GOVERNMENT COLLEGE OF ENGINEERING (Formerly IRTT) ERODE-638 316

Certified that this project titled "DEVELOPING A FLIGHT DELAY PREDICTION USING MACHINE LEARNING" is the bonafide work of "PARKKAVI T(731119104036),PRAVENA S(731119104039),SALLY JEMIMAH J(731119104041),VAISHNAVI A(731119104050)" who carried out the project work under my supervision.

SIGNATURE OF HOD	SIGNATURE OF SPOC
Dr.A.SARADHA,M.E.,Ph.D.,	Dr.G.GOWRISON, M.E.,Ph.D.,
HEAD OF THE DEPARTMENT	ASSISTANT PROFESSOR(SR)
DEPARTMENT OF CSE,	DEPARTMENT OF ECE,
GOVERNMENT COLLEGE OF	GOVERNMENT COLLEGE OF
ENGINEERING, ERODE - 638316	ENGINEERING, ERODE - 638316

SIGNATURE OF FACULTY MENTOR SIGNATURE OF FACULTY EVALUATOR

Dr.A.KAVIDHA,M.E.Ph.D.,	Mrs.N.VASUKI,M.E.,
ASSOCIATE PROFESSOR	ASSISTANT PROFESOR
DEPARMENT OF CSE,	DEPARTMENT OF CSE,
GOVERNMENT COLLEGE OF	GOVERNMENT COLLEGE OF
ENGINEERING,ERODE 638316.	ENGINEERING,ERODE-638316.

TABLE OF CONTENTS

CHAPTER	TITLE	PAGE NO
1.	INTRODUCTION	
	1.1 PROJECT OVERVIEW 1.2 PURPOSE	1 1
2.	LITERATURE SURVEY	
	2.1 EXISTING PROBLEM 2.2 REFERENCES 2.3 PROBLEM STATEMENT DEFINITION	2 2 2
3.	IDEATION AND PROPOSED SOLUTION	
	3.1 EMPATHY MAP CANVAS 3.2 IDEATION AND BRAINSTOMING 3.3 PROPOSED SOLUTION 3.4 PROBLEM SOLUTION FIT	3 4 5 6
4.	REQUIREMENT ANALYSIS	
	4.1 FUNCTIONAL REQUIREMENT 4.2 NON FUNCTIONAL REQUIREMENT	7 7
5.	PROJECT DESIGN	
	5.1 DATA FLOW DIAGRAM 5.2 SOLUTION AND TECHNICAL ARCHITECTURE 5.3 USER STORIES	9 10 13
6.	PROJECT PLANNING AND SCHEDULING	
	6.1 SPRINT PLANNING AND ESTIMATION 6.2 SPRINT DELIVERY SCHEDULE 6.3 REPORTS FROM JIRA	14 15 17

7.	CODING AND SOLUTIONING	
	7.1 FEATURE 1 7.2 FEATURE 2 7.3 DATABASE SCHEMA	18 20 22
8.	TESTING	
	8.1 TEST CASES 8.2 USER ACCEPTANCE TESTING	23 24
9.	RESULTS	
	9.1 PERFORMANCE METRICS	26
10.	ADVANTAGES AND DISADVANTAGES	29
11.	CONCLUSION	30
12.	FUTURE SCOPE	30
13.	APPENDIX	
	SOURCE CODE GITHUB AND PROJECT DEMO LINK	31 61

1. INTRODUCTION

1.1 PROJECT OVERVIEW

Over the last twenty years, air travel has been increasingly preferred among travelers, mainly because of its speed and in some cases comfort. This has led to phenomenal growth in air traffic and on the ground. An increase in air traffic growth has also resulted in massive levels of aircraft delays on the ground and in the air. These delays are responsible for large economic and environmental losses. The main objective of the model is to predict flight delays accurately in order to optimize flight operations and minimize delays.

Using a machine learning model, we can predict flight arrival delays. The input to our algorithm is rows of feature vector like departure date, departure delay, distance between the two airports, scheduled arrival time etc. We then use decision tree classifier to predict if the flight arrival will be delayed or not. A flight is considered to be delayed when difference between scheduled and actual arrival times is greater than 15 minutes. Furthermore, we compare decision tree classifier with logistic regression and a simple neural network for various figures of merit.

1.2 PURPOSE

Flight delay is inevitable and it plays an important role in both profits and loss of the airlines. An accurate estimation of flight delay is critical for airlines because the results can be applied to increase customer satisfaction and incomes of airline agencies.

2.LITERATURE SURVEY

2.1 EXISTING PROBLEM

While airlines want to get passengers to their destinations on time, there are many things that can – and sometimes do – make it difficult for flights to arrive on time. Some problems, like bad weather, air traffic delays, and mechanical issues, are hard to predict and often beyond the airlines' control.

2.2 REFERENCES

Yuemin Tang.2021.Airline Flight Delay Prediction Using Machine Learning Models.In 2021 5th International Conference on E-Business and Internet (ICEBI), October 15-17,2021,Singapore,Singapore.ACM,New York, NY, USA, 7 Pages. https://doi.org/10.1145/3497701.3497725

Bhuvan Bhatia used python based Logistic Regression along with Support Vector Machine to predict flight delays and compared the results with other models such as RandomForest Classifier and derive the best classifier to solve the problem. The dataset focused on LaGuardia International Airport. The result shows that the Random Forest method yields the best performance compared to the SVM model.

https://ietresearch.onlinelibrary.wiley.com/doi/full/10.1049/itr2.12183 https://medium.com/analytics-vidhya/using-machine-learning-to-predict-flight-delays-e8a50b0bb64c

2.3 PROBLEM STATEMENT DEFINITION

Flight Delay Prediction uses certain features of the flight like the airlines who operate them, distance they have to cover ,origin and target airport ,arrival and departure times and so on .It can help the passengers to know what delays they should be ready to face depending on where they fly from the airlines they choose to fly. It is of immense help to the passengers, airlines and the aviation

3. IDEATION AND PROPOSED SOLUTION

3.1 EMPATHY MAP CANVAS

3.2 IDEATION AND PROPOSED SOLUTION

3.3 PROPOSED SOLUTION

S.No.	Parameter	Description
1.	Problem Statement (Problem to be solved)	The main objective of the model is to predict flight delays accurately in order to optimize flight operations, to save passengers and airlines from all the hardships caused due to flight delays or in worst case cancellations
2.	Idea / Solution description	Using a machine learning model, we can predict flight arrival delays. The input to our algorithm is rows of feature vector like departure date, departure delay, distance between the two airports, scheduled arrival time etc. We then use decision tree classifier to predict if the flight arrival will be delayed or not. A flight is considered to be delayed when difference between scheduled and actual arrival times is greater than 15 minutes.
3.	Novelty / Uniqueness	We compare decision tree classifier with logistic regression and a simple neural network for various figures of merit.
4.	Social Impact / Customer Satisfaction	Time management will be the social impact such that when informed earlier the passengers can plan accordingly.
5.	Business Model (Revenue Model)	* Low-cost airline business model. * B2C business Model.
6.	Scalability of the Solution	The delayed time of any type of flight can be known with maximum accuracy

3.4 PROBLEM SOLUTION FIT

1. CUSTOMER SEGMENT Business peoples and regular flight users	6. CUSTOMER CONSTRAINTS Lack of transparency, no user-friendly models to work with	5. AVAILABLE SOLUTIONS Weather forecasting, creation of larger runways, effective air traffic control
JOBS-TO-BE-DONE/ PROBLEMS Predicting the flight delay due to the various reasons that may cause it, Intimate the flight delay to the passengers, Provide alternate flights, if the delay is prolonged	9. PROBLEM ROOT / CAUSE Adverse weather conditions, air traffic, bird strikes, less runways, waiting for connecting passengers and bags, flight malfunction	7. BEHAVIOUR Choose the right airlines, Choose different modes of transport, Wait patiently in the waiting hall until further notification, Search online for alternate flights, Dissatisfied and frustrated
3. TRIGGERS Seeing other airlines that give accurate departure and arrival time even with delay 4. EMOTIONS: before /after Frustration -> Satisfaction	10. YOUR SOLUTION By using machine learning algorithms we can try to predict if the flight will be delayed in many ways. If given the right set of input parameters (Flight no, departure and arrival time, origin and destination airport, scheduled arrival and departure time, etc.,), the ML algorithms can predict the delay with high accuracy	8. CHANNELS OF BEHAVIOUR 8.1 ONLINE Check for reimbursements, Search for the right airlines, book alternate flights online, agree to a new connection, call the airline 8.2 OFFLINE Don't plan activities on the day of arrival, schedule flights for the middle of the week, fly non-stop routes, avoid travelling during holidays

4. REQUIREMENT ANALYSIS

4.1 FUNCTIONAL REQUIREMENT

FR No.	Functional Requirement (Epic)	Sub Requirement (Story / Sub-Task)	
FR-1	User registration & login	Registration & login of passengers via Google with email id and password	
FR-2	Detailed arrival and departure time of flights	With the flight no and name, the passenger cam see the details (time, boarding station, etc)of his/her in the dashboard.	
FR-3	Intimate the accurate flight timings to passengers	With the help of various machine learning algorithms, when given the right input features (actual arrival time & departure time, scheduled time, etc) we can predict the delay in time of the flight which will also be shown in the dashboard and updated time-to-time.	
FR-4	Airline helpdesk provide alternatives	The contact details of different airlines will be provided, The passenger will also be able to look for any alternative flight in case the flights get cancelled.	
FR-5	Passenger feedback	The feedback will be got from the users or how the application was to use, with their feedback and suggestions, we can improve the application further.	

