Supplementary Materials for WC-KNNG-PC

In this material, information about the WC-KNNG-PC method and the comparison algorithms: K-means, DBSCAN, OPTICS, RNN-DBSCAN (RNN), CHKNN, ADBSCAN, cutESC, SNN-DPC, are presented, such as pseudo code of WC-KNNG-PC, the parameters used, and the noise ratio and their performance. In the following table, the horizontal line "—" indicates that the algorithm does not produce corresponding results or cannot run on the data set. The names of the datasets used here are denoted by their first 4 letters.

1. Description of data sets

Table I Description of data sets: Number of data points (N), Number of Dimensions (D), Number of Clusters (C)

	Data set	N	D	С		Dataset	N	D	С
	Aggregation	788	2	7		Spectrometer	531	100	48
	CMC	500	2	3		Ecoli	336	7	8
	Compound	399	2	6		Ionosphere	351	34	2
	D31	3100	2	31		Iris	150	4	3
Synthetic data	Flame	240	2	2	Real data	Libras movement	360	90	15
Symmetic data	Jain	373	2	2		Seeds	210	7	3
	Pathbased	300	2	3		Segmentation	2,310	19	7
	Spiral	312	2	3		Glass	214	9	7
	R15	600	2	15		Wdbc	569	30	2
	S2	5000	2	15		Wine	178	13	3
Image data	Mnist (test)	10000	55	10	Image data	Olivetti face	400	28	40
image data	Usps	9298	50	10	image data				

2. Pseudo code of WC-KNNG-PC

Algorithm 1 WC-KNNG-PC

Input: dataset D, parameter t and k $(0 < t \le k < n)$

Output: clustering results: catchment basins: $\Sigma = \{B_1, \dots, B_b, \dots, B_l\}, L$

- 1: Apply Algorithm 2 to construct KNNG for a given dataset
- 2: Apply Algorithm 3 to construct catchment basins
- 3: Apply Algorithm 4 to detect invalid basin immersions
- 4: Apply Algorithm 5 to merge catchment basins

Algorithm 2 Construct k nearest neighbor graph $G_{kNN}(V, E)$

Input: dataset D, nearest neighbor parameter k and t

Output: $G_{kNN}(V, E)$, LA

- 1: Calculate $N_t(x_i)$, $N_k(x_i)$, $pN_t(x_i)$, $pN_k(x_i)$ of every vertex $x_i \in D$,
- 2: Calculate the 1st, 2nd and 3rd weight of each edge in $G_{kNN}(V, E)$ from $SNN_t(x_i, x_j)$, $SNN_k(x_i, x_j)$, $RNN_t(x_i, x_j)$
- 3: Calculate naïve altitude, refined altitude, and edge weight 4 of $G_{kNN}(V, E)$ according to Eqs.5-12 and 16
- 4: Calculate node attribute 2 and 3 of $G_{kNN}(V,E)$ according to Eqs. 错误!未找到引用源。-错误!未找到引用源。
- 5: Calculate local anomalies according to Eq. 错误!未找到引用源。

Algorithm 3 Detect catchment basins

Input: $G_{kNN}(V, E)$, DL, t, k, LA

Output:
$$\Sigma = \{B_1, \dots, B_l\}, \ \Upsilon = \{BA_1, \dots, BA_l\}, \ \Psi = \{Bcp_1, \dots, Bcp_l\}, \ \Lambda, L, O$$

- 1: Initialize a basin label list of all data points $L = [-1, -1, \cdots]$, outlies $O = \emptyset$
- 2: Sort all nodes in ascending order by their altitudes into the queue $DL = (x_1', x_2' \cdots, x_n')$
- 3: **while** DL is not empty **do**
- 4: $q \leftarrow \text{Pop a point from the } T$'s head
- 5: **if** $\tau(q)$'s level is 1, **then** go to step 4
- 6: **if** L[q] == -1 **then** New a Catchment basin: B_q , $BA_q = \emptyset$, $Bcp_q = \emptyset$, and set $B_q = \{q\}$, L[q] = q

```
7:
         for each z \in pN_k(q) do
8:
             if \tau(z) = 0, then skip to next z and go to step 7
9:
             if IPS(\alpha(q), \alpha(z), k) == 1 then
10:
              if z doesn't belong any catchment basin, then
11:
                 if IIM(q,z) then
                    Add z to B_{L[q]}, set L[z] = L[q], and if z \in LA, then add z to BA_{L[q]}
12:
13:
              else then
14:
                 if L[z] \neq L[q] then Add (q, z) to \Lambda, z to Bcp_{L[q]}
15:
              end if
16:
             end if
17:
         end for
18:
      end while
19:
      for each z \in DL do
         if L[z] < 0, then add z to O
20:
21:
      end for
```

