

密码学

第四章 分组密码

网络空间安全学院 胡 伟 朱丹 weihu/zhudan@nwpu.edu.cn

- ◆ 1997年美国国家标准与技术研究所 (NIST) 向社会公开征集高级数据加密标准 (AES, Advanced Encryption Standard)
- - 學 第一轮: 1998年8月20日从应征的21个算法中选出15个
 - 第二轮: 1999年8月又选出其中5个候选算法(RC6, Rijndael, SERPENT, Twofish和MARS)
 - 第 第 三 轮: 2000年10月2日再选出1个算法(Rijndael)
- ◆ 2001年11月26日NIST接受其作为标准
- ◆ 2001年12月4日正式公布为联邦标准: FIPS 197

✓ AES英文全称✓ AES设计要求:安全性(由密钥决定) 、分组长度、密钥长度

- ♪ 分组密码:明文和密文分组长度为128位,密钥长度可为128/192/256位
- ♪ 基本轮函数迭代,轮数可为10/12/14 (与密钥长度对应)
- ♪ 整体结构: S-P网络结构
- **◇** 不是对合运算:加解密算法存在差异
- ◆ 与DES类似,属于面向二进制的密码:便于计算机实现

- ◆ AES基于有限域GF(28)
- グ 有限域GF(28)上元素的GF(2)多项式表示
 - 学 字节 $B = b_7 b_6 b_5 b_4 b_3 b_2 b_1 b_0$ 可表示成GF(2)上的多项式

$$b_7x^7 + b_6x^6 + b_5x^5 + b_4x^4 + b_3x^3 + b_2x^2 + b_1x + b_0$$

- ∮ 例如, 0x57对应的二进制数为, 01010111
- **卢** 相应的多项式为 $x^6 + x^4 + x^2 + x + 1$

- グ 有限域GF(28)上的加法
 - ▶ 对应多项式系数的模2加(异或)
 - 學 结果仍为GF(28)上的元素 (次数不超过7的多项式)
 - ∮ 例, 0x57 + 0x83 = ?

$$01010111 \oplus 10000011 = 11010100$$

$$(x^6+x^4+x^2+x+1)\oplus (x^7+x+1) = x^7+x^6+x^4+x^2$$

$$0x57 + 0x83 = 0xD4$$

- グ 有限域GF(28)上的乘法

 - **№** AES选择 $m(x) = x^8 + x^4 + x^3 + x + 1$, 其16进制表示为0x11B
 - 多项式乘法对m(x)取模,结果仍为 $GF(2^8)$ 上的元素(次数不超过7的多项式)
 - ∮ 例, 0x57×0x83 = ?

$$(x^6+x^4+x^2+x+1)\otimes (x^7+x+1) = x^7+x^6+1 \mod m(x)$$

0x57 × 0x83 = 0xC1

◆ 有限域GF(28)上的x乘法(xtime), 定义为

$$x \otimes (b_7x^7 + b_6x^6 + b_5x^5 + b_4x^4 + b_3x^3 + b_2x^2 + b_1x + b_0)$$

= $b_7x^8 + b_6x^7 + b_5x^6 + b_4x^5 + b_3x^4 + b_2x^3 + b_1x^2 + b_0x$

- ♪ 计算规则:
 - 学 若 $b_7 = 0$,次数不超过7,直接得到结果
 - F 否则,乘法结果减去m(x),即与m(x)做异或
- - $F B = b_7 b_6 b_5 b_4 b_3 b_2 b_1 b_0$ 左移一位,最低位补0(乘2)
 - F 若 $b_7 = 0$,直接得到结果
 - $^{\sharp}$ 否则, $b_6b_5b_4b_3b_2b_1b_0$ 0再与0x1B做异或
 - ₹ x的更高次的乘法可以重复应用xtime实现

- ◆ AES数据处理的单位是字节(byte)、字(word)和状态(state)
 - ▶ 一个字 = 4个字节 = 32位, 状态为128位
 - ▶ 一个字可表示为系数取自GF(28)上的次数低于4次的多项式
 - **乡** 例, 字: 57 83 4A D1 -- $57x^3 + 83x^2 + 4Ax + D1$
- ♪ 字加法: 两多项式系数按位模2加

