→ DWM A	CN	Toland	en . J
	3 CN	Independe)
<i>3</i>	С А	Attain	extra
-> Krushed-Wall	. 0		
- Mann Whitney	U-Telst:		
Works for ins		•	
analogous of	4-tut.	$H_1: M_1 > n_2$	
$\rightarrow I-I_{\bullet}: M_{i}=H_{2}$ $\Rightarrow r H_{i} H_{i} < H_{2}$	H,	: MX ML	
-> find rule the	deta l	selving to	sing le
-s first rack the sample in either order of magn	2 an inc	creeding or A	-creasing
order of magn	nitude.		O
-> After making -	find the	sun of the	ranks
-> After making -	rilves I	first sample	(R_{i})

Sother as (R2). -> tot Statisic i-e U-test which is a measurement of the difference between ranked observations of 2 samples. $U = \frac{n_1 \cdot n_2 + n_1 (n_1 + 1)}{2} - R_1$ -> Ho for V-tro-l is 2 samples come from idential populations. -> Hi for U-Test is 2 semps do not come from identical populations. -> Mean = U = 11.12 $-5 \quad S. \mathcal{D} = \sigma_{\nu} = \sqrt{\frac{n_{l} \cdot n_{l} \left(n_{l} + n_{l+1}\right)}{12}}$ Example:

One Jample: 53, 38, 65, 57, 46, 39, 73,48,73,74,60,78 Other Layle: 44, 40, 61, 5-2, 32, 44, 70, 41, 67, 72,53, 72 -> Single Hems in Kanh

assending order

32 | 46 | 61 | 73

38 | 48 | 67 | 74

39 | 52 | 63 | 78

40 | 5-3 | 70

41 | 5-3 | 72

44 | 5-7 \72 | (0 73

Not Relatible San, k:

K, = 2+3+8+9+ 11.5 +13+14+ 17+ 21.5+21.5+2]+24

1.061

0.978

0.941

0.920

0.906

0.896

1.386

1.250

1.190

1.156

1.134

1.119

1.886

1.638

1.533

1,476

1.440

1.415

2.920

2.353

2.132

2.015

1.943

4.303

3.182

2.776

2.571

2.447

2.365

6.965

4.541

3.747

3,365

3.143

2.998

9.925

5.841

4.604

4.032

3.707

3.499

22.327

10.215

7.173

5 893

5.208

31.599

12.924

8.610

6.869

5.959

0.000

0.000

0.000

0.000

0.000

0.000

0.816

0.765

0.741

0.727

0.718

0.711

	Confidence Level										
	0%	50%	60%	70%	80%	90%	95%	98%	99%	99.8%	99.9%
Z	0.000	0.674	0.842	1.036	1.282	1.645	1.960	2.326	2.576	3.090	3.291
1000	0.000	0.675	0.842	1.037	1.282	1.646	1.962	2.330	2.581	3.098	3.300
100	0.000	0.677	0.845	1.042	1.290	1.660	1.984	2.364	2.626	3.174	3.390
80	0.000	0.678	0.846	1.043	1.292	1.664	1.990	2.374	2.639	3.195	3.416
60	0.000	0.679	0.848	1.045	1.296	1.671	2.000	2.390	2.660	3.232	3.460
40	0.000	0.681	0.851	1.050	1.303	1.684	2.021	2.423	2.704	3.307	3.551
30	0.000	0.683	0.854	1.055	1.310	1.697	2.042	2.457	2.750	3.385	3.646
29	0.000	0.683	0.854	1.055	1.311	1.699	2.045	2.462	2.756	3.396	3.659
28	0.000	0.683	0.855	1.056	1.313	1.701	2.048	2.467	2.763	3.408	3.674
27	0.000	0.684	0.855	1.057	1.314	1.703	2.052	2.473	2.771	3.421	3.690
26	0.000	0.684	0.856	1.058	1.315	1.706	2.056	2.479	2.779	3.435	3.707
25	0.000	0.684	0.856	1.058	1.316	1.708	2.060	2.485	2.787	3.450	3.725
24	0.000	0.685	0.857	1.059	1.318	1.711	2.064	2.492	2.797	3.467	3.745
23	0.000	0.685	0.858	1.060	1.319	1.714	2.069	2.500	2.807	3.485	3.768
22	0.000	0.686	0.858	1.061	1.321	1.717	2.074	2.508	2.819	3.505	3.792
21	0.000	0.686	0.859	1.063	1.323	1.721	2.080	2.518	2.831	3.527	3.819
20	0.000	0.687	0.860	1.064	1.325	1.725	2.086	2.528	2.845	3.552	3.850
19	0.000	0.688	0.861	1.066	1.328	1.729	2.093	2.539	2.861	3.579	3.883
18	0.000	0.688	0.862	1.067	1.330	1.734	2.101	2.552	2.878	3.610	3.922
17	0.000	0.689	0.863	1.069	1.333	1.740	2.110	2.567	2.898	3.646	3.965
16	0.000	0.690	0.865	1.071	1.337	1.746	2.120	2.583	2.921	3.686	4.015
15	0.000	0.691	0.866	1.074	1.341	1.753	2.131	2.602	2.947	3.733	4.073
14	0.000	0.692	0.868	1.076	1.345	1.761	2.145	2.624	2.977	3.787	4.140
13	0.000	0.694	0.870	1.079	1.350	1.771	2.160	2.650	3.012	3.852	4.221
12	0.000	0.695	0.873	1.083	1.356	1.782	2.179	2.681	3.055	3.930	4.318
10	0.000	0.697	0.876	1.088	1.363		2.201		3.106	4.025	4.437
10	0.000	0.703	0.879	1.003	1.372	1.812	2.202	2.764	3.169	4.144	4.761
8	0.000	0.706 0.703	0.889	1.108	1.397	1.833	2.306 2.262	2.896	3.355	4.501 4.297	4.781
7	0.000	0.711	0.896	1.119 1.108	1.415	1.895 1.860	2.365	2.998 2.896	3.499	4.785	5.408 5.041
6	0.000	0.718	0.906	1.134	1.440	1.943	2.447	3.143	3.707	5.208	5.959
5	0.000	0.727	0.920	1.156	1.476	2.015	2.571	3.365	4.032	5.893	6.869
4	0.000	0.741	0.941	1.190	1.533	2.132	2.776	3.747	4.604	7.173	8.610

: Accept Nobl My pothesis of we con clock
that both the data belongs to same population.