

第六章 同步时序逻辑电路(三)

秦磊华 计算机学院

本节主要内容

6.8 时序电路设计举例

同步时序逻辑电路设计步骤

- 1)逻辑抽象,得出电路的状态转换图或状态转换表
- 2)状态化简
- 3)状态分配与编码
- 4)选定触发器的类型设计电路

例1设计一个3位二进制串行奇偶检测器。该电路从输入端x串行输入二进制代码,每三位为一组,当三位代码中1的个数为偶数时,输出Z产生一个1输出,平时Z输出为0。

1)建立原始状态图和原始状态表

Moore 型还是 Mealy?

例1设计一个3位二进制串行奇偶检测器。该电路从输入端x串行输入二进制代码,每三位为一组,当三位代码中1的个数为偶数时,输出Z产生一个1输出,平时Z输出为0。 1)建立原始状态图和原始状态表

现态	次态/输出		
	x=0	x=1	
Α	B/0	C/0	
В	D/0	E/0	
С	F/0	G/0	
D	A/1 A/0		
Е	A/0	A/1	
F	A/0	A/1	
G	A/1	A/0	

例1设计一个3位二进制串行奇偶检测器。该电路从输入端x串行输入二进制代码,每三位为一组,当三位代码中1的个数为偶数时,输出Z产生一个1输出,平时Z输出为0。

2)状态化简

现态	次态/输出		
27076	x=0	x=1	
Α	B/0	C/0	
В	D/0	E/0	
С	F/0 G/0		
D	A/1 A/0		
Е	A/0	A/1	
F	A/0 A/1		
G	A/1	A/0	

根据等效对判断规则观察可知(D,G), (E,F)

现态	次态/输出		
少心心	x=0	x=1	
А	B/0	C/0	
В	D/0	E/0	
С	E/0	D/0	
D	A/1	A/0	
Е	A/0	A/1	

II

6.8 同步时序电路设计举例

例1设计一个3位二进制串行奇偶检测器。该电路从输入端x串行输入二进制代码,每三位为一组,当三位代码中1的个数为偶数时,输出Z产生一个1输出,平时Z输出为0。

2)状态化简

现态	次态/输出		
りじがい	x=0	x=1	
Α	B/0 C/0		
В	D/0	E/0	
С	E/0 D/0		
D	A/1	A/0	
Е	A/0	A/1	

例1设计一个3位二进制串行奇偶检测器。该电路从输入端x串行输入二进制代码,每三位为一组,当三位代码中1的个数为偶数时,输出Z产生一个1输出,平时Z输出为0。

3)状态分配与编码

(1)次态相同,现态相邻

(2)同一现态, 次态相邻

(3)输出相同,现态相邻

现态	次态/输出		
力じがい	x=0	x=1	
Α	B/0 C/0		
В	D/0 E/0		
С	E/0 D/0		
D	A/1 A/0		
Е	A/0 A/1		

原则①: DE相邻;

原则③:ABC相邻。

y_3y_2				
y_1	00	01	11	10
0	А	В	С	D
1				Е
			_	

A: 000 B: 010 C: 110

D: 100 E: 110

例1设计一个3位二进制串行奇偶检测器。该电路从输入端x串行输入二进制代码,每三位为一组,当三位代码中1的个数为偶数时,输出Z产生一个1输出,平时Z输出为0。

3)状态分配与编码

现态	次态/输出		
少心心	x=0	x=1	
Α	B/0	C/0	
В	D/0	E/0	
С	E/0 D/0		
D	A/1	A/0	
Е	A/0	A/1	

A: 000 B: 010 C: 110 D: 100 F: 110

D: 100	E: 110

У 3 У 2 У 1	$y_3^{n+1}y_2^{n+1}y_1^{n+1}/Z$	
737271	x=0	x=1
000	010/0	110/0
010	100/0	101/0
110	101/0	100/0
100	000/1	000/0
101	000/0	000/1

例1设计一个3位二进制串行奇偶检测器。该电路从输入端x串行输入二进制代码,每三位为一组,当三位代码中1的个数为偶数时,输出Z产生一个1输出,平时Z输出为0。

4)确定激励函数和输出函数

У 3 У 2 У 1	$y_3^{n+1}y_2^{n+1}y_1^{n+1}/Z$		
J 3 J 2 J 1	x=0	x=1	
000	010/0	110/0	
010	100/0 101/0		
110	101/0	100/0	
100	000/1	000/0	
101	000/0	000/1	

(假定用D触发器实现)

