

NAVAL POSTGRADUATE SCHOOL Monterey, California

SEP 2 7 1982

THESIS

DEVELOPMENT OF A COMPUTER PROGRAM FOR THE TESTING AND EVALUATION OF NUMERICAL OPTIMIZATION TECHNIQUES

bу

James Edward Fitzgerald, III

June 1982

Thesis Advisor:

G. N. Vanderplaats

Approved for public release, distribution unlimited.

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

	REPORT DOCUMENTATION PAGE						
REPORT HUMBER	2. GOVT ACCESSION NO	BEFORE COMPLETING FORM 3. RECIPIENT'S CATALOG NUMBER					
	AD - A119571						
i. TITLE (and Subtitio)		S. TYPE OF REPORT & PERIOD COVERED					
Development of a Computer F	m £						
the Testing and Evaluation	rogram for	Master's Thesis: June 3					
Optimization Market	or Numerical	Master's Thesis; June 3:					
Optimization Techniques							
. AUTHOR(a)		6. CONTRACT OR GRANT NUMBER(a)					
James Edward Fitzgerald, II	I						
PERFORMING ORGANIZATION NAME AND ADDRE	188	10. PROGRAM ELEMENT. PROJECT, TASK					
Naval Postgraduate School		AREA & WORK UNIT NUMBERS					
Monterey, California 93940							
I. CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE					
Naval Postgraduate School		June 1982					
Monterey, California 93940		13. NUMBER OF PAGES					
		32					
T. MONITORING AGENCY NAME & ADDRESS(II dile	rem: from Controlling Office)	18. SECURITY CLASS, (of this report)					
		III - 1 i Si . 1					
		Unclassified 18a. DECLASSIFICATION/DOWNGRADING SCHEDULE					
		CHEMILE					
	, distribution						
Approved for public release 7. DISTRIBUTION STATEMENT (of the aborrant enter		unlimited.					
Approved for public release 7. DISTRIBUTION STATEMENT (of the abovest enter 8. SUPPLEMENTARY NOTES Optimization Optimizer	ed in Block 20, if different in a constant i	unlimited.					
Approved for public release 7. DISTRIBUTION STATEMENT (of the electrons on the statement of the electrons on the statement of the electrons of the statement on the statement of the statement o	end in Block 20, if different for end identify by block number, Automa Shape	unlimited. Report) ted Design Optimization					
Approved for public release 7. DISTRIBUTION STATEMENT (of the abovest enter 8. SUPPLEMENTARY NOTES 9. KEY WORDS (Consinue on reverse side if necessary Optimization Optimizer Finite Element Method 9. ADSTRACT (Consinue on reverse side if necessary A three dimensional fin	and identify by block number, Automa Shape	unlimited. Report) ted Design Optimization					

SOCUMTY CLASSIFICATION OF THIS PAGETWON POR BUSING

The finite element code may be used as a stand alone analysis tool or may be coupled to an optimizer of the user's choice. The finite element displacement method of analysis is used for static analysis and eigenvalues are calculated using the subspace iteration technique.

A major portion of this work is the software (user guide) which is presented in detail with examples and results. Explanation of how this code is coupled to an optimizer is given.

Design variables are member area sizes, joint coordinates, or both. Examples are presented to demonstrate the method.

Accession For	
DTIC TAB Unnnounced Justification	
By	COPY INSPECTED
Availability Codes Avail and/or Dist Special	<u> </u>
9	

Approved for public release, distribution unlimited.

Development of a Computer Program for the Testing and Evaluation of Numerical Optimization Techniques

by

James Edward Fitzgerald III
Lieutenant, United States Navy
B.S., Middle Tennessee State University, 1975

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN MECHANICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL June 1982

Approved by:

Approved by:

Second Reader

Chairman, Department of Mechanical Engineering

Dean of Science and Engineering

ABSTRACT

A three dimensional finite element code is written for truss analysis and design. Trusses may be designed for minimum weight subject to constraints on: member stresses, Euler buckling, joint displacements and system natural frequency. The optimum configuration may be found in addition to optimization with respect to member sizes.

The finite element code may be used as a stand alone analysis tool or may be coupled to an optimizer of the user's choice. The finite element displacement method of analysis is used for static analysis and eigenvalues are calculated using the subspace iteration technique.

A major portion of this work is the software (user guide) which is presented in detail with examples and results. Explanation of how this code is coupled to an optimizer is given.

Design variables are member area sizes, joint coordinates, or both. Examples are presented to demonstrate the method.

TABLE OF CONTENTS

I.	INT	RODUCTION10
II.	OPT	IMIZATION1
	Α.	INTRODUCTION12
	в.	FORMULATION12
	С.	PARAMETERS13
		1. Design Variables1
		2. Objective Function1
		3. Constraints1
		4. Euler Buckling1
		5. Displacement1
		6. Frequency19
III.	FIN	ITE ELEMENT METHOD16
	Α.	INTRODUCTION16
	В.	ANALYSIS16
	c.	GRADIENTS OF CONSTRAINTS18
IV.	PRO	GRAM FEATURES19
	Α.	INTRODUCTION19
V.	USE	R GUIDE2
	Α.	INTRODUCTION24
	В.	GENERAL FORMULATION24
	С.	CONSTRAINTS24
	ח	FYAMDI F

	1	. Properties/Conditions	-26
	2	. Input Control Parameters	-26
vi.	NUMER	ICAL EXAMPLES	- 4 3
A	A. I	NTRODUCTION	- 4 3
F	в. с	ASE 1: 3-BAR PLANAR TRUSS	-43
	1	. Case la	-44
	2	. Case 1b	-44
(с. с.	ASE 2: 18-BAR PLANAR TRUSS	- 45
	1	. Case 2a	-46
I	D. C	ASE 3: 25-BAR SPACE TOWER	-46
	1	. Case 3a	-47
F	E. C.	ASE 4: 234-BAR SPACE TOWER	-47
	1	. Case 4a	-48
VII.	CONCL	USIONS AND RECOMMENDATIONS	-60
ŀ	A. C	ONCLUSIONS	-60
Ę	3. R	ECOMMENDATIONS	-60
APPEND	IX A:	DATA FILES	-62
	A. I	NTRODUCTION	-63
APPEND	IX B:	PROGRAM ORGANIZATION	-73
E	A. D:	ESCRIPTION	-73
LIST 01	F REF	ERENCES	- 80
ΤΝΙΤΤΔΙ	יפדת ז	TDIBITTON I ICT	0.7

LIST OF TABLES

I.	25-BAR TOWER SAMPLE OUTPUT	20
II.	25-BAR TOWER SAMPLE OUTPUT	21
III.	25-BAR TOWER SAMPLE OUTPUT	- 2 2
IV.	25-BAR TOWER SAMPLE OUTPUT	23
ν.	COMMON VARIABLE NOMENCLATURE	27
VI.	3-BAR TRUSS. DESIGN INFORMATION (STRESS)	 50
VII.	3-BAR TRUSS. DESIGN INFORMATION	51
vIII.	18-BAR TRUSS. LOAD CONDITIONS	52
IX.	18-BAR TRUSS. DESIGN INFORMATION	53
х.	25-BAR TRUSS. LOAD CONDITIONS	54
XI.	25-BAR TURSS. DESIGN INFORMATION	55
XII.	234-BAR SPACE TOWER. LOADING INFORMATION	56
XIII.	234-BAR SPACE TOWER. DESIGN INFORMATION	- 57
XIV.	DATA FILE 3-BAR TRUSS	63
.vx	DATA FILE 3-BAR TRUSS	64
XVI.	DATA FILE 18-BAR TRUSS	65
XVII.	DATA FILE 25-BAR SPACE TOWER	 66
XVIII.	DATA FILE 234-BAR SPACE TOWER	67
XIX.	ANALYSIS CONTROL	74
XX.	OUTPUT CONTROL	- 75
XXI.	PROGRAM FLOW CHART	76
TTXX	SUBROUTINE USES	77

LIST OF FIGURES

6.1	3-BAR TRUSS	- 41
6.2	18-BAR TRUSS	_ 4 5
6.3	25-BAR SPACE TOWER	-46
6 4	234_BAR SPACE TOWER	_40

ACKNOWLEDGEMENT

In the course of this research there were many persons who were extremely helpful in their kind and timely assistance.

I would like to express my appreciation to the Mechanical Engineering Department for giving me the opportunity to pursue research of my choice. Additionally I want to thank Professors Cantin and Shin for their special assistance in this research project.

