The NUBASE evaluation of nuclear and decay properties*

G. Audi^{a,§}, O. Bersillon^b, J. Blachot^b and A.H. Wapstra^c

^a Centre de Spectrométrie Nucléaire et de Spectrométrie de Masse, CSNSM, IN2P3-CNRS&UPS, Bâtiment 108, F-91405 Orsay Campus, France

Abstract

This paper presents the NUBASE evaluation of nuclear and decay properties of nuclides in their ground- and isomeric-states. All nuclides for which some experimental information is known are considered. NUBASE uses extensively the information given by the "Evaluated Nuclear Structure Data Files" and includes the masses from the "Atomic Mass Evaluation" (AME, second part of this issue). But it also includes information from recent literature and is meant to cover all experimental data along with their references. In case no experimental data is available, trends in the systematics of neighboring nuclides have been used, whenever possible, to derive estimated values (labeled in the database as non-experimental). Adopted procedures and policies are presented.

AMDC: http://csnwww.in2p3.fr/AMDC/

1. Introduction

The present evaluation responds to the needs expressed by the nuclear physics community, from fundamental physics to applied nuclear sciences, for a database which contains values for the main basic nuclear properties such as masses, excitation energies of isomers, half-lives, spins and parities, decay modes and their intensities. A

b Service de Physique Nucléaire, CEA, B.P. 12, F-91680 Bruyères-le-Châtel, France

^c National Institute of Nuclear Physics and High-Energy Physics, NIKHEF, PO Box 41882, 1009DB Amsterdam, The Netherlands

^{*} This work has been undertaken with the encouragement of the IUPAP Commission on Symbols, Units, Nomenclature, Atomic Masses and Fundamental Constants (SUN-AMCO).

[§] Corresponding author. E-mail address: audi@csnsm.in2p3.fr (G. Audi).

requirement is that all the information should be properly referenced in that database to allow checks on their validity.

One of the applications of such a database is the "Atomic Mass Evaluation" (AME) in which it is essential to have clear identification of the states involved in a decay, a reaction or a mass-spectrometric line. This is the main reason for which these two evaluations are coupled in the present issue. Furthermore, calculations requiring radioactive parameters for nuclear applications (e.g. reactors, waste management, nuclear astrophysics) need to access this basic information on any nuclide. In the preparation of a nuclear physics experiment, such a database could also be quite useful.

Most of the data mentioned above are in principle already present in two evaluated files: the "Evaluated Nuclear Structure Data Files" (ENSDF) [1] and the "Atomic Mass Evaluation" (AME2003, second part of this issue). The demand for a database as described above could be thus partially fulfilled by combining them in a 'horizontal' structure (which exists in the AME, but not in ENSDF). NUBASE is therefore, at a first level, a critical compilation of these two evaluations.

While building NUBASE, we found it necessary to examine the literature, firstly, to revise several of the collected results in ENSDF and ensure that the mentioned data are presented in a more consistent way; secondly, to have as far as possible all the available experimental data included, not only the recent ones (updating requirement), but also those missed in ENSDF (completeness requirement). This implied some evaluation work, which appears in the remarks added in the NUBASE table and in the discussions below. Full references are given for all of the added experimental information (cf. Section 2.7).

There is no strict cut-off date for the data from literature used in the present NUBASE2003 evaluation: all data available to us until the material was sent (November 19, 2003) to the publisher have been included. Those which could not be included for special reasons, like the need for a heavy revision of the evaluation at a too late stage, are added in remarks to the relevant data.

The contents of NUBASE are described below, along with some of the policies adopted in this work. Updating procedures of NUBASE are presented in Section 3. Finally, the electronic distribution of NUBASE and an interactive display of its contents with a World Wide Web Java program or with a PC-program are described in Section 4.

The present publication updates and includes all the information given in the previous and very first evaluation of NUBASE [2], published in 1997.

2. Contents of NUBASE

NUBASE contains experimentally known nuclear properties together with some values estimated by extrapolation of experimental data for 3177 nuclides. NUBASE also

contains data on isomeric states. We presently know 977 nuclides having one or more excited isomers according to our definition below. In the present evaluation we extended the definition of isomers compared to NUBASE'97 where only states with half-lives greater than 1 millisecond were considered. In present mass spectrometric experiments performed at accelerators, with immediate detection of the produced nuclei, isomers with half-lives as short as 100 ns may be present in the detected signals. We aimed at including as much as possible all those which play or might play in the near future a $r\hat{o}le$ in such experiments. We include also the description of those states that are involved in mass measurements and thus enter the AME2003.

For each nuclide (A,Z), and for each state (ground or excited isomer), the following quantities have been compiled, and when necessary evaluated: mass excess, excitation energy of the excited isomeric states, half-life, spin and parity, decay modes and intensities for each mode, isotopic abundances of the stable nuclei, and references for all experimental values of the above items.

In the description below, references to papers that are also quoted in the NUBASE table are given with the same Nuclear Structure Reference key number style [3]. They are listed at the end of this issue (AME2003, Part II, p. 579).

In Nubase'97, the names and the chemical symbols used for elements 104 to 109 were those recommended then by the Commission on Nomenclature of Inorganic Chemistry of the International Union of Pure and Applied Chemistry (IUPAC). Since then, unfortunately for the resulting confusion, the names were changed and moreover two of them were displaced [4] (see also AME2003, Part I, Section 6.5). The user should therefore be careful when comparing results between Nubase'97 and the present Nubase2003 for nuclides with $Z \ge 104$. The finally adopted names and symbols are: 104 rutherfordium (Rf), 105 dubnium (Db), 106 seaborgium (Sg), 107 bohrium (Bh), 108 hassium (Hs), and 109 meitnerium (Mt), while the provisional symbols Ea, Eb, . . . , Ei are used for elements 110, 111, . . . , 118.

Besides considering all nuclides for which at least one piece of information is experimentally available, we also included unknown nuclides - for which we give estimated properties - in order to ensure continuity of the set of the considered nuclides at the same time in N, in Z, in A and in N-Z. The chart of the nuclides defined this way has a smooth contour.

As far as possible, one standard deviations (1 σ) are given to represent the uncertainties connected with the experimental values. Unfortunately, authors do not always define the meaning of the uncertainties they quote; under such circumstances, the uncertainties are assumed to be one standard deviations. In many cases, the uncertainties are not given at all; we then estimated them on the basis of the limitations of the method of measurement.

Values and errors that are given in the NUBASE table have been rounded, even if unrounded values were found in ENSDF or in the literature. In cases where the two

furthest-left significant digit in the error were larger than a given limit (30 for the energies, to maintain strict identity with AME2003, and 25 for all other quantities), values and errors were rounded off (see examples in the 'Explanation of table'). In very few cases, when essential for traceability, we added a remark with the original value.

When no experimental data exist for a nuclide, values can often be estimated from observed trends in the systematics of experimental data. In the AME2003, masses estimated from systematic trends were already flagged with the symbol '#'. The use of this symbol has been extended in NUBASE to all other quantities and has the same meaning of indicating non-experimental information.

2.1. Mass excess

The mass excess is defined as the difference between the atomic mass (in mass units) and the mass number, and is given in keV for each nuclear state, together with its one standard deviation uncertainty. The mass excess values given in NUBASE are exactly those of the AME2003 evaluation, given in the second part of this issue.

It sometimes happens that knowledge of masses can yield information on the decay modes, in particular regarding nucleon-stability. Such information has been used here, as can be seen in the table for 10 He, 19 Na, 39 Sc, 62 As or 63 As. In some cases we rejected claimed observation of decay modes, when not allowed by energetic consideration. As an example, ENSDF2000 compiles for 142 Ba five measurements of delayed neutron decay intensities, whereas $Q(\beta^- n) = -2955(7)$ keV.

Figure 1 complements the main table in displaying the precisions on the masses, in a color-coded chart, as a function of *N* and *Z*.

2.2. Isomers

In the first version of NUBASE in 1997 [2], a simple definition for the excited isomers was adopted: they were states that live longer than 1 millisecond. Already in NUBASE97, we noticed that such a simple definition had several drawbacks, particularly for alpha and proton decaying nuclides: whereas for β -decay a limit of 1 millisecond was acceptable (the shortest-lived known β -decaying nuclide (35 Na) has a half-life of 1.5 millisecond), for α or proton decay, several cases are known where an isomer with a half-life far below 1 millisecond lives still longer than the ground-state.

As mentioned earlier, the definition of isomers is now extended to include a large number of excited states, with half-lives as short as 100 ns, that are of interest for mass spectrometric works at accelerators. Isomers are given in order of increasing excitation energy and identified by appending 'm', 'n', 'p' or 'q' to the nuclide name, e.g. ⁹⁰Nb for the ground-state, ⁹⁰Nb^m for the first excited isomer, ⁹⁰Nbⁿ for the second

Figure 1: Chart of the nuclides for the precision 'u' on masses (created by NUCLEUS-AMDC).

one, 90 Nb p and 90 Nb q for respectively the third and fourth. In NUBASE97 we could not report in a normal way the third excited isomer of 178 Ta with half-life 59 ms, because of poorness of notation; the new notation adopted here removes also such a limitation.

The excitation energy can be derived from a number of different experimental methods. When this energy is derived from a method other than γ -ray spectrometry, the origin is indicated by a two-letter code and the numerical value is taken from AME. Otherwise, the code is left blank and the numerical value is taken from ENSDF or from literature update.

When the existence of an isomer is under discussion (e.g. ¹⁴¹Tb^m) it is flagged with 'EU' in the origin field to mean "existence uncertain". A comment is generally added to indicate why its existence is questioned, or where this matter has been discussed. Depending on the degree of our confidence in this existence, we can still give a mass excess value and an excitation energy, or omit them altogether (e.g. ¹³⁸Pmⁿ). In the latter case, the mention "non-existent" appears in place of that excitation energy.

When an isomer has been reported, and later proved not to exist (e.g. ¹⁸⁴Lu^m), it is flagged with 'RN' in the origin field to mean "reported, non-existent". In such case we give of course no mass excess value and no excitation energy, and, as in the case of the 'EU's above, they are replaced by the same mention "non-existent".

Note: we have extended the use of the two flags 'EU' and 'RN' to cases where the discovery of a nuclide (e.g. ²⁶⁰Fm) is questioned. In this case however we always give an estimate, derived from systematic trends, for the ground state masses.

In several cases, ENSDF gives a lower and a higher limit for an isomeric excitation energy. A uniform distribution of probabilities has been assumed which yields a value at the middle of the range and a 1σ uncertainty of 29% of that range (cf. Appendix B of the AME2003, Part I, for a complete description of this procedure). An example is 136 La for which it is known that the excited isomer lies above the level at 230.1 keV, but, as explained in ENSDF, there are good experimental indications that the difference between these two levels lies between 10 and 40 keV. We present this information as E=255(9) keV. However, if that difference would have been derived from theory or from systematics, the resulting E is considered as non-experimental and the value flagged with the '#' symbol.

In case that the uncertainty σ on the excitation energy E is relatively large compared to the value, the assignment to ground state and isomeric state is uncertain. If $\sigma > E/2$ a flag is added in the NUBASE table.

As a result of this work, the orderings of several ground-states and isomeric-states have been reversed compared to those in ENSDF. They are flagged in the NUBASE table with the '&' symbol. In several cases we found evidence for a state below the adopted ENSDF ground-state. Also, in many other cases, the systematics of nuclides with the same parities in *N* and *Z* strongly suggest that such a lower state should exist.

They have been added in the NUBASE table and can be located easily, since they are also flagged with the '&' symbol. In a few cases, new information on masses can also lead to reversal of the level ordering. Thanks to the coupling of the NUBASE and the AME evaluations, all changes in level ordering are carefully synchronized.

News on isomeric excitation energies

Interestingly, the technique of investigating proton decay of very proton-rich nuclides gives information on isomeric excitation energies. Thus, such work on 167 Ir [1997Da07] shows that it has an isomeric excitation energy E=175.3(2.2) keV. This information is displayed by the 'p' symbol following the excitation energy. In addition, study of the α -decay series of these activities not only showed that a number of α lines earlier assigned to ground-states belong in reality to isomers, but also allowed to derive values for their excitation energies.

Another case of such a change is 181 Pb. The α decay half-life that was previouly assigned to 181 Pb m is now assigned to the ground-state, following the work of Toth *et al.* [1996To01] who showed, first, that contrary to a previous work, there is no α line at higher energy than the one just mentioned, and second, that the observed α is in correlation with the decay of the daughter 177 Hg, which is also most probably a $5/2^-$ state.

2.3. Half-life

For some light nuclei, the half-life $(T_{1/2})$ is deduced from the level total width $(\Gamma_{\rm cm})$ by the equation $\Gamma_{\rm cm}\,T_{1/2}\simeq\hbar\ln 2$:

$$T_{1/2}$$
 (s) $\simeq 4.562 \, 10^{-22} / \Gamma_{\rm cm}$ (MeV).

Quite often uncertainties for half-lives are given asymmetrically T_{-b}^{+a} . If these uncertainties are used in some applications, they need to be symmetrized. Earlier (cf. AME'95) a rough symmetrization was used: take the central value to be the midvalue between the upper and lower 1σ -equivalent limits T+(a-b)/2, and define the uncertainty to be the average of the two uncertainties (a+b)/2. A strict statistical derivation (see Appendix) shows that a better approximation for the central value is obtained by using $T+0.64\times(a-b)$. The exact expression for the uncertainty is given in the Appendix.

When two or more independent measurements have been reported, they are averaged, while being weighed by their reported precision. While doing this, we consider the NORMALIZED CHI, χ_n (or 'consistency factor' or 'Birge ratio'), as defined in AME2003, Part I, Section 5.2. Only when χ_n is beyond 2.5, do we depart from the statistical result, and adopt the external error for the average, following the same

policy as discussed and adopted in AME2003, Part I, Section 5.4. Very rarely, when the Birge ratio χ_n is so large that we consider all errors given as non-relevant, do we adopt the arithmetic average (unweighed) for the result and the corresponding error (based on the dispersion of values). In all such cases, a remark is added to the data, giving the list of values that were averaged, and, when relevant, the value of the Birge ratio χ_n and the reason for our choice.

In the case of experiments in which extremely rare events are observed, and where the results are very asymmetric, we did not average directly the half-lives derived from different works, but instead, when the information given in the papers was sufficient (e.g. ²⁶⁴Hs or ²⁶⁹Hs), we combined the delay times of the individual events, as prescribed by Schmidt *et al* [1984Sc13].

Some measurements are reported as a range of values with most probable lower and upper limits. They are treated, as explained above (cf. Section 2.2), as a uniform distribution of probabilities with a value at the middle of the range and a 1σ uncertainty of 29% of that range (cf. Appendix B of the AME2003 for a complete description of this procedure).

For some nuclides identified by using a time-of-flight spectrometer, an upper or a lower limit on the half-life is given.

- i) For *observed* species, we give this important but isolated piece of information (lower limit) in place of the uncertainty on the half-life, and within brackets (e.g. ³⁶Mg, p. 34). The user of our table should be careful in that this limit can be very far below the eventually measured half-life. To help to avoid confusion, we now give, in addition, an estimate (as always in the present two evaluations, flagged with #) for the half-life derived from trends in systematics.
- ii) For nuclides sought for but *not observed*, we give the found upper limit in place of the half-life. Upper limits for undetected nuclides have been evaluated for NUBASE by F. Pougheon [1993Po.A], based on the time-of-flight of the experimental setup and the yields expected from the trends in neighboring nuclides (e.g. ¹⁹Na).

When half-lives for nuclides with the same parities in Z and N are found to vary smoothly (see Fig. 2), interpolation or extrapolation is used to obtain reasonable estimates.

2.4. Spin and parity

As in ENSDF, values are presented without and with parentheses based upon strong and weak assignment arguments, respectively (see the introductory pages of Ref. [5]). Unfortunately, the latter include estimates from systematics or theory. Where we can distinguish them, we use parentheses if the so-called "weak" argument is an experimental one, but the symbol "#" in the other cases. The survey might have not been complete, and the reader might still find non-flagged non-experimental cases (the

Figure 2: Chart of the nuclides for half-lives (created by NUCLEUS-AMDC).

authors will gratefully appreciate mention of such cases to improve future versions of NUBASE).

If spin and parity are not known from experiment, they can be estimated, in some cases, from systematic trends in neighboring nuclides with the same parities in *N* and *Z*. This is often true for odd-*A* nuclides (see Fig. 3 and Fig. 4), but also, not so rarely, for odd-odd ones, as can be seen in Fig. 5. These estimated values are also flagged with the '#' symbol. In several cases we replaced the ENSDF systematics by our own.

The review of nuclear radii and moments of Otten [1989Ot.A], in which the spins were compiled, was used to check and complete the spin values in NUBASE.

2.5. Decay modes and intensities

The most important policy, from our point of view, in coding the information for the decay modes, is in establishing a very clear distinction between a decay mode that is energetically allowed but not yet experimentally observed (represented by a question mark alone, which thus refers to the decay mode itself), and a decay mode that is actually observed but for which the intensity could not be determined (represented by '=?', the question mark referring here to the quantity after the equal sign).

As in ENSDF, no corrections have been made to normalize the primary intensities to 100%.

Besides direct updates from the literature, we also made use of partial evaluations by other authors (with proper quotation). They are mentioned below, when discussing some particular decay modes.

The
$$\beta^+$$
 decay

In the course of our work we refined some definitions and notations for the β^+ decay, in order to present more clearly the available information. We denote with β^+ the decay process that includes both electron capture, denoted ε , and the decay by positron emission, denoted e^+ . One can then symbolically write: $\beta^+ = \varepsilon + e^+$. As is well known, for an available energy below 1022 keV, only electron capture ε is allowed; above that value both processes compete.

Remark: this notation is **not** the same as the one implicitly used in ENSDF, where the combination of both modes is denoted "EC+B+".

When both modes compete, the separated intensities are not always available from experiment. Most of the time, separated values in ENSDF are calculated ones. In continuation of one of our general policies, in which we retain whenever possible only experimental information, we decided not to retain ENSDF's calculated separated values (which are scarce and not always updated). Most often, it is in some very particular cases that the distinction is of importance, like in the case of rare or extremely rare processes (e.g. ⁹¹Nb, ⁵⁴Mn, ¹¹⁹Te^m). Then, the use of our notation is useful.

Figure 3: Chart of the nuclides for spins and parities. Shown are only the odd-Z even-N nuclides (created by NUCLEUS-AMDC).

Figure 4: Chart of the nuclides for spins and parities. Shown are only the even-Z odd-N nuclides (created by NUCLEUS-AMDC).

Figure 5: Chart of the nuclides for spins and parities. Shown are only the odd-Z odd-N nuclides (created by NUCLEUS-AMDC).

In the same line, we give both electron capture ε -delayed fission and the positron e^+ -delayed fission with the same symbol β^+ SF.

The double- β decay

In the course of our work we found that half-lives for double- β decay were not always given in a consistent way in ENSDF. For NUBASE we decided to give only half-life values or upper-limits related to the dominant process, which is in general the two-neutrino gs-gs transition (one exception may be ⁹⁸Mo, for which the neutrinoless decay is predicted to be faster, see [2002Tr04]). No attempt was made to convert to the same statistical confidence level (CL) upper limit results given by different authors.

The excellent recent compilation of Tretyak and Zdesenko [2002Tr04] was of great help in this part of our work.

The β -delayed decays

For delayed decays, intensities have to be considered carefully. By definition, the intensity of a decay mode is the percentage of decaying nuclei in that mode. But traditionally, the intensities of the pure β decay and of those of the delayed ones are summed to give an intensity that is assigned to the pure β decay. For example, if the (A,Z) nuclide has a decay described, according to the tradition, by ' $\beta^-=100$; $\beta^-=20$ ', this means that for 100 decays of the parent (A,Z), 80 (A,Z+1) and 20 (A-1,Z+1) daughter nuclei are produced and that 100 electrons and 20 delayed-neutrons are emitted. A strict notation, following the definition above, would have been in this case ' $\beta^-=80$; $\beta^-=20$ '. However we decided to follow the tradition and use in our work the notation: ' $\beta^-=100$; $\beta^-=20$ '.

This also holds for more complex delayed emissions. A decay described by: ' β^- =100; β^- n=30; β^- 2n=20; $\beta^-\alpha$ =10' corresponds to the emission of 100 electrons, (30+2×20=70) delayed-neutrons and 10 delayed- α particles; and in terms of residual nuclides, to 40 (A,Z+1), 30 (A-1,Z+1), 20 (A-2,Z+1) and 10 (A-4,Z-1). More generally, P_n , the number of emitted neutrons per 100 decays, can be written:

$$P_{n} = \sum_{i} i \times \beta_{in}^{-};$$

and similar expressions for α or proton emission. The number of residual β daughter (A,Z+1) is:

$$\beta^- - \sum_i \beta_{in}^- - \sum_j \beta_{j\alpha}^- - \dots$$

Another special remark concerns the intensity of a particular β -delayed mode. The primary β -decay populates several excited states in the β -daughter, that will further decay by particle emission. However, in the case where the daughter's ground state also decays by the same particle emission, some authors included its decay

in the value for the concerned β -delayed intensity. We decided not to do so for two reasons. Firstly, because the energies of the particles emitted from the excited states are generally much higher than that from the ground-state, implying different subsequent processes. Secondly, because the characteristic times for the decays from the excited states are related to the parent, whereas those for the decays from the daughter's ground state are due to the daughter. For example 9 C decays through β^+ mode with an intensity of 100% of which 12% and 11% to two excited p-emitting states in 9 B, and 17% to an α -emitting state. We give thus β^+ p=23% and $\beta^+\alpha$ =17%, from which the user of our table can derive a 60% direct feeding of the ground-state of 9 B. In a slightly different example, 8 B decays only to two excited states in 8 Be which in turn decay by α and γ emission, but not to the 8 Be ground-state. We write thus β^+ =100% and $\beta^+\alpha$ =100%, the difference of which leaves 0% for the feeding of the daughter's ground state.

Finally, we want to draw to the attention of the user of our table, that the percentages are, by definition, related to 100 decaying nuclei, not to the primary beta-decay fraction. An illustrative example is given by the decay of 228 Np, for which the delayed-fission probability is given in the original paper as 0.020(9)% [1994Kr13], but this number is relative to the ε process, the intensity of which is 59(7)%. We thus renormalized the delayed-fission intensity to 0.012(6)% of the total decay.

In collecting the delayed proton and α activities, the remarkable work of Hardy and Hagberg [1989Ha.A], in which this physics was reviewed and discussed, was an appreciable help in our work. The review of Honkanen, Äystö and Eskola [6] on delayed-protons has also been verified.

Similarly, the review of delayed neutron emission by Hansen and Jonson [1989Ha.B] was carefully examined and used in our table, as well as the evaluation of Rudstam, Aleklett and Sihver [1993Ru01].

2.6. Isotopic abundances

Isotopic abundances are taken from the compilation of K.J.R. Rosman and P.D.P. Taylor [1998Ro45] and are listed in the decay field with the symbol IS. They are displayed as given in [1998Ro45], i.e. we did not even apply our rounding policy.

2.7. References

The year of the archival file is indicated for the nuclides evaluated in ENSDF; otherwise, this entry is left blank.

References for all of the experimental updates are given by the NSR key number [3], and listed at the end of this issue (p. 579). They are followed by one, two or three one-letter codes which specify the added or modified physical quantities (see the

Figure 6: Chart of the nuclides for decay modes (created by NUCLEUS-AMDC).

Explanation of Table). In cases where more than one reference is needed to describe the updates, they are given in a remark. No reference is given for systematic values. The ABBW reference key is used in cases where it may not appear unambiguously that re-interpretations of the data were made by the present authors.

3. Updating procedure

NUBASE is updated via two routes: from ENSDF after each new *A*-chain evaluation (or from the bi-annual releases), and directly from the literature.

ENSDF files are retrieved from NNDC using the on-line service [1] and transferred through the Internet. Two of the present authors [7] developed programs to successively:

- \bullet check that each Z in the A-chain has an 'adopted levels' data set; if not, a corresponding data set is generated from the 'decay' or 'reaction' data set,
- extract the 'adopted levels' data sets from ENSDF,
- extract from these data sets the required physical quantities, and convert them into a format similar to the NUBASE format.

The processed data are used to update manually the previous version of NUBASE. This step is done separately by the four authors and cross-checked until full agreement is reached.

The ENSDF is updated generally by A-chains, and, more recently, also by individual nuclides. Its contents however is very large, since it encompasses all the complex nuclear structure and decay properties. This is a huge effort, and it is no wonder that some older data (including annual reports, conference proceedings, and theses) are missing, and that some recent data have not yet been included. Where we notice such missing data, they are analyzed and evaluated, as above, independently by the four authors and the proposed updatings are compared. Most often these new data are included in the next ENSDF evaluation and the corresponding references can be removed from the NUBASE database.

4. Distribution and displays of NUBASE

Full content of the present evaluation is accessible on-line at the web site of the Atomic Mass Data Center (AMDC) [8] through the *World Wide Web*. An electronic ASCII file for the NUBASE table, for use with computer programs, is also distributed by the AMDC. This file will **not** be updated, to allow stable reference data for calculations. Any work using that file should make reference to the present paper and not to the electronic file.

The contents of NUBASE can be displayed by a Java program JVNUBASE [9] through the *World Wide Web* and also with a PC-program called "NUCLEUS" [10]. Both can

be accessed or downloaded from the AMDC. They will be updated regularly to allow the user to check for the latest available information in NUBASE.

5. Conclusions

A 'horizontal' evaluated database has been developed which contains most of the main properties of the nuclides in their ground and isomeric states. These data originate from a critical compilation of two evaluated datasets: the ENSDF, updated and completed from the literature, and the AME. The guidelines in setting up this database were to cover as completely as possible all the experimental data, and to provide proper reference for those used in NUBASE and not already included in ENSDF; this traceability allows any user to check the recommended data and, if necessary, undertake a re-evaluation.

As a result of this 'horizontal' work, a greater homogeneity in data handling and presentation has been obtained for all of the nuclides. Furthermore, isomeric assignments and excitation energies have been reconsidered on a firmer basis and their data improved.

It is expected to follow up this second version of NUBASE with improved treatments. Among them, we plan to complete the extension due to the new definition of isomer to states with half-lives between 100 ns and 1 millisecond that are available at the large-scale facilities. Another foreseeable implementation would be to provide the main α , γ , conversion and X-ray lines accompanying the decays. NUBASE could also be extended to other nuclear properties: energies of the first 2^+ states in even-even nuclides, radii, moments . . . An interesting feature that is already implemented, but not yet checked sufficiently to be included here, is to give for each nuclide, in ground or isomeric-state, the year of its discovery.

6. Acknowledgements

We wish to thank our many colleagues who answered our questions about their experiments and those who sent us preprints of their papers. Continuous interest, discussions, suggestions and help in the preparation of the present publication by C. Thibault were highly appreciated. We appreciate the help provided by J.K. Tuli in solving some of the puzzles we encountered. Special thanks are due to S. Audi for the preparation of the color figures from the NUCLEUS program, and to C. Gaulard and D. Lunney for careful reading of the manuscript. A.H.W. expresses his gratitude to the NIKHEF-K laboratory and especially to Mr. K. Huyser for his continual help, and J.B. to the ISN-Grenoble and DRFMC-Grenoble laboratories for permission to use their facilities.

Figure 7: Simulated asymmetric probability density function (heavy solid line) and the equivalent symmetric one (dashed line).

Appendix A. Symmetrization of asymmetric uncertainties

Experimental data are sometimes given with asymmetric uncertainties, X_{-b}^{+a} . If these data are to be used with other ones in some applications, their uncertainties may need to be symmetrized. A simple method (Method 1), used earlier, consisted in taking the central value to be the mid-value between the upper and lower 1 σ -equivalent limits X + (a-b)/2, and define the uncertainty to be the average of the two uncertainties (a+b)/2.

An alternative method (Method 2) is to consider the random variable x associated with the measured quantity. For this random variable, we assume the probability density function to be an asymmetric normal distribution having a modal (most probable) value of x = X, a standard deviation b for x < X, and a standard deviation a for x > X (Fig. 7). Then the average value of this distribution is

$$\langle x \rangle = X + \sqrt{2/\pi} (a - b),$$

with variance

$$\sigma^2 = (1 - 2/\pi)(a - b)^2 + ab. \tag{1}$$

The median value m which divides the distribution into two equal areas is given, for a > b, by

$$\operatorname{erf}\left(\frac{m-X}{\sqrt{2}a}\right) = \frac{a-b}{2a},\tag{2}$$

and by a similar expression for b > a.

We define the equivalent symmetric normal distribution we are looking for as a distribution having a mean value equal to the median value m of the previous distribution with same variance σ .

Table A. Examples of treatment of asymmetric uncertainties for half-lives. Method 1 is the classical method, used previously, as in the AME'95. Method 2 is the one developed in this Appendix and used for half-lives and intensities of the decay modes.

Nuclide	Original $T_{1/2}$	Method 1	Method 2
⁷⁶ Ni ²²² U ²⁶⁴ Hs ²⁶⁶ Mt	240+550–190 ms 1.0+1.0–0.4 μs 327+448–120 μs 1.01+0.47–0.24 ms	420 ± 370 1.3 ± 0.7 490 ± 280 1.1 ± 0.4	470 ± 390 1.4 ± 0.7 540 ± 300 1.2 ± 0.4

If the shift m - X of the central value is small compared to a or b, expression (2) can be written [11]:

$$m-X \simeq \sqrt{\pi/8} (a-b) \simeq 0.6267 (a-b).$$

In order to allow for a small non-linearity that appears for higher values of m-X, we adopt for Method 2 the relation

$$m - X = 0.64(a - b)$$
.

Table A illustrates the results from both methods. In NUBASE, Method 2 is used for the symmetrization of asymmetric half-lives and of asymmetric decay intensities.

References

References quoted in the text as [1993Po.A] or [2002Tr04] (NSR style) are listed under "References used in the AME2003 and the NUBASE2003 evaluations", p. 579.

- [1] T.W. Burrows, Nucl. Instrum. Meth. 286 (1990) 595; http://www.nndc.bnl.gov/
- [2] G. Audi, O. Bersillon, J. Blachot and A.H. Wapstra, Nucl. Phys. A 624 (1997) 1; http://csnwww.in2p3.fr/AMDC/nubase/nubase97.pdf
- [3] Nuclear Structure Reference (NSR): a computer file of indexed references maintained by NNDC, Brookhaven National Laboratory; http://www2.nndc.bnl.gov/nsr/
- [4] Commission on Nomenclature of Inorganic Chemistry, Pure and Applied Chemistry 69 (1997) 2471.
- [5] General Policies, Nuclear Data Sheets, 71(1994) v.

- [6] J. Honkanen, J. Äystö and K. Eskola, Phys. Scr. 34 (1986) 608.
- [7] O. Bersillon and J. Blachot, NEANDC(E) 246/L, INDC(FR) 071/L, September 1991.
- [8] The NUBASE2003 files in the electronic distribution and complementary information can be retrieved from the Atomic Mass Data Center (AMDC) through the *Web*: http://csnwww.in2p3.fr/amdc/
- [9] E. Durand, Report CSNSM 97-09, July 1997; http://csnwww.in2p3.fr/AMDC/nucleus/stg-durand.doc
- [10] B. Potet, J. Duflo and G. Audi, Proceedings ENAM'95 conference, Arles, June 1995, p. 151; http://csnwww.in2p3.fr/AMDC/nucleus/arlnucleus.ps
- [11] R.D. Evans, The Atomic Nucleus (McGraw-Hill, New York, 1955) p. 766.

Table I. Table of nuclear and decay properties

EXPLANATION OF TABLE

Data are presented in groups ordered according to increasing mass number A.

Nuclide

Nuclidic name: mass number A=N+Z and element symbol (for Z>109 see Section 2). Element indications with suffix 'm', 'n', 'p' or 'q' indicate assignments to excited isomeric states (defined, see text, as upper states with half-lives larger than 100 ns). Suffixes 'p' and 'q' indicate also non-isomeric levels, of use in the AME2003. Suffix 'r' indicates a state from a proton resonance occurring in (p,γ) reactions (e.g. $^{28}\text{Si}^r$). Suffix 'x' applies to mixtures of levels (with relative ratio R, given in the 'Half-life'column), e.g. occurring in spallation reactions (indicated 'spmix' in the ' J^{π} ' column) or fission ('fsmix').

Mass excess

Mass excess [M(in u)-A], in keV, and its one standard deviation uncertainty as given in the 'Atomic Mass Evaluation' (AME2003, second part of this volume).

Rounding policy: in cases where the furthest-left significant digit in the error is larger than 3, values and errors are rounded off, but not to more than tens of keV. (Examples: $2345.67 \pm 2.78 \rightarrow 2345.7 \pm 2.8, 2345.67 \pm 4.68 \rightarrow 2346 \pm 5$, but $2346.7 \pm 468.2 \rightarrow 2350 \pm 470$).

in place of decimal point: value and uncertainty derived not from purely experimental data, but at least partly from systematic trends (cf. AME2003).

Excitation energy

For excited isomers only: energy difference, in keV, between levels adopted as higher level isomer and ground state isomer, and its one standard deviation uncertainty, as given in AME2003 when derived from the AME, otherwise as given by ENSDF. The rounding policy is the same as for the mass excess (see above).

in place of decimal point: value and uncertainty derived from systematic trends. The excitation energy is followed by its origin code when derived from a method other than γ -ray spectrometry:

MD Mass doublet

RQ Reaction energy difference

AD α energy difference

BD β energy difference

p proton decay

XL L X-rays

Nm estimated value derived with help of Nilsson model

When the existence of an isomer is questionable the following codes are used:

EU existence of isomer is under discussion (e.g. ¹⁴¹Tb^m). If existence is strongly doubted, no excitation energy and no mass are given. They are replaced by the mention "non-existent" (e.g. ¹³⁸Pmⁿ).

RN isomer is proved not to exist (e.g. ¹⁸⁴Lu^m). Excitation energy and mass are replaced by the mention "non-existent".

Remark: codes EU and RN are also used when the discovery of a nuclide (e.g. ²⁶⁰Fm) is questioned. In this case however we always give an estimate, derived from systematic trends, for the ground state mass.

Isomeric assignment:

- * In case the uncertainty σ on the excitation energy E is larger than half that energy ($\sigma > E/2$), these quantities are followed by an asterix (e.g. 130 In and 130 In m).
- & In case the ordering of the ground- and isomeric-states are reversed compared to ENSDF, an ampersand sign is added (e.g. ⁹⁰Tc and ⁹⁰Tc^m).

Half-life

```
s = seconds; m = minutes; h = hours; d = days; y = years; 1 y = 31 556 926 s or 365.2422 d
```

adopted values for NUBASE (see text)

STABLE = stable nuclide or nuclide for which no finite value for half-life has been found.

value estimated from systematic trends in neighboring nuclides with the same Z and N parities.

subunits:

```
ms: 10^{-3} s millisecond ky: 10^3 y kiloyear \mus: 10^{-6} s microsecond My: 10^6 y megayear ns: 10^{-9} s nanosecond Gy: 10^9 y gigayear ps: 10^{-12} s picosecond Ty: 10^{12} y terayear fs: 10^{-15} s femtosecond Py: 10^{15} y petayear as: 10^{-18} s attosecond Ey: 10^{18} y exayear 2s: 10^{-21} s zeptosecond Ty: 10^{21} y zettayear ys: 10^{-24} s yoctosecond Ty: 10^{24} y yottayear
```

For isomeric mixtures: R is the production ratio of excited isomeric state to ground-state.

J^{π}

Spin and parity:

() uncertain spin and/or parity.

values estimated from systematic trends in neighboring nuclides with the same Z and N parities.

high high spin.

low low spin.

am same J^{π} as α -decay parent;

For isomeric mixtures: mix (spmix and fsmix if coming from spallation and fission respectively).

Ens

Year of the archival file of the ENSDF

(in order to reduce the width of the Table, the two digits for the centuries are omitted).

Reference

Reference keys:

(in order to reduce the width of the Table, the two digits for the centuries are omitted; at the end of this volume however, the full reference key-number is given: 1992Pa05 and not 92Pa05)

92Pa05 Updates to ENSDF derived from regular journal. These keys are taken from Nuclear Data Sheets. Where not yet available, the style 03Ya.1 is provisionally adopted.

95Am.A Updates to ENSDF derived from abstract, preprint, private communication, conference, thesis or annual report.

ABBW Re-interpretation by the present authors.

The reference key-numbers are followed by one, two or three letter codes which specifies the added or modified physical quantities:

- T for half-life
- J for spin and/or parity
- E for the isomer excitation energy
- D for decay mode and/or intensity
- I for identification

Decay modes and intensities

Decay modes followed by their intensities (in %), and their one standard deviation uncertainties. The special notation 1.8e–12 stands for 1.8×10^{-12} .

The uncertainties are given - only in this field - in the ENSDF-style: α =25.9 23 stands for $\alpha = 25.9 \pm 2.3 \; \%$

The ordering is according to decreasing intensities.

```
\alpha emission
        p 2p
                        proton emission
                                                     2-proton emission
        n 2n
                        neutron emission
                                                      2-neutron emission
                        electron capture
        ε
       e^{+}
                        positron emission
        \beta^+
                        \beta^+ decay
                                           (\beta^+ = \varepsilon + e^+)
        \beta^{-}
                        \beta^- decay
       2\beta^-
                        double \beta^- decay
        2\beta^+
                        double \beta^+ decay
        \beta^-n
                        \beta^- delayed neutron emission
        \beta^-2n
                        \beta^- delayed 2-neutron emission
       \beta^+ p \beta^+ 2p
                        \beta^+ delayed proton emission
                        \beta^+ delayed 2-proton emission
        \beta^-\alpha
                        \beta^- delayed \alpha emission
        \beta^+\alpha
                        \beta^+ delayed \alpha emission
        \beta^-d
                        \beta^- delayed deuteron emission
       IT
                        internal transition
       SF
                        spontaneous fission
        \beta+SF
                        \beta^+ delayed fission
        \beta-SF
                        \beta^- delayed fission
       <sup>24</sup>Ne
                        heavy cluster emission
                        list is continued in a remark, at the end of the A-group
For long-lived nuclides:
```

IS Isotopic abundance

A remark on the corresponding nuclide is given below the block of data corresponding to the same A.

Remarks. For nuclides indicated with an asterix at the end of the line, remarks have been added. They are collected in groups at the end of each block of data corresponding to the same A. They start with a code letter, like the ones following the reference key-number, as given above, indicating to which quantity the remark applies. They give:

- i) Continuation for the list of decays. In this case, the remark starts with three dots.
- ii) Information explaining how a value has been derived.
- iii) Reasons for changing a value or its uncertainty as given by the authors or for rejecting it.
- iv) Complementary references for updated data.
- v) Separate values entering an adopted average.

Nuclide	Mass excess (keV)	Excitation energy(keV)	Half-l	ife		J^{π}	Ens	Referen	ce	Decay modes and intensities (%)	
¹ n	8071.3171 0.000	05	613.9	s	0.6	1/2+	00	02PaDG	Т	β ⁻ =100	
^{1}H	7288.9705 0.000		STABLE			$1/2^{+}$		98Ro45		IS=99.9885 70	*
* ¹ H	D : all isotopic abund	ances in NUBASE are	e from 98Ro	45							**
$^{2}\mathrm{H}$	13135.7216 0.000	03	STABLE			1+	99			IS=0.0115 70	
³ H	14949.8060 0.002	23	12.32	v	0.02	1/2+	00			β ⁻ =100	
³ He	14931.2148 0.002	24	STABLE	•		$1/2^{+}$	98			IS=0.000137 3	
³ Li	28670# 2000#	RN	p-unstable				98			p ?	
⁴ H	25900 100		139	ys	10	2^{-}	98	03Me11	Т	n=100	*
⁴ He	2424.9156 0.000	01	STABLE	•		0^{+}	98			IS=99.999863 3	
⁴ Li	25320 210		91	ys	9	2-	98	65Ce02	T	p=100	
* ⁴ H	T: width=3.28(0.23)	MeV; also 91Go19=	4.7(1.0) outs	veig	thed, i	ot used					**
⁵ H	32890 100		> 910	ys		$(1/2^{+})$	02	03Go11	Т	2n=100	*
⁵ He	11390 50		700	ys	30	$3/2^{-}$	02			n=100	
⁵ Li ⁵ Be	11680 50 38000# 4000#		370	ys	30	3/2 ⁻ 1/2 ⁺ #	02			p=100 p?	
* ⁵ H	T : from width < 0.5	MeV; at variance wi	th 01Ko52=2	280(50) y	,		0.4)		p :	**
*5H) but with instrumen					,	/			**
*5H		9=66(25) ys 95Al31		ably	for h	igher sta	ate				**
* ⁵ H	J : from angular distri	ibution consistent wi	th $l = 0$								**
⁶ H	41860 260		290	ys	70	2-#	02			n ?; 3n ?	
⁶ He	17595.1 0.8		806.7	ms	1.5	0^{+}	02	90Ri01	D	β^- =100; β^- d=0.00028 5	
⁶ Li ⁶ Be	14086.793 0.013 18375 5	5	STABLE	Pro.	0.3	1 ⁺ 0 ⁺	02 02			IS=7.59 4	
⁶ B	18375 5 43600# 700#		5.0 p-unstable#		0.3	2-#	02			2p=100 2p ?	
2	700		p unstables							-p ·	
^{7}H	49140# 1010#		23	ys	6	1/2+#		03Ko11	T	2n ?	*
⁷ He	26101 17		2.9	zs	0.5	$(3/2)^{-}$		02Me07	T	n=100	*
⁷ Li ⁷ Be	14908.14 0.08		STABLE		0.00	3/2-	03			IS=92.41 4	
⁷ B	15770.03 0.11 27870 70		53.22 350			$3/2^ (3/2^-)$	03			$\varepsilon = 100$ p=100	
* ⁷ H	T : from estimated wi	idth 20(5) MeV in Fi		,,,		(5/2)	0.5			P 100	**
* ⁷ He	T : from 159(28) keV	, average 02Me07=1	50(80) 69St()2=1	160(3))					**
⁸ He	31598 7		119.0	ms	1.5	0^{+}	99	88Aj01	D	$\beta^-=100; \beta^-=161; \beta^-=0.91$	*
⁸ Li	20946.84 0.09		840.3	ms	0.9	2^{+}	99	90Sa16	T	$\beta^-=100; \beta^-\alpha=100$	*
⁸ Be	4941.67 0.04		67	as	17	0+	99		_	α=100	
⁸ B ⁸ C	22921.5 1.0 35094 23		770 2.0	ms	3 0.4	0^{+}	99	88Aj01	D	$\beta^{+}=100; \beta^{+}\alpha=100$ 2p=100	*
*8He	D: β^- n intensity is fi	rom 88Ai01: β ⁻ t int				U	77			2p=100	**
* ⁸ Li	$D: \beta^-$ decay to first 2					:					**
* ⁸ B	D: β^+ to 2 excited st	ates in ⁸ Be, then α	and γ , but no	t to	⁸ Be g	round-st	ate				**
⁹ He	40939 29		7	zs	4	1/2(-#)	99	99Bo26	т	n=100	*
⁹ Li	24954.3 1.9		178.3		0.4	3/2-	99	95Re.A		$\beta^-=100$; $\beta^-=50.82$	*
⁹ Be	11347.6 0.4		STABLE			$3/2^{-}$	99			IS=100.	
9B	12415.7 1.0		800			3/2-	99	004:01	-	p=100	
⁹ C ∗ ⁹ He	28910.5 2.1 T : derived from widt	h 100(60) baV	126.5 J : from 01			$(3/2^{-})$	99	88Aj01	D	$\beta^{+}=100; \beta^{+}p=23; \beta^{+}\alpha=17$	*
*°Не * ⁹ Li	D: also 92Te03 β ⁻ n=					sed					**
* ⁹ C	D: $\beta^+=12\%$ and 11%						α em	itter			**
	-	-									

Nuclide	Mass e (ke			xcitat ergy(l		На	ılf-lif	e e	J^{π}	Ens	Referen	ce	Decay modes and intensities (%)	
¹⁰ He	48810	70				2.7	zs	1.8	0^{+}	99	94Os04	T	2n=100	*
¹⁰ Li	33051	15				2.0	ZS	0.5	$(1^-, 2^-)$	99	94Yo01	TJ	n=100	
¹⁰ Li ^m	33250	40	200		RQ	3.7	ZS	1.5	1+		97Zi04	T	IT=100	*
¹⁰ Li ⁿ ¹⁰ Be	33530	40	480	40	RQ	1.35	ZS	0.24	0^{+}	99	94Yo01	T	IT=100	*
¹⁰ B	12606.7 12050.7	0.4 0.4				1.51 Stable	Му	0.06	3 ⁺	99			$\beta^-=100$ IS=19.9 7	
¹⁰ C	15698.7	0.4				19.290	s	0.012	0+	99	90Ba02	T	$\beta^{+}=100$	
¹⁰ N	38800	400				200	ys	140	(2^{-})	99	02Le16	TJ	p ?	
$*^{10}$ He	D : most prol	bably 2 neut	ron em	itter	from S	_{2n} =-10700			` /				1	**
$*^{10}$ Li ^m	T: average 9													**
* ¹⁰ Li ⁿ	T: average 9	4Yo01=358	(23) 93	Bo03	3=150((70) keV, E	Birge	ratio B	=2.8					**
¹¹ Li ¹¹ Be	40797	19				8.75	ms	0.14	3/2-	00	97Mo35		$\beta^-=100; \beta^-=84.9.8; \dots$	*
11 B	20174 8667.9	6 0.4				13.81 Stable	S	0.08	$\frac{1}{2^{+}}$ $\frac{3}{2^{-}}$	00	81Al03	D	$\beta^-=100; \beta^-\alpha=2.9 4$ IS=80.1 7	
11 C	10650.3	1.0				20.39	m	0.02	$3/2^{-}$	00			$\beta^{+}=100$	
¹¹ N	24300	50				590	ys	210	1/2+	00	03Gu06	T	p=100	*
${}^{11}N^{m}$	25040	80	740	60		690	ys	80	$1/2^{-}$		96Ax01	ETJ	p=100	
* ¹¹ Li	$D:\ldots;\beta^{-2}$									13 5				**
* ¹¹ Li	$D: \beta^- n, \beta^-$													**
* ¹¹ Li * ¹¹ Li		x intensity i average 84							u19;					**
* ¹¹ Li	T: average 9								0.2)					**
*11Li		01=8.83(0.1				. ,		(-	/					**
* ¹¹ N * ¹¹ N	T : unweighe	d average 0	3Gu06	=0.24	(0.24)	00Ma62=	1.44	$(0.2) \mathrm{M}$	eV 00010	01=0	4(0.1)			**
¹² Li	50100#	1000#				< 10	ns			00	74Bo05	I	n ?	
¹² Be	25077	15				21.50	ms		0_{+}	00	01Be53	T	β^- =100; β^- n=0.50 3	*
¹² B	13368.9	1.4				20.20	ms	0.02	1+	00	66Sc23	D	$\beta^{-}=100; \beta^{-}\alpha=1.63$	
¹² C ¹² N	0.0 17338.1	0.0 1.0				STABLE 11.000	***	0.016	0^{+} 1^{+}	00	668.22	D	IS=98.93 8 β^+ =100; $\beta^+\alpha$ =3.5 5	
12 O	32048	1.0				580	VS	30	0+	00	66Sc23 95Kr03	T	$p = 100$, $p = \alpha = 3.3 3$ 2p=60 30; β ⁺ ?	
* ¹² Be	D : from 99E		5Re.A=	0.52	9% ou		-		v		701110 3	•	2p 00 30, p	**
¹³ Be ¹³ Be ^p	33250 33950	70 90	700	120	RO	0.5 2.7	ns zs	0.1 1.8	$(1/2^+)$ $(1/2^-)$	00	01Th01	TJ	n ?	
$^{13}\mathrm{Be}^q$	35160	50	1910	90	RQ				$(5/2^{+})$					
¹³ B	16562.2	1.1				17.33	ms	0.17	$3/2^{-}$	00			$\beta^-=100; \beta^-n=0.28 4$	
¹³ C	3125.0113	0.0009				STABLE		0.004	1/2-	01			IS=1.07 8	
¹³ N ¹³ O	5345.48 23112	0.27 10				9.965 8.58	m ms	0.004	$1/2^ (3/2^-)$	00	70Es03	D	$\beta^{+}=100$ $\beta^{+}=100$; $\beta^{+}p=10.9 20$	
.0	23112	10				0.30	IIIS	0.03	(3/2)	00	70E803	D	ρ · =100, ρ · p=10.9 20	
¹⁴ Be ¹⁴ Be ^p	39950 41470	130 60	1520	150		4.35	ms	0.17	0 ⁺ (2 ⁺)	01	02Je11 95Bo10	D	$\beta^-=100; \beta^-n=982; \dots$	*
¹⁴ B	23664	21	1320	150		12.5	ms	0.5	2-	01	95Re.A	D	$\beta^-=100$; $\beta^-n=6.04$ 23	
¹⁴ C	3019.893	0.004				5.70	ky	0.03	0^{+}	01		_	$\beta^{-}=100$	
¹⁴ N	2863.4170	0.0006				STABLE	•		1+	01			IS=99.632 7	
¹⁴ O	8007.36	0.11				70.598	S	0.018	0^+	01	01Ga59	T	$\beta^{+}=100$	*
¹⁴ F	32660#	400#	-2 ^	2.2	0 ^	00.1 0=		00.4	2-#				p ?	
* ¹⁴ Be * ¹⁴ Be	D:; β^-2 D: supersede				p t=0	.02 1; β ¯ (x<0.	.004						**
*14O	T : average 0				'8Wi∩₄	1=70.613(0.025	5) 73CI	12=70 59	0(0.0	(30)			**
. 5	u. crugo 0	- 500 /- 10.	200,00	, 1	5.710-	. , 0.015(.,	0.57	٥.٠٠)	-0,			

Nuclide	Mass excess (keV)	Excitation energy(keV)	Half-life	J^{π}	Ens	Referen	ice	Decay modes and intensities (%)	
15 Be 15 B 15 C 15 N	49800# 500# 28972 22 9873.1 0.8 101.4380 0.0007		< 200 ns 9.87 ms 0.07 2.449 s 0.00 STABLE	$\frac{1}{2^{+}}$ $\frac{1}{2^{-}}$	94 94	03Ba47 95Re.A		n? $\beta^-=100$; $\beta^-=100$; $\beta^-=100$ IS=0.368 7	2 *
¹⁵ O ¹⁵ F	2855.6 0.5 16780 130		122.24 s 0.16 410 ys 60			01Ze.A	Т	$\beta^{+}=100$ p=100	*
*15B	D: β^- 2n intensity is from	om 89Re.A	J : given in 91Aj	. , .	, ,,	012011	•	P 100	**
*15B	T: four other outweight								**
* ¹⁵ F	T : average 01Ze.A=1.2	3(0.22)MeV 78I	3e16=1.2(0.3) 78K	e06=0.8	(0.3)				**
¹⁶ Be	57680# 500#		< 200 ns	0^{+}		03Ba47	I	2n ?	*
¹⁶ B ¹⁶ C	37080 60 13694 4		< 190 ps 747 ms 8	0_{-}	99	89Re.A	D	n ? β ⁻ =100; β ⁻ n=97.9 23	
16N	5683.7 2.6		7.13 s 0.02			74Ne10		$\beta^-=100$; $\beta^-=97.923$ $\beta^-=100$; $\beta^-\alpha=0.001007$	
¹⁶ O	-4737.0014 0.0001		STABLE	0^{+}	99			IS=99.757 16	
¹⁶ F	10680 8		11 zs 6	0-	99			p=100	
¹⁶ Ne * ¹⁶ Be	23996 20 I: 100 events expected,	none observed	9 zs	0_{+}	99			2p=100	**
. 20	1. Too events expected,	none observed							
^{17}B	43770 170		5.08 ms 0.05	(3/2-	99	88Du09	D	$\beta^-=100; \beta^-=631; \dots$	*
¹⁷ C	21039 17		193 ms 5		,	01Ma08		$\beta^-=100; \beta^-=28.4 13$	*
¹⁷ N ¹⁷ O	7871 15 -808.81 0.11		4.173 s 0.004	$\frac{4}{5/2^{+}}$		94Do08	D	$\beta^-=100; \beta^-=951; \dots$	*
17F	-808.81 0.11 1951.70 0.25		STABLE 64.49 s 0.16		99 99			IS=0.038 1 β ⁺ =100	
¹⁷ Ne	16461 27		109.2 ms 0.6			88Bo39	D	$\beta^{+}=100; \beta^{+}p=96.09; \beta^{+}\alpha=2.79$	
* ¹⁷ B	D:; β^{-2} n=117; β^{-1}								**
* ¹⁷ C * ¹⁷ C	T : average 95Sc03=193 D : β ⁻ n intensity is from		3(10) 86Cu01=202	(17)					**
* C * ¹⁷ N	D: β if litteristy is from D:; β - α =0.0025 4								**
	·								
¹⁸ B	52320# 800#		< 26 ns	4-#		93Po.A	I	n ?	
¹⁸ C ¹⁸ N	24930 30 13114 19		92 ms 2 622 ms 9	0 ⁺ 1 ⁻	96 96	95Re.A	D	$\beta^-=100; \beta^-n=31.5 15$ $\beta^-=100; \beta^-n=10.9 9;$	*
18O	-781.5 0.6		STABLE 9	0+	96	95KC.A	D	IS=0.205 14	*
¹⁸ F	873.7 0.5		109.771 m 0.020		96	02Un02	T	β^{+} =100	
¹⁸ F ^m	1995.1 0.5	1121.36 0.15	234 ns	5+	0.6			0+ 100	
¹⁸ Ne ¹⁸ Na	5317.17 0.28 24190 50		1.672 s 0.003 1.3 zs 0.4	8 0 ⁺ 1 ⁻ #	96	01 7 e A	TD	$\beta^{+}=100$ p=?; β^{+} ?	
$*^{18}N$	D:; $\beta^{-}\alpha=12.26$			- "				r .,,,	**
* ¹⁸ N	D: β^- n intensity is from			h04					**
* ¹⁸ N	T : average 99Og03=62	.0(14) 82OI01=6	24(12)						**
¹⁹ B	59360# 400#		2.92 ms 0.13	3/2-#	96	03Yo02	Т	$\beta^-=100; \beta^- n \approx 75; \dots$	*
¹⁹ C	32420 100					88Du09	TD	$\beta^-=100; \beta^-=473; \dots$	*
¹⁹ N ¹⁹ O	15862 16 3334.9 2.8		271 ms 8 26.464 s 0.009	$(1/2)^{-}$		OAT+ A	Т	$\beta^-=100; \beta^-=54.6 14$ $\beta^-=100$	*
¹⁹ F	-1487.39 0.07		STABLE STABLE	1/2+		94II.A	1	IS=100.	
¹⁹ Ne	1751.44 0.29		17.296 s 0.003			94Ko.A	T	$\beta^{+}=100$	
¹⁹ Na	12927 12		< 40 ns			93Po.A	I	p=100	*
¹⁹ Mg * ¹⁹ B	33040 250 D:; β−2n≈25			1/2-#	F 96			2p ?	**
* ¹⁹ B	T: others: 99Re16=4.5	(1.5) 98Yo06=3.	3(0.2 statistics + 2.	0 system	natics	estimate	d by	NUBASE)	**
*19B	D: deduced from $P_n =$		+ =125(32)% in	1 98Yo0	6 and	l assuming	g		**
* ¹⁹ B * ¹⁹ C	D: $\beta^{-}n + \beta^{-}2n=10$	00%							**
*19C	D:; β ⁻ 2n=7 3 T: average 88Du09=49	(4) 95Re A=44(4	4) 95Oz02=45 5(4)	0)					**
* ¹⁹ C	J : from 01Ma08, 99Na		.,	-/					**
* ¹⁹ N	J: 95Oz02=(1/2, 3/2, 5/	'2) - 89Ca25=(1/							**
* ¹⁹ Na	D: most probably proto	on emitter from S	$_p = -333(12) \text{ keV}$						**

Nuclide	Mass excess (keV)	Excitation energy(keV)	Half-life	J^{π}	Ens Reference	Decay modes and intensities (%)
²⁰ C ²⁰ N ²⁰ O ²⁰ F ²⁰ Ne ²⁰ Na	37560 240 21770 60 3797.5 1.1 -17.40 0.08 -7041.9313 0.001 6848 7	8	16 ms 3 130 ms 7 13.51 s 0.05 11.163 s 0.008 STABLE 447.9 ms 2.3	0 ⁺ 2 ⁺ 0 ⁺ 2 ⁺	98 98 98Ti06 7 98 98 89Cl02 1	FD β^- =100; β^- n=57.0 25 β^- =100 F β^- =100 IS=90.48 3 D β^+ =100; $\beta^+\alpha$ =25.0 4
	17570 27 Γ : average 90Mu06=1 Γ : average 95Pi03=95				98 95Pi03 ′	ΓD β ⁺ =100; β ⁺ p=30.4 16 * ***
²¹ C ²¹ N ²¹ O ²¹ F ²¹ Ne ²¹ Na ²¹ Mg	45960# 500# 25250 100 8063 12 -47.6 1.8 -5731.78 0.04 -2184.2 0.7 10911 16		4.158 s 0.020 STABLE 22.49 s 0.04	1/2 ⁻ # (1,3,5)/2 ⁺ (5/2 ⁺ (3/2 ⁺ (3/2 ⁺ (4/2))	00 93Po.A 1	β^- =100; β^- n=80 6 β^- =100 β^- =100 IS=0.27 1 β^+ =100
²¹ Al * ²¹ Mg I	$26120# 300#$ $0:; \beta^+ \alpha < 0.5$ $0: from mirror^{21}F, the$	ere is a preference fo	< 35 ns	(5/2,3/2) ⁺ (1/2 ⁺ #	00 00 93Po.A 1	
²² C ²² N ²² O ²² F ²² Ne ²² Na ²² Na ^m	53280# 900# 32040 190 9280 60 2793 12 -8024.715 0.018 -5182.4 0.4 -4599.4 0.4	583.03 0.09	6.2 ms 1.3 13.9 ms 1.4 2.25 s 0.15 4.23 s 0.04 STABLE 2.6019 y 0.0004 244 ns 6	0^{+} $4^{+}, (3^{+})$ 0^{+} 3^{+} 1^{+}	00 03Yo02 7 00 00 00 00 00 00	TD $β^-$ =100; $β^-$ n=99 39; * $Γ β^-$ =100; $β^-$ n=35 5 * $β^-$ =100; $β^-$ n<22 $β^-$ =100; $β^-$ n<11 IS=9.25 3 $β^+$ =100 IT=100 g^+ =100
* ²² N I	-397.0 1.3 18180# 90# 32160# 200# $0:; \beta^{-}2n$? 0: from 90Mu06 $0:; \beta^{+}2p=0.9 5; \beta^{+}$	D: from 98Yo06 $\beta^{+}\alpha = 0.319$	3.857 s 0.009 59 ms 3 29 ms 2	$(3)^{+}$	00 00 97B103 1 00 96B111 1	
²³ N ²³ O ²³ F ²³ Ne ²³ Na	38400# 300# 14610 120 3330 80 -5154.05 0.10 -9529.8536 0.002	27	37.24 s 0.12 Stable	1/2+# (3/2,5/2)+ (5/2+ (3/2+ (4/2))	00 00	$\beta^-=100; \beta^-=317$ $\beta^-=100; \beta^-=104$ $\beta^-=100$ IS=100.
*23 Al I	-5473.8 1.3 6770 19 23770# 200# Γ : statistical error 1.4 Γ : $\beta^+ p=3.5(1.9)\%$ from Γ :			5/2+#		$\beta^{+}=100$ D $\beta^{+}=100; \beta^{+}p=84$ TD $\beta^{+}=100; \beta^{+}p\approx88;$ * ** **
²⁴ N ²⁴ O ²⁴ F ²⁴ Ne ²⁴ Na ²⁴ Na ²⁴ Na	47540# 400# 19070 240 7560 0.4 -5951.5 0.4 -8418.11 0.08 -7945.90 0.08 -13933.567 0.013	472.207 0.009	<52 ns 65 ms 5 400 ms 50 3.38 m 0.02 14.9590 h 0.0012 20.20 ms 0.07 STABLE	0^{+} $(1,2,3)^{+}$ 0^{+} 4^{+} 1^{+}	93Po.A 1 00 00 00 00 00 00 00	n? β ⁻ =100; $β$ ⁻ n=18 6 β ⁻ =100; $β$ ⁻ n<5.9 β ⁻ =100 Γ ⁻ =100 Γ ⁻ =100; $β$ ⁻ =0.05 Γ ⁻ =0.99 4
²⁴ Al ²⁴ Al ^m ²⁴ Si ²⁴ P * ²⁴ Al I	-56.9 2.8 368.9 2.8 10755 19 32000# 500# $0: \dots; \beta^+ p = 0.0016$ 2 $0: \dots; \beta^+ \alpha = 0.028$ 6	425.8 0.1	2.053 s 0.004 131.3 ms 2.5 140 ms 8	4 ⁺ 1 ⁺	00 00 00 00 98Cz01 1	$\beta^{+}=100; \beta^{+}\alpha=0.035 6; \dots * $ IT=82 3; $\beta^{+}=18 3; \dots * $

Nuclide	Mass excess (keV)	Excitation energy(keV)	Half-life	J^{π} Ens	Reference	Decay modes and intensities (%)	
25 N 25 O 25 F 25 Ne 25 Na 25 Mg 25 Al 25 Si 25 P *25 N	56500# 500# 27440# 260# 11270 100 -2108 26 -9357.8 1.2 -13192.83 0.03 -8916.2 0.5 3824 10 18870# 200# D: in 99Sa06 experiments	ent, 240 ²⁵ N events expect	<260 ns <50 ns 50 ms 6 602 ms 8 59.1 s 0.6 STABLE 7.183 s 0.012 220 ms 3 <30 ns ted, none observed	1/2 ⁻ # 3/2 ⁺ # 00 5/2 ⁺ # 00 (3/2) ⁺ 00 5/2 ⁺ 00 5/2 ⁺ 00 5/2 ⁺ 00 5/2 ⁺ 00 1/2 ⁺ # 00	99Sa06 ID 93Po.A I	n?; 2n?; $\beta^-=0$ n? $\beta^-=100$; β^- n=145 $\beta^-=100$ $\beta^-=100$ IS=10.00 1 $\beta^+=100$ $\beta^+=100$; β^+ p=36.815 p?	**
26 O 26 F 26 Ne 26 Ne 26 Al 26 Al 26 Si 26 S *26 O *26 F *26 P		228.305 0.013 a06, several 100s of ²⁶ O e l01=9.6(0.8): same data	< 40 ns 10.2 ms 1.4 197 ms 1 1.077 s 0.005 STABLE 717 ky 24 6.3452 s 0.0019 2.234 s 0.013 30 ms 25 10# ms vents expected, none	0 ⁺ 00 (3 ⁺) 00 0 ⁺	93Po.A I 99Re16 T	2n ?; n=30#; β^- =0 β^- =100; β^- n=11 4 β^- =100; β^- n=0.13 3 β^- =100 1S=11.01 3 β^+ =100 β^+ =100 β^+ =100 β^+ =100; β^+ 2p≈1; 2p ?	* * * * ** **
27 O 27 F 27 Ne 27 Ne 27 Ng 27 Al 27 Si 27 P 27 S *27 F *27 F *27 S		Re16=6.5(1.1) and 97Ta2: 8) same data as in 99Re16	< 260 ns 4.9 ms 0.2 32 ms 2 301 ms 6 9.458 m 0.012 STABLE 4.16 s 0.02 260 ms 80 21 ms 4 2=5.3(0.9) outweight	$3/2^+\#$ $5/2^+\#$ 01 $3/2^+\#$ 01 $5/2^+$ 01 $1/2^+$ 01 $5/2^+$ 01 $5/2^+$ 01 $1/2^+$ 01 $1/2^+$ 01 $1/2^+$ 01 (5/2+) 01 sd; and	99Sa06 I 98No.A T 84Gu19 D	$\begin{array}{l} \text{n ?; 2n ?} \\ \beta^-\!=\!100; \beta^-\text{n=77 21} \\ \beta^-\!=\!100; \beta^-\text{n=2.0 5} \\ \beta^-\!=\!100; \beta^-\text{n=0.13 4} \\ \beta^-\!=\!100 \\ \text{IS=100} \\ \beta^+\!=\!100; \beta^+\text{p=0.07} \\ \beta^+\!=\!100; \beta^+\text{p=2.0 10;} \end{array}$	* ** **
28 O 28 F 28 Ne 28 Na 28 Mg 28 Al 28 Si 28 Si 28 P 28 S 28 Cl *28 O *28 Ne *28 Ne *28 Ne *28 Ne	T: average 99Re16=18	12541.25 0.12 RQ a06, 11 and 37 ²⁸ O events 3(3) 97Ta22=21(5) 92Te03 5) at variance, 99Dl01=20	8=17(4). Others not a	0+ 01 1+ 01 0+ 01 3+ 01 0+ 01 3+ 01 3+ 01 0+ 01 1+# rved	98Po.A I 93Po.A I 99Re16 T 79Ho27 D 89Po10 D	n?; 2n?; $\beta^-=0$ n? $\beta^-=100$; β^- n=16 6 $\beta^-=100$; β^- n=0.58 12 $\beta^-=100$ $\beta^-=100$ IS=92.2297 7 $\beta^+=100$; β^+ p=0.0013 4; $\beta^+=100$; β^+ p=20.7 19 p?	* * * * * * * * * * * * * * * * * * * *

Nuclide	Mass e (ke		Excitation energy(keV)	1	Half-l	life	J^{π}	Ens	Referen	ice	Decay modes and intensities (%)	
²⁹ F	40300#	580#		2.6	ms	0.3	5/2+#	01	99Re16	т	$\beta^-=100; \beta^-=6040; \dots$	*
²⁹ Ne	18060	270		15.6	ms	0.5	3/2+#	01	01Be53		$\beta^-=100; \beta^-=194;$	*
²⁹ Na	2665	13		44.9	ms	1.2	3/2(+#)	01	95Re.A		$\beta^-=100; \beta^-=25.923$	*
²⁹ Mg	-10619	14		1.30	S	0.12	3/2+	01			$\beta^{-}=100$	
²⁹ Al	-18215.3	1.2		6.56	m	0.06	5/2+	01			$\beta^{-}=100$	
²⁹ Si	-21895.046	0.021		STABLE	į.		1/2+	01			IS=4.6832 5	
²⁹ P	-16952.6	0.6		4.142	S	0.015	1/2+	01			$\beta^{+}=100$	
²⁹ S	-3160	50		187	ms	4	5/2+	01	79Vi01		$\beta^{+}=100; \beta^{+}p=46.4 10$	
²⁹ Cl	13140#	200#		< 20	ns		3/2+#	01	93Po.A	I	p ?	
* ²⁹ F * ²⁹ F	$D:\ldots;\beta^{-2}$		0/0.0\ 00NI- 4. 2	· c(0, 4), 0	7T- 2	2 2 4(0.0)	041					**
*29F	_		.9(0.8) 98No.A=2 2.4(0.4) same dat				. Otners not					**
* ²⁹ F	$D: \beta^-$ n from			a as III 9	JKC1	5						**
* ²⁹ Ne	$D: \beta = \beta$		-100(00)/0									**
* ²⁹ Ne			7 5 99Re16=27 9	: other no	ot use	d: 99D101	=27(9)%. sa	me				**
* ²⁹ Ne			e16. β^- 2n limit is				_ (,) , , , ,					**
* ²⁹ Na			e.A=27.1(1.6)% 8									**
³⁰ F	48900#	600#		< 260	ns				99Sa06	I	n ?	
³⁰ Ne	23100	570		5.8	ms	0.2	0_{+}	01	99Dl01	D	$\beta^-=100; \beta^-n=13.8$	*
³⁰ Na	8361	25		48.4	ms	1.7	2^+	01	99D101		$\beta^-=100; \beta^-n=30 4; \dots$	*
³⁰ Mg	-8911	8		335	ms	17	0^{+}	01	84La03	D	$\beta^-=100; \beta^- n < 0.06$	
³⁰ Al	-15872	14		3.60	S	0.06	3+	01			$\beta^{-}=100$	
³⁰ Si ³⁰ P	-24432.928			STABLE		0.004	0+	01			IS=3.0872 5	
³⁰ S	-20200.6 -14063	0.3		2.498 1.178	m s	0.004	1 ⁺ 0 ⁺	01 01			$\beta^{+}=100$ $\beta^{+}=100$	*
³⁰ Cl	-14003 4440#	200#		< 30	ns	0.003	3+#	01	93Po.A	ĭ	p?=100 p?	
³⁰ Ar	20080#	300#		< 20	ns		0+	01	93Po.A		2p ?	
* ³⁰ Ne	D : from 9(1									_	-r ·	**
*30Na			$6; \beta^- \alpha = 5.5e - 5.20$)								**
$*^{30}$ Na	T: average	99D101=50)(4) 97Ta22=48(5	6) 84La02	2=48((2)						**
* ³⁰ P	D : first obse	erved radio	onuclide, in 1934									**
³¹ F	56290#	600#		1#	ms	(>260 ns)	5/2+#		99Sa06	I	β^- ?; β^- n ?	
³¹ Ne	30840#	900#		3.4	ms	0.8	7/2-#	01			$\beta^{-}=100; \beta^{-}n$?	
31 Na	12650	210		17.0	ms	0.4	$(3/2^+)$	01	93K102	J	$\beta^-=100; \beta^-n=375; \dots$	*
³¹ Mg	-3217	12		230	ms	20	3/2+	01	95Re.A	D	$\beta^-=100; \beta^-=6.220$	*
31 Al	-14954	20		644	ms	25	$(5/2,3/2)^+$				$\beta^-=100; \beta^-n<1.6$	*
³¹ Si ³¹ P	-22949.01	0.04		157.3	m	0.3	3/2+	01			$\beta^-=100$	
³¹ S	-24440.88 -19044.6	0.18 1.5		2.572	s	0.013	$\frac{1/2^{+}}{1/2^{+}}$	01 01			IS=100. β^+ =100	
³¹ Cl	-7070	50		150	ms	25	$\frac{1}{2}$ $3/2^{+}$	01	85Ay02	D	$\beta^{+}=100; \beta^{+}=0.7$	*
³¹ Ar	11290#	210#		14.4	ms	0.6	5/2(+#)	01	00Fy01		$\beta^{+}=100; \beta^{+}=63.7; \dots$	*
* ³¹ Na	$D:\ldots;\beta^{-2}$		6^{-3} n<0.05		1110	0.0	5/2	0.	001) 01	•	p 100, p p 00 1,	**
$*^{31}Na$	D: all from											**
$*^{31}Mg$	D: strongly	conflicting	g with earlier 84L	a03=1.70	(0.3)9	6						**
$*^{31}A1$			ere is a preference									**
*31Cl			66 keV protons. To				26%					**
*31 Ar			β^{+} 3p<1.4; β^{+} p	α <0.38;	$\beta^+\alpha$	< 0.03						**
*31 Ar	D : from 98		4 1 (0 7) 02D 01	15 17 1		, ,	c corri	00				**
* ³¹ Ar	T : average (J0Fy01=14	4.1(0.7) 92Ba01=	15.1(+1.	3-1.1) J	: from 99Th	09				**
³² Ne	37280#	800#		3.5	ms	0.9	0+	01			$\beta^-=100; \beta^- n ?$	
³² Na	19060	360		12.9	ms	0.7	$(3^-,4^-)$	01	93K102	J	$\beta^-=100; \beta^-=247; \dots$	*
³² Mg	-955	18		95	ms	16	0+	01	050 1	TD	$\beta^-=100; \beta^-=2.45$	
³² Al ³² Al ^m	-11060	90	055.7.0.4	31.7	ms	0.8	1 ⁺	01			$\beta^-=100; \beta^-=0.75$	
³² Al ^m ³² Si	-10100 -24080.91	90 0.05	955.7 0.4	200 132	ns	20 13	0^{+}	01 01	96Ro02	EIJ	$\beta^{-}=100$	
$^{32}Si^m$	-24080.91 -18497.9	1.0	5583.0 1.0	27	y ns	2	(5-)	O1	97Fo01	ETI	ρ –100	
	oup is continu			21	113	-	(3)		J,1 001			

Nuclide	Mass excess (keV)	Excitation energy(keV)	Half-life	J^{π} Ens	Reference	Decay modes and intensities (%)
A-gro	up continued					
³² S ³² Cl ³² Ar ³² Ar	$\begin{array}{ccc} -24305.22 & 0.19 \\ -26015.70 & 0.14 \\ -13330 & 7 \\ -2200.2 & 1.8 \\ 3400\# & 100\# \end{array}$	5600# 100#	14.263 d 0.003 STABLE 298 ms 1 98 ms 2	1+ 01 0+ 01 1+ 01 0+ 01 5-#	02Un02 T 79Ho27 D	$\begin{array}{l} \beta^-{=}100 \\ \text{IS}{=}94.93 \ 31 \\ \beta^+{=}100; \ \beta^+\alpha{=}0.054 \ 8; \dots \\ \beta^+{=}100; \ \beta^+p{=}43 \ 3 \\ \text{IT} \ ? \end{array} \\ \\ \end{array}$
³² K ³² K ^m	20420# 500# 21370# 510#	950# 100#		1 ⁺ # 4 ⁺ #		p? p?
* ³² Na	D:; β^{-2} n=8 2 T: average 98No.A D:; β^{+} p=0.026	=11.5(0.8) 84La03=1	3.2(0.4)			** ** **
³³ Ne ³³ Na	46000# 800# 24890 870		< 260 ns 8.2 ms 0.2	7/2 ⁻ # 3/2 ⁺ # 01	02No11 I 02Ra16 TD	n? * $β^-=100; β^-n=476;$ *
³³ Mg ³³ Al ³³ Si	4894 20 -8530 70 -20493 16		90.5 ms 1.6 41.7 ms 0.2 6.18 s 0.18	7/2 ⁻ # 01 5/2 ⁺ # 01 (3/2 ⁺) 01	02Mo29 T 02Mo29 T	$\beta^{-}=100; \beta^{-}n=17.5$ $\beta^{-}=100; \beta^{-}n=8.5.7$ $\beta^{-}=100$
³³ S ³³ Cl	$\begin{array}{ccc} -26337.5 & 1.1 \\ -26585.99 & 0.14 \\ -21003.4 & 0.5 \end{array}$		25.34 d 0.12 STABLE 2.511 s 0.003	$1/2^{+}$ 01 $3/2^{+}$ 01 $3/2^{+}$ 01		β^{-} =100 IS=0.76 2 β^{+} =100
³³ Ar ³³ K * ³³ Ne	-9384.1 0.4 6760# 200# T : estimated half-li	fe 1# ms for β^- deca	173.0 ms 2.0 < 25 ns ay I : also 02Le.	$1/2^+$ 01 $3/2^+$ # 01 $4 < 1.5 \mu$ s	93Po.A I	β ⁺ =100; β ⁺ p=38.7 10 p?
	D:; β^{-2} n=13 3		y			**
³⁴ Ne ³⁴ Na	53120# 810# 32760# 900#		1# ms (>1.5 μ s) 5.5 ms 1.0	1^{+} 01	02Le.A I ABBW D	$β^- ?; β^- n ?$ $β^- = 100; β^- 2n \approx 50; β^- n \approx 15$ *
2.4	8810 230 -2930 110 -19957 14		20 ms 10 56.3 ms 0.5 2.77 s 0.20	0 ⁺ 01 4 ⁻ # 01 0 ⁺ 01	01Nu01 T	$\beta^{-}=100; \beta^{-}n?$ $\beta^{-}=100; \beta^{-}n=12.525$ * * $\beta^{-}=100$
³⁴ S ³⁴ Cl	-24558 5 -29931.79 0.11 -24439.78 0.18		12.43 s 0.08 STABLE 1.5264 s 0.0014	$ \begin{array}{ccc} 1^{+} & 01 \\ 0^{+} & 01 \\ 0^{+} & 01 \\ \end{array} $		$\beta^{-}=100$ IS=4.29 28 $\beta^{+}=100$
2.4	-24293.42 0.18 -18377.2 0.4 -1480# 300#	146.36 0.03	32.00 m 0.04 845 ms 3 < 40 ns	3 ⁺ 01 0 ⁺ 01 1 ⁺ # 01	93Po.A I	β ⁺ =55.4 6; IT=44.6 6 β ⁺ =100 p ?
³⁴ Ca	13150# 300# I: also 02No11 > 2	260 ns	< 35 ns		93Po.A I	2p ?
* ³⁴ Na * ³⁴ Na * ³⁴ Al	D: assuming β	$^-$ n/ β $^-$ 2n=0.3 from transferrongly conflicting wi	om $P_n = \beta^- n + 2 \times \beta^{-2}$ ends in the ³⁰ Na- ³³ Na s th 89Ba50=27(5)% and	series: 26 41	3 4	** **
³⁵ Na	20590# 050#		15 05	2/2+# 01		R-100, R-m-2
³⁵ Mg ³⁵ Al	39580# 950# 16150# 400# -130 180		1.5 ms 0.5 70 ms 40 38.6 ms 0.4		95Re.A D	$\beta^{-}=100; \beta^{-}=?$ $\beta^{-}=100; \beta^{-}=5246$ $\beta^{-}=100; \beta^{-}=4113$
³⁵ Si ³⁵ P	-14360 40 -24857.7 1.9 -28846.36 0.10		780 ms 120 47.3 s 0.7 87.51 d 0.12			$\beta^{-}=100; \beta^{-}=150$ $\beta^{-}=100; \beta^{-}=100$ $\beta^{-}=100$
³⁵ Ar	$-29013.54 0.04 \\ -23047.4 0.7$		STABLE 1.775 s 0.004	$3/2^{+}$ 01 $3/2^{+}$ 01		IS=75.78 4 β ⁺ =100
³⁵ Ca	-11169 20 4600# 200# T : also 95Re.A=30	(4); both strongly cor	178 ms 8 25.7 ms 0.2 inflicting with 89Le16=1	3/2 ⁺ 01 1/2 ⁺ # 01 170(70) and		$\beta^{+}=100; \beta^{+}=0.37 15$ $\beta^{+}=100; \beta^{+}=95.7 14; *$
* ³⁵ Al * ³⁵ Al	T: 88Mu08=13	60(+100-50) 6(4)% 89Le16=40(10))% and 88Mu08=87(+3			**

Nuclide	Mass ex (keV			eitation gy(keV)		1	Half-	·life	J^{π}	En	s Reference	Decay modes and intensities (%)	
36P - 36S - 36Cl - 36Ar - 36K - 36Ca 36Sc * 36Na I	47950# 21420# 5780 -12480 -20251 -30664.07 -29521.86 -30231.540 -17426 -6440 13900# (13900)# (1390)# (1390)# (1390)# (1390)#					< 260 5# 90 450 5.6 Stabli 301 Stabli 342 102	ms ms s E ky E ms	(>200 ns) 40 60 0.3 2 2	0 0 ⁺ 0 + 4 - # 0 + 2 + 0 + 2 + 0 + 2 + 0 +	01 01 01 01 01 01		$\begin{array}{l} {\rm n}~?\\ {\beta}^-~?\\ {\beta}^-=100;~{\beta}^-{\rm n}<30\\ {\beta}^-=100;~{\beta}^-{\rm n}=12.5\\ {\beta}^-=100\\ {\rm IS}=0.02.1\\ {\beta}^-=98.1~1;~{\beta}^+=1.9~1\\ {\rm IS}=0.3365~30;~2{\beta}^+~?\\ {\beta}^+=100;~{\beta}^+{\rm p}=0.048~14;~\\ {\beta}^+=100;~{\beta}^+{\rm p}=56.8~13\\ {\rm p}~? \end{array}$	**
³⁷ S - ³⁷ C1 - ³⁷ Ar - ³⁷ K - ³⁷ Ca - ³⁷ Sc	55280# 29250# 9950 -6580 -18990 -26896.36 -31761.53 -30947.66 -24800.20 -13162 2840# 1: also 02No	960# 900# 330 170 40 0.20 0.05 0.21 0.09 22 300# 11 > 260	ns			1# 40# 20# 90 2.31 5.05 STABLI 35.04 1.226 181.1	ms ms ms s m E d s	(>1.5 \mu s) (>260 ns) (>1 \mu s) 60 0.13 0.02 0.04 0.007 1.0	,	01 01 01 01 01 01	02Le.A I 96Sa34 I 91Or01 I 95Re.A D	$β^-?; β^-n?$ $β^-?; β^-n?$ $β^-?; β^-n?$ $β^-=100; β^-n=17 13$ $β^-=100$ $β^-=100$ 15=24.22 4 ε=100 $β^+=100$ $β^+=100; β^+p=82.17$ p?	**
38 S - 38 Cl - 38 Cl - 38 Ar - 38 K - 38 K - 38 Ca - 38 Sc - 38 Sc - 38 Ti	35000# 16050 -4070 -14760 -26861 -29798.10 -29126.74 -34714.6 -28800.7 -28670.2 -25342.7 -22059 -4940# -4270# 9100# 1:18 events i	500# 730 140 100 7 0.10 0.3 0.4 0.4 5 300# 320# 250# reported	671.361 130.50 3458.0 670#	0.008 0.28 0.2 100#		1# 40# 90# 640 170.3 37.24 715 STABLI 7.636 923.9 21.98 440 < 3000 < 120	ms ms ms m m ms E m ms µs ms ns	(>260 ns) (>200 ns) (>1 µs) 140 0.7 0.05 3 0.018 0.6 0.11 8		01 01 01 01 01 01 01 01 01 01	97Sa14 I 89Gu03 I 91Zh24 I 95Re.A D	β^- ? β^- ? β^- ? β^- ?; β^- n? β^- 100; β^- n=12 5 β^- 100 IT=100 IS=0.0632 5 β^+ 100 IT=100 β^+ 100 IT=100 β^+ 100 β^+ 200 β^+ 20? IT?; p? β^- 2p?	**
39 S - 39 Cl - 39 Ar - 39 K - 39 Ca - 39 Sc - 39 Ti *39 Mg T*39 Sc I*39 Ti I	43570# 21400 1930 -12870 -23160 -29800.2 -33242 -33807.01 -27274.4 -14168 1500# Γ : estimated D:; β^+ p: Γ : average 9	oably prot =85 15; β	ton emitter B ⁺ 2p=15#	from S _p	y =-60) : β	90# 190 11.5 55.6 269 STABLI 859.6 < 300 31	ms ms s m y E ms ns ms		7/2-#	01 01 01 01 01 01 01 01	94B110 I	n ? β^{-} ? β^{-} ? β^{-} ? β^{-} = 100; β^{-} n=26 8 β^{-} =100 β^{-} =100 β^{-} =100 IS=93.2581 44 β^{+} =100 β^{-} =100 β^{-} =100 β^{-} =100;	* * * * * * * * * * * * * * * * * * *

Nuclide	e Mass (ke			citation gy(keV)	I	Half-l	life	J^{π}	En	s Reference	Decay modes and intensities (%)	
⁴⁰ Mg	50240#	900#				1#	ms		0+		02No11 I	β-?;β-n?	*
⁴⁰ A1	29300#	700#				10#	ms ((>260 ns)		02	97Sa14 I	β^- ?; β^- n ?	*
⁴⁰ Si	5470	560				20#		(>200 ns)	0+		89Gu03 I	β^- ?; β^- n ?	
⁴⁰ P	-8110	140				153	ms	8	$(2^-,3^-)$	02		$\beta^-=100;$	*
⁴⁰ S ⁴⁰ Cl	-22870	140				8.8	S	2.2	0+	02		$\beta^{-}=100$	
⁴⁰ Ar	-27560 -35039.896	30 0 0.0027	,			1.35 STABLE	m	0.02	2^{-} 0^{+}	02 02		β ⁻ =100 IS=99.6003 30	
40 K	-33535.20	0.0027				1.251		0.011	4-	02		IS=0.0117 1;	*
$^{40}\mathrm{K}^m$	-31891.56	0.19	1643.639	0.011		336	ns	12	0+	02		IT=100	***
⁴⁰ Ca	-34846.27	0.21				STABLE		(>5.9 Zy)	0+	01	99Be64 T	IS=96.941 156; 2β+ 3	?
$^{40}\mathrm{Sc}$	-20523.2	2.8				182.3	ms	0.7	4^{-}	02		$\beta^{+}=100;$	*
⁴⁰ Ti	-8850	160				53.3	ms	1.5	0^{+}	02		$\beta^{+}=100; \beta^{+}p=100$	
⁴⁰ V	10330#	500#							2-#			p ?	
* ⁴⁰ Mg	I : one event	•						e.A					**
* ⁴⁰ Al * ⁴⁰ P	I: 34 events		9/Sa14; ai	so one	event	ın 96 S a.	34						**
***F * ⁴⁰ K	$D: \ldots; \beta^- n$ $D: \ldots; \beta^- =$		+-10.72.1	3									**
* K * ⁴⁰ Sc	$D : \dots; \beta^+ p$												**
BC	Б, р р	-0.11 7, β	w-0.017 :	,									
⁴¹ Al	35700#	800#				2#	ms ((>260 ns)	3/2+#	02	97Sa14 I	β − ?	*
⁴¹ Si	13560	1840				30#		(>200 ns)	,		89Gu03 I	β^- ?	
⁴¹ P	-5280	220				150	ms	15	$1/2^{+}$ #	02		β^- =100; β^- n=30 10	
⁴¹ S	-19020	120				1.99	S	0.05	7/2-#	02		$\beta^-=100; \beta^- n$?	
⁴¹ Cl	-27310	70				38.4	S	0.8	$(1/2,3/2^+)$			$\beta^{-}=100$	
⁴¹ Ar ⁴¹ K	-33067.5	0.3				109.61		0.04	7/2 ⁻	02		$\beta^{-}=100$	
⁴¹ Ca	-35559.07 -35137.76	0.19 0.24				STABLE 102	ky	7	$\frac{3}{2^{+}}$ $\frac{7}{2^{-}}$	02		IS=6.7302 44 ε =100	
⁴¹ Sc	-28642.39	0.24				596.3		1.7	$\frac{7}{2}$	02		$\beta^{+}=100$	
$^{41}\mathrm{Sc}^{r}$	-25760.10	0.23	2882.30	0.05	RO	0,0.0	1110		$\frac{7}{2}$	02		P=59 2; IT=41 2	
⁴¹ Ti	-15700#	100#				80.9	ms	1.2	3/2+		98Bh12 T	$\beta^{+}=100; \beta^{+}p\approx 100$	*
^{41}V	-210#	210#							7/2-#			p ?	
* ⁴¹ Al	I : reported 4												**
* ⁴¹ Ti	T : average 9	8Bh12=81.	3(2.0) 98L	146=820	(3) 96	Fa09=8	1(4)	/4Se11=8	0(2)				**
⁴² Al	43680#	900#				1#	ms					β-?;β-n?	
⁴² Si	18430#	500#				5#		(>200 ns)	0^{+}	01	90Le03 I	β^- ?; β^- n?	*
⁴² P	940	450				120	ms	30		01	89Le16 T	$\beta^-=100; \beta^-=5020$	
⁴² S	-17680	120				1.013	s	0.015	0^{+}	01		$\beta^-=100; \beta^-n<4$	
⁴² Cl	-24910	140				6.8	S	0.3		01		$\beta^{-}=100$	
⁴² Ar	-34423	6				32.9	У	1.1	0^{+}	01		$\beta^{-}=100$	
⁴² K ⁴² Ca	-35021.56	0.22				12.360		0.012	0^{+}	01		$\beta^-=100$	
⁴² Sc	-38547.07 -32121.24	0.25 0.27				STABLE 681.3		0.7	0+	01 01		IS=0.647 23 β^+ =100	
$^{42}Sc^m$	-32121.24 -31504.96	0.27	616.28	0.06		61.7	S	0.7	$(7,5,6)^+$	01		$\beta^{+}=100$ $\beta^{+}=100$	
$^{42}\mathrm{Sc}^{r}$	-26044.91	0.26	6076.33	0.08	RO	01.7		0.1	(1+to4+)			IT=100	
⁴² Ti	-25122	5				199	ms	6	0+	01		$\beta^{+}=100$	
^{42}V	-8170#	200#				< 55	ns		2-#		92Bo37 I	p ?	
⁴² Cr	5990#	300#				14	ms	3	0_{+}	01	01Gi01 TD	$\beta^{+} \approx 100; \beta^{+} p = ?; 2p$?
* ⁴² Si * ⁴² Si	TD : ENSDF												**
* 51	TD: $\%\beta$	_n=103 48,	subject to	Turtner	anai	ysis acco	oraing	g to the au	tnors				**
⁴³ Si	26700#	700#				15#	me /	(>260 ns)	3/2-#		02No11 I	β-?;β-n?	
43P	5770	970				33	ms	3	1/2+#	01	02110111	$\beta^{-}=100; \beta^{-}=100$	
⁴³ S	-11970	200				260	ms	15	3/2-#		98Wi.A T	$\beta^-=100; \beta^-=100$ $\beta^-=100; \beta^-=40$	
$^{43}S^m$	-11650	200	319	5		480	ns	50	$(7/2^{-})$	01		IT=100	*
⁴³ Cl	-24170	160				3.07	S	0.07	3/2+#	01		$\beta^-=100; \beta^- n ?$	
⁴³ Ar	-32010	5				5.37	m	0.06	$(5/2^{-})$	01		$\beta^{-}=100$	
43 K	-36593	9				22.3	h	0.1	$3/2^{+}$	01		$\beta^{-}=100$	
⁴³ Ca	-38408.6	0.3				STABLE	3		$7/2^{-}$	01		IS=0.135 10	
A-gro	oup is continu	ed on next p	oage										

Nuclide	Mass ex (keV			citation gy(keV)]	Half	-life	J^{π}	Ens	Referen	ce	Decay modes and intensities (%)	
A-gro	oup continue	ed												
⁴³ Sc	-36187.9	1.9				3.891	h	0.012	$7/2^{-}$	01			$\beta^{+}=100$	
43 Sc ^m	-36036.5	1.9	151.4	0.2		438	μs	7	3/2+	01			IT=100	
⁴³ Ti	-29321	7				509	ms	5	7/2-	01			$\beta^{+}=100$	
⁴³ Ti ^m	-29008	7	313.0	1.0		12.6	μ s	0.6	$(3/2^+)$	01			IT=100	
⁴³ Ti ⁿ	-26255	7	3066.4	1.0		560	ns	6	$(19/2^{-})$	01			IT=100	
43 V	-18020#	230#				80#	ms	0.7	7/2-#	01			β^+ ?	*
⁴³ Cr	-2130#	220#	C D (FIG.)	11 10	1.0	21.6	ms	0.7	$(3/2^{+})$	01			$\beta^{+}=100; \beta^{+}p=23 6; \dots$	
* ⁴³ S ^m * ⁴³ V	J: from co								C 1					**
***V * ⁴³ Cr	$D:\ldots;\beta$		-	03 / and a	шор	ted in Er	NSDF	'01. To be	confirmed.					**
44									- 1					
44Si	32840#	800#				10#	ms	(- 200 ·	0_{+}	00	000 00		β^- ?; β^- n?	
⁴⁴ P ⁴⁴ S	12100#	700#				30#		(>200 ns)	0+	99	89Gu03	1	β^- ?	
**S **C1	-9120	390				123	ms	10	0_{+}	99			$\beta^-=100; \beta^-=183$	
44 Ar	-20230	110				560	ms	110	0+	99			$\beta^{-}=100; \beta^{-}n<8$	
44 K	-32673.1	1.6 40				11.87	m	0.05	0^{+} 2^{-}	99 99			$\beta^{-}=100$	
⁴⁴ Ca	-35810	0.4				22.13		0.19	0 ⁺	99			$\beta^-=100$	
⁴⁴ Sc	-41468.5 -37816.1	1.8				STABLE 3.97	h	0.04	2+	99			IS=2.086 110 β^+ =100	
$^{44}\text{Sc}^m$	-37510.1 -37545.2	1.8	270.95	0.20		58.61	h	0.10	6 ⁺	99			IT=98.80 7; β^+ =1.20 7	
$^{44}Sc^n$	-37669.9	1.8	146.224	0.022		50.4	μs	0.7	0-	99			11-96.60 7, p =1.20 7	
⁴⁴ Ti	-37548.5	0.7	140.224	0.022		60.0	μs y	1.1	0+	99			<i>ε</i> =100	*
44 V	-24120	120			*	111	ms	7	(2 ⁺)	99			$\beta^{+}=100; \beta^{+}\alpha=?$	~
$^{44}V^m$	-23850#	160#	270#	100#	*	150	ms	3	(6 ⁺)	99			$\beta^{+}=100, \beta^{-} \omega = 1$	
$^{44}V^n$	-23970#	160#	150#	100#		150	1113	3	0-#	,,			P =100	
⁴⁴ Cr	-13460#	50#	150	100		54	ms	4	0+	99	96Fa09	D	$\beta^{+}=100; \beta^{+}p=7.3$	
⁴⁴ Mn	6400#	500#				< 105		•	2-#	99	, 01 40,	_	p?	
* ⁴⁴ Ti	T: also 01		9(2)			(100							Ρ.	**
			- (-)											
⁴⁵ P	17900#	800#				8#		(>200 ns)	1/2+#	93	90Le03	I	eta^- ?	
⁴⁵ S		1740				82	ms	13	3/2-#	97			$\beta^-=100; \beta^-n=54$	
⁴⁵ Cl	-18360	120				400	ms	40	3/2+#	95			$\beta^-=100; \beta^-=24.4$	
45 Ar	-29770.6	0.5				21.48	S	0.15	$(1,3,5)/2^{-}$				$\beta^{-}=100$	*
⁴⁵ K	-36608	10				17.3	m	0.6	3/2+	95	0.47 0.4		$\beta^{-}=100$	
⁴⁵ Ca	-40812.0	0.4				162.67		0.25	7/2-	95	94Lo04	1	$\beta^{-}=100$	
⁴⁵ Sc ⁴⁵ Sc ^m	-41067.8	0.8	10.40	0.05		STABLE		7	7/2-	95			IS=100.	
⁴⁵ Ti	-41055.4	0.8	12.40	0.05		318	ms	7	$3/2^{+}$	95			IT=100	
45 V	-39005.7 -31880	1.0 17				184.8 547	m	0.5 6	$7/2^{-}$	95 95			$\beta^{+}=100$ $\beta^{+}=100$	
⁴⁵ Cr	-31880 -18970	500			*	50	ms ms	6	7/2 ⁻ 7/2 ⁻ #	95			$\beta^{+}=100; \beta^{+}p>27$	
45 Cr ^m	-18920#	510#	50#	100#	*	1#	ms	U	3/2+#	93			$\beta = 100, \beta = \beta \ge 27$ IT ?; β ⁺ ?	
⁴⁵ Mn	-5110#	300#	3011	10011	~	< 70	ns		7/2-#	97	92Bo37	T	p?	
⁴⁵ Fe	13580#	220#				4.9	ms	1.5	3/2+#				$2p=75\ 5; \beta^{+}=25\ 5; \dots$	*
* ⁴⁵ Ar			ed from th	eory and	fron			. See Ense		21	020109	ıυ	2p-733, p=233,	**
* ⁴⁵ Fe	$D:\ldots;\beta^{-1}$			cory and	11011	ı system	atics	. Dec Livat	4.					**
* ⁴⁵ Fe	T : average			-1.4) 02F	f02=	=3.2(+2.	6–1.	0) D	β : β + p from	01G	i01			**
16-	0.000	000:						/ 2 00		0.0	001 00		0-0	
⁴⁶ P	25500#	900#				4#		(>200 ns)	0.1	00	90Le03		β^- ?	
⁴⁶ S	700#	700#				30#		(>200 ns)	0_{+}	00	89Gu03	I	β^- ?	
⁴⁶ Cl	-14710	720				220	ms	40	0+	00			$\beta^-=100; \beta^-=609$	
⁴⁶ Ar	-29720	40				8.4	S	0.6	0+	00	0.00		$\beta^{-}=100$	
⁴⁶ K	-35418	16				105	S	10	2(-)	00	82To02		$\beta^-=100$	
⁴⁶ Ca	-43135.1	2.3				STABLE		(>100 Ey)		00	99Be64	1	IS=0.004 3; $2\beta^-$?	*
⁴⁶ Sc	-41757.1	0.8	1.40.500	0.00=		83.79		0.04	4+	00			$\beta^{-}=100$	
⁴⁶ Sc ^m	-41614.6	0.8	142.528	0.007		18.75		0.04	1-	00			IT=100	
⁴⁶ Ti ⁴⁶ V	-44123.4	0.8				STABLE		0.11	0+	00			IS=8.25 3	
46 Vm	-37073.0	1.0	901.46	0.10		422.50		0.11	0 ⁺	00			$\beta^{+}=100$	
•	-36271.5	1.0	801.46	0.10		1.02	ms	0.07	3+	00			IT=100	
A-gro	oup is contir	iueu on	next page											

Nuclide	Mass ex (keV			citation rgy(keV)	:	Half-	life	J^{π}	Ens	Referen	ce	Decay modes and intensities (%)	
A-gro	up continue	d											
⁴⁶ Cr ⁴⁶ Mn ⁴⁶ Mn ^m	-29474 -12370#	20 110#	150"	100#	260 * 37	ms ms	60 3	0 ⁺ (4 ⁺)	00 00	92Bo37	TD	$\beta^{+}=100$ $\beta^{+}=100; \beta^{+}p=222;$	*
⁴⁶ Fe	-12220# 760#		150#	100#	* 1#	ms ms	4	1 ⁻ #	00	01Gi01	TD	β^+ ? $\beta^+=100; \beta^+=3620$	
* ⁴⁶ Ca	T: limit is	for neu		$\beta\beta$ decay								, ,, ,	**
* ⁴⁶ Mn * ⁴⁶ Mn	$D: \ldots; \beta$			6) 01 <i>G</i> (0	1=34.0(+4.5	3.5)							**
* ⁴⁶ Mn					$\beta^+ p + 2 \times \beta$			01Gi01					**
⁴⁷ S	8000#	800#			20#	me	(>200 ns)	3/2-#	05	89Gu03	ĭ	β− ?	
⁴⁷ Cl	-10520#	600#			200#		(>200 ns)			89Gu03		$\beta^{-}=100; \beta^{-}=100$	
⁴⁷ Ar	-25910	100			580	ms	120	3/2-#		89Ba.B	T	$\beta^-=100; \beta^-n<1$	*
⁴⁷ K	-35696 42240 1	8			17.50	S	0.24	$1/2^{+}$	95			$\beta^{-}=100$	
⁴⁷ Ca ⁴⁷ Sc	-42340.1 -44332.1	2.3			4.536 3.3492	d d	0.003 0.0006	$7/2^{-}$ $7/2^{-}$	95 95			$\beta^-=100$ $\beta^-=100$	
$^{47}\mathrm{Sc}^m$	-43565.3	2.0	766.83	0.09	272	ns	8	$(3/2)^{+}$				IT=100	
⁴⁷ Ti	-44932.4	0.8			STABLE			5/2-	95			IS=7.44 2	
⁴⁷ V	-42002.1	0.8			32.6	m	0.3	$3/2^{-}$	95			$\beta^{+}=100$	
⁴⁷ Cr ⁴⁷ Mn	-34558 -22260#	14 160#			500 100	ms ms	15 50	3/2 ⁻ 5/2 ⁻ #	95 95	96Fa09	TD	$\beta^{+}=100$ $\beta^{+}=100$; $\beta^{+}=3.49$	
⁴⁷ Fe	-22200# -6620#	260#			21.8	ms	0.7	$\frac{3}{2}$ # $\frac{7}{2}$ #		01Gi01		$\beta^{+}=100; \beta^{+}=3.49$ $\beta^{+}=100; \beta^{+}=87.7$	
47 Fe m	-5850#		770#	100#				3/2+#				IT?	
⁴⁷ Co	10700#							$7/2^{-}$ #				p ?	
* ⁴⁷ Ar	D : from 9:	5So03											**
⁴⁸ S	13200#	900#			10#	ms	(>200 ns)	0^{+}		90Le03	I	β- ?	
⁴⁸ Cl	-4700#	700#			100#		(>200 ns)			89Gu03	I	β-?	
⁴⁸ Ar ⁴⁸ K	-23720# -32124	300# 24			500# 6.8	ms s	0.2	0^+ (2^-)	95			β^- ? $\beta^-=100$; $\beta^-=1.14$ 15	
⁴⁸ Ca	-32124 -44214	4			53	Ey	17	0+	95	00Br63	T	IS=0.187 21;	*
⁴⁸ Sc	-44496	5			43.67	h	0.09	6^{+}	95			$\beta^{-}=100$	
⁴⁸ Ti	-48487.7	0.8			STABLE			0^{+}	95			IS=73.72 3	
⁴⁸ V ⁴⁸ Cr	-44475.4 -42819	2.6 7			15.9735 21.56	d h	0.0025 0.03	4^{+} 0^{+}	95 95			$\beta^{+}=100$ $\beta^{+}=100$	
⁴⁸ Mn	-29320	110			158.1	ms	2.2	4 ⁺	97	87Se07	D	$\beta^{+}=100$; $\beta^{+}=0.284$;	*
⁴⁸ Fe	-18160#	70#			44	ms	7	0_{+}	95	96Fa09	TD		
⁴⁸ Co	1640#							6+#				p ?	
⁴⁸ Ni * ⁴⁸ Ca	18400# D:; 2£		2- 9		10#	ms	(>500 ns)	0_{+}	01	00Bl01	I	2p ?	
* Ca * ⁴⁸ Ca				13) 96Ba	80=43(+24-1	1 sta	tistics + 14	svstema	tics)				**
* ⁴⁸ Ca					β^- decay:					A117			**
* ⁴⁸ Mn	$D:\ldots;\beta$				40= 01								**
* ⁴⁸ Mn	D : one β [⊤]	α ever	it was obs	served, ve	rsus 437 β ⁺ p	, in f	ig.4 of 87Se	e07					**
⁴⁹ S	22000#					ns				90Le03		n ?	*
⁴⁹ Cl	300#				50#		(>200 ns)					β^- ?	
⁴⁹ Ar ⁴⁹ K	-18150# -30320	70			170 1.26	ms s	50 0.05	$3/2 \#$ $(3/2^+)$		03 we09	ID	$\beta^-=100; \beta^-n=65\ 20$ $\beta^-=100; \beta^-n=86\ 9$	
⁴⁹ Ca	-30320 -41289	4			8.718	m	0.006	$3/2^{-}$	95			$\beta = 100, \beta = 100$	
⁴⁹ Sc	-46552	4			57.2	m	0.2	$7/2^{-}$	95			$\beta^{-}=100$	
⁴⁹ Ti	-48558.8 47056.0	0.8			STABLE		1.7	$7/2^{-}$	95			IS=5.41 2	
⁴⁹ V ⁴⁹ Cr	-47956.9 -45330.5	1.2 2.4			330 42.3	d m	15 0.1	$\frac{7/2^{-}}{5/2^{-}}$	95 95			$\varepsilon=100$ $\beta^+=100$	
⁴⁹ Mn	-43330.3 -37616	24			382	ms	7	$5/2^{-}$	01			$\beta^{+}=100$ $\beta^{+}=100$	
⁴⁹ Fe	-24580#				70	ms	3	$(7/2^{-})$		96Fa09	J	$\beta^{+}=100; \beta^{+}p=52 10$	
⁴⁹ Co	-9580#				< 35	ns		7/2-#		94B110		p?	
⁴⁹ Ni * ⁴⁹ S	9000#		ides any	conclusion	13 , say authors	ms	4	7/2-#	97	01Gi01	TD	$\beta^{+}=100; \beta^{+}p=?$	**
* D	1 . Statistic	s precit	iucs ally (OHCIUSION	, say aumors								**

