

BEST AVAILABLE COPY

PCT/EP 03 / 13898

BUNDESREPUBLIK DEUTSCHLAND

EP03 /13898

**Prioritätsbescheinigung über die Einreichung
einer Patentanmeldung**

Aktenzeichen: 103 34 321.0

Anmeldetag: 28. Juli 2003

Anmelder/Inhaber: Bosch Rexroth AG, Stuttgart/DE

Bezeichnung: Steuereinrichtung für ein Arbeitsgerät mit einer an einem Ausleger gehaltenen Schaufel

Priorität: 18.12.2002 DE 102 59 120.2

IPC: E 02 F 3/43

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

München, den 31. Oktober 2003
Deutsches Patent- und Markenamt
Der Präsident
Im Auftrag

A large, handwritten signature in black ink, appearing to read "Vonle".

A 9161
02/00
EDV-L

ZusammenfassungSteuereinrichtung für ein Arbeitsgerät mit einer an einem Ausleger gehaltenen Schaufel

An einem Arbeitsgerät ist ein Ausleger drehbar gehalten, und an dem Ausleger ist eine Schaufel drehbar gehalten. Die Betätigung des Auslegers und der Schaufel erfolgt durch je einen hydraulischen Zylinder. Jedem Zylinder ist ein Ventil zugeordnet, daß den Druckmittelfluß von einer Pumpe zu dem Zylinder und von diesem zum Tank steuert. Eine Drehbewegung des Auslegers ist mit einer Änderung der Winkellage der Oberkante der Schaufel verbunden, die sich insbesondere dann, wenn die Schaufel gefüllt ist, beim Anheben des Auslegers nachteilig auswirkt. Damit die Oberkante der Schaufel beim Anheben oder Absenken des Auslegers ihre Winkellage beibehält, sind die Ventile, die den Druckmittelfluß zu den Zylindern steuern, derart ansteuerbar, daß das Verhältnis der den Zylindern zugeführten Druckmittelmengen - unabhängig von der Größe des den Druckmittelfluß zu dem Zylinder für die Betätigung des Auslegers steuernden Steuersignals - auf einem konstanten Wert gehalten ist. Die Erfindung läßt sich in vorteilhafter Weise bei Radladern einsetzen, insbesondere bei solchen Radladern, die einen einfachen konstruktiven Aufbau aufweisen.

Beschreibung

Steuereinrichtung für ein Arbeitsgerät mit einer an einem Ausleger gehaltenen Schaufel

Die Erfindung betrifft eine Steuereinrichtung für ein Arbeitsgerät mit einer an einem Ausleger gehaltenen Schaufel gemäß dem Oberbegriff des Anspruchs 1.

Bei einem derartigen Arbeitsgerät, z. B. einem Radlader, ist der Ausleger drehbar an dem Rahmen des Arbeitsgeräts gehalten. Die Betätigung des Auslegers erfolgt durch einen ersten hydraulischen Zylinder, der an dem Rahmen des Arbeitsgeräts und an dem Ausleger angreift. Der Drehwinkel des Auslegers ist durch den Hub des ersten Zylinders begrenzt. Die Schaufel ist an dem Ausleger drehbar gehalten. Für die Betätigung der Schaufel ist ein zweiter hydraulischer Zylinder vorgesehen, der an dem Ausleger und an der Schaufel angreift. Der Drehwinkel der Schaufel ist durch den Hub des zweiten Zylinders begrenzt. Die Betätigung der Zylinder erfolgt bei doppeltwirkenden Zylindern durch Zufuhr von Druckmittel zu der einen Kammer eines Zylinders und gleichzeitige Abfuhr von Druckmittel aus der jeweils anderen Kammer des Zylinders. Um die Schaufel eines derartigen Arbeitsgerätes anzuheben, wird der Ausleger um seinen Anlenkpunkt an dem Rahmen des Arbeitsgeräts gedreht. Erfolgt dabei keine Druckmittelzufuhr zu dem für die Drehbewegung der Schaufel vorgesehenen Zylinder, behält die Schaufel ihren Winkel zu dem Ausleger bei, d. h. die Schaufel wird - wie bei einer starren Verbindung zwischen dem Ausleger und der Schaufel - entsprechend der Drehbewegung des Ausleger

Auslegers mitgenommen. Dies führt dazu, daß die Schaufel gegenüber ihrer ursprünglichen Winkellage bezüglich des Untergrunds gekippt wird. Dabei besteht die Gefahr, daß Material aus der gekippten Schaufel herausfällt. Aus der Schaufel fallendes Material kann den Bediener gefährden, insbesondere dann, wenn sich die Kabine des Arbeitsgeräts in diesem Bereich befindet. Auch um eine derartige Gefährdung auszuschließen, wird gefordert, daß die Schaufel beim Anheben ihre auf den Untergrund bezogene Winkellage unabhängig von der Drehbewegung des Auslegers beibehält.

Um dieser Forderung nachzukommen, sind bereits unterschiedliche Maßnahmen ergriffen worden. So wurde z. B. durch eine besondere Ausgestaltung der Kinematik des Auslegers und der Schaufel anstelle von Drehgelenken für den Ausleger und die Schaufel eine mechanische Parallelführung der Schaufel beim Anheben des Auslegers verwirklicht. Eine andere Lösung besteht darin, den Lagewinkel der Schaufel zu einer Bezugs ebene, z. B. zur Horizontalen, zu regeln. Hierzu wird der Lagewinkel der Schaufel mit einem elektrischen Lagesensor gemessen und mit einem Lagesollwert verglichen. Bei einer Abweichung des Ausgangssignals des Lagesensors von dem Lagesollwert wird der für die Drehbewegung der Schaufel vorgesehene Zylinder während des Anhebens des Auslegers derart mit Druckmittel beaufschlagt, daß die Schaufel ihre ursprüngliche Lage bezüglich der Horizontalen wieder annimmt. Damit ist dafür gesorgt, daß die Schaufel beim Anheben ihre Winkellage beibehält. Eine weitere Möglichkeit, dafür zu sorgen, daß die Schaufel beim Anheben ihre Winkellage beibehält, besteht darin, zusätzlich zu den Ventilen, die die den Zylindern zuge-

führte Druckmittelmenge steuern, einen Steuerblock vorzusehen, der einen vorbestimmten Teil des Druckmittels, das beim Anheben des Auslegers aus dem Zylinder für die Betätigung des Auslegers verdrängt wird, dem Zylinder für die Drehbewegung der Schaufel zuführt. Der Einsatz eines derartigen Steuerblocks ist mit nicht zu vernachlässigenden Kosten verbunden. Außerdem beansprucht ein derartiger Steuerblock zusätzlichen Platz und erfordert eine Verrohrung seiner Anschlüsse mit den Zylindern und den Ventilen für die Betätigung des Auslegers und der Schaufel.

