SC223 - Linear Algebra

Aditya Tatu

Lecture 38

November 21, 2023

Summary of Lecture 38

- **Proposition 23:** In a IPS $(V, \langle \cdot, \cdot \rangle)$, a set of n non-zero orthogonal vectors $\{v_1, \ldots, v_n\}$ is linearly independent.
- **Proposition 24:** (Pythagoras Theorem): In an IPS $(V, \langle \cdot, \cdot \rangle)$, if $\langle x, y \rangle = 0$, $||x + y||^2 = ||x||^2 + ||y||^2$.
- Orthogonal Decomposition: Let

$$x, y \neq \theta \in V.x = \frac{\langle x, y \rangle}{\langle y, y \rangle} \cdot y + \underbrace{\left(x - \frac{\langle x, y \rangle}{\langle y, y \rangle} \cdot y\right)}_{\text{such that } w \perp y.$$

● **Proposition 25** (Cauchy-Schwartz inequality): In an IPS $(V, \langle \cdot, \cdot \rangle)$, $|\langle x, y \rangle| \leq ||x|| \ ||y||$.

Gram-Schmidt Procedure

Proposition 26: (Gram-Schmidt Procedure): Let $\{v_1, \ldots, v_m\}$ be a list of linearly independent vectors. Then there exists a list of orthonormal vectors $\{e_1,\ldots,e_m\}$ such that $span(\{v_1,\ldots,v_j\})=span(\{e_1,\ldots,e_j\}), \forall j=1,\ldots,m.$

• Observe that $span(\{v_1,\ldots,v_i\}) = span(\{e_1,\ldots,e_i\})$.

Gram-Schmidt Procedure

- **Proposition 26:** (Gram-Schmidt Procedure): Let $\{v_1, \ldots, v_m\}$ be a list of linearly independent vectors. Then there exists a list of orthonormal vectors $\{e_1, \ldots, e_m\}$ such that $span(\{v_1, \ldots, v_j\}) = span(\{e_1, \ldots, e_j\}), \forall j = 1, \ldots, m$.
- Let $e_1 = \frac{v_1}{||v_1||}$. Define $e_2 = \frac{v_2 \langle v_2, e_1 \rangle e_1}{||v_2 \langle v_2, e_1 \rangle e_1||}$.
- Similarly, $e_3 = \frac{v_3 (\langle v_3, e_1 \rangle e_1 + \langle v_3, e_2 \rangle e_2)}{||v_3 (\langle v_3, e_1 \rangle e_1 + \langle v_3, e_2 \rangle e_2)||}$, and $e_k = \frac{v_k \sum_{i=1}^{k-1} \langle v_k, e_i \rangle e_i}{||v_k \sum_{i=1}^{k-1} \langle v_k, e_i \rangle e_i||}$.
- Observe that $span(\{v_1,\ldots,v_j\}) = span(\{e_1,\ldots,e_j\})$.
- ullet It is easy to see that $e_1 \perp e_2$. Assume that $\{e_1,\ldots,e_j\}$ are orthonormal.

$$\langle e_1, e_2 \rangle = \langle u_1, u_2 - \langle u_2, e_1 \rangle e_1 \rangle = 0$$

$$= \langle e_1, u_2 - \langle u_2, e_1 \rangle e_1 \rangle$$

$$= \langle e_1, u_2 - \langle u_2, e_1 \rangle e_1 \rangle$$

Gram-Schmidt Procedure

- **Proposition 26:** (Gram-Schmidt Procedure): Let $\{v_1, \ldots, v_m\}$ be a list of linearly independent vectors. Then there exists a list of orthonormal vectors $\{e_1, \ldots, e_m\}$ such that $span(\{v_1, \ldots, v_j\}) = span(\{e_1, \ldots, e_j\}), \forall j = 1, \ldots, m$.
- Let $e_1 = \frac{v_1}{||v_1||}$. Define $e_2 = \frac{v_2 \langle v_2, e_1 \rangle e_1}{||v_2 \langle v_2, e_1 \rangle e_1||}$.
- $\qquad \text{Similarly, } e_3 = \frac{v_3 (\langle v_3, e_1 \rangle e_1 + \langle v_3, e_2 \rangle e_2)}{||v_3 (\langle v_3, e_1 \rangle e_1 + \langle v_3, e_2 \rangle e_2)||}, \text{ and } e_k = \frac{v_k \sum_{i=1}^{k-1} \langle v_k, e_i \rangle e_i}{||v_k \sum_{i=1}^{k-1} \langle v_k, e_i \rangle e_i||}.$
- Observe that $span(\{v_1,\ldots,v_j\}) = span(\{e_1,\ldots,e_j\})$.
- ullet It is easy to see that $e_1 \perp e_2$. Assume that $\{e_1, \ldots, e_i\}$ are orthonormal.
- Then $\forall I=1,\ldots j$, with $\tilde{e_{j+1}}=v_{j+1}-\sum_{i=1}^{j}\left\langle v_{j+1},e_{i}\right\rangle \tilde{e_{i}}$

