Essentials of MOSFETs

Unit 3: MOS Electrostatics

Lecture 3.5: MOS CV

Mark Lundstrom

Iundstro@purdue.edu
Electrical and Computer Engineering
Purdue University
West Lafayette, Indiana USA

MOS capacitor

Effect of DC bias

Two capacitors in series

4

Small signal gate capacitance vs. d.c. gate bias

5

s.s. gate capacitance vs. d.c. gate bias

6

Realistic MOS CV / Critical voltages

High frequency vs. low frequency CV

8

HF vs. LF CV

CV measurements as an analysis tool

CV measurements as an analysis tool

- Oxide thickness
- Flatband voltage
- Doping density

More advanced techniques can also probe various types of charges in the oxide and at the oxide/semiconductor interface.

Summary (i)

Summary (ii)

Summary (iii)

Next topic

The mobile charge (the electron or holes in the inversion layer) carries the current in a device.

Our goal in the next lecture is to understand how the mobile charge varies with surface potential and gate voltage.

$$Q_n(\psi_S)$$
 $Q_n(V_G)$