Задача А. Наркоконтроль

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

В маленьком городке «М» начала действовать служба наркоконтроля. Первая задача службы — выяснить, сколько наркоторговцев работает в окрестности города. Агенты службы опросили всех наркозависимых в городе и составили список случаев продажи травки, произошедших за одни сутки, с указанием места и времени наблюдения. Теперь аналитики хотят понять, сколько же на самом деле есть наркоторговцев. Из данных разведки известна максимальная скорость, с которой может двигаться наркоторговец. Аналитики просят вас узнать, какое минимальное количество наркоторговцев могли участвовать во всех зафиксированных случаях продажи травки.

Формат входных данных

На первой строке входного файла содержатся целые числа n и v — количество случаев продажи травки и максимальная скорость наркоторговца ($1\leqslant n\leqslant 100, 1\leqslant v\leqslant 10000$). Следующие n строк содержат описания случаев продажи травки в формате «ЧЧ:ММ x y», где ЧЧ:ММ — время продажи, x и y — координаты места, в котором продавалась травка (для простоты будем считать, что всё происходило на плоскости). Координаты по модулю не превышают 1000. Скорость выражена в км/ч, координаты — в км.

Формат выходных данных

Выведите в выходной файл одно число — минимальное возможное количество наркоторговцев.

Пример

стандартный ввод	стандартный вывод
4 1	2
12:00 0 0	
13:10 0 1	
14:00 1 0	
15:00 1 1	

Задача В. Экспедиция

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Винни-Пух отправился в очередную Экспедицию по Лесу!

Лес представляет собой n полянок, соединённых m двусторонними тропинками. При этом возможно, что для некоторых полянок не существует способа добраться из одной в другую по тропинкам. За половину суток (день или ночь) Пух проходит ровно по одной тропинке.

Когда Пух пришёл на рассвете на очередную полянку, ему показалось, что он вернулся к полянке, с которой он начал свое путешествие. Он также уверен, что не проходил ни по одной тропинке дважды, и что все полянки до этого были различными. Также он помнит, что он отправился в Экспедицию на рассвете, то есть число дней в пути было равно числу ночей.

Вы решили помочь медвежонку и хотите определить по карте Леса, могло ли такое случиться.

Формат входных данных

Первая строка содержит число T — число наборов входных данных, которые вам предстоит обработать. Далее следуют T наборов входных данных. Каждый набор задаётся в следующем формате.

В первой строке набора входных данных заданы два числа n и m ($2 \leqslant n \leqslant 500\,000$, $1 \leqslant m \leqslant 500\,000$) — количество полянок и количество тропинок в соответствующем Лесу.

В следующих m строках содержатся описания тропинок: каждая строка состоит из двух целых чисел $u_i, v_i \ (1 \leqslant u_i, v_i \leqslant n, u_i \neq v_i)$, обозначающих номера полянок, соединённых очередной тропинкой.

Гарантируется, что никакие две полянки не соединены двумя или более тропинками.

Гарантируется, что и суммарное число полянок, и суммарное число тропинок по всем наборам входных данных не превзойдёт 500 000.

Формат выходных данных

Для каждого набора входных данных выведите в отдельной строке «YES», если в Лесу существует маршрут, удовлетворяющий описанию Пуха, и «NO» в противном случае.

Пример

стандартный ввод	стандартный вывод
2	YES
5 6	NO
1 2	
2 3	
3 4	
4 5	
5 2	
5 3	
3 3	
1 2	
2 3	
3 1	

Замечание

Тест из условия состоит из двух наборов входных данных.

В первом примере Пух мог начать Экспедицию на полянке с номером 2, в первый день перейти на полянку 5, в первую ночь перейти на полянку 3, во второй день перейти на полянку 4 и во вторую ночь вернуться обратно на полянку 2.

Во втором примере, независимо от выбора начальной полянки, Пух может вернуться на неё, но ему в любом случае потребуется три перехода, а значит дней в пути будет больше, чем ночей.

Задача С. Цветные волшебники

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Сказочная страна представляет собой множество городов, соединенных дорогами с двухсторонним движением. Причем из любого города страны можно добраться в любой другой город либо непосредственно, либо через другие города. Известно, что в сказочной стране не существует дорог, соединяющих город сам с собой и между любыми двумя разными городами, существует не более одной дороги.

