

Appendix H): Pseudorandom Frequency Hopping Sequence

Test Requirement:

47 CFR Part 15C Section 15.247 (a)(1) requirement:

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence

The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- Number of shift register stages: 9
- Length of pseudo-random sequence: 29 -1 = 511 bits
- · Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

Each frequency used equally on the average by each transmitter.

The system receivers have input bandwidths that match the hopping channel bandwidths of their Corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

The device does not have the ability to be coordinated with other FHSS systems in an effort to avoid the simultaneous occupancy of individual hopping frequencies by multiple transmitters.

Appendix I): Antenna Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 0.54dBi.

	Test frequency range :150KHz-			
	1)The mains terminal disturban	ce voltage test was c	onducted in a shielded	d room.
	2) The EUT was connected to Stabilization Network) whice power cables of all other up	h provides a 50Ω/50	uH + 5Ω linear imped	ance. Th
	which was bonded to the gr			
	for the unit being measured multiple power cables to a sexceeded.	d. A multiple socket of	outlet strip was used t	to connec
	3)The tabletop EUT was place reference plane. And for flo horizontal ground reference	or-standing arrangem		
	4) The test was performed wit EUT shall be 0.4 m from the reference plane was bonde 1 was placed 0.8 m from the ground reference plane for plane. This distance was be All other units of the EUT a LISN 2.	e vertical ground refe d to the horizontal gro he boundary of the to tr LISNs mounted o etween the closest po	rence plane. The verticular reference plane. Init under test and boon top of the ground ints of the LISN 1 and	cal ground The LISN anded to reference the EUT
	5) In order to find the maximum	emission the relativ	e positions of equipme	
	of the interface cables must conducted measurement.			ent and al
Limit:	of the interface cables must			ent and al
Limit:	of the interface cables must conducted measurement.		g to ANSI C63.10 on	ent and al
Limit:	of the interface cables must	be changed according	g to ANSI C63.10 on	ent and al
Limit:	of the interface cables must conducted measurement.	be changed according	g to ANSI C63.10 on	ent and al
Limit:	of the interface cables must conducted measurement. Frequency range (MHz)	be changed according Limit (conditions)	IBμV) Average	ent and al
Limit:	of the interface cables must conducted measurement. Frequency range (MHz) 0.15-0.5	Limit (c Quasi-peak 66 to 56*	IBµV) Average 56 to 46*	ent and al
Limit:	of the interface cables must conducted measurement. Frequency range (MHz) 0.15-0.5 0.5-5	Limit (c Quasi-peak 66 to 56* 56 60 with the logarithm of	IBµV) Average 56 to 46* 46 50 the frequency in the r	(cit)

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

	No.	Freq.	(0	dBuV)		Factor		(dBu∀)		(dBı	ıV)	(0	iB)		
		MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	1	0.1700	36.70	34.25	22.94	9.80	46.50	44.05	32.74	64.96	54.96	-20.91	-22.22	Р	
	2	0.2980	30.93	27.52	27.49	9.80	40.73	37.32	37.29	60.30	50.30	-22.98	-13.01	Р	
	3	0.3540	33.41	30.87	30.60	9.85	43.26	40.72	40.45	58.87	48.87	-18.15	-8.42	Р	
	4	0.4140	28.81	26.87	25.26	9.90	38.71	36.77	35.16	57.57	47.57	-20.80	-12.41	Р	
	5	0.7100	24.07	22.35	17.70	9.90	33.97	32.25	27.60	56.00	46.00	-23.75	-18.40	Р	
	6	1.8780	21.87	20.00	14.45	10.00	31.87	30.00	24.45	56.00	46.00	-26.00	-21.55	Р	

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Neutral line:

