EXERCISE-1 (SPECIAL DPP)

SPECIAL DPP-1

Q.1
$$\frac{1}{\log_{\sqrt{bc}} abc} + \frac{1}{\log_{\sqrt{aa}} abc} + \frac{1}{\log_{\sqrt{ab}} abc}$$
 has the value equal to

- (A) 1/2
- (B) 1

(C) 2

- (D) 4
- If $5 x^{\log_2 3} + 3^{\log_2 x} = 162$ then logarithm of x to the base 4 has the value equal to Q.2 (A)2(C) - 1(D) 3/2
- If $\log (x+y) = \log 2 + \frac{1}{2} \log x + \frac{1}{2} \log y$, then Q.3
 - (A) x + y = 0
- (B) xy = 1
- (C) $x^2 + xy + y^2 = 0$ (D) x y = 0
- If $\log_2(\log_3(\log_4 x)) = 0$, $\log_4(\log_3(\log_2 y)) = 0$ and $\log_3(\log_4(\log_2 z)) = 0$, then the correct Q.4 option is
 - (A) x>y>z
- (B) x>z>v
- (C)z>x>y
- (D)z>y>z

- The value of $\log_2\left(\frac{1}{7^{\log_7 0.125}}\right)$, is Q.5.
 - (A) I

- (C)3

- (D) 4
- Let x satisfies the equation $\log_3(\log_9 x) = \log_9(\log_3 x)$ then the product of the digits in x is Q.6 (A)9(B) 18 (C)36(D) 8
- If $\log_3(\log_2 a) + \log_{\frac{1}{2}} (\log_{\frac{1}{2}} b) = 1$, then the value of ab^3 is Q.7
 - (A)9

(B) 3

(C) 1

- (D) $\frac{1}{2}$
- The value of $\log_{\frac{4}{3}} \left(\frac{56 + \sqrt{56 + \sqrt{56 + \sqrt{56 + \dots \infty}}}}{\sqrt{64 \sqrt{64 \sqrt{64}}}} \right)$ is equal to Q.8
 - (A)0

(C)3

- (D) 4
- The value of $\log_{\frac{1}{6}} 2 \cdot \log_5 36 \cdot \log_{17} 125 \cdot \log_{\frac{1}{\sqrt{2}}} 17$, is equal to Q.9
 - (A) 3
- (C)6

(D) 12

		- 1		part the second second		The second second	LOGARITH
Q.10		Column-I			Column-II		
	(A)	$\log_2 x = -\log_{\frac{1}{2}} 7$, then the value of	fx is	(P)	1/49		
	(B)	$\log_3 y = \frac{-}{\log}$	$\frac{1}{32}$, then the value of	fyis	(Q)	1 36	
	(C)	$\log_{\frac{1}{4}} z = \log_{\frac{1}{4}} z$	g ₂ 6, then the value of	fzis	(R)	<u>1</u> 27	
	(D)	$\log_{\frac{1}{9}} w = 1$	og ₃ 7, then the value	of w is	(S)	7	
					(T)	$\frac{1}{6}$	
			SP	ECIAL DPP-2			
Q.1	Product of all the solution of equation $x^{\log_{10} x} = \left(100 + 2^{\sqrt{\log_2 3}} - 3^{\sqrt{\log_3 2}}\right)x$ is						
	(A) $\frac{1}{1}$	_	(B) I	(C) 10		(D) 100	
Q.2	If $\log_7 2 = m$, then the value of $\log_{49} 28$ is						
	(A) 2	(1+2m)	$(B) \frac{1+2m}{2}$	(C) $\frac{2}{1+2m}$		(D) 1 + m	
Q.3	If P = (A) 3	= log ₅ (log ₅ 3) a	and $3^{C+5^{-P}} = 405 \text{ th}$ (B) 4	en C is equal to (C) 81		(D) 5	
Q.4	If $\frac{a + \log_4 3}{a + \log_2 3} = \frac{a + \log_8 3}{a + \log_4 3} = b$, then b is equal to						
	(A) $\frac{1}{2}$	j.	(B) $\frac{2}{3}$	(C) $\frac{1}{3}$		(D) $\frac{3}{2}$	
Q.5	Let x, y and z be positive real numbers such that $x^{\log_2 7} = 8$, $y^{\log_3 5} = 81$ and $z^{\log_5 216} = \sqrt[3]{5}$. The value of $x^{(\log_2 7)^2} + y^{(\log_3 5)^2} + z^{(\log_5 216)^2}$, is						
	The va	alue of x 362	7 + y = 57 + Z = 5	, IS			

