

Università degli Studi di Trento

Dipartimento di Ingegneria e Scienza dell'Informazione Corso di Laurea in Ingegneria Informatica, delle Comunicazioni ed Elettronica (ICE)

Organizzazione e Gestione Aziendale

La gestione della Qualita'

Lean Management

Prof. Marco Formentini Università degli Studi di Trento, 7 Maggio 2023

Agenda della sessione

- Definire la natura e l'importanza della qualità nella gestione dei processi aziendali
- Decidere la misurazione della qualità e definire gli standard
- · Gli strumenti per la gestione della qualità
- Lean Management e Just-in-Time
- Come implementare la lean synchronisation?

Definire il concetto di qualità

Le definizioni di qualità

Quante diverse prospettive?

Cinque categorie proposte da Garvin (1984)

- product-based un insieme di determinate caratteristiche
- manufacturing-based senza difetti
- · value-based qualità vs. costo/prezzo
- user-based "fitness for purpose"
- transcendent eccellenza innata e intangibile

Inoltre....

• gap-based – aspettative e percezioni

Quality Management

- · Le dimensioni della qualità
- "La qualità e' la totalita' delle specifiche e delle caratterisitche di un prodotto o servizio su cui si basa la sua abilita' di soddisfare determinati bisogni" (American National Standards Institute (ANSI) and American Society for Quality Control (ASQC))
- Alcune dimensioni della qualità:
 - <u>Performance</u>: main characteristics
 - _ Aesthetics: appearance, feel, smell, taste
 - Features: extra characteristics
 - Conformance: how well product/service conforms to customer's expectations
 - Reliability: consistency of performance
 - Durability: useful life
 - Perceived Quality: indirect evaluation of quality (e.g. reputation)
 - Service after sale: handling of customer complaints or checking on customer satisfaction

Certificazione della Qualità ISO 9001

- La Certificazione della Qualità ISO 9001 è uno standard internazionale applicabile da tutte le organizzazioni, operanti in qualsiasi settore di attività.
- E' basata su otto principi di gestione per la qualità (tutti indispensabili per una buona conduzione aziendale).
 - Focalizzazione sul cliente
 - Leadership
 - Coinvolgimento del personale
 - Approccio per processi
 - Approccio sistemico alla gestione
 - Miglioramento continuo
 - Decisioni basate su dati di fatto
 - Rapporti di reciproco beneficio con i fornitori

Prof Marco Formentini

F

Decidere le misure e definire gli standard

- Misurazione oggettiva o soggettiva?
- · Assoluta o relativa?
- Chi lo dice? Clienti, staff, o managers?
- Critiche o commenti?
- Prevenzione o riparazione?

Definire gli obiettivi: Obiettivi basati su dati storici Obiettivi strategici Obiettivi basati su performance esterne Obiettivi di performance assoluta

Prof Marco Formentini

7

15

Approcci differenti alla gestione della qualità e del miglioramento dei processi

		LININGPOLITY			
	Breakthrough improvement (Business process reengineering)	Continuous improvement (TQM, Six Sigma, Lean Manufacturing)			
Duration	Short-term	Long-term			
Pace	Big steps	Small steps			
Change	Abrupt	Incremental			
Involvement	A few "champions"	Everyone			
Approach	Individualistic	Collective			
Stimulus	New inventions, new theories, new technology	Conventional know-how			
Risks	Concentrated	Spread over many projects			
Investment & efforts	Large investment but small effort over time	Small investment but large effort over time			
Effort focus	Technology	People			
Evaluation	Profit	Better results in general			

Lean Manufacturing

- https://www.youtube.com/watch?v=P-bDIYWuptM
 - Lean Thinking/Synchronization...

34

What is the Lean Operations Philosophy?

Waste is undesirable. GOAL: Zero waste

High quality is essential. GOAL: Zero defects

• Just-In-Time is essential. Pull instead of push.

GOAL: Low inventories

 Any difficulty in achieving the above three goals provides an opportunity to improve the process.

The Toyota Production System

"the benchmark for lean management"

Based on two philosophies:

1. Elimination of waste (*muda* – horse not carrying a load - 无驮)

Taiichi Ohno (1912 - 1990)

2. Respect for people

Video

Respect for People

- Level payrolls (constant workforce no layoffs)
 - Lifetime employment of core workers
 - Recruitment of temporary workers
- Cooperative employee unions
- Bottom-round management style
 - Workers are trained to continuously improve the process (kaizen change for the better 改善) get to the root problem
 - Workers can also stop the process (line) to address short-term quality problems (jidoka autonomation 自动让 and Andon Cord cord to trigger "Paper Lantern" to light up 行灯)
- Quality circles (Small Group Involvement Activities or SGIA's)

Toyota's View of Waste

Waste is 'anything other than the minimum amount of equipment, materials, parts, space, and worker's time, which are absolutely essential to add value to the product.'

