R Notebook

Used Car Regressions

Load Tools for Project

```
library(dplyr)
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
      filter, lag
## The following objects are masked from 'package:base':
##
##
       intersect, setdiff, setequal, union
library(ggplot2)
library(tidyverse)
## — Attaching core tidyverse packages —
                                                          ----- tidyverse 2.0.0 ---
## √ forcats 1.0.0
                         √ stringr 1.5.0
## √ lubridate 1.9.2 √ tibble 3.2.1
## √ purrr
              1.0.1

√ tidyr 1.3.0

## √ readr
              2.1.4
                                                     --- tidyverse_conflicts() --
## — Conflicts —
## X dplyr::filter() masks stats::filter()
                   masks stats::lag()
## X dplyr::lag()
## i Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
```

library(fastDummies)

```
## Thank you for using fastDummies!
## To acknowledge our work, please cite the package:
## Kaplan, J. & Schlegel, B. (2023). fastDummies: Fast Creation of Dummy (Binary) Columns and Rows from Categorical Variable
s. Version 1.7.1. URL: https://github.com/jacobkap/fastDummies, https://jacobkap.github.io/fastDummies/.
```

library(caret)

```
## Loading required package: lattice
##
## Attaching package: 'caret'
##
## The following object is masked from 'package:purrr':
##
## lift
```

library(AER)

```
## Loading required package: car
## Loading required package: carData
## Attaching package: 'car'
## The following object is masked from 'package:purrr':
##
       some
##
## The following object is masked from 'package:dplyr':
##
##
       recode
##
## Loading required package: lmtest
## Loading required package: zoo
##
## Attaching package: 'zoo'
##
## The following objects are masked from 'package:base':
##
       as.Date, as.Date.numeric
##
##
## Loading required package: sandwich
## Loading required package: survival
## Attaching package: 'survival'
## The following object is masked from 'package:caret':
##
##
       cluster
```

```
library(estimatr)
library(Hmisc)
```

```
## Warning: package 'Hmisc' was built under R version 4.3.2
```

```
##
## Attaching package: 'Hmisc'
##
## The following objects are masked from 'package:dplyr':
##
## src, summarize
##
## The following objects are masked from 'package:base':
##
## format.pval, units
```

library(glmnet)

```
## Warning: package 'glmnet' was built under R version 4.3.2
```

```
## Loading required package: Matrix
##
## Attaching package: 'Matrix'
##
## The following objects are masked from 'package:tidyr':
##
## expand, pack, unpack
##
## Loaded glmnet 4.1-8
```

library(caTools)

```
## Warning: package 'caTools' was built under R version 4.3.2
```

Load Data

```
car <- read.csv('Clean Data_pakwheels.csv')</pre>
```

Show Data Frame

car

X Company.Name <int><chr></chr></int>	Model.Name <chr></chr>	Price <int></int>	Model.Year <int></int>	Location <chr></chr>	_	Engine.Type <chr></chr>	Enç	gine.Capacity <int></int>
0 Toyota	Vitz	2385000	2017	Islamabad	9869	Petrol		1000
1 Toyota	Corolla	111000	2019	KPK	11111	Petrol		1300
2 Suzuki	Alto	1530000	2019	KPK	17500	Petrol		660
3 Suzuki	Alto	1650000	2019	Punjab	9600	Petrol		660
4 Toyota	Corolla	1435000	2010	Islamabad	120000	Petrol		1300
5 Honda	Civic	3850000	2017	Punjab	22000	Petrol		1500
6 Suzuki	Wagon	1440000	2017	Punjab	31000	Petrol		1000
7 Mitsubishi	Mirage	1425000	2012	Punjab	101000	Petrol		1000
8 Toyota	Prado	2650000	1998	Punjab	110000	Diesel		3000
9 Honda	Civic	3350000	2017	Punjab	60000	Petrol		1800
1-10 of 10,000 rows 1-	9 of 14 columns				Previo	ous 1 2 3	4 5	6 1000 Next

Drop NA's

car%>%
 mutate(drop_na(car))

X Company.Name <int><chr></chr></int>	Model.Name <chr></chr>	Price <int></int>	Model.Year <int></int>	Location <chr></chr>		Engine.Type <chr></chr>	Engine.Capacity <int></int>
0 Toyota	Vitz	2385000	2017	Islamabad	9869	Petrol	1000
1 Toyota	Corolla	111000	2019	KPK	11111	Petrol	1300
2 Suzuki	Alto	1530000	2019	KPK	17500	Petrol	660
3 Suzuki	Alto	1650000	2019	Punjab	9600	Petrol	660

