Hasznos összefüggések:

Kinematika:
$$s = \frac{a}{2}t^2 + v_0t + s_0$$
, $v = at + v_0$, $a = a_0$, $v_{\acute{a}tl} = \frac{s_{\ddot{o}SSZ}}{t_{\ddot{o}SSZ}}$

Dinamika: F = ma, p = mv

Gravitációs erőtörvény: $F=\gamma \frac{m_1 m_2}{r^2}$, F=mg

Súrlódási erő: $F_s = \mu F_{nv}$

Rugó:
$$F_r = -D\Delta x$$
, $E_r = \frac{1}{2}Dx^2$

Körmozgás:
$$v_k=\frac{i}{t}$$
, $\omega=\frac{\alpha}{t}$, $i=r\alpha$, $v_k=r\omega$, $a_{cp}=\frac{v^2}{r}=\omega^2 r$, $\omega=2\pi f=\frac{2\pi}{r}$

Munka: $W = F\Delta s$ Teljesítmény: $P = \frac{W}{t}$

Mozgási energia: $E_{kin} = \frac{1}{2}mv^2$ Helyzeti energia: $E_{pot} = mgh$

Coulomb törvény: $F=krac{Q_1Q_2}{r^2}=rac{1}{4\pi\cdotarepsilon_0}rac{Q_1Q_2}{r^2}$

Elektromos térerősség: $E=k\frac{Q}{r^2}$ Elektromos potenciál: $U=-k\frac{Q}{r}$

Kapacitás: $C=\frac{Q}{U}$ Síkkondenzátor: $C=\varepsilon_{r}\varepsilon_{0}\frac{A}{d}$ Energia: $E_{C}=\frac{1}{2}QU=\frac{1}{2}CU^{2}$

Állandók:

Gravitációs állandó: $\gamma = 6,674 \cdot 10^{-11} \frac{\text{m}^3}{\text{kg s}^2}$

Coulomb tényező: $k = 8,988 \cdot 10^9 \frac{\text{Nm}^2}{\text{C}^2}$

Elemi töltés: $e = 1,602 \cdot 10^{-19} \, \mathrm{C}$

Elektron tömeg: $m_e = 9,109 \cdot 10^{-31} \text{ kg}$

Vákuum permittivitás: $\varepsilon_0 = 8,854 \cdot 10^{-12} \frac{F}{m}$