TABLE OF CONTENTS

FIREDRAKE NOTES

Supervisors: Dr Pawar, Prof Piggott, Dr Sebille • 201718 • Imperial College London

Last Revision: January 4, 2018

Table of Contents

ey Notes to NEVER FORGET	i.
"Integration by Parts"	ii
Example: Linear Poisson Equation	i
Example: Nonlinear Poisson Equation	iii
Solving Navier Stokes in Firedrake	iv
Time-Dependent Navier Stokes via "Chorin's Method (IPCS)"	iv
P1 - Computing the Tentative Velocity	iv
P2 - Computing p^{n+1} with the tentative velocity u^*	V
P3 - Computing the new velocity u^{n+1} with the new pressure p^{n+1}	V
References	viii

Key Notes to NEVER FORGET

"Integration by Parts"

This comes up constantly in FEM stuff, when expressing problems in variational form. The usual spiel is to say "multiply by a test function v and then integrate by parts", to obtain the desired form. This hides a number of key subtle steps that otherwise look like magic.

First to note is that "integrate by parts" really means "apply (a corollary of) the Divergence Theorem":

Theorem 1.1 (Divergence Theorem). If Ω is a compact subset of \mathbb{R}^N with a piecewise smooth boundary $\partial\Omega = \Gamma$, and if \mathbf{F} is a continuously differentiable vevctor field defined on a neighbourhood of Ω then we have:

$$\int_{\Omega} (\nabla \cdot \boldsymbol{F}) \ d\Omega = \iint_{\Gamma} (\boldsymbol{F} \cdot \boldsymbol{n}) \ d\Gamma$$

where n is the outward pointing unit normal field of the boundary Γ .

Corollary 1.1. Replacing F with Fg in the theorem, where g is a scalar function, we get:

$$\int_{\Omega} \mathbf{F} \cdot (\nabla g) \ d\Omega + \int_{\Omega} g(\nabla \cdot \mathbf{F}) \ d\Omega = \iint_{\Gamma} g \mathbf{F} \cdot \mathbf{n} \ d\Gamma$$

We can apply this corollary to the LHS (i.e. to the terms involving u) to rewrite it as the sum of a different volume integral and a surface integral, which can often be made to vanish by applying boundary conditions.

Example: Linear Poisson Equation

Let us take an initial easy example of the basic linear Poisson problem:

$$(-\Delta u) = f$$
, on Ω
 $u = 0$, on $\partial \Omega = \Gamma$

We multiply both sides by the test function v and integrate to obtain:

$$\int_{\Omega} (-\Delta u) v \ d\Omega = \int_{\Omega} f v \ d\Omega$$

Now we apply the Corollary to the LHS (replacing F with ∇u and g with v) to get:

$$\int_{\Omega} \nabla u \cdot \nabla v \ d\Omega + \iint_{\Gamma} v \nabla u \cdot \boldsymbol{n} \ d\Omega = \int_{\Omega} (-\Delta u) v \ d\Omega = \int_{\Omega} f v \ d\Omega$$

The second term in the new LHS is a <u>closed</u> line integral of a grad function and thus equal to the difference of its endpoints, which are the same, hence the term is zero, leaving us with the desired variational form a(u, v) = L(v):

$$\int_{\Omega} \nabla u \cdot \nabla v \ d\Omega = \int_{\Omega} f v \ d\Omega$$

Example: Nonlinear Poisson Equation

Let's now look at the following nonlinear Poisson problem:

$$-\nabla \cdot ((1+u)\nabla u) = f$$
, in Ω
 $u = 0$, on $\partial \Omega = \Gamma$

We multiply by the test function v and integrate both sides:

$$\int_{\Omega} \left(-\nabla \cdot \left((1+u)\nabla u \right) \right) v \ d\Omega = \int_{\Omega} f v \ d\Omega$$

Again we apply the Corollary to the LHS (replacing F with $((1+u)\nabla u)$ and g with v) to get:

$$\int_{\Omega} \left((1+u)\nabla u \right) \cdot \nabla v \ d\Omega + \iint_{\Gamma} v \left(\left((1+u)\nabla u \right) \right) \cdot \boldsymbol{n} \ d\Gamma = \int_{\Omega} \left(-\nabla \cdot \left((1+u)\nabla u \right) \right) v \ d\Omega = \int_{\Omega} fv \ d\Omega$$

Looking again at the surface integral term on the new LHS, we recall the initial condition u = 0 on Γ and thus this term simplifies to:

$$\iint_{\Gamma} v(\nabla u \cdot \boldsymbol{n}) \ d\Gamma = 0 \qquad \text{(closed line integral of a grad function)}$$

Leaving us with the desired variational form F(u; v) = 0:

$$\int_{\Omega} ((1+u)\nabla u) \cdot \nabla v \ d\Omega = \int_{\Omega} f v \ d\Omega$$

Solving Navier Stokes in Firedrake

This section is based on material from the Navier Stokes tutorials from [1].