Nuclide	Mass excess (keV)		Excitation energy(keV)			Half-life			J^{π} Ens		Reference		Decay modes and intensities (%)	
50 Cl 50 Ar 50 K 50 Ca 50 Sc 50 Sc 50 Ti 50 V	7300# -14500# -25350 -39571 -44537 -44280 -51426.7 -49221.6	900# 700# 280 9 16 16 0.8 1.0	256.895	0.010		20# 85 472 13.9 102.5 350 STABLE 150	ms ms ms s s ms	30 4 0.6 0.5 40	$0^{+} \\ (0^{-}, 1, 2^{-}) \\ 0^{+} \\ 5^{+} \\ 2^{+}, 3^{+} \\ 0^{+} \\ 6^{+}$	95 95 95 95 95 95	03We09	TD	β^- ? β^- =100; β^- n=35 10 β^- =100; β^- n=29 3 β^- =100 β^- =100 IT>97.5; β^- <2.5 IS=5.18 2 IS=0.250 4; β^+ =83 11;	
⁵⁰ Cr ⁵⁰ Mn ⁵⁰ Mn ^m ⁵⁰ Fe ⁵⁰ Co ⁵⁰ Ni	-50259.5 -42626.8 -42398 -34480 -17200# -3790#	1.0 1.0 7 60 170# 260#	229	7		STABLE 283.9 1.75 155 44 9.1		(>1.3 Ey) 0.5 0.03 11 4 1.8	-	95 95 95 95 01 01 97	03Bi05 96Fa09 01Ma.A	JD	$\beta = 0.250 + \beta = 0.511,$ $\beta = 4.345 + 13; 2\beta + ?$ $\beta = 100$ $\beta = 100; \beta + p \approx 0$ $\beta = 100; \beta + p \approx 0$ $\beta = 100; \beta + p \approx 0$ $\beta = 100; \beta + p \approx 0$. *
* ⁵⁰ V	D:; β-	=17 11												**
51 Cl 51 Ar 51 K 51 Ca 51 Sc 51 Ti 51 V 51 Cr 51 Mn 51 Fe 51 Co	13500# -7800# -22000# -35860 -43218 -49727.8 -52201.4 -51448.8 -48241.3 -40222 -27270#	1000# 700# 500# 90 20 1.0 1.0 1.0 15				2# 60# 365 10.0 12.4 5.76 STABLE 27.7025 46.2 305 60#	ms ms s s m d m ms	(>200 ns) (>200 ns) 5 0.8 0.1 0.01 0.0024 0.1 5 (>200 ns)	3/2-# 3/2+# 3/2-# (7/2)- 3/2- 7/2- 7/2- 5/2- 5/2-	97 97 97 97 97 97 97 97	90Le03 89Gu03	I	β^{-} ? β^{-} ? β^{-} =100; β^{-} n=47 5 β^{-} =100; β^{-} n ? β^{-} =100 β^{-} =100 β^{+} =100 β^{+} =100 β^{+} =100 β^{+} ?	
⁵¹ Ni	-11440#	260#				30#		(>200 ns)	,	97	87Po04		β ⁺ ?	
⁵² Ar ⁵² K ⁵² Ca	-3000# -16200# -32510	900# 700# 700				10# 105 4.6	ms ms s	5 0.3	0 ⁺ 2 ⁻ # 0 ⁺	00 00 00	ABBW	D	β^{-} ? $\beta^{-}=100; \beta^{-}n\approx64;$ $\beta^{-}=100; \beta^{-}n<2$	*
	-40360 -49465 -51441.3 -55416.9 -50705.4 -50327.7	190 7 1.0 0.8 2.0 2.0	377.749	0.005		8.2 1.7 3.743 STABLE 5.591 21.1	s m m	0.2 0.1 0.005 0.003 0.2	$3^{(+)}$ 0^{+} 3^{+} 0^{+} 6^{+} 2^{+}	00 00 00 00 00 00			$\beta^{-}=100$ $\beta^{-}=100$ $\beta^{-}=100$ IS=83.789 18 $\beta^{+}=100$ $\beta^{+}=98.25$ 5; IT=1.75 5	
⁵² Co	-48332 -41520 -33920# -33540# -22650#	7 130 70# 120# 80#	6810 380#	130 100#	BD	8.275 45.9 115 104 38	h s ms ms	0.008 0.6 23 11 5	0^{+} $12^{+}\#$ (6^{+}) $2^{+}\#$ 0^{+}	00 00 00	97Ha04	TD	$\beta^{+}=100$ $\beta^{+}\approx100$; IT<0.004 $\beta^{+}=100$ $\beta^{+}=?$; IT?	*
⁵² Cu * ⁵² K * ⁵² K * ⁵² K	$-2630 \#$ D:; β^- D: β^- n ≈ 6 D: and	260# 2n≈21 54%, β [−] I assumi	$ng \beta^- n/\beta$	-2n=3 as	in ³²]	$P_n = \beta^{-1}$		$2 \times \beta^- 2n =$	3+#	00	La23		β^+ =100; β^+ p=17.0 14 p?	** ** **
*52Com	I : tentative	: no spe	ecific evide	ence for 5	$^{2}\mathrm{Co}^{m}$, say auth	ors i	n 97Ha04						**

		7)	ener	gy(keV)								intensities (%)	
⁵³ Ar	4600#	1000#			3#	ms		5/2-#	99			β-?;β-n?	
53 K	-12000 #	700#			30	ms	5	3/2+#	99	ABBW	D	$\beta^-=100; \beta^-n\approx 67;$	*
⁵³ Ca	-27900 #	500#			90	ms	15	$3/2^{-}$ #	99	83La23	D	$\beta^-=100; \beta^-n>30$	*
⁵³ Sc	-37620#	300#			> 3	S		7/2-#	99	98So03	TD	$\beta^-=100; \beta^- n$?	
⁵³ Ti ⁵³ V	-46830 51840	100			32.7	S	0.9	$(3/2)^{-}$	99			$\beta^{-}=100$	
⁵³ Cr	-51849	3			1.60	m	0.04	7/2-	99 99			$\beta^-=100$	
⁵³ Mn	-55284.7 -54687.9	0.8			STABLE 3.7	My	0.4	$3/2^{-}$ $7/2^{-}$	99			IS=9.501 17 ε =100	
⁵³ Fe	-50945.3	1.8			8.51	m	0.02	$\frac{7}{2}$	99			$\beta^{+}=100$	
⁵³ Fe ^m	-47904.9	1.8	3040.4	0.3	2.526	m	0.024	19/2-	99	97Ge11	T	IT=100	*
⁵³ Co	-42645	18			242	ms	8	7/2-#	99	02Lo13	T	$\beta^{+}=100$	*
$^{53}\text{Co}^m$	-39447	22	3197	29 p	247	ms	12	$(19/2^{-})$	99			$\beta^{+} \approx 98.5$; p ≈ 1.5	
⁵³ Ni	-29370#	160#			45	ms	15	7/2-#	99	76Vi02	D	$\beta^{+}=100; \beta^{+}p\approx 45$	
⁵³ Cu	-13460#	260#			< 300	ns		3/2-#	99	93B1.A	I	p ?; β ⁺ ?	
* ⁵³ K * ⁵³ K	$D:\ldots;\beta^-$		2170/	4 4 4	£ D	o –	. 2 0-2	100(20)(v : (21 -22			**
*53K				-2n=4 as		рп	$+2\times\beta^{-}2n$	=100(30)	70 III (SSLazs			**
* K * ⁵³ Ca	$D: \beta^- n=4$												**
* ⁵³ Ca	T : expecte					nes							**
*53Fem							Es06=2.58((0.03)					**
* ⁵³ Co	T : average	02Lo13	3=240(9)	89Ho13=2	40(20) 73K	o10	=262(25)						**
⁵⁴ K	-5400#	900#			10	ms	5	2-#	01			$\beta^-=100; \beta^-n=?$	
⁵⁴ Ca	-23890 #	700#			50#	ms	(>300 ns)	0_{+}	01	97Be70	I	β^{-} ?; β^{-} n ?	
⁵⁴ Sc	-34220	370			260	ms	30	3+#	01	02Ja16	T	$\beta^-=100; \beta^- n ?$	*
⁵⁴ Sc ^m	-34110	370	110	3	7	μs	5	(5 ⁺)	01	98Gr14	EJ	IT=100	
⁵⁴ Ti ⁵⁴ V	-45590 40801	120			1.5	S	0.4	0 ⁺ 3 ⁺	01			$\beta^{-}=100$	
54 Vm	-49891 -49783	15 15	108	3	49.8 900	s ns	0.5 500	(5+)	01	98Gr14	EJ	$\beta^-=100$ IT=100	
⁵⁴ Cr	-56932.5	0.8	100	3	STABLE	113	300	0+	01	70GI14	LJ	IS=2.365 7	
⁵⁴ Mn	-55555.4	1.3			312.03	d	0.03	3+	01	02Un02	T	$\varepsilon = 100; \beta^{-} < 2.9e-4; \dots$	*
⁵⁴ Fe	-56252.5	0.7			STABLE			0^+	01			IS=5.845 35; $2\beta^+$?	
54 Fe m	-49725.6	0.9	6526.9	0.6	364	ns	7	10^{+}	01			IT=100	
⁵⁴ Co	-48009.5	0.7			193.23	ms	0.14	0_{+}	01			$\beta^{+}=100$	
54 Com	-47812.1	0.9	197.4	0.5	1.48	m	0.02	$(7)^{+}$	01		_	$\beta^{+}=100$	
⁵⁴ Ni	-39210	50			104	ms	7	0+	01	02Lo13	T	$\beta^{+}=100$	*
⁵⁴ Cu ⁵⁴ Zn	-21690# -6570#	210# 400#			< 75	ns		3 ⁺ #	01	94B110	I	p?	
* ⁵⁴ Sc	T : average		-360(60)	985003-2	25(40)			0				2p ?	**
* ⁵⁴ Mn	D:; e ⁺			705005-2	23(40)								**
* ⁵⁴ Mn	D: e ⁺ avei			0(0.26) 97	Za07=2.2(0).9)							**
* ⁵⁴ Ni	T : average												**
⁵⁵ K	-270#	1000#			3#	ms		3/2+#				β- ?; β-n ?	
⁵⁵ Ca	-18120#	700#			30#	ms	(>300 ns)	5/2-#		97Be70	I	β -?	
⁵⁵ Sc	-29580	740			120	ms	40	7/2-#	01			$\beta^{-}=100; \beta^{-}n$?	
⁵⁵ Ti	-41670	150			490	ms	90	3/2-#	01	98Am04	T	$\beta^-=100$	*
55 V	-49150	100			6.54	S	0.15	7/2-#	01			$\beta^{-}=100$	
⁵⁵ Cr	-55107.5	0.8			3.497	m	0.003	3/2-	01			$\beta^{-}=100$	
⁵⁵ Mn	-57710.6	0.7			STABLE		0.011	5/2-	01			IS=100.	
⁵⁵ Fe ⁵⁵ Co	-57479.4 -54027.6	0.7			2.737 17.53	y h	0.011	$3/2^{-}$	01			ε =100 β ⁺ =100	
55 Ni	-54027.6 -45336	0.7 11			204.7	h	0.03 1.7	$7/2^{-}$ $7/2^{-}$	01 01	02Lo13	Т	$\beta^{+}=100$ $\beta^{+}=100$	a.
⁵⁵ Cu	-45556 -31620#	300#			204.7 40#	ms	(>200 ns)	3/2-#	01	02L013 87Po04	I	β^{+} ?; p ?	*
⁵⁵ Zn	-31020# -14920#	250#			20#		(>200 Hs) $(>1.6 \mu\text{s})$	5/2-#		01Gi10	I	β^+ ?	
* ⁵⁵ Ti			age 98An	n04=3206			$(>1.0 \mu s)$ 0(40) and 95				•	ρ .	**
* ⁵⁵ Ti			B=2.75)	525(0	, , 02 020	000	- (. 0 <i>)</i> and <i>)</i> 0		- (///				**
* 11		٠	,										
* 11 * ⁵⁵ Ni	T: average	02Lo13	=196(5)	99Re06=20	04(3) 87Ha	.A=2	212.1(3.8) 8	4Ay01=20	08(5)				**

Nuclide	Mass ex (keV			ergy(keV)		Half	-life	J^{π}	Ens	Reference	e	Decay modes and intensities (%)	
⁵⁶ Ca ⁵⁶ Sc ⁵⁶ Ti ⁵⁶ V ⁵⁶ Cr ⁵⁶ Mn ⁵⁶ Fe	-13440# -25270# -38940 -46080 -55281.2 -56909.7	900# 700# 200 200 1.9 0.7			10# ms (>300 ns) 0' 80# ms (>300 ns) 3 ⁺ 164 ms 24 0' 216 ms 4 (1' 5.94 m 0.10 0' 2.5789 h 0.0001 3' STABLE 0' 77.23 d 0.03 4' 6.075 d 0.010 0' 93 ms 3 (4' 36 ms 10 0' 3 ⁺				99 99 99 99 99	97Be70 97Be70 98Am04 03Ma02	I I TD TJ	β^{-} ? β^{-} ? β^{-} 100; β^{-} n? β^{-} 100; β^{-} n? β^{-} 100 β^{-} 100	*
56 Co 56 Ni 56 Cu 56 Zn 56 Ga *56 Ti *56 Zn *56 Zn *56 Zn		e is deriv	ed from	experimen	77.23 d 0.03 4 6.075 d 0.010 0 93 ms 3 (4 36 ms 10 0 33 3=150(30) atal (p,n) cross sections with $T > 1.6 \mu s$				99 99 99 99 01	01Bo54 95Wa.A	TJD T	IS=91.754 36 β^{+} =100 β^{+} =100; β^{+} p=0.40 12 β^{+} ?; β^{+} p? p?	* ** ** **
⁵⁷ Ca ⁵⁷ Sc	-7120# -20690#	1000#			5# 13	ms ms	4	5/2 ⁻ # 7/2 ⁻ #	98	02So.A	TD	β-?;β-n? β-=100;β-n=33#	
⁵⁷ Ti ⁵⁷ V ⁵⁷ Cr ⁵⁷ Mn ⁵⁷ Fe	-33540 -44190 -52524.1 -57486.8 -60180.1	460 230 1.9 1.8 0.7			13 ms 4 7/ 60 ms 16 5/ 350 ms 10 (3 21.1 s 1.0 (3 85.4 s 1.8 5 STABLE				98 98 98 98 98	99So20 03Ma02	T TJ	β ⁻ =100; β ⁻ n=0.3# β ⁻ =100; β ⁻ n=0.4# β ⁻ =100 β ⁻ =100 IS=2.119 10	*
⁵⁷ Co ⁵⁷ Ni ⁵⁷ Cu ⁵⁷ Zn ⁵⁷ Ga * ⁵⁷ Ti	-59344.2 -56082.0 -47310 -32800# -15900#	0.7 1.8 16 100# 260#	57.05	0.50.00	271.74 35.60 196.3 38	d h ms ms	0.06 0.06 0.7 4	7/2 ⁻ 3/2 ⁻ 3/2 ⁻ 7/2 ⁻ # 1/2 ⁻ #		02Lo13	Т	ε =100 β^{+} =100 β^{+} =100 β^{+} =100; β^{+} p≈65 p?	*
* ⁵⁷ I1 * ⁵⁷ Zn	T : average				56(20); 98An (10)	104=	180(30) at v	ariance i	iot us	sea			**
58 Sc 58 Ti 58 V 58 Cr 58 Mn 58 Mn ^m 58 Fe	-15170# -30770# -40210 -51830 -55910 -55840 -62153.4	800# 700# 250 200 30 30 0.7	71.78	0.05	12 54 191 7.0 3.0 65.2 STABLE	ms ms s s	5 7 8 0.3 0.1 0.5	3+# 0+ 3+# 0+ 1+ (4)+ 0+	97 97 97 97 97	02So.A 99So20 03Ma02	TD TD TD	$\beta^{-}=100$ $\beta^{-}=100$ $\beta^{-}=100$; β^{-} n? $\beta^{-}=100$ $\beta^{-}=100$ $\beta^{-}=?$; IT=20# IS=0.282 4	*
⁵⁸ Co ⁵⁸ Co ^m ⁵⁸ Co ⁿ ⁵⁸ Ni ⁵⁸ Cu ⁵⁸ Zn	-59845.9 -59821.0 -59792.8 -60227.7 -51662.1 -42300	1.2 1.2 1.2 0.6 1.6 50	24.95 53.15	0.06 0.07	70.86 9.04 10.4 STABLE 3.204 84	d h µs	0.06 0.11 0.3 (>700 Ey) 0.007 9	2 ⁺ 5 ⁺ 4 ⁺ 0 ⁺ 1 ⁺ 0 ⁺	00 00 00 01 01 99	02Lo13	Т	β^{+} =100 IT=100 IT=100 IS=68.0769 89; $2\beta^{+}$? β^{+} =100 β^{+} =100; β^{+} 9<3	*
58 Ga 58 Ga ^m 58 Ge 58 Ge *58 Ti *58 V *58 Ni *58 Zn	-23990# -23960# -8370# T : average T : average	210# 230# 320# 02So.A 03Ma02 by to 2 ⁺ 1	2=185(1 level of	0) 98Am04 58Fe, >700	* (10) 4=200(20) 98 0 Ey to groun	So03	3=205(20)	2+# 5+# 0+	<i>))</i>	02L013		p ? p? p? p? 2p?	** ** **

Nuclide	Mass ex (keV			citation gy(keV)	I	Half-	life	J^{π}	Ens	Reference	ce	Decay modes and intensities (%)	
⁵⁹ Sc	-10040#	900#			10#	ms		7/2-#				β-?;β-n?	
⁵⁹ Ti	-25220#	700#			30	ms	3	$5/2^{-}$ #	02	02So.A	T	$\beta^{-}=100$	*
⁵⁹ V	-37070	310			75	ms	7	$7/2^{-}$ #	02			$\beta^{-}=100; \beta^{-}n$?	
⁵⁹ Cr	-47890	240			460	ms	50	5/2-#	02			$\beta^{-}=100$	
⁵⁹ Cr ^m	-47390	240	503.0	1.7	96	μ s	20	$(9/2^{+})$	02			IT=100	
⁵⁹ Mn	-55480	30			4.59	s	0.05	$(5/2)^{-}$	02			$\beta^{-}=100$	
⁵⁹ Fe	-60663.1	0.7			44.495	d	0.009	$3/2^{-}$	02			$\beta^{-}=100$	
⁵⁹ Co	-62228.4	0.6			STABLE			$7/2^{-}$	02			IS=100.	
	-61155.7	0.6			101	ky	13	$3/2^{-}$	02	94Ru19	T	$\beta^{+}=100$	*
⁵⁹ Cu	-56357.2	0.8			81.5	S	0.5	3/2-	02			$\beta^{+}=100$	
⁵⁹ Zn	-47260	40			182.0	ms	1.8	3/2-	02			$\beta^{+}=100; \beta^{+}p=0.103$	
⁵⁹ Ga ⁵⁹ Ge	-34120#							3/2-#				p ?	
50	-17000#		0-20 50	(17)				7/2-#				2p ?	
				(17) same g		0(taamita_13	0(22) 81Ni0	0-76	(5)			**
	-		o $B=2.05$		13) 94Ku1	9(1110	1001110)-12	.0(22) 611 v i(JO- / U	(3)			**
k 1 V 1	1. (В	irge rau	.0 B=2.03	')									**
⁶⁰ Sc	-4000#				3#	ms		3+#				β^- ?	
⁶⁰ Ti	-21650#				22	ms	2	0+		02So.A		$\beta^{-}=100$	
60 V	-32580	470			122	ms	18	3+#	97	99So20		$\beta^{-}=100; \beta^{-}n$?	*
$^{60}V^{m}$ $^{60}V^{n}$	-32580#	490#	0#	150#	40	ms	15	1+#		03So02		β^- =?; IT ?	
60 Cr	-32480	470	101	1	5.00		(>400 ns)	0^{+}	0.2		EI	IT=100	
60Mn	-46500 52180	210			560	ms	60	0+	93 94	96Do23	1	$\beta^-=100$ $\beta^-=100$	*
	-53180 -52910	90	271.90	0.10	51 1.77	S	6 0.02	3 ⁺	94 94	025.4	Б	$\beta = 100$ $\beta = 88.5 \text{ 8; IT} = 11.5 \text{ 8}$	
⁶⁰ Fe	-32910 -61412	90 3	271.90	0.10	1.77	s My	0.02	0+	93	92Sc.A	E	$\beta = 88.5 \text{ s}, 11 = 11.5 \text{ s}$ $\beta = 100$	
⁶⁰ Co	-61412 -61649.0				5.2713	y	0.0008	5 ⁺	00			$\beta^{-}=100$ $\beta^{-}=100$	
	-61590.4	0.6	58.59	0.01	10.467	m	0.006	2+	00			IT \approx 100; β^- =0.24 3	
	-64472.1	0.6	36.37	0.01	STABLE	111	0.000	0+	96			IS=26.2231 77	
⁶⁰ Cu	-58344.1	1.7			23.7	m	0.4	2^{+}	93			$\beta^{+}=100$	
⁶⁰ Zn	-54188	11			2.38	m	0.05	0^{+}	02			$\beta^{+}=100$	
⁶⁰ Ga	-40000#				70	ms	10	(2 ⁺)	02	01Ma96	TJ	$\beta^{+}=100; \beta^{+}=1.67; \dots$	*
⁶⁰ Ge	-27770 #				30#	ms		0+				β ⁺ ?	
⁶⁰ As	-6400 #	600#						5+#				p ?	
60 As m	-6340#	600#	60#	20#				2+#				p ?	
	T: also 98	Am04=	200(40),	, not used									**
				23=510(15	0) 88Bo06	=570	(60); other	95Am.A=3	80(30)			**
	$D:\ldots;\beta$												**
∗ ⁶⁰ Ga	T : averag	e 02Lo1	13=70(13) 01Ma96=	=70(15)								**
⁶¹ Ti	-15650#	900#			10#	ms	(>300 ns)	1/2-#	99	97Be70	I	β-?;β-n?	
^{61}V	-29360#				47.0	ms	1.2	7/2-#	99	03So02		$\beta^{-}=100; \beta^{-}n<6$	
⁶¹ Cr	-42180	250			261	ms	15	5/2-#	99	99So20	TD	$\beta^{-}=100; \beta^{-}n$?	*
⁶¹ Mn	-51560	230			670	ms	40	$(5/2)^{-}$	99	99Ha05	D	$\beta^-=100; \beta^-n=?$	
⁶¹ Fe	-58921	20			5.98	m	0.06	$3/2^-, 5/2^-$	99			$\beta^{-}=100$	
61 Fe m	-58060	20	861	3	250	ns	10	9/2+#	99	98Gr14	Е	IT=100	
⁶¹ Co	-62898.4	0.9			1.650	h	0.005	$7/2^{-}$	99			$\beta^{-}=100$	
⁶¹ Ni	-64220.9	0.6			STABLE			$3/2^{-}$	99			IS=1.1399 6	
61 Cu	-61983.6				3.333	h	0.005	3/2-	99			$\beta^{+}=100$	
⁶¹ Zn	-56345	16	00.4	0.1	89.1	S	0.2	$3/2^{-}$	99			$\beta^{+}=100$	
61 Zn ^m	-56257	16	88.4	0.1	< 430	ms	70	1/2-	99			IT=100	
	-55927 55590	16	418.10	0.15	140	ms	70	3/2-	99			IT=100	
	-55589 47000	16	756.02	0.18	< 130	ms	2	5/2-	99	02111 07	TD	IT=100	
61 Zn p	-47090	50	90#	100#	168	ms	3	3/2-	99	02We07	ID	$\beta^+=100; \beta^+$ p ≈ 0	
⁶¹ Ga				11111				$1/2^{-}$ #					
⁶¹ Ga ⁶¹ Ga ^m	-47000 #		90#	10011	20	me	12	3/2-#	00	021 412	т	R+-100: R+=~90	
⁶¹ Ga ⁶¹ Ga ^m ⁶¹ Ge	$-47000 \# \\ -33730 \#$	300#	90#	100#	39	ms	12	3/2-#	99	02Lo13	T	$\beta^{+}=100; \beta^{+}p\approx 80$	*
⁶¹ Ga ⁶¹ Ga ^m ⁶¹ Ge ⁶¹ As	-47000 # -33730 # -18050 #	300# 600#		2) 98Am04		ms	12	3/2 ⁻ # 3/2 ⁻ #	99	02Lo13	T	$\beta^{+}=100; \beta^{+}p\approx 80$ p?	**

Nuclide	Mass ex (keV			xcitation ergy(keV)		I	Half-	life	J^{π}	Ens	Referen	ce	Decay modes and intensities (%)	
⁶² Ti	-11650#	900#				10#	ms		0+				β- ?	
^{62}V	-24420 #	500#				33.5	ms	2.0	3+#	01	03So02	TD	$\beta^-=100$	
⁶² Cr	-40410	340				199	ms	9	0^+	01	02So.A	TD	$\beta^-=100; \beta^- n ?$	*
62 Mn	-48040 48040#	220	0.11	150"	*	671	ms	5	(3^+)	01	99Ha05	TD	$\beta^-=100; \beta^-=?$	
⁶² Mn ^m ⁶² Fe	-48040# 58001	270# 14	0#	150#	*	92 68	ms	13 2	$(1^+) \\ 0^+$	01	99So20	IJD	$\beta^{-}=100; \beta^{-}n\approx 0$ $\beta^{-}=100$	
⁶² Co	-58901 -61432	20				1.50	s m	0.04	2+	01			$\beta^{-}=100$ $\beta^{-}=100$	
$^{62}\text{Co}^m$	-61410	21	22	5		13.91	m	0.04	5 ⁺	01			$\beta^{-}>99$; IT<1	
⁶² Ni	-66746.1	0.6				STABLE		0.02	0^{+}	01			IS=3.6345 17	
⁶² Cu	-62798	4				9.673	m	0.008	1+	01	02Un02	T	$\beta^{+}=100$	*
⁶² Zn	-61171	10				9.186	h	0.013	0_{+}	01			$\beta^{+}=100$	
⁶² Ga	-52000	28				115.99		0.17	0+	01	03Hy02		$\beta^{+}=100$	*
62Ga ^m	-51183	28	817.5	0.5		4.6	ns	0.5	(3^{+})	01	98Vi06	ETJ	IT=100	
⁶² Ge ⁶² As	-42240# -24960#	140# 300#				130	ms	40	0 ⁺ 1 ⁺ #	01 01	02Lo13	TD	$\beta^{+}=100$	*
*62Cr	T : average		-209(12	995020-	187(15) 98An	104-	190(30)	1 '#	01			p ?	**
* ⁶² Cu	_							thod)=9.673	3(0.026)					**
* ⁶² Cu								9(0.06) 65E		6(0.0	2)			**
$*^{62}$ Ga								78A123=11						**
*62Ge	I: T=113(-							⁶² Ga						**
$*^{62}$ As	D : p-unsta	ble from	estimate	$dS_p = -14$	76#(422#) keV	7							**
⁶³ Ti	-5200#	1000#				3#	ms		1/2-#				β^{-} ?; β^{-} n ?	
63 V	-20910#	600#				17	ms	3	7/2-#	01	03So02	TD	$\beta^{-}=100; \beta^{-}=100$	
⁶³ Cr	-35530#	300#				129	ms	2	1/2-#		02So.A	TD	$\beta^{-}=100; \beta^{-}n$?	*
⁶³ Mn	-46350	260				275	ms	4	5/2-#	01	99Ha05	TD	$\beta^-=100; \beta^-n=?$	*
⁶³ Fe	-55550	170				6.1	S	0.6	$(5/2)^{-}$				$\beta^{-}=100$	
63Co	-61840	20				26.9	S	0.4	7/2-	01	94It.A	T	$\beta^{-}=100$	*
63 Ni	-65512.6	0.6	05.15	0.11		100.1	У	2.0	1/2-	01			$\beta^{-}=100$	
⁶³ Ni ^m ⁶³ Cu	-65425.5	0.6	87.15	0.11		1.67 Stable	μs	0.03	$5/2^{-}$	01			IT=100	
⁶³ Zn	-65579.5 -62213.0	0.6 1.6				38.47	m	0.05	$3/2^{-}$ $3/2^{-}$	01 01			IS=69.17 3 β^+ =100	
⁶³ Ga	-56547.1	1.3				32.4	S	0.5	$(3/2^{-})$				$\beta^{+}=100$	
⁶³ Ge	-46910#	200#				142	ms	8	3/2-#		02Lo13	TD	$\beta^{+}=100$	*
⁶³ As	-33820#	500#							3/2-#				p ?	*
*63Cr								hed, not use						**
*63Mn								(40) outwei	ighed, no	ot use	d			**
*63Co	T : average)Wa1	5=26(1)						**
* ⁶³ Ge * ⁶³ As	T : average D : p-unsta						7							**
* As	D : p-unsta	DIE HOIH	estimate	$\operatorname{cu} S_p = -11$.	32#(.	322#) Ke v	′							**
^{64}V	-15400 #	700#				10#	ms	(>300 ns)		97	97Be70	I	β − ?	
⁶⁴ Cr	-33150#	400#				43	ms	1	0_{+}		02So.A	TD	$\beta^{-}=100$	*
64Mn	-42620	270		_		88.8	ms	2.5	(1^{+})	96	99So20		$\beta^{-}=100; \beta^{-}n=?$	*
64 Mn ^m	-42490 54770	270	135	3		> 100	μs	0.2	0+	0.0	98Gr14	ET	IT=100	
⁶⁴ Fe ⁶⁴ Co	-54770 -59793	280 20				2.0 300	s ms	0.2 30	0^{+} 1^{+}	96 96			$\beta^{-}=100$ $\beta^{-}=100$	
⁶⁴ Ni	-67099.3	0.6				STABLE		30	0+	96			IS=0.9256 9	
⁶⁴ Cu	-65424.2	0.6				12.700		0.002	1+	96			$\beta^{+}=61.03; \beta^{-}=39.03$	
⁶⁴ Zn	-66003.6	0.7				STABLE		(>2.3 Ey)	0^{+}	96	85No03	T	IS=48.63 60; $2\beta^+$?	
⁶⁴ Ga	-58834.3	2.0				2.627	m	0.012	0(+#)	96			$\beta^{+}=100$	
$^{64}\mathrm{Ga}^m$	-58791.5	2.0	42.85	0.08		21.9	μs	0.7	2^{+}	96	99Ta29	TJ	TT=100	
⁶⁴ Ge	-54350	30				63.7	S	2.5	0^+	96			$\beta^{+}=100$	
64 As	-39520#	360#				40	ms	30	0^{+} #		02Lo13	TD	$\beta^{+}=100$	
* ⁶⁴ Cr	T : also 995						0/1	004 04	1.40/20					**
$*^{64}Mn$	i : average	02S0.A	=91(4)9	95020=85	(5) 9	9HaU5=8	9(4);	; 98Am04=	140(30) 1	not us	ea			**

Nuclide	Mass ex (keV			itation gy(keV)	1	Half-	life	J^{π}	Ens	Reference	ce	Decay modes and intensities (%)	
65 V	-11250#	800#			10#	ms		5/2-#				β-?;β-n?	
⁶⁵ Cr	-27800 #	500#			27	ms	3	1/2-#	97	02So.A	TD	$\beta^-=100; \beta^- n$?	
⁶⁵ Mn	-40670	540			92	ms	1	5/2-#	93	02So.A	TD	$\beta^-=100; \beta^-n=?$	*
⁶⁵ Fe	-50880	240			1.3	S	0.3	$1/2^{-}$ #	93	99So20	T	$\beta^-=100$	*
⁶⁵ Fe ^m	-50520	240	364	3	430	ns	130	$(5/2^{-})$		98Gr14	ETJ	IT=100	
65Co	-59170	13			1.20	S	0.06	$(7/2)^{-}$	93			$\beta^{-}=100$	
⁶⁵ Ni ⁶⁵ Ni ^m	-65126.1	0.6	1012		2.5172	h	0.0003	5/2-	97	0570101		$\beta^{-}=100$	
65 Cu	-64113.1 -67263.7	1.2 0.7	1013	1	26.7 Stable	ns	1.0	$9/2^{+}$ $3/2^{-}$	93	95Bl01	ETJ	IS=30.83 3	
⁶⁵ Zn	-65911.6				244.06	d	0.10	$5/2^{-}$	00			$\beta^{+}=100$	
65 Zn ^m	-65857.7		53.928	0.010	1.6	μs	0.6	$(1/2)^{-}$	00			IT=100	
⁶⁵ Ga	-62657.2		00.720	0.010	15.2	m	0.2	3/2-	93			$\beta^{+}=100$	
⁶⁵ Ge	-56410	100			30.9	s	0.5	$(3/2)^{-}$	93	87Vi01	D	$\beta^{+}=100; \beta^{+}=0.0113$	
⁶⁵ As	-46980 #	300#			170	ms	30	3/2-#		02Lo13	T	$\beta^{+}=100$	*
⁶⁵ Se	-32920 #	600#			< 50	ms		3/2-#	93	94Mo.A	T	$\beta^{+}=100; \beta^{+}p=?$	*
$*^{65}Mn$	T: others	99Ha05	=88(4) 99S	020=100(8) 98Am04=	1100	(20) outweig	ghed, not	used	l			**
* ⁶⁵ Fe							rom same g		ne us	ed			**
*65 As			3=126(16)	95Mo26=1	90(11) with	ı Bir	ge ratio $B=3$	3.3					**
* ⁶⁵ Se	D : from 9	3Ba12											**
⁶⁶ Cr	-24800#	600#			10	ms	6	0^{+}	98	02So.A	TD	$\beta^- = 100$	
⁶⁶ Mn	-36250 #	400#			64.4	ms	1.8		98	02So.A	TD	$\beta^-=100; \beta^-n=?$	*
⁶⁶ Fe	-49570	300			440	ms	40	0_{+}	98	99So20	TD	$\beta^-=100; \beta^- n$?	*
⁶⁶ Co	-56110	250			194	ms	17	(3^{+})	98	00Mu10	TJ	$\beta^{-}=100$	*
66 Com	-55940	250	175	3	1.21	μ s	0.01	(5^{+})		98Gr14		IT=100	
66Con	-55470	250	642	5	> 100	μs	0.4	(8-)	00	98Gr14	ETJ	IT=100	
⁶⁶ Ni ⁶⁶ Cu	-66006.3				54.6	h	0.4 0.014	0^{+} 1^{+}	98			$\beta^{-}=100$	
⁶⁶ Zn	-66258.3 -68899.4				5.120 Stable	m	0.014	0+	98 98			β^- =100 IS=27.90 27	
⁶⁶ Ga	-63724	3			9.49	h	0.07	0+	98			$\beta^{+}=100$	
⁶⁶ Ge	-61620	30			2.26	h	0.07	0^{+}	98			$\beta^{+}=100$	
⁶⁶ As	-51500	680			95.77	ms	0.23	(0 ⁺)	98	98Gr12	J	$\beta^{+}=100$	
$^{66}As^m$	-50140	680	1356.70	0.17	1.1	μs	0.1	(5 ⁺)		01Gr07	TJ	IT=100	*
66 As ⁿ	-48480	680	3023.9	0.3	8.2	μs	0.5	(9+)		01Gr07	TJ	IT=100	*
⁶⁶ Se	-41720 #	300#			33	ms	12	0_{+}	98	02Lo13	TD	$\beta^{+}=100$	
*66Mn			A=64(2) 99										**
* ⁶⁶ Mn			2(14) 98Ar			ed, no	ot used						**
* ⁶⁶ Fe			0=440(60)				220(20)						**
* ⁶⁶ Co * ⁶⁶ As ^m			10=180(10)	94Cz02=2	40(30) 85B	6049	=230(20)						**
$*^{66}$ As ⁿ	J: 3+# fro		emanes Gr12=17.5()	1.5)	E : from 98	Gr1	2						**
* As	1 . superse	cues 900	3112-17.3(1.5)	E . Hom 90	JOI I	2						**
⁶⁷ Cr	-19050#	700#			10#	ms	(>300 ns)	1/2-#		97Be70	I	β ⁻ ?	
⁶⁷ Mn	-33400 #	500#			45	ms	3	5/2-#		02So.A	TD	$\beta^-=100; \beta^-n=?$	*
⁶⁷ Fe	-45690	420			394	ms	9	$1/2^{-}$ #	91	02So.A	TD	$\beta^-=100; \beta^- n$?	*
67 Fe ^m	-45320	420	367	3	64	μs	17	$(5/2^{-})$		03Sa02	ET	IT=100	*
67Co	-55060	320			425	ms	20	7/2-#		99We07	T	$\beta^{-}=100$	*
67 Ni	-63742.7		1007	2	21	S	1	1/2-	01	00Ri14	J	$\beta^{-}=100$	
⁶⁷ Ni ^m	-62736	4	1007	3	13.3	μs	0.2	$9/2^{+}$	01	98Gr14	E	IT=100	
⁶⁷ Cu ⁶⁷ Zn	-67318.8				61.83	h	0.12	3/2-	91			$\beta^-=100$	
⁶⁷ Ga	-67880.4				STABLE		0.0006	$5/2^{-}$	91			IS=4.10 13 ε =100	
⁶⁷ Ge	-66879.7				3.2612		0.0006	$3/2^{-}$	96				
⁶⁷ Ge ^m	-62658 -62640	5 5	18.2	0.05	18.9 13.7	m	0.3	$\frac{1/2^{-}}{5/2^{-}}$	91 91			$\beta^{+}=100$ IT=100	
⁶⁷ Ge ⁿ	-62640 -61906	5	751.70	0.05	110.9	μs ns	0.9 1.4	3/2	91			IT=100 IT=100	
⁶⁷ As	-56650	100	131.10	0.00	42.5	S	1.4	$(5/2^{-})$				$\beta^{+}=100$	
	up is contin		next page		-12.3		1.2	(3/2)	/1			P =100	
510	vomin	0.11	r80 .										

	Mass ex (keV			citation rgy(keV)		Hal	f-life	e	J^{π}	Ens	Reference	e	Decay modes and intensities (%)	
	up continue	d												
⁶⁷ Se ⁶⁷ Br	-46490# -32800#					133	ms	11	5/2 ⁻ # 1/2 ⁻ #	97	95Bl23	TD	$\beta^{+}=100; \beta^{+}p=0.5 1$ p?	
⁶⁷ Mn			A=47(4) 99I	Ha05=42(4	-)				-/				r ·	*
	T: others	99So20	=500(100) 9	8Am04=4	70(50) outweig	hed,	not us	sed					*
	T: average	e 03Sa0	2=75(21) 98	3Gr14=43(30), s	ame autho	ors, c	liffere	nt experir	nent				k
			=440(70) 99				20(7	0) out	weighed,	not u	sed			>
			.A=310(20)											>
			3=136(12) 9 5B123 for ⁶⁷ 5				ques	tioned	by 97Oi0)1				*
⁶⁸ Mn	-28600#	600#				28	ms	4		02	02So.A	Т	$\beta^-=100; \beta^-n=?$	
⁵⁸ Fe	-43130	700				187	ms	6	0^{+}	02	02So.A	T	$\beta^{-}=100; \beta^{-}n?$	
⁵⁸ Co	-51350	320			*	200	ms	21	(7-)	02	00Mu10		$\beta^{-}=100, \beta^{-}=1$	
58 Co m	-51200#	350#	150#	150#	*	1.6	S	0.3	(3+)	02	00Mu10		β^- =?; IT ?	
⁵⁸ Ni	-63463.8	3.0				29	S	2	0+	02			$\beta^{-}=100$	
⁵⁸ Ni ^m	-61694	3	1770.0	1.0		276	ns	65	0_{+}	02			IT=100	
⁵⁸ Ni ⁿ	-60615	3	2849.1	0.3		860	μ s	50	5^{-}	02			IT=100	
⁵⁸ Cu	-65567.0	1.6				31.1	S	1.5	1+	02			$\beta^{-}=100$	
⁵⁸ Cu ^m	-64845.4	1.7	721.6	0.7		3.75	m	0.05	(6^{-})	02			IT=84 1; β^- =16 1	
⁵⁸ Zn	-70007.2	1.0				STABLE			0_{+}	02			IS=18.75 51	
⁵⁸ Ga	-67086.1	1.5				67.71	m	0.09	1+	02			$\beta^{+}=100$	
⁵⁸ Ga ^m	-65856.2	1.5	1229.87	0.04		62.0	ns	1.4	7-	02			IT=100	
⁵⁸ Ge	-66980 50000	6				270.95	d	0.16	0^{+}	02			ε=100	
⁶⁸ As ⁶⁸ As ^m	-58900	40	125.21	0.16		151.6	S	0.8	3 ⁺ 1 ⁺	02			$\beta^{+}=100$	
⁶⁸ Se	-58470 54210	40 30	425.21	0.16		111	S	20	0+	02			IT=100	
⁶⁸ Br	-54210 -38640#					35.5 < 1.5	S	0.7	3+#	02 02	95Bl06	I	$\beta^{+}=100$ p?	
			A=28(8) 99I	Ia05-28(4)	< 1.J	μs		Эπ	02	93 D 100	1	p :	
			=155(50) 91			nutweighe	d n	at iisea	1					
			10=230(30)											
			sedes 91Be3		,	, ,								
⁶⁸ Co														
⁶⁹ Mn	-25300#	800#				14	ms	4	5/2-#	00			β^- =100; β^- n=24#	
⁶⁹ Mn ⁶⁹ Fe	-38400 #	500#				109	ms	9	1/2-#	00	02So.A	Т	$\beta^-=100; \beta^-n=7#$	
⁵⁹ Mn ⁵⁹ Fe ⁵⁹ Co	$-38400 \# \\ -50000$	500# 340				109 227	ms ms	9 13	1/2 ⁻ # 7/2 ⁻ #	00 00	02So.A	T	$\beta^{-}=100; \beta^{-}n=7#$ $\beta^{-}=100; \beta^{-}n=1#$	
⁵⁹ Mn ⁵⁹ Fe ⁵⁹ Co ⁵⁹ Ni	-38400# -50000 -59979	500# 340 4				109 227 11.5	ms ms s	9 13 0.3	1/2 ⁻ # 7/2 ⁻ # 9/2 ⁺	00 00 00	02So.A 99Pr10	T T	$\beta^{-}=100; \beta^{-}=7#$ $\beta^{-}=100; \beta^{-}=1#$ $\beta^{-}=100$	
⁵⁹ Mn ⁵⁹ Fe ⁵⁹ Co ⁵⁹ Ni ⁵⁹ Ni ^m	-38400# -50000 -59979 -59658	500# 340 4 4	321	2		109 227 11.5 3.5	ms ms s	9 13 0.3 0.4	1/2 ⁻ # 7/2 ⁻ # 9/2 ⁺ (1/2 ⁻)	00 00 00 00	02So.A	T	$\beta^{-}=100; \beta^{-}=7#$ $\beta^{-}=100; \beta^{-}=1#$ $\beta^{-}=100$ $\beta^{-}\approx 100; \text{ IT } ?$	
⁶⁹ Mn ⁶⁹ Fe ⁶⁹ Co ⁶⁹ Ni ⁶⁹ Ni ^m ⁶⁹ Ni ⁿ	-38400# -50000 -59979 -59658 -57278	500# 340 4 4 11	321 2701	2 10		109 227 11.5 3.5 439	ms ms s s ns	9 13 0.3 0.4 3	1/2 ⁻ # 7/2 ⁻ # 9/2 ⁺ (1/2 ⁻) (17/2 ⁻)	00 00 00 00 00	02So.A 99Pr10	T T	$\beta^{-}=100; \beta^{-}n=7#$ $\beta^{-}=100; \beta^{-}n=1#$ $\beta^{-}=100$ $\beta^{-}\approx100; \text{IT }?$ IT=100	
⁶⁹ Mn ⁶⁹ Fe ⁶⁹ Co ⁶⁹ Ni ⁶⁹ Ni ^m ⁶⁹ Ni ⁿ ⁶⁹ Cu	-38400# -50000 -59979 -59658 -57278 -65736.2	500# 340 4 4 11 1.4	2701	10		109 227 11.5 3.5 439 2.85	ms ms s s ns ms	9 13 0.3 0.4 3 0.15	1/2 ⁻ # 7/2 ⁻ # 9/2 ⁺ (1/2 ⁻) (17/2 ⁻) 3/2 ⁻	00 00 00 00 00 00	02So.A 99Pr10	T T	$\beta^{-}=100; \beta^{-}=7#$ $\beta^{-}=100; \beta^{-}=1#$ $\beta^{-}=100$ $\beta^{-}\approx100; \text{IT }?$ IT=100 $\beta^{-}=100$	
69Mn 69Fe 69Co 69Ni 69Ni ^m 69Ni ⁿ 69Cu	-38400# -50000 -59979 -59658 -57278 -65736.2 -62994.4	500# 340 4 4 11 1.4 1.7				109 227 11.5 3.5 439 2.85 360	ms ms s s ns ms m	9 13 0.3 0.4 3 0.15 30	1/2 ⁻ # 7/2 ⁻ # 9/2 ⁺ (1/2 ⁻) (17/2 ⁻) 3/2 ⁻ (13/2 ⁺)	00 00 00 00 00 00	02So.A 99Pr10	T T	β^- =100; β^- n=7# β^- =100; β^- n=1# β^- =100 β^- =100; IT ? IT=100 β^- =100 IT=100	
⁶⁹ Mn ⁶⁹ Fe ⁶⁹ Co ⁶⁹ Ni ⁶⁹ Ni ⁶⁹ Ni ⁶⁹ Cu ⁶⁹ Cu ⁶⁹ Cu	-38400# -50000 -59979 -59658 -57278 -65736.2 -62994.4 -68418.0	500# 340 4 4 11 1.4 1.7 1.0	2701 2741.8	1.0		109 227 11.5 3.5 439 2.85 360 56.4	ms ms s s ns m ns m	9 13 0.3 0.4 3 0.15 30 0.9	1/2 ⁻ # 7/2 ⁻ # 9/2 ⁺ (1/2 ⁻) (17/2 ⁻) 3/2 ⁻ (13/2 ⁺) 1/2 ⁻	00 00 00 00 00 00 00	02So.A 99Pr10	T T	$\begin{array}{lll} \beta^- = 100; \ \beta^- = n = 7 \# \\ \beta^- = 100; \ \beta^- = n = 1 \# \\ \beta^- = 100 \\ \beta^- = 100; \ \text{IT ?} \\ 17 = 100 \\ \beta^- = 100 \\ 17 = 100 \\ \beta^- = 100 \\ \end{array}$	
69 Mn 69 Fe 69 Co 69 Ni 69 Ni ^m 69 Ni ⁿ 69 Cu 69 Cu ^m 69 Zn 69 Zn	-38400# -50000 -59979 -59658 -57278 -65736.2 -62994.4 -68418.0 -67979.4	500# 340 4 4 11 1.4 1.7 1.0 1.0	2701	10		109 227 11.5 3.5 439 2.85 360 56.4 13.76	ms ms s s ns ms m	9 13 0.3 0.4 3 0.15 30	1/2 ⁻ # 7/2 ⁻ # 9/2 ⁺ (1/2 ⁻) (17/2 ⁻) 3/2 ⁻ (13/2 ⁺) 1/2 ⁻ 9/2 ⁺	00 00 00 00 00 00 00 00	02So.A 99Pr10	T T	$\begin{array}{lll} \beta^- \! = \! 100; \beta^- n \! = \! 7\# \\ \beta^- \! = \! 100; \beta^- n \! = \! 1\# \\ \beta^- \! = \! 100; \beta^- n \! = \! 1\# \\ \beta^- \! = \! 100; \text{IT ?} \\ \text{IT} \! = \! 100 \\ \beta^- \! = \! 100 \\ \text{IT} \! = \! 100 \\ \text{IT} \! = \! 100; \beta^- \! = \! 0.033 3 \end{array}$	
Mn So Fe So O O O O O O O O O O O O O	-38400# -50000 -59979 -59658 -57278 -65736.2 -62994.4 -68418.0 -67979.4 -69327.8	500# 340 4 4 11 1.4 1.7 1.0 1.0	2701 2741.8	1.0		109 227 11.5 3.5 439 2.85 360 56.4 13.76 STABLE	ms ms s ns m ns m h	9 13 0.3 0.4 3 0.15 30 0.9 0.02	1/2-# 7/2-# 9/2+ (1/2-) (17/2-) 3/2- (13/2+) 1/2- 9/2+ 3/2-	00 00 00 00 00 00 00 00 00	02So.A 99Pr10	T T	$\begin{array}{lll} \beta^- = 100; \ \beta^- n = 7\# \\ \beta^- = 100; \ \beta^- n = 1\# \\ \beta^- = 100 \\ \beta^- \approx 100; \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	
⁶⁹ Mn ⁶⁹ Fe ⁶⁹ Co ⁶⁹ Ni ⁶⁹ Ni ^m ⁶⁹ Ni ⁿ ⁶⁹ Cu ⁶⁹ Cu ⁶⁹ Zn ⁶⁹ Zn ⁶⁹ Ga ⁶⁹ Ge	-38400# -50000 -59979 -59658 -57278 -65736.2 -62994.4 -68418.0 -67979.4 -69327.8 -67100.6	500# 340 4 4 11 1.4 1.7 1.0 1.0	2701 2741.8	1.0		109 227 11.5 3.5 439 2.85 360 56.4 13.76 STABLE 39.05	ms ms s ns m ns m h	9 13 0.3 0.4 3 0.15 30 0.9 0.02	1/2-# 7/2-# 9/2+ (1/2-) (17/2-) 3/2- (13/2+) 1/2- 9/2+ 3/2- 5/2-	00 00 00 00 00 00 00 00	02So.A 99Pr10	T T	$\begin{array}{l} \beta^- = 100; \beta^- = 77 \# \\ \beta^- = 100; \beta^- = 18 \# \\ \beta^- = 100; \beta^- = 100; \text{IT ?} \\ \text{IT} = 100 \\ \beta^- = 100; \text{IT ?} \\ \text{IT} = 100 \\ \beta^- = 100; \text{IT} = 100; \beta^- = 0.033 3 \\ \text{IS} = 60.108 9 \\ \beta^+ = 100 \end{array}$	
69 Mn 69 Fe 69 Co 69 Ni 69 Ni 69 Ni 69 Cu 69 Cu 69 Cu 69 Zn 69 Zn 69 Ge 69 Ge 69 Ge	-38400# -50000 -59979 -59658 -57278 -65736.2 -62994.4 -68418.0 -67979.4 -69327.8	500# 340 4 4 11 1.4 1.7 1.0 1.0 1.2	2701 2741.8 438.636	1.0 0.018		109 227 11.5 3.5 439 2.85 360 56.4 13.76 STABLE	ms ms s ns m ns m h	9 13 0.3 0.4 3 0.15 30 0.9 0.02	1/2-# 7/2-# 9/2+ (1/2-) (17/2-) 3/2- (13/2+) 1/2- 9/2+ 3/2-	00 00 00 00 00 00 00 00 00	02So.A 99Pr10	T T	$\begin{array}{lll} \beta^- = 100; \ \beta^- n = 7\# \\ \beta^- = 100; \ \beta^- n = 1\# \\ \beta^- = 100 \\ \beta^- \approx 100; \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	
68 Co 69 Mn 69 Fe 69 Co 69 Ni 69 Ni ^m 69 Cu 69 Cu 69 Cu 69 Cu 69 Cn 69 Ge 69 Ge 69 Ge 69 Ge 69 Ge 69 As	-38400# -50000 -59979 -59658 -57278 -65736.2 -62994.4 -67979.4 -67979.4 -67100.6 -67013.8	500# 340 4 4 11 1.4 1.7 1.0 1.0 1.2 1.3	2701 2741.8 438.636 86.765	10 1.0 0.018 0.014		109 227 11.5 3.5 439 2.85 360 56.4 13.76 STABLE 39.05 5.1	ms ms s ns m ns m h	9 13 0.3 0.4 3 0.15 30 0.9 0.02	1/2-# 7/2-# 9/2+ (1/2-) (17/2-) 3/2- (13/2+) 1/2- 9/2+ 3/2- 5/2- 1/2-	00 00 00 00 00 00 00 00 00 00	02So.A 99Pr10	T T	$\begin{array}{l} \beta^- = 100; \ \beta^- = n = 7\# \\ \beta^- = 100; \ \beta^- = n = 1\# \\ \beta^- = 100 \\ \beta^- = 100; \ \text{IT ?} \\ \text{IT} = 100 \\ \beta^- = 100 \\ \text{IT} = 100 \\ \beta^- = 100 \\ \text{IT} = 100; \ \beta^- = 0.033 \ 3 \\ \text{IS} = 60.108 \ 9 \\ \beta^+ = 100 \\ \text{IT} = 10$	
69 Mn 69 Fe 69 Co 69 Ni 69 Ni ^m 69 Ni ⁿ 69 Cu 69 Cu 69 Cu 69 Cu 69 Cu 69 Cu 69 Ca 69 Ca 69 Ge 69 Ge 69 Ge 69 Se	-38400# -50000 -59979 -59658 -57278 -65736.2 -62994.4 -68418.0 -67979.4 -69327.8 -67100.6 -67013.8 -66702.7	500# 340 4 4 11 1.4 1.7 1.0 1.0 1.2 1.3 1.3	2701 2741.8 438.636 86.765	10 1.0 0.018 0.014		109 227 11.5 3.5 439 2.85 360 56.4 13.76 STABLE 39.05 5.1 2.81	ms ms s s ns m ns m h h µs µs	9 13 0.3 0.4 3 0.15 30 0.9 0.02 0.10 0.2 0.05	1/2-# 7/2-# 9/2+ (1/2-) (17/2-) 3/2- (13/2+) 1/2- 9/2+ 3/2- 5/2- 1/2- 9/2+	00 00 00 00 00 00 00 00 00 00 00	02So.A 99Pr10	T T	$\begin{array}{lll} \beta^- = 100; \beta^- = 77 \# \\ \beta^- = 100; \beta^- = 17 \# \\ \beta^- = 100; \beta^- = 100; \text{IT ?} \\ \text{IT} = 100 \\ \beta^- = 100 \\ \text{IT} = 100 \\ \beta^- = 100 \\ \text{IT} = 100; \beta^- = 0.033 3 \\ \text{IS} = 60.108 9 \\ \beta^+ = 100 \\ \text{IT} = 100$	
69 Mn 69 Fe 69 Co 69 Ni 69 Ni 69 Ni 69 Ni 69 Cu 69 Cu 69 Cu 69 Ge 69 Ge 69 Ge 69 Ge 69 Ge 69 Se 69 Se	-38400# -50000 -59979 -59658 -57278 -65736.2 -62994.4 -68418.0 -67979.4 -67100.6 -67013.8 -66702.7 -63090	500# 340 4 4 11 1.4 1.7 1.0 1.2 1.3 1.3 30	2701 2741.8 438.636 86.765	10 1.0 0.018 0.014		109 227 11.5 3.5 439 2.85 360 56.4 13.76 STABLE 39.05 5.1 2.81 15.2	ms ms s s ns m ns m h h µs µs m	9 13 0.3 0.4 3 0.15 30 0.9 0.02 0.10 0.2 0.05 0.2	$\begin{array}{c} 1/2^-\#\\ 7/2^-\#\\ 9/2^+\\ (1/2^-)\\ (17/2^-)\\ 3/2^-\\ (13/2^+)\\ 1/2^-\\ 9/2^+\\ 3/2^-\\ 5/2^-\\ 1/2^-\\ 9/2^+\\ 5/2^-\\ \end{array}$	00 00 00 00 00 00 00 00 00 00 00	02So.A 99Pr10 98Gr14	T T E	$\begin{array}{l} \beta^- \! = \! 100; \beta^- \! = \! 77 \# \\ \beta^- \! = \! 100; \beta^- \! = \! 17 \# \\ \beta^- \! = \! 100; \beta^- \! = \! 100; \text{IT ?} \\ \text{IT} \! = \! 100 \\ \beta^- \! = \! 100; \text{IT ?} \\ \text{IT} \! = \! 100 \\ \text{IT} \! = \! 100; \beta^- \! = \! 100; \beta^+ \! = \!$	
69 Mn 69 Fe 69 Co 69 Ni 69 Ni 69 Ni 69 Cu 69 Cu 69 Cu 69 Cu 69 Ge 69 Ge 69 Ge 69 Ge 69 Se 69 Se 69 Se	-38400# -50000 -59979 -59658 -57278 -65736.2 -62994.4 -68418.0 -67979.4 -67100.6 -67013.8 -66702.7 -63090 -56300 -56260 -55730	500# 340 4 4 11 1.4 1.7 1.0 1.0 1.2 1.3 1.3 30 30 30 30	2701 2741.8 438.636 86.765 397.944	1.0 0.018 0.014 0.018		109 227 11.5 3.5 439 2.85 360 56.4 13.76 57ABLE 39.05 5.1 2.81 15.2 27.4 2.0 955	ms ms s s ns m ns m h h µs µs m s	9 13 0.3 0.4 3 0.15 30 0.9 0.02 0.10 0.2 0.05 0.2	$\begin{array}{c} 1/2^-\#\\ 7/2^-\#\\ 9/2^+\\ (1/2^-)\\ (17/2^-)\\ 3/2^-\\ (13/2^+)\\ 1/2^-\\ 9/2^+\\ 3/2^-\\ 5/2^-\\ 1/2^-\\ 9/2^+\\ 5/2^-\\ (1/2^-)\\ \end{array}$	00 00 00 00 00 00 00 00 00 00 00 00 00	02So.A 99Pr10 98Gr14 95Po01 00Ch07	T T E	$\begin{array}{l} \beta^-{=}100; \beta^-{=}n{=}7\#\\ \beta^-{=}100; \beta^-{=}n{=}1\#\\ \beta^-{=}100; \beta^-{=}100; \text{IT?}\\ \text{IT}=100\\ \beta^-{=}100; \text{IT?}\\ \text{IT}=100\\ \beta^-{=}100\\ \text{IT}=100; \beta^-{=}0.033\; 3\\ \text{IS}=60.108\; 9\\ \beta^+{=}100\\ \text{IT}=100\\ \text{IT}=100\\ \beta^+{=}100; \beta^+{=}0.045\; 10\\ \text{IT}=100\\ \text{IT}=$	
69 Mn 69 Fe 69 Co 69 Ni 69 Ni 69 Ni 69 Ni 69 Cu 69 Cu 69 Cu 69 Co 60 Co	-38400# -50000 -59979 -59658 -57278 -65736.2 -62994.4 -68418.0 -67979.4 -69327.8 -67100.6 -67013.8 -66702.7 -63090 -56300 -56260 -55730 -46480#	500# 340 4 4 11 1.4 1.7 1.0 1.0 1.2 1.3 1.3 30 30 30 30 110#	2701 2741.8 438.636 86.765 397.944 39.4 573.9	1.0 0.018 0.014 0.018 0.1 1.0	*	109 227 11.5 3.5 439 2.85 360 56.4 13.76 STABLE 39.05 5.1 2.81 15.2 27.4 2.0	ms ms s s ns m ns m h h µs m s m s m s m s m s m s m s m s m s	9 13 0.3 0.4 3 0.15 30 0.9 0.02 0.10 0.2 0.05 0.2 0.2	1/2-# 7/2-# 9/2+ (1/2-) (17/2-) 3/2- (13/2+) 1/2- 9/2+ 3/2- 5/2- 1/2- 9/2+ 5/2- (1/2-) 5/2- 9/2+ 1/2-#	00 00 00 00 00 00 00 00 00 00 00 00 00	02So.A 99Pr10 98Gr14	T T E	$\begin{array}{l} \beta^- = 100; \beta^- = 77 \# \\ \beta^- = 100; \beta^- = 11 \# \\ \beta^- = 100; \beta^- = 100; \text{IT ?} \\ \text{IT} = 100 \\ \beta^- = 100; \text{IT ?} \\ \text{IT} = 100 \\ \beta^- = 100; \text{IT} = 100; \beta^- = 0.033 3 \\ \text{IS} = 60.108 9 \\ \beta^+ = 100; \beta^- = 0.033 0 \\ \text{IT} = 100; \beta^- = 0.033 0 \\ \text{IT} = 100; \beta^+ = 100; $	
69 Mn 69 Fe 69 Co 69 Ni 69 Ni 69 Ni 69 Ni 69 Cu 69 Cu 69 Cu 69 Co 69 Co 69 Go 69 Go 69 Ge 69 Ge 69 Ge 69 Ge	-38400# -50000 -59979 -59658 -57278 -65736.2 -62994.4 -68418.0 -67979.4 -67100.6 -67013.8 -66702.7 -63090 -56300 -56260 -55730	500# 340 4 4 11 1.4 1.7 1.0 1.0 1.2 1.3 1.3 30 30 30 30	2701 2741.8 438.636 86.765 397.944	1.0 0.018 0.014 0.018	* *	109 227 11.5 3.5 439 2.85 360 56.4 13.76 57ABLE 39.05 5.1 2.81 15.2 27.4 2.0 955	ms ms s s ns m ns m h h µs µs m s µs ns ns	9 13 0.3 0.4 3 0.15 30 0.9 0.02 0.10 0.2 0.05 0.2 0.2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	00 00 00 00 00 00 00 00 00 00 00 00 00	02So.A 99Pr10 98Gr14 95Po01 00Ch07	T T E	$\begin{array}{l} \beta^-{=}100; \beta^-{=}n{=}7\#\\ \beta^-{=}100; \beta^-{=}n{=}1\#\\ \beta^-{=}100; \beta^-{=}100; \text{IT?}\\ \text{IT}=100\\ \beta^-{=}100; \text{IT?}\\ \text{IT}=100\\ \beta^-{=}100\\ \text{IT}=100; \beta^-{=}0.033\; 3\\ \text{IS}=60.108\; 9\\ \beta^+{=}100\\ \text{IT}=100\\ \text{IT}=100\\ \beta^+{=}100; \beta^+{=}0.045\; 10\\ \text{IT}=100\\ \text{IT}=$	

Nuclide	Mass ex			Excitation nergy(keV]	Half-l	life	J^{π}	Ens	Referen	ce	Decay modes and intensities (%)	
	oup continu									- 4					
69 Kr	-32440#		4 h 00II	05			32	ms	10	5/2-#	00			$\beta^{+}=100; \beta^{+}p=?$	
* ⁶⁹ Mn * ⁶⁹ Co			d by 99Ha		7_220	(20).	othor	0050	20-1000	40), not used					**
* C0 * ⁶⁹ Ni			10=11.7(0.												**
* ⁶⁹ Ni ^m			u17=3.5(0.				, not t	isca .	701113=1	11.2(0.7)					**
*69Ni ^m			isotones: 7				1) 69N	Ji=-3	321(2) ext	hibits					**
*69Nim			trong varia			(-, -,-		(_,						**
$*^{69}$ Se ⁿ			107=950(2		=960((23)									**
* ⁶⁹ Br	T: in cont	tradicti	on with 45	0 keV pro	tons,	50 <t< td=""><td><100</td><td>μs re</td><td>eported ir</td><td>1 88Ho.A</td><td></td><td></td><td></td><td></td><td>**</td></t<>	<100	μs re	eported ir	1 88Ho.A					**
⁷⁰ Fe	-35900#	600#					94	ms	17	0+	97	02So A	TD	β ⁻ =100	
⁷⁰ Co	-35900π -45640	840				*	125	ms	7	$(6^-, 7^-)$				$\beta = 100$ $\beta = 100; \beta = n?$	*
$^{70}\text{Co}^m$	-45440#		200#	200#		*	500	ms	180	(3+)	,,			$\beta \beta^{-100}$; IT ?; β^{-} n	?
⁷⁰ Ni	-59150	350					6.0	s	0.3	0+	03			$\beta^{-}=100$	
70 Ni m	-56290	350	2860	2			232	ns	1	8^+	03			T=100	
⁷⁰ Cu	-62976.1	1.6				&	44.5	S	0.2	(6^{-})	93	02We03	TJ	$\beta^-=100$	
70 Cu m	-62875.4		100.7	2.6	MD		33	S	2	(3-)		02We03		$\beta^- \approx 50$; IT ≈ 50	
⁷⁰ Cu ⁿ	-62734.1		242.0	2.7	MD	&	6.6	S	0.2	1+	93	02We03	TD	β [−] ≈95; IT≈5	*
⁷⁰ Zn	-69564.6						TABLE		0.02	0^{+}	93			IS=0.62 3; $2\beta^-$?	*
⁷⁰ Ga ⁷⁰ Ge	-68910.1						21.14		0.03	1 ⁺ 0 ⁺	93			$\beta^{-} \approx 100; \varepsilon = 0.416$	
⁷⁰ As	-70563.1	1.0 50				2	TABLE 52.6		0.2	4(+#)	93 93			IS=20.84 87 β^+ =100	
70 As ^m	-64340 -64310	50	32.06	0.03			96	m	0.3	2(+)	93			IT=100	
⁷⁰ Se	-62050	60	32.00	0.03			41.1	μs m	0.3	0+	93			$\beta^{+}=100$	
⁷⁰ Br	-51430#						79.1	ms	0.8	0+#	93			$\beta^{+}=100$	
$^{70}\mathrm{Br}^m$	-49140#		2292.2	0.8			2.2	S	0.2	(9+)		00Pi15	J	$\beta^+=?$; IT ?	*
⁷⁰ Kr	-41680#						57	ms	21	0+		00Oi02		•	
* ⁷⁰ Co	T: averag	e 02So	.A=121(8)	98Am04	=150(20); (others	00Mı	u10=120((30) 99So20=	92(2:	5)			**
$*^{70}$ Cu ⁿ	D : IT=fev							1.1(0	0.3) and 2	42.4(0.3)					**
* ⁷⁰ Zn			NSDF is for	$10\nu-2\beta$	decay	alon	e								**
* ⁷⁰ Br ^m	E: from 2	002Je()7												**
⁷¹ Fe	-31000#	800#					30#	ms	(>300 ns	7/2+#	97	97Be70	I	β ⁻ ?	
⁷¹ Co	-43870	840					97	ms	2	7/2-#		02So.A		$\beta^{-}=100; \beta^{-}n$?	*
⁷¹ Ni	-55200	370					2.56	S	0.03	1/2-#	93	98Fr15	T	$\beta^{-}=100$	
⁷¹ Cu	-62711.1	1.5					19.4	S	1.4	$(3/2^{-})$	93		T	$\beta^-=100$	*
71 Cu ^m	-59955	10	2756	10			271	ns	13	$(19/2^{-})$		98Gr14	ETJ	IT=100	*
⁷¹ Zn	-67327	10	155.5				2.45	m	0.10	1/2-	93			$\beta^{-}=100$	
⁷¹ Zn ^m ⁷¹ Ga	-67169	10	157.7	1.3			3.96	h	0.05	9/2+	93			$\beta^- \approx 100$; IT ≤ 0.05 IS = 39.892 9	
⁷¹ Ge	-70140.2 -69907.7						TABLE 11.43		0.03	$\frac{3/2^{-}}{1/2^{-}}$	93 93			ε=100	
71 Ge ^m	-69709.3		198.367	0.010			20.40		0.03	9/2+	93			IT=100	
⁷¹ As	-67894	4	170.507	0.010			65.28	h	0.15	5/2-	93			$\beta^{+}=100$	
⁷¹ Se	-63120	30					4.74	m	0.05	5/2-	93			$\beta^{+}=100$	
71 Se ^{m}	-63070	30	48.79	0.05			5.6	μs	0.7	$1/2^{-t}o9/2^{-t}$	93			IT=100	
71 Se ⁿ	-62860	30	260.48	0.10			19.0	μs	0.5	$(9/2)^{+}$	93	00Ch07	T	IT=100	
⁷¹ Br	-57060	570					21.4	S	0.6	$(5/2)^{-}$	93			$\beta^{+}=100$	
⁷¹ Kr	-46920						100	ms	3	$(5/2)^{-}$	97	97Oi01	TJD	$\beta^{+}=100; \beta^{+}p=2.17$	*
⁷¹ Rb	-32300#		50 11	100#		*				5/2-#				p ?	
⁷¹ Rb ^m	-32250# 32040#		50#	100#	:	*				1/2-#					
71 Rb ⁿ * 71 Co	-32040#		260#	100#						9/2+#					
* ⁷¹ Cu			1: 98Am04 10=19(3) 8			6)									**
* Cu * ⁷¹ Cu ^m			11=250(30)												**
* Cu * ⁷¹ Kr							3123=6	4(+8	–5) at vai	riance not use	d				**
* ⁷¹ Kr			5B123 for												**
$*^{71}Kr$			0.6) at vari					•							**
		,													

Nuclide	Mass ex (keV			Excitation energy(keV)]	Half-	life	J^{π}	Ens	Reference	e	Decay modes and intensities (%)	
⁷² Fe ⁷² Co ⁷² Ni	-28300# -39300# -53940					10# 90 1.57	ms ms	(>300 ns) 20 0.05	0 ⁺	97	97Be70 98Am04 98Fr15	TD	β ⁻ ? β ⁻ =100; β ⁻ n ? β ⁻ =100; β ⁻ n ?	*
⁷² Cu	-59783.0	1.4				6.6	S	0.1	(1^{+})	95			$\beta^{-}=100$	
⁷² Cu ^m	-59513	3	270	3		1.76	μs	0.03	(4^{-})		98Gr14	ETJ	IT=100	
⁷² Zn ⁷² Ga	-68131	6				46.5	h	0.1	0 ⁺	95			$\beta^{-}=100$	
⁷² Ga ^m	-68589.4 -68469.7		119.66	0.05		14.10 39.68	h	0.02 0.13	3- (0+)	95 95			$\beta^-=100$ IT=100	
⁷² Ge	-72585.9	1.6	117.00	0.05		STABLE		0.13	0+	95			IS=27.54 34	
$^{72}\mathrm{Ge}^m$	-71894.5		691.43	0.04		444.2	ns	0.8	0^+					
⁷² As	-68230	4				26.0	h	0.1	2^{-}	95			$\beta^{+}=100$	
⁷² Se	-67894	12				8.40	d	0.08	0+	97			ε=100	
⁷² Br ⁷² Br ^m	-59020 58020	60	100.02	0.03		78.6	S	2.4	1 ⁺ 1 ⁻	95 95	03Pi03	J	$\beta^{+}=100$	
⁷² Kr	-58920 -53941	60 8	100.92	0.03		10.6 17.16	S S	0.3 0.18	0+	95	03Pi03	T	IT \approx 100; $\beta^+=?$ $\beta^+=100$	*
⁷² Rb	-38120#				*	< 1.5	μs	0.10	3+#	97	95Bl06	Ī	p ?	
$^{72}\mathrm{Rb}^m$	-38020#		100#	100#	*	1#	μs		1-#				p?	
* ⁷² Ni	T : not use	d 95Ar	n.A=1.30(0.10) and 92	Be.A=	2.06(0.30		e two of sa	me grou	ıp)			•	**
* ⁷² Kr	T : average	e 03Pi0	3=17.1(0.2	2) 73Da22=	17.4(0.4	.)								**
⁷³ Co	-37040#	700#				80#	ms	(>300 ns)	7/2-#	02	97Be70	ī	β− ?	
⁷³ Ni	-49860#	300#				840	ms	30	$(9/2^+)$) I BC I O	•	$\beta^{-}=100; \beta^{-}n?$	
⁷³ Cu	-58987	4				4.2	s	0.3	$(3/2^{-})$		98Fr15	J	$\beta^{-}=100; \beta^{-}n$?	
73 Zn	-65410	40				23.5	S	1.0	$(1/2)^{-}$	02			$\beta^{-}=100$	
73 Zn ^m	-65210	40	195.5	0.2		13.0	ms	0.2	$(5/2^+)$				IT=100	
73 Zn ⁿ	-65170	40	237.6	2.0	EU	5.8	S	0.8	$(7/2^+)$				IT=?; β^- =?	*
⁷³ Ga ⁷³ Ge	-69699.3	1.7				4.86	h	0.03	$3/2^{-}$	02			$\beta^{-}=100$	
⁷³ Ge ^m	-71297.5 -71284.2	1.6 1.6	13.2845	0.0015		STABLE 2.92	μs	0.03	$9/2^{+}$ $5/2^{+}$	02 02			IS=7.73 5 IT=100	
73 Ge ⁿ	-71234.2 -71230.8	1.6	66.726	0.0013		499	ms	11	$1/2^{-}$	02			IT=100 IT=100	
⁷³ As	-70957	4	00.720	0.007		80.30	d	0.06	3/2-	93			ε=100	
⁷³ Se	-68218	11				7.15	h	0.08	$9/2^{+}$	03			β^{+} =100	
73 Se ^m	-68192	11	25.71	0.04		39.8	m	1.3	$3/2^{-}$	03			IT=72.6 3; β^+ =27.4 3	
⁷³ Br	-63630	50				3.4	m	0.2	$1/2^{-}$	02		_	$\beta^{+}=100$	
⁷³ Kr	-56552	7	122.66	0.10		28.6	S	0.6	3/2-	02	99Mi17	T	$\beta^{+}=100; \beta^{+}p=0.25 3$	*
⁷³ Kr ^m ⁷³ Rb	-56118	7	433.66	0.12		107 < 30	ns	10	$(9/2^+)$ $3/2^- \#$		06Df01	I	IT=100	
$^{73}\text{Rb}^m$	-46050# -45620#		430#	100#		< 30	ns		9/2+#	03	96Pf01	1	p ?	
⁷³ Sr	-31700#		15011	10011		> 25	ms		1/2-#	03			$\beta^{+}=100; \beta^{+}p=?$	
$*^{73}$ Zn ⁿ			feeds ⁷³ Zn	m, EU: see d	liscussio)2	,				r	**
$*^{73}$ Kr	T: average	e 99Mi	17=29.0(1	.0) 81Ha44=	28.4(0.	7); 73Da	22=2	25.9(0.6) at	varianc	e,				**
* ⁷³ Kr	T: not	t used												**
⁷⁴ Co	-32250#	800#				50#	ms	(>300 ns)		03	97Be70	I	β − ?	
⁷⁴ Ni	-48370#					680	ms	120	0^{+}	03	98Fr15	T	$\beta^{-}=100; \beta^{-}n?$	*
⁷⁴ Cu	-56006	6				1.594	s	0.010	1+#	95			$\beta^{-}=100$	
⁷⁴ Zn	-65710	50				95.6	S	1.2	0_{+}	95			$\beta^{-}=100$	
⁷⁴ Ga	-68050	4				8.12	m	0.12	(3^{-})	95			$\beta^{-}=100$	
⁷⁴ Ga ^m	-67990	4	59.571	0.014		9.5	S	1.0	(0)	95			IT=?; β^- =25#	
⁷⁴ Ge ⁷⁴ As	-73422.4 70860.0					STABLE		0.02	$\frac{0^{+}}{2^{-}}$	95			IS=36.28 73	
⁷⁴ Se	-70860.0 -72212.7					17.77 STABLE	d	0.02	0^{+}	95 95			β^+ =66 2; β^- =34 2 IS=0.89 4; $2\beta^+$?	
⁷⁴ Br	-65306	15				25.4	m	0.3	(0^{-})	95			$\beta^{+}=100$	
$^{74}\mathrm{Br}^m$	-65292	15	13.58	0.21		46	m	2	4(+#)	95			$\beta^{+}=100$	
⁷⁴ Kr	-62331.5					11.50	m	0.11	0^{+}	95			$\beta^{+}=100$	
$^{74}\mathrm{Kr}^m$	-61824	10	508	10		29	ns	6	0^{+}		00Ch07	ETJ		
⁷⁴ Rb	-51917	4				64.76		0.03	(0^{+})	95	01Ba12		$\beta^{+}=100$	
⁷⁴ Sr	-40700#					50#	ms	$(>1.5\mu\mathrm{s})$	0_{+}	97	95Bl06	I	eta^+ ?	
* ⁷⁴ Ni	T : average	e 98Fr1	5=900(20	0) 98Am04=	=540(16	0)								**

Nuclide	Mass excess (keV)	Excitation energy(keV		Half-l	ife	J^{π}	Ens	Reference	ce	Decay modes and intensities (%)	
75 Co 75 Ni 75 Cu 75 Zn 75 Ga 75 Ge 75 Ge 75 Ge 75 As 75 Se 75 Br 75 Sr 75 Ni 75 Ni 75 Ni	$\begin{array}{cccc} -73032.4 & 1.8 \\ -72728.5 & 1.8 \\ -72169.0 & 1.7 \\ -69139 & 14 \\ -64324 & 8 \\ -57222 & 7 \\ -46620 & 220 \end{array}$	139.69 0.03 303.9241 0.00 estimated by 85Re	119.779 96.7 4.29 19.0 88	ms s s s m s	(>300 ns) 200 0.003 0.2 2 0.04 0.5 0.23 0.004 1.3 0.17 1.2 3	$7/2^{+}$ # $3/2^{-}$ # $7/2^{+}$ # $(3/2)^{-}$ $1/2^{-}$ $7/2^{+}$ $3/2^{-}$ $9/2^{+}$ $5/2^{+}$ $3/2^{-}$ $5/2^{+}$ $(3/2^{-})$	99 99 99 99 99 99 99 99 99	97Be70 85Re01	D	$β^-$? $β^-$ =100; $β^-$ n=1.6# $β^-$ =100; $β^-$ n=3.5 6 $β^-$ =100 $β^-$ =100 $β^-$ =100 IT≈100; $β^-$ =0.030 6 IS=100. IT=100 ε=100 $β^+$ =100 $β^+$ =100 $β^+$ =100 $β^+$ =100 $β^+$ =100 $β^+$ =100; $β^+$ p=5.2 9	**
w 141	D. p 11-1.07011	estimated by 65Ke	<i>J</i> 1								**
76Ni 76Cu 76Cu 76Cu 76Ga 76Ga 76Ge 76As 76Se 76Br 76Br 76Kr 76Rb 76Ge *76Ge	-54240 40 -38700# 500# T: from 01K111= T: 97Gu13= T: other ground of the standard of the s	0# 200# 44.425 0.00 102.58 0.03 316.93 0.08 316.93 0.08 1.77(+0.13-0.11) 9 ups 93Br22=0.84(+ 23=1.1(+0.6-0.3)(-ββ 01K113=15 Y) 200 ns, same group	STABLI 16.2 1.31 14.8 36.5 3.050 8.9 500# other results five 4Ba15=1.42(0. 0.10-0.08)(2σ)	μs h s h s μs s ns (18=0.90(0		95 95 95 95 95 95 95 95 95 95	98Am04 90Wi12 90Wi12 01KI11 78Ha08 00Ch07 00We.A	J J T	$β^-=100; β^-n?$ $β^-=100; β^-n=3 2$ $β^-=100$ $β^-=100$ $β^-=100$ $β^-=100$ $β^-=100; ε<0.02$ IS=9.37 29 $β^+=100$ IT>99.4; $β^+<0.6$ $β^+=100; β^+=0.6$ $β^+=100; β^+=0.6$ $β^+=100; β^+=0.6$ $β^+=100; β^+=0.6$ $β^+=100; β^+=0.6$	* ** ** ** **
77 Ni 77 Cu 77 Zn 77 Zn 77 Ge 77 Ge 77 Ge 77 As 77 Se 77 Se 77 Sr 77 Rb 77 Kr 77 Y	$\begin{array}{ccc} -73916.6 & 2.3 \\ -73441.2 & 2.3 \\ -74599.6 & 1.7 \end{array}$	772.39 0.12 159.70 0.10 475.443 0.01 161.9223 0.00 105.86 0.08	38.83 6 114.0 STABLI 07 17.36 57.036	ms s s s h s h g h g s s	(>300 ns) 8 0.05 0.10 0.2 0.01 0.6 0.05 2.5 0.05 0.006 0.10 0.6 0.04 0.2 17	3/2-# 7/2+# 1/2-# (3/2-) 7/2+ 1/2- 3/2- 9/2+ 1/2- 7/2+ 3/2- 9/2+ 5/2+ 3/2- 5/2+	97 97 97 97 97 97 97 97 97 97 97 97	97Be70 01Ki13		$\begin{array}{l} \beta^{-} ? \\ \beta^{-} = 100 \\ \beta^{-} = 100 \\ \Gamma = 50; \ \beta^{-} < 50 \\ \beta^{-} = 100 \\ \beta^{-} = 100 \\ \beta^{-} = 81 \ 2; \ \Gamma = 19 \ 2 \\ \beta^{-} = 100 \\ \Gamma = 100 \\ \beta^{+} = 100 \\ \beta^{+} = 100 \\ \beta^{+} = 100; \ \beta^{+} p < 0.25 \\ \beta^{+} = ?; \ \beta^{+} p \ ?; \ p < 10 \\ \end{array}$	*

Nuclide	Mass ex (keV			citation gy(keV)		На	ılf-li	fe	J^{π}	Ens	Referen	ce	Decay modes and intensities (%)	
⁷⁸ Ni	-34300#					200#		(>300 ns)	0+	97			β ⁻ ?	
⁷⁸ Cu ⁷⁸ Zn	-44750#	400#				342	ms	11	0+	97	91Kr15	T	$\beta^{-}=100$	
78 Zn	-57340 -54670	90 90	2673	1		1.47 319	s ns	0.15 9	0 ⁺ (8 ⁺)	91	00Da07	ET	$\beta^-=100$ IT=100	
⁷⁸ Ga	-63706.6	2.4	2073	1		5.09	S	0.05	(3+)	91	001207	LI	$\beta^{-}=100$	
⁷⁸ Ge	-71862	4				88	m	1	0+	91			$\beta^{-}=100$	
⁷⁸ As	-72817	10				90.7	m	0.2	2^{-}	91			$\beta^{-}=100$	
⁷⁸ Se	-77026.1	1.7				STABLE			0_{+}	91			IS=23.77 28	
⁷⁸ Br	-73452	4				6.46	m	0.04	1+	91			$\beta^{+}\approx 100; \beta^{-}<0.01$	*
⁷⁸ Br ^m	-73271	4	180.82	0.13		119.2	μs	(: 110E)	4 ⁺	0.1	0.40, 21		rg 0.25.1.20±0	
⁷⁸ Kr ⁷⁸ Rb	-74179.7	1.1				STABLE		(>110 Ey)	$0_{(+)} \\ 0_{+}$	91	94Sa31	Τ	IS=0.35 1; $2\beta^+$?	*
⁷⁸ Rb ^m	-66936 -66825	7 7	111.20	0.10		17.66 5.74	m	0.08 0.05	4(-)	91 91	01Ma A	Б	$\beta^{+}=100$ $\beta^{+}=90$ 2; IT=10 2	
⁷⁸ Rb ^x	-66862	14	111.20 74	0.10 12		$R = 2.0 \ 0.5$	m	0.05	spmix	91	91Mc.A	Е	p =90 2; 11=10 2	
⁷⁸ Sr	-63174	7	74	12		159	s	8	0 ⁺	91	92Gr09	Т	$\beta^{+}=100$	
⁷⁸ Y	-52530#	400#			*	54	ms	5	(0 ⁺)	97			$\beta^{+}=100; \beta^{+}p?$	*
$^{78}Y^m$	-52530#	640#	0#	500#	*	5.8	s	0.5	5+#				$\beta^{+}=100; \beta^{+}p$?	*
$^{78}\mathrm{Zr}$	-41700 #	500#				50#	ms	(>170 ns)	0_{+}		00We.A	I	β^+ ?; β^+ p ?	*
* ⁷⁸ Br	$D: \beta^-$ bra													**
* ⁷⁸ Kr						heoretically	faste	er)						**
$*^{78}Y$ $*^{78}Y^{m}$	T : average													**
* ⁷⁸ Zr	T : average I : also 01I				0.8(0).6)								**
* Z1	1 . aiso 011	X113/20	JO IIS Sailie	group										**
⁷⁹ Cu	-42330#	500#				188	ms	25	3/2-#	02			β ⁻ =100; β ⁻ n=55 17	
79 Zn	-53420 #	260#				995	ms	19	$(9/2^+)$	02			$\beta^-=100; \beta^-n=1.3 4$	
⁷⁹ Ga	-62510	100				2.847	S	0.003	3/2-#	02			β^- =100; β^- n=0.089 19)
⁷⁹ Ge	-69490	90				18.98	S	0.03	$(1/2)^{-}$				$\beta^{-}=100$	
⁷⁹ Ge ^m	-69300	90	185.95	0.04		39.0	S	1.0	7/2+#				β^- =96 1; IT=4 1	
⁷⁹ As ⁷⁹ As ^m	-73637	6	772 01	0.06		9.01	m	0.15	$3/2^{-}$		09C=14	т	$\beta^-=100$	
⁷⁹ Se	-72864 -75917.6	6 1.7	772.81	0.06		1.21 295	μs ky	0.01 38	$(9/2)^+$ $7/2^+$		98Gr14	1	IT=100 β ⁻ =100	*
⁷⁹ Se ^m	-75917.0 -75821.8	1.7	95.77	0.03		3.92	m	0.01	$1/2^{-}$				IT \approx 100; β ⁻ =0.056 11	
⁷⁹ Br	-76068.5	2.0	,,,,,	0.05		STABLE		0.01	$3/2^{-}$				IS=50.69 7	
$^{79}\mathrm{Br}^m$	-75860.9	2.0	207.61	0.09		4.86	s	0.04	$(9/2^{+})$				IT=100	
⁷⁹ Kr	-74443	4				35.04	h	0.10	1/2-	02			$\beta^{+}=100$	
⁷⁹ Kr ^m	-74313	4	129.77	0.05		50	S	3	$7/2^{+}$	02			IT=100	
⁷⁹ Kr ⁿ	-74296	4	147.06	0.06		78.7	ns	1.0	$(5/2^{-})$				IT=100	
⁷⁹ Rb	-70803	6				22.9	m	0.5	5/2+				$\beta^{+}=100$	
⁷⁹ Sr ⁷⁹ Y	-65477 59260	8				2.25	m	0.10	3/2(-)				$\beta^{+}=100$	
⁷⁹ Zr	-58360 -47360#	450 400#				14.8 56	s ms	0.6 30	5/2 ⁺ # 5/2 ⁺ #				$\beta^{+}=100; \beta^{+}p ?$ $\beta^{+}=100; \beta^{+}p ?$	
$*^{79}$ As ^m	T: 98Ho1:		0.06) outwo	eighed, no	t use		1115	30	3/2 #	02			<i>β</i> =100, <i>β β</i> :	**
80Cu	-36450#	600#				100#		(>300 ns)		97	97Be70	I	β^- ?	
⁸⁰ Zn	-51840	170				545	ms	16	0+	92	020 01	Б	$\beta^-=100; \beta^-=1.05$	
⁸⁰ Ga ⁸⁰ Ge	-59140	120				1.697	S	0.011	(3)	92	93Ru01	ע	$\beta^-=100; \beta^-=0.896$	
80 As	-69515 -72159	28 23				29.5 15.2	S S	0.4 0.2	0^{+} 1^{+}	92 92			$\beta^-=100$ $\beta^-=100$	
⁸⁰ Se	-72139 -77759.9	2.0				STABLE	5	0.2	0+	92			$\beta = 100$ IS=49.61 41; $2\beta^-$?	
⁸⁰ Br	-75889.5	2.0				17.68	m	0.02	1+	92			$\beta^-=91.72; \beta^+=8.32$	
$^{80}\mathrm{Br}^m$	-75803.7	2.0	85.843	0.004		4.4205	h	0.0008	5-	92			IT=100	
$^{80}\mathrm{Kr}$	-77892.5	1.5				STABLE			0^{+}	92			IS=2.28 6	
80 Rb	-72173	7				33.4	S	0.7	1+	92			$\beta^{+}=100$	
80 Rb m	-71679	7	494.4	0.5		1.6	μs	0.02	6+		92Do10	E		
⁸⁰ Sr	-70308	7				106.3	m	1.5	0^{+}	99			$\beta^{+}=100$	
80 Y	-61220	180	226 -	0.1		30.1	S	0.5	4-	92			$\beta^{+}=100$	*
$^{80}Y^{m}$ $^{80}Y^{n}$	-60990	180	228.5	0.1		4.8	S	0.3	(1 ⁻)				IT=81 2; β^+ =19 2	*
_	-60910 oup is contin	180	312.5	1.0		4.7	μs	0.3	(2^{+})		oocno/	EIJ	IT=100	*
A-gro	rap is contil	rucu Oil	near page.											

Nuclide	Mass ex (keV			xcitation ergy(keV)	1	Half-	life	J^{π}	Ens	s Reference	Decay modes and intensities (%)	
A-gro	oup continue	ed										
	-55520				4.6	S	0.6	0+	92	01Ki13 T	$\beta^{+}=100; \beta^{+}p$?	*
				8(1) 81Li12=3								**
				98Do04=4.7(0.3	s) D	: fro	m 98Do04					**
			above 228.5		17:00.00							**
* ⁸⁰ Zr	1 : average	01K113	3=5.3(+1.1-	0.9) 00Re03=4	.1(+0.8–0.6)						**
⁸¹ Zn	-46130#	300#			290	ms	50	5/2+#	97		$\beta^-=100; \beta^-=7.530$	
	-57980	190			1.217	s	0.005	$(5/2^{-})$			$\beta^-=100; \beta^-=11.97$	
	-66300	120			8	s	2	9/2+#			$\beta^{-}=100$	*
	-65620	120	679.13	0.04	8	s	2	$(1/2^{+})$			$\beta^- \approx 100$; IT<1	
	-72533	6			33.3	s	0.8	3/2-	97		$\beta^{-}=100$	
	-76389.5	2.0			18.45	m	0.12	$1/2^{-}$	97		$\beta^{-}=100$	
	-76286.5	2.0	102.99	0.06	57.28	m	0.02	$7/2^{+}$	97		IT \approx 100; $\beta^-=0.052$ 14	ļ
⁸¹ Br	-77974.8	2.0			STABLE	3		$3/2^{-}$	97		IS=49.31 7	
	-77438.6	2.0	536.20	0.09	34.6	μs		$9/2^{+}$				
⁸¹ Kr	-77694.0	2.0			229	ky	11	$7/2^{+}$	97		ε=100	
81 Kr m	-77503.4	2.0	190.62	0.04	13.10	S	0.03	$1/2^{-}$	97		IT \approx 100; ϵ =0.0025 4	
⁸¹ Rb	-75455	6			4.576	h	0.005	$3/2^{-}$	97		$\beta^{+}=100$	
81 Rb m	-75369	6	86.31	0.07	30.5	m	0.3	$9/2^{+}$	97		IT=97.6 6; β^+ =2.4 6	
	-71528	6			22.3	m	0.4	$1/2^{-}$	99		$\beta^{+}=100$	
	-66020	60			70.4	S	1.0	$(5/2^+)$			$\beta^{+}=100$	
	-58490	170			5.5	S	0.4	$3/2^{-}$ #			$\beta^{+}=100; \beta^{+}p=0.122$	
	-47480 #				< 44	ns				00We.A I	$p ?; \beta^+ ?; \beta^+ p ?$	*
				nixture of grou						alf-life		**
* ⁸¹ Nb	1 : aiso 991	au2<80	01Ki13<2	oons 1	estimated	nan-	ine for p	: 100# 1	118			**
82 Zn	-42460#	500#			100#	ms	(>300 ns)	0^{+}	03	97Be70 I	eta^- ?	
	-53100#	300#			599	ms	2	(1,2,3)	03	93Ru01 D	$\beta^-=100; \beta^-=21.3 13$	3 *
⁸² Ge	-65620	240			4.55	S	0.05	0+	03		$\beta^{-}=100$	
	-70320	200			* 19.1	S	0.5	(1+)	03		$\beta^{-}=100$	
	-70075	25	250	200 BE		s	0.4	(5-)	03	000:00 5	$\beta^-=100$	
0.0	-77594.0	2.0			97	Ey	5	0+	03	99Pi08 T	IS=8.73 22; $2\beta^-=100$	*
	-77496.5	1.9	45.0402	0.0010	35.282		0.007	5 ⁻	03		$\beta^-=100$	
	-77450.6 -80589.5	1.9	45.9492	0.0010	6.13		0.05	0^{+}	03		IT=97.6 3; β^- =2.4 3 IS=11.58 14	
	-80389.3 -76188.2	1.8 2.8			STABLE		0.002	1+	03		$\beta^{+}=100$	
0.0	-76188.2 -76119.1	2.4	69.1	1.5 ME	1.273 6.472		0.002 0.006	5-	03		$\beta^{+} \approx 100$; IT<0.33	
	-76119.1 -76008	6	09.1	1.5 NIL	25.36	d	0.00	0+	03	87Ho06 T	$\rho \approx 100, 11 < 0.55$ $\varepsilon = 100$	*
0.0	-68190	100			8.30	s	0.03	1 ⁺	03	8/11000 1	$\beta^{+}=100$	*
	-67790	100	402.63	0.14	268	ns	25	4-	03		IT=100	
	-64190#	230#	402.03	0.14	32	S	5	0^{+}	03		$\beta^{+}=100$	
	-52970#	300#			51	ms	5	0+	03	01Ga24 T	$\beta^{+}=100; \beta^{+}p$?	*
			1=31.1(4.4)	86Wa17=19.8				-			P, P P .	**
				98Ar10=83(12)				i11=1200	10)			**
				3) 87Ju02=25.		(,	(,			**
				Xi13=48(+8-6)	(,							**
⁸³ Zn	-36300#	500#			80#	ms	(>300 ns)	5/2+#	01	97Be70 I	β− ?	
0.0	-49390#	300#			308	ms	1	3/2-#			$\beta^-=100; \beta^-=37.17$	
	-60900#	200#			1.85	S	0.06	5/2+#			$\beta^{-}=100, \beta^{-}=37.17$ $\beta^{-}=100$	
0.0	-69880	220			13.4	s	0.3	3/2-#			$\beta^{-}=100$	
	-75341	4			22.3	m	0.3	9/2+	01		$\beta^{-}=100$	
	-75113	4	228.50	0.20	70.1	s	0.4	1/2-	01		$\beta^{-}=100$	
Se"	-79009	4		~~	2.40	h	0.02	$3/2^{-}$	01		$\beta^{-}=100$	
			3068.8	0.6	700	ns	100	$(19/2^{-})$			IT=100	
⁸³ Br	-75940	4	2000,0					\/ -)				
$^{83}\mathrm{Br}$ $^{83}\mathrm{Br}^m$	-75940 -79981.7	4 2.8	3006.6	0.0		3		9/2+	01		IS=11.49 6	
⁸³ Br ⁸³ Br ^m ⁸³ Kr	-79981.7	2.8			STABLE		1.1	9/2 ⁺ 7/2 ⁺	01 01		IS=11.49 6 IT=100	
⁸³ Br ⁸³ Br ^m ⁸³ Kr ⁸³ Kr			9.4053 41.5569	0.0008 0.0010			1.1 0.02	9/2 ⁺ 7/2 ⁺ 1/2 ⁻	01 01 01		IS=11.49 6 IT=100 IT=100	

Nuclide	Mass ex			xcitation ergy(keV))	I	Half-	life	J^{π}	Ens	Reference	ce	Decay modes and intensities (%)	
A-gro	oup continued	1												
83Rb	- 79075	6				86.2	d	0.1	$5/2^{-}$	01			ε=100	
83 Rb m	-79033	6	42.11	0.04		7.8	ms	0.7	$9/2^{+}$	01	68Et01	T	IT=100	
83 Sr	-76795	10				32.41	h	0.03	7/2+	01			$\beta^{+}=100$	
83 Sr m	-76536	10	259.15	0.09		4.95	s	0.12	$1/2^{-}$	01			IT=100	
83 Y	-72330	40				7.08	m	0.06	$9/2^{+}$	01	92Bu10	J	$\beta^{+}=100$	
$^{83}Y^m$	-72270	40	61.98	0.11		2.85	m	0.02	$(3/2^{-})$	01			β^{+} =60 5; IT=40 5	
83 Zr	-66460	100				41.6	S	2.4	1/2-#	01			$\beta^{+}=100; \beta^{+}p=?$	
83 Zr m	-66410	100	52.72	0.05		530	ns	0.12	$(5/2^{-})$	01			IT=100	
83 Zr n			non ex	kistent	RN	8	S	1	high	01	87Ra06	I	$\beta^{+}=100; \beta^{+}p=?$	*
⁸³ Nb	-58960	310				4.1	S	0.3	$(5/2^+)$				$\beta^{+}=100$	
⁸³ Mo	-47750#	500#				23	ms	19	$3/2^{-}$ #	01	01Ki13	TD	$\beta^{+}=100; \beta^{+}p$?	
$*^{83}Zr^{n}$	D: 6(4)% of													**
$*^{83}$ Zr ⁿ	I : misassign	ed: absen	ice of radia	tions sug	gests no	o isomer	with	1 E>18 ke	V					**
⁸⁴ Ga	-44110#	400#				85	ms	10		97			$\beta^-=100; \beta^-n=70.15$	
⁸⁴ Ge	-58250#	300#				954	ms	14	0^{+}		93Ru01	Т	$\beta^-=100; \beta^-=10.86$	*
⁸⁴ As	-66080#	300#			*	4.02	S	0.03	(3)(+#)	97	93Ru01		$\beta^-=100; \beta^-=0.284$	
$^{84}As^m$	-66080#	320#	0#	100#	*	650	ms	150	(5)	97	, D11401	•	$\beta^{-}=100$	
⁸⁴ Se	-75952	15	***			3.1	m	0.1	0^{+}	97			$\beta^{-}=100$	
⁸⁴ Br	-77799	15				31.80		0.08	2-	97			$\beta^{-}=100$	
$^{84}\mathrm{Br}^m$	-77460	100	340	100	BD	6.0	m	0.2	(6^{-})	97			$\beta^{-}=100$	
$^{84}\mathrm{Br}^n$	-77391	15	408.2	0.4		< 140	ns		1+	97			IT=100	
84 Kr	-82431.0	2.8				STABLE			0_{+}	97			IS=57.00 4	
$^{84}\mathrm{Kr}^m$	-79195.0	2.8	3236.02	0.18		1.89	μs	0.04	8+	97			IT=100	
⁸⁴ Rb	-79750.0	2.8				32.77	d	0.14	2^{-}	97			β^{+} =96.2 5; β^{-} =3.8 5	
$^{84}\text{Rb}^m$	-79286.4	2.8	463.62	0.09		20.26	m	0.04	6^{-}	97			IT \approx 100; $\beta^+=0.0012$	
⁸⁴ Sr	-80644	3				STABLE			0^{+}	97			IS=0.56 1; $2\beta^+$?	
84 Y	-74160	90			*	4.6	S	0.2	1+	97			$\beta^{+}=100$	
$^{84}Y^m$	-74230	170	-80	190	BD *	39.5	m	0.8	(5^{-})	97			$\beta^{+}=100$	
^{84}Zr	-71490 #	200#				25.9	m	0.7	0^{+}	97			$\beta^{+}=100$	
⁸⁴ Nb	-61880 #	300#				9.8	S	0.9	3^+	97	03Do01	T	$\beta^{+}=100; \beta^{+}p$?	*
$^{84}\text{Nb}^m$	-61540 #	300#	338	10		103	ns	19	(5^{-})		00Ch07	ETJ	IT=100	
⁸⁴ Mo	-55810#	400#				3.8	ms	0.9	0_{+}	97	01Ki13	T	$\beta^{+}=100; \beta^{+}p$?	
*84Ge	T: average 9	93Ru01=9	947(11) 911	Kr15=984	(23)									**
*84Nb	T : average (03Do01=9	9.5(1.0) 771	Ko05=12	(3)									**
⁸⁵ Ga	-40050#	500#				50#	ms	(>300 ns)	3/2-#	97	97Be70	I	β − ?	
⁸⁵ Ge	-53070#	400#				540	ms	50	5/2+#		,,Be,	•	$\beta^{-}=100; \beta^{-}=143$	
85 As	-63320#	200#				2.021	s	0.010	3/2-#				$\beta^-=100; \beta^-=59.4 24$	ļ
⁸⁵ Se	-72428	30				31.7	s	0.9	5/2+#				$\beta^{-}=100$	
⁸⁵ Br	-78610	19				2.90	m	0.06	3/2-	91			$\beta^{-}=100$	
⁸⁵ Kr	-81480.3	1.9				10.776		0.003	9/2+		02Un02	T	$\beta^{-}=100$	
85 Kr m	-81175.4	1.9	304.871	0.020		4.480	h	0.008	$1/2^{-}$	91			β^- =78.6 4; IT=21.4 4	
85 Kr ⁿ	-79488.5	2.3	1991.8	1.3		1.6	μs	0.7	$(17/2^{+})$	91			IT=100	
85Rb	-82167.331	0.011				STABLE	•		5/2-	91			IS=72.17 2	
85 Sr	-81102.6	2.8				64.853		0.008	9/2+	91	02Un02	T	ε=100	
85 Sr m	-80863.9	2.8	238.66	0.06		67.63	m	0.04	$1/2^{-}$	91			IT=86.6 4; β^+ =13.4 4	
85 Y	-77842	19				2.68	h	0.05	$(1/2)^{-}$	94			$\beta^{+}=100$	
$^{85}Y^m$	-77822	19	19.8	0.5		4.86	h	0.13	9/2+	94			$\beta^{+}\approx 100$; IT<0.002	
85 Zr	-73150	100				7.86	m	0.04	$7/2^{+}$	94			$\beta^{+}=100$	
$^{85}\mathrm{Zr}^m$	-72860	100	292.2	0.3		10.9	s	0.3	$(1/2^{-})$				IT \leq 92; $\beta^+>8$	
⁸⁵ Nb	-67150	220				20.9	s	0.7	$(9/2^+)$				$\beta^{+}=100$	
85 Nb m	-66390	220	759.0	1.0		12	s	5			980i.A	ETJ		
85 Mo	-59100#	280#				3.2	s	0.2	1/2-#	97	97Hu15	TD	$\beta^{+}=100; \beta^{+}p=?$	
85 Tc	-47670 #	400#				< 110	ns		1/2-#		00We.A	I	$p ?; \beta^+ ?; \beta^+ p ?$	*
*85Tc	I: also 99Ja	02 < 100 n	s T	: estimate	d half-	life for β	+ de	ecay: 100#	# ms					**

Nuclide	Mass ex			citation gy(keV)		I	Half-l	life	J^{π}	Ens	Referen	ce	Decay modes and intensities (%)	
86Ga 86Ge 86As 86Se 86Br 86Kr 86Rb 86Rb ^m 86Sr 86Sr ^m 86Y 86Y ^m	-34350# -49840# -59150# -70541 -75640 -83265.57 -82747.02 -82190.97 -84523.6 -81567.9 -79284 -79066	800# 500# 300# 16 11 0.10 0.20 0.27 1.1 1.1	556.05 2955.68 218.30	0.18 0.21 0.20		30# 300# 945 15.3 55.1 STABLE 18.642 1.017 STABLE 455 14.74	ms ms s s	(>300 ns) (>300 ns) 8 0.9 0.4 0.018 0.003 7 0.02	0^{+} 0^{+} (2^{-}) 0^{+} 2^{-} 6^{-} 0^{+} 8^{+} 4^{-} (8^{+})	01 01 01 01 01 01 01 01 01 97	97Be70 94Be24		$β^-$? $β^-$?; $β^-$ n? $β^-$ =100; $β^-$ n=33 4 $β^-$ =100 IS=17.30 22; $2β^-$? $β^-$ ≈100; $ε$ =0.0052 5 IT≈100; $β^-$ <0.3 IS=9.86 1 IT=100 $β^+$ =100 IT=99.31 4; $β^+$ =0.69 4	
86 Yn 86 Zr 86 Nb 86 Nb ^m 86 Mo 86 Tc 86 Tc ^m	-78982 -77800 -69830 -69580# -64560 -53210# -51710#	14 30 90 180# 440 300# 340#	302.2 250# 1500	0.5 160# 150	*	125 16.5 88 56 19.6 55 1.11	ns h s s s ms µs	6 0.1 1 8 1.1 6 0.21	(7-) 0+ (6+) high 0+ (0+) (5+,5-)		94Sh07 01Ga24 00Ch07	TJ	IT=100 β^{+} =100 β^{+} =100 β^{+} =100 β^{+} =100; β^{+} p? IT=100	* *
* ⁸⁶ Nb ^m * ⁸⁶ Tc * ⁸⁶ Tc ^m	I : existence T : average (E : above the	01Ga24=4	14(12) 01K	i13=59(+8	8–7		is co	nfirmation						** ** **
⁸⁷ Ge ⁸⁷ As ⁸⁷ Se ⁸⁷ Br ⁸⁷ Kr	-44240# -55980# -66580 -73857 -80709.43	500# 300# 40 18 0.27				150# 610 5.50 55.65 76.3	ms ms s s	(>300 ns) 120 0.12 0.13 0.5		02	97Be70 93Ru01		β^- ?; β^- n ? β^- = 100; β^- n=15.4 22 β^- = 100; β^- n=0.20 4 β^- = 100; β^- n=2.60 4 β^- = 100	*
87 Rb 87 Sr 87 Sr ^m 87 Y 87 Y ^m 87 Zr	-84597.795 -84880.4 -84491.9 -83018.7 -82637.9 -79348		388.533 380.82	0.003 0.07		49.23 STABLE 2.815 79.8 13.37 1.68		0.22 0.012 0.3 0.03 0.01	3/2 ⁻ 9/2 ⁺ 1/2 ⁻ 1/2 ⁻ 9/2 ⁺ (9/2) ⁺	02 02 02 02 02 02 02	82Mi14	T	IS=27.83 2; $β^-$ =100 IS=7.00 1 IT≈100; $ε$ =0.30 8 $β^+$ =100 IT=98.43 10; $β^+$ =1.57 10 $β^+$ =100	*
⁸⁷ Zr ^m ⁸⁷ Nb ⁸⁷ Nb ^m ⁸⁷ Mo ⁸⁷ Tc ⁸⁷ Tc ^m	-79012 -74180 -74180 -67690 -59120# -59100#	8 60 60 220 300# 310#	335.84 3.84 20#	0.19 0.14 60#	*	14.0 3.75 2.6 14.05 2.18 2#	s m m s s	0.2 0.09 0.1 0.23 0.16	(1/2) ⁻ (1/2 ⁻) 9/2 ⁺ # 7/2 ⁺ #	02 02 02 02			IT=100 β^{+} =100 β^{+} =100 β^{+} =100; β^{+} p=15 5 β^{+} =100; β^{+} p? β^{+} ?; IT?	*
**7 Ru **7 As **87 Rb **87 Rb **87 Rb **87 Rb **87 Mo **87 Mo		82Mi14=4 methods a22 super 97Hu07=	19.44(0.28) , respective sedes 66Mc 13.6(1.1) 91	74Ne14= ly: geoch :12=47.2(lMi15=14	:48. ron (0.4)	8(0.8) 77 ology, de) using th 0.3) 83H	60) (Da2 cay (cay (a) e sai a06=	2=48.9(0.4 counting, one material 13.3(0.4)) B=3.4) 4) obtain chemical	ed by	•	I	β+?	** ** ** ** **