I want to express my deepest appreciation to Professor Gary Vanderplaats for his tireless support and long hours in the development of the finite element code and data correlation.

No question or problem was too trivial. Professor Vanderplaats is truly a professional in every sense of the word.

Finally to my loving wife, Yuko, there are no words to express my appreciation for the support you have given me in my two years at Naval Postgraduate School. Thank you.

I. INTRODUCTION

Design optimization requires the minimization or maximization of some parameter. Optimization of structures has had continuing changes since its development in the early 1960's with an active area of research being elastic truss structures. The main goal is to design structural systems that efficien vertex perform specified purposes. For any design to be acceptable it must satisfy a variety of physical, aesthetic and economic constraints.

Since most physical problems can be modeled by some mathematical formulation a computer program can be written to perform the necessary calculations.

The purpose of this research was to develop a FINITE ELEMENT code that could be easily coupled to an optimizer, thus (1) allowing testing and comparison of various optimizers and (2) provide a useful design program in its own right.

The design problem considered in this study is the optimization of three-dimensional indeterminate trusses, for multiple static load conditions. The objective is to minimize the weight of the structure where the design variables are member sizes and joint coordinates. Constraints include stress, displacement, Euler buckling, and the natural frequency of the system.

This document describes the use and capabilities of the finite element computer code to be coupled to an optimizer. The user's manual presented in Chapter V contains a simple design example in which the program is coupled to the CONMIN optimization code [Ref. 1].

Additionally, guidelines for coupling the code to an optimizer of the user's choice are presented.

Several examples demonstrating the program under a variety of conditions are presented. Conclusions and recommendations for future work are given.

II. OPTIMIZATION

A. INTRODUCTION

The main goal of structural engineering optimization is to design structural systems that efficiently perform specified purposes. Selection of a specific algorithm must include the following considerations: 1) the structure should be analyzed as few times as possible, 2) the algorithm should minimize specific gradient information required, and 3) it should provide reasonable assurance that an optimum design will be reached.

The next few sections discuss the general formulation of the algorithm with respect to the above requirements.

B. FORMULATION

Minimum weight design of trusses is presented in the general form of a mathematical programming problem as follows:

Minimize F(X)

Subject to:
$$g_{j}(x) \leq 0 \qquad j=1,m \qquad (Eq. 2)$$

$$x_{i}^{\ell} \leq x_{i} \leq x_{i}^{u} \qquad i=1,n \qquad (Eq. 3)$$

(Eq. 1)

where F(X) is the objective function, in this case, weight of the structure be minimized. X is the vector of independent design variables and here contains the member cross-sectional areas as well as the coordinates of the joints. The inequality constraints, $g_j(x) \leq 0$, j=1,m, must be satisfied for the design to be accepted as feasible. These include limits on stress, Euler buckling, joint displacements and the first fundamental frequency of the structure. Side constraints x_i^ℓ and x_i^u are lower and upper bounds on the design variable. These may be treated as general inequality constraints.

C. PARAMETERS

The design variables, constraints, and objective function considered in the design process are discussed here.

1. Design Variables

The design variables the user has available are member cross-sectional area, reciprocal of member cross-sectional area, joint coordinates, or both member areas (or their reciprocals) and coordinates. The cross-sectional areas are A_k , k=1,NE, where NE is the number of elements in the truss structure. The joint coordinates are X_{ij} , i=1,2,3 j=1, NJ, where i is the coordinate axis, j is the joint number and NJ is the total number of joints. Design variable linking is allowed in both member sizing and coordinate design variables.

2. Objective Function

The objective function considered here is weight.

Weight (W) =
$$\sum_{i=1}^{NE} \rho_i^{AL}i$$
 (Eq. 4)

where ρ is the material density, A is the cross-sectional area and $L_{\dot{1}}$ is the length of the member. The truss may be made up of members of differing materials.

3. Constraints

Stress:
$$\frac{\sigma_{ij}}{\bar{\sigma}^{-}} - 1 \leq 0$$
 $j=1,NLC$ (Eq. 5)

$$\frac{\sigma_{ij}}{\overline{\sigma}^{+}} - 1 \leq 0 \qquad j=1, NLC \qquad (Eq. 6)$$

where σ is the stress in member i under load condition j. NE is the number of elements and NLC is the number of loading conditions.

 $\bar{\sigma}$ is the lower bound on the stress (maximum compressive stress) and $\bar{\sigma}$ is the upper bound on the stress. The upper and lower bounds on stress may be different for each member, but are taken to be the same for every loading condition.

4. Euler Buckling

The stress at which Euler buckling occurs is given by:

$$\sigma_{i}^{E} = \frac{-K_{i}A_{i}E_{i}}{L_{i}^{2}} \qquad i=1,NE \qquad (Eq. 7)$$

where the subscript i corresponds to the member number, E_i is Young's modulus and K_i is a constant depending on the cross-sectional geometry of the member.

5. Displacement

Displacement limits are imposed at prescribed joints to create a constraint equation as follows:

$$\frac{u_{ijk}}{\bar{u}_{ijk}} - 1 \le 0$$
 (Eq. 8)

$$\frac{u_{ijk}}{\bar{u}_{ijk}} - 1 \le 0$$
 (Eq. 9)

where \bar{u}_{ijk} and \bar{u}_{ijk} are lower and upper bounds on the displacement at joint i in the coordinate direction j under loading condition k.

6. Frequency

The first fundamental frequency of the structure is required to exceed the specified lower bound, so that

$$\frac{1}{1-\lambda/\lambda} < 0$$
 (Eq. 10)

Reference 2 is an excellent source for the basic structural design formulation.

III. FINITE ELEMENT METHOD

A. INTRODUCTION

Several features are desirable when the finite element methods of analysis are used in design optimization. First the number of analyses for the structure should be kept to a minimum. Second, the amount of gradient information required during the design process should be reduced to shorten run times and computer storage requirements. Third, the user should be able to specify only that gradient information desired.

B. ANALYSIS

Initial problem formulation includes member sizing, material properties (which may be different for each member), a set or sets of external loads, and specified support condition.

The analysis for the stresses and deflections must satisfy the conditions of equilibrium of forces at the nodes and compatibility of deformation. In this analysis the weight of the individual members are not part of the specified load conditions.

Additionally for this analysis the following assumptions are made. Trusses will be treated as discrete elements, and each element will be treated as pin-connected with loads and reactions supported at the joints.

The general method of solution is as follows. The Displacement (Stiffness) method reference 2 considers the joint displacement components as the unknowns, and written in matrix notation for the general case is

$$Ku = P$$
 (Eq. 1)

where K is the global stiffness matrix, P is the vector or vectors of applied loads, and W is the vector of vectors of displacements.

Once displacements at every node are known, the internal forces and stresses are calculated by applying the appropriate force-deflection relationships.

When the system's natural frequency constraints are considered the design process requires the solution of an eigen-problem. This solution will determine the natural frequencies and normal modes of the structure. For linear elastic structures, the finite element approach leads to the following equation of motion with free vibration conditions,

$$M\ddot{u} + Ku = 0$$
 (Eq. 2)

where $\frac{M}{2}$ is the global mass matrix, and $\frac{M}{2}$ is the linear acceleration vector. This leads to an eigenvalue problem of the form $1X-\lambda$ 1d=0, and is solved here by the subspace iteration method reference 2.

C. GRADIENTS OF CONSTRAINTS

Gradient computation of necessary functions in a design optimization process arise from the need for derivative information for efficient mathematical programming. For structural optimization the gradient of displacement with respect to the design variables, $\partial u/\partial x$, is needed from which ∇G , is calculated for stress, displacement, and buckling.

Consider the finite element method $\underbrace{\mathbb{K}\mathfrak{U}}_{\infty}$ = $\underbrace{\mathbb{P}}_{\infty}$. Taking the derivative of both sides with respect to the design variable \mathbf{x}_2 , we have:

$$\frac{\partial}{\partial \mathbf{x}_{\ell}} \left[\underbrace{\mathbf{K}_{\mathcal{U}}}_{=} \right] = \frac{\partial}{\partial \mathbf{x}_{\ell}} \left(\underbrace{\mathbf{P}} \right)$$
 (Eq. 3)

Assuming the loads P are not a function of x_{ℓ} ,

$$\left[\frac{\partial}{\partial \mathbf{x}_{\varrho}} \left(\mathbf{x} \right) \right] \left(\mathbf{u} \right) + \mathbf{x} \frac{\partial}{\partial \mathbf{x}_{\varrho}} \left(\mathbf{u} \right) = 0 \tag{Eq. 4}$$

Finally, we arrive at $\frac{\partial}{\partial x_g} (u) = -K^{-1} \left[\frac{\partial}{\partial x_g} (K) \right] u$ (Eq. 5)

where K⁻¹ is the inverse of K. For efficiency K⁻¹ is not actually calculated.

