

~~REPLACED~~
By
#0

SEQUENCE LISTING

<110> WU, Xue-Ru
SUN, Tung-Tien

<120> TRANSGENIC ANIMALS AS URINARY BIOREACTORS FOR THE
PRODUCTION OF POLYPEPTIDE IN THE URINE, RECOMBINANT DNA
CONSTRUCT FOR KIDNEY-SPECIFIC EXPRESSION, AND METHOD OF
USING SAME

<130> WU43C

<140> NOT YET ASSIGNED

<141> 2000-06-26

<150> 60/108,195

<151> 1998-11-13

<150> 60/142,925

<151> 1999-07-09

<150> 09/438,785

<151> 1999-11-12

<160> 54

<170> PatentIn Ver. 2.1

<210> 1

<211> 9345

<212> DNA

<213> MOUSE UROMODULIN

<400> 1

ggggggggcc tcgggagttt ggctaaatgtc tgcaaatgag ctgtgtatgc aggtttgcgc 60
catatgagat ccagtgcacaa gtcatctct agatgtctgc ataccaataa gtgaccatc 120
attatgcaat caggccggac tcatcccttg tggctttgtc tcttactact gtaaacttga 180
taacctatat gattttaccc atttccccctc catggcactc aactctccctc ttcctatgt 240
accctactta tgtcctatgt gactccagct gttccctttg atgagagcca tcctgttctt 300
tctatgtac tctgctact tcttccacgt gactccacca atctgtctac attgcagagt 360
cactcacagt ttcttgagag cagaagactc agaactgatc tgtcctcaat gtcctcccta 420
cactttctcc tcataatcca catatctaaa gctatagaga taatttcatg cactatagt 480
ttcagttacta tcgttatctac tgtctctacc ctgttaactgg tatcttcatg acatctcgaa 540
tatttccaat ttctctattt ctgcaaagtc ttgagaagtc tagtctttagt gatctccctt 600
tctcctcagg tctcctggtc tccacacacc attcacactt cttgaatatt ctttgaacat 660
aacaatattct ctcacatgggt ttgttccctc tacccaaatt catgccttca ggataactac 720
tctgccccat cttcaactcat ctctgctttg gtcattcaaa tctcaaattgt agccatttct 780
aaaaggctct ccaagagaat aatatttgaa agcattttgc tattctatca agtgatcata 840

caatgtctgc tcctgccacc accatgacca tccccatgaa tacagacact gccttcttag 900
tggttgcgt atgtgttctg tgtggtacat ttagataaa tgctgtaata aacatctgtg 960
gagcaattg aatcatcaga tagcacccctc tctctgagag gcatgatctc atggttatcc 1020
ccaaaggcatg aggtaggac attatcccag gtccatgctg gtttccgtat tgattgtt 1080
taacacaac ttaatagatt aaaacagcac ggatttatttc tcacatgttt tgagacgcca 1140
gaaatctgac accagttca atgttttagac ttgatgcaca cctgtaattc tggtaacttag 1200
gaggcagatg cagggggact atgattaaa gcccatttt aagctgctgg gtgagaacct 1260
gtcttgattt tttttcaca ttggctaaa agtcaaggat catcagggtt ggtgcattct 1320
ggaagaaacc ttgccttgc agcttcccag agggccgcca gcattccctg gcttgtgtt 1380
ggtcctgaa tcactgtgac cttatgctcc atcctcacat tccctctgca tttatccct 1440
aagcaccggt gtgttgtat ccaacccctt ggagccccat agatccccca tttctccctcg 1500
acttaatcac acctgtataa gtactttca ctctgcaaag caatattgt gggtccaagg 1560
gattaggatg tggtatattt tgggtgtt cattattcaa tgcttcataat ttacactgtt 1620
tctctgttcc actttattgg ggtacttgaa cttctaagaa gaactgaggg gtattgtt 1680
aggaactaaa ttccccatg gacctctgtg cttccacccat atcacacaag acagaggta 1740
tttgtatccc tagatccccca gaagaaattc ccactctcaa ccctccatcc ctgacttgc 1800
cacatctaga tgaagcaggg aacagcctga gncctggAAC tcactggagc cagatgactc 1860
tatggagtt ggttttagta ttcaagacac gatgcaagac tcacccctgc tccccctaca 1920
gacatgtggc tgccctgtcaa aggtggggcc atggggctgc tgagactaag tcacgtggac 1980
agcgcccatg acaagcagtg acatggagac caaggctgca gtgtcatgc tccacagggt 2040
cacctgaagc cttagagacg ggaagaggag agggagcaga aagatgggt acagataccc 2100
ctctgtttagg aagggtttca aaaccgtttt ctaagttttt gatccctttt aatgtatcca 2160
cctgtcactt gaccctctcc tgctctgtct gatcagcttc tcaaaaccct tcattccctt 2220
aactccaccc tactgaaaaaa agatgaaacc acttgcataat ataaacctca acagctaagc 2280
atggaataact gttaacccct caagacataa agctgactga agggataagt ttgaaaaaaaa 2340
tgggcttcag tttgcactag ctaagtatgt aaccttgaag atattactca gtttctctga 2400
acttcagctc gctctccat ttattgacaa catgtaagac cacataccgg gcatttctt 2460
tcaccaaatg aagttccag taccaggaat gggttatatc taatcgagtt gttggccaaa 2520
ggagttccat ggaaactccc aaacaatcca ggctattggc aagactttt atgtctctcc 2580
acaactgac agcaactgtt gaaagacaaat acctacacag ctcactgaac acagagaagc 2640
tgagttgtg cctacataaa tcctcttagct ctatgaaggat ccataatggt attcatggcc 2700
ctagaagata ctctccctc caccatggaa gaaatgtaaa cactaagcca gccataaacc 2760
cttggctcg ttagagtggc ctgcctgcaa gttctgtgg tgtaataatg gcacagagct 2820
tgttaggagta accaaacaat atctgatagg ttaaggccc ctccatgaga tcaaaaccct 2880
acctaacaac acttgggtgg atgagaaccc gagaccagat aggccaggaa cctatggaa 2940
aactaaacat gactgttctg ctaaaagaac ctaccaataa aatagctccat agtgcacattc 3000
tgccatattt atagatcagt tccttgcata tccatcatca gaaaacttcc tcttcagtag 3060
atagaaacaa atatagagcc cacagccaga taatatccag agagtgagat accctggAAC 3120
actcagctct aaaagggatg tctccatcaa ccccccccccc ccccacctt caggactcat 3180
gaaaccctcc agaagacgag tcagaaagag tgtaagatcc agaagggatg gaggacatcc 3240
aaaacttaag gccttcaaga cacaactgta agggAACACA tatgaactta gagagatgtt 3300
gcagcatgca cagagcctgc atgggttgc accagatggg gttctagagc tgaaaggaga 3360
aatggatagc cactctgatt cctaaccctc aagtgcaccc taactgatag tgacttgc 3420
ataaaaaaatt agtctttttt caaaggatg ctcactggaa aaataaacca ctctaaatag 3480
tagacccat gcccagcagt agatggccaa cagaaaatga actcaatgtc atctttgacc 3540
ttccttgctc ggaaagcttt ttgtttgcctt tttcttaccc tacaggtcct ttgcataattt 3600
attatggttt cttgtttcag gtttttaatg gaactcctga gtgtgtgaat gtgtgtgtct 3660
ctgcatacat gtgtgtttct taagccgtt cttttcttt tcttctctt attgtttaaa 3720

