Student Number: Name: Bryan Hoang

2. (4 points) Answer:

Proof. For $s \in S$, we have

$$P(Y_0 = s) = P(X_{k(0)} = s)$$
 by the definition of Y_n
 $= P(X_0 = s)$
 $= \lambda$ $\therefore \{X_n : n \ge 0\} \sim \text{Markov}(\lambda, P).$ (1)

Therefore, the initial distribution of $\{Y_n\}_{n\geq 0}$ is λ .

Now for $i, j \in S$, consider

$$P(Y_{n+1} = j | Y_n = i) = P(X_{k(n+1)} = j | X_{k(n)} = i)$$
 by the definition of Y_n
= $P(X_{kn+k} = j | X_{kn} = i)$

Then by the Markov Property, conditional on $\{X_{kn} = i\}$,

$$\{X_{kn+k}\}_{n\geq 0} = \{\tilde{X}_k\}_{k\geq 0} \sim \operatorname{Markov}(\delta_i, P).$$

Thus, by the CK equation,

$$P(Y_{n+1} = j | Y_n = i) = P(\tilde{X}_k | X_0 = i)$$

= P_{ij}^k . (2)

Then by (1) and (2), we have proven that $(Y_n)_{n\geq 0} \sim \operatorname{Markov}(\lambda, P^k)$.