4.2 NON FUNCTIONAL REQUIREMENT

FR No.	Non-Functional Requirement	Description
NFR-1	Usability	The application will have an easy-to-use GUI. Users will find it simple to comprehend and utilize all the capabilities of the application.
NFR-2	Security	The technique known as database replication will be utilised for the application security to ensure the safety of all crucial data
NFR-3	Reliability	The application will be consistent in all scenarios and work without fail in any environment
NFR-4	Performance	The applications response time is direct &faster which is determined by the efficiency of the implemented machine algorithm.

NFR-5	Availability	The application will be accessible to users 24 hours a day,7 days a week without interruption. They can access it from any part of the world with proper internet.
NFR-6	Scalability	The application will be able to handle a rise in the no.of users & generate higher versions.

5. PROJECT DESIGN

5.1 DATA FLOW DIAGRAM

A Data Flow Diagram (DFD) is a traditional visual representation of the information flows within a system. A neat and clear DFD can depict the right amount of the system requirement graphically. It shows how data enters and leaves the system, what changes the information, and where data is stored.

5.2 SOLUTION AND TECHNICAL ARCHITECTURE

SOLUTION ARCHITECTURE

TECHNICAL ARCHITECTURE

Table-1 : Components & Technologies:

S.No	Component	Description	Technology
1.	User Interface	How user interacts with application	HTML, CSS, Flask
2.	Application Logic-1	Logic for a process in the application	Python
3.	Application Logic-2	Logic for a process in the application	IBM Watson STT service
4.	Data processing	To clean data	Pandas, NumPy, Matplotlib etc.,
5.	Database	Store data	MySQL
6.	File Storage	Storing files	IBM Block Storage
7.	External API-1	External API used in the system	IBM Weather API
8.	External API-2	External API used in the system	Email API
9.	Machine Learning Model	Purpose of Machine Learning Model	Evaluation and prediction model
	Infrastructure (Server / Cloud)	Application Deployment	IBM Cloud

Table-2: Application Characteristics:

S.No	Characteristics	Description	Technology
1.	Open-Source Frameworks	Open-source software is that by which the source code or the base code is usually available for modification or enhancement	Python - flask
2.	Security Implementations	The security measures can be grouped into two types; standardized screening techniques, which all passengers must undergo and elevate-risk	Encryptions, SHA2
3.	Scalable Architecture	Screening for which only a subset of passengers are selected	Python
4.	Availability	Does not affect the performance even though used by many users	IBM cloud
5.	Performance	High delay prediction accuracy	Python, Flask

5.3 USER STORIES

User Type	Functional Requirement (Epic)	User Story Number	User Story / Task	Acceptance criteria	Priority	Release
Customer (Mobile or Web user)	Registration and Login	USN-1	As a new user, I can register for the application by entering my email and my password.	I can access my account / dashboard	High	Sprint-1
·		USN-2	I will receive a confirmation message through email after registration	I can receive confirmation email & click confirm	Medium	Sprint-1
		USN-3	As a user, I can log into the application by entering the registered email-id and password	I can register & access the dashboard with Gmail Login	High	Sprint-1
Customer (Mobile or Web user)	Arrival and Departure time of flights	USN-4	As a user, I can search for the details of a specific flight with flight number or name	I can find all the details of a flight	Medium	Sprint-2
		USN-5	As a user, I can find the accurate arrival and departure time of flights	I can find the actual timings of the flight	High	Sprint-3
Customer (Mobile or Web user)	Real time flight delay	USN-6	As a user, I can find exactly how long the flight will be delayed	I can get the accurate delayed time	High	Sprint-3
·		USN-7	As a user, I can get real time timings that are updated every few seconds.	I can check the updated time	High	Sprint-3
Customer Care Executive	Helpdesk	USN-8	I can provide other alternative flights to the passenger's destination	I can check for alternative flights	High	Sprint-2
		USN-9	As a customer care executive, I can provide the contact details of the airlines to help the passenger to get in touch with them in case of any query	I can give the airlines' phone number	Medium	Sprint-4
Customer Care Executive	Feedback	USN-10	I can collect all the feedback and suggestions that are given by the passengers, after using this application	I am able to record the feedbacks	Medium	Sprint-4
Administrator	Authentication	USN-11	As an admin, I can authenticate the registration and login credentials of the passengers.	I can validate the passengers' login	High	Sprint-1
		USN-12	As an admin, I ensure the security of the passengers' details	I maintain the security of user details	High	Sprint-4

6.PROJECT PLANNING AND SCHEDULING

6.1 SPRINT PLANNING AND ESTIMATION

Product Backlog, Sprint Schedule, and Estimation

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members
Sprint-1	Registration and Login	USN-1	As a new user, I can register for the application by entering my email and my password.	10	High	Pravena S
Sprint-2		USN-2	As a user, I will receive confirmation email once I have registered for the application	10	Medium	ParkkaviT Pravena S
Sprint-1		USN-3	As a user, I can login into the application by entering the registered email-id and password	10	High	Vaishnavi A Sally Jemimah J
Sprint-2	Admin Panel	USN-4	As an admin, I can authenticate the registration and login credentials of the passengers	10	High	Pravena S Vaishanvi A Parkkavi T Sally Jemimah J
Sprint-3	Arrival and Departure time of flights	USN-5	As a user, I can find all the details of a specific flight with its number or name	10	High	Pravena S Vaishanvi A Parkkavi T Sally Jemimah J
Sprint-3		USN-6	As a user, I can find exactly how long the flight will be delayed	10	High	Pravena S Vaishanvi A Parkkavi T Sally Jemimah J
Sprint-4	Helpdesk	USN-7	As a customer care executive, I can provide the contact details of the airlines	05	Medium	Vaishnavi A Pravena S
Sprint-4		USN-8	As a passenger, I can find alternative flights to the destination that are available	05	High	Parkkavi T Sally Jemimah J
Sprint-4	Feedback	USN-9	As a user, I can provide my suggestions and feedback for the improvement of the application	10	Medium	Sally Jemimah J Parkkavi T Vaishnavi A

6.2 SPRINT DELIVERY SCHEDULE

Project Tracker, Velocity & Burndown Chart:

Sprint	Total Story Points	Duration	Sprint Start Date	Sprint End Date (Planned)	Story Points Completed (as on Planned End Date)	Sprint Release Date (Actual)
Sprint-1	20	6 Days	24 Oct 2022	29 Oct 2022	20	29 Oct 2022
Sprint-2	20	6 Days	31 Oct 2022	05 Nov 2022	20	05 Nov 2022
Sprint-3	20	6 Days	07 Nov 2022	12 Nov 2022	20	12 Nov 2022
Sprint-4	20	6 Days	14 Nov 2022	19 Nov 2022	20	19 Nov 2022

Velocity:

We have a 24-day sprint duration, and the velocity of the team is 20 (points per sprint). Thus the team's avera ge velocity (AV) per iteration unit (story points per day) is as follows

= 24/20

= 1.2

Average velocity = 6/20 = 0.3 (Sprint 1)

Average velocity = 6/20 = 0.3 (Sprint 2)

Average velocity = 6/20 = 0.3 (Sprint 3)

Average velocity = 6/20 = 0.3 (Sprint 4)

Burndown Chart:

A burn down chart is a graphical representation of work left to do versus time. It is often used in agile software development methodologies such as Scrum.

6.3 REPORTS FROM JIRA

7. CODING AND SOLUTIONING

7.1 FEATURE 1

Step 1: The flightdata.csv was preprocessed and the machine learning models were built using jupyter notebook

Step 2: The ML model was then deployed in IBM Watson and the API key and endpoint were noted down

Step 3: The python flask code was written and run to connect the html pages with the deployed ML model in IBM Watson

7.2 FEATURE 2

Step 1: If the user has already registered, then he/she can log into the application by entering the correct email-id and password

Step 2: If the user is new, then he/she should have to register first. After registration, they can be logged into the application

Step 3: After successful login, the user will be directed to the homepage where he/she has to enter all the details of the flight

Step 4: After submitting all the flight details, the output of the prediction will be displayed which could either be 'Your flight is likely to be delayed' or 'Your flight is likely to be on time'.

Step 5: To get any of their queries answered by the airlines, the users can click on the link below which provides the toll-free number and websites of the airlines.

7.3 DATABASE SCHEMA

For user registration and login, the SQLite DB Browser is used to store and access data from the database.

