

Hochschule für Technik und Wirtschaft Berlin

University of Applied Sciences

Untersuchung von Image Colorization Methoden anhand Convolutional Neuronal Networks

Abschlussarbeit

zur Erlangung des akademischen Grades

Bachelor of Science (B.Sc.)

an der

Hochschule für Technik und Wirtschaft Berlin
Fachbereich IV: Informatik, Kommunikation und Wirtschaft
Studiengang Angewandte Informatik

Prüfer: Prof. Dr. Christin Schmidt
 Prüfer: M.Sc. Patrick Baumann

Eingereicht von: Adrian Saiz Ferri

Immatrikulationsnummer: s0554249

Eingereicht am: XX.XX.2020

Abstract

Die vorliegende Arbeit beschäftigt sich mit der Einfärbung von Graustufenbilder durch Convolutional Neuronal Networks. Das Ziel ist es ein Model zu trainieren, dass selbstständig und ohne menschlichen Einfluss, aus einem Graustufenbild ein plausibles Farbbild erzeugen kann. Um das Model zu trainieren werden Farbbilder genommen und in Graustufenbilder umgewandelt. Die Graustufenbilder werden in das Netzwerk eingespeist und daraus werden die Farbkanäle erzeugt. Am ende wird das Graustufenbild mit den Farbkanälen konkateniert um das Farbbild zu generieren. Da Objekte auf einem Bild mehrere Farben haben können, werden mit Hilfe von Hyperparameter realistische anstatt "richtige" Farben bevorzugt.

Es werden verschiedene Netzwerk Architekturen exploriert und verglichen. Zunächst werden mehrere Experimente mit verschiedene Hyperparameter durchgeführt. Anschließend werden die Experimente ausgewertet und die Ergebnisse untersucht.

Inhaltsverzeichnis

1	\mathbf{Ein}	leitung	g 5		1			
	1.1	Motiv	ration		1			
	1.2	Zielset	tzung	•	1			
	1.3	Vorge	hensweise und Aufbau der Arbeit		1			
2	Grundlagen							
	2.1	2.1 Lab-Farbraum						
	2.2	Neuro	onale Netze		2			
		2.2.1	Feedforward Neural Network		3			
		2.2.2	Fully-connected Neural Network		4			
		2.2.3	Aktivierungsfunktionen		6			
		2.2.4	Convolutional Neural Networks		9			
		2.2.5	Loss Functions	. 1	11			
		2.2.6	Optimierungsalgorithmen	. 1	12			
		2.2.7	Backpropagation	. 1	13			
		2.2.8	Transposed Convolution	. 1	14			
	2.3	Verwa	andte Arbeiten	. 1	15			
3	Konzeption							
	3.1	Vorhe	erige Arbeiten	. 1	16			
	3.2	Daten	ısatz	. 1	16			
	3.3	Netzw	verkarchitekturen	.]	16			
	3.4	Frame	ework	. 1	16			
4	Imp	olemen	ntierung	1	L 7			
5	Eva	luatio	n	1	18			
	5 1	Vorglo	pieh der Modelle	-	10			

Inhaltsverzeichnis	iii

6	Fazit				
	6.1	Zusammenfassung	19		
	6.2	Kritischer Rückblick	19		
	6.3	Ausblick	19		
\mathbf{A}	bbild	lungsverzeichnis	I		
Tabellenverzeichnis					
Source Code Content					
\mathbf{G}	lossa	ur	IV		
Literaturverzeichnis					
Onlinereferenzen					
Bi	ldre	ferenzen	VII		
\mathbf{A}_{1}	nhan	ng A	VIII		
Eigenständigkeitserklärung					

Einleitung

1.1 Motivation

TODO

1.2 Zielsetzung

TODO

1.3 Vorgehensweise und Aufbau der Arbeit

Grundlagen

Dieses Kapitel verschafft einen Überblick über die benötigten theoretische Grundlagen, um die Methoden dieser Arbeit zu verstehen. Als erstes wird der "Lab-Farbraum" kurz erklärt. Als nächstes wird eine Einführung in Neuronale Netzwerke gegeben, anschließend werden einzelne Bestandsteile und Varianten von Neuronalen Netzwerken erklärt. Abschließend wird einen Überblick über verwandte Arbeiten gegeben.

