Ритейл — Анализ программы лояльности

Задача - проанализировать программу лояльности магазина.

Материалы:

Презентация

Дашборд

Загрузим данные и подготовим их к анализу

```
In [ ]: import pandas as pd
         import numpy as np
         import datetime as dt
         import matplotlib.pyplot as plt
         import seaborn as sns
         import scipy.stats as st
         from scipv.stats import norm
         import plotly.graph objects as go
         import math as mth
         import warnings
        warnings.filterwarnings("ignore")
        from datetime import datetime, timedelta
In [ ]: | try:
            price = pd.read csv('product codes.csv', sep=',')
            retail = pd.read csv('retail dataset.csv', sep=',')
         except:
            price = pd.read csv('/datasets/product codes.csv', sep=',')
            retail = pd.read csv('/datasets/retail dataset.csv', sep=',')
```

Изучим данные и выполним предобработку

04.04.2024, 21:13

```
In [ ]: price.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 9969 entries, 0 to 9968
        Data columns (total 2 columns):
             Column
                           Non-Null Count Dtype
                           _____
             productID
                           9969 non-null
                                           object
         1 price per one 9969 non-null float64
        dtypes: float64(1), object(1)
        memory usage: 155.9+ KB
        2 столбца: продукт и цена за единицу товара
In [ ]: retail.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 105335 entries, 0 to 105334
        Data columns (total 7 columns):
             Column
                             Non-Null Count
                                              Dtype
            purchaseid
                             105335 non-null object
         1 item ID
                             105335 non-null object
         2
             Ouantity
                             105335 non-null int64
            purchasedate
                             105335 non-null object
            CustomerID
                             69125 non-null
                                             float64
             ShopID
                             105335 non-null object
             loyalty program 105335 non-null float64
        dtypes: float64(2), int64(1), object(4)
        memory usage: 5.6+ MB
        6 столбцов: номер чека, продукт, количество, дата покупки, покупатель, магазин, участие в программе лояльности.
```

Необходимо привести столбцы с датой к типу дата, идентификационный номер покупателя к целочисленному типу, предварительно заменив пропуски, если есть. Столбец loyalty_program привести к типу int

Переименуем столбцы

```
In [ ]: retail.columns = map(str.lower, retail.columns) #приведем названия столбцов к нижнему регистру
```

Изменили названия столбцов.

Проверим данные на наличие пропусков

```
price.isna().sum() #проверим пропуски
In [ ]:
        item
Out[ ]:
        price_per_one
                          0
        dtype: int64
        Пропусков нет
         retail.isna().sum() #проверим пропуски
In [ ]:
        purchase
Out[ ]:
        item
                         0
        quantity
         date
        customer
                     36210
        shop
        loyalty
        dtype: int64
        Большое количество пропусков в столбце customer
         retail.head(10) # проверим значения в пропущенных данных
In [ ]:
```

Out[]:		purchase	item	quantity	date	customer	shop	loyalty
	0	538280	21873	11	2016-12-10 12:50:00	18427.0	Shop 0	0.0
	1	538862	22195	0	2016-12-14 14:11:00	22389.0	Shop 0	1.0
	2	538855	21239	7	2016-12-14 13:50:00	22182.0	Shop 0	1.0
	3	543543	22271	0	2017-02-09 15:33:00	23522.0	Shop 0	1.0
	4	543812	79321	0	2017-02-13 14:40:00	23151.0	Shop 0	1.0
	5	538379	22965	0	2016-12-12 11:26:00	22805.0	Shop 0	1.0
	6	540468	22189	0	2017-01-07 13:55:00	NaN	Shop 0	0.0
	7	541424	79321	1	2017-01-17 17:57:00	NaN	Shop 0	0.0
	8	538883	22891	0	2016-12-14 15:56:00	NaN	Shop 0	0.0
	9	539501	22372	0	2016-12-20 11:08:00	22764.0	Shop 0	1.0

Заменим NaN на 0, чтобы было удобнее работать с данными. Но держим в голове, что необходимо делать срезы данных, чтобы избежать искажений в исследовании

В таблице price пропусков нет. В таблице retail заменили пропуски в столбце customer

Приведем данные к нужному типу данных

04.04.2024, 21:13

```
In []: # преобразование данных о времени
retail['date'] = pd.to_datetime(retail['date'], format='%Y-%m-%d %H:%M:%S')
retail['customer'] = retail['customer'].astype(int)
retail['loyalty'] = retail['loyalty'].astype(int)
```

Проверим данные на дубликаты

```
In [ ]: dupl = retail[retail.duplicated()] #проверим дубликаты
dupl
```

Out[]:		purchase	item	quantity	date	customer	shop	loyalty
	5345	537265	21499	24	2016-12-06 11:26:00	21598	Shop 0	0
	5863	540803	21485	0	2017-01-11 12:30:00	20348	Shop 0	0
	6893	540524	21326	11	2017-01-09 12:53:00	22414	Shop 0	1
	7821	537192	22585	0	2016-12-05 13:42:00	22081	Shop 0	1
	10806	537772	22080	4	2016-12-08 12:35:00	23722	Shop 0	1
	•••							
	105164	542224	22178	5	2017-01-26 12:45:00	23567	Shop 0	1
	105173	544153	82552	1	2017-02-16 12:11:00	21035	Shop 0	0
	105178	540839	21123	0	2017-01-11 15:42:00	22470	Shop 0	1
	105229	543277	21533	0	2017-02-06 14:33:00	21487	Shop 0	0
	105233	538313	22725	0	2016-12-10 13:50:00	21193	Shop 0	0

1033 rows × 7 columns

```
In []: filtr = len(dupl) # количесвто дубликатов в таблице row_count = len (retail) # количество строк в таблице print ('Количество дубликатов', filtr) print ('Количество строк в таблице', row_count) print('Процент дубликатов в данных {:,.3%}'.format(filtr/ row_count))
```

04.04.2024, 21:13

```
Количество дубликатов 1033
Количество строк в таблице 105335
Процент дубликатов в данных 0.981%
```

Процент дубликатов около 1%, поэтому можем смело их удалить

```
retail= retail.drop duplicates() #удаляем дубликаты
         retail = retail.reset index(drop=True)
         retail[retail.duplicated()].count()
         purchase
Out[ ]:
         item
         quantity
         date
         customer
         shop
        loyalty
         dtype: int64
        Дубликатов не осталось. Проверим таблицу price на дубликаты
         dupl = price[price.duplicated()] #проверим дубликаты
In [ ]:
         dupl
          item price_per_one
Out[]:
```

Дубликаты удалены

Проверим уникальные значения

```
In []: retail['loyalty'].value_counts() #проверим уникальные значения

Out[]: 0 80890
1 23412
Name: loyalty, dtype: int64
```

80890 строк с покупателями, которые не участвуют в программе лояльности, 23412 строк с покупателями, состоящими в программе лояльности

```
retail['shop'].value counts()
In [ ]:
        Shop 0
                    96370
Out[]:
        Shop 4
                    1739
        Shop 1
                    1540
        Shop 6
                    1030
        Shop 8
                     560
        Shop 3
                     492
        Shop 7
                     312
        Shop 10
                     299
        Shop 12
                     278
        Shop 18
                     255
        Shop 2
                     252
        Shop 5
                     179
        Shop 11
                     169
        Shop 14
                     154
        Shop 19
                      74
        Shop 9
                      61
        Shop 15
                      60
        Shop 16
                      59
        Shop 26
                      56
        Shop 25
                      53
        Shop 27
                      45
        Shop 17
                      40
        Shop 22
                      40
        Shop 13
                      35
        Shop 21
                      32
        Shop 24
                      32
        Shop 28
                      30
        Shop 20
                      30
        Shop 30
                      15
        Shop 29
                       9
        Shop 23
                       2
        Name: shop, dtype: int64
        retail['shop'].nunique()
In [ ]:
Out[]:
```

