CMPT 379 Compilers

Anoop Sarkar http://www.cs.sfu.ca/~anoop

Parsing - Roadmap

- Parser:
 - decision procedure: builds a parse tree
- Top-down vs. bottom-up
- LL(1) Deterministic Parsing
 - recursive-descent
 - table-driven
- LR(k) Deterministic Parsing
 - LR(0), SLR(1), LR(1), LALR(1)
- Parsing arbitrary CFGs Polynomial time parsing

Top-Down vs. Bottom Up

Grammar: $S \rightarrow A B$ Input String: ccbca $A \rightarrow c \mid \epsilon$ $B \rightarrow cbB \mid ca$

Top-Down/le	eftmost	Bottom-Up/rightmost				
$S \Rightarrow AB$	S→AB	ccbca ← Acbca	A→c			
⇒cB	A→c	← AcbB	B→ca			
⇒ ccbB	B→cbB	←AB	B→cbB			
⇒ ccbca	B→ca	⇐ S	S→AB			

3

Top-Down: Backtracking

Backtracking

 $S \rightarrow cAd \mid c$ $A \rightarrow a \mid ad$

Input: cad

 $S \rightarrow cAd \mid c$ $A \rightarrow ad \mid a$

S

Failure

5

d

For some grammars, rule ordering is crucial for backtracking parsers, e.g $S \rightarrow aSa$, $S \rightarrow aa$

Predictive Top-Down Parser

- Knows which production to choose based on single lookahead symbol
- Need LL(1) grammars

First L: reads input Left to right
Second L: produce Leftmost derivation
1: one symbol of lookahead

- Can't have left-recursion
- Must be left-factored (no left-factors)
- Not all grammars can be made LL(1)

Transition Diagram

 $S \rightarrow cAa$

S:

 $\mathsf{A} \to \mathsf{c} \mathsf{B} \mid \mathsf{B}$

 $B \rightarrow bcB \mid \epsilon \quad B$:

Leftmost derivation for id + id * id

$$E \rightarrow E + E$$
 $E \Rightarrow E + E$ $E \rightarrow E * E$ $\Rightarrow id + E$ $E \rightarrow (E)$ $\Rightarrow id + E * E$ $E \rightarrow -E$ $\Rightarrow id + id * E$ $E \rightarrow id$ $\Rightarrow id + id * id$

$$E \Rightarrow^*_{lm} id + E \setminus^* E$$

6

Predictive Parsing Table

1	Productions				
1	T → F T '				
2	Τ' → ε				
3	T' → * F T'				
4	F → id				
5	$\mathbf{F} \rightarrow (\mathbf{T})$				

	*	()	id	\$
T		T → F T'		T → F T'	
T'	T' → * F T'		Τ' → ε		Τ' → ε
F		$\mathbf{F} \rightarrow (\mathbf{T})$		F → id	

Trace "(id)*id"

		*	()	id	\$
	T		T → FT'		T → FT'	
,,	T'	T' → *FT'		T' → ε		Τ' → ε
	F		$\mathbf{F} \rightarrow (\mathbf{T})$		F → id	

Stack	Input	Output
\$T'	*id\$	
\$T'F*	*id\$	T' → * F T'
\$T'F	id\$	
\$T'id	id\$	F → id
\$T'	\$	
\$	\$	Τ' → ε

11

Trace "(id)*id"

	*	()	id	\$
т		T → FT'		T → FT'	
1		1 - F1		1 - F1	
T'	T' → *FT'		T' → ε		T' → ε
F		$\mathbf{F} \rightarrow (\mathbf{T})$		F → id	

Stack	Input	Output
\$T	(id)*id\$	
\$T'F	(id)*id\$	T → F T'
\$T')T((id)*id\$	$\mathbf{F} \rightarrow (\mathbf{T})$
\$T')T	id)*id\$	
\$T')T'F	id)*id\$	T → F T'
\$T')T'id	id)*id\$	F → id
\$T')T')*id\$	
\$T'))*id\$	Τ' → ε

Table-Driven Parsing

```
stack.push(\$); stack.push(S); \\ a = input.read(); \\ \textbf{forever do begin} \\ X = stack.peek(); \\ \textbf{if } X = a \textbf{ and } a = \$ \textbf{ then } return SUCCESS; \\ \textbf{elsif } X = a \textbf{ and } a != \$ \textbf{ then} \\ pop X; a = input.read(); \\ \textbf{elsif } X != a \textbf{ and } X \in \textbf{N} \textbf{ and } M[X,a] \textbf{ then} \\ pop X; push right-hand side of M[X,a]; \\ \textbf{else } ERROR! \\ \textbf{end}
```

