

Teoria da Computação

Expressões e linguagens regulares

Introdução

Definições

- Basicamente, podemos dizer algo abrangente de forma específica. Definindo um padrão de busca, temos uma lista de possibilidades.
 - "Como o brinquedo LEGO, várias pecinhas diferentes, cada uma com sua característica, que juntas compõem estruturas completas e podem ser arranjadas com infinitas combinações diferentes."
- Expressões Regulares são **metacaracteres** que casam um padrão. É uma maneira de procurar um texto especificando padrões.
 - Padrões para validar data, horário, número IP, e-mail, RG, CPF, telefones... Exemplo: ER para números de telefones => ([0-9]{2})? [0-9] {4}-[0-9]{4}. Casa qualquer uma das strings: "83 3224-1063", "83 3254-3421", "82 2343-1212"...

Introdução

História

- O termo deriva do que se chamou de álbegra de conjuntos regulares ("*regular sets*"), do matemático Stephen Cole Kleene.
- 1968, Ken Thompson implementava no qed um comando de contexto que aceitava expressões regulares. Sua sintaxe? g/RE/p (Global Regular Expression Print)... Mais tarde deu origem ao famoso grep nos sistemas Unix.
- 1986, criado um pacote pioneiro em C, chamado regex e de graça!
 Daí a norma IEEE POSIX 1003.2 (POSIX.2) padroniza expressões regulares.

Expressões regulares

- ☐ Úteis em pesquisa de texto (grep do Unix) e em compiladores (Lex, Flex, analisadores lexicais)
- Alternativa simpática aos NFA
- □ Equivalentes aos autómatos → provar
- Características algébricas; permitem expressão declarativa das cadeias pretendidas
- Expressões regulares denotam linguagens
 - 01*+10*
 - Linguagem das cadeias binárias que têm um 0 seguido de zero ou mais 1's, ou um 1 seguido de zero ou mais 0's

Operadores sobre linguagens

- □ União de duas linguagens L e M (L ∪ M), é o conjunto das cadeias que pertencem a L, a M, ou a ambas
 - $L = \{001, 10, 111\}$ $M = \{\epsilon, 001\}$ $L \cup M = \{\epsilon, 001, 10, 111\}$
- □ Concatenação de duas linguagens L e M (LM ou L.M), é o conjunto de cadeias que se obtém concatenando qualquer cadeia em L com qualquer cadeia em M
 - $-LM = \{001, 10, 111, 001001, 10001, 111001\}$
- □ **Fecho** de uma linguagem L (L*) é o conjunto de cadeias que se obtém concatenando um número arbitrário de cadeias de L, incluindo repetições, isto é, L* = $\cup_{i\geq 0}$ Lⁱ, em que L⁰={ε}
 - $L=\{0,1\}$ L* é a linguagem das cadeias binárias

Os Metacaracteres

Sopa de letrinhas

Metacaractere Nome

Ponto

Lista

[^] Lista negada

? Opcional

* Asterisco

+ Mais

{ } Chaves

1/	[etacaractere	
IV	letacaractere	

^ Circunflexo

\$ Cifrão

\b Borda

Escape

Ou (pipe)

() Grupo

\1 Retrovisor

Sopa de letrinhas – exemplos

Miller, Müler, Müller, Mueler, Mueller: M(ü|i|ue)ll?er

Siglas de 4 letras, começando com UF: UF[A-Z]{2}

Tags HTML , , <i>, </i>, </i>, <u>, </u>: </?[BbUuli]>

Títulos (primeira linha não pontuada): ^[A-Za-z0-9]+\$

Palavras:

