Question 1 (a)

Proof. To show that $\lim \left(\frac{n^2+n}{2n^2-3}\right)=\frac{1}{2}$, we need to show that $\forall \epsilon>0, \exists N\in\mathbb{N}, \text{ s.t } \forall n\geq N:$ $|a_n-L|<\epsilon.$

In this case, $(a_n) = \frac{n^2 + 2n}{2n^2 - 3}$, $L = \frac{1}{2}$.

 $|a_n - L| = \left| \frac{n^2 + n}{2n^2 - 3} - \frac{1}{2} \right| = \left| \frac{2n + 3}{4n^2 - 6} \right|$. When n is enfficiently large, especially, say $n \ge 3$, then we

have $\left| \frac{2n+3}{4n^2-6} \right| < \left| \frac{2n+3}{4n^2-9} \right| = \frac{2n+3}{4n^2-9}$, because 2n+3>0 and $4n^2-9>0$ in this case.

We may observe that $\frac{2n+3}{4n^2-9} = \frac{2n+3}{(2n+3)(2n-3)} = \frac{1}{2n-3}$. This operation is totally doable because 2n-3>0 and 2n+3>0.

Then, if we let $\frac{1}{2n-3} < \epsilon$, solve for n we get $n > \frac{1}{\epsilon} + 3$. Then, by our previous steps, we say that

$$|a_n - L| < \frac{1}{2n - 3} < \epsilon \text{ for all } n > \frac{1}{\epsilon} + 3$$

If we let $N > \frac{1}{\epsilon} + 3$, then we conclude that $\forall n \geq N$, we have $|a_n - L| < \epsilon$, which means

$$\lim \left(\frac{n^2+n}{2n^2-3}\right) = \frac{1}{2}$$

Question 2

Proof. By definition, if $\lim(x_n) = x$, it means $\exists N \in \mathbb{N}, \forall x \geq N, |x_n - x| < \epsilon$, for all $\epsilon > 0$.

$$\implies |x_n - x| < \epsilon$$

$$\implies -\epsilon < x_n - x < \epsilon$$

$$\implies -\epsilon + x < x_n < \epsilon + x$$

If we choose $\epsilon = \frac{1}{2}x$, then we have $\frac{1}{2}x < x_n < \frac{3}{2}x$, for all x > N for some N. In this case, it is the same as saying $\frac{1}{2}x < x_n < 2x$, because x > 0. So we have proved the inequility.