$$\langle e_{j+1}, e_l \rangle = \underbrace{\frac{1}{||e_{j+1}^-||}}_{||e_{j+1}^-||} \underbrace{\left(\langle v_{j+1}, e_l \rangle - \sum_{i=1}^j \langle v_{j+1}, e_i \rangle \langle e_i, e_l \rangle}_{|e_{j+1}^-||} \right)$$

 $\omega = \sum a^{\alpha} U_{i}$ $\langle \omega, U_{k} \rangle = \sum u^{\alpha} \langle U_{i}, U_{k} \rangle.$

Orthogonal Complement

ullet Let V be a FD IPS and let U be a subset of V. The **Orthogonal Complement** of U is defined as

Orthogonal Complement

ullet Let V be a FD IPS and let U be a subset of V. The **Orthogonal Complement** of U is defined as

$$U^{\perp} = \{ v \in V \mid \langle v, u \rangle = 0, \forall u \in U \}$$

ullet Proposition 27: Irrespective of whether U is a subspace of V or not, U^\perp is a subspace.

ullet Let U be a subspace of FD IPS V, and $V = U \oplus U^{\perp}$.

$$weV^{\perp} \Rightarrow \langle w_1 u \rangle = 0$$
, $\forall ueV$.
 $weV \Rightarrow \langle w_1 w \rangle = 0 = ||w||^2 \Rightarrow w = 0$.
 $V = U + U^{\perp}$

- ullet Let U be a subspace of FD IPS V, and $V = U \oplus U^{\perp}$.
- Define $P_U \in \mathcal{L}(V)$ as $\forall v \in V$, if $v = u + w, u \in U, w \in U^{\perp}$, $P_U(v) = u$.

- ullet Let U be a subspace of FD IPS V, and $V=U\oplus U^{\perp}$.
- Define $P_U \in \mathcal{L}(V)$ as $\forall v \in V$, if $v = u + w, u \in U, w \in U^{\perp}$, $P_U(v) = u$.
- ullet P_U is said to be the Orthogonal Projection Operator on U.

- ullet Let U be a subspace of FD IPS V, and $V = U \oplus U^{\perp}$.
- Define $P_U \in \mathcal{L}(V)$ as $\forall v \in V$, if $v = u + w, u \in U, w \in U^{\perp}$, $P_U(v) = u$.
- ullet P_U is said to be the Orthogonal Projection Operator on U.
- It has the following properties:
 - 1. Range(P_U) =

- ullet Let U be a subspace of FD IPS V, and $V = U \oplus U^{\perp}$.
- Define $P_U \in \mathcal{L}(V)$ as $\forall v \in V$, if $v = u + w, u \in U, w \in U^{\perp}$, $P_U(v) = u$.
- ullet P_U is said to be the Orthogonal Projection Operator on U.
- It has the following properties:
 - 1. Range(P_U) = U
 - 2. $Null(P_U) =$

- ullet Let U be a subspace of FD IPS V, and $V = U \oplus U^{\perp}$.
- Define $P_U \in \mathcal{L}(V)$ as $\forall v \in V$, if $v = u + w, u \in U, w \in U^{\perp}$, $P_U(v) = u$.
- ullet P_U is said to be the Orthogonal Projection Operator on U.
- It has the following properties:
 - 1. Range(P_U) = U
 - 2. $Null(P_U) = U^{\perp}$
 - 3. Idempotent: $(P_U)^2 =$

- Let U be a subspace of FD IPS V, and $V = U \oplus U^{\perp}$. • Define $P_U \in \mathcal{L}(V)$ as $\forall v \in V$, if $v = u + w, u \in U, w \in U^{\perp}$,
- $P_U(v) = u$.
- ullet P_U is said to be the Orthogonal Projection Operator on U. It has the following properties:
 - 1. Range $(P_U) = U$

 - 2. Null $(P_U) = U^{\perp}$
 - 3. Idempotent: $(P_U)^2 = P_U$

 - 4. (Conjugate) Symmetric: If $V = \mathbb{R}^n$ (or \mathbb{C}^n), $P_{II}^T =$

 - V= C", <x,y> = y*x.