Nuclide	Mass ex (keV			ergy(ke		I	Half-	life	J^{π}	Ens	Referen	ce	Decay modes and intensities (%)	
⁸⁸ Ge	-40140#	700#				80#		(>300 ns)		97			β- ?	
⁸⁸ As	-51290 #	500#				300#	ms	(>300 ns)		97	94Be24	I	β^{-} ?; β^{-} n ?	
⁸⁸ Se	-63880	50				1.53	S	0.06	0^+	97			$\beta^-=100; \beta^-n=0.99 10$	
⁸⁸ Br	-70730	40				16.36	S	0.07	$(2^-,1^+)$	98	93Ru01	T	$\beta^-=100; \beta^-=6.58 18$	3 *
$^{88}\mathrm{Br}^m$	-70460	40	272.7	0.3		5.4	μ s	0.7		98			IT=100	
⁸⁸ Kr	-79692	13				2.84	h	0.03	0_{+}	88			$\beta^{-}=100$	
⁸⁸ Rb	-82609.00					17.78		0.11	2^{-}	88			$\beta^{-}=100$	
⁸⁸ Sr	-87921.7	1.1				STABLE			0^{+}	88			IS=82.58 1	
88 Y	-84299.1	1.9				106.65		0.04	4-	88			$\beta^{+}=100$	
$^{88}Y^m$	-83624.6	1.9	674.55	0.04		13.9	ms	0.2	$(8)^{+}$	88			IT=100	
$^{88}Y^n$	-83906.2	1.9	392.86	0.09		300	μ s	3	1+	88				
⁸⁸ Zr	-83623	10				83.4	d	0.3	0_{+}	88			<i>ε</i> =100	
⁸⁸ Nb	-76070	100			*	14.5	m	0.1	(8^{+})	88			$\beta^{+}=100$	
$^{88}\text{Nb}^m$	-76030	100	40	140	BD *	7.8	m	0.1	(4^{-})	88			$\beta^{+}=100$	
⁸⁸ Mo	-72700	20				8.0	m	0.2	0_{+}	97			$\beta^{+}=100$	
⁸⁸ Tc	-62710 #	200#			*	5.8	S	0.2	(2,3)	97			$\beta^{+}=100$	
$^{88}\text{Tc}^m$	-62710 #	360#	0#	300#	*	6.4	S	0.8	(6,7,8)	97			$\beta^{+}=100$	
⁸⁸ Ru	-55650#	400#				1.3	S	0.3	0_{+}			TD	$\beta^{+}=100; \beta^{+}p ?$	
	T: average	93Ru01	=16.34(0	0.08) 740	Gr29=1	6.5(0.2)		J : syste	ematics prefer	s (2)			**
* ⁸⁸ Br														
⁸⁹ Ge ⁸⁹ As	-33690# -47140#	900# 500#				50# 200#		(>300 ns) (>300 ns)	3/2-#	98 98	97Be70 94Be24		β-? β-?	
⁸⁹ Ge ⁸⁹ As ⁸⁹ Se														
⁸⁹ Ge ⁸⁹ As	-47140 #	500#				200#	ms	(>300 ns)	3/2 ⁻ # 5/2 ⁺ # (3/2 ⁻ ,5/2 ⁻)	98			β-?	*
⁸⁹ Ge ⁸⁹ As ⁸⁹ Se ⁸⁹ Br ⁸⁹ Kr	$-47140 \# \\ -59200 \#$	500# 300#				200# 410	ms ms	(>300 ns) 40	3/2 ⁻ # 5/2 ⁺ #	98 98		I	β^{-} ? $\beta^{-}=100; \beta^{-}$ n=7.8 25	*
⁸⁹ Ge ⁸⁹ As ⁸⁹ Se ⁸⁹ Br ⁸⁹ Kr ⁸⁹ Rb	-47140# -59200# -68570	500# 300# 60				200# 410 4.40	ms ms	(>300 ns) 40 0.03	3/2 ⁻ # 5/2 ⁺ # (3/2 ⁻ ,5/2 ⁻)	98 98 98	94Be24	I	β^- ? β^- =100; β^- n=7.8 25 β^- =100; β^- n=13.8 4	*
⁸⁹ Ge ⁸⁹ As ⁸⁹ Se ⁸⁹ Br ⁸⁹ Kr ⁸⁹ Rb ⁸⁹ Sr	-47140# -59200# -68570 -76730	500# 300# 60 50				200# 410 4.40 3.15	ms ms s m	(>300 ns) 40 0.03 0.04	3/2 ⁻ # 5/2 ⁺ # (3/2 ⁻ ,5/2 ⁻) 3/2 ^(+#)	98 98 98 98	94Be24	I	β^- ? β^- = 100; β^- n=7.8 25 β^- = 100; β^- n=13.8 4 β^- = 100	*
⁸⁹ Ge ⁸⁹ As ⁸⁹ Se ⁸⁹ Br ⁸⁹ Kr ⁸⁹ Rb ⁸⁹ Sr ⁸⁹ Y	-47140# -59200# -68570 -76730 -81713	500# 300# 60 50 5				200# 410 4.40 3.15 15.15	ms ms s m m d	(>300 ns) 40 0.03 0.04 0.12	3/2 ⁻ # 5/2 ⁺ # (3/2 ⁻ ,5/2 ⁻) 3/2 ^(+#) 3/2 ⁻	98 98 98 98 98	94Be24	I	β^- ? β^- =100; β^- n=7.8 25 β^- =100; β^- n=13.8 4 β^- =100 β^- =100	**
⁸⁹ Ge ⁸⁹ As ⁸⁹ Se ⁸⁹ Br ⁸⁹ Kr ⁸⁹ Rb ⁸⁹ Sr ⁸⁹ Y ⁸⁹ Y	-47140# -59200# -68570 -76730 -81713 -86209.1	500# 300# 60 50 5	908.97	0.03		200# 410 4.40 3.15 15.15 50.53	ms ms s m m d	(>300 ns) 40 0.03 0.04 0.12	3/2 ^{-#} 5/2 ^{+#} (3/2 ⁻ ,5/2 ⁻) 3/2 ^(+#) 3/2 ⁻ 5/2 ⁺	98 98 98 98 98 98	94Be24	I	β^- ? β^- =100; β^- n=7.8 25 β^- =100; β^- n=13.8 4 β^- =100 β^- =100 β^- =100	*
⁸⁹ Ge ⁸⁹ As ⁸⁹ Se ⁸⁹ Br ⁸⁹ Kr ⁸⁹ Rb ⁸⁹ Sr ⁸⁹ Y	-47140# -59200# -68570 -76730 -81713 -86209.1 -87701.7	500# 300# 60 50 5 1.1 2.6	908.97	0.03		200# 410 4.40 3.15 15.15 50.53 STABLE	ms ms s m m d	(>300 ns) 40 0.03 0.04 0.12 0.07	3/2 ⁻ # 5/2 ⁺ # (3/2 ⁻ ,5/2 ⁻) 3/2(+#) 3/2 ⁻ 5/2 ⁺ 1/2 ⁻	98 98 98 98 98 98 98	94Be24 95Ke04	J	β^- ? β^- =100; β^- n=7.8 25 β^- =100; β^- n=13.8 4 β^- =100 β^- =100 β^- =100 IS=100.	*
89 Ge 89 As 89 Se 89 Br 89 Kr 89 Rb 89 Sr 89 Ym 89 Ym 89 Zr 89 Zr	-47140# -59200# -68570 -76730 -81713 -86209.1 -87701.7 -86792.7	500# 300# 60 50 5 1.1 2.6 2.6	908.97 587.82	0.03 0.10		200# 410 4.40 3.15 15.15 50.53 STABLE 15.663	ms ms s m m d	(>300 ns) 40 0.03 0.04 0.12 0.07 0.005	3/2 ⁻ # 5/2 ⁺ # (3/2 ⁻ ,5/2 ⁻) 3/2 ^(+#) 3/2 ⁻ 5/2 ⁺ 1/2 ⁻ 9/2 ⁺	98 98 98 98 98 98 98	94Be24 95Ke04	J	β^- ? β^- =100; β^- n=7.8 25 β^- =100; β^- n=13.8 4 β^- =100 β^- =100 IS=100. IT=100	**
89 Ge 89 As 89 Se 89 Br 89 Kr 89 Rb 89 Sr 89 Y ^m 89 Yr 89 Zr 89 Zr 89 Zr 89 Nb	-47140# -59200# -68570 -76730 -81713 -86209.1 -87701.7 -86792.7 -84869	500# 300# 60 50 5 1.1 2.6 2.6 4			*	200# 410 4.40 3.15 15.15 50.53 STABLE 15.663 78.41	ms ms s m m d	(>300 ns) 40 0.03 0.04 0.12 0.07 0.005 0.12	3/2 ⁻ # 5/2 ⁺ # (3/2 ⁻ ,5/2 ⁻) 3/2 ^(+#) 3/2 ⁻ 5/2 ⁺ 1/2 ⁻ 9/2 ⁺ 9/2 ⁺	98 98 98 98 98 98 98 98	94Be24 95Ke04	J	β^- ? β^- : β^- : 100 ; β^- : β^- : 100 ; β^- : β^- : 100 ;	**
89 Ge 89 As 89 Se 89 Br 89 Kr 89 Rb 89 Sr 89 Y 89 Y 89 Zr 89 Zr 89 Nb 89 Nb	-47140# -59200# -68570 -76730 -81713 -86209.1 -87701.7 -86792.7 -84869 -84281	500# 300# 60 50 5 1.1 2.6 2.6 4			*	200# 410 4.40 3.15 15.15 50.53 STABLE 15.663 78.41 4.161	ms ms s m m d	(>300 ns) 40 0.03 0.04 0.12 0.07 0.005 0.12 0.017	$\begin{array}{c} 3/2^-\#\\ 5/2^+\#\\ 5/2^+\#\\ (3/2^-,5/2^-)\\ 3/2^-\\ 5/2^+\\ 1/2^-\\ 9/2^+\\ 9/2^+\\ 1/2^-\\ \end{array}$	98 98 98 98 98 98 98 98 98	94Be24 95Ke04	J	β^- ? β^- =100; β^- n=7.8 25 β^- =100; β^- n=13.8 4 β^- =100 β^- =100 β^- =100 IS=100. IT=100 β^+ =100 IT=93.77 12;	*
89 Ge 89 As 89 Se 89 Br 89 Rb 89 Sr 89 Y 89 Y ^m 89 Zr 89 Zr ^m 89 Nb 89 Nb ^m 89 Mo	-47140# -59200# -68570 -76730 -81713 -86209.1 -87701.7 -86792.7 -84869 -84281 -80650	500# 300# 60 50 5 1.1 2.6 2.6 4 4 27	587.82	0.10		200# 410 4.40 3.15 15.15 50.53 STABLE 15.663 78.41 4.161 2.03	ms ms s m m d s h m	(>300 ns) 40 0.03 0.04 0.12 0.07 0.005 0.12 0.017 0.07	$\begin{array}{c} 3/2^-\#\\ 5/2^+\#\\ (3/2^-,5/2^-)\\ 3/2^{(+\#)}\\ 3/2^-\\ 5/2^+\\ 1/2^-\\ 9/2^+\\ 1/2^-\\ (9/2^+) \end{array}$	98 98 98 98 98 98 98 98 98	94Be24 95Ke04	J	β^- ? β^- : β^- : $-$ 100; β^- : β^- : $-$ 13.8 4 β^- : $-$ 100 β^- : $-$ 100 β^- : $-$ 100 β^- : $-$ 100 IS=100. IT=100 β^+ : $-$ 100 IT=93.77 12; β^+ : $-$ 100	K
89 Ge 89 As 89 Se 89 Br 89 Kr 89 Rb 89 Sr 89 Y ^m 89 Zr 89 Zr ^m 89 Nb ^m 89 Mo 89 Mo 89 Mo	-47140# -59200# -68570 -76730 -81713 -86209.1 -87701.7 -86792.7 -84869 -84281 -80650 -80650#	500# 300# 60 50 5 1.1 2.6 2.6 4 4 27 40#	587.82	0.10		200# 410 4.40 3.15 15.15 50.53 STABLE 15.663 78.41 4.161 2.03 1.10	ms ms s m d d s h m h	(>300 ns) 40 0.03 0.04 0.12 0.07 0.005 0.12 0.017 0.07 0.03	$\begin{array}{c} 3/2^-\#\\ 5/2^+\#\\ 5/2^-\#\\ (3/2^-,5/2^-)\\ 3/2^{(+\#)}\\ 3/2^-\\ 5/2^+\\ 1/2^-\\ 9/2^+\\ 1/2^-\\ (9/2^+)\\ (1/2)^-\\ \end{array}$	98 98 98 98 98 98 98 98 98 98	94Be24 95Ke04	J	β^- ? β^- =100; β^- n=7.8 25 β^- =100; β^- n=13.8 4 β^- =100 β^- =100 β^- =100 IS=100. IT=100 β^+ =100 IT=93.77 12; β^+ =100 β^+ =100	**
89 Ge 89 As 89 Se 89 Br 89 Rb 89 Sr 89 Y 89 Y 89 Zr 89 Zr 89 Zr 89 Nb 89 Nb 89 Mo 89 Mo 89 Mo 89 Tc	-47140# -59200# -68570 -76730 -81713 -86209.1 -87701.7 -86792.7 -84869 -84281 -80650 -80650# -75004	500# 300# 60 50 5 1.1 2.6 2.6 4 4 27 40# 15	587.82 0#	0.10 30#		200# 410 4.40 3.15 15.15 50.53 STABLE 15.663 78.41 4.161 2.03 1.10 2.11	ms ms s m d d s h m h h	(>300 ns) 40 0.03 0.04 0.12 0.07 0.005 0.12 0.017 0.07 0.03 0.10	$\begin{array}{c} 3/2^{-\#} \\ 5/2^{+\#} \\ 5/2^{-\#} \\ (3/2^{-}, 5/2^{-}) \\ 3/2^{(+\#)} \\ 3/2^{-} \\ 5/2^{+} \\ 1/2^{-} \\ 9/2^{+} \\ 1/2^{-} \\ (9/2^{+}) \\ (1/2)^{-} \\ (9/2^{+}) \end{array}$	98 98 98 98 98 98 98 98 98 98	94Be24 95Ke04	J	β^- ? β^- =100; β^- n=7.8 25 β^- =100; β^- n=13.8 4 β^- =100 β^- =100 β^- =100 IS=100. IT=100 IT=93.77 12; β^+ =100 β^+ =100 β^+ =100	**
89 Ge 89 As 89 Se 89 Br 89 Rb 89 Sr 89 Ym 89 Ym 89 Zr 89 Zr 89 Zr 89 Nb 89 Nb 89 Mo 89 Mo 89 Mo 89 Tc 89 Tc	-47140# -59200# -68570 -76730 -81713 -86209.1 -87701.7 -86792.7 -84869 -84281 -80650 -80650 -75004 -74617	500# 300# 60 50 5 1.1 2.6 2.6 4 4 27 40# 15	587.82 0#	0.10 30#		200# 410 4.40 3.15 15.15 50.53 STABLE 15.663 78.41 4.161 2.03 1.10 2.11	ms ms s m d d s h m h h m	(>300 ns) 40 0.03 0.04 0.12 0.07 0.005 0.12 0.017 0.007 0.03 0.10 15	$\begin{array}{c} 3/2^-\#\\ 5/2^+\#\\ 5/2^-\#\\ (3/2^-,5/2^-)\\ 3/2^-\\ 5/2^+\\ 1/2^-\\ 9/2^+\\ 1/2^-\\ (9/2^+)\\ (1/2)^-\\ (9/2^+)\\ (1/2^-)\\ (9/2^+)\\ (1/2^-)\\ (9/2^+)\\ (1/2^-)\\ (1/2^-)\\ \end{array}$	98 98 98 98 98 98 98 98 98 98 98 98	94Be24 95Ke04	J	β^- ? β^- =100; β^- n=7.8 25 β^- =100; β^- n=13.8 4 β^- =100 β^- =100 IS=100. IT=100 IT=93.77 12; β^+ =100 β^+ =100 β^+ =100 β^+ =100 IT=100	**
89 Ge 89 As 89 Se 89 Br 89 Rb 89 Sr 89 Y 89 Y ^m 89 Zr 89 Zr 89 Zr 89 Nb 89 Nb 89 Mo 89 Mo 89 Mo 89 Tc ^m 89 Tc ^m 89 Tc ^m	-47140# -59200# -68570 -76730 -81713 -86209.1 -87701.7 -86792.7 -84869 -84281 -80650 -80650# -75004 -74617 -67840#	500# 300# 60 50 5 1.1 2.6 2.6 4 4 27 40# 15 15 200#	587.82 0# 387.5	0.10 30# 0.2		200# 410 4.40 3.15 15.15 50.53 STABLE 15.663 78.41 4.161 2.03 1.10 2.11 190 12.8	ms ms s m m d d s h m h h m ms s	(>300 ns) 40 0.03 0.04 0.12 0.07 0.005 0.12 0.017 0.017 0.03 0.10 15 0.9	$\begin{array}{c} 3/2^-\#\\ 5/2^+\#\\ 5/2^-\#\\ (3/2^-,5/2^-)\\ 3/2^-\#\\ 3/2^-\\ 5/2^+\\ 1/2^-\\ 9/2^+\\ 1/2^-\\ (9/2^+)\\ (1/2)^-\\ (9/2^+)\\ (1/2^-)\\ (9/2^+)\\ (1/2^-)\\ (9/2^+)\\ \end{array}$	98 98 98 98 98 98 98 98 98 98 98 98 98	94Be24 95Ke04	J T	β^- ? β^- : β^- : 100 ; β^- : β^- : 100 ; β^- : β^- : 100 ; β^+ : 100 ; β^- : 100 ;	×
89 Ge 89 As 89 Se 89 Br 89 Kr 89 Y 89 Ym 89 Zr ⁿ 89 Zr ⁿ 89 Nb 89 Mo 89 Mo 89 Mo 89 TC 89 TC 89 Ru 89 Ru	-47140# -59200# -68570 -76730 -81713 -86209.1 -87701.7 -86792.7 -84869 -84281 -80650 -80650# -75004 -74617 -67840# -67780#	500# 300# 60 50 5 1.1 2.6 2.6 4 4 27 40# 15 15 200# 200#	587.82 0# 387.5	0.10 30# 0.2		200# 410 4.40 3.15 15.15 50.53 STABLE 15.663 78.41 4.161 2.03 1.10 2.11 190 12.8 12.9	ms ms s m m d d s h m h h m ms s s s s s	(>300 ns) 40 0.03 0.04 0.12 0.07 0.005 0.12 0.017 0.07 0.03 0.10 15 0.9 0.8	$\begin{array}{c} 3/2^{-\#} \\ 5/2^{+\#} \\ 5/2^{-\#} \\ (3/2^{-}, 5/2^{-}) \\ 3/2^{-} \\ 5/2^{+} \\ 1/2^{-} \\ 9/2^{+} \\ 1/2^{-} \\ (9/2^{+}) \\ (1/2)^{-} \\ (9/2^{+}) \\ (1/2^{-}) \\ (9/2^{+}) \\ (1/2^{-}) \\ (7/2)^{(+\#)} \end{array}$	98 98 98 98 98 98 98 98 98 98 98 98 98	94Be24 95Ke04 94It.A	J T	β^- ? β^- ? β^- =100; β^- n=7.8 25 β^- =100; β^- n=13.8 4 β^- =100 β^- =100 IS=100 IT=100 β^+ =100 IT=93.77 12; β^+ =100	×
89 Ge 89 As 89 Se 89 Br 89 Rr 89 Rb 89 Sr 89 Ym 89 Zr 89 Zr 89 Zr 89 Mo 89 Mo 89 Mo 89 Mo 89 Tc 89 Tc 89 Tc 89 Rh 89 Rh 89 Rh 89 Rh	-47140# -59200# -68570 -76730 -81713 -86209.1 -87701.7 -86792.7 -84869 -84281 -80650 -75004 -74617 -67840# -67780# -47660# T: ENSDF &	500# 300# 60 50 5 1.1 2.6 2.6 4 4 27 40# 15 15 200# 200# 450# averages	587.82 0# 387.5 62.6	0.10 30# 0.2 0.5	*	200# 410 4.40 3.15 15.15 50.53 78.41 4.161 2.03 1.10 2.11 190 12.8 12.9 1.38 10#	ms ms s m m d d s h m h h m ms s s s ms	(>300 ns) 40 0.03 0.04 0.12 0.07 0.005 0.12 0.017 0.03 0.10 15 0.9 0.8 0.11 (>1.5 µs)	$\begin{array}{c} 3/2^{-\#} \\ 5/2^{+\#} \\ 5/2^{-\#} \\ (3/2^{-}, 5/2^{-}) \\ 3/2^{-+} \\ 3/2^{-} \\ 5/2^{+} \\ 1/2^{-} \\ 9/2^{+} \\ 1/2^{-} \\ (9/2^{+}) \\ (1/2)^{-} \\ (9/2^{+}) \\ (1/2^{-}) \\ (9/2^{+}) \\ (1/2^{-}) \\ (7/2)^{(+\#)} \end{array}$	98 98 98 98 98 98 98 98 98 98 98 98 98 9	94Be24 95Ke04 94It.A	J T	β^- ? β^- : β^- : 100 ; β^- : β^- : 100 ; β^- : β^- : 100 ;	*
89 Ge 89 As 89 Se 89 Br 89 Rb 89 Sr 89 Y 89 Zr 89 Zr 89 Nb 89 Nb 89 No 89 Mo 89 Tc 89 Tc 89 Ru 89 Ru 89 Ru 89 Ru	-47140# -59200# -68870 -76730 -81713 -86209.1 -87701.7 -84869 -84281 -80650 -80650# -75004 -74617 -67780# -67780# -67780# -47660#	500# 300# 60 50 5 1.1 2.6 2.6 4 4 27 40# 15 15 200# 200# 450# averages	587.82 0# 387.5 62.6	0.10 30# 0.2 0.5	*	200# 410 4.40 3.15 15.15 50.53 78.41 4.161 2.03 1.10 2.11 190 12.8 12.9 1.38 10#	ms ms s m m d d s h m h h m ms s s s ms	(>300 ns) 40 0.03 0.04 0.12 0.07 0.005 0.12 0.017 0.03 0.10 15 0.9 0.8 0.11 (>1.5 µs)	$\begin{array}{c} 3/2^{-\#} \\ 5/2^{+\#} \\ 5/2^{-\#} \\ (3/2^{-}, 5/2^{-}) \\ 3/2^{-+} \\ 3/2^{-} \\ 5/2^{+} \\ 1/2^{-} \\ 9/2^{+} \\ 1/2^{-} \\ (9/2^{+}) \\ (1/2)^{-} \\ (9/2^{+}) \\ (1/2^{-}) \\ (9/2^{+}) \\ (1/2^{-}) \\ (7/2)^{(+\#)} \end{array}$	98 98 98 98 98 98 98 98 98 98 98 98 98 9	94Be24 95Ke04 94It.A	J T	β^- ? β^- : β^- : 100 ; β^- : β^- : 100 ; β^- : β^- : 100 ;	* ** **
89 Ge 89 As 89 Se 89 Br 89 Rb 89 Sr 89 Y 89 Ym 89 Zr 89 Zr 89 Zr 89 Nb 89 Mo 89 Mo 89 Mo 89 Mo 89 Tc 89 Tc 89 Tc 89 Tc	$\begin{array}{c} -47140\# \\ -59200\# \\ -68570 \\ -76730 \\ -81713 \\ -86209.1 \\ -87701.7 \\ -86792.7 \\ -84869 \\ -84281 \\ -80650 \\ -80650\# \\ -75004 \\ -75004 \\ -74617 \\ -67840\# \\ -699510\# \\ -17606 \\ -1$	500# 300# 60 50 5 1.1 2.6 2.6 4 4 27 40# 15 200# 200# 450# 450# 450# 450# 450# 450#	587.82 0# 387.5 62.6 8 values 2	0.10 30# 0.2 0.5	* 3Ru01:	200# 410 4.40 3.15 15.15 50.53 STABLE 15.663 78.41 4.161 2.03 1.10 2.11 190 12.8 12.9 1.38 10# =4.348(0	ms ms s m m d d s h m h h m ms s s s ms 0.022	(>300 ns) 40 0.03 0.04 0.12 0.07 0.005 0.12 0.017 0.07 0.03 0.10 15 0.9 0.8 0.11 (>1.5 μs)	$\begin{array}{c} 3/2^{-\#} \\ 5/2^{+\#} \\ 5/2^{-\#} \\ (3/2^{-}, 5/2^{-}) \\ 3/2^{-+} \\ 3/2^{-} \\ 5/2^{+} \\ 1/2^{-} \\ 9/2^{+} \\ 1/2^{-} \\ (9/2^{+}) \\ (1/2)^{-} \\ (9/2^{+}) \\ (1/2^{-}) \\ (9/2^{+}) \\ (1/2^{-}) \\ (7/2)^{(+\#)} \end{array}$	98 98 98 98 98 98 98 98 98 98 98 98 98 9	94Be24 95Ke04 94It.A	J T	β^- ? β^- : β^- : 100 ; β^- : β^- : 100 ; β^- : β^- : 100 ;	****

Nuclide	Mass ex (keV			Excitation nergy(keV		H	Ialf-l	ife	J^{π}	Ens	Referen	ce	Decay modes and intensities (%)	
⁹⁰ As	-41450#					80#		(>300 ns)			97Be70		β- ?	
⁹⁰ Se	-55930#					300#		(>300 ns)	0_{+}		94Be24		β^- ?; β^- n?	
	-64620	80				1.910	S	0.010		98	93Ru01	T	$\beta^-=100; \beta^-=25.29$	*
90 Kr	-74970	19				32.32	S	0.09	0^{+}	98			$\beta^{-}=100$	
	-79362	7	106.00	0.02		158	S	5	0-	98			$\beta^-=100$	
	-79255 70201	7	106.90	0.03 12		258	S	4	3- famin	98			β^- =97.4 4; IT=2.6 4	
	-79291 -85941.6	14 2.9	71	12		R = 2 1 28.79		0.06	fsmix 0 ⁺	98			β ⁻ =100	
	-85941.0 -86487.5					64.00	y h	0.06	2-	98			$\beta = 100$ $\beta = 100$	
•	-85805.8		681.67	0.10		3.19	h	0.21	7+	98			IT \approx 100; β ⁻ =0.0018 2	
	-88767.3		001.07	0.10		STABLE	11	0.00	0+	98			IS=51.45 40	
	-86448.3		2319.000	0.010			ms	2.0	5-	98			IT=100	
	-85177.9		3589.419	0.016		131	ns	4	8+	98			IT=100	
	-82656	5	3307.417	0.010		14.60	h	0.05	8+	98			$\beta^{+}=100$	
	-82534	5	122.370	0.022		63	μs	2	6+	98			IT=100	
	-82531	5	124.67	0.25		18.81	s	0.06	4-	98			IT=100	
	-82485	5	171.10	0.10		< 1	μs		7+	98			IT=100	
	-82274	5	382.01	0.25		6.19	ms	0.08	1+	98			IT=100	
	-80776	5	1880.21	0.20		472	ns	13	(11^{-})	98			IT=100	
	-80167	6				5.56	h	0.09	0+	98			$\beta^{+}=100$	
0.0	-77292	6	2874.73	0.15		1.12	μs	0.05	8+#	98			IT=100	
	-71210	240			* &	8.7	s	0.2	1+	98			$\beta^{+}=100$	
$^{90}\mathrm{Tc}^m$	-70900	300	310	390	BD * &	49.2	S	0.4	(8^{+})	98	93Ru03	J	$\beta^{+}=100$	*
00-	-65310#	300#				11	s	3	0^{+}	98			$\beta^{+}=100$	
³⁰ Ru											0117:10		0	
90Rh	-53220#	500#			*	15	ms	7	0^{+} #	98	01K113	TD	$\beta^{+}=100; \beta^{+}p$?	
90 Rh 90 Rh m	-53220# -53220#	710#	0#	500#	*	1.1	ms s	7 0.3	0+# 9+#	98			$\beta^{+}=100; \beta^{+}p ?$ $\beta^{+}=100; \beta^{+}p ?$	
90Rh 90Rh ^m *90Br	-53220# -53220# T : superso	710# edes 80	A115=1.92	2(0.02) fro	* m same g	1.1 group	s	0.3	9+#	98				**
90Rh 90Rh ^m *90Br	-53220# -53220# T : superso	710# edes 80		2(0.02) fro	* m same g	1.1 group	s	0.3	9+#	98				**
90Rh 90Rh ^m *90Br	-53220# -53220# T : superso	710# edes 80	A115=1.92	2(0.02) fro	* m same g	1.1 group	s	0.3	9+#	98				
90Rh 90Rh ^m *90Br *90Tc ^m	-53220# -53220# T : superso	710# edes 80 ents are	A115=1.92	2(0.02) fro	* m same g	1.1 group	s be th	0.3	9 ⁺ #	98		TD		
90Rh 90Rh ^m *90Br *90Tc ^m	-53220# -53220# T : superso E : argumo	710# edes 80 ents are	A115=1.92	2(0.02) fro	* m same g	1.1 group level to	s be th	0.3 e ground-	9 ⁺ # state 3/2 ⁻ #		01Ki13	TD	$\dot{\beta}^+$ =100; $\dot{\beta}^+$ p?	
90Rh 90Rh ^m *90Br *90Tc ^m *91As 91Se 91Br	-53220# -53220# T: superso E: argume	710# edes 80 ents are	A115=1.92	2(0.02) fro	* m same g	1.1 group level to 50#	s be th ms (0.3 e ground- (>300 ns)	9 ⁺ # state 3/2 ⁻ # 1/2 ⁺ # 3/2 ⁻ #	99 99	01Ki13	TD	β^+ =100; β^+ p?	
90Rh 90Rh ^m *90Br *90Tc ^m *91As 91Se 91Br 91Kr	-53220# -53220# T: superso E: argumo	710# edes 80 ents are 900# 500#	A115=1.92	2(0.02) fro	* m same g	1.1 group level to 50# 270	s be the	0.3 e ground- (>300 ns) 50	9 ⁺ # state 3/2 ⁻ # 1/2 ⁺ #	99 99	01Ki13	TD	$\beta^{+}=100; \beta^{+}p?$ $\beta^{-}?$ $\beta^{-}=100; \beta^{-}n=2110$	
90Rh 90Rh ^m *90Br *90Tc ^m *91As 91Se 91Br 91Kr 91Rb	-53220# -53220# T: supers E: argume -36860# -50340# -61510	710# edes 80 ents are 900# 500# 70	A115=1.92	2(0.02) fro	* m same g	1.1 group level to 50# 270 541	s be the	0.3 e ground- (>300 ns) 50 5	9 ⁺ # state 3/2 ⁻ # 1/2 ⁺ # 3/2 ⁻ #	99 99 99	01Ki13	TD	$\beta^{+}=100; \beta^{+}p?$ $\beta^{-}?$ $\beta^{-}=100; \beta^{-}n=2110$ $\beta^{-}=100; \beta^{-}n=203$	
90Rh 90Rh ^m *90Br *90Tc ^m *91As 91Se 91Br 91Kr 91Rb 91Sr	-53220# -53220# T: supersc E: argume -36860# -50340# -61510 -71310	710# edes 80 ents are 900# 500# 70 60	A115=1.92	2(0.02) fro	* m same g	1.1 group level to 50# 270 541 8.57	ms (ms ms s	0.3 e ground- (>300 ns) 50 5 0.04	9+# state 3/2-# 1/2+# 3/2-# 5/2(+)	99 99 99 01	01Ki13	TD	β^{+} =100; β^{+} p? β^{-} ? β^{-} ? β^{-} =100; β^{-} n=21 10 β^{-} =100; β^{-} n=20 3 β^{-} =100	
90 Rh 90 Rhm *90 Rhm *90 Br *90 Tc *90 Tc *90 Tc *90 Tc *90 Fr Se 91 Br 91 Kr 91 Rb 91 Sr 91 Sr 91 Sr 51 Sr	-53220# -53220# T: superso E: argumo -36860# -50340# -61510 -71310	710# edes 80 ents are 900# 500# 70 60 8	A115=1.92	2(0.02) fro	* m same g	1.1 group level to 50# 270 541 8.57 58.4	ms (ms ms s	0.3 e ground- (>300 ns) 50 5 0.04 0.4	9+# state 3/2-# 1/2+# 3/2-# 5/2(+) 3/2(-) 5/2+ mix	99 99 99 01 99 01	01Ki13	TD	β^{-} = 100; β^{+} p? β^{-} ? β^{-} = 100; β^{-} n=21 10 β^{-} = 100; β^{-} n=20 3 β^{-} = 100 β^{-} = 100	
90 Rh 90 Rh 90 Rh 80 Br *90 Tc 91 As 91 Se 91 Br 91 Kr 91 Sr 91 Sr 91 Sr 91 Sr	-53220# -53220# T: superss E: argume -36860# -50340# -61510 -71310 -7745 -83645 -83599 -86345.0	710# edes 80 ents are 900# 500# 70 60 8 5 11 2.9	A115=1.92 given in 9	2(0.02) fro 93Ru03 fo	* m same g	1.1 group level to 50# 270 541 8.57 58.4 9.63 $R = 6$ 58.51	ms (ms ms s	0.3 e ground- (>300 ns) 50 5 0.04 0.4 0.05 0.06	9+# state 3/2-# 1/2+# 5/2(+) 3/2(-) 5/2+ mix 1/2-	99 99 99 01 99 01	01Ki13	TD	β^{+} =100; β^{+} p? β^{-} ? β^{-} =100; β^{-} n=21 10 β^{-} =100; β^{-} n=20 3 β^{-} =100 β^{-} =100 β^{-} =100	
90 Rh 90 Rh 90 Rh 80 Br *90 Tc 91 As 91 Se 91 Br 91 Kr 91 Rb 91 Sr 91 Sr 91 Sr 91 Y 91 Y 91 Y	-53220# -53220# T: superst E: argume -36860# -50340# -61510 -77745 -83645 -83599 -86345.0 -85789.4	710# edes 80 ents are 900# 500# 70 60 8 5 11 2.9 2.9	Al15=1.92	2(0.02) fro 3Ru03 fo	* m same g	1.1 group blevel to 50# 270 541 8.57 58.4 9.63 R = 6	ms (ms ms s s h	0.3 e ground- (>300 ns) 50 5 0.04 0.4 0.05	9+# state 3/2-# 1/2+# 3/2-# 5/2(+) 3/2(-) 5/2+ mix 1/2- 9/2+	99 99 99 01 99 01	01Ki13	TD	β^{+} =100; β^{+} p? β^{-} ? β^{-} =100; β^{-} n=21 10 β^{-} =100; β^{-} n=20 3 β^{-} =100 β^{-} =100	
90 Rh 90 Rh 90 Rh 80 Br *90 Tc 91 As 91 Se 91 Br 91 Kr 91 Rb 91 Sr 91 Sr 91 Yr 91 Ym 91 Zr	-53220# -53220# T: superst E: argume -36860# -50340# -61510 -71310 -77745 -83549 -86345.0 -85789.4 -87890.4	710# edes 80 ents are 900# 500# 70 60 8 5 11 2.9 2.3	A115=1.92 given in 9 47 555.58	2(0.02) fro 33Ru03 fo 11 0.05	* m same g	50# 270 541 8.57 58.4 9.63 R = 6 58.51 49.71 STABLE	ms (ms s s s h d	0.3 e ground- (>300 ns) 50 5 0.04 0.4 0.05 0.06	9+# state 3/2-# 1/2+# 3/2-# 5/2(-) 5/2+ mix 1/2- 9/2+ 5/2+	99 99 99 01 99 01	01Ki13	TD	β^{-} = 100; β^{+} p? β^{-} ? β^{-} = 100; β^{-} n=21 10 β^{-} = 100; β^{-} n=20 3 β^{-} = 100 β^{-} = 100 β^{-} = 100 IT>98.5; β^{-} < 1.5 IS=11.22 5	
90 Rh 90 Rhm *90 Br *90 Tcm *1 As 91 Se 91 Se 91 Br 91 Kr 91 Sr 91 Sr 91 Sr 91 Sr 91 Sr 91 Sr 91 Sr 91 Sr 91 Sr	-53220# -53220# T: superss E: argume -36860# -50340# -61510 -771310 -77745 -83599 -86345.0 -85789.4 -87890.4 -87890.4	710# edes 80 ents are 900# 500# 70 60 8 5 11 2.9 2.3	A115=1.92 given in 9	2(0.02) fro 93Ru03 fo	* m same g	50# 270 541 8.57 58.4 9.63 R = 6 58.51 49.71 STABLE 4.35	ms (ms s s s h d	0.3 e ground- (>300 ns) 50 5 0.04 0.4 0.05 0.06 0.04 0.14	9+# state 3/2-# 1/2+# 3/2-# 3/2(-) 5/2+ mix 1/2-9/2+ (21/2+)	99 99 99 01 99 01 01 01	01Ki13	TD	β^{-} = 100; β^{+} p? β^{-} ? β^{-} = 100; β^{-} n=21 10 β^{-} = 100; β^{-} n=20 3 β^{-} = 100 β^{-} = 100 β^{-} = 100 IT>98.5; β^{-} < 1.5 IS=11.22 5 IT=100	
90 Rh	-53220# -53220# T: superss E: argume -36860# -50340# -61510 -71310 -77745 -83645 -83599 -86345.0 -85789.4 -87890.4 -84723.1 -86632	710# edes 80 ents are 900# 500# 70 60 8 5 11 2.9 2.3 2.3 4	A115=1.92 given in 9 47 555.58 3167.3	2(0.02) fro 33Ru03 fo 11 0.05 0.4	* m same g	50# 270 541 8.57 58.4 9.63 R = 6 58.51 49.71 5TABLE 4.35 680	ms (ms ms s s h d m	0.3 e ground- (>300 ns) 50 5 0.04 0.4 0.05 0.06 0.04 0.14 130	9+# state 3/2-# 1/2+# 3/2-# 5/2(-) 5/2+ mix 1/2- 9/2+ (21/2+) 9/2+	99 99 99 01 99 01 01 01 99	91Hi.A	TD I	β^{+} =100; β^{+} p? β^{-} ? β^{-} =100; β^{-} n=21 10 β^{-} =100; β^{-} n=20 3 β^{-} =100 β^{-} =100 β^{-} =100 β^{-} 58.5; β^{-} 61.5 IS=11.22 5 IT=100 ϵ \times100; ϵ^{+} =0.0138 25	
90 Rh 90 Rh 90 Rh 80 Rh ** 80 Br ** 91 As 91 Se 91 Br 91 Kr 91 Sr 91 Sr 91 Sr 91 Y 91 Y 91 Y 91 Zr 91 Nb 91 Nb 91 Nb	-53220# -53220# T: supersi E: argume -36860# -50340# -61510 -717310 -77745 -83695 -86345.0 -85789.4 -87890.4 -84723.1 -86632 -86527	710# edes 80 ents are 900# 500# 70 60 8 5 11 2.9 2.3 2.3 4 4	A115=1.92 given in 9 47 555.58 3167.3 104.60	11 0.05 0.4 0.05	* m same g	1.1 group level to 50# 270 541 8.57 58.4 9.63 <i>R</i> = 6 58.51 49.71 STABLE 4.35 680 60.86	ms (ms) ms s s h d m	0.3 e ground- (>300 ns) 50 5 0.04 0.4 0.05 0.06 0.04 0.14 130 0.22	9+# state 3/2-# 1/2+# 3/2-# 5/2(+) 3/2(-) 5/2+ mix 1/2- 9/2+ 5/2+ (21/2+) 9/2+ 1/2-	99 99 99 01 99 01 01 01 99 99	01Ki13 97Be70	TD I	β^{+} =100; β^{+} p? β^{-} ? β^{-} =100; β^{-} n=21 10 β^{-} =100; β^{-} n=20 3 β^{-} =100 β^{-} =100 β^{-} =100 IT>98.5; β^{-} <1.5 IS=11.22 5 IT=100 $\epsilon \approx 100$; ϵ^{+} =0.0138 25 IT=96.6 5; ϵ =3.4 5;	
90 Rh 90 Rh** 90 Rh** **0 Br **0 Tc** 91 As 91 Se 91 Br 91 Kr 91 Rb 91 Sr 91 Y* 91 Y** 91 Y** 91 Y** 91 INb** 91 Nb** 91 Nb**	-53220# -53220# T: superst E: argume -36860# -50340# -61510 -77745 -83645 -83599 -86345.0 -85789.4 -84723.1 -86632 -866527 -84598	710# edes 80 ents are 900# 500# 70 60 8 5 11 2.9 2.3 2.3 4 4 4	A115=1.92 given in 9 47 555.58 3167.3	2(0.02) fro 33Ru03 fo 11 0.05 0.4	* m same g	1.1 group blevel to 50# 270 541 8.57 58.4 9.63 <i>R</i> = 6 58.51 49.71 STABLE 4.35 680 60.86 3.76	ms (ms) ms s s h d m	0.3 e ground- (>300 ns) 50 5 0.04 0.4 0.05 0.06 0.04 130 0.22 0.12	9 ⁺ # state 3/2 ⁻ # 1/2 ⁺ # 3/2 ⁻ # 5/2(+) 3/2(-) 5/2 ⁺ mix 1/2 ⁻ 9/2 ⁺ 5/2 ⁺ (21/2 ⁺) 9/2 ⁺ 1/2 ⁻ (17/2 ⁻)	99 99 99 01 99 01 01 01 99 99	91Hi.A	TD I	$\begin{array}{l} \beta^{+} \! = \! 100; \beta^{+} \! p ? \\ \beta^{-} \! ? \\ \beta^{-} \! = \! 100; \beta^{-} \! n \! = \! 21 10 \\ \beta^{-} \! = \! 100; \beta^{-} \! n \! = \! 20 3 \\ \beta^{-} \! = \! 100 \\ IT \! > \! 98.5; \beta^{-} \! < \! 1.5 \\ IS \! = \! 11.22 5 \\ IT \! = \! 100; e^{+} \! = \! 0.0138 25 \\ IT \! = \! 0.0138 25 \\ IT = \! 0.$	
90 Rh 90 Rh 90 Rh 80 Br 80 Br 80 Tc M 91 As 91 Se 91 Br 91 Kr 91 Rb 91 Sr 91 Sr 91 Sr 91 Yr 91 Zr 91 Zr 91 Nb 91 Nb 91 Nb 91 Nb 91 Nb	-53220# -53220# T: superst E: argume -36860# -50340# -61510 -77745 -83645 -83599 -86345.0 -85789.4 -84723.1 -86632 -86527 -84598 -82204	710# edes 80 ents are 900# 70 60 8 5 11 2.9 2.3 2.3 4 4 4 11	A115=1.92 given in 9 47 555.58 3167.3 104.60 2034.35	11 0.05 0.4 0.05 0.19	* m same g	50# 270 541 8.57 58.4 9.63 <i>R</i> = 6 58.51 49.71 STABLE 4.35 680 60.86 3.76 15.49	ms (ms ms s s h d m	0.3 e ground- (>300 ns) 50 5 0.04 0.4 0.05 0.06 0.04 130 0.22 0.12 0.01	9+# state 3/2-# 1/2+# 3/2-# 3/2(-) 5/2+ 5/2+ (21/2+) 9/2+ 1/2- (17/2-) 9/2+	99 99 99 01 99 01 01 99 99 99 99	91Hi.A	TD I	$\begin{array}{l} \beta^{+}\!=\!100; \beta^{+}\!p? \\ \beta^{-}? \\ \beta^{-}\!=\!100; \beta^{-}\!n\!=\!2110 \\ \beta^{-}\!=\!100; \beta^{-}\!n\!=\!203 \\ \beta^{-}\!=\!100 \\ \beta^{-}\!=\!100 \\ \beta^{-}\!=\!100 \\ IT\!>\!98.5; \beta^{-}\!<\!1.5 \\ IS\!=\!11.225 \\ IT\!=\!100 \\ \varepsilon\!\approx\!100; e^{+}\!=\!0.013825 \\ IT\!=\!96.65; \varepsilon\!=\!3.45; \dots \\ IT\!=\!100 \\ \beta^{+}\!=\!100 \end{array}$	**
90 Rh 90 Rh 90 Rh 80 Rh **BT 91 As 91 Se 91 Se 91 Sr 91 Sr 91 Sr 91 Sr 91 Sr 91 Sr 91 Ym 91 Nb 91 Mo 91 Mo	-53220# -53220# T: supersi E: argume -36860# -50340# -61510 -71310 -77745 -83549 -86345.0 -87890.4 -84723.1 -86632 -86527 -84598 -84598 -84598	710# edes 80 900# 500# 70 60 8 5 11 2.99 2.3 2.3 4 4 11 11	A115=1.92 given in 9 47 555.58 3167.3 104.60	11 0.05 0.4 0.05	* m same g	50# 270 541 8.57 58.4 9.63 R = 6 58.51 49.71 STABLE 4.35 680 60.86 3.76 15.49 64.6	ms (ms ms s s h d m	0.3 e ground- (>300 ns) 50 5 0.04 0.4 0.05 0.06 0.04 0.14 130 0.22 0.12 0.01 0.6	9+# state 3/2-# 1/2+# 5/2(+) 3/2(-) 5/2+ mix 1/2- 9/2+ (21/2+) 9/2+ 1/2- (17/2-) 9/2+ 1/2-	99 99 99 01 99 01 01 99 99 99 99	91Hi.A	TD I	$β^-$ =100; $β^+$ p? $β^-$? $β^-$ =100; $β^-$ n=21 10 $β^-$ =100; $β^-$ n=20 3 $β^-$ =100 $β^-$ =100 $β^-$ =100 $β^-$ =100 ε =100; $ε$ =0.0138 25 IT=96.6 5; $ε$ =3.4 5; IT=100 $β^+$ =100 IT=50.0 16; $β^+$ =50.0 16	**
90 Rh 90 Rh 90 Rh 80 Rh **BT 91 As 91 Se 91 Br 91 Kr 91 Sr 91 Sr 91 Sr 91 Yr 91 Yr 91 Zr 91 Zr 91 Zr 91 Nb 91 Nb 91 Nb 91 Nb 91 Nb 91 Mo 91 Mo 91 Mo 91 Tc	-53220# -53220# T: superss E: argume -36860# -50340# -61510 -717310 -77745 -83645 -83599 -86345.0 -85789.4 -87890.4 -84723.1 -86632 -84527 -84598 -82204 -81551 -75980	710# edes 80 ents are 900# 70 60 8 5 11 2.9 2.3 2.3 4 4 4 11 11 200	47 555.58 3167.3 104.60 2034.35 653.01	11 0.05 0.4 0.05 0.19	* m same g	50# 270 541 8.57 58.4 9.63 <i>R</i> = 6 58.51 49.71 STABLE 4.35 680 60.86 3.76 15.49 64.6 3.14	ms (ms ms ms s h d m	0.3 e ground- (>300 ns) 50 5 0.04 0.4 0.05 0.06 0.04 0.14 130 0.22 0.12 0.01 0.6 0.02	9+# state 3/2-# 1/2+# 3/2-# 3/2(-) 5/2+ mix 1/2- 9/2+ (21/2+) 9/2+ 1/2- (17/2-) 9/2+ 1/2- (9/2)+	99 99 99 01 99 01 01 99 99 99 99 99	91Hi.A	TD I	$\begin{array}{l} \beta^{+}\!=\!100; \beta^{+}\!p? \\ \\ \beta^{-}? \\ \beta^{-}\!=\!100; \beta^{-}\!n\!=\!2110 \\ \beta^{-}\!=\!100; \beta^{-}\!n\!=\!203 \\ \beta^{-}\!=\!100 \\ \beta^{-}\!=\!100 \\ \beta^{-}\!=\!100 \\ \text{IT}\!>\!98.5; \beta^{-}\!<\!1.5 \\ \text{IS}\!=\!11.225 \\ \text{IT}\!=\!100 \\ \varepsilon\!\approx\!100; e^{+}\!=\!0.013825 \\ \text{IT}\!=\!100 \\ \beta^{+}\!=\!100 \\ \text{IT}\!=\!50.016; \beta^{+}\!=\!50.016 \\ \beta^{+}\!=\!100 \end{array}$	**
90 Rh 90 Rh 90 Rh 70 Rh 80 Br **90 Tc** 91 As 91 Se 91 Br 91 Kr 91 Sr 91 Sr 91 Sr 91 Sr 91 Y 91 Y 91 Zr 91 Nb 91 Nb 91 Nb 91 Nb 91 Mo 91 Mo 91 Mo 91 Tc 91 Tc**	-53220# -53220# T: supersi E: argume -36860# -50340# -61510 -71310 -771310 -83645 -83599 -86345.0 -8789.4 -87890.4 -84723.1 -86632 -86527 -84598 -82204 -81551 -75980 -75840	710# edes 80 ents are 900# 70 60 8 5 11 2.9 2.3 2.3 4 4 4 11 11 200 200	A115=1.92 given in 9 47 555.58 3167.3 104.60 2034.35	11 0.05 0.4 0.05 0.19	m same gr the (8 ⁺)	1.1 group blevel to 50# 270 541 8.57 58.4 9.63 <i>R</i> = 6 58.51 49.71 STABLE 4.35 680 60.86 3.76 15.49 64.6 3.14 3.3	ms (ms s s s h d m \mu s y d \mu s m s m m m	0.3 e ground- (>300 ns) 5 0.04 0.4 0.05 0.06 0.04 0.14 130 0.22 0.12 0.01 0.6 0.02 0.1	9+# state 3/2-# 1/2+# 3/2-# 5/2(+) 3/2(-) 5/2+ mix 1/2- 9/2+ 5/2+ 1/2- (17/2-) 9/2+ 1/2- (17/2-) (1/2)- (1/2)-	99 99 99 01 99 01 01 01 99 99 99 99 99	91Hi.A	TD I	$\begin{array}{l} \beta^{+}\!=\!100; \beta^{+}\!p? \\ \beta^{-}? \\ \beta^{-}\!=\!100; \beta^{-}\!n\!=\!2110 \\ \beta^{-}\!=\!100; \beta^{-}\!n\!=\!203 \\ \beta^{-}\!=\!100 \\ \beta^{-}\!=\!100 \\ \beta^{-}\!=\!100 \\ \beta^{-}\!=\!100 \\ \beta^{-}\!=\!100 \\ \text{IT}\!>\!98.5; \beta^{-}\!<\!1.5 \\ \text{IS}\!=\!11.225 \\ \text{IT}\!=\!100 \\ \varepsilon\!\approx\!100; e^{+}\!=\!0.013825 \\ \text{IT}\!=\!96.65; \varepsilon\!=\!3.45; \dots \\ \text{IT}\!=\!100 \\ \beta^{+}\!=\!100 \\ \text{IT}\!=\!50.016; \beta^{+}\!=\!50.016 \\ \beta^{+}\!=\!99; \text{IT}\!<\!1 \end{array}$	**
90 Rh 90 Rh 90 Rh 80 Rh 81 Rh 91 Rh 91 Sr 91 Y 91 Y 91 Y 91 Nb 91 Ru 91 Tc 91 Tc 91 Ru	-53220# -53220# T: supersi E: argume -36860# -50340# -61510 -71310 -77745 -83645.0 -85789.4 -87890.4 -84723.1 -86632 -86527 -84598 -82204 -81551 -75980 -75980 -75980 -68660#	710# edes 80 ents are 900# 500# 70 60 8 5 11 2.9 2.3 4 4 4 11 11 200 200 580#	47 555.58 3167.3 104.60 2034.35 653.01 139.3	11 0.05 0.4 0.09 0.09 0.3	* m same gr the (8+)	1.1 group blevel to 50# 270 541 8.57 58.4 9.63 <i>R</i> = 6 58.51 49.71 STABLE 4.35 680 60.86 3.76 15.49 64.6 3.14 3.3	ms (ms s s s h d m \mu s y d \mu s m s m m s m s m s m s m s m m s m s	0.3 e ground- (>300 ns) 50 5 0.04 0.4 0.05 0.06 0.04 0.14 130 0.22 0.12 0.01 0.6 0.02 0.1 1	9+# state 3/2-# 1/2+# 3/2-# 5/2(+) 3/2(-) 5/2+ mix 1/2- 9/2+ 5/2+ 1/2- (17/2-) 9/2+ 1/2- (9/2)+ (1/2)- (9/2)+ (1/2)- (9/2+)	99 99 99 01 99 01 01 01 99 99 99 99 99 99	91Hi.A	TD I	$\begin{array}{l} \beta^{+}\!=\!100; \beta^{+}\!p? \\ \beta^{-}? \\ \beta^{-}\!=\!100; \beta^{-}\!n\!=\!2110 \\ \beta^{-}\!=\!100; \beta^{-}\!n\!=\!203 \\ \beta^{-}\!=\!100 \\ \beta^{-}\!=\!100 \\ \beta^{-}\!=\!100 \\ \beta^{-}\!=\!100 \\ \text{IT}\!>\!98.5; \beta^{-}\!<\!1.5 \\ \text{IS}\!=\!11.225 \\ \text{IT}\!=\!100 \\ \epsilon\!\approx\!100; \epsilon^{+}\!=\!0.013825 \\ \text{IT}\!=\!96.65; \epsilon\!=\!3.45; \dots \\ \text{IT}\!=\!100 \\ \beta^{+}\!=\!100 \\ \text{IT}\!=\!50.016; \beta^{+}\!=\!50.016 \\ \beta^{+}\!=\!100 \\ \beta^{+}\!=\!100 \\ \beta^{+}\!=\!99; \text{IT}\!<\!1 \\ \beta^{+}\!=\!100 \end{array}$	**
90 Rh 90 Rh** 90 Rh** **0Br **0Fr **0Te** 91 As 91 Se 91 Br 91 Kr 91 Rh 91 Sr 91 Sr 91 Sr 91 Sr 91 Ym 91 Ym 91 Nb** 91 Nb** 91 Nb** 91 Mo 91 Mo 91 Tc** 91 Ru 91 Ru 91 Ru	-53220# -53220# T: superst E: argume -36860# -50340# -61510 -71310 -77745 -83645 -83599 -86345.0 -8789.4 -84723.1 -86632 -86632 -86527 -84598 -82204 -81551 -75980 -68660# -68580	710# edes 80 ents are 900# 70 60 8 5 11 2.9 2.3 2.3 4 4 4 11 11 200 580# 5500	47 555.58 3167.3 104.60 2034.35 653.01	11 0.05 0.4 0.05 0.19	m same gr the (8 ⁺)	50# 270 541 8.57 58.4 9.63 <i>R</i> = 6 58.51 49.71 STABLE 4.35 680 60.86 3.76 15.49 64.6 3.14 3.3 9	ms (ms ms s s s h d m ms y d \mu s m s m s s m m s s s m m s s m m m s s s s s h	0.3 e ground- (>300 ns) 50 5 0.04 0.4 0.05 0.06 0.04 0.14 130 0.22 0.12 0.01 0.6 0.02 0.1 1 0.8	9+# state 3/2-# 1/2+# 3/2-# 3/2(-) 5/2+ 5/2+ (21/2+) 9/2+ 1/2- (17/2-) 9/2+ 1/2- (9/2)+ (1/2-) (9/2+) (1/2-)	99 99 99 01 99 01 01 99 99 99 99 99 99	97Be70 91Hi.A 91Hi.A	I D D D	$\begin{array}{l} \beta^{+}\!=\!100; \beta^{+}\!p? \\ \beta^{-}? \\ \beta^{-}\!=\!100; \beta^{-}\!n\!=\!2110 \\ \beta^{-}\!=\!100; \beta^{-}\!n\!=\!203 \\ \beta^{-}\!=\!100 \\ \beta^{-}\!=\!100 \\ \beta^{-}\!=\!100 \\ \beta^{-}\!=\!100 \\ \beta^{-}\!=\!100 \\ \beta^{-}\!=\!100 \\ \beta^{+}\!=\!100 \\ \beta^{+}\!=\!100; e^{+}\!=\!0.013825 \\ \text{IT}\!=\!100 \\ \beta^{+}\!=\!100 \\ \text{IT}\!=\!50.016; \beta^{+}\!=\!50.016 \\ \beta^{+}\!=\!100 \\ \beta^{+}\!=\!99; \text{IT}\!<\!1 \\ \beta^{+}\!=\!100 \\ \beta^{+}\!=\!99; \text{IT}\!<\!1 \\ \beta^{+}\!=\!100 \\ \beta^{+}\!=\!100; \beta^{+}\!p\!=\!?; \text{IT}? \end{array}$	**
90 Rh 90 Rh 90 Rh 80 Br 80 Br 80 Br 80 Br 91 As 91 Se 91 Br 91 Kr 91 Sr 91 Sr 91 Sr 91 Yr 91 Zr 91 Zr 91 Nb 91 Nb 91 Nb 91 Nb 91 Nb 91 Nb 91 Mo 91 Tc 91 Tc 91 Tc 91 Ru 91 Ru 91 Ru	-53220# -53220# T: superst E: argume -36860# -50340# -61510 -71710 -83645 -83599 -86345.0 -85789.4 -84723.1 -86632 -86527 -84598 -82204 -81551 -75980 -75840 -68660# -68580 -59100#	710# edes 80 900# 500# 70 60 8 5 11 2.99 2.3 2.3 4 4 4 11 111 200 200 580# 5500 400# 400#	47 555.58 3167.3 104.60 2034.35 653.01 139.3	11 0.05 0.4 0.09 0.09 0.3	* m same gr the (8+)	50# 270 541 8.57 58.4 9.63 R = 6 58.51 49.71 STABLE 4.35 680 60.86 3.76 15.49 64.6 3.14 3.3 9	ms (ms ms ms s s h d m	0.3 e ground- (>300 ns) 50 5 0.04 0.4 0.05 0.06 0.04 0.14 130 0.22 0.12 0.01 0.6 0.02 0.1 1 0.8 0.14	9+# state $3/2^-#$ $1/2^+#$ $5/2^(+)$ $3/2^-(+)$ $5/2^+$ $1/2^ 9/2^+$ $1/2^ 9/2^+$ $1/2^ (9/2)^+$ $(1/2)^ (9/2^+)$ $(1/2^-)$ $7/2^+#$	99 99 99 01 99 01 01 01 99 99 99 99 99 99 99	97Be70 91Hi.A 91Hi.A	I D D D	$\begin{array}{l} \beta^{+}\!=\!100; \beta^{+}\!p? \\ \beta^{-}? \\ \beta^{-}\!=\!100; \beta^{-}\!n\!=\!2110 \\ \beta^{-}\!=\!100; \beta^{-}\!n\!=\!203 \\ \beta^{-}\!=\!100 \\ \beta^{-}\!=\!100 \\ \beta^{-}\!=\!100 \\ \beta^{-}\!=\!100 \\ \beta^{-}\!=\!100 \\ \beta^{-}\!=\!100 \\ \beta^{+}\!=\!100 \\ \beta^{+}\!=\!100; \alpha^{+}\!=\!0.013825 \\ \text{IT}\!=\!100; \beta^{+}\!=\!100; \beta^{+}\!=\!100; \beta^{+}\!=\!100; \beta^{+}\!=\!100; \beta^{+}\!=\!100; \beta^{+}\!=\!100; \beta^{+}\!=\!100; \beta^{+}\!p?; \text{IT}? \\ \beta^{+}\!=\!100; \beta^{+}\!p?; \text{IT}? \\ \beta^{+}\!=\!100; \beta^{+}\!p? \end{array}$	**
90 Rh 90 Rh 90 Rh 80 Br *80 Br *80 Tc 91 As 91 Se 91 Br 91 Kr 91 Sr 91 Sr 91 Y 91 Yr 91 Nb 91 Nb 91 Nb 91 Nb 91 Nb 91 Mo 91 Mo 91 Tc 91 Tc 91 Ru 91 Ru 91 Ru 91 Rh 91 Pd	-53220# -53220# T: superst E: argume -36860# -50340# -61510 -71310 -77745 -83645 -83599 -86345.0 -8789.4 -84723.1 -86632 -86632 -86527 -84598 -82204 -81551 -75980 -68660# -68580	710# edes 80 ents are 900# 70 60 8 5 11 2.9 2.3 2.3 4 4 11 11 200 200 5500 400# 570#	47 555.58 3167.3 104.60 2034.35 653.01 139.3 80#	11 0.05 0.4 0.09 0.09 0.3	* m same gr the (8+)	50# 270 541 8.57 58.4 9.63 <i>R</i> = 6 58.51 49.71 STABLE 4.35 680 60.86 3.76 15.49 64.6 3.14 3.3 9	ms (ms ms ms s s h d m	0.3 e ground- (>300 ns) 50 5 0.04 0.4 0.05 0.06 0.04 0.14 130 0.22 0.12 0.01 0.6 0.02 0.1 1 0.8	9+# state $3/2^-#$ $1/2^+#$ $5/2^(+)$ $3/2^-(+)$ $5/2^+$ $1/2^ 9/2^+$ $1/2^ 9/2^+$ $1/2^ (9/2)^+$ $(1/2)^ (9/2^+)$ $(1/2^-)$ $7/2^+#$	99 99 99 01 99 01 01 01 99 99 99 99 99 99 99	97Be70 91Hi.A 91Hi.A	I D D D	$\begin{array}{l} \beta^{+}\!=\!100; \beta^{+}\!p? \\ \beta^{-}? \\ \beta^{-}\!=\!100; \beta^{-}\!n\!=\!2110 \\ \beta^{-}\!=\!100; \beta^{-}\!n\!=\!203 \\ \beta^{-}\!=\!100 \\ \beta^{-}\!=\!100 \\ \beta^{-}\!=\!100 \\ \beta^{-}\!=\!100 \\ \beta^{-}\!=\!100 \\ \beta^{-}\!=\!100 \\ \beta^{+}\!=\!100 \\ \beta^{+}\!=\!100; e^{+}\!=\!0.013825 \\ \text{IT}\!=\!100 \\ \beta^{+}\!=\!100 \\ \text{IT}\!=\!50.016; \beta^{+}\!=\!50.016 \\ \beta^{+}\!=\!100 \\ \beta^{+}\!=\!99; \text{IT}\!<\!1 \\ \beta^{+}\!=\!100 \\ \beta^{+}\!=\!99; \text{IT}\!<\!1 \\ \beta^{+}\!=\!100 \\ \beta^{+}\!=\!100; \beta^{+}\!p\!=\!?; \text{IT}? \end{array}$	**

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ens Reference	Decay modes and intensities (%)
93Sa 40720# 800# 50# mc (>300 no) 1/2±# 00	01	$β^-?$ $β^-?$ $β^-?$ $β^-=100; β^-n=33.1 25$ $β^-=100; β^-n=0.0332 25$ $β^-=100; β^-n=0.0107 5$ $β^-=100$ $β^+=100$ $β^+=100$ $β^+=100$ $β^+=100; β^+=?$ $β^-=100; β^+=?$ $β^-=100; β^+=?$ $β^-=100; β^+=?$ $β^-=100; β^-=?$
$\begin{array}{c} ^{93}\mathrm{Br} & -53050\# \ 300\# \\ ^{93}\mathrm{Kr} & -64020 \ 100 \\ ^{93}\mathrm{Rb} & -72618 \ 8 \\ ^{93}\mathrm{Rb} & -72618 \ 8 \\ ^{93}\mathrm{Rb} & -72365 \ 8 \ 253.38 \ 0.03 \\ ^{93}\mathrm{Sr} & -80085 \ 8 \\ ^{93}\mathrm{Y} & -84223 \ 11 \\ ^{93}\mathrm{Y} & -83464 \ 11 \ 758.719 \ 0.021 \\ ^{93}\mathrm{Nb} & -87117.0 \ 2.3 \\ ^{93}\mathrm{Nb} & -87117.0 \ 2.4 \\ ^{93}\mathrm{Nb} & -87117.5 \ 2.4 \\ ^{93}\mathrm{Nb} & -86803 \ 4 \\ ^{93}\mathrm{Nb} & -84378 \ 4 \ 2424.89 \ 0.03 \\ ^{93}\mathrm{Tc} & -83411 \ 4 \ 391.84 \ 0.08 \\ ^{93}\mathrm{Tc} & -83211 \ 4 \ 391.84 \ 0.08 \\ ^{93}\mathrm{Tc} & -83211 \ 4 \ 391.84 \ 0.08 \\ ^{93}\mathrm{Ru} & -77270 \ 90 \\ ^{93}\mathrm{Ru} & -77270 \ 90 \\ ^{93}\mathrm{Ru} & -76540 \ 90 \ 734.40 \ 0.10 \\ ^{93}\mathrm{Ru} & -76540 \ 90 \ 734.40 \ 0.10 \\ ^{93}\mathrm{Ru} & -69170\# \ 400\# \\ ^{93}\mathrm{Rh} & -675900\# \ 400\# \\ ^{93}\mathrm{Rh} & -675900\# \ 400\# \\ ^{93}\mathrm{Rh} & -675900\# \ 400\# \\ ^{93}\mathrm{Rh} & -69170\# \ 400\# \\ ^{93}\mathrm{Rh} & -675900\# \ 400\# \\ ^{93}\mathrm{Rh} & -675900\# \ 400\# \\ ^{93}\mathrm{Rh} & -69170\# \ 400\# \\ & 10.7 \ \ 8 \ 0.12 \ (9/2^+) \ 0.9 \\ ^{93}\mathrm{Rh} & -69170\# \ 400\# \\ & 10.7 \ \ 8 \ 0.12 \ (9/2^+) \ 0.9 \\ ^{93}\mathrm{Rh} & -69170\# \ 400\# \\ & 5\# \ \mathrm{ms} \ (>1.5\mathrm{\mu s}) \ 9/2^+ \# \ 9/2^+ \\ \end{array}$	01 07 07 07 07 07 07 07 07 01 01 01 07 83Ay01 D	β^- ? β^- =100; β^- n=68 7 β^- =100; β^- n=68 7 β^- =100; β^- n=1.95 11 β^- =100; β^- n=1.39 7 IT=100 β^- =100 IT=100 β^- =100 IS=100. IT=100 ϵ =100 IT=100 ϵ =100 IT=6.6 11; β^+ =23.4 11 β^+ =100 IT=76.6 11; β^+ =23.4 11 β^+ =100 β^+ =78.0 23; IT=100 β^+ =100; β^+ p? D β^+ =100; β^+ p? P? P?; β^+ ? **

Nuclide	Mass ex (keV			citation gy(keV)]	Half	-life	J^{π}	Ens	Referen	ice	Decay modes and intensities (%)	
⁹⁴ Se ⁹⁴ Br	-36800# 47800#					20#		(>300 ns)	0+	97	97Be70	I	β-?	
94Kr	-47800#					70	ms	20 4	0^{+}	92	020-05	TD	$\beta^-=100; \beta^-=70.15$	
94Rb	-61140# -68553	8				210 2.702	ms	0.005	3(-)	01 92	03Be05 93Ru01		$\beta^-=100; \beta^-n=1.117$ $\beta^-=100; \beta^-n=10.0123$	*
94Sr	-08333 -78840	7				75.3	s s	0.003	0+	92	93Ku01	D	$\beta = 100; \beta = 10.01 23$ $\beta = 100$	
94 Y	-82348	7				18.7	m	0.2	2-	92			$\beta^{-}=100$ $\beta^{-}=100$	
$^{94}\mathrm{Zr}$	-87266.8					STABLE	111	(>110 Py)	0+	92	99Ar25	Т	IS=17.38 28; $2\beta^-$?	
⁹⁴ Nb	-86364.5					20.3	ky	1.6	(6)+	92	,,,,,,,,	•	$\beta^{-}=100$	
$^{94}\mathrm{Nb}^m$	-86323.6		40.902	0.012		6.263	m	0.004	3+	92			IT=99.50 6; β ⁻ =0.50 6	
⁹⁴ Mo	-88409.7					STABLE			0^{+}	97			IS=9.25 12	
⁹⁴ Tc	-84154	4				293	m	1	7+	92			$\beta^{+}=100$	
$^{94}\mathrm{Tc}^m$	-84079	4	75.5	1.9		52.0	m	1.0	$(2)^{+}$	92			$\beta^{+}\approx 100; \text{IT}<0.1$	
⁹⁴ Ru	-82568	13				51.8	m	0.6	0_{+}	92			$\beta^{+}=100$	
⁹⁴ Ru ^m	-79923	13	2644.55	0.25		71	μs	4	(8^{+})	92			IT=100	
94Rh	-72940#	450#			*	70.6	S	0.6	$(2^+,4^+)$		96Jo06	J	$\beta^{+}=100; \beta^{+}p=1.85$	
94Rh ^m	-72640	400	300#	200#	*	25.8	S	0.2	(8+)	92			$\beta^{+}=100$	
94Pd	-66350#					9.0	S	0.5	0+	02			$\beta^{+}=100$	
94 Pd ^m			4884.4	0.5		530	ns	10	(14^{+})	02			IT=100	
94 Ag	-53300#	500#	1250#	400#		37	ms	18	0+#	02	021 - 10	TI	$\beta^{+}=100; \beta^{+}p?$	
$^{94}Ag^m$ $^{94}Ag^n$	-51950# -46800#		1350# 6500#	2000#		422 300	ms ms	16 200	(7^+) (21^+)	02 02	02La18 02La18		$\beta^{+}=100; \beta^{+}p=?$ $\beta^{+}=100; \beta^{+}p=?$	*
* ⁹⁴ Kr			0500# 05=212(5) '		ooc.					02	UZLaio	13	ρ =100, ρ p=:	**
* ⁹⁴ Kr			210(20) 75 <i>A</i>						ot usea.					**
$*^{94}Ag^m$			18=360(30)											**
⁹⁵ Br	-43900#	500#				50#	ms	(>300 ns)	3/2-#	97	97Be70	I	β ⁻ ?	
⁹⁵ Kr	-56040#					114	ms	3	1/2(+)	95			$\beta^-=100; \beta^-=2.87 18$	*
95Rb	-65854	21				377.5	ms	0.8	5/2-	95			$\beta^-=100; \beta^-=8.7320$	
⁹⁵ Sr	-75117	7				23.90	S	0.14	$1/2^{+}$	94			$\beta^{-}=100$	
⁹⁵ Y	-81207	7				10.3	m	0.1	$1/2^{-}$	94			$\beta^{-}=100$	
95 Zr	-85657.8	2.4				64.032	d	0.006	$5/2^{+}$	00			$\beta^{-}=100$	
⁹⁵ Nb	-86781.9					34.991	d	0.006	$9/2^{+}$	00			$\beta^{-}=100$	
95 Nb ^m	-86546.2		235.690	0.020		3.61	d	0.03	$1/2^{-}$	00			IT=94.4 6; β^- =5.6 6	
95 Mo	-87707.5					STABLE			$5/2^{+}$	00			IS=15.92 13	
⁹⁵ Tc	-86017	5				20.0	h	0.1	9/2+	95			$\beta^{+}=100$	
95 Tc ^m	-85978	5	38.89	0.05		61	d	2	1/2-	95			β^{+} =96.12 32; IT=3.88 32	2
⁹⁵ Ru ⁹⁵ Rh	-83450 78240	12				1.643	h	0.014	$5/2^{+}$	94 94			$\beta^{+}=100$	
95 Rh ^m	-78340 -77800	150 150	543.3	0.3		5.02 1.96	m m	0.10 0.04	$(9/2)^+$	94			$\beta^{+}=100$ IT=88 5; $\beta^{+}=12$ 5	
95Pd			343.3	0.3		1.90	S	0.04	$(1/2)^-$ 9/2+#	95	078-20	TD	$\beta^{+}=100$	
95 Pd ^m	-68290	300	1860#	500#		13.3	S	0.3	$(21/2^+)$		973030	ID	$\beta^{+}=?; IT=5#;$	*
95 Ag	-60100#	400#	1000π	300π		1.74	s	0.13	$(9/2^+)$		948c35	TID	$\beta^{+}=100; \beta^{+}=2$	· ·
$^{95}Ag^m$	-59760#	400#	344.2	0.3		< 0.5	s	0.13	$(1/2^{-})$,,			IT=100	***
$^{95}Ag^n$	-57570#		2531	1		< 16	ms		$(23/2^+)$		03Do.1			
$^{95}Ag^p$	-55240#		4859	1		< 40	ms		$(37/2^+)$		03Do.1			
95Cd	-46700#		.00)	•		5#	ms		9/2+#		0020.1		β^+ ?; β^+ p ?	
*95Kr	J : from 95								-/				r ., r r .	**
*95Pd			97Sc30, if	the 1219.3	keV	γorigin	ates	from grou	nd-state:					**
*95Pd			< 7.5 s in S											**
$*^{95}Pd^{m}$	$D:\ldots;\beta$													**
$*^{95}$ Ag			for $eta^+\gamma$ act	ivity; super	sed	es 94Sc3	5=2.	0(0.1) by s	ame autho	ors				**
*95 Ag	T: als	o 03Dc	0.1=1.85(0.3	34), same g	rou)		•						**

	Mass ex (keV			Excitation ergy(ke\		I	Half-	life	J^{π}	Ens	Referen	ce	Decay modes and intensities (%)	
⁹⁶ Br	-38630#	700#				20#	ms	(>300 ns)		97	97Be70	I	β- ?	
⁹⁶ Kr	-53030 #	500#				80	ms	7	0^{+}	97	03Be 05	TD	$\beta^-=100; \beta^-n=3.74$	
⁹⁶ Rb	-61225	29			*	203	ms	3	2+	95	93Ru01	D	$\beta^-=100; \beta^-n=13.44$	*
⁹⁶ Rb ^m	-61230 #	200#	0#	200#	*		ms	(>1 ms)	1(-#)		81Bo30	JI	β^{-} ?; IT ?; β^{-} n ?	*
⁹⁶ Sr	-72939	27				1.07	S	0.01	0_{+}	93			$\beta^{-}=100$	
96Y 96Y ^m	-78347	23	1110	20	D.D.	5.34	S	0.05	0-	93			$\beta^{-}=100$	
96Zr	-77206	21	1140	30	BD	9.6 24	S	0.2	$(8)^{+}$ 0^{+}	93 98	004-25	т	$\beta^{-}=100$	
96Nb	-85442.8 -85604	2.8				23.35	Ey h	6 0.05	6 ⁺	98	99Ar25	1	IS=2.80 9; $2\beta^-=100$ $\beta^-=100$	*
96 M o	-88790.5	1.9				STABLE	11	0.03	0^{+}	93			IS=16.68 2	
⁹⁶ Tc	-85817	5				4.28	d	0.07	7+	93			$\beta^{+}=100$	
96Tc ^m	-85783	5	34.28	0.07		51.5	m	1.0	4 ⁺	93			IT=98.0 5; β^+ =2.0 5	
⁹⁶ Ru	-86072	8				STABLE		(>67 Py)	0^{+}	01	85No03	T	IS=5.54 14; $2\beta^+$?	
⁹⁶ Rh	-79679	13				9.90	m	0.10	(6^{+})	93			$\beta^{+}=100$	
$^{96}Rh^m$	-79627	13	52.0	0.1		1.51	m	0.02	(3+)	93			IT=60 5; β^+ =40 5	
⁹⁶ Pd	-76230	150				122	S	2	0^{+}	93			$\beta^{+}=100$	
$^{96}\text{Pd}^m$	-73700	150	2530.8	0.1		1.81	μs	0.01	8+	93	98Gr.B	TD	IT=100	*
96 Ag	-64570#	400#			*		S	0.04	(8^{+})	93	03Ba39	TJ	$\beta^{+}=100; \beta^{+}p=9.7 17$	*
$^{96}\text{Ag}^m$	-64570#	400#	0#	50#	*	0.7	S	0.6	(2^{+})				$\beta^{+}=100; \beta^{+}p=18.5$	
96 Ag ⁿ 96 Cd	-64570# -56100#	400#				700 1#	ns	200	0^{+}		97Gr02	1	IT ? β+ ?	
* ⁹⁶ Rb	-36100# T : ENSDF		of 8 volv	oc Thor	o ic ala		s -201	(1)	0.				\mathbf{p} · :	
$*^{96}$ Rb ^m								(1) 81Bo30 ex	neriment					**
$*^{96}$ Rb ^m			f this ison				WILLI	01 D 030 CX	periment					**
*96Zr							Ka12	=39(9) in g	eochemi	cal				**
$*^{96}$ Zr								uestionned l						**
$*^{96}Pd^m$	T : superse	1 074	~ ~ ~											
		eaes 970	Gr02=1.7((0.1); oth	er 83G	r01=2.2(0.	3) or	itweighed						**
$*^{96}Ag$	T : average	e 03Ba3	39=4.40(0	.06) 97S	c30=4.	50(0.06)	_	Ü						** **
* ⁹⁶ Ag * ⁹⁶ Ag	T : average	e 03Ba3	39=4.40(0	.06) 97S	c30=4.	50(0.06)	_	itweighed Je25=3.7(0.	9) not us	ed				
* ⁹⁶ Ag * ⁹⁶ Ag	T : average	e 03Ba3	39=4.40(0	.06) 97S	c30=4.	50(0.06)	_	Ü	9) not us 3/2 ⁻ #	ed 97	97Be70	I	β-?	**
* ⁹⁶ Ag * ⁹⁶ Ag	T : averag D : averag	e 03Ba3 e β ⁺ p 9	39=4.40(0	.06) 97S	c30=4.	50(0.06) 5=8.0(2.3)	, 96H	Ie25=3.7(0.			97Be70 03Be05		β^- ? β^- =100; β^- n=6.7 6	**
* ⁹⁶ Ag * ⁹⁶ Ag ⁹⁷ Br ⁹⁷ Kr ⁹⁷ Rb	T : averag D : averag -34650# -47920# -58360	e 03Ba3 e β ⁺ p 9 800# 500# 30	39=4.40(0	.06) 97S	c30=4.	50(0.06) 5=8.0(2.3); 10# 63 169.9	96F ms	Ie25=3.7(0.	3/2 ⁻ # 3/2 ⁺ # 3/2 ⁺	97 93		TD	$\beta^{-}=100; \beta^{-}n=6.7 6$ $\beta^{-}=100; \beta^{-}n=25.7 8$	**
*96 Ag *96 Ag *97 Br 97 Kr 97 Rb 97 Sr	T : averag D : averag -34650# -47920# -58360 -68788	800# 500# 30 19	39=4.40(0 97Sc30=1	.06) 97S 1.9(2.6)	c30=4.	50(0.06) 5=8.0(2.3); 10# 63 169.9 429	ms ms ms ms	Je25=3.7(0. (>300 ns) 4 0.7 5	3/2 ⁻ # 3/2 ⁺ # 3/2 ⁺ 1/2 ⁺	97 93 93	03Be 05	TD	β^- =100; β^- n=6.7 6 β^- =100; β^- n=25.7 8 β^- =100; β^- n<0.05	**
* ⁹⁶ Ag * ⁹⁶ Ag ⁹⁷ Br ⁹⁷ Kr ⁹⁷ Rb ⁹⁷ Sr ⁹⁷ Sr	T: averag D: averag -34650# -47920# -58360 -68788 -68480	800# 500# 30 19	39=4.40(0 97Sc30=1 308.13	0.11	c30=4.	50(0.06) 5=8.0(2.3); 10# 63 169.9 429 170	ms ms ms ms	(>300 ns) 4 0.7 5	3/2 ⁻ # 3/2 ⁺ # 3/2 ⁺ 1/2 ⁺ (7/2) ⁺	97 93 93 93	03Be 05	TD	β^{-} =100; β^{-} n=6.7 6 β^{-} =100; β^{-} n=25.7 8 β^{-} =100; β^{-} n<0.05 IT=100	**
*96Ag *96Ag *97Br 97Kr 97Rb 97Sr 97Sr ^m	T: averag D: averag -34650# -47920# -58360 -68788 -68480 -67957	800# 500# 30 19 19	39=4.40(0 97Sc30=1	.06) 97S 1.9(2.6)	c30=4.	50(0.06) 5=8.0(2.3); 10# 63 169.9 429 170 255	ms ms ms ms ns	(>300 ns) 4 0.7 5 10 10	3/2 ⁻ # 3/2 ⁺ # 3/2 ⁺ 1/2 ⁺ (7/2) ⁺ 11/2 ⁻ #	97 93 93 93 93	03Be05 93Ru01	TD D	β^- =100; β^- n=6.7 6 β^- =100; β^- n=25.7 8 β^- =100; β^- n<0.05 IT=100 IT=100	**
*96 Ag *96 Ag *97 Br 97 Kr 97 Rb 97 Sr 97 Sr" 97 Sr" 97 Y	T: averag D: averag -34650# -47920# -58360 -68788 -68480 -67957 -76258	e 03Ba3 e β ⁺ p 9 800# 500# 30 19 19 19	308.13 830.8	0.11 0.2	c30=4.	50(0.06) 5=8.0(2.3); 10# 63 169.9 429 170 255 3.75	ms ms ms ms ms ns	(>300 ns) 4 0.7 5 10 10 0.03	3/2 ⁻ # 3/2 ⁺ # 3/2 ⁺ 1/2 ⁺ (7/2) ⁺ 11/2 ⁻ # (1/2 ⁻)	97 93 93 93 93 93	03Be 05	TD D	$\begin{array}{l} \beta^-{=}100; \beta^-{n}{=}6.7 6 \\ \beta^-{=}100; \beta^-{n}{=}25.7 8 \\ \beta^-{=}100; \beta^-{n}{<}0.05 \\ \text{IT}{=}100 \\ \text{IT}{=}100 \\ \beta^-{=}100; \beta^-{n}{=}0.058 7 \end{array}$	**
*96Ag *96Ag *96Ag 97Br 97Kr 97Rb 97Sr 97Sr ^m 97Sr ⁿ 97Y	T: averag D: averag -34650# -47920# -58360 -68788 -68480 -67957 -76258 -75590	800# 500# 30 19 19 12 12	308.13 830.8 667.51	0.06) 97Sd 1.9(2.6) 3 0.11 0.2 0.23	c30=4.	50(0.06) 5=8.0(2.3); 10# 63 169.9 429 170 255 3.75 1.17	ms ms ms ms ns ns s	(>300 ns) 4 0.7 5 10 10 0.03 0.03	3/2 ⁻ # 3/2 ⁺ # 3/2 ⁺ 1/2 ⁺ (7/2) ⁺ 11/2 ⁻ # (1/2 ⁻) (9/2) ⁺	97 93 93 93 93 93 93	03Be05 93Ru01	TD D	$\begin{array}{l} \beta^-{=}100; \beta^-{=}n{=}6.7 \; 6 \\ \beta^-{=}100; \beta^-{=}n{=}25.7 \; 8 \\ \beta^-{=}100; \beta^-{=}n{<}0.05 \\ \text{IT}{=}100 \\ \text{IT}{=}100 \\ \beta^-{=}100; \beta^-{=}n{=}0.058 \; 7 \\ \beta^-{>}99.3; \text{IT}{<}0.7; \dots \end{array}$	**
*96Ag *96Ag *97Br 97Kr 97Rb 97Sr 97Sr ^m 97Sr ⁿ 97Ym 97Ym	T: averag D: averag -34650# -47920# -58360 -68788 -68480 -67957 -76258 -75590 -72735	800# 500# 30 19 19 12 12 12	308.13 830.8	0.11 0.2	c30=4.	50(0.06) 5=8.0(2.3); 10# 63 169.9 429 170 255 3.75 1.17 142	ms ms ms ms ns ns s s	(>300 ns) 4 0.7 5 10 0.03 0.03 8	3/2 ^{-#} 3/2 ⁺ 3/2 ⁺ 1/2 ⁺ (7/2) ⁺ 11/2 ⁻ # (1/2 ⁻) (9/2) ⁺ (27/2 ⁻)	97 93 93 93 93 93 93 93	03Be05 93Ru01	TD D	$\begin{array}{l} \beta^-{=}100; \beta^-{=}n{=}6.7 \; 6 \\ \beta^-{=}100; \beta^-{=}n{=}25.7 \; 8 \\ \beta^-{=}100; \beta^-{=}n{<}0.05 \\ \text{IT}{=}100 \\ \text{IT}{=}100 \\ \beta^-{=}100; \beta^-{=}n{=}0.058 \; 7 \\ \beta^-{>}99.3; \text{IT}{<}0.7; \dots \\ \text{IT}{\geq}80; \beta^-{\leq}20 \\ \end{array}$	**
*96 Ag *96 Ag *96 Ag *97 Br 97 Kr 97 Sr 97 Sr 97 Sr 97 Sr 97 Yr 97 Yr 97 Yr	T: average D: average -34650# -47920# -58360 -68788 -68480 -67957 -76258 -75590 -72735 -82946.6	800# 500# 30 19 19 12 12 12 2.8	308.13 830.8 667.51	0.06) 97Sd 1.9(2.6) 3 0.11 0.2 0.23	c30=4.	50(0.06) 5=8.0(2.3): 10# 63 169.9 429 170 255 3.75 1.17 142 16.90	ms ms ms ns ns s ms h	(>300 ns) 4 0.7 5 10 0.03 0.03 8 0.05	3/2 ⁻ # 3/2 ⁺ # 3/2 ⁺ 1/2 ⁺ (7/2) ⁺ 11/2 ⁻ # (1/2 ⁻) (9/2) ⁺ (27/2 ⁻) 1/2 ⁺	97 93 93 93 93 93 93 93 93	03Be05 93Ru01	TD D	$\begin{array}{l} \beta^-{=}100; \beta^-{=}n{=}6.7 \; 6 \\ \beta^-{=}100; \beta^-{=}n{=}25.7 \; 8 \\ \beta^-{=}100; \beta^-{=}n{<}0.05 \\ \text{IT}{=}100 \\ \text{IT}{=}100 \\ \beta^-{=}100; \beta^-{=}n{=}0.058 \; 7 \\ \beta^-{>}99.3; \text{IT}{<}0.7; \dots \\ \text{IT}{\geq}80; \beta^-{\leq}20 \\ \beta^-{=}100 \end{array}$	**
*96Ag *96Ag *97Br 97Kr 97Rb 97Sr 97Sr ^m 97Sr ⁿ 97Ym 97Ym	T: average D: average -34650# -47920# -58360 -68788 -68480 -67957 -76258 -75590 -72735 -82946.6 -85605.6	800# 500# 30 19 19 12 12 12 2.8 2.6	308.13 830.8 308.13 830.8 667.51 3523.3	0.11 0.2 0.23 0.4	c30=4.	50(0.06) 5=8.0(2.3); 10# 63 169.9 429 170 255 3.75 1.17 142 16.90 72.1	ms ms ms ms ns ns s ms h m	(>300 ns) 4 0.7 5 10 0.03 0.03 8 0.05 0.7	3/2 ⁻ # 3/2 ⁺ # 3/2 ⁺ 1/2 ⁺ (7/2) ⁺ 11/2 ⁻ # (1/2 ⁻) (9/2) ⁺ (27/2 ⁻) 1/2 ⁺ 9/2 ⁺	97 93 93 93 93 93 93 93 93	03Be05 93Ru01	TD D	$\begin{array}{l} \beta^-{=}100; \beta^-{=}n{=}6.7 \; 6 \\ \beta^-{=}100; \beta^-{=}n{=}25.7 \; 8 \\ \beta^-{=}100; \beta^-{=}n{<}0.05 \\ \text{IT}{=}100 \\ \text{IT}{=}100; \beta^-{=}n{=}0.058 \; 7 \\ \beta^-{=}100; \beta^-{=}0.058 \; 7 \\ \beta^-{>}99.3; \text{IT}{<}0.7; \dots \\ \text{IT}{\geq}80; \beta^-{\leq}20 \\ \beta^-{=}100 \\ \beta^-{=}100 \end{array}$	**
*96 Ag *96 Ag *97 Br 97 Kr 97 Rb 97 Sr 97 Sr 97 Sr 97 Sr 97 Yr 97 Ym 97 Yn 97 Zr 97 Nb 97 Nb	T: average D: average -34650# -47920# -58360 -68788 -68480 -67957 -76258 -75590 -72735 -82946.6	800# 500# 30 19 19 12 12 12 2.8	308.13 830.8 667.51	0.06) 97Sd 1.9(2.6) 3 0.11 0.2 0.23	c30=4.	50(0.06) 5=8.0(2.3): 10# 63 169.9 429 170 255 3.75 1.17 142 16.90	ms ms ms ns ns s ms h	(>300 ns) 4 0.7 5 10 0.03 0.03 8 0.05	3/2 ⁻ # 3/2 ⁺ 1/2 ⁺ 1/2 ⁺ (7/2) ⁺ 11/2 ⁻ # (1/2 ⁻) (27/2 ⁻) 1/2 ⁺ 9/2 ⁺ 1/2 ⁻	97 93 93 93 93 93 93 93 93	03Be05 93Ru01	TD D	$\begin{array}{l} \beta^-{=}100; \beta^-{=}n{=}6.7 \; 6 \\ \beta^-{=}100; \beta^-{=}n{=}25.7 \; 8 \\ \beta^-{=}100; \beta^-{=}n{<}0.05 \\ \text{IT}{=}100 \\ \text{IT}{=}100 \\ \beta^-{=}100; \beta^-{=}n{=}0.058 \; 7 \\ \beta^-{>}99.3; \text{IT}{<}0.7; \dots \\ \text{IT}{\geq}80; \beta^-{\leq}20 \\ \beta^-{=}100 \end{array}$	**
*96 Ag *96 Ag *96 Ag *97 Br 97 Kr 97 Sr 97 Sr 97 Sr 97 Yr 97 Yr 97 Yn 97 Yn 97 Nb 97 Nb 97 Nb 97 Nb	T: average D: average D: average -34650# -47920# -58360 -68788 -68480 -67957 -76258 -75590 -7273 -782946.6 -85605.6 -84862.3	800# 500# 30 19 19 12 12 12 2.8 2.6 2.6	308.13 830.8 308.13 830.8 667.51 3523.3	0.11 0.2 0.23 0.4	c30=4.	50(0.06) 5=8.0(2.3): 10# 63 169.9 429 170 255 3.75 1.17 142 16.90 72.1 52.7	ms ms ms ms ns ns s ms h m	(>300 ns) 4 0.7 5 10 0.03 0.03 8 0.05 0.7	3/2 ⁻ # 3/2 ⁺ # 3/2 ⁺ 1/2 ⁺ (7/2) ⁺ 11/2 ⁻ # (1/2 ⁻) (9/2) ⁺ (27/2 ⁻) 1/2 ⁺ 9/2 ⁺	97 93 93 93 93 93 93 93 93 93	03Be05 93Ru01	TD D	$\begin{array}{l} \beta^-{=}100; \beta^-{=}n{=}6.7 \; 6 \\ \beta^-{=}100; \beta^-{=}n{=}25.7 \; 8 \\ \beta^-{=}100; \beta^-{=}n{<}0.05 \\ \text{IT}{=}100 \\ \text{IT}{=}100 \\ \beta^-{=}100; \beta^-{=}n{=}0.058 \; 7 \\ \beta^-{=}99.3; \text{IT}{<}0.7; \dots \\ \text{IT}{\ge}80; \beta^-{\le}20 \\ \beta^-{=}100 \\ \beta^-{=}100 \\ \text{IT}{=}100 \\ \text{IT}{=}100 \end{array}$	**
*96 Ag *96 Ag *96 Ag *97 Br 97 Kr 97 Sr 97 Sr" 97 Sr" 97 Y 97 Y" 97 Y" 97 Y" 97 Y" 97 Y" 97 Nb 97 Nb" 97 Nb" 97 Tc	T: average D: average D: average -34650# -47920# -58360 -68788 -68480 -67957 -76258 -75590 -72735 -82946.6 -85605.6 -84862.3 -87540.4	800# 500# 30 19 19 12 12 12 2.8 2.6 2.6	308.13 830.8 308.13 830.8 667.51 3523.3	0.11 0.2 0.23 0.4	c30=4.	50(0.06) 5=8.0(2.3): 10# 63 169.9 429 170 255 3.75 1.17 142 16.90 72.1 52.7 STABLE	ms ms ms ns ns s ms h m s	(>300 ns) 4 0.7 5 10 0.03 0.03 8 0.05 0.7 1.8	3/2 ⁻ # 3/2 ⁺ 1/2 ⁺ 1/2 ⁺ (7/2) ⁺ 11/2 ⁻ # (1/2 ⁻) (27/2 ⁻) 1/2 ⁺ (27/2 ⁻) 1/2 ⁺ 5/2 ⁺	97 93 93 93 93 93 93 93 93 93 93	03Be05 93Ru01	TD D	$\begin{array}{l} \beta^-{=}100; \beta^-{=}n{=}6.7 6 \\ \beta^-{=}100; \beta^-{=}n{=}25.7 8 \\ \beta^-{=}100; \beta^-{=}n{<}0.05 \\ \text{IT}{=}100 \\ \text{IT}{=}100 \\ \beta^-{=}100; \beta^-{=}n{=}0.058 7 \\ \beta^-{>}99.3; \text{IT}{<}0.7; \dots \\ \text{IT}{\geq}80; \beta^-{\leq}20 \\ \beta^-{=}100 \\ \beta^-{=}100 \\ \text{IT}{=}100 \\ \text{IS}{=}9.55 8 \end{array}$	**
*96 Ag *96 Ag *96 Ag *97 Br *97 Kr *97 Rb *97 Sr** *97 Sr** *97 Y** *97 Y** *97 Y** *97 Y** *97 Nb *97 Nb *97 Nb *97 Tc *97 Ru	T: average D: average D: average -34650# -47920# -58360 -68783 -68480 -67957 -76258 -75590 -72735 -82946.6 -85605.6 -84862.3 -87540.4 -87220 -87123 -86112	800# 500# 30 19 19 12 12 12 2.8 2.6 2.6 1.9 5	308.13 830.8 667.51 3523.3	0.06) 97Sd 1.9(2.6) 3 0.11 0.2 0.23 0.4 0.03	c30=4.	50(0.06) 5=8.0(2.3): 10# 63 169.9 429 170 255 3.75 1.17 142 16.90 72.1 52.7 STABLE 2.6 90.1 2.9	ms ms ms ms ns s s ms h m s	He25=3.7(0. (>300 ns) 4 0.7 5 10 10 0.03 0.03 8 0.05 0.7 1.8 0.4	3/2-# 3/2+# 3/2+ 1/2+ (7/2)+ 11/2-# (1/2-) (9/2)+ (27/2-) 1/2+ 9/2+ 1/2- 5/2+ 1/2- 5/2+	97 93 93 93 93 93 93 93 93 93 93 93 93 93	03Be05 93Ru01	TD D	$\begin{array}{l} \beta^-{=}100; \beta^-{=}n{=}6.7 6 \\ \beta^-{=}100; \beta^-{=}n{=}25.7 8 \\ \beta^-{=}100; \beta^-{=}n{<}0.05 \\ \text{IT}{=}100 \\ \beta^-{=}100; \beta^-{=}n{=}0.058 7 \\ \beta^-{=}99.3; \text{IT}{<}0.7; \dots \\ \text{IT}{\ge}80; \beta^-{=}20 \\ \beta^-{=}100 \\ \beta^-{=}100 \\ \text{IT}{=}100 \\ \text{IS}{=}9.55 8 \\ \varepsilon{=}100 \\ \text{IT}{\approx}100; \varepsilon{<}0.34 \\ \beta^+{=}100 \\ \end{array}$	**
*96 Ag *96 Ag *96 Ag *97 Br *97 Kr *97 Rb *97 Sr** *97 Sr** *97 Y** *97 Y** *97 Y** *97 Y** *97 Nb *97 Nb *97 Mo *97 Tc *97 Tc *97 Tc *97 Ru *97 Ru *97 Ru	T: average D: average D: average -34650# -47920# -58360 -68785 -68480 -67957 -76258 -75590 -7273 -885605.6 -84862.3 -87540.4 -87220 -87123 -86112 -82590	800# 500# 30 19 19 12 12 12 2.8 2.6 2.6 1.9 5 8 40	308.13 830.8 667.51 3523.3 743.35	0.11 0.2 0.23 0.4 0.03	c30=4.	50(0.06) 5=8.0(2.3): 10# 63 169.9 429 170 255 3.75 1.17 142 16.90 72.1 52.7 STABLE 2.6 90.1 2.9 30.7	ms ms ms ms ns ns s s ms h m s	(>300 ns) 4 0.7 5 10 0.03 0.03 8 0.05 0.7 1.8 0.4 1.0 0.1 0.6	3/2-# 3/2+# 3/2+ 1/2+ (7/2)+ 11/2-# (1/2-) (9/2)+ (27/2-) 1/2+ 9/2+ 1/2- 5/2+ 9/2+ 1/2- 5/2+ 9/2+ 9/2+	97 93 93 93 93 93 93 93 93 93 93 93 93 93	03Be05 93Ru01	TD D	$\begin{array}{l} \beta^- \! = \! 100; \beta^- \! n \! = \! 6.7 6 \\ \beta^- \! = \! 100; \beta^- \! n \! = \! 25.7 8 \\ \beta^- \! = \! 100; \beta^- \! n \! = \! 25.7 8 \\ \beta^- \! = \! 100; \beta^- \! n \! < \! 0.05 \\ \text{IT} \! = \! 100 \\ \beta^- \! = \! 100; \beta^- \! n \! = \! 0.058 7 \\ \beta^- \! > \! 99.3; \text{IT} \! < \! 0.7; \dots \\ \text{IT} \! \geq \! 80; \beta^- \! \leq \! 20 \\ \beta^- \! = \! 100 \\ \beta^- \! = \! 100 \\ \text{IT} \! = \! 100 \\ \text{IT} \! \approx \! 100; \epsilon \! < \! 0.34 \\ \beta^+ \! = \! 100 \\ \beta^+ \! = \! 100 \\ \beta^+ \! = \! 100 \\ \end{array}$	**
*96Ag *96Ag *96Ag *97Br 97 Kr 97 Rb 97 Sr* 97 Sr* 97 Y* 97 Y* 97 Y* 97 Nb 97 Nb 97 Tc 97 Tc* 97 Rh 97 Rh	T: average D: average D: average D: average -34650# -47920# -58360 -68788 -68480 -67957 -76258 -75590 -72735 -82946.6 -85605.6 -84862.3 -87540.4 -87220 -87123 -86112 -86129 -82330	800# 500# 30 19 12 12 12 2.8 2.6 1.9 5 8 40 40	308.13 830.8 667.51 3523.3	0.06) 97Sd 1.9(2.6) 3 0.11 0.2 0.23 0.4 0.03	c30=4.	50(0.06) 5=8.0(2.3): 10# 63 169.9 429 170 255 3.75 1.17 142 16.90 72.1 52.7 STABLE 2.6 90.1 2.9 30.7 46.2	ms ms ms ms ns ns s s ms h m s	(>300 ns) 4 0.7 5 10 10 0.03 0.03 8 0.05 0.7 1.8 0.4 1.0 0.1 0.6 1.6	3/2-# 3/2+# 1/2+ (7/2)+ 11/2-# (1/2-) (9/2)+ (27/2-) 1/2+ 9/2+ 1/2- 5/2+ 9/2+ 1/2- 5/2+ 1/2- 1/2- 1/2-	97 93 93 93 93 93 93 93 93 93 93 93 93 93	03Be05 93Ru01	TD D	$\begin{array}{l} \beta^-{=}100; \beta^-{=}n{=}6.7 6 \\ \beta^-{=}100; \beta^-{=}n{=}25.7 8 \\ \beta^-{=}100; \beta^-{=}n{=}25.7 8 \\ \beta^-{=}100; \beta^-{=}n{<}0.05 \\ \text{IT}{=}100 \\ \beta^-{=}100; \beta^-{=}n{=}0.058 7 \\ \beta^-{>}99.3; \text{IT}{<}0.7; \dots \\ \text{IT}{\geq}80; \beta^-{\leq}20 \\ \beta^-{=}100 \\ \beta^-{=}100 \\ \text{IT}{=}100 \\ \text{IS}{=}9.55 8 \\ \varepsilon{=}100 \\ \text{IT}{\approx}100; \varepsilon{<}0.34 \\ \beta^+{=}100 \\ \beta^+{=}100 \\ \beta^+{=}94.4 6; \text{IT}{=}5.6 6 \\ \end{array}$	**
*96 Ag *96 Ag *97 Br 97 Kr 97 Sr 97 Sr 97 Sr 97 Y 97 Yr 97 Yr 97 Yr 97 Nb 97 Nb 97 Nb 97 Tc 97 Tc 97 Ru 97 Rh 97 Rh	T: average D: average D: average D: average -34650# -47920# -58360 -68788 -68480 -67957 -76258 -75590 -72735 -82946 -85605.6 -85605.6 -848602.3 -87540.4 -87220 -87123 -86112 -82330 -77800	e 03Ba2 e β ⁺ p 9 800# 30 19 19 12 12 12 2.8 2.66 2.6 1.9 5 5 8 40 40 300	308.13 830.8 667.51 3523.3 743.35	0.11 0.2 0.23 0.4 0.03	c30=4.	50(0.06) 5=8.0(2.3): 10# 63 169.9 429 170 255 3.75 1.17 142 16.90 72.1 52.7 STABLE 2.6 90.1 2.9 30.7 46.2 3.10	ms ms ms ms ns ns ns h m s	He25=3.7(0. (>300 ns) 4 0.7 5 10 10 0.03 0.03 8 0.05 0.7 1.8 0.4 1.0 0.1 0.6 1.6 0.09	3/2-# 3/2+# 3/2+ 1/2+ (7/2)+ 11/2-# (1/2-) (9/2)+ (27/2-) 1/2+ 1/2- 5/2+ 9/2+ 1/2- 5/2+ 9/2+ 1/2- 5/2+ 9/2+ 1/2- 5/2+ 9/2+ 1/2- 5/2+ 9/2+ 1/2- 5/2+ 1/2- 5/2+#	97 93 93 93 93 93 93 93 93 93 93 93 93 93	03Be05 93Ru01 93Ru01	TD D	$\begin{array}{l} \beta^-{=}100; \beta^-{=}n{=}6.7 6 \\ \beta^-{=}100; \beta^-{=}n{=}25.7 8 \\ \beta^-{=}100; \beta^-{=}n{<}0.05 \\ \text{IT}{=}100 \\ \text{IT}{=}100 \\ \beta^-{=}100; \beta^-{=}n{<}0.058 7 \\ \beta^-{>}99.3; \text{IT}{<}0.7; \dots \\ \text{IT}{\geq}80; \beta^-{\leq}20 \\ \beta^-{=}100 \\ \beta^-{=}100 \\ \text{IT}{=}100 \\ \text{IS}{=}9.55 8 \\ \varepsilon{=}100 \\ \text{IT}{\approx}100; \varepsilon{<}0.34 \\ \beta^+{=}100 \\ \beta^+{=}94.4 6; \text{IT}{=}5.6 6 \\ \beta^+{=}100 \\ \end{array}$	**
*96 Ag *96 Ag *97 Br 97 Kr 97 Sr 97 Sr 97 Sr 97 Y 97 Yr 97 Yr 97 Yn 97 Nb 97 Nb 97 Nb 97 Nc 97 Tc 97 Ru 97 Ru 97 Rh 97 Pd 97 Pd	T: average D: average D: average D: average -34650# -47920# -58360 -68788 -68480 -67957 -76258 -75590 -72735 -82946.6 -85605.6 -85605.6 -84862.3 -87540.4 -87220 -87123 -86112 -82530 -77800 -70820	e 03Ba2 800# 800# 500# 30 19 12 12 2.8 2.6 2.6 1.9 5 8 40 300 300 300 300 300 300 300	308.13 830.8 667.51 3523.3 743.35 96.56	0.06) 97Si 1.9(2.6) 3 0.11 0.2 0.23 0.4 0.03 0.06	c30=4.	50(0.06) 5=8.0(2.3): 10# 63 169.9 429 170 255 3.75 1.17 142 16.90 72.1 52.7 STABLE 2.6 90.1 2.9 30.7 46.2 3.10 25.3	ms ms ms ms ns ns ns h m s	(>300 ns) 4 0.7 5 10 10 0.03 0.03 8 0.05 0.7 1.8 0.4 1.0 0.1 0.6 1.6	$\begin{array}{c} 3/2^-\#\\ 3/2^+\#\\ 3/2^+\\ 1/2^+\\ (7/2)^+\\ 11/2^-\#\\ (1/2^-)\\ (27/2^-)\\ 1/2^+\\ 9/2^+\\ 1/2^-\\ 5/2^+\\ 1/2^-\\ 5/2^+\#\\ 1/2^-\\ 5/2^+\#\\ (9/2^+)\\ (9/2^+) \end{array}$	97 93 93 93 93 93 93 93 93 93 93 93 93 93	03Be05 93Ru01	TD D	$\begin{array}{l} \beta^-{=}100; \beta^-{=}n{=}6.7 6 \\ \beta^-{=}100; \beta^-{=}n{=}25.7 8 \\ \beta^-{=}100; \beta^-{=}n{=}25.7 8 \\ \beta^-{=}100; \beta^-{=}n{<}0.05 \\ \text{IT}{=}100 \\ \beta^-{=}100; \beta^-{=}n{=}0.058 7 \\ \beta^-{>}99.3; \text{IT}{<}0.7; \dots \\ \text{IT}{\geq}80; \beta^-{\leq}20 \\ \beta^-{=}100 \\ \beta^-{=}100 \\ \text{IT}{=}100 \\ \text{IS}{=}9.55 8 \\ \varepsilon{=}100 \\ \text{IT}{\approx}100; \varepsilon{<}0.34 \\ \beta^+{=}100 \\ \beta^+{=}100 \\ \beta^+{=}94.4 6; \text{IT}{=}5.6 6 \\ \end{array}$	**
*96 Ag *96 Ag *97 Br *97 Kr *97 Rb *97 Sr" *97 Sr" *97 Y" *97 Y" *97 Y" *97 Y" *97 Nb *97 Nb *97 Nb *97 Nb *97 Tc* *97 Ru *97 Rh *97 Rh *97 Rh *97 Rh *97 Pd *97 Ag*	T: average D: average D: average D: average -34650# -47920# -58360 -68785 -68480 -67957 -76258 -75590 -72735 -82946.6 -8462.3 -87540.4 -87220 -87123 -86112 -82590 -82330 -77800 -77800 -778020 -68480	e 03Ba2 800# 800# 30 19 19 12 12 12 2.8 2.6 2.6 1.9 5 5 8 40 40 30 30 30 30 30 30 30 30 30 3	308.13 830.8 667.51 3523.3 743.35	0.11 0.2 0.23 0.4 0.03	c30=4.	50(0.06) 5=8.0(2.3): 10# 63 169.9 429 170 255 3.75 1.17 142 16.90 72.1 52.7 STABLE 2.6 90.1 2.9 30.7 46.2 3.10	ms ms ms ms ns ns s s ms h m s My d d m m m s ns ns ns ns	(>300 ns) 4 0.7 5 10 0.03 0.03 8 0.05 0.7 1.8 0.4 1.0 0.1 0.6 1.6 0.09 0.3	$\begin{array}{c} 3/2^-\#\\ 3/2^+\#\\ 3/2^+\\ 1/2^+\\ (7/2)^+\\ 11/2^-\#\\ (1/2^-)\\ (9/2)^+\\ (27/2^-)\\ 1/2^+\\ 9/2^+\\ 1/2^-\\ 5/2^+\#\\ 9/2^+\\ 1/2^-\\ 5/2^+\#\\ (9/2^+)\\ (21/2^+)\\ (21/2^+) \end{array}$	97 93 93 93 93 93 93 93 93 93 93 93 93 93	03Be05 93Ru01 93Ru01 97Sc30	TD D	$\begin{array}{l} \beta^-{=}100; \beta^-{=}n{=}6.7 6 \\ \beta^-{=}100; \beta^-{=}n{=}25.7 8 \\ \beta^-{=}100; \beta^-{=}n{=}25.7 8 \\ \beta^-{=}100; \beta^-{=}n{<}0.05 \\ \text{IT}{=}100 \\ \beta^-{=}100; \beta^-{=}n{=}0.058 7 \\ \beta^-{=}99.3; \text{IT}{<}0.7; \dots \\ \text{IT}{\geq}80; \beta^-{\leq}20 \\ \beta^-{=}100 \\ \beta^-{=}100 \\ \text{IT}{=}100 \\ \text{IS}{=}9.55 8 \\ \varepsilon{=}100 \\ \beta^+{=}100 \\ \beta^-{=}100 \\ \beta^-{=}10$	**
*96 Ag *96 Ag *96 Ag *96 Ag *96 Ag *97 Br *97 Kr *97 Rb *97 Sr *97 Y* *97 Y* *97 Y* *97 Y* *97 Y* *97 Y* *97 Nb *97 Nb *97 Nb *97 Tc *97 Ru *97 Rh *97 Rh *97 Rh *97 Pd *97 Ag *97 Ag *97 Cd	T: average D: average D: average D: average -34650# -47920# -58360 -68788 -68480 -67957 -76258 -75590 -72735 -882946.6 -84862.3 -87540.4 -87220 -87123 -86112 -82590 -82330 -77802 -78020 -68480 -60600#	e 03Ba2 800# 800# 30 19 19 12 12 12 2.8 2.6 2.6 1.9 5 5 8 40 40 30 40 30 40 40 40 40 40 40 40 40 40 4	308.13 830.8 667.51 3523.3 743.35 96.56	0.06) 97Si 1.9(2.6) 3 0.11 0.2 0.23 0.4 0.03 0.06	c30=4.	50(0.06) 5=8.0(2.3): 10# 63 169.9 429 170 255 3.75 1.17 142 16.90 72.1 52.7 STABLE 2.6 90.1 2.9 30.7 46.2 3.10 25.3 5 2.8	ms ms ms ms ns ns s ms h m s My d d m m m s ns s s	He25=3.7(0. (>300 ns) 4 0.7 5 10 10 0.03 0.03 8 0.05 0.7 1.8 0.4 1.0 0.1 0.6 1.6 0.09	3/2-# 3/2+ 1/2+ (7/2)+ 11/2-# (1/2-) (9/2)+ (27/2-) 1/2- 5/2+ 9/2+ 1/2- 5/2+ 1/2- 5/2+ 1/2- 5/2+ 9/2+ 1/2- 5/2+ 9/2+ 1/2- 5/2+ 9/2+ 1/2- 5/2+ 1/2- 5/2+ 9/2+ 1/2- 5/2- 1/2- 5/2- 1/2- 5/2- 1/2- 5/2- 1/2- 5/2- 1/2- 5/2- 1/2- 5/2- 1/2- 5/2- 1/2- 5/2- 1/2- 5/2- 1/2- 5/2- 1/2- 5/2- 1/2- 5/2- 1/2- 5/2- 1/2- 5/2- 1/2- 5/2- 1/2- 5/2- 1/2- 1/2- 1/2- 1/2- 1/2- 1/2- 1/2- 1	97 93 93 93 93 93 93 93 93 93 93 93 93 93	03Be05 93Ru01 93Ru01	TD D	$\begin{array}{l} \beta^-{=}100; \beta^-{=}n{=}6.7 6 \\ \beta^-{=}100; \beta^-{=}n{=}25.7 8 \\ \beta^-{=}100; \beta^-{=}n{<}0.05 \\ \text{IT}{=}100 \\ \text{IT}{=}100 \\ \beta^-{=}100; \beta^-{=}n{<}0.058 7 \\ \beta^-{=}99.3; \text{IT}{<}0.7; \dots \\ \text{IT}{\ge}80; \beta^-{\le}20 \\ \beta^-{=}100 \\ \beta^-{=}100 \\ \text{IT}{=}100 \\ \text{IS}{=}9.55 8 \\ \varepsilon{=}100 \\ \text{IT}{\approx}100; \varepsilon{<}0.34 \\ \beta^+{=}100 \\ \beta^+{=}100; \beta^+{=}9? \\ \end{array}$	** **
*96 Ag *96 Ag *97 Br *97 Kr *97 Rb *97 Sr" *97 Sr" *97 Y" *97 Y" *97 Y" *97 Y" *97 Nb *97 Nb *97 Nb *97 Nb *97 Tc* *97 Ru *97 Rh *97 Rh *97 Rh *97 Rh *97 Pd *97 Ag*	T: average D: average D: average D: average -34650# -47920# -58360 -68785 -68480 -67957 -76258 -75590 -72735 -82946.6 -8462.3 -87540.4 -87220 -87123 -86112 -82590 -82330 -77800 -77800 -778020 -68480	e 03Ba2 e β ⁺ p 9 800# 30 19 19 12 12 12 12 2.88 2.66 2.6 1.9 5 5 8 40 40 300 300 400 400 400 400	308.13 830.8 667.51 3523.3 743.35 96.56 258.85	0.06) 97Si 1.9(2.6) 3 0.11 0.2 0.23 0.4 0.03 0.06	c30=4.	50(0.06) 5=8.0(2.3): 10# 63 169.9 429 170 255 3.75 1.17 142 16.90 72.1 52.7 STABLE 2.6 90.1 2.9 30.7 46.2 3.10	ms ms ms ms ns ns s s ms h m s My d d m m m s ns ns ns ns	(>300 ns) 4 0.7 5 10 0.03 0.03 8 0.05 0.7 1.8 0.4 1.0 0.1 0.6 1.6 0.09 0.3	$\begin{array}{c} 3/2^-\#\\ 3/2^+\#\\ 3/2^+\\ 1/2^+\\ (7/2)^+\\ 11/2^-\#\\ (1/2^-)\\ (9/2)^+\\ (27/2^-)\\ 1/2^+\\ 9/2^+\\ 1/2^-\\ 5/2^+\#\\ 9/2^+\\ 1/2^-\\ 5/2^+\#\\ (9/2^+)\\ (21/2^+)\\ (21/2^+) \end{array}$	97 93 93 93 93 93 93 93 93 93 93 93 93 93	03Be05 93Ru01 93Ru01 97Sc30	TD D	$\begin{array}{l} \beta^-{=}100; \beta^-{=}n{=}6.7 6 \\ \beta^-{=}100; \beta^-{=}n{=}25.7 8 \\ \beta^-{=}100; \beta^-{=}n{=}25.7 8 \\ \beta^-{=}100; \beta^-{=}n{<}0.05 \\ \text{IT}{=}100 \\ \beta^-{=}100; \beta^-{=}n{=}0.058 7 \\ \beta^-{=}99.3; \text{IT}{<}0.7; \dots \\ \text{IT}{\geq}80; \beta^-{\leq}20 \\ \beta^-{=}100 \\ \beta^-{=}100 \\ \text{IT}{=}100 \\ \text{IS}{=}9.55 8 \\ \varepsilon{=}100 \\ \beta^+{=}100 \\ \beta^-{=}100 \\ \beta^-{=}10$	**

