

Written assessment, February, 6, 2025

Last name, First name _

Exercise 1 (value 9)

A company must plan the production of a single type of good for the next T periods. The demand d_t of the product for each period $t \in T$ is kwown. The company can produce up to P units in each period. Units not sold in a period can be stored in a depot and used in the next periods. The depot is initially empty. The cost for storing units is negligible, while the production cost of each unit in a period is c_s if the production of the period is smaller than or equal to ϑ units and $c_l > c_s$ if the production is larger than ϑ units. Write a Mixed Integer Linear Program to plan the production in each period, together with the quantities to be stored. (Hint: use two variables to represent the production of a period, one for productions up to ϑ units, productions higher than ϑ units). PRODUCTS UNITS

Exercise 2 (value 8)

Consider the following linear program:

$$\max x_1 + x_2$$

$$s.t. \ 2x_1 \le 5$$

$$x_2 \le 3$$

$$x_1, x_2 \ge 0 \text{ integer}$$

- Relax the integrality constraints, draw the feasible region and solve the problem graphically (report the solution and its value)
- Write the tableau corresponding to the optimal solution in basic form
- Find a Gomory's cut and add it to the tableau, compute and report the new feasible solution
- Is the new solution optimal for the given problem? Motivate your answer

Exercise 3 (value 8)

Consider the following ILP:

$$\max 2x_1 + x_2$$
s.t. $x_1 - x_2 \ge 0$

$$2x_1 + 3x_2 \le 35$$

$$x_1 - 2x_2 \le 0$$

$$x_1 \le 9$$

$$x_1, x_2 \ge 0 \text{ integer}$$

Solve the problem using the standard branch-and-bound algorithm. Solve all the relaxed problems encountered via the graphical method. (Explore at most five nodes of the tree)

Written assessment, January 16, 2025 Solution sketch

Exercise 1

Variables

LET PERIODO

 $xs_t = \text{units produced in period } t$, if $\text{production} \leq \vartheta$ units $xl_t = \text{units produced in period } t$, if $\text{production} \geq \vartheta$ units $I_t = \text{units stored in the depot at the end of period } t$ $\delta_t = 1$ if at most ϑ units are produced in period t; 0 otherwise

$$\begin{aligned} \min \ c_s \sum_{t=1}^T x s_t + c_l \sum_{t=1}^T x l_t \\ x s_1 + x l_1 &= I_1 + d_1 \\ x s_t + x l_t + I_{t-1} &= I_t + d_t \\ x s_t &\leq \vartheta \delta_t \\ t &= 1, \dots, T \\ x l_t &\leq P(1 - \delta_t) \\ t &= 1, \dots, T \\ x s_t &\geq 0, \text{ integer} \\ t &= 1, \dots, T \\ t_t &\geq 0, \text{ integer} \\ I_t &\geq 0, \text{ integer} \\ \delta_t &\in \{0, 1\} \end{aligned}$$

Exercise 2

Optimal solution : x = (5/2, 3, 0, 0) z = 11/2

x_1	x_2	s_1	s_2		
0	0	-1/2	-1	-11/2	-z
1	0	1/2	0	5/2	
0	1	0	1	3	
Gomory's c	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$1/2s_1 \stackrel{\circ}{\geq} 1/2$	D				

x_1	x_2	s_1	s_2	s_3		
0	0	-1/2	-1	0	-11/2	-z
1	0	1/2	0	0	5/2	
0	1	0	1	0	3	
0	0	-1/2	0	1	-1/2	
$\underline{} x_1$	x_2	s_1	s_2	s_3		
0	0	0	-1	-1	-5	-z
1	0	0	0	1	2	
0	1	0	1	0	3	
0	0	1	0	-2	1	
NT 1	0					
New soluti	0					

It is the optimal solution of the original problem since it is optimal for the relaxed problem (non-positive reduced costs) and it is feasible (integer)

Exercise 3

The optimal solution is in node P_1 with x=(9,5) and value 23.