The following is the time-dependent Navier Stokes equation:

$$\rho \left(\frac{\partial u}{\partial t} + u \cdot \nabla u \right) = \nabla \cdot \sigma(u, p) + f \tag{1.1}$$

$$\nabla \cdot u = 0 \tag{1.2}$$

where

$$\sigma(u, p) = 2\mu\epsilon(u) - pI,$$

$$\epsilon(u) = \frac{\nabla u + (\nabla u)^T}{2},$$

f is a given force per unit volume.

We could choose to discretize this in time by replacing the time derivative with a difference quotient. There are complications to such a method though, since it has a "saddle-point" structure, and requires particular preconditioners and iterative methods to solve properly. Instead, we shall use one example of what is known as a *splitting method*, which essentially 'splits' the above nonlinear problem into numerous easier problems to be solved in sequence.

Time-Dependent Navier Stokes via "Chorin's Method (IPCS)"

We shall use a variant of what is known as *Chorin's Method*. This variant, called IPCS, solves three linear problems per timestep:

- P1: We compute a 'tentative velocity' u^* by advancing the momentum equation by a midpoint finite difference scheme in time, but using the previous pressure p^n and linearising the nonlinear convective term using u^n .
- P2: We use the tentative velocity u^* to compute the new pressure p^{n+1} .
- P3: We use the new pressure p^{n+1} to compute the new velocity u^{n+1} .

Each of these steps has some individual complexity, so we will discuss them in detail:

P1 - Computing the Tentative Velocity

We can express this as a linear variational problem, using the following variational form:

$$\underbrace{\left\langle \frac{\rho(u^* - u^n)}{\delta t}, v \right\rangle + \left\langle \rho u^n \cdot \nabla u^n, v \right\rangle}_{1 \& 2} + \underbrace{\left\langle \sigma(u^{n + \frac{1}{2}}, p^n), \epsilon(v) \right\rangle + \left\langle p^n n, v \right\rangle_{\partial \Omega}}_{3, 4 \& 5} - \left\langle \mu \nabla u^{n + \frac{1}{2}} \cdot n, v \right\rangle_{\partial \Omega}}_{1 \& 2} = \left\langle f^{n+1}, v \right\rangle \quad (1.3)$$

where

$$u^{n+\frac{1}{2}} = \frac{u^n + u^{n+1}}{2} \text{ (arithmetic mean)}$$

Let's break down this variational form a little to see where each term comes from:

<u>Terms 1 & 2</u> come from the LHS of the first equation in the initial problem. We write $\frac{u^*-u^n}{\delta t}$ for $\frac{\partial u}{\partial t}$ and then just integrate after multiplying by a test function v:

$$\rho\left(\frac{\partial u}{\partial t} + u \cdot \nabla u\right) \leadsto \int_{\Omega} \frac{\rho(u^* - u^n)}{\delta t} v \, dx + \int_{\Omega} \rho(u \cdot \nabla u) v \, dx$$
$$= \underbrace{\left\langle \frac{\rho(u^* - u^n)}{\delta t}, v \right\rangle}_{1} + \underbrace{\left\langle \rho u^n \cdot \nabla u^n, v \right\rangle}_{2}$$

Terms 3, 4 & 5 come from the term $\nabla \cdot \sigma(v, p)$ from the RHS of the initial expression. We multiply by v and integrate by parts to obtain:

$$-\int_{\Omega} (\nabla \cdot \sigma) v \ dx = \int_{\Omega} \sigma \cdot \nabla v \ dx - \int_{\partial \Omega} v(\sigma \cdot n) \ ds$$