0
1
2
3
4
5
6
7
8
9

ctgtctggaa tctagtgagg aggacttac tggtaagct gtccttaga acaggagtgt 6660
gttccagctc tcaaagcaaa cattcccttt atcctaacac agtctgactt cagatatact 6720
gtttttcc tggctccttg ggcttaggtc taccttgc ttgcccaggt ccaagaaaag 6780
gccccagaacc ttgcactgt tttgccagtt aatgtctaac tgaggaatgt cttgctgcc 6840
aaaggtgaaa acagagacct tgtatttcca ggcacaggtg tgaccccaat gtcaatcatt 6900
tttgtctaa ctcccagggg aaaaactaac aacaacagac tcatggctt gaaaaggta 6960
attctatgcc aaaaggaaag gaaagttcta cccccacaga aacaatctca gagggcagaa 7020
gcagagaata atctgagggg gagggccagc caagggcagg caagtatata ttgatcacag 7080
gcacttactt gtatggac cagtcctgtc ctgggttcag gtaaggctgt atgaaactgt 7140
cacccccata tccacttctc ctctatctaa tcccattata tttcagggag gttgtggtag 7200
aagcttagct tctggacact ggggtcccat gctaacccttc atggcatctt ggtatgctc 7260
tgtaaaacct aggtaatgc ttgcattccat ctggattat ttcacctgtt gcaaccacaa 7320
tcattttgaa aataactagta tgtattatag ttatgtatgt atatagagtt aatcatctc 7380
aaagctccct atctttgcc atttcttac atgagttgt tgaagatgt aacgatattc 7440
attattctct ttgttatcta gcacctgtt tggcacataa tactactcaa taagggttg 7500
ttgaatgaat aagtaggtga gagcaaatttga taagttcagg taatcacgaa cttcctgtaa 7560
aactccaagg ctgcctccag taaggatataa gtcctgatgt agccttccc catcttgc 7620
cttttgctc caaatgaaag actcagtttct tcaaaaatgtg cagcacatgg aggtttgcga 7680
cataggggtg tattcacaga ggcttoggaa gcccacacaa cctacagttt gatcactgt 7740
cagtcttcct ttacataca agctgtgcct cctggtnac atccatgctg ttttctgtac 7800
catatagagg gtacacaaca aaagcatttc ttctgtctat agggaaagca attagatcat 7860
gcatgtgcct caccacaccc tggctctcatg atttcaggca tcagaaacac aaggaaatc 7920
caaagtacct aaccatctt tgccttggg caggttttc caggacagag ggcagatgt 7980
aaaggatggg gatcccttg acctggatgc tggctgtt gatgttaacc tcctggttca 8040
ctctggctga agccagtaac tcaacagaag cgagtaagt tggctgtgt tggctgtgt 8100
tgtgtgtgt tggtagaga aatgtttccct ttgcagaagc aatcttaatc cctcttttag 8160
cacacttgat gtatcttta ttttaagccc atttcaga tggtaatgag cacaggactc 8220
acttcgaagt ttgttaaga tgcaatttct acttttagtag gtctagcaag gggcccgaga 8280
ctctgaatta atagcagcgt gtgggtgatg tttctgggg gacaaggggc taaaacacct 8340
ctgaaccatt tctgcacttc acggtaaagt cacaagcatg cccagataca taagagattt 8400
gaccacccctc tcctgttaagt gtgaagtcat cccatgggg tagcttgcc ttccaccctg 8460
gagtaactctg gaattacact aagtataatt gtgaggtcat ggttaaaagc acatgttctg 8520
tggtcaggcc atgtgcgtgt accctgtttt acaactggct tggctgttctt gatgtcaat 8580
attctttctt gtaaatgaag aaaatgaaaa tgggttccag cggdaggggg tggccctgg 8640
ggaggattcg ctaaactcta gactgaaaag tcaatgaata gaggactcca ctcaggag 8700
ctcggatggg tggttttga aggtgccaac aacttaacaa gtccagaaaa gcaagaaagt 8760
atgggcaggc gcacctgcca gctgcaggaa ttctgaagct gggctttctt gtcgcaggaa 8820
cggtgttctg aatgccacaa ccacgcccacc tgcacggtgg atgggtgtgtt cacaacgtgc 8880
tcctgccaga ccggcttcac tggtgatggg ctgggtgtgtt aggacatggg tgagtgtgt 8940
accccatggg ctcacaactg ctccaaacacg agctgtgtga acacccccc ctcgtttaag 9000
tgctcctgtc agatggttt tcgtctgacg cctgagctga gctgcactga tggatgttag 9060
tgctcagagc aggggctcag taactgtcat gccctggcca cctgtgtcaa cacagaaggc 9120
gactacttgt gctgtgtcc cgagggtttt acaggggatg gttggtaactg tgagtgttcc 9180
ccaggctcctt gtgagccagg actggactgc ttgccccagg gcccggatgg aaagctgtgt 9240
tgtcaagacc cctgcaatac atatgagacc ctgactgagt actggcgcag cacagatgt 9300
ggtgtggctt actcctgtga cgcgggtctg cacggctggt accgg 9345