Q.6 If x = 500, y = 100 and z = 5050, then the value of $(\log_{xyz} x^z)(1 + \log_x yz)$ is equal to (A) 500 (B) 100 (C) 5050 (D) 10

(B) 750

(A) 526

(C) 874

(D) 974

Suppose n be an integer greater than 1, let $a_n = \frac{1}{\log_2 2002}$. Suppose $b = a_2 + a_3 + a_4 + a_5$ and Q.7 $c = a_{10} + a_{11} + a_{12} + a_{13} + a_{14}$. Then (b - c) equals

(A)
$$\frac{-1}{1001}$$

Q.9

(B)
$$\frac{1}{1002}$$

$$(D) - 2$$

(D) LMN = 30

Q.8 If
$$L = \sum_{r=7}^{2400} \log_7 \left(\frac{r+1}{r} \right)$$
, $M = \prod_{r=2}^{1023} \log_r \left(r+1 \right)$ and $N = \sum_{r=2}^{2011} \left(\frac{1}{\log_r p} \right)$ where $p = (1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot \dots \cdot 2011)$, then

(B) $M^2 + N^2 = 101$ (C) L - M + N = 6(A) L + M = 13

(C)
$$7^{\log_3^5} + 3^{\log_5^7} - 5^{\log_3^7} - 7^{\log_5^3}$$

(D)
$$\log \tan 1^\circ + \log \tan 2^\circ + \log \tan 3^\circ + \dots + \log \tan 89^\circ$$
.

Q.10 Column-I Column-II

(A) Given
$$x > 1$$
 and $\log_x \left(x^{x^2}\right) + \log_x \left(x^{-5x}\right) = \log_x \left(\frac{1}{x^6}\right)$. (P) 2

The sum of all values of x that satisfying the equation, is

(B) Let
$$0 < x < \pi$$
, $3^{\tan x} = 27^{\sin x}$, then the value of sec x, is (Q) 3

(C) Let a = x - 2 and b = x - 4.

The value of
$$x$$
 satisfying the equation (R) 4

$$\frac{\log_{a}(x-3)\log_{b}(x+10)}{\log_{b}(x-3)} = 2, \text{ is}$$
 (S) 5

(D) The real values of x so that all terms are real and satisfy the equation
$$\sqrt{2x} = \sqrt{x+7} - 1$$
, is

Q.11 If
$$\prod_{r=0}^{26} \log_r(r+1) = 3^x$$
, then find the value of x.

SPECIAL DPP-3

Q.1 If
$$10^{\log_a(\log_b(\log_c x))} = 1$$
 and $10^{(\log_b(\log_c(\log_a x)))} = 1$ then, a is equal to

(A)
$$\frac{a}{b}$$

$$(D) c^{b/c}$$

If $x \in R$, then number of real solution of the equation $2^x + 2^{-x} = \log_s 24$ is Q.2 (B) 1 (C) 2

If $x \ge y > 1$ then the maximum value of $\log_x \left(\frac{x}{y}\right) + \log_y \left(\frac{y}{x}\right)$ is equal to Q.3

