

(a)

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶ :		A2	(11) International Publication Number:	WO 99/38973
C12N 15/12, A61K 38/17, C07K 14/47, 16/18, A61K 35/14			(43) International Publication Date: 5 August 1999 (05.08.99)	
(21) International Application Number:		PCT/US99/01642		
(22) International Filing Date:		26 January 1999 (26.01.99)		
(30) Priority Data:				
09/015,029	28 January 1998 (28.01.98)	US	<p>(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, HR, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM; GA, GN, GW, ML, MR, NE, SN, TD, TG).</p>	
09/015,022	28 January 1998 (28.01.98)	US		
09/040,828	18 March 1998 (18.03.98)	US		
09/040,831	18 March 1998 (18.03.98)	US		
09/122,192	23 July 1998 (23.07.98)	US		
09/122,191	23 July 1998 (23.07.98)	US		
09/219,245	22 December 1998 (22.12.98)	US		
(71) Applicant:		CORIXA CORPORATION [US/US]; Suite 200, 1124 Columbia Street, Seattle, WA 98104 (US).		
(72) Inventors:		REED, Steven, G.; 2843 - 122nd Place, N.E., Bellevue, WA 98005 (US). LODES, Michael, J.; 9223 - 36th Avenue S.W., Seattle, WA 98126 (US). FRUDAKIS, Tony, N.; P.O. Box 99232, Seattle, WA 99232-0232 (US). MOHAMATH, Raodoh; 4205 South Morgan, Seattle, WA 98118 (US).		
(74) Agents:		MAKI, David, J. et al.; Seed and Berry LLP, 6300 Columbia Center, 701 Fifth Avenue, Seattle, WA 98104-7092 (US).		
(54) Title: COMPOUNDS FOR THERAPY AND DIAGNOSIS OF LUNG CANCER AND METHODS FOR THEIR USE				
(57) Abstract				
<p>Compounds and methods for treating lung cancer are provided. The inventive compounds include polypeptides containing at least a portion of a lung tumor protein. Vaccines and pharmaceutical compositions for immunotherapy of lung cancer comprising such polypeptides, or polynucleotides encoding such polypeptides, are also provided, together with polynucleotides for preparing the inventive polypeptides.</p>				

1

COMPOUNDS FOR THERAPY AND DIAGNOSIS OF LUNG CANCER AND METHODS FOR THEIR USE

5 TECHNICAL FIELD

The present invention relates generally to compositions and methods for the treatment of lung cancer. The invention is more specifically related to nucleotide sequences that are preferentially expressed in lung tumor tissue, together with polypeptides encoded by such nucleotide sequences. The inventive nucleotide sequences and polypeptides may be used in vaccines and pharmaceutical compositions for the treatment of lung cancer.

BACKGROUND OF THE INVENTION

Lung cancer is the primary cause of cancer death among both men and women in the U.S., with an estimated 172,000 new cases being reported in 1994. The five-year survival rate among all lung cancer patients, regardless of the stage of disease at diagnosis, is only 13%. This contrasts with a five-year survival rate of 46% among cases detected while the disease is still localized. However, only 16% of lung cancers are discovered before the disease has spread.

Early detection is difficult since clinical symptoms are often not seen until the disease has reached an advanced stage. Currently, diagnosis is aided by the use of chest x-rays, analysis of the type of cells contained in sputum and fiberoptic examination of the bronchial passages. Treatment regimens are determined by the type and stage of the cancer, and include surgery, radiation therapy and/or chemotherapy. In spite of considerable research into therapies for the disease, lung cancer remains difficult to treat.

Accordingly, there remains a need in the art for improved vaccines, treatment methods and diagnostic techniques for lung cancer.

SUMMARY OF THE INVENTION

Briefly stated, the present invention provides compounds and methods for the therapy of lung cancer. In a first aspect, isolated polynucleotides encoding lung tumor polypeptides are provided, such polynucleotides comprising a nucleotide sequence selected

herein; and (b) detecting in the sample a protein or polypeptide that binds to the binding agent. In preferred embodiments, the binding agent is an antibody, most preferably a monoclonal antibody.

In related aspects, methods are provided for monitoring the progression of lung cancer in a patient, comprising: (a) contacting a biological sample obtained from a patient with a binding agent that is capable of binding to one of the polypeptides disclosed herein; (b) determining in the sample an amount of a protein or polypeptide that binds to the binding agent; (c) repeating steps (a) and (b); and comparing the amounts of polypeptide detected in steps (b) and (c).

Within related aspects, the present invention provides antibodies, preferably monoclonal antibodies, that bind to the inventive polypeptides, as well as diagnostic kits comprising such antibodies, and methods of using such antibodies to inhibit the development of lung cancer.

The present invention further provides methods for detecting lung cancer comprising: (a) obtaining a biological sample from a patient; (b) contacting the sample with a first and a second oligonucleotide primer in a polymerase chain reaction, at least one of the oligonucleotide primers being specific for a polynucleotide that encodes one of the polypeptides disclosed herein; and (c) detecting in the sample a DNA sequence that amplifies in the presence of the first and second oligonucleotide primers. In a preferred embodiment, at least one of the oligonucleotide primers comprises at least about 10 contiguous nucleotides of a polynucleotide comprising a sequence selected from the group consisting of SEQ ID NO: 1-31, 49-55, 63, 64, 66, 68-72, 78-80, 84-92, 102-110, 116-120 and 126-181.

In a further aspect, the present invention provides a method for detecting lung cancer in a patient comprising: (a) obtaining a biological sample from the patient; (b) contacting the sample with an oligonucleotide probe specific for a polynucleotide that encodes one of the polypeptides disclosed herein; and (c) detecting in the sample a DNA sequence that hybridizes to the oligonucleotide probe. Preferably, the oligonucleotide probe comprises at least about 15 contiguous nucleotides of a polynucleotide comprising a sequence selected from the group consisting of SEQ ID NO: 1-31, 49-55, 63, 64, 66, 68-72, 78-80, 84-92, 102-110, 116-120 and 126-181. In related aspects, diagnostic kits comprising the above oligonucleotide probes or primers are provided.

- SEQ ID NO: 14 is the determined cDNA sequence for L355C1.cons
SEQ ID NO: 15 is the determined cDNA sequence for L366C1.cons
SEQ ID NO: 16 is the determined cDNA sequence for L163C1a
SEQ ID NO: 17 is the determined cDNA sequence for LT86-1
5 SEQ ID NO: 18 is the determined cDNA sequence for LT86-2
SEQ ID NO: 19 is the determined cDNA sequence for LT86-3
SEQ ID NO: 20 is the determined cDNA sequence for LT86-4
SEQ ID NO: 21 is the determined cDNA sequence for LT86-5
SEQ ID NO: 22 is the determined cDNA sequence for LT86-6
10 SEQ ID NO: 23 is the determined cDNA sequence for LT86-7
SEQ ID NO: 24 is the determined cDNA sequence for LT86-8
SEQ ID NO: 25 is the determined cDNA sequence for LT86-9
SEQ ID NO: 26 is the determined cDNA sequence for LT86-10
SEQ ID NO: 27 is the determined cDNA sequence for LT86-11
15 SEQ ID NO: 28 is the determined cDNA sequence for LT86-12
SEQ ID NO: 29 is the determined cDNA sequence for LT86-13
SEQ ID NO: 30 is the determined cDNA sequence for LT86-14
-
- SEQ ID NO: 31 is the determined cDNA sequence for LT86-15
SEQ ID NO: 32 is the predicted amino acid sequence for LT86-1
20 SEQ ID NO: 33 is the predicted amino acid sequence for LT86-2
SEQ ID NO: 34 is the predicted amino acid sequence for LT86-3
SEQ ID NO: 35 is the predicted amino acid sequence for LT86-4
SEQ ID NO: 36 is the predicted amino acid sequence for LT86-5
SEQ ID NO: 37 is the predicted amino acid sequence for LT86-6
25 SEQ ID NO: 38 is the predicted amino acid sequence for LT86-7
SEQ ID NO: 39 is the predicted amino acid sequence for LT86-8
SEQ ID NO: 40 is the predicted amino acid sequence for LT86-9
SEQ ID NO: 41 is the predicted amino acid sequence for LT86-10
SEQ ID NO: 42 is the predicted amino acid sequence for LT86-11
30 SEQ ID NO: 43 is the predicted amino acid sequence for LT86-12

- SEQ ID NO: 74 is the predicted amino acid sequence for LT86-21
SEQ ID NO: 75 is the predicted amino acid sequence for LT86-22
SEQ ID NO: 76 is the predicted amino acid sequence for LT86-26
SEQ ID NO: 77 is the predicted amino acid sequence for LT86-27
5 SEQ ID NO: 78 is the determined extended cDNA sequence for L86S-12
SEQ ID NO: 79 is the determined extended cDNA sequence for L86S-36
SEQ ID NO: 80 is the determined extended cDNA sequence for L86S-46
SEQ ID NO: 81 is the predicted extended amino acid sequence for L86S-12
SEQ ID NO: 82 is the predicted extended amino acid sequence for L86S-36
10 SEQ ID NO: 83 is the predicted extended amino acid sequence for L86S-46
SEQ ID NO: 84 is the determined 5'cDNA sequence for L86S-6
SEQ ID NO: 85 is the determined 5'cDNA sequence for L86S-11
SEQ ID NO: 86 is the determined 5'cDNA sequence for L86S-14
SEQ ID NO: 87 is the determined 5'cDNA sequence for L86S-29
15 SEQ ID NO: 88 is the determined 5'cDNA sequence for L86S-34
SEQ ID NO: 89 is the determined 5'cDNA sequence for L86S-39
SEQ ID NO: 90 is the determined 5'cDNA sequence for L86S-47
SEQ ID NO: 91 is the determined 5'cDNA sequence for L86S-49
SEQ ID NO: 92 is the determined 5'cDNA sequence for L86S-51
20 SEQ ID NO: 93 is the predicted amino acid sequence for L86S-6
SEQ ID NO: 94 is the predicted amino acid sequence for L86S-11
SEQ ID NO: 95 is the predicted amino acid sequence for L86S-14
SEQ ID NO: 96 is the predicted amino acid sequence for L86S-29
SEQ ID NO: 97 is the predicted amino acid sequence for L86S-34
25 SEQ ID NO: 98 is the predicted amino acid sequence for L86S-39
SEQ ID NO: 99 is the predicted amino acid sequence for L86S-47
SEQ ID NO: 100 is the predicted amino acid sequence for L86S-49
SEQ ID NO: 101 is the predicted amino acid sequence for L86S-51
SEQ ID NO: 102 is the determined DNA sequence for SLT-T1
30 SEQ ID NO: 103 is the determined 5' cDNA sequence for SLT-T2

- SEQ ID NO: 134 is the determined cDNA sequence for PSLT-69
SEQ ID NO: 135 is the determined cDNA sequence for PSLT-71
SEQ ID NO: 136 is the determined cDNA sequence for PSLT-73
SEQ ID NO: 137 is the determined cDNA sequence for PSLT-79
5 SEQ ID NO: 138 is the determined cDNA sequence for PSLT-03
SEQ ID NO: 139 is the determined cDNA sequence for PSLT-09
SEQ ID NO: 140 is the determined cDNA sequence for PSLT-011
SEQ ID NO: 141 is the determined cDNA sequence for PSLT-041
SEQ ID NO: 142 is the determined cDNA sequence for PSLT-62
10 SEQ ID NO: 143 is the determined cDNA sequence for PSLT-6
SEQ ID NO: 144 is the determined cDNA sequence for PSLT-37
SEQ ID NO: 145 is the determined cDNA sequence for PSLT-74
SEQ ID NO: 146 is the determined cDNA sequence for PSLT-010
SEQ ID NO: 147 is the determined cDNA sequence for PSLT-012
15 SEQ ID NO: 148 is the determined cDNA sequence for PSLT-037
SEQ ID NO: 149 is the determined 5' cDNA sequence for SAL-3
SEQ ID NO: 150 is the determined 5' cDNA sequence for SAL-24
SEQ ID NO: 151 is the determined 5' cDNA sequence for SAL-25
SEQ ID NO: 152 is the determined 5' cDNA sequence for SAL-33
20 SEQ ID NO: 153 is the determined 5' cDNA sequence for SAL-50
SEQ ID NO: 154 is the determined 5' cDNA sequence for SAL-57
SEQ ID NO: 155 is the determined 5' cDNA sequence for SAL-66
SEQ ID NO: 156 is the determined 5' cDNA sequence for SAL-82
SEQ ID NO: 157 is the determined 5' cDNA sequence for SAL-99
25 SEQ ID NO: 158 is the determined 5' cDNA sequence for SAL-104
SEQ ID NO: 159 is the determined 5' cDNA sequence for SAL-109
SEQ ID NO: 160 is the determined 5' cDNA sequence for SAL-5
SEQ ID NO: 161 is the determined 5' cDNA sequence for SAL-8
SEQ ID NO: 162 is the determined 5' cDNA sequence for SAL-12
30 SEQ ID NO: 163 is the determined 5' cDNA sequence for SAL-14

SEQ ID NO: 194 is the predicted amino acid sequence for SAL-5

SEQ ID NO: 195 is the predicted amino acid sequence for SAL-8

SEQ ID NO: 196 is the predicted amino acid sequence for SAL-12

SEQ ID NO: 197 is the predicted amino acid sequence for SAL-14

5 SEQ ID NO: 198 is the predicted amino acid sequence for SAL-16

SEQ ID NO: 199 is the predicted amino acid sequence for SAL-23

SEQ ID NO: 200 is the predicted amino acid sequence for SAL-26

SEQ ID NO: 201 is the predicted amino acid sequence for SAL-29

SEQ ID NO: 202 is the predicted amino acid sequence for SAL-32

10 SEQ ID NO: 203 is the predicted amino acid sequence for SAL-39

SEQ ID NO: 204 is the predicted amino acid sequence for SAL-42

SEQ ID NO: 205 is the predicted amino acid sequence for SAL-43

SEQ ID NO: 206 is the predicted amino acid sequence for SAL-44

SEQ ID NO: 207 is the predicted amino acid sequence for SAL-48

15 SEQ ID NO: 208 is the predicted amino acid sequence for SAL-68

SEQ ID NO: 209 is the predicted amino acid sequence for SAL-72

SEQ ID NO: 210 is the predicted amino acid sequence for SAL-77

SEQ ID NO: 211 is the predicted amino acid sequence for SAL-86

SEQ ID NO: 212 is the predicted amino acid sequence for SAL-88

20 SEQ ID NO: 213 is the predicted amino acid sequence for SAL-93

SEQ ID NO: 214 is the predicted amino acid sequence for SAL-100

SEQ ID NO: 215 is the predicted amino acid sequence for SAL-105

SEQ ID NO: 216 is a second predicted amino acid sequence for SAL-50

25 DETAILED DESCRIPTION OF THE INVENTION

As noted above, the present invention is generally directed to compositions and methods for the therapy of lung cancer. The compositions described herein include polypeptides, fusion proteins and polynucleotides. Also included within the present invention are molecules (such as an antibody or fragment thereof) that bind to the inventive polypeptides. Such molecules are referred to herein as "binding agents."

of the proteins described herein may be identified in antibody binding assays. Such assays may generally be performed using any of a variety of means known to those of ordinary skill in the art, as described, for example, in Harlow and Lane, *Antibodies: A Laboratory Manual*, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 1988. For example, a polypeptide 5 may be immobilized on a solid support (as described below) and contacted with patient sera to allow binding of antibodies within the sera to the immobilized polypeptide. Unbound sera may then be removed and bound antibodies detected using, for example, ¹²⁵I-labeled Protein A. Alternatively, a polypeptide may be used to generate monoclonal and polyclonal antibodies for use in detection of the polypeptide in blood or other fluids of lung cancer 10 patients. Methods for preparing and identifying immunogenic portions of antigens of known sequence are well known in the art and include those summarized in Paul, *Fundamental Immunology*, 3rd ed., Raven Press, 1993, pp. 243-247.

The term "polynucleotide(s)," as used herein, means a single or double-stranded polymer of deoxyribonucleotide or ribonucleotide bases and includes DNA and 15 corresponding RNA molecules, including HnRNA and mRNA molecules, both sense and anti-sense strands, and comprehends cDNA, genomic DNA and recombinant DNA, as well as wholly or partially synthesized polynucleotides. An HnRNA molecule contains introns and corresponds to a DNA molecule in a generally one-to-one manner. An mRNA molecule corresponds to an HnRNA and DNA molecule from which the introns have been excised. A 20 polynucleotide may consist of an entire gene, or any portion thereof. Operable anti-sense polynucleotides may comprise a fragment of the corresponding polynucleotide, and the definition of "polynucleotide" therefore includes all such operable anti-sense fragments.

The compositions and methods of the present invention also encompass variants of the above polypeptides and polynucleotides.

A polypeptide "variant," as used herein, is a polypeptide that differs from the recited polypeptide only in conservative substitutions and/or modifications, such that the antigenic properties of the polypeptide are retained. In a preferred embodiment, variant polypeptides differ from an identified sequence by substitution, deletion or addition of five amino acids or fewer. Such variants may generally be identified by modifying one of the 25 above polypeptide sequences, and evaluating the antigenic properties of the modified polypeptide using, for example, the representative procedures described herein. Polypeptide

SSC, 0.5% SDS, 1.0 mM EDTA (pH 8.0); hybridizing at 50°C-65°C, 5X SSC, overnight or, in the event of cross-species homology, at 45°C with 0.5X SSC; followed by washing twice at 65°C for 20 minutes with each of 2X, 0.5X and 0.2X SSC containing 0.1% SDS. Such hybridizing DNA sequences are also within the scope of this invention, as are nucleotide sequences that, due to code degeneracy, encode an immunogenic polypeptide that is encoded by a hybridizing DNA sequence.

Two nucleotide or polypeptide sequences are said to be "identical" if the sequence of nucleotides or amino acid residues in the two sequences is the same when aligned for maximum correspondence as described below. Comparisons between two sequences are typically performed by comparing the sequences over a comparison window to identify and compare local regions of sequence similarity. A "comparison window" as used herein, refers to a segment of at least about 20 contiguous positions, usually 30 to about 75, 40 to about 50, in which a sequence may be compared to a reference sequence of the same number of contiguous positions after the two sequences are optimally aligned.

- 15 Optimal alignment of sequences for comparison may be conducted using the Megalign program in the Lasergene suite of bioinformatics software (DNASTAR, Inc., Madison, WI), using default parameters. This program embodies several alignment schemes described in the following references: Dayhoff, M.O. (1978) A model of evolutionary change in proteins – Matrices for detecting distant relationships. In Dayhoff, M.O. (ed.) *Atlas of Protein Sequence and Structure*, National Biomedical Research Foundation, Washington DC Vol. 5, Suppl. 3, pp. 345-358; Hein J. (1990) Unified Approach to Alignment and Phylogenies pp. 626-645 *Methods in Enzymology* vol. 183, Academic Press, Inc., San Diego, CA; Higgins, D.G. and Sharp, P.M. (1989) Fast and sensitive multiple sequence alignments on a microcomputer *CABIOS* 5:151-153; Myers, E.W. and Muller W. (1988) Optimal alignments in linear space *CABIOS* 4:11-17; Robinson, E.D. (1971) *Comb. Theor* 11:105; Santou, N. Nes, M. (1987) The neighbor joining method: A new method for reconstructing phylogenetic trees *Mol. Biol. Evol.* 4:406-425; Sneath, P.H.A. and Sokal, R.R. (1973) *Numerical Taxonomy – the Principles and Practice of Numerical Taxonomy*, Freeman Press, San Francisco, CA; Wilbur, W.J. and Lipman, D.J. (1983) Rapid similarity searches of nucleic acid and protein data banks *Proc. Natl. Acad. Sci. USA* 80:726-730.

libraries prepared from SCID mice with mouse anti-tumor sera, as described below in Example 4. Examples of cDNA sequences that may be isolated using this technique are provided in SEQ ID NO: 149-181.

A gene encoding a polypeptide described herein (or a portion thereof) may, alternatively, be amplified from human genomic DNA, or from lung tumor cDNA, via polymerase chain reaction. For this approach, sequence-specific primers may be designed based on the nucleotide sequences provided herein and may be purchased or synthesized. An amplified portion of a specific nucleotide sequence may then be used to isolate the full length gene from a human genomic DNA library or from a lung tumor cDNA library, using well known techniques, such as those described in Sambrook et al., *Molecular Cloning: A Laboratory Manual*, Cold Spring Harbor Laboratories, Cold Spring Harbor, NY (1989).

Once a DNA sequence encoding a polypeptide is obtained, the polypeptide may be produced recombinantly by inserting the DNA sequence into an expression vector and expressing the polypeptide in an appropriate host. Any of a variety of expression vectors known to those of ordinary skill in the art may be employed to express recombinant polypeptides of this invention. Expression may be achieved in any appropriate host cell that has been transformed or transfected with an expression vector containing a polynucleotide that encodes the recombinant polypeptide. Suitable host cells include prokaryotes, yeast and higher eukaryotic cells. Preferably, the host cells employed are *E. coli*, yeast or a mammalian cell line, such as COS or CHO cells. The DNA sequences expressed in this manner may encode naturally occurring polypeptides, portions of naturally occurring polypeptides, or other variants thereof. Supernatants from suitable host/vector systems which secrete the recombinant polypeptide may be first concentrated using a commercially available filter. The concentrate may then be applied to a suitable purification matrix, such as an affinity matrix or ion exchange resin. Finally, one or more reverse phase HPLC steps can be employed to further purify the recombinant polypeptide.

Such techniques may also be used to prepare polypeptides comprising portions or variants of the native polypeptides. Portions and other variants having fewer than about 100 amino acids, and generally fewer than about 50 amino acids, may be generated using techniques well known to those of ordinary skill in the art. For example, such polypeptides may be synthesized using any of the commercially available solid-phase techniques, such as

extended conformation; (2) their inability to adopt a secondary structure that could interact with functional epitopes on the first and second polypeptides; and (3) the lack of hydrophobic or charged residues that might react with the polypeptide functional epitopes. Preferred peptide linker sequences contain Gly, Asn and Ser residues. Other near neutral amino acids, such as Thr and Ala may also be used in the linker sequence. Amino acid sequences which may be usefully employed as linkers include those disclosed in Maratea et al., *Gene* 40:39-46, 1985; Murphy et al., *Proc. Natl. Acad. Sci. USA* 83:8258-8262, 1986; U.S. Patent No. 4,935,233 and U.S. Patent No. 4,751,180. The linker sequence may be from 1 to about 50 amino acids in length. Peptide sequences are not required when the first and second polypeptides have non-essential N-terminal amino acid regions that can be used to separate the functional domains and prevent steric interference.

The ligated DNA sequences are operably linked to suitable transcriptional or translational regulatory elements. The regulatory elements responsible for expression of DNA are located only 5' to the DNA sequence encoding the first polypeptides. Similarly, stop codons require to end translation and transcription termination signals are only present 3' to the DNA sequence encoding the second polypeptide.

Fusion proteins are also provided that comprise a polypeptide of the present invention together with an unrelated immunogenic protein. Preferably the immunogenic protein is capable of eliciting a recall response. Examples of such proteins include tetanus, tuberculosis and hepatitis proteins (see, for example, Stoute et al. *New Engl. J. Med.*, 336:86-91 (1997)).

Polypeptides that comprise an immunogenic portion of a lung tumor protein may generally be used for therapy of lung cancer, wherein the polypeptide stimulates the patient's own immune response to lung tumor cells. The present invention thus provides methods for using one or more of the compounds described herein (which may be polypeptides, polynucleotides or fusion proteins) for immunotherapy of lung cancer in a patient. As used herein, a "patient" refers to any warm-blooded animal, preferably a human. A patient may be afflicted with disease, or may be free of detectable disease. Accordingly, the compounds disclosed herein may be used to treat lung cancer or to inhibit the development of lung cancer. In a preferred embodiment, the compounds are administered

ordinary skill in the art. The DNA may also be "naked," as described, for example, in published PCT application WO 90/11092, and Ulmer et al., *Science* 259:1745-1749, 1993, reviewed by Cohen, *Science* 259:1691-1692, 1993. The uptake of naked DNA may be increased by coating the DNA onto biodegradable beads, which are efficiently transported into the cells.

Routes and frequency of administration, as well as dosage, will vary from individual to individual and may parallel those currently being used in immunotherapy of other diseases. In general, the pharmaceutical compositions and vaccines may be administered by injection (e.g., intracutaneous, intramuscular, intravenous or subcutaneous), intranasally (e.g., by aspiration) or orally. Between 1 and 10 doses may be administered over a 3-24 week period. Preferably, 4 doses are administered, at an interval of 3 months, and booster administrations may be given periodically thereafter. Alternate protocols may be appropriate for individual patients. A suitable dose is an amount of polypeptide or DNA that is effective to raise an immune response (cellular and/or humoral) against lung tumor cells in a treated patient. A suitable immune response is at least 10-50% above the basal (*i.e.*, untreated) level. In general, the amount of polypeptide present in a dose (or produced *in situ* by the DNA in a dose) ranges from about 1 pg to about 100 mg per kg of host, typically from about 10 pg to about 1 mg, and preferably from about 100 pg to about 1 µg. Suitable dose sizes will vary with the size of the patient, but will typically range from about 0.01 mL to about 5 mL.

While any suitable carrier known to those of ordinary skill in the art may be employed in the pharmaceutical compositions of this invention, the type of carrier will vary depending on the mode of administration. For parenteral administration, such as subcutaneous injection, the carrier preferably comprises water, saline, alcohol, a lipid, a wax and/or a buffer. For oral administration, any of the above carriers or a solid carrier, such as mannitol, lactose, starch, magnesium stearate, sodium saccharine, talcum, cellulose, glucose, sucrose, and/or magnesium carbonate, may be employed. Biodegradable microspheres (*e.g.*, polylactic glycolide) may also be employed as carriers for the pharmaceutical compositions of this invention. Suitable biodegradable microspheres are disclosed, for example, in U.S. Patent Nos. 4,897,268 and 5,075,109.

(Natural Killer cells, lymphokine-activated killer cells), B cells, or antigen presenting cells (such as dendritic cells and macrophages) expressing the disclosed antigens. The polypeptides disclosed herein may also be used to generate antibodies or anti-idiotypic antibodies (as in U.S. Patent No. 4,918,164), for passive immunotherapy.

5 The predominant method of procuring adequate numbers of T-cells for adoptive immunotherapy is to grow immune T-cells *in vitro*. Culture conditions for expanding single antigen-specific T-cells to several billion in number with retention of antigen recognition *in vivo* are well known in the art. These *in vitro* culture conditions typically utilize intermittent stimulation with antigen, often in the presence of cytokines, such as IL-2, and non-dividing feeder cells. As noted above, the immunoreactive polypeptides described herein may be used to rapidly expand antigen-specific T cell cultures in order to generate sufficient number of cells for immunotherapy. In particular, antigen-presenting cells, such as dendritic, macrophage or B-cells, may be pulsed with immunoreactive polypeptides or transfected with a polynucleotide sequence(s), using standard techniques well known in the art. For cultured T-cells to be effective in therapy, the cultured T-cells must be able to grow and distribute widely and to survive long term *in vivo*. Studies have demonstrated that cultured T-cells can be induced to grow *in vivo* and to survive long term in substantial numbers by repeated stimulation with antigen supplemented with IL-2 (see, for example, Cheever et al. *Ibid*).

10 The polypeptides disclosed herein may also be employed to generate and/or isolate tumor-reactive T-cells, which can then be administered to the patient. In one technique, antigen-specific T-cell lines may be generated by *in vivo* immunization with short peptides corresponding to immunogenic portions of the disclosed polypeptides. The resulting antigen specific CD8+ CTL clones may be isolated from the patient, expanded using standard tissue culture techniques, and returned to the patient.

15 Alternatively, peptides corresponding to immunogenic portions of the polypeptides may be employed to generate tumor reactive T cell subsets by selective *in vitro* stimulation and expansion of autologous T cells to provide antigen-specific T cells which may be subsequently transferred to the patient as described, for example, by Chang et al.
20 (Crit. Rev. Oncol. Hematol., 22(3), 213, 1996).

at least about 80%, and preferably at least about 90%) of the patients for which lung cancer would be indicated using the full length protein, and that indicate the absence of lung cancer in substantially all of those samples that would be negative when tested with full length protein. The representative assays described below, such as the two-antibody sandwich assay, may generally be employed for evaluating the ability of a binding agent to detect metastatic human lung tumors.

The ability of a polypeptide prepared as described herein to generate antibodies capable of detecting primary or metastatic human lung tumors may generally be evaluated by raising one or more antibodies against the polypeptide (using, for example, a representative method described herein) and determining the ability of such antibodies to detect such tumors in patients. This determination may be made by assaying biological samples from patients with and without primary or metastatic lung cancer for the presence of a polypeptide that binds to the generated antibodies. Such test assays may be performed, for example, using a representative procedure described below. Polypeptides that generate antibodies capable of detecting at least 20% of primary or metastatic lung tumors by such procedures are considered to be useful in assays for detecting primary or metastatic human lung tumors. Polypeptide specific antibodies may be used alone or in combination to improve sensitivity.

Polypeptides capable of detecting primary or metastatic human lung tumors may be used as markers for diagnosing lung cancer or for monitoring disease progression in patients. In one embodiment, lung cancer in a patient may be diagnosed by evaluating a biological sample obtained from the patient for the level of one or more of the above polypeptides, relative to a predetermined cut-off value. As used herein, suitable "biological samples" include blood, sera, urine and/or lung secretions.

The level of one or more of the above polypeptides may be evaluated using any binding agent specific for the polypeptide(s). A "binding agent," in the context of this invention, is any agent (such as a compound or a cell) that binds to a polypeptide as described above. As used herein, "binding" refers to a noncovalent association between two separate molecules (each of which may be free (*i.e.*, in solution) or present on the surface of a cell or a solid support), such that a "complex" is formed. Such a complex may be free or immobilized (either covalently or noncovalently) on a support material. The ability to bind may generally

be immobilized on the solid support using a variety of techniques known to those of skill in the art, which are amply described in the patent and scientific literature. In the context of the present invention, the term "immobilization" refers to both noncovalent association, such as adsorption, and covalent attachment (which may be a direct linkage between the antigen and functional groups on the support or may be a linkage by way of a cross-linking agent).
5 Immobilization by adsorption to a well in a microtiter plate or to a membrane is preferred. In such cases, adsorption may be achieved by contacting the binding agent, in a suitable buffer, with the solid support for a suitable amount of time. The contact time varies with temperature, but is typically between about 1 hour and about 1 day. In general, contacting a
10 well of a plastic microtiter plate (such as polystyrene or polyvinylchloride) with an amount of binding agent ranging from about 10 ng to about 10 µg, and preferably about 100 ng to about 1 µg, is sufficient to immobilize an adequate amount of binding agent.

Covalent attachment of binding agent to a solid support may generally be achieved by first reacting the support with a bifunctional reagent that will react with both the
15 support and a functional group, such as a hydroxyl or amino group, on the binding agent. For example, the binding agent may be covalently attached to supports having an appropriate polymer coating using benzoquinone or by condensation of an aldehyde group on the support with an amine and an active hydrogen on the binding partner (see, e.g., Pierce Immunotechnology Catalog and Handbook, 1991, at A12-A13).

20 In certain embodiments, the assay is a two-antibody sandwich assay. This assay may be performed by first contacting an antibody that has been immobilized on a solid support, commonly the well of a microtiter plate, with the sample, such that polypeptides within the sample are allowed to bind to the immobilized antibody. Unbound sample is then removed from the immobilized polypeptide-antibody complexes and a second antibody
25 (containing a reporter group) capable of binding to a different site on the polypeptide is added. The amount of second antibody that remains bound to the solid support is then determined using a method appropriate for the specific reporter group.

More specifically, once the antibody is immobilized on the support as described above, the remaining protein binding sites on the support are typically blocked.
30 Any suitable blocking agent known to those of ordinary skill in the art, such as bovine serum albumin or Tween 20™ (Sigma Chemical Co., St. Louis, MO). The immobilized antibody is

that corresponds to a predetermined cut-off value. In one preferred embodiment, the cut-off value is the average mean signal obtained when the immobilized antibody is incubated with samples from patients without lung cancer. In general, a sample generating a signal that is three standard deviations above the predetermined cut-off value is considered positive for 5 lung cancer. In an alternate preferred embodiment, the cut-off value is determined using a Receiver Operator Curve, according to the method of Sackett et al., *Clinical Epidemiology: A Basic Science for Clinical Medicine*, Little Brown and Co., 1985, p. 106-7. Briefly, in this embodiment, the cut-off value may be determined from a plot of pairs of true positive rates (i.e., sensitivity) and false positive rates (100%-specificity) that correspond to each possible 10 cut-off value for the diagnostic test result. The cut-off value on the plot that is the closest to the upper left-hand corner (i.e., the value that encloses the largest area) is the most accurate cut-off value, and a sample generating a signal that is higher than the cut-off value determined by this method may be considered positive. Alternatively, the cut-off value may be shifted to the left along the plot, to minimize the false positive rate, or to the right, to 15 minimize the false negative rate. In general, a sample generating a signal that is higher than the cut-off value determined by this method is considered positive for lung cancer.

In a related embodiment, the assay is performed in a flow-through or strip test format, wherein the antibody is immobilized on a membrane, such as nitrocellulose. In the flow-through test, polypeptides within the sample bind to the immobilized antibody as the 20 sample passes through the membrane. A second, labeled antibody then binds to the antibody-polypeptide complex as a solution containing the second antibody flows through the membrane. The detection of bound second antibody may then be performed as described above. In the strip test format, one end of the membrane to which antibody is bound is immersed in a solution containing the sample. The sample migrates along the membrane 25 through a region containing second antibody and to the area of immobilized antibody. Concentration of second antibody at the area of immobilized antibody indicates the presence of lung cancer. Typically, the concentration of second antibody at that site generates a pattern, such as a line, that can be read visually. The absence of such a pattern indicates a negative result. In general, the amount of antibody immobilized on the membrane is selected 30 to generate a visually discernible pattern when the biological sample contains a level of polypeptide that would be sufficient to generate a positive signal in the two-antibody

of immortal cell lines capable of producing antibodies having the desired specificity (*i.e.*, reactivity with the polypeptide of interest). Such cell lines may be produced, for example, from spleen cells obtained from an animal immunized as described above. The spleen cells are then immortalized by, for example, fusion with a myeloma cell fusion partner, preferably one that is syngeneic with the immunized animal. A variety of fusion techniques may be employed. For example, the spleen cells and myeloma cells may be combined with a nonionic detergent for a few minutes and then plated at low density on a selective medium that supports the growth of hybrid cells, but not myeloma cells. A preferred selection technique uses HAT (hypoxanthine, aminopterin, thymidine) selection. After a sufficient time, usually about 1 to 2 weeks, colonies of hybrids are observed. Single colonies are selected and tested for binding activity against the polypeptide. Hybridomas having high reactivity and specificity are preferred.

Monoclonal antibodies may be isolated from the supernatants of growing hybridoma colonies. In addition, various techniques may be employed to enhance the yield, such as injection of the hybridoma cell line into the peritoneal cavity of a suitable vertebrate host, such as a mouse. Monoclonal antibodies may then be harvested from the ascites fluid or the blood. Contaminants may be removed from the antibodies by conventional techniques, such as chromatography, gel filtration, precipitation, and extraction. The polypeptides of this invention may be used in the purification process in, for example, an affinity chromatography step.

Monoclonal antibodies of the present invention may also be used as therapeutic reagents, to diminish or eliminate lung tumors. The antibodies may be used on their own (for instance, to inhibit metastases) or coupled to one or more therapeutic agents. Suitable agents in this regard include radionuclides, differentiation inducers, drugs, toxins, and derivatives thereof. Preferred radionuclides include ⁹⁰Y, ¹²³I, ¹²⁵I, ¹³¹I, ¹⁸⁶Re, ¹⁸⁸Re, ²¹¹At, and ²¹²Bi. Preferred drugs include methotrexate, and pyrimidine and purine analogs. Preferred differentiation inducers include phorbol esters and butyric acid. Preferred toxins include ricin, abrin, diphtheria toxin, cholera toxin, gelonin, *Pseudomonas* exotoxin, *Shigella* toxin, and pokeweed antiviral protein.

A therapeutic agent may be coupled (*e.g.*, covalently bonded) to a suitable monoclonal antibody either directly or indirectly (*e.g.*, via a linker group). A direct reaction

be prepared in a variety of ways. For example, more than one agent may be coupled directly to an antibody molecule, or linkers which provide multiple sites for attachment can be used. Alternatively, a carrier can be used.

A carrier may bear the agents in a variety of ways, including covalent bonding either directly or via a linker group. Suitable carriers include proteins such as albumins (e.g., U.S. Patent No. 4,507,234, to Kato et al.), peptides and polysaccharides such as aminodextran (e.g., U.S. Patent No. 4,699,784, to Shih et al.). A carrier may also bear an agent by noncovalent bonding or by encapsulation, such as within a liposome vesicle (e.g., U.S. Patent Nos. 4,429,008 and 4,873,088). Carriers specific for radionuclide agents include radiohalogenated small molecules and chelating compounds. For example, U.S. Patent No. 4,735,792 discloses representative radiohalogenated small molecules and their synthesis. A radionuclide chelate may be formed from chelating compounds that include those containing nitrogen and sulfur atoms as the donor atoms for binding the metal, or metal oxide, radionuclide. For example, U.S. Patent No. 4,673,562, to Davison et al. discloses representative chelating compounds and their synthesis.

A variety of routes of administration for the antibodies and immunoconjugates may be used. Typically, administration will be intravenous, intramuscular, subcutaneous or in the bed of a resected tumor. It will be evident that the precise dose of the antibody/immunoconjugate will vary depending upon the antibody used, the antigen density on the tumor, and the rate of clearance of the antibody.

Diagnostic reagents of the present invention may also comprise DNA sequences encoding one or more of the above polypeptides, or one or more portions thereof. For example, at least two oligonucleotide primers may be employed in a polymerase chain reaction (PCR) based assay to amplify lung tumor-specific cDNA derived from a biological sample, wherein at least one of the oligonucleotide primers is specific for a polynucleotide encoding a lung tumor protein of the present invention. The presence of the amplified cDNA is then detected using techniques well known in the art, such as gel electrophoresis. Similarly, oligonucleotide probes specific for a polynucleotide encoding a lung tumor protein of the present invention may be used in a hybridization assay to detect the presence of an inventive polypeptide in a biological sample.

The following Examples are offered by way of illustration and not by way of limitation.

EXAMPLES

Example 1

PREPARATION OF LUNG TUMOR-SPECIFIC cDNA SEQUENCES USING DIFFERENTIAL DISPLAY RT-PCR

This example illustrates the preparation of cDNA molecules encoding lung tumor-specific polypeptides using a differential display screen.

Tissue samples were prepared from breast tumor and normal tissue of a patient with lung cancer that was confirmed by pathology after removal of samples from the patient. Normal RNA and tumor RNA was extracted from the samples and mRNA was isolated and converted into cDNA using a (dT)₁₂AG (SEQ ID NO: 47) anchored 3' primer. Differential display PCR was then executed using a randomly chosen primer (SEQ ID NO: 48). Amplification conditions were standard buffer containing 1.5 mM MgCl₂, 20 pmol of primer, 500 pmol dNTP and 1 unit of Taq DNA polymerase (Perkin-Elmer, Branchburg, NJ). Forty cycles of amplification were performed using 94 °C denaturation for 30 seconds, 42 °C annealing for 1 minute and 72 °C extension for 30 seconds. Bands that were repeatedly observed to be specific to the RNA fingerprint pattern of the tumor were cut out of a silver stained gel, subcloned into the pGEM-T vector (Promega, Madison, WI) and sequenced. The isolated 3' sequences are provided in SEQ ID NO: 1-16.

Comparison of these sequences to those in the public databases using the BLASTN program, revealed no significant homologies to the sequences provided in SEQ ID NO: 1-11. To the best of the inventors' knowledge, none of the isolated DNA sequences have previously been shown to be expressed at a greater level in human lung tumor tissue than in normal lung tissue.

aminopeptidase. Clone LT86-9 appears to contain two inserts, with the 5' sequence showing homology to the previously identified antisense sequence of interferon alpha-induced P27, and the 3' sequence being similar to LT86-6. Clone LT86-14 (SEQ ID NO: 30) was found to show some homology to the trithorax gene and has an "RGD" cell attachment sequence and a beta-Lactamase A site which functions in hydrolysis of penicillin. Clones LT86-1, LT86-2, LT86-4, LT86-5 and LT86-10 (SEQ ID NOS: 17, 18, 20, 21 and 26, respectively) were found to show homology to previously identified genes. A subsequently determined extended cDNA sequence for LT86-4 is provided in SEQ ID NO: 66, with the corresponding predicted amino acid sequence being provided in SEQ ID NO: 67.

10 Subsequent studies led to the isolation of five additional clones, referred to as LT86-20, LT86-21, LT86-22, LT86-26 and LT86-27. The determined 5' cDNA sequences for LT86-20, LT86-22, LT86-26 and LT86-27 are provided in SEQ ID NO: 68 and 70-72, respectively, with the determined 3' cDNA sequences for LT86-21 being provided in SEQ ID NO: 69. The corresponding predicted amino acid sequences for LT86-20, LT86-21, LT86-
15 22, LT86-26 and LT86-27 are provided in SEQ ID NO: 73-77, respectively. LT86-22 and LT86-27 were found to be highly similar to each other. Comparison of these sequences to those in the gene bank as described above, revealed no significant homologies to LT86-22 and LT86-27. LT86-20, LT86-21 and LT86-26 were found to show homology to previously identified genes.

predicted amino acid sequences are provided in SEQ ID NO: 93-101, respectively. L86S-30, L86S-39 and L86S-47 were found to be similar to each other. Comparison of these sequences with those in the gene bank as described above, revealed no significant homologies to L86S-14. L86S-29 was found to show some homology to a previously identified EST. 5 L86S-6, L86S-11, L86S-34, L86S-39, L86S-47, L86S-49 and L86S-51 were found to show some homology to previously identified genes.

In further studies, a directional cDNA library was constructed using a Stratagene kit with a Lambda Zap Express vector. Total RNA for the library was isolated from two primary squamous lung tumors and poly A+ RNA was isolated using an oligo dT column. Antiserum was developed in normal mice using a pool of sera from three SCID mice implanted with human squamous lung carcinomas. Approximately 700,000 PFUs were screened from the unamplified library with *E. coli* absorbed mouse anti-SCID tumor serum. Positive plaques were identified as described above. Phage was purified and phagemid excised for 180 clones with inserts in a pBK-CMV vector for expression in prokaryotic or 10 eukaryotic cells.

The determined cDNA sequences for 23 of the isolated clones are provided in SEQ ID NO: 126-148. Comparison of these sequences with those in the public database as described above revealed no significant homologies to the sequences of SEQ ID NO: 139 and 143-148. The sequences of SEQ ID NO: 126-138 and 140-142 were found to show 15 homology previously identified human polynucleotide sequences.

tags (ESTs). The sequences of SEQ ID NO: 150, 155 and 159-181 were found to show homology to sequences previously identified in humans.

Example 6

ISOLATION OF DNA SEQUENCES ENCODING LUNG TUMOR ANTIGENS

DNA sequences encoding antigens potentially involved in squamous cell lung tumor formation were isolated as follows.

A lung tumor directional cDNA expression library was constructed employing the Lambda ZAP Express expression system (Stratagene, La Jolla, CA). Total RNA for the library was taken from a pool of two human squamous epithelial lung carcinomas and poly A+ RNA was isolated using oligo-dT cellulose (Gibco BRL, Gaithersburg, MD). Phagemid were rescued at random and the cDNA sequences of isolated clones were determined.

The determined cDNA sequence for the clone SLT-T1 is provided in SEQ ID NO: 102, with the determined 5' cDNA sequences for the clones SLT-T2, SLT-T3, SLT-T5, SLT-T7, SLT-T9, SLT-T10, SLT-T11 and SLT-T12 being provided in SEQ ID NO: 103-110, respectively. The corresponding predicted amino acid sequence for SLT-T1, SLT-T2, SLT-T3, SLT-T10 and SLT-T12 are provided in SEQ ID NO: 111-115, respectively.

Comparison of the sequences for SLT-T2, SLT-T3, SLT-T5, SLT-T7, SLT-T9 and SLT-T11 with those in the public databases as described above, revealed no significant homologies. The sequences for SLT-T10 and SLT-T12 were found to show some homology to sequences previously identified in humans.

The sequence of SLT-T1 was determined to show some homology to a PAC clone of unknown protein function. The cDNA sequence of SLT-T1 (SEQ ID NO: 102) was found to contain a mutator (MUTT) domain. Such domains are known to function in removal of damaged guanine from DNA that can cause A to G transversions (see, for example, el-Deiry, W.S., 1997 *Curr. Opin. Oncol.* 9:79-87; Okamoto, K. et al. 1996 *Int. J. Cancer* 65:437-41; Wu, C. et al. 1995 *Biochem. Biophys. Res. Commun.* 214:1239-45; Porter, D.W. et al. 1996 *Chem. Res. Toxicol.* 9:1375-81). SLT-T1 may thus be of use in the treatment, by gene therapy, of lung cancers caused by, or associated with, a disruption in DNA repair.

Example 7

SYNTHESIS OF POLYPEPTIDES

Polypeptides may be synthesized on a Perkin Elmer/Applied Biosystems

- 5 Division 430A peptide synthesizer using FMOC chemistry with HPTU (O-Benzotriazole-N,N,N',N'-tetramethyluronium hexafluorophosphate) activation. A Gly-Cys-Gly sequence may be attached to the amino terminus of the peptide to provide a method of conjugation, binding to an immobilized surface, or labeling of the peptide. Cleavage of the peptides from the solid support may be carried out using the following cleavage mixture: trifluoroacetic acid:ethanedithiol:thioanisole:water:phenol (40:1:2:2:3). After cleaving for 2 hours, the peptides may be precipitated in cold methyl-t-butyl-ether. The peptide pellets may then be dissolved in water containing 0.1% trifluoroacetic acid (TFA) and lyophilized prior to purification by C18 reverse phase HPLC. A gradient of 0%-60% acetonitrile (containing 0.1% TFA) in water (containing 0.1% TFA) may be used to elute the peptides.
 - 10
 - 15
- Following lyophilization of the pure fractions, the peptides may be characterized using electrospray or other types of mass spectrometry and by amino acid analysis.

From the foregoing, it will be appreciated that, although specific embodiments of the invention have been described herein for the purposes of illustration, various modifications may be made without deviating from the spirit and scope of the invention.

9. A vaccine comprising the polypeptide of claim 2 and an immune response enhancer.

5 10. The vaccine of claim 9 wherein the immune response enhancer is an adjuvant.

11. A vaccine comprising the polynucleotide of claims 1 or 4 and an immune response enhancer.

10

12. The vaccine of claim 11 wherein the immune response enhancer is an adjuvant.

15 13. A pharmaceutical composition for the treatment of lung cancer comprising a polypeptide and a physiologically acceptable carrier, the polypeptide comprising an immunogenic portion of a lung protein or of a variant thereof, wherein said protein comprises an amino acid sequence encoded by a polynucleotide comprising a sequence selected from the group consisting of:

20 (a) sequences recited in SEQ ID NO: 12-18, 20, 21, 26, 49, 50, 52, 54, 64, 66, 68, 69, 71, 78, 84, 85, 88, 91, 92, 116-120, 126-138, 140-142, 150, 155 and 159-181;

(b) sequences complementary to the sequences of SEQ ID NO: 12-18, 20, 21, 26, 49, 50, 52, 54, 64, 66, 68, 69, 71, 78, 84, 85, 88, 91, 92, 116-120, 126-138, 140-142, 150, 155 and 159-181; and

(c) variants of the sequences of (a) and (b).

25

14. A vaccine for the treatment of lung cancer comprising a polypeptide and an immune response enhancer, said polypeptide comprising an immunogenic portion of a lung protein or of a variant thereof, wherein said protein comprises an amino acid sequence encoded by a polynucleotide comprising a sequence selected from the group consisting of:

30 (a) sequences recited in SEQ ID NO: 12-18, 20, 21, 26, 49, 50, 52, 54, 64, 66, 68, 69, 71, 78, 84, 85, 88, 91, 92, 116-120, 126-138, 140-142, 150, 155 and 159-181;

21. A pharmaceutical composition comprising a fusion protein according to any one of claims 18-20 and a physiologically acceptable carrier.

5 22. A vaccine comprising a fusion protein according to any one of claims 18-20 and an immune response enhancer.

23. The vaccine of claim 22 wherein the immune response enhancer is an adjuvant.

10

24. A method for inhibiting the development of lung cancer in a patient, comprising administering to the patient an effective amount of the pharmaceutical composition of claim 21.

15

25. A method for inhibiting the development of lung cancer in a patient, comprising administering to the patient an effective amount of the vaccine of claim 22.

20

26. A method for inhibiting the development of lung cancer in a patient, comprising administering to the patient a polynucleotide under conditions such that the polynucleotide enters a cell of the patient and is expressed therein, the polynucleotide having a sequence selected from the group consisting of:

- (a) a sequence provided in SEQ ID NO: 102;
- (b) sequences complementary to a sequence of SEQ ID NO: 102; and
- (c) variants of the sequence of SEQ ID NO: 102.

25

27. A method for detecting lung cancer in a patient, comprising:

- (a) contacting a biological sample obtained from the patient with a binding agent which is capable of binding to a polypeptide, the polypeptide comprising an immunogenic portion of a lung tumor protein or a variant thereof, wherein said protein comprises an amino acid sequence encoded by a polynucleotide comprising a nucleotide sequence selected from the group consisting of sequences provided in SEQ ID NO: 1-31, 49-

- (a) sequences recited in SEQ ID NO: 1-11, 19, 22-25, 27-31, 51, 53, 55, 63, 70, 72, 79, 80, 86, 87, 89, 90, 102-107, 109, 139, 143-149, 151-154 and 156-158;
- (b) the complements of nucleotide sequences recited in SEQ ID NO: 1-11, 19, 22-25, 27-31, 51, 53, 55, 63, 70, 72, 79, 80, 86, 87, 89, 90, 102-107, 109, 139, 143-149, 151-154 and 156-158; and
- (c) variants of the sequences of (a) and (b).

