Importing packages

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
import matplotlib.mlab as mlab
import matplotlib
plt.style.use('ggplot')
from matplotlib.pyplot import figure

%matplotlib inline
matplotlib.rcParams['figure.figsize'] = (12,8)

pd.options.mode.chained_assignment = None
```

Loading the data

```
In [2]: df = pd.read_csv(r'B:\MY COMPUTER (HOME)\2 IT\data science courses\projects\Data ana
    df
```

[2]:		name	rating	genre	year	released	score	votes	director	writer	
	0	The Shining	R	Drama	1980	June 13, 1980 (United States)	8.4	927000.0	Stanley Kubrick	Stephen King	Ni
	1	The Blue Lagoon	R	Adventure	1980	July 2, 1980 (United States)	5.8	65000.0	Randal Kleiser	Henry De Vere Stacpoole	
	2	Star Wars: Episode V - The Empire Strikes Back	PG	Action	1980	June 20, 1980 (United States)	8.7	1200000.0	Irvin Kershner	Leigh Brackett	
	3	Airplane!	PG	Comedy	1980	July 2, 1980 (United States)	7.7	221000.0	Jim Abrahams	Jim Abrahams	
	4	Caddyshack	R	Comedy	1980	July 25, 1980 (United States)	7.3	108000.0	Harold Ramis	Brian Doyle- Murray	
	•••										
	7663	More to Life	NaN	Drama	2020	October 23, 2020 (United States)	3.1	18.0	Joseph Ebanks	Joseph Ebanks	S
	7664	Dream Round	NaN	Comedy	2020	February 7, 2020 (United States)	4.7	36.0	Dusty Dukatz	Lisa Huston	
	7665	Saving Mbango	NaN	Drama	2020	April 27, 2020 (Cameroon)	5.7	29.0	Nkanya Nkwai	Lynno Lovert	(
	7666	lt's Just Us	NaN	Drama	2020	October 1, 2020 (United States)	NaN	NaN	James Randall	James Randall	C
	7667	Tee em el	NaN	Horror	2020	August 19, 2020 (United States)	5.7	7.0	Pereko Mosia	Pereko Mosia	Siy
-	7668 r	ows × 15 co	lumns								

```
In [3]: # We need to see if we have any missing data

for col in df.columns:
    pct_missing = np.mean(df[col].isnull())
    print('{} - {}%'.format(col, round(pct_missing*100)))
```