Из 31 магазина больше всего данных по магазину 0

```
In [ ]: retail['customer'].nunique()
```

```
Out[ ]: 1750
```

1750 уникальных пользователей в данных

```
In [ ]: retail['purchase'].nunique()
Out[ ]: 4894
```

4894 уникальных чеков

```
In [ ]: retail['item'].nunique()
Out[ ]: 3159
```

3159 наименований товаров

Проверим данные на отрицательные значения

```
In []: price.query('price_per_one < 0') #прверяем нет ли в данных отрицательных цен

Out[]: item price_per_one
```

In []: returne = retail.query('quantity < 0') #проверяем наличие в данных отрицательных значений количества товаров returne

04.04.2024, 21:13

Out[]:		purchase	item	quantity	date	customer	shop	loyalty
	64	C539944	22776	-2	2016-12-23 11:38:00	20239	Shop 0	0
	109	C542910	20726	-2	2017-02-01 15:38:00	23190	Shop 0	1
	112	C542426	22418	-25	2017-01-28 09:32:00	19825	Shop 0	0
	253	C539726	22791	-11	2016-12-21 14:24:00	22686	Shop 0	1
	344	C544034	21878	-2	2017-02-15 11:28:00	20380	Shop 0	0
	•••							
	104132	C541650	М	-2	2017-01-20 11:44:00	0	Shop 0	0
	104143	C540246	79320	-2	2017-01-05 15:43:00	18760	Shop 0	0
	104180	C539467	22801	-2	2016-12-19 12:46:00	20723	Shop 0	0
	104217	C540847	22197	-3	2017-01-11 17:35:00	19137	Shop 0	0
	104267	C540164	21144	-13	2017-01-05 12:02:00	20590	Shop 6	0

2076 rows × 7 columns

Строк с отрицательным количеством достаточно много, скорее всего это возвраты товара либо ошибочные продажи. Поэтому пока оставим их.

```
returne['item'].value_counts() # проверим возвращаемые товары
In [ ]:
        22423
                  55
Out[]:
                  28
        22960
                  22
        POST
                  18
        85123A
                  16
                  . .
        20712
                   1
        84849D
                   1
        20934
                   1
        21822
                   1
                   1
        22398
        Name: item, Length: 950, dtype: int64
```

Есть товары, которые возвращают чаще, но анолмалий не наблюдаем

```
In [ ]: active_returne = returne.groupby('customer').agg({'purchase':'count'}).sort_values(by='purchase', ascending=False)
active_returne
```

Out[]: purchase

customer	
0	288
19477	44
20590	43
23190	37
18150	36
•••	
20528	1
18668	1
18659	1
22232	1
23956	1

523 rows × 1 columns

Есть особо активные покупатели, совершающие возварты часто, но тоже ничего критичного.

```
In [ ]: q = retail.query('quantity == 0')
q
```

Out[]:		purchase	item	quantity	date	customer	shop	loyalty
	1	538862	22195	0	2016-12-14 14:11:00	22389	Shop 0	1
	3	543543	22271	0	2017-02-09 15:33:00	23522	Shop 0	1
	4	543812	79321	0	2017-02-13 14:40:00	23151	Shop 0	1
	5	538379	22965	0	2016-12-12 11:26:00	22805	Shop 0	1
	6	540468	22189	0	2017-01-07 13:55:00	0	Shop 0	0
	•••							
	104281	538073	22439	0	2016-12-09 14:10:00	23495	Shop 0	1
	104282	543306	22898	0	2017-02-07 11:56:00	22365	Shop 0	1
	104283	543013	22266	0	2017-02-02 13:35:00	0	Shop 0	0
	104294	538349	22625	0	2016-12-10 14:59:00	0	Shop 0	0
	104298	540247	21742	0	2017-01-05 15:56:00	21143	Shop 0	0

 $32362 \text{ rows} \times 7 \text{ columns}$

```
In []: filtr = len(q) # количесвто дубликатов в таблице row_count = len (retail) # количество строк в таблице print ('Количество строк без товаров ', filtr) print ('Количество строк в таблице ', row_count) print('Процент строк без товаров в данных {:,.3%}'.format(filtr/ row_count))
```

Количество строк без товаров 32362 Количество строк в таблице 104302 Процент строк без товаров в данных 31.027%

Процент строк без товаров слишком высок. Удалять их нельзя. Рассмотрим эти данные глубже при исследовании.

Изучим данные в таблице price

```
In [ ]: price.groupby('item').agg({'price_per_one':'count'}).sort_values(by='price_per_one', ascending=False) #εργηπαργέμ πο ποβαργ
```

Out[]: price_per_one

item	
DOT	174
M	59
S	29
POST	15
D	13
•••	
85018C	1
85018D	1
85019B	1
47420	1
m	1

3159 rows × 1 columns

Видим, что на один и тот же товар может быть несколько цен. Непонятно с чем это связано. Возможно это акционные или сезонные цены. Возьмем медианную цену для таких товаров

```
In []: new_price = price.pivot_table(index = 'item', values = 'price_per_one', aggfunc = 'median') # вставим медианные значения цены retail = retail.merge(new_price, how='left', left_on='item', right_on= 'item') #объединим с основной таблицей retail.head()
```

Out[]

:		purchase	item	quantity	date	customer	shop	loyalty	price_per_one
	0	538280	21873	11	2016-12-10 12:50:00	18427	Shop 0	0	1.63
	1	538862	22195	0	2016-12-14 14:11:00	22389	Shop 0	1	3.29
	2	538855	21239	7	2016-12-14 13:50:00	22182	Shop 0	1	1.63
	3	543543	22271	0	2017-02-09 15:33:00	23522	Shop 0	1	4.37
	4	543812	79321	0	2017-02-13 14:40:00	23151	Shop 0	1	5.75

К товарам, меющим несколько цен применили медианное значение цены

Проведем исследовательский анализ данных

подсчитать ритейл-метрики: средний чек, количество чеков, среднее количество покупок на пользователя, количество покупателей, совершивших повторные покупки Сравнить данные по категориям (соотношение). Сравнить общие данные по месяцам. Оценить влияние декабрьских скидок Использовать методы визуализации. Сделать промежуточные выводы

Определим количество покупателей

```
In []: retail['customer'].nunique() #количество уникальных покупателй

Out[]: 1750

In []: loyalty_yes = retail.query('loyalty == 1') # срез с покупателями - участниками программы лояльности loyalty_no = retail.query('loyalty == 0') # срез с покупателями - не участвующими в программе лояльности loyalty_yes['customer'].nunique() #количество уникальных покупателей в программе

Out[]: 10yalty_no['customer'].nunique() #количество уникальных покупателей не в программе

Out[]: 1163
```

Количество уникальных покупателей 1750. Из них 587 участвуют в программе лояльности

04.04.2024, 21:13

```
In []: x= [loyalty_no['customer'].nunique(), loyalty_yes['customer'].nunique()]
labels = ['He yчаствуют', 'Участники программы']
colors = ['tab:blue', 'tab:cyan']
fig, ax = plt.subplots()
ax.pie(x, labels = labels, colors = colors, autopct='%1.1f%%')
ax.set_title('Доля покупателей, участвующих в программе')
plt.show()
```

Доля покупателей, участвующих в программе

Доля покупателей, участвующий в пргорамме лояльности 33,5%

Определим даты исследования

```
In []: # определим границы дат покупок в исследуемых данных min_date = retail['date'].min() max_date = retail['date'].max() days = (max_date - min_date).days +1 #посчитаем количество дней print('Представлены данные с ', min_date, ' по ', max_date) print('Представлены данные за ', days, 'дней.')

Представлены данные с 2016-12-01 08:26:00 по 2017-02-28 17:04:00
```

Представлены данные за 90 дней.

