МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского» (ННГУ)

Высшая школа общей и прикладной физики

Отчет по лабораторной работе № 134 «Измерение коэффициента теплопроводности воздуха»

Выполнил:

студент 1 курса ВШ ОПФ

Тарханов Андрей Алексеевич

Цель работы: изучение теплопроводности воздуха как одного из явлений переноса в газах.

Теоретическая часть

Теплопередача в газах осуществляется тремя способами: тепловым излучением (перенос энергии электромагнитными волнами), конвекцией (перенос энергии за счёт перемещения слоёв газа в пространстве из областей с более высокой температурой в области с низкой температурой) и теплопроводностью.

При теплопроводности осуществляется непосредственная передача энергии от молекул с большей энергией к молекулам с меньшей энергией. Для стационарного процесса, при котором разность температур в слое газа не изменяется со временем, количество теплоты dQ, которое переносится за время dt через площадку S, перпендикулярно к направлению г переноса энергии определяется по закону Фурье:

$$dQ = -k \frac{dT}{dr} Sdt, (1)$$

где k — коэффициент теплопроводности; $\frac{dT}{dr}$ — градиент температуры. Для идеального газа

$$k = \frac{1}{3}\rho\lambda < v > C_V (2)$$

где ρ - плотность газа; λ — средняя длина свободного пробега; < v> - средняя скорость теплового движения молекул, равная $\sqrt{\frac{8RT}{\pi\mu}}$, C_V - удельная теплоёмкость газа при постоянном объёме.

Рассмотрим два коаксиальных цилиндра, пространство между которыми заполнено газом. Если внутренний цилиндр нагревать, а температуру наружного цилиндра поддерживать постоянной (ниже температуры нагревателя), то в кольцевом слое газа возникает радиальный тепловой поток, направленный от внутреннего цилиндра к наружному. При этом температура слоёв газа, прилегающих к стенкам цилиндров, равна температуре стенок. Выделим в газе кольцевой слой радиусом г, толщиной dr и длиной L. По закону Фурье (1) мощность тепловых потерь P_T , то есть количество теплоты, которое проходит через этот слой за одну секунду, можно записать в виде

$$P_T = -k \frac{dT}{dr} S = -k \frac{dT}{dr} 2\pi r L. (3)$$

Разделяя переменные, получим

$$\frac{dr}{r} = -\frac{2\pi kL}{P_T} dT.$$

Считая, что диаметр и температура внутреннего цилиндра равны соответственно d и t_1 , а внешнего D и T_2 , проинтегрируем дифференциальное уравнение:

$$\int_{
m d/2}^{
m D/2} rac{
m dr}{
m r} = -rac{2\pi k L}{
m P_T} \int_{
m T_1}^{
m T_2}
m dT$$
, то есть

$$\ln \frac{D}{d} = \frac{2\pi kL}{P_T} (T_1 - T_2).$$
 (4)

Из уравнения (4) получим формулу для определения коэффициента теплопроводности газа

$$k = \frac{P_{T} \ln \frac{D}{d}}{2\pi L(T_{1} - T_{2})}$$
 (5)

Формула (5) получена в предположении, что теплота переносится от внутреннего цилиндра к наружному только благодаря теплопроводности. Это предположение достаточно обосновано, поскольку поток лучистой энергии при невысоких температурах и малом диаметре нагревателя минимален.

Внутренним цилиндром в работе служит проволока, которая нагревается электрическим током. Тогда после установления стационарного режима мощность тепловых потерь можно принять равной тепловой мощности, выделяющейся при протекании по проволоке электрического тока

$$P_T = I_H U_H$$

где $I_{\rm H}$ – ток через проволоку, $U_{\rm H}$ - падение напряжения на проволоке.

Если последовательно с проволокой включить эталонный резистор R_{\ni} , то $I_{H}=\frac{U_{R}}{R_{\ni}}$,

и тогда
$$P_{T} = \frac{U_{R}U_{H}}{R_{\odot}}$$
, (6)

где U_R - падение напряжения на эталонном резисторе. Используя равенство (6) в формуле (5), получим

$$k = \frac{U_R U_H \ln \frac{D}{d}}{2\pi L R_{\mathcal{D}} \Delta T}. (7)$$

Здесь D и d — диаметры наружного цилиндра и проволоки; $\Delta T = T_H - T_T$ — разность температур проволоки и наружного цилиндра (трубки). Температуру трубки T_T можно принять равной температуре окружающего воздуха.

