

Report No.: DRTFCC1201-0018

Total 67 Pages

RF TEST REPORT

	141 120		ILLI OILI
	Test item	:	WiMAX & WiFi Dual CPE
	Model No.	:	IMW-C910W
	Order No.	:	1109-01216
	Date of receipt	:	2011-09-19
	Test duration	:	2011-11-01 ~ 2011-12-02
	Date of issue	•	2012-01-13
	Use of report	1	FCC Original Grant
Applicant	: Infomark Co., Ltd.		
			Jeongja-Dong, Bundang-Gu, Seongnam-Si
	Gyeonggi-do, Korea,	13	7-130
Test laboratory	: Digital EMC Co., Ltd.		
•			neoin-Gu, Yongin-Si, Kyunggi-Do, 449-080, Korea
	3000 St. 100 - Advisor 100 - 200 St. 100 St. 1		
	Test specification : FO	C.	Part 27
	*		
	Test environment : Se	e a	appended test report
	Test result : 🗵	P	ass
			imited only to the sample supplied by applicant and
the use of this tes			se. This test report shall not be reproduced except in full, val of Digital EMC Co., Ltd.
Tested by:	Witnesse	d h	y: Reviewed by:
rested by.	vviillesse	u b	y. Reviewed by:
1			m
Engineer		- 10 W	Technical Director
S K Rvu	IN/A		Harvey Sung

CONTENTS

1. Equipment information	3
1.1 Equipment description	3
1.2 Ancillary equipment	3
2. Information about test items	4
2.1 Test set-up configuration	4
2.2 Auxiliary equipment	5
2.3 Tested frequency	5
2.4 Tested environment	5
2.5 EMI Suppression Device(s)/Modifications	5
3. Test Report	6
3.1 Summary of tests	6
3.2 Test Result	7
3.2.1 Emission Bandwidth	7
3.2.2 Equivalent Isotropic Radiated Power	11
3.2.3 Band Edge	17
3.2.4 Conducted Spurious Emissions	36
3.2.5 Frequency Stability	55
3.2.6 Radiated Spurious Emissions	58
ΔΡΡΕΝΠΙΥ	64

1. Equipment information

1.1 Equipment description

FCC Equipment Class	Licensed Non-Broadcast Station Transmitter(TNB)
FCC ID	YCO-IMW-C910W
Equipment type	WiMAX & WiFi Dual CPE
Equipment model name	IMW-C910W
Equipment add model name	N/A
Equipment serial no.	Identical prototype
Associated Channel BW	5MHz, 10MHz
Frequency band	5MHz: 2499.00 ~ 2686.75MHz 10MHz: 2508.50 ~ 2683.50MHz
Zone format	PUSC, AMC
DL:UL symbol rate	29:18
Modulation technology	OFDMA
Modulation type(Coding rate)	QPSK (QPSK1/2, QPSK3/4) 16QAM (16QAM1/2, 16QAM3/4) 64QAM (64QAM1/2, 64QAM2/3, 64QAM3/4, 64QAM5/6)
Antenna type	Internal Type - Main Antenna: Chip Antenna (Max. Peak Gain: 2.72dBi) - Sub Antenna: Chip Antenna (Max. Peak Gain:1.27dBi)
Power Supply	DC 3.7 V

1.2 Ancillary equipment

Equipment	Model No.	Serial No.	Manufacturer	Note
-	-	-	-	-
-	-	-	-	-

2. Information about test items

2.1 Test set-up configuration

The test set-up for RF testing is shown in the below picture. This device is connected to USB port of the notebook computer.

A PC(or Notebook) controls EUT to transmit rated output power under appropriate transmission mode and specific frequency. A telnet program is used for verifying a connection status between notebook computer and EUT and to control maximum transmitting power, channel selection, bandwidth. A vector signal generator(VSG) is used to supply the WiMAX signal sources to a EUT and an external trigger source to a spectrum analyzer. The trigger is set in such a way that the analyzer records power measurements only during the times in which the EUT is transmitting.

The WiMAX signal sources are provided by chipset manufacturer(GCT) as below,

ODW	File name				
OBW	PUSC Zone	AMC Zone			
	5MHz_UL_QPSK_12	5MHz_UL_AMC_QPSK_12			
	5MHz_UL_QPSK_34	5MHz_UL_AMC_QPSK_34			
	5MHz_UL_16QAM_12	5MHz_UL_AMC_16QAM_12			
5MHz	5MHz_UL_16QAM_34	5MHz_UL_AMC_16QAM_34			
SIVIFIZ	5MHz_UL_64QAM_12	5MHz_UL_AMC_64QAM_12			
	5MHz_UL_64QAM_23	5MHz_UL_AMC_64QAM_23			
	5MHz_UL_64QAM_34	5MHz_UL_AMC_64QAM_34			
	5MHz_UL_64QAM_56	5MHz_UL_AMC_64QAM_56			
	10MHz_UL_QPSK_12	10MHz_UL_AMC_QPSK_12			
	10MHz_UL_QPSK_34	10MHz_UL_AMC_QPSK_34			
	10MHz_UL_16QAM_12	10MHz_UL_AMC_16QAM_12			
10MHz	10MHz_UL_16QAM_34	10MHz_UL_AMC_16QAM_34			
TOIVINZ	10MHz_UL_64QAM_12	10MHz_UL_AMC_64QAM_12			
	10MHz_UL_64QAM_23	10MHz_UL_AMC_64QAM_23			
	10MHz_UL_64QAM_34	10MHz_UL_AMC_64QAM_34			
	10MHz_UL_64QAM_56	10MHz_UL_AMC_64QAM_56			

The WiMAX signal sources have 29:18 symbol ratio(Downlink: Uplink). This device will transmit control signaling at the first 3 uplink symbols and then use the rest of the uplink symbols for data traffic bursts in the uplink sub-frame. Measurements were taken in the 29:18 ratio, but since there was no energy in the control symbols, the effective power is only across 15 data symbols.

