Bilinear forms

August 5, 2015

In this Chapter we study finite-dimensional vector spaces over an arbitrary field \mathbb{F} with a bilinear form defined on the space. This is a generalisation of the notion of an inner product space over \mathbb{R} .

1 The notion of bilinear form. Matrix representation. Congruent matrices.

Let V be a vector space over \mathbb{F} .

Definition 1.1: A bilinear form on V is a map $g: V \times V \to \mathbb{F}$ such that for any u, u', v, v' in V and $scalar \ a \in \mathbb{F}$ we have

- 1. (linearity in the first variable) g(u+u',v)=g(u,v)+g(u',v) and g(au,v)=ag(u,v);
- 2. (linearity in the second variable) g(u, v + v') = g(u, v) + g(u, v') and g(u, av) = ag(u, v).

Remark 1.2: Equivalently, $g: V \times V \to \mathbb{F}$ is a bilinear form if and only if for all $u \in V$ the map $l_u: V \to V$ defined by $l_u: v \mapsto g(u,v)$ is a linear form on V and for all $v \in V$ the map $r_v: V \to V$ defined by $r_v: u \mapsto g(u,v)$ is a linear form on V.

- **Example 1.3:** 1. Let (V, \langle, \rangle) be an inner product space over \mathbb{R} . Then $g: V \times V \to \mathbb{R}$ defined by $g(u, v) = \langle u, v \rangle$ is a bilinear form. In particular, the standard dot product in \mathbb{R}^n is a bilinear form. (Note, however, that this is not so in an inner product space over \mathbb{C} . The standard dot product in \mathbb{C}^n is not a bilinear form!)
 - 2. The zero form. \mathbb{F} is an arbitrary field and $g: V \times V \to \mathbb{F}$ is defined by g(u,v) = 0 for all $u,v \in V$.
 - 3. $V = \mathbb{F}_{col}^2$ and g is the determinant form:

$$g(u, v) = \det \begin{bmatrix} x^1 & y^1 \\ x^2 & y^2 \end{bmatrix} = x^1 y^2 - x^2 y^1$$

for
$$u = \begin{bmatrix} x^1 \\ x^2 \end{bmatrix}$$
, $v = \begin{bmatrix} y^1 \\ y^2 \end{bmatrix}$.

(Since the determinant of a matrix is linear in each of its columns when the remaining n-1 columns are fixed, the example can be generalized to $V = \mathbb{F}_{col}^n$ for n > 2. Consider an $n \times n$ matrix with all but two columns fixed, then its determinant, considered as a function of the two remaining columns, is bilinear in its two arguments.)

- 4. $V = \mathbb{R}^4$ and $g(u,v) = x^1y^1 + x^2y^2 + x^3y^3 x^4y^4$ for $u = (x^1, x^2, x^3, x^4)$ and $v = (y^1, y^2, y^3, y^4)$ (this form is called the Lorentz form, and \mathbb{R}^4 endowed with this form is called the Minkowski space an important tool in the special relativity theory).
- 5. If g is a bilinear form on V and $f: V \to V$ is a linear operator, then $\tilde{g}: V \times V \to \mathbb{F}$ defined by $\tilde{g}(u,v) = g(f(u),v)$ is also bilinear.

1