Sum-product algorithm

CS B553 Spring 2013

Announcements

• A2 (still) due next week

Recall we can convert a Bayes net to a Markov net...

Recall we can convert a Bayes net to a Markov net...

We can use variable elimination to compute marginals...

 Each step of VE "consumes" some factors, multiplies them together, marginalizes to eliminate a variable, and creates a new factor

Step	Variable	Factors	Variables	New
	eliminated	used	involved	factor
1	C	$\phi_C(C)$, $\phi_D(D,C)$	C, D	$\tau_1(D)$
2	D	$\phi_G(G, I, D)$, $\tau_1(D)$	G, I, D	$\tau_2(G, I)$
3	I	$\phi_I(I)$, $\phi_S(S, I)$, $\tau_2(G, I)$	G, S, I	$\tau_3(G, S)$
4	H	$\phi_H(H,G,J)$	H, G, J	$\tau_4(G, J)$
5	G	$\tau_4(G, J), \tau_3(G, S), \phi_L(L, G)$	G, J, L, S	$\tau_5(J, L, S)$
6	S	$\tau_5(J, L, S)$, $\phi_J(J, L, S)$	J, L, S	$\tau_6(J, L)$
7	L	$\tau_6(J, L)$	J, L	$\tau_7(J)$

Execution of variable elimination defines an *induced graph...*

• Induced graph has an edge between X and Y iff X and Y appear in an intermediate factor during VE

	Step	Variable eliminated	Factors used	Variables involved	New factor	
	2	C D	$\phi_C(C)$, $\phi_D(D,C)$ $\phi_G(G,I,D)$, $\tau_1(D)$	C,D G,I,D	$\tau_1(D)$ $\tau_2(G, I)$	
	3	I I	$\phi_G(G, I, D), \tau_1(D)$ $\phi_I(I), \phi_S(S, I), \tau_2(G, I)$			
	4	Ĥ	$\phi_H(H,G,J)$	H,G,J		
	5	G	$\tau_4(G, J), \tau_3(G, S), \phi_L(L, G)$	G,J,L,S	$\tau_5(J, L, S)$	
	6	S	$\tau_5(J, L, S), \phi_J(J, L, S)$			
	7	L	$\tau_0(J, L)$	J, L	$\tau_7(J)$	
Coherence Ditticulty Grade Letter Happy	Intelligen	SAT -	Every maximal cliquinduced graph corre an intermediate VE Every intermediate for corresponds to a clicinduced graph	sponds t factor factor	Letter	SAT

Execution of variable elimination also defines a *clique tree*...

