SSD1306B

Advance Information

128 x 64 Dot Matrix **OLED/PLED Segment/Common Driver with Controller**

This document contains information on a new product. Specifications and information herein are subject to change without notice.

Appendix: IC Revision history of SSD1306B Specification

Version	Change Items	Effective Date
1.0	1 st release	10-Oct-12
1.1	Revise typo in Bump die pad coordinate	04-Jun-14
	** * *	

Solomon Systech May 2014 P 2/61 Rev 1.1 SSD1306B

CONTENTS

1	GENE	RAL DESCRIPTION	
_			
2	FEAT	URES	••••••
3	ORDE	RING INFORMATION	
_			_
4	BLOC	K DIAGRAM	8
5	DIE PA	AD FLOOR PLAN	
6	PIN DI	ESCRIPTION	11
7	FUNC	ΓΙΟΝΑL BLOCK DESCRIPTIONS	13
•		U Interface selection	
	7.1 MC 7.1.1		
	7.1.1 7.1.2	MCU Parallel 6800-series Interface	
		MCU Parallel 8080-series Interface	
	7.1.3	MCU Serial Interface (4-wire SPI)	
	7.1.4	MCU Serial Interface (3-wire SPI)	
	7.1.5	MCU I ² C Interface	
	7.2 Con	MMAND DECODER	20
	7.3 Osc	CILLATOR CIRCUIT AND DISPLAY TIME GENERATOR	20
		SYNCHRONIZATION	
		ET CIRCUIT	
		MENT DRIVERS / COMMON DRIVERS	
	7.7 GRA	APHIC DISPLAY DATA RAM (GDDRAM)	23
	7.8 SEC	G/COM DRIVING BLOCK	24
	7.9 Pov	VER ON AND OFF SEQUENCE	25
	7.9.1	Power ON and OFF sequence with External V _{CC}	
	7.9.2	Power ON and OFF sequence with Charge Pump Application	
		ARGE PUMP REGULATOR	
8	COMN	1AND TABLE	27
	8.1 DAT	ΓA READ / WRITE	24
9	COMN	MAND DESCRIPTIONS	36
		IDAMENTAL COMMAND	
	9.1.1	Set Lower Column Start Address for Page Addressing Mode (00h~0Fh)	
	9.1.2	Set Higher Column Start Address for Page Addressing Mode (10h~1Fh)	30
	9.1.3	Set Memory Addressing Mode (20h)	30
	9.1.4	Set Column Address (21h)	37
	9.1.5	Set Page Address (22h)	32
	9.1.6	Set Display Start Line (40h~7Fh)	
	9.1.7	Set Contrast Control for BANKO (81h)	
	9.1.8	Set Segment Re-map (A0h/A1h)	
	9.1.9	Entire Display ON (A4h/A5h)	
	9.1.10	Set Normal/Inverse Display (A6h/A7h)	
	9.1.11	Set Multiplex Ratio (A8h)	
		External or internal I _{REF} Selection (ADh)	
	0112		
	9.1.12		
	9.1.13	Set Display ON/OFF (AEh/AFh)	39
	9.1.13 9.1.14	Set Display ON/OFF (AEh/AFh)	39 39
	9.1.13 9.1.14 9.1.15	Set Display ON/OFF (AEh/AFh)	39 39
	9.1.13 9.1.14 9.1.15 9.1.16	Set Display ON/OFF (AEh/AFh) Set Page Start Address for Page Addressing Mode (B0h~B7h) Set COM Output Scan Direction (C0h/C8h) Set Display Offset (D3h)	39 39 39
	9.1.13 9.1.14 9.1.15 9.1.16 9.1.17	Set Display ON/OFF (AEh/AFh) Set Page Start Address for Page Addressing Mode (B0h~B7h) Set COM Output Scan Direction (C0h/C8h) Set Display Offset (D3h) Set Display Clock Divide Ratio/ Oscillator Frequency (D5h)	39 39 39 39
	9.1.13 9.1.14 9.1.15 9.1.16 9.1.17 9.1.18	Set Display ON/OFF (AEh/AFh)	
	9.1.13 9.1.14 9.1.15 9.1.16 9.1.17 9.1.18 9.1.19	Set Display ON/OFF (AEh/AFh) Set Page Start Address for Page Addressing Mode (B0h~B7h) Set COM Output Scan Direction (C0h/C8h) Set Display Offset (D3h) Set Display Clock Divide Ratio/ Oscillator Frequency (D5h) Set Pre-charge Period (D9h) Set COM Pins Hardware Configuration (DAh)	
	9.1.13 9.1.14 9.1.15 9.1.16 9.1.17 9.1.18 9.1.19 9.1.20	Set Display ON/OFF (AEh/AFh)	
	9.1.13 9.1.14 9.1.15 9.1.16 9.1.17 9.1.18 9.1.19	Set Display ON/OFF (AEh/AFh) Set Page Start Address for Page Addressing Mode (B0h~B7h) Set COM Output Scan Direction (C0h/C8h) Set Display Offset (D3h) Set Display Clock Divide Ratio/ Oscillator Frequency (D5h) Set Pre-charge Period (D9h) Set COM Pins Hardware Configuration (DAh)	39 39 39 42 42 42
	9.1.13 9.1.14 9.1.15 9.1.16 9.1.17 9.1.18 9.1.19 9.1.20	Set Display ON/OFF (AEh/AFh) Set Page Start Address for Page Addressing Mode (B0h~B7h) Set COM Output Scan Direction (C0h/C8h) Set Display Offset (D3h) Set Display Clock Divide Ratio/ Oscillator Frequency (D5h) Set Pre-charge Period (D9h) Set COM Pins Hardware Configuration (DAh) Set V _{COMH} Deselect Level (DBh)	39 39 39 42 42 42 43

9.1.23 Charge Pump Setting (8Dh)	
9.2 GRAPHIC ACCELERATION COMMAND	
9.2.1 Horizontal Scroll Setup (26h/27h)	
9.2.2 Continuous Vertical and Horizontal Scroll Setup (29h/2Ah)	
9.2.3 Deactivate Scroll (2Eh)	
9.2.4 Activate Scroll (2Fh)	
9.2.5 Set Vertical Scroll Area (A3h)	
9.2.6 Content Scroll Setup (2Ch/2Dh)	
9.3 ADVANCE GRAPHIC COMMAND	
9.3.1 Set Fade Out and Blinking (23h)	
9.3.2 Set Zoom In (D6h)	50
10 MAXIMUM RATINGS	51
11 DC CHARACTERISTICS	52
12 AC CHARACTERISTICS	53
13 APPLICATION EXAMPLE	59
AA DAGUAGE NIEGDAA EVON	
14 PACKAGE INFORMATION	61
14.1 SSD1306BZ DIE TRAY INFORMATION	61
40	4.0
4.63	
confidential co	

Solomon Systech May 2014 P 4/61 Rev 1.1 SSD1306B

TABLES

Table 5-1 : SSD1306B Bump Die Pad Coordinates	10
TABLE 6-1 : MCU BUS INTERFACE PIN SELECTION	12
TABLE 7-1: MCU INTERFACE ASSIGNMENT UNDER DIFFERENT BUS INTERFACE MODE	13
TABLE 7-2: CONTROL PINS OF 6800 INTERFACE	13
TABLE 7-3: CONTROL PINS OF 8080 INTERFACE	15
TABLE 7-4 : CONTROL PINS OF 4-WIRE SERIAL INTERFACE	15
TABLE 7-5 : CONTROL PINS OF 3-WIRE SERIAL INTERFACE	16
Table 8-1: Command Table	27
TABLE 8-2: READ COMMAND TABLE	35
TABLE 8-3: ADDRESS INCREMENT TABLE (AUTOMATIC)	35
TABLE 9-1: EXAMPLE OF SET DISPLAY OFFSET AND DISPLAY START LINE WITH NO REMAP	40
TABLE 9-2 :EXAMPLE OF SET DISPLAY OFFSET AND DISPLAY START LINE WITH REMAP	41
TABLE 9-3: COM PINS HARDWARE CONFIGURATION	43
TABLE 9-4: CONTENT SCROLLING SOFTWARE FLOW EXAMPLE (PAGE ADDRESSING MODE – COMMAND 20H, 02H)	48
TABLE 9-5: CONTENT SCROLLING SETTING EXAMPLE (VERTICAL ADDRESSING MODE – COMMAND 20H, 01H)	49
TABLE 10-1: MAXIMUM RATINGS (VOLTAGE REFERENCED TO VSS)	51
Table 11-1: DC Characteristics	52
TABLE 12-1: AC CHARACTERISTICS	53
TABLE 12-2: 6800-SERIES MCU PARALLEL INTERFACE TIMING CHARACTERISTICS	54
TABLE 12-3: 8080-SERIES MCU PARALLEL INTERFACE TIMING CHARACTERISTICS	55
Table 12-4: 4-wire Serial Interface Timing Characteristics	56
TABLE 12-5: 3-WIRE SERIAL INTERFACE TIMING CHARACTERISTICS	57
TABLE 12-6: I ² C Interface Timing Characteristics	58
TABLE 12-4: 4-WIRE SERIAL INTERFACE TIMING CHARACTERISTICS	

 SSD1306B
 Rev 1.1
 P 5/61
 May 2014
 Solomon Systech

FIGURES

FIGURE 4-1 SSD1306B BLOCK DIAGRAM	8
FIGURE 5-1: SSD1306BZ DIE DRAWING	
Figure 6-1 Pin Description	11
FIGURE 7-1: DATA READ BACK PROCEDURE - INSERTION OF DUMMY READ	14
FIGURE 7-2: EXAMPLE OF WRITE PROCEDURE IN 8080 PARALLEL INTERFACE MODE	14
FIGURE 7-3: EXAMPLE OF READ PROCEDURE IN 8080 PARALLEL INTERFACE MODE	14
FIGURE 7-4: DISPLAY DATA READ BACK PROCEDURE - INSERTION OF DUMMY READ	15
FIGURE 7-5: WRITE PROCEDURE IN 4-WIRE SERIAL INTERFACE MODE	16
FIGURE 7-6: WRITE PROCEDURE IN 3-WIRE SERIAL INTERFACE MODE	16
Figure 7-7 : I ² C-bus data format	
FIGURE 7-8: DEFINITION OF THE START AND STOP CONDITION	19
FIGURE 7-9: DEFINITION OF THE ACKNOWLEDGEMENT CONDITION	19
FIGURE 7-10: DEFINITION OF THE DATA TRANSFER CONDITION	19
FIGURE 7-11 : OSCILLATOR CIRCUIT AND DISPLAY TIME GENERATOR	20
FIGURE 7-12 : SEGMENT OUTPUT WAVEFORM IN THREE PHASES	22
FIGURE 7-13 : GDDRAM PAGES STRUCTURE OF SSD1306B	
FIGURE 7-14: ENLARGEMENT OF GDDRAM (NO ROW RE-MAPPING AND COLUMN-REMAPPING)	
FIGURE 7-15 : I _{ref} Current Setting by Resistor Value	24
FIGURE 7-16: THE POWER ON SEQUENCE	25
FIGURE 7-17 : THE POWER OFF SEQUENCE	25
FIGURE 7-18: THE POWER ON SEQUENCE WITH CHARGE PUMP APPLICATION	26
FIGURE 7-19: THE POWER OFF SEQUENCE WITH CHARGE PUMP APPLICATION	26
FIGURE 9-1 : ADDRESS POINTER MOVEMENT OF PAGE ADDRESSING MODE	36
FIGURE 9-2: EXAMPLE OF GDDRAM ACCESS POINTER SETTING IN PAGE ADDRESSING MODE (NO ROW AND	COLUMN-REMAPPING)
	36
FIGURE 9-3: ADDRESS POINTER MOVEMENT OF HORIZONTAL ADDRESSING MODE	
FIGURE 9-4: ADDRESS POINTER MOVEMENT OF VERTICAL ADDRESSING MODE	
FIGURE 9-5: EXAMPLE OF COLUMN AND ROW ADDRESS POINTER MOVEMENT	
FIGURE 9-6 :TRANSITION BETWEEN DIFFERENT MODES	
FIGURE 9-7 : OSCILLATOR FREQUENCY SETTING	42
FIGURE 9-8: HORIZONTAL SCROLL EXAMPLE: SCROLL RIGHT BY 1 COLUMN	
FIGURE 9-9: HORIZONTAL SCROLL EXAMPLE: SCROLL LEFT BY 1 COLUMN	
FIGURE 9-10: HORIZONTAL SCROLLING SETUP EXAMPLE	46
FIGURE 9-11: CONTINUOUS VERTICAL AND HORIZONTAL SCROLLING SETUP EXAMPLE	
FIGURE 9-12: CONTENT SCROLLING EXAMPLE (2DH, LEFT HORIZONTAL SCROLL BY ONE COLUMN)	48
FIGURE 9-13: EXAMPLE OF FADE OUT MODE	50
FIGURE 9-14: EXAMPLE OF BLINKING MODE	50
FIGURE 9-15: EXAMPLE OF ZOOM IN	50
FIGURE 12-1: 6800-SERIES MCU PARALLEL INTERFACE CHARACTERISTICS	54
FIGURE 12-2: 8080-SERIES PARALLEL INTERFACE CHARACTERISTICS	55
FIGURE 12-3: 4-WIRE SERIAL INTERFACE CHARACTERISTICS	
FIGURE 12-4: 3-WIRE SERIAL INTERFACE CHARACTERISTICS	57
FIGURE 12-5: I ² C INTERFACE TIMING CHARACTERISTICS	
FIGURE 13-1 : APPLICATION EXAMPLE OF SSD1306B WITH EXTERNAL V_{CC} AND I^2C INTERFACE	59
Figure 13-2 Application Example of SSD1306B with Internal Charge Pump, Internal $ m I_{REF}$ and $ m I^2C$	INTERFACE60
Figure 14-1 : SSD1306BZ die tray information	61

 Solomon Systech
 May 2014
 P 6/61
 Rev 1.1
 SSD1306B

1 GENERAL DESCRIPTION

SSD1306B is a single-chip CMOS OLED/PLED driver with controller for organic / polymer light emitting diode dot-matrix graphic display system. It consists of 128 segments and 64 commons. This IC is designed for Common Cathode type OLED panel.

The SSD1306B embeds with contrast control, display RAM and oscillator, which reduces the number of external components and power consumption. It has 256-step brightness control. Data/Commands are sent from general MCU through the hardware selectable 6800/8000 series compatible Parallel Interface, I2C interface or Serial Peripheral Interface. The on chip charge bump regulator of SSD1306B operates at a wide voltage range, and supports 2.2V lowest operating voltage, making it suitable for many compact portable applications which operate on common consumer battery, such as portable gadgets, consumer appliances, portable medical devices, etc.

2 FEATURES

- Resolution: 128 x 64 dot matrix panel
- Power supply
 - o $V_{DD} = 1.65 \text{V to } 3.3 \text{V}, \leq V_{BAT}$ for IC logic
 - o $V_{BAT} = 2.2V$ to 4.2V for charge pump regulator circuit
 - o $V_{CC} = 6V$ to 15V for Panel driving
- For matrix display
 - o Segment maximum source current: 240uA
 - Common maximum sink current: 30mA
 - o 256 step contrast brightness current control
- Embedded 128 x 64 bit SRAM display buffer
- Pin selectable MCU Interfaces:
 - o 8-bit 6800/8080-series parallel interface
 - o 3 /4 wire Serial Peripheral Interface
 - I²C Interface
- Screen saving continuous scrolling function in both horizontal and vertical direction
- Screen saving infinite content scrolling function
- Internal or external I_{REF} selection
- Internal charge pump regulator with 4 selectable output mode
- RAM write synchronization signal
- Programmable Frame Rate and Multiplexing Ratio
- Row Re-mapping and Column Re-mapping
- On-Chip Oscillator
- Chip layout for COG & COF
- Wide range of operating temperature: -40°C to 85°C

3 ORDERING INFORMATION

Table 3-1: Ordering Information

Ordering Part Number	SEG	СОМ	Package Form	Reference	Remark
SSD1306BZ	128	64	COG	9	 Min SEG pad pitch: 47um Min COM pad pitch: 40um Die thickness: 300 +/- 15um Bump height: Nominal 9um

4 BLOCK DIAGRAM

RES# CS# D/C# E (RD#) R/W#(WR#) Graphic Display Data RAM (GDDRAM) BS2 BS1 BS0 Display Controller COM62 COM60 Common Driver MCU Interface COM2 COM0 SEG0 Segment Driver SEG1 SEG126 SEG127 V_{DD} $v_{\scriptscriptstyle LSS}^{V_{\scriptscriptstyle SS}}$ COM1 Common Driver COM3 Voltage Control Charge pump Regulator COM61 Current Control Command Decoder COM63 Oscillator CL – CLS – BGGND – $V_{\text{COMH}} \leftarrow I_{\text{REF}}$ V CCINC CCINC CCINC CCIPC CCIP

Figure 4-1 SSD1306B Block Diagram

Solomon Systech May 2014 P 8/61 Rev 1.1 SSD1306B

Pad 1 -

公

Figure 5-1: SSD1306BZ Die Drawing

Die Size (after	6.76mm +/- 0.05mm x
sawing)	0.86mm +/- 0.05mm
Die thickness	300 +/- 15um
Min I/O pad pitch	60um
Min SEG pad pitch	47um
Min COM pad pitch	40um
Bump height	Nominal 9um

Bump size	
Pad 1, 106, 124, 256	80um x 50um
Pad 2-18, 89-105, 107-123, 257-273	25um x 80um
Pad 19-88	35um x 70um
Pad 125-255	31um x 59um
Pad 274-281 (TR pads)	30um x 50um

Alignment mark	Position	Size
+ shape	(-2973, 0)	75um x 75um
+ shape	(2973, 0)	75um x 75um
SSL Logo	(-2883.395,146.66)	-

Note

- (1) Diagram showing the Gold bumps face up.
- (2) Coordinates are referenced to center of the chip.
- (3) Coordinate units and size of all alignment marks are in um.
- (4) All alignment keys do not contain gold