В сказочной стране живут желтый и синий волшебники. Желтый волшебник, пройдя по дороге, перекрашивает ее в желтый цвет, синий — в синий. Как известно, при наложении желтой краски на синюю, либо синей краски на желтую, краски смешиваются и превращаются в краску зеленого цвета, который является самым нелюбимым цветом обоих волшебников.

В этом году в столице страны (городе f) проводится конференция волшебников. Поэтому желтый и синий волшебники хотят узнать, какое минимальное количество дорог им придется перекрасить в зеленый цвет, чтобы добраться в столицу. Изначально все дороги не покрашены.

Начальное положение желтого и синего волшебников заранее не известно. Поэтому необходимо решить данную задачу для k возможных случаев их начальных расположений.

Формат входных данных

Первая строка входного файла содержит целые числа: $n\ (1\leqslant n\leqslant 10^5)$ и $m\ (1\leqslant mle \cdot 5\cdot 10^5)$ — количество городов и дорог в волшебной стране соответственно.

Вторая строка содержит одно целое число f $(1\leqslant f\leqslant n)$ — номер города, являющегося столицей сказочной страны.

В следующих m строках, находится описание дорог страны. В этих m строк записано по два целых числа a_i и b_i , означающих, что существует дорога, соединяющая города a_i и b_i .

Следующая строка содержит целое число k ($1 \le k \le 10^5$) — количество возможных начальных расположений волшебников.

Далее следуют k строк, каждая из которых содержит два целых числа — номера городов, в которых изначально находится желтый и синий волшебники соответственно.

Формат выходных данных

Для каждого из k случаев, ваша программа должна вывести в выходной минимальное количество дорог, которое придется покрасить в зеленый цвет волшебникам для того, чтобы добраться в столицу

Пример

стандартный ввод	стандартный вывод
6 6	1
1	2
1 2	
2 3	
3 4	
4 2	
4 5	
3 6	
2	
5 6	
6 6	

Задача D. Обновление дата-центров

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 512 мегабайт

У компании BigData Inc. есть n дата-центров, пронумерованных от 1 до n, расположенных по всему миру. В этих дата-центрах хранятся данные клиентов компании (как можно догадаться из названия — большие данные!)

Основой предлагаемых компанией BigData Inc. услуг является гарантия возможности работы с пользовательскими данными даже при условии выхода какого-либо из дата-центров компании из доступности. Подобная гарантия достигается путём использования двойной репликации данных. Двойная репликация — это подход, при котором любые данные хранятся в двух идентичных копиях в двух различных дата-центрах.

Про каждого из m клиентов компании известны номера двух различных дата-центров $c_{i,1}$ и $c_{i,2}$, в которых хранятся его данные.

Для поддержания работоспособности дата-центра и безопасности данных программное обеспечение каждого дата-центра требует регулярного обновления. Релизный цикл в компании BigData Inc. составляет один день, то есть новая версия программного обеспечения выкладывается на каждый компьютер дата-центра каждый день.

Обновление дата-центра, состоящего из множества компьютеров, является сложной и длительной задачей, поэтому для каждого дата-центра выделен временной интервал длиной в час, в течение которого компьютеры дата-центра обновляются и, как следствие, могут быть недоступны. Будем считать, что в сутках h часов. Таким образом, для каждого дата-центра зафиксировано целое число u_j ($0 \le u_j \le h-1$), обозначающее номер часа в сутках, в течение которого j-й дата-центр недоступен в связи с плановым обновлением.

Из всего вышесказанного следует, что для любого клиента должны выполняться условия $u_{c_{i,1}} \neq u_{c_{i,2}}$, так как иначе во время одновременного обновления обоих дата-центров, компания будет не в состоянии обеспечить клиенту доступ к его данным.

В связи с переводом часов в разных странах и городах мира, время обновления в некоторых дата-центрах может сдвинуться на один час вперёд. Для подготовки к непредвиденным ситуациям руководство компании хочет провести учения, в ходе которых будет выбрано некоторое непустое подмножество дата-центров, и время обновления каждого из них будет сдвинуто на один час позже внутри суток (то есть, если $u_j = h - 1$, то новым часом обновления будет 0, иначе новым часом обновления станет $u_j + 1$). При этом учения не должны нарушать гарантии доступности, то есть, после смены графика обновления должно по-прежнему выполняться условие, что данные любого клиента доступны хотя бы в одном экземпляре в любой час.