$$(A)-2$$

Q.4 If
$$\log_5(3^x-4^y)=3$$
 and $3^{\frac{x}{2}}-2^y=5$, then $\frac{x}{y}$ is equal to
$$(A) \frac{2(\log_2 5)-2}{1+\log_2 5} \qquad (B) \frac{(\log_3 5)+2}{1+\log_2 5} \qquad (C) \frac{2(\log_3 5)+2}{1+\log_2 5} \qquad (D) \frac{2(\log_3 5)+1}{1+\log_2 5}$$
Q.5 Let $x=4^{\log_2 \sqrt{9^{k-1}+7}}$ and $y=\frac{1}{32^{\log_2 \sqrt[3]{3^{k-1}+1}}}$ and $xy=4$, then the sum of the cubes of the real value(s) of k is $(A) \ 1 \qquad (B) \ 5 \qquad (C) \ 8 \qquad (D) \ 9$
Q.6 Number of real solution(s) of the equation $9^{\log_3(\ln x)}=\ln x-(\ln^2 x)+1$ is equal to $(A) \ 0 \qquad (B) \ 1 \qquad (C) \ 2 \qquad (D) \ 3$
Q.7 The value of the expression $\frac{1}{\log_4(18)}+\frac{1}{2\log_6(3)+\log_6(2)}+\frac{5}{\log_3(18)}$, is $(A) \ \text{odd} \qquad (C) \ \text{even composite} \qquad (D) \ \text{twin prime with 5}$
Q.8 Which of the following real numbers is(are) non-positive?
$$(A) \ \log_{0.3}\left(\frac{\sqrt{5}+2}{\sqrt{5}-2}\right) \qquad (B) \ \log_7\left(\sqrt{83}-9\right)$$
(C) $\log_{2-\sqrt{3}}\left(\sqrt{2}+1\right) \qquad (D) \ \log_2\sqrt{9\cdot\sqrt[3]{27^{\frac{-5}{3}}\cdot243^{\frac{-7}{3}}}}$
Q.9 Given that $\frac{1}{\log_7 2}+\frac{1}{\log_9 4}=x$, then which of the following will divide $(4)^x$?
$$(A) \ 3 \qquad (B) \ 7 \qquad (C) \ 9 \qquad (D) \ 21$$
Q.10 Column-I (A) The value of expression $3^{\sqrt{\log_2 7}8}-2^{\sqrt{\log_3 243}}-5^{\sqrt{\log_{22} 81}}+3^{\sqrt{\log_{22} 5}}+\sqrt{2^{\log_{2} 9}}+3^{\log_{2} 425}-5^{\log_4 9}$, is less than (B) The value of x satisfying the equation (Q)

$$2^{\log_2 e^{\ln 5 \log_5 7 \log_7 10 \log_{10}(8x-3)}} = 13, \text{ is}$$
 (R) 4

(C) The number
$$N = \left(\frac{1}{\log_2 \pi} + \frac{1}{\log_6 \pi}\right)$$
 is less than (S) 5

(D) Let
$$l = (\log_3 4 + \log_2 9)^2 - (\log_3 4 - \log_2 9)^2$$
 and $m = (0.8) (1 + 9^{\log_3 8})^{\log_{65} 5}$ (T) 6 then $(l+m)$ is divisible by

Q.11 If $\log_2(\log_8 x) = \log_8(\log_2 x)$, find the value of $(\log_2 x)^2$.

SPECIAL DPP-4

- Q.1 If $\log_{30}(3) = \alpha$ and $\log_{30}(5) = \beta$, then $\log_{30}(8)$ is equal to
 (A) 3 $(1 + \alpha \beta)$ (B) 3 $(1 + \alpha + \beta)$ (C) 3 $(\alpha + \beta)$ (D) 3 $(1 \alpha \beta)$
- Q.2 The equation $(\log_{10}x + 2)^3 + (\log_{10}x 1)^3 = (2\log_{10}x + 1)^3$ has
 (A) no natural solution
 (B) two rational solutions
 (C) no prime solution.
 (D) one irrational solution.

Q.3

Q.4

- Column-I Column-II If $\log_{h} 3 = 4$ and $\log_{h2} 27 = \frac{3a}{2}$, (A) **(P)** 2 then the value of $(a^2 - b^4)$ is equal to 3 (Q) **(B)** If number of digits in 12¹¹ is 'd', and number of cyphers after (R) 6 decimal before a significant figure starts in (0.2)9 is 'c', then (d-c) is equal to If $N = \text{antilog}_3 (\log_6 (\text{antilog}_{./5} (\log_5 1296)))$, (C) **(S)** 13 then the characteristic of log N to the base 2, is equal to Column-I Column-II
- (A) If $\left(\log_2\left(\log_{\frac{1}{2}}(\log_2 a)\right)\right)^2 + \left(\log_3\left(\log_{\frac{1}{3}}(\log_3 b)\right)\right)^2 = 0$, (P) 1 then $(a^2 + b^3)$ is greater than
 - (B) If $11^{\log_{10} x} = 242 x^{\log_{10} 11}$ then x is coprime with (Q) 2
 - (C) If $p = \sqrt[3]{\sqrt{2} + 1} \sqrt[3]{\sqrt{2} 1}$, then the value of $(p^3 + 3p + 1)$ is less than (R) 3
 - (D) If $\log_{\frac{\sqrt{x}}{2}} (\log_9(\sqrt{3} + \sqrt{12})) = 2$, (S) 4 then the value of x is twin prime with (T) 5
- Q.5 Given that $\log 2 = 0.301$, find the number of digits before decimal in the solution to the equation $\log_5(\log_4(\log_3(\log_2 x)) = 0$.
- Q.6 Let $N = log_3 \left(\frac{log_3 3^{3^3}}{log_{3^3} 3^{3^3}} \right)$, then find the sum of digits in N.
- Q.7 Find the sum of all integral values of x satisfying $(\log_5 x)^2 + \log_{5x} (\frac{5}{x}) = 1$.