Table 5-1: SSD1306B Bump Die Pad Coordinates

Pad no.	Pad Name	X-pos	Y-pos		Pad no.	Pad Nam
1	NC	-3315	-377.5		81	VCOMH
2	VSS	-3084.77	-362.5		82	VCC
3	COM49 COM50	-3044.77	-362.5		83 84	VCC VLSS
5	COM50	-3004.77 -2964.77	-362.5 -362.5		85	VLSS
6	COM52	-2924.77	-362.5		86	VLSS
7	COM53	-2884.77	-362.5		87	NC
8	COM54	-2844.77	-362.5		88	NC
9	COM55	-2804.77	-362.5		89	VSS
10	COM56 COM57	-2764.77 -2724.77	-362.5 -362.5		90 91	COM31 COM30
12	COM58	-2684.77	-362.5		92	COM29
13	COM59	-2644.77	-362.5		93	COM28
14	COM60	-2604.77	-362.5		94	COM27
15	COM61	-2564.77	-362.5		95	COM26
16	COM62	-2524.77	-362.5		96	COM25
17 18	COM63 VCOMH	-2484.77 -2444.77	-362.5 -362.5		97 98	COM24 COM23
19	NC	-2334.965	-352.83		99	COM22
20	C2N	-2278.265	-352.83		100	COM21
21	C2N	-2218.265	-352.83		101	COM20
22	C2P	-2136.715	-352.83		102	COM 19
23	C2P	-2055.465	-352.83		103	COM18
24	C1P C1P	-1995.465 -1904.115	-352.83 -352.83		104 105	COM 17 VSS
26	CIP	-1904.115	-352.83		105	NC
27	CIN	-1762.865	-352.83		107	COM 16
28	VBAT	-1679.31	-352.83		108	COM15
29	VBAT	-1619.31	-352.83		109	COM 14
30	VBREF	-1537.51	-352.83		110	COM13
31	BGGND	-1477.51	-352.83		111	COM12
32	VCC VCC	-1416.01 -1356.01	-352.83 -352.83		112 113	COM11 COM10
34	VCOMH	-1266.955	-352.83		114	COM9
35	VCOMH	-1206.955	-352.83		115	COM8
36	VLSS	-1125.155	-352.83		116	COM7
37	VLSS	-1043.355	-352.83		117	COM6
38	VLSS VSS	-983.355	-352.83		118	COM5
39 40	VSS	-920 -856	-352.83 -352.83		119 120	COM4 COM3
41	VSS	-796	-352.83		121	COM2
42	VDD	-732.645	-352.83		122	COM1
43	VDD	-672.645	-352.83		123	COM0
44	BS0	-595.655	-352.83		124	NC
45 46	VSS BS1	-531.955 -467.655	-352.83 -352.83		125 126	NC SEG0
47	VDD	-407.055	-352.83		127	SEG1
48	VDD	-342.555	-352.83		128	SEG2
49	BS2	-279.705	-352.83		129	SEG3
50	VSS	-215.705	-352.83		130	SEG4
51	FR	-151.955	-352.83		131	SEG5
52	CL VSS	-89.815 -25.665	-352.83		132	SEG6 SEG7
54	CS#	38.635	-352.83		134	SEG/
55	RES#	109.835	-352.83		135	SEG9
56	D/C#	182.425	-352.83		136	SEG10
57	VSS	246.125	-352.83	4	137	SEG11
58 59	R/W# E	310.425	-352.83		138	SEG12
60	VDD	373.125 457.175	-352.83 -352.83		139 140	SEG13 SEG14
61	VDD	517.175	-352.83		141	SEG15
62	D0	609.275	-352.83		142	SEG16
63	D1	692.475	-352.83		143	SEG17
64	D2	765.675	-352.83		144	SEG18
65	D3	828.875	-352.83		145 146	SEG19 SEG20
66	VSS D4	890.325 951.275	-352.83 -352.83		140	SEG20
68	D5	1013.315	-352.83		148	SEG22
69	D6	1075.355	-352.83		149	SEG23
70	D7	1137.395	-352.83		150	SEG24
71	VSS	1220.735	-352.83		151	SEG25
72	VSS	1280.735	-352.83		152	SEG26
73 74	CLS VDD	1362.585 1425.285	-352.83 -352.83		153 154	SEG27 SEG28
75	VDD	1425.285	-352.83		154	SEG28 SEG29
76	VDD	1553.185	-352.83		156	SEG30
77	VDD	1613.185	-352.83		157	SEG31
78	IREF	1684.585	-352.83		158	SEG32
79	IREF	1744.585	-352.83		159	SEG33
80	VCOMH	1815.585	-352.83		160	SEG34

	Lable 3-1	· SSD1	ооов в
Pad no.	Pad Name	X-pos	Y-pos
81	VCOMH VCC	1875.585 1967.185	-352.83 -352.83
83	VCC	2027.185	-352.83
84	VLSS	2109.185	-352.83
85	VLSS	2169.185	-352.83
86	VLSS	2254.185	-352.83
87 88	NC NC	2314.185 2374.185	-352.83 -352.83
89	VSS	2444.77	-362.5
90	COM31	2484.77	-362.5
91	COM30	2524.77	-362.5
92	COM29	2564.77	-362.5
93	COM28	2604.77	-362.5
94	COM27 COM26	2644.77 2684.77	-362.5 -362.5
96	COM25	2724.77	-362.5
97	COM24	2764.77	-362.5
98	COM23	2804.77	-362.5
99	COM22	2844.77	-362.5
100	COM21	2884.77	-362.5
101	COM20 COM19	2924.77 2964.77	-362.5 -362.5
102	COM 19 COM 18	3004.77	-362.5
104	COM17	3044.77	-362.5
105	VSS	3084.77	-362.5
106	NC	3315	-377.5
107	COM16	3315	-325
108	COM15 COM14	3315 3315	-285 -245
110	COM 14	3315	-243
111	COM12	3315	-165
112	COM11	3315	-125
113	COM 10	3315	-85
114	COM9	3315	-45
115 116	COM8 COM7	3315 3315	-5 35
117	COM7	3315	75
118	COM5	3315	115
119	COM4	3315	155
120	COM3	3315	195
121	COM2	3315	235
122	COM1	3315	275
123 124	COM0 NC	3315 3315	315 367.5
125	NC	3055.5	356
126	SEG0	3009.5	356
127	SEG1	2962.5	356
128	SEG2	2915.5	356
130	SEG3 SEG4	2868.5 2821.5	356 356
131	SEG5	2774.5	356
132	SEG6	2727.5	356
133	SEG7	2680.5	356
134	SEG8	2633.5	356
135	SEG9	2586.5	356
136 137	SEG10 SEG11	2539.5 2492.5	356 356
138	SEG12	2445.5	356
139	SEG12	2398.5	356
140	SEG14	2351.5	356
141	SEG15	2304.5	356
142	SEG16	2257.5	356
143 144	SEG17 SEG18	2210.5 2163.5	356 356
145	SEG19	2116.5	356
146	SEG20	2069.5	356
147	SEG21	2022.5	356
148	SEG22	1975.5	356
149	SEG23	1928.5	356
150 151	SEG24 SEG25	1881.5 1834.5	356 356
152	SEG25 SEG26	1787.5	356
153	SEG27	1740.5	356
154	SEG28	1693.5	356
155	SEG29	1646.5	356
156	SEG30	1599.5	356
157 158	SEG31 SEG32	1552.5 1505.5	356 356
159	SEG33	1458.5	356
160	SEG34	1411.5	356

Pad no.	Pad Name	V noc	V noc
161	SEG35	X-pos 1364.5	Y-pos 356
162	SEG36	1317.5	356
163	SEG37	1270.5	356
164 165	SEG38 SEG39	1223.5 1176.5	356 356
166	SEG40	1129.5	356
167	SEG41	1082.5	356
168	SEG42	1035.5	356
169 170	SEG43 SEG44	988.5 941.5	356 356
171	SEG45	894.5	356
172	SEG46	847.5	356
173	SEG47	800.5	356
174	SEG48	753.5	356
175 176	SEG49 SEG50	706.5 659.5	356 356
177	SEG51	612.5	356
178	SEG52	565.5	356
179	SEG53	518.5	356
180	SEG54	471.5 424.5	356
181 182	SEG55 SEG56	377.5	356 356
183	SEG57	330.5	356
184	SEG58	283.5	356
185	SEG59	236.5	356
186 187	SEG60 SEG61	189.5 142.5	356 356
188	SEG62	95.5	356
189	SEG63	48.5	356
190	SEG64	1.5	356
191	SEG65	-45.5	356
192 193	SEG66	-92.5	356 356
193	SEG67 SEG68	-139.5 -186.5	356
195	SEG69	-233.5	356
196	SEG70	-280.5	356
197	SEG71	-327.5	356
198 199	SEG72	-374.5	356
200	SEG73 SEG74	-421.5 -468.5	356 356
201	SEG75	-515.5	356
202	SEG76	-562.5	356
203	SEG77	-609.5	356
204 205	SEG78 SEG79	-656.5 -703.5	356
203	SEG80	-750.5	356 356
207	SEG81	-797.5	356
208	SEG82	-844.5	356
209	SEG83	-891.5	356 356
210 211	NC SEG84	-940 -988.5	356
212	SEG85	-1035.5	356
213	SEG86	-1082.5	356
214	SEG87	-1129.5	356
215	SEG88	-1176.5	356
216 217	SEG90	-1223.5 -1270.5	356 356
218	SEG91	-1317.5	356
219	SEG92	-1364.5	356
220	SEG93	-1411.5	356
221 222	SEG94 SEG95	-1458.5 -1505.5	356 356
223	SEG95 SEG96	-1505.5	356
224	SEG97	-1599.5	356
225	SEG98	-1646.5	356
226	SEG99	-1693.5	356
227 228	SEG100 SEG101	-1740.5 -1787.5	356 356
229	SEG102	-1834.5	356
230	SEG103	-1881.5	356
231	SEG104	-1928.5	356
232	SEG105	-1975.5	356
233	SEG106 SEG107	-2022.5 -2069.5	356 356
235	SEG107 SEG108	-2009.5	356
236	SEG109	-2163.5	356
237	SEG110	-2210.5	356
238	SEG111	-2257.5	356
239 240	SEG112 SEG113	-2304.5 -2351.5	356 356
210	SLOTIS	ل.1 ريس	550

Pad no.	Pad Name	X-pos	Y-pos
241	SEG114	-2398.5	356
242	SEG115	-2396.5	356
243	SEG115 SEG116	-2443.3	356
243	SEG116 SEG117	-2492.5	356
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
245	SEG118	-2586.5	356
246	SEG119	-2633.5	356
247	SEG120	-2680.5	356
248	SEG121	-2727.5	356
249	SEG122	-2774.5	356
250	SEG123	-2821.5	356
251	SEG124	-2868.5	356
252	SEG125	-2915.5	356
253	SEG126	-2962.5	356
254	SEG127	-3009.5	356
255	NC	-3056.5	356
256	NC	-3315	367.5
257	COM32	-3315	315
258	COM33	-3315	275
259	COM34	-3315	235
260	COM35	-3315	195
261	COM36	-3315	155
262	COM37	-3315	115
263	COM38	-3315	75
264	COM39	-3315	35
265	COM40	-3315	-5
266	COM41	-3315	-45
267	COM41 COM42	-3315	-43
268	COM42 COM43	-3315	-125
269	COM44	-3315	-165
270	COM45	-3315	-205
271	COM46	-3315	-245
272	COM47	-3315	-285
273	COM48	-3315	-325
Pad no.	Pad Name	X-pos	Y-pos
Pin#	Pin name	X-dir	Y-dir
274	TR0	2757.05	114.8
275	TR1	2697.05	114.8
276	TR2	2637.05	114.8
277	TR3	2577.05	114.8
278	VSS	2517.05	114.8
279	TR4	2457.05	114.8
280	TR5	2397.05	114.8
281	TR6	2337.05	114.8

 Solomon Systech
 May 2014
 P 10/61
 Rev 1.1
 SSD1306B

6 PIN DESCRIPTION

Key:

I = Input	NC = Not Connected
O =Output	Pull LOW= connect to Ground
I/O = Bi-directional (input/output)	Pull HIGH= connect to V _{DD}
P = Power pin	

Figure 6-1 Pin Description

Pin Name	Type	Description										
V _{DD}	P		ower supply pin for core logic operation.									
V_{CC}	P		Power supply for panel driving voltage. This is also the most positive power voltage supply pin. When charge pump is enabled, a capacitor should be connected between this pin and V_{SS} .									
V _{SS}	P	This is a grou	ind pin.									
V_{LSS}	P	This is an ana	his is an analog ground pin. It should be connected to V _{SS} externally.									
V _{COMH}	О		ne pin for COM signal deselected voltage level. capacitor should be connected between this pin and V_{SS} .									
V_{BAT}	P	Power supply	for charge pump reg	ulator circuit.								
		Status	V_{BAT}	V_{DD}	Vcc							
		Enable charge pump	Connect to external V _{BAT} source	Connect to external V _{DD} source	A capacitor should be connected between this pin and Vss							
		Disable charge pump	Keep float or connect to V _{DD}	Connect to external V _{DD} source	Connect to external V _{CC} source							
BGGND	P		. It should be connec	ted to ground.								
C1P/C1N C2P/C2N	I				each other with a capacitor. each other with a capacitor.							
V_{BREF}	P	Reserved pin	. It should be kept N	C.								
BS[2:0]	I	MCU bus into	erface selection pins.	Please refer to Table	e 6-1 for the details of setting.							
I_{REF}	I	When extern		stor should be conne	ected between this pin and $V_{\rm SS}$ to maintain to Figure 7-15 for the details of resistor							
			l $I_{ m REF}$ is used, this pir									
FR	O	and frame dis	splay timing can be ac	chieved to prevent te	Proper timing between MCU data writing aring effect. ction 7.4 for details usage.							
CL	I	When interna	V _{SS} . When internal c		, this pin is not used and should be LOW in CLS pin), this pin is the external							
CLS	I	enabled. Who		the internal clock is	IGH (i.e. connect to V_{DD}), internal clock is disabled; an external clock source must be							
RES#	I		set signal input. Wh HIGH (i.e. connect t		LOW, initialization of the chip is executed.							

 SSD1306B
 Rev 1.1
 P 11/61
 May 2014
 Solomon Systech

Pin Name	Type	Description
CS#	I	This pin is the chip select input. (active LOW).
D/C#	I	This is Data/Command control pin. When it is pulled HIGH (i.e. connect to V_{DD}), the data at D[7:0] is treated as data. When it is pulled LOW, the data at D[7:0] will be transferred to the command register. In I ² C mode, this pin acts as SA0 for slave address selection. When 3-wire serial interface is selected, this pin must be connected to V_{SS} . For detail relationship to MCU interface signals, please refer to the Timing Characteristics Diagrams: Figure 12-1 to Figure 12-5.
E (RD#)	I	When interfacing to a 6800-series microprocessor, this pin will be used as the Enable (E) signal. Read/write operation is initiated when this pin is pulled HIGH (i.e. connect to V_{DD}) and the chip is selected. When connecting to an 8080-series microprocessor, this pin receives the Read (RD#) signal. Read operation is initiated when this pin is pulled LOW and the chip is selected. When serial or I^2C interface is selected, this pin must be connected to V_{SS} .
R/W#(WR#)	Ι	This is read / write control input pin connecting to the MCU interface. When interfacing to a 6800-series microprocessor, this pin will be used as Read/Write (R/W#) selection input. Read mode will be carried out when this pin is pulled HIGH (i.e. connect to V_{DD}) and write mode when LOW. When 8080 interface mode is selected, this pin will be the Write (WR#) input. Data write operation is initiated when this pin is pulled LOW and the chip is selected. When serial or I^2C interface is selected, this pin must be connected to V_{SS} .
D[7:0]	IO	These are 8-bit bi-directional data bus to be connected to the microprocessor's data bus. When serial interface mode is selected, D0 will be the serial clock input: SCLK; D1 will be the serial data input: SDIN. When I²C mode is selected, D2, D1 should be tied together and serve as SDA _{out} , SDA _{in} in application and D0 is the serial clock input, SCL.
TR0-TR6	-	Testing reserved pins. It should be kept NC.
SEG0 ~ SEG127	О	These pins provide Segment switch signals to OLED panel. These pins are V _{SS} state when display is OFF.
COM0 ~ COM63	0	These pins provide Common switch signals to OLED panel. They are in high impedance state when display is OFF.
NC	-	This is dummy pin. Do not group or short NC pins together.

Table 6-1: MCU Bus Interface Pin Selection

SSD1306B Pin Name	I ² C Interface	6800-parallel interface (8 bit)	8080-parallel interface(8 bit)	4-wire Serial interface	3-wire Serial interface
BS0	0	0	0	0	1
BS1	1	0	1	0	0
BS2	0	1	1	0	0

Note

May 2014 P 12/61 Rev 1.1 SSD1306B Solomon Systech

 $^{^{(1)}}$ 0 is connected to V_{SS} $^{(2)}$ 1 is connected to V_{DD}

7 FUNCTIONAL BLOCK DESCRIPTIONS

7.1 MCU Interface selection

SSD1306B MCU interface consist of 8 data pins and 5 control pins. The pin assignment at different interface mode is summarized in Table 7-1. Different MCU mode can be set by hardware selection on BS[2:0] pins (please refer to Table 6-1 for BS[2:0] setting).

Table 7-1: MCU interface assignment under different bus interface mode

Pin Name Bus	Data/C	Comma	nd Inte	rface		Control Signal							
Interface	D7	D6	D5	D4	D3	D2	D1	D 0	E	R/W#	CS#	D/C#	RES#
8-bit 8080		D[7:0]							RD#	WR#	CS#	D/C#	RES#
8-bit 6800				D	[7:0]				Е	R/W#	CS#	D/C#	RES#
3-wire SPI	Tie LC	Tie LOW					SDIN	SCLK	Tie LO'	W	CS#	Tie LOW	RES#
4-wire SPI	Tie LC	Tie LOW						SCLK	Tie LOW CS#		D/C#	RES#	
I ² C	Tie LC)W				SDA _{OUT}	SDA_{IN}	SCL	Tie LO'	W		SA0	RES#

7.1.1 MCU Parallel 6800-series Interface

The parallel interface consists of 8 bi-directional data pins (D[7:0]), R/W#, D/C#, E and CS#.

