TARGET SQL QUERY-RESULT

Aniket Chavan

9420395075

aniketc7303@gmail.com

- 1. Import the dataset and do usual exploratory analysis steps like checking the structure & characteristics of the dataset:
 - 1. Data type of all columns in the "customers" table.

2. Get the time range between which the orders were placed.

```
SELECT
MIN(order_purchase_timestamp) AS first_purchase,
MAX(order_purchase_timestamp) AS last_purchase,
FROM `Target_SQL_Business_Case.orders`
```

Query results

JOB IN	IFORMATION	RESULTS	CHART	JSON	E
Row	first_purchase	· //	last_purchase	•	1.
1	2016-09-04 21:1	5:19 UTC	2018-10-17 17:3	0:18 UTC	

3. Count the Cities & States of customers who ordered during the given period.

```
select
COUNT(distinct customer_city) as city_count,
COUNT(distinct customer_state) as state_count
from Target_SQL_Business_Case.customers as c inner join `Target_SQL_Business_Case.orders` as
o
on c.customer_id = o.customer_id;
```


II. In-depth Exploration:

- 1. Is there a growing trend in the no. of orders placed over the past years?

 Query is same as 2nd question. As we can see growing trend from same table.
- 2. Can we see some kind of monthly seasonality in terms of the no. of orders being placed?

```
SELECT
  count(*) as order_count,
  extract(year from order_purchase_timestamp) as year,
  extract(month from order_purchase_timestamp) as month
from `Target_SQL_Business_Case.orders`
group by month, year
order by month, year;
```

Query results

JOB INFORMATION		RESULTS	CHAR	T JSON
Row	order_count ▼	year ▼	- /-	month ▼
1	80	0	2017	1
2	726	9	2018	1
3	178	0	2017	2
4	672	8	2018	2
5	268	2	2017	3
6	721	1	2018	3
7	240	4	2017	4
8	693	9	2018	4
9	370	0	2017	5
10	687	3	2018	5

Observation -

- a. As here the query output is ordered by months and years we can easily find our answer. Yes there is a growing trend in the no. of orders per month every year. Also there is growth in no. of orders in a month as compare to the previous year.
- b. In terms of *seasonality* we can see here the *growth in no. of orders* in particular months of seasons per year.

3. During what time of the day, do the Brazilian customers mostly place their orders? (Dawn, Morning, Afternoon or Night)

```
SELECT
  case
   when EXTRACT(hour from order_purchase_timestamp) BETWEEN 0 and 6 THEN 'Dawn'
   when EXTRACT(hour from order_purchase_timestamp) BETWEEN 7 and 12 THEN 'Morning'
   when EXTRACT(hour from order_purchase_timestamp) BETWEEN 13 and 18 THEN 'Afternoon'
   when EXTRACT(hour from order_purchase_timestamp) BETWEEN 19 and 23 THEN 'Night'
  END as day_time,
  count(distinct order_id) as order_count
from `Target_SQL_Business_Case.orders`
group by day_time;
```

Quer	y results			
JOB IN	FORMATION	RESULTS	CHART	JSON
Row	day_time ▼		order_count ▼	/
1	Morning		2773	33
2	Dawn		524	42
3	Afternoon		3813	35
4	Night		2833	31

Observation -

As we can see here, Brazilian customers mostly place their orders in the **Afternoon** which is **38135** nos. **Secondarily** their orders are get placed during **night** hours which is 28331 nos. **Consecutively** they use **morning** time to order with nos. of **27733**. After all **least** no. of orders get placed in **Dawn** time of the day with **5242** orders.

III. Evolution of E-commerce orders in the Brazil region:

1. Get the month on month no. of orders placed in each state.

```
SELECT
   c.customer_state,
   count(o.order_id) as order_count,
   extract(year from o.order_purchase_timestamp) as order_year,
   extract(month from o.order_purchase_timestamp) as order_month
from `Target_SQL_Business_Case.customers` as c
   join `Target_SQL_Business_Case.orders` as o
   on c.customer_id = o.customer_id
GROUP BY c.customer_state, order_year, order_month
   order by order_year, order_month, c.customer_state;
```


 How are the customers distributed across all the states? select distinct customer_state, count(customer_id) as cust_count from `Target_SQL_Business_Case.customers` group by customer_state

Query results

JOB IN	FORMATION	RESULTS	CHART	JSON
Row	customer_state	~	cust_count ▼	1.
1	RN		485	
2	CE		1336	
3	RS		5466	
4	SC		3637	
5	SP		41746	
6	MG		11635	
7	BA		3380	
8	RJ		12852	
9	GO		2020	
10	MA		747	