SPECIAL DPP-5

- If A is the number of integers whose logarithms to the base 10 have characteristic 11 and B the number Q.1 of integers, the logarithm of whose reciprocals to the base 10 have characteristic -4, then the value of $(\log_{10}A - \log_{10}B)$ is equal to
 - (A) 7
 - (B)7
- (C)8

- (D) 9
- $\frac{\left(\log_{\frac{a}{b}}p\right)^{-} + \left(\log_{\frac{b}{c}}p\right)^{-} + \left(\log_{\frac{c}{a}}p\right)^{-}}{\left(\log_{\frac{a}{b}}p + \log_{\frac{b}{c}}p + \log_{\frac{c}{c}}p\right)^{2}}, \text{ wherever defined, simplifies to}$ The expression Q.2 (D) 4 (A) 1(B)2(C)3
- Q.3 Number of ordered pair(s) of (x, y) satisfying the system of equations,

 $\log_2 xy = 5$ and $\log_{1/2} \frac{x}{y} = 1$ is:

- (A) one
- (B) two
- (C) three
- (D) four

Paragraph for question nos. 4 to 6

 $\log_{M} N = \alpha + \beta$, where α is an integer & $\beta \in [0, 1)$

- Q.4 If M & α are prime & $\alpha + M = 7$ then the greatest integral value of N is
 - (A) 64
- (B) 63
- (C) 125
- (D) 124
- If M & α are twin prime & $\alpha + M = 8$ then the greatest integral value of N is Q.5 (B) 625 (A)624(C) 728

- (D) 729
- If M & α are relative prime & $\alpha + M = 7$ then minimum integral value of N is Q.6 (A)25(B)32(C)6(D) 81

- Column-I Q.7 Column-II
 - The expression $x = \log_2 \log_9 \sqrt{6 + \sqrt{6 + \sqrt{6 + \dots \infty}}}$ simplifies to (A)
- **(P)** an integer
- The number $N = 2^{(\log_2 3 \cdot \log_3 4 \cdot \log_4 5 \cdot \dots \cdot \log_{99} 100)}$ simplifies to **(B)**
- (Q) a prime
- The expression $\frac{1}{\log_{\epsilon} 3} + \frac{1}{\log_{\epsilon} 3} \frac{1}{\log_{10} 3}$ simplifies to (C)
- (R) a natural
- The number $N = \sqrt{2 + \sqrt{5} \sqrt{6 3\sqrt{5} + \sqrt{14 6\sqrt{5}}}}$ simplifies to (D)
 - **(S)** a composite

- Q.8 If sum of the integral values of x satisfying the equation $|x-1|^{\log^2 x \log x^2} = |x-1|^3$ is N, then find characteristic of logarithm of N to the base 5.
- Q.9 If x satisfies the equation $\log_{125} x^3 3\sqrt{\log_{25} x^2} = 4$, then find the number of digits in x. [Use: $\log 2 = 0.3010$]
- Q.10 Find the sum of all possible values of x satisfying the equation

$$\sqrt{x^2 - 4x + 4} = (\log_2 9)(\log_3 \sqrt{5})(\log_{25} 256)$$

EXERCISE-2

Q.1 Let
$$\mathbf{A}$$
 denotes the value of $\log_{10}\left(\frac{ab+\sqrt{(ab)^2-4(a+b)}}{2}\right) + \log_{10}\left(\frac{ab-\sqrt{(ab)^2-4(a+b)}}{2}\right)$ when $a=43$ and $b=57$ and \mathbf{B} denotes the value of the expression $\left(2^{\log_6 18}\right) \cdot \left(3^{\log_6 3}\right)$. Find the value of $(\mathbf{A} \cdot \mathbf{B})$.