<210> 2
<211> 297
<212> DNA
<213> GOAT UROMODULIN

<400> 2
tactggcgca gcacagagta cggctccggc tacgtctgtg atgtcagtct gggcggctgg 60
taccgcttcg tgggccaggg cggcgtgcgc ctgcccgaga cctgcgtgcc cgtcctgcac 120
tgcaacacgg ccgcgcctat gtggctcaac ggcacgcacc catcgagcga cgagggcatc 180
gtgaaccgcg tgccctgtgc gcactggagc ggcgactgtct gcctgtggga cgcgcctgtc 240
caagtgaagg cctgtgccgg cggctactac gtgtacaacc tgacagagcc ccctgag 297

<210> 3
<211> 653
<212> DNA
<213> GOAT UROMODULIN

<400> 3
actatagggc acgcgtggc gacggcccg gctggtaaat cttaaaaaaa aaaaaaaaaaca 60
aaaagaacat cactaagccc ccctgcctg gcactttatt ggaaggtcaa gaacacactc 120
aaccacacaa gagatgtgaa catacctgtg tggtagccaa agacatcccc tttcacacat 180
acatgaccct tccattgggt tgcacattgc tgtagctt ttgttggaga agggagctag 240
acacctctac acaaccccca actggagttc tctggaacacag agtaataacc atcgtgtcat 300
catggagcgc acacacactg tggcctgca acctcgattt gtgtcctggc tctgctgctt 360
accaatgaag caagtagctt aaaccttctg aatctcaagt ttccctcaccc tcaaactata 420
gctaaataca aaagtcattt cccaggccca ctggagagaga ttctatcaga taatggatag 480
aagatgccta tcccagtgtt tgacatatcc taagtgccta atacacgaga gtcaccatc 540
tttactggta ttattgcaca gagaaacaca caaagtgtca gtgcctgtc tagtagaga 600
gggangcang gnaaggagat ctgagcaaaa ggcataagaat atatcaagct ggg 653

<210> 4
<211> 655
<212> DNA
<213> GOAT UROMODULIN

<400> 4
cgggggaagg ttatattgt ttctttcaa aggggtctt gntctgtatc aaagaccnta 60
aggaccatga aaaaatctct ttgtaaaaag tgccaagcgg tccccactct gaatctggc 120
ttttctgcct gcagaaagct gctctgaatg tcacgccaat gccacttgta cggtagacgg 180
ggcttgcac gacctgcgcc tgccaggagg gcttcactgc gacggctcg aatgtgcgg 240
tctggatgaa tgcgccattc tggggcgca caactgctcc gccaccaaca gatgcgtgaa 300
cgcgctggc tcctacacat gcgtctgccc tgaaggtttc ctccctgagct cggagctcgg 360
ctgcgaggat gtggacgagt gtgcagagcc agggctcagc cgctgccacg ccctggccac 420
ctgcacatcaat ggcgagggca actactcatg cgtgtgtccc gcgggctacg tggggacgg 480
gaggcactgt gagtttccc cggcctctg cggccctggg ctagactgcg tgccggaggg 540
tgacgcgcta gtgtgcgtg acccgtgccca ggccgaccac atcctggacg aataactggcg 600

DRAFT GENOME SEQUENCES

cagcacagag tacggctccg gctacgtctg ttagtgcagt ctggcggtt ggtac	655
<210> 5	
<211> 24	
<212> DNA	
<213> MOUSE UROMODULIN	
<400> 5	
tggaccaggc ctgtcctggc tcag	24
<210> 6	
<211> 24	
<212> DNA	
<213> MOUSE UROMODULIN	
<400> 6	
gggtgttcac acagctgctg ttgg	24
<210> 7	
<211> 22	
<212> DNA	
<213> MOUSE UROMODULIN	
<400> 7	
aggcatttac agggatggt tg	22
<210> 8	
<211> 22	
<212> DNA	
<213> MOUSE UROMODULIN	
<400> 8	
gattgcactc agggggctct gt	22
<210> 9	
<211> 24	
<212> DNA	
<213> MOUSE UROMODULIN	
<400> 9	
ggaacctcat agatcagacc cgtg	24

<210> 10
<211> 24
<212> DNA
<213> MOUSE UROMODULIN

<400> 10
tgccacatcc ttccaggaga cagg

24

<210> 11
<211> 22
<212> DNA
<213> MOUSE UROMODULIN

<400> 11
agggctttac aggggatggt tg

22

<210> 12
<211> 22
<212> DNA
<213> MOUSE UROMODULIN

<400> 12
gattgcactc agggggctct gt

22

<210> 13
<211> 22
<212> DNA
<213> MOUSE UROMODULIN

<400> 13
gcctcagggc ccggatggaa ag

22

<210> 14
<211> 22
<212> DNA
<213> MOUSE UROMODULIN

<400> 14
gcagcagtgg tcgctccagt gt

22

<210> 15
<211> 20
<212> DNA

<213> MOUSE UROMODULIN

<400> 15

tgtcctatgt gactccagct

20

<210> 16

<211> 20

<212> DNA

<213> MOUSE UROMODULIN

<400> 16

tctcctcagc tctactggtc

20

<210> 17

<211> 20

<212> DNA

<213> MOUSE UROMODULIN

<400> 17

tcctgccacc accatgacca

20

<210> 18

<211> 20

<212> DNA

<213> MOUSE UROMODULIN

<400> 18

aaggcaccgggt gtgcttgtat

20

<210> 19

<211> 20

<212> DNA

<213> MOUSE UROMODULIN

<400> 19

atggggctgc tgagactaag

20

<210> 20

<211> 20

<212> DNA

<213> MOUSE UROMODULIN

<400> 20

.....
.....
.....
.....
.....
.....
.....
.....
.....
.....

