Exploring the Trade-off Between Model Performance and Explanation Plausibility of Text Classifiers Using Human Rationales

Marcos M. Raimundo²

Jorge Poco¹

¹Fundação Getulio Vargas, Rio de Janeiro, Brazil ²Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil ³1ucas.resck@fgv.br

https://github.com/visual-ds/plausible-nlp-explanations

Example Motivation

• Suppose one has the following model:

- One may want to understand this decision.
 - "Which are the most important tokens?"
- Existing methods: LIME, SHAP, Integrated Gradients, GradCAM, etc.

Example Motivation

- (a) This is such a great movie!
 (b) This is such a great movie!
- Figure: Explanations from different models.

- Two different explanations. Which is better?
- Explanation (a) is more plausible: it matches more human intuition.
- Ideally, the explanation would be

This is such a great movie!

We call this a human rationale.

How can we make the model explanations more plausible?

Notation Description

Suppose a multi-class text classification task with:

- Classes C;
- Model f_{θ} (output probabilities), g_{θ} (output logits);
- Texts $X = \{X_1, \dots, X_N\};$
- Labels $y = \{y_1, \dots, y_N\}.$

Therefore, we use the standard **cross-entropy loss**:

$$\mathcal{L}_{\theta}(X, y) = -\frac{1}{N} \sum_{i=1}^{N} \sum_{k=1}^{|C|} \mathbb{1}_{y_i = k} \ln \frac{e^{g_{\theta}(X_i)_k}}{\sum_{j=1}^{|C|} e^{g_{\theta}(X_i)_j}}$$

Contrastive Rationale Loss

Cross-entropy loss:

$$\mathcal{L}_{\theta}(X, y) = -\frac{1}{N} \sum_{i=1}^{N} \sum_{k=1}^{|C|} \mathbb{1}_{y_i = k} \ln \frac{e^{g_{\theta}(X_i)_k}}{\sum_{j=1}^{|C|} e^{g_{\theta}(X_i)_j}}$$

Contrastive rationale loss:

$$\dot{\mathcal{L}}_{\theta}(\dot{X}, \dot{y}) = -\frac{1}{N} \sum_{i=1}^{N} \sum_{k=1}^{|C|} \mathbb{1}_{\dot{y}_{i}=k} \ln \frac{e^{g_{\theta}(\dot{X}_{i})_{k}}}{\sum_{j=1}^{m} e^{g_{\theta}(\check{X}_{i,j})_{k}}}$$

- Human rationales $\dot{X} = \{\dot{X}_1, \dots, \dot{X}_N\};$
- Their labels $\dot{y} = \{\dot{y}_1, \dots, \dot{y}_N\};$
- "Sample rationales" $\{\tilde{X}_{i,j}\}_{j=1}^m = \{\dot{X}_i\} \cup \{\text{other } m-1 \text{ random rationales}\}.$

Trade-Off Exploration

Classification loss

$$\mathcal{L}_{\theta}(X, y) = -\frac{1}{N} \sum_{i=1}^{N} \sum_{k=1}^{|C|} \mathbb{1}_{y_i = k} \ln \frac{e^{g_{\theta}(X_i)_k}}{\sum_{j=1}^{|C|} e^{g_{\theta}(X_i)_j}}$$

Contrastive rationale loss

$$\dot{\mathcal{L}}_{\theta}(\dot{X}, \dot{y}) = -\frac{1}{N} \sum_{i=1}^{N} \sum_{k=1}^{|C|} \mathbb{1}_{\dot{y}_i = k} \ln \frac{e^{g_{\theta}(\dot{X}_i)_k}}{\sum_{j=1}^{m} e^{g_{\theta}(\tilde{X}_{i,j})_k}}$$

• We use a multi-objective optimization solver to generate a Pareto-frontier by sampling weights w_1, w_2 and solving

$$\mathcal{L}_{\theta}(X, y, \dot{X}, \dot{y}) = w_1 \cdot \mathcal{L}_{\theta}(X, y) + w_2 \cdot \dot{\mathcal{L}}_{\theta}(\dot{X}, \dot{y}).$$

Main Experiments: DistilBERT and HateXplain

- DistilBERT is a simpler version of BERT, the most popular Transformer encoder.
 - We add a classification layer and train only it.
- **HateXplain** is a dataset of hate speech detection with human-annotated rationales.
 - We use it as a binary classification between normal and hatespeech.

Main Experiments: DistilBERT and HateXplain

Figure: (a) Trade-off between the two losses on the training data. (b) Trade-off between accuracy and plausibility on the test data.

Main Experiments: DistilBERT and HateXplain

Figure: (a) Trade-off between the two losses on the training data. (b) Trade-off between accuracy and plausibility on the test data.

- (a) ugh i hate d*kes u
- Figure: Examples of explanations of the hate speech class from the original model (a) and the model with top-AUPRC (b).

All Experiments

- Trade-offs between performance (accuracy, x-axis) and plausibility (AUPRC, y-axis, in percentage (%)) for all models and datasets (test data).
- The explainer is LIME.
- Green dots are the models chosen to be analyzed more carefully.

All Experiments

Table: Comparison between the original model (cross-entropy only) and the chosen model (green dots on previous figure) for each performance and explainability metric on test data.

Dataset	Model	w_1	Acc. %	AUPRC %	AUPRC rel. %	Suff.	Comp.
HateXplain	DistilBERT	0.20	-0.80	1.11	1.37	0.25	-0.03
	BERT-Mini	0.29	-0.84	2.46	3.49	0.40	-0.05
	TF-IDF	0.002	-9.35	6.96	10.79	0.13	-0.10
Movie Reviews	DistilBERT	0.12	-0.28	0.50	4.39	0.25	-0.05
	BERT-Mini	0.26	0.28	0.39	3.61	0.00	-0.02
	TF-IDF	0.09	0.56	0.85	6.95	0.00	0.01
TSE	DistilBERT	0.64	0.09	1.32	1.98	0.05	0.00
	BERT-Mini	0.19	0.37	0.64	1.01	0.06	0.01
	TF-IDF	0.42	0.24	0.40	0.64	0.01	-0.02

Key Takeaways

- We propose a novel contrastive-inspired loss function that effectively incorporates rationales into the learning process.
 - The methodology is model- and explainer-agnostic.
- We develop a multi-objective framework that automatically assigns weights to the learning loss and contrastive rationale loss.
- We perform a series of experiments using various models, datasets, and explainability methods.
 - We demonstrate a significant enhancement of model explanations without compromising (and sometimes without any detriment to) the model's performance.

Key Takeaways

- We propose a novel contrastive-inspired loss function that effectively incorporates rationales into the learning process.
 - The methodology is model- and explainer-agnostic.
- We develop a multi-objective framework that automatically assigns weights to the learning loss and contrastive rationale loss.
- We perform a series of experiments using various models, datasets, and explainability methods.
 - We demonstrate a significant enhancement of model explanations without compromising (and sometimes without any detriment to) the model's performance.

Exploring the Trade-off Between Model Performance and Explanation Plausibility of Text Classifiers Using Human Rationales

Marcos M. Raimundo²

Jorge Poco¹

¹Fundação Getulio Vargas, Rio de Janeiro, Brazil ²Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil ³1ucas.resck@fgv.br

https://github.com/visual-ds/plausible-nlp-explanations