- Q.2(a) If $x = \log_3 4$ and $y = \log_5 3$, find the value of $\log_3 10$ and $\log_3 \left(\frac{6}{5}\right)$ in terms of x and y.
 - (b) If $k^{\log_2 5} = 16$, find the value of $k^{(\log_2 5)^2}$.

Q.3 Prove that: (a)
$$\frac{\log_2 24}{\log_{96} 2} - \frac{\log_2 192}{\log_{12} 2} = 3;$$
 (b) $\frac{\log_3 135}{\log_{15} 3} - \frac{\log_3 5}{\log_{405} 3} = 3$

- Q.4 Given that $\log_2 a = s$, $\log_4 b = s^2$ and $\log_{c^2}(8) = \frac{2}{s^3 + 1}$. Write $\log_2 \frac{a^2 b^5}{c^4}$ as a function of 's' (a, b, c > 0, c \neq 1).
- Q.5 Simplify the following:

(a)
$$4^{5\log_{4}\sqrt{2}(3-\sqrt{6})-6\log_{8}(\sqrt{3}-\sqrt{2})}$$
 (b) $\frac{81^{\frac{1}{\log_{5}9}}+3^{\frac{3}{\log_{\sqrt{6}3}}}}{409} \left(\left(\sqrt{7}\right)^{\frac{2}{\log_{25}7}} - \left(125\right)^{\log_{25}6} \right)$

(c)
$$5^{\log_{1/5}(\frac{1}{2})} + \log_{\sqrt{2}} \frac{4}{\sqrt{7} + \sqrt{3}} + \log_{1/2} \frac{1}{10 + 2\sqrt{21}}$$
 (d) $49^{(1 - \log_7 2)} + 5^{-\log_5 4}$

Q.6 Find the square of the sum of the roots of the equation $\log_3 x \cdot \log_4 x \cdot \log_5 x = \log_3 x \cdot \log_4 x + \log_4 x \cdot \log_5 x + \log_5 x \cdot \log_3 x.$

Q.7 Let a and b be real numbers greater than 1 for which there exists a positive real number c, different from 1, such that

 $2(\log_a c + \log_b c) = 9\log_{ab} c$. Find the largest possible value of $\log_a b$.

- If a, b, c are positive real numbers such that $a^{\log_3 7} = 27$; $b^{\log_7 11} = 49$ and $c^{\log_{11} 25} = \sqrt{11}$. Q.8 Find the value of $\left(a^{(\log_3 7)^2} + b^{(\log_7 11)^2} + c^{(\log_{11} 25)^2}\right)$.
- (a) $\log(\log x) + \log(\log x^3 2) = 0$; where base of log is 10 everywhere. Q.9

(b) $\log_{x} 2 \cdot \log_{2x} 2 = \log_{4x} 2$

(c) $5^{\log x} + 5 x^{\log 5} = 3 (a > 0)$; where base of log is a.

(d) $x^{\log x+4} = 32$, where base of logarithm is 2.

Q.10 Solve the system of equations:

 $\log_a x \log_a (xyz) = 48$

 $\log_a^2 y \log_a^2 (xyz) = 12, a > 0, a \ne 1.$

 $\log_a z \log_a (xyz) = 84$

- $\log_{x+1} (x^2 + x 6)^2 = 4$ Q.11
- Q.12 $\log_5 120 + (x-3) 2 \cdot \log_5 (1 5^{x-3}) = -\log_5 (0.2 5^{x-4})$
- Q.13 $\log 4 + \left(1 + \frac{1}{2x}\right) \log 3 = \log(\sqrt[8]{3} + 27).$
- Q.14 If 'x' and 'y' are real numbers such that, $2 \log(2y-3x) = \log x + \log y$, find $\frac{x}{y}$.
- Find the sum of all solutions of the equation $3^{(\log_9 x)^2 \frac{9}{2}\log_9 x + 5} = 3\sqrt{3}$.
- Q.16 Positive numbers x, y and z satisfy $xyz = 10^{81}$ and $(\log_{10}x)(\log_{10}yz) + (\log_{10}y)(\log_{10}z) = 468$. Find the value of $(\log_{10} x)^2 + (\log_{10} y)^2 + (\log_{10} z)^2$.
- Q.17
 - Given: $\log_{10} 34.56 = 1.5386$, find $\log_{10} 3.456$; $\log_{10} 0.3456$ & $\log_{10} 0.003456$. (a)
 - Find the number of positive integers which have the characteristic 3, when the base of the logarithm is 7.
 - If $\log_{10} 2 = 0.3010$ & $\log_{10} 3 = 0.4771$, find the value of $\log_{10} (2.25)$.
 - If $N = \text{antilog}_3(\log_6(\text{antilog}_{./5}(\log_5 1296)))$, then find the characteristic of log N to the base 2.
 - Let L be the number of digits in 3⁴⁰ and M be the number of zeroes in 3⁻⁴⁰ after decimal before a significant digit, then find (L-M).
- Q.18 If $\log_{3x} 45 = \log_{4x} 40\sqrt{3}$ then find the characteristic of $\log x^3$ to the base 7.

