

Micro Commercial Components

Micro Commercial Components 20736 Marilla Street Chatsworth

CA 91311

Phone: (818) 701-4933 Fax: (818) 701-4939

BC546B BC547A/B/C BC548A/B/C

Features 1

- Through Hole Package
- 150°C Junction Temperature
- Case Material: Molded Plastic. UL Flammability Classification Rating 94V-0 and MSL rating 1
- Marking:Type Number
- Lead Free Finish/Rohs Compliant) ("P"Suffix designates Compliant. See ordering information)

Mechanical Data

Case: TO-92, Molded PlasticPolarity: indicated as below.

Maximum Ratings @ 25°C Unless Otherwise Specified

Charateristic		Symbol	Value	Unit	
Collector-Emitter Voltage	BC546		65		
	BC547	V_{CEO}	45	V	
	BC548		30		
Collector-Base Voltage	BC546		80		
	BC547	V_{CBO}	50	V	
	BC548		30		
Emitter-Base Voltage		V_{EBO}	6.0	V	
Collector Current(DC)		I _C 100		mA	
Power Dissipation@T _A =25°C		D	625	mW	
		P_d	5.0	mW/°C	
Power Dissipation@T _C =25°C		D	1.5	W	
		P_d	12	mW/°C	
Thermal Resistance, Junction to		$R_{ hetaJA}$	200	°C/W	
Ambient Air		03/		O/ V V	
Thermal Resistance, Junction to Case		$R_{ hetaJC}$	83.3	°C/W	
Operating & Storage Temperature		T _i , T _{STG} -55~150		°C	

NPN Silicon Amplifier Transistor 625mW

www.mccsemi.com

Revision: 8 2010/08/18

1 of 5

BC546 thru BC548C

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

Micro Commercial Components

Characteristic		Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS						
Collector–Emitter Breakdown Voltage (I _C = 1.0 mA, I _B = 0)	BC546 BC547 BC548	V _(BR) CEO	65 45 30	_ _ _	_ _ _	V
Collector–Base Breakdown Voltage ($I_C = 100 \mu Adc$)	BC546 BC547 BC548	V _{(BR)CBO}	80 50 30	_ _ _	_ _ _	V
Emitter–Base Breakdown Voltage ($I_E = 10 \mu A, I_C = 0$)	BC546 BC547 BC548	V _{(BR)EBO}	6.0 6.0 6.0	_ _ _	_ _ _	V
ON CHARACTERISTICS						
DC Current Gain ($I_C = 10 \mu A, V_{CE} = 5.0 V$)	BC547A/548A BC546B/547B/548B BC548C	h _{FE}	_ _ _	90 150 270	_ _ _	_
$(I_C = 2.0 \text{ mA}, V_{CE} = 5.0 \text{ V})$	BC547A/548A BC546B/547B/548B BC547C/BC548C		110 200 420	180 290 520	220 450 800	
$(I_C = 100 \text{ mA}, V_{CE} = 5.0 \text{ V})$	BC547A/548A BC546B/547B/548B BC548C		_ _ _	120 180 300	_ _ _	
Collector–Emitter Saturation Voltage (I _C = 100 mA, I _B = 5.0 mA)		V _{CE(sat)}	_		0.3	V
Base–Emitter Saturation Voltage (I _C = 100 mA, I _B = 5.0 mA)		V _{BE(sat)}	_	_	1.0	V
Base–Emitter On Voltage ($I_C = 2.0 \text{ mA}, V_{CE} = 5.0 \text{ V}$) ($I_C = 10 \text{ mA}, V_{CE} = 5.0 \text{ V}$)		V _{BE(on)}	0.55 —		0.7 0.77	V
SMALL-SIGNAL CHARACTERISTICS						
Current–Gain — Bandwidth Product ($I_C = 10 \text{ mA}, V_{CE} = 5.0 \text{ V}, f = 100 \text{ MHz}$)	BC546 BC547 BC548	f⊤	150 150 150	300 300 300	_ _ _	MHz
Output Capacitance (V _{CB} = 10 V, I _C = 0, f = 1.0 MHz)		C _{obo}	_	1.7	4.5	pF
Input Capacitance $(V_{EB} = 0.5 \text{ V}, I_C = 0, f = 1.0 \text{ MHz})$		C _{ibo}	_	10	_	pF
Small–Signal Current Gain ($I_C = 2.0 \text{ mA}, V_{CE} = 5.0 \text{ V}, f = 1.0 \text{ kHz}$)		h _{fe}				_
	BC547A/548A BC546B/547B/548B BC547C/548C		125 240 450	220 330 600	260 500 900	
Noise Figure $(I_C=0.2 \text{ mA}, \text{ V}_{CE}=5.0 \text{ V}, \text{ R}_S=2 \text{ k}\Omega, \\ f=1.0 \text{ kHz}, \Delta f=200 \text{ Hz})$	BC546 BC547 BC548	NF	_ _ _	2.0 2.0 2.0	10 10 10	dB

BC546 thru BC548C

Figure 1. Normalized DC Current Gain

Figure 2. "Saturation" and "On" Voltages

Figure 3. Collector Saturation Region

Figure 4. Base-Emitter Temperature Coefficient

BC547/BC548

Figure 5. Capacitances

Figure 6. Current-Gain - Bandwidth Product

www.mccsemi.com

BC546 thru BC548C

BC547/BC548

Micro Commercial Components

Figure 7. DC Current Gain

Figure 8. "On" Voltage

Figure 9. Collector Saturation Region

Figure 10. Base-Emitter Temperature Coefficient

Figure 11. Capacitance

Figure 12. Current-Gain - Bandwidth Product

Micro Commercial Components

Ordering Information

Device	Packing		
(Part Number)-AP	Ammo Packing;2Kpcs/AmmoBox		
(Part Number)-BP	Bulk;1Kpcs/Bag		

IMPORTANT NOTICE

Micro Commercial Components Corp. reserves the right to make changes without further notice to any product herein to make corrections, modifications, enhancements, improvements, or other changes.
Micro Commercial Components Corp. does not assume any liability arising out of the application or use of any product described herein; neither does it convey any license under its patent rights, nor the rights of others. The user of products in such applications shall assume all risks of such use and will agree to hold Micro Commercial Components Corp. and all the companies whose products are represented on our website, harmless against all damages.

LIFE SUPPORT

MCC's products are not authorized for use as critical components in life support devices or systems without the expresse written approval of Micro Commercial Components Corporation.