8.TESTING AND TEST CASES

8.1 TEST CASES

5	Test case ID	Feature Type	Component	Test Scenario	Pre-Requisite	Steps To Execute	Test Data	Expected Result	Actual Result	Status	Executed By
6	PredictionPage_TC_ OO1	Functional	Home Page	Verify user is able to see the Prediction input page when user clicked on URL	Any Latest Browser	1.Enter URL and click go 2.Verify if the Prediction input is fully displayed or not	Flask App	The Prediction input page should be displayed	Working as expected	Pass	Pravena S
7	PredictionPage_TC_ OO2	UI	Home Page	Verify the UI elements in Prediction page	Any Latest Browser	I Enter UII. and click go 2	Flask App	Application should show below UI elements: a.Flight Number b.Date in terms of month, day of month and day of week c.Orlight in and Destination dropdown d.Flight Timings e.Submit button	Working as expected	Pass	Parkkavi T
8	PredictionPage_TC_ OO3	Functional	Home page	Verify user is able to enter the flight details properly	Any Latest Browser	2 Enter valid filight number States valid date in terms of month, day of month and day of week 4 Enter valid origin and destination States valid filight timings G.Click submit	Flight Number: 2610 Month: 1 Day of Month: 2 Day of Week: 6 Origin: ATL Destination: MSP Scheduled Oppt Time: 1210 Actual Dept Time: 1231 Scheduled Arr Time: 1415	User should navigate to result page and input details are recieved properly	Working as expected	Pass	Vaishnavi A

5	Test case ID	Feature Type	Component	Test Scenario	Pre-Requisite	Steps To Execute	Test Data	Expected Result	Actual Result	Status	Executed By
	PredictionPage_TC_ OO4	Functional	Home Page	Verify user is able to log into application with invalid input	Any Latest Browser	Linter URL and click go 2. Carter valid light part. 2. Carter valid light part. 2. Carter valid light and date in terms of morth, day of morth and day of week 4. Extra valid origin and destination 6. Click submit 6. Click submit	Flight Number: 2610 Month: 1 Day of Month: 2 Day of Week: 6 Origin: MSP Destination: MSP Scheduled Dept Time: 1210 Actual Dept Time: 1231 Scheduled Arr Time: 1415	Application should show 'origin and destination airport can't be same airport 'validation message.	Working as expected	Fail	Sally Jemimah J
16	PredictionPage_TC_ OOS	Functional	Home Page	Verify user is able to log into application with invalid input	Any Latest Browser	Exter visit light must click go 2 Exter visit light must maker 2 Exter visit light must maker 3 Exter visit light must maker 3 Exter visit data in terms of month, day of month and day of week 4 Exter visit of right and destination 5 Exter visit of Right timings 6 Click submit	Flight Number: 2610 Month: 14 Day of Month: 2 Day of Week: 6 Origin: ATL Destination: MSP Scheduled Dept Time: 1210 Actual Dept Time: 1251 Scheduled Arr Time: 1415	Application should show 'month value can't be more than 12' validation message.	Working as expected	Fail	Veishnevi A
45	LoginPage_TC_001	Functional	Login page	Verify if user is able to log into the application with valid username and password	Any Latest Browser	1.Enser URL and click go 2.Enser walld email and password 3.Click the submit button	Email: sallyjemi1908@gmail.com Password: sally	Application should move to homepage where the user can now enter all the flight details	Working as expected	Pass	Sally Jemimah J

-					*						
5	Test case ID	Feature Type	Component	Test Scenario	Pre-Requisite	Steps To Execute	Test Data	Expected Result	Actual Result	Status	Executed By
12	oginPage_TC_002	Functional	Login page	Verify that the user will not be able to log in when entered incorrect email/password			Email: sallyiemi1908@gmail.com Password: hello	Application should show 'incorrect password'	Working as expected	Fail	Sally Jemimah J
13	rgisterPage_TC_00 1	Functional	Register page	Verify if the user is able to register with his/her email-lid and new password		2.Enter the Email-id and password	Email: leah@gmail.com Password: leah Confirm Password: leah	The login page will be opened as the registration was successful	Working as expected	Pass	Parkkavi T
	esultPage_TC_OO 1	UI	Result page	Verify user is able to view the predicted results			Flight Number: 2610 Month: 1 Day of Month: 2 Day of Week: 6 Origin: ATL Destination: MSP Scheduled Dept Time: 1210 Actual Dept Time: 1231 Scheduled Arr Time: 1415	Application should show 'Flight is on time or Flight is delayed' message.	Working as expected	Pass	Sally Jemimah J

8.2 USER ACCEPTANCE TESTING

1.PURPOSE OF DOCUMENT

The purpose of this document is to briefly explain the test coverage and open issues of the Flight Delay Prediction project at the time of the release to User Acceptance Testing (UAT).

2.DEFECT ANALYSIS

This report shows the number of resolved or closed bugs at each severity level, and how they were resolved

Resolution	Severity 1	Severity 2	Severity 3	Severity 4	Subtotal
By Design	1	4	2	3	10
Duplicate	0	0	3	0	3
External	0	1	0	0	1
Fixed	1	3	2	6	12
Not Reproduced	0	0	0	0	0
Skipped	1	1	0	0	2
Won't Fix	1	0	0	0	1
Totals	4	9	7	9	29

3.TEST CASE ANALYSIS

This report shows the number of test cases that have passed, failed, and untested

Section	Total Cases	Not Tested	Fail	Pass
Model Evaluation	10	0	0	10
Client Application	20	0	0	20
Exception Reporting	2	0	0	2
Final Report Output	4	0	0	4

9.RESULTS

9.1 PERFORMANCE METRICS

S.No.	Parameter	Values	Screenshot					
1.	Metrics	Classification Model: Confusion Matrix - , Accuray	Classification Re	port				
		Score- & Classification	print(classific	ation_repo	rt(Y_test	, Y_pred_lo	og_test))	
		Report -	F	recision	recall	f1-score	support	
			0.0	0.96	0.94	0.95	1985	
			1.0	0.60	0.73	0.66	262	
			accuracy			0.91	2247	
			macro avg	0.78	0.83	0.81	2247	
			weighted avg	0.92	0.91	0.92	2247	
			Accuracy, Precision, Recal	, F1 Score				
			acc_log = accuracy_scor prec_log, rec_log, fi_li print('Accuracy Score = print('Precision =', pr print('Recall =', rec_li print('F1 Score =', fi_	og, sup_log = pre , acc_log) ec_log[0]) og[0])	log_test) cision_recall_t	Fscore_support(Y_	test, Y_pred_log_tes	
			Accuracy Score = 0.9127 Precision = 0.963231486 Recall = 0.937027707808 F1 Score = 0.9499489274	2765406 5643				
			Checking for Ove	rfitting and L	Inderfitting			
			<pre>log_train_acc = log_test_acc = print('Training print('Testing')</pre>	Accuracy_sc Accuracy =	ore(Y_test	t, Y_pred_lo ain_acc)		
			Training Accura Testing Accurac					

Confusion Matrix
<pre>pd.crosstab(Y_test.ravel(), Y_pred_log_test)</pre>
col_0 0.0 1.0 row_0
0.0 1860 125
1.0 71 191

2.	Tune the Model	Hyperparameter Tuning Validation Method -	Tuning the Hyper Parameters of Logistic Regression
		Validation Method	<pre>parameters = { 'solver':['newton-cg', 'lbfgs', 'liblinear'],</pre>
			<pre>In [57]: tuned model = GridSearchCV(LogisticRegression(max_iter=880), param_grid=parameters, verbose=2] tuned_model.fit(%_train, Y_train.ravel())</pre>
			Out[57]: GridSearchCV(estinator-LogisticRegression(max_iter-806), param_grid={'C': [100, 10, 1.0, 0.1, 0.01], 'penalty': ['12'],
			Y_pred_tun_train = tuned_model.predict(X_train) Y_pred_tun_test = tuned_model.predict(X_test)
			: pd.DataFrame(Y_pred_tun_train).value_counts()
			0.0 7734 1.0 1250 dtype: int64
			: pd.DataFrame(Y_pred_tun_test).value_counts()
			0.0 1922 1.0 325 dtype: int64