		Read	ding_Le	vel	Correct	M	leasuren	nent	Lin	nit	Mai	rgin		
No.	Freq.	(dBuV)		Factor		(dBu∀)		(dB	uV)	(0	dB)		
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.1700	36.65	35.32	23.19	9.80	46.45	45.12	32.99	64.96	54.96	-19.84	-21.97	Р	
2	0.3540	33.56	31.00	30.92	9.85	43.41	40.85	40.77	58.87	48.87	-18.02	-8.10	Р	
3	0.4100	38.62	36.87	17.77	9.90	48.52	46.77	27.67	57.65	47.65	-10.88	-19.98	Р	
4	0.7100	25.57	23.05	19.30	9.90	35.47	32.95	29.20	56.00	46.00	-23.05	-16.80	Р	
5	1.0140	21.33	17.63	14.96	10.00	31.33	27.63	24.96	56.00	46.00	-28.37	-21.04	Р	
6	16.8140	23.16	21.05	13.63	10.24	33.40	31.29	23.87	60.00	50.00	-28.71	-26.13	Р	

Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Report No. : EED32I00153601 Page 51 of 75

Appendix K): Restricted bands around fundamental frequency (Radiated)

Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
	AL 4011	Peak	1MHz	3MHz	Peak	100
	Above 1GHz	Peak	1MHz	10Hz	Average	
Test Procedure:	Below 1GHz test proced	re as below:				_
	a. The EUT was placed of at a 3 meter semi-ane determine the position b. The EUT was set 3 me was mounted on the to c. The antenna height is determine the maximular polarizations of the and d. For each suspected end the antenna was tuned table was turned from e. The test-receiver system Bandwidth with Maximular f. Place a marker at the frequency to show corbands. Save the spect for lowest and highest Above 1GHz test proced	on the top of a rochoic camber. The choic camber. The of the highest rate away from op of a variable-to varied from one movement of the fittenna are set to mission, the EUT of the heights from 0 degrees to 360 mm was set to Petum Hold Mode. The pliance of the restriction of the	the table was adiation. the interfer neight anter to for eld strength make the range of the make the range of the table of tabl	ence-receinna tower. Four meters The Both hore The Both ho	above the groent. worst case an and the rotata maximum reards Specified the transmit in the restricts in the restricts.	o which bund erticand the dible ding.
	Above 10112 test proced					
	g. Different between abo to fully Anechoic Chan meter(Above 18GHz h. b. Test the EUT in the i. The radiation measure Transmitting mode, an j. Repeat above procedu	nber and change he distance is 1 lowest channel ments are perfo d found the X ax	e form table meter and , the Highe rmed in X, kis position	e 0.8 meter table is 1.5 st channel Y, Z axis p ing which i	to 1.5 meter). positioning for t is worse cas	
Limit:	to fully Anechoic Chan meter(Above 18GHz h. b. Test the EUT in the i. The radiation measure Transmitting mode, an j. Repeat above procedu	nber and change he distance is 1 lowest channel ments are perfo d found the X ax ires until all freq	e form table meter and , the Highe rmed in X, kis position uencies me	e 0.8 meter table is 1.5 st channel Y, Z axis p ing which i	to 1.5 meter). positioning for t is worse cas	
_imit:	to fully Anechoic Chan meter(Above 18GHz in h. b. Test the EUT in the i. The radiation measure Transmitting mode, an	nber and change he distance is 1 lowest channel ments are perfo d found the X ax	e form table meter and , the Highe rmed in X, kis position uencies me /m @3m)	e 0.8 meter table is 1.5 st channel Y, Z axis p ing which i easured wa	to 1.5 meter). positioning for t is worse cas as complete.	
-imit:	to fully Anechoic Chan meter(Above 18GHz in the hand). Test the EUT in the interest in the in	he distance is 1 lowest channel ments are performents until all frequents (dBµV).	e form table meter and , the Highe rmed in X, kis position uencies me /m @3m)	e 0.8 meter table is 1.5 st channel Y, Z axis p ing which i easured wa Rer Quasi-pe	to 1.5 meter). positioning for t is worse cas as complete. mark eak Value	
imit:	to fully Anechoic Chan meter(Above 18GHz in the factor). The radiation measure that Transmitting mode, and its requency and the same statements.	he distance is 1 lowest channel ments are perfo d found the X av ires until all frequency Limit (dBµV 40.6	e form table meter and , the Highe rmed in X, xis position uencies me /m @3m)	e 0.8 meter table is 1.5 st channel Y, Z axis p ing which i easured wa Rer Quasi-pe	to 1.5 meter). positioning for t is worse cas as complete. mark eak Value eak Value	
_imit:	to fully Anechoic Chan meter(Above 18GHz has been also a has been also and the fill	hber and change he distance is 1 lowest channel ments are performents until all frequency Limit (dBµV 40.6 43.5	e form table meter and the Highe meter and the Highe med in X, kis position uencies med/m @3m)	e 0.8 meter table is 1.5 st channel Y, Z axis ping which is assured ware Quasi-pe Quasi-pe Quasi-pe	to 1.5 meter). positioning for t is worse cas as complete. mark eak Value eak Value	
Limit:	to fully Anechoic Chan meter(Above 18GHz in the line of the head of the line	Limit (dBµV, 40.0	e form table meter and the Highe meter and the Highe med in X, kis position uencies med media. The media of t	e 0.8 meter table is 1.5 st channel Y, Z axis ping which i easured ware Quasi-pe Quasi-pe Quasi-pe Quasi-pe Quasi-pe	to 1.5 meter). positioning for t is worse cas as complete. mark eak Value eak Value	

