데이터베이스론

- 문 1. 관계형 데이터베이스에서 참조 무결성 제약조건을 만족하도록 외래키를 생성하고자 한다. 이와 관련된 SQL 명령문의 제약조건에 대한 설명으로 옳지 않은 것은?
 - ① 'on delete set null'은 참조되는 테이블의 행이 삭제되면, 참조하는 테이블의 행에 있는 외래키 열에 null을 저장한다.
 - ② 'on delete cascade'는 참조되는 테이블의 행이 삭제되면, 참조하는 테이블의 행에 있는 외래키 열을 삭제한다.
 - ③ 'on delete set default'는 참조되는 테이블의 행이 삭제되면, 참조하는 테이블의 행에 있는 외래키 열에 사전에 정의된 default 값을 저장한다.
 - ④ 'on delete no action'은 참조되는 테이블의 행을 삭제하려고 할 때, 참조하는 테이블의 행이 존재할 경우 삭제 명령이 수행되지 못하도록 한다.
- 문 2. 다음 과제 테이블은 학년별 동아리에 가입한 학생 수와 제출한 과제 수를 저장하고 있다. '학생이 10명 이상 가입한 동아리에 대하여 동아리와 제출한 총 과제 수를 출력하시오'를 수행하기 위한 SQL문으로 옳은 것은?

과제			
학년	동아리	학생수	과제수
1	A	20	20
1	В	10	20
1	С	5	8
2	A	15	10
2	В	15	20
3	A	5	15
3	В	12	20
3	С	8	15

① SELECT 동아리, SUM(과제수)

FROM 과제

GROUP BY 동아리

HAVING SUM(학생수) >= 10;

② SELECT 동아리, SUM(과제수)

FROM 과제

WHERE SUM(학생수) >= 10;

③ SELECT 동아리, SUM(과제수)

FROM 과제

HAVING SUM(학생수) >= 10;

④ SELECT 동아리, SUM(과제수)

FROM 과제

WHERE 학생수 >= 10

GROUP BY 동아리;

- 문 3. 다음 관계형 데이터베이스의 세 가지 기능적 요소에 대한 설명에서 ¬ ∼ ⓒ에 들어갈 용어를 바르게 연결한 것은?
 - (⑦)는(은) SQL에서 삽입, 삭제, 갱신과 같은 데이터 변경문을 실행할 때 미리 명시된 조건을 만족하는 경우 특정한 동작을 자동으로 수행할 수 있도록 한다.
 - (ⓒ)는(은) 데이터베이스 내에 존재하는 작업 순서가 정해진 수행 단위로서 DBMS에서 컴파일된 후 실행된다.
 - (ⓒ)는(은) 데이터베이스에서 데이터를 신속하게 탐색할 수 있도록 만든 데이터 구조이다.

트리거

① 인덱스 트리거(trigger) 주장(assertion)

② 주장 인덱스

저장 프로시저(stored procedure)

③ 주장 인덱스

④ 트리거 저장 프로시저 인덱스

- 문 4. 데이터베이스 보안과 관련한 설명으로 옳지 않은 것은?
 - ① SQL 삽입(injection) 공격은 공격자가 악의적으로 만든 SQL 명령을 응용 프로그램이 수행하도록 하는 것이다.
 - ② 데이터베이스 관리자(DBA)가 각 사용자에게 데이터베이스에 대한 접근 권한을 부여하거나 취소할 때 grant 명령을 사용한다.
 - ③ 데이터베이스에 대한 권한은 역할(role)에도 부여할 수 있다.
 - ④ 전자 서명(digital signature)은 공개키 암호화 기법의 특성을 이용하여 인증을 수행한다.
- 문 5. 다음 ERD(Entity-Relationship Diagram)에 대한 설명으로 옳지 않은 것은? (단, 속성 이름에 대한 밑줄은 기본키이다)

