

(19) 대한민국특허청(KR)

(12) 등록특허공보(B1)

(51) 국제특허분류(Int. Cl.)

 A43B 3/00 (2022.01)
 A43B 11/00 (2006.01)

 A43B 3/26 (2022.01)
 A44B 18/00 (2006.01)

 B06B 1/18 (2006.01)
 F16F 9/10 (2006.01)

 F16F 9/32 (2006.01)

(52) CPC특허분류

A43B 3/0036 (2022.01) **A43B 11/00** (2022.01)

(21) 출원번호 **10-2022-0189056**

(22) 출원일자 **2022년12월29일** 심사청구일자 **2022년12월29일**

(65) 공개번호 **10-2024-0106311**

(43) 공개일자 2024년07월08일

(56) 선행기술조사문헌 JP05200140 A* US20140336008 A1* *는 심사관에 의하여 인용된 문헌 (45) 공고일자 2025년03월13일

(11) 등록번호 10-2781595

(24) 등록일자 2025년03월11일

(73) 특허권자

경희대학교 산학협력단

경기도 용인시 기흥구 덕영대로 1732 (서천동, 경희대학교 국제캠퍼스내)

(72) 발명자

전석희

경기도 수원시 영통구 봉영로 1526, 706동 1204 호(영통동, 살구골 진덕,서광,성지,동아 아파트)

모하마드 샤드만 하솀

경기도 수원시 영통구 청명남로50번길 13-8, 지하 101호(영통동)

아흐산 라자

경기도 용인시 기흥구 덕영대로 1732(서천동)

(74) 대리인

두호특허법인

전체 청구항 수 : 총 7 항

심사관 : 김혜진

(54) 발명의 명칭 수중 역감 제공 댐핑 신발

(57) 요 약

본 발명의 일 실시예는 물속을 걷는 듯한 역감을 제공할 수 있는 수중 역감 제공 댐핑 신발에 관한 것이다. 본 발명의 일 실시예에 따르면, 사용자의 양 발을 수용하는 한 쌍의 신발부; 상기 한 쌍의 신발부 각각의 저면과 결합되는 한 쌍의 플랫폼; 및 상기 한 쌍의 플랫폼 간을 연결하는 한 쌍의 댐핑부;를 포함하고, 상기 한 쌍의 댐핑부는 X자 형태로 상기 한 쌍의 플랫폼 간을 연결하는, 수중 역감 제공 댐핑 신발이 제공된다.

대 표 도 - 도1

100

(52) CPC특허분류

A43B 3/26 (2022.01) A44B 18/008 (2013.01) B06B 1/18 (2013.01) F16F 9/10 (2013.01) F16F 9/3214 (2013.01)

이 발명을 지원한 국가연구개발사업

과제고유번호 1315001822

과제번호 2019-MOIS34-001-01030000-2022

부처명 행정안전부

과제관리(전문)기관명 국립재난안전연구원

연구사업명 생활안전예방서비스기술개발(R&D)

연구과제명 생활안전 체험교육을 위한 실감형 콘텐츠 기술개발

기 여 율 1/2

과제수행기관명 한국전자통신연구원 연구기간 2022.01.01 ~ 2022.12.31

이 발명을 지원한 국가연구개발사업

과제고유번호 1711160320 과제번호 2022-0-01005-001 부처명 과학기술정보통신부 과제관리(전문)기관명 정보통신기획평가원

연구사업명 ICT융합산업혁신기술개발사업

연구과제명 디지털 객체의 다양한 해석 정보 제공을 위한 비착용식 시-촉각 디지털 트윈 플랫폼

기술 개발

기 여 율 1/2

과제수행기관명 경희대학교 산학협력단 연구기간 2022.04.01 ~ 2022.12.31

명 세 서

청구범위

청구항 1

사용자의 양 발을 수용하는 한 쌍의 신발부;

상기 한 쌍의 신발부 각각의 저면과 결합되는 한 쌍의 플랫폼; 및

상기 한 쌍의 플랫폼 간을 연결하는 한 쌍의 댐핑부;를 포함하고,

상기 한 쌍의 댐핑부는 X자 형태로 상기 한 쌍의 플랫폼 간을 연결하며,

상기 한 쌍의 댐핑부 각각은,

중간에 위치하는 실린더와 상기 실린더의 양측에서 연장되는 로드를 포함하고, 상기 로드의 상기 실린더에 대한 움직임의 반대 방향의 저항력이 발생하는, 수중 역감 제공 댐핑 신발.

