Elektronik Aygıtlar

BÖLÜM 7 FET TRANSISTÖRLERIN DC POLARLAMASI

BMB2012 – Elektronik Devreler ve Aygıtlar Ders Notları Bursa Uludağ Üniversitesi Bilgisayar Mühendisliği Bölümü 2023-2024 Bahar Yarıyılı

Çeviren ve Düzenleyen: Prof. Dr. Kemal FİDANBOYLU

Yaygın FET Polarlama Devreleri

JFET Polarlama Devreleri

- Sabit Polarlama
- Öz Polarlama
- Voltaj Bölücü Polarlama
- Ortak-Geçit Polarlama

D-MOSFET Polarlama Devreleri

- Öz Polarlama
- Voltaj Bölücü Polarlama

E-MOSFET Polarlama Devreleri

- Geri Beslemeli Polarlama
- Voltaj Bölücü Polarlama

Akım Denklemleri

Tüm FET'ler için:

$$I_{\rm G}\cong 0$$
 A

$$I_D = I_S$$

JFET'ler ve D-MOSFET'ler için:

$$I_D = I_{DSS} \left(1 - \frac{V_{GS}}{V_P} \right)^2$$

E-MOSFET'ler için:

$$I_D = k(V_{GS} - V_T)^2$$

Sabit Polarlama (1)

$$V_{DS} = V_{DD} - I_D R_D$$
 $V_S = 0 V$
 $V_D = V_{DS}$
 $V_G = V_{GS}$
 $V_{GS} = -V_{GG}$

Sabit Polarlama (2)

- Örnek 1: Şekil 6'daki devre için aşağıdakileri bulun: (a) V_{GSQ} , (b) I_{DQ} , (c) V_{DS} , (d) V_{D} , (e) V_{G} , (f) V_{S} .
- Çözüm (Matematiksel Yaklaşım):

a.
$$V_{GS_Q} = -V_{GG} = -2 \text{ V}$$

b. $I_{D_Q} = I_{DSS} \left(1 - \frac{V_{GS}}{V_P} \right)^2 = 10 \text{ mA} \left(1 - \frac{-2 \text{ V}}{-8 \text{ V}} \right)^2$
 $= 10 \text{ mA} (1 - 0.25)^2 = 10 \text{ mA} (0.75)^2 = 10 \text{ mA} (0.5625)$
 $= 5.625 \text{ mA}$

c.
$$V_{DS} = V_{DD} - I_D R_D = 16 \text{ V} - (5.625 \text{ mA})(2 \text{ k}\Omega)$$

= $16 \text{ V} - 11.25 \text{ V} = 4.75 \text{ V}$

d.
$$V_D = V_{DS} = 4.75 \text{ V}$$

e.
$$V_G = V_{GS} = -2 \text{ V}$$

f.
$$V_S = \mathbf{0} \mathbf{V}$$

Sabit Polarlama (3)

Örnek 1: (Devamı) (Grafiksel Yaklaşım):

a.
$$V_{GS_O} = -V_{GG} = -2 \text{ V}$$

b.
$$I_{D_0} = 5.6 \,\mathrm{mA}$$

c.
$$V_{DS} = V_{DD} - I_D R_D = 16 \text{ V} - (5.6 \text{ mA})(2 \text{ k}\Omega)$$

= 16 V - 11.2 V = 4.8 V

d.
$$V_D = V_{DS} = 4.8 \text{ V}$$

e.
$$V_G = V_{GS} = -2 \text{ V}$$

f.
$$V_S = \mathbf{0} \mathbf{V}$$

Öz Polarlama (1)

Öz Polarlama (2)

- 1. Bir $I_D < I_{DSS}$ değeri seçin ve V_{GS} 'yi hesaplamak için R_S 'nin değerini kullanın. I_D ve V_{GS} ile tanımlanan noktayı çizin ve eksenin orijininden bu noktaya bir çizgi çizin.
- 2. I_{DSS} ve V_P (teknik özellikler belgesinde V_P = $|V_{GSoff}|$) ve $V_{GS} = V_P/4$ ve $V_{GS} = V_P/2$ vb. gibi birkaç nokta kullanarak karakteristik eğrisini çizin.
- Q noktası, ilk çizginin karakteristik eğrisini kestiği yerde bulunur. Q noktasındaki (I_{DQ}) I_D değerini kullanarak aşağıdakileri hesaplayın:

$$V_{GS} = -I_D R_S$$
 $V_{DS} = V_{DD} - I_D (R_S + R_D)$ $V_G = 0 \text{ V}$ $V_S = I_D R_S$ $V_D = V_{DS} + V_S = V_{DD} - V_{R_D}$