2.1 *Lab*-Farbraum

Der Lab-Farbraum (auch CIELAB-Farbraum genannt) ist ein Farbraum definiert bei der Internationale Beleuchtungskommission (CIE) in 1976. Farben werden mit drei Werte beschrieben. "L" (Lightness) definiert die Helligkeit. Die Werte liegen zwischen 0 und 100. "a" gibt die Farbart und Farbintensität zwischen Grün und Rot und "b" gibt die Farbart und Farbintensität zwischen Blau und Gelb. Die Werte für "a" und "b" liegen zwischen -128 und 127.

TODO: image

2.2 Neuronale Netze

Künstliche Neuronale Netze sind inspiriert durch das Menschliche Gehirn und werden für Künstliche Intelligenz und Maschinelles Lernen angewendet. Sie werden für überwachtes und unüberwachtes lernen verwendet. In der vorliegende Arbeit werden nur Methoden des überwachtes lernen angewendet. Bei überwachtes lernen sind die Datensätze gelabelt

sodass den Output von dem Neuronales Netz mit den richtigen Ergebnissen verglichen werden kann.

Neuronale Netze bestehen aus Neuronen oder auch "Units" genannt, die Schichtenweise in "Layers" (Schichten) angeordnet sind. Beginnend mit der Eingabeschicht (Input Layer) fließen Informationen über eine oder mehrere Zwischenschichten (Hidden Layer) bis hin zur Ausgabeschicht (Output Layer). Dabei ist der Output des einen Neurons der Input des nächsten. [Moe18]

2.2.1 Feedforward Neural Network

Das Ziel von einem Feedforward Neural Network ist die Annäherung an irgendeine Funktion f^* . Ein Feedforward Neural Network definiert eine Abbildung $y = f(x; \theta)$ wo x den Input ist und θ die lernbare Parameter sind (auch Weights genannt). [GBC16, S. 164-223]

Diese Netzwerkarchitektur heißt "feedforward" weil der Informationsfluss von der Input Layer über die Hidden Layers bis zur Output Layer in einer Richtung weitergereicht wird.

Feedforward Neural Networks werden als eine Kette von Funktionen repräsentiert. Als Beispiel, kann man die Funktionen $f^{(1)}, f^{(2)}, f^{(3)}$ in Form einer Kette verbinden um $f(\mathbf{x}) = f^{(3)}(f^{(2)}(f^{(1)}(\mathbf{x})))$ zu bekommen. Diese Kettenstrukturen sind die am häufigsten genutzte Struktur bei Neuronale Netzwerke. In diesem Fall, $f^{(1)}$ ist das erste Layer, $f^{(2)}$ das zweite und $f^{(3)}$ der Output Layer von diesem Netzwerk. Die Länge dieser Kette definiert die Tiefe von einem Netzwerk. Je tiefer ein Netzwerk ist desto mehr lernbare Parameter hat es und somit eine erhöhte Rechenleistung braucht um trainiert zu werden. In der Praxis werden die Netzwerke sehr tief, daher der Begriff Deep Learning.

Während dem Training werden die Weights von f(x) verstellt, um $f^*(x)$ zu erhalten. Jedes Trainingsbeispiel x ist mit einem Label $y = f^*(x)$ versehen. Die Trainingsbeispiele legen genau fest, was der Output Layer generieren soll. Der Output Layer soll Werte generieren, die nah an y liegen. Das Verhalten von den Hidden Layers wird nicht durch die Trainingsbeispiele festgelegt, sondern der Lernalgorithmus soll definieren, wie diese Layers verwendet werden, um die beste Annäherung von $f^*(x)$ zu generieren. [GBC16, S. 164-223]

2.2.2 Fully-connected Neural Network

Fully-connected Neural Networks sind die am häufigsten vorkommende Art von Neuronale Netze. In dieser Netzwerkarchitektur sind alle Neuronen von einem Layer mit alle Neuronen von der vorherige und nächsten Layer verbunden. Neuronen in dem gleichen Layer sind aber nicht miteinander verbunden. [Fei17a]

Abbildung 2.1: Fully-connected Neural Network mit 2 Layers (ein Hidden Layer mit 4 Neuronen) und ein Output Layer mit 2 Neuronen [Fei20a]

