Agenda

- Lecture: Timing in sequential logics
 - Setup/hold time
 - Clock skew

Sequential timing equations (all we need)

1. Hold Time Constraint:

Let's go over all subscripts first.

$$t_{\text{hold}} < t_{ccq} + t_{cd}$$

2. Hold Time Constraint with Skew:

$$t_{\text{hold}} + t_{\text{skew}} < t_{ccq} + t_{cd}$$

3. Setup Time Constraint:

$$T_c \ge t_{pcq} + t_{pd} + t_{\text{setup}}$$

4. Setup Time Constraint with Skew:

$$T_c \ge t_{pcq} + t_{pd} + t_{\text{setup}} + t_{\text{skew}}$$

Recap: timing in combinational logics

Propagation & Contamination Delay

- Propagation delay: t_{pd} =
- Contamination delay: t_{cd} =

Actual signal arriving time at outputs

Intro to timing in sequential logics

Flip-flop samples D at clock edge

- <u>D</u> must be stable when sampled
- <u>D must be stable around clock</u>
 <u>edge</u>

If not, metastability can occur

Let's explain this idea in an academic manner

 Describe the situation using terminologies as like we did in combinational logics study; propa— d, combin—d

A big picture of timing analysis in SLs:

 A step by step consideration of inputs, outputs, and clock

Input Timing

- Setup time: t_{setup} = time before clock edge data. It must be stable (i.e. not changing, guaranteed to be stable)
- Hold time: t_{hold} = time after clock edge data. It must be stable (guaranteed to be stable)
- Aperture time (Data required interval): t_a = time around clock edge data. It must be stable (t_a = t_{setup} + t_{hold})

Output Timing

- Propagation delay, clk to Q: t_{pcq} = time after clock edge that the output Q is guaranteed to be stable (i.e., to stop changing, maximum t) $\leftarrow \rightarrow$ t_{pd} in Comb. logics
- Contamination delay, clk to Q: t_{ccq} = time after clock edge that Q might be stable (or not) (i.e., start changing, minimum t) ←→ t_{cd} in Comb. logics

- Synchronous sequential circuit inputs must be stable during aperture (setup and hold) time around clock edge
- Specifically, inputs must be stable
 - 1. at least t_{setup} before the clock edge: <u>setup time</u> <u>constraint</u>
 - 2. at least until t_{hold} after the clock edge: <u>hold time</u> constraints
 - 3. 1 and 2 are considered with the clock skew concept

RECAP: cascading two components to analyze from "OUTPUT" to "INPUT"

A chain of two buffers

High Noise Margin: $NM_H = V_{OH} - V_{IH}$

Low Noise Margin: $NM_L = V_{IL} - V_{OL}$

Setup Time Constraint

- Depends on the maximum delay from register R1 through combinational logic to R2
- The **input** to register R2 must be stable at least $t_{\rm setup}$ before clock edge

Hold Time Constraint

- Depends on the minimum delay from register R1 through the combinational logic to R2
- After the rising edge of the clock, D2 must not change until t_{hold} and might change as soon as $t_{ccq}+t_{cd}$

 t_{hold} ? $t_{ccq} + t_{cd}$

If you hold previous input (D2) too long, you can't take next output from Q1

Examples: Timing Analysis, setup/hold time constraint

Q. Find the minimum clock period (in sec) to work with this circuit. And check if this circuit satisfy hold time constraint.

Timing Characteristics per gate

$$t_{ccq}$$
 = 30 ps
 t_{pcq} = 50 ps
 t_{setup} = 60 ps
 t_{hold} = 70 ps

$$\begin{array}{c|c}
 & \text{pr} \\
 & \text{pr} \\
 & \text{pr} \\
 & \text{pr}
\end{array}$$

$$\begin{array}{c}
 & \text{pr} \\
 & \text{pr} \\
 & \text{pr}
\end{array}$$

$$\begin{array}{c}
 & \text{pr} \\
 & \text{pr}
\end{array}$$

$$\begin{array}{c}
 & \text{pr} \\
 & \text{pr}
\end{array}$$

Hold time constraint:

$$t_{\text{ccq}} + t_{cd} > t_{\text{hold}}$$
?