 $\b[A-Za-z]+\b$

Padrões POSIX

[:upper:] [A-Z] Letras maiúsculas [:lower:] [a-z] Letras minúsculas [:alpha:] [A-Za-z] Maiúsculas/Minúsculas [:alnum:] [A-Za-z0-9] Letras e números [:digit:] [0-9] Números [:xdigit:] [0-9A-Fa-f] Números Hexadecimais	Classe POSIX	Similar	Significa
minúsculas [:alpha:] [A-Za-z] Maiúsculas/Min úsculas [:alnum:] [A-Za-z0-9] Letras e números [:digit:] [0-9] Números [:xdigit:] [0-9A-Fa-f] Números	[:upper:]	[A-Z]	
isculas [:alnum:] [A-Za-z0-9] Letras e números [:digit:] [0-9] Números [:xdigit:] [0-9A-Fa-f] Números	[:lower:]	[a-z]	
números [:digit:] [0-9] Números [:xdigit:] [0-9A-Fa-f] Números	[:alpha:]	[A-Za-z]	
[:xdigit:] [0-9A-Fa-f] Números	[:alnum:]	[A-Za-z0-9]	
	[:digit:]	[0-9]	Números
	[:xdigit:]	[0-9A-Fa-f]	

(Alguns m|M)etacaracteres tipo barra-letra

Classe POSIX	Similar	Significa
\d	[[:digit:]]	Dígito
\D	[^[:digit:]]	Não-dígito
\w	[[:alnum:]_]	Palavra
\W	[^[:alnum:]_]	Não-palavra
\s	[[:space:]]	Branco
\S	[^[:space:]]	Não-branco

Google Docs

Nam id nibh nec odio rhoncus lobortis. Curabitur liqula risus, tincidunt nec consequ

a, ornare eget nisi. Maecenas vel sem ac leo rhoncus varius a id arcu. Quisque sempe elit mattis auctor. Etiam euismod vestibulum felis vitae eleifend. Nullam iaculis faucibus Duis semper ornare odio. Morbi dignissim dictum felis, vitae lobortis elit condimentum r

Quisque quis arcu eget ante bibendum consectetur.

Google Docs – observações

- Não há classes POSIX (como [:alpha:]), \w, e [A-Z] não suporta acentuação. Solução?
- [A-Za-zÀ-u]+ (Posições 65 a 90, 97 a 122 e 192 a 252 da tabela ASCII).
- A opção 'Match hole world only' ('Fazer correspondência somente da palavra inteira') não casará palavras acentuadas ou com 'ç'.
- Retrovisores são referenciados por \$1, \$2... na expressão de substituição, mas na ER utiliza-se \1, \2... Por exemplo, palavras repetidas ([A-Za-z]+) \1
- •Quebras de linha e paragráfos podem ser identificados com \n, assim as ERs podem casar múltiplas linhas de uma vez.

Java

• Na J2SE 1.4 aparecem o pacote java.util.regex e classes Pattern e Matcher, além de algumas melhorias na classe java.lang.String (com os métodos matches, replaceFirst, replaceAll, split).

Classe String

Java

• Classes Pattern e Matcher

```
Arquivo Editar Ver Terminal Ajuda
 1 import java.util.regex.*;
 3 class ExpressaoRegularRegex {
           public static void main(String[] args) {
                   String pet
                   Pattern er
                                   = Pattern.compile("
                   Matcher result = er.matcher(pet);
10
                   System.out.println(result.matches()); // TRUE
11
12
                   System.out.println(result.replaceAll("PET")); // PET
13
14
17
19
                   pet = "P.E.T";
                   er = Pattern.compile("\\.");
20
                   String[] matches = er.split(pet);
21
22
                   for(String s : matches) {
23
24
                           System.out.println(s);
25
26
27 }
                                                                        1,1
                                                                                     Tudo
```

Exemplos

```
Data (dd/mm/aaaa)
   .../.../...
   [0-9]{2}/[0-9]{2}/[0-9]{4}
    [0123][0-9]/[01][0-9]/[12][0-9]{3}
   ([012][0-9][3[0-1])/([0[0-9][1[012])/[12][0-9]{3})
    (0[1-9]|[12][0-9]|3[01])/0[0-9]|1[012])/[12][0-9]{3}
Horário (hh:mm)
    [0-9]{2}:[0-9]{2}
    [012][0-9]:[0-5][0-9]
    ([01][0-9]|2[0-3]):[0-5][0-9]
Email (email@company.com)
    .*@.*
    [^@]+@[^@]+.[.*]
    [A-Za-z0-9]+@[A-Za-z0-9]+\.[a-z]+
    [A-Za-z0-9_.-]+@[A-Za-z0-9_]+\.[a-z]{2,3}
```

