# Generative Al Life Cycle

## Training /

#### Building

## Data Preparation

## Evaluation



**Data Collection** 



























#### Feature Engineering



#### Containers at scale















## **Domain Experts**



### Data Indexing



Context Retrieval



#### Tool & Function Calling

## ⑤ OpenAl



#### ANTHROP\C







## ⑤ OpenAl



#### ANTHROP\C





## Data Engineer

## Data Scientist /



## Software Engineer

## ML Engineer



















| Method                               | Definition                                                          | Primary use case                              | Data require-<br>ments                                           | Training time                                  | Advantage                                            | Considerations                                                  |
|--------------------------------------|---------------------------------------------------------------------|-----------------------------------------------|------------------------------------------------------------------|------------------------------------------------|------------------------------------------------------|-----------------------------------------------------------------|
| Prompt engineering                   | Crafting specialized prompts to guide LLM behavior                  | Quick, on-the-fly<br>model guidance           | None                                                             | None                                           | Fast, cost-effective,<br>no training required        | Less control than fine-tuning                                   |
| Retrieval augmented generation (RAG) | Combining an<br>LLM with external<br>knowledge retrieval            | Dynamic datasets & external knowledge         | External knowledge<br>base or database<br>(e.g. vector database) | Moderate<br>(e.g. computing<br>embeddings)     | Dynamically<br>updated context,<br>enhanced accuracy | Significantly increases prompt length and inference computation |
| Fine-tuning                          | Adapting a<br>pre-trained LLM<br>to specific datasets<br>or domains | Domain or task<br>specialization              | Thousands of<br>domain-specific or<br>instruction examples       | Moderate — long<br>(depending on<br>data size) | Granular control,<br>high specialization             | Requires labeled data,<br>computational cost                    |
| Pre-training                         | Training an LLM<br>from scratch                                     | Unique tasks or<br>domain-specific<br>corpora | Large datasets<br>(billions to trillions<br>of tokens            | Long (days to<br>many weeks)                   | Maximum control,<br>tailored for specific<br>needs   | Extremely resource-intensive                                    |

# How teams are building LLMs

## Complexity/compute-intensiveness