32. A method for inhibiting the development of lung cancer in a patient, comprising administering to the patient a therapeutically effective amount of a monoclonal antibody according to claim 31.

33. The method of claim 32 wherein the monoclonal antibody is conjugated to a therapeutic agent.

34. A method for detecting lung cancer in a patient comprising:

- (a) obtaining a biological sample from the patient;
- (b) contacting the sample with at least two oligonucleotide primers in a polymerase chain reaction, wherein at least one of the oligonucleotides is specific for a polynucleotide encoding a polypeptide comprising an immunogenic portion of a lung tumor protein or a variant thereof, said protein comprising an amino acid sequence encoded by a polynucleotide comprising a nucleotide sequence selected from the group consisting of sequences recited in SEQ ID NO: 1-31, 49-55, 63, 64, 66, 68-72, 78-80, 84-92, 102-110, 116-120 and 126-181, the complements of said sequences and variants thereof; and
- (c) detecting in the sample a DNA sequence that amplifies in the presence of the oligonucleotide primers, thereby detecting lung cancer.

35. The method of claim 34, wherein at least one of the oligonucleotide primers comprises at least about 10 contiguous nucleotides of a polynucleotide comprising a sequence selected from SEQ ID NO: 1-31, 49-55, 63, 64, 66, 68-72, 78-80, 84-92, 102-110, 116-120 and 126-181.

provided in SEQ ID NO: 1-31, 49-55, 63, 64, 66, 68-72, 78-80, 84-92, 102-110, 116-120 and 126-181, the complements of said sequences and variants thereof.

44. A method for detecting lung cancer in a patient, comprising:

- (a) obtaining a biological sample from the patient;
- 5 (b) contacting the biological sample with an oligonucleotide probe specific for a polynucleotide encoding a polypeptide comprising an immunogenic portion of a lung tumor protein or a variant thereof, said protein comprising an amino acid sequence encoded by a polynucleotide comprising a nucleotide sequence selected from the group consisting of sequences recited in SEQ ID NO: 1-31, 49-55, 63, 64, 66, 68-72, 78-80, 84-92, 102-110, 116-120 and 126-181, the complements of said nucleotide sequences and variants thereof; and
- 10 (c) detecting in the sample a DNA sequence that hybridizes to the oligonucleotide probe, thereby detecting lung cancer in the patient.

45. The method of claim 44 wherein the oligonucleotide probe comprises at least about 15 contiguous nucleotides of a polynucleotide having a nucleotide sequence selected from the group consisting of sequences recited in SEQ ID NO: 1-31, 49-55, 63, 64, 66, 68-72, 78-80, 84-92, 102-110, 116-120 and 126-181, the complements of said nucleotide sequences and variants thereof.

46. A diagnostic kit comprising an oligonucleotide probe specific for a polynucleotide encoding a polypeptide comprising an immunogenic portion of a lung tumor protein or a variant thereof, said protein comprising an amino acid sequence encoded by a polynucleotide comprising a nucleotide sequence selected from the group consisting of sequences recited in SEQ ID NO: 1-31, 49-55, 63, 64, 66, 68-72, 78-80, 84-92, 102-110, 116-120 and 126-181, the complements of said sequences and variants thereof.

47. The diagnostic kit of claim 46, wherein the oligonucleotide probe comprises at least about 15 contiguous nucleotides of a polynucleotide having a nucleotide sequence selected from the group consisting of sequences recited in SEQ ID NO: 1-31, 49-55,

pharmaceutically acceptable carrier.

55. A composition for the treatment of lung cancer in a patient, comprising T cells proliferated in the presence of a polynucleotide of claim 1, in combination with a pharmaceutically acceptable carrier.

56. A method for treating lung cancer in a patient, comprising the steps of:

(a) incubating antigen presenting cells in the presence of at least one polypeptide of claim 2; and

10 (b) administering to the patient the incubated antigen presenting cells.

57. A method for treating lung cancer in a patient, comprising the steps of:

(a) incubating antigen presenting cells in the presence of at least one polynucleotide of claim 1; and

15 (b) administering to the patient the incubated antigen presenting cells.

58. The method of claims 54 or 55 wherein the antigen presenting cells are selected from the group consisting of dendritic cells and macrophage cells.

20 59. A composition for the treatment of lung cancer in a patient, comprising antigen presenting cells incubated in the presence of a polypeptide of claim 2, in combination with a pharmaceutically acceptable carrier.

25 60. A composition for the treatment of lung cancer in a patient, comprising antigen presenting cells incubated in the presence of a polynucleotide of claim 1, in combination with a pharmaceutically acceptable carrier.

SEQUENCE LISTING

<110> Corixa Corporation

<120> COMPOUNDS FOR THERAPY AND DIAGNOSIS OF LUNG CANCER AND METHODS FOR THEIR USE

<130> 210121.447PC

<140> PCT

<141> 1999-01-28

<160> 216

<170> PatentIn Ver. 2.0

<210> 1

<211> 339

<212> DNA

<213> Homo sapiens

<400> 1

gtactcagac aggatagtca tcatgtägca caaagcamat cctgtttcta tacttgtat 60
ttgctctcac tcagtgccat ratcattact atacagtgt aatgtttrt atgtacata 120
gatgtgggt ctctagccca cagctctsta ccttgcata gcaactctgt cctcataacct 180
ragtggccctg tccatcagca tgtttctcat ctactttgtc tgcctcagtc actgtggtcc 240
tcccttgccc tctcccttat gtggcagagt ggaaccagct gtcctgagac ttgagttcaa 300
catctggtgc gccccatytgc atgtttgtgg tctgagtac 339

<210> 2

<211> 698

<212> DNA

<213> Homo sapiens

<400> 2

gtactcagac cacgactgca ttttctccac tgctgacggg tctaataccca gctgcttccc 60
tttcttgag gcagagctng tgaccttgag aaagtgcac gtaaccatca tgcgtggtagt 120
gagctgctgc aagggtcat gggagctccc acactccatg cactttwaga tctgggactt 180
gcaggccctca ractgccagg ttagctcgc tccatTTTgg tagccatagc gttttttgg 240
ggacaactgc aagttggcggt tcttctgaga agaaaaagaa tctgcääaaag atccctgtgt 300
tgaatcgggg gaacacggcc gattgacatc aaaaacgcgt ttcttagccccc gggtgaccat 360
tttcgagggaa atgggtgggg actggctcct tcaaaggcac tttttggta tttttttttt 420
yaatcatgtk gacgcctcaa ttttggrragg gaatcgaang rantcnccnc caaaacatrc 480
stttcagraa ccttttgarc atccctttttt ttccgtrtcc cggmaargcc cyttccckg 540
ggctttgaaa wyagcctsqt tgggttctta aattaccart ccacnwgttg gaatccccg 600
ggccccctgc ccggktccaa ccaatTTTgg graaaacccc cncansccgt tkggantgcn 660
acaacntggm ntttttcttt tctgtntccc ctngaacc 698

<210> 3

<211> 697

<212> DNA

<213> Homo sapiens

<400> 3

gtactcagac ccccaacctc gaacagccag aagacaggtt gtctcctggg ccttggacac 60

```

agccngccag gccattgaag ganaagcaaa gacgaagcga accatctctc tccattgtgg 120
gggccaagta gctgcantaa ctttcagtc cagttgcatt gggtaaaga gctcatacat 180
actatgtgtt aggggtacag aagctttcc tcataaggca tgagctctcc nagagtgc 240
cttttgctt aacttggggt ttctgtggtt cataaaagttt ggatatgtat ttttttcaa 300
atggaaanaaa atccgtatTTT ggcaaaaaga ctccaggggg atgataactgt ctttgcact 360
tacagtccaa angatnttcc ccaaagaata gacatTTTTT cttctcatca ttctggatg 420
caaaatcttt tattttttc ctttctcgca ccnccccaga cccctnnag gttnaaccgc 480
ttccccatctc ccccatTCca cacgatTTT aatTngcann ncgttgtgg tcgggtccen 540
nccgaaaggg tntttttatt cggggtnctg anttnnnaac cnctnagttg aatccgcggg 600
gcggccnnngn gggtnnacc atgntggga naactncccn ccgcgnTTgg aatgccanag 660
ccttgaaant ttcttttgg tcggccccc gagatTC 697

```

<210> 4
<211> 712
<212> DNA
<213> *Homo sapiens*

<400> 4
 gtactcagac aaccaatagg tgtgttctc anatctgaaa cacaaaaaga ttctagctna 60
 taatgttsaa tggttgaggg ttaagtgtatgt tngatttagc agcgatnggc 120
 cgggtgcggg ggctcacgca tttatcccag cactttggga ggccgaggca ggaggatcac 180
 ctgaggtcag gagtttgaga ccagcctggc cgacatggtn aaacccccgtc tctactangaa 240
 atacanaaat tagccccggc atagtggcgc gtgcctrtaa cctcsgtac tttggggatt 300
 ctccctgagga agaattgtctt gaactcaggg aagtggargt ttgcagttag cttaaatcaa 360
 gccactggca ctccccagcct gggktaacag agccamgact ctkgcccggaaa aaaaaraama 420
 cgacggagaa nmagnrtctgt tattccatgg gaaattkgaa tttccttcyt tkaaatatct 480
 taaaatnnggt cctcttwaaa aaagttccgc tggggcccgk tggctcacat tttkttaycc 540
 cycccccttt tggggarggc caargggccgg kttgawtnnc cttgaggggg ccanaactcc 600
 agnaaccrgn cccggggcar smgwkgkstr armcccttcc cyyccmaraa aawwcsmaaa 660
 wwttyccscs cygsykggct ggkasckggt myyyyygamt mcsyagcttgc tt 712

<210> 5
<211> 679
<212> DNA
<213> *Homo sapiens*

```

<400> 5
gtactcagac cacccatcacat gcagggttnag aaacatggag tggcgccag cattcttc 60
acatccccttt gtgagcacgg ctgcgtccgga atactgacca tctgggctag caccgactaa 120
cagagggttc tgcaggatgt gctatttaa agcagctggg tgcaacttgt gaaaacggga 180
atctngaagc agaacatgtn atcagcgatg gctgggattt gttggacaggag ttgacaggag 240
tatggaggc tctaccaggc ctgtctacag gacagcttca tcgaaggggac atttttttaa 300
ctgttatttt anatnccaca tatntttttt aatgctnaag catacagggtt gaattttctgg 360
atcgtacta ctatgtactt ctgagggtta cagtntgaat atgttctcn aggtttatca 420
agtnttgta ttgtatgtatng gtaatctaca cctcttggaaag ctgtngaatg taaaaaaagat 480
ncntncanct gaccagtttgc nagggcaactc tcttcttggna agnaatccgn caaaaaaaaat 540
tgtttctnagg gggcntgggg ggtttaaaaa aatgtttctn ttncntaaa aatgtttacc 600
cnnctattga aaaaatgggg gtcgnggggg gcttnaaatc cccnntnttnta gaatntnta 660
tccggaanct tggtttcccc

```

<210> 6
<211> 369
<212> DNA
<213> *Homo sapiens*

<400> 6

tcagtccagt catgggtcct ataagagaag tcactctgtg agtttccatg gaggaagaaa 60
aagcttcatt tctttaccct gcagcaacag cggaggaggag gagagcctat cttctttgc 120
aattcattaa ctgttggtt gaagggagca gcgtcngaaa ctgttttagc acagtggag 180
gaaaacaaac agattcatct ccggaaacca aaggaaagg tragtgggtt tttattagcc 240
agctgtatcc tagatggtca attccagtg gatgaataca ccttacgtac gtttcttctg 300
cttcctaccc nggctgatc agctnggcac ttraatcatt ccgtnggggt wgcgtgnaca 360
ctggactga 369

<210> 7

<211> 264

<212> DNA

<213> Homo sapiens

<400> 7

tgctggatra gggatggggc acgggaccac agatmgactt taactgcccc cacgtntcm 60
aggaaaggat tacaggcgtg agccactgcg cccggcctct tctccacttt catagttcc 120
agtctcttgtt tcttctttct cagtttggttt tttttgttcc ttaaatmatg gagatnagaa 180
tgaacactac actcgaaatc aggaagccct gcctggggcc tctgtcacct gtctaggggc 240
ttcttctcac tgagtcatcc agca 264

<210> 8

<211> 280

<212> DNA

<213> Homo sapiens

<400> 8

acctaactg cccanaacan aactgttgta caagatttga ggatttaaca atatttcaca 60
tgaaatatattt cagacctacg ngagggctta aagacnaatt aaatgagcac cngtgtgcc 120
accggcccna ttaagaatta gagcaagcag tgaggtgaag ctttgcctt gcttttaaca 180
tagaaagtga tccaaattca ccaaacttga cttnnngttt tgcaagtgtgg cctccctgatt 240
ctagacnctg gcgaaacatt tgatggcaa aaaaaaaaaa 280

<210> 9

<211> 449

<212> DNA

<213> Homo sapiens

<400> 9

tcgtcaactc caggatggct ttgaaaatna atggacacag atctctcctg ttttgatrat 60
ntcagtgct natgaetggc tttcagttt attttGattc aggcaacaga tggccctttt 120
ggttccctgtt ctccccatggg cgtcatttca tgggtgcctt tgcccttcccc cagatatttt 180
aagttcagga cacaagcttc tggcccatgc agagcagagg ccatgagggg tcacagcatg 240
ggtaacgggag gaaacactgg gctnaccagg atnctggact tgagtcttgc ctctgctgct 300
tgctgcacag ctctgtcat ggtgtctaaac ctgtgacccctg cctcacaggc ttagagcatg 360
cccgtagaaag tactctnaac taaratgctt tccacaaatg agatggttt atgaaaactt 420
caaatacgagg gcctgggcaa aaaaaaaaaa 449

<210> 10

<211> 538

<212> DNA

<213> Homo sapiens

<400> 10

ttttttttttt ttcccaaagg cctcaraaca ctgtcttct aattccaagc agaaaagttac 60

atccggccggg atacatgccca cttgggttga taaatcaaaa tacagcatcc ttccagatccc 120
 tttgtctgagc aataacaatta ttgttatatg ttactttttt ttctgtttgg ctnaaagatt 180
 tgatatgagc tgaggaaaaat gaagccntta ctgcctatnag atctnatccc ttccaccac 240
 ctttcagggta tnttggcaact gcayatattc agaattcccc nnagtctgtn gtgataaaaa 300
 tgtcttcaga gatggcagaa tatgtttctt ttggatcatg ttcattaaaa atatacacgt 360
 gctcaactact gtggatatgt atgttttgac cgatnacaca ggctgattta gggaaagagat 420
 aaaagcacac ttngaattta ttageccctt accnagacta anattctgaa attaagaatg 480
 tattccttgg tcaacaattt tcctcttctc ttgcctctc tacattgtan tggactga 538

<210> 11

<211> 543

<212> DNA

<213> Homo sapiens

<400> 11

ttttttttt ttgcccacag ctgcccacatctt tggatgataa ggccaaacctt ctatggaaat 60
 caaccctcgccatcccgca aatccccctt ctcccttctc atgggagatgc cttgtattca 120
 tcaggcatct gggacttgcat gtgggtntgg gatggaaat cagagcacct ngtctctst 180
 caccattctn tcaatttta gctctnaacct tgggttaata cctgccttag tgccttaggt 240
 acaaatatgaa tattgtctat ttcttcaggaa ttgcaatgac nagtnnatna gtgcattgaga 300
 gggtaaaacc acagggtaact ccgtctcttc naagaatgga gaattttttc tagaagccca 360
 natntgcttg gaaggttggc caccnagagc cnnaatcttc ttttattncc cactgaangc 420
 ctaagaggna attctgaact catccccmna tgacccctcc cgaatmagaa tattctctggc 480
 acttaccata ttttcttgcctt ctcttccact tacnnaaactc ctttatttccct taacnggacg 540
 aaa 543

<210> 12

<211> 329

<212> DNA

<213> Homo sapiens

<400> 12

cgtatgacttg ggcagtggatggccttcctg ccagggtggca gggcacagct tagaccaaacc 60
 ccttggccctc cccccctctgc agstacactt gaccaagaag gaaacttagca agcctatgct 120
 ggcacccatcca taggtgggt gctgggaaatc ctggggccg gctggcaccc actccctggtg 180
 ctcaagggag agaccactt gttcagatgc atrggctca ggccgttcaa ggcrgtctta 240
 gagccacaga gtcataaaaa aatcaattttt gagagaccac agcacctgct gctttgatcg 300
 ttagtggtaaa ggcaagttgc aagtcatcg 329

<210> 13

<211> 314

<212> DNA

<213> Homo sapiens

<400> 13

cgtatgacttg cacccggggag ctgtgacagt ggcctggaaag cagatggcaag cccctcaag 60
 gccccggatgg agaccaccaa accctccaaa cagacaaca actatgtacgc ggccagcagc 120
 tacctgagcc tgacgcccga gcagtggaaat tcccacagaa gctacagctg ccaggctacg 180
 catgaaggaa gcaccgtggaa gaagacagtg gcccctacag aatgttcata gggtcccnac 240
 tctnacccca cccacggggag cctgganctg cangatccc gggaaagggt ctctctcccc 300
 atcccaagtc atcg 314

<210> 14

<211> 691

<212> DNA

<213> Homo sapiens

<400> 14

cgattacttg cacaatgcan attagaaccc aaatgaaggg tacaacccag atcttctggc 60
 ttccagttca gtgctgtgg gtttttctta ctaaaaccaa acaatkaaga gcatagaagg 120
 gaagagaaga ataaagtcta ttttggtctt tggttagcchg ggtaangaga atgctstcac 180
 tctacnagaa aaccnnaagt gaacccggct aatcaggacc gtgcggcggg aggagcagg 240
 ggcattacctt tcacaccca gaggttctt gccttctc tgcaggact cgargactat 300
 gtgaagtggc tgggargggca tcactcggt tggttcattg grtttctcat cataaactat 360
 natttctttg gaaaaagatc ctcttggaa artccttgc ttccttacag gaaatcaagt 420
 cttaggacagt gatcttgcctt ctgcttgcas tctccggcgg ctgatcttat csgscggc 480
 tkatgtgsam cgctccctgg attrkactct tggttwctc cvaggaaggg gcytgcmaegt 540
 ccnwtnaatg amssgggccc ttaactccgg scrggnamy ncttgsctsc rattygggt 600
 ycytcttcyt ttgsccmgt tcktcnnaaac cacttngttr aattccccgg sccgctkgc 660
 ngtycaacc wttttggaa mamcyccccc c 691

<210> 15

<211> 355

<212> DNA

<213> Homo sapiens

<400> 15

acctgaactg tgtgttgaag agtgatgtcc tgctgcctgg agctcaagtc actactgtat 60
 accgtgccta tgtccgacag cttagttnccct ccattggatgt gactgagacc aatgtcttct 120
 tcyacccctcg gctcttaccc ttgacnaagt ctcccggtga gacttactacc gaaccaccag 180
 cagttcgagc ctctnaagag cgtctaagcg atggggatat atatttactg gagaatggc 240
 tcaacctctt cctctgggtg ggagcaagcg tccagcaggg tggtgtccag agcctttca 300
 gctgtctccctt cttcagtcag atcaccagtg gtntgagtgt tctgccagtt caggt 355

<210> 16

<211> 522

<212> DNA

<213> Homo sapiens

<400> 16

tcagtcctcgtt gagggtggaaacttcgagggc tcgtggggc cgcttctccca agtctgtat 60
 tgagagacag cgcatgtgg tgcagcgatgg ggcgaactc ctccagcaag ctgcagacg 120
 ttcttgcac aaaagttctg aagatgtgc ggcctcagag agcttctcc cctcggaaagg 180
 tgctgtctctt gacccctgtga ccctncgtcg aangatgtcg gtgcggccg cggAACGGG 240
 gcttcagaag cagcagaccc ctctngcgtcc ccttgccttc ctcagctgtcc tccctggccc 300
 tggtggccggc tgactggagg aggctgtcc aattctgccc gccccatggaa aaagcggtct 360
 tgactgcatt gcccgtgtat naaagcatgt ggtttagtacatggac gctnatnaat 420
 ttatccctnic tntgtataac ttcttatgtg acatcttctt ctcccttggaa aacactgcan 480
 attttactg tgagttgtat ctcttcttngt gttactggac tg 522

<210> 17

<211> 317

<212> DNA

<213> Homo sapiens

<400> 17

gtgtcgcgaa ttgcgggtgg tgctaaagaaa aggaagaaga agtcttacac cactccaaag 60
 aaggataagc accagagaaa gaaggtttag ccggccgtcc taaaatatta taagggtggat 120
 gagaatggca aaatttagtt ctttcgtcgaa gactggccct ctgatgtatgg tgggtgtggg 180
 gtgtttatgg caagtcactt tgacagacat tattgtggca aatgttgtct gaccactgt 240

ttcactaac cagaagacaa gtaactgtat gagttatta aagacatgaa ctaaaaaaaa 300
 aaaaaaaaaa actcgag 317

<210> 18

<211> 392

<212> DNA

<213> Homo sapiens

<400> 18

tggagatttc taatgaggtg aggaagtcc gtacattgac agaattgatc ctcgatgctc 60
 aggaacatgt taaaaatcct tacaaaggca aaaaactcaa gaaacaccca gacttcccc 120
 agaagccctt gacccttat ttccgcttct tcattggagaa gcggggcaag tatgcgaaac 180
 tccaccctca gatgagacaac ctggacctga ccaaggattct gtccaaagaaa tacaaggagc 240
 ttccggagaa gaagaagatg aaatatgttc cggacttcca gagaagagaa acaggagttc 300
 gagcgaaacc tggcccgatt cagggaggat caccggacc ttatccagaa tgccaaagaat 360
 cggacatccc agagaagccc caagaccccg cg 392

<210> 19

<211> 2624

<212> DNA

<213> Homo sapiens

<400> 19

gaaacagtga gaaggagatt cctgtgtca atgagctgcc agtccccatg gtggcccgct 60
 acattcgcataaaccctcag ttctggtttataacgggag catctgcatttggatggaga 120
 tcttggctg cccactgccc gatccataata actattatca ccgacgtaat gagatgacca 180
 ccacggatgatc cctggatttt aagcaccaca actatttaga aatgcgcag ttgtatgagg 240
 ttgtcaatgt aatgtgcccc aatattacca ggatttacaa cattggcaaa agccaccagg 300
 gcctgaaattt gtatgcgtt gatctctg accatcctgg ggaacatgaa gttggtgagc 360
 cccgagttcca ctacatcgca gggggccacac gcaatggat tctggacgaa gaactgtgc 420
 tgcgtctgtc gcacttccctc tgccaggat actcgccgca gaacgcacgc atcgccgt 480
 tggtgagga gactcgaatc cacattctac cctccctcaa ttctgtggc tatgagaagg 540
 cctatgaagg aggttcccgag ttgggaggctt accatcgatc ctggggacgaa gaggaccagg 600
 tcgatataca caacaactttt ccggattttaa acatcgatc ctggggacgaa 660
 agaatgcccc aaggaaggc cccaaacctt acatggccat ccctgaggatgg tttctgtctg 720
 agaatgccac agtggccaca gagaccagag ggccatccaa ttctgtggc catgatggca 780
 ttgtgctggg aggcaaccta caggggggtt agctggctgtt ggcataccccc tatgacatgg 840
 tgcggccctt gtggaaagacc caggagcaca ccccaacacc tgatgtatcat gtgttccgt 900
 ggctggcgta ttccctacgccc tccactcacc gcctcatgac agatgccagg aggccaggatgt 960
 gcccacacggaa agattttcag aaggaggagg gcaccgtcaa tggggcttcc tggcacacag 1020
 tggctggaaag tctaaacgtt ttcaatgttacc tccatcacaaa ctgctttgag ctgtccatct 1080
 acgtggctg tgataaaatac ccacacgaga gcgagctgcc ggaggaatgg gagaataacc 1140
 gggagttctt gattgtttt atggaggcagg ttcatcgagg catcaaaaggc atagtgagag 1200
 atttacaagg gaaagggtt tcaatgttgc tcatctctgtt ggaagggtttt aaccatgaca 1260
 tccggacagc cagcgatggg gattactggc gtctactgaa ccctggcgaa tatgtgtca 1320
 cagccaaaggc ggaaggctttt atcaatgttcca ccaagaactg catggttggc tatgatatgg 1380
 gagctactcg tggacttcc accttcacaa agaccaaccc ggttggatata agagaatttta 1440
 tggagacatt tgggaagcag cctgtcagcc taccctccag gcgcctgtt gtcggggac 1500
 gggaaaaggcg gcagcggttt tgacccgttc ggacacttgc gacatacccc agaccgtgca 1560
 aataaaaaatc cactccatgt gtaacttgcgtt agcaggctttt ccctgtttt ttgactgtaa 1620
 ttcaagagac actcaggagc atacatgttgcgtt ggcttggctg accccaaagg ggagggctgg 1680
 tggctcagggt tgggggggggg tttttttttt ttgttctcat ttatccaaat 1740
 accttgcaca ggcagcaga gaaaggccgg tggcagttag ggaatttattt cagtgtgtca 1800
 gtctgatgtt ctaaaaaaggc tggatgttgcacca ctggccagga agggaaatca ggcctttccc 1860
 catttgcgtt acattcaagc ttccctgttgc atttgcataat ggcacatgtt acactgtcagc 1920

acccagggaa	tctttgcc	cagatgttat	catttgagat	gctcttatgc	agcctaaga	1980
aatccatcct	ctctggcccc	aggggacaag	ccaagctgct	atgtacacac	tcggtgttct	2040
attgacaata	gaggcattta	ttaccaagt	tgcacatcgct	agtccctaaat	cagctctgtt	2100
ccttttcca	acaaagctt	ttttccctaa	agcagacaga	agtggagagc	acccaagaat	2160
gagtgtggg	cagcagaccc	tgggggaggg	ggcttgctat	cccagaaaagc	ccctaaaccc	2220
tttgcgtctc	cattagccct	ggggtgagga	gagccagaca	tgttaggagg	ccagagcagt	2280
cagtcaggc	atcttgaaa	agaccttga	ggaagcaa	cctgggttcc	tttgctcca	2340
gaatgtgaga	gctccaagtt	ggcccaatc	aggaggggag	taatgtatgaa	catacagacg	2400
gccacatctt	gccaatcaag	catcatctga	tgaaaaaaagaa	agcaatctta	ggattacctg	2460
ggacacgtca	gtctgggaga	ggtggttga	tcatttgtt	agggaatagt	gtatctaatc	2520
tgtgttgatc	ctgtgtcc	gttgaccctgg	agagaatgaa	acaaaacaaac	acataaaacaa	2580
ataaaagcaa	tggtaagatt	aaaaaaaaaa	aaaaaaaaact	cgag		2624

<210> 20

<211> 488

<212> DNA

<213> Homo sapiens

<400> 20

ctttcaaccc	gcgctcgccg	gttccagccc	cgcgcgcccc	cacccttgc	cctccggcg	60
gctccgcagg	gtgagggtggc	tttgaccccg	ggttgcgg	ccagcacgac	cgaggagtg	120
gctggacagc	tggaggatga	acggagaagc	cgactgc	acagacctgg	aatggccgc	180
ccccagaggc	caagaccgtt	gttccagga	agacatgtg	actttgtgg	aatgcatgaa	240
gaacaacctt	ccatccaatg	acagctcca	gttc	acccaaacac	acatggaccg	300
ggaaaaagtt	gcattgaaag	actttctgg	agacatgtg	aagctcaa	gggtcgagat	360
ctctaattgag	gtgaggaagt	tccgtacatt	gacagaattg	atcctcgata	ctcaggaaaca	420
tgtttaaaat	ccttacaaag	gcaaaaaatc	aagaaacacc	ccgacttccc	cgagaaagcc	480
ccttaaccc						488

<210> 21

<211> 391

<212> DNA

<213> Homo sapiens

<400> 21

atggaaattgt	ggttttctct	ttggggatcaa	tggtctcaga	aattccagag	aagaaaagctg	60
tggcgattgc	tgtatgcttg	ggccaaaatcc	ctcagacagt	cctgtggcg	tacactggaa	120
cccgaccatc	gaatcttgcg	aacaacacga	tacttgttca	gtggctaccc	caaaacgatc	180
tgcttggtca	cccaatgacc	cgtgcctta	tcaccccattgc	tagttccccat	ggtgttaatg	240
aaagcatatg	caatggcggt	cccatggtga	tgataccctt	atttggtgat	cagatggaca	300
atgcaaagcg	cagggagact	aagggagctg	gagtgaccct	gaatgttctg	gagatgactt	360
ctgaagatct	aqaagatgct	ctgaagagca	q			391

<210> 22

<211> 1320

<212> DNA

<213> Homo sapiens

<400> 22

gctttttagatg	aagctatgtc	atactgtcga	tatcatccctt	ccaaagggtta	ttggtgtggcac	420
ttcaaaagatc	atgaaagagca	agataaaagtc	agacctaaag	ccaaaaggaa	agaagaacca	480
agctctattt	ttcagagaca	acgtgtggat	gctttacttt	tagacctcg	acaaaaattt	540
ccaccccaaat	ttgtgcagct	aaagcctgga	gaaaagcctg	ttccagtggta	tcaaacaaag	600
aaagaggcgag	aacctataacc	agaaaactgtta	aaacctgagg	agaaggagac	cacaaaagaat	660
gtacaacaga	cagtgagtgc	taaaggcccc	cctgaaaaac	ggatgagact	tcagtgagta	720
ctggacaaaaa	gagaagcctg	gaagactcct	catgtctagtt	atcatacctc	agtactgtgg	780
ctcttgagct	ttgaagtact	ttattgtAAC	cttcttattt	gtatggaatg	cgcttatttt	840
ttgaaaggat	attaggccgg	atgtgttggc	tcacgcctgt	aatcccagca	ctttggggagg	900
ccatggccgg	tggatcactt	gaggtcagaa	gttcaagacc	agcctgacca	atatggtaa	960
accccgtctc	tactaaaaat	acaaaaatta	gccgggctgt	gtggcgggcg	cccatagtc	1020
cagctactcg	ggaggcttag	acaggagact	tgcttgaacc	cgggaggtgg	aggtgtccct	1080
gagctgatca	tcctgctgtt	gcactccagc	ttggggcgaaa	gagcgagact	ttgtctctat	1140
aaagaaggaa	agatattatt	cccatcatga	tttcttgcga	atatttgtaa	tatgtttttt	1200
gtaaccttcc	cttcccgga	cttgcggcaac	ctacacactc	acatgtttaa	tggtagatat	1260
gttttaaagc	aagataaaagg	tattgggttt	aaaaaaaaaa	aaaaaaaaaa	aaaactcgag	1320

<210> 23

<211> 633

<212> DNA

<213> *Homo sapiens*

<400> 23

ctaaggccag	tgaaggtgaa	aacccttc	cgttcccagg	gagggagaag	gaaggcatgc	60
tgtatgggggt	taagccgggg	gaggacgcat	cggggcctgc	tgaagacctt	gtgagaagat	120
ctgagaaaaga	tactgcagct	gttgtctcca	gacagggcag	ctccctgaac	ctctttgaag	180
atgtgcagat	cacagaacca	gaagctgagc	cagagtccaa	gtctgaaccg	agacctccaa	240
tttcctctcc	gagggctccc	cagaccagag	ctgtcaagcc	ccgacttcat	cctgtgaagc	300
caatgaatgc	cacggccacc	aagggttcta	actgcagctt	ggaaactgcc	accatcatcg	360
gtgagaacctt	gaacaatgag	gtcataatgt	agaaaatacag	ccccctggac	cctgcatttg	420
catatgcgc	gctgaccac	gatggactgt	ttagtgggt	cctcaaacag	aaggaaacg	480
taagcaagaa	ggagttccag	gtcccgcgac	ttggaaagacta	cattgacaac	ctgctcg	540
gggtcatgga	agaaacccccc	aatatctcc	gcatcccgac	tcaggttggc	aaaaaaagcag	600
aaaaagatgt	aattagcaga	aaaaaaaaactc	qad			633

<210> 24

<211> 1328

<212> DNA

<213> *Homo sapiens*

400-24

gttaaacgcctc tcggaaattat ggccggcggtg gataatccgag acaatctgct gggaaatttct 60
tgggttgcaca gcttttggat cccttatttg aacagtggta gtgttcttggaa ttacttttca 120
aaaagaagta atccccctta tgacagaaca tgaataatag aagtggtcaa aatgcagagg 180
taacatttag aacacttgaa tcagatggtt ggaatcgagt acatctttt gcatgctcaa 240
gagcccattc ttttcatcat tcggaagacaa cagccggcagt cccctgcucca agttatccca 300
rtagctgatt actatatcat tgctggagtg atctatcagg caccagactt gggatcagtt 360
ataaactcta gagtgtttac tgcagtgcat ggtattcagt cagcttttga tgaagctatg 420
ccatactgtc gatatcatcc ttccaaaggg tatttgtgc acttcaaaaga tcatgaagag 480
aagataaaag tcagacctaa agccaaaagg aaagaagaac caagcttat ttttcagaga 540
aactgtgtgg atgcttact ttttagacctc agacaaaaaa ttccacccca aatttgtgc 600
tggatcaa caaagaaaaga ggcagaacct ataccagaaa ctgtaaaacc tgaggagaag 660
agaccacaa agaatgtaca acagacagtg agtgctaaag gccccctga aaaacggatg 720
gacttcagt gagtacttggaa caaaagagaa gccttggaaaga ctccctcatgc tagttatcat 780
ccctcgttac tgggttgcctt gagctttgaa gtactttattt gtaaccttct tattttgtatq 840

gaatgcgctt attttttga aaggatatta ggccggatgt ggtggctcac gcctgtaatc 900
 ccagcactt gggaggccat ggccgggtgga tcacttgagg tcagaagttc aagaccagcc 960
 tgaccaatat ggtgaaaccc cgtctctact aaaaatacaa aaatttagccg ggctgggtgg 1020
 cggcgccccca tagtcccagc tactcgggag gctgagacag gagacttgc tgaacctcggg 1080
 agtgtggaggt tgccctgagc tgattatcat gctgtgcac tccagcttgg gcgacagagc 1140
 gagactttgt ctcaaaaaag aagaaaagat attattccca tcatgatttc ttgtgaatat 1200
 ttgtgatatg tcttctgtaa ccttccctct cccggacttg agcaacctac acactcacat 1260
 gtttactggt agatatgtt aaaagcaaaa taaaggattt tgtataaaaa aaaaaaaaaa 1320
 aaactcga 1328

<210> 25

<211> 1758

<212> DNA

<213> Homo sapiens

<400> 25

gtttttttttt tttttttttt aaagagttgc aacaattcat ctttatttct ttttttcctc 60
 tggagatgca gaatttggta tatttcaccc caagtatatt tggatagtt ggctccctcgc 120
 tgggtcagga tggctggtg ctttctccccc tggcatggtt ctcttctctg cagggcgagg 180
 ggcagggagc tagtaaaacc tcgcaatgac agccgcaatg gcagacccaa tggagcccg 240
 gatgaacttg gtcaatccgg agagtccagt tgcctccagt gactgcagag tagccacaaag 300
 gctgcccggag gcaactccac ccccatggc aatggccgc gggacatca tcttggctgc 360
 tatggaggac gaggcgattc ccgcgcgagt gaagcccatg gcactgagtg gcccgggtgg 420
 atatccgaga caatctgctg ggaattttttt gggttgacag ctcttggatc ctttgc 480
 acagtggtag tgccttgat tactttttag aaagaagtaa tcccttttat gacagaacat 540
 gtaataatga agtggcAAA atgcagaggc taacattaga acacttgaat cagatggttg 600
 gaatcgagta catccttttgc catgctcaag agccattct tttcatcatt cgaaagcaac 660
 agccggcgatc ccctgccccaa gttatccac tagctgatta ctatatttatt gctggagtga 720
 tctatcaggc accagacttg ggatcgttta taaactcttag agtgcctact gcagtgcgt 780
 gtattcagtc agctttgtat gaagctatgt catactgtcg atatcatcct tccaaagggt 840
 atttggggca cttcaaaagat catgaagagc aagataaaatg cagacctaaa gccaaaagga 900
 aagaagaacc aagctctatt tttcagagac aacgtgtggc tgctttactt ttagacactca 960
 gacaaaaatttccacccaaa tttgtgcgc taaagcttgg agaaaagcct gttccagtgg 1020
 atcaaacaaa gaaagaggca gAACCTATAC cagaaactgt aaaacctgag gagaaggaga 1080
 ccacaaagaa tgcataacag acagtggatg ctaaaggccc ccctgaaaaa cggatgagac 1140
 ttcagtggatg actggacaaa agagaagcct ggaagactcc tcatgctagt tattcataacct 1200
 cagactgtg gctcttgagc tttgaagtttac tttattgtaa ctttcttatt tttatgtt 1260
 ggccttattt tttgaaagga tattaggccg gatgtggtgg ctacgcctg taatcccg 1320
 actttggggag gccatggcgg gtggatcaact tgaggtcaga agtcaagac cagccctgacc 1380
 aatatggta aaccccgctt ctactaaaaa tacaaaaattt agccgggcgt ggtggccggc 1440
 gcccataatgc ccagctactc gggaggctga gacaggagac ttgttgcac ccggggagggtg 1500
 gaggttgcggc tgagctgatt atcatgtgt tgcaactccag cttggggcgc agagcgagac 1560
 tttgtctcaa aaaagaagaa aagatattat tcccatcatg atttcttgc tttttttttt 1620
 atatgtcttc tgttacccctt ccttcccccgg aattgagcaa cctacacact cacatgttta 1680
 ctggtagata tgttaaaaag caaataaagg tattggtata tattgttca aaaaaaaaaa 1740
 aaaaaaaaaa aactcgag 1758

<210> 26

<211> 493

<212> DNA

<213> Homo sapiens

<400> 26

gaggcgagcg gcaggccctg gtggcgagag cgccggctgtc actgcgcggc agcatcccg 60
 agcttccga gcccgcgacg cggccgtgcc gggcatcccc agccctcgcta ccctcgccagc 120

```

acacgtcgag ccccgcacag gcaagggtcc ggaacttagc ccaaagcacg tttccccctgg 180
cagcgccagg aacgcccggc cgccgcggcc cgacaccccc cctcttcctcc ttgttccgg 240
gggtcgccgg ccgtcttcct gccagcgtcg gatctcgcc cccgggaggc gggccgttegg 300
gcgcagccgc gaagattccg ttggaactga cgccagagccg agtgcagaag atctgggtgc 360
ccgtggacc aaggccctcg ttgcccagat cctgtgggcc aaagctgacc aactcccccg 420
ccgtcttcgt catggtgggc ctcccccgcc cggggcaaga cctacttctc cacgaaagct 480
tactcgctgc ctc

```

493

<210> 27

<211> 1331

212 DNA

<212> DNA

<400> 27

gggtggatc cgagacaatc tgctggaat ttcttgggtt gacagcttt ggatccctat 60
tttgcacagt ggtagtgtcc tggattactt ttcagaaaaga agtaatccctt ttatgacag 120
aacatgtaat aatgaagtgg tcaaaatgca gaggctaaca tttagaacact tgaatcagat 180
ggttggatc gagatcatcc ttttgcatgc tcaagagccc attctttca tcattcgaa 240
gcaacagcgg cagtcggctg cccaaggat cccactagct gattactata tcattgctgg 300
agtgtatcat caggcaccag acttgggatc agttataaac tcttagagtgc ttactgcagt 360
gcatggtatt cagtcagtt ttgatgaaagc tatgtcatac tgcgcatac atccttccaa 420
agggtatgg tggacttca aagatcatga agacaaagat aaagtccatc ctaaagccaa 480
aaggaaagaa gaaccaagct ctattttca gagacaacgt gtggatgctt tacttttaga 540
cctcagacaa aaatttccac ccaaatttgc gcaatggatca aacaaagaaag aggcaaaacc tctggagaaa agcctgttcc 600
actgtatcatc acaaaagaaag aggcagaacc tataccagaa ggagaccaca aagaatgtac aacagacagt gagtgctaaa 660
gagacttcag tgagtaactgg acaaaaagaga agcttggaaag ggcggccctg aaaaacggat 720
tacccatgtt ctgtggctct tgagcttgc agtactttat actccctatg ctatgtatca 780
ggaatgcgt tatttttgc aaggatatta ggcggatgt ggtggctcac gcctgtatc 840
ccagcacttt gggaggccat ggccgggtgg tcacttgagg tcaagatcc aagaccagcc 900
tgaccaatat ggtgaaaccc cgtctctact aaaaatacaa aaatttagccg ggcgtgggtgg 960
ccccgcucca tagtcccagc tactcgggag gctgagacag gagacttgct tgaacccggg 1020
agggtggaggt tgccctgagc tgattatcat gctgttgcac tccagcttgg gcgacagagc 1080
gagactttgt ctcaaaaaaa gaagaaaaga tattattccc atcatgattt ctgtgataa 1140
tttgttatat gtcttctgtt acctttcttc tcccgactt gagcaaccta cacactcaca 1200
tgttactgg tagatatgtt taaaagcaaa ataaaggat tggataaaaa aaaaaaaaaa 1320
aaaaactcga g 1331

<210> 28

<211> 1333

<212> DNA

<213> Homo sapiens

<400> 28

```

cgcgccgttggatatccgagac aatctgttggaaattttcttg ggttgcacagc tcttggatcc 60
ctattttggaa cagtggtagt gtcctggatt acttttcaga aagaagtaat cctttttatg 120
acagaacatg taataatgaa gtggtcaaaa tgcatgggct aacattagaa cacttgaate 180
agatggttgg aatccgactac atccccgtgc atgctcaaga gcccattctt ttcatcatc 240
ggaagcaacacgcggcaggccctggcccaag ttatcccact agctgattac tatatcattg 300
ctggagtgat ctatcaggca ccagacttgg gatcagttat aaactctaga gtgtttactg 360
cagtgcatttgg tattcagtca gctttgtatg aagctatgtc atactgtcgatatcatcc 420
ccaaagggttatggtggcac ttcaaagatc atgaaggagaca agataaaagtc agacctaag 480
ccaaaaggaa agaagaacca agctctatccatcagagaca acgtgtggat gctttacttt 540
tagaccttcag aaaaaattt ccacccaaat ttgtgcagct aaagccttggaaaaaagcctg 600
ttccactgttggatcaaacaaag aaagaggcag aacctataacc agaaactgtaaaccttgagg 660

```

agaaggagac cacaagaat gtacaacaga cagttagtgc taaaggcccc cctaaaaac 720
 ggatgagact tcagttagta ctggacaaa gagaagcctg gaagactcct catgttagtt 780
 atcataccctc agtactgtgg ctcttgagct ttgaagtact ttattgtaac cttcttattt 840
 gtatggatcg cgcttatattt ttgaaaggat attaggccgg atgtggtggc tcacgcctgt 900
 aatcccagca ctggggagg ccatggcggg tggatcaatt gaggtcagaa gttcaagacc 960
 agcctgacca atatggtcaa accccgtctc tactaaaaat aaaaaattt gcccggcgtg 1020
 gtggcggcggc cccatagtec cagctactcg ggaggctgag acaggagact tgcttgaacc 1080
 cgggaggtgg aggttgcct gagctgatta tcatgtgtt gcactccagc ttggcgacaa 1140
 gagcgagact ttgtctcaaa aaaaagaaaa agatatttt cccatcatga tttcttgtga 1200
 atatttgta tatgttttc ttaaccccttc ctctccggg cttgagcaac ctacacactc 1260
 acatgtttac tggtagatat gttaaaagg aaaataaagg tatttgtata aaaaaaaaaa 1320
 aaaaaaaaaactc gag 1333

<210> 29

<211> 813

<212> DNA

<213> Homo sapiens

<400> 29

ctgagctgca cttcagcgaa ttccaccccg ctgtggctga catgaagaac tccgtggcgg 60
 accggacaaa cagccccagc tcctgtctg gcctcttcat tgcttcacac atcgggtttgc 120
 actggcccg ggtctggtc cacctggaca tcgctgtcc agtgcattgt ggcgagcgg 180
 ccacaggctt tggggcttctt ctcttactgg ctcttttgg ccgtgcctcc gaggaccgc 240
 tgctgaacct ggtatccccg ctggactgtg aggtggatgc ccaggaaggc gacaacatgg 300
 ggcgtactc caagagacgg aggctcggtt gagggtact tccagctgg tgacacaggg 360
 ttcccttaccc cattttgcac tgactgattt taagcaattt aaagatttac taactcttaa 420
 gatgagtttgc ttcttcttctt ctgtggccagg tgggtacagg agtgagccat tcttcttta 480
 gaaggcgtt tggggcttgg tgggtctgg agaaaattgt cacagacccc ataggcttcc 540
 atctgtaaac tctgtccctt gtccctccacc ctggcttttta gagccacccctt aggtcacccct 600
 ctgttagtgc tttacttccctt gaccaggcc ctgtgtcaag ctggggctcc ctgggggtgtc 660
 taaccagccc tggtagatg tgactggctg tttagggaccc cattctgtga agcaggagac 720
cctcacagct cccacccaacc cccagttcac ttgaaggtaa attaaatatg gccacaacat 780
 aaaaaaaaaa aaaaaaaaaa aaaaaaaaaactc gag 813

<210> 30

<211> 1316

<212> DNA

<213> Homo sapiens

<400> 30

caggcccca gtcatggccc aagagacagc accaccgtgt ggcccaagtctt caagggtgt 60
 cagtcataatc ataaaaaaa tggaaaaaaag gacatgtgcc ctgtggccctg aaggccacga 120
 gtggagtcaa atatactttt caccatcagg aaatatagtt gtcatgtaaa actgtttgt 180
 gtattcatca ggactgggtgg agtgtgagac tcttgcattt cgtatatacaa tttagaaactt 240
 tgatgtcaaa tctgtaaaga aagagatctg gagaggaaga agattgtaaa gtcattctg 300
 taacaaagga ggcgccaccg tgggtgtga tttatggttc tggtaagaaga gttaccacta 360
 tggctgtgtcc aaaaaggacc aagcaattct tcaagttgtat ggaaccatg gaacttacaa 420
 attattttgc ccagaacattt ctccagaaca agaagaggcc actgaaatgt ctgtatgaccc 480
 aagcatgaag aagaagagag gaaaaaaacaa acgcctctca tcaggccctc ctgcacagcc 540
 aaaaaacgtatg aaatgttagt acgcacccaa acatatgaca gaagagcctc atggtcacac 600
 agatgcagct gtcaaatctc cttttcttaa gaaatggccag gaagcaggac ttcttactgt 660
 actatttgaa cacatacttag aaaatatgaa ttcaagttcat ggaagacttg tggatgagac 720
 tgcctcagag tcggactatg aaggatcgaa gacccatgt tttactgtg gattattaa 780
 agacacacta agaaaattcc aagaagtaat caagagtaaa gcttgcgtat gggaaagaaag 840
 gcaaaaggcag atgaagcagc agttgaggc acttgcagac ttacaacaaa gcttgcgtc 900

atttcaagaa aatggggacc tggactgctc aagttctaca tcaggatcct tgctacacctcc 960
 tgaggaccac cagtaaaaagc tggcttcctag gaaaactgga tggggcctcc atgttctcca 1020
 aggatecgagg aagtcttcct gccttccctg cccaccccg tcaagggcag caacaccaga 1080
 gctttgctca gccttaaatg gaatcttaga gctttctt gcttctgcta ctcttacaga 1140
 tggcttcatac atggtctcca ctctacttata ataaactccat cagcatagag caaactcaac 1200
 actgtgcatt gcacactgtt accatgggtt tatgctcact atcatatcac attgccaata 1260
 ttttagcacac ttaataaatg cttgtcaaaaa cccaaaaaaaaaaa ctcgag 1316

<210> 31
 <211> 1355
 <212> DNA
 <213> Homo sapiens

<400> 31
 cggcggtgga tatccgagac aatctgctgg gaatttcttg gtttgcacgc tcttggatcc 60
 ctatttgaa cagtggttgt gtccctggatt accttttcaga aagaagtaat cttttttatg 120
 acagaacatg taataatgaa gtggtaaaaa tgcagaggct aacattagaa cacttgaatc 180
 agatggttgg aatcgagttac atccctttgc atgttcaaga gccattttt ttcattatcc 240
 ggaagcaaca gcccgcgtcc cctggcccaag ttatcccact agctgattac tatatcattg 300
 ctggagtgtat ctatcaggca ccagacttgg gatcaggat aaactctaga gtgcttactg 360
 cagtgcatgg tattcagtca gcttttgcgt aagctatgtc atactgtcga tttttttttt 420
 ccaaagggtt ttggtggcac ttccaaagatc atgaagagca agataaaagtc agacctaaag 480
 ccaaaggaa agaagaacca agctctattt ttcagagaca acgtgtggat gctttactt 540
 tagaccttag acaaaaaattt ccacccaaat ttgtgcagct aaagccttggaa gaaaaggctg 600
 ttccagtgga tcaaaacaaag aaagaggcag aacctatacc agaaaactgtt aaaccttgagg 660
 agaaggagac cacaaggaaat gtacaacaga cagtgagtgc taaaggcccc cctgaaaaac 720
 ggatgagact tcagtgagta ctggacaaaa gagaaggctg gaagacttct catgctagtt 780
 atcatacctc agtactgtgg ctcttgcgtt ttgaagttact ttattgttacatcattt 840
 gtatggatg cgcttatttt ttggaaaggat attaggccgg atgtggtggc tcacgcctgt 900
 aatcccagca ctggggagg ccattggcggg tggatcaactt gaggtcagaa gttcaagacc 960
 agcctgacca atatggtaa accccgtctc tactaaaaat acaaaaaatta gcccggcgtg 1020
 gtggcgcccg cccatagtcc cagctactcg ggaggctgag acaggagact tgcttgaacc 1080
 cgggaggtgg aggttgcct gagctgatta tcatgctgtt gcaactccagc ttgggcaca 1140
 gaacgagact ttgtctcaaa aaaagaagaa aagatattat tcccatcatg atttcttgc 1200
 aatatttgc atatgttttc tggtaacctt tcctctcccg gacttgaagc aacctcacac 1260
 actcacaatgt ttactgttag atatgtttt aaaaagaaaaat aaaggatattt gtttttccaa 1320
 aaaaaaaaaa aaaaaaaaaa aaaaaaaaaac tcgag 1355

