

Institutt for datateknikk og informasjonsvitenskap

Eksamensoppgave i TDT4300 Datavarehus og datagruvedrift

Faglig kontakt under eksamen: Kjetil Nørvåg Tlf.: 73596755		
Eksamensdato: 26. mai 2015		
Eksamenstid (fra-til): 09.00-13.00		
Hjelpemiddelkode/Tillatte hjelpemidler: D: Ing	gen trykte eller håndsk	revne
hjo	elpemiddel tillatt.	
Ве	estemt, enkel kalkulato	or tillatt.
Annen informasjon:		
Målform/språk: Bokmål		
Antall sider (uten forside): 4		
Antall sider vedlegg: 0		Kontrollert av:
	Dato	Sign
Informasjon om trykking av eksamensoppgave		
Originalen er:		
1-sidig X 2-sidig □		
sort/hvit X farger □		

Oppgave 1 – Diverse – 15 % (alle deler teller likt)

- a) Beskriv kort fire formål med klyngevalidering/evaluering.
- b) Forklar fire teknikker for data-vasking i kontekst av web-bruk-data.
- c) Anta to bit-vektorer p og q:

```
p = 1010000111
q = 1000001101
```

Regn ut Jaccard-koeffisienten for bitvektorene p og q.

Oppgave 2 – Modellering – 15 %

I denne oppgaven skal du modellere et datavarehus for bilskader i forsikringsselskapet Lillebrand. Lillebrand ønsker et datavarehus for å kunne analysere hendelser som har medført forsikringsutbetalinger.

Eksempel på analyser man skal være i stand til å gjøre mot datavarehuset:

- Antall skader i 2015.
- Gjennomsnittlig antall skader per måned.
- Antall skader for hvert kvartal i 2015.
- Totalt beløp utbetalt for hver biltype.
- Antall skader av type "kollisjon" per by.

Beskrivelsen er litt upresis og det er en del av oppgaven å velge ut det som skal være med. Vi er først og fremst ute etter at du skal vise modelleringsprinsippet for datavarehus. Forklar kort eventuelle forutsetninger du finner det nødvendig å gjøre.

Lag et stjerne-skjema for denne case-beskrivelsen.

Oppgave 3 – OLAP – 15 % (5 % på a og 10 % på b)

a) Gitt en kube med dimensjoner:

Time(day-month-quarter-year)
Item(item_name-brand-type)
Location(street-city-province_or_state-country)

Anta følgende materialiserte kuboider:

- 1) {year, item_name, city}
- 2) {year, brand, country}
- 3) {year, brand, province_or_state}
- 4) {item_name, province_or_state} where year = 2004

Gitt følgende OLAP-spørring: {*item_name*, *province_or_state*} med vilkår "*year* = 2006" Hvilke(n) materialiserte kuboider kan brukes for å prosessere spørringen? Begrunn svaret.

b) Gitt et datavarehus med tre tabeller Location/Item/Sales, der Sales er fakta-tabellen og de to andre er dimensjonstabeller. Vi ønsker å bruke *join-indekser* for å kunne utføre spørringer mer effektivt. Vis struktur og innhold for join-indeksene Location/Sales og Item/Sales med utgangspunkt i innholdet i de tre tabellene under.

Location		
LocKey	CityName	
L1	Oslo	
L2	Athen	
L3	Trondheim	

Item		
ItemKey	ItemName	
I1	Sony-TV	
I2	Rolex	
I3	Lexus	

Sales			
TransID	LocKey	ItemKey	Price
T1	L1	I1	5
T2	L2	I2	8
T3	L1	I1	6
T4	L3	I1	5
T5	L3	I3	9
T6	L1	I2	8
T7	L1	I1	4

Oppgave 4 – Klynging – 10 %

Gitt et to-dimensjonalt datasett som vist i tabellen til høyre. Utfør klynging ved hjelp av DBSCAN på dette datasettet, gitt MinPts=4 (inkl. eget punkt) og Eps=3 (inkl. punkt som har distanse 3). Bruk Manhattan –distanse som avstandsmål.

