To fail or not to fail? Assessing the microprudential efficiency of Basel III

Additional results and appendices

February 2025

This document provides additional results and robustness checks to support the main results presented in the paper, as well as its appendices. In particular, after reminding mains contributions of the paper, we give insights on the analysis of models' confusion matrices. Results are presented for GBC and HGBC, which are the models that perform best alongside with RF and Logit. Finally we display robustness checks in this document.

1 Contributions of the paper

1.1 Contribution of the paper

This article contributes to the above-presented literature in at least three respects:

- Capital requirements. We provide evidence that, to lower the most the probability of default, the best option is to set the leverage ratio at 10% and the risk-weighted ratio at 15%. Above these levels, no further impact on the probability of default is found. The values of the capital ratios found in this paper are consistent with those found by Karmakar (2016); Egan et al. (2017); Dagher et al. (2020); Mendicino et al. (2021).
- Interaction between liquidity and capital. We provide evidence that liquidity is not per se a strong driver of bank default. Consistently with Pérignon et al. (2018), we therefore question the idea that liquidity risk can act as a driver of financial instability independently of banks being under-capitalized. In fact, we notice that liquidity has a positive impact on the probability of default: failed

banks are likely to exhibit more liquid asset portfolios than unfailed banks. In line with the evidence put forward by DeYoung et al. (2018), this may be because banks whose capital deteriorates are forced to sell their illiquid assets. As a consequence, banks whose situation deteriorates up to default might very well be more liquid than sound banks. Such evidence questions the implementation of the LCR in addition to capital requirements. In line with Thakor (2018), we therefore recommend to focus on capital requirements and to release the regulatory pressure put on liquidity. This would allow to reduce the complexity of banking regulation (Herring, 2018), to reduce the regulatory pressure exerted on safe assets (Caballero et al., 2017), and to prevent the shortening of banks' investment time horizon, which could prove detrimental to the funding of low-carbon sectors (Campiglio, 2016).

• Methodology. Among the seven models that are run, Logit, RF, GBC and HGBC perform the best. Linear SVC, MLP and KNN are, on the contrary, lagging behind.

2 Additional results: Determinants of bank default

2.1 Confusion matrices analysis

Let us have a look at the confusion matrices (Table 1) for the four models that perform best. Doing so, we notice that these models manage to properly identify the vast majority of the failed banks in the test sample: among the 121 failed banks, Logit identifies 100 defaults, HGBC, RF and GBC identify 98 defaults. What is however less convincing is the number of false positives (FP): 1047 for Logit, 888 for RF, 848 for HGBC and 941 for GBC. Recall however that our dataset is made of bank-year observations. A failed bank is thus identified as a true positive only the year before the actual default occurred. As a consequence, at date t-2 this specific bank is identified as an unfailed one even if it might already exhibit the characteristics of a failed bank. To disentangle what the false positives displayed in Table 1 are made of, we try to identify whether or not they in fact consist in banks that at some point go bankrupt. Results are presented in Table 2. More precisely, we 1) identify all FP (Nb. of FP), 2) identify within these FP the actual number of banks keeping in mind that the same bank can be wrongly identified several times (Nb. of banks in FP), 3) look among these banks for those that actually go bankrupt at some point in the considered time period (Nb. of failed banks in FP), 4)

compute the proportion these banks represent among all the banks at least once wrongly identified as failed ones (Prop. of failed banks in FP).

Table 1: Confusion matrices

Train	Logit		HGBC		RF		GBC	
	Pred. 0	Pred. 1	Pred. 0	Pred. 1	Pred. 0	Pred. 0 Pred. 1		Pred. 1
True 0	53353	2396	53988	1761	53832	1917	53660	2089
True 1	8609	47140	1779	53970	5055 50694		5163	50586
Test	Logit		HGBC		RF		GBC	
	Pred. 0	Pred. 1	Pred. 0	Pred. 1	Pred. 0	Pred. 1	Pred. 0	Pred. 1
True 0	22868	1047	23067	848	23027	888	22974	941
True 1	21	100	23	98	23	98	23	98

Source: Authors' calculations.

Having a look at Table 2, we notice that, depending on the considered model, between 14.61% and 18.75% of the false positives are actually previous observations of banks that do eventually go bankrupt. Even if the models make mistakes by identifying as failed banks some banks that are actually sound, a significant proportion of these mistakes concern banks that at some point do indeed go bankrupt.

