Análisis y Diseño de Algoritmos

Programación Dinámica

DR. JESÚS A. GONZÁLEZ BERNAL CIENCIAS COMPUTACIONALES INAOE

Introducción a Programación Dinámica

- Parecido a divide y conquista
 - Resuelve problemas combinando soluciones
 - o Programación se refiere a resolver problemas en forma tabular
 - Programación dinámica aplica cuando los subproblemas no son independientes
 - Comparten subproblemas
 - Resuelve cada subproblema sólo una vez, guarda la solución, ahorra tiempo
- Generalmente utilizada en problemas de optimización

Introducción a Programación Dinámica

3

Cuatro pasos

- 1. Caracterizar la estructura de una solución óptima
- 2. Recursivamente definir el valor de una solución óptima
- 3. Calcular el valor de una solución óptima de un modo bottomup
- 4. Construir una solución óptima a partir de la información calculada

Multiplicación de Matrices

• Dadas 2 matrices:

$$\circ A_{p \ge q} * B_{q \ge r} = C_{p \ge r} \ , A_{2 \ge 3} * B_{3 \ge 2} = C_{2 \ge 2}$$

 \circ Se requieren $p \times q \times r$ multiplicaciones

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} * \begin{bmatrix} 7 & 8 \\ 9 & 10 \\ 11 & 12 \end{bmatrix} = \begin{bmatrix} 1x7 + 2x9 + 3x11 & 1x8 + 2x10 + 3x12 \\ 4x7 + 5x9 + 6x11 & 4x8 + 5x10 + 6x12 \end{bmatrix}$$

```
MATRIX-MULTIPLY (A, B)

1 if columns[A] \neq rows[B]

2 then error "incompatible dimensions"

3 else for i \leftarrow 1 to rows[A]

4 do for j \leftarrow 1 to columns[B]

5 do C[i, j] \leftarrow 0

6 for k \leftarrow 1 to columns[A]

7 do C[i, j] \leftarrow C[i, j] + A[i, k] \cdot B[k, j]

8 return C
```

Multiplicación de Matrices en Cadena

- Entrada: una cadena de n matrices $\langle A_1, A_2, ..., A_n \rangle$
- Salida: el producto de las matrices *A*1*A*2...*An*.
- Algoritmo
 - Acomodar los paréntesis a manera de minimizar el número de productos escalares al multiplicar las matrices
 - \circ $A_1A_2A_3$ se puede agrupar como:
 - \times $(A_1A_2)A_3$, ó como $A_1(A_2A_3)$

Ejemplo

- Si A_1 es de 10 x 100, A_2 de 100 x 5 y A_3 de 5 x 50 \rightarrow
 - \circ $A_1(A_2A_3)$ → 100x5x50 + 10x100x50 = 25,000 + 50,000 = 75,000 multiplicaciones, (A_2A_3 es una matriz de 100x50)
 - $(A_1A_2)A_3$ → 10x100x5 + 10x5x 50 = 5,000 + 2,500 = 7,500 multiplicaciones (A_1A_2) es una matriz de 10x5)

Solución por Fuerza Bruta

- Intentamos resolver el problema probando todas las maneras de agrupar con paréntesis
- No es una solución eficiente
- Sea *P*(*n*) el número de formas diferentes de acomodar los paréntesis en una secuencia de *n* matrices
- Tenemos la recurrencia: $P(n) = \begin{cases} 1 & \text{if } n = 1, \\ \sum_{k=1}^{n-1} P(k)P(n-k) & \text{if } n \geq 2. \end{cases}$
- (la secuencia de los números de catalán)
- P(n) = C(n-1), donde: $C(n) = \frac{1}{n+1} {2n \choose n} = \Omega\left(\frac{4^n}{n^{3/2}}\right)$
 - o El número de soluciones es exponencial en *n*
 - ➤ Resolver por programación dinámica

Paso 1: Caracterizar la Estructura de la Solución Óptima (La estructura para agrupar los paréntesis)