Ev	aluating	g the	Tuned N	Model us	ing Metri	cs
Cla	ssification	n Repo	rt			
pri	nt(class	ificat	ion_repo	rt(Y_test	, Y_pred_to	un_test))
		pre	cision	recall	f1-score	support
	0.	0	0.97	0.94	0.95	1985
	0.000	0	0.61	0.76	0.95 0.68	262
					0.00	2247
	macro	y	0 70	0 05	0.92 0.81 0.92	2247
wei	anted av	8	0.79	0.00	0.01	2247
Accur	acy, Precision, R	Recall, F1 Sc	core			
prec_t print print print	un = accuracy : tum, rec_tum, f ('Accuracy Scor ('Precision =', ('Recall =', re ('F1 Score =',	f1_tun, su ne =', acc , prec_tun ec_tun[0])	p_tun = precis _tun) [0])		ore_support(Y_tes	t, Y_pred_tun_test
	acy Score = 8.9					
Recal	sion = 0.967221 1 = 0.936523920 ore = 0.9516252	1644120707 94710328	5			
Recal F1 Sco	sion = 8.96722: 1 = 8.936523920 ore = 8.9516252	1644120707 94710328 2879447147	5	Inderfitting		
Recall F1 Sco	sion = 0.967221 1 = 0.936523924 ore = 0.9516253 ocking for _train_ac _test_acc _nt('Train	1644128787 94718328 2879447147 Overfitt C = ac = acc ing Ac	ting and U curacy_sc uracy_sc curacy =	core(Y_tr	ain, Y_pred t, Y_pred_t ain_acc)	_tun_train) un_test)
Che tun tun prii	sion = 8.967221 1 - 8.936523922 ore = 8.956253 ccking for a _train_ac_ _test_acc_ nt('Train_ nt('Testi_ ining Acc_	0verfitt C = ac	ting and Li curacy_sc uracy_sc curacy = uracy =' = 0.9213	core(Y_tra	ain, Y_pred t, Y_pred_t ain_acc) t_acc)	
Che tun tun pri pri Tra Tes:	sion = 8.967221 1 - 8.936523922 ore = 8.956253 ccking for a _train_ac_ _test_acc_ nt('Train_ nt('Testi_ ining Acc_	1644128787 94718328 2879447147 Overfitt cc = acc cing Acc curacy gracy =	curacy_scuracy_scuracy = 0.92138	core(Y_troore(Y_test) ', tun_tro ', tun_test	ain, Y_pred t, Y_pred_t ain_acc) t_acc)	
Che tun tun pri pri Tra Tes:	sion = 8.967221 1 - 8.93652392 ccking for _train_ac _test_acc nt('Train nt('Testi ining Accu onfusion	Overfitti c = ac = accing Ac ng Acc uracy uracy uracy uracy uracy uracy	curacy_s: uracy_sc: curacy = uracy = 0.9213: 0.91588	core(Y_tropre(Y_tes) ', tun_tropre(Y_tes) ', tun_tes) 045414069 785046728	ain, Y_pred t, Y_pred_t ain_acc) t_acc) 457	un_test)
Che tun tun prii prii Tra: Tes:	sion = 8.967221 1 - 8.99652392 ocking for train_ac_ test_acc tt('Train nt('Testi ining Accu onfusion .crosst .crosst	Overfitti c = ac = accing Ac ng Acc uracy uracy uracy uracy uracy uracy	curacy_sc curacy_sc curacy = uracy =: = 0.9213 0.91588	core(Y_tropre(Y_tes) ', tun_tropre(Y_tes) ', tun_tes) 045414069 785046728	ain, Y_pred t, Y_pred_t ain_acc) t_acc) 457	un_test)
Che tun, prii prii Tra. Tes:	sion = 8.967221 1 - 8.99652392 ocking for train_ac_ test_acc tt('Train nt('Testi ining Accu onfusion .crosst .crosst	Overfitt c = acc ing	curacy_sc curacy_sc curacy = uracy =: = 0.9213 0.91588	core(Y_tropre(Y_tes) ', tun_tropre(Y_tes) ', tun_tes) 045414069 785046728	ain, Y_pred t, Y_pred_t ain_acc) t_acc) 457	
Che tun, prii prii Tra. Tes:	cking for train_ac test_acc nt('Train nt('Testi ining Accu confusior ccol_0 (Overfitt c = acc	curacy_si unacy_sci curacy = unacy =: unacy =: 1	core(Y_tropre(Y_tes) ', tun_tropre(Y_tes) ', tun_tes) 045414069 785046728	ain, Y_pred t, Y_pred_t ain_acc) t_acc) 457	un_test)

10. ADVANTAGES AND DISADVANTAGES

ADVANTAGES

- With this model, we can easily simplify the extensive traffic at the airport and can prevent the major confusions over flight delays.
- This can enable customer satisfaction and incomes of major airlines.
- Accuracy is measured with the previous models and we have analyzed that this model is much more effective in every way.
- The delay prediction model can make the concerned authorities be well prepared for any possible problem.
- The model can easily be understood by a layman: the model is simple and effective.

DISADVANTAGES

- This model needs to be more compact and flexible. The interoperability feature should be more enhanced.
- The model can be automated instead of manually entering data from the user.
 Manually entering data is hectic work for the user

11.CONCLUSION

In the present world, the major components of any transportation system include passenger airline, cargo airline and air traffic control system. They all face difficulties due to some sort of miscommunication. Our model has been made with the motive of simplifying complex situations due to flight delays and increasing customer satisfaction. With delays being predicted before, the passengers can easily schedule their plans well before. Our model works with an accuracy of 84% and is considered as an efficient model.

12.FUTURE SCOPE

The project can be extended to a wider range of airports. Current model only supports the data from 5 airports. If the dataset is extended by a vast quantity that has data from airports worldwide then the model can predict any flight delay across the globe. But to do so the complexity of power required will be much greater and the model needs to be trained better to have a higher speed and accuracy of computing results.

13.APPENDIX

SOURCE CODE

register.html

```
<!DOCTYPE html>
<html >
<!--From https://codepen.io/frytyler/pen/EGdtg-->
<head>
 <meta charset="UTF-8">
 <title>ML API</title>
 <link href='https://fonts.googleapis.com/css?family=Pacifico' rel='stylesheet' type='text/css'>
<link href='https://fonts.googleapis.com/css?family=Arimo' rel='stylesheet' type='text/css'>
k href='https://fonts.googleapis.com/css?family=Hind:300' rel='stylesheet' type='text/css'>
k href='https://fonts.googleapis.com/css?family=Open+Sans+Condensed:300 'rel='stylesheet' t
ype='text/css'>
<link rel="stylesheet" href="{{ url_for('static',filename='styles/Lcssstyle.css') }}">
</head>
<script>
function confirmPass() {
  var pass = document.getElementById("pswd").value
  var confPass = document.getElementById("cpswd").value
  if(pass != confPass) {
    //alert('Wrong confirm password !');
    document.getElementById('error').innerHTML='wrong confirm password';
document.getElementById('rbtn').disabled=true; }
```

```
else
    document.getElementById('error').innerHTML=";
document.getElementById('rbtn').disabled=false;
 }
}
</script>
<body>
<h1 class="h1">REGISTRATION</h1>
<div class="register">
  <form action="{{ url_for('register')}}" method="post">
   Email: <input type="email" name="email" placeholder="ex:abc@gmail.com" required="required"
autocomplete />
   Password: <input type="password" name="pswd" id="pswd" placeholder="ex:abc@123"
required="required" maxlength=15/>
 Confirm Password:<input type="password" name="cpswd" id="cpswd" placeholder="re-enter same
password" required="required" oninput="confirmPass()" />
 <span id="error" style="color:#F00;"> </span>
   <button type="submit" class="btn btn-primary btn-block" id="rbtn">Register</button>
  </form>
 <br>
 <br>
</div>
</body>
</html>
```

login.html

```
<!DOCTYPE html>
<html>
<!--From https://codepen.io/frytyler/pen/EGdtg-->
<head>
 <meta charset="UTF-8">
 <title>ML API</title>
 k href='https://fonts.googleapis.com/css?family=Pacifico' rel='stylesheet' type='text/css'>
k href='https://fonts.googleapis.com/css?family=Arimo' rel='stylesheet' type='text/css'>
k href='https://fonts.googleapis.com/css?family=Hind:300' rel='stylesheet' type='text/css'>
k href='https://fonts.googleapis.com/css?family=Open+Sans+Condensed:300' rel='stylesheet'
type='text/css'>
k rel="stylesheet" href="{{ url_for('static',filename='styles/Lcssstyle.css') }}">
</head>
<body>
<h1 class="h1">LOGIN</h1>
<div class="login">
  <form action="{{ url_for('login')}}" method="post">
   Email: <input type="email" name="email" placeholder="ex:abc@gmail.com" required="required"
autocomplete />
   Password: <input type="password" name="pswd" id="pswd" placeholder="ex:abc@123"
required="required" maxlength=15/>
  {{error}}
   <span id="error" style="color:#F00;"> </span>
   <button type="Submit" class="btn btn-primary btn-block" id="lbtn">login</button>
   <h5>If you're a new user, </h5><a href="{{url_for('reg')}}">click here to register</a>
  </form> <br> <br>>
</div></body></html>
```