aagtcagact gtgttaggat 20

<210> 21
<211> 20
<212> DNA
<213> MOUSE UROMODULIN

<400> 21
attgactgag caggaaggcat 20

<210> 22
<211> 20
<212> DNA
<213> MOUSE UROMODULIN

<400> 22
attttataaac ctccctctag 20

<210> 23
<211> 20
<212> DNA
<213> MOUSE UROMODULIN

<400> 23
atgcattcca gtctcagtgc 20

<210> 24
<211> 21
<212> DNA
<213> MOUSE UROMODULIN

<400> 24
tggggagagg acaaagcctt g 21

<210> 25
<211> 20
<212> DNA
<213> MOUSE UROMODULIN

<400> 25
tgacgtgcc aactccactga 20

<210> 26
<211> 20
<212> DNA
<213> MOUSE UROMODULIN

<400> 26
aggacctgta gggtaagaaa 20

<210> 27
<211> 20
<212> DNA
<213> MOUSE UROMODULIN

<400> 27
tctggctgtg ggctctata 20

<210> 28
<211> 23
<212> DNA
<213> GOAT UROMOULIN

<400> 28
gactgagtagc tggcgccagca cag 23

<210> 29
<211> 22
<212> DNA
<213> GOAT UROMOULIN

<400> 29
gattgcactc agggggctct gt 22

<210> 30
<211> 28
<212> DNA
<213> GOAT UROMOULIN

<400> 30
gtaccagccg cccagactga catcacag 28

<210> 31
<211> 28
<212> DNA

<213> GOAT UROMOULIN

<400> 31

caggtttagac acgttagtagc cgccggca

28

<210> 32

<211> 27

<212> DNA

<213> GOAT UROMOULIN

<400> 32

aagatttacc agcccgccg gtcgacc

27

<210> 33

<211> 27

<212> DNA

<213> GOAT UROMOULIN

<400> 33

aataaaagtgc cagggcaggg gggctta

27

<210> 34

<211> 27

<212> DNA

<213> GOAT UROMOULIN

<400> 34

cttgttggt tgagtgtgtt cttgacc

27

<210> 35

<211> 27

<212> DNA

<213> GOAT UROMOULIN

<400> 35

tgtgaaaggg gatgtctttg ggtacca

27

<210> 36

<211> 27

<212> DNA

<213> GOAT UROMOULIN

<400> 36

acagcaatgt gcaacccaa at ggaagggg

27

<210> 37

<211> 1630

<212> DNA

<213> GOAT UROMOULIN

<400> 37

actatagggc acgcgtggc gacggcccg gctggtaaa ag acacccagac ttaggtttg 60
acagagccctc atgttaccca accagaaaatg acattcacca cctaggattt agaaaaaagaa 120
tattaggaac ttttattttc ttctgaagtt atagcaaaga aagggggaaa aaaaaaaacat 180
tcttatgggg gataaaacggg caaaggatac aaacagttca gaaaagaata aatagtaagc 240
aaataaaaag ataacttcct ttttcatcaa agaaccgcaa aagtaaataa tgataagatg 300
tttctcactt ttccacaaag atgaaagtta atgcccaggg tggctgagta ctgtgctggg 360
attgtgaact aactgttata gatctcttg gggtgctgtt tggaaagaaa catcgctgaa 420
aactgagcta cctctttcc tatgaaattc ccctgaggag gtgagtgagc cgctgctgat 480
cgtcaccgga gcactaggcc agacagaagg agaaagccct caaagaggca atgctgtgga 540
tcactgtcat atttcctgct cagcctgagt tccacatgtgc ctgattttc tcaatatggc 600
attgccatta acgtggaatt aggtcaggag acctaaggct gaaccaagcc ctgtcatct 660
ctgccccatg actgcgcatc accaaaacag catccgcagt gacttccaca gatggtagcca 720
ttgctatatg ccttaacttg catcatctcc tttaatggcc ataacaattc taggacacgg 780
gtattcttgtt ttacagatg atgaaaatta cctctggaa gaaaattact ggcacacaaa 840
aaacgctgac caggattcag atagactgac tccaaagtca gtctgttcat ctacaaaatt 900
atctacttct caaggacattt cttcatggg aattcaaattt tcttgattca cagagcatct 960
ggtccaatga tgtctgaattt atctgctgtc tctgacccctc agccatttcc agctcccttc 1020
ctgatcacat tgggacccca ggggagctgg ctgaatctgt gaggtatggca tttgctttgg 1080
aattaatggg ccacaagtac acatccctggt ggggacgatg agccacccctt ttctccctgga 1140
gcagcctggc ttcaagattct ggcctctgct tggctccact ttgtgtttt caatgaccaa 1200
gaaaatccca gccccttgga attgtttaact cagtttaattt ctaactaaag aacctctgt 1260
tgccaaaagg tataaaacag agcccttgta gctgtgggca cagctgtac ccccatgtca 1320
atcatttggg gtctctaccc attaggaaaa agaacaacaa ccacccatcaca gcctagaaaa 1380
ggaaaacact gtgtcaaaag ggaaaaatat tccaccccca ttaaaataat taagaaacag 1440
aaccagagga tcattggagg agagattgcc agtgggggac agatgtatat atatagatat 1500
gaaagtccacc tacttgtaaa aggattaattt ctacctttct ggtttcaggt aaggctatct 1560
gcagctctca cttctccttag ccacttctcc catctgtct ttgctggctc ccattctgtt 1620
tgaaggatgg 1630