- Sea $A_{i..j}$ la matriz resultante del producto $A_iA_{i+1}...A_j$ donde i < j
- Si se divide el producto entre A_k y A_{k+1} para $i \le k < j$
- Se calcula por separado $A_{i..k}$ y $A_{k+1..i}$
 - O La solución a cada subproblema debe ser óptima para que la solución de $A_1..A_n$ sea óptima
 - Costo = Costo($A_{i..k}$) + Costo($A_{k+1..j}$) + Costo de multiplicar ambas matrices
- Si hubiera otra forma de agrupar que nos de mejor costo entonces la anterior no sería la óptima

Paso 1: Caracterizar la Estructura de la Solución Óptima (La estructura para agrupar los paréntesis)

Subestructura óptima:

- Construir soluciones óptimas para todos los subproblemas (así trabaja programación dinámica)
 - × Por eso se llama subestructura óptima

Paso 2. Definir una Solución Recursiva

- Definimos costo de una solución óptima recursivamente en términos de la solución óptima a subproblemas
- Subproblemas
 - o Problema de determinar el costo mínimo de agrupar las matrices con paréntesis para $A_iA_{i+1}...A_j$ para 1 ≤ $i \le j \le n$
 - \circ Sea m[i,j] el número mínimo de multiplicaciones escaleres para calcular $A_{i..j}$
 - ightharpoonup El costo total para obtener $A_{1..n}$ sería m[1,n]

Paso 2. Definir una Solución Recursiva

• Definimos m[i,j]

- o Si i = j, m[i,j] = o (problema trivial, una sóla matriz, no son necesarias multiplicaciones de escalares)
- o Si i < j, asumimos una división óptima entre A_k y A_{k+1} ($i \le k < j$) $m[i,j] = \cos to \ de \ calcular \ A_{i...k} + \cos to \ de \ calcular \ A_{k+1..j} + \cos to \ de \ calcular \ A_{i...k} A_{k+1..j} = m[i,k] + m[k+1,j] + p_{i-1}p_kp_j$ Sin embargo, no conocemos el valor de k e intentaremos todas las j-i posibilidades
- o La definición recursiva para el mínimo costo de agrupar los paréntesis del producto $A_iA_{i+1}...A_i$ es:

$$m[i,j] = \begin{cases} 0 & \text{if } i = j, \\ \min_{i \le k < j} \{m[i,k] + m[k+1,j] + p_{i-1}p_kp_j\} & \text{if } i < j. \end{cases}$$

- Podemos utilizar la recurrencia anterior para calcular el costo mínimo de m[1,n] para multiplicar $A_1A_2...A_n$
 - Pero el algoritmo todavía es exponencial (no mejor que fuerza bruta)
 - Algo bueno es que tenemos relativamente pocos subproblemas
 - \blacksquare Uno para cada elección de i y j donde $1 \le i \le j \le n$, ó

$$\binom{n}{2} + n = \Theta(n^2)$$

- ➤ El algoritmo puede encontrar subproblemas repetidos
 - Traslape (Overlapping)
 - o Utilizamos método bottom-up tabular → paso 3

Método bottom-up

 Resolvemos subproblemas pequeños primero y los más grandes serán más fáciles de resolver

Definimos 2 arreglos

- \circ m[1..n, 1..n], para almacenar costos mínimos
- \circ s[1..n, 1..n], para almacenar las divisiones óptimas, índice de k
 - Para construir la solución óptima

14

• Tiempo de ejecución de $O(n^3)$ y requiere $\Theta(n^2)$ memoria para almacenar m y s.

```
MATRIX-CHAIN-ORDER (p)
    n \leftarrow length[p] - 1
 2 for i \leftarrow 1 to n
           do m[i, i] \leftarrow 0
 4 for l \leftarrow 2 to n > l is the chain length.
           do for i \leftarrow 1 to n-l+1
                    do j \leftarrow i + l - 1
                        m[i, j] \leftarrow \infty
                         for k \leftarrow i to j-1
                              do q \leftarrow m[i, k] + m[k+1, j] + p_{i-1}p_kp_j
                                 if q < m[i, j]
10
                                    then m[i, j] \leftarrow q
12
                                           s[i, j] \leftarrow k
      return m and s
```


