071

LATEX Author Guidelines for BAU Proceedings

Anonymous BAU submission

Paper ID KARIM SEYAM

	Abstract	2. Methodology	03
001	This work evaluates three deep learning approaches for sar-	2.1. Data Collection and Preparation	03
001	casm detection, classifying comments/posts as either sar-	• Dataset: 13,000 social media posts from Twitter and Red-	03
003	castic or not sarcastic on a dataset of 13,000 Twitter and	dit	03
004	Reddit posts. Three architectures are comparatively ana-	• Class distribution: Sarcastic (58%) vs Non-sarcastic	04
005	lyzed:	(42%)	04
006	(1) A GloVe-embedded Bidirectional LSTM with attention	• Average text length: 84 tokens (range: 12-420 tokens)	04
007	mechanisms.	• Platform distribution: Twitter (65%), Reddit (35%)	04
800	(2) A regularized hybrid model with multi-head attention	• Includes: Context-response pairs, metadata timestamps	04
009	and noise injection.	2.2. Data Preprocessing	04
010	(3) A FastText-enhanced network optimized for subword	-	04
011	pattern recognition.	2.2.1. Text Normalization	04
012	The system demonstrates training accuracies ranging from	 Custom sarcasm-specific cleansing (preserve ALLCAPS, 	04
013	65% to 75% and validation accuracies between 59% and	punctuation)	04
014	63%.	 Tokenization using NLTK TweetTokenizer 	04
		 Sequence padding/truncation to 100 tokens 	05
		• GloVe/FastText embeddings (300D)	05
015	1. Introduction	2.2.2. Data Split	05
016	Sarcasm detection poses unique challenges in natural lan-	• Training: 80% (10,400 samples)	05
017	guage processing due to its reliance on contextual, cultural,	• Validation: 20% (2,600 samples)	05
018	and tonal cues. This project develops and evaluates three	• Batch size: 64	05
019	deep learning models—a GloVe-embedded Bidirectional	2.3. Model Architectures	05
020	LSTM with attention mechanisms, a regularized hybrid		
021	model with multi-head attention and noise injection, and	2.3.1. GloVe-BiLSTM with Attention	05
022	a FastText-enhanced network optimized for subword pat-	• Embedding layer (300D GloVe, non-trainable)	05
023	tern recognition—to classify sarcasm in 13,000 Twitter and	• Bidirectional LSTM (64 units)	05
024	Reddit posts.	• Attention mechanism with context weighting	06
005	1.1. Related Work	• Dropout (0.5)	06
025		• Dense output layer (sigmoid)	06
026	Recent advances in deep learning have significantly im-	2.3.2. Regularized Hybrid Model	06
027	proved sarcasm detection in social media text. Early work	 Stacked BiLSTMs (128 → 64 units) 	06
028	by Joshi2017 demonstrated the effectiveness of rule-based	 Multi-head attention (4 heads) 	06
029	patterns and lexical features, while Cheng2020 pioneered	• Gaussian noise injection (0.1)	06
030	CNN architectures for sarcasm classification on Twitter	 Layer normalization 	06
031	data. Subsequent studies explored contextual embeddings: Schifanella2021 achieved 68% accuracy using BERT vari-	 Adaptive max pooling 	06
032 033	ants on Reddit posts, and Wang2022 incorporated attention	2.3.3. FastText Enhanced Network	06
034	mechanisms with BiLSTM for improved contextual aware-	• Subword embedding layer (300D FastText)	07
	mechanisms with Bil S LVI for improved confextual aware-	• Subword embedding laver (3001) Fast lext)	U/

072	Hierarchical attention
073	• Dropout (0.4)
074	Output layer with focal loss
075	3. Evaluation & Performance Metrics
076	3.1. Comparative Performance Analysis
077	• GloVe-BiLSTM (Baseline):
078	Accuracy: 65% (Test) / 63% (Validation)
079	- F ₁ Score: 63
080	- Precision: 68%
081	- Recall: 60%
082	 Inference Latency: 14 ms
083	Regularized Hybrid Model:
084	- Accuracy: 64% (-1.5% vs baseline)
085	- F ₁ Score: 65 (+3.2)
086	- Precision: 62%
087	- Recall: 68% (+8%)
088	- Training Time: 660 s (+175%)
089	• FastText Enhanced Network:
090	- Accuracy: 75% (+15%)
091	- F ₁ Score: 56 (-11%)
092	- Precision: 61%
093	- Recall: 85%
094	- OOV Detection: 19% improvement
095	3.2. Model Efficiency
096	• Training Speed (samples/sec):
097	- GloVe-BiLSTM: 142
098	- Regularized: 89
099	- FastText: 67
100	Memory Footprint:
101	- GloVe: 148 MB
102	- Regularized: 163 MB
103	- FastText: 142 MB
104	3.3. Methodology Flow Chart
105	3.4. Error Analysis
106	• 63% errors involve cultural references
106	• 22% misclassify ironic questions
107	 15% false positives from exaggerated language
100	 Platform Variance:
110	Transfer variance.Twitter: 12% higher precision
110	- I while i. 12 /0 mghei precision

Metric	GloVe	Regularized	FastText
Accuracy	0.65	0.64	0.75
F_1	0.63	0.65	0.56
Recall	0.60	0.68	0.85
Latency (ms)	14	39	40

- Reddit: 18% better recall

111

Table 1. Quantitative performance comparison across architectures

Figure 1. Methodology Flow Chart

<i>Note</i> : All metrics averaged over 5 trials with \leq 1% variance	112	
Workflow Explanation	113	
The methodology follows seven key stages:		
• Data Collection : Aggregation of 13,000 sarcastic/non-sarcastic posts from Twitter (65%) and Reddit (35%), preserving contextual metadata and platform-specific formatting	115 116 117 118	
• Text Preprocessing:	119	
 Sarcasm-specific cleansing: Preserve ALLCAPS, exaggerated punctuation (!!!), and negation patterns 	120 121	
 Tokenization using NLTK's TweetTokenizer for social media lexicons 	122 123	
Example: "I LOVE working weekends!" \rightarrow [I, LOVE, working, weekends, !]	124 125	
• Model Training:	126	
 GloVe-BiLSTM: 300D embeddings + bidirectional LSTM (64 units) + attention layer 	127 128	
- Regularized Model: Stacked BiLSTMs with multi-	129	
head attention + 0.1 Gaussian noise - FastText: Subword embeddings + character n-grams	130 131	
(3-6 length) + hierarchical attention	132	
• Evaluation:	133	
- Primary metrics: Accuracy/F1-score	134	
- Efficiency: Inference latency (ms) & memory footprint	135	
- Error analysis: Cultural reference identification	136	
• Deployment:	137	
 REST API with adjustable confidence thresholds 	138	

Platform-specific tuning: Twitter (precision-focused)
 vs Reddit (recall-focused)

4. Conclusion

Based on our comprehensive analysis, it is evident that our approach offers significant benefits in handling the nuances of informal social media language and in achieving superior computational efficiency compared to traditional models. - Tailored to Casual Language: Unlike traditional sarcasm detectors that target more formal text (e.g., news headlines), your models—using techniques like subword embeddings and dynamic padding—are designed for the unpredictable, informal language of social media. This allows them to capture the nuanced, implicit cues typical of Reddit and Twitter sarcasm. - Computational Efficiency and Memory Usage: While transformer-based models like BERT-base have around 110 million parameters (or more in the case of RoBERTa), your lightweight architectures generally use only tens of millions—or even fewer—resulting in 80–90