》 例,
$$(57x^3 + 83x^2 + 4Ax + D1) + (Ax^3 + B3x^2 + EF)$$

= $5Dx^3 + 30x^2 + 4Ax + 3E$

状态矩阵

- ◈ 状态 (128位)
 - 加解密过程中的中间数据
 - ▶ 以字节为元素的矩阵或二维数组

a _{0,0}	a _{0,1}	a _{0,2}	a _{0,3}
a _{1,0}	a _{1,1}	a _{1,2}	a _{1,3}
a _{2,0}	a _{2,1}	a _{2,2}	a _{2,3}
a _{3,0}	a _{3,1}	a _{3,2}	a _{3,3}

知识回顾 - AES数学基础

❖ 字乘法: 设a和c是两个字, a(x)和c(x)为对应的字多项式, AES定义a和c的乘积b为

$$b(x) = a(x)c(x) \bmod x^4 + 1$$

♪ 假设

$$a(x) = a3x^3 + a2x^2 + a1x + a0$$

$$c(x) = c3x^3 + c2x^2 + c1x + c0$$

$$b(x) = b3x^3 + b2x^2 + b1x + b0$$

沙 则, $b(x)=a(x)c(x) \mod x^4 + 1$ 为

$$b0 = a0c0 + a3c1 + a2c2 + a1c3$$
 四次项和常量
 $b1 = a1c0 + a0c1 + a3c2 + a2c3$ 一次项
 $b2 = a2c0 + a1c1 + a0c2 + a3c3$ 二次项
 $b3 = a3c0 + a2c1 + a1c2 + a0c3$ 三次项

- ◆ 字乘法的矩阵表示
- x^4 + 1= (x^2 + 1)(x^2 + 1), 是可约多项式,字c(x)不一定存在逆元
- ◆ AES选择的c(x)有逆, $c(x) = 03x^3 + 01x^2 + 01x + 02$

$$\begin{pmatrix} b_0 \\ b_1 \\ b_2 \\ b_3 \end{pmatrix} = \begin{pmatrix} c_0 & c_3 & c_2 & c_1 \\ c_1 & c_0 & c_3 & c_2 \\ c_2 & c_1 & c_0 & c_3 \\ c_3 & c_2 & c_1 & c_0 \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{pmatrix}$$

知识回顾 - AES数学基础

学 字的x乘法: 设b(x)是一个字, $p(x) = xb(x) \mod x^4 + 1$ $= b_3 x^4 + b_2 x^3 + b_1 x^2 + b_0 x \mod x^4 + 1$

 $=b_{2}x^{3}+b_{1}x^{2}+b_{0}x+b_{3}$

- **୬** 因为模 $x^4 + 1$,字的x乘法相当于按字节循环移位
- **≫** 写成矩阵形式

- ◈ 选择 $m(x) = x^8 + x^4 + x^3 + x + 1$, 计算有限域GF(28)上的乘法87×15。

章节安排

Outline

AES算法概述

AES数学基础

AES加解密算法

AES密钥扩展算法

AES安全性分析

常用符号

▼ N_b: 明密文所含的字数 (N_b = 4)

 N_k : 密钥所含的字数 ($N_k = 4, 6, 8$)

[▶] N_r: 迭代轮数 (N_r = 10, 12, 14)

N_b = 4时, 状态矩阵为

a _{0,0}	a _{0,1}	a _{0,2}	a _{0,3}
a _{1,0}	a _{1,1}	a _{1,2}	a _{1,3}
a _{2,0}	a _{2,1}	a _{2,2}	a _{2,3}
a _{3,0}	a _{3,1}	a _{3,2}	a _{3,3}

 $N_k = 4$ 时,密钥矩阵为

k _{0,0}	k _{0,1}	k _{0,2}	k _{0,3}
k _{1,0}	k _{1,1}	k _{1,2}	k _{1,3}
k _{2,0}	k _{2,1}	k _{2,2}	k _{2,3}
k _{3,0}	k _{3,1}	k _{3,2}	k _{3,3}

4.9(2) AES的基本结构

Basic Structure

◆ S盒变换 –

S-Box

- ◆ 行移位 **ShiftRows**
- **MixColumns**
- ◈ 密钥扩展 KeyScheduler
- ♪ 加轮密钥 AddRoundKey

