Calculus II

1 Vectors

 $\mathbb R$ represents the set of real numbers.

 \mathbb{R}^2 represents a 2 dimensional real plane.

Normally elements of $\mathbb R$ are known as scalers.

We can

- \cdot add (or subtract) two vectors
- \cdot if $c \in \mathbb{R}$ and $v \in \mathbb{R}^2$, $c\vec{v}$

1.1 Dot Product

$$u = (u_1, u_2)$$
 and $v = (v_1, v_2)$

$$u.v = u_1.v_1 + u_2.v_2$$

Theorem

$$u.v = |u||v|\cos(\theta)$$

where θ is the angle between \vec{u} and \vec{v} and |u| is the length of vector \vec{u}

Proof:

$$w^2 = u^2 + v^2 - 2|u||v|\cos(\theta)\dots(1)$$

$$\vec{w} = \vec{v} - \vec{u}$$

$$w = (v_1 - u_1, v_2 - u_2)$$

$$w^2 = (v_1 - u_1)^2 + (v_2 - u_2)^2$$

$$w^2 = v_1^2 - 2v_1u_1 + u_1^2 + v_2^2 - 2v_2u_2 + u_2^2$$

$$w^2 = v^2 + u^2 - 2v_1u_1 - 2v_2u_2 \dots (2)$$

$$\text{now, as } (1) = (2)$$

$$u^2 + v^2 - 2|u||v|\cos(\theta) = v^2 + u^2 - 2v_1u_1 - 2v_2u_2$$

$$|u||v|\cos(\theta) = v_1u_1 + v_2u_2$$

$$|u||v|\cos(\theta) = \vec{u}.\vec{v}$$

Hence proved.

Extending the above theorem to \mathbb{R}^n : Consider $\vec{u}=(u_1,u_2,\ldots,u_n), \vec{v}=(v_1,v_2,\ldots,v_n)\in\mathbb{R}$

$$\vec{u}.\vec{v} = u_1v_1 + u_2v_2 + \dots + u_nv_n$$

1.2 Unit Vectors

If $\vec{v} \in \mathbb{R}^2$ is a vector. then,

$$\hat{v} = \frac{\vec{v}}{|\vec{v}|}$$

1.3 Projections

If \vec{u} and \vec{v} are vectors in \mathbb{R}^2 and θ is the angle between them:

let \vec{w} be the projection of \vec{u} on \vec{v}

$$\begin{split} \vec{w} &= |u| \cos(\theta) \hat{v} \\ \vec{w} &= \frac{|u| \cos(\theta) |v| \vec{v}}{|v|^2} \\ \vec{w} &= \frac{\vec{u}.\vec{v}}{|\vec{v}|^2} \vec{v} \end{split}$$

1.4 Cross Product

Consider the vectors, u, v. Then the cross-product of u and v is defined as:

$$u \times v = |u||v|\sin(\theta)\hat{n}$$

where \hat{n} is the unit vector perpendicular to the plane containing u and v, and also $(\vec{u}, \vec{v}, \hat{n})$ form a right handed system.

Properties of Cross Product:

- $\vec{u} \times \vec{v} = -(\vec{v} \times \vec{u})$
- $(r\vec{u}) \times (s\vec{v}) = rs\vec{u} \times \vec{v}$
- $\vec{u} \times (\vec{v} + \vec{w}) = \vec{u} \times \vec{v} + \vec{u} \times \vec{w}$

 \vec{u} and \vec{v} can also be represented as:

$$\vec{u} = u_1\hat{i} + u_2\hat{j} + u_3\hat{k}$$

$$\vec{v} = v_1 \hat{i} + v_2 \hat{j} + v_3 \hat{k}$$

$$\vec{u} \times \vec{v} = (u_2v_3 - u_3v_2)\hat{i} + (u_3v_1 - u_1v_3)\hat{i} + (u_1v_2 - u_2v_1)\hat{k}$$

$$ec{u} imes ec{v} = egin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \\ \end{pmatrix}$$

the above formula is only symbolic and meant to represent a cross product.

2 Multi-Variable Calculus

let $r: \mathbb{R} \to \mathbb{R}^3$ be a function. (It could be to any \mathbb{R}^n) for $t \in \mathbb{R}$, r(t) is a vector in \mathbb{R}^3

$$r(t) = f(t)\hat{i} + g(t)\hat{i} + h(t)\hat{i}$$

2.1 Continuity

r is continuous at a if:

$$\lim_{t \to a} r(t) = r(a)$$

i.e. $\forall \epsilon > 0, \exists \delta > 0$ such that $|t - a| < \delta \implies |r(t) - r(a)| < \epsilon$ or, if f, g and h are continuous at a, r is continuous at a.