Arkopal Dutt

314 Main St, Cambridge, MA 02142

Education

Massachusetts Institute of Technology (MIT), Cambridge, MA, USA

Feb. 2018 - Dec. 2023

Ph.D. in Mechanical Engineering, Advisor: Professor Isaac Chuang

Thesis: Accelerating Learning of Quantum Systems using Prior Information

Massachusetts Institute of Technology (MIT), Cambridge, MA, USA

Sep. 2015 - Feb. 2018

S.M. in Mechanical Engineering

Thesis: High Order Stochastic Transport and Lagrangian Data Assimilation

Indian Institute of Technology Bombay (IITB), Mumbai, MH, India

July 2011 - May 2015

B. Tech. in Aerospace Engineering (Honors) with Minor in Mathematics

Research Experience

Research Scientist, IBM Quantum, IBM Research Cambridge	Jan. 2024 - Now
Research Assistant, Center for Ultracold Atoms, Research Laboratory of Electronics, MIT	Jan. 2019 – Dec. 2023
Long-time visitor at Institute for Pure and Applied Mathematics (IPAM), UCLA	Oct., 2023
Part-time Quantum Researcher CO-OP Intern, IBM Research, Cambridge	Oct. 2022 – Apr., 2023
Research Intern, IBM T.J Watson Research Center, Mentors: Antonio Mezzacapo and Sarah Sheldon	Jun. – Aug., 2022
Research Intern, IBM T.J Watson Research Center, Mentors: Antonio Mezzacapo and Sarah Sheldon	Jun. – Aug., 2021
Research Intern, IBM T.J Watson Research Center, Mentors: Lev Bishop and Sarah Sheldon	Jun. – Aug., 2020
Research Intern, Los Alamos National Laboratory, Mentors: Andrey Lokhov and Marc Vuffray	Jun. – Aug., 2018
Research Assistant, MSEAS Lab, MIT	Sep. 2015 – Aug. 2018
Research Intern, Space Science and Engineering Center, University of Wisconsin, Madison, USA	May – Jul., 2014

Selected Publications

- 1. (alphabetical order) Arunachalam, S., & Dutt, A. (2024). Tolerant testing stabilizer states. [arXiv:2408.06289]
- 2. (alphabetical order) Arunachalam, S., Dutt, A., Gutierrez, F. E., & Palazuelos, C. (2024). Learning low-degree quantum objects. arXiv preprint arXiv:2405.10933.
- 3. Dutt, A., Kirby, W., Raymond, R., Hadfield, C., Sheldon, S., Chuang, I. L., & Mezzacapo, A. (2023). Practical Benchmarking of Randomized Measurement Methods for Quantum Chemistry Hamiltonians. arXiv preprint arXiv:2312.07497.
- 4. Sugiura, S., Dutt, A., Munro, W. J., Zevtinoğlu, S., & Chuang, I. L. (2023). Power of sequential protocols in hidden quantum channel discrimination. Physical Review Letters, 132(24), 240805. [arXiv:2112.14553]
- 5. Dutt, A., Pednault, E., Wu, C. W., Sheldon, S., Smolin, J., Bishop, L., & Chuang, I. L. (2023). Active Learning of Quantum System Hamiltonians yields Query Advantage. Physical Review Research, 5(3), 033060. [arXiv:2112.14553]
- 6. (alphabetical order) Arunachalam, S., Bravyi, S., Dutt, A., & Yoder, T. J. (2023). Optimal algorithms for learning quantum phase states. In Proceedings of the 18th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2023). [arXiv:2208.07851]
- 7. Liu, Y., Meitei, O. R., Chin, Z. E., Dutt, A., Tao, M., Van Voorhis, T., & Chuang, I. L. (2023). Bootstrap Embedding on a Quantum Computer. Journal of Chemical Theory and Computation, 19(8), 2230-2247. [arXiv:2301.01457]
- 8. Dutt, A., Lokhov, A. Y., Vuffray, M., & Misra, S. (2021). Exponential Reduction in Sample Complexity with Learning of Ising Model Dynamics. In Proceedings of the 38th International Conference on Machine Learning (pp.2914–2925). PMLR. [arXiv:2104.00995]