ruciide	Mass ex (keV			xcitation ergy(keV)			Half-	life	J^{π}	Ens	s Referenc	e	Decay modes and intensities (%)	
	-44800#	600#				46	ms	8	0+	03			β ⁻ =100; β ⁻ n=7.0 10	
⁹⁸ Rb -	-54220	50				114	ms	5	$(0,1)^{(-\#}$	03			$\beta^-=100; \beta^-n=13.86;$. *
$^{98}\text{Rb}^m$	-53940	120	290	130	BD	96	ms	3	$(3,4)^{(+#)}$				$\beta^{-}=100$	
⁹⁸ Sr	-66646	26				653	ms	2	0^+	03			$\beta^-=100; \beta^-=0.255$	
	-72467	25				548	ms	2	$(0)^{-}$	03			$\beta^-=100; \beta^-n=0.331 24$	
	-72050	30	410	30	BD	2.0	S	0.2	$(5^+, 4^-)$	03			β^- =?; IT=10#;	*
	-71971	25	496.19	0.15		7.6	μs	0.4	(2^{-})	03			IT=100	
	-72296	25	170.74	0.6		620	ns	80	$(2)^{-}$	03			IT=100	
	-81287	20				30.7	S	0.4	0+	03			$\beta^{-}=100$	
	-83529	6				2.86	S	0.06	1+	03			$\beta^{-}=100$	
98Nb ^m -	-83445	7	84	4		51.3	m	0.4	(5+)	03		_	$\beta^- \approx 100$; IT=0.1#	
	-88111.7					STABLE		$(>100{\rm Ty})$		03	52Fr23	T	IS=24.13 31; $2\beta^-$?	*
0.0	-86428	4	00.75	0.16		4.2	Му	0.3	(6) ⁺	03			$\beta^{-}=100; \beta^{+}=0$	
	-86337	4	90.76	0.16		14.7	μs	3	$(2)^{-}$ 0^{+}	03			IT=100	
	-88224	6				STABLE		0.12		03			IS=1.87 3	
	-83175 82120#	12 50#	60#	50#	*		m m	0.12 0.2	$(2)^+$ (5^+)	03			$\beta^{+}=100$ IT=89 5; $\beta^{+}=11$ 5	
	-83120# -81300	21	00#	30 11	×	3.6		0.2	0+	03			$\beta^{+}=100$	
	-73060	70				47.5	m s	0.3	(5 ⁺)	03	ABBW03	1	$\beta^{+}=100; \beta^{+}=0.00125$	
$^{98}Ag^m$	-72890	70	167.83	0.15		220	ns	20	(3+)	03	98Gr.B		DIT=100	T
	-67630	80	107.03	0.15		9.2	s	0.3	0+	03	70GI.D		$\beta^{+}=100; \beta^{+}p<0.025$	
	-65200	80	2427.5	0.6		190	ns	20	8+#		98Gr.B	TD	IT=100	*
	-53900#			***	*		ms	23	0+#		01Ki13		$\beta^{+}=100; \beta^{+}p$?	
		F 4011	0#	500#	*		S	0.8		03	01Ki13	TD	$\beta^{+}=100; \beta^{+}p$?	
98 In ^m	-53900#	540#											, , , ,	**
⁹⁸ In ^m - * ⁹⁸ Rb I	–53900# D : ; β													**
98 In ^m + 898 Rb I *98 Y ^m I		-2n=0	.051 7											**
98 In ^m + *98 Rb I *98 Y ^m I *98 Y ^m J	D:; β D:; β	-2n=0 -n=3.	.051 7	-)										
98 In ^m *98 Rb I *98 Y ^m I *98 Y ^m J *98 Mo	D:; β D:; β J:94St31 T:limit g	-2n=0 -n=3.4 =(5 ⁺) iven h	0.051 7 4 10 95Ha.B=(4- ere is for 0 <i>v</i>	$-2\beta^-$ deca										**
98 In ^m *98 Rb I *98 Y ^m I *98 Y ^m J *98 Mo I *98 Ag J	D:; β D:; β J: 94St31 T: limit g J: (5^+) wi	-2n=0 -n=3. =(5 ⁺) iven heith exp	0.051 7 4 10 95Ha.B=(4- ere is for 0 <i>v</i> erimental b	$^{\prime}$ -2 β^{-} decay asis prefer	red to	(6^+) , se	e disc	cussion in	ENSDF					** ** **
98 In ^m *98 Rb I *98 Y ^m I *98 Y ^m J *98 Mo I *98 Ag J	D:; β D:; β J: 94St31 T: limit g J: (5^+) wi	-2n=0 -n=3. =(5 ⁺) iven heith exp	0.051 7 4 10 95Ha.B=(4- ere is for 0v	$^{\prime}$ -2 β^{-} decay asis prefer	red to	(6^+) , se	e disc	cussion in	ENSDF	d				** **
98 In ^m + *98 Rb I *98 Y ^m I *98 Y ^m I *98 Y ^m I *98 Y ^m I *98 Ag I *98 Cd ^m I	D:; β D:; β J: 94St31 T: limit g J: (5^+) wi	-2n=0 -n=3 =(5 ⁺) iven heith exp edes 9'	0.051 7 4 10 95Ha.B=(4- ere is for 0 <i>v</i> erimental b	$^{\prime}$ -2 β^{-} decay asis prefer	red to	(6^+) , se	e disc	cussion in	ENSDF utweighe		03Be05	TD	$\beta^-=100; \beta^-=117$	** ** **
98 In ^m *98 Rb II *98 Y ^m II *98 Cd ^m II *99 Kr *99 Rb	D:; β D:; β J: 94St31 T: limit g J: (5 ⁺) wi	-2n=0 -n=3 =(5 ⁺) iven heith exp edes 9'	0.051 7 4 10 95Ha.B=(4- ere is for 0 <i>v</i> erimental b	$^{\prime}$ -2 β^{-} decay asis prefer	red to	(6 ⁺), se er 97Go	e diso 18=4	cussion in 80(160) o	ENSDF utweighe	97	03Be05	TD	$\beta^{-}=100; \beta^{-}=117$ $\beta^{-}=100; \beta^{-}=15.920$	** ** **
98 In ^m *98 Rb II *98 Y ^m II *98 Mo *98 Ag II *99 Kr *99 Rb *99 Sr	D:; β D:; β D:; β J: 94St31 T: limit g J: (5 ⁺) wi T: superso	-2n=0 -n=3. =(5 ⁺) iven heith expedes 9'	0.051 7 4 10 95Ha.B=(4- ere is for 0 <i>v</i> erimental b	$^{\prime}$ -2 β^{-} decay asis prefer	red to	(6 ⁺), se er 97Go 40	e disc 18=48 ms	eussion in 80(160) o	ENSDF utweighe	97	03Be05	TD		** ** **
98 In ^m *98 Rb II *98 Y ^m II *98 Y ^m II *98 Y ^m II *98 Y ^m II *98 Mo *98 Ag *98 Cd ^m 99 Kr *99 Rb *99 Sr *99 Y	D:; β D:; β D:; β J: 94St31 T: limit g J: (5 ⁺) wi T: superso	-2n=0 -n=3. =(5 ⁺) iven heith expedes 9' 600# 130	0.051 7 4 10 95Ha.B=(4- ere is for 0 <i>v</i> erimental b	$^{\prime}$ -2 β^{-} decay asis prefer	red to	(6 ⁺), se er 97Go 40 50.3	e disc 18=43 ms ms	11 0.7	ENSDF utweighe $3/2^{+}\#$ $(5/2^{+})$	97 98 95	03Be05	TD	$\beta^-=100; \beta^-n=15.9 20$	** ** **
98 In" *98 Rb I *98 Y" I *98 Y" J *98 Y J *98 Ag J *98 Cd" I 99 Kr 99 Kr 99 Fr 99 Y - 99 Y - 99 Y -	D:; β D:; β D:; β J: 94St31 T: limit g J: (5 ⁺) wi T: superso -39500# -50880 -62190	-2n=0 -n=3 =(5 ⁺) iven heith expedes 9' 600# 130 80	0.051 7 4 10 95Ha.B=(4- ere is for 0 <i>v</i> erimental b	$^{\prime}$ -2 β^{-} decay asis prefer	red to	(6 ⁺), se er 97Go 40 50.3 269	ms ms ms	11 0.7 1	3/2+# (5/2+) 3/2+	97 98 95 95	03Be05	TD	$\beta^{-}=100; \beta^{-}=15.9 20$ $\beta^{-}=100; \beta^{-}=0.100 19$	** ** **
98 In" *98 Rb I *98 Ym I *98 Ym I *98 Ym I *98 Mo I *98 Ag I *98 Ag *98 Cd" 99 Kr 99 Rb 99 Sr 99 Yr 99 Yr 99 Yr 99 Zr	D:; β D:; β D:; β J: 94St31 T: limit g J: (5 ⁺) wi T: superso -39500# -50880 -62190 -70201	-2n=0 -n=3 =(5 ⁺) iven heith expedes 9' 600# 130 80 24	0.051 7 4 10 95Ha.B=(4- ere is for 0v erimental b 7Gr02=2000	$y-2\beta^-$ dec: asis prefer (+300–170	red to	(6 ⁺), se er 97Go 40 50.3 269 1.470	ms ms ms ms	11 0.7 1 0.007	3/2+# (5/2+) 3/2+ (5/2+) (17/2+) 1/2+	97 98 95 95	03Be05 02Ca37	TD	$\beta^{-}=100; \beta^{-}=15.920$ $\beta^{-}=100; \beta^{-}=0.10019$ $\beta^{-}=100; \beta^{-}=1.94$ $\beta^{-}=100$ $\beta^{-}=100$	** ** **
98 In ^m 98 Rb 1 98 Rb 1 898 Tb 1 898 Tm 1 98 Rb 1 98 Rm 1 99 Rc	D:; β D:; β D:; β J: 94St31 T: limit g J: (5 ⁺) wi T: superso -39500# -50880 -62190 -70201 -68059	-2n=0 -n=3 =(5 ⁺) iven heith expedes 9' 600# 130 80 24 24	0.051 7 4 10 95Ha.B=(4- ere is for 0v erimental b 7Gr02=2000	$y-2\beta^-$ dec: asis prefer (+300–170	red to	(6 ⁺), se er 97Go 40 50.3 269 1.470 8.6	ms ms ms ms ms	11 0.7 1 0.007 0.8	3/2+# (5/2+) 3/2+ (5/2+) (17/2+) 1/2+ 9/2+	97 98 95 95 95			$\beta^{-}=100; \beta^{-}=15.920$ $\beta^{-}=100; \beta^{-}=0.10019$ $\beta^{-}=100; \beta^{-}=1.94$ $\beta^{-}=100; \beta^{-}=1.94$	** ** **
98 In ^m 98 Rb 18	D:; β D:; β D:; β J: 94St31 T: limit g J: (5 ⁺) wi T: superso -39500# -50880 -62190 -70201 -68059 -77768 -82327 -81962	-2n=0 -n=3. =(5 ⁺) iven heith expedes 9' 600# 130 80 24 20 13 13	0.051 7 4 10 95Ha.B=(4- ere is for 0v erimental b 7Gr02=2000	$y-2\beta^-$ dec: asis prefer (+300–170	red to	(6 ⁺), se er 97Go 40 50.3 269 1.470 8.6 2.1 15.0 2.6	ms ms ms ms s us s ms	11 0.7 1 0.007 0.8 0.1 0.2 0.2	3/2+# (5/2+) 3/2+ (5/2+) 3/2+ (5/2+) (17/2+) 1/2+ 9/2+ 1/2-	97 98 95 95 95 95 95			$\beta^{-}=100; \beta^{-}n=15.920$ $\beta^{-}=100; \beta^{-}n=0.10019$ $\beta^{-}=100; \beta^{-}n=1.94$ IT=100 $\beta^{-}=100$ $\beta^{-}=100$ $\beta^{-}=100$	** ** **
98 In ^m 98 Rb 1 98 Rb 1 898 Ym 1 898 Ym 1 898 Ym 2 898 Ag 3 898 Cd ^m 99 Kr 99 Rb 999 Yr 99 Yr 99 Yr 99 Yr 99 Yr 99 Nb ^m 99 Nb ^m 99 Mo	D:; β D:; β J: 948(31) T: limit g J: 948(31) T: superson T: superso	-2n=0 -n=3 =(5 ⁺) iven heith expedes 9' 600# 130 80 24 24 20 13 13	20.051 7 4 10 95Ha.B=(4- ere is for 0 <i>v</i> erimental b 7Gr02=2006 2141.65	2β ⁻ dec: asis prefer (+300–170 0.19	red to	(6 ⁺), seer 97Go 40 50.3 269 1.470 8.6 2.1 15.0 2.6 65.94	ms ms ms s \mu s s ms h	eussion in 80(160) or 11 0.7 1 0.007 0.8 0.1 0.2 0.2 0.01	ENSDF utweighe 3/2+# (5/2+) 3/2+ (5/2+) (17/2+) 1/2+ 9/2+ 1/2- 1/2+	97 98 95 95 95 95 95 95			$\beta^{-}=100; \beta^{-}n=15.920$ $\beta^{-}=100; \beta^{-}n=0.10019$ $\beta^{-}=100; \beta^{-}n=1.94$ IT=100 $\beta^{-}=100$ $\beta^{-}=100$ $\beta^{-}=100$ $\beta^{-}=100$ $\beta^{-}=100$	** ** **
98 In** 98 Rb 1 98 Rb 1 898 Y** 98 Y** 1 98 Ag 3 99 Kr 99 Rb 99 Sr 99 Y** 99 Y** 99 Y** 99 Y** 99 Y** 99 Nb 99 Nb** 99 Nb** 99 Mo**	D:; β D:; β J: 948(31) T: limit g J: 948(31) T: superson J: (5 ⁺) wit T: superson J: (-2n=0 -n=3 =(5 ⁺) iven heith expedes 9' 600# 130 80 24 20 13 13 1.9	2051 7 4 10 95Ha.B=(4- ere is for 0v erimental b 7Gr02=2006	7-2β ⁻ decassis prefer (+300–170) 0.19	red to	(6 ⁺), seer 97Go 40 50.3 269 1.470 8.6 2.1 15.0 2.6 65.94 15.5	ms ms ms s \mu s s ms h \mu s	11 0.7 1 0.007 0.8 0.1 0.2 0.2 0.01 0.2	ENSDF utweighe 3/2+# (5/2+) 3/2+ (5/2+) (17/2+ 1/2+ 9/2+ 1/2- 1/2+ 5/2+	97 98 95 95 95 95 95 95 95			$\beta^{-}=100; \beta^{-}n=15.920$ $\beta^{-}=100; \beta^{-}n=0.10019$ $\beta^{-}=100; \beta^{-}n=1.94$ IT=100 $\beta^{-}=100$ $\beta^{-}=100$ $\beta^{-}=100$ $\beta^{-}=00$ IT=100 IT=100	** ** **
98 In" 98 Rb 1 98 Rb 1 898 Tm 1 898 Tm 1 898 Mo 5 898 Ag 1 99 Kr 99 Rb 99 Sr 99 Yr 99 Yr 99 Yr 99 Yr 99 Yr 99 Nb 99 Nb" 99 Mo" 99 Mo"	D:; β D:; β J: 94St31 T: limit g J: 94St31 T: limit g J: (5 ⁺) wi T: superso -39500# -50880 -62190 -70201 -68059 -77768 -82327 -81962 -82965.8 -85868.0 -87323.1	-2n=0 -n=3 =(5 ⁺) iven heith expedes 9' 600# 130 80 24 24 20 13 1.9 1.9 2.0	20.051 7 4 10 95Ha.B=(4- ere is for 0v erimental b 7Gr02=2000 2141.65 365.29 97.785	-2β ⁻ dec: asis prefer (+300–170 0.19 0.14 0.003	red to	(6 ⁺), se er 97Go 40 50.3 269 1.470 8.6 2.1 15.0 2.6 65.94 15.5 211.1	ms ms ms s \mu s s ms h \mu s ky	2000 cussion in 80(160) or 11 0.7 1 0.007 0.8 0.1 0.2 0.2 1.2	ENSDF utweighe 3/2+# (5/2+) 3/2+ (5/2+) (17/2+) 1/2- 1/2- 1/2+ 5/2+ 9/2+	97 98 95 95 95 95 95 95 95 95			$\beta^{-}=100; \beta^{-}n=15.920$ $\beta^{-}=100; \beta^{-}n=0.10019$ $\beta^{-}=100; \beta^{-}n=1.94$ IT=100 $\beta^{-}=100$ $\beta^{-}=100$ $\beta^{-}=100$ $\beta^{-}=100$ IT=100 IT=100 $\beta^{-}=100$	** ** **
98 In** 98 Rb I** 98 Rb I** 898 Y** I I** 998 Y** I I** 998 Mo ** 998 Cd** 998 Kr 999 Rb 999 Sr 999 Y** 999 Zr 999 Nb 99 Nb** 99 Mo 99 Mo 99 Mo 99 Tc 99 Tc 99 Tc**	D:; β D:; β D:; β D:; β J: 94St31 T: limit g J: (5+) with T: supersor -39500# -50880 -62190 -70201 -68059 -677768 -82327 -81962 -85965.8 -87823.1 -87180.4	-2n=C-7 = -2n=C-	20.051 7 4 10 95Ha.B=(4- ere is for 0 <i>v</i> erimental b 7Gr02=2006 2141.65	-2β ⁻ dec: asis prefer (+300–170 0.19 0.14 0.003	red to	(6 ⁺), seer 97Go 40 50.3 269 1.470 8.6 2.1 15.0 2.6 65.94 15.5 211.1 6.015	ms ms ms s \(\mu s \) s s m h \(\mu s \) ky h	11 0.7 1 0.007 0.8 0.1 0.2 0.2 0.01 0.2	3/2+# (5/2+) 3/2+ (5/2+) 3/2+ (5/2+) (17/2+ 1/2- 1/2- 5/2+ 9/2+ 1/2- 1/2-	97 98 95 95 95 95 95 95 95 95 01			$\begin{array}{l} \beta^-{=}100; \beta^-{=}15.9 20 \\ \beta^-{=}100; \beta^-{=}0.100 19 \\ \beta^-{=}100; \beta^-{=}1.9 4 \\ \text{TT}{=}100 \\ \beta^-{=}100 \\ \beta^-{=}100 \\ \beta^-{=}100 \\ \beta^-{=}100 \\ \text{TT}{=}100 \\ \text{TT}{=}100 \\ \text{TT}{\approx}100; \beta^-{=}0.0037 6 \\ \end{array}$	** ** **
98 In" 98 Rb 18 Rb 19 SY 99 Ym 99 Kr 99 Rb 99 Sr 99 Yr 99 Nb 99 Mo 99 Mo 99 Tc 99 Ru	D:; β D:; β D:; β J: 948(31) T: limit g J: (5 ⁺) with T: superson T: supe	-21=-(5 ⁺) iven hith expedes 9 600# 130 80 24 24 20 13 13 13 1.9 9 1.9 2.0 2.0 2.0 2.0	20.051 7 4 10 95Ha.B=(4- ere is for 0v erimental b 7Gr02=2000 2141.65 365.29 97.785	-2β ⁻ dec: asis prefer (+300–170 0.19 0.14 0.003	red to	(6 ⁺), se er 97Go 40 50.3 269 1.470 8.6 2.1 15.0 2.6 65.94 15.5 211.1 6.015	ms ms ms s µs s mh µus ky h	11 0.7 1 0.007 0.8 0.1 0.2 0.2 0.01 0.2 0.2 0.01 0.2	ENSDF utweighe 3/2+# (5/2+) 3/2+ (5/2+) (17/2+ 1/2- 1/2- 5/2+ 9/2+ 1/2- 5/2+ 9/2+ 5/2+ 5/2+ 5/2+	97 98 95 95 95 95 95 95 95 95 01 01 95			β ⁻ =100; $β$ ⁻ n=15.9 20 β ⁻ =100; $β$ ⁻ n=0.100 19 β ⁻ =100; $β$ ⁻ n=1.9 4 IT=100 β ⁻ =100 β ⁻ =100 β ⁻ =100 IT=100 β ⁻ =100 IT=100 IT≈100; $β$ ⁻ =0.0037 6 IS=12.76 14	** ** **
98 In** 98 Rb 1 98 Rb 1 89 Y** 99 Y** 99 Kr 99 Rb 99 Y** 99 Y** 99 Y** 99 Y** 99 Y** 99 Y** 99 Nb 99 Mo 99 Mo 99 Tc 99 Tc 99 Tc 99 Tc 99 Th	D:; β D:; β D:; β J: 948(31) T: limit g J: 948(31) T: superson	- 2n=C- - n=3 =(5 ⁺) iven heith expedes 9 600# 130 80 24 20 13 13 1.9 2.0 2.0 2.0 7	20.051 7 4 10 95Ha.B=(4- ere is for 0 <i>v</i> erimental b 7Gr02=2006 2141.65 365.29 97.785 142.6832	-2β ⁻ dec: asis prefer (+300–170 0.19 0.14 0.003 0.0011	red to	(6 ⁺), se er 97Go 40 50.3 269 1.470 8.6 2.1 15.0 2.6 65.94 15.5 211.1 6.015 STABLE	ms ms ms s µs s mh µus ky h	eussion in 80(160) of 11 0.7 1 0.007 0.8 0.1 0.2 0.2 0.2 0.01 0.2 1.2 0.009	ENSDF utweighe 3/2+# (5/2+) 3/2+ (5/2+) (17/2+ 1/2- 1/2- 5/2+ 9/2+ 1/2- 5/2+ 9/2- 1/2- (1/2-) 5/2- (1/2-)	97 98 95 95 95 95 95 95 95 95 95 95 95			β^- =100; β^- n=15.9 20 β^- =100; β^- n=0.100 19 β^- =100; β^- n=1.9 4 IT=100 β^- =100 β^- =100 β^- =100 IT=100 IT=100 β^- =100 IT=100; β^- =0.0037 6 IS=12.76 14 β^+ =100	** ** **
98 In** 98 Rb 1 98 Rb 1 89 Y** 98 Y** 1 89 Y** 99 Kr 99 Rb 99 Y** 99 Y** 99 Y** 99 Y** 99 Y** 99 Y** 99 Mo 99 Mo 99 Tc	D:; β D:; β J: 948(31) T: limit g J: 948(31) T: superson	-21=(C-n=3=(5+)) iven hith expedes 9' 600# 130 80 24 24 20 13 1.9 2.00 2.00 7	20.051 7 4 10 95Ha.B=(4- ere is for 0v erimental b 7Gr02=2000 2141.65 365.29 97.785	-2β ⁻ dec: asis prefer (+300–170 0.19 0.14 0.003	red to	(6 ⁺), se er 97Go 40 50.3 269 1.470 8.6 2.1 15.0 2.6 65.94 15.5 211.1 6.015 STABLE 16.1 4.7	ms ms ms s \(\mu s \) s s m \(\mu s \) ky \(\mu s \) if \(\mu s \) if \(\mu s	eussion in 80(160) of 11 0.7 1 0.007 0.8 0.1 0.2 0.2 0.01 0.2 1.2 0.009	ENSDF utweighe 3/2+# (5/2+) 3/2+ (5/2+) (17/2+ 1/2- 1/2- 5/2+ 1/2- 5/2+ (1/2-) 9/2+ (1/2-) 9/2+	97 98 95 95 95 95 95 95 91 01 95 95 95			β^- =100; β^- n=15.9 20 β^- =100; β^- n=0.100 19 β^- =100; β^- n=1.9 4 IT=100 β^- =100 β^- =100 β^- =100 IT=100 IT=100 β^- =100 IT≈100; β^- =0.0037 6 IS=12.76 14 β^+ =100 β^+ ≈100; IT<0.16	** ** **
98 In" 98 Rb I 98 Rb I 898 Tb I 898 Tm I 898 Tm I 898 Tm I 898 Tm I 99 Kr 99 Rb 99 Sr 99 Yr 99 Yr 99 Yr 99 Yr 99 Nb 99 Nb 99 No" 99 Tc 99 Ru 99 Ru 99 Ru 99 Ru 99 Ru 99 Ru	D:; β D:; β J: 948(3)1. T: limit gJ: 95(5)4 with T: superson T: superso	-21=(C-n=3=(5+)) iven hith expedes 9' 600# 130 80 24 24 20 13 1.9 2.0 2.0 7 7	20.051 7 4 10 95Ha.B=(4- ere is for 0 <i>v</i> erimental b 7Gr02=2006 2141.65 365.29 97.785 142.6832	-2β ⁻ dec: asis prefer (+300–170 0.19 0.14 0.003 0.0011	red to	(6 ⁺), se er 97Go 40 50.3 269 1.470 8.6 2.1 15.0 2.6 65.94 15.5 211.1 6.015 STABLE 16.1 4.7 21.4	ms ms ms s \(\mu s \) s s m \(\mu s \) ky h \(\mu s \)	eussion in 80(160) or 11 0.7 1 0.007 0.8 0.1 0.2 0.2 1.2 0.009 0.2 0.1 0.2 0.1 0.2	3/2+# (5/2+) 3/2+ (5/2+) (5/2+) (17/2+) 1/2- 1/2- 1/2+ 5/2+ 9/2+ 1/2- 5/2+ 9/2+ (1/2-) 5/2+ (1/2-) 5/2+ (1/2-) (1/2-) (1/2-)	97 98 95 95 95 95 95 95 95 95 95 95 95 95 95			$\begin{array}{l} \beta^-{=}100; \beta^-{=}15.9 20 \\ \beta^-{=}100; \beta^-{=}0.100 19 \\ \beta^-{=}100; \beta^-{=}1.9 4 \\ \text{TT}{=}100 \\ \beta^-{=}100 \\ \beta^-{=}100 \\ \beta^-{=}100 \\ \beta^-{=}100 \\ \text{TT}{=}100 \\ \beta^-{=}100 \\ \text{TT}{=}100 \\ \text{TT}{=}100; \beta^-{=}0.0037 6 \\ \text{IS}{=}12.76 14 \\ \beta^+{=}100 \\ \beta^+{=}100; \text{TT}{<}0.16 \\ \beta^+{=}100 \end{array}$	** ** **
98 In** 98 Rb I 98 Rb I 898 Tb I 898 Tb I 898 Tm I 898 Mo 98 Ag 99 Kr 99 Rb 99 Sr 99 Yr 99 Zr 99 Nb 99 Nb** 99 Mo 99 Mo 99 Tc 99 Tc 99 Ru 99 Ru 99 Rh 99 Rh 99 Pd 99 Ag	D:; β D:; β J: 945(31) T: limit gJ: (5^+) with T: supersonant T: super	-2n=(-7 n=3=(5+)) iven hith expedes 9' 600# 130 80 24 24 20 13 13 19 19 2.0 2.0 7 7 15 150	20.051 7 4 10 95Ha.B=(4- ere is for 0v erimental b 7Gr02=2006 2141.65 365.29 97.785 142.6832 64.3	-2β ⁻ dec: asis prefer (+300–170 0.19 0.14 0.003 0.0011	red to	(6 ⁺), se er 97Go 40 50.3 269 1.470 8.6 2.1 15.0 2.6 65.94 15.5 511.1 6.015 STABLE 16.1 4.7 21.4 124	ms ms ms s µs s mh µs ky h m s	eussion in 80(160) of 11 0.7 1 0.007 0.8 0.1 0.2 0.2 0.01 0.2 0.009 0.2 0.1 0.2 3	SNSDF utweighe 3/2+# (5/2+) 3/2+ (5/2+) (17/2+) 1/2- 1/2- 1/2- 5/2+ (1/2-) 9/2+ (1/2-) 9/2+ (5/2)+ (5/2)+ (5/2)+ (5/2)+ (9/2)+	97 98 95 95 95 95 95 95 95 95 95 95 95 95 95			$\begin{array}{l} \beta^-{=}100; \beta^-{=}15.9 20 \\ \beta^-{=}100; \beta^-{=}0.100 19 \\ \beta^-{=}100; \beta^-{=}1.9 4 \\ \text{IT}{=}100 \\ \beta^-{=}100 \\ \beta^-{=}100 \\ \beta^-{=}100 \\ \beta^-{=}100 \\ \text{IT}{=}100 \\ \text{IT}{=}100 \\ \text{IT}{=}100 \\ \text{IT}{\approx}100; \beta^-{=}0.0037 6 \\ \text{IS}{=}12.76 14 \\ \beta^+{=}100 \\ $	** ** **
98 In" 98 Rb 18 Rb 18 PS 99 Ym 99 Rc 99 Rr 99 Rr 99 PS 9	D:; β D:; β J:; β J:	-2n=(-n=3. -(s+) iven hi expedes 9' iven hi expedes 9' 600# 130 80 24 24 20 13 13 1.9 2.00 2.0 7 7 15 150 150	20.051 7 4 10 95Ha.B=(4- ere is for 0 <i>v</i> erimental b 7Gr02=2006 2141.65 365.29 97.785 142.6832	-2β ⁻ dec: asis prefer (+300–170 0.19 0.14 0.003 0.0011	red to	(6 ⁺), se er 97Go 40 50.3 269 1.470 8.6 2.1 15.0 2.6 65.94 15.5 211.1 6.015 STABLE 16.1 4.7 21.4 10.5	ms ms ms s µs s mh µµs ky h m s s	eussion in 80(160) of 11 0.7 1 0.007 0.8 0.1 0.2 0.2 0.01 0.2 1.2 0.009 0.2 0.1 0.2 0.5 0.5	ENSDF utweighe 3/2+# (5/2+) 3/2+ (5/2+) (17/2++ 1/2- 1/2- 5/2+ 1/2- 5/2+ 1/2- 5/2+ (1/2-) 9/2+ (5/2)+ (5/2)+ (5/2)+ (5/2)+ (1/2-)	97 98 95 95 95 95 95 95 95 95 95 95 95 95 95			$\begin{array}{l} \beta^-{=}100; \beta^-{=}15.9 20 \\ \beta^-{=}100; \beta^-{=}0.100 19 \\ \beta^-{=}100; \beta^-{=}1.9 4 \\ \text{IT}{=}100 \\ \beta^-{=}100 \\ \beta^-{=}100 \\ \beta^-{=}100 \\ \beta^-{=}100 \\ \text{IT}{=}100 \\ \text{IT}{=}100 \\ \text{IT}{=}100 \\ \text{IT}{\approx}100; \beta^-{=}0.0037 6 \\ \text{IS}{=}12.76 14 \\ \beta^+{=}100 \\ \beta^+{=}100 \\ \beta^+{=}100 \\ \beta^+{=}100 \\ \beta^+{=}100 \\ \beta^+{=}100 \\ \text{IT}{=}100 \\ \text{IT}{=}$	** ** **
98 In** 98 Rb 1 98 Rb 1 89 Y** 99 Y** 99 Kr 99 Rb 99 Sr 99 Y** 99 Y** 99 Y** 99 Y** 99 Y** 99 Y** 99 Tc	D:; β D:; β J: 948(31) T: β J: 9500# - β 50880 - β 62190 - β 70201 - β 8059 - β 70201 - β 8059 - β 70201 - β 8068 - β 82327 - β 81962 - β 8568.0 - β 873(31) - β 87180.4 - β 87180.4 - β 85574 - β 8510 - β 87180.4 - β 76760 - β 76250 - β 8950#	-2n=C-n=3. (-5+) iven hit expedes 9 (-600# 130 80 24 24 20 13 13 1.9 2.00 2.00 7 7 15 150 150 210#	20.051 7 4 10 95Ha.B=(4- ere is for 0v erimental b 7Gr02=2006 2141.65 365.29 97.785 142.6832 64.3	-2β ⁻ dec: asis prefer (+300–170 0.19 0.14 0.003 0.0011	red to	(6 ⁺), se er 97Go 40 50.3 269 1.470 8.6 2.1 15.0 2.6 65.94 15.5 211.1 6.015 STABLI 16.1 4.7 21.4 10.5 16	ms ms ms s \mu s s ms h \mu s ky h m s s s s s s s s s s s s s s s s s m h \mu s s s s m h m s s s s s s s s s s s s s	eussion in 80(160) of 11 0.7 1 0.007 0.8 0.1 0.2 0.2 0.01 0.2 1.2 0.009 0.2 0.1 0.2 5.3 3 0.5 3	ENSDF utweighe 3/2+# (5/2+) 3/2+ (5/2+) (17/2+ 1/2- 1/2- 5/2+ 1/2- 5/2+ 1/2- (1/2-) 9/2+ (5/2)+ (9/2)+ (1/2-) (9/2)+ (1/2-) (5/2)+ (1/2-)	97 98 95 95 95 95 95 95 95 95 95 95 95 95 95	02Ca37	J	$\begin{array}{l} \beta^-{=}100; \beta^-{=}15.9 20 \\ \beta^-{=}100; \beta^-{=}0.100 19 \\ \beta^-{=}100; \beta^-{=}1.9 4 \\ \text{IT}{=}100 \\ \beta^-{=}100 \\ \beta^-{=}100 \\ \beta^-{=}100 \\ \text{IT}{=}100 \\ \text{IT}{=}100 \\ \text{IT}{=}100 \\ \text{IT}{=}100 \\ \text{IT}{=}100 \\ \text{IT}{=}100 \\ \text{IT}{=}100; \beta^-{=}0.0037 6 \\ \text{IS}{=}12.76 14 \\ \beta^+{=}100 \\ \beta^+{=}100; \text{IT}{<}0.16 \\ \beta^+{=}100 \\ \beta^+{=}100 \\ \text{IT}{=}100 \\ \beta^+{=}100; \beta^+{=}0.21 8; \dots \end{array}$	** ** **
98 In** 98 Rb 1 98 Rb 1 89 Y** 98 Y** 99 Mo 2 99 Kr 99 Rb 99 SY 99 Y** 9	D:; β D:; β J: 948(31). T: limit gJ: 95700#. T: superson	-2n=(-n=3=(5+)) iven hi the expedes 9' 600# 130 80 24 24 20 13 1.9 2.0 2.0 7 7 15 150 150 210# 400#	20.051 7 4 10 95Ha.B=(4- ere is for 0v- ere imental b 7Gr02=2000 2141.65 365.29 97.785 142.6832 64.3	0.19 0.14 0.003 0.0011 0.4	red to	(6 ⁺), see r 97Go 40 50.3 269 1.470 8.6 2.1 15.0 2.6 65.94 15.5 211.1 6.015 STABLE 16.1 4.7 21.4 124 10.5 16 3.1	ms ms ms s \mu s s s mh \mu s s s d h m s s s s s s s s s s s	eussion in 80(160) of 11 0.7 1 0.007 0.8 0.1 0.2 0.2 0.01 0.2 1.2 0.009 0.2 0.1 0.2 0.5 0.5	ENSDF utweighe 3/2+# (5/2+) 3/2+ (5/2+) 1/2+ 1/2- 1/2- 5/2+ 9/2+ 1/2- 5/2+ (1/2-) 9/2+ (5/2)+ (9/2)+ (5/2)+ (9/2)+ (5/2)+ (9/2)+ (1/2-) (5/2)+ (9/2)+ (1/2-) (5/2)+ (1/2-) (97 98 95 95 95 95 95 95 95 95 95 95 95 95 95		J	β^- =100; β^- n=15.9 20 β^- =100; β^- n=0.100 19 β^- =100; β^- n=1.9 4 IT=100 β^- =100 β^- =100 β^- =100 IT=100 IT=100 β^- =100 IT=100 β^- =100 IT=100 β^+ =100 IT=100 β^+ =100; β^- 0.0037 6 IS=12.76 14 β^+ =100 β^+ =100; IT<0.16 β^+ =100 β^+ =100; β^+ 9.21 8; β^+ =100; β^+ 9?	** ** **
98 In" 98 Rb I 98 Rb I 898 Tb I 898 Tm I 898 Tm I 898 Tm I 898 Tm I 99 Kr 99 Rb 99 Sr 99 Yr 99 Yr 99 Yr 99 Yr 99 Tr 99 Nb 99 Mo 99 Tc 99 Tc 99 Ru	D:; β D:; β D:; β D:; β J: 94St31 T: limit g J: (5+) with the second of t	-2n=(-n=3	20.051 7 4 10 95Ha.B=(4- ere is for 0v erimental b 7Gr02=2006 2141.65 365.29 97.785 142.6832 64.3	-2β ⁻ dec: asis prefer (+300–170 0.19 0.14 0.003 0.0011	red to	(6 ⁺), see r 97Go 40 50.3 269 1.470 8.6 2.1 15.0 2.6 65.94 15.5 211.1 6.015 STABLE 16.1 4.7 21.4 124 10.5 16 3.1	ms ms ms s \(\mu s \) s s m h \(\mu s \) ky h m s s s s s s	eussion in 80(160) of 11 0.7 1 0.007 0.8 0.1 0.2 0.2 0.01 0.2 1.2 0.009 0.2 0.1 0.2 5.3 3 0.5 3	SNSDF utweighe 3/2+# (5/2+) 3/2+ (5/2+) 1/2+ 1/2- 1/2+ 5/2+ 9/2+ 1/2- 5/2+ (1/2-) 9/2+ (1/2-) 9/2+ (1/2-) 9/2+# 1/2-# 1/2-# 1/2-# 1/2-# 1/2-# 1/2-# 1/2-# 1/2-# 1/2-#	97 98 95 95 95 95 95 95 95 95 95 95 95 95 95	02Ca37	J	β^- =100; β^- n=15.9 20 β^- =100; β^- n=0.100 19 β^- =100; β^- n=1.9 4 IT=100 β^- =100 β^- =100 β^- =2; IT<3.8 β^- =100 IT=100 β^- =100 IT=100; β^- =0.0037 6 IS=12.76 14 β^+ =100; β^+ =0.016 β^+ =100 β^+ =100 β^+ =100 β^+ =100; β^+ =0.21 8; β^+ =100; β^+ p=0.21 8; β^+ =100; β^+ p? β^+ ?; IT?	** ** **
98 In"	D:; β D:; β D:; β J: 948(31) T: limit gJ: (5^+) with T: superson T	-2n=(-n=3(-5+) iven hit expeds 9' iven hit expeds 9' 600# 130 80 24 24 20 13 13 1.9 2.0 2.0 7 7 15 150 150 210# 430# 430# 430# 4600#	20.051 7 4 10 95Ha.B=(4- 95Ha.B=(4- ere is for 0v- erimental b 7Gr02=2006 2141.65 365.29 97.785 142.6832 64.3 506.1	0.19 0.14 0.003 0.0011 0.4 150#	red to	(6 ⁺), see r 97Go 40 50.3 269 1.470 8.6 2.1 15.0 2.6 65.94 15.5 211.1 6.015 STABLE 16.1 4.7 21.4 124 10.5 16 3.1	ms ms ms s \mu s s s mh \mu s s s d h m s s s s s s s s s s s	eussion in 80(160) of 11 0.7 1 0.007 0.8 0.1 0.2 0.2 0.01 0.2 1.2 0.009 0.2 0.1 0.2 5.3 3 0.5 3	ENSDF utweighe 3/2+# (5/2+) 3/2+ (5/2+) 1/2+ 1/2- 1/2- 1/2- 5/2+ (1/2-) 9/2+ (5/2)+ (5/2)+ (5/2)+ (5/2)+ (1/2-) 9/2+ 1/2- 1/2	97 98 95 95 95 95 95 95 95 95 95 95 95 95 95	02Ca37	J	β^- =100; β^- n=15.9 20 β^- =100; β^- n=0.100 19 β^- =100; β^- n=1.9 4 IT=100 β^- =100 β^- =100 β^- =100 IT=100 IT=100 β^- =100 IT=100 β^- =100 IT=100 β^+ =100 IT=100 β^+ =100; β^- 0.0037 6 IS=12.76 14 β^+ =100 β^+ =100; IT<0.16 β^+ =100 β^+ =100; β^+ 9.21 8; β^+ =100; β^+ 9?	** ** **
98 In** 98 Rb I 98 Rb I 89 Rb I 89 Rm I 89 Rm I 89 Rm I 99 Kr 99 Rb 99 Sr 99 Y 99 Zr 99 Nb 99 Nb** 99 Mo 99 Ho** 99 Ru 99 Ru 99 Ru 99 Ru 99 Rh 99 Rh 99 Pd 99 Ag 99 Ag 99 Ag 99 Cd 99 In** 99 Sn 99 Sn	D:; β D:; β D:; β D:; β J: 94St31 T: limit g J: (5+) with the second of t	-2n=(-n=3. -(s+) hiven he	20.051 7 4 10 95Ha.B=(4- ere is for 0v erimental b 7Gr02=2000 2141.65 365.29 97.785 142.6832 64.3 506.1 400# 400#	0.19 0.14 0.003 0.0011 0.4	red to	(6 ⁺), see r 97Go 40 50.3 269 1.470 8.6 2.1 15.0 2.6 65.94 15.5 211.1 6.015 STABLE 16.1 4.7 21.4 124 10.5 16 3.1	ms ms ms s \(\mu s \) s s m h \(\mu s \) ky h m s s s s s s	eussion in 80(160) of 11 0.7 1 0.007 0.8 0.1 0.2 0.2 0.01 0.2 1.2 0.009 0.2 0.1 0.2 5.3 3 0.5 3	SNSDF utweighe 3/2+# (5/2+) 3/2+ (5/2+) 1/2+ 1/2- 1/2+ 5/2+ 9/2+ 1/2- 5/2+ (1/2-) 9/2+ (1/2-) 9/2+ (1/2-) 9/2+# 1/2-# 1/2-# 1/2-# 1/2-# 1/2-# 1/2-# 1/2-# 1/2-# 1/2-#	97 98 95 95 95 95 95 95 95 95 95 95 95 95 95	02Ca37	J	β^- =100; β^- n=15.9 20 β^- =100; β^- n=0.100 19 β^- =100; β^- n=1.9 4 IT=100 β^- =100 β^- =100 β^- =2; IT<3.8 β^- =100 IT=100 β^- =100 IT=100; β^- =0.0037 6 IS=12.76 14 β^+ =100; β^+ =0.016 β^+ =100 β^+ =100 β^+ =100 β^+ =100; β^+ =0.21 8; β^+ =100; β^+ p=0.21 8; β^+ =100; β^+ p? β^+ ?; IT?	** ** **

Nuclide	Mass ex (keV			xcitation ergy(keV]	Half-	life	J^{π}	Ens	Referen	ce	Decay modes and intensities (%)	
100 Kr 100 Rb 100 Sr 100 Y 100 Ym 100 Zr 100 Nb 100 Nb 100 Mo 100 Tc	-36200# -46700# -60220 -67290 -67090# -76600 -7939 -79471 -86184 -86016.2	500# 300# 130 80 220# 40 26 28 6 2.2 2.2	200# 470 200.67	200# 40 0.04	* *	10# 51 202 735 940 7.1 1.5 2.99 8.5 15.8 8.32	ms ms ms ms s s s Ey s	(>300 ns) 8 3 7 30 0.4 0.2 0.11 0.5 0.1 0.14	$0^{+} \\ (3^{+}) \\ 0^{+} \\ 1^{-}, 2^{-} \\ (3, 4, 5)^{+\#} \\ 0^{+} \\ 1^{+} \\ (4^{+}, 5^{+}) \\ 0^{+} \\ 1^{+} \\ (4)^{+}$	97 97 97 97 97 97 97 97	97Be70 93Ru01 97Al02	D	$β^-$? $β^-$ =100; $β^-$ n=5.6 12; $β^-$ =100; $β^-$ n=0.78 13 $β^-$ =100; $β^-$ n=0.92 8 $β^-$ =100 $β^-$ =100 $β^-$ =100 $β^-$ =100 IS=9.63 23; $2β^-$ =100 $β^-$ ≈100; $ε$ =0.0018 9	*
100 Tc" 100 Ru 100 Rh 100 Rh" 100 Pd 100 Ag 100 Ag 100 Cd 100 Cd" 100 In 100 Sh *100 Rb *100 Rb *100 Rb *100 Mo *100 Ns	T: 95	18 18 11 80 80 100 100 250 710 -2n=0. average intensit; e 97AI0 Da37=9 95Sz0	e of 3 value y is derive 02=7.6(+2 0.5(0.9) 91 1=6.1(0.9	0.04 0.2 0.16 0.5 des. See: def from \$\frac{\psi}{2}\$.2-1.4) 9 Ej02=11 95Fa.A	3 ⁻ 2n/β 7De40 1.5(+3-	n=0.02 =6.82(+0 2) and 91	h m d m s ns s s Pf.A 7(7), 0.38-0	in 81Jo.A 0.53 statist l=11.6(+3.4	(6)+ 0+ 1- (5+) 0+ (5)+ (2)+ 0+ (8)+ (6,7)+ 0+ 2- 3- 4-0.8) les 95Sc33	syste		UT	IS=12.60 7 β^+ =100 IT \approx 98.3; β^+ \approx 1.7 ϵ =100 β^+ =100 β^+ =100 IT=100 β^+ =100; β^+ p>3.9 β^+ =100; β^+ p<17	* ** ** ** ** **
101 Rb 101 Sr 101 Y 101 Zr 101 Nb 101 Mo 101 Tc 101 Tc 101 Ru 101 Ru 101 Rh 101 Rh 101 Ag 101 Ag 101 Cd 101 In		e 96Me	207.53 527.5 157.32 274.1 550# 09=400(2 179(9) at v				μs y d h m s m s s	4 3 20 0.1 0.3 0.03 0.01 8 0.4 0.3 0.01 0.06 0.3 0.10 0.05 1.1	3/2+# (5/2-) (5/2+) 3/2+ (5/2#)+ 1/2- 1/2- 5/2+ 11/2- 9/2+ 5/2+ 1/2- (5/2+) 9/2+# 1/2-# 5/2+# 50)	98 98 98 98 98 98 98 98 98 98 98 98 98	96Me09 02Ca37		$\begin{array}{l} \beta^-{=}100; \ \beta^-{\rm n}{=}28\ 4\\ \beta^-{=}100; \ \beta^-{\rm n}{=}2.37\ 14\\ \beta^-{=}100; \ \beta^-{\rm n}{=}2.37\ 14\\ \beta^-{=}100; \ \beta^-{\rm n}{=}1.94\ 18\\ \beta^-{=}100\\ \beta^-{=}100\\ \beta^-{=}100\\ \Gamma^-{=}100\\ \Gamma^-{=}100\\ \Gamma^-{=}100\\ \epsilon^-{=}100\\ \epsilon^-{=}100\\ \epsilon^-{=}100\\ \epsilon^-{=}100\\ \epsilon^-{=}100\\ \beta^+{=}100\\ \beta^+{=}100\\ \beta^+{=}100\\ \beta^+{=}100\\ \beta^+{=}100; \ \beta^+{p}{=}?\\ \beta^+{=}95\#; \ \Gamma^-{=}5\#\\ \beta^+{=}100; \ \beta^+{p}{=}?\\ \end{array}$	**

Nuclide	Mass ex (keV			Excitation nergy(keV		I	Half-l	life	J^{π}	Ens	Referen	ce	Decay modes and intensities (%)	
102Rb 102Sr 102Y 102Y ^m 102Zr 102Nb	-38310# -53080 -61890 -61690# -71740 -76350	110 90	200#	200#	* & * &		ms ms ms ms	5 6 10 40 0.2 0.2	0 ⁺ low high 0 ⁺ 1 ⁺	98 98 98 98 98	93Ru01	D	$\beta^{-}=100; \beta^{-}n=18 8$ $\beta^{-}=100; \beta^{-}n=5.5 15$ $\beta^{-}=100; \beta^{-}n=4.9 12$ $\beta^{-}=100; \beta^{-}n=4.9 12$ $\beta^{-}=100$ $\beta^{-}=100$	_
	-76220 -83557 -84566 -84546	50 21 9	130	50 10	BD * *	4.3 11.3 5.28 4.35	s m s m	0.2 0.4 0.2 0.15 0.07	high 0 ⁺ 1 ⁺ (4,5)	98 01 98 98			$\beta^{-}=100$ $\beta^{-}=100$ $\beta^{-}=100$ $\beta^{-}=100$ $\beta^{-}=98$ 2; IT=2 2	
¹⁰² Ru ¹⁰² Rh ¹⁰² Rh ^m ¹⁰² Pd	-89098.0 -86775 -86634 -87925.1	5 5 3.0	140.75	0.08		\$TABLE 207.0 3.742 \$TABLE	d y	0.010	0 ⁺ (1 ⁻ ,2 ⁻) 6 ⁺ 0 ⁺	98 98	98Sh21 98Sh21		IS=31.55 14 β^+ =78 5; β^- =22 5 β^+ ≈100; IT=0.233 24 IS=1.02 1; $2\beta^+$?	*
¹⁰² Cd ¹⁰² In	-82265 -82256 -79678 -70710	28 28 29 110	9.3	0.4		12.9 7.7 5.5 23.3	m m m	0.3 0.5 0.5 0.1	5 ⁺ 2 ⁺ 0 ⁺ (6 ⁺)		03Gi06		$\beta^{+}=100$ $\beta^{+}=51$ 5; IT=49 5 $\beta^{+}=100$ $\beta^{+}=100$; β^{+} p=0.0093 13	
$*^{102}Rh$	-64930 -62910 T: averag J: from 99 J: from 99	9Gi14	2017 21=207.3(2 (1.7) 61Hi	06=206(3	4.6 720 3)	s ns	1.4 220	0 ⁺ (6 ⁺)	98 98	95Fa.A 98Li50		β^+ =100; β^+ p? IT=100	* * * * * * * *
* ¹⁰² Sn * ¹⁰² Sn ^m	T: 95Fa.A	A, super								00)				**
¹⁰³ Sr ¹⁰³ Y	-47550# -58940#					50# 224	ms ((>300 ns)	5/2+#	01 01	97Be70 96Me09		β ⁻ ? β ⁻ =100; β ⁻ n=8 3	*
¹⁰³ Zr ¹⁰³ Nb ¹⁰³ Mo ¹⁰³ Tc	-68370 -75320 -80850 -84597	110 70 60 10				1.3 1.5 67.5 54.2	s s s	0.1 0.2 1.5 0.8	$(5/2^{-})$ $(5/2^{+})$ $(3/2^{+})$ $5/2^{+}$	01 01			$\beta^{-}=100$ $\beta^{-}=100$ $\beta^{-}=100$ $\beta^{-}=100$	
¹⁰³ Rh ¹⁰³ Rh ^m	-87258.8 -87020.6 -88022.2 -87982.4	2.1 2.8	238.2 39.756	0.7		39.26 1.69 STABLE 56.114	i	0.02 0.07 0.009	3/2 ⁺ 11/2 ⁻ 1/2 ⁻ 7/2 ⁺	01 01 01 01			β ⁻ =100 IT=100 IS=100. IT=100	
¹⁰³ Ag ¹⁰³ Ag ^m	-87479.1 -86694.3 -84791 -84657		784.79 134.45	0.10 0.04		16.991 25 65.7 5.7	d ns m s	0.019 2 0.7 0.3	5/2 ⁺ 11/2 ⁻ 7/2 ⁺ 1/2 ⁻	01 01 01 01			ε =100 IT=100 β ⁺ =100 IT=100	
103 Cd 103 In 103 In 103 Sn	-80649 -74599 -73967 -66970#	15 25 25 300#	631.7	0.1		7.3 60 34 7	m s s	0.1 1 2 3	5/2 ⁺ 9/2 ⁺ # 1/2 ⁻ # 5/2 ⁺ #	01	97Sz04 97Sz04		$\beta^{+}=100$ $\beta^{+}=100$ $\beta^{+}=67$; IT=33 $\beta^{+}=100$; $\beta^{+}=9$?	
¹⁰³ Sb * ¹⁰³ Y	-56180# T : averag	300#	e09=230(2	0) 96Lh04	4=190(50	100#	ms	$(>1.5 \mu s)$,		95Ry03	I	β^+ ?	**

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Nuclide	Mass ex (keV			Excitation nergy(keV)	I	Half-	·life	J^{π}	Ens	Referen	ce	Decay modes and intensities (%)	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	¹⁰⁴ Sr							ms		0+					
1993 No												99Wa09	D	, ,,	
1994 Nr															
1934				220	120										*
103-TC				220	120	во *									
10-1															
103 Ra				69.7	0.2										
103 Rh	104Ru			07.7	0.2			μο	0.5						
103-Rpm -86820.8 2.8 128.967 0.004 4.34 m 0.03 5† 00 Trac100; β = 0.131 103-Pat -89390 4 0.00 69.2 m 1.0 5† 00 β = 100 103-Agm -85111 6 6.9 0.4 33.5 m 2.0 2† 00 β = 100 103-Agm -85104 6 6.9 0.4 33.5 m 2.0 2† 00 β = 100 103-Agm -85104 6 6.9 0.4 33.5 m 2.0 2† 00 β = 100 103-Agm -85104 6 6.9 0.4 33.5 m 2.0 2† 00 β = 100 103-Agm -85104 6 6.9 0.4 33.5 m 2.0 2† 00 β = 100 103-Agm -76110 80 1.80 m 0.03 5,6† 00 ∏ = 100 103-Agm -76110 80 93.48 0.10 15.7 8 0.5 0† 00 ∏ = 100 β = 100 103-Agm -71590 100 20.8 8 0.5 0† 00 β = 100 β = 100 103-Agm -71590 100 20.8 8 0.5 0† 00 β = 100 β = 100 103-Agm -71590 100 20.8 8 0.5 0† 00 β = 100 β = 100 103-Agm -71590 100 20.8 8 0.5 0† 00 β = 100 β = 100 β = 100 103-Agm -71590 100 20.8 8 0.5 0† 00 β = 100 β = 100 β = 100 103-Agm -71590 100 20.8 8 0.5 0† 00 95Fa.A D β = 100 β = 100								s	0.4						
164Ag				128.967	0.004										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	¹⁰⁴ Pd														
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	^{104}Ag		6				69.2	m	1.0	5+	00			$\beta^{+}=100$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$^{104}Ag^{m}$	-85104	6	6.9	0.4		33.5	m	2.0	2^{+}	00			$\beta^{+} \approx 100$; IT<0.07	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	^{104}Cd	-83975	9				57.7	m	1.0	0_{+}	00			$\beta^{+}=100$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	¹⁰⁴ In	-76110	80				1.80	m	0.03	$5,6^{(+)}$	00			$\beta^{+}=100$	
		-76020	80	93.48	0.10		15.7	S	0.5		00			IT=80; β^+ =20	
*************************************							20.8	S	0.5	0_{+}	00				
*** *** *** *** *** *** *** **								ms	130		00	95Fa.A	D	$\beta^{+}=?; \beta^{+}p<7; p<7; \alpha ?$	*
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						ce, not	used								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	*104Sb	D : 95Fa.A	Super	sedes 95So	c28 p<1										**
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$															
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	105 Cr	38580#	700#				20#	me	(>300 nc)		07	07Bo70	T	R- 2	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	105 V									5/2+#				•	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										3/2 #		94DC24	1	•	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	105 Nb									5/2+#		96Me09	D		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$,		JOIVICOJ	D		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$. , ,				,	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	105Ru													•	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	¹⁰⁵ Rh									, .				•	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$^{105}\mathrm{Rh}^m$			129.781	0.004				0.00	,				•	*
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	¹⁰⁵ Pd							-							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	¹⁰⁵ Αg							d	0.07						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$^{105}\text{Ag}^{m}$			25,465	0.012										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	¹⁰⁵ Cd		12					m			93				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-79481	17				5.07	m	0.07	$9/2^{+}$	93	87Eb02	J	$\beta^{+}=100$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-78807	17	674.1	0.3		48	S	6	$(1/2)^{-}$	93			IT=?; $\beta^+=25\#$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	¹⁰⁵ Sn	-73260	80				34	s	1	$(5/2^{+})$	93	95Pf01	T	$\beta^{+}=100; \beta^{+}p=?$	*
*** *** *** T: no error given; other value: 30 s (see ENSDF: remeasurement recommended)	¹⁰⁵ Sb	-63820	100				1.12	s	0.16	$(5/2^{+})$	02			β^+ ?; p \approx 1; β^+ p ?	
*** *** *** *** *** *** *** *** *** **		-52500 #	500#				1#	μs		$5/2^{+}$ #				$\alpha ?; \beta^+ ?$	*
*** *** *** *** *** *** *** **		T: no erro	r given	; other val	lue: 30 s (see Ens	SDF: reme	asur	ement reco	mmende	ed)				**
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$															**
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	*105Te	I: the 3 ev	ents re	ported in 9	95Ry03 ar	e not tr	usted by N	NUB	ASE						**
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$															
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	106 v	-46770#	700#				50#	me	(>300 ne)		97	97Re70	ī	β − ?	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	106 Z r									0^{+}					*
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	106Nh													•	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	106Mo														
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	¹⁰⁶ Tc												-		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	¹⁰⁶ Ru														
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	¹⁰⁶ Rh													,	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				136	12	BD									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	¹⁰⁶ Pd														
$^{106}\text{Ag}^m$ -86847 5 89.66 0.07 8.28 d 0.02 6^+ 94 β^+ =100; IT \leq 4.2e-6		-86937	5				23.96	m	0.04	1+	94			$\beta^{+}=?; \beta^{-}\approx 0.5$	
A-group is continued on next page	$^{106}Ag^m$	-86847	5	89.66	0.07				0.02	6^{+}	94				
	A-gro	up is conti	nued on	next page	e										

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\beta^{+}=100$ $\beta^{+}=100$ $\beta^{+}=100$ $\beta^{+}=100$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\beta^{+}=100$ $\beta^{+}=100$ $\beta^{+}=100$ $\beta^{+}=100$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\beta^{+}=100$ $\beta^{+}=100$ $\beta^{+}=100$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\beta^{+}=100 \beta^{+}=100$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\beta^{+}=100$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	TT 100
* ¹⁰⁶ Zr I: and T>240 ns in 97So07 * ¹⁰⁶ Nb T: average 96Me09=900(20) 83Sh06=1020(50) * ¹⁰⁶ Sb T: from 95Le.C, Fig. 4, preliminary * ¹⁰⁶ Te T: average 94Pa11=60(+40-20) 81Sc17=60(+30-10) * ¹⁰⁷ Zr -55190# 300# 300 ms (>300 ns) 5/2+# 00 97Be70 II * ¹⁰⁷ Zr -55190# 300# 300 ms (>300 ns) 00 94Be24 II * ¹⁰⁷ Nb -64920# 400# 300 ms (9 5/2+# 00 96Me09 II * ¹⁰⁷ Mo -72940 160 3.5 s 0.5 (7/2-) 00 * ¹⁰⁷ Mo -72870 160 66.3 0.2 470 ns 30 (5/2-) 00 * ¹⁰⁷ Tc -79100 150 21.2 s 0.2 (3/2-) 00 * ¹⁰⁷ Tc ^m -79030 150 65.7 1.0 184 ns 3 (5/2-) 00	
* ¹⁰⁶ Nb T: average 96Me09=900(20) 83Sh06=1020(50) * ¹⁰⁶ Sb T: from 95Le.C, Fig. 4, preliminary * ¹⁰⁶ Te T: average 94Pa11=60(+40-20) 81Sc17=60(+30-10) 107Y -42720# 500# 30# ms (>300 ns) 5/2+# 00 97Be70 I 107Zr -55190# 300# 150# ms (>300 ns) 00 94Be24 I 107Nb -64920# 400# 300 ms 9 5/2+# 00 96Me09 I 107Mo -72940 160 3.5 s 0.5 (7/2-) 00 107Tc -79100 150 21.2 s 0.2 (3/2-) 00 107Tc ^m -79030 150 65.7 1.0 184 ns 3 (5/2-) 00	α=100 *
* ¹⁰⁶ Sb T : from 95Le.C, Fig. 4, preliminary * ¹⁰⁶ Te T : average 94Pa11=60(+40-20) 81Sc17=60(+30-10) ** 107Y	" K
*\$^{106}Te\$ T : average \$94Pa11=60(+40-20) \$1Sc17=60(+30-10)\$\$\$ 30# ms \$(>300 ns)\$ \$5/2+# 00 \$97Be70\$ I \$^{107}Zr\$ \$-55190# 300# \$150# ms \$(>300 ns)\$ \$00 94Be24\$ I \$^{107}Nb\$ \$-64920# 400# \$300 ms \$9\$ \$5/2+# 00 \$96Me09\$ T \$^{107}Mo^m\$ \$-72940\$ 160 \$3.5\$ s \$0.5\$ \$(7/2-) 00 \$^{107}Mo^m\$ \$-72870\$ 160 \$66.3\$ \$0.2\$ \$470\$ ns \$30\$ \$(5/2-) 00 \$^{107}Tc\$ \$-79100\$ 150 \$21.2\$ s \$0.2\$ \$(3/2-) 00 \$^{107}Tc^m\$ \$-79030\$ 150 \$65.7\$ 1.0 \$184\$ ns \$3\$ \$(5/2-) 00\$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	k
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	eta^- ?
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	β-?
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	TD $\beta^-=100$; β^- n=6.0 15
107 Tc -79100 150 21.2 s 0.2 $(3/2^{-})$ 00 107 Tc ^m -79030 150 65.7 1.0 184 ns 3 $(5/2^{-})$ 00	$\beta^{-}=100$
107 Tc ^m -79030 150 65.7 1.0 184 ns 3 $(5/2^{-})$ 00	IT=100
	$\beta^-=100$ IT=100
107 Ru -83920 120 3.75 m 0.05 $(5/2)^+$ 00	$\beta^{-}=100$
107Rh -86863 12 21.7 m 0.4 7/2+ 00	$\beta^{-}=100$
$^{107}\text{Rh}^m$ -86595 12 268.36 0.04 > 10 μs 1/2 00	IT=100
¹⁰⁷ Pd -88368 4 6.5 My 0.3 5/2 ⁺ 00	$\beta^{-}=100$
$^{107}\text{Pd}^m$ -88153 4 214.6 0.3 21.3 s 0.5 11/2 00	IT=100
107 Ag -88402 4 STABLE $1/2^{-}$ 00	IS=51.839 8
107 Ag ^m -88309 4 93.125 0.019 44.3 s 0.2 $7/2^+$ 00	IT=100
^{107}Cd -86985 6 6.50 h 0.02 $5/2^+$ 00	$\beta^{+}=100$
107 In -83560 11 32.4 m 0.3 $9/2^+$ 00	$\beta^{+}=100$
107 In ^m -82882 11 678.5 0.3 50.4 s 0.6 $1/2^{-}$ 00	IT=100
107 Sn -78580 80 2.90 m 0.05 $(5/2^{+})$ 00	$\beta^{+}=100$
107Sb -70650# 300# 4.6 s 0.8 5/2+# 00	$\beta^{+}=100$
107 Te $-60540\#$ 300# 3.1 ms 0.1 5/2+# 00 $*^{107}$ Zr I: and $T > 240$ ns in 97So07	α =70 30; β ⁺ =30 30
* ¹⁰⁷ Zr I: and T>240 ns in 97So07 * ¹⁰⁷ Nb T: average 96Me09=300(30) 91Hi02=300(10)	*
* No 1 . average 70/Ne07=300(30) 7111102=300(10)	4
¹⁰⁸ Y -37740# 800# 20# ms (>300 ns) 00 95Cz.A I	β-?;β-n?
108Zr −52200# 600# 80# ms (>300 ns) 0 ⁺ 00 97Be70 I	β^- ?; β^- n?
108 Nb $-60700# 300#$ 193 ms 17 $(2^+) 00$	$\beta^{-}=100; \beta^{-}=6.25$
108 Mo -71300 # 200# 1.09 s 0.02 $^{0+}$ 00	$\beta^{-}=100$
108 Tc -75950 130 5.17 s 0.07 $^{(2)^{+}}$ 00	$\beta^{-}=100$
108 Ru -83670 120 4.55 m 0.05 $^{+}$ 00	$\beta^{-}=100$
108 Rh -85020 110 * 16.8 s 0.5 1 ⁺ 00	$\beta^{-}=100$
$^{108}\text{Rh}^m$ -85080 40 -60 110 BD * 6.0 m 0.3 $(5)^{(+\#)}$ 00	$\beta^{-}=100$
¹⁰⁸ Pd -89524 3 STABLE 0 ⁺ 00	IS=26.46 9
108 Ag - 87602 4 2.37 m 0.01 1 ⁺ 00	$\beta^-=97.15\ 20;\ \beta^+=2.85\ 20$
108 Ag '' - 87493 4 109.440 0.007 418 y 21 6+ 00	$\beta^{+}=91.39$; IT=8.79
108Cd -89252 6 STABLE (>410 Py) 0+ 02 95Ge14 T 108In -84116 10 58.0 m 1.2 7+ 00	
	$\beta^{+}=100$ $\beta^{+}=100$
108 In ^m -84086 10 29.75 0.05 39.6 m 0.7 2 ⁺ 00 108 Sn -82041 20 10.30 m 0.08 0 ⁺ 00	$\beta^{+}=100$ $\beta^{+}=100$
108 Sb $-72510# 210# 74 s 0.3 (4+) 00$	$\beta^{+}=100$ $\beta^{+}=100$; $\beta^{+}p$?
108 Te $^{-65720}$ 100 $^{+}$ 0.1 $^{+}$ 0.0 85Ti02 I	
108I -52650# 360# 36 ms 6 1 ⁺ # 00 94Pa12 II	
* ¹⁰⁸ Ag ^m T: discrepant results: 418(7) 310(130) 127(21), see ENSDF	
*108Te D:; $\beta^+ p = 2.4 \ 10$; $\beta^+ \alpha < 0.065$	$\alpha = ?; \beta^+ = 9#; p < 1$
* ¹⁰⁸ I D: β^+ =9%# estimated by 94Pa12 using theoretical β^+ half-life ≈400 ms	

Nuclide	Mass ex (keV			citation rgy(keV)		H	Ialf-	life	J^{π}	Ens	Referen	ce	Decay modes and intensities (%)
109 Nb 109 Mo 109 Tc 109 Ru 109 Rh 109 Pd 109 Pd ^m 109 Ag	-47280# -58100# -67250# -74540 -80850 -85011 -87607 -87418 -88722.7	500#	188.990	0.010		60# 190 530 860 34.5 80 13.7012 4.696 STABLE	ms ms ms s	(>300 ns) 30 60 40 1.0 2 0.0024 0.003	5/2+# 7/2-# 3/2-# 5/2+# 7/2+ 5/2+ 11/2- 1/2-	99 99 99 99 99 99	97Be70	I	β^- ? β^- =100; β^- n=31 5 β^- =100 β^- =100; β^- n=0.08 2 β^- =100 β^- =100 IT=100 IS=48.161 8
¹⁰⁹ Cd ¹⁰⁹ Cd ^m ¹⁰⁹ Cd ⁿ ¹⁰⁹ In	-88634.7 -88508 -88448 -88045 -86489 -85839	2.9 4 4 4 6 6	88.0341 59.6 463.0 650.1	0.0011 0.4 0.5		39.6 461.4 12 10.9 4.2 1.34	s d μs μs h m	0.2 1.2 2 0.5 0.1 0.07	7/2 ⁺ 5/2 ⁺ 1/2 ⁺ 11/2 ⁻ 9/2 ⁺ 1/2 ⁻	99 99 99 99 99			$\begin{array}{l} \text{IT=}100 \\ \varepsilon = 100 \\ \text{IT=}100 \\ \text{IT=}100 \\ \text{JT=}100 \\ \text{JT=}100 \\ \text{IT=}100 \end{array}$
¹⁰⁹ In ⁿ ¹⁰⁹ Sn ¹⁰⁹ Sb ¹⁰⁹ Te ¹⁰⁹ I	-84387 -82639 -76259 -67610 -57610	6 10 19 60 100	2101.8	0.2		1.34 209 18.0 17.0 4.6 103	ms m s s µs	6 0.2 0.7 0.3 5	$(19/2^{+})$ $5/2^{(+)}$ $5/2^{+}$ $(5/2^{+})$ $(5/2^{+})$	99 99 99 99	87Gi02	J	TI=100 TI=100 $\beta^{+}=100$ $\beta^{+}=100$ $\beta^{+}=?$; $\alpha=3.9$ 13; * $p=100$
* ¹⁰⁹ Te	D:;β	+p=9.4	$+31; \beta^+ \alpha < 0$	0.005									**
¹¹⁰ Nb ¹¹⁰ Mo ¹¹⁰ Tc ¹¹⁰ Ru	-43900# -53620# -65460# -70960 -79980 -82780	500#			*	30# 170 300 920 11.6 28.5	ms ms ms ms	(>300 ns) 20 40 30 0.6 1.5	$0^{+} \\ 2^{+} \# \\ 0^{+} \\ (2^{+}) \\ 0^{+} \\ (>3)^{(+\#)}$	00 00 00 00 00	97Be70 96Me09		β^- ? β^- =100; β^- n=40 8 β^- =100; β^- n ? β^- =100; β^- n=0.04 2 β^- =100 β^- =100
¹¹⁰ Rh ^m ¹¹⁰ Pd ¹¹⁰ Ag ¹¹⁰ Ag ^m		22 11 2.9 2.9	-60 117.59	0.05	BD *	3.2 STABLE 24.6 249.950	s	0.2 (>600 Py) 0.2 0.024	1+	00 00 00 00 00	52Wi26 02Un02		$β^-$ =100 IS=11.72 9; 2 $β^-$? $β^-$ ≈100; ε=0.30 6 $β^-$ =98.64 6; IT=1.36 6
¹¹⁰ In ¹¹⁰ In ^m ¹¹⁰ Sn ¹¹⁰ Sb ¹¹⁰ Te	-86475 -86413 -85844 -77540# -72280	12 12 14 200# 50	62.1	0.5		4.9 69.1 4.11 23.0 18.6	h m h s	0.1 0.5 0.10 0.4 0.8	7 ⁺ 2 ⁺ 0 ⁺ (4 ⁺) 0 ⁺	00 00 00 00 00	97La13	J	IS=12.49 18 β^{+} =100 β^{+} =100 ϵ =100 β^{+} =100 β^{+} ≈100; α =0.003#
¹¹⁰ Xe		130	3; $\beta^{+}\alpha=1.1$	3		650 310	ms ms	20 190	1 ⁺ # 0 ⁺	00	02Ma19	TD	β^{+} =83 4; α =17 4; * α =64 35; β^{+} ? **

Nuclide	Mass ex (keV			citation rgy(keV)	I	Half-	life	J^{π}	Ens	Referen	ce	Decay modes and intensities (%)	
111 Nb 111 Mo 111 Tc 111 Ru 111 Rh	-50630# -61100# -69220 -76670 -82357	500# 400# 110 70 30				80# 200# 290 2.12		(>300 ns) (>300 ns) 20 0.07 1	5/2 ⁺ # 3/2 ⁻ # (5/2 ⁺) (7/2 ⁺)	97 97 96 96 96	97Be70 94Be24 96Me09 98Lh02	I TD	β ⁻ ? β ⁻ ? β ⁻ =100; β ⁻ n=0.85 20 β ⁻ =100 β ⁻ =100	*
	-86004 -85832 -88221 -88161	11 11 3 3	172.18 59.82	0.08		23.4 5.5 7.45 64.8	m h d s	0.2 0.1 0.01 0.8	5/2 ⁺ 11/2 ⁻ 1/2 ⁻ 7/2 ⁺	96 96 96 96			$\beta^{-}=100$ IT=73 3; $\beta^{-}=27$ 3 $\beta^{-}=100$ IT=99.3 2; $\beta^{-}=0.7$ 2	
111Cd 111Cd ^m 111In 111In ^m	-89257.5 -88861.3 -88396 -87859	2.7 2.7 5 5	396.214 536.95	0.021		STABLE 48.50 2.8047 7.7	m d m	0.09 0.0004 0.2	1/2 ⁺ 11/2 ⁻ 9/2 ⁺ 1/2 ⁻	00 00 00 00			IS=12.80 12 IT=100 ε =100 IT=100	
¹¹¹ Sn ¹¹¹ Sn ^m ¹¹¹ Sb ¹¹¹ Te	-85945 -85690 -80888 -73480	7 7 28 70	254.72	0.08		35.3 12.5 75 19.3	m μs s	0.6 1.0 1 0.4	7/2 ⁺ 1/2 ⁺ (5/2 ⁺) 5/2 ⁺ #	96 96 97			$\beta^{+}=100$ $\beta^{+}=100$ $\beta^{+}=100; \beta^{+}=?$	
111 I 111 I ^m 111 Xe 111 Xe ^m	-64950# -63550# -54400#	300# 300# 300#	1398 non ex	1 istent	RN	2.5 21 740 900	s ns ms	0.2 2 200 200	5/2 ⁺ # (11/2 ⁻) 5/2 ⁺ #	96	94Pa11 90Tu.A	D T	$\beta^{+} \approx 100; \alpha = 0.088$ $\beta^{+} ?; \alpha = 107$	*
* ¹¹¹ Mo * ¹¹¹ Tc * ¹¹¹ Xe ^m	I : and T > T : supersor I : from as	edes 881	in 97So07 Pe13=300(30) from	same	group					901u.A	1		** ** **
¹¹² Nb	-45800#	700#				60#	ms	(>300 ns)	2+#	97	97Be70	ī	β-?	
¹¹² Mo ¹¹² Tc ¹¹² Ru	-58830# -66000 -75480	600# 120 70				150# 290 1.75		(>300 ns) 20 0.07	0 ⁺ 2 ⁺ # 0 ⁺	97 97 97	94Be24	I	β^{-} ? β^{-} =100; β^{-} n=1.5 2 β^{-} =100	
112Rh 112Rh ^m 112Pd 112Ag	-79740 -79410 -86336 -86624	50 60 18 17	330	70	BD	3.4 6.73 21.03 3.130	s s h h	0.4 0.15 0.05 0.009	1^{+} > 3 0^{+} $2^{(-)}$	97 97 97 97	99Lh01 99Lh01	T T	$\beta^{-}=100$ $\beta^{-}=100$ $\beta^{-}=100$ $\beta^{-}=100$	*
112Cd 112In 112In ^m 112In ⁿ	-90580.5 -87996 -87839 -87645	2.7 5 5 5	156.59 350.76	0.05 0.09		STABLE 14.97 20.56 690	m m ns	0.10 0.06 50	0 ⁺ 1 ⁺ 4 ⁺ 7 ⁺	97 97 97 97			IS=24.13 21 β^+ =56 3; β^- =44 3 IT=100 IT=100	
¹¹² In ^p ¹¹² Sn ¹¹² Sb ¹¹² Te	-87382 -88661 -81601 -77300	5 4 18 170	613.69	0.14		2.81 STABLE 51.4 2.0	μs s m	0.03 1.0 0.2	8 ⁻ 0 ⁺ 3 ⁺ 0 ⁺	97 97 97 97	87Eb02	J	IT=100 IS=0.97 1; $2\beta^+$? β^+ =100 β^+ =100	
¹¹² I ¹¹² Xe ¹¹² Cs * ¹¹² Rh	-67100# -59970 -46290# T: superse	100 300#	Io11-2 1(0	(3) and 8	88 Av0	3.42 2.7 500 2-3 8(0.6)	s s μs	0.11 0.8 100 same group	1+# 0+ 1+#	97 97 02	78Ro19 94Pa11		$\beta^{+}\approx 100; \alpha=0.0012; \dots$ $\beta^{+}\approx 100; \alpha=0.9 8$ p=100	* *
* ¹¹² Rh ^m * ¹¹² I * ¹¹² I * ¹¹² Xe	T: superso D:; β D: β ⁺ p and	edes 88.7 $p=0.85$ $p=0.85$ $p=0.85$	Ay02=6.8(0 8 10; $\beta^+\alpha$ are derive	0.2) =0.104 1 d from <i>f</i>	2 B ⁺ p/α=	=735(80)	$oldsymbol{eta}^+$ p	$\beta + \alpha = 8.50$ So and 78Ro						** ** ** **

Nuclide	Mass ex (keV			xcitation ergy(keV))	I	Half-	life	J^{π}	Ens	Reference)	Decay modes and intensities (%)	
¹¹³ Nb ¹¹³ Mo	-42200# -54140#					30# 100#		(>300 ns) (>300 ns)	5/2+#	98 98	97Be70 94Be24	I I	β-? β-?	
¹¹³ Tc		300#				170	ms	20	$3/2^{-}$ #		99Wa09		$\beta^-=100; \beta^-=2.13$	*
113 R u	-72200	70				800	ms	50	$(5/2^+)$		98Ku17	J	$\beta^{-}=100$	
	-72070	70	130	18		510	ms	30	$(11/2^{-})$		98Ku17		IT=?; β^- =?	*
¹¹³ Rh ¹¹³ Pd	-78680 -83690	50 40				2.80 93	s s	0.12 5	$(7/2^+)$ $(5/2^+)$		93Pe11	J	$\beta^{-}=100$ $\beta^{-}=100$	
113Pdm	-83690 -83610	40	81.1	0.3		300	ms	100	$(9/2^{-})$	98			IT=100	
$^{113}Pd^n$	05010	-10		xistent	RN	> 100	s	100	(2/2)	98	81Me17	I	11-100	*
113Ag	-87033	17				5.37	h	0.05	$1/2^{-}$	98			$\beta^-=100$	
$^{113}Ag^{m}$	-86990	17	43.50	0.10		68.7	S	1.6	$7/2^{+}$	98			IT=64 7; β ⁻ =36 7	
¹¹³ Cd	-89049.3					7.7	Py	0.3	$1/2^{+}$	98			IS=12.22 12; β^- =100	
113Cd ^m	-88785.8		263.54	0.03		14.1	У	0.5	11/2-	98			$\beta^- \approx 100$; IT=0.14	
¹¹³ In ¹¹³ In ^m	-89370 -88978	3	391.699	0.003		STABLE 1.6579		0.0004	$9/2^+$ $1/2^-$	99 99			IS=4.29 5 IT=100	
113Sn	-88333	4	391.099	0.003		115.09		0.0004	1/2+	00			$\beta^{+}=100$	
	-88256	4	77.386	0.019		21.4	m	0.4	7/2+	00			IT=91.1 23; β^+ =8.9 23	
¹¹³ Sb	-84420	18				6.67	m	0.07	5/2+	98			$\beta^{+}=100$	
¹¹³ Te	-78347	28				1.7	m	0.2	$(7/2^{+})$	98			$\beta^{+}=100$	
113I	-71130	50				6.6	S	0.2	5/2+#	98			β^{+} =100; α =3.31e-7;	*
¹¹³ Xe	-62090	80				2.74	S	0.08	$5/2^{+}$ #		85Ti02	D	$\beta^{+}\approx 100; \alpha=0.0115;$	*
113Cs		100	(20) 10		0(50)	16.7	μs	0.7	$5/2^{+}$ #	02			p=100; α =0	
* ¹¹³ Tc	T: 98Ku1 E: above						sam	e authors						**
* Ku * 113 Pd ⁿ	I : existend						n by	03Pe11						**
* ¹¹³ I	$D:\ldots:\beta$		n possible	since disc	overy	or ru	Оу	931 011						**
*113Xe	$D:\ldots;\beta$		4; β ⁺ α≈0.	007 4										**
*113Xe	D: $\alpha = 0.0$	024-0.0	0204% fro	m estimat	ed limi	t for the	redu	ced width,	see 85T	i02				**
*113Xe	D: β^+	p and	$\beta^+\alpha$ deriv	ed from	3^+ p/ α	=605(35)	and	$\beta^+ p/\beta^+ \alpha$	=500-15	00 i	n 85Ti02			**
¹¹⁴ Mo	-51310 #					80#	ms	(>300 ns)						
¹¹⁴ Tc	-59730#	600#							0_{+}	03	97Be70	I	β^- ?	
¹¹⁴ Ru ¹¹⁴ Rh	-70530#					150	ms	30	2+#	03	97Be70	I	$\beta^-=100; \beta^-n=?$	
		230#				530	ms	60	2+# 0+	03 03	97Be70	I	$\beta^{-}=100; \beta^{-}n=?$ $\beta^{-}=100; \beta^{-}n?$	
	-75630	230# 110	200#	150#	*	530 1.85	ms s	60 0.05	2+# 0+ 1+	03 03 03	97Be70	I	$\beta^{-}=100; \beta^{-}n=?$ $\beta^{-}=100; \beta^{-}n?$ $\beta^{-}=100; \beta^{-}n?$	
$^{114}\mathrm{Rh}^{m}$	-75630 -75430#	230# 110 190#	200#	150#	*	530 1.85 1.85	ms s s	60 0.05 0.05	2+# 0+ 1+ (4,5)	03 03 03 03	97Be70	I	$\beta^{-}=100; \beta^{-}n=?$ $\beta^{-}=100; \beta^{-}n?$ $\beta^{-}=100; \beta^{-}n?$ $\beta^{-}=100$	
¹¹⁴ Rh ^m ¹¹⁴ Pd	-75630 -75430# -83497	230# 110 190# 24	200#	150#		530 1.85 1.85 2.42	ms s s m	60 0.05 0.05 0.06	$2^{+}\#$ 0^{+} 1^{+} $(4,5)$ 0^{+}	03 03 03 03 03	97Be70	I	$\beta^{-}=100; \beta^{-}n=?$ $\beta^{-}=100; \beta^{-}n?$ $\beta^{-}=100; \beta^{-}n?$ $\beta^{-}=100$ $\beta^{-}=100$	
¹¹⁴ Rh ^m ¹¹⁴ Pd ¹¹⁴ Ag	-75630 -75430# -83497 -84949	230# 110 190#	200# 199	150#		530 1.85 1.85	ms s s	60 0.05 0.05	2+# 0+ 1+ (4,5)	03 03 03 03	97Be70	I	$\beta^{-}=100; \beta^{-}n=?$ $\beta^{-}=100; \beta^{-}n?$ $\beta^{-}=100; \beta^{-}n?$ $\beta^{-}=100$	
114Rh ^m 114Pd 114Ag 114Ag ^m 114Cd	-75630 -75430# -83497	230# 110 190# 24 25 25				530 1.85 1.85 2.42 4.6	ms s s m s	60 0.05 0.05 0.06 0.1	$\begin{array}{c} 2^{+} \# \\ 0^{+} \\ 1^{+} \\ (4,5) \\ 0^{+} \\ 1^{+} \\ (<7^{+}) \\ 0^{+} \end{array}$	03 03 03 03 03 03	97Be70 95Ge14	I T	β^- =100; β^- n=? β^- =100; β^- n? β^- =100; β^- n? β^- =100 β^- =100 β^- =100	
114Rh ^m 114Pd 114Ag 114Ag ^m 114Cd 114In	-75630 -75430# -83497 -84949 -84750 -90020.9 -88572	230# 110 190# 24 25 25 2.7 3	199	5		530 1.85 1.85 2.42 4.6 1.50 STABLE 71.9	ms s m s ms	60 0.05 0.05 0.06 0.1 0.05 (>92 Py) 0.1	$\begin{array}{c} 2^{+}\#\\ 0^{+}\\ 1^{+}\\ (4,5)\\ 0^{+}\\ 1^{+}\\ (<7^{+})\\ 0^{+}\\ 1^{+}\\ \end{array}$	03 03 03 03 03 03 03 03			$\begin{array}{l} \beta^-{=}100; \beta^-{n}{=}? \\ \beta^-{=}100; \beta^-{n}{}? \\ \beta^-{=}100; \beta^-{n}{}? \\ \beta^-{=}100; \beta^-{n}{}? \\ \beta^-{=}100 \\ \beta^-{=}100 \\ \beta^-{=}100 \\ \text{IT}{=}100 \\ \text{IS}{=}28.73 42; 2\beta^-{}? \\ \beta^-{=}99.50 15; \beta^+{=}0.50 15 \end{array}$	
114Rh ^m 114Pd 114Ag 114Ag ^m 114Cd 114In 114In ^m	-75630 -75430# -83497 -84949 -84750 -90020.9 -88572 -88382	230# 110 190# 24 25 25 2.7 3	199 190.29	5 0.03		530 1.85 1.85 2.42 4.6 1.50 STABLE 71.9 49.51	ms s m s ms	60 0.05 0.05 0.06 0.1 0.05 (>92 Py) 0.1 0.01	$\begin{array}{c} 2^{+}\#\\ 0^{+}\\ 1^{+}\\ (4,5)\\ 0^{+}\\ 1^{+}\\ (<7^{+})\\ 0^{+}\\ 1^{+}\\ 5^{+}\\ \end{array}$	03 03 03 03 03 03 03 03 03			$\begin{array}{l} \beta^-{=}100; \beta^-{n}{=}? \\ \beta^-{=}100; \beta^-{n}{}? \\ \beta^-{=}100; \beta^-{n}{}? \\ \beta^-{=}100; \beta^-{n}{}? \\ \beta^-{=}100 \\ \beta^-{=}100 \\ \Pi^-{=}100 \\ \Pi^-$	
114Rh ^m 114Pd 114Ag 114Ag ^m 114Cd 114In 114In ^m 114In ⁿ	-75630 -75430# -83497 -84949 -84750 -90020.9 -88572 -88382 -88070	230# 110 190# 24 25 25 2.7 3 3	199 190.29 501.94	5 0.03 0.03		530 1.85 1.85 2.42 4.6 1.50 STABLE 71.9 49.51 43.1	ms s m s ms	60 0.05 0.05 0.06 0.1 0.05 (>92 Py) 0.1 0.01 0.6	$\begin{array}{c} 2^{+}\#\\ 0^{+}\\ 1^{+}\\ (4,5)\\ 0^{+}\\ 1^{+}\\ (<7^{+})\\ 0^{+}\\ 1^{+}\\ 5^{+}\\ (8^{-})\\ \end{array}$	03 03 03 03 03 03 03 03 03 03			$\begin{array}{l} \beta^- = 100; \ \beta^- = n = ? \\ \beta^- = 100; \ \beta^- = n \ ? \\ \beta^- = 100; \ \beta^- = n \ ? \\ \beta^- = 100 \\ \beta^- = 100 \\ \beta^- = 100 \\ \text{IT} = 100 \\ \text{IS} = 28.73 \ 42; \ 2\beta^- \ ? \\ \beta^- = 99.50 \ 15; \ \beta^+ = 0.50 \ 15 \\ \text{IT} = 96.75 \ 24; \ \beta^+ = 3.25 \ 24 \\ \text{IT} = 100 \end{array}$	
114 Rh ^m 114 Pd 114 Ag 114 Ag 114 Cd 114 In 114 In ^m 114 In ⁿ 114 In ^p	-75630 -75430# -83497 -84949 -84750 -90020.9 -88572 -88382 -88070 -87930	230# 110 190# 24 25 25 2.7 3 3 3	199 190.29	5 0.03		530 1.85 1.85 2.42 4.6 1.50 STABLE 71.9 49.51 43.1 4.3	ms s m s ms d ms μ s	60 0.05 0.05 0.06 0.1 0.05 (>92 Py) 0.1 0.01	$\begin{array}{c} 2^{+\#} \\ 0^{+} \\ 1^{+} \\ (4,5) \\ 0^{+} \\ 1^{+} \\ (<7^{+}) \\ 0^{+} \\ 1^{+} \\ 5^{+} \\ (8^{-}) \\ (7^{+}) \end{array}$	03 03 03 03 03 03 03 03 03 03			$\begin{array}{l} \beta^-{=}100;\beta^-{=}n{=}?\\ \beta^-{=}100;\beta^-{n}?\\ \beta^-{=}100;\beta^-{n}?\\ \beta^-{=}100\\ \beta^-{=}100\\ \beta^-{=}100\\ \text{IT}{=}100\\ \text{IS}{=}28.7342;2\beta^-?\\ \beta^-{=}99.5015;\beta^+{=}0.5015\\ \text{IT}{=}66.7524;\beta^+{=}3.2524\\ \text{IT}{=}100\\ \text{IT}{=}100\\ \text{IT}{=}100\\ \end{array}$	
114Rh ^m 114Pd 114Ag 114Ag 114Cd 114In 114In ^m 114In ⁿ 114In ⁿ 114Sn	-75630 -75430# -83497 -84949 -84750 -90020.9 -88572 -88382 -88070 -87930 -90561	230# 110 190# 24 25 25 2.7 3 3 3 3	199 190.29 501.94 641.72	5 0.03 0.03 0.03		530 1.85 1.85 2.42 4.6 1.50 STABLE 71.9 49.51 43.1 4.3 STABLE	ms s m s ms d ms μ s	60 0.05 0.05 0.06 0.1 0.05 (>92 Py) 0.1 0.01 0.6 0.4	$\begin{array}{c} 2^{+}\#\\ 0^{+}\\ 1^{+}\\ (4,5)\\ 0^{+}\\ 1^{+}\\ (<7^{+})\\ 0^{+}\\ 1^{+}\\ 5^{+}\\ (8^{-})\\ (7^{+})\\ 0^{+}\\ \end{array}$	03 03 03 03 03 03 03 03 03 03 03 03			$\begin{array}{l} \beta^-{=}100; \beta^-{=}? \\ \beta^-{=}100; \beta^-{=}n ? \\ \beta^-{=}100; \beta^-{n} ? \\ \beta^-{=}100; \beta^-{n} ? \\ \beta^-{=}100 \\ \beta^-{=}100 \\ \beta^-{=}100 \\ \text{IT}{=}100 \\ \text{IS}{=}28.73 42; 2\beta^- ? \\ \beta^-{=}99.50 15; \beta^+{=}0.50 15 \\ \text{IT}{=}96.75 24; \beta^+{=}3.25 24 \\ \text{IT}{=}100 \\ \text{IT}{=}100 \\ \text{IS}{=}0.66 1 \end{array}$	
114Rh ^m 114Pd 114Ag 114Ag ^m 114Cd 114In 114In ^m 114In ⁿ 114In ⁿ 114Sn 114Sn ^m	-75630 -75430# -83497 -84949 -84750 -90020.9 -88572 -88382 -88070 -87930 -90561 -87474	230# 110 190# 24 25 25 2.7 3 3 3 3 3	199 190.29 501.94	5 0.03 0.03		530 1.85 1.85 2.42 4.6 1.50 STABLE 71.9 49.51 43.1 4.3 STABLE 733	ms s s m s ms d ms µs ns	60 0.05 0.05 0.06 0.1 0.05 (>92 Py) 0.1 0.01 0.6 0.4	$\begin{array}{c} 2^{+\#} \\ 0^{+} \\ 1^{+} \\ (4,5) \\ 0^{+} \\ 1^{+} \\ (<7^{+}) \\ 0^{+} \\ 1^{+} \\ 5^{+} \\ (8^{-}) \\ (7^{+}) \\ 0^{+} \\ 7^{-} \end{array}$	03 03 03 03 03 03 03 03 03 03 03 03 03			$\begin{array}{l} \beta^-{=}100; \beta^-{=}n{=}? \\ \beta^-{=}100; \beta^-{n} ? \\ \beta^-{=}100; \beta^-{n} ? \\ \beta^-{=}100; \beta^-{n} ? \\ \beta^-{=}100 \\ \beta^-{=}100 \\ \text{IT}{=}100 \\ \text{IS}{=}28.73 42; 2\beta^- ? \\ \beta^-{=}99.50 15; \beta^+{=}0.50 15 \\ \text{IT}{=}96.75 24; \beta^+{=}3.25 24 \\ \text{IT}{=}100 \\ \text{IS}{=}0.66 1 \\ \text{IT}{=}100 \\ \end{array}$	
114Rh ^m 114Pd 114Ag 114Ag 114Cd 114In 114In ^m 114In ⁿ 114Sn 114Sn 114Sb 114Sb ^m	-75630 -75430# -83497 -84949 -84750 -90020.9 -88572 -88382 -88070 -87930 -90561	230# 110 190# 24 25 25 2.7 3 3 3 3	199 190.29 501.94 641.72	5 0.03 0.03 0.03		530 1.85 1.85 2.42 4.6 1.50 STABLE 71.9 49.51 43.1 4.3 STABLE	ms s m s ms d ms μ s	60 0.05 0.05 0.06 0.1 0.05 (>92 Py) 0.1 0.01 0.6 0.4	$\begin{array}{c} 2^{+}\#\\ 0^{+}\\ 1^{+}\\ (4,5)\\ 0^{+}\\ 1^{+}\\ (<7^{+})\\ 0^{+}\\ 1^{+}\\ 5^{+}\\ (8^{-})\\ (7^{+})\\ 0^{+}\\ \end{array}$	03 03 03 03 03 03 03 03 03 03 03 03			$\begin{array}{l} \beta^-{=}100; \beta^-{=}? \\ \beta^-{=}100; \beta^-{=}n ? \\ \beta^-{=}100; \beta^-{n} ? \\ \beta^-{=}100; \beta^-{n} ? \\ \beta^-{=}100 \\ \beta^-{=}100 \\ \beta^-{=}100 \\ \text{IT}{=}100 \\ \text{IS}{=}28.73 42; 2\beta^- ? \\ \beta^-{=}99.50 15; \beta^+{=}0.50 15 \\ \text{IT}{=}96.75 24; \beta^+{=}3.25 24 \\ \text{IT}{=}100 \\ \text{IT}{=}100 \\ \text{IS}{=}0.66 1 \end{array}$	
114Rh ^m 114Pd 114Ag 114Ag ^m 114Cd 114In 114In ^m 114In ⁿ 114Sp 114Sp 114Sb ^m 114Sb ^m	-75630 -75430# -83497 -84949 -84750 -90020.9 -88572 -88382 -88070 -87930 -90561 -87474 -84515	230# 110 190# 24 25 25 2.7 3 3 3 3 3 28	199 190.29 501.94 641.72 3087.37	5 0.03 0.03 0.03 0.07		530 1.85 1.85 2.42 4.6 1.50 STABLE 71.9 49.51 43.1 4.3 STABLE 733 3.49	ms s s m s ms d ms μ s	60 0.05 0.05 0.06 0.1 0.05 (>92 Py) 0.1 0.01 0.6 0.4	$\begin{array}{c} 2^{+\#} \\ 0^{+} \\ 1^{+} \\ (4,5) \\ 0^{+} \\ 1^{+} \\ (<7^{+}) \\ 0^{+} \\ 1^{+} \\ 5^{+} \\ (8^{-}) \\ (7^{+}) \\ 0^{+} \\ 7^{-} \\ (3^{+}) \end{array}$	03 03 03 03 03 03 03 03 03 03 03 03 03			$\begin{array}{l} \beta^-{=}100; \beta^-{=}n{=}? \\ \beta^-{=}100; \beta^-{n} ? \\ \beta^-{=}100; \beta^-{n} ? \\ \beta^-{=}100; \beta^-{n} ? \\ \beta^-{=}100 \\ \beta^-{=}100 \\ \text{IT}{=}100 \\ \text{IS}{=}28.73 42; 2\beta^- ? \\ \beta^-{=}99.50 15; \beta^+{=}0.50 15; \\ \text{IT}{=}96.75 24; \beta^+{=}3.25 24; \\ \text{IT}{=}100 \\ \text{IT}{=}100 \\ \text{IS}{=}0.66 1; \\ \text{IT}{=}100 \\ \beta^+{=}100 \\ \end{array}$	
114Rh ^m 114Pd 114Ag 114Ag 114Cd 114In 114In ^m 114In ^p 114Sn 114Sn ^m 114Sb 114Sb ^m 114Te 114I	-75630 -75430# -83497 -84949 -84750 -90020.9 -88572 -88070 -90561 -87474 -84515 -84020 -81889 -72800#	230# 110 190# 24 25 25 2.7 3 3 3 3 28 28 28 300#	199 190.29 501.94 641.72 3087.37 495.5	5 0.03 0.03 0.03 0.07		530 1.85 1.85 2.42 4.6 1.50 STABLE 71.9 49.51 43.1 4.3 STABLE 733 3.49 219	ms s s m s ms d ms µs	60 0.05 0.05 0.06 0.1 0.05 (>92 Py) 0.1 0.01 0.6 0.4 14 0.03 12 0.7 0.2	$\begin{array}{c} 2^{+\#} \\ 0^{+} \\ 1^{+} \\ (4,5) \\ 0^{+} \\ 1^{+} \\ (<7^{+}) \\ 0^{+} \\ 1^{+} \\ 5^{+} \\ (8^{-}) \\ (7^{+}) \\ 0^{+} \\ 7^{-} \\ (3^{+}) \\ (8^{-}) \\ 0^{+} \\ 1^{+} \end{array}$	03 03 03 03 03 03 03 03 03 03 03 03 03 0	95Ge14	Т	$\begin{array}{l} \beta^-{=}100; \beta^-{=}n{=}? \\ \beta^-{=}100; \beta^-{=}n ? \\ \beta^-{=}100; \beta^-{=}n ? \\ \beta^-{=}100; \beta^-{=}n ? \\ \beta^-{=}100 \\ \beta^-{=}100 \\ \beta^-{=}100 \\ \text{IT}{=}100 \\ \text{IS}{=}28.73 42; 2\beta^-{?} \\ \beta^-{=}99.50 15; \beta^+{=}0.50 15 \\ \text{IT}{=}96.75 24; \beta^+{=}3.25 24 \\ \text{IT}{=}100 \\ \text{IS}{=}0.66 1 \\ \text{IT}{=}100 \\ \beta^+{=}100 \\ \text{IT}{=}100 \\ \beta^+{=}100 \\ \beta^+{=}$	
114Rh ^m 114Pd 114Ag 114Ag 114Ag 114In 114In 114In 114In 114Is 114Sh 114Sh 114Sh 114Te 114In 114Im	-75630 -75430# -83497 -84949 -84750 -90020.9 -88572 -88070 -90561 -87474 -84515 -84020 -81889 -72800# -72530#	230# 110 190# 24 25 25 2.7 3 3 3 3 28 28 28 300# 300#	199 190.29 501.94 641.72 3087.37	5 0.03 0.03 0.03 0.07		530 1.85 1.85 2.42 4.6 1.50 STABLE 71.9 49.51 43.1 4.3 STABLE 733 3.49 219 15.2 2.1 6.2	ms s s m s ms s d ms	60 0.05 0.05 0.06 0.1 0.05 (>92 Py) 0.1 0.01 0.6 0.4 14 0.03 12 0.7 0.2	$\begin{array}{c} 2^{+\#} \\ 0^{+} \\ 1^{+} \\ (4,5) \\ 0^{+} \\ 1^{+} \\ (<7^{+}) \\ 0^{+} \\ 1^{+} \\ 5^{+} \\ (8^{-}) \\ (7^{+}) \\ 0^{+} \\ 7^{-} \\ (3^{+}) \\ (8^{-}) \\ 0^{+} \\ 1^{+} \\ (7) \end{array}$	03 03 03 03 03 03 03 03 03 03 03 03 03 0		Т	$\begin{array}{l} \beta^- = 100; \ \beta^- = n = ? \\ \beta^- = 100; \ \beta^- n = ? \\ \beta^- = 100; \ \beta^- n = ? \\ \beta^- = 100; \ \beta^- n = ? \\ \beta^- = 100; \ \beta^- n = ? \\ \beta^- = 100; \ \beta^- n = ? \\ \beta^- = 100; \ \beta^- n = ? \\ \beta^- = 100; \ \beta^- n = ? \\ \beta^- = 100; \ \beta^+ = 0.50; \ \beta^+ = 0.50; \ \beta^+ = 0.50; \ \beta^+ = 0.50; \ \beta^+ = 100; \ \beta^+ = 91; $	*
114Rh ^m 114Pd 114Ag 114Ag 114Ag 114In 114In 114In ^m 114In ^p 114Sn 114Sb 114Sb 114Te 114Im 114Im	-75630 -75430# -83497 -84949 -84750 -90020.9 -88572 -88382 -88700 -87930 -90561 -87474 -84515 -84020 -72800# -72530# -67086	230# 110 190# 24 25 25 2.7 3 3 3 3 28 28 28 300# 311	199 190.29 501.94 641.72 3087.37 495.5	5 0.03 0.03 0.03 0.07		530 1.85 1.85 2.42 4.6 1.50 STABLE 71.9 49.51 43.1 4.3 STABLE 733 3.49 219 15.2 2.1 6.2 10.0	ms s s m s ms s ms d ms	60 0.05 0.05 0.06 0.1 0.05 (>92 Py) 0.1 0.01 0.6 0.4 14 0.03 12 0.7 0.2 0.5 0.4	$\begin{array}{c} 2^{+\#} \\ 0^{+} \\ 1^{+} \\ (4,5) \\ 0^{+} \\ 1^{+} \\ (<7^{+}) \\ 0^{+} \\ 1^{+} \\ 5^{+} \\ (8^{-}) \\ (7^{+}) \\ 0^{+} \\ 7^{-} \\ (3^{+}) \\ (8^{-}) \\ 0^{+} \\ 1^{+} \\ (7) \\ 0^{+} \end{array}$	03 03 03 03 03 03 03 03 03 03 03 03 03 0	95Ge14	Т	$\begin{array}{l} \beta^- = 100; \ \beta^- = n = ? \\ \beta^- = 100; \ \beta^- = n \ ? \\ \beta^- = 100; \ \beta^- = n \ ? \\ \beta^- = 100 \\ \beta^- = 100 \\ \beta^- = 100 \\ \beta^- = 100 \\ \text{IT} = 100 \\ \text{IS} = 28.73 \ 42; \ 2\beta^- \ ? \\ \beta^- = 99.50 \ 15; \ \beta^+ = 0.50 \ 15 \\ \text{IT} = 96.75 \ 24; \ \beta^+ = 3.25 \ 24 \\ \text{IT} = 100 \\ \text{IT} = 100 \\ \text{IT} = 100 \\ \text{IT} = 100 \\ \beta^+ = 100 \\ \text{IT} = 100 \\ \beta^+ = 100; \ \beta^+ p \ ? \\ \beta^+ = 91 \ 2; \ \text{IT} = 9 \ 2 \\ \beta^+ = 100 \\ \end{array}$	
114Rh ^m 114Pd 114Ag 114Ag 114Cd 114In 114In ^m 114In ^p 114Sb 114Sb 114Sb 114I 114I 114I 114I 114I 114I 114I 114	-75630 -75430# -83497 -84790 -84750 -90020.9 -88572 -88382 -88930 -90561 -87474 -84515 -84020 -81889 -72800# -72530# -67086 -54540#	230# 110 190# 24 25 25 2.7 3 3 3 3 3 28 28 28 300# 11 310#	199 190.29 501.94 641.72 3087.37 495.5	5 0.03 0.03 0.03 0.07		530 1.85 1.85 2.42 4.6 1.50 STABLE 71.9 49.51 43.1 4.3 STABLE 733 3.49 219 15.2 2.1 6.2 10.0 570	ms s s m s ms s d ms	60 0.05 0.05 0.06 0.1 0.05 (>92 Py) 0.1 0.01 0.6 0.4 14 0.03 12 0.7 0.2 0.5 0.4 20	$\begin{array}{c} 2^{+\#} \\ 0^{+} \\ 1^{+} \\ (4,5) \\ 0^{+} \\ 1^{+} \\ (<7^{+}) \\ 0^{+} \\ 1^{+} \\ 5^{+} \\ (8^{-}) \\ (7^{+}) \\ 0^{+} \\ 7^{-} \\ (3^{+}) \\ (8^{-}) \\ 0^{+} \\ 1^{+} \\ (7) \\ 0^{+} \\ (1^{+}) \end{array}$	03 03 03 03 03 03 03 03 03 03 03 03 03 0	95Ge14 ABBW96	T	$\begin{array}{l} \beta^-{=}100; \beta^-{=}n{=}? \\ \beta^-{=}100; \beta^-{=}n ? \\ \beta^-{=}100; \beta^-{=}n ? \\ \beta^-{=}100 \\ \beta^-{=}100 \\ \beta^-{=}100 \\ \beta^-{=}100 \\ \beta^-{=}100 \\ \text{IT}{=}100 \\ \text{IS}{=}28.73 42; 2\beta^-{?} \\ \beta^-{=}99.50 15; \beta^+{=}0.50 15 \\ \text{IT}{=}66.75 24; \beta^+{=}3.25 24 \\ \text{IT}{=}100 \\ \text{IT}{=}100 \\ \text{IS}{=}0.66 1 \\ \text{IT}{=}100 \\ \beta^+{=}100 \\ \beta^+{=}100 \\ \beta^+{=}100 \\ \beta^+{=}100 \\ \beta^+{=}91 2; \text{IT}{=}9 2 \\ \beta^+{=}91 2; \text{IT}{=}9 2 \\ \beta^+{=}100 \\ \beta^-{=}0.018 6; \dots \end{array}$	*
114Rh ^m 114Pd 114Ag 114Ag 114In 114In ^m 114In ^p 114Sh 114Sh 114Sb 114Sb 114Te 114I 114I 114I 114I 114I 114I 114I 114	-75630 -75430# -83497 -84949 -84750 -90020.9 -88572 -88070 -90561 -87474 -84515 -84020 -81889 -72830# -72530# -67086 -54540# -45950	230# 110 190# 24 25 25 2.7 3 3 3 3 3 3 28 28 28 300# 311 310# 140	199 190.29 501.94 641.72 3087.37 495.5 265.9	5 0.03 0.03 0.03 0.07 0.07	*	530 1.85 1.85 2.42 4.6 1.50 STABLE 71.9 49.51 43.1 4.3 STABLE 733 3.49 219 15.2 2.1 6.2 10.0 570 530	ms s s m s ms s d ms \mu s m \mu s m \mu s s m s m \mu s s s m s ms ms ms	60 0.05 0.05 0.06 0.1 0.05 (>92 Py) 0.1 0.06 0.4 14 0.03 12 0.7 0.2 0.5 0.4 20 230	$\begin{array}{c} 2^{+\#} \\ 0^{+} \\ 1^{+} \\ (4,5) \\ 0^{+} \\ 1^{+} \\ (<7^{+}) \\ 0^{+} \\ 1^{+} \\ 5^{+} \\ (8^{-}) \\ (7^{+}) \\ 0^{+} \\ 7^{-} \\ (3^{+}) \\ (8^{-}) \\ 0^{+} \\ 1^{+} \\ (7) \\ 0^{+} \end{array}$	03 03 03 03 03 03 03 03 03 03 03 03 03 0	95Ge14	T	$\begin{array}{l} \beta^- = 100; \ \beta^- = n = ? \\ \beta^- = 100; \ \beta^- = n \ ? \\ \beta^- = 100; \ \beta^- = n \ ? \\ \beta^- = 100 \\ \beta^- = 100 \\ \beta^- = 100 \\ \beta^- = 100 \\ \text{IT} = 100 \\ \text{IS} = 28.73 \ 42; \ 2\beta^- \ ? \\ \beta^- = 99.50 \ 15; \ \beta^+ = 0.50 \ 15 \\ \text{IT} = 96.75 \ 24; \ \beta^+ = 3.25 \ 24 \\ \text{IT} = 100 \\ \text{IT} = 100 \\ \text{IT} = 100 \\ \text{IT} = 100 \\ \beta^+ = 100 \\ \text{IT} = 100 \\ \beta^+ = 100; \ \beta^+ p \ ? \\ \beta^+ = 91 \ 2; \ \text{IT} = 9 \ 2 \\ \beta^+ = 100 \\ \end{array}$	*
114Rh ^m 114Pd 114Ag 114Ag ^m 114In 114In 114In ^m 114Sn 114Sn 114Sb 114Sb ^m 114Te 114In ^m 114Te 114In	-75630 -75430# -83497 -84949 -84750 -90020.9 -88572 -88070 -90561 -87474 -84515 -84020 -72830# -72530# -67086 -54540# -45950 D: evalua	230# 110 190# 24 25 25 2.7 3 3 3 3 3 3 28 28 28 300# 11 140 ted for	199 190.29 501.94 641.72 3087.37 495.5 265.9	5 0.03 0.03 0.03 0.07 0.07 0.5	*	530 1.85 1.85 2.42 4.6 1.50 STABLE 71.9 49.51 43.1 4.3 STABLE 733 3.49 219 15.2 2.1 6.2 10.0 570 530	ms s s m s ms s d ms \mu s m \mu s m \mu s s m s m \mu s s s m s ms ms ms	60 0.05 0.05 0.06 0.1 0.05 (>92 Py) 0.1 0.06 0.4 14 0.03 12 0.7 0.2 0.5 0.4 20 230	$\begin{array}{c} 2^{+\#} \\ 0^{+} \\ 1^{+} \\ (4,5) \\ 0^{+} \\ 1^{+} \\ (<7^{+}) \\ 0^{+} \\ 1^{+} \\ 5^{+} \\ (8^{-}) \\ (7^{+}) \\ 0^{+} \\ 7^{-} \\ (3^{+}) \\ (8^{-}) \\ 0^{+} \\ 1^{+} \\ (7) \\ 0^{+} \\ (1^{+}) \end{array}$	03 03 03 03 03 03 03 03 03 03 03 03 03 0	95Ge14 ABBW96	T	$\begin{array}{l} \beta^-{=}100; \beta^-{=}n{=}? \\ \beta^-{=}100; \beta^-{=}n ? \\ \beta^-{=}100; \beta^-{=}n ? \\ \beta^-{=}100 \\ \beta^-{=}100 \\ \beta^-{=}100 \\ \beta^-{=}100 \\ \beta^-{=}100 \\ \text{IT}{=}100 \\ \text{IS}{=}28.73 42; 2\beta^-{?} \\ \beta^-{=}99.50 15; \beta^+{=}0.50 15 \\ \text{IT}{=}66.75 24; \beta^+{=}3.25 24 \\ \text{IT}{=}100 \\ \text{IT}{=}100 \\ \text{IS}{=}0.66 1 \\ \text{IT}{=}100 \\ \beta^+{=}100 \\ \beta^+{=}100 \\ \beta^+{=}100 \\ \beta^+{=}100 \\ \beta^+{=}91 2; \text{IT}{=}9 2 \\ \beta^+{=}91 2; \text{IT}{=}9 2 \\ \beta^+{=}100 \\ \beta^-{=}0.018 6; \dots \end{array}$	* * *
114Rh ^m 114Pd 114Ag 114Ag 114In 114In ^m 114In ^p 114Sh 114Sh 114Sb 114Sb 114Te 114I 114I 114I 114I 114I 114I 114I 114	-75630 -75430# -83497 -84949 -84750 -90020.9 -88572 -88070 -90561 -87474 -84515 -84020 -81889 -72830# -72530# -67086 -54540# -45950	230# 110 190# 24 25 25 2.7 3 3 3 3 3 3 3 3 3 3 3 3 10# 1140 ted for +p=8.7	199 190.29 501.94 641.72 3087.37 495.5 265.9 NUBASE b 7 13; $\beta^+\alpha$	5 0.03 0.03 0.03 0.07 0.07 0.5 y J. Blact =0.19 3	*	530 1.85 1.85 2.42 4.6 1.50 STABLE 71.9 49.51 43.1 4.3 STABLE 733 3.49 219 15.2 2.1 6.2 10.0 570 530	ms s s m s ms s d ms \mu s m \mu s m \mu s s m s m \mu s s s m s ms ms ms	60 0.05 0.05 0.06 0.1 0.05 (>92 Py) 0.1 0.06 0.4 14 0.03 12 0.7 0.2 0.5 0.4 20 230	$\begin{array}{c} 2^{+\#} \\ 0^{+} \\ 1^{+} \\ (4,5) \\ 0^{+} \\ 1^{+} \\ (<7^{+}) \\ 0^{+} \\ 1^{+} \\ 5^{+} \\ (8^{-}) \\ (7^{+}) \\ 0^{+} \\ 7^{-} \\ (3^{+}) \\ (8^{-}) \\ 0^{+} \\ 1^{+} \\ (7) \\ 0^{+} \\ (1^{+}) \end{array}$	03 03 03 03 03 03 03 03 03 03 03 03 03 0	95Ge14 ABBW96	T	$\begin{array}{l} \beta^-{=}100; \beta^-{=}n{=}? \\ \beta^-{=}100; \beta^-{=}n ? \\ \beta^-{=}100; \beta^-{=}n ? \\ \beta^-{=}100 \\ \beta^-{=}100 \\ \beta^-{=}100 \\ \beta^-{=}100 \\ \beta^-{=}100 \\ \text{IT}{=}100 \\ \text{IS}{=}28.73 42; 2\beta^-{?} \\ \beta^-{=}99.50 15; \beta^+{=}0.50 15 \\ \text{IT}{=}66.75 24; \beta^+{=}3.25 24 \\ \text{IT}{=}100 \\ \text{IT}{=}100 \\ \text{IS}{=}0.66 1 \\ \text{IT}{=}100 \\ \beta^+{=}100 \\ \beta^+{=}100 \\ \beta^+{=}100 \\ \beta^+{=}100 \\ \beta^+{=}91 2; \text{IT}{=}9 2 \\ \beta^+{=}91 2; \text{IT}{=}9 2 \\ \beta^+{=}100 \\ \beta^-{=}0.018 6; \dots \end{array}$	*