If (x_1, y_1) and (x_2, y_2) are the solution of the system of equation 0.19 $\log_{225}(x) + \log_{64}(y) = 4$ $\log_{\nu}(225) - \log_{\nu}(64) = 1$ then find the value of $\log_{30}(x_1y_1x_2y_2)$.

Q.20 Solve for x:
$$\log^2(4-x) + \log(4-x) \cdot \log\left(x + \frac{1}{2}\right) - 2\log^2\left(x + \frac{1}{2}\right) = 0.$$

EXERCISE-3

(JEE-ADVANCED Previous Year's Questions)

Let (x_0, y_0) be the solution of the following equations Q.1

$$(2x)^{\ln 2} = (3y)^{\ln 3}$$

 $3^{\ln x} = 2^{\ln y}$

Then x_0 is

(A)
$$\frac{1}{6}$$

(B)
$$\frac{1}{3}$$
 (C) $\frac{1}{2}$

[JEE 2011, 3]

Q.2 The value of
$$6 + \log_{\frac{3}{2}} \left(\frac{1}{3\sqrt{2}} \sqrt{4 - \frac{1}{3\sqrt{2}} \sqrt{4 - \frac{1}{3\sqrt{2}} \sqrt{4 - \frac{1}{3\sqrt{2}} \dots}}} \right)$$
 is [JEE 2012, 4]

If $3^x = 4^{x-1}$, then x =Q.3

$$(A) \frac{2\log_3 2}{2\log_3 2}$$

(B)
$$\frac{2}{2-\log_2 3}$$

$$(C) \frac{1}{1 - \log_4 3}$$

(A)
$$\frac{2\log_3 2}{2\log_3 2 - 1}$$
 (B) $\frac{2}{2 - \log_2 3}$ (C) $\frac{1}{1 - \log_4 3}$ (D) $\frac{2\log_2 3}{2\log_2 3 - 1}$

[JEE ADV. 2013, 3 (-1)]

(Potential Problems Based on CBSE)

Q.1 Simplify:

(i)
$$\log\left(\frac{1}{x} + \frac{1}{y}\right) - \log(x+y) + \log x + \log y$$
. (ii) $\frac{\log x^3 z - \log z y^3}{\log x - \log y}$.

(ii)
$$\frac{\log x^3z - \log x}{\log x}$$

Q.2 Show that:

(i)
$$\log 2 + 16 \log \frac{16}{15} + 12 \log \frac{25}{24} + 7 \log \frac{81}{80} = 1$$

(ii)
$$\log \frac{81}{8} - 2 \log \frac{3}{2} + 3 \log \frac{2}{3} + \log \frac{3}{4} = 0$$

Q.3 Solve for x:

(i)
$$\log(x+1) + \log(x-1) = \log 99$$

(ii)
$$\frac{\log 16}{\log 4} = \log x$$

(iii)
$$\log (3x-2) + \log (3x+2) = 5 \log 2$$

(iv)
$$\log 5 + \log (5x + 1) = \log (x + 5) + 1$$

Q.4 Simplify each of the following:

(i)
$$\log_8 \sqrt{6} + \log_8 \left(\sqrt{\frac{2}{3}} \right) - \log_8 (\log_3 9)$$
 (ii) $\log_2 [\log_2 \{\log_3 (\log_3 27^3)\}]$

Q.5 (i) If
$$\log\left(\frac{a-b}{2}\right) = \frac{1}{2}$$
 (log a + log b), show that $a^2 + b^2 = 6ab$

(ii) If
$$\log\left(\frac{a+b}{2}\right) = \frac{1}{2}(\log a + \log b)$$
, show that $\frac{a+b}{2} = \sqrt{ab}$ and $a^2 + b^2 = 2ab$.