- Node for each subset of variables considered by VE
- Edge between X and Y if X is used to compute Y

	~~~				pate .
	Step	Variable	Factors	Variables	New
		eliminated	used	involved	factor
	1	C	$\phi_C(C), \phi_D(D,C)$	C, D	$\tau_1(D)$
	2	D	$\phi_G(G, I, D), \tau_1(D)$	G, I, D	$\tau_2(G, I)$
	3	I	$\phi_I(I), \phi_S(S, I), \tau_2(G, I)$	G, S, I	$\tau_3(G, S)$
	4	H	$\phi_H(H, G, J)$	H,G,J	$\tau_4(G, J)$
	5	G S	$\tau_4(G, J), \tau_3(G, S), \phi_L(L, G)$	G, J, L, S	$\tau_5(J, L, S)$
	6		$\tau_5(J, L, S), \phi_J(J, L, S)$	J, L, S	$\tau_6(J, L)$
	7	L	$\tau_6(J, L)$	J, L	$\tau_7(J)$
C,D T ₁	S,I,D	τ ₂	F,I H,G,J T ₄ C	G,J,L,S	T ₅ J,L,S T ₆ J,L



## Different VE orderings yield different induced graphs and clique trees...

Step	Variable	Factors	Variables	New
	eliminated	used	involved	factor
1	G	$\phi_G(G, I, D), \phi_L(L, G), \phi_H(H, G, J)$	G, I, D, L, J, H	$\tau_1(I, D, L, J, E)$
2	I	$\phi_I(I), \phi_S(S, I), \tau_1(I, D, L, S, J, H)$	S, I, D, L, J, H	$\tau_2(D, L, S, J, H)$
3	S	$\phi_J(J, L, S)$ , $\tau_2(D, L, S, J, H)$	D, L, S, J, H	$\tau_3(D, L, J, H)$
4	L	$\tau_3(D, L, J, H)$	D, L, J, H	$\tau_4(D, J, H)$
5	H	$\tau_4(D, J, H)$	D, J, H	$\tau_5(D, J)$
6	C	$\phi_C(C), \phi_D(D, C)$	D, J, C	$\tau_6(D)$
7	D	$\tau_5(D, J), \tau_6(D)$	D, J	$\tau_7(J)$



#### Important properties of clique trees

- A clique tree is always a tree (obviously)
- Clique trees exhibit the running intersection property
  - If variable X is part of node C and node D, then every node along the path from C to D also contains X
- If there is an edge between C and D, then the  $\tau$  function "connecting" C and D has scope C  $\bigcap$  D

### Inference through message passing

- Clique trees provide an alternative inference algorithm
  - Think of each node in clique tree as an "agent"
  - Each agent waits to receive its incoming message(s)
  - Once message(s) arrive, it computes a new message, based on incoming messages and its own factor, and sends the new message to its neighbor
  - Continue until all nodes have computed their message



#### Inference through message passing

- Say you want to compute a marginal over variable  $\boldsymbol{X}$ 
  - Declare a node containing X to be the root of the clique tree
- Recall that Markov nets factor over cliques,

 $P(\mathbf{X}) = P(X_1, ..., X_N) = \frac{1}{Z} \phi_1(\mathbf{A_1}) \cdot \phi_2(\mathbf{A_2}) \cdot ... \cdot \phi_N(\mathbf{A_N})$ 

C2 C3 C4 C5

 We can assign each of these factors to one of the nodes in the clique tree,

 $P(\mathbf{X}) = \frac{1}{Z} \prod_{j} \psi_{j}(\mathbf{C}_{j})$ 

#### Sum-product algorithm

- First, each leaf C_i computes a message to send to its parent, C_i
  - This message has scope  $\mathbf{S}_{i,j} = \mathbf{C}_i \cap \mathbf{C}_j$
  - In computing the message, we marginalize over the (single) variable in C_i – C_i
  - So the message is computed as,

$$\delta_{i \to j}(\mathbf{S_{i,j}}) = \sum_{\mathbf{C_i} - \mathbf{C_j}} \psi_i(\mathbf{C_i})$$



#### Sum-product algorithm

- Non-leaf nodes wait to receive messages from all their children
- Each node C_i then computes a message to send to its parent, C_i





 This message includes the messages (intermediate factors) from the children,

$$\delta_{i \rightarrow j}(\mathbf{S_{i,j}}) = \sum_{\mathbf{C_i} - \mathbf{C_j}} \psi_i(\mathbf{C_i}) \prod_{k \in \mathcal{N}(i) - \{j\}} \delta_{k \rightarrow i}(\mathbf{S_{k,i}})$$

where  $\mathcal{N}(i)$  is the set of neighbors of  $C_i$ 

### Sum-product algorithm

- Then, the root node computes a final message to send to its (imaginary) parent
  - This message,  $\beta(\mathbf{C_r})$ , gives us the marginal,

$$P(\mathbf{C_r}) = \frac{1}{Z}\beta(\mathbf{C_r})$$



### Computing multiple marginals

- Often, we'll want to compute marginals over multiple variables of our graphical model
  - How to do this?



### Sum-product belief propagation

- Instead of sending messages in one direction ("up" the tree), nodes send messages in all directions
  - Algorithm is almost exactly the same
  - Each node C_i sends a message to each of its neighbors C_i,



 Note that message sent to j does not use the message sent from j, to avoid double counting



#### Sum-product belief propagation

 Once all messages have been exchanged, each node can compute its marginal,

$$P(\mathbf{C_i}) = \frac{1}{Z} \psi_i(\mathbf{C_i}) \prod_{k \in \mathcal{N}(i)} \delta_{k \to i}(\mathbf{S_{k,i}})$$

- Running time of sum-product BP?

### Constructing a clique tree

- One way to find a clique tree is to choose a variable elimination ordering and "run" VE
- Another approach is to use a graph construction
  - If necessary, moralize to produce an undirected graph G.
  - Triangulate G to produce a chordal graph H. (Would like one with minimum clique size, but this is NP hard.)
  - Find maximal cliques in H. (Not NP hard for chordal graphs.)
  - Construct graph with nodes corresponding to max cliques in
    H, edges weighted according to degree of overlap. I.e. edge
    between C1 and C2 has weight |C1 ∩ C2 |
  - Find a maximum spanning tree on this graph to yield a clique