Table 2: False positives (FP)

Model	Nb. of FP	Nb. of banks	Nb. of failed	Prop. of failed
		in FP	banks in FP	banks in FP (%)
Logit	1047	731	153	14.61
HGBC	848	650	159	18.75
RF	888	668	156	17.56
GBC	941	692	164	17.43

2.2 Permutation feature importance

In the main document, total regulatory capital ratio (TRCR) and total equity over total assets (TE/TA) are identified as significant predictors of default in the RF model thanks to permutation feature importance. On the contrary, liquid assets over total assets (LA/TA) is not identified as a strong predictor. This result allows to conclude that capital (TE/TA and/or TRCR) is a greater predictor of default than liquidity. Results are here presented for GBC (Figure 1) and HGBC (Figure 2). The idea that capital is a stronger predictor of default than liquidity is corroborated by these figures: capital is always a stronger predictor of default than liquidity. We however notice that it is not possible to conclude, from these figures, which of TE/TA and TRCR is the strongest predictor.

Figure 1: Permutation feature importance (GBC)

Figure 2: Permutation feature importance (HGBC)

Source: Authors' calculations.

2.3 Shapley values

In the main document, Shapley values are used to assess the significance and the nature of the impact of the various predictors on the probability of default. In particular, from Shapley values, we conclude that both TRCR and TE/TA have a significant and negative impact on the probability of default, while the impact of LA/TA is less significant and ambiguous. Shapley values are here presented for GBC (Figure 3) and HGBC (Figure 4). These results are consistent with those of RF.

Operating roaa Total reg cap ratio Total equity total assets Total funding over TA Total int exp over TA Deposits mm funding growth Tax expense over TA Net int margir Total non earning assets over TA log Avg earning assets over TA log_Total assets Liquid assets total assets log Liquid assets deposits mm funding Total desposits over TA Net loans total assets -0.25 0.00 SHAP value (impact on model output)

Figure 3: Shapley values (GBC)

Source: Authors' calculations.

Figure 4: Shapley values (HGBC)

Source: Authors' calculations.

2.4 Capital ratio

2.4.1 Partial dependent plots (PDPs)

In the main document, PDPs are used to assess the nature of the impact of TE/TA and that of TRCR on the probability of default. Both predictors have a non-linear impact on the probability of default which allows to identify threshold values of TE/TA and TRCR such that below them the probability of default is large and above them the probability of default is low. Results are here presented for GBC (Figures 5 and 7) and HGBC (Figures 6 and 8). Figures 5 and 6 suggest that the impact of TE/TA on the the probability of

default is indeed non-linear and that the threshold value of 10 is consistent. Similarly, Figures 7 and 8 corroborate the results presented in the main document concerning the impact of TRCR on the probability of default.

Figure 5: Partial Dependence Plots (PDPs) – TE/TA – GBC

Figure 6: Partial Dependence Plots (PDPs) – TE/TA – HGBC

Partial dependence - Hist Gradient Boosting Classifier

Source: Authors' calculations.

Figure 7: Partial Dependence Plots (PDPs) – TRCR – GBC

Partial dependence - Gradient Boosting Classifier

Figure 8: Partial Dependence Plots (PDPs) – TRCR – HGBC

Partial dependence - Hist Gradient Boosting Classifier

Source: Authors' calculations.

2.5 Two-way PDPs

In the main document, two-way PDPs allow to study the impact of the interaction between TE/TA and TRCR on the probability of default. In particular, two-way PDPs allow to identify which values of these two variables allow to reach the space where the probability of default is the lowest. Two-way PDPs are here reported for GBC (Figure 9) and for HGBC (Figure 10). Consistently with the conclusion reached in the main document based on RF, we notice that the probability of default is the lowest when TRCR is above 15 and TE/TA above 10.

Figure 9: Two-way Partial Dependence Plots (PDPs) between TE/TA and TRCR-GBC

Source: Authors' calculations.

