❖ Lab 1 : Breadboarding Circuits

Lab due May 13, 2023 10:37 PDT Completed

Design a *full adder*. The inputs are A, B, and C_{in} . The outputs are S and C_{out} . The full adder computes $\{C_{out}, S\} = A + B + C_{in}$. In other words, it sums the three inputs to produce a two-bit result, with S being the least significant bit and C_{out} being the most significant bit. C_{in} and C_{out} are called the carries. For example, if A = 1, B = 0, and $C_{in} = 1$, the result is $1 + 0 + 1 = 2_{10} = 10_2$. Thus, the sum is 0 and the carry out is 1. Although the logic for a full adder is in the textbook and many other places, please work it out yourself from first principles.

Full Adder Truth Table

1/1 point (graded)

Keyboard Help

Drag 0s and 1s to complete a truth table for the full adder.

Inputs			Outputs				
<u>Cin</u>	\boldsymbol{B}	\boldsymbol{A}		Cout		\boldsymbol{S}	
0	0	0		0		0	
0	0	1		0		1	
0	1	0		0		1	
0	1	1		1		0	
1	0	0		0		1	
1	0	1		1		0	
1	1	0		1		0	
1	1	1		1		1	

Reset
