Assignment 3 Fundamentals of ML

R Markdown

library(reshape) library(caret) library(e1071)

readin the excel data into dataframe

```
rm(list=ls())
getwd()

## [1] "/Users/ankithdasu/Desktop/Spring 2022/Fundamentals of Machine Learning/Assignment 3"
setwd("/Users/ankithdasu/Desktop/Spring 2022/Fundamentals of Machine Learning/Assignment 3")
NvBay3 <- read.csv("UniversalBank.csv")
head(NvBay3)</pre>
```

##		ID	Age	Experie	ence	Income	ZIP.Code	Family	CCAvg	Education	Mortgage
##	1	1	25		1	49	91107	4	1.6	1	0
##	2	2	45		19	34	90089	3	1.5	1	0
##	3	3	39		15	11	94720	1	1.0	1	0
##	4	4	35		9	100	94112	1	2.7	2	0
##	5	5	35		8	45	91330	4	1.0	2	0
##	6	6	37		13	29	92121	4	0.4	2	155
##		Pei	rsona	al.Loan	Secu	ırities	.Account	CD.Acco	int On	line Credi	tCard
##	1			0			1		0	0	0
##	2			0			1		0	0	0
##	3			0			0		0	0	0
##	4			0			0		0	0	0
##	5			0			0		0	0	1
##	6			0			0		0	1	0

tail(NvBay3)

##		ID	Age	Experie	ence	Income	ZIP.Code	Family	CCAvg	Education	Mortgage
##	4995	4995	64		40	75	94588	3	2.0	3	0
##	4996	4996	29		3	40	92697	1	1.9	3	0
##	4997	4997	30		4	15	92037	4	0.4	1	85
##	4998	4998	63		39	24	93023	2	0.3	3	0
##	4999	4999	65		40	49	90034	. 3	0.5	2	0
##	5000	5000	28		4	83	92612	3	0.8	1	0
##		Perso	onal.	Loan Se	ecuri	ties.Ac	count CD	.Account	t Onlir	ne CreditCa	ard
##	4995			0			0	()	1	0

```
## 4996
                     0
                                                                         0
## 4997
                                                             1
                                                                         0
## 4998
                     0
                                                             0
                                          0
                                                      0
                                                                         0
                     0
                                          0
                                                      0
                                                                         0
## 4999
                                                             1
## 5000
                                                      0
```

Converting data into factors(categorical) mainly the one which are important to this.

```
NvBay3$Personal.Loan = as.factor(NvBay3$Personal.Loan) # converting Personal Loan into categorical data
NvBay3$Online = as.factor(NvBay3$Online) # converting Online into categorical data
NvBay3$CreditCard = as.factor(NvBay3$CreditCard) # converting CreditCard into categorical data
```

#Data partition 60 % training and 40 % into validation

2

3

4

0

1

```
set.seed(1)
train.index <- sample(row.names(NvBay3), 0.6*dim(NvBay3)[1]) # 60 % of data into training set
valid.index <- setdiff(row.names(NvBay3), train.index) # 40 % into validation set
train.df <- NvBay3[train.index,] # assigning the train.index into data frame
valid.df <- NvBay3[valid.index,] # assigning the validation index into data frame
train <- NvBay3[train.index,] # Making a copy of the data frame train.df
valid = NvBay3[train.index,] # Making a copy of the data frame valid.df</pre>
```

A. Create a pivot table for the training data with Online as a column variable, CC as a row variable, and Loan as a secondary row variable. The values inside the table should convey the count. In R use functions melt() and cast(), or function table().

Pivot table For CreditCard , Personal loan as row variables and Online in column.

1 198

0 801

1 77

```
library(reshape2)
melt = melt(train,id=c("CreditCard","Personal.Loan"),variable= "Online")

## Warning: attributes are not identical across measure variables; they will be

## dropped

cast=dcast(melt,CreditCard+Personal.Loan~Online) # dcast is to convert the data in CC , Personal loan

## Aggregation function missing: defaulting to length

cast[,c(1,2,3,14)] # casting column no 14 which credit card and 1 , 2 , 3 column is , personal loan,

## CreditCard Personal.Loan ID Online

## 1 0 0 1924 1924
```