Der Erfindung liegt die Aufgabe zugrunde, eine kostengünstige Steuereinrichtung der eingangs genannten Art zu schaffen.

Diese Aufgabe wird durch die im Anspruch 1 gekennzeichneten Merkmale gelöst. Für die Realisierung der Erfindung kann auf Baugruppen zurückgegriffen werden, die üblicherweise bei in Scheibenbauweise aufgebauten Steuerblöcken für eine lastunabhängige Durchflußverteilung verwendet werden.

Vorteilhafte Weiterbildungen der Erfindung sind in den Unteransprüchen gekennzeichnet. Sie betreffen Einzelheiten einer erfindungsgemäßen Steuereinrichtung mit druckgesteuerten Ventilen für die Zufuhr von Druckmittel zu den Zylindern.

Die Erfindung wird im folgenden mit ihren weiteren Einzelheiten anhand von in den Zeichnungen dargestellten Ausführungsbeispiels näher erläutert. Es zeigen

4.

Figur 1 eine schematische Darstellung einer Arbeitsmaschine mit einer an einem Ausleger gehaltenen Schaufel sowie einer erfindungsgemäßen Steuereinrichtung für eine derartige Arbeitsmaschine,

5. Figur 2 eine erste Ausgestaltung der in der Figur 1 dargestellten Steuereinrichtung,

10 Figur 3 Einzelheiten der in den Figuren 1 und 2 dargestellten Steuereinrichtung soweit sie für eine Beschreibung der Aufwärtsbewegung des Auslegers erforderlich sind,

Figur 4 Einzelheiten des Druckmittelflusses bei der Abwärtsbewegung des Auslegers,

15 Figur 5 den Zusammenhang zwischen den den Ventilen zugeführten Steuerdrücken und den den Zylindern zugeführten Druckmittelmengen in Form eines Diagramms,

Figur 6 eine Ausgestaltung des Schiebers des die Schaufel betätigenden Ventils in schematischer Darstellung und

20 Figur 7 eine weitere Ausgestaltung der in der Figur 1 dargestellten Steuereinrichtung.

Die Figur 1 zeigt in schematischer Darstellung eine Arbeitsmaschine 10, an deren Rahmen 11 ein Ausleger 12 gehalten ist, der um einen Anlenkpunkt 13 drehbar ist. An dem Ausleger 12

ist eine Schaufel 14 gehalten, die um einen Anlenkpunkt 15 gegenüber dem Ausleger 12 drehbar ist. Der Untergrund, auf dem die Arbeitsmaschine 10 steht, ist mit dem Bezugszeichen 16 versehen. Ein erster doppeltwirkender hydraulischer Zylinder 18 ist zwischen dem Rahmen 11 und dem Ausleger 12 angeordnet. Die entsprechenden Anlenkpunkte sind mit den Bezugszeichen 19 bzw. 20 versehen. Der Drehwinkel des Auslegers 12 ist durch den Hub des Zylinders 18 begrenzt. Ein zweiter doppeltwirkender hydraulischer Zylinder 22 ist zwischen dem Ausleger 12 und der Schaufel 14 angeordnet. Die entsprechenden Anlenkpunkte sind mit den Bezugszeichen 23 bzw. 24 versehen. Der Drehwinkel der Schaufel 14 ist durch den Hub des Zylinders 22 begrenzt. Eine Steuereinrichtung 27 mit sechs Anschlüssen P, T, A1, B1, A2, B2 für hydraulisches Druckmittel steuert den Druckmittelfluß von einer Pumpe 28 zu den Zylindern 18 und 22 und von den Zylindern 18 und 22 zurück zu einem Tank 29. Die Pumpe 28 ist in vorteilhafter Weise als Verstellpumpe ausgebildet. Sie ist über eine erste hydraulische Leitung 31 mit dem Tank 29 und über eine weitere Leitung 32 mit dem Anschluß P der Steuereinrichtung 27 verbunden. Der Tank 29 ist über eine weitere hydraulische Leitung 33 mit dem Anschluß T der Steuereinrichtung 27 verbunden. Die beiden Kammern des Zylinders 18 sind über Leitungen 35 und 36 mit den Anschlüssen A1 bzw. B1 der Steuereinrichtung 27 verbunden. In gleicher Weise sind die Kammern des Zylinders 22 über Leitungen 38 und 39 mit den Anschlüssen A2 bzw. B2 der Steuereinrichtung 27 verbunden. Zwei schematisch dargestellte hydraulische Ventile 41 und 42 steuern die den Zylindern 18 bzw. 22 zugeführten Druckmittelmengen. Ein dem Ventil 41 zugeführtes Steuersignal y_{st1} bestimmt die dem Zylinder 18 zu-

geführte Druckmittelmenge, die im Folgenden mit Q_1 bezeichnet ist. In gleicher Weise bestimmt ein dem Ventil 42 zugeführtes Steuersignal y_{st2} die dem Zylinder 22 zugeführte Druckmittelmenge, die im Folgenden mit Q_2 bezeichnet ist. Das dem Ventil 41 zugeführte Steuersignal y_{st1} ist zusätzlich einem Block 44 zugeführt. Dessen Ausgangssignal ist dem Ventil 42 als Steuersignal y_{st2} zugeführt. Das Übertragungsverhalten des Blocks 44 ist dabei so gewählt, daß das Verhältnis Q_2/Q_1 der den Zylindern 22 und 18 zugeführten Druckmittelmengen Q_2 bzw. Q_1 unter Berücksichtigung des konstruktiven Aufbaus der Ventile 41 und 42 unabhängig von der Größe des Steuersignals y_{st1} auf einem konstanten Wert gehalten ist, der im Folgenden mit K_Q bezeichnet ist. Für die dem Zylinder 22 zugeführte Druckmittelmenge Q_2 gilt somit die Beziehung $Q_2 = K_Q \times Q_1$.