X Company.Name <int><chr></chr></int>	Model.Name <chr></chr>	Price <int></int>	Model.Year <int></int>	Location <chr></chr>	_	Engine.Type <chr></chr>	Engi	ne.Capacity <int></int>
4 Toyota	Corolla	1435000	2010	Islamabad	120000	Petrol		1300
5 Honda	Civic	3850000	2017	Punjab	22000	Petrol		1500
6 Suzuki	Wagon	1440000	2017	Punjab	31000	Petrol		1000
7 Mitsubishi	Mirage	1425000	2012	Punjab	101000	Petrol		1000
8 Toyota	Prado	2650000	1998	Punjab	110000	Diesel		3000
9 Honda	Civic	3350000	2017	Punjab	60000	Petrol		1800
1-10 of 10,000 rows 1-	9 of 14 columns				Previo	ous 1 2 3	4 5	6 1000 Next

Drop all rows that are not Punjab Region, for simplification of model

```
car_2 <-car%>%
  filter(., Location %in% c('Punjab'))
```

Show Car2 data frame

car_2

Model.Name	Price	Model.Year	Location	Mileage	Engine.Type	Engine.Capacity
<chr></chr>	<int></int>	<int></int>	<chr></chr>	<int></int>	<chr></chr>	<int></int>
Alto	1650000	2019	Punjab	9600	Petrol	660
Civic	3850000	2017	Punjab	22000	Petrol	1500
Wagon	1440000	2017	Punjab	31000	Petrol	1000
Mirage	1425000	2012	Punjab	101000	Petrol	1000
Prado	2650000	1998	Punjab	110000	Diesel	3000
Civic	3350000	2017	Punjab	60000	Petrol	1800
City	1990000	2017	Puniab	75000	Petrol	1300
	<chr> Alto Civic Wagon Mirage Prado Civic</chr>	<chr> <int> Alto 1650000 Civic 3850000 Wagon 1440000 Mirage 1425000 Prado 2650000 Civic 3350000</int></chr>	<chr> <int> <int> Alto 1650000 2019 Civic 3850000 2017 Wagon 1440000 2017 Mirage 1425000 2012 Prado 2650000 1998 Civic 3350000 2017</int></int></chr>	<chr> <int> <int> <chr> Alto 1650000 2019 Punjab Civic 3850000 2017 Punjab Wagon 1440000 2017 Punjab Mirage 1425000 2012 Punjab Prado 2650000 1998 Punjab Civic 3350000 2017 Punjab</chr></int></int></chr>	<chr> <int><int><int><chr> <chr> <int> Alto 1650000 2019 Punjab 9600 Civic 3850000 2017 Punjab 22000 Wagon 1440000 2017 Punjab 31000 Mirage 1425000 2012 Punjab 101000 Prado 2650000 1998 Punjab 110000 Civic 3350000 2017 Punjab 60000</int></chr></chr></int></int></int></chr>	<chr> <int><int><chr> <chr> <int><chr> <int><int><int><int><int><int><int><int< td=""></int<></int></int></int></int></int></int></int></chr></int></chr></int></chr></int></chr></int></chr></int></chr></int></chr></int></chr></int></chr></int></chr></int></chr></int></chr></chr></int></int></chr>

X Company.Name <int><chr></chr></int>	Model.Name <chr></chr>	Price <int></int>	Model.Year <int></int>	Location <chr></chr>	_	Engine.Type <chr></chr>	Engi	ne.Capacity <int></int>
12 Honda	N	185000	2016	Punjab	20000	Petrol		660
13 Suzuki	Cultus	920000	2012	Punjab	83000	Petrol		1000
14 Toyota	Corolla	2750000	2018	Punjab	51240	Petrol		1300
1-10 of 10,000 rows 1-	9 of 14 columns				Previ	ous 1 2 3	4 5	6 1000 Next

