.09 0.10 0.13 0.17 0.18 140 0.09 0.09 0.09 0.12 0.16 0.18
160 0.08 0.08 0.08 0.11 0.14 0.17 180 0.08 0.08 0.08 0.10 0.14 0.17 200 0.08 0.08 0.08 0.09 0.13 0.16 250 0.07 0.07 0.07 0.08 0.11 0.14	160 0.08 0.08 0.08 0.10 0.15 0.17 180 0.08 0.08 0.08 0.10 0.14 0.17 200 0.08 0.08 0.08 0.10 0.13 0.16 250 0.07 0.07 0.07 0.08 0.11 0.14
300 0.06 0.06 0.06 0.07 0.10 0.13 350 0.06 0.06 0.06 0.06 0.09 0.12 400 0.06 0.06 0.06 0.06 0.08 0.11	300 0.06 0.06 0.06 0.07 0.10 0.13 350 0.06 0.06 0.06 0.06 0.09 0.12 400 0.06 0.06 0.06 0.06 0.08 0.11
x ₁ = 1 km	x ₁ = 3 km x(km) 0.1 0.3 1 3 10 30
x(km) 0.1 0.3 1 3 10 30 z(m) 2 0.51 0.53 0.56 0.59 0.62 0.65	x(km) 0.1 0.3 1 3 10 30 z(m) 2 0.54 0.56 0.57 0.60 0.63 0.65
4 0.32 0.34 0.35 0.38 0.40 0.43 6 0.27 0.28 0.30 0.32 0.34 0.36 8 0.24 0.25 0.27 0.29 0.31 0.33 10 0.22 0.23 0.25 0.27 0.29 0.31	4 0.34 0.35 0.37 0.38 0.41 0.43 6 0.29 0.30 0.31 0.32 0.34 0.36 8 0.26 0.27 0.28 0.29 0.31 10 0.24 0.25 0.26 0.27 0.29 0.31
15 0.20 0.21 0.22 0.24 0.26 0.28 20 0.18 0.19 0.21 0.22 0.24 0.26 30 0.16 0.17 0.19 0.20 0.23 0.24 40 0.15 0.16 0.18 0.19 0.21 0.23 50 0.15 0.15 0.17 0.18 0.20 0.22	15 0.21 0.22 0.23 0.25 0.26 0.28 20 0.20 0.21 0.22 0.23 0.25 0.26 30 0.18 0.19 0.20 0.21 0.23 0.24 40 0.17 0.18 0.19 0.20 0.22 0.23 0.24 50 0.16 0.16 0.18 0.19 0.20 0.22 0.23
60 0.13 0.14 0.16 0.18 0.20 0.21 70 0.12 0.13 0.15 0.17 0.19 0.21 80 0.12 0.12 0.14 0.17 0.19 0.20 90 0.11 0.11 0.13 0.16 0.18 0.20	60 0.16 0.16 0.17 0.18 0.20 0.21 70 0.15 0.15 0.16 0.18 0.19 0.21 80 0.14 0.15 0.16 0.17 0.19 0.20 90 0.14 0.14 0.15 0.17 0.18 0.20
100 0.10 0.11 0.12 0.15 0.18 0.19 120 0.09 0.10 0.11 0.14 0.17 0.19 140 0.09 0.09 0.10 0.12 0.16 0.18 160 0.08 0.08 0.09 0.11 0.15 0.17	100 0.13 0.13 0.14 0.16 0.18 0.19 120 0.12 0.12 0.13 0.15 0.17 0.19 140 0.11 0.11 0.12 0.13 0.16 0.18 160 0.10 0.10 0.11 0.12 0.15 0.17
180	180 0.09 0.10 0.10 0.12 0.14 0.17 200 0.09 0.09 0.09 0.11 0.13 0.16 250 0.08 0.08 0.08 0.08 0.09 0.12 0.14 300 0.07 0.07 0.07 0.08 0.11 0.13
300 0.06 0.06 0.06 0.07 0.10 0.13 350 0.06 0.06 0.06 0.06 0.09 0.12 400 0.06 0.06 0.06 0.06 0.08 0.11	300 0.07 0.07 0.07 0.08 0.11 0.13 350 0.06 0.06 0.06 0.07 0.10 0.12 400 0.06 0.06 0.06 0.07 0.09 0.11
$x_1 = 10 \text{ km}$	$x_1 = 30 \text{ km}$
x(km) 0.1 0.3 1 3 10 30 z(m)	x(km) 0.1 0.3 1 3 10 30 z(m)
2 0.57 0.58 0.60 0.62 0.64 0.66 4 0.37 0.38 0.39 0.40 0.41 0.43 6 0.31 0.32 0.33 0.34 0.35 0.37 8 0.28 0.29 0.30 0.31 0.32 0.33 10 0.26 0.27 0.28 0.29 0.30 0.31 15 0.23 0.24 0.25 0.26 0.27 0.28	2 0.59 0.61 0.62 0.64 0.65 0.67 4 0.38 0.39 0.41 0.42 0.43 0.44 6 0.32 0.33 0.34 0.35 0.36 0.37 8 0.29 0.30 0.31 0.32 0.33 0.34 10 0.27 0.28 0.29 0.30 0.31 0.32 15 0.25 0.25 0.26 0.27 0.28 0.29
20 0.22 0.23 0.24 0.25 0.27 30 0.19 0.20 0.21 0.22 0.23 0.25 40 0.18 0.19 0.20 0.21 0.22 0.23 50 0.18 0.18 0.19 0.20 0.21 0.22 0.23	20 0.23 0.24 0.25 0.25 0.26 0.27 30 0.21 0.22 0.23 0.23 0.24 0.25 40 0.20 0.20 0.21 0.22 0.23 0.24 50 0.19 0.19 0.20 0.21 0.22 0.23
60 0.17 0.17 0.19 0.19 0.20 0.22 70 0.17 0.17 0.18 0.19 0.20 0.21 80 0.16 0.16 0.17 0.18 0.19 0.20 90 0.16 0.16 0.17 0.18 0.19 0.20	60 0.18 0.18 0.20 0.20 0.21 0.22 70 0.18 0.18 0.19 0.20 0.21 0.21 80 0.17 0.17 0.18 0.19 0.20 0.21 90 0.17 0.17 0.18 0.19 0.20 0.20
100 0.15 0.15 0.16 0.17 0.18 0.20 120 0.15 0.15 0.15 0.16 0.18 0.19 140 0.14 0.14 0.14 0.15 0.17 0.18 160 0.13 0.13 0.13 0.14 0.16 0.17	100 0.17 0.17 0.17 0.18 0.19 0.20 120 0.16 0.16 0.16 0.17 0.18 0.19 140 0.15 0.15 0.15 0.15 0.17 0.18 0.18 160 0.15 0.15 0.15 0.16 0.17 0.18
180 0.12 0.12 0.12 0.13 0.15 0.17 200 0.11 0.11 0.12 0.12 0.14 0.16 250 0.10 0.10 0.10 0.11 0.13 0.14 300 0.09 0.09 0.09 0.10 0.11 0.13 350 0.08 0.08 0.09 0.09 0.09 0.10 0.12	180 0.14 0.14 0.14 0.15 0.16 0.17 200 0.14 0.14 0.14 0.15 0.17 250 0.12 0.12 0.12 0.13 0.14 0.15 300 0.11 0.11 0.11 0.11 0.13 0.14
350 0.08 0.08 0.09 0.09 0.10 0.12 400 0.08 0.08 0.08 0.08 0.10 0.11	350 0.10 0.10 0.10 0.10 0.12 0.13 400 0.10 0.10 0.10 0.10 0.11 0.12