Построим гисторгамму по дате и времени за 90 дней

14/51

```
In []: plt.figure(figsize=(15, 6))
    plt.hist(x = retail['date'], bins= days*24, color = 'blue')
    plt.grid()
    plt.xlabel('Дата')
    plt.xticks(rotation=90)
    plt.ylabel('Количество событий')
    plt.title('Гистограмма по дате и времени', fontsize=14);
```


Видим пропуски данных в конце декабря. Также, очевидно есть выходные дни, в которые нет продаж.

Сумма позиции в чеке

```
In [ ]: #посчитаем сумму по позиции в чеке, добавим в новый столбец
retail['item_sum'] = retail['quantity'] * retail['price_per_one']
```

```
retail.head()
data=retail
```

Нулевое количество

Мы занаем, что в данных очень много позиций с нулевым количеством. Это может повлиять на средний чек т.к увеличивает количество позиций в чеке, поэтому исследуем эти данные, чтобы решить, что делать с ними дальше

```
In [ ]: q = retail.query('quantity == 0')
q['purchase_date'] = q['date'].dt.date
q
```

Out[]:		purchase	item	quantity	date	customer	shop	loyalty	price_per_one	item_sum	purchase_date
	1	538862	22195	0	2016-12-14 14:11:00	22389	Shop 0	1	3.290	0.0	2016-12-14
	3	543543	22271	0	2017-02-09 15:33:00	23522	Shop 0	1	4.370	0.0	2017-02-09
	4	543812	79321	0	2017-02-13 14:40:00	23151	Shop 0	1	5.750	0.0	2017-02-13
	5	538379	22965	0	2016-12-12 11:26:00	22805	Shop 0	1	3.115	0.0	2016-12-12
	6	540468	22189	0	2017-01-07 13:55:00	0	Shop 0	0	3.950	0.0	2017-01-07
	•••										
	104281	538073	22439	0	2016-12-09 14:10:00	23495	Shop 0	1	1.250	0.0	2016-12-09
	104282	543306	22898	0	2017-02-07 11:56:00	22365	Shop 0	1	4.130	0.0	2017-02-07
	104283	543013	22266	0	2017-02-02 13:35:00	0	Shop 0	0	0.950	0.0	2017-02-02
	104294	538349	22625	0	2016-12-10 14:59:00	0	Shop 0	0	8.500	0.0	2016-12-10
	104298	540247	21742	0	2017-01-05 15:56:00	21143	Shop 0	0	9.335	0.0	2017-01-05

32362 rows × 10 columns

Товары с нулевым количеством могут быть как бесплатными, так и иметь цену. Скорее всего это какие-то услуги, поскольку для товара была бы нулевая цена, а не количество.

```
In []: plt.subplots(figsize=(15, 6))
    f = sns.countplot(q['purchase_date'].sort_values())
    plt.xticks(rotation=90)
    plt.xlabel('Дата')
    plt.ylabel('Количество ')
    plt.title('Количество строк с нулевым значением quantity по дате', size= 14)
    plt.show()
```


Большее колиечство данных с нулевым значением появлялось 6 и 17 декабря. Данные с нулевым количеством товара появлялись на протяжении всего периода. Нет никаких оснований полагать, что это технические ошибки или сбои систем.

Попробуем сгруппировать данные по товару

```
In [ ]: q.groupby('item')['item'].count()
```

```
item
Out[ ]:
        10002
                        18
        10120
                         2
        10123C
                         1
        10125
                        13
        10133
                         6
        gift 0001 20
        gift 0001 30
        gift 0001 40
                         1
        gift_0001_50
                         1
                         1
        Name: item, Length: 2801, dtype: int64
```

2801 уникальный артикул имеет в данных значение количества 0 хотя бы 1 раз. Значит это не какие-то определенные ошибочные артикулы или не какие-либо конкретные услуги. Как минимум, видим, что это могут быть подарки (gift). Но возникает вопрос, почему подарки не просчитываются в системе по количеству.

Посмотрим поближе данные по самому популярному товару с нулевым количеством

```
In [ ]: q.query('item == "10002"')
```

_			-	-
\cap	1.1	+		
\cup	и	L		

	purchase	item	quantity	date	customer	shop	loyalty	price_per_one	item_sum	purchase_date
11006	537823	10002	0	2016-12-08 14:25:00	0	Shop 0	0	1.63	0.0	2016-12-08
11837	540418	10002	0	2017-01-07 11:04:00	0	Shop 0	0	1.63	0.0	2017-01-07
12326	544205	10002	0	2017-02-17 10:31:00	0	Shop 0	0	1.63	0.0	2017-02-17
20302	539451	10002	0	2016-12-17 16:59:00	0	Shop 0	0	1.63	0.0	2016-12-17
26499	543806	10002	0	2017-02-13 12:48:00	22764	Shop 0	1	1.63	0.0	2017-02-13
27698	537642	10002	0	2016-12-07 15:33:00	0	Shop 0	0	1.63	0.0	2016-12-07
33692	536863	10002	0	2016-12-03 11:19:00	23646	Shop 0	1	1.63	0.0	2016-12-03
39959	541878	10002	0	2017-01-24 10:28:00	0	Shop 0	0	1.63	0.0	2017-01-24
44531	543179	10002	0	2017-02-04 10:31:00	18433	Shop 14	0	1.63	0.0	2017-02-04
49285	538566	10002	0	2016-12-13 11:21:00	0	Shop 0	0	1.63	0.0	2016-12-13
56469	541277	10002	0	2017-01-17 11:46:00	18352	Shop 4	0	1.63	0.0	2017-01-17
57111	541248	10002	0	2017-01-16 13:04:00	18427	Shop 0	0	1.63	0.0	2017-01-16
63608	541592	10002	0	2017-01-19 15:08:00	0	Shop 0	0	1.63	0.0	2017-01-19
65203	539434	10002	0	2016-12-17 14:41:00	0	Shop 0	0	1.63	0.0	2016-12-17
66793	537240	10002	0	2016-12-06 10:08:00	0	Shop 0	0	1.63	0.0	2016-12-06
70783	544201	10002	0	2017-02-17 10:11:00	0	Shop 0	0	1.63	0.0	2017-02-17
97794	536756	10002	0	2016-12-02 14:23:00	0	Shop 0	0	1.63	0.0	2016-12-02
99901	537047	10002	0	2016-12-05 11:02:00	18748	Shop 0	0	1.63	0.0	2016-12-05

Нет никакой связи между покупателем, количеством или участием в программе лояльности. Этот артикул есть как в чеках у известных покупателей, так и у покупателей без идентификатора, как у участников программы лояльности, так и у тех, кто в ней не состоит. Также покупка проходит в разных магазинах.