In Algorithm 3, if the immersion stability of x_i belongs to level 1 (see 错误!未找到引用源。), x_i is processed in two ways: (1) if $0 < \tau(x_i) < 0.2$, x_i can only be used as the immersion point; (2) x_i must be an outlier when $\tau(x_i) = 0$. Therefore, if $\tau(x_i)$ belongs to level 1, point x_i may be an outlier that cannot be clustered by other basins.

Algorithm 4 Detection of invalid catchment basin immersions

```
Input: G_{kNN}(V,E), \Sigma, \Upsilon, \Lambda, \Upsilon, \Psi
```

Output: invalid catchment basins immersions Γ

- 1: Initialize the invalid immersions in all catchment basins $\Gamma = \emptyset$
- 2: Calculate $BpN_t(x_i)$ of point $x_i \in D$ according to **错误!未找到引用源。**
- 3: **for** each $BA \in Y$ **do**
- 4: **if** |BA| > 0 **then**
- 5: **for each** $p \in B_b$ **do**
- 6: **if** $\vartheta(p) \in level1$, **then** add $(p, x_i) \in \Lambda$ to Γ

```
7: for each z \in pN_t(p) do
8: if \vartheta(z) \in level1, then add (x_i, x_j) \in \Lambda to \Gamma
9: end for
10: end for
11: end if
```

Algorithm 5 Merging catchment basins

```
Input: G_{kNN}(V,E), \Sigma, \Pi, \Lambda, \Gamma
Output: L, \Sigma
        Sort \Lambda in ascending order of min(\alpha(x_i), \alpha(x_j)) into the queue \Lambda'
 2:
        for each r \in \Lambda' do
           if r \notin \Gamma then
 3:
              if BM(x_i, x_j) then
4:
                 if \alpha(L[r[0]]) \leq \alpha(L[r[1]]) then
 5:
                    Set the basin label of all points in B_{L[r[1]]} to L[r[0]] and merge B_{L[r[1]]} into B_{L[r[0]]}
 6:
7:
                 else then
                    Set the basin label of all points in B_{L[r[0]]} to L[r[1]] and merge B_{L[r[0]]} into B_{L[r[1]]}
 8:
 9:
                 end if
 10:
              end if
 11:
           end if
```

Algorithm 6 Allocate outlies *O*

```
Input: G_{kNN}(V, E), \Sigma, L, O, k
```

Output: Σ , L

end for

12:

1: Sort outlies O in increasing order of the refine altitude to O'

2: **for** all $q \in O'$ **do**

3: **for** all $z \in pN_k(q)$ **do**

- 4: **if** $SNN_k(q, z) \ge \lfloor k/2 \rfloor$ and $L[z] \ge 0$ **then**
- 5: Set L[q] = L[z] and add q to $B_{L[q]}$
- 6: Jump out of the loop and skip to the next outlier: q
- 7: **end if**
- 8: **end for**
- 9: end for

3. AMI performance on Artificial Datasets

Table III AMI performance on Artificial Datasets.

