

Tele 2060

### **ALU**

- Performs Arithmentic Functions
- Performs Logic Functions
- Function is Selected by Control
- Status Bits
  - o C Carry
  - ∘ V Overflow
  - Z = 1 If Resultant Contains All Zeros
  - o S Sign Bit of the Result
- Decoder Selects Destination for the Resultant

### **ALU**

- Inputs
  - o Operands
  - o Input Carry
  - o Operation Select
    - □ Add
    - Subtract
    - □ AND
    - □ OR
    - □ XOR
  - o Mode (Arithmetic or Logic) Select
- Outputs
  - o Resultant
  - o Output Carry

Martin B.H. Weiss

Arithmetic-Logic Unit and Processor Design - 3

University of Pittsburgh

Tele 2060

## **ALU Function Table**

| $\mathbf{S_2}$ | $S_1$ | $S_0$ | $\mathbf{C_{in}}$ | Operation                     | Function                       |
|----------------|-------|-------|-------------------|-------------------------------|--------------------------------|
| 0              | 0     | 0     | 0                 | F=A                           | Transfer A                     |
| 0              | 0     | 0     | -                 | $\mathbf{F} = \mathbf{A} + 1$ | Increment A                    |
| 0              | 0     | 1     | 0                 | F=A+B                         | Add A and B                    |
| 0              | 0     | 1     | 1                 | F=A+B+1                       | Add A and B With Carry         |
| 0              | 1     | 0     | 0                 | <b>F=A+B'</b>                 | Add A and One's Compement of B |
| 0              | 1     | 0     | 1                 | F=A+B'+1                      | Subtract B From A              |
| 0              | 1     | 1     | 0                 | F=A-1                         | Decrement A                    |
| 0              | 1     | 1     | 1                 | F=A                           | Transfer A                     |
| 1              | 0     | 0     | 0                 | F=AB                          | AND                            |
| 1              | 0     | 1     | 0                 | F=A+B                         | OR                             |
| 1              | 1     | 0     | 0                 | F=A XOR B                     | Exclusive OR                   |
| 1              | 1     | 1     | 0                 | F=A'                          | Complement                     |

## **ALU Components**

- Arithmetic
  - o Parallel Add
  - o One Full Adder per Bit
  - o Selection Logic
- Logic
  - o Gates
  - o Multiplexer

Martin B.H. Weiss

University of Pittsburgh

Arithmetic-Logic Unit and Processor Design - 5



Arithmetic-Logic Unit and Processor Design - 6

University of Pittsburgh



Arithmetic-Logic Unit and Processor Design - 7

University of Pittsburgh



### **Shifter**

- General
  - o Extension of Shift Register Circuit is Possible
  - o This Requires Several Clock Pulses
  - o This is Time Consuming
- Alternate Approach (Figure 7-18, p. 246 of Mano)
  - o Use Multiplexers
  - **o Wire to Cause Shift Effect**
  - o Control Determines Nature of Shift
  - o Thus, a Single Clock Cycle is Used

Martin B.H. Weiss

Arithmetic-Logic Unit and Processor Design - 9

University of Pittsburgh

Tele 2060

## **Control Unit Requirements**

- MUX A Selector
- MUX B Selector
- ALU Operation Selector
- Shift Selector
- Destination Selector

#### **Control Word**

- Number and Organization of Bits Required to Control ALU
- Bit Requirements
  - o A: A Bus Select (Seven Registers Plus Input): 3 bits
  - o B: B Bus Select (Seven Registers Plus Input): 3 bits
  - o D: Destination Select (Seven Registers): 3 bits
  - o F: ALU Control (Four bits)
  - o H: Shift Control (Three bits)
  - $\circ$  TOTAL = 16 bits
  - o Thus, 16 Bits Can Be Used to Perform All Microoperations



Martin B.H. Weiss

Arithmetic-Logic Unit and Processor Design - 11

University of Pittsburgh

Tele 2060

# **Control Word Encoding**

|       | Opera          | tion (F)     |           |            | ,         |          |
|-------|----------------|--------------|-----------|------------|-----------|----------|
| Code  | $C_{in} = 0$   | $C_{in} = 1$ | A         | В          | D         | Н        |
| 0 0 0 | F=A            | F=A+1        | Inpu      | t Inpu     | t None    | No Shift |
| 001   | F=A+B          | F=A+B+1      | <b>R1</b> | <b>R</b> 1 | R1        | SHL      |
| 010   | <b>F=A+B</b> ' | F=A+B'+1     | <b>R2</b> | <b>R2</b>  | R2        | SHR      |
| 0 1 1 | F=A-1          | F=A          | <b>R3</b> | <b>R3</b>  | R3        | Bus=0    |
| 0 0   | F=AB           |              | <b>R4</b> | <b>R4</b>  | R4        |          |
| 0 1   | F=A+B          |              | <b>R5</b> | <b>R5</b>  | <b>R5</b> | ROL      |
| 1 0   | F=A XO         | R B          | <b>R6</b> | <b>R6</b>  | <b>R6</b> | ROR      |
| 111   | F=A'           |              | <b>R7</b> | <b>R7</b>  | <b>R7</b> |          |
|       |                |              |           |            |           |          |

## **Microoperations and Microprograms**

- Example Microoperation
  - o **R1**← **R2 R3**
  - o Symbolically: R2,R3,R1,F=A-B,No Shift
  - o Control Word = 010 011 001 0101 000 = 4CA8 (H)
- Clearly, Many Microoperations Are Possible
- Control Memory
  - o Location of Available Microoperations
  - Width of Control Memory = Control Word
- Microprograms Can be Written Using a Sequence of Microoperations

Martin B.H. Weiss

Arithmetic-Logic Unit and Processor Design - 13

University of Pittsburgh