Проверим этот же артикул в общих данных

```
In [ ]: retail.query('item == "10002"').head(20)
```

_		1	г	7
()	IJ.	Т		- 1

	purchase	item	quantity	date	customer	shop	loyalty	price_per_one	item_sum
2181	537666	10002	1	2016-12-07 18:36:00	0	Shop 0	0	1.63	1.63
2798	538167	10002	11	2016-12-09 18:58:00	20392	Shop 0	0	1.63	17.93
6421	541094	10002	10	2017-01-13 13:36:00	18925	Shop 0	0	1.63	16.30
6922	540277	10002	59	2017-01-06 12:18:00	19937	Shop 0	0	1.63	96.17
9941	538071	10002	1	2016-12-09 14:09:00	0	Shop 0	0	1.63	1.63
11006	537823	10002	0	2016-12-08 14:25:00	0	Shop 0	0	1.63	0.00
11837	540418	10002	0	2017-01-07 11:04:00	0	Shop 0	0	1.63	0.00
12326	544205	10002	0	2017-02-17 10:31:00	0	Shop 0	0	1.63	0.00
12952	542610	10002	13	2017-01-30 14:05:00	18827	Shop 0	0	1.63	21.19
15877	541518	10002	11	2017-01-19 09:05:00	18130	Shop 7	0	1.63	17.93
16041	538255	10002	11	2016-12-10 12:33:00	20590	Shop 6	0	1.63	17.93
16208	538890	10002	2	2016-12-14 16:39:00	18546	Shop 0	0	1.63	3.26
20302	539451	10002	0	2016-12-17 16:59:00	0	Shop 0	0	1.63	0.00
24414	541631	10002	11	2017-01-20 10:48:00	18316	Shop 1	0	1.63	17.93
25563	540798	10002	11	2017-01-11 12:11:00	23044	Shop 0	1	1.63	17.93
26473	538853	10002	3	2016-12-14 13:35:00	22484	Shop 0	1	1.63	4.89
26499	543806	10002	0	2017-02-13 12:48:00	22764	Shop 0	1	1.63	0.00
27698	537642	10002	0	2016-12-07 15:33:00	0	Shop 0	0	1.63	0.00
30425	538524	10002	1	2016-12-13 09:35:00	0	Shop 0	0	1.63	1.63
31235	536370	10002	47	2016-12-01 08:45:00	18262	Shop 1	0	1.63	76.61

Также не обнаружено никакой связи между количеством товара.

Попробуем сгруппировать по цене

```
In [ ]: q.groupby('price_per_one')['item'].count().sort_values()
```

```
price per one
Out[ ]:
         6706.710
                        1
         5.950
                        1
         20.790
                        1
         0.825
                        1
         6.110
                        1
         4.370
                      822
         3,290
                      927
        1.855
                      974
        1.630
                     1037
         2,460
                     1204
        Name: item, Length: 484, dtype: int64
```

484 уникальных цены артикулов. То есть мы не можем четко сказать, что это какая-то конкретная скидка.

По каждой позиции в чеке должно отражаться движение стока. Если товар был продан даже за нулевую цену, то это должно отражаться в системе как 1. Если был возврат, то -1. Никаких точных данных у нас нет. Каких-либо связей нулевого количества с другими значениями не обнаружено. Поэтому мы вынуждены удалить эти данные, как пустые и не учитывать их при расчете среднего чека.

В реальной жизни необходимо уточнить у заказчика каким образом отражается в системе движение товара. В рамках проекта не удалось определить что это за данные, это может привести к искажению исследования, поскольку их очень большое количество.

```
retail.query('quantity == 0').count()
In [ ]:
         purchase
                          32362
Out[ ]:
         item
                          32362
                          32362
        quantity
         date
                          32362
                          32362
         customer
                          32362
         shop
                          32362
        lovaltv
        price per one
                          32362
        item sum
                          32362
        dtype: int64
In [ ]: retail = retail.query('quantity != 0') #удаляем
         retail.query('quantity == 0').count() #проверяем
```

```
Out[]: purchase 0 item 0 quantity 0 date 0 customer shop 0 loyalty price_per_one item_sum 0 dtype: int64
```

Посмотрим на графике распределение по количеству товаров

```
In []: plt.figure(figsize=(12, 6))
    sns.boxplot(data = retail, x='quantity')
    plt.title('Распределение количества товаров', size= 14)
    plt.xlabel('Количество товаров')
    plt.show()
```

Распределение количества товаров


```
retail['quantity'].describe()
In [ ]:
                  71940.000000
Out[]:
                     11.429149
         mean
                    396,778322
        std
        min
                 -74216.000000
         25%
                      1.000000
         50%
                      5.000000
        75%
                     11,000000
                  74214.000000
        max
        Name: quantity, dtype: float64
        Пропасть значений между максимумом и 3 квартилем, что видим также по графику. Удалим явные выбросы, опираясь на график
        x = retail.query('quantity < -5000 | quantity > 20000')
        len(retail)
In [ ]:
        71940
Out[]:
        retail = retail[retail.purchase.isin(x['purchase']) == False]
        len(retail)
         71937
Out[ ]:
        retail['quantity'].describe()
                  71937.000000
         count
Out[ ]:
        mean
                     11.559781
         std
                     55.552321
        min
                  -2601.000000
        25%
                      1.000000
         50%
                      5.000000
        75%
                     11.000000
                   5567.000000
        max
        Name: quantity, dtype: float64
        Удалили выбросы по количеству товаров.
         retail.head()
In [ ]:
```

]:		purchase	item	quantity	date	customer	shop	loyalty	price_per_one	item_sum
	0	538280	21873	11	2016-12-10 12:50:00	18427	Shop 0	0	1.630	17.930
	2	538855	21239	7	2016-12-14 13:50:00	22182	Shop 0	1	1.630	11.410
	7	541424	79321	1	2017-01-17 17:57:00	0	Shop 0	0	5.750	5.750
	10	537795	82494L	5	2016-12-08 13:03:00	22892	Shop 0	1	5.205	26.025
	11	541696	22197	4	2017-01-20 18:08:00	0	Shop 0	0	1.240	4.960

Отрицательное количество

Out[]

Отрицательное количество в данных чеков, скорее всего, говорит о возврате товаров. Раз количество отрицательное, то это и сумма по позиции отрицательная. Но она может быть скомпенсирована другими позициями в чеке. Посчитаем сумму чеков и проверим много ли в данных отрицательных сумм чеков.

```
In []: minus = retail.query('quantity < 0')
    minus['item'].nunique()
    print('Количество строк в данных с отрицательным колиечеством товара', len(minus))
    print('Количество уникальных товаров с отрицательным колиечеством', minus['item'].nunique())

Количество строк в данных с отрицательным колиечеством товара 2074
    Kоличество уникальных товаров с отрицательным колиечеством 949

In []: #cmpowm ma6лицу с группировкой по чеку
    purchase = retail.groupby(['purchase', 'customer', 'loyalty', 'date']).agg({'item_sum': 'sum', 'item': 'count'}).reset_index()
    purchase['date'] = pd.to_datetime(purchase['date'], format='%Y-%m-%d %H:%M:%S')
    purchase['date'] = purchase['date'].dt.date
    days_sum = purchase.groupby('date').agg({'item_sum': 'sum'}).reset_index()

Проверим есть ли отрицательные значения сумм чеков в разрезе дней, т.е. есть ли дни, когда магазин уходит в минус.</pre>
```

date item_sum

Out[]:

days_sum.query('item_sum < 0')</pre>

Таких значений не обнаружено.

