Aufgabe 1:

Abbildung 1: Auswertung der vorgegebenen Funktionen in halb-logarithmischer Darstellung

Angabe der Reihenfolge der Funktionen nach ihrer asymptotischen Komplexität für $n \to \infty$

$f_3 = O(n!)$	Faktoriell
$f_5 = O(2^n)$	Exponentiell
$f_6 = O(n^3)$	Polynomiell
$f_2 = O(n^2 \log(n))$	Polynomiell
$f_1 = O(n)$	Polynomiell
$f_4 = O(\log(n))$	Logarithmisch

Aufgabe 2:

Lösung im beigefügten Eclipse-Projekt

Aufgabe 3:

- (a) Die Schleife über i geht von $2 \cdot n$ bis Null wobei bei jeder Iteration der Wert von i um Eins reduziert wird. Die Komplexität dieser Schleife beträgt also 2n. Die Schleife über j geht von 0 bis j wobei bei jeder Iteration der Wert von j um Zwei erhöht wird. Die Komplexität dieser Schleife beträgt also $\frac{n}{2}$. Insgesamt also ist die asymptotische Komplexität O(n).
- (b) Die Gesamtkomplexität von verschachtelten Schleifen ist das Produkt der einzelnen Komplexitäten. Die Schleife über i hat Komplexität n, die Schleife über j hat $\frac{n}{2}$ und die Schleife über k hat Komplexität $\frac{n}{6}$ (Wenn der Index der Schleife in jeder Iteration mit einem Wert addiert wird ist die Komplexität der Schleife die Differenz von Start- und Endwert geteilt durch die "Schrittlänge"). Die asymptotische Komplexität des Algorithmus beträgt also $O(n^3)$.
- (c) Der Algorithmus ruft sich selbst rekursiv insgesamt n mal auf. Bei jeder Rekursion entstehen zwei Funktionsaufrufe. Also ist die asymptotische Komplexität $O(2^n)$. Es ist zu bemerken dass keinerlei Rechenoperationen durchgeführt werden, am Ende der Rekursion steht lediglich die Ausgabe von n.
- (d) Nach Erreichen von $\frac{n}{2}$ wird die Schleife abgebrochen. Bis dahin wird in jeder Schleifeniteration mit Zwei multipliziert. Die Komplexität ist also die Lösung der Gleichung $2^x = \frac{n}{2}$ also $O(\log n)$.
- (e) Die Komplexität ist das Produkt der Komplexitäten der beiden Schleifen. Dass n durch $\frac{n}{2}$ ersetzt wird ist dabei für die Abschätzung der Komplexität irrelevant. Die Komplexität der Schleife über i ist n und die der Schleife über j $\log n$ da in jeder Iteration j verdoppelt wird. Insgesamt also ist die asymptotische Komplexität $O(n \log n)$.
- (f) Nur die Schleife über i hängt in ihrer Komplexität von n ab. Die Komplexität der Schleife über j ist bezüglich n konstant. Also ist die Gesamtkomplexität O(n).