- ① 주어진 ERD를 릴레이션으로 사상(mapping)하면, 4개의 릴레이션이 생성된다.
- ② 모든 사원은 적어도 하나 이상의 과제를 수행하여야 한다.
- ③ 모든 부서는 적어도 1명 이상의 사원이 존재하여야 하며, 사원도 반드시 하나의 부서에 소속되어야 한다.
- ④ 사원은 2개의 부서에 동시에 소속될 수 없다.
- 문 6. 다음 함수종속성 집합 FD의 최소커버(minimal cover) FD_{min}는?

$$FD = \{Y \rightarrow X, Z \rightarrow XYW\}$$

- ① $FD_{min} = \{Y \rightarrow X, Z \rightarrow X, Z \rightarrow Y, Z \rightarrow W\}$
- ② $FD_{min} = \{Y \rightarrow X, Z \rightarrow Y, Z \rightarrow W\}$
- $(3) FD_{min} = \{Y \rightarrow X, Z \rightarrow X, Z \rightarrow W\}$
- $\textcircled{4} \operatorname{FD}_{\min} = \{Y \to X, Z \to X, Z \to Y\}$

문 7. 다음 인덱스 기법에 대한 설명으로 옳은 것만을 모두 고르면?

- 기. B-트리 전체를 노드 내의 키 값에 따라 순차 검색하기 위해서는 트리의 각 노드를 전위 순회(preorder traversal) 하다
- ㄴ. 밀집(dense) 인덱스는 희소(sparse) 인덱스에 비해 액세스 시간은 빠르지만 더 많은 공간을 필요로 한다.
- C. B-트리에서 오버플로가 발생하여 리프 노드가 분할될 때. 중간 키 값이 부모 노드뿐만 아니라 새로 분할된 노드에도 저장된다.
- ㄹ. 1,000명의 사원 정보가 저장된 '사원' 테이블의 '부서' 필드에 대하여, 30명이 소속된 '총무과' 사원에 대한 비트맵 인덱스를 구성할 경우 1,000비트가 필요하다.
- ① 7. ⊏
- ② ¬. ≥
- ③ ∟. ⊏
- ④ ∟, ⊒
- 문 8. 다음은 시스템 고장이 발생할 때 트랜잭션 T₁, T₂, T₃, T₄, T₅를 복구하기 위해 고장 전에 마지막으로 기록된 DBMS 로그이다. 이 로그를 사용하여 즉시 갱신 회복 기법의 undo-redo 알고리즘을 수행할 때, 회복과정에 대한 설명으로 옳지 않은 것은? (단, <checkpoint>는 검사점 기록 로그 레코드이며, <T1, A, 200, 400>은 'T₁이 데이터 항목 A의 현재 값 200을 400으로 갱신한다'를 의미하는 로그 레코드이다. 표현되지 않은 로그의 다른 속성은 고려하지 않는다)

至500年 1612年7	
로그 번호	로그 레코드
1	<t<sub>1 start></t<sub>
2	<t<sub>1, A, 200, 400></t<sub>
3	<t<sub>1 commit></t<sub>
4	<t<sub>2 start></t<sub>
5	<t<sub>2, B, 900, 1900></t<sub>
6	<checkpoint></checkpoint>
7	<t<sub>3 start></t<sub>
8	<t<sub>3, A, 400, 700></t<sub>
9	<checkpoint></checkpoint>
10	<t<sub>5 start></t<sub>
11	<t<sub>5, C, 100, 5000></t<sub>
12	<t<sub>3 commit></t<sub>
13	<t<sub>4 start></t<sub>
14	<t<sub>4, D, 700, 1300></t<sub>
15	<t<sub>5 commit></t<sub>
16	<t<sub>4, E, 1300, 1500></t<sub>
	시스템 고장발생

- ① T_1 은 어떠한 undo와 redo 연산도 수행하지 않는다.
- ② 데이터 항목 A와 B의 값은 각각 700과 900으로 갱신된다.
- ③ 데이터 항목 C와 D의 값은 각각 5000과 700으로 갱신된다.
- ④ redo 연산은 T₅, T₃ 순서로 수행된다.