AES的基本部件

- ◆ AES的S盒变换 SubByte (以字节为单位)
- ◆ S盒变换是AES的唯一的非线性变换,是AES安全的关键

	S盒数量	S盒规模	S盒功能	各S盒是否相同
DES	8	6输入4输出	非线性压缩	不同
AES	16	8输入8输出	非线性置换	相同

- ◆ S盒变换的特点
 - ₹ 把输入字节看成GF(28)上的元素
 - ▶ 求出其在GF(28)上的逆元素, 00变换为自身

设a(x)的逆元为b(x), 则 $a(x)b(x) = 1 \mod m(x)$ 其中, $m(x) = x^8 + x^4 + x^3 + x + 1$

◆ 第二步:在GF(2)上对上面的结果作如下的仿射变换

$$\begin{pmatrix} y_0 \\ y_1 \\ y_2 \\ y_3 \\ y_4 \\ y_5 \\ y_6 \\ y_7 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \\ x_7 \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \end{pmatrix}$$

4.9(2) AES的基本结构-S盒

- **※**第一步把字节的值用它的乘法逆来代替,是一种非线性变换
- 参 第二步是仿射运算,是线性变换
- ▶ 由于系数矩阵中每列都含有 5个1,这说明改变输入中的任意一位,将影响输出中的5位
- ◆ 由于系数矩阵中每行都含有 5个1,这说明输出中的任意一位,都与输入中的5位相关

4.9(2) AES的基本结构-S盒

- **№** 通常采用查找表来实现
 - ₹ 256字节数组
 - ፆ case语句

	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	E	F
0	63	7C	77	7B	F2	6B	6F	C5	30	01	67	2B	FE	D7	AB	76
1	CA	82	C9	7D	FA	59	47	F0	AD	D4	A2	AF	9C	A4	72	CO
2	B7	FD	93	26	36	3F	F7	СС	34	A5	E5	F1	71	D8	31	15
3	04	C7	23	СЗ	18	96	05	9A	07	12	80	E2	EB	27	B2	75
4	09	83	2C	1A	1B	6E	5A	A0	52	3B	D6	В3	29	E3	2F	84
5	53	D1	00	ED	20	FC	B1	5B	6A	СВ	BE	39	4A	4C	58	CF
6	D0	EF	AA	FB	43	4D	33	85	45	F9	02	7F	50	3C	9F	A8
7	51	А3	40	8F	92	9D	38	F5	вс	В6	DA	21	10	FF	F3	D2
8	CD	0C	13	EC	5F	97	44	17	C4	A7	7E	3D	64	5D	19	73
9	60	81	4F	DC	22	2A	90	88	46	EE	B8	14	DE	5E	0B	DB
Α	E0	32	3A	0A	49	06	24	5C	C2	D3	AC	62	91	95	E4	79
В	E7	C8	37	6D	8D	D5	4E	A9	6C	56	F4	EA	65	7A	AE	08
С	ВА	78	25	2E	1C	A6	В4	C6	E8	DD	74	1F	4B	BD	8B	8A
D	70	3E	В5	66	48	03	F6	0E	61	35	57	В9	86	C1	1D	9E
E	E1	F8	98	11	69	D9	8E	94	9B	1E	87	E9	CE	55	28	DF
F	8C	A1	89	0D	BF	E6	42	68	41	99	2D	0F	В0	54	ВВ	16

4.9(2) AES的基本结构-行移位

- グ 行移位变换 ShiftRow(128位)
 - ▶ 行移位变换对状态矩阵的行进行循环左移
 - ▶ 第 0行不移位, 第1行移 1字节, 第2行移 2字节, 第3行移3字节
 - **▶** 行移位变换属于置换,属于线性变换,本质在于把数据打乱重排,起扩散作用

a _{0,0}	a _{0,1}	a _{0,2}	a _{0,3}	循环左移0字节	a _{0,0}	a _{n 1}	a _{0,2}	a _{n 3}
3-0,0				循环左移1字节	3-0,0	0,1	0,2	0,5
a _{1,0}	a _{1,1}	a _{1,2}	a _{1,3}		a _{1.1}	a_{12}	a _{1,3}	a_{10}
,				循环左移2字节	•,•	·		
a _{2,0}	a _{2,1}	a _{2,2}	a _{2,3}		a _{2,2}	a _{2,3}	a _{2,0}	a _{2,1}
_				循环左移3字节		·	,	,
$a_{3,0}$	$a_{3,1}$	a _{3,2}	a _{3,3}		a _{3,3}	$a_{3,0}$	$a_{3,1}$	a _{3,2}