청구항 2

청구항 1에 있어서,

상기 한 쌍의 신발부 각각은,

사용자의 발 사이즈에 맞추어서 조절가능한 사이즈 조절부를 포함하는, 수중 역감 제공 댐핑 신발.

청구항 3

청구항 1에 있어서.

상기 한 쌍의 신발부 각각의 저면에 바닥 부착부가 형성되고,

상기 한 쌍의 플랫폼 각각의 상면에 플랫폼 부착부가 형성되며,

상기 바닥 부착부 및 상기 플랫폼 부착부 간이 결합되는, 수중 역감 제공 댐핑 신발.

청구항 4

청구항 3에 있어서,

상기 바닥 부착부 및 상기 플랫폼 부착부는 벨크로로 형성되는, 수중 역감 제공 댐핑 신발.

청구항 5

청구항 1에 있어서,

상기 한 쌍의 댐핑부 각각의 일단은 상기 한 쌍의 플랫폼 중 하나의 앞부분에 연결되고,

상기 한 쌍의 댐핑부 각각의 타단은 상기 한 쌍의 플랫폼 중 다른 하나의 뒷부분에 연결되는, 수중 역감 제공 댐핑 신발.

청구항 6

청구항 1에 있어서,

사용자가 걷는 중에 있어서,

상기 한 쌍의 댐핑부 중 하나는 신장되고, 다른 하나는 수축되는, 수중 역감 제공 댐핑 신발.

청구항 7

청구항 1에 있어서,

상기 한 쌍의 댐핑부 각각에서 발생하는 저항력의 합은 사용자의 발의 움직임에 의한 힘의 방향의 반대 방향을 향하는, 수중 역감 제공 댐핑 신발.

발명의 설명

기 술 분 야

[0001] 본 발명의 일 실시예는 물속을 걷는 듯한 역감을 제공할 수 있는 수중 역감 제공 댐핑 신발에 관한 것이다.

배경기술

- [0003] 가상 현실은 VR 헤드셋의 눈에 띄는 개선으로 인해 최근 몇 년 동안 많이 진화했다. 그러나 가상 현실은 VR 환경에서 사실성을 향상시키므로 핵심 감각, 즉 촉각 없이는 사용자에게 불완전하게 받아들여진다. 오늘날 세계에 존재하는 광범위한 햅틱 장치들이 접촉 기반 및 비접촉 채널을 통해 VR 경험을 향상시킨다는 사실에도 불구하고, 햅틱 도메인을 통해 몰입형 VR 경험을 제공하기 위해서는 여전히 사실성을 높일 수 있는 특정 측면에 초점을 맞출 필요가 있다. 한 가지 측면은 가상 현실에서 진정한 걷기 경험을 제공하는 것이다.
- [0005] VR 환경을 느낄 수 있도록 진동 촉각을 제공하고 피드백 반응을 강제하기 위해 햅틱 슈즈를 설계하는 데 초점을 맞춘 연구들이 진행되어 왔다. 그 중에는, 소형 공압 블래더를 사용하여 지형과 작은 경사의 프로필을 렌더링하는 소프트 로봇 스마트 신발이 제안되었다. 그런데, 공압 블래더 기반 시스템은 시스템의 특성상 부드러운 피드백만 제공할 수 있어서 본질적으로 딱딱한 물체들에 대한 인식을 제공할 수 없다. 최근에는 가상 현실에서 걷기를 위한 자기유동유체(Magneto Rheological Fluid; MRF) 햅틱 슈즈 디자인이 제안되었다. MRF 기반 촉각신발은 가상 환경에서 다양한 지형에 대한 현실적인 인식을 제공할 수 있다. 햅틱 신발과 관련된 대부분의 연구는 지면을 연결하는 표면 인식을 제공하는 데 초점을 맞추고 있다. 그러나 현재의 기술은 사용자가 물 속과 같은 유체 속을 걷고 있는 그러한 시나리오에 대해 다리 사이에 힘 피드백 응답을 제공하는 측면이 부족하다.