Mutate car2 to car3 for mutations of data

```
car_3 <- car_2 %>%
  #group data by decade
  mutate(decade_1 = case_when( Model.Year >= '1990' & Model.Year <= '2000' ~ 1,Model.Year >= '2001' ~ 0 ))%>%
  mutate(decade_2 = case_when( Model.Year >= '2001' & Model.Year <= '2010' ~ 1, Model.Year >= '2011' | Model.Year < '2001'~0))%
>%
  mutate(decade 3 = case when( Model.Year >='2011' & Model.Year <= '2019' ~ 1, Model.Year < '2011' | Model.Year > '2019'~0))%
>%
  #group data by manufacturing Location
  mutate(East_asia = case_when(Company.Name == 'Toyota'
                                |Company.Name == 'Honda'
                                |Company.Name == 'Daihatsu'
                                |Company.Name == 'Nissan'
                                |Company.Name =='Mitsubishi'
                                |Company.Name == 'Hyundai'
                                |Company.Name == 'FAW'
                                |Company.Name == 'Suzuki' ~ 1,
                               Company.Name != 'Toyota'
                                |Company.Name !='Honda'
                                |Company.Name !='Daihatsu'
                                |Company.Name !='Nissan'
                                |Company.Name !='Hyundai'
                                |Company.Name !='Suzuki'
                                |Company.Name != 'Mitsubishi' ~0 ))%>%
  mutate(german = case when(Company.Name == 'Audi'
                                |Company.Name=='Mercedes'
                                Company.Name=='BMW'~ 1,
                               Company.Name !='Audi'
                                |Company.Name !='Mercedes'
                                |Company.Name !='BMW' ~0))%>%
```

```
#create a dummy for transmission type
 mutate(tran_dum = case_when(Transmission.Type =="Manual" ~ 0, Transmission.Type =="Automatic" ~ 1))%>%
 #create dummies for engine type, hybrid and diesel
 mutate(Engine_num = case_when(Engine.Type== 'Petrol' | Engine.Type=='Hybrid'~ 1, Engine.Type=='Diesel'~ 0))%>%
 #Local vehicles serve as the baseline
 mutate(Assembly_num =case_when(Assembly == 'Local' ~ 0, Assembly == 'Imported' ~ 1))%>%
 #Control for body type
 mutate(dummy_cols(., select_columns ='Body.Type'))%>%
 #Control for color, separated in three categories
 mutate(.,Color_num = case_when(Color=='Black'~ 'Black', Color =='White'~ 'White', Color!='Black'|Color!='White' ~ 'Othe
r'))%>%
 mutate((dummy_cols(.,select_columns = 'Color_num')))%>%
 #Convert price into USD for context (this might change according to the audience)
 #Conversion on November 25th 2023 is 83.31 rupees to 1 dollar
 mutate(USD = Price/83.31)%>%
```

```
#Select your variables that you want
select(.,East_asia, german, Mileage, decade_1,decade_2,decade_3, Engine.Capacity,tran_dum:Body.Type_Van,Color_num_Black:US
D)
```

See relationship and check for multi-collinearity & Relationship with Target Variable

```
cor_check <- cor(car_3)
#cor_check</pre>
```

```
palette = colorRampPalette(c("green", "white", "red")) (20)
heatmap(x = cor_check, col = palette, symm = TRUE)
```


library(corrplot)

Warning: package 'corrplot' was built under R version 4.3.2

corrplot 0.92 loaded

corrplot(cor_check)

Run a simple model of price on the variable with the highest correlation

base <- lm(USD ~ Engine.Capacity, car_3)
summary(base)</pre>

```
##
## Call:
## lm(formula = USD ~ Engine.Capacity, data = car 3)
## Residuals:
      Min
               1Q Median
                              3Q
                                     Max
## -182603
          -6921
                     -436
                            5273 572794
## Coefficients:
                   Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                  -18378.25
                               351.86 -52.23 <2e-16 ***
## Engine.Capacity
                      32.07
                                 0.25 128.27 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 22610 on 24730 degrees of freedom
## Multiple R-squared: 0.3995, Adjusted R-squared: 0.3995
## F-statistic: 1.645e+04 on 1 and 24730 DF, p-value: < 2.2e-16
```

