參考: Lattice Boltzmann Method

IPCST Seoul National University

Modeling Scales

- Microscopic
 - Small particles or individuals.
- Macroscopic
 - Averaged quantities of groups (ex.: particle group). Approximation to continuum.
- Mesoscopic
 - Large particles or small clusters. Ensembles.
 Kinetic type. Often stochastic.
- Multi-scale: Combination of different scales

Kinetic Theory

- Object of interest
 - Particle distribution function (PDF)
 - Phase space probability density
- BBGKY hierarchy
 - Bogoliubov, Born, Green, Kirkwood, and Yvon
 - A set of equations for many particles
 - Each equation describes k-particle probability density function (k = 1, 2, ..., N)
 - Boltzmann equation
 - Truncation at the first or the second equation

- Boltzmann equation
 - Considering 1-particle probability density function $f(\mathbf{x}, \mathbf{v}, t)$

$$\partial_t f = (\partial_t f)_{\text{ext. force}} + (\partial_t f)_{\text{diffusion}} + (\partial_t f)_{\text{collision}}$$
$$\partial_t f + (\mathbf{v} \cdot \nabla) f + \mathbf{F} \cdot \partial f / \partial \mathbf{p} = \Omega(f, f)$$

- F: external force field
- $-\Omega(f,f)$: collision effect term

$$\Omega(f, f) = \int_{\mathbb{R}^3} \int_{\mathbb{S}^2} \sigma(\omega) |\mathbf{w} - \mathbf{v}| \left(f(\mathbf{v}') f(\mathbf{w}') - f(\mathbf{v}) f(\mathbf{w}) \right) d\omega d\mathbf{w}$$

- $\Omega(f, f)$: collision effect term (also called collision operator)

$$\Omega(f, f) = \int_{\mathbb{R}^3} \int_{\mathbb{S}^2} \sigma(\omega) |\mathbf{w} - \mathbf{v}| \left(f(\mathbf{v}') f(\mathbf{w}') - f(\mathbf{v}) f(\mathbf{w}) \right) d\omega d\mathbf{w}$$

- Collision of particles with velocity v and particles with velocity w
- $\sigma(\omega)$: scattering cross section
- ω : scattering angle

- Detailed balance
 - At equilibrium, (net gain) = (net loss)
 - $\Omega(f, f) = 0$
 - $\oint f_0(\mathbf{v'}) f_0(\mathbf{w'}) = f_0(\mathbf{v}) f_0(\mathbf{w})$ for gas model (no **F** case)
 - $f_0(\mathbf{v})$: a one-particle probability density function at equilibrium
- Maxwell-Boltzmann distribution

```
f_0(\mathbf{v}) = n \ (m\beta/2\pi)^{3/2} \exp(-m\beta|\mathbf{v}-\mathbf{v}^0|^2/2) \text{ where } \beta = 1/(k_B T)
```

• n = 1 after normalization

- $k_{\rm R}$: Boltzmann constant
- The equilibrium state for Boltzmann equation without external forces
 - Accurate for rarefied gases

- Average value of $A: \langle A \rangle = \int Af d\mathbf{v} / \int f d\mathbf{v}$
- Mass conservation

$$\partial_t \rho + \nabla \cdot (\rho \mathbf{u}) = 0$$
 $(\rho = mn, n = \int f d\mathbf{v}, \mathbf{u} = \langle \mathbf{v} \rangle)$

Momentum conservation

$$\partial_t(\rho \mathbf{u}) + \nabla \cdot (\rho \mathbf{u} \otimes \mathbf{u}) + \nabla \cdot \tau = n\mathbf{F} \quad (\tau = \frac{1}{m} \int \mathbf{v}' \otimes \mathbf{v}' f d\mathbf{v}')$$

τ: stress by fluctuation

$$\mathbf{v}\otimes\mathbf{w}=egin{bmatrix} v_1w_1 & v_1w_2 & \cdots & v_1w_m \ v_2w_1 & v_2w_2 & \cdots & v_2w_m \ dots & dots & \ddots & dots \ v_nw_1 & v_nw_2 & \cdots & v_nw_m \end{bmatrix}$$