<210> 32
 <211> 80
 <212> PRT
 <213> Homo sapiens

<400> 32
 Val Ser Arg Ile Arg Gly Gly Ala Lys Lys Arg Lys Lys Ser Tyr
 1 5 10 15

Thr Thr Pro Lys Lys Asp Lys His Gln Arg Lys Lys Val Gln Pro Ala
 20 25 30

Val Leu Lys Tyr Tyr Lys Val Asp Glu Asn Gly Lys Ile Ser Cys Leu
 35 40 45

Arg Arg Glu Cys Pro Ser Asp Glu Cys Gly Ala Gly Val Phe Met Ala
 50 55 60

Ser His Phe Asp Arg His Tyr Cys Gly Lys Cys Cys Leu Thr His Cys
 65 70 75 80

<210> 33
 <211> 130
 <212> PRT
 <213> Homo sapiens

<400> 33
 Glu Ile Ser Asn Glu Val Arg Lys Phe Arg Thr Leu Thr Glu Leu Ile
 1 5 10 15
 Leu Asp Ala Gln Glu His Val Lys Asn Pro Tyr Lys Gly Lys Lys Leu
 20 25 30
 Lys Lys His Pro Asp Phe Pro Lys Lys Pro Leu Thr Pro Tyr Phe Arg
 35 40 45
 Phe Phe Met Glu Lys Arg Ala Lys Tyr Ala Lys Leu His Pro Gln Met
 50 55 60
 Ser Asn Leu Asp Leu Thr Lys Ile Leu Ser Lys Lys Tyr Lys Glu Leu
 65 70 75 80
 Pro Glu Lys Lys Met Lys Tyr Val Pro Asp Phe Gln Arg Arg Glu
 85 90 95
 Thr Gly Val Arg Ala Lys Pro Gly Pro Ile Gln Gly Ser Pro Pro
 100 105 110
 Pro Tyr Pro Glu Cys Gln Glu Ser Asp Ile Pro Glu Lys Pro Gln Asp
 115 120 125

Pro Pro
 130

<210> 34
 <211> 506
 <212> PRT
 <213> Homo sapiens

<400> 34
 Asn Ser Glu Lys Glu Ile Pro Val Leu Asn Glu Leu Pro Val Pro Met
 1 5 10 15
 Val Ala Arg Tyr Ile Arg Ile Asn Pro Gln Ser Trp Phe Asp Asn Gly
 20 25 30
 Ser Ile Cys Met Arg Met Glu Ile Leu Gly Cys Pro Leu Pro Asp Pro

35	40	45
Asn Asn Tyr Tyr His Arg Arg Asn Glu Met Thr Thr Thr Asp Asp Leu		
50	55	60
Asp Phe Lys His His Asn Tyr Lys Glu Met Arg Gln Leu Met Lys Val		
65	70	75
80		
Val Asn Glu Met Cys Pro Asn Ile Thr Arg Ile Tyr Asn Ile Gly Lys		
85	90	95
Ser His Gln Gly Leu Lys Leu Tyr Ala Val Glu Ile Ser Asp His Pro		
100	105	110
Gly Glu His Glu Val Gly Glu Pro Glu Phe His Tyr Ile Ala Gly Ala		
115	120	125
His Gly Asn Glu Val Leu Gly Arg Glu Leu Leu Leu Leu Leu His		
130	135	140
Phe Leu Cys Gln Glu Tyr Ser Ala Gln Asn Ala Arg Ile Val Arg Leu		
145	150	155
160		
Val Glu Glu Thr Arg Ile His Ile Leu Pro Ser Leu Asn Pro Asp Gly		
165	170	175
Tyr Glu Lys Ala Tyr Glu Gly Gly Ser Glu Leu Gly Gly Trp Ser Leu		
180	185	190
Gly Arg Trp Thr His Asp Gly Ile Asp Ile Asn Asn Asn Phe Pro Asp		
195	200	205
Leu Asn Ser Leu Leu Trp Glu Ala Glu Asp Gln Gln Asn Ala Pro Arg		
210	215	220
Lys Val Pro Asn His Tyr Ile Ala Ile Pro Glu Trp Phe Leu Ser Glu		
225	230	235
240		
Asn Ala Thr Val Ala Thr Glu Thr Arg Ala Val Ile Ala Trp Met Glu		
245	250	255
Lys Ile Pro Phe Val Leu Gly Gly Asn Leu Gln Gly Gly Glu Leu Val		
260	265	270
Val Ala Tyr Pro Tyr Asp Met Val Arg Ser Leu Trp Lys Thr Gln Glu		
275	280	285
His Thr Pro Thr Pro Asp Asp His Val Phe Arg Trp Leu Ala Tyr Ser		
290	295	300
Tyr Ala Ser Thr His Arg Leu Met Thr Asp Ala Arg Arg Arg Val Cys		
305	310	315
320		
His Thr Glu Asp Phe Gln Lys Glu Glu Gly Thr Val Asn Gly Ala Ser		
325	330	335

Trp His Thr Val Ala Gly Ser Leu Asn Asp Phe Ser Tyr Leu His Thr
 340 345 350

Asn Cys Phe Glu Leu Ser Ile Tyr Val Gly Cys Asp Lys Tyr Pro His
 355 360 365

Glu Ser Glu Leu Pro Glu Glu Trp Glu Asn Asn Arg Glu Ser Leu Ile
 370 375 380

Val Phe Met Glu Gln Val His Arg Gly Ile Lys Gly Ile Val Arg Asp
 385 390 395 400

Leu Gln Gly Gly Ile Ser Asn Ala Val Ile Ser Val Glu Gly Val
 405 410 415

Asn His Asp Ile Arg Thr Ala Ser Asp Gly Asp Tyr Trp Arg Leu Leu
 420 425 430

Asn Pro Gly Glu Tyr Val Val Thr Ala Lys Ala Glu Gly Phe Ile Thr
 435 440 445

Ser Thr Lys Asn Cys Met Val Gly Tyr Asp Met Gly Ala Thr Arg Cys
 450 455 460

Asp Phe Thr Leu Thr Lys Thr Asn Leu Ala Arg Ile Arg Glu Ile Met
 465 470 475 480

Glu Thr Phe Gly Lys Gln Pro Val Ser Leu Pro Ser Arg Arg Leu Lys
 485 490 495

Leu Arg Gly Arg Lys Arg Arg Gln Arg Gly
 500 505

<210> 35

<211> 96

<212> PRT

<213> Homo sapiens

<400> 35

Met Asn Gly Glu Ala Asp Cys Pro Thr Asp Leu Glu Met Ala Ala Pro
 1 5 10 15

Arg Gly Gln Asp Arg Trp Ser Gln Glu Asp Met Leu Thr Leu Leu Glu
 20 25 30

Cys Met Lys Asn Asn Leu Pro Ser Asn Asp Ser Ser Gln Phe Lys Thr
 35 40 45

Thr Gln Thr His Met Asp Arg Glu Lys Val Ala Leu Lys Asp Phe Ser
 50 55 60

Gly Asp Met Cys Lys Leu Lys Trp Val Glu Ile Ser Asn Glu Val Arg
 65 70 75 80

Lys Phe Arg Thr Leu Thr Glu Leu Ile Leu Asp Thr Gln Glu His Val
85 90 95

<210> 36
<211> 129
<212> PRT
<213> Homo

Gly Ile Val Val Phe Ser Leu Gly Ser Met Val Ser Glu Ile Pro Glu
1 5 10 15

Lys Lys Ala Val Ala Ile Ala Asp Ala Leu Gly Lys Ile Pro Gln Thr
20 25 30

Val Leu Trp Arg Tyr Thr Gly Thr Arg Pro Ser Asn Leu Ala Asn Asn
35 40 45

Thr Ile Leu Val Gln Trp Leu Pro Gln Asn Asp Leu Leu Gly His Pro
50 55 60

Met Thr Arg Ala Phe Ile Thr His Ala Ser Ser His Gly Val Asn Glu
65 70 75 80

Ser Ile Cys Asn Gly Val Pro Met Val Met Ile Pro Leu Phe Gly Asp
85 90 95

Gln Met Asp Asn Ala Lys Arg Arg Glu Thr Lys Gly Ala Gly Val Thr
100 105 110

Leu Ash Val Leu Glu Met Thr Ser Glu Asp Leu Glu Asp Ala Leu Lys
115 120 125

501

<210> 37
<211> 238
<212> PRT
<213> *Homo sapiens*

<400> 37

Ash Leu Leu Gly Ile Ser Trp Val Asp Ser Ser Trp Ile Pro Ile Leu
1 5 10 15

Asn Ser Gly Ser Val Leu Asp Tyr Phe Ser Glu Arg Ser Asn Pro Phe
20 25 30

Tyr Asp Arg Thr Cys Asn Asn Glu Val Val Lys Met Gln Arg Leu Thr
35 40 45

Leu Glu His Leu Asn Gln Met Val Gly Ile Glu Tyr Ile Leu Leu His
50 55 60

Ala Gln Glu Pro Ile Leu Phe Ile Ile Arg Lys Gln Gln Arg Gln Ser
 65 70 75 80

Pro Ala Gln Val Ile Pro Leu Ala Asp Tyr Tyr Ile Ile Ala Gly Val
 85 90 95

Ile Tyr Gln Ala Pro Asp Leu Gly Ser Val Ile Asn Ser Arg Val Leu
 100 105 110

Thr Ala Val His Gly Ile Gln Ser Ala Phe Asp Glu Ala Met Ser Tyr
 115 120 125

Cys Arg Tyr His Pro Ser Lys Gly Tyr Trp Trp His Phe Lys Asp His
 130 135 140

Glu Glu Gln Asp Lys Val Arg Pro Lys Ala Lys Arg Lys Glu Glu Pro
 145 150 155 160

Ser Ser Ile Phe Gln Arg Gln Arg Val Asp Ala Leu Leu Leu Asp Leu
 165 170 175

Arg Gln Lys Phe Pro Pro Lys Phe Val Gln Leu Lys Pro Gly Glu Lys
 180 185 190

Pro Val Pro Val Asp Gln Thr Lys Lys Glu Ala Glu Pro Ile Pro Glu
 195 200 205

Thr Val Lys Pro Glu Glu Lys Glu Thr Thr Lys Asn Val Gln Gln Thr
 210 215 220

Val Ser Ala Lys Gly Pro Pro Glu Lys Arg Met Arg Leu Gln
 225 230 235

<210> 38
 <211> 202
 <212> PRT
 <213> Homo sapiens

<400> 38
 Lys Gly Ser Glu Gly Glu Asn Pro Leu Thr Val Pro Gly Arg Glu Lys
 1 5 10 15

Glu Gly Met Leu Met Gly Val Lys Pro Gly Glu Asp Ala Ser Gly Pro
 20 25 30

Ala Glu Asp Leu Val Arg Arg Ser Glu Lys Asp Thr Ala Ala Val Val
 35 40 45

Ser Arg Gln Gly Ser Ser Leu Asn Leu Phe Glu Asp Val Gln Ile Thr
 50 55 60

Glu Pro Glu Ala Glu Pro Glu Ser Lys Ser Glu Pro Arg Pro Pro Ile
 65 70 75 80

Pro Val Lys Pro Met Asn Ala Thr Ala Thr Lys Val Ala Asn Cys Ser
100 105 110

Leu Gly Thr Ala Thr Ile Ile Gly Glu Asn Leu Asn Asn Glu Val Met
115 120 125

Met Lys Lys Tyr Ser Pro Ser Asp Pro Ala Phe Ala Tyr Ala Gln Leu
130 135 140

Thr His Asp Glu Leu Ile Gln Leu Val Leu Lys Gln Lys Glu Thr Ile
145 150 155 160

Ser Lys Lys Glu Phe Gln Val Arg Glu Leu Glu Asp Tyr Ile Asp Asn
165 - 170 - 175

Leu Leu Val Arg Val Met Glu Glu Thr Pro Asn Ile Leu Arg Ile Pro
180 185 190

Thr Gln Val Gly Lys Lys Ala Gly Lys Met
195 200

<210> 39
<211> 243
<212> PRT
<213> Homo s

<400> 39
Val Asn-Ala Leu Gly Ile Met Ala Ala Val Asp Ile Arg Asp Asn Leu
1 5 10 15

Leu Gly Ile Ser Trp Val Asp Ser Ser Trp Ile Pro Ile Leu Asn Ser
20 25 30

Gly Ser Val Leu Asp Tyr Phe Ser Glu Arg Ser Asn Pro Phe Tyr Asp
35 40 45

Arg Thr Cys Asn Asn Glu Val Val Lys Met Gln Arg Leu Thr Leu Glu
50 55 60

His Leu Asn Gln Met Val Gly Ile Glu Tyr Ile Leu Leu His Ala Gln
 65 70 75 80

Glu Pro Ile Leu Phe Ile Ile Arg Lys Gln Gln Arg Gln Ser Pro Ala
85 90 95

Gln Val Ile Pro Leu Ala Asp Tyr Tyr Ile Ile Ala Gly Val Ile Tyr
100 105 110

Gln Ala Pro Asp Leu Gly Ser Val Ile Asn Ser Arg Val Leu Thr Ala
115 120 125

Val His Gly Ile Gln Ser Ala Phe Asp Glu Ala Met Ser Tyr Cys Arg
 130 135 140

Tyr His Pro Ser Lys Gly Tyr Trp Trp His Phe Lys Asp His Glu Glu
 145 150 155 160

Gln Asp Lys Val Arg Pro Lys Ala Lys Arg Lys Glu Glu Pro Ser Ser
 165 170 175

Ile Phe Gln Arg Gln Arg Val Asp Ala Leu Leu Leu Asp Leu Arg Gln
 180 185 190

Lys Ile Ser Thr Gln Ile Cys Ala Val Asp Gln Thr Lys Lys Glu Ala
 195 200 205

Glu Pro Ile Pro Glu Thr Val Lys Pro Glu Glu Lys Glu Thr Thr Lys
 210 215 220

Asn Val Gln Gln Thr Val Ser Ala Lys Gly Pro Pro Glu Lys Arg Met
 225 230 235 240

Arg Leu Gln

<210> 40

<211> 245

<212> PRT

<213> Homo sapiens

<400> 40

Ala Ala Val Asp Ile Arg Asp Asn Leu Leu Gly Ile Ser Trp Val Asp
 1 5 10 15

Ser Ser Trp Ile Pro Ile Leu Asn Ser Gly Ser Val Leu Asp Tyr Phe
 20 25 30

Ser Glu Arg Ser Asn Pro Phe Tyr Asp Arg Thr Cys Asn Asn Glu Val
 35 40 45

Val Lys Met Gln Arg Leu Thr Leu Glu His Leu Asn Gln Met Val Gly
 50 55 60

Ile Glu Tyr Ile Leu Leu His Ala Gln Glu Pro Ile Leu Phe Ile Ile
 65 70 75 80

Arg Lys Gln Gln Arg Gln Ser Pro Ala Gln Val Ile Pro Leu Ala Asp
 85 90 95

Tyr Tyr Ile Ile Ala Gly Val Ile Tyr Gln Ala Pro Asp Leu Gly Ser
 100 105 110

Val Ile Asn Ser Arg Val Leu Thr Ala Val His Gly Ile Gln Ser Ala
 115 120 125

Phe Asp Glu Ala Met Ser Tyr Cys Arg Tyr His Pro Ser Lys Gly Tyr
 130 135 140

Trp Trp His Phe Lys Asp His Glu Glu Gln Asp Lys Val Arg Pro Lys
 145 150 155 160

Ala Lys Arg Lys Glu Glu Pro Ser Ser Ile Phe Gln Arg Gln Arg Val
 165 170 175

Asp Ala Leu Leu Leu Asp Leu Arg Gln Lys Phe Pro Pro Lys Phe Val
 180 185 190

Gln Leu Lys Pro Gly Glu Lys Pro Val Pro Val Asp Gln Thr Lys Lys
 195 200 205

Glu Ala Glu Pro Ile Pro Glu Thr Val Lys Pro Glu Glu Lys Glu Thr
 210 215 220

Thr Lys Asn Val Gln Gln Thr Val Ser Ala Lys Gly Pro Pro Glu Lys
 225 230 235 240

Arg Met Arg Leu Gln
 245

<210> 41
 <211> 163
 <212> PRT
 <213> Homo sapiens

<400> 41
 Gly Glu Arg Gln Gln Gly Leu Val Ala Arg Ala Arg Leu Ser Leu Arg Pro
 1 5 10 15

Ser Ile Pro Glu Leu Ser Glu Arg Thr Ser Arg Pro Cys Arg Ala Ser
 20 25 30

Pro Ala Ser Leu Pro Ser Gln His Thr Ser Ser Pro Ala Gln Ala Arg
 35 40 45

Val Arg Asn Leu Ala Gln Ser Thr Phe Pro Leu Ala Ala Gln Glu Thr
 50 55 60

Pro Gly Arg Ala Pro Ala His Ala Pro Leu Ser Ser Phe Val Pro Gly
 65 70 75 80

Val Gly Gly Arg Ser Pro Ala Ser Val Gly Ile Ser Ala Pro Gly Gly
 85 90 95

Gly Pro Ser Gly Ala Ala Ala Lys Ile Pro Leu Glu Leu Thr Gln Ser
 100 105 110

Arg Val Gln Lys Ile Trp Val Pro Val Asp His Arg Pro Ser Leu Pro
 115 120 125

Arg Ser Cys Gly Pro Lys Leu Thr Asn Ser Pro Ala Val Phe Val Met

130

135

140

Val Gly Leu Pro Arg Pro Gly Gln Asp Leu Leu Leu His Glu Ser Leu
145 150 155 160

Leu Ala Ala

<210> 42

<211> 243

<212> PRT

<213> Homo sapiens

<400> 42

Val Asp Ile Arg Asp Asn Leu Leu Gly Ile Ser Trp Val Asp Ser Ser
1 5 10 15

Trp Ile Pro Ile Leu Asn Ser Gly Ser Val Leu Asp Tyr Phe Ser Glu
20 25 30

Arg Ser Asn Pro Phe Tyr Asp Arg Thr Cys Asn Asn Glu Val Val Lys
35 40 45

Met Gln Arg Leu Thr Leu Glu His Leu Asn Gln Met Val Gly Ile Glu

Tyr Ile Leu Leu His Ala Gln Glu Pro Ile Leu Phe Ile Ile Arg Lys

Gln Gln Arg Gln Ser Pro Ala Gln Val Ile Pro Leu Ala Asp Tyr Tyr

Ile Ile Ala Gly Val Ile Tyr Gln Ala Pro Asp Leu Gly Ser Val Ile

Asn Ser Arg Val Leu Thr Ala Val His Gly Ile Gln Ser Ala Phe Asp

Glu Ala Met Ser Tyr Cys Arg Tyr His Pro Ser Lys Gly Tyr Tyr Tyr

His Phe Lys Asp His Glu Glu Gln Asp Lys Val Arg Pro Lys Ala Lys

Arg Lys Glu Glu Pro Ser Ser Ile Phe Gln Arg Gln Arg Val Asn Ala

Leu Leu Leu Asp Leu Arg Gln Iys Phe Pro Pro Pro Iys Phe Val Glu Iys

Lys Pro Gly Glu Lys Pro Val Pro Val Asn Glu Thr

195 200 205
Glu Pro Ile Pro Glu Thr Val Lys Pro Glu Glu

210 **215** **220**

Asn Val Gln Gln Thr Val Ser Ala Lys Gly Pro Pro Glu Lys Arg Met
 225 230 235 240

Arg Leu Gln

<210> 43
 <211> 244
 <212> PRT
 <213> Homo sapiens

<400> 43
 Ala Val Asp Ile Arg Asp Asn Leu Leu Gly Ile Ser Trp Val Asp Ser
 1 5 10 15

Ser Trp Ile Pro Ile Leu Asn Ser Gly Ser Val Leu Asp Tyr Phe Ser
 20 25 30

Glu Arg Ser Asn Pro Phe Tyr Asp Arg Thr Cys Asn Asn Glu Val Val
 35 40 45

Lys Met Gln Arg Leu Thr Leu Glu His Leu Asn Gln Met Val Gly Ile
 50 55 60

Glu Tyr Ile Leu Leu His Ala Gln Glu Pro Ile Leu Phe Ile Ile Arg
 65 70 75 80

Lys Gln Gln Arg Gln Ser Pro Ala Gln Val Ile Pro Leu Ala Asp Tyr
 85 90 95

Tyr Ile Ile Ala Gly Val Ile Tyr Gln Ala Pro Asp Leu Gly Ser Val
 100 105 110

Ile Asn Ser Arg Val Leu Thr Ala Val His Gly Ile Gln Ser Ala Phe
 115 120 125

Asp Glu Ala Met Ser Tyr Cys Arg Tyr His Pro Ser Lys Gly Tyr Trp
 130 135 140

Trp His Phe Lys Asp His Glu Glu Gln Asp Lys Val Arg Pro Lys Ala
 145 150 155 160

Lys Arg Lys Glu Glu Pro Ser Ser Ile Phe Gln Arg Gln Arg Val Asp
 165 170 175

Ala Leu Leu Leu Asp Leu Arg Gln Lys Phe Pro Pro Lys Phe Val Gln
 180 185 190

Leu Lys Pro Gly Glu Lys Pro Val Pro Val Asp Gln Thr Lys Lys Glu
 195 200 205

Ala Glu Pro Ile Pro Glu Thr Val Lys Pro Glu Glu Lys Glu Thr Thr
 210 215 220

Lys Asn Val Gln Gln Thr Val Ser Ala Lys Gly Pro Pro Glu Lys Arg
 225 230 235 240

Met Arg Leu Gln

<210> 44

<211> 109

<212> PRT

<213> Homo sapiens

<400> 44

Glu Leu His Phe Ser Glu Phe Thr Ser Ala Val Ala Asp Met Lys Asn
 1 5 10 15

Ser Val Ala Asp Arg Asp Asn Ser Pro Ser Ser Cys Ala Gly Leu Phe
 20 25 30

Ile Ala Ser His Ile Gly Phe Asp Trp Pro Gly Val Trp Val His Leu
 35 40 45

Asp Ile Ala Ala Pro Val His Ala Gly Glu Arg Ala Thr Gly Phe Gly
 50 55 60

Val Ala Leu Leu Leu Ala Leu Phe Gly Arg Ala Ser Glu Asp Pro Leu
 65 70 75 80

Leu Asn Leu Val Ser Pro Leu Asp Cys Glu Val Asp Ala Gln Glu Gly
 85 90 95

Asp Asn Met Gly Arg Asp Ser Lys Arg Arg Arg Leu Val
 100 105

<210> 45

<211> 324

<212> PRT

<213> Homo sapiens

<400> 45

Arg Arg Pro Val Met Ala Gln Glu Thr Ala Pro Pro Cys Gly Pro Val
 1 5 10 15

Ser Arg Gly Asp Ser Pro Ile Ile Glu Lys Met Glu Lys Arg Thr Cys
 20 25 30

Ala Leu Cys Pro Glu Gly His Glu Trp Ser Gln Ile Tyr Phe Ser Pro
 35 40 45

Ser Gly Asn Ile Val Ala His Glu Asn Cys Leu Leu Tyr Ser Ser Gly
 50 55 60

Leu Val Glu Cys Glu Thr Leu Asp Leu Arg Asn Thr Ile Arg Asn Phe
 65 70 75 80

Asp Val Lys Ser Val Lys Lys Glu Ile Trp Arg Gly Arg Arg Leu Lys
 85 90 95

Cys Ser Phe Cys Asn Lys Gly Gly Ala Thr Val Gly Cys Asp Leu Trp
 100 105 110

Phe Cys Lys Lys Ser Tyr His Tyr Val Cys Ala Lys Lys Asp Gln Ala
 115 120 125

Ile Leu Gln Val Asp Gly Asn His Gly Thr Tyr Lys Leu Phe Cys Pro
 130 135 140

Glu His Ser Pro Glu Gln Glu Glu Ala Thr Glu Ser Ala Asp Asp Pro
 145 150 155 160

Ser Met Lys Lys Arg Gly Lys Asn Lys Arg Leu Ser Ser Gly Pro
 165 170 175

Pro Ala Gln Pro Lys Thr Met Lys Cys Ser Asn Ala Lys Arg His Met
 180 185 190

Thr Glu Glu Pro His Gly His Thr Asp Ala Ala Val Lys Ser Pro Phe
 195 200 205

Leu Lys Lys Cys Gln Glu Ala Gly Leu Leu Thr Glu Leu Phe Glu His
 210 215 220

Ile Leu Glu Asn Met Asp Ser Val His Gly Arg Leu Val Asp Glu Thr
 225 230 235 240

Ala Ser Glu Ser Asp Tyr Glu Gly Ile Glu Thr Leu Leu Phe Asp Cys
 245 250 255

Gly Leu Phe Lys Asp Thr Leu Arg Lys Phe Gln Glu Val Ile Lys Ser
 260 265 270

Lys Ala Cys Glu Trp Glu Glu Arg Gln Arg Gln Met Lys Gln Gln Leu
 275 280 285

Glu Ala Leu Ala Asp Leu Gln Gln Ser Leu Cys Ser Phe Gln Glu Asn
 290 295 300

Gly Asp Leu Asp Cys Ser Ser Ser Thr Ser Gly Ser Leu Leu Pro Pro
 305 310 315 320

Glu Asp His Gln

<210> 46
 <211> 244
 <212> PRT
 <213> Homo sapiens

<400> 46
 Ala Val Asp Ile Arg Asp Asn Leu Leu Gly Ile Ser Trp Val Asp Ser

1	5	10	15
Ser Trp Ile Pro Ile Leu Asn Ser Gly Ser Val Leu Asp Tyr Phe Ser			
20	25	30	
Glu Arg Ser Asn Pro Phe Tyr Asp Arg Thr Cys Asn Asn Glu Val Val			
35	40	45	
Lys Met Gln Arg Leu Thr Leu Glu His Leu Asn Gln Met Val Gly Ile			
50	55	60	
Glu Tyr Ile Leu Leu His Ala Gln Glu Pro Ile Leu Phe Ile Ile Arg			
65	70	75	80
Lys Gln Gln Arg Gln Ser Pro Ala Gln Val Ile Pro Leu Ala Asp Tyr			
85	90	95	
Tyr Ile Ile Ala Gly Val Ile Tyr Gln Ala Pro Asp Leu Gly Ser Val			
100	105	110	
Ile Asn Ser Arg Val Leu Thr Ala Val His Gly Ile Gln Ser Ala Phe			
115	120	125	
Asp Glu Ala Met Ser Tyr Cys Arg Tyr His Pro Ser Lys Gly Tyr Trp			
130	135	140	
Trp His Phe Lys Asp His Glu Glu Gln Asp Lys Val Arg Pro Lys Ala			
145	150	155	160
Lys Arg Lys Glu Glu Pro Ser Ser Ile Phe Gln Arg Gln Arg Val Asp			
165	170	175	
Ala Leu Leu Leu Asp Leu Arg Gln Lys Phe Pro Pro Lys Phe Val Gln			
180	185	190	
Leu Lys Pro Gly Glu Lys Pro Val Pro Val Asp Gln Thr Lys Lys Glu			
195	200	205	
Ala Glu Pro Ile Pro Glu Thr Val Lys Pro Glu Glu Lys Glu Thr Thr			
210	215	220	
Lys Asn Val Gln Gln Thr Val Ser Ala Lys Gly Pro Pro Glu Lys Arg			
225	230	235	240
Met Arg Leu Gln			

<210> 47
<211> 14
<212> DNA
<213> Homo sapiens

<400> 47
ttttttttt ttag

<210> 48
<211> 10
<212> DNA
<213> Homo sapiens

<400> 48
cttcaacctc

10

<210> 49
<211> 496
<212> DNA
<213> Homo sapiens

<400> 49

gcaccatgtt ccgagcactt cggttcctcg cggcgtcg tccctctgtg cgggctccag 60
ccgcaggctt agtttcggct cccggcttgg gtggcgccgc cgtgccttc ttttggcctc 120
cgaacgcggc tcgaatggca accaaaatt cttccggat agaatatgtat acctttggtg 180
aactaaaggt gccaatgtat aagtattatg ggcggccagac cgtgagatct acgtgaact 240
ttaagattgg aggtgtgaca gaacgcattgc caaccccagt tattaaagct tttggcatct 300
tgaaggcgagc ggccgctgaa gtaaaccagg attatggtct tgatccaaag attgctaatg 360
caataatgaa ggcagcagat gaggttagctg aaggtaaatt aaatgtatcat tttcctctcg 420
tggatggca gactggatca ggaactcaga caaatatgaa tgtaaatgaa gtcattagcc 480
aatagagcaa ttgaaa

496

<210> 50
<211> 499
<212> DNA
<213> Homo sapiens

<400> 50

agaaaaagtc tatgtttgca gaaatacaga tccaaagacaa agacaggatg ggcactgctg 60
gaaaagttat taaatgcaaa gcagctgtgc ttggggagca gaagcaaccc ttctccattt 120
agaaaataga agttgccttca ccaaagacta aagaaggctcg cattaagatt ttggccacag 180
gaatctgtcg cacagatgac catgtgtata aaggaacaat ggtgtccaag tttccagtga 240
tttggggaca tgaggcaact gggattgttag agagcattgg agaaggagtg actacagtga 300
aaccagggtga caaagtccatc cctcttttc tgccacaatg tagagaatgc aatgctgtc 360
gcaaccaggc tggcaaccc ttgatttagga gcgatattac tggctgtgga gtactggctg 420
atggcaccac cagatttaca tgcaagggcg aaccagtcca ccacattcatg aacaccagta 480
catttaccga gtacacagt

499

<210> 51
<211> 887
<212> DNA
<213> Homo sapiens

<400> 51

gagtctgagc agaaaggaaa agcagccttgc agccacgt tagaggaata caaagccaca 60
gtggccagtgc accagataga gatgaatcgctc tggatggatc agctggagaa tgaaaagcag 120
aaagtggcag agctgtatttc tattccataac tctggagaca aatctgtat ttcaggaccc 180
ctggagatgt tcaggcttgc caaagaaaaaa gcagagactt tggcttagtag ctgtcgaggaa 240
gatctggctc atacccggaa tgatgcaat cgattacagg atgccattgc taaggtagag 300
gatgaatacc gagccttcca agaagaagct aagaaacaaa ttgaagatgtt gaatatgacg 360
tttagaaaaat taagatcaga cctggatgaa aaagaaacag aaaggagtga catgaaagaa 420
accatcttgc aacttgaaga tgaagttagaa caacatcgatc ctgtgaaact tcatgacaac 480
ctcattatcc tgcatttgcata gaatacagtt aaaaaactcc aggaccaaaa gcacgjacatg 540

gaaagagaaa taaagacact ccacagaaga ctgcgggaag aatctgcgga atggcggcag 600
tttcaggctg atctccagac tgcaagtgc attgcaaatg acattaaatc tgaagccaa 660
gaggagattt gtgatctaaa gcgcgggta catgaggctc aaaaaaaaaa tgagaaactc 720
acaaaagaat tggagggaaat aaagtcaacgc aagcaagagg aggagcgagg cgggtataca 780
attacatgaa tgccgttgag agagatttgg cagcctaag gcagggaaatg ggactgagta 840
gaaggcctc gacttcctca gagccaactc ctacagtaaa aaccctc 887

<210> 52
<211> 491
<212> DNA
<213> Homo sapiens

<400> 52
ggcacgagct tttccaaaaa tcactgctgct cttttctcta aagttcttac attttataga 60
aaggaacctt tcactttga ggcctactac agctctcctc aggatttgcc ctatccagat 120
cctgctatag ctcagtttc agttcagaaa gtcacttcctc agtctgtatgg ctccagttca 180
aaagtgaaag tcaaaaggctc agttaaatgtc catggcattt tcagtgtgtc cagtgcattc 240
tttagtggagg ttccacaagtc tgaggaaaaat gaggagccaa tgaaaacaga tcagaatgca 300
aaggaggaag agaagatgca agtggaccag gaggaaccac atgttgaaga gcaaeagcag 360
cagacaccag gcagaaaaata aggcagatgc tgaagaaatg gagacctctc aagetggate 420
caaggataaa aagatggacc aaccacccca agccaagaag gcaaaagtga agaccagtac 480
tgtggacctg g 491

<210> 53
<211> 787
<212> DNA
<213> Homo sapiens

<400> 53
aagcagttaa gtaggcagaa aaaagaacct cttcattaag gattaaaatg tataggccag 60
cacgtgtaac ttccacttca agatttctga atccatatgt agtatgtttc attgtcgtcg 120
caggggtagt gatcctggca gtcaccatag ctctacttgc ttactttta gctttgatc 180
aaaaaatctt cttttatagg agcagtttc aactcctaaa tggtaatataat aatagtcaatg 240
taaattcacc agctacacag gaatacagga ctttggatgg aagaattgaa tctctgatta 300
ctaaaacatt caaagaatca aatttaagaa atcagtcat cagagctcat gttgcacaa 360
tgaggcaaga tggtagtgggt gtgagagcgg atggtgtcat gaaatttcaa ttcactagaa 420
ataacaatgg agcatcaatg aaaagcagaa ttgagtcgtt tttacgacaa atgctgaata 480
actctggaaa cctggaaata aacccttcaa ctgagataac atcacttact gaccaggctg 540
cagcaaattt gcttattaaat gaatgtgggg ccggccaga cctaataaca ttgtctgacg 600
agagaatcct tggaggcact gaggctgagg agggaaatgtc gccgtggcaa gtcagtctgc 660
ggctcaataa tgcccaccac tggaggcact gacccatgtt gatgttgcac 720
cagctcaactg cttcagaagc aactctaatac ctcgtgactg gattgccacg tctggatattt 780
ccacaaac 787

<210> 54
<211> 386
<212> DNA
<213> Homo sapiens

<400> 54
ggcattttca gtgtgtccag tgcatcttta gtggagggttc acaagtctga ggaaaatgg 60
gagccaatgg aaacagatca gaatgcaaaag gaggaagaga agatgcaagt ggaccaggag 120
gaaccacatg ttgaagagca acagcagcag acaccagcag aaaataaggc agagtctgaa 180
gaaatggaga cctctcaagc tgatccaag gataaaaaaga tggaccaacc accccaagcc 240
aagaaggcaa aagtgaagac cagtaactgtc gacccatgtc tcgagaatca gctattatgg 300

cagatagaca gagagatgct caacttgtac attgaaaatg aggttaagat gatcatgcag 360
 gataaactgg agaaggagcg gaatga 386

<210> 55

<211> 1462

<212> DNA

<213> Homo sapiens

<400> 55

aagcagtta gtaggcgaaaa aaaagaacctt cttcattaag gattaaaatg tatagggccag 60
 cacgtgtaaac ttgcacttca agatttctga atccatatgt agtatgttc attgtcgctg 120
 caggggtagt gatcctggca gtcaccatag ctctacttgt ttactttta gcttttgatc 180
 aaaaatctta cttttataagg agcagtttc aactcctaa tggtaaatat aatagtca 240
 taaaattcacc agctacacag gaatacagga ctttgagtgg aagaattgaa tctctgatta 300
 ctaaaacatt caaagaatca aatthaagaa atcagttcat cagagctcat gttgccaaac 360
 tgaggcaaga tggtagtgg gtgagagcgg atgttgcataa gaaatttcaa ttcactagaa 420
 ataacaatgg agcatcaatg aaaagcagaa ttgagtcgt tttacgacaa atgctgaata 480
 actctggaaa cctggaaata aacccttcaa ctgagataac atcaacttact gaccaggctg 540
 cagcaaattt gcttattaaat gaatgtgggg cccgtccaga cctaataaca ttgtctgagc 600
 agagaatct tggaggcact gaggctgagg agggaaagctg gcccgtggcaa gtcagtcgc 660
 ggctcaataa tgcccaccac tggaggca gctgtatcaa taacatgtgg atcctgcacag 720
 cagctcactg cttcagaagc aactctaattc ctctgtactg gattgccacg tctggattt 780
 ccacaacatt tcctaaacta agaatgagag taagaaatat tttattatc aacaattata 840
 aatctgcac tcatgaaaat gacattgcac ttgtgagact tgagaacagt gtcacccctta 900
 ccaaagatat ccatagtgtg tggctccac gctgtaccca gaatattccaa cctggctcta 960
 ctgcttatgt aacaggatgg ggcgtcaag aatatgtgg ccacacagtt ccagagctaa 1020
 ggcaaggaca ggtcagaata ataagtaatg atgtatgtaa tgccccat agttataatg 1080
 gagccatctt tcttggaaatg ctgtgtgctg gaggatccaa aggtggagtg gacgcacgtc 1140
 agggtgactc tggggccca ctgtacaag aagactcacg gcgctttgg tttattgtgg 1200
 ggatagtaag ctggggagat cagtgtggcc tgccggataa gccaggagtg tataactcgag 1260
 tgacagcata cattgactgg attaggcaac aaactggat ctgtcaac aagtgcaccc 1320
 ctgttgcaaa gtcgtatgc aggtgtgcct gtcttaattt ccaaagctt acatttcaac 1380
 tgaaaaagaa actagaaaatg tccttaattt acatttgtt acataaatat ggtttaacaa 1440
 aaaaaaaaaa aaaaaactcg ag 1462

<210> 56

<211> 159

<212> PRT

<213> Homo sapiens

<400> 56

Thr Met Tyr Arg Ala Leu Arg Leu Leu Ala Arg Ser Arg Pro Leu Val

1

5

10

15

Arg Ala Pro Ala Ala Leu Ala Ser Ala Pro Gly Leu Gly Gly Ala

20

25

30

Ala Val Pro Ser Phe Trp Pro Pro Asn Ala Ala Arg Met Ala Ser Gln

35

40

45

Asn Ser Phe Arg Ile Glu Tyr Asp Thr Phe Gly Glu Leu Lys Val Pro

50

55

60

Asn Asp Lys Tyr Tyr Gly Ala Gln Thr Val Arg Ser Thr Met Asn Phe

65

70

75

80

Lys Ile Gly Gly Val Thr Glu Arg Met Pro Thr Pro Val Ile Lys Ala
 85 90 95

Phe Gly Ile Leu Lys Arg Ala Ala Ala Glu Val Asn Gln Asp Tyr Gly
 100 105 110

Leu Asp Pro Lys Ile Ala Asn Ala Ile Met Lys Ala Ala Asp Glu Val
 115 120 125

Ala Glu Gly Lys Leu Asn Asp His Phe Pro Leu Val Val Trp Gln Thr
 130 135 140

Gly Ser Gly Thr Gln Thr Asn Met Asn Val Asn Glu Val Ile Ser
 145 150 155

<210> 57

<211> 165

<212> PRT

<213> Homo sapiens

<400> 57

Lys Lys Ser Met Phe Ala Glu Ile Gln Ile Gln Asp Lys Asp Arg Met
 1 5 10 15

Gly Thr Ala Gly Lys Val Ile Lys Cys Lys Ala Ala Val Leu Trp Glu
 20 25 30

Gln Lys Gln Pro Phe Ser Ile Glu Glu Ile Glu Val Ala Pro Pro Lys
 35 40 45

Thr Lys Glu Val Arg Ile Lys Ile Leu Ala Thr Gly Ile Cys Arg Thr
 50 55 60

Asp Asp His Val Ile Lys Gly Thr Met Val Ser Lys Phe Pro Val Ile
 65 70 75 80

Val Gly His Glu Ala Thr Gly Ile Val Glu Ser Ile Gly Glu Gly Val
 85 90 95

Thr Thr Val Lys Pro Gly Asp Lys Val Ile Pro Leu Phe Leu Pro Gln
 100 105 110

Cys Arg Glu Cys Asn Ala Cys Arg Asn Pro Asp Gly Asn Leu Cys Ile
 115 120 125

Arg Ser Asp Ile Thr Gly Arg Gly Val Leu Ala Asp Gly Thr Thr Arg
 130 135 140

Phe Thr Cys Lys Gly Glu Pro Val His His Phe Met Asn Thr Ser Thr
 145 150 155 160

Phe Thr Glu Tyr Thr
 165

<210> 58

<211> 259

<212> PRT

<213> Homo sapiens

<400> 58

Glu Ser Glu Gln Lys Gly Lys Ala Ala Leu Ala Ala Thr Leu Glu Glu
 1 5 10 15

Tyr Lys Ala Thr Val Ala Ser Asp Gln Ile Glu Met Asn Arg Leu Lys
 20 25 30

Ala Gln Leu Glu Asn Glu Lys Gln Lys Val Ala Glu Leu Tyr Ser Ile
 35 40 45

His Asn Ser Gly Asp Lys Ser Asp Ile Gln Asp Leu Leu Glu Ser Val
 50 55 60

Arg Leu Asp Lys Glu Lys Ala Glu Thr Leu Ala Ser Ser Leu Gln Glu
 65 70 75 80

Asp Leu Ala His Thr Arg Asn Asp Ala Asn Arg Leu Gln Asp Ala Ile
 85 90 95

Ala Lys Val Glu Asp Glu Tyr Arg Ala Phe Gln Glu Glu Ala Lys Lys
 100 105 110

Gln Ile Glu Asp Leu Asn Met Thr Leu Glu Lys Leu Arg Ser Asp Leu
 115 120 125

Asp Glu Lys Glu Thr Glu Arg Ser Asp Met Lys Glu Thr Ile Phe Glu
 130 135 140

Leu Glu Asp Glu Val Glu Gln His Arg Ala Val Lys Leu His Asp Asn
 145 150 155 160

Leu Ile Ile Ser Asp Leu Glu Asn Thr Val Lys Lys Leu Gln Asp Gln
 165 170 175

Lys His Asp Met Glu Arg Glu Ile Lys Thr Leu His Arg Arg Leu Arg
 180 185 190

Glu Glu Ser Ala Glu Trp Arg Gln Phe Gln Ala Asp Leu Gln Thr Ala
 195 200 205

Val Val Ile Ala Asn Asp Ile Lys Ser Glu Ala Gln Glu Glu Ile Gly
 210 215 220

Asp Leu Lys Arg Arg Leu His Glu Ala Gln Glu Lys Asn Glu Lys Leu
 225 230 235 240

Thr Lys Glu Leu Glu Glu Ile Lys Ser Arg Lys Gln Glu Glu Glu Arg
 245 250 255

Gly Gly Tyr

<210> 59

<211> 125

<212> PRT

<213> Homo sapiens

<400> 59

Gly Thr Ser Phe Ser Lys Asn His Ala Ala Pro Phe Ser Lys Val Leu
 1 5 10 15

Thr Phe Tyr Arg Lys Glu Pro Phe Thr Leu Glu Ala Tyr Tyr Ser Ser
 20 25 30

Pro Gln Asp Leu Pro Tyr Pro Asp Pro Ala Ile Ala Gln Phe Ser Val
 35 40 45

Gln Lys Val Thr Pro Gln Ser Asp Gly Ser Ser Ser Lys Val Lys Val
 50 55 60

Lys Val Arg Val Asn Val His Gly Ile Phe Ser Val Ser Ser Ala Ser
 65 70 75 80

Leu Val Glu Val His Lys Ser Glu Glu Asn Glu Glu Pro Met Glu Thr
 85 90 95

Asp Gln Asn Ala Lys Glu Glu Glu Lys Met Gln Val Asp Gln Glu Glu
 100 105 110

Pro His Val Glu Glu Gln Gln Gln Thr Pro Gly Arg
 115 120 125

<210> 60

<211> 246

<212> PRT

<213> Homo sapiens

<400> 60

Met Tyr Arg Pro Ala Arg Val Thr Ser Thr Ser Arg Phe Leu Asn Pro
 1 5 10 15

Tyr Val Val Cys Phe Ile Val Val Ala Gly Val Val Ile Leu Ala Val
 20 25 30

Thr Ile Ala Leu Leu Val Tyr Phe Leu Ala Phe Asp Gln Lys Ser Tyr
 35 40 45

Phe Tyr Arg Ser Ser Phe Gln Leu Leu Asn Val Glu Tyr Asn Ser Gln
 50 55 60

Leu Asn Ser Pro Ala Thr Gln Glu Tyr Arg Thr Leu Ser Gly Arg Ile
 65 70 75 80

Glu Ser Leu Ile Thr Lys Thr Phe Lys Glu Ser Asn Leu Arg Asn Gln
 85 90 95
 Phe Ile Arg Ala His Val Ala Lys Leu Arg Gln Asp Gly Ser Gly Val
 100 105 110
 Arg Ala Asp Val Val Met Lys Phe Gln Phe Thr Arg Asn Asn Asn Gly
 115 120 125
 Ala Ser Met Lys Ser Arg Ile Glu Ser Val Leu Arg Gln Met Leu Asn
 130 135 140
 Asn Ser Gly Asn Leu Glu Ile Asn Pro Ser Thr Glu Ile Thr Ser Leu
 145 150 155 160
 Thr Asp Gln Ala Ala Ala Asn Trp Leu Ile Asn Glu Cys Gly Ala Gly
 165 170 175
 Pro Asp Leu Ile Thr Leu Ser Glu Gln Arg Ile Leu Gly Gly Thr Glu
 180 185 190
 Ala Glu Glu Gly Ser Trp Pro Trp Gln Val Ser Leu Arg Leu Asn Asn
 195 200 205
 Ala His His Cys Gly Gly Ser Leu Ile Asn Asn Met Trp Ile Leu Thr
 210 215 220
 Ala Ala His Cys Phe Arg Ser Asn Ser Asn Pro Arg Asp Trp Ile Ala
 225 230 235 240
 Thr Ser Gly Ile Ser Thr
 245
 <210> 61
 <211> 128
 <212> PRT
 <213> Homo sapiens
 <400> 61
 Gly Ile Phe Ser Val Ser Ser Ala Ser Leu Val Glu Val His Lys Ser
 1 5 10 15
 Glu Glu Asn Glu Glu Pro Met Glu Thr Asp Gln Asn Ala Lys Glu Glu
 20 25 30
 Glu Lys Met Gln Val Asp Gln Glu Glu Pro His Val Glu Glu Gln Gln
 35 40 45
 Gln Gln Thr Pro Ala Glu Asn Lys Ala Glu Ser Glu Glu Met Glu Thr
 50 55 60
 Ser Gln Ala Gly Ser Lys Asp Lys Lys Met Asp Gln Pro Pro Gln Ala
 65 70 75 80
 Lys Lys Ala Lys Val Lys Thr Ser Thr Val Asp Leu Pro Ile Glu Asn

85

90

95

Gln Leu Leu Trp Gln Ile Asp Arg Glu Met Leu Asn Leu Tyr Ile Glu
100 105 110

Asn Glu Gly Lys Met Ile Met Gln Asp Lys Leu Glu Lys Glu Arg Asn
115 120 125

<210> 62

<211> 418

<212> PRT

<213> Homo sapiens

<400> 62

Met Tyr Arg Pro Ala Arg Val Thr Ser Thr Ser Arg Phe Leu Asn Pro
1 5 10 15

Tyr Val Val Cys Phe Ile Val Val Ala Gly Val Val Ile Leu Ala Val
20 25 30

Thr Ile Ala Leu Leu Val Tyr Phe Leu Ala Phe Asp Gln Lys Ser Tyr
35 40 45

Phe Tyr Arg Ser Ser Phe Gln Leu Leu Asn Val Glu Tyr Asn Ser Gln
50 55 60

Leu Asn Ser Pro Ala Thr Gln Glu Tyr Arg Thr Leu Ser Gly Arg Ile
65 70 75 80

Glu Ser Leu Ile Thr Lys Thr Phe Lys Glu Ser Asn Leu Arg Asn Gln
85 90 95

Phe Ile Arg Ala His Val Ala Lys Leu Arg Gln Asp Gly Ser Gly Val
100 105 110

Arg Ala Asp Val Val Met Lys Phe Gln Phe Thr Arg Asn Asn Asn Gly
115 120 125

Ala Ser Met Lys Ser Arg Ile Glu Ser Val Leu Arg Gln Met Leu Asn
130 135 140

Asn Ser Gly Asn Leu Glu Ile Asn Pro Ser Thr Glu Ile Thr Ser Leu
145 150 155 160

Thr Asp Gln Ala Ala Asn Trp Leu Ile Asn Glu Cys Gly Ala Gly
165 170 175

Pro Asp Leu Ile Thr Leu Ser Glu Gln Arg Ile Leu Gly Gly Thr Glu
180 185 190

Ala Glu Glu Gly Ser Trp Pro Trp Gln Val Ser Leu Arg Leu Asn Asn
195 200 205

Ala His His Cys Gly Gly Ser Leu Ile Asn Asn Met Trp Ile Leu Thr

210	215	220
Ala Ala His Cys Phe Arg Ser Asn Ser Asn Pro Arg Asp Trp Ile Ala		
225	230	235
Thr Ser Gly Ile Ser Thr Thr Phe Pro Lys Leu Arg Met Arg Val Arg		
245	250	255
Asn Ile Leu Ile His Asn Asn Tyr Lys Ser Ala Thr His Glu Asn Asp		
260	265	270
Ile Ala Leu Val Arg Leu Glu Asn Ser Val Thr Phe Thr Lys Asp Ile		
275	280	285
His Ser Val Cys Leu Pro Ala Ala Thr Gln Asn Ile Pro Pro Gly Ser		
290	295	300
Thr Ala Tyr Val Thr Gly Trp Gly Ala Gln Glu Tyr Ala Gly His Thr		
305	310	315
Val Pro Glu Leu Arg Gln Gly Gln Val Arg Ile Ile Ser Asn Asp Val		
325	330	335
Cys Asn Ala Pro His Ser Tyr Asn Gly Ala Ile Leu Ser Gly Met Leu		
340	345	350
Cys Ala Gly Val Pro Gln Gly Gly Val Asp Ala Cys Gln Gly Asp Ser		
355	360	365
Gly Gly Pro Leu Val Gln Glu Asp Ser Arg Arg Leu Trp Phe Ile Val		
370	375	380
Gly Ile Val Ser Trp Gly Asp Gln Cys Gly Leu Pro Asp Lys Pro Gly		
385	390	395
Val Tyr Thr Arg Val Thr Ala Tyr Ile Asp Trp Ile Arg Gln Gln Thr		
405	410	415