Run Regression based on selected features (baseline model)

```
mult_reg <- lm(USD~ Engine.Capacity + Mileage + tran_dum + Engine_num + Color_num_Other + Color_num_White + Body.Type_SUV +
Body.Type_Hatchback + `Body.Type_Cross Over`+ Assembly_num, car_3)
summary(mult_reg)</pre>
```

```
##
## Call:
## lm(formula = USD ~ Engine.Capacity + Mileage + tran dum + Engine num +
      Color_num_Other + Color_num_White + Body.Type_SUV + Body.Type_Hatchback +
      `Body.Type_Cross Over` + Assembly_num, data = car_3)
##
##
## Residuals:
      Min
               1Q Median
                              3Q
                                     Max
## -137792 -4901
                     -202
                            4111 537075
## Coefficients:
                           Estimate Std. Error t value Pr(>|t|)
                        -5.431e+04 1.284e+03 -42.295 < 2e-16 ***
## (Intercept)
                        3.059e+01 3.615e-01 84.627 < 2e-16 ***
## Engine.Capacity
                         -9.823e-02 2.091e-03 -46.983 < 2e-16 ***
## Mileage
## tran dum
                        2.414e+03 3.558e+02 6.784 1.19e-11 ***
## Engine num
                        4.350e+04 1.005e+03 43.298 < 2e-16 ***
                        -3.572e+03 3.940e+02 -9.065 < 2e-16 ***
## Color_num_Other
                       4.692e+02 4.026e+02 1.165
## Color_num_White
                                                        0.244
## Body.Type SUV
                    2.635e+04 8.359e+02 31.521 < 2e-16 ***
## Body.Type Hatchback 3.124e+03 3.322e+02 9.401 < 2e-16 ***
## `Body.Type Cross Over` 1.093e+04 9.016e+02 12.119 < 2e-16 ***
## Assembly num
                          5.752e+03 3.888e+02 14.794 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '* 0.05 '.' 0.1 ' ' 1
## Residual standard error: 19610 on 24721 degrees of freedom
## Multiple R-squared: 0.5483, Adjusted R-squared: 0.5481
## F-statistic: 3001 on 10 and 24721 DF, p-value: < 2.2e-16
```

Lasso for feature selection

```
## glmnet
##
## 24732 samples
      19 predictor
## No pre-processing
## Resampling: Bootstrapped (25 reps)
## Summary of sample sizes: 24732, 24732, 24732, 24732, 24732, ...
## Resampling results across tuning parameters:
##
    lambda RMSE
                      Rsquared
                                 MAE
            18584.18 0.6006657 7876.787
##
    1
            18584.18 0.6006657 7876.787
## Tuning parameter 'alpha' was held constant at a value of 1
## RMSE was used to select the optimal model using the smallest value.
## The final values used for the model were alpha = 1 and lambda = 1.
```

Predicting car price based on our model Train and Testing Split for generalization

```
mult_reg_train <- lm(USD~ Engine.Capacity + Mileage + tran_dum + Engine_num
+Color_num_Black + Color_num_White + Body.Type_SUV + Body.Type_Hatchback + Body.Type_Sedan+
+ Body.Type_Van + East_asia + decade_2 + decade_3+ Assembly_num, data=car_3_train)
summary(mult_reg_train)</pre>
```

```
##
## Call:
## lm(formula = USD ~ Engine.Capacity + Mileage + tran dum + Engine num +
      Color_num_Black + Color_num_White + Body.Type_SUV + Body.Type_Hatchback +
##
      Body. Type Sedan + +Body. Type Van + East asia + decade 2 +
##
       decade_3 + Assembly_num, data = car_3_train)
## Residuals:
      Min
               1Q Median
                              3Q
                                     Max
## -163421
          -5001
                     -364
                            4298 534109
## Coefficients:
                        Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                      -5.521e+04 1.728e+03 -31.953 < 2e-16 ***
## Engine.Capacity
                     3.106e+01 4.077e-01 76.193 < 2e-16 ***
## Mileage
                      -4.714e-02 2.637e-03 -17.874 < 2e-16 ***
## tran dum
                      2.247e+02 3.947e+02 0.569 0.5692
## Engine_num
                      3.823e+04 1.105e+03 34.603 < 2e-16 ***
## Color num Black
                      2.343e+03 4.272e+02 5.485 4.18e-08 ***
## Color num White
                       3.450e+03 2.989e+02 11.540 < 2e-16 ***
                       2.476e+04 1.133e+03 21.848 < 2e-16 ***
## Body.Type SUV
## Body.Type_Hatchback -1.535e+03 6.635e+02 -2.313 0.0207 *
## Body.Type Sedan
                      -5.287e+03 6.938e+02 -7.620 2.64e-14 ***
                      -6.649e+03 1.200e+03 -5.542 3.02e-08 ***
## Body.Type Van
## East asia
                      -1.623e+04 8.283e+02 -19.599 < 2e-16 ***
## decade 2
                     1.301e+04 6.280e+02 20.710 < 2e-16 ***
                      2.407e+04 6.541e+02 36.797 < 2e-16 ***
## decade 3
## Assembly num
                       5.664e+03 4.344e+02 13.037 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 19000 on 19772 degrees of freedom
## Multiple R-squared: 0.5823, Adjusted R-squared: 0.582
## F-statistic: 1969 on 14 and 19772 DF, p-value: < 2.2e-16
```

```
#check residuals
res <- resid(mult_reg_train)
plot(fitted(mult_reg_train), res)</pre>
```



```
##predicting with multiple regression

pred_mult <- predict(mult_reg_train, car_3_test)

#pred_mult

postResample(pred = pred_mult, car_3_test$USD)</pre>
```