선행기술문헌

특허문헌

[0007] (특허문헌 0001) 미합중국 등록특허공보 US 8,917,167 (2014, 12, 23)

발명의 내용

해결하려는 과제

- [0008] 본 발명은 앞서 기술한 종래의 햅틱 장치가 가지는 문제점을 해결하기 위한 것으로, 본 발명의 일 실시예는 다양한 시나리오에 대해 가상 환경에서 물 속을 걷는 느낌을 연출할 수 있는 수중 역감 제공 댐핑 신발을 제공하고자 한다.
- [0010] 또한, 본 발명의 일 실시예는 플랫폼에서 신발을 쉽게 장착하고 제거할 수 있어서 필요에 따라 사용하거나 사용 하지 않을 수 있는 수중 역감 제공 댐핑 신발을 제공하고자 한다.
- [0012] 또한, 본 발명의 일 실시예는 물속에서의 안전 교육을 할 수 있도록 교육 환경을 제공하는 수중 역감 제공 댐핑

신발을 제공하고자 한다.

과제의 해결 수단

- [0014] 본 발명의 일 실시예에 따르면, 사용자의 양 발을 수용하는 한 쌍의 신발부; 상기 한 쌍의 신발부 각각의 저면 과 결합되는 한 쌍의 플랫폼; 및 상기 한 쌍의 플랫폼 간을 연결하는 한 쌍의 댐핑부;를 포함하고, 상기 한 쌍의 댐핑부는 X자 형태로 상기 한 쌍의 플랫폼 간을 연결하는, 수중 역감 제공 댐핑 신발이 제공된다.
- [0016] 상기 한 쌍의 신발부 각각은, 사용자의 발 사이즈에 맞추어서 조절가능한 사이즈 조절부를 포함할 수 있다.
- [0017] 상기 한 쌍의 신발부 각각의 저면에 바닥 부착부가 형성되고, 상기 한 쌍의 플랫폼 각각의 상면에 플랫폼 부착부가 형성되며, 상기 바닥 부착부 및 상기 플랫폼 부착부 간이 결합될 수 있다.
- [0018] 상기 바닥 부착부 및 상기 플랫폼 부착부는 벨크로로 형성될 수 있다.
- [0019] 상기 한 쌍의 댐핑부 각각의 일단은 상기 한 쌍의 플랫폼 중 하나의 앞부분에 연결되고, 상기 한 쌍의 댐핑부 각각의 타단은 상기 한 쌍의 플랫폼 중 다른 하나의 뒷부분에 연결될 수 있다.
- [0020] 사용자가 걷는 중에 있어서, 상기 한 쌍의 댐핑부 중 하나는 신장되고, 다른 하나는 수축될 수 있다.
- [0021] 상기 한 쌍의 댐핑부 각각에서 발생하는 저항력의 합은 사용자의 발의 움직임에 의한 힘의 방향의 반대 방향을 향할 수 있다.

발명의 효과

- [0023] 본 발명의 일 실시예에 따르면, 다양한 시나리오에 대해 가상 환경에서 물 속을 걷는 느낌을 연출할 수 있는 수 중 역감 제공 댐핑 신발이 제공된다.
- [0024] 또한, 본 발명의 일 실시예에 따르면, 플랫폼에서 신발을 쉽게 장착하고 제거할 수 있어서 필요에 따라 사용하 거나 사용하지 않을 수 있는 수중 역감 제공 댐핑 신발이 제공된다.
- [0025] 또한, 본 발명의 일 실시예에 따르면, 물속에서의 안전 교육을 할 수 있도록 교육 환경을 제공할 수 있다.