Gly Ile

<210> 63
<211> 776
<212> DNA
<213> Homo sapiens

<400> 63
cacagatgg tatacaggaa tccatcttgc agtcagataa agcccteact gatagagaga 60
aggcagtgc agtgatcg gccaaagaagg aggcaagctga gaaggaacag gaactttaa 120
aacagaaaatt acaggaggcc ccagcaacag atggaggctc aagataagag tcgcaaggaa 180
aacttagccaa ctgaaggaga agctgcagat ggagagagaa caccctactga gagagcagat 240
tatgtatgttgc gagcacacgc agaaggcataa aaatgatgg cttcatgttgc gatgttggaa 300
gaagttatgttgc gagatgtatgc cagatgtatgc tcaatgttgc cgtatgttgc atactacaaa 360
aaatgtatgtatgc actccctggaa ttgcacgttgc cttggacaac cttggccatgttgc agctaactgc 420
aatattgttgc tgcctgttgc aatgttgc tcatgttgc aaatgttgc gtcactctt 480

taaaaagcat aagctccctt ttaaggata ttatagattg tacatatatg ctttgacta 540
 ttttgatct gtatgtttt catttcatt cagcaagttt tttttttttt tcagagtctt 600
 actctgttgc ccaggctgga gtacagtgg gcaatctcag ctcactgcaa cctctgcctc 660
 ctgggttcaa gagattcacc tgccctagcc cccttagtagc tgggattata ggtgtacacc 720
 accacaccca gctaattttt gtattttag tagagatggg gttcactat gttggc 776

<210> 64

<211> 160

<212> DNA

<213> Homo sapiens

<400> 64

gcagcgctct cggttgcagt acccaactgga aggacttagg cgctcgctg gacaccgcaa 60
 gcccctcagt agcctcgccc caagaggct gcttccact cgctagcccc gccccgggtc 120
 cgtgtcctgt ctcggcggcc ggaccgggc cggagccgca 160

<210> 65

<211> 72

<212> PRT

<213> Homo sapiens

<400> 65

Leu	Ser	Ala	Met	Gly	Phe	Thr	Ala	Ala	Gly	Ile	Ala	Ser	Ser	Ser	Ile
1															

5

10

15

Ala	Ala	Lys	Met	Met	Ser	Ala	Ala	Ile	Ala	Asn	Gly	Gly	Gly	Val

20

25

30

Ala	Ser	Gly	Ser	Leu	Val	Ala	Thr	Leu	Gln	Ser	Leu	Gly	Ala	Thr	Gly

35

40

45

Leu	Ser	Gly	Leu	Thr	Lys	Phe	Ile	Leu	Gly	Ser	Ile	Gly	Ser	Ala	Ile

50

55

60

Ala	Ala	Val	Ile	Ala	Arg	Phe	Tyr

65

70

<210> 66

<211> 2581

<212> DNA

<213> Homo sapiens

<400> 66

cttcaaccc gcgctcgccc gctccagccc cgcgcccc cacccttgc cctccggcg 60
 gctccgcagg gtgagggtggc tttgaccccg ggttgcggg ccagcacgac cgaggaggtg 120
 gctggacagg tggaggatga acggagaagc cgactgcccc acagacctgg aaatggccgc 180
 ccccaaaggc caagaccgtt gttcccgagg agacatgtcg actttgtctgg aatgcatgaa 240
 gaacaacctt ccatccaatg acagctccaa gttcaaaacc accgaatcac acatggactg 300
 gaaaaaaatgt gcatatgg acttttgtgg agacatgtgc aagctcaat gggtgagat 360
 ttctaatgag gtgaggaaatgt tccgtacattt gacagaattt atcctcgatg ctcaggaaca 420
 ttttaaaaat ccttacaaat gcaaaaaactt caagaaacac ccagacttcc caaagaagcc 480
 cctgaccctt tattttcgat ttttcatgga gaagccggcc aagtatgcga aactccaccc 540
 tgatgatgac aacctggacc taaccaagat tctgtccaag aaatacaagg agcttccgga 600
 gaagaagaag atgaaatata ttcaggactt ccagagagag aaacaggagt tcgagcgaaa 660

cctggcccgaa ttcaggaggagg atcaccccgaa cctaattccag aatgccaaga aatcgacat 720
cccagagaag cccaaaacccccc cccagcagct gtggtagacacc caccgagaaga aggtgtatct 780
caaagtgcgg ccagatgccaa ctacgaagggaa ggtgaaggac tccctggggaa agcagtggtc 840
tcagctctcg gacaaaaaga ggctgaaatg gattcataag gcccctggagc agcggaaagga 900
gtacgaggag atcatgagag actatatccaa gaagcaccctt gagctgaaca tcagtgagga 960
gggtatcacc aagtccaccc tcaccaaggc cgaacgcctt ctcagggaca tcagtgacgg 1020
gcccacccacc aagccacccctt cgaacagctt ctcgtgtac tgccgagagc tcatggccaa 1080
catgaaggac gtgcccagca cagagcgtt ggtgtgtgc agccagcagt ggaagctgct 1140
gtccccagaag gagaaggacg cctatcacaa gaagtgttat cagaaaaaga aagattacga 1200
ggtgagactg ctccgtttcc tcgagagctt gcctgaggag gaggcagcgc gggcttggg 1260
ggaagagaag atgctgaaca tcaacaagaa gcaggccacc agccccctt ccaagaagcc 1320
agcccaggaa gggggcaagg gcccgtccga gaagcccaag cggccgtgt cggccatgtt 1380
catttctcg gaggagaaac ggcggcagctt gcaaggaggag cggccgttgc tctccgagag 1440
cgagctgacc cgcctgttgg cccgaatgtt gAACGACCTT TCTGAGAAGA agaaggccaa 1500
gtacaaggcc cgagaggccg cgttcaaggc tcagtctggag aggaagcccg gcccggagcg 1560
cgaggaacgg ggcaggacttcc cccgatcccc caaaaagatc gaggagatct ggcaacagag 1620
cgttatcgcc gactacctgg cccgcttcaa gaatgaccgg gtgaaggcct tgaaaggcat 1680
ggaaatgacc tggaaataaca tggaaaagaa ggagaaactg atgtgatta agaaggcagc 1740
cgaagaccaa aagcgatatg agagagagct gaggatggat cggccacccctt cagctgttac 1800
aaatcttcc aagaagatga aattccaggaa gaaaccccaag aaggcccttca tgaacggta 1860
ccagaagtcc tcccaggagc tgctgtccaa tggggagctg aaccaccttc cgctgaaggaa 1920
gcgcattgtt gagatcgccaa gtcgtggca ggcattctcc cagagccaga aggagacta 1980
caaaaagctt gcccaggagc agaaaaagca gtacaagggtt cacctggacc tctgggttaa 2040
gagcctgtct cccaggacc ttgcagcata taaagagttt atctccaata aacgtaaagag 2100
catgaccaag ctgcgaggcc caaaacccaa atccagccgg actactctgc aatcgttac 2160
ggagtcggag gaggatgtat aagaggatga ggtatgacggag gacgaggatg aagaagagga 2220
agatgtatg aatggggact cctctgaaga tggccggcgtt ccctctgttcc ccaacggcga 2280
ggacgagagc gaggatgggg atgagaatga agaggatgtt gaggacgaa acgacgacga 2340
ggatgacgtt gaggatgtt aatatgttcc cggggcagc agtccatgtt cctcccttcc 2400
aggggactcc tcagactttt aactccaaactt ggtttttttt ccaccccttgggg gggccagg 2460
agagcccaagg agctccccctt cccaaacttgc caccctttttt tcttccccat gttctgtccc 2520
ttggccccctt ggcctcccccc actttttttt tttttttttt aaaaaaaaaaaa aaaaactcga 2580
g

<210> 67

<211> 764

<212> PRT

<213> Homo sapiens

<400> 67

Met Asn Gly Glu Ala Asp Cys Pro Thr Asp Leu Glu Met Ala Ala Pro

1

5

10

19

Lys Gly Gln Asp Arg Trp Ser Gln Glu Asp Met Leu Thr Leu Leu Glu
20 25 30

20

25

30

Cys Met Lys Asn Asn Leu Pro Ser Asn Asp Ser Ser Lys Phe Lys Thr
35 40 45

35

40

4

Thr Glu Ser His Met Asp Trp Glu Lys Val Ala Phe Lys Asp Phe Ser
50 55 60

58

59

6

Gly Asp Met Cys Lys Leu Lys Trp Val Glu Ile Ser Asn Glu Val Arg
65 70 75 80

Lys Phe Arg Thr Leu Thr Glu Leu Ile Leu Asp Ala Gln Glu His Val
 85 90 95

Lys Asn Pro Tyr Lys Gly Lys Lys Leu Lys Lys His Pro Asp Phe Pro
 100 105 110

Lys Lys Pro Leu Thr Pro Tyr Phe Arg Phe Phe Met Glu Lys Arg Ala
 115 120 125

Lys Tyr Ala Lys Ileu His Pro Glu Met Ser Asn Leu Asp Leu Thr Lys
 130 135 140

Ile Leu Ser Lys Lys Tyr Lys Glu Leu Pro Glu Lys Lys Lys Met Lys
 145 150 155 160

Tyr Ile Gln Asp Phe Gln Arg Glu Lys Gln Glu Phe Glu Arg Asn Leu
 165 170 175

Ala Arg Phe Arg Glu Asp His Pro Asp Leu Ile Gln Asn Ala Lys Lys
 180 185 190

Ser Asp Ile Pro Glu Lys Pro Lys Thr Pro Gln Gln Leu Trp Tyr Thr
 195 200 205

His Glu Lys Lys Val Tyr Leu Lys Val Arg Pro Asp Ala Thr Thr Lys
 210 215 220

Glu Val Lys Asp Ser Leu Gly Lys Gln Trp Ser Gln Leu Ser Asp Lys
 225 230 235 240

Lys Arg Leu Lys Trp Ile His Lys Ala Leu Glu Gln Arg Lys Glu Tyr
 245 250 255

Glu Glu Ile Met Arg Asp Tyr Ile Gln Lys His Pro Glu Leu Asn Ile
 260 265 270

Ser Glu Glu Gly Ile Thr Lys Ser Thr Leu Thr Lys Ala Glu Arg Gln
 275 280 285

Leu Lys Asp Lys Phe Asp Gly Arg Pro Thr Lys Pro Pro Pro Asn Ser
 290 295 300

Tyr Ser Leu Tyr Cys Ala Glu Leu Met Ala Asn Met Lys Asp Val Pro
 305 310 315 320

Ser Thr Glu Arg Met Val Leu Cys Ser Gln Gln Trp Lys Leu Leu Ser
 325 330 335

Gln Lys Glu Lys Asp Ala Tyr His Lys Lys Cys Asp Gln Lys Lys Lys
 340 345 350

Asp Tyr Glu Val Glu Leu Leu Arg Phe Leu Glu Ser Leu Pro Glu Glu
 355 360 365

Glu Gln Gln Arg Val Leu Gly Glu Glu Lys Met Leu Asn Ile Asn Lys

370	375	380	
Lys Gln Ala Thr Ser Pro Ala Ser Lys Lys Pro Ala Gln Glu Gly Gly			
385	390	395	400
Lys Gly Gly Ser Glu Lys Pro Lys Arg Pro Val Ser Ala Met Phe Ile			
405	410	415	
Phe Ser Glu Glu Lys Arg Arg Gln Leu Gln Glu Glu Arg Pro Glu Leu			
420	425	430	
Ser Glu Ser Glu Leu Thr Arg Leu Leu Ala Arg Met Trp Asn Asp Leu			
435	440	445	
Ser Glu Lys Lys Lys Ala Lys Tyr Lys Ala Arg Glu Ala Ala Leu Lys			
450	455	460	
Ala Gln Ser Glu Arg Lys Pro Gly Gly Glu Arg Glu Glu Arg Gly Lys			
465	470	475	480
Leu Pro Glu Ser Pro Lys Arg Ala Glu Glu Ile Trp Gln Gln Ser Val			
485	490	495	
Ile Gly Asp Tyr Leu Ala Arg Phe Lys Asn Asp Arg Val Lys Ala Leu			
500	505	510	
Lys Ala Met Glu Met Thr Trp Asn Asn Met Glu Lys Lys Glu Lys Leu			
515	520	525	
Met Trp Ile Lys Lys Ala Ala Glu Asp Gln Lys Arg Tyr Glu Arg Glu			
530	535	540	
Leu Ser Glu Met Arg Ala Pro Pro Ala Ala Thr Asn Ser Ser Lys Lys			
545	550	555	560
Met Lys Phe Gln Gly Glu Pro Lys Lys Pro Pro Met Asn Gly Tyr Gln			
565	570	575	
Lys Phe Ser Gln Glu Leu Leu Ser Asn Gly Glu Leu Asn His Leu Pro			
580	585	590	
Leu Lys Glu Arg Met Val Glu Ile Gly Ser Arg Trp Gln Arg Ile Ser			
595	600	605	
Gln Ser Gln Lys Glu His Tyr Lys Lys Leu Ala Glu Glu Gln Gln Lys			
610	615	620	
Gln Tyr Lys Val His Leu Asp Leu Trp Val Lys Ser Leu Ser Pro Gln			
625	630	635	640
Asp Arg Ala Ala Tyr Lys Glu Tyr Ile Ser Asn Lys Arg Lys Ser Met			
645	650	655	
Thr Lys Leu Arg Gly Pro Asn Pro Lys Ser Ser Arg Thr Thr Leu Gln			
660	665	670	

Ser Lys Ser Glu Ser Glu Glu Asp Asp Glu Glu Asp Asp Asp Glu
 675 680 685

Asp Glu Asp Glu Glu Glu Glu Asp Asp Glu Asn Gly Asp Ser Ser Glu
 690 695 700

Asp Gly Gly Asp Ser Ser Glu Ser Ser Ser Glu Asp Glu Ser Glu Asp
 705 710 715 720

Gly Asp Glu Asn Glu Glu Asp Asp Glu Asp Glu Asp Asp Asp Glu Asp
 725 730 735

Asp Asp Glu Asp Glu Asp Asn Glu Ser Glu Gly Ser Ser Ser Ser
 740 745 750

Ser Ser Leu Gly Asp Ser Ser Asp Phe Asp Ser Asn
 755 760

<210> 68

<211> 434

<212> DNA

<213> Homo sapiens

<400> 68

ctaaagatgct ggatgtcgaa gacatcgctcg gaactgcccggccagatgagaaaggccatta 60
 tgacttatgt gtcttagtttc tatcatgcct tctctggagccagaaggca gaaacacgcag 120
 ccaatcgcat ctgcaaagtgttggcggtca atcaagagaa cgagcagctt atggaagact 180
 atgagaagct ggccagtgtat ctgttggagt ggatccgcccaccatccca tggctggaga 240
 atcgggtgcc tgagaacacccatgcattgcatacgagaa gctggaggac ttccgagact 300
 atagacgcct gcacaagccgc cccaagggtgc aggagaagtgc ctagctggag atcaacttta 360
 acacgctgca gaccaaactgcgctcagca accggcctgc cttcatgccc tccgagggca 420
 ggatggtctc ggat 434

<210> 69

<211> 244

<212> DNA

<213> Homo sapiens

<400> 69

aggcagcatg ctcgttgaga gtcatcacca ctccttaatc tcaagtacgc agggacacaaa 60
 acaactgcgga aggccgcagggtcctctgcc tagaaaaacc agagaccttttttacttgt 120
 ttatgtgtctg accttccctc cactattgtc ctgtgaccct gccaaatccc cctttgttag 180
 aaacacccaa gaatgtcaaaataattaa attaatttag gaaaaaaaaaaaaaaaact 240
 cgag 244

<210> 70

<211> 437

<212> DNA

<213> Homo sapiens

<400> 70

ctgggacgggg agcgtccagc gggactcgaa cccccagatgt gaaggcgttt ctggaaagtc 60
 ctgggtccct ggatccagcg tcggccagcc cagagcccggt gccgcacatc cttgcgtcct 120

ccaggcagtggaccccgcg agctgcacgt ccctggcac ggacaagtgt gaggcaactgt 180
 tggggctgtg ccagggtcggtggctgc cccctttctc agaaccttcc agectggtgc 240
 cgtggcccccc aggccggagt cttccataagg ctgtgaggcc acccctgtcc tggcctccgt 300
 tctcgccatcgacca gcagacccgttgc cccgtatga gcggggaggc ctttgctgg ctgggccagg 360
 ctggttcccttgcatgggg gtcacccctc tggggagcc agccaaggag gaccatgc 420
 tggcgccaggaa gcccgggg 437

<210> 71
 <211> 271
 <212> DNA
 <213> Homo sapiens

<400> 71
 ggcgcagagtt ctgtcgcca ccatcgagt aggaagagag cattggttcc cctgagatag 60
 aagagatggc tctcttcagt gcccgatctc catacattaa cccgatcatc cccttactg 120
 gaccaatcca aggagggtcg caggaggac ttcaaggatgc cttccagggg actaccgaga 180
 gttttgcaca aaagtttgcgtg gtgaacttt cagaacagct tcaatggaga tgacttggcc 240
 ttccacttca accccggta tgaggaagga g. 271

<210> 72
 <211> 290
 <212> DNA
 <213> Homo sapiens

<400> 72
 ccgagcccta cccggaggc tccagaatcc ccacccgtcag gggatgcaac ggctccctgt 60
 ctgggtccctt ctcctgtcg gaggactcg cccagggtcc gggcccgccc aaggccctta 120
 cgggtggccga gggcccacgc ttctgccttc ggccggaaacgt gatcagcggag aggagcgca 180
 ggaagcggat gtcgttgagc tggagcgtc tgccggccct gctggccca gtcgtatggcc 240
 ggcggggagga catggcctcg gtcctggaga tgtctgttgc aattcctgcg 290

<210> 73
 <211> 144
 <212> PRT
 <213> Homo sapiens

<400> 73
 Lys Met Leu Asp Ala Glu Asp Ile Val Gly Thr Ala Arg Pro Asp Glu
 1 5 10 15

Lys Ala Ile Met Thr Tyr Val Ser Ser Phe Tyr His Ala Phe Ser Gly
 20 25 30

Ala Gln Lys Ala Glu Thr Ala Ala Asn Arg Ile Cys Lys Val Leu Ala
 35 40 45

Val Asn Gln Glu Asn Glu Gln Leu Met Glu Asp Tyr Glu Lys Leu Ala
 50 55 60

Ser Asp Leu Leu Glu Trp Ile Arg Arg Thr Ile Pro Trp Leu Glu Asn
 65 70 75 80

Arg Val Pro Glu Asn Thr Met His Ala Met Gln Gln Lys Leu Glu Asp
 85 90 95

Phe Arg Asp Tyr Arg Arg Leu His Lys Pro Pro Lys Val Gln Glu Lys
 100 105 110

Cys Gln Leu Glu Ile Asn Phe Asn Thr Leu Gln Thr Lys Leu Arg Leu
 115 120 125

Ser Asn Arg Pro Ala Phe Met Pro Ser Glu Gly Arg Met Val Ser Asp
 130 135 140

<210> 74

<211> 64

<212> PRT

<213> Homo sapiens

<400> 74

Gly Ser Met Leu Val Glu Ser His His Ser Leu Ile Ser Ser Thr
 1 5 10 15

Gln Gly His Lys His Cys Gly Arg Pro Gln Gly Pro Leu Pro Arg Lys
 20 25 30

Thr Arg Asp Leu Cys Ser Leu Val Tyr Val Leu Thr Phe Pro Pro Leu
 35 40 45

Leu Ser Cys Asp Pro Ala Lys Ser Pro Phe Val Arg Asn Thr Gln Glu
 50 55 60

<210> 75

<211> 145

<212> PRT

<213> Homo sapiens

<400> 75

Gly Thr Gly Ala Ser Ser Gly Thr Arg Thr Pro Asp Val Lys Ala Phe
 1 5 10 15

Leu Glu Ser Pro Trp Ser Leu Asp Pro Ala Ser Ala Ser Pro Glu Pro
 20 25 30

Val Pro His Ile Leu Ala Ser Ser Arg Gln Trp Asp Pro Ala Ser Cys
 35 40 45

Thr Ser Leu Gly Thr Asp Lys Cys Glu Ala Leu Leu Gly Leu Cys Gln
 50 55 60

Val Arg Gly Gly Leu Pro Pro Phe Ser Glu Pro Ser Ser Leu Val Pro
 65 70 75 80

Trp Pro Pro Gly Arg Ser Leu Pro Lys Ala Val Arg Pro Pro Leu Ser
 85 90 95

Trp Pro Pro Phe Ser Gln Gln Thr Leu Pro Val Met Ser Gly Glu
 100 105 110

Ala Leu Gly Trp Leu Gly Gln Ala Gly Ser Leu Ala Met Gly Ala Ala
 115 120 125

Pro Leu Gly Glu Pro Ala Lys Glu Asp Pro Met Leu Ala Gln Glu Ala
 130 135 140

Gly
 145

<210> 76

<211> 69

<212> PRT

<213> Homo sapiens

<400> 76

Ala Glu Phe Cys Arg Pro Pro Ser Ser Glu Glu Glu Ser Ile Gly Ser

1 5 10 15

Pro Glu Ile Glu Glu Met Ala Leu Phe Ser Ala Gln Ser Pro Tyr Ile
 20 25 30

Asn Pro Ile Ile Pro Phe Thr Gly Pro Ile Gln Gly Gly Leu Gln Glu
 35 40 45

Gly Leu Gln Val Thr Leu Gln Gly Thr Thr Glu Ser Phe Ala Gln Lys

50 55 60

Phe Val Val Asn Phe

65

<210> 77

<211> 96

<212> PRT

<213> Homo sapiens

<400> 77

Glu Pro Tyr Pro Glu Val Ser Arg Ile Pro Thr Val Arg Gly Cys Asn

1 5 10 15

Gly Ser Leu Ser Gly Ala Leu Ser Cys Cys Glu Asp Ser Ala Gln Gly
 20 25 30

Ser Gly Pro Pro Lys Ala Pro Thr Val Ala Glu Gly Pro Ser Ser Cys
 35 40 45

Leu Arg Arg Asn Val Ile Ser Glu Arg Glu Arg Arg Lys Arg Met Ser
 50 55 60

Leu Ser Cys Glu Arg Leu Arg Ala Leu Leu Pro Gln Phe Asp Gly Arg
 65 70 75 80

Arg Glu Asp Met Ala Ser Val Leu Glu Met Ser Val Ala Ile Pro Ala

85

90

95

<210> 78
<211> 2076
<212> DNA
<213> Homo sapiens

<400> 78
agaaaaaaagtc tatgttgca gaaatacaga tccaagacaa agacaggatg ggcactgctg 60
gaaaagtat taaatgc当地 gcagctgtgc tttgggagca gaagcaaccc ttctccattg 120
agggaaataga agttgc当地 ccaaagacta aagaaggctcg cattaagatt ttggccacag 180
gaatctgtcg cacagatgac catgtgataa aaggaacaat ggtgtccaag tttccagtga 240
ttgtgggaca tgaggcaact gggattgttag agagcattgg agaaggagtg actacagtga 300
aaccaggtga caaagtcatc cctcttttgc tgccacaatg tagagaatgc aatgcttgc 360
gcaacccaga tggcaacctt tgcatcttgc tggtcggtgg gtactggctg 420
atggcaccac cagatttaca tgcaagggca aaccagtcca ccacttcatg aacaccagta 480
cattaccga gtacacagtg gtggatgaat ctctgttgc taagattgtat gatgcagtc 540
ctcctgagaa agtctgttta atggctgtg ggtttccac tggtatggc gctgctgtt 600
aaaactggcaa ggtcaaacct ggttccactt ggtcgcttt tgccctgaga ggagttggcc 660
tgtcagtcat catggctgt aagtctgtg gtgcattctg gatcattggg attgacacta 720
acaaaagacaa atttggaaag gcatggctg taggtcccac tgagtgtatc agtcccaagg 780
actctaccaa acccatcagt gaggtgtgt cagaaatgac aggcaacaac gtggatata 840
cctttgaaatg tattggcat ctgttacca tgattgtgc cttggcatcc tgccacatga 900
actatggac cagcgtggtt gttaggatgc ctccatcagc caagatgctc acctatgacc 960
cgatgttgc cttaacttgc cgcacatggc agggatgtgt ctggaggt ttgaaaagca 1020
gagatgtatc cccaaaacta gtgactgagt tcctggcaaa gaaatttgc ctggaccagt 1080
tgataactca tgc当地 tttaaaaaaa tcgtgaagg atttggatgt ctcaatttcag 1140
gacaaagcat tgc当地 ctgc当地 ttggatggc gagatccaa gtggcaggag gtctgtttg 1200
tcatggtcaa ctggatgttgc tttgtgaga gttccatcat ctgaaatcat gtatctgtct 1260
cacaatatac agcataagta gaagatttgc tgaagacata gaacccttat aaagaattat 1320
taacatattttaa aacatttaa agtctgtga gacactggaa attagtataa taacaatgtt 1380
aatattttttgc atttacattt tgc当地 ttttgc当地 taattgtatc ttttggaaa acatacactt 1440
ggatttctat gttgaaatgg agatttttaa gagttttaac cagctgtgc agatatatat 1500
ctcaaaaacag atatagcgtt taaagatata gtaaatgc当地 ctccatagat aatatttact 1560
taacacatttgc aactattat tttttagat tgaatataaa tgatattttt aaacacttgc 1620
tatgagttaa ctggatttgc attttgc当地 cagttcatttgc catgtatgc attactggat 1680
tagattaaga aagacagaaaa agattaaggg acgggcacat ttttcaacgc ttaagaatca 1740
tcattacata acttggatgc actggaaaag tatatcatat ggttacacaa ggctatttgc 1800
cagcatatataatatttta gaaaatatttgc ttttgc当地 actgaatata aacatagac 1860
tagaatcata ttatcataact tattcataatgc ttcaatttgc tacagttagaa ttgcaagtcc 1920
ttaagtccctt atttactgtg cttagtgc actccatatttgc ataaaaatgtt tttttagttt 1980
ttaacaacta cactgtatgc ttttatata tttataacat gttaaaaattt ttttggaaa 2040
ttaaaaatata tataaaaaaaa aaaaaaaaaa ctcgag 2076

<210> 79
<211> 2790
<212> DNA
<213> Homo sapiens

<400> 79
aagcagttga gttaggc当地 aaaagaacct ctccatataag gattaaaaatg tataggccag 60
cacgtgtac ttgc当地 agatttctga atccatataatgt agtatgttgc attgtcg 120
cagggatgt gatcctggca gtc当地 ctctacttgc ttacttttgc gttttgatc 180
aaaaatcttgc tttttagggc agcagtttgc aactccatata ttttgc当地 aatagtctgt 240

taaaattcacc agctacacag gaatacagga ctttgagtgg aagaattgaa tctctgatta 300
 ctaaaaacatt caaagaatca aatttaagaa atcagttcat cagagctcat gttgccaaac 360
 tgaggcaaga tggtagtgg gtgagagccc atgttgtcat gaaatttcaa ttcactagaa 420
 ataacaatgg agcatcaatg aaaagcagaa ttgagtcgt tttacgacaa atgctgaata 480
 actctggaaa cctggaaaata aacccttcaa ctgagataac atcacttaat gaccaggctg 540
 cagcaaattt gcttattat gaatgtgggg ccggccca ctaataaca ttgtctgagc 600
 agagaatcc tggaggcaact gaggctgagg agggaaatcg gccgtggccaa gtcagtctgc 660
 ggctcaataa tgcccaccac tggggaggca gcctgatcaa taacatgtgg atccgtacag 720
 cagtcactg ctteagaagc aactctaattc ctgtgtactg gattgccacg tctggtattt 780
 ccacaacatt tcctaaacta agaatgagag taagaaatat ttaattcat aacaattata 840
 aatctgcaac tcatgaaaat gacattgcac ttgtgagact tgagaacagt gtcacccctta 900
 ccaaagatat ccatagtgtg tgcctccca ctgctaccca gaatattcca cctggctcta 960
 ctgcttatgt aacaggatgg ggcgtcaag aatatgtgg ccacacaggccag 1020
 gcaaggaca ggtcagaata ataagtaatg atgtatgtaa tgcacccat agttataatg 1080
 gagccatctt gtctggatgt ctgtgtgctg gatgtacatc aggtggagtg gacgcgtgtc 1140
 aggtgactc tggggccca ctgtacaag aagactcagg ggggtttgg tttattgtgg 1200
 gatatagtaag ctggggagat cagtgtggcc tgccggataa gccaggagtg tatactcgag 1260
 tgacagccca ctttgcactgg attaggcaac aaactgggat ctgtcaac aagtgcac 1320
 ctgttgcaaa gtctgtatgc agtgtgcct gtcttaattt ccaaagettt acatttcaac 1380
 taaaaaaagaa actagaaaatg tcctaaattt acatcttgc acataaaatat ggtttacaa 1440
 acactgtttt acctttttt attattaaag gttttctatt ttctccagag aacttatatga 1500
 atgttgcatc gtactgtggc tggtaacag aagaaacaca ctaaactaat tacaaagttt 1560
 acaatttcat tacatgtgt cttaatgccc gtatgtgaaa gaacagggaaac cttgagcatg 1620
 tatagtagag gaacctgcac agtctgtatg ggtcagaggg gtcttctctg ggtttcaactg 1680
 agatgagaa gtaagcaaac tggaaaca tgcacggaa aaagtgtatg aataatattc 1740
 aagacaaaaaa gaacagtatg aggcaagaga aatagatgt attttttt tttgttact 1800
 caatatctt tacttagat ggtctctaaa attttttatg tgaaactgtt gtactatacg 1860
 tataacctaa ccttaattat tctgtaaagaa catgtttcca taggaaatag tggataattt 1920
 tcagctattt aaggcaaaag cttaaatagt tcactctca actgagacccc aaagaattat 1980
 agatattttt catgtgacc catgaaaaat atcactcatt tacataaagg agagactata 2040
 tctatattt agagaagcta agaaatatac ctacacaaac ttgtcaggtt ctttacaact 2100
 acatagtact ttttaacaac aaaataataa ttttaagaat gaaaaattttt atcatcgga 2160
 agaacgtccc actacagact tcctatcat ggcaggatata tttttgagcg taaaagggtc 2220
 gtcaaacgct aaatctaagt aatgtatgtt aagttttaaag agggggaaaga gttgggttgc 2280
 aaaggaaaag tttaaatagc ttaatatcaa tagaatgatc ctgtacacag aaaaaacttt 2340
 gtcaactttc ctctctcatt ttctttctct ctctctcccc ttctcataca catgcctccc 2400
 cgacccaaaga atataatgtt aattttttttt actaaaaatgt aatggcatgtt aaatctctgt 2460
 agtctgaatc actaatattt ctgatgtttt atgagctctt agtacagctt aagtttgcct 2520
 atgcatgatc atctatgcgt cagagcttcc ttcttctaca agtcaactcc ctgcacatctgg 2580
 gcatcaggac tgcctccatc atttgcgtt aacttcttgcatttccatc agtcaactcc ctgcacatctgg 2640
 gcaaacaccc acaataaaatc catctacttt tagggaaaagg gagttgaaaa tgcacccaaac 2700
 tcttggcgaa ctgtacaaac aatctttgc tatactttt ttcacaaataaa ttcttttgc 2760
 aatgaaaaaaaaaaaaaaa aaaaactctcgag 2790

<210> 80

<211> 1460

<212> DNA

<213> Homo sapiens

<400> 80

ctcaaaagcag ttgagtaggc agaaaaaaaga acctcttcat taaggattaa aatgtatagg 60
 ccagcacgtg taacttcgac ttcaagattt ctgaatccat atgtatgtat tttcattgtc 120
 gtgcgggggg tagtgcgtt ggcgtccacc atagctctac ttgtttactt tttagctttt 180
 gatcaaaaaat cttacttttta taggagcgtt ttcaactcc taaatgttga atataatagt 240
 cagttaaattt caccagctac acaggaatac aggacttga gtggaaagaat tgaatctctg 300

attactaaaa cattcaaaga atcaaattt aaaaaatcagt tcatcagac tcatagtgcc 360
 aaactgaggc aagatggtag tgggttgaga gcggatgttgc tcatgaaatt tcaatttact 420
 agaaaataaca atggagcatc aatgaaaagc agaattttagt ctgttttacg acaaattgctg 480
 aataactctg gaaaccttggaaataaaaccct tcaactgaga taacatcaact tactgaccag 540
 gctcagcaatattggcttat taatgaatgt ggggcceggc cagacctaataaacattgtct 600
 gagcagagaa tccttggagg cactgaggct gaggaggaa gctggccgtg gcaagtca 660
 ctgcggctca ataattccccca ccactgtggaa ggcagcctga tcaataacat gtggatctg 720
 acacgagctc actgtcttcag aagcaactct aatcccttgtc actggattgc cacgtctgg 780
 atttccacaa catttcttaa actaagaatg agagaatgaa atattttaat tcaataacat 840
 tataaaatctg caactcatga aaatgacatt gcacttgtga gacttgagaa cagtgtcacc 900
 tttaaccaaag atatccatag tttgtgtctc ccagctcta cccagaatataat tccacccggc 960
 tctactgtttt atgttaacagg atggggcgct caagaatatg ctggccacac agttccagag 1020
 ctaaggcaag gacaggctcag aataaataatg aatgtatgtt gtaatgcacc acatagttat 1080
 aatggagcca tcttggctgg aatgtctgtc gctggaggatc ctcaggatggc agtggacgca 1140
 tgtcagggtg actctgttggcccactgta caagaagact caccggggct ttgggttatt 1200
 gtggggatag taagctgggg agatcgtgt ggcttgcggg ataagccagg agtgtatact 1260
 cgagtgacag cctacccttga ctggattagg caacaaactg ggtatctagtg caacaagtgc 1320
 atccctgttg caaagtctgtc atgcaggatc gcttgcctta aatcccaaag ctttacattt 1380
 caactgaaaaa agaaaactaga aatgttctaa tttaacatct ttttacataaa atatggttt 1440
 aaaaaaaaaaaaaaaa 1460

<210> 81

Met Phe Ala Glu Ile Gln Ile Gln Asp Lys Asp Arg Met Gly Thr Ala

1 5 10 15

Gly Lys Val Ile Lys Cys Lys Ala Ala Val Leu Trp Glu Gln Lys Gln

20 25 30

Pro Phe Ser Ile Glu Glu Ile Glu Val Ala Pro Pro Lys Thr Lys Glu

35 40 45

Val Arg Ile Lys Ile Leu Ala Thr Gly Ile Cys Arg Thr Asp Asp His

50 55 60

Val Ile Lys Gly Thr Met Val Ser Lys Phe Pro Val Ile Val Gly His

65 70 75 80

Glu Ala Thr Gly Ile Val Glu Ser Ile Gly Glu Gly Val Thr Thr Val

85 90 95

Lys Pro Gly Asp Lys Val Ile Pro Leu Phe Leu Pro Gln Cys Arg Glu

100 105 110

Cys Asn Ala Cys Arg Asn Pro Asp Gly Asn Leu Cys Ile Arg Ser Asp

115 120 125

Ile Thr Gly Arg Gly Val Leu Ala Asp Gly Thr Thr Arg Phe Thr Cys

130 135 140

Lys Gly Lys Pro Val His His Phe Met Asn Thr Ser Thr Phe Thr Glu

145	150	155	160
Tyr Thr Val Val Asp Glu Ser Ser Val Ala Lys Ile Asp Asp Ala Ala			
165	170	175	
Pro Pro Glu Lys Val Cys Leu Ile Gly Cys Gly Phe Ser Thr Gly Tyr			
180	185	190	
Gly Ala Ala Val Lys Thr Gly Lys Val Lys Pro Gly Ser Thr Cys Val			
195	200	205	
Val Phe Gly Leu Arg Gly Val Gly Leu Ser Val Ile Met Gly Cys Lys			
210	215	220	
Ser Ala Gly Ala Ser Arg Ile Ile Gly Ile Asp Leu Asn Lys Asp Lys			
225	230	235	240
Phe Glu Lys Ala Met Ala Val Gly Ala Thr Glu Cys Ile Ser Pro Lys			
245	250	255	
Asp Ser Thr Lys Pro Ile Ser Glu Val Leu Ser Glu Met Thr Gly Asn			
260	265	270	
Asn Val Gly Tyr Thr Phe Glu Val Ile Gly His Leu Glu Thr Met Ile			
275	280	285	
Asp Ala Leu Ala Ser Cys His Met Asn Tyr Gly Thr Ser Val Val Val			
290	295	300	
Gly Val Pro Pro Ser Ala Lys Met Leu Thr Tyr Asp Pro Met Leu Leu			
305	310	315	320
Phe Thr Gly Arg Thr Trp Lys Gly Cys Val Phe Gly Gly Leu Lys Ser			
325	330	335	
Arg Asp Asp Val Pro Lys Leu Val Thr Glu Phe Leu Ala Lys Lys Phe			
340	345	350	
Asp Leu Asp Gln Leu Ile Thr His Val Leu Pro Phe Lys Lys Ile Ser			
355	360	365	
Glu Gly Phe Glu Leu Leu Asn Ser Gly Gln Ser Ile Arg Thr Val Leu			
370	375	380	
Thr Phe			
385			
<210> 82			
<211> 418			
<212> PRT			
<213> Homo sapiens			
<400> 82			
Met Tyr Arg Pro Ala Arg Val Thr Ser Thr Ser Arg Phe Leu Asn Pro			

1	5	10	15
Tyr Val Val Cys Phe Ile Val Val Ala Gly Val Val Ile Leu Ala Val			
20	25	30	
Thr Ile Ala Leu Leu Val Tyr Phe Leu Ala Phe Asp Gln Lys Ser Tyr			
35	40	45	
Phe Tyr Arg Ser Ser Phe Gln Leu Leu Asn Val Glu Tyr Asn Ser Gln			
50	55	60	
Leu Asn Ser Pro Ala Thr Gln Glu Tyr Arg Thr Leu Ser Gly Arg Ile			
65	70	75	80
Glu Ser Leu Ile Thr Lys Thr Phe Lys Glu Ser Asn Leu Arg Asn Gln			
85	90	95	
Phe Ile Arg Ala His Val Ala Lys Leu Arg Gln Asp Gly Ser Gly Val			
100	105	110	
Arg Ala Asp Val Val Met Lys Phe Gln Phe Thr Arg Asn Asn Asn Gly			
115	120	125	
Ala Ser Met Lys Ser Arg Ile Glu Ser Val Leu Arg Gln Met Leu Asn			
130	135	140	
Asn Ser Gly Asn Leu Glu Ile Asn Pro Ser Thr Glu Ile Thr Ser Leu			
145	150	155	160
Thr Asp Gln Ala Ala Asn Trp Leu Ile Asn Glu Cys Gly Ala Gly			
165	170	175	
Pro Asp Leu Ile Thr Leu Ser Glu Gln Arg Ile Leu Gly Gly Thr Glu			
180	185	190	
Ala Glu Glu Gly Ser Trp Pro Trp Gln Val Ser Leu Arg Leu Asn Asn			
195	200	205	
Ala His His Cys Gly Gly Ser Leu Ile Asn Asn Met Trp Ile Leu Thr			
210	215	220	
Ala Ala His Cys Phe Arg Ser Asn Ser Asn Pro Arg Asp Trp Ile Ala			
225	230	235	240
Thr Ser Gly Ile Ser Thr Thr Phe Pro Lys Leu Arg Met Arg Val Arg			
245	250	255	
Asn Ile Leu Ile His Asn Asn Tyr Lys Ser Ala Thr His Glu Asn Asp			
260	265	270	
Ile Ala Leu Val Arg Leu Glu Asn Ser Val Thr Phe Thr Lys Asp Ile			
275	280	285	
His Ser Val Cys Leu Pro Ala Ala Thr Gln Asn Ile Pro Pro Gly Ser			
290	295	300	

Thr Ala Tyr Val Thr Gly Trp Gly Ala Gln Glu Tyr Ala Gly His Thr
 305 310 315 320

Val Pro Glu Leu Arg Gln Gly Gln Val Arg Ile Ile Ser Asn Asp Val
 325 330 335

Cys Asn Ala Pro His Ser Tyr Asn Gly Ala Ile Leu Ser Gly Met Leu
 340 345 350

Cys Ala Gly Val Pro Gln Gly Gly Val Asp Ala Cys Gln Gly Asp Ser
 355 360 365

Gly Gly Pro Leu Val Gln Glu Asp Ser Arg Arg Leu Trp Phe Ile Val
 370 375 380

Gly Ile Val Ser Trp Gly Asp Gln Cys Gly Leu Pro Asp Lys Pro Gly
 385 390 395 400

Val Tyr Thr Arg Val Thr Ala Tyr Leu Asp Trp Ile Arg Gln Gln Thr
 405 410 415

Gly Ile

<210> 83
<211> 418
<212> PRT
<213> Homo sapiens

<400> 83

Met Tyr Arg Pro Ala Arg Val Thr Ser Thr Ser Arg Phe Leu Asn Pro
 1 5 10 15

Tyr Val Val Cys Phe Ile Val Val Ala Gly Val Val Ile Leu Ala Val
 20 25 30

Thr Ile Ala Leu Leu Val Tyr Phe Leu Ala Phe Asp Gln Lys Ser Tyr
 35 40 45

Phe Tyr Arg Ser Ser Phe Gln Leu Leu Asn Val Glu Tyr Asn Ser Gln
 50 55 60

Leu Asn Ser Pro Ala Thr Gln Glu Tyr Arg Thr Leu Ser Gly Arg Ile
 65 70 75 80

Glu Ser Leu Ile Thr Lys Thr Phe Lys Glu Ser Asn Leu Arg Asn Gln
 85 90 95

Phe Ile Arg Ala His Val Ala Lys Leu Arg Gln Asp Gly Ser Gly Val
 100 105 110

Arg Ala Asp Val Val Met Lys Phe Gln Phe Thr Arg Asn Asn Asn Gly
 115 120 125

Ala Ser Met Lys Ser Arg Ile Glu Ser Val Leu Arg Gln Met Leu Asn
130 135 140

Asn Ser Gly Asn Leu Glu Ile Asn Pro Ser Thr Glu Ile Thr Ser Leu
145 150 155 160

Thr Asp Gln Ala Ala Asn Trp Leu Ile Asn Glu Cys Gly Ala Gly
165 170 175

Pro Asp Leu Ile Thr Leu Ser Glu Gln Arg Ile Leu Gly Gly Thr Glu
180 185 190

Ala Glu Glu Gly Ser Trp Pro Trp Gln Val Ser Leu Arg Leu Asn Asn
195 200 205

Ala His His Cys Gly Gly Ser Leu Ile Asn Asn Met Trp Ile Leu Thr
210 215 220

Ala Ala His Cys Phe Arg Ser Asn Ser Asn Pro Arg Asp Trp Ile Ala
225 230 235 240

Thr Ser Gly Ile Ser Thr Thr Phe Pro Lys Leu Arg Met Arg Val Arg
245 250 255

Asn Ile Leu Ile His Asn Asn Tyr Lys Ser Ala Thr His Glu Asn Asp
260 265 270

Ile Ala Leu Val Arg Leu Glu Asn Ser Val Thr Phe Thr Lys Asp Ile
275 280 285

His Ser Val Cys Leu Pro Ala Ala Thr Gln Asn Ile Pro Pro Gly Ser
290 295 300

Thr Ala Tyr Val Thr Gly Trp Gly Ala Gln Glu Tyr Ala Gly His Thr
305 310 315 320

Val Pro Glu Leu Arg Gln Gly Gln Val Arg Ile Ile Ser Asn Asp Val
325 330 335

Cys Asn Ala Pro His Ser Tyr Asn Gly Ala Ile Leu Ser Gly Met Leu
340 345 350

Cys Ala Gly Val Pro Gln Gly Gly Val Asp Ala Cys Gln Gly Asp Ser
355 360 365

Gly Gly Pro Leu Val Gln Glu Asp Ser Arg Arg Leu Trp Phe Ile Val
370 375 380

Gly Ile Val Ser Trp Gly Asp Gln Cys Gly Leu Pro Asp Lys Pro Gly
385 390 395 400

Val Tyr Thr Arg Val Thr Ala Tyr Leu Asp Trp Ile Arg Gln Gln Thr
405 410 415

attcgcacatc aggtggcgcc agtcgagaag gctcgttaa agaaaacaata acattaaagt 420
 ggtgtacacc aaggacaaaat aacattgaat tacacttattg tactggagct tateggattt 480
 cacctgtaga tgtaaaatagt agaccttcct cctgccttac taattttctt ctaaatggtc 540
 gttctgtttt attgaaacaa ccacgaaagt caggttctaa agtcatttagt catatgctta 600
 gtagccatgg aggagagatt ttttgcacg tccttagcag ttctcgatcc attctagaag 660
 atccacccccc aatttagtcaa ggatgtggag gaagagttac agactaccgg attacagatt 720
 ttggtaatt tatgagggga aaacagatta actcccccac tacaccccaag atataaaaatc 780
 gatgaaagtc ttgaggtccc ttgaaaccc agccaaaaga tcagttaaaa aaacataaccc 840
 gttactggcc tatgatttca aaaacccacc attttaaca tgcaagcgtt agttccgtt 900
 acca 904

<210> 88

<211> 387

<212> DNA

<213> Homo sapiens

<400> 88

cgtctctccc ccagttgcc gttcacccgg agcgctcgcc acttgccgat agtggtgacg 60
 gggcaacat gtctgtggct ttgcggccc cgaggcagcg aggcaagggg gagatcactc 120
 ccgcgtcgat tcagaagatg ttggatgaca ataaccatct tattcagtgt ataatggact 180
 ctcagaataa aggaagacc tcagagtgtt ctcagatcta gcagatgtt cacacaaact 240
 tggtataacct tgctacaata gcagattcta atcaaaaatgcgatctt ttaccagcac 300
 cacccacaca gaatatgcct atgggtcctg gaggatgaa tcagagcggg cctccccac 360
 ctccacgctc tcacaacatg ccttcaa 387

<210> 89

<211> 481

<212> DNA

<213> Homo sapiens

<400> 89

tgttcttggc cctgcgggtgc tatagagcag gctcttctag gttggcagtt gccatggaat 60
 ctggacccaa aatgttggcc cccgtttgcc tggtaaaaa taacaatgag cagctattgg 120
 tgaaccagca agctatacag attcttggaa agatttctca gccagtgggt gtggtgcc 180
 ttgttaggact gtaccgtaca gggaaatccct acttgatgaa ccatctggca ggacagaatc 240
 atggcttccc tctggctcc acgggtcgat ctgaaaccaa gggcatctgg atgtggtgc 300
 tggcccccaccc atccaagcca aaccacaccc tggtcccttgc ggacaccgaa ggtctggc 360
 atgtggaaaaa gggtgaccct aagaatgact cctggatctt tgccctggct gtgtctctgt 420
 gcaacccctt tgcataaac acgtatgacca ccatcaacca ccaggccctg gagcagctgc 480
 a 481

<210> 90

<211> 491

<212> DNA

<213> Homo sapiens

<400> 90

tggaaaactgt tcttgaccc gcggtgctat agagcagggtt ggcagttgcc atggaatctg 60
 gacccaaaat gttggccccc gtttgcctgg tggaaaataaa caatgagcag ctattggta 120
 accagcaagc tatacagatt ctgaaaaga tttctcagcc agtgggtgggt gtggccattt 180
 taggactgtt ccgtacaggg aaatcctact tgcataacca tctggcaggg cagaatcatg 240
 gctccctct gggctccacg gtgcagtctg aaaccaagggtt catctggatg tggtgcgtgc 300
 cccacccatc caagccaaac cacacccctgg tccttctggc caccgaaggtt ctggccatgt 360
 tggaaaagggtt tgacccttaag aatgacttgc ggcattttgc cctggctgtt ctccctgtgc 420
 gcaccccttgtt ctacaacacgc atgacccacca tcaaccacca agccctggag cagctgcatt 480