IV. PROGRAM FEATURES

A. INTRODUCTION

Each computer code has its own special features with which the user should be familiar if the program is to be used effectively. The next few sections will discuss an overview of the code and a typical problem that might be solved using the program. This problem along with other numerical examples will be presented in detail with results in Chapter VI.

The FINITE ELEMENT code was written to be used as a stand alone analysis program or an analysis code that could easily be coupled to an optimizer (of the user's choice) through simple modifications to the main driver program.

With user supplied area and coordinates coupled with input control parameters, the analysis mode will calculate the weight of the truss structure. Design variables may be chosen as member areas, joint coordinates, or both. Additionally, gradient information will be calculated with respect to area variables, coordinate variables or both. Coupled to an optimizer the code will optimize the weight of the structure and print the final optimization information and gradient vectors of specified constraints.

The following example of a 25-bar space tower presented in Tables (I-IV) shows some of the options the code contains.

Table I 25-BAR TOWER SAMPLE OUTPUT

INPUT CONTROL PARAMETERS

INPUT PARAMETERS FOR STRUCTURAL ANALYSIS AND DESIGN ROUTINE, "SAD" 25-BAR SPACE TRUSS (TEST CASE STRESS/DISP./BUCKLING/FREQ.)

CONTROL PARAMETERS

```
NUMBER OF ELEMENTS, NE = 25
TOTAL NUMBER OF JCINIS, NJ = 10
JCINI CONSTRAINT VARIABLE, NCJ = 10
NC. OF MATERIAL TYPES, NM1 = 1
NO. OF LOAD COND., NLC = 2
NC. OF EIGENVALUES, NEIG = 2
NO. OF FIGENVALUES, NEIG = 2
NO. OF FIXED MASSES, NFMASS = 2
BUCKLING CONSTRAINT ID, NEUBC = 1
NO. OF DISPL. CONST., NEREQ = 1
NO. OF FREQ. CONST., NFREQ = 1
LUMPED MASS OPTION. LMASS = 0
VARB. CALC. CCNTROL, IDVCLC = 2
```

ACCELERATION DUE TO GRAVITY, GRAV = 0.38640E+03 EIGENVALUE CONVERGENCE TOLORANCE, EPSEIG = 0.10000E-03

COORDIN		I GN VAR I		141 1		
JOINT	DEZIGN	VARIABLE	_	X MU	LTIPLIER	Z
ļ	0	0	ò	0.0	0.0	0.0
3	Ī	Ž	3	-0.1000E+01	0.1000E+01	0.1000E+01
5	į	Ž	3	0.10005+01	-0.10005+01	0.1000E+01
9	4	5	Õ	-0.1000E+01	-0.1000F+01 0.1000E+01	0.1000E+01
8	*	5	8	0.100GE+01 0.100GE+01	0.1000E+01 -0.1000E+01	0.0 0.0
10	4	5	Ŏ	-0.1000E+01	-0.1000E+01	0.0

Table II 25-BAR TOWER SAMPLE OUTPUT

MOINT DISPLACEMENTS CALCULATED BY SYSTEM ROUTINE "SAD" LOAD CONDITION ı 3 -0.27099E-01 -0.27099E-01 -0.68752E-01 -0.68752E-01 -0.68752E-01 0.36100E-01 0.0 0.0 DEGREE OF FREEDOM DISPLACEMENTS JUINT 3 -0.21905E-02 0.21910E-02 0.90789E-01 0.91278E-01 -0.90789E-01 -0.91278E-01 0.0 0.38017E+00 -0.38017E+00 -0.15964E-01 0.17510E-01 0.15964E-01 -0.17511E-31 45 3.3 89 j.ğ 10 2 LOAD CONDITION DEGREE OF FREEDOM DISPLACEMENTS 3 -C.21023E-01 -0.32687E-01 -0.95653E-01 -0.10297E+00 0.62874E-01 0.70194E-01 2 0.38860E+00 0.38860E+00 0.25951E-01 0.25977E-01 0.24435E-01 0.25192E-01 0.00 0.00 0.20126E-01 0.22911E-01 0.99531E-03 0.64733E-02 0.81493E-03 1 2 3 00000 3.0

10	0.0		0.0	0.	U
JOINT JOINT 1 2 3 4 5 6 7 9 10	0.37 -0.37 0.37 -0.37 -0.10	TES 500E+02 500E+02 500E+02 500E+02 500E+03 000E+03 000E+03 000E+03	0.37 -0.37 -0.17 0.17 -0.17	Y 7500E+02 7500E+02 7500E+02 7500E+03 0000E+03 0000E+03	0.2000uE+u3 7.20000E+03 0.10000E+03 0.10000E+03 0.10000E+03 0.10000E+03
JOINT 10 INT 12345678910	-0.37 -0.37 -0.37 -0.37 -0.37 -0.10	TES \$500E+02 \$500E+02 \$500E+02 \$500E+02 \$500E+03 \$000E+03 \$000E+03	0.3 -0.3 -0.3 -0.1	Y 75 00E+02 75 00E+02 75 00E+02 75 00E+03 00 00E+03 00 00E+03	2 • 200 00 E + 03 0 • 200 00 E + 03 0 • 100 00 E + 03 0 • 00 0 • 0

Table III 25-BAR TOWER SAMPLE OUTPUT

AREA/COORDINATE VARIABLES

THERE ARE 8 AREA DESIGN VARIABLES

INITIAL VALUES 0.20000E+01 0.20000E+01 0.20000E+01 0.20000E+01 0.20000E+01

LOWER BOUNTS 0.10000E-04 0.10000E-04 0.10000E-04 0.10000E-04 0.10000E-04

UPPER BOUNDS 0.50000E+02 0.50000E+02 0.50000E+02 0.50000E+02 0.50000E+02

THERE ARE 5 COORDINATE VARIABLES

INITIAL VALUES 0.37500E+02 0.10000E+03 0.10000E+03 0.10000E+03

LOWER BOUNDS 0.10000E+00 0.10000E+00 0.10000E+00 0.10000E+00

UPPER 30UNDS 0.50000E+03 0.50000E+03 0.50000E+03 0.50000E+03

JOINT DISPLACEMENT CONSTRAINTS
DIRECTION 1=x, 2=y, 3=z, 0=resultant

NODE OIR. COND. BOUND BOUND 1 1 1 -0.3500E+00 0.350CE+00 1 2 1 1 -0.3500E+00 0.350CE+00 1 2 1 -0.3500E+00 0.350CE+00 2 2 1 -0.3500E+00 0.3500E+00

