Algolab 2015 Winter Games

Michael Hoffmann, Antonis Thomas

December 2, 2015

Objective

Learn how to solve a problem given by a textual description.

This includes:

- appropriate problem modeling
- choice of suitable (combinatorial) algorithms, and
- implementation.

Your Task:

- read the 3 problem descriptions
- sketch your approach (modeling, algorithms)

Use them all!

Observations

- $2 \le n \le 90'000$
- no overlap
- maximize radius

probably not looking for $\Omega(n^2)$ only "close neighbors" matter optimization problem?

Use them all!

Observations

- $2 \le n \le 90'000$
- no overlap
- maximize radius

probably not looking for $\Omega(n^2)$ only "close neighbors" matter optimization problem?

Key ideas

 for a fixed cannon, the nearest neighbor determines an upper bound on the operation range

Use them all!

Observations

- $2 \le n \le 90'000$
- no overlap
- maximize radius

probably not looking for $\Omega(n^2)$ only "close neighbors" matter optimization problem?

Key ideas

- for a fixed cannon, the nearest neighbor determines an upper bound on the operation range
- only the closest cannon pair matters

Use them all! - Solution

Try them all!

• Compute $\binom{n}{2}$ pairwise distances

$$ightarrow \Theta(n^2)$$

Use them all! - Solution

Try them all!

• Compute $\binom{n}{2}$ pairwise distances

$$ightarrow \Theta(\mathit{n}^2)$$

Check only the distance to the nearest neighbor for each cannon

• Compute the Delaunay triangulation

 $\rightarrow \Theta(n \log n)$

• Iterate over the edges of the triangulation

Use them all! - Solution

Try them all!

• Compute $\binom{n}{2}$ pairwise distances

$$\rightarrow \Theta(n^2)$$

Check only the distance to the nearest neighbor for each cannon

• Compute the Delaunay triangulation

 $\to \Theta(n \log n)$ $\to \Theta(n)$

• Iterate over the edges of the triangulation

Implementation details

• the distance fits into a double radius $\leq \sqrt{2^{50} + 2^{50}} < 2^{50}$

Observations

- $1 \le n \le 10'000$
- no overlap 2 options for every cannon (on/off)
- each cannon has at most 2 neighbors graph problem?

Observations

- $1 \le n \le 10'000$
- no overlap

2 options for every cannon (on/off)

each cannon has at most 2 neighbors

graph problem?

Key ideas

 graph problem: cannons are vertices, put an edge whenever two ranges overlap still need to find/construct the graph

Observations

- $1 \le n \le 10'000$
- no overlap 2 options for every cannon (on/off)
- each cannon has at most 2 neighbors graph problem?

Key ideas

- graph problem: cannons are vertices, put an edge whenever two ranges overlap
 still need to find/construct the graph
- find maximum independent set

Observations

- 1 < n < 10'000
- no overlap 2 options for every cannon (on/off)
- each cannon has at most 2 neighbors graph problem?

Key ideas

- graph problem: cannons are vertices, put an edge whenever two ranges overlap still need to find/construct the graph
- find maximum independent set
 - in general
 - bipartite graphs
 - special cases

NP-complete

König's Theorem, Matching

trivial

Construct a graph ${\it G}$ to model the dependencies: vertices are cannons and there is an edge between two vertices if the repective operation ranges overlap

ullet Compute $\binom{n}{2}$ pairwise distances $o \Theta(n^2)$

Construct a graph G to model the dependencies: vertices are cannons and there is an edge between two vertices if the repective operation ranges overlap

- ullet Compute $inom{n}{2}$ pairwise distances $igophi \Theta(n^2)$
- It suffices to consider the nearest neighbor $o \Theta(n \log n)$ the second nearest neighbor $o \Theta(n \log n)$

Construct a graph G to model the dependencies: vertices are cannons and there is an edge between two vertices if the repective operation ranges overlap