```
name - 0%
        rating - 1%
        genre - 0%
        year - 0%
        released - 0%
        score - 0%
        votes - 0%
        director - 0%
        writer - 0%
        star - 0%
        country - 0%
        budget - 28%
        gross - 2%
        company - 0%
        runtime - 0%
In [4]: # Data Types for our columns
        print(df.dtypes)
                     object
        name
                     object
        rating
        genre
                    object
                     int64
        year
                    object
        released
                    float64
        score
                   float64
        votes
        director object
                   object
        writer
                    object
        star
                    object
        country
                    float64
        budget
                    float64
        gross
                    object
        company
        runtime
                    float64
        dtype: object
In [ ]: # change the datatype of column
        df['budget']=df['budget'].astype('int64')
        df['gross']=df['gross'].astype('int64')
In [ ]: |
        # create correct year column
        # df['yearcorrect']=df['released'].astype(str).str[:4]
        # df
In [6]: # Order our Data a little bit to see
        df.sort_values(by=['gross'], inplace=False, ascending=False)
```

IVI					st (portiono)						
]:		name	rating	genre	year	released	score	votes	director	writer	
54	445	Avatar	PG-13	Action	2009	December 18, 2009 (United States)	7.8	1100000.0	James Cameron	James Cameron	Worth
74	445	Avengers: Endgame	PG-13	Action	2019	April 26, 2019 (United States)	8.4	903000.0	Anthony Russo	Christopher Markus	Dov
30	045	Titanic	PG-13	Drama	1997	December 19, 1997 (United States)	7.8	1100000.0	James Cameron	James Cameron	Le ₁ Di
66	663	Star Wars: Episode VII - The Force Awakens	PG-13	Action	2015	December 18, 2015 (United States)	7.8	876000.0	J.J. Abrams	Lawrence Kasdan	Daisy
72	244	Avengers: Infinity War	PG-13	Action	2018	April 27, 2018 (United States)	8.4	897000.0	Anthony Russo	Christopher Markus	Dov
	•••										
76	663	More to Life	NaN	Drama	2020	October 23, 2020 (United States)	3.1	18.0	Joseph Ebanks	Joseph Ebanks	Sł
76	664	Dream Round	NaN	Comedy	2020	February 7, 2020 (United States)	4.7	36.0	Dusty Dukatz	Lisa Huston	N Si
76	665	Saving Mbango	NaN	Drama	2020	April 27, 2020 (Cameroon)	5.7	29.0	Nkanya Nkwai	Lynno Lovert	0
76	666	lt's Just Us	NaN	Drama	2020	October 1, 2020 (United States)	NaN	NaN	James Randall	James Randall	CI
76	667	Tee em el	NaN	Horror	2020	August 19, 2020 (United States)	5.7	7.0	Pereko Mosia	Pereko Mosia	Siya N
76	68 rd	ows × 15	column	S							

In [7]: # drop any duplicates df.drop_duplicates()

Out[7]

					portiono)						
		name	rating	genre	year	released	score	votes	director	writer	
	0	The Shining	R	Drama	1980	June 13, 1980 (United States)	8.4	927000.0	Stanley Kubrick	Stephen King	Ni
	1	The Blue Lagoon	R	Adventure	1980	July 2, 1980 (United States)	5.8	65000.0	Randal Kleiser	Henry De Vere Stacpoole	
	2	Star Wars: Episode V - The Empire Strikes Back	PG	Action	1980	June 20, 1980 (United States)	8.7	1200000.0	Irvin Kershner	Leigh Brackett	
	3	Airplane!	PG	Comedy	1980	July 2, 1980 (United States)	7.7	221000.0	Jim Abrahams	Jim Abrahams	
	4	Caddyshack	R	Comedy	1980	July 25, 1980 (United States)	7.3	108000.0	Harold Ramis	Brian Doyle- Murray	
	•••										
	7663	More to Life	NaN	Drama	2020	October 23, 2020 (United States)	3.1	18.0	Joseph Ebanks	Joseph Ebanks	S
	7664	Dream Round	NaN	Comedy	2020	February 7, 2020 (United States)	4.7	36.0	Dusty Dukatz	Lisa Huston	
	7665	Saving Mbango	NaN	Drama	2020	April 27, 2020 (Cameroon)	5.7	29.0	Nkanya Nkwai	Lynno Lovert	(
	7666	lt's Just Us	NaN	Drama	2020	October 1, 2020 (United States)	NaN	NaN	James Randall	James Randall	(
	7667	Tee em el	NaN	Horror	2020	August 19, 2020 (United States)	5.7	7.0	Pereko Mosia	Pereko Mosia	Siy
7668 rows × 15 columns											
											•
	# Are	there any	Outlie	rs?							
	4 C 1	1 (/ 1		175							

```
In [8]
        df.boxplot(column=['gross'])
Out[8]: <AxesSubplot:>
```



```
In [9]: # scatter plot with budget vs gross
plt.scatter(x=df['budget'], y=df['gross'], alpha=0.5)
plt.title('Budget vs Gross Earnings')
plt.xlabel('Gross Earnings')
plt.ylabel('Budget for Film')
plt.show()
```



