Devoir surveillé n°07

- La présentation, la lisibilité, l'orthographe, la qualité de la rédaction et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.
- On prendra le temps de vérifier les résultats dans la mesure du possible.
- Les calculatrices sont interdites.

Solution 1

- 1. Il est clair que les fonctions f_n sont continues sur]0,1]. De plus, par croissances comparées, $\lim_{x\to 0} x \ln(x) = 0$, ce qui garantit la continuité de f_n en 0. Remarquons ensuite que pour tout $x \in]0,1]$, $f(x) = e^{-x \ln(x)}$. Donc f est continue sur]0,1]. Le même argument de croissances comparées prouve la continuité de f en 0.
- 2. Tout d'abord, $\sum f_n(0)$ converge clairement et $\sum_{n=0}^{+\infty} f_n(0) = 1 = f(0)$. De plus, pour tout $x \in]0,1]$, la série $\sum f_n(x)$ est une série exponentielle : elle converge et $\sum_{n=0}^{+\infty} f_n(x) = e^{-x \ln(x)} = f(x)$. Ainsi $\sum_{n \geq 0} f_n$ converge simplement vers la fonction f sur I.
- 3. Tout d'abord, comme φ est continue en 0, $\varphi(0) = \lim_{t \to 0^+} t \ln(t) = 0$. Ensuite, φ est dérivable sur]0,1] et $\forall t \in]0,1], \ \varphi'(t) = 1 + \ln(t)$

On en déduit que φ est décroissante sur $[0, e^{-1}]$ puis croissante sur $[e^{-1}, 1]$.

4. Puisque $\varphi(1) = 0$ et $\varphi'(1) = 1$, la courbe de φ admet une tangente d'équation y = x - 1 en (1,0). De plus, $\lim_{t \to 0} \frac{\varphi(t) - \varphi(0)}{t - 0} = -\infty \text{ donc la courbe de } \varphi \text{ admet une tangente verticale en } (0,0).$

5. Les variations et le signe de φ montrent que $\|\varphi\|_{\infty} = |\varphi(e^{-1})| = e^{-1}$. Puisque pour tout $n \in \mathbb{N}$ et tout $x \in I$, $f_n(x) = \frac{(-1)^n \varphi(x)^n}{n!}$, on en déduit que $\|f_n\|_{\infty} = \frac{(e^{-1})^n}{n!}$. La série exponentielle $\sum \|f_n\|_{\infty}$ converge i.e. $\sum f_n$ converge normalement sur I.

- 6. a. Soit $x \in \mathbb{R}$. La fonction $\phi: t \mapsto t^{x-1}e^{-t}$ est continue par morceaux sur \mathbb{R}_+^* . De plus, ϕ est positive donc la convergence de l'intégrale $\Gamma(x)$ équivaut à l'intégrabilité de ϕ sur \mathbb{R}_+^* . D'une part, $\phi(t) \sim \frac{1}{t^{1-x}}$ donc ϕ est intégrable en 0^+ si et seulement si 1-x < 1 i.e. x > 0. D'autre part, $\phi(t) = o(1/t^2)$ par croissances comparées donc ϕ est intégrable en $+\infty$. Finalement, ϕ est intégrable sur \mathbb{R}_+^* si et seulement si x > 0. Autrement dit, le domaine de définition de Γ est \mathbb{R}_+^* .
 - **b.** Soit $n \in \mathbb{N}^*$. Par intégration par parties et sous réserve de convergence,

$$\Gamma(n+1) = \int_0^{+\infty} t^n e^{-t} dt = -\left[t^n e^{-t}\right]_0^{+\infty} + n \int_0^{+\infty} t^{n-1} e^{-t} dt$$

Puisque

$$\lim_{t \to 0} t^n e^{-t} = \lim_{t \to +\infty} t^n e^{-t} = 0$$

l'intégration par parties précédente est légitime et $\Gamma(n+1) = n\Gamma(n)$. De plus,

$$\Gamma(1) = \int_0^{+\infty} e^{-t} dt = -\left[e^{-t}\right]_0^{+\infty} = 1$$

On en déduit par une récurrence évidente que $\Gamma(n+1)=n!$ pour tout $n\in\mathbb{N}$.