TABLE 7.3 Site Roughness $z_0 = 0.3$ m; Upwind Roughness $z_{01} = 0.7$ m and $z_{02} = 0.003$ m

x ₁ = 0.1 km	x ₁ = 0.3 km
x(km) 0.1 0.3 1 3 10 30	x(km) 0.1 0.3 1 3 10 30 z(m)
2 (m) 2 0.30 0.31 0.33 0.35 0.37 0.39 4 0.23 0.24 0.25 0.27 0.29 0.31 6 0.20 0.21 0.23 0.24 0.25 0.27 0.29 0.31 6 0.20 0.21 0.23 0.24 0.25 0.26 10 0.18 0.19 0.20 0.21 0.23 0.25 0.26 10 0.18 0.19 0.20 0.22 0.22 0.24 0.25 15 0.16 0.17 0.18 0.20 0.22 0.23 20 0.15 0.16 0.17 0.19 0.21 0.22 30 0.13 0.15 0.16 0.18 0.19 0.21 40 0.12 0.13 0.15 0.16 0.18 0.19 0.21 50 0.11 0.12 0.15 0.16 0.18 0.19 60 0.11 0.11 0.14 0.16 0.17 0.19 70 0.10 0.10 0.13 0.15 0.17 0.19 80 0.10 0.10 0.13 0.15 0.17 0.19 100 0.10 0.10 0.11 0.14 0.16 0.17 0.18 80 0.10 0.10 0.11 0.14 0.16 0.17 100 0.10 0.10 0.11 0.14 0.16 0.17 1100 0.10 0.10 0.11 0.14 0.16 0.17 120 0.09 0.09 0.09 0.12 0.15 0.16 140 0.09 0.09 0.09 0.11 0.14 0.16 160 0.08 0.08 0.08 0.10 0.13 0.15 180 0.08 0.08 0.08 0.10 0.13 0.15 200 0.08 0.08 0.08 0.00 0.10 0.12 0.15 200 0.08 0.08 0.08 0.09 0.12 0.14 250 0.07 0.07 0.07 0.08 0.10 0.13 350 0.06 0.06 0.06 0.06 0.09 0.11 350 0.06 0.06 0.06 0.06 0.09 0.11	2 0.31 0.32 0.33 0.35 0.37 0.39 4 0.24 0.25 0.26 0.27 0.29 0.31 6 0.21 0.22 0.23 0.24 0.26 0.28 8 0.20 0.20 0.21 0.23 0.25 0.26 10 0.19 0.19 0.20 0.22 0.23 0.25 0.26 10 0.19 0.19 0.20 0.22 0.24 0.25 15 0.17 0.18 0.19 0.20 0.22 0.23 20 0.16 0.17 0.18 0.19 0.21 0.22 30 0.15 0.16 0.17 0.18 0.19 0.21 0.22 40 0.15 0.16 0.17 0.18 0.19 0.21 0.20 15 0.15 0.16 0.17 0.18 0.19 0.21 0.20 15 0.15 0.16 0.17 0.18 0.19 0.20 0.13 0.15 0.16 0.17 0.18 0.19 0.20 0.10 0.11 0.12 0.14 0.16 0.17 0.19 0.20 0.10 0.11 0.12 0.14 0.16 0.17 0.19 0.20 0.10 0.10 0.11 0.13 0.15 0.16 0.18 0.19 0.10 0.10 0.10 0.12 0.15 0.16 0.18 0.19 0.10 0.10 0.10 0.12 0.15 0.16 0.18 0.19 0.10 0.10 0.10 0.12 0.15 0.16 0.18 0.19 0.10 0.10 0.10 0.12 0.15 0.16 0.17 0.18 0.10 0.10 0.10 0.10 0.11 0.13 0.16 0.17 0.18 0.10 0.10 0.10 0.10 0.11 0.13 0.16 0.17 0.18 0.10 0.10 0.10 0.10 0.11 0.13 0.16 0.17 0.18 0.10 0.10 0.10 0.10 0.11 0.13 0.16 0.17 0.16 0.18 0.19 0.09 0.09 0.09 0.11 0.14 0.16 0.17 0.18 0.08 0.08 0.08 0.10 0.12 0.15 0.16 0.17 0.18 0.08 0.08 0.08 0.10 0.12 0.15 0.16 0.17 0.18 0.08 0.08 0.08 0.09 0.11 0.13 0.15 0.16 0.17 0.19 0.00 0.08 0.08 0.08 0.09 0.11 0.13 0.15 0.16 0.17 0.19 0.00 0.08 0.08 0.08 0.09 0.11 0.13 0.15 0.16 0.17 0.19 0.10 0.10 0.10 0.10 0.10 0.10 0.11 0.13 0.15 0.16 0.17 0.19 0.10 0.10 0.10 0.10 0.10 0.10 0.10
x ₁ = 1 km	x ₁ = 3 km
x(km) 0.1 0.3 1 3 10 30 z(m)	x(km) 0.1 0.3 1 3 10 30 z(m)
2 0.34 0.34 0.34 0.35 0.37 0.39 4 0.26 0.26 0.27 0.28 0.29 0.31 6 0.24 0.23 0.24 0.25 0.26 0.28 8 0.22 0.22 0.22 0.23 0.25 0.26 10 0.21 0.21 0.21 0.22 0.22 0.23 20 0.18 0.18 0.19 0.19 0.20 0.21 0.22 0.23 20 0.18 0.18 0.19 0.19 0.20 0.21 0.22 0.23 30 0.17 0.17 0.17 0.18 0.20 0.21 40 0.17 0.16 0.16 0.17 0.18 0.20 0.21 50 0.16 0.16 0.16 0.17 0.19 0.20 50 0.16 0.16 0.16 0.17 0.19 0.20 50 0.15 0.15 0.16 0.16 0.17 0.18 0.19 60 0.15 0.15 0.16 0.16 0.17 0.18 80 0.13 0.13 0.14 0.15 0.16 0.17 0.18 80 0.13 0.13 0.14 0.15 0.16 0.17 100 0.11 0.11 0.13 0.14 0.16 0.17 120 0.10 0.10 0.11 0.13 0.15 0.16 0.17 120 0.10 0.10 0.11 0.13 0.14 0.16 0.17 120 0.10 0.0 0.00 0.10 0.11 0.13 0.15 0.16 140 0.09 0.09 0.09 0.10 0.12 0.14 0.16 160 0.08 0.08 0.09 0.10 0.12 0.14 0.15 200 0.08 0.08 0.09 0.10 0.13 0.15 200 0.08 0.08 0.09 0.10 0.12 0.14 250 0.07 0.07 0.07 0.09 0.11 0.13 300 0.06 0.06 0.06 0.06 0.07 0.09 0.11 350 0.06 0.06 0.06 0.06 0.07 0.09 0.11	2 0.37 0.36 0.36 0.36 0.38 0.39 4 0.29 0.28 0.29 0.29 0.20 0.20 0.27 0.28 8 0.29 0.29 0.26 0.27 0.28 8 0.29 0.20 0.26 0.27 0.28 8 0.24 0.24 0.25 0.26 10 0.23 0.23 0.23 0.23 0.23 0.23 0.24 0.25 15 0.26 0.20 0.20 0.21 0.21 0.21 0.22 0.23 20 0.20 0.20 0.20 0.21 0.22 0.23 20 0.20 0.20 0.21 0.19 0.19 0.19 0.19 0.19 0.20 0.21 40 0.19 0.18 0.18 0.18 0.19 0.20 0.21 40 0.17 0.17 0.17 0.17 0.17 0.18 0.19 60 0.17 0.17 0.17 0.17 0.17 0.18 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19
_	$x_1 = 30 \text{ km}$ $x \text{ (km) } 0.1 0.3 1 3 10 30$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

