北京师范大学 2020-2021 学年第一学期期末考试试题

近世代数

- 1. (18 分) 设 F 是一个域, 正整数 $n \ge 2$, R 是 $M_n(F)$ 中全体上三角矩阵关于矩阵加法和乘 法构成的环. 设 N 和 D 分别是 R 中幂零矩阵和对角矩阵构成的集合.
 - (1) 证明 N 是 R 的一个理想, D 是 R 的一个子环.
 - (2) 证明存在 R 的一个自同态 φ 使得 $\varphi(R) = D$, 并求出 $\ker(\varphi)$.
- 2. (18 分) 设 R_1, \dots, R_s 是除环, $R = R_1 \oplus \dots \oplus R_s$.
 - (1) 求出 R 中全部理想的个数, 并说明理由.
 - (2) 求出 R 的全部极大理想, 并对每个极大理想 M 决定 R/M.
- 3. (16 分) 设 R = F[x] 是域 F 上的一元多项式环, $f(x), g(x) \in R$.
 - (1) 证明 R 是主理想环.
 - (2) 证明 $R = \langle f(x) \rangle + \langle g(x) \rangle \iff (f(x), g(x)) = 1.$
 - (3) 判断是否有 $\langle f(x) \rangle + \langle g(x) \rangle = \langle f(x) \rangle \oplus \langle g(x) \rangle$, 并说明理由.
- 4. (16 分) 设 R 是有单位元 1 的交换环, P 是 R 的一个非平凡理想 (即 $\{0\} \subsetneq P \subsetneq R$). 若对于任意 $a,b \notin P$, 都存在 $x \in R$ 使得 $ax b \in P$, 证明 P 是 R 的一个素理想.
- 5. (16 分) 设 p < q 是两个不同的素数. 对于 $\alpha = \sqrt[q]{p} + \sqrt[q]{q}$ 以及 $E = \mathbb{Q}(\alpha)$, 证明 $[E : \mathbb{Q}] \neq p$.
- 6. (16 分) 对于 $p(x) \in \mathbb{Q}[x]$, 用 \mathbb{Q}_p 表示 p(x) 在有理数域 \mathbb{Q} 上的分裂域.
 - (1) 设 $p(x) = x^{mn} 1$, (m, n) = 1, α, β 分别是 m 和 n 次本原单位根. 证明 $\mathbb{Q}_p = \mathbb{Q}(\alpha, \beta)$.
 - (2) 对于 $f(x) = x^{15} 1$, $g(x) = x^{20} 1$, 分别求出 \mathbb{Q}_f 和 \mathbb{Q}_g ; 判断是否有 $\mathbb{Q}_f \cap \mathbb{Q}_g = \mathbb{Q}_{(f,g)}$, 并说明理由.