

AUTOMOTIVE GRADE

AUIRFS4115-7P

HEXFET® Power MOSFET

Features

- Advanced Process Technology
- Ultra Low On-Resistance
- Dynamic dV/dT Rating
- 175°C Operating Temperature
- Fast Switching

Description

this design

of other applications.

Repetitive Avalanche Allowed up to Timax

Specifically designed for Automotive applications, this HEXFET® Power MOSFET utilizes the latest processing techniques to achieve extremely low on-resistance per silicon area. Additional features of

switching speed and improved repetitive avalanche rating. These features combine to make this design an extremely efficient and reliable device for use in Automotive applications and a wide variety

are a 175°C junction operating temperature, fast

- · Lead-Free, RoHS Compliant
- Automotive Qualified *

V _{DSS}	150V
R _{DS(on)} typ.	10mΩ
max.	11.8mΩ
I _D	105A

D²Pak 7 Pin

G	D	S
Gate	Drain	Source

Page Dout Number	Dookogo Typo	Standar	d Pack	Orderable Port Number
Base Part Number	Package Type	Form	Quantity	Orderable Part Number
AUIRFS4115-7P D ² Pak 7 Pin		Tube	50	AUIRFS4115-7P
AUIRF34115-7F	D Pak / Pill	Tape and Reel Left	800	AUIRFS4115-7TRL

Absolute Maximum Ratings

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only; and functional operation of the device at these or any other condition beyond those indicated in the specifications is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. Ambient temperature (TA) is 25°C, unless otherwise specified.

Symbol	Parameter	Max.	Units
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V	105	
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V	74	Α
I _{DM}	Pulsed Drain Current ①	420	
P _D @T _C = 25°C	Maximum Power Dissipation	380	W
	Linear Derating Factor	2.5	W/°C
V_{GS}	Gate-to-Source Voltage	± 20	V
E _{AS} Single Pulse Avalanche Energy (Thermally Limited) ②		230	mJ
I _{AR} Avalanche Current ①		See Fig.14,15, 22a, 22b	Α
E _{AR}	Repetitive Avalanche Energy ①		mJ
dv/dt	Peak Diode Recovery ③	32	V/ns
T _J	Operating Junction and	-55 to + 175	
T _{STG}	Storage Temperature Range		°C
	Soldering Temperature, for 10 seconds (1.6mm from case)	300	

Thermal Resistance

Symbol	Parameter	Тур.	Max.	Units
$R_{ heta JC}$	Junction-to-Case ® ®		0.40	°CAM
$R_{\scriptscriptstyle{ hetaJA}}$	Junction-to-Ambient ⑦		40	°C/W

HEXFET® is a registered trademark of Infineon.

^{*}Qualification standards can be found at www.infineon.com

Static @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
$V_{(BR)DSS}$	Drain-to-Source Breakdown Voltage	150			V	$V_{GS} = 0V, I_{D} = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		0.18		V/°C	Reference to 25°C, I _D = 3.5mA
R _{DS(on)}	Static Drain-to-Source On-Resistance		10	11.8	mΩ	V_{GS} = 10V, I_{D} = 63A @
$V_{GS(th)}$	Gate Threshold Voltage	3.0		5.0	V	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$
gfs	Forward Trans conductance	93			S	$V_{DS} = 50V, I_{D} = 63A$
R_G	Gate Resistance		2.1		Ω	
	Drain to Course Leakers Current			20		$V_{DS} = 150V, V_{GS} = 0V$
IDSS	Drain-to-Source Leakage Current			250	μA	$V_{DS} = 150V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
cee	Gate-to-Source Forward Leakage			100	nA	V _{GS} = 20V
	Gate-to-Source Reverse Leakage			-100	HA	V _{GS} = -20V

Dynamic Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

			,		
Q_g	Total Gate Charge	 73	110		$I_D = 63A$
Q_{gs}	Gate-to-Source Charge	 28			V _{DS} = 75V V _{GS} = 10V⊕
Q_{gd}	Gate-to-Drain Charge	 28		nC	V _{GS} = 10V4
Q _{sync}	Total Gate Charge Sync. (Q _g - Q _{gd})	 45			
$t_{d(on)}$	Turn-On Delay Time	 18			$V_{DD} = 98V$
t _r	Rise Time	 50		no	$I_D = 63A$
$t_{d(off)}$	Turn-Off Delay Time	 37		ns	$R_G = 2.1\Omega$
t _f	Fall Time	 23			V _{GS} = 10V4
C _{iss}	Input Capacitance	 5320			$V_{GS} = 0V$
C_{oss}	Output Capacitance	 490			$V_{DS} = 50V$
C _{rss}	Reverse Transfer Capacitance	 110		pF	f = 1.0MHz
Coss eff.(ER)	Effective Output Capacitance (Energy Related)	 450			V _{GS} = 0V, V _{DS} = 0V to 120V®
C _{oss eff.(TR)}	Effective Output Capacitance (Time Related)	 520			V _{GS} = 0V, V _{DS} = 0V to 120V⑤