IV. Impact on Economy: Analyze the money movement by e-commerce by looking at order prices, freight and others.

1. Get the % increase in the cost of orders from year 2017 to 2018 (include months between Jan to Aug only).

```
WITH CTE1 AS(
  SELECT
  from `Target_SQL_Business_Case.orders` as o
    join `Target_SQL_Business_Case.payments` as p
   on o.order_id = p.order_id
  where extract(year from o.order_purchase_timestamp) between 2017 and 2018
    and extract(month from o.order_purchase_timestamp) between 1 and 8
),
CTE2 AS(
 SELECT
   extract(year from order_purchase_timestamp) as year,
    sum(payment_value) as cost
  from CTE1
  group by year
SELECT
 year, cost,
  (cost - lag(cost, 1) over(order by CTE2.year))*100/ lag(cost, 1) over(order by
CTE2.year) as per_inc
  from CTE2
```


2. Calculate the Total & Average value of order price for each state.

```
SELECT
  distinct c.customer_state,
  COUNT(distinct i.order_id) as unique_id,
  ROUND(SUM(i.price),3) as Total_amt,
  ROUND(SUM(i.price)/COUNT(distinct i.order_id),3) as avg_amt
FROM `Target_SQL_Business_Case.orders` as o
join `Target_SQL_Business_Case.order_items` as i
on o.order_id = i.order_id
join `Target_SQL_Business_Case.customers` as c
on o.customer_id = c.customer_id
GROUP BY c.customer_state
```

JOB IN	IFORMATION	RESULTS CH	HART JSON	EXECUTION DETAI
Row	customer_state ▼	unique_id ▼	Total_amt ▼	avg_amt ▼
1	MT	903	156453.53	173.26
2	MA	740	119648.22	161.687
3	AL	411	80314.81	195.413
4	SP	41375	5202955.05	125.751
5	MG	11544	1585308.03	137.327
6	PE	1648	262788.03	159.459
7	RJ	12762	1824092.67	142.932
8	DF	2125	302603.94	142.402
9	RS	5432	750304.02	138.127
10	SE	345	58920.85	170.785

Observation -

Here we can see the total and average order prices for each state with state wise unique order ids. States with names SP, RJ and MG have highest order prices with highest order ids. So the average price is lesser as compare to other states having less total prices. State with name RR has 7829.43 as total price which is lowest of all the states.

3. Calculate the Total & Average value of order freight for each state.

```
distinct c.customer_state,
   COUNT(distinct i.order_id) as unique_id,
   ROUND(SUM(i.freight_value),3) as Total_amt,
   ROUND(SUM(i.freight_value)/COUNT(distinct i.order_id),3) as avg_amt
FROM `Target_SQL_Business_Case.orders` as o
join `Target_SQL_Business_Case.order_items` as i
on o.order_id = i.order_id
join `Target_SQL_Business_Case.customers` as c
on o.customer_id = c.customer_id
GROUP BY c.customer_state
```

JOB IN	IFORMATION	RESULTS	СН	ART JSON	EXECUTION DE
Row	customer_state 🔻	unique_id	· /	Total_amt ▼	avg_amt ▼
1	MT		903	29715.43	32.907
2	MA		740	31523.77	42.6
3	AL		411	15914.59	38.722
4	SP		41375	718723.07	17.371
5	MG		11544	270853.46	23.463
6	PE		1648	59449.66	36.074
7	RJ		12762	305589.31	23.945
8	DF		2125	50625.5	23.824
9	RS		5432	135522.74	24.949
10	SE		345	14111.47	40.903

Observation -

We can say by watching this table, lesser the order no. needs to pay higher average fright charges for the order. On the contrary, as order nos. get increased it lowers the fright charges which customers needs to pay.

V. Analysis based on sales, freight and delivery time.

1. Find the no. of days taken to deliver each order from the order's purchase date as delivery time. Also, calculate the difference (in days) between the estimated & actual delivery date of an order. Do this in a single query.

```
SELECT
 x.order_id,
 x.purchase_date,
 x.esti_deli_date,
 x.delivery_date,
 DATE_DIFF(x.delivery_date, x.purchase_date, DAY) as time_to_deliver,
 DATE_DIFF(x.esti_deli_date, x.delivery_date, DAY) as diff_estimated_delivery
from
(
 SELECT
   order_id,
   DATE(order_purchase_timestamp) as purchase_date,
   DATE(order_estimated_delivery_date) as esti_deli_date,
   DATE(order_delivered_customer_date) as delivery_date
 FROM `Target_SQL_Business_Case.orders`
) x
```