A LOW in R/W# indicates WRITE operation and HIGH in R/W# indicates READ operation.

A LOW in D/C# indicates COMMAND read/write and HIGH in D/C# indicates DATA read/write.

The E input serves as data latch signal while CS# is LOW. Data is latched at the falling edge of E signal.

Table 7-2: Control pins of 6800 interface

Function	E	R/W#	CS#	D/C#
Write command	1	L	L	L
Read status	15	Н	L	L
Write data	1	L	L	Н
Read data	1	Н	L	Н

Note

L stands for LOW in signal

In order to match the operating frequency of display RAM with that of the microprocessor, some pipeline processing is internally performed which requires the insertion of a dummy read before the first actual display data read. This is shown in Figure 7-1.

^{(1) ↓} stands for falling edge of signal H stands for HIGH in signal

Figure 7-1: Data read back procedure - insertion of dummy read

7.1.2 MCU Parallel 8080-series Interface

The parallel interface consists of 8 bi-directional data pins (D[7:0]), RD#, WR#, D/C# and CS#.

A LOW in D/C# indicates COMMAND read/write and HIGH in D/C# indicates DATA read/write. A rising edge of RD# input serves as a data READ latch signal while CS# is kept LOW. A rising edge of WR# input serves as a data/command WRITE latch signal while CS# is kept LOW.

Figure 7-2: Example of Write procedure in 8080 parallel interface mode

Figure 7-3: Example of Read procedure in 8080 parallel interface mode

Solomon Systech May 2014 P 14/61 Rev 1.1 SSD1306B

Table 7-3: Control pins of 8080 interface

Function	RD#	WR#	CS#	D/C#
Write command	Н	↑	L	L
Read status	↑	Н	L	L
Write data	Н	↑	L	Н
Read data	↑	Н	L	Н

Note

- (1) ↑ stands for rising edge of signal
- (2) H stands for HIGH in signal
- (3) L stands for LOW in signal

In order to match the operating frequency of display RAM with that of the microprocessor, some pipeline processing is internally performed which requires the insertion of a dummy read before the first actual display data read. This is shown in Figure 7-4.

Figure 7-4: Display data read back procedure - insertion of dummy read

7.1.3 MCU Serial Interface (4-wire SPI)

The 4-wire serial interface consists of serial clock: SCLK, serial data: SDIN, D/C#, CS#. In 4-wire SPI mode, D0 acts as SCLK, D1 acts as SDIN. For the unused data pins from D2 to D7, R/W# (WR#), E and D/C# can be connected to an external ground.

Table 7-4: Control pins of 4-wire Serial interface

Function	E(RD#)	R/W#(WR#)	CS#	D/C#	D0
Write command	Tie LOW	Tie LOW	L	L	1
Write data	Tie LOW	Tie LOW	L	Н	1

Note

(1) H stands for HIGH in signal

SDIN is shifted into an 8-bit shift register on every rising edge of SCLK in the order of D7, D6, ... D0. D/C# is sampled on every eighth clock and the data byte in the shift register is written to the Graphic Display Data RAM (GDDRAM) or command register in the same clock.

Under serial mode, only write operations are allowed.

SSD1306B | Rev 1.1 | P 15/61 | May 2014 | **Solomon Systech**

⁽²⁾ L stands for LOW in signal

Figure 7-5: Write procedure in 4-wire Serial interface mode

7.1.4 MCU Serial Interface (3-wire SPI)

The 3-wire serial interface consists of serial clock SCLK, serial data SDIN and CS#.

In 3-wire SPI mode, D0 acts as SCLK, D1 acts as SDIN. For the unused data pins from D2 to D7, R/W# (WR#)#, E and D/C# can be connected to an external ground.

The operation is similar to 4-wire serial interface while D/C# pin is not used. There are altogether 9-bits will be shifted into the shift register on every ninth clock in sequence: D/C# bit, D7 to D0 bit. The D/C# bit (first bit of the sequential data) will determine the following data byte in the shift register is written to the Display Data RAM (D/C# bit = 1) or the command register (D/C# bit = 0). Under serial mode, only write operations are allowed.

Table 7-5: Control pins of 3-wire Serial interface

Function	E(RD#)	R/W #(WR #)	CS#	D/C#	D0	
Write command	Tie LOW	Tie LOW	L	Tie LOW	1	Note
Write data	Tie LOW	Tie LOW	L	Tie LOW	1	(1) L stands for LOW in signal

Figure 7-6: Write procedure in 3-wire Serial interface mode

Solomon Systech May 2014 P 16/61 Rev 1.1 SSD1306B

7.1.5 MCU I²C Interface

The I²C communication interface consists of slave address bit SA0, I²C-bus data signal SDA (SDA_{OUT}/D₂ for output and SDA_{IN}/D_1 for input) and I²C-bus clock signal SCL (D₀). Both the data and clock signals must be connected to pull-up resistors. RES# is used for the initialization of device.

Slave address bit (SA0)

SSD1306B has to recognize the slave address before transmitting or receiving any information by the I²C-bus. The device will respond to the slave address following by the slave address bit ("SA0" bit) and the read/write select bit ("R/W#" bit) with the following byte format,

 $b_7 b_6 b_5 b_4 b_3 b_2 b_1$

0 1 1 1 1 0 SA0 R/W#

"SA0" bit provides an extension bit for the slave address. Either "0111100" or "0111101", can be selected as the slave address of SSD1306B. D/C# pin acts as SA0 for slave address selection.

"R/W#" bit is used to determine the operation mode of the I^2 C-bus interface. R/W#=1, it is in read mode. R/W#=0, it is in write mode.

b) I²C-bus data signal (SDA)

SDA acts as a communication channel between the transmitter and the receiver. The data and the acknowledgement are sent through the SDA.

It should be noticed that the ITO track resistance and the pulled-up resistance at "SDA" pin becomes a voltage potential divider. As a result, the acknowledgement would not be possible to attain a valid logic 0 level in "SDA".

"SDA_{IN}" and "SDA_{OUT}" are tied together and serve as SDA. The "SDA_{IN}" pin must be connected to act as SDA. The "SDA_{OUT}" pin may be disconnected. When "SDA_{OUT}" pin is disconnected, the acknowledgement signal will be ignored in the I²C-bus.

c) I²C-bus clock signal (SCL)

Lock signal, The transmission of information in the I²C-bus is following a clock signal, SCL. Each transmission of data bit is taken place during a single clock period of SCL.

P 17/61 SSD1306B Rev 1.1 May 2014 Solomon Systech

7.1.5.1 I²C-bus Write data

The I^2C -bus interface gives access to write data and command into the device. Please refer to Figure 7-7 for the write mode of I^2C -bus in chronological order.

Figure 7-7: I²C-bus data format

7.1.5.2 Write mode for I^2C

- 1) The master device initiates the data communication by a start condition. The definition of the start condition is shown in Figure 7-8. The start condition is established by pulling the SDA from HIGH to LOW while the SCL stays HIGH.
- 2) The slave address is following the start condition for recognition use. For the SSD1306B, the slave address is either "b0111100" or "b0111101" by changing the SA0 to LOW or HIGH (D/C pin acts as SA0).
- 3) The write mode is established by setting the R/W# bit to logic "0".
- 4) An acknowledgement signal will be generated after receiving one byte of data, including the slave address and the R/W# bit. Please refer to the Figure 7-9 for the graphical representation of the acknowledge signal. The acknowledge bit is defined as the SDA line is pulled down during the HIGH period of the acknowledgement related clock pulse.
- 5) After the transmission of the slave address, either the control byte or the data byte may be sent across the SDA. A control byte mainly consists of Co and D/C# bits following by six "0" 's.
 - a. If the Co bit is set as logic "0", the transmission of the following information will contain data bytes only.
 - b. The D/C# bit determines the next data byte is acted as a command or a data. If the D/C# bit is set to logic "0", it defines the following data byte as a command. If the D/C# bit is set to logic "1", it defines the following data byte as a data which will be stored at the GDDRAM. The GDDRAM column address pointer will be increased by one automatically after each data write.
- 6) Acknowledge bit will be generated after receiving each control byte or data byte.
- 7) The write mode will be finished when a stop condition is applied. The stop condition is also defined in Figure 7-8. The stop condition is established by pulling the "SDA in" from LOW to HIGH while the "SCL" stays HIGH.

Solomon Systech May 2014 P 18/61 Rev 1.1 SSD1306B

Figure 7-8: Definition of the Start and Stop Condition

Figure 7-9: Definition of the acknowledgement condition

Please be noted that the transmission of the data bit has some limitations.

- 1. The data bit, which is transmitted during each SCL pulse, must keep at a stable state within the "HIGH" period of the clock pulse. Please refer to the Figure 7-10 for graphical representations. Except in start or stop conditions, the data line can be switched only when the SCL is LOW.
- 2. Both the data line (SDA) and the clock line (SCL) should be pulled up by external resistors.

SDA
SCL
Data line is Stable of data

Figure 7-10: Definition of the data transfer condition

7.2 Command Decoder

This module determines whether the input data is interpreted as data or command. Data is interpreted based upon the input of the D/C# pin.

If D/C# pin is HIGH, D[7:0] is interpreted as display data written to Graphic Display Data RAM (GDDRAM). If it is LOW, the input at D[7:0] is interpreted as a command. Then data input will be decoded and written to the corresponding command register.

7.3 Oscillator Circuit and Display Time Generator

Figure 7-11: Oscillator Circuit and Display Time Generator

This module is an on-chip LOW power RC oscillator circuitry. The operation clock (CLK) can be generated either from internal oscillator or external source CL pin. This selection is done by CLS pin. If CLS pin is pulled HIGH, internal oscillator is chosen and CL should be connected to V_{SS} . Pulling CLS pin LOW disables internal oscillator and external clock must be connected to CL pins for proper operation. When the internal oscillator is selected, its output frequency Fosc can be changed by command D5h A[7:4].

The display clock (DCLK) for the Display Timing Generator is derived from CLK. The division factor "D" can be programmed from 1 to 16 by command D5h

$$DCLK = F_{OSC} / D$$

The frame frequency of display is determined by the following formula.

$$F_{FRM} = \frac{F_{osc}}{D \times K \times No. \text{ of Mux}}$$

where

- D stands for clock divide ratio. It is set by command D5h A[3:0]. The divide ratio has the range from 1 to 16.
- K is the number of display clocks per row. The value is derived by

K = Phase 1 period + Phase 2 period + BANK0 pulse width

= 2 + 2 + 50 = 54 at power on reset

(Please refer to Section 7.6 "Segment Drivers / Common Drivers" for the details of the "Phase")

- Number of multiplex ratio is set by command A8h. The power on reset value is 63 (i.e. 64MUX).
- F_{OSC} is the oscillator frequency. It can be changed by command D5h A[7:4]. The higher the register setting results in higher frequency.

Solomon Systech May 2014 P 20/61 Rev 1.1 SSD1306B

7.4 FR synchronization

FR synchronization signal can be used to prevent tearing effect.

The starting time to write a new image to OLED driver is depended on the MCU writing speed. If MCU can finish writing a frame image within one frame period, it is classified as fast write MCU. For MCU needs longer writing time to complete (more than one frame but within two frames), it is a slow write one.

For fast write MCU: MCU should start to write new frame of ram data just after rising edge of FR pulse and should be finished well before the rising edge of the next FR pulse.

For slow write MCU: MCU should start to write new frame ram data after the falling edge of the 1st FR pulse and must be finished before the rising edge of the 3rd FR pulse.

7.5 Reset Circuit

When RES# input is LOW, the chip is initialized with the following status:

- 1. Display is OFF
- 2. 128 x 64 Display Mode
- 3. Normal segment and display data column address and row address mapping (SEG0 mapped to address 00h and COM0 mapped to address 00h)
- 4. Shift register data clear in serial interface
- 5. Display start line is set at display RAM address 0
- 6. Column address counter is set at 0
- 7. Normal scan direction of the COM outputs
- 8. Contrast control register is set at 7Fh
- 9. Normal display mode (Equivalent to A4h command)

7.6 Segment Drivers / Common Drivers

Segment drivers deliver 128 current sources to drive the OLED panel. The driving current can be adjusted by altering the registers of the contrast setting command (81h). Common drivers generate voltage-scanning pulses.

The segment driving waveform is divided into three phases:

- 1. In phase 1, the OLED pixel charges of previous image are discharged in order to prepare for next image content display.
- 2. In phase 2, the OLED pixel is driven to the targeted voltage. The pixel is driven to attain the corresponding voltage level from V_{SS} . The period of phase 2 can be programmed in length from 1 to 15 DCLKs. If the capacitance value of the pixel of OLED panel is larger, a longer period is required to charge up the capacitor to reach the desired voltage.
- 3. In phase 3, the OLED driver switches to use current source to drive the OLED pixels and this is the current drive stage.

Figure 7-12: Segment Output Waveform in three phases

After finishing phase 3, the driver IC will go back to phase 1 to display the next row image data. This three-step cycle is run continuously to refresh image display on OLED panel.

In phase 3, if the length of current drive pulse width is set to 50, after finishing 50 DCLKs in current drive phase, the driver IC will go back to phase 1 for next row display.

Solomon Systech May 2014 P 22/61 Rev 1.1 SSD1306B

7.7 Graphic Display Data RAM (GDDRAM)

Column re-mapping

The GDDRAM is a bit mapped static RAM holding the bit pattern to be displayed. The size of the RAM is 128 x 64 bits and the RAM is divided into eight pages, from PAGE0 to PAGE7, which are used for monochrome 128x64 dot matrix display, as shown in Figure 7-13.

Row re-mapping PAGE0 (COM0-COM7) PAGE0 (COM 63-COM56) Page 0 PAGE1 (COM8-COM15) Page 1 PAGE1 (COM 55-COM48) PAGE2 (COM16-COM23) PAGE2 (COM47-COM40) Page 2 PAGE3 (COM24-COM31) PAGE3 (COM39-COM32) Page 3 PAGE4 (COM32-COM39) PAGE4 (COM31-COM24) Page 4 PAGE5 (COM40-COM47) PAGE5 (COM23-COM16) Page 5 PAGE6 (COM48-COM55) PAGE6 (COM15-COM8) Page 6 PAGE7 (COM56-COM63) PAGE7 (COM 7-COM0) Page 7

Figure 7-13: GDDRAM pages structure of SSD1306B

When one data byte is written into GDDRAM, all the rows image data of the same page of the current column are filled (i.e. the whole column (8 bits) pointed by the column address pointer is filled.). Data bit D0 is written into the top row, while data bit D7 is written into bottom row as shown in Figure 7-14.

Figure 7-14: Enlargement of GDDRAM (No row re-mapping and column-remapping)

For mechanical flexibility, re-mapping on both Segment and Common outputs can be selected by software as shown in Figure 7-13.

For vertical shifting of the display, an internal register storing the display start line can be set to control the portion of the RAM data to be mapped to the display (command D3h).

7.8 SEG/COM Driving block

This block is used to derive the incoming power sources into the different levels of internal use voltage and current.

• V_{CC} is the most positive voltage supply.

 $I_{SEG} = 240uA$ at maximum contrast 255.

• V_{COMH} is the Common deselected level. It is internally regulated.

the scale factor is 8 by default.

- V_{LSS} is the ground path of the analog and panel current.
- I_{REF} is a reference current source for segment current drivers I_{SEG} . The relationship between reference current and segment current of a color is:

```
I_{SEG} = (Contrast) / 256 x I_{REF} x scale factor in which the contrast (1~255) is set by Set Contrast command 81h; and
```

When external I_{REF} is used, the magnitude of I_{REF} is controlled by the value of resistor, which is connected between I_{REF} pin and V_{SS} as shown in Figure 7-15. It is recommended to set I_{REF} to $30\pm2uA$ so as to achieve

Figure 7-15: I_{REF} Current Setting by Resistor Value

Since the voltage at I_{REF} pin is VCC – 3V, the value of resistor R1 can be found as below:

```
For I_{REF} (max)= 30uA, V_{CC} =12V:

R1 = (Voltage at I_{REF} – V_{SS}) / I_{REF}

= (12 – 3) / 30uA

= 300K\Omega
```

When internal I_{REF} is used, the I_{REF} pin should be kept NC and the I_{SEG} can be set as either 150uA or 240uA (max) by software command ADh setting. The selection of external or internal I_{REF} is also controlled by command ADh. For details, please refer to Table 8-1.

Solomon Systech May 2014 | P 24/61 | Rev 1.1 | SSD1306B

7.9 Power ON and OFF sequence

The following figures illustrate the recommended power ON and power OFF sequence of SSD1306B:

7.9.1 Power ON and OFF sequence with External V_{CC}

Power ON sequence:

- 1. Power ON V_{DD}
- 2. After V_{DD} become stable, set RES# pin LOW (logic low) for at least 3us (t₁) ⁽⁴⁾ and then HIGH (logic high).
- 3. After set RES# pin LOW (logic low), wait for at least 3us (t₂). Then Power ON V_{CC.}⁽¹⁾
- 4. After V_{CC} become stable, send command AFh for display ON. SEG/COM will be ON after 100ms (t_{AF}).

Figure 7-16: The Power ON sequence

Power OFF sequence:

- 1. Send command AEh for display OFF.
- 2. Power OFF $V_{CC}^{(1),(2),(3)}$
- 3. Power OFF V_{DD} after t_{OFF}. (5) (Typical t_{OFF}=100ms)

Figure 7-17: The Power OFF sequence

Note:

- $^{(1)}$ Since an ESD protection circuit is connected between V_{DD} and V_{CC} , V_{CC} becomes lower than V_{DD} whenever V_{DD} is ON and V_{CC} is OFF as shown in the dotted line of V_{CC} in Figure 7-16 and Figure 7-17.
- (2) V_{CC} should be kept float (i.e. disable) when it is OFF.
- $^{(3)}$ Power Pins (V_{CC}) can never be pulled to ground under any circumstance.
- $^{(4)}$ The register values are reset after t_1 .
- (5) V_{DD} should not be Power OFF before V_{CC} Power OFF.