TRF-RF-217(00)111207 Page 4 / 67

2.2 Auxiliary equipment

Equipment	Model No.	Serial No.	Manufacturer	Note
Notebook	X51RL	85N0AS318314227	ASUSTeK Computer Inc.	-
-	-	-	-	-

2.3 Tested frequency

	Frequency (MHz)				
	OBW: 5MHz	OBW: 10MHz			
Lowest Frequency	2499.00	2508.50			
Middle Frequency	2600.00	2600.00			
Highest Frequency	2686.75	2683.50			

2.4 Tested environment

Temperature	:	22 ~ 24 °C
Relative humidity content	:	44 ~ 49 % R.H.
Details of power supply	:	DC 3.7 V

2.5 EMI Suppression Device(s)/Modifications

EMI suppression device(s) added and/or modifications made during testing

 $\rightarrow \text{None}$

3. Test Report

3.1 Summary of tests

FCC Part Section(s)	Parameter	Test Condition	Status Note 1
2.1049 27.53(m),(6)	Emission Bandwidth		С
2.1046 27.50(h),(2)	Equivalent Isotropic Radiated Power		С
2.1051 27.53(m),(4) & (6)	Band Edge	Conducted	С
2.1051 27.53(m),(4) & (6)	Conducted Spurious Emissions		С
2.1055 27.54	Frequency Stability		С
2.1051 27.53(m),(4) & (6)	Radiated Spurious Emissions	Radiated	C Note 2

Note 1: C=Comply NC=Not Comply NT=Not Tested NA=Not Applicable

Note 2: This test item was performed in each axis and the worst case data were reported.

The sample was tested according to the following specification: ANSI C-63.4-2003

3.2 Test Result

3.2.1 Emission Bandwidth

- Procedure:

The bandwidth of the fundamental frequency was measured by spectrum analyzer with RBW = 51KHz(for the Associated Channel BW = 5MHz) and RBW = 100KHz(for the Associated Channel BW = 10MHz). The 26dB Bandwidth is defined as the total spectrum the poser of which is higher than peak power minus 26dB.

- Measurement Data: Comply

7	NA - ded - Com		OBW: 5MHz		OBW: 10MHz		
Zone Format	Modulation Type	Lowest frequency	Middle frequency	Highest frequency	Lowest frequency	Middle frequency	Highest frequency
	QPSK1/2	5.024	5.041	5.058	9.524	9.677	9.628
	QPSK3/4	4.927	4.887	4.875	9.676	9.614	9.520
	16QAM1/2	4.886	4.959	4.912	9.662	9.530	9.543
PUSC	16QAM3/4	4.895	4.983	4.921	9.607	9.559	9.553
PUSC	64QAM1/2	4.960	4.928	4.844	9.674	9.474	9.598
	64QAM2/3	4.929	4.866	4.885	9.519	9.595	9.507
	64QAM3/4	4.804	4.972	4.964	9.598	9.576	9.501
	64QAM5/6	4.883	4.875	4.878	9.522	9.475	9.756
	QPSK1/2	5.133	5.175	5.197	9.788	9.803	9.787
	QPSK3/4	5.155	5.180	5.184	9.894	9.859	9.882
	16QAM1/2	5.130	5.152	5.060	9.892	9.733	9.826
A N 4 C	16QAM3/4	5.190	5.025	5.185	9.883	9.898	9.888
AMC	64QAM1/2	<u>5.262</u>	<u>5.284</u>	5.223	9.785	9.805	9.840
	64QAM2/3	5.084	5.165	<u>5.254</u>	<u>9.985</u>	9.776	9.926
	64QAM3/4	5.201	5.207	5.214	9.855	9.762	9.788
	64QAM5/6	5.180	5.216	5.147	9.859	9.845	9.868

Note 1: This test item was performed in the worst case antenna port. (At the main antenna port). See next pages for above worst case test plots.

- Minimum Standard:

The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

Emission Bandwidth OBW: 5MHz & Lowest Frequency & AMC Zone & 64QAM1/2 & Main Antenna

Emission Bandwidth OBW: 5MHz & Middle Frequency & AMC Zone & 64QAM1/2 & Main Antenna

Emission Bandwidth OBW: 5MHz & Highest Frequency & AMC Zone & 64QAM2/3 & Main Antenna

Emission Bandwidth OBW: 10MHz & Lowest Frequency & AMC Zone & 64QAM2/3 & Main Antenna

Emission Bandwidth OBW: 10MHz & Middle Frequency & AMC Zone & 16QAM3/4 & Main Antenna

Emission Bandwidth OBW: 10MHz & Highest Frequency & AMC Zone & 64QAM2/3 & Main Antenna

3.2.2 Equivalent Isotropic Radiated Power

- Test Procedure:

Conducted method

The bandwidth of the fundamental frequency was measured by spectrum analyzer with RBW = 51KHz (for the Associated Channel BW = 5MHz) and RBW = 100KHz(for the Associated Channel BW = 10MHz).

Radiated Method

This test item is performed at semi-anechoic chamber. The equipment under test is placed on a wooden turntable located at 3-meters from the receive antenna.

This test is based on the use of spectrum analyzer employing a RBW/VBW = 5MHz(OBW: 5MHz) and 10MHz(OBW: 10MHz) and peak detector mode.

The receive antenna height and turntable rotations are adjusted for the highest reading on the receive spectrum analyzer. A antenna is substituted in place of the EUT. This antenna is driven by a vector signal generator. The level of the signal generator is adjusted to obtain the same spectrum analyzer's reading level when EUT existed. After that conducted power at the input terminal of the transmit antenna is measured and this conducted power is corrected with antenna gain in dBi. This level was recorded.

Note: Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004

 Measurement Data: Cor 	າply	
---	------	--

Refer to next page.

