Plancha 5 Memoria virtual

Arquitectura del Computador Licenciatura en Ciencias de la Computación

1) Un proceso en un sistema con arquitectura de memoria basada en **segmentación** tiene la siguiente tabla de segmentos:

Segmento	Inicio	Tamaño	Permisos
0	240	600	rx
1	2300	16	\mathbf{r}
2	90	100	$\mathbf{r}\mathbf{w}$
3	1320	950	$\mathbf{r}\mathbf{w}$
4	_	96	rx

Para cada una de las siguientes solicitudes, indique cuál sería la dirección física correspondiente o, si corresponde, qué excepción se generaría:

a) Lectura: Segmento 0, Dirección 430.

b) Escritura: Segmento 0, Dirección 150.

c) Lectura: Segmento 1, Dirección 15.

d) Escritura: Segmento 2, Dirección 130.

e) Ejecución: Segmento 4, Dirección 25.

2) Un sistema debe alojar en memoria dos programas:

• Programa A, que requiere un total de 4300 bytes.

• Programa B, que requiere un total de 3068 bytes.

El sistema utiliza paginación con páginas de 128 bytes, y tanto las direcciones virtuales como las físicas son de 16 bits.

a) ¿Cuántas páginas requerirá cada proceso?

- b) ¿Cuánto espacio se desperdicia por fragmentación interna y externa en cada programa?
- c) Suponiendo que se usa una tabla de paginación de un solo nivel, ¿qué tamaño tendrá cada tabla si cada entrada ocupa 8 bytes?
- 3) Considere un sistema de memoria virtual capaz de direccionar hasta 2⁵⁰ bytes, con un espacio de almacenamiento ilimitado en el disco duro, pero limitado a 2 GB de memoria RAM. Suponga que tanto las páginas virtuales como las físicas tienen un tamaño de 4 KB.

- a) ¿Cuántos bits tienen las direcciones físicas?
- b) ¿Cuál es el número máximo de páginas virtuales que puede tener el sistema?
- c) ¿Cuál es el número máximo de páginas físicas que puede tener el sistema?
- d) ¿Cuántos bits son necesarios para identificar los números de página en los espacios de direcciones virtual y física?
 - e) ¿Cuántas entradas tendrá la tabla de páginas?
- f) Suponga que cada entrada de la tabla de páginas incluye el número de página física, un bit de estado válido (V) y un bit de estado sucio (D). ¿Cuántos bytes ocupa cada entrada en la tabla de páginas? Redondee al número entero más cercano.
 - g) Realice un esquema del diseño de la tabla de páginas.
 - h) ¿Cuál es el tamaño total de la tabla de páginas en bytes?
- 4) Se decide optimizar el sistema de memoria virtual descrito en el ejercicio anterior mediante el uso de una TLB (Translation Lookaside Buffer) con 128 entradas.
 - a) Dibuja la TLB. Asegúrate de etiquetar claramente todos los campos y dimensiones.
- b) ¿Cuánta memoria RAM se necesitaría para implementar la TLB descrita en el ejercicio anterior?
- 5) Supongamos un sistema de memoria virtual que está diseñando con un solo nivel de tabla de páginas. Este sistema admite direcciones virtuales de 25 bits, direcciones físicas de 22 bits y páginas de 2¹⁶ bytes (64 KB). Cada entrada de la tabla de páginas contiene el número de página física, el bit de validez (V) y el bit sucio (D).
 - a) ¿Cuántos bytes ocupa en total la tabla de páginas?
- b) El equipo de diseñadores del sistema operativo propone reducir el tamaño de la página de 64 a 16 KB, pero los ingenieros de hardware de su equipo se oponen debido al costo adicional del hardware. Explique el motivo de la objeción.
- 6) Dado un sistema que emplea un esquema de paginación con las siguientes características:
 - El espacio de memoria virtual puede direccionar 2⁴⁸ bytes.
 - El tamaño de página es de 4 KB.
 - La memoria física es de 64 MB (2²⁶ bytes).
 - Para un determinado proceso se tiene la siguiente TLB y la siguiente tabla de paginación (se muestra solo un fragmento):
- a) ¿Cuál es el formato de las direcciones virtuales? Especificar el tamaño de los campos y su significado.
 - b) Indicar la cantidad de páginas virtuales y de páginas físicas que se pueden direccionar.

Tabla de paginación

Nro. pág. virtual V Nro. pág. física

. virtual	V	Nro. pag. fisica
:	:	:
0x7fffffff8	0	0xd000
0x7fffffff9	0	0xf000
0x7ffffffa	0	0xc000
0x7fffffffb	1	0x4000
0x7fffffffc	1	0x5000
0x7ffffffd	0	0x6000
0x7fffffffe	1	0x3000
0x7ffffffff	0	0x8000

TLB

\mathbf{V}	Nro. pág. virtual	Nro. pág. física
0	0x406	0x7000
0	0x7fffffffd	0xa000
1	0x404	0x1000
1	0x405	0x2000
1	0x401	0xb000

Atendiendo al contenido de la TLB y de la tabla de páginas de un proceso mostra**c**) das previamente, indicar la dirección de memoria física accedida para las siguientes direcciones virtuales:

- 1. 0x401136
- 2. 0x404030
- 3. 0x7fffffffebb8
- 4. 0x7fffffffebbc

7) Se tiene un sistema de memoria virtual con paginación de dos niveles que puede direccionar un total de 2³² bytes. El primer nivel tiene 12 bits en el primer nivel y 10 bits en el segundo nivel. Tiene 1 GB de memoria principal con páginas virtuales y físicas de 1 KB.

- a) ¿Cuántos bits tienen las direcciones virtuales?
- b) Indicar cómo están compuestas la direcciones virtuales.
- c) ¿Cuántos bits tienen las direcciones físicas?
- Indicar cómo están compuestas las direcciones físicas. **d**)
- ¿Cuál es el número máximo de páginas virtuales en el sistema?
- f) ¿Cuál es el número máximo de páginas físicas en el sistema?

Con base en el contenido de la TLB y las tablas de páginas de un proceso, indique la dirección de memoria física correspondiente a las siguientes direcciones virtuales:

- 1. 0xffb00b18
- 2. 0xffffc78f
- 3. 0xffbff79f

TLB

V	D	Nro. Pág. Virtual	Nro. Pág. Física
0	0		
1	0	0x3ffff0	0x600
0	0		
1	0	0x3ffff1	0x5ff
0	0		

Tabla de páginas de primer nivel

	V	Dirección
0xfff	0	
	0	
	0	
	0	
	1	0x1400
	:	
	1	0x1000
	0	
	0	
	1	0x1800
0x0	0	

Tablas de páginas de segundo nivel

	V	D	Nro. Página física
0x1bff	0	0	
	0	0	
	1	0	0x7ffff
	:		:
	1	0	0x7fffe
	0	0	
	0	0	
0x1800	1	0	0x7fff0

	V	D	Nro. Página física
0x17ff	0	0	
	1	0	0x1df
	0	0	0x1de
	:		:
	0	0	
	1	0	0x1d0
	0	0	
0x1400	0	0	

	V	D	Nro. Página física
0x13ff	0	0	
	1	1	0x5f0
	0	0	
	:		:
	0	0	
	0	0	
	1	0	0x600
0x1000	0	0	