Flightdelay.html

```
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta http-equiv="X-UA-Compatible">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
k rel="stylesheet" href="{{ url_for('static',filename='styles/styles.css') }}">
<script src="{{url_for('static', filename='styles/delaypredict.js')}}"></script>
<title>Flight Delay Prediction</title>
</head>
<body id="flight-form">
<h2 id="main-head" class="centered-head">FLIGHT DELAY PREDICTION</h2>
<img src="{{url_for('static', filename='styles/images/Flight.png')}}" id="bgimg">
<form name="flightForm" action="/result" method="POST" target="_blank">
<div id="form-content">
<div id="block1">
<div class="detail-container">
<label for="fno" class="label-item">Enter the Flight Number</label>
<br>
<input type="number" id="fno" name="fno" class="text-input">
</div>
<div class="detail-container">
<label for="month" class="label-item">Month</label>
<br>
<input type="number" id="month" name="month" class="text-input" onblur="checkValid('month');"
placeholder="Enter the Month Number">
<div class="alert-text" id="month-valid">Enter a valid month between 1 to 12.</div></div>
```

```
<div class="detail-container">
<label for="daym" class="label-item">Day of Month</label>
<hr>
<input type="number" id="daym" name="daym" class="text-input" onblur="checkValid('daym');">
<div class="alert-text" id="daym-valid">Enter a valid day of month.</div>
</div>
<div class="detail-container">
<label for="dayw" class="label-item">Day of Week</label>
<br>
<input type="number" id="dayw" name="dayw" class="text-input" onblur="checkValid('dayw');">
<div class="alert-text" id="dayw-valid">Enter a valid day between 1 to 7.</div>
</div>
<div class="detail-container">
<label for="org" class="label-item">Origin</label>
<hr>
<select id="org" name="org" class="select-input">
<option value="ATL" class="option-item">ATL</option>
<option value="SEA" class="option-item">SEA</option>
<option value="DTW" class="option-item">DTW</option>
<option value="MSP" class="option-item">MSP</option>
<option value="JFK" class="option-item">JFK</option>
</select>
</div>
<div class="detail-container">
<label for="dest" class="label-item">Destination</label>
<br>
<select id="dest" name="dest" class="select-input" onblur="checkValid('dest');">
```

```
<option value="ATL" class="option-item">ATL</option>
<option value="SEA" class="option-item">SEA</option>
<option value="DTW" class="option-item">DTW</option>
<option value="MSP" class="option-item">MSP</option>
<option value="JFK" class="option-item">JFK</option>
</select>
<div class="alert-text" id="dest-valid">Enter different Origin and Destination.</div>
</div>
</div>
<div id="block2">
<div class="detail-container">
<label for="sdt" class="label-item">Scheduled Departure Time</label>
<br>
<input
        type="number" id="sdt" name="sdt"
                                                   class="text-input"
                                                                       onblur="checkValid('sdt');"
placeholder="Enter in the format HHMM">
<div class="alert-text" id="sdt-valid">Enter a valid time between 500 to 2359.
</div>
<div class="detail-container">
<label for="sat" class="label-item">Scheduled Arrival Time</label>
<br>
<input
        type="number"
                          id="sat"
                                    name="sat"
                                                   class="text-input"
                                                                       onblur="checkValid('sat');"
placeholder="Enter in the format HHMM">
<div class="alert-text" id="sat-valid">Enter a valid time between 500 to 2359.
</div>
<div class="detail-container">
<label for="adt" class="label-item">Actual Departure Time</label>
<br>
```

```
onblur="checkValid('adt');"
<input
         type="number"
                           id="adt"
                                      name="adt"
                                                     class="text-input"
placeholder="Enter in the format HHMM">
<div class="alert-text" id="adt-valid">Enter a valid time between 500 to 2359.</div>
</div>
</div>
</div>
<div id="submit-button">
<input type="submit" value="Submit" id="submit" class="button" onclick="validateForm()">
</div>
</form>
</body>
</html>
result.html
<!doctype html>
<html>
<head>
 <title>Flight Delay Prediction - Result</title>
 rel="stylesheet" href="{{ url_for('static',filename='styles/result_styles.css') }}">
</head>
<body>
 <img src="{{url_for('static', filename='styles/images/Flight.png')}}" id="bgimg">
 {% if prediction[0]== 0.0 %}
 <div class="pred_result" id="result_0">Your flight will likely be on time</div>
 {% endif %}
 {% if prediction[0] == 1.0 %}
 <div class="pred_result" id="result_1">Your flight is likely to be delayed</div>
```

```
{% endif %}
</body>
<footer>
 If you need any of your queries to be answered, kindly find below the link that provides the 24x7 customer toll-free number of different airlines
  <a href="http://www.tollfreeairline.com/">Airline toll-free numbers and websites</a> 
</pooter>
</html>
```

cssstyle.css

@import url(https://fonts.googleapis.com/css?family=Open+Sans);

.btn { display: inline-block; *display: inline; *zoom: 1; padding: 4px 10px 4px; margin-bottom: 0; fontsize: 13px; line-height: 18px; color: #333333; text-align: center; text-shadow: 0 1px 1px rgba(255, 255, 255, 0.75); vertical-align: middle; background-color: #f5f5f5; background-image: -moz-lineargradient(top, #ffffff, #e6e6e6); background-image: -ms-linear-gradient(top, #ffffff, #e6e6e6); background-image: -webkit-gradient(linear, 0 0, 0 100%, from(#ffffff), to(#e6e6e6)); backgroundimage: -webkit-linear-gradient(top, #ffffff, #e6e6e6); background-image: -o-linear-gradient(top, #ffffff, #e6e6e6); background-image: linear-gradient(top, #ffffff, #e6e6e6); background-repeat: repeat-x; filter: progid:dximagetransform.microsoft.gradient(startColorstr=#ffffff, endColorstr=#e6e6e6, GradientType=0); border-color: #e6e6e6 #e6e6e6 #e6e6e6; border-color: rgba(0, 0, 0, 0, 1) rgba(0, 0, 0, 0.1) rgba(0, 0, 0, 0.25); border: 1px solid #e6e6e6; -webkit-border-radius: 4px; -moz-border-radius: 4px; border-radius: 4px; -webkit-box-shadow: inset 0 1px 0 rgba(255, 255, 255, 0.2), 0 1px 2px rgba(0, 0, 0, 0.05); -moz-box-shadow: inset 0 1px 0 rgba(255, 255, 255, 0.2), 0 1px 2px rgba(0, 0, 0, 0.05); box-shadow: inset 0 1px 0 rgba(255, 255, 255, 0.2), 0 1px 2px rgba(0, 0, 0, 0.05); cursor: pointer; *margin-left: .3em; }

.btn:hover, .btn:active, .btn.active, .btn.disabled, .btn[disabled] { background-color: #e6e6e6; }

.btn-large { padding: 9px 14px; font-size: 15px; line-height: normal; -webkit-border-radius: 5px; -moz-border-radius: 5px; border-radius: 5px; }

.btn:hover { color: #333333; text-decoration: none; background-color: #e6e6e6; background-position: 0 -15px; -webkit-transition: background-position 0.1s linear; -moz-transition: background-position 0.1s linear; -o-transition: background-position 0.1s linear; transition: background-position 0.1s linear; }

```
. btn-primary. btn-primary: hover \{ text-shadow: 0 -1 px 0 rgba(0, 0, 0, 0.25); color: \#ffffff; \} \\ . btn-primary.active \{ color: rgba(255, 255, 255, 0.75); \} \\
```

.btn-primary { background-color: #4a77d4; background-image: -moz-linear-gradient(top, #6eb6de, #4a77d4); background-image: -ms-linear-gradient(top, #6eb6de, #4a77d4); background-image: -webkit-gradient(linear, 0 0, 0 100%, from(#6eb6de), to(#4a77d4)); background-image: -webkit-linear-gradient(top, #6eb6de, #4a77d4); background-image: -o-linear-gradient(top, #6eb6de, #4a77d4); background-repeat: repeat-x; filter: progid:dximagetransform.microsoft.gradient(startColorstr=#6eb6de, endColorstr=#4a77d4, GradientType=0); border: 1px solid #3762bc; text-shadow: 1px 1px 1px rgba(0,0,0,0.4); box-shadow: inset 0 1px 0 rgba(255, 255, 255, 0.2), 0 1px 2px rgba(0, 0, 0, 0.5); }

.btn-primary:hover, .btn-primary:active, .btn-primary.disabled, .btn-primary[disabled] { filter: none; background-color: #4a77d4; }

```
.btn-block { width: 100%; display:block; }
```