- [Minimum Standard:			
	< 2W			

Measurement Data: Conducted method

- OBW: 5MHz

Zone Format	Modulation Type	Main antenna port			Sub antenna port			
		Lowest frequency	Middle frequency	Highest frequency	Lowest frequency	Middle frequency	Highest frequency	
PUSC	QPSK1/2	22.52	22.38	22.19	22.44	22.23	22.18	
	QPSK3/4	22.50	22.37	22.01	22.35	22.20	21.94	
	16QAM1/2	22.40	22.21	22.24	22.34	22.17	22.05	
	16QAM3/4	22.38	22.11	22.13	22.33	22.09	22.01	
	64QAM1/2	22.10	22.04	21.81	22.09	21.98	21.81	
	64QAM2/3	22.68	22.51	22.44	22.66	22.50	22.33	
	64QAM3/4	22.13	22.11	21.71	22.09	21.99	21.71	
	64QAM5/6	22.16	22.19	21.70	21.91	22.14	21.67	
	QPSK1/2	<u>23.33</u>	23.03	22.97	23.24	22.95	22.82	
AMC	QPSK3/4	23.19	22.97	22.81	23.09	22.91	22.67	
	16QAM1/2	23.21	23.01	23.02	23.17	22.95	22.86	
	16QAM3/4	23.06	22.65	22.97	23.04	22.62	22.61	
	64QAM1/2	22.79	22.67	22.66	22.75	22.61	22.47	
	64QAM2/3	23.26	23.11	23.09	23.21	23.07	22.89	
	64QAM3/4	22.71	22.52	22.32	22.63	22.44	22.20	
	64QAM5/6	22.80	22.75	22.77	22.77	22.65	22.66	

- OBW: 10MHz

Zone Format	Modulation Type	N	/lain antenna po	ort	Sub antenna port			
		Lowest frequency	Middle frequency	Highest frequency	Lowest frequency	Middle frequency	Highest frequency	
PUSC	QPSK1/2	22.55	22.41	22.29	22.53	22.35	22.19	
	QPSK3/4	22.46	22.37	22.16	22.32	22.23	22.08	
	16QAM1/2	22.53	22.35	22.29	22.32	22.32	22.26	
	16QAM3/4	22.37	22.21	22.17	22.22	22.13	22.01	
	64QAM1/2	22.27	22.02	21.87	22.17	21.98	21.87	
	64QAM2/3	22.69	22.47	22.44	22.63	22.37	22.40	
	64QAM3/4	22.18	22.08	21.91	22.07	22.00	21.81	
	64QAM5/6	22.50	22.34	22.37	22.44	22.33	22.21	
	QPSK1/2	23.19	23.00	22.94	23.16	22.95	22.90	
AMC	QPSK3/4	22.96	22.82	22.86	22.86	22.69	22.78	
	16QAM1/2	<u>23.27</u>	22.96	22.99	23.24	22.94	22.89	
	16QAM3/4	23.13	22.83	22.71	23.03	22.75	22.68	
	64QAM1/2	22.85	22.66	22.67	22.74	22.58	22.62	
	64QAM2/3	23.20	23.07	22.95	23.10	22.98	22.91	
	64QAM3/4	22.68	22.50	22.47	22.57	22.40	22.38	
	64QAM5/6	23.01	22.76	22.66	22.94	22.63	22.59	

Note: Please see next pages for above worst case power measurement plots.

Conducted Output Power OBW: 5MHz & Lowest Frequency & AMC Zone & QPSK1/2 & Main Antenna

Conducted Output Power OBW: 5MHz & Middle Frequency & AMC Zone & 64QAM2/3 & Main Antenna

Conducted Output Power OBW: 5MHz & Highest Frequency & AMC Zone & 64QAM2/3 & Main Antenna

Conducted Output Power OBW: 10MHz & Lowest Frequency & AMC Zone & 16QAM1/2 & Main Antenna

Conducted Output Power OBW: 10MHz & Middle Frequency & AMC Zone & 64QAM2/3 & Main Antenna

Conducted Output Power OBW: 10MHz & Highest Frequency & AMC Zone & 16QAM1/2 & Main Antenna

Measurement Data: Radiated method

- OBW: 5MHz

Tested	Mod.	Transmitting Antenna	EUT Position	TEST CONDITIONS					
Freq.	Type			Ref. level (dBm)	Pol. (H/V)	Ant Gain (dBi)	EIRP (dBm)	EIRP (W)	
Lowest	QPSK1/2	Main Antenna	Z	-13.12	V	9.05	25.76	0.377	
		Sub Antenna	Z	-13.93	V	9.05	24.95	0.313	
	16O A M 1 / 2	Main Antenna	Z	-13.43	V	9.05	25.45	0.351	
	16QAM1/2	Sub Antenna	Z	-13.84	V	9.05	25.04	0.319	
	64QAM2/3	Main Antenna	Z	-13.19	V	9.05	25.69	0.371	
		Sub Antenna	Z	-13.96	V	9.05	24.92	0.310	
	QPSK1/2	Main Antenna	Z	-12.68	V	9.21	26.08	0.406	
Middle		Sub Antenna	Z	-14.88	V	9.21	23.88	0.244	
	16QAM1/2	Main Antenna	Z	-13.02	V	9.21	25.74	0.375	
ivildale		Sub Antenna	Z	-14.50	V	9.21	24.26	0.267	
	64QAM2/3	Main Antenna	Z	-12.60	V	9.21	26.16	0.413	
		Sub Antenna	Z	-14.76	V	9.21	24.00	0.251	
Highest	QPSK1/2	Main Antenna	Z	-13.23	V	9.34	25.79	0.379	
		Sub Antenna	Z	-14.44	V	9.34	24.58	0.287	
	16QAM1/2	Main Antenna	Z	-13.35	V	9.34	25.67	0.369	
		Sub Antenna	Z	-14.61	V	9.34	24.41	0.276	
	64QAM2/3	Main Antenna	Z	-13.11	V	9.34	25.91	0.390	
		Sub Antenna	Z	-14.37	V	9.34	24.65	0.292	