Now expressing in \langle , \rangle notation we get:

$$=\langle \sigma, \epsilon(v) \rangle : \sigma \text{ is sym } \&$$

$$-\left\langle \nabla \cdot \sigma, v \right\rangle = \overbrace{\left\langle \sigma, \nabla v \right\rangle} - \left\langle \sigma \cdot n, v \right\rangle_{\partial \Omega}$$

$$\left(\text{expanding } \sigma\right) = \left\langle \sigma, \epsilon(v) \right\rangle + \left\langle pn - \mu \nabla u \cdot n - \underline{\mu(\nabla u)^T \cdot n}, v \right\rangle_{\partial \Omega}$$

$$\left(\text{assuming } \star = 0 \text{ (see below)}, \\ \text{and using } \nabla u = \left(\frac{\partial u_j}{\partial x_i}\right)_{ij} \text{ convention}\right) = \underbrace{\left\langle \sigma, \epsilon(v) \right\rangle}_{3} + \underbrace{\left\langle pn, v \right\rangle_{\partial \Omega}}_{4} - \underbrace{\left\langle \mu \nabla u \cdot n, v \right\rangle_{\partial \Omega}}_{5}$$

We should avoid passing over \star without remarking on what assumption we are making in allowing it to be zero. If we had been solving a problem with a free boundary we could simply set $\sigma \cdot n = 0$ on the boundary. However we are computing flow through a channel and hence our flow continues at the end into some 'imaginary' further channel or region, so we need to be a little more careful. We therefore make the assertion that "the derivative of the velocity in the direction of the channel is zero at the outflow" which is what (assuming the $\nabla u = \left(\frac{\partial u_j}{\partial x_i}\right)_{ij}$ convention) yields $\star = 0$.

 $^{^{1} \}mathtt{https://fenicsproject.org/pub/tutorial/html/._ftut1009.html[1]}$

P2 - Computing p^{n+1} with the tentative velocity u^*

To compute the new pressure p^{n+1} , we solve the following linear variational problem, wherein q is a scalar-valued test function from the pressure function space:

$$\left\langle \nabla p^{n+1}, \nabla q \right\rangle = \left\langle \nabla p^n, \nabla q \right\rangle - \Delta t^{-1} \left\langle \nabla \cdot u^*, q \right\rangle$$
 (1.4)

Again let's provide some intuition for where this comes from. Let us take the Navier Stokes momentum equation in terms of u^* and p^{n+1} and subtract it from the same equation expressed in terms of u^{n+1} and p^{n+1} :

$$\rho\left(\frac{u^{n+1} - u^*}{\Delta t} + u^n \cdot \nabla u^n\right) - \rho\left(\frac{u^* - u^n}{\Delta t} + u^n \cdot \nabla u^n\right) = \nabla \cdot \sigma(u^n, p^{n+1}) - \nabla \cdot \sigma(u^n, p^n)$$

which simplifies to:

$$\rho \frac{u^{n+1} - u^*}{\Delta t} = \nabla \cdot \sigma(u^n, p^{n+1}) - \nabla \cdot \sigma(u^n, p^n)$$
(by defin of σ) = $(\nabla \cdot p^n I) - (\nabla \cdot p^{n+1} I)$

$$= \nabla p^n - \nabla p^{n+1}$$

and hence yields:

$$\frac{u^{n+1} - u^*}{\Delta t} + \nabla p^{n+1} - \nabla p^n = 0 \tag{1.5}$$

(the ρ vanishes inexplicably because hey, physics!)

If we then take the divergence and require the $\nabla \cdot u^{n+1} = 0$ condition from the second Navier Stokes equation 1.2, we get:

$$\frac{-\nabla \cdot u^*}{\Delta t} + \nabla^2 p^{n+1} - \nabla^2 p^n = 0$$

which is a Poisson problem for p^{n+1} , yielding the variational problem 1.4 we were hoping to arrive at!

P3 - Computing the new velocity u^{n+1} with the new pressure p^{n+1}

Once again we seek a linear variational problem, this time to solve for u^{n+1} using the updated pressure p^{n+1} that we just solved in P2. If we look back at equation 1.5 we see that this provides exactly what we need! Multiplying by a test function v and integrating yields precisely:

$$\langle u^{n+1}, v \rangle = \langle u^*, v \rangle - \Delta t \langle \nabla(p^{n+1} - p^n), v \rangle$$
 (1.6)

201718 REFERENCES

References

MIGRATE TO BIBLIO

- https://en.wikipedia.org/wiki/Divergence_theorem
- https://en.wikipedia.org/wiki/Surface_integral
- http://mathinsight.org/gradient_theorem_line_integrals

201718 REFERENCES

References

[1] H. P. Langtangen. Solving PDEs in Python: the FEniCS tutorial I. SpringerOpen, 2016.