- $\bullet \ \mathsf{Compute} \ \tbinom{n}{2} \ \mathsf{pairwise} \ \mathsf{distances} \ \to \Theta(\mathit{n}^2)$
- It suffices to consider the nearest neighbor $\rightarrow \Theta(n \log n)$ the second nearest neighbor $\rightarrow \Theta(n \log n)$

Construct a graph G to model the dependencies: vertices are cannons and there is an edge between two vertices if the repective operation ranges overlap

- Compute $\binom{n}{2}$ pairwise distances $\to \Theta(n^2)$
- It suffices to consider the nearest neighbor $o \Theta(n \log n)$ the second nearest neighbor $o \Theta(n \log n)$

Lemma

Let v_1 be a nearest neighbor and v_2 be a second nearest neighbor of v. Then at least one of vv_2 or v_1v_2 is an edge of the Delaunay triangulation.

Construct a graph G to model the dependencies: vertices are cannons and there is an edge between two vertices if the repective operation ranges overlap

- Compute $\binom{n}{2}$ pairwise distances $o \Theta(n^2)$
- It suffices to consider the nearest neighbor $o \Theta(n \log n)$ the second nearest neighbor $o \Theta(n \log n)$

- maximal degree 2
- \Rightarrow the graph G must be a disjoint union of paths and cycles
- ⇒ greedy/ad-hoc solution for every component

 $\rightarrow \Theta(n)$

Software update

Observations

- $2 \le n \le 50$
- minimal radius
- no overlap
- maximize sum of the radii

tiny...
need solution of Exercise 2
radii are bounded from above

optimization problem?

Software update

Observations

- $2 \le n \le 50$
- minimal radius
- no overlap
- maximize sum of the radii

tiny...

need solution of Exercise 2

radii are bounded from above

optimization problem?

Key ideas

optimization problem

find a larger radius for each cannon

Software update

Observations

- 2 < n < 50
- tiny... minimal radius
- no overlap
- maximize sum of the radii

- need solution of Exercise 2
- radii are bounded from above
 - optimization problem?

Key ideas

optimization problem

- find a larger radius for each cannon
- the improvement is linear in the radius
- lower bounds for the radii
- implicit upper bounds: no overlap

Software update – Solution

Linear program with n variables and $n + \binom{n}{2}$ constraints:

• Variables: Operation range (radius) of every snow cannon

$$r_i \geq \frac{\texttt{closest_pair_dist}}{2}$$
, $i = 1, \dots, n$

8 / 8

Exam Preparation Algolab 15 December 2, 2015

Software update – Solution

Linear program with n variables and $n + \binom{n}{2}$ constraints:

• Variables: Operation range (radius) of every snow cannon

$$r_i \geq \frac{\texttt{closest_pair_dist}}{2} \,, \quad i = 1, \dots, n$$

• Constraints: Operation ranges are not overlapping

$$r_i + r_j \leq \operatorname{dist}(i,j), \quad 1 \leq i, j \leq n$$

Software update - Solution

Linear program with n variables and $n + \binom{n}{2}$ constraints:

• Variables: Operation range (radius) of every snow cannon

$$r_i \geq rac{ exttt{closest_pair_dist}}{2}\,, \quad i=1,\ldots,n$$

Constraints: Operation ranges are not overlapping

$$r_i + r_j \leq \operatorname{dist}(i,j), \quad 1 \leq i,j \leq n$$

• Objective: Maximize the sum of the radii

$$\max \sum_{i} r_{i}$$

Software update – Solution

Linear program with *n* variables and $n + \binom{n}{2}$ constraints:

• Variables: Operation range (radius) of every snow cannon

$$r_i \geq \frac{\texttt{closest_pair_dist}}{2} \,, \quad i = 1, \dots, n$$

• Constraints: Operation ranges are not overlapping

$$r_i + r_j \leq \operatorname{dist}(i,j), \quad 1 \leq i, j \leq n$$

• Objective: Maximize the sum of the radii

$$\max \sum_{i} r_{i}$$

Implementation details

• **IT**: Exact type with sqrt

ET: Exact type with sqrt