198

801

77

B. Consider the task of classifying a customer who owns a bank credit card and is actively using online banking services. Looking at the pivot table, what is the probability that this customer will accept the loan offer? [This is the probability of loan acceptance (Loan = 1) conditional on having a bank credit card (CC = 1) and being an active user of online banking services (Online = 1)].

```
Loan_CC1 <- 77/3000 # 77 is the value for Loan and CC =1 as per pivot table. and 3000 is the total co
Loan_CC1 # which is 26 %.
## [1] 0.02566667
C. Create two separate pivot tables for the training data. One will have Loan (rows) as a function of Online
(columns) and the other will have Loan (rows) as a function of CC.
melt_1 = melt(train,id=c("Personal.Loan"), variable = "Online") # Melting Personal loan and Online data
## Warning: attributes are not identical across measure variables; they will be
## dropped
melt_2 = melt(train,id=c("CreditCard"),variable = "Online") # Melting Credicard data with reference to
## Warning: attributes are not identical across measure variables; they will be
## dropped
cast_1 =dcast(melt_1,Personal.Loan~Online) # Casting Personal loan and online values
## Aggregation function missing: defaulting to length
cast_2=dcast(melt_2,CreditCard~Online) # Casting Personal loan and online values
## Aggregation function missing: defaulting to length
Loanonline=cast 1[,c(1,13)]
LoanCC = cast_2[,c(1,14)]
Loanonline # indicates personal loan count in reference with online
##
     Personal.Loan Online
## 1
                 0
                     2725
## 2
                 1
                      275
LoanCC # Indicates Credit Card count in reference with online.
     CreditCard Online
## 1
              0
                  2122
## 2
                   878
```

