Mathematics. — Demonstration that the concept of spreads of higher order does not come into consideration as a fundamental notion in intuitionistic mathematics. By Prof. L. E. J. Brouwer*

(Communicated at the meeting of September 26, 1942.)

In my note, "Concerning the free development of spreads and functions", 1) the process M_{σ} was considered, through which the fundamental sequence F', which is enumerated in an arbitrary, predetermined way, is associated one-to-one with finite choice sequences of numbers and likewise an arbitrary element σ of the spread²) M. We want to call this process M_{σ} a spread of second order, and the successions of figure-sequences thus associated to the unrestricted choice sequences of numbers [we shall call] the elements of the second-order spread M_{σ} .

The assertion stated in my quoted note, that M_{σ} acts as a subspecies of a spread M_1 which is derivable from M, and that the union of all M_{σ} generated from M is identical with this M_1 , shall be demonstrated as follows. First, we will deal with the construction of the spread M_1 .

Let $\alpha_1 \alpha_2 \ldots \alpha_m$ be a finite choice sequences of numbers. We will indicate the rank thereof in the fundamental sequence F' with $\varrho (\alpha_1 \alpha_2 \ldots \alpha_m)$ and the maximum of the numbers $\varrho (\alpha_1)$, $\varrho (\alpha_1 \alpha_2)$, ... $\varrho (\alpha_1 \alpha_2 \ldots \alpha_m)$ with $\zeta (\alpha_1 \alpha_2 \ldots \alpha_m)$.

^{*} Translated from the original German by Jon Sterling.

¹⁾ Proc. Ned. Akad. v. Wetensch. Amsterdam, 45, 322 (1942).

²⁾ For the sake of simplicity, we restrict ourselves in this note to such spreads, in the process of whose creation neither inhibition nor termination occurs. This restriction is inessential.