Predictive Parsing table

- Given a grammar produce the predictive parsing table
- We need to to know for all rules $A \rightarrow \alpha \mid \beta$ the lookahead symbol
- Based on the lookahead symbol the table can be used to pick which rule to push onto the stack
- This can be done using two sets: FIRST and FOLLOW

13

FIRST and FOLLOW

```
a \in \text{FIRST}(\alpha) \text{ if } \alpha \Rightarrow^* a\beta

if \alpha \Rightarrow^* \epsilon \text{ then } \epsilon \in \text{FIRST}(\alpha)

a \in \text{FOLLOW}(A) \text{ if } S \Rightarrow^* \alpha A a\beta

a \in \text{FOLLOW}(A) \text{ if } S \Rightarrow^* \alpha A \gamma a\beta

and \gamma \Rightarrow^* \epsilon
```

Conditions for LL(1)

- Necessary conditions:
 - no ambiguity
 - no left recursion
 - Left factored grammar
- A grammar G is LL(1) iff whenever $A \rightarrow \alpha \mid \beta$
 - 1. $First(\alpha) \cap First(\beta) = \emptyset$
 - 2. $\alpha \Rightarrow^* \epsilon$ implies !($\beta \Rightarrow^* \epsilon$)
 - 3. $\alpha \Rightarrow * \epsilon \text{ implies First}(\beta) \cap \text{Follow}(A) = \emptyset$

15

ComputeFirst(α : string of symbols)

```
\label{eq:continuous_system} \begin{split} & \text{// assume } \alpha = X_1 \ X_2 \ X_3 \ \dots \ X_n \\ & \text{if } X_1 \in \textbf{T then } \text{First}[\alpha] := \{X_1\} \\ & \text{else begin} \\ & \text{i:=1; First}[\alpha] := \text{ComputeFirst}(X_1) \backslash \{\epsilon\}; \\ & \text{while } X_i \Rightarrow^* \epsilon \ \text{do begin} \\ & \text{if } i < n \ \text{then} \\ & \text{First}[\alpha] := \text{First}[\alpha] \ \cup \ \text{ComputeFirst}(X_{i+1}) \backslash \{\epsilon\}; \\ & \text{else} \\ & \text{First}[\alpha] := \text{First}[\alpha] \ \cup \ \{\epsilon\}; \\ & \text{i } := \text{i } + 1; \\ & \text{end} \\ & \text{end} \\ \end{split}
```

ComputeFirst(α : string of symbols)

ComputeFirst; modified

17

18

```
foreach X \in T do First[X] := X;

foreach p \in P : X \rightarrow \epsilon do First[X] := \{\epsilon\};

repeat foreach X \in N, p : X \rightarrow Y_1 Y_2 Y_3 ... Y_n do

begin i := 1;

while Y_i \Rightarrow^* \epsilon and i <= n do begin

First[X] := First[X] \cup First[Y_i] \setminus \{\epsilon\};

i := i+1;

end

if i = n+1 then First[X] := First[X] \cup \{\epsilon\};

else First[X] := First[X] \cup First[Y_i];

until no change in First[X] for any X;
```

ComputeFirst; modified

```
foreach X \in T do First[X] := X;

foreach p \in P : X \to \epsilon do First[X] := \{\epsilon\};

repeat foreach X \in N, p : X \to Y_1 Y_2 Y_3 ... Y_n do

begin i:=1;

while Y_i \Rightarrow^*

First[X] := Computes a fixed point for FIRST[X]

i := i+1; for all non-terminals X in the grammar.

end But this algorithm is very inefficient.

if i = n+1 then First[X] := First[X] \cup \{\epsilon\};

else First[X] := First[X] \cup First[Y_i];

until no change in First[X] for any X;
```

ComputeFollow

```
\begin{aligned} & Follow(S) \coloneqq \{\$\}; \\ & \textbf{repeat} \\ & \textbf{foreach } p \in \textbf{P do} \\ & \textbf{case } p = A \rightarrow \alpha B\beta \textbf{ begin} \\ & Follow[B] \coloneqq Follow[B] \cup ComputeFirst(\beta) \setminus \{\pmb{\epsilon}\}; \\ & \textbf{if } \epsilon \in First(\beta) \textbf{ then} \\ & Follow[B] \coloneqq Follow[B] \cup Follow[A]; \\ & \textbf{end} \\ & \textbf{case } p = A \rightarrow \alpha B \\ & Follow[B] \coloneqq Follow[B] \cup Follow[A]; \\ & \textbf{until } no \ change \ in \ any \ Follow[N] \end{aligned}
```

Example First/Follow

$$S \rightarrow AB$$

 $A \rightarrow c \mid \epsilon$ Not an LL(1) grammar
 $B \rightarrow cbB \mid ca$
First(A) = {c, \epsilon} Follow(A) = {c}
First(B) = {c} Follow(A) \cap First(cbB) = First(c) = {c}
First(ca) = {c} Follow(B) = {\$}
First(S) = {c} Follow(S) = {\$}