Eine der wichtigsten Gründe für die Anordnung von Neuronale Netze in Layers ist dass so eine Struktur anhand von Matrix Multiplikationen berechnet werden kann. Das obere Bild 2.1 stellt ein Netzwerk mit 3 Inputs x, eine Hidden Layer mit 4 Neuronen und eine Output Layer mit 2 Neuronen dar. Die Kreisen repräsentieren die Neuronen und einem Bias Wert b, die Pfeilen stellen die Weights w dar.

$$f(x) = w * x + b \tag{2.1}$$

Nach jeden Hidden Layer läuft den Output durch eine Aktivierungsfunktion σ die in 2.2.3 erklärt wird. Daraus wird die vorherige Formel um σ erweitert:

$$f(x) = \sigma(w * x + b) \tag{2.2}$$

Forward Pass

Den Forward Pass von einem Neuronalem Netz wird anhand von Matrizen Multiplikationen berechnet. Um das zu veranschaulichen wird es anhand eines Beispiels erklärt.

Ausgehend von einem Netzwerk mit 3 Inputs, eine Hidden Layer mit 2 Neuronen und einem Output Neuron, ergeben sich folgende Beispielwerte:

$$X = \begin{pmatrix} 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{pmatrix} \quad W = \begin{pmatrix} 10 & 20 \\ -20 & -40 \\ 20 & 0 \\ -40 & 0 \end{pmatrix} \quad W_{out} = \begin{pmatrix} 20 \\ 40 \\ -40 \end{pmatrix}$$
 (2.3)

Die erste Spalte in der Input Matrix X und die erste Zeile in beide Gewichtsmatrizen W und W_{out} sind die Werte für den Bias. Diese Anordnung von den Bias Werte ermöglicht die Berechnung durch eine einzigen Matrix Multiplikation. Als Aktivierungsfunktion wird ReLU [NH10] verwendet:

$$\sigma(x) = \begin{cases} 0 & \text{if } x < 0 \\ x & \text{if } x \ge 0 \end{cases}$$
 (2.4)

Im ersten Schritt durchläuft den Input durch das Hidden Layer $\sigma(X \times W)$:

$$\sigma \left(\begin{pmatrix} 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} 10 & 20 \\ -20 & -40 \\ 20 & 0 \\ -40 & 0 \end{pmatrix} \right) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \\ 0 & 0 \end{pmatrix}$$
(2.5)

Im zweiten Schritt wird den Output von der vorherige Multiplikation mal die Gewichte von dem Output Layer multipliziert:

$$\sigma\left(\begin{pmatrix} 1 & 0 & 1\\ 1 & 1 & 0\\ 1 & 0 & 0 \end{pmatrix} \times \begin{pmatrix} 20\\ 40\\ -40 \end{pmatrix}\right) = \begin{pmatrix} 0\\ 1\\ 0 \end{pmatrix} \tag{2.6}$$

2.2.3 Aktivierungsfunktionen

Eine Aktivierungsfunktion definiert die Aktivierungsrate von einem Neuron. Es gibt verschiedene Aktivierungsfunktionen:

Sigmoid

Sigmoid ist eine nicht lineare Funktion $\sigma(x) = 1/(1+e^{-x})$ welche die Werte in einem Wertebereich von [0,1] bringt. Große negative Werte werden 0 und große positive Werte werden 1. Sigmoid hat verschiedene Nachteile, es neigt dazu den Gradienten zu verschwinden und die Outputs sind nicht Null zentriert.

Abbildung 2.2: Sigmoid Aktivierungsfunktion [Fei20b]

Tanh

Die Tanh Aktivierungsfunktion bringt Werte in einem Wertebereich von [-1,1]. Es ist eine skalierte Sigmoid (σ) Funktion, $tanh(x) = 2\sigma(2x) - 1$. Die Nachteile von Tanh sind ähnlich zu Sigmoid aber der Output ist Null zentriert.

