

Ingo Blechschmidt
December 17th, 2014

Ingo Blechschmidt
December 17th, 2014

Outline

1 Theory

- Singular value decomposition
- Pseudoinverses
- Low-rank approximation

2 Applications

- Image compression
- Proper orthogonal decomposition
- Principal component analysis
- Eigenfaces
- Digit recognition

Theory Applicati

Singular value decomposition

Let $A \in \mathbb{R}^{n \times m}$. Then there exist

- numbers $\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_m \ge 0$,
- \blacksquare an orthonormal basis $\mathbf{v}_1, \dots, \mathbf{v}_m$ of \mathbb{R}^m , and
- \blacksquare an orthonormal basis $\mathbf{w}_1, \dots, \mathbf{w}_n$ of \mathbb{R}^n ,

such that

$$A\mathbf{v}_i = \sigma_i \mathbf{w}_i, \quad i = 1, \ldots, m.$$

In matrix language:

$$A = W \Sigma V^t,$$
 where $V = (\mathbf{v}_1 | \dots | \mathbf{v}_m) \in \mathbb{R}^{m \times m}$ orthogonal, $W = (\mathbf{w}_1 | \dots | \mathbf{w}_n) \in \mathbb{R}^{n \times n}$ orthogonal, $\Sigma = \operatorname{diag}(\sigma_1, \dots, \sigma_m) \in \mathbb{R}^{n \times m}.$

Let $A \in \mathbb{R}^{n \times m}$ and $\mathbf{b} \in \mathbb{R}^n$. Then the solutions to the optimization problem

$$\|A\mathbf{x} - \mathbf{b}\|_2 \longrightarrow \min$$

under $\mathbf{x} \in \mathbb{R}^m$ are given by

$$\mathbf{x} = A^{+}\mathbf{b} + V\begin{pmatrix} 0 \\ \star \end{pmatrix},$$

where $A = W \Sigma V^t$ is the SVD and

$$A^{+} = W\Sigma^{+}V^{t},$$

$$\Sigma^{+} = \operatorname{diag}(\sigma_{1}^{-1}, \dots, \sigma_{m}^{-1}).$$

Low-rank approximation

Let $A = W \Sigma V^t \in \mathbb{R}^{n \times m}$ and $1 \le r \le n, m$. Then a solution to the optimization problem

$$||A - M||_{\mathsf{Frobenius}} \longrightarrow \mathsf{min}$$

under all matrices M with rank $M \le r$ is given by

$$M = W \Sigma_r V^t,$$
 where $\Sigma_r = \mathrm{diag}(\sigma_1, \ldots, \sigma_r, 0, \ldots, 0).$

The approximation error is

$$||A - W\Sigma_r V^t||_F = \sqrt{\sigma_{r+1}^2 + \dots + \sigma_m^2}.$$

Image compression

- Think of images as matrices.
- Substitute a matrix $W\Sigma V^t$ by $W\Sigma_r V^t$ with r small.
- To reconstruct $W\Sigma_r V^t$, only need to know
 - the r singular values $\sigma_1, \ldots, \sigma_r$,
 - \blacksquare the first r columns of W, and
 - the top r rows of V^t .

- height $\cdot r$
 - width $\cdot r$

r

- Total amount:
 - $r \cdot (1 + \text{height} + \text{weight}) \ll \text{height} \cdot \text{width}$

Proper orthogonal decomposition

Given data points $\mathbf{x}_i \in \mathbb{R}^N$, want to find a low-dimensional linear subspace which approximately contains the \mathbf{x}_i .

Minimize

$$J(U) := \sum_i \|\mathbf{x}_i - P_U(\mathbf{x}_i)\|^2$$

under all r-dimensional subspaces $U \subseteq \mathbb{R}^N$, $r \ll N$, where $P_U : \mathbb{R}^N \to \mathbb{R}^N$ is the orthogonal projection onto U.

Proper orthogonal decomposition

Given data points $\mathbf{x}_i \in \mathbb{R}^N$, want to find a low-dimensional linear subspace which approximately contains the \mathbf{x}_i .

Minimize

$$J(U) := \sum_i \|\mathbf{x}_i - P_U(\mathbf{x}_i)\|^2$$

under all r-dimensional subspaces $U \subseteq \mathbb{R}^N$, $r \ll N$, where $P_U : \mathbb{R}^N \to \mathbb{R}^N$ is the orthogonal projection onto U.

More concrete formulation: Minimize

$$J(\mathbf{u}_1,\ldots,\mathbf{u}_r):=\sum_i\left\|\mathbf{x}_i-\sum_{j=1}^r\langle\mathbf{x}_i,\mathbf{u}_j\rangle\mathbf{u}_j\right\|^2,$$

where $\mathbf{u}_1, \dots, \mathbf{u}_r \in \mathbb{R}^N$, $\langle \mathbf{u}_i, \mathbf{u}_k \rangle = \delta_{ik}$.

Given observations $x_i^{(k)}$ of random variables $X^{(k)}$, want to find linearly uncorrelated principal components.

Write $X = (\mathbf{x}_1 | \cdots | \mathbf{x}_\ell) \in \mathbb{R}^{N \times \ell}$. Calculate $X = W \Sigma V^t$. Then the principal components are the variables

$$Y^{(j)} = \sum_{k} W_{kj} X^{(k)}.$$

Most of the variance is captured by $Y^{(1)}$; second to most is captured by $Y^{(2)}$; and so on.

Eigenfaces

- Record sample faces $\mathbf{x}_1, \dots, \mathbf{x}_N \in \mathbb{R}^{\text{width-height}}$.
- Calculate a POD basis of eigenfaces.
- Recognize faces by looking at the coefficients of the most important eigenfaces.

Eigenfaces resemble faces.

More eigenfaces

Digit recognition

Apply POD for dimension reduction, then use some similarity measure or clustering technique. Results:

Eigendigits

