• Récurrences 5

On considère la suite :

$$\begin{cases} u_{n+1} = 16u_n - 150n - 290 \\ u_0 = 30 \end{cases}$$

- **1.** Calculer u_1 .
- **2.** On pose : $\forall n \in \mathbb{N}$: $v_n = u_n 10n 20$. Montrer que la suite (v_n) est géométrique . Donner la raison et le premier terme.
- **3.** En déduire que l'expression de v_n en fonction de n.
- 4. En déduire que l'expression de u_n en fonction de n.
- **5.** En déduire le sens de variation de la suite (u_n) .

1. On a:

$$u_1 = 16u_0 - 150 \times 0 - 290 = 190$$

2. On a:

$$\begin{aligned} v_{n+1} &= u_{n+1} - 10(n+1) - 20 \\ v_{n+1} &= 16u_n - 150n - 290 - 10(n+1) - 20 \\ v_{n+1} &= 16u_n - (150 + 10)n - 20 - 290 - 10 \\ v_{n+1} &= 16u_n - 160n - 320 \\ v_{n+1} &= 16\left(u_n - \frac{160}{16}n - \frac{320}{16}\right) \\ v_{n+1} &= 16\left(u_n - 10n - 20\right) \\ v_{n+1} &= 16v_n \end{aligned}$$

3. Comme la suite (v_n) est géométrique de raison 16, on peut en déduire que :

$$v_n = 16^n v_0$$

 $v_n = 16^n (u_0 - 20)$
 $v_n = 10 \times 16^n$

4. On a:

$$v_n = u_n - 10n - 20$$

$$\Leftrightarrow u_n = v_n + 10n + 20$$

$$\Leftrightarrow u_n = 10 \times 16^n + 10n + 20$$

5. On doit déterminer le signe de $u_{n+1} - u_n$:

$$u_{n+1} - u_n = 10 \times 16^{n+1} + 10(n+1) + 20 - (10 \times 16^n + 10n + 20)$$

= $10 \times 16^n (16 - 1) + 10n + 10 + 20 - 10n - 20$
= $150 \times 16^n + 10 > 0$

Comme $u_{n+1} - u_n > 0$, on en déduit que la suite (u_n) est croissante.