

Efficient Multi-agent Epistemic Planning: Teaching Planners About Nested Belief

Christian Muise¹, Vaishak Belle², Paolo Felli³, Sheila McIlraith⁴ Tim Miller⁵, Adrian R. Pearce⁵, Liz Sonenberg⁵

¹School of Computing, Queen's University

²School of Informatics, University of Edinburgh

³Faculty of Computer Science, Free University of Bozen-Bolzano
 ⁴Department of Computer Science, University of Toronto
 ⁵School of Computing and Information Systems, University of Melbourne

Contact: christian.muise@queensu.ca

Contribution

We formally characterize a notion of multi-agent epistemic planning, and demonstrate how to solve a rich subclass of these problems using classical planning techniques.

General Approach

- Model how the actions update both the state of the world and the agents' belief of that state
- Assume a single nesting of belief is a fluent and convert to a classical planning problem
- Reformulate the problem to maintain desired properties

Classical Planning

Planning Problem $\langle F, G, I, O \rangle$ where,

F: set of fluent atoms

G: set of fluents describing the goal condition

I: setting of the fluents describing the initial state

O: set of operators of the form $\langle Pre, eff^+, eff^- \rangle$

Pre: set of fluents for the precondition

 eff^+ : set of conditional effects that add a fluent eff^- : set of conditional effects that delete a fluent

 $(\langle \mathcal{C}^+, \mathcal{C}^- \rangle \to 1)$: conditional effect that fires when \mathcal{C}^+ holds and \mathcal{C}^- does not hold

E.g., PICKUPBLOCK

- If the agent is strong and the block is not slippery, then the agent holds the block: eff^+ contains $(\langle \{strong\}, \{slippery\} \}) \rightarrow holding_block)$
- If the block is big, then the agent's hand will no longer be free (i.e., we should delete the hand_free fluent): eff⁻ contains (⟨{big_block}, ∅⟩ → hand_free)

Note: We distinguish between $\mathcal{C}^+/\mathcal{C}^-$ and eff^+/eff^- so that our encoding is more legible

Multi-Agent Epistemic Planning

- State represents our belief about the world
- Our belief includes the nested belief of others
- Action precondition / effects can mention belief

Encoded fluents are Restricted Modal Literals (RMLs):

$$\phi := p \mid B_{aq} \phi \mid \neg \phi$$

- $\alpha g \in Ag$: A particular agent
- $p \in \mathcal{P}$: An original fluent without belief
- E.g., B_{Sue}raining: "Sue believes it is raining"

Key Issue: How do we maintain properties on the state of the world, such as believing logical deductions or never believing contradictory information? *Additional effects*

Example: Grapevine

Agents each have their own secret to (possibly) share with one another and start knowing only their own secret. They can move freely between a pair of rooms, and broadcast any secret they currently believe to everyone in the room.

Actions: share(i, secret_j, room_k) (i and j may differ), move_left(i), and move_right(i)

Goal: Misconception – one agent believes another does not know their secret, when in fact they do.

Solution: Consider a goal of $\{B_a secret_b, \neg B_b B_a secret_b\}$ [move_right(a), share(b, secret_b, 1), move_right(c), share(c, secret_b, 2)]

Example Effect

E.g., Consider the action $share(c, secret_b, room_1)$ **Precondition**: $\{at_c_room_1, B_c secret_b\}$

One effect: If a is in the room, they will learn the secret: $(\langle \{at_a_room_1\}, \emptyset \rangle \to B_a secret_b) \in \mathit{eff}^+$

Ancillary Conditional Effects

Idea: Compile new conditional effects from existing ones in order to ensure certain properties hold

Negation Removal

Delete the negation of any added RML

$$(\langle \mathcal{C}^{+}, \mathcal{C}^{-} \rangle \to 1) \in eff^{+}$$

$$\Rightarrow (\langle \mathcal{C}^{+}, \mathcal{C}^{-} \rangle \to \neg 1) \in eff^{-}$$
E.g., $(\langle \{at_a_room_{1}\}, \emptyset \rangle \to B_{a}secret_{b}) \in eff^{+}$

$$\Rightarrow (\langle \{at_a_room_{1}\}, \emptyset \rangle \to \neg B_{a}secret_{b}) \in eff^{-}$$

Uncertain Firing

If we are uncertain if an effect fires, we should be uncertain about the original outcome of the effect

E.g.,
$$(\langle \{at_a_room_1\}, \emptyset \rangle \to B_a secret_b) \in eff^+$$

 $\Rightarrow (\langle \emptyset, \{\neg at_a_room_1\} \rangle \to \neg B_a secret_b) \in eff^-$

KD45_n Closure

The agent's belief should remain deductively closed under the logic of KD45_n (e.g., $B_ip \vdash_{KD45} \neg B_i \neg p$)

E.g.,
$$(\langle \{at_a_room_1\}, \emptyset \rangle \rightarrow B_a secret_b) \in eff^+$$

 $\Rightarrow (\langle \{at_a_room_1\}, \emptyset \rangle \rightarrow \neg B_a \neg secret_b) \in eff^+$

KD45_n Unclosure

Remove anything that would deduce a delete effect.

E.g.,
$$(\langle \emptyset, \emptyset \rangle \to \neg B_{\mathfrak{a}} secret) \in eff^-$$

 $\Rightarrow (\langle \emptyset, \emptyset \rangle \to B_{\mathfrak{a}} \neg secret) \in eff^-$

Conditioned Mutual Awareness

Idea: Given condition μ_i for agent i to witness an action, add the effects to update our belief about agent i

Examples for μ_i :

- in_room_i: Agent i observes effect if they are in the room (i.e., physically present).
- True: Agent i always observes the effect
- False: Agent i never observes the effect

$$\begin{array}{l} \text{E.g., } (\langle \emptyset, \{\neg at_a_room_1\} \rangle \rightarrow \neg B_a secret_b) \in \textit{eff}^- \\ \Rightarrow (\langle \{\neg B_c \neg at_a_room_1\}, \emptyset \rangle \rightarrow \neg B_c \neg B_a secret_b) \in \textit{eff}^+ \end{array}$$

Preliminary Evaluation

Ag: The set of agents included

g: Size of the goal specification

d: Maximum depth of nested belief

 \vec{o} : Computed plan

Solve(old): Time to find a plan (old solver)

Comp: Time to compile theoryTotal: Total time for both

Communication

Time (s)								
\mathbf{Solve}_{old}	Solve	Comp.	Total					
17.52	0.08	0.70	0.78					
10.88	0.13	1.14	1.27					
659.21	10.67	1.09	11.76					
1607.87	18.29	1.77	20.06					

Grapevine

Ag $ g $	1 1	7	$ \vec{o} $		Time (s)		
	g	d	RPMEP	EFP2	RPMEP	EFP2	$EFP2_{simp}$
4	2	1	4	4	0.46	39.40	0.67
4	4	1	6	6	0.47	2698.30	100.22
4	8	1	12	ТО	0.46	TO	-
4	2	2	5	4	9.28	48.43	0.91
4	4	2	7	6	9.26	3413.02	14.37
4	8	2	27	TO	9.76	TO	-

Summary

- Multi-agent planning settings often require us to model the nested belief of agents
- We leveraged a tractable fragment of epistemic reasoning to maintain consistency of agents' belief
- Realized an automated planning system that deals with the nested belief in a multi-agent setting