Abbildung 2.3: Tanh Aktivierungsfunktion [Fei20b]

ReLU

Die Rectified Linear Unit berechnet f(x) = max(0, x), alle negative Werte werden 0 und alle positive Werte bleiben unverändert. Diese Aktivierungsfunktion wurde für die Netzwerke in dieser Arbeit benutzt da es Vorteile gegenüber Sigmoid und Tanh zeigt. Einer der Vorteile ist dass die Mathematische Auswertung der Funktion unkompliziert ist. Außerdem beschleunigt es die Konvergenz von Stochastisches Gradientenabstiegsverfahren im Vergleich zu Sigmoid und Tanh.

Neuronen die ReLU als Aktivierungsfunktion verwenden, können während des Trainings "sterben". Zum Beispiel, wenn der Gradient in einem Neuron zu groß ist, kann dieser zu einem update der Gewichte führen, wo das Neuron nie wieder aktiviert werden kann. Mit einer korrekter Einstellung der Lernrate kann das vermieden werden. [Fei17a]

Abbildung 2.4: Rectified Linear Unit (ReLU) [Fei20b]

Leaky ReLU

Leaky ReLU ist einer Variante von ReLU, die versucht, das Problem mit den "sterbenden" Neuronen zu minimieren. Anstatt alle negative Werte in Null zu konvertieren, werden die Werte mal einer Konstante multipliziert. Die Funktion wird zu $f(x) = 1(x < 0)(\alpha x) + 1(x >= 0)(x)$, wobei α eine kleine Konstante ist, zum Beispiel 0.001.

Abbildung 2.5: Leaky ReLU [ccs20]

2.2.4 Convolutional Neural Networks

Convolutional Neural Networks (CNN) sind eine besondere Form von künstliche neuronale Netzwerke, das speziell für maschinelles Lernen und die Verarbeitung von Bilddaten vorgesehen ist [Dip19].

Im gegensatz zu traditionelle neuronale Netzwerke, die ein Vektor als Input nehmen, nehmen Convolutional Neural Networks ein 3D Volumen als Input $(W \times H \times C,$ wobei W die Breite, H die Höhe und C die Farbkanäle sind).

Abbildung 2.6: Typische Struktur von einem Convolutional Neural Network [Nel19]

CNNs bestehen in der Regel aus 2 Formen von Layers, die Convolutional Layer und die Pooling Layer.

Die Convolutional Layer besteht aus mehrere hintereinander geschaltete 3 Dimensionale Filter, auch Kernel genannt ($W \times H \times D$, wobei D die Tiefe der Aktivierungsmatrix darstellt), die während den Forward pass, über dem Bild mit einer festgelegten Schrittweite (Stride), geschoben werden. Mit den sogenannten Padding wird der Verhalten an den Rändern festgelegt. An jeder stelle wird eine Matrix Multiplikation zwischen den Filter und die aktuelle Position auf dem Bild durchgeführt. Als Output wird eine 2 Dimensionalen Aktivierungsmatrix generiert. Die Größe dieser Aktivierungsmatrix ist abhängig von der Größe des Filters, dem Padding und vor allem dem Stride. Ein Stride von 2 bei einer Filter Größe von 2×2 führt beispielweise pro Filter zu einer Halbierung der Größe der Aktivierungsmatrix im Vergleich zum Input Volumen [Bec19]. Ein Stride von 1 bei einem 3×3 Filter mit Padding 1 führt zu einer Aktivierungsmatrix mit der gleiche Größe wie der Input Volumen.

Die Filter erkennen in den ersten Ebenen einfache Strukturen wie Linien, Farben oder Kanten. In den nächsten Ebenen lernt das CNN Kombinationen aus diesen Strukturen wie Formen oder Kurven. In den tieferen Layers werden komplexere Strukturen und Objekte identifiziert [Dip19].

Abbildung 2.7: Beispiel Forward pass von einem Convolutional Layer mit einem $7 \times 7 \times 3$ Input Volumen, zwei $3 \times 3 \times 3$ Filter, Padding 1 und Stride 2. [Fei20c]

Die Pooling Layer dient zur Reduktion der Dimensionen von einem Input Volumen und somit die Parameter von dem Netzwerk. Es gibt verschiedene pooling Operationen die angewandt werden können, wie zum Beispiel Maximum Pooling, Minimum Pooling, oder Average Pooling. Im Rahmen dieser Arbeit wird Maximum Pooling (oder Max Pooling) verwendet.