15 Zum Heben der Schaufel 14 führt die Steuereinrichtung 27 dem Zylinder 18 über die Leitung 35 Druckmittel zu. Die zugeführte Druckmittelmenge Q_1 ist durch das dem Ventil 41 zugeführte Steuersignal y_{st1} bestimmt. Der Kolben des Zylinders 18 fährt entsprechend der zugeführten Druckmittelmenge Q_1 aus und dreht den Ausleger 12 im Gegenuhrzeigersinn. Ohne eine gleichzeitige Druckmittelzufuhr zu dem Zylinder 22 würde sich die Oberkante der Schaufel 14 im Gegenuhrzeigersinn gegenüber dem Untergrund 16 drehen. Damit die Schaufeloberkante ihre ursprüngliche Winkellage zu dem Untergrund 16 beibehält, 25 führt die Steuereinrichtung 27 dem Zylinder 22 - gleichzeitig mit der Druckmittelzufuhr zu dem Zylinder 18 - über die Leitung 38 eine durch das Steuersignal y_{st2} bestimmte Druckmittelmenge Q_2 zu. Dadurch fährt der Kolben des Zylinders 22 aus, und die Schaufel 14 dreht sich im Uhrzeigersinn. Die dem

Zylinder 22 zugeführte Druckmittelmenge Q_2 ist dabei so auf die dem Zylinder 18 zugeführte Druckmittelmenge Q_1 abgestimmt, daß die im Uhrzeigersinn erfolgende Drehbewegung der Schaufel 14 die durch das Heben des Auslegers 12 hervorgerufene, im Gegenuhrzeigersinn erfolgende Drehbewegung der Schaufel 14 gerade ausgleicht. Hierfür ist das Ventil 42 so angesteuert, daß die Druckmittelmenge Q_2 unabhängig von der Größe des dem Ventil 41 zugeführten Steuersignals y_{st1} , das die Druckmittelmenge Q_1 bestimmt, in einem festen Verhältnis zu der dem Zylinder 18 für die Betätigung des Auslegers 12 zugeführten Druckmittelmenge Q_1 steht. Die Steuereinrichtung 27 steuert somit das Ventil 42 derart an, daß für die Druckmittelmengen Q_1 und Q_2 die Beziehung $Q_2 = K_Q \times Q_1$ unabhängig von der Größe des Steuersignals y_{st1} erfüllt ist. Bei dem Faktor K_Q handelt es sich um einen konstanten Wert, der durch den konstruktiven Aufbau der Arbeitsmaschine 10 und die Dimensionierung der Zylinder 18 und 22 bestimmt ist. Der Wert von K_Q gibt an, in welchem Verhältnis die dem Zylinder 22 zugeführte Druckmittelmenge Q_2 zu der dem Zylinder 18 zugeführten Druckmittelmenge Q_1 stehen muß, damit beim Heben oder Senken des Auslegers 12 die Schaufel 14 ihre Winkellage bezüglich des Untergrunds 16 im Wesentlichen beibehält. Die Größe des Faktors K_Q lässt sich durch Berechnungen, in die die konstruktive Ausgestaltung der Arbeitsmaschine 10 und die Dimensionierung der Zylinder 18 und 22 eingehen, bestimmen. Eine andere Möglichkeit, die Größe des Faktors K_Q zu ermitteln, besteht darin, in der Erprobungsphase der Arbeitsmaschine 10 vorübergehend einen Lägeregler für die Schaufel 14 vorzusehen, der insbesondere beim Heben und Senken des Auslegers 12 die Winkellage der Oberkante der Schaufel 14 bezüglich

lich des Untergrunds 16 konstant hält. In dieser Zeit ist die Verbindung zwischen den Steuersignalen y_{st1} und y_{st2} über den Block 44 unterbrochen. Als Steuergröße y_{st2} ist dem Ventil 42 stattdessen die Stellgröße des in der Figur 1 nicht dargestellten Lagereglers zugeführt. Die den Zylindern 18 und 22 zugeführten Druckmittelmengen Q_1 bzw. Q_2 werden in Abhängigkeit von dem Steuersignal y_{st1} aufgezeichnet. Der Faktor K_Q ergibt sich durch einen Vergleich der dem Zylinder 22 zugeführten Druckmittelmenge Q_2 mit der dem Zylinder 18 zugeführten Druckmittelmenge Q_1 , die durch das Steuersignal y_{st1} vorgegeben ist. Nachdem der Faktor K_Q in der beschriebenen Weise ermittelt worden ist, wird der Lageregler nicht mehr benötigt. Der Lageregler wird entfernt und die Verbindung zwischen den Steuersignalen y_{st1} und y_{st2} über den Block 44 wieder hergestellt. Danach wird das Übertragungsverhalten des Blocks 44 auf der Grundlage des zuvor ermittelten Wertes für den Faktor K_Q so eingestellt, daß die Beziehung $Q_2 = K_Q \times Q_1$ erfüllt ist.

Die Figur 2 zeigt eine detailliertere Darstellung der in der Figur 1 zunächst in allgemeiner Form dargestellten Steuereinrichtung 27. Aus Platzgründen sind in der Figur 2 nur die Zylinder 18 und 22 jedoch keine konstruktiven Einzelheiten der Arbeitsmaschine 10, wie der Rahmen 11, der Ausleger 12 oder die Schaufel 14, dargestellt. Die Ventile 41 und 42 sind in diesem Ausführungsbeispiel als druckgesteuerte Wegeventile ausgebildet. Als Steuersignale für das Ventil 41 dienen mit p_{st1A} und p_{st1B} bezeichnete Steuerdrücke. Als Steuersignale für das Ventil 42 dienen mit p_{st2A} und p_{st2B} bezeichnete Steuerdrücke.

Das Ventil 41 weist einen Schieber 47 auf, der zwischen zwei Federn 48 und 49 eingespannt ist. Der Schieber 47 ist in der einen Richtung von dem Steuerdruck $Pst1A$ gegen die Kraft der Feder 48 beaufschlagt. In der entgegengesetzten Richtung ist der Schieber 47 von dem Steuerdruck $Pst1B$ gegen die Kraft der Feder 49 beaufschlagt. Die Federn 48 und 49 halten den Schieber 47 in einer definierten Ruhelage, wenn er weder von der einen noch von der anderen Seite mit einem Steuerdruck beaufschlagt ist. Ist der Schieber 47 mit dem Steuerdruck $Pst1A$ beaufschlagt, drückt er die Feder 48 so weit zusammen, bis das Produkt aus dem Steuerdruck $Pst1A$ und der von ihm beaufschlagten Fläche des Schiebers 47 gleich der Kraft der Feder 48 ist. Die sich dabei ergebende Stellung des Schiebers 47 ist ein Maß für den Steuerdruck, mit dem der Schieber 47 beaufschlagt ist. Der Schieber 47 ist mit einer ersten den Druckmittelfluß zu dem Zylinder 18 steuernden Kerbe versehen. Eine derartige Kerbe ist weiter unten anhand der Figur 5 im Zusammenhang mit einer Ausgestaltung des Ventils 42 näher beschrieben. Die Kerbe verläuft in der Längsrichtung des Schiebers 47 und bestimmt zusammen mit einer Steuerkante die Größe des Durchlaßquerschnitts $Aa1$ des Ventils 41 bei einem Druckmittelfluß von dem Anschluß A1 des Ventils 47 über die Leitung 35 in die bodenseitige Kammer des Zylinders 18. Die Kerbe ist so ausgebildet, daß zwischen der auf die Steuerkante bezogenen Stellung des Schiebers 47 und dem Durchlaßquerschnitt $Aa1$ ein linearer Zusammenhang besteht. Somit besteht auch zwischen dem Steuerdruck $Pst1A$ und dem Durchlaßquerschnitt $Aa1$ ein linearer Zusammenhang. Die Zuordnung zwischen dem Steuerdruck $Pst1A$ und der dem Zylinder 18 zugeführten Druckmittelmenge Q_1 ist in diesem Ausführungsbeispiel so

gewählt, daß bei Beaufschlagung des Schiebers 47 mit dem Steuerdruck p_{st1A} das Druckmittel wie oben beschrieben von dem mit A1 bezeichneten Anschluß des Ventils 41 in die bodenseitige Kammer des Zylinders 18 fließt. Wie bereits anhand der Figur 1 beschrieben, führt ein derartiger Druckmittelstrom zu einem Heben des Auslegers 12.

