TT = Test day treated group value

[0122] 2. LDL and VLDL cholesterol levels were calculated according to the formula:

LDL cholesterol in mg/dl = [Total cholesterol - HDL cholesterol - $\frac{\text{Triglyceride}}{5}$] mg/dl

VLDL cholesterol in mg/dl = [Total cholesterol - HDL cholesterol - LDL cholesterol] mg/dl.

- [0123] Single dose oral pharmacokinetic studies
- [0124] Male Wistar rats (220 250 gm) were used in the experiments. The animals were maintained under standard laboratory conditions and had free access to feed and water *ad libitum*. Before experimentation animals were fasted overnight (~15 h) during which they had free access to water *ad libitum*.
- [0125] An amount equivalent to 30 mg of drug was weighed accurately and transferred into a clean mortar and triturated to obtain a fine powder. To this 0.5 ml of 0.25% sodium carboxy methyl cellulose (sodium CMC) was added to obtain a paste. To the obtained paste remaining 2.5 ml of sodium CMC was added to make up the volume to 3 ml. Based on the animal weight appropriate volume (body weight x 3) of the prepared suspension was administered through oral gavage.
- [0126] After dosing, at designated time points (0.5, 1, 2, 3, 5, 8, 12 and 24 h) 200 μ l of blood was collected from retro orbital plexus into 0.5 ml eppendorff tubes containing EDTA (10 μ l of 200 mg/ml solution in Milli Q water). Blood was centrifuged at 12,800 rpm for 5 min and obtained plasma and stored at -20° C till further analysis.
- [0127] 100μl plasma was transferred into a clean and dry centrifuge tube. To this internal standard (10 μl of 100 μg/ml) was added and extracted with 2 ml of extraction recovery solvent. The contents were vortexed for 2 min, followed by centrifugation for 10 min at 2800 rpm. Clear organic layer (2 x 0.75 ml) was separated and dried under nitrogen gas at 50°C. The residue was reconstituted with 150 μl of mobile phase and vortexed for 20 sec, from this 50 μl was injected onto HPLC column.
- [0128] Pharmacokinetic parameters were calculated by non-compartmental model analysis. The peak plasma concentration (C_{max}) and the corresponding time (T_{max}) were

directly obtained from the raw data. The area under the plasma concentration versus time curve up to the last quantifiable time point, $AUC_{(0-t)}$ was obtained by the linear and log–linear trapezoidal summation. The $AUC_{(0-t)}$ extrapolated to infinity (i.e., $AUC_{(0-\alpha)}$) by adding the quotient of C_{last}/K_{el} , where C_{last} represents the last measurable time concentration and K_{el} represents the apparent terminal rate constant. K_{el} was calculated by the linear regression of the log-transformed concentrations of the drug in the terminal phase. The half-life of the terminal elimination phase was obtained using the relationship $t_{1/2} = 0.693/K_{el}$.

Example	AUC (0-~)	AUC (0-t)	C _{max}	T _{max} (h)	K _{el} (h ⁻¹)	T _{1/2} (h)
No.	(µg.hr/ml)	(µg.hr/ml)	(µg.hr/ml)			
2	319.93 ±	315.05 ±	77.23 ±	0.63 ±	0.17 ±	4.25 ±
	36.19	34.73	24.07	0.25	0.03	0.86