Ein Max Pooling Layer aggregiert die Aktivierungsmatrizen von Convolutional Layers, in dem nur die höchste Zahl von einem Filter weitergegeben wird. Zum Beispiel, bei einem 2×2 Filter wird aus 4 Zahlen nur 1 Zahl weitergegeben. Damit wird einer Reduktion der Dimensionen erreicht.

Abbildung 2.8: Max pooling Operation mit 2×2 Filtern und Stride 2 [Fei20c]

2.2.5 Loss Functions

Die Loss Function (Kostenfunktion) dient zur Feststellung der Fehler (Loss) zwischen dem Output von einem Model und die Zielwerte. Das Ziel von Neuronalen Netzen ist es den Loss zu minimieren. Wenn der Loss gleich Null ist, heißt dass $y=\hat{y}$. Es gibt verschiedene Arten von Loss Functions. Im Rahmen dieser Arbeit werden Loss Functions bezogen auf Regressions- und Klassifizierungsprobleme behandelt.

Mean Square Error Loss

Mean Square Error (MSE) Loss misst die durchschnittlichen der Quadrate des Fehlers und ist definiert als:

$$MSE = \frac{1}{N} \sum (y - \hat{y})^2 \tag{2.7}$$

Cross Entropy Loss

Der Cross Entropy Loss wird bei Klassifizierungsprobleme verwendet. Es gibt 2 Arten, Binär und Multiclass Cross Entropy Loss. Bei der Multiclass Cross Entropy Loss wird ein Vektor mit einer Wahrscheinlichkeitsverteilung $x \in [0,1]$ ausgewertet, wenn die Korrekte Klasse eine 1 hat ist der Loss 0. Je weniger Wahrscheinlichkeit die Korrekte Klasse besitzt desto höher der Loss sein wird. Der Multiclass Cross Entropy Loss ist definiert als:

$$J = -\frac{1}{N} \left(\sum_{i=0}^{N} y_i * \log(\hat{y}_i) \right)$$
 (2.8)

Weighted Cross Entropy Loss

Bei der Weighted Cross Entropy Loss werden die Klassen gewichtet bevor der Loss berechnet wird. Das ist zum Beispiel nützlich um Klassen mit einer niedrige Wahrscheinlichkeit zu bevorzugen.

2.2.6 Optimierungsalgorithmen

Das Ziel von Optimierungsalgorithmen ist eine Kombination von Gewichte W zu finden, dass die Loss Function minimiert. Es gibt verschiedene relevante Optimierungsalgorithmen. In der vorliegende Arbeit werden Gradient Descent und Adam verwendet.

Gradient Descent

Gradient Descent (Gradientenabstiegsverfahren) ist ein Verfahren, um bei einer Funktion das Minimum (oder das Maximum) zu finden. Mit Hilfe von partielle Ableitungen kann der Gradient von einer Loss Function berechnet werden. Ein Gradient ist, in dem Fall von Neuronale Netze, ein Vektor der zum höchsten Punkt der Loss Function zeigt. Wird der negative Gradient genommen, zeigt dieser zum tiefsten Punkt. Bei jeder Kombination von Gewichte wird der Gradient berechnet und mal eine bestimmte Lernrate α multipliziert, anschließend werden alle Gewichte aktualisiert. Die Lernrate definiert die Größe der Schritte in Richtung Minimum.

Abbildung 2.9: Gradient descent visualisiert [Bha18]

Adam

Adam steht für "Adaptive Moment Estimation Algorithm" und ist ein Optimierungsalgorithmus der eine angepasste Lernrate für die verschiedene Gewichte berechnet [KB14].

2.2.7 Backpropagation

Neuronale Netze lernen in dem das Loss minimiert wird. Wie in der vorherigen Sektionen erläutert, bestimmt die Loss Function, die Fehlerrate von einem Neuronales Netz. Dieses Loss kann mit Hilfe von einem Optimierungsalgorithmus reduziert werden. Backpropagation ermöglicht es, einer effizienten Berechnung der Gradienten in einem neuronalen Netzwerk [15]. Mit Hilfe der Kettenregel kann eine Komplexe Loss Function in kleinere Unterfunktionen zerlegt werden um Lokal die Ableitung zu berechnen. Das ermöglicht eine unkomplizierte Berechnung des Gradienten.