输入 x	现态 y ₃ y ₂ y ₁	次 态 y ₃ ⁿ⁺¹ y ₂ ⁿ⁺¹ y ₁ ⁿ⁺¹	激励函数 D ₃ D ₂ D ₁	输除 Z
0	000	010	010	0
0	010	100	100	0
0	100	000	000	1
0	101	000	000	0
0	110	101	101	0
1	000	110	110	0
1	010	101	101	0
1	100	000	000	0
1	101	000	000	1
1	110	100	100	0

例1设计一个3位二进制串行奇偶检测器。该电路从输入端x串行输入二进制代码,每三位为一组,当三位代码中1的个数为偶数时,输出Z产生一个1输出,平时Z输出为0。

输入 x	现态 y ₃ y ₂ y ₁	次 态 y ₃ ⁿ⁺¹ y ₂ ⁿ⁺¹ y ₁ ⁿ⁺¹	激励函数 D ₃ D ₂ D ₁	输除 Z
0	000	010	010	0
0	010	100	100	0
0	100	000	000	1
0	101	000	000	0
0	110	101	101	0
1	000	110	110	0
1	010	101	101	0
1	100	000	000	0
1	101	000	000	1
1	110	100	100	0

$$D_2 = \overline{y}_3 \overline{y}_2$$

_			
$D_3 =$	x y ₃	+	y ₂

例1设计一个3位二进制串行奇偶检测器。该电路从输入端x串行输入二进制代码,每三位为一组,当三位代码中1的个数为偶数时,输出Z产生一个1输出,平时Z输出为0。

输入 x	现态 y ₃ y ₂ y ₁	次 态 y ₃ ⁿ⁺¹ y ₂ ⁿ⁺¹ y ₁ ⁿ⁺¹	激励函数 D ₃ D ₂ D ₁	输除 Z
0	000	010	010	0
0	010	100	100	0
0	100	000	000	1
0	101	000	000	0
0	110	101	101	0
1	000	110	110	0
1	010	101	101	0
1	100	000	000	0
1	101	000	000	1
1	110	100	100	0

$$Z = \overline{x} y_3 \overline{y_2} \overline{y_1} + xy_1$$

$D_1 = \overline{x} y_3 y_2 + x \overline{y}_3 y_2$
$=(x \oplus y_3)y_2$

例1设计一个3位二进制串行奇偶检测器。该电路从输入端x串行输入二进制代码,每三位为一组,当三位代码中1的个数为偶数时,输出Z产生一个1输出,平时Z输出为0。

$\sqrt{\lambda^3}$	2			
y_1	00	01	11	10
0	А	В	С	D
1				E

本例存在001、011和111共3个无效状态,要检查是否存在挂起状态或错误输出。

例1设计一个3位二进制串行奇偶检测器。该电路从输入端x串行输入二进制代码,每三位为一组,当三位代码中1的个数为偶数时,输出Z产生一个1输出,平时Z输出为0。

5) 特殊情况检查

$$D_3 = x \overline{y}_3 + y_2$$
 $D_2 = \overline{y}_3 \overline{y}_2$
 $D_1 = (x \oplus y_3)y_2$ $Z = \overline{x} y_3 \overline{y}_2 y_1 + xy_1$

输入 x	现态 y ₃ y ₂ y ₁	激励函数 D ₃ D ₂ D ₁	次态 y ₃ ^{n+l} y ₂ ^{n+l} y ₁ ^{n+l}	输出 Z
0	001	010	010	0
0	011	100	100	0
0	111	101	101	0
1	001	110	110	1
1	011	101	101	1
1	111	100	100	1

У ₃ У ₂ У ₁	$y_3^{n+1}y_2^{n+1}y_1^{n+1}/Z$		
	x=0	x=1	
000	010/0	110/0	
010	100/0	101/0	
110	101/0	100/0	
100	000/1	000/0	
101	000/0	000/1	

例1设计一个3位二进制串行奇偶检测器。该电路从输入端x串行输入二进制代码,每三位为一组,当三位代码中1的个数为偶数时,输出Z产生一个1输出,平时Z输出为0。

y ₂	y_1	00	01	11	10
	00	0	1	0	0
Z	01	ъ	0	1	Ъ
	11	d	d	d	d
	10	0	0	0	0

不存在挂起, 但存在错误输出

$$Z = \overline{X}Y_3\overline{Y_2}\overline{Y_1} + XY_3\overline{Y_2}Y_1$$

例1设计一个3位二进制串行奇偶检测器。该电路从输入端x串行输入二进制代码,每三位为一组,当三位代码中1的个数为偶数时,输出Z产生一个1输出,平时Z输出为0。

$$D_3 = x \overline{y}_3 + y_2$$
 $D_2 = \overline{y}_3 \overline{y}_2$
 $D_1 = \overline{x} y_3 y_2 + x \overline{y}_3 y_2$

$$Z = \overline{X}Y_3\overline{Y_2}\overline{Y_1} + XY_3\overline{Y_2}Y_1$$

例1 设计一个3位二进制串行奇偶检测器。该电路从输入端x串行输入二进制代码,每三位为一组,当三位代码中1的个数为偶数时,输出Z产生一个1输出,平时Z输出为0。1)建立原始状态图和原始状态表

Moore 型还是 Mealy?