<210> 38

<211> 644

<212> PRT

<213> RAT UROMODULIN

<400> 38

Met Gly Gln Leu Leu Ser Leu Thr Trp Leu Leu Leu Val Met Val Val

1

5

10

15

D E C O D I N G
E n c o d i n g

Thr Pro Trp Phe Thr Val Ala Gly Ala Asn Asp Ser Pro Glu Ala Arg
20 25 30

Arg Cys Ser Glu Cys His Asp Asn Ala Thr Cys Val Leu Asp Gly Val
35 40 45

Val Thr Thr Cys Ser Cys Gln Ala Gly Phe Thr Gly Asp Gly Leu Val
50 55 60

Cys Glu Asp Ile Asp Glu Cys Ala Thr Pro Trp Thr His Asn Cys Ser
65 70 75 80

Asn Ser Ile Cys Met Asn Thr Leu Gly Ser Tyr Glu Cys Ser Cys Gln
85 90 95

Asp Gly Phe Arg Leu Thr Pro Gly Leu Gly Cys Ile Asp Val Asn Glu
100 105 110

Cys Thr Glu Gln Gly Leu Ser Asn Cys His Ser Leu Ala Thr Cys Val
115 120 125

Asn Thr Glu Gly Ser Tyr Ser Cys Val Cys Pro Lys Gly Tyr Arg Gly
130 135 140

Asp Gly Trp Tyr Cys Glu Cys Ser Pro Gly Phe Cys Glu Pro Gly Leu
145 150 155 160

Asp Cys Leu Pro Gln Gly Pro Ser Gly Lys Leu Val Cys Gln Asp Pro
165 170 175

Cys Asn Val Tyr Glu Thr Leu Thr Glu Tyr Trp Arg Ser Thr Asp Tyr
180 185 190

Gly Ala Gly Tyr Ser Cys Asp Ser Asp Met His Gly Trp Tyr Arg Phe
195 200 205

Thr Gly Gln Gly Val Arg Met Ala Glu Thr Cys Val Pro Val Leu
210 215 220

Arg Cys Asn Thr Ala Ala Pro Met Trp Leu Asn Gly Ser His Pro Ser
225 230 235 240

Ser Arg Glu Gly Ile Val Ser Arg Thr Ala Cys Ala His Trp Ser Asp
245 250 255

His Cys Cys Leu Trp Ser Thr Glu Ile Gln Val Lys Ala Cys Pro Gly
260 265 270

Gly Phe Tyr Val Tyr Asn Leu Thr Glu Pro Pro Glu Cys Asn Leu Ala
275 280 285

Tyr Cys Thr Asp Pro Ser Ser Val Glu Gly Thr Cys Glu Glu Cys Gly
290 295 300

Val Asp Glu Asp Cys Val Ser Asp Asn Gly Arg Trp Arg Cys Gln Cys
305 310 315 320

Lys Gln Asp Phe Asn Val Thr Asp Val Ser Leu Leu Glu His Arg Leu
325 330 335

Glu Cys Glu Ala Asn Glu Ile Lys Ile Ser Leu Ser Lys Cys Gln Leu
340 345 350

Gln Ser Leu Gly Phe Met Lys Val Phe Met Tyr Leu Asn Asp Arg Gln
355 360 365

Cys Ser Gly Phe Ser Glu Arg Gly Glu Arg Asp Trp Met Ser Ile Val
370 375 380

Thr Pro Ala Arg Asp Gly Pro Cys Gly Thr Val Leu Arg Arg Asn Glu
385 390 395 400

Thr His Ala Thr Tyr Ser Asn Thr Leu Tyr Leu Ala Ser Glu Ile Ile
405 410 415

Ile Arg Asp Ile Asn Ile Arg Ile Asn Phe Glu Cys Ser Tyr Pro Leu
420 425 430

Asp Met Lys Val Ser Leu Lys Thr Ser Leu Gln Pro Met Val Ser Ala
435 440 445

Leu Asn Ile Ser Leu Gly Gly Thr Gly Lys Phe Thr Val Gln Met Ala
450 455 460

Leu Phe Gln Asn Pro Thr Tyr Thr Gln Pro Tyr Gln Gly Pro Ser Val
465 470 475 480

Met Leu Ser Thr Glu Ala Phe Leu Tyr Val Gly Thr Met Leu Asp Gly
485 490 495

Gly Asp Leu Ser Arg Phe Val Leu Leu Met Thr Asn Cys Tyr Ala Thr
500 505 510

Pro Ser Ser Asn Ser Thr Asp Pro Val Lys Tyr Phe Ile Ile Gln Asp
515 520 525

Arg Cys Pro His Thr Glu Asp Thr Thr Ile Gln Val Thr Glu Asn Gly
530 535 540

Glu Ser Ser Gln Ala Arg Phe Ser Ile Gln Met Phe Arg Phe Ala Gly
545 550 555 560

Asn Ser Asp Leu Val Tyr Leu His Cys Glu Val Tyr Leu Cys Asp Thr
565 570 575

Met Ser Glu Gln Cys Lys Pro Thr Cys Ser Gly Thr Arg Tyr Arg Ser
580 585 590

Gly Asn Phe Ile Asp Gln Thr Arg Val Leu Asn Leu Gly Pro Ile Thr
595 600 605

Arg Gln Gly Val Gln Ala Ser Val Ser Lys Ala Ala Ser Ser Asn Leu
610 615 620

Gly Phe Leu Ser Ile Trp Leu Leu Leu Phe Leu Ser Ala Thr Leu Thr
625 630 635 640

Leu Met Val His