Öz Polarlama (3)

• Örnek 2: Şekil 12'deki devre için aşağıdakini bulun: (a) V_{GSO} , (b) I_{DO} , (c) V_{DS} , (d) V_{S} , (e) V_{G} , (f) V_{D} .

Çözüm:

Öz Polarlama (4)

Örnek 2: (Devamı)

Öz Polarlama (5)

Örnek 2: (Devamı)

a.
$$V_{GS_Q} = -2.6 \text{ V}$$

b.
$$I_{D_O} = 2.6 \,\mathrm{mA}$$

c.
$$V_{DS} = V_{DD} - I_D(R_S + R_D)$$

= 20 V - (2.6 mA)(1 k Ω + 3.3 k Ω)
= 20 V - 11.18 V
= **8.82 V**

d.
$$V_S = I_D R_S$$

= $(2.6 \text{ mA})(1 \text{ k}\Omega)$
= 2.6 V
e. $V_G = 0 \text{ V}$
f. $V_D = V_{DS} + V_S = 8.82 \text{ V} + 2.6 \text{ V} = 11.42 \text{ V}$
 $V_D = V_{DD} - I_D R_D = 20 \text{ V} - (2.6 \text{ mA})(3.3 \text{ k}\Omega) = 11.42 \text{ V}$

Öz Polarlama (6)

 Örnek 3: Aşağıdaki durumlarda Şekil 12'deki devre için Q noktasını bulun: (a) R_S = 100 Ω, (b) R_S = 10 kΩ.

Çözüm:

a.
$$I_{D_Q} \cong \mathbf{6.4 \, mA}$$
 $V_{GS_Q} \cong \mathbf{-0.64 \, V}$

b.
$$V_{GS_Q} \cong -4.6 \text{ V}$$
 $I_{D_Q} \cong 0.46 \text{ mA}$

Voltaj Bölücü Polarlama (1)

- $I_G = 0 A$
- I_D, V_{GS}'deki değişikliklere yanıt verir.

Voltaj Bölücü Polarlama (2)

• V_G , bölücü direnç R_2 üzerindeki gerilime eşittir:

$$V_G = \frac{R_2 V_{DD}}{R_1 + R_2}$$

Kirchhoff kanthunu kullanırsak:

$$V_{GS} = V_G - I_D R_S$$

$$V_{DS} = V_{DD} - I_D(R_D + R_S)$$

$$V_D = V_{DD} - I_D R_D$$

$$V_{S} = I_{D}R_{S}$$

Q noktası, karakteristik eğrisini kesen bir çizgi çizilerek oluşturulur.

Voltaj Bölücü Polarlama (3)

 Bu iki nokta tarafından tanımlanan doğruyu çizin:

-
$$V_{GS} = V_G$$
, $I_D = 0$ A

$$- V_{GS} = 0 \text{ V}, I_D = V_G / R_S$$

- I_{DSS} , V_P ve hesaplanan I_D değerlerini çizerek, karakteristik eğrisini çizin.
- Q noktası, doğrunun karakteristik eğrisi ile kesiştiği yerde bulunur.

Voltaj Bölücü Polarlama (4)

 Artan R_S değerleri, I_D'nin daha düşük Q değerlerine ve V_{GS}'nin azalan değerlerine neden olur.