Als Beispiel kann die folgende Sigmoid Funktion in Unterfunktionen zerlegt werden:

$$f(w,x) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}}$$
 (2.9)

Abbildung 2.10: Backpropagation Beispiel anhand einer 2D Neuron mit der Aktivierungsfunktion Sigmoid [Fei20d]

Bei dem oberen Bild sind $[w_0, w_1, w_2]$ die Gewichte und $[x_0, x_1]$ die Inputs des Neurons. Um es unkompliziert zu halten, kann die obere Funktion als irgendeine Funktion, die Inputs (w, x) entgegennimmt und eine einzelne Zahl als Output hat, visualisiert werden. Die Grüne Zahlen repräsentieren die Ergebnissen aus dem Forward Pass und die Rote Zahlen der zurück propagierte Loss. Jeder Knoten ist fähig ein Output und der lokale Gradient von dem Output im Bezug auf den Input zu berechnen, ohne die ganze Funktion kennen zu müssen [Fei17b].

2.2.8 Transposed Convolution

Im gegensatz zu einem Pooling Layer, ermöglicht einer Transposed Convolutional Layer die Dimensionen von einem Volumen zu vergrößern. Die funktionsweise einer Transposed Convolution wird anhand von einem Beispiel erklärt.

Ausgehend von einer 2×2 Input Matrix die auf 3×3 vergrößert werden soll, ein 2×2 Filter, Null Padding und Stride 1, ergibt sich den Folgenden Output.

Abbildung 2.11: Die Komplette Transposed Convolution Operation [Mis20]

Jeder Zahl in der Input Matrix wird mit jeder Zahl in den Filter multipliziert. Daraus ergibt sich an jeder Position in der Input Matrix einer 2×2 Matrix. Die überlappende Zahlen auf der Output Matrix werden addiert. Daraus ergibt sich einer 3×3 Output Matrix.

2.3 Verwandte Arbeiten

Vor der Erstellung dieser Arbeit wurden Methoden von Image Colorization bereits untersucht. Die vorliegende Arbeit orientiert sich auf die Methoden von Zhang et al. und Billaut et al., die ähnliche Ansätze für Image Colorization vorschlagen.

Konzeption

TODO

3.1 Vorherige Arbeiten

TODO

3.2 Datensatz

TODO

3.3 Netzwerkarchitekturen

TODO

3.4 Framework

Implementierung

Evaluation

TODO

5.1 Vergleich der Modelle

Fazit

TODO

6.1 Zusammenfassung

TODO

6.2 Kritischer Rückblick

TODO (Reflexion und Bewertung der Zielsetzung gegenüber erreichtem Ergebnis)

6.3 Ausblick

Abbildungsverzeichnis

2.1	Fully-connected Neural Network mit 2 Layers (ein Hidden Layer mit 4	
	Neuronen) und ein Output Layer mit 2 Neuronen [Fei20a]	4
2.2	Sigmoid Aktivierungsfunktion [Fei20b]	6
2.3	Tanh Aktivierungsfunktion [Fei20b]	7
2.4	Rectified Linear Unit (ReLU) [Fei20b]	8
2.5	Leaky ReLU [ccs20]	8
2.6	Typische Struktur von einem Convolutional Neural Network [Nel 19] $\ .\ .\ .$	9
2.7	Beispiel Forward pass von einem Convolutional Layer mit einem $7\times7\times3$	
	Input Volumen, zwei $3\times3\times3$ Filter, Padding 1 und Stride 2. [Fei20c] $$	10
2.8	Max pooling Operation mit 2×2 Filtern und Stride 2 [Fei $20c$]	11
2.9	Gradient descent visualisiert [Bha18]	13
2.10	Backpropagation Beispiel anhand einer 2D Neuron mit der Aktivierungs-	
	funktion Sigmoid [Fei20d]	14
2.11	Die Komplette Transposed Convolution Operation [Mis20]	14