Exemplos de fecho

```
\Box L = {0, 11}
     - L<sub>0</sub>= {\epsilon}
     -L_1 = L = \{0, 11\}
     - L^2 = LL = \{00, 011, 110, 1111\}
     - L^* = \{ \epsilon, 0, 11, 00, 011, 110, 1111, \ldots \}
     - Apesar de a linguagem L ser finita, bem como cada termo Li, L* é infinita
\Box L = {todas as cadeias só com 0's}
     -L*=L
     - L é infinita, tal como L*
\Box \Gamma = \emptyset
     - \quad \Gamma_* = \Gamma_0 = \{\epsilon\}
```

Construção de expressões regulares

Base

- As constantes ε e ∅ são expressões regulares
 - \Box L(ϵ) = { ϵ } e L(\oslash) = \oslash
- Se a é um símbolo **a** é uma expressão regular
 - \Box L(**a**) = {a}
- Uma variável (ex: L) é uma expressão regular
 - Representa qualquer linguagem

□ Indução

- Se E e F são expressões regulares E + F é expressão regular
 - \Box L(E + F) = L(E) \cup L(F)
- Se E e F são expressões regulares EF é expressão regular
 - \Box L(EF) = L(E)L(F)
- Se E é expressão regular E* é expressão regular
 - $\Box L(E^*) = (L(E))^*$
- Se E é expressão regular (E) é expressão regular
 - \Box L((E)) = L(E)

Exemplo

Escrever uma expressão regular para o conjunto de cadeias constituídas por 0's e 1's alternados.

```
- 01 L(01) = \{01\}

- (01)^* \neq 01^* L((01)^*) = \{\epsilon, 01, 0101, 0101, ...\}

- Ainda faltam muitas!

- (01)^* + (10)^* + 0(10)^* + 1(01)^*

- Está bem

- (\epsilon+1)(01)^*(\epsilon+0)

- Também.
```

Equivalência FA - RE

- Mostrar que todas as linguagens definidas por autómatos também são definidas por expressões regulares (DFA → RE)
- Mostrar que todas as linguagens definidas por RE também são definidas por autómatos (RE → ε-NFA)

Dos DFA's às RE's

- □ **Teorema**: Se L=L(A) para um DFA A então existe uma expressão regular R tal que L=L(R)
- Dois métodos
 - numerar os estados de 1 a n; construir REs que vão descrevendo caminhos sucessivamente mais complexos no DFA, até descrever todos os caminhos da entrada para cada estado final
 - Considerar os arcos etiquetados por RE; eliminar estados internos substituindo o seu "efeito" por REs

Construção de caminhos

- Numerar os estados de 1 a n, começando pelo de entrada
- \square $R_{ij}(k)$
 - Expressão regular cuja linguagem é o conjunto de cadeias w tal que w é a etiqueta de um caminho entre os nós i e j, sem passar em nenhum nó intermédio maior do que k (os extremos podem ser)
- ☐ Indução no número dos nós (k)

Construção de caminhos

Base

- k=0 significa sem nós intermédios (o menor é 1)
 - □ arco de i para j (RE é o respectivo símbolo; ou \emptyset , se não existir; ou $a_1+a_2+\dots+a_m$, se houver m arcos em paralelo)
 - \square nó i (i para i) (RE é $\varepsilon + a_1 + a_2 + ... + a_m$)

Indução

- Hipótese: os caminhos que só usam nós até k-1 já estão convertidos
- Existe caminho de i para j sem passar no estado k
 - \Box $R_{ij}^{(k-1)}$
- O caminho passa uma ou mais vezes em k:
 - $\qquad R_{ij}^{(k)} = R_{ij}^{(k-1)} + R_{ik}^{(k-1)} (R_{kk}^{(k-1)})^* R_{kj}^{(k-1)}$
- Terminar: R_{ij}(n) caminhos entre i e j usando todos os estados
- A RE da linguagem do autómato é a soma das expressões $R_{1j}^{(n)}$ tais que j é um estado de aceitação.