Voltaj Bölücü Polarlama (5)

- Örnek 4: Şekil 21'deki devre için aşağıdakini bulun: (a) I_{DQ} and V_{GSQ} , (b) V_D , (c) V_S , (d) V_{DS} , (e) V_{DG} .
- Çözüm:

a. Karakteristik eğrisinden, eğer $I_D = I_{DSS}/4 = 8$ mA/4 = 2 mA ise, $V_{GS} = V_P/2 = -4$ V/2 = -2 V. Shockley denklemini temsil eden sonuç eğrisi Şekil 22'de görülmektedir. Böylelikle, devrenin denklemi aşağıdaki gibi tanımlanır:

$$V_G = \frac{R_2 V_{DD}}{R_1 + R_2} = \frac{(270 \text{ k}\Omega)(16 \text{ V})}{2.1 \text{ M}\Omega + 0.27 \text{ M}\Omega} = 1.82 \text{ V}$$

$$V_{GS} = V_G - I_D R_S = 1.82 \text{ V} - I_D (1.5 \text{ k}\Omega)$$

Voltaj Bölücü Polarlama (6)

Örnek 4: (Devamı)

$$I_D = 0 \text{ mA}, \ V_{GS} = +1.82 \text{ V}$$

$$V_{GS} = 0 \text{ V}, \ I_D = \frac{1.82 \text{ V}}{1.5 \text{ k}\Omega} = 1.21 \text{ mA}$$

 Şekil 22'deki yük doğrusunun karakteristik eğrisi ile kesiştiği nokta Qnoktasını verir.

$$I_{D_Q} = 2.4 \text{ mA}$$
 $V_{GS_Q} = -1.8 \text{ V}$

b.
$$V_D = V_{DD} - I_D R_D$$

= 16 V - (2.4 mA)(2.4 k Ω)
= **10.24 V**

c.
$$V_S = I_D R_S = (2.4 \text{ mA})(1.5 \text{ k}\Omega)$$

= **3.6 V**

e.
$$V_{DG} = V_D - V_G$$

= 10.24 V - 1.82 V
= **8.42 V**

Determining the Q-point for the network of Fig. 21.

d.
$$V_{DS} = V_{DD} - I_D(R_D + R_S)$$

= 16 V - (2.4 mA)(2.4 k Ω + 1.5 k Ω)
= **6.64 V**

$$V_{DS} = V_D - V_S = 10.24 \text{ V} - 3.6 \text{ V}$$

= **6.64 V**

Ortak Geçit Polarlama (1)

Ortak Geçit Polarlama (2)

$$-V_{GS} - I_{S}R_{S} + V_{SS} = 0$$

$$V_{GS} = V_{SS} - I_{S}R_{S}$$

$$I_{S} = I_{D}$$

$$V_{GS} = V_{SS} - I_D R_S$$

$$V_{GS} = V_{SS} - (0)R_S$$

$$V_{GS} = V_{SS}|_{I_D = 0 \text{mA}}$$

$$0 = V_{SS} - I_D R_S$$

$$I_D = \frac{V_{SS}}{R_S} \bigg|_{V_{GS} = 0 \text{ V}}$$

Determining the Q-point for the network of Fig. 24.

Ortak Geçit Polarlama (3)

Kirchhoff'un voltaj kanununu, Şekil 23a ve Şekil 23b'deki JFET, R_D ve R_S dirençleri ile iki kaynağı içeren döngü etrafında uygularsak, aşağıdakilerle sonuçları elde ederiz:

$$+V_{DD} - I_{D}R_{D} - V_{DS} - I_{S}R_{S} + V_{SS} = 0$$

$$+V_{DD} + V_{SS} - V_{DS} - I_{D}(R_{D} + R_{S}) = 0$$

$$V_{DS} = V_{SQ} + V_{SS} - I_{D}(R_{D} + R_{S})$$

$$V_{D} = V_{DD} - I_{D}R_{D}$$

$$V_{S} = -V_{SS} + I_{D}R_{S}$$

Yok

Ortak Geçit Polarlama (4)

Örnek 5: Şekil 26'daki ortak geçit konfigürasyonu için aşağıdakileri bulun: (a) V_{GSO} , (b) I_{DO} , (c) V_{D} , (d) V_{G} ,

(e) V_{S} , (f) V_{DS} .

