Quiz 3

Total Marks: 30 30 October 2024

- 1. [10 marks] Write LTL formulae φ which capture each requirement. Assume $AP = \{a, b\}$.
 - (a) Finitely many a's.
 - (b) Infinitely many a's and finitely many b's.
 - (c) Eventually a and eventually forever $\neg a$.
 - (d) There is an a which is never eventually followed by two occurrences of b's.
 - (e) There is at least one a, and b holds continuously since the last occurrence of a.

For each formula, give a short justification.

Solution

- (a) $\neg(\Box \Diamond a)$ or $\Diamond \Box \neg a$
- (b) $\Box \Diamond a \neg (\Box \Diamond b)$
- (c) $\Diamond a \vee \Diamond \Box \neg a$
- (d) $\Diamond (a \land (\bigcirc(\Diamond b \land (\bigcirc\Diamond b))))$
- (e) $\Diamond (a \land \bigcirc \Box \neg a \land \Box b) \lor \Box \Diamond a$

Rubrics

- For (a), (b), and (c) 2 marks has been given in each part for the correct LTL formula. No partial marks have been awarded in (a), (b), and (c).
- For (d), 2 marks has been given for correct LTL formula. 1 mark has been awarded if the LTL formula has 1-2 mistakes.
- For (e), 2 marks for the correct answer. 1 mark has been given if the student has missed the case for infinitely many a's.

Comments.

- There are many possible answers to this question. We have given marks for alternate answers if they are correct.
- A lot of students have misunderstood the alphabet as AP instead of 2^{AP} . You cannot assume that $\neg a \iff b$.
- In (d), the two occurrences of b need not be consecutive.

2. [10 marks] Consider the formula $\varphi = \bigcirc \Box (a \land \neg b)$ and the transition system TS below over $AP = \{a, b\}$.

Does $TS \models \varphi$? To answer this,

- (a) Write down $\neg \varphi$ so that the negation is attached only to symbols from AP.
- (b) Draw the NBA $A_{\neg\varphi}$ for $\neg\varphi$. (You should construct the NBA directly from $\neg\varphi$. DO NOT use the construction from LTL to GNBA)
- (c) Construct the transition system TS' as a product of TS and $A_{\neg\varphi}$. The labels of TS' are the states of $A_{\neg\varphi}$.
- (d) Write the persistence property ψ which should be checked on TS'.
- (e) Does $TS' \models \psi$? Explain in 2-3 lines your answer for this (whether or not TS' satisfies ψ) and connect it to the given question $TS \models \varphi$ appropriately, and conclude whether or not $TS \models \varphi$.

Solution

(a)
$$\bigcirc \Diamond (\neg a \lor b)$$

- 3. [10 marks] Consider $\varphi = a \cup (\bigcirc b \wedge \neg a)$ over $AP = \{a, b\}$.
 - (a) What is the closure of φ , $Cl(\varphi)$?
 - (b) Write down all elementary subsets of $Cl(\varphi)$.
 - (c) Which of these are initial states in a GNBA for φ ?
 - (d) Which of these are accepting states in a GNBA for $\neg \varphi$?
 - (e) Take a pair of elementary sets B_1, B_2 from the above so that there is no transition from B_1 to B_2 . Explain why. Note that you are not asked to draw the GNBA for φ .

Solution

(a)
$$Cl(\varphi) = \{a, \neg a, b, \neg b, (\bigcirc b \land \neg a), \neg (\bigcirc b \land \neg a), \bigcirc b, \neg (\bigcirc b), \varphi, \neg \varphi\}$$

(b) Taking $\gamma = (\bigcirc b \land \neg a)$, the elementary subsets of $Cl(\varphi)$ are

$$B_{1} = \{a, b, \bigcirc b, \neg \gamma, \varphi\}$$

$$B_{2} = \{a, b, \bigcirc b, \neg \gamma, \neg \varphi\}$$

$$B_{3} = \{a, b, \neg(\bigcirc b), \neg \gamma, \varphi\}$$

$$B_{4} = \{a, b, \neg(\bigcirc b), \neg \gamma, \neg \varphi\}$$

$$B_{5} = \{a, \neg b, \bigcirc b, \neg \gamma, \neg \varphi\}$$

$$B_{6} = \{a, \neg b, \bigcirc b, \neg \gamma, \neg \varphi\}$$

$$B_{7} = \{a, \neg b, \neg(\bigcirc b), \neg \gamma, \varphi\}$$

$$B_{8} = \{a, \neg b, \neg(\bigcirc b), \neg \gamma, \neg \varphi\}$$

$$B_{9} = \{\neg a, b, \bigcirc b, \gamma, \varphi\}$$

$$B_{10} = \{\neg a, b, \neg(\bigcirc b), \neg \gamma, \neg \varphi\}$$

$$B_{11} = \{\neg a, \neg b, \bigcirc b, \gamma, \varphi\}$$

$$B_{12} = \{\neg a, \neg b, \neg(\bigcirc b), \neg \gamma, \neg \varphi\}$$

- (c) At the initial state, φ must be true. Thus Initial states = $\{B_1, B_3, B_5, B_7, B_9, B_{11}\}$
- (d) Notice that $Cl(\varphi) = Cl(\neg \varphi)$. So the elementary sets of φ and $\neg \varphi$ are the same. Hence $\mathcal{F} = F_{\varphi} = \{B \mid \varphi \notin B \text{ or } (\varphi \in B \text{ and } (\bigcirc b \land \neg a) \in B)\} = \{B_2, B_4, B_6, B_8, B_9, B_{10}, B_{11}, B_{12}\}$

Rubrics

- For (a), 2 marks has been given for the correct $Cl(\varphi)$.
- For (b), 0.25 marks has been given for each of the 12 sets and 0.25 marks have been deducted for each set which is not an elementary subset. [For checking, all 8 sets with $\{a, \neg \gamma\}$ as subset and 4 sets with $\{\neg a\}$. In these 4 sets, $\{\bigcirc b, \gamma, \varphi\}$ occur together.]
- For (c), 1.5 marks for the correct answer
- For (d), 1.5 marks for the correct answer
- For (e), 1 mark for the correct answer and 1 mark for justification

Comments.

- If $Cl(\varphi)$ is wrong, everything that follows will be wrong. In such cases, the total marks will be 0. However, in some *exceptional* cases, if you have made elementary sets correct even with wrong $Cl(\varphi)$, we have graded accordingly.
- Part (c) and (d) are graded only if you get full 3 marks in Part (b), as it doesn't make any sense to talk about start states and accepting states, when the state set is itself wrong.

- For (c) and (d), you **must** list down all the relevant states. Just writing "all states which contains φ " is not sufficient. Similarly for (d).
- For part (e), we have given 1 mark if the given pair even when justification is wrong. However both the states that you use in (e) should be an elementary set. If a set which is not elementary is used, 0 marks.