Nuclide	Mass ex (keV			Excitation ergy(keV)	1	Half-	life	J^{π}	Ens	s Reference	Decay modes and intensities (%)	
¹¹⁵ Mo	-46310#					60#		(>300 ns)		99		β-?;β-n?	
¹¹⁵ Tc	-57110#					100#	ms	(>300 ns)	$3/2^{-}$ #	99		$\beta^- ?; \beta^- n ?$	
115Ru	-66430	130				740	ms	80		99		$\beta^-=100; \beta^- n ?$	
115Rh	-74210	80				990	ms	50	7/2+#	99		$\beta^{-}=100$	
¹¹⁵ Pd	-80400	60				25	S	2	5/2+#	99		$\beta^{-}=100$	
	-80310	60	89.18	0.25		50	S	3	11/2-#			β^- =92.0 20; IT=8.0 20	*
115 Ag	-84990	30	41.16	0.10		20.0	m	0.5	1/2-	99		$\beta^-=100$	
	-84950	30	41.16	0.10		18.0	S	0.7	7/2+	99		β^- =79.0 3; IT=21.0 3	
115Cd	-88090.5	2.7	181.0	0.5		53.46 44.56	h	0.10	$1/2^{+}$	99 99		$\beta^{-}=100$	
115 In	-87909.5 -89537	4	181.0	0.5		44.56	d Ty	0.24 25	$(11/2)^-$ $9/2^+$	99		$\beta^- \approx 100$; IT<0.003 IS=95.71 5; $\beta^- = 100$	
115 In ^m	-89337 -89201	4	336.244	0.017		4.486	h	0.004	$1/2^{-}$	99		IT=95.07; β^- =5.07	
115Sn	-90036.0		330.244	0.017		STABLE		0.004	1/2+	99		IS=0.34 1	
	-89423.2		612.81	0.04		3.26	μs	0.08	7/2 ⁺	99		IT=100	
$^{115}Sn^n$	-89322.4		713.64	0.12		159	μs	1	11/2-	99		IT=100 IT=100	
115Sb	-87003	16	713.01	0.12		32.1	m	0.3	5/2+	99		$\beta^{+}=100$	
¹¹⁵ Te	-82063	28			*	5.8	m	0.2	7/2+	99		$\beta^{+}=100$	
$^{115}\mathrm{Te}^{m}$	-82053	29	10	7	*		m	0.4	$(1/2)^{+}$	99	ABBW E	$\beta^{+} \approx 100$; IT<0.06	*
$^{115}\mathrm{Te}^n$	-81783	28	280.05	0.20		7.5	μs	0.2	$11/2^{-}$	99		IT=100	
^{115}I	-76338	29				1.3	m	0.2	5/2+#	99		$\beta^{+}=100$	
¹¹⁵ Xe	-68657	12				18	s	4	$(5/2^{+})$	99		$\beta^{+}=100; \beta^{+}p=0.346; \dots$	*
¹¹⁵ Cs	-59700#	300#				1.4	s	0.8	$9/2^{+}$ #	99		$\beta^{+}=100; \beta^{+}p\approx 0.07$	
¹¹⁵ Ba	-49030 #					450	ms	50	5/2+#	99	97Ja12 D	$\beta^{+}=100; \beta^{+}p>15$	
	J: E3 tran												**
	E: less tha			ENSDF									**
* ¹¹⁵ Xe	D:; β	+α=0.0	0003 1										**
¹¹⁶ Tc	-52750#	700#				90#	ms	(>300 ns)	2+#	01	97Be70 I	β − ?	
¹¹⁶ Ru	-64450 #	700#				400#	ms	(>300 ns)	0^{+}	01	94Be24 I	β- ?	*
^{116}Rh	-70740	140			*	680	ms	60	1+	01		$\beta^{-}=100; \beta^{-}n$?	
	-70540 #	210#	200#	150#	*	570	ms	50	(6^{-})	01		$\beta^{-}=100$	
¹¹⁶ Pd	-79960	60				11.8	S	0.4	0+	01		$\beta^{-}=100$	
¹¹⁶ Ag	-82570	50				2.68	m	0.10	$(2)^{-}$	01		$\beta^{-}=100$	
¹¹⁶ Ag ^m	-82490	50	81.90	0.20		8.6	S	0.3	(5^{+})	01		β^- =94.0 15; IT=6.0 15	
¹¹⁶ Cd	-88719	3				30	Ey	4	0_{+}	01	03Da09 T	IS=7.49 18; $2\beta^-=100$	*
116 In	-88250	4				14.10	S	0.03	1+	01	98Bh04 D	$\beta^-\approx 100$; $\varepsilon=0.23$ 6	
¹¹⁶ In ^m	-88123	4	127.267	0.006		54.29	m	0.17	5+	01		$\beta^{-}=100$	
116In ⁿ	-87960	4	289.660	0.006		2.18	S	0.04	8-	01		IT=100	
¹¹⁶ Sn ¹¹⁶ Sb	-91528.1	2.9				STABLE		0.0	0 ⁺ 3 ⁺	01		IS=14.54 9	
116Sb ^m	-86821	6 40	200	40	BD	15.8 60.3	m	0.8	8-	01 01		$\beta^{+}=100$ $\beta^{+}=100$	
116Te	-86440 -85269	28	380	40	BD	2.49	m h	0.6 0.04	0^{+}	01		$\beta^{+}=100$ $\beta^{+}=100$	
116 I	-83209 -77490	100				2.49	S	0.04	1+	01		$\beta^{+}=100$ $\beta^{+}=100$	
116 T m	-77490 -77090#		400#	50#		3.27	μs	0.15	(7-)	01		IT=100	
¹¹⁶ Xe	-77090# -73047	13	-τυυπ	συπ		59	μs s	2	0+	01		$\beta^{+}=100$	
116Cs	-62070#				*	700	ms	40	(1 ⁺)	01		$\beta^{+}=100$ $\beta^{+}=100$; $\beta^{+}=0.287$;	*
¹¹⁶ Cs ^m	-61970#		100#	60#	*		S	0.13	4 ⁺ ,5,6			$\beta^+=100; \beta^+=0.237;$ $\beta^+=100; \beta^+=0.5115;$	*
¹¹⁶ Ba	-54600#		-00"	00	-	1.3	s	0.2	0+	01		$\beta^+=100; \beta^+=0.31 15,$ $\beta^+=100; \beta^+=3.1$	
	I : and $T >$		in 97So0	7			-		-			,, r	**
*116Cd					atics);	supersede	s 001	Da27=26(1	statistic	s +7-	-4 systematics	3)	**
*116Cs	$D:\ldots;\beta$	$+\alpha = 0.0$	049 25		,,,	•					•		**
$*^{116}$ Cs ^m	$D:\ldots;\beta$	$^{+}\alpha = 0.0$	008 2										**
	•												

Nuclide	Mass ex (keV			xcitation ergy(keV			I	Half-l	life	J^{π}	Ens	s Referen	ce	Decay modes and intensities (%)	
¹¹⁷ Tc	-49850#						10#		(>300 ns)	,		97Be70		β ⁻ ?	
	-60010#						00#		(>300 ns)			94Be24	I	β-?	*
¹¹⁷ Rh ¹¹⁷ Pd	-68950# -76530	500# 60					140 4.3	ms	40	$7/2^+ \#$ $(5/2^+)$	02 02			$\beta^{-}=100$	
	-76330 -76330	60	203.2	0.3			9.1	s ms	0.3 0.7	11/2-#	02			$\beta^-=100$ IT=100	
	-82270	50	203.2	0.5			3.6	S	1.4	1/2-#	02			$\beta^{-}=100$	
	-82240	50	28.6	0.2			.34	s	0.05	$(7/2^+)$	02			β^- =94.0 15; IT=6.0 15	
¹¹⁷ Cd	-86425	3					.49	h	0.04	1/2+	02			$\beta^{-}=100$	
$^{117}\text{Cd}^m$	-86289	3	136.4	0.2		3	.36	h	0.05	$(11/2)^{-}$	02			$\beta^-\approx 100$; IT ≈ 0	
¹¹⁷ In	-88945	6					3.2	m	0.3	$9/2^{+}$	02			$\beta^{-}=100$	
	-88630	6	315.302	0.012			16.2		0.3	1/2-	02			β^- =52.9 15; IT=47.1 15	
¹¹⁷ Sn	-90400.0			0.04			ABLE		0.04	1/2+	02			IS=7.68 7	
	-90085.4 -88645	· 2.9	314.58	0.04			3.76	d L	0.04 0.01	11/2 ⁻ 5/2 ⁺	02 02			IT=100	
117Te	-85097	13					ou 62	h m	2	1/2+	02			$\beta^{+}=100$ $\beta^{+}=100$; e ⁺ =25 1	
	-84801	13	296.1	0.5			103	ms	3	$(11/2^{-})$	02	99Mo30	J	IT ?	
	-84823	13	274.4	0.1			9.9	ns	0.4	5/2+	02	,,,,,,		IT=100	
^{117}I	-80435	28					.22	m	0.04	$(5/2)^{+}$	02			$\beta^{+}=100; e^{+}\approx 77$	
	-74185	10					61	s	2	5/2(+)	02			β^{+} =100; β^{+} p=0.0029 6	
¹¹⁷ Cs	-66440	60				* :	8.4	S	0.6	9/2+#	02			$\beta^{+}=100$	
¹¹⁷ Cs ^m	-66290 #		150#	80#			6.5	S	0.4	$3/2^{+}$ #	02			$\beta^{+}=100$	
	-66390	80	50	50			=?			spmix					
¹¹⁷ Ba ¹¹⁷ La	-57290#						.75	S	0.07	$(3/2)^{(+\#)}$		97Ja12	D	$\beta^{+}=100; \beta^{+}p=133;$	*
117 La	-46510# -46370#		129	15			3.5 10	ms ms	2.6 5	$(3/2^+, 3/2^-)$ $(9/2^+)$	02			p=?; β^+ =6# p=?; β^+ =3#	
	I : and T >				p		10	1118	3	(9/2)	02			p=:, p == 5#	**
	$D:\ldots;\beta$,,											**
$*^{117}Ba$	$D: \beta^+ p$ for	rom 97	Ja12. β ⁺	$p/\beta^+\alpha =$	350-	1200	fron	85T	i02 yields	$\beta^{+}\alpha = 0.011$	-0.03	7			**
¹¹⁸ Tc	-45200#	900#				-	30#	me ((>300 ns)	2+#	97	95Cz.A	ī	β- ?	
118 R u	-57920#						00#		(>300 ns)		,,	94Be24		β^- ?	
^{118}Rh	-65140#						310	ms	30	$(4^-10)^{(+\#)}$	97			$\beta^{-}=100$	
¹¹⁸ Pd	-75470	210					1.9	s	0.1	0+	95			$\beta^{-}=100$	
118Ag	-79570	60				3	.76	S	0.15	1^{-}	95	93Ja03	J	$\beta^{-}=100$	
118Ag ^m	-79440	60	127.49	0.05			2.0	s	0.2	$4^{(+)}$	95	95Ap.A	E	β^- =59; IT=41	
¹¹⁸ Cd	-86709	20					0.3	m	0.2	0^+	95			$\beta^{-}=100$	
118In	-87230	8	100#	5011			5.0	S	0.5	1 ⁺	95	0.47: 4	T	$\beta^{-}=100$	
$^{118}In^{m}$ $^{118}In^{n}$	-87130# -86990#	50# 50#	100# 240#	50# 50#			.364 8.5	m s	0.007	5 ⁺ 8 ⁻	95 95	94It.A	T	$\beta^-=100$	
118Sn	-91656.1	2.9		30 11			able Able		0.3	0^{+}	95			IT=98.6 3; β^- =1.4 3 IS=24.22 9	*
¹¹⁸ Sb	-87999	4					3.6	m	0.1	1+	95			$\beta^{+}=100$	
	-87749	6	250	6	BD		.00	h	0.02	8-	95			$\beta^{+}=100$	
$^{118}Sb^n$	-87948	4	50.814				0.6	μs	0.6	$(3)^{+}$,	
¹¹⁸ Te	-87721	15				6	.00	d	0.02	0^+	95			ε=100	
118I	-80971	20					3.7	m	0.5	2^{-}	95			$\beta^{+}=100$	
118Im	-80781	20	190.1	1.0			8.5	m	0.5	(7-)	95	94Ka39	Е	$\beta^+ \approx 100$; IT=?	
¹¹⁸ Xe ¹¹⁸ Cs	-78079	10					3.8	m	0.9	0+	95			$\beta^{+}=100$	
118Cs ^m	-68409 68310#	13	100#	60#			14	S	2	2	95	02Po46	T	$\beta^+=100; \beta^+p=0.021 14;$ $\beta^+=100; \beta^+p=0.021 14;$. *
¹¹⁸ Cs ^x	-68310# -68404	60# 12	5	4			17 < 0.1	S	3	(7 ⁻) spmix	93	93Be46	J	ρ =100, ρ p=0.021 14,	. *
¹¹⁸ Ba	-62370#		3	7			5.2	s	0.2	0 ⁺	97	97Ja12	TD	$\beta^{+}=100; \beta^{+}p$?	
¹¹⁸ La	-49620#						00#		·	•				β =100, β β ?	
$*^{118}In^{n}$	E: 138.2(V above 1	118 In m , fi	rom									•	**
*118Cs	$D:\ldots;\beta$	$^{+}\alpha = 0.$.0012 5												**
*118Cs										re of ground-		and isome	er.		**
*118Cs	D: Re	placed	d by unifo	rm distri	ibuti	ons fr	om z	ero to	o values fo	or each isome	er				**
*Cs**	$D:\ldots;\beta$	$\alpha=0$.	.0012 5												**

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Nuclide	Mass ex (keV			citation gy(keV)		Н	alf-lif	îe	J^{π}	En	s Reference	Decay modes and intensities (%)	
199Ag										7/2+#			,	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $										1/2 11	00)+DC2+ 1	•	
19°CG = 83910 80						* &				$1/2^{-}$ #				
19Ce = 83760 80 146.54 0.11 2.20 m 0.02 11/2° # 00 β = 100 19In = 87393 8 311.37 0.03 18.0 m 0.3 1/2° 00 β = 94.4 15; IT = 5.6 15 19Sh = 99088 2.9 89.531 0.013 293.1 d 0.7 11/2° 00 IT = 100 19Sh = 89078 2.9 89.531 0.013 293.1 d 0.7 11/2° 00 IT = 100 19Sh = 89678 2.9 89.531 0.013 293.1 d 0.7 11/2° 00 IT = 100 19Sh = 86655 11 2852 7 850 ms 90 27/2° # 00 ABBW E IT = 100 8 19Sh = 86625 11 2852 7 850 ms 90 27/2° # 00 B = 100 19Te = 87364 8 8 19.1 m 0.4 5/2° 00 8 = 99.59 4; e*=0.414; 19Te = 87364 8 8 19.1 m 0.4 5/2° 00 8 = 99.59 4; e*=0.414; 19Te = 87369 14 8 8 30.4 8 30.4 8 0.3 5/2° 00 90Nc. 1 6°=795; e*=21 5 19Ce = 72280 30# 50# 30# 8 30.4 8 0.3 5/2° 00 90Nc. 1 6°=795; e*=21 5 19Ce = 72305 14 8 8 30.4 8 30.4 8 30.3 5/2° 00 90Nc. 2 6°=795; e*=21 5 19Ce = 72360 30# 50# 30# 8 30.4 8 30.3 5/2° 00 90Nc. 3 6°=795; e*=21 5 19Ce = 72360 30# 50# 30# 8 30.4 8 30.3 5/2° 00 90Nc. 3 6°=795; e*=21 5 19Ce = 40000 600# 1 8 8 11/2° 8 6 7 7 19Ce = 40000 600# 200# ms 5/2° 00 90Nc. 3 6°=795; e*=21 5 19Te = 50940# 800# 1 8 8 11/2° 8 6 7 7 7 7 7 7 7 7 7	$^{119}Ag^m$	-78540 #	90#	20#	20#	* &	2.1	S	0.1	7/2+#	00		$\beta^{-}=100$	*
19 19 -87704 8 2.4 m 0.1 9/2† 00 β = 100 F = 104 15 T = 5.6 15 19 m -87393 8 311.37 0.03 18.0 m 0.3 1/2* 00 S = 90068.4 15 T = 5.6 5 19 S = 90068.4 2.9 89.531 0.013 293.1 d 0.7 11/2* 00 S = 8.53 4.15 T = 5.6 5 19 S = 8.53 0.013 293.1 d 0.7 11/2* 00 E = 100 E			80					m	0.02		00		$\beta^{-}=100$	
1919				146.54	0.11								•	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				311.37	0.03			m	0.3				•	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				80 531	0.013			d	0.7	,				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				09.551	0.013									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				2852	7							ABBW E		*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$														
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-86923	8	260.96	0.05		4.70	d	0.04	$11/2^{-}$	00		ε =99.59 4; e ⁺ =0.41 4;	*
			28				19.1	m	0.4	$5/2^{+}$	00		$\beta^{+}=100$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	¹¹⁹ Xe							m				90Ne.A J	,	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$														
$ \begin{array}{c} ^{19}{\rm Ba} = -64590 \ \ 200 \\ 1^{19}{\rm Ca} = -54970\# \ 400\# \\ 1^{19}{\rm Ce} = -44000\# \ 600\# \\ 1^{19}{\rm Ce} = -44000\# \ 600\# \ 1^{19}{\rm Km} \\ 1^{19}{\rm Ce} = -44000\# \ 600\# \ 1^{19}{\rm Km} \\ 1^{19}{\rm Ch} = -24000\# \ 600\# \ 1^{19}{\rm Ce} \\ 1^{19}{\rm Ch} = -24000\# \ 600\# \ 1^{19}{\rm Ce} \\ 1^{19}{\rm Ch} = -80400\# \ 600\# \ 1^{19}{\rm Ce} \\ 1^{19}{\rm Ch} = -59230\# \ 600\# \ 200\# \ ms \ (>300 ns) \\ 1^{120}{\rm Ru} = -50940\# \ 800\# \\ 1^{120}{\rm Rh} = -59230\# \ 600\# \ 200\# \ ms \ (>300 ns) \\ 1^{120}{\rm Rh} = -59230\# \ 600\# \ 200\# \ ms \ (>300 ns) \\ 1^{120}{\rm Rh} = -59230\# \ 600\# \ 200\# \ ms \ (>300 ns) \\ 1^{120}{\rm Rh} = -59230\# \ 600\# \ 200\# \ ms \ (>300 ns) \\ 1^{120}{\rm Rh} = -59230\# \ 600\# \ 200\# \ ms \ (>300 ns) \\ 1^{120}{\rm Rh} = -59230\# \ 600\# \ 200\# \ ms \ (>300 ns) \\ 1^{120}{\rm Rh} = -59230\# \ 600\# \ 200\# \ ms \ (>300 ns) \\ 1^{120}{\rm Rh} = -59230\# \ 600\# \ 200\# \ ms \ (>300 ns) \\ 1^{120}{\rm Rh} = -59230\# \ 600\# \ 200\# \ ms \ (>300 ns) \\ 1^{120}{\rm Rh} = -59230\# \ 600\# \ 200\# \ ms \ (>300 ns) \\ 1^{120}{\rm Rh} = -85740 \ 40 \\ 1^{120}{\rm In}^{-} = -85690\# \ 50\# \ 50\# \ 60\# \ *\& \ 46.2 \ s \ 0.8 \ 5^{+} \ 02 \ 978600 \ 3^{-} = 100 \\ 1^{120}{\rm In}^{-} = -85690\# \ 50\# \ 50\# \ 60\# \ *\& \ 46.2 \ s \ 0.8 \ 5^{+} \ 02 \ 978600 \ 3^{-} = 100 \\ 1^{120}{\rm In}^{-} = -85440\# \ 200\# \ 300\# \ 200\# \ *\& \ 47.3 \ s \ 0.5 \ 8^{(-)} \ 0.2 \ 978610 \ J \ \beta^{-} = 100 \\ 1^{120}{\rm In}^{-} = -858400\# \ 200\# \ 300\# \ 200\# \ *\& \ 47.3 \ s \ 0.5 \ 8^{(-)} \ 0.2 \ 978610 \ J \ \beta^{-} = 100 \\ 1^{120}{\rm In}^{-} = -858400\# \ 200\# \ s \ *\& \ 47.3 \ s \ 0.5 \ 8^{(-)} \ 0.2 \ 978610 \ J \ \beta^{-} = 100 \\ 1^{120}{\rm In}^{-} = -858400\# \ 200\# \ s \ *\& \ 47.3 \ s \ 0.5 \ 8^{(-)} \ 0.2 \ 978610 \ J \ \beta^{-} = 100 \\ 1^{120}{\rm In}^{-} = -858400\# \ 200\# \ s \ *\& \ 47.3 \ s \ 0.5 \ 8^{(-)} \ 0.2 \ 978610 \ J \ \beta^{-} = 100 \\ 1^{120}{\rm In}^{-} = -858400\# \ 200\# \ s \ *\& \ 47.3 \ s \ 0.5 \ 8^{(-)} \ 0.2 \ 978610 \ J \ \beta^{-} = 100 \\ 1^{120}{\rm In}^{-} = -88623.5 \ 2.5 \ 2481.63 \ 0.06 \ 11.8 \ \mu s \ 0.5 \ (7^{-}) \ 0.2 \ \ 17=100 \\ 1^{120}{\rm In}^{-} = -89405 \ 10 \ \$	119Cs ^m	-72260#							0.1	,	00		$\beta^{+}=100$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				16	11	4			0.2		00		0± 100, 0±, 225	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$									0.3		00			
*** *********************************										,				
*** **** Fig. ************************************				m 7/2 ⁺ lev	vel in isot	ones			g=41 ¹¹⁷ A				ρ.	**
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										-6				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$														**
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$														
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1200	500.40#	000#				0011		200	0+	0.2	0.50 4 4	0-0	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$,		0 '	02			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	120 pd									0+	02	94Be24 I		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												93Ru01 D	•	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				203.0	1.0					-			•	*
$ \begin{array}{c} ^{120} \mathrm{In} & -85740 & 40 \\ ^{120} \mathrm{Im}''' & -85690 & 50 \# & 50 \# & 60 \# & *\& & 46.2 & s & 0.8 & 5^{+} & 02 & 87Eb02 & J & \beta^{-}=100 \\ ^{120} \mathrm{In}'' & -85440 \# 200 \# & 300 \# & 200 \# & *\& & 47.3 & s & 0.5 & 8^{(-)} & 02 & 79Fo10 & J & \beta^{-}=100 \\ ^{120} \mathrm{Sn}'' & -85440 \# 200 \# & 300 \# & 200 \# & *\& & 47.3 & s & 0.5 & 8^{(-)} & 02 & 79Fo10 & J & \beta^{-}=100 \\ ^{120} \mathrm{Sn}'' & -895440 \# 200 \# & 300 \# & 200 \# & *\& & 47.3 & s & 0.5 & 8^{(-)} & 02 & 79Fo10 & J & \beta^{-}=100 \\ ^{120} \mathrm{Sn}'' & -88623.5 & 2.5 & 2481.63 & 0.06 & 11.8 & \mu s & 0.5 & (7^{-}) & 02 & 17=100 \\ ^{120} \mathrm{Sn}'' & -88202.9 & 2.5 & 2902.22 & 0.22 & 6.26 & \mu s & 0.11 & 10^{+} \# & 02 & 17=100 \\ ^{120} \mathrm{Sp}'' & -88424 & 8 & * & 15.89 & m & 0.04 & 1^{+} & 02 & \beta^{+}=100 \\ ^{120} \mathrm{Sp}'' & -88420 \# 100 \# & 0 \# & 100 \# & * 5.76 & d & 0.02 & 8^{-} & 02 & \beta^{+}=100 \\ ^{120} \mathrm{Sp}'' & -88346 & 8 & 78.16 & 0.05 & 246 & ns & 2 & (3^{+}) & 02 & 17=100 \\ ^{120} \mathrm{Sp}'' & -88346 & 8 & 78.16 & 0.05 & 246 & ns & 2 & (3^{+}) & 02 & 17=100 \\ ^{120} \mathrm{Sp}'' & -883906 & 8 & 2328.3 & 0.6 & 400 & ns & 8 & (6) & 02 & 17=100 \\ ^{120} \mathrm{Te} & -89405 & 10 & & \mathrm{STABLE} & 0^{+} & 02 & \mathrm{IS=0.091}; 2\beta^{+}? \\ ^{120} \mathrm{IT} & -83790 & 18 & & 81.6 & m & 0.2 & 2^{-} & 02 & \beta^{+}=100 \\ ^{120} \mathrm{IT}'' & -83470 & 23 & 320 & 15 & 53 & m & 4 & (7^{-}) & 02 & \beta^{+}=100 \\ ^{120} \mathrm{IT}'' & -83470 & 23 & 320 & 15 & 53 & m & 4 & (7^{-}) & 02 & \beta^{+}=100 \\ ^{120} \mathrm{IT}'' & -83470 & 23 & 320 & 15 & 53 & m & 4 & (7^{-}) & 02 & \beta^{+}=100 \\ ^{120} \mathrm{IT}'' & -83470 & 23 & 320 & 15 & 53 & m & 4 & (7^{-}) & 02 & \beta^{+}=100 \\ ^{120} \mathrm{IT}'' & -83470 & 23 & 320 & 15 & 53 & m & 4 & (7^{-}) & 02 & \beta^{+}=100 \\ ^{120} \mathrm{IT}'' & -83470 & 23 & 320 & 15 & 53 & m & 4 & (7^{-}) & 02 & \beta^{+}=100 \\ ^{120} \mathrm{Cs} & -73889 & 10 & * *61.2 & * 1.8 & 2^{(-\#)} & 02 & \beta^{+}=100; \beta^{+}\alpha < 2.0e-5 4; * \\ ^{120} \mathrm{Cs} & -73889 & 9 & 5 & 4 & R < 0.1 & spmix \\ ^{120} \mathrm{Cs} & -73890 \# 60 \# 100 \# 60 \# * *57 * * * 6 & (7^{-}) & 02 & 75Ho09 & D & \beta^{+}=100; \beta^{+}p ? \\ ^{120} \mathrm{Cc} & -49710 \# 700 \# & 250 \# ms & 0^{+} $	¹²⁰ Cd			200.0	1.0							05 11415 1		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	¹²⁰ In		40			*	3.08	S		1+	02		•	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$^{120}In^{m}$	-85690 #	50#	50#	60#	* &	46.2	S	0.8	5+	02	87Eb02 J	$\beta^{-}=100$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				300#	200#	* &	47.3	S	0.5		02	79Fo10 J		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$														
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								•						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	120 Sn"			2902.22	0.22			•						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				0#	100#									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$^{120}\mathrm{Sh}^n$	-88346				*								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$^{120}\mathrm{Sb}^p$	-86096								. ,				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	¹²⁰ Te													
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	^{120}I	-83790						m	0.2	2^{-}	02		$\beta^{+}=100$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-		18	72.61	0.09		228	ns	15		02		IT=100	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				320	15			m		(7^{-})			,	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	¹²⁰ Xe		12				40	m	1	0+	02		*_ ·	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	120Cs	-73889			-0.11									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						*		S	6	. ,	02	75Ho09 D	$\beta^{+}=100; \beta^{+}\alpha<2.0e-5 4;$. *
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				5	4				2		02	02V::04 T	Q±_100	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$										0.		92Au04 I	,	
** 120 Ag m T : average 03Wa13=400(30) 71Fo22=320(40)									0.2	0^{+}	02			
* 120 Cs D : ; $\bar{\beta}^+$ p<7e-6 3				a13=40003	30) 71Fo2	2=32		1113		3			Ρ .	**
* 120 Cs D: isomers not distinguished by 75Ho09 in $\beta^+\alpha$ and β^+p . Values replaced ** * 120 Cs D: by upper limits for both (cf. ENSDF evaluation of 118 Cs) **					.,	. 52	- (/							
	$*^{120}Cs$				ed by 75H	1o09	in eta^+lpha as	nd $oldsymbol{eta}^+$	p. Value	s replaced				**
*** *** p^{120} Cs ^m D:; β^+ p<7e-63		D: by	upper	limits for	both (cf.	Ense	F evaluati	on of	¹¹⁸ Cs)					**
	*120Csm	$D:\ldots;\beta$	+p<76	e–6 3										**

Nuclide	Mass ex (keV			xcitation ergy(keV)		I	Ialf-	life	J^{π}	Ens	Reference	Decay modes and intensities (%)	
¹²¹ Rh ¹²¹ Pd	-57080# -66260#					100# 400#		(>300 ns) (>300 ns)	7/2+#	00	94Be24 I 94Be24 I	β ⁻ ? β ⁻ ?	*
¹²¹ Ag	-74660	150				790	ms	20	$7/2^{+}$ #	00		$\beta^-=100; \beta^-n=0.080 13$	
¹²¹ Cd	-81060	80				13.5	S	0.3	$(3/2^+)$	00		$\beta^{-}=100$	
¹²¹ Cd ^m	-80850	80	214.86	0.15		8.3	S	0.8	$(11/2^{-})$			$\beta^{-}=100$	
¹²¹ In	-85841	27	212.00	0.00		23.1	S	0.6	9/2+	00		$\beta^{-}=100$	
¹²¹ In ^m	-85528	27	312.98	0.08		3.88	m	0.10	1/2-	00		$\beta^-=98.8\ 2;\ \text{IT}=1.2\ 2$	
¹²¹ Sn ¹²¹ Sn ^m	-89204.1 -89197.8	2.5 2.5	6.30	0.06		27.03 43.9	h	0.04 0.5	$3/2^+$ $11/2^-$	00	02Re18 T	$\beta^-=100$	
$^{121}\mathrm{Sn}^n$	-89197.8 -87205.3		1998.8	0.06		5.3	y μs	0.5	19/2+#	00	02Re16 1	IT=77.6 20; β^- =22.4 20 IT=100	
¹²¹ Sb	-87205.3 -89595.1	2.2	1990.0	0.9		STABLE		0.5	5/2+	00		IS=57.21 5	
¹²¹ Te	-88551	26				19.16	d	0.05	1/2+	00		$\beta^{+}=100$	
	-88257	26	293.991	0.022		154	d	7	11/2-	00		IT=88.6 11; β^+ =11.4 11	
¹²¹ I	-86287	10				2.12	h	0.01	$5/2^{+}$	00		$\beta^{+}=100$	
$^{121}I^{m}$	-83910	10	2376.9	0.4		9.0	μs	1.5	,	00		IT=100	
¹²¹ Xe	-82473	11				40.1	m	2.0	$(5/2^{+})$	00		$\beta^{+}=100$	
¹²¹ Cs	-77100	14				155	S	4	$3/2^{(+)}$	00		$\beta^{+}=100$	
$^{121}\mathrm{Cs}^m$	-77032	14	68.5	0.3		122	s	3	$9/2^{(+)}$	00		β^{+} =83; IT=17	
¹²¹ Ba		140				29.7	S	1.5	$5/2^{(+)}$	00		$\beta^{+}=100; \beta^{+}p=0.02 1$	
¹²¹ La	-62400 #					5.3	S	0.2	11/2-#			$\beta^{+}=100; \beta^{+}p$?	
¹²¹ Ce	-52700#					1.1	S	0.1	$(5/2)^{(+\#)}$		99Li46 J	$\beta^+=100; \beta^+p\approx 1$	
¹²¹ Pr	-41580#					600	ms	300	$(3/2^{-})$	00	90Bo39 TJ	D p=?; β^+ ?; β^+ p ?	*
* ¹²¹ Pd * ¹²¹ Pr	I : and $T >$. 1 1		1						**
* [1	1 . 1 -1.4(0.6) \$ 1	n Ensdf: no	n nusicu n) belong	g to tills	nucn	iue				•	**
122 Cd 122 In 122 In ^m 122 In ⁿ 122 Sn 122 Sb ^m 122 Sb ⁿ 122 Te 122 I 122 Xe 122 Cs	-52900# -64690# -71230# -71150# -80730 -83580 -83580 -83540# -83290 -88945.9 -88330.2 -88166.6 -88192.7 -90314.0 -86080 -85355 -78140 -78005 -78010 -74609	400# 210#	80# 40# 290 163.5591 137.472	50# 60# 140 0.0017 0.001	* * * BD	50# 300# 520 1.5 5.24 1.5 10.3 10.8 STABLE 2.7238 4.191 530 STABLE 3.63 20.1 21.18 3.70 360 1.95	ms s s s s s s s s s mm ms	(>300 ns) (>300 ns) 14 0.5 0.03 0.3 0.6 0.4 0.0002 0.003 0.06 0.1 0.19 0.11 20	0^{+} (3^{+}) 8^{-} # 0^{+} 1^{+} 5^{+} 8^{-} 0^{+} 2^{-} $(8)^{-}$ 5^{+} 0^{+} 1^{+} 0^{+} 1^{+} 8^{-} $(5)^{-}$ 0^{+}	98 94 94 94 94 94 94 94 96 96 96 96	97Be70 I 94Be24 I 95Fe12 T	$β^-$? $β^-$? $β^-$? $β^-$ =100; $β^-$ n=0.186 10 $β^-$ =100; $β^-$ n? $β^-$ =100 $β^-$ =100 $β^-$ =100 IS=4.63 3; $2β^-$? $β^-$ =97.59 12; IT=100 IS=2.55 12 $β^+$ =100 ε=100 $β^+$ =100; $β^+$ α<2e-7 $β^+$ =100 IT=100 $β^+$ =100	* * *
¹²² Ba ¹²² La ¹²² Ce ¹²² Pr	$-64540 \# \\ -57840 \#$	300# 400#				8.7 2#	m s s	0.15	0+	94 94 94		$\beta^{+}=100; \beta^{+}p=?$ $\beta^{+}?; \beta^{+}p?$	*
* ¹²² Pr * ¹²² Pd	-44890# I : and $T>$		in 07\$007			500#	ms					$oldsymbol{eta}^+$?	**
*122Ag			in 975007 is from 93F	2n01									** **
* Ag * ¹²² Sb	$D: \beta : \Pi$	-		1									**
*122Cs			03=21.2(0.2) 69Ch18=	21.000	7)							**
*122Cs			y upper limi			,							**
* ¹²² Ce			n NDS 71 (1			for 122L	a; co	orrected in	ENSDF				**
	(-	,	. (-	,			,						

Nuclide	Mass ex (keV			xcitation ergy(keV)		I	Half-	life	J^{π}	Ens	Reference	Decay modes and intensities (%)	
¹²³ Pd	-60610#	600#				200#	ms	(>300 ns)			94Be24 I	β- ?	
123Ag	-69960#	210#				296	ms	6	$(7/2^+)$	94	95Fe12 T	$\beta^-=100; \beta^-=0.555$; *
¹²³ Cd	-77310	40				2.10	S	0.02	$(3/2)^{+}$	94		$\beta^{-}=100$	
$^{123}\text{Cd}^m$	-76990	40	316.52	0.23		1.82	S	0.03	$(11/2^{-})$	94		$\beta^-=?$; IT=?	
¹²³ In	-83426	24				5.98	S	0.06	$9/2^{+}$	94		$\beta^{-}=100$	
$^{123}In^{m}$	-83099	24	327.21	0.04		47.8	S	0.5	$1/2^{-}$	94		$\beta^{-}=100$	
¹²³ Sn	-87820.5	2.7				129.2	d	0.4	$11/2^{-}$	94		$\beta^{-}=100$	
123Snm	-87795.9	2.7	24.6	0.4		40.06	m	0.01	$3/2^{+}$	94		$\beta^{-}=100$	
¹²³ Sb	-89224.1	2.1				STABLE			$7/2^{+}$	94		IS=42.79 5	
¹²³ Te	-89171.9	1.5				> 600	Ty		$1/2^{+}$	94	96Al30 T	IS=0.89 3; ε =100	;
	-88924.3	1.5	247.55	0.04		119.25	d	0.15	$11/2^{-}$	94		IT=100	
123I	-87943	4				13.2235		0.0019	5/2+	94	02Un02 T	$\beta^{+}=100$	
¹²³ Xe	-85249	10				2.08	h	0.02	1/2+	94	90Ne.A J	$\beta^{+}=100$	
123 Xe ^m	-85064	10	185.18	0.22		5.49	μs	0.26	$7/2^{(-)}$			a	
¹²³ Cs	-81044	12				5.87	m	0.04	1/2+	94	93Al03 T	$\beta^{+}=100$	*
	-80887	12	156.74	0.21		1.64	S	0.12	$(11/2)^{-}$	94		IT=100	
¹²³ Cs ^x ¹²³ Ba	-81037	13	7	4		R < 0.1		0.4	spmix			0+ 100	
¹²³ La	-75655	12				2.7	m	0.4	5/2+	94		$\beta^{+}=100$	
¹²³ Ce	-68710#					17	S	3	11/2-#			$\beta^{+}=100$	
¹²³ Pr	-60180#					3.8	S	0.2	$(5/2)^{(+\#)}$	94		$\beta^{+}=100; \beta^{+}p=?$	
	-50340#		12 202(7) 9	CM-42 20	0(20) 0	800#	ms	0) I	3/2+#	2D/	21	$oldsymbol{eta}^+$?	
¹²³ Te	_		12=293(7) 80 Ey for $\varepsilon(K)$,			3KeU3=3	00(1	.0) 1) : from 9	3Ku)1		*:
122			not consider			c hoc be		bearred					*:
123Ta					SHICC I	c mas oc	CIIC	osci vcu					4.
¹²³ Te ¹²³ Cs			03=5.87(0.05			.05)							**
124Pd 124Ag 124Ag 124Ag ^m	T : averag -58800# -66470# -66470#	500# 200# 220#				100# 172 200#	ms ms	(>300 ns) 5	0 ⁺ 3 ⁺ # 8 ⁻ #	97	97Be70 I 95Kr.A I	β^- ? β^- =100; β^- n>0.1 β^- ?; IT ?	**
¹²³ Cs ¹²⁴ Pd ¹²⁴ Ag ¹²⁴ Ag ^m ¹²⁴ Cd	T : averag -58800# -66470# -664700 -76710	500# 200# 220# 60	03=5.87(0.05	5) 68Ch18=	=5.87(0 * *	100# 172 200# 1.25	ms ms	5 0.02	3+# 8-# 0+	97		$\beta^{-}=100; \beta^{-}n>0.1$ $\beta^{-}?; IT?$ $\beta^{-}=100$	
¹²³ Cs ¹²⁴ Pd ¹²⁴ Ag ¹²⁴ Ag ^m ¹²⁴ Cd ¹²⁴ In	T : averag -58800# -66470# -66470# -76710 -80880	500# 200# 220# 60 50	03=5.87(0.05	5) 68Ch18= 100#	=5.87(0 * *	100# 172 200# 1.25 3.11	ms ms s	5 0.02 0.10	3+# 8-# 0+ 3+	97 97		$\beta^{-}=100; \beta^{-}n>0.1$ $\beta^{-}?; IT?$ $\beta^{-}=100$ $\beta^{-}=100$	
124Pd 124Ag 124Ag 124Ag ^m 124Cd 124In 124In ^m	T: averag -58800# -66470# -66470# -76710 -80880 -80900	500# 200# 220# 60 50	03=5.87(0.05	5) 68Ch18=	=5.87(0 * *	100# 172 200# 1.25 3.11 3.7	ms ms s s	5 0.02 0.10 0.2	3+# 8-# 0+ 3+ (8) ^(-#)	97 97 97	95Kr.A I	$\beta^{-}=100; \beta^{-}n>0.1$ $\beta^{-}?; IT?$ $\beta^{-}=100$ $\beta^{-}=100$ $\beta^{-}\approx 100; IT?$	
124Pd 124Ag 124Ag 124Ag ^m 124Cd 124In 124In ^m 124Sn	T: averag -58800# -66470# -66470# -76710 -80880 -80900 -88236.8	500# 200# 220# 60 50 50	0# -20	5) 68Ch18= 100# 70	=5.87(0 * *	100# 172 200# 1.25 3.11 3.7 STABLE	ms ms s s	5 0.02 0.10 0.2 (>100 Py)	$3^{+}\#$ $8^{-}\#$ 0^{+} 3^{+} $(8)^{(-\#)}$ 0^{+}	97 97 97 97		β ⁻ =100; $β$ ⁻ n>0.1 β ⁻ ?; IT? β ⁻ =100 β ⁻ =100; IT? IS=5.79 5; $2β$ ⁻ ?	
124Pd 124Ag 124Ag 124Ag ^m 124Cd 124In 124In ^m 124Sn 124Sn ^m	T: averag -58800# -66470# -66470# -76710 -80880 -80900 -88236.8 -85911.8	500# 200# 220# 60 50 1.4 1.4	03=5.87(0.05 0# -20 2325.01	5) 68Ch18= 100# 70 0.04	=5.87(0 * *	100# 172 200# 1.25 3.11 3.7 STABLE 3.1	ms ms s s s	5 0.02 0.10 0.2 (>100 Py) 0.5	3+# 8-# 0+ 3+ (8) ^(-#) 0+ 7-	97 97 97 97 97	95Kr.A I	β ⁻ =100; $β$ ⁻ n>0.1 β ⁻ ?; IT? β ⁻ =100 β ⁻ =100 β ⁻ ≈100; IT? IS=5.79 5; 2 $β$ ⁻ ? IT=100	
124Pd 124Ag 124Ag 124Ag ^m 124Cd 124In 124In ^m 124Sn 124Sn ^m 124Sn ^m	T: averag -58800# -66470# -66470# -76710 -80880 -80900 -88236.8 -85911.8 -85580.2	500# 200# 220# 60 50 1.4 1.5	0# -20	5) 68Ch18= 100# 70	=5.87(0 * *	100# 172 200# 1.25 3.11 3.7 STABLE 3.1 45	ms ms s s s	5 0.02 0.10 0.2 (>100 Py) 0.5 5	$3^{+}\#$ $8^{-}\#$ 0^{+} 3^{+} $(8)^{(-\#)}$ 0^{+} 7^{-} $10^{+}\#$	97 97 97 97 97 97	95Kr.A I	β ⁻ =100; $β$ ⁻ n>0.1 β ⁻ ?; IT? β ⁻ =100 β ⁻ =100 β ⁻ ≈100; IT? IS=5.79 5; 2 $β$ ⁻ ? IT=100 IT=100	
123 Cs 124 Pd 124 Ag 124 Ag 124 Ag 124 Cd 124 In 124 In 124 Sn 124 Sn 124 Sn 124 Sn 124 Sn	T: averag -58800# -66470# -66470# -76710 -80880 -80900 -88236.8 -85911.8 -85580.2 -87620.3	500# 200# 220# 60 50 50 1.4 1.5 2.1	0# -20 2325.01 2656.6	70 0.04 0.5	=5.87(0 * *	100# 172 200# 1.25 3.11 3.7 STABLE 3.1 45 60.20	ms s s s ups ups d	5 0.02 0.10 0.2 (>100 Py) 0.5 5 0.03	3+# 8-# 0+ 3+ (8)(-#) 0+ 7- 10+# 3-	97 97 97 97 97 97 98	95Kr.A I	β ⁻ =100; $β$ ⁻ n>0.1 β ⁻ ?; IT? β ⁻ =100 β ⁻ =100; IT? IS=5.79 5; 2 $β$ ⁻ ? IT=100 IT=100 β ⁻ =100	
123Cs 124Pd 124Ag 124Ag ^m 124Cd 124In 124Sn 124Sn ^m 124Sn ^m 124Sn ^m 124Sb ^m	T: averag -58800# -66470# -66470# -76710 -80880 -80900 -88236.8 -85911.8 -85580.2 -87620.3 -87609.4	500# 200# 220# 60 50 1.4 1.5 2.1 2.1	03=5.87(0.05) 0# -20 2325.01 2656.6 10.8627	70 0.04 0.5 0.0008	=5.87(0 * *	100# 172 200# 1.25 3.11 3.7 STABLE 3.1 45 60.20 93	ms s s s ups ups d s	5 0.02 0.10 0.2 (>100 Py) 0.5 5 0.03 5	3+# 8-# 0+ 3+ (8)(-#) 0+ 7- 10+# 3- 5+	97 97 97 97 97 97 98 97	95Kr.A I	β ⁻ =100; $β$ ⁻ n>0.1 β ⁻ ?; IT? β ⁻ =100 β ⁻ =100; IT? IS=5.79 5; 2 $β$ ⁻ ? IT=100 IT=100 β ⁻ =100 IT=75 5; $β$ ⁻ =25 5	
123°Cs 124°Pd 124°Ag 124°Ag 124°Cd 124°In 124°Sn 124°Sn 124°Sn 124°Sb 124°Sb 124°Sb 124°Sb	T: averag -58800# -66470# -66470# -76710 -80880 -80900 -88236.8 -85911.8 -85580.2 -87620.3 -87609.4 -87583.5	500# 200# 220# 60 50 50 1.4 1.5 2.1	0# -20 2325.01 2656.6 10.8627 36.8440	70 0.04 0.5 0.0008 0.0014	=5.87(0 * *	100# 172 200# 1.25 3.11 3.7 STABLE 3.1 45 60.20 93 20.2	ms ms s s s ups d s m	5 0.02 0.10 0.2 (>100 Py) 0.5 5 0.03	3+# 8-# 0+ 3+ (8)(-#) 0+ 7- 10+# 3- 5+ (8)-	97 97 97 97 97 97 98	95Kr.A I	β ⁻ =100; $β$ ⁻ n>0.1 β ⁻ ?; IT? β ⁻ =100 β ⁻ =100 β ⁻ =100; IT? IS=5.79 5; 2 $β$ ⁻ ? IT=100 IT=100 β ⁻ =100 IT=5 5; $β$ ⁻ =25 5 IT=100	
123°Cs 124°Pd 124°Ag 124'Ag 124'Cd 124'In 124'Sn 124'Sn 124'Sn 124'Sb 124'Sb 124'Sb 124'Sb 124'Sb 124'Sb	T: averag -58800# -66470# -66470# -76710 -80880 -80900 -88236.8 -85911.8 -85580.2 -87620.3 -87609.4	500# 200# 220# 60 50 1.4 1.5 2.1 2.1	03=5.87(0.05) 0# -20 2325.01 2656.6 10.8627	70 0.04 0.5 0.0008	=5.87(0 * *	100# 172 200# 1.25 3.11 3.7 STABLE 3.1 45 60.20 93	ms s s s ups ups d s	5 0.02 0.10 0.2 (>100 Py) 0.5 5 0.03 5 0.2	3+# 8-# 0+ 3+ (8)(-#) 0+ 7- 10+# 3- 5+	97 97 97 97 97 97 98 97	95Kr.A I	β ⁻ =100; $β$ ⁻ n>0.1 β ⁻ ?; IT? β ⁻ =100 β ⁻ =100; IT? IS=5.79 5; 2 $β$ ⁻ ? IT=100 IT=100 β ⁻ =100 IT=75 5; $β$ ⁻ =25 5	
124 Pd 124 Ag 124 Ag 124 Ag 124 Cd 124 In 124 Sn 124 Sn 124 Sn 124 Sn 124 Sp 124 Sb 124 Sb 124 Sb 124 Sb 124 Sb	T: averag -58800# -66470# -66470# -76710 -8080 -80900 -88236.8 -85911.8 -85580.2 -87620.3 -87609.4 -87583.5 -87579.5	500# 200# 200# 60 50 1.4 1.5 2.1 2.1 2.1	0# -20 2325.01 2656.6 10.8627 36.8440	70 0.04 0.5 0.0008 0.0014	=5.87(0 * *	100# 172 200# 1.25 3.11 3.7 STABLE 3.1 45 60.20 93 20.2 3.2	ms ms s s s ups d s m	5 0.02 0.10 0.2 (>100 Py) 0.5 5 0.03 5 0.2	$3^{+}\#$ $8^{-}\#$ 0^{+} 3^{+} $(8)^{(-\#)}$ 0^{+} 7^{-} $10^{+}\#$ 3^{-} 5^{+} $(8)^{-}$ $(3^{+},4^{+})$	97 97 97 97 97 97 98 97 97	95Kr.A I	$β^-=100; β^-n>0.1$ $β^-?; IT?$ $β^-=100$ $β^-=100$ $β^-=100; IT?$ $IS=5.795; 2β^-?$ IT=100 IT=100 $IT=755; β^-=255$ IT=100 IT=100	
123 Cs 124 Pd 124 Ag 124 Ag 124 Cd 124 In 124 Sn 124 Sn 124 Sb	T: averag -58800# -66470# -66470# -76710 -80880 -80900 -88236.8 -85911.8 -85580.2 -87620.3 -87699.4 -87583.5 -99524.5	500# 200# 200# 60 50 1.4 1.5 2.1 2.1 2.1	0# -20 2325.01 2656.6 10.8627 36.8440	70 0.04 0.5 0.0008 0.0014	=5.87(0 * *	100# 172 200# 1.25 3.11 3.7 STABLE 3.1 45 60.20 93 20.2 3.2 STABLE	ms ms s s s ups d s m ups	5 0.02 0.10 0.2 (>100 Py) 0.5 5 0.03 5 0.2 0.3	$\begin{array}{c} 3^+ \# \\ 8^- \# \\ 0^+ \\ 3^+ \\ (8)^{(-\#)} \\ 0^+ \\ 7^- \\ 10^+ \# \\ 3^- \\ 5^+ \\ (8)^- \\ (3^+, 4^+) \\ 0^+ \\ 2^- \\ 0^+ \end{array}$	97 97 97 97 97 97 98 97 97 97	95Kr.A I	β ⁻ =100; $β$ ⁻ n>0.1 β ⁻ ?; IT? β ⁻ =100 β ⁻ =100; IT? IS=5.79 5; 2 $β$ ⁻ ? IT=100 IT=100 B ⁻ =100 IT=55; $β$ ⁻ =25 5 IT=100 IT=100 IS=4.74 14	
124Pd 124Ag 124Ag 124Ag 124Cd 124Sn 124Sn 124Sn 124Sn 124Sb 124Sb 124Sb 124Sb 124Sb 124Sb 124Sb	T: averag -58800# -66470# -66470# -76710 -80880 -80900 -88236.8 -85911.8 -85580.2 -87620.3 -87609.4 -87583.5 -90524.5 -87365.0	500# 200# 220# 60 50 1.4 1.5 2.1 2.1 2.1 2.1 2.2	0# -20 2325.01 2656.6 10.8627 36.8440	70 0.04 0.5 0.0008 0.0014	=5.87(0 * *	100# 172 200# 1.25 3.11 3.7 STABLE 3.1 45 60.20 93 20.2 3.2 STABLE 4.1760	ms ms s s s ups d s m ups	5 0.02 0.10 0.2 (>100 Py) 0.5 5 0.03 5 0.2 0.3	$\begin{array}{c} 3^+ \# \\ 8^- \# \\ 0^+ \\ 3^+ \\ (8)^{(-\#)} \\ 0^+ \\ 7^- \\ 10^+ \# \\ 3^- \\ 5^+ \\ (8)^- \\ (3^+, 4^+) \\ 0^+ \\ 2^- \\ 0^+ \end{array}$	97 97 97 97 97 97 98 97 97 97	95Kr.A I 52Ka41 T	β ⁻ =100; $β$ ⁻ n>0.1 β ⁻ ?; IT? β ⁻ =100 β ⁻ =100 β ⁻ =100; IT? IS=5.79 5; 2 $β$ ⁻ ? IT=100 IT=100 IT=55 5; $β$ ⁻ =25 5 IT=100 IT=100 IS=4.74 14 β ⁺ =100	,
124 Pd 124 Ag 124 Ag 124 Ag 124 Cd 124 In 124 Sn 124 Sn 124 Sn 124 Sb 124 Sb	T: averag -58800# -66470# -66470# -76710 -80880 -80900 -88236.8 -85911.8 -85580.2 -87620.3 -87609.4 -87583.5 -87572.5 -87575.5 -87365.0 -87660.1	500# 200# 220# 60 50 1.4 1.5 2.1 2.1 2.1 2.1 1.5 2.4	0# -20 2325.01 2656.6 10.8627 36.8440	70 0.04 0.5 0.0008 0.0014	=5.87(0 * *	100# 172 200# 1.25 3.11 3.7 STABLE 3.1 45 60.20 93 20.2 3.2 STABLE 4.1760 STABLE	ms ms s s s s \ \mu s \ \mu s d s m \ \mu s d s d s d \ \text{d} s d d s d d d d d d d d d d d d d d d	5 0.02 0.10 0.2 (>100 Py) 0.5 5 0.03 5 0.2 0.3 0.0003 (>48 Py)	$\begin{array}{c} 3^{+\#} \\ 8^{-\#} \\ 0^{+} \\ 3^{+} \\ (8)^{(-\#)} \\ 0^{+} \\ 7^{-} \\ 10^{+\#} \\ 3^{-} \\ 5^{+} \\ (8)^{-} \\ (3^{+}, 4^{+}) \\ 0^{+} \\ 2^{-} \end{array}$	97 97 97 97 97 97 98 97 97 97 97	95Kr.A I 52Ka41 T 89Ba22 T	β ⁻ =100; $β$ ⁻ n>0.1 β ⁻ ?; IT? β ⁻ =100 β ⁻ =100; IT? IS=5.79 5; 2 $β$ ⁻ ? IT=100 IT=100 β ⁻ =100 IT=75 5; $β$ ⁻ =25 5 IT=100 IT=100 IS=4.74 14 β ⁺ =100 IS=0.09 1; 2 $β$ ⁺ ?	
124 Pd 124 Ag 124 Ag 124 Ag 124 Cd 124 In 124 Sn 124 Sn 124 Sn 124 Sb 124 Sc 124 Sc 125 Sc 126 Sc 126 Sc 126 Sc 127 Sc	T: averag -58800# -66470# -66470# -76710 -80880 -80900 -88236.8 -85911.8 -85580.2 -87620.3 -87579.5 -90524.5 -987365.0 -87660.1 -81731	500# 200# 220# 60 50 50 1.4 1.5 2.1 2.1 2.1 2.1 2.1 8	0# -20 2325.01 2656.6 10.8627 36.8440 40.8038	70 0.04 0.5 0.0008 0.0014 0.0007	=5.87(0 * *	100# 172 200# 1.25 3.11 3.7 STABLE 3.1 45 60.20 93 20.2 3.2 STABLE 4.1760 STABLE 30.9	ms ms s s s s pus d s m pus d s	5 0.02 0.10 0.2 (>100 Py) 0.5 5 0.03 5 0.2 0.3 0.0003 (>48 Py) 0.4	$\begin{array}{c} 3^+ \# \\ 8^- \# \\ 0^+ \\ 3^+ \\ (8)^{(-\#)} \\ 0^+ \\ 7^- \\ 10^+ \# \\ 3^- \\ 5^+ \\ (8)^- \\ (3^+, 4^+) \\ 0^+ \\ 2^- \\ 0^+ \\ 1^+ \end{array}$	97 97 97 97 97 97 98 97 97 97 97	95Kr.A I 52Ka41 T 89Ba22 T	$β^-=100; β^-n>0.1$ $β^-=?; IT?$ $β^-=100$ $β^-=100; IT?$ $IS=5.795; 2β^-?$ IT=100 IT=100 IT=100 $IT=155; β^-=255$ IT=100 IT=100 IT=100 IT=100 IT=100 IT=100 IT=100 IT=100 IT=100 IT=100 IT=100	,
124 Pd 124 Ag 124 Ag 124 Ag 124 Cd 124 In m 124 In m 124 Sn m 124 Sn m 124 Sb m 124 Sc	T: averag -58800# -66470# -66470# -76710 -80880 -80900 -88236.8 -85911.8 -85580.2 -87620.3 -87650.4 -87583.5 -87579.5 -90524.5 -87365.0 -87660.1 -81731 -81268	500# 200# 60 50 1.4 1.5 2.1 2.1 1.5 2.4 1.8 8 8	0# -20 2325.01 2656.6 10.8627 36.8440 40.8038	70 0.04 0.5 0.0008 0.0014 0.0007	=5.87(0 * *	100# 172 200# 1.25 3.11 3.7 5TABLE 3.1 45 60.20 93 20.2 3.2 STABLE 4.1760 STABLE 30.9 6.3	ms ms s s s s pus d s m pus d s	5 0.02 0.10 0.2 (>100 Py) 0.5 5 0.03 5 0.2 0.3 0.0003 (>48 Py) 0.4	$\begin{array}{c} 3^{+}\#\\ 8^{-}\#\\ 0^{+}\\ 3^{+}\\ (8)(-\#)\\ 0^{+}\\ 7^{-}\\ 10^{+}\#\\ 3^{-}\\ 5^{+}\\ (8)^{-}\\ (3^{+},4^{+})\\ 0^{+}\\ 2^{-}\\ 0^{+}\\ 1^{+}\\ (7)^{+}\\ \end{array}$	97 97 97 97 97 97 98 97 97 97 97	95Kr.A I 52Ka41 T 89Ba22 T	$β^-=100; β^-n>0.1$ $β^-=?; IT?$ $β^-=100$ $β^-=100; IT?$ $IS=5.795; 2β^-?$ IT=100 IT=100 IT=100 $IT=155; β^-=255$ IT=100 IT=100 IT=100 IT=100 IT=100 IT=100 IT=100 IT=100 IT=100 IT=100 IT=100	,
124Pd 124Ag 124Ag 124Ag 124Inm 124Inm 124Sn 124Snm 124Snm 124Ssnm 124Sbm 124Bam 124La	T: averag -58800# -66470# -66470# -66470# -76710 -80880 -80900 -88236.8 -85911.8 -85580.2 -87620.3 -87699.4 -87583.5 -87579.5 -90524.5 -87365.0 -87660.1 -81731 -811218 -81218	500# 200# 60 50 50 1.4 1.5 2.1 2.1 2.1 2.1 2.1 8.8 8	0# -20 2325.01 2656.6 10.8627 36.8440 40.8038	70 0.04 0.5 0.0008 0.0014 0.0007	=5.87(0 * *	100# 172 200# 1.25 3.11 3.7 5TABLE 3.1 45 60.20 93 20.2 3.2 STABLE 4.1760 STABLE 30.9 6.3 R=?	ms ms s s s s \ \mu s d s m \ \mu s d s s m \ \mu s s s s s m \ \mu s s s m \ \mu s s s s s s s m \ \mu s s s s s s s s s s s s s s s s s s s	5 0.02 0.10 0.2 (>100 Py) 0.5 5 0.03 5 0.2 0.3 0.0003 (>48 Py) 0.4 0.2	$\begin{array}{c} 3^{+}\#\\ 8^{-}\#\\ 0^{+}\\ 3^{+}\\ (8)^{(-\#)}\\ 0^{+}\\ 7^{-}\\ 10^{+}\#\\ 3^{-}\\ 5^{+}\\ (8)^{-}\\ (3^{+},4^{+})\\ 0^{+}\\ 2^{-}\\ 0^{+}\\ 1^{+}\\ (7)^{+}\\ \text{spmix}\\ 0^{+}\\ (7^{-},8^{-}) \end{array}$	97 97 97 97 97 97 98 97 97 97 97 97	95Kr.A I 52Ka41 T 89Ba22 T	$β^-$ =100; $β^-$ n>0.1 $β^-$?; IT? $β^-$ =100 $β^-$ =100; IT? IS=5.79 5; 2 $β^-$? IT=100 IT=100 IT=75 5; $β^-$ =25 5 IT=100 IT=100 IS=4.74 14 $β^+$ =100 IS=0.09 1; 2 $β^+$? $β^+$ =100 IT=100	>
124Pd 124Ag 124Ag 124Ag 124In 124In 124Sn 124Sn 124Sn 124Sb	T: averag -58800# -66470# -66470# -76710 -80880 -80900 -88236.8 -85911.8 -85580.2 -87620.3 -87699.4 -87583.5 -90524.5 -87360.1 -81731 -81268 -81701 -79090	500# 200# 60 50 1.4 1.5 2.1 2.1 1.5 2.4 1.8 8 8 22 12 60	0# -20 2325.01 2656.6 10.8627 36.8440 40.8038	70 0.04 0.5 0.0008 0.0014 0.0007	* * * BD *	100# 172 200# 1.25 3.11 3.7 STABLE 3.1 45 60.20 93 20.2 3.2 STABLE 4.1760 STABLE 30.9 6.3 R = ? 11.0	ms ms s s s s s s s s s s s d s m us d s s s m us s s s s m us s s s s s s s s	5 0.02 0.10 0.2 (>100 Py) 0.5 5 0.03 5 0.2 0.3 0.0003 (>48 Py) 0.4 0.2 0.5	$\begin{array}{c} 3^{+}\#\\ 8^{-}\#\\ 0^{+}\\ 3^{+}\\ (8)^{(-\#)}\\ 0^{+}\\ 7^{-}\\ 10^{+}\#\\ 3^{-}\\ 5^{+}\\ (8)^{-}\\ 0^{+}\\ 2^{-}\\ 0^{+}\\ 1^{+}\\ (7)^{+}\\ \text{spmix}\\ 0^{+}\\ \end{array}$	97 97 97 97 97 97 98 97 97 97 97 97	95Kr.A I 52Ka41 T 89Ba22 T 93Al03 T	$β^-=100; β^-n>0.1$ $β^-?; IT?$ $β^-=100$ $β^-=100$ $β^-=100; IT?$ $IS=5.795; 2β^-?$ IT=100 IT=100 IT=100 IT=100 IT=100 IT=100 IT=100 IS=4.7414 $β^+=100$ $IS=0.091; 2β^+?$ $β^+=100$ IT=100 IS=100	>
124 Pd 124 Ag 124 Ag 124 Ag 124 In 124 In 124 In 124 Sn 124 Sn 124 Sp 124 Sb 124 Sb 124 Sb 124 Sb 124 Sb 124 Sb 124 Sb 124 Sb 124 Sc 124 Sc 125 Sc 126 Sc	T: averag -58800# -66470# -66470# -76710 -80880 -80900 -889206 -885911.8 -85580.2 -87620.3 -87609.4 -87583.5 -87579.5 -90524.6 -87660.1 -81731 -81268 -81701 -79090 -70260	500# 220# 220# 60 50 1.4 1.5 2.1 2.1 1.5 2.4 1.8 8 8 22 60 120#	0# -20 2325.01 2656.6 10.8627 36.8440 40.8038	70 0.04 0.5 0.0008 0.0014 0.0007	* * BD *	100# 172 200# 1.25 3.11 3.7 STABLE 3.1 45 60.20 93 20.2 3.2 STABLE 4.1760 STABLE 30.9 6.3 R = ? 11.0 29.21	ms ms s s s s s s s s s s s s s s s s s	5 0.02 0.10 0.2 (>100 Py) 0.5 5 0.03 5 0.2 0.3 0.0003 (>48 Py) 0.4 0.2 0.5 0.17	$\begin{array}{c} 3^{+}\#\\ 8^{-}\#\\ 0^{+}\\ 3^{+}\\ (8)^{(-\#)}\\ 0^{+}\\ 7^{-}\\ 10^{+}\#\\ 3^{-}\\ 5^{+}\\ (8)^{-}\\ (3^{+},4^{+})\\ 0^{+}\\ 2^{-}\\ 0^{+}\\ 1^{+}\\ (7)^{+}\\ \text{spmix}\\ 0^{+}\\ (7^{-},8^{-}) \end{array}$	97 97 97 97 97 97 98 97 97 97 97 97 97	95Kr.A I 52Ka41 T 89Ba22 T 93Al03 T	$β^-=100; β^-n>0.1$ $β^-=?; IT?$ $β^-=100$ $β^-=100$ $β^-=100; IT?$ $IS=5.795; 2β^-?$ IT=100 IT=100 IT=100 IT=100 IT=100 IT=100 IT=100 IS=4.7414 $β^+=100$ $IS=0.091; 2β^+?$ $β^+=100$ IT=100 $IS=0.091; 2β^+?$,
124 Pd 124 Ag 124 Ag 124 Ag 124 Ag 124 Cd 124 In 124 Sn 124 Sn 124 Sn 124 Sb 124 Sb 124 Sb 124 Sb 124 Sb 124 Sb 124 Sb 124 Sb 124 Sb 124 Sc 124 Cc 124 Cc	T: averag -58800# -66470# -66470# -66470# -76710 -80880 -80800 -88236.8 -85911.8 -85580.2 -87620.3 -87650.4 -87583.5 -87579.5 -90524.5 -87365.0 -87660.1 -81731 -81268 -81701 -79090 -70260 -70160#	500# 220# 60 50 1.4 1.5 2.1 2.1 1.5 2.4 1.8 8 8 22 12 60 120# 300#	0# -20 2325.01 2656.6 10.8627 36.8440 40.8038	70 0.04 0.5 0.0008 0.0014 0.0007	* * BD *	100# 172 200# 1.25 3.11 3.7 STABLE 3.1 45 60.20 93 20.2 3.2 STABLE 4.1760 STABLE 30.9 6.3 R=? 11.0 29.21 21	ms ms s s s s s s s s s s s s s s s s s	5 0.02 0.10 0.2 (>100 Py) 0.5 5 0.03 5 0.2 0.3 0.0003 (>48 Py) 0.4 0.2 0.5 0.17 4	$\begin{array}{c} 3^{+\#}\\ 8^{-\#}\\ 0^{+}\\ 3^{+}\\ (8)^{(-\#)}\\ 0^{+}\\ 7^{-}\\ 10^{+\#}\\ 3^{-}\\ 5^{+}\\ (8)^{-}\\ (3^{+},4^{+})\\ 0^{+}\\ 2^{-}\\ 0^{+}\\ 1^{+}\\ (7)^{+}\\ \text{spmiss}\\ 0^{+}\\ (7^{-},8^{-})\\ \log^{(+\#)}\\ \end{array}$	97 97 97 97 97 97 97 97 97 97 97 97	95Kr.A I 52Ka41 T 89Ba22 T 93Al03 T 97As05 T 97As05 T	$β^-=100; β^-n>0.1$ $β^-=?; IT?$ $β^-=100$ $β^-=100$ $β^-=100; IT?$ $IS=5.795; 2β^-?$ IT=100 IT=100 $IT=155; β^-=255$ IT=100 IT=100 IT=100 IS=4.7414 $β^+=100$ $IS=0.091; 2β^+?$ $β^+=100$ IT=100 $IS=0.091; 2β^+?$ $β^+=100$ $IS=0.091; 2β^+?$,
124 Pd 124 Ag 124 Ag 124 Ag 124 Ag 124 Cd 124 In 124 Sn 124 Sn 124 Sn 124 Sb 124 Sb 124 Sb 124 Sb 124 Sb 124 Sb 124 Sb 124 Sb 124 Sb 124 Sc 124 Cc 124 Cc	T: averag -58800# -66470# -66470# -76710 -80880 -80900 -88236.8 -85911.8 -85580.2 -87620.3 -87650.4 -87583.5 -87579.5 -90524.5 -8766.0 -81731 -81268 -81701 -79090 -70260 -70160# -64820#	500# 220# 60 50 1.4 1.5 2.1 2.1 1.5 2.4 1.8 8 22 12 60 300# 600# 600#	0# -20 2325.01 2656.6 10.8627 36.8440 40.8038	70 0.04 0.5 0.0008 0.0014 0.0007	* * BD *	100# 172 200# 1.25 3.11 3.7 5TABLE 3.1 45 60.20 93 20.2 3.2 STABLE 4.1760 STABLE 30.9 6.3 R = ? 11.0 29.21 91.1	ms ms s s s s s ups d s m ps d s s m s s s s	5 0.02 0.10 0.2 (>100 Py) 0.5 5 0.03 5 0.2 0.3 0.0003 (>48 Py) 0.4 0.2 0.5 0.17 4 1.2	$\begin{array}{c} 3^{+\#}\\ 8^{-\#}\\ 0^{+}\\ 3^{+}\\ (8)^{(-\#)}\\ 0^{+}\\ 7^{-}\\ 10^{+\#}\\ 3^{-}\\ 5^{+}\\ (8)^{-}\\ (3^{+},4^{+})\\ 0^{+}\\ 2^{-}\\ 0^{+}\\ 1^{+}\\ (7)^{+}\\ \text{spmiss}\\ 0^{+}\\ (7^{-},8^{-})\\ \log^{(+\#)}\\ \end{array}$	97 97 97 97 97 97 97 97 97 97 97 97 97 9	95Kr.A I 52Ka41 T 89Ba22 T 93Al03 T 97As05 T 97As05 T	$β^-=100; β^-n>0.1$ $β^-: ; IT?$ $β^-=100$ $β^-=100$ $β^-=100; IT?$ $IS=5.795; 2β^-?$ IT=100 IT=100 $IT=155; β^-=255$ IT=100 IT=100 IT=100 IS=4.7414 $β^+=100$ $IS=0.091; 2β^+?$ $β^+=100$ $β^+=100$ $β^+=100$ $β^+=100$ $β^+=100$ $β^+=100$ $β^+=100$ $β^+=100$ $β^+=100$ $β^+=100$ $β^+=100$ $β^+=100$,
123°Cs 124°Pd 124°Ag 124'Ag 124'Ag 124'Sn 124'Sn 124'Sn 124'Sn 124'Sb 124'Sb 124'Sb 124'Sb 124'Sb 124'Sb 124'Sb 124'Sb 124'Cs 124'Ca	T: averag -58800# -66470# -66470# -66470# -76710 -80880 -80900 -88236.8 -85911.8 -85580.2 -87620.3 -87699.4 -87583.5 -90524.5 -87365.0 -87660.1 -81731 -81268 -81701 -79090 -70260 -70160# -64820# -64820# -44500#	500# 220# 60 50 1.44 1.5 2.1 2.1 1.5 2.4 1.8 8 22 12 60 120# 600# 600# 600#	0# -20 2325.01 2656.6 10.8627 36.8440 40.8038	70 0.04 0.5 0.0008 0.0014 0.0007 0.17 20	* * * * * * * * * * * * * * * * * * *	100# 172 200# 1.25 3.11 3.7 STABLE 3.1 45 60.20 93 20.2 3.2 STABLE 4.1760 STABLE 30.9 6.3 <i>R</i> =? 11.0 29.21 21 9.1 1.2 500#	ms ms s s s s p p s d s m p p s d s s s s m s s s s ms	5 0.02 0.10 0.2 (>100 Py) 0.5 5 0.03 5 0.2 0.3 0.0003 (>48 Py) 0.4 0.2 0.5 0.17 4 1.2 0.2	$\begin{array}{c} 3^{+}\#\\ 8^{-}\#\\ 0^{+}\\ 3^{+}\\ (8)^{(-\#)}\\ 0^{+}\\ 7^{-}\\ 10^{+}\#\\ 3^{-}\\ 5^{+}\\ (8)^{-}\\ 0^{+}\\ 2^{-}\\ 0^{+}\\ 1^{+}\\ (7)^{+}\\ \mathrm{spmix}\\ 0^{+}\\ (7^{-},8^{-})\\ \mathrm{low}^{(+\#)}\\ 0^{+}\\ 0^{+}\\ \end{array}$	97 97 97 97 97 97 97 97 97 97 97 97 97 9	95Kr.A I 52Ka41 T 89Ba22 T 93Al03 T 97As05 T 97As05 T	$β^-=100; β^-n>0.1$ $β^-: ; IT?$ $β^-=100$ $β^-=100$ $β^-=100; IT?$ $IS=5.795; 2β^-?$ IT=100 IT=100 IT=100 IT=100 IT=100 IT=100 IT=100 IS=4.7414 $β^+=100$ $IS=0.091; 2β^+?$ $β^+=100$ IT=100 $β^+=100$ $β^+=100$ $β^+=100$ $β^+=100$ $β^+=100$ $β^+=100$ $β^+=100$ $β^+=100$ $β^+=100$ $β^+=100$ $β^+=100$ $β^+=100$ $β^+=100$ $β^+=100$	
124Pd 124Ag 124Ag 124Ag 124Ag 124In 124In 124Sn 124Sn 124Sn 124Sb 124Sb 124Sb 124Sb 124Sb 124Sb 124Sb 124Sb 124Sb 124Sb 124Sb 124Cs	T: averag -58800# -66470# -66470# -76710 -80880 -80900 -88236.8 -85911.8 -85580.2 -87620.3 -87650.4 -87583.5 -87579.5 -90524.5 -87365.0 -87660.1 -81731 -81268 -81701 -79090 -70160# -64820# -53130# -44500# I: "There T: averag	500# 220# 60 50 1.4 1.5 2.1 2.1 1.5 2.4 1.8 8 22 12 66 0120# 600# 600# 600# 600# 600# 600# 600# 6	03=5.87(0.05) 0# -20 2325.01 2656.6 10.8627 36.8440 40.8038 462.55 30 100#	70 0.04 0.5 0.008 0.0014 0.0007 0.17 20 100#	* * * BD *	100# 172 200# 1.25 3.11 3.7 STABLE 3.1 45 60.20 93 20.2 3.2 STABLE 4.1760 STABLE 30.9 6.3 R = ? 11.0 29.21 21 9.1 1.2 500# 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2	ms ms s s s s p p s d s m p p s d s s s s m s s s s ms	5 0.02 0.10 0.2 (>100 Py) 0.5 5 0.03 5 0.2 0.3 0.0003 (>48 Py) 0.4 0.2 0.5 0.17 4 1.2 0.2	$\begin{array}{c} 3^{+}\#\\ 8^{-}\#\\ 0^{+}\\ 3^{+}\\ (8)^{(-\#)}\\ 0^{+}\\ 7^{-}\\ 10^{+}\#\\ 3^{-}\\ 5^{+}\\ (8)^{-}\\ 0^{+}\\ 2^{-}\\ 0^{+}\\ 1^{+}\\ (7)^{+}\\ \mathrm{spmix}\\ 0^{+}\\ (7^{-},8^{-})\\ \mathrm{low}^{(+\#)}\\ 0^{+}\\ 0^{+}\\ \end{array}$	97 97 97 97 97 97 97 97 97 97 97 97 97 9	95Kr.A I 52Ka41 T 89Ba22 T 93Al03 T 97As05 T 97As05 T	$β^-=100; β^-n>0.1$ $β^-: ; IT?$ $β^-=100$ $β^-=100$ $β^-=100; IT?$ $IS=5.795; 2β^-?$ IT=100 IT=100 IT=100 IT=100 IT=100 IT=100 IT=100 IS=4.7414 $β^+=100$ $IS=0.091; 2β^+?$ $β^+=100$ IT=100 $β^+=100$ $β^+=100$ $β^+=100$ $β^+=100$ $β^+=100$ $β^+=100$ $β^+=100$ $β^+=100$ $β^+=100$ $β^+=100$ $β^+=100$ $β^+=100$ $β^+=100$ $β^+=100$	
123°Cs 124°Pd 124°Ag 124°Ag 124°Ag 124°Sn 124°Sn 124°Sn 124°Sn 124°Sb 1	T: averag -58800# -66470# -66470# -76710 -80880 -80900 -88236.8 -85911.8 -85580.2 -87620.3 -87650.4 -87583.5 -87579.5 -90524.5 -87365.0 -87660.1 -81731 -81268 -81701 -79090 -70160# -64820# -53130# -44500# I: "There T: averag	500# 220# 60 50 1.4 1.5 2.1 2.1 1.5 2.4 1.8 8 22 12 66 0120# 600# 600# 600# 600# 600# 600# 600# 6	0# -20 2325.01 2656.6 10.8627 36.8440 40.8038 462.55 30 100#	70 0.04 0.5 0.008 0.0014 0.0007 0.17 20 100#	* * * BD *	100# 172 200# 1.25 3.11 3.7 STABLE 3.1 45 60.20 93 20.2 3.2 STABLE 4.1760 STABLE 30.9 6.3 R = ? 11.0 29.21 21 9.1 1.2 500# 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2	ms ms s s s s p p s d s m p p s d s s s s m s s s s ms	5 0.02 0.10 0.2 (>100 Py) 0.5 5 0.03 5 0.2 0.3 0.0003 (>48 Py) 0.4 0.2 0.5 0.17 4 1.2 0.2	$\begin{array}{c} 3^{+}\#\\ 8^{-}\#\\ 0^{+}\\ 3^{+}\\ (8)^{(-\#)}\\ 0^{+}\\ 7^{-}\\ 10^{+}\#\\ 3^{-}\\ 5^{+}\\ (8)^{-}\\ 0^{+}\\ 2^{-}\\ 0^{+}\\ 1^{+}\\ (7)^{+}\\ \mathrm{spmix}\\ 0^{+}\\ (7^{-},8^{-})\\ \mathrm{low}^{(+\#)}\\ 0^{+}\\ 0^{+}\\ \end{array}$	97 97 97 97 97 97 97 97 97 97 97 97 97 9	95Kr.A I 52Ka41 T 89Ba22 T 93Al03 T 97As05 T 97As05 T	$β^-=100; β^-n>0.1$ $β^-: ; IT?$ $β^-=100$ $β^-=100$ $β^-=100; IT?$ $IS=5.795; 2β^-?$ IT=100 IT=100 IT=100 IT=100 IT=100 IT=100 IT=100 IS=4.7414 $β^+=100$ $IS=0.091; 2β^+?$ $β^+=100$ IT=100 $β^+=100$ $β^+=100$ $β^+=100$ $β^+=100$ $β^+=100$ $β^+=100$ $β^+=100$ $β^+=100$ $β^+=100$ $β^+=100$ $β^+=100$ $β^+=100$ $β^+=100$ $β^+=100$	***

Nuclide	Mass ex (keV			xcitation ergy(keV)	ŀ	Half-l	ife	J^{π}	Ens	Reference	Decay modes and intensities (%)	
¹²⁵ Ag ¹²⁵ Cd ¹²⁵ Cd ^m	-64800# -73360 -73310	70 50	50	70	* BD *	166 650 570	ms ms ms	7 20 90	7/2+# 3/2+# 11/2-#	99 99 99	89Hu03 T	$\beta^{-}=100; \beta^{-}=?$ $\beta^{-}=100$ $\beta^{-}=100$	*
¹²⁵ In ¹²⁵ In ^m	-80480 -80120	30 30	360.12	0.09		2.36 12.2	s s	0.04	$9/2^+$ $1/2^{(-)}$	99 99		$\beta^{-}=100$ $\beta^{-}=100$	
¹²⁵ Sn	-85898.5	1.5				9.64	d	0.03	$11/2^{-}$	99		$\beta^{-}=100$	
$^{125}{\rm Sn}^{m}$	-85871.0	1.5	27.50	0.14		9.52	m	0.05	$3/2^{+}$	99		$\beta^{-}=100$	
¹²⁵ Sb	-88255.5	2.6				2.75856	y	0.00025	$7/2^{+}$	99		$\beta^{-}=100$	
¹²⁵ Te	-89022.2					STABLE			$1/2^{+}$	99		IS=7.07 15	
¹²⁵ Te ^m	-88877.4		144.772	0.009		57.40	d	0.15	$11/2^{-}$	99		IT=100	
125I	-88836.4					59.400	d	0.010	5/2+	99		ε=100	
¹²⁵ Xe	-87192.1	1.9				16.9	h	0.2	1/2(+)	99		$\beta^{+}=100$	
¹²⁵ Xe ^m	-86939.5	1.9	252.60	0.14		56.9	S	0.9	9/2(-)	99		IT=100	
¹²⁵ Cs	-84088	8				45	m	1	1/2(+)	99		$\beta^{+}=100$	
¹²⁵ Cs ^m	-83821	8	266.6	1.1		900	ms	30	$(11/2^{-})$	99	98Su16 TJ	IT=100	
¹²⁵ Ba ¹²⁵ La	-79668	11				3.5	m	0.4	1/2(+#)	99		$\beta^{+}=100$	
	-73759 -73652	26 26	107.0	0.1		64.8 390	s ms	1.2 40	$(11/2^{-})$	99 99	99Ca21 ET.	$\beta^{+}=100$	*
¹²⁵ Ce	-73632 -66660#		107.0	0.1		9.3	S	0.3	$(3/2^+)$ $(7/2^-)$	99	02Pe15 J	$\beta^{+}=100; \beta^{+}p=?$	*
¹²⁵ Pr	-57910#					3.3	S	0.3	3/2+#	02	02FE13 J	$\beta^{+}=100, \beta^{-}=2$ $\beta^{+}=100; \beta^{+}=2$	*
¹²⁵ Nd	-47620#					600	ms	150	5/2(+#)	02		$\beta^{+}=100, \beta^{-}\beta^{-}$	
			erage 89H	m03-480	30) 861				atio $B=4.24$)	02		ρ =100	**
*125La									8-9 keV abo	ove gr	ound-state		**
	J: 3/2+#									8-			**
*125Ce	T : averag												**
¹²⁶ Ag	-61010#	300#				107	ms	12	3+#	03		$\beta^-=100; \beta^-n=?$	
¹²⁶ Cd	-72330	50				515	ms	17	0^{+}	03		$\beta^{-}=100$	
¹²⁶ In	-77810	40			*	1.53	S	0.01	3(+#)	03		$\beta^{-}=100$	
$^{126}\mathrm{In}^m$	-77710	50	100	60	BD *	1.64	S	0.05	8(-#)	03	79Fo10 J	$\beta^{-}=100$	
¹²⁶ Sn	-86020	11				230	ky	14	0^{+}	03		$\beta^{-}=100$	
$^{126}{\rm Sn}^{m}$	-83801	11	2218.99	0.08		6.6	μ s	1.4	7-	03		IT=100	
126Sn ⁿ	-83456	11	2564.5	0.5		7.7	μs	0.5	10+#	03		IT=100	
126Sb	-86400	30				12.35	d	0.06	(8-)	03		$\beta^{-}=100$	
$^{126}{\rm Sb}^{m}$ $^{126}{\rm Sb}^{n}$	-86380	30	17.7	0.3		19.15	m	0.08	(5 ⁺)	03		β ⁻ =86 4; IT=14 4	
126Sb"	-86360	30	40.4	0.3		11	S	_	(3^{-}) (3^{+})	03 03		IT=100 IT=100	
¹²⁶ Te	-86300 -90064.6	30 1.5	104.6	0.3		553 STABLE	ns	5	0+	03		IS=18.84 25	
126I	-90004.0 -87911	4				12.93	d	0.05	$\frac{0}{2^{-}}$	03		$\beta^{+}=52.75; \beta^{-}=47.35$	
¹²⁶ Xe	-89169	6				STABLE	u	0.03	0^{+}	03		IS=0.09 1; $2\beta^+$?	
¹²⁶ Cs	-84345	12				1.64	m	0.02	1+	03		$\beta^{+}=100$	
$^{126}\text{Cs}^m$	-84072	12	273.0	0.7		> 1	μs	0.02	1	03		IT=100	
$^{126}Cs^n$	-83749	12	596.1	1.1		171	μs	14		03		IT=100	
¹²⁶ Ba	-82670	12				100	m	2	0^{+}	03		$\beta^{+}=100$	
¹²⁶ La	-74970	90			*	54	S	2	$(5)^{(+#)}$	03		$\beta^{+}=100$	
$^{126}La^m$	-74760	400	210	410	BD *	20	s	20	$(0^-, 1^-, 2^-)$	03		$\beta^{+}=100$	*
¹²⁶ Ce	-70821	28				51.0	s	0.3	0^{+}	03		$\beta^{+}=100$	
¹²⁶ Pr	-60260 #					3.12	S	0.18	(4, 5, 6)	03	88Ba42 T	$\beta^{+}=100; \beta^{+}p=?$	*
¹²⁶ Nd	-52890 #					1#		(>200 ns)	0_{+}	03	00So11 I	β^+ ?	
126Pm	-39570#					500#	ms					β^+ ?	
*126Lam	T: 97As0					(O 1)	063	.05 65:					**
*126Pr	T: averag	e 95Os	03=3.14(0)	.22) 88Ba	42 = 3.0	(0.4) and	83N	105=3.2(0.	.6)				**

Nuclide	Mass ex (keV			ergy(keV))		Half-li	fe	J^{π}	Ens	Reference	ce	Decay modes and intensities (%)	_
127 Ag 127 Cd 127 In 127 In ^m 127 Sn 127 Sn ^m 127 Sb 127 Te 127 Te ^m	-58900# -68520 -76990 -76520 -83499 -83494 -86700 -88281.1 -88192.8 -88983	300# 70 40 70 25 25 5 1.5 4	460 4.7 88.26	70 0.3 0.08	BD	79 370 1.09 3.6° 2.10 4.13 3.83 9.33 109 STAB	9 s 7 s 9 h 8 m 5 d 5 h 9 d	70 0.01 0.04 0.04 0.03 0.05 0.07	$7/2^+ \#$ $(3/2^+)$ $9/2^{(+)}$ $(1/2^-)$ $(11/2^-)$ $(3/2^+)$ $7/2^+$ $3/2^+$ $11/2^ 5/2^+$	98 96 96 96 96 96 96 96	96Wo.A 87Eb02	J	$\begin{array}{l} \beta^-{=}100 \\ \beta^-{=}100; \beta^-{\rm n}{\leq}0.03 \\ \beta^-{=}100; \beta^-{\rm n}{=}0.69 \; 4 \\ \beta^-{=}100 \\ \beta^-{=}100 \\ \beta^-{=}100 \\ \beta^-{=}100 \\ \Gamma^-{=}97.6 \; 2; \beta^-{=}2.4 \; 2 \\ {\rm IS}{=}100. \end{array}$	*
127Xe 127Xe ^m 127Cs 127Cs ^m 127Ba 127Ba ^m 127La 127La ^m	-88321 -88024 -86240 -85788 -82816 -82736 -77896	4 6 6 11 11 26 26	297.10 452.23 80.33 14.8	0.08 0.21 0.12		36.34 69.3 6.23 55 12.7 1.9 5.1 3.7	2 s 5 h µs 7 m s	0.003 0.9 0.10 3 0.4 0.2 0.1 0.4	1/2 ⁺ 9/2 ⁻ 1/2 ⁺ (11/2) ⁻ 1/2 ⁺ 7/2 ⁻ (11/2 ⁻) (3/2 ⁺)	96 96 96 96 96 96 96	02Un02	Т	ε =100 IT=100 β ⁺ =100 IT=100 β ⁺ =100 IT=100 β ⁺ =100 β ⁺ ≈100; IT ?	
127 Ce 127 Ce ^m 127 Pr 127 Pr ^m 127 Nd 127 Pm *127 Ag	-71980 -71980# -64430# -63830# -55420# -45060#	60 120# 200# 280# 400# 600#	0# 600# Fe12=109(2	100# 200#	,	* 29 * 34 4.2 50# 1.8	s s s ms	2 2 0.3	5/2+# (1/2+) 3/2+# 11/2- 5/2+# 5/2+#	98 98 96	96Ge07 96Ge07 98Mo30		$\beta^{+}=100$ $\beta^{+}=100$ $\beta^{+}=100$ $\beta^{+}=100$ $\beta^{+}=?$ IT? $\beta^{+}=100; \beta^{+}=?$ $\beta^{+}?; p?$	**
128 Ag 128 Cd 128 In 128 In ^m 128 In ⁿ 128 Sn	-54800# -67290 -74360 -74110 -74040 -83335	300# 290 50 50 50 27	247.87 320	0.10 60	BD	58 280 840 10 720 59.0	ms ms ms	40 60 7	0 ⁺ (3) ⁺ (1) ⁻ (8 ⁻) 0 ⁺	01 01 01 01 01 01	93Ru01	D	β^- =100; β^- n=? β^- =100 β^- =100; β^- n=0.038 3 IT=100 β^- =100 β^- =100	*
128 Sn ^m 128 Sb 128 Sb ^m 128 Te 128 Te ^m 128 I	-81244 -84609 -84599 -88992.1 -86201.4 -87738 -87600	27 25 24 1.7 1.7 4	2091.50 10 2790.7 137.850	0.11 7 0.4 0.004	>	* 10.4 2.2 370 24.9 845	h h m Yy ns ns ns	30 0.02 20	(7 ⁻) 8 ⁻ 5 ⁺ 0 ⁺ 10 ⁺ 1 ⁺ 4 ⁻	01 01 01 01 01 01	96Ta04	Т	IT=100 β ⁻ =100 β ⁻ =96.4 10; IT=3.6 10 IS=31.74 8; $2β$ ⁻ =100 IT=100 β ⁻ =93.1 8; $β$ ⁺ =6.9 8 IT=100	*
128 In 128 Xe 128 Xe 128 Cs 128 Ba 128 La 128 La ^m 128 Ce	-87571 -89860.0 -87072.7 -85931 -85402 -78630 -78530#	4 1.4 1.5 5 10 50 110#	167.367 2787.3 100#	0.005 0.4 100#	>	× < 1.	ns 0 m 3 d 3 m 4 m	0.05 0.14	$(6)^{-}$ 0^{+} 8^{-} 1^{+} 0^{+} (5^{+}) $(1^{+}, 2^{-})$		93Al03	T	IT=100 IS=1.92 3 IT=100 β^+ =100 ϵ =100 β^+ =100 β^+ =100	*
128Pr 128Nd 128Pm 128Sm *128In ^m	-75534 -66331 -60180# -48050# -39050# T:10 μs <	400# 500#	ife < 20 ms	, cf. Ense)F	3.93 2.84 5# 1.0 500	1 s s s	0.02 0.09 0.3	0 ⁺ (3 ⁺) 0 ⁺ 6 ⁺ # 0 ⁺	01 01 01 01	99Xi03 93Li40	J D	$\beta^{+}=100$ $\beta^{+}=100; \beta^{+}p=?$ $\beta^{+}?; \beta^{+}p?$ $\beta^{+}\approx100; \beta^{+}p?; p=0$ $\beta^{+}?; p?$	* * * *
* ¹²⁸ Sb ^m * ¹²⁸ Te * ¹²⁸ Cs * ¹²⁸ Pr * ¹²⁸ Nd * ¹²⁸ Pm	T : see also T : average D : from 8	o 92Be3 e 93Al0 5Wi07 5 gave 4	V above gr 30=7.7(0.4) 3=3.66(0.0 4(2) s. Prove 440	not used f 2) 76He04	For con l=3.62 Vi07, t	sistency (0.02) o be due	to ¹²⁸ I							** ** ** ** **