7.9.2 Power ON and OFF sequence with Charge Pump Application

Power ON sequence:

1. Power ON V_{DD}

 V_{DD}

OFF

 V_{BAT} **OFF**

RES#

GND

SEG/COM

- 2. Wait for t_{ON} . Power ON V_{BAT} . (where Minimum $t_{ON} = 0$ ms)
- 3. After V_{BAT} become stable, set RES# pin LOW (logic low) for at least 3us $(t_1)^{(3)}$ and then HIGH (logic high).
- 4. After set RES# pin LOW (logic low), wait for at least 3us (t2). Then input commands with below sequence:
 - a. 8Dh 14h for enabling charge pump at 7.5V mode
 - for display ON b. AFh
- 5. SEG/COM will be ON after 100ms (t_{AF}).

Send 8Dh 14h command for enabling charge pump ON VDD ON VBAT RES# Send AFh command for display ON

 t_{AF}

Figure 7-18: The Power ON sequence with Charge Pump Application

Power OFF sequence:

- 1. Send command AEh for display OFF
- 2. Send command 8Dh 10h to disable charge pump
- 3. Power OFF V_{BAT} after t_{OFF} . (Typical $t_{OFF} = 100 \text{ms}$)
- 4. Power OFF V_{DD} after t_{OFF2} . (where Minimum $t_{OFF2} = 0 \text{ms}^{(4)}$, Typical $t_{OFF2} = 5 \text{ms}$)

Figure 7-19: The Power OFF sequence with Charge Pump Application

Note:

- $^{(1)}V_{BAT}$ should be kept float (i.e. disable) when it is OFF.
- (2) Power Pins (V_{BAT}) can never be pulled to ground under any circumstance.
- $^{(3)}$ The register values are reset after t_1 .
- (4) V_{DD} should not be Power OFF before V_{BAT} Power OFF

May 2014 P 26/61 SSD1306B Solomon Systech Rev 1.1

7.10 Charge Pump Regulator

The internal regulator circuit in SSD1306B accompanying only 2 external capacitors can generate a maximum of 9.0V voltage supply, V_{CC} and a maximum output loading of 12mA from a low voltage supply input, V_{BAT} . In SSD1306B, there are 4 charge pump output V_{CC} setting, 6V, 7.5V, 8.5V and 9V, which can be selected by software command 8Dh setting. The V_{CC} is the voltage supply to the OLED driver block. This regulator can be turned ON/OFF by software command 8Dh setting. For details, please refer to Table 8-1.

8 COMMAND TABLE

Table 8-1: Command Table

(D/C#=0, R/W#(WR#) = 0, E(RD#=1) unless specific setting is stated)

	ndamer									(is stated)	
D /C#	Hex	D 7	D6	D 5	D4	D3	D2	D1	D 0	Command	Description
_	81 A[7:0]	1 A ₇	0 A ₆	0 A ₅	0 A ₄	0 A ₃	0 A ₂	0 A ₁	1 A ₀	Set Contrast Control	Double byte command to select one of the contrast steps. Contrast increases as the value increases. (RESET = 7Fh) A[7:0] valid range: 01h to FFh
	A4/A5	1	0	1	0	0	1	0		Entire Display ON	A4h, X ₀ =0b: Resume to RAM content display (RESET) Output follows RAM content A5h, X ₀ =1b: Entire display ON Output ignores RAM content
0	A6/A7	1	0	1	0	0			X_0	Set Normal/Inverse Display	A6h, X[0]=0b: Normal display (RESET) 0 in RAM: OFF in display panel 1 in RAM: ON in display panel A7h, X[0]=1b: Inverse display 0 in RAM: ON in display panel 1 in RAM: OFF in display panel
0	AD	1	0	1	0	1	1	0	1	Internal IREF Setting	Select external or internal I _{REF} :
0	A[5:4]	0	0	A ₅	A ₄	0	0	0	0		A[4] = '0': Select external I _{REF} (RESET) A[4] = '1': Enable internal I _{REF} during display ON Internal I _{REF} value setting: A[5] = '0': Internal I _{REF} setting: 19uA, output a maximum I _{SEG} =150uA (RESET) A[5] = '1': Internal I _{REF} setting: 30uA, output a maximum I _{SEG} =240uA Note (1) Refer to section 7.8 for details.
0	AE/AF	1	0	1	0	1	1	1	X_0	Set Display ON/OFF	AEh, X[0]=0b:Display OFF (sleep mode) (RESET) AFh X[0]=1b:Display ON in normal mode
0	E3	1	1	1	0	0	0	1	1	NOP	Command for no operation

Discription Discription Discription	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
0	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
0 C[2:0] * * * * * * * * D2 D1 D0 D0 E[7:0] * F6 F5 F4 F3 F2 F1 F0 F0 F5 F4 F3 F2 F1 F0 F0 F5 F4 F5 F4 F3 F2 F1 F0 F0 F5 F4 F5 F4 F3 F2 F1 F0 F0 F5 F4 F5 F4 F3 F2 F1 F0 F0 F5 F4 F5 F4 F3 F2 F1 F0 F0 F5 F4 F5 F4 F5 F4 F5 F4 F5 F4 F5 F5 F5 F5 F4 F5	
0 D[2:0] * * * * * * * D2 D1 D0 D0 E[7:0] * F6 F5 F4 F3 F2 F1 F0 F0 F17:0] * F6 F5 F4 F3 F2 F1 F0 F0 F17:0] * F6 F5 F4 F3 F2 F1 F0 F0 F17:0] * F6 F5 F4 F3 F2 F1 F0 F0 F17:0] * F6 F5 F4 F3 F2 F1 F0 F0 F17:0] * F6 F5 F4 F3 F2 F1 F0 F0 F17:0] * F6 F5 F4 F3 F2 F1 F0 F0 F17:0] * F6 F5 F4 F3 F2 F1 F0 F0 F17:0] * F6 F5 F4 F3 F2 F1 F0 F0 F17:0] * F6 F5 F4 F3 F2 F1 F0 F0 F17:0] * F6 F5 F4 F3 F2 F1 F1 F0 F0 F17:0] * F6 F5 F4 F3 F2 F1 F1 F0 F0 F17:0] * F6 F5 F4 F3 F2 F1 F1 F0 F17:0] * F6 F5 F4 F3 F2 F1 F1 F0 F17:0] * F6 F5 F4 F3 F2 F1 F1 F0 F17:0] * F6 F5 F4 F3 F2 F1	
December 2017 February Febr	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
O00b - PAGE0 011b - PAGE3 110b - P.	
D10b - PAGE2 101b - PAGE5	GE6
C[2:0] : Set time interval between each scroll sterms of frame frequency 000b - 6 frames	GE7
terms of frame frequency 000b - 6 frames 100b - 3 frames 001b - 32 frames 101b - 4 frames 010b - 64 frames 110b - 5 frame 011b - 128 frames 111b - 2 frame 011b - 128 frames 111b - 2 frame 000b - PAGE0 011b - PAGE3 110b - PAGE1 001b - PAGE1 100b - PAGE4 111b - PAGE3 010b - PAGE2 101b - PAGE5 E[6:0] : Define start column address (RESET = F[6:0] : Define end colum	
terms of frame frequency 000b - 6 frames 100b - 3 frames 001b - 32 frames 101b - 4 frames 010b - 64 frames 110b - 5 frame 011b - 128 frames 111b - 2 frame 011b - 128 frames 111b - 2 frame 000b - PAGE0 011b - PAGE3 110b - PAGE1 001b - PAGE1 100b - PAGE4 111b - PAGE3 010b - PAGE2 101b - PAGE5 E[6:0] : Define start column address (RESET = F[6:0] : Define end colum	
Double	ep in
Double	
D[2:0] : Define end page address	
D[2:0] : Define end page address	
D[2:0] : Define end page address 000b - PAGE0 011b - PAGE3 110b - PAGE1 100b - PAGE4 111b - PAGE5 110b - PAGE5 010b - PAGE2 101b - PAGE5 E[6:0] : Define start column address (RESET = F[6:0] : Define end column address (
000b - PAGE0 011b - PAGE3 110b - PAGE1 100b - PAGE4 111b - PAGE1 100b - PAGE4 111b - PAGE5 010b - PAGE2 101b - PAGE5 E[6:0] : Define start column address (RESET = F[6:0] : Define end column address (RESET = F[6:0] : Def	
000b - PAGE0 011b - PAGE3 110b - PAGE1 100b - PAGE4 111b - PAGE1 100b - PAGE4 111b - PAGE1 101b - PAGE5	
000b - PAGE0 011b - PAGE3 110b - PAGE1 100b - PAGE4 111b - PAGE1 100b - PAGE4 111b - PAGE1 101b - PAGE5	
E[6:0]: Define start column address (RESET =	GE6
E[6:0] : Define start column address (RESET =	GE7
F[6:0] : Define end column address (RESET =	
F[6:0] : Define end column address (RESET =	
Notes:	7Fh)
(1) The value of D[2:0] must be larger than or e	ual to
B[2:0]	
(2) The value of F[6:0] must be larger than or e	ual to
E[6:0]	
B[2:0] (2) The value of F[6:0] must be larger than or e E[6:0]	

 Solomon Systech
 May 2014
 P 28/61
 Rev 1.1
 SSD1306B

2. Scr	olling	Com	mand	l Tab	le						
						D3	D2	D1	D0	Command	Description
D/C# 0 0 0 0 0 0		D7 0 0 * * * *				D3 1 0 * * * E3	D2 0 0 B2 C2 D2 E2	D1 X ₁ 0 B ₁ C ₁ D ₁ E ₁	D0 X ₀ 0 B ₀ C ₀ D ₀ E ₀	Command Continuous Vertical and Horizontal Scroll Setup	29h, X ₁ X ₀ =01b : Vertical and Right Horizontal Scroll 2Ah, X ₁ X ₀ =10b : Vertical and Left Horizontal Scroll (Horizontal scroll by 1 column) A[7:0] : Dummy byte B[2:0] : Define start page address 000b - PAGE0 011b - PAGE3 110b - PAGE6 001b - PAGE1 100b - PAGE4 111b - PAGE7 010b - PAGE2 101b - PAGE5 C[2:0] : Set time interval between each scroll step in terms of frame frequency 000b - 6 frames 100b - 3 frames 001b - 32 frames 101b - 4 frames 010b - 64 frames 110b - 5 frame 011b - 128 frames 111b - 2 frame D[2:0] : Define end page address 000b - PAGE0 011b - PAGE3 110b - PAGE6 001b - PAGE1 100b - PAGE4 111b - PAGE7 010b - PAGE2 101b - PAGE5 The value of D[2:0] must be larger or equal to B[2:0] E[5:0] : Vertical scrolling offset e.g. E[5:0] = 01h refer to offset = 1 row E[5:0] = 3Fh refer to offset = 63 rows
										ente	(1) No continuous vertical scrolling is available.
0	2E	0	0	1	0	1	G		0	Deactivate scroll	Stop scrolling that is configured by command 26h/27h/29h/2Ah. Note (1) After sending 2Eh command to deactivate the scrolling action, the ram data needs to be rewritten.
0	2F	0	0	1	0	1	1	1	1	Activate scroll	Start scrolling that is configured by the scrolling setup

 SSD1306B
 Rev 1.1
 P 29/61
 May 2014
 Solomon Systech

2. Scr	olling (Comi	nand	Tab	le						
D/C#				_		D3	D2	D1	D0	Command	Description
D/C#	nex	<u>D/</u>	Do	DS	D4	DS	D2	DI .	D 0	Command	commands:26h/27h/29h/2Ah with the following valid sequences: Valid command sequence 1: 26h;2Fh. Valid command sequence 2: 27h;2Fh. Valid command sequence 3: 29h;2Fh. Valid command sequence 4: 2Ah;2Fh. For example, if "26h; 2Ah; 2Fh." commands are issued, the setting in the last scrolling setup command, i.e. 2Ah in this case, will be executed. In other words, setting in the last scrolling setup command overwrites the setting in the previous scrolling setup commands.
0	A3 A[5:0] B[6:0]	1 * *	0 * B ₆	1 A ₅ B ₅	0 A ₄ B ₄	0 A ₃ B ₃	0 A ₂ B ₂	1 A ₁ B ₁	1 A ₀ B ₀	Set Vertical Scrol	II A[5:0]: Set No. of rows in top fixed area. The No. of rows in top fixed area is referenced to the top of the GDDRAM (i.e. row 0).[RESET = 0] B[6:0]: Set No. of rows in scroll area. This is the number of rows to be used for vertical scrolling. The scroll area starts in the first row below the top fixed area. [RESET = 64] Note (1) A[5:0]+B[6:0] <= MUX ratio (2) B[6:0] <= MUX ratio (3a) Vertical scrolling offset (E[5:0] in 29h/2Ah) < B[6:0] (3b) Set Display Start Line (X ₅ X ₄ X ₃ X ₂ X ₁ X ₀ of 40h~7Fh) < B[6:0] (4) The last row of the scroll area shifts to the first row of the scroll area. (5) For 64d MUX display A[5:0] = 0, B[6:0]=64: whole area scrolls A[5:0] + B[6:0] < 64: central area scrolls A[5:0] + B[6:0] = 64: bottom area scrolls
0 0 0 0	2C/2D A[7:0] B[2:0] C[7:0] D[2:0] E[7:0]	0 0 * * * * *	0 0 * * E ₆	1 0 * * E ₅	0 0 * * E ₄	1 0 * * E ₃	$\begin{array}{c c} 1 & 0 \\ B_2 & 0 \\ D_2 & E_2 \end{array}$	$\begin{array}{c c} 0 \\ 0 \\ B_1 \\ 0 \\ D_1 \\ E_1 \end{array}$	$\begin{array}{c c} X_0 \\ 0 \\ B_0 \\ 1 \\ D_0 \\ E_0 \end{array}$	Content Scroll Setup	2Ch, X[0]=0, Right Horizontal Scroll by one column 2Dh, X[0]=1, Left Horizontal Scroll by one column A[7:0]: Dummy byte (Set as 00h) B[2:0]: Define start page address

 Solomon Systech
 May 2014
 P 30/61
 Rev 1.1
 SSD1306B

2. Scr	rolling Command Table											
D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description	
0	F[7:0]	*	F ₆	F ₅	F ₄	F ₃	F ₂	F ₁	F ₀		000b – PAGE0 011b – PAGE3 110b – PAGE6 001b – PAGE1 100b – PAGE4 111b – PAGE7 010b – PAGE2 101b – PAGE5	
											C[7:0]: Dummy byte (Set as 01h)	
											D[2:0] : Define end page address 000b - PAGE0 011b - PAGE3 110b - PAGE6 001b - PAGE1 100b - PAGE4 111b - PAGE7 010b - PAGE2 101b - PAGE5 E[6:0] : Define start column address (RESET = 00h) F[6:0] : Define end column address (RESET = 7Fh) Note (1) The value of D[2:0] must be larger than or equal to B[2:0]	
											(2) The value of F[6:0] must be larger than E[6:0] (3) A delay time of 2 frame frequency must be set if sending the command of 2Ch / 2Dh consecutively	

										dial	40 Ltd.
3. Ad	dressin	g Sett	ting C	omma	and T	Table					
D/C #		D7			D4	D3	D2	D 1	D0	Command	Description
0	00~0F	0	0	0	0	X ₃	X ₂		X ₀	Set Lower Column Start Address for Page Addressing Mode	Set the lower nibble of the column start address register for Page Addressing Mode using X[3:0] as data bits. The initial display line register is reset to 0000b after RESET.
							5				Note (1) This command is only for page addressing mode
0	10~1F	0	0	0	1	X ₃	X ₂	X_1		Set Higher Column Start Address for Page Addressing Mode	Set the higher nibble of the column start address register for Page Addressing Mode using X[3:0] as data bits. The initial display line register is reset to 0000b after RESET.
											Note (1) This command is only for page addressing mode
0	20	0	0	1	0	0	0	0	0	Set Memory	A[1:0] = 00b, Horizontal Addressing Mode
0	A[1:0]	*	*	*	*	*	*	A ₁	A ₀	Addressing Mode	A[1:0] = 01b, Vertical Addressing Mode A[1:0] = 10b, Page Addressing Mode (RESET) A[1:0] = 11b, Invalid
0	21	0	0	1	0	0	0	0	1	Set Column Address	
0	A[6:0]	*	A_6	A_5	A_4	A_3	A_2	A_1	A_0		A[6:0] : Column start address, range : 0-127d,
0	B[6:0]	*	B_6	\mathbf{B}_{5}	\mathbf{B}_4	\mathbf{B}_3	\mathbf{B}_2	B_1	\mathbf{B}_0		(RESET=0d)

 SSD1306B
 Rev 1.1
 P 31/61
 May 2014
 Solomon Systech

3. Ad	3. Addressing Setting Command Table												
D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description		
											B[6:0]: Column end address, range : 0-127d, (RESET =127d) Note (1) This command is only for horizontal or vertical addressing mode.		
0	22	0	0	1	0	0	0	1	0	Set Page Address	Setup page start and end address		
0	A[2:0]	*	*	*	*	*	A_2	A_1	A_0		A[2:0]: Page start Address, range: 0-7d,		
	B[2:0]	*	*	*	*	*	\mathbf{B}_2	\mathbf{B}_1	\mathbf{B}_0		(RESET = 0d)		
											B[2:0]: Page end Address, range: 0-7d, (RESET = 7d) Note (1) This command is only for horizontal or vertical addressing mode.		
0	B0~B7	1	0	1	1	0	X ₂	X ₁		Set Page Start Address for Page Addressing Mode	Set GDDRAM Page Start Address (PAGE0~PAGE7) for Page Addressing Mode using X[2:0]. Note (1) This command is only for page addressing mode.		