Diode Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current (Body Diode)			104		MOSFET symbol showing the
I _{SM}	Pulsed Source Current (Body Diode) ①			420		integral reverse p-n junction diode.
V_{SD}	Diode Forward Voltage			1.3	V	$T_J = 25^{\circ}C, I_S = 63A, V_{GS} = 0V \oplus$
t _{rr}	Reverse Recovery Time		82 99			$T_J = 25^{\circ}C$ $V_{DD} = 130V$ $T_J = 125^{\circ}C$ $I_F = 63A$,
Q _{rr}	Reverse Recovery Charge		271 385		nC	$T_{j} = 25^{\circ}C$ di/dt = 100A/ μ s \oplus
I _{RRM}	Reverse Recovery Current		6.0		Α	T _J = 25°C
t_{on}	Forward Turn-On Time	Intrinsio	turn-or	time is	negligil	ble (turn-on is dominated by L _S +L _D)

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature.
- ② Limited by T_{Jmax} , starting T_J = 25°C, L = 0.115mH, R_G = 25 Ω , I_{AS} = 63A, V_{GS} =10V. Part not recommended for use above this value.
- $\label{eq:local_spectrum} \mbox{3} \quad I_{SD} \leq 63A, \; di/dt \leq 2510A/\mu s, \; V_{DD} \leq V_{(BR)DSS}, \; T_{J} \leq 175^{\circ}C.$
- 4 Pulse width $\leq 400 \mu s$; duty cycle $\leq 2\%$.
- \circ C_{oss} eff. (TR) is a fixed capacitance that gives the same charging time as C_{oss} while V_{DS} is rising from 0 to 80% V_{DSS}.
- © Coss eff. (ER) is a fixed capacitance that gives the same energy as Coss while VDS is rising from 0 to 80% VDSS.
- When mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques refer to application note #AN-994

Fig. 1 Typical Output Characteristics

Fig. 3 Typical Transfer Characteristics

Fig 5. Typical Capacitance vs. Drain-to-Source Voltage

Fig. 2 Typical Output Characteristics

Fig. 4 Normalized On-Resistance vs. Temperature

Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage

Fig. 7 Typical Source-to-Drain Diode

Fig 9. Maximum Drain Current vs. Case Temperature

Fig 11. Typical Coss Stored Energy

Fig 8. Maximum Safe Operating Area

Fig 10. Drain-to-Source Breakdown Voltage

Fig 12. Maximum Avalanche Energy vs. Drain Current

2015-12-4

Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case

Fig 14. Avalanche Current vs. Pulse width

Fig 15. Maximum Avalanche Energy vs. Temperature

Notes on Repetitive Avalanche Curves , Figures 14, 15: (For further info, see AN-1005 at www.infineon.com)

- (For further info, see AN-1005 at www.infineon.com)

 1. Avalanche failures assumption:
 - Purely a thermal phenomenon and failure occurs at a temperature far in excess of T_{jmax} . This is validated for every part type.
- 2. Safe operation in Avalanche is allowed as long as Tjmax is not exceeded.
- 3. Equation below based on circuit and waveforms shown in Figures 18a, 18b.
- 4. PD (ave) = Average power dissipation per single avalanche pulse.
- 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche).
- 6. Iav = Allowable avalanche current.
- 7. ΔT = Allowable rise in junction temperature, not to exceed T_{jmax} (assumed as 25°C in Figure 13, 14).

tav = Average time in avalanche.

D = Duty cycle in avalanche = tav ·f

ZthJC(D, tav) = Transient thermal resistance, see Figures 13)

$$\begin{split} P_{D \; (ave)} &= 1/2 \; (\; 1.3 \cdot BV \cdot I_{av}) = \Delta T / \; Z_{thJC} \\ I_{av} &= 2\Delta T / \; [1.3 \cdot BV \cdot Z_{th}] \\ E_{AS \; (AR)} &= P_{D \; (ave)} \cdot t_{av} \end{split}$$

Fig 16. Threshold Voltage vs. Temperature

Fig. 18 - Typical Recovery Current vs. dif/dt

Fig. 17 - Typical Recovery Current vs. dif/dt

Fig. 19 - Typical Stored Charge vs. dif/dt

Fig. 20 - Typical Stored Charge vs. dif/dt

Fig 21. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs

Fig 22a. Unclamped Inductive Test Circuit

Fig 23a. Switching Time Test Circuit

Fig 24a. Gate Charge Test Circuit

Fig 22b. Unclamped Inductive Waveforms

Fig 23b. Switching Time Waveforms

Fig 24b. Gate Charge Waveform

D²Pak - 7 Pin Package Outline (Dimensions are shown in millimeters (inches))