10

15

25

Wird dem Schieber 47 von der entgegengesetzten Seite der Steuerdruck p_{st1B} zugeführt, drückt er die Feder 49 so weit zusammen, bis das Produkt aus dem Steuerdruck p_{st1B} und der von ihm beaufschlagten Fläche des Schiebers 47 gleich der Kraft der Feder 49 ist. Der Schieber 47 ist mit einer weiteren ebenfalls in Längsrichtung des Schiebers 47 verlaufenden Kerbe versehen. Diese Kerbe bestimmt zusammen mit einer weiteren Steuerkante die Größe des Durchlaßquerschnitts A_{B1} des Ventils 41 für einen Druckmittelfluß von dem Anschluß B1 des Ventils 41 über die Leitung 36 zu der stangenseitigen Kammer des Zylinders 18. Auch diese Kerbe ist so ausgebildet, daß zwischen der auf die Steuerkante bezogenen Stellung des Schiebers 47 und dem Durchlaßquerschnitt A_{B1} ein linearer Zusammenhang besteht. Damit besteht auch zwischen dem Steuerdruck p_{st1B} und dem Durchlaßquerschnitt A_{B1} ein linearer Zusammenhang. Bei Beaufschlagung des Schiebers 47 mit dem Steuerdruck p_{st1B} fließt das Druckmittel von dem mit B1 bezeichneten Anschluß in die stangenseitige Kammer des Zylinders 18. Dieser Druckmittelfluß fährt den Kolben des Zylinders 18 ein und senkt damit den Ausleger 12.

Das Ventil 42 ist in gleicher Weise aufgebaut wie das Ventil 41. Ein Schieber 50 ist zwischen zwei Federn 51 und 52 gehal-

ten. Die dem Ventil 42 zugeführten Steuerdrücke sind mit Pst2A und Pst2B bezeichnet. Der Schieber 50 ist beidseitig mit Kerben versehen, die im Zusammenwirken mit einer Steuerkante des Ventils 42 die Größe der mit AA2 und AB2 bezeichneten Durchlaßquerschnitte in Abhängigkeit von der Auslenkung des Schiebers 50 bestimmen. Dabei besteht sowohl zwischen dem Durchlaßquerschnitt AA2 und dem dem Schieber 50 von der einen Seite zugeführten Steuerdruck Pst2A als auch zwischen dem mit AB2 bezeichneten Durchlaßquerschnitt und dem dem Schieber 50 von der entgegengesetzten Seite zugeführten Steuerdruck Pst2B ein linearer Zusammenhang. Bei einer Beaufschlagung des Schiebers 50 mit dem Steuerdruck Pst2A wird der Schieber 50 gegen die Feder 51 gedrückt, und es fließt Druckmittel von dem Anschluß A2 über die Leitung 38 in die bodenseitige Kammer des Zylinders 22. Wie bereits anhand der Figur 1 beschrieben, führt ein derartiger Druckmittelstrom zu einer Drehung der Schaufel 14 im Uhrzeigersinn. Bei einer Beaufschlagung des Schiebers 50 mit dem Steuerdruck Pst2B wird der Schieber 50 gegen die Feder 52 gedrückt, und es fließt Druckmittel von dem Anschluß B2 über die Leitung 39 in die stangenseitige Kammer des Zylinders 22. Dieser Druckmittelstrom führt zu einer Drehung der Schaufel 14 im Gegenuhrzeigersinn.

Für die Realisierung der Erfindung können Baugruppen von in Scheibenbauweise aufgebauten Steuerblöcken verwendet werden. Bei derartigen Baugruppen sind die Durchmesser der Bohrungen für die Schieber der Ventile im Allgemeinen gleich groß. Damit sind auch die von dem Steuerdruck beaufschlagten Flächen der Schieber gleich groß. Als Variable für den von dem

Steuerdruck abhängigen Durchlaßquerschnitt der Ventile stehen damit noch die Federkonstante und die Ausgestaltung der mit einer Steuerkante zusammenwirkenden Kerben zur Verfügung.
Sind auch die Federkonstanten der Federn gleich, verbleibt 5 als Variable für den von dem Steuerdruck abhängigen Durchlaßquerschnitt der Ventile nur noch die Ausgestaltung der Kerben.

Ein erstes Vorsteuergerät 55, das vorzugsweise als Joystick ausgebildet ist, liefert die Steuerdrücke p_{st1A} und p_{st1B} für das Ventil 41. Die Steuerdrücke p_{st1A} und p_{st1B} stellen sich entsprechend der Auslenkung des Joysticks ein. Der Steuerdruck p_{st1A} ist dem Schieber 47 über eine Leitung 56 zugeführt. In gleicher Weise ist der Steuerdruck p_{st1B} dem Schieber 47 über eine weitere Leitung 57 zugeführt. Ein weiteres 10 Vorsteuergerät 60, das vorzugsweise ebenfalls als Joystick ausgebildet ist, liefert mit p_{st3A} und p_{st3B} bezeichnete Steuerdrücke. Die Steuerdrücke p_{st3A} und p_{st3B} stellen sich entsprechend der Auslenkung des Joysticks des Vorsteuergeräts 60 ein. Von dem Vorsteuergerät 60 führen Leitungen 61 und 62 zu dem Schieber 50 des Ventils 42. Dem Eingang des Ventils 42 für den Steuerdruck p_{st2A} ist ein Wechselventil 65 vorgeschaltet. Zwischen der Leitung 56 und dem einen Eingang des Wechselventils 65 ist ein Schaltventil 66 angeordnet, das in seiner Arbeitsstellung den einen Eingang des Wechselventils 25 65 mit dem Steuerdruck p_{st1A} beaufschlagt. In seiner in der Figur 2 dargestellten Ruhestellung unterbricht das Schaltventil 66 die Verbindung zwischen der Leitung 56 und dem Wechselventil 65. Im Folgenden wird jedoch der Fall betrachtet, daß sich das Schaltventil 66 in seiner Arbeitsstellung befind-

