

planetmath.org

Math for the people, by the people.

proof of comparison test

Canonical name ProofOfComparisonTest
Date of creation 2013-03-22 13:22:06
Last modified on 2013-03-22 13:22:06

Owner mathwizard (128)
Last modified by mathwizard (128)

Numerical id 4

Author mathwizard (128)

Entry type Proof

Classification msc 40A05

Assume $|a_k| \leq b_k$ for all k > n. Then we define

$$s_k := \sum_{i=k}^{\infty} |a_i|$$

and

$$t_k := \sum_{i=k}^{\infty} b_i.$$

Obviously $s_k \leq t_k$ for all k > n. Since by assumption (t_k) is http://planetmath.org/node/601com (t_k) is bounded and so is (s_k) . Also (s_k) is monotonic and therefore. Therefore $\sum_{i=0}^{\infty} a_i$ is absolutely convergent.

Now assume $b_k \leq a_k$ for all k > n. If $\sum_{i=k}^{\infty} b_i$ is divergent then so is $\sum_{i=k}^{\infty} a_i$ because otherwise we could apply the test we just proved and show that $\sum_{i=0}^{\infty} b_i$ is convergent, which is is not by assumption.