

ARJUNA NEET BATCH

UNITS AND MEASUREMENTS

LECTURE - 05

(2) Equation is Dimensionally (orrect
then it must be (physically) correct

[Ans] > false

(2) A equation is physically correct then

it (may) be timen siomally

Correct

False

.

@ A P.Q have dimension then
it may have Unit => False

(a) It P.Q have Vnit then

it must be dimension less -> false

1 = 400 m = 4×10² m = 4×10⁴ cm Signifial digit = 1 $\frac{1}{\sqrt{1 - 4.00 \text{ m}}} = 4.00 \text{ xio} \text{ m}$ $\frac{1}{\sqrt{1 - 4.00 \text{ m}}} = 4.00 \text{ xio} \text{ m}$

Significant Figures

Significant Figures (Meaningful Digits

All non-zero digits are significant

$$Ex - 44 \text{ m} \Rightarrow 2 \checkmark$$

All zeros between non-zero digits are significant

Ex - 405 m
$$\Rightarrow$$
 3 \checkmark

All zeros on left side are non-significant.

S.T- = 3

1.0000000000----

A Trailing zero after decimal place is significant.

 $\frac{1}{\sqrt{5.5}}$

,

The number of significant figures in 0.01020 is :

(A) 1 (B) 2

(C) 3

The number of significant figures in 0.900 is:

(A) 1 (B) 2

(C) 3 (D) 4

The number of significant figures in 0.007 is:

(A) 4 (B) 3

(C) 2 (D) 1

ARJUNA

The number of significant figures in (1) 0.03800 and (ii) 90.00 is:

(A) (i) D (ii) D (B) (i) B (ii) A

(C) (i) C (ii) C (D) (i) B (ii) D

The number of significant figures in 3.04×10^{23} is:

(A) 2

3

(C) 23

(D) 25

Given P = 0.0030 m, Q = 2.40 m and R = 3000 m, the number of significant figures in P, Q, R are respectively:

(A) 1, 2, 1

(B) 2, 3, 1

(C) 4, 2, 1

(D) 4, 2, 4

Addition or Subtraction

→ Final result is written in minimum decimal places.

Multiplication or Division

Final result written in minimum significant figure.

If A = 2.413 and B = 1.2 then find A + B.

ARJUNA

$$\frac{17}{2.413} + \frac{1.2}{1.2} = \frac{3.613}{3.61}$$

$$= \frac{3.61}{4m}$$

If A = 25.5 and B = 5 then find
$$\frac{A}{B}$$
.

$$\left(\frac{A}{B}\right) = \frac{25.5}{5} = 5.1 \approx 5$$
Ans

 $\frac{1.5}{1.5}$ is equal to

(A) 1

(C) 1.00

Taking into account of the significant figures, what is the value of 9.99 m - 0.0099 m?

[NEET 2020]

9.9801 m

9.98 m

(C) 9.980 m

L) minm Jechnal Place

ROUNDING OFF

- ► If digit to be removed is greater than 5 then there previous number increases by 1. 2468 = 247
- ▶ If digit is 5, then previous number remains same if even and increase by 1 then if odd.
- \triangleright Dimensionally correct equation <u>must</u> be (physically) correct. \rightarrow Fulse
- ► Dimensionally incorrect must be physically correct. → False
- \triangleright Physically incorrect equation may be dimensionally correct. $\longrightarrow \mathcal{T}_{\gamma \nu}$
- Physically correct may be dimensionally correct. False

lost digit Odd even T by 1 as it is 24375=2438

EX 24685 = 2468

.

When 96.54 is divided by 2.40, the correct result is:

(A) $40.2250 \times$

- S.F = 3
- (B) 40.225

(C) 40.23

(D) 40.2

$$=\frac{96.54}{240}=40.2$$

Find round off value of x = 6.87

(A) ϵ

(B) 6.7

(C) 6.8

£27 6.9

- Find round off value of x = 16.351
- (A) 16

(B) 16.33

(C) 16.3

(0) 16.4

- Find round off value of x = 3.750
- (A) 3.7

(3.1

(C) 3.5

(D) 3

Find round off value of x = 3.250

(B) 3.25

(C) 3.5

(D) 3

PARALLAX METHOD

Change in the apparent position of the object when viewed from two measur the dist b/w Plant & earth (2) different points of view.

S - Position of the planet

b = distance between two point of observation

Measurement of Diameter of Planet

The moon is observed from two diametrically opposite points A and B on Earth. The angle θ subtended at the moon by the two directions of observation is 2° , Given the diameter of the Earth to be about 1.276×10^{7} m, compute the distance of the moon from the Earth.

$$b(Axc) = \pi \theta$$

$$h(x) = \frac{1.27 \times 10^{7}}{90}$$

$$= \frac{1.27\times90}{5}10^{7}$$

$$\approx 35\times10^{7}$$

MEASURING INSTRUMENT

DIMENSIONAL FORMULA

Vernier Callipers:

In a Vernier calliper, one main scale division is x cm and n division of Vernier scale coincide with (n-1) division of the main scale. The least count of the Vernier caliper in cm is:

(a)
$$\left(\frac{n-1}{n}\right)x$$

(b)
$$\frac{nx}{(n-1)}$$

(c)
$$\frac{x}{n}$$

(d)
$$\frac{x}{n-1}$$

The main scale of a Vernier callipers has n divisions/cm. n divisions of the Vernier scale coincide with (n-1) divisions of main scale. The least count of the Vernier callipers is

(a)
$$\frac{1}{(n+1)(n-1)}$$
 cm

(b)
$$\frac{1}{n}$$
 cm

(c)
$$\frac{1}{n^2}$$
 cm

(d)
$$\frac{1}{n(n+1)}$$
 cm

A student measured the diameter of a small steel ball using a screw gauge of least count 0.001 cm. The main scale reading is 5 mm and zero of circular scale division coincides with 25 divisions above the reference level. If screw gauge has a zero error of – 0.004 cm, the correct diameter of the ball is

(a) 0.521 cm

(b) 0.525 cm

(c) 0.053 cm

(d) 0.529 cm

NEET

SCREW GAUGE

ARJUNA

If measured length of Rod is 1.56 cm then instrument used is

(a) metre scale

(b) Vernier calliper

(c) screw gauge

THANK YOU ©