Leu Lys Gln Gly Leu Asn Gly Val Pro Ile Leu Ser Glu Glu Glu Leu
 100 105 110

Ser Leu Leu Asp Glu Phe Tyr Lys Leu Val Asp Pro Glu Arg Asp Met
 115 120 125

Ser Leu Arg Leu Asn Glu Gln Tyr Glu His Ala Ser Ile His Leu Trp
 130 135 140

Asp Leu Leu Glu Gly Lys Glu Lys Pro Val Cys Gly Thr Thr Tyr Lys
 145 150 155 160

Val Leu

<210> 94

<211> 100

<212> PRT

<213> Homo sapiens

<400> 94

Asp Leu Glu Glu Ala Thr Leu Gln His Glu Ala Thr Ala Ala Thr Leu
 1 5 10 15

Arg Lys Lys His Ala Asp Ser Val Ala Glu Leu Gly Glu Gln Ile Asp
 20 25 30

Asn Leu Gln Arg Val Lys Gln Lys Leu Glu Lys Glu Lys Ser Glu Met
 35 40 45

Lys Met Glu Ile Asp Asp Ile Ala Cys Asn Met Glu Val Ile Ser Lys
 50 55 60

Ser Lys Gly Asn Leu Glu Lys Met Cys Arg Thr Leu Glu Asp Gln Val
 65 70 75 80

Ser Glu Leu Lys Thr Gln Glu Glu Glu Gln Gln Arg Leu Ile Asn Glu
 85 90 95

Leu Thr Ala Gln

100

<210> 95

<211> 99

<212> PRT

<213> Homo sapiens

<400> 95

Lys Ile Leu Pro Leu Asn Gly Asn Leu Gln Ala Val Glu Leu Gly Glu
 1 5 10 15

Lys Arg Thr Ser Ser Leu Arg Ile Lys Met Phe Arg Ala Thr Arg Val
 20 25 30

Thr Ser Thr Ser Arg Phe Leu Asn Pro Tyr Val Val Cys Phe Leu Val
 35 40 45

Leu Pro Gly Val Val Ile Leu Ala Val Pro Ile Ala Leu Leu Val Tyr
 50 55 60

Phe Leu Ala Phe Asp Gln Lys Ser Tyr Phe Tyr Trp Ser Asn Phe Pro
 65 70 75 80

Leu Pro Asn Val Glu Tyr Asn Ser Pro Phe Asn Ser Pro Ala Ser Pro
 85 90 95

Gly Ile Pro

<210> 96

<211> 257

<212> PRT

<213> Homo sapiens

<400> 96

Val Gln Glu Thr Ile His Glu His Asn Lys Leu Ala Ala Asn Ser Asp
 1 5 10 15

His Leu Met Gln Ile Gln Lys Cys Glu Leu Val Leu Ile His Thr Tyr
 20 25 30

Pro Val Gly Glu Asp Ser Leu Val Ser Asp Arg Ser Lys Lys Glu Leu
 35 40 45

Ser Pro Val Leu Thr Ser Glu Val His Ser Val Arg Ala Gly Arg His
 50 55 60

Leu Ala Thr Lys Leu Asn Ile Leu Val Gln Gln His Phe Asp Leu Ala
 65 70 75 80

Ser Thr Thr Ile Thr Asn Ile Pro Met Lys Glu Glu Gln His Ala Asn
 85 90 95

Thr Ser Ala Asn Tyr Asp Val Glu Leu Leu His His Lys Asp Ala His
 100 105 110

Val Asp Phe Leu Lys Ser Gly Asp Ser His Leu Gly Gly Ser Arg
 115 120 125

Glu Gly Ser Phe Lys Glu Thr Ile Thr Leu Lys Trp Cys Thr Pro Arg
 130 135 140

Thr Asn Asn Ile Glu Leu His Tyr Cys Thr Gly Ala Tyr Arg Ile Ser
 145 150 155 160

Pro Val Asp Val Asn Ser Arg Pro Ser Ser Cys Leu Thr Asn Phe Leu
 165 170 175

Leu Asn Gly Arg Ser Val Leu Leu Glu Gln Pro Arg Lys Ser Gly Ser
180 185 190

Lys Val Ile Ser His Met Leu Ser Ser His Gly Gly Glu Ile Phe Leu
195 200 205

His Val Leu Ser Ser Ser Arg Ser Ile Leu Glu Asp Pro Pro Ser Ile
210 215 220

Ser Glu Gly Cys Gly Gly Arg Val Thr Asp Tyr Arg Ile Thr Asp Phe
225 230 235 240

Gly Glu Phe Met Arg Gly Lys Gln Ile Asn Ser Phe Ser Thr Pro Gln
245 250 255

Ile

<210> 97

<211> 128

<212> PRT

<213> Homo sapiens

<400> 97

Ser Leu Pro Gln Phe Ala Val His Pro Glu Arg Ser Gly Leu Ala Asp
1 5 10 15

Ser Gly Asp Gly Gly Asn Met Ser Val Ala Phe Ala Ala Pro Arg Gln
20 25 30

Arg Gly Lys Gly Glu Ile Thr Pro Ala Ala Ile Gln Lys Met Leu Asp
35 40 45

Asp Asn Asn His Leu Ile Gln Cys Ile Met Asp Ser Gln Asn Lys Gly
50 55 60

Lys Thr Ser Glu Cys Ser Gln Tyr Gln Gln Met Leu His Thr Asn Leu
65 70 75 80

Val Tyr Leu Ala Thr Ile Ala Asp Ser Asn Gln Asn Met Gln Ser Leu
85 90 95

Leu Pro Ala Pro Pro Thr Gln Asn Met Pro Met Gly Pro Gly Gly Met
100 105 110

Asn Gln Ser Gly Pro Pro Pro Pro Arg Ser His Asn Met Pro Ser
115 120 125

<210> 98

<211> 159

<212> PRT

<213> Homo sapiens

<400> 98

Phe Leu Asp Leu Arg Cys Tyr Arg Ala Gly Ser Ser Arg Leu Ala Val
 1 5 10 15

Ala Met Glu Ser Gly Pro Lys Met Leu Ala Pro Val Cys Leu Val Glu
20 25 30

Asn Asn Asn Glu Gln Leu Leu Val Asn Gln Gln Ala Ile Gln Ile Leu
35 40 45

Glu Lys Ile Ser Gln Pro Val Val Val Ala Ile Val Gly Leu Tyr
 50 55 60

Arg Thr Gly Lys Ser Tyr Leu Met Asn His Leu Ala Gly Gln Asn His
65 70 75 80

Gly Phe Pro Leu Gly Ser Thr Val Gln-Ser Glu Thr Lys Gly Ile Trp
85 90 95

Met Trp Cys Val Pro His Pro Ser Lys Pro Asn His Thr Leu Val Leu
100 105 110

Leu Asp Thr Glu Gly Leu Gly Asp Val Glu Lys Gly Asp Pro Lys Asn
115 120 125

Asp Ser Trp Ile Phe Ala Leu Ala Val Leu Leu Cys Ser Thr Phe Val
130 135 140

Tyr Asn Ser Met Ser Thr Ile Asn His Gln Ala Leu Glu Gln Leu
145 150 155

<210> 99

<211> 147

<212> PRT

<213> Homo sapiens

1400-82

Met Glu Ser Gly Pro Lys Met Leu Ala Pro Val Cys Leu Val Glu Asn

Asn Asn Glu Gln Leu Leu Val Asn Gln Gln Ala Ile Gln Ile Leu Glu
20 25

Lys Ile Ser Gln Pro Val Val Val Ala Ile Val Gly Leu Tyr Arg
35 16

Thr Gly Lys Ser Tyr Leu Met Asn His Leu Ala Gly Gln Asn His Gly

Phe Pro Leu Gly Ser Thr Val Gln Ser Glu Thr Lys Gly Ile Trp Met
65 70

Two-Grouped Data

85

90

95

Asp Thr Glu Gly Leu Gly Asp Val Glu Lys Gly Asp Pro Lys Asn Asp
 100 105 110

Ser Trp Ile Phe Ala Leu Ala Val Leu Leu Cys Ser Thr Phe Val Tyr
 115 120 125

Asn Ser Met Ser Thr Ile Asn His Gln Ala Leu Glu Gln Leu His Tyr
 130 135 140

Val Thr Asp
 145

<210> 100

<211> 124

<212> PRT

<213> Homo sapiens

<400> 100

Met Gly Lys Val Lys Val Gly Val Asn Gly Phe Gly Arg Ile Gly Arg
 1 5 10 15

Leu Val Thr Arg Ala Ala Phe Asn Ser Gly Lys Val Asp Ile Val Ala
 20 25 30

Ile Asn Asp Pro Phe Ile Asp Leu Asn Tyr Met Val Tyr Met Phe Gln
 35 40 45

Tyr Asp Ser Thr His Gly Lys Phe His Gly Thr Val Glu Ala Glu Asn
 50 55 60

Gly Lys Leu Val Ile Asn Gly Asn Pro Ile Thr Ile Phe Gln Glu Arg
 65 70 75 80

Asp Pro Ser Lys Ile Lys Trp Gly Asp Ala Gly Ala Glu Tyr Val Val
 85 90 95

Glu Ser Thr Gly Val Phe Thr Thr Met Glu Lys Ala Gly Ala His Leu
 100 105 110

Gln Gly Gly Ala Lys Arg Val Ile Ile Ser Ala Pro
 115 120

<210> 101

<211> 127

<212> PRT

<213> Homo sapiens

<400> 101

Gln Ser Ala Ala Ser Ser Phe Ala Ser Pro Ala Glu Pro His Arg Ser
 1 5 10 15

Asp Thr Met Gly Lys Val Lys Val Gly Val Asn Gly Phe Gly Arg Ile
 20 25 30

Gly Arg Leu Val Thr Arg Ala Ala Phe Asn Ser Gly Lys Val Asp Ile
 35 40 45

Val Ala Ile Asn Asp Pro Phe Ile Asp Leu Asn Tyr Met Val Tyr Met
 50 55 60

Phe Gln Tyr Asp Ser Thr His Gly Lys Phe His Gly Thr Val Glu Ala
 65 70 75 80

Glu Asn Gly Lys Leu Val Ile Asn Gly Asn Pro Ile Thr Ile Phe Gln
 85 90 95

Glu Arg Asp Pro Ser Lys Ile Lys Trp Gly Asp Thr Gly Ala Glu Tyr
 100 105 110

Val Val Glu Ser Thr Gly Val Phe Thr Thr Met Glu Lys Ala Gly
 115 120 125

<210> 102

<211> 1225

<212> DNA

<213> Homo sapiens

<400> 102

atggcggcgc ggtcgctgac ggggggtggcg gcggcagagg gggcggcggc cctggcggca 60
 gcggagacgg cagccgtgac ggtggcagcg gcggcgcggg acctgggcct gggggatga 120
 ggcggccgcg gccccccgcg ggccggccgcg tggtagccggag aagctcccccc tccctgcttc 180
 ccttggccga gcccggggcg cgccgcacgc cggccgtcca gagccggcgtc cccacccttc 240
 gactcctgac accccgacccg cacccccacc cggcccccggaa ggatgtatgaa gctcaagtgc 300
 aaccagaccc gcacctacga cggcgacggc tacaagaagc gggccgcattg cctgtgtttc 360
 cgcacgcgaga gcgaggagga ggtgtactc gtgagcgtta gtcgcctatcc agacagatgg 420
 attgtccctg gaggaggcat ggagcccgag gaggagccaa gtgtggcagc agttcgtgaa 480
 gtctgtgagg aggctggagt aaaggggaca ttggaaagat tagttggaaat ttttgagaac 540
 caggagagga agcacaggac gtatgtctat gtgctcatttgcactgaagt gctggaaagac 600
 tggttaagat cagttAACAT tggaaaggaag agggaaatggt taaaataga agacgccata 660
 aaagtgcgtgc agtatcacaa acccggtgcag gcatcatatt ttgaaacatt gaggcaaggc 720
 tactcagcca acaatggcac cccagtcgtg gccaccacat actcggtttc tgctcagagc 780
 tcgatgtcag gcatcagatg actgaagact ttctgttgc gaaatggaaa ttggaaacta 840
 gactgaagtgc caaatcttcc ctctcaccct ggcttttcc acttctcaca ggcctccctc 900
 ttcaaaaataag gcatggggg cagcaaagaa aggggttatt gataatgttgc tggtttgggt 960
 ttaagtgtat gggcttttc ttctgtttt attgagggtg ggggttgggt gtgtatgg 1020
 taagtacttt tttgtcatgtat ctgtccctcc ctctccac ccctgcagtc ctctgaagag 1080
 aggccaaacag cttcccttg cttggattc tgaagtgttc ctgtttgtct tatcctggcc 1140
 ctggccagac gtttcttg attttaatt tttttttt attaaaagat accagatgaa 1200
 gaaaaaaaaaaaaaa aaaaaaaaaac tcgag 1225

<210> 103

<211> 741

<212> DNA

<213> Homo sapiens

<400> 103
 agaaaacctca atcgattca gcaaagaat ggtgttatta tcactacata ccaaatgtta 60
 atcaataact ggcagcaact ttcaagctt aggggccaag agtttgttg ggactatgtc 120
 atccctcgatg aagcacataa aataaaaaacc tcatctacta agtcagcaat atgtgtcg 180
 gctattcccg caagtaatcg cctccctcc acaggaaccc caatccagaa taatttacaa 240
 gaactatggt ccctatttga ttttgcttgc caagggtccc tgctggaaac attaaaaact 300
 ttttagatgg agtatgaaaa tcctattact agagcaagag agaaggatgc taccggcagg 360
 gaaaaagcct tgggatttaa aatatctgaa aacttaatgg caatcataaa acccttatttt 420
 ctctaggagga ctaaagaaga cgtacagaag aaaaagtcaa gcaaccaga ggcagactt 480
 aatgaaaaaga atccagatgt tgatgcatt tgtaaatgc ctcccccc caggagaaat 540
 gatttaatta ttggatacg acttgcct ttacaagaag aaatatacag gaaatttttg 600
 tcttttagatc atatcaagga gttgtaatg gagacgcgt caccttggc tgagcttagt 660
 gtcttaaaga agctgtgtga tcatcctagg ctgctgtctg cacgggcttg ttgtttgcta 720
 aatcttggga cattctctgc t 741

<210> 104

<211> 321

<212> DNA

<213> Homo sapiens

<400> 104

ttgctctgcg	tcatcaaaga	caccaaaactg	ctgtgtata	aaagttccaa	ggaccagcag	60
cctcagatgg	aactgccact	ccaaggctgt	aacattacgt	acatcccga	agacagcaaa	120
aagaagaagc	acgagctgaa	gattactcg	cagggcacgg	acccgcttgt	tctcggcgtc	180
cagagcaagg	aacaggccga	gcagtggctg	aaggtgatca	aagaagctta	cagtggttgt	240
agtggccccc	tggattcaga	gtgtcctcct	ccaccaagct	ccccggtgca	caaggcagaa	300
ctggagaaga	aactgtcttc	a				321

<210> 105

<211> 389

<212> DNA

<213> Homo sapiens

<400> 105

<210> 106

<211> 446

<212> DNA

<213> Homo sapiens

<400> 106

```

gccacatttgc cctggtcat agttaaaca ccaggtctg tgtcacatct tttggtgcc 60
acaaggatca ctccattgtt cagagagtaa tgtattagtt ctgccccatt cattcttcac 120
tttattttct tcacatttcat tagcatttat atcagctcaa gaagttaaagg traaaaatt 180
ttccacttca aattttcagt acagaaatgt gctgtgatgt ttgacaagac tatttcata 240
taagtggatt aatgtttatt ggcctctgct ctctctgtg tcagacctag gaagcttag 300
gattacttag ttgttctgtc tctgggtcca caggcagaat ttggcccatc caaagactgg 360
ccaagtggca aaaaaaggcc tgattaggcc ctgaaaattca gtgaaaattct gcctgaagaa 420

```

acctcttatt gaatttgaaa accata

446

<210> 107

<211> 467

<212> DNA

<213> Homo sapiens

<400> 107

ccggcgcgtgc	cgtcgccttc	ctgggattgg	agtctcgagc	tttcttcgtt	cgttcgcccgg	60
cggttgcgcg	cccttctcgc	gcctcggggc	tgcgaggctg	gggaagggggt	tggaggggggc	120
tgttgatcgc	cgcgttaag	ttgcgctcg	ggcgccatg	tcggccggcg	agtgtcgagcg	180
cctagtgtcg	gagctgagcg	gcgggaccgg	aggggatgag	gaggaagagt	ggctctatgg	240
cgatgaagat	gaagttgaaa	ggccagaaga	agaaaaatgcc	agtgtataatc	ctccatctgg	300
aattgaagat	gaaactgctg	aaaatggtgt	acccaaaaccg	aaagtgactg	agaccgaaga	360
tgtatagtgtat	agtgacagcg	atgatgtat	agatgtatqtg	catgtcacta	taggagacat	420
aaaaacggga	gcaccacagt	atgggagtt	tggtagacgca	cctgtaa		467

<210> 108

<211> 491

<212> DNA

<213> Homo sapiens

<400> 108

<210> 109

<211> 489

<212> DNA

<213> Homo sapiens

<400> 109

ctcagatagt	actgaaccct	ttatcaacta	tgtttttca	gtctgacaac	caaggcggct	60
actaagtgc	taaggggcag	gtagtataca	gtgtggataa	gcaggacaaa	ggggtgattc	120
acatcccagg	caggacagag	caggagatca	ttagatttca	tcactcagga	tggcttgta	180
tttatTTTAT	tttattcttt	tttttttttg	agatggagtc	tcactcttgc	ccaggctgg	240
gtgcagtgg	gcgatcttgg	ctcaactgcaa	cctctgcctc	ctgggttcaa	gcagttctcc	300
tgcctcagcc	tcccaagtag	ctgggattac	aggcgccgc	caccatgccc	agccaatttt	360
tgtactttt	gtagagatgg	ggtttccacca	tgttgccag	gctggtctcg	aactcctgac	420
ctcagggtat	ccactcgcc	cggcctccca	aagtgtgg	attataggca	tgcgccacca	480
tgccccgggc						540

<210> 110

<211> 391

<212> DNA

<213> Homo sapiens

<400> 110

gcggagtccg ctggctgacc cgagcgctgg tctccgcccgg gaaccctggg gcatggagag 60
 gtctgagtac ctcggccgctg ggcacgctg catcgccgg ccaggctgcc gctgtcccag 120
 tggagttcca ggagcaccac ctgagtgagg tgcagaatat ggcatctgag gagaagctgg 180
 agcagggtct gagttccatg aaggagaaca aagtggccat cattggaaag attcatacc 240
 cgatggagta taagggggag ctgcctccat atgatatgcg gctgaggcgt aagttggact 300
 tatttgc当地 cgtaatccat gtgaagtcac ttccctggta tatgactcgg cacaacaatc 360
 tagacctggat gatcattcga gagcagacag a 391

<210> 111

<211> 172

<212> PRT

<213> Homo sapiens

<400> 111
 Met Met Lys Leu Lys Ser Asn Gln Thr Arg Thr Tyr Asp Gly Asp Gly
 1 5 10 15

Tyr Lys Lys Arg Ala Ala Cys Leu Cys Phe Arg Ser Glu Ser Glu Glu
 20 25 30

Glu Val Leu Leu Val Ser Ser Arg His Pro Asp Arg Trp Ile Val
 35 40 45

Pro Gly Gly Gly Met Glu Pro Glu Glu Glu Pro Ser Val Ala Ala Val
 50 55 60

Arg Glu Val Cys Glu Glu Ala Gly Val Lys Gly Thr Leu Gly Arg Leu
 65 70 75 80

Val Gly Ile Phe Glu Asn Gln Glu Arg Lys His Arg Thr Tyr Val Tyr
 85 90 95

Val Leu Ile Val Thr Glu Val Leu Glu Asp Trp Glu Asp Ser Val Asn
 100 105 110

Ile Gly Arg Lys Arg Glu Trp Phe Lys Ile Glu Asp Ala Ile Lys Val
 115 120 125

Leu Gln Tyr His Lys Pro Val Gln Ala Ser Tyr Phe Glu Thr Leu Arg
 130 135 140

Gln Gly Tyr Ser Ala Asn Asn Gly Thr Pro Val Val Ala Thr Thr Tyr
 145 150 155 160

Ser Val Ser Ala Gln Ser Ser Met Ser Gly Ile Arg
 165 170

<210> 112

<211> 247

<212> PRT

<213> Homo sapiens

<400> 112

Arg Asn Leu Asn Arg Ile Gln Gln Arg Asn Gly Val Ile Ile Thr Thr

1

5

10

15

Tyr Gln Met Leu Ile Asn Asn Trp Gln Gln Leu Ser Ser Phe Arg Gly
20 25 30

Gln Glu Phe Val Trp Asp Tyr Val Ile Leu Asp Glu Ala His Lys Ile
35 40 45

Lys Thr Ser Ser Thr Lys Ser Ala Ile Cys Ala Arg Ala Ile Pro Ala
50 55 60

Ser Asn Arg Leu Leu Leu Thr Gly Thr Pro Ile Gln Asn Asn Leu Gln
65 70 75 80

Glu Leu Trp Ser Leu Phe Asp Phe Ala Cys Gln Gly Ser Leu Leu Gly
85 90 95

Thr Leu Lys Thr Phe Lys Met Glu Tyr Glu Asn Pro Ile Thr Arg Ala
100 105 110

Arg Glu Lys Asp Ala Thr Pro Gly Glu Lys Ala Leu Gly Phe Lys Ile
115 120 125

Ser Glu Asn Leu Met Ala Ile Ile Lys Pro Tyr Phe Leu Arg Arg Thr
130 135 140

Lys Glu Asp Val Gln Lys Lys Ser Ser Asn Pro Glu Ala Arg Leu
145 150 155 160

Asn Glu Lys Asn Pro Asp Val Asp Ala Ile Cys Glu Met Pro Ser Leu
165 170 175

Ser Arg Arg Asn Asp Leu Ile Ile Trp Ile Arg Leu Val Pro Leu Gln
180 185 190

Glu Glu Ile Tyr Arg Lys Phe Val Ser Leu Asp His Ile Lys Glu Leu
195 200 205

Leu Met Glu Thr Arg Ser Pro Leu Ala Glu Leu Gly Val Leu Lys Lys
210 215 220

Leu Cys Asp His Pro Arg Leu Leu Ser Ala Arg Ala Cys Cys Leu Leu
225 230 235 240

Asn Leu Gly Thr Phe Ser Ala

245

<210> 113

<211> 107

<212> PRT

<213> Homo sapiens

<400> 113

Leu Leu Cys Val Ile Lys Asp Thr Lys Leu Leu Cys Tyr Lys Ser Ser

1	5	10	15
Lys Asp Gln Gln Pro Gln Met Glu Leu Pro Leu Gln Gly Cys Asn Ile			
20	25	30	

Thr Tyr Ile Pro Lys Asp Ser Lys Lys Lys His Glu Leu Lys Ile			
35	40	45	

Thr Gln Gln Gly Thr Asp Pro Leu Val Leu Ala Val Gln Ser Lys Glu			
50	55	60	

Gln Ala Glu Gln Trp Leu Lys Val Ile Lys Glu Ala Tyr Ser Gly Cys			
65	70	75	80

Ser Gly Pro Val Asp Ser Glu Cys Pro Pro Pro Pro Ser Ser Pro Val			
85	90	95	

His Lys Ala Glu Leu Glu Lys Lys Leu Ser Ser			
100	105		

<210> 114

<211> 155

<212> PRT

<213> Homo sapiens

<400> 114

Glu Arg Tyr Asn Phe Pro Asn Pro Asn Pro Phe Val Glu Asp Asp Met			
1	5	10	15

Asp Lys Asn Glu Ile Ala Ser Val Ala Tyr Arg Tyr Arg Arg Trp Lys			
20	25	30	

Leu Gly Asp Asp Ile Asp Leu Ile Val Arg Cys Glu His Asp Gly Val			
35	40	45	

Met Thr Gly Ala Asn Gly Glu Val Ser Phe Ile Asn Ile Lys Thr Leu			
50	55	60	

Asn Glu Trp Asp Ser Arg His Cys Asn Gly Val Asp Trp Arg Gln Lys			
65	70	75	80

Leu Asp Ser Gln Arg Gly Ala Val Ile Ala Thr Glu Leu Lys Asn Asn			
85	90	95	

Ser Tyr Lys Leu Ala Arg Trp Thr Cys Cys Ala Leu Leu Ala Gly Ser			
100	105	110	

Glu Tyr Leu Lys Leu Gly Tyr Val Ser Arg Tyr His Val Lys Asp Ser			
115	120	125	

Ser Arg His Val Ile Leu Gly Thr Gln Gln Phe Lys Pro Asn Glu Phe			
130	135	140	

Ala Ser Gln Ile Asn Leu Ser Val Glu Asn Ala			
---	--	--	--

145

150

155

<210> 115
<211> 129
<212> PRT
<213> Homo sapiens

<400> 115
Gly Val Arg Trp Leu Thr Arg Ala Leu Val Ser Ala Gly Asn Pro Gly
1 5 10 15

Ala Trp Arg Gly Leu Ser Thr Ser Ala Ala Ala His Ala Ala Ser Arg
20 25 30

Ser Gln Ala Ala Ala Val Pro Val Glu Phe Gln Glu His His Leu Ser
35 40 45

Glu Val Gln Asn Met Ala Ser Glu Glu Lys Leu Glu Gln Val Leu Ser
50 55 60

Ser Met Lys Glu Asn Lys Val Ala Ile Ile Gly Lys Ile His Thr Pro
65 70 75 80

Met Glu Tyr Lys Gly Glu Leu Ala Ser Tyr Asp Met Arg Leu Arg Arg
85 90 95

Lys Leu Asp Leu Phe Ala Asn Val Ile His Val Lys Ser Leu Pro Gly
100 105 110

Tyr Met Thr Arg His Asn Asn Leu Asp Leu Val Ile Ile Arg Glu Gln
115 120 125

Thr

<210> 116

<211> 550

<212> DNA

<213> Homo sapiens

<400> 116

gaatttggca ccagcctcag agccccccag cccggctacc acccccctgct gaaaggtaac 60
catctgcatt cctgcccgtc gggacctggg ggacagtcca gccttccttgg cctcttagct 120
tggctcacgg ctgccttagag ccaaggagct catcctaat gaccttcccg ccagcactcc 180
tgcctccaaa tccctgtact cctcccccgc ccaggacgct tccacccccc ggcggcagctc 240
ggccagtcac ctctgcacgc ttgctgccaa gccagcacct tccacggaca gcttcgcctt 300
gaggagcccc ctgactctgt ccagtccctt caccacgtcc ttccagcctgg gctcccacag 360
cactctcaac ggagacccct ccgtgcccag ctccatcgctc agcctccacc tgccccccca 420
ggtcagcage tctgtgggt acggacgctc cccctgtatg gcatttgagt ctccatccccca 480
tctccgaggg tcatacgctt cttcccttccctt acccagacatc cctgggggaa agccggccta 540
ctcccttccac 550

<210> 117

<211> 154

<212> DNA

<213> Homo sapiens

<400> 117

ttctgaggga aagccgagtg gagtggcga cccggcgccg gtgacaatga gttttcttg 60
 aggtttttt ggtccccattt gtgagattga ttttgcctt aatgatgggg aaaccaggaa 120
 aatggcagaa ataaaaactg aggtatggcaa agta 154

154

<210> 118

<211> 449

<212> DNA

<213> Homo sapiens

<400> 118

gaatttcggca ccaggccccg cagcccgagt gtcgcgcaca tggcttcgcc gcagctctgc 60
cgcgcgtctgg tgtcgccgca atgggtggcg gagggcgctgc gggcccccgcg cgctgggcag 120
cctctgcacgc tgctggacgc ctccctggtac ctgcccgaagc tggggcgcgaa cgccgcacgc 180
gagttcgagg agcgccacat cccggggcgcc gtttttttcg acatcgacca gtgcagcgac 240
cgcacctcgc cctaacgacca catgctgccc gggggccgagc atttcgcgga gtacgcaggc 300
cgccctggcg tgggcgcggc cacccacgtc gtgatctacg acgcccagcgaa ccaggggcetc 360
taactccgcggc cgccgcgtctg gtggatgttc cgccgccttcg gccaccacgc cgtgtcaactg 420
cttgatggcg gcctccggcca ctggctcg 449

. 449

<210> 119

<211> 642

<212> DNA

<213> Homo sapiens

<400> 119

gaattcgcca	cgagcagtaa	cccgaccgccc	gctggtcttc	gctggacacc	atgaatcaca	60
ctgtccaaac	cttcttctct	cctgtcaaca	gtggccagcc	ccccaaactat	gagatgctca	120
aggaggagca	cgaggtggct	tgctgggggg	cgccccacaa	ccctgtcccc	ccgacgtcca	180
ccgtgatcca	catccgcage	gagacctccg	tgccccgacca	tgtcgcttgg	tccctgttca	240
acaccctttt	catgaaccccc	tgctgcctgg	gcttcatagc	attcgcttac	tccgtgaagt	300
ctagggacag	gaagatggtt	ggcgacgtga	ccggggccca	ggcctatgcc	tccaccggcca	360
agtgcctgaa	catactggcc	ctgattctgg	gcatcctcat	gaccattctg	ctcatgtca	420
tcccagtgt	gatcttccag	gcctatggat	agatcaggag	gcatcaactga	ggccaggaggc	480
tctgccccatg	acctgtatcc	cacgtactcc	aacttccatt	cctcgccctg	ccccccggaggc	540
cgagtcctgt	atcagccctt	tatcctcaca	cgcttttcta	caatggcatt	caataaagtgc	600
cacgttttcc	tggtaaaaaaa	aaaaaaaaaa	aaaaaaactcg	ag		642

642

<210> 120

<211> 603

<212> DNA

<213> Homo sapiens

<400> 120

```

gaattcgcca cgagccacaa cagccactac gactgcatacc actggatcca cggccacccc 60
gtccctcacc ccggaaacag ctccccctcc caaatgtctg accagcccg ccaccacacc 120
catgtccacc atgtccacaa tccacaccc tcctactcca gagaccaccc acacctccac 180
agtgtctgacc accacagcca ccatgacaag ggccaccaat tccacggcca caccctccctc 240
cactctgggg acgacccgga tcctcaactga gctgaccaca acagccacta caactgcagc 300
cactggatcc acggccaccc tgcttcaccc cccaggggacc acctggatcc tcacagagcc 360
gagcactata gccacccgtga tggtgccac cggttccacg gccaccgcct cttccactct 420
ggaaacagct cacacccca aagtggtgcac caccatggcc actatggcca caqccactgc 480

```

ctccacgggtt cccagcttgtt ccaccgtggg gaccacccgc acccccgcag tgctccccag 540
 caggcctgcac accttcagcg tgcactgtt gtcctcctca gtcctcacca ccctgagacc 600
 cac 603

<210> 121
 <211> 178
 <212> PRT
 <213> Homo sapiens

<400> 121
 Ser Glu Pro Pro Ser Pro Ala Thr Thr Pro Cys Gly Lys Val Pro Ile
 1 5 10 15

Cys Ile Pro Ala Arg Arg Asp Leu Val Asp Ser Pro Ala Ser Leu Ala
 20 25 30

Ser Ser Leu Gly Ser Pro Leu Pro Arg Ala Lys Glu Leu Ile Leu Asn
 35 40 45

Asp Leu Pro Ala Ser Thr Pro Ala Ser Lys Ser Cys Asp Ser Ser Pro
 50 55 60

Pro Gln Asp Ala Ser Thr Pro Arg Pro Ser Ser Ala Ser His Leu Cys
 65 70 75 80

Gln Leu Ala Ala Lys Pro Ala Pro Ser Thr Asp Ser Val Ala Leu Arg
 85 90 95

Ser Pro Leu Thr Leu Ser Ser Pro Phe Thr Thr Ser Phe Ser Leu Gly
 100 105 110

Ser His Ser Thr Leu Asn Gly Asp Leu Ser Val Pro Ser Ser Tyr Val
 115 120 125

Ser Leu His Leu Ser Pro Gln Val Ser Ser Val Val Tyr Gly Arg
 130 135 140

Ser Pro Val Met Ala Phe Glu Ser His Pro His Leu Arg Gly Ser Ser
 145 150 155 160

Val Ser Ser Ser Leu Pro Ser Ile Pro Gly Gly Lys Pro Ala Tyr Ser
 165 170 175

Phe His

<210> 122
 <211> 36
 <212> PRT
 <213> Homo sapiens

<400> 122
 Met Ser Phe Leu Gly Gly Phe Phe Gly Pro Ile Cys Glu Ile Asp Val
 1 5 10 15

Ala Leu Asn Asp Gly Glu Thr Arg Lys Met Ala Glu Met Lys Thr Glu
 20 25 30

Asp Gly Lys Val
 35

<210> 123

<211> 136

<212> PRT

<213> Homo sapiens

<400> 123

Met Ala Ser Pro Gln Leu Cys Arg Ala Leu Val Ser Ala Gln Trp Val
 1 5 10 15

Ala Glu Ala Leu Arg Ala Pro Arg Ala Gly Gln Pro Leu Gln Leu Leu
 20 25 30

Asp Ala Ser Trp Tyr Leu Pro Lys Leu Gly Arg Asp Ala Arg Arg Glu
 35 40 45

Phe Glu Glu Arg His Ile Pro Gly Ala Ala Phe Phe Asp Ile Asp Gln
 50 55 60

Cys Ser Asp Arg Thr Ser Pro Tyr Asp His Met Leu Pro Gly Ala Glu
 65 70 75 80

His Phe Ala Glu Tyr Ala Gly Arg Leu Gly Val Gly Ala Ala Thr His
 85 90 95

Val Val Ile Tyr Asp Ala Ser Asp Gln Gly Leu Tyr Ser Ala Pro Arg
 100 105 110

Val Trp Trp Met Phe Arg Ala Phe Gly His His Ala Val Ser Leu Leu
 115 120 125

Asp Gly Gly Leu Arg His Trp Leu
 130 135

<210> 124

<211> 133

<212> PRT

<213> Homo sapiens

<400> 124

Met Asn His Thr Val Gln Thr Phe Phe Ser Pro Val Asn Ser Gly Gln
 1 5 10 15

Pro Pro Asn Tyr Glu Met Leu Lys Glu Glu His Glu Val Ala Val Leu
 20 25 30

Gly Ala Pro His Asn Pro Ala Pro Pro Thr Ser Thr Val Ile His Ile
 35 40 45

Arg Ser Glu Thr Ser Val Pro Asp His Val Val Trp Ser Leu Phe Asn
 50 55 60

Thr Leu Phe Met Asn Pro Cys Cys Leu Gly Phe Ile Ala Phe Ala Tyr
 65 70 75 80

Ser Val Lys Ser Arg Asp Arg Lys Met Val Gly Asp Val Thr Gly Ala
 85 90 95

Gln Ala Tyr Ala Ser Thr Ala Lys Cys Leu Asn Ile Trp Ala Leu Ile
 100 105 110

Leu Gly Ile Leu Met Thr Ile Leu Leu Ile Val Ile Pro Val Leu Ile
 115 120 125

Phe Gln Ala Tyr Gly
 130

<210> 125
 <211> 195
 <212> PRT
 <213> Homo sapiens

<400> 125

Thr Thr Ala Thr Thr Ala Ser Thr Gly Ser Thr Ala Thr Pro Ser
 1 5 10 15

Ser Thr Pro Gly Thr Ala Pro Pro Pro Lys Val Leu Thr Ser Pro Ala
 20 25 30

Thr Thr Pro Met Ser Thr Met Ser Thr Ile His Thr Ser Ser Thr Pro
 35 40 45

Glu Thr Thr His Thr Ser Thr Val Leu Thr Thr Ala Thr Met Thr
 50 55 60

Arg Ala Thr Asn Ser Thr Ala Thr Pro Ser Ser Thr Leu Gly Thr Thr
 65 70 75 80

Arg Ile Leu Thr Glu Leu Thr Thr Ala Thr Thr Ala Ala Thr
 85 90 95

Gly Ser Thr Ala Thr Leu Ser Ser Thr Pro Gly Thr Thr Trp Ile Leu
 100 105 110

Thr Glu Pro Ser Thr Ile Ala Thr Val Met Val Pro Thr Gly Ser Thr
 115 120 125

Ala Thr Ala Ser Ser Thr Leu Gly Thr Ala His Thr Pro Lys Val Val
 130 135 140

Thr Thr Met Ala Thr Met Pro Thr Ala Thr Ala Ser Thr Val Pro Ser
 145 150 155 160

Ser Ser Thr Val Gly Thr Thr Arg Thr Pro Ala Val Leu Pro Ser Ser
 165 170 175

Leu Pro Thr Phe Ser Val Ser Thr Val Ser Ser Ser Val Leu Thr Thr
 180 185 190

Leu Arg Pro
 195

<210> 126

<211> 509

<212> DNA

<213> homo sapien

<400> 126

gaattcgcca cgagccaagt acccccctgag	aatctgcag cctgcacatctg	agtacaccgt	60
atccctcggt gcccataaaagg gcaaccaaga	gagccccaaa gccactggag	tcttaccac	120
actgcagcct gggagctcta ttccaccta caacaccgag	gtgactgaga	ccaccatgt	180
gatcacatgg acgcctgctc caagaattgg ttttaagctg	ggtgtacac	caagccagg	240
aggagaggca ccacgagaag tgacttcaga ctcaggaagc	atcggtgtgt	ccggcttgac	300
tccaggagta gaatacgtct acaccatcca agtctgaga	gatggacagg	aaagagatgc	360
gccaattgtt aacaaagtgg tgacaccatt gtctccacca	acaaaacttgc	atctggaggc	420
aaaccctgac actggagtgc tcacagtctc ctggagagga	gcaccacccc	agacattact	480
gggtatagaa ttaccacaac ccctacaaa			509

<210> 127

<211> 500

<212> DNA

<213> homo sapien

<400> 127

gaattcgcca cgagccactg atgtccgggg	agtcagccag gagcttgggg	aaggaaagcg	60
cggcccccggg gccgtcccg gagggctcga	tccgcacatcta cagcatgagg	ttctgccccgt	120
ttgctgagag gacgcgtcta gtcctgaagg	ccaagggaaat cagggcatgaa	gtcatccaata	180
tcaacctgaa aaataagccct	gagtggttct ttaagaaaaaa	tccctttgtt	240
ttctggaaaaa cagtcagggt	cagctgatct acgagtcgc	catcacctgt	300
atgaagcata cccagggaaag aagctgttgc	cggtatgaccc	ctatgagaaa	360
agatgatctt agagttgttt tctaagggtgc	catccttgg	aggaagctt	420
aaaataaaaga agactatgct ggcctaaaag	aagaatttcg	attagaagcc	480
aggaggttct gactaataag		accaagctag	500

<210> 128

<211> 500

<212> DNA

<213> homo sapien

<400> 128

agctttccctc tgctgccgct	cggtcacgct tgcgtccgaa	ggaggaaaca	60
tggagactgc agttcttat	ccctcacaca gctcttcac	atgcctgaa	120
tgaatgcaga agcttgcgg	ccaaaagatg tggaaattgt	tgccctttag	180
cttctcaata tggatcaa	cgaggtgg	aaaaatatga	240
ataccatgg	ttggccag	tggatgatgt	300
ctctttgcat	gccaagatgg	gctctgcac	360
gactgtggtt	cagaatctta	agatagagaa	
	tggagagaaa	gatattaact	
	taacccttcc	tatatttgc	

ttgggcggct ggaagttgga acagagacaa tcatcgacaa atcaaagtct gtgaagacta 420
 atttcatgca gctgttgaa gagtctggaa atacagatat agaaggaatc gacacaacta 480
 atgcatgcta tggaggcaca 500

<210> 129

<211> 497

<212> DNA

<213> homo sapien

<400> 129

gaattcggca cgagcagagg tctccagagc cttctcttc ctgtgcaaaa tggcaactct 60
 taaggaaaaa ctcattgcac cagttcgga agaaggaggca acagttccaa acaataagat 120
 cactgttagt ggtgttggac aagttggat ggcgtgtct atcagcattc tggaaagtc 180
 tctggctgtat gaacctgctc ttgtggatgt tttgaaagat aagcttaaag gagaatgtat 240
 gatctcgac catggggagct tatttcttca gacacctaaa attgtggcag ataaagatta 300
 ttctgtgacc gccaattcta agattgttagt ggtaactgca ggagtccgtc agcaagaagg 360
 ggagagtccg ctcaatctgg tgccagagaaa tgtaatgtc ttcaaattca ttattcttca 420
 gatcgtaag tacagtccgtt attgcattcat aatttgtgtt tccaaacccag tggacattct 480
 tacgtatgtt acctggaa 497

<210> 130

<211> 383

<212> DNA

<213> homo sapien

<400> 130

gaattcggca cgagggccgc ggctgccgac tgggtccccct gcccgtgtc ccaccatggc 60
 tccgcaccgc cccgcgcggc cgctgttttgc cgcgtgtcc ctggcgctgt ggcgcgtgtc 120
 gctggccgtc cgcgccggcca ctgcgtcgcc gggggcggtcc caggcggggg cgcggccagg 180
 gcggtgtccc gaggcgccgc ccaacagcat ggtgtggaa caccggagat tccctcaaggc 240
 agggaaaggag cctggcctgc agatctggcg tggagaaaa gttcgatctg gtggccgtg 300
 cccaccaacc ttatggaga cttcttcacg ggcgacgcct acgtcatctt gaagacagtg 360
 cagcttaaga acggaaaatc ttg 383

<210> 131

<211> 509

<212> DNA

<213> homo sapien

<400> 131

gaattcggca cgagagtca gccgcatttc ttttgcgtcg ccagccgagc cacatcgctc 60
 agacaccatg gggaaaggta aggtcgaggat caacggattt ggtcgatattt ggcgcctgg 120
 caccagggtc gcttttaact ctggtaaagt ggatattttt gccatcaatg acccccttcat 180
 tgacacctaac tacatggttt acatgttcca atatgattcc acccatggca aattccatgg 240
 caccgtcaag gctgagaacg ggaagcttgcatcaatggaa aatcccatca ccatcttcca 300
 ggagcgagat ccctccaaaa tcaagtgggg cgatgtggc gctgagatcg tcgtggagtc 360
 cactggccgtt cttcaccacc atggagaagg ctggggctca tttgcagggg ggagccaaaa 420
 gggtcatcat ctctggccccc tctgtgtacg ccccatgtt cgtcatgggt gtgaaccatg 480
 agaagtatga caacagcctc aagatcatc 509

<210> 132

<211> 357

<212> DNA

<213> homo sapien

<400> 132

gaattcggca cgagtaagaa gaagcccta gaccacagct ccacaccatg gactggacct	60
ggaggatct cttcttggtg gcagcagcaa caggtgcaca ctcccaggtg caactggtgc	120
aatctgggtc ttagttgaag aagcctgggg cctcaagtcaa ggtttctgc aaggcttctg	180
gacacatctt cagtatctat ggtttgaatt gggtgcaca ggccccctggg caaggccttg	240
agtggatggg atggatcaa gtcgacactg cgaacccaac gtatgccag ggcttcacag	300
gacgatttgt cttctccctg gacacctctg tcagcacggc atatctgcag atcagca	357

<210> 133

<211> 468

<212> DNA

<213> homo sapien

<400> 133

gaattcggca cgaggcgccc cgaaccgtcc tcctgctgct ctccggggcc ctggccctga	60
ccgagacctg ggccggctcc cactccatga ggtatttoga caccgccatg tccggcccg	120
gccgcggggg gccccgccttc atctcagtgg gctacgtgg cagacacgcag ttctgtgggt	180
tgcacagcga cgccgcgagt ccgagagagg agccgcgggc gccgtggata gagcaggagg	240
ggccggagta ttgggaccgg aacacacaga tcttcagac caacacacag actgaccgag	300
agagcctgcg gaacctgcgc ggctactaca accagagcga ggccgggtct cacaccctcc	360
agagcatgtt cggctgcgac gtggggccgg acgggcgcct cttccgcggg cataaccagt	420
acgcctacga cggcaaggat tacatgcgcc tgaacgagga cctgegt	468

<210> 134

<211> 214

<212> DNA

<213> homo sapien

<400> 134

gaattcggca cgagctgcgt cctgctgagc tctgttctct ccagcacccctc ccaacccact	60
agtgcctggt tctctgtctc caccaggAAC aagccaccat gtctcgccag tcaagtgtgt	120
ccttccggag cggggcaggt ctagcttca gcaccgcctc tgccatcacc cctgtgtct	180
ccgcaccag cttcacctcc gtgtccgggt ccgg	214

<210> 135

<211> 355

<212> DNA

<213> homo sapien

<400> 135

gaattcggca cgaggtaaac aggacccgtc gccatgggcc gtgtgatccg tggacagagg	60
aaggggcgccg ggtctgtttt cccgcgcac gtgaagcacc gtaaaggcgc tgccgcctg	120
cgcgcgtgg atttcgtga gggcacggc tacatcaagg gcatgtcaaa ggacatcatc	180
cacgacccgg gccgcggcgc gcccctcgcc aagggtgtct tccggatcc gtatcggtt	240
aagaagcggg cggagctgtt cattgcgcg gaggcattc acacgggcca gtttgttat	300
tgcggcaaga aggcccagct caacattggc aatgtgtcc ctgtgggcac catgc	355

<210> 136

<211> 242

<212> DNA

<213> homo sapien

<400> 136

gaattcggca cgagccagct cctaaccgcg agtgatccgc cagcctccgc ctccccaggt	60
gcccggattt cagacggagt ctcccttact cagtgtcaa tgggtccag gctggagtgc	120

agtggtgtga tctcgctcg ctacaacatc cacctcccag cagcctgcct tggcctccca	180
aagtgccag attcgagtc tctgcccggc cgccaccccgt gtctggaaag tgaggatgtc	240
gt	242
<210> 137	
<211> 424	
<212> DNA	
<213> homo sapien	
<400> 137	
gaattcggca cgagccccaga tcccggaggc cgacagcgcc cggcccgat ccccacgcct	60
gccaggagca agcccgagac cagccggccg ggcgcactccg actccgagca gtctctgtcc	120
ttcgaccgcg gccccggcc ctttccggga cccctgcccc gcggggcagcg ctgcacaccc	180
gcccggccatg gagaccccggt cccagcggccg cgccacccgc agcggggcgc aggccagtc	240
cactccgctg tcgccccaccc gcatcacccg gctgcaggag aaggaggacc tgcaggagct	300
caatgatcgc ttggcggtct acatcgaccc gttgcgtcg ctggaaacgg agaacgcagg	360
gctgcgcctt cgcatcaccgg agtctgaaga ggtggtcatgc cgcgagggtgt ccggcatcaa	420
ggcc	424
<210> 138	
<211> 448	
<212> DNA	
<213> homo sapien	
<400> 138	
gaattcggca cgagcctgtg ttccaggaggc cgaatcagaa atgtcatect caggcacgc	60
agacttacct gtcctactca ccgatttgaa gattcaaat actaagatct tcataaaca	120
tgaatggcat gattcagtga ttggcaagaa atttcctgtc tttaaatccctg caactgagga	180
ggagctctgc caggtagaag aaggagataa ggaggatgtt gacaaggcag tgaaggccgc	240
aagacaggct tttcagattg gatccccgtg gcgtactatg gatgttccg agagggggcgc	300
actattatac aagttggctg atttaatcga aagagatctg ctgctgtcg ccgacaatgg	360
agtcaatgaa ttggggaaaa ctctattcca atgcataatct gaatgattta gcaggctgca	420
tcaaaaacatt ggcgtactgt gcagggttg	448
<210> 139	
<211> 510	
<212> DNA	
<213> homo sapien	
<400> 139	
gaattcggca cgagggtccg tgcaagtcac ggagaagcga atggacaaag tcggcaagta	60
ccccaggag ctgcgcaagt gtcgcaggaa cggcatgcgg gagaacccca tgagggtctc	120
gtgccaggc cggaccggc ttcatctccct ggcgaggcgt gcaagaagggt ttccctggac	180
tgtgcact acatcacaga gtcgcggcgg cagcacgcgc gggccagcca cctggctgc	240
caggagtaac ctggatgagg acatcattgc agaagagaac atcgtttccc gaagtgagtt	300
cccagagac ttggctgtgg acgttgagga ttgtggaaagag ccacggaaaa atggaatctc	360
tacgaagctc atgaatatat ttttggaaaga ctccatcacc acgtgggaga ttctggctgt	420
gagcatgtcg gacaagaaag ggtatctgtgt ggcagacccc ttgcagggtca cagtaatgca	480
ggacttcttc atcgacccgtc ggctacccta	510
<210> 140	
<211> 360	
<212> DNA	
<213> homo sapien	

<400> 140
 gaattcggca cgagcggtaa ctacccggc tgcgcacagc tcggcgctcc ttcccgtcc 60
 ctcacacacc ggcctcagcc cgcacccggca gtagaagatg gtaaaagaaa caactacta 120
 cgatgtttt ggggtcaaac ccaatgctac tcagaagaa ttaaaaagg cttataggaa 180
 actggcttg aagtaccatc ctgataagaa cccaaatgaa ggagagaagt ttaaacagat 240
 ttctcaagct tacgaagttc tctctgtatgc aaagaaaagg gaattatatg acaaaggagg 300
 agaacaggca attaaagagg gtggagcagg tggcggttt ggctccccca tggacatctt 360

<210> 141
<211> 483
<212> DNA
<213> homo sapien

<400> 141
 gaattcggca cgagagcaga ggctgatctt tgctggaaaa cagctggaaag atgggctgca 60
 ccctgtctga ctacaacatc cagaaaagagt ccacccgtca cctgggtgtc cgtctcagag 120
 gtgggatgca aatcttcgtg aagacactca ctggcaagac catcaccctt gaggtggagc 180
 ccagtgcac acatcggaaac gtcaaagcaa agatccagga caaggaaggc attcctcctg 240
 accagcagag gttgatctt gccggaaagc agctggaaaga tgggcgcacc ctgtctgact 300
 acaacatcca gaaagagtct accctgcacc tggtgcctcg tctcagaggt gggatgcaga 360
 tcttcgtgaa gaccctgact ggttaagacca tcaccctcgaa ggtggagccc agtgcacacca 420
 tcgagaatgt caaggcaaag atccaagata aggaaggcat tcctcctgtat cagcagaggt 480
 tga 483

