1

NCERT 11.9.2 Q7

EE23BTECH11204 - Ashley Ann Benoy*

Question: Find the sum of n terms of the A.P. whose kth term is 5k + 1.

Solution:

TABLE 0 GIVEN DATA

Symbol	Value	Parameter
x(0)	1	First Term
x(n)	(5n+1)u(n)	kth Term
d	5	Common Difference
y(n)	?	Sum of N terms

Apply the Z-transform to x(n):

$$X(z) = \frac{5z^{-1}}{(1 - z^{-1})^2} + \frac{1}{(1 - z^{-1})} \quad |z| > 1$$
 (1)

Sum of First n + 1 Terms: Express the sum of the first n + 1 terms (y(n)) in terms of x(n) using convolution:

$$y(n) = x(n) * u(n) \tag{2}$$

Applying Z transform on both sides:

$$Y(z) = X(z)U(z)$$
 (3)

$$= \frac{1}{(1-z^{-1})^2} + \frac{5z^{-1}}{(1-z^{-1})^3} \tag{4}$$

Given expressions:

$$X_1(z) = \frac{1}{(1 - z^{-1})^2} \tag{5}$$

$$X_2(z) = \frac{5z^{-1}}{(1 - z^{-1})^3}$$

Now, let's find the Z-transforms:

1. For $X_1(z)$ **:**

$$X_1(z) = \sum_{n=0}^{\infty} x_1[n] \cdot z^{-n}$$
 (7)

$$x_1[n] = \binom{n+1}{1} \tag{8}$$

The Z-transform pair for $x[n] = \binom{n+k-1}{k-1}u[n]$ is $X(z) = \frac{1}{(1-z^{-1})^k}$, where k is a positive integer. Therefore, $X_1(z) = \frac{1}{(1-z^{-1})^2}$ corresponds to $x_1[n] = \binom{n+1}{1}$.

2. For $X_2(z)$ **:**

$$X_2(z) = \sum_{n=0}^{\infty} x_2[n] \cdot z^{-n}$$
 (9)

$$x_2[n] = \binom{n+2}{2} \tag{10}$$

The Z-transform pair for $x[n] = \binom{n+k-1}{k-1}u[n]$ is $X(z) = \frac{1}{(1-z^{-1})^k}$, where k is a positive integer. Therefore, $X_2(z) = \frac{5z^{-1}}{(1-z^{-1})^3}$ corresponds to $x_2[n] = \binom{n+2}{2}$. Now, let's find the inverse Z-transforms for $X_1(z)$

and $X_2(z)$:

1. For $X_1(z)$ **:**

$$x_1[n] = \binom{n+1}{1} \tag{11}$$

This is a first-order discrete-time signal, and its inverse Z-transform is given by $x_1[n] = -nu[n]$.

2. For $X_2(z)$ **:**

$$x_2[n] = \binom{n+2}{2} \tag{12}$$

This is a second-order discrete-time signal, and its inverse Z-transform is given by $x_2[n] = \frac{1}{2}n(n - n)$ 1)u[n].

Therefore, the inverse Z-transforms for $X_1(z)$ and $X_2(z)$ are:

1.
$$x_1[n] = -nu[n]$$

(6)

2.
$$x_2[n] = \frac{1}{2}n(n-1)u[n]$$

Now, let's express y(n) in terms of $x_1(n)$ and

$$y(n) = x_1(n) + x_2(n) \tag{13}$$

$$= -nu(n) + \frac{1}{2}n(n-1)u(n) + 5(n-1)u(n-1)$$
(14)

$$= (n+1) + \frac{5n(n+1)}{2}u(n) \tag{15}$$

The stem plot is given as