도면의 간단한 설명

[0027] 도 1은 본 발명의 일 실시예에 따른 수중 역감 제공 댐핑 신발의 플랫폼 및 댐핑부를 나타내는 도면

도 2는 수중 역감 제공 댐핑 신발의 신발부를 도시하는 도면

도 3은 수중 역감 제공 댐핑 신발을 신은 사용자가 걷는 경우 한 쌍의 댐핑부의 신장 및 수축 상태를 나타내는 도면

도 4는 도 3(a)에서와 같이 사용자의 오른발이 앞으로 나가는 경우에 작용되는 저항력의 방향을 설명하기 위한 도면

발명을 실시하기 위한 구체적인 내용

- [0028] 이하, 도면을 참조하여 본 발명의 구체적인 실시형태를 설명하기로 한다. 그러나 이는 예시에 불과하며 본 발명은 이에 제한되지 않는다.
- [0029] 본 발명을 설명함에 있어서, 본 발명과 관련된 공지기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략하기로 한다. 그리고, 후술되는 용어들은 본 발명에서 의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있다. 그러 므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.
- [0030] 본 발명의 기술적 사상은 청구범위에 의해 결정되며, 이하의 실시예는 본 발명의 기술적 사상을 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 효율적으로 설명하기 위한 일 수단일 뿐이다.
- [0032] 도 1은 본 발명의 일 실시예에 따른 수중 역감 제공 댐핑 신발(100)의 플랫폼(110a, 110b) 및 댐핑부(120)를 나타내는 도면이다.
- [0034] 도 1을 참조하면, 수중 역감 제공 댐핑 신발(100)의 플랫폼(110a, 110b)은 사용자의 양 발에 맞추어서 한 쌍으로 형성될 수 있다. 플랫폼(110a, 110b)는 그 위에 사용자의 발을 수용하는 신발부(150a, 150b)와 결합되어 사

용자의 발 움직임에 따라 같이 이동할 수 있다. 한 쌍의 플랫폼(110a, 110b)는 서로 대칭되는 형상으로 제작될 수 있고, 일반적인 발 형상과 유사하게 형성될 수 있다. 플랫폼(110a, 110b)의 상면에는 플랫폼 부착부(115)가 형성되어서 신발부(150a, 150b)가 플랫폼(110a, 110b)에 부착되도록 할 수 있다.