Exemplo DFA ⇒ RE

1

Start
$$0$$
 2

0,1

☐ Autómato que reconhece cadeias com pelo menos um 0

$$\ \, \square \ \, R_{ij}^{(k)} = R_{ij}^{(k-1)} + R_{ik}^{(k-1)} \big(R_{kk}^{(k-1)} \big)^{\!\!\!\!/} \!\!\!\! * \, R_{kj}^{(k-1)}$$

$R_{11}^{(0)}$	ε+1
$R_{12}^{(0)}$	0
$R_{21}^{(0)}$	Ø
R ₂₂ ⁽⁰⁾	ε+0+1

$R_{11}^{(1)}$	$\epsilon+1+(\epsilon+1)(\epsilon+1)*(\epsilon+1)$	1*
$R_{12}^{(1)}$	$0+(\epsilon+1)(\epsilon+1)*0$	1*0
$R_{21}^{(1)}$	⊘+⊘(ε+1)*(ε+1)	0
$R_{22}^{(1)}$	ε+0+1+⊘(ε+1)*0	ε+0+1

~ : 1		~
Simpl	111C	മറമറ:
Omip		uçuo.

$$(\epsilon + 1)^* = 1^*$$

$$\emptyset R = R \emptyset = \emptyset$$

$$\bigcirc + R = R + \bigcirc = R$$

$$\begin{array}{|c|c|c|c|}\hline R_{11}^{(2)} & 1^* + 1^*0(\epsilon + 0 + 1)^* \oslash & 1^* \\\hline R_{12}^{(2)} & 1^*0 + 1^*0(\epsilon + 0 + 1)^*(\epsilon + 0 + 1) & 1^*0(0 + 1)^* \\\hline R_{21}^{(2)} & \oslash + (\epsilon + 0 + 1)(\epsilon + 0 + 1)^* \oslash & & \oslash \\\hline R_{22}^{(2)} & \epsilon + 0 + 1 + (\epsilon + 0 + 1)(\epsilon + 0 + 1)^*(\epsilon + 0 + 1) & (0 + 1)^* \\\hline \end{array}$$

$$R = 1*0(0+1)*$$

Eliminação de estados

Eliminação do estado s

Propriedades de fecho

- A classe das linguagens regulares é fechada para a operação
- Exemplos de operações
 - União, Intersecção e Complemento
 - Diferença
 - Reverso
 - Fecho (*) e Concatenação
 - Homomorfismo e Homomorfismo Inverso

Propriedades de decisão das LR

- Como estudar uma linguagem?
 - Infinita → não dá para análise exaustiva
 - Representação finita: DFA, NFA, ε-NFA, ER → LR
- Responder a uma questão sobre uma linguagem
 - Encontrar um algoritmo que responda sim ou não
 - Em muitas situações, existem algoritmos para LR mas não existem para as não regulares, mesmo que exista representação finita para algumas delas
- Três questões
 - A linguagem é vazia?
 - A cadeia w pertence à linguagem?
 - Duas descrições de linguagens correspondem de facto à mesma?

Conversão entre representações

- Qual a complexidade dos respectivos algoritmos?
- \square NFA \rightarrow DFA
 - Função no número de estados n do NFA
 - Cálculo do fecho-ε: O(n³)
 - Construção de subconjuntos: O(2n) (número de estados do DFA)
 - Cálculo de uma transição da função δ : O(n³)
 - Considera-se o alfabeto constante, portanto só influencia a constante escondida na notação O(.)
 - Conversão completa: O(n³2n)
 - Como o número de estados s do DFA é frequentemente muito menor que exponencial: O(n³s)

Conversão entre representações

- \square DFA \rightarrow NFA
 - O(n)
- \square DFA \rightarrow ER
 - Algoritmo de introdução sucessiva de estados: n passos
 - Em cada passo temos n² expressões e uma expressão é construída à custa de 4 do passo anterior: O(n³4n)
 - No caso NFA → ER, se se começar por converter primeiro para DFA obtém-se um algoritmo duplamente exponencial: $O(n^34^{n^32^n})$

A linguagem é vazia?