FREQUENCY CONSTRAINTS LOWER BOUNDS IN CPS

FREQUENCY LOWER SCUND 0.1600E+02

Table IV 25-BAR TOWER SAMPLE OUTPUT

FINAL OPTIMIZATION INFORMATION

```
FINAL OPTIMIZATION INFORMATION
                                    0.2672562+03
  DECISION VAR(ABLES (X-VECTOR)

1) 0.14595E+01 0.74285E+00 0.98392E+00 0.10425E+01 0.11271E+01 0.73567E+00

7) 0.85953F+10 0.69571E+00 0.39367E+02 0.46934E+02 0.13895E+03 0.73636E+02

13) 0.66280E+02
CONSTRAINT VALUES (G-VECTOR)

1) -0.23866E-01 -0.99317E+00 -0.10068E+01 -0.10160E+01 -0.99316E+00 -0.19707E+01

7) -0.2952E-01 -0.99252E-01 -0.19707E+01 -0.10160E+01 -0.98405E+00 -0.10063E+01

13) -0.10090E+01 -0.99170FE+00 -0.10035E+01 -0.714+05E+00 -0.12854E+01 -0.53604E+00

13) -0.89407E+00 -0.1139E+01 -0.83131E+00 -0.12854E+01 -0.76507E+00 -0.13813E+01

25) -0.91972E+00 -0.13807E+01 -0.86400E+00 -0.12349E+01 -0.76507E+00 -0.13813E+01

311 -0.10259E-01 -0.97413E+000 -0.10470FE+01 -0.774+05E+00 -0.12854E+01 -0.53084E+00

311 -0.10259E-01 -0.975088E+00 -0.10797E+01 -0.774+05E+00 -0.1285E+00 -0.112818E+01

43) -0.75467E+01 -0.95088E+00 -0.10797E+01 -0.72364E+00 -0.78870E+00 -0.112848E+01

43) -0.75467E+01 -0.975088E+00 -0.10797E+01 -0.7536E+00 -0.13446E+01 -0.76832E+00

43) -0.1021E+01 -0.95088E+00 -0.10797E+01 -0.5736E+00 -0.13446E+01 -0.76832E+00

55) -0.76690F+30 -0.12455E+01 -0.86492E+00 -0.25336E+00 -0.13446E+01 -0.78832E+00

67) -0.1346E+01 -0.888486E+00 -0.10378E+01 -0.10478E+01 -0.95216E+00 -0.10412E+01

67) -0.1346E+01 -0.96343E+00 -0.10378E+01 -0.10478E+01 -0.95216E+00 -0.10412E+01

67) -0.12364E+01 -0.88817E+00 -0.10570E+01 -0.11130E+01 -0.98304E+00 -0.10471E+01

97) -0.11018E+01 -0.89817E+00 -0.10570E+01 -0.11110E+01 -0.98902E+03 -0.14719E+01

91) -0.12364E+00 -0.11932E+01 -0.9570E+01 -0.11110E+01 -0.89902E+03 -0.14719E+01

109) -0.78602E+00 -0.11932E+01 -0.9970E+01 -0.11110E+01 -0.89902E+03 -0.14719E+01

100) -0.78602E+00 -0.11932E+01 -0.9980E+01 -0.11951E+01 -0.80493E+01 -0.33238E+00

1151 -0.81120E+01 -0.888
    THERE ARE 7 ACTIVE CONSTRAINTS CONSTRAINT NUMBERS ARE 111 120 126 153
    THERE ARE O VIOLATED CONSTRAINTS
    THERE ARE
                                                               O ACTIVE SIDE CONSTRAINTS
    TERMINATION CRITERION ITER EQUALS ITMAX
    NUMBER OF ITERATIONS = 20
    OBJECTIVE FUNCTION WAS EVALUATED
                                                                                                                                                                                                             60 TIMES
    CONSTRAINT FUNCTIONS WERE EVALUATED
                                                                                                                                                                                                             60 TIMES
    GRADIENT OF OBJECTIVE WAS CALCULATED
                                                                                                                                                                                                             20 TIMES
    GRADIENTS OF CONSTRAINTS WERE CALCULATED 20 TIMES
```

V. USER GUIDE

A. INTRODUCTION

In developing any computer code for engineering analysis, it is necessary to additionally develop concise, easily understood software. This USER GUIDE is writen to be easily followed assuming minimal FORTRAN knowledge. The format follows that of the optimization code, COPES/CONMIN, reference 1.

This chapter is devoted to acquainting the user with the code and necessary input data. A simple 3-bar truss analysis is used as the example.

B. GENERAL FORMULATION

Each data card is set up to show the input data necessary with the 3-bar truss example underneath. Formats are of "I5" and "F10.0" type. "I" formats must be right justified, and "F" formats must have the decimal point. The number of cards read per data block is listed at the bottom of each block.

C. CONSTRAINTS

Constraints are calculated and stored in the G vector as listed in the following chart. The total number of constraints NCON = 2*NDSPLC + NFREQ + NE*NLC. When any of the constraints are missing from the G vector, all constraints are moved up.

For example, if there is no frequency constraint, then a displacement constraint would fill the first location of the G vector.

D. EXAMPLE

The initial layout of the 3-bar truss is shown in Figure 6.1. Stress constraints were imposed as well as constraints on Euler buckling, displacement, and first fundamental frequency.

With geometry specified as per the figure, 2 independent load conditions (P1,P2) were imposed with 3 member sizing variables (A1, A2, A3) linked so that A1=X(1), A2=X(2), A3=X(1).

1. Properties/Conditions

The material used had a density (ρ)=0.1 lb/in³. Young's Modulus was selected as 10⁷ psi.

LOADS: P1=P2= 20,000 lbs.

STRESS LIMITS: -15,000 $< \sigma_i < 20,000 psi$ i=1,3

Symmetry was maintained by linking of variables so Al=A3. Initial design began with Al=A2=A3= 1.0 in. One non-structural mass of 500 lbs was attached at joint 2. Displacement constraints were imposed between -.02 and .02 inches in the x-direction with the first natural frequency limited to a value ω_n < 20 Hz.

2. Input Control Parameters

The following input control parameters are given for ease of the following example. NE=3, NJ=4, NCJ=4, NMT=1, NLC=2, NEIG=2, NEIG1=2, NFMASS=1, NEUBC=1, NDSPLC=2, NFREQ=1, LMASS=0, IDVCLC=2. Table V is a listing of commonly used nomenclature.

TABLE V

COMMON VARIABLE NOMENCLATURE

```
A- MEMBER'S CROSS-SECTIONAL AREA
BL- LOWER BOUND ON DISPLACEMENTS
BU- UPPER BOUND ON DISPLACEMENTS
DIR- DIRECTION 1=x, 2=y, 3=Z,
0=Limit on Resultant Displ.
BU- UPPER BOUND ON DISPLACEMENTS
DIR- DIRECTION 1=X, 2=Y, 3=Z

E- YOUNGS HODULUS
ELNO- ELEMENT NUMBER
EPSEIG- CONVERGENCE TOLERANCE OF EIGENVALUE
SOLUTIONS (DEPAULT=.0001)
FC1,FC2,...FCN- LOWER BOUND ON FIRST, SECOND, ETC.
FY- LOAD FORCES BEING APPLIED IN THE X DIRECTION
FY- LOAD FORCES BEING APPLIED IN THE X DIRECTION
FY- LOAD FORCES BEING APPLIED IN THE X DIRECTION
FY- LOAD FORCES BEING APPLIED IN THE Z DIRECTION
FY- LOAD FORCES BEING APPLIED IN THE X DOPF
IX- CONSTRAINT DENTIFIER. IF NON-ZERO THE X-DOPF
IX- CONSTRAINED
IX- DOPPER BUSKLING COEFFICIENT FOR BAR
ELEMENTS
IX- LUMPED HASS OPTIONS. IF LMASS .NE. O LUMPED
HASS- LUMPED HASS OPTIONS. IF LMASS .NE. O LUMPED
HASS- LUMPED HASS OPTIONS. IF LMASS .NE. O LUMPED
HASS- LUMPED HASS OPTIONS. IF LMASS .NE. O LUMPED
HASS- LUMPED HASS OPTIONS. IF LMASS .NE. O LUMPED
HASS- LUMPED HASS OPTIONS. IF LMASS .NE. O LUMPED
HASS- LUMPED HASS OPTIONS. IF LMASS .NE. O LUMPED
NEIGH-NUMBER OF FIREDUENCY CONSTRAINTS
NED-NUMBER OF FIREDUENCY CONSTRAINTS
IND-NUMBER OF FIREDUENCY CONSTRAINTS
IND-NUMBER OF JOINTS
NUC- NUMBER OF LOADEN JOINTS FOR THIS LOAD CONDITION
NMT- NUMBER OF LOADEN JOINTS FOR THIS LOAD CONDITION
NMT- NUMBER OF JOINTS
INC- NUMBER OF SEPRARATE MATERIAL TYPES
IXAL- LOWER BOUND
IXAL- UPPER BOUNDS
IXAL- LOWER BOUNDS
IXAL- LOWER BOUNDS
IXAL- LOWER BOUNDS
```

The following user's manual is divided into blocks A through M. Appearing directly below each data field line are the parameters for the 3-bar truss example. It is important to note the user may choose any units; however, all units must remain consistent throughout the problem.

DATA BLOCK A DESCRIPTION: Title Card Format and Example TITLE FORMAT 20 A4 3-BAR TRUSS (EXAMPLE) FIELD <u>CONTENTS</u> ANY 80 CHARACTER TITLE MAY BE GIVEN ON THIS LINE DATA BLOCK B

DESCRIPTION: Control Parameters

Format and Example

NE	NJ	NCJ	NAT	NLC	NEUE	3C	NDSPI	.c	NPRI	FORMAT 815
3	4	4	1	2	1		2		0]
NEI 2	GN	EIG1 2	NFMAS:	S NFI	REQ	II	VCLC 2	II	R ECP	FORMAT 515
	T			T				-]

NOTE: DEFINITIONS OF INPUT CONTROL PARAMETERS FOR PROGRAM NEXT PAGE.

