

UNIVERSIDADE DE CAXIAS DO SUL – UCS CENTRO DE CIÊNCIAS EXATAS E TECNOLOGIA – CCET DEPARTAMENTO DE INFORMÁTICA – DEIN PROFA. MÁRCIA RODRIGUES NOTARE

Respostas da Lista de Exercícios 4

R₁ = {(3,3), (4,2), (4,4), (5,5), (6,2), (6,3), (10,2), (10,5)}
Domínio de definição = (3,4,5,6,10)
Conjunto Imagem = {2,3,4,5}

- b) $R_2 = \{(2,6), (3,4), (4,3)\}$ Domínio de definição = $\{2,3,4\}$ Conjunto Imagem = $\{3,4,6\}$
- c) $R_3 = \{(4,3), (5,4)\}$ Domínio de definição = $\{4,5\}$ Conjunto Imagem = $\{3,4\}$
- d) $R_4=\{(2,3)(2,4)(,2,5)(2,6)(2,10)(3,3)(3,4)(3,5)(3,6)(3,10)(4,4)(4,5)(4,6)(4,10)(5,5)(5,6)(5,10)\}$ Domínio de definição = $\{2,3,4,5\}$ = A Conjunto Imagem = $\{3,4,5,6,10\}$ = B
- 2. Todas as possíveis relações de A = {a, b} são:
- 1) $\{(a,a),(a,b),(b,a),(b,b)\}$ 9) {(a,b),(b,a)} 2) {(a,a)} 10) $\{(a,b),(b,b)\}$ 3) $\{(a,b)\}$ 11) $\{(b,a),(b,b)\}$ 4) {(b,a)} 12) $\{(a,a),(a,b),(b,a)\}$ 5) {(b,b)} 13) $\{(a,a),(a,b),(b.b)\}$ 6) $\{(a,a),(a,b)\}$ 14) $\{(a,a),(b,a),(b,b)\}$ 7) $\{(a,a),(b,a)\}$ 15) $\{(a,b),(b,a),(b,b)\}$ 8) $\{(a,a),(b,b)\}$ **16**) ∅
- a) Reflexivas: 1, 8, 13, 14 b) Irreflexivas: 3, 4, 9, 16
- c) Simétricas: 1, 2, 5, 8, 9, 12, 15, 16 d) Anti-simétricas: 2, 5, 8, 13, 14, 16
- e) Transitivas: 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 16

3.

- a) reflexiva, simétrica, transitiva
- b) reflexiva, anti-simétrica
- c) anti-simétrica
- d) reflexiva, simétrica, transitiva
- 4. Suponha B subconjunto de todas as relações de um dado conjunto A. Se R e S pertencem a B, então são subconjuntos de A×A. Logo, pode-se realizar operações como R∪S, R∩S, ~R, ~S ou R S, que resultam em novos subconjuntos de A×A, isto é, em novas relações binárias.

5. a) $R_1 = \{(a,a),(b,b),(c,c),(d,d),(b,c),(c,a),(c,b)\}$

b) $R_2 = \{(a,b),(b,a),(a,a)\}$

c) $R_3 = \{(a,a),(a,b),(b,a),(a,c),(b,c),(b,b)\}$

d) $R_4 = \{(a,a),(a,c),(c,b)\}$

e) $R_5 = \{(a,a),(b,b),(c,c),(d,d),(a,b),(b,a),(c,a)\}$

f) $R_6 = \{(a,a),(b,b),(c,c),(d,d),(a,b),(b,a),(b,c),(c,b)\}$

g) $R_7 = \{(a,a),(b,b)\}$

6. Matriz: a diagonal da matriz deve ser constituída de 0 e 1.

Grafo: alguns nodos devem conter aresta com origem e destino em si mesmos e outros não.

7. Seja A = $\{1,2,3\}$

a)
$$R = \{(1,2),(1,3),(2,1)\}$$

b)
$$R = \{(1,1),(2,2),(3,3)\}$$

8.

	1	2	3	4	5
1	0	1 0 0 0	0	0	1
2	0	0	1	0	0
3	0	0	0	1	0
4	0	0	0	0	0
5	0	0	0	0	0

	1	2	3	4	5
1	1 0 0 0	1	0	0	1
1 2 3 4 5	0	1	1	0	0
3	0	0	1	1	0
4	0	0	0	1	0
5	0	0	0	0	1

	1	2	3	4	5	
1	0	1 0 1 0 0	0	0	1	
2	1	0	1	0	0	
3	0	1	0	1	0	
4	0	0	1	0	0	
5	1	0	0	0	0	

9. a) FECHO-{reflexivo, transitivo}(R_0) = {(1,1),(1,2),(2,1),(2,2),(3,3)}

R_0	1	2	3
1	1	1	0
2	1	1	0
3	0	0	1

FECHO-{simétrico}(R_0) = {(1,1),(1,2),(2,1)} = R_0

R_0	1	2	3
1	1	1	0
2	1	0	0
3	0	0	0

b) FECHO-{reflexivo, transitivo}(R_1) = {(1,2),(1,1),(2,2),(2,1),(3,3)} = R_1

R ₁	1	2	3	
1	1	1	0	
2	1	1	0	
3	0	0	1	

 $FECHO-\{sim\acute{e}trico\}(R_1)=\{(1,2),(1,1),(2,2),(2,1),(3,3)\}=R_1$

R_1	1	2	3
1	1	1	0
2	1	1	0
3	0	0	1

c) FECHO-{reflexivo, transitivo}(R_2) = {(1,1),(2,2),(3,3),(1,2),(2,3),(1,3)}

R_2	1	2	3
1	1	1	1
2	0	1	1
3	0	0	1

 $\label{eq:FECHO-simétrico} \text{FECHO-}\{\text{simétrico}\}(R_2) = \{(1,1),(2,2),(3,3),(1,2),(2,3), \textbf{(2,1),(3,2)}\}$

R_2	1	2	3
1	1	1	0
2	1	1	1
3	0	1	1

d) FECHO-{reflexivo,transitivo}(R_3) = {(1,1),(2,2),(1,2),(2,3),(3,1),(3,3),(1,3),(2,1),(3,2)}

R_3	1	2	3
1	1	1	1
2	1	1	1
3	1	1	1

FECHO-{simétrico}(R_3) = {(1,1),(2,2),(1,2),(2,3),(3,1),(2,1),(3,2),(1,3)}

R_3	1	2	3
1	1	1	1
2	1	1	1
3	1	1	0

10.

- a) Não, pois se a relação é irreflexiva, ela é seu próprio fecho irreflexivo. Se a relação não é irreflexiva, é porque existem pares do tipo (x,x) e, acrescentar mais pares a essa relação não mudaria essa situação.
- b) Não, pois se a relação é anti-simétrica, ela é seu próprio fecho anti-simétrico. Se a relação não é anti-simétrica, é porque existem pares do tipo (x,y) e (y,x) e, acrescentar mais pares a essa relação não mudaria essa situação.