<210> 39

<211> 642

<212> PRT

<213> MOUSE UROMODULIN

<400> 39

Met Gly Ile Pro Leu Thr Trp Met Leu Leu Val Met Met Val Thr Ser
1 5 10 15

Trp Phe Thr Leu Ala Gly Ala Ser Asn Ser Thr Glu Ala Arg Arg Cys
20 25 30

Ser Glu Cys His Asn Asn Ala Thr Cys Thr Val Asp Gly Val Val Thr
35 40 45

Thr Cys Ser Cys Gln Thr Gly Phe Thr Gly Asp Gly Leu Val Cys Glu
50 55 60

Asp Met Asp Glu Cys Ala Thr Pro Trp Thr His Asn Cys Ser Asn Ser
65 70 75 80

Ser Cys Val Asn Thr Pro Gly Ser Phe Lys Cys Ser Cys Gln Asp Gly
85 90 95

Phe Arg Leu Thr Pro Gly Leu Gly Cys Thr Asp Val Asp Glu Cys Ser
 100 105 110

 Glu Gln Gly Leu Ser Asn Cys His Ala Leu Ala Thr Cys Val Asn Thr
 115 120 125

 Glu Gly Asp Tyr Leu Cys Val Cys Pro Lys Gly Phe Thr Gly Asp Gly
 130 135 140

 Trp Tyr Cys Glu Cys Ser Pro Ser Ser Cys Glu Pro Gly Leu Asp Cys
 145 150 155 160

 Leu Pro Gln Gly Pro Asp Gly Lys Leu Val Cys Gln Asp Pro Cys Asn
 165 170 175

 Thr Tyr Glu Thr Leu Thr Glu Tyr Trp Arg Ser Thr Glu Tyr Gly Val
 180 185 190

 Gly Tyr Ser Cys Asp Ala Gly Gln His Gly Trp Tyr Arg Phe Thr Gly
 195 200 205

 Gln Gly Val Arg Met Ala Glu Thr Cys Val Pro Val Leu Ala Cys
 210 215 220

 Asn Thr Ala Ala Pro Met Trp Leu Asn Gly Ser His Pro Ser Ser Ser
 225 230 235 240

 Glu Gly Ile Val Ser Arg Thr Ala Cys Ala His Trp Ser Asp His Cys
 245 250 255

 Cys Arg Trp Ser Thr Glu Ile Gln Val Lys Ala Cys Pro Gly Gly Phe
 260 265 270

 Tyr Ile Tyr Asn Leu Thr Glu Pro Pro Glu Cys Asn Leu Ala Tyr Cys
 275 280 285

 Thr Asp Pro Ser Ser Val Glu Gly Thr Cys Glu Glu Cys Arg Val Asp
 290 295 300

 Glu Asp Cys Ile Ser Asp Asn Gly Arg Trp Arg Cys Gln Cys Lys Gln
 305 310 315 320

 Asp Ser Asn Ile Thr Asp Val Ser Gln Leu Glu Tyr Arg Leu Glu Cys
 325 330 335

 Gly Ala Asn Asp Ile Lys Met Ser Leu Arg Lys Cys Gln Leu Gln Ser
 340 345 350

Leu Gly Phe Met Asn Val Phe Met Tyr Leu Asn Asp Arg Gln Cys Ser
355 360 365

Gly Phe Ser Glu Ser Asp Glu Arg Asp Trp Met Ser Ile Val Thr Pro
370 375 380

Ala Arg Asn Gly Pro Cys Gly Thr Val Leu Arg Arg Asn Glu Thr His
385 390 395 400

Ala Thr Tyr Ser Asn Thr Leu Tyr Leu Ala Asn Ala Ile Ile Arg
405 410 415

Asp Ile Ile Ile Arg Met Asn Phe Glu Cys Ser Tyr Pro Leu Asp Met
420 425 430

Lys Val Ser Leu Lys Thr Ser Leu Gln Pro Met Val Ser Ala Leu Asn
435 440 445

Ile Ser Leu Gly Gly Thr Gly Lys Phe Thr Val Arg Met Ala Leu Phe
450 455 460

Gln Ser Pro Thr Tyr Thr Gln Pro Tyr Gln Gly Pro Ser Val Met Leu
465 470 475 480

Ser Thr Glu Ala Phe Leu Tyr Val Gly Thr Met Leu Asp Gly Gly Asp
485 490 495

Leu Ser Arg Phe Val Leu Leu Met Thr Asn Cys Tyr Ala Thr Pro Ser
500 505 510

Ser Asn Ser Thr Asp Pro Val Lys Tyr Phe Ile Ile Gln Asp Ser Cys
515 520 525

Pro Arg Thr Glu Asp Thr Thr Ile Gln Val Thr Glu Asn Gly Glu Ser
530 535 540

Ser Gln Ala Arg Phe Ser Val Gln Met Phe Arg Phe Ala Gly Asn Tyr
545 550 555 560

Asp Leu Val Tyr Leu His Cys Glu Val Tyr Leu Cys Asp Ser Thr Ser
565 570 575

Glu Gln Cys Lys Pro Thr Cys Ser Gly Thr Arg Phe Arg Cys Gly Asn
580 585 590

Phe Ile Asp Gln Thr Arg Val Leu Asn Leu Gly Pro Ile Thr Arg Gln
595 600 605

Gly Val Gln Ala Ser Val Ser Lys Ala Ala Ser Ser Asn Leu Arg Leu
610 615 620

Leu Ser Ile Trp Leu Leu Leu Phe Leu Ser Ala Thr Leu Ile Phe Met
625 630 635 640

Val Gln

<210> 40