X	Y
4	8
4	9
4	10
4	13
4	14
5	3 7
5	7
5	14
6	15
6	16
6	19
7	11
7	16
4 4 4 4 5 5 5 6 6 6 7 7 7	17
7	18
7	19

Oppgave 5 – Klassifisering – 20 % (5 % på a og 15 % på b)

- a) Forklar kryssvalidering ("cross validation") og hva denne teknikken brukes til.
- b) Et bilforsikringsselskap har for eksisterende kunder lagret informasjon som inkluderer kundenr, alder (L/M/H, dvs. 18-25/26-70/71-100), biltype, kjørelengde per år (4000/8000/20000/Ubegrenset), bonus (Lav/Middels/Høy) og om de har hatt skade på bilen som ble dekket av forsikringen. Når nye kunder ber om tilbud på forsikring, ønsker selskapet å sette prisen til normal eller høy basert på om de tror kunden kommer til å få skade på bilen eller ikke, dvs. de ønsker å predikere attributtet "Skade".

Kundenr	Alder	Biltype	Kjørelengde per år	Bonus	Skade
1	L	Ferrari	8000	Lav	Ja
2	М	BMW	8000	Høy	Nei
3	Н	Lexus	Ubegrenset	Høy	Ja
4	L	Audi	8000	Høy	Nei
5	Н	Opel	8000	Lav	Ja
6	M	Toyota	8000	Lav	Nei
7	М	Honda	8000	Høy	Nei
8	M	Nissan	8000	Høy	Nei
9	М	Audi	Ubegrenset	Høy	Nei
10	M	BMW	8000	Lav	Ja
11	Н	Toyota	Ubegrenset	Høy	Nei
12	L	Nissan	4000	Lav	Ja
13	L	Opel	Ubegrenset	Høy	Ja
14	М	Audi	8000	Høy	Nei
15	М	Opel	8000	Høy	Nei
16	М	Toyota	4000	Lav	Nei

Anta at vi skal bruke beslutningstre ("decision tree") som klassifiseringsmetode. Vi bruker da data i tabellen over som treningsdata. Vi bruker Gini index som mål for urenhet ("impurity"), og følgende to formler kan være til hjelp for å løse oppgaven:

$$GINI(t) = 1 - \sum_{j} [p(j|t)]^{2}$$

$$GINI(t) = 1 - \sum_{j} [p(j \mid t)]^{2}$$

$$GAIN_{split} = GINI(p) - \left(\sum_{i=1}^{k} \frac{n_{i}}{n} GINI(i)\right)$$

Oppgave: Målet med klassifiseringen er å kunne predikere "Skade". Regn ut GAIN_{split} for splitting på (1) "Alder" og (2) "Bonus". Hvilken av disse splittingene ville du valgt for å starte opprettingen av beslutningstreet? Begrunn svaret.

Oppgave 6 – Assosiasjonsregler – 25 % (10 % på a, 5 % på b, og 10 % på c)

a) Anta handlekorg-data som er gitt under. Bruk apriori-algoritmen til å finne alle frekvente elementsett med minimum støtte på 50 % (dvs. minimum support count er 4). Bruk $F_{k-1} \times F_{k-1}$ metoden for kandidat-generering.

TransaksionsID Element

ABCDFGH
DKM
FK
ACGH
ACDDGH
BM
DFKM
ABCDGH

- b) Anta handlekorg-data som er gitt under. Du skal nå bruke FP-growth-algoritmen til å finne alle frekvente elementsett med minimum støtte på 60 % (dvs. minimum support count er 3).
 - 1) Konstruer et FP-tre basert på datasettet.
 - 2) Finn frekvente elementsett ved å bruke FP-growth-algoritmen. Bruk tabell-notasjon med følgende kolonner for å vise resultatet:
 - Element
 - "Conditional pattern base"
 - "Conditional FP-tree"
 - Frekvente elementsett

TransaksjonsID Element

T1	f, a, c, d, g, i, m, p
T2	a, b, c, f, l, m, o
T3	b, f, h, j, o
T4	b, c, k, s, p
T5	a, f, c, e, l, p, m, n