Test plot as follows:

Worse cas	se mode:	GFSK(GFSK(1-DH5)										
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Premap Factor (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Antenna Polaxis	Remark	Test channel			
2390.00	32.53	4.28	34.39	44.57	46.99	74	-27.01	Н	PK	Lowest			
2390.00	32.53	4.28	34.39	44.48	46.90	74	-27.10	V	PK	Lowest			
2483.50	32.71	4.51	34.41	50.02	52.83	74	-21.17	Н	PK	Highest			
2483.50	32.71	4.51	34.41	39.72	42.53	54	-11.47	Н	AV	Highest			
2483.50	32.71	4.51	34.41	49.71	52.52	74	-21.48	V	PK	Highest			
2483.50	32.71	4.51	34.41	38.95	41.76	54	-12.24	V	AV	Highest			

Worse cas	se mode:	π/4DQF	τ/4DQPSK(2-DH5)									
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Premap Factor (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Antenna Polaxis	Remark	Test channel		
2390.00	32.53	4.28	34.39	45.33	47.75	74	-26.25	Н	PK	Lowest		
2390.00	32.53	4.28	34.39	45.04	47.46	74	-26.54	V	PK	Lowest		
2483.50	32.71	4.51	34.41	47.24	50.05	74	-23.95	H	PK	Highest		
2483.50	32.71	4.51	34.41	49.79	52.60	74	-21.40	V	PK	Highest		
2483.50	32.71	4.51	34.41	38.44	41.25	54	-12.75	V	AV	Highest		

Worse cas	se mode:	8DPSK	8DPSK(3-DH5)										
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Premap Factor (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Antenna Polaxis	Remark	Test channel			
2390.00	32.53	4.28	34.39	44.91	47.33	74	-26.67	Н	PK	Lowest			
2390.00	32.53	4.28	34.39	44.99	47.41	74	-26.59	V	PK	Lowest			
2483.50	32.71	4.51	34.41	46.89	49.70	74	-24.30	H	PK	Highest			
2483.50	32.71	4.51	34.41	48.66	51.47	74	-22.53	V	PK	Highest			
2483.50	32.71	4.51	34.41	38.18	40.99	54	-13.01	V	AV	Highest			

Note:

- 1) Through Pre-scan transmitter mode with all kind of modulation and all kind of data type, find the 1-DH5 of data type is the worse case of GFSK modulation type, the 2-DH5 of data type is the worse case of $\pi/4DQPSK$ modulation type, the 3-DH5 of data type is the worse case of 8DPSKmodulation type in transmitter mode.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor – Antenna Factor – Cable Factor

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Report No.: EED32I00153601 Page 53 of 75

Appendix L): Radiated Spurious Emissions

Above 1GHz

1 -45,751	1 -5.71				1 45 71
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark
		Detector	INDVV	VDVV	Remark
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average
1	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
/	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak
(6)	(62)	Peak	1MHz	3MHz	Peak

Test Procedure:

Below 1GHz test procedure as below:

a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.