Figure 10: Two-way Partial Dependence Plots (PDPs) between TE/TA and TRCR - HGBC

2.6 Interaction between liquidity and solvency risks

In the main document, we study the impact of the interaction between capital variables (TE/TA and TRCR) and LA/TA. We conclude that, most of the times, the impact of this interaction on the probability of default is driven by the variable accounting for capital. This idea is supported by results coming from GBC and HGBC. In particular, Figures 11, 13 and 14 unambiguously outline that the impact of the interaction between capital and liquidity on the probability of default is driven by the variable accounting for capital. Figure 12 qualifies this result. However, recalling that TE/TA is not a significant predictor of default according to HGBC (see Figures 2 and 4 above), interpretations coming from the reading of PDPs when TE/TA is considered need to be done cautiously.

Figure 11: Two-way Partial Dependence Plots (PDPs) – TE/TA and LA/TA – GBC

Figure 12: Two-way Partial Dependence Plots (PDPs) - TE/TA and LA/TA - HGBC

Two ways partial dependence

22.5
20.0
0.14
17.5
10.0
0.06
7.5
0.02
2.5
2.4
4.6
6.8
10.12
14

Source: Authors' calculations.

Figure 13: Two-way Partial Dependence Plots (PDPs) – TRCR and LA/TA – GBC

Figure 14: Two-way Partial Dependence Plots (PDPs) – TRCR and LA/TA – HGBC

Two ways partial dependence

Source: Authors' calculations.

3 Robustness

3.1 Fine-tuning the decision threshold?

To classify banks, models actually yield a probability: if this probability is superior (respectively inferior) to 0.5, the predicted class is 1 (respectively 0). Therefore, to increase the performance of a specific model, we could have fine tuned the decision threshold so as to choose the value that maximizes a given performance measure. Having a look at the distributions of the predicted probabilities for all the models (see Figure 16 in C.1) we notice that all the distributions exhibit two clear-cut mods: one around 0 and the other around 1. In other words, changing the value of the decision threshold would only marginally modify the performance of the models (it would actually mostly re-balance the proportion of false positives and that of false negatives). More precisely, having a look at the distribution for RF and differentiating between true (in blue) and false (in red) predictions, we notice that the probabilities having a value between 0.4 and 0.6 are equally distributed among true and false (see Figure 17 in C.1 for RF). This result outlines the fact that changing the decision threshold would not change much the global

quality of the models.

3.2 Accumulated local effects (ALEs)

One of the most important issues associated with PDPs is that they assume that the predictor for which the partial dependence is computed and the other ones are independent. Figure 15 provides a correlation heatmap. As can be seen, some variables are strongly correlated with each other. To avoid any bias in our estimations, we remove those variables that are the most correlated. More precisely, the following variables have been removed: Net income over Total Assets, Operating profit avg equity, Post tax profit total assets avg. We are therefore left with 20 variables.

Figure 15: Correlation heatmap

Source: Authors' calculations.

As a consequence, the existence of strong linear correlations between some features

may bias the computation of PDPs. In addition, making X_j vary across all its distribution creates the risk to overfit regions with almost no data. In order to take these issues into account, we compute Accumulated Local Effects (ALEs) (Datta et al., 2016) as a robustness check. By difference from PDPs, ALEs are unbiased even when features are correlated and they are computed over actual data intervals of the explanatory variables. ALEs are only reported for RF. They are displayed in C.2. Let us have a look at the different subplots presented in Figure 18.

Subplot (a): TRCR indeed has a negative impact on the probability of default. In addition, the two regimes identified in section 2.4 are clearly distinguishable: the probability of default is larger when TRCR < 15% and decrease above this threshold.

Subplot (b): TE/TA indeed has a negative impact on the probability of default. In addition, the two regimes identified in section 2.4 are clearly distinguishable: the probability of default is larger when TE/TA < 10% and lower above this threshold.

Subplot (c): LA/TA indeed has a weakly positive impact on the probability of default.

3.3 Without over-sampling

Using the SMOTE procedure to re-balance the dataset allows to increase the performance of the models. However, since it consists in creating new instances in the minority class, it significantly modifies the information the classifiers find in the dataset. To check the robustness of the results presented in this paper, we therefore re-run the models without over-sampling the train sample. Results are presented for all the models in Table 5 in C.3. We do notice that the models underperform when the train sample is imbalanced. More specifically, they get lower scores on the train sample and over-fit the zero class and, as a consequence, fail to properly identify failed banks. Macro recalls are however not so low on both the train and test samples. This can be explained by the propensity of the models to over-predict zeros. KNN is a great illustration: all banks but one are classified as 0 (unfailed banks). In this case, the precisions for both zeros and ones reach 100%, while the recall for ones is only 1%. This is by the way a further argument in favor of using macro recall as the reference score to assess the performance of the models.