16

Figure 15.3 The m and s tables computed by MATRIX-CHAIN-ORDER for n = 6 and the following matrix dimensions:

matrix	dimension
A_1	30×35
A_2	35×15
A_3	15×5
A_4	5×10
A_5	10×20
A_6	20×25

The tables are rotated so that the main diagonal runs horizontally. Only the main diagonal and upper triangle are used in the m table, and only the upper triangle is used in the s table. The minimum number of scalar multiplications to multiply the 6 matrices is m[1, 6] = 15,125. Of the darker entries, the pairs that have the same shading are taken together in line 9 when computing

$$m[2,5] = \min \begin{cases} m[2,2] + m[3,5] + p_1 p_2 p_5 = 0 + 2500 + 35 \cdot 15 \cdot 20 &= 13000, \\ m[2,3] + m[4,5] + p_1 p_3 p_5 = 2625 + 1000 + 35 \cdot 5 \cdot 20 = 7125, \\ m[2,4] + m[5,5] + p_1 p_4 p_5 = 4375 + 0 + 35 \cdot 10 \cdot 20 &= 11375 \\ = 7125. \end{cases}$$

Paso 4. Construyendo la Solución Óptima

- MATRIX-CHAIN-ORDER encuentra el número óptimo de multiplicaciones escalares
- Construimos la solución óptima con la información en s[1..n, 1..n]

```
PRINT-OPTIMAL-PARENS (s, i, j)

1 if i = j

2 then print "A"<sub>i</sub>

3 else print "("

4 PRINT-OPTIMAL-PARENS (s, i, s[i, j])

5 PRINT-OPTIMAL-PARENS (s, s[i, j] + 1, j)

6 print ")"
```

In the example of Figure 15.3, the call PRINT-OPTIMAL-PARENS (s, 1, 6) prints the parenthesization $((A_1(A_2A_3))((A_4A_5)A_6))$.

Elementos de la Programación Dinámica

18

Subestructura óptima

- Un problema con solución óptima que tiene sub-problemas con soluciones óptimas
- Si se presenta esta propiedad, podría aplicar (probablemente) programación dinámica

Elementos de la Programación Dinámica

- Problemas traslapados
 - o El espacio de sub-problemas debe ser pequeño
 - o Un alg. recursivo los resolvería muchas veces
 - ➤ Lo ideal (recursivo) sería sólo generar/resolver problemas nuevos
 - o Generalmente el número de sub-problemas diferentes es polinomial en tamaño de la entrada
- Divide y conquista genera nuevos problemas cada paso de la recursión

Traslape en Multiplicación en Cadena de Matrices

Algoritmo Recursivo para Multiplicación de Matrices en Cadena


```
m[i, j] = \begin{cases} 0 & \text{if } i = j, \\ \min_{i \le k < j} \{m[i, k] + m[k+1, j] + p_{i-1} p_k p_j\} & \text{if } i < j. \end{cases}
```

```
RECURSIVE-MATRIX-CHAIN (p, i, j)

1 if i = j

2 then return 0

3 m[i, j] \leftarrow \infty

4 for k \leftarrow i to j - 1

5 do q \leftarrow RECURSIVE-MATRIX-CHAIN (p, i, k)

+ RECURSIVE-MATRIX-CHAIN (p, k + 1, j)

+ p_{i-1}p_kp_j

6 if q < m[i, j]

7 then m[i, j] \leftarrow q

8 return m[i, j]
```

Análisis de la Solución Recursiva

$$T(n) = \begin{cases} \Theta(1) & n = 1\\ \Theta(1) + \sum_{k=1}^{n-1} (T(k) + T(n-k) + \Theta(1)) & n > 1 \end{cases}$$

$$T(n) = \Theta(1) + \sum_{k=1}^{n-1} (T(k) + T(n-k) + \Theta(1))$$

$$= \Theta(1) + \sum_{k=1}^{n-1} \Theta(1) + \sum_{k=1}^{n-1} T(k) \sum_{k=1}^{n-1} T(n-k)$$

$$= \Theta(1) + \Theta(n-1) + \sum_{k=1}^{n-1} T(k) + \sum_{k=1}^{n-1} T(k)$$

$$= \Theta(n) + 2\sum_{k=1}^{n-1} T(k)$$

Análisis de la Solución Recursiva

- Por el método de substitución, probando que $T(n) = \Omega(2^n)$
 - o Mostrar: $T(n) = Ω(2^n) ≥ c2^n$
 - o Asumiendo: T(k) ≥ $c2^k$ para k < n
 - \circ Si $4c-\Theta(n) \le 0$, \circ $c \le \Theta(n)/4$
 - \star (valor largo de n)
 - Entonces, $T(n) = \Omega(2^n)$
 - \circ T(n) sigue siendo exponencial!