TABLE 7.4 Site Roughness $z_0 = 0.3$ m; Upwind Roughness $z_{01} = 0.03$ m and $z_{02} = 0.003$ m

$x_1 = 0.1 \text{ km}$	$x_1 = 0.3 \text{ km}$
x(km) 0.1 0.3 1 3 10 30	x(km) 0.1 0.3 1 3 10 30 z(m)
z (m)	2 (m)
2 0.28 0.30 0.32 0.35 0.37 0.39	2 0.28 0.30 0.33 0.35 0.37 0.39
4 0.21 0.23 0.25 0.27 0.29 0.31	4 0.21 0.23 0.25 0.27 0.29 0.31
6 0.18 0.20 0.22 0.24 0.26 0.28	6 0.19 0.21 0.23 0.24 0.26 0.28
8 0.17 0.19 0.21 0.23 0.25 0.26	8 0.17 0.19 0.21 0.23 0.25 0.26
10 0.16 0.18 0.20 0.22 0.24 0.25	10 0.16 0.18 0.20 0.22 0.24 0.25
15 0.14 0.16 0.18 0.20 0.22 0.23 20 0.14 0.15 0.17 0.19 0.21 0.22	15 0.15 0.17 0.18 0.20 0.22 0.23
30 0.12 0.14 0.16 0.18 0.19 0.21 40 0.12 0.13 0.15 0.17 0.19 0.20	30 0.13 0.14 0.16 0.18 0.19 0.21 40 0.12 0.13 0.15 0.17 0.19 0.20 50 0.11 0.12 0.15 0.16 0.18 0.19
50 0.11 0.11 0.15 0.16 0.18 0.19 60 0.11 0.11 0.14 0.16 0.17 0.19	60 0.11 0.11 0.14 0.16 0.17 0.19
70 0.10 0.10 0.13 0.15 0.17 0.18	70 0.10 0.10 0.13 0.15 0.17 0.18
80 0.10 0.10 0.12 0.15 0.16 0.18	80 0.10 0.10 0.12 0.15 0.16 0.18
90 0.10 0.10 0.11 0.14 0.16 0.17	90 0.10 0.10 0.11 0.14 0.16 0.17
90 0.10 0.10 0.11 0.14 0.16 0.17 100 0.10 0.10 0.10 0.13 0.16 0.17 120 0.09 0.09 0.09 0.12 0.15 0.16	100 0.10 0.10 0.11 0.13 0.16 0.17 120 0.09 0.09 0.09 0.09 0.12 0.15 0.16
140 0.09 0.09 0.09 0.11 0.14 0.16	140 0.09 0.09 0.09 0.11 0.14 0.16
160 0.08 0.08 0.08 0.10 0.13 0.15	160 0.08 0.08 0.08 0.10 0.13 0.15
180	180 0.08 0.08 0.08 0.10 0.12 0.14 200 0.08 0.08 0.08 0.09 0.12 0.14
250 0.07 0.07 0.07 0.08 0.10 0.12 300 0.06 0.06 0.06 0.07 0.09 0.11	250 0.07 0.07 0.07 0.08 0.10 0.12 300 0.06 0.06 0.06 0.07 0.09 0.11 350 0.06 0.06 0.06 0.06 0.09 0.10
350 0.06 0.06 0.06 0.06 0.09 0.10	350 0.06 0.06 0.06 0.06 0.09 0.10
400 0.06 0.06 0.06 0.06 0.08 0.10	400 0.06 0.06 0.06 0.06 0.08 0.10
x ₁ = 1 km	x ₁ = 3 km
x(km) 0.1 0.3 1 3 10 30	x(km) 0.1 0.3 1 3 10 30
z(m)	z(m)
2 0.29 0.31 0.33 0.35 0.37 0.39	2 0.30 0.32 0.34 0.35 0.37 0.39
4 0.22 0.24 0.26 0.27 0.29 0.31	4 0.23 0.24 0.26 0.28 0.29 0.31
6 0.20 0.21 0.23 0.25 0.26 0.28 8 0.18 0.20 0.21 0.23 0.25 0.26	6 0.20 0.22 0.23 0.25 0.26 0.28 8 0.19 0.20 0.22 0.23 0.25 0.26 10 0.18 0.19 0.21 0.22 0.24 0.25
10 0.17 0.19 0.20 0.22 0.24 0.25	10 0.18 0.19 0.21 0.22 0.24 0.25
15 0.16 0.17 0.19 0.20 0.22 0.23	15 0.16 0.18 0.19 0.20 0.22 0.23
20 0.15 0.16 0.18 0.19 0.21 0.22	20 0.15 0.17 0.18 0.19 0.21 0.22
20 0.15 0.16 0.18 0.19 0.21 0.22 30 0.13 0.15 0.16 0.18 0.19 0.21 40 0.13 0.14 0.16 0.17 0.19 0.20	30 0.14 0.15 0.17 0.18 0.20 0.21 40 0.13 0.14 0.16 0.17 0.19 0.20
50 0.12 0.13 0.15 0.16 0.18 0.19 60 0.12 0.12 0.14 0.16 0.17 0.19	50 0.13 0.13 0.15 0.17 0.18 0.19