RMSE Rsquared MAE ## 1.709639e+04 6.345992e-01 7.888478e+03

```
## glmnet
##
## 19787 samples
## 19 predictor
##
## No pre-processing
## Resampling: Bootstrapped (25 reps)
## Summary of sample sizes: 19787, 19787, 19787, 19787, 19787, ...
## Resampling results:
##
## RMSE Rsquared MAE
## 18550.92 0.5954659 7903.787
##
## Tuning parameter 'alpha' was held constant at a value of 1
## Tuning
## parameter 'lambda' was held constant at a value of 1e-04
```

```
#summary(model_lasso)
#Summary doesn't work for advanced models
#model_2 <-train(USD~., car_3_train)</pre>
```

Now predict outcomes in test set

```
p <- predict(model_lasso, car_3_test, type = 'raw')
postResample(pred=p, obs= car_3_test$USD)</pre>
```

```
RMSE
                     Rsquared
                                        MAE
 ## 1.697333e+04 6.398262e-01 7.679397e+03
 #RMSE(p)
 paste("MSE: ", mean((p - car_3_test$USD)^2))
 ## [1] "MSE: 288094060.736897"
 paste("RMSE: ", sqrt(mean((p - car_3_test$USD)^2)))
 ## [1] "RMSE: 16973.333813276"
 # add predictions to initial dataset
 #c_test$pred_churn <- p</pre>
Preparing data for Decision Trees and Random Forests
 library(rpart)
 library(rpart.plot)
 ## Warning: package 'rpart.plot' was built under R version 4.3.2
 library(randomForest)
 ## Warning: package 'randomForest' was built under R version 4.3.2
 ## randomForest 4.7-1.1
 ## Type rfNews() to see new features/changes/bug fixes.
```

```
##
## Attaching package: 'randomForest'

## The following object is masked from 'package:ggplot2':
##
## margin

## The following object is masked from 'package:dplyr':
##
## combine

#print(car_3)

car_3 <- car_3 %>% rename(Body.Type_CrossOver = 'Body.Type_Cross Over')
car_3 <- car_3 %>% rename(Body.Type_MiniVan = 'Body.Type_Mini Van')
car_3 <- car_3 %>% rename(Price = USD)
```

Decision Trees

```
#Decision tree with every feature. A little messy
decision_tree_model <- rpart(Price ~ ., data = car_3, method = "anova")

plot(decision_tree_model)
text(decision_tree_model, use.n = TRUE)</pre>
```



```
#This tree only is using three main features
decision_tree_model <- rpart(Price ~ Engine.Capacity + Mileage + tran_dum, data = car_3, method = "anova")
plot(decision_tree_model)
text(decision_tree_model, use.n = TRUE)</pre>
```


Random Forests:

The first RF model we ran was a regular one with all the features included. I tried to run it with certain features omitted, but it would return a higher RMSE each time.

```
#Regular RF
set.seed(123) # reproducibility
# Splitting the data into training and test sets
train_indices <- sample(1:nrow(car_3), 0.8 * nrow(car_3))
train_data <- car_3[train_indices, ]
test_data <- car_3[-train_indices, ]

# Fit model on training data
fitted_model <- randomForest(Price ~ ., data = train_data, ntree = 500)

# Predict on test data
predictions <- predict(fitted_model, test_data)

# Calculate MSE
results <- data.frame(predictions, test_data$Price)
results$Difference = abs(results$predictions - results$test_data.Price)
print("Predictions for RF with all variables included")</pre>
```