例1设计一个3位二进制串行奇偶检测器。该电路从输入端x串行输入二进制代码,每三位为一组,当三位代码中1的个数为偶数时,输出Z产生一个1输出,平时Z输出为0。

现态	次态		输
少0.76%	x=0	x=1	出
Α	В	C	0
В	D	E	0
С	F	G	0
D	Н		0
Е	- 1	Н	0
F	I	Н	0
G	Н		0
Н	В	С	1
	В	С	0

Ш

6.8 同步时序电路设计举例

例1设计一个3位二进制串行奇偶检测器。该电路从输入端x串行输入二进制代码,每三位为一组,当三位代码中1的个数为偶数时,输出Z产生一个1输出,平时Z输出为0。2)状态化简

现态	次	输	
少0.60	x=0	x=1	出
Α	В	С	0
В	D	Е	0
С	F	G	0
D	Н		0
Е		Н	0
F		Н	0
G	Н	1	0
Н	В	С	1
	В	С	0

观察可知: (A,I)--- A, (D,G)--- D, (E, F) --- E

现 态	次态		输
态	x=0	x=1	出
А	В	C	0
В	D	Е	0
C	Е	D	0
D	Τ	А	0
Е	А	Τ	0
Н	В	С	1

现态	次态/输出		
地心	x=0	x=1	
Α	B/0	C/0	
В	D/0	E/0	
С	E/0	D/0	
D	A/1	A/0	
Е	A/0	A/1	

例1 设计一个3位二进制串行奇偶检测器。该电路从输入端x串行输入二进制代码,每三位为一组,当三位代码中1的个数为偶数时,输出Z产生一个1输出,平时Z输出为0。2)状态化简

现态	次态		输
态	x=0	x=1	田
Α	В	С	0
В	D	Е	0
С	Ш	D	0
D	Ι	А	0
Е	А	Η	0
Н	В	С	1

例1设计一个3位二进制串行奇偶检测器。该电路从输入端x串行输入二进制代码,每三位为一组,当三位代码中1的个数为偶数时,输出Z产生一个1输出,平时Z输出为0。

3)状态分配与编码

现态	次态		输	
态	x=0	x=1	出	
Α	В	С	0	
В	D	Е	0	
С	Е	D	0	
D	Ι	Α	0	
Е	А	Н	0	
Η	В	С	1	

原则①: AH相邻;

原则②: BC、DE、AH相邻;

原则③: ABCDE相邻。

(1)次态相同,现态相邻

(2)同一现态, 次态相邻

(3)输出相同,现态相邻

A: 000 B: 010 C: 110

D: 100 E: 110 H: 001

例1设计一个3位二进制串行奇偶检测器。该电路从输入端x串行输入二进制代码,每三位为一组,当三位代码中1的个数为偶数时,输出Z产生一个1输出,平时Z输出为0。

3)状态分配与编码

现态	次态		输	
态	x=0	x=1	出	
А	В	С	0	
В	D	Е	0	
С	Е	D	0	
D	Ι	Α	0	
Е	А	Η	0	
Н	В	С	1	

A: 000 B: 010 C: 110 D: 100 E: 110 H: 001

现	次	输	
态	x=0	x=1	田
000	010	110	0
010	100	101	0
110	101	100	0
100	001	000	0
101	000	001	0
001	010	110	1

22

例1 设计一个3位二进制串行奇偶检测器。该电路从输入端x串行输入二进制代码,每三位为一组,当三位代码中1的个数为偶数时,输出Z产生一个1输出,平时Z输出为0。4)确定激励函数和输出函数

现态	次	输	
りじんご	x=0	x=1	出
000	010	110	0
010	100	101	0
110	101	100	0
100	001	000	0
101	000	001	0
001	010	110	1

(假定用D触发器实现)