- OBW: 10MHz

Tested	Mod.	Transmitting	EUT Position	TEST CONDITIONS					
Freq.	Type	Antenna		Ref. level (dBm)	Pol. (H/V)	Ant Gain (dBi)	EIRP (dBm)	EIRP (W)	
	QPSK1/2	Main Antenna	Z	-12.72	V	9.05	26.16	0.413	
		Sub Antenna	Z	-13.69	V	9.05	25.19	0.330	
Lowcot	160 4 14 12	Main Antenna	Z	-13.02	V	9.05	25.86	0.385	
Lowest	16QAM1/2	Sub Antenna	Z	-14.36	V	9.05	24.52	0.283	
	64QAM2/3	Main Antenna	Z	17.12	V	9.05	26.17	0.414	
		Sub Antenna	Z	16.08	V	9.05	25.13	0.326	
	QPSK1/2	Main Antenna	Z	-12.85	V	9.21	25.91	0.390	
		Sub Antenna	Z	-14.37	V	9.21	24.39	0.275	
Middle	16QAM1/2	Main Antenna	Z	-13.37	V	9.21	25.39	0.346	
Middle		Sub Antenna	Z	-13.95	V	9.21	24.81	0.303	
	64QAM2/3	Main Antenna	Z	16.77	V	9.21	25.98	0.396	
		Sub Antenna	Z	15.21	V	9.21	24.42	0.277	
	QPSK1/2	Main Antenna	Z	-13.15	V	9.34	25.87	0.386	
Highest		Sub Antenna	Z	-15.03	V	9.34	23.99	0.251	
	16QAM1/2	Main Antenna	Z	-13.01	V	9.34	26.01	0.399	
		Sub Antenna	Z	-14.48	V	9.34	24.54	0.284	
	64QAM2/3	Main Antenna	Z	16.54	V	9.34	25.88	0.387	
	U4QAIVIZ/3	Sub Antenna	Z	14.66	V	9.34	24.00	0.251	

3.2.3 Band Edge

- Procedure:

The bandwidth of the fundamental frequency was measured by spectrum analyzer with RBW = 51KHz(for the Associated Channel BW = 5MHz) and RBW = 100KHz(for the Associated Channel BW = 10MHz).

- Measurement Data: Comply

Note 1: See next pages for worst case spectrum plots.

- Minimum Standard:

The power of any emission outside of the channel edge must be attenuated below the transmitting power (P) by a factor shall be not less than 43 + 10log(P) at the channel edge, the limit of emission equal to -13dBm. And 55 + 10log(P) dB at 5.5MHz from the channel edges, the limit of emission equal to -25dBm. In the 1MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least on percent of the emission bandwidth of the fundamental emission of the transmitter may be employed.

TRF-RF-217(00)111207 Page 17 / 67

Band Edge

OBW: 5MHz & Lowest Frequency & AMC Zone & QPSK1/2 & Main Antenna

Band Edge

OBW: 5MHz & Lowest Frequency & AMC Zone & 16QAM1/2 & Main Antenna

Band Edge

OBW: 5MHz & Lowest Frequency & AMC Zone & 64QAM2/3 & Main Antenna

Band Edge

OBW: 5MHz & Middle Frequency & AMC Zone & QPSK1/2 & Main Antenna

Band Edge

OBW: 5MHz & Middle Frequency & AMC Zone & 16QAM1/2 & Main Antenna

Band Edge

OBW: 5MHz & Middle Frequency & AMC Zone & 64QAM2/3 & Main Antenna

Band Edge

OBW: 5MHz & Highest Frequency & AMC Zone & QPSK1/2 & Main Antenna

Band Edge

OBW: 5MHz & Highest Frequency & AMC Zone & 16QAM1/2 & Main Antenna

Band Edge

OBW: 5MHz & Highest Frequency & AMC Zone & 64QAM2/3 & Main Antenna

Band Edge

OBW: 10MHz & Lowest Frequency & AMC Zone & QPSK1/2 & Main Antenna

Band Edge

OBW: 10MHz & Lowest Frequency & AMC Zone & 16QAM1/2 & Main Antenna

Band Edge

OBW: 10MHz & Lowest Frequency & AMC Zone & 64QAM2/3 & Main Antenna

Band Edge

OBW: 10MHz & Middle Frequency & AMC Zone & QPSK1/2 & Main Antenna

Band Edge

OBW: 10MHz & Middle Frequency & AMC Zone & 16QAM1/2 & Main Antenna

Band Edge

OBW: 10MHz & Middle Frequency & AMC Zone & 64QAM2/3 & Main Antenna

Band Edge

OBW: 10MHz & Highest Frequency & AMC Zone & QPSK1/2 & Main Antenna

Band Edge

OBW: 10MHz & Highest Frequency & AMC Zone & 16QAM1/2 & Main Antenna

Band Edge

OBW: 10MHz & Highest Frequency & AMC Zone & 64QAM2/3 & Main Antenna

3.2.4 Conducted Spurious Emissions

- Procedure:

The level of the carrier and the various conducted spurious and harmonic frequencies is measured by means of a calibrated spectrum analyzer. The spectrum is scanned from the lowest frequency generated in the equipment up to a frequency including its 10th harmonic.

- Measurement Data: Comply

Note 1: See next pages for actual measured spectrum plots.

- Minimum Standard:

On any frequency outside a licensee's frequency block, the power of any emission shall be attenuated below the transmitter power (P) by at least 55 + 10log(P) dB. The limit of emission equal to -25 dBm