- □ Resposta: L=∅ é vazia; as outras linguagens não.
- A questão é mais interessante se L for representada por uma expressão regular ou por um autómato
- Autómato
 - Questão resume-se à acessibilidade no respectivo grafo: se nenhum estado final for acessível a partir do inicial, a resposta é positiva
 - Algoritmo de complexidade proporcional ao número de arcos O(n²)
- Expressão regular (comprimento n)
 - Converter para ε-NFA, resultado O(n) estados, algoritmo O(n), ou
 - Inspeccionar a expressão regular (no caso de conter ∅)

w pertence à linguagem?

- L representada por um autómato
 - w é sempre explícita
 - DFA
 - □ Simular o processamento da cadeia; sim, se terminar num estado de aceitação; O(|w|)
 - NFA, ε -NFA
 - Converter para DFA e aplicar método anterior; algoritmo pode ser exponencial no tamanho da representação
 - □ Mais simples e mais eficiente simular o NFA directamente, mantendo o conjunto dos s estados em que o autómato pode ficar em cada transição O(|w|s²)
- L representada por expressão regular de comprimento s
 - Converter para ε-NFA com até 2s estados em tempo O(s) e aplicar o método anterior

L₁ e L₂ são equivalentes?

- Duas descrições de LR são equivalentes se definirem a mesma linguagem
 - Pode encontrar-se uma representação mínima, única a menos de renomeação dos estados
- Equivalência de estados de um DFA
 - Dois estados p e q são equivalentes se para todas as cadeias w $\delta^{(p,w)}$ é um estado de aceitação se e só se $\delta^{(q,w)}$ também o for
 - □ Não se consegue distinguir p e q só a partir do resultado de aceitação ou não de quaisquer cadeias
 - Não se exige que $\delta^{(p,w)}$ e $\delta^{(q,w)}$ sejam o mesmo estado mas apenas que sejam ambos de aceitação ou ambos de não aceitação
 - Se dois estados não forem equivalentes, são distinguíveis
 - Há pelo menos uma cadeia em que um de $\delta^{(p,w)}$ e $\delta^{(q,w)}$ é de aceitação e o outro não

Equivalência de estados

- $\delta^{\wedge}(C,\varepsilon) = C$ é de aceitação e $\delta^{\wedge}(G,\varepsilon)$ não \rightarrow C e G não são equivalentes
- A e G: ε, 0, 1 não permitem distinguir, mas $\delta^{\wedge}(A,01)=C$ e $\delta^{\wedge}(G,01)=E$ sim
- A e E: nenhum é de aceitação; 1 leva ambos para F, portanto w=1x não permite distinguir; 0 também não; $\delta^{\wedge}(A,00) = G = \delta^{\wedge}(E,00)$; $\delta^{\wedge}(A,01) = C = \delta^{\wedge}(E,01)$; portanto A e E são equivalentes

Algoritmo de preenchimento de tabela

- Dado um DFA $A=(Q,\Sigma,\delta,q_0,F)$ encontrar estados equivalentes
 - Base: se p for de aceitação e q não, o par {p,q} é distinguível
 - Indução: sejam p e q estados tais que, para um símbolo a, $r=\delta^{(p,a)}$ e $s=\delta^{(q,a)}$ são distinguíveis; então $\{p,q\}$ é distinguível

В	X						
C	X	X					
D	X	X	X				
E		X	X	X			
F	X	X	X		X		
G	X	X	X	X	X	X	
Η	X		X	X	X	X	X
	A	В	C	D	Е	F	G

Trabalho

Apresentar uma implementação que utilize de recursos de expressões regulares.