<210> 142
<211> 500
<212> DNA
<213> homo sapien

<400> 142
 gaattcggca cgaggcggcg acgaccggcg ggagcgtgtg cagcggcgcc ggcggaaagt 60
 gccggcgagc ccgggtccccg ccggcacccat gcttccctt tcactgtca agacggctca 120
 gaatcaccctt atgttggtgg agctggaaaa tggggagacg tacaatggac acctgggtgag 180
 ctgcgacaaac tggatgaaca ttaacctgcg agaagtcatc tgacgtcca gggacgggg 240
 caagttctgg cggatgccc agtgctacat ccgcggcage accatcaagt acctgcgcac 300
 ccccgacgag atcatcgaca tggtcaagga ggaggtggtg gccaaggggcc gggccggcg 360
 aggccctgcag cagcagaagc agcagaaaagg ccgcggcatg ggcggcgctg gccgaggtgt 420
 gtttggtggc cggggccgag gtggatccc gggcacaggc agaagccagc cagagaagaa 480
 gcctggcaga caggcgca 500

<210> 143
<211> 400
<212> DNA
<213> homo sapien

<400> 143
 gaattcggca cgagctcgga tgcgtcgacc cagcagggaaac tggctcaatt 60
 ctcagaagaa agcgatcgcc cccgaggcag gaagccggc tccgggtgcag ggcgcggcgc 120
 ctgcgggctg cttcgccca gggtcgaccc gagggccagc gcaagcagcg gcaacaggag 180
 cgccaggagg acatgaggct ctgcctgcag tcagaacatt ggaatattca gacttcagac 240
 cagcatcaca gattataacc ctccgtaaat catctgcac ccagctccca tcaaaaagcca 300
 gcctgaagga cccatggaca cgtgactccaa gtgttctcaa caacatctt gatcaagttg 360
 gtttgcacaa catttgcac tacttggac aaagcaagaa 400

<210> 144

<211> 243
 <212> DNA
 <213> homo sapien

<400> 144

gaattcggca cgagccagct cctaaccgcg agtgatccgc cagcctccgc ctccccaggt	60
gcccggattt gagacggagt ctcccttact cagtgtctaa tggtgcccgag gctggagtgc	120
agtgggtgtga tctccggctcg ctacaacatc caccctcccgag cagcctgcct tggcctccca	180
aagtggccgag attgcagccct ctgccccggcc gtcaccccggt ctgggaagtg aggagcgttt	240
ctgt	243

<210> 145

<211> 450

<212> DNA

<213> homo sapien

<400> 145

gaattcggca cgaggacacgc aggaccgtgg aggccgcggc aggggtggca gtgggtggcg	60
cgccggcggc ggcgggtggg gttacaaccg cagcagtgggt ggctatgaac ccagaggctcg	120
tggaggtggc cgtggaggca gaggtggcat gggcgaagt gaccgtggtg gcttcaataaa	180
atttgggtggc cctcgggacc aaggatcacg tcatgactcc gaacaggata attcagacaa	240
caacaccatc tttgtcaag gcctgggtga gaatgttaca attgagtctg tggctgatta	300
tttcaaggcag attgttatta ttaagacaaa caaaaaacg ggacagccca tgattaat	360
gtacacagac agggaaaactg gcaagctgaa gggagaggca acggctcttt ttgatgaccc	420
accttcagct aaaggcagcc attgactgg	450

<210> 146

<211> 451

<212> DNA

<213> homo sapien

<400> 146

gaattcggca cgagccatcg agtccctgcc ttctgacttg cagagaaatg tctcgctgat	60
gcgggagatc gacgcgaaat accaagagat cctgaaggag cttagacgagt gctacgagcg	120
cttcagtcgc gagacagacg gggcgcaaaa gcccggatg ctgcactgtg tgcaagcg	180
gctgatccgc accaggagct gggcgacgag aagatccaga tcgtgagcca gatgtggag	240
ctgggtggaga accgcacgcg gcagggtggac agccacgtgg agctgttca ggcgcagcag	300
gagctggcgc acacagcggg caacagcgc aaggctggcg cggcagggcc caaaggcag	360
gcggcagcgc aggctgacaa gcccaacagc aaggctcac ggcggcagcg caacaacgag	420
aaccgtgaga acgcgtccag caaccacgac	451

<210> 147

<211> 400

<212> DNA

<213> homo sapien

<400> 147

gaattcggca cgagctcgga tgcgtggcagg cgtcccaacc cagcaggaac tggctcaatt	60
cttcagaagaa agcgatcgcc cccgaggcgag gaaggccggc tccgggtgcag ggcgcgcgc	120
ctgcgggctg ctgcgggcca gggtcgaccgc gaggccagc gcaaggcagcg gcaacaggag	180
cggccaggagg acatgaggct ctgcctgcag tcagcaactt ggaatattca gacttcagac	240
cagcatcaca gattataacc ctccgtaaat catctgcaccc ccaagctccca tcaaagcca	300
gcctgaagga cccatggaca cgtgactcca gtgttctcaa caacatctt gatcaagttg	360
gtttgcacaa catttgcaccc tacttgggac aaagcaagaa	400

<210> 148

<211> 503

<212> DNA

<213> Homo sapien

<400> 148

aaaagaattc	ggcacgagcg	gcgcgcgtca	tccccccttc	ccagcagatt	cccaactggaa	60
attcgttta	tgaatcttat	tacaaggcagg	tcgatccggc	atacacaggg	agggtggggg	120
cgagtgaagc	tgcgttttt	ctaaagaagt	ctggccttc	ggacattatc	cttggaaaga	180
tatgggactt	ggccgatcca	gaaggtaaag	ggttcttgg	caaacagggt	ttctatgttg	240
cactgagact	ggtggcctgt	gcacagagt	gccatgaagt	taccttgagc	aatctgaatt	300
tgagcatgcc	accgcctaaa	ttcacgaca	ccagcagccc	tctgatggc	acaccgccc	360
ctgcagaggc	ccactgggct	gtgagggtgg	aagaaaaggc	caaattttagt	gggatttttg	420
aaaggcttctt	gccccatcaat	ggtttgtct	ctggagacaa	agtcaageca	gtccctcatga	480
actcaaagct	gcctctttagt	gtc				503

<210> 149

<211> 1061

<212> DNA

<213> homo sapien

<400> 149

gaattcggca	cgaggccttt	tccagcaacc	ccaagggtcca	ggtgtggagggc	atcgaaggggg	60
gagccctgca	gaagctgtcg	gtcatcttgg	ccacggagca	gcccgtcaact	gcaaaagaaga	120
agggtctgtt	tgcactgtgc	tccctgtctgc	gccacttccc	ctatgcccag	cggcagttcc	180
tgaagctcgg	ggggctgcag	gtcctgagga	cccttgggtca	ggagaagggc	acggagggtgc	240
tcgcccgtcgc	cgtgttcaca	ctgctctac	accttggtcac	ggagaagatg	ttcggcggagg	300
aggaggctga	gctgaccagg	gagatgtccc	cagagaagct	gcagcagttat	cgccaggtac	360
accttcttggc	aggctgtgg	gaacagggtct	ggtgcgagat	cacggcccac	tccctggcgc	420
tgcggcggaca	tgtatcccgt	gagaagggtgc	tgcagacact	ggggcgtctc	ctgaccacct	480
gcccgggaccg	ctaccgtcag	gaccccccagc	tcggcaggac	actggccagc	ctgcaggctg	540
agtaccaggt	gctggccage	ctggagctgc	aggatggtga	ggacgagggc	tacttccagg	600
agctgttggg	ctctgtcaac	agcttgcgt	aggagctgag	atgaggcccc	acaccagtac	660
tggacttggg	tgcgcgttagt	gaggctgagg	ggtgcctggcg	tgggtgggtt	tctcaggcag	720
gaggacatct	tggcagtgt	ggcttggcca	ttaaatggaa	acctgaaggc	catccctttt	780
ctgctgtgtg	tctgtgtaga	ctggggcacag	ccctgtggcc	gggggggtcag	gtgagtggtt	840
gggtgtatggg	ctctgtgtac	gtgcagggtct	cagcccagg	catccaggaa	caggctccag	900
ggcaggaaacc	tggggccagg	agttgcaagt	ctctgtttct	taccaaggcag	cagcttgcgt	960
ccttggaaag	tgcctaatt	gctctgatgt	tgtttctca	tctgtcagg	gtgcattaa	1020
aggagaaaaaa	tcacgtaaaa	aaaaaaaaaa	aaaaactcga	g		1061

<210> 150

<211> 781

<212> DNA

<213> homo sapien

<400> 150

gaattcggca	cgagaaatgg	ccgcagggtt	cgaaggcggca	gccgaagtgg	cgccgacaga	60
acccaaaatg	gaggaagaga	gcggcgcgcc	ctgcgtgcgg	agcggcaacg	gagctccggg	120
cccgaagggt	gaagaaacgac	ctactcagaa	tgagaagagg	aaggagaaaa	acataaaaaag	180
aggaggcaat	cgcttgcgt	catattccaa	cccaactaaa	agatacagag	ccttcattac	240
aaatataacct	tttgatgtga	aatggcgttc	acttaaagac	ctgggttaaag	aaaaagttgg	300
tgaggttaaca	tacgtggagc	tcttaatgg	cgctgaagga	aagtcaaggg	gatgtgtgt	360
tgttgaattc	aagatggagg	agagcatgaa	aaaagctgt	gaagttctaa	acaagcatag	420
tctgagtgg	aggccactga	aagtcaagga	agatcctgt	ggtgaacatg	caaggagac	480

aatgcaaaag gctggaaagac ttggaagcac agtatttgta gcaaacttgg attataaaagt
 tggctggaaag aaactgaagg aagtatttag tatggctgggt gtgggtgtcc gagcagacat
 tctggaaat aaagatggga aaagtcgtgg aataggcatt gtgacttttgc aacagtcacat
 tgaagctgtg caagcaatat ctatgtttaa tgccagttg ctgtttgata gaccgatgca
 cgtcaagatg gatgagaggg ctttacaaa gggagacttt tttcttcctg aacgccacag
 C 540
 <210> 151 600
 <211> 3275 660
 <212> DNA 720
 <213> Homo sapien 780
 <400> 151 781
 cttaaatggta tcctgcataa ggaggggagca gacaccggag aaagaaaaac aagttgtgct
 gtttggggaa gcaaggtaa cctgcactcc agcctgtgg gatgaaccta ggactgtgat 60
 tctgctatcc agtatgtgg ctgaccacag gctcaatctg gaggattata aggatcgct 120
 gaaaatggta gagcatctta atccagacca gttggaaatgt gttagagaaat atgaagaatg 180
 gctacataat ttggatattt ccaaggagct tcaaaaaacc ttttctgggt tgaggctaga 240
 tctactaaa ggcggaaaaga aggcccagag aaggagcac atgctaaaac ttgaggctga 300
 gaagaaaaag cttcgaacta tacttcaagt tcagtagtta ttgcagaact tgacacagga 360
 gcacgtacaa aaagaatcca aagggggtt gaatgggtca gtgtatggc cttcaaaaaga 420
 acttgactac ctcattaaat tttcaaaact gacctgcct gaaagaaaatg aaagtctgag 480
 acaaacacact gaaggatcta ctgtctaaat tgctgaactc aggctattt gaaagtatcc 540
 cagttcccaa aatgccaag gaaaaggaaag taccacttgg ggaagaaaatg ctaatacaat 600
 cagagaaaaa aacacaatta tcgaagactg aatctgtcaa agatcagag tctctaatgg 660
 aatttgccta gccagagata caaccacaaag agtttcttaa cagacgctat atgacagaag 720
 tagattattc aaacaaacaa ggcaagagc aacccctggg agcagattat gctagaaaaac 780
 caaatctccc aaaacgttgg gatatgttta ctgaaaccaga tggtcaagag aagaaacagg 840
 agtcttttaa gtcctggag gtttctggta agcaccagga gttatccaag cctgcagttt 900
 ccttagaaca gaggaaacaa gacacactcaa aactcaggc tactctgcgg gaagagcaga 960
 agaaggcaga gatctccaaa tccaaagccat ctccatggca gtggaaagcaa gatacaccta 1020
 aatccaaagc agggatgtt caagaggaaac aaaagaaaaca ggagacacca aagctgtggc 1080
 cagttcagct gcagaaaagaa caagatccaa agaagcaac tccaaatgtt tggacacctt 1140
 ccatgcagag cgaacagaac accaccaagt catggaccac tcccatgtgt gaagaacagg 1200
 attcaaaaca gccagagact caaaatctt gggaaaacaa ttgtttagt caaaaacact 1260
 cttaacatc acagtcacag atttctccaa agtccctggg agtagctaca gcaaggctca 1320
 taccatgtt ccagctgtt cccaggaatgt tgaacacaga accccaaagat gtgcctaagc 1380
 ctgtgcataa gcctgttagt tcttcctcta cccttccgaa ggatccagta ttgaggaaag 1440
 aaaaactgca ggatctgtatg actcagattc aaggaaacttgg taactttatg caagagtctg 1500
 ttcttgactt tgacaaacct tcaagtgcac ttccaaacgtc acaaccgcct tcagtcactc 1560
 caggttagccc cgtacatctt aaagaacaaa atctgtccag tcaaaatgtat tttcttcag 1620
 agccgttaca ggtatccaat gtaatgcac ctctgcctt acgaaaagaa caagaataaa 1680
 aagaatcccc ttatccaccc ggctacatc aaagtttac cacagcaagt acacaaacac 1740
 caccggatgt ccaactgcca tctatacatg tagaacaacac tgccttccatctt caagagactg 1800
 cagcaaattt tcatctgtat ggaactattt aagtaagcaa tggtagccctt gccttttacc 1860
 cagcacagac gaatgtgttt cccagacccat ctcagccatt tgcataatgc cggggatctg 1920
 ttagaggatg tactctgtgtt ggagatattaa taaccaattt cttatcggtcc cctgggtgg 1980
 ataaaagggtt tgataactt atagggactcc cttaatcc caatggaaat tatagccagc 2040
 tgcgttccaa agcttagagat tattctggag caccttattt cccaaagggtt aatttccagc 2100
 agtgttataa gcgaggaggg acatctgtgtt gtccacgac aaattcgaga gcagggtgg 2160
 gtgattctt ctaggtgagc agcccgaaa gagacaacga aaccttttac agtgggtgact 2220
 ctggacaagg agactccgtt agcatgaccc ctgtggatgtt gcctgcataa aatccagcag 2280
 ccaccatact gcaatgcac gcctaccctt tgcctcagca gatgcgagtt gccttcctcag 2340
 cagccagaaac ctctaaatctg gcccctggaa ctttagacca acctattgtt tttgatctt 2400
 ttctgaacaa ctttaggagaa acttttgcac ttccatgg tagatttat tgcccagtga 2460
 2520

atggcactta	cgttttcatt	tttcacatgc	taaagctggc	agtgaatgtg	ccactgtatg	2580
tcaacctcat	gaagaatgaa	gaggcttgg	tatcagccta	tgccaatgat	ggtgctccag	2640
accatgaaaac	tgctagcaat	catgcaattc	ttcagcttt	ccagggagac	cagatatggt	2700
tacgtctgca	caggggagca	atttatgaa	gtagctggaa	atattctacg	tttcaggct	2760
atcttcttta	tcaagattga	aagtcagtac	agtattgaca	ataaaaggat	ggtgttctaa	2820
tttagtgggat	tgaaggaaaa	gtagtccttg	ccctcatgac	tgattggttt	aggaaaaatgt	2880
ttttgttctt	agagggagga	ggtccttact	tttttggttt	ccttcctgag	gtgaaaaatc	2940
aagctgaatg	acaatttagca	ctaatctggc	actttataaa	ttgtgatgta	gcctcgctag	3000
tcaagctgtg	aatgtatatt	gtttgcaccc	aatccttaac	tgtattaacg	ttcagcttac	3060
taaactgact	gcctcaagtc	caggcaagtt	acaatgcctt	gttgcgcctc	aataaaaaaag	3120
ttacatgcaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	3180
aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	3240
aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaac	tcgag			3275

<210> 152

<211> 2179

<212> DNA

<213> homo sapien

<400> 152

gaattcggca	ccaggcacta	ttaaatgtga	ggcagcctcc	atctactaca	acatttgc	60
tgaatcaaat	aaatcatctt	ccacccttgg	gatctacaat	tgtaatgact	aaaacaccac	120
ctgttaacaaac	caacaggcaa	accatcaatt	taactaagtt	tatccagact	actgcaagca	180
cacgcccgtc	agtctcgca	ccaacagttac	gaaatgccat	gacctctgca	ccttcaaaag	240
accaagttca	gcttaaaagat	ctactgaaaa	ataatgtct	taatgaactg	atgaaaactaa	300
agccacctgc	taatattgtc	cagccagtag	caacagcagc	tactgatgta	agcaatggta	360
cagtaaaagaa	agagtcttct	aataaagaag	gagctagaat	gtggataaaac	gacatgaaga	420
tgaggagttt	ttcccccaacc	atgaaggttc	ctgttgtaaa	agaagatgat	gaaccagagg	480
aagaagatga	agaagaaaatg	ggtcatgcag	aaaccttatgc	agaatacatg	ccaaataaaat	540
taaaaattgg	cctacgtcat	ccagatgctg	tagtggaaac	cagctcttta	ccagtggtta	600
ctccctctga	tgttgggtac	aaaacatcca	tttctgagga	aaccattgtat	aatggctggt	660
tatcagcatt	gcagcttgc	gcaattacat	atgcagccca	gcaacatgaa	actttcttac	720
ctaatggaga	tcgtgtgttgc	ttttttatag	gtgtgtgtgc	cggtgttagga	aaaggaagga	780
cgatagcagg	aatcatctat	gaaaattatt	tgttgatgt	aaaacgagca	ttgtggttta	840
gtgtttcaaa	tgacttaaaag	tatgtgtct	aaagagattt	aaggatatt	ggacaaaaaa	900
acattttgg	tcatttcgtt	aataagtta	aatacggaaa	aatttcttcc	aaacataatg	960
ggagtgtgaa	aaagggtgtt	atttttgtt	cttactcttc	acttatttgg	gaaagccagt	1020
ctggcggcaa	gtataaaaact	aggtaaaac	aacttctgc	ttggtgccgt	gatgacttcg	1080
atggagtgtat	agtgtttgt	gagtgtcata	aagccaaaaa	cttatgtcc	gttggtttctt	1140
caaagccaaac	caagacaggc	ttagcagttt	tagagcttca	gaacaaattt	ccaaaagcca	1200
gagttgttta	tgcttagtgc	actggtgctt	ctgaaccacg	caacatggcc	tatataacc	1260
gtcttggcat	atgggggtgag	ggtactccat	ttagagaatt	cagtgatttt	attcaagcag	1320
tagaaacggag	aggagttgtt	gccatggaaa	tagttgtat	ggatatgaag	cttagaggaa	1380
tgtacattgc	tgcacaactg	agctttactg	gagtgcaccc	aaaaatttgg	gaagttcttc	1440
tttctcagag	ctacgttaaa	atgtataaca	aagctgtcaa	gctgtgggtc	attgccagag	1500
agcggtttca	gcaagctgc	gatctgatgt	atgtgagca	acgaatgaag	aagtccatgt	1560
ggggtcagtt	ctggctgtct	caccagaggt	tcttcaaata	tttatgtata	gcatccaaag	1620
ttaaaaagggt	tgtgcaacta	gctcgagagg	aaatcaagaa	tggaaaatgt	gttgtatgt	1680
gtctgcagtc	tacaggagaa	gtctggacat	tagaaatctt	ggaagagggc	gggggagaat	1740
tgaatgattt	tgttcaact	gccaaagggt	tgttgctgtc	actcatttgc	aaacattttc	1800
ctgtccaga	caggaaaaaa	ttttatagtt	tacttaggaat	cgatttgcaca	gctccaagta	1860
acaacatgtt	gccaagagat	agtcccttgc	aagaaaataa	aataaaagaag	cggaaagggtg	1920
aagaaataac	tcgagaagcc	aaaaaagcac	gaaaagttagg	tggccttact	ggttagcagtt	1980
ctgacgacag	tggaaagtgaa	tctgtatgcct	ctgataatga	agaaaagtgc	tatgagagct	2040
ctaaaaacat	gagttctgga	gatgtatgc	atttcaaccc	attttttagat	gagtctaatg	2100

aggatgatga	aatatgtcccc	tggtaatta	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	2160
aaaaaaaaaa	aaaactcgag					2179
<210>	153					
<211>	2109					
<212>	DNA					
<213>	Homo sapien					
<400>	153					
cagagagccc	caaggcatcg	ggagaaggcg	gcggagaatg	gggccttggg	gtcccccggag	60
agagaagaga	aagtgtcg	gaatggggag	ctgacacccc	caaggaggga	ggagaaagcg	120
ctggagaatg	gggagctg	gtccccagag	gccggggaga	aggtgtcggt	aatgggggc	180
ctgacacccc	caaagagcg	ggacaagggt	ttagaata	gggccttgg	attccccagg	240
aacacggaga	gcccaccaga	gactggcct	tggagagccc	caggcccctg	ggagaagacg	300
cccgagagtt	ggggttcage	ccccacatc	ggggagccag	ccccagagac	ctctctggag	360
agagccccctg	cacccagcgc	agtgtctcc	ttccggaaacg	gccccctggc	agccccctggc	420
cccccttggcc	cagcccccaa	aaacggggacg	ctggaaacccg	ggaccggagag	gagagcccc	480
gagactgggg	gggcggccg	agccccaggg	gctggagggc	tggacctcg	gagtggggc	540
cgagccccag	ttggcacgg	gacggcccc	ggccgcggcc	ccggaaacg	cgtggacgca	600
aaggccggat	gggttagacaa	cacggggccg	cagccacccg	cgccacccgt	gccaccgc	660
ccggaggcac	acccgaggag	gctggagcca	gcgcacccga	gagccaggcc	ggaggtggcc	720
cccgagggag	agccccgggc	cccacacgc	agggccggcg	gagacacgc	actcagcg	780
gacggggacc	cccccaagcc	cgagggaaag	ggccccggaga	tgccacgact	attcttggac	840
ttgggacccc	ctcaggggaa	cacggggccg	atcaaagcca	ggctctcccg	gtctctcg	900
gcgctgcgc	cgctcacgc	cacgcattc	ccggggccgg	gccccggcg	gccccctgtgg	960
gagggcgcgg	acgccccggc	ggctggcg	gaggccggcg	ggcggggagc	gcccggggcc	1020
gcggaggagg	acggggagg	cgaggacg	gacggaggagg	aggacgagga	ggcggggccg	1080
ccggggcgcgg	cgggggggcc	gccccggccc	ggggggccgc	gagcagcccc	gtgccccgtc	1140
gtggtgagca	gcccgcacgc	ggacgcggcc	cgccccgtc	gggggtctgt	caagtctccg	1200
cgccccggcc	acgagccaga	ggacacgc	tggagaggg	agcacaagat	gtctcccttc	1260
cacggggacg	tgaccgtcta	ccttcgtac	caggagacgc	caaccaacga	gtgagcg	1320
caggcccccc	ccgaggggg	cacggacccg	tcaacgc	cagccccccc	gacacccccc	1380
cacccgcaca	ccccccggaga	tggtttcc	ageaacgaca	gcggcttgg	aggcagttt	1440
gagtggggcg	aggatttcc	cctccccc	cctccaggcc	ccccgtgt	tttctcccg	1500
tttctccgtct	cgctcg	ggagaccccg	ggccaccccg	ccccggcccc	cgacgcccgg	1560
ccccgcaggcc	ccgtggagaa	ttgatcccc	gaagacccga	ccccgtgc	ccctcagaag	1620
aggggtttag	aatggaaatcc	tctgtggat	acgggcac	tgccacccacc	gcagacgc	1680
cctctgggg	ggccccccg	gctggccct	ccccctcccc	ctcccttacc	atgtgc	1740
cgggaggccc	cgggcccccc	ccccccagc	ccccagatg	gtccccctga	ccccctgac	1800
ccccctcgag	ccaaatgagg	caggatccc	ccccccctc	catagagac	cgcccttctc	1860
ggaactgaac	tgaactttt	tggcctg	gccccctcg	acagcg	tccttc	1920
ccccactctg	gcccaagaca	ggggccg	gttcgggg	ccggacccc	ccat	1980
tctccctt	cctccccc	ccccggccct	ggagggcc	ctggttca	ccctcg	2040
gcattttcac	attat	aaaa	aaagacaaaa	acaactttt	ggagaaaaaa	2100
aaactcgag						2109
<210>	154					
<211>	1411					
<212>	DNA					
<213>	homo sapien					
<400>	154					
gaattcg	ccaggggaga	tgaggaagt	cgatgttcc	agcatgg	ctaccctt	60
ccagccagcc	atgttaga	cgatatactc	agatccacat	taccg	ccccccaa	120
cccaagac	gtacaaata	aggatgtata	caaagtatt	ccagaatcc	agaaggc	180

gggcagtgg	gcagtattt	agaggaacgg	accacatgt	agcagtagtg	gggtgctccc	240
tttgggactc	cagcctgcgc	ctggactt	caagtcacta	tcctctcagg	tgtggcaacc	300
aagtccgtac	ccttggcatc	ctggagaa	atcctgtaa	ctcagtaett	gtcgacagca	360
gttggaaattg	atccgtttac	agatggagca	aatgcagett	cagaacggag	ccatgtgtca	420
ccatccgtct	gttttcgtc	cattactg	caccctagag	ccagcacagt	ggctcagcat	480
cctgaacagt	aacgacatc	tcctgaagg	gaaggagctc	ctcattgaca	agcaaaggaa	540
gcatatctt	cagetggagc	agaaaagtgc	agagagtga	ctgcaagttc	acagtgcct	600
tttggggcgc	cctgccccct	ttggggatgt	ctgcttattg	aggctacagg	agttgcagcg	660
agagaacact	ttcttaeggg	cacagttgc	acagaagaca	gaagccctga	gcaaggagaa	720
gatggagctt	gaaaagaaac	tctctgcate	tgaagttga	attcagctca	ttagggagtc	780
tctaaaagt	acactacaga	gcattcga	ggaggggaag	aaacaggagg	aaagggtcaa	840
aggtegtgtat	aaacatatca	ataatttga	aaagaaaatgt	cagaaggaat	cagacagaa	900
ccgggagaag	cagcagcgt	ttgaaacctt	ggagcgctat	ctagctgacc	tgcccacccct	960
agaagaccat	cagaacaga	cgagcacgt	taaggacgct	gaattaaaga	acacagaact	1020
gcaagagaga	gtggctgagc	ttggagactt	gctggaggac	acccaggcaa	cctgcagaga	1080
gaaggaggtt	cagctggaaa	gtctgagaca	aagagaagca	gacctctct	ctgcttagaca	1140
tagttaatgc	cctgtgtact	ttggggaaagg	agggagttcg	gttctggc	tctgttaact	1200
cttgcgtgtt	caacagtgtt	catttcaagt	tcccttcttc	taagagctt	gtgttctttg	1260
aattgaaatg	cacttattgc	cggtgtgtt	ggcgcacacc	ttaatccca	gcacttggga	1320
gtcagaggca	ggctaattt	tgagtttcag	gacagccagg	gctatacaga	gaaaccctgt	1380
ctcaaacaaa	aaaaaaaaa	aaaaactcga	g			1411

<210> 155

<211> 678

<212> DNA

<213> homo sapien

<400> 155

ctggagtgaa	gggagctagt	gttaaaggga	gctggggag	gggtggcg	aggggttaagg	60
ggcaggggac	accctttaga	cgagagcgg	gctccgaggt	cctggctggc	cctcggtgcg	120
cccgccccct	tgttggcccc	acaatccctg	gcaatgagag	gccagggtt	attggacaga	180
gtcagtgtt	gggttcaagag	gttcagcaat	caatcaatcc	tccgaatcca	gagattttaga	240
cccgatcg	cgttatttaga	ctggaggggg	gtcaataggt	tcagtgttt	agatgccaag	300
ggaiacctgc	ttttgattt	gggttcaaca	tacaggttc	aggtacctgc	aggaatttgc	360
ccccctaggc	acagggggt	gttttacca	ttttcggagac	cagatctgg	ctgggagccc	420
cgaggcattc	ttegtgtca	agctgtatgt	ctgctccgac	ttcccccttga	gtgctatgtt	480
ggaagccac	cgacgcccgc	gtcacccctt	tttacttcc	gcaactacgg	ctaacaggac	540
gcaatccctc	aactacggat	gtatgttga	gaatccacag	acacacgagg	tattgcacta	600
tgtggagaaa	cccagcacat	ttatcgtga	catcatcaac	tgccgcacct	accttctttc	660
tcctgaagcc	ttgaagcc					678

<210> 156

<211> 2668

<212> DNA

<213> Homo sapien

<400> 156

gggaaggcgg	ctgcgcgtct	gggcgggggc	gggagctgga	gccggagctg	gagccggggc	60
cggggcccccgg	gtcagcgttt	gagccggag	aagagtttga	gtcgtggac	cgaagccagc	120
tgcccggccc	aggcgaccc	cgagcgc	cgaggccgc	ggcggccgag	ggctggcgtgg	180
cgcgcgcgc	gacccttggca	cgcaggccca	ccgggaacct	gtcggcgagc	tgegggagcg	240
cgctgcgcgc	ggccgcgggg	ctggggcggcg	gggacagcgg	ggacggcaccg	gcgcgcgcgc	300
cttctaagt	ccagatgt	gaggagctg	ccaaacctgtat	gcacatgtat	aaacttcagca	360
tcaagggttt	gtcccaagt	gtctcgagcc	tggccgcag	cctggatgcg	gaccatgccc	420
ccttgcagca	gttcttgc	gtatggagc	actgcctcaa	acatggctg	aaagttaaga	480

agagtttat tggccaaaat aaatcattct ttggtcctt ggagctggg gagaacttt 540
 gtccagaagc atcagatata gcgactagt tcagaaatct tccagaatta aagacagctg 600
 tgggaagagg ccgagcgtgg ctttatctt cactcatgca aaagaaactg gcagattatc 660
 taaaagtct tatagacaat aaacatctt taagcgagtt ctatgagct gaggctttaa 720
 tgatggagga agaaggatg gtgattgtt gtctgctggt gggactcaat ttctcgatg 780
 ccaatcttg cttgaaagga gaagacttgg attctcaggt tggagtaata gatTTTCCC 840
 tctacattaa ggtatgtcag gatcttgatg gtggcaagga gcatgaaaga attactgatg 900
 tccttgatca aaaaaattat gtggaaagac ttaaccggca cttgagctgc acagttgggg 960
 atcttcaaac caagatagat ggcttggaaa agactaactc aaagttcaa gaagagctt 1020
 cagctgcaac agaccgaatt tgctcaccc aagaagaaca gcagcagttt agagaacaaa 1080
 atgaattaaat tcgagaaaga agtggaaaaga gtgttagagat aacaaaacag gataccaaag 1140
 ttgagctgga gactacaag caaactccgc aaggtctgg taaaatgtac agtgtatgtt 1200
 gaaagcagct aaaagaggag aagaaagtcc ggttggact ggaaaaagaa ctggagttac 1260
 aaattggaat gaaaaccgaa atggaaattt caatgaaagtt actggaaaag gacacccacg 1320
 ayaagcagga cacactagt gcccctccgc agcagctgg ayaagtcaa gcgatattt 1380
 tacagatgtt tcacaaagct cagaatgcag agagcagttt gcagcagaaag aatgaaagcca 1440
 tcacatccct tgaaggaaaa accaaccaaag ttatgtccag catgaaacaa atggagaaaa 1500
 gtgtcagca ctcggagcgg gcgaggcagg gggtctgagga gcggagccac aagctgcagc 1560
 aggagctggg cgggaggatc ggcccccctc agctgcagct ctccccagctg cacgagcaat 1620
 gctcaaggct ggagaaagaa ttgaaatcag aaaaagagca aagacaggtt ctccagcgc 1680
 aattacagca cgagaaagac acttccctcc tactcaggat ggagctgcaa caagtggaaag 1740
 gactggaaaaa ggagtgcgg gagtttcagg acgagaaggc agagctgcag aagatctgcg 1800
 aggagcagga acaaggcccte cagggaaatgg gcctgcacct cagccagtc aagctgaaaga 1860
 tggaaagatataaaaagatg aaccaggcac tgaagggcca gcctggctg aaagatgacg 1920
 aagcgacaca ctgttaggcag ttttgcagg agttccat tccccggaga aagcaccact 1980
 gccggacttggccacatc ttctgcaaca cctgcctccag caacgagctg gcccggccct 2040
 ctatccccca gcccggcga gtgtgcgaca gctgcacac cctgcctctg cagcgcgtgt 2100
 ctccacggc ctcttgcacg tccgtccca ggagcacagc ctcacggaca gtgcggaaacc 2160
 ctgtgggtct ccaggggctt gggaaatgtt ttcttccca agagtatcaa agggaaagaat 2220
 caaatttctt gcccggcactc tggcactcca gaagacagcg tgccggaaacc ggcagctctc 2280
 accttctgt gacttgcgg gatttactt ctctggatgg aaacttccat cttaattggt 2340
 tacatcacgg ctctgggtca gatacaactt catgattttgc ctactatcat ttttcaattt 2400
 tcaaagaattttaacctttaatcagcgtt cagttctgtc agtgaatgtt tttccctctcc 2460
 taccttcctt ctaaaaacctt gatcatgca cagcgttgc cacacatgga gtctggcagt 2520
 gtgccttctc tgcttcagac aagagatctg ccatttcatg cccttgcac tacatcat 2580
 tggccctgca ataaaatcat ttatTTTCA aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 2640
 aaaaaaaaaa aaaaaaaaaa aactcag 2668

<210> 157

<211> 2313

<212> DNA

<213> homo sapien

<400> 157

gaattcggca ccaggccggg cgggcgcctc agccatggcc ctgcgcacagg aactgctcaa 60
 gtccatctgg tacgccttta ccgcgtggc cgtggagaag agtggcaaaatgatccatc 120
 ccagctcaag gtgtgtccc acaacctgtt caccgtccctg cacatccccccatgacccctgt 180
 ggcctggag gaacacttcc gagatgttgc tgacggccct gtgtccagcc agggataat 240
 gcccacccca aacaagtaca ttctggacaa ggtggaggag gggcttttgc taaaagagca 300
 ctttgcggatgttgcgttgcgc caagaagaac ttttgcggatgttgc taaaagagca 360
 gaacagatgttgcgttgcgc caagaagaac ttttgcggatgttgc taaaagagca 420
 tgaggacaatc aggtgcgttgc ttttgcggatgttgc taaaagagca 480
 actcagcgcgttgc ttttgcggatgttgc taaaagagca 540
 ggcctggatgttgcgttgcgc caagaagaac ttttgcggatgttgc taaaagagca 600
 ttcggccgc ttttgcggatgttgcgttgcgc caagaagaac ttttgcggatgttgc taaaagagca 660

ctaccaggag	ctcatccaag	atgtcctgaa	gcagggctac	ctgtggaagc	gagggcacct	720
gagaaggaac	tggccgaaac	getgggttcca	gctgcagccc	agctgcctct	gctactttgg	780
gagtgaagag	tgcaaaagaga	aaaggggcat	tatcccgtcg	gatgcacact	gctgcgtgga	840
ggtgctgcca	gaccgcgacg	gaaagcgctg	catgttctgt	gtgaagacag	ccacccgcac	900
gtatgagatg	agcgctcag	acacgcgcca	gcccgcaggag	tggacagctg	ccatccagat	960
ggcgatccgg	ctgcaggccg	aggggaagac	gtccctacac	aaggacactg	agcagaaaacg	1020
gcccgcggcag	egggagcagc	gggagcggcg	ccggggcgcc	aaggaagagg	agctgctgcp	1080
gctgcagcag	ctgcaggagg	agaaggagcg	gaagctgca	gagctggagc	tgctgcagga	1140
ggcgagcgg	caggccgagc	ggctgctgca	ggaaggaggag	gaacggcgcc	gcagccagca	1200
cccgagctg	cagcaggcgc	tcgagggcca	actgcgcag	gcccggcgtcc	1260	
catgcaggct	gagatggagc	tgaaggagga	ggaggctgccc	cggcagcggc	agcgcataa	1320
ggagctggag	gagatgcagc	agcgggttca	ggaggccctg	caactagagg	tgaaagctcg	1380
gcgagatgaa	gaatctgtgc	gaatcgctca	gaccagactg	ctggaaagagg	aggaagagaa	1440
gctgaagcag	ttgatgcagc	tgaaggagga	gcaaggagcgc	tatcgaaac	gggcgcagca	1500
ggagaaggaa	gagctgcagc	aggagatggc	acagcagac	cgctccctgc	agcaggccca	1560
gcagcagctg	gaggaggtgc	ggcagaaccg	gcagagggtc	gacgaggatg	tggaggctgc	1620
ccagagaaaa	ctgcgccagg	ccagcaccaa	cgtgaaacac	tggaatgtcc	agatgaaaccg	1680
gctgatgcac	ccaatttgagc	ctggagataa	gctgtccggtc	acaaggact	cccttetcagg	1740
cttccagccc	cctctgcttgc	cccaccgtga	cttctcccta	aagcgcctga	cccgctgggg	1800
atccccaggc	aacaggaccc	cctcgcccaa	cagcaatgag	cagcagaat	ccctcaatgg	1860
tgggatgag	gctctgtccc	cggtttccac	ccctcaggaa	gataaaactgg	atccagcacc	1920
agaaaaattag	ctctcttttag	cccccttgc	ttrcccaatgt	cataccacc	agacactggc	1980
cacagctggc	ctgtgggtga	tcccagctct	tactaggaga	gggagctgag	gttctggc	2040
cagggggccca	ggccctccaa	ccataaaacag	tccaggatgg	aacctggttc	acccttcata	2100
ccagctccaa	gccccagacc	atgggagctg	tctggatgt	tgatccttga	gaacttggcc	2160
ctgtgcttta	gaccaagaga	cccgatttcc	ggcttaggaa	agagagaaca	agcaagccgg	2220
ggctacctgc	ccccaggtgg	ccaccaagtt	gttggaaagc	atttctaaat	aaaaactgtct	2280
cttagaatga	aaaaaaaaaa	aaaaaaactc	gag			2313

<210> 158

<211> 2114

<212> DNA

<213> homo sapien

<400> 158

gaattcggca	cgaggaagaa	ctgcctctg	ttgagtgtaa	gtgccaac	aataaccaag	60
gagaataaca	gaatgtcca	tttgagcac	tcaagcaga	atctgttgc	atcagcagg	120
gacacccctcg	cagcgcacca	ggtggtttta	ggagaaaact	tgatagccac	agccctttgt	180
ctttctggca	gtgggtctca	gtctgatttg	aagatgtgg	ccagcacagc	aggagaggag	240
ggggacacaa	gcctcggga	gagcctccat	ccagtcactc	ggtctcttaa	ggcagggtgc	300
catactaagc	agcttgccctc	caggaattgc	tctgaagaga	aatccccaca	aacctccatc	360
ctaaaggaag	gtAACAGGGA	cacaagcttgc	gattccgac	ctgttagtgc	tccagcaaatt	420
ggggttgtaa	gagtccgagt	ggatcaggat	gatgtcaag	atagcttttc	cctgaagctt	480
tctcagaaca	ttgctgtaca	gactgacttt	aagacagctg	attcagaggt	aaacacagat	540
caagatattt	aaaagaattt	ggataaaatg	atgacagaga	gaaccctgtt	aaaagagcgt	600
taccaggagg	tcctggacaa	acagaggcaa	gtggagaatc	agctccaagt	gcaattaaag	660
cagcttcagc	aaaggagaga	agagaaatg	aagaatcacc	aggagatatt	aaaggctatt	720
caggatgtga	caataaaagcg	ggaagaaaca	aagaagaaga	tagagaaga	gaagaaggag	780
tttttgcaga	aggagcagga	tctgaaagct	gaaatttgaga	agctttgtga	gaagggcaga	840
agagaggtgt	gggaaatgg	actggataga	ctcaagaatc	aggatggcga	aataaaatagg	900
aacattatgg	aagagactga	acgggcctgg	aaggcagaga	tcttatca	agagagccgg	960
aaagagttac	tggtaactgaa	actagaagaa	gcagaaaaag	aggcagaatt	gcacccctact	1020
tacctcaagt	caactcccc	aaacactggag	acagttcggt	ccaaacagga	gtggagacg	1080
agactgaatg	qagtccggat	aatgaaaaag	aatgttgcgt	accaattaa	tagtcatatc	1140
cagttagtga	ggaacggagc	caagctgagc	agccttcctc	aaatccctac	tcccacttta	1200

cctccacccc catcagagac agacttcatg cttcagggtgt ttcaacccag tccctctctg 1260
 gtcctctcgta tgcccttctc cattgggcag gtcacaatgc ccataatgttat gcccagtgc 1320
 gatccccgtt ctttgccttt cccaaatccctg aaccctgccc ttcccagcc cagccagcc 1380
 tcctcacccc ttccctggctc ccatggcaga aatagccctg gcttgggttc ctttgcctgc 1440
 cctgggtgcgg aattccggcac gaggtaccac tggctctgtgt gctagaggag ggtgttgcca 1500
 tagaacagt ggcacagtt gtgggtgggtgg tggtcagcac tgggggggtg tgggtgggtcc 1560
 ccgggacggga ggaggggggtc accgtgaagc cactgggtgt ggggtgtgggtgg tgggtgtga 1620
 tccacactgg aggctgtcggt ggcgtccctg ggctgaagga ggggggtgact gtgaagcccg 1680
 tgggtgtgggt agtgcgcact ttggtagtgtt gagctgttcc tgggggtggaa gaggggggtgg 1740
 ccacagagcc ggtggccctg gttgtgggtgg ccgtgggtgg aagcaactgtg gaggtgtggg 1800
 cagtcctctgg agtggaggag ggtgtggctg tggacatgggt ggcgtgggt gttgtggct 1860
 gtgataggcg ggtccagggtg gtggccaggag aggaggaggag gatggctgtaaagctggtag 1920
 ctgtgggtgt ggtggctgtg ttctctcgtg ctggaaaggcc ggttgcagtc cctgactgg 1980
 agaaggggagt ggcttggag ctggtagctg tgggtgtcggt ggcgtgggt gtcacatgtg 2040
 ggggtgccage agttgcctgg gtggaggagg cggtggccgtt ggttgcctgg ggcaccgtca 2100
 cgggagttact tcta 2114

<210> 159

<211> 278

<212> DNA

<213> homo sapien

<400> 159

gaattccggca caggttaactt tgccctgggtt atttaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaag 60
 tcaaataatctt gaggtaataat ttccctgaaaaa gtatgttccg atagatgaac agatcattaa 120
 tgcagaatgtt gaatcaactcc taaaataggtt aatggtaaaaa attaaatttga caattacctc 180
 tctctatgtca gaagggaaata tcaccttatat gacatcatca tcatcttattt atacttgctg 240
 gcagtgcataa taatggttttt aatgccaattt tgtaagaa 278

<210> 160

<211> 848

<212> DNA

<213> homo sapien

<400> 160

gaattccggca cgagccccag aggagctcggt cctgcgtgc gccacgtgtt ccggggagtc 60
 agccaggagc ttggggaaagg gaagcgcgc cccggggccg gtcccggagg gctcgatccg 120
 catctacagc atgagggttctt gcccgtttgc tgagaggacg cgtctagtcc tgaaggccaa 180
 gggaaatcagg catgaagtca tcaatatcaa cctgaaaaat aagcctgagt ggttctttaa 240
 gaaaaatccc ttgggtctgg tgccagttctt gggaaacagt cagggtcagc tgatcta 300
 gtctgccatc acctgtgagt acctggatga agcataccca gggaaagaagc tggccatc 360
 tgacccttat gagaagacctt gccagaagat gatcttagag ttgtttctttaa aggtgccatc 420
 cttggtagga agctttatta gaagccaaaaaaa taaagaagac tatgctggcc taaaagaaga 480
 atttcgtaaa gaatttacca agctagagga ggttctgact aataagaaga cgacccctt 540
 tggtagccat tctatctctt tgattgatta cctcatctgg ccctgggtttt aacggctgg 600
 agcaatgaag ttaaatgagt gttagacca cactccaaaaa ctgaaactgtt ggatggcagc 660
 catgaaggaa gatcccacag ttcagccctt gcttactagt gagaagact ggcaagggtt 720
 ccttagagctc tacttacaga acagccctga ggcctgtgac tatgggtctt gaagggggca 780
 ggagtgcagca ataaagctat gtctgatattt ttcccttactt aaaaaaaaaaaa aaaaaaaaaaaa 840
 aacttcgag 848

<210> 161

<211> 432

<212> DNA

<213> homo sapien

<400> 161

gaattcggca	cgagggcaga	ccaagatcct	ggaggaggac	ctggaacaga	tcaagctgtc	60
cttgagagag	cgagggccgg	agctgaccac	ttagaggcag	ctgatgcagg	aacgggcaga	120
ggaagggaag	ggcccaagta	aagcacagcg	cgggagccct	gagcacatga	agctgtatcct	180
gcgtgataag	gagaaggagg	tggaatgtca	gcaggagcat	atccatgaac	tccaggagct	240
caaagaccag	ctggagcagc	agctccagg	cctgcacagg	aggtaggtg	agaccagect	300
cctcctgtcc	cagcgagagc	aggaaatagt	ggtctgcag	cagcaactgc	aggaagccag	360
ggaacaagg	gagctgaagg	agcagtca	tcaagtcaa	ctggatgagg	cccagagagc	420
cctagccag	ag					432

<210> 162

<211> 433

<212> DNA

<213> homo sapien

<400> 162

gattcggcac	gagccggagc	tggtttgctc	ctgtccccgt	cttccaagtcc	tggcacctcc	60
ttcaagctgg	gagagggctc	tagtcctgg	ttctgaacac	tctgggttc	tgggtgcag	120
gcgcgcattga	gcaaacggaa	ggcgcgcag	gagactctca	acgggggaat	cacccgacatg	180
ctcacagaac	tgcacaaactt	tgagaagaac	gtgagccaag	ctatccacaa	gtacaatgt	240
tacagaaaag	cagcatctgt	tatagcaaaa	tacccacaca	aaataaagag	tggagctgaa	300
gctaagaaaat	tgcctggagt	aggaacaaaaa	attgctgaaa	agattgtatg	gttttagca	360
actggaaaat	tacgtaaact	gaaaaagatt	cggcaggatg	atacgagttc	atccatcaat	420
ttcctgactc	gag					433

<210> 163

<211> 432

<212> DNA

<213> homo sapien

<400> 163

gaattcggca	ccagatgagg	ccaacgagg	gacggacagc	gcgtacatgg	gctccgagag	60
cacccatcagt	gagtgtgaga	cttcacgga	cgaggacacc	agcaccctgg	tgcaccctga	120
gtgtcaacct	gaaggggacg	cagacagtgc	cggggctcg	gccgtgcct	ctgagtgccct	180
ggacgcctatg	gaggagcccg	accatggtc	cctgtgtctg	ctcccaggca	ggcctcaccc	240
ccatggccag	tctgtcatca	cggtgatcgg	gggcgaggag	cactttgagg	actacggtga	300
aggcagttag	gcggagctgt	ccccagagac	cctatgcaac	gggcagctgg	gctgcagtga	360
ccccgccttc	ctcacgcccc	gtccgacaaa	gcggctctcc	agcaagaagg	tggcaaggt	420
cctgcacca	tc					432

<210> 164

<211> 395

<212> DNA

<213> homo sapien

<400> 164

gacacttgtaa	tcatgggtga	cgtaaaaat	tttctgtatg	cctgggtgtgg	caaaaggaag	60
atgaccccat	cctatgaaat	tagagcagt	ggaaacaaaa	acaggcagaa	attcatgtgt	120
gagggttcagg	tggaaaggta	taattacact	ggcatggaa	attccaccaa	taaaaaagat	180
gcacaaaagca	atgctgccag	agactttgtt	aactattgg	ttcgaataaa	tgaaataaaag	240
agtgaagaag	ttccagctt	tgggttagca	tctccgcucc	cacttactga	tactccgtac	300
actacagcaa	atgctgaagg	catttgttg	acatcgaata	tgactttgt	aataaataacc	360
gttccctgaa	aaaaaaaaa	aaaaaaaaac	tegag			395

<210> 165
<211> 503
<212> DNA
<213> homo sapien

<400> 165

gaattcggca ccaggaacgc tcggtgagag gcgaggaggc ggttaactacc cccggttgcgc	60
acagctccgc gctcctcccc gctccctcac acaccggcct cagccgcac cggcagtaga	120
agatggtaaa agaaaacaact tactacgatg ttttgggggt caaacccaat gctactcagg	180
aagaattgaa aaaggcttat aggaaactgg ccttgaagta ccatcctgt aagaacccaa	240
atgaaggaga gaagtttaaa cagatttctc aagcttacga agttctctc gatgcaaaga	300
aaagggaatt atatgacaaa ggaggagaac aggcaattaa agagggtgga gcaggtggcg	360
gttttggctc ccccatggac atctttgata tgtttttgg aggaggagga aggatgcaga	420
gagaaaggag aggtaaaaat gttgtacatc agctctcagt aaccctagaa gacttatata	480
atggtgcaac aagaaaactg gct	503