[1] "Predictions for RF with all variables included"

head(results)

	predictions <dbl></dbl>	test_data.Price <dbl></dbl>	Difference <dbl></dbl>
1	15000.02	19805.546	4805.526
6	34974.59	40211.259	5236.665
8	20427.83	2220.622	18207.209
12	12498.34	10923.058	1575.282
24	39878.42	45432.721	5554.306
29	24604.93	28688.033	4083.099

6 rows

```
paste("MSE: ", mean((results$predictions - results$test data.Price)^2))
## [1] "MSE: 54137181.7664882"
paste("RMSE: ", sqrt(mean((results$predictions - results$test data.Price)^2)))
## [1] "RMSE: 7357.79734475531"
paste("R-Squared: ", cor(results$test_data.Price, results$predictions)^2)
## [1] "R-Squared: 0.932957112939525"
#Tried running RF with select features, but no combination was nearly as good as including all features
#fitted_model <- randomForest(Price ~ East_asia + german + Mileage + Engine.Capacity + tran_dum + Engine_num +
                                Assembly_num + Body.Type_CrossOver + Body.Type_Hatchback + Body.Type_MiniVan + Body.Type_Sed
an + Body. Type SUV + Body. Type Van +
                                Color_num_Black + Color_num_Other + Color_num_White, data = train_data, ntree = 500)
# Predict on test data
#predictions <- predict(fitted_model, test_data)</pre>
#results <- data.frame(predictions, test data$Price)</pre>
#print("Predictions for RF with all variables included")
#head(results)
#paste("MSE: ", mean((results$predictions - results$test_data.Price)^2))
#paste("RMSE: ", sqrt(mean((results$predictions - results$test data.Price)^2)))
```

Next I tried to focus on outliers, which began with limiting the lowest-end cars, however this had no significant change

```
#Removing the lowest end cars
car_4 <- subset(car_3, Price >= 8000)

# Splitting the data into training and test sets
train_indices <- sample(1:nrow(car_4), 0.8 * nrow(car_4))
train_data <- car_4[train_indices, ]
test_data <- car_4[-train_indices, ]

# Fit model on training data
fitted_model <- randomForest(Price ~ ., data = train_data, ntree = 500)

# Predict on test data
predictions <- predict(fitted_model, test_data)

# Calculate MSE
results <- data.frame(predictions, test_data$Price)
print("Predictions for RF with outliers removed")</pre>
```

[1] "Predictions for RF with outliers removed"

head(results)

	predictions <dbl></dbl>	test_data.Price <dbl></dbl>
4	21180.38	17104.79
10	30137.08	33009.24
13	102459.84	103829.07
15	26690.83	25207.06
20	24735.51	23826.67
29	24932.26	28688.03
6 rows		

```
paste("MSE: ", mean((results$predictions - results$test_data.Price)^2))

## [1] "MSE: 100650958.855945"

paste("RMSE: ", sqrt(mean((results$predictions - results$test_data.Price)^2)))

## [1] "RMSE: 10032.4951460713"

paste("R-Squared: ", cor(results$test_data.Price, results$predictions)^2)

## [1] "R-Squared: 0.90872669929471"
```

When I did the opposite and left out observations with an actual price over \$60,000, it significantly improved and I had the best RMSE by far (Around 3400, which represents the model being off by an average of 3400 each time, which isn't bad with it having to do with car prices)

```
#Removing the highest end cars (Best Model)
car_4 <- subset(car_3, Price <= 60000)

# Splitting the data into training and test sets
train_indices <- sample(1:nrow(car_4), 0.8 * nrow(car_4))
train_data <- car_4[train_indices, ]
test_data <- car_4[-train_indices, ]

# Fit model on training data
fitted_model <- randomForest(Price ~ ., data = train_data, ntree = 500)

# Predict on test data
predictions <- predict(fitted_model, test_data)

# Calculate MSE
results <- data.frame(predictions, test_data$Price)
print("Predictions for RF with outliers removed")</pre>
```

[1] "Predictions for RF with outliers removed"

head(results)

	predictions <dbl></dbl>	test_data.Price <dbl></dbl>
7	24004.159	23886.688
9	13547.106	11043.092
12	12505.082	10923.058
19	4872.387	4801.344
26	17413.588	17344.857
29	24709.331	28688.033
6 rows		

```
paste("MSE: ", mean((results$predictions - results$test_data.Price)^2))
```

```
## [1] "MSE: 11273425.2957469"
```

```
paste("RMSE: ", sqrt(mean((results$predictions - results$test_data.Price)^2)))
```

```
## [1] "RMSE: 3357.59218722985"
```

```
paste("R-Squared: ", cor(results$test_data.Price, results$predictions)^2)
```

```
## [1] "R-Squared: 0.907603848410807"
```