											Note (1) This command is only for page addressing mode.
								,0	nsi	dentia dentia	le Description
						resolu	ıtion d	& lay	out rel	lated) Command Tab	le
D/C #	Hex 40~7F	D7 0	D6 1	D5 X ₅	D4 X ₄	D3 X ₃	D2 X ₂	D1 X ₁		Set Display Start Line	Description Set display RAM display start line register from 0-63 using X ₅ X ₃ X ₂ X ₁ X ₀ . Display start line register is reset to 000000b during RESET.
0	A0/A1	1	0	1	0	0	0	0	X_0		A0h, X[0]=0b: column address 0 is mapped to SEG0 (RESET) A1h, X[0]=1b: column address 127 is mapped to SEG0
	A8	1	0	1	0	1	0	0	0	Set Multiplex Ratio	Set MUX ratio to N+1 MUX
0	A[5:0]	*	*	\mathbf{A}_5	\mathbf{A}_4	A_3	A_2	A_1	A_0		N=A[5:0]: from 16MUX to 64MUX, RESET= 111111b (i.e. 63d, 64MUX) A[5:0] from 0 to 14 are invalid entry.
0	C0/C8	1	1	0	0	X ₃	0	0	0	Scan Direction	C0h, X[3]=0b: normal mode (RESET) Scan from COM0 to COM[N-1] C8h, X[3]=1b: remapped mode. Scan from COM[N-1] to COM0 Where N is the Multiplex ratio.

 Solomon Systech
 May 2014
 P 32/61
 Rev 1.1
 SSD1306B

4. Ha	Hardware Configuration (Panel resolution & layout related) Command Table										
D/C #	Hex	D7	D6	D5	D4	D3	D2	D1	D 0	Command	Description
0	D3	1	1	0	1	0	0	1	1	Set Display Offset	Set vertical shift by COM from 0d~63d
0	A[5:0]	*	*	A ₅	A_4	A ₃	A_2	A_1	A_0		The value is reset to 00h after RESET.
0	DA	1	1	0	1	1	0	1	0	Set COM Pins	A[4]=0b, Sequential COM pin configuration
0	A[5:4]	0	0	A ₅	A ₄	0	0	1		Hardware Configuration	A[4]=1b(RESET), Alternative COM pin configuration
											A[5]=0b(RESET), Disable COM Left/Right remap A[5]=1b, Enable COM Left/Right remap

5. Ti	Timing & Driving Scheme Setting Command Table										
D/C	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0	D5	1	1	0	1	0	1	0	1	Set Display Clock	A[3:0]: Define the divide ratio (D) of the display
0	A[7:0]	A ₇	A_6	A_5	A_4	A_3	A_2	A_1	A_0	Divide	clocks (DCLK):
										Ratio/Oscillator	Divide ratio= A[3:0] + 1, RESET is 0000b
										Frequency	(divide ratio = 1)
											A[7:4] : Set the Oscillator Frequency, F _{OSC} .
											Oscillator Frequency increases with the
											value of A[7:4] and vice versa. RESET
											is 1000b
											Range:0000b~1111b. Frequency increases
											as setting value increases.
0	D9	1	1	0	1	1	0	0	1	Sat Pro charge Period	IA[3:0]: Phase 1 period of up to 15 DCLK clocks 0
U	Da	1	1	U	1	1	0	0	1	Set Fie-charge Feriod	is invalid entry (RESET=2h)
0	A[7:0]	A ₇	A_6	A_5	A_4	A_3	A_2	A_1	A_0		A[7:4]: Phase 2 period of up to 15 DCLK clocks 0
											is invalid entry (RESET=2h)
											is invalid citaly (RESET=2ii)
0	DB	1	1	0	1	1	0	1	1	Set V _{COMH} Deselect	A[5:4] Hex V COMH deselect level
0	A[5:4]	0	0	A_5	A_4	0	0	0	0	Level	code
	11[3.1]			113	1 -4						00b 00h ~ 0.65 x V _{CC}
									1	127	01b 10h $\sim 0.71 \text{ x V}_{CC}$
											10b 20h ~ 0.77 x V _{CC} (RESET)
										191	11b 30h ~ 0.83 x V _{CC}

												110 3011	~ 0.83 X V _{CC}		
							359	30							
6. Ad	vance (Grap	hic C	Comn	nand '	Table									
D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description		_	•	
0	23	0	0	1	0	0	0	1	1	Set Fade	A[5:4] = 00b	Disable Fade	Out / Blinking Mode	[RESET]	

 SSD1306B
 Rev 1.1
 P 33/61
 May 2014
 Solomon Systech

6. Ad	vance (omm	and '	Table					
D /C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
	A[6:0]		*	A5	A4	A3	A2	Al	A0	Out and Blinking	A[5:4] = 10b Enable Fade Out mode. Once Fade Mode is enabled, contrast decrease gradually to all pixels OFF. Output follows RAM content when Fade mode is disabled. A[5:4] = 11b Enable Blinking mode. Once Blinking Mode is enabled, contrast decrease gradually to all pixels OFF and than contrast increase gradually to normal display. This process loop continuously until the Blinking mode is disabled. A[3:0] : Set time interval for each fade step A[3:0] Time interval for each fade step Note 0000b 8 Frames 0001b 16 Frames 0010b 24 Frames : 1111b 128 Frames
											Refer to section 9.3.1 for details.
0	D6 A[0]	1 0	1 0	0 0	1 0	0 0	1 0	1 0	0 A0	Set Zoom In	A[0] = 0b Disable Zoom in Mode[RESET] A[0] = 1b Enable Zoom in Mode Note (1) The panel must be in alternative COM pin configuration
											(command DAh A[4] =1) (2) Refer to section 9.3.2 for details.

7. Cha	Charge Pump Command Table														
D/C #	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Desc	ription			
0	8D A[7:0]	1 A ₇	0	0	0	1 0	1 A ₂	0						al charge pum harge pump	
	A[7.0]	Α,			1	U	Λ_2								luring display on
								1.0				A[7]	A[0]	Hex code	Charge Pump Mode
								C.C.				0b	0b	14h	7.5V (RESET)
												0b	1b	15h	6.0V
												1b	0b	94h	8.5V
												1b	1b	95h	9.0V
											comr 8Dh 14h /	ne Charg nand se ; Charge	quence: e Pump 4h / 95h		abled by the following harge Pump

Note
(1) "*" stands for "Don't care".

May 2014 P 34/61 Rev 1.1 **SSD1306B Solomon Systech**

Table 8-2: Read Command Table

Bit Pattern	Command	Description
$D_7D_6D_5D_4D_3D_2D_1D_0$	Status Register Read	D[7]: Reserved
		D[6]: "1" for display OFF / "0" for display ON
		D[5] Reserved
		D[4] : Reserved
		D[3] : Reserved
		D[2] : Reserved
		D[1]: Reserved
		D[0] : Reserved

Note

8.1 Data Read / Write

To read data from the GDDRAM, select HIGH for both the R/W# (WR#) pin and the D/C# pin for 6800-series parallel mode and select LOW for the E (RD#) pin and HIGH for the D/C# pin for 8080-series parallel mode. No data read is provided in serial mode operation.

In normal data read mode the GDDRAM column address pointer will be increased automatically by one after each data read.

Also, a dummy read is required before the first data read.

To write data to the GDDRAM, select LOW for the R/W# (WR#) pin and HIGH for the D/C# pin for both 6800-series parallel mode and 8080-series parallel mode. The serial interface mode is always in write mode. The GDDRAM column address pointer will be increased automatically by one after each data write.

Table 8-3: Address increment table (Automatic)

D/C#	R/W# (WR#)	Comment	Address Increment
0	0	Write Command	No
0	1	Read Status	No
1	0	Write Data	Yes
1	1	Read Data	Yes

⁽¹⁾ Patterns other than those given in the Command Table are prohibited to enter the chip as a command; as unexpected results can occur

9 COMMAND DESCRIPTIONS

9.1 Fundamental Command

9.1.1 Set Lower Column Start Address for Page Addressing Mode (00h~0Fh)

This command specifies the lower nibble of the 8-bit column start address for the display data RAM under Page Addressing Mode. The column address will be incremented by each data access. Please refer to Section Table 8-1 and Section 9.1.3 for details.

9.1.2 Set Higher Column Start Address for Page Addressing Mode (10h~1Fh)

This command specifies the higher nibble of the 8-bit column start address for the display data RAM under Page Addressing Mode. The column address will be incremented by each data access. Please refer to Section Table 8-1 and Section 9.1.3 for details.

9.1.3 Set Memory Addressing Mode (20h)

There are 3 different memory addressing mode in SSD1306B: page addressing mode, horizontal addressing mode and vertical addressing mode. This command sets the way of memory addressing into one of the above three modes. In there, "COL" means the graphic display data RAM column.

Page addressing mode (A[1:0]=10xb)

In page addressing mode, after the display RAM is read/written, the column address pointer is increased automatically by 1. If the column address pointer reaches column end address, the column address pointer is reset to column start address and page address pointer is not changed. Users have to set the new page and column addresses in order to access the next page RAM content. The sequence of movement of the PAGE and column address point for page addressing mode is shown in Figure 9-1.

 COL0
 COL 1

 COL 126
 COL 127

 PAGE0
 →
 →

</

Figure 9-1: Address Pointer Movement of Page addressing mode

In normal display data RAM read or write and page addressing mode, the following steps are required to define the starting RAM access pointer location:

- Set the page start address of the target display location by command B0h to B7h.
- Set the lower start column address of pointer by command 00h~0Fh.
- Set the upper start column address of pointer by command 10h~1Fh.

For example, if the page address is set to B2h, lower column address is 03h and upper column address is 10h, then that means the starting column is SEG3 of PAGE2. The RAM access pointer is located as shown in Figure 9-2. The input data byte will be written into RAM position of column 3.

Figure 9-2 : Example of GDDRAM access pointer setting in Page Addressing Mode (No row and column-remapping)
SEG0 SEG3 (Starting column) SEG127

Solomon Systech May 2014 | P 36/61 | Rev 1.1 | SSD1306B

Horizontal addressing mode (A[1:0]=00b)

In horizontal addressing mode, after the display RAM is read/written, the column address pointer is increased automatically by 1. If the column address pointer reaches column end address, the column address pointer is reset to column start address and page address pointer is increased by 1. The sequence of movement of the page and column address point for horizontal addressing mode is shown in Figure 9-3. When both column and page address pointers reach the end address, the pointers are reset to column start address and page start address (Dotted line in Figure 9-3.)

Figure 9-3: Address Pointer Movement of Horizontal addressing mode

	COL0	COL 1		COL 126	COL 127
PAGE0					
PAGE1	+				1
:	+ :	.:	:	·	 :
PAGE6	+	-			†
PAGE7	+		_		,

Vertical addressing mode: (A[1:0]=01b)

In vertical addressing mode, after the display RAM is read/written, the page address pointer is increased automatically by 1. If the page address pointer reaches the page end address, the page address pointer is reset to page start address and column address pointer is increased by 1. The sequence of movement of the page and column address point for vertical addressing mode is shown in Figure 9-4. When both column and page address pointers reach the end address, the pointers are reset to column start address and page start address (Dotted line in Figure 9-4.)

Figure 9-4: Address Pointer Movement of Vertical addressing mode

	COL0	COL 1		COI	126	COI	L 127
PAGE0	-	1	<i>J</i>				
PAGE1	, ,						
:			: /				
PAGE6			/.				
PAGE7	¥		· · · · · ·				

In normal display data RAM read or write and horizontal / vertical addressing mode, the following steps are required to define the RAM access pointer location:

- Set the column start and end address of the target display location by command 21h.
- Set the page start and end address of the target display location by command 22h.

Example is shown in Figure 9-5.

9.1.4 Set Column Address (21h)

This triple byte command specifies column start address and end address of the display data RAM. This command also sets the column address pointer to column start address. This pointer is used to define the current read/write column address in graphic display data RAM. If horizontal address increment mode is enabled by command 20h, after finishing read/write one column data, it is incremented automatically to the next column address. Whenever the column address pointer finishes accessing the end column address, it is reset back to start column address and the row address is incremented to the next row.

9.1.5 Set Page Address (22h)

This triple byte command specifies page start address and end address of the display data RAM. This command also sets the page address pointer to page start address. This pointer is used to define the current read/write page address in

SSD1306B | Rev 1.1 | P 37/61 | May 2014 | **Solomon Systech**

graphic display data RAM. If vertical address increment mode is enabled by command 20h, after finishing read/write one page data, it is incremented automatically to the next page address. Whenever the page address pointer finishes accessing the end page address, it is reset back to start page address.

The figure below shows the way of column and page address pointer movement through the example: column start address is set to 2 and column end address is set to 125, page start address is set to 1 and page end address is set to 6; Horizontal address increment mode is enabled by command 20h. In this case, the graphic display data RAM column accessible range is from column 2 to column 125 and from page 1 to page 6 only. In addition, the column address pointer is set to 2 and page address pointer is set to 1. After finishing read/write one pixel of data, the column address is increased automatically by 1 to access the next RAM location for next read/write operation (solid line in Figure 9-5). Whenever the column address pointer finishes accessing the end column 125, it is reset back to column 2 and page address is automatically increased by 1 (solid line in Figure 9-5). While the end page 6 and end column 125 RAM location is accessed, the page address is reset back to 1 and the column address is reset back to 2 (dotted line in Figure 9-5). .

Col 0 Col 1 Col 2 Col 125 Col 126 PAGE0 PAGE1 PAGE6 PAGE7

Figure 9-5: Example of Column and Row Address Pointer Movement

9.1.6 Set Display Start Line (40h~7Fh)

This command sets the Display Start Line register to determine starting address of display RAM, by selecting a value from 0 to 63. With value equal to 0, RAM row 0 is mapped to COM0. With value equal to 1, RAM row 1 is mapped to COM0 and so on.

Refer to Table 9-1 for more illustrations.

Set Contrast Control for BANKO (81h)

nmand sets the Contrast Setting of the set as the contrast of This command sets the Contrast Setting of the display with a valid range from 01h to FFh. The segment output current increases as the contrast step value increases.

9.1.8 Set Segment Re-map (A0h/A1h)

This command changes the mapping between the display data column address and the segment driver. It allows flexibility in OLED module design. Please refer to Table 8-1.

This command only affects subsequent data input. Data already stored in GDDRAM will have no changes.

Entire Display ON (A4h/A5h) 9.1.9

A4h command enable display outputs according to the GDDRAM contents.

If A5h command is issued, then by using A4h command, the display will resume to the GDDRAM contents.

In other words, A4h command resumes the display from entire display "ON" stage.

A5h command forces the entire display to be "ON", regardless of the contents of the display data RAM.

9.1.10 Set Normal/Inverse Display (A6h/A7h)

This command sets the display to be either normal or inverse. In normal display a RAM data of 1 indicates an "ON" pixel while in inverse display a RAM data of 0 indicates an "ON" pixel.

Solomon Systech May 2014 P 38/61 Rev 1.1 SSD1306B

9.1.11 Set Multiplex Ratio (A8h)

This command switches the default 63 multiplex mode to any multiplex ratio, ranging from 16 to 63. The output pads COM0~COM63 will be switched to the corresponding COM signal.

9.1.12 External or internal I_{REF} Selection (ADh)

This command selects the external I_{REF} or internal I_{REF} and to define the value of internal I_{REF} setting. Refer to Section 7.8 for details.

9.1.13 Set Display ON/OFF (AEh/AFh)

These single byte commands are used to turn the OLED panel display ON or OFF.

When the display is ON, the selected circuits by Set Master Configuration command will be turned ON.

When the display is OFF, those circuits will be turned OFF and the segment and common output are in V_{SS} state and high impedance state, respectively. These commands set the display to one of the two states:

AEh : Display OFFAFh : Display ON

Figure 9-6: Transition between different modes

9.1.14 Set Page Start Address for Page Addressing Mode (B0h~B7h)

This command positions the page start address from 0 to 7 in GDDRAM under Page Addressing Mode. Please refer to Table 8-1 and Section 9.1.3 for details.

9.1.15 Set COM Output Scan Direction (C0h/C8h)

This command sets the scan direction of the COM output, allowing layout flexibility in the OLED module design. Additionally, the display will show once this command is issued. For example, if this command is sent during normal display then the graphic display will be vertically flipped immediately. Please refer to Table 9-3 for details.

9.1.16 Set Display Offset (D3h)

This is a double byte command. The second command specifies the mapping of the display start line to one of COM0~COM63 (assuming that COM0 is the display start line then the display start line register is equal to 0).

For example, to move the COM16 towards the COM0 direction by 16 lines the 6-bit data in the second byte should be given as 010000b. To move in the opposite direction by 16 lines the 6-bit data should be given by 64 - 16, so the second byte would be 100000b. The following two tables (Table 9-2) show the example of setting the command C0b/C8h and D3h.