JOB IN	FORMATION F	RESULTS C	CHART J	ISON EXE	CUTION DETAILS	EXECUTION G
Row	order_id ▼	purchase_date	esti_deli_date	delivery_date	time_to_deliver	diff_estimated_delive
1	770d331c84e5b21	2016-10-07	2016-11-29	2016-10-14	7	46
2	1950d777989f6a8	2018-02-19	2018-03-09	2018-03-21	30	-12
3	2c45c33d2f9cb8ff	2016-10-09	2016-12-08	2016-11-09	31	29
4	dabf2b0e35b423f9	2016-10-09	2016-11-30	2016-10-16	7	45
5	8beb59392e21af5	2016-10-08	2016-11-30	2016-10-19	11	42
6	b60b53ad0bb7dac	2017-05-10	2017-05-18	2017-05-23	13	-5
7	276e9ec344d3bf0	2017-04-08	2017-05-18	2017-05-22	44	-4
8	1a0b31f08d0d7e8	2017-04-11	2017-05-18	2017-04-18	7	30
9	cec8f5f7a13e5ab9	2017-03-17	2017-05-18	2017-04-07	21	41
10	2d846c03073b1a4	2017-05-10	2017-05-18	2017-05-25	15	-7

2. Find out the top 5 states with the highest & lowest average freight value.

```
WITH T1 AS(
  SELECT
    distinct c.customer_state as state,
    ROUND(SUM(i.freight_value)/COUNT(distinct i.order_id),3) as avg_fright_amt
  FROM `Target_SQL_Business_Case.orders` as o
    join `Target_SQL_Business_Case.order_items` as i
    on o.order_id = i.order_id
    join `Target_SQL_Business_Case.customers` as c
   on o.customer_id = c.customer_id
  GROUP BY c.customer_state
  ORDER BY avg_fright_amt DESC
 LIMIT 5),
T2 AS(
  SELECT
    distinct c.customer_state as state,
    ROUND(SUM(i.freight_value)/COUNT(distinct i.order_id),3) as avg_fright_amt
  FROM `Target_SQL_Business_Case.orders` as o
    join `Target_SQL_Business_Case.order_items` as i
    on o.order_id = i.order_id
    join `Target_SQL_Business_Case.customers` as c
  on o.customer_id = c.customer_id
  GROUP BY c.customer_state
  ORDER BY avg_fright_amt ASC
  LIMIT 5)
(SELECT state, avg_fright_amt FROM T1) UNION ALL (SELECT state, avg_fright_amt FROM T2)
```

3. Find out the top 5 states with the highest & lowest average delivery time

With T1 as (

union all

JOB INFORMATION		RESULTS	CHART J	S(
Row	state ▼	/:	avg_fright_amt ▼	
1	RR		48.591	
2	РВ		48.345	
3	RO		46.224	
4	AC		45.515	
5	PI		43.039	
6	SP		17.371	
7	MG		23.463	
8	PR		23.58	
9	DF		23.824	
10	RJ		23.945	

Select c.customer_state, count(o.order_id) as No_of_Orders, sum(date_diff(o.order_delivered_customer_date, o.order_purchase_timestamp, Day))/count(o.order_id) as Delivery_Time from `Target_SQL_Business_Case.orders` o inner join `Target_SQL_Business_Case.customers` c on o.customer_id = c.customer_id group by c.customer_state order by Delivery_Time Desc Limit 5), T2 as (Select c.customer_state, count(o.order_id) as No_of_Orders, sum(date_diff(o.order_delivered_customer_date, o.order_purchase_timestamp, Day))/count(o.order_id) as Delivery_Time from `Target_SQL_Business_Case.orders` o inner join `Target_SQL_Business_Case.customers` c on o.customer_id = c.customer_id group by c.customer_state order by 3 ASC Limit 5)

(Select Distinct customer_state as State, Delivery_Time as Average_Delivery_Time from T1)

(Select Distinct customer_state as State, Delivery_Time as Average_Delivery_Time from T2)

Query results							
JOB IN	IFORMATION	RESULTS	CHART J:				
Row	State ▼	1.	Average_Delivery_Tir				
1	SP		8.049393953911				
2	PR		11.24796828543				
3	MG		11.26600773528				
4	DF		12.15841121495				
5	SC		14.12125378058				
6	AP		26.33823529411				
7	RR		25.82608695652				
8	AM		25.45945945945				
9	AL		23.10895883777				
10	PA		22.62256410256				