- [0036] 한 쌍의 플랫폼(110a, 110b) 사이에는 한 쌍의 댐핑부(120)가 위치할 수 있다. 한 쌍의 댐핑부(120)의 각각 (120a, 120b)은 중간에 위치하는 실린더(121a, 121b)와 실린더(121a, 121b)의 양측에서 연장되는 로드(122a, 122b, 123a, 123b)를 포함할 수 있다. 로드(122a, 122b, 123a, 123b)가 실린더(121a, 121b)에서 나오거나 들어가는 것에 의해 로드(122a, 122b, 123a, 123b)의 움직임에 대해 반대 방향의 저항력이 발생할 수 있다. 예를 들어, 로드(122a, 122b, 123a, 123b)가 실린더(121a, 121b)에서 나오는 방향으로 외력이 가해지면 해당 댐핑부(120a, 120b)에서는 로드(122a, 122b, 123a, 123b)가 들어가는 방향으로 저항력이 발생할 수 있다. 반대로, 로드(122a, 122b, 123a, 123b)가 실린더(121a, 121b)로 들어가는 방향으로 외력이 가해지면 해당 댐핑부(120a, 120b)에서는 로드(122a, 122b, 123a, 123b)가 나오는 방향으로 저항력이 발생할 수 있다. 그렇기 때문에, 후술하는 바와 같이 한 쌍의 댐핑부(120)에 의해 사용자에게 수중을 걷는 듯한 역감을 제공할 수 있다. 이를 위하여, 댐핑부(120a, 120b)의 실린더(121a, 121b)의 내부에는 유성 액체를 수용할 수 있다.
- [0038] 한 쌍의 댐핑부(120)는 한 쌍의 플랫폼(110a, 110b) 간을 X자 형상으로 연결할 수 있다. 구체적으로는, 한 쌍의 댐핑부(120) 중 하나(120a)의 경우에는 그 일단이 좌측의 플랫폼(110a)의 앞부분에 연결되고 타단이 우측의 플랫폼(110b)의 뒷부분에 연결될 수 있다. 또한, 한 쌍의 댐핑부(120) 중 다른 하나(120b)의 경우에는 그 일단이 우측의 플랫폼(110b)의 앞부분에 연결되고 타단이 좌측의 플랫폼(110a)의 뒷부분에 연결될 수 있다. 이와 같은 연결 방식에 의해서 한 쌍의 댐핑부(120)는 X자 형상으로 한 쌍의 플랫폼(110a, 110b)에 연결될 수 있다.
- [0040] 댐핑부(120a, 120b)에서의 로드(122a, 122b, 123a, 123b)의 단부에는 조인트부(124a, 124b, 125a, 125b)가 형성될 수 있다. 조인트부(124a, 124b, 125a, 125b)는 플랫폼(110a, 110b)에 형성되는 연결부(131, 132, 133, 134)에 각각 결합될 수 있다. 연결부(131, 132, 133, 134)는 고리 형상으로 되어서 조인트부(124a, 124b, 125a, 125b)가 연결부(131, 132, 133, 134)에 걸림으로써 결합될 수 있다. 조인트부(124a, 124b, 125a, 125b)는 3차원 운동이 가능하도록 유니버셜 조인트일 수 있다. 그리고, 한 쌍의 댐핑부(120)가 X자 형상을 이루기위해서 댐핑부(120a, 120b)가 서로 교차되는 부분에서는 댐핑부(120a, 120b)의 실린더(121a, 121b)의 두께로 인하여 댐핑부(120a, 120b) 각각의 지면으로부터의 높이가 서로 달라지게 될 수 밖에 없다. 따라서, 댐핑부(120a, 120b)의 양단인 조인트부(124a, 124b, 125a, 125b)의 위치도 댐핑부(120a, 120b)에 따라서 달라지게 되므로, 조인트부(124a, 124b, 125a, 125b)와 연결되는 연결부(131, 132, 133, 134)의 형성 위치도 그에 따라 달라질 수 있다. 예를 들어, 도 1에 도시된 바와 같이 하나의 댐핑부(120a)의 조인트부(124a, 125a)와 연결되는 연결부(131, 132)의 형성 위치와 달라지게 되며, 도 1에 따르면 연결부(131, 132)의 형성 위치가 연결부(133, 134)의 형성 위치와다지면에 가깝게 형성될 수 있다. 하지만, 이에 한정되는 것은 아니며, 연결부(131, 132, 133, 134)의 형성 위치 는 필요에 따라 조절될 수 있다.
- [0042] 도 2는 수중 역감 제공 댐핑 신발의 신발부(150a, 150b)를 도시하는 도면이다.
- [0044] 도 2를 참조하면, 한 쌍의 신발부(150a, 150b)는 사용자의 발을 수용할 수 있도록, 사용자의 발을 감싸도록 형성될 수 있다. 특히, 다양한 발 사이즈에 적용할 수 있도록 신발부(150a, 150b)에는 발 사이즈에 맞추어서 조절가능한 사이즈 조절부(151)를 포함할 수 있다. 조절부(151)는 사용자의 발이 올라가는 바닥부(152)의 가장자리 양측에서 연장되어서 발등 상에서 결합되는 방식으로 형성될 수 있다. 다만, 조절부(151)의 형태는 이에 한정되는 것은 아니다.
- [0046] 바닥부(152)의 저면에는 바닥 부착부(155)가 형성될 수 있고, 바닥 부착부(155)와 플랫폼(110a, 110b)의 플랫폼 부착부(115) 간이 결합되어 플랫폼(110a, 110b)과 신발부(150a, 150b)가 결합될 수 있다. 여기에서, 바닥 부착부(155)와 플랫폼 부착부(115)는 벨크로로 형성되어서 착탈이 용이하게 형성될 수 있다.
- [0048] 도 3은 수중 역감 제공 댐핑 신발을 신은 사용자가 걷는 경우 한 쌍의 댐핑부(120a, 120b)의 신장 및 수축 상태를 나타내는 도면이다.
- [0050] 도 3을 참조하면, 도 3(a)는 사용자의 왼발(200a)을 땅에 딛은 상태에서 오른발(200b)이 앞으로 나간 상태를 나타내는 도면이고, 도 3(b)는 사용자의 오른발(200b)을 땅에 딛은 상태에서 왼발(200a)이 앞으로 나간 상태를 나타내는 도면이다. 여기에서, 한 쌍의 댐핑부(120a, 120b)는 제 1 댐핑부(120a)와 제 2 댐핑부(120b)로 구분하기로 한다. 우선, 도 3(a)에서와 같이 사용자의 오른발(200b)이 앞으로 나간 상태에서는 제 1 댐핑부(120a)는

수축되고, 제 2 댐핑부(120b)는 신장될 수 있다. 그래서, 제 1 댐핑부(120a)는 수축되는 방향의 반대 방향으로 저항력을 발생시키고, 제 2 댐핑부(120b)는 신장되는 방향의 반대 방향으로 저항력을 발생시킬 수 있다.