Table 9-1: Example of Set Display Offset and Display Start Line with no Remap

						Out	put						1
	6	64	6	64	6	64		56	5	6	5	6	Set MUX ratio(A8h)
		rmal	Noi	rmal		mal		mal	Nor	mal		mal	COM Normal / Remapped (C0h / C8h)
Hardware		0		8		0		0		3)	Display offset (D3h)
pin name COM0	Row0	0 RAM0	Row8	0 RAM8	Row0	RAM8	Row0	0 RAM0	Row8	RAM8	Row0	RAM8	Display start line (40h - 7Fh)
COM1	Row1	RAM1	Row9	RAM9	Row1	RAM9	Row1	RAM1	Row9	RAM9	Row1	RAM9	
COM2	Row2	RAM2	Row10	RAM10	Row2	RAM10	Row2	RAM2	Row10	RAM10	Row2	RAM10	
СОМЗ	Row3	RAM3	Row11	RAM11	Row3	RAM11	Row3	RAM3	Row11	RAM11	Row3	RAM11	
COM4	Row4	RAM4	Row12	RAM12	Row4	RAM12	Row4	RAM4	Row12	RAM12	Row4	RAM12	
COM5	Row5	RAM5	Row13	RAM13	Row5	RAM13	Row5	RAM5	Row13	RAM13	Row5	RAM13	
COM6 COM7	Row6 Row7	RAM6 RAM7	Row14 Row15	RAM14 RAM15	Row6 Row7	RAM14 RAM15	Row6 Row7	RAM6 RAM7	Row14 Row15	RAM14 RAM15	Row6 Row7	RAM14 RAM15	
COM8	Row8	RAM8	Row16	RAM16	Row8	RAM16	Row8	RAM8	Row16	RAM16	Row8	RAM16	
COM9	Row9	RAM9	Row17	RAM17	Row9	RAM17	Row9	RAM9	Row17	RAM17	Row9	RAM17	
COM10	Row10	RAM10	Row18	RAM18	Row10	RAM18	Row10	RAM10	Row18	RAM18	Row10	RAM18	
COM11	Row11	RAM11	Row19	RAM19	Row11	RAM19	Row11	RAM11	Row19	RAM19	Row11	RAM19	
COM12	Row12	RAM12	Row20	RAM20	Row12	RAM20	Row12	RAM12	Row20	RAM20	Row12	RAM20	
COM13	Row13	RAM13	Row21	RAM21	Row13	RAM21	Row13	RAM13	Row21	RAM21	Row13	RAM21	
COM14 COM15	Row14 Row15	RAM14 RAM15	Row22 Row23	RAM22 RAM23	Row14 Row15	RAM22 RAM23	Row14 Row15	RAM14 RAM15	Row22 Row23	RAM22 RAM23	Row14 Row15	RAM22 RAM23	
COM15	Row16	RAM16	Row24	RAM24	Row16	RAM24	Row16	RAM16	Row23	RAM24	Row16	RAM24	
COM17	Row17	RAM17	Row25	RAM25	Row17	RAM25	Row17	RAM17	Row25	RAM25	Row17	RAM25	
COM18	Row18	RAM18	Row26	RAM26	Row18	RAM26	Row18	RAM18	Row26	RAM26	Row18	RAM26	
COM19	Row19	RAM19	Row27	RAM27	Row19	RAM27	Row19	RAM19	Row27	RAM27	Row19	RAM27	
COM20	Row20	RAM20	Row28	RAM28	Row20	RAM28	Row20	RAM20	Row28	RAM28	Row20	RAM28	
COM21	Row21	RAM21	Row29	RAM29	Row21	RAM29	Row21	RAM21	Row29	RAM29	Row21	RAM29	
COM22	Row22	RAM22	Row30	RAM30	Row22	RAM30	Row22	RAM22	Row30	RAM30	Row22	RAM30	
COM23 COM24	Row23 Row24	RAM23 RAM24	Row31 Row32	RAM31 RAM32	Row23 Row24	RAM31 RAM32	Row23 Row24	RAM23 RAM24	Row31 Row32	RAM31 RAM32	Row23 Row24	RAM31 RAM32	
COM25	Row25	RAM25	Row33	RAM33	Row25	RAM33	Row25	RAM25	Row32	RAM33	Row25	RAM33	
COM26	Row26	RAM26	Row34	RAM34	Row26	RAM34	Row26	RAM26	Row34	RAM34	Row26	RAM34	
COM27	Row27	RAM27	Row35	RAM35	Row27	RAM35	Row27	RAM27	Row35	RAM35	Row27	RAM35	
COM28	Row28	RAM28	Row36	RAM36	Row28	RAM36	Row28	RAM28	Row36	RAM36	Row28	RAM36	
COM29	Row29	RAM29	Row37	RAM37	Row29	RAM37	Row29	RAM29	Row37	RAM37	Row29	RAM37	
COM30	Row30	RAM30	Row38	RAM38	Row30	RAM38	Row30	RAM30	Row38	RAM38	Row30	RAM38	
COM31 COM32	Row31 Row32	RAM31 RAM32	Row39 Row40	RAM39 RAM40	Row31 Row32	RAM39 RAM40	Row31 Row32	RAM31 RAM32	Row39 Row40	RAM39 RAM40	Row31 Row32	RAM39 RAM40	
COM33	Row33	RAM33	Row41	RAM41	Row33	RAM41	Row33	RAM33	Row41	RAM41	Row33	RAM41	
COM34	Row34	RAM34	Row42	RAM42	Row34	RAM42	Row34	RAM34	Row42	RAM42	Row34	RAM42	
COM35	Row35	RAM35	Row43	RAM43	Row35	RAM43	Row35	RAM35	Row43	RAM43	Row35	RAM43	
COM36	Row36	RAM36	Row44	RAM44	Row36	RAM44	Row36	RAM36	Row44	RAM44	Row36	RAM44	
COM37	Row37	RAM37	Row45	RAM45	Row37	RAM45	Row37	RAM37	Row45	RAM45	Row37	RAM45	
COM38	Row38	RAM38	Row46	RAM46	Row38	RAM46	Row38	RAM38	Row46	RAM46	Row38	RAM46	
COM39 COM40	Row39 Row40	RAM39 RAM40	Row47 Row48	RAM47 RAM48	Row39 Row40	RAM47 RAM48	Row39 Row40	RAM39 RAM40	Row47 Row48	RAM47 RAM48	Row39 Row40	RAM47 RAM48	
COM41	Row40	RAM41	Row49	RAM49	Row41	RAM49	Row41	RAM41	Row49	RAM49	Row40	RAM49	
COM42	Row42	RAM42	Row50	RAM50	Row42	RAM50	Row42	RAM42	Row50	RAM50	Row42	RAM50	
COM43	Row43	RAM43	Row51	RAM51	Row43	RAM51	Row43	RAM43	Row51	RAM51	Row43	RAM51	
COM44	Row44	RAM44	Row52	RAM52	Row44	RAM52	Row44	RAM44	Row52	RAM52	Row44	RAM52	
COM45	Row45	RAM45	Row53	RAM53	Row45	RAM53	Row45	RAM45	Row53	RAM53	Row45	RAM53	
COM46	Row46	RAM46	Row54	RAM54	Row46	RAM54	Row46	RAM46	Row54	RAM54	Row46	RAM54	
COM47 COM48	Row47	RAM47 RAM48	Row55	RAM55 RAM56	Row47 Row48	RAM55 RAM56	Row47 Row48	RAM47 RAM48	Row55	RAM55	Row47 Row48	RAM55 RAM56	
COM49	Row48 Row49	RAM49	Row56 Row57	RAM57	Row49	RAM57	Row49	RAM49	-	-	Row49	RAM57	
COM50	Row50	RAM50	Row58	RAM58	Row50	RAM58	Row50	RAM50	_	_	Row50	RAM58	
COM51	Row51	RAM51	Row59	RAM59	Row51	RAM59	Row51	RAM51	-	-	Row51	RAM59	
COM52	Row52	RAM52	Row60	RAM60	Row52	RAM60	Row52	RAM52	-	-	Row52	RAM60	
COM53	Row53	RAM53	Row61	RAM61	Row53	RAM61	Row53	RAM53	-	-	Row53	RAM61	
COM54	Row54	RAM54	Row62	RAM62	Row54	RAM62	Row54	RAM54	-	-	Row54	RAM62	
COM55	Row55	RAM55	Row63	RAM63	Row55	RAM63	Row55	RAM55	- David	- DAMC	Row55	RAM63	
COM56 COM57	Row56 Row57	RAM56 RAM57	Row0 Row1	RAM0 RAM1	Row56 Row57	RAM0 RAM1	_	-	Row0 Row1	RAM0 RAM1	-	-	
COM58	Row58	RAM58	Row2	RAM2	Row58	RAM2		-	Row1	RAM2	_	-	
COM59	Row59	RAM59	Row3	RAM3	Row59	RAM3	-	-	Row3	RAM3	_	-	
COM60	Row60	RAM60	Row4	RAM4	Row60	RAM4	-	-	Row4	RAM4	-	-	
COM61	Row61	RAM61	Row5	RAM5	Row61	RAM5	-	-	Row5	RAM5	-	-	
COM62	Row62	RAM62	Row6	RAM6	Row62	RAM6	-	-	Row6	RAM6	-	-	
COM63	Row63	RAM63	Row7	RAM7	Row63	RAM7	-		Row7	RAM7	-		1
Display examples	(a)	(b)	(c)	(d)	(6	e)	(f)	
campics	l												J

