

Principles of Programming Languages CS 314

Recitation 12

Topics Today

- Project 3
 - Data Structure
 - One-way handshaking
 - N-way handshaking
 - Filter matched nodes
- Loop Parallelization

- Find a matching in the graph
- Data Structure adjacency array
 - degree: vertex degree
 - index: neighbor list
 - weight: edge weight
 - offset: location in the neighbor list

(a) Original Graph

- Step 1: Each vertex extends a hand to its strongest neighbor
 - Strongest neighbor
 - Vertex on the maximum-weight edge
 - Vertex has smaller index
 - A greedy algorithm that aims to maximize the total weight in the matching
 - E.g. $V_A > V_D$, $V_E \rightarrow V_B$

(b) Extend a Hand to the Strongest Neighbor

- Step 2: Each vertex checks its strongest neighbor
 - If strongest neighbor extends back a hand
 - Two vertices are matched (no data race)
 - If strongest neighbor extends a hand to other vertex
 - The vertex is not matched in this round
 - If there is no strongest neighbor (no unmatched neighbor vertex)
 - Set res[] to NO_MATCHED_NODES(= -2)

(c) Check Handshaking and Matching Vertices

Repeat Step 1 & 2

- Some vertices in the graph may have many neighbors which extend a hand to.
- E.g. V_B , V_D , $V_H \rightarrow V_E$

 Neither V_D and V_H can be matched at this round

Extends N hands instead of one

(b) Extend a Hand to the Strongest Neighbor

- Step 1: Extends at most N hands at once (N = 2 in the example)
 - Extends hands to N strongest neighbors
 - May be less than N unmatched neighbors

- N-way Graph Data Structure
 - nWayGraphDegree: vertex degree in nway graph
 - nWayGraph: adjacency list of each vertex

(b) Extend a Hand to the Strongest Neighbor

- Step 2: prune edges that two end vertices have no handshaking
 - So that vertices like V_D and V_H can match to other vertices
 - The pruned N-way graph has maximum degree of N (N=2 in the example)

(c) Discard Edges without a Handshaking

- Step 3: Do one-way handshaking on the new graph
 - More vertices can be matched!

- Be careful that:
 - Vertices have no strongest neighbors in the pruned N-way graph CANNOT be set to NO MATCHED NODES
 - Only do one pass of one-way handshaking

(d) Do One-Way Handshaking on the new graph

- Repeat Step 1, 2, 3
- May be different matching results, compared to one-way handshaking match

Filter matched results

- After each pass of handshaking matching, some vertices are matched.
- We want to filter out those matched vertices so that each process/thread can handle same amount of work.

Filter matched results

- After each pass of handshaking matching, some vertices are matched.
- We want to filter out those matched vertices so that each process/thread can handle same amount of work.

Filter matched results

 Step 1: Each thread counts the number of unmatched vertices in its range

 Step 2: Perform an exclusive prefix sum

 Step: Use the result of prefix sum to put vertices into new location

Give the following nested loop:

```
do i = 2, 10

do j = 2, 10

S_1: a(i, j) = b(i + 1, j + 1) + 2

S_2: b(i, j) = i + j - 1

enddo

enddo
```

Show the <u>statement-level dependence graph</u> with <u>distance</u> <u>vectors</u>, along with the <u>dependence graph for statement</u> instances

Statement Level
Dependence graph &
distance vector

Dependence graph for statement instances

• Provide <u>one valid affine schedule</u> for statements S_1 and S_2 such that $p(S_1) = C_{11} * i + C_{12} * j + d_1$ and $p(S_2) = C_{21} * i + C_{22} * j + d_2$ in order to achieve synchronization-free parallelism. (Hint: $d_1 = d_2 = 0$)

```
do i = 2, 10

do j = 2, 10

S_1: a(i, j) = b(i + 1, j + 1) + 2

S_2: b(i, j) = i + j - 1

enddo

enddo
```

First, for statement S₁ and S₂, using the distance vector

$$i_1 + 1 = i_2, j_1 + 1 = j_2$$

- To find C_{11} , C_{12} , d_1 and C_{21} , C_{22} , d_2 such that $p(S_1) = p(S_2)$ $C_{11} * i_1 + C_{12} * j_1 + d_1 = C_{21} * i_2 + C_{22} * j_2 + d_2$
- Simplify this results:

$$(C_{11} - C_{21}) * i_1 + (C_{12} - C_{22}) * j_1 + (d_1 - d_2 - C_{21} - C_{22}) = 0$$

Solving this gives

$$C_{11} - C_{21} = 0$$
, $C_{12} - C_{22} = 0$, $d_1 - d_2 - C_{21} - C_{22} = 0$

$$C_{11} - C_{21} = 0$$
, $C_{12} - C_{22} = 0$, $d_1 - d_2 - C_{21} - C_{22} = 0$

• Use the hint: $d_1 = d_2 = 0$, one possible solution

$$C_{11} = C_{21} = 1$$
, $C_{12} = C_{22} = -1$
 $p(S_1) = i - j$, $p(S_2) = i - j$

 Generate <u>two-level loop code</u> for the affine schedule you provided. (outermost loop: p, innermost loop: i)

```
do i = 2, 10

do j = 2, 10

S_1: a(i, j) = b(i + 1, j + 1) + 2

S_2: b(i, j) = i + j - 1

enddo

enddo
```


First find the range for p:

```
do i = 2, 10

do j = 2, 10

S_1: a(i, j) = b(i + 1, j + 1) + 2

S_2: b(i, j) = i + j - 1

enddo

enddo

p(S_1) = i - j, p(S_2) = i - j
```

```
do p = -8, 8

do i = 2, 10

do j = 2, 10

if (i - j == p)

a(i, j) = b(i + 1, j + 1) + 2

b(i, j) = i + j - 1

endif

enddo

enddo

enddo
```

• Eliminate j by doing Fourier-Motzkin elimination: (p = i - j) $2 \le i - p \le 10$

also since 2 <= i <= 10, so we have

```
do p = -8, 8

do i = max(2, 2 + p), min(10, p + 10)

a(i, i - p) = b(i + 1, i - p + 1) + 2

b(i, i - p) = i + i - p - 1

enddo

enddo
```