- [0052] 그리고, 도 3(b)에서와 같이 사용자의 왼발(200a)이 앞으로 나간 상태에서는 제 1 댐핑부(120a)는 신장되고, 제 2 댐핑부(120b)는 수축될 수 있다. 그래서, 제 1 댐핑부(120a)는 신장되는 방향의 반대 방향으로 저항력을 발생시킬 수 있다.
- [0054] 도 4는 도 3(a)에서와 같이 사용자의 오른발이 앞으로 나가는 경우에 작용되는 저항력의 방향을 설명하기 위한 도면이다.
- [0056] 도 4를 참조하면, 도 4(a)에서 나타내는 바와 같이 제 1 댐핑부(120a)의 양단을 A와 B로 하고, 제 2 댐핑부 (120b)의 양단을 C와 D로 할 수 있다. 그 경우, 저항력의 방향을 나타내기 위하여 도 4(b)에서와 같이 벡터로 나타낼 수 있다. 도 4(b)에 따르면, 사용자의 오른발(200b)이 앞으로 나가기 위해 오른발(200b)을 내딛는 힘을 \vec{F}

라고 하면, 제 1 댐핑부(120a)의 경우는 수축되기 때문에 제 1 댐핑부(120a)에서 발생하는 저항력은 수축의 $\overrightarrow{R_{AB}}$

반대 방향으로 발생하며 이는 로 나타낼 수 있다. 그리고, 제 2 댐핑부(120b)의 경우에는 신장되기 때문

 R_{DC}

에 제 2 댐핑부(120b)에서 발생하는 저항력은 신장의 반대 방향으로 발생하며 이는 로 나타낼 수 있다.

[0058] 여기에서, 제 1 댐핑부(120a)와 제 2 댐핑부(120b)에서 발생하는 저항력의 합인 은 다음과 같이 나타낼 수 있다.

 $\vec{R} = \overrightarrow{R_{AB}} + \overrightarrow{R_{DC}}$

[0059]

 \vec{R} \vec{F}

- [0060] 그리고, 도 4(b)에서 나타내는 바와 같이, 의 방향은 의 반대 방향임을 알 수 있다. 따라서, 제 1 댐핑부 (120a)와 제 2 댐핑부(120b)에서 발생하는 전체 저항력은 사용자의 발이 나가는 방향의 반대 방향이므로 사용자의 입장에서는 물속에서 걷는 것과 같이 발의 움직임을 방해하는 역감을 느낄 수 있다.
- [0062] 그리고, 도 4에서의 경우와 반대로 사용자의 왼발(200a)이 앞으로 나가는 경우에도 마찬가지 방식으로 제 1 댐 평부(120a) 및 제 2 댐핑부(120b)에서 발생하는 저항력을 확인할 수 있으며, 그에 따르면 제 1 댐핑부(120a) 및 제 2 댐핑부(120b)에서 발생하는 전체 저항력은 역시 사용자의 발이 나가는 방향의 반대 방향임을 알 수 있다.
- [0064] 이상에서 본 발명의 대표적인 실시예들을 상세하게 설명하였으나, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 상술한 실시예에 대하여 본 발명의 범주에서 벗어나지 않는 한도 내에서 다양한 변형이 가능함을 이해할 것이다. 그러므로 본 발명의 권리범위는 설명된 실시예에 국한되어 정해져서는 안 되며, 후술하는 청구범위 뿐만 아니라 이 특허청구범위와 균등한 것들에 의해 정해져야 한다.

부호의 설명

[0066] 100 : 수중 역감 제공 댐핑 신발

110a, 110b : 플랫폼

115 : 플랫폼 부착부

120 : 한 쌍의 댐핑부

120a : 제 1 댐핑부

120b : 제 2 댐핑부

121a, 121b : 실린더

122a, 122b, 123a, 123b : 로드

124a, 124b, 125a, 125b : 조인트부

131, 132, 133, 134 : 연결부

150a, 150b : 신발부 151 : 사이즈 조절부

152 : 바닥부

155 : 바닥 부착부

200a : 왼발

200b : 오른발

도면

도면1

<u>100</u>

도면2

도면3

도면4