Solomon Systech May 2014 P 40/61 Rev 1.1 SSD1306B

Table 9-2 :Example of Set Display Offset and Display Start Line with Remap

Remap	Sat MLIV ratio(A9h)	10		ıQ .		10		utput 48	0	64		64		64		
Bercharge	Set MUX ratio(A8h) COM Normal / Remapped (C0h / C8h)								R	64 emap						
COMMIT ROWER RAMES RAMES RAME RAMES RAME	Display offset (D3h)	8)	(8		0		0		8				Hardware
COMM	Display start line (40h - 7Fh)	16		-		0		•						-		
COMMS RAM61 RAM61 RAM62 RAM63 RAM64 RAM64 RAM62 RAM66 RAM6		-	-			-	-									
COMM																
COMM6 ROMS RAMS ROW2 RAM2 ROMS RAM2 ROMS RAM5 RAM5 ROMS RAM5 ROMS RAM5 ROMS RAM5 ROMS RAM5 RAM5 ROMS		-	-			-	-	RAM44	Row44	RAM4	Row60	RAM4	Row4	RAM60	Row60	COM3
COMMP ROMS RAMES ROW RAMI ROWS RAMES ROWS RAMES		-				-										
COMM		-	-			-	-									
COMB ROMS RAMS ROMS RAMS		-	-			-	_									
COMMIN		RAM63	Row47			RAM47	Row47									
COMPI																
COMID																
COMM3																
COMIS ROWIS RANMS ROWSE RANSE ROWS																
COMM6 Rowi45 RAMM5 Rowi65 RAMM5 Rowi66 RAMM5 Rowi68 RAMM																
COM17																
COMIS Row45 RAM5 RAM5 RAM5 RAM5 RAM52 RAM52 RAM52 RAM52 RAM52 RAM52 RAM54 RAM54 RAM54 RAM54 RAM52 RAM52 RAM52 RAM52 RAM54 RAM54 RAM54 RAM54 RAM52 RAM55 RAM55 RAM55 RAM55 RAM55 RAM55 RAM55 RAM55 RAM56 R																
COM20																
COM21 Row42 RAMM2 Row49 RAM49 Row49 RAM49 Row49 RAM49 Row40 RAM40 Row4																
COM22 Row41 RAM41 Row49 RAM49 RAM49 ROw41 RAM49 Row42 RAM25 Row32 RAM23 Row32 RAM33 Row24 RAM39 Row41 RAM49 Row40 RAM48 Row40 RAM48 Row32 RAM24 RAM24 RAM22 RAM32 RAM32 RAM32 RAM33 Row32 RAM38 Row36 RAM47 RAM34 RAM34 RAM34 RAM35 RAM35 RAM35 RAM36 RAM3																
COM23																
COM25 ROW36 RAM36 ROW46 RAM46 ROW37 RAM45 ROW30 RAM29 RAM29 RAM28 ROW30 RAM30 RAM36 ROW36 RAM3																
COM26																
COM27																
COM28 Row35 RAM35 ROw42 RAM43 Row35 RAM43 Row19 RAM19 Row27 RAM27 Row19 RAM27 Row19 RAM27 Row19 RAM38 ROw26 RAM26 ROw18 RAM38 RAW26 RAW26 RAW36 RAW38 RAW39 RAW3																
COMB0 Row33 RAM33 RAM41 RAM41 Row33 RAM41 Row37 RAM17 Row25 RAM25 Row17 RAM25 Row25 RAM41 ROW25 RAM40 RAM40 Row32 RAM40 RAM40 Row32 RAM40 RAM50 RAM5																
COM31 Row32 RAM32 Row40 RAM40 Row32 RAM40 Row16 RAM16 Row24 RAM24 Row16 RAM24 Row24 RAM40 Row32 RAM39 Row31 RAM39 Row31 RAM39 Row31 RAM39 Row31 RAM39 Row31 RAM38 Row30 RAM38 Row31 RAM17 Row22 RAM22 Row14 RAM22 Row22 RAM36 Row32 RAM38 Row30 RAM38 Row30 RAM38 Row31 RAM38 Row31 RAM38 Row31 RAM38 Row31 RAM38 Row32 RAM38 Row32 RAM38 Row32 RAM39 Row31 RAM38 Row32 RAM38 Row32 RAM38 Row32 RAM38 Row32 RAM38 Row32 RAM38 Row32 RAM39 Row17 RAM39 Row12 RAM20 Row32 RAM36 Row27 RAM36 Row27 RAM36 Row38 RAM38 Row30 RAM38 Row30 RAM38 Row30 RAM38 Row30 RAM38 Row30 RAM38 Row30 RAM39 Row11 RAM11 Row19 RAM19 Row11 RAM16 ROw18 RAM38 Row30 RAM39 Row31 RAM31 Row32 RAM31 Row32 RAM31 Row32 RAM31 Row30 RAM30 Row30 RAM30 Row30 RAM30 Row30 RAM30 Row30 RAM30 Row30 RAM38 Row40 RAM44 Row14 RAM14 Row6 RAM16 ROw16 RAM16 ROw16 RAM16 ROw16 RAM16 ROw16 RAM16 ROw18 RAM18 Row30 RAM28 Row20 RAM28 Row20 RAM28 Row20 RAM28 Row30 RAM28 Row40 RAM4 Row12 RAM11 Row30 RAM13 Row30 RAM29 ROw31 RAM31 Row30 RAM30 ROw32 RAM38 Row40 RAM44 Row14 RAM14 Row4 RAM16 ROw4 RAM29 ROw17 RAM25 ROw18 RAM28 ROw20 RAM28 ROw30 RAM28 ROw40 RAM38 ROw40 RAM38 ROw40 RAM38 ROw40 RAM38 ROw40 RAM38									Row18							
COM32 Row31 RAM31 Row39 RAM39 Row31 RAM39 Row31 RAM39 Row15 RAM15 Row23 RAM23 Row24 RAM22 Row22 RAM39 Row36 RAM38 Row30 RAM38 Row30 RAM38 Row30 RAM38 Row30 RAM38 Row30 RAM38 Row30 RAM38 Row31 RAM37 Row21 RAM14 Row22 RAM21 Row14 RAM22 Row21 RAM21 Row21 RAM36 Row27 RAM35 Row28 RAM38 Row28 RAM38 Row28 RAM38 Row28 RAM38 Row26 RAM34 Row26 RAM34 Row26 RAM34 Row26 RAM34 Row26 RAM35 Row27 RAM35 Row28 RAM38 Row28 RAM38 Row16 RAM16 Row16 RAM16 Row16 RAM36 Row28 RAM38 Row28 RAM38 Row16 RAM16 Row8 RAM16 Row16 RAM32 Row28 RAM35 Row27 RAM35 Row28 RAM35 Row28 RAM36 Row28 RAM36 Row28 RAM36 Row29 RAM30 Row30 RAM36 Row16 RAM16 Row16 RAM16 Row16 RAM16 Row16 RAM16 Row16 RAM16 Row16 RAM16 Row17 RAM17 Row29 Row29 RAM28 Row4 RAM4 Row12 RAM11 Row5 RAM18 Row18 RAM18 Row19 RAM19 Row29 RAM28 Row4 RAM4 Row12 RAM11 Row3 RAM11 Row4 RAM4 Row4 RAM5 ROw4 R																
COM33																
COM35 Row28 RAM28 Row36 RAM36 Row28 RAM36 Row27 RAM36 Row12 RAM11 Row19 RAM19 Row11 RAM11 Row17 RAM19 Row19 RAM35 Row20 RAM36 Row20 RAM36 Row27 RAM35 Row27 RAM35 Row27 RAM35 Row10 RAM11 Row18 RAM18 Row10 RAM19 RAM15 Row19 RAM35 Row26 RAM34 Row26 RAM34 Row26 RAM34 Row26 RAM34 Row26 RAM34 Row27 RAM35 Row28 RAM35 Row28 RAM35 Row28 RAM36 Row18 RAM18 Row10 RAM16 Row18 RAM18 Row10 RAM17 Row9 RAM17 Row9 RAM17 Row27 RAM35 Row28 RAM34 Row28 RAM34 Row28 RAM34 Row28 RAM36 Row16 RAM16 Row8 RAM16 Row8 RAM16 Row8 RAM16 Row38 RAM31 Row28 RAM31 Row28 RAM31 Row28 RAM31 Row29 RAM31 Row29 RAM36 Row16 RAM16 Row11 Row29 RAM29 Row21 RAM29 Row21 RAM29 Row21 RAM29 Row29 RAM29 Row21 RAM29 Row38 RAM38 Row16 RAM16 Row4 RAM14 Row6 RAM16 Row4 RAM12 Row4 RAM12 Row4 RAM29 Row29 RAM29 Row21 RAM29 Row29 RAM29 Row21 RAM29 Row21 RAM29 Row21 RAM29 Row21 RAM29 Row21 RAM29 Row21 RAM29 Row39 RAM38 Row19 RAM19 Row29 RAM28 Row39 RAM39 Row19 RAM19 Row27 RAM27 Row19 RAM27 Row39 RAM29 RAM29 ROw19 RAM11 Row29 RAM26 Row18 RAM26 Row2 RAM28 Row10 RAM10 Row4 RAM11 Row39 RAM11 Row11 RAM27 Row39 RAM27 Row39 RAM29 Row10 RAM10 Row4 RAM11 Row6 RAM16 Row41 RAM27 Row16 RAM26 ROw18 RAM25 Row18 RAM38 Row10 RAM10 Row8 RAM38 Row0 RAM26 RAM36 RAM36 RAM3																
COM36 Row27 RAM27 Row35 RAM35 Row27 RAM35 Row11 RAM11 Row19 RAM19 Row11 RAM19 Row19 RAM35 ROW37 RAM35 ROw36 RAM34 Row26 RAM34 Row26 RAM34 Row10 RAM10 Raw18 Row10 RAM18 Row18 RAM34 Row25 RAM33 Row25 RAM33 Row25 RAM33 Row25 RAM33 Row25 RAM33 Row25 RAM33 Row25 RAM38 Row16 RAM16 Row16 RAM16 Row29 RAM17 Row17 RAM33 Row21 RAM35 Row24 RAM35 Row24 RAM35 Row25 RAM35 Row27 RAM36 Row16 RAM16 Row16 RAM16 Row28 RAM35 Row27 RAM31 Row27 RAM35 Row27 RAM35 Row27 RAM35 Row28 RAM36 Row16 RAM16 Row28 RAM15 Row17 RAM31 Row27 RAM35 Row17 RAM35 Row17 RAM15 Row17 RAM35 Row17 RAM35 Row18 RAM36 Row19 RAM36 Row27 RAM28 Row20 RAM28 Row4 RAM4 Row12 RAM12 Row8 RAM16 Row18 RAM36 Row19 RAM36 Row18 RAM36 Row19 RAM36 Row18 RAM36 Row18 RAM36 Row18 RAM36 Row18 RAM36 Row18 RAM36 Row17 RAM36 Row18 RAM36 Row18 RAM36 Row18 RAM36 Row17 RAM36 Row18 RAM36																
COM37 Row26 RAM26 Row34 RAM34 Row26 RAM34 Row26 RAM34 Row10 RAM10 Row18 RAM18 Row10 RAM18 Row18 RAM34 Row25 RAM33 Row25 RAM33 Row25 RAM33 Row26 RAM34 Row27 RAM37 Row3 RAM17 Row3 RAM17 Row3 RAM17 Row3 RAM17 Row3 RAM18 Row17 RAM38 Row10 RAM18 Row17 RAM38 Row10 RAM18 Row17 RAM38 Row10 RAM16 Row47 RAM38 Row10 RAM16 Row48 RAM18 Row48 RAM18 Row48 RAM38 Row41 RAM18 Row48 RAM38 Row48 RAM38 Row48 RAM18 Row48 RAM18 Row48 RAM38 Row48 RAM18 Row49 RAM19 Row48 RAM18 Row49 RAM19 Row49 R																
COM38 Row25 RAM25 Row33 RAM33 Row25 RAM33 Row25 RAM33 Row9 RAM9 Row17 RAM17 Row9 RAM17 Row17 RAM33 ROw39 RAM24 RAM24 Row22 RAM32 Row24 RAM32 Row24 RAM32 Row8 RAM8 Row16 RAM16 Row8 RAM16 Row8 RAM16 Row16 RAM32 RAM31 Row30 RAM31 Row41 Row		B														
COM40 Row23 RAM23 Row31 RAM31 Row23 RAM31 Row7 RAM7 Row7 RAM7 Row7 RAM15 Row7 RAM18 Row11 RAM11 Row7 RAM15 Row7 RAM18 Row11 RAM11 Row7 RAM18 Row11 RAM18 Row10 RAM18																
COM41 Row22 RAM22 Row30 RAW30 Row22 RAM30 Row6 RAM6 Row14 RAM14 Row6 RAM14 Row14 RAM14 Row6 RAM14 Row14 RAM13 RAM30 COM42 Row21 RAW29 Row21 RAW29 Row6 RAW59 Row13 RAW29 Row13 RAW29 Row13 RAW29 Row12 RAW29 Row12 RAW12 Row5 RAW13 Row5 RAW13 Row13 RAW19 Row12 RAW13 Row5 RAW13 Row12 RAW19 Row4 RAW12 Row12 RAW12 Row4 RAW12 Row1 RAW12 Row1 RAW12 Row1 RAW13 Row1 RAW12 Row4 RAW12 Row1 RAW12 Row1 RAW12 Row1 RAW12 Row1 RAW12 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							_									
COM42																
COM43 Row20 RAM20 Row28 RAM28 Row20 RAM28 Row4 RAM4 Row12 RAM12 Row4 RAM12 Row12 RAM12 Row4 RAM12 Row12 RAM12 Row4 RAM12 Row12 RAM12 Row12 RAM12 Row11 RAM12 Row12 RAM12 Row11 RAM12 Row12 RAM12 Row11 RAM12 Row11 RAM11 Row3 RAM11 Row11 RAM12 Row11 RAM11 Row3 RAM11 Row11 RAM12 Row11 RAM12 Row11 RAM11 Row3 RAM11 Row11 RAM12 Row11 RAM12 Row11 RAM11 Row2 RAM10 Row11 RAM11 Row2 RAM12 Row11 RAM11 Row2 RAM12 Row11 RAM11 Row2 RAM12 Row11 RAM11 Row2 RAM24																
COM45 Row18 RAM18 Row26 RAM26 Row18 RAM26 Row2 RAM2 Row2 RAM10 Row2 RAM10 Row2 RAM10 Row3 RAM26 Row3 RAM26 Row3 RAM26 Row3 RAM26 Row3 RAM27 Row3 RAM28 Row3 RAM38 Row3 RA																
COM46 Row17 RAM17 Row25 RAM25 Row17 RAM25 Row1 RAM1 Row9 RAM9 Row1 RAM9 Row9 RAM9 COM47 Row16 RAM16 Row24 RAM24 Row16 RAM24 Row0 RAM0 Row8 RAM8 Row0 RAM8 Row8 RAM8 Row8 RAM8 Row0 RAM8 Row8 RAM24 Row8 RAM24 Row8 RAM24 Row8 RAM0 RAM8 Row0 RAM8 Row8 RAM8 Row0 RAM8 Row8 RAM24 Row8 RAM6 - - Row7 RAM6 - - Row6 RAM66 - - Row6 RAM56 - - Row6 RAM56 - - Row6 RAM56 - - Row6 <td></td> <td></td> <td></td> <td></td> <td>Row3</td> <td>RAM11</td> <td>Row11</td> <td></td> <td>Row3</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>					Row3	RAM11	Row11		Row3							
COM47 Row16 RAM16 Row24 RAW24 Row16 RAW24 Row16 RAW24 Row0 RAM0 Row8 RAM8 Row0 RAW8 Row8 RAW24 COM48 Row15 RAM15 Row23 RAW23 Row15 RAW23 - - Row7 RAW17 - - Row7 RAW23 COM49 Row14 RAW14 Row22 RAW22 Row14 RAW22 - - Row6 RAW6 - - Row6 RAW22 COM50 Row13 RAM13 Row21 RAW21 Row13 RAW21 - - Row5 RAW5 - - Row6 RAW5 COM51 Row12 RAW12 Row12 RAW20 - - Row4 RAW4 - - Row4 RAW4 COM52 Row11 RAW11 Row19 Row11 RAW19 - - Row3 RAW3 - - Row3 RAW19 </td <td></td>																
COM48 Row15 RAM15 Row23 RAM23 Row15 RAM23 Row7 RAM7 Row7 RAM23 COM49 Row14 RAM14 Row22 RAM22 Row14 RAM22 Row6 RAM6 Row6 RAM22 COM50 Row13 RAM13 Row21 RAM21 Row13 RAM21 Row5 RAM5 Row5 RAM21 COM51 Row12 RAM12 Row20 RAM20 Row12 RAM20 Row12 RAM20 Row12 RAM20 Row14 RAM14 Row4 RAM4 Row4 RAM20 COM52 Row11 RAM11 Row19 Row19 RAM19 Row10 RAM19 Row10 RAM10 Row18 RAM18 Row10 RAM18 Row2 RAM2 Row2 RAM18																
COM/49 Row14 RAM14 Row22 RAM22 Row14 RAM22 - Row6 RAM6 - Row6 RAM22 ROw13 RAM13 Row21 RAM21 Row13 RAM21 - Row5 RAM21 Row12 RAM21 Row12 RAM21 Row12 RAM20 Row12 RAM20 Row12 RAM20 RAM20 RAM20 RAM20 RAM20 RAM30 - Row4 RAM4 - Row3 RAM30 RAM30																
COM51 Row12 RAM12 Row20 RAM20 RAM20 - - Row4 RAM4 - - Row4 RAM20 COM52 Row11 RAM11 Row19 RAM19 ROw11 RAM19 - - Row3 RAM3 - - Row3 RAM19 COM53 Row10 RAM10 Row18 RAM18 Row10 RAM18 - - Row2 RAM2 - - Row2 RAM18					-											
COM52 Row11 RAM11 Row19 RAM19 Row11 RAM19 Row3 RAM3 Row3 RAM19 COM53 Row10 RAM10 Row18 RAM18 Row10 RAM18 Row2 RAM2 Row2 RAM18					-											
COM53 ROW10 RAM10 ROW18 RAM18 ROW10 RAM18 ROW2 RAM2 ROW2 RAM18																
COMEA POLO PAMO POLAT PAMAT POLO PAMAT				-	-					4						
		RAM17	Row1	-	-	RAM1	Row1	-		RAM17	Row9	RAM17	Row17	RAM9	Row9	COM54
COMES ROWS RAMS ROWS RAMS ROWS RAMS ROW RAMS RO		RAM16	Row0	-	-	RAM0	Row0	-	-					-		
COM56 Row7 RAM7 Row15 RAM15 Row7 RAM15		-		-		-		-	_		-					
COMB8 ROWS RAM5 ROW13 ROW13 ROW15 ROW15		-	-	-	-	-	-	-	-							
COM59 Row4 RAM4 Row12 RAM12 Row4 RAM12		-	-	-	-	-	-	-	-	RAM12	Row4	RAM12	Row12	RAM4	Row4	COM59
COM60 Row3 RAM3 Row11 RAM11 Row3 RAM11		-	-	-	-	-	-	-	-							
COM61 Row2 RAM2 Row10 RAM10 Row2 RAM10				-		-										
COM63 ROW0 RAW0 ROW8 RAW8 ROW0 RAW8] -	- 1	-	-	-									
Display		~)		0	,	·)		(A)	Ī	-						
examples (a) (b) (c) (d) (e) (f) (g)		g)	(I)		e)		(a)		(c)	<u> </u>	(D)	'	(a)	<u> </u>	

 SSD1306B
 Rev 1.1
 P 41/61
 May 2014
 Solomon Systech

9.1.17 Set Display Clock Divide Ratio/ Oscillator Frequency (D5h)

This command consists of two functions:

- Display Clock Divide Ratio (D)(A[3:0])
 Set the divide ratio to generate DCLK (Display Clock) from CLK. The divide ratio is from 1 to 16, with reset value = 1. Please refer to section 7.3 for the details relationship of DCLK and CLK.
- Oscillator Frequency (A[7:4])
 Program the oscillator frequency Fosc that is the source of CLK if CLS pin is pulled high. The 4-bit value results in 16 different frequency settings available as shown below. The default setting is 1000b.

Figure 9-7: Oscillator frequency setting

9.1.18 Set Pre-charge Period (D9h)

This command is used to set the duration of the pre-charge period. The interval is counted in number of DCLK, where RESET equals 2 DCLKs.

Solomon Systech May 2014 P 42/61 Rev 1.1 SSD1306B

9.1.19 Set COM Pins Hardware Configuration (DAh)

This command sets the COM signals pin configuration to match the OLED panel hardware layout. The table below shows the COM pin configuration under different conditions (for MUX ratio =64):

Table 9-3: COM Pins Hardware Configuration

Solomon Systech May 2014 P 44/61 Rev 1.1 SSD1306B

9.1.20 Set V_{COMH} Deselect Level (DBh)

This command adjusts the V_{COMH} regulator output.

9.1.21 NOP (E3h)

No Operation Command.

9.1.22 Status register Read

This command is issued by setting D/C# ON LOW during a data read (See Figure 12-1 to Figure 12-2 for parallel interface waveform). It allows the MCU to monitor the internal status of the chip. No status read is provided for serial mode.

9.1.23 Charge Pump Setting (8Dh)

This command controls the ON/OFF of the Charge Pump. The Charge Pump must be enabled by the following command sequence:

8Dh; Charge Pump Setting

14h /15h / 94h / 95h; Enable Charge Pump at different output mode

AFh; Display ON

9.2 Graphic Acceleration Command

9.2.1 Horizontal Scroll Setup (26h/27h)

This command consists of 6 consecutive bytes to set up the horizontal scroll parameters and determines the scrolling start page, end page and scrolling speed.

Before issuing this command the horizontal scroll must be deactivated (2Eh). Otherwise, RAM content may be corrupted.

The SSD1306B horizontal scroll is designed for 128 columns scrolling. The following two figures (Figure 9-8, Figure 9-9, Figure 9-10) show the examples of using the horizontal scroll:

Figure 9-8: Horizontal scroll example: Scroll RIGHT by 1 column

Original Setting	SEGO	SEG1	SEG2	SEG3	SEG4	SEG5	÷	÷	÷	SEG122	SEG123	SEG124	SEG125	SEG126	SEG127
After one scroll step	SEG127	SEG0	SEG1	SEG2	SEG3	SEG4	÷	:	::	SEG121	SEG122	SEG123	SEG124	SEG125	SEG126

Figure 9-9: Horizontal scroll example: Scroll LEFT by 1 column

Original Setting	SEG0	SEG1	SEG2	SEG3	SEG4	SEG5			(a)	SEG122	SEG123	SEG124	SEG125	SEG126	SEG127
After one scroll step	SEG1	SEG2	SEG3	SEG4	SEG5	SEG6	58	8		SEG123	SEG124	SEG125	SEG126	SEG127	SEG0

Figure 9-10: Horizontal scrolling setup example

Solomon Systech May 2014 P 46/61 Rev 1.1 SSD1306B

9.2.2 Continuous Vertical and Horizontal Scroll Setup (29h/2Ah)

This command consists of 5 consecutive bytes to set up the continuous vertical scroll parameters and determines the scrolling start page, end page, scrolling speed and vertical scrolling offset.

The bytes B[2:0], C[2:0] and D[2:0] of command 29h/2Ah are for the setting of the continuous horizontal scrolling. The byte E[5:0] is for the setting of the continuous vertical scrolling offset. All these bytes together are for the setting of continuous diagonal (horizontal + vertical) scrolling. If the vertical scrolling offset byte E[5:0] is set to zero, then only horizontal scrolling is performed (like command 26/27h).

Before issuing this command the scroll must be deactivated (2Eh). Otherwise, RAM content may be corrupted. The following figure (Figure 9-11) show the example of using the continuous vertical and horizontal scroll:

Example 1 : Full screen diagonal Display snap shot after scrolling start Display before scrolling start scrolling (horizontal right side scrolling with 1 column shift plus Start page address / vertical scrolling with 1 row up) in No. of rows in top fixed every 6 frames. area =0 (POR) Sample code 29h // Vertical and right horizontal scroll No. of rows in scroll 00h // Dummy byte 00h // Define PAGEO as start page address area =64 (POR) 00h #Set time interval between each scroll step as 6 frames 07h #Define PAGE7 as end page address End page address Olh #Set vertical scrolling offset as 1 row 2Fh // Activate scrolling

Figure 9-11: Continuous Vertical and Horizontal scrolling setup example

9.2.3 Deactivate Scroll (2Eh)

This command stops the motion of scrolling. After sending 2Eh command to deactivate the scrolling action, the ram data needs to be rewritten.

9.2.4 Activate Scroll (2Fh)

This command starts the motion of scrolling and should only be issued after the scroll setup parameters have been defined by the scrolling setup commands :26h/27h/29h/2Ah . The setting in the last scrolling setup command overwrites the setting in the previous scrolling setup commands.

The following actions are prohibited after the scrolling is activated

- 1. RAM access (Data write or read)
- 2. Changing the horizontal scroll setup parameters

9.2.5 Set Vertical Scroll Area (A3h)

This command consists of 3 consecutive bytes to set up the vertical scroll area. For the continuous vertical scroll function (command 29/2Ah), the number of rows that in vertical scrolling can be set smaller or equal to the MUX ratio.

9.2.6 Content Scroll Setup (2Ch/2Dh)

This command consists of 7 consecutive bytes to set up the horizontal scroll parameters and determine the scrolling start page, end page, start column and end column. One column will be scrolled horizontally by sending the setting of command 2Ch / 2Dh once.

When command 2Ch / 2Dh are sent consecutively, a delay time of 2 / Frame Frequency must be set. Figure 9-12 shown an example of using 2Dh "Content Scroll Setup" command for horizontal scrolling to left with infinite content update. In there, "Col" means the graphic display data RAM column.

Figure 9-12: Content Scrolling example (2Dh, Left Horizontal Scroll by one column)

By using command 2Ch/2Dh, RAM contents are scrolled and updated by one column. Table 9-4 is an example of content scrolling setting of SSD1306B (scrolling window of 4 pages). The values of registers depend on different conditions and applications.

Table 9-4: Content Scrolling software flow example (Page addressing mode – command 20h, 02h)

Step	Action	D/C #	Code	Remarks
1	For i= 1 to n	-	-	Create "For loop" for infinite content scrolling
2	Set Content scrolling command	0	2Dh	Left Horizontal Scroll by one column
	(scrolling window : Page 2 to 5, Col	0	00h	A[7:0]: Dummy byte (Set as 00h)
	8 to Col 120)	0	02h	B[2:0] : Define start page address
		0	01h	C[7:0]: Dummy byte (Set as 01h)
		0	05h	D[2:0] : Define end page address
		0	08h	E[6:0] : Define start column address
		0	78h	F[6:0] : Define end column address
3	A 11D 1			E.g. Delay 20ms if frame freq ≈ 100Hz
	Add Delay time of 2/FrameFreq	_	-	E.g. Delay 2011s it frame freq ≈ 100Hz
	W. D. D. J.			
4	Write RAM on the beginning column			410 -011
	of the scrolling window	0	DOL	Cat Day Ctart Address for Day Addressin Made
	Write RAM on (Page2, Col 120) (Content update in beginning	0	B2h	Set Page Start Address for Page Addressing Mode
	column)	0	17h	Set Higher Column Start Address for Page Addressing Mode
	Cottinut)	-	08h	Set Lower Column Start Address for Page Addressing Mode Write data to fill the RAM
	Write DAM on (Dane 2, Cal 120)	0	D21-	
	Write RAM on (Page3, Col 120) (Content update in beginning	0	B3h 17h	Set Page Start Address for Page Addressing Mode
	column)		08h	Set Higher Column Start Address for Page Addressing Mode
	Cotunity	0	- -	Set Lower Column Start Address for Page Addressing Mode Write data to fill the RAM
	Write DAM on (Deep 4 Cel 120)			
	Write RAM on (Page4, Col 120) (Content update in beginning	0	B4h	Set Page Start Address for Page Addressing Mode
	column)	0	17h 08h	Set Higher Column Start Address for Page Addressing Mode
	Cotumity	1	Uon	Set Lower Column Start Address for Page Addressing Mode Write data to fill the RAM
	Write DAM on (Deces Col 120)	0	B5h	
	Write RAM on (Page5, Col 120) (Content update in beginning	0		Set Page Start Address for Page Addressing Mode
	column)	0	17h 08h	Set Higher Column Start Address for Page Addressing Mode
	Commit		U8n	Set Lower Column Start Address for Page Addressing Mode
		1	-	Write data to fill the RAM
5	1 1 1			C- 4 "F1"
S	i=i+1	-	-	Go to next "For loop"
	Delay timing	-	-	Set time interval between each scroll step if necessary
	End			

There are 3 different memory addressing mode in SSD1306B: page addressing mode, horizontal addressing mode and vertical addressing mode and it is selected by command 20h. Table 9-4 is an example of content scrolling software flow under page addressing mode, while vertical addressing mode example is shown in below Table 9-5.