70 0.11 0.11 0.13 0.15 0.17 0.18 80 0.11 0.11 0.12 0.15 0.16 0.18	70 0.12 0.12 0.14 0.16 0.17 0.18 80 0.12 0.12 0.13 0.15 0.16 0.18 90 0.11 0.11 0.12 0.15 0.16 0.17
90 0.10 0.10 0.12 0.14 0.16 0.17 100 0.10 0.10 0.11 0.13 0.16 0.17	100 0.11 0.11 0.12 0.14 0.16 0.17
120 0.09 0.09 0.10 0.12 0.15 0.16	120 0.10 0.10 0.11 0.13 0.15 0.16
140 0.09 0.09 0.09 0.11 0.14 0.16	140 0.10 0.10 0.10 0.12 0.14 0.16
160 0.08 0.08 0.09 0.11 0.13 0.15	160 0.09 0.09 0.09 0.11 0.13 0.15
180 0.08 0.08 0.08 0.10 0.12 0.14	180 0.09 0.09 0.09 0.10 0.13 0.14
200 0.08 0.08 0.08 0.09 0.12 0.14	200 0.08 0.08 0.08 0.10 0.12 0.14
250 0.07 0.07 0.07 0.08 0.10 0.12	250 0.07 0.07 0.08 0.08 0.11 0.12
300 0.06 0.06 0.06 0.07 0.09 0.11	300 0.07 0.07 0.07 0.07 0.10 0.11
350 d.06 0.06 0.06 0.06 0.09 0.10	350 0.06 0.06 0.06 0.07 0.09 0.10
400 0.06 0.06 0.06 0.06 0.08 0.10	400 0.06 0.06 0.06 0.06 0.08 0.10
x ₁ = 10 km	x ₁ = 30 km
$\frac{x (km)}{z (m)}$ 0.1 0.3 1 3 10 30	$\frac{x(km)}{z(m)}$ 0.1 0.3 1 3 10 30
2 0.31 0.33 0.34 0.36 0.38 0.39	2 0.32 0.33 0.35 0.36 0.38 0.39
4 0.24 0.25 0.27 0.28 0.30 0.31	4 0.24 0.26 0.27 0.29 0.30 0.31
8 0.20 0.21 0.22 0.24 0.25 0.26	6 0.22 0.23 0.25 0.26 0.27 0.28 8 0.20 0.21 0.23 0.24 0.25 0.26 10 0.19 0.20 0.22 0.23 0.24 0.25
10 0.19 0.20 0.21 0.23 0.24 0.25 15 0.17 0.18 0.20 0.21 0.22 0.23 20 0.16 0.17 0.19 0.20 0.21 0.22	15 0.18 0.19 0.20 0.21 0.23 0.24 20 0.17 0.18 0.19 0.20 0.21 0.22 0.22
30 0.15 0.16 0.17 0.19 0.20 0.21	30 0.15 0.17 0.18 0.19 0.20 0.21
40 0.14 0.15 0.17 0.18 0.19 0.20	40 0.15 0.15 0.17 0.18 0.19 0.20
50 0.14 0.14 0.16 0.17 0.18 0.19	50 0.14 0.14 0.16 0.17 0.18 0.19
60 0.13 0.13 0.15 0.16 0.18 0.19	60 0.14 0.14 0.16 0.17 0.18 0.19
70 0.13 0.13 0.14 0.16 0.17 0.18	70 0.13 0.13 0.15 0.16 0.17 0.18
80 0.12 0.12 0.14 0.15 0.17 0.18	80 0.13 0.13 0.14 0.16 0.17 0.18
90 0.12 0.12 0.13 0.15 0.16 0.17 100 0.12 0.12 0.12 0.14 0.16 0.17	90 0.13 0.13 0.13 0.15 0.17 0.17 100 0.12 0.12 0.13 0.15 0.16 0.17
120 0.11 0.11 0.12 0.13 0.15 0.16	120 0.12 0.12 0.12 0.14 0.15 0.16
140 0.11 0.11 0.11 0.12 0.14 0.16	140 0.11 0.11 0.11 0.13 0.15 0.16
160 0.10 0.10 0.10 0.12 0.14 0.15	160 0.11 0.11 0.12 0.14 0.15
180 0.10 0.10 0.10 0.11 0.13 0.15	180 0.10 0.10 0.10 0.12 0.13 0.15
200 0.09 0.09 0.09 0.10 0.12 0.14	200 0.10 0.10 0.10 0.11 0.13 0.14
200 0.09 0.09 0.09 0.10 0.12 0.14	200 0.10 0.10 0.10 0.11 0.13 0.14
250 0.08 0.08 0.08 0.09 0.11 0.13	250 0.09 0.09 0.09 0.10 0.11 0.13
300 0.08 0.08 0.08 0.08 0.10 0.11	300 0.08 0.08 0.08 0.09 0.10 0.12
350 0.07 0.07 0.07 0.09 0.11	350 0.08 0.08 0.08 0.08 0.09 0.11
400 0.07 0.07 0.07 0.07 0.08 0.10	400 0.07 0.07 0.07 0.07 0.09 0.10

