Bowdoin

Representation

CSCI 2330

Computer Science Stephen Houser

Office Hours

The Teaching Assistants (TAs) for the semester and their hours are:

- Pauline Unietis <pmunieti@bowdoin.edu>: Monday 6:30-8:30pm
- Joshua Lin <jlin@bowdoin.edu>: Tuesday 7-9pm
- Rose Xi <yxi∂bowdoin.edu>: Thursday 7-9pm
- Steven Xu <hxu∂bowdoin.edu>: Thursday 7-9pm

All TA Hours are in 224 Searles

My Office Hours are

Tuesday/Thursday 10-11 in H-L 112

Data Representation

- Bases: 2, 10, and 16
- Logical and Bitwise Operators
- Integers: Signs and ...not
- Floating Point numbers
- Textual Data (ASCII)

Number Systems

Hex Decimal Binary

0	0	0000
1	1	0001
1 2 3	2	0010
3	3	0011
4	4	0100
4 5 6	<u>4</u> 5	0101
6	6	0110
7	7	0111
7 8 9	8	1000
9	9	1001
Α	10	1010
B C	11	1011
С	12	1100
D	13	1101
E	14	1110
F	15	1111

Binary to Decimal (base 10)

1	0	1	0	1	0	1	0	binary
27	2 ⁶	2 ⁵	24	23	2 ²	21	20	
128	64	32	16	8	4	2	1	decimal

$$128 + 32 + 8 + 2 = 170$$

Binary to Hex (base 16)

$$8 + 2 = A_{16}$$

$$8 + 2 = A_{16}$$

AA₁₆

Example

Hex Decimal Binary

0	0	0000
1	1	0001
1 2 3	<u>1</u> 2	0010
3	3	0011
4	<u>4</u> 5	0100
4 5 6	5	0101
6	6	0110
7	7	0111
7 8 9	8	1000
9	9	1001
Α	10	1010
B C	11	1011
С	12	1100
D	13	1101
E	14	1110
F	15	1111

Write 42 (base 10) as...

• hexadecimal (base 16) **0x2a**

• binary (base 2) **00101010b**

Bowdoin

Exercises 1-4

Computer Science Stephen Houser

Boolean Algebra

Logical vs. Bitwise Operators (C)

Operation	Logical	Bitwise
AND	&&	&
OR		
NOT	!	~

$$1 \&\& 0 = FALSE$$

$$1 & 0 = 0$$

The Big Three

Bitwise	AND	"&"
----------------	------------	-----

X	У	q
0	0	0
0	1	0
1	0	0
1	1	1

Bitwise OR "|"

X	У	q
0	0	0
0	1	1
1	0	1
1	1	1

Bitwise NOT "~"

X	q
0	1
1	0

Shifty Operators

Shift Left "<<"

Number	<<	q
00000101	<< 2	00010100
0000000	<< 6	00000000
10000000	<< 1	00000000
00010000	<< 3	10000000

Shift Right ">>"

Number	>>	q
00000101	>> 2	00000001
00000000	>> 6	00000000
10000000	>> 1	11000000
00010000	>> 3	00000010

Bouns

Bitwise XOR

×	У	q
0	0	0
0	1	1
1	0	1
1	1	0

Bitwise NAND

X	У	q
0	0	1
0	1	1
1	0	1
1	1	0

Binary Addition

0110

+0100 + 4

1010

10

1010 10

+ 1001 + 9

<u>1</u>0011

19 or 3?

Overflow!

Integers - Sign

Binary	Hex	Unsigned	Sign Magnitude	1's Comp.	2's Comp
0000	0x0	0	0	0	0
0001	0x1	1	1	1	1
0010	0x2	2	2	2	2
0011	0x3	3	3	3	3
0100	0x4	4	4	4	4
0101	0x5	5	5	5	5
0110	0x6	6	6	6	6
0111	0x7	7	7	7	7
1000	0x8	8	-0	-7	-8
1001	0x9	9	-1	-6	-7
1010	0xA	10	-2	-5	-6
1011	0xB	11	-3	-4	-5
1100	0xC	12	-4	-3	-4
1101	0xD	13	-5	-2	-3
1110	0xE	14	-6	-1	-2
1111	0xF	15	-7	-0	-1

Data Sizes

Data Type	Bytes
char	1
short	2
int	4
long	8
float	4
double	8

Byte Ordering

How do we keep a multi-byte things in memory?