S		DIMEN	ISIONS		N
M B O	MILLIM	ETERS	INC	HES	0 T E S
L	MIN.	MAX.	MIN.	MAX.	E S
Α	4.06	4.83	.160	.190	
A1	_	0.254	_	.010	
ь	0.51	0.99	.020	.036	
b1	0.51	0.89	.020	.032	5
С	0.38	0.74	.015	.029	
с1	0.38	0.58	.015	.023	5
c2	1.14	1.65	.045	.065	
D	8.38	9.65	.330	.380	3
D1	6.86	7.42	.270	.292	4
E	9.65	10.54	.380	.415	3,4
E1	6.22	8.48	.245	.334	4
е	1.27 BSC		.050	BSC	
Н	14.61	15.88	.575	.625	
L	1.78	2.79	.070	.110	
L1	_	1.68	_	.066	4
L2	-	1.78	_	.070	
L3	0.25 BSC		.010	BSC	

NOTES:

- 1. DIMENSIONING AND TOLERANCING AS PER ASME Y14.5M-1994
- 2. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].

O.127 [.005"] PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTMOST EXTREMES OF THE PLASTIC BODY AT DATUM H.

4. THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSION E, L1, D1 & E1.

5. DIMENSION 61 AND c1 APPLY TO BASE METAL ONLY.

- 6. DATUM A & B TO BE DETERMINED AT DATUM PLANE H.
- 7. CONTROLLING DIMENSION: INCH.
- 8. OUTLINE CONFORMS TO JEDEC OUTLINE TO-263CB. EXCEPT FOR DIMS. E, E1 & D1.

D²Pak - 7 Pin Part Marking Information

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

D²Pak - 7 Pin Tape and Reel

NOTES, TAPE & REEL, LABELLING:

- 1. TAPE AND REEL.
 - 1.1 REEL SIZE 13 INCH DIAMETER.
 - 1.2 EACH REEL CONTAINING 800 DEVICES.
 - 1.3 THERE SHALL BE A MINIMUM OF 42 SEALED POCKETS CONTAINED IN THE LEADER AND A MINIMUM OF 15 SEALED POCKETS IN THE TRAILER.
 - 1.4 PEEL STRENGTH MUST CONFORM TO THE SPEC. NO. 71-9667.
 - 1.5 PART ORIENTATION SHALL BE AS SHOWN BELOW.
 - 1.6 REEL MAY CONTAIN A MAXIMUM OF TWO UNIQUE LOT CODE/DATE CODE COMBINATIONS.

 REWORKED REELS MAY CONTAIN A MAXIMUM OF THREE UNIQUE LOT CODE/DATE CODE COMBINATIONS.

 HOWEVER, THE LOT CODES AND DATE CODES WITH THEIR RESPECTIVE QUANTITIES SHALL APPEAR ON THE BAR CODE LABEL FOR THE AFFECTED REEL.

- 2. LABELLING (REEL AND SHIPPING BAG).
 - 2.1 CUST. PART NUMBER (BAR CODE): IRFXXXXSTRL-7P
 - 2.2 CUST. PART NUMBER (TEXT CODE): IRFXXXXSTRL-7P
 - 2.3 I.R. PART NUMBER: IRFXXXXSTRL-7P
 - 2.4 QUANTITY:
 - 2.5 VENDOR CODE: IR
 - 2.6 LOT CODE:
 - 2.7 DATE CODE:

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

Qualification Information

		Automotive (per AEC-Q101)				
Qualificat	tion Level	Comments: This part number(s) passed Automotive qualification. Infined Industrial and Consumer qualification level is granted by extension of the hig Automotive level.				
Moisture	Sensitivity Level	D ² -Pak 7 Pin MSL1				
	Manhina Manhal		Class M3 (+/- 400V) [†]			
	Machine Model	AEC-Q101-002				
ECD	Human Dady Madal	Class H2 (+/- 4000V) [†]				
ESD	Human Body Model	AEC-Q101-001				
Charred Davisa Madal		Class C5 (+/- 2000V) [†]				
	Charged Device Model		AEC-Q101-005			
RoHS Co	mpliant	Yes				

[†] Highest passing voltage.

Revision History

Date	Comments			
12/4/2015	Updated datasheet with corporate template			
12/4/2015	Corrected ordering table on page 1.			

Published by Infineon Technologies AG 81726 München, Germany © Infineon Technologies AG 2015 All Rights Reserved.

IMPORTANT NOTICE

The information given in this document shall in <u>no event</u> be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may <u>not</u> be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.