Conducted Spurious Emissions

OBW: 5MHz & Lowest Frequency & AMC Zone & QPSK1/2 & Main Antenna

TRF-RF-217(00)111207 Page 37 / 67

Conducted Spurious Emissions

OBW: 5MHz & Lowest Frequency & AMC Zone & 16QAM1/2 & Main Antenna

TRF-RF-217(00)111207 Page 38 / 67

Conducted Spurious Emissions

OBW: 5MHz & Lowest Frequency & AMC Zone & 64QAM2/3 & Main Antenna

TRF-RF-217(00)111207 Page 39 / 67

Conducted Spurious Emissions

OBW: 5MHz & Middle Frequency & AMC Zone & QPSK1/2 & Main Antenna

TRF-RF-217(00)111207 Page 40 / 67

Conducted Spurious Emissions

OBW: 5MHz & Middle Frequency & AMC Zone & 16QAM1/2 & Main Antenna

TRF-RF-217(00)111207 Page 41 / 67

Conducted Spurious Emissions

OBW: 5MHz & Middle Frequency & AMC Zone & 64QAM2/3 & Main Antenna

TRF-RF-217(00)111207 Page 42 / 67

Conducted Spurious Emissions

OBW: 5MHz & Highest Frequency & AMC Zone & QPSK1/2 & Main Antenna

TRF-RF-217(00)111207 Page 43 / 67

Conducted Spurious Emissions

OBW: 5MHz & Highest Frequency & AMC Zone & 16QAM1/2 & Main Antenna

TRF-RF-217(00)111207 Page 44 / 67

Conducted Spurious Emissions

OBW: 5MHz & Highest Frequency & AMC Zone & 64QAM2/3 & Main Antenna

TRF-RF-217(00)111207 Page 45 / 67

Conducted Spurious Emissions

OBW: 10MHz & Lowest Frequency & AMC Zone & QPSK1/2 & Main Antenna

TRF-RF-217(00)111207 Page 46 / 67

Conducted Spurious Emissions

OBW: 10MHz & Lowest Frequency & AMC Zone & 16QAM1/2 & Main Antenna

TRF-RF-217(00)111207 Page 47 / 67

Conducted Spurious Emissions

OBW: 10MHz & Lowest Frequency & AMC Zone & 64QAM2/3 & Main Antenna

TRF-RF-217(00)111207 Page 48 / 67

Conducted Spurious Emissions

OBW: 10MHz & Middle Frequency & AMC Zone & QPSK1/2 & Main Antenna

TRF-RF-217(00)111207 Page 49 / 67

Conducted Spurious Emissions

OBW: 10MHz & Middle Frequency & AMC Zone & 16QAM1/2 & Main Antenna

TRF-RF-217(00)111207 Page 50 / 67

Conducted Spurious Emissions

OBW: 10MHz & Middle Frequency & AMC Zone & 64QAM2/3 & Main Antenna

TRF-RF-217(00)111207 Page 51 / 67

Conducted Spurious Emissions

OBW: 10MHz & Highest Frequency & AMC Zone & QPSK1/2 & Main Antenna

Conducted Spurious Emissions

OBW: 10MHz & Highest Frequency & AMC Zone & 16QAM1/2 & Main Antenna

TRF-RF-217(00)111207 Page 53 / 67

Conducted Spurious Emissions

OBW: 10MHz & Highest Frequency & AMC Zone & 64QAM2/3 & Main Antenna

TRF-RF-217(00)111207 Page 54 / 67

3.2.5 Frequency Stability

- Procedure:

The frequency stability of the transmitter is measured by:

a) **Temperature**: The temperature is varied from -30°C to + 50°C using an environmental chamber with 10°C increments.

b) **Primary Supply Voltage**: The primary supply voltage is varied from 85% to 115% of the nominal voltage at the input to the device or at the power supply terminals if cables are not normally supplied.

Time Period and Procedure:

- 1. The carrier frequency of the transmitter is measured at room temperature.(20°C to provide a reference).
- 2. The equipment is turned on in a "standby" condition for one minute before applying power to the transmitter. Measurement of the carrier frequency of the transmitter is made within one minute after applying power to the transmitter.
- 3. Frequency measurements are made at 10°C intervals ranging from -30°C to +50°C. A period of at least one half-hour is provided to allow stabilization of the equipment at each temperature level.

- Measurement Data: Comply

Note 1: See next pages for measurement data.

- Minimum Standard:

The frequency stability shall be sufficient to ensure that the fundamental emissions stay within the authorized bands of operation.

TRF-RF-217(00)111207 Page 55 / 67

Measurement Data:

115%

BATT.ENDPOINT

4.255

3.400

BANDWIDTH : 5 MHZ

ZONE MODE : AMC

MODULATION TYPE : QPSK 1/2

OPERATING FREQUENCY : 2,600,000,005 Hz

REFERENCE VOLTAGE : 3.7 V DC

POWER TEMP **VOLTAGE FREQ** Deviation (%) (VDC) (°C) (Hz) (ppm) 3.7 100% 0.000 +20(Ref) 2,600,000,005 100% -30 2,599,999,977 -0.011 100% -20 -0.008 2,599,999,985 100% -10 -0.008 2,599,999,984 100% 0 2,599,999,992 -0.005 2,599,999,995 100% +10 -0.004 100% +20 2,600,000,008 0.001 100% +30 2,600,000,007 0.001 100% +40 0.002 2,600,000,009 100% +50 2,599,999,988 -0.007 85% 3.145 +20 N/A N/A

+20

+20

2,599,999,986

2,599,999,990

-0.007

-0.006

Measurement Data:

BANDWIDTH : 10 MHZ

ZONE MODE : AMC

MODULATION TYPE : QPSK 1/2

OPERATING FREQUENCY : 2,600,000,015 Hz

REFERENCE VOLTAGE : 3.7 V DC

VOLTAGE (%)	POWER (VDC)	TEMP (℃)	FREQ (Hz)	Deviation (ppm)
100%	3.7	+20(Ref)	2,600,000,015	0.000
100%		-30	2,600,000,018	0.001
100%		-20	2,600,000,023	0.003
100%		-10	2,599,999,989	-0.010
100%		0 2,599,999,984	-0.012	
100%		+10	2,600,000,016	0.000
100%		+20	2,600,000,015	0.000
100%		+30	2,600,000,013	-0.001
100%		+40	2,600,000,011	-0.002
100%		+50	2,600,000,015	0.000
85%	3.145	+20	N/A	N/A
115%	4.255	+20	2,599,999,980	-0.013
BATT.ENDPOINT	3.400	+20	2,599,999,973	-0.016

3.2.6 Radiated Spurious Emissions

- Procedure:

Spurious and harmonic emissions between the lowest frequency generated in this device and up to 10th harmonic of the highest generated in this device are measured at semi-anechoic chamber. The equipment under test is placed on a wooden turntable located at 3-meters from the receive antenna.

This test is based on the use of spectrum analyzer employing a RBW/VBW = 5MHz(OBW: 5MHz) and 10MHz(OBW: 10MHz) and peak detector mode.