D. Compute the following quantities [P (A | B) means "the probability of A given B"]: P (CC = 1 | Loan = 1) (the proportion of credit card holders among the loan acceptors) P(Online=1|Loan=1) P (Loan = 1) (the proportion of loan acceptors) P(CC=1|Loan=0) P(Online=1|Loan=0) P(Loan=0)

```
table(train[,c(14,10)]) # Creating a pivot table for column 14 and 10 which is credit card and persona
##
             Personal.Loan
## CreditCard
                0
            0 1924 198
##
            1 801
                   77
table(train[,c(13,10)]) # Creating a pivot table for column 13 and 10 which is online and personal lo
##
         Personal.Loan
## Online
           0
                1
##
       0 1137 109
        1 1588 166
##
table(train[,c(10)]) # Pivot table for Personal loan. There are 2725 and 275 from training
##
##
      0
           1
## 2725 275
P(CC = 1 \mid Loan = 1)
CCLoan_1 = 77/(77+198) # by referring the above pivot table we can get the CC= 1 and Loan = 1 values, w
CCLoan_1
## [1] 0.28
P(Online=1|Loan=1)
ONLoan_1 =166/(166+109) # by referring the above pivot table we can get the online = 1 and Loan = 1 val
ONLoan 1
## [1] 0.6036364
P (Loan = 1)
Loan_1 =275/(275+2725) # by referring the above pivot table we can get the Loan = 1
Loan_1
## [1] 0.09166667
P(CC=1|Loan=0)
CCLoan_01= 801/(801+1924) # by referring the above pivot table we can get the CC = 1 and Loan = 0 value
CCLoan_01
## [1] 0.293945
P(Online=1|Loan=0)
```

```
ON1LO= 1588/(1588+1137) # by referring the above pivot table we can get the online = 1 and Loan = 0 va
ON1LO
## [1] 0.5827523
P(Loan=0)
Loan_0= 2725/(2725+275) # by referring the above pivot table we can get the Loan = 0 values
Loan_0
## [1] 0.9083333
E. Use the quantities computed above to compute the naive Ba1 probability P(Loan = 1 \mid CC = 1, Online)
= 1).
Naive bayes = ((77/(77+198))*(166/(166+109))*(275/(275+2725)))/(((77/(77+198))*(166/(166+109))*(275/(275+2725)))/(((77/(77+198)))*(166/(166+109))*(275/(275+2725)))/(((77/(77+198)))*(166/(166+109)))*(275/(275+2725)))/(((77/(77+198)))*(166/(166+109)))*(275/(275+2725)))/(((77/(77+198)))*(166/(166+109)))*(275/(275+2725)))/(((77/(77+198)))*(166/(166+109)))*(275/(275+2725)))/(((77/(77+198))))*(166/(166+109)))*(275/(275+2725)))/(((77/(77+198))))*(166/(166+109)))*(275/(275+2725)))/(((77/(77+198))))*(166/(166+109)))*(275/(275+2725)))/(((77/(77+198))))*(166/(166+109)))*(275/(275+2725)))/(((77/(77+198))))/(((77/(77+198)))))/(((77/(77+198))))/(((77/(77+198))))/(((77/(77+198))))/(((77/(77+198))))/(((77/(77+198))))/(((77/(77+198))))/(((77/(77+198))))/(((77/(77+198))))/(((77/(77+198))))/(((77/(77+198))))/(((77/(77+198))))/(((77/(77+198))))/(((77/(77+198))))/(((77/(77+198))))/(((77/(77+198))))/(((77/(77+198))))/(((77/(77+198))))/(((77/(77+198))))/(((77/(77+198))))/(((77/(77+198))))/(((77/(77+198))))/(((77/(77+198))))/(((77/(77+198))))/(((77/(77+198))))/(((77/(77+198))))/(((77/(77+198))))/(((77/(77+198))))/(((77/(77+198))))/(((77/(77+198))))/(((77/(77+198))))/(((77/(77+198))))/(((77/(77+198))))/(((77/(77+198))))/(((77/(77+198))))/(((77/(77+198))))/(((77/(77+198))))/(((77/(77+198))))/(((77/(77+198))))/(((77/(77+198))))/(((77/(77+198))))/(((77/(77+198))))/(((77/(77+198))))/(((77/(77+198))))/(((77/(77+198))))/(((77/(77+198))))/(((77/(77+198))))/(((77/(77+198))))/(((77/(77+198))))/(((77/(77+198))))/(((77/(77+198))))/(((77/(77+198)))/(((77/(77+198))))/(((77/(77+198)))/(((77/(77+198))))/(((77/(77+198)))/(((77/(77+198))))/(((77/(77+198)))/(((77/(77+198))))/(((77/(77+198)))/(((77/(77+198))))/(((77/(77+198)))/(((77/(77+198))))/(((77/(77+198)))/(((77/(77+198)))/(((77/(77+198)))/(((77/(77+198)))/(((77/(77+198)))/(((77/(77+198)))/(((77/(77+198)))/((77/(77+198)))/(((77/(77+198)))/(((77/(77+198)))/(((77/(77+198)))/(((77/(77+198)))/(((77/(77+198)))/(((77/(77+198)))/(((77/(77+198)))/(((77/(77+198)))/(((77/(77+198)))/(((77/(77+198)))/(((77/(7
Naivebayes # 90 % is the probability
## [1] 0.09055758
F. Compare this value with the one obtained from the pivot table in (b). Which is a more accurate estimate?
9.05% are very similar to the 9.7% the difference between the exact method and the naive-baise method is
the exact method would need the the exact same independent variable classifications to predict, where the
naive bayes method does not.
library(caret)
## Loading required package: ggplot2
## Loading required package: lattice
library(e1071)
naive.train1 = train.df[,c(10,13,14)] # training data is from Personal loan, Creditcard and online. col
naive.test1 =valid.df[,c(10,13,14)] # testing set data from the same columns of data
naivebayes = naiveBayes(Personal.Loan~., data=naive.train1) # applying naivebayes algorithm to personal
naivebayes
##
## Naive Bayes Classifier for Discrete Predictors
##
## Call:
## naiveBayes.default(x = X, y = Y, laplace = laplace)
## A-priori probabilities:
## Y
##
## 0.90833333 0.09166667
##
```

```
## Conditional probabilities:
##
      Online
## Y
##
     0 0.4172477 0.5827523
##
     1 0.3963636 0.6036364
##
##
      CreditCard
## Y
              0
                        1
##
     0 0.706055 0.293945
##
     1 0.720000 0.280000
```

G. Which of the entries in this table are needed for computing P (Loan = $1 \mid CC = 1$, Online = 1)? In R, run naive Bayes on the data. Examine the model output on training data, and find the entry that corresponds to P (Loan = $1 \mid CC = 1$, Online = 1). Compare this to the number you obtained in (E).

Answer:

For the naivebayes, it is same output that we have got in the manual calculation process. (.280)(.603)(.09)/(.280.603.09+.29.58 = .09 which is the same as the manual calculation process.