- グ 列混合变换 MixColumn (128位), 属于线性变换, 起扩散作用
- **୬** 把状态的列视为GF(2⁸)上的多项式a(x),乘以一个固定的多项式c(x),然后模 x^4+1 :

$$b(x) = a(x)c(x) \bmod x^4 + 1$$

- **其中**, $c(x) = 03x^3 + 01x^2 + 01x + 02$
- c(x)与 $x^4 + 1$ 互素,从而保证c(x)存在逆多项式d(x),使得 $c(x)d(x) = 1 \mod x^4 + 1$
- ♪ 只有逆多项式d(x)存在,才能正确进行解密

AES数学基础

字乘法:设a和c是两个字,a(x)和c(x)为对应的字多项式,AES定义a和c的乘积b为

$$b(x) = a(x)c(x) \bmod x^4 + 1$$

♪ 假设

$$a(x) = a3x^{3} + a2x^{2} + a1x + a0$$

$$c(x) = c3x^{3} + c2x^{2} + c1x + c0$$

$$b(x) = b3x^{3} + b2x^{2} + b1x + b0$$

沙 则, $b(x)=a(x)c(x) \mod x^4 + 1$ 为

$$b0 = a0c0 + a3c1 + a2c2 + a1c3$$
 四次项和常量
 $b1 = a1c0 + a0c1 + a3c2 + a2c3$ 一次项
 $b2 = a2c0 + a1c1 + a0c2 + a3c3$ 二次项
 $b3 = a3c0 + a2c1 + a1c2 + a0c3$ 三次项

- ♪ 列混合变换 MixColumn (128位), 属于线性变换, 起扩散作用
- ♪ 把状态的列视为 $GF(2^8)$ 上的多项式a(x),乘以一个固定的多项式c(x),并模 x^4+1 :

$$b(x) = a(x)c(x) \bmod x^4 + 1$$

其中,
$$c(x) = c_3 x^3 + c_2 x^2 + c_1 x + c_0 = 03x^3 + 01x^2 + 01x + 02$$

▶ 写成矩阵形式

4.9(2) AES的基本结构-加轮密钥

- ❖ 轮密钥加变换AddRoundKey(128位)
 - ᢞ 把轮密钥与状态进行模2加
 - 轮密钥根据密钥产生算法产生
 - 幹 轮密钥长度等于数据分组长度

★ AES不是对合运算,解密算法与加密算法不同

(AES)-1≠AES

- ▲ AES的巧妙之处:虽然解密算法与加密算法不同,但是解密算法与加密算法的结构相同
- ※ 把加密算法的基本运变换成逆变换,便得到解密算法,密钥扩展策略稍有不同

◈ 轮密钥加变换的逆就是其本身

 $(AddRoundKey)^{-1} = AddRoundKey$

- ◆ 行移位变换的逆是状态的后三行分别循环左移3,2,1个字节(或循环右移1,2,3个字节)
- ♪ 列混合变换把状态的每一列都乘以一个多项式c(x): $b(x) = a(x)c(x) \mod x^4 + 1$
- ✓ 列混合变换的逆就是状态的每列都乘以c(x)的逆多项式d(x):

$$d(x) = (c(x))^{-1} \mod x^4 + 1$$

$$c(x) = 03x^3 + 01x^2 + 01x + 02$$

$$d(x) = 0Bx^3 + 0Dx^2 + 09x + 0E$$

$$\begin{pmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{pmatrix} = \begin{pmatrix} 0E & 0B & 0D & 09 \\ 09 & 0E & 0B & 0D \\ 0D & 09 & 0E & 0B \\ 0B & 0D & 09 & 0E \end{pmatrix} \begin{pmatrix} b_0 \\ b_1 \\ b_2 \\ b_3 \end{pmatrix}$$

✓ 轮密钥加的逆运算是它本身;行移位的逆运算是按照一定规则移回来✓ 列混合的逆运算是在正变换的两边乘以c(x)的逆多项式,字乘法的逆,也可写成矩阵乘法形式

※第一步: 首先进行逆仿射变换

参 第二步: 再把每个字节用其在GF(28)中的逆来代替

$(0\ 0\ 1\ 0\ 0\ 1\ 0\ 1)$	(y_0) (1) (x_0)	$\begin{bmatrix} 0 \end{bmatrix}$
1 0 0 1 0 0 1 0	$ y_1 x$	1
0 1 0 0 1 0 0 1	$ y_2 0 x_1$	2
1 0 1 0 0 1 0 0	$ y_3 0 x_5$	3
0 1 0 1 0 0 1 0	$ y_4 \oplus 0 = x_4$	4
0 0 1 0 1 0 0 1	$ y_5 $ $ x_5 $	5
1 0 0 1 0 1 0 0	$ y_6 $ $ x_6 $	6
$(0 \ 1 \ 0 \ 0 \ 1 \ 0 \ 1 \ 0)$	(y_7) (0) (x_1)	7