4. Find out the top 5 states where the order delivery is really fast as compared to the estimated date of delivery.

```
Select State, sum(No_of_days) as No_of_days, count(order_id) as order_count,
 ROUND(sum(No_of_days)/count(order_id),2) as Fast_Delivery
  (Select State, Date_diff(Expected_Delivery_Date, Delivery_Date, Day) as No_of_days,
order_id
 from
    (Select c.customer_state as State,
      Extract(Date from o.order_delivered_customer_date) as Delivery_Date,
      Extract(Date from o.order_estimated_delivery_date) as Expected_Delivery_Date,
o.order_id
    from`Target_SQL_Business_Case.orders` o inner join `Target_SQL_Business_Case.customers` c
      on o.customer_id=c.customer_id
    where
      Extract(Date from o.order_delivered_customer_date) is not null
      Extract(Date from o.order_delivered_customer_date) < Extract(Date from</pre>
o.order_estimated_delivery_date)))
    group by state
    order by 4
    limit 5
```

'	Quer	y results				▲ SAVE RESULTS
Ι,	JOB IN	FORMATION	RESULTS	CHART J	SON EXECUTI	ON DETAILS EXE
Ro	w	State ▼	(,	No_of_days ▼	order_count ▼	Fast_Delivery ▼
	1	SP		463704	38108	12.17
	2	ES		23358	1751	13.34
	3	MS		8315	620	13.41
	4	DF		25935	1933	13.42
	5	SC		43239	3201	13.51

VI. Analysis based on the payments:

1. Find the month on month no. of orders placed using different payment types.

```
p.payment_type,
  EXTRACT(month from o.order_purchase_timestamp) as Month,
  EXTRACT(year from o.order_purchase_timestamp) as Year,
  COUNT(o.order_id) as Order_count
FROM `Target_SQL_Business_Case.orders` o
  inner join `Target_SQL_Business_Case.payments` p
  on o.order_id = p.order_id
GROUP BY Month, Year, p.payment_type
ORDER BY Month, Year
```

Quer	Query results SAVE RESULT							
JOB IN	NFORMATION	RESULTS	CHART	J	SON	EXECUTI	ON DETAILS E	
Row	payment_type 🔻		Month ▼	1.	Year ▼	/	Order_count ▼	
1	credit_card			1		2017	583	
2	UPI			1		2017	197	
3	voucher			1		2017	61	
4	debit_card			1		2017	9	
5	credit_card			1		2018	5520	
6	UPI			1		2018	1518	
7	voucher			1		2018	416	
8	debit_card			1		2018	109	
9	credit_card			2		2017	1356	
10	UPI			2		2017	398	

2. Find the no. of orders placed on the basis of the payment installments that have been paid.

```
SELECT
  COUNT(order_id) as Order_count,
  payment_installments
FROM `Target_SQL_Business_Case.payments`
WHERE payment_installments > 1
GROUP BY payment_installments
```

Query results

JOB IN	NFORMATION	RESULTS CHA	RT
Row	Order_count ▼	payment_installment	
1	12413	2	
2	10461	3	
3	7098	4	
4	5239	5	
5	3920	6	
6	1626	7	
7	4268	8	
8	644	9	
9	5328	10	
10	23	11	

Important Insights from the Data Set

- 1. The orders starts from 4th of September 2016 and ends on 17th October 2018.
- 2. There are total of 27 States and 8011 cities present in the data set.
- 3. November 2017 has the highest number of orders (7544).
- 4. Highest number of customers are from the State of SP (41746).
- 5. From 2017 to 2018, there is growth of 137 % in the cost of orders.
- 6. Year on Year Analysis shows maximum orders are placed in 2018 (54011), followed by 2017 (45101) and only 329 in 2016.
- 7. Month on Month Analysis also show increasing number of orders (positive trend) except in the months of September and October 2018.
- 8. There is significant increase in the number of orders placed from 2016 to 2017 and 2017 to 2018.
- 9. People of Brazil order significantly higher in the autumn and Winter Season as compared to other two seasons of the year.
- 10. Afternoon is the most preferred time period for Brazilians to order which is followed by Morning time.
- 11. Yes there is a growing trend in the number of orders placed over the past years. Implying that the company is growing and there is acceptance among the people of Brazil.
- 12. People of Brazil prefer Credit card payment mode as compared to other modes of payment. The data set shows credit card payment type is significantly higher than other three types of payments.
- 13. Installments of almost all the orders have been made successfully except in two cases. Means pendency's on account of due payments is almost nil where installment option is opted by the Brazilian customers.