 - let 0, 02 € M. 0, = U,+W,, U, EO, 1

- 10= 12+W2, U2E 0, $=\langle P_{1}, u_{2} \rangle = \langle u_{1}, u_{2} + w_{2} \rangle = \langle u_{1}, u_{2} \rangle$

 - (U1, PUU2) = <U1, U2) = U2 P*U1=> PU=PU

- ullet Let U be a subspace of FD IPS V, and $V = U \oplus U^{\perp}$.
- Define $P_U \in \mathcal{L}(V)$ as $\forall v \in V$, if $v = u + w, u \in U, w \in U^{\perp}$, $P_U(v) = u$.
- \bullet P_U is said to be the *Orthogonal Projection Operator on U*.
- It has the following properties:
 - 1. Range $(P_U) = U$
 - 2. Null $(P_U) = U^{\perp}$
 - 3. Idempotent: $(P_U)^2 = P_U$
 - 4. (Conjugate) Symmetric: If $V = \mathbb{R}^n$ (or \mathbb{C}^n), $P_U^T = P_U$ ($P_U^* = P_U$).

- ullet Let U be a subspace of FD IPS V, and $V=U\oplus U^{\perp}.$
- Define $P_U \in \mathcal{L}(V)$ as $\forall v \in V$, if $v = u + w, u \in U, w \in U^{\perp}$, $P_U(v) = u$.
- ullet P_U is said to be the Orthogonal Projection Operator on U.
- It has the following properties:
 - 1. Range $(P_U) = U$
 - 2. $Null(P_U) = U^{\perp}$
 - 3. Idempotent: $(P_U)^2 = P_U$
 - 4. (Conjugate) Symmetric: If $V = \mathbb{R}^n$ (or \mathbb{C}^n), $P_U^T = P_U$ ($P_U^* = P_U$).
 - 5. $\forall v \in V, P_U(v) = \arg\min_{u \in U} ||u v||^2$.

x = argnun f(m) x \in Rⁿ nun fa, x \in Rⁿ

• Let $A \in \mathbb{R}^{m \times n}$ be a matrix with rank(A) = n.

- Let $A \in \mathbb{R}^{m \times n}$ be a matrix with rank(A) = n.
- Solve for $x \in \mathbb{R}^n$ in Ax = b such that $b \notin C(A)$.

- Let $A \in \mathbb{R}^{m \times n}$ be a matrix with rank(A) = n.
- Solve for $x \in \mathbb{R}^n$ in Ax = b such that $b \notin C(A)$.
- Solution: $x^* = \arg\min_{x \in \mathbb{R}^n} ||Ax b||^2$

- Let $A \in \mathbb{R}^{m \times n}$ be a matrix with rank(A) = n.
- Solve for $x \in \mathbb{R}^n$ in Ax = b such that $b \notin C(A)$.
- Solution: $x^* = \arg\min_{x \in \mathbb{R}^n} ||Ax b||^2$
- $Ax^* = P_{C(A)}(b)$

= End of Class

- Let $A \in \mathbb{R}^{m \times n}$ be a matrix with rank(A) = n.
- Solve for $x \in \mathbb{R}^n$ in Ax = b such that $b \notin C(A)$.
- Solution: $x^* = \arg\min_{x \in \mathbb{R}^n} ||Ax b||^2$
- $Ax^* = P_{C(A)}(b)$, i.e., $\langle b P_{C(A)}(b), Ax \rangle = 0, \forall x \in \mathbb{R}^n$.

- Let $A \in \mathbb{R}^{m \times n}$ be a matrix with rank(A) = n.
- Solve for $x \in \mathbb{R}^n$ in Ax = b such that $b \notin C(A)$.
- Solution: $x^* = \arg\min_{x \in \mathbb{R}^n} ||Ax b||^2$
- $Ax^* = P_{C(A)}(b)$, i.e., $\langle b P_{C(A)}(b), Ax \rangle = 0, \forall x \in \mathbb{R}^n$.
- Let $a_{*i}, i = 1, \ldots, n$ denote the n column vectors. Then $\langle b P_{C(A)}(b), a_{*i} \rangle = 0, \forall i = 1, \ldots, n$.

