Example Code of Beamer

Your Name

Jan 5, 2019

Index

Introduction

Content

Conclusion

Introduction

Block Title 1

- Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore. Author A, Author B 2018
- Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo conseguat.
- Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Author A, Author B 2016

Block Title 2

- Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore . Author A. Author B 2018
- Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo conseguat.
- Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Author A, Author B 2016

Jan 5, 2019

Example of subfigure

Idea A ← Idea B

(a) Image Caption

(b) Image Caption

4/7

Black hole

The metric and the electromagnetic field of the spherically symmetric solution

$$ds^{2} = -fdt^{2} + \frac{dr^{2}}{f} + r^{2}d\Omega_{2}^{2},$$
(1)

$$F = Edt \wedge dr \,, \quad E = \frac{Q}{\sqrt{r^4 + Q^2/b^2}} \,.$$
 (2)

where

$$\begin{split} f = &1 - \frac{2M}{r} + \frac{r^2}{l^2} + \frac{2b^2}{r} \int_r^{\infty} \left(\sqrt{r^4 + \frac{Q^2}{b^2}} - r^2 \right) dr \\ = &1 - \frac{2M}{r} + \frac{r^2}{l^2} + \frac{2b^2r^2}{3} \left(1 - \sqrt{1 + \frac{Q^2}{b^2r^4}} \right) \\ &+ \frac{4Q^2}{3r^2} \,_2F_1 \left(\frac{1}{4}, \frac{1}{2}; \frac{5}{4}; -\frac{Q^2}{b^2r^4} \right) \,, \end{split}$$

and ${}_2F_1$ is the hypergeometry function, M and Q stand for black hole mass and charge. $d\Omega$ is the unit sphere on S^2 .

◆□▶ ◆□▶ ◆ 壹 ▶ ◆ 壹 ● り へ ○

Your Name Examp

Content

Mass M

$$f(r_h) = 0 \Longrightarrow M = \frac{T}{v} - \frac{1 - \sqrt{\frac{16}{v^4} + 1}}{4\pi} - \frac{1}{2\pi v^2}$$
 (3)

Hawking temperature T

$$T = f'(r_{+})/4\pi = \frac{1}{4\pi r_{+}} \left[1 + \frac{3r_{+}^{2}}{l^{2}} + 2b^{2}r_{+}^{2} \left(1 - \sqrt{1 + \frac{Q^{2}}{b^{2}r_{+}^{4}}} \right) \right]$$
 (4)

Electric potential Φ

$$\Phi = \int_{r_{+}}^{\infty} E dr = \frac{Q}{r_{+}} {}_{2}F_{1}\left(\frac{1}{4}, \frac{1}{2}; \frac{5}{4}; -\frac{Q^{2}}{b^{2}r_{+}^{4}}\right). \tag{5}$$

The corresponding entropy is $S=\pi r_+^2$, The specific volume $v=2r_+l_P^2$ and corresponding pressure $P=-\frac{\Lambda}{8\pi}=\frac{3}{8\pi l^2}$

Conclusion

Conclusion 1

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.

Conclusion 2

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.

Thank You!