문 9. <보기 1>에서 공급업체와 부품. 카탈로그 테이블을 생성하는 SQL문을 수행한 후 튜플을 삽입하여 세 테이블의 상태가 다음과 같을 때, <보기 2>의 SQL문을 수행한 결과로 옳은 것은?

-----<보기 1>---

CREATE TABLE 공급업체 (

업체번호 INT NOT NULL,

업체명 VARCHAR(20).

PRIMARY KEY(업체번호));

CREATE TABLE 부품 (

부품번호 INT NOT NULL.

부품명 VARCHAR(20),

색상 VARCHAR(20),

PRIMARY KEY(부품번호));

CREATE TABLE 카탈로그 (

업체번호 INT NOT NULL,

부품번호 INT NOT NULL,

가격 INT,

PRIMARY KEY(업체번호, 부품번호).

FOREIGN KEY(업체번호) REFERENCES 공급업체(업체번호),

FOREIGN KEY(부품번호) REFERENCES 부품(부품번호));

공급업체	
업체번호	업체명
1	공급A
2	공급B
3	공급C

부품		
부품번호	부품명	색상
1	부품1	빨강
2	부품2	파랑
3	부품3	노랑

카탈로그		
업체번호	부품번호	가격
1	3	10000
2	1	20000
3	2	30000

-<보기 2>-

SELECT 업체번호, 업체명

FROM 공급업체

WHERE NOT EXISTS (

SELECT 부품.부품번호

FROM 부품

WHERE 부품.색상='빨강' AND EXISTS (

SELECT *

FROM 카탈로그

WHERE 카탈로그.부품번호=부품.부품번호

AND 카탈로그.업체번호=공급업체.업체번호));

(I)	업체번호	업체명

()	업체번호	업체명
	2	공급B

3	업체번호	업체명
	1	공급A
	3	공급C

(I)		
(4)	업체번호	업체명
	1	공급A
	2	공급B
	3	공급C

문 10. 다음 SQL문에 대하여 질의 최적화를 수행하고자 한다. 이에 대한 설명으로 옳지 않은 것은?

SELECT 학생.이름, 교수.이름

FROM 학생, 학과, 교수

WHERE 학생.학과코드 = 학과.학과코드

AND 교수.교수코드 = 학과.학과장코드

AND 학과.학과코드 = 'CS';

- ① 카탈로그는 해당 테이블에 대한 통계 정보를 저장하고 있어 비용 계산에 활용될 수 있지만, 통계 정보를 실시간으로 갱신하려면 부하가 커서 주기적으로 갱신하기도 한다.
- ② 조인연산 학생 ⋈학과코드=학과코드 학과는 기본적으로 중첩 루프(nested loop)를 이용하여 구현하지만, '학과.학과코드'에 인덱스가 구축되어 있다면 비용을 감소시킬 수 있다.
- ③ 경험적 질의 최적화 기법에서는 주어진 SQL문의 WHERE절에서 조인연산보다 학과.학과코드='CS'를 먼저 수행하도록 한다.
- ④ |R|을 릴레이션 R의 투플의 수로 정의할 때, $R\bowtie_{A=B}S$ 에 대하여 A가 R의 기본키이면 $|(R\bowtie_{A=B}S)| \leq |S|$ 이고 조인 선택률(js)은 js>1/|R|이다.
- 문 11. 두 릴레이션 T_1 , T_2 에 관계 대수 연산 $\bigcirc \sim \mathbb{C}$ 을 수행한 결과 릴레이션이 각각 R_1 , R_2 , R_3 과 같다. 연산을 바르게 연결한 것은?