3.4 Standardized predictors

In order to control for the impact of (un)standardized features on our models' quality, we ran all hyperparameters pipelines allowing for standardization.¹ Our goal is to see if an increase appears in the models' macro recall, but we keep in mind that standardization does not facilitate for post-estimation interpretation. We find that this is the case for KNN (+ 8.48 % with RobustScaler), Linear SVC (+ 8.48 % with RobustScaler), MLP (+ 10.91 % with StandardScaler) and GBC (+ 2.75 % with RobustScaler). However, no standardization is optimal for Logit, RF and HGBC while potential increases imply a loss in interpretability.

References

- R. J. Caballero, E. Farhi, and P.-O. Gourinchas. The Safe Assets Shortage Conundrum. Journal of Economic Perspectives, 31(3):29–46, Aug. 2017. 2
- E. Campiglio. Beyond carbon pricing: The role of banking and monetary policy in financing the transition to a low-carbon economy. *Ecological Economics*, 121:220–230, Jan. 2016. 2
- J. Dagher, G. Dell'Ariccia, L. Laeven, M. L. Ratnovski, and M. H. Tong. Bank Capital: A Seawall Approach. *International Journal of Central Banking*, 16(2):249–291, Mar. 2020.
- A. Datta, S. Sen, and Y. Zick. Algorithmic Transparency via Quantitative Input Influence: Theory and Experiments with Learning Systems. pages 598–617, 05 2016. 15
- R. DeYoung, I. Distinguin, and A. Tarazi. The joint regulation of bank liquidity and bank capital. *Journal of Financial Intermediation*, 34:32–46, Apr. 2018. 2
- M. Egan, A. Hortaçsu, and G. Matvos. Deposit Competition and Financial Fragility: Evidence from the US Banking Sector. *American Economic Review*, 107(1):169–216, Jan. 2017. 1
- R. J. Herring. The Evolving Complexity of Capital Regulation. *Journal of Financial Services Research*, 53(2-3):183–205, June 2018. 2

 $^{^1\}mathrm{We}$ used "Standard Scaler" and "RobustScaler" modules from Scikit-Learn as extra hyperparameters.

- S. Karmakar. Macroprudential regulation and macroeconomic activity. *Journal of Financial Stability*, 25:166–178, Aug. 2016. 1
- C. Mendicino, K. Nikolov, J.-R. Ramirez, J. Suarez, and D. Supera. How much capital should banks hold? *Research Bulletin ECB*, 80, 2021. 1
- С. Pérignon, D. Thesmar, and G. Vuillemey. Wholesale Funding Dry-Ups. TheJournalof Finance, 73(2):575-617, 2018. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/jofi.12592. 1
- A. V. Thakor. Post-crisis regulatory reform in banking: Address insolvency risk, not illiquidity! *Journal of Financial Stability*, 37:107–111, 2018. 2

A Data sources and definitions

Table 3: Data sources and definitions

Data	Definition	Source
Total equity total as-	Ratio of total equity to total assets.	FitchConnect
sets	This ratio is close to the leverage ratio	
	as defined under Basel agreements.	
Total reg cap ratio	Total regulatory capital ratio as defined	FitchConnect
	under Basel agreements. It is fixed to	
	8% of the risk weighted assets, plus a	
	conservation buffer (2%).	
Liquid assets total as-	Liquid assets detained by the bank over	FitchConnect
sets	its total assets	
Net loans total assets	Ratio of net loans to total assets.	FitchConnect
Deposits mm funding	Growth rate of deposits to money mar-	FitchConnect
growth	ket funding.	
Expenses rev	Expenses over revenues ratio.	FitchConnect
Net int margin	Returns on invested funds. It is mea-	FitchConnect
	sured by the difference between the in-	
	terests received and those paid, divided	
	by the average invested assets.	
Non earning assets gs	All assets that do not generate income	FitchConnect
over TA	over total assets.	
Operating roaa	Ratio of net income to average total as-	FitchConnect
	sets. It measures the profitability of as-	
	sets, meaning how a firm uses the re-	
	sources it owns to generate profit. It	
	refers to the returns on the assets pur-	
	chased using each unit of money in-	
	vested.	
Tax expense over TA	Expense for current and deferred tax	FitchConnect
	for the period over total assets.	