- Average value of $A: \langle A \rangle = \int Af d\mathbf{v} / \int f d\mathbf{v}$
- Mass conservation

$$\partial_t \rho + \nabla \cdot (\rho \mathbf{u}) = 0$$
 $(\rho = mn, n = \int f d\mathbf{v}, \mathbf{u} = \langle \mathbf{v} \rangle)$

Momentum conservation

$$\partial_t(\rho \mathbf{u}) + \nabla \cdot (\rho \mathbf{u} \otimes \mathbf{u}) + \nabla \cdot \tau = n\mathbf{F} \quad (\tau = \frac{1}{m} \int \mathbf{v}' \otimes \mathbf{v}' f d\mathbf{v}')$$

- τ: stress by fluctuation
- Energy conservation

$$\partial_t E + \nabla \cdot (E\mathbf{u} + \tau \cdot \mathbf{u}) + \nabla \cdot \mathbf{q} = n\mathbf{F} \cdot \mathbf{u} \quad (\mathbf{q} = \frac{1}{m} \int \frac{|\mathbf{v}'|^2}{2} \mathbf{v}' f d\mathbf{v}')$$

• $E = \rho/\mathbf{u}|^2/2$ + (thermal E), \mathbf{q} : heat flux

Knudsen number (Kn)

$$Kn = \lambda/L$$

- λ : mean free path (typical order: μ m or nm)
- *L* : system size (typical order: meter)
- Dimensionless Boltzmann equation

$$\partial_t f + (\mathbf{v} \cdot \nabla) f + \mathbf{F} \cdot \partial f / \partial \mathbf{p} = \Omega(f, f) / \mathrm{Kn}$$

- Local equilibrium approximation
 - Assuming $\mathbf{F} = 0$,

If
$$Kn \ll 1 \rightarrow \Omega(f, f) = 0 \rightarrow M.-B$$
. Distribution

BGK Approximation

- Bhatnagar, Gross, and Krook
- In most cases, the collision effect results a distribution not far from the equilibrium distribution.

$$\partial_t f + (\mathbf{v} \cdot \nabla) f + \mathbf{F} \cdot \partial f / \partial \mathbf{p} = (f_0 - f) / \tau$$

- $-\tau$: relaxation time
 - Elementary time of collisions
 - Related to transport coefficient or diffusion coefficient

Lattice Boltzmann Method

- Computational fluid dynamics method
- Discrete-velocity version of approximated Boltzmann equation
 - When we ignore the external force term, $\partial_t f_i + (\mathbf{v}_i \cdot \nabla) f_i = \Omega(f_i, f_i)$ (*i*: velocity index)

$$U_t J_i + (\mathbf{v}_i \cdot \vee) J_i - 22(J_i, J_i)$$
 (1. Velocity 1)

- $\longrightarrow f_i(\mathbf{x} + \mathbf{v}_i \Delta t, t + \Delta t) = f_i(\mathbf{x}, t) + \Delta t \cdot \Omega[f_i(\mathbf{x}, t), f_i(\mathbf{x}, t)]$
- Propagation and collision of fictitious particles (quasiparticles)
 - Mesoscopic viewpoint

Advantages of LBM

- Easy to include a particular molecular interaction
- Easy to be parallelized.
 - Massive-parallelism such as GPUs and supercomputers
- Suitable to mass-conserving flows in porus media
- Moving boundaries can be implemented.
- Multiphase and multicomponent methods are available.
- Various couplings between different flows are available.
 - Wave with sound, heat-transfer or chemical reactions
- Thermal fluctuations can be applied.
- Appropriate for simulating mesoscopic physics