7. D'abord, $t \mapsto -\ln(t)$ est une bijection de classe \mathcal{C}^1 strictement décroissante de]0,1[sur \mathbb{R}_+^* . De plus, si $u = -\ln(t)$, alors $t = e^{-u}$ de sorte que $\mathrm{d}t = -e^{-u}$ du. On en déduit par changement de variable que

$$J_n = \int_0^1 f_n(t) dt = \frac{1}{n!} \int_0^1 t^n (-\ln t)^n dt = \frac{1}{n!} \int_0^{+\infty} u^n e^{-nu} e^{-u} du = \frac{1}{n!} \int_0^{+\infty} u^n e^{-(n+1)u} du$$

On effectue ensuite le changement de variable v = (n + 1)u de sorte que

$$J_n = \frac{1}{n!} \cdot \frac{1}{(n+1)^{n+1}} \int_0^{+\infty} v^n e^{-v} dv = \frac{1}{n!} \cdot \frac{1}{(n+1)^{n+1}} \cdot \Gamma(n+1) = \frac{1}{(n+1)^{n+1}}$$

On remarque que ce résultat est encore valable pour n=0 puisque $J_0=1$. Comme $\sum f_n$ est une série de fonctions continue convergeant normalement vers f sur le segment [0,1], on peut affirmer par théorème d'interversion série/intégrale que

$$J = \int_0^1 f(t) dt = \sum_{n=0}^{+\infty} \int_0^1 f_n(t) dt = \sum_{n=0}^{+\infty} \frac{1}{(n+1)^{n+1}} = \sum_{n=1}^{+\infty} \frac{1}{n^n}$$

8. Notons $S_n = \sum_{k=1}^n \frac{1}{k^k}$ et $R_n = \sum_{k=n+1}^{+\infty} \frac{1}{k^k}$. Alors

$$|J - S_n| = |R_n| = R_n \le \sum_{k=n+1}^{+\infty} \frac{1}{(n+1)^k} = \frac{1}{(n+1)^{n+1}} \cdot \frac{1}{1 - \frac{1}{n+1}} = \frac{1}{n(n+1)^n}$$

Il suffit donc de trouver un entier n_0 tel que $\frac{1}{n_0(n_0+1)^{n_0}} \le 10^{-6}$ i.e. $n_0(n_0+1)^{n_0} \ge 10^6$. $n_0=9$ fait l'affaire puisqu'alors $n_0(n_0+1)^{n_0}=9\cdot 10^9 \ge 10^6$.

Solution 2

1. Soit $x \in J$. Puisque x > 0, la suite de terme général $\frac{1}{\sqrt{1+nx}}$ est décroissante et de limite nulle. D'après le critère spécial des séries alternées, $\sum f_n(x)$ converge. Ainsi $\sum f_n$ converge simplement sur J.

2. Pour tout $n \in \mathbb{N}$,

$$||f_n||_{\infty,J} = \sup_{x \in J} \frac{1}{\sqrt{1+nx}} = \frac{1}{\sqrt{1+n}} \sim \frac{1}{\sqrt{n}}$$

Or la série $\sum \frac{1}{\sqrt{n}}$ est une série à termes positifs divergente donc $\sum \|f_n\|_{\infty,J}$ diverge également. Autrement dit, $\sum f_n$ ne converge pas normalement.

3. Comme la série $\sum f_n$ converge simplement sur J, il suffit de montrer que la suite de ses restes converge uniformément vers la fonction nulle sur J. Posons $R_n = \sum_{k=n+1}^{+\infty} f_n$. D'après le critère spécial des séries alternées,

$$\forall x \in J, |R_n(x)| \le \frac{1}{\sqrt{1 + (n+1)x}} \le \frac{1}{\sqrt{n+2}}$$

Ainsi

$$\|\mathbf{R}_n\|_{\infty,\mathbf{J}} \le \frac{1}{\sqrt{n+2}}$$

On en déduit que $\lim_{n\to +\infty}\|\mathbf{R}_n\|_{\infty,\mathbf{J}}=0$ i.e. (\mathbf{R}_n) converge uniformément vers la fonction nulle sur J. Par conséquent, $\sum f_n$ converge uniformément sur J.