输入 x	现态 y ₃ y ₂ y ₁	次 态 y ₃ ⁿ⁺¹ y ₂ ⁿ⁺¹ y ₁ ⁿ⁺¹	激励函数 D ₃ D ₂ D ₁	输除 Z
0	000	010	010	0
0	001	010	010	1
0	010	100	100	0
0	100	001	001	0
0	101	000	000	0
0	110	101	101	0
1	000	110	110	0
1	001	110	110	1
1	010	101	101	0
1	100	000	000	0
1	101	001	001	0
1	110	100	100	0

例1设计一个3位二进制串行奇偶检测器。该电路从输入端x串行输入二进制代码,每三位为一组,当三位代码中1的个数为偶数时,输出Z产生一个1输出,平时Z输出为0。

4)确定激励函数和输出函数

输入 x	现态 y ₃ y ₂ y ₁	次 态 y ₃ ⁿ⁺¹ y ₂ ⁿ⁺¹ y ₁ ⁿ⁺¹	激励函数 D ₃ D ₂ D ₁	输除 Z
0	000	010	010	0
0	001	010	010	1
0	010	100	100	0
0	100	001	001	0
0	101	000	000	0
0	110	101	101	0
1	000	110	110	0
1	001	110	110	1
1	010	101	101	0
1	100	000	000	0
1	101	001	001	0
1	110	100	100	0

$$D_2 = \overline{y_3 y_2}$$

D_3	=	y 2	+	xy_3

II

6.8 同步时序电路设计举例

例1设计一个3位二进制串行奇偶检测器。该电路从输入端x串行输入二进制代码,每三位为一组,当三位代码中1的个数为偶数时,输出Z产生一个1输出,平时Z输出为0。4)确定激励函数和输出函数

输入 x	现态 y ₃ y ₂ y ₁	次 态 y ₃ ⁿ⁺¹ y ₂ ⁿ⁺¹ y ₁ ⁿ⁺¹	激励函数 D ₃ D ₂ D ₁	输除 Z
0	000	010	010	0
0	001	010	010	1
0	010	100	100	0
0	100	001	001	0
0	101	000	000	0
0	110	101	101	0
1	000	110	110	0
1	001	110	110	1
1	010	101	101	0
1	100	000	000	0
1	101	001	001	0
1	110	100	100	0

$$D_1 = \overline{x}y_3\overline{y_1} + x\overline{y_3}y_2\overline{y_1} + xy_3\overline{y_2}y_1$$

例1设计一个3位二进制串行奇偶检测器。该电路从输入端x串行输入二进制代码,每 三位为一组,当三位代码中1的个数为偶数时,输出Z产生一个1输出,平时Z输出为0。

5) 特殊情况检查

输入 x	现态 y ₃ y ₂ y ₁	激励函数 D ₃ D ₂ D ₁	次态 y ₃ ^{n+l} y ₂ ^{n+l} y ₁	输出 Z
0	011	100	100	0
0	111	100	100	0
1	011	100	100	0
1	111	100	100	0

0	011	100	100	0
0	111	100	100	0
1	0 1 1	100	100	0
1	111	100	100	0

$$D_3 = y_2 + x \overline{y_3} \quad D_2 = \overline{y_3} \overline{y_2}$$

 $D_1 = \overline{x} y_3 \overline{y_1} + x \overline{y_3} y_2 \overline{y_1} + x y_3 \overline{y_2} y_1$

$$Z = \overline{\mathbf{y}_3} \overline{\mathbf{y}_2} y_1$$

输入 x	现态 y ₃ y ₂ y ₁	次 态 y ₃ ⁿ⁺¹ y ₂ ⁿ⁺¹ y ₁ ⁿ⁺¹	激励函数 D ₃ D ₂ D ₁	输除 Z
0	000	010	010	0
0	001	010	010	1
0	010	100	100	0
0	100	001	001	0
0	101	000	000	0
0	110	101	101	0
1	000	110	110	0
1	001	110	110	1
1	010	101	101	0
1	100	000	000	0
1	101	001	001	0
1	110	100	100	0

不存在挂起,也没有错误输出

例1设计一个3位二进制串行奇偶检测器。该电路从输入端x串行输入二进制代码,每三位为一组,当三位代码中1的个数为偶数时,输出Z产生一个1输出,平时Z输出为0。

$$D_{3} = y_{2} + x \overline{y_{3}} \qquad D_{2} = \overline{y_{3}} \overline{y_{2}}$$

$$D_{1} = \overline{x} \overline{y_{3}} \overline{y_{1}} + x \overline{y_{3}} \overline{y_{2}} \overline{y_{1}} + x \overline{y_{3}} \overline{y_{2}} \overline{y_{1}}$$

$$Z = \overline{y_{3}} \overline{y_{2}} \overline{y_{1}}$$

第三部分完