Selected Oral and Poster Presentations

- 1. "Optimal algorithms for learning quantum phase states". (based on arXiv:2208.07851) Contributed talk at TQC 2023, Aveiro, Portugal, July 24-28, 2023.
- 2. "Learning beyond Cliffords: states and circuits". (based on arXiv:2208.07851) Regular talk at QIP 2023, Ghent, Belgium, February 4-10, 2023.
- 3. "Power of sequential protocol in hidden channel discrimination". Poster presentation with Sho Sugiura (NTT Research) at QIP 2023, Ghent, Belgium, February 4-10, 2023.
- 4. "Power of sequential protocol in quantum channel discrimination". Poster presentation at Coherent Network Computing 2022, October 24-26, 2022.
- 5. "Optimal algorithms for learning quantum phase states". Invited talk at Triangle Quantum Computing Seminar, October 14, 2022.
- 6. "Optimal algorithms for learning quantum phase states". Poster presentation at C2QA Workshop, October 6, 2022. (Awarded best theory poster)
- 7. "Exponential Reduction in Sample Complexity with Learning of Ising Model Dynamics". Long oral presentation at ICML 2021, July 22, 2021.
- 8. "Efficient Learning of Ising Models from Glauber Dynamics". Contributed poster at Youth in High Dimensions, ITCP, June, 2021.
- 9. "Experimental Evaluation of Active Learning of a Two Qubit Cross-Resonance Hamiltonian". Contributed talk at APS March Meeting, March, 2021.
- 10. "Active Learning of Hamiltonians". Contributed talk at APS March Meeting, March, 2020.
- 11. "Active Learning for Hamiltonian Tomography". Contributed talk at Physics Informed Machine Learning Workshop, January 15, 2020.

Honors and Awards

Director's Postdoctoral Fellowship, Los Alamos National Laboratory (declined)	Aug., 2023
James C. Keck Travel Award from Department of Mechanical Engineering, MIT for TQC 2023	2023
MIT GSC Conference Grant for TQC 2023	2023
MIT Great Dome Award	2023
Physics Informed Machine Learning 2020 Travel Grant	2019
Applied Machine Learning Fellowship, Los Alamos National Laboratory	2018
SIAM Student Chapter Certificate in recognition of outstanding service and contributions	2018, 2021
American Geophysical Union (AGU) Fall Meeting Student Travel Award	2017
Undergraduate Research Award for undergraduate thesis at IITB	2015
Institute Academic Prizes for academic excellence at IITB	2013, 2014
S.N. Bose Scholarship (IUSSTF) for summer internship at University of Wisconsin, Madison	2014
Prestigious Indian Government Fellowship - Kishore Vaigyanik Protsahan Yojana (KVPY)	2010

Leadership and Professional Development

Institute for Artificial Intelligence and Fundamental Interactions, Speaker Selection Committee	2021 - 2023
Society of Industrial and Applied Mathematics (SIAM), MIT Chapter, President	2018 - 2021
Sidney-Pacific Graduate Residence, Vice-President of Resources and Treasurer	2017 - 2018

Professional Service

Conference review: QIP 2024, TQC (2023, 2024), ICML AI4Science, NeurIPS AI4Science

Journal review: npj Quantum Information, Journal of Chemical Theory and Computation, Quantum, Quantum Information and Computation (Rinton Press)

Teaching Experience

Kaufman Teaching Certificate Program (KTCP), MIT	Spring 2023
Co-instructor, Practical Computer Science for Computational Scientists, MIT	IAP 2019
Teaching Assistant, 2.003 Dynamics, MIT	Fall 2018
Teaching Assistant, 2.29 Numerical Fluid Mechanics, MIT	Spring 2017
Teaching Assistant, AE625 Particle Methods for Fluid Flow Simulation, IITB	Spring 2015
Teaching Assistant, AE333 Aerodynamics, IITB	Fall 2014

Technical Skills

 $\begin{array}{llll} \textbf{Programming:} \ \, \text{Python, Julia, MATLAB, HTML, LATEX} \\ \textbf{Software:} \ \, \text{Git, TensorFlow, Qiskit} \end{array}$