Data set					Method				
	K-means	DBSCAN	OPTICS	RNN	CHKNN	ADBSCAN	cutESC	SNN-DPC	WC
Aggr	0.849(0.015)	0.983(0.000)	0.953(0.000)	0.993(0.001)	0.996(0.000)	0.986(0.000)	0.937(0.000)	0.950(0.000)	0.996(0.000)
CMC	0.194(0.065)	0.991(0.000)	0.991(0.000)	0.862(0.000)	1.000(0.000)	0.782(0.000)	0.758(0.000)	1.000(0.000)	0.920(0.000)
Comp	0.729(0.046)	0.945(0.000)	0.946(0.000)	0.869(0.003)	0.881(0.000)	0.867(0.000)	0.940(0.000)	0.828(0.000)	0.984(0.000)
D31	0.943(0.011)	0.906(0.000)	0.905(0.000)	0.909(0.001)	0.963(0.000)	0.878(0.000)	0.815(0.000)	0.964(0.000)	0.949(0.000)
Flam	0.409(0.25)	0.899(0.000)	0.837(0.000)	0.954(0.018)	0.935(0.000)	0.682(0.000)	0.834(0.000)	0.900(0.000)	0.927(0.000)
Jain	0.365(0.005)	0.856(0.000)	0.852(0.000)	0.939(0.029)	0.883(0.000)	1.000(0.000)	0.896(0.000)	0.379(0.000)	1.000(0.000)
Path	0.544(0.001)	0.862(0.000)	0.898(0.000)	0.870(0.008)	0.860(0.000)	0.762(0.000)	0.795(0.000)	0.901(0.000)	0.907(0.000)
R15	0.971(0.023)	0.979(0.000)	0.980(0.000)	0.989(0.004)	0.994(0.000)	0.940(0.000)	0.809(0.000)	0.994(0.000)	0.976(0.000)
Spir	0.000(0.000)	1.000(0.000)	1.000(0.000)	1.000(0.000)	0.963(0.000)	0.886(0.000)	0.794(0.000)	1.000(0.000)	1.000(0.000)
S2	0.927(0.017)	0.811(0.000)	0.811(0.000)	0.896(0.001)	0.949(0.000)	0.723(0.000)	0.784(0.000)	0.937(0.000)	0.945(0.000)
Average	0.5931	0.9232	0.9173	0.9281	0.9424	0.8506	0.8362	0.8853	0.9604

4. AMI performance on Real-world Datasets

Table III AMI performance on real-world Datasets

Data set					Method				
	K-means	DBSCAN	OPTICS	RNN	CHKNN	ADBSCAN	cutESC	SNN-DPC	WC
Spec	0.514(0.009)	0.269(0.000)	0.220(0.000)	0.433(0.000)	0.469(0.000)	0.430(0.000)	_	0.004(0.000)	0.277(0.000)

Ecol	0.605(0.034)	0.493(0.000)	0.562(0.000)	0.517(0.004)	0.665(0.000)	0.521(0.000)	0.445(0.000)	0.671(0.000)	0.656(0.000)
Libr	0.529(0.018)	0.454(0.000)	0.465(0.000)	0.553(0.002)	0.468(0.000)	0.522(0.000)	_	0.583(0.000)	0.600(0.000)
Iono	0.128(0.024)	0.601(0.000)	0.581(0.000)	0.518(0.000)	0.396(0.000)	0.381(0.000)	_	0.001(0.000)	0.429(0.000)
Iris	0.734(0.046)	0.619(0.000)	0.732(0.000)	0.659(0.005)	0.869(0.000)	0.667(0.000)	0.714(0.000)	0.912(0.000)	0.770(0.000)
Seed	0.700(0.008)	0.586(0.000)	0.558(0.000)	0.608(0.004)	0.736(0.000)	0.540(0.000)	0.493(0.000)	0.738(0.000)	0.736(0.000)
Segm	0.428(0.072)	0.610(0.000)	0.610(0.000)	0.639(0.001)	0.732(0.000)	0.509(0.000)	_	0.000(0.000)	0.650(0.000)
Glas	0.392(0.025)	0.378(0.000)	0.378(0.000)	0.376(0.000)	0.364(0.000)	0.418(0.000)	0.380(0.000)	0.275(0.000)	0.341(0.000)
Wdbc	0.464(0.000)	0.367(0.000)	0.389(0.000)	0.395(0.007)	0.635(0.000)	0.349(0.000)	_	0.752(0.000)	0.423(0.000)
Wine	0.418(0.006)	0.586(0.000)	0.469(0.000)	0.381(0.017)	0.468(0.000)	0.383(0.000)	_	0.874(0.000)	0.349(0.000)
Oliv	0.743(0.017)	0.794(0.000)	0.794(0.000)	0.712(0.001)	0.358(0.000)	0.748(0.000)	_	0.837(0.000)	0.838(0.000)
Mnis	0.510(0.014)	0.266(0.000)	0.266(0.000)	0.225(0.000)	0.579(0.000)	0.467(0.000)	_	0.662(0.000)	0.686(0.000)
Usps	0.625(0.014)	0.248(0.000)	0.424(0.000)	0.503(0.000)	0.690(0.000)	0.534(0.000)	_	0.684(0.000)	0.720(0.000)
Average	0.5223	0.4824	0.4960	0.5015	0.5715	0.4976	0.5080	0.5379	0.5750