0x1234567 (4 byte int)

Memory ->	0x0FF	0x100	0x101	0x102	0x103	0x104
Big Endian		0x01	0x23	0x45	0x67	•••
Little Endian		0x67	0x45	0x23	0x01	

Which is better?

Intel uses little-endian

IEEE 754 Standard

What does 4.5 look like in binary?

$$4 = 100$$

$$0.5 = ?$$

$$0.5 = 0.1$$

$$4.5 = 100.1$$

12.25 = 1100.01 = 1.10001 * 2³ (normalized)

8-bit float (
$$k=4$$
, $n=3$, bias = 7)

s (1) exp (4) frac (3)

```
8-bit float (k=4, n=3, bias = 7)
                 exp (4)
                               frac (3)
4.5 = 100.1 = 1.001 * 2^2  (normalized)
sign = 0 (positive)
exponent = 2 + bias = 2 + 7 = 9 \Rightarrow 1001
fraction = 1001 \Rightarrow drop leading 1 \Rightarrow 001
                  0 1001 001
```

```
8-bit float (k=4, n=3, bias = 7)
                 exp (4)
                              frac (3)
                   0 1001 001
sign = 0 (positive)
exponent = 1001 = 9 \Rightarrow 9-bais = 9-7 = 2
fraction = 001 \Rightarrow 1.001
         1.001 \times 2^2 = 100.1 = 4.5
                   ~ OR ~
  1.001 = 1.125 * 2^2 = 1.125 * 4 = 4.5
```


Not evenly distributed

1. Normalized

 $s \neq 0 \& \neq 255$

2. Denormalized

s 0 0 0 0 0 0 0 0 0 f

3a. Infinity

3b. NaN

 s
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1</

Text ASCII

ASCII Table

Dec	Hex	0ct	Char	Dec	Hex	0ct	Char	Dec	Hex	0ct	Char	Dec	Hex	0ct	Char
0	0	0		32	20	40	[space]	64	40	100	@	96	60	140	`
1	1	1		33	21	41	!	65	41	101	Α	97	61	141	a
2	2	2		34	22	42	"	66	42	102	В	98	62	142	b
3	3	3		35	23	43	#	67	43	103	С	99	63	143	С
4	4	4		36	24	44	\$	68	44	104	D	100	64	144	d
5	5	5		37	25	45	%	69	45	105	E	101	65	145	e
6	6	6		38	26	46	&	70	46	106	F	102	66	146	f
7	7	7		39	27	47	'	71	47	107	G	103	67	147	g
8	8	10		40	28	50	(72	48	110	Н	104	68	150	h
9	9	11		41	29	51)	73	49	111	I	105	69	151	i
10	Α	12		42	2A	52	*	74	4A	112	J	106	6A	152	j
11	В	13		43	2B	53	+	75	4B	113	K	107	6B	153	k
12	С	14		44	2C	54	,	76	4C	114	L	108	6C	154	I
13	D	15		45	2D	55	-	77	4D	115	M	109	6D	155	m
14	E	16		46	2E	56		78	4E	116	N	110	6E	156	n
15	F	17		47	2F	57	/	79	4F	117	О	111	6F	157	0
16	10	20		48	30	60	0	80	50	120	Р	112	70	160	р
17	11	21		49	31	61	1	81	51	121	Q	113	71	161	q
18	12	22		50	32	62	2	82	52	122	R	114	72	162	r
19	13	23		51	33	63	3	83	53	123	S	115	73	163	S
20	14	24		52	34	64	4	84	54	124	Т	116	74	164	t
21	15	25		53	35	65	5	85	55	125	U	117	75	165	u
22	16	26		54	36	66	6	86	56	126	V	118	76	166	V
23	17	27		55	37	67	7	87	57	127	W	119	77	167	W
24	18	30		56	38	70	8	88	58	130	X	120	78	170	X
25	19	31		57	39	71	9	89	59	131	Υ	121	79	171	У
26	1A	32		58	3A	72	:	90	5A	132	Z	122	7A	172	z
27	1B	33		59	3B	73	;	91	5B	133	[123	7B	173	{
28	1C	34		60	3C	74	<	92	5C	134	\	124	7C	174	I
29	1D	35		61	3D	75	=	93	5D	135]	125	7D	175	}
30	1E	36		62	3E	76	>	94	5E	136	^	126	7E	176	~
31	1F	37		63	3F	77	?	95	5F	137	_	127	7F	177	