Maths pour l'image : algèbre linéaire et géométrie Fiche d'exercices 1 - espaces vectoriels

Exercice 1 - espaces vectoriels

Dans $E = \mathbb{R}^2$, on définit l'addition entre vecteurs et la multiplication par un scalaire réel des façons suivantes. E est-il alors un espace vectoriel?

aide : vérifiez la commutativité de l'addition et le neutre pour la multiplication

1.
$$(u_x, u_y) + (v_x, v_y) = (u_x + v_x, u_y + v_y)$$
 et $\lambda \cdot (u_x, u_y) = (\lambda u_x, \lambda u_y)$

2.
$$(u_x, u_y) + (v_x, v_y) = (u_x, u_y)$$
 et $\lambda \cdot (u_x, u_y) = (\lambda u_x, \lambda u_y)$

3.
$$(u_x, u_y) + (v_x, v_y) = (u_x + v_x, u_y + v_y)$$
 et $\lambda \cdot (u_x, u_y) = (\lambda u_x, 0)$

Exercice 2 - sous-espaces vectoriels

1. Les parties suivantes de \mathbb{R}^3 en sont-elles des sous-espaces vectoriels?

(a)
$$E_1 = \{(x, y, z) \mid x = 2z\}$$

(b)
$$E_2 = \{(x, y, z) \mid y \neq 0\}$$

(c)
$$E_3 = \{(x, y, z) \mid 5x - y + z - 4 = 0\}$$

(d)
$$E_4 = \{(x, y, z) \mid x + y + z = 0\}$$

2. Soient F et G deux sous-espaces vectoriels de E. Montrer que $F+G=\{x=f+g\mid f\in F,g\in G\}$ est un sous-espace vectoriel de E.

Exercice 3 - dépendance linéaire

- 1. Les familles suivantes sont-elles libres ou liées?
 - (a) $\{(6,5),(3,2)\}$
 - (b) $\{(6,4),(3,2),(1,0)\}$
 - (c) $\{(0,0),(1,2)\}$
- 2. Soient $\{u,v,w\}$ une famille libre dans un espace vectoriel V. Montrer que :
 - (a) $\{u+v,v+w,u-w\}$ est une famille liée dans V
 - (b) $\{u+v, u-v, u+w\}$ est une famille libre dans V

Exercice 4 - générateurs, bases

- 1. Les familles suivantes sont-elles des bases de \mathbb{R}^3 ?
 - (a) $F_1 = \{(1,0,1), (2,0,-1), (-1,1,2)\}$
 - (b) $F_2 = \{(1, -1, 0), (1, 2, 3), (0, 1, 1), (1, 0, 1)\}$
 - (c) $F_3 = \{(1, -1, 0), (1, 2, 3), (0, 1, 1)\}$
- 2. Soit la famille de vecteurs de \mathbb{R}^4 $\{(0,1,1,1),(1,0,1,1),(1,1,0,1),(1,1,1,0)\}.$
 - (a) Montrer que c'en est une base.
 - (b) Donner les coordonnées du vecteur (1, 1, 1, 1) dans cette base.