ComputeFirst on Left-recursive Grammars

- ComputeFirst as defined earlier loops on leftrecursive grammars
- Here is an alternative algorithm for ComputeFirst
 - 1. Compute non-recursive cases of FIRST
 - 2. Create a graph of recursive cases where FIRST of a non-terminal depends on another non-terminal
 - 3. Compute Strongly Connected Components (SCC)
 - 4. Compute FIRST starting from root of SCC to avoid cycles

22

 Unlike top-down LL parsing, bottom-up LR parsing allows left-recursive grammars, so this algorithm is useful for LR parsing

ComputeFirst on Left-recursive Grammars

Converting to LL(1)

Verifying LL(1) using F/F sets

$$S \rightarrow cAa$$

 $A \rightarrow cB \mid B$
 $B \rightarrow bcB \mid \epsilon$
First(A) = {b, c, \varepsilon} Follow(A) = {a}
First(B) = {b, \varepsilon} Follow(B) = {a}
First(S) = {c} Follow(S) = {\$}

Revisit conditions for LL(1)

- A grammar G is LL(1) iff whenever $A \rightarrow \alpha \mid \beta$
 - 1. $First(\alpha) \cap First(\beta) = \emptyset$
 - 2. $\alpha \Rightarrow^* \epsilon \text{ implies } !(\beta \Rightarrow^* \epsilon)$
 - 3. $\alpha \Rightarrow * \epsilon \text{ implies First}(\beta) \cap \text{Follow}(A) = \emptyset$
- No more than one entry per table field

25

Building the Parse Table

- Compute First and Follow sets
- For each production $A \rightarrow \alpha$
 - foreach a ∈ First(α) add A \rightarrow α to M[A,a]
 - If ε ∈ First(α) add A → α to M[A,b] for each b in Follow(A)
 - If ε ∈ First(α) add A → α to M[A,\$] if \$ ∈ Follow(α)
 - All undefined entries are errors

Error Handling

- Reporting & Recovery
 - Report as soon as possible
 - Suitable error messages
 - Resume after error
 - Avoid cascading errors
- Phrase-level vs. Panic-mode recovery

27

Panic-Mode Recovery

- Skip tokens until synchronizing set is seen
 - Follow(A)
 - · garbage or missing things after
 - Higher-level start symbols
 - First(A)
 - · garbage before
 - Epsilon
 - · if nullable
 - Pop/Insert terminal
 - · "auto-insert"
- Add "synch" actions to table

Summary so far

29

30

- LL(1) grammars
 - necessary conditions
 - · No left recursion
 - · Left-factored
- Not all languages can be generated by LL(1) grammar
- LL(1) grammars can be parsed by simple predictive recursive-descent parser
 - Alternative: table-driven top-down parser

Bottom-up parsing overview

- Start from terminal symbols, search for a path to the start symbol
- Apply shift and reduce actions: postpone decisions
- LR parsing:
 - L: left to right parsing
 - R: rightmost derivation (in reverse or bottom-up)
- $LR(0) \rightarrow SLR(1) \rightarrow LR(1) \rightarrow LALR(1)$
 - 0 or 1 or *k* lookahead symbols

31

32

Actions in Shift-Reduce Parsing

- Shift
 - add terminal to parse stack, advance input
- Reduce
 - If αw on stack, and A→ w, and there is a β ∈ T* such that $S \Rightarrow^*_{rm} \alpha A \beta \Rightarrow_{rm} \alpha w \beta$ then we can *prune the handle* w; we reduce αw to αA on the stack
 - αw is a *viable prefix*
- Error
- Accept

Questions

- When to shift/reduce?
 - What are valid handles?
 - Ambiguity: Shift/reduce conflict
- If reducing, using which production?
 - Ambiguity: Reduce/reduce conflict

LR Parsing

- Table-based parser
 - Creates rightmost derivation (in reverse)
 - For "less massaged" grammars than LL(1)

35

- Data structures:
 - Stack of states/symbols {s}
 - Action table: action[s, a]; $a \in T$
 - Goto table: $goto[s, X]; X \in \mathbb{N}$

Rightmost derivation for id + id * id

$$E \rightarrow E + E \qquad E \Rightarrow E * E$$

$$E \rightarrow E * E \qquad \Rightarrow E * id$$

$$E \rightarrow (E) \qquad \Rightarrow E + E * id$$

$$E \rightarrow -E \qquad \Rightarrow E + id * id \qquad \text{reduce with } E \rightarrow id$$

$$E \rightarrow id \qquad \Rightarrow id + id * id \qquad \text{shift}$$

$$E \Rightarrow^*_{rm} E + E \setminus^* id$$

Productions $T \rightarrow F$ Action/Goto Table 2 T → T*F $3 \text{ F} \rightarrow \text{id}$ id F $\mathbf{F} \rightarrow (\mathbf{T})$ **S**5 **S8** 1 R1 **R**1 **R**1 **R**1 R1 2 **S**3 Acc! **S**5 **S8** 3 4 R2 R2 4 R2 R2 R2 **S**5 5 **S**8 6 1 **S**7 6 **S**3 7 R4 R4 R4 R4 R4 8 R3 R3 R3 R3 R3