Disadvantages of LBM

- Memory-intensive
- Time-dependent, even for steady flows
- Spurious currents near fluid-fluid interfaces, as in other lattice-based methods
- The range of viscosities and densities are limited in multiphase and multicomponent simulations
- Energy-conserving thermal simulations are not straightforward
- Inappropriate for long-range propagation of sound at real viscosity
- Inappropriate for strongly compressible flows

Lattice Boltzmann Models

Lattice Boltzmann equation

$$f_i(\mathbf{x} + \mathbf{v}_i \Delta t, t + \Delta t) = f_i(\mathbf{x}, t) + \Delta t \cdot \Omega[f_i(\mathbf{x}, t), f_i(\mathbf{x}, t)]$$

- Discretization: time & velocity
- The BGK approximation is usually used in LBM.

$$f_i(\mathbf{x} + \mathbf{v}_i \Delta t, t + \Delta t) = f_i(\mathbf{x}, t) + [f_{0,i}(\mathbf{x}, t) - f_i(\mathbf{x}, t)] \cdot \Delta t / \tau$$

- * Naturally, (v lattice unit) = (x lattice unit)/ Δt
- ❖ Velocity lattice notation: DdQq
 - d: dimension, q: number of linkages

1-D Lattice Arrangements

D1Q2

- 2 1
- Weighting factors: $w_1=1/2$, $w_2=1/2$.
- D1Q3

- 2 0 1
- Weighting factors: $w_0 = 2/3$, $w_1 = 1/6$, $w_2 = 1/6$.
- D1Q5

- 4 2 0 1 3
- Weighting factors: $w_0 = 1/2$, $w_1 = 1/6$, $w_2 = 1/6$, $w_3 = 1/12$, $w_4 = 1/12$.

2-D Lattice Arrangements

Weighting factors: w_i=1/4

• D2Q5

- Weighting factors: $w_0 = 1/3$, $w_1 = 1/6$, $w_2 = 1/6$, $w_3 = 1/6$, $w_4 = 1/6$. D2Q9

– Weighting factors:

$$w_0 = 4/9, w_1 = 1/9,$$

 $w_2 = 1/9, w_3 = 1/9,$
 $w_4 = 1/9, w_5 = 1/36,$
 $w_6 = 1/36, w_7 = 1/36,$
 $w_8 = 1/36$

2-D La

2-D Lattice Arrangements

D2Q7

- Hexagonal grid
- Weighting factors: $w_0 = 1/2$, $w_1 = 1/12$,, $w_6 = 1/12$,

$$c_{\rm s} = \Delta x/(2\Delta t)$$

3-D Lattice Arrangements

D3Q15

D3Q19

- Weighting factors: $w_0 = 2/9$, $w_1 = 1/9$,

$$W_0 = 2/9, W_1 = 1/9,$$

....., $W_6 = 1/9,$
 $W_7 = 1/72,,$
 $W_{14} = 1/72.$

- Weighting factors: $w_0 = 1/3, w_1 = 1/18,$

.....,
$$w_6 = 1/18$$
, $w_7 = 1/36$,,

$$w_{18} = 1/36$$
.

3-D Lattice Arrangements

D3Q27

- Weighting factors:
$$w_0 = 8/27$$
, $w_1 = 2/27$,, $w_6 = 2/27$, $w_7 = 1/216$,, $w_{14} = 1/216$, $w_{15} = 1/54$,, $w_{26} = 1/54$.

Macroscopic Variables

$$f_i(\mathbf{x} + \mathbf{v}_i \Delta t, t + \Delta t) = f_i(\mathbf{x}, t) + [f_{0,i}(\mathbf{x}, t) - f_i(\mathbf{x}, t)] \cdot \Delta t / \tau$$