det. Dem anderen Eingang des Wechselventils 65 ist über die Leitung 61 der Steuerdruck P_{st3A} zugeführt. Das Wechselventil 65 leitet den höheren der beiden ihm zugeführten Steuerdrücke als Steuerdruck P_{st2A} an den Schieber 50 des Ventil 42 weiter. In entsprechender Weise ist dem Eingang des Ventils 42 für den Steuerdruck P_{st2B} ein Wechselventil 68 vorgeschaltet. Zwischen der Leitung 57 und dem einen Eingang des Wechselventils 68 ist ein weiteres Schaltventil 69 angeordnet. Das Schaltventil 69 beaufschlagt in seiner Arbeitsstellung den einen Eingang des Wechselventils 68 mit dem Steuerdruck P_{st1B} . In der in der Figur 2 dargestellten Ruhestellung unterbricht das Schaltventil 69 die Verbindung zwischen der Leitung 57 und dem Wechselventil 68. Im Folgenden wird auch hier der Fall betrachtet, daß sich das Schaltventil 69 in seiner Arbeitsstellung befindet. Dem anderen Eingang des Wechselventils 68 ist über die Leitung 62 der Steuerdruck P_{st3B} zugeführt. Das Wechselventil 68 leitet den höheren der beiden ihm zugeführten Steuerdrücke als Steuerdruck P_{st2B} an den Schieber 50 des Ventil 42 weiter.

Zwischen den Leitungen 35 und 36 sowie zwischen den Leitungen 38 und 39 ist jeweils ein weiteres Wechselventil 71 bzw. 72 angeordnet. Das Wechselventil 71 leitet den höheren der Kammerdrücke des Zylinders 18 an den einen Eingang eines weiteren Wechselventils 73 weiter. Das Wechselventil 72 leitet den höheren der Kammerdrücke des Zylinders 22 an den anderen Eingang des Wechselventils 73 weiter. Das Wechselventil 73 leitet den höheren der ihm zugeführten Drücke als Führungsgröße an einen Pumpenregler 75 weiter sowie an den mit LS bezeichneten Anschluß der Ventile 41 und 42. Bei diesem Druck han-

delt es sich um den höchsten Lastdruck, der im Folgenden mit p_{Lmax} bezeichnet ist. Der Pumpenregler 75 stellt das Fördervolumen der Pumpe 28 derart ein, daß der mit p_p bezeichnete Pumpendruck gleich der Summe aus dem Druck p_{Lmax} und dem Druckäquivalent p_0 einer in der gleichen Richtung wie der Druck p_{Lmax} auf den Pumpenregler 75 wirkenden Feder 76 ist. Bei sogenannter Mangelversorgung, d. h. wenn das maximale Fördervolumen der Pumpe 28 nicht ausreicht, das obengenannte Druckgleichgewicht zu erreichen, nimmt der Druck p_p einen Wert an, der entsprechend kleiner als die Summe von p_{Lmax} und p_0 ist.

Für die Beschreibung der Funktion der erfindungsgemäßen Steuereinrichtung wird davon ausgegangen, daß die Schaufel 14 auf dem Untergrund 16 aufliegt und die Oberkante der Schaufel 14 parallel zu dem Untergrund 16 ausgerichtet ist. Um die Schaufel 14 aus dieser Stellung anzuheben, wird der Joystick des Vorsteuergeräts 55 aus seiner Ruhelage ausgelenkt und dem Ventil 41 ein Steuerdruck $Pst1A(50\%)$ zugeführt, der z. B. 50 % des mit $Pst1A_{max}$ bezeichneten maximalen Werts des Steuerdrucks $Pst1A$ entspricht. Wie im Zusammenhang mit der Figur 3 noch erläutert wird, entspricht diesem Steuerdruck ein Druckmittelstrom $Q_1(50\%)$, der in die bodenseitige Kammer des Zylinders 18 fließt. Dieser Druckmittelstrom dreht den Ausleger 12 im Gegenuhzeigersinn um den Anlenkpunkt 13 und hebt dabei die Schaufel 14 an. Der Steuerdruck $Pst1A(50\%)$ ist außerdem dem Ventil 42 über das Schaltventil 66 und das Wechselventil 65 als Steuerdruck $Pst2A$ zugeführt. Der dem Ventil 42 zugeführte Steuerdruck $Pst2A = Pst1A(50\%)$ führt zu einem Druckmittelstrom $Q_2 = K_Q \times Q_1(50\%)$ in die bodenseitige Kammer des

Zylinders 22, der die Schaufel 14 im Uhrzeigersinn gerade so stark dreht, daß die Oberkante der Schaufel 14 beim Anheben ihre ursprüngliche Lage bezogen auf den Untergrund 16 beibehält. Bei diesen Überlegungen wurde davon ausgegangen, daß der Steuerdruck P_{st3A} gleich Null, auf alle Fälle aber kleiner als der Steuerdruck P_{st1A} ist. Soll die Schaufel 14 während des Anhebens entleert werden, wird der Steuerdruck P_{st3A} gegenüber dem Steuerdruck P_{st1A} erhöht. In diesem Fall dreht sich die Schaufel 14 mit der durch den Steuerdruck P_{st3A} bestimmten Geschwindigkeit im Uhrzeigersinn. Da die Schaufel 14 sich jetzt mit einer Geschwindigkeit im Uhrzeigersinn dreht, die größer als die für das Aufrechterhalten der Lage ihrer Oberkante ist, ist es möglich, auf diese Weise Material aus der Schaufel 14 zu kippen.

15 Ausgehend von den Figuren 1 und 2 zeigt die Figur 3 weitere Einzelheiten der Steuereinrichtung, soweit sie für das Anheben der Schaufel 14 erforderlich sind. Der von dem Ventil 41 gesteuerte Druckmittelstrom Q_1 fließt über eine nachgeschaltete Druckwaage 79, ein Lasthalteventil 80 sowie die Leitung 35 in die bodenseitige Kammer des Zylinders 18. Der Rückfluß des Druckmittels aus der stangenseitigen Kammer des Zylinders 18 zum Tank 29 erfolgt über die Leitung 36. Der von dem Ventil 42 gesteuerte Druckmittelstrom Q_2 fließt über eine nachgeschaltete Druckwaage 85, ein Lasthalteventil 86 sowie die Leitung 38 in die bodenseitige Kammer des Zylinders 22. Der Rückfluß des Druckmittels aus der stangenseitigen Kammer des Zylinders 22 zum Tank 29 erfolgt über ein vom Druck in der Leitung 38 gesteuertes Gegenhalteventil 87 in der Leitung 39. Das Gegenhalteventil 87 erlaubt es, die Schaufel 14 auch