Shoichiro ToyodaChairman, Toyota(1992 – 1999)

How to Reduce Waste? Tool 1 - Value Stream Mapping

- Value Added activities (VA): activities in a process for which a customer is willing to pay for
 - Nursing care, surgery, patient treatment
 - A worker assembling a wheel in a car
- Non-value Added activities (NVA): activities for which the patient is not willing to pay for, and are not necessary for business
 - A nurse walking 50 ft to another room to search for supplies
 - Retrieving inventory from warehouse
- Business Non-value Added (BNVA): activities for which the patient is not willing to pay for, but are necessary for accounting, legal, or regulatory purposes
 - Preparing financial statements
 - Disclosing information to regulatory agencies

What is Value Stream Mapping?

- Essentially, a process flow chart, with activities being labeled as VA, BNVA, or NVA
- More information may be added
 - Changeover time
 - Processing time per unit; cycle time
 - Wait (queue) time
 - Estimated cost
- Objective: look for waste reduction through removal or reduction of NVA activities

Process Efficiency

Process Efficiency = $\frac{\text{Time spent in value-added activities}}{\text{Total process time (Lead Time)}}$

Example: previous Value Stream Map

Activity	Туре	Time (min)
Transport parts to inspection area	NVA	5
Inspect parts	NVA	3
Move parts to storage shelves	NVA	10
Remove parts from shelf and place in assembly kit	NVA	15
Transport parts to assembly line technician	NVA	5
Assemble parts	VA	13
Inspect assembly	NVA	3

Process efficiency =
$$\frac{13}{5+3+10+15+5+13+3} = \frac{13}{56} = 0.23 = 23\%$$

How to Reduce Waste? Tool 2 - Reducing Waste Through 5S

 5S is a system of procedures that are used to organize and arrange the workplace, to optimize performance, cleanliness, safety

Japanese S English S

<u>S</u>eiri 整理 <u>S</u>orting

Seiton 整顿 Set in order

Seiso 清扫 Sweeping (or Shine)

Seiketsu 清洁 Standardization

Shitsuke 身美 (纪律) Self-Discipline (or, Sustain)

Example of 5S Implementation (Black & Decker Plant at Hampstead, MD)

BEFORE

Simple stuff will improve productivity and lower waste significantly

AFTER

"One place for each thing each thing at its place"

Just-In-Time

Synchronize production flow with demand

- 1. Produce at the rate of customer demand
 - Mixed model production Heijunka 平准化 even flow by volume and product
 - Small batch size & reduce setup time/cost SMED see next slide
- 2. Use Pull system instead of Push
 - Kanban based pull *Kanban* 看板 visual card signaling a need for an item see later slides
 - Make-to-order produce based on customer orders

Minimizes Inventory

→ Exposes Quality / Process Problems

How to Reduce Batch Sizes? By Decreasing Setup Cost / Time

- Batch size (and consequently average inventory) increases with setup cost
- To reduce batch size, you need to reduce setup cost (or setup time)
- SMED Single Minute Exchange of Dies
 - This is a group of techniques applied to reduce setup (or changeover) times in manufacturing
 - Starts with documenting (e.g., filming) the changeover process
 - Then, one designs fixtures, trays, change layout, and other actions to avoid time wasted during setup
 - May include activities as simple as positioning necessary tools for changeover closer to setup operation

"Push" vs. "Pull"

Push

Production based on forecast – before knowing the actual demand

Work is scheduled and *pushed through* each stage in the process *in anticipation* of customer orders

Pull

Production based on actual demand – after seeing the actual demand

Work at each stage in the production process is *pulled through* the system *in response to* actual orders for final products / services.

Lean Manufacturing

- 1. Use of Cellular Layout
- 2. Demand Pull
- 3. Level Production
- 4. Quality at the Source
- 5. Standardization of Work and Maintenance
- 6. Use of Safety Capacity
- 7. Improving Visibility of Performance
- 8. Employee Involvement
- 9. Supplier Management

Part Routing Matrix

	Machines											
Parts	1	2	3	4	5	6	7	8	9	10	11	12
A	ж	ж		ж				ж		ж		
В					x		x				x	x
С			x			х			x			
D	ж	x		x				x		x		
E				x	x							x
F	ж			x				ж				
G			x			ж			x			x
н							x				x	x
											7.7	

Reordered Routing Matrix

	Machines											
Parts	1	2	4	8	10	3	6	9	5	7	11	12
A	x	x	x	x	ж							
D	x	x	x	x	х							
F	ж		x	x					_			
С						ж	X	ж				
G						x	X	x				x
В					÷				х	ж	ж	x
H										x	x	x
E							x		x			x

5. Standardization of Work and Maintenance

- · Standardization of Work:
 - Reduces variability due to changing personnel
 - Reduces variability from one production cycle to the next
 - Makes it easier to identify sources of waste
- Preventative Maintenance
- Poka yoke

6. Use of Safety Capacity

Companies that strive for lean manufacturing reduce safety inventory at the expense of increasing safety capacity.

7. Improving Performance Visibility

- Understanding performance from the customer's perspective
 - Close alignment of internal and external measures
- Understanding of expected and actual performance

8. Employee Involvement

- Expertise
- Flexibility
- Empowerment

9. Supplier Management

- Supplier Selection
- Supplier Development
- Supplier Evaluation