$$\Lambda_c(2625)^+$$

$$I(J^P) = O(\frac{3}{2})$$
 Status: ***

The spin-parity has not been measured but is expected to be $3/2^-$: this is presumably the charm counterpart of the strange $\Lambda(1520)$.

$\Lambda_{c}(2625)^{+}$ MASS

The mass is obtained from the $\Lambda_{\it C}(2625)^+ - \Lambda_{\it C}^+$ mass-difference measurements below.

VALUE (MeV)EVTSDOCUMENT IDTECNCOMMENT**2628.11±0.19 OUR FIT**Error includes scale factor of 1.1.• • • We do not use the following data for averages, fits, limits, etc. • • •2626.6 ±0.5 ±1.542 ± 9ALBRECHT93FARGSee ALBRECHT 97

$\Lambda_c(2625)^+ - \Lambda_c^+$ MASS DIFFERENCE

VALUE (MeV) DOCUMENT ID TECN COMMENT 341.65 ± 0.13 OUR FIT Error includes scale factor of 1.1. **341.65±0.15 OUR AVERAGE** Error includes scale factor of 1.3. See the ideogram below. 6.2k AALTONEN 11H CDF $p\overline{p}$ at 1.96 TeV $341.65 \pm 0.04 \pm 0.12$ $e^+e^-pprox~10~{
m GeV}$ $342.1 \pm 0.5 \pm 0.5$ **ALBRECHT** ARG 51 CLE2 $e^+e^-\approx 10.5 \text{ GeV}$ $342.2 \pm 0.2 \pm 0.5$ 245 ± 19 **EDWARDS** E687 γ Be, $\overline{E}_{\gamma} = 220$ GeV $340.4 \pm 0.6 \pm 0.3$ 40 ± 9 **FRABETTI**

WEIGHTED AVERAGE 341.65±0.15 (Error scaled by 1.3)

Created: 5/30/2017 17:20

$\Lambda_{c}(2625)^{+}$ WIDTH

VALUE (MeV)	CL%	EVTS	DOCUMENT ID		TECN	COMMENT
<0.97	90	6.2k	AALTONEN	11H	CDF	$p\overline{p}$ at 1.96 TeV
ullet $ullet$ We do not use the following data for averages, fits, limits, etc. $ullet$ $ullet$						
<1.9	90	245 ± 19	EDWARDS	95	CLE2	$e^+e^-pprox~10.5~{ m GeV}$
<3.2	90		ALBRECHT	93F	ARG	$e^+e^-pprox\varUpsilon$ (4S)

$\Lambda_c(2625)^+$ DECAY MODES

 $\Lambda_{c}^{+}\pi\pi$ and its submode $\Sigma(2455)\pi$ are the only strong decays allowed to an excited Λ_{c}^{+} having this mass.

	Mode	Fraction (Γ_i/Γ)	Confidence level
$\overline{\Gamma_1}$	$\Lambda_c^+ \pi^+ \pi^-$	[a] ≈ 67%	_
Γ_2	$\Sigma_c(2455)^{++}\pi^- \ \Sigma_c(2455)^0\pi^+$	<5	90%
Γ3	Σ_c (2455) $^0\pi^+$	<5	90%
Γ_4	$\Lambda_c^+ \pi^+ \pi^-$ 3-body	large	
Γ_5	$\Lambda_c^+ \tilde{\pi}^0$ $\Lambda_c^+ \gamma$	[b] not seen	
Γ_6	$\Lambda_c^+ \gamma$	not seen	

- [a] See AALTONEN 11H, Fig. 8, for the calculated ratio of $\Lambda_c^+\pi^0\pi^0$ and $\Lambda_c^+\pi^+\pi^-$ partial widths as a function of the $\Lambda_c(2595)^+-\Lambda_c^+$ mass difference. At our value of the mass difference, the ratio is about 4.
- [b] A test that the isospin is indeed 0, so that the particle is indeed a Λ_c^+ .

$\Lambda_c(2625)^+$ BRANCHING RATIOS

Created: 5/30/2017 17:20

$\Gamma(\Lambda_c^+\pi^+)$	π^{-} 3-	body)/ $\Gamma(\Lambda_c^+\pi^-)$	$^{+}\pi^{-})$				Γ_4/Γ_1
<u>VALUE</u>		<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT	
• • • We d	do not	use the following	data for average	s, fits,	limits,	etc. • • •	
0.54 ± 0.14		16	ALBRECHT	93F	ARG	$e^+e^-pprox \Upsilon(e^+e^-)$	4 <i>S</i>)
$\Gamma(\Lambda_c^+\pi^0)$	/ Г (Л	$_{c}^{+}\pi^{+}\pi^{-})$					Γ_5/Γ_1
$\Lambda_c^+ \pi$.0 deca	ay is forbidden by	isospin conservat	ion if	this sta	te is in fact a /	١ _c .
VALUE		<u>CL%</u>	DOCUMENT ID		TECN	COMMENT	
<0.91		90	EDWARDS	95	CLE2	$e^+e^-pprox~10$.5 GeV
$\Gamma(\Lambda_c^+\gamma)/$	$\Gamma(\Lambda_c^+$	$(\pi^{+}\pi^{-})$					Γ_6/Γ_1
VALUE		<u>CL%</u>	DOCUMENT ID		TECN	COMMENT	
<0.52		90	EDWARDS	95	CLE2	$e^+e^-\approx 10$.5 GeV
		$\Lambda_c(2$	2625) ⁺ REFER	RENC	ES		
AALTONEN ALBRECHT EDWARDS	11H 97 95	PR D84 012003 PL B402 207 PRL 74 3331	T. Aaltonen <i>e</i> H. Albrecht <i>et</i> K.W. Edwards	al.		(ARGUS	Collab.) Collab.) Collab.)

AALTONEN	11H	PR D84 012003	T. Aaltonen et al.	(CDF Collab.)
ALBRECHT	97	PL B402 207	H. Albrecht et al.	(ARGUS Collab.)
EDWARDS	95	PRL 74 3331	K.W. Edwards et al.	(CLEO Collab.)
FRABETTI	94	PRL 72 961	P.L. Frabetti <i>et al.</i>	(FNAL E687 Collab.)
ALBRECHT	93F	PL B317 227	H. Albrecht <i>et al.</i>	(ARGUS Collab.)