

Issue

3s: Button Pressed

1m5s: Pedestrian Green Triggered

Problem Statement

- Road users at crosswalks pedestrians + vehicles
- Objective: reduce total delay for all road users

SUMO

Total Cumulative Wait Time (Delay)

$$TCWT_t = \sum n_{ped,t} + n_{veh,t}$$

 $n_{ped,t}$: Number of <u>waiting</u> pedestrians at time t

 $n_{veh,t}$: Number of vehicles in <u>queue</u> at time t

Baseline Fixed Time Control

Adaptive Time Control

Reinforcement Learning Based Control

Why RL?

Automate learning based on reward system

Improvement over fixed and adaptive time (rule-based) controls

State, Action, Reward

State

• $(n_{ped,t}, n_{veh,t})$

Action

 {Vehicle Green, Pedestrian Green}

Reward

Less Delay = More Reward

Markov Decision Process

Next state only depends on <u>current</u> state and action

Q-Value Function

- $\circ Q \colon S \times A \to \mathbb{R}$
- "How good is taking this action at that state?"
 - Reward-to-go
- Represented by
 - Lookup Table (Q-Table), or
 - Neural Network Deep Q-Network (DQN)

Policy

- $\circ \pi: S \to A$
- "Which action should I take at each state?"
- Choose from reward-to-go

$$\pi(s) = \operatorname*{argmax}_{a} Q(s, a)$$

TCWT (Baseline - Fixed)

TCWT (Adaptive)

TCWT (DQN: ε-Greedy)

TCWT (DQN)

TCWT (Q-Table)

SUMO (Fixed)

SUMO (Adaptive)

SUMO (RL)

Discussion

RL improves over rule-based control

Tabular RL fast but not scalable

Deep RL can scale to larger state space

Future Directions

SUMO-RL

<u>LucasAlegre/sumo-rl: Reinforcement Learning environments for Traffic Signal Control with SUMO.</u>

Compatible with Gym, PettingZoo, and popular RL libraries. (github.com)