Reduktionen

- turing red.: $P \leq_T Q$ P kann mit Q als subroutine gelößt werden
- poly. m-red.: $P \leq_p Q \Leftrightarrow \forall w \in \Sigma^* : w \in P \leftrightarrow f(w) \in Q$
- L ist NP-hard: $\forall L' \in \text{NP} : L' \leq_p L$ (alle L' aus NP sind auf L p.m.r.)
- L element NP: ex. ein poly. Verifikator (Cert. überprüfbar in P)
- L ist NP-complete: $L \in NP$ und L NP-hard
- Jede m-red ist eine t-red (aber nicht anders herum) ex. P s.d. $P \leq_T Q$ aber nicht $P \leq_m Q$

Halteproblem

- PHalt = geg. M, w hält M auf w?
- Assume: PHalt entscheidbar \rightarrow ex. Entscheider H
- Konstruiere d. Diagonalisierung TM D s.d.
- - prüfe ob Eingabe TM ist
- - Simuliere H auf <M,<M» \rightarrow hält M auf <M> ?
- - Ja \rightarrow Endlosschleife, Nein \rightarrow akzeptiere
- *Simuliere D auf* $\langle D \rangle \rightarrow$ Wiederspruch

Prädikatenlogik Definitionen

- V...Variablen, C...Konstanten, P...Prädikatensymbole
- Atom: $p(t_1,...,t_n)$ $p \in P, t_i \in V \cup C$ (t...Terme)
- Formel: Induktiv, Atom ist Formel, $\neg F, F \land G, ..., \forall x.F$ auch
- gebundene Variable: steht im Scope eines Quantors default: Variablen in Atomen sind frei
- Interpretation $\mathcal{I}: \langle \Delta^{\mathcal{I}}, \cdot^{\mathcal{I}} \rangle$
- - $\Delta^{\mathcal{I}}$: Domäne/Grunmenge
- - · ^I: Interpretations funktion
- *I* mapped jede Konstante auf ein Domänenelement und jedes Prädikatensymbol auf eine Relation (Menge)
- Bsp: $\Delta^{\mathcal{I}} = \mathbb{N}, c^{\mathcal{I}} = 299.792.458, \leq_4^{\mathcal{I}} = \{0, 1, 2, 3, 4\},$ even $= \{n \mid n \equiv 0 \pmod{2}\}$
- Zuweisung: $\mathcal{Z}: V \to \Delta^{\mathcal{I}}, \mathcal{Z}[x \mapsto \delta]$, für $x \in V, \delta \in \Delta^{\mathcal{I}}$

(Un)Entscheidbarkeit

- entscheidbar: ex. TM, die f.a. inputs $w \in (\exists z)$ hält
- (co)-semi-entscheidbar: ex. TM, die f.a. inputs $w(\not\in) \in L$ hält
- $P \leq Q$, Q (un)entscheidbar \Rightarrow P (un)entscheidbar
- semi- + co-semi = entscheidbar = L und \bar{L} entscheidbar
- $Phalt \leq P \wedge PHalt \leq \bar{P} \Rightarrow \text{vollständig unentscheidbar}$
- Satz v. Rice: E nicht-triviale Eigenschaft, TM M mit L=L(M) hat L die E ? ⇒ Unentscheidbar

PCP

- Menge Dominosteine, ex. Anordnung s.d. oben = unten
- $PHalt \le mPCP \le PCP$
- mPCP: PCP aber mit festem Startstein
- idee: Kodieren TM-lauf (config. seq) als seq. von Wortpaaren, s.d oben eine config zurücl liegt
- -> TM hält \rightarrow Lauf endlich, ex. Lösung (+ vice versa)
- MPCP hat lsg. \rightarrow PCP hat lsg. + \forall Sym. umgeben mit #
- PCP hat lsg. → mPCP hat lsg. + da PCP mit erstem Stein anfangen muss, da nur dieser oben = unten + # weglassen

Formelformen

- geschlossene Formel/Satz: Formel ohne freie Variablen
- negation normal Form (NNF): nur (\neg, \land, \lor) , \neg nur vor Atomen
- bereinigte Form: keine Variable kommt gebunden und frei vor keine Variable wird von mehr als einem Quantor gebunden
- Pränexform: Alle Quantoren stehen am Anfang
- Skolemform: Pränexform + alle ∃ entfernt n-stelliges Funktionssymbol mit n = Anz. der ∀ davor
- KNF: (... ∨ ... ∨ ...) ∧ (... ∨ ...) ∧ ...
- Klauselform: $(x \lor y) \land \neg z \rightarrow \{\{x,y\}, \{\neg z\}\}$
- F in Pränex erfüllbar ⇔ Skolemisierung erfüllbar
- Skolemisierung is keine äquiv. Umf., nur erfüllbarkeitserhalte

Beziehungen von Klassen

- $L \subseteq NL \subseteq P \subseteq NP \subseteq PSpace \subseteq NPSpace \subseteq EXP \subseteq NEXP$
- Satz von Savitch: $NSpace(f(n)) \subseteq DSpace(f(n)^2)$
- NL \subseteq PSpace, P \subseteq EXP, NP \subseteq NEXP (folgt auf THT/SHT)
- Satz von Immerman, Szelepcsenyi: NL = coNL
- $L \in \mathsf{DTIME/DSPACE} \Leftrightarrow \bar{L} \in \mathsf{DTIME/DSPACE}$
- wenn $NP = coNP \rightarrow P = NP$

Unifikation

- Löschen: $\{x = x\} \rightarrow \{\}$ (gleiches weglassen)
- Zerlegung:

$$\{f(x_1,...,x_n)=f(y_1,...,y_n)\} \to \{x_1=y_1,...,x_n=y_n\}$$

- Orientierung: $\{x = y\} \rightarrow \{y = x\}$ (vertauschen)
- Eliminierung: $\{x = y\} \rightarrow \{x = y\} \cup G\{x \mapsto y\}$ (einsetzen)
- σ is min. so allgemein wie θ , wenn $\exists \lambda : \sigma \circ \lambda = \theta$,
- MGU: $\forall \theta : \sigma \leq \theta$
- alle MGU's sind bis auch Umbenennung der Vars gleich
- gelößte Form: wenn RS nicht in LS vorkommt, RS ist Variable

Logigisches Schließen

- \mathcal{I} is ein Modell für F wenn \mathcal{I} F erfüllt ($\mathcal{I} \models F$)
- $\mathcal{I} \models \mathcal{T} \text{ wenn } \forall F \in \mathcal{T} : \mathcal{I} \models F$
- logische Konsequenz: $F \models G$, jedes Modell für F ist eins für G
- Alle Tautologien $\models F$ sind äquivalent (ebenso für unerf. F)
- $F \equiv G \Leftrightarrow F \models G \land G \models F$
- Monotonie: Mehr Sätze
 ⇔ weniger Modele, mehr Schlussfolgerungen
 - \rightarrow Tautologien sind in jeder ${\mathcal I}$ wahr, log. Kons. von allem
- → Unerf. F haben kein Model, haben alle Sätze als Kons.
- Deduktionstheorem: $F \models G \rightarrow H \Leftrightarrow F \cup \{G\} \models H$
- $F \wedge G \models H \Leftrightarrow F \models G \to H$
- $F \equiv G \Leftrightarrow \models F \leftrightarrow G$
- $T \models F \equiv T \cup \{\neg F\}$ unerf. $? \equiv (\land_{G \in \mathcal{T}} G \to F \text{ Tautologie } ?$