34

Trace "(id)*id"

Stack	Input	Action
0	(id) * id \$	Shift S5
0 5	id)*id\$	Shift S8
058) * id \$	Reduce 3 F→id,
		pop 8, goto [5,F]=1
051) * id \$	Reduce 1 $T \rightarrow F$,
		pop 1, goto [5,T]=6
0 5 6) * id \$	Shift S7
0567	* id \$	Reduce 4 $F \rightarrow (T)$,
		pop 7 6 5, goto [0,F]=1
0 1	* id \$	Reduce 1 T \rightarrow F
		pop 1, goto [0,T]=2

Trace "(id)*id"

Stack	Input	Action
0 1	* id \$	Reduce 1 T→F,
		pop 1, goto [0,T]=2
0 2	* id \$	Shift S3
023	id \$	Shift S8
0238	\$	Reduce 3 F→id,
		pop 8, goto [3,F]=4
0234	\$	Reduce 2 T→T * F
		pop 4 3 2, goto [0,T]=2
0 2	\$	Accept

Pro	ductions						*	()	id	\$	T	F
1 T	→ F					0		S5		S8		2	1
2 T	→ T*F	"(id	l)*id	"		1	R1	R1	R1	R1	R1		
3 F	→ id	(10	, Iu			2	S3				Α		
4 F	→ (T)	: I	[nput		A	3		S5		S8			4
7 1	10		(id)	* id \$	Ç1	4	R2	R2	R2	R2	R2		
	l "					3		S5		S8		6	1
	0 5			* id \$		0	S3		S7				
	058)	* id \$	K	7	R4	R4	R4	R4	R4		
					po	8	R3	R3	R3	R3	R3		
	051)	* id \$	Reduce $1 T \rightarrow F$,								
					po	p 1	, got	to [5	5,T]:	=6			
	056)	* id \$	Shift S7								
	0567				Reduce 4 $F \rightarrow (T)$,								
				•					` ′	,	=1		
	01	2 6; *			pop 7 6 5, goto [0,F]=1 \$ Reduce 1 T → F								
	10.1		iu 5						•				
					po	р 1,	, got	ιο [(,1]:	=2			

]	Produc	ctions	1				*	()	id	\$	T	F
1	T→	F				0		S5		S8		2	1
2	T→	T*F	۲۰٬۱	d)*id"		1	R1	R1	R1	R1	R1		
3	F →	id	(1)	a) la		2	S3				A		
4	F→					3		S5		S8			4
_	-	Stack		Input	Actio	4	R2	R2	R2	R2	R2		
				*		3		S5		S8		6	1
		0 1		* id \$	Reduc	6	S3		S7				
					pop 1,		R4	R4	R4	R4	R4		
		0 2		* id \$	Shift S	8	R3	R3	R3	R3	R3		
		023		id \$	Shift S	8							
		023	8	\$	Reduce 3 F→id,								
					pop 8,	got	о [3	.Fl=	-4				
		023	234 \$										
		" - "	-	*						-2			
		0 2		\$	pop 4 3 2, goto [0,T]=2 Accept								
		U 2		P	Accep	ι 							

38

Tracing LR: **action**[*s*, *a*]

- case **shift** *u*:
 - push state *u*
 - read new a
- case **reduce** *r*:
 - lookup production $r: X \rightarrow Y_1...Y_k$;
 - pop k states, find state u
 - − push **goto**[*u*, *X*]
- case accept: done
- no entry in action table: error

Configuration set

- Each set is a parser state
- Consider

$$T \rightarrow T * \bullet F$$

$$F \rightarrow \bullet (T)$$

$$F \rightarrow \bullet id$$

• Like NFA-to-DFA conversion

Closure

Closure property:

- If $T \to X_1 \dots X_i$ $X_{i+1} \dots X_n$ is in set, and X_{i+1} is a nonterminal, then $X_{i+1} \to Y_1 \dots Y_m$ is in the set as well for all productions $X_{i+1} \to Y_1 \dots Y_m$
- Compute as fixed point

43

Starting Configuration

- Augment Grammar with S'
- Add production $S' \rightarrow S$
- Initial configuration set is closure(S' → • S)