Peak

1MHz

10Hz

Average

- b. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter (Above 18GHz the distance is 1 meter and table is 1.5 meter).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- . Repeat above procedures until all frequencies measured was complete.

Limit:	Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
	0.009MHz-0.490MHz	2400/F(kHz)	-	-	300
3	0.490MHz-1.705MHz	24000/F(kHz)	- /	(S)-	30
)	1.705MHz-30MHz	30	- ((T	30
	30MHz-88MHz	100	40.0	Quasi-peak	3
	88MHz-216MHz	150	43.5	Quasi-peak	3
7.5	216MHz-960MHz	200	46.0	Quasi-peak	3
(25)	960MHz-1GHz	500	54.0	Quasi-peak	3
	Above 1GHz	500	54.0	Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Radiated Spurious Emissions test Data:

Radiated Emission below 1GHz

30MHz~1GHz (QP)

		Ant	Cable	Read		Limit	0ver		
	Freq	Factor	Loss	Level	Level	Line	Limit	Pol/Phase	Remark
_									
	MHz	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
1	48.502	14.43	1.28	6.24	21.95	40.00	-18.05	Horizontal	
2	106.013	13.70	1.57	5.43	20.70	43.50	-22.80	Horizontal	
3	210.786	12.14	2.24	5.63	20.01	43.50	-23.49	Horizontal	
4	437.120	16.89	2.94	6.04	25.87	46.00	-20.13	Horizontal	
5	752.743	20.88	4.00	6.53	31.41	46.00	-14.59	Horizontal	
6 рр	916.069	22.61	4.33	6.88	33.82	46.00	-12.18	Horizontal	

		Ant	cabie	Kead		Limit	over		
	Freq	Factor	Loss	Level	Level	Line	Limit	Pol/Phase	Remark
	MHz	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
1	54.835	14.22	1.42	6.35	21.99	40.00	-18.01	Vertical	
2	98.487	14.08	1.57	5.60	21.25	43.50	-22.25	Vertical	
3	239.987	13.34	2.32	5.55	21.21	46.00	-24.79	Vertical	
4	422.058	16.82	2.89	5.15	24.86	46.00	-21.14	Vertical	
5	568.613	19.26	3.32	6.32	28.90	46.00	-17.10	Vertical	
6 рр	755.387	20.91	3.99	6.42	31.32	46.00	-14.68	Vertical	

Transmitter Emission above 1GHz

Worse case	mode:	GFSK(1-	DH5)	Test chan	nel:	Lowest			
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1101.563	29.98	2.33	35.07	48.88	46.12	74	-27.88	Pass	ЭН
1659.574	31.16	2.69	34.54	47.85	47.16	74	-26.84	Pass	(H)
3795.660	32.95	5.99	34.58	44.32	48.68	74	-25.32	Pass	Ĥ
4804.000	34.69	6.72	34.35	45.87	52.93	74	-21.07	Pass	Н
4804.000	34.69	6.72	34.35	43.59	50.65	54	-3.35	Pass	H-AV
7206.000	36.42	8.35	34.90	37.73	47.60	74	-26.40	Pass	Н
9608.000	37.88	7.67	35.08	38.73	49.20	74	-24.80	Pass	Н
1098.763	29.97	2.32	35.08	48.19	45.40	74	-28.60	Pass	V
1343.505	30.55	2.50	34.82	50.72	48.95	74	-25.05	Pass	V
3644.175	33.06	5.57	34.57	45.29	49.35	74	-24.65	Pass	V
4804.000	34.69	6.72	34.35	41.82	48.88	74	-25.12	Pass	V
7206.000	36.42	8.35	34.90	38.33	48.20	74	-25.80	Pass	V
9608.000	37.88	7.67	35.08	36.99	47.46	74	-26.54	Pass	V