bei ziehender Last durch Steuerung des Zulaufquerschnitts des Ventils 42 zu steuern. Der Druck p_{st1A} , der dem Ventil 41 als Steuerdruck zugeführt ist, ist auch dem Ventil 42 als Steuerdruck zugeführt. Der Steuerdruck p_{st2A} ist somit gleich dem Steuerdruck p_{st1A} . Die Druckwaagen 79 und 85 sorgen dafür, daß sowohl der mit p_{v1} bezeichnete Druck zwischen dem Ventil 41 und der Druckwaage 79 als auch der mit p_{v2} bezeichnete Druck zwischen dem Ventil 42 und der Druckwaage 85 gleich dem höchsten Lastdruck p_{Lmax} gehalten ist. Hierzu ist die dem Zylinder mit dem höchsten Lastdruck zugewordene Druckwaage voll geöffnet und die jeweils andere Druckwaage befindet sich in einer Regelstellung, in der der an ihr abfallende Druck gleich der Differenz zwischen dem höchsten Lastdruck und dem Lastdruck des ihr zugeordneten Zylinders ist. Der Druckabfall $\Delta p_1 = p_p - p_{v1}$ über dem Ventil 41 ist dann gleich dem Druckabfall $\Delta p_2 = p_p - p_{v2}$ über dem Ventil 42. Befindet sich der Pumpenregler 75 in seinem Regelbereich, ist der Druckabfall Δp_1 über dem Ventil 41 ebenso wie der Druckabfall Δp_2 über dem Ventil 42 gleich dem Druckäquivalent p_0 der Feder 76. Die den Zylindern 18 und 22 zugeführten Druckmittelmengen Q_1 bzw. Q_2 entsprechen damit den Durchlaßquerschnitten der Ventile 41 und 42. Wählt man das Verhältnis der Durchlaßquerschnitte der Ventile 41 und 42 entsprechend dem für eine parallele Bewegung der Oberkante der Schaufel 14 erforderlichen Faktor K_Q , ist das Verhältnis der den Zylindern 18 und 22 zugeführten Druckmittelmengen Q_1 bzw. Q_2 bei gleichen Steuerdrücken ($p_{st2A} = p_{st1A}$) unabhängig von der Größe des Steuerdrucks. Dieser Zusammenhang gilt auch im Fall der Mangelversorgung. In diesem Fall sind zwar die einzelnen Druckabfälle über den Ventilen 41 und 42 kleiner als p_0 , da die Druckabfälle aber

unter sich gleich bleiben, ändert sich nichts an dem Verhältnis zwischen den den Zylindern 18 und 22 zugeführten Druckmittelmengen Q_1 und Q_2 .

Die Figur 4 zeigt den Druckmittelfluß beim Senken des Auslegers 12 mit gleichzeitiger Drehbewegung der Schaufel 14 im Gegenuhrzeigersinn. In der von der bodenseitigen Kammer des Zylinders 18 zum Tank 29 führenden Leitung 35 ist ein Gegenhalteventil 91 vorgesehen, das von dem Druck in der zu der stangenseitigen Kammer des Zylinders 18 führenden Leitung 36 gesteuert ist. Damit ist es möglich, den Ausleger 12 auch bei ziehender Last durch Steuerung des Zulaufquerschnitts des Ventils 41 zu steuern.

Für die folgende Erläuterung wird wieder von der Figur 2 ausgegangen. Nach einer vorteilhaften Ausgestaltung der Ventile 41 und 42 ist es möglich, die Schaufel 14 beim Anheben des Auslegers 12 nur über den Steuerdruck P_{st1A} zu entleeren. Hierfür ist das Ventil 41 mit einem Anschlag für den Schieber 47 versehen, dessen Lage dem maximalen Wert Q_{1max} der Druckmittelmenge Q_1 entspricht. Die Federkonstante der Feder 48 ist so gewählt, daß der Schieber 47 bereits bei ca. 65 % des maximalen Werts $P_{st1Amax}$ des Steuerdrucks p_{st1A} den Anschlag erreicht. In dieser Lage des Schiebers 47 fließt die maximale Druckmittelmenge Q_{1max} . Das Ventil 42 ist ebenfalls mit einem Anschlag für seinen Schieber 50 versehen. Jedoch ist die Federkonstante der Feder 51 so gewählt, daß sie bei dem Druck, bei dem der Schieber 47 bereits an seinem Anschlag anliegt, erst ca. 65 % seines Wegs zurückgelegt hat. In diesem Bereich, in dem der Steuerdruck p_{st1A} einen Wert zwischen Null

und $0,65 \times Pst1A_{max}$ aufweist, ist der Zusammenhang zwischen den Druckmittelmengen Q_2 und Q_1 durch eine entsprechende Ausgestaltung der den Durchlaßquerschnitt der Ventile 41 und 42 bestimmenden Kerben gewährleistet. Erhöht man jetzt den Steuerdruck $Pst1A$ über den Wert von $0,65 \times Pst1A_{max}$ bis auf $Pst1A_{max}$, so bewegt sich der Schieber 50 in Richtung seines Anschlags während der Schieber 47 an seinem Anschlag bleibt. Hierdurch verschiebt sich das Verhältnis zwischen den Druckmittelmengen Q_2 und Q_1 derart, daß die Drehbewegung der Schaufel 14 im Uhrzeigersinn die Drehbewegung des Auslegers 12 im Gegenuhrzeigersinn überwiegt, und die Schaufel 14 entleert sich. In diesem zweiten Bereich ist die Beziehung $Q_2 = K_Q \times Q_1$ nicht mehr erfüllt. Dies ist aber auch nicht erforderlich, da in diesem Bereich die Schaufel 14 beim Anheben des Auslegers gezielt entleert werden soll.

Die Figur 5 zeigt den Zusammenhang zwischen dem Steuerdruck Pst und den den Zylindern 18 und 22 zugeführten Druckmittelmengen Q_1 bzw. Q_2 in Form eines Diagramms. Der Steuerdruck ist in der Figur 5 verkürzt mit pst bezeichnet, da der dem Ventil 42 zugeführte Steuerdruck $Pst2A$ gleich dem Steuerdruck $Pst1A$ ist. Der Faktor K_Q weist in dem Diagramm für den Bereich von 5 % bis 65 % von pst_{max} einen Wert von 0,5 auf. Der Bereich von 0 % bis 5 % von pst_{max} entspricht einer positiven Überdeckung der Ventile 41 und 42, in dem noch kein Druckmittel zu den Zylindern 18 bzw. 22 fließt.