Çözüm:

- $V_{GS} = 0 I_D R_S$ Yük doğrusu denklemi: $V_{GS} = -I_D R_S$
- I_D = 6 mA olarak alırsak V_{GS} aşağıdaki şekilde elde edilir.

$$V_{GS} = -I_D R_S = -(6 \text{ mA})(680 \Omega) = -4.08 \text{ V}$$

- Karakteristik eğrisini çizmek için aşağıdaki parametreler kullanılır:

$$V_P/2$$
 noktasında: $I_D = \frac{I_{DSS}}{4} = \frac{12 \text{ mA}}{4} = 3 \text{ mA}$

 $0.3V_P$ noktasında: $V_{GS} \cong 0.3V_P = 0.3(-6 \text{ V}) = -1.8 \text{ V}$

Ortak Geçit Polarlama (5)

Örnek 5: (Devamı)

a. b. Şekil 27'deki yük doğrusunun karakteristik eğrisi ile kesiştiği nokta Q-noktasını verir.

$$I_{D_Q} \cong 3.8 \,\mathrm{mA} \quad V_{GS_Q} \cong -2.6 \,\mathrm{V}$$

c.
$$V_D = V_{DD} - I_D R_D$$

= 12 V - (3.8 mA)(1.5 k Ω) = 12 V - 5.7 V
= **6.3 V**

d.
$$V_G = \mathbf{0} \mathbf{V}$$

e.
$$V_S = I_D R_S = (3.8 \text{ mA})(680 \Omega)$$

= **2.58 V**

f.
$$V_{DS} = V_D - V_S$$

= 6.3 V - 2.58 V
= 3.72 V

Determining the Q-point for the network of Fig. 26.

A

Özel Durum: $V_{GSQ} = 0$

Göreceli basitliği nedeniyle pratik değere sahip bir devre, Şekil 28'deki gösterilmektedir. Geçitin ve kaynak terminallerinin toprağa doğrudan bağlı olması, $V_{GS} = 0$ V sonucunu verir. Bu, Şekil 29'da gösterildiği gibi $V_{GSQ} = 0$ V'de dikey bir yük çizgisi ile sonuçlanır.

D-MOSFET'ler (1)

- D-MOSFET polarlama devreleri, JFET'lerin polarlama devrelerine benzer. Tek fark, D-MOSFET'lerin V_{GS}'nin pozitif değerleri ve I_{DSS}'yi aşan I_D değerleri ile çalışabilmesidir.
- Bu iki nokta tarafından tanımlanan doğruyu çizin:
 - $-V_{GS} = V_G, I_D = 0 A$
 - $-I_D = V_G/R_S$, $V_{GS} = 0 \text{ V}$
- I_{DSS} , V_P ve hesaplanan I_D değerlerini kullanarak karakteristik eğrisini çizin.
- Q noktası, doğrunun karakteristik eğrisi ile kesiştiği yerde bulunur.
 Devredeki diğer değişkenleri çözmek için Q noktasındaki I_D değerini kullanın.
- Bunlar, JFET voltaj bölücü polarlama devrelerini analiz etmek için kullanılan adımların aynısıdır.

D-MOSFET'ler (2)

Örnek 6: Şekil
 30'daki n-kanallı D-MOSFET için
 aşağıdakileri bulun:
 (a) I_{DQ} ve V_{GSQ}, (b)

Çözüm:

a. Karakteristik özellikleri için $I_D = I_{DSS}/4 = 6$ mA/4 = 1,5 mA ve $V_{GS} = V_P/2 = -3$ V/2 = -1,5 V ile bir çizim noktası tanımlanır. Shockley denklemi, V_{GS} daha pozitif hale geldikçe daha hızlı yükselen bir eğri tanımlar, $V_{GS} = +1$ V'de bir çizim noktası tanımlanacaktır. Shockley denkleminde ikame etmek aşağıdaki sonuçları verir:

D-MOSFET'ler (3)

Örnek 6: (Devamı)

$$I_D = I_{DSS} \left(1 - \frac{V_{GS}}{V_P} \right)^2 = 6 \text{ mA} \left(1 - \frac{+1 \text{ V}}{-3 \text{ V}} \right)^2 = 6 \text{ mA} \left(1 + \frac{1}{3} \right)^2 = 6 \text{ mA} (1.778) = 10.67 \text{ mA}$$