Worse case	mode:	GFSK(1-	DH5)	Test chan	nel:	Middle			
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1498.912	30.87	2.60	34.67	49.36	48.16	74	-25.84	Pass	Н
3854.077	32.90	6.15	34.59	44.41	48.87	74	-25.13	Pass	₩.
4882.000	34.85	6.74	34.33	46.41	53.67	74	-20.33	Pass	Н
4882.000	34.85	6.74	34.33	44.13	51.39	54	-2.61	Pass	H-AV
5895.771	35.82	6.05	34.30	41.82	49.39	74	-24.61	Pass	Н
7323.000	36.43	8.45	34.90	39.58	49.56	74	-24.44	Pass	Н
9764.000	38.05	7.53	35.05	36.66	47.19	74	-26.81	Pass	Н
1399.353	30.67	2.54	34.76	49.79	48.24	74	-25.76	Pass	V
3776.385	32.96	5.94	34.58	44.85	49.17	74	-24.83	Pass	V
4882.000	34.85	6.74	34.33	45.77	53.03	74	-20.97	Pass	V
4882.000	34.85	6.74	34.33	43.49	50.75	54	-3.25	Pass	V-AV
7323.000	36.43	8.45	34.90	38.86	48.84	74	-25.16	Pass	V
9764.000	38.05	7.53	35.05	38.03	48.56	74	-25.44	Pass	V

Worse case	Worse case mode:		DH5)	Test chan	nel:	Highest	hest		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1198.095	30.22	2.40	34.97	48.30	45.95	74	-28.05	Pass	Н
1663.803	31.17	2.70	34.54	48.53	47.86	74	-26.14	Pass	· H
3747.656	32.98	5.86	34.58	44.99	49.25	74	-24.75	Pass	H
4960.000	35.02	6.75	34.31	42.74	50.20	74	-23.80	Pass	Н
7440.000	36.45	8.55	34.90	37.79	47.89	74	-26.11	Pass	Н
9920.000	38.22	7.41	35.02	36.39	47.00	74	-27.00	Pass	Н
1204.210	30.24	2.41	34.96	47.19	44.88	74	-29.12	Pass	V
1435.431	30.74	2.56	34.73	48.40	46.97	74	-27.03	Pass	V
3854.077	32.90	6.15	34.59	44.92	49.38	74	-24.62	Pass	V
4960.000	35.02	6.75	34.31	41.13	48.59	74	-25.41	Pass	V
7440.000	36.45	8.55	34.90	39.03	49.13	74	-24.87	Pass	V
9920.000	38.22	7.41	35.02	38.21	48.82	74	-25.18	Pass	V

Worse case	Worse case mode:		π/4DQPSK(2-DH5)		nnel:	Lowest	Lowest		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1198.095	30.22	2.40	34.97	52.60	50.25	74	-23.75	Pass	Н
3419.491	33.24	4.90	34.55	44.71	48.30	74	-25.70	Pass	Н
4804.000	34.69	6.72	34.35	45.56	52.62	74	-21.38	Pass	Н
4804.000	34.69	6.72	34.35	43.30	50.36	54	-3.64	Pass	H-AV
5821.207	35.77	6.10	34.30	43.22	50.79	74	-23.21	Pass	Н
7206.000	36.42	8.35	34.90	39.19	49.06	74	-24.94	Pass	Н
9608.000	37.88	7.67	35.08	38.02	48.49	74	-25.51	Pass	Н
1392.247	30.65	2.54	34.77	49.64	48.06	74	-25.94	Pass	V
3728.625	33.00	5.80	34.58	45.07	49.29	74	-24.71	Pass	V
4804.000	34.69	6.72	34.35	43.24	50.30	74	-23.70	Pass	V
5880.782	35.81	6.06	34.30	42.86	50.43	74	-23.57	Pass	V
7206.000	36.42	8.35	34.90	39.23	49.10	74	-24.90	Pass	V
9608.000	37.88	7.67	35.08	39.33	49.80	74	-24.20	Pass	V