<210> 166

<211> 893

<212> DNA

<213> homo sapien

<400> 166

gaattcggca cgagaggaac ttctcttgac gagaagagag accaaggagg ccaaggcagg	60
gctggcccg aggtgccaac atggggaaac tgaggctcg ctcggaggg tgagagttag	120
actacatctc aaaaaaaaaa aaaaaaaaaa aaaagaaaaga aaagaaaaga aaaaagaaaag	180
aaeggaagta gtttaggtt gtggatgtgt ggtatgatc tttttctgt tacttataac	240
aacaacaaca aaaaaaaaaacg ctgaaactgg gtaatttata aagaaaaga aaaaagcag	300
aaaaaaaaatca ggaagaagag aaaggaaaag aagacaaata aatgaaattt atgtattaca	360
gttctgaagg ctgagacatc ccaggtcaag ggtccacact tggcagggc tttttgtgt	420
gtggagactc tttgtggagt cctgggacag tgcagaagga tcacgcctcc ctaccgctcc	480
aagcccagcc ctccagccatg gcatgcccc tggatcaggg cattggccctc ctctggcca	540
tcttccacaa gtactccggc agggagggtg acaagcacac cctgagcaag aaggagctga	600
aggagctgtatccagaaggag ctcaccatg gctcaagct gcaggatgt gaaattgca	660
ggctgtatgga agacttggac cggacaacagg accaggaggt gaacttccag gatgtatgtca	720
ctttccctggg ggccttggct ttgatctaca atgaagccct caaggctgaa aataaaatag	780
ggaagatgga gacaccctct gggggctc tctgagtcaa atccagtgtt gggtaattgt	840
acaataaaatt tttttggtc aaattttaaaa aaaaaaaaaa aaaaaaaactc gag	893

<210> 167

<211> 549

<212> DNA

<213> homo sapien

<400> 167

gaattcggca cgagcccaga tcccgagggtc cgacagcgcc cggcccgat cccacgcct	60
gccaggagca agccgagagc cagccggccg ggcactccg actccgagca gtctctgtcc	120
tccgacccga gccccgcctt ctttceggga cccctgcccc gggggcagcg ctgccaaccc	180
gcccggccatg gagacccgt cccagcggcg cgccacccgc agcggggcgc aggccagctc	240
cactccgctg tcgcccaccc gcatcaccgg gctcaggag aaggaggacc tgcaggagct	300
caatgatcgc ttggcggctt acatcgaccg tgcggctcg ctggaaaegg agaaccgcagg	360
gctgcgcctt cgcatcaccgg agtctgaaga ggtggtcagc cgcgagggtt ccggcatcaa	420
ggccgcctac gaggccgagc tcggggatgc cgcgaagacc ttgactctcg tagccaaagg	480
gcccgcggc ctgcagctgg agctgagcaa agtgcgtgaa gagtttaagg agctgaaagc	540
gcgcataac	549

<210> 168

<211> 547

<212> DNA

<213> homo sapien

<400> 168

gaattcggca	cgagatggcg	gcaggggtcg	aagccggcggc	ggaggtggcg	gcccacggaga	60
tcaaaatgga	ggaagagagc	ggccgcggcc	gcgtgccgag	cggcaacggg	gtccgggccc	120
cttaagggtga	aggagaacga	cctgctcaga	atgagaagag	gaaggagaaa	aacataaaaa	180
gaggaggcaa	tcgcttttag	ccatatgcca	atccaactaa	aagatacaga	gccttattaa	240
caaacatacc	tttgatgtg	aatggcagt	cacttaaaga	cctggtaaaa	aaaaaagtgg	300
gtgaggtaac	atacgtggag	ctcttaatgg	acgctgaagg	aaagtcaagg	ggatgtgtcg	360
tttgttgaatt	caagatggaa	gagagcatga	aaaaagctgc	ggaagtccctaa	aacaagcata	420
gtctgagcgg	aagaccactg	aaagtcaaaag	aagatcctga	ttgtgaacat	gccaggagag	480
caatgcaaaa	ggctgaaaga	cttggaaagca	cagtatttgc	agccaaatctg	gattataaag	540
ttggctg						547

<210> 169

<211> 547

<212> DNA

<213> homo sapien

<400> 169

gaattcggca	ccaggagtcc	gactgtgtc	gtgtctcagc	ccccaccccg	gaagatgagg	60
ctegccgtgg	gagccctgct	gttctgcgcc	gtcctggggc	tgtgtctgct	tgccctgtat	120
aaaactgtga	gatgggtgtc	agtgtcgag	catgaggcca	ctaagtgc	gagtttccgc	180
gaccatatga	aaagcgtcat	tcctatcgat	ggtcccagtgc	ttgttgcgt	gaagaaagcc	240
tcctacccctt	attgcatcag	ggccattgcg	gcaaacgaag	cggatgtgt	gacactggat	300
gcagggttgg	tgtatgtgc	ttacctggct	cccaataacc	tgaagcctgt	ggtggcagag	360
ttctatgggt	caaaagggaa	tccacagact	ttctattatg	ctgttgcgt	ggtgaaaaag	420
gatagtggct	tccagatgaa	ccagcttcga	ggcaagaagt	cctgccacac	gggtctaggc	480
aggtccgctg	ggtggaaacat	ccccataggc	ttacttact	gtgacttacc	tgagccacgt	540
aaacctc						547

<210> 170

<211> 838

<212> DNA

<213> homo sapien

<400> 170

gaattcggca	ccagaggagc	tcggcctgct	ctgcgccacg	atgtccgggg	agtcagccag	60
gagttgggg	aagggaaagcg	cgccccccggg	gcccgtcccg	gagggtctga	tccgcacatct	120
cagcatgagg	ttctcccg	ttgtctgagag	gacgcgtcta	gtcctgaagg	ccaaaggaaat	180
caggcatgaa	gtcatcaata	tcaacctgaa	aaataagcct	gagtgggtct	ttaaaaaaaaa	240
tcctttgggt	ctgggtccag	ttctggaaaa	cagtcagggt	cagctgatct	acgagtctgc	300
catcacctgt	gagtacctgg	atgaagcata	cccaggaaag	aagctgtgc	cggtatgaccc	360
ctatgagaaa	gtttggcaga	agatgatctt	agagttgtt	tctaaagggtc	catccttgg	420
aggaagcttt	attagaagcc	aaaataaaaga	agactatgtat	ggcctaaaag	aagaatttcg	480
taaagaattt	accaagctag	aggaggttct	gactaataag	aagacgacat	tctttgggt	540
caattctatc	tctatgattt	attacctcat	ctggccctgg	tttgaacggc	ttggaaagcaat	600
gaagttaaat	gagtgtgtag	accacactcc	aaaactgaaa	ctgtggatgg	cagccatgaa	660
ggaagatccc	acagtcctcg	ccctgcttac	tagtggaaaa	gactggcag	gtttcttaga	720
gctctactta	cagaacagcc	ctgaggccctg	tgactatggg	ctctgaaggg	ggcaggagtc	780
agcaataaaag	ctatgtctga	tatccctt	cactaaaaaa	aaaaaaaaaa	aactcgag	838

<210> 171
<211> 547
<212> DNA
<213> homo sapien

<400> 171

gaattcggca	ccagcggat	ttgggtcgca	gttcttgttt	gtggattgt	gtgatcgta	60
cttgacaatg	cagatctcg	tgaagactct	gactggtaag	accatcaccc	tgcagggtga	120
gcccagtgcac	accatcgaga	atgtcaaggc	aaagatccaa	gataaggaag	gatccccctcc	180
tgaccacgg	aggctgatct	ttgctggaaa	acagctggaa	gatggggcga	ccctgtctga	240
ctacaacatc	cagaaaaggt	ccaccctgca	cctggtgctc	cgatctcagag	gtggatgca	300
aatcttcgtg	aagacactca	ctggcaagac	catcaccctt	gagggtcgagc	ccagtgcacac	360
catcgagaac	gtcaaagcaa	agatccagga	caaggaaggc	atccctctg	accagcaag	420
gttgatctt	gccggaaaagc	agctggaaaga	tgggcgcacc	ctgtctgact	acaacatcca	480
gaaagagtct	accctgcacc	tggtgctccg	tctcagaggt	gggatgcaga	tcttcgtgaa	540
gaccctg						547

<210> 172

<211> 608

<212> DNA

<213> homo sapien

<400> 172

gaattcggca	ccagagactt	ctccctctga	ggcctgcgca	cccccctctca	tcaagctgtc	60
caccctcatac	tacaatggt	ccctgcccatt	tcagtgcac	cctcaagggtt	cactgagttc	120
tgagtgcac	cctcatggt	gtcagtgcct	gtgcacagcct	ggagttgggt	ggcggcgctg	180
tgacctctgt	gccccggct	actatggctt	tggccccaca	ggctgtcaag	gcccgttgcct	240
gggctggcg	gatcacacag	gggggtgagca	ctgtgaaagg	tgcattgtc	gtttccacgg	300
ggacccacgg	ctgccccat	ggggccagtg	ccggccctgt	ccctgtctg	aaggccctgg	360
gagccaaacgg	cactttgtca	tttcttgca	ccagatgaa	tatcccagc	agattgtgtg	420
ccactgcgg	gcaggctata	ccccggctg	atgtgaagct	tgtccccctg	ggcactttgg	480
ggacccatca	aggccagggt	gccgggtgcca	actgtgtgag	tgcagtggga	acattgaccc	540
aatggatct	gatgcctgt	acccccacac	ggggcaatgc	ctgcgtgtt	tacaccacac	600
agagggtc						608

<210> 173

<211> 543

<212> DNA

<213> homo sapien

<400> 173

gaattcggca	ccagagatca	tccggccagca	gggtctggcc	tcctacgact	acgtgcgcgg	60
cegcctcact	gctgaggacc	ttttcgaggc	tcggatcattc	tctctcgaga	cctacaaccc	120
gttccggag	ggcaccagga	gcctccgtga	ggctctcgag	gcccggatccg	cctgggtgeta	180
cctctatggc	acgggcctcc	tggctgggt	ctacctgccc	gtttccaggg	agacactgag	240
catctaccag	gctctcaaga	aagggtctgt	gagtggcgag	gtggcccgcc	tgctgtgg	300
ggcacaggca	gccacaggct	tccctgtgtt	cccggtgaag	ggggaaacggc	tgactgtgg	360
tgaagctgt	cggaaggggcc	tctgtggggcc	cgaaactgcac	gaccgcctgc	tctcggctga	420
gccccgggtc	accggctacc	gtgaccccta	caccgagca	accatctcg	tcttcaggc	480
catgaagaag	gaactgatcc	ctactgagga	ggccctgcgg	ctgtggatgc	ccagctggcc	540
acc						543

<210> 174

<211> 548

<212> DNA

<213> homo sapien

<400> 174

gaattcggca	cgagaaatgg	cggcagggtt	cgaagcggcg	gcggagggtgg	cggcgacgga	60
gatcaaataatg	gaggaagaga	gcggcgcc	cgcgctgccg	agcggcaacg	gggctccggg	120
ccctaagggt	gaaggagaac	gacctgctca	aatgagaag	aggaaggaga	aaaacataaaa	180
aagaggaggc	aatcgcttg	agccatatgc	aatccaact	aaaagataca	gacccttcat	240
tacaaaacata	cctttgtatg	tgaaatggca	gtcaacttaaa	gacctggta	aagaaaaagt	300
tggtgaggtt	acatacgtgg	agctcttaat	ggacgctgaa	ggaaagtcaa	ggggatgtgc	360
tgttgttggaa	ttcaagatgg	aagagagcat	aaaaaaagct	gcggaaatgc	aaaacaagca	420
tagtctgagc	ggaagaccac	tgaaagtcaa	agaagatct	atggtgaaac	atgccaggag	480
agcaatgca	aagggtatgg	ctacgactgg	tggatgggt	atgggaccag	gtggcccagg	540
aatgatta						548

<210> 175

<211> 604

<212> DNA

<213> homo sapien

<400> 175

gaattcggca	ccagaggacc	tccaggacat	gttcatcg	cataccatcg	aggagattga	60
gggcgtatc	tcagccccatg	accagttcaa	gtccaccctg	ccggacgccc	atagggagcg	120
cgaggccatc	ctggccatcc	acaaggaggc	ccagaggatc	gctgagagca	accacatcaa	180
gctgtcgcc	agcaacccct	acaccacccgt	caccccgaa	atcatcaact	ccaagtggg	240
gaaggtgcag	cagctgggc	caaaacggg	ccatgccc	ctggaggagc	agagcaagca	300
gcagtccaa	gagcacctgc	gcccgcagtt	cgccagccag	gccaatgtt	tggggccctg	360
gatccagacc	aagatggagg	agatcgccg	catctccatt	gagatgaacg	ggaccctgga	420
ggaccagctg	agccacctga	agcagtatga	acgcagcatc	gtggactaca	agcccaacct	480
ggacctgtg	gagcagcgc	accagctt	ccaggaggcc	ctcatcttcg	acaacaagca	540
caccaactat	accatggagc	acatccgcgt	ggctgggag	cagctgtca	ccaccattgc	600
ccgg						604

<210> 176

<211> 486

<212> DNA

<213> homo sapien

<400> 176

gaattcggca	ccagccaagg	tcactattga	atccacgccc	ttcaatgtcg	cagagggaa	60
ggaggttctt	ctactcgccc	acaacctgcc	ccagaatcg	attggataca	gctgtacaa	120
aggcgaaaga	gtggatggca	acagtcta	tgttagat	gtaataggaa	ctcaacaagc	180
taccccagg	cccgatata	gtggcgaga	gacaata	cccaatgc	ccctgtgtat	240
ccagaacgtc	acccagaatg	acaacaggatt	ctataccct	caagtat	agtcatatct	300
tgtgaatgaa	gaagcaaccg	gacagttcca	tgtatacccg	gagctgcc	agccctccat	360
ctccagcaac	aactccaacc	ccgtggagga	caaggatgt	gtggccttca	cctgtgaacc	420
tgaggttcag	aacacaaccc	acctgtgggt	ggtaatgg	cagaccctcc	cggtcagtcc	480
caaggc						486

<210> 177

<211> 387

<212> DNA

<213> homo sapien

<400> 177

gaattcggca	ccagggacag	cagaccagac	agtcacagca	gccttgacaa	aacgttcc	60
------------	------------	------------	------------	------------	----------	----

gaactcaagc tcttctccac agaggaggac agagcagaca gcagagacca tggagtctcc
 ctcggccctt ccccacagat ggtgcattttt ctggcagagg ctctgtctca cagcctca
 tctaacccttc tgaaaccgccc accaccatgc caagctca acttgaatcca cgccgttcaa
 tgcgcagag gggaggagg tgcttctact tgccacaat ctgccccagc atcttttg
 ctacagctgg tacaaggtg aaagagtgg tggcaaccgt caaattatag gatagttaat
 aggaactcaa caagctaccc cagggcc 120
 180
 240
 300
 360
 387.

<210> 178

<211> 440

<212> DNA

<213> homo sapien

<400> 178

gaattcgca cgaggagaag cagaaaaaca aggaatttag ccagactttt aaaaatgaga
 aaaataacctt actgagttagt atatcaacaa aggatggta actaaaaatg cttcaggagg
 aagtaaccaa aatgaacccg ttaaatcagc aaatccaaga agaactctt agatgtacca
 aactaaagga gacagcagaa gaagagaaaatgatgatggta agagaggctt atgaatcaat
 tagcagaact taatggaaagc attggtaattt actgtcaggta tggttacagat gcccaaataa
 aaaaatgagct attggaatct gaaatgaaaga acctaaaaa gtgtgtgagt gaattggaaag
 aagaaaaagca gcagtttagtc aaggaaaaaa ctaaggtggta atcagaaataa cggaaaggaaat
 atttggagaa aataacaaggt 60
 120
 180
 240
 300
 360
 420
 440

<210> 179

<211> 443

<212> DNA

<213> homo sapien

<400> 179

gaattcgca ccagcgaaaa gctacggcgccggctacggc ggcttcgttccgcggcgtccgc
 cggcgctgtg gggcaacg agaagctaacatgcacac ctcaacgacc gcctggctc
 ctacctggac aaggtgcgcg ccctggaggc ggccaaacggc gagctagagg tgaagatccg
 cgactggtagc cagaacgcagg ggcctggcccteeegegac tacagccact actacacgac
 catccaggac ctgggggaca agattcttgg tgccaccatt gagaacttccaa ggattgtcct
 gcagatcgac aacccccgtc tggctgcaga tgacttccga accaagtggatccgaaaca
 ggcttcgtccgc atgagcgtgg agggcacat caacggctcg cgccagggtgc tggatgagct
 gaccctggcc aggaccgacc tgg 60
 120
 180
 240
 300
 360
 420
 443

<210> 180

<211> 403

<212> DNA

<213> homo sapien

<400> 180

gaattcgca cgaggttatg agagtcgact tcaatgttcc tatgaagaac aaccagataa
 ccaacaacca gaggattaag gctgtgttcc caagcatcaa attctgtttt gacaatggag
 ccaagtcgtt agtcctttagt agccacctag gcccgcctga tggtgtgtccc atgcctgaca
 agtactccctt agagccagtt gctgttagaac tcagatctt gctggcaag gatgttctgt
 tcttgaagga ctgtgttaggc ccagaagttgg agaaaggctg tgccaaaccca gctgtgggt
 ctgtcatctt gctggagaac ctccgccttc atgtggagga agaagggaaag gggaaaatgt
 ttcttggaa caagttaaa gcccggccag cccaaataga agc 60
 120
 180
 240
 300
 360
 403

<210> 181

<211> 493

<212> DNA

<213> homo sapien

<400> 181
gaattcgcca ccagcagagg tctccagagc cttctctctc ctgtcaaaaa tgccaactct
taaggaaaaaa ctcatgtcac cagttgcgga agaagaggca acagttccaa acaataagat
cactgttagt ggttgtggac aagttgttat ggctgtgtct atcagcattc tgggaaagtct
tctggctgtat gaacttgctc ttgtggatgt ttttggaaat aagcttaaaag gagaatgtat
ggatctgcag catggagact tatttcttca gacacctaata attgtggcag ataaaagatta
ttctgtgacc gccaattctta agattgttagt ggtaactgca ggagtccgtc agcaagaagg
ggagagtcgg ctcaatctgg tgcagagaaa tggtaatgtc ttcaaattca ttattctca
gatcgtaaag tacagtccctg attgcattcat aattgtggtt tccaaacctcag tggacattct
tagtatgtttt acc

<210> 182

<211> 209

<212> PRT

<213> homo sapien

<400> 182

Ala Phe Ser Ser Asn Pro Lys Val Gln Val Glu Ala Ile Glu Gly Gly
 1 5 10 15
 Ala Leu Gln Lys Leu Leu Val Ile Leu Ala Thr Glu Gln Pro Leu Thr
 20 25 30
 Ala Lys Lys Lys Val Leu Phe Ala Leu Cys Ser Leu Leu Arg His Phe
 35 40 45
 Pro Tyr Ala Gln Arg Gln Phe Leu Lys Leu Gly Gly Leu Gln Val Leu
 50 55 60
 Arg Thr Leu Val Gln Glu Lys Gly Thr Glu Val Leu Ala Val Arg Val
 65 70 75 80
 Val Thr Leu Leu Tyr Asp Leu Val Thr Glu Lys Met Phe Ala Glu Glu
 85 90 95
 Glu Ala Glu Leu Thr Gln Glu Met Ser Pro Glu Lys Leu Gln Gln Tyr
 100 105 110
 Arg Gln Val His Leu Leu Pro Gly Leu Trp Glu Gln Gly Trp Cys Glu
 115 120 125
 Ile Thr Ala His Leu Leu Ala Leu Pro Glu His Asp Ala Arg Glu Lys
 130 135 140
 Val Leu Gln Thr Leu Gly Val Leu Leu Thr Thr Cys Arg Asp Arg Tyr
 145 150 155 160
 Arg Gln Asp Pro Gln Leu Gly Arg Thr Leu Ala Ser Leu Gln Ala Glu
 165 170 175
 Tyr Gln Val Leu Ala Ser Leu Glu Leu Gln Asp Gly Glu Asp Glu Gly
 180 185 190
 Tyr Phe Gln Glu Leu Leu Gly Ser Val Asn Ser Leu Leu Lys Glu Leu
 195 200 205
 Arg

-210- 183

22103 183
22113 255

<211> 255

<212> PRT

<400> 183

Met Ala Ala Gly Val Glu Ala Ala Ala Glu Val Ala Ala Thr Glu Pro
1 5 10 15

Lys Met Glu Glu Glu Ser Gly Ala Pro Cys Val Pro Ser Gly Asn Gly
 20 25 30
 Ala Pro Gly Pro Lys Gly Glu Glu Arg Pro Thr Gln Asn Glu Lys Arg
 35 40 45
 Lys Glu Lys Asn Ile Lys Arg Gly Gly Asn Arg Phe Glu Pro Tyr Ser
 50 55 60
 Asn Pro Thr Lys Arg Tyr Arg Ala Phe Ile Thr Asn Ile Pro Phe Asp
 65 70 75 80
 Val Lys Trp Gln Ser Leu Lys Asp Leu Val Lys Glu Lys Val Gly Glu
 85 90 95
 Val Thr Tyr Val Glu Leu Leu Met Asp Ala Glu Gly Lys Ser Arg Gly
 100 105 110
 Cys Ala Val Val Glu Phe Lys Met Glu Glu Ser Met Lys Lys Ala Ala
 115 120 125
 Glu Val Leu Asn Lys His Ser Leu Ser Gly Arg Pro Leu Lys Val Lys
 130 135 140
 Glu Asp Pro Asp Gly Glu His Ala Arg Arg Ala Met Gln Lys Ala Gly
 145 150 155 160
 Arg Leu Gly Ser Thr Val Phe Val Ala Asn Leu Asp Tyr Lys Val Gly
 165 170 175
 Trp Lys Lys Leu Lys Glu Val Phe Ser Met Ala Gly Val Val Val Arg
 180 185 190
 Ala Asp Ile Leu Glu Asp Lys Asp Gly Lys Ser Arg Gly Ile Gly Ile
 195 200 205
 Val Thr Phe Glu Gln Ser Ile Glu Ala Val Gln Ala Ile Ser Met Phe
 210 215 220
 Asn Gly Gln Leu Leu Phe Asp Arg Pro Met His Val Lys Met Asp Glu
 225 230 235 240
 Arg Ala Leu Pro Lys Gly Asp Phe Phe Pro Pro Glu Arg His Ser
 245 250 255

<210> 184

<211> 188

<212> PRT

<213> Homo sapien

<400> 184

Leu Ser Gly Ser Cys Ile Arg Arg Glu Gln Thr Pro Glu Lys Glu Lys
 1 5 10 15
 Gln Val Val Leu Phe Glu Glu Ala Ser Trp Thr Cys Thr Pro Ala Cys
 20 25 30
 Gly Asp Glu Pro Arg Thr Val Ile Leu Leu Ser Ser Met Leu Ala Asp
 35 40 45
 His Arg Leu Lys Leu Glu Asp Tyr Lys Asp Arg Leu Lys Ser Gly Glu
 50 55 60
 His Leu Asn Pro Asp Gln Leu Glu Ala Val Glu Lys Tyr Glu Glu Val
 65 70 75 80
 Leu His Asn Leu Glu Phe Ala Lys Glu Leu Gln Lys Thr Phe Ser Gly
 85 90 95
 Leu Ser Leu Asp Leu Leu Lys Ala Gln Lys Lys Ala Gln Arg Arg Glu
 100 105 110
 His Met Leu Lys Leu Glu Ala Glu Lys Lys Lys Leu Arg Thr Ile Leu
 115 120 125
 Gln Val Gln Tyr Val Leu Gln Asn Leu Thr Gln Glu His Val Gln Lys
 130 135 140

Asp Phe Lys Gly Gly Leu Asn Gly Ala Val Tyr Leu Pro Ser Lys Glu
 145 150 155 160
 Leu Asp Tyr Leu Ile Lys Phe Ser Lys Leu Thr Cys Pro Glu Arg Asn
 165 170 175
 Glu Ser Leu Arg Gln Thr Leu Glu Gly Ser Thr Val
 180 185

 <210> 185
 <211> 746
 <212> PRT
 <213> Homo sapien

 <400> 185
 Asp Lys His Leu Lys Asp Leu Leu Ser Lys Leu Leu Asn Ser Gly Tyr
 1 5 10 15
 Phe Glu Ser Ile Pro Val Pro Lys Asn Ala Lys Glu Lys Glu Val Pro
 20 25 30
 Leu Glu Glu Glu Met Leu Ile Gln Ser Glu Lys Lys Thr Gln Leu Ser
 35 40 45
 Lys Thr Glu Ser Val Lys Glu Ser Glu Ser Leu Met Glu Phe Ala Gln
 50 55 60
 Pro Glu Ile Gln Pro Gln Glu Phe Leu Asn Arg Arg Tyr Met Thr Glu
 65 70 75 80
 Val Asp Tyr Ser Asn Lys Gln Gly Glu Glu Gln Pro Trp Glu Ala Asp
 85 90 95
 Tyr Ala Arg Lys Pro Asn Leu Pro Lys Arg Trp Asp Met Leu Thr Glu
 100 105 110
 Pro Asp Gly Gln Glu Lys Lys Gln Glu Ser Phe Lys Ser Trp Glu Ala
 115 120 125
 Ser Gly Lys His Gln Glu Val Ser Lys Pro Ala Val Ser Leu Glu Gln
 130 135 140
 Arg Lys Gln Asp Thr Ser Lys Leu Arg Ser Thr Leu Pro Glu Glu Gln
 145 150 155 160
 Lys Lys Gln Glu Ile Ser Lys Ser Lys Pro Ser Pro Ser Gln Trp Lys
 165 170 175
 Gln Asp Thr Pro Lys Ser Lys Ala Gly Tyr Val Gln Glu Glu Gln Lys
 180 185 190
 Lys Gln Glu Thr Pro Lys Leu Trp Pro Val Gln Leu Gln Lys Glu Gln
 195 200 205
 Asp Pro Lys Lys Gln Thr Pro Lys Ser Trp Thr Pro Ser Met Gln Ser
 210 215 220
 Glu Gln Asn Thr Thr Lys Ser Trp Thr Pro Met Cys Glu Glu Gln
 225 230 235 240
 Asp Ser Lys Gln Pro Glu Thr Pro Lys Ser Trp Glu Asn Asn Val Glu
 245 250 255
 Ser Gln Lys His Ser Leu Thr Ser Gln Ser Gln Ile Ser Pro Lys Ser
 260 265 270
 Trp Gly Val Ala Thr Ala Ser Leu Ile Pro Asn Asp Gln Leu Leu Pro
 275 280 285
 Arg Lys Leu Asn Thr Glu Pro Lys Asp Val Pro Lys Pro Val His Gln
 290 295 300
 Pro Val Gly Ser Ser Ser Thr Leu Pro Lys Asp Pro Val Leu Arg Lys
 305 310 315 320
 Glu Lys Leu Gln Asp Leu Met Thr Gln Ile Gln Gly Thr Cys Asn Phe
 325 330 335

Met Gln Glu Ser Val Leu Asp Phe Asp Lys Pro Ser Ser Ala Ile Pro
 340 345 350
 Thr Ser Gln Pro Pro Ser Ala Thr Pro Gly Ser Pro Val Ala Ser Lys
 355 360 365
 Glu Gln Asn Leu Ser Ser Gln Ser Asp Phe Leu Gln Glu Pro Leu Gln
 370 375 380
 Val Phe Asn Val Asn Ala Pro Leu Pro Pro Arg Lys Glu Gln Glu Ile
 385 390 395 400
 Lys Glu Ser Pro Tyr Ser Pro Gly Tyr Asn Gln Ser Phe Thr Thr Ala
 405 410 415
 Ser Thr Gln Thr Pro Pro Gln Cys Gln Leu Pro Ser Ile His Val Glu
 420 425 430
 Gln Thr Val His Ser Gln Glu Thr Ala Ala Asn Tyr His Pro Asp Gly
 435 440 445
 Thr Ile Gln Val Ser Asn Gly Ser Leu Ala Phe Tyr Pro Ala Gln Thr
 450 455 460
 Asn Val Phe Pro Arg Pro Thr Gin Pro Phe Val Asn Ser Arg Gly Ser
 465 470 475 480
 Val Arg Gly Cys Thr Arg Gly Gly Arg Leu Ile Thr Asn Ser Tyr Arg
 485 490 495
 Ser Pro Gly Gly Tyr Lys Gly Phe Asp Thr Tyr Arg Gly Leu Pro Ser
 500 505 510
 Ile Ser Asn Gly Asn Tyr Ser Gln Leu Gln Phe Gln Ala Arg Glu Tyr
 515 520 525
 Ser Gly Ala Pro Tyr Ser Gln Arg Asp Asn Phe Gln Gln Cys Tyr Lys
 530 535 540
 Arg Gly Gly Thr Ser Gly Gly Pro Arg Ala Asn Ser Arg Ala Gly Trp
 545 550 555 560
 Ser Asp Ser Ser Gln Val Ser Ser Pro Glu Arg Asp Asn Glu Thr Phe
 565 570 575
 Asn Ser Gly Asp Ser Gly Gln Gly Asp Ser Arg Ser Met Thr Pro Val
 580 585 590
 Asp Val Pro Val Thr Asn Pro Ala Ala Thr Ile Leu Pro Val His Val
 595 600 605
 Tyr Pro Leu Pro Gln Gln Met Arg Val Ala Phe Ser Ala Ala Arg Thr
 610 615 620
 Ser Asn Leu Ala Pro Gly Thr Leu Asp Gln Pro Ile Val Phe Asp Leu
 625 630 635 640
 Leu Leu Asn Asn Leu Gly Glu Thr Phe Asp Leu Gln Leu Gly Arg Phe
 645 650 655
 Asn Cys Pro Val Asn Gly Thr Tyr Val Phe Ile Phe His Met Leu Lys
 660 665 670
 Leu Ala Val Asn Val Pro Leu Tyr Val Asn Leu Met Lys Asn Glu Glu
 675 680 685
 Val Leu Val Ser Ala Tyr Ala Asn Asp Gly Ala Pro Asp His Glu Thr
 690 695 700
 Ala Ser Asn His Ala Ile Leu Gln Leu Phe Gln Gly Asp Gln Ile Trp
 705 710 715 720
 Leu Arg Leu His Arg Gly Ala Ile Tyr Gly Ser Ser Trp Lys Tyr Ser
 725 730 735
 Thr Phe Ser Gly Tyr Leu Leu Tyr Gln Asp
 740 745

<210> 186

<211> 705

<212> PRT

<213> Homo sapien

<400> 186

Ala Leu Leu Asn Val Arg Gln Pro Pro Ser Thr Thr Thr Phe Val Leu
 1 5 10 15
 Asn Gln Ile Asn His Leu Pro Pro Leu Gly Ser Thr Ile Val Met Thr
 20 25 30
 Lys Thr Pro Pro Val Thr Thr Asn Arg Gln Thr Ile Thr Leu Thr Lys
 35 40 45
 Phe Ile Gln Thr Thr Ala Ser Thr Arg Pro Ser Val Ser Ala Pro Thr
 50 55 60
 Val Arg Asn Ala Met Thr Ser Ala Pro Ser Lys Asp Gln Val Gln Leu
 65 70 75 80
 Lys Asp Leu Leu Lys Asn Asn Ser Leu Asn Glu Leu Met Lys Leu Lys
 85 90 95
 Pro Pro Ala Asn Ile Ala Gln Pro Val Ala Thr Ala Ala Thr Asp Val
 100 105 110
 Ser Asn Gly Thr Val Lys Lys Glu Ser Ser Asn Lys Glu Gly Ala Arg
 115 120 125
 Met Trp Ile Asn Asp Met Lys Met Arg Ser Phe Ser Pro Thr Met Lys
 130 135 140
 Val Pro Val Val Lys Glu Asp Asp Glu Pro Glu Glu Asp Glu Glu
 145 150 155 160
 Glu Met Gly His Ala Glu Thr Tyr Ala Glu Tyr Met Pro Ile Lys Leu
 165 170 175
 Lys Ile Gly Leu Arg His Pro Asp Ala Val Val Glu Thr Ser Ser Leu
 180 185 190
 Ser Ser Val Thr Pro Pro Asp Val Trp Tyr Lys Thr Ser Ile Ser Glu
 195 200 205
 Glu Thr Ile Asp Asn Gly Trp Leu Ser Ala Leu Gln Leu Glu Ala Ile
 210 215 220
 Thr Tyr Ala Ala Gln Gln His Glu Thr Phe Leu Pro Asn Gly Asp Arg
 225 230 235 240
 Ala Gly Phe Leu Ile Gly Asp Gly Ala Gly Val Gly Lys Gly Arg Thr
 245 250 255
 Ile Ala Gly Ile Ile Tyr Glu Asn Tyr Leu Leu Ser Arg Lys Arg Ala
 260 265 270
 Leu Trp Phe Ser Val Ser Asn Asp Leu Lys Tyr Asp Ala Glu Arg Asp
 275 280 285
 Leu Arg Asp Ile Gly Ala Lys Asn Ile Leu Val His Ser Leu Asn Lys
 290 295 300
 Phe Lys Tyr Gly Lys Ile Ser Ser Lys His Asn Gly Ser Val Lys Lys
 305 310 315 320
 Gly Val Ile Phe Ala Thr Tyr Ser Ser Leu Ile Gly Glu Ser Gln Ser
 325 330 335
 Gly Gly Lys Tyr Lys Thr Arg Leu Lys Gln Leu Leu His Trp Cys Gly
 340 345 350
 Asp Asp Phe Asp Gly Val Ile Val Phe Asp Glu Cys His Lys Ala Lys
 355 360 365
 Asn Leu Cys Pro Val Gly Ser Ser Lys Pro Thr Lys Thr Gly Leu Ala
 370 375 380
 Val Leu Glu Leu Gln Asn Lys Leu Pro Lys Ala Arg Val Val Tyr Ala
 385 390 395 400
 Ser Ala Thr Gly Ala Ser Glu Pro Arg Asn Met Ala Tyr Met Asn Arg

	405	410	415												
Leu	Gly	Ile	Trp	Gly	Glu	Gly	Thr	Pro	Phe	Arg	Glu	Phe	Ser	Asp	Phe
			420		425					430					
Ile	Gln	Ala	Val	Glu	Arg	Arg	Gly	Val	Gly	Ala	Met	Glu	Ile	Val	Ala
			435		440					445					
Met	Asp	Met	Lys	Leu	Arg	Gly	Met	Tyr	Ile	Ala	Arg	Gln	Leu	Ser	Phe
			450		455					460					
Thr	Gly	Val	Thr	Phe	Lys	Ile	Glu	Glu	Val	Leu	Leu	Ser	Gln	Ser	Tyr
			465		470					475				480	
Val	Lys	Met	Tyr	Asn	Lys	Ala	Val	Lys	Leu	Trp	Val	Ile	Ala	Arg	Glu
			485						490				495		
Arg	Phe	Gln	Gln	Ala	Ala	Asp	Leu	Ile	Asp	Ala	Glu	Gln	Arg	Met	Lys
			500				505				510				
Lys	Ser	Met	Trp	Gly	Gln	Phe	Trp	Ser	Ala	His	Gln	Arg	Phe	Phe	Lys
			515			520				525					
Tyr	Leu	Cys	Ile	Ala	Ser	Lys	Val	Lys	Arg	Val	Val	Gln	Leu	Ala	Arg
											535		540		
			530												
Glu	Glu	Ile	Lys	Asn	Gly	Lys	Cys	Val	Val	Ile	Gly	Leu	Gln	Ser	Thr
											550		555		
			545											560	
Gly	Glu	Ala	Arg	Thr	Leu	Glu	Ala	Leu	Glu	Gly	Gly	Gly	Glu	Leu	
											565		570		
			575										575		
Asn	Asp	Phe	Val	Ser	Thr	Ala	Lys	Gly	Val	Leu	Gln	Ser	Leu	Ile	Glu
											580		585		
			585										590		
Lys	His	Phe	Pro	Ala	Pro	Asp	Arg	Lys	Lys	Leu	Tyr	Ser	Leu	Leu	Gly
											595		600		
													605		
Ile	Asp	Leu	Thr	Ala	Pro	Ser	Asn	Asn	Ser	Pro	Arg	Asp	Ser	Pro	
											610		615		
													620		
Cys	Lys	Glu	Asn	Lys	Ile	Lys	Lys	Arg	Lys	Gly	Glu	Ile	Thr	Arg	
											625		630		
													635		
Glu	Ala	Lys	Lys	Ala	Arg	Lys	Val	Gly	Gly	Leu	Thr	Gly	Ser	Ser	
											645		650		
													655		
Asp	Asp	Ser	Gly	Ser	Glu	Ser	Asp	Ala	Ser	Asp	Asn	Glu	Glu	Ser	Asp
											660		665		
													670		
Tyr	Glu	Ser	Ser	Lys	Asn	Met	Ser	Ser	Gly	Asp	Asp	Asp	Asp	Phe	Asn
											675		680		
													685		
Pro	Phe	Leu	Asp	Glu	Ser	Asn	Glu	Asp	Asp	Glu	Asn	Asp	Pro	Trp	Leu
											690		695		
													700		
Ile															
705															

<210> 187

Glu	Ser	Pro	Arg	His	Arg	Gly	Glu	Gly	Gly	Glu	Trp	Gly	Pro	Gly
1							5		10			15		
Val	Pro	Arg	Glu	Arg	Arg	Glu	Ser	Ala	Gly	Glu	Trp	Gly	Ala	Asp
											20		25	
Pro	Lys	Glu	Gly	Gly	Glu	Ser	Ala	Gly	Glu	Trp	Gly	Ala	Glu	Val
											35		40	
Arg	Gly	Arg	Gly	Glu	Gly	Ala	Gly	Glu	Trp	Gly	Ala	Glu	Val	Pro
											45			
											50		55	
Glu	Arg	Gly	Gln	Gly	Val	Arg	Glu	Trp	Gly	Pro	Asp	Thr	Pro	Lys

65	70	75	80
His	Gly	Ala	Thr
Glu	Ala	Thr	Arg
Asp	Trp	Ala	Leu
85	90	95	
Gly	Glu	Asp	Ala
Arg	Glu	Leu	Gly
Ser	Ser	Pro	His
100	105	110	
Ser	Pro	Arg	Asp
Arg	Asp	Leu	Ser
115	120	125	
Leu	Leu	Pro	Glu
Arg	Arg	Gly	Asp
Gly	Asp	Ser	Pro
Trp	Pro	Trp	Pro
130	135	140	
Pro	Gln	Glu	Arg
Gly	Asp	Ala	Gly
Arg	Asp	Arg	Asp
145	150	155	160
Asp	Trp	Gly	Gly
Gly	Ala	Glu	Ser
Arg	Trp	Pro	Arg
165	170	175	
Glu	Trp	Gly	Pro
Gly	Pro	Ser	Pro
Ser	Gly	His	Gly
180	185	190	
Pro	Arg	Lys	Arg
Arg	Arg	Gly	Arg
195	200	205	
Ala	Ala	Ala	Thr
Ala	Ala	Ala	Thr
Ala	Ala	Ala	Ala
210	215	220	
Glu	Glu	Ala	Gly
Ala	Ser	Ala	Pro
Glu	Ser	Gln	Gly
225	230	235	240
Arg	Gly	Arg	Ala
Gly	Arg	Ala	Arg
245	250	255	
Thr	Gln	Arg	Arg
Gly	Pro	Pro	Gln
Arg	Gln	Ala	Arg
260	265	270	
Asp	Ala	Thr	Thr
Ile	Leu	Gly	Leu
Gly	Leu	Gly	Thr
275	280	285	
Ala	Asp	Gln	Ser
Gln	Ala	Leu	Pro
Ala	Leu	Ala	Gly
290	295	300	
His	Ala	His	Ala
Ile	Pro	Gly	Ala
Gly	Pro	Ala	Ala
305	310	315	320
Gly	Arg	Gly	Arg
Gly	Gly	Gly	Trp
325	330	335	
Ala	Gly	Ala	Gly
Gly	Gly	Gly	Gly
340	345	350	
Gly	Gly	Arg	Gly
Gly	Gly	Gly	Gly
355	360	365	
Pro	Arg	Glu	Gly
Gly	Ala	Ser	Ser
370	375	380	
Arg	Arg	Gly	Arg
Gly	Pro	Pro	Ala
385	390	395	400
Arg	Gly	Arg	Ala
Arg	Arg	Gly	Gln
405	410	415	
Gly	Leu	Leu	Pro
420	425	430	
Ala	Asn	Gln	Arg
Ala	Glu	Arg	Pro
435	440	445	
Pro	Val	Asn	Ala
450	455	460	
Arg	Arg	Trp	Val
465	470	475	480
Val	Gly	Gly	Phe
485	490	495	
Leu	Leu	Pro	Leu
500	505	510	
Leu	Leu	Arg	Leu
Ala	Cys	Ala	Gly
			Asp
			Pro
			Gly
			Ala
			Thr

Arg Pro Gly Pro Arg Arg Pro Ala Arg Arg Pro Arg Gly Glu Leu Ile
 515 520 525
 Pro Arg Arg Pro Asp Pro Ala Ala Pro Ser Glu Glu Gly Leu Arg Met
 530 535 540
 Glu Ser Ser Val Asp Asp Gly Ala Thr Ala Thr Ala Asp Ala Ala
 545 550 555 560
 Ser Gly Glu Ala Pro Glu Ala Gly Pro Ser Pro Ser His Ser Pro Thr
 565 570 575
 Met Cys Gln Thr Gly Gly Pro Gly Pro Pro Pro Gln Pro Pro Arg
 580 585 590
 Trp Leu Pro
 595

<210> 188
 <211> 376
 <212> PRT
 <213> Homo sapien

<400> 188
 Glu Met Arg Lys Phe Asp Val Pro Ser Met Glu Ser Thr Leu Asn Gln
 1 5 10 15
 Pro Ala Met Leu Glu Thr Leu Tyr Ser Asp Pro His Tyr Arg Ala His
 20 25 30
 Phe Pro Asn Pro Arg Pro Asp Thr Asn Lys Asp Val Tyr Lys Val Leu
 35 40 45
 Pro Glu Ser Lys Lys Ala Pro Gly Ser Gly Ala Val Phe Glu Arg Asn
 50 55 60
 Gly Pro His Ala Ser Ser Gly Val Leu Pro Leu Gly Leu Gln Pro
 65 70 75 80
 Ala Pro Gly Leu Ser Lys Ser Leu Ser Ser Gln Val Trp Gln Pro Ser
 85 90 95
 Pro Asp Pro Trp His Pro Gly Glu Gln Ser Cys Glu Leu Ser Thr Cys
 100 105 110
 Arg Gln Gln Leu Glu Leu Ile Arg Leu Gln Met Glu Gln Met Gln Leu
 115 120 125
 Gln Asn Gly Ala Met Cys His His Pro Ala Ala Phe Ala Pro Leu Leu
 130 135 140
 Pro Thr Leu Glu Pro Ala Gln Trp Leu Ser Ile Leu Asn Ser Asn Glu
 145 150 155 160
 His Leu Leu Lys Glu Lys Glu Leu Leu Ile Asp Lys Gln Arg Lys His
 165 170 175
 Ile Ser Gln Leu Glu Gln Lys Val Arg Glu Ser Glu Leu Gln Val His
 180 185 190
 Ser Ala Leu Leu Gly Arg Pro Ala Pro Phe Gly Asp Val Cys Leu Leu
 195 200 205
 Arg Leu Gln Glu Leu Gln Arg Glu Asn Thr Phe Leu Arg Ala Gln Phe
 210 215 220
 Ala Gln Lys Thr Glu Ala Leu Ser Lys Glu Lys Met Glu Leu Glu Lys
 225 230 235 240
 Lys Leu Ser Ala Ser Glu Val Glu Ile Gln Leu Ile Arg Glu Ser Leu
 245 250 255
 Lys Val Thr Leu Gln Lys His Ser Glu Glu Gly Lys Lys Gln Glu Glu
 260 265 270
 Arg Val Lys Gly Arg Asp Lys His Ile Asn Asn Leu Lys Lys Lys Cys
 275 280 285

Gln Lys Glu Ser Glu Gln Asn Arg Glu Lys Gln Gln Arg Ile Glu Thr
 290 295 300
 Leu Glu Arg Tyr Leu Ala Asp Leu Pro Thr Leu Glu Asp His Gln Lys
 305 310 315 320
 Gln Thr Glu Gln Leu Lys Asp Ala Glu Leu Lys Asn Thr Glu Leu Gln
 325 330 335
 Glu Arg Val Ala Glu Leu Glu Thr Leu Leu Glu Asp Thr Gln Ala Thr
 340 345 350
 Cys Arg Glu Lys Glu Val Gln Leu Glu Ser Leu Arg Gln Arg Glu Ala
 355 360 365
 Asp Leu Ser Ser Ala Arg His Arg
 370 375

<210> 189

<211> 160

<212> PRT

<213> Homo sapien

<400> 189

Met Leu Glu Ala His Arg Arg Gln Arg His Pro Phe Leu Leu Leu Gly
 1 5 10 15
 Thr Thr Ala Asn Arg Thr Gln Ser Leu Asn Tyr Gly Cys Ile Val Glu
 20 25 30
 Asn Pro Gln Thr His Glu Val Leu His Tyr Val Glu Lys Pro Ser Thr
 35 40 45
 Phe Ile Ser Asp Ile Ile Asn Cys Gly Ile Tyr Leu Phe Ser Pro Glu
 50 55 60
 Ala Leu Lys Pro Leu Arg Asp Val Phe Gln Arg Asn Gln Gln Asp Gly
 65 70 75 80
 Gln Leu Glu Asp Ser Pro Gly Leu Trp Pro Gly Ala Gly Thr Ile Arg
 85 90 95
 Leu Glu Gln Asp Val Phe Ser Ala Leu Ala Gly Gln Gly Gln Ile Tyr
 100 105 110
 Val His Leu Thr Asp Gly Ile Trp Ser Gln Ile Lys Ser Ala Gly Ser
 115 120 125
 Ala Leu Tyr Ala Ser Arg Leu Tyr Leu Ser Arg Tyr Gln Asp Thr His
 130 135 140
 Pro Glu Arg Leu Ala Lys His Thr Pro Gly Gly Pro Trp Ile Arg Gly
 145 150 155 160

<210> 190

<211> 146

<212> PRT

<213> Homo sapien

<400> 190

Met Asp Pro Arg Ala Ser Leu Leu Leu Gly Asn Val Tyr Ile His
 1 5 10 15
 Pro Thr Ala Lys Val Ala Pro Ser Ala Val Leu Gly Pro Asn Val Ser
 20 25 30
 Ile Gly Lys Gly Val Thr Val Gly Glu Gly Val Arg Leu Arg Glu Ser
 35 40 45
 Ile Val Leu His Gly Ala Thr Leu Gln Glu His Thr Cys Val Leu His
 50 55 60
 Ser Ile Val Gly Trp Gly Ser Thr Val Gly Arg Trp Ala Arg Val Glu

65	70	75	80
Gly Thr Pro Ser Asp Pro Asn Pro Asn Asp Pro Arg Ala Arg Met Asp			
85	90	95	
Ser Glu Ser Leu Phe Lys Asp Gly Lys Leu Leu Pro Ala Ile Thr Ile			
100	105	110	
Leu Gly Cys Arg Val Arg Ile Pro Ala Glu Val Leu Ile Leu Asn Ser			
115	120	125	
Ile Val Leu Pro His Lys Glu Leu Ser Arg Ser Phe Thr Asn Gln Ile			
130	135	140	
Ile Leu			
145			
 <210> 191			
 <211> 704			
 <212> PRT			
 <213> Homo sapien			
 <400> 191			
Glu Gly Gly Cys Ala Ala Gly Arg Gly Arg Glu Leu Glu Pro Glu Leu			
1	5	10	15
Glu Pro Gly Pro Gly Pro Gly Ser Ala Leu Glu Pro Gly Glu Glu Phe			
20	25	30	
Glu Ile Val Asp Arg Ser Gln Leu Pro Gly Pro Gly Asp Leu Arg Ser			
35	40	45	
Ala Thr Arg Pro Arg Ala Ala Glu Gly Trp Ser Ala Pro Ile Leu Thr			
50	55	60	
Leu Ala Arg Arg Ala Thr Gly Asn Leu Ser Ala Ser Cys Gly Ser Ala			
65	70	75	80
Leu Arg Ala Ala Ala Gly Leu Gly Gly Asp Ser Gly Asp Gly Thr			
85	90	95	
Ala Arg Ala Ala Ser Lys Cys Gln Met Met Glu Glu Arg Ala Asn Leu			
100	105	110	
Met His Met Met Lys Leu Ser Ile Lys Val Leu Leu Gln Ser Ala Leu			
115	120	125	
Ser Leu Gly Arg Ser Leu Asp Ala Asp His Ala Pro Leu Gln Gln Phe			
130	135	140	
Phe Val Val Met Glu His Cys Leu Lys His Gly Leu Lys Val Lys Lys			
145	150	155	160
Ser Phe Ile Gly Gln Asn Lys Ser Phe Phe Gly Pro Leu Glu Leu Val			
165	170	175	
Glu Lys Leu Cys Pro Glu Ala Ser Asp Ile Ala Thr Ser Val Arg Asn			
180	185	190	
Leu Pro Glu Leu Lys Thr Ala Val Gly Arg Gly Arg Ala Trp Leu Tyr			
195	200	205	
Leu Ala Leu Met Gln Lys Lys Leu Ala Asp Tyr Leu Lys Val Leu Ile			
210	215	220	
Asp Asn Lys His Leu Leu Ser Glu Phe Tyr Glu Pro Glu Ala Leu Met			
225	230	235	240
Met Glu Glu Glu Gly Met Val Ile Val Gly Leu Leu Val Gly Leu Asn			
245	250	255	
Val Leu Asp Ala Asn Leu Cys Leu Lys Gly Glu Asp Leu Asp Ser Gln			
260	265	270	
Val Gly Val Ile Asp Phe Ser Leu Tyr Leu Lys Asp Val Gln Asp Leu			
275	280	285	
Asp Gly Gly Lys Glu His Glu Arg Ile Thr Asp Val Leu Asp Gln Lys			