Используя таблицу посмотрим, какие дни были самыми прибыльными для магазина

```
In []: # используем стиль dark из библиотеки seaborn
        sns.set style('dark')
        # назначаем размер графика
        plt.figure(figsize=(24, 10))
        # строим столбчатый график средствами seaborn
        sns.barplot(x='date', y='item sum', data=days sum)
        # формируем заголовок графика и подписи осей средствами matplotlib
        plt.title('Суммы чеков по дням', size = 16)
        plt.xlabel('Дата', size = 14)
        plt.ylabel('Сумма чека', size = 14)
        # поворачиваем подписи значений по оси X на 45 градусов
        plt.xticks(rotation=90)
        # добавляем сетку
        plt.grid()
        # отображаем график на экране
        plt.show()
```


Самый прибыльный день 11 января, меньше всего магазин получил 6 февраля.

Оставим данные с отрицательным колитчеством. Суммы таких позиций повлияют на средний чек.

Сумма чеков

```
In [ ]: retail = retail.query('customer > 0')
```

На этом этапе нам необходимо избавится от неидентифицированнных покупателей, поскольку при формировании таблицы для расчета LTV , такие даныые исказят исследование.

Сформируем таблицу с группировкой по чеку, посчитаем сумму чека

```
In [ ]: purchase.describe()
```

Out[]:		customer	loyalty	item_sum	item
	count	4738.000000	4738.000000	4738.000000	4738.000000
	mean	18107.962431	0.281553	435.414574	15.182989
	std	7352.582892	0.449804	1436.870457	25.947042
	min	0.000000	0.000000	-13413.420000	1.000000
	25%	18732.500000	0.000000	15.740000	2.000000
	50%	20412.000000	0.000000	215.635000	8.000000
	75%	22251.250000	1.000000	506.648750	18.000000
	max	23962.000000	1.000000	26374.580000	331.000000

```
In []: ax = plt.figure(figsize=(14, 6))
    ax = sns.boxplot(x='item_sum', data=purchase)
    #ax.set_ylim([-10, 5000])
    plt.title('Значение суммы чека ', size = 14)
    plt.xlabel('Сумма чека')
    plt.show()
```

Значение суммы чека

Видим большой разброс значений. Если удалять выбросы по третьему квартилю, то придется избавится от половины чеков. Это делать не будем. Удалим аномальные значения, ориентируясь на график

```
In [ ]: len(purchase)
Out[ ]: 4738

In [ ]: purchase = purchase.query('item_sum > -5000 & item_sum < 10000')
    len(purchase)
Out[ ]: 4710

In [ ]: ax = plt.figure(figsize=(14, 6))
    ax = sns.boxplot(x='item_sum', data=purchase)
    ax.set_xlim([-1000, 2000])
    plt.title('Значение суммы чека ', size = 14)</pre>
```

```
plt.xlabel('Сумма чека')
plt.show()
```


In []: purchase.describe()

	customer	loyalty	item_sum	item
count	4710.000000	4710.000000	4710.000000	4710.000000
mean	18149.321444	0.282378	410.337244	15.092569
std	7310.424254	0.450204	804.806977	25.821198
min	0.000000	0.000000	-4497.495000	1.000000
25%	18750.000000	0.000000	15.900000	2.000000
50%	20414.000000	0.000000	214.635000	8.000000
75%	22268.750000	1.000000	503.968750	18.000000
max	23962.000000	1.000000	9969.210000	331.000000

Медианное занчение суммы чека 214.6 рубля. Максимальное значение 9969.2 руб., минимальное -4497,5 руб. Среднее значение суммы чека 410 руб

Медианное количество артикулов в чеке 8 шт., максимальное 331 шт., минимальное 1 шт. Среднее количество артикулов в чеке 15

Найдем значение среднего чека

```
In []: print('Средний чек по всем данным', round((purchase['item_sum'].sum())/ purchase['purchase'].count(),2))
```

Средний чек по всем данным 410.34

Вывод:

Out[]:

Представлены данные за 90 дней с 2016-12-01 по 2017-02-28

- Всего в данных 1750 уникальных покупателя. Из них 33,5% имеют карту лояльности.
- Средний чек по всем данным 410.34
- Всего 4095 уникальных чека
- Максимальное значение суммы чека 9969.2 руб., минимальное -4497,5 руб.
- Медианное количество артикулов в чеке 8 шт., максимальное 331 шт., минимальное 1 шт.
- Удалили выбросы по количеству товаров и покупатели без идентификаторов

Анализ программы лояльности

Расчет пожизненной ценности покупателя LTV

Сформируем таблицу для профилей покупателей, добавим столбец с первой датой покупки

```
In [ ]: profiles = retail.groupby('customer').agg({'date' : np.min}).reset_index()
    profiles = profiles.rename(columns={'date':'first_ts'})
    profiles['first_ts']= pd.to_datetime(profiles['first_ts'], format='%Y-%m-%d %H:%M:%S')
    profiles['dt']= profiles['first_ts'].dt.date
    profiles.head()
```

Out[]:		customer	first_ts	dt
	0	18026	2016-12-07 14:57:00	2016-12-07
	1	18027	2016-12-16 19:09:00	2016-12-16
	2	18029	2017-02-02 16:01:00	2017-02-02
	3	18031	2017-02-16 12:33:00	2017-02-16
	4	18035	2017-01-18 09:50:00	2017-01-18

В таблице с чеками изменим формат даты

```
In [ ]: # purchase['date']= pd.to_datetime(purchase['date'], format='%Y-%m-%d %H:%M:%S')
# purchase['date']= purchase['date'].dt.date
In [ ]: purchase.head(1)
```

```
        Out[]:
        purchase
        customer
        loyalty
        date
        item_sum
        item

        0
        536365
        23529
        1
        2016-12-01
        186.515
        7
```