Table 3: (continued)

Total funding over TA Total Deposits, Money Market and Short-term Funding + Total Long Term Funding + Derivatives + Trading Liabilities, all over total assets. Total int exp over TA Ratio of total interest expense / Total assets. Total non earning assets over TA Operating costs include administration over total assets Operating costs include administration costs such as staff costs, over total assets log Avg earning assets log Avg earning assets log Total assets Logarithm of year assets that generate income, over total assets. log Total assets Logarithm of total assets. It gives a proxy for banks' size. log Bus volume over TA Managed Securitized Assets Reported Off-Balance Sheet + Other off-balance sheet exposure to securitizations + Guarantees + Acceptances and documentary credits reported off-balance sheet + Committed Credit Lines + Other Contingent Liabilities + Total Assets. All over total assets. log Liquid assets de- Liquid assets as a deposit. FitchConnect	Total desposits over	Total deposits over total assets.	FitchConnect
Short-term Funding + Total Long Term Funding + Derivatives + Trading Liabilities, all over total assets. Total int exp over TA Ratio of total interest expense / Total assets. Total non earning assets. All assets that do not generate income, over total assets. Total oper expense over total assets. Operating costs include administration costs such as staff costs, over total assets log Avg earning assets log Avg earning assets Logarithm of year assets that generate income, over total assets. log Total assets Logarithm of total assets. It gives a proxy for banks' size. log Bus volume over Logarithm Total Business Volume = Managed Securitized Assets Reported Off-Balance sheet + Other off-balance sheet exposure to securitizations + Guarantees + Acceptances and documentary credits reported off-balance sheet + Committed Credit Lines + Other Contingent Liabilities + Total Assets. All over total assets.	TA		
Term Funding + Derivatives + Trading Liabilities, all over total assets. Total int exp over TA Ratio of total interest expense / Total assets. Total non earning assets. Total oper expense over total assets. Total oper expense over TA Operating costs include administration costs such as staff costs, over total assets log Avg earning assets costs uch as staff costs, over total assets log Avg earning assets logarithm of year assets that generate income, over total assets. log Total assets Logarithm of total assets. It gives a proxy for banks' size. log Bus volume over Logarithm Total Business Volume = FitchConnect Managed Securitized Assets Reported Off-Balance sheet exposure to securitizations + Guarantees + Acceptances and documentary credits reported off-balance sheet + Committed Credit Lines + Other Contingent Liabilities + Total Assets. All over total assets.	Total funding over TA	Total Deposits, Money Market and	FitchConnect
ing Liabilities, all over total assets. Total int exp over TA Ratio of total interest expense / Total assets. Total non earning assets over TA Over total assets. Total oper expense over total assets. Total oper expense over total assets log Avg earning assets costs under assets that generate income, over total assets log Avg earning assets Logarithm of year assets that generate over TA Logarithm of total assets. In gives a proxy for banks' size. log Bus volume over Logarithm Total Business Volume = The Connect Off-Balance Sheet + Other off-balance sheet exposure to securitizations + Guarantees + Acceptances and documentary credits reported off-balance sheet + Committed Credit Lines + Other Contingent Liabilities + Total Assets. All over total assets.		Short-term Funding + Total Long	