4. Pour tout $n \in \mathbb{N}^*$, $\lim_{\substack{+\infty \\ +\infty}} f_n = 0$ et $\lim_{\substack{+\infty \\ +\infty}} f_0 = 1$. Comme $\sum_{\substack{+\infty \\ +\infty}} f_n$ converge uniformément sur $J = [1, +\infty[$, on peut utiliser le théorème d'interversion série/limite :

$$\lim_{+\infty} \varphi = \sum_{n=0}^{+\infty} \lim_{+\infty} f_n = 1$$

- 5. a. Il s'agit à nouveau du critère spécial des séries alternées.
 - b. Remarquons que

$$\forall x \in J, \ \varphi(x) - \ell - \frac{a}{\sqrt{x}} = \sum_{n=1}^{+\infty} (-1)^n \left(\frac{1}{\sqrt{1 + nx}} - \frac{1}{\sqrt{nx}} \right)$$

De plus,

$$\left| \frac{1}{\sqrt{1+nx}} - \frac{1}{\sqrt{nx}} \right| = \frac{1}{\sqrt{nx}} - \frac{1}{\sqrt{1+nx}} = \frac{\sqrt{1+nx} - \sqrt{nx}}{\sqrt{nx}\sqrt{1+nx}} = \frac{1}{\left(\sqrt{1+nx} + \sqrt{nx}\right)\sqrt{nx}\sqrt{1+nx}} \le \frac{1}{2(nx)^{3/2}}$$

Ainsi, par inégalité triangulaire,

$$\forall x \in J, \ \left| \varphi(x) - \ell - \frac{a}{\sqrt{x}} \right| \le \sum_{n=1}^{+\infty} \left| \frac{1}{\sqrt{1 + nx}} - \frac{1}{\sqrt{nx}} \right| \le \sum_{n=1}^{+\infty} \frac{1}{2(nx)^{3/2}} = \frac{K}{x^{3/2}}$$

en posant $K = \frac{1}{2} \sum_{n=1}^{+\infty} \frac{1}{n^{3/2}}$. On en déduit bien que

$$\varphi(x) = \ell + \frac{a}{\sqrt{x}} + \mathcal{O}\left(\frac{1}{x^{3/2}}\right)$$

Solution 3

1. Soit $x \in \mathbb{R}$. Comme ch est à valeurs dans $[1, +\infty[$, la suite $(P_n(x))$ l'est également. A fortiori, elle est strictement positive. De plus,

$$\forall n \in \mathbb{N}^*, \ \frac{P_{n+1}(x)}{P_n(x)} = \operatorname{ch}\left(\frac{x}{n+1}\right) \ge 1$$

donc $(P_n(x))$ est croissante.

2. Soit $x \in \mathbb{R}$. Alors, pour tout $n \in \mathbb{N}^*$,

$$\ln(P_n(x)) = \sum_{k=1}^n \ln\left(\operatorname{ch}(x/k)\right)$$

Comme $\operatorname{ch}(x/n) - 1 \xrightarrow[n \to +\infty]{} 0$,

$$\ln(\operatorname{ch}(x/n)) = \ln(1 + (\operatorname{ch}(x/n) - 1)) \underset{n \to +\infty}{\sim} \operatorname{ch}(x/n) - 1 \underset{n \to +\infty}{\sim} x^2 / 2n^2$$

Or $\sum \frac{x^2}{n^2}$ est une série à termes psoitifs convergente donc $\sum \ln(\operatorname{ch}(x/n))$ également. La suite de ses sommes partielles i.e. la suite $(\ln(P_n(x)))$ converge. Par passage à l'exponentielle, la suite $(P_n(x))$ converge également. On en déduit que $J = \mathbb{R}$.

3. a. Comme ch est paire, $P_n(-x) = P_n(x)$ pour tout $x \in \mathbb{R}$ et tout $n \in \mathbb{N}^*$. Par passage à la limite, $\varphi(-x) = \varphi(x)$ pour tout $x \in \mathbb{R}$? φ est donc paire.

Soit x et y deux réels tels que $0 \le x \le y$. Par croissance de ch sur \mathbb{R}_+ ,

$$\forall n \in \mathbb{N}^*, \ \forall k \in [1, n], \ 0 \le \operatorname{ch}(x/k \le \operatorname{ch}(y/k))$$

puis

$$\forall n \in \mathbb{N}^*, P_n(x) \leq P_n(y)$$

Enfin, $\varphi(x) \leq \varphi(y)$ par passage à la limite. φ est donc croissante sur \mathbb{R}_+ . Par parité, elle est décroissante sur \mathbb{R}_- .

b. Posons $g_n: x \mapsto \ln(\operatorname{ch}(x/n))$. Soit $a \in \mathbb{R}_+$. Alors

$$||h_n||_{\infty,[-a,a]} = h_n(a)$$

On a vu précédemment que $\sum h_n(a)$ convergeait donc $\sum h_n$ converge normalement et donc uniformément sur [-a,a]. De plus, les h_n sont continues sur $\mathbb R$. On en déduit que la $\sum_{n=0}^{+\infty}h_n=\ln\circ\varphi$ est continue sur $\mathbb R$. Par continuité de l'exponentielle, φ est également continue sur $\mathbb R$.