Tabellenverzeichnis

Source Code Content

Glossar

CIE Internationale Beleuchtungskommission. 2

CNN Convolutional Neural Network (Gefaltetes Neuronales Netzwerk). 8, 9, IV

Layer Schicht. 2, 3, 9, 10, I

Loss Function Kostenfunktion. 11, 12, 13

Stride Schrittweite einer Faltung bei einem CNN. 9, 10, I

Literaturverzeichnis

- [GBC16] Ian Goodfellow, Yoshua Bengio und Aaron Courville. *Deep Learning*. http://www.deeplearningbook.org. MIT Press, 2016.
- [NH10] Vinod Nair und Geoffrey E. Hinton. "Rectified Linear Units Improve Restricted Boltzmann Machines". In: Proceedings of the 27th International Conference on International Conference on Machine Learning. ICML'10. Haifa, Israel: Omnipress, 2010, S. 807–814. ISBN: 9781605589077. (Besucht am 27.07.2020).

Onlinereferenzen

- [15] Backpropagation. 2015. URL: http://www.inztitut.de/blog/glossar/backpropagation/(besucht am 01.08.2020).
- [Bec19] Roland Becker. Convolutional Neural Networks Aufbau, Funktion und Anwendungsgebiete. 2019. URL: https://jaai.de/convolutional-neural-networks-cnn-aufbau-funktion-und-anwendungsgebiete-1691/ (besucht am 01.08.2020).
- [Dip19] Nico Litzel Dipl.-Ing. (FH) Stefan Luber. Was ist ein Convolutional Neural Network? 2019. URL: https://www.bigdata-insider.de/was-ist-ein-convolutional-neural-network-a-801246/ (besucht am 01.08.2020).
- [Fei17a] Serena Yeung Fei-Fei Li Justin Johnson. Neural Networks 1. 2017. URL: https://cs231n.github.io/neural-networks-1/ (besucht am 12.07.2020).
- [Fei17b] Serena Yeung Fei-Fei Li Justin Johnson. *Optimization 2.* 2017. URL: https://cs231n.github.io/optimization-2/ (besucht am 01.08.2020).
- [Moe18] Julian Moeser. Funktionsweise und Aufbau künstlicher neuronaler Netze. 2018. URL: https://jaai.de/kuenstliche-neuronale-netze-aufbau-funktion-291/ (besucht am 10.07.2020).

Bildreferenzen

- [Bha18] Saugat Bhattarai. What is gradient descent in machine learning? 2018. URL: https://saugatbhattarai.com.np/what-is-gradient-descent-in-machine-learning/(besucht am 01.08.2020).
- [ccs20] ccs96307. 2020. URL: https://clay-atlas.com/us/blog/2020/02/03/machine-learning-english-note-relu-function/(besucht am 31.07.2020).
- [Fei20a] Serena Yeung Fei-Fei Li Justin Johnson. 2020. URL: https://cs231n.github.io/neural-networks-1/ (besucht am 10.07.2020).
- [Fei20b] Serena Yeung Fei-Fei Li Justin Johnson. 2020. URL: https://cs231n.github.io/neural-networks-1/ (besucht am 12.07.2020).
- [Fei20c] Serena Yeung Fei-Fei Li Justin Johnson. 2020. URL: https://cs231n.github.io/convolutional-networks/ (besucht am 01.08.2020).
- [Fei20d] Serena Yeung Fei-Fei Li Justin Johnson. 2020. URL: https://cs231n.github.io/optimization-2/ (besucht am 01.08.2020).
- [Mis20] Divyanshu Mishra. Transposed Convolution Demystified. 2020. URL: https://
 towardsdatascience.com/transposed-convolution-demystified-84ca81b4baba#:
 ~:text=Transposed%20Convolutions%20are%20used%20to,upsampled%
 20to%203x3%20feature%20map. (besucht am 01.08.2020).
- [Nel19] Daniel Nelson. What are Convolutional Neural Networks? 2019. URL: https://www.unite.ai/what-are-convolutional-neural-networks/ (besucht am 01.08.2020).

Anhang A

Eigenständigkeitserklärung

Hiermit versichere ich, dass ich die vorliegende Bachelorarbeit selbstständig und nur unter Verwendung der angegebenen Quellen und Hilfsmittel verfasst habe. Die Arbeit wurde bisher in gleicher oder ähnlicher Form keiner anderen Prüfungsbehörde vorgelegt.

Berlin, den XX.XX.2018

Adrian Saiz Ferri