- Density $\rho(\mathbf{x}, t) = \sum f_i(\mathbf{x}, t)$
- Velocity $\mathbf{u}(\mathbf{x}, t) = \sum f_i(\mathbf{x}, t) \mathbf{v}_i / \rho(\mathbf{x}, t)$
- Kinematic shear viscosity (or diffusivity)

$$v = c_s^2 (\tau - \Delta t/2)$$

- $-c_{\rm s}$: speed of sound (or an equivalent speed)
- Kinematic bulk viscosity $v_{\rm B} = 2v/3$
- Viscous stress tensor

$$\sigma_{\alpha\beta} \approx - [1 - \Delta t/(2\tau)] \sum_{i} v_{i\alpha} v_{i\beta} (f_i - f_{0,i})$$

Equilibrium Distribution Function

Maxwell-Boltzmann distribution

$$f_0(\mathbf{v}) = (m\beta/2\pi)^{3/2} \exp(-m\beta|\mathbf{v}-\mathbf{v}^0|^2/2)$$
 where $\beta = k_{\rm B}T$
 $\rightarrow f_0(\mathbf{v}) = (m\beta/2\pi)^{3/2} \exp(-m\beta|\mathbf{v}-\mathbf{u}|^2/2)$ where $\beta = k_{\rm B}T$
This can be approximated by Hermite expansion.

- So $f_{0,i}$ can have a form of $f_{0,i} = \rho \, \mathbf{W_i} \, [A + B \, \mathbf{v_i} \cdot \mathbf{u} + C(\mathbf{v_i} \cdot \mathbf{u})^2 + D|\mathbf{u}|^2 \,], \, \rho = \sum f_i(\mathbf{x}, t)$
- For general fluids with constant density,

$$f_{0,i} = \rho_0 \,\mathbf{w_i} \left[1 + \frac{\mathbf{v_i \cdot u}}{c_s^2} + \frac{(\mathbf{v_i \cdot u})^2}{2 \, c_s^4} + \frac{|\mathbf{u}|^2}{2 \, c_s^2} \right]$$

General LBM Algorithm

- 1. Initialization
 - ***** Ex.) $f_{0,i}$ at prev. page & $\rho = 1$ & $\mathbf{u} = 0$
- 2. Calculation: $\rho \& \mathbf{u}$
- 3. Calculation: $f_{0,i}$ (and optionally, $\sigma_{\alpha\beta}$)
 - ✓ You can save $\rho \& \mathbf{u}$ at this point.
- 4. Collision: $f_i(\mathbf{x}, t) + [f_{0,i}(\mathbf{x}, t) f_i(\mathbf{x}, t)] \cdot \Delta t / \tau$
- 5. Streaming: $f_i(\mathbf{x} + \mathbf{v}_i \Delta t, t + \Delta t)$
 - & Applying boundary conditions
- 6. Time stepping: $t \rightarrow t + \Delta t$
- 7. Back to 2 or Stop

Memory and Loops in LBM

Memory usage

- $-\rho: N_x \times N_y \times N_z$
- $-u_x, u_y, u_z: N_x \times N_y \times N_z$
- $-f_i: \mathbf{N}_x \times \mathbf{N}_y \times \mathbf{N}_z \times \mathbf{q}$

(q: number of \mathbf{v}_i)

• You need $f_{i,old} \& f_{i,new}$, or you should arrange updating carefully with or without some buffer memory (some functions such as <code>circshift</code> in Matlab, <code>numpy.roll</code> in Python, and <code>CSHIFT</code> in Fortran may be helpful).

Loops

- $-\rho$: for each position, summation over *i*
- $-u_x, u_y, u_z$: for each position, summation over *i*
- $-f_i$: for each position

Dimensionless Variables

$$f_i(\mathbf{x} + \mathbf{v}_i \Delta t, t + \Delta t) = f_i(\mathbf{x}, t) + [f_{0,i}(\mathbf{x}, t) - f_i(\mathbf{x}, t)] \cdot \Delta t / \tau$$

- Let's assume your system has the characteristic length l, velocity V, and density ρ_0 ,
- $t \rightarrow tV/l$, $\mathbf{x} \rightarrow \mathbf{x}/l$, $\mathbf{v} \rightarrow \mathbf{v}/V$, $\rho \rightarrow \rho/\rho_0$
- $f \rightarrow fV^d/\rho_0$ (d: space dimension)

