

ACM-ICPC Thailand Southern Programming Contest 2013

Hosted by Department of Computer Engineering Prince of Songkla University Hatyai Campus

10 August 2013

Contest Problems

- There are **8** problems (A-H) to solve within 3 hours 30 minutes.
- Solve as many problems as you can, in an order of your choice.
- Use C or C++ or Java to program at your convenience for any problems.
- Input and output of each program are **standard input** and **output**.

Problem A	Unlock My Safe						
Problem B	Two Mysterious Alphabets from a Tree						
Problem C	Max Volume						
Problem D	Birthday Statistics						
Problem E	Nonogram						
Problem F	Jane's First Words						
Problem G	Range Sum Query						
Problem H	Sum of Distinct Numbers ผลรวมเลขไม่ซ้ำ						

Problem B. Two Mysterious Alphabets from a Tree

Time Limit: 2s

Your task is to extract 2 alphabets from a **binary** tree which is composed of unsigned integers respecting the following rules. Let n be the height of a tree. At the level k (1 <= k <= n), the tree contains k of nodes and each node has 2 children nodes (except the leaf nodes at the level n which have no children). See the example below to understand the tree formation. Some nodes may have 2 parent nodes.

Example:

You need to walk in a tree on the path that has a maximum summation (e.g., 1 + 5 + 9 = 15). Numbers in each summation cannot cross into different links (e.g., 5+7 is illegal). Then, your intermediate task is to calculate 2 numbers for alphabet extraction. The first number is calculated from $\sum_{i=1}^{n} i^2$ where i is a number along the maximum summation path and n is the height of a tree.

The second number is a summation of the maximum path $(\sum_{i=1}^{n} i)$. Regarding to the example above, the first number = 1 + 25 + 81 = 107 and the second number = 1 + 5 + 9 = 15.

Finally, these two numbers are transformed into two lower case alphabets from 'a' to 'z' respectively, where 'a' is used for 0 and 'z' is used for 25. Since there are only 26 alphabets, a number greater than 25 will reuse the same set of alphabets. For example, 107 = 'd' and 15 = 'p' (that is, the first alphabet 'a' = 0, or 26, or 52 etc).

Write a program to find the 2 mysterious alphabets from a given tree.

Input

The first line of input contains the height (n) of a tree (0 < n < 100). The second line contains unsigned integer numbers (i) in each level of a tree (0 < i < 100), consecutively. Assume that there is only one maximum path in a tree.

Output

The first line contains two integer calculated from the rules above, and the second line contains 2 decoded alphabets.

Sample Input	Sample Output
3	107 15
1 4 5 7 8 9	dp

Sample Input	Sample Output
4	486 32
1 5 2 5 1 9 3 4 20 1	sg

						Sa	mp	le	Inp	ut							Sample Output
5															166	20	
2	4	9	1	3	1	1	1	1	2	12	5	4	3	2	ku		

Sample Input													Sample Output		
6															6765 109
9	8	8	7	7 7	9	1	1	3	8	2	10	5	1	2	ff
3	2	1	9	81											