Table 3.3 *P*-values for three samples, $n_1 = n_2 = n_3 = 5$, $\sigma^2 = 14$

$\overline{\overline{Y}}_1$	\overline{Y}_2	\overline{Y}_3	ANOVA	ISO	Reg
2	6	6	0.149	0.050	0.045
2	6	7	0.082	0.026	0.017
2	6	8	0.036	0.011	0.006

relative ease of using regression is probably why isotonic regression is not used more.

Finally, although the *p*-values reported in Table 3.3 are for the known-variance case, qualitatively similar results are obtained for the more complicated case of σ unknown.

There is a large literature on order-restricted inference. For testing for ordered alternatives, there has been more emphasis on $T_{\rm LR}$ than on $T_{\rm W}$ and $T_{\rm S}$. The classic references are Barlow et al. (1972) and Robertson et al. (1988), whereas a more recent account is Silvapulle and Sen (2005).

3.6.2 Null Hypotheses on the Boundary of the Parameter Space

When a null hypothesis value, say θ_0 lies on the boundary of the parameter space, then maximum likelihood estimators are often truncated at that boundary because by definition $\widehat{\theta}_{MLE}$ must lie in the parameter space of θ . Thus $\widehat{\theta}_{MLE}$ is equal to the boundary value θ_0 with positive probability and correspondingly T_{LR} is zero for those cases. The result is that the limiting distribution of T_{LR} is a mixture of a point mass at zero and a chi-squared distribution. We illustrate first with an artificial example and then consider the one-way random effects model.

3.6.2a Normal Mean with Restricted Parameter Space

Suppose that $Y_1,\ldots,Y_n\sim N(\mu,1)$. Usually, $\widehat{\mu}_{MLE}=\overline{Y}$, but suppose that we restrict the parameter space for μ to be $[\mu_0,\infty)$ where μ_0 is some given constant, instead of $(-\infty,\infty)$. Then $\widehat{\mu}_{MLE}=\overline{Y}$ if $\overline{Y}\geq \mu_0$ and $\widehat{\mu}_{MLE}=\mu_0$ if $\overline{Y}<\mu_0$. Now suppose that the null hypothesis is $H_0:\mu=\mu_0$. We first consider the three likelihood-based test statistics, showing that only the score statistic has a limiting χ_1^2 distribution. Then we provide a simple solution to this testing problem.

Under H_0 , the Wald statistic is $T_{\rm W} = n(\widehat{\mu}_{\rm MLE} - \mu_0)^2$, which is thus $T_{\rm W} = 0$ if $\widehat{\mu}_{\rm MLE} = \mu_0$ and $T_{\rm W} = n(\overline{Y} - \mu_0)^2$ if $\overline{Y} \ge \mu_0$. The score statistic is $T_{\rm S} = n(\overline{Y} - \mu_0)^2$, and the likelihood ratio statistic is the same as the Wald statistic. Thus, only the score statistic converges to a χ_1^2 distribution under H_0 . The Wald and the likelihood ratio statistics converge to a distribution that is an equal mixture of a point mass at 0 and a χ_1^2 distribution, the same distribution as in (3.23) for k=2. In fact the