TABLE 7.5 Site Roughness z_0 = 0.03 m; Upwind Roughness z_{01} = 0.3 m and z_{02} = 0.03 m

x, = 0.1	km					x ₁ •	0.3	km				
$\frac{x(km) \ 0.1}{z(m)}$	0.3	1	3	10	30	<u> </u>	0.1	0.3	1	3	10	30
2 (m) 2 0.22 4 0.20 6 0.19 8 0.19 10 0.18 15 0.17 20 0.17 30 0.17 40 0.15 60 0.14 80 0.13 90 0.13 100 0.13 120 0.12 140 0.11 180 0.11 180 0.11 200 0.11 250 0.10 300 0.09 350 0.09 400 0.08	0.20	0.22 0.20 0.18 0.18 0.17 0.17 0.15 0.15 0.15 0.14 0.14 0.13 0.11 0.11 0.10 0.10 0.09	0.22 0.20 0.19 0.18 0.17 0.15 0.15 0.15 0.15 0.15 0.11 0.14 0.14 0.13 0.12 0.12 0.11 0.00 0.09	0.22 0.20 0.19 0.18 0.17 0.16 0.15 0.14 0.14 0.14 0.13 0.13 0.12 0.12 0.12	0.22 0.20 0.19 0.18 0.17 0.16 0.15 0.14 0.14 0.13 0.12 0.12 0.12 0.12	2 (m) 2 4 6 8 10 15 20 30 40 50 60 70 80 90 120 140 160 180 200 250 300 350 400	0.23	0.22 0.20 0.19 0.19 0.18 0.17 0.16 0.17 0.16 0.15 0.14 0.13 0.13 0.12 0.11 0.11 0.11	0.22 0.20 0.19 0.18 0.17 0.17 0.15 0.15 0.15 0.15 0.14 0.14 0.11 0.11 0.11	0.22 0.20 0.19 0.18 0.17 0.15 0.15 0.15 0.14 0.14 0.14 0.13 0.12 0.12 0.10 0.09	0.22 0.20 0.19 0.18 0.17 0.16 0.15 0.14 0.14 0.14 0.13 0.12 0.12 0.11 0.10 0.09	0.22 0.20 0.19 0.18 0.17 0.16 0.15 0.14 0.14 0.13 0.12 0.12 0.12 0.12
$x_1 = 1 \text{ km}$							• 3 k		_			
$\frac{x(km)}{z(m)}$		1	3 .	10	30	x(km)	0.1	0.3	1	3	10	30
2 0.24 4 0.22 6 0.21 8 0.20 10 0.20 15 0.19 20 0.19 30 0.19 40 0.18 50 0.17 60 0.16 80 0.15 90 0.14 100 0.14 120 0.13 140 0.12 160 0.11 200 0.11 250 0.10 300 0.09 350 0.09 400 0.08	0.21 0.20 0.10 0.18 0.18 0.17 0.17 0.17 0.16 0.14 0.14 0.14 0.11 0.11 0.11 0.11 0.10 0.09 0.09	0.22 0.20 0.19 0.19 0.18 0.17 0.16 0.16 0.16 0.15 0.15 0.11 0.11 0.11 0.11 0.10 0.09	0.22 0.20 0.19 0.18 0.18 0.16 0.16 0.15 0.15 0.15 0.15 0.15 0.15 0.12 0.13 0.12 0.12 0.10 0.09	0.22 0.20 0.19 0.19 0.17 0.16 0.15 0.14 0.14 0.14 0.13 0.13 0.12 0.10 0.10	0.22 0.20 0.19 0.18 0.17 0.16 0.15 0.14 0.14 0.13 0.13 0.12 0.12 0.12 0.10 0.10	2 4 4 6 8 10 15 15 200 300 400 120 140 1600 250 300 350 400	0.25 0.22 0.22 0.22 0.21 0.20 0.19 0.17 0.17 0.16 0.16 0.14 0.13 0.12 0.09 0.09	0.24 0.22 0.21 0.20 0.19 0.18 0.18 0.18 0.17 0.17 0.17 0.16 0.15 0.14 0.14 0.13 0.12 0.10 0.09 0.08	0.23 0.21 0.20 0.20 0.19 0.18 0.17 0.16 0.16 0.16 0.16 0.15 0.14 0.13 0.13 0.12 0.10 0.09	0.22 0.21 0.19 0.19 0.17 0.16 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.10 0.10	0.22 0.29 0.19 0.18 0.16 0.16 0.15 0.14 0.14 0.14 0.13 0.13 0.12 0.12 0.10 0.10	0.22 0.20 0.19 0.19 0.18 0.16 0.16 0.15 0.15 0.14 0.14 0.13 0.13 0.13 0.12 0.12 0.12
x(km) 0.1		1	3	10	30	x(km z(m)			1	3	10	30
2 (m) 2 0.26 4 0.24 6 0.23 8 0.22 15 0.21 30 0.21 40 0.20 50 0.19 60 0.18 80 0.17 90 0.17 100 0.17 120 0.16 140 0.15 160 0.14 180 0.14 200 0.13 250 0.12 300 0.11 350 0.10 400 0.09	0.23 (0.22 (0.22 0.21 0.20 0.20	0.23 0.21 0.20 0.20 0.19 0.18 0.17 0.16 0.16 0.15 0.15 0.15 0.15 0.15 0.10 0.10	0.22 0.21 0.20 0.19 0.18 0.17 0.16 0.15 0.14 0.14 0.14 0.13 0.13 0.12 0.12 0.12	0.22 0.20 0.19 0.19 0.18 0.16 0.15 0.15 0.14 0.13 0.13 0.13 0.12 0.12 0.12	4 6 8 10 15 20 30 40 50 60 70 80 90 120 140 160 180 200 250 300 350 400	0.27 0.25 0.23 0.23 0.22 0.22 0.21 0.21 0.19 0.18 0.16 0.16 0.15 0.12 0.11	0.26 0.24 0.23 0.22 0.21 0.20 0.20 0.20 0.19 0.19 0.17 0.16 0.15 0.15	0.25 0.23 0.21 0.21 0.20 0.19 0.18 0.18 0.18 0.16 0.17 0.17 0.17 0.16 0.16 0.11 0.11	0.24 0.22 0.21 0.20 0.19 0.19 0.16 0.16 0.16 0.16 0.15 0.15 0.15 0.15	0.23 0.21 0.20 0.20 0.18 0.18 0.15 0.15 0.15 0.15 0.14 0.14 0.13 0.12 0.12	0.22 0.21 0.20 0.19 0.18 0.17 0.16 0.15 0.15 0.14 0.14 0.13 0.13 0.13 0.12 0.11