Page 58 of 75

Worse case	mode:	π/4DQPS	SK(2-DH5)	Test char	Test channel:		Middle			
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis	
1118.517	30.02	2.34	35.05	47.49	44.80	74	-29.20	Pass	Н	
1593.340	31.04	2.66	34.60	45.97	45.07	74	-28.93	Pass	-°:H	
4882.000	34.85	6.74	34.33	47.32	54.58	74	-19.42	Pass	H	
4882.000	34.85	6.74	34.33	45.06	52.32	54	-1.68	Pass	H-AV	
5821.207	35.77	6.10	34.30	42.79	50.36	74	-23.64	Pass	Н	
7323.000	36.43	8.45	34.90	38.31	48.29	74	-25.71	Pass	Н	
9764.000	38.05	7.53	35.05	37.00	47.53	74	-26.47	Pass	Н	
1336.682	30.54	2.50	34.82	48.43	46.65	74	-27.35	Pass	V	
3834.506	32.92	6.10	34.59	45.27	49.70	74	-24.30	Pass	V	
4882.000	34.85	6.74	34.33	44.60	51.86	74	-22.14	Pass	V	
4882.000	34.85	6.74	34.33	42.33	49.59	54	-4.41	Pass	V-AV	
6017.064	35.91	6.01	34.31	43.11	50.72	74	-23.28	Pass	V	
7323.000	36.43	8.45	34.90	39.24	49.22	74	-24.78	Pass	V	
9764.000	38.05	7.53	35.05	37.34	47.87	74	-26.13	Pass	V	

Worse case	Worse case mode:		π/4DQPSK(2-DH5)		Test channel:				
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1464.963	30.80	2.58	34.70	47.97	46.65	74	-27.35	Pass	Н
4960.000	35.02	6.75	34.31	44.14	51.60	74	-22.40	Pass	₩ H
4960.000	35.02	6.75	34.31	41.95	49.41	54	-4.59	Pass	H-AV
5925.863	35.85	6.02	34.30	42.99	50.56	74	-23.44	Pass	Н
7440.000	36.45	8.55	34.90	38.20	48.30	74	-25.70	Pass	Н
9920.000	38.22	7.41	35.02	36.35	46.96	74	-27.04	Pass	Н
1364.182	30.60	2.52	34.80	48.24	46.56	74	-27.44	Pass	V
1846.834	31.47	2.79	34.40	47.24	47.10	74	-26.90	Pass	V
3634.910	33.07	5.54	34.57	45.24	49.28	74	-24.72	Pass	V
4960.000	35.02	6.75	34.31	41.93	49.39	74	-24.61	Pass	V
7440.000	36.45	8.55	34.90	39.21	49.31	74	-24.69	Pass	V
9920.000	38.22	7.41	35.02	35.13	45.74	74	-28.26	Pass	V

Worse case	mode:	8DPSK(3	-DH5)	Test chan	nel:	Lowest	_owest		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1198.095	30.22	2.40	34.97	49.86	47.51	74	-26.49	Pass	Н
3834.506	32.92	6.10	34.59	44.83	49.26	74	-24.74	Pass	P3H
4804.000	34.69	6.72	34.35	42.65	49.71	74	-24.29	Pass	H
5850.919	35.79	6.08	34.30	43.01	50.58	74	-23.42	Pass	H
7206.000	36.42	8.35	34.90	39.08	48.95	74	-25.05	Pass	Н
9608.000	37.88	7.67	35.08	37.12	47.59	74	-26.41	Pass	Н
1118.517	30.02	2.34	35.05	47.18	44.49	74	-29.51	Pass	V
1431.782	30.74	2.56	34.73	48.59	47.16	74	-26.84	Pass	V
4213.211	33.34	6.59	34.53	43.99	49.39	74	-24.61	Pass	V
4804.000	34.69	6.72	34.35	42.40	49.46	74	-24.54	Pass	V
7206.000	36.42	8.35	34.90	38.39	48.26	74	-25.74	Pass	V
9608.000	37.88	7.67	35.08	36.13	46.60	74	-27.40	Pass	V