(iii) If
$$a^2 + b^2 = 7ab$$
, prove that $\log\left(\frac{a+b}{3}\right) = \frac{1}{2} (\log a + \log b)$.

Q.6 (i) If
$$a = \log_{24} 12$$
, $b = \log_{36} 24$ and $c = \log_{48} 36$, show that $1 + abc = 2bc$.

(ii) If
$$x = \log \frac{2}{3}$$
, $y = \log \frac{3}{5}$ and $z = \log \frac{5}{2}$, show that $x + y + z = 0$

(iii) If
$$y = x^{\frac{1}{m}}$$
, show that $m = \log_{y} x$.

Q.7 Prove that

(i)
$$\log_3 \log_2 \log_{\sqrt{3}} 81 = 1$$

(ii)
$$\log_a x \times \log_b y = \log_b x \times \log_a y$$

(iii)
$$\log_2 \log_2 \log_2 16 = 1$$

(iv)
$$\log_a x = \log_b x \times \log_c b \times \dots \times \log_n m \times \log_a n$$

Q.8 Simplify:

$$\frac{\log_9 11}{\log_5 13} \div \frac{\log_3 11}{\log_{\sqrt{5}} 13}$$

Q.9 (i) If
$$\log_4 10 = x$$
, $\log_2 20 = y$ and $\log_5 8 = z$.
Prove that $\frac{1}{x+1} + \frac{1}{y+1} + \frac{1}{z+1} = 1$.

(ii) If
$$x = \log_a(bc)$$
, $y = \log_b(ca)$, $z = \log_c(ab)$.
Prove that $\frac{1}{x+1} + \frac{1}{y+1} + \frac{1}{z+1} = 1$.

Q.10 (i) Prove that
$$\frac{1}{1 + \log_b a + \log_b c} + \frac{1}{1 + \log_c a + \log_c b} + \frac{1}{1 + \log_a b + \log_a c} = 1$$
.

(ii) Show that
$$\frac{1}{\log_2 n} + \frac{1}{\log_3 n} + \frac{1}{\log_4 n} + \dots + \frac{1}{\log_{43} n} = \frac{1}{\log_{43} n}$$
.

(D) 4

EXERCISE-5 (Rank Booster)

Paragraph for question nos. 1 to 3

Let A denotes the sum of the roots of the equation $\frac{1}{5-4\log_4 x} + \frac{4}{1+\log_4 x} = 3$. B denotes the value of the product of m and n, if $2^m = 3$ and $3^n = 4$.

C denotes the sum of the integral roots of the equation $\log_{3x} \left(\frac{3}{x} \right) + (\log_3 x)^2 = 1$.

- Q.1 The value of A + B equals
 (A) 10 (B) 6 (C) 8
- Q.2 The value of B+C equals
 (A) 6 (B) 2 (C) 4 (D) 8
- Q.3 The value of $A+C \div B$ equals
 (A) 5 (B) 8 (C) 7 (D) 4
- Q.4 Find the sum of all possible values of x satisfying simultaneous the equations

$$\log^2 x - 3 \log x = \log(x^2) - 4$$
 and $\log^2(100 x) + \log^2(10 x) = 14 + \log\left(\frac{1}{x}\right)$.

[Note: Assume base of logarithm is 10.]

Q.5 Let k be the unique positive value satisfying the equation

$$(4k)^{\log 2} - (9k)^{\log 3} = 0$$
, then find the value of (72 k).

Q.6 Given $\frac{\log_2\left(\frac{b^3}{8}\right)}{\log_3\left(\frac{27}{a^2}\right)} = 1$ and $\log_3\left(\frac{9}{a}\right) = \log_2\left(\frac{b}{4}\right)$. If the largest single digit number which can divide

the value of $\left(\frac{a}{b}\right)$ is m, then find the value of m.