4. a. Comme 1/ch est positive, le calcul de l'intégrale vaudra comme preuve de convergence.

$$\int_{-\infty}^{+\infty} \frac{\mathrm{d}t}{\mathrm{ch}\,t} = \int_{-\infty}^{+\infty} \frac{\mathrm{ch}\,t\,\,\mathrm{d}t}{1 + \mathrm{sh}^2\,t} = \left[\arctan(\mathrm{sh}\,t)\right]_{-\infty}^{+\infty} = \pi$$

car $\limsup_{+\infty} sh = +\infty$ et $\limsup_{+\infty} \arctan = \pi/2$ de même que $\limsup_{-\infty} sh = -\infty$ et $\limsup_{-\infty} \arctan = -\pi/2$.

b. Comme ch est à valeurs dans $[1, +\infty[$,

$$\forall x \in \mathbb{R}, \ \forall n \in \mathbb{N}^*, \ P_n(x) \ge P_1(x) = \operatorname{ch}(x)$$

puis

$$\forall x \in \mathbb{R}, \ \forall n \in \mathbb{N}^*, \ \frac{1}{P_n(x)} \le \frac{1}{\operatorname{ch}(x)}$$

et enfin, par passage à la limite

$$0 \le \frac{1}{\varphi} \le \frac{1}{ch}$$

Comme $\frac{1}{ch}$ est intégrable sur $\mathbb{R}, \frac{1}{\phi}$ l'est également.

Solution 4

- 1. L'application $(\cdot \mid \cdot)$ est clairement symétrique. Elle est également bilinéaire par linéarité de l'intégrale. Pour $f \in E$, $(f \mid f) = \int_{-1}^{1} f(t)^2 dt \ge 0$ par positivité de l'intégrale. De plus, si cette dernière intégrale est nulle, alors f^2 est nulle car elle est positive et continue sur [-1,1]. Ainsi $(\cdot \mid \cdot)$ est définie positive. C'est donc un produit scalaire.
- 2. On note $\|\dot{\|}$ la norme associée au produit scalaire $(\cdot \mid \cdot)$. Remarquons que $(u \mid v) = 0$ car uv est impaire. Ainsi $(u/\|u\|, v/\|v\|)$ est une base orthonormée de F. On calcule $\|u\|^2 = \int_{-1}^1 \mathrm{d}t = 2$ et $\|v\|^2 = \int_{-1}^1 t^2 \, \mathrm{d}t = \frac{2}{3}$.

3. Le projeté orthogonal de w sur F est donc

$$p = \frac{(w \mid u)}{\|u\|^2} u + \frac{(w \mid v)}{\|v\|^2} v$$

Or

$$(w \mid u) = \int_{-1}^{1} e^{t} dt = e^{1} - e^{-1}$$

$$(w \mid v) = \int_{-1}^{1} t e^{t} dt = \left[t e^{t} \right]_{-1}^{1} - \int_{-1}^{1} e t^{t} dt = 2e^{-1}$$

Ainsi p est la fonction

$$t \mapsto \frac{e^1 - e^{-1}}{2} + 3e^{-1}t$$

Le réel recherché est également

$$\inf_{f \in F} \|w - f\|^2 = d(w, F)^2$$

Or on sait d'après le cours que

$$d(w, F)^2 = ||w - p||^2$$

Mais comme $p \perp w - p$, le théorème de Pythagore donne

$$d(w, F)^2 = ||w||^2 - ||p||^2$$

De plus,

$$p = \frac{(w \mid u)}{\|u\|^2} u + \frac{(w \mid v)}{\|v\|^2} v$$

et $u \perp v$ donc le théorème de Pythagore donne

$$||p||^2 = \frac{(w \mid u)^2}{||u||^2} + \frac{(w \mid v)^2}{||v||^2} = \frac{1}{2}(e^1 - e^{-1})^2 + 6e^{-2} = \frac{1}{2}e^2 - 1 + \frac{13}{2}e^{-2}$$