Worse case	mode:	8DPSK(3	3-DH5)	Test chan	nel:	Middle	dle		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1367.659	30.60	2.52	34.79	47.00	45.33	74	-28.67	Pass	Н
1668.044	31.18	2.70	34.54	47.67	47.01	74	-26.99	Pass	Н
3903.444	32.87	6.28	34.59	45.00	49.56	74	-24.44	Pass	H
4882.000	34.85	6.74	34.33	45.37	52.63	74	-21.37	Pass	₩ H
4882.000	34.85	6.74	34.33	43.11	50.37	54	-3.63	Pass	H-AV
7323.000	36.43	8.45	34.90	37.33	47.31	74	-26.69	Pass	Н
9764.000	38.05	7.53	35.05	36.68	47.21	74	-26.79	Pass	Н
1095.969	29.96	2.32	35.08	47.51	44.71	74	-29.29	Pass	V
1442.758	30.76	2.57	34.72	51.28	49.89	74	-24.11	Pass	V
3625.669	33.07	5.51	34.57	45.03	49.04	74	-24.96	Pass	V
4882.000	34.85	6.74	34.33	42.51	49.77	74	-24.23	Pass	V
7323.000	36.43	8.45	34.90	38.63	48.61	74	-25.39	Pass	V
9764.000	38.05	7.53	35.05	37.26	47.79	74	-26.21	Pass	V

Worse case	Worse case mode:		8DPSK(3-DH5)		nel:	Highest			
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1118.517	30.02	2.34	35.05	48.19	45.50	74	-28.50	Pass	Н
1668.044	31.18	2.70	34.54	47.61	46.95	74	-27.05	Pass	т
4076.070	32.99	6.56	34.57	44.64	49.62	74	-24.38	Pass	H
4960.000	35.02	6.75	34.31	42.93	50.39	74	-23.61	Pass	H
7440.000	36.45	8.55	34.90	38.18	48.28	74	-25.72	Pass	Н
9920.000	38.22	7.41	35.02	36.26	46.87	74	-27.13	Pass	Н
1118.517	30.02	2.34	35.05	46.89	44.20	74	-29.80	Pass	V
1378.143	30.63	2.53	34.78	49.30	47.68	74	-26.32	Pass	V
3616.451	33.08	5.49	34.56	45.44	49.45	74	-24.55	Pass	V
4960.000	35.02	6.75	34.31	41.04	48.50	74	-25.50	Pass	V
7440.000	36.45	8.55	34.90	38.50	48.60	74	-25.40	Pass	V
9920.000	38.22	7.41	35.02	35.87	46.48	74	-27.52	Pass	V

Note:

- 1) Through Pre-scan transmitter mode with all kind of modulation and all kind of data type, find the 1-DH5 of data type is the worse case of GFSK modulation type, the 2-DH5 of data type is the worse case of $\pi/4DQPSK$ modulation type, he 3-DH5 of data type is the worse case of 8DPSKmodulation type in transmitter mode.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

3) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

PHOTOGRAPHS OF TEST SETUP

Test mode No.: OKAT3W/37

Radiated spurious emission Test Setup-2(Above 1GHz)

Page 62 of 75

PHOTOGRAPHS OF EUT Constructional Details

Test mode No.: OKAT3W/37

Report No.: EED32I00153601

View of Product-7

View of Product-8

Page 67 of 75

View of Product-11

View of Product-12

View of Product-14

View of Product-15

View of Product-19

View of Product-20

View of Product-21

View of Product-22

View of Product-24

View of Product-25

View of Product-26

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com