BGK Stability

Sufficient condition

$$f_{0,i} \ge 0$$
 for all i and $\tau/\Delta t > 1/2$

• Optimal condition for $\tau/\Delta t \geq 1$

$$f_{0,0} > 0$$
 and $\tau/\Delta t \ge 1$

$$|\mathbf{u}| < \sqrt{\frac{2}{3}} \frac{\Delta x}{\Delta t}$$

- If unstable,
 - Adjust Δt and Δx , or
 - Try MRT(Multi-Relaxation-Time) or TRT(Two-Relaxation-Time) instead of BGK approx.

Initial Conditions

$$f_i = f_{0,i} \& \rho = 1 \& \mathbf{u} = 0$$

For a time-dependent solution,

$$f_i = f_{0,i} + f_{n,i}$$
 (non-equilibrium part)

- Consistent initialization
 - Ref.) R. Mei et al., Comput. Fluids 35, 855 (2006).
 - Through iteration by the LB algorithm,
 - Initial velocity $\rightarrow f_i \rightarrow \rho \rightarrow f_i \rightarrow \rho \rightarrow \dots \rightarrow$ converged
 - The end step has to be propagation rather than collision.

LBM for Diffusion Equation

- 1-D diffusion equation $\phi_t = \mu \phi_{xx} \ [+S]$
 - Diffusivity $\mu = c_s^2(\tau \Delta t/2)$ or $\rho_0 c_s^2(\tau \Delta t/2)$
 - In LBM, $c_s = \Delta x/(\Delta t \cdot \sqrt{c})$
 - c: 3 for most v_i lattices except D1Q2, D2Q4, & D2Q7
- Equilibrium distribution function
 - At equilibrium, $\mathbf{u} = 0$.
 - Thus, $f_{0,i} = \rho W_i$ (Note: usually $\phi = \rho$ in diffusion equation)
- With source term

$$f_i(\mathbf{x} + \mathbf{v}_i \Delta t, t + \Delta t) = f_i(\mathbf{x}, t) + [f_{0,i}(\mathbf{x}, t) - f_i(\mathbf{x}, t)] \cdot \Delta t / \tau + \Delta t \mathbf{w}_i S$$

LBM for Diffusion Equation

- Boundary conditions (for $T_t = \mu T_{xx}$)
 - Constant temperature (Dirichlet B. C.)
 - $\Sigma f_i(\mathbf{x} = \mathbf{x}_0, t) = T_0 \rightarrow f_i(\mathbf{x} = \mathbf{x}_0) + f_j(\mathbf{x} = \mathbf{x}_0) = \mathbf{W}_i T_0 + \mathbf{W}_j T_0$
 - Adiabatic boundary (insulator, Neumann B. C.)
 - Using forward or backward finite differences
 - $[T(\mathbf{x} = \mathbf{x}_0 + \Delta x) T(\mathbf{x} = \mathbf{x}_0)]/\Delta x = 0 \rightarrow f_i(\mathbf{x} = \mathbf{x}_0) = f_i(\mathbf{x} = \mathbf{x}_0 + \Delta x)$
 - Constant flux boundary
 - $T_t = S$ at the boundary
 - $T(\mathbf{x} = \mathbf{x}_0 + \Delta x) T(\mathbf{x} = \mathbf{x}_0) = \Delta x S$
 - $\rightarrow f_i(\mathbf{x} = \mathbf{x}_0) = f_i(\mathbf{x} = \mathbf{x}_0 + \Delta x) \Delta x \mathbf{W}_i S$