FIELD	<u>co ntent</u>
1	NE-number of elements
2	NJ-number of joints
3	NCJ-number of constrained joints
4	NMT-number of seperate material types
5	NLC-number of load conditions
6	NEUBC-buckling constraint identifier
	(If NEUBC.NE.O -EULER buckling con-
	straints will be imposed on bar ele.)
7	NDSPLC-number of displacement constraints
8	NPR1-input print control (if NPR1.ne.0
	input information will not be printed)
1	NEIG-number of precise eigenvalues to
	be evaluated
2	MEIG1-number of eigenvalues to be evaluated
	DEFAULT=min. of (2*NEIG , NNEIG+8)
3	HFMASS-number of fixed masses attached to
	structure
4	MFREQ-number of frequency constraints
5	IDVCLC-design variable control parameter
	If (IDVCLC.EQ.1) NDV=NDVAR1
	If (IDVCLC.EQ.2) NDV=NDVAR1+ NDVAR2
	If (IDVCLC.EQ.3) NDV=NDVAR2
6	IRECP-recripocal variable identifier
	If (IRECP.GT.0) the X-vector contains
	the recripocal of area and VLB & VUB
	are changed accordingly

DATA BLOCK C

DESCRIPTION: Dynamic Analysis Information

Format and Example

LMASS	GRAV	EPSEIG	FORMAT 15, 2F10.0
0	386.4	0.	

1 LHASS-lumped mass option (if LHASS.NE.0)
the lumped mass matrix is used.

2 GRAV-accleration due to gravity
(defau*+=386.4 inches/sec)

3 EPSEIG-convergence tolerance on eigenvalue solution. (default=.0001)

,	DATA BLOCK D										
i	<pre>DESCRIPTION: Joint Coordinates 5</pre>										
	Fort	ıat an	id Exa	mple							
	JN	х	Y	Z	IX	IY	IZ	PCX	PCY	PCZ	FORMAT 15, 3F10.0, 3I5, 3F10.0
	1	-10.	0.	0.	1	0	0	-1.	0.	0.	
[2	0.	-10.	0.	0	0	0	0.	0.	0.	
[3	0.	0.	0.	0	0	0	0.	0.	0.	
[4	10.	0.	0.	1	0	0	1.	0.	0.	
_	FIE	D		<u>C</u>	ONT	en I	5				
		1		•				nate	number		
		2		K-x c							
		3 4		Y-y co Z-z co							
		5						ble a	ssocia	ted wi	th x coord
		6			•						th y coord
		7									th z coord

NOTE: Number of cards read=NJ

8

PCX-participation coefficient of x-coord.

PCY-participation coefficient of y-coord. PCZ-participation coefficient of z-coord.

DATA BLOCK E

<u>DESCRIPTION</u>: Material Properties

Format and Example

E	RHO	SIGMIN	SIGNAX	KEULER	FORMAT 5F10.0
1000000.	.1	-15000.	20000.	4.	

FIELD	CONTENTS
1	E-Young's Modulus
2	RHO-material density
3	SIGMIN-minimum allowable stress
4	SIGMAX-maximum allowable stress
5	REULER-Euler buckling coefficient
	for bar element

NOTE: Number of cards read=NMT

DATA BLOCK F

<u>DESCRIPTION</u>: Bar Element Information

Format and Example

ELNO	NODE 1	NO DE 2	MATCOD	NDSG	A	FORMAT 515,F10.0
L						
1	1	2	1	1	1.	
2	3	2	1	2	1.	
3	4	2	1	1	1.	-
PIELD			CONT	NIS	<u> </u>	ı
•	١	ELI	NO-eleme	ent num	ber	
2	2	NOI	-			ssociated with
		***		ent no		istad with
-	3	ŅO	-	ent num		ssociated with
(•	MA				of this element
9	5					n umber associa ted
			with	this e	lement	t
•	5	A- 1	ember o	: IOSS-S	ection	nal area
NO	re: Numl	er of o	cards re	ad=NE		

DATA BLOCK G

<u>DESCRIPTION</u>: Joint Constraint Information

Format and Example

JN	IX	IY	ΙZ		FORMAT
1				{	415

[1	1	1	1	
2	0	0	1	
3	1	1	1	
4	1	1	1	

FIELD CONTENTS

- 1 JN-joint number
- 2 IX x,y,z constraint identifier. (if non-
- 3 IY zero the corresponding degree of freedom
- 4 IZ is constrained)

NOTE: Number of cards read=NCJ

DATA BLOCK H

OMIT this card if NLC=0 was read in block B.

DESCRIPTION: Joint Loading Information

Format and Example

NLJ				FORMAT
				15
1			·	
1				
JN	PX	FY	PZ	FORMAT 15,3F10.
2	14140.	-14140.	0.	
2	- 14 14 0 .	-14140.	0.	

FIELD	<u>CONTENT</u>
1	NLJ-number of loaded joints
	for this load condition
1	JN-joint number
2	FX
3	FY- Forces in the X,Y,Z directions
4	FZ

DATA BLOCK I

OMIT this block if NFMASS=0 was read in block B.

DESCRIPTION: Lumped Mass Information

Format and Example

JN	MASS	FORM	AT
		15,F	10.0
L			
2	500.		
Ł			

FIELD CONTENTS

- 1 JN-joint number
- 2 MASS-concentrated mass at joint (JN) mass is in force units

DATA BLOCK J

OMIT this block if N DV AR 1=0

<u>DESCRIPTION</u>: Design Variable Information (AREA Variables)

Format and Example

XA (I)		 	FORMAT 8F10.0
1.	1.		
, 01	.01		XAL(I)
10.	10.		XAU(I)

FIELD CONTENTS

- 1 XA-initial value of area design variables 2 XAL-lower bounds on area design variables
- 3 XAU-upper bounds on area design variables

NOTE: read one value of XA, XAL, XAU for each independent area variable defined in Block D

Number of cards read =as required

DATA BLOCK K

OMIT this block if NDVAR2=0

Format and Example

XC (1)	XC (2)	XC (NDVAR1)	FORMAT 8F10.0
10.			
1.0			XCL
20.			kcu

FIELD CONTENTS

- 1 IC-initial value of coord. design variables
- 2 XCL-lower bounds on coord. design variables
- 3 ICU-upper bounds on coord. design variables

NOTE: read one value of XC, XCL, XCU for each independent coordinate variable defined in Block D

Number of cards read =as required.

DATA BLOCK L

OMIT this block if NDSPLC=0 in Block A

<u>DESCRIPTION</u>: Joint Displacement Constraint Information

Format and Example

JN	DIR	LC	BL	BŪ	FORMAT 315,2F10.0
2	1	1	02	.02	
2	2	1	02	.02	

PIELD	CONT ENTS
1	JN-joint number
2	DIR-direction 1=X 2=Y 3=z
	0=limit on resultant displ.
3	LC-load condition
4	BL-lower bound on displacement
	(If DIR=0 read 0 here)
5	BU-upper bound on displacement

Number of cards read = NDSPLC

DATA BLOCK M

OMIT this block if NFREQ=0 was read in Block A

DESCRIPTION: Frequency Constraint Information

Format and Example

	FORMAT
	8710.0
20.	

FIELD CONTENTS

- FC1- lower bound on first natural frequency constraint in CPS. (cycles per second)
- N FCN- lower bound on NFREQ-th natural frequency constraint in CPS. (cycles per second)

NOTE: OHIT this block if NFREQ=0 was read in data block B.

Number of cards read = as required

VI. NUMERICAL EXAMPLES

A. INTRODUCTION

Design of planar trusses and 3-dimensional space towers are presented here and the corresponding numerical results are summarized to demonstrate the use of the code.

In the examples given here, the design variables are member cross-sectional areas and joint coordinates. It should be emphasized that in practical design, the reciprocal of the member areas is usually a better choice for the design variables. However, the purpose here is to knowingly create difficult optimization problems, thus the choice of variables.

The examples begin with the 3-bar truss.

B. CASE 1: 3-BAR PLANAR TRUSS

The simple 3-bar planar truss, as shown in Figure 6.1 has been previously used for the user guide example. This structure was designed for optimum geometry subject to a set of two load conditions, buckling constraints, displacement constraints, and a lower bound on the system's first natural frequency. The allowable stresses specified are

-15000. < $\sigma_{\rm i}$ < 20000. psi \$i =1,3 The member areas were linked in the following groups: Al=A3; A2.

1. Case la

Only the stress constraint was imposed for this case. Final design information is given in Table VI. The number of analysis for this design was 38.