 Ortaya çıkan karakteristik eğrisi, Şekil 31'de görülmektedir. JFET'ler için tanımlandığı gibi aşağıdaki sonuçları elde ederiz:

$$V_G = \frac{10 \,\mathrm{M}\Omega(18 \,\mathrm{V})}{10 \,\mathrm{M}\Omega \,+\,110 \,\mathrm{M}\Omega} = 1.5 \,\mathrm{V} \ \Box > V_{GS} = V_G - I_D R_S = 1.5 \,\mathrm{V} - I_D (750 \,\Omega)$$

$$I_D = 0 \text{ mA için: } V_{GS} = V_G = 1.5 \text{ V}$$
 $V_{GS} = 0 \text{ mA için: } I_D = \frac{V_G}{R_S} = \frac{1.5 \text{ V}}{750 \Omega} = 2 \text{ mA}$

 Karakteristik eğrisi ile yük doğrusu, Şekil 31'de gösterilmektedir. Ortaya çıkan Qnoktası aşağıda gösterilmektedir:

$$I_{D_O} = 3.1 \,\mathrm{mA} \qquad V_{GS_O} = -0.8 \,\mathrm{V}$$

D-MOSFET'ler (4)

Örnek 6: (Devamı)

b.
$$V_{DS} = V_{DD} - I_D(R_D + R_S)$$

= 18 V - (3.1 mA)(1.8 k Ω + 750 Ω)
 \cong **10.1 V**

D-MOSFET'ler (5)

- Örnek 7: Örnek 6'yı $R_S = 150 \Omega$ ile tekrarlayın.
- Çözüm:

a. Çizim noktaları, Şekil 32'de gösterildiği gibi karakteristik eğrisi için aynıdır. Yük doğrusu için:

$$V_{GS} = V_G - I_D R_S = 1.5 \text{ V} - I_D (150 \Omega)$$

$$I_D = 0$$
 mA için: $V_{GS} = 1.5 \text{ V}$

$$V_{GS} = 0 \text{ mA için:}$$
 $I_D = \frac{V_G}{R_S} = \frac{1.5 \text{ V}}{150 \Omega} = 10 \text{ mA}$

• Ortaya çıkan Q-noktası Şekil 32'den aşağıdaki gibi elde edilmektedir: $I_{D_Q} = 7.6 \,\mathrm{mA}$

$$V_{GS_Q} = +0.35 \,\mathrm{V}$$

b.
$$V_{DS} = V_{DD} - I_D(R_D + R_S)$$

= 18 V - (7.6 mA)(1.8 k Ω + 150 Ω)
= **3.18 V**

D-MOSFET'ler (6)

• Örnek 8: Şekil 33'deki devre için aşağıdakileri bulun: (a) I_{DQ} ve V_{GSQ} , (b) V_D .

Çözüm:

o 20 V

D-MOSFET'ler (7)

- Örnek 9: Şekil 35'teki devre için V_{DS} 'yi bulun.
- Çözüm:
- Geçit ve kaynak terminalleri arasındaki doğrudan bağlantı, $V_{GS} = 0$ olmasını gerektirir.
- V_{GS} , 0 V'ta sabitlendiğinden, boşaltma akımı I_{DSS} olmalıdır (tanım gereği). Başka bir deyişle,

$$V_{GS_Q} = 0 \text{ V} \qquad I_{D_Q} = 10 \text{ mA}$$

• Bu nedenle, karakteristik eğriyi çizmeye gerek yoktur, dolayısıyla $V_{DS} = V_D$ aşağıdaki gibi elde edilir:

$$V_D = V_{DD} - I_D R_D = 20 \text{ V} - (10 \text{ mA})(1.5 \text{ k}\Omega) = 20 \text{ V} - 15 \text{ V} = 5 \text{ V}$$

E-MOSFET'ler

 E-MOSFET'in karakteristik eğrisi, JFET veya D-MOSFET'inkinden çok farklıdır.

$$I_D = k(V_{GS} - V_{GS(Th)})^2$$

$$k = \frac{I_{D(\text{on})}}{(V_{GS(\text{on})} - V_{GS(Th)})^2} \rightarrow \frac{A}{V}$$

Transfer characteristics of an n-channel enhancement-type MOSFET.