Для того, чтобы добавить 200 руб. к чеку лояльных покупателей за первую покупку в месяце, сначала найдем все необходимые значения чеков, к которым будем их добавлять. Для этого построим табличку а

```
In [ ]: purchase['month'] = purchase['date'].astype('datetime64[M]')
         a = purchase .groupby([ 'month', 'purchase', 'customer', 'loyalty']).agg({'item': 'count', 'date': np.min}).reset index()
         a = a.query('loyalty == 1') #нам нужны только лояльные
         a = a.drop duplicates(['customer', 'date']) # удалим дубликаты тех, кто в первый день сделал покупку больше 1 раза
         \#a = a['purchase']. tolist()
         a['card'] = 200 #добавим столбец с 200 руб
         a.head(1)
Out[ ]:
               month purchase customer loyalty item
                                                         date card
        0 2016-12-01
                       536365
                                 23529
                                                 1 2016-12-01 200
In [ ]: #соединим с таблицей с чеками
         purchase = pd.merge(purchase, a, on = 'purchase', how='left')
         purchase.rename(columns={'customer x': 'customer', 'loyalty x': 'loyalty', 'item x': 'item', 'date x': 'date', 'month x':'month',
                                  'customer y': 'customer a', 'loyalty y': 'loyalty a', 'item y': 'item a',\
                                  'date y': 'date a', 'card x': 'card'}, inplace=True)
         #purchase = purchase.drop(columns='month v', 'customer a', 'loyalty a', 'item a', 'date a')
         purchase['card'] = purchase['card'].fillna(0) # все значения NaN заменим на 0
         purchase['total'] = purchase['item sum'] + purchase['card']# добавим новый столбец в котором посчитаем общ сумму
         purchase.head(1)
Out[ ]:
           purchase customer loyalty
                                          date item sum item
                                                                 month
                                                                          month y customer a loyalty a item a
                                                                                                                date a card
                                                                                                                               total
```

```
1 2016-12-01
                                                        7 2016-12-01 2016-12-01
                                                                                                           1.0 2016-12-01 200.0 386.515
0
    536365
                23529
                                             186.515
                                                                                      23529.0
                                                                                                    1.0
```

Расчитаем LTV с помощью функции. Возьмем горизонт событий равный 60 дней, т.е рассмотрим покупателей, которые "прожили" это время. Рассмотрим LTV в разрезе программы лояльности.

```
In [ ]: #функция сглаживания
         def filter data(df, window):
             for column in df.columns.values:
                 df[column] = df[column].rolling(window).mean()
             return df
         #функция для расчета LTV
         def get ltv(
             profiles, # Шаг 1. Получить профили и данные о покупках
             purchase,
            observation date,
             horizon days,
```

32/51

```
dimensions=[],
ignore horizon=False,
dimensions = ['loyalty'] + dimensions
# исключаем пользователей, не «доживших» до горизонта анализа
last suitable acquisition date = observation date
if not ignore horizon:
    last suitable acquisition date = observation date - timedelta(
        days=horizon days - 1
result raw = profiles.query('dt <= @last suitable acquisition date')
# Шаг 2. Добавить данные о покупках в профили
result raw = result raw.merge(
    # добавляем в профили время совершения покупок и выручку
    purchase[['customer', 'date', 'total', 'lovalty']],
    on='customer',
    how='left',
# Шаг 3. Рассчитать лайфтайм пользователя для каждой покупки
result raw['lifetime'] = (
    result raw['date'] - result raw['first ts']
).dt.days
# группируем по cohort, если в dimensions ничего нет
if len(dimensions) == 0:
    result raw['cohort'] = 'All users'
    dimensions = dimensions + ['cohort']
# функция для группировки таблицы по желаемым признакам
def group by dimensions(df, dims, horizon days):
    # Шаг 4. Построить таблицу выручки
    # строим «треугольную» таблицу
    result = df.pivot table(
        index=dims,
        columns='lifetime',
        values='total', # в ячейках — выручка за каждый лайфтайм
        aggfunc='sum',
    # Шаг 5. Посчитать сумму выручки с накоплением
```

```
result = result.fillna(0).cumsum(axis=1)
    # Шаг 6. Вычислить размеры когорт
    cohort sizes = (
        df.groupby(dims)
        .agg({'customer': 'nunique'})
        .rename(columns={'customer': 'cohort size'})
    # Шаг 7. Объединить размеры когорт и таблицу выручки
    result = cohort sizes.merge(result, on=dims, how='left').fillna(0)
    # Шаг 8. Посчитать LTV
    # делим каждую «ячейку» в строке на размер когорты
    result = result.div(result['cohort size'], axis=0)
    # исключаем все лайфтаймы, превышающие горизонт анализа
    result = result[['cohort size'] + list(range(horizon days))]
    # восстанавливаем размеры когорт
    result['cohort size'] = cohort sizes
    return result
# получаем таблицу LTV
result grouped = group by dimensions(result raw, dimensions, horizon days)
 # получаем таблицу динамики LTV
result in time = group by dimensions(
    result raw, dimensions + ['dt'], horizon days
# возвращаем обе таблицы LTV и сырые данные
return result raw, result grouped, result in time
```

```
In []: #φγκκιμα ποςπροθιμα εραφικα
def plot_ltv(ltv, ltv_history, horizon, window=7):

    plt.figure(figsize=(24, 10))

    ltv = ltv.drop(columns=['cohort_size'])
    ltv_history = ltv_history.drop(columns=['cohort_size'])[[horizon - 1]]

    ax1 = plt.subplot(1, 2, 1)
    ltv.T.plot(grid=True, ax=ax1)
    plt.legend()
```

```
plt.xlabel('Лайфтайм', size=16)
            plt.title('LTV', size=16)
            ax2 = plt.subplot(1, 2, 2, sharey=ax1)
            columns = [name for name in ltv history.index.names if name not in ['dt']]
            filtered data = ltv history.pivot table(
                index='dt', columns=columns, values=horizon - 1, aggfunc='mean'
            filter data(filtered data, window).plot(grid=True, ax=ax2)
            plt.legend()
            plt.xlabel('Дата привлечения', size=16)
            plt.title('Динамика LTV пользователей на {}-й день'.format(horizon), size=16)
            plt.tight layout()
            plt.show()
In []: # преобразуем данные о времени
        profiles['dt'] = pd.to datetime(profiles['dt'])
        profiles['first ts'] = pd.to datetime(profiles['first ts'])
        purchase['date'] = pd.to datetime(purchase['date'])
In [ ]: observation date= datetime(2017, 2, 28).date()
        horizon days =60
        profiles= profiles
        purchese= purchase
        ltv raw, ltv grouped, ltv history= get ltv(
            profiles, purchase, observation date, horizon days
        plot ltv(ltv grouped, ltv history, horizon days)
```


Судя по графику, LTV — у пользователей без карт выше, чем у участников программы лояльности. LTV достаточно стабилен.

Динамика LTV к 60 дню снижается в обеих группах. Однако у покупателей с картами они более равномерная.

Суммы чеков по группам лояльности

Построим график распределения сумм чеков по месяцам и группам лояльности

```
In [ ]: purchase['month'] = purchase['date'].astype('datetime64[M]')

In [ ]: purchase['month1'] = purchase['month'].dt.strftime('%b %Y')
    purchase['day'] = purchase['date'].dt.date
    l0 = purchase.query('loyalty == 0').groupby('month1').agg({'total': 'sum'})
    l1 = purchase.query('loyalty == 1').groupby('month1').agg({'total': 'sum'})
    l = pd.merge(l0, l1, on = 'month1', how='left').reset_index()
```

```
l.rename(columns={'total x': '0', 'total y': '1'}, inplace=True)
        1
Out[]:
            month1
                           0
                                      1
        0 Dec 2016 596321.755 302292.920
        1 Feb 2017 366311.455 245912.660
        2 Jan 2017 460058.015 195991.615
In [ ]: plt.figure()
        x = 1['month1']
        y1 = 1['0']
        y2 = 1['1']
        plt.figure(figsize=(12, 6))
         plt.grid()
         plt.title('График соотношения сумм чеков по группам лояльности')
         plt.xlabel('Месяц')
         plt.ylabel('Чек')
         plt.plot(x,y1)
         plt.plot(x,y2)
         plt.show()
        <Figure size 432x288 with 0 Axes>
```


Все три месяца покупатели без карт приносили магазину в общем большую выгоду, чем с картами.Каждый месяц прибыль от лояльных покупателей уменьшается. При этом сумма чеков покупателей без карт растет в феврале после просадки в январе.