2. Case 1b

This case includes the previous constraint plus constraints on buckling (KEULER=4.0), displacement (-.02 -.02 in.), and first natural frequency ($\omega_{\rm n}$ =20.0). Results are given in Table VII. The number of analysis required for this design was 16 with 1.73 seconds of CPU time.

Figure 6.1 3-BAR TRUSS

C. CASE 2: 18-BAR PLANAR TRUSS

A cantiliver truss, as shown in Figure 6.2, has been previously used as a standard test case for structural design [Ref. 2]. The structure was analyzed for a single set of load conditions with allowable stresses being

-20000. < σ_i < 20000. psi i=1,18 Young's modulus was taken as 10 7 psi with a material density ρ =0.1 lb./cu in.

Figure 6.2 18-BAR TRUSS

The independent coordinate variables were taken as X3, Y3, X5, Y5, X7, Y7, X9, Y9. The member areas were linked as follows: Al=A4=A8=Al2=Al6; A2=A6=Al0=Al4=Al8; A3=A7=All=Al5; A5=A9=Al3=Al7. There are a total of four independent area variables and eight coordinate variables.

1. <u>Case 2a</u>

This design analysis includes stress, buckling (KEULER= 4.0), displacement (-10.0 to 10.0 in.), and a first fundamental frequency of 3 Hz. Additionally, a nonstructural mass of W=5000 lbs. was attached to node 1. The number of analyses for this design was 62. Results are presented in Table VIII. 26.72 seconds of CPU time were used for this calculation.

D. CASE 3: 25-BAR SPACE TOWER

Figure 6.3 25-BAR SPACE TOWER

The 25-bar space tower shown in Figure 6.3 was designed for two independent load conditions given in Table X. The allowable stresses were specified as follows

Young's modulus was selected as 10^7 psi with a material density ρ =.1 lb/cu. in. Members are assumed tubular with a nominal diameter to thickness ratio of D/t=100 giving KEULER=39.274. Symmetry was imposed in both the x-z and y-z planes. Non-structural masses of W=500 lbs. were attached at nodes 1 and 2. Coordinate variables were X4, Y4, Z4, X3, and Y3 with the remaining coordinates linked to maintain symmetry. Area variables were linked in the following manner: A1; A2=A3=A4=A5; A6=A7=A8=A9; A10=A11; A12=A13; A14=A15=A16=A17; A18=A19=A20=A21; A22=A23=A24=A25.

1. Case 3a

Stress, displacement (-0.35 to 0.35 in.), Euler buckling and first natural frequency limited to a value $\omega_{\rm n}$ > 16 Hz. were imposed for this case. Final design information is given in Table XI. The number of analyses for this design was 61 with 27.99 seconds of CPU time used.

E. CASE 4: 234-BAR SPACE TOWER

The inital layout of the tower is shown in Figure 6.4 stress limits were as follows

-15000. < σ_i < 20000. psi i=1,234 Young's modulus was chosen as steel 3.x10⁷ psi with a material density of aluminum ρ =.1 lbs/cu. in.

1. Case 4a

Stress constraints as well as constraints on Euler buckling were imposed. The resulting problem had 56 area design variables and 42 coordinate variables. This problem required 91 structural analyses using 72 minutes of CPU time. The objective function was evaluated 89 times and gradients were calculated 30 times. Results are presented in Tables XII through XIV. Although the weight of the structure was only reduced by 2%, it should be noted that constraints were initially violated and the optimizer overcame the constraint violations. It is believed the optimum that was reached is not the true optimum because of the extreme non-linearity of the problem.

Figure 6.4 234-BAR SPACE TOWER

Table VI
3-BAR TRUSS. DESIGN INFORMATION (STRESS)

	3-DAK INUSS.	DESIGN INFORMATION	(317533)	
BODY				
LOAD COND.	JOINT	X	LOADS Y	Z
1	2	0.1414E+05	-0.1414E+05	0.0
2	2	-0.1414E+05	-0.1414E+05	0.0
FIXED MAS	SES			
NO.	JOINT	MASS		
1	2	500 lbs.		
		AREA (sq. in.)		
MEMBER		INITIAL	FINAL	
Al=A3		1.0	.7662E+	00
A2		1.0	.4833E+	00

COORDINATES	(in.)

JOINT	INITIAL	FINAL
2	10	.9856E+01

FINAL WEIGHT FOR AREA AND COORDINATES
WEIGHT = 2.6349 (lbs.)

Table VII

3-BAR TRUSS. DESIGN INFORMATION (STRESS, DISPLACEMENT, BUCKLING, FREQUENCY)

BODY

JOINT LOADING INFORMATION

SAME AS TABLE VI

JOINT DISPLACEMENT INFORMATION

JOINT NUMBER	DIR.	LOAD COND.	LOWER BOUND	UPPER BOUND
2	1	1	02	.02
2	2	1	02	.02
		AREA (sq.	in.)	
MEMBER		INITI	AL	FINAL
Al=A3		1.0		0.99995E+00
A2		1.0		0.1000 E-01
		COORDINATE	S (in.)	
JOINT		INITI	AL	FINAL
2		10.0		0.99986E+01

FINAL WEIGHT = 2.9381 (lbs.)

CRITICAL CONSTRAINT - FREQUENCY

Table VIII
18-BAR TRUSS. LOAD CONDITIONS

BODY

	LOAD CON	OITIONS (1	bs.)	
LOAD COND.	JOINT	Х	LOADS Y	Z
1	1	0.0	-0.2000E+05	0.0
1	2	0.0	-0.2000E+05	0.0
1	4	0.0	-0.2000E+05	0.0
1	6	0.0	-G.2000E+05	0.0
1	8	0.0	-0.2000E+05	0.0

FIXED MASS INFORMATION

NO.	JOINT	MASS
1	1	5000 (lbs.)

Table IX

18-BAR TRUSS. DESIGN INFORMATION

(STRESS, DISPLACEMENT, EULER BUCKLING, FREQUENCY)

	AREA (sq	. in.)		
MEMBER	INIT	IAL	FINAL	
Al=A4=A8=Al2=Al6	10.0		38.20)
A2=A6=A10=A14=A18	10.0		38.27	7
A3=A7=A11=A15	10.0		15.98	3
A4=A9=A13=A17	10.0		20.62	2
	COORDINAT	ES (in.)		
JOINT	TINI X	IAL Y	FINAL X	Y
3	1000.	0.	839.	0.
5	750.	0.	628.	0.
7	500.	0.	384.	0.
9	250.	0.	148.	0.

FINAL WEIGHT = 13,940 (1bs.)

CRITICAL CONSTRAINT - FREQUENCY

Table X
25-BAR TRUSS. LOAD CONDITIONS

BODY

LOAD CONDITIONS (1bs.)

LOAD COND.	JOINT	Х	LOADS Y	Z
1	1	0.0	2000.	-5000.
	2	0.0	-2000.	-5000.
2	1	1000.	10000.	-5000.
	2	0.	10000.	-5000.
	3	500.	0.	0.
	6	500.	0.	0.

FIXED MASS INFORMATION

NO.	JOINT	MASS
2	1	500.(1bs.)
	2	500.(1bs.)

Table XI

25-BAR TRUSS. DESIGN INFORMATION

(STRESS, DISPLACEMENT, EULER BUCKLING, FREQUENCY)

	AREA (sq. in.)	
MEMBER	INITIAL	FINAL
Al	2.0	1.46
A2=A3=A4=A5	2.0	0.74
A6=A7=A8=A9	2.0	0.98
Al0=All	2.0	1.04
A12=A13	2.0	1.12
A14=A15=A16=A17	2.0	0.74
A18=A19=A20=A21	2.0	0.86
A22=A23=A24=A25	2.0	0.70
	COORDINATES (in.)	
JOINT	INITIAL X Y Z	FINAL X Y Z
ц	37.5 37.5 100	39.4 46.9 138.9
9	100.0 100.0 0.0	73.6 68.3 0.0

FINAL WEIGHT = 267 (lbs.)
CRITICAL CONSTRAINT - FREQUENCY

Table XII

234-BAR SPACE TOWER. LOADING INFORMATION
BODY

	LOAD CON	DITIONS (1b	s.)	
LOAD COND.	JOINT	x	LOADS Y	Z
1	49	6000.	-20000.	0.0
1	50	6000.	-20000.	0.0
2	49	6000.	-20000.	0.0
2	50	-6000.	-20000.	0.0
3	49	6000.	-20000.	0.0
3	50	3000.	-10000.	5000.
4	49	3000.	-10000.	-5000.
ц	50	3000.	-10000.	5000.
5	49	-3000.	10000.	5000.
5	50	-3000.	10000.	-5000.