Geri Beslemeli Polarlama (E-MOSFET) (1)

$$I_G = 0 \text{ A}$$
 $V_{RG} = 0 \text{ V}$
 $V_{DS} = V_{GS}$
 $V_{GS} = V_{DD} - I_D R_D$

Geri Beslemeli Polarlama (E-MOSFET) (2)

 Bu iki nokta tarafından tanımlanan doğruyu çizin:

-
$$V_{GS} = V_{DD}$$
, $I_D = 0$
- $I_D = V_{DD} / R_D$, $V_{GS} = 0 \text{ V}$

 Teknik özellikler belgesindeki bu değerleri kullanarak karakteristik eğrisini çizin:

$$-V_{GSTh}$$
, $I_D = 0$ A

 $-V_{GS(on)}, I_{D(on)}$

- Q noktası, doğrunun ve karakteristik eğrisinin kesiştiği yerde bulunur.
- Q noktasındaki I_D değerini kullanarak devredeki diğer değişkenleri bulun.

Geri Beslemeli Polarlama (E-MOSFET) (3)

• Örnek 10: Şekil 40'taki E-MOSFET için I_{DQ} ve

 V_{DSQ} 'yu bulun.

Çözüm:

 Karakteristik eğrisinin çizilmesi: İki nokta, Şekil 41'de gösterildiği gibi tanımlanır. Önce k'yi hesaplarsak:

$$k = \frac{I_{D(\text{on})}}{(V_{GS(\text{on})} - V_{GS(\text{Th})})^2}$$

$$= \frac{6 \text{ mA}}{(8 \text{ V} - 3 \text{ V})^2} = \frac{6 \times 10^{-3}}{25} \text{ A/V}^2$$

$$= 0.24 \times 10^{-3} \text{ A/V}^2$$

Geri Beslemeli Polarlama (E-MOSFET) (4)

Örnek 10: (Devamı)

• V_{GS} = 6 V için (3 ile 8 V arasında, Şekil 41'de gösterildiği gibi):

$$I_D = 0.24 \times 10^{-3} (6 \text{ V} - 3 \text{ V})^2 = 0.24 \times 10^{-3} (9)$$

= 2.16 mA

• V_{GS} = 10 V için ($V_{GS(Th)}$ 'den biraz daha büyük, Şekil 41'de gösterildiği gibi),

$$I_D = 0.24 \times 10^{-3} (10 \text{ V} - 3 \text{ V})^2 = 0.24 \times 10^{-3} (49)$$

= 11.76 mA

 Dört nokta, Şekil 41'de gösterildiği gibi ilgi alanı için eğriyi çizmek için yeterlidir.

Plotting the transfer curve for the MOSFET of Fig. 40.

Geri Beslemeli Polarlama (E-MOSFET) (5)

Örnek 10: (Devamı)

Yük doğrusu denklemi:

$$V_{GS} = V_{DD} - I_D R_D$$

= 12 V - I_D (2 k Ω)
 $V_{GS} = V_{DD} = 12$ V $|_{I_D=0 \text{ mA}}$
 $I_D = \frac{V_{DD}}{R_D} = \frac{12 \text{ V}}{2 \text{ k} \Omega} = 6 \text{ mA}|_{V_{GS}=0 \text{ V}}$

 Yük doğrusu Şekil 42'de gösterilmektedir. Yük doğrusu ile karakteristik eğrisinin kesiştiği nokta bize Q-noktasını verir.

$$I_{D_Q} = 2.75 \text{ mA}$$

 $V_{GS_Q} = 6.4 \text{ V}$
 $V_{DS_Q} = V_{GS_Q} = 6.4 \text{ V}$

Voltaj Bölücü Polarlama (E-MOSFET) (1)

 Bu denklemleri kullanarak Q-noktasını bulmak için doğruyu ve karakteristik eğrisini çizin:

$$V_{G} = \frac{R_{2}V_{DD}}{R_{1} + R_{2}}$$

$$V_{GS} = V_{G} - I_{D}R_{S}$$

$$V_{DS} = V_{DD} - I_{D}(R_{S} + R_{D})$$

Voltaj Bölücü Polarlama (E-MOSFET) (2)

- Aşağıdaki parametreleri kullanarak doğruyu çizin:
 - $-V_{GS} = V_{G}, I_{D} = 0 \text{ A}$
 - $I_D = V_G / R_S$, $V_{GS} = 0 \text{ V}$
- Teknik özellik belgesindeki bu değerleri kullanarak karakteristik eğrisini çizin:
 - V_{GSTh} , $I_D = 0$ A
 - $V_{GS(on)}$, $I_{D(on)}$
- Doğrunun ve karakteristik eğrisinin kesiştiği nokta Q noktasıdır.
- Q noktasındaki I_D değerini kullanarak diğer devre değerlerini çözün.