$$T(n) \ge \Theta(n) + 2\sum_{k=1}^{n-1} c2^k$$

$$= \Theta(n) + 2c \sum_{k=0}^{n-2} 2^{k+1}$$

$$= \Theta(n) + 4c \sum_{k=0}^{n-2} 2^k$$

$$= \Theta(n) + 4c(2^{n-1} - 1)$$

$$= \Theta(n) + 2c2^n - 4c$$

$$\geq c2^n$$

Memoization

- Variación de programación dinámica
 - o Estrategia top-down, con el algoritmo recursivo
 - ▼ Utiliza una tabla con soluciones de subproblemas

Memoization para Multiplicación de Matrices en Cadena

- Tiempo:
 - \circ $O(n^3)$
 - o Mejor que $\Omega(2^n)$
- Memoria:
 - \circ $O(n^2)$

```
MEMOIZED-MATRIX-CHAIN(p)
   n \leftarrow length[p] - 1
   for i \leftarrow 1 to n
         do for j \leftarrow i to n
                 do m[i,j] \leftarrow \infty
   return LOOKUP-CHAIN(p, 1, n)
LOOKUP-CHAIN(p, i, j)
    if m[i, j] < \infty
       then return m[i, j]
   if i = j
       then m[i, j] \leftarrow 0
       else for k \leftarrow i to j-1
                  do q \leftarrow \text{LOOKUP-CHAIN}(p, i, k)
                               + LOOKUP-CHAIN(p, k + 1, j) + p_{i-1}p_kp_j
                     if q < m[i, j]
                        then m[i, j] \leftarrow q
    return m[i, j]
```

Subsecuencia Común más Larga Longest Common Subsequence (LCS)

- Una subsecuencia de otra secuencia es la misma secuencia quitándole cero o más elementos.
- Dada la secuencia $X = \langle x_1, x_2, ..., x_m \rangle$, otra secuencia $Z = \langle z_1, z_2, ..., z_k \rangle$ es una subsecuencia de X si existe una secuencia creciente $\langle i_1, i_2, ..., i_k \rangle$ (no necesariamente contiguos) de índices de X tal que para cada j = 1, 2, ..., k, tenemos que $x_{ij} = z_j$.

Ejemplos de Subsecuencias Comunes

- Z = <B, C, D, B> es subsecuencia de X = <A, B, C, B,
 D, A, B>, con la secuencia de índices <2, 3, 5, 7>
- Dadas las secuencias X y Y, Z es una secuencia común de X e Y si Z es una subsecuencia de ambas.
 - X = <A, B, C, B, D, A, B>, Y = <B, D, C, A, B, A>, la secuencia <B, C, A> es una subsecuencia común de X e Y.
 - La secuencia <B, C, B, A> es una LCS de X e Y, igual que <B,
 D, A, B>

Problema LCS

• Dadas dos secuencias X e Y, encontramos la subsecuencia común máxima de X e Y.

Problema LCS

- Solución por fuerza bruta
 - o 2^m subsecuencias de X a buscar en Y
 - ➤ Cada secuencia es un conjunto de índices {1, 2, ..., m}
 - Tiempo exponencial
 - No práctico para secuencias largas

LCS con Programación Dinámica

Subestructura óptima

- Definir
 - x Dado $X = \langle x_1, ..., x_m \rangle$, el iésimo prefijo de X, i = 0, ..., m, es $X_i = \langle x_1, ..., x_i \rangle$. X_0 está vacío.
- o Teorema 16.1
 - × Sean $X = \langle x_1, ..., x_m \rangle$ y $Y = \langle y_1, ..., y_n \rangle$ secuencias y $Z = \langle z_1, ..., z_k \rangle$ sea cualquier LCS de X y Y.
 - 1. Si $x_m = y_n$, entonces $z_k = x_m = y_n$ y Z_{k-1} es una LCS de X_{m-1} y Y_{n-1}
 - 2. Si $x_m \neq y_n$, entonces $z_k \neq x_m$ implica que Z es una LCS de X_{m-1} y Y.
 - 3. Si $x_m \neq y_n$, entonces $z_k \neq y_m$ implica que Z es una LCS de X y Y_{n-1}
 - ➤ Por tanto, el problema de LCS tiene subestructura óptima