Do It Yourself

- Consider LBM for 1-D diffusion equation $T_t = \mu T_{xx}$ with D1Q2 lattice.
 - Set $\Delta t = \Delta x = 1$ and prepare f_i and T for your own space grid (set initial $f_i(x, t = 0) = 0$ & T(x, t = 0) = 0)
 - Set τ (> 0.5) and b. c. value T_0
 - Loop: $T(x, t) = \sum f_i(x, t), f_{0,i} = T W_i, \& f_i(x + v_i \Delta t, t + \Delta t) = f_i(x, t) + [f_{0,i}(x, t) f_i(x, t)] \cdot \Delta t / \tau$
 - Applying B. C.: $f_1(x = 0, t) = T_0 f_2(x = 0, t)$ & $f_2(x = L, t) = -f_1(x = L, t)$
 - Make and run your code. Check out T(x, t)

Boundary Conditions for Fluids

- Link-wise
 - Bounce-back method
 - Inverting f_i across the boundary wall. No-slip condition. Simple and stable. Moderate accuracy.
- Wet-node
 - Equilibrium scheme
 - ρ & \mathbf{u} at the boundary by $f_{0,i}$. Simple and stable.
 - Non-equilibrium extrapolation method
 - Non-eq. contribution by nearby fluid. Moderate.
 - Non-equilibrium bounce-back method
 - Complex. Very accurate but less stable.

Boundary Conditions for Fluids

- Pressure B. C.
 - Periodic B. C.
 - For constant pressure, but periodic pressure gradient is also available if you follow the scheme of Zhang & Kwok (Phys. Rev. E, 2006)
 - You should check dependence and change of velocities
 - Pressure at inlet or outlet
 - Ghost boundary $+ f_{0,i}$ by the desired pressure, or
 - Density at inlet or outlet from the desired pressure, and finding f_i and normal velocity from the non-equilibrium distribution functions
 - Zou & He (Phys. Fluids, 1997), Guo et al. (Phys. Rev. E, 2002)

LBM for Advection-Diffusion

- 1-D advection-diffusion eq. $\phi_t + u_0 \phi_x = \mu \phi_{xx}$
 - Like LBM for diffusion, $\mu = c_s^2(\tau \Delta t/2)$ or $\rho_0 c_s^2(\tau \Delta t/2)$
- Equilibrium distribution function

$$f_{0,i} = \rho \,\mathbf{W_i} \,(1 + \mathbf{v_i \cdot u_0}/c_s^2)$$

- Source term: Same as for the diffusion eq.
- Boundary conditions
 - Periodic B. C.
 - Bounce-back wall
 - Neumann B. C.: setting $u_x = 0$ at the wall if x is the wall direction. (Remember $\rho \mathbf{u} = \sum f_i(\mathbf{x}, t) \mathbf{v}_i$)

LBM for Navier-Stokes Equation

2-D incompressible Navier-Stokes equation

$$\rho u_t + \rho(\mathbf{u} \cdot \nabla) u = -p_x + \mu(u_{xx} + u_{yy})$$
$$\rho v_t + \rho(\mathbf{u} \cdot \nabla) v = -p_y + \mu(v_{xx} + v_{yy})$$

- With the continuity equation: $\rho(u_x + v_y) = 0$
- where $\mathbf{u} := (u, v)$
- Dynamic viscosity $\mu = \rho_0 c_s^2 (\tau \Delta t/2)$
- Remember $c_s = \Delta x/(\Delta t \cdot \sqrt{c})$

U: characteristic velocity

L: characteristic length

- Reynolds number $Re = \rho_0 UL/\mu$
- Mach number $Ma = U/c_s$

LBM for Navier-Stokes Equation

Equilibrium distribution function

$$f_{0,i} = \rho_0 \,\mathbf{w_i} \left[1 + \frac{\mathbf{v_i \cdot u}}{c_s^2} + \frac{(\mathbf{v_i \cdot u})^2}{2 \, c_s^4} + \frac{|\mathbf{u}|^2}{2 \, c_s^2} \right]$$

- If Ma^2 is not sufficiently small but $Ma^3 \ll 1$

$$f_{0,i} = \rho \, \mathbf{w_i} + \rho_0 \, \mathbf{w_i} \left[\frac{\mathbf{v_i \cdot u}}{c_s^2} + \frac{(\mathbf{v_i \cdot u})^2}{2 \, c_s^4} + \frac{|\mathbf{u}|^2}{2 \, c_s^2} \right]$$