5. Noise ratio detected by different methods on synthetic datasets

Table IV Noise ratio detected by different methods on synthetic datasets

Data set -		Method												
	K-means	DBSCAN	OPTICS	RNN	CHKNN	ADBSCAN	cutESC	SNN-DPC	WC					
Aggr	_	0.001(0.000)	0.020(0.000)	0.001(0.000)	_	0.006(0.000)	0.052(0.000)	_	0.000(0.000)					
CMC	_	0.001(0.000)	0.001(0.000)	0.013(0.000)	_	0.002(0.000)	0.060(0.000)	_	0.016(0.000)					
Comp	_	0.128(0.000)	0.140(0.000)	0.035(0.000)	_	0.000(0.000)	0.000(0.000)	_	0.003(0.000)					
D31	_	0.064(0.000)	0.074(0.000)	0.054(0.000)	_	0.089(0.000)	0.122(0.000)	_	0.008(0.000)					
Flam	_	0.008(0.000)	0.025(0.000)	0.008(0.000)	_	0.008(0.000)	0.067(0.000)	_	0.000(0.000)					
Jain	_	0.013(0.000)	0.016(0.000)	0.008(0.000)	_	0.000(0.000)	0.273(0.000)	_	0.000(0.000)					
Path	_	0.357(0.000)	0.370(0.000)	0.037(0.000)	_	0.360(0.000)	0.433(0.000)	_	0.020(0.000)					
R15		0.012(0.000)	0.010(0.000)	0.000(0.000)	_	0.047(0.000)	0.162(0.000)		0.010(0.000)					
		0.000(0.000)	0.000(0.000)	0.000(0.000)		0.006(0.000)	0.026(0.000)		0.000(0.000)					
Spir	_	, ,	,	, ,	_	, ,	, ,	_	, ,					
S2		0.183(0.000)	0.185(0.000)	0.056(0.000)		0.002(0.000)	0.166(0.000)		0.001(0.000)					

6. Noise ratio detected by different methods on real-world datasets

Table V Noise ratio detected by different methods on real-world datasets

					Method				
Dataset -	K-means	DBSCAN	OPTICS	RNN	CHKNN	ADBSCAN	cutESC	SNN-	WC
Spec	_	0.407(0.000)	0.488(0.000)	0.143(0.000)	_	0.047(0.000)	_	_	0.017(0.000)
Ecol	_	0.301(0.000)	0.241(0.000)	0.030(0.000)	_	0.057(0.000)	0.220(0.000)	_	0.048(0.000)
Libr	_	0.183(0.000)	0.196(0.000)	0.097(0.000)	_	0.044(0.000)	_	_	0.042(0.000)
Iono	_	0.336(0.000)	0.330(0.000)	0.256(0.000)	_	0.251(0.000)	_	_	0.336(0.000)
Iris	_	0.220(0.000)	0.000(0.000)	0.107(0.000)	_	0.493(0.000)	0.160(0.000)	_	0.013(0.000)
Seed	_	0.305(0.000)	0.348(0.000)	0.019(0.000)	_	0.181(0.000)	0.210(0.000)	_	0.000(0.000)
Segm	_	0.100(0.000)	0.100(0.000)	0.041(0.000)	_	0.007(0.000)	_	_	0.027(0.000)
Glas	_	0.182(0.000)	0.182(0.000)	0.107(0.000)	_	0.206(0.000)	0.313(0.000)	_	0.056(0.000)
Wdbc	_	0.313(0.000)	0.322(0.000)	0.014(0.000)	_	0.025(0.000)	_	_	0.019(0.000)
Wine	_	0.573(0.000)	0.640(0.000)	0.039(0.000)	_	0.000(0.000)	_	_	0.006(0.000)
Oliv	_	0.078(0.000)	0.078(0.000)	0.133(0.000)	_	0.018(0.000)	_	_	0.030(0.000)
Mnis	_	0.402(0.000)	0.402(0.000)	0.021(0.000)	_	0.005(0.000)	_	_	0.181(0.000)
Usps	_	0.698(0.000)	0.539(0.000)	0.044(0.000)	_	0.005(0.000)	_	_	0.196(0.000)

