



Name: YADATI KRISHNA

# Assignment-4

**Roll No.** : FWC22036

# **Problem Statement:**

Slope of a line passing through P(2,3) and intersecting the line x+y=7 at a distance of 4 units from P.

## SOLUTION:

#### Given:

Equation of line is x+y=7

$$P = (2,3) \tag{1}$$

#### To Find

Slope of the line passing through P(2,3)

## STEP-1

Let A be any point on the line and the coordinates are,

$$\mathbf{A} = \begin{pmatrix} 4\\3 \end{pmatrix} \tag{2}$$

From given, we know that point P

$$\mathbf{P} = \begin{pmatrix} 2\\3 \end{pmatrix} \tag{3}$$

Let  $\mathbf{m}$  be the directional vector

$$\mathbf{m} = \begin{pmatrix} 1 \\ -1 \end{pmatrix} \tag{4}$$

Given distance from point  ${\bf P}$  to the line is 4

## STEP-2

The distance from a point  $\mathbf{P}$  to the line is given by,

$$d(\lambda) = \|\mathbf{A} + \lambda \mathbf{m} - \mathbf{P}\| \tag{5}$$

Squaring on both the sides

$$d^{2}(\lambda) = \|\mathbf{A} + \lambda \mathbf{m} - \mathbf{P}\|^{2} \tag{6}$$

After substituting  $\mathbf{A}$ ,  $\mathbf{P}$  and  $\mathbf{m}$  in the above equation and solving (6) we get

$$\lambda = 1.64, -3.64 \tag{7}$$

Using equation (7) any point on the line

$$\mathbf{x} = \mathbf{A} + \lambda \mathbf{m} \tag{8}$$

substituting  $\mathbf{A}$  and  $\mathbf{m}$  in (8) we get

$$\mathbf{x1} = \begin{pmatrix} 0.36\\ 6.64 \end{pmatrix} \tag{9}$$

and

$$\mathbf{x2} = \begin{pmatrix} 5.64\\ 1.36 \end{pmatrix} \tag{10}$$

using (9) and (10) in line equation we get

$$2.21x+y=8.66$$
  
 $x+2.21y=7.42$ 



## Construction

| vertex | coordinates                            |
|--------|----------------------------------------|
| P      | $\begin{pmatrix} 2 \\ 3 \end{pmatrix}$ |

Download the code Github link: Assignment-4.

STEP-3