T_1		
A	В	
aa	10	
bb	20	
сс	30	
dd	20	

T_2		
В	С	
20	XX	
30	уу	
40	ZZ	

$R_1 \leftarrow T_1 \ \ \ T_2$		
A	В	С
aa	10	
bb	20	
сс	30	
dd	20	
	20	XX
	30	уу
	40	ZZ

$R_2 \leftarrow T_1 \odot T_2$				
A	В	С		
aa	10			
bb	20	XX		
сс	30	уу		
dd	20	XX		
	40	ZZ		

$R_3 \leftarrow T_1 \boxdot T_2$				
В	С			
20	XX			
20	XX			
30	уу			
40	ZZ			
	B 20 20 30			

- ① 완전 외부조인(\bowtie) 외부 합집합(U+) 왼쪽 외부조인(\bowtie)
- ② 완전 외부조인(\bowtie) 외부 합집합(U+) 오른쪽 외부조인(\bowtie)
- ③ 외부 합집합(U+) 완전 외부조인(\bowtie) 왼쪽 외부조인(\bowtie)
- ④ 외부 합집합(U+) 완전 외부조인(⋈) 오른쪽 외부조인(⋈)

- 문 12. SQL에서 뷰(view)의 역할에 대한 설명으로 옳지 않은 것은?
 - ① 기본 테이블(base table)들만으로 작성된 질의를 간소화시킬 수 있다.
 - ② 사용자의 접근권한에 따라 동일한 기본 테이블의 속성들을 선택적으로 제공할 수 있다.
 - ③ 기본 테이블들만으로 작성된 질의 처리 성능을 향상시키기 위해 개발되었다.
 - ④ 기본 테이블들의 물리적 구조를 변경시키지 않고 사용자가 원하는 새로운 가상 테이블을 생성시킬 수 있다.
- 문 13. 데이터베이스와 데이터베이스 관리시스템(DBMS)에 대한 설명으로 옳지 않은 것은?
 - ① 데이터 종속성(data dependency)을 유지하여 데이터와 이를 이용하는 프로그램이 밀접하게 연결되어 동작하도록 도와준다.
 - ② 데이터베이스 사용자들에게 공용 데이터에 대한 다양한 관점을 제공해 준다.
 - ③ 데이터베이스 시스템의 자기 기술성은 데이터베이스 구조와 제약조건에 대한 정의를 가지고 있음을 의미한다.
 - ④ 분산 데이터베이스 시스템에 포함된 각 지역의 DBMS는 지역 자치성(local autonomy)을 가질 수 있다.
- 문 14. 다음 트랜잭션 스케줄 S₁, S₂, S₃, S₄ 중 회복 불가능한 스케줄은? (단, r_i(X)와 w_i(X)는 각각 트랜잭션 T_i의 데이터 항목 X에 대한 읽기연산과 쓰기연산이고, c_i와 a_i는 각각 T_i의 완료연산과 철회 연산이다)
 - ① S_1 : $r_1(X)$; $r_2(X)$; $r_1(Y)$; $w_2(X)$; $w_1(Y)$; a_1 ; $r_2(Y)$; c_2 ;
 - ② S_2 : $r_1(X)$; $w_1(X)$; $r_2(X)$; $r_1(Y)$; $w_2(X)$; c_2 ; a_1 ;
 - ③ S_3 : $r_1(X)$; $w_1(X)$; $r_2(Y)$; $w_2(Y)$; $w_2(X)$; c_2 ; c_1 ;
 - 4 S_4 : $r_1(X)$; $w_1(X)$; $r_2(X)$; $r_1(Y)$; $w_2(X)$; $w_1(Y)$; a_1 ; a_2 ;
- 문 15. 릴레이션 스키마 R(A, B, C, D)는 다음 함수적 종속성 집합 FD를 만족한다. R을 BCNF 정규화하였을 때 분해된 두 릴레이션 스키마 R1과 R2로 옳은 것은?

$FD = \{A \rightarrow BCD, B \rightarrow ACD, D \rightarrow C\}$

- ① R1(B,C,D), R2(A,B)
- ② R1(A,C,D), R2(B,C,D)
- ③ R1(A,B,D), R2(C,D)
- 4 R1(A,B,C), R2(C,D)

문 16. 다음과 같은 두 트랜잭션 T₁과 T₂에 대하여 현재 T₁은 x-lock(X)를, T₂는 s-lock(Y)를 성공적으로 수행한 상태이다. 이후 두 트랜잭션이 각각 순서대로 마지막 연산까지 수행하는 과정에 대한 설명으로 옳은 것은? (단, read(X)와 write(X)는 각각 트랜잭션의 데이터 항목 X에 대한 읽기연산과 쓰기연산이고, x-lock(X)와 s-lock(X)는 각각 X에 대한 배타로크를 거는 연산과 공유로크를 거는 연산 이며, unlock(X)는 X에 대한 로크를 해제하는 연산이다)