* { -webkit-box-sizing:border-box; -moz-box-sizing:border-box; -ms-box-sizing:border-box; -o-box-sizing:border-box; box-sizing:border-box;}

```
html { width: 100%; height:150%;}
body {
  width: 100%;
  height:100%;
  font-family: 'Open Sans', sans-serif;
  background: #092756;
  color: #fff;
  font-size: 16px;
  text-align:center-left;
  letter-spacing:1.2px;
```

background: -moz-radial-gradient(0% 100%, ellipse cover, rgba(104,128,138,.4) 10%,rgba(138,114,76,0) 40%),-moz-linear-gradient(top, rgba(57,173,219,.25) 0%, rgba(42,60,87,.4) 100%), -moz-linear-gradient(-45deg, #670d10 0%, #092756 100%);

```
: -webkit-radial-gradient(0% 100%, ellipse cover, rgba(104,128,138,.4) 10%,rgba(138,114,76,0) 40%), -webkit-linear-gradient(top, rgba(57,173,219,.25) 0%,rgba(42,60,87,.4) 100%), -webkit-linear-gradient(-45deg, #670d10 0%,#092756 100%);
```

background: -o-radial-gradient(0% 100%, ellipse cover, rgba(104,128,138,.4) 10%,rgba(138,114,76,0) 40%), -o-linear-gradient(top, rgba(57,173,219,.25) 0%,rgba(42,60,87,.4) 100%), -o-linear-gradient(-45deg, #670d10 0%,#092756 100%);

background: -ms-radial-gradient(0% 100%, ellipse cover, rgba(104,128,138,.4) 10%,rgba(138,114,76,0) 40%), -ms-linear-gradient(top, rgba(57,173,219,.25) 0%,rgba(42,60,87,.4) 100%), -ms-linear-gradient(-45deg, #670d10 0%,#092756 100%);

background: -webkit-radial-gradient(0% 100%, ellipse cover, rgba(104,128,138,.4) 10%,rgba(138,114,76,0) 40%), linear-gradient(to bottom, rgba(57,173,219,.25) 0%,rgba(42,60,87,.4) 100%), linear-gradient(135deg, #670d10 0%,#092756 100%);

```
filter: progid:DXImageTransform.Microsoft.gradient( startColorstr='#3E1D6D', endColorstr='#092756',GradientType=1);
}
```

```
.login {
    position: absolute;
    top: 40%;
    left: 50%;
    margin: -150px 0 0 -150px;
    width:400px;
    height:400px;
}
.h1 {font-size: 38px;color: #fff; text-shadow: 0 0 10px rgba(0,0,0,0.3); letter-spacing:1px; text-align:center;margin-left: 90px; }
body .origin{padding-bottom:10px}
body .dest{padding-bottom:10px}
body .btn{padding:20px}
input {
```

```
width: 100%:
 margin-bottom: 10px;
 background: rgba(0,0,0,0.3);
 border: none;
 outline: none;
 padding: 10px;
 font-size: 13px;
 color: #fff;
 text-shadow: 1px 1px 1px rgba(0,0,0,0.3);
 border: 1px solid rgba(0,0,0,0.3);
 border-radius: 4px;
 box-shadow: inset 0 -5px 45px rgba(100,100,100,0.2), 0 1px 1px rgba(255,255,255,0.2);
 -webkit-transition: box-shadow .5s ease:
 -moz-transition: box-shadow .5s ease:
 -o-transition: box-shadow .5s ease:
 -ms-transition: box-shadow .5s ease;
 transition: box-shadow .5s ease;
}
input:focus { box-shadow: inset 0 -5px 45px rgba(100,100,100,0.4), 0 1px 1px rgba(255,255,255,0.2);
```

Lcssstyle.css

@import url(https://fonts.googleapis.com/css?family=Open+Sans);

.btn { display: inline-block; *display: inline; *zoom: 1; padding: 4px 10px 4px; margin-bottom: 0; font-size: 13px; line-height: 18px; color: #333333; text-align: center;text-shadow: 0 1px 1px rgba(255, 255, 255, 0.75); vertical-align: middle; background-color: #f5f5f5; background-image: -moz-linear-gradient(top, #ffffff, #e6e6e6); background-image: -ms-linear-gradient(top, #ffffff, #e6e6e6); background-image: -webkit-linear-gradient(top, #ffffff, #e6e6e6); background-image: -o-linear-gradient(top, #ffffff, #e6e6e6); background-image: -o-linear-gradient(top,

#ffffff, #e6e6e6); background-image: linear-gradient(top, #ffffff, #e6e6e6); background-repeat: repeat-x; filter: progid:dximagetransform.microsoft.gradient(startColorstr=#ffffff, endColorstr=#e6e6e6, GradientType=0); border-color: #e6e6e6 #e6e6e6 #e6e6e6; border-color: rgba(0, 0, 0, 0.1) rgba(0, 0, 0, 0.25); border: 1px solid #e6e6e6; -webkit-border-radius: 4px; -moz-border-radius: 4px; border-radius: 4px; -webkit-box-shadow: inset 0 1px 0 rgba(255, 255, 255, 0.2), 0 1px 2px rgba(0, 0, 0, 0.05); -moz-box-shadow: inset 0 1px 0 rgba(255, 255, 255, 0.2), 0 1px 2px rgba(0, 0, 0, 0.05); box-shadow: inset 0 1px 0 rgba(255, 255, 0.2), 0 1px 2px rgba(0, 0, 0, 0.05); cursor: pointer; *margin-left: .3em; }

.btn:hover, .btn:active, .btn.active, .btn.disabled, .btn[disabled] { background-color: #e6e6e6; }

.btn-large { padding: 9px 14px; font-size: 15px; line-height: normal; -webkit-border-radius: 5px; -moz-border-radius: 5px; border-radius: 5px; }

.btn:hover { color: #333333; text-decoration: none; background-color: #e6e6e6; background-position: 0 -15px; -webkit-transition: background-position 0.1s linear; -moz-transition: background-position 0.1s linear; -o-transition: background-position 0.1s linear; transition: background-position 0.1s linear; }

.btn-primary, .btn-primary:hover { text-shadow: 0 -1px 0 rgba(0, 0, 0, 0.25); color: #ffffff; }

.btn-primary.active { color: rgba(255, 255, 255, 0.75); }

.btn-primary { background-color: #4a77d4; background-image: -moz-linear-gradient(top, #6eb6de, #4a77d4); background-image: -ms-linear-gradient(top, #6eb6de, #4a77d4); background-image: -webkit-gradient(linear, 0 0, 0 100%, from(#6eb6de), to(#4a77d4)); background-image: -webkit-linear-gradient(top, #6eb6de, #4a77d4); background-image: -o-linear-gradient(top, #6eb6de, #4a77d4); background-image: linear-gradient(top, #6eb6de, #4a77d4); background-repeat: repeat-x; filter: progid:dximagetransform.microsoft.gradient(startColorstr=#6eb6de, endColorstr=#4a77d4, GradientType=0); border: 1px solid #3762bc; text-shadow: 1px 1px rgba(0,0,0,0.4); box-shadow: inset 0 1px 0 rgba(255, 255, 255, 0.2), 0 1px 2px rgba(0, 0, 0, 0.5); }

.btn-primary:hover, .btn-primary:active, .btn-primary.active, .btn-primary.disabled, .btn-primary[disabled] { filter: none; background-color: #4a77d4; }

.btn-block { width: 100%; display:block; }

* { -webkit-box-sizing:border-box; -moz-box-sizing:border-box; -ms-box-sizing:border-box; -o-box-sizing:border-box; box-sizing:border-box;}

```
html { width: 100%; height:100%;}
body {
  width: 100%;
  height:100%;
  font-family: 'Open Sans', sans-serif;
```

```
background: #092756;
 color: #fffff;
 font-size: 16px;
 text-align:center-left;
 letter-spacing:1.2px;
 background:
                  -moz-radial-gradient(0%
                                              100%,
                                                        ellipse
                                                                   cover,
                                                                              rgba(104,128,138,.4)
10%,rgba(138,114,76,0) 40%),-moz-linear-gradient(top, rgba(57,173,219,.25) 0%, rgba(42,60,87,.4)
100%), -moz-linear-gradient(-45deg, #670d10 0%, #092756 100%);
 background:
                  -webkit-radial-gradient(0%
                                                100%,
                                                         ellipse
                                                                              rgba(104,128,138,.4)
                                                                    cover,
10%,rgba(138,114,76,0) 40%), -webkit-linear-gradient(top, rgba(57,173,219,.25) 0%,rgba(42,60,87,.4)
100%), -webkit-linear-gradient(-45deg, #670d10 0%, #0756 100%);
                   -o-radial-gradient(0%
 background:
                                            100%,
                                                       ellipse
                                                                              rgba(104,128,138,.4)
                                                                   cover,
10%,rgba(138,114,76,0) 40%), -o-linear-gradient(top,
                                                        rgba(57,173,219,.25) 0%,rgba(42,60,87,.4)
100%), -o-linear-gradient(-45deg, #670d10 0%,#092756 100%);
                  -ms-radial-gradient(0%
 background:
                                             100%,
                                                        ellipse
                                                                   cover,
                                                                              rgba(104,128,138,.4)
10%,rgba(138,114,76,0) 40%), -ms-linear-gradient(top,
                                                        rgba(57,173,219,.25) 0%,rgba(42,60,87,.4)
100%), -ms-linear-gradient(-45deg, #670d10 0%, #092756 100%);
 background:
                  -webkit-radial-gradient(0%
                                                100%.
                                                         ellipse
                                                                    cover,
                                                                              rgba(104,128,138,.4)
10%,rgba(192,192,192,0) 40%), linear-gradient(to bottom, rgba(57,173,219,.25) 0%,rgba(42,60,87,.4)
100%), linear- gradient(13deg, #67d 0%,#1156 100%);
filter:progid:DXImageTransform.Microsoft.gradient(startColorstr='#c0c0c0',
endColorstr='#092756',GradientType=1);
}
.register {
 position: absolute;
 top: 40%;
 left: 50%;
 margin: -150px 0 0 -150px;
 width:400px;
 height:400px;
}
```

```
.login {
 position: absolute;
 top: 40%;
 left: 50%;
 margin: -150px 0 0 -150px;
 width:400px;
 height:400px;
}
.h1 {font-size: 38px;color: #fff; text-shadow: 0 0 10px rgba(0,0,0,0.3); letter-spacing:1px; text-
align:center;margin-left: 90px; }
body .origin{padding-bottom:10px}
body .dest{padding-bottom:10px}
body .btn{padding:20px}
input {
 width: 100%;
 margin-bottom: 10px;
 background: #ffff;
 border: none;
 outline: none;
 padding: 10px;
 font-size: 13px;
 color: #fffff;
 text-shadow: 1px 1px 1px rgba(0,0,0,0.3);
 border: 1px solid rgba(0,0,0,0.3);
 border-radius: 4px;
 box-shadow: inset 0 -5px 45px rgba(100,100,100,0.2), 0 1px 1px rgba(255,255,255,0.2);
 -webkit-transition: box-shadow .5s ease;
 -moz-transition: box-shadow .5s ease:
```

```
-o-transition: box-shadow .5s ease;
 -ms-transition: box-shadow .5s ease;
 transition: box-shadow .5s ease;
}
input:focus { box-shadow: inset 0 -5px 45px rgba(100,100,100,0.4), 0 1px 1px rgba(255,255,255,0.2);
result_style.css
#bgimg {
  position: fixed;
  z-index: -1;
  opacity: 0.5;
  width: 100%;
  height: 100%;
  padding: 0;
  margin: 0;
  top: 0;
}
body {
 font-family: Arial, Helvetica, sans-serif;
 margin: 0;
 display: flex;
 justify-content: center;
 align-items: center;
 height: 100vh;
}
```