- Let $A \in \mathbb{R}^{m \times n}$ be a matrix with rank(A) = n.
- Solve for $x \in \mathbb{R}^n$ in Ax = b such that $b \notin C(A)$.
- Solution: $x^* = \arg\min_{x \in \mathbb{R}^n} ||Ax b||^2$
- $Ax^* = P_{C(A)}(b)$, i.e., $\langle b P_{C(A)}(b), Ax \rangle = 0, \forall x \in \mathbb{R}^n$.
- Let a_{*i} , $i=1,\ldots,n$ denote the n column vectors. Then $\langle b-P_{C(A)}(b),a_{*i}\rangle=0, \forall i=1,\ldots,n.$

$$\langle Ax^*, a_{*i} \rangle = \langle b, a_{*i} \rangle$$

Using Euclidean inner product
 $(a_{*i})^T Ax^* = (a_{*i})^T b, \forall i = 1, \dots, n$
 $A^T Ax^* = A^T b \Rightarrow x^* = \underbrace{(A^T A)^{-1} A^T}_{A^{\dagger}} b,$

where A^{\dagger} is known as the *Pseudo-inverse* of the matrix A.

• Definition: (Adjoint of an operator) Let $T \in \mathcal{L}(U)$, where U is an IPS with IP $\langle \cdot, \cdot \rangle$. Then adjoint of T, denoted by T^* is defined as

$$\forall x, y \in U, \langle Tx, y \rangle = \langle x, T^*y \rangle$$

Definition: (Adjoint of an operator) Let $T \in \mathcal{L}(U)$, where U is an IPS with IP $\langle \cdot, \cdot \rangle$. Then adjoint of T, denoted by T^* is defined as

$$\forall x, y \in U, \langle Tx, y \rangle = \langle x, T^*y \rangle$$

ullet Let $V=\mathbb{C}^n$ be the IPS with IP $\langle x,y\rangle=y^*x$.

Definition: (Adjoint of an operator) Let $T \in \mathcal{L}(U)$, where U is an IPS with IP $\langle \cdot, \cdot \rangle$. Then adjoint of T, denoted by T^* is defined as

$$\forall x, y \in U, \langle Tx, y \rangle = \langle x, T^*y \rangle$$

ullet Let $V=\mathbb{C}^n$ be the IPS with IP $\langle x,y\rangle=y^*x$. For $A\in\mathbb{C}^{n\times n}$, what is A^* ?

Definition: (Adjoint of an operator) Let $T \in \mathcal{L}(U)$, where U is an IPS with IP $\langle \cdot, \cdot \rangle$. Then adjoint of T, denoted by T^* is defined as

$$\forall x, y \in U, \langle Tx, y \rangle = \langle x, T^*y \rangle$$

- ullet Let $V=\mathbb{C}^n$ be the IPS with IP $\langle x,y\rangle=y^*x$. For $A\in\mathbb{C}^{n\times n}$, what is A^* ?
- Let $V = \{ f \in C^1[-1,1] \mid f(-1) = f(1) \}$ be an IPS with IP: $\langle f, g \rangle = \int_{-1}^1 f(x) \cdot g(x) \ dx$.

Definition: (Adjoint of an operator) Let $T \in \mathcal{L}(U)$, where U is an IPS with IP $\langle \cdot, \cdot \rangle$. Then adjoint of T, denoted by T^* is defined as

$$\forall x, y \in U, \langle Tx, y \rangle = \langle x, T^*y \rangle$$

- ullet Let $V=\mathbb{C}^n$ be the IPS with IP $\langle x,y\rangle=y^*x$. For $A\in\mathbb{C}^{n\times n}$, what is A^* ?
- Let $V = \{f \in \mathcal{C}^1[-1,1] \mid f(-1) = f(1)\}$ be an IPS with IP: $\langle f,g \rangle = \int_{-1}^1 f(x) \cdot g(x) \ dx$. What is $\frac{d}{dx}^*$?

Definition: (Adjoint of an operator) Let $T \in \mathcal{L}(U)$, where U is an IPS with IP $\langle \cdot, \cdot \rangle$. Then adjoint of T, denoted by T^* is defined as

$$\forall x, y \in U, \langle Tx, y \rangle = \langle x, T^*y \rangle$$

- ullet Let $V=\mathbb{C}^n$ be the IPS with IP $\langle x,y\rangle=y^*x$. For $A\in\mathbb{C}^{n\times n}$, what is A^* ?
- Let $V = \{ f \in \mathcal{C}^1[-1,1] \mid f(-1) = f(1) \}$ be an IPS with IP: $\langle f,g \rangle = \int_{-1}^1 f(x) \cdot g(x) \ dx$. What is $\frac{d}{dx}^*$?
- **Definition:** (Self-Adjoint Operator). Let $T \in \mathcal{L}(U)$, where $(U, \langle \cdot, \cdot \rangle)$ is an IPS. If $T = T^*$, then T is called a Self-adjoint operator.