<211> 640

<212> PRT

<213> HUMAN UROMODULIN

<400> 40

Met Gly Gln Pro Ser Leu Thr Trp Met Leu Met Val Val Val Ala Ser
1 5 10 15

Trp Phe Ile Thr Thr Ala Ala Thr Asp Thr Ser Glu Ala Arg Trp Cys
20 25 30

Ser Glu Cys His Ser Asn Ala Thr Cys Thr Glu Asp Glu Ala Val Thr
35 40 45

Thr Cys Thr Cys Gln Glu Gly Phe Thr Gly Asp Gly Leu Thr Cys Val
50 55 60

Asp Leu Asp Glu Cys Ala Ile Pro Gly Ala His Asn Cys Ser Ala Asn
65 70 75 80

Ser Ser Cys Val Asn Thr Pro Gly Ser Phe Ser Cys Val Cys Pro Glu
85 90 95

Gly Phe Arg Leu Ser Pro Gly Leu Gly Cys Thr Asp Val Asp Glu Cys
100 105 110

Ala Glu Pro Gly Leu Ser His Cys His Ala Leu Ala Thr Cys Val Asn
115 120 125

Val Val Gly Ser Tyr Leu Cys Val Cys Pro Ala Gly Tyr Arg Gly Asp
130 135 140

Gly Trp His Cys Glu Cys Ser Pro Gly Ser Cys Gly Pro Gly Leu Asp
145 150 155 160

Cys Val Pro Glu Gly Asp Ala Leu Val Cys Ala Asp Pro Cys Gln Ala

165

170

175

His Arg Thr Leu Asp Glu Tyr Trp Arg Ser Thr Glu Tyr Gly Glu Gly
 180 185 190

Tyr Ala Cys Asp Thr Asp Leu Arg Gly Trp Tyr Arg Phe Val Gly Gln
 195 200 205

Gly Gly Ala Arg Met Ala Glu Thr Cys Val Pro Val Leu Arg Cys Asn
 210 215 220

Thr Ala Ala Pro Met Trp Leu Asn Gly Thr His Pro Ser Ser Asp Glu
 225 230 235 240

Gly Ile Val Ser Arg Lys Ala Cys Ala His Trp Ser Gly His Cys Cys
 245 250 255

Leu Trp Asp Ala Ser Val Gln Val Lys Ala Cys Ala Gly Gly Tyr Tyr
 260 265 270

Val Tyr Asn Leu Thr Ala Pro Pro Glu Cys His Leu Ala Tyr Cys Thr
 275 280 285

Asp Pro Ser Ser Val Glu Gly Thr Cys Glu Glu Cys Ser Ile Asp Glu
 290 295 300

Asp Cys Lys Ser Asn Asn Gly Arg Trp His Cys Gln Cys Lys Gln Asp
 305 310 315 320

Phe Asn Ile Thr Asp Ile Ser Leu Leu Glu His Arg Leu Glu Cys Gly
 325 330 335

Ala Asn Asp Met Lys Val Ser Leu Gly Lys Cys Gln Leu Lys Ser Leu
 340 345 350

Gly Phe Asp Lys Val Phe Met Tyr Leu Ser Asp Ser Arg Cys Ser Gly
 355 360 365

Phe Asn Asp Arg Asp Asn Arg Asp Trp Val Ser Val Val Thr Pro Ala
 370 375 380

Arg Asp Gly Pro Cys Gly Thr Val Leu Thr Arg Asn Glu Thr His Ala
 385 390 395 400

Thr Tyr Ser Asn Thr Leu Tyr Leu Ala Asp Glu Ile Ile Ile Arg Asp
 405 410 415

Leu Asn Ile Lys Ile Asn Phe Ala Cys Ser Tyr Pro Leu Asp Met Lys

	420	425	430
Val Ser Leu Lys Thr Ala Leu Gln Pro Met Val Ser Ala Leu Asn Ile			
435	440	445	
Arg Val Gly Gly Thr Gly Met Phe Thr Val Arg Met Ala Leu Phe Gln			
450	455	460	
Thr Pro Ser Tyr Thr Gln Pro Tyr Gln Gly Ser Ser Val Thr Leu Ser			
465	470	475	480
Thr Glu Ala Phe Leu Tyr Val Gly Thr Met Leu Asp Gly Asp Leu			
485	490	495	
Ser Arg Phe Ala Leu Leu Met Thr Asn Cys Tyr Ala Thr Pro Ser Ser			
500	505	510	
Asn Ala Thr Asp Pro Leu Lys Tyr Phe Ile Ile Gln Asp Arg Cys Pro			
515	520	525	
His Thr Arg Asp Ser Thr Ile Gln Val Val Glu Asn Gly Glu Ser Ser			
530	535	540	
Gln Gly Arg Phe Ser Val Gln Met Phe Arg Phe Ala Gly Asn Tyr Asp			
545	550	555	560
Leu Val Tyr Leu His Cys Glu Val Tyr Leu Cys Asp Thr Met Asn Glu			
565	570	575	
Lys Cys Lys Pro Thr Cys Ser Gly Thr Arg Phe Arg Ser Gly Ser Val			
580	585	590	
Ile Asp Gln Ser Arg Val Leu Asn Leu Gly Pro Ile Thr Arg Lys Gly			
595	600	605	
Val Gln Ala Thr Val Ser Arg Ala Phe Ser Ser Leu Gly Leu Leu Lys			
610	615	620	
Val Trp Leu Pro Leu Leu Leu Ser Ala Thr Leu Thr Leu Thr Phe Gln			
625	630	635	640