The receive antenna height and turntable rotations are adjusted for the highest reading on the receive spectrum analyzer. A antenna is substituted in place of the EUT. This antenna is driven by a vector signal generator for spurious emissions. The level of the signal generator is adjusted to obtain the same spectrum analyzer's reading level when EUT existed. After that conducted power at the input terminal of the transmit antenna is measured and this conducted power is corrected with antenna gain in dBi. This spurious level was recorded.

Note: Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004

- Measurement Data: Comply

Note 1: See next pages for worst case measurement data.

- Minimum Standard:

On any frequency outside a licensee's frequency block, the power of any emission shall be attenuated below the transmitter power (P) by at least 55 + 10log(P) dB. The limit of emission equal to -25 dBm

TRF-RF-217(00)111207 Page 58 / 67

Measurement Data:

- OBW: 5MHz & Main Antenna

Tested	Mod.	Frequency (MHz)	EUT					
Freq.	Туре		Position	Ref. level (dBm)	Pol. (H/V)	Limit (dBm)		
	QPSK1/2	4996.30	Z	-57.59	Н	10.89	-44.46	-25.00
	QFSK1/2	7495.73	Y	-60.74	Н	11.72	-42.51	-25.00
Lowest	160 11/2	4998.06	Z	-57.56	Н	10.88	-44.44	-25.00
Lowest	16QAM1/2	7494.82	Y	-60.28	Н	11.72	-42.05	-25.00
	6400112/2	4997.94	Z	-56.62	Н	10.89	-43.49	-25.00
	64QAM2/3	7495.59	Y	-62.29	Н	11.72	-44.06	-25.00
	QPSK1/2	5200.48	Z	-55.82	Н	11.01	-42.19	-25.00
		7800.38	Y	-61.74	Н	11.59	-44.40	-25.00
Middle	16QAM1/2	5200.51	Z	-55.51	Н	11.01	-41.88	-25.00
Middle		7802.69	Y	-60.83	Н	11.59	-43.49	-25.00
	64QAM2/3	5199.90	Z	-55.74	Н	11.01	-42.11	-25.00
		7801.76	Y	-58.93	Η	11.59	-41.59	-25.00
	ODCK4/2	5375.30	Z	-57.11	Н	11.10	-43.29	-25.00
	QPSK1/2	8060.96	Y	-59.75	Н	11.51	-40.74	-25.00
Llighoot	16QAM1/2	5373.08	Z	-57.14	Н	11.10	-43.32	-25.00
Highest		8060.38	Y	-60.51	Н	11.51	-41.50	-25.00
	6400112/2	5374.37	Z	-57.32	Н	11.10	-43.50	-25.00
	64QAM2/3	8059.22	Y	-61.99	Н	11.51	-42.98	-25.00

- OBW: 10MHz & Main Antenna

Tested	Mod.	Frequency (MHz)	EUT						
Freq.	Туре		Position	Ref. level (dBm)					
	QPSK1/2	5014.72	Z	-55.17	Н	10.90	-41.73	-25.00	
	QF3K1/2	7524.44	Υ	-65.15	Η	11.70	-47.05	-25.00	
Lowest	16QAM1/2	5016.39	Z	-55.92	Η	10.90	-42.48	-25.00	
Lowest	TOQAWIT/2	7527.81	Υ	-65.46	Η	11.70	-47.36	-25.00	
	C4O A N4O/O	5011.58	Z	-55.46	Η	10.90	-42.02	-25.00	
	64QAM2/3	7522.87	Υ	-60.79	Η	11.70	-42.69	-25.00	
	QPSK1/2	5198.69	Z	-59.70	Н	11.01	-46.07	-25.00	
		7799.62	Υ	-66.05	Η	11.59	-48.71	-25.00	
Middle	16QAM1/2	5200.77	Z	-59.54	Н	11.01	-45.91	-25.00	
Middle		7798.14	Υ	-66.62	Н	11.59	-49.28	-25.00	
	64QAM2/3	5200.03	Z	-58.93	Н	11.01	-45.30	-25.00	
		7796.54	Υ	-60.49	Η	11.59	-43.15	-25.00	
	000144/0	5367.32	Z	-60.69	Н	11.11	-46.86	-25.00	
	QPSK1/2	8048.80	Υ	-65.09	Н	11.51	-46.74	-25.00	
Llighost	16OAM1/2	5366.55	Z	-60.14	Н	11.11	-46.31	-25.00	
Highest	16QAM1/2	8053.13	Υ	-63.99	Н	11.51	-45.64	-25.00	
	64OAM2/2	5368.79	Z	-58.92	Η	11.11	-45.09	-25.00	
	64QAM2/3	8048.32	Υ	-60.36	Н	11.51	-42.01	-25.00	

3.2.7 99% Occupied Bandwidth

- Procedure:

The bandwidth was measured by spectrum analyzer with RBW = 51KHz(for the Associated Channel BW = 5MHz) and RBW = 100KHz(for the Associated Channel BW = 10MHz).

- Measurement Data:

7	NA - dod - C		OBW: 5MHz			OBW: 10MHz	
Zone Format	Modulation Type	Lowest frequency	Middle frequency	Highest frequency	Lowest frequency	Middle frequency	Highest frequency
	QPSK1/2	4.4545	4.4481	4.4413	9.0989	9.1222	9.1069
	QPSK3/4	4.4375	4.4385	4.4427	9.1074	9.0732	9.0875
	16QAM1/2	4.4424	4.4457	4.4398	9.1062	9.1242	9.1039
PUSC	16QAM3/4	4.4441	4.4566	4.4379	9.0816	9.1071	9.0790
PUSC	64QAM1/2	4.4359	4.4385	4.4338	9.1161	9.1165	9.1315
	64QAM2/3	4.4292	4.4265	4.4382	9.0944	9.1041	9.0852
	64QAM3/4	4.4440	4.4431	4.4483	9.0728	9.0755	9.0940
	64QAM5/6	4.4346	4.4435	4.4330	9.1173	9.0374	9.0923
	QPSK1/2	4.6913	4.7030	4.6960	9.3179	9.3492	9.3560
	QPSK3/4	4.7079	4.7085	4.7029	9.3365	9.3241	9.3587
	16QAM1/2	<u>4.7197</u>	4.7052	4.7047	<u>9.3550</u>	9.3374	9.3828
AMC	16QAM3/4	4.6989	4.6918	4.6977	9.3319	9.3193	9.3172
AMC	64QAM1/2	4.7038	4.7057	4.7016	9.3517	9.3397	9.3570
	64QAM2/3	4.6929	4.6992	<u>4.7114</u>	9.3491	9.3607	9.3540
	64QAM3/4	4.6990	4.7138	4.7109	9.3486	9.3673	9.3594
	64QAM5/6	4.7015	4.7070	4.7084	9.3377	9.3485	9.3466

Note 1: This test item was performed in the worst case antenna port. (At the main antenna port). See next pages for above worst case test plots.