参 为什么AES加密和解密过程是可以对称的

章节安排

Outline

AES算法概述

AES数学基础

AES加解密算法

AES密钥扩展算法

AES安全性分析

- ◈ 密钥扩展 $(N_k \le 6$ 的密钥扩展)
 - ₱最前面的Nょ个字由用户密钥填充
 - \checkmark 之后每个字W[j]等于W[j-1]与N_k个位置之前的字W[j N_k]的异或
 - 对于 N_k 的整数倍的位置处的字,在异或之前,对W[j-1]进行Rotl变换和ByteSub变换,再异或一个轮常数Rcon

当j是 N_k 的整数倍时: $W_j = W_{j-Nk} \oplus ByteSub (Rotl (W_{j-1})) \oplus Rcon[j/N_k]$

否则: $W_j = W_{j-Nk} \oplus W_{j-1}$

◢ 当前密钥字和两个字相关;根据当前密钥字位置下标与Nk的关系,确定扩展规则

♪ Rotl是一个字里的字节循环左移函数,设

$$W = (A, B, C, D),$$

$$Rotl(W) = (B, C, D, A)$$

- ❖ 轮常数Rcon与N_k无关,且定义为:
 - Rcon[i] = (RC[i], '00', '00', '00')
 - RC[0] = '01'
 - RC[i] = xtime(RC[i-1])

- ♪ N_k > 6 的密钥扩展
 - 增加: $N_k > 6$ 的密钥扩展与 $N_k \le 6$ 的密钥扩展不同之处在于: 如果j被 N_k 除的余数为4,则在异或之前,对W[j-1]进行SubBytes变换
 - \not 当 $N_k > 6$ 时密钥很长,仅仅对 N_k 的整数倍的位置处的字进行SubBytes 变换,就显得 SubBytes 变换的密度较稀,安全程度不够强

- ♪ N_k > 6 的密钥扩展
 - 增加: $N_k > 6$ 的密钥扩展与 $N_k \le 6$ 的密钥扩展不同之处在于: 如果j被 N_k 除的余数为4,则在异或之前,对W[j-1]进行SubBytes变换

当j 是 N_k 的整数倍时: $W_j = W_{j-Nk}^{\oplus}$ ByteSub (Rotl (W_{j-1})) \oplus Rcon[j/N_k] 当j被 N_k 除的余数为4: $W_j = W_{j-Nk}^{\oplus}$ ByteSub(W_{j-1})

否则: $W_j = W_{j-Nk} \oplus W_{j-1}$

参 举例: N_k = 4

当 j = 5时,j不是 $N_k = 4$ 的整数倍:

$$W_5 = W_1 \oplus W_4$$

当j = 4时,j是 $N_k = 4$ 的整数倍:

 $W4 = W0 \oplus ByteSub(Rotl(W3)) \oplus Rcon[1]$

初始密钥先按字填充

- **★**第一种解密方法解密的密钥扩展与加密的密钥扩展
- ◆ 第二种解密方法解密的密钥扩展与加密的密钥扩展不同,定义如下
 - ▶ 加密算法的密钥扩展
 - ₹ 把InvMixColumn应用到除第一和最后一轮外的所有轮密钥

4.10(2) AES解密算法

章节安排

Outline

AES算法概述

AES数学基础

AES加解密算法

AES密钥扩展算法

AES安全性分析

- ◈ 安全性:
 - ✗ AES仍然是目前主流的数据加密标准
 - ✔ AES主要的安全威胁来源于侧信道攻击
 - 主要是能量侧信道、电磁侧信道和故障注入攻击
 - ₹ 无弱密钥,128位AES的密钥空间可达2128

课后作业

- FIPS 197 Advance Encryption Standard (AES), https://www.nist.org/nist_plugins/content/content.php?content.39
- Mini-AES,
 https://doc.sagemath.org/html/en/reference/cryptography/sage/crypto/block_
 cipher/miniaes.html
- R. C.-W. Phan. Mini advanced encryption standard (mini-AES): a testbed for cryptanalysis students. Cryptologia, 26(4):283–306, 2002
- グ 编程实现AES算法 (密钥长度128位)