Total int exp over TA Ratio of total interest expense / Total assets. Total non earning assets over TA All assets that do not generate income, over total assets. Total oper expense over total assets. Total oper expense over TA Operating costs include administration costs such as staff costs, over total assets log Avg earning assets Logarithm of year assets that generate income, over total assets. Logarithm of total assets. It gives a proxy for banks' size. log Bus volume over Logarithm Total Business Volume = Managed Securitized Assets Reported Off-Balance Sheet + Other off-balance sheet exposure to securitizations + Guarantees + Acceptances and documentary credits reported off-balance sheet + Committed Credit Lines + Other Contingent Liabilities + Total Assets. All over total assets.		Term Funding + Derivatives + Trad-	
assets. Total non earning assets over TA Total oper expense over TA Operating costs include administration costs such as staff costs, over total assets log Avg earning assets over TA Logarithm of year assets that generate income, over total assets. Logarithm of total assets. It gives a proxy for banks' size. log Bus volume over TA Logarithm Total Business Volume = TA Managed Securitized Assets Reported Off-Balance sheet + Other off-balance sheet + Acceptances and documentary credits reported off-balance sheet + Committed Credit Lines + Other Contingent Liabilities + Total Assets. All over total assets.		ing Liabilities, all over total assets.	
Total non earning assets over TA Total oper expense over total assets. Total oper expense over TA Total oper expense over total assets Logarithm of year assets that generate income, over TA Income, over total assets. Logarithm of total assets. Logarithm of total assets. It gives a proxy for banks' size. Income over TA Logarithm Total Business Volume = Tata off-balance sheet exposure to securitizations + Guarantees + Acceptances and documentary credits reported off-balance sheet + Committed Credit Lines + Other Contingent Liabilities + Total Assets. All over total assets.	Total int exp over TA	Ratio of total interest expense / Total	FitchConnect
Total oper expense over TA Operating costs include administration costs such as staff costs, over total assets log Avg earning assets cover TA Logarithm of year assets that generate income, over total assets. log Total assets Logarithm of total assets. It gives a proxy for banks' size. log Bus volume over Logarithm Total Business Volume = Managed Securitized Assets Reported Off-Balance Sheet + Other off-balance sheet exposure to securitizations + Guarantees + Acceptances and documentary credits reported off-balance sheet + Committed Credit Lines + Other Contingent Liabilities + Total Assets. All over total assets.		assets.	
Total oper expense over TA Costs such as staff costs, over total assets log Avg earning assets Logarithm of year assets that generate income, over total assets. Logarithm of total assets. Logarithm of total assets. It gives a proxy for banks' size. log Bus volume over TA Logarithm Total Business Volume = Managed Securitized Assets Reported Off-Balance Sheet + Other off-balance sheet exposure to securitizations + Guarantees + Acceptances and documentary credits reported off-balance sheet + Committed Credit Lines + Other Contingent Liabilities + Total Assets. All over total assets.	Total non earning as-	All assets that do not generate income,	FitchConnect
over TA costs such as staff costs, over total assets log Avg earning assets	sets over TA	over total assets.	
log Avg earning assets over TA log Total assets Logarithm of year assets that generate income, over total assets. Logarithm of total assets. It gives a proxy for banks' size. log Bus volume over TA Logarithm Total Business Volume = Managed Securitized Assets Reported Off-Balance Sheet + Other off-balance sheet exposure to securitizations + Guarantees + Acceptances and documentary credits reported off-balance sheet + Committed Credit Lines + Other Contingent Liabilities + Total Assets. All over total assets.	Total oper expense	Operating costs include administration	FitchConnect