Die Figur 6 zeigt eine Ausgestaltung des Schieber 50 des die Schaufel 14 betätigenden Ventils 42 in schematischer Darstellung. Mit 94 ist der Anschlag bezeichnet, an dem der Schieber

50 anliegt; wenn der Steuerdruck p_{st2A} , mit dem der Schieber
50 beaufschlagt ist, gleich $p_{st1Amax}$ ist. In der Figur 6 ist
der Schieber 50 in der Lage dargestellt, die er einnimmt,
wenn er mit keinem Steuerdruck beaufschlagt ist. Der Schieber
5 50 ist mit einer Kerbe 95 versehen, die zwei Bereiche 96 und
97 aufweist. Zusammen mit einer Steuerkante 98 ergibt die
Kerbe 95 bei Beaufschlagung des Schiebers 50 mit dem Steuer-
druck p_{st2A} einen Durchlaßquerschnitt AA_2 von dem Anschluß P
zu dem Anschluß A, der in dem ersten Bereich 96 in dem durch
den Faktor K_Q vorgegeben Verhältnis zu dem entsprechenden
Durchlaßquerschnitt AA_1 des Ventils 41 steht. In dem zweiten
Bereich 97 ist der Zusammenhang mit dem Durchlaßquerschnitt
 AA_2 des Ventils 41 so gewählt, daß wie oben beschrieben ein
Entleeren der Schaufel 14 während des Anhebens des Auslegers
15 12 möglich ist.

Die Figur 7 zeigt eine der Figur 2 entsprechende Darstellung
einer weiteren Ausgestaltung der in der Figur 1 dargestellten
Steuereinrichtung 27. Anstelle der in der Figur 2 dargestell-
ten elektrisch gesteuerten Schaltventile 66 und 69 sind in
der Figur 7 hydraulisch gesteuerte Schaltventile 66* und 69*
vorgesehen. Die Schaltventile 66* und 69* sind durch den
Steuerdruck p_{st1B} für die Drehbewegung des Auslegers 12 in
Senkrichtung derart gesteuert, daß sie bis zu einem einstell-
baren Schwellenwert p_{sts} die in der Figur 7 dargestellte
Schaltstellung einnehmen. Übersteigt der Steuerdruck p_{st1B}
25 den Schwellenwert p_{sts} , nehmen die Schaltventile 66* und 69*
die andere Schaltstellung ein, in der der eine Eingang des
Wechselventils 65 bzw. 68 mit dem Tank 29 verbunden ist. Das
bedeutet, daß z. B. dann, wenn der Steuerdruck p_{st1B} größer

als der Schwellenwert P_{sts} ist, der dem Ventil 42 zugeführte Steuerdruck P_{st2A} oder P_{st2B} gleich dem Druck P_{st3A} bzw. P_{st3B} des Vorsteuergeräts 60 ist, da dieser Druck - sofern er nicht gleich dem Tankdruck ist - immer größer als dieser ist. Die Schaltventile 66* und 69* erlauben die Verwendung eines Ventils 42 mit einem Schieber 47, der eine vierte, auch als „Schwimmstellung“ bezeichnete Stellung für das Senken des Auslegers 12 besitzt. In der Schwimmstellung des Schiebers 47 sinkt der Ausleger 12 mit einer von der Last abhängigen Geschwindigkeit. Da in dieser Stellung des Schiebers 47 keine Steuerung der Sinkgeschwindigkeit durch das Ventil 41 erfolgt, kann die oben in Verbindung mit den Figuren 1 bis 3 beschriebene Volumenstromaufteilung nicht mehr exakt arbeiten. Um aber trotzdem eine unkontrollierte Drehbewegung der Schaufel 14 zu verhindern, werden die Schaltventile 66* und 69* in die Schaltstellung geschaltet, in der die Drehbewegung der Schaufel 14 allein durch den Steuerdruck P_{st3A} oder P_{st3B} des Vorsteuergeräts 60 gesteuert ist. Um die Schwimmstellung zu aktivieren, wird der Steuerdruck P_{st1B} auf einen Wert erhöht, der größer als der Schwellenwert P_{sts} ist, der seinerseits größer als der der maximalen Sinkgeschwindigkeit entsprechende Wert ist. Dieser Steuerdruck bewirkt einerseits, daß der Schieber 47 des Ventils 41 so angesteuert wird, daß er die Schwimmstellung einnimmt, und andererseits, daß die Lage des Schiebers 50 des Ventils 42 weder durch den Steuerdruck P_{st1B} noch durch den Steuerdruck P_{st1A} beeinflußt wird. Ist das Vorsteuergerät 55 so aufgebaut, daß der Steuerdruck P_{st1A} zumindest dann, wenn der Steuerdruck P_{st1B} größer als der Schwellenwert P_{sts} ist, gleich dem Tankdruck ist, kann das Ventil 66* entfallen. Denn in diesem Fall ist auch ohne

das Ventil 66* sichergestellt, daß der Druck p_{st1A} kleiner als der Druck p_{st3A} oder höchstens gleich diesem ist. Somit ist es möglich, anstelle des hydraulisch gesteuerten Ventils 66* ein elektrisch gesteuertes Ventil 66 (wie in der Figur 2 dargestellt) zu verwenden. Diese Ausgestaltung erlaubt es, die erfindungsgemäße Volumenstromaufteilung während des Hebens des Auslegers 12 willkürlich unwirksam zu machen.

Patentansprüche

1. Steuereinrichtung für ein Arbeitsgerät mit einer an einem Ausleger gehaltenen Schaufel, insbesondere für einen Radlader,

- mit zwei hydraulischen Zylindern, von denen der erste den Ausleger und der zweite die Schaufel betätigt,
- mit einer die Zylinder aus einem Tank mit Druckmittel versorgenden Pumpe sowie
- mit zwei Ventilen, von denen das erste Ventil die Druckmittelzufuhr von der Pumpe zu dem ersten Zylinder steuert und das zweite Ventil die Druckmittelzufuhr von der Pumpe zu dem zweiten Zylinder steuert,
dadurch gekennzeichnet,
daß die Ventile (42, 41) derart ansteuerbar sind, daß das Verhältnis (Q_2/Q_1) der den beiden Zylindern (22, 18) zugeführten Druckmittelmengen (Q_2, Q_1) unabhängig von der Größe des dem ersten Ventil (41) zugeführten Steuersignals (y_{st1}) auf einem konstanten Wert (K_Q) gehalten ist.