- Minimum Standard: N/A

TRF-RF-217(00)111207 Page 60 / 67

99% **OBW**

OBW: 5MHz & Lowest Frequency & AMC Zone & 16QAM1/2 & Main Antenna

99% **OBW**

OBW: 5MHz & Middle Frequency & AMC Zone & 64QAM3/4 & Main Antenna

99% **OBW**

OBW: 5MHz & Highest Frequency & AMC Zone & 64QAM2/3 & Main Antenna

99% **OBW**

OBW: 10MHz & Lowest Frequency & AMC Zone & 16QAM1/2 & Main Antenna

99% **OBW**

OBW: 10MHz & Middle Frequency & AMC Zone & 64QAM3/4 & Main Antenna

99% **OBW**

OBW: 10MHz & Highest Frequency & AMC Zone & 16QAM1/2 & Main Antenna

APPENDIX

TEST EQUIPMENT FOR TESTS

To facilitate inclusion on each page of the test equipment used for related tests, each item of test equipment.

	Туре	Manufacturer	Model	Cal.Date (yy/mm/dd)	Next.Cal.Date (yy/mm/dd)	S/N
\boxtimes	Spectrum Analyzer	Agilent	E4440A	11/09/30	12/09/30	MY45304199
\boxtimes	Spectrum Analyzer	Rohde Schwarz	FSQ26	12/01/09	13/01/09	200445
	Spectrum analyzer	Agilent	E4404B	11/03/08	12/03/08	US41061134
	Spectrum Analyzer(RE)	H.P	8563E	11/10/04	12/10/04	3551A04634
	MXA Signal Analyzer	Agilent Technologies, Inc	N9020A	12/01/09	13/01/09	MY49100833
	Power Meter	H.P	EPM-442A	11/07/01	12/07/01	GB37170413
	Power Sensor	H.P	8481A	11/07/01	12/07/01	3318A96332
	Wideband Power Sensor	Rohde Schwarz	NRP-Z81	11/06/04	12/06/04	1137.9009.02- 101001
	Virtual Power Meter(S/W)	Rohde Schwarz	R&S Power Viewer Plus	-	-	V 4.1.0
	Power Divider	Agilent	11636B	11/09/30	12/09/30	56471
	4-Way Power Divider	ET Industries	D-0526-4	11/12/01	12/12/01	210195001
\boxtimes	Power Splitter	Anritsu	K241B	11/09/30	12/09/30	020611
	Power Splitter	Anritsu	K241B	11/07/01	12/07/01	017060
	Power Splitters & Dividers	Aeroflex/Weinschel	1594	11/02/21	12/02/21	1177
	Frequency Counter	H.P	5342A	11/07/01	12/07/01	2119A04450
\boxtimes	TEMP & HUMIDITY Chamber	JISCO	KR-100/J-RHC2	11/09/30	12/09/30	30604493/021031
\boxtimes	Digital Multimeter	H.P	34401A	11/03/07	12/03/07	3146A13475, US36122178
	Multifunction Synthesizer	HP	8904A	11/10/06	12/10/06	3633A08404
	Signal Generator	Rohde Schwarz	SMR20	11/03/08	12/03/08	101251
	Signal Generator	H.P	ESG-3000A	11/07/01	12/07/01	US37230529
	Vector Signal Generator	Rohde Schwarz	SMJ100A	12/01/09	13/01/09	100148
	Vector Signal Generator	Rohde Schwarz	SMBV100A	12/01/09	13/01/09	255571
	Audio Analyzer	H.P	8903B	11/07/02	12/07/02	3011A09448
	Modulation Analyzer	H.P	8901B	11/07/01	12/07/01	3028A03029
	8960 Series 10 Wireless Comms. Test Set	Agilent	E5515C	11/03/07	12/03/07	GB43461134
	Universal Radio communication Tester	Rohde Schwarz	CMU200	11/03/07	12/03/07	106760
	Bluetooth Tester	TESCOM	TC-3000B	11/07/01	12/07/01	3000B000268
	Thermo hygrometer	BODYCOM	BJ5478	11/01/13	12/01/13	090205-3
\boxtimes	Thermo hygrometer	BODYCOM	BJ5478	11/01/13	12/01/13	090205-2
	Thermo hygrometer	BODYCOM	BJ5478	11/01/13	12/01/13	090205-4
	AC Power supply	DAEKWANG	5KVA	11/03/08	12/03/08	20060321-1
\boxtimes	DC Power Supply	HP	6622A	11/03/07	12/03/07	3448A03760
	DC Power Supply	HP	6633A	11/03/07	12/03/07	3524A06634
	DC Power Supply	Protek	PWS-3010D	11/09/30	12/09/30	4072702
	DC Power Supply	SM techno	SDP30-5D	11/05/20	12/05/20	305DKA013
	BAND Reject Filter	Microwave Circuits	N0308372	11/09/30	12/09/30	3125-01DC0352
	BAND Reject Filter	Wainwright	WRCG1750	11/09/30	12/09/30	2
	High-Pass Filter	ANRITSU	MP526D	11/09/30	12/09/30	M27756