Solomon Systech May 2014 | P 48/61 | Rev 1.1 | SSD1306B

Table 9-5 : Content Scrolling setting example (Vertical addressing mode – command 20h, 01h)

Step	Action	D/C#	Code	Remarks
1	For i= 1 to n	-	-	Create "For loop" for infinite content scrolling
2	Set Content scrolling command	0	2Dh	Left Horizontal Scroll by one column
	(scrolling window : Page 2 to 5, Col	0	00h	A[6:0]: Dummy byte (Set as 00h)
	8 to Col 120)	0	02h	B[2:0] : Define start page address
		0	01h	C[2:0]: Dummy byte (Set as 01h)
		0	05h	D[2:0] : Define end page address
		0	08h	E[6:0] : Define start column address
		0	78h	F[6:0] : Define end column address
3	Add Delay time of 2/FrameFreq	-	-	E.g. Delay 20ms if frame freq ≈ 100Hz
	Add Delay time of 2/1 ramer req			2.g. 2011. 1 maine neq 100112
4	WY'' DANG ALL THE T	0	0.11	0.01
4	Write RAM on the beginning column		21h	Set Column address
	of the scrolling window (Page 2 to 5,	0	78h	Set column start address for Vertical Addressing Mode
	Col 120)	0	78h	Set column end address for Vertical Addressing Mode
	(Content update in beginning	0	22h	Set Page address
	column)	0	02h	Set start page address for Vertical Addressing Mode
		0	05h	Set end page address for Vertical Addressing Mode
		1	-	Write data to fill the RAM
5	i=i+1	-	-	Go to next "For loop"
	Delay timing	-	-	Set time interval between each scroll step if necessary
	End			
	Go	nii	019	Go to next "For loop" Set time interval between each scroll step if necessary
	Minst			

 SSD1306B
 Rev 1.1
 P 49/61
 May 2014
 Solomon Systech

9.3 Advance Graphic Command

9.3.1 Set Fade Out and Blinking (23h)

This command allows to set the fade mode and to adjust the time interval for each fade step. Below figures show the example of Fade Out mode and Blinking mode.

Figure 9-13: Example of Fade Out mode

Figure 9-14: Example of Blinking mode

9.3.2 Set Zoom In (D6h)

Under Zoom in mode, one row of display contents is expanded into two rows on the display. That is, contents of row0~31 fill the whole display panel of 64 rows. It should be notice that the panel must be in alternative COM pin configuration (command DAh A[4] =1) for zoom in function.

Figure 9-15: Example of Zoom In

Solomon Systech May 2014 | P 50/61 | Rev 1.1 | SSD1306B

10 MAXIMUM RATINGS

Table 10-1: Maximum Ratings (Voltage Referenced to VSS)

Symbol	Parameter	Value	Unit
V_{DD}		-0.3 to +4	V
V_{BAT}	Supply Voltage	-0.3 to +5	V
V_{CC}		0 to 16	V
V_{SEG}	SEG output voltage	0 to V _{CC}	V
V_{COM}	COM output voltage	0 to 0.9*V _{CC}	V
V_{in}	Input voltage	V_{SS} -0.3 to V_{DD} +0.3	V
T_A	Operating Temperature	-40 to +85	°C
T_{stg}	Storage Temperature Range	-65 to +150	°C

Maximum ratings are those values beyond which damages to the device may occur. Functional operation should be restricted to the limits in the Electrical Characteristics tables or Pin Description section

This device may be light sensitive. Caution should be taken to avoid exposure of this device to any light source during normal operation. This device is not radiation protected.

11 DC CHARACTERISTICS

Condition (Unless otherwise specified):

 $\begin{aligned} &Voltage \ referenced \ to \ V_{SS} \\ &V_{DD} = 1.65 \ to \ 3.3V \\ &T_A = 25^{\circ}C \end{aligned}$

Table 11-1: DC Characteristics

Symbol	Parameter	Test Condition	Min	Тур	Max	Unit
V_{CC}	Operating Voltage	-	6	-	15	V
$V_{ m DD}$	Logic Supply Voltage	-	1.65	-	3.3	V
V_{BAT}	Charge Pump Regulator Supply Voltage	-	2.2	-	4.2	V
		V _{BAT} = 2.2V~4.2V, 6V mode Maximum output loading = 4mA	5.5	6	-	V
Charge Pump V _{CC}	Charge Pump Output Voltage ITO resistance <30hm for charge	V _{BAT} = 3.0V~4.2V, 7.5V mode Maximum output loading = 8mA	7	7.5	-	V
rump vcc	pump related pins (1)	V _{BAT} = 3.6V~4.2V, 8.5V mode Maximum output loading = 12mA	8	8.5	-	V
		V _{BAT} = 3.8V~4.2V, 9V mode Maximum output loading = 12mA	8.5	9	-	V
V_{OH}	High Logic Output Level	$I_{OUT} = 100uA, 3.3MHz$	$0.9 \times V_{DD}$	-	-	V
V_{OL}	Low Logic Output Level	$I_{OUT} = 100uA, 3.3MHz$	-	-	$0.1 \times V_{DD}$	V
V_{IH}	High Logic Input Level	-	$0.8 \times V_{DD}$	-	-	V
$V_{\rm IL}$	Low Logic Input Level	-	-	1-	$0.2 \times V_{DD}$	V
ICC, SLEEP	I _{CC} , Sleep mode Current	V _{DD} = 1.65V~3.3V, V _{CC} = 6V~15V Display OFF, No panel attached		-	10	uA
I _{DD, SLEEP}	I _{DD} , Sleep mode Current	V _{DD} = 1.65V~3.3V, V _{CC} = 6V~15V Display OFF, No panel attached	10	-	10	uA
I _{BAT} , SLEEP	IBAT, Sleep mode Current	$V_{DD} = 1.65 \text{V} \sim 3.3 \text{V}, V_{BAT} = 2.2 \text{V} \sim 4.2 \text{V}$ Display OFF, No panel attached	-0*	+	10	uA
Icc	V_{CC} Supply Current $V_{DD} = 2.8V$, $V_{CC} = 12V$, $I_{REF} = 30uA$	aden ay		900	1500	uA
I _{DD}	No loading, Display ON, All ON VDD Supply Current VDD = 2.8V, VCC = 12V, IREF = 30uA No loading, Display ON, All ON	Contrast = FFh	-	50	150	uA
		Contrast=FFh	-	240	-	
I_{SEG}	Segment Output Current V _{DD} =2.8V, V _{CC} =12V, I _{REF} =30uA,	Contrast=AFh	-	165	-	uA
	Display ON.	Contrast=3Fh	-	60	-	
	Segment Output Current	Contrast=FFh	-	150	-	uA
I_{SEG}	V _{DD} =2.8V, V _{CC} =7.5V, I _{REF} =19uA, Display ON.	Contrast=AFh	-	104	-	uA
	Display OIV.	Contrast=3Fh	-	38	-	uA
Dev	Segment output current uniformity	$\begin{aligned} \text{Dev} &= (I_{SEG} - I_{MID})/I_{MID} \\ I_{MID} &= (I_{MAX} + I_{MIN})/2 \\ I_{SEG}[0:131] &= \text{Segment current at} \\ \text{contrast} &= FFh \end{aligned}$	-3	-	+3	%
Adj. Dev	Adjacent pin output current uniformity (contrast = FF)	Adj Dev = $(I[n]-I[n+1]) / (I[n]+I[n+1])$	-2	-	+2	%

Remarks: (1) Charge pump related pins include: V_{BAT}, C1P, C1N, C2P, C2N, V_{LSS}

Solomon Systech May 2014 P 52/61 Rev 1.1 SSD1306B

12 AC CHARACTERISTICS

Conditions:

Voltage referenced to Vss $V_{DD} = 1.65 \text{ to } 3.3 \text{ V}$ $T_A = 25^{\circ}C$

Table 12-1: AC Characteristics

Symbol	Parameter	Test Condition	Min	Тур	Max	Unit
Fosc (1)	Oscillation Frequency of Display	$V_{DD} = 2.8V$	333	370	407	kHz
	Timing Generator					
FFRM	Frame Frequency for 64 MUX Mode	128x64 Graphic Display Mode, Display ON, Internal Oscillator Enabled	-	Fosc x 1/(DxKx64) (2)	-	Hz
RES#	Reset low pulse width		3	-	-	us

Note

(1) Fosc stands for the frequency value of the internal oscillator and the value is measured when command D5h A[7:4] is in default value.

(2) D: divide ratio (default value = 1)

K: number of display clocks (default value = 54)

, , D5h) for detailed descript Please refer to Table 8-1 (Set Display Clock Divide Ratio/Oscillator Frequency, D5h) for detailed description

P 53/61 SSD1306B Rev 1.1 May 2014 Solomon Systech

Table 12-2: 6800-Series MCU Parallel Interface Timing Characteristics

 $(V_{DD}$ - V_{SS} = 1.65V to 3.3V, T_A = 25°C)

Symbol	Parameter	Min	Тур	Max	Unit
t _{cycle}	Clock Cycle Time	300	-	-	ns
t _{AS}	Address Setup Time	5	-	-	ns
t _{AH}	Address Hold Time	0	-	-	ns
t_{DSW}	Write Data Setup Time	40	-	-	ns
$t_{ m DHW}$	Write Data Hold Time	7	-	-	ns
t _{DHR}	Read Data Hold Time	20	-	-	ns
t _{OH}	Output Disable Time	-	-	70	ns
t _{ACC}	Access Time	-	-	140	ns
PW_{CSL}	Chip Select Low Pulse Width (read) Chip Select Low Pulse Width (write)	120 60	-	-	ns
PW _{CSH}	Chip Select High Pulse Width (read) Chip Select High Pulse Width (write)	60 60	-	-	ns
t_R	Rise Time	-	-	40	ns
t_{F}	Fall Time	-	-	40	ns

Figure 12-1: 6800-series MCU parallel interface characteristics

 Solomon Systech
 May 2014
 P 54/61
 Rev 1.1
 SSD1306B

 ${\bf Table~12\text{-}3:8080\text{-}Series~MCU~Parallel~Interface~Timing~Characteristics}$

 $(V_{DD} - V_{SS} = 1.65V \text{ to } 3.3V, T_A = 25^{\circ}C)$

Symbol	Parameter	Min	Тур	Max	Unit
t _{cycle}	Clock Cycle Time	300	-	-	ns
t _{AS}	Address Setup Time	10	-	-	ns
t_{AH}	Address Hold Time	0	-	-	ns
t_{DSW}	Write Data Setup Time	40	-	-	ns
t_{DHW}	Write Data Hold Time	7	-	-	ns
t_{DHR}	Read Data Hold Time	20	-	-	ns
t _{OH}	Output Disable Time	-	-	70	ns
t _{ACC}	Access Time	-	-	140	ns
t_{PWLR}	Read Low Time	120	-	-	ns
t_{PWLW}	Write Low Time	60	-	-	ns
t_{PWHR}	Read High Time	60	-	-	ns
t_{PWHW}	Write High Time	60	-	-	ns
t_R	Rise Time	-	-	40	ns
$t_{\rm F}$	Fall Time	-	-	40	ns
t _{CS}	Chip select setup time	0	-	-	ns
t _{CSH}	Chip select hold time to read signal	0	-	-	ns
t _{CSF}	Chip select hold time	20	-	-	ns

Figure 12-2: 8080-series parallel interface characteristics

 SSD1306B
 Rev 1.1
 P 55/61
 May 2014
 Solomon Systech

Table 12-4: 4-wire Serial Interface Timing Characteristics

 $(V_{DD} - V_{SS} = 1.65V \text{ to } 3.3V, T_A = 25^{\circ}C)$

Symbol	Parameter	Min	Тур	Max	Unit
t _{cycle}	Clock Cycle Time	100	-	-	ns
t _{AS}	Address Setup Time	15	-	-	ns
t_{AH}	Address Hold Time	15	-	-	ns
tcss	Chip Select Setup Time	20	-	-	ns
t _{CSH}	Chip Select Hold Time	10	-	-	ns
t_{DSW}	Write Data Setup Time	15	-	-	ns
t_{DHW}	Write Data Hold Time	15	-	-	ns
t _{CLKL}	Clock Low Time	20	-	-	ns
t _{CLKH}	Clock High Time	20	-	-	ns
t _R	Rise Time	-	-	40	ns
$t_{\rm F}$	Fall Time	-	-	40	ns

Figure 12-3: 4-wire Serial interface characteristics

 Solomon Systech
 May 2014
 P 56/61
 Rev 1.1
 SSD1306B

Table 12-5: 3-wire Serial Interface Timing Characteristics

 $(V_{DD} - V_{SS} = 1.65V \text{ to } 3.3V, T_A = 25^{\circ}C)$

Symbol	Parameter	Min	Тур	Max	Unit
t _{cycle}	Clock Cycle Time	100	-	-	ns
tcss	Chip Select Setup Time	20	-	-	ns
t _{CSH}	Chip Select Hold Time	10	-	-	ns
t _{DSW}	Write Data Setup Time	15	-	-	ns
t_{DHW}	Write Data Hold Time	15	-	-	ns
t _{CLKL}	Clock Low Time	20	-	-	ns
t _{CLKH}	Clock High Time	20	-	-	ns
t_R	Rise Time	-	-	40	ns
t_{F}	Fall Time	-	-	40	ns

Figure 12-4: 3-wire Serial interface characteristics

SSD1306B Rev 1.1 P 57/61 May 2014 **Solomon Systech**

Conditions:

 V_{DD} - $V_{SS} = V_{DD}$ - $V_{SS} = 1.65 V$ to 3.3 V $T_A = 25 ^{\circ} C$

Table 12-6: I²C Interface Timing Characteristics

Symbol	Parameter	Min	Тур	Max	Unit
t_{cycle}	Clock Cycle Time	2.5	-	-	us
t _{HSTART}	Start condition Hold Time	0.6	-	-	us
t _{HD}	Data Hold Time (for "SDA _{OUT} " pin)	0	-	-	ns
	Data Hold Time (for "SDA _{IN} " pin)	300	-	-	ns
t_{SD}	Data Setup Time	100	-	-	ns
t _{SSTART}	Start condition Setup Time (Only relevant for a repeated Start condition)	0.6	-	-	us
t_{SSTOP}	Stop condition Setup Time	0.6	-	-	us
t _R	Rise Time for data and clock pin	-	-	300	ns
t_{F}	Fall Time for data and clock pin	-	-	300	ns
t _{IDLE}	Idle Time before a new transmission can start	1.3	-	_	us

Figure 12-5: I^2C interface Timing characteristics

 Solomon Systech
 May 2014
 P 58/61
 Rev 1.1
 SSD1306B

13 Application Example

Figure 13-1 : Application Example of SSD1306B with External V_{CC} and I^2C interface

 Solomon Systech
 May 2014
 P 60/61
 Rev 1.1
 SSD1306B

14 PACKAGE INFORMATION

14.1 SSD1306BZ Die Tray Information

Figure 14-1: SSD1306BZ die tray information

	Spec		
W1	76.00±0.1	(2992)	
W2	68.00±0.1	(2677)	
W3	68.30±0.1	(2689)	
Н	4.20±0.1	(165)	
Px	8.30±0.05	(327)	
Py	2.20±0.05	(87)	
Dx	8.95±0.10	(352)	
TPx	58.10±0.10	(2287)	
Dy	6.10±0.10	(240)	
TPy	63.80±0.10	(2512)	
X	6.91±0.05	(272)	
Y	1.00±0.05	(39)	
Z	0.41±0.05	(16)	
N	240 (pocket number)		

SSD1306B Rev 1.1 P 61/61 May 2014 **Solomon Systech**

Solomon Systech reserves the right to make changes without notice to any products herein. Solomon Systech makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Solomon Systech assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any, and all, liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typical" must be validated for each customer application by the customer's technical experts. Solomon Systech does not convey any license under its patent rights nor the rights of others. Solomon Systech products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Solomon Systech product could create a situation where personal injury or death may occur. Should Buyer purchase or use Solomon Systech products for any such unintended or unauthorized application, Buyer shall indemnify and hold Solomon Systech and its offices, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Solomon Systech was negligent regarding the design or manufacture of the part.

The product(s) listed in this datasheet comply with Directive 2011/65/EU of the European Parliament and of the council of 8 June 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment and People's Republic of China Electronic Industry Standard SJ/T 11363-2006 "Requirements for concentration limits for certain hazardous substances in electronic information products (电子信息产品中有毒有害物质的限量要求)". Hazardous Substances test report is available upon request.

http://www.solomon-systech.com

Solomon Systech May 2014 P 62/61 Rev 1.1 SSD1306B