```
In [10]: # plot budget vs gross using seaborn
sns.regplot(x="gross", y="budget", data=df)
```

Out[10]: <AxesSubplot:xlabel='gross', ylabel='budget'>

Correlation

In [11]: # Correlation Matrix between all numeric columns
 # default method is pearson
 # high corr bet gross and budget
 df.corr(method ='pearson')

Out[11]:		year	score	votes	budget	gross	runtime
	year	1.000000	0.097995	0.222945	0.329321	0.257486	0.120811
	score	0.097995	1.000000	0.409182	0.076254	0.186258	0.399451
	votes	0.222945	0.409182	1.000000	0.442429	0.630757	0.309212
	budget	0.329321	0.076254	0.442429	1.000000	0.740395	0.320447
	gross	0.257486	0.186258	0.630757	0.740395	1.000000	0.245216
	runtime	0.120811	0.399451	0.309212	0.320447	0.245216	1.000000

In [12]: df.corr(method ='kendall')

Out[12]:		year	score	votes	budget	gross	runtime
	year	1.000000	0.067652	0.331465	0.224120	0.200618	0.097184
	score	0.067652	1.000000	0.300115	-0.000566	0.086046	0.283611
	votes	0.331465	0.300115	1.000000	0.353702	0.548899	0.198240
	budget	0.224120	-0.000566	0.353702	1.000000	0.512637	0.235483
	gross	0.200618	0.086046	0.548899	0.512637	1.000000	0.168933
	runtime	0.097184	0.283611	0.198240	0.235483	0.168933	1.000000

In [13]: df.corr(method ='spearman')

Out[13]:

```
votes
                                         budget
                                                    gross runtime
             year
                      score
         1.000000
                    0.099045
                            0.469829
                                        0.317336  0.293084
                                                           0.142977
   year
         0.099045
                    1.000000
                            0.428138
                                       -0.001403 0.126116 0.399857
         0.469829
                    0.428138
                             1.000000
                                        0.502466 0.742050
                                                           0.290159
  votes
budget
         0.317336
                   -0.001403
                            0.502466
                                        1.000000
                                                 0.693670 0.336370
                    0.126116 0.742050
                                                 1.000000
                                                           0.246243
  gross
         0.293084
                                        0.693670
                    0.399857 0.290159
runtime 0.142977
                                        0.336370  0.246243  1.000000
```

```
In [14]: correlation_matrix = df.corr()
    sns.heatmap(correlation_matrix, annot = True)

plt.title("Correlation matrix for Numeric Features")

plt.xlabel("Movie features")

plt.ylabel("Movie features")

plt.show()
```



```
In [15]: # numerization- giving a number to objects column for correlation
    df_numerized = df

for col_name in df_numerized.columns:
        if(df_numerized[col_name].dtype == 'object'):
            df_numerized[col_name] = df_numerized[col_name].astype('category')
            df_numerized[col_name] = df_numerized[col_name].cat.codes

df_numerized
```

Out[15]:		name	rating	genre	year	released	score	votes	director	writer	star	country	k
	0	6587	6	6	1980	1705	8.4	927000.0	2589	4014	1047	54	1900
	1	5573	6	1	1980	1492	5.8	65000.0	2269	1632	327	55	450
	2	5142	4	0	1980	1771	8.7	1200000.0	1111	2567	1745	55	1800
	3	286	4	4	1980	1492	7.7	221000.0	1301	2000	2246	55	350
	4	1027	6	4	1980	1543	7.3	108000.0	1054	521	410	55	600
	•••												
	7663	3705	-1	6	2020	2964	3.1	18.0	1500	2289	2421	55	
	7664	1678	-1	4	2020	1107	4.7	36.0	774	2614	1886	55	
	7665	4717	-1	6	2020	193	5.7	29.0	2061	2683	2040	55	ĩ
	7666	2843	-1	6	2020	2817	NaN	NaN	1184	1824	450	55	1
	7667	5394	-1	10	2020	391	5.7	7.0	2165	3344	2463	44	

7668 rows × 15 columns