div {

```
display: flex;
 align-items: center;
 justify-content: center;
 font-size: 82px;
 font-weight: 700;
 margin: 0;
 height: 100vh;}
style.css
body {
  font-family: Arial, Helvetica, sans-serif;
  margin: 0;
}
.content {
  padding: 10px;
  display: block;
}
.content-head {
  text-align: center;
  font-weight: bold;
  font-size: 36px;
}
.button {
  background-color: #1C55A2;
  color: aliceblue;
  padding: 10px;
  border-radius: 10px;
```

```
border-color: #0E0E0F;
  border-width: 1.5px;
}
.button a {
  color: aliceblue;
  text-decoration: none;
  font-weight: bold;
}
#feedback-button {
  margin-top: 10px;
}
#feedback-button-section {
  text-align: center;
}
#bgimg {
  position: fixed;
  z-index: -1;
  opacity: 0.5;
  width: 100%;
  height: 100%;
  padding: 0;
  margin: 0;
  top: 0;
.centered-head {
  text-align: center;
  color: #1C55A2;
  font-weight: bold;
```

```
}
.label-item {
  color: #2E547F;
  font-weight: bold;
}
.detail-container {
  padding-bottom: 10px;
  padding-top: 10px;
}
.text-input {
  margin-top: 5px;
  border-color: #1C55A2;
  border-width: 1.5px;
  border-radius: 10px;
  width: 75%;
  height: 20px;
  padding-left: 5px;
  padding-right: 5px;
  padding-top: 2px;
  padding-bottom: 2px;
}
.select-input {
  margin-top: 5px;
  border-color: #0E0E0F;
  border-width: 1.5px;
  border-radius: 10px;
```

```
width: 40%;
  height: 30px;
  background-color: #1C55A2;
  color: aliceblue;
  font-weight: bold;
  cursor: pointer;
}
#form-content {
  display: flex;
  justify-content: space-evenly;
  flex-direction: row;
  padding-left: 10%;
}
#block1 {
  display: block;
  width: 50%;
  padding: 20px;
}
#block2 {
  display: block;
  width: 50%;
  padding: 20px;
}
#review {
  height: 100px;
  padding-top: 5px;
  font-family: Arial, Helvetica, sans-serif;
}
```

```
#submit-button {
  text-align: center;
  align-items: center;
  display: block;
}
#submit {
  background-color: #1C55A2;
  color: aliceblue;
  font-weight: bold;
}
#submit:hover {
  cursor: pointer;
}
.choose-item {
  font-weight: 600;
}
input[type="radio"], input[type="checkbox"] {
  cursor: pointer;
}
.alert-text {
  color: rgb(255, 79, 47);
  font-size: small;
  padding-left: 10px;
  display: none;
}
```

Importing the required packages

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sb
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, classification_report, precision_recall_fscore_support
import joblib
import pickle

Loading the dataset

import os, types import pandas as pd from botocore.client import Config import ibm_boto3

```
def __iter__(self): return 0
```

```
# @hidden_cell
```

The following code accesses a file in your IBM Cloud Object Storage. It includes your credentials. # You might want to remove those credentials before you share the notebook.

cos_client = ibm_boto3.client(service_name='s3',

ibm_api_key_id='PM77kN4FyWauT9b7yYQ1Mgxi4SbBI4_3cKxpFreNFXdY', ibm_auth_endpoint="https://iam.cloud.ibm.com/oidc/token", config=Config(signature version='oauth').

endpoint_url='https://s3.private.us.cloud-object-storage.appdomain.cloud')

bucket = 'flightdelayprediction-donotdelete-pr-3uvg7e82sbqe8r' object_key = 'flightdata.csv'

body = cos_client.get_object(Bucket=bucket,Key=object_key)['Body']
add missing __iter__ method, so pandas accepts body as file-like object
if not hasattr(body, "__iter__"): body.__iter__ = types.MethodType(__iter__, body)
df = pd.read_csv(body)
df.head()
df.info()

Performing Univariate Analysis

Using Pie Chart

df['YEAR'].value_counts().plot(kind='pie', autopct='%.0f') plt.show()

Performing Bivariate Analysis

Using scatterplot

```
plt.scatter(df.DEP_DELAY, df.DEP_DEL15)
plt.title('Departure Delay Analysis')
plt.xlabel('DEP_DELAY')
plt.ylabel('DEP_DEL15')
plt.show()

plt.scatter(df.DEP_DELAY, df.DEP_DEL15)
plt.title('Arrival Delay Analysis')
plt.xlabel('ARR_DELAY')
plt.ylabel('ARR_DEL15')
plt.show()
```

Using lineplots

```
fig, ax = plt.subplots(figsize=(10, 3))
plt.subplot(1, 2, 1)
plt.title('CRS_DEP_TIME')
plt.plot(df.CRS_DEP_TIME)
plt.subplot(1, 2, 2)
plt.title('DEP_TIME')
plt.plot(df.DEP_TIME)
plt.show()
fig, ax = plt.subplots(figsize=(10, 3))
plt.subplot(1, 2, 1)
plt.title('CRS_ARR_TIME')
plt.plot(df.CRS_ARR_TIME)
plt.subplot(1, 2, 2)
```

plt.title('ARR_TIME')

```
plt.plot(df.ARR_TIME)

plt.show()
fig, ax = plt.subplots(figsize=(10, 3))
plt.subplot(1, 2, 1)
plt.title('CRS_ELAPSED_TIME')
plt.plot(df.CRS_ELAPSED_TIME)
plt.subplot(1, 2, 2)
plt.title('ACTUAL_ELAPSED_TIME')
plt.plot(df.ACTUAL_ELAPSED_TIME)
plt.show()
```

Performing Multivariate Analysis

Using pairplot

sb.pairplot(df.iloc[:, 12:])
plt.show()

Using heatmap

fig, ax = plt.subplots(figsize=(15, 10)) sb.heatmap(df.iloc[:, 12:].corr(), annot=True, ax=ax) plt.show()

Performing Descriptive Analysis

df.describe()

Dropping unnecessary columns

df = df[['FL_NUM', 'MONTH', 'DAY_OF_MONTH', 'DAY_OF_WEEK', 'ORIGIN', 'DEST', 'DEP_DEL15',
'CRS_ARR_TIME', 'ARR_DEL15']]

df.head()

Handling Missing Values

Checking for null values

df.isnull().any()

Replacing null values

```
df.fillna(df['DEP_DEL15'].mode()[0], inplace=True) df.fillna(df['ARR_DEL15'].mode()[0], inplace=True)
```

Checking if the replacement is made

df.isnull().any()

Handling Outliers

fig, ax = plt.subplots(figsize=(5, 6)) sb.boxplot(data=df['CRS_ARR_TIME']) plt.show()

Encoding

One Hot Encoding

df = pd.get_dummies(df, columns=['ORIGIN', 'DEST'])
df.head()
df.columns

Splitting dataset into Independent and Dependent Variables

X = df.drop(columns=['ARR_DEL15']) Y = df[['ARR_DEL15']]

