Text Summarization (NLP 과제)

≔ 종류	기타
📋 학습 일자	@April 30, 2022
⊘ 참고자료	<u>문서 요약 참고 링크</u>

문서 요약 (Text Summarization)

요약 Methods

1. Extractive Method

- 전통적인 문서 요약 방식
- 중요한 문장을 구분하여 요약본에 포함하는 방식 (즉, 원본 문서의 문장 전체가 그대로 요약본에 포함됨)

2. Abstractive Method

- 중요한 부분을 구분하여 문맥을 파악하고 문장을 새롭게 재구성하는 방식
- 중요한 문장이 가능한 가장 짧은 문장으로 표현

Extractive Methods

1) Gensim의 Text Rank

자주 나타나는 단어들을 중요하다고 판단. 이에 근거하여 문서의 각 문장에 점수를 부여해 top-rank 문장들을 요약본에 포함함.

2) Sumy 활용 문서 요약

파이썬에서 제공하는 문서 요약 라이브러리로 아래 알고리즘들을 포함함.

1. LexRank

a. 다른 문장들과 유사한 의미를 가진 문장이 중요할 가능성이 높다고 판단. rank가 높을 수록 요약본에 포함될 확률이 높음.

2. LSA (Latent Semantic Analysis)

- a. 비지도학습 알고리즘으로, 특이값 분해(SVD) 방식 활용
- b. DTM 이나 DTM에 단어의 중요도에 따른 가중치를 주는 TF-IDF 행렬은 단어의 의미를 고려하지 못한다는 단점이 있음. LSA는 DTM이나 TF-IDF에서 절단된 SVD를 사용하여 차원을 축소시키고 단어들의 잠재적인 의미를 끌어냄.
- c. LSA는 쉽고 빠르게 구현 가능. 단어의 잠재적인 의미를 이끌어낼 수 있어 문서의 유사도 계산 등에서 좋은 성능을 보여줌.
- d. 이미 계산된 LSA에 새로운 데이터를 추가하여 계산하려고 하면 처음부터 다시 계산해야 한다는 단점. (즉, 새로운 정보에 대해 업데이트 어렵)

참고: https://wikidocs.net/24949

3. Luhn

a. TF-IDF 기반 문서 요약 방식

4. KL-Sum

a. 원본 문서와의 divergence를 계산하는 KL Divergence값이 최소화 될 때까지 요약 문에 문장을 더하는 방식

참고: <u>https://iq.opengenus.org/k-l-sum-algorithm-for-text-summarization/</u>

Abstractive Methods

1) T5 Transformers

encoder-decoder 모델로 각 문장마다 학습 과정을 거쳐 target text가 생성됨

참고: <u>https://paperswithcode.com/method/t5</u>

2) BART transformers

sequence-to-sequence 모델로 BERT와 GPT를 일반화한 것. Noising의 유연성이 장점.

참고: https://chloelab.tistory.com/34#:~:text=BART

3) GPT-2 Transformers

비지도학습 기반 모델로 flexible transfer가 가능하며, fine-tuning 없이 사용 가능.

참고: <u>https://supkoon.tistory.com/25#:~:text=GPT-2</u>