```
In [16]: # correlation of all the columns
    correlation_matrix = df_numerized.corr(method='pearson')

    sns.heatmap(correlation_matrix, annot = True)

    plt.title("Correlation matrix for Movies")

    plt.xlabel("Movie features")

    plt.ylabel("Movie features")

    plt.show()
```



```
In [17]:
          correlation_mat = df_numerized.corr()
          corr_pairs = correlation_mat.unstack()
          print(corr_pairs)
                                1.000000
          name
                    name
                    rating
                                -0.008069
                    genre
                                0.016355
                                0.011453
                    year
                    released
                                -0.011311
                                   . . .
          runtime
                                -0.078412
                   country
                    budget
                                0.320447
                                0.245216
                    gross
                    company
                                0.034402
                    runtime
                                1.000000
          Length: 225, dtype: float64
          sorted_pairs = corr_pairs.sort_values(kind="quicksort")
In [18]:
          sorted pairs
                              -0.356564
          budget
                    genre
Out[18]:
          genre
                   budget
                              -0.356564
                              -0.235650
                    gross
                              -0.235650
          gross
                    genre
                              -0.176002
          rating
                    budget
                                  . . .
          year
                               1.000000
                   year
                               1.000000
          genre
                    genre
          rating
                    rating
                               1.000000
          company
                    company
                               1.000000
                    runtime
                               1.000000
          runtime
          Length: 225, dtype: float64
```

```
In [19]: # We can now take a look at the ones that have a high correlation (> 0.5)
         strong_pairs = sorted_pairs[abs(sorted_pairs) > 0.5]
         print(strong pairs)
                                0.630757
         gross
                   votes
                                0.630757
         votes
                   gross
         budget
                   gross
                                0.740395
         gross
                   budget
                                0.740395
         name
                   name
                                1.000000
         director director
                                1.000000
                                1.000000
         gross
                   gross
                                1.000000
         budget
                   budget
         country
                   country
                                1.000000
                                1.000000
         star
                   star
         writer
                   writer
                               1.000000
         votes
                   votes
                               1.000000
                   score
         score
                               1.000000
         released released
                                1.000000
                   year
                                1.000000
         year
                                1.000000
         genre
                   genre
         rating
                   rating
                                1.000000
                                1.000000
         company
                   company
                                1.000000
         runtime
                   runtime
         dtype: float64
In [20]: # Looking at the top 15 compaies by gross revenue
         CompanyGrossSum = df.groupby('company')[["gross"]].sum()
         CompanyGrossSumSorted = CompanyGrossSum.sort_values('gross', ascending = False)[:15]
         CompanyGrossSumSorted = CompanyGrossSumSorted['gross'].astype('int64')
         CompanyGrossSumSorted
         company
Out[20]:
         2319
                 56491421806
         2281
                 52514188890
         731
                 43008941346
         1812
                 40493607415
         2253
                 40257053857
         2316
                 36327887792
         1713
                 19883797684
         1606
                 15065592411
         887
                 11873612858
         2232
                 11795832638
         889
                 11635441081
         1637
                  9230230105
         2147
                  8373718838
         1856
                  7886344526
         1109
                  7443502667
         Name: gross, dtype: int64
         sns.swarmplot(x="rating", y="gross", data=df)
```

C:\Users\Admin\anaconda3\lib\site-packages\seaborn\categorical.py:1296: UserWarning: 53.2% of the points cannot be placed; you may want to decrease the size of the marke rs or use stripplot.

warnings.warn(msg, UserWarning)

C:\Users\Admin\anaconda3\lib\site-packages\seaborn\categorical.py:1296: UserWarning: 48.4% of the points cannot be placed; you may want to decrease the size of the marke rs or use stripplot.

warnings.warn(msg, UserWarning)

C:\Users\Admin\anaconda3\lib\site-packages\seaborn\categorical.py:1296: UserWarning: 60.9% of the points cannot be placed; you may want to decrease the size of the marke rs or use stripplot.

warnings.warn(msg, UserWarning)

C:\Users\Admin\anaconda3\lib\site-packages\seaborn\categorical.py:1296: UserWarning:
80.6% of the points cannot be placed; you may want to decrease the size of the marke
rs or use stripplot.

warnings.warn(msg, UserWarning)

C:\Users\Admin\anaconda3\lib\site-packages\seaborn\categorical.py:1296: UserWarning:
84.4% of the points cannot be placed; you may want to decrease the size of the marke
rs or use stripplot.

warnings.warn(msg, UserWarning)

```
In [ ]: sns.stripplot(x="rating", y="gross", data=df)
In [ ]:
```