Example: $I = closure(S' \rightarrow \bullet T)$

$$S' \rightarrow {}^{\bullet}T$$
 $T \rightarrow {}^{\bullet}T * F$
 $T \rightarrow {}^{\bullet}F$
 $F \rightarrow {}^{\bullet}id$
 $F \rightarrow {}^{\bullet}(T)$

$$S' \rightarrow T$$
 $T \rightarrow F \mid T * F$
 $F \rightarrow id \mid (T)$

45

Successor(I, X)

Informally: "move by symbol X"

- 1. move dot to the right in all items where dot is before X
- 2. remove all other items (viable prefixes only!)
- 3. compute closure

Successor Example

$$I = \{S' \to \bullet T, \\ T \to \bullet F, \\ T \to \bullet T * F, \\ F \to \bullet \text{ id}, \\ F \to \bullet (T) \}$$
Compute **Successor**(I, "(")
$$\{F \to (\bullet T), T \to \bullet F, T \to \bullet T * F, \\ F \to \bullet \text{ id}, F \to \bullet (T) \}$$

47

Sets-of-Items Construction

Family of configuration sets $\begin{aligned} & \textbf{function} \text{ items}(G') \\ & C = \{ \text{ closure}(\{S' \rightarrow \bullet S\}) \}; \\ & \textbf{do foreach } I \in C \textbf{ do} \\ & \textbf{ foreach } X \in (\textbf{N} \cup \textbf{T}) \textbf{ do} \\ & C = C \cup \{ \textbf{ Successor}(I, X) \}; \\ & \textbf{while } C \text{ changes}; \end{aligned}$

LR(0) Construction

- 1. Construct $F = \{I_0, I_1, ... I_n\}$
- 2. a) if $\{A \rightarrow \alpha \bullet\} \in I_i$ and A != Sthen action[i, _] := reduce $A \rightarrow \alpha$
 - b) if $\{S' \rightarrow S^{\bullet}\} \in I_i$ then action[i,\$] := accept
 - c) if $\{A \rightarrow \alpha \bullet a\beta\} \in I_i$ and $Successor(I_i,a) = I_j$ then action[i,a] := shift j
- 3. if $Successor(I_i,A) = I_j$ then goto[i,A] := j

51

LR(0) Construction (cont'd)

- 4. All entries not defined are errors
- 5. Make sure I_0 is the initial state
- Note: LR(0) always reduces if $\{A \rightarrow \alpha^{\bullet}\} \in I_i$, no lookahead
- Shift and reduce items can't be in the same configuration set
 - Accepting state doesn't count as reduce item
- At most one reduce item per set

Set-of-items with Epsilon rules

SLR(1): Simple LR(1) Parsing

LR(0) conflicts:

$$S' \rightarrow F$$

$$F \rightarrow id \mid (T)$$

$$F \rightarrow id = T;$$

$$T \rightarrow T * F$$

$$T \rightarrow id$$

$$S: F \rightarrow id \bullet$$

$$F \rightarrow id \bullet = T$$

$$Shift/reduce conflict$$

$$2: F \rightarrow id \bullet$$

$$T \rightarrow id \bullet$$

$$Reduce/Reduce conflict$$

Need more lookahead: SLR(1)

54

SLR(1) Construction

```
1. Construct F = \{I_0, I_1, ... I_n\}

2. a) if \{A \rightarrow \alpha \bullet\} \in I_i and A := S' then action[i, b] := reduce A \rightarrow \alpha for all b \in Follow(A)

b) if \{S' \rightarrow S \bullet\} \in I_i then action[i, $\$] := accept

c) if \{A \rightarrow \alpha \bullet a\beta\} \in I_i and Successor(I_i, a) = I_j then action[i, a] := shift j

3. if Successor(I_i, A) = I_i then goto[i, A] := j
```

SLR(1) Construction (cont'd)

- 4. All entries not defined are errors
- 5. Make sure I_0 is the initial state
- Note: SLR(1) only reduces {A → α•} if lookahead in Follow(A)
- Shift and reduce items or more than one reduce item can be in the same configuration set as long as lookaheads are disjoint

57

SLR(1) Conditions

- A grammar is SLR(1) if for each configuration set:
 - For any item $\{A \rightarrow \alpha \bullet x \beta : x \in T\}$ there is no $\{B \rightarrow \gamma \bullet : x \in Follow(B)\}$
 - For any two items $\{A \rightarrow \alpha^{\bullet}\}\$ and $\{B \rightarrow \beta^{\bullet}\}\$ Follow(A) ∩ Follow(B) = Ø

LR(0) Grammars \subseteq SLR(1) Grammars

Is this grammar SLR(1)?