Для вычисления разности температур ΔT в слое газа напишем формулы, по которым определяют сопротивление проволоки при температуре окружающего воздуха и в нагретом состоянии:

$$R_{H0} = R_0(1 + \alpha t_0), R_H = R_0(1 + \alpha t),$$

где α — температурный коэффициент сопротивления материала проволоки, а R_0 — сопротивление проволоки при t=0°C. Исключив из этих равенств R_0 , найдём

$$\Delta T = t - t_0 = \frac{R_H - R_{H0}}{\alpha R_{H0}} (1 + \alpha t_0)$$

Учитывая, что
$$R_{\rm H}=\frac{U_{\rm H}}{I_{\rm H}}$$
, $I_{\rm H}=\frac{U_{R}}{R_{\rm 9}}$, $R_{\rm H0}=\frac{U_{\rm H0}}{I_{\rm H0}}$, $I_{\rm H0}=\frac{U_{R0}}{R_{\rm 9}}$, получаем

$$\Delta T = \frac{\left(\frac{U_{H}}{U_{R}} - \frac{U_{H0}}{U_{R0}}\right)(1 + \alpha t_{0})}{\frac{U_{H0}}{U_{R0}}\alpha}.$$
 (8)

Здесь U_H , U_{H0} - падение напряжения на проволоке соответственно в нагретом состоянии и при температуре t_0 окружающего воздуха; U_R , U_{R0} - падение напряжения на эталонном резисторе соответственно при нагретой проволоке и при температуре окружающего воздуха t_0 .

Экспериментальная часть:

Включив установку тумблером «Сеть», и включив тумблер «Нагрев», начнём увеличивать напряжение на проволоке. Нажав кнопку « U_R » (режим измерения падения напряжения на эталонном резисторе) и с помощью регулятора «Нагрев» установим падение напряжения на эталонном резисторе U_{R0} не более 1В. При этом температура проволоки остаётся практически неизменной («ненагревающий» ток). Затем при том же положении регулятора «Нагрев» нажмём кнопку « U_H » (режим измерения падения напряжения на проволоке) и зарегистрируем значение напряжения U_{H0} . Опыт проведём пять раз для близких значений к U_{H0} и U_{R0} . Результаты занесём в таблицу.

№ опыта	U_{R0} , B	U_{H0} , B	U_{H0}/U_{R0}	(U_{H0}/U_{R0}) cp.	t₀,°C
1	0,71	0,18	0,25		
2	0,79	0,2	0,25		
3	0,91	0,23	0,25	0,25	23
4	0,94	0,24	0,26		
5	1	0,26	0,26		

Нажмём кнопку « U_R » и с помощью регулятора нагрев установим падение напряжения на эталонном резисторе U_R в диапазоне 5-8В. Затем нажмём кнопку « U_H ». Для стабилизации теплового режима необходимо подождать две минуты, после чего определить падение напряжения на проволоке U_H . Опыт был повторён четыре раза для четырёх различных значений U_R .

№ опыта	U _R , B	U _H , B	$U_{\rm H}/U_{\rm R}$	U_{H0} $* U_{R0}, B^2$	ΔΤ, Κ	k, Вт/мК	k _{ср} ,Вт /мК
1	7	1,9	0,27	13,3	17,85	0,042	
2	7,5	2,05	0,27	15,4	18,90	0,046	0,046
3	7,9	2,16	0,27	17,1	18,90	0,051	

Погрешности:

$$dT = \frac{\Delta U \frac{U_H + U_R}{U_R^2} + \Delta U \frac{U_{R0} + U_{H0}}{U_{R0}^2}}{\frac{U_H}{U_R} - \frac{U_{H0}}{U_{R0}}} + \frac{\Delta U}{U_{H0}} + \frac{\Delta U}{U_{R0}}$$

$$\Delta k = dT + \frac{\Delta U}{U_R} + \frac{\Delta U}{U_H}$$

$$\Delta k = dT + \frac{\Delta U}{U_R} + \frac{\Delta U}{U_H}$$

Тогда относительные погрешности равны:

 $dT_1=0.87$; $\Delta k_1=0.88$

 $dT_2=0.95$; $\Delta k_2=0.96$

 $dT_3=0,96$; $\Delta k_3=0,96$

Вывод: в результате проделанной работы вычислили коэффициент МЫ теплопроводности воздуха. По нашим подсчётам ОН получился равным $0,046\pm0,044$ BT/MK.