7. Arguments used by different methods on Synthetic datasets

Table VI Arguments used by different methods on Synthetic datasets

Data set		Method											
Data set	K-means	DBSCAN	OPTICS	RNN	CHKNN	ADBSCAN	cutESC	SNN-DPC	WC				
	k	eps, mps	eps, mps	k	p1, p2, p3, m	k, np	α, β	nc, k	t, k				
Aggr	7	1.7, 10	1.8, 10	12	4, 17, 1, 50	39, 0.32	0.66, 0.38	7, 15	9, 19				
CMC	3	0.011, 1	0.011, 1	13	8, 30, 3, 50	27, 0	1.00, 1.00	22, 3	8, 35				
Comp	6	1.5, 2	1.5, 2	8	5, 5, 2, 50	28, 0	1.00, 1.00	18, 6	16, 19				
D31	31	0.95, 34	0.95, 34	35	32, 32, 3, 50	33, 0.01	0.60, 0.95	41, 31	27, 30				
Flam	2	1.3, 7	1.3, 7	8	9, 9, 1, 50	22, 0.16	0.42, 0.56	5, 2	23, 23				
Jain	2	2.3, 2	2.3, 2	15	5, 5, 4, 100	29, 0	1.00, 1.00	18, 2	15, 30				
Path	3	2.4, 10	2.4, 10	6	8, 10, 1, 50	9, 0.38	0.52, 1.00	9,3	9, 19				

R15	15	0.53, 12	0.53, 11	30	7, 8, 1, 100	40, 0.01	1.00, 0.36	15, 10	13, 23
Spir	3	1.11, 1	1.11, 1	2	2, 2, 1, 50	14, 0.08	0.70, 1.00	3,9	10, 15
S2	15	0.03, 32	0.03, 32	202	40,45,3,400	19, 0.52	1.00, 1.00	35, 15	31, 33

8. Arguments used by different methods on real-world datasets

Table VII Arguments used by different methods on real-world datasets

D-4					Method				
Data set	K-means	DBSCAN	OPTICS	RNN	CHKNN	ADBSCAN	cutESC	SNN-DPC	WC
	k	eps, mps	eps, mps	k	p1, p2, p3, m	k, np	α, β	nc, k	t, k
Spec	48	0.6, 25	0.6, 25	2	5, 5, 1, 200	14, 0.1	_	48, 12	36, 36
Ecol	8	0.2, 21	0.23, 29	3	9, 10, 1, 200	20, 0	0.11, 0.27	8, 6	9, 20
Libr	15	0.9, 1	0.89, 1	4	18,18,2,100	13, 0	_	15, 11	7, 11
Iono	2	0.78, 9	0.8, 9	15	13,14,2,200	31, 0.25	_	2, 5	19, 56
Iris	3	0.13, 5	0.4, 6	5	5, 15, 1,100	25, 0.36	0.90, 0.16	3, 15	16, 27
Seed	3	0.24, 15	0.24,15	5	13,13,1,100	14, 0.33	0.74, 0.23	3, 6	17, 24
Segm	7	0.15, 1	0.15, 1	10	11,60,1,300	21,0	_	7,7	27, 41
Glass	7	0.27, 8	0.27, 8	5	6, 6, 1, 100	4, 0.05	0.95, 1	6, 20	15, 45
Wdbc	2	0.51, 65	0.51, 65	19	62,76,11,300	19, 0.12	_	2, 12	14, 34
Wine	3	0.50, 20	0.50, 20	42	18,18,3,100	22, 0.06	_	3, 18	16, 28
Oliv	40	0.73,1	0.73, 1	3	13,14,1,100	9, 0.06	_	40, 6	5, 7
Mnis	10	0.62,1	0.62, 1	3	40,45,3,500	17, 0	_	10, 14	100, 127
Usps	10	0.71, 61	0.71, 61	2	45,50,4,450	20, 0.01	_	10, 13	99, 99

9. The results generated by 9 clustering algorithms on different datasets

Fig. I Clustering results of different methods on Aggregation, CMC, D31, R15 and Spiral datasets.

Different colors indicate different classes, but the red points are outliers.

10. WC-KNNG-PC on the dataset Pathbsed with different arguments

Fig. II WC-KNNG-PC on the Pathbsed dataset with different t and k which range from (3, 3) to (30, 30).

(a) Performances. (b) Clusters.

11. Run-time (seconds) analysis for the methodology

Table VIII Run-time (seconds) analysis for the methodology

Data set	P1	P2	Р3	P4
Flam	0.744	0.005	2.430	0.001
Jain	0.528	0.013	1.578	0.003
CMC	0.584	0.056	1.152	0.015
D31	13.819	0.169	43.657	0.050
S2	1.610	0.010	5.583	0.000
Iris	0.248	0.003	0.714	0.000
Seed	0.375	0.005	1.156	0.001
Spec	8.955	0.019	13.369	0.002
Segm	11.566	0.192	31.239	0.008
Usps	585.798	4.858	1451.913	0.241