The final alterations I tried were with limiting the number of trees in the model and this had a slight impact

```
# Reducing number of trees to 128
# Splitting the data into training and test sets
train_indices <- sample(1:nrow(car_3), 0.8 * nrow(car_3))
train_data <- car_3[train_indices, ]
test_data <- car_3[-train_indices, ]

# Fit model on training data
fitted_model <- randomForest(Price ~ ., data = train_data, ntree = 128)

# Predict on test data
predictions <- predict(fitted_model, test_data)

# Calculate MSE
results <- data.frame(predictions, test_data$Price)
print("Predictions for RF with all variables included and less trees (128)")</pre>
```

[1] "Predictions for RF with all variables included and less trees (128)"

head(results)

	predictions <dbl></dbl>	test_data.Price <dbl></dbl>
1	15189.40	19805.55
4	21125.13	17104.79
6	35552.29	40211.26
9	13589.93	11043.09
18	17189.38	17824.99
21	26765.29	29348.22
6 rows		

```
paste("MSE: ", mean((results$predictions - results$test_data.Price)^2))
## [1] "MSE: 68082783.0993424"
paste("RMSE: ", sqrt(mean((results$predictions - results$test data.Price)^2)))
## [1] "RMSE: 8251.22918717826"
paste("R-Squared: ", cor(results$test_data.Price, results$predictions)^2)
## [1] "R-Squared: 0.939420844952495"
#Tried many different number of trees, did not make major changes, 128 seemed optimal
# Splitting the data into training and test sets
train indices <- sample(1:nrow(car_3), 0.8 * nrow(car_3))</pre>
train_data <- car_3[train_indices, ]</pre>
test_data <- car_3[-train_indices, ]</pre>
# Fit model on training data
fitted model <- randomForest(Price ~ ., data = train data, ntree = 100)
# Predict on test data
predictions <- predict(fitted_model, test_data)</pre>
# Calculate MSE
results <- data.frame(predictions, test data$Price)
print("Predictions for RF with all variables included")
## [1] "Predictions for RF with all variables included"
head(results)
```

	predictions <dbl></dbl>	test_data.Price <dbl></dbl>
5	27891.521	31808.906
11	16621.496	13803.865
16	14658.224	11583.243
22	22149.355	16324.571
25	17435.199	17885.008
32	7077.242	7502.101
6 rows		

paste("MSE: ", mean((results\$predictions - results\$test_data.Price)^2))

[1] "MSE: 64327807.0111158"

paste("RMSE: ", sqrt(mean((results\$predictions - results\$test_data.Price)^2)))

[1] "RMSE: 8020.46177044164"

paste("R-Squared: ", cor(results\$test_data.Price, results\$predictions)^2)

[1] "R-Squared: 0.920298039622535"

```
# Less Trees + select features
# Splitting the data into training and test sets
train_indices <- sample(1:nrow(car_3), 0.8 * nrow(car_3)))
train_data <- car_3[train_indices, ]
test_data <- car_3[-train_indices, ]

# Fit model on training data
fitted_model <- randomForest(Price ~ Engine.Capacity + Mileage + tran_dum, data = train_data, ntree = 128)

# Predict on test data
predictions <- predict(fitted_model, test_data)

# Calculate MSE
results <- data.frame(predictions, test_data$Price)
print("Predictions for RF with three variables included (Engine Capacity, Mileage, Transmission) and less trees (128)")</pre>
```

[1] "Predictions for RF with three variables included (Engine Capacity, Mileage, Transmission) and less trees (128)"

head(results)

	predictions <dbl></dbl>	test_data.Price <dbl></dbl>
3	15624.05	17284.84
13	76200.38	103829.07
14	30735.39	19505.46
22	14435.44	16324.57
28	34403.84	21786.10
30	23837.14	16804.71
6 rows		

paste("MSE: ", mean((results\$predictions - results\$test_data.Price)^2))

[1] "MSE: 226144479.413305"

paste("RMSE: ", sqrt(mean((results\$predictions - results\$test_data.Price)^2)))

[1] "RMSE: 15038.1009244288"

paste("R-Squared: ", cor(results\$test_data.Price, results\$predictions)^2)

[1] "R-Squared: 0.815039819609284"