FIXED MASS INFORMATION

NO.	JOINT	MASS
1	49	200.(lbs.)
2	50	200.(1bs.)

Table XIII
234-BAR SPACE TOWER. DESIGN INFORMATION

AREA (sq. in.)

Table XIII (cont'd)

AREA	(sq.	in.)

MEMBER	INITIAL	FINAL
A193,A194,A195,A196 A197,A198,A199,A200 A201,A202 A203,A204 A205,A206,A207,A208 A209,A210,A211,A212 A213,A214 A215,A216 A217,A218 A219,A220 A221,A222 A223,A224 A225,A226	25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	24.95 24.97 24.91 24.92 24.86 24.87 24.89 24.90 24.91 24.92 24.93 24.93
A227,A228 A229,A230 A231,A232	25.0 25.0	24.94
A231,A232 A233,A234	25.0 25.0	24.94 24.93

COORDINATES (in.)

JOINT	v	INITIAL	C7	32	FINAL		
	X	Y	Z	X	Y	Z	
1	120	0 *	120	120.5	0	121.4	
5	111	120	111	110.7	120.4	112.1	
9	102	240	102	102.2	241.2	103.2	
13	93	360	93	93.1	362.6	93.7	
17	84	480	84	84.0	483.8	84.4	
21	75	600	75	74.9	604.5	75.2	
25	66	720	66	65.9	724.2	65.9	
29	5 7	840	5 7	56.8	842.6	56.8	
33	48	960	48	47.8	960.4	47.3	

Initial weight = 84,524 lbs.

Final weight = 83,142 lbs.

^{*}Final weight (AREA VARBIABLES ONLY) = 28,900 lbs.

^{*} This clearly indicates optimum not reached with previous case.

Table XIII (cont'd)

•		<u>coo</u>	RDINATES	(in.)		
JOINT .	x	INITIAL Y	Z	Х	FINAL Y	Z
37	39	1080	39	38.8	1077.4	38.8
41	30	0 %	30	29.9	-	29.9
45	30	1248	30	29.8	1212.0	29.9
49	0 *	1248	90	-	1203.5	90.0
51	15	1224	60	15.0	1194.1	58.9
5.3	15	1248	60	15.0	1214.7	59.2

*NOT A DESIGN VARIABLE

VII. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

The finite element code was presented coupled to an optimizer for truss analysis and design. Trusses were designed for minimum weight with multiple load conditions considered.

The displacement method for static analysis and the subspace iteration method for eigenvalues were applied.

Several examples were considered. In every case the code worked as an analysis tool, and significant weight reductions were obtained with the coupled optimizer CONMIN. Run times and results compared to the same test cases with other codes indiate that the code is competitive as a design tool.

B. RECOMMENDATIONS

The following recommendations may be of value for follow on work:

- The code should be modified so the user can access stresses directly.
- 2. The code should be extended to include other elements such as frames and plates.
- 3. An out of core equation solver should be added.
- 4. The method of gradient calculation should be dependent on specific gradients required reference 3 and reference 4.

- 5. Gradients of frequency constraints would benefit from a more efficient algorithm reference 5.
- 6. The need for a large scale public structural optimization code still exists.

APPENDIX A

DATA FILES

A. INTRODUCTION

This appendix contains the data files used to create the test cases in Chapter VI. Additionally the data file for the user's guide in complete form is presented.

Table XIV

DATA FILE 3-BAR TRUSS

(STRESS)

Table XV

DATA FILE 3-BAR TRUSS

(STRESS, DISPLACEMENT, BUCKLING, FREQUENCY)

Table XVI

DATA FILE 18-BAR TRUSS

(STRESS, DISPLACEMENT, BUCKLING, FREQUENCY)

Table XVII

DATA FILE 25-BAR SPACE TOWER

(STRESS, DISPLACEMENT, BUCKLING, FREQUENCY)

Table XVIII

DATA FILE 234-BAR SPACE TOWER

234-BAR 234	SPACE TO	WER DESIGN	TEST CASE	STRESS, BUCK., DISPL., FREQ.)	
01234567890123456789012345678901234567890123456789012345678901 111111111111222222223333333334444444444	1422 4 - 100 - 111 - 111 - 121	N	0.000	00001111111111111111111111111111111111	11-11-11-11-11-11-11-11-11-11-11-11-11-

678901234567890100000000000000000000000000000000000
6751223344156677885900112293445566378889900712233441566778 859 90011229344 5566
788657687580910219243546536879809702132431465768758091021924354653687980970444
+3+55555556666666777777788888899999999990000011111111111NNNNNNNNNN
0.0000000000000000000000000000000000000

69

Table XVIII (cont'd)

70

Table XVIII (cont'd)

```
10.
                                                                            6000.
                                                                                                                                                                                         -20000.
-20000.
                                                                                                                                                                                                                                                                                                                                                             0.0
                                                                            6000.
                                                                            6000:
                                                                                                                                                                                         -18888:
                                                                                                                                                                                                                                                                                                                                                         9.000.
                                                                                                                                                                                         -10000:
-10000:
                                                                            3000.
                                                                                                                                                                                                                                                                                                                                              -5000.
5000.
                                                    10000.
                                                                                                                                                                                                                                                                                                                                              -5000.
                                                                                                                                                                                                                                       2722222
2722222
2722222
2722222
2722222
2722222
2722222
2722222
2722222
2722222
2722222
2722222
2722222
2722222
2722222
2722222
2722222
2722222
2722222
2722222
2722222
2722222
2722222
2722222
2722222
2722222
2722222
2722222
2722222
2722222
2722222
2722222
2722222
2722222
2722222
272222
272222
272222
272222
272222
272222
272222
272222
272222
272222
272222
272222
272222
272222
272222
272222
272222
272222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
2722
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
27222
2722
27222
27222
27222
2722
2722
2722
2722
2722
2722
2722
2722
2722
2722
2722
2722
2722
2722
2722
2722
2722
2722
2722
2722
2722
2722
2722
2722
2722
2722
2722
2722
27
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          25.
225.
225.
225.
2000001
2000001
2000001
2000001
2000001
2000001
2000001
2000001
2000001
2000001
2000001
2000001
2000001
2000001
20000001
2000.
                                                                                                                                                                                                                                                                                                                                                                        00000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    00000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               00000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           00000
                                                                                                                                                                                                                                                                                                                                                                      2000.
2000.
2000.
2000.
2000.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    2000
2000
2000
2000
2000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              2000.
2000.
2000.
2000.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           2000.
2000.
2000.
2000.
```

Table XVIII (cont'd)

50	2	2	3 3	• 3
50 49 50 49 50	2 2 2	3		
5Ó	2	4 5	3 3	• 3
, , 50	Ž	5	3	. 3

APPENDIX B

PROGRAM ORGANIZATION

A. DESCRIPTION

The program organization is laid out in the following flow charts. The main driver program is arranged to call a subdriver, XMSADT, and the optimizer of the user's choice. All changes for replacing an optimizer occur in MSADT. This allows for easy testing of several optimizers on the same problem.

XMSADT may be called from the main for input, analysis, and output. Printed output may vary as the user requires. A complete listing of all subroutines and their functions is given in Table .