	Туре	Manufacturer	Model	Cal.Date (yy/mm/dd)	Next.Cal.Date (yy/mm/dd)	S/N
	High-pass filter	Wainwright	WHNX2.1	11/09/30	12/09/30	1
\boxtimes	High-pass filter	Wainwright	WHNX3.0	11/09/30	12/09/30	9
	High-pass filter	Wainwright	WHNX5.0	11/09/19	12/09/19	8
	High-Pass Filter	Wainwright	WHKX8.5	11/09/19	12/09/19	1
	High-Pass Filter	Wainwright	WHKX1.0	11/09/30	12/09/30	9
	Tunable Notch Filter	Wainwright	WRCT800.0 /960.0-0.2/40-8SSK	N/A	N/A	32
	Tunable Notch Filter	Wainwright	WRCD1700.0 /2000.0-0.2/40- 10SSK	N/A	N/A	53
	Tunable Notch Filter	Wainwright	WRCT1900.0/ 2200.0-5/40-10SSK	N/A	N/A	30
\boxtimes	HORN ANT	ETS	3115	11/09/06	12/09/06	21097
\boxtimes	HORN ANT	ETS	3115	11/03/22	12/03/22	6419
\boxtimes	HORN ANT	A.H.Systems	SAS-574	11/03/25	13/03/25	154
	HORN ANT	A.H.Systems	SAS-574	11/03/25	13/03/25	155
	HORN ANT	SCHWARZBECK	BBHA9120A	10/04/13	12/04/13	322
\boxtimes	Dipole Antenna	Schwarzbeck	VHA9103	11/11/22	12/11/22	2116
\boxtimes	Dipole Antenna	Schwarzbeck	VHA9103	11/11/22	12/11/22	2117
\boxtimes	Dipole Antenna	Schwarzbeck	UHA9105	11/11/22	12/11/22	2261
\boxtimes	Dipole Antenna	Schwarzbeck	UHA9105	11/11/22	12/11/22	2262
	LOOP Antenna	ETS	6502	10/10/29	12/10/29	3471
	Coaxial Fixed Attenuators	Agilent	8491B	11/07/02	12/07/02	MY39260700
\boxtimes	Attenuator (3dB)	WEINSCHEL	56-3	11/09/30	12/09/30	Y2342
\boxtimes	Attenuator (3dB)	WEINSCHEL	56-3	11/09/30	12/09/30	Y2370
	Attenuator (10dB)	WEINSCHEL	23-10-34	11/09/30	12/09/30	BP4386
	Attenuator (10dB)	WEINSCHEL	23-10-34	12/01/09	13/01/09	BP4387
	Attenuator (10dB)	WEINSCHEL	86-10-11	11/09/30	12/09/30	446
	Attenuator (10dB)	WEINSCHEL	86-10-11	11/09/30	12/09/30	408
	Attenuator (20dB)	WEINSCHEL	86-20-11	11/09/30	12/09/30	432
	Attenuator (30dB)	JFW	50FH-030-300	11/03/07	12/03/07	060320-1
	Attenuator (40dB)	WEINSCHEL	57-40-33	11/09/30	12/09/30	NN837
	Termination	H.P	HP-909D	11/07/02	12/07/02	02750
	Termination	H.P	HP-909D	11/07/02	12/07/02	02702
	Type N Coaxial CIRCULATOR	NOVA MICROWAVE	0088CAN	11/07/01	12/07/01	788
	Type N Coaxial CIRCULATOR	NOVA MICROWAVE	0185CAN	11/07/01	12/07/01	790
	Amplifier (30dB)	Agilent	8449B	11/03/07	12/03/07	3008A01590
\boxtimes	Amplifier (30dB)	H.P	8449B	11/03/07	12/03/07	3008A00370
\boxtimes	Amplifier	EMPOWER	BBS3Q7ELU	11/09/30	12/09/30	1020
	RF Power Amplifier	OPHIRRF	5069F	11/07/01	12/07/01	1006
	EMI TEST RECEIVER	R&S	ESU	12/01/09	13/01/09	100014

	Туре	Manufacturer	Model	Cal.Date (yy/mm/dd)	Next.Cal.Date (yy/mm/dd)	S/N
\boxtimes	BILOG ANTENNA	SCHAFFNER	CBL6112B	10/07/14	12/07/14	2737
\boxtimes	Amplifier (22dB)	H.P	8447E	12/01/09	13/01/09	2945A02865
	EMI TEST RECEIVER	R&S	ESCI	11/03/08	12/03/08	100364
	BICONICAL ANT.	Schwarzbeck	VHA 9103	10/11/29	12/11/29	91032789
	LOG-PERIODIC ANT.	Schwarzbeck	UHALP9108A1	10/11/29	12/11/29	1098
	BICONICAL ANT.	Schwarzbeck	VHA 9103	10/12/21	12/12/21	91031946
	LOG-PERIODIC ANT.	Schwarzbeck	UHALP9108A1	10/07/07	12/07/07	0590
	Low Noise Pre Amplifier	TSJ	MLA-100K01-B01-2	11/03/07	12/03/07	1252741
	Low Noise Pre Amplifier	TSJ	MLA-00108-B02-36	12/01/09	13/01/09	1518831
	Amplifier (25dB)	Agilent	8447D	11/03/07	12/03/07	2944A10144
	Amplifier (25dB)	Agilent	8447D	11/07/01	12/07/01	2648A04922
	Spectrum Analyzer(CE)	H.P	8591E	11/03/07	12/03/07	3649A05889
	LISN	Kyoritsu	KNW-407	12/01/09	13/01/09	8-317-8
	LISN	Kyoritsu	KNW-242	11/07/02	12/07/02	8-654-15
	CVCF	NF Electronic	4420	11/09/15	12/19/15	304935/4420023
	50 ohm Terminator	НМЕ	CT-01	12/01/09	13/01/09	N/A
	RFI/FIELD Intensity Meter	Kyoritsu	KNM-2402	11/07/02	12/07/02	4N-170-3
	EMI Test Receiver	R&S	ECSI	11/03/08	12/03/08	100364
	LISN	R&S	ESH2-Z5	11/09/30	12/09/30	8287391006
	CVCF	NF Electronic	4420	11/03/08	12/03/08	304935/337980
	RFI/FIELD Intensity Meter	ES4152	424059	11/09/30	12/09/30	424059
	Wideband Radio Communication Tester	R&S	CMW500	11/09/30	12/09/30	100989