- Q.7 If $\log_3 M = a_1 + b_1$ and $\log_5 M = a_2 + b_2$ where $a_1, a_2 \in N$ and $b_1, b_2 \in [0, 1)$. If $a_1, a_2 = 6$, then find the number of integral values of M.
- Q.8 Solve: $\log_3 \left(\sqrt{x} + \left| \sqrt{x} 1 \right| \right) = \log_9 \left(4\sqrt{x} 3 + 4 \left| \sqrt{x} 1 \right| \right)$

Q.9 Prove that :
$$2^{\left(\sqrt{\log_a \sqrt[4]{ab} + \log_b \sqrt[4]{ab}} - \sqrt{\log_a \sqrt[4]{\frac{b}{a}} + \log_b \sqrt[4]{\frac{a}{b}}}\right) \cdot \sqrt{\log_a b}} = \begin{bmatrix} 2 & \text{if } b \ge a > 1 \\ 2^{\log_a b} & \text{if } 1 < b < a \end{bmatrix}$$

Q.10 Find the value of x satisfying the equation,

$$\sqrt{(\log_3 \sqrt[3]{3x} + \log_x \sqrt[3]{3x}) \cdot \log_3 x^3} + \sqrt{(\log_3 \sqrt[3]{x/3} + \log_x \sqrt[3]{3/x}) \cdot \log_3 x^3} = 2.$$

ANSWER KEY

EXERCISE-1

SPECIAL DPP-1

Q.1 B Q.2 D Q.3 D Q.4 B Q.5 C Q.6 D Q.7 C

Q.8 A Q.9 D Q.10 (A) S:(B)R;(C)Q;(D)P

SPECIAL DPP-2

0.7 Q.6 D Q.4 C Q.5 Q.3 B Q.2 В Q.1 C Q.10 (A) S; (B) Q; (C) T; (D) P 0001 0.11A, B, C, D Q.9 A, B, D 0.8

SPECIAL DPP-3

Q.1 D Q.2 A Q.3 B Q.4 C Q.5 D Q.6 B Q.7 A,D

Q.8 A, B, C, D Q.9 A, B, C, D Q.10 (A) R, S, T; (B) P; (C) Q, R, S, T; (D) P, R, S

Q.11 27

SPECIAL DPP-4

Q.1 D Q.2 B, C, D Q.3 (A) S, (B) R, (C) Q Q.4 (A) P, Q, R, S; (B) P, R; (C) S, T; (D) T Q.5 0025 Q.6 0007 Q.7 6

SPECIAL DPP-5

Q.1 C Q.2 A Q.3 B Q.4 D Q.5 C Q.6 C

Q.7 (A) P, (B) P, R, S, (C) P, R, (D) P, Q, R Q.8 0004 Q.9 0012 Q.10 0004

EXERCISE-2

Q.1 12 Q.2 (a)
$$\frac{xy+2}{2y}$$
, $\frac{xy+2y-2}{2y}$; (b) 625 Q.4 $2s+10s^2-3(s^3+1)$

Q.5 (a) 9, (b) 1, (c) 6, (d) $\frac{25}{2}$ Q.6 3721 Q.7 2 Q.8 469

Q.9 (a) x=10 (b) $x=2^{\sqrt{2}}$ or $2^{-\sqrt{2}}$ (c) $x=2^{-\log a}$ where base of $\log is 5$, (d) x=2 or 1/32

Q.10 (a^4, a, a^7) or $\left(\frac{1}{a^4}, \frac{1}{a}, \frac{1}{a^7}\right)$ Q.11 x = 1 Q.12 x = 1 Q.13 $x \in \phi$ Q.14 $\frac{4}{9}$

Q.15 2196 Q.16 5625 Q.17 (a) 0.5386; $\overline{1}$.5386; $\overline{3}$.5386 (b) 2058 (c) 0.3522 (d) 3; (e) 1

Q.18 2 Q.19 12 Q.20 $\left\{0, \frac{7}{4}, \frac{3+\sqrt{24}}{2}\right\}$

EXERCISE-3

Q.1 C Q.2 4 Q.3 ABC

EXERCISE-4

Q.1 (i) 0; (ii) 3 Q.3 (i) x = 10 (ii) x = 100 (iii) x = 2 (iv) x = 3 Q.4 (i) 0; (ii) 0 Q.8 1

EXERCISE-5

Q.1 C Q.2 A Q.3 B Q.4 10 Q.5 0002 Q.6 9 Q.7 54

Q.8 $[0, 1] \cup \{4\};$ Q.10 $x \in [1/3, 3] - \{1\}$