TABLE 7.6 Site Roughness $z_0 = 0.03$ m; Upwind Roughness $z_{01} = 0.3$ m and $z_{02} = 0.003$ m

$x_1 = 0.1 \text{ km}$		$x_1 = 0.3 \text{ km}$	
x(km) 0.1 0.3 1	3 10 30	$\frac{x(km) \ 0.1 \ 0.3 \ 1}{z(m)}$	3 10 30
2 (m) 2 (n) 4 0.17 0.17 0.17 6 0.16 0.16 0.16 8 0.15 0.15 0.15 10 0.15 0.15 0.15 15 0.14 0.14 0.15 20 0.14 0.13 0.13 0.13 0.13 0.13 50 0.11 0.12 0.13 60 0.11 0.12 0.13 60 0.11 0.12 0.13 60 0.11 0.11 0.12 70 0.10 0.10 0.10 10 0.10 0.10 0.11 90 0.10 0.10 0.10 10 0.10 0.10 0.11 10 0.10 0.	0.20 0.21 0.21 0.18 0.19 0.19 0.17 0.18 0.18 0.17 0.17 0.18 0.16 0.17 0.17 0.15 0.16 0.17 0.15 0.16 0.16 0.14 0.15 0.15 0.14 0.14 0.15 0.13 0.14 0.14 0.13 0.13 0.14 0.13 0.13 0.14 0.12 0.13 0.13 0.12 0.13 0.13 0.12 0.13 0.13 0.12 0.12 0.13 0.11 0.12 0.12 0.10 0.11 0.12 0.10 0.11 0.12 0.10 0.11 0.12 0.09 0.10 0.11 0.08 0.09 0.10 0.07 0.08 0.09 0.06 0.08 0.09	2 (m) 2 0.19 0.19 0.1 4 0.18 0.17 0.1 6 0.17 0.16 0.1 8 0.16 0.16 0.1 10 0.16 0.16 0.1 11 0.15 0.15 0.1 20 0.15 0.14 0.1 30 0.15 0.14 0.1 40 0.13 0.14 0.1 50 0.12 0.13 0.1 60 0.11 0.12 0.1 70 0.10 0.10 0.1 80 0.10 0.10 0.1 100 0.10 0.10 0.1 120 0.09 0.09 0.0 140 0.08 0.08 0.0 200 0.08 0.08 0.0 250 0.07 0.07 0.0 350 0.66 0.06 0.0 400 0.06 0.06 0.0	9 0.20 0.21 0.21 7 0.18 0.19 0.19 6 0.17 0.18 0.18 6 0.16 0.17 0.17 5 0.16 0.16 0.17 5 0.15 0.16 0.16 4 0.14 0.15 0.15 3 0.14 0.14 0.15 3 0.13 0.14 0.14 2 0.13 0.13 0.14 2 0.13 0.13 0.14 2 0.13 0.13 0.13 1 0.12 0.13 0.13 8 0.09 0.10 0.11 0.12 8 0.09 0.10 0.11 7 0.08 0.09 0.10 6 0.06 0.08 0.09
x ₁ = 1 km		$x_1 = 3 \text{ km}$	
x(km) 0.1 0.3 1	3 10 30	$\frac{x(km) \ 0.1 \ 0.3 \ 1}{z(m)}$	3 10 30
2 (m) 2 0.21 0.20 0.20 4 0.19 0.19 0.18 6 0.18 0.18 0.17 10 0.17 0.17 0.16 15 0.17 0.16 0.15 30 0.16 0.15 0.14 40 0.15 0.15 0.14 50 0.15 0.15 0.14 60 0.13 0.14 0.14 70 0.12 0.13 0.13 80 0.12 0.12 0.13 80 0.12 0.12 0.13 90 0.11 0.11 0.12 100 0.10 0.11 0.12 100 0.00 0.10 0.11 100 0.00 0.00 0.00	0.16 0.19 0.19 0.19 0.17 0.18 0.17 0.17 0.18 0.18 0.17 0.17 0.18 0.16 0.16 0.16 0.16 0.15 0.16 0.15 0.16 0.15 0.16 0.13 0.14 0.15 0.13 0.14 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13	2 0.23 0.22 0.2 4 0.21 0.20 0.1 6 0.20 0.19 0.1 8 0.20 0.19 0.1 10 0.19 0.18 0.1 15 0.18 0.17 0.1 20 0.18 0.17 0.1 30 0.18 0.16 0.1 40 0.17 0.16 0.1 50 0.16 0.16 0.1 60 0.16 0.16 0.1 70 0.15 0.15 0.1 80 0.14 0.15 0.1 90 0.14 0.14 0.1 100 0.13 0.13 0.1 120 0.12 0.12 0.1 140 0.11 0.11 0.1 160 0.10 0.10 0.1 180 0.09 0.10 0.1 180 0.09 0.09 0.0 250 0.08 0.08 0.0 300 0.07 0.07 0.0 350 0.06 0.06 0.0	9 0.19 0.19 0.19 8 0.19 8 0.17 0.18 0.18 0.18 0.19 7 0.17 0.18 0.18 7 0.16 0.16 0.16 0.16 0.16 0.16 0.15 0.15 0.15 0.15 0.15 0.14 0.14 0.14 0.14 0.14 0.14 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13
$x_1 = 10 \text{ km}$	2 20 20	$x_1 = 30 \text{ km}$ $x(\text{km}) 0.1 0.3 1$	3 10 30
$\frac{x(km) \ 0.1 \ 0.3 \ 1}{z(m)}$ 2 0.25 0.24 0.22	3 10 30 0.22 0.21 0.21	z(m) 2 0.26 0.25 0.2	4 0.23 0.22 0.22
4 0.23 0.22 0.21 6 0.22 0.21 0.20 8 0.21 0.20 0.19 10 0.21 0.20 0.19 15 0.20 0.19 0.18 20 0.20 0.18 0.17 30 0.19 0.18 0.17 40 0.18 0.18 0.16 50 0.18 0.18 0.16 60 0.17 0.17 0.16 80 0.16 0.16 0.16 90 0.16 0.16 0.16 100 0.15 0.15 0.15 140 0.14 0.14 0.14 160 0.13 0.13 0.13 180 0.12 0.12 0.12 200 0.11 0.12 0.12 200 0.11 0.12 0.12 200 0.10 0.10 0.10 300 0.09 0.09 0.09 400 0.08 0.08 0.08	0.20 0.20 0.20 0.20 0.19 0.19 0.19 0.19 0.19 0.19 0.18 0.18 0.18 0.18 0.17 0.17 0.17 0.16 0.16 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.14 0.14 0.14 0.13 0.13 0.14 0.13 0.13 0.14 0.13 0.13 0.14 0.13 0.13 0.14 0.13 0.13 0.14 0.13 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12	4 0.24 0.23 0.2 6 0.23 0.22 0.2 8 0.23 0.21 0.2 10 0.22 0.21 0.2 15 0.21 0.20 0.1 20 0.21 0.20 0.1 20 0.21 0.19 0.1 40 0.20 0.19 0.1 50 0.19 0.19 0.1 60 0.18 0.18 0.18 0.1 70 0.18 0.18 0.18 0.1 10 0.17 0.17 0.1 100 0.17 0.17 0.1 100 0.17 0.17 0.1 100 0.15 0.15 0.1 140 0.15 0.15 0.1 160 0.15 0.15 0.1 160 0.14 0.14 0.1 200 0.14 0.14 0.1 250 0.12 0.12 0.1 350 0.10 0.10 0.1	1 0.20 0.19 0.19 0.19 0 0.20 0.19 0.19 0.19 0.19 0.18 0.18 0.17 9 0.18 0.17 0.17 0.17 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.15 0.15 0.15 0.15 0.15 0.14 0.14 0.14 0.15 0.15 0.14 0.13 0.12 0.15 0.14 0.13 0.12 0.15 0.14 0.13 0.12 0.14 0.13 0.12 0.14 0.13 0.12 0.14 0.13 0.12 0.14 0.13 0.12 0.14 0.13 0.12 0.14 0.13 0.12 0.11 0.11 0.11 0.11 0.11 0.11 0.11