290	295	300
Asn Tyr Val Glu Glu Leu Asn Arg His Leu Ser Cys Thr Val Gly Asp		
305	310	315
Leu Gln Thr Lys Ile Asp Gly Leu Glu Lys Thr Asn Ser Lys Leu Gln		320
325	330	335
Glu Glu Leu Ser Ala Ala Thr Asp Arg Ile Cys Ser Leu Gln Glu Glu		
340	345	350
Gln Gln Gln Leu Arg Glu Gln Asn Glu Leu Ile Arg Glu Arg Ser Glu		
355	360	365
Lys Ser Val Glu Ile Thr Lys Gln Asp Thr Lys Val Glu Leu Glu Thr		
370	375	380
Tyr Lys Gln Thr Arg Gln Gly Leu Asp Glu Met Tyr Ser Asp Val Trp		
385	390	395
Lys Gln Leu Lys Glu Glu Lys Val Arg Leu Glu Leu Glu Lys Glu		400
405	410	415
Leu Glu Leu Gln Ile Gly Met Lys Thr Glu Met Glu Ile Ala Met Lys		
420	425	430
Leu Leu Glu Lys Asp Thr His Glu Lys Gln Asp Thr Leu Val Ala Leu		
435	440	445
Arg Gln Gln Leu Glu Glu Val Lys Ala Ile Asn Leu Gln Met Phe His		
450	455	460
Lys Ala Gln Asn Ala Glu Ser Ser Leu Gln Gln Lys Asn Glu Ala Ile		
465	470	475
Thr Ser Phe Glu Gly Lys Thr Asn Gln Val Met Ser Ser Met Lys Gln		480
485	490	495
Met Glu Glu Arg Leu Gln His Ser Glu Arg Ala Arg Gln Gly Ala Glu		
500	505	510
Glu Arg Ser His Lys Leu Gln Gln Glu Leu Gly Gly Arg Ile Gly Ala		
515	520	525
Leu Gln Leu Gln Leu Ser Gln Leu His Glu Gln Cys Ser Ser Leu Glu		
530	535	540
Lys Glu Leu Lys Ser Glu Lys Glu Gln Arg Gln Ala Leu Gln Arg Glu		
545	550	555
Leu Gln His Glu Lys Asp Thr Ser Ser Leu Leu Arg Met Glu Leu Gln		560
565	570	575
Gln Val Glu Gly Leu Lys Lys Glu Leu Arg Glu Leu Gln Asp Glu Lys		
580	585	590
Ala Glu Leu Gln Lys Ile Cys Glu Glu Gln Glu Gln Ala Leu Gln Glu		
595	600	605
Met Gly Leu His Leu Ser Gln Ser Lys Leu Lys Met Glu Asp Ile Lys		
610	615	620
Glu Val Asn Gln Ala Leu Lys Gly His Ala Trp Leu Lys Asp Asp Glu		
625	630	635
Ala Thr His Cys Arg Gln Cys Glu Lys Glu Phe Ser Ile Ser Arg Arg		640
645	650	655
Lys His His Cys Arg Asn Cys Gly His Ile Phe Cys Asn Thr Cys Ser		
660	665	670
Ser Asn Glu Leu Ala Leu Pro Ser Tyr Pro Lys Pro Val Arg Val Cys		
675	680	685
Asp Ser Cys His Thr Leu Leu Gln Arg Cys Ser Ser Thr Ala Ser		
690	695	700

<210> 192

<211> 331

<212> PRT

100

<213> Homo sapien

<400> 192

Arg Ala Gly Ala Ser Ala Met Ala Leu Arg Lys Glu Leu Leu Lys Ser
 1 5 10 15
 Ile Tyr Tyr Ala Phe Thr Ala Leu Asp Val Glu Lys Ser Gly Lys Val
 20 25 30
 Ser Lys Ser Gln Leu Lys Val Leu Ser His Asn Leu Tyr Thr Val Leu
 35 40 45
 His Ile Pro His Asp Pro Val Ala Leu Glu Glu His Phe Arg Asp Asp
 50 55 60
 Asp Asp Gly Pro Val Ser Ser Gln Gly Tyr Met Pro Tyr Leu Asn Lys
 65 70 75 80
 Tyr Ile Leu Asp Lys Val Glu Glu Gly Ala Phe Val Lys Glu His Phe
 85 90 95
 Asp Glu Leu Cys Trp Thr Leu Thr Ala Lys Lys Asn Tyr Arg Ala Asp
 100 105 110
 Ser Asn Gly Asn Ser Met Leu Ser Asn Gln Asp Ala Phe Arg Leu Trp
 115 120 125
 Cys Leu Phe Asn Phe Leu Ser Glu Asp Lys Tyr Pro Leu Ile Met Val
 130 135 140
 Pro Asp Glu Val Glu Tyr Leu Leu Lys Lys Val Leu Ser Ser Met Ser
 145 150 155 160
 Leu Glu Val Ser Leu Gly Glu Leu Glu Leu Leu Ala Gln Glu Ala
 165 170 175
 Gln Val Ala Gln Thr Thr Gly Gly Leu Ser Val Trp Gln Phe Leu Glu
 180 185 190
 Leu Phe Asn Ser Gly Arg Cys Leu Arg Gly Val Gly Arg Asp Thr Leu
 195 200 205
 Ser Met Ala Ile His Glu Val Tyr Gln Glu Leu Ile Gln Asp Val Leu
 210 215 220
 Lys Gln Gly Tyr Leu Trp Lys Arg Gly His Leu Arg Arg Asn Trp Ala
 225 230 235 240
 Glu Arg Trp Phe Gln Leu Gln Pro Ser Cys Leu Cys Tyr Phe Gly Ser
 245 250 255
 Glu Glu Cys Lys Glu Lys Arg Gly Ile Ile Pro Leu Asp Ala His Cys
 260 265 270
 Cys Val Glu Val Leu Pro Asp Arg Asp Gly Lys Arg Cys Met Phe Cys
 275 280 285
 Val Lys Thr Ala Thr Arg Thr Tyr Glu Met Ser Ala Ser Asp Thr Arg
 290 295 300
 Gln Arg Gln Glu Trp Thr Ala Ala Ile Gln Met Ala Ile Arg Leu Gln
 305 310 315 320
 Ala Glu Gly Lys Thr Ser Leu His Lys Asp Leu
 325 330

<210> 193

<211> 475

<212> PRT

<213> Homo sapien

<400> 193

Lys Asn Ser Pro Leu Leu Ser Val Ser Ser Gln Thr Ile Thr Lys Glu
 1 5 10 15
 Asn Asn Arg Asn Val His Leu Glu His Ser Glu Gln Asn Pro Gly Ser

	20	25	30
Ser Ala Gly Asp Thr Ser Ala Ala His Gln Val Val Leu Gly Glu Asn			
35	40	45	
Leu Ile Ala Thr Ala Leu Cys Leu Ser Gly Ser Gly Ser Gln Ser Asp			
50	55	60	
Leu Lys Asp Val Ala Ser Thr Ala Gly Glu Glu Gly Asp Thr Ser Leu			
65	70	75	80
Arg Glu Ser Leu His Pro Val Thr Arg Ser Leu Lys Ala Gly Cys His			
85	90	95	
Thr Lys Gln Leu Ala Ser Arg Asn Cys Ser Glu Glu Lys Ser Pro Gln			
100	105	110	
Thr Ser Ile Leu Lys Glu Gly Asn Arg Asp Thr Ser Leu Asp Phe Arg			
115	120	125	
Pro Val Val Ser Pro Ala Asn Gly Val Glu Gly Val Arg Val Asp Gln			
130	135	140	
Asp Asp Asp Gln Asp Ser Ser Leu Lys Leu Ser Gln Asn Ile Ala			
145	150	155	160
Val Gln Thr Asp Phe Lys Thr Ala Asp Ser Glu Val Asn Thr Asp Gln			
165	170	175	
Asp Ile Glu Lys Asn Leu Asp Lys Met Met Thr Glu Arg Thr Leu Leu			
180	185	190	
Lys Glu Arg Tyr Gln Glu Val Leu Asp Lys Gln Arg Gln Val Glu Asn			
195	200	205	
Gln Leu Gln Val Gln Leu Lys Gln Leu Gln Gln Arg Arg Glu Glu Glu			
210	215	220	
Met Lys Asn His Gln Glu Ile Leu Lys Ala Ile Gln Asp Val Thr Ile			
225	230	235	240
Lys Arg Glu Glu Thr Lys Lys Ile Glu Lys Glu Lys Lys Glu Phe			
245	250	255	
Leu Gln Lys Glu Gln Asp Leu Lys Ala Glu Ile Glu Lys Leu Cys Glu			
260	265	270	
Lys Gly Arg Arg Glu Val Trp Glu Met Glu Leu Asp Arg Leu Lys Asn			
275	280	285	
Gln Asp Gly Glu Ile Asn Arg Asn Ile Met Glu Glu Thr Glu Arg Ala			
290	295	300	
Trp Lys Ala Glu Ile Leu Ser Leu Glu Ser Arg Lys Glu Leu Leu Val			
305	310	315	320
Leu Lys Leu Glu Ala Glu Lys Glu Ala Glu Leu His Leu Thr Tyr			
325	330	335	
Leu Lys Ser Thr Pro Pro Thr Leu Glu Thr Val Arg Ser Lys Gln Glu			
340	345	350	
Trp Glu Thr Arg Leu Asn Gly Val Arg Ile Met Lys Lys Asn Val Arg			
355	360	365	
Asp Gln Phe Asn Ser His Ile Gln Leu Val Arg Asn Gly Ala Lys Leu			
370	375	380	
Ser Ser Leu Pro Gln Ile Pro Thr Pro Thr Leu Pro Pro Pro Pro Ser			
385	390	395	400
Glu Thr Asp Phe Met Leu Gln Val Phe Gln Pro Ser Pro Ser Leu Ala			
405	410	415	
Pro Arg Met Pro Phe Ser Ile Gly Gln Val Thr Met Pro Met Val Met			
420	425	430	
Pro Ser Ala Asp Pro Arg Ser Leu Ser Phe Pro Ile Leu Asn Pro Ala			
435	440	445	
Leu Ser Gln Pro Ser Gln Pro Ser Ser Pro Leu Pro Gly Ser His Gly			
450	455	460	

Arg Asn Ser Pro Gly Leu Gly Ser Leu Val Ser
 465 470 475

 <210> 194
 <211> 241
 <212> PRT
 <213> Homo sapien

 <400> 194
 Met Ser Gly Glu Ser Ala Arg Ser Leu Gly Lys Gly Ser Ala Pro Pro
 1 5 10 15
 Gly Pro Val Pro Glu Gly Ser Ile Arg Ile Tyr Ser Met Arg Phe Cys
 20 25 30
 Pro Phe Ala Glu Arg Thr Arg Leu Val Leu Lys Ala Lys Gly Ile Arg
 35 40 45
 His Glu Val Ile Asn Ile Asn Leu Lys Asn Lys Pro Glu Trp Phe Phe
 50 55 60
 Lys Lys Asn Pro Phe Gly Leu Val Pro Val Leu Glu Asn Ser Gln Gly
 65 70 75 80
 Gln Leu Ile Tyr Glu Ser Ala Ile Thr Cys Glu Tyr Leu Asp Glu Ala
 85 90 95
 Tyr Pro Gly Lys Lys Leu Leu Pro Asp Asp Pro Tyr Glu Lys Ala Cys
 100 105 110
 Gln Lys Met Ile Leu Glu Leu Phe Ser Lys Val Pro Ser Leu Val Gly
 115 120 125
 Ser Phe Ile Arg Ser Gln Asn Lys Glu Asp Tyr Ala Gly Leu Lys Glu
 130 135 140
 Glu Phe Arg Lys Glu Phe Thr Lys Leu Glu Glu Val Leu Thr Asn Lys
 145 150 155 160
 Lys Thr Thr Phe Phe Gly Gly Asn Ser Ile Ser Met Ile Asp Tyr Leu
 165 170 175
 Ile Trp Pro Trp Phe Glu Arg Leu Glu Ala Met Lys Leu Asn Glu Cys
 180 185 190
 Val Asp His Thr Pro Lys Leu Lys Leu Trp Met Ala Ala Met Lys Glu
 195 200 205
 Asp Pro Thr Val Ser Ala Leu Leu Thr Ser Glu Lys Asp Trp Gln Gly
 210 215 220
 Phe Leu Glu Leu Tyr Leu Gln Asn Ser Pro Glu Ala Cys Asp Tyr Gly
 225 230 235 240
 Leu

<210> 195
 <211> 138
 <212> PRT
 <213> Homo sapien

 <400> 195
 Gln Thr Lys Ile Leu Glu Glu Asp Leu Glu Gln Ile Lys Leu Ser Leu
 1 5 10 15
 Arg Glu Arg Gly Arg Glu Leu Thr Thr Gln Arg Gln Leu Met Gln Glu
 20 25 30
 Arg Ala Glu Glu Gly Lys Gly Pro Ser Lys Ala Gln Arg Gly Ser Leu
 35 40 45
 Glu His Met Lys Leu Ile Leu Arg Asp Lys Glu Lys Glu Val Glu Cys

50	55	60
Gln Gln Glu His Ile His Glu Leu Gln Glu Leu Lys Asp Gln Leu Glu		
65	70	75
Gln Gln Leu Gln Gly Leu His Arg Lys Val Gly Glu Thr Ser Leu Leu		
85	90	95
Leu Ser Gln Arg Glu Gln Glu Ile Val Val Leu Gln Gln Gln Leu Gln		
100	105	110
Glu Ala Arg Glu Gln Gly Glu Leu Lys Glu Gln Ser Leu Gln Ser Gln		
115	120	125
Leu Asp Glu Ala Gln Arg Ala Leu Ala Gln		
130	135	
<210> 196		
<211> 102		
<212> PRT		
<213> Homo sapien		

<400> 196		
Met Ser Lys Arg Lys Ala Pro Gln Glu Thr Leu Asn Gly Gly Ile Thr		
1	5	10
Asp Met Leu Thr Glu Leu Ala Asn Phe Glu Lys Asn Val Ser Gln Ala		
20	25	30
Ile His Lys Tyr Asn Ala Tyr Arg Lys Ala Ala Ser Val Ile Ala Lys		
35	40	45
Tyr Pro His Lys Ile Lys Ser Gly Ala Glu Ala Lys Lys Leu Pro Gly		
50	55	60
Val Gly Thr Lys Ile Ala Glu Lys Ile Asp Glu Phe Leu Ala Thr Gly		
65	70	75
Lys Leu Arg Lys Leu Glu Lys Ile Arg Gln Asp Asp Thr Ser Ser		
85	90	95
Ile Asn Phe Leu Thr Arg		
100		

<210> 197		
<211> 138		
<212> PRT		
<213> Homo sapien		
<400> 197		
Glu Ala Asn Glu Val Thr Asp Ser Ala Tyr Met Gly Ser Glu Ser Thr		
1	5	10
Tyr Ser Glu Cys Glu Thr Phe Thr Asp Glu Asp Thr Ser Thr Leu Val		
20	25	30
His Pro Glu Leu Gln Pro Glu Gly Asp Ala Asp Ser Ala Gly Gly Ser		
35	40	45
Ala Val Pro Ser Glu Cys Leu Asp Ala Met Glu Glu Pro Asp His Gly		
50	55	60
Ala Leu Leu Leu Pro Gly Arg Pro His Pro His Gly Gln Ser Val		
65	70	75
Ile Thr Val Ile Gly Gly Glu His Phe Glu Asp Tyr Gly Glu Gly		
85	90	95
Ser Glu Ala Glu Leu Ser Pro Glu Thr Leu Cys Asn Gly Gln Leu Gly		
100	105	110
Cys Ser Asp Pro Ala Phe Leu Thr Pro Ser Pro Thr Lys Arg Leu Ser		
115	120	125

Ser Lys Lys Val Ala Arg Tyr Leu His Gln
 130 135

<210> 198

<211> 100

<212> PRT

<213> Homo sapien

<400> 198

Met Gly Asp Val Lys Asn Phe Leu Tyr Ala Trp Cys Gly Lys Arg Lys
 1 5 10 15

Met Thr Pro Ser Tyr Glu Ile Arg Ala Val Gly Asn Lys Asn Arg Gln
 20 25 30

Lys Phe Met Cys Glu Val Gln Val Glu Gly Tyr Asn Tyr Thr Gly Met
 35 40 45

Gly Asn Ser Thr Asn Lys Lys Asp Ala Gln Ser Asn Ala Ala Arg Asp
 50 55 60

Phe Val Asn Tyr Leu Val Arg Ile Asn Glu Ile Lys Ser Glu Glu Val
 65 70 75 80

Pro Ala Phe Gly Val Ala Ser Pro Pro Pro Leu Thr Asp Thr Pro Asp
 85 90 95

Thr Thr Ala Asn

100

<210> 199

<211> 127

<212> PRT

<213> Homo sapien

<400> 199

Met Val Lys Glu Thr Thr Tyr Asp Val Leu Gly Val Lys Pro Asn
 1 5 10 15

Ala Thr Gln Glu Glu Leu Lys Lys Ala Tyr Arg Lys Leu Ala Leu Lys
 20 25 30

Tyr His Pro Asp Lys Asn Pro Asn Glu Gly Glu Lys Phe Gln Ile
 35 40 45

Ser Gln Ala Tyr Glu Val Leu Ser Asp Ala Lys Lys Arg Glu Leu Tyr
 50 55 60

Asp Lys Gly Gly Glu Gln Ala Ile Lys Glu Gly Gly Ala Gly Gly Gly
 65 70 75 80

Phe Gly Ser Pro Met Asp Ile Phe Asp Met Phe Phe Gly Gly Gly
 85 90 95

Arg Met Gln Arg Glu Arg Arg Gly Lys Asn Val Val His Gln Leu Ser
 100 105 110

Val Thr Leu Glu Asp Leu Tyr Asn Gln Ala Thr Arg Lys Leu Ala
 115 120 125

<210> 200

<211> 90

<212> PRT

<213> Homo sapien

<400> 200

Met Ala Cys Pro Leu Asp Gln Ala Ile Gly Leu Leu Val Ala Ile Phe
 1 5 10 15

His Lys Tyr Ser Gly Arg Glu Gly Asp Lys His Thr Leu Ser Lys Lys
 20 25 30
 Glu Leu Lys Glu Leu Ile Gln Lys Glu Leu Thr Ile Gly Ser Lys Leu
 35 40 45
 Gln Asp Ala Glu Ile Ala Arg Leu Met Glu Asp Leu Asp Arg Asn Lys
 50 55 60
 Asp Gln Glu Val Asn Phe Gln Glu Tyr Val Thr Phe Leu Gly Ala Leu
 65 70 75 80
 Ala Leu Ile Tyr Asn Glu Ala Leu Lys Gly
 85 90

<210> 201

<211> 120

<212> PRT

<213> Homo sapien

<400> 201

Met Glu Thr Pro Ser Gln Arg Arg Ala Thr Arg Ser Gly Ala Gln Ala
 1 5 10 15
 Ser Ser Thr Pro Leu Ser Pro Thr Arg Ile Thr Arg Leu Gln Glu Lys
 20 25 30
 Glu Asp Leu Gln Glu Leu Asn Asp Arg Leu Ala Val Tyr Ile Asp Arg
 35 40 45
 Val Arg Ser Leu Glu Thr Glu Asn Ala Gly Leu Arg Leu Arg Ile Thr
 50 55 60
 Glu Ser Glu Glu Val Val Ser Arg Glu Val Ser Gly Ile Lys Ala Ala
 65 70 75 80
 Tyr Glu Ala Glu Leu Gly Asp Ala Arg Lys Thr Leu Asp Ser Val Ala
 85 90 95
 Lys Glu Arg Ala Arg Leu Gln Leu Glu Leu Ser Lys Val Arg Glu Glu
 100 105 110
 Phe Lys Glu Leu Lys Ala Arg Asn
 115 120

<210> 202

<211> 177

<212> PRT

<213> Homo sapien

<400> 202

Met Ala Ala Gly Val Glu Ala Ala Ala Glu Val Ala Ala Thr Glu Ile
 1 5 10 15
 Lys Met Glu Glu Glu Ser Gly Ala Pro Gly Val Pro Ser Gly Asn Gly
 20 25 30
 Ala Pro Gly Pro Lys Gly Glu Gly Glu Arg Pro Ala Gln Asn Glu Lys
 35 40 45
 Arg Lys Glu Lys Asn Ile Lys Arg Gly Gly Asn Arg Phe Glu Pro Tyr
 50 55 60
 Ala Asn Pro Thr Lys Arg Tyr Arg Ala Phe Ile Thr Asn Ile Pro Phe
 65 70 75 80
 Asp Val Lys Trp Gln Ser Leu Lys Asp Leu Val Lys Glu Lys Val Gly
 85 90 95
 Glu Val Thr Tyr Val Glu Leu Leu Met Asp Ala Glu Gly Lys Ser Arg
 100 105 110
 Gly Cys Ala Val Val Glu Phe Lys Met Glu Glu Ser Met Lys Lys Ala

115	120	125
Ala Glu Val Leu Asn Lys His Ser Leu Ser Gly Arg Pro Leu Lys Val		
130	135	140
Lys Glu Asp Pro Asp Gly Glu His Ala Arg Arg Ala Met Gln Lys Ala		
145	150	155
Gly Arg Leu Gly Ser Thr Val Phe Val Ala Asn Leu Asp Tyr Lys Val		
165	170	175
Gly		

<210> 203

<211> 164

<212> PRT

<213> Homo sapien

<400> 203

Met Arg Leu Ala Val Gly Ala Leu Leu Val Cys Ala Val Leu Gly Leu		
1	5	10
Cys Leu Ala Val Pro Asp Lys Thr Val Arg Trp Cys Ala Val Ser Glu		
20	25	30
His Glu Ala Thr Lys Cys Gln Ser Phe Arg Asp His Met Lys Ser Val		
35	40	45
Ile Pro Ser Asp Gly Pro Ser Val Ala Cys Val Lys Lys Ala Ser Tyr		
50	55	60
Leu Asp Cys Ile Arg Ala Ile Ala Ala Asn Glu Ala Asp Ala Val Thr		
65	70	75
Leu Asp Ala Gly Leu Val Tyr Asp Ala Tyr Leu Ala Pro Asn Asn Leu		
85	90	95
Lys Pro Val Val Ala Glu Phe Tyr Gly Ser Lys Glu Asp Pro Gln Thr		
100	105	110
Phe Tyr Tyr Ala Val Ala Val Val Lys Lys Asp Ser Gly Phe Gln Met		
115	120	125
Asn Gln Leu Arg Gly Lys Lys Ser Cys His Thr Gly Leu Gly Arg Ser		
130	135	140
Ala Gly Trp Asn Ile Pro Ile Gly Leu Leu Tyr Cys Asp Leu Pro Glu		
145	150	155
Pro Arg Lys Pro		

<210> 204

<211> 241

<212> PRT

<213> Homo sapien

<400> 204

Met Ser Gly Glu Ser Ala Arg Ser Leu Gly Lys Gly Ser Ala Pro Pro		
1	5	10
Gly Pro Val Pro Glu Gly Ser Ile Arg Ile Tyr Ser Met Arg Phe Cys		
20	25	30
Pro Phe Ala Glu Arg Thr Arg Leu Val Leu Lys Ala Lys Gly Ile Arg		
35	40	45
His Glu Val Ile Asn Ile Asn Leu Lys Asn Lys Pro Glu Trp Phe Phe		
50	55	60
Lys Lys Asn Pro Phe Gly Leu Val Pro Val Leu Glu Asn Ser Gln Gly		
65	70	75
		80

Gln Leu Ile Tyr Glu Ser Ala Ile Thr Cys Glu Tyr Leu Asp Glu Ala
 85 90 95
 Tyr Pro Gly Lys Lys Leu Leu Pro Asp Asp Pro Tyr Glu Lys Ala Cys
 100 105 110
 Gln Lys Met Ile Leu Glu Leu Phe Ser Lys Val Pro Ser Leu Val Gly
 115 120 125
 Ser Phe Ile Arg Ser Gln Asn Lys Glu Asp Tyr Asp Gly Leu Lys Glu
 130 135 140
 Glu Phe Arg Lys Glu Phe Thr Lys Leu Glu Glu Val Leu Thr Asn Lys
 145 150 155 160
 Lys Thr Thr Phe Phe Gly Asn Ser Ile Ser Met Ile Asp Tyr Leu
 165 170 175
 Ile Trp Pro Trp Phe Glu Arg Leu Glu Ala Met Lys Leu Asn Glu Cys
 180 185 190
 Val Asp His Thr Pro Lys Leu Lys Leu Trp Met Ala Ala Met Lys Glu
 195 200 205
 Asp Pro Thr Val Ser Ala Leu Leu Thr Ser Glu Lys Asp Trp Gln Gly
 210 215 220
 Phe Leu Glu Leu Tyr Leu Gln Asn Ser Pro Glu Ala Cys Asp Tyr Gly
 225 230 235 240
 Leu

<210> 205

<211> 160

<212> PRT

<213> Homo sapien

<400> 205

Met Gln Ile Phe Val Lys Thr Leu Thr Gly Lys Thr Ile Thr Leu Glu
 1 5 10 15
 Val Glu Pro Ser Asp Thr Ile Glu Asn Val Lys Ala Lys Ile Gln Asp
 20 25 30
 Lys Glu Gly Ile Pro Pro Asp Gln Gln Arg Leu Ile Phe Ala Gly Lys
 35 40 45
 Gln Leu Glu Asp Gly Arg Thr Leu Ser Asp Tyr Asn Ile Gln Lys Glu
 50 55 60
 Ser Thr Leu His Leu Val Leu Arg Leu Arg Gly Gly Met Gln Ile Phe
 65 70 75 80
 Val Lys Thr Leu Thr Gly Lys Thr Ile Thr Leu Glu Val Glu Pro Ser
 85 90 95
 Asp Thr Ile Glu Asn Val Lys Ala Lys Ile Gln Asp Lys Glu Gly Ile
 100 105 110
 Pro Pro Asp Gln Gln Arg Leu Ile Phe Ala Gly Lys Gln Leu Glu Asp
 115 120 125
 Gly Arg Thr Leu Ser Asp Tyr Asn Ile Gln Lys Glu Ser Thr Leu His
 130 135 140
 Leu Val Leu Arg Leu Arg Gly Gly Met Gln Ile Phe Val Lys Thr Leu
 145 150 155 160

<210> 206

<211> 197

<212> PRT

<213> Homo sapien

<400> 206

Thr Ser Pro Ser Glu Ala Cys Ala Pro Leu Leu Ile Ser Leu Ser Thr
 1 5 10 15
 Leu Ile Tyr Asn Gly Ala Leu Pro Cys Gln Cys Asn Pro Gln Gly Ser
 20 25 30
 Leu Ser Ser Glu Cys Asn Pro His Gly Gly Gln Cys Leu Cys Lys Pro
 35 40 45
 Gly Val Val Gly Arg Arg Cys Asp Leu Cys Ala Pro Gly Tyr Tyr Gly
 50 55 60
 Phe Gly Pro Thr Gly Cys Gln Gly Ala Cys Leu Gly Cys Arg Asp His
 65 70 75 80
 Thr Gly Gly Glu His Cys Glu Arg Cys Ile Ala Gly Phe His Gly Asp
 85 90 95
 Pro Arg Leu Pro Tyr Gly Gly Gln Cys Arg Pro Cys Pro Cys Pro Glu
 100 105 110
 Gly Pro Gly Ser Gln Arg His Phe Ala Thr Ser Cys His Gln Asp Glu
 115 120 125
 Tyr Ser Gln Gln Ile Val Cys His Cys Arg Ala Gly Tyr Thr Gly Leu
 130 135 140
 Arg Cys Glu Ala Cys Ala Pro Gly His Phe Gly Asp Pro Ser Arg Pro
 145 150 155 160
 Gly Gly Arg Cys Gln Leu Cys Glu Cys Ser Gly Asn Ile Asp Pro Met
 165 170 175
 Asp Pro Asp Ala Cys Asp Pro His Thr Gly Gln Cys Leu Arg Cys Leu
 180 185 190
 His His Thr Glu Gly
 195

<210> 207

<211> 175

<212> PRT

<213> Homo sapien

<400> 207

Ile Ile Arg Gln Gln Gly Leu Ala Ser Tyr Asp Tyr Val Arg Arg Arg
 1 5 10 15
 Leu Thr Ala Glu Asp Leu Phe Glu Ala Arg Ile Ile Ser Leu Glu Thr
 20 25 30
 Tyr Asn Leu Leu Arg Glu Gly Thr Arg Ser Leu Arg Glu Ala Leu Glu
 35 40 45
 Ala Glu Ser Ala Trp Cys Tyr Leu Tyr Gly Thr Gly Ser Val Ala Gly
 50 55 60
 Val Tyr Leu Pro Gly Ser Arg Gln Thr Leu Ser Ile Tyr Gln Ala Leu
 65 70 75 80
 Lys Lys Gly Leu Leu Ser Ala Glu Val Ala Arg Leu Leu Glu Ala
 85 90 95
 Gln Ala Ala Thr Gly Phe Leu Leu Asp Pro Val Lys Gly Glu Arg Leu
 100 105 110
 Thr Val Asp Glu Ala Val Arg Lys Gly Leu Val Gly Pro Glu Leu His
 115 120 125
 Asp Arg Leu Leu Ser Ala Glu Arg Ala Val Thr Gly Tyr Arg Asp Pro
 130 135 140
 Tyr Thr Glu Gln Thr Ile Ser Leu Phe Gln Ala Met Lys Lys Glu Leu
 145 150 155 160
 Ile Pro Thr Glu Glu Ala Leu Arg Leu Trp Met Pro Ser Trp Pro

165

170

175

<210> 208

<211> 177

<212> PRT

<213> Homo sapien

<400> 208

Met Ala Ala Gly Val Glu Ala Ala Ala Glu Val Ala Ala Thr Glu Ile
 1 5 10 15
 Lys Met Glu Glu Glu Ser Gly Ala Pro Gly Val Pro Ser Gly Asn Gly
 20 25 30
 Ala Pro Gly Pro Lys Gly Glu Gly Glu Arg Pro Ala Gln Asn Glu Lys
 35 40 45
 Arg Lys Glu Lys Asn Ile Lys Arg Gly Gly Asn Arg Phe Glu Pro Tyr
 50 55 60
 Ala Asn Pro Thr Lys Arg Tyr Arg Ala Phe Ile Thr Asn Ile Pro Phe
 65 70 75 80
 Asp Val Lys Trp Gln Ser Leu Lys Asp Leu Val Lys Glu Lys Val Gly
 85 90 95
 Glu Val Thr Tyr Val Glu Leu Leu Met Asp Ala Glu Gly Lys Ser Arg
 100 105 110
 Gly Cys Ala Val Val Glu Phe Lys Met Glu Glu Ser Met Lys Lys Ala
 115 120 125
 Ala Glu Val Leu Asn Lys His Ser Leu Ser Gly Arg Pro Leu Lys Val
 130 135 140
 Lys Glu Asp Pro Asp Gly Glu His Ala Arg Arg Ala Met Gln Lys Val
 145 150 155 160
 Met Ala Thr Thr Gly Gly Met Gly Met Gly Pro Gly Gly Pro Gly Met
 165 170 175
 Ile

<210> 209

<211> 196

<212> PRT

<213> Homo sapien

<400> 209

Asp Leu Gln Asp Met Phe Ile Val His Thr Ile Glu Glu Ile Glu Gly
 1 5 10 15
 Leu Ile Ser Ala His Asp Gln Phe Lys Ser Thr Leu Pro Asp Ala Asp
 20 25 30
 Arg Glu Arg Glu Ala Ile Leu Ala Ile His Lys Glu Ala Gln Arg Ile
 35 40 45
 Ala Glu Ser Asn His Ile Lys Leu Ser Gly Ser Asn Pro Tyr Thr Thr
 50 55 60
 Val Thr Pro Gln Ile Ile Asn Ser Lys Trp Glu Lys Val Gln Gln Leu
 65 70 75 80
 Val Pro Lys Arg Asp His Ala Leu Leu Glu Glu Gln Ser Lys Gln Gln
 85 90 95
 Ser Asn Glu His Leu Arg Arg Gln Phe Ala Ser Gln Ala Asn Val Val
 100 105 110
 Gly Pro Trp Ile Gln Thr Lys Met Glu Glu Ile Gly Arg Ile Ser Ile
 115 120 125

Glu Met Asn Gly Thr Leu Glu Asp Gln Leu Ser His Leu Lys Gln Tyr
 130 135 140
 Glu Arg Ser Ile Val Asp Tyr Lys Pro Asn Leu Asp Leu Leu Glu Gln
 145 150 155 160
 Gln His Gln Leu Ile Gln Glu Ala Leu Ile Phe Asp Asn Lys His Thr
 165 170 175
 Asn Tyr Thr Met Glu His Ile Arg Val Gly Trp Glu Gln Leu Leu Thr
 180 185 190
 Thr Ile Ala Arg
 195
 <210> 210
 <211> 156
 <212> PRT
 <213> Homo sapien

 <400> 210
 Lys Leu Thr Ile Glu Ser Thr Pro Phe Asn Val Ala Glu Gly Lys Glu
 1 5 10 15
 Val Leu Leu Ala His Asn Leu Pro Gln Asn Arg Ile Gly Tyr Ser
 20 25 30
 Trp Tyr Lys Gly Glu Arg Val Asp Gly Asn Ser Leu Ile Val Gly Tyr
 35 40 45
 Val Ile Gly Thr Gln Gln Ala Thr Pro Gly Pro Ala Tyr Ser Gly Arg
 50 55 60
 Glu Thr Ile Tyr Pro Asn Ala Ser Leu Leu Ile Gln Asn Val Thr Gln
 65 70 75 80
 Asn Asp Thr Gly Phe Tyr Thr Leu Gln Val Ile Lys Ser Asp Leu Val
 85 90 95
 Asn Glu Glu Ala Thr Gly Gln Phe His Val Tyr Pro Glu Leu Pro Lys
 100 105 110
 Pro Ser Ile Ser Ser Asn Asn Ser Asn Pro Val Glu Asp Lys Asp Ala
 115 120 125
 Val Ala Phe Thr Cys Glu Pro Glu Val Gln Asn Thr Thr Tyr Leu Trp
 130 135 140
 Trp Val Asn Gly Gln Ser Leu Pro Val Ser Pro Lys
 145 150 155
 <210> 211
 <211> 92
 <212> PRT
 <213> Homo sapien

 <400> 211
 Met Glu Ser Pro Ser Ala Pro Pro His Arg Trp Cys Ile Pro Trp Gln
 1 5 10 15
 Arg Leu Leu Leu Thr Ala Ser Leu Leu Thr Phe Trp Asn Pro Pro Thr
 20 25 30
 Thr Ala Lys Leu Thr Ile Glu Ser Thr Pro Phe Asn Val Ala Glu Gly
 35 40 45
 Lys Glu Val Leu Leu Val His Asn Leu Pro Gln His Leu Phe Gly
 50 55 60
 Tyr Ser Trp Tyr Lys Gly Glu Arg Val Asp Gly Asn Arg Gln Ile Ile
 65 70 75 80
 Gly Tyr Val Ile Gly Thr Gln Gln Ala Thr Pro Gly

85 90

<210> 212
<211> 142
<212> PRT
<213> Homo sapien

<400> 212

Glu	Lys	Gln	Lys	Asn	Lys	Glu	Phe	Ser	Gln	Thr	Leu	Glu	Asn	Glu	Lys
1						5				10					15
Asn	Thr	Leu	Leu	Ser	Gln	Ile	Ser	Thr	Lys	Asp	Gly	Glu	Leu	Lys	Met
						20			25						30
Leu	Gln	Glu	Glu	Val	Thr	Lys	Met	Asn	Leu	Leu	Asn	Gln	Gln	Ile	Gln
						35			40						45
Glu	Glu	Leu	Ser	Arg	Val	Thr	Lys	Leu	Lys	Glu	Thr	Ala	Glu	Glu	Glu
						50			55						60
Lys	Asp	Asp	Leu	Glu	Glu	Arg	Leu	Met	Asn	Gln	Leu	Ala	Glu	Leu	Asn
65						70				75					80
Gly	Ser	Ile	Gly	Asn	Tyr	Cys	Gln	Asp	Val	Thr	Asp	Ala	Gln	Ile	Lys
						85				90					95
Asn	Glu	Leu	Leu	Glu	Ser	Glu	Met	Lys	Asn	Leu	Lys	Lys	Cys	Val	Ser
						100				105					110
Glu	Leu	Glu	Glu	Lys	Gln	Gln	Leu	Val	Lys	Glu	Lys	Thr	Lys	Val	
						115			120						125
Glu	Ser	Glu	Ile	Arg	Lys	Glu	Tyr	Leu	Glu	Lys	Ile	Gln	Gly		
						130			135						140

<210> 213
<211> 142
<212> PRT
<213> Homo sapien

<400> 213

Gly	Gly	Tyr	Gly	Gly	Tyr	Gly	Gly	Val	Leu	Thr	Ala	Ser	Asp	Gly	
1						5			10					15	
Leu	Leu	Ala	Gly	Asn	Glu	Lys	Leu	Thr	Met	Gln	Asn	Leu	Asn	Arg	
						20			25					30	
Leu	Ala	Ser	Tyr	Leu	Asp	Lys	Val	Arg	Ala	Leu	Glu	Ala	Ala	Gly	
						35			40					45	
Glu	Leu	Glu	Val	Lys	Ile	Arg	Asp	Trp	Tyr	Gln	Lys	Gln	Pro	Gly	
						50			55					60	
Pro	Ser	Arg	Asp	Tyr	Ser	His	Tyr	Tyr	Thr	Thr	Ile	Gln	Asp	Leu	Arg
65						70				75					80
Asp	Lys	Ile	Leu	Gly	Ala	Thr	Ile	Glu	Asn	Ser	Arg	Ile	Val	Leu	Gln
						85				90					95
Ile	Asp	Asn	Ala	Arg	Leu	Ala	Ala	Asp	Asp	Phe	Arg	Thr	Lys	Phe	Glu
						100				105					110
Thr	Glu	Gln	Ala	Leu	Arg	Met	Ser	Val	Glu	Ala	Asp	Ile	Asn	Gly	Leu
						115			120						125
Arg	Arg	Val	Leu	Asp	Glu	Leu	Thr	Leu	Ala	Arg	Thr	Asp	Leu		
						130			135						140

<210> 214
<211> 129
<212> PRT

<213> Homo sapien

<400> 214

Val Met Arg Val Asp Phe Asn Val Pro Met Lys Asn Asn Gln Ile Thr
 1 5 10 15
 Asn Asn Gln Arg Ile Lys Ala Ala Val Pro Ser Ile Lys Phe Cys Leu
 20 25 30
 Asp Asn Gly Ala Lys Ser Val Val Leu Met Ser His Leu Gly Arg Pro
 35 40 45
 Asp Gly Val Pro Met Pro Asp Lys Tyr Ser Leu Glu Pro Val Ala Val
 50 55 60
 Glu Leu Arg Ser Leu Leu Gly Lys Asp Val Leu Phe Leu Lys Asp Cys
 65 70 75 80
 Val Gly Pro Glu Val Glu Lys Ala Cys Ala Asn Pro Ala Ala Gly Ser
 85 90 95
 Val Ile Leu Leu Glu Asn Leu Arg Phe His Val Glu Glu Gly Lys
 100 105 110
 Gly Lys Asp Ala Ser Gly Asn Lys Val Lys Ala Glu Pro Ala Lys Ile
 115 120 125
 Glu

<210> 215

<211> 148

<212> PRT

<213> Homo sapien

<400> 215

Met Ala Thr Leu Lys Glu Lys Leu Ile Ala Pro Val Ala Glu Glu Glu
 1 5 10 15
 Ala Thr Val Pro Asn Asn Lys Ile Thr Val Val Gly Val Gly Gln Val
 20 25 30
 Gly Met Ala Cys Ala Ile Ser Ile Leu Gly Lys Ser Leu Ala Asp Glu
 35 40 45
 Leu Ala Leu Val Asp Val Leu Glu Asp Lys Leu Lys Gly Glu Met Met
 50 55 60
 Asp Leu Gln His Gly Ser Leu Phe Leu Gln Thr Pro Lys Ile Val Ala
 65 70 75 80
 Asp Lys Asp Tyr Ser Val Thr Ala Asn Ser Lys Ile Val Val Val Thr
 85 90 95
 Ala Gly Val Arg Gln Gln Glu Gly Glu Ser Arg Leu Asn Leu Val Gln
 100 105 110
 Arg Asn Val Asn Val Phe Lys Phe Ile Ile Pro Gln Ile Val Lys Tyr
 115 120 125
 Ser Pro Asp Cys Ile Ile Ile Val Val Ser Asn Pro Val Asp Ile Leu
 130 135 140
 Thr Tyr Val Thr
 145

<210> 216

<211> 527

<212> PRT

<213> Homo sapien

<400> 216

Gln Arg Ala Pro Gly Ile Glu Glu Lys Ala Ala Glu Asn Gly Ala Leu
 1 5 10 15
 Gly Ser Pro Glu Arg Glu Glu Lys Val Leu Glu Asn Gly Glu Leu Thr
 20 25 30
 Pro Pro Arg Arg Glu Glu Lys Ala Leu Glu Asn Gly Glu Leu Arg Ser
 35 40 45
 Pro Glu Ala Gly Glu Lys Val Leu Val Asn Gly Gly Leu Thr Pro Pro
 50 55 60
 Lys Ser Glu Asp Lys Val Ser Glu Asn Gly Gly Leu Arg Phe Pro Arg
 65 70 75 80
 Asn Thr Glu Arg Pro Pro Glu Thr Gly Pro Trp Arg Ala Pro Gly Pro
 85 90 95
 Trp Glu Lys Thr Pro Glu Ser Trp Gly Pro Ala Pro Thr Ile Gly Glu
 100 105 110
 Pro Ala Pro Glu Thr Ser Leu Glu Arg Ala Pro Ala Pro Ser Ala Val
 115 120 125
 Val Ser Ser Arg Asn Gly Gly Glu Thr Ala Pro Gly Pro Leu Gly Pro
 130 135 140
 Ala Pro Lys Asn Gly Thr Leu Glu Pro Gly Thr Glu Arg Arg Ala Pro
 145 150 155 160
 Glu Thr Gly Gly Ala Pro Arg Ala Pro Gly Ala Gly Arg Leu Asp Leu
 165 170 175
 Gly Ser Gly Gly Arg Ala Pro Val Gly Thr Gly Thr Ala Pro Gly Gly
 180 185 190
 Gly Pro Gly Ser Gly Val Asp Ala Lys Ala Gly Trp Val Asp Asn Thr
 195 200 205
 Arg Pro Gln Pro Pro Pro Pro Leu Pro Pro Pro Glu Ala Gln
 210 215 220
 Pro Arg Arg Leu Glu Pro Ala Pro Pro Arg Ala Arg Pro Glu Val Ala
 225 230 235 240
 Pro Glu Gly Glu Pro Gly Ala Pro Asp Ser Arg Ala Gly Gly Asp Thr
 245 250 255
 Ala Leu Ser Gly Asp Gly Asp Pro Pro Lys Pro Glu Arg Lys Gly Pro
 260 265 270
 Glu Met Pro Arg Leu Phe Leu Asp Leu Gly Pro Pro Gln Gly Asn Ser
 275 280 285
 Glu Gln Ile Lys Ala Arg Leu Ser Arg Leu Ser Leu Ala Leu Pro Pro
 290 295 300
 Leu Thr Leu Thr Pro Phe Pro Gly Pro Gly Pro Arg Arg Pro Pro Trp
 305 310 315 320
 Glu Gly Ala Asp Ala Gly Ala Ala Gly Gly Glu Ala Gly Gly Ala Gly
 325 330 335
 Ala Pro Gly Pro Ala Glu Glu Asp Gly Glu Asp Glu Asp Glu Asp Glu
 340 345 350
 Glu Glu Asp Glu Glu Ala Ala Ala Pro Gly Ala Ala Ala Gly Pro Arg
 355 360 365
 Gly Pro Gly Arg Ala Arg Ala Ala Pro Val Pro Val Val Val Ser Ser
 370 375 380
 Ala Asp Ala Asp Ala Ala Arg Pro Leu Arg Gly Leu Leu Lys Ser Pro
 385 390 395 400
 Arg Gly Ala Asp Glu Pro Glu Asp Ser Glu Leu Glu Arg Lys Arg Lys
 405 410 415
 Met Val Ser Phe His Gly Asp Val Thr Val Tyr Leu Phe Asp Gln Glu
 420 425 430
 Thr Pro Thr Asn Glu Leu Ser Val Gln Ala Pro Pro Glu Gly Asp Thr

435 440 445
Asp Pro Ser Thr Pro Pro Ala Pro Pro Thr Pro Pro His Pro Ala Thr
450 455 460
Pro Gly Asp Gly Phe Pro Ser Asn Asp Ser Gly Phe Gly Gly Ser Phe
465 470 475 480
Glu Trp Ala Glu Asp Phe Pro Leu Leu Pro Pro Pro Gly Pro Pro Leu
485 490 495
Cys Phe Ser Arg Phe Ser Val Ser Pro Ala Leu Glu Thr Pro Gly Pro
500 505 510
Pro Ala Arg Ala Pro Asp Ala Arg Pro Ala Gly Pro Val Glu Asn
515 520 525

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 : C12N 15/12, A61K 38/17, C07K 14/47, 16/18, A61K 35/14		A3	(11) International Publication Number: WO 99/38973 (43) International Publication Date: 5 August 1999 (05.08.99)
(21) International Application Number: PCT/US99/01642 (22) International Filing Date: 26 January 1999 (26.01.99)		(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, HR, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).	
(30) Priority Data: 09/015,029 28 January 1998 (28.01.98) US 09/015,022 28 January 1998 (28.01.98) US 09/040,828 18 March 1998 (18.03.98) US 09/040,831 18 March 1998 (18.03.98) US 09/122,192 23 July 1998 (23.07.98) US 09/122,191 23 July 1998 (23.07.98) US 09/219,245 22 December 1998 (22.12.98) US		(Published) <i>With international search report.</i> <i>*Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.</i>	
(71) Applicant: CORIXA CORPORATION [US/US]; Suite 200, 1124 Columbia Street, Seattle, WA 98104 (US).		(88) Date of publication of the international search report: 9 December 1999 (09.12.99)	
(72) Inventors: REED, Steven, G.; 2843 - 122nd Place N.E., Bellevue, WA 98005 (US). LODES, Michael, J.; 9223 - 36th Avenue S.W., Seattle, WA 98126 (US). FRUDAKIS, Tony, N.; P.O. Box 99232, Seattle, WA 99232-0232 (US). MOHAMATH, Raadoh; 4205 South Morgan, Seattle, WA 98118 (US).			
(74) Agents: MAKI, David, J. et al.; Seed and Berry LLP, 6300 Columbia Center, 701 Fifth Avenue, Seattle, WA 98104-7092 (US).			
(54) Title: COMPOUNDS FOR THERAPY AND DIAGNOSIS OF LUNG CANCER AND METHODS FOR THEIR USE			
(57) Abstract			
Compounds and methods for treating lung cancer are provided. The inventive compounds include polypeptides containing at least a portion of a lung tumor protein. Vaccines and pharmaceutical compositions for immunotherapy of lung cancer comprising such polypeptides, or polynucleotides encoding such polypeptides, are also provided, together with polynucleotides for preparing the inventive polypeptides.			

INTERNATIONAL SEARCH REPORT

Inte. Sional Application No
PCT/US 99/01642

A. CLASSIFICATION OF SUBJECT MATTER	IPC 6 C12N15/12	A61K38/17	C07K14/47	C07K16/18	A61K35/14
-------------------------------------	-----------------	-----------	-----------	-----------	-----------

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 6 C12N C12Q A61K C07K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	WO 96 30389 A (MILLENIUM PHARMACEUTICALS, INC.; SHYJAN A.) 3 October 1996 see page 112 - page 127 ---	1-60
A	WO 96 02552 A (CYTOCLONYL PHARMACEUTICS, INC.; TORCZYNSKI R. ET AL.) 1 February 1996 see the whole document ---	1-60
A	YOU L ET AL.: "Identification of early growth response gene-1 (Egr-1) as a phorbol myristate-induced gene in lung cancer cells by differential mRNA display" AM. J. RESPIR. CELL MOL. BIOL., vol. 17, no. 5, November 1997, pages 617-624, XP002106654 see page 618, left-hand column, paragraph 3 ---	1,2,4-7

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

- *T* later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- *X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- *Y* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- *&* document member of the same patent family

Date of the actual completion of the international search:

21 June 1999

Date of mailing of the international search report

22 10. 1999

Name and mailing address of the ISA:

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

CUPIDO, M

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US 99/01642

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)

This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
Remark: Although claims 16, 17, 24-26, 32, 33, 48-53 and 56-58 are directed to a method of treatment of the human/animal body the search has been carried out and based on the alleged effects of the composition.
2. Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

see FURTHER INFORMATION sheet

1. As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

see FURTHER INFORMATION sheet, subject 1.

Remark on Protest

- The additional search fees were accompanied by the applicant's protest.
 No protest accompanied the payment of additional search fees.

INTERNATIONAL SEARCH REPORT

Information on patent family members

Inte. Total Application No.

PCT/US 99/01642

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
WO 9630389	A 03-10-1996	US 5633161 A		27-05-1997
		AU 708746 B		12-08-1999
		AU 5437896 A		16-10-1996
		CA 2216717 A		03-10-1996
		EP 0817792 A		14-01-1998
		US 5674739 A		07-10-1997
<hr/>				
WO 9602552	A 01-02-1996	US 5589579 A		31-12-1996
		AU 700915 B		14-01-1999
		AU 3359295 A		16-02-1996
		BR 9508417 A		18-11-1997
		CA 2195403 A		01-02-1996
		EP 0804451 A		05-11-1997
		JP 10503087 T		24-03-1998
		US 5773579 A		30-06-1998