Enfin

$$||w||^2 = \int_{-1}^1 e^{2t} dt = \frac{1}{2} (e^2 - e^{-2})$$

puis

$$d(w, F)^2 = 1 - 7e^{-2}$$

Solution 5

- 1. L'application $\langle \cdot, \cdot \rangle$ est clairement symétrique. Par linéarité de l'intégrale, elle est aussi bilinéaire. Pour tout $P \in E$, $\langle P, P \rangle = \int_0^1 P(t)_d^2 i f f t \geq 0$ par positivité de l'intégrale. De plus, si cette intégrale est nulle $t \mapsto P(t)^2$ est nulle sur [0,1] car elle est positive et continue sur [0,1]. Par conséquent, P(t) = 0 pour tout $t \in [0,1]$. Ainsi P possède une infinité de racines de sorte que P = 0. L'application $\langle \cdot, \cdot \rangle$ est définie positive; c'est donc un produit scalaire.
- **2.** On a dim $F^{\perp} = \dim E \dim F = n + 1 p$.
- 3. D'après la question précédente, $\dim(\mathbb{R}_1[X])^{\perp} = 1$. On cherche alors $P = X^2 + aX + b$ de sorte que $\langle P, 1 \rangle = \langle P, X \rangle = 0$. Ces conditions équivalent à

$$\frac{1}{3} + \frac{1}{2}a + b = \frac{1}{4} + \frac{1}{3}a + \frac{1}{2}b = 0$$

ce qui équivaut à (a,b)=(-1,1/6). Finalement $(X^2-X+1/6)$ est une base de $\mathbb{R}_1[X]^{\perp}$.

- **4.** a. Si deg $L \le n-1$, alors $L \in \mathbb{R}_{n-1}[X] \cap \mathbb{R}_{n-1}[X]^{\perp} = \{0\}$. On en déduit que deg L = n.
 - **b.** i. Posons L = $\sum_{k=0}^{n} a_k X^k$. On en déduit que pour tout $x \in \mathbb{R} \setminus [-n-1, -1]$,

$$\varphi(x) = \sum_{k=0}^{n} \frac{a_k}{x+k+1}$$

Ainsi φ est bien une fraction rationnelle.

ii. Posons $Q = \prod_{k=0}^{n} (X + k + 1)$. En réduisant la fraction précédente au même dénominateur, $\varphi = \frac{P}{Q}$ où P est une combinaison linéaire de polynômes de degré n. On en déduit que deg $P \le n$. De plus, $\langle L, X^k \rangle = 0$ i.e. $\varphi(k) = 0$ pour tout $k \in [0, n-1]$. On en déduit que P(k) = 0 pour tout $k \in [0, n-1]$. Enfin, φ n'est pas la fraction rationnelle nulle puisque $a_n \ne 0$ donc $P \ne 0$. Il existe donc $\lambda \in \mathbb{R}^*$ tel que

$$P = \lambda \prod_{k=0}^{n-1} (X - k)$$

Les zéros de φ sont donc les entiers $k \in [0, n-1]$ et ils sont tous simples. Les pôles de φ sont les -k-1 pour $k \in [0, n]$ et ils sont tous simples également.

iii. D'après la question précédente,

$$\varphi(X) = \lambda \frac{\prod_{k=0}^{n-1} (X - k)}{\prod_{k=0}^{n} (X + k + 1)}$$

c. D'après la question précédente, il existe $(\lambda_0, ..., \lambda_n) \in \mathbb{R}^{n+1}$ tel que

$$\varphi(X) = \sum_{j=0}^{n} \frac{\lambda_k}{X + j + 1}$$

De plus, pour tout $j \in [0, n]$,

$$\lambda_{j} = \left[(X+j+1)\varphi(X) \right] (-j-1) = \lambda \frac{\prod_{k=0}^{n-1} (-j-1-k)}{\prod_{\substack{0 \le k \le n \\ k \ne j}} (-j+k)} = \lambda (-1)^{n-j} \frac{(n+j)!}{(j!)^{2} (n-j)!}$$

Par unicité de la décomposition en éléments simples, pour tout $j \in [0, n]$

$$a_j = b_j = \lambda (-1)^{n-j} \frac{(n+j)!}{(j!)^2 (n-j)!}$$

de sorte que

$$L = \lambda \sum_{j=0}^{n-1} \lambda (-1)^{n-j} \frac{(n+j)!}{(j!)^2 (n-j)!} X^j$$

Comme dim $\mathbb{R}_{n-1}[X]^{\perp} = 1$, (L) est une base de $\mathbb{R}_{n-1}[X]^{\perp}$.

Remarque. On peut convenir que $\lambda = 1$.