Procesorul MIPS pipeline

(versiune pe 16 biți)

-RAPORT-

Nume: Buda Andreea-Rodica

Grupa: 30221

1. Modificări suplimentare

Nu au fost făcute modificări suplimentare asupra operațiilor implementate anterior.

2. <u>Tabel cu descrierea registrilor MIPS 16 Pipeline</u>

IF/ID	ID/EX	EX/MEM	MEM/WB
Instruction_IF_ID(16)	PCinc_ID_EX(16)	BranchAddress_EX_ <u>MEM(</u> 1 6)	MemData_MEM_ <u>WB(</u> 16)
PCinc_IF_ID(16)	RD1_ID_EX(16)	ALURes_EX_ <u>MEM(</u> 16)	ALURes MEM WB(16)
	RD2_ID_EX(16)	RD2_EX_ <u>MEM(</u> 16)	rd_MEM_ <u>WB(</u> 3)
	Ext_imm_ID_EX(16)	rd_EX_ <u>MEM(</u> 3)	MemtoReg MEM WB(1)
	func_ID_EX(3)	zero_EX_ <u>MEM(</u> 1)	RegWrite MEM WB(1)
	rt_ID_EX(3)	MemtoReg_EX_ <u>MEM(</u> 1)	
	rd_ID_EX(3)	RegWrite_EX_ <u>MEM(</u> 1)	
	ALUOp_ID_EX(3)	MemWrite_EX_ <u>MEM(</u> 1)	
	sa_ID_EX(1)	Branch EX MEM(1)	
	MemtoReg_ID_EX(1)		
	RegWrite_ID_EX(1)		
	MemWrite_ID_EX(1)		
	Branch_ID_EX(1)		
	ALUSrc_ID_EX(1)		
	RegDst_ID_EX(1)		

3. <u>Schema procesorului MIPS Pipeline, versiunea pe</u> <u>16 biţi</u>

4. Rezolvarea hazardurilor folosind diagrama pipeline

Programul original:

Adresa	Instrucțiune	
00	addi \$1,\$0,0	
01	addi \$2,\$0,0	
02	addi \$3,\$0,1	
03	addi \$4,\$0,5	
04	lw \$5,0(\$0)	
05	lw \$6,1(\$0)	
06	add \$1,\$5,\$6	
07	lw \$5,0(\$3)	
08	lw \$6,1(\$3)	
09	add \$2,\$5,\$6	
10	slt \$1,\$2,\$1	
11	addi \$3,\$3,1	
12	beq \$3,\$4,1	
13	j7	

Hazarduri identificate:

Adresa	Instrucțiune
00	addi \$1,\$0,0
01	addi \$2,\$0,0
02	addi \$3,\$0,1
03	addi \$4,\$0,5
04	lw \$5,0(\$0)
05	lw \$6,1(\$0)
06	add \$1,\$5,\$6
07	lw \$5,0(\$3)
08	lw \$6,1(\$3)
09	add \$2,\$5,\$6
10	slt \$1,\$2,\$1
11	addi \$3,\$3,1
12	beq \$3,\$4,1
13	j 7

- Hazardul sructural a fost soluționat prin modificarea blocului de registre RF, astfel încât scrierea să aibă loc în mijlocul perioadei de ceas(pe front descrescător a perioadei de ceas).
- Între instrucțiunile de la adresele 4 și 6 se identifică un hazard de date, după registrul \$5.
- Între instrucțiunile de la adresele 5 și 6 se identifică un hazard de date, după registrul \$6.
 - Aceste două hazarde pot fi soluționate introducând doua NoOp-uri.
- Între instrucțiunile de la adresele 7 și 9 se identifică un hazard de date, după registrul \$5.
- Între instrucțiunile de la adresele 8 și 9 se identifică un hazard de date, după registrul \$6.
 - Aceste două hazarde pot fi soluționate introducând doua NoOp-uri.
- Între instrucțiunile de la adresele 9 și 10 se identifică un hazard de date, după registrul \$2.
 - Acest hazard poate fi soluționat introducând doua NoOp-uri.
- Între instrucțiunile de la adresele 11 și 12 se identifică un hazard de date, după registrul \$3.
 - Acest hazard poate fi soluționat introducând doua NoOp-uri.
- Instrucțiunea de la adresa 12 este o instrucțiune de salt condiționat la care se găsește un hazard de control care poate fi rezolvat prin introducerea a trei NoOp-uri.
- Instrucțiunea de la adresa 13 este o instrucțiune de salt necondiționat la care se găsește un hazard de control care poate fi rezolvat prin introducerea unei singure instrucțiuni NoOp.

Diagrama pipeline:

Programul rescris, fără hazarduri:

Adresa	Instrucțiune
00	addi \$1,\$0,0
01	addi \$2,\$0,0
02	addi \$3,\$0,1
03	addi \$4,\$0,5
04	Iw \$5,0(\$0)
05	Iw \$6,1(\$0)
06	NoOp
07	NoOp
08	add \$1,\$5,\$6
09	Iw \$5,0(\$3)
10	Iw \$6,1(\$3)
11	NoOp
12	NoOp
13	add \$2,\$5,\$6
14	NoOp
15	NoOp
16	slt \$1,\$2,\$1
17	addi \$3,\$3,1
18	NoOp
19	NoOp
20	beq \$3,\$4,5
21	NoOp
22	NoOp
23	NoOp
24	j 9
25	NoOp

5. RLT schematic pentru entitatea top-level

! Testarea pe plăcuță nu funcționează deoarece imediatele nu mi se modfică așa cum trebuie.