log Avg earning assets Logarithm of year assets that generate income, over total assets. log Total assets Logarithm of total assets. It gives a proxy for banks' size. log Bus volume over Logarithm Total Business Volume = FitchConnect TA Managed Securitized Assets Reported Off-Balance Sheet + Other off-balance sheet exposure to securitizations + Guarantees + Acceptances and documentary credits reported off-balance sheet + Committed Credit Lines + Other Contingent Liabilities + Total Assets. All over total assets.	over TA	costs such as staff costs, over total as-	
over TA income, over total assets. log Total assets Logarithm of total assets. It gives a proxy for banks' size. log Bus volume over Logarithm Total Business Volume = Managed Securitized Assets Reported Off-Balance Sheet + Other off-balance sheet exposure to securitizations + Guarantees + Acceptances and documentary credits reported off-balance sheet + Committed Credit Lines + Other Contingent Liabilities + Total Assets. All over total assets.		sets	
log Total assets Logarithm of total assets. It gives a proxy for banks' size. log Bus volume over TA Logarithm Total Business Volume = FitchConnect Managed Securitized Assets Reported Off-Balance Sheet + Other off-balance sheet exposure to securitizations + Guarantees + Acceptances and documentary credits reported off-balance sheet + Committed Credit Lines + Other Contingent Liabilities + Total Assets. All over total assets.	log Avg earning assets	Logarithm of year assets that generate	FitchConnect
proxy for banks' size. log Bus volume over Logarithm Total Business Volume = FitchConnect TA Managed Securitized Assets Reported Off-Balance Sheet + Other off-balance sheet exposure to securitizations + Guarantees + Acceptances and documentary credits reported off-balance sheet + Committed Credit Lines + Other Contingent Liabilities + Total Assets. All over total assets.	over TA	income, over total assets.	
log Bus volume over Logarithm Total Business Volume = FitchConnect Managed Securitized Assets Reported Off-Balance Sheet + Other off-balance sheet exposure to securitizations + Guarantees + Acceptances and documentary credits reported off-balance sheet + Committed Credit Lines + Other Contingent Liabilities + Total Assets. All over total assets.	log Total assets	Logarithm of total assets. It gives a	FitchConnect
Managed Securitized Assets Reported Off-Balance Sheet + Other off-balance sheet exposure to securitizations + Guarantees + Acceptances and doc- umentary credits reported off-balance sheet + Committed Credit Lines + Other Contingent Liabilities + Total Assets. All over total assets.		proxy for banks' size.	
Off-Balance Sheet + Other off-balance sheet exposure to securitizations + Guarantees + Acceptances and documentary credits reported off-balance sheet + Committed Credit Lines + Other Contingent Liabilities + Total Assets. All over total assets.	log Bus volume over	Logarithm Total Business Volume =	FitchConnect
sheet exposure to securitizations + Guarantees + Acceptances and doc- umentary credits reported off-balance sheet + Committed Credit Lines + Other Contingent Liabilities + Total Assets. All over total assets.	TA	Managed Securitized Assets Reported	
Guarantees + Acceptances and documentary credits reported off-balance sheet + Committed Credit Lines + Other Contingent Liabilities + Total Assets. All over total assets.		Off-Balance Sheet + Other off-balance	
umentary credits reported off-balance sheet + Committed Credit Lines + Other Contingent Liabilities + Total Assets. All over total assets.		sheet exposure to securitizations +	
sheet + Committed Credit Lines + Other Contingent Liabilities + Total Assets. All over total assets.		Guarantees + Acceptances and doc-	
Other Contingent Liabilities + Total Assets. All over total assets.		umentary credits reported off-balance	
Assets. All over total assets.		sheet + Committed Credit Lines +	
		Other Contingent Liabilities + Total	
log Liquid assets de- Liquid assets as a deposit. FitchConnect		Assets. All over total assets.	
	log Liquid assets de-	Liquid assets as a deposit.	FitchConnect
posits mm funding	posits mm funding		
log Total non int exp Non interest expenses over total assets. FitchConnect	log Total non int exp	Non interest expenses over total assets.	FitchConnect
over TA	over TA		

