HW3 - Rappresentazione di poliedri, punti estremi e soluzioni di base

Esercizio 1 Dato l'insieme di punti $S = \{A, B, C\}$ in \mathbb{R}^2 , con $A = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $B = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$, $C = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$, sia P il poliedro così definito:

$$P = \{ x \in \mathbb{R}^2 : \mathbf{x} \in conv(S), \mathbf{x} \ge \mathbf{0} \}$$

Si chiede di:

- determinare una rappresentazione esterna (cioè definita dall'intersezione di semispazi) di P;
- determinare, se esiste, una soluzione di base NON ammissibile per P;
- determinare l'insieme Ext(P) dei punti estremi di P

Esercizio 2 Un'azienda produce tre modelli di calzature, utilizzando cuoio (C) e pelle sintetica (P). I fornitori approvvigionano giornalmente il calzaturificio di tali materie prime, in quantità non superiori a 60 rotoli di C e 80 di P. Il numero di rotoli di C e P necessari a produrre un paio di scarpe dei vari modelli è indicato nella seguente tabella:

modello	С	Р
1	2	1
2	1	2
3	2	3

Produrre un paio di scarpe del modello 3 richiede un tempo di lavorazione doppio rispetto al modello 1 e triplo rispetto al modello 2. Con il personale disponibile è possibile produrre non più dell'equivalente di 50 paia del modello 3. La politica commerciale dell'azienda richiede di produrre almeno 20 paia del modello 1 e 20 del modello 2. Infine, il profitto unitario di ogni modello è di 30, 20 e 40 euro, rispettivamente.

Formulare un modello di programmazione lineare che permetta pianificare la produzione giornaliera massimizzando il profitto.