T_1	T_2
x-lock(X)	s-lock(Y)
read(X)	read(Y)
X = X + 500	x-lock(X)
write(X)	unlock(Y)
x-lock(Y)	read(X)
unlock(X)	X = X + Y
Y = Y + 500	unlock(X)
unlock(Y)	

- ① T_1 은 성공적으로 완료되지만 T_2 는 교착 상태에 빠진다.
- ② T₁은 교착 상태에 빠지지만 T₂는 성공적으로 완료된다.
- ③ T₁과 T₂가 모두 성공적으로 완료된다.
- ④ T₁과 T₂가 모두 교착 상태에 빠진다.
- 문 17. 빅데이터(big data)에 대한 설명으로 옳지 않은 것은?
 - ① 디지털 환경에서 생성되는 데이터로 규모가 방대하고, 정형, 반정형, 비정형 등 다양한 형태의 데이터를 포함한다.
 - ② NoSQL 시스템은 반구조적이고 자기 기술적인 데이터를 허용하므로 대개는 스키마를 요구하지 않는다.
 - ③ NoSQL의 키-값(key-value) 데이터 모델은 키와 값의 쌍으로 저장하며, 값은 이미지나 동영상 등 다양한 형태의 데이터가 될 수 있다.
 - ④ 빅데이터 분석 과정에서 추출된 정보를 시각화하는 기술로 Hadoop의 맵 리듀스(MapReduce)를 사용한다.
- 문 18. XML(eXtensible Markup Language)에 대한 설명으로 옳은 것은?
 - ① DTD(Document Type Definition) 문서는 XML 문서를 작성하기 위한 구문 규칙과 동일한 방식으로 작성된다.
 - ② DTD(Document Type Definition) 문서는 XML 스키마 문서와 달리 네임스페이스(namespace)를 지원한다.
 - ③ XQuery 질의문은 FOR, LET, WHERE, RETURN 절로 구성되고 둘 이상의 변수에 대한 조인연산을 작성할 수 있다.
 - ④ XML 스키마는 XML 문서의 요소 및 속성을 데이터베이스 데이블에 맵핑(mapping)할 때 문자열 데이터를 제외한 다른 데이터형(data type)을 지정할 수 없다.

문 19. 3개의 트랜잭션 T₁, T₂, T₃에 대하여, 다음과 같은 스케줄의 뷰(view)/충돌(conflict) 직렬 가능성(serializability)을 설명한 것으로 옳은 것은?

시간	T_1	T_2	T_3
	read(X)		
		write(X)	
	write(X)		
*			write(X)

- ① 뷰 직렬 가능하며, 동시에 충돌 직렬 가능하다.
- ② 뷰 직렬 가능하지 않으며, 충돌 직렬 가능하지 않다.
- ③ 뷰 직렬 가능하지만, 충돌 직렬 가능하지 않다.
- ④ 뷰 직렬 가능하지 않지만, 충돌 직렬 가능하다.
- 문 20. 관계형 데이터베이스 역정규화(denormalization)에 대한 설명으로 옳지 않은 것만을 모두 고르면?
 - □. 릴레이션들은 역정규화한 후 정규형 수준이 높아진다.
 - 니. 데이터베이스의 데이터 무결성을 강화할 목적으로 개발되었다.
 - 다. 릴레이션들의 데이터 중복을 줄임으로써 데이터베이스의크기를 감소시킨다.
 - 리. 둘 이상의 릴레이션들에 대하여 조인한 결과를 빈번하게이용하는 경우, 역정규화 함으로써 질의응답 시간이 단축될 수 있다.
 - ① 7, ∟, ⊏
 - ② 기, ㄴ, ㄹ
 - ③ ㄴ, ㄷ, ㄹ
 - ④ 7, L, E, 已