TABLE 7.7 Site Roughness $z_0 = 0.003$ m; Upwind Roughness $z_{01} = 0.7$ m and $z_{02} = 0.03$ m

$x_1 = 0.1 \text{ km}$		$x_1 = 0.3 \text{ km}$
x(km) 0.1 0.3 1 3	10 30	x(km) 0,1 0.3 1 3 10 30 z(m)
2 (m)	0.17	2 (m) 2 0.21 0.19 0.17 0.16 0.16 0.16 4 0.20 0.18 0.17 0.16 0.16 0.15 0.15 8 0.19 0.17 0.16 0.15 0.15 0.15 10 0.19 0.17 0.16 0.15 0.15 0.15 10 0.19 0.17 0.16 0.15 0.15 0.15 15 0.18 0.16 0.15 0.15 0.14 0.14 20 0.18 0.16 0.15 0.14 0.14 0.13 0.18 0.15 0.14 0.14 0.13 0.13 40 0.18 0.15 0.14 0.13 0.12 0.12 60 0.15 0.15 0.13 0.12 0.12 0.12 70 0.14 0.15 0.13 0.12 0.12 0.12 70 0.14 0.15 0.13 0.12 0.12 0.11 100 0.13 0.14 0.13 0.12 0.11 0.11 100 0.13 0.14 0.13 0.12 0.11 0.11 100 0.13 0.14 0.13 0.12 0.11 0.11 100 0.13 0.14 0.13 0.12 0.11 0.11 100 0.13 0.14 0.13 0.12 0.11 0.11 100 0.13 0.14 0.13 0.12 0.11 0.11 100 0.13 0.14 0.13 0.12 0.11 0.10 120 0.12 0.12 0.12 0.12 0.11 0.10 0.10 180 0.11 0.11 0.11 0.11 0.10 0.10 250 0.10 0.10 0.10 0.10 0.09 0.09 350 0.09 0.09 0.09 0.09 0.09 0.09 350 0.09 0.09 0.09 0.09 0.09 0.08 400 0.08 0.08 0.08 0.08 0.08
x ₁ = 1 km		x ₁ = 3 km
x(km) 0.1 0.3 1 3 z(m)	10 30	x(km) 0.1 0.3 1 3 10 30 z(m)
2 0.22 0.20 0.18 0.17 0.16 6 0.21 0.19 0.17 0.16 6 0.21 0.19 0.17 0.16 0.16 10 0.20 0.18 0.16 0.15 0.16 0.15 0.20 0.19 0.17 0.16 0.15 0.20 0.19 0.17 0.16 0.15 0.14 0.12 0.19 0.17 0.16 0.15 0.14 0.12 0.16 0.15 0.14 0.12 0.16 0.15 0.14 0.12 0.16 0.15 0.14 0.12 0.16 0.17 0.14 0.12 0.17 0.14 0.12 0.17 0.17 0.14 0.12 0.17 0.17 0.14 0.12 0.17 0.17 0.14 0.12 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17	0.16 0.16 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.14 0.14 0.14 0.13 0.13 0.13 0.12 0.12 0.12 0.12 0.12 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.10 0.11 0.10 0.11 0.10 0.11 0.10 0.11 0.10 0.11 0.10 0.11 0.10 0.11 0.10 0.11 0.10 0.11 0.10 0.11 0.10	2 0.24 0.21 0.19 0.18 0.17 0.16 4 0.23 0.20 0.18 0.17 0.16 0.16 6 0.22 0.20 0.18 0.16 0.15 0.15 0.15 0.22 0.19 0.17 0.16 0.15 0.15 10 0.22 0.19 0.17 0.16 0.15 0.15 15 0.21 0.19 0.17 0.16 0.15 0.15 15 0.21 0.19 0.17 0.16 0.15 0.14 0.14 0.13 0.21 0.18 0.16 0.15 0.14 0.14 0.13 0.21 0.18 0.16 0.15 0.14 0.14 0.13 0.21 0.19 0.15 0.15 0.13 0.13 0.12 0.17 0.15 0.13 0.13 0.10 0.20 0.18 0.15 0.13 0.13 0.12 0.12 0.19 0.19 0.15 0.13 0.12 0.12 0.19 0.19 0.15 0.13 0.12 0.11 0.10 0.19 0.19 0.15 0.13 0.12 0.11 0.11 0.00 0.17 0.17 0.15 0.13 0.11 0.11 0.10 0.17 0.17 0.15 0.13 0.11 0.11 0.10 0.17 0.17 0.15 0.13 0.11 0.11 0.10 0.16 0.16 0.15 0.13 0.11 0.10 110 0.15 0.15 0.15 0.13 0.11 0.10 110 0.15 0.15 0.15 0.13 0.11 0.10 110 0.15 0.15 0.15 0.13 0.11 0.10 110 0.15 0.15 0.15 0.13 0.11 0.10 110 0.15 0.15 0.15 0.13 0.11 0.10 0.10 0.14 0.14 0.14 0.12 0.11 0.10 0.10 0.14 0.14 0.14 0.12 0.11 0.10 0.10 0.13 0.13 0.13 0.13 0.13
$x_1 = 10 \text{ km}$ $x(\text{km}) 0.1 0.3 1 3$	10 30	$x_1 = 30 \text{ km}$ $\frac{x \text{ (km) } 0.1 0.3 1}{z \text{ (m)}}$ 3 10 30