B Hyperparameters

The list of the hyperparameters and their values are presented in Table 4. For each model, the optimal values of the hyperparameters are displayed in bold characters. The last column presents the mean effect (if any) of each hyperparameter (from the left of the list) on the out-of-sample macro recall score.

Table 4: Hyperparameters per model and macro recall

Model	Hyperparameter	value range	mean effect	
	С	[0.01, 0.1, 1, 10, 100, 1000]	inv. U-shape	
I D	penalty	[None, $l1$, $l2$, ElasticNet]	inv. U-shape	
LK	Penalty [None, \$l1\$, \$l2\$, ElasticNet] inv.	n.s.		
	solver	[0.01, 0.1, 1, 10, 100, 1000] inv. Uty [None, l1, l2, ElasticNet] inv. Uty [None, l1, l2, ElasticNet] inv. Uty [In EN] [0.1, 0.3, 0.5, 0.7, 0.9] note [Ibfgs, liblinear, newton-cg, sag, saga] decreators [5, 10, 50, 100, 500, 1000] inv. Uty [5, 10, 50, None] decreators [5, 10, sqrt, log2, None] U-slees_split [5, 10, 20] increators [5, 10, 50, 100, 500, 1000] decreators [5, 10, 50, 100, 500, 1000] decreators [5, 10, sqrt, log2, None] decreators [5, 10, sqrt, log2, None] U-slees_split [5, 10, sqrt, log2, None] decreators [5, 10, 50, 100, 500, 1000] decreators [5, 10, 50, 100, 500, 1000] decreators [5, 10, 50, 100, 500, 1000] decreators [5, 10, sqrt, log2, None] inv. Uty [5, 10, sqrt, log2, None] U-slees_split [5, 10, sqrt, log2, None] uty [5, 10, sqrt, log2, None] inv. Uty [10, 1, 1, 10, 100, 1000] inv. Uty [10, 10, 10, 1000] inv. Uty [10, 10, 10, 10, 10, 10] inv. Uty [10, 10, 10, 10, 10, 10, 10] inv. Uty [10, 10, 10, 10, 10, 10, 10, 10, 10, 10,	decreasing	
	n_{-} estimators	[5, 10, 50, 100 , 500, 1000]	inv. U-shape	
DE	\max_{-depth}	[5, 10, 50, None]	decreasing	
Γ	\max_{features}	$[5, 10, \text{sqrt}, \log 2, \text{None}]$	U-shape	
	$min_samples_split$	[5 , 10, 20]	increasing	
	learning_rate	[0.01, 0.1, 0.5]	decreasing	
	n_{-} estimators	[5, 10 , 50,100, 500, 1000]	decreasing	
GBC	\max_{-depth}	[5, 10, 50, None]	decreasing	
	$\max_{}$ features	$[5, 10, \text{sqrt}, \log 2, \text{None}]$	U-shape	
	$min_samples_split$	[5 , 10, 20]	decreasing	
	learning_rate	$[0.01, \ \textit{0.1}, \ 0.5]$	decreasing	
	min_samples_split [5, 10, 20] learning_rate [0.01, 0.1, 0.5] max_iter* [5, 10, 50,100, 500, 100] BC max_depth [5, 10, 50, None]	[5, 10 , 50,100, 500, 1000]	decreasing	
HGBC	\max_{-depth}	[5, 10 , 50, None]	inv. U-shape	
	\max_{features}	$[5, 10, \text{sqrt}, \log 2, \text{None}]$	U-shape	
	l2_regularization	[0, 0.1]	decreasing	
	C	[0.1, 1, 10, 100, 1000]	inv. U-shape	
SVC	kernel	$[\it{linear}, { m poly}, { m rbf}]$	U-shape	
	degree (if poly)	[2, 3]	decreasing	
	gamma	[0.0001 , 0.001]	decreasing	
	activation	[logistic, relu, <i>tanh</i>]	inv. U-shape	
	alpha	[0.005 , 0.01]	increasing	

MLP

Table 4: (continued)

	max_iter	[10, 50 , 100]	decreasing
	early_stopping	[False, $True$]	increasing
	hidden_layers	39 combinations of [10, 100, 500] a.n.*	n.r.
	alpha	[0.05 , 0.01]	increasing
	n_neighbors	[4, 15, 25, 30, 40 , 50]	increasing
KNN	metric	$[{\rm euclidean}, \boldsymbol{manhattan}, {\rm minkowski}]$	inv. U-shape
	weights	$[\mathrm{uniform},\ \boldsymbol{distance}]$	increasing

Source: Authors' calculations.

C Robustness outputs

C.1 Fine-tuning the decision threshold?

Figure 16: Predicted probability distribution - all models

 $^{^{\}ast}$ max_iter in HGBC corresponds to n_estimators in RF and GB.

 $^{^{\}ast\ast}$ The smallest possible MLP is chosen with a single layer of 10 artificial neurons.

Figure 17: Predicted probability distribution - Random Forest

Source: Authors' calculations. Interpretation example: around 7% of the observations have a predicted probability around 0.05. Among those, more than 6% are well predicted (blue part) while 0.5% are wrongly predicted (red part).

C.2 ALEs

Figure 18: ALEs - RF

(a) TRCR

C.3 Without over-sampling

Table 5: Models' performance -

	Log	Logit		F	KN	NN GBO		BC
	Train	Test	Train	Test	Train	Test	Train	Test
Recall	39	0	61	49	100	1	75	51
Macro recall	69	50	80	74	51	51	87	76
(AUROC)								
	HG	ВС	Linear	SVC	MI	LΡ		
	Train	Test	Train	Test	Train	Test		
Recall	55	13	31	44	44	46		
Macro recall (AUROC)	77	57	65	71	72	73		
(110100)								