SLR limitation: lack of context

Solution: Canonical LR(1)

- Extend definition of configuration
 - Remember lookahead
- New closure method
- Extend definition of Successor

61

LR(1) Configurations

• $[A \rightarrow \alpha \bullet \beta, a]$ for $a \in T$ is valid for a viable prefix $\delta \alpha$ if there is a rightmost derivation $S \Rightarrow^* \delta A \eta \Rightarrow^* \delta \alpha \beta \eta$ and $(\eta = a\gamma)$ or $(\eta = \epsilon \text{ and } a = \$)$

• Notation: $[A \rightarrow \alpha \cdot \beta, a/b/c]$

LR(1) Configurations

$$S \rightarrow B B$$

 $B \rightarrow a B \mid b$

- $S \Rightarrow^*_{rm} aaBab \Rightarrow_{rm} aaaBab$
- Item $[B \rightarrow a \bullet B, a]$ is valid for viable prefix aaa
- $S \Rightarrow^*_{rm} BaB \Rightarrow_{rm} BaaB$
- Also, item $[B \rightarrow a \bullet B, \$]$ is valid for viable prefix *Baa*

63

LR(1) Closure

Closure property:

- If $[A \rightarrow \alpha \bullet B\beta, a]$ is in set, then $[B \rightarrow \bullet \gamma, b]$ is in set if $b \in First(\beta a)$
- Compute as fixed point
- Only include contextually valid lookaheads to guide reducing to B

Starting Configuration

- Augment Grammar with S' just like for LR(0), SLR(1)
- Initial configuration set is

$$I = closure([S' \rightarrow \bullet S, \$])$$

LR(1) Successor(C, X)

- Let $I = [A \rightarrow \alpha \bullet B\beta, a]$ or $[A \rightarrow \alpha \bullet b\beta, a]$
- Successor(I, B) = closure([A $\rightarrow \alpha$ B • β , a])
- Successor(I, b) = closure([A $\rightarrow \alpha b \cdot \beta, a]$)

Example: closure($[S' \rightarrow \bullet S, \$]$)

$$[S' \rightarrow \bullet S, \$]$$

$$[S \rightarrow \bullet L = R, \$]$$

$$[S \rightarrow \bullet R, \$]$$

$$[L \rightarrow \bullet * R, =]$$

$$[L \rightarrow \bullet id, =]$$

$$[R \rightarrow \bullet L, \$]$$

$$[L \rightarrow \bullet * R, \$]$$

$$[L \rightarrow \bullet id, \$]$$

$$S' \rightarrow S$$

$$S \rightarrow L = R \mid R$$

$$L \rightarrow *R \mid id$$

$$R \rightarrow L$$

LR(1) Example

67

66

LR(1) Example (contd)

1	Productions
1	$S \rightarrow L = R$
2	$S \rightarrow R$
3	L → * R
4	L → id
5	$R \rightarrow L$

69

	id	=	*	\$	S	L	R
0	S 1		S10		7	2	13
1		R4		R4			
2		S 3		R5			
3	S4		S8			5	6
4				R4			
5				R5			
6				R1			
7				Acc			
8	S4					5	9
9				R3			
10	S 1		S10			11	12
11		R5		R5			
12		R3		R3			
13				R2			

LR(1) Example (contd)

$0: S' \rightarrow \bullet S, \$$ 13: $S \rightarrow R^{\bullet}$, \$ $S \rightarrow \bullet L = R, \$$ $S \rightarrow \bullet R, \$$ 1: L \rightarrow id \bullet , =/\$ $L \rightarrow \bullet * R, =/$$ id $L \rightarrow \bullet id, =/$ \$ $10: L \rightarrow * \bullet R, =/$$ $R \rightarrow \bullet L, \$$ 11: $R \rightarrow L \bullet, =/\$$ $R \rightarrow \bullet L, =/$$ $L \rightarrow *R, =/$$ $R \searrow 12: L \rightarrow *R \bullet, =/$$ $L \rightarrow \bullet id, =/$ \$ 70

LR(1) Construction

- 1. Construct $F = \{I_0, I_1, ... I_n\}$
- 2. a) if $[A \rightarrow \alpha^{\bullet}, a] \in I_i$ and A != S'then action[i, a] := reduce $A \rightarrow \alpha$
 - b) if $[S' \rightarrow S^{\bullet}, \$] \in I_i$ then action[i, \$] := accept
 - c) if $[A \rightarrow \alpha \bullet a\beta, b] \in I_i$ and $Successor(I_i, a)=I_j$ then action[i, a] := shift j
- 3. if $Successor(I_i, A) = I_j$ then goto[i, A] := j

LR(1) Construction (cont'd)

- 4. All entries not defined are errors
- 5. Make sure I_0 is the initial state
- Note: LR(1) only reduces using $A \rightarrow \alpha$ for $[A \rightarrow \alpha \bullet, a]$ if a follows
- LR(1) states remember context by virtue of lookahead
- Possibly many states!
 - LALR(1) combines some states