Voltaj Bölücü Polarlama (E-MOSFET) (3)

• Örnek 11: Şekil 44'teki devre için I_{DQ} , V_{GSQ} ve V_{DS} 'yi bulun.

- Çözüm:
- Şebeke denklemleri aşağıdaki gibidir:

$$V_G = \frac{R_2 V_{DD}}{R_1 + R_2} = \frac{(18 \text{ M}\Omega)(40 \text{ V})}{22 \text{ M}\Omega + 18 \text{ M}\Omega} = 18 \text{ V}$$
$$V_{GS} = V_G - I_D R_S = 18 \text{ V} - I_D (0.82 \text{ k}\Omega)$$

• $I_D = 0$ için (bkz. Şekil 45):

$$V_{GS} = 18 \text{ V} - (0 \text{ mA})(0.82 \text{ k}\Omega) = 18 \text{ V}$$

• $V_{GS} = 0$ için (bkz. Şekil 45):

$$V_{GS} = 18 \text{ V} - I_D(0.82 \text{ k}\Omega)$$

 $0 = 18 \text{ V} - I_D(0.82 \text{ k}\Omega)$
 $I_D = \frac{18 \text{ V}}{0.82 \text{ k}\Omega} = 21.95 \text{ mA}$

Voltaj Bölücü Polarlama (E-MOSFET) (4)

- Örnek 11: (Devamı)
- MOSFET özelliklerini içeren denklemler aşağıdaki gibidir:

$$V_{GS(Th)} = 5 \text{ V}, \quad I_{D(on)} = 3 \text{ mA ve} \quad V_{GS(on)} = 10 \text{ V}$$

$$k = \frac{I_{D(on)}}{(V_{GS(on)} - V_{GS(Th)})^2}$$

$$= \frac{3 \text{ mA}}{(10 \text{ V} - 5 \text{ V})^2} = 0.12 \times 10^{-3} \text{ A/V}^2$$

$$I_D = k(V_{GS} - V_{GS(Th)})^2$$

$$= 0.12 \times 10^{-3} (V_{GS} - 5)^2$$

 Şekil 45'de gösterildiği gibi, yük doğrusu ile karakteristik eğrisinin kesiştiği nokta bize Q-noktasını verir.

$$I_{D_Q} \cong \mathbf{6.7} \, \mathbf{mA}$$

 $V_{GS_Q} = \mathbf{12.5} \, \mathbf{V}$

Determining the Q-point for the network of Example 11.

$$V_{DS} = V_{DD} - I_D(R_S + R_D)$$

= $40 \text{ V} - (6.7 \text{ mA})(0.82 \text{ k}\Omega + 3.0 \text{ k}\Omega)$
= $40 \text{ V} - 25.6 \text{ V}$
= **14.4 V**

Özet Tablosu (1)

TABLE 1
FET Bias Configurations

Type	Configuration	Pertinent Equations	Graphical Solution
JFET Fixed-bias	V_{GG}	$V_{DS} = V_{DD} - I_D R_D$ $V_{GS} = -V_{GG}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
JFET Self-bias	R_G	$V_{GS} = -I_D R_S$ $V_{DS} = V_{DD} - I_D (R_D + R_S)$	$Q\text{-point} = I_{DSS}$ $V_{P} V_{GS}^{\dagger} = 0$ V_{GS}
JFET Voltage-divider bias	R_1 R_D R_D R_S	$V_{G} = \frac{R_{2}V_{DD}}{R_{1} + R_{2}}$ $V_{GS} = V_{G} - I_{D}R_{S}$ $V_{DS} = V_{DD} - I_{D}(R_{D} + R_{S})$	$Q\text{-point} \qquad \begin{matrix} I_D \\ I_{DSS} \\ \hline V_G \\ \hline V_P \\ \end{matrix} \qquad \begin{matrix} V_G \\ \hline V_{GS} \\ \end{matrix}$