Nuclide	Mass ex (keV			Excitation nergy(keV)		Н	alf-li	fe	J^{π}	En	s Referen	ce	Decay modes and intensities (%)	
	-52450#		0.11	2001	*	44	ms	7	7/2+#				$\beta^-=100; \beta^-=?$	
	-52450# -63200#		0#	200#	EU *	160 242	ms ms	8	1/2-#		03Pf.A	TD	β^- ?; β^- n ? β^- =100; β^- n=?	*
	-63200#		0#	200#	*	104	ms	6	$11/2^{-}$ #				$\beta^{-}=100; \beta^{-}=?$	
¹²⁹ In	-72940	40				611	ms	4	,		93Ru01		$\beta^-=100; \beta^-=0.255$	*
	-72560	70	380	70	BD	1.23	s	0.03	1/2-#	96			$\beta^- \approx 100$; IT<0.3;	*
	-71250	40	1688.0	0.5		8.5	μ s	0.5	$17/2^{-}$		03Ge04	ETJ	IT=100	
129Sn	-80594	29				2.23	m	0.04	3/2+#				$\beta^{-}=100$	
	-80559	29	35.2	0.3		6.9	m	0.1	11/2-#				$\beta^- \approx 100$; IT ≈ 0.002	
	-84628 -82777	21 21	1851.05	0.10		4.40 17.7	h m	0.01 0.1	$7/2^+$ $(19/2^-)$				$\beta^-=100$ $\beta^-=85$; IT=15	
	-82767	21	1860.90	0.10		> 2	μs	0.1	$(15/2^{-})$				IT=100	
	-82489	21	2138.9	0.5		1.1	μs	0.1	$(23/2^+)$		03Ge04	ETJ		
	-87003.2	1.8				69.6	m	0.3	3/2+	96			$\beta^{-}=100$	
	-86897.7	1.8	105.50	0.05		33.6	d	0.1	$11/2^{-}$	96			IT=63 17; β ⁻ =37 17	
129I	-88503	3				15.7	My	0.4	7/2+	96			$\beta^{-}=100$	
	-88697.4	0.7				STABLE			1/2+	96			IS=26.44 24	
	-88461.3		236.14	0.05		8.88	d	0.02	11/2-	96			IT=100	
	-87500 -85065	5 11				32.06 2.23	h h	0.06	$\frac{1/2^+}{1/2^+}$	96 96			$\beta^{+}=100$ $\beta^{+}=100$	
129 R a ^m	-85053 -85057	11	8.42	0.06		2.23	h	0.11 0.02	7/2+#	96			$\beta^{+}\approx 100$; IT=?	
	-81326	21	0.42	0.00		11.6	m	0.02	3/2+	96			$\beta^+ \approx 100, 11 = 3$ $\beta^+ = 100$	
$^{129}La^{m}$	-81154	21	172.1	0.4		560	ms	50	11/2-	96			IT=100	
¹²⁹ Ce	-76287	28				3.5	m	0.3	$(5/2^+)$	97	93A103	T	$\beta^{+}=100$	*
¹²⁹ Ce ^m	-76179	28	107.6	0.1		62	ns	5	$(7/2^{-})$	96			IT=100	
¹²⁹ Pr	-69774	30			&		S	4	. , ,		96Gi08		$\beta^{+}=100$	
	-69390	30	382.7	0.5	&		ms	0.2	$(11/2^{-})$		97Gi07	EJD	O IT=100	
	-62240# -52950#					4.9 3#	s s	0.2 (>200 ns)	5/2+#	96	00So11	T	$\beta^{+}=100; \beta^{+}p=?$ $\beta^{+}?$	
	-32930# -42250#					550	ms	100	5/2+#				$\beta^{+}=100$	
100			are not cor	nvinced by	the ident				3/2 "))/Iuo3	110	p =100	**
*129In				86Wa17=6			_							**
	$D:\ldots;\tilde{\beta}$	n=2.5	5 5											**
* ¹²⁹ Ce	J : from 96	6Gi08	(5/2 ⁺ in EN	SDF was fro	om theor	y)								**
¹³⁰ Ag	-46160#	330#				50	ms		0^{+}	01			$\beta^-=100; \beta^- n$?	
	-61570	280				162	ms	7	0_{+}	01	01Ha39	TD	$\beta^-=100; \beta^-=3.5 10$	
130In	-69890	40	50	50	*	290	ms	20	(1-)	01	000 01		$\beta^-=100; \beta^-=0.93 13$	
¹³⁰ In ^m ¹³⁰ In ⁿ	-69840 -69490	40 50	50 400	50 60	BD * BD	538 540	ms	5 10	10 ⁻ # (5 ⁺)	01 01	93Ru01	1	$\beta^-=100; \beta^-=1.65 15$	
130Sn	-80139	11	400	60	טט	3.72	ms m	0.07	0+	01			$\beta^-=100; \beta^-=1.65 \ 15$ $\beta^-=100$,
	-78192	11	1946.88	0.10		1.7	m	0.1	7-#	01			$\beta^{-}=100$	
	-82292	17	17.10.00	0.10		39.5	m	0.8	8-#	01			$\beta^{-}=100$	
	-82287	17	4.80	0.20		6.3	m	0.2	$(4,5)^{+}$	01			$\beta^{-}=100$	
	-87351.4	1.9				790	Ey	100	0_{+}	01	96Ta04	TD	IS=34.08 62; $2\beta^-$ =100) *
	-85205.0		2146.41	0.04		115	ns	8	(7)-	01			IT=100	
	-84690	7	2661	7		1.90	μ s	0.08	(10^{+})	01			IT=100	*
¹³⁰ Te ^p ¹³⁰ I	-82976.0 -86932	2.6	4375.4	1.8		261 12.36	ns	33 0.01	5 ⁺	01 01			IT=100 β ⁻ =100	
130 Im	-86932 -86892	3	39.9525	0.0013		8.84	h m	0.06	2 ⁺	01			$\beta = 100$ IT=84 2; $\beta^-=16$ 2	
¹³⁰ Xe	-89881.7		37.7323	0.0013		STABLE	111	0.00	0+	01			IS=4.08 2	
¹³⁰ Cs	-86900	8				29.21	m	0.04	1+	01			$\beta^{+}=98.4; \beta^{-}=1.6$	
$^{130}\mathrm{Cs}^m$	-86737	8	163.25	0.11		3.46	m	0.06	5-	01			IT \approx 100; β^+ =0.16 2	
$^{130}Cs^x$	-86873	17	27	15		R = .2 .1			fsmix				•	
	-87261.6					STABLE		$(>4.0\mathrm{Zy})$			96Ba24		IS=0.106 1; $2\beta^+$?	
	-84786.5		2475.12	0.18		9.54	ms	0.14	8^{-}	01	02Mo31	T	IT=100	*
A-gro	oup is conti	nued c	on next page	e										

Nuclide	Mass ex (keV			citation rgy(keV)		Н	alf-l	ife	J^{π}	Ens	Referen	ce	Decay modes and intensities (%)	
A-grc 130 La 130 Ce 130 Ce 130 Pr 130 Pr 130 Pr 130 Nm 130 Sm 130 Eu *130 In* *130 In* *130 Te *130 Te *130 Te *130 Te *130 Pr *130 Nd	T: 76. T: see als T: tre E: less tha T: others J: 88Ba42 J: see also	26 28 28 60 120# 28 300# 400# 500# e 93Ru Lu02=: o nume ated by an 25 k 66Br1- 2: there	2453.6 100# 101=542(9) 580(10) at verous (not use ENSDF'01) eV above 2 4=8.8(0.2) 6 ev is also a loo scussion in ing data, no	variance, resul as a lowe 648.57(0. 59Wa.A=1 w-spin co 01Gi17 o	ts in 9 r limi 22) (8 13.5(1 ompor n thre	ped 95Tr07 It (not access*) level, 1.0) not us nent in 130 ee isomeri	eptec see I ed Pr ac c sta	1 by NUE ENSDF'0 ctivity tes in 130	BASE) I Pr	01 01 01 01 01 01 01 01	88Ba42 88Ba42 01Gi17 99Xi03 02Ma61	J T J	$\beta^{+}=100$ $\beta^{+}=100$ TT=100 $\beta^{+}=100$ $\beta^{+}=100$ $\beta^{+}=100$; $\beta^{+}p=?$ $\beta^{+}?$ $p=?$; $\beta^{+}=1\#$	* * * * * * * * * * * * * * * * * * *
131 Cd 131 In 131 In ^m 131 In ⁿ 131 Sn ^m 131 Sb 131 Te ^m 131 Te ^m 131 Xe ^m 131 Xe ^m	-55270# -68137 -67790 -64040 -77314 -77230# -81988 -85209.5 -85027.3 -87444.4 -88415.2 -88251.3 -88060	28 40 70 21 40# 21 1.9 1.9 1.1 1.0 5	350 4100 80# 182.250 163.930	40 70 30# 0.020	BD BD	68 280 350 320 56.0 58.4 23.03 25.0 30 8.02070 STABLE 11.84 9.689	d d	3 30 50 60 0.5 0.5 0.04 0.1 2 0.00011	$7/2^{-\#}$ $(9/2^{+})$ $(1/2^{-})$ $(19.23/2^{+})$ $(3/2^{+})$ $(11/2^{-})$ $(7/2^{+})$ $3/2^{+}$ $11/2^{-}$ $7/2^{+}$ $3/2^{+}$ $11/2^{-}$ $5/2^{+}$ $1/2^{-}$	94 94 94 94 94 94 94 94	00Ha55 93Ru01 01Si.A		β ⁻ =100; $β$ ⁻ n=3.5 10 β ⁻ =100; $β$ ⁻ n=2.2 3 β ⁻ ≈100; β ⁻ >99; β ⁻ =100 β ⁻ =100; IT<0.0004# β ⁻ =100 β ⁻ =100 β ⁻ =100 IS=21.18 3 IT=100 ε ⁺ =100 ε ⁺ =100 ε ⁺ =100	* * *
131 Ba 131 Ba ^m 131 La 131 La 131 Ce ^m 131 Ce ^m 131 Pr 131 Pr 131 Nd 131 Nd 131 Sm 131 Eu *131 In ^m *131 In ^m *131 In ^m	D:; β	2.8 28 30 30 30 50 50 28 28 200# 400# -n<2.0	187.14 304.52 61.8 162.00 152.4 357 0 4; IT≤0.0 028 5; IT<1			11.50 14.6 59 170 10.2 5.0 70 1.50 5.7 33 50 6.3 1.2 17.8	d m m m µs m m ns m s s s ns s s ms	0.06 0.2 2 10 0.3 1.0 5 0.03 0.2 3 0.8 0.2 1.9	1/2+ 9/2- 3/2+ 11/2- (7/2+) (1/2+) (9/2-) (3/2+) (5/2)(+#) (7/2-) 5/2+# 5/2+# 3/2+	94 94 94 99 99 99 94 94 94 94 94 02	96Gi08	T J	$\begin{array}{l} \beta^{+}\!=\!100 \\ \text{IT}\!=\!100 \\ \beta^{+}\!=\!100 \\ \text{IT}\!=\!100 \\ \beta^{+}\!=\!100 \\ \beta^{+}\!=\!100 \\ \beta^{+}\!=\!100 \\ \beta^{+}\!=\!100 \\ \beta^{+}\!=\!100; \beta^{+}\!p\!=\!? \\ \text{IT}\!=\!100 \\ \beta^{+}\!=\!100; \beta^{+}\!p\!=\!? \\ \text{IT}\!=\!100 \\ \beta^{+}\!=\!100; \beta^{+}\!p\!=\!? \\ p\!=\!?; \beta^{+}\!=\!12\# \end{array}$	**
* ¹³¹ Sn ^m * ¹³¹ Pr			11.8(0.8) qu 08=1.57(0.0						nsiderations .58(0.05)					**

Nuclide	Mass e: (ke\			xcitation ergy(keV			Half	-life	J^{π}	Ens	s Referen	ce	Decay modes and intensities (%)	
¹³² Cd	-50720#	500#				97	ms	10	0+		00Ha55	TD	β ⁻ =100; β ⁻ n=60 15	_
¹³² In	-62420	60				206	ms	4	(7^{-})	02			$\beta^-=100; \beta^-n=6.2 11$	
¹³² Sn	-76554	14				39.7	S	0.5	0^{+}	92			$\beta^{-}=100$	
	-79674	14				2.79	m	0.05	(4^{+})	92			$\beta^{-}=100$	
132Sb ^m		30	200	30		4.15	m	0.05	(8-)	92	89St06	Е	$\beta^{-}=100$	
	-85182	7				3.204		0.013	0+	92			$\beta^{-}=100$	
	-85700	6	101		D.D.	2.295		0.013	4+	92			$\beta^{-}=100$	
	-85595	10	104	12	BD	1.387		0.015	(8-)	92			IT=86 2; β^- =14 2	
132 Xe	-89280.5 -86528.2	1.0 1.0	2752.27	0.17		STABLI 8.39		0.11	0^{+} (10^{+})	92 92			IS=26.89 6	
	-80328.2 -87155.9	1.0	2132.21	0.17		6.479	ms d	0.11 0.007	2+	92			IT=100 β^+ =98.13 9; β^- =1.87 9	
	-88434.8	1.1				STABLI		(>300 Ey)		94	96Ba24	т	IS=0.101 1; $2\beta^+$?	
	-83740	40				4.8	h	0.2	2 ⁻	94	90Da24	1	$\beta^{+}=100$	
$^{132}La^m$		40	188.18	0.11		24.3	m	0.5	6-	94			IT=76; β^+ =24	
¹³² Ce		21	100.10	0.11		3.51	h	0.11	0+	99			$\beta^{+}=100$	
¹³² Ce ^m		21	2340.8	0.5		9.4	ms	0.3	(8-)		01Mo05	ΤJ	,	
	-75210	60			*	1.49	m	0.11	(2+)	01			$\beta^{+}=100$	*
	-75210#	120#	0#	100#	*	20#	s		(5+)		90Ko25		β^+ ?	
¹³² Nd	-71426	24				1.56	m	0.10	0+	97	95Bu11		$\beta^{+}=100$	*
132Pm	-61710#	200#				6.3	s	0.7	(3^{+})	92			$\beta^{+}=100; \beta^{+}p\approx 5e-5$	
132Sm	-55250#	300#				4.0	s	0.3	0+	92			$\beta^{+}=100; \beta^{+}p$?	
	-42500#	400#				100#	ms				93Li40	D	β^{+} ?; p=0	
	T: average	94Bu18=	1.47(0.12)	74Ar27=	1.6(0.3))								**
*132Nd	T: average	95Bu11=	1.47(0.12)	77Bo02=	1.75(0.	17)								**
¹³³ In	-57930#	300#				165	***	3	(0/2±)	02	0611-16	т	Q=_100, Q=05 10	*
	-57600#	300#	330#	40#		180#	ms ms	3	$(9/2^{-})$ $(1/2^{-})$		96Ho16 96Ho16		$\beta^-=100; \beta^-n=85 \ 10$ IT ?	*
	-70950	40	330 11	40#		1.45	S	0.03	$7/2^{-}$ #		93Ru01		$\beta^-=100; \beta^-=0.0294 24$	1
100	-70930 -78943	25				2.5	m	0.03	$(7/2^+)$		93Ku01	ט	$\beta = 100, \beta = 100.029424$ $\beta = 100$	
	-82945	24				12.5	m	0.3	$(3/2^+)$				$\beta^{-}=100$ $\beta^{-}=100$	
$^{133}{\rm Te}^{m}$		24	334.26	0.04		55.4	m	0.4	$(11/2^{-1})$				$\beta^-=82.5\ 30;\ IT=17.5\ 30$	
	-85887	5	5520	0.0.		20.8	h	0.1	7/2+				$\beta^{-}=100$	
	-84253	5	1634.174	0.017		9	s	2	$(19/2^{-1})$				IT=100	
	-87643.6	2.4				5.2475	d	0.0005	3/2+	95	02Un02	T	$\beta^{-}=100$	
	-87410.4	2.4	233.221	0.018		2.19	d	0.01	$11/2^{-}$	95			IT=100	
	-88070.958	0.022				STABLI	Е		7/2+	95			IS=100.	
133Ba	-87553.5	1.0				10.51	У	0.05	1/2+	95			<i>ε</i> =100	
$^{133}{\rm Ba}^{m}$	-87265.3	1.0	288.247	0.009		38.9	h	0.1	$11/2^{-}$	95			IT \approx 100; ϵ =0.0096 11	
¹³³ La		28				3.912	h	0.008	$5/2^{+}$	95			$\beta^{+}=100$	
$^{133}La^m$	-84958	28	535.60	0.02		62	ns	3	$11/2^{-}$					
	-82423	16				97	m	4	$1/2^{+}$	97			$\beta^{+}=100$	
¹³³ Ce ^m		16	37.1	0.8		4.9	h	0.4	9/2-	97			$\beta^{+}=100$	
¹³³ Pr	-77938	12				6.5	m	0.3	$(3/2^+)$				$\beta^{+}=100$	
¹³³ Pr ^m	-77746	12	192.05	0.14		1.1	μs	0.2	. , .	,	01Xu04	T	IT=100	
133Nd		50				70	S	10	$(7/2^+)$			_	$\beta^{+}=100$	
133Nd ^m		50	127.97	0.11		70	S		$(1/2)^+$		95Br24	D	$\beta^+ \approx 100$; IT=?	
133 Nd ⁿ	-72150	50	176.10	0.10		300	ns		$(9/2^{-})$		0.00 15		IT=100	
133Pm	-65410	50	120.4	1.0	8		S	3			96Ga17		$\beta^{+}=100$	
¹³³ Pm ^m		50	130.4	1.0	8		S	0.17	$(11/2^{-1})$				β^{+} ?; IT ?	*
	-57130# 47280#	200#				2.90	S	0.17			01Xu04	1	$\beta^{+}=100; \beta^{+}p=?$ $\beta^{+}?$	*
	-47280# D : β^- n inte	300#	rom 02D-r	11		200#	ms		11/2-#	•			p · ϵ	
	D : ρ n inte E : combinii				3577	153.8	252	8 6/3/1)						**
	T : average													**
. 5111	uvciago	0121d0 1 —	(0.2) 02	.,107-2.	0.21	. 15002-	ا) ۵۰۵ (۱	····/						P

	Mass ex (keV			xcitation ergy(keV)		H	Half-l	life	J^{π}	Ens	Reference	Decay modes and intensities (%)	
¹³⁴ In –	-52020#	400#					ms	4	high		96Ho16 J	$\beta^-=100; \beta^-n=65; \dots$	*
	-66800	100				1.12	S	0.08	0_{+}	94		$\beta^-=100; \beta^-n=17 13$	
¹³⁴ Sb –	-74170	40			*	780	ms	60	(0^{-})	95		$\beta^{-}=100$	
$^{134}{\rm Sb}^{m} -$		100	80	110	BD*	10.22	S	0.09	(7^{-})	95		$\beta^-=100; \beta^-=0.091 $ 8	3
	-82559	11				41.8	m	0.8	0_{+}	98		$\beta^{-}=100$	
¹³⁴ Te ^m −		11	1691.24	0.17		164	ns	1	6^{+}	98		IT=100	
	-84072	8				52.5	m	0.2	$(4)^{+}$	94		$\beta^{-}=100$	
	-83756	8	316.49	0.22		3.60	m	0.10	(8)-	94		IT=97.7 10; β^- =2.3 10	0
¹³⁴ Xe –		0.8				STABLE		(>11 Py)			89Ba22 T	IS=10.44 10; $2\beta^-$?	
¹³⁴ Xe ^m −		0.9	1965.5	0.5		290	ms	17	7-	94		IT=100	
	-86891.181		100 5441	0.0026		2.0648		0.0010	4+	94		$\beta^{-}=100; \varepsilon=0.0003 1$	
	-86752.437		138.7441	0.0026		2.903		0.008	8-	94		IT=100	
¹³⁴ Ba –		0.4				STABLE		0.16	0^{+} 1^{+}	95 94		IS=2.417 18	
¹³⁴ La – ¹³⁴ Ce –	04026	20 20				6.45 3.16	m d	0.16 0.04	0+	94		$\beta^{+}=100$ $\varepsilon=100$	
	-84830 -78510	40			0_		m	0.04	(5-)	94		$\beta^{+}=100$	
¹³⁴ Pr ^m –		110#	0#	100#	& &		m	2	2-	94		$\beta^{+}=100$ $\beta^{+}=100$	
134Nd -		12	O II	100#	α	8.5	m	1.5	0+	99		$\beta^{+}=100$ $\beta^{+}=100$	
$^{134}\text{Nd}^m$ $-$	73353		2293.1	0.4		410	μs	30	(8)-	99		IT=100	
¹³⁴ Pm –	-66740	60	2273.1	0.4	*	22	μs S	1	(5 ⁺)	94		$\beta^{+}=100$	
$^{134}\text{Pm}^{m}$ —	-66740#	120#	0#	100#	*	5	s	1	(2 ⁺)	94		$\beta^{+}=100$	
¹³⁴ Sm –	-61510#	200#	OII	10011	r	10	S	1	0+	94		$\beta^{+}=100$ $\beta^{+}=100$	
¹³⁴ Eu –		200#				500	ms	200	Ü	94		$\beta^{+}=100; \beta^{+}p=?$	
¹³⁴ Gd –		400#					ms	200	0^{+}			β^+ ?	
	$\beta : \ldots ; \beta^{-2}$	2n<4										r	**
* ¹³⁴ In D	β : β ⁻²ⁿ in	tensity lir	nits is from	95Jo.A									**
	-47200#	500#				92	ms	10	9/2+#	02		β^- ?; β^- n ?	
¹³⁵ Sn –	-60800#	400#				530	ms	20	$(7/2^{-})$	02		$\beta^-=100; \beta^-n=21.3$	
¹³⁵ Sb -	-69710	100				1.68	S	0.02	$(7/2^+)$		02Sh08 J	$\beta^-=100; \beta^-n=22.3$	
¹³⁵ Te –	-77830	90				19.0	S	0.2	$(7/2^{-})$	98		$\beta^{-}=100$	
$^{135}\text{Te}^{m}$ -		90	1554.88	0.17		510	ns	20	$(19/2^{-})$	98		IT=100	
	-83790	7				6.57	h	0.02	$7/2^{+}$	98		$\beta^{-}=100$	
¹³⁵ Xe –	-86417	5				9.14	h	0.02	$3/2^{+}$	98		$\beta^{-}=100$	
¹³⁵ Xe ^m −		5	526.551	0.013		15.29	m	0.05	$11/2^{-}$	98		IT \approx 100; $\beta^-=0.30$ 17	*
¹³⁵ Cs –	-87581.9	1.0					My	0.3	$7/2^{+}$	98		$\beta^{-}=100$	
		1.8	1632.9	1.5		53	m	2	19/2-	98		IT=100	
¹³⁵ Cs ^m −							₹.					IS=6.592 12	
¹³⁵ Ba –		0.4	2 50 22	0.00		STABLE		0.0	3/2+	98		VIII. 100	
¹³⁵ Ba – ¹³⁵ Ba ^m –	-87582.3	0.4	268.22	0.02		28.7	h	0.2	$11/2^{-}$	98		IT=100	
¹³⁵ Ba – ¹³⁵ Ba ^m – ¹³⁵ La –	-87582.3 -86651	0.4 10	268.22	0.02		28.7 19.5	h h	0.2	11/2 ⁻ 5/2 ⁺	98 98		$\beta^{+}=100$	
¹³⁵ Ba - ¹³⁵ Ba ^m - ¹³⁵ La - ¹³⁵ Ce -	-87582.3 -86651 -84625	0.4 10 11				28.7 19.5 17.7	h h h	0.2 0.3	11/2 ⁻ 5/2 ⁺ 1/2 ⁽⁺⁾	98 98 98		$\beta^{+}=100$ $\beta^{+}=100$	
¹³⁵ Ba - ¹³⁵ Ba ^m - ¹³⁵ La - ¹³⁵ Ce - ¹³⁵ Ce ^m -	-87582.3 -86651 -84625 -84179	0.4 10 11 11	268.22 445.8	0.02		28.7 19.5 17.7 20	h h h s	0.2 0.3 1	11/2 ⁻ 5/2 ⁺ 1/2 ⁽⁺⁾ (11/2 ⁻)	98 98 98 98		β^{+} =100 β^{+} =100 IT=100	
¹³⁵ Ba — ¹³⁵ Ba ^m — ¹³⁵ La — ¹³⁵ Ce — ¹³⁵ Ce — ¹³⁵ Pr —	-87582.3 -86651 -84625 -84179 -80936	0.4 10 11 11 12	445.8	0.2		28.7 19.5 17.7 20 24	h h h s	0.2 0.3 1 2	11/2 ⁻ 5/2 ⁺ 1/2 ⁽⁺⁾ (11/2 ⁻) 3/2 ⁽⁺⁾	98 98 98 98 98		$\beta^{+}=100$ $\beta^{+}=100$ IT=100 $\beta^{+}=100$	
135Ba — 135Ba ^m — 135La — 135Ce — 135Ce ^m — 135Pr — 135Pr ^m —	-87582.3 -86651 -84625 -84179 -80936 -80578	0.4 10 11 11 12 12				28.7 19.5 17.7 20 24 105	h h s m µs	0.2 0.3 1 2 10	11/2 ⁻ 5/2 ⁺ 1/2 ⁽⁺⁾ (11/2 ⁻) 3/2 ⁽⁺⁾ (11/2 ⁻)	98 98 98 98 98 98		β^{+} =100 β^{+} =100 IT=100 β^{+} =100 IT=100	
135Ba — 135Ba ^m — 135La — 135Ce — 135Ce ^m — 135Pr — 135Pr ^m —	-87582.3 -86651 -84625 -84179 -80936 -80578 -76214	0.4 10 11 11 12 12 19	445.8 358.06	0.2		28.7 19.5 17.7 20 24 105 12.4	h h s m µs m	0.2 0.3 1 2 10 0.6	11/2 ⁻ 5/2 ⁺ 1/2 ⁽⁺⁾ (11/2 ⁻) 3/2 ⁽⁺⁾ (11/2 ⁻) 9/2 ⁽⁻⁾	98 98 98 98 98 98 98		β^{+} =100 β^{+} =100 IT=100 β^{+} =100 IT=100 β^{+} =100	
135 Ba — 135 Ba ^m — 135 La — 135 Ce — 135 Ce ^m — 135 Pr — 135 Pr ^m — 135 Nd — 135 Nd ^m —	-87582.3 -86651 -84625 -84179 -80936 -80578 -76214 -76149	0.4 10 11 11 12 12 19	445.8	0.2		28.7 19.5 17.7 20 24 105 12.4 5.5	h h s m	0.2 0.3 1 2 10 0.6 0.5	11/2 ⁻ 5/2 ⁺ 1/2 ⁽⁺⁾ (11/2 ⁻) 3/2 ⁽⁺⁾ (11/2 ⁻) 9/2 ⁽⁻⁾ (1/2 ⁺)	98 98 98 98 98 98 98		$\begin{array}{l} \beta^{+}{=}100 \\ \beta^{+}{=}100 \\ \text{IT}{=}100 \\ \beta^{+}{=}100 \\ \text{IT}{=}100 \\ \beta^{+}{=}100 \\ \beta^{+}{=}100 \\ \beta^{+}{>}99.97; \text{IT}{<}0.03 \end{array}$	
135 Ba	-87582.3 -86651 -84625 -84179 -80936 -80578 -76214 -76149 -69980	0.4 10 11 11 12 12 19 19	445.8 358.06 65.0	0.2 0.06 0.2	*&	28.7 19.5 17.7 20 24 105 12.4 5.5 49	h h s m μs m m s	0.2 0.3 1 2 10 0.6 0.5 3	11/2 ⁻ 5/2 ⁺ 1/2 ⁽⁺⁾ (11/2 ⁻) 3/2 ⁽⁺⁾ (11/2 ⁻) 9/2 ⁽⁻⁾ (1/2 ⁺) (5/2 ⁺ ,3/2 ⁺	98 98 98 98 98 98 98 98	80K-007 TV	$\begin{array}{l} \beta^{+}{=}100\\ \beta^{+}{=}100\\ \text{IT}{=}100\\ \beta^{+}{=}100\\ \text{IT}{=}100\\ \beta^{+}{=}100\\ \beta^{+}{=}100\\ \beta^{+}{>}99.97; \text{IT}{<}0.03\\ \beta^{+}{=}100\\ \end{array}$	
135 Ba	-87582.3 -86651 -84625 -84179 -80936 -80578 -76214 -76149 -69980 -69930#	0.4 10 11 11 12 12 19 19 60 120#	445.8 358.06	0.2	*& *&	28.7 19.5 17.7 20 24 105 12.4 5.5 49 40	h h s m μs m m s s	0.2 0.3 1 2 10 0.6 0.5 3	$\begin{array}{c} 11/2^-\\ 5/2^+\\ 1/2^{(+)}\\ (11/2^-)\\ 3/2^{(+)}\\ (11/2^-)\\ 9/2^{(-)}\\ (1/2^+)\\ (5/2^+,3/2^+\\ (11/2^-)\\ \end{array}$	98 98 98 98 98 98 98 98 98	89Ko07 TJ	$\begin{array}{l} \beta^{+}{=}100\\ \beta^{+}{=}100\\ \text{IT}{=}100\\ \text{IT}{=}100\\ \beta^{+}{=}100\\ \text{IT}{=}100\\ \beta^{+}{=}100\\ \beta^{+}{>}99.97; \text{IT}{<}0.03\\ \beta^{+}{=}100\\ \beta^{+}{=}100\\ \end{array}$	
135 Ba	-87582.3 -86651 -84625 -84179 -80936 -80578 -76214 -76149 -69980 -69930# -62860	0.4 10 11 11 12 12 19 19 60 120# 150	445.8 358.06 65.0 50#	0.2 0.06 0.2 100#	*& *& *	28.7 19.5 17.7 20 24 105 12.4 5.5 49 40 10.3	h h s m	0.2 0.3 1 2 10 0.6 0.5 3 3 0.5	$\begin{array}{c} 11/2^-\\ 5/2^+\\ 1/2^{(+)}\\ (11/2^-)\\ 3/2^{(+)}\\ (11/2^-)\\ 9/2^{(-)}\\ (1/2^+)\\ (5/2^+,3/2^+\\ (11/2^-)\\ (7/2^+)\\ \end{array}$	98 98 98 98 98 98 98 98 98	77Bo02 J	$\begin{array}{l} \beta^{+}{=}100 \\ \beta^{+}{=}100 \\ \text{IT}{=}100 \\ \text{IT}{=}100 \\ \beta^{+}{=}100 \\ \beta^{+}{=}100 \\ \beta^{+}{=}100 \\ \beta^{+}{=}100 \\ \beta^{+}{=}100 \\ \beta^{+}{=}100 \\ \beta^{+}{=}100; \beta^{+}{p}{=}0.02 \\ 1 \end{array}$	
135 Ba	-87582.3 -86651 -84625 -84179 -80936 -80578 -76214 -76149 -69980 -69930# -62860 -62860#	0.4 10 11 11 12 12 19 19 60 120# 150 340#	445.8 358.06 65.0	0.2 0.06 0.2	*& *&	28.7 19.5 17.7 20 24 105 12.4 5.5 49 40 10.3 2.4	h h s m μs m m s s s s	0.2 0.3 1 2 10 0.6 0.5 3 0.5 0.9	$\begin{array}{c} 11/2^-\\ 5/2^+\\ 1/2^{(+)}\\ (11/2^-)\\ 3/2^{(+)}\\ (11/2^-)\\ 9/2^{(-)}\\ (1/2^+)\\ (5/2^+,3/2^+\\ (11/2^-)\\ (7/2^+)\\ (3/2^+,5/2^+\\ \end{array}$	98 98 98 98 98 98 98 98 98 98 98		$\begin{array}{l} \beta^{+}{=}100 \\ \beta^{+}{=}100 \\ \Gamma {=}100 \\ \Gamma {=}100 \\ \beta^{+}{=}100 \\ \Gamma {=}100 \\ \beta^{+}{=}100 \\ \beta^{+}{>}99.97; \Gamma {<}0.03 \\ \beta^{+}{=}100 \\ \beta^{+}{=}100 \\ \beta^{+}{=}100; \beta^{+}{p=}0.02 \\ 1 \\ \beta^{+}{=}100 \end{array}$	*
135 Ba	-87582.3 -86651 -84625 -84179 -80936 -80578 -76214 -76980 -69930# -62860 -62860# -54190#	0.4 10 11 11 12 12 19 19 60 120# 150 340# 300#	445.8 358.06 65.0 50#	0.2 0.06 0.2 100#	*& *& *	28.7 19.5 17.7 20 24 105 12.4 5.5 49 40 10.3 2.4 1.5	h h s m μs m m s s s s	0.2 0.3 1 2 10 0.6 0.5 3 0.5 0.9 0.2	$\begin{array}{c} 11/2^-\\ 5/2^+\\ 1/2^{(+)}\\ (11/2^-)\\ 3/2^{(+)}\\ (11/2^-)\\ 9/2^{(-)}\\ (1/2^+)\\ (5/2^+,3/2^+\\ (11/2^-)\\ (7/2^+)\\ (3/2^+,5/2^+\\ 11/2^-\#\\ \end{array}$	98 98 98 98 98 98 98 98 98 98 98 98	77Bo02 J 89Vi04 TJE	$\begin{array}{l} \beta^{+}{=}100 \\ \beta^{+}{=}100 \\ \Pi^{-}{=}100 \\ \Pi^{-}{=}100 \\ \Pi^{+}{=}100 \\ \Pi^{+}{=}100 \\ \beta^{+}{=}100 \\ \beta^{+}{=}100 \\ \beta^{+}{=}100 \\ \beta^{+}{=}100 \\ \beta^{+}{=}100; \beta^{+}{p}{=}0.02 \\ 1 \\ \beta^{+}{=}100 \\ \beta^{+}{=}100; \beta^{+}{p}? \end{array}$	*
135 Ba	-87582.3 -86651 -84625 -84179 -80936 -80578 -76214 -76149 -69980 -69930# -62860 -62860# -54190# -44180#	0.4 10 11 11 12 12 19 60 120# 150 340# 300# 500#	445.8 358.06 65.0 50# 0#	0.2 0.06 0.2 100#	*& *& *	28.7 19.5 17.7 20 24 105 12.4 5.5 49 40 10.3 2.4	h h s m μs m m s s s s	0.2 0.3 1 2 10 0.6 0.5 3 0.5 0.9	$\begin{array}{c} 11/2^-\\ 5/2^+\\ 1/2^{(+)}\\ (11/2^-)\\ 3/2^{(+)}\\ (11/2^-)\\ 9/2^{(-)}\\ (1/2^+)\\ (5/2^+,3/2^+\\ (11/2^-)\\ (7/2^+)\\ (3/2^+,5/2^+\\ \end{array}$	98 98 98 98 98 98 98 98 98 98 98 98	77Bo02 J	$\begin{array}{l} \beta^{+}{=}100 \\ \beta^{+}{=}100 \\ \Gamma {=}100 \\ \Gamma {=}100 \\ \beta^{+}{=}100 \\ \Gamma {=}100 \\ \beta^{+}{=}100 \\ \beta^{+}{>}99.97; \Gamma {<}0.03 \\ \beta^{+}{=}100 \\ \beta^{+}{=}100 \\ \beta^{+}{=}100; \beta^{+}{p=}0.02 \\ 1 \\ \beta^{+}{=}100 \end{array}$	*

Nuclide	Mass ex (keV			Excitation ergy(keV			H	Ialf-	life	J^{π}	Ens	Referen	ce	Decay modes and intensities (%)	
¹³⁶ Sn	-56500#	500#					250	ms	30	0+	02			β ⁻ =100; β ⁻ n=30 5	
136Sb	-64880#						923	ms	14	1-#	02		_	$\beta^-=100; \beta^-=16.3 32;$. *
¹³⁶ Sb ^m ¹³⁶ Te	-64710#		173	3			570	ns	50	6-#	02	01Mi22	Е	IT=100	
136 I e	-74430 -79500	50 50					17.63 83.4	s s	0.08 1.0	0^+ (1^-)	02 02			$\beta^-=100; \beta^-=1.315$ $\beta^-=100$	
136 J m	-79300 -78850	110	650	120	BD		46.9	S	1.0	(f ⁻)	02			$\beta = 100$ $\beta = 100$; IT=0	
¹³⁶ Xe	-86425	7	050	120	טט		STABLE		(>10 Zy)	0+	02	02Be74	Т	IS=8.87 16; $2\beta^-$?	
	-84533	7	1891.703	0.014			2.95	μs	0.09	6 ⁺	02	02207.	-	IT=100	
¹³⁶ Cs	-86338.7	1.9				*	13.16	ď	0.03	5^+	02			$\beta^{-}=100$	
	-85821	5	518	5		*	19	S	2	8-	02	83We07	E	IT=?; β^- ?	
¹³⁶ Ba	-88886.9						STABLE			0_{+}	02			IS=7.854 24	
¹³⁶ Ba ^m	-86856.4		2030.466	0.018					1.9	7-	02			IT=100	
136La	-86040	50					9.87	m	0.03	1+	02		_	$\beta^{+}=100$	
	-85790	50	255	9			114	ms	3	(8)(-#)		ABBW		IT=100	*
¹³⁶ Ce	-86468	13	2005 5	0.4			STABLE		(>38 Py)	0 ⁺	02	01Da22	T	IS=0.185 2; $2\beta^+$?	
136Pr	-83373 -81327	13 12	3095.5	0.4			2.2 13.1	μs	0.2 0.1	$\frac{10^{+}}{2^{+}}$	02 02			IT=100 β^+ =100	
	-81327 -80732	12	594.62	0.22			91.7	m ns	0.1	(6) ⁺	02			IT=100	
	-79199	12	394.02	0.22			50.7	m	0.3	0+	02			$\beta^{+}=100$	
100	-71200	80				* &	107	s	6	(5 ⁻)	02			$\beta^{+}=100$	
	-71070	90	130	120	BD	* &	47	s	2	(2+)	02			$\beta^{+}=100$	
136 Sm		12					47	s	2	0+	02			$\beta^{+}=100$	
$^{136}{\rm Sm}^{m}$	-64546	12	2264.7	1.1			15	μs	1	(8^{-})	02			IT=100	
¹³⁶ Eu	-56260 #	200#				*	3.3	s	0.3	(7+)	02	89Vi04	D	β^{+} =100; β^{+} p=0.09 3	
	-56260 #		0#	500#		*	3.8	S	0.3	(3^{+})	02	89Vi04		$\beta^{+}=100; \beta^{+}p=0.09 3$	
	-49050 #						1#		(>200 ns)	0_{+}	02	00So11	I	β^+ ?	
¹³⁶ Tb	-35970#						200#	ms			02			eta^+ ?	
	$D:\ldots;\beta$			220.11		c			220.1	25(0)					**
* ¹³⁶ La ^m	E : approx	. 10-40) keV abov	e 230.1 le	vel,	trom	ENSDF'(J2, tl	nus 230.1 -	+ 25(9)					**
¹³⁷ Sn	-50310#	600#					190	ms	60	5/2-#	02			$\beta^-=100; \beta^-n=58 15$	
	-60260 #	400#					450	ms	50	$7/2^{+}$ #	94	02Sh08	TD	$\beta^-=100; \beta^-n=49 10$	
¹³⁷ Te	-69560	120					2.49	S	0.05	3/2-#		93Ru01		$\beta^-=100; \beta^-=2.99 16$	
137I	-76503	28					24.13	S	0.12	$(7/2^+)$		93Ru01	TD	$\beta^-=100; \beta^-=7.1423$	*
¹³⁷ Xe	-82379	7					3.818	m	0.013	7/2-	94	0011 00		$\beta^{-}=100$	
¹³⁷ Cs ¹³⁷ Ba	-86545.6 -87721.2						30.1671	У	0.0013	$\frac{7}{2^{+}}$ $\frac{3}{2^{+}}$	01 97	02Un02	T	$\beta^-=100$	
	-87721.2 -87059.5		661.659	0.003			STABLE 2.552	m	0.001	$\frac{3}{2}$	97			IS=11.232 24 IT=100	
	-87039.3 -87101	13	001.039	0.003			60	ky	20	$7/2^{+}$	94			ε=100	
¹³⁷ Ce	-85879	13					9.0	h	0.3	3/2+	94			$\beta^{+}=100$	
	-85625	13	254.29	0.05			34.4	h	0.3	11/2-	94			IT=99.22 3; β^+ =0.78 3	
¹³⁷ Pr	-83177	12					1.28	h	0.03	5/2+	94			$\beta^{+}=100$	
137 Pr m	-82616	12	561.22	0.23			2.66	μs		$11/2^{-}$					
	-79580	11					38.5	m	1.5	$1/2^{+}$	01			$\beta^{+}=100$	
137 Nd ^m		11	519.43	0.17			1.60	S	0.15	$(11/2^{-})$	01			IT=100	
	-74073	13				&	2#	m		5/2+#				β^+ ?	
	-73920	50	150	50	BD	&	2.4	m	0.1	11/2-				$\beta^{+}=100$	
	-68030	40	100#	50#			45	S	1	$(9/2^{-})$	94			$\beta^{+}=100$	
	$-67850 \# \\ -60020 \#$	60#	180#	50#			20# 8.4	S	0.5	1/2 ⁺ # 11/2 ⁻ #	04	88B^ A	т	β^{+} ? $\beta^{+}=100$	
	-50020# -51210#						2.2	s s	0.5 0.2	7/2+#		88Be.A 99Xu05		$\beta^{+}=100$ $\beta^{+}=100$; $\beta^{+}p=?$	
¹³⁷ Tb	-31210# -41000#						600#	ms	0.2	11/2-#		772 xu 03	1	p?; β ⁺ ?	
	T : superse		Ru08=24.5	5(0.2) from	n sai	ne g		10		, "	, 0			r ., P .	**
				,		. 0									

Nuclide	Mass ex (keV			xcitation ergy(keV		1	Half-	life	J^{π}	Ens	Referen	ice	Decay modes and intensities (%)	
¹³⁸ Sb	-55150#					500#	ms	(>300 ns)	2-#	03	94Be24	I	β-?;β-n?	
¹³⁸ Te	-65930#	210#				1.4	S	0.4	0_{+}	03			$\beta^-=100; \beta^-n=6.3 21$	
138I	-72330	80				6.23	S	0.03	(2^{-})	03	93Ru01	D	$\beta^-=100; \beta^-n=5.46 18$	
¹³⁸ Xe	-80150	40				14.08	m	0.08	0+	03			$\beta^{-}=100$	
138Cs	-82887	9				33.41	m	0.18	3-	03			$\beta^{-}=100$	
138Cs ^m	-82807	9	79.9	0.3		2.91	m	0.08	6-	03			IT=81 2; β^- =19 2	
138Cs ^x	-82847	25	40	23		R = ?			fsmix	0.2			¥0. 71. coo. 12	
¹³⁸ Ba ¹³⁸ Ba ^m	-88261.6		2000 54	0.06		STABLE		100	0 ⁺ 6 ⁺	03 03			IS=71.698 42	
138La	-86171.1 -86525	0.4 4	2090.54	0.06		800 102	ns Gy	100 1	5 ⁺	03			IT=100 IS=0.090 1;	
138La ^m	-86323 -86452	4	72.57	0.03		116	ns	5	(3)+	03			IS=0.090 1; IT=100	*
¹³⁸ Ce	-80432 -87569	10	12.31	0.03		STABLE	118	(>150 Ty)	0+	03	01Da22	т	IS=0.251 2; $2\beta^+$?	
¹³⁸ Ce ^m	-85440	10	2129.17	0.12		8.65	ms	0.20	7-	03	0112422	1	IT=100	
¹³⁸ Pr	-83132	14	2127.17	0.12		1.45	m	0.05	1+	03			$\beta^{+}=100$	
$^{138}\mathrm{Pr}^{m}$	-82783	17	348	23	BD	2.12	h	0.04	7-	03			$\beta^{+}=100$	
¹³⁸ Nd	-82018	12	5.0	20	22	5.04	h	0.09	0^{+}	03			$\beta^{+}=100$	
$^{138}Nd^m$	-78843	12	3174.9	0.4		410	ns	50	(10^{+})	03			IT=100	
138Pm	-74940	27			*	10	s	2	1+#	03			$\beta^{+}=100$	
138 Pm m	-74911	13	30	30	BD *	3.24	m	0.05	5-#	03			$\beta^{+}=100$	
$^{138}Pm^{n}$			non ex	istent	EU	3.24	m	0.05	(3^{+})		81De38	I	$\beta^{+}=100$	*
138Sm	-71498	12				3.1	m	0.2	0+	03			$\beta^{+}=100$	
138Eu	-61750	28				12.1	S	0.6	(6^{-})	03			$\beta^{+}=100$	
¹³⁸ Gd	-55780 #	200#				4.7	s	0.9	0^{+}	03			$\beta^{+}=100$	
$^{138}Gd^m$	-53550 #	200#	2232.7	1.1		6	μs	1	(8^{-})	03				
¹³⁸ Tb	-43630 #	400#				800#	ms	(>200 ns)		03	00So11	I	β^{+} ?; p=0	*
¹³⁸ Dy	-34940 #					200#	ms		0_{+}				$oldsymbol{eta}^+$?	
* ¹³⁸ La	$D:\ldots;\beta$													**
$*^{138}Pm^{n}$			a second	isomer, c	of interm	ediate sp	in, aı	re not convi	ncing					**
* ¹³⁸ Tb	D: from 9	3Li40												**
¹³⁹ Sb	-50320#	500#				300#	ms	(>300 ns)	7/2+#	01	94Be24	I	β- ?	
¹³⁹ Te	-60800 #	400#				500#	ms	(>300 ns)	5/2-#	01	94Be24	I	β-?; β-n?	
^{139}I	-68840	30				2.282	S	0.010	7/2+#	01	93Ru01	T	$\beta^-=100; \beta^-n=10.03$	*
¹³⁹ Xe	-75644	21				39.68	S	0.14	$3/2^{-}$	01			$\beta^-=100$	
¹³⁹ Cs	-80701	3				9.27	m	0.05	$7/2^{+}$	01			$\beta^{-}=100$	
¹³⁹ Ba	-84913.7	0.4				83.1	m	0.3	$(7/2^{-})$	01			$\beta^{-}=100$	
¹³⁹ La	-87231.4					STABLE			7/2+	01			IS=99.910 1	
¹³⁹ Ce	-86952	7				137.641		0.020	$3/2^{+}$	01			ε=100	
¹³⁹ Ce ^m	-86198	7	754.24	0.08		56.54	S	0.13	11/2-	01	94It.A	T	IT=100	
139Pr	-84823	8				4.41	h	0.04	5/2+	01			$\beta^{+}=100$	
139Nd	-81992	26				29.7	m	0.5	3/2+	01			$\beta^{+}=100$	
139 Nd ^m	-81761	26	231.15	0.05		5.50	h	0.20	11/2-	01			β^{+} =88.2 4; IT=11.8 4	
139Pm	-77496	13	100.7	0.2		4.15	m	0.05	$(5/2)^+$	01			$\beta^{+}=100$	
139 Pm ^m	-77307 72390	13	188.7	0.3		180	ms	20	$(11/2)^{-}$	01			IT \approx 100; $\beta^+=0.16\#$	
¹³⁹ Sm ¹³⁹ Sm ^m	-72380 71022	11	457.40	0.22		2.57	m	0.10	1/2+	01			$\beta^{+}=100$	
139Eu	-71923	11	457.40	0.22		10.7	S	0.6	11/2	01			IT=93.7 5; β^+ =6.3 5	
139Gd	-65398 -57530#	13 200#			*	17.9 5.7	S S	0.6 0.3	$(11/2)^-$ $9/2^-$ #	01 01	99Xi04	т	$\beta^{+}=100$ $\beta^{+}=100; \beta^{+}p=?$	*
139 Gd ^m	-57280#	250#	250#	150#	*	4.8	S	0.5	1/2+#	01	22A1U4	1	$\beta^{+}=100; \beta^{+}p=?$ $\beta^{+}=100; \beta^{+}p=?$	*
139Tb	-57280# -48170#		230#	150#	*	4.8 1.6		0.9	1/2"#				$\beta^{+}=100; \beta^{+}p=?$ $\beta^{+}=100; \beta^{+}p?$	*
139Dy	-48170# -37690#					600	s ms	200	7/2 ⁺ #				$\beta^{+}=100; \beta^{+}p?$ $\beta^{+}=100; \beta^{+}p?$	
* ¹³⁹ I	-3/690# T : average		01-2 2800	0 011) 9/	0Δ115-0			200	1/2:#	01			$\rho = 100, p \cdot p$	**
* 139Gd								05=4.9(1.0)) not used	ı				**
* Gd * ¹³⁹ Gd	_		rresponds						, not usec					**
								are from bo	oth states					**
· Gu	⇒ . assum		aciuy	- a p. 0.001	report	0 5 0 0 0 0 0 1								

Nuclide	Mass ex (keV			xcitatior ergy(ke\		I	Half-	life	J^{π}	Ens	Referen	ce	Decay modes and intensities (%)	
	-56960#	300#				300#	ms	(>300 ns)	0^{+}	98	94Be24	I	β-?;β-n?	
140I	-64270#	200#				860	ms	40	$(3)^{(-\#)}$	95			$\beta^-=100; \beta^-n=9.3 10$	
¹⁴⁰ Xe	-72990	60				13.60	s	0.10	0^+	02			$\beta^{-}=100$	
¹⁴⁰ Cs	-77051	8				63.7	s	0.3	1-	95			$\beta^{-}=100$	
¹⁴⁰ Ba	-83271	8				12.752	d	0.003	0^{+}	98			$\beta^{-}=100$	
¹⁴⁰ La	-84321.0	2.4				1.6781	d	0.0003	3-	95			$\beta^{-}=100$	
	-88083.3	2.5				STABLE			0^{+}	95			IS=88.450 51	
$^{140}\mathrm{Ce}^m$	-85975.5	2.5	2107.85	0.03		7.3	μs	1.5	6^{+}					
	-84695	6				3.39	m	0.01	1+	95			$\beta^{+}=100$	
140Prm	-83932	6	763.3	0.7		3.05	μs	0.20	$(8)^{-}$,	
¹⁴⁰ Nd	-84252	28				3.37	ď	0.02	0+	95			ε=100	
$^{140}\mathrm{Nd}^m$	-82031	28	2221.4	0.1		600	μs	50	7-	95			IT=100	
	-78210	40				9.2	s	0.2	1+	95			$\beta^{+}=100$	
140 Pm m	-77783	13	420	40	BD	5.95	m	0.05	8^{-}	95			$\beta^{+}=100$	
	-75456	12				14.82	m	0.12	0^{+}	95			$\beta^{+}=100$	
	-66990	50				1.51	s	0.02	1+	95			$\beta^{+}=100$	
	-66780	50	210	15		125	ms	2	5-#	95	ABBW	Е	IT \approx 100; $\beta^+<1$	
	-61782	28				15.8	s	0.4	0^{+}	95	91Fi03	T	$\beta^{+}=100$	
	-50480	800				2.4	s	0.2	5	97			$\beta^{+}=100; \beta^{+}p=0.26 13$	3
	-42840#	500#				700#	ms		0^{+}	02			β^+ ?	
	-40670#	500#	2166.1	0.5		7.0	μs	0.5	(8-)	02			β^+ ?	
· · · ·] \/ · · ·			2100.1	0.0		6	ms	3	8+#	02			$p=?; \beta^{+}=1#$	
¹⁴⁰ Ho	—29310# E : less tha		V above 1	85.3 lev	el, from	Ensdf, tl	hus 1	85.3 + 25(15)					
¹⁴⁰ Ho ¹⁴⁰ Eu ^m			V above 1	85.3 lev	el, from	ENSDF, tl				01	94Be24	I	β- ?: β-n ?	
¹⁴⁰ Ho ¹⁴⁰ Eu ^m ¹⁴¹ Te	E : less tha	an 50 ke	V above 1	85.3 lev	el, from			(>300 ns)		01 01	94Be24	I	β^{-} ?; β^{-} n ? β^{-} = 100; β^{-} n = 21 3	
¹⁴⁰ Ho ¹⁴⁰ Eu ^m 1 ¹⁴¹ Te	E: less that -51560# -60520#	an 50 ke	V above 1	85.3 lev	el, from	100# 430	ms ms	(>300 ns)	5/2 ⁻ # 7/2 ⁺ #	01	94Be24	I	$\beta^-=100; \beta^-=21.3$	
¹⁴⁰ Ho ¹⁴⁰ Eu ^m 1 ¹⁴¹ Te ¹⁴¹ I ¹⁴¹ Xe	E : less tha	400# 200#	V above 1	85.3 lev	el, from	100#	ms	(>300 ns)	5/2 ⁻ # 7/2 ⁺ # 5/2 ^(-#)		94Be24	I	$\beta^-=100; \beta^-n=213$ $\beta^-=100; \beta^-n=0.0445$	5
140 Ho 140 Eu ^m 1 141 Te 141 I 141 Xe 141 Cs	E : less that -51560# -60520# -68330	400# 200# 90	V above 1	85.3 lev	el, from	100# 430 1.73	ms ms	(>300 ns) 20 0.01	5/2 ⁻ # 7/2 ⁺ # 5/2 ^(-#) 7/2 ⁺	01 01 01	94Be24	Ι	$\beta^-=100; \beta^-=21.3$	5
140 Ho 140 Eu ^m 141 Te 141 I 141 Xe 141 Cs 141 Ba 141 La	E: less that -51560# -60520# -68330 -74477	400# 200# 90	V above 1	85.3 lev	el, from	100# 430 1.73 24.84	ms ms s	(>300 ns) 20 0.01 0.16	5/2 ⁻ # 7/2 ⁺ # 5/2 ^(-#)	01 01	94Be24	I	$\beta^{-}=100; \beta^{-}=213$ $\beta^{-}=100; \beta^{-}=0.0445$ $\beta^{-}=100; \beta^{-}=0.0353$	5
140 Ho 140 Eu ^m 141 Te 141 I 141 Xe 141 Cs 141 Ba 141 La	-51560# -60520# -68330 -74477 -79726	400# 200# 90 11 8	V above 1	85.3 lev	el, from	100# 430 1.73 24.84 18.27	ms ms s s m	(>300 ns) 20 0.01 0.16 0.07	5/2 ⁻ # 7/2 ⁺ # 5/2 ^(-#) 7/2 ⁺ 3/2 ⁻	01 01 01 01	94Be24	Ι	$\beta^{-}=100; \beta^{-}n=21 3$ $\beta^{-}=100; \beta^{-}n=0.044 5$ $\beta^{-}=100; \beta^{-}n=0.035 3$ $\beta^{-}=100$ $\beta^{-}=100$	5
140 Ho 140 Eu ^m 1 141 Te 141 I 141 Xe 141 Cs 141 Ba 141 La 141 Ce	E: less that -51560# -60520# -68330 -74477 -79726 -82938	400# 200# 90 11 8 5	V above 1	85.3 lev	el, from	100# 430 1.73 24.84 18.27 3.92	ms ms s m h	(>300 ns) 20 0.01 0.16 0.07 0.03	5/2 ⁻ # 7/2 ⁺ # 5/2 ^(-#) 7/2 ⁺ 3/2 ⁻ (7/2 ⁺)	01 01 01 01 01	94Be24	Ι	$\beta^{-}=100; \beta^{-}n=213$ $\beta^{-}=100; \beta^{-}n=0.0445$ $\beta^{-}=100; \beta^{-}n=0.0353$ $\beta^{-}=100$	5
140 Ho 140 Eu ^m 141 Te 141 I 141 Xe 141 Cs 141 Ba 141 La 141 Ce 141 Pr	E: less that -51560# -60520# -68330 -74477 -79726 -82938 -85440.1	400# 200# 90 11 8 5 2.5	V above 1	85.3 lev	el, from	100# 430 1.73 24.84 18.27 3.92 32.508	ms ms s m h	(>300 ns) 20 0.01 0.16 0.07 0.03	5/2 ⁻ # 7/2 ⁺ # 5/2 ^(-#) 7/2 ⁺ 3/2 ⁻ (7/2 ⁺) 7/2 ⁻	01 01 01 01 01 01	94Be24	Ι	$\beta^{-}=100; \beta^{-}=213$ $\beta^{-}=100; \beta^{-}=0.0445$ $\beta^{-}=100; \beta^{-}=0.0353$ $\beta^{-}=100$ $\beta^{-}=100$ $\beta^{-}=100$	5
140 Ho 140 Eu ^m 141 Te 141 I 141 Xe 141 Cs 141 Ba 141 La 141 Ce 141 Pr 141 Nd	-51560# -60520# -68330 -74477 -79726 -82938 -85440.1 -86020.9	400# 200# 90 11 8 5 2.5 2.5	756.51	85.3 lev	el, from	100# 430 1.73 24.84 18.27 3.92 32.508 STABLE	ms ms s m h d	(>300 ns) 20 0.01 0.16 0.07 0.03 0.013	5/2 ⁻ # 7/2 ⁺ # 5/2 ^(-#) 7/2 ⁺ 3/2 ⁻ (7/2 ⁺) 7/2 ⁻ 5/2 ⁺	01 01 01 01 01 01	94Be24 70Ab05		$\beta^{-}=100; \beta^{-}=213$ $\beta^{-}=100; \beta^{-}=0.0445$ $\beta^{-}=100; \beta^{-}=0.0353$ $\beta^{-}=100$ $\beta^{-}=100$ $\beta^{-}=100$ IS=100. $\beta^{+}=100$	5
140 Ho 1410 Eu ^m 1411 Te 1411 I 1411 Xe 1411 Cs 1411 Ba 1411 La 1411 Pr 1411 Nd 1411 Nd 1411 Pm	E: less that -51560# -60520# -68330 -74477 -79726 -82938 -85440.1 -86020.9 -84198	400# 200# 90 11 8 5 2.5 2.5 4			el, from	100# 430 1.73 24.84 18.27 3.92 32.508 STABLE 2.49	ms s s m h d	(>300 ns) 20 0.01 0.16 0.07 0.03 0.013	5/2 ⁻ # 7/2 ⁺ # 5/2 ^(-#) 7/2 ⁺ 3/2 ⁻ (7/2 ⁺) 7/2 ⁻ 5/2 ⁺ 3/2 ⁺	01 01 01 01 01 01 01			β^- =100; β^- n=21 3 β^- =100; β^- n=0.044 5 β^- =100; β^- n=0.035 3 β^- =100 β^- =100 β^- =100 IS=100.	5
140 Ho 1410 Eu ^m 1411 Te 1411 I 1411 Xe 1411 Cs 1411 Ba 1411 La 1411 Pr 1411 Nd 1411 Nd 1411 Pm	E: less that -51560# -60520# -68330 -74477 -79726 -82938 -85440.1 -86020.9 -84198 -83441	400# 200# 90 11 8 5 2.5 2.5 4			el, from	100# 430 1.73 24.84 18.27 3.92 32.508 STABLE 2.49 62.0	ms ms s m h d	(>300 ns) 20 0.01 0.16 0.07 0.03 0.013	5/2 ⁻ # 7/2 ⁺ # 5/2 ^(-#) 3/2 ⁻ (7/2 ⁺) 3/2 ⁻ (7/2 ⁺) 3/2 ⁺ 11/2 ⁻	01 01 01 01 01 01 01 01			β^- =100; β^- n=21 3 β^- =100; β^- n=0.044 5 β^- =100; β^- n=0.035 3 β^- =100 β^- =100 β^- =100 IS=100. β^+ =100 IT≈100; β^+ =0.032 8	5
140 Ho 140 Eu ^m 141 Te 141 I 141 Xe 141 Cs 141 Ba 141 Le 141 Ce 141 Pr 141 Nd 141 Pm ^m 141 Pm ^m 141 Sm	E: less that -51560# -60520# -68330 -74477 -79726 -82938 -85440.1 -86020.9 -84198 -83441 -80523 -79895 -75939	400# 200# 90 11 8 5 2.5 2.5 4 14	756.51	0.05	el, from	100# 430 1.73 24.84 18.27 3.92 32.508 STABLE 2.49 62.0 20.90	ms ms s s m h d d h s m	(>300 ns) 20 0.01 0.16 0.07 0.03 0.013 0.03 0.8 0.05	5/2 ⁻ # 7/2 ⁺ # 5/2 ^(-#) 7/2 ⁺ 3/2 ⁻ (7/2 ⁺) 7/2 ⁻ 5/2 ⁺ 3/2 ⁺ 11/2 ⁻ 5/2 ⁺	01 01 01 01 01 01 01 01 01			$\begin{array}{l} \beta^{-}\!=\!100; \beta^{-}\!=\!213 \\ \beta^{-}\!=\!100; \beta^{-}\!=\!0.0445 \\ \beta^{-}\!=\!100; \beta^{-}\!=\!0.0353 \\ \beta^{-}\!=\!100 \\ \beta^{-}\!=\!100 \\ \beta^{-}\!=\!100 \\ 15\!=\!100 \\ \beta^{+}\!=\!100 \\ 1T\!\approx\!100; \beta^{+}\!=\!0.0328 \\ \beta^{+}\!=\!100 \end{array}$	5
140 Ho 140 Eu ^m 141 Te 141 I 141 Xe 141 Cs 141 Ba 141 Ce 141 Pr 141 Nd 141 Nd 141 Nd 141 Pm ^m 141 Sm	E: less that -51560# -60520# -68330 -74477 -79726 -82938 -85440.1 -86020.9 -84198 -83441 -80523 -79895 -75939	400# 200# 90 11 8 5 2.5 4 14 14	756.51	0.05	el, from	100# 430 1.73 24.84 18.27 3.92 32.508 STABLE 2.49 62.0 20.90 630	ms ms s s m h d h s m ns	(>300 ns) 20 0.01 0.16 0.07 0.03 0.013 0.03 0.05 20	5/2 ⁻ # 7/2 ⁺ # 5/2 ^(-#) 7/2 ⁺ 3/2 ⁻ (7/2 ⁺) 7/2 ⁻ 5/2 ⁺ 11/2 ⁻ 5/2 ⁺ 11/2 ⁻	01 01 01 01 01 01 01 01 01			$β^-$ =100; $β^-$ n=21 3 $β^-$ =100; $β^-$ n=0.044 5 $β^-$ =100; $β^-$ n=0.035 3 $β^-$ =100 $β^-$ =100 $β^-$ =100 IS=100. $β^+$ =100 IT≈100; $β^+$ =0.032 8 $β^+$ =100 IT=100	5
141 Te 141 Te 141 I 141 Xe 141 Cs 141 Cs 141 La 141 Ce 141 Pm 141 Pm 141 Pm 141 Sm 141 Sm 141 Eu	E: less that -51560# -60520# -68330 -74477 -79726 -82938 -85440.1 -86020.9 -84198 -83441 -80523 -79895 -75939	400# 200# 90 11 8 5 2.5 4 14 14 9	756.51 628.40	0.05 0.10	el, from	100# 430 1.73 24.84 18.27 3.92 32.508 STABLE 2.49 62.0 20.90 630 10.2	ms ms s s m h d h s m ns m	(>300 ns) 20 0.01 0.16 0.07 0.03 0.013 0.03 0.05 20 0.2	5/2 ⁻ # 7/2 ⁺ # 5/2 ^(-#) 7/2 ⁺ 3/2 ⁻ (7/2 ⁺) 7/2 ⁻ 5/2 ⁺ 11/2 ⁻ 5/2 ⁺ 11/2 ⁻ 1/2 ⁺	01 01 01 01 01 01 01 01 01 01			β^- =100; β^- n=21 3 β^- =100; β^- n=0.044 5 β^- =100; β^- n=0.035 3 β^- =100 β^- =100 β^- =100 IS=100. β^+ =100 IT=100; β^+ =0.032 8 β^+ =100 IT=100 β^+ =100 β^+ =100; IT=0.31 3 β^+ =100	5
140 Ho 140 Eu ^m 141 Te 141 I 141 Xe 141 Cs 141 Ba 141 La 141 Pr 141 Nd 141 Nd 141 Nd 141 Pm 141 Sm 141 Sm 141 Eu 141 Eu 141 Eu	E: less that -51560# -60520# -68330 -74477 -79726 -82938 -85440.1 -86020.9 -84198 -83441 -80523 -79895 -75939 -75763 -69927 -69831	400# 200# 90 11 8 5 2.5 4 4 14 14 9 9 13	756.51 628.40	0.05 0.10	el, from	100# 430 1.73 24.84 18.27 32.508 STABLE 2.49 62.0 20.90 630 10.2 22.6	ms ms s s m h d h s m ns m m	(>300 ns) 20 0.01 0.16 0.07 0.03 0.013 0.08 0.05 20 0.2	5/2 ⁻ # 7/2 ⁺ # 5/2(-#) 5/2(-#) 7/2 ⁺ 3/2 ⁺ 5/2 ⁺ 11/2 ⁻ 5/2 ⁺ 11/2 ⁻ 1/2 ⁺ 11/2 ⁻ 5/2 ⁺ 11/2 ⁻ 11/2 ⁻ 5/2 ⁺ 11/2 ⁻ 11/2 ⁻ 5/2 ⁺ 11/2 ⁻ 5/2	01 01 01 01 01 01 01 01 01 01 01 01			β^- =100; β^- n=21 3 β^- =100; β^- n=0.044 5 β^- =100; β^- n=0.035 3 β^- =100 β^- =100 IS=100 IS=100. β^+ =100 IT=100; β^+ =0.032 8 β^+ =100 IT=100 β^+ =100 IT=100; β^+ =100; IT=0.31 3 β^+ =100 IT=86 3; β^+ =14 3	5
140 Ho 140 Eu ^m 141 Te 141 I 141 Xe 141 Cs 141 Ba 141 Ce 141 Pr 141 Nd 141 Nd 141 Pm 141 Pm 141 Pm 141 Sm 141 Eu 141 Eu 141 Eu 141 Gd	E: less that -51560# -60520# -68330 -74477 -79726 -82938 -85440.1 -86020.9 -84198 -83441 -80523 -79895 -755763 -69927	400# 200# 90 11 8 5 2.5 4 4 14 9 9	756.51 628.40 176.0	0.05 0.10 0.3	el, from	100# 430 1.73 24.84 18.27 3.92 32.508 STABLE 2.49 62.0 20.90 630 10.2 22.6 40.7	ms ms s s m h d d h s m ns m m s	(>300 ns) 20 0.01 0.16 0.07 0.03 0.013 0.05 20 0.2 0.2 0.7	5/2 ⁻ # 7/2 ⁺ # 5/2(-#) 5/2(-#) 7/2 ⁺ 3/2 ⁻ (7/2 ⁺) 7/2 ⁻ 5/2 ⁺ 3/2 ⁺ 11/2 ⁻ 5/2 ⁺ 11/2 ⁻ 1/2 ⁻ 1/2 ⁺ 11/2 ⁻ 5/2 ⁺	01 01 01 01 01 01 01 01 01 01 01 01			$β^-$ =100; $β^-$ n=21 3 $β^-$ =100; $β^-$ n=0.044 5 $β^-$ =100; $β^-$ n=0.035 3 $β^-$ =100 $β^-$ =100 $β^-$ =100 IS=100. $β^+$ =100 IT=100; $β^+$ =0.032 8 $β^+$ =100 IT=100 $β^+$ =100; IT=0.31 3 $β^+$ =100 IT=86 3; $β^+$ =14 3 $β^+$ =100; $β^+$ p=0.03 1	5
140 Ho 140 Eu ^m 141 Te 141 I 141 Xe 141 Cs 141 Ba 141 La 141 Pr 141 Pr 141 Pm 141 Pm 141 Sm 141 Sm 141 Eu 141 Eu 141 Eu 141 Eu 141 Eu 141 Gd 141 Gd 141 Gd 140 Eu ^m	-51560# -60520# -68330 -74477 -79726 -82938 -85440.1 -86020.9 -84198 -83441 -80523 -79895 -75939 -75763 -69921 -63224 -63224	400# 200# 90 11 8 5 2.5 4 4 14 14 9 9 13	756.51 628.40 176.0	0.05 0.10 0.3	el, from	100# 430 1.73 24.84 18.27 3.92 32.508 STABLE 2.49 62.0 20.90 630 10.2 22.6 40.7 2.7 14 24.5	ms ms s s m h d h s m ns m m s s s	(>300 ns) 20 0.01 0.16 0.07 0.03 0.013 0.03 0.8 0.05 20 0.2 0.2	5/2 ⁻ # 7/2 ⁺ # 5/2(-#) 5/2(-#) 7/2 ⁺ 3/2 ⁺ 5/2 ⁺ 11/2 ⁻ 5/2 ⁺ 11/2 ⁻ 1/2 ⁺ 11/2 ⁻ 5/2 ⁺ 11/2 ⁻ 11/2 ⁻ 5/2 ⁺ 11/2 ⁻ 11/2 ⁻ 5/2 ⁺ 11/2 ⁻ 5/2	01 01 01 01 01 01 01 01 01 01 01 01 01			$\begin{array}{l} \beta^- = 100; \ \beta^- = 1213 \\ \beta^- = 100; \ \beta^- = 0.0445 \\ \beta^- = 100; \ \beta^- = 0.0353 \\ \beta^- = 100 \\ \beta^- = 100 \\ \beta^- = 100 \\ \beta^+ = 100 \\ \text{IT} \approx 100; \ \beta^+ = 0.0328 \\ \beta^+ = 100 \\ \text{IT} = 100 \\ \beta^+ = 100 \\ \text{IT} = 100 \\ \beta^+ = 100 \\ \beta^+ = 100 \\ \beta^+ = 100; \ \beta^+ = 0.0313 \\ \beta^+ = 100; \ \beta^+ = 0.031 \\ \beta^+ = 100; \ \beta^+ = 0.031 \\ \beta^+ = 892; \ \text{IT} = 112 \\ \end{array}$	5
141 Te 141 Te 141 I 141 Xe 141 Cs 141 Ba 141 La 141 La 141 Pr 141 Nd 141 Pm 141 Pm 141 Sm 141 Sm 141 Eu 141	-51560# -60520# -68330 -74477 -79726 -82938 -85440.1 -86020.9 -84198 -83441 -80523 -79895 -75763 -69927 -69831 -63244 -63846 -54540	400# 200# 90 11 8 5 2.5 2.5 4 4 14 14 19 9 9 13 13 20 20 110	756.51 628.40 176.0 96.45 377.8	0.05 0.10 0.3 0.07 0.2	*	100# 430 1.73 24.84 18.27 3.92 32.508 STABLE 2.49 62.0 20.90 630 10.2 22.6 40.7 2.7 14 24.5 3.5	ms ms s s m h d h s m ns m m s s s s s	(>300 ns) 20 0.01 0.16 0.07 0.03 0.013 0.03 0.05 20 0.2 0.2 0.7 0.3 4	5/2 ⁻ # 7/2 ⁺ # 5/2 ^(-#) 7/2 ⁺ 3/2 ⁻ (7/2 ⁺) 3/2 ⁺ 11/2 ⁻ 5/2 ⁺ 11/2 ⁻ 1/2 ⁺ 11/2 ⁻ (1/2 ⁺) (1/2 ⁻) (1/2 ⁻) (5/2 ⁻)	01 01 01 01 01 01 01 01 01 01 01 01 01 0	70Ab05	D	$\begin{array}{l} \beta^-=100; \ \beta^-=21\ 3\\ \beta^-=100; \ \beta^-=0.044\ 5\\ \beta^-=100; \ \beta^-=0.035\ 3\\ \beta^-=100\\ \beta^-=100\\ \beta^-=100\\ \text{IS}=100\\ \text{IS}=100\\ \text{IT}\approx 100; \ \beta^+=0.032\ 8\\ \beta^+=100\\ \text{IT}=100\\ \beta^+=100\\ \beta^+=100$	5
140 Ho 140 Eu ^m 141 Te 141 I 141 Xe 141 Cs 141 Ba 141 La 141 Pm 141 Pm 141 Pm 141 Sm 141 Sm 141 Eu 141 Eu ^m 141 Gd 141 Gd 141 Tb ^m 141 Tb ^m	E: less that -51560# -60520# -68330 -74477 -79726 -82938 -85440.1 -80523 -79893 -755763 -69927 -69831 -63224 -62846 -54540 -54540#	400# 200# 90 11 8 5 2.5 2.5 4 4 14 19 9 13 13 20 20 110 230#	756.51 628.40 176.0 96.45	0.05 0.10 0.3 0.07		100# 430 1.73 24.84 18.27 3.92 32.508 STABLE 2.49 62.0 20.90 630 10.2 22.6 40.7 2.7 14 24.5 3.5 7.9	ms ms s s m h d h s m ns m m s s s s s s	(>300 ns) 20 0.01 0.16 0.07 0.03 0.013 0.03 0.05 20 0.2 0.2 0.7 0.3 4	5/2 ^{-#} 7/2 ^{+#} 5/2(-#) 5/2(-#) 7/2 ⁺ 3/2 ⁻ (7/2 ⁺) 7/2 ⁻ 5/2 ⁺ 11/2 ⁻ 5/2 ⁺ 11/2 ⁻ 11/2 ⁻ (1/2 ⁺) (11/2 ⁻) (1/2 ⁺) (11/2 ⁻) (11/2 ⁻ #) 11/2 ⁻ #	01 01 01 01 01 01 01 01 01 01 01 01 01 0		D	$\begin{array}{l} \beta^-{=}100; \beta^-{=}n{=}21 3 \\ \beta^-{=}100; \beta^-{=}n{=}0.044 5 \\ \beta^-{=}100; \beta^-{=}n{=}0.035 3 \\ \beta^-{=}100 \\ \beta^-{=}100 \\ \beta^-{=}100 \\ \beta^-{=}100 \\ \beta^+{=}100 \\ \text{IT}{\approx}100; \beta^+{=}0.032 8 \\ \beta^+{=}100 \\ \text{IT}{=}100 \\ \beta^+{\approx}100; \text{IT}{=}0.31 3 \\ \beta^+{=}100 \\ \text{IT}{=}86 3; \beta^+{=}14 3 \\ \beta^+{=}100; \beta^+{=}0.03 1 \\ \beta^+{=}89 2; \text{IT}{=}11 2 \\ \beta^+{=}100 \\ \beta^+{=}100 \\ \beta^+{=}100 \\ \beta^+{=}100 \end{array}$	5
140 Ho 140 Eu ^m 141 Te 141 I 141 Xe 141 Cs 141 Ba 141 La 141 Ce 141 Pm 141 Pm 141 Pm 141 Sm 141 Sm 141 Eu 141 Eu ^m 141 Gd 141 Gd ^m 141 Eu ^m 141 Gd 141 Gd ^m 141 Tb ^m	E: less that -51560# -60520# -68330 -74477 -79726 -82938 -85440.1 -86029 -84198 -84198 -879895 -75939 -75763 -69927 -69831 -63224 -62846 -54540 -54540# -45320#	400# 200# 90 11 8 5 2.5 2.5 4 4 14 14 9 9 13 13 20 20 20 300#	756.51 628.40 176.0 96.45 377.8	0.05 0.10 0.3 0.07 0.2	*	100# 430 1.73 24.84 18.27 3.92 32.508 STABLE 2.49 62.0 20.90 630 10.2 22.6 40.7 2.7 14 24.5 3.5 7.9 900	ms ms s s m h d h s m ns m m s s s s s s s	(>300 ns) 20 0.01 0.16 0.07 0.03 0.013 0.03 0.8 0.05 20 0.2 0.2 0.7 0.3 4 0.5 0.2	5/2 ⁻ # 7/2 ⁺ # 5/2(-#) 7/2 ⁺ 3/2 ⁺ 5/2(-7/2 ⁺) 11/2 ⁻ 5/2 ⁺ 11/2 ⁻ 11/2 ⁻ 11/2 ⁻ (1/2 ⁺) (11/2 ⁻) (5/2 ⁻) 11/2 ⁻ (1/2 ⁻) (9/2 ⁻)	01 01 01 01 01 01 01 01 01 01 01 01 01 0	70Ab05	D	$\begin{array}{l} \beta^-{=}100; \beta^-{=}n{=}21 3 \\ \beta^-{=}100; \beta^-{=}n{=}0.044 5 \\ \beta^-{=}100; \beta^-{=}n{=}0.035 3 \\ \beta^-{=}100 \\ \beta^-{=}100 \\ \beta^-{=}100 \\ \text{IS}{=}100 \\ \text{IT}{\approx}100; \beta^+{=}0.032 8 \\ \beta^+{=}100 \\ \text{IT}{=}100 \\ \text{IT}{=}100 \\ \beta^+{=}100 \\ \text{IT}{=}100 \\ \beta^+{=}100 \\ \text{IT}{=}86 3; \beta^+{=}14 3 \\ \beta^+{=}100; \beta^+{=}0.03 1 \\ \beta^+{=}89 2; \text{IT}{=}11 2 \\ \beta^+{=}100 \\ \beta^+{=}100 \\ \beta^+{=}100 \\ \beta^+{=}100 \\ \beta^+{=}100; \beta^+{=}9? \\ \end{array}$	5
141 Te 141 Te 141 I 141 Xe 141 Cs 141 Ba 141 Ce 141 Pr 141 Nd 141 Nd 141 Pm 141 Pm 141 Pm 141 Eu 141 Eu 141 Ed 141 Gd 141 Gd 141 Gd 141 Tb 141	-51560# -60520# -68330 -74477 -79726 -82938 -85440.1 -86020.9 -84198 -83441 -80523 -75939 -75763 -69927 -69927 -69931 -63224 -62846 -54540# -45320# -45320# -45320# -45320#	400# 200# 90 11 8 5 2.5 2.5 4 4 14 19 9 9 13 13 20 20 110 300# 500#	756.51 628.40 176.0 96.45 377.8 0#	0.05 0.10 0.3 0.07 0.2 200#	*	100# 430 1.73 24.84 18.27 3.92 32.508 STABLE 2.49 62.0 630 10.2 22.6 40.7 2.7 14 24.5 3.5 7.9 900 4.1	ms ms s s m h d h s m ns m m s s s s s s s s	(>300 ns) 20 0.01 0.16 0.07 0.03 0.013 0.03 0.05 20 0.2 0.2 0.7 0.3 4 0.5 0.2 0.6 200 0.3	5/2 ⁻ # 7/2 ⁺ # 5/2(-#) 7/2 ⁺ 3/2 ⁻ 7/2 ⁺ 3/2 ⁻ 5/2 ⁺ 11/2 ⁻ 5/2 ⁺ 11/2 ⁻ 11/2 ⁻ (1/2 ⁺) (11/2 ⁻) (5/2 ⁻) 11/2 ⁻ (9/2 ⁻) (7/2 ⁻) (7/2 ⁻)	01 01 01 01 01 01 01 01 01 01 01 01 01 0	70Ab05 88Be.A	D	$β^-$ =100; $β^-$ n=21 3 $β^-$ =100; $β^-$ n=0.044 5 $β^-$ =100; $β^-$ n=0.035 3 $β^-$ =100 $β^-$ =100 $β^-$ =100 IT≈100; $β^+$ =100 IT≈100; $β^+$ =100 IT=100 $β^+$ =100 IT=100 $β^+$ =100; IT=0.31 3 $β^+$ =100; $β^+$ =0.03 1 $β^+$ =89 2; IT=11 2 $β^+$ =100; $β^+$ =9-0.03 1 $β^+$ =100; $β^+$ =9-0.03 1	5
140 Ho 140 Eu ^m 141 Te 141 I 141 Xe 141 Cs 141 Ba 141 La 141 Ce 141 Pr 141 Nd 141 Nd 141 Sm 141 Eu 141 Eu 141 Eu 141 Eu 141 Eu 141 Gd 141 Gd 141 Gd 141 Ho	E: less that -51560# -60520# -68330 -74477 -79726 -82938 -85440.1 -86029 -84198 -84198 -879895 -75939 -75763 -69927 -69831 -63224 -62846 -54540 -54540# -45320#	400# 200# 90 11 8 5 2.5 2.5 4 4 14 14 9 9 13 13 20 20 110 230# 500# 500# 500#	756.51 628.40 176.0 96.45 377.8 0#	0.05 0.10 0.3 0.07 0.2 200#	* EU *	100# 430 1.73 24.84 18.27 3.92 32.508 STABLE 2.49 62.0 20.90 630 10.2 22.6 40.7 2.7 14 24.5 3.5 7.9 900 4.1 6.4	ms ms s s m h d h s m ms ms ms s s s s s ms ms \mu ms ms ms ms \mu ms s s s s s ms ms \mu ms \mu ms ms \mu ms \mu ms ms \mu ms \	(>300 ns) 20 0.01 0.16 0.07 0.03 0.013 0.03 0.8 0.05 20 0.2 0.2 0.2 0.7 0.3 4 0.5 0.2 0.6 200	5/2 ⁻ # 7/2 ⁺ # 5/2(-#) 7/2 ⁺ 3/2 ⁺ 5/2(-7/2 ⁺) 11/2 ⁻ 5/2 ⁺ 11/2 ⁻ 11/2 ⁻ 11/2 ⁻ (1/2 ⁺) (11/2 ⁻) (5/2 ⁻) 11/2 ⁻ (1/2 ⁻) (9/2 ⁻)	01 01 01 01 01 01 01 01 01 01 01 01 01 0	70Ab05	D	$\begin{array}{l} \beta^-{=}100; \beta^-{=}n{=}21 3 \\ \beta^-{=}100; \beta^-{=}n{=}0.044 5 \\ \beta^-{=}100; \beta^-{=}n{=}0.035 3 \\ \beta^-{=}100 \\ \beta^-{=}100 \\ \beta^-{=}100 \\ \text{IS}{=}100 \\ \text{IT}{\approx}100; \beta^+{=}0.032 8 \\ \beta^+{=}100 \\ \text{IT}{=}100 \\ \text{IT}{=}100 \\ \beta^+{=}100 \\ \text{IT}{=}100 \\ \beta^+{=}100 \\ \text{IT}{=}86 3; \beta^+{=}14 3 \\ \beta^+{=}100; \beta^+{=}0.03 1 \\ \beta^+{=}89 2; \text{IT}{=}11 2 \\ \beta^+{=}100 \\ \beta^+{=}100 \\ \beta^+{=}100 \\ \beta^+{=}100 \\ \beta^+{=}100; \beta^+{=}9? \\ \end{array}$	5

Nuclide	Mass excess (keV)		ergy(keV)		H	Half-l	ife	J^{π}	Ens	Referen	ce	Decay modes and intensities (%)	
142Te 142I 142Xe 142Cs 142Ba 142La 142Ce	-47430# 600# -55720# 400# -65480 100 -70515 11 -77823 6 -80035 6 -84538.5 3.	ŧ			50# 200 1.22 1.689 10.6 91.1 STABLE	ms s s m m	0.02 0.011 0.2 0.5 (>50 Py)	0 ⁺ 2 ⁻ # 0 ⁺ 0 ⁻ 0 ⁺ 2 ⁻ 0 ⁺	00 00 00 00 00 00	94Be24 03Be05 93Ru01	TD	$β^-?$ $β^-=100; β^-n=25#$ $β^-=100; β^-n=0.36 3$ $β^-=100; β^-n=0.090 4$ $β^-=100$ $β^-=100$ IS=11.114 51; $α?; 2β^-?$	* *
¹⁴² Pr ¹⁴² Pr ^m ¹⁴² Nd ¹⁴² Pm	-83792.7 2. -83789.0 2. -85955.2 2. -81157 25	5 5 3.694	0.003		19.12 14.6 STABLE 40.5	h m	0.04 0.5 0.5	2 ⁻ 5 ⁻ 0 ⁺ 1 ⁺	00 00 00 00			$\beta^- \approx 100; \ \epsilon = 0.0164 \ 8$ IT=100 IS=27.2 5 $\beta^+ = 100$	
¹⁴² Pm ^m ¹⁴² Sm ¹⁴² Eu	$\begin{array}{ccc} -80274 & 25 \\ -78993 & 6 \\ -71320 & 30 \end{array}$	883.17	0.16	. D	2.0 72.49 2.36	ms m s	0.2 0.05 0.10	(8) ⁻ 0 ⁺ 1 ⁺	00 00 00	91Fi03	Т	TT=100 β^+ =100 β^+ =100	*
¹⁴² Eu ^m ¹⁴² Gd ¹⁴² Tb ¹⁴² Tb ^m	-70856 12 -66960 28 -57060# 300# -56780# 300#	280.2	30 F	BD	1.223 70.2 597 303	m s ms ms	0.008 0.6 17 17	8 ⁻ 0 ⁺ 1 ⁺ (5 ⁻)	00 00 00 00			$\beta^{+}=100$ $\beta^{+}=100$ $\beta^{+}=100; \beta^{+}p=0.0022 11$ $1T\approx100; \beta^{+}<0.5$	
142Dy 142Ho *142Cs *142Ba *142Ce	-49960# 360# -37470# 500# T: average 93R D: β ⁻ n=0.0910 T: lower limit in	tu01=1.684((0.003)% in	Ensdf'00 c	ontra	dicts $Q(\beta)$	3-n)=		0 ⁺ (6to9) keV	00 02				**
* Ce * ¹⁴² Eu	T : average 91F					×200 I	гу						**
¹⁴³ I ¹⁴³ Xe ¹⁴³ Cs ¹⁴³ Ba	-51640# 400# -60450# 200# -67671 24 -73936 13				100# 511 1.791 14.5	ms (ms s	(>300 ns) 6 0.007 0.3	7/2 ⁺ # 5/2 ⁻ 3/2 ⁺ 5/2 ⁻	02 02 02 02	94Be24 03Be05		β^- ?; β^- n=40# β^- =100; β^- n=1.00 15 β^- =100; β^- n=1.64 7 β^- =100	
¹⁴³ La ¹⁴³ Ce ¹⁴³ Pr ¹⁴³ Nd	-78187 15 -81612.0 3. -83073.5 2. -84007.4 2.	6			14.2 33.039 13.57 STABLE	m h d	0.1 0.006 0.02	$(7/2)^{+}$ $3/2^{-}$ $7/2^{+}$ $7/2^{-}$	02 02 02 02 02			$\beta^{-}=100$ $\beta^{-}=100$ $\beta^{-}=100$ $\beta^{-}=100$ IS=12.2 2	
143 Sm	-82966 3 -82006 3 -79523 4 -78769 4	959.73 753.99	0.13 0.16		265 24.0 8.75 66	d ns m s	7 0.7 0.08 2	5/2 ⁺ 11/2 ⁻ 3/2 ⁺ 11/2 ⁻	02 02 02 02			ε =100; e ⁺ <5.7e-6 IT=100 β ⁺ =100 IT≈100; β ⁺ =0.24 6	
¹⁴³ Sm ⁿ ¹⁴³ Eu ¹⁴³ Eu ^m	$\begin{array}{ccc} -76729 & 4 \\ -74242 & 11 \\ -73852 & 11 \end{array}$	2793.8 389.51	0.13 0.04		30 2.59 50.0	ms m μs	3 0.02 0.5	23/2 ⁽⁻⁾ 5/2 ⁺ 11/2 ⁻	02 02	50F:02		$\beta^{+}=100$ $\beta^{+}=100$ TT=100	
¹⁴³ Tb ¹⁴³ Tb ^m	-68230 200 -68080 200 -60430 60 -60430# 120#	152.6	0.5 100#	*	39 110.0 12 < 21	s s s	2 1.4 1	$(1/2)^+$ $(11/2^-)$ $(11/2^-)$ $5/2^+$ #	01	78Fi02 78Fi02		$\beta^{+}=100; \beta^{+}p=?; \beta^{+}\alpha=?$ $\beta^{+}=100; \beta^{+}p=?; \beta^{+}\alpha=?$ $\beta^{+}=100$ $\beta^{+}?$	*
¹⁴³ Dy ¹⁴³ Dy ^m ¹⁴³ Ho	-52320# 200# -52010# 200# -42280# 400#	± 310.7	0.6		5.6 3.0 300#	s s ms (1.0 0.3 >200 ns)	(1/2 ⁺) (11/2 ⁻) 11/2 ⁻ #	01 01	03Xu04 03Xu04 00So11	JTD	$\beta^{+}=100; \beta^{+}p=?$ $\beta^{+}=100; \beta^{+}p=?$ $\beta^{+}?$	*
¹⁴³ Er * ¹⁴³ Gd * ¹⁴³ Dy	-31350# 600# D: 78Fi02: β^+ T: others: 84N	p and/or β^+							ed			β ⁺ ?	** **

Nuclide	Mass ex (keV			citation rgy(keV)]	Half-	life	J^{π}	Ens	Referen	ce	Decay modes and intensities (%)	
¹⁴⁴ I	-46580#	500#				50#	ms	(>300 ns)	1-#	01	94Be24		β-?; β-n=40#	
¹⁴⁴ Xe	-57280 #	300#				388	ms	7	0^+	01	03Be05	TD	$\beta^-=100; \beta^-n=3.0 3$	
¹⁴⁴ Cs	-63270	26			*	994	ms	4	1(-#)	01			$\beta^-=100; \beta^-=3.2021$	
¹⁴⁴ Cs ^m	-62970#	200#	300#	200#	*	< 1	S		(>3)	01			$\beta^-=?$; IT ?	
¹⁴⁴ Ba	-71769	13				11.5	S	0.2	0+	01			$\beta^{-}=100$	*
¹⁴⁴ La ¹⁴⁴ Ce	-74890	50				40.8	S	0.4	(3^{-}) 0^{+}	01			$\beta^{-}=100$	
144Pr	-80437 -80756	3				284.91	d	0.05 0.05	0-	01 01			$\beta^{-}=100$	
¹⁴⁴ Pr ^m	-80697	3	59.03	0.03		17.28 7.2	m m	0.03	3-	01			$\beta^-=100$ IT \approx 100; $\beta^-=0.07$	
¹⁴⁴ Nd	-83753.2		39.03	0.03		2.29	Py	0.16	0^{+}	01			IS=23.8 3; α =100	
¹⁴⁴ Pm	-81421	3				363	d	14	5-	01	94Hi05	D	ε =100; e ⁺ <8e-5	
$^{144}\text{Pm}^{m}$	-80580	3	840.90	0.05		780	ns	200	(9) ⁺	01	7411105	D	IT=100	
$^{144}\text{Pm}^n$	-72825	4	8595.8	2.2		2.7	μs		(27+)	01			IT=100	
¹⁴⁴ Sm	-81972.0	2.8				STABLE			0+	01			IS=3.07 7; $2\beta^+$?; α ?	
$^{144}{\rm Sm}^{m}$	-79648.4	2.8	2323.60	0.08		880	ns	25	6^{+}	01			IT=100	
¹⁴⁴ Eu	-75622	11				10.2	S	0.1	1+	01			$\beta^{+}=100$	
144 Eu m	-74494	11	1127.6	0.6		1.0	μs	0.1	(8^{-})	01			IT=100	
144 Gd	-71760	28				4.47	m	0.06	0^{+}	01			$\beta^{+}=100$	
¹⁴⁴ Tb	-62368	28				1	S		1+	01			$\beta^{+}=100; \beta^{+}p$?	
$^{144}{ m Tb}^{m}$	-61971	28	396.9	0.5		4.25	S	0.15	(6^{-})	01			IT=66; β^+ =34; β^+ p?	
¹⁴⁴ Tb ⁿ	-61892	28	476.2	0.5		2.8	μ s	0.3	(8^{-})	01			IT=100	
¹⁴⁴ Tb ^p	-61851	28	517.1	0.5		670	ns	60	(9^+)	01			IT=100	
¹⁴⁴ Dy ¹⁴⁴ Ho	-56580	30				9.1	S	0.4	0_{+}	01			$\beta^{+}=100; \beta^{+}p=?$	
144Er	-45200# -36910#	300# 400#				700 400#	ms	100 (>200 ns)	0^{+}	01 01	00So11	т	$\beta^{+}=100; \beta^{+}p=?$ $\beta^{+}?$	
* ¹⁴⁴ Ba	D: β^{-} n=3		ENCDE'01	halonge i	n fac		IIIS	(>200 lis)	0	01	003011	1	ρ. :	**
т Du	D. p 11=3	7.0 7 III	LN3DI OI	ociongs i	II Iac	t to Cs								**
¹⁴⁵ Xe	-52100#	300#				188	ms	4	3/2-#	97	03Be05	TD	$\beta^-=100; \beta^-n=5.06$	
¹⁴⁵ Cs	-60057	11				582	ms	6	$3/2^{+}$	93	93Ru01	TD	$\beta^-=100; \beta^-n=14.3 8$	*
¹⁴⁵ Ba	-67410	70				4.31	S	0.16	$5/2^{-}$	98			$\beta^{-}=100$	
¹⁴⁵ La	-72990	90				24.8	S	2.0	$(5/2^+)$	98	96Ur02	J	$\beta^{-}=100$	
¹⁴⁵ Ce	-77100	40				3.01	m	0.06	$(3/2)^{-}$	93			$\beta^{-}=100$	
¹⁴⁵ Pr	-79632	7				5.984	h	0.010	$7/2^{+}$	93			$\beta^{-}=100$	
¹⁴⁵ Nd	-81437.1	2.3				STABLE			7/2-	93			IS=8.3 1	
¹⁴⁵ Pm	-81274	3				17.7	y	0.4	5/2+	93			$\varepsilon = 100; \; \alpha = 2.8e - 7$	
¹⁴⁵ Sm ¹⁴⁵ Sm ^m	-80657.7	2.8	97963	0.7		340	d	3	$7/2^{-}$	02			ε=100	
145 Eu	-71871.5 -77998	2.9 4	8786.2	0.7		990 5.93	ns	170 0.04	$(49/2^+)$ $5/2^+$	02 93			IT=100 β^+ =100	
¹⁴⁵ Eu ^m	-77998 -77282	4	716.0	0.3		5.93 490	d	0.04	$\frac{3/2}{11/2^{-}}$	93			IT=100	
145Gd	-77282 -72927	19	/10.0	0.3		23.0	ns m	0.4	11/2 $1/2^+$	01			$\beta^{+}=100$	
$^{145}\mathrm{Gd}^m$	-72327 -72178	19	749.1	0.2		85	S	3	$\frac{1}{2}$ $11/2^{-}$	01			IT=94.3 5; β^+ =5.7 5	
¹⁴⁵ Tb	-65880	60	747.1	0.2	*	20#	m	3	$(3/2^+)$	96	93To04	J	β^{+} ?	
$^{145}\mathrm{Tb}^m$	-65880#	120#	0#	100#	*	30.9	s	0.7	$(11/2^{-})$		93A103	T	$\beta^{+}=100$	*
¹⁴⁵ Dy	-58290	50	0	100		9.5	s	1.0	$(1/2^+)$	93	93A103	T	$\beta^{+}=100; \beta^{+}p=?$	*
145 Dv ^m	-58170	50	118.2	0.2		14.1	s	0.7	$(11/2^{-})$		93To04	T	$\beta^{+}=100$	*
¹⁴⁵ Ho	-49180#	300#			*	2.4	s	0.1	$(11/2^{-})$				$\beta^{+}=100$	
$^{145}{\rm Ho}^{m}$	-49080 #	320#	100#	100#	*	100#	ms		5/2+#				β ⁺ ?; IT ?	
¹⁴⁵ Er	-39690#	400#				900	ms	300	1/2+#	98			$\beta^{+}=100; \beta^{+}p=?$	
¹⁴⁵ Tm	-27880 #	400#				3.1	μs	0.3	$(11/2^{-})$	02	98Ba13	TJ	p=100	*
*145Cs	T: average													**
$*^{145}$ Tb ^m								A107=29.50	(1.5)					**
*145Dy	T: average						c.C=	=10(1)						**
$*^{145}$ Dy ^m	T : average			,		` '								**
* ¹⁴⁵ Tm	T : average	e 03Ka0	04=3.1(0.3) 98Ba13	=3.50	(1.0)	J:	not adopte	d by Ensi	of'02	;			**

Nuclide	Mass ex (keV			Excitation nergy(ke\		Н	alf-li	fe	J^{π}	Ens	Referen	ce	Decay modes and intensities (%)	_
¹⁴⁶ Xe ¹⁴⁶ Cs ¹⁴⁶ Ba	-48670# -55620 -65000	400# 70 70				146 323 2.22	ms ms	6 6 0.07	0 ⁺ 1 ⁻ 0 ⁺	97 97 97	03Be05 93Ru01 93Ru01	TD T D	$\beta^{-}=100; \beta^{-}=6.9 15$ $\beta^{-}=100; \beta^{-}=14.2 5$ $\beta^{-}=100$	*
¹⁴⁶ La	-69120	70			*	6.27	s	0.10	2-	97	93Ru01	D	$\beta^{-}=100$	*
$^{146}\mathrm{La}^m$	-68990	150	130	130	*	10.0	s	0.1	(6^{-})	97	79Ke02	E	$\beta^{-}=100$	*
¹⁴⁶ Ce	-75680	70				13.52	m	0.13	0^+	97			$\beta^{-}=100$	
¹⁴⁶ Pr	-76710	60				24.15	m	0.18	$(2)^{-}$	97			$\beta^-=100$	
¹⁴⁶ Nd	-80931.1	2.3				STABLE			0^{+}	97			IS=17.2 3; $2\beta^-$?; α ?	
146Pm	-79460	5				5.53	У	0.05	3-	99			ε =66.0 13; β ⁻ =34.0 13	
146Sm	-81002	4				103	My	5	0+	97			α=100	
¹⁴⁶ Eu ¹⁴⁶ Eu ^m	-77122	6	CCC 27	0.16		4.61	d	0.03	4- 9+	97			$\beta^{+}=100$	
146Gd	-76456 -76093	6 5	666.37	0.16		235 48.27	μs d	3 0.10	0 ⁺	97 01			IT=100 ε=100	
¹⁴⁶ Tb	-67770	50			*	8	S	4	1 ⁺	97			$\beta^{+}=100$	
$^{146}\text{Tb}^m$	-67620#	110#	150#	100#	*	24.1	S	0.5	5-	97	93A103	T	$\beta^{+}=100$ $\beta^{+}=100$	
$^{146}\mathrm{Tb}^n$	-66840#	110#	930#	100#	••	1.18	ms	0.02	(10^{+})	97)31 H03	•	IT=100	*
146 Dy	-62554	27				33.2	s	0.7	0+	97	93A103	T	$\beta^{+}=100$	
$^{146}\mathrm{Dy}^m$	-59618	27	2935.7	0.6		150	ms	20	10^{+} #	97			IT=100	
¹⁴⁶ Ho	-51570 #	200#				3.6	S	0.3	(10^{+})	97			$\beta^{+}=100; \beta^{+}p=?$	
¹⁴⁶ Er	-44710 #	300#				1.7	S	0.6	0_{+}	97	93To05	D	$\beta^{+}=100; \beta^{+}p=?$	
¹⁴⁶ Tm	-31280 #					240	ms	30	(6^{-})	02			p≈100; $β$ ⁺ ?	
¹⁴⁶ Tm ^m	-31200#		71	6	p	72	ms	23	(10^{+})	02			$p=?; \beta^+=16#$	
*146Cs	T : average					0/0- >			100/10	0)				**
* ¹⁴⁶ Ba * ¹⁴⁶ La	D: 93Ru0													**
*146La ^m	D: 93Ru0 E: derived) 1S II	eganve:	=-180(8	0)				**
$*^{146}$ Tb ⁿ	E: 779.6 k					Neu2								**
* 10	L. 777.0 K	c v abo	VC 10	, mom E	NSD1									T T
¹⁴⁷ Xe	-43260#	400#				130	ms	80	3/2-#	98	03Be05	TD	$\beta^-=100; \beta^-=4.023$	*
¹⁴⁷ Cs	-52020	50				225	ms	5	$(3/2^{+})$	92	93Ru01	D	$\beta^-=100; \beta^-n=28.5 17$	
¹⁴⁷ Ba	-60600 #	210#				893	ms	1	$(3/2^+)$	98	93Ru01		$\beta^{-}=100$	*
¹⁴⁷ La	-66850	50				4.015	S	0.008	$(5/2^{+})$	98	93Ru01	D	$\beta^-=100; \beta^-n=0.040 3$	*
¹⁴⁷ Ce	-72030	30				56.4	S	1.0	$(5/2^{-})$	92			$\beta^{-}=100$	
¹⁴⁷ Pr	-75455	23				13.4	m	0.4	$(3/2^+)$	92			$\beta^{-}=100$	
¹⁴⁷ Nd ¹⁴⁷ Pm	-78151.9					10.98	d	0.01	5/2 ⁻	92 96			$\beta^{-}=100$	
¹⁴⁷ Sm	-79047.9 -79272.1	2.4				2.6234 106.0	y Gy	0.0002	$7/2^+$ $7/2^-$	92	70Gu14	т	$\beta^-=100$ IS=14.99 18; $\alpha=100$	*
¹⁴⁷ Eu	-77550	3				24.1	d	0.6	5/2 ⁺	99	70Gu14	1	$\beta^{+}\approx 100; \alpha=0.0022.6$	4
¹⁴⁷ Gd	-75363	3				38.06	h	0.12	$\frac{3}{2}$	99			$\beta^{+}=100$	
$^{147}\mathrm{Gd}^m$	-66775	3	8587.8	0.4		510	ns	20	$(49/2^+)$	99			IT=100	
¹⁴⁷ Tb	-70752	12				1.64	h	0.03	1/2+#	99	97Wa04	T	$\beta^{+}=100$	
$^{147}\mathrm{Tb}^m$	-70701	12	50.6	0.9		1.87	m	0.05	$(11/2)^{-}$	99	93A103	T	$\beta^{+}=100$	*
¹⁴⁷ Dy	-64188	20				40	S	10	1/2+	92	84To07	D	$\beta^{+}=100; \beta^{+}p\approx 0.05$	
$^{147}\mathrm{Dy}^m$	-63438	20	750.5	0.4		55	S	1	$11/2^{-}$	92			β^{+} =65 4; IT=35 4	
¹⁴⁷ Ho	-55837	28				5.8	S	0.4	$(11/2^{-})$				$\beta^{+}=100; \beta^{+}p$?	
¹⁴⁷ Er	-47050#	300#			* &	2.5	S		$(1/2^+)$				$\beta^{+}=100; \beta^{+}p=?$	
¹⁴⁷ Er ^m	-46950#	300#	100#	50#	* &	2.5	S	0.2	$(11/2^{-})$				$\beta^{+}=100$	*
¹⁴⁷ Tm ¹⁴⁷ Tm ^m	-36370#	300#	<i>c</i> 0	-	_	580	ms	30	11/2-	02			$\beta^{+}=85$ 5; p=15 5	
* ¹⁴⁷ Xe	−36300# D : from β		60	5	p	360	μs	40	$3/2^{+}$	02			p=100	**
*147Ba	D: from p D: 93Ru0			contradi	ote O(B-	n)3/10	120)							**
* Ба * ¹⁴⁷ La	J : from 96		-0.00(3)%	Contradit	us Q(p	11)340	(120)							**
* 147 Sm	T : average		14=106(2)	65Va16	=108(2)	54Do01=	1040	3) 61Wr(02=105(2))				**
$*^{147}$ Tb ^m	T : average							E : from		,				**
$*^{147}$ Er ^m	E : estimat	ted fron	n 11/2 ⁻ le	vel in iso	tones 141	Sm=175				3				**
									-					

Nuclide	Mass ex (keV			citation gy(keV)	1	Half-	-life	J^{π}	Ens	Referen	ce	Decay modes and intensities (%)	,
¹⁴⁸ Cs	-47300	580			146	ms	6		00			$\beta^-=100; \beta^-=25.1 25$	_
148 B a	-58010	80			612	ms	17	0_{+}	00			$\beta^-=100; \beta^-=0.43$	
¹⁴⁸ La	-63130	60			1.26	s	0.08	(2^{-})	00			$\beta^-=100; \beta^-=0.15 3$	
¹⁴⁸ Ce	-70391	29			56	S	1	0_{+}	00			$\beta^{-}=100$	
¹⁴⁸ Pr	-72531	26			* 2.29	m	0.02	1-	00			$\beta^{-}=100$	
148Pr ^m	-72480# 77412-4	40#	50#	30#	* 2.01	m	0.07	(4)	00	ABBW		$\beta^{-}=100$	*
¹⁴⁸ Nd ¹⁴⁸ Pm	-77413.4 -76872				STABLE 5.368		(>3.0 Ey) 0.002	0^{+} 1^{-}	00	82Be20	T	IS=5.7 1; $2\beta^-$?; α ?	
	-76734	6 6	137.9	0.3	41.29	d d	0.002	5-,6-	00			$\beta^-=100$ $\beta^-=95.8$ 6; IT=4.2 6	
¹⁴⁸ Sm	-70734 -79342.2		137.9	0.5	7	Py	3	0+	00			IS=11.24 10; α =100	
¹⁴⁸ Eu	-76302	10			54.5	d	0.5	5-	00			$\beta^{+}=100; \alpha=9.4e-7.28$	
¹⁴⁸ Gd	-76275.8				74.6	у	3.0	0^+	00			α =100; 2 β ⁺ ?	
¹⁴⁸ Tb	-70540	14			60	m	1	2^{-}	00			$\beta^{+}=100$	
	-70450	14	90.1	0.3	2.20	m	0.05	$(9)^{+}$	00			$\beta^{+}=100$	
$^{148}\mathrm{Tb}^n$	-61921	14	8618.6	1.0	1.310	μs	0.007	(27^{+})	00			IT=100	
¹⁴⁸ Dy	-67859	11			3.3	m	0.2	0+	00			$\beta^{+}=100$	
¹⁴⁸ Ho	-58020	130			2.2	S	1.1	(1+)	00		_	$\beta^{+}=100$	
	-57620#		400#	100#	9.49	S	0.12	(6) ⁻	00	93A103	Т	$\beta^{+}=100; \beta^{+}p=0.081$	*
¹⁴⁸ Ho ⁿ ¹⁴⁸ Er	-57330#		690#	100#	2.35	ms	0.04	(10^{+})	00			IT=100	*
	-51650# -39270#				4.6 700	S	0.2 200	0^+ (10^+)	00			$\beta^{+}=100; \beta^{+}p\approx 0.15$	
148 Y b	-39270# -30350#				250#	ms ms	200	0+	00			$\beta^{+}=100$ β^{+} ?	
			ENSDF estin	nate F<9		1115		Ü				ρ :	**
					1=9.59(0.15)							**
			ove ¹⁴⁸ Ho ^m			,							**
¹⁴⁹ Cs	-43850#	200#			150#	ms	(>50 ms)	3/2+#	95	87Ra12	ī	β- ?; β-n ?	
149 B a	-53490#				344	ms	7	3/2-#	95	0714412	•	$\beta^-=100; \beta^-=0.43 12$	
¹⁴⁹ La	-60800#				1.05	S	0.03	5/2+#	95	93Ru01	D	$\beta^-=100; \beta^-=1.43$	
¹⁴⁹ Ce	-66700	100			5.3	S	0.2	3/2-#	98			$\beta^{-}=100$	
¹⁴⁹ Pr	-71060	80			2.26	m	0.07	$(5/2^{+})$	95			$\beta^{-}=100$	
¹⁴⁹ Nd	-74380.9	2.8			1.728	h	0.001	5/2-	95			$\beta^{-}=100$	
¹⁴⁹ Pm	-76071	4			53.08	h	0.05	$7/2^{+}$	95			$\beta^{-}=100$	
	-75831	4	240.214	0.007	35	μs	3	$11/2^{-}$					
¹⁴⁹ Sm	-77141.9				STABLE		(>2 Py)	7/2-	95			IS=13.82 7; α ?	
¹⁴⁹ Eu	-76447	4			93.1	d	0.4	5/2+	95			ε=100	
¹⁴⁹ Gd ¹⁴⁹ Tb	-75133 71406	4 4			9.28	d h	0.10	7/2-	01 99			$\beta^{+}=100; \alpha=4.3e-4.10$	
	-71496 -71460	4	35.78	0.13	4.118 4.16	n m	0.025 0.04	$\frac{1/2^{+}}{11/2^{-}}$	99			β^{+} =83.3 17; α =16.7 17 β^{+} ≈100; α =0.022 3	
¹⁴⁹ Dy	-67715	9	33.76	0.13	4.10	m	0.04	7/2(-)	95	88Ah02	T	$\beta^{+} \approx 100, \alpha = 0.022.3$ $\beta^{+} = 100$	
149 Dy ^m	-65054	9	2661.1	0.4	4.20	ms	15	$(27/2^{-})$	95	00AII02	J	IT=99.3 3; β^+ =0.7 3	
	-60230	30	7490	30	28	ns	2	$(47/2^+)$	95			IT=100	*
¹⁴⁹ Ho	-61688	18	, ,,,	50	21.1	S	0.2	$(11/2^{-})$	95			$\beta^{+}=100$	
	-61639	18	48.80	0.20	56	s	3	$(1/2^{+})^{'}$	95			$\beta^{+}=100$	
¹⁴⁹ Er	-53742	28			4	s	2	$(1/2^{+})$	95			$\beta^{+}=100; \beta^{+}p=7.2$	
$^{149}{\rm Er}^{m}$	-53000	28	741.8	0.2	8.9	S	0.2	$(11/2^{-})$	95			β^+ =96.5 7; IT=3.5 7;	*
¹⁴⁹ Tm	-44040 #	300#			900	ms	200	$(11/2^{-})$	95			β^{+} =100; β^{+} p=0.26 15	
¹⁴⁹ Yb	-33500#	500#			700	ms	200	$(1/2^+, 3/2^+)$	95	01Xu06	TD	$\beta^{+}=100; \beta^{+}p=?$	
*149Dy"	E: 7409.9	above	level at ≈8	80 keV									**
*149Erm	D:; β	⁺ p=0.1	.87										**
¹⁵⁰ Cs	-38960#				100#	ms	(>50 ms)		97	87Ra12	I	β-?;β-n?	
¹⁵⁰ Ba	-50600 #				300	ms		0^+	95			$\beta^-=100; \beta^- n ?$	
150La	-57040 #				510	ms	30	(3+)		95Ok02	TJ	$\beta^-=100; \beta^-=2.73$	
¹⁵⁰ Ce	-64820	50			4.0	S	0.6	0+	95			$\beta^{-}=100$	
150Pr	-68304	26			6.19	s	0.16	(1)-	96			$\beta^{-}=100$	
150Nd	-73690	3			6.7	Ey	0.7	0+		97De40	TD	IS=5.6 2; $2\beta^-=100$	*
	-73603	20	t		2.68	h	0.02	(1^{-})	95			$\beta^-=100$	
A-gro	oup is conti	nued of	n next page	• • • •									