Scaling the Independent Variables

scale_crs = StandardScaler()
X[['CRS_ARR_TIME']] = scale_crs.fit_transform(X[['CRS_ARR_TIME']])
scale_flnum = StandardScaler()
X[['FL_NUM']] = scale_flnum.fit_transform(X[['FL_NUM']])
X.head()
X.FL_NUM.value_counts()

Converting the Independent and Dependent Variables to 1D Arrays

X = X.values

Y = Y.values

Splitting dataset into Train and Test datasets

X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2) X_train.shape, X_test.shape, Y_train.shape, Y_test.shape

Building the Machine Learning Models

Support Vector Machine (Classifier)

```
from sklearn.svm import SVC
svc = SVC()
svc.fit(X_train, Y_train.ravel())
```

Testing the Models

Support Vector Machine (Classifier)

pd.DataFrame(Y_pred_svc_train).value_counts()

Classification Report

```
print(classification_report(Y_test, Y_pred_svc_test))
Accuracy, Precision, Recall, F1 Score
acc_svc = accuracy_score(Y_test, Y_pred_svc_test)
prec_svc, rec_svc, f1_svc, sup_svc = precision_recall_fscore_support(Y_test, Y_pred_svc_test)
print('Accuracy Score =', acc_svc)
print('Precision =', prec_svc[0])
print('Recall =', rec_svc[0])
print('F1 Score =', f1_svc[0])
```

Checking for Overfitting and Underfitting

```
vc_train_acc = accuracy_score(Y_train, Y_pred_svc_train)
svc_test_acc = accuracy_score(Y_test, Y_pred_svc_test)
print('Training Accuracy =', svc_train_acc)
print('Testing Accuracy =', svc_test_acc)
```

Confusion Matrix

pd.crosstab(Y_test.ravel(), Y_pred_svc_test)

Dumping the Chosen Model into pkl file

joblib.dump(svc, 'model.pkl')

```
Dumping the Scaling Modules into pkl file
pickle.dump(scale_crs, open('crs_scale.pkl', 'wb'))
pickle.dump(scale_flnum, open('flnum_scale.pkl', 'wb'))
!pip install -U ibm-watson-machine-learning
from ibm_watson_machine_learning import APIClient
import json
wml_credentials = {
  "apikey": "G0-fTz5hk2xE6cxkk-PyyzQmio8NNqeMG_wTLTgCSqmU",
  "url":"https://us-south.ml.cloud.ibm.com"
}
wml_clients = APIClient(wml_credentials)
wml_clients.spaces.list()
space_id = "267b8ab3-7a6f-4efa-81fb-bc602a9f29e2"
wml_clients.set.default_space(space_id)
wml_clients.software_specifications.list(500)
import sklearn
sklearn.__version__
'1.0.2'
MODEL_NAME="supportvectormachine"
DEPLOYMENT_NAME="svc_deployment"
DEMO_MODEL=svc
soft_sepc_id=wml_clients.software_specifications.get_id_by_name("runtime-22.1-py3.9")
model_props={
  wml_clients.repository.ModelMetaNames.NAME:MODEL_NAME,
  wml_clients.repository.ModelMetaNames.TYPE:"scikit-learn_1.0",
  wml_clients.repository.ModelMetaNames.SOFTWARE_SPEC_UID: soft_sepc_id}
model_details=wml_clients.repository.store_model(model=DEMO_MODEL,meta_props=model_prop
s,training_data=X_train, training_target=Y_train.ravel())
model_details
model_id = wml_clients.repository.get_model_id(model_details)
```

```
model_id
deployment_props = {
  wml_clients.deployments.ConfigurationMetaNames.NAME:DEPLOYMENT_NAME,
  wml_clients.deployments.ConfigurationMetaNames.ONLINE: {}
}
deployment = wml_clients.deployments.create(
  artifact_uid=model_id,
  meta_props=deployment_props
app_ibm.py
from flask import Flask, render_template, request, redirect, flash
import pickle
import pandas as pd
import joblib
import numpy as np
import sqlite3
app = Flask(__name__)
app.secret_key="21433253"
conn = sqlite3.connect("database1.db")
conn.execute("CREATE TABLE IF NOT EXISTS login(email TEXT PRIMARY KEY,password TEXT)")
conn.close()
@app.route('/')
def main():
  return render_template('login.html')
@app.route('/login', methods=['POST', 'GET'])
def login():
  if request.method == 'POST':
    try.
      print("request1")
      fv = [x for x in request.form.values()]
      print(fv)
      print([x for x in request.form.values()])
      print(request.form["email"])
```

```
email = request.form["email"]
  pswd = request.form["pswd"]
  print("request2")
  conn = sqlite3.connect("database1.db")
  cur = conn.cursor()
  print(email, pswd)
  cur.execute("SELECT password FROM login WHERE email=?;", (str(email),))
  print("select")
  result = cur.fetchone()
  cur.execute("SELECT * FROM login")
  print(cur.fetchall())
  print("fetch")
  if result:
    print("You've have been logged in")
    print(result)
    if result[0] == pswd:
      flash("Login successfully", 'success')
      return redirect('/home')
    else:
      return render_template("login.html", error="Please enter correct password")
  else:
    print("register")
    flash("Please Register first to access", 'danger')
    return redirect('/reg')
except Exception as e:
  print(e)
  print('danger----')
  return "hello error"
```

```
@app.route('/reg')
def reg():
  return render_template("register.html")
@app.route('/register', methods=['POST', 'GET'])
def register():
  if request.method == 'POST':
    try:
      print("request1")
       fv = [x for x in request.form.values()]
       print(fv)
       print([x for x in request.form.values()])
       print(request.form["email"])
       email = request.form["email"]
       print(request.form["pswd"])
       pswd = request.form["pswd"]
       conn = sglite3.connect("database1.db")
       print("database")
       cur = conn.cursor()
       print("cursor")
       cur.execute("SELECT * FROM login WHERE email=?;", (str(email),))
      print("fetch")
       result = cur.fetchone()
       if result:
         print("already")
         flash("User already exists, please login", 'danger')
         return redirect('/')
       else:
         print("insert")
         cur.execute("INSERT INTO login(email,password)values(?,?)", (str(email), str(pswd)))
         conn.commit()
         cur.execute("SELECT * FROM login")
         print(cur.fetchall())
         flash("Registered successfully", 'success')
         return render_template('login.html')
```

```
except Exception as e
print(e)
 return "hello error1"
@app.route('/home')
def home():
  return render_template('Flightdelay.html')
@app.route('/result', methods=['POST'])
def predict():
  fl_num = int(request.form.get('fno'))
  month = int(request.form.get('month'))
  dayofmonth = int(request.form.get('daym'))
  dayofweek = int(request.form.get('dayw'))
  sdeptime = request.form.get('sdt')
  adeptime = request.form.get('adt')
  arrtime = int(request.form.get('sat'))
  depdelay = int(adeptime) - int(sdeptime)
  inputs = list()
  inputs.append(fl_num)
  inputs.append(month)
  inputs.append(dayofmonth)
  inputs.append(dayofweek)
  if (depdelay < 15):
    inputs.append(0)
  else:
    inputs.append(1)
  inputs.append(arrtime)
  origin = str(request.form.get("org"))
  dest = str(request.form.get("dest"))
  if (origin == "ATL"):
    a = [1, 0, 0, 0, 0]
    inputs.extend(a)
  elif (origin == "DTW"):
    a = [0, 1, 0, 0, 0]
    inputs.extend(a)
  elif (origin == "JFK"):
    a = [0, 0, 1, 0, 0]
```

```
inputs.extend(a)
  elif (origin == "MSP"):
    a = [0, 0, 0, 1, 0]
    inputs.extend(a)
  elif (origin == "SEA"):
    a = [0, 0, 0, 0, 1]
    inputs.extend(a)
  if (dest == "ATL"):
    b = [1, 0, 0, 0, 0]
    inputs.extend(b)
  elif (dest == "DTW"):
    b = [0, 1, 0, 0, 0]
    inputs.extend(b)
  elif (dest == "JFK"):
    b = [0, 0, 1, 0, 0]
    inputs.extend(b)
  elif (dest == "MSP"):
    b = [0, 0, 0, 1, 0]
    inputs.extend(b)
  elif (dest == "SEA"):
    b = [0, 0, 0, 0, 1]
    inputs.extend(b)
  prediction = preprocessAndPredict(inputs)
  # Pass prediction to prediction template
  print(inputs)
  return render_template('/result.html', prediction=prediction)
def preprocessAndPredict(inputs):
  test_data = np.array(inputs).reshape((1, 16))
  model_file = open('model.pkl', 'rb')
trained_model = joblib.load(model_file)
  crs_sc = pickle.load(open('crs_scale.pkl', 'rb'))
  flnum_sc = pickle.load(open('flnum_scale.pkl', 'rb'))
```

GITHUB LINK:

https://github.com/IBM-EPBL/IBM-Project-1443-1658388206

PROJECT DEMO LINK:

https://youtu.beTOQKYXBQe0I