LBM for Navier-Stokes Equation

- Boundary conditions
 - Same as for the advection-diffusion eq., or
 - Dirichlet B. C.: fixing density/pressure at the boundary
 - You need to find f_i and normal velocity at the wall.
- Gravity: adjust the equilibrium velocity.
- Temperature
 - Compare the result with Maxwell-Boltzmann distribution, or
 - Use an equation of state.

Accuracy

- Spatial truncation errors
 - Dominated by $O([\tau \Delta t/2]^2)$ terms
- Modelling errors
 - Ground concept: LBM can be viewed as an approximation of Navier-Stokes equation.
 - See T. Krüger *et al.* section 4 or M. Junk, Numer. Methods Partial Differential Eq. 17: 383-402 (2001).
 - Space and time accuracy: second order
 - Stress tensor errors: $O(u^3)$
 - In case of standard lattice
 - This limits LBM to weakly compressible flows.
 - Insignificant if $Ma^2 \ll 1$
 - Compressibility errors: $O(Ma^2)$
 - If you reduce these and spatial truncation errors simultaneously, time accuracy reduces to first order.

MRT Collision Operator

•
$$f_i(\mathbf{x} + \mathbf{v}_i \Delta t, t + \Delta t) = f_i(\mathbf{x}, t) + \Delta t \cdot \Omega[f_i(\mathbf{x}, t), f_i(\mathbf{x}, t)]$$

 $\rightarrow f_i(\mathbf{x} + \mathbf{v}_i \Delta t, t + \Delta t) = f_i(\mathbf{x}, t) + \Delta t \cdot \mathbf{M}^{-1} \mathbf{S}[\mathbf{m}_0(\mathbf{x}, t) - \mathbf{m}(\mathbf{x}, t)]$

For DdQq velocity lattice,

$$m_j = \sum_{i=0}^{q-1} M_{ji} f_i$$
 for $j = 0, \dots, q-1$
 $m_{0,j} = \sum_{i=0}^{q-1} M_{ji} f_{0,i}$ for $j = 0, \dots, q-1$

- See Mohamad or Krüger et al. for the values of M_{ji}
- S: diagonal matrix of parameters.
 - If $S = (1/\tau)I$ → BGK approx.

TRT Collision Operator

•
$$f_i(\mathbf{x} + \mathbf{v}_i \Delta t, t + \Delta t) = f_i(\mathbf{x}, t) + [f_{0,i}^+(\mathbf{x}, t) - f_i^+(\mathbf{x}, t)] \cdot \Delta t / \tau^+ + [f_{0,i}^-(\mathbf{x}, t) - f_i^-(\mathbf{x}, t)] \cdot \Delta t / \tau^-$$

- Two relaxation time parameters
- $f_i^+ = (f_i + f_{-i})/2, f_i^- = (f_i f_{-i})/2$
 - where f_{-i} means that for the opposite velocity (i.e., $-\mathbf{v}_i$)
- $f_i = f_i^+ + f_i^-, f_{0,i} = f_{0,i}^+ + f_{0,i}^-$
- Dynamic viscosity $\mu = \rho_0 c_s^2 (\tau^+ \Delta t/2)$
 - while τ is a free parameter

References

- E. Weinan,
 Principles of Multiscale Modeling
- N. Bellomo et al., "Lecture Notes on Mathematical Modelling in Applied Sciences"
- Wikipedia
- R. L. Liboff, Kinetic Theory

References

- A. A. Mohamad,
 Lattice Boltzmann Method
- T. Krüger et al.,
 The Lattice Boltzmann Method
- D. C. Sukop & D. T. Thorne Jr., Lattice Boltzmann Modeling
- A. J. Wagner, "A Practical Introduction to the Lattice Boltzmann Method"