Nuclide	Mass ex (keV			Excitation ergy(keV			I	Half-	-life	J^{π}	Ens	s Reference	Decay modes and intensities (%)	
A-gro	up continu	ıed												
150Sm	-77057.3	2.4					STABLE			0_{+}	96		IS=7.38 1	
	-74797	6					36.9	y	0.9	5(-)	95		$\beta^{+}=100$	
150 Eu m		6	42.1	0.5			12.8	h	0.1	0_{-}	95		β^- =89 2; β^+ =11 2;	*
150 Gd	-75769	6					1.79	My	0.08	0_{+}	96		$\alpha = 100; 2\beta^{+}$?	
	-71111	8					3.48	h	0.16	(2^{-})	96		$\beta^{+} \approx 100; \alpha < 0.05$	
¹⁵⁰ Tb ^m		28	457	29	MD		5.8	m	0.2	9+	96		$\beta^+ \approx 100$; IT ?	
¹⁵⁰ Dy		5					7.17	m	0.05	0_{+}	96		β^{+} =64 5; α =36 5	
150Ho	-61948	14			*		76.8	S	1.8	2-	95	93Al03 T	$\beta^{+}=100$	*
150Ho ^m		50	-10	50	BD »	<	23.3	S	0.3	$(9)^{+}$	95		$\beta^{+}=100$	
¹⁵⁰ Ho ⁿ ¹⁵⁰ Er		50	8000				751	ns	0.7	0+	0.5		0+ 100	
	-57833 -46610#	17				· &	18.5 3#	S	0.7	0^{+} (1^{+})	95	00N:02 I	$\beta^{+}=100$ $\beta^{+}=100$	
	-46470#		140#	140#			2.20	S S	0.06	(6 ⁻)	05	88Ni02 J 96Ga24 T	$\beta^{+}=100$ $\beta^{+}=100$; $\beta^{+}=1.23$	*
	-45800#		810#	140#	1	· oc	5.2	ms	0.3	(10^{+})	95	90Ga24 1	IT=100	*
	-38730#		010#	1-1011			700#		(>200 ns)	. ,		00So11 I	β^+ ?	***
	-24940#						46	ms				00Gi01 J	$p=?; \beta^+=30#$	
	-24900#		34	15	р		80	μs	60			00Gi01 J	$p\approx 100; \beta^+$?	
*150Nd	T: from 6	.75(+0	.37-0.68 st	atistics +		yste	ematics)			, ,			. ,,	**
$*^{150}$ Eu ^m	D : ; I'	Γ≤5e–8	3			-								**
*150Ho	T : averag	e 93A1	03=78(2) 8	2No08=7	2(4)									**
						15(0).10) an	d 87	To05=2.2(0.2)				**
*150Tmm	T: 82No0	08=3.5(0.6) at vari	ance, not	used		D : f	rom	88Ni02					**
$*^{150}$ Tm ⁿ	E: 671.61	keV ab	ove 150 Tm	n, from E	NSDF									**
¹⁵¹ Cs	-35220#	500#					60#	ms	(>50 ms)	3/2+#	97	87Ra12 I	β^{-} ?; β^{-} n ?	
	-45820#						200#					94Be24 I	β -?	
¹⁵¹ La	-54290#	400#					300#	ms	(>300 ns)	5/2+#	97	94Be24 I	β^- ?	
	-61500	100					1.02	S	0.06	$3/2^{-}$ #	97		$\beta^{-}=100$	
	-66771	23					18.90	S	0.07	$(3/2)^{(-\#)}$	97		$\beta^{-}=100$	
¹⁵¹ Nd		3					12.44	m	0.07	$3/2^{+}$	97		$\beta^{-}=100$	
¹⁵¹ Pm		5					28.40	h	0.04	5/2+	97		$\beta^{-}=100$	
	-74582.5		261.12	0.04			90	У	8	5/2-	97		$\beta^{-}=100$	
	-74321.4		261.13	0.04			1.4	μs	0.1	$(11/2)^{-}$	97		IT=100	
	-74659.1 -74462.9		106 245	0.010			STABLE		0.5	5/2+	97 97		IS=47.81 3	
151 Gd		4	196.245	0.010			58.9 124	μs d	0.5 1	$\frac{11/2^{-}}{7/2^{-}}$	97		ε=100; α=1.0e-6 6	
	-74193 -71630	5					17.609		0.001	1/2(+)			$\beta^{+}\approx 100; \alpha=0.0095 15$	
$^{151}{\rm Tb}^{m}$		5	99.54	0.06			25	S	3	$(11/2^{-})$			IT=93.8 4; β^+ =6.2 4	
¹⁵¹ Dy		4	,,,,,,	0.00			17.9	m	0.3	7/2(-)			$\beta^{+}=?; \alpha=5.64$	
¹⁵¹ Ho		12					35.2	s	0.1			87Ne.A J	$\beta^{+}=?; \alpha=22.3$	
$^{151}\text{Ho}^m$		12	41.0	0.2			47.2	s	1.0	1/2(+)			α =77 18; β ⁺ ?	
¹⁵¹ Er	-58266	16					23.5	s	1.3	$(7/2^{-})$			$\beta^{+}=100$	
$^{151}{\rm Er}^{m}$	-55681	16	2585.5	0.6			580	ms	20	$(27/2^{-1})$	97		IT=95.3 3; β^+ =4.7 3	
¹⁵¹ Tm		20				&	4.17	S	0.10	$(11/2^{-})$	97		$\beta^{+}=100$	
$^{151}{\rm Tm}^{m}$		21	92	7	AD	&	6.6	S	1.4	$(1/2^{+})$	97		$\beta^{+}=100$	
¹⁵¹ Tm ⁿ		20	2655.67	0.22			451	ns	24	$(27/2^{-})$			IT=100	
¹⁵¹ Yb		300					1.6	S	0.5			86To12 T	$\beta^{+}=100; \beta^{+}p=?$	*
	-40790#		750#	100#			1.6	S	0.5	. , ,		86To12 TD	$\beta^{+}\approx 100; \beta^{+}p=?; IT=0.4$	# *
	-39750#		1790#	500#			2.6	μs		19/2-#			IT=100	*
	-39090#		2450#	500#			20	μs	1	27/2-#		020 04 5	IT=100	*
	-30200#		77	-			80.6	ms				93Se04 D	$p=?; \beta^{+}=37#$	*
	-30130#		77	5	p		16	μs	1	(3/2 ⁺)		half 1:6-	$p=?; \beta^+ ?$	
			1.6(0.1), fo ed by 90Al					ına	isomer with	ı aımost s	ame	пан-ше		**
			ea by 90A1 bove ¹⁵¹ Yb				'							**
			ove 151 Yb ^m											**
							cted het	a-de	cay half-lit	fe≈220 m	ıs			**
. Lu	- · P=03.	. (0.7)/		, Jusec	. o.i pi	241	000			2011				

Nuclide	Mass ex (keV			xcitation ergy(keV)		I	Half-	life	J^{π}	Ens	Referen	ce	Decay modes and intensities (%)	
¹⁵² Ba	-42600#					100#	ms		0+	97			β- ?	_
	-50070#					200#		(>300 ns)		97	94Be24		β^- ?	
¹⁵² Ce	-59110#					1.1	S	0.3	0+	97	90Ta07		$\beta^-=100$	*
¹⁵² Pr ¹⁵² Nd	-63810	120				3.63	S	0.12 0.2	4^{+} 0^{+}	97	99To04	J	$\beta^{-}=100$	
	-70158 -71262	25 26			*	11.4 4.12	m m	0.2	1 ⁺	97 97			$\beta^-=100$ $\beta^-=100$	
$^{152}\text{Pm}^{m}$		80	140	90	BD *	7.52	m	0.08	4-	97			$\beta^{-}=100$ $\beta^{-}=100$	
	-71010#		250#	150#	*	13.8	m	0.2	(8)	97			$\beta^-\approx 100$; IT=?	*
	-74768.8	2.5				STABLE			0+	97			IS=26.75 16	
¹⁵² Eu	-72894.5	2.5				13.537	y	0.006	3-	97			β^{+} =72.1 3; β^{-} =27.9 3	
	-72848.9	2.5	45.5998	0.0004		9.3116	h	0.0013	0_{-}	97			β^- =72 4; β^+ =28 4	
152 Eu ⁿ	-72746.6	2.5	147.86	0.10		96	m	1	8-	97			IT=100	
	-74714.2	2.5				108	Ty	8	0_{+}	97			IS=0.20 1; α =100; 2β ⁺ ?	,
¹⁵² Tb	-70720	40	501.74	0.10		17.5	h	0.1	2-	98			$\beta^{+}=100; \alpha<7e-7$	
¹⁵² Tb ^m ¹⁵² Dy	-70220 -70124	40 5	501.74	0.19		4.2 2.38	m h	0.1 0.02	$^{8^{+}}$	98 99			IT=78.8 8; β^+ =21.2 8 $\varepsilon \approx 100$; α =0.100 7	
	-63608	14				161.8	S	0.02	2-	97			$\beta^{+}=883; \alpha=123$	
	-63448	14	160	1		50.0	S	0.3	9 ⁺	97			β^{+} =89.2 17; α =10.8 17	
	-60588	14	3019.59	0.19		8.4	μs	0.3	19-	97			IT=100	
	-60500	11				10.3	s	0.1	0^{+}	97			α =90 4; β ⁺ =10 4	
^{152}Tm		70			*	8.0	S	1.0	$(2#)^{-}$	97			$\beta^{+}=100$	
	-51670 #	110#	100#	80#	*	5.2	S	0.6	$(9)^{+}$	97			$\beta^{+}=100$	
152Yb	-46310	210				3.04	S	0.06	0+	97			$\beta^{+}=100; \beta^{+}p$?	
	-33420#		05 1 4(0 2)		0(0.0)	650	ms	70	$(5^-, 6^-)$	97	88Ni02	T	$\beta^{+}=100; \beta^{+}p=157$	*
			07=1.4(0.2)											**
			oably feeds 7 02=600(100											**
* Lu	1 . average	C OOLVI	02=000(100) 671002-	700(10	10)								**
¹⁵³ Ba	-37620#	800#				80#	ms		5/2-#				β-?	
¹⁵³ La	-46930 #	600#				150#	ms	(>300 ns)	5/2+#	98	94Be24	I	β^- ?	
¹⁵³ Ce	-55350 #					500#	ms	(>300 ns)	,	98	94Be24	I	β^- ?	
¹⁵³ Pr	-61630	100				4.28	S	0.11	,				$\beta^{-}=100$	
	-67349	27				31.6	S	1.0	$(3/2)^{-}$				$\beta^{-}=100$	
	-70685 -72565.8	11				5.25 46.284	m L	0.02	$5/2^{-}$ $3/2^{+}$	98			$\beta^{-}=100$	
	-72467.4	2.5 2.5	98.37	0.10		10.6		0.004	$\frac{3}{2}$	98 98			$\beta^-=100$ IT=100	*
153Eu	-73373.5	2.5	70.57	0.10		STABLE		0.5	5/2+	98			IS=52.19 3	
	-72889.8	2.5				240.4	d	1.0	3/2-	98			ε=100	
	-72794.6	2.5	95.1737	0.0012		3.5	μs	0.4	$(9/2^{+})$				IT=100	
$^{153}Gd^n$	-72718.6	2.5	171.189	0.005		76.0	μs	1.4	$(11/2^{-})$	98			IT=100	
¹⁵³ Tb	-71320	4				2.34	d	0.01	$5/2^{+}$	98			$\beta^{+}=100$	
	-71157	4	163.175	0.005		186	μ s	4	11/2	98			IT=100	
	-69150	5				6.4	h	0.1	7/2(-)				$\beta^{+}\approx 100; \alpha=0.0094 14$	
	-65019	6	60.7	0.2		2.01	m	0.03	11/2-	98			$\beta^{+}\approx 100; \alpha=0.051\ 25$	
	-64950	6	68.7	0.3		9.3	m	0.5	$1/2^{+}$	98	05.41.1		$\beta^{+}\approx 100; \alpha=0.188$	
¹⁵³ Er ¹⁵³ Tm	-60488	9				37.1	S	0.2	$7/2^{(-)}$		85Ah.1	J	$\alpha = 53 \ 3; \ \beta^{+} = 47 \ 3$	*
153Tm ^m	-34013 -53072	18 18	43.2	0.2		1.48 2.5	S S	0.01	$(11/2^{-})$ $(1/2^{+})$				α =91 3; β ⁺ =9 3 α =92 3; β ⁺ =?	
153 Yh	-33972 -47060#		43.2	0.2		4.2	s	0.2			88Wi05	D	$\beta^{+}=?; \alpha=50\#; \dots$	*
153 Yb ^m	-44360#	220#	2700	100		15	μs	1	$(27/2^{-1})$		00 11103	D	ρ =:, α=30π,	*
		210	2700	100		900	ms	200			97Ir01	D	$\alpha = 70\#; \beta^{+} = ?; p = 0$	*
	-38330	210	80	5		1#	s		1/2+	98			β^+ ?; α ?; p=0	
		210	2632.9	0.5		15	μs	3	27/2-				,	
$^{153}{\rm Hf}$	-27300 #							(>200 ns)			00So11	I	$oldsymbol{eta}^+$?	
	-26550 #		750#	100#		500#	ms		11/2-#				β^+ ?; IT ?	
			12=46.274(7	7)										**
	J: and 890													**
	$D:\ldots;\beta$													**
	E: in ENS													**
*****Lu	D: p deca	y is fro	m 9/1r01											**

Nuclide	Mass ex (keV			xcitatior ergy(keV		I	Half-	life	J^{π}	Ens	Referen	ce	Decay modes and intensities (%)	
	-42380#	600#				100#	ms						β-?	
	-52700#					300#	ms	(>300 ns)	0+	98	94Be24	I	β^- ?	
	-58200	150				2.3	S		$(3^+, 2^+)$				$\beta^{-}=100$	
	-65690 -65210#	110	400#	150#		25.9	S	0.2	0_{+}	98			$\beta^{-}=100$	
154Nd ⁿ	-65210# -64340	110	480# 1349	150# 10		1.3 > 1	μs	0.5	(5-)	98 98				
154Pm		40	1349	10	* (μs m	0.10	(0,1)	98			$\beta^{-}=100$	
$^{154}\text{Pm}^m$	-68380	110	120	120		& 2.68	m	0.07	(3,4)	98			$\beta^{-}=100$	
	-72461.6					STABLE		(>2.3 Ey)	0+	98			IS=22.75 29; $2\beta^-$?	
	-71744.4	2.5				8.593	y	0.004	3-	98			$\beta^- \approx 100$; $\varepsilon = 0.02 \ 1$	
¹⁵⁴ Eu ^m	-71599.1	2.5	145.3	0.3		46.3	m	0.4	(8^{-})	98			IT=100	
	-73713.2	2.5				STABLE			0+	98			IS=2.18 3	
	-70160	50		_	*	21.5	h	0.4	0(+#)	98		_	$\beta^{+}\approx 100; \beta^{-}<0.1$	
¹⁵⁴ Tb ^m -		50	12	7	*	9.4	h	0.4	3-	98	ABBW	Е	β^{+} =78.2 7; IT=21.8 7;	×
	-69960# -70398	160# 8	200#	150#	*	22.7 3.0	h	0.5 1.5	7^{-} 0^{+}	98 99			$\beta^{+}=98.2 \text{ 6; IT}=1.8 \text{ 6}$	
	70398 64644	8				11.76	My m	0.19	2-	98			α =100; 2 β ⁺ ? β ⁺ \approx 100; α =0.019 5	
154Ho ^m		28	238	30	AD	3.10	m	0.19	8 ⁺	98			$\beta^+ = 100; \alpha < 0.001; \text{IT} \approx 0$	
	-62612	5	250	50		3.73	m	0.09	0^{+}	01			$\beta^{+}\approx 100; \alpha=0.47 \ 13$	
¹⁵⁴ Tm -		14			*	8.1	s	0.3	(2^{-})	98			α =54 5; β ⁺ =46 5	
$^{154}\mathrm{Tm}^m$	-54360	50	70	50	BD *	3.30	S	0.07	(9+)	98			$\alpha = 58.5; \beta^{+} = 42.5$	k
	-49934	17				409	ms	2	0_{+}	98			α =92.6 12; β ⁺ =7.4 12	
	-39570#					1#	S		(2^{-})	98		_	β^+ ?	
	-39510#		58	13	AD	1.12	S	0.08	(9 ⁺)	98	88Vi02	D	$\beta^{+} \approx 100; \beta^{+} p = ?;$	*
			> 2562			35	μs	3	(17^+) 0^+	98 98			IT=100 $\beta^+ \approx 100; \alpha \approx 0$	
154Lu ⁿ -			, 2002			2								
¹⁵⁴ Hf	-32730#	500#	, 2002			2	S	1	0	70			p	44
¹⁵⁴ Hf * ¹⁵⁴ Tb ^m I	$-32730#$ D:; β	500# -<0.1		NSDF		2	S	1	U.	,,			p 100, w 0	
¹⁵⁴ Hf * ¹⁵⁴ Tb ^m I * ¹⁵⁴ Tb ^m I	$-32730#$ D:; β E: less that	500# -<0.1 an 25 k	eV, from En			2	S	1	0.	70			p 100, a 0	**
* 154Hf + 154Tb ^m I * 154Tb ^m I * 154Tb ^m I * 154Tm ^m I * 154Lu ^m I	$-32730 #$ D:; β E: less that D:IT dec D:; β	$500#$ $-<0.1$ an 25 ke ay has $+\alpha=?;$	eV, from EN not been ob α =0.002#	served						,,,			p	** ** **
154Hf + *154Tb ^m I *154Tb ^m I *154Tm ^m I *154Lu ^m I	$-32730 #$ D:; β E: less that D:IT dec D:; β	$500#$ $-<0.1$ an 25 ke ay has $+\alpha=?;$	eV, from En	served	y 88Vi0					,,,			p 1.00, w. 10	**
154Hf + 154Tb ^m I + 154Tb ^m I + 154Tb ^m I + 154Tm ^m I + 154Lu ^m I + 154Lu ^m I	$-32730 #$ D:; β E: less that D:IT dec D:; β	$500#$ $-<0.1$ an 25 ke ay has $+\alpha=?;$ and $\beta+\alpha=1$	eV, from EN not been ob α =0.002#	served	y 88 V i0					,,,			β-?	**
154Hf - 154Tb ^m I 154Tb ^m I 154Tm ^m I 154Lu ^m I 155La	$-32730 \#$ D:; β E: less that D: IT dec D:; β D: β^+ p and	$500\#$ $^{-}$ < 0.1 an 25 kg ay has $^{+}$ $\alpha = ?;$ and $\beta ^{+}$ $\alpha = 800\#$	eV, from EN not been ob α =0.002#	served	y 88Vi0	2; β + p co	nfirr		h.A 5/2 ⁺ #		94Be24	I		**
154Hf - 154Tbm I 154Tbm I 154Tbm I 154Tbm I 154Tbm I 154Lum I 155La - 155Ce - 155Pr	$-32730 \#$ D:; β E: less that D:IT dect D:; β D: β^+ p and	$500#$ $-<0.1$ an 25 kay has $+\alpha=?$; and $\beta+\alpha=$ 800#	eV, from EN not been ob α =0.002#	served	y 88Vi0	2; β ⁺ p co 60#	ms ms	ned by 90S	h.A 5/2+# 5/2-#	97	94Be24 95Cz.A		β- ?	**
154Hf	$-32730 \#$ D:; β E: less that D: IT dec D:; β D: β p and β and β = 38800 # $-48400 \#$ $-55780 \#$ $-62470 \#$	$500\#$ $-<0.1$ an 25 kg ay has $+\alpha=?$; and $\beta+\alpha=0$ 0 0 0 0 0 0 0 0 0	eV, from EN not been ob α =0.002#	served	y 88Vi0	2; β ⁺ p co 60# 200# 1# 8.9	ms ms	(>300 ns) (>300 ns) (>300 ns)	5/2+# 5/2-# 5/2-# 5/2-# 3/2-#	97 97 94			$\beta^{-} ? \\ \beta^{-} ? \\ \beta^{-} ? \\ \beta^{-} ? \\ \beta^{-} = 100$	**
154Hf 154Tb ^m 1 154Tb ^m 1 154Tm ^m 1 154Tm ^m 1 154Lu ^m 1 155La 155Ce 155Pr 155Nd 155Pm	$-32730 \#$ D:; β E: less that D: IT dec D:; β D: β^+ p and $-38800 \#$ $-48400 \#$ $-55780 \#$ $-62470 \#$ -66970	$500\#$ $-<0.1$ an 25 kg ay has $+\alpha=?$; and $\beta+\alpha=1$ 0 0 0 0 0 0 0 0 0 0	eV, from EN not been ob α =0.002#	served	y 88Vi0	2; β ⁺ p co 60# 200# 1# 8.9 41.5	ms ms s s	(>300 ns) (>300 ns) (>300 ns) 0.2 0.2	5/2+# 5/2-# 5/2-# 5/2-# 3/2-# (5/2-)	97 97 94 94			β^{-} ? β^{-} ? β^{-} ? β^{-} ? β^{-} = 100 β^{-} = 100	**
154Hf 154Tb ^m 1 154Tb ^m 1 154Tb ^m 1 154Tm ^m 1 154Lu ^m 1 155La 155Ce 155Pr 155Nd 155Pm 155Sm	$-32730\#$ D:; β E: less that D: IT dec D:; β D: β^+ p and	500# -<0.1 an 25 k ay has + α=?; nd β+α 600# 300# 150# 30 2.6	eV, from EN not been ob α =0.002#	served	y 88Vi0	2; β ⁺ p co 60# 200# 1# 8.9 41.5 22.3	ms ms s s s	(>300 ns) (>300 ns) (>300 ns) 0.2 0.2 0.2	5/2+# 5/2-# 5/2-# 3/2-# (5/2-) 3/2-	97 97 94 94			β^{-} ? β^{-} ? β^{-} ? β^{-} ? β^{-} ? $\beta^{-}=100$ $\beta^{-}=100$	**
154Hf	$-32730\#$ D:; β E: less that D: IT dec D:; β D:; β D:; β D:; β D:; β -38800# -48400# -55780# -62470# -66970 -70197.2 -71824.5	500# -<0.1 an 25 k ay has + α=?; nd β+α 600# 300# 150# 30 2.6 2.5	eV, from EN not been ob α =0.002#	served	y 88Vi0	2; β ⁺ p co 60# 200# 1# 8.9 41.5 22.3 4.7611	ms ms s s s m y	(>300 ns) (>300 ns) (>300 ns) 0.2 0.2	5/2+# 5/2-# 5/2-# 3/2-# (5/2-) 3/2- 5/2+	97 97 94 94 94			β^{-} ? β^{-} ? β^{-} ? β^{-} ? β^{-} ? $\beta^{-}=100$ $\beta^{-}=100$ $\beta^{-}=100$	**
154Hf 154Tb ^m I 154Tb ^m I 154Tm ^m I 154Lu ^m I 155La 155Ce 155Pr 155Nd 155Sm 155Sd 155Sd	$-32730\#$ D:; β D:; β E: less that D:; β D: β P and D: β P and D: β P and P a	$^{500\#}$ $^{-}$ $<$ $^{0.1}$ an 25 kg ay has $^{+}$ α =?; and β $^{+}$ α $^{0.4}$ $^{$	eV, from EN not been ob α =0.002# α modes ob	served b	-	2; β ⁺ p co 60# 200# 1# 8.9 41.5 22.3 4.7611 STABLE	ms ms s s s m y	(>300 ns) (>300 ns) (>300 ns) 0.2 0.2 0.2 0.0013	5/2+# 5/2-# 5/2-# 3/2-# (5/2-) 3/2- 5/2+ 3/2-	97 97 94 94 94 97			β^{-} ? β^{-} ? β^{-} ? β^{-} ? β^{-} ? $\beta^{-}=100$ $\beta^{-}=100$ $\beta^{-}=100$ IS=14.80 12	**
154Hf 154Tbm I 154Tbm I 154Tbm I 154Tbm I 154Lum I 155La 155Ce 155Pr 155Nd 155Pm 155Sm 155Eu 155Gd 155Gd 155Gd 155Gd	$-32730\#$ D:; β E: less that D: IT dec D: IT dec D: β D:	$^{500\#}$ $^{-}$ $<$ $^{0.1}$ an 25 kg ay has $^{+}$ α =?; and β $^{+}$ α $^{0.4}$ $^{$	eV, from EN not been ob α =0.002#	served b	-	2; β ⁺ p co 60# 200# 1# 8.9 41.5 22.3 4.7611 STABLE 32.0	ms ms s s s m y	(>300 ns) (>300 ns) (>300 ns) 0.2 0.2 0.2 0.0013	5/2+# 5/2-# 5/2-# 5/2-# 3/2- 5/2+ 3/2- 11/2-	97 97 94 94 94 97 97			β^{-} ? β^{-} ? β^{-} ? β^{-} ? β^{-} ? β^{-} =100 β^{-} =100 β^{-} =100 β^{-} =100 IS=14.80 12 IT=100	**
154Hf	$-32730\#$ D:; β D:; β E: less that D:; β D: β P and D: β P and D: β P and P a	$^{500\#}$ $^{-}$ $<$ $^{0.1}$ an 25 kg ay has $^{+}$ α =?; and β $^{+}$ α $^{0.4}$ $^{$	eV, from EN not been ob α =0.002# α modes ob	served b	-	2; β ⁺ p co 60# 200# 1# 8.9 41.5 22.3 4.7611 STABLE	ms ms s s s m y	(>300 ns) (>300 ns) (>300 ns) 0.2 0.2 0.2 0.0013	5/2+# 5/2-# 5/2-# 3/2-# (5/2-) 3/2- 5/2+ 3/2-	97 97 94 94 94 97			β^{-} ? β^{-} ? β^{-} ? β^{-} ? β^{-} ? $\beta^{-}=100$ $\beta^{-}=100$ $\beta^{-}=100$ IS=14.80 12	**
154Hf 154Tbm I 154Tbm I 154Tbm I 154Tbm I 154Lum I 155La 155Ce 155Pr 155Nd 155Pm 155Sm 155Eu 155Gdm 155Gdm 155Tb	$-32730\#$ D:; β E: less that D: IT dee D:; β	500# -<0.1 an 25 ka ay has + α=?; nd β+α 800# 600# 300# 150# 30 2.6 2.5 2.5 2.5	eV, from EN not been ob α =0.002# α modes ob	oserved b		2; β ⁺ p co 60# 200# 1# 8.9 41.5 22.3 4.7611 STABLE 32.0 5.32	ms ms s s s m y ms d	(>300 ns) (>300 ns) (>300 ns) 0.2 0.2 0.2 0.0013 0.3 0.06	5/2+# 5/2-# 5/2-# 3/2-# (5/2-) 3/2- 5/2+ 3/2- 11/2- 3/2+	97 97 94 94 94 97 97 94			β^{-} ? β^{-} ? β^{-} ? β^{-} ? β^{-} 100	**
154Hf	$-32730\#$ D:; β D:; β E: less that D:; β D: β P p and β P P P P P P P P P P P P P P P P P P P	500# -<0.1 an 25 ka ay has + α=?; and β+α 800# 600# 300# 150# 30 2.6 2.5 2.5 2.5 12	eV, from EN not been ob α =0.002# x modes ob	oserved b		2; β ⁺ p co 60# 200# 1# 8.9 41.5 22.3 4.7611 STABLE 32.0 5.32 9.9	ms ms s s m y ms d h	(>300 ns) (>300 ns) (>300 ns) 0.2 0.2 0.2 0.0013 0.3 0.06	5/2+# 5/2-# 5/2-# 3/2-# (5/2-) 3/2- 5/2+ 3/2- 11/2- 3/2+ 3/2-	97 97 94 94 94 97 97 94 99			β^{-} ? β^{-} ? β^{-} ? β^{-} ? β^{-} ? $\beta^{-}=100$ $\beta^{-}=100$ $\beta^{-}=100$ IS=14.80 12 IT=100 ε =100 $\beta^{+}=100$	**
154Hf 154Tbm I 154Tbm I 154Tbm I 154Tbm I 154Tbm I 155La 155Ce 155Pr 155Nd 155Pm 155Sd 155Gd 155Gd 155Gd 155Dy 155Ho 155Ho	$-32730\#$ D:; β E: less the D:; β E: less the D: β P and D: β P and D: β P and D: β P and P a	$\begin{array}{l} 500\# \\ -\langle 0.1 \\ \text{in } 25 \text{ k} \\ \text{agy has} \\ \text{has} \\ h$	eV, from EN not been ob α =0.002# x modes ob	0.19		2; β ⁺ p co 60# 200# 1# 8.9 41.5 22.3 4.7611 STABLE 32.0 5.32 9.9 6 48 880	ms ms s s m y ms d h µs m µs	(>300 ns) (>300 ns) (>300 ns) 0.2 0.2 0.2 0.0013 0.3 0.06 0.2	5/2+# 5/2-# 5/2-# 3/2-# (5/2-) 3/2- 3/2- 11/2- 3/2+ 3/2- 11/2- 5/2+ 11/2- 11/2-	97 97 94 94 97 97 99 99 94 94			β^{-} ? β^{-} ? β^{-} ? β^{-} ? β^{-} ? $\beta^{-}=100$ $\beta^{-}=100$ $\beta^{-}=100$ IS=14.80 12 IT=100 ε =100 $\beta^{+}=100$ IT=100 IT=100 IT=100	**
154Hf 154Tbm I 154Tbm I 154Tbm I 154Tbm I 154Tbm I 154Lum I 155La 155Ce 155Pr 155Nd 155Pm 155Ed	$-32730\#$ D:; β E: less that D: IT dec D:; β D: β +p an $-38800\#$ $-48400\#$ $-55780\#$ -66970 -70197.2 -71824.5 -72077.1 -71956.1 -71254 -69160 -6896 -6898 -62215	$\begin{array}{l} 500\# \\ -\langle 0.1 \\ 1 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ $	eV, from EN not been ob α =0.002# α modes ob 121.05	0.19		2; β ⁺ p co 60# 200# 1# 8.9 41.5 22.3 4.7611 STABLE 32.0 5.32 9.9 6 48 880 5.3	ms ms s s m y ms d h µs m µs m	(>300 ns) (>300 ns) (>300 ns) 0.2 0.2 0.2 0.0013 0.3 0.06 0.2 1 80 0.3	5/2+# 5/2-# 5/2-# 3/2-# (5/2-) 3/2- 5/2+ 3/2- 11/2- 3/2+ 3/2- 11/2- 5/2+ 11/2- 7/2-	97 97 94 94 97 97 99 99 94 94 94			β^{-} ? β^{-} ? β^{-} ? β^{-} ? β^{-} 9 β^{-} 100 β^{-} 100 β^{-} 100 β^{-} 100 β^{-} 100 IS=14.80 12 IT=100 β^{+} 100 IT=100 β^{+} 100 β^{+} 100 β^{+} 100 β^{+} 100; α =0.022 7	**
154Hf 154Tbm 1 154Tbm 1 154Tbm 1 154Tbm 1 154Tbm 1 155La 155Ce 155Pr 155Pm 155Sm 155Eu 155Gd 155Tb 155Dy 155Dy 155Dy 155Dy 155Dy 155Dy 155Eu 155Eu 155Tb 155Dy 155Dy 155Dy 155Dy 155Dy 155Dy 155Dy 155Eu 155Eu 155Eu 155Tb 155Dy 155Dy	$-32730\#$ D:; β E: less the D:; β E: less the D: IT deec D:; β D: β^+ p as $-38800\#$ $-48400\#$ $-55780\#$ $-62470\#$ $-62470\#$ -66970 -70197.2 -71824.5 -72077.1 -71956.1 -71956.1 -71956.2 -68926 -66940 -65898 -62215 -56635	500# $-<0.1$ an $25k$ aay has ay has $600#$ $6000#$ $6000#$ $6000#$ $6000#$ $6000#$ $6000#$ $6000#$ $6000#$ $6000#$ $6000#$ $6000#$ $6000#$ $6000#$ $6000#$ $6000%$ $6000%$ $6000%$ $6000%$ $6000%$ $6000%$ $6000%$ $6000%$ $60000%$ $60000%$ $60000000%$ $6000000000000000000000000000000000000$	eV, from EN not been ob α =0.002# x modes ob 121.05 234.33	0.19 0.03		2; β ⁺ p co 60# 200# 1# 8.9 41.5 22.3 4.7611 STABLE 32.0 5.32 9.9 6 48 880 5.3 21.6	ms ms s s s m y ms d h µs m µs m s	(>300 ns) (>300 ns) (>300 ns) 0.2 0.2 0.2 0.0013 0.3 0.06 0.2	5/2+# 5/2-# 5/2-# 5/2-# (5/2-) 3/2- 5/2+ 3/2- 11/2- 3/2+ 3/2- 11/2- 5/2+ 11/2- 7/2- (11/2-)	97 97 94 94 97 99 99 94 94 94 95			β^{-} ? β^{-} ? β^{-} ? β^{-} ? β^{-} ? β^{-} = 100 β^{-} = 100 β^{-} = 100 β^{-} = 100 δ^{-} = 100 δ^{-} = 100 δ^{+} = 100; α = 0.022 7 δ^{+} = 98.1 3; α = 1.9 3	**
154Hf 154Tbm I 154Tbm I 154Tbm I 154Tm I 154Tm I 155La 155Ce 155Pr 155Nd 155Sm 155Sm 155Sd 155Gd 155Dd 155Dy	$-32730\#$ D:; β E: less that β D: IT deec D:; β D: β +p and β +p and β -find β	$\begin{array}{l} 500\# \\ - < 0.5 \mathrm{k} \\ \mathrm{an} \ 25 \mathrm{k} \\ \mathrm{ay} \ \mathrm{has} \ \mathrm{ay} \ \mathrm{has} \\ \mathrm{ay} \ \mathrm{has} \ \mathrm{ay} \ \mathrm{has} \\ \mathrm{600\#} \\ \mathrm{300\#} \\ \mathrm{150\#} \\ \mathrm{30} \\ \mathrm{2.5} \\ \mathrm{2.5} \\ \mathrm{2.5} \\ \mathrm{12} \\ \mathrm{12} \\ \mathrm{18} \\ \mathrm{18} \\ \mathrm{7} \\ \mathrm{13} \\ \mathrm{14} \\ \end{array}$	eV, from EN not been ob α =0.002# α modes ob 121.05	0.19		2; β ⁺ p co 60# 200# 1# 8.9 41.5 22.3 4.7611 STABLE 32.0 5.32 9.9 6 48 880 5.3 21.6 45	ms ms s s s m y ms d h µs m µs m s s	(>300 ns) (>300 ns) (>300 ns) 0.2 0.2 0.2 0.0013 0.3 0.06 0.2 1 80 0.3 0.2 3	h.A 5/2+# 5/2-# 5/2-# 3/2- 3/2- 5/2+ 3/2- 11/2- 3/2+ 3/2- 11/2- 5/2+ 11/2- (11/2-) (1/2+)	97 94 94 94 97 97 99 94 94 94 95 95	95Cz.A	I	β^- ? β^- ? β^- ? β^- ? β^- 100 β^- 100 β^- 100 β^- 100 β^- 100 β^+ 100 β^+ 100 β^+ 100 β^+ 100 β^+ 100 β^+ 100 β^+ 2100 β^+ 2100 β^+ 2103 β^+ 298.1 3; α^- 1.9 3 β^+ 292; α^- 8	***
154Hf 154Tb** I 154Tb** I 154Tb** I 154Tb** I 154Lu** I 155La 155Ce 155Pr 155Nd 155Eu 155Sd 155Gd** 155Eu 155Bd 155Gd** 155Dy** 155Dy** 155Ho 155Dy** 155Er 155Er 155Er 155Tm** 155Er 155Tm** 155Yb	$-32730\#$ D:; β E: less that D:; β E: less that D:; β D: β +p and β -comparison β D: β +p and β -comparison	$\begin{array}{l} 500\# \\ -<0.1 \mathrm{k} \\ \mathrm{an} \ 25 \mathrm{k} \\ \mathrm{ay} \ \mathrm{has} \ \mathrm{ay} \ \mathrm{has} \\ \mathrm{ay} \ \mathrm{has} \ \mathrm{ay} \ \mathrm{has} \\ \mathrm{a00\#} \ \mathrm{d} \ \mathrm{d} \ \mathrm{d} \ \mathrm{d} \\ \mathrm{600\#} \ \mathrm{300\#} \\ \mathrm{150\#} \ \mathrm{300} \\ \mathrm{2.5} \ \mathrm{2.5} \\ \mathrm{2.5} \ \mathrm{2.5} \\ \mathrm{12} \\ \mathrm{18} \\ \mathrm{18} \\ \mathrm{7} \\ \mathrm{13} \\ \mathrm{14} \\ \mathrm{17} \end{array}$	eV, from EN not been ob α =0.002# x modes ob 121.05 234.33	0.19 0.03		2; β ⁺ p co 60# 200# 1# 8.9 41.5 22.3 4.7611 STABLE 32.0 5.32 9.9 6 48 880 5.3 21.6 45 1.793	ms ms s s s m y ms d h µs m µs m s s s s s	(>300 ns) (>300 ns) (>300 ns) 0.2 0.2 0.0013 0.3 0.06 0.2 1 80 0.3 0.2 3 0.019	5/2+# 5/2-# 5/2-# 3/2-# (5/2-) 3/2- 5/2+ 3/2- 11/2- 3/2- 11/2- 5/2+ 11/2- 7/2- (11/2-) (11/2-) (11/2-) (17/2-)	97 94 94 94 97 97 99 94 94 94 95 95	95Cz.A 96Pa01	I	β^{-} ? β^{-} ? β^{-} ? β^{-} ? β^{-} ? β^{-} =100 β^{-} =100 β^{-} =100 β^{-} =100 IS=14.80 12 IT=100 ε =100 IT=100 IT=100 β^{+} =100 IT=100 β^{+} =100; α =0.022 7 β^{+} =98.1 3; α =1.9 3 β^{+} >92; α <8 α =89 4; β^{+} =11 4	***
154Hf 154Tbm I 154Tbm I 154Tbm I 154Tbm I 154Tbm I 154Lum I 155La 155Ce 155Pr 155Nd 155Pm 155Sd 155Gd 155Gd 155Gd 155Dy	$-32730\#$ D:; β E: less the D:; β E: less the D: β P D: β P and D: β P D:	$\begin{array}{l} 500\# \\ - < 0.1 \\ \text{an 25 k} \\ \text{asy has ay has ay has ay has } \\ 800\# \\ 800\# \\ 300\# \\ 150\# \\ 2.6 \\ 2.5 \\ 2.5 \\ 12 \\ 12 \\ 18 \\ 18 \\ 7 \\ 13 \\ 14 \\ 17 \\ 20 \\ \end{array}$	eV, from EN not been ob α=0.002# x modes ob 121.05 234.33 141.97	0.19 0.03 0.11		2; β ⁺ p co 60# 200# 1# 8.9 41.5 22.3 4.7611 STABLE 32.0 5.32 9.9 6 48 880 5.3 21.6 45 1.793 & 68.6	ms ms s s m y ms d h µs m µs m s s s ms	(>300 ns) (>300 ns) (>300 ns) 0.2 0.2 0.2 0.0013 0.3 0.06 0.2 1 80 0.3 0.2 3 0.019 1.6	5/2+# 5/2-# 5/2-# 5/2-# 3/2-# (5/2-) 3/2- 3/2- 11/2- 3/2+ 3/2- 11/2- 7/2- (11/2-) (1/2+) (7/2-) (11/2-) (11/2-)	97 97 94 94 94 97 97 99 94 94 95 95 94 94	95Cz.A 96Pa01 97Da07	T TD	β^- ? β^- ? β^- ? β^- ? β^- 100 β^- 100 β^- 100 β^- 100 IS=14.80 12 IT=100 β^+ 100 IT=100 β^+ 100 IT=100 β^+ 2100; α 20.22 7 β^+ 298.1 3; α 1.9 3 β^+ 292; α 88 α 89 4; β^+ 11 4 α 88 4; β^+ ?	******
154Hf 154Tb** I 154Tb** I 154Tb** I 154Tb** I 154Tb** I 155La 155Ce 155Pr 155Nd 155Eu 155Sd 155Gd 155Gd 155Gd 155Dy 155Dy 155Dy 155Dy 155Dy 155Eu 155Dy 155Eu 155Dy 155Dy 155Eu 155Dy 155Ho 155Er 155Tm 155Er 155Tm 155Tm** 155Yb	$-32730\#$ D:; β E: less the D:; β E: less the D: β P: The decomposition of the D: β P: β	$\begin{array}{l} 500\# \\ -<0.1 \mathrm{k} \\ \mathrm{an} \ 25 \mathrm{k} \\ \mathrm{ay} \ \mathrm{has} \ \mathrm{ay} \ \mathrm{has} \\ \mathrm{ay} \ \mathrm{has} \ \mathrm{ay} \ \mathrm{has} \\ \mathrm{a00\#} \ \mathrm{d} \ \mathrm{d} \ \mathrm{d} \ \mathrm{d} \\ \mathrm{600\#} \ \mathrm{300\#} \\ \mathrm{150\#} \ \mathrm{300} \\ \mathrm{2.5} \ \mathrm{2.5} \\ \mathrm{2.5} \ \mathrm{2.5} \\ \mathrm{12} \\ \mathrm{18} \\ \mathrm{18} \\ \mathrm{7} \\ \mathrm{13} \\ \mathrm{14} \\ \mathrm{17} \end{array}$	eV, from EN not been ob α =0.002# x modes ob 121.05 234.33	0.19 0.03		2; β ⁺ p co 60# 200# 1# 8.9 41.5 22.3 4.7611 STABLE 32.0 5.32 9.9 6 48 880 5.3 21.6 45 1.793	ms ms s s s m y ms d h µs m µs m s s s s s	(>300 ns) (>300 ns) (>300 ns) 0.2 0.2 0.0013 0.3 0.06 0.2 1 80 0.3 0.2 3 0.019	5/2+# 5/2-# 5/2-# 3/2-# (5/2-) 3/2- 5/2+ 3/2- 11/2- 5/2+ 11/2- 7/2- (11/2-) (1/2+) (7/2-) (11/2-) (11/2-) (11/2-)	97 97 94 94 94 97 97 99 94 94 95 95 94 94 94 94	95Cz.A 96Pa01 97Da07	T TD TJD	β^{-} ? β^{-} ? β^{-} ? β^{-} ? β^{-} ? β^{-} =100 β^{-} =100 β^{-} =100 β^{-} =100 IS=14.80 12 IT=100 ε =100 IT=100 IT=100 β^{+} =100 IT=100 β^{+} =100; α =0.022 7 β^{+} =98.1 3; α =1.9 3 β^{+} >92; α <8 α =89 4; β^{+} =11 4	******
154Hf 154Tb** I 154Tb** I 154Tb** I 154Tb** I 154Lu** I 155La 155Ce 155Pr 155Nd 155Eu 155Sd 155Gd 155Gd 155Dy 155Dy 155Dy 155Ho 155Tb 155Tm 155Tm 155Tm 155Tm 155Lu 155Lu 155Lu 155Lu 155Lu 155Lu 155Ho 155Lu 155Th	$-32730\#$ D:; β E: less the D:; β E: less the D: β P: The decomposition of the D: β P: β	$\begin{array}{l} 500\# \\ -\langle 0.1 \\ \text{In 25k} \\ \text{ay has} \\ ay ha$	eV, from EN not been ob α=0.002# x modes ob 121.05 234.33 141.97 41 20	0.19 0.03 0.11 6	AD	2; β ⁺ p co 60# 200# 1# 8.9 41.5 22.3 4.7611 STABLE 32.0 5.32 9.9 6 48 880 5.3 21.6 45 1.793 & 68.6 & 138	ms ms s s m y ms d h µs m µs m s s s ms ms	(>300 ns) (>300 ns) (>300 ns) 0.2 0.2 0.2 0.0013 0.3 0.06 0.2 1 80 0.3 0.2 3 0.019 1.6	5/2+# 5/2-# 5/2-# 3/2-# (5/2-) 3/2- 5/2+ 3/2- 11/2- 5/2+ 11/2- 7/2- (11/2-) (1/2+) (7/2-) (11/2-) (11/2-) (11/2-)	97 97 94 94 97 97 99 94 94 95 95 94 94 94 94 94	96Pa01 97Da07 97Da07	T TD TJD	β^{-} ? β^{-} ? β^{-} ? β^{-} ? β^{-} =100 β^{-} =100 β^{-} =100 IS=14.80 12 IT=100 ϵ^{+} =100 IT=100 β^{+} =100 IT=100 β^{+} =100; α =0.022 7 β^{+} =98.1 3; α =1.9 3 β^{+} >92; α <8 α =89 4; β^{+} =11 4 α =88 4; β^{+} ? α =76 16; β^{+} ?	******
154Hf 154Tb** I 154Tb** I 154Tb** I 154Tb** I 154Lu** I 155La 155Ce 155Pr 155Nd 155Pr 155Sd 155Sd 155Sd 155Sd 155Sd 155Dy** 155Dy** 155Ho** 155Tm** 155Tm** 155Tu** 155Hcu** 155Hd 155Tu** 155Hd 155Hd 155Tu** 155Hd 155Hd 155Hd 155Hd 155Hd 155Hd 155Hd 155Hd	$-32730\#$ D:; β E: less the D:; β E: less the D:; β D: β +p and β -62470# -66970 -70197.2 -71824.5 -72077.1 -71956.1 -71254 -69160 -68926 -66040 -68926 -66040 -65898 -62215 -56635 -56635 -56639 -50503 -42534	$\begin{array}{l} 500\# \\ -<0.1 \mathrm{k} \\ \mathrm{an} \ 25 \mathrm{k} \\ \mathrm{ay} \ \mathrm{has} \ \mathrm{ay} \ \mathrm{has} \\ \mathrm{ay} \ \mathrm{has} \ \mathrm{ay} \ \mathrm{has} \\ \mathrm{a00\#} \ \mathrm{a00\#} \\ \mathrm{300\#} \\ \mathrm{150\#} \\ \mathrm{300} \\ \mathrm{2.6} \\ \mathrm{2.5} \\ \mathrm{2.5} \\ \mathrm{2.5} \\ \mathrm{2.5} \\ \mathrm{12} \\ \mathrm{12} \\ \mathrm{18} \\ \mathrm{18} \\ \mathrm{7} \\ \mathrm{13} \\ \mathrm{14} \\ \mathrm{17} \\ \mathrm{20} \\ \mathrm{2400\#} \\ \mathrm{500\#} \end{array}$	eV, from En not been ob α=0.002# x modes ob 121.05 234.33 141.97 41 20 1781.0	0.19 0.03 0.11 6 6 2.0	AD AD	2; β ⁺ p co 60# 200# 1# 8.9 41.5 22.3 4.7611 STABLE 32.0 5.32 9.9 6 48 880 5.3 21.6 45 1.793 & 68.6 & 138 2.70 890 13	ms ms s s m y ms d h µs m µs m s s s ms ms ms	(>300 ns) (>300 ns) (>300 ns) 0.2 0.2 0.20.2 0.0013 0.3 0.06 0.2 1 80 0.3 0.2 3 0.016 0.2 8 0.03	h.A 5/2+# 5/2-# 5/2-# 3/2-# 3/2- 3/2- 11/2- 3/2+ 3/2- 11/2- 7/2- (11/2-) (1/2+) (7/2-) (11/2-) (11/2-) (11/2-) (12+) (25/2-)	97 97 94 94 97 97 99 94 94 95 94 94 94 94 94 94	96Pa01 97Da07 97Da07	T TD TJD	β^- ? β^- ? β^- ? β^- 100 β^- 100 β^- 100 β^- 100 β^- 100 δ^- 100 δ^+ 100 δ^+ 100 δ^+ 100 δ^+ 100 δ^+ 100 δ^+ 2100 δ^+ 2100 δ^+ 2100 δ^+ 2101 δ^+ 2102 δ^+ 2107 δ^+ 2107 δ^+ 2107 δ^+ 2107 δ^+ 2107 δ^+ 2107 δ^+ 2107 δ^+ 2107 δ^+ 2107 δ^+ 217 δ^+ 217	******
154Hf 154Tbm I 154Tbm I 154Tbm I 154Tbm I 154Tbm I 154Lum I 155La 155Ce 155Pr 155Nd 155Pm 155Sd 155Sd 155Sd 155Sd 155Sd 155Dy 155Ho 155Ho 155Er 155St 155St 155St 155St 155St 155St 155St 155Lu 155Lu 155Lu 155Lu 155Lu 155Lu 155Lu 155Lu 155Ho 155Tb 155Lu 155Sy 155Su 155Sy	$-32730\#$ D:; β E: less the D:; β E: less the D: β P p and β D:	$500\#$ $-<0.1$ an 25 k way has any has any has any has $+\infty$ $+\infty$ $+\infty$ $+\infty$ $+\infty$ $+\infty$ $+\infty$ $+\infty$	eV, from EN not been ob α=0.002# x modes ob 121.05 234.33 141.97 41 20 1781.0	0.19 0.03 0.11 6 6 2.0	AD AD	2; β ⁺ p co 60# 200# 1# 8.9 41.5 22.3 4.7611 STABLE 32.0 5.32 9.9 6 48 880 5.3 21.6 45 1.793 & 68.6 & 138 2.70 890 13 5(0.05)	ms ms s s m y ms d h µs m s s s ms ms ms ms ms µs	(>300 ns) (>300 ns) (>300 ns) 0.2 0.2 0.2 0.0013 0.3 0.06 0.2 1 80 0.3 0.019 1.6 8 0.03 120 4	5/2+# 5/2-# 3/2-# 3/2-# (5/2-) 3/2- 3/2- 11/2- 3/2+ 3/2- 11/2- 7/2- (11/2-) (1/2+) (11/2-) (1/2+) (25/2-) 7/2-# (11/2-)	97 97 94 94 97 97 99 94 94 95 94 94 94 94 94 94	96Pa01 97Da07 97Da07	T TD TJD	β^- ? β^- ? β^- ? β^- ? β^- ? β^- ? β^- =100 β^- =100 β^- =100 β^- =100 β^- =100 IS=14.80 12 IT=100 β^+ =100 IT=100 β^+ =100 IT=100 β^+ =200; α =0.022 7 β^+ =98.1 3; α =1.9 3 β^+ >92; α <8 α =89 4; β^+ =11 4 α =88 4; β^+ ? α =616; β^+ ? α =100; IT? β^+ ≈100; α ?	***
154Hf 154Tbm I 154Tbm I 154Tbm I 154Tbm I 154Tbm I 154Lum I 155La 155Ce 155Pr 155Nd 155Pr 155Nd 155Sd 155Sd 155Sd 155Sd 155Sd 155Sbv 155Sbv 155Sbv 155Sbv 155Lv 155Lv 155Lv 155Tb 155Lv 155Lv 155Lv 155Lv 155Lv 155Lv 155Tb 15	$-32730\#$ D:; β E: less that D:; β E: less that D: β P: IT dec D: β P: β P	500# $-<0.11$ m 25 k. $400%$ $-<0.11$ m 26 k. $400%$ $-<0.11$ m 20 km 21 km 20 km	eV, from EN not been ob α=0.002# x modes ob 121.05 234.33 141.97 41 20 1781.0 01=1.80(0.0 01=70(1) 9'	0.19 0.03 0.11 6 6 2.0 02) 91To	AD AD 608=1.7553(2) 91	2; β ⁺ p co 60# 200# 1# 8.9 41.5 22.3 4.76111 STABLE 32.0 5.32 9.9 6 48 880 5.3 21.6 45 1.793 & 68.6 & 138 2.70 890 13 5(0.05) To09=66(ms ms s s m y ms d h µs m µs s ms ms ms ms ms ms ms 7) 75	(>300 ns) (>300 ns) (>300 ns) 0.2 0.2 0.2 0.0013 0.3 0.06 0.2 1 80 0.3 0.2 3 0.019 1.6 8 0.03 120 4	5/2+# 5/2-# 5/2-# 3/2-# (5/2-) 3/2- 5/2+ 11/2- 3/2- 11/2- 5/2+ 11/2- 7/2- (11/2-) (1/2-) (1/2-) (1/2-) 7/2-# (11/2-) (1/2-)	97 97 94 94 97 97 99 94 94 95 94 94 94 94 94 94	96Pa01 97Da07 97Da07	T TD TJD	β^- ? β^- ? β^- ? β^- ? β^- ? β^- ? β^- =100 β^- =100 β^- =100 β^- =100 β^- =100 IS=14.80 12 IT=100 β^+ =100 IT=100 β^+ =100 IT=100 β^+ =200; α =0.022 7 β^+ =98.1 3; α =1.9 3 β^+ >92; α <8 α =89 4; β^+ =11 4 α =88 4; β^+ ? α =616; β^+ ? α =100; IT? β^+ ≈100; α ?	******
154Hf 154Tfm I 154Tfm I 154Tfm I 154Tfm I 154Tfm I 155La 155Ce 155Pe 155Nd 155Pm 155SM 155SM 155SM 155SH 155ST 155Tb 155Tb 155Tfm 155ST 155SL	-32730# D:; $β$ E: less the D:; $β$ E: less the D: 1 T deec D:; $β$ D: $β$ +p and $-48400#$ $-48400#$ $-557800#$ $-62470#$ $-66470#$ -66970 -70197.2 -71824.5 -72077.1 -71956.1 -71956.1 -71956.1 -71956.1 -71956.1 -71956.1 -71956.1 -71956.1 -71956.1 -71956.1 -71956.1 -71956.1 -71254 -69160 -68926 -66040 -65892 -66040 -65893 -62215 -56635 -56594 -50503 -42554 -40773 $-34100#$ $-23670#$ T: $-23670#$	$500\#$ $-<0.1$ an 25 k asy has ay has ay has $+ \alpha = 27$; and $\beta + \alpha = 27$.	eV, from EN not been ob α=0.002# x modes ob 121.05 234.33 141.97 41 20 1781.0	0.19 0.03 0.11 6 6 2.0 02) 91To 07Da07=6 2)% 79H	AD AD AD 08=1.75	2; β+p co 60# 200# 1# 8.9 41.5 22.3 4.7611 STABLE 32.0 5.32 9.9 6 48 880 5.3 21.6 45 1.793 & 68.6 & 138 2.70 890 15.005) T009=66(04)% with	ms ms s s s m y ms d h µs m µs ms ps	(>300 ns) (>300 ns) (>300 ns) 0.2 0.2 0.20.2 0.0013 0.3 0.06 0.2 1 80 0.3 0.2 3 0.019 1.6 8 0.03 120 4	5/2+# 5/2-# 5/2-# 3/2-# (5/2-) 3/2- 5/2+ 11/2- 3/2- 11/2- 5/2+ 11/2- 7/2- (11/2-) (1/2-) (1/2-) (1/2-) 7/2-# (11/2-) (1/2-)	97 97 94 94 97 97 99 94 94 95 94 94 94 94 94 94	96Pa01 97Da07 97Da07	T TD TJD	β^- ? β^- ? β^- ? β^- ? β^- ? β^- ? β^- =100 β^- =100 β^- =100 β^- =100 β^- =100 IS=14.80 12 IT=100 β^+ =100 IT=100 β^+ =100 IT=100 β^+ =200; α =0.022 7 β^+ =98.1 3; α =1.9 3 β^+ >92; α <8 α =89 4; β^+ =11 4 α =88 4; β^+ ? α =616; β^+ ? α =100; IT? β^+ ≈100; α ?	**

	Mass ex (keV			xcitatio ergy(ke]	Half-	life	J^{π}	Ens	Reference	Decay modes and intensities (%)	
¹⁵⁶ Ce	-45400#	600#				150#	ms		0+			β- ?	
¹⁵⁶ Pr	-51910#					500#		(>300 ns)	Ü		95Cz.A I	β^- ?	
¹⁵⁶ Nd	-60530	200				5.49	S	0.07	0^{+}	03)5CE.71 1	$\beta^{-}=100$	
	-59100	200	1432	5		135	ns	0.07	5-	03		IT=100	
	-64220	30	1432	5		26.70	S	0.10	4-	03		$\beta^{-}=100$	
	-69370	10				9.4	h	0.2	0+	03		$\beta^{-}=100$	
	-67972	10	1397.55	0.09		185	ns	7	5-	03		IT=100	
156Eu	-70093	6	1377.33	0.07		15.19	d	0.08	0^{+}	03		$\beta^{-}=100$	
156Gd	-72542.2					STABLE		0.00	0^{+}	03		IS=20.47 9	
	-70404.6		2137.60	0.05		1.3	μs	0.1	7-	03		IT=100	
¹⁵⁶ Tb	-70098	4	2137.00	0.05		5.35	d	0.10	3-	03		$\beta^{+}\approx 100; \beta^{-}$?	
	-70044	5	54	3		24.4	h	1.0	(7-)	03		IT=100	*
	-70010	4	88.4	0.2		5.3	h	0.2	(0^{+})	03		IT=?; β^+ =?	~
156Dy	-70510	7	00.4	0.2		STABLE		(>1 Ey)	0+	03	58Ri23 T	IS=0.06 1; α ?; $2\beta^+$?	, ,
156Ho	-65350	40				51ABLE	m	(>1 Ly)	4 ⁻	03	36K123 I	$\beta^{+}=100$	*
	-65300	40	52.4	0.5		9.5	S	1.5	1-	03		$\beta = 100$ IT=?; β ⁺ ?	
	-65250#	60#	100#	50#		7.8		0.3	(9 ⁺)	03		$\beta^{+}=75$; IT ?	
156Er	-63230# -64213	24	100#	30#		19.5	m	1.0	0+	03		$\beta^{+}=100; \alpha=17e-64$	
							m		2-			$\beta^{+} \approx 100; \alpha = 1.7e - 6.4$ $\beta^{+} \approx 100; \alpha = 0.064.10$	
	-56840 -56636	16	202.6	0.5		83.8	S	1.8		03			'
$^{156}\mathrm{Tm}^n$	-30030	16	203.6	0.5	DM	400	ns	2	(11 ⁻) 9 ⁺	03	017-00 1	IT=100	
156 Yb	52264		non ex	istent	RN	19	S	3	-	03	91To08 I	0+ 000 100	*
156 Y B 156 Lu	-53264	11				26.1	S	0.7	0+	03		$\beta^{+}=90.2; \alpha=10.2$	
	-43750	70	22011	0011	*	494	ms	12	(2)-	03	06B 01 B	$\alpha = ?; \beta^{+} = 5#$	
156 Lu ^m		110#	220#	80#	*	198	ms	2	(9)+	03	96Pa01 D	$\alpha = 94.6; \beta^{+}.?$	*
¹⁵⁶ Hf	-37850	210				23	ms	1	0+	03	96Pa01 D	$\alpha = 97.3; \beta^{+}.$	*
$^{156}Hf^{m}$	-35890	210	1959.0	1.0	AD	480	μs	40	8+	03	96Pa01 T	α=100	*
	-25800#	400#				144	ms	24	(2^{-})	03		$p\approx 100; \beta^+$?	
¹⁵⁶ Ta									(6.13				
$^{156}\mathrm{Ta}^m$	-25700 #		100	8	AD	360	ms	40	(9+)	03		$\beta^+=95.89$; p=4.29	
¹⁵⁶ Ta ^m ∗ ¹⁵⁶ Tb ^m	-25700# E : derived	d from l	E3 24h to	4+ 49.6				40 B(L)=9 ke		03		β ⁺ =95.8 9; p=4.2 9	**
¹⁵⁶ Ta ^m * ¹⁵⁶ Tb ^m * ¹⁵⁶ Dy	-25700# E : derived T : lower l	from limit is	E3 24h to for α deca	4 ⁺ 49.6 ay	530 leve					03		β ⁺ =95.8 9; p=4.2 9	**
156Ta ^m * 156Tb ^m * 156Dy * 156Tm ⁿ	-25700# E : derived T : lower l I : see also	from limit is the dis	E3 24h to for α deca scussion in	4 ⁺ 49.6 ay n Ensdi	530 leve 5'03					03		β ⁺ =95.8 9; p=4.2 9	**
156Ta ^m * ¹⁵⁶ Tb ^m * ¹⁵⁶ Dy * ¹⁵⁶ Tm ⁿ * ¹⁵⁶ Lu ^m	-25700# E : derived T : lower l I : see also D : derived	from limit is the dis	E3 24h to for α deca scussion in original α	4 ⁺ 49.6 ay n Ensdi z=98(9)	530 leve F'03 %					03		β ⁺ =95.8 9; p=4.2 9	** ** **
156Ta ^m 156Tb ^m 156Dy 156Tm ⁿ 156Lu ^m 156Hf	-25700# E: derived T: lower l I: see also D: derived D: derived	d from limit is the dis	E3 24h to for α deca scussion in original α original α	4 ⁺ 49.6 ay n Ensdi z=98(9) z=100(6	530 leve 5'03 % 5)%	el and E(l				03		β ⁺ =95.8 9; p=4.2 9	** ** ** **
156Ta ^m 156Tb ^m 156Dy 156Dy 156Lu ^m 156Lu ^m 156Hf	-25700# E: derived T: lower I I: see also D: derived T: averag	I from I limit is the dis d from d from e 96Pa(E3 24h to for α decascussion in original α original α 01=520(10	4 ⁺ 49.6 ay a ENSDI (=98(9) (=100(6	530 leve 5'03 % 5)% 5.A=444	el and E(l				03		β ⁺ =95.8 9; p=4.2 9	** ** ** ** **
156Ta ^m 156Tb ^m 156Dy 156Tm ⁿ 156Lu ^m 156Hf	-25700# E: derived T: lower l I: see also D: derived D: derived	I from I limit is the dis d from d from e 96Pa(E3 24h to for α decascussion in original α original α 01=520(10	4 ⁺ 49.6 ay a ENSDI (=98(9) (=100(6	530 leve 5'03 % 5)% 5.A=444	el and E(l				03		β ⁺ =95.8 9; p=4.2 9	** **
156Ta ^m 156Tb ^m 156Dy 156Dy 156Lu ^m 156Lu ^m 156Hf	-25700# E: derived T: lower I I: see also D: derived T: averag	I from I limit is the district of the district	E3 24h to for α decascussion in original α original α 01=520(10	4 ⁺ 49.6 ay a ENSDI (=98(9) (=100(6	530 leve 5'03 % 5)% 5.A=444	el and E(l				03		β^{+} =95.8 9; p=4.2 9 β^{-} ?	** ** ** ** **
156Ta ^m 156Tb ^m 156Dy 156Tm ⁿ 156Lu ^m 156Hf 156Hf ^m 156Ta ^m	-25700# E: derived T: lower I I: see also D: derived T: averag T: 96Pa0	I from I limit is the disd from d from e 96Pat 1=375(£	E3 24h to for α decascussion in original α original α 01=520(10	4 ⁺ 49.6 ay a ENSDI (=98(9) (=100(6	530 leve 5'03 % 5)% 5.A=444	el and <i>E</i> (1	T)<		v	03		, .	** ** ** **
156Ta ^m 156Tb ^m 156Dy 156Dy 156Lu ^m 156Lu ^m 156Hf 156Hf ^m 156Ta ^m	-25700# E: derived T: lower I I: see also D: derived T: averag T: 96Pa0:	I from I limit is to the disd from d from e 96Pa0 1=375(\$\frac{700#}{400#}\$	E3 24h to for α decascussion in original α original α 01=520(10	4 ⁺ 49.6 ay a ENSDI (=98(9) (=100(6	530 leve 5'03 % 5)% 5.A=444	el and <i>E</i> (14(17)	ms ms		V 7/2+#	97	95Cz.A I	β- ?	** ** ** **
156Ta ^m k ¹⁵⁶ Tb ^m k ¹⁵⁶ Dy k ¹⁵⁶ Cu ^m k ¹⁵⁶ Lu ^m k ¹⁵⁶ Hf k ¹⁵⁶ Hf ^m k ¹⁵⁶ Ta ^m	-25700# E: derived T: lower l I: see also D: derived T: averag T: 96Pa0:	I from I limit is to the disd from d from e 96Pa0 1=375(\$\frac{700#}{400#}\$	E3 24h to for α decascussion in original α original α 01=520(10	4 ⁺ 49.6 ay a ENSDI (=98(9) (=100(6	530 leve 5'03 % 5)% 5.A=444	el and <i>E</i> (14(17) 50# 300#	ms ms	<i>B</i> (L)=9 ke	7/2+# 5/2-#		95Cz.A I	β- ? β- ?	** ** ** **
156Ta ^m k156Tb ^m k156Dy k156Tm ⁿ k156Lu ^m k156Hf ^m k156Hf ^m k156Ta ^m	-25700# E: derived T: lower l I: see also D: derived T: averag T: 96Pa0: -40670# -48970# -56790#	I from I limit is to the disd from d from e 96Pa(1=375(5)) 700# 400# 200#	E3 24h to for α decascussion in original α original α 01=520(10	4 ⁺ 49.6 ay a ENSDI (=98(9) (=100(6	530 leve 5'03 % 5)% 5.A=444	4(17) 50# 300# 2#	ms ms s	(>300 ns)	7/2+# 5/2-# 5/2-#	97	95Cz.A I	β- ? β- ? β- ?	** ** ** **
156Ta ^m k156Tb ^m k156Dy k156Tm ⁿ k156Lu ^m k156Hf ^m k156Hf ^m k156Ta ^m	-25700# E: derived T: lower! I: see also D: derived T: averag T: 96Pa0: -40670# -48970# -56790# -62370	d from dimit is to the distribution of the dis	E3 24h to for α decascussion in original α original α 01=520(10	4 ⁺ 49.6 ay a ENSDI (=98(9) (=100(6	530 leve 5'03 % 5)% 5.A=444	4(17) 50# 300# 2# 10.56	ms ms s s	(>300 ns) 0.10	7/2+# 5/2-# 5/2-# (5/2-) (3/2-)	97 96	95Cz.A I	β ⁻ ? β ⁻ ? β ⁻ ? β ⁻ =100 β ⁻ =100	** ** ** **
156 Ta ^m k 156 Tb ^m 156 Dy 156 Tb ^m 156 Lu ^m k 156 Lu ^m k 156 Ta ^m 156 Ta ^m 157 Ce 157 Pr 157 Nd 157 Sm 157 Sm 157 Ed 157 Gd	-25700# E: derived E: derived T: lower I I: see also D: derived D: derived T: averag T: 96Pa0. -40670# -48970# -56790# -62370 -66730 -69467	1 from 1 limit is to the district the distri	E3 24h to for α decascussion in original α original α 01=520(10	4 ⁺ 49.6 ay a ENSDI (=98(9) (=100(6	530 leve 5'03 % 5)% 5.A=444	4(17) 50# 300# 2# 10.56 8.03 15.18	ms ms s m	(>300 ns) 0.10 0.07	7/2+# 5/2-# 5/2-# (5/2-) (3/2-) 5/2+	97 96 96	95Cz.A I	β^{-} ? β^{-} ? β^{-} ? β^{-} ? β^{-} = 100 β^{-} = 100	** ** ** **
156 Ta ^m k 156 Tb ^m 156 Dy 156 Tb ^m 156 Lu ^m k 156 Lu ^m k 156 Ta ^m 156 Ta ^m 157 Ce 157 Pr 157 Nd 157 Sm 157 Sm 157 Ed 157 Gd	-25700# E: derived T: lower I I: see also D: derived T: averag T: 96Pa0 -40670# -48970# -56790# -62370 -66730 -69467 -70830.7	700# 400# 110 50 50 12375(5	E3 24h to for α decascussion in original α original α 01=520(10	4 ⁺ 49.6 ay a ENSDI (=98(9) (=100(6	530 leve 5'03 % 5)% 5.A=444	50# 300# 2# 10.56 8.03 15.18 STABLE	ms ms s s m h	(>300 ns) 0.10 0.07 0.03	7/2+# 5/2-# 5/2-# (5/2-) (3/2-) 5/2+ 3/2-	97 96 96 96 96	95Cz.A I	β^{-} ? β^{-} ? β^{-} ? β^{-} ? β^{-} = 100 β^{-} = 100 IS=15.65 2	** ** ** **
156 Ta ^m , 156 Tb ^m , 156 Tb ^m , 156 Tb ^m , 156 Tb ^m , 156 Tm ⁿ , 156 Hf , 156 Hf , 156 Hf , 157 Pr 157 Nd 157 Pm 157 Sm 157 Eu 157 Gd 157 Tb	-25700# E: derived T: lower I I: see also D: derived T: averag T: 96Pa0. -40670# -48970# -56790# -62370 -69467 -70830.7 -70770.6	1 from 1 limit is the dis of the dis of the dis of the dis of from d from e 96Pa(1=375(5) 110 110 110 110 110 110 110 110 110 11	E3 24h to for α decascussion in original α original α 01=520(10	4 ⁺ 49.6 ay a ENSDI (=98(9) (=100(6	530 leve 5'03 % 5)% 5.A=444	50# 300# 2# 10.56 8.03 15.18 STABLE 71	ms ms s s m h	(>300 ns) 0.10 0.07 0.03	7/2+# 5/2-# 5/2-# (5/2-) (3/2-) 5/2+ 3/2- 3/2+	97 96 96 96 96 96	95Cz.A I	β^{-} ? β^{-} ? β^{-} ? β^{-} ? β^{-} = 100 β^{-} = 100 IS=15.65 2 ε =100	** ** ** **
156 Ta ^m 156 Tb ^m 156 Tb ^m 156 Tb ^m 156 Tb ^m 156 Tm ⁿ 156 Hf 156 Hf ^m 156 Ta ^m 157 Ce 157 Pr 157 Nd 157 Pm 157 Sm 157 Eu 157 Gd 157 Tb 157 Tb	-25700# E: derived T: lower I I: see also D: derived T: averag T: 96Pa0. -40670# -48970# -56790# -62370 -69467 -70830.7 -70770.6 -69428	1 from 1 limit is the district	E3 24h to for α decaseussion in original α original α original α 3)1=520(1654) 93Li3-	4 ⁺ 49.6 ay n ENSDI (=98(9)) (=100(6))) 81Hc (4=320(3)	530 leve 5'03 % 5)% 5.A=444	4(17) 50# 300# 2# 10.56 8.03 15.18 STABLE 71 8.14	ms ms s s m h	(>300 ns) 0.10 0.07 0.03	7/2+# 5/2-# 5/2-# (5/2-) (3/2-) 5/2+ 3/2- 3/2+ 3/2- 3/2-	97 96 96 96 96 96 97	95Cz.A I	β^{-} ? β^{-} ? β^{-} ? β^{-} ? $\beta^{-}=100$ $\beta^{-}=100$ 1S=15.65 2 $\varepsilon=100$ $\beta^{+}=100$	*** **
156 Ta ^m , 156 Tb ^m , 156 Tb ^m , 156 Tb ^m , 156 Lu ^m , 156 Lu ^m , 156 Hf ^m , 156 Hf ^m , 157 Ce 157 Pr 157 Nd 157 Pm 157 Sm 157 Eu 157 Gd 157 Tb 157 Dy ^m , 158 Dy ^m ,	-25700# E: derived E: derived T: lower I I: see also D: derived T: averag T: 96Pa0 -40670# -48970# -56790# -62370 -66730 -69467 -70830.7 -70770.6 -69428 -69229	1 from limit is the disd from d from e 96Pac 1=375(5) 700# 400# 200# 110 50 5 2.5 7 7	E3 24h to for α decascussion in original α original α 01=520(10	4 ⁺ 49.6 ay a ENSDI (=98(9) (=100(6	530 leve 5'03 % 5)% 5.A=444	50# 300# 2# 10.56 8.03 15.18 STABLE 71 8.14 21.6	ms ms s s m h	(>300 ns) 0.10 0.07 0.03 7 0.04 1.6	7/2+# 5/2-# 5/2-# (5/2-) (3/2-) 5/2+ 3/2- 3/2+ 3/2- 11/2-	97 96 96 96 96 97 97	95Cz.A I	β^{-} ? β^{-} ? β^{-} ? β^{-} ? $\beta^{-}=100$ $\beta^{-}=100$ IS=15.65 2 ε =100 $\beta^{+}=100$ IT=100	** ** ** **
156 Ta ^m 156 Tb ^m 156 Tb ^m 156 Tb ^m 156 Lu ^m 156 Hff 156 Hf ^m 157 Ce 157 Pr 157 Nd 157 Sm 157 Sm 157 Eu 157 Dy 157 Dy 157 Dy 157 Dy 157 Ho	-25700# E: derived E: derived T: lower I I: see also D: derived D: derived T: averag T: 96Pa0. -40670# -48970# -56790# -62370 -66730 -69467 -70830.7 -70770.6 -69429 -66829	1 from blimit is the district t	E3 24h to for α decaseussion in original α original α original α 3)1=520(1654) 93Li3-	4 ⁺ 49.6 ay n ENSDI (=98(9)) (=100(6))) 81Hc (4=320(3)	530 leve 5'03 % 5)% 5.A=444	4(17) 50# 300# 2# 10.56 8.03 15.18 STABLE 71 8.14 21.6 12.6	ms ms s s m h	(>300 ns) 0.10 0.07 0.03 7 0.04 1.6 0.2	7/2+# 5/2-# 5/2-# (5/2-) (3/2-) 5/2+ 3/2- 3/2+ 3/2- 11/2- 7/2-	97 96 96 96 96 97 97 97	95Cz.A I	β^{-} ? β^{-} ? β^{-} ? β^{-} ? β^{-} ? β^{-} =100 β^{-} =100 IS=15.65 2 ε =100 β^{+} =100 IT=100 β^{+} =100	*** **
156 Ta ^m 156 Tb ^m 156 Tb ^m 156 Lu ^m 156 Hff 156 Hff 156 Hf ^m 157 Ce 157 Pr 157 Nd 157 Ps 157 Sm 157 Eu 157 Dy 157 Dy 157 Dy 157 Dy 157 Ho 157 Ho 157 Ho 157 Ho	-25700# E: derived T: lower I I: see also D: derived T: averag T: 96Pa0 -40670# -48970# -56790# -62370 -69467 -70830.7 -70770.6 -69428 -69229 -66829 -63420	1 from limit is to the disd from de 96Pa(1=375(5)) 700# 400# 110 50 5 2.5 7 7 24 28	E3 24h to for α decascussion ir original α original α oll=520(1054) 93Li3-	4+ 49.6 ay a ENSDI =98(9) =100(6 0) 81Ha 4=320(3	530 leve 5'03 % 5)% 5.A=444	50# 300# 2# 10.56 8.03 15.18 STABLE 71 8.14 21.6 12.6 18.65	ms ms s s m h y h ms m m	(>300 ns) 0.10 0.07 0.03 7 0.04 1.6 0.2 0.10	7/2+# 5/2-# 5/2-# (5/2-) (3/2-) 5/2+ 3/2- 3/2+ 3/2- 11/2- 7/2- 3/2-	97 96 96 96 96 97 97 96 96	95Cz.A I	β^{-} ? β^{-} ? β^{-} ? β^{-} ? β^{-} 9 β^{-} =100 β^{-} =100 IS=15.65 2 ε =100 β^{+} =100 IT=100 β^{+} =100 β^{+} =100 β^{+} =100	*** *** *** ***
156 Ta ^m 156 Tb ^m 156 Dy 156 Dy 156 Hr 156 Hr 156 Hr 156 Hr 157 Ce 157 Pr 157 Nd 157 Pm 157 Sm 157 Ed 157 Dy 157 Dy 157 Dy 157 Dy 157 Dy 157 Dy 157 Ho 157 Er 157 Er	-25700# E: derived T: lower I I: see also D: derived T: averag T: 96Pa0 -40670# -48970# -56790# -62370 -69467 -70830.7 -70770.6 -69428 -69229 -66829 -63420 -63265	1 from 1	E3 24h to for α decaseussion in original α original α original α 3)1=520(1654) 93Li3-	4 ⁺ 49.6 ay n ENSDI (=98(9)) (=100(6))) 81Hc (4=320(3)	530 leve 5'03 % 5)% 5.A=444	4(17) 50# 300# 2# 10.56 8.03 15.18 STABLE 71 8.14 21.6 12.6 18.65 76	ms ms s s m h y h ms m ms m	(>300 ns) 0.10 0.07 0.03 7 0.04 1.6 0.2 0.10 6	7/2+# 5/2-# 5/2-# (5/2-) (3/2-) 5/2+ 3/2- 3/2+ 3/2- 11/2- 7/2- 3/2- (9/2+)	97 96 96 96 97 97 96 96 96	95Cz.A I	β^{-} ? β^{-} ? β^{-} ? β^{-} ? β^{-} = 100 β^{-} = 100 IS=15.65 2 ε = 100 IT=100 β^{+} = 100 IT=100 β^{+} = 100 IT=100	*** *** *** ***
156 Ta ^m , 156 Tb ^m , 156 Tb ^m , 156 Tb ^m , 156 Lu ^m , 156 Lu ^m , 156 Hf 156 Hf 157 Ce 157 Pr 157 Nd 157 Pm 157 Sm 157 Eu 157 Dy 157 Dy ^m , 156 Ho 157 Er 157 Ho 157 Er 157 Tb 15	-25700# E: derived T: lower I I: see also D: derived D: derived D: derived T: averag T: 96Pa0. -40670# -48970# -56790# -62370 -66730 -69428 -69429 -66829 -63420 -63265 -58709	11 from 1 imit is the dis the dis the dis 12 from 1	E3 24h to for α decascussion ir original α original α oll=520(1054) 93Li3-	4+ 49.6 ay a ENSDI =98(9) =100(6 0) 81Ha 4=320(3	530 leve 5'03 % 5)% 5.A=444	50# 300# 2# 10.56 8.03 15.18 STABLE 71 8.14 21.6 12.6 18.65 76 3.63	ms ms s s m h y h ms m ms m	(>300 ns) 0.10 0.07 0.03 7 0.04 1.6 0.2 0.10 6 0.09	7/2+# 5/2-# 5/2-# (5/2-) (3/2-) 5/2+ 3/2- 3/2- 3/2- 11/2- 7/2- 3/2- (9/2+) 1/2+	97 96 96 96 97 96 96 96 96 97	95Cz.A I	β^{-} ? β^{-} ? β^{-} ? β^{-} ? β^{-} ? $\beta^{-}=100$ $\beta^{-}=100$ IS=15.65 2 ε =100 $\beta^{+}=100$ IT=100 $\beta^{+}=100$ IT=100 $\beta^{+}=100$ IT=100 $\beta^{+}=100$ IT=100 $\beta^{+}=100$ IT=100 $\beta^{-}=100$	*** *** *** ***
156 Ta ^m , 156 Tb ^m , 156 Tb ^m , 156 Tb ^m , 156 Lu ^m , 156 Lu ^m , 156 Hf ^m , 157 Ce 157 Pr 157 Nd 157 Pm 157 Sm 157 Eu 157 Gd 157 Tb 157 Dy ^m , 157 Ho 157 Er 157 Tb 157 Th 157 Tb 157 Th 157 Th 157 Th 157 Th 157 Th 157 Th	-25700# E: derived E: derived T: lower I I I: see also: D: derived D: derived T: averag T: 96Pa0 -40670# -48970# -56790# -66370 -66730 -69467 -70830.7 -70770.6 -69428 -69229 -66829 -63420 -63265 -58709 -53442	1 from 1	E3 24h to for α decascussion ir original α original α oll=520(1054) 93Li3-	4+ 49.6 ay a ENSDI =98(9) =100(6 0) 81Ha 4=320(3	530 leve 5'03 % 5)% 5.A=444	50# 300# 2# 10.56 8.03 15.18 STABLE 71 8.14 21.6 12.6 76 3.63 38.6	ms ms s s m h y h ms m ms m s m s	(>300 ns) 0.10 0.07 0.03 7 0.04 1.6 0.2 0.10 6 0.09 1.0	7/2+# 5/2-# 5/2-# (5/2-) (3/2-) 5/2+ 3/2- 3/2+ 3/2- 11/2- 7/2- 3/2- (9/2+) 1/2+ 7/2-	97 96 96 96 97 96 96 96 96 97 96	95Cz.A I	β^{-} ? β^{-} ? β^{-} ? β^{-} ? β^{-} ? β^{-} =100 β^{-} =100 β^{-} =100 IS=15.65 2 ε =100 β^{+} =100 IT=100 β^{+} =100 IT=100 β^{+} =100 β^{+} =100 β^{+} =100 β^{+} =100 β^{+} =100 β^{+} =100 β^{-} =100 β^{+}	*** *** *** ***
156 Ta ^m 156 Tb ^m 156 Tb ^m 156 Tb ^m 156 Tu ^m 156 Lu ^m 156 Hf 156 Hf 156 Hf 157 Pr 157 Nd 157 Pr 157 Nd 157 Fu 157 Fu 157 Fu 157 Fu 157 Fu 157 Fu 157 Tb 157 Dy ^m 157 Dy ^m 157 Er 157 Lu	-25700# E: derived T: lower I I: see also: D: derived D: derived D: derived T: averag T: 96Pa0. -40670# -48970# -56790# -62370 -66730 -69467 -70830.7 -70770.6 -69428 -69428 -69229 -63420 -63269 -53442 -46483	1d from 1 imit is the dis the dis 1d from 1 direct the direct the 1d from 200# 110 50 50 50 50 50 7 7 24 28 28 28 10 19	E3 24h to for α decascussion in original α original α and 1=520(10 54) 93Li3-199.38	4 ⁺ 49.4 49.4 49.1 1 ENSDID 1 ENSDIP 1	630 leve 6'03 % 9'9'% 0.A=444	50# 300# 2# 10.56 8.03 15.18 STABLE 71 8.14 21.6 12.6 13.65 76 3.63 38.6 6.8	ms ms s s m h y h ms m ms m s s s	(>300 ns) 0.10 0.07 0.03 7 0.04 1.6 0.2 0.10 6 0.09 1.0 1.8	7/2+# 5/2-# 5/2-# 5/2-# (5/2-) (3/2-) 5/2+ 3/2- 3/2+ 3/2- 7/2- 3/2- (9/2+) 1/2+ 7/2- (1/2+,3/2+)	97 96 96 96 97 96 96 97 96 96 97 96 96	95Cz.A I	β^{-} ? β^{-} ? β^{-} ? β^{-} ? β^{-} ? β^{-} = 100 β^{-} = 100 IS=15.65 2 ε =100 β^{+} = 100 IT=100 β^{+} = 100 IT=100 β^{+} = 100 β	*** *** *** ***
156 Ta ^m 156 Tb ^m 156 Tb ^m 156 Tb ^m 156 Lm ⁿ 156 Hf 156 Hf 156 Hf 156 Hf 157 Pr 157 Nd 157 Pr 157 Nd 157 Eu 157 Eu 157 Dy 157 Dy 157 Dy 157 Dy 157 Dy 157 Er 157 Lu 157 Lu 157 Lu	-25700# E: derived T: lower II I: see also D: derived D	1d from 1 imit is the dis the dis 1 from 1 direct the dis 1 from 1 direct the dis 1 from 2 direct the distribution of 1 from 2 direct the direc	E3 24h to for α decascussion ir original α original α oll=520(1054) 93Li3-	4+ 49.6 ay a ENSDI =98(9) =100(6 0) 81Ha 4=320(3	530 leve 5'03 % 5)% 5.A=444	50# 300# 2# 10.56 8.03 15.18 STABLE 71 8.14 21.6 12.6 18.65 76 3.63 38.6 6.8 4.79	ms ms s s m h y h ms m ms m s s s s	(>300 ns) 0.10 0.07 0.03 7 0.04 1.6 0.2 0.10 6 0.09 1.0 1.8 0.12	7/2+# 5/2-# 5/2-# (5/2-) (3/2-) 5/2+ 3/2- 3/2- 11/2- 7/2- 3/2- (9/2+) 1/2+ 7/2- (1/2+,3/2+) (11/2-)	97 96 96 96 97 96 96 97 96 96 96 96		β^{-} ? β^{-} ? β^{-} ? β^{-} ? β^{-} ? β^{-} =100 β^{-} =100 IS=15.65 2 ε =100 β^{+} =100 IT=100 β^{+} =100 IT=100 β^{+} =100 β^{+} 90 β^{+}	*** *** *** ***
156Ta ^m 156Tb ^m 156Dy 156Dy 156Hf 156Hf 156Hf 156Hf 156Ta ^m 157Ce 157Pr 157Nd 157Pm 157Sm 157Eu 157Bd 157Tb 157Dy 157Ho 157Er 157Dy 157Ho 157Er 157Er 157Er 157Er 157Er 157Er 157Er 157Dy 157Ho 157Er	-25700# E: derived T: lower I I: see also D: derived D:	11 from 1 init is the dis the dis 1 from 1 init is the dis 1 from 1 d from 2 from 2 from 2 from 3 fr	E3 24h to for α decascussion in original α original α and 1=520(10 54) 93Li3-199.38	4 ⁺ 49.4 49.4 49.1 1 ENSDID 1 ENSDIP 1	630 leve 6'03 % 9'9'% 0.A=444	50# 300# 2# 10.56 8.03 15.18 STABLE 71 8.14 21.6 12.6 13.63 38.6 6.8 4.79	ms ms s s m h y h ms m ms m s s s ms	(>300 ns) 0.10 0.07 0.03 7 0.04 1.6 0.2 0.10 6 0.09 1.0 1.8 0.12	7/2+# 5/2-# 5/2-# (5/2-) (3/2-) 5/2+ 3/2- 3/2- 11/2- 7/2- (9/2+) 1/2+ 7/2- (1/2+,3/2+) (11/2-) 7/2-	97 96 96 96 97 97 96 96 97 96 96 96 96	95Cz.A I 96Pa01 T	β^{-} ? β^{-} ? β^{-} ? β^{-} ? $\beta^{-}=100$ $\beta^{-}=100$ 1S=15.65 2 $\varepsilon=100$ $\beta^{+}=100$ 1T=100 $\beta^{+}=100$ 1T=100 $\beta^{+}=100$ $\beta^{+}=100$ $\beta^{+}=100$ $\beta^{+}=100$ $\beta^{+}=100$ $\beta^{+}=100$ $\beta^{+}=100$ $\beta^{+}=100$ $\beta^{+}=100$ $\beta^{+}=100$ $\beta^{+}=100$ $\beta^{+}=100$ $\beta^{+}=100$ $\beta^{+}=100$ $\beta^{+}=100$	*** *** *** ***
156 Ta ^m , 156 Ta ^m , 156 Tb ^m , 156 Tb ^m , 156 Tb ^m , 156 Tb ^m , 156 Hf, 156 Hf, 156 Hf ^m , 156 Ta ^m 157 Ce 157 Pr 157 Nd 157 Pm 157 Sm 157 Eu 157 Gd 157 Tb 157 Tb 157 Tb 157 Tb 157 Ho 157 Er 157 Hf 157 Hf 157 Th 157	-25700# E: derived T: lower I I: see also D: derived D: derived D: derived T: averag T: 96Pa0. -40670# -48970# -56790# -62370 -66730 -69467 -70870.6 -69428 -69229 -66829 -53442 -46482 -46482 -48750# -29630	11 from 1 imit is the dis the dis the dis 1 from 1 imit is the dis 1 from 1 fro	E3 24h to for α decascussion in original α original α oliginal α	4 ⁺ 49.4 49.4 49.1 1 ENSDID 1 ENSDIP 1	630 leve 6'03 % 9'9'% 0.A=444	50# 300# 2# 10.56 8.03 15.18 STABLE 71 8.14 21.6 12.6 18.65 76 3.63 38.6 6.8 4.79 115 10.1	ms ms ms s mh h y h ms m ms ms s s ms ms ms ms ms ms ms ms	(>300 ns) 0.10 0.07 0.03 7 0.04 1.6 0.2 0.10 6 0.09 1.0 1.8 0.12 1 0.4	7/2+# 5/2-# 5/2-# (5/2-) (3/2-) 5/2+ 3/2- 3/2- 3/2- 11/2- 7/2- (9/2+) 1/2+ 7/2- (1/2+,3/2+) (11/2-) 7/2- 1/2+	97 96 96 96 97 96 96 96 96 96 96 96		β^{-} ? β^{-} ? β^{-} ? β^{-} ? $\beta^{-}=100$ $\beta^{-}=100$ IS=15.65 2 $\varepsilon=100$ $\beta^{+}=100$ IT=100 $\beta^{+}=100$ IT=100 $\beta^{+}=99.5$; $\alpha=0.5$ β^{+} ?; $\alpha=9$ $\beta^{+}=9.5$; $\alpha=0.5$ $\beta^{+}=9.5$; $\alpha=0.5$	*** *** ***
156Ta ^m 156Tb ^m 156Tb ^m 156Tb ^m 156Lu ^m 156Lu ^m 156Hf 156Hf 156Hf 157Ce 157Pc 157Nd 157Pm 157Sm 157Eu 157Eu 157Ep 157Tb 157Dy 157Ho 157Er 157Tb 157Er 157Er 157Th 157Er 157Th 157Er 157Th 157Th 157Th 157Th 157Th 157Th	-25700# E: derived T: lower I I I: see also: D: derived	1 from 1 imit is the dis the dis the dis 1 from 1 d from 2 of 2 from 2 d from 2 of 2 from 2	E3 24h to for α decascussion in original α original α all 250(1654) 93Li3-199.38	4 ⁺ 49.4 49.4 49.4 49.4 49.4 49.4 49.4 49.	630 leve 630	50# 300# 2# 10.56 8.03 15.18 STABLE 71 8.14 21.6 12.6 3.63 38.6 6.8 4.79 115 10.1	ms ms s s m h y h ms m ms m s s s ms	(>300 ns) 0.10 0.07 0.03 7 0.04 1.6 0.2 0.10 6 0.09 1.0 1.8 0.12 1 0.4 0.1	7/2+# 5/2-# 5/2-# (5/2-) (3/2-) (3/2-) 5/2+ 3/2- 3/2- 11/2- 7/2- (9/2+) 1/2+ 7/2- (1/2+,3/2+) (11/2-) 7/2- 1/2+ 11/2-	97 96 96 96 97 97 96 96 96 96 96 96 96 96 90 20 02		β^- ? β^- ? β^- ? β^- ? β^- ? β^- =100 β^- =100 IS=15.65 2 ε =100 β^+ =100 IT=100 β^+ =100 IT=100 β^+ =100 β^+ =1100 β^+ =11100 β^+ =11100 β^+ =11100 β^+ =111100 β^- =11100 β^- =1100 β^- =110	*** *** ***
156 Ta ^m 156 Tb ^m 156 Tb ^m 156 Tb ^m 156 Tb ^m 156 Lu ^m 156 Lu ^m 156 Hf 156 Hf 156 Hf 157 Pr 157 Pr 157 Sm 157 Eu 157 Gd 157 Tb 157 Dy 157 Ho 157 Er 157 Er 157 Er 157 Er 157 Tb 157 Th 157 Ta ^m 157 Ta ^m 157 Ta ^m	-25700# E: derived T: lower I I I: see also D: derived	1 from 1	E3 24h to for α decascussion in original α and 1=520(10 54) 93Li3-155.4 21.0 22 1593	4 ⁺ 49.4 49.4 49.4 49.4 49.4 49.4 49.4 49.	630 leve 6'03 % 9)% .A=444 AD	50# 300# 2# 10.56 8.03 15.18 STABLE 71 8.14 21.6 12.6 18.65 76 3.63 38.6 6.8 4.79 115 10.1 4.3	ms ms s s m h y h ms m ms m s s s ms ms ms ms ms ms ms ms	(>300 ns) 0.10 0.07 0.03 7 0.04 1.6 0.2 0.10 6 0.09 1.0 1.8 0.12 1 0.4 0.1 0.1	7/2+# 5/2-# 5/2-# (5/2-) (3/2-) 5/2+ 3/2- 3/2- 3/2- 11/2- 7/2- (9/2+) 1/2+ 7/2- (1/2+,3/2+) (11/2-) 7/2- 1/2+	97 96 96 96 97 96 96 96 96 96 96 96		β^{-} ? β^{-} ? β^{-} ? β^{-} ? $\beta^{-}=100$ $\beta^{-}=100$ IS=15.65 2 $\varepsilon=100$ $\beta^{+}=100$ IT=100 $\beta^{+}=100$ IT=100 $\beta^{+}=99.5$; $\alpha=0.5$ β^{+} ?; $\alpha=9$ $\beta^{+}=9.5$; $\alpha=0.5$ $\beta^{+}=9.5$; $\alpha=0.5$	*** *** ***
156 Ta ^m 156 Tb ^m 156 Tb ^m 156 Tb ^m 156 Ctr 156 Ltr 156 Hfr 156 Hfr 156 Hfr 156 Ta ^m 157 Ce 157 Pr 157 Nd 157 Eu 157 Fb 157 Tb 157 Tb 157 Tb 157 Er 157 Er 157 Ltr	-25700# E: derived T: lower I I: see also D: derived D:	11 from 1 imit is the dis the dis 1 from 1 imit is the dis 1 from 1 d from 1 d from 1 d from 2 of 1 fr	E3 24h to for α decascussion in original α original α oll=520(1654) 93Li3-4 199.38 155.4 21.0 22 1593 ENSDF ev	4 ⁺ 49.4 49.4 49.1 1 ENSDID 1 1	630 leve 6*03 %))% .A=444 AD AD from 3	50# 300# 2# 10.56 8.03 15.18 STABLE 71 8.14 21.6 12.6 12.6 6.86 4.79 115 10.1 4.3 1.7 inconsist	ms ms s s m h y h ms m ms ms s s s ms ms ms ms ms ms ms m	(>300 ns) 0.10 0.07 0.03 7 0.04 1.6 0.2 0.10 6 0.09 1.0 1.8 0.12 1 0.4 0.1 0.1 results	7/2+# 5/2-# 5/2-# (5/2-) (3/2-) 5/2+ 3/2- 3/2- 11/2- 7/2- (9/2+) 1/2+ (1/2+,3/2+) (11/2-) 7/2- 1/2+ 1/2- (25/2-)	97 96 96 96 96 97 96 96 96 96 96 96 02 02		β^- ? β^- ? β^- ? β^- ? β^- ? β^- =100 β^- =100 IS=15.65 2 ε =100 β^+ =100 IT=100 β^+ =100 IT=100 β^+ =100 β^+ =1100 β^+ =11100 β^+ =11100 β^+ =11100 β^+ =111100 β^- =11100 β^- =1100 β^- =110	***
156 Ta ^m 156 Tb ^m 156 Tb ^m 156 Tb ^m 156 Lu ^m 156 Lu ^m 157 Ce 157 Pr 157 Nd 157 Eu 157 Fb 157 Fb 157 Tb 157 Tb 157 Lu 157 Lu 157 Lu 157 Lu 157 Th 157 Tb 157 Ta ^m 157 Ta ^m	-25700# E: derived T: lower I I: see also D: derived D:	11 from 1 imit is the dis the dis 1 from 1 imit is the dis 1 from 1 d from 2 d from 2 d from 1 d from	E3 24h to for α decascussion in original α original α oll=520(1654) 93Li3-4 199.38 155.4 21.0 22 1593 ENSDF ev	4 ⁺ 49.4 49.4 49.1 1 ENSDID 1 1	630 leve 6*03 %))% .A=444 AD AD from 3	50# 300# 2# 10.56 8.03 15.18 STABLE 71 8.14 21.6 12.6 12.6 6.86 4.79 115 10.1 4.3 1.7 inconsist	ms ms s s m h y h ms m ms ms s s s ms ms ms ms ms ms ms m	(>300 ns) 0.10 0.07 0.03 7 0.04 1.6 0.2 0.10 6 0.09 1.0 1.8 0.12 1 0.4 0.1 0.1 results	7/2+# 5/2-# 5/2-# (5/2-) (3/2-) (3/2-) 5/2+ 3/2- 3/2- 11/2- 7/2- (9/2+) 1/2+ 7/2- (1/2+,3/2+) (11/2-) 7/2- 1/2+ 11/2-	97 96 96 96 96 97 96 96 96 96 96 96 02 02		β^- ? β^- ? β^- ? β^- ? β^- ? β^- =100 β^- =100 IS=15.65 2 ε =100 β^+ =100 IT=100 β^+ =100 IT=100 β^+ =100 β^+ =1100 β^+ =11100 β^+ =11100 β^+ =11100 β^+ =111100 β^- =11100 β^- =1100 β^- =110	*** **

Nuclide	Mass ex (keV			Excitation nergy(keV		I	Half-	life	J^{π}	Ens	Referen	ce	Decay modes and intensities (%)	
158Pr	-44730#	600#				200#	ms						β- ?	
¹⁵⁸ Nd	-54400 #	400#				700#	ms	(>300 ns)	0^{+}	97	95Cz.A	I	β-?	
¹⁵⁸ Pm	-59090	130				4.8	S	0.5		96			$\beta^{-}=100$	
158 Sm	-65210	80				5.30	m	0.03	0^{+}	96			$\beta^{-}=100$	
¹⁵⁸ Eu	-67210	80				45.9	m	0.2	(1^{-})	96			$\beta^{-}=100$	
¹⁵⁸ Gd	-70696.8	2.5				STABLE			0_{+}	96			IS=24.84 7	
¹⁵⁸ Tb	-69477.2	2.6				180	У	11	3-	96			β^{+} =83.4 7; β^{-} =16.6 7	
	-69366.9	2.9	110.3	1.2		10.70	S	0.17	0_{-}	96			IT \approx 100; β^- <0.6;	*
¹⁵⁸ Tb ⁿ	-69088.8	2.6	388.37	0.15		395	μ s		7-				*** *** * ***	
¹⁵⁸ Dy	-70412	3				STABLE		0.4	0+	96			IS=0.10 1; α ?; $2\beta^+$?	
158Ho	-66191	27	67.000	0.010		11.3	m	0.4	5 ⁺	97			$\beta^+ \approx 100; \alpha$?	
	-66124	27	67.200	0.010		28	m	2	2- (9+)	97			IT>81; β^+ <19	
158Er	-66010#	80# 25	180#	70#		21.3	m L	2.3 0.06	(9 ⁺)	97 96			$\beta^{+}>93; \text{IT}<7#$ $\varepsilon=100$	
	-65304 -58703	25 25			*	2.29 3.98	h m	0.06	2-	96			$\beta^{+}=100$	
		100#	50#	100#	*	20	ns	0.00	(5 ⁺)	96	81Dr07	т	IT ?	*
158Yb	-56015	8	3011	10011	T	1.49	m	0.13	0^{+}	96	01D107		$\beta^{+} \approx 100; \alpha \approx 0.0021 \ 12$	
158Lu	-47214	15				10.6	S	0.13	2-	96	95Ga.A	I	β^+ =99.09 20;	*
¹⁵⁸ Hf	-42104	18				2.84	s	0.07	0^{+}	96			$\beta^{+}=55\ 3;\ \alpha=45\ 3$	*
¹⁵⁸ Ta	-31020#					& 49	ms	8	(2^{-})	96			α =96 4; β ⁺ ?	*
$^{158}\mathrm{Ta}^m$	-30880#		140	12	AD	& 36.0	ms	0.8	(9+)	96			$\alpha = 93.6; \beta^{+}.?; \text{IT}.?$	*
^{158}W	-23700 #	500#				1.37	ms	0.17	0+	96	00Ma95	T	α=100	*
$^{158}W^m$	-21810 #	500#	1889	8	AD	143	μ s	19	8^{+}		00Ma95	T	$\alpha=100$	*
	D:; β													**
	$I: T \approx 20 s$	in 81D	r07 was a t	typo. Valı	ıe in Fi	g. 2 was co	orrec	t. See 96D	Or.A					**
*158Lu	$D:\ldots;\alpha$													**
*158Hf	T: average													**
*158Ta	T : average		` '			ith Birge r	atio I	B=2						**
* ¹⁵⁸ Ta	D : derived		C	. ,		7011-10	26.00	(1.0)						**
* ¹⁵⁸ Ta ^m * ¹⁵⁸ W	T : average						36.8((1.6)						**
* * W * 158 W ^m	T : average T : average													**
**	1 . uveruge	001114	25-110(20	,, , , , , , , , , , , , , , , , , , , ,	-100(3	0)								
¹⁵⁹ Pr	-41450#	700#				100#	ms		5/2-#				β − ?	
159Nd	-50220#					500#	ms		7/2+#				β^{-} ?	
159Pm	-56850#					1.47	S	0.15	5/2-#	03			$\beta^{-}=100$	
159Sm	-62210	100				11.37	S	0.15	5/2-	03			$\beta^{-}=100$	
¹⁵⁹ Eu	-66053	7				18.1	m	0.1	5/2+	03			$\beta^{-}=100$	
¹⁵⁹ Gd	-68568.5	2.5				18.479		0.004	3/2-	03			$\beta^{-}=100$	
¹⁵⁹ Tb	-69539.0	2.6				STABLE			3/2+	03			IS=100.	
159Dy	-69173.5	2.7				144.4		0.2	$3/2^{-}$	03			ε=100	
159Dym	-68820.7	2.7	352.77	0.14		122	μ s	3	$11/2^{-}$	03			IT=100	
¹⁵⁹ Ho	-67336	4				33.05	m	0.11	$7/2^{-}$	03			$\beta^{+}=100$	
$^{159}\text{Ho}^m$	-67130	4	205.91	0.05		8.30	S	0.08	$1/2^{+}$	03			IT=100	
¹⁵⁹ Er	-64567	4				36	m	1	$3/2^{-}$	03			$\beta^{+}=100$	
¹⁵⁹ Er ^m	-64384	4	182.602	0.024		337	ns	14	$9/2^{+}$	03			IT=100	
159Er ⁿ	-64138	4	429.05	0.03		590	ns	60	$11/2^{-}$	03			IT=100	
	-60570	28				9.13	m	0.16	5/2+	03			$\beta^{+}=100$	
159Yb	-55843	18				1.72	m	0.10			93A103	T	$\beta^{+}=100$	*
159Lu	-49710	40			*	12.1	S	1.0	1/2+#				$\beta^{+} \approx 100; \alpha = 0.1 \#$	
159xxc	-49610#	90#	100#	80#	*	10#	S	0.10	11/2-#		0CB 01	т	β^{+} ?; IT ?; α ?	
159Hf	-42854 24448	17				5.20	S	0.10		03	96Pa01		$\beta^{+}=65\ 7;\ \alpha=35\ 7$	*
¹⁵⁹ Ta ¹⁵⁹ Ta ^m	-34448 24295	21	61	5	AD.	1.04	S	0.09	$(1/2^+)$	02	97Da07		β^{+} ?; α =34 5	*
159 W	-34385 -25230#	20	64	5	AD	514	ms	9	$(11/2^{-})$				$\alpha = 55 \ 1; \beta^{+} \ ?$	*
* ¹⁵⁹ Yb	-25230# T : superse		A114-1 40	(0.20) fro	m com	8.2	ms	0.7	1/2 #	U3	JOP au 1	ıυ	α =82 16; β ⁺ ?	*
*159Hf	J: 7/2 is			. ,		C 1	ment	ic accumo	ď,					**
* 159Ta	T: average						ment	is assuille	u					**
* 159 Ta ^m	T : average						R ₀ 1	7=620(50))					**
*159W	D : derived				2.1(11	.,, 001 02		. 020(30)	,					**
			0	() // 0										