2 (m) 2 0.25 0.23 0.20 0.19 4 0.24 0.22 0.19 0.18 6 0.24 0.21 0.19 0.17 8 0.23 0.21 0.18 0.17 10 0.23 0.21 0.18 0.16 20 0.22 0.20 0.18 0.16 30 0.22 0.19 0.17 0.16 40 0.23 0.19 0.16 0.12 50 0.22 0.19 0.16 0.12 60 0.21 0.20 0.16 0.12 70 0.20 0.20 0.16 0.14 80 0.20 0.20 0.16 0.14 90 0.19 0.19 0.17 0.14 100 0.19 0.19 0.17 0.14 120 0.18 0.18 0.17 0.14 120 0.18 0.18 0.17 0.14 120 0.18 0.18 0.17 0.14 120 0.15 0.15 0.16 0.12 250 0.13 0.13 0.13 0.13 300 0.12 0.12 0.12 0.12 3550 0.11 0.11 0.11 0.1 400 0.10 0.10 0.10 0.10	0 0.16 0.17 0 0.16 0.15 0 0.16 0.15 0 0.16 0.15 0 0.15 0.15 0 0.15 0.14 0 0.15 0.14 0 0.15 0.14 0 0.13 0.12 0 0.13 0.12 0 0.12 0.12 0 0.12 0.11 0 0.12 0.11 0 0.12 0.11 0 0.12 0.11 0 0.12 0.11 0 0.12 0.11 0 0.12 0.11 0 0.12 0.10 0 0.12 0.10 0 0.12 0.10 0 0.12 0.10 0 0.12 0.10 0 0.12 0.10 0 0.12 0.10 0 0.12 0.10 0 0.10 0.09 1 0.10 0.09 1 0.10 0.09	2 (m) 4 0.26 0.23 0.20 0.19 0.18 0.17 6 0.25 0.22 0.20 0.19 0.17 0.16 8 0.25 0.22 0.20 0.18 0.17 0.16 10 0.25 0.22 0.20 0.18 0.16 0.15 15 0.24 0.21 0.19 0.17 0.16 0.15 20 0.23 0.21 0.19 0.17 0.15 0.14 30 0.24 0.20 0.18 0.16 0.15 20 0.23 0.21 0.18 0.16 0.15 0.14 40 0.24 0.20 0.18 0.16 0.15 0.14 40 0.24 0.20 0.18 0.16 0.15 0.14 10 0.22 0.21 0.17 0.15 0.14 0.13 50 0.23 0.21 0.17 0.15 0.14 0.13 50 0.23 0.21 0.17 0.15 0.14 0.13 60 0.22 0.21 0.17 0.15 0.14 0.13 90 0.20 0.20 0.18 0.15 0.12 0.12 100 0.20 0.20 0.18 0.15 0.12 0.11 100 0.20 0.20 0.18 0.15 0.12 0.11 100 0.20 0.20 0.18 0.15 0.12 0.11 120 0.19 0.19 0.18 0.15 0.12 0.11 140 0.19 0.19 0.18 0.15 0.12 0.10 140 0.19 0.19 0.18 0.15 0.12 0.10 160 0.18 0.18 0.18 0.15 0.12 0.10 160 0.18 0.18 0.18 0.15 0.12 0.10 250 0.17 0.17 0.17 0.15 0.12 0.10 250 0.15 0.15 0.15 0.14 0.11 0.09 350 0.13 0.13 0.13 0.13 0.11 0.09

THE PREPARATION OF THIS DATA ITEM

The work on this particular Item was monitored and guided by the Wind Engineering Panel which has the following constitution:

Chairman

Mr T.V. Lawson – Bristol University

Members

Mr D.D. Croft – Ove Arup and Partners

Prof. A.G. Davenport* – University of Western Ontario, Canada Dr D.M. Deaves – Atkins Research and Development

Dr A.R. Flint – Flint and Neill

Prof. D.H. Freeston* - Auckland University, New Zealand
Mr R.I. Harris - Cranfield Institute of Technology
Mr J.R. Mayne - Building Research Establishment

Mr R. Melling – Racal Antennas Ltd Dr G.A. Mowatt – Earl and Wright Ltd

Mr J.R.C. Pedersen – Independent Mr C. Scruton – Independent

Mr R.E. Whitbread – National Maritime Institute

Mr G. Wiskin – British Broadcasting Corporation.

The work on this Item was carried out in the Wind Engineering Group of ESDU under the supervision of Mr N. Thompson. The member of staff who undertook the technical work involved in the initial assessment of available information and the construction and subsequent development of the Item was

Mr B.C. Freeman – Senior Engineer.

^{*} Corresponding Member