Task 1 张配天-2018202180

 ${f 3.2}$ 假设分派器进程名为 ${\it P0}$, 且地址从 ${\it 100}$ 开始占用 ${\it 4}$ 个位置

T., A A I	D N
Instruction Addr	
4050-4054	P1
100-104	P0
3200-3204	P2
100-104	P0
5000-5004	P3
100-104	P0
6700-6702	P4
P4	finish
100-104	P0
4055-4059	P1
100-104	P0
3205-3206	P2
P2	finish
100-104	P0
5005-5009	Р3
100-104	P0
4060	P1
P1	finish
100-104	P0
5010	P3
P3	finish

posible cases

记新建态为 N, 就绪态为 R, 就绪挂起态为 RS, 运行态为 U, 阻塞态为 B, 阻塞挂起态为 BS, 退出态为 E

表 1: possible cases

表 1: possible cases		
_pre_State	$next_State$	Instance
N	R	操作系统准备好再接纳一个进程
	RS	操作系统准备好再接纳一个进程
	${ m E}$	超时被终结
R	U	操作系统选择一个处于就绪状态的进程运行
	${ m E}$	目前已就绪的进程被其父进程或操作系统终结
	RS	由于交换、交互请求、定时、父进程请求、其他 os 因
		素导致操作系统需要释放主存空间
U	R	正在运行的进程的时间片用完或者有更高优先级的进
		程进入就绪队列抢占了处理器 (swap)
	RS	由于交换、交互请求、定时、父进程请求、其他 os 因
		素导致操作系统需要释放主存空间
	В	进程请求了其必须等待的事件
	E	当前运行的进程表示自己已经完成或被取消
В	BS	由于交换、交互请求、定时、父进程请求、其他 os 因
		素导致操作系统需要释放主存空间
	R	处于阻塞挂起状态进程等待的事件发生了
	${ m E}$	超时被终结
RS	R	处于就绪挂起状态的进程被操作系统激活
	E	超时等原因被终结
BS	В	处于挂起状态的进程被操作系统激活
	RS	处于阻塞挂起状态进程等待的事件发生了
	E	等待超时、I/O 失败等原因被终结

impossible cases

表 2: impossible cases

		衣 2: impossible cases
pre_State	next_State	Instance
N	U	没有就绪的进程不会被分派器分派处理器资源
	В	没有运行的进程不会遇到中断进入阻塞
	BS	没有运行的进程不会遇到使其进入阻塞态的事件
R	N	已经处于就绪队列的进程不会再次被重新创建
	В	没有运行的进程不会遇到中断进入阻塞
U	N	正在运行的进程不会再次被重新创建
	BS	正在运行的进程不会在没有遇到阻塞时直接进入阻塞
		挂起态
E	N	已经退出的进程不会重新被创建
	R	没有就绪的进程不会进入运行态
	RS	没有运行的进程不会被挂起
	В	没有运行的进程不会进入阻塞
	BS	没有运行的进程不会进入阻塞挂起
RS	N	已经被加载进入辅存的进程不会被重新创建
	В	没有运行的进程不会进入阻塞
	BS	没有运行的进程不会进入阻塞挂起
	U	没有被加载进入内存的进程不会被运行
BS	N	已经被加载进入辅存的进程不会被重新创建
	R	等待的事件没有发生的进程不会进入就绪队列
	U	没有被加载进入内存的进程不会被运行

3.5

主要考虑空间的优化;记就绪挂起态优先级最高的进程为 P_1 ,就绪态将要被交换的进 程为 P_2 , 某一进程 P_i 被加载进入主存所将占用的空间为 $S(P_i)$, 记主存总空间为 S_0 , 现已 占用空间为S,则若:

$$S(P_0) + S \le S_0$$

直接激活 P1, 加载进入主存, 成为就绪态;

otherwise, 交换 P_1 和 P_0 。

3.12

pid_child 0