LCS con Programación Dinámica

- Traslape de subproblemas
 - \circ Sea c[i,j] la longitud de una LCS en las secuencias X_i y Y_j

• La subestructura óptima del problema LCS nos lleva a la sig. fórmula recursiva

$$c[i, j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \text{ ,} \\ c[i-1, j-1] + 1 & \text{if } i, j > 0 \text{ and } x_i = y_j \text{ ,} \\ \max(c[i, j-1], c[i-1, j]) & \text{if } i, j > 0 \text{ and } x_i \neq y_j \text{ .} \end{cases}$$

LCS con Programación Dinámica

- Algoritmo recursivo exponencial para calcular longitud de una LCS de dos secuencias
 - o Pero sólo hay m x n subproblemas distintos
- Solución
 - Utilizar programación dinámica
 - Procedimiento bottom up
 - \star En c[i,j] guardamos la longitud del arreglo
 - ullet En b[i,j] guardamos el caso relacionando $x_i, y_j, y z_k$

Pseudocódigo LCS

33

LCS-LENGTH tiene un orden de O(mn)

```
LCS-LENGTH(X, Y)
      m \leftarrow length[X]
     n \leftarrow length[Y]
     for i \leftarrow 1 to m
            do c[i,0] \leftarrow 0
      for j \leftarrow 0 to n
            do c[0, j] \leftarrow 0
      for i \leftarrow 1 to m
            do for i \leftarrow 1 to n
                      do if x_i = y_i
                              then c[i, j] \leftarrow c[i - 1, j - 1] + 1
10
                                    b[i, j] \leftarrow "\\"
                              else if c[i - 1, j] \ge c[i, j - 1]
13
                                        then c[i, j] \leftarrow c[i-1, j]
                                              b[i, j] \leftarrow "\uparrow"
14
15
                                        else c[i, j] \leftarrow c[i, j-1]
16
                                              b[i, j] \leftarrow "\leftarrow"
      return c and b
```


Construcción de una LCS

- PRINT-LCS tiene un orden de O(m + n)
 - Para construir la LCS
 - Iniciar en b[m,n]
 - Seguir las flechas
 - Flecha

 indica x_i = y_j, es un elemento de la LCS
 - Llamado: LCS(b,X,length[X], length[Y])

```
PRINT-LCS(b, X, i, j)

1 if i = 0 or j = 0

2 then return

3 if b[i, j] = \text{``\cdot'}

4 then PRINT-LCS(b, X, i - 1, j - 1)

5 print x_i

6 elseif b[i, j] = \text{``\cdot'}

7 then PRINT-LCS(b, X, i - 1, j)

8 else PRINT-LCS(b, X, i, j - 1)
```


• Un polígono se define como $P = \langle v_0, v_1, ..., v_{n-1} \rangle$

36

 Un polígono es convexo si un segmento de línea entre dos puntos, o en su interior, caen ya sea en sus bordes o en su interior.

- Si v_i y v_j no son adyacentes, entonces el segmento $v_i v_j$ es una cuerda
- Una triangulación es un conjunto de cuerdas *T* que divide *P* en triángulos disjuntos
 - Las cuerdas no se intersectan
 - o T es maximal (cada cuerda $\notin T$ intersecta una cuerda $\in T$)

Problema

- Dados
 - $\times P = \langle v_0, v_1, ..., v_{n-1} \rangle$
 - \star Una función de pesos w sobre triángulos formada por P y T
- Encontrar T que minimice la suma de pesos
- Example: $w(\Delta v_i v_j v_k) = |v_i v_j| + |v_j v_k| + |v_k v_i|$ (dist. Euclidiana)
- Este problema se puede reducir al problema de multiplicación de matrices en cadena

Subestructura óptima

- \circ T tiene $\Delta v_{\rm o} v_k v_n$
- $ow(T) = w(\Delta v_0 v_k v_n) + m[o,k] + m[k+1, n]$
- Las dos soluciones a los subproblemas deben ser óptimas o w(T) no lo sería.
- O El algoritmo requiere $Θ(n^3)$ en tiempo y $Θ(n^2)$ en memoria