

Activité 1 : Chute libre avec frottement

Objectifs:

- Modéliser un problème physique et le résoudre analytiquement
- Mettre en œuvre les méthodes numériques vues en mathématique
- Faire varier les paramètres numériques
- Se familiariser avec quelques méthodes graphiques Python en vue de tracer des évolutions de grandeurs physiques numériques et analytiques
- Dans cette activité, on souhaite tracer la courbe représentative de la vitesse et la loi horaire d'un phénomène de chute libre avec frottement.

1. Modélisation analytique

Dans un référentiel supposé galiléen, on s'intéresse à la chute libre d'un corps M, de masse m=1kg, lâché sans vitesse initiale, d'une hauteur $h_0=25m$. On considère les frottements dus à l'air avec $\lambda=5~{\rm Kg.s^{-1}}$

La verticale du lieu définit l'axe (Oz), vertical ascendant.

- a) Déterminer, rigoureusement, l'équation différentielle vérifiée par la vitesse v(t) du point M.
- b) Déterminer l'expression de la vitesse v(t), en fonction des paramètres.
- c) En déduire l'équation horaire de la trajectoire du point M notée z(t).

2. Modélisation numérique de la vitesse

On se propose maintenant de résoudre ce problème à l'aide de la méthode d'Euler explicite.

- Identifier et définir les paramètres physiques nécessaires au calcul de v(t).
- Créer une fonction *EulerExp* pour résoudre l'équation différentielle vérifiée par la vitesse.
- Préciser l'intervalle de temps $[t_{min}, t_{max}]$ sur lequel on désire tracer la courbe et choisir un pas de temps dt.
- Tracer la courbe de la vitesse théorique et la vitesse numérique.
- Faire varier le pas de temps et calculer l'erreur commise par le calcul numérique (par exemple au sens des moindres carrés)
- Tracer l'erreur commise en fonction du pas de temps.
- Etudier l'influence des autres données du problème, par exemple la masse, le coefficient de frottement λ , etc...
- Analyser et interpréter les résultats.

3. Modélisation numérique de la position (BONUS)

• Ecrire l'équation différentielle d'ordre 2 vérifiée par z(t)

2022-2023

- Créer une fonction *EulerExp2* pour résoudre cette équation différentielle.
- Préciser l'intervalle de temps $[t_{min}, t_{max}]$ sur lequel on désire tracer la courbe ;
- Tracer la courbe puis l'afficher.

Module et packages

Dans cette activité, il est nécessaire d'importer deux modules :

- Le module *numpy* dédié au calcul numérique : il permet en particulier la manipulation de tableaux multidimensionnels pour stocker des données. Ce module fournit également un grand nombre de fonctions dédiées aux calculs mathématiques et numériques
- Le module *matplotlib* pour les représentations graphiques.