Учения — полезное мероприятие, но трудоёмкое и затратное, поэтому руководство компании обратилось к вам за помощью в определении минимального по размеру непустого подходящего подмножества дата-центров, чтобы провести учения только на этом подмножестве.

Формат входных данных

В первой строке находятся три целых числа n, m и h ($2 \le n \le 100\,000, 1 \le m \le 100\,000, 2 \le h \le 100\,000$) — число дата-центров компании, число клиентов компании и количество часов в сутках.

Во второй строке вам даны n чисел u_1, u_2, \ldots, u_n ($0 \le u_j < h$), j-е из которых задаёт номер часа, в который происходит плановое обновление программного обеспечения на компьютерах датацентра j.

Далее в m строках находятся пары чисел $c_{i,1}$ и $c_{i,2}$ ($1 \leqslant c_{i,1}, c_{i,2} \leqslant n, c_{i,1} \neq c_{i,2}$), задающие номера дата-центров, на которых находятся данные клиента i.

Гарантируется, что при заданном расписании обновлений в дата-центрах любому клиенту в любой момент доступна хотя бы одна копия его данных.

Формат выходных данных

В первой строке выведите минимальное количество дата-центров k ($1 \le k \le n$), которые должны затронуть учения, чтобы не потерять гарантию доступности. Во второй строке выведите k различных целых чисел — номера кластеров x_1, x_2, \ldots, x_k ($1 \le x_i \le n$), на которых в рамках учений обновления станут проводиться на час позже. Номера кластеров можно выводить в любом порядке.

Если возможных ответов несколько, разрешается вывести любой из них. Гарантируется, что хотя бы один ответ, удовлетворяющий условиям задачи, существует.

Примеры

стандартный ввод	стандартный вывод
3 3 5	1
4 4 0	3
1 3	
3 2	
3 1	
4 5 4	4
2 1 0 3	1 2 3 4
4 3	
3 2	
1 2	
1 4	
1 3	

Замечание

Рассмотрим первый тест из условия. Приведённый ответ является единственным способом провести учения, затронув только один дата-центр. В таком сценарии третий сервер начинает обновляться в первый час дня, и никакие два сервера, хранящие данные одного и того же пользователя, не обновляются в один и тот же час.

 ${\bf C}$ другой стороны, например, сдвинуть только время обновления первого сервера на один час вперёд нельзя — в таком случае данные пользователей 1 и 3 будут недоступны в течение нулевого часа.

Задача E. Xor the Graph

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Дан неориентированный граф, состоящий из N вершин и M рёбер. Каждому ребру присвоено значение, 0 или 1. Операция состоит в том, чтобы выбрать путь (не обязательно простой), и изменить значения, записанные на каждом его ребре на противоположные. Сделайте значения на всех рёбрах нулями за минимальное число операций.

Формат входных данных

На первой строке заданы два целых числа N и M $(1 \leqslant N \leqslant 10^5, 0 \leqslant M \leqslant 10^5).$

В каждой из следующих M строк записаны по три целых числа a, b и c. Они означают, что существует ребро между вершинами (a,b), изначальное значение которого равно c $(1 \le a,b \le n,0 \le c \le 1)$.

Формат выходных данных

Выведите количество операций K на первой строке.

В последующих K строках выведите пути, которые вы выбрали:

- ullet Первым числом выведите P количество вершин в пути
- Затем выведите P целых чисел v_1, v_2, \dots, v_P индексы вершин. Для всех $1 \le i \le P-1$ (v_i, v_{i+1}) должно являться ребром в заданном графе.

Решение будет считаться верным, если оно использует минимальное количество операций, и при этом $\sum P \leqslant 4*M$.

Пример

стандартный ввод	стандартный вывод
13 14	3
1 2 1	5 1 2 3 4 6
2 3 1	8 4 2 7 8 9 7 2 5
3 4 1	3 12 11 13
2 4 1	
1 4 0	
4 6 1	
4 10 0	
2 5 1	
2 7 0	
7 8 1	
8 9 1	
9 7 1	
11 12 1	
11 13 1	

Замечание

Ниже приведён граф в первом тесте.