Table XIX
ANALYSIS CONTROL

ANALYSIS ICALC=2

Table XX
OUTPUT CONTROL

OUTPUT FOR INFO=0/1/2

Table XXI PROGRAM FLOW CHART

TABLE XXII

SUBROUTINE USES

FILENAME	TITLE
EIGR01	SOLVES EIGENVALUE PROBLEM (A-ALAMBD*B) X=0
EIGR02	SOLVES EIGEN VALUE PROBLEM
EIGR03	SOLVES EIGENVALUE PROBLEM
SADTO1	THIS ROUTINE READS AND PRINTS INPUT DATA AND ORGANIZES PSEUDO-DYNAMIC STORAGE ALLOCATION
SADT02	BUILDS VECTORS JC AND IIK FOR FINITE ELEMENT STRUCTURAL ANALYSIS
SADT03	BUILDS THE ELEMENT STIFFNESS MATRIX FOR TRUSS FINITE ELEMENT NO. II
SADTO4	BUILDS ELEMENT STIFFNESS MATRICES AND ADDS THEM TO THE GLOBAL STIFFNESS MATRIX
SADT05	SUPERIMPOSES THE ELEMENT STIFFNESS VECTOR EKOF ELEMENT II ON THE GLOBAL VECTOR AK
SADT06	BUILDS GLOBAL LUMPED MASS MATRIX
SADTO7	LU DECOMPOSES SYMMETRIC POSITIVE-DEFINITE SPARCE MATRICES, THE UPPER TRIANGLE OF WHICH IS STORED IN VECTOR AK WITH LEADING ZEROES OMITTED
SADTO8	PORWARD AND BACK SUBSTITUTES TO YIELD A SOLN TO A SET OF LINEAR EQNS (DECOMPOSED W/ SADTO7)
SADT09	PRINTS ALL JOINT DISPLACEMENTS FOR EACH LOAD CONDITION OF A FINITE ELEM. STRUCTURE
SADT10	PERFORMS TRUSS FIXED-GEOMETRY DESIGN
SADT11	ROUTINE TO ORGANIZE ANALYSIS
SADT14	CALCULATES PARTIAL DERIVATIVE OF TRUSS ELEM R NATRIX WRT COORD DOF 11 AT NODE J1
SADT15	CALCULATESS VALUES OF ALL DESIGN AND BEHAV- IORIAL CONSTRAINTS AS DEFINED BY PROGRAM "SAD"
SADT16	CALCULATES STRESS IN BAR ELEMENT II UNDER LOAD CONDITION JJ
SADT 17	PRINTS FORCES OR STRESSES IN BAR ELEMENTS
SADT18	CALCULATES GRADIENT INFO IN FINITE ELEM STRUCTURAL ANALYSIS
SADT19	ADDS ELEMENT MASS AN OF ELEMENENT II TO GLOBAL MASS MATRIX

SADT20	CALCULATES THE PARTIAL DERIVATIVES OF THE DISPLACEMENTS WRT INDEPENDENT DESIGN VARIABLE II
SADT21	CALCULATES STRESS AND GRADIENT OF STRESS IN BAR ELEM II UNDER LOAD COND JJ GIVEN DISPLACEMENT VECTOR PL AND GRADIENTS OF THE DISPLACEMENTS IN VECTOR DU
SADT22	PERFORMS STRESS-RATIO DESIGN OF A FIXED GEOMETRY TRUSS
SADT23	CALCULATES WEIGHT OF TRUSS GIVEN AREAS AND LENGTHS
SADT26	CALCULATES THE GRADIENT OF WEIGHT WRT RECIPROCAL DESIGN VARIABLES
SADT31	CALCULATES GRADIENT INFORMATION AND STORES IN ARRAY TAY
SADT34	COMMIN EXTERNAL FOR TRUSS FIXED GEOMETRY DESIGN
SADT35	CALCULATES GRADIENT INFORMATION AND STORES IN ARRAY TAY
SADT36	CALCULATES (XEIG-TAM*XEIG) FOR GRADIENT CALCULATIONS IN PREQUENCY CONSTRAINTS
SADT37	CALCULATES EIGENVALUE GRADIENT INFORMATION IN PINITE ELEMENT STRUCTURAL ANALYSIS AND DESIGN
SADT40	CALCULATES GRADIENTS OF DISPLACEMENTS WRT COORDINATE DESIGN VARIABLE II
SADT41	CALCULATES GRADIENT INFORMATION WRT COORDINATE VARIABLES
SADT42	CALCULATES GRADIENT OF WEIGHT WRT COORDINATE DESIGN VARIABLES
SADT43	CALCULATES GRADIENTS OF OBJECTIVE AND ACTIVE CONSTRAINTS IN OPTIMUM GEOMETRY DIRECTION FINDING PROBLEM
SADT44	PERFORMS TRUSS FIXED GEOMETRY DESIGN AND EVALUATES CONSTRAINTS
SADT45	PERFORMS TRUSS OPTIMUM GEOMETRY DESIGN
SADT46	READS INPUT INFORMATION FOR BAR ELEMENTS
SADT48	BUILDS THE ELEMENT MASS MATRIX FOR A TRUSS FINITE ELEMENT
SADT49	SOLVES REAL EIGENVALUE PROBLEMS USING THE SUBSPACE ITERATION METHOD
SADT50	BUILDS INITIAL SET OF BASIS VECTORS FOR EIGENSOLUTION BY REDUCED BASIS METHOD
SADT51	CALCULATES STRESS AND GRADIENT OF STRESS IN BAR ELEMENT II UNDER LOAD CONDITION JJ. GIVEN DISLPLACEMENTS CONTAINED IN VECTOR PL AND GRADIENT OF DISPLACEMENTS

IN VECTOR DU

SADT52	PERFORMS 1-DIMENSIONAL SEARCH IN COORDINATE DESIGN SPACE
SADT53	PRINTS MEMBER INFORMATION FOR BAR ELEM
SADT54	CALCULATES AND PRINTS CENTER-OF-GRAVITY AND INERTIAL PROPERTIES OF FINITE ELEM STRUCTURE
SADT61	BUILDS GLOBAL MASS MATRIX
SADT62	PRINTS NEIG EIGENVALUES STORED IN EIGVAL, AND THEIR CORRESPONDING EIGENVECTORS STORED IN XEIG
SADT71	PRINTS G VECTOR OF CONSTRAINTS
SADT73	CALCULATES GRADIENT INFORMATION
SADT74	PRINTS TAY ARRAY OF GRADIENTS
SADT75	CALCULATES GRADIENT OF WEIGHT WITH RESPECT TO AREA DESIGN VARIABLES
SADT76	CALCULATES GRADIENT OF WEIGHT WITH RESPECT TO COORDINATE DESIGN VARIABLES
SADT77	CALCULATES GRADIENT INFORMATION
SADT79	PRINTS COORDINATE INFORMATION
MSADT	DRIVER PROGRAM FOR USING THE ABOVE SUBROUTINES. MSADT MAY BE COUPLED TO OPTIMIZER OF USER'S CHOICE.
XMSADT	SUBDRIVER PROGRAM FOR COUPLING SADT ROUTINES TO MEADT

LIST OF REFERENCES

- Vanderplaats, G. N., "CONMIN A Fortran Program for Constrained Function Minimization - User's Manual," NASA TMX-62, 282, August 1973.
- 2. Felix, J. and Vanderplaats, G. N., Configuration
 Optimization of Trusses Subject to Strength, Displacement and Frequency Constraints, proc. ASME Computer
 Engineering Conference and Exhibit, San Diego, August
 15-19, 1982.
- 3. Arora, J. S. and Haug, E.J., "Methods of Design Sensitivity Analysis in Structural Optimization," AIAA Journal, Vol. 17, No. 9, September 1979, pp. 970-174.
- 4. Vanderplaats, G. N., "Comment on Method of Design Sensitivity Analysis in Structural Optimization," AIAA Journal, Vol. 18, No. 11, November 1976, pp. 1406-1407.
- 5. Nelson, R. B., "Simplified Calculation of Eigenvector Derivatives," AIAA Journal, Vol. 14, No. 9, September 1976, pp. 1201-1205.

INITIAL DISTRIBUTION LIST

		No.	Copie
1.	Defense Technical Information Center Cameron Station Alexandria, Virginia 22314		2
2.	Library, Code 0142 Naval Postgraduate School Monterey, California 93940		2
3.	Professor G. N. Vanderplaats, Code 69Vn Department of Mechanical Engineering Naval Postgraduate School Monterey, California 93940	1	.0
4.	Professor Young Shin, Code 69 Department of Mechanical Engineering Naval Postgraduate School Monterey, California 93940		1
5.	Dr. Jim Bennett GM Research Laboratory Warren, Michigan 48090		1
6.	Dr. Richard L. Bennett Bell Helicopter Textron P.O. Box 482 Forth Worth, Texas 76101		1
7.	Dr. Richard H. Gallegner Dean of College of Engineering University of Arizona Tucson, Arizona 85721		1
8.	Dr. Erwin Johnson Northrop Corporation (Aircraft Group) 1 Northrop Avenue Hawthorne, California 90250		1
9.	Dr. Hirokazu Miura NASA Ames Research Center MS 237-11 Moffett Field California 94035		1

		No.	Copies
10.	Dr. Lucien A. Schmit Department of Mechanical & Structural Engineering 6731 Boelter Hall University of California Los Angeles Los Angeles, California 90024		1
11.	Dr. Jarek Sobieski NASA Langley Research Center MS 243 Hampton, Virginia 23665		1
12.	LT James E. Titzgerald 122 Pennsylvania Avenue Lebanon, Tennessee 37082		2
13.	Chairman, Code 69 Department of Mechanical Engineering Naval Postgraduate School Monterey, California 93940		1

DATE