<210> 41
<211> 459
<212> PRT

<213> BOVINE UROMODULIN

<400> 41

Met Lys Cys Ser Asn Met Trp Met Ala Ala Val Val Thr Ser Trp Val
1 5 10 15

Ala Ala Thr Asp Thr Ser Ser Ala Lys Ser Cys Ser Cys His Ser Asn
20 25 30

Ala Thr Cys Thr Val Asp Gly Ala Ala Thr Thr Cys Ala Cys Gly Thr
35 40 45

Gly Asp Gly Cys Val Asp Asp Cys Ala Val Gly Ala His Asn Cys Ser
50 55 60

Ala Thr Lys Ser Cys Val Asn Thr Gly Ser Tyr Thr Cys Val Cys Gly
65 70 75 80

Ser Ser Gly Cys Asp Val Asp Cys Ala Gly Ser Arg Cys His Ala Ala
85 90 95

Thr Cys Asn Gly Gly Asn Tyr Ser Cys Val Cys Ala Gly Tyr Gly Asp
100 105 110

Gly Arg His Cys Cys Ser Gly Ser Cys Gly Gly Asp Cys Val Arg Gly
115 120 125

Asp Ala Val Cys Val Asp Cys Val His Arg Asp Tyr Trp Arg Ser Thr
130 135 140

Tyr Gly Ser Gly Tyr Cys Asp Val Ser Gly Gly Trp Tyr Arg Val Gly
145 150 155 160

Ala Gly Val Arg Thr Cys Val Val His Cys Asn Thr Ala Ala Met Trp
165 170 175

Asn Gly Thr His Ser Ser Asp Gly Val Asn Arg Val Ala Cys Ala His
180 185 190

Trp Ser Gly Asp Cys Cys Trp Asp Ala Val Lys Ala Cys Ala Gly Gly
195 200 205

Tyr Tyr Val Tyr Asn Thr Ala Cys His Ala Tyr Cys Thr Asp Ser Ser
210 215 220

Val Gly Thr Cys Cys Arg Val Asp Asp Cys Lys Ser Asp Asn Gly Trp
225 230 235 240

His Cys Cys Lys Asp Asn Val Thr Asp Ser Arg Arg Cys Gly Val Asp
 245 250 255

 Asp Lys Ser Ser Lys Cys Lys Ser Gly Lys Val Met Tyr His Asp Ser
 260 265 270

 Cys Ser Gly Thr Arg Gly Asp Arg Asp Trp Met Ser Val Val Thr Ala
 275 280 285

 Arg Asp Gly Cys Gly Thr Val Met Thr Arg Asn Thr His Ala Thr Tyr
 290 295 300

 Ser Asn Thr Tyr Ala Asp Arg Asp Asn Arg Asn Ala Cys Ser Tyr Asp
 305 310 315 320

 Met Lys Val Ser Lys Thr Ser Met Val Ser Ala Asn Ser Met Gly Gly
 325 330 335

 Thr Gly Thr Thr Val Arg Met Ala Ser Ala Tyr Thr Tyr Gly Ser Ser
 340 345 350

 Val Thr Ser Thr Ala Tyr Val Gly Thr Met Asp Gly Gly Asp Ser Arg
 355 360 365

 Val Met Thr Asn Cys Tyr Ala Thr Ser Ser Asn Ala Thr Asp Lys Tyr
 370 375 380

 Asp Arg Cys Arg Ala Ala Asp Ser Thr Val Asn Gly Ser Gly Arg Ser
 385 390 395 400

 Val Met Arg Ala Gly Asn Tyr Asp Val Tyr His Cys Val Tyr Cys Asp
 405 410 415

 Thr Val Asn Lys Cys Arg Thr Cys Thr Arg Arg Ser Gly Ser Asp Thr
 420 425 430

 Arg Val Asn Gly Thr Arg Lys Gly Gly Ala Ala Met Ser Arg Ala Ala
 435 440 445

 Ser Ser Gly Val Trp Ser Ala Thr Thr Met Ser
 450 455

<210> 42
 <211> 34
 <212> PRT
 <213> RAT UROMODULIN

<400> 42

Gly Val Gln Ala Ser Val Ser Lys Ala Ala Ser Ser Asn Leu Gly Phe
1 5 10 15

Leu Ser Ile Trp Leu Leu Leu Phe Leu Ser Ala Thr Leu Thr Leu Met
20 25 30

Val His

<210> 43

<211> 34

<212> PRT

<213> MOUSE UROMODULIN

<400> 43

Gly Val Gln Ala Ser Val Ser Lys Ala Ala Ser Ser Asn Leu Arg Leu
1 5 10 15

Leu Ser Ile Trp Leu Leu Leu Phe Leu Ser Ala Thr Leu Ile Phe Met
20 25 30

Val Gln

<210> 44

<211> 33

<212> PRT

<213> HUMAN UROMODULIN

<400> 44

Gly Val Gln Ala Thr Val Ser Arg Ala Phe Ser Ser Leu Gly Leu Leu
1 5 10 15

Lys Val Trp Leu Pro Leu Leu Leu Ser Ala Thr Leu Thr Leu Thr Phe
20 25 30

Gln

<210> 45

<211> 34

<212> PRT

<213> BOVINE UROMODULIN

<400> 45
Gly Gly Gln Ala Ala Met Ser Arg Ala Ala Pro Ser Ser Leu Gly Leu
1 5 10 15

Leu Gln Val Trp Leu Pro Leu Leu Ser Ala Thr Leu Thr Leu Met
20 25 30

Ser Pro

<210> 46
<211> 42
<212> PRT
<213> TORPEDO

<400> 46
Asn Gln Phe Leu Pro Lys Leu Leu Asn Ala Thr Ala Cys Asp Gly Glu
1 5 10 15

Leu Ser Ser Ser Gly Thr Ser Ser Ser Lys Gly Ile Ile Phe Tyr Val
20 25 30

Leu Phe Ser Ile Leu Tyr Leu Ile Phe Tyr
35 40

<210> 47
<211> 42
<212> PRT
<213> PLACENTA

<400> 47
Thr Ala Cys Asp Leu Ala Pro Pro Ala Gly Thr Thr Asp Ala Ala His
1 5 10 15

Pro Gly Arg Ser Val Val Pro Ala Leu Leu Pro Leu Leu Ala Gly Thr
20 25 30

Leu Leu Leu Leu Glu Thr Ala Thr Ala Pro
35 40

<210> 48
<211> 41
<212> PRT
<213> DECAY ACCELERATING FACTOR

<400> 48

His Glu Thr Thr Pro Asn Lys Gly Ser Gly Thr Thr Ser Gly Thr Thr
1 5 10 15

Arg Leu Leu Ser Gly His Thr Cys Phe Thr Leu Thr Gly Leu Leu Gly
20 25 30

Thr Leu Val Thr Met Gly Leu Leu Thr
35 40

<210> 49

<211> 35

<212> PRT

<213> T. BRUCEI

<400> 49

Glu Pro Glu Pro Glu Pro Glu Pro Glu Pro Gly Ala Ala Thr
1 5 10 15

Leu Lys Ser Val Ala Leu Pro Phe Ala Ile Ala Ala Ala Leu Val
20 25 30

Ala Ala Phe

35

<210> 50

<211> 36

<212> PRT

<213> HAMSTER

<400> 50

Gln Lys Glu Ser Gln Ala Tyr Tyr Asp Gly Arg Arg Ser Ser Ala Val
1 5 10 15

Leu Phe Ser Ser Pro Pro Val Ile Leu Leu Ile Ser Phe Leu Ile Phe
20 25 30

Leu Met Val Gly

35

<210> 51

<211> 44

<212> PRT

<213> RAT

<400> 51

Lys Thr Ile Asn Val Ile Arg Asp Lys Leu Val Lys Cys Gly Gly Ile
1 5 10 15

Ser Leu Leu Val Gln Asn Thr Ser Trp Leu Leu Leu Leu Leu Ser
20 25 30

Leu Ser Phe Leu Gln Ala Thr Asp Phe Ile Ser Leu
35 40

<210> 52

<211> 36

<212> PRT

<213> T. BRUCEI

<400> 52

Glu Ser Asn Cys Lys Trp Glu Asn Asn Ala Cys Lys Asp Ser Ser Ile
1 5 10 15

Leu Val Thr Lys Lys Phe Ala Leu Thr Val Val Ser Ala Ala Phe Val
20 25 30

Ala Leu Leu Phe

35

<210> 53

<211> 29

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:SYNTHETIC

<400> 53

gaaggggcccc caagagatcc aagtctcct

29

<210> 54

<211> 30

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:SYNTHETIC

<400> 54