73

LR(1) Conditions

- A grammar is LR(1) if for each configuration set holds:
 - For any item $[A \rightarrow \alpha \bullet x \beta, a]$ with $x \in T$ there is no $[B \rightarrow \gamma \bullet, x]$
 - For any two complete items $[A \rightarrow \gamma^{\bullet}, a]$ and $[B \rightarrow \beta^{\bullet}, b]$ it follows a and a != b.
- Grammars:
 - $-LR(0) \subset SLR(1) \subset LR(1) \subset LR(k)$
- Languages expressible by grammars:
 - $-LR(0) \subset SLR(1) \subset LR(1) = LR(k)$

Canonical LR(1) Recap

- LR(1) uses left context, current handle and lookahead to decide when to reduce or shift
- Most powerful parser so far
- LALR(1) is practical simplification with fewer states

75

Merging States in LALR(1)

• Same Core Set

• Different lookaheads

R/R conflicts when merging

 If R/R conflicts are introduced, grammar is not LALR(1)!

77

LALR(1)

- LALR(1) Condition:
 - Merging in this way does not introduce reduce/reduce conflicts
 - Shift/reduce can't be introduced
- Merging brute force or step-by-step
- More compact than canonical LR, like SLR(1)
- More powerful than SLR(1)
 - Not always merge to full Follow Set

S/R & ambiguous grammars

- Lx(k) Grammar vs. Language
 - Grammar is Lx(k) if it can be parsed by Lx(k) method according to criteria that is specific to the method.
 - A Lx(k) grammar may or may not exist for a language.
- Even if a given grammar is not LR(k), shift/reduce parser can *sometimes* handle them by accounting for ambiguities
 - Example: 'dangling' else
 - · Preferring shift to reduce means matching inner 'if'

79

Dangling 'else'

- 1. $S \rightarrow \text{if E then } S$
- 2. $S \rightarrow \text{if E then S else S}$
- Viable prefix "if E then if E then S"
 - Then read else
- Shift "else" (means go for 2)
- Reduce (reduce using production #1)
- NB: dangling else as written above is ambiguous
 - $-\,$ NB: Ambiguity can be resolved, but there's still no LR(k) grammar

Precedence & Associativity

Precedence Relations

- Let $A \rightarrow w$ be a rule in the grammar
- And b is a terminal
- In some state q of the LR(1) parser there is a shift-reduce conflict:
 - either reduce with $A \rightarrow w$ or shift on b
- Write down a rule, either:

$$A \rightarrow w, < b \text{ or } A \rightarrow w, > b$$

Precedence Relations

- A \rightarrow w, < b means rule has less precedence and so we shift if we see b in the lookahead
- A \rightarrow w, > b means rule has higher precedence and so we reduce if we see b in the lookahead
- If there are multiple terminals with shiftreduce conflicts, then we list them all: $A \rightarrow w, > b, < c, > d$

83

Precedence Relations

- Consider the grammar $E \rightarrow E + E \mid E * E \mid (E) \mid a$
- Assume left-association so that E+E+E is interpreted as (E+E)+E
- Assume multiplication has higher precedence than addition
- Then we can write precedence rules/relns: $E \rightarrow E + E, >+, <*$

$$E \rightarrow E + E, >+, <^*$$

 $E \rightarrow E * E, >+, >^*$

Precedence & Associativity

Conflicts revisited (cont'd)

- Can the grammar be rearranged so that the conflict disappears?
 - No?
 - Is the conflict S/R and does shift-to-reduce preference yield desired result?
 - Yes: Done. (Example: dangling else)
 - · Else: Bad luck
 - Yes: Is it worth it?
 - · Yes, resolve conflict.
 - No: live with default or specified conflict resolution (precedence, associativity)

87

Handling S/R & R/R Conflicts

- Have a conflict?
 - No? Done, grammar is compliant.
- Already using most powerful parser available?
 - No? Upgrade and goto 1
- Can the grammar be rearranged so that the conflict disappears?
 - While preserving the language!

Compiler (parser) compilers

- Rather than build a parser for a particular grammar (e.g. recursive descent), write down a grammar as a text file
- Run through a compiler compiler which produces a parser for that grammar
- The parser is a program that can be compiled and accepts input strings and produces user-defined output

Compiler (parser) compilers

- For LR parsing, all it needs to do is produce action/goto table
 - Yacc (yet another compiler compiler) was distributed with Unix, the most popular tool. Uses LALR(1).
 - Many variants of yacc exist for many languages
- As we will see later, translation of the parse tree into machine code (or anything else) can also be written down with the grammar
- Handling errors and interaction with the lexical analyzer have to be precisely defined

89

Parsing CFGs

- Consider the problem of parsing with arbitrary CFGs
- For any input string, the parser has to produce a parse tree
- The simpler problem: print **yes** if the input string is generated by the grammar, print **no** otherwise
- This problem is called *recognition*