Setup time constraint:

Shortest pat

$$T_c \geq ?$$

Consider entire CL's

> Maximum clock frequency to work with this circuit!

Let's add buffers to the short paths:

Timing Characteristics per gate

$$t_{ccq}$$
 = 30 ps
 t_{pcq} = 50 ps
 t_{setup} = 60 ps
 t_{hold} = 70 ps

$$\begin{array}{c|c} & & & \\ \hline b & & \\ \hline b & \\ \hline c & \\ \hline c & \\ \end{array} = 35 \text{ ps}$$

$$t_{pd}$$
 = Critical path

$$t_{cd}$$
 = Shortest path

Hold time constraint:

$$t_{\text{ccq}} + t_{cd} > t_{\text{hold}}$$
?

Setup time constraint:

$$T_c \geq ?$$

Setup/hold time constraints (+) Clock Skew

- The clock doesn't arrive at all registers at same time
- Skew: difference between two clock edges
- Perform worst case

 analysis to guarantee
 dynamic discipline is not
 violated for any register –
 many registers in a
 system!

Setup Time Constraint with Skew

In the worst case, CLK2 is earlier than CLK1

T_c should be larger than input/output's undesired effects

Hold Time Constraint with Skew

In the worst case, CLK2 is later than CLK1

$$t_{\text{hold}} < t_{ccq} + t_{cd}$$

Which hand-side is for t_{skew} ? \rightarrow clock is a kind of inputs

An example

 A sequential circuit design is shown with its delay parameters:

D-FF clk-to-q propagation delay $t_{pcq}=18~\mathrm{ps}$

D-FF clk-to-q contamination delay $t_{ccq} = 12 \text{ ps}$

D-FF data setup time $t_s = 14$ ps

D-FF data hold time $t_h = 7$ ps

Table 1: Propagation delay for certain gates

Gate	T_{pd} (ps)	T_{cd} (ps)
2-input NAND	17	11
2-input NOR	27	16
2-input XOR	36	26
NOT	11	6

- a. Calculate the maximum clock frequency for reliable operation assuming there is no clock skew
- b. How much clock skew can the circuit tolerate before it experiences a hold time violation?

We discussed several equations, which one should we apply for each question?

Summary of sequential timing eqs.

1. Hold Time Constraint:

$$t_{
m hold} < t_{ccq} + t_{cd}$$

2. Hold Time Constraint with Skew:

$$t_{\text{hold}} + t_{\text{skew}} < t_{ccq} + t_{cd}$$

3. Setup Time Constraint:

$$T_c \ge t_{pcq} + t_{pd} + t_{\text{setup}}$$

4. Setup Time Constraint with Skew:

$$T_c \ge t_{pcq} + t_{pd} + t_{\text{setup}} + t_{\text{skew}}$$

- a. Calculate the maximum clock frequency for reliable operation assuming there is no clock skew
- b. How much clock skew can the circuit tolerate before it experiences a hold time violation?

22

D-FF clk-to-q propagation delay $t_{pcq} = 18 \text{ ps}$

D-FF clk-to-q contamination delay $t_{ccq} = 12 \text{ ps}$

D-FF data setup time $t_s = 14$ ps

D-FF data hold time $t_h = 7$ ps

Table 1: Propagation delay for certain gates

Gate	T_{pd} (ps)	T_{cd} (ps)
2-input NAND	17	11
2-input NOR	27	16
2-input XOR	36	26
NOT	11	6

- Calculate the maximum clock frequency for reliable operation assuming there is no clock skew
- b. How much clock skew can the circuit tolerate before it experiences a hold time violation?