Özet Tablosu (2)

Özet Tablosu (3)

TABLE 1
FET Bias Configurations

Type	Configuration	Pertinent Equations	Graphical Solution
Enhancement type MOSFET Feedback configuration (and MESFETs)	R_G R_D	$V_{GS} = V_{DS}$ $V_{GS} = V_{DD} - I_D R_D$	$I_{D(\text{on})} - I_{D}$ $Q\text{-point}$ $V_{GS(\text{Th})} V_{DD} V_{GS}$
Enhancement type MOSFET Voltage-divider bias (and MESFETs)	QV_{DD} R_1 R_2 R_S	$V_G = \frac{R_2 V_{DD}}{R_1 + R_2}$ $V_{GS} = V_G - I_D R_S$	$V_G \over R_S$ Q -point $V_{GS(Th)}$ $V_G V_{GS}$
Depletion-type MOSFET Voltage-divider bias (and MESFETs)	R_1 R_D R_S	$V_G = \frac{R_2 V_{DD}}{R_1 + R_2}$ $V_{GS} = V_G - I_S R_S$ $V_{DS} = V_{DD} - I_D (R_D + R_S)$	V_{P} V_{P} V_{P} V_{G} V_{G} V_{G} V_{G}

p-Kanallı FET'ler (1)

p-kanallı FET'leri için, voltaj polariteleri ve akım yönleri ters çevrilmiş olması dışında aynı hesaplamalar ve grafikler kullanılır. Grafikler, n-kanallı grafiklere benzer.

Şekil 56: p-Kanallı konfigürasyonlar : (a) JFET.

p-Kanallı FET'ler (2)

Şekil 56: p-Kanallı konfigürasyonlar : (b) D-MOSFET.

p-Kanallı FET'ler (3)

Şekil 56: p-Kanallı konfigürasyonlar: (c) E-MOSFET.

p-Kanallı FET'ler (4)

- Örnek 17: Şekil 57'deki p-kanallı JFET için I_{DQ} , V_{GSQ} ve V_{DS} 'yi bulun.
- Çözüm:
- Şebeke denklemleri aşağıdaki gibidir:

$$V_G = \frac{20 \text{ k}\Omega(-20 \text{ V})}{20 \text{ k}\Omega + 68 \text{ k}\Omega} = -4.55 \text{ V}$$

$$V_G - V_{GS} + I_D R_S = 0$$
$$V_{GS} = V_G + I_D R_S$$

• $I_D = 0$ için (bkz. Şekil 58):

$$V_{GS} = V_G = -4.55 \text{ V}$$

• $V_{GS} = 0$ için (bkz. Şekil 58):

$$I_D = -\frac{V_G}{R_S} = -\frac{-4.55 \text{ V}}{1.8 \text{ k}\Omega} = 2.53 \text{ mA}$$

p-Kanallı FET'ler (5)

Örnek 17: (Devamı)

 Şekil 58'de gösterildiği gibi, yük doğrusu ile karakteristik eğrisinin kesiştiği nokta bize Q-noktasını verir.

$$I_{D_O} = 3.4 \text{ mA}$$
 $V_{GS_O} = 1.4 \text{ V}$

 V_{DS} için, Kirchhoff'un voltaj kanunu aşağıdaki denklemleri verir:

$$-I_D R_S + V_{DS} - I_D R_D + V_{DD} = 0$$

$$V_{DS} = -V_{DD} + I_D (R_D + R_S)$$

$$= -20 \text{ V} + (3.4 \text{ mA})(2.7 \text{ k}\Omega + 1.8 \text{ k}\Omega)$$

$$= -20 \text{ V} + 15.3 \text{ V}$$

$$= -4.7 \text{ V}$$

Determining the Q-point for the JFET configuration of Fig. 57.

Uygulamalar

- Voltaj kontrollü direnç
- JFET voltmetre
- Zamanlayıcı devre
- Fiber optik devre
- MOSFET röle sürücüsü