

Figure 44.6: The "triangular trough" determined by the inequalities $y-z \le 0$, $y+z \ge 0$, and $-2 \le x \le 2$ is an \mathcal{H} -polyhedron and an \mathcal{V} -polyhedron, where $Y = \{(2,0,0), (-2,0,0)\}$ and $V = \{(0,1,1), (0,-1,1)\}$.

Since $\lambda_i^{(k)} \geq 0$ for i = 1, ..., m and all $k \geq 0$, we have $x_i \geq 0$ for i = 1, ..., m, so $x \in \text{cone}(\{a_1, ..., a_m\})$.

Next, assume that x belongs to the polyhedral cone C. Consider a positive combination

$$x = \lambda_1 a_1 + \dots + \lambda_k a_k, \tag{*_1}$$

for some nonzero $a_1, \ldots, a_k \in C$, with $\lambda_i \geq 0$ and with k minimal. Since k is minimal, we must have $\lambda_i > 0$ for $i = 1, \ldots, k$. We claim that (a_1, \ldots, a_k) are linearly independent.

If not, there is some nontrivial linear combination

$$\mu_1 a_1 + \dots + \mu_k a_k = 0, \tag{*_2}$$

and since the a_i are nonzero, $\mu_j \neq 0$ for some at least some j. We may assume that $\mu_j < 0$ for some j (otherwise, we consider the family $(-\mu_i)_{1 \leq i \leq k}$), so let

$$J = \{ j \in \{1, \dots, k\} \mid \mu_j < 0 \}.$$

For any $t \in \mathbb{R}$, since $x = \lambda_1 a_1 + \cdots + \lambda_k a_k$, using $(*_2)$ we get

$$x = (\lambda_1 + t\mu_1)a_1 + \dots + (\lambda_k + t\mu_k)a_k,$$
 (*3)