CKY Recognition Algorithm

- The Cocke-Kasami-Younger algorithm
- As we shall see it runs in time that is polynomial in the size of the input
- It takes space polynomial in the size of the input
- Remarkable fact: it can find all possible parse trees (exponentially many) in polynomial time

Chomsky Normal Form

- Before we can see how CKY works, we need to convert the input CFG into Chomsky Normal Form
- CNF means that the input CFG G is converted to a new CFG G' in which all rules are of the form:

 $A \rightarrow B C$

 $A \rightarrow a$

91

Epsilon Removal

• First step, remove epsilon rules

$$A \rightarrow B C$$

$$C \rightarrow \epsilon \mid C D \mid a$$

$$D \rightarrow b \quad B \rightarrow b$$

• After ε-removal:

$$A \rightarrow B \mid B \mid C \mid D \mid B \mid a$$

$$C \rightarrow D \mid C D D \mid a D \mid C D \mid a$$

$$D \rightarrow b \quad B \rightarrow b$$

Eliminate terminals from RHS

• Third step, remove terminals from the rhs of rules

$$A \rightarrow B a C d$$

• After removal of terminals from the rhs:

$$A \rightarrow B N_1 C N_2$$

$$N_1 \rightarrow a$$

$$N_2 \rightarrow d$$

93

Removal of Chain Rules

• Second step, remove chain rules

$$A \rightarrow B C \mid C D C$$

$$C \rightarrow D \mid a$$

$$D \rightarrow d \quad B \rightarrow b$$

• After removal of chain rules:

$$A \rightarrow B a \mid B D \mid a D a \mid a D D \mid D D a \mid D D$$

$$D \rightarrow d \quad B \rightarrow b$$

Binarize RHS with Nonterminals

• Fourth step, convert the rhs of each rule to have two non-terminals

$$A \rightarrow B N_1 C N_2$$

$$N_1 \rightarrow a$$

$$N_2 \rightarrow d$$

• After converting to binary form:

$$A \rightarrow B N_3 \qquad N_1 \rightarrow a$$

$$N_1 \rightarrow 0$$

$$N_3 \rightarrow N_1 N_4 \qquad N_2 \rightarrow d$$

$$N_2 \rightarrow 0$$

$$N_4 \rightarrow C N_2$$

CKY algorithm

- We will consider the working of the algorithm on an example CFG and input string
- Example CFG:

$$S \rightarrow A X \mid Y B$$

 $X \rightarrow A B \mid B A$ $Y \rightarrow B A$
 $A \rightarrow a \quad B \rightarrow a$

• Example input string: aaa

Parse trees

97

CKY Algorithm

	0	1	2	3
0		A, B $A \rightarrow a$ $B \rightarrow a$	X, Y $X \to A B \mid B A$ $Y \to B A$	$S \to A_{(0,1)} X_{(1,3)} S \to Y_{(0,2)} B_{(2,3)}$
1			A, B $A \rightarrow a$ $B \rightarrow a$	X, Y $X \rightarrow A B \mid B A$ $Y \rightarrow B A$
2				A, B $A \rightarrow a$ $B \rightarrow a$
		a	a	a

CKY Algorithm

```
Input string input of size n

Create a 2D table chart of size n²

for i=0 to n-1

chart[i][i+1] = A if there is a rule A → a and input[i]=a

for j=2 to N

for i=j-2 downto 0

for k=i+1 to j-1

chart[i][j] = A if there is a rule A → B C and

chart[i][k] = B and chart[k][j] = C

return yes if chart[0][n] has the start symbol

else return no
```

CKY algorithm summary

- Parsing arbitrary CFGs
- For the CKY algorithm, the time complexity is $O(|G|^2 n^3)$
- The space requirement is $O(n^2)$
- The CKY algorithm handles arbitrary ambiguous CFGs
- All ambiguous choices are stored in the chart
- For compilers we consider parsing algorithms for CFGs that do not handle ambiguous grammars

101

GLR – Generalized LR Parsing

- Works for any CFG (just like CKY algorithm)
 - Masaru Tomita [1986]
- If you have shift/reduce conflict, just clone your stack and shift in one clone, reduce in the other clone
 - proceed in lockstep
 - parser that get into error states die
 - merge parsers that lead to identical reductions (graph structured stack)

Parsing - Summary

- Parsing arbitrary CFGs: $O(n^3)$ time complexity
- Top-down vs. bottom-up
- Lookahead: FIRST and FOLLOW sets
- LL(1) Parsing: O(n) time complexity
 - recursive-descent and table-driven predictive parsing
- LR(k) Parsing : O(n) time complexity
 - LR(0), SLR(1), LR(1), LALR(1)
- Resolving shift/reduce conflicts
 - using precedence, associativity