Средний чек

Сформируем общую таблицу для удобства расчетов.

```
In []: #посчитаем средний чек и добавим его к основному датасету
retail = pd.merge(retail, purchase, on = 'purchase', how='left')
retail.rename(columns={'item_sum_x': 'item_sum', 'item_sum_y': 'total_sum'}, inplace=True)
retail.head()
```

Out[]:	ı	purchase	item_x	quantity	date_x	customer_x	shop	loyalty_x	price_per_one	item_sum	customer_y	•••	month	month_y	customer_a	loyalty_a
	0	538280	21873	11	2016- 12-10 12:50:00	18427	Shop 0	0	1.630	17.930	18427.0		2016- 12-01	NaT	NaN	NaN
	1	538855	21239	7	2016- 12-14 13:50:00	22182	Shop 0	1	1.630	11.410	22182.0		2016- 12-01	2016-12- 01	22182.0	1.0
	2	537795	82494L	5	2016- 12-08 13:03:00	22892	Shop 0	1	5.205	26.025	22892.0		2016- 12-01	2016-12- 01	22892.0	1.0
	3	543647	21987	3	2017- 02-10 19:49:00	18520	Shop 0	0	0.650	1.950	18520.0		2017- 02-01	NaT	NaN	NaN
	4	538533	22294	9	2016- 12-13 10:31:00	20475	Shop 0	0	1.855	16.695	20475.0		2016- 12-01	NaT	NaN	NaN

5 rows × 24 columns

```
In [ ]: # Создадим здесь датасет без возвратов, он пригодится нам позже для расчета чистого среднего чека.
plus = retail.query('quantity > 0')
```

Построим график среднего чека по дням в разрезе групп лояльности

```
<class 'pandas.core.frame.DataFrame'>
        RangeIndex: 90 entries, 0 to 89
        Data columns (total 1 columns):
         # Column Non-Null Count Dtype
         0 date v 90 non-null datetime64[ns]
        dtypes: datetime64[ns](1)
        memory usage: 848.0 bytes
In [ ]: #соединяем две таблицы, чтобы получить одну, включающую в себя дни без продаж
        average day = pd.merge(average day, df, on = 'date y', how='right')
        average day['loyalty y'] = average day['loyalty y'].fillna(0) # заменяем NaN на 0
         average day['total sum'] = average day['total sum'].fillna(0)
        average day['date y']= average day['date y'].dt.date
         average day.head(1)
Out[ ]:
              date_y loyalty_y total_sum
        0 2016-12-01
                          0.0
                                 398.54
In []: # используем стиль dark из библиотеки seaborn
        sns.set style('dark')
        # назначаем размер графика
         plt.figure(figsize=(24, 10))
        # строим столбчатый график средствами seaborn
        sns.barplot(x='date y', y='total sum', data=average day, hue='loyalty y')
         # формируем заголовок графика и подписи осей средствами matplotlib
         plt.title('Соотношение средних чеков в день участников / не участников программы лояльности', size = 16)
        plt.xlabel('Дата', size = 14)
         plt.ylabel('Средний чек', size = 14)
         # поворачиваем подписи значений по оси Х на 45 градусов
         plt.xticks(rotation=90)
         # выбираем положение легенды и указываем размер шрифта
        plt.legend(loc='lower right', fontsize=10, title='He участник/Участник')
        # добавляем сетку
         plt.grid()
        # отображаем график на экране
         plt.show()
```


До середины декабря преобладают более высокие показатели группы без карт.

Соотношение средних чеков по дням переменчиво. Нет четкой картины, что с картой лояльности всегда покупают больше или меньше. Есть дни, когда это так, есть дня, где наоборот.

23 декабря средний чек покупателей с картами падает ниже нуля после сильного роста 22 декабря. Это может говорить о том, что покупатели сделали большое количество возвратов товаров, которые были приобритены ранее. Можно предположить, что прошла какая-то акция на товар, а возврат связан с качеством самого товара (как пример).

Построим график среднего чека по месяцам в разрезе групп лояльности

04.04.2024, 21:13

average_month

```
Out[ ]:
                month loyalty_y total_sum
         0 2016-12-01
                            0.0
                                   244.755
         1 2016-12-01
                            1.0
                                   194.785
         2 2017-01-01
                            0.0
                                   267.305
         3 2017-01-01
                            1.0
                                   254.290
         4 2017-02-01
                            0.0
                                   284.175
         5 2017-02-01
                            1.0
                                   270.625
```

```
In []: plt.subplots(figsize = (20, 8))
    sns.lineplot(x='month', y='total_sum', hue = 'loyalty_y', data = average_month)
    plt.legend(title='Программа лояльности', labels=['He участник', ' Участник'])
    plt.grid()
    plt.title('Соотношение средних чеков в день участников / не участников программы лояльности', size = 16)
    plt.ylabel('Средний чек', size = 14)
    plt.xlabel('Дата', size = 14)
    plt.show()
```


Здесь на графике четко определяется лидирующая группа. Не участвующие в программе лояльности покупатели имеют больший средний чек в течение трех месяцев. Средний чек обеих групп увеличивался все время исследования.

Сравнение показателей за декабрь

```
plt.title('График соотношения количества чеков по месяцам')
plt.xlabel('Месяц')
plt.ylabel('Чек')
# поворачиваем подписи значений по оси X на 45 градусов
#plt.xticks(rotation=45)
# выбираем положение легенды и указываем размер шрифта
plt.legend(loc='lower right', fontsize=10, title='He участник/Участник')
# добавляем сетку
plt.grid()
# отображаем график на экране
plt.show()
```


По исследованным данным мы можем сказать, что:

- Общая сумма покупок за декабрь больше, чем за другие месяцы, без карт лояльности и меньше, чем в другие месяцы по картам.
- Общая сумма покупок лояльных покупателей меньше, чем нелояльных
- Средний чек до 22 декабря у покупателей без карт почти всегда выше.
- 22 декабря есть скачок по лояльным клиентам, но 23 сильный спад среднего чека, скорее всего большое количество возвратов

- Средний чек по декабрю ниже остальных месяцев
- Количество чеков самое большое как по покупателям без карт, так и по картам