2. Steuereinrichtung nach Anspruch 1, dadurch gekennzeichnet,

- daß jedes Ventil (41, 42) mit einem von einem einstellbaren Steuerdruck (p_{st1A} bzw. p_{st1B}, p_{st2A} bzw. p_{st2B}) beaufschlagten Schieber (47, 50) versehen ist,
- daß der Steuerdruck (p_{st1A} bzw. p_{st1B}, p_{st2A} bzw. p_{st2B}) den Schieber (47, 50) gegen die Kraft einer Feder (48 bzw. 49, 51 bzw. 52) auslenkt, wobei die Stellung der Schieber (47, 50) ein Maß für die aus den auf den Schieber (47, 50) wirkenden Steuerdrücken (p_{st1A} bzw. p_{st1B}, p_{st2A} bzw. p_{st2B})

und den jeweils druckbeaufschlagten Flächen resultierende Kraft ist,

- daß jeder Schieber (47, 50) mit einer in seiner Längsrichtung verlaufenden, die Größe des Durchlaßquerschnitts (A_{A1} bzw. A_{B1} , A_{A2} bzw. A_{B2}) des Ventils (41, 42) bestimmenden Kerbe versehen ist, die so ausgebildet ist, daß der jeweilige Durchlaßquerschnitt (A_{A1} bzw. A_{B1} , A_{A2} bzw. A_{B2}) des Ventils (41, 42) durch die Stellung des Schiebers (47, 50) bestimmt ist und
- daß jedem Ventil (41, 42) eine Druckwaage (79, 85) zugeordnet ist, die den Druckabfall (Δp_1 , Δp_2) an den Ventilen (41, 42) auf dem gleichen Wert hält.

3. Steuereinrichtung nach Anspruch 2, dadurch gekennzeichnet, daß sich der Durchlaßquerschnitt (A_{A1} bzw. A_{B1} , A_{A2} bzw. A_{B2}) der beiden Ventile (41, 42) linear mit dem ihnen zugeführten Steuerdruck (P_{st1A} bzw. P_{st1B} , P_{st2A} bzw. P_{st2B}) ändert.

4. Steuereinrichtung nach Anspruch 2 oder Anspruch 3, dadurch gekennzeichnet, daß die von dem Steuerdruck (P_{st1A} bzw. P_{st1B}) beaufschlagte Fläche des Schiebers (47) des ersten Ventils (41) gleich der von dem Steuerdruck (P_{st2A} bzw. P_{st2B}) beaufschlagten Fläche des Schiebers (50) des zweiten Ventils (42) ist.

5. Steuereinrichtung nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, daß dem Eingang des zweiten Ventils (42) für den Steuerdruck (P_{st2A} bzw. P_{st2B}) eine Ventilanordnung (65, 66; 68, 69) vorgeschaltet ist, über die ihm der

Steuerdruck (P_{st1A} , P_{st1B}) für die Drehbewegung des Auslegers (12) oder der Steuerdruck (P_{st3A} , P_{st3B}) für die Drehbewegung der Schaufel (14) zuführbar ist.

6. Steuereinrichtung nach Anspruch 5, dadurch gekennzeichnet, daß die Ventilanordnung als Wechselventil (65, 68) ausgebildet ist; dessen einem Eingang der Steuerdruck (P_{st1A} , P_{st1B}) für die Drehbewegung des Auslegers (12) zuführbar ist und dessen anderem Eingang der Steuerdruck (P_{st3A} , P_{st3B}) für die Drehbewegung der Schaufel (14) zugeführt ist.

7. Steuereinrichtung nach Anspruch 6, dadurch gekennzeichnet, daß in der zu dem ersten Eingang des Wechselventils (65, 68) führenden Steuerdruckleitung (56, 57) ein Schaltventil (66, 69) angeordnet ist, das in einer Stellung die Zuführung des Steuerdrucks (P_{st1A} , P_{st1B}) für die Drehbewegung des Auslegers (12) zu dem Eingang für den Steuerdruck (P_{st2A} , P_{st2B}) des zweiten Ventils (42) unterbricht und gleichzeitig dem ersten Eingang des Wechselventils (65, 68) einen Druck (Tankdruck) zuführt, der kleiner als der jeweilige Steuerdruck (P_{st3A} , P_{st3B}) für die Drehbewegung der Schaufel (14) oder gleich diesem ist.

8.. Steuereinrichtung nach einem der Ansprüche 5 bis 7, dadurch gekennzeichnet, daß die Ventilanordnung (69*, 68) die Zuführung des Steuerdrucks (P_{st1B}) für die Drehbewegung des Auslegers (12) in Senkrichtung zu dem Eingang für den Steuerdruck (P_{st2B}) des zweiten Ventils (42) unterbricht, wenn dieser Druck (P_{st1B}) einen einstellbaren Wert (P_{sts}) überschreitet.

9. Steuereinrichtung nach Anspruch 8, dadurch gekennzeichnet, daß das Schaltventil (66*) die Zuführung des Steuerdrucks (P_{st1A}) für die Drehbewegung des Auslegers (12) in Hebenrichtung zu dem ersten Eingang des zugeordneten Wechselventils (65) unterbricht, wenn der Druck (P_{st1B}) für die Drehbewegung des Auslegers (12) in Senkrichtung einen einstellbaren Wert (P_{sts}) überschreitet.

10. Steuereinrichtung nach einem der Ansprüche 2 bis 9, dadurch gekennzeichnet, daß die Kerbe (95) des Schiebers (50) des zweiten Ventils (42) so ausgebildet ist, daß bei einer Beaufschlagung des Schiebers (50) des zweiten Ventils (42) mit einem Steuerdruck (P_{st2A} , P_{st2B}), der größer als der für die maximale Druckmittelmenge (Q_{1max}) erforderliche Steuerdruck ($P_{st1A}(65\%)$, $P_{st1B}(65\%)$) für das erste Ventil (41) ist, der Durchlaßquerschnitt (A_{A2} , A_{B2}) des zweiten Ventils (42) mit steigendem Steuerdruck (P_{st2A} , P_{st2B}) stärker ansteigt als in dem Bereich unterhalb des für die maximale Druckmittelmenge (Q_1) erforderlichen Steuerdrucks ($P_{st1A}(65\%)$, $P_{st1B}(65\%)$) für das erste Ventil (41).

20 11. Steuereinrichtung einem der Ansprüche 2 bis 9, dadurch gekennzeichnet, daß die Federkonstante der auf den ersten Schieber (47) wirkenden Feder (48 bzw. 49) gleich der Federkonstante der auf den zweiten Schieber (50) wirkenden Feder (50, 51) ist.

25 12. Steuereinrichtung nach einem der Ansprüche 2 bis 11, dadurch gekennzeichnet, daß in einer von einem mit einer ziehenden Last beaufschlagten Zylinder (18, 22) zum Tank (29)

1.2331.1RR

28

26

führenden Leitung (35, 39) ein vom Zulaufdruck gesteuertes
Gegenhalteventil (91, 87) angeordnet ist.

1/6

FIG.1

FIG. 2

31

3 / 6

FIG. 3.

3.2

4/6

FIG.4

5/6

FIG.5

FIG.6

34

616

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER: _____**

**IMAGES ARE BEST AVAILABLE COPY.
As rescanning these documents will not correct the image
problems checked, please do not report these problems to
the IFW Image Problem Mailbox.**