

planetmath.org

Math for the people, by the people.

prime ideals by Artin are prime ideals

 ${\bf Canonical\ name} \quad {\bf Prime Ideals By Artin Are Prime Ideals}$

Date of creation 2013-03-22 18:44:55 Last modified on 2013-03-22 18:44:55

Owner pahio (2872) Last modified by pahio (2872)

Numerical id 10

Author pahio (2872) Entry type Theorem Classification msc 13C99 Classification msc 06A06

Related topic IdealGeneratedByASet

Related topic PrimeIdeal

Theorem. Due to Artin, a prime ideal of a commutative ring R is the maximal element among the ideals not intersecting a multiplicative subset S of R. This is http://planetmath.org/Equivalent3equivalent to the usual criterion

$$ab \in \mathfrak{p} \quad \Rightarrow \quad a \in \mathfrak{p} \lor b \in \mathfrak{p} \tag{1}$$

of prime ideal (see the entry http://planetmath.org/PrimeIdealprime ideal).

Proof. 1º. Let \mathfrak{p} be a prime ideal by Artin, corresponding the semigroup S, and let the ring product ab belong to \mathfrak{p} . Assume, contrary to the assertion, that neither of a and b lies in \mathfrak{p} . When (\mathfrak{p}, x) generally means the least ideal containing \mathfrak{p} and an element x, the antithesis implies that

$$\mathfrak{p} \subset (\mathfrak{p}, a) \wedge \mathfrak{p} \subset (\mathfrak{p}, a),$$

whence by the maximality of \mathfrak{p} we have

$$(\mathfrak{p}, a) \cap S \neq \emptyset \land (\mathfrak{p}, b) \cap S \neq \emptyset.$$

Therefore we can chose such elements $s_i = p_i + r_i a + n_i a$ of S (N.B. the multiples) that

$$p_i \in \mathfrak{p}, \ r_i \in R, \ n_i \in \mathbb{Z} \ (i = 1, 2).$$

But then

$$s_1s_2 = (p_2+r_2b+n_2b)p_1+(r_1a+n_1a)p_2+(r_1r_2+n_2r_1+n_1r_2)ab+(n_1n_2)ab \in \mathfrak{p}.$$

This is however impossible, since the product s_1s_2 belongs to the semigroup S and $\mathfrak{p} \cap S = \emptyset$. Because the antithesis thus is wrong, we must have $a \in \mathfrak{p}$ or $b \in \mathfrak{p}$.

 $2^{\underline{o}}$. Let us then suppose that an ideal \mathfrak{p} satisfies the condition (1) for all $a, b \in R$. It means that the set $S = R \setminus \mathfrak{p}$ is a multiplicative semigroup. Accordingly, the \mathfrak{p} is the greatest ideal not intersecting the semigroup S, Q.E.D.

Remark. It follows easily from the theorem, that if \mathfrak{p} is a prime ideal of the commutative ring \mathfrak{O} and \mathfrak{o} is a subring of \mathfrak{O} , then $\mathfrak{p} \cap \mathfrak{o}$ is a prime ideal of \mathfrak{o} .