По этим данным, можно предположить, что коммерческие мероприятия декабря не были удачными. Несмотря на большое количество покупок, общая сумма и средний чек по декабрю самые низкие, что может говорить о большой количистве возвратов.

```
In [ ]: # создаем таблицу с группировкой чеков по дням без возвратов
         average day plus = plus.drop duplicates(subset='purchase').groupby(['date v', 'loyalty v'])\
                                       .agg({'total sum': 'median'}).reset index()
         #соединяем две таблицы, чтобы получить одну, включающую в себя дни без продаж
         average day plus = pd.merge(average day plus, df, on = 'date y', how='right')
         average day plus['loyalty y'] = average day plus['loyalty y'].fillna(0) # заменяем NaN на 0
         average day plus['total sum'] = average day plus['total sum'].fillna(0)
         average day plus['date v']= average day plus['date v'].dt.date
         average day plus.head(1)
Out[ ]:
               date_y loyalty_y total_sum
        0 2016-12-01
                          0.0
                                 403.82
In [ ]: # используем стиль dark из библиотеки seaborn
         sns.set style('dark')
         # назначаем размер графика
         plt.figure(figsize=(24, 10))
         # строим столбчатый график средствами seaborn
         sns.barplot(x='date y', y='total sum', data=average day plus, hue='loyalty y')
         # формируем заголовок графика и подписи осей средствами matplotlib
         plt.title('Соотношение средних чеков в день участников / не участников программы лояльности БЕЗ учета возвратов', size = 16)
         plt.xlabel('Дата', size = 14)
         plt.vlabel('Средний чек', size = 14)
         # поворачиваем подписи значений по оси Х на 45 градусов
         plt.xticks(rotation=90)
         # выбираем положение легенды и указываем размер шрифта
         plt.legend(loc='lower right', fontsize=10, title='He участник/Участник')
         # добавляем сетку
         plt.grid()
        # отображаем график на экране
         plt.show()
```



```
Out[ ]:
            month1
                           0
                                    1
        0 Dec 2016 657776.87 249957.38
        1 Feb 2017 450169.62 190041.10
        2 Jan 2017 700429.30 151422.20
In [ ]: plt.figure()
        x = 1['month1']
        y1 = 1['0']
        y2 = 1['1']
         plt.figure(figsize=(12, 6))
         plt.grid()
         plt.title('График соотношения сумм чеков по группам лояльности')
         plt.xlabel('Месяц')
         plt.ylabel('Чек')
         plt.plot(x,y1)
         plt.plot(x,y2)
         plt.show()
        <Figure size 432x288 with 0 Axes>
```


Без учета минусовых позиций количества общая картина не меняется. Покупатели без карт приносят магазину меньше прибыли и прибыль уменьшается с течением времени. У покупаетлей без карт сумма всех чеков за месяц уменьшилась в январе, но сильно увеличилась в феврале и обогнала даже декабрьские показатели.

Проверка гипотез

Подготовим данные

```
In [ ]: df= retail.groupby(['loyalty_y', 'customer_y']).agg({'purchase': 'nunique', 'item_sum':'sum', 'quantity':'sum'}).reset_index()
    df.columns = ['loyalty', 'customer', 'purchase_count', 'total_sum', 'quantity_sum']
    df['avg_purchase'] = round(df['total_sum'] / df['purchase_count'], 2)
    df['avg_quantity'] = round(df['quantity_sum'] / df['purchase_count'], 2)
    df.head()
```

]:		loyalty	customer	purchase_count	total_sum	quantity_sum	avg_purchase	avg_quantity
	0	0.0	18026.0	2	1736.520	574	868.26	287.0
	1	0.0	18027.0	2	2004.205	1832	1002.10	916.0
	2	0.0	18029.0	1	386.180	180	386.18	180.0
	3	0.0	18031.0	1	390.170	83	390.17	83.0
	4	0.0	18035.0	1	3559.810	1180	3559.81	1180.0

Разделим участников на группы по программе лояльности

```
In [ ]: 10 = df.query('loyalty == 0').reset_index(drop=True)
11 = df.query('loyalty == 1').reset_index(drop=True)
```

Будем использовать для тестирования критерий Манна-Уитни т.к. в данных есть большие выбросы, алгебраические метрики работают плохо, одно выбивающееся значение существенно влияет на результат. Это непараметрически метод, поэтому к нему прибегают тогда, когда работа с самими значениями невозможна из-за выбросов, сильно сдвигающих параметрические результаты. В нашем случае критерий Манна-Уитни должен более вероятно найти статистически значимый эффект.

Гипотеза 1

Out[

Нулевая гипотеза Н0: средний чек при участии в программе лояльности равен среднему чеку без участия в программе лояльности

Альтернативная гипотеза H1: средний чек при участии в программе лояльности отличается от среднего чека без участия в программе лояльности

```
In []: alpha = .05

results = st.mannwhitneyu(l0['avg_purchase'], l1['avg_purchase'])

print('p-значение:', '{0:.3f}'.format(results.pvalue))

if (results.pvalue < alpha):
```

```
print("Отвергаем нулевую гипотезу")
else:
    print("Не удалось отвергнуть нулевую гипотезу")
print('Относительная разница = {0:.1%}'.format(l0['avg_purchase'].mean()/l1['avg_purchase'].mean()-1))

p-значение: 0.002
Отвергаем нулевую гипотезу
Относительная разница = 20.5%
```

p-value = 0.002 Это меньше 0.05. Отвергаем нулевую гипотезу. Средний чек неучаствующих в программе лояльности выше, чем у держателей карт.

Гипотеза 2

Нулевая гипотеза Н0: среднее количество товаров в чеке участников в программе лояльности равно среднему количеству товаров в чеке без участия в программе лояльности

Альтернативная гипотеза H1: среднее количество товаров в чеке участников в программе лояльности отличается от среднего количества товаров в чеке без участия в программе лояльности

```
In []: alpha = .05

results = st.mannwhitneyu(l0['avg_quantity'], l1['avg_quantity'])

print('p-значение:', '{0:.3f}'.format(results.pvalue))

if (results.pvalue < alpha):
    print("Отвергаем нулевую гипотезу")

else:
    print("Не удалось отвергнуть нулевую гипотезу")
print('Относительная разница = {0:.1%}'.format(l0['avg_quantity'].mean()/l1['avg_quantity'].mean()-1))

p-значение: 0.020
Отвергаем нулевую гипотезу
Относительная разница = 6.9%
```

p-value 0.020, это меньше alpha = 0.5 значит между выборками существует стистическая значимость. Среднее количество товаров в чеках покупателей без карт выше, чем у держателей карт

Вывод и рекомендации

Программа лояльности работает, но может стать эффективнее.

Что мы узнали:

- Наличие карты не влияет на повышение среднего чека, количества товаров в чеке.
- Средний доход на пользователя, участвующего в программе лояльности значительно ниже.
- В течение исследуемого пеориода покупатели без карт приносили магазину в общем большую выгоду, чем с картами.
- Пожизненная ценность покупателей без карт выше, чем у участников программы лояльности
- Наличие карты лояльности не оказало положительного влияния на коммерческие мероприятия в декабре.
- По графику соотношения сумм по месяцам, видим, что общая сумма покупателей с картой падает с каждым месяцем.

Что мы можем сделать:

- Т.к. цель программы лояльности сбор, анализ и сегментация клиентской базы,улучшение экономических показателей клиентов, необходимо в первую очередь усовершенствовать сбор данных. Изучить механику движения стока и идентификацию покупателей.
- Следует изучить окупаемость бесплатных позиций в чеках. Это поможет сегментировать клиентскую базу по определенным признакам, уведомлять об акциях и индивидуальных предложениях.
- Возможно стоит пересмотреть условия программы лояльности и ее продвижения
- Пересмотреть политику возвратов по карте лояльности
- Покупки с картой составляли основную часть продаж в празднечные дни до нового года и после, значит есть потенциал в составлении коммерческих мероприятий и в другие перо=иоды.
- Возможно пересмотреть предложения по карте лояльности и сделать их более интересными для покупателя.
- Желательно рассмотреть данные за более продолжительный период, чтобы посчитать другие пользовательские метрики, кооторые бы помогли более точно определеить влияние программы лояльности на выручку.