MARGE: Tutorial using presence-absence data and the marge R-package

Jakub Stoklosa & David I. Warton

16 September, 2020

This tutorial documents fitting multivariate adaptive regression splines using generalized estimating equations (MARGE) via the marge R-package. We also fit some additional models and compare them with MARGE using a predictive squared error (PSE) on test data. Computational times for each model fit are also reported.

For more specific details on the MARGE algorithm see:

Stoklosa, J. and Warton, D.I. (2018). A generalized estimating equation approach to multivariate adaptive regression splines. *Journal of Computational and Graphical Statistics*, **27**, pp. 245–253. Also, see ?marge for further details on the fitting function, input arguments and output.

We use the leptrine data set which is provided within the marge R-package and analyzed in Stoklosa and Warton (2018). These data are binary (presence-absence) data collected on plant species for 8,678 sites located in the Blue Mountains region. These data contain nine environmental predictor variables collected at each site. Our objective is to predict the presence of the species $Leptospermum\ trinervium\ using$ the environmental predictor variables. There are are 1,751 absences and 6,927 presences. The leptrine data consists of training and test sets, such that $N_{train}=4,339$. The nine environmental predictor variables have been standardized. See ?leptrine for further details.

Below we fit a MARS model, a generalized additive model (GAM), a Bayesian additive regression tree (BART) model and MARGE (with two different penalties, $\lambda=2$ and $\lambda=\log(N)$). We record the computational times (in seconds) and calculate the predictive squared errors (PSE) on test data.

```
library("marge")
library("mgcv")
library("BayesTree")
```

Load the marge, mgcv and BayesTree R-packages.

```
data("leptrine")

dat1 <- leptrine[[1]]  # Training data.
dat1_t <- leptrine[[2]]  # Test data.

Y <- dat1$Y  # Response variable.
N <- length(Y)  # Sample size (number of clusters).</pre>
```

Load the data, label the training and test data as objects and set data dimensions.

```
family <- "binomial"  # The selected "exponential" family for the GLM/GEE.

corstr <- "independence" # The selected "working correlation" structure (used for GEEs).

is.gee <- FALSE  # Is the model a GEE?

nb <- FALSE  # Is this a negative binomial model?

tols <- 0.0001  # A set tolerance (stopping condition) in the forward pass for MARS.

tols_score <- 0.0001  # A set tolerance (stopping condition) in forward pass for MARGE.

M <- 21  # A set threshold for the maximum no. of basis functions to be used.

pen <- 2  # Penalty to be used in GCV (required for MARS).

minspan <- NULL  # A set minimum span value.

print.disp <- FALSE # Print ALL the output?
```

Set the required arguments and tuning parameters to fit models.

Fit models and record the computational times. Model fitting can take \sim 12 minutes to complete (this depends on your computer speed/memory).


```
end <- Sys.time()
t4 <- difftime(end, start, units = "secs")</pre>
```

```
H \leftarrow function(a) \{1 / (1 + exp(-a))\} \# An inverse logit function (required for PSE below).
pred_own_y <- predict(model_own, X_predt, X_pred)</pre>
pred_marge_2_y <- predict(model_marge, X_predt, X_pred, TRUE, "2")</pre>
pred_marge_log_y <- predict(model_marge, X_predt, X_pred, TRUE, "logN")</pre>
mu_bart <- apply(pnorm(model_bart$yhat.test), 2, mean)</pre>
var_bart <- mu_bart*(1 - mu_bart)</pre>
PSE_pred_bart<-mean((dat1_t$Y - mu_bart)^2/var_bart, na.rm = TRUE)</pre>
mu gam <- H(predict(model gam, newdata = dat1 t))</pre>
var_gam <- mu_gam*(1 - mu_gam)</pre>
PSE_pred_gam <- mean((dat1_t$Y - mu_gam)^2/var_gam, na.rm = TRUE)
mu_own <- H(pred_own_y$eta.p)</pre>
var_own <- mu_own*(1 - mu_own)</pre>
PSE_pred_own <- mean((dat1_t$Y - mu_own)^2/var_own,na.rm = TRUE)
mu_marge_2 <- H(pred_marge_2_y$eta.p)</pre>
mu_marge_log <- H(pred_marge_log_y$eta.p)</pre>
var_marge_2 <- mu_marge_2*(1 - mu_marge_2)</pre>
var_marge_log <- mu_marge_log*(1 - mu_marge_log)</pre>
PSE_pred_marge_2 <- mean((dat1_t$Y - mu_marge_2)^2/var_marge_2, na.rm = TRUE)
PSE_pred_marge_log <- mean((dat1_t$Y - mu_marge_log)^2/var_marge_log, na.rm = TRUE)
PSE_pred_list <- c(PSE_pred_bart, PSE_pred_gam, PSE_pred_own,
                    PSE_pred_marge_2, PSE_pred_marge_log)
```

Calculate the predictive squared error (PSE) on test data using each fitted model.

```
res1 <- PSE_pred_list
res2 <- cbind(t1, t2, t3, t4)

res <- cbind(c(round(res2, digits = 2), round(res2, digits = 2)[4]), round(res1, digits = 3))

rownames(res) <- c("BART", "GAM", "MARS", "MARGE_2_ind", "MARGE_logN_ind")
colnames(res) <- c("time (sec.)", " PSE")

print(res)</pre>
```

Display results - these PSE values should match the results given in Table 3 of Stoklosa and Warton (2018), except for BART (which should be pretty close).

```
## time (sec.) PSE

## BART 161.45 0.868

## GAM 13.90 0.913

## MARS 191.43 0.941

## MARGE_1ogN_ind 224.21 0.839
```