Nuclide	Mass ex (keV			Excitation ergy(keV)		Half-	life	J^{π}	Ens	Referen	ce	Decay modes and intensities (%)	
¹⁶⁰ Nd ¹⁶⁰ Pm	-47420# 52100#	600#				300#	ms		0+		85Si25	I	β-?	*
¹⁶⁰ Sm	-53100# -60420#	300# 200#				2# 9.6	s s	0.3	0^{+}	97			β^- ? $\beta^-=100$	
¹⁶⁰ Eu	-63370#	200#				38	S	4	1(-)	97			$\beta^{-}=100$ $\beta^{-}=100$	
¹⁶⁰ Gd	-67948.6	2.6				STABLE		(>31 Ey)	0^{+}	97	01Da22	T	IS=21.86 19; $2\beta^-$?	
¹⁶⁰ Tb	-67842.9	2.6				72.3	d	0.2	3-	97			$\beta^{-}=100$	
¹⁶⁰ Dy	-69678.1	2.5				STABLE	3		0^{+}	97			IS=2.34 8	
¹⁶⁰ Ho	-66388	15				25.6	m	0.3	5^+	97			$\beta^{+}=100$	
¹⁶⁰ Ho ^m	-66328	15	59.98	0.03		5.02	h	0.05	2-	97		_	IT=65 3; β^+ =35 3	
¹⁶⁰ Ho ⁿ	-66191	22	197	16		3	S	0.00	(9+)	97	ABBW	E	IT=100	*
¹⁶⁰ Er ¹⁶⁰ Tm	-66058	24				28.58	h	0.09	0+	97			ε=100	
160 T m	-60300	30	70	20		9.4	m	0.3	1- 5 ^(+#)	97			$\beta^{+}=100$	
¹⁶⁰ Yb	-60230 -58170	40 17	70	20		74.5 4.8	s m	1.5 0.2	0+	97 97			IT=85 5; β^+ =15 5 β^+ =100	
160 Lu	-50270	60			*	36.1	S	0.2	2-#	97			$\beta^{+}=100; \alpha<1e-4$	
160 Lu m	-50270#	120#	0#	100#	*	40	s	1	2 11	97			$\beta^{+}\approx 100; \alpha$?	
$^{160}\mathrm{Hf}$	-45937	12	0	100		13.6	s	0.2	0^{+}	97			$\beta^{+}=99.32; \alpha=0.72$	
¹⁶⁰ Ta	-35880	90				1.70	s	0.20	(2#)-		96Pa01	TJD	β^+ ?; α =?	*
$^{160}\text{Ta}^{m}$	-35560#	110#	310#	90#		1.55	s	0.04	(9)+	97	96Pa01	TJ	$\beta^{+}=66#; \alpha=?$	*
^{160}W	-29360	210				90	ms	5	0+	97	96Pa01	TD	α =87 8; β ⁺ ?	*
¹⁶⁰ Re	-16660#	400#				860	μs	120	(2^{-})	02	92Pa05	J	p=91 5; α=9 5	*
*160Nd	I : seen in													**
*160 Hon	E: less tha				el, fr	om Ensdf								**
* ¹⁶⁰ Ta	J: from α													**
* ¹⁶⁰ Ta ^m * ¹⁶⁰ W	J: from α													**
*160 Re	T : average J : protons				1(13	,								**
			,,2											
¹⁶¹ Nd	-42960#	700#				200#	ms		1/2-#				β ⁻ ?	
¹⁶¹ Pm	-50430#	500#				700#	ms		5/2-#				β- ?	
¹⁶¹ Sm	-56980 #	300#				4.8	s	0.8	7/2+#	00			$\beta^{-}=100$	
¹⁶¹ Eu	-61780 #	300#				26	S	3	$5/2^{+}$ #	00			$\beta^{-}=100$	
¹⁶¹ Gd	-65512.7	2.7				3.646	m	0.003	$5/2^{-}$	00	94It.A	T	$\beta^{-}=100$	
¹⁶¹ Tb	-67468.2	2.6				6.906	d	0.019	3/2+	00			$\beta^{-}=100$	
¹⁶¹ Dy	-68061.1	2.5				STABLE		0.05	5/2+	00			IS=18.91 24	
¹⁶¹ Ho ¹⁶¹ Ho ^m	-67203	3	211 16	0.03		2.48	h	0.05 0.07	$\frac{7/2^{-}}{1/2^{+}}$	00			ε=100 IT=100	
161 Er	-66992 -65209	3	211.16	0.03		6.76 3.21	s h	0.07	$3/2^{-}$	00			$\beta^{+}=100$	
$^{161}\mathrm{Er}^{m}$	-64813	9	396.44	0.04		7.5	μs	0.03	$11/2^{-}$	00			IT=100	
¹⁶¹ Tm	-61899	28	370.11	0.01		30.2	m	0.8	7/2+	00			$\beta^{+}=100$	
$^{161}\mathrm{Tm}^{m}$	-61892	28	7.4	0.2		5#	m		1/2+	00			β^+ ?; IT ?	
¹⁶¹ Yb	-57844	16				4.2	m	0.2	$3/2^{-}$	00			$\beta^{+}=100$	
¹⁶¹ Lu	-52562	28				77	s	2	$1/2^{+}$	00			$\beta^{+}=100$	
161 Lu m	-52400	30	166	18		7.3	ms	0.4	$(9/2^{-})$	00	ABBW	E	IT=100	*
¹⁶¹ Hf	-46319	23				18.2	S	0.5	$3/2^{-}$ #	00			$\beta^{+} \approx 100; \alpha < 0.13$	
¹⁶¹ Ta	-38730#	60#				& 3#	S		$1/2^{+}$ #				β^+ ?; α ?	
¹⁶¹ Ta ^m	-38684	23	50#	50#	*	& 2.89	S	0.12	11/2-#		0.68.01		$\beta^{+}=95\#; \alpha=?$	
161 W	-30410#	200#				409	ms	16	7/2-#	00	96Pa01	T	$\alpha = 73.3; \beta^{+} = 27.3$	*
¹⁶¹ Re ¹⁶¹ Re ^m	-20880 20750	210 210	122 0	1.2		370 15.6	μs	40	1/2+	02	97Ir01	D	$p=97 2; \alpha ?$	*
* ¹⁶¹ Lu ^m	-20750 E : less the		123.8	1.3	/) ah	15.6	ms	0.9 from ENSD	11/2-	02			α=?; p=4.8 6	**
* Lu * 161 W	T : average						cvci,	HOIH ENSE	.1					**
* ¹⁶¹ Re	D : derived				.10	()								**

Nuclide	Mass ex (keV			Excitation energy(ke)		1	Half-	-life	J^{π}	Ens	Referen	ce	Decay modes and intensities (%)	
¹⁶² Pm	-46310#	700#				500#	ms						β-?	
162 Sm	-54750#	500#				2.4	s	0.5	0^{+}		00As.A	TD	$\beta^{-}=100$	
¹⁶² Eu	-58650#	300#				10.6	s	1.0		99			$\beta^{-}=100$	
¹⁶² Gd	-64287	5				8.4	m	0.2	0_{+}	99			$\beta^{-}=100$	
¹⁶² Tb	-65680	40				7.60	m	0.15	1-	99			$\beta^{-}=100$	
¹⁶² Dy	-68186.8	2.5				STABLE			0_{+}	99			IS=25.51 26	
¹⁶² Ho	-66047	4				15.0	m	1.0	1+	99			$\beta^{+}=100$	
¹⁶² Ho ^m	-65941	8	106	7		67.0	m	0.7	6-	99		_	IT=62; β^+ =38	*
¹⁶² Er	-66343	3				STABLE		$(>140\mathrm{Ty})$	0+	99	56Po16	T	IS=0.14 1; α ?; $2\beta^+$?	*
¹⁶² Tm	-61484	26	120	40		21.70	m	0.19	1-	99	A DDW	г	$\beta^{+}=100$	
¹⁶² Tm ^m ¹⁶² Yb	-61350	50	130	40		24.3	S	1.7	5^{+} 0^{+}	99	ABBW	E	IT ?; $\beta^+=18.4$	*
¹⁶² Lu	-59832	16				18.87	m	0.19	1 ⁽⁻⁾	99	000 12		$\beta^{+}=100$	
162Lu ^m	-52840 52720#	80	120#	200#	*	1.37	m	0.02	4 ⁻ #	99 99	98Ge13	J	$\beta^{+}=100$ $\beta^{+}\approx 100$; IT ?	
162Lu ⁿ	-52720# -52540#	220# 220#	120# 300#	200# 200#	*	1.5 1.9	m m		4 #	99			β * \approx 100; IT ? β * \approx 100; IT ?	
¹⁶² Hf	-32340# -49173	10	300#	200#	*	39.4	S	0.9	0^{+}	99			$\beta \approx 100, 11$? $\beta \approx 100; \alpha = 0.008 1$	
¹⁶² Ta	-49173 -39780	50				3.57	s	0.12	3+#	99			$\beta^{+}\approx 100$; $\alpha=0.0081$	
162W	-34002	18				1.36	S	0.12	0 ⁺	99			$\beta^+ \approx 100, \alpha = 0.074 \text{ 10}$ $\beta^+ ?: \alpha = 45.2 \text{ 16}$	
¹⁶² Re	-22350#	200#				107	ms	13	(2^{-})	99			$\alpha = 94.6; \beta^{+}.?$	
$^{162}\text{Re}^m$	-22180#	200#	173	10	AD	77	ms	9	(9 ⁺)	99			$\alpha=91.5; \beta^+.$	
162Os	-14500#		1,0	10		1.87	ms	0.18	0+	99	00Ma95	Т	$\alpha=100$	*
*162Hom			above le	evel at 96.1	(0.1), f			ror from NU	JBASE					**
*162Er	T: lower 1				(//		, .							**
$*^{162}\text{Tm}^m$	E: above	66.90 le	evel and	l less than	192 keV	, from En	SDF							**
$*^{162}Os$	T: average	e 00Ma	95=1.9	(0.2) 96Bi(07=1.5(+0.7-0.5)	89H	012=1.9(0.7	")					**
¹⁶³ Pm	-43150#	800#				200#	ms		5/2-#				β − ?	
¹⁶³ Sm	-50900#	700#				1#	s		1/2-#				β^- ?	
¹⁶³ Eu	-56630#	500#				6#	s		5/2+#				β^- ?	
¹⁶³ Gd	-61490#					68	s	3	7/2+#	00			$\beta^{-}=100$	
¹⁶³ Tb	-64601	5				19.5	m	0.3	$3/2^{+}$	00			$\beta^{-}=100$	
¹⁶³ Dy	-66386.5	2.5				STABLE			$5/2^{-}$	00			IS=24.90 16	
¹⁶³ Ho	-66383.9	2.5				4.570	ky	0.025	$7/2^{-}$	00			<i>ε</i> =100	
$^{163}\mathrm{Ho}^m$	-66086.0	2.5	297.8	8 0.07		1.09	S	0.03	$1/2^{+}$	00			IT=100	
¹⁶³ Er	-65174	5				75.0	m	0.4	$5/2^{-}$	00			$\beta^{+}=100$	
$^{163}\mathrm{Er}^{m}$	-64729	5	445.5	0.6		580	ns	100	$(11/2^{-})$	00			IT=100	
¹⁶³ Tm	-62735	6				1.810	h	0.005	$1/2^{+}$	00			$\beta^{+}=100$	
¹⁶³ Yb	-59304	16				11.05	m	0.25	3/2-	00			$\beta^{+}=100$	
¹⁶³ Lu	-54791	28				3.97	m	0.13	1/2(+)	01			$\beta^{+}=100$	
¹⁶³ Hf	-49286	28				40.0	S	0.6	3/2-#	00			$\beta^{+}=100; \alpha<0.0001$	
¹⁶³ Ta	-42540	40				10.6	S	1.8	1/2+#	00			$\beta^+ \approx 100; \alpha \approx 0.2$	
163W	-34910	50				2.8	S	0.2	3/2-#	00			β^{+} ?; α =13 2	
¹⁶³ Re	-26007	20	115			390	ms	70	$(1/2^+)$	00			β^{+} ?; $\alpha = 32.3$	
¹⁶³ Re ^m ¹⁶³ Os	-25892	20	115	4	AD	214	ms	5	$(11/2^{-})$	00			$\alpha = 66.4; \beta^{+}.?$	
· · · Os	-16120#	400#				5.5	ms	0.6	$7/2^{-}$ #	UU			$\alpha \approx 100; \beta^+ ?; \beta^+ p ?$	

Nuclide	Mass ex (keV			Excitation energy(ke\			Ha	lf-lii	fe	J^{π}	Ens	Referen	ce	Decay modes and intensities (%)	
¹⁶⁴ Sm	-48180#	800#					500#	ms		0+				β-?	
¹⁶⁴ Eu	-53100#	600#					2#	S						β- ?	
¹⁶⁴ Gd	-59750#						45	S	3	0^{+}	01			$\beta^{-}=100$	
¹⁶⁴ Tb	-62080	100					3.0	m	0.1	(5^{+})	01			$\beta^{-}=100$	
¹⁶⁴ Dy	-65973.3	2.5					STABLE			0^{+}	01			IS=28.18 37	
¹⁶⁴ Ho	-64987.1	2.8					29	m	1	1+	01			ε =60 5; β ⁻ =40 5	
$^{164}\mathrm{Ho}^m$	-64847.3	2.8	139.77	0.08			38.0	m	1.0	6^{-}	01			IT=100	
¹⁶⁴ Er	-65950	3					STABLE			0_{+}	01			IS=1.61 3; α ?; $2\beta^+$?	
164 Tm	-61888	28				*	2.0	m	0.1	1+	01			ε =61 1; e ⁺ =39 1	
$^{164}\mathrm{Tm}^m$	-61878	29	10	6		*	5.1	m	0.1	6-	01	ABBW	E	IT \approx 80; β ⁺ \approx 20	
$^{164}\mathrm{Yb}$	-61023	16					75.8	m	1.7	0^{+}	01			<i>ε</i> =100	
¹⁶⁴ Lu	-54642	28					3.14	m	0.03	$1^{(-)}$	01			$\beta^{+}=100$	
$^{164}\mathrm{Hf}$	-51822	20					111	S	8	0_{+}	01			$\beta^{+}=100$	
¹⁶⁴ Ta	-43283	28					14.2	S	0.3	(3^{+})	01			$\beta^{+}=100$	
^{164}W	-38234	12					6.3	S	0.2	0_{+}	01			β^{+} =96.2 12; α =3.8 12	
¹⁶⁴ Re	-27640 #	160#				* &				high		95Pa.A	J	α ?	
164 Re m	-27520	100	120#	120#		* &	530	ms	230	$(2#)^{-}$	01	96Pa01	JD	$\alpha = ?; \beta^{+} = 42#$	
$^{164}\mathrm{Os}$	-20460	210					21	ms	1	0_{+}	01			$\alpha = ?; \beta^{+} = 2#$	
164 Ir	-7270#					&	1#	ms		2^{-} #				p?; α?; β ⁺ ?	
$^{164}\mathrm{Ir}^m$	-7000#		270#	110#		&	94	μs	27	9+#	02	02Ma61	T	p=?; α ?; β ⁺ ?	
	E: less tha														*
* ¹⁶⁴ Lu				d by 98Ge1								ound-state			*
* ¹⁶⁴ Ta				lered as alp	ha er	nitter	, instead	of 10	³ Ta by	83Sc18					*
*164Rem	J: from α														*
*164 Ir**	T : average	e 02Ma	61=58(+4	46–18) 01K	.e05=	=110(+60–30)								*
¹⁶⁵ Sm	-43800#	900#					200#	ms		5/2-#				β − ?	
¹⁶⁵ Eu	-50560#	700#					1#	S		5/2+#				β− ?	
¹⁶⁵ Gd	-56470#						10.3	S	1.6	1/2-#	99			$\beta^{-}=100$	
¹⁶⁵ Tb	-60660#						2.11	m	0.10	3/2+#	92			$\beta^{-}=100$	
¹⁶⁵ Dy	-63617.9	2.5					2.334	h	0.001	7/2+	92			$\beta^{-}=100$	
$^{165}\mathrm{Dy}^m$	-63509.7	2.5	108.160	0.003			1.257	m	0.006	$1/2^{-}$	92			IT=97.76 11; β^- =2.24 11	
¹⁶⁵ Ho	-64904.6	2.5					STABLE			$7/2^{-}$	92			IS=100.	
¹⁶⁵ Er	-64528	3					10.36	h	0.04	$5/2^{-}$	92			<i>ε</i> =100	
¹⁶⁵ Tm	-62936	3					30.06	h	0.03	$1/2^{+}$	92			$\beta^{+}=100$	
¹⁶⁵ Yb	-60287	28					9.9	m	0.3	5/2-	92			$\beta^{+}=100$	
¹⁶⁵ Lu	-56442	27				*	10.74	m	0.10	$1/2^{+}$	99			$\beta^{+}=100$	
¹⁶⁵ Hf	-51636	28					76	S	4	$(5/2^{-})$	92			$\beta^{+}=100$	
¹⁶⁵ Ta	-45855	17					31.0	s	1.5	5/2-#				$\beta^{+}=100$	
$^{165}\text{Ta}^{p}$	-45800	30	60	30	AD					9/2-#				•	
^{165}W	-38862	25					5.1	s	0.5	3/2-#	99			$\beta^{+} \approx 100; \alpha < 0.2$	
¹⁶⁵ Re	-30657	28				* &	1#	s		1/2+#				β^+ ?; α ?	
165 Re m	-30610	23	47	26	AD	* &	2.1	s	0.3	11/2-#				$\beta^{+}=87.3; \alpha=13.3$	
¹⁶⁵ Os	-21650#	200#					71	ms	3	$(7/2^{-})$				$\alpha > 60; \beta^{+} < 40$	
¹⁶⁵ Ir	-11630#	220#					< 1#	μs		1/2+#				p?; α?	
$^{165}\mathrm{Ir}^{m}$	-11440	210	180#	50#			300	μs	60	11/2-				p=87 4; α=13 4	
								•							

Nuclide	Mass ex (keV			Excitation nergy(ke			На	lf-lif	ie	J^{π}	Ens	Reference	ce	Decay modes and intensities (%)	_
¹⁶⁶ Eu ¹⁶⁶ Gd	-46600# -54400#	800# 600#					400# 4.8	ms s	1.0	0+		00As.A	TD	β-? β-=100	
¹⁶⁶ Tb	-57760	100					25.6	S	2.2		97	00As.A	T	$\beta^{-}=100$	*
¹⁶⁶ Dy	-62590.1	2.6					81.6	h	0.1	0_{+}	92			$\beta^{-}=100$	
¹⁶⁶ Ho	-63076.9	2.5					26.83	h	0.02	0_	92			$\beta^{-}=100$	
¹⁶⁶ Ho ^m	-63070.9	2.5	5.985	0.018			1.20	ky	0.18	(7)-	92			$\beta^{-}=100$	
¹⁶⁶ Er	-64931.6	2.5					STABLE		0.00	0^{+}	92			IS=33.61 35	
¹⁶⁶ Tm ¹⁶⁶ Tm ^m	-61894	12	122	0			7.70	h	0.03	2+	92	000-07	TIE	$\beta^{+}=100$	
166 Yb	-61772 -61588	14 8	122	8			340 56.7	ms h	25 0.1	6^{-} 0^{+}	92	96Dr07	IJE	IT=100 ε=100	*
¹⁶⁶ Lu	-56021	30					2.65	m	0.10	6(-)	92	98Ge13	J	$\beta^{+}=100$	
166 Lu m	-55990	30	34.37	0.05			1.41	m	0.10	3(-)	92	98Ge13	J	$\beta^{+}=585$; IT=425	
166Lu ⁿ	-55980	30	42.9	0.03			2.12	m	0.10	0(-)	92	98Ge13	J	$\beta^{+} > 80$; IT < 20	
¹⁶⁶ Hf	-53859	28	42.9	0.5			6.77	m	0.10	0+	92	76GC13	J	$\beta^{+}=100$	
¹⁶⁶ Ta	-46098	28					34.4	S	0.5	(2) ⁺	92			$\beta^{+}=100$	
^{166}W	-41892	10					19.2	s	0.6	0+	00			$\beta^{+}\approx 100; \alpha=0.035 12$	
¹⁶⁶ Re	-31850#	90#				&	2#	s		2-#				β^+ ?; α ?	
166 Re m	-31700	70	150#	50#		&	2.5	s	0.2	9+#	92	92Me10	T	β^{+} ?; $\alpha = 5.2$	*
$^{166}\mathrm{Re}^p$	-31700 #	100#	150#	50#						low					
¹⁶⁶ Os	-25438	18					216	ms	9	0_{+}	92	96Pa01	T	α =72 13; β ⁺ =28 13	*
¹⁶⁶ Ir	-13210 #	200#					10.5	ms	2.2	(2^{-})	02			α=93 3; p=7 3	
¹⁶⁶ Ir ^m	-13030#	200#	172	6	p		15.1	ms	0.9	(9^{+})	02			α=98.2 6; p=1.8 6	
¹⁶⁶ Pt	_4790#	500#					300	μs	100	0_{+}	97	96Bi07	TD	$\alpha=100$	
* ¹⁶⁶ Tb	T : superse														**
* ¹⁶⁶ Tm ^m * ¹⁶⁶ Re ^m	E : less tha T : average					n 2)									**
* Re * 166 Re ^m	D : α inter						ac dicence	ad it	FNCD	c					**
* RC * ¹⁶⁶ Os	T : average						as discuss	cu II	I LNSD.	Г					**
. 05	1 . u · crug·	0 7 01 40	1 220(1)		., .(1	.,									
167-															
¹⁶⁷ Eu	-43590#	800#					200#	ms		5/2+#				β^- ?	
¹⁶⁷ Gd ¹⁶⁷ Tb	-50700#	600#					3#	S	2	5/2-#	00	00 4 02		β^- ?	
¹⁶⁷ Dy	-55840#	400#					19	S	3	$3/2^{+}$ #	00	99As03	T	$\beta^{-}=100$	
¹⁶⁷ Ho	-59940 -62287	60 6					6.20 3.1	m h	0.08	$\frac{(1/2^{-})}{7/2^{-}}$	00			$\beta^-=100$ $\beta^-=100$	
167 Ho ^m	-62028	6	259.34	0.11			6.0	μs	1.0	3/2+	00			IT=100	
¹⁶⁷ Er	-63296.7	2.5	237.34	0.11			STABLE	μο	1.0	7/2+	00			IS=22.93 17	
$^{167}\mathrm{Er}^m$	-63088.9	2.5	207.801	0.005			2.269	s	0.006	$1/2^{-}$	00			IT=100	
¹⁶⁷ Tm	-62548.3	2.7	207.001	0.005			9.25	d	0.02	1/2+	00			ε=100	
$^{167}\mathrm{Tm}^{m}$	-62368.8	2.7	179.480	0.019			1.16	μs	0.06	$(7/2)^{+}$	00			IT=100	
$^{167}\mathrm{Tm}^n$	-62255.5	2.7	292.820	0.020			0.9	μs	0.1	7/2-	00			IT=100	
¹⁶⁷ Yb	-60594	5					17.5	m	0.2	$5/2^{-}$	00			$\beta^{+}=100$	
¹⁶⁷ Lu	-57500	30			*		51.5	m	1.0	$7/2^{+}$	00			$\beta^{+}=100$	
167 Lu m	-57500 #	40#	0#	30#	*		> 1	m		$1/2^{(-\#)}$	00			IT ?; β ⁺ ?	
¹⁶⁷ Hf	-53468	28					2.05	m	0.05	$(5/2)^{-}$	00			$\beta^{+}=100$	
¹⁶⁷ Ta	-48351	28					1.33	m	0.07	$(3/2^+)$	00			$\beta^{+}=100$	
167W	-42089	19					19.9	S	0.5	3/2-#	00			β^+ =99.96 1; α =0.04 1	*
¹⁶⁷ Re	-34840#	50#	120#	40.0		&	3.4	S	0.4	9/2-#	00			$\alpha \approx 100; \beta^+$?	
¹⁶⁷ Re ^m ¹⁶⁷ Os	-34710	40	130#	40#		&	5.9	S	0.3	1/2+#	00			$\beta^+ \approx 99; \alpha \approx 1$	
167 Os 167 Ir	-26500	70 19					810 35.2	ms	60 2.0	3/2-#	00 02			α =57 8; β ⁺ =43 8 α =48 6; p=32 4; β ⁺ ?	
167 Ir 167 Ir ^m	-17079 -16903	19 19	175.3	2.2			30.0	ms ms	0.6	$\frac{1/2^{+}}{11/2^{-}}$	02			α =48 6; p=32 4; β ? ? α =80 10; β + ?;	.1.
¹⁶⁷ Pt	-16903 -6540#		1/3.3	2.2	p		700	μs	200	$\frac{11}{2}$	00			$\alpha=80\ 10;\ p=2;\ldots$ $\alpha=100$	*
* ¹⁶⁷ W	J : lowest o		d state by G	92Tb06 i	s 13/2	+	700	μδ	200	1/2 #	00			W-100	**
* 167 Irm	D:; p=		a suite by	1 1100 I	. 13/2	•									**
	, p-														

Nuclide	Mass ex (keV			Excitation nergy(ke\]	Half-	life	J^{π}	Ens	Referen	ce	Decay modes and intensities (%)	
¹⁶⁸ Gd ¹⁶⁸ Tb ¹⁶⁸ Dy ¹⁶⁸ Ho	-48100# -52500# -58560 -60070						300# 8.2 8.7 2.99	ms s m m	1.3 0.3 0.07	$0^{+} \ 4^{-} \# \ 0^{+} \ 3^{+}$	99 99 94	85Si25	I	β^{-} ? $\beta^{-}=100$ $\beta^{-}=100$ $\beta^{-}=100$	*
¹⁶⁸ Ho ^m ¹⁶⁸ Er ¹⁶⁸ Tm ¹⁶⁸ Yb	-60010 -62996.7 -61317.7 -61575	30 2.5 2.9 4	59	1			132 STABLE 93.1 STABLE	d	4 0.2 (>130 Ty)	(6^{+}) 0^{+} 3^{+} 0^{+}	94 94 94 94	90Ch37 56Po16		IT \approx 100; β^- <0.5 IS=26.78 26 $\beta^+\approx$ 100; β^- =0.010 7 IS=0.13 1; α ?; $2\beta^+$?	*
¹⁶⁸ Lu ¹⁶⁸ Lu ^m ¹⁶⁸ Hf ¹⁶⁸ Ta	-57060 -56880 -55361 -48394	50 100 28 28	180	110	BD >	k	5.5 6.7 25.95 2.0	m m m	0.1 0.4 0.20 0.1	$ \begin{array}{c} 6^{(-)} \\ 3^{+} \\ 0^{+} \\ (2^{-}, 3^{+}) \end{array} $	94 94 01 94	98Ge13		$\beta^{+}=100$ $\beta^{+}>95$; IT<5 $\varepsilon\approx98$; e ⁺ ≈2 $\beta^{+}=100$	
¹⁶⁸ W ¹⁶⁸ Re ¹⁶⁸ Re ^m	-44890 -35790	16 30	non e	xistent	RN		51 4.4 6.6	s s s	2 0.1 1.5	$(5^+, 6^+, 7^+)$	94 94	92Me10		$\beta^{+} \approx 100; \alpha = 0.0032 \ 10$ $\beta^{+} \approx 100; \alpha \approx 0.005$	
168 Os 168 Ir 168 Ir 168 Pt		110 210	50#	100#	,		2.06 161 125 2.00	ms ms ms	0.06 21 40 0.18	high low 0 ⁺	94 94 94 94	96Pa01 96Pa01 96Pa01 98Ki20	TJD TJ	$\beta^{+}=51\ 3;\ \alpha=49\ 3$ $\alpha=82\ 14$ $\alpha=?;\ \beta^{+}\ ?$ $\alpha\approx100;\ \beta^{+}=0.7\#$	*
* ¹⁶⁸ Gd * ¹⁶⁸ Yb * ¹⁶⁸ Os * ¹⁶⁸ Os * ¹⁶⁸ Pt		imit is e 96Pa0 Sc06 su	for α dec 01=2.1(0. upersedes	ay 1) 84Sc0 78Sc26=	5=2.0 2.4(0.	2) f	rom san			'a11=1.9(0.1)				** ** ** **
¹⁶⁹ Gd ¹⁶⁹ Tb	-43900# -50100#	600#					1# 2#	s s		7/2 ⁻ # 3/2 ⁺ #				β-? β-?	
¹⁶⁹ Dy ¹⁶⁹ Ho ¹⁶⁹ Er ¹⁶⁹ Tm	-55600 -58803 -60928.7 -61280.0	300 20 2.5 2.5					39 4.7 9.40 STABLE	s m d	8 0.1 0.02	$(5/2^{-})$ $7/2^{-}$ $1/2^{-}$ $1/2^{+}$	91 91 91 91			$\beta^{-}=100$ $\beta^{-}=100$ $\beta^{-}=100$ IS=100.	
¹⁶⁹ Yb ¹⁶⁹ Yb ^m ¹⁶⁹ Lu	-60370 -60346 -58077	4 4 5	24.199	0.003			32.026 46 34.06		0.005 2 0.05	7/2 ⁺ 1/2 ⁻ 7/2 ⁺	91 91 91			$\varepsilon = 100$. $\varepsilon = 100$ IT = 100 $\beta^+ = 100$	
¹⁶⁹ Lu ^m ¹⁶⁹ Hf ¹⁶⁹ Ta ¹⁶⁹ W	-58048 -54717 -50290 -44918	5 28 28 15	29.0	0.5			160 3.24 4.9 76	s m m s	10 0.04 0.4 6	$1/2^{-}$ $(5/2)^{-}$ $(5/2^{+})$ $(5/2^{-})$	91 91 91 91	98Zh03		IT=100 β^{+} =100 β^{+} =100 β^{+} =100 β^{+} =2, α =0.005 2	
169 Re 169 Re ^m 169 Os 169 Ir 169 Ir ^m	-38386 -38241 -30721 -22081	28 17 25 26	145	29	AD	&	8.1 15.1 3.46 780	s s ms	0.5 1.6 0.11 360	9/2 ⁻ # 1/2 ⁺ # 3/2 ⁻ # 1/2 ⁺ #	91 91 91	92Me10 96Pa01 99Po09	TD T TD	$\beta^{+}=?; \alpha=0.0053$ $\beta^{+}?; \alpha\approx0.2$ $\beta^{+}=891; \alpha=111$ $\alpha=5018; \beta^{+}?$	* *
¹⁶⁹ Pt ¹⁶⁹ Au * ¹⁶⁹ Re	-21927 -12380# -1790# D: α=0.00	300# 05(3)%						ms ms µs 0.01	22 1.5 %	11/2 ⁻ # 3/2 ⁻ # 1/2 ⁺ #		96Pa01 96Pa01	TD T	α =81 7; β ⁺ =19 7 α =?; β ⁺ =1# α ?; β ⁺ ?	* * *
* ¹⁶⁹ Re ^m * ¹⁶⁹ Os * ¹⁶⁹ Ir ^m * ¹⁶⁹ Pt	T : average T : also 99 T : average	e 96Pa Po09=	01=3.6(0. 323(+90-	2) 95Hi0 66)	2=3.20 D :	(0.3 ave) 84Sc0 rage 99I			n03=3.4(0.2) 6Pa01=72(1					** ** **

Nuclide	Mass ex (keV			citation ergy(keV)		I	Half-	life	J^{π}	Ens	Referen	ce	Decay modes and intensities (%)	
170 Yb 170 Yb 170 Yb 170 Lu 170 Lu 170 Hf 170 Ta 170 W 170 Re 170 Os 170 Ir 170 Ir	-57310 -57217 -56254 -50138 -47293 -38918 -33928 -23320# -23050	200# 50 60 2.8 2.5 2.5 2.4 2.4 17 17 28 28 15 26 11 100# 70	100 183.197 1258.46 92.91	80 0.004 0.14 0.09	* BD *	3# 30# 2.76 43 STABLE 128.6 4.12 STABLE 370 2.012 670 16.01 6.76 2.42 9.2 7.46 910 440	d μs	0.05 2 (>320 Py) 0.3 0.13 15 0.020 100 0.13 0.06 0.04 0.2 0.23 150 60	0 ⁺ 6 ⁺ # (1 ⁺) 0 ⁺ 1 ⁻ (3) ⁺ 4 ⁻ 0 ⁺ (4) ⁻ 0 ⁺ (5) ⁺ 0 ⁺ (5) ⁺ low# high#	02 02 02 02 02 02 02 02 02 02 02 02 02 0	96De60	Т	β^- ? β^- ? β^- ? β^- ? β^- =100 β^- =100 IS=14.93 27; $\beta^-\approx$ 100; ε =0.131 10 IT=100 IS=3.04 15 IT=100 β^+ =100 IT=100 ε =100 β^+ =100 β^+ =100; α <0.01# β^+ =20; α =8.6 18 β^+ ?; α =8.6 18 β^+ ?; α =5.2 17 α =36 10; β^+ ?; IT?	*
170Pt 170Au 170Au *170Au ^m *170Er *170Au ^m	-16306 -3610# -3340# D:; 2J T: from 0	200# β ⁻ ?; α	274 ? :620(+60–50	16 0); other 0	p 2Ma61=	13.8 310 630 =570(+31	ms μs μs 0–15	0.5 50 60	0 ⁺ (2 ⁻) (9 ⁺)	02 02 02	02Ma61	TD	α =?; β ⁺ =2# p=85 10; α =15 10 p=75 15; α =?; β ⁺ ?	* ** **
171 Yb 171 Yb" 171 Yb" 171 Lu 171 Lu" 171 Ht" 171 Ta 171 W 171 Re 171 Os 171 Ir 171 Au 171 Au	-43500# -50110# -54520 -57724.9 -57526.3 -59215.6 -59312.1 -59216.8 -59189.7 -57762.4 -55431 -55409 -51720 -47086 -41250 -34293 -26450# -7565 -7315	300# 600 2.8 2.8 2.6 2.4 2.4 2.4 2.8 2.8 29 29 28 28 19 40 50# 90 26 20	198.6 424.9560 95.282 122.416 71.13 21.93	0.1 0.0015 0.002 0.002 0.08 0.09	p	500# 6# 53 7.516 210 1.92 2.60 STABLE 5.25 265 8.24 79 12.1 29.5 23.3 2.38 15.2 8.3 3.6 6 1.40 44 30 1.014	ms ns d s h s m m s s s s ms µs ms	2 0.002 10 0.01 0.02 0.24 20 0.03 2 0.4 0.9 0.3 0.04 0.4 0.2 1.0 0.10 7	$3/2^+\#$ $7/2^-\#$ $7/2^-\#$ $5/2^ 1/2^ 1/2^+$ $7/2^+$ $1/2^ 7/2^+$ $1/2^ 1/2^ 1/2^ 1/2^ 1/2^ 1/2^ 1/2^ 1/2^+\#$ $1/2^ 1/2^+\#$ $1/2^ 1/2^+\#$ $1/2^ 1/2^+\#$ $1/2^ 1/2^+\#$ $1/2^ 1/2^+\#$ $1/2^-$	02 02 02 02 02 02 02 02	99Ba84 03Ba20 03Ba20	Т	β^- ? β^- ? β^- ? β^- =100 β^- =100 β^- =100 β^- =100 β^+ 2; α^- 1.80 21 α^- 100; β^+ ? α^- 58 11; β^+ ?; p? α^- 57; β^+ 2# β^+ 100; α ? α^- 54 4; p=46 4	*
¹⁷¹ Hg * ¹⁷¹ Au	3500# T : averag		20=37(+7-5)	99Po09=	17(+9-	80 5); Birge	μs ratio	30 B=2.0	3/2-#	02			$\alpha \approx 100; \beta^{+} = 0.01 \#$	**

Nuclide	Mass ex (keV			ergy(keV)	На	lf-lif	ie .	J^{π}	Ens	Referen	ce	Decay modes and intensities (%)	
¹⁷² Dy ¹⁷² Ho	-47730# -51400#	400# 400#				3# 25	s s	3	0+	95			β^{-} ? $\beta^{-}=100$	
¹⁷² Er	-56489	5				49.3	h	0.3	0^{+}	95			$\beta^{-}=100$	
¹⁷² Tm	-57380	6				63.6	h	0.2	2-	95			$\beta^{-}=100$	
¹⁷² Yb	-59260.3	2.4				STABLE			0^+	95			IS=21.83 67	
¹⁷² Lu	-56741.3	3.0				6.70	d	0.03	4-	95			$\beta^{+}=100$	
$^{172}Lu^{m}$	-56699	3	41.86	0.04		3.7	m	0.5	1-	95			IT=100	
$^{172}Lu^{n}$	-56632	3	109.41	0.10		440	μs	12	(1)+					
¹⁷² Hf	-56404	24				1.87	У	0.03	0+	95			ε=100	
$^{172}Hf^{m}$	-54398	24	2005.58	0.11		163	ns	3	(8-)					
¹⁷² Ta	-51330	28				36.8	m	0.3	(3+)	95			$\beta^{+}=100$	
172W	-49097	28				6.6	m	0.9	0+	95			$\beta^{+}=100$	
¹⁷² Re	-41520	50			*	15	S	3	(5)	95			$\beta^{+}=100$	
¹⁷² Re ^m	-41520#	110#	0#	100#	*		S	5	(2)	95			$\beta^{+}=100$	
¹⁷² Os	-37238	15				19.2	S	0.9	0+	95	95Hi02	D	$\beta^{+}=?; \alpha=1.1 \ 2$	
¹⁷² Ir	-27520#	110#				4.4	S	0.3	(3+)	95			$\beta^{+}=98; \alpha=2$	
¹⁷² Ir ^m	-27240	30	280#	100#	AD	2.0	S	0.1	(7+)	95			$\beta^{+}=77.3; \alpha=23.3$	
¹⁷² Pt	-21101	13				98.4	ms	2.4	0^+	95	02Ro17		α =77 21; β ⁺ ?	*
¹⁷² Au		160#				4.7	ms	1.1	high	95	96Pa01	TJ	$\alpha=?; p<2$	*
¹⁷² Hg	-1090	210				420	μs	240	0+		99Se14	TD	$\alpha=100$	
* ¹⁷² Pt * ¹⁷² Pt			` '						=120(10) and					**
		Ga25=1				om original	$\alpha = 1$	94(32)	%					**
* ¹⁷² Au * ¹⁷² Au			1=6.3(1.5) tion with ¹⁶⁸		(1)									**
* Au	J: Holli α	correra	uon with	II IIIIe										**
¹⁷³ Dy	-43780#	500#				2#	s		9/2+#				β ⁻ ?	
¹⁷³ Ho	-49100#	400#				10#	s		7/2-#				β^- ?	
¹⁷³ Er	-53650#					1.434	m	0.017	$(7/2^{-})$	95	94It.A	T	$\beta^{-}=100$	
¹⁷³ Tm	-56259	5				8.24	h	0.08	$(1/2^{+})$	95			$\beta^{-}=100$	
$^{173}\text{Tm}^{m}$	-55941	5	317.73	0.20		10	μs		$(7/2^{-})$				•	
¹⁷³ Yb	-57556.3	2.4				STABLE	•		5/2-	95			IS=16.13 27	
$^{173}\mathrm{Yb}^{m}$	-57157.4	2.5	398.9	0.5		2.9	μs	0.1	1/2-					
¹⁷³ Lu	-56885.8	2.4				1.37	У	0.01	7/2+	95			ε=100	
173 Lu ^m	-56762.1	2.4	123.672	0.013		74.2	μs		5/2-					
¹⁷³ Hf	-55412	28				23.6	h	0.1	$1/2^{-}$	95			$\beta^{+}=100$	
¹⁷³ Ta	-52397	28				3.14	h	0.13	5/2-	95			$\beta^{+}=100$	
173 W	-48727	28				7.6	m	0.2	5/2-	95			$\beta^{+}=100$	
¹⁷³ Re	-43554	28				2.0	m	0.3	$(5/2^{-})$	95			$\beta^{+}=100$	
173Os	-37438	15				22.4	s	0.9	$(5/2^{-})$	95	95Hi02	TD	$\beta^{+} \approx 100; \alpha = 0.42$	
¹⁷³ Ir	-30272	14				9.0	s	0.8	$(3/2^+, 5/2^+)$	95			$\beta^{+}>93; \alpha<7$	
$^{173}\mathrm{Ir}^m$	-30019	28	253	27	AD	2.20	S	0.05	$(11/2^{-})$	95			$\beta^{+}=881; \alpha=121$	
¹⁷³ Pt	-21940	60				365	ms	7	5/2-#	95	02Ro17	T	$\alpha = 84.6; \beta^{+} = 16.6$	*
¹⁷³ Au	-12820	26				25	ms	1	$(1/2^{+})$	03			α =86 13; β ⁺ =6#	*
173 Au m	-12606	22	214	23	AD	14.0	ms	0.9	$(11/2^{-1})$	03			α =89 11; β ⁺ =4#	
¹⁷³ Hg	-2570#					1.1	ms	0.4	3/2-#	03			α=100	
*173Pt			17=370(13)	96Pa01=3	376(11)				181De22=325(**
$*^{173}$ Au			9)%; and fo						,					**

Nuclide	Mass ex (keV			xcitation ergy(keV]	Half-l	life	J^{π}	Ens	Reference	ce	Decay modes and intensities (%)	
	-45500#						8#	s						β ⁻ ?	
¹⁷⁴ Er	-51950#						3.2	m	0.2	0_{+}	99			$\beta^{-}=100$	
¹⁷⁴ Tm	-53870	40					5.4	m	0.1	(4)-	99			$\beta^{-}=100$	
	-56949.6	2.4					STABLE		0.05	0_{+}	99	000 10		IS=31.83 92	
	-55575.3	2.4	170.83	0.05			3.31	y	0.05	1-	99 99	98Ge13 98Ge13		$\beta^{+}=100$	
	-55404.5 -55846.6	2.4 2.8	170.83	0.05			142 2.0	d Py	0.4	6^{-}	99	98Ge13	J	IT=99.38 2; ε =0.62 2 IS=0.16 1; α =100; 2β ⁺	,
	-54049	3	1797.5	2.0			2.39	μs	0.4	(8-)	99			IT=100	
	-51741	28	1171.5	2.0			1.14	h h	0.08	3+	99			$\beta^{+}=100$	
	-50227	28					33.2	m	2.1	0+	99			$\beta^{+}=100$	
	-43673	28					2.40	m	0.04		99			$\beta^{+}=100$	
174Os	-39996	11					44	s	4	0^{+}	99			$\beta^{+} \approx 100; \alpha = 0.0247$	
	-30869	28					7.9	s	0.6	(3^{+})	99			$\beta^{+}=99.5\ 3;\ \alpha=0.5\ 3$	
	-30676	26	193	11	AD		4.9	s	0.3	(7^{+})	99			β^{+} =97.5 3; α =2.5 3	
	-25319	12					889	ms	17	0_{+}	99			$\alpha = 76.8; \beta^{+}.$	
	-14200#	100#					139	ms	3	low	99	02Ro17		$\alpha = 90 6; \beta^{+} ?$	*
¹⁷⁴ Au ^m		70	360#	70#			171	ms	29	high		96Pa01	TJ	$\alpha=?;\beta+?$	
¹⁷⁴ Hg ∗ ¹⁷⁴ Au	-6647	20	171(20)	20.24	120/2	10)	2.0	ms	0.4	0_{+}	99	99Se14	T	$\alpha \approx 100; \beta^+=0.4#$	
**^'Au	T: others	96Pa01	=1/1(29) 8	33SC24=	120(2	(0)									**
	-42800#						5#	s		7/2-#				β-?	
		400#					1.2	m	0.3	$(9/2^+)$		96Zh03	TD	r	
	-52320	50					15.2	m	0.5	1/2+	98			$\beta^{-}=100$	
	-54700.6	2.4	514.000	0.007			4.185	d	0.001	7/2-	93			$\beta^{-}=100$	
	-54185.7 -55170.7	2.4	514.869	0.007			68.2 Stable	ms	0.3	$\frac{1/2^{-}}{7/2^{+}}$	93 93			IT=100 IS=97.41 2	
	-53780	4	1391	3			930	μs	80	19/2+	93	98Wh02	СТІ		
	-54483.8	2.8	1391	3			70	μs d	2	$5/2^{-}$	93	96 W 1102	EIJ	ε=100	
	-52409	28					10.5	h	0.2	$7/2^{+}$	93			$\beta^{+}=100$	
	-49633	28					35.2	m	0.6	$(1/2^{-})$				$\beta^{+}=100$	
	-45288	28					5.89	m	0.05	$(5/2^{-})$				$\beta^{+}=100$	
¹⁷⁵ Os	-40105	14					1.4	m	0.1	$(5/2^{-})$				$\beta^{+}=100$	
	-33429	20					9	s	2	$(5/2^{-})$	93			β^{+} =99.15 28; α =0.85 28	;
$^{175}{ m Ir}^{p}$	-33357	17	72	17	AD					am					
	-25690	19					2.52	S	0.08	$5/2^{-}$ #	93			α =64 5; β ⁺ ?	
	-17440	40				&	100#	ms		$1/2^{+}$ #		02Ro17		$\alpha=?;\beta^+?$	*
1/5 Au ^m	-17240#	50#	200#	30#		&	156	ms	3	$11/2^{-}$ #		02Ro17		$\alpha = 82 \ 17; \beta^{+} ?$	*
¹⁷⁵ Hg * ¹⁷⁵ Au	-7990	100	61	00D 17			10.8	ms	0.4	$5/2^{-}$ #	93	02Ro17	Т	$\alpha = ?; \beta^{+} = 1#$	*
	D : from as T : average										200	v(22)			**
	T : average T : others 9									055024	=200)(22)			**
, IIg	1 . Others	970 u01	1=15(+0-4) 901 ao.	1-0(0,) Ou	tweight	u, no	t uscu						**
	-46500#						20#	s	0.02	0+	00	0.47: 4	T.	β-?	
		100					1.85	m	0.03	(4^{+})	98	94It.A	T	$\beta^-=100$	
	-53494.1 -52444.1	2.6	1050.0	0.2			STABLE		(>160 Py)		98	96De60	1	IS=12.76 41;	*
	-52444.1 -53387.4	2.6	1050.0	0.3			11.4 38.5	S Gv	0.3 0.7	(8) ⁻ 7 ⁻	98 98	03Gr02	т	IT=?; β^- <10# IS=2.59 2; β^- =100	*
	-53387.4 -53264.5	2.2	122.855	0.006			3.664	Gy h	0.7	1-	98 98	030102	1	$β$ ⁻ \approx 100; $ε$ =0.095 16	*
	-53264.5 -54577.5	2.2	122.833	0.006			3.004 Stable		0.019	0+	98 98			$p \approx 100; \epsilon = 0.095 \text{ 16}$ IS=5.26 7	
176m	-54377.3 -51370	30					8.09	h	0.05	(1)-	98			$\beta^{+}=100$	
1/0.	21210	50					0.07	11	0.05	(1)	20			P -100	
¹⁷⁶ Ta ¹⁷⁶ Ta ^m	_51270	30	103.0	1.0			1.1	me	0.1	(+)	QQ			IT-100	
¹⁷⁶ Ta ^m	-51270 -48550	30 60	103.0 2820	1.0 50			1.1 0.97	ms ms	0.1 0.07	(20 ⁻)	98 98			IT=100 IT=100	,

Nuclide	Mass ex (keV			citation gy(keV)	Ha	lf-lit	fe	J^{π}	Ens	Referen	ce	Decay modes and intensities (%)	
<i>A</i> -groi	up continue	d											
^{176}W	-50642	28			2.5	h	0.1	0^{+}	98			ε=100	
	-45063	28			5.3	m	0.3	3+	98			$\beta^{+}=100$	
¹⁷⁶ Os	-42098	28			3.6	m	0.5	0^{+}	98			$\beta^{+}=100$	
¹⁷⁶ Ir	-33861	20			8.3	S	0.6		98			β^{+} =96.9 6; α =3.1 6	
¹⁷⁶ Pt	-28928	14			6.33	S	0.15	0_{+}	98			β^{+} ?; α =38 3	
¹⁷⁶ Au	-18540 #	110#			1.08	S	0.17	(5^{-})	98	ABBW	J	$\alpha = ?; \beta^{+} = 40 \#$	3
¹⁷⁶ Au ^m	-18380	30	150#	100#	860	ms	160	(7^{+})		02Ro17		$\alpha = ?; \beta^{+} = 40 \#$	
¹⁷⁶ Hg	-11779	14			20.4	ms	1.5	0^{+}	98	02Ro17	T	$\alpha = 90 9; \beta^{+} ?$	
¹⁷⁶ Tl	550#				10#	ms						α ?	
* ¹⁷⁶ Yb	$D:\ldots;2\beta$												*
* ¹⁷⁶ Lu					98Ni07=36.9								*
* ¹⁷⁶ Lu								0No01=40.8(2	.4)				*
					erage would y		Birge	ratio <i>B</i> =4.6)					*
* ¹⁷⁶ Ta ⁿ					60) by Nubasi	Ξ							*
			to ¹⁷² Ir 168.4	level									*
	J: from α												*
* ¹⁷⁶ Hg					3) 99Po09=21((4); (others 1	not used					*:
* ¹⁷⁶ Hg	T: 96F	2a01=1	8(10) and 83	SC24=34(-	+18-9)								**
¹⁷⁷ Er	-42800#	500#			3#	s		1/2-#				β ⁻ ?	
	-47470#				90	s	6	$(7/2^{-})$	03			$\beta^{-}=100$	
	-50989.2	2.6			1.911		0.003	$(9/2^+)$	03			$\beta^{-}=100$	
$^{177}{\rm Yb}^{m}$	-50657.7	2.6	331.5	0.3	6.41	S	0.02	$(1/2^{-})$	03			IT=100	
	-52389.0	2.2			6.647		0.004	7/2+	03			$\beta^{-}=100$	
177 Lu m	-51418.8	2.2	970.1750	0.0024	160.44	d	0.06	$23/2^{-}$	03			β^- =78.6 8; IT=21.4 8	3
177 Lu ⁿ	-48489	10	3900	10	7	m	2	39/2-	03	03A1.1	ET	$\beta^- = ?; IT ?$	
177 Lu p	-52238.6	2.2	150.3967	0.0010	130	ns	3	9/2-	03			IT=100	
177 Lu q	-51819.3	2.2	569.7068	0.0016	155	μs	7	1/2+	03			IT=100	
¹⁷⁷ Hf	-52889.6	2.1			STABLE			$7/2^{-}$	03			IS=18.60 9	
$^{177}Hf^{m}$	-51574.1	2.1	1315.4504	0.0008	1.09	S	0.05	$23/2^{+}$	03			IT=100	
$^{177}\mathrm{Hf}^n$	-50149.6	2.1	2740.02	0.15	51.4	m	0.5	$37/2^{-}$	03			IT=100	
$^{177}\mathrm{Hf}^p$	-51547.2	2.1	1342.38	0.20	55.9	μs	1.2	$(19/2^{-})$	03			IT=100	
¹⁷⁷ Ta	-51724	4			56.56	h	0.06	$7/2^{+}$	03			$\beta^{+}=100$	
	-51538	4	186.15	0.06	3.62	μs	0.10	$5/2^{-}$	03			IT=100	
	-50369	4	1355.01	0.19	5.31	μs		$21/2^{-}$	03			IT=100	
	-51651	4	73.36	0.15	410	ns	7	9/2-	03			IT=100	
	-47068	4	4656.3	0.5	133	μs	4	49/2-	03			IT=100	
	-49702	28			132	m	2	1/2-	03			$\beta^{+}=100$	
¹⁷⁷ Re	-46269	28			14	m	1	5/2-	03			$\beta^{+}=100$	
	-46184	28	84.71	0.10	50	μs	10	5/2+	03			IT=100	
	-41950	16			3.0	m	0.2	1/2-	03			$\beta^{+}=100$	
	-36047	20			30	S	2	5/2-	03			$\beta^{+}\approx 100; \alpha=0.061$	
	-29370	15	147.4	0.4	10.6	S	0.4	5/2-	03			β^+ =94.3 5; α =5.7 5	
	-29223	15	147.4	0.4	2.2	μs	0.3	$1/2^-$	03	0117 - 44	TIL	IT=100	
177 Pt m	-21550	13 28	216	26	1.46	S	0.03	$(1/2^+, 3/2^+)$	03			$\alpha \approx 100; \beta^+$?	
¹⁷⁷ Pt ^m ¹⁷⁷ Au			216	26	1.180 7	S	0.012	$11/2^{-}$	03			$\alpha \approx 100; \beta^+$?	
¹⁷⁷ Pt ^m ¹⁷⁷ Au ¹⁷⁷ Au ^m	-21334		157			ns	4	$(9/2^{-})$	03	02Ro17	EIJ	11=100	
¹⁷⁷ Pt ^m ¹⁷⁷ Au ¹⁷⁷ Au ^m ¹⁷⁷ Au ^m	-21334 -21093	28	457	26			1.0	E /2-4	0.2			. 05. 0± 15	
¹⁷⁷ Pt ^m ¹⁷⁷ Au ¹⁷⁷ Au ^m ¹⁷⁷ Au ⁿ ¹⁷⁷ Au ⁿ	-21334 -21093 -12780	28 80	457	26	127.3	ms	1.8	5/2-#	03			$\alpha = 85; \beta^{+} = 15$	
¹⁷⁷ Pt ^m ¹⁷⁷ Au ¹⁷⁷ Au ¹⁷⁷ Au ^m ¹⁷⁷ Au ⁿ ¹⁷⁷ Hg ¹⁷⁷ Tl	-21334 -21093 -12780 -3328	28 80 25			127.3 18	ms	5	$(1/2^{+})$	03			α=73 13; p=27 13	
177Pt ^m 177Au 177Au ^m 177Au ⁿ 177Au ⁿ 177Hg 177Tl 177Tl ^m	-21334 -21093 -12780 -3328 -2521	28 80 25 17	807	18	127.3	ms μs	5 40	$(1/2^+)$ $(11/2^-)$					*

Nuclide	Mass ex (keV			xcitation ergy(keV)		Hal	f-lif	e	J^{π}	Ens	Referen	ce	Decay modes and intensities (%)	
178 Tm 178 Yb 178 Lu 178 Lu ^m 178 Hf 178 Hf ⁿ 178 Hf ⁿ 178 Ta 178 Ta ⁿ 178 Ta ⁿ	-44120# -49698 -50343.0 -50219 -52444.3 -51296.9 -4998.6 -49870.8 -50507 -50410# -48940# -47510#	400# 10 2.9 4 2.1 2.1 2.2 15 50# 50#	123.8 1147.423 2445.69 2573.5 100# 1570# 3000#	2.6 0.005 0.11 0.5 50# 50# 50#	RQ ***	30# 74 28.4 23.1 STABLE 4.0 31 68 9.31 2.36 59 290	s m m m m s y µs m h ms ms	3 0.2 0.3 0.2 1 2 0.03 0.08 3 12	0 ⁺ 1(+) 9(-) 0 ⁺ 8 ⁻ 16 ⁺ (14 ⁻) 1 ⁺ (7) ⁻ (15 ⁻) (21 ⁻)	94 94 94 94 94 94 94 94	98Ge13 94Ki.A 96Ko13 96Ko13	E T	β^{-} ? $\beta^{-}=100$ $\beta^{-}=100$ $\beta^{-}=100$ IS=27.28 7 IT=100 IT=100 IT=100 $\beta^{+}=100$ $\beta^{+}=100$ IT=100	*
178W 178 Re 178 Os 178 Ir 178 Pt 178 Hg 178 Hg 178 Tl 178 Ta ⁿ *178 Ta ⁿ *178 Ta ⁿ *178 Ta ⁿ *178 Ta ⁿ *178 Ta ⁿ *178 Ta ⁿ	3568 E: 1470.6 T: average E: 2902 ke T: others	e 96Ko eV abo 96Pa01	pove ¹⁷⁸ Ta ^m , 13=58(4) 79 we the (7) ⁻¹ =287(23) 91 202 and 147	Du02=60(⁷⁸ Ta ^m ison Se01=250	5) ner	21.6 13.2 5.0 12 21.1 2.6 269 255 230	d m m s s s ms ms ms µs	0.3 0.2 0.4 2 0.6 0.5 3 10 150	0+ (3+) 0+ 0+ 0+ 0+	94 94 95 94 94 94	02Ro17 02Ro17 01Ro.B	TD	$\begin{array}{l} \varepsilon = 100 \\ \beta^{+} = 100 \\ \beta^{+} = 100 \\ \beta^{+} = 100 \\ \beta^{+} = 2.3 \text{ 3; } \alpha = 7.7 \text{ 3} \\ \beta^{+} \leq 60; \alpha > 40 \\ \alpha = ?; \beta^{+} = 30\# \\ \alpha = ?; \beta^{+} = 47\# \\ \alpha \approx 100; \beta^{+} ? \end{array}$	* ** ** ** ** **
179 Tm 179 Yb 179 Lu 179 Lu 179 Hf 179 Hf 179 Hf 179 Ta 179 Ta 179 Ta 179 Ta 179 Ta 179 Ye 179 W 179 W 179 Re 179 Re 179 Os 179 Ir 179 Au 179 Au 179 Au	-41600# -46420# -49064 -48472 -50471.9 -50096.9 -49366.1 -50366.3 -49049.0 -47727.0 -49304 -49082 -46586 -46521 -43020 -38077 -32264 -24952 -24853	500# 300# 5 5 2.1 2.1 2.2 2.2 2.3 16 16 24 24 18 11 9 17	592.4 375.0367 1105.84 1317.3 2639.3 221.926 65.39	0.4 0.0025 0.19 0.4 0.5 0.008 0.09	AD	20# 8.0 4.59 3.1 STABLE 18.67 25.05 1.82 9.0 54.1 37.05 6.40 19.5 95 6.5 79 21.2	s d y ms ms	0.04 0.25 0.03	$\begin{array}{c} 1/2^+\#\\ (1/2^-)\\ 7/2^{(+)}\\ 1/2^{(+)}\\ 9/2^+\\ 1/2^-\\ 25/2^-\\ 7/2^+\\ (25/2^+)\\ (37/2^+)\\ (7/2)^-\\ (5/2)^-\\ (5/2)^+\\ (5/2^-)\\ (1/2^-)\\ (5/2)^-\\ 1/2^-\\ 5/2^-\#\\ (11/2^-)\\ \end{array}$	94 94 94 94 94 90 00 00 94 95 94 98 94 94			β^- ? β^- =100 β^- =100 IT=100 IS=13.62 2 IT=100 IT=100 ϵ =100 IT=100 ϵ =100 IT=100 β^+ =100 β^+ =100; β^+ =22.0 9	
179 Hg 179 Tl 179 Tl''' 179 Pb *179 Hg *179 Tl *179 Tl''' *179 Tl'''	T : average J : from α	e 02Ro e 02Ro decay t	860# 17=1.08(0.09 17=415(55) to ¹⁷⁵ Au ^m 17=1.7(0.2)	98To14=2	30(40) 8	83Sc24=1	`	-90-4		94 01 01	02Ro17 ABBW 02Ro17	J	$\alpha \approx 53; \beta^{+}=?; \beta^{+}p\approx 0.15$ $\alpha = ?; \beta^{+}=30#$ $\alpha \approx 100; \text{ IT } ?; \beta^{+} ?$ $\alpha ?$	* * * * * * * * * * * * * * * * * * *

Nuclide	Mass ex (keV			xcitation ergy(keV			I	Half-	-life	J^{π}	Ens	Reference	ce	Decay modes and intensities (%)	
¹⁸⁰ Yb	-44400#						2.4	m	0.5	0+	94			β^- =100	
¹⁸⁰ Lu	-46690	70					5.7	m	0.1	5+	94	95Me03		$\beta^{-}=100$	
¹⁸⁰ Lu ^m	-46680	70	13.9	0.3			1	S		3-		95Me03	EJT	β^- ?; IT ?	
¹⁸⁰ Hf	-49788.4	2.1	1111 10	0.04		S	STABLE		0.1	0^{+}	94			IS=35.08 16	
¹⁸⁰ Hf ^m	-48646.9		1141.48	0.04			5.5	h	0.1	8-	94			IT \approx 100; $\beta^-=0.3$ 1	
¹⁸⁰ Ta	-48936.2	2.2	75.0	1.0	D.O.		8.152	h	0.006	1+	94			$\varepsilon = 86.3; \beta^{-} = 14.3$	
¹⁸⁰ Ta ^m ¹⁸⁰ Ta ⁿ	-48860.9	1.8	75.3	1.3	RQ	2	STABLE		(>1.2 Py)	9- 15-	94	060-02	TE	IS=0.012 2; β^- ?	
180 Ta ²	-47485.2 -49644	2.4 4	1451.0	1.0			45	μs	2 (> 700 Pm)	15 ⁻ 0 ⁺	94	96Dr02 03Da05	TE	IC_0 12 1, ~ 2, 20± 2	
180 W ^m	-49644 -48115	4	1529.04	0.03		2	STABLE 5.47	ms	(>700 Py) 0.09	8-	94	USDauS	1	IS=0.12 1; α ?; $2\beta^+$? IT=100	*
¹⁸⁰ Re	-48113 -45840	21	1329.04	0.03			2.44	m	0.09	(1)-	94			$\beta^{+}=100$	
180Os	-44359	20					21.5	m	0.00	0+	94			$\beta^{+}=100$ $\beta^{+}=100$	
¹⁸⁰ Ir	- 37978	22					1.5	m	0.4	$(4,5)^{(+\#)}$				$\beta = 100$ $\beta = 100$	
¹⁸⁰ Pt	-34436	11					52	S	3	0+	94			$\beta^+ \approx 100$; $\alpha \approx 0.3$	
180 Au	-25596	21					8.1	S	0.3	U	94			β \approx 100, $\alpha \approx$ 0.3 β $+ \leq$ 98.2; $\alpha \geq$ 1.8	
180Hg	-20245	14					2.56	s	0.02	0^{+}	94	93Wa03	т	$\beta^{+} = 52.4$; $\alpha = 48.4$	
¹⁸⁰ Tl	-9400#						1.5	S	0.02	Ü	94	98To14		β^{+} ?; α =7 3;	*
¹⁸⁰ Pb	-1939	21					5	ms	3	0^{+}	00	96To08		$\alpha=100$	-,-
*180W			for α decay	z. also 03	Ce01	>270				v	00	701000	110	u=100	**
$*^{180}W$									ortant back	ground					**
$*^{180}W$			y for $2\beta^-$,		- /	3,			5					**
$*^{180}T1$	D:; β														**
$*^{180}T1$			om 02An.A	1											**
¹⁸¹ Yb ¹⁸¹ Lu	-40850# 44740#						1#	m	0.2	3/2-#	01			β-? β100	
¹⁸¹ Hf	-44740# -47411.9	2.1					3.5 42.39	m d	0.3 0.06	$(7/2^+)$ $1/2^-$	91 91			$\beta^-=100$ $\beta^-=100$	
$^{181}\mathrm{Hf}^m$	-47411.9 -46817	4	595	3			80	μs	5	$(9/2^+)$	91	01Sh36	ETI	IT=100	
$^{181}\mathrm{Hf}^n$	-46372	10	1040	10			100	μs	3	$(17/2^+)$		01Sh36		IT=100	
$^{181}\mathrm{Hf}^p$	-45674	10	1738	10			1.5	ms	0.5	$(27/2^{-})$		01Sh36		IT=100	
¹⁸¹ Ta	-48441.6					S	STABLE			7/2+	92			IS=99.988 2	
$^{181}\mathrm{Ta}^m$	-48435.4	1.8	6.238	0.020			6.05	μs	0.12	9/2-	92			IT=100	
$^{181}\mathrm{Ta}^n$	-46957	3	1485	3			25	μs	2	$21/2^{-}$		98Wh02	ETJ	IT=100	
$^{181}\text{Ta}^{p}$	-46212	3	2230	3			210	μs	20	29/2-		98Wh02	ETJ	IT=100	
^{181}W	-48254	5					121.2	d	0.2	$9/2^{+}$	91			ε=100	
¹⁸¹ Re	-46511	13					19.9	h	0.7	$5/2^{+}$	91			$\beta^{+}=100$	
¹⁸¹ Os	-43550	30					105	m	3	$1/2^{-}$	92			$\beta^{+}=100$	
$^{181}\mathrm{Os}^m$	-43500	30	48.9	0.2			2.7	m	0.1	$(7/2)^{-}$	92	95Ro09	E	$\beta^{+}=100$	
¹⁸¹ Ir	-39472	26					4.90	m	0.15	$(5/2)^{-}$	93			$\beta^{+}=100$	
¹⁸¹ Pt	-34375	15					52.0	S	2.2	$1/2^{-}$	99	95Bi01	D	$\beta^{+}\approx 100; \alpha=0.074 \ 10$	
¹⁸¹ Au	-27871	20					13.7	S	1.4	$(3/2^{-})$	99			β^{+} =?; α =2.7 5	
¹⁸¹ Hg	-20661	15					3.6	S	0.1	$1/2^{(-)}$	99			β^{+} =69 5; α =31 5;	*
$^{181}{\rm Hg}^{p}$	-20460 #	40#	210#	40#						$13/2^{+}$					
¹⁸¹ Tl	-12801	9					3.2	S	0.3	$1/2^{+}$ #	91	98To14		$\alpha=?;\beta^+?$	*
¹⁸¹ Tl ^m	-11944	29	857	29	AD		1.7	ms	0.4	9/2-#		98To14	TD	β^+ ?; α =?; IT ?	*
¹⁸¹ Pb	-3140	90			D	&	45	ms	20	5/2-#		96To01	T	$\alpha = ?; \beta^{+} = 2#$	*
¹⁸¹ Pb ^m	D 0	+ 00	non ex		RN	δt				$13/2^{+}$ #	91	96To01	I		*
* ¹⁸¹ Hg			$16.4; \beta^{+}\alpha$			00									**
* ¹⁸¹ Tl * ¹⁸¹ Tl ^m	U		14=3.2(0.3)												**
* ¹⁸¹ Pb			14=1.4(0.5) To01=50(+				OTTO TO								**
			1001=50(+ 001 not to 6	,	TOIL	same	group								**
↑ FU	i . proved	oy 201	001 1101 10 0	AISL											**

Nuclide	Mass ex (keV			xcitation ergy(keV))	Half	-life	J^{π}	Ens	s Referen	ce	Decay modes and intensities (%)	
¹⁸² Lu ¹⁸² Hf	-41880# -46059	200#				2.0	m My	0.2	(0,1,2) 0 ⁺	95 95			$\beta^{-}=100$ $\beta^{-}=100$	
	-44886	6	1172.88	0.18		61.5	m	1.5	8-	95			$\beta^{-}=58$ 3; IT=42 3	
¹⁸² Ta	-46433.3			*****		114.43		0.03	3-	95			$\beta^{-}=100$	
$^{182}\mathrm{Ta}^m$	-46417.0		16.263	0.003		283	ms	3	5+	95			TT=100	
$^{182}\mathrm{Ta}^n$	-45913.7	1.8	519.572	0.018		15.84	m	0.10	10^{-}	95			IT=100	
^{182}W	-48247.5	0.8				STABLE		(>170 Ey)	0_{+}	95	03Da05	T	IS=26.50 16; α?	*
¹⁸² Re	-45450	100			*	64.0	h	0.5	7+	95			$\beta^{+}=100$	
¹⁸² Re ^m	-45388	20	60	100	BD *	12.7	h	0.2	2^{+}	95			$\beta^{+}=100$	
¹⁸² Os	-44609	22				22.10	h	0.25	0+	95			ε=100	
¹⁸² Ir	-39052	21				15	m	1	(3+)		95Sa42	J	$\beta^{+}=100$	
¹⁸² Pt	-36169	16				2.2	m	0.1	0+	95	0.171.02		$\beta^{+}\approx 100; \alpha=0.0382$	
	-28301	20				15.5	S	0.4	(2+)	95	01Ib02		$\beta^{+}\approx 100; \alpha=0.135$	*
¹⁸² Hg ¹⁸² Tl	-23576 -13350	10 80				10.83	S	0.06	0 ⁺ 2 ⁻ #	95 95	97Ba21 92Bo.D		$\beta^{+}=86.2 \text{ 9; } \alpha=13.8 \text{ 9; } \dots$ $\beta^{+}>96; \alpha<4$	*
$^{182}{\rm Tl}^{m}$	-13350 -13250#		100#	100#	*	2.0	S	0.5	2 # (7+)	93	92B0.D 91Bo22		$\alpha \approx 100; \beta^+$?	*
$^{182}\mathrm{Tl}^p$	-13230# -12750#		600#	140#	*	2.9	S	0.5	10-		911022	1 J	$a \approx 100, p$	*
¹⁸² Pb	-6826	14	σοσπ	140π		60	ms	40	0^{+}	95			$\alpha = ?; \beta^{+} = 2#$	
* ¹⁸² W	T : also 03		>25 Ev 970	Ge15>8.3	Ev	00	1113	40	O)5			$\alpha = :, \beta = 2\pi$	**
* ¹⁸² Au						(1.0)(for	· α)	and 92Ro2	1=15.6(0	.4)				**
* ¹⁸² Hg	$D:\ldots; \beta$			-)(P	,,	()(,		(-	,				**
* ¹⁸² Hg				3(0.5) 80S	c09=1	5.2(0.8);	β^+	p is from 7	1Ho07					**
$*^{182}Tl^{m}$	T : averag						,	•						**
192-									(= (= l)					
183Lu	-39520#					58	S	4	$(7/2^+)$				$\beta^{-}=100$	
¹⁸³ Hf ¹⁸³ Ta	-43290 45206 1	30				1.067	h	0.017	$(3/2^{-})$				$\beta^{-}=100$	
¹⁸³ Ta ^m	-45296.1 -45222.9	1.8	73.174	0.012		5.1 107	d	0.1 11	$\frac{7/2^{+}}{9/2^{-}}$	91 91			$\beta^-=100$ IT=100	
¹⁸³ W	-43222.9 -46367.0		/3.1/4	0.012		STABLE	ns	(>80 Ey)	$1/2^{-}$	01	03Da05	т	IS=14.31 4; α ?	ale.
	-46057.5		309.493	0.003		5.2	s	0.3	11/2+	01	03Da03	1	IT=100	*
¹⁸³ Re	-45811	8	307.473	0.003		70.0	d	1.4	5/2+	99			ε=100	
	-43903	8	1907.6	0.3		1.04	ms	0.04	$(25/2^{+})$				IT=100	
¹⁸³ Os	-43660	50	1,0,10	0.5		13.0	h	0.5	9/2+	91			$\beta^{+}=100$	
	-43490	50	170.71	0.05		9.9	h	0.3	1/2-	91			β^{+} =85 2; IT=15 2	
¹⁸³ Ir	-40197	25				58	m	5	5/2-	91	61Di04	T	$\beta^{+} \approx 100; \alpha = 0.05 \#$	*
¹⁸³ Pt	-35772	16				6.5	m	1.0	1/2-	93	95Bi01	D	$\beta^{+}\approx 100; \alpha=0.00965$	
183 Pt m	-35738	16	34.50	0.08		43	S	5	$(7/2)^{-}$	93			$\beta^{+} \approx 100$; $\alpha < 4e-4$; IT ?	
	-30187	10				42.8	S	1.0	$5/2^{-}$	99	94Pa37	J	$\beta^{+} \approx 100; \alpha = 0.55 \ 25$	
	-30114	10	73.3	0.4		> 1	μs		$(1/2)^{+}$				IT=100	
	-29956	10	230.6	0.6		< 1	μs		$(11/2)^{-}$				IT=100	
	-23800	8				9.4	S	0.7	1/2-	01		_	β^{+} =88.3 20; α =11.7 20;	*
183 Y Z	-23560#	40#	240#	40#	EU	5#	S		13/2+#		01Sc41	I	β^+ ?	*
183 Hg ^p	-23602	13	198	14	AD			0.7	13/2+#				2+ 2 2"	
¹⁸³ Tl ^m	-16587 -15944	10 16	643	14	AD	6.9 60	S	0.7 15	1/2 ⁺ # 9/2 ⁻ #				β^+ =?; α =2# α \approx 1.5; β^+ ?; IT ?	
183Tln	-15944 -15611	20	976.8	17	ΑD	1.48	ms	0.10			01Mu26	ы		
¹⁸³ Pb	-7569	28	970.6	1/		535	μs ms	30	$(3/2^{-})$		01WIU20	ĽJ	$\alpha = ?; \beta^{+} = 10#$	*
$^{183}\text{Pb}^{m}$	-7475	28	94	8	AD	415	ms	20	$(3/2^+)$				$\alpha \approx 100; \beta^+$?	
* ¹⁸³ W			>13 Ey 970			413	1113	20	(13/2)	05			$a \sim 100, p$	**
* ¹⁸³ Ir	T : averag													**
* ¹⁸³ Hg	$D:\ldots;\beta$				- (~)									**
	I: 2001Sc	41= nc	isomer se	en with sa	me ch	aracteris	tics	as ¹⁸⁵ Hg or	¹⁸⁷ Hg					**
$*^{183}Hg^{m}$	I: no	isomer	in same oc	dd-N ¹⁸¹ P	t and 1	⁷⁹ Os		<i>J</i> .	J					**
$*^{183}Tl^{n}$	E: 346.80	0.3) ke	V above 18	$^{3}\text{Tl}^{m}$										**

Nuclide	Mass ex (keV			xcitatio ergy(ke]	Half	-life	J^{π}	Ens	s Referen	ce	Decay modes and intensities (%)	
¹⁸⁴ Lu ¹⁸⁴ Lu ^m	-36410#	400#	non ex	tistent	RN	20 20	s s	3	(3 ⁺) high	90	95Kr04 95Kr04		β=100	
¹⁸⁴ Hf	-41500	40				4.12	h	0.05	0_{+}	90			$\beta^{-}=100$	
¹⁸⁴ Hf ^m	-40230	40	1272.4	0.4		48	S	10	8-	00	95Kr04	TE	$\beta^{-}=100$	
¹⁸⁴ Ta ¹⁸⁴ W	-42841 -45707.3	26 0.9				8.7 Stable	h	0.1 (>180 Ey)	(5^{-}) 0 +	90 90	03Da05	т	$\beta^-=100$ IS=30.64 2; α ?	*
¹⁸⁴ Re	-44227	4				38.0	d	0.5	3(-)	90	0312403	•	$\beta^{+}=100$	•••
	-44039	4	188.01	0.04		169	d	8	8(+)	90			IT=75.4 11; ε=24.6 11	
¹⁸⁴ Os	-44256.1	1.3				STABLE	E	$(>56\mathrm{Ty})$	0_{+}	90			IS=0.02 1; α ?; $2\beta^+$?	*
¹⁸⁴ Ir ¹⁸⁴ Ir ^m	-39611	28	225.65	0.11		3.09	h	0.03	5 ⁻	90			$\beta^{+}=100$	
¹⁸⁴ Pt	-39385 -37332	28 18	225.65	0.11		470 17.3	μs m	0.2	0^{+}	90	95Bi01	D	$\beta^{+} \approx 100; \alpha = 0.00177$	
¹⁸⁴ Pt ^m	-35493	18	1839.4	1.6		1.01	ms	0.05	8-	90)3B101	D	$F \approx 100$, $\alpha = 0.0017$ 7 IT=100	
¹⁸⁴ Au	-30319	22				20.6	s	0.9	5+	03			$\beta^{+}\approx 100; \alpha < 0.016$	
	-30251	22	68.46	0.01		47.6	S	1.4	2+	03	94Ib01	EJ	β^{+} =?; IT=30 10; α <0.016	
	-30091	22	228.40	0.06		69	ns	6	3 ⁻ 0 ⁺	03			IT=100 0+-08 80 6. or-1 11 6	
184Tl	-26349 -16890	10 50			*	30.6 9.7	s s	0.3 0.6	2-#	90	92Bo.D	т	β^+ =98.89 6; α =1.11 6 β^+ =97.9 7; α =2.1 7	
$^{184}\text{Tl}^{m}$	-16790#		100#	100#	*	10#	s	0.0	7 ⁺ #	70)2B0.B	•	β^+ ?; IT ?	
$^{184}{\rm Tl}^{n}$	-16390 #	150#	500#	140#		> 20	ns		(10^{-})		84Sc.A		IT?	*
¹⁸⁴ Pb	-11045	14				490	ms	25	0+	03	02An.A		$\alpha = 80 \ 15; \beta^{+} ?$	
¹⁸⁴ Bi ¹⁸⁴ Bi ^m	1050# 1200#		150#	100#	*	6.6 13	ms	1.5 2	3 ⁺ # 10 ⁻ #		02An.A 02An.A		$\alpha = ?$ $\alpha = ?$	
* ¹⁸⁴ W	T : also 03			100# 'Ge15>:	* 4 0 Ev	13	ms	2	10 #		02AII.A	1	$\alpha = :$	**
* ¹⁸⁴ Os	T: lower 1				25									**
$*^{184}Tl^{n}$	T: alpha d			i ^m not co	oinciden	t with X	(K)	and γ						**
* ¹⁸⁴ Tl ⁿ	I : identifie	ed by (2Sc.A											**
¹⁸⁵ Hf	-38360#	200#				3.5	m	0.6	3/2-#	95			$\beta^- = 100$	
¹⁸⁵ Ta	-41396	14	1000	20		49.4	m	1.5	7/2+#		001111 02		$\beta^{-}=100$	
¹⁸⁵ Ta ^m ¹⁸⁵ W	-40090 -43389.7	30 0.9	1308	29		> 1 75.1	ms d	0.3	$(21/2^{-})$ $3/2^{-}$	95	99Wh03	TJL	D IT=100 β ⁻ =100	*
$^{185}W^m$	-43192.3	0.9	197.43	0.05		1.597		0.004	11/2+	95	94It.A	Т	IT=100	
¹⁸⁵ Re	-43822.2	1.2				STABLE			$5/2^{+}$	95			IS=37.40 2	
	-41698.2		2124	2		123	ns	23	(21/2)		97Sh37	T	IT=100	
¹⁸⁵ Os	-42809.4 -42707.1	1.3	102.2	0.7		93.6	d	0.5	1/2-	95			ε=100	
185 Ir	-42707.1 -40336	1.5 28	102.3	0.7		3.0 14.4	μs h	0.4 0.1	$7/2^{-}$ # $5/2^{-}$	95 95			IT ? β+=100	
¹⁸⁵ Pt	-36680	40				70.9	m	2.4	$(9/2^+)$				$\beta^{+}\approx 100; \alpha=0.0050 \ 20$	*
185 Pt m	-36580	40	103.4	0.2		33.0	m	0.8	$(1/2^{-})$				$\beta^{+}=?; IT<2$	
	-31867	26			*	4.25	m	0.06	$5/2^{-}$	95			$\beta^{+}\approx 100; \alpha=0.26 6$	
185 Au ^m		100#	100#	100#	*	6.8	m	0.3	1/2+#				β^{+} <100; IT ?	
	-26176 -26072	16 16	103.8	1.0		49.1 21.6	s s	1.0 1.5	$1/2^-$ $13/2^+$	95	87Ki.A	E	$\beta^+=94\ 1; \alpha=6\ 1$ IT=54\ 10; $\beta^+=46\ 10; \alpha\approx0.03$	3 4
185Tl	-20072 -19760	50	103.6	1.0		19.5	S	0.5	1/2+#		0/KI.A	E	$\beta^{+}=?; \alpha ?$	<i>3</i> *
$^{185}\text{Tl}^{m}$	-19300	50	452.8	2.0		1.83	s	0.12	,		77Sc03	Е	IT \approx 100; α =0.10 3; β ⁺ ?	
$^{185}\text{Tl}^{n}$	-18760	50	1003.0	2.0		8.3	ns	1.4	$(13/2^+)$)	95La08	T	•	
¹⁸⁵ Pb	-11541	16			*	6.3	S	0.4	3/2-	95			$\alpha = 50 \ 25; \beta^{+} ?$	*
¹⁸⁵ Pb ^m	-11480#	40#	60#	40#	*	4.07	S	0.15	13/2+				$\alpha = 50 \ 25; \beta^{+} ?$	*
¹⁸⁵ Bi ¹⁸⁵ Bi ^m	-2210# -2143	50#	70#	50#	* & * &		ms	7	9/2-#	റാ	96Da06 01Po05		p ?; α ? p=85 6; α=15 6	*
	E : from 99	18 9 W b0°					μs level				ound-state			*
* 185Pt	D: if the 4												•	**
$*^{185}Hg^{m}$	E : ENSDF													**
* ¹⁸⁵ Pb	T: average													**
	T : average								5.1 s activ	vity)				**
* ¹⁸⁵ Bi .185p:m	T : estimat						soto	pes						**
* ¹⁸⁵ Bi ^m	T: average	UIPO	005=50(8)	90Dau	o=44(16	,								**

	Mass ex (keV			Excitationergy(ke			I	Half-	life	J^{π}	Ens	Referen	ce	Decay modes and intensities (%)	
¹⁸⁶ Hf	-36430#	300#					2.6	m	1.2	0^{+}	03			β ⁻ =100	
¹⁸⁶ Ta	-38610	60					10.5	m	0.3	$(2^-,3^-)$	03			$\beta^{-}=100$	
¹⁸⁶ W	-42509.5	1.7					STABLE		(>4.1 Ey)	0^+	03	03Da09	T	IS=28.43 19; $2\beta^-$?; α ?	*
186Wm	-40992.3		1517.2	0.6			18	μs	1	(7^{-})	03			IT=100	
186W ⁿ	-38966.7		3542.8	2.1			> 3	ms		(16^{+})	03			IT=100	*
¹⁸⁶ Re	-41930.2	1.2		_			3.7183	d	0.0011	1-	03			β^- =92.53 10; ε =7.47 10	
	-41781	7	149	7			200	ky	50	(8+)	03			IT=?; β^- <10	*
¹⁸⁶ Os ¹⁸⁶ Ir	-42999.5	1.4					2.0	Py	1.1	0^{+}	03			IS=1.59 3; α =100	
186 Ir	-39173	17	0.0	0.4			16.64	h	0.03	5 ⁺	03	017.05	r.r.	$\beta^{+}=100$	
186Pt	-39172	17	0.8	0.4			1.92	h	0.05	2-	03	91Be25	EI	$\beta^+ \approx 75$; IT ≈ 25	*
¹⁸⁶ Au	-37864	22					2.08	h	0.05	0+	03			$\beta^{+}=100; \alpha \approx 1.4e-4$	
186 A m	-31715	21	227 77	0.07			10.7	m	0.5	3 ⁻ 2 ⁺	03			$\beta^{+}=100; \alpha=0.0008 2$	
186 Au ^p	-31487	21	227.77 non ex	0.07	RN		110 < 2	ns m	10	2.	03	83Po10	т	IT=100	
186Hg	-28539	11	non ex	distent	KIN		1.38	m	0.06	0^{+}	03	83P010	1	$\beta^{+}\approx 100; \alpha=0.0165$	
	-26339 -26322	11	2217.3	0.4			82	μs	5	(8-)	03			$\mu \sim 100, \alpha = 0.010 \text{ J}$ IT=100	
186Tl	-20322 -20190	180	2217.3	0.4		* &	40#	μs s	3	(2^{-})	03	91Va04	T	β^+ ?	*
	-20190 -19874	9	320	180	AD		27.5	s	1.0	(2) (7 ⁺)	03	21 Va04	1	$\beta^+ \approx 100; \alpha \approx 0.006$	*
186TIn	-19501	9	690	180	AD	r cc	2.9	S	0.2	(10^{-})	03			IT=100	*
¹⁸⁶ Pb	-14681	11	070	100	7110		4.82	s	0.03	0+	03			β^{+} ?; α =40 8	
¹⁸⁶ Bi	-3170	80				*	14.8	ms	0.7	(3+)	03	02An.A	Т	$\alpha \approx 100; \beta^+$?	*
	-2900#		270#	140#		*	9.8	ms	0.4	(10^{-})	03	02An.A		$\alpha \approx 100; \beta^+$?	
100Bi ^m														, p	
¹⁸⁶ Bi ^m • ¹⁸⁶ W	T : limit is		ecay; 03E	0a05>17	0 Ey ()3Ce	01 > 2/1	±y 9	/Ge15>6.3	5 Ey for a	x aec	cay			**
186W		$2\beta^-$ d			-	3Ce	01>2/1	±y 9	/Ge15>6.3	5 Ey for (x dec	cay			**
186W 186W ⁿ 186Re ^m	T: limit is	$2\beta^-$ d imit is	3 ms; upp	er limit 3	30 s			±y 9	/Ge15>6.3	5 Ey for (x dec	cay			
186W 186W ⁿ 186Re ^m	T : limit is T : lower l	$2\beta^-$ d imit is inty es	3 ms; upp timated b	er limit 3 y Ensdf	30 s '89 ev	alua	tor	±y 9	/Ge15>6.3	5 Ey for (x dec	cay			**
186W 186W ⁿ 186Re ^m 186Ir ^m	T : limit is T : lower l T : uncerta	$2\beta^-$ d imit is inty es e 91Be	3 ms; upp timated b 25=1.90(0	er limit 3 y Ensdf').05) 70F	30 s '89 ev	alua	tor	±y 9	/Ge15>6.3	5 Ey for (х аес	cay			**
186W 186W ⁿ 186Re ^m 186Ir ^m 186Ir ^m	T: limit is T: lower l T: uncerta T: average E: E is po I: identifie	$2\beta^-$ dimit is inty es $= 91$ Besitive and as de	3 ms; upp timated by 25=1.90(0 and below ecay level	er limit 3 y ENSDF' 0.05) 70F 1.5 keV from ¹⁹⁰	30 s '89 ev 'i.A=2	alua .0(0	tor .1)	zy 9	/Ge15>6.5	5 Ey for (x dec	cay			** ** **
186W 186W ⁿ 186Re ^m 186Ir ^m 186Ir ^m 186Tl	T: limit is T: lower 1 T: uncerta T: average E: E is po I: identifie E: 374.00	$2\beta^-$ d imit is inty es e 91Be. sitive a d as de 0.2) keV	3 ms; upp timated by 25=1.90(0 nd below ecay level V above 18	er limit 3 y ENSDF' 0.05) 70F 1.5 keV from ¹⁹⁰ ³⁶ Tl ^m	30 s '89 ev Fi.A=2 Bi in	alua .0(0	tor .1) a04	±y 9	/Ge15>6.3	5 Ey for α	x dec	cay			** ** ** **
186W 186W ⁿ 186Re ^m 186Ir ^m 186Ir ^m 186Tl	T: limit is T: lower l T: uncerta T: average E: E is po I: identifie	$2\beta^-$ d imit is inty es e 91Be. sitive a d as de 0.2) keV	3 ms; upp timated by 25=1.90(0 nd below ecay level V above 18	er limit 3 y ENSDF' 0.05) 70F 1.5 keV from ¹⁹⁰ ³⁶ Tl ^m	30 s '89 ev Fi.A=2 Bi in	alua .0(0	tor .1) a04	Ξу 9	/Ge15>6.3	5 Ey for (x dec	cay			** ** ** **
186W 186W ⁿ 186Re ^m 186Ir ^m 186Ir ^m 186TI 186TI 186Bi	T: limit is T: lower l T: uncerta T: average E: E is po I: identifie E: 374.0(0 T: average	$2\beta^-$ dimit is inty es e 91Be; sitive a ed as de 0.2) keV	3 ms; upp timated by 25=1.90(0 nd below ecay level V above 18	er limit 3 y ENSDF' 0.05) 70F 1.5 keV from ¹⁹⁰ ³⁶ Tl ^m	30 s '89 ev Fi.A=2 Bi in	alua .0(0	tor .1) a04 1.7)	s	(>300 ns)	3/2-#	x dec	99Be63		β ⁻ ?	**
.186W .186W ⁿ .186Re ^m .186Ir ^m .186Ir ^m .186TI .186TI ⁿ .186Bi	T: limit is T: lower l T: uncerta T: average E: E is po I: identifie E: 374.0(0 T: average -32980# -36770#	$2\beta^-$ dimit is inty es e 91Be; sitive a ed as de 0.2) keV e 02An 400# 200#	3 ms; upp timated by 25=1.90(0 nd below ecay level V above 18	er limit 3 y ENSDF' 0.05) 70F 1.5 keV from ¹⁹⁰ ³⁶ Tl ^m	30 s '89 ev Fi.A=2 Bi in	alua .0(0	tor .1) a04 1.7) 30# 2#	s m	(>300 ns) (>300 ns)	3/2 ⁻ # 7/2 ⁺ #		·		β-?	** ** ** **
186W 186W ⁿ 186Re ^m 186Ir ^m 186Ir ^m 186TI 186TI 187Hf 187Ta 187W	T: limit is T: lower l T: uncerta T: average E: E is po I: identifie E: 374.0(0 T: average -32980# -36770# -39904.8	$2\beta^-$ dimit is inty ese 91Be; sitive a ed as de 0.2) keVe 02An 400# 1.7	3 ms; upp timated by 25=1.90(0 nd below ecay level V above 18	er limit 3 y ENSDF' 0.05) 70F 1.5 keV from ¹⁹⁰ ³⁶ Tl ^m	30 s '89 ev Fi.A=2 Bi in	alua .0(0	tor .1) a04 1.7) 30# 2# 23.72	s m h	(>300 ns) (>300 ns) 0.06	3/2 ⁻ # 7/2 ⁺ # 3/2 ⁻	92	99Be63 99Be63	I	β^{-} ? $\beta^{-}=100$	** ** ** ** ** ** **
¹⁸⁶ W (186 W n (186 K n n n n n n n n n n n n n n n n n n	T: limit is T: lower I T: uncerta T: average E: E is po I: identific E: 374.0(T: average -32980# -36770# -39904.8 -41215.7	$2\beta^-$ dimit is inty es e 91Be stive a ed as de 0.2) keV e 02An 400# 1.7 1.4	3 ms; upp timated by 25=1.90(0 nd below ecay level V above 18	er limit 3 y ENSDF' 0.05) 70F 1.5 keV from ¹⁹⁰ ³⁶ Tl ^m	30 s '89 ev Fi.A=2 Bi in	alua .0(0	tor .1) a04 1.7) 30# 2# 23.72 41.2	s m h Gy	(>300 ns) (>300 ns)	3/2 ⁻ # 7/2 ⁺ # 3/2 ⁻ 5/2 ⁺	92 91	99Be63	I	β^- ? β^- =100 IS=62.60 2; β^- =100;	*** **
186W 186W ⁿ 186Re ^m 186Ir ^m 186Tl 186Tl 186Tl ⁿ 187Tl 187Ta 187Ya 187 Hf	T: limit is T: lower l T: uncerta T: uncerta T: average E: E is po II: identifie E: 374.0((T: average) - 32980# - 36770# - 39904.8 - 41215.7 - 41218.2	2β dimit is inty es e 91Be a sitive a ed as de 0.2) keV e 02An 400# 1.7 1.4 1.4	3 ms; upp timated by 25=1.90(0 nd below ecay level V above 18	er limit 3 y ENSDF' 0.05) 70F 1.5 keV from ¹⁹⁰ ³⁶ Tl ^m	30 s '89 ev Fi.A=2 Bi in	alua .0(0	tor .1) a04 1.7) 30# 2# 23.72 41.2 STABLE	s m h Gy	(>300 ns) (>300 ns) 0.06 0.2	3/2 ⁻ # 7/2 ⁺ # 3/2 ⁻ 5/2 ⁺ 1/2 ⁻	92 91 92	99Be63 99Be63	I	β^- ? β^- =100 IS=62.60 2; β^- =100; IS=1.96 2	** ** ** ** ** ** **
186 W 186 W 186 Re ^m 186 Re ^m 186 Ir ^m 186 Ir ^m 186 Ir ^m 186 Tl ⁿ 186 Tl ⁿ 186 Tl ⁿ 187 Tl 187 Tl 187 W 187 Re 187 Os 187 Ir	T: limit is T: lower I T: uncerta T: uncerta T: uncerta T: average E: E: is po I: identifie E: 374.0(0 T: average - 32980# - 36770# - 39904.8 - 41215.7 - 41218.2 - 39716	$2\beta^{-}$ dimit is inty es e 91Be; sitive a ed as de 0.2) ke\text{e} 02An 400# 1.7 1.4 1.4 6	3 ms; upp timated b 25=1.90(0 nd below ecay level V above 11 .A=14.8(0	er limit 3 y ENSDF' 0.05) 70F 1.5 keV from ¹⁹⁰ 36TI''').8) 97Ba	30 s '89 ev Fi.A=2 Bi in	alua .0(0	30# 23.72 41.2 STABLE 10.5	s m h Gy	(>300 ns) (>300 ns) 0.06 0.2	3/2 ⁻ # 7/2 ⁺ # 3/2 ⁻ 5/2 ⁺ 1/2 ⁻ 3/2 ⁺	92 91 92 91	99Be63 99Be63	I	β^- ? β^- =100 IS=62.60 2; β^- =100; IS=1.96 2 β^+ =100	** ** ** ** ** ** **
186W 186Re ^m 186Ir ^m 186Ir ^m 186Tl ^m 186Tl ⁿ 186Tl 187Tl 187Ta 187 Re 187 Os 187 Ir 187 Ir	T: limit is T: lower I T: uncerta T: uncerta T: average E: E: E: Eis po I: identifite E: 374.0(0 T: average - 32980# - 36770# - 39904.8 - 41215.7 - 41218.2 - 39716 - 39530	2β dimit is sinty es e 91Be; sitive a da s de 0.2) ke\ e 02An 400# 1.7 1.4 1.4 6 6	3 ms; upp timated by 25=1.90(0 nd below ecay level V above 18	er limit 3 y ENSDF' 0.05) 70F 1.5 keV from ¹⁹⁰ ³⁶ Tl ^m	30 s '89 ev Fi.A=2 Bi in	alua .0(0	tor .1) a04 1.7) 30# 2# 23.72 41.2 STABLE 10.5 30.3	s m h Gy h ms	(>300 ns) (>300 ns) 0.06 0.2 0.3 0.6	3/2 ⁻ # 7/2 ⁺ # 3/2 ⁻ 5/2 ⁺ 1/2 ⁻ 3/2 ⁺ 9/2 ⁻	92 91 92 91 91	99Be63 99Be63	I	β^- ? β^- =100 IS=62.60 2; β^- =100; IS=1.96 2 β^+ =100 IT=100	*** **
186 W 186 W 186 W 186 Ke m 186 It m 187 It a 187 It a 187 W 187 Re 187 Os 187 It m 187	T: limit is T: lower l T: uncerta T: average E: E: E: spo l: identifie E: 374.0(0 T: average -32980# -36770# -39904.8 -41215.7 -41218.2 -39716 -39530 -36713	2β dimit is inty es e 91Be; sitive a ed as de 0.2) keV e 02An 400# 1.7 1.4 6 6 28	3 ms; upp timated b 25=1.90(0 nd below ecay level V above 11 .A=14.8(0	er limit 3 y ENSDF' 0.05) 70F 1.5 keV from ¹⁹⁰ 36TI''').8) 97Ba	30 s '89 ev Fi.A=2 Bi in	alua .0(0	tor .1) a04 1.7) 30# 2# 23.72 41.2 STABLE 10.5 30.3 2.35	s m h Gy h ms h	(>300 ns) (>300 ns) 0.06 0.2 0.3 0.6 0.03	3/2 ⁻ # 7/2 ⁺ # 3/2 ⁻ 5/2 ⁺ 1/2 ⁻ 3/2 ⁺ 9/2 3/2 ⁻	92 91 92 91 91 91	99Be63 99Be63	I	β^- ? β^- =100 IS=62.60 2; β^- =100; IS=1.96 2 β^+ =100 IT=100 β^+ =100	*** **
186W 186W ⁿ 186Re ^m 186Ir ^m 186Ir ^m 186TI 186TI ⁿ 187Hf 187Ta 187W 187Re 187Os 187Ir ^m 187 Is	T: limit is T: lower l T: uncerta T: average E: E is po L: detailed E: 374.0(C T: average -32980# -36770# -39904.8 -41215.7 -41218.2 -39716 -39530 -36713 -33005	2β - d imit is inty es e 91Be; sitive a ed as de 0.2) keV e 02An 400# 1.7 1.4 6 6 28 25	3 ms; upp timated by 25=1.90((nd below becay level W above 11 A=14.8((er limit 3 y ENSDF' 1.05) 70F 1.5 keV from ¹⁹⁰ 36TI'' 0.8) 97Ba	30 s '89 ev Fi.A=2 Bi in	alua .0(0	30# 2# 23.72 41.2 STABLE 10.5 30.3 2.35 8.4	s m h Gy h ms h m	(>300 ns) (>300 ns) 0.06 0.2 0.3 0.6 0.03 0.3	3/2 ⁻ # 7/2 ⁺ # 3/2 ⁻ 5/2 ⁺ 1/2 ⁻ 3/2 ⁻ 9/2 ⁻ 1/2 ⁺	92 91 92 91 91 91	99Be63 99Be63	I	$\begin{array}{l} \beta^- ? \\ \beta^- = 100 \\ \text{IS} = 62.60 \ 2; \ \beta^- = 100; \dots \\ \text{IS} = 1.96 \ 2 \\ \beta^+ = 100 \\ \text{IT} = 100 \\ \beta^+ = 100 \\ \beta^+ \approx 100; \alpha = 0.003\# \end{array}$	** ** ** ** ** ** **
186W 186W 186W 186W 186K 186Rem 186Irm 186Irm 186Tl 186Tl 187Hf 187Ta 187W 187W 187 Ir	T: limit is T: lower I T: uncerta T: uncerta T: uncerta T: average E: E is po I: identifie E: 374.0((T: average -32980# -36770# -39904.8 -41215.7 -41218.2 -39716 -39530 -36733 -36733 -36733 -36735 -32884	2β - d imit is inty es ≥ 91Be; sitive a ed as de 0.2) keV ≥ 02An 400# 1.7 1.4 6 6 28 25 25	3 ms; upp timated b 25=1.90(0 nd below ecay level V above 11 .A=14.8(0	er limit 3 y ENSDF' 0.05) 70F 1.5 keV from ¹⁹⁰ 36TI''').8) 97Ba	30 s '89 ev Fi.A=2 Bi in	alua .0(0 91Va 55.0(tor .1) a04 1.7) 30# 2# 23.72 41.2 STABLE 10.5 30.3 2.35 8.4 2.3	s m h Gy h ms h m s	(>300 ns) (>300 ns) 0.06 0.2 0.3 0.6 0.03 0.3 0.1	3/2 ⁻ # 7/2 ⁺ # 3/2 ⁻ 5/2 ⁺ 1/2 ⁻ 3/2 ⁻ 9/2 ⁻ 1/2 ⁺ 9/2 ⁻	92 91 92 91 91 91 91	99Be63 99Be63	I	$\begin{array}{l} \beta^- ? \\ \beta^- = 100 \\ \text{IS} = 62.60 \ 2; \ \beta^- = 100; \dots \\ \text{IS} = 1.96 \ 2 \\ \beta^+ = 100 \\ \text{IT} = 100 \\ \beta^+ = 100 \\ \beta^+ \approx 100; \ \alpha = 0.003\# \\ \text{IT} = 100 \end{array}$	** ** ** ** ** ** **
186W 186Wn 186Rem 186Irm 186Irm 186Tl 186Tl 187Hf 187Ta 187Ta 187Re 187 os 187 ir 187 ir	T: limit is T: lower I T: uncerta T: uncerta T: uncerta T: uncerta T: average E: E: is po I: identifie E: 374.0(t T: average - 32980# - 36770# - 39904.8 - 41215.2 - 39716 - 39530 - 36730 - 36730 - 36730 - 33035 - 32884 - 28118	2\(\beta^-\) dimit is inty es e 9 1Be; sitive a et as de 3.2) ke\(\text{e} 0.2) ke\(\text{e} 0.2) ke\(\text{e} 1.7 \) 1.4 1.4 6 6 28 25 25 14	3 ms; upp timated b, 25=1,90((mtd below scay level V above 18 .A=14.8((186.15	er limit 3 y ENSDF' 1.5 keV from ¹⁹⁰ 0.86 TI ^m 0.89 97Ba 0.04	80 s 89 ev ii.A=2 Bi in in 1	alua 0(0 91Va 55.0(tor .1) a04 1.7) 30# 2# 23.72 41.2 STABLE 10.5 30.3 2.35 8.4 2.3 1.9	s m h Gy h ms h m s m	(>300 ns) (>300 ns) 0.06 0.2 0.3 0.6 0.03 0.3 0.1 0.3	3/2 ⁻ # 7/2 ⁺ # 3/2 ⁻ 5/2 ⁺ 1/2 ⁻ 3/2 ⁻ 1/2 ⁺ 9/2 ⁻ 3/2 ⁻ 1/2 ⁻ 3/2 ⁻	92 91 92 91 91 91 91 91	99Be63 99Be63	I	β^- ? β^- ? β^- 100 IS=62.60 2; β^- =100; IS=1.96 2 β^+ =100 IT=100 β^+ ≈100; α =0.003# IT=100 β^+ =100; α >1.2e–4	** ** ** **
186 W 186 W ⁿ 186 Re ^m 186 Ir ^m 186 Ir ^m 186 Tl 186 Tl 187 Ta 187 Ta 187 W 187 Re 187 Ir 187 Ir 187 Ir 187 Au 187 Au 187 Au 187 Au 187 Hg 187 Hg	T: limit is T: lower I T: uncerta T: average E: E: E: po D: i: identifite E: 374.0(C T: average - 32980# - 36770# - 39904.8 - 41215.7 - 41218.2 - 39716 - 39530 - 36713 - 33055 - 32884 - 28118 - 28059	2\$\beta^{-}\$ dimit is inty es \$9\$ lBe; sinty es \$9\$ lBe; sinty es \$2\$ lBe; solid as de \$0.2\$ ke\cdot 22An \$1.4\$ la.4 6 6 6 28 25 14 20	3 ms; upp timated by 25=1.90((nd below becay level W above 11 A=14.8((er limit 3 y ENSDF' 1.05) 70F 1.5 keV from ¹⁹⁰ 36TI'' 0.8) 97Ba	30 s '89 ev Fi.A=2 Bi in	alua .0(0 91Va 55.0(30# 2# 23.72 41.2 STABLE 10.5 30.3 2.35 8.4 2.3 1.9 2.4	s m h Gy h ms h m s m m	(>300 ns) (>300 ns) 0.06 0.2 0.3 0.6 0.03 0.3 0.1	3/2 ⁻ # 7/2 ⁺ # 3/2 ⁻ 5/2 ⁺ 1/2 ⁻ 3/2 ⁻ 1/2 ⁺ 9/2 ⁻ 3/2 ⁻ 1/2/ 13/2 ⁺	92 91 92 91 91 91 91 91	99Be63 99Be63	I	β^- ? β^- :100 IS=62.60 2; β^- =100; IS=1.96 2 β^+ =100 IT=100 β^+ =100; α =0.003# IT=100 β^+ =100; α >1.2e-4 β^+ =100; α >2.5e-4	*** **
186W 186Wn 186Rem 186Irm 186Irm 186Tl 186Tl 187Hf 187Ta 187Ta 187Re 187 os 187 ir 187 ir	T: limit is T: lower l T: uncerta T: average E: E: E: ps po I: identifit E: 374.0(0 T: average -32980# -36770# -39904.8 -41215.7 -41218.2 -39716 -39530 -36713 -33005 -328818 -28059 -22444	2\(\beta^-\) dimit is inty ese 2 91Be; sittive a dd as dd as dd as dd 20.2) ke\(\beta^-\) ke\(\beta^-\) 200# 1.4 1.4 6 6 28 25 25 14 20 8	3 ms; upp timated by timated by 25=1.90(c) molecular by 25=1.90(c) which should be shown as a pleveled of above 18 above	er limit 3 y ENSDF' 1.05) 70F 1.5 keV from ¹⁹⁰ 36TI ^m 0.8) 97Ba 0.04 0.16	80 s 89 ev ii.A=2 Bi in a21=1	alua 0(0 91Va 55.0(30# 2# 23.72 41.2 STABLE 10.5 30.3 2.35 8.4 2.3 1.9 2.4 51	s m h Gy h ms h m s m m s	(>300 ns) (>300 ns) 0.06 0.2 0.3 0.6 0.03 0.3 0.1 0.3 0.3	3/2 ⁻ # 7/2 ⁺ # 3/2 ⁻ 5/2 ⁺ 1/2 ⁻ 3/2 ⁻ 3/2 ⁻ 1/2 ⁺ 9/2 ⁻ 3/2 ⁻ 13/2 ⁺ (1/2 ⁺)	92 91 92 91 91 91 91 91 91 99	99Be63 99Be63	I	β^- ? β^- ? β^- =100 IS=62.60 2; β^- =100; IS=1.96 2 β^+ =100 IT=100 β^+ =100; α =0.003# IT=100 β^+ =100; α >1.2e-4 β^+ =100; α >2.5e-4 β^+ <100; α ?	*** **
186W 186W 186W 186W 186K 186Rem 186Irm 186Irm 186Irm 186TI 186Bi 187Hf 187Ta 187W 187Re 187Os 187Ir 187Irm 187Au 187Au 187Au 187Au 187Au 187Au 187TI 187TI 187TI'm 187	T: limit is T: lower l T: uncerta T: average T: average E: E: E is po I: identifie E: 374.0(6 T: average - 32980# - 36770# - 39904.8 - 41215.7 - 41218.2 - 39716 - 39530 - 36713 - 33005 - 32884 - 28015 - 22444 - 22109	2\(\beta^-\) dimit is inty ese \$9 \text{IBe}. \text{inty} into \$\text{e}\$ of \$1\text{Be}. \text{distinct}\$ as \$\text{d}\$ das \$\text{d}\$ as \$\text{d}\$ das \$\text{d}\$ as \$\text{d}\$ 22An \$\text{d}\$ \text{d}\$ = \$0.2\text{A}\$ n \$\text{d}\$ = \$0.2\text{d}\$ \text{d}\$ = \$0.2\text{d}\$ \text{d}\$ = \$0.2\text{d}\$ = \$0.2\text{d}\$ \text{d}\$ = \$0.2\text{d}\$ = \$0.2	3 ms; upp timated b, 25=1,90((mtd below scay level V above 18 .A=14.8((186.15	er limit 3 y ENSDF' 1.5 keV from ¹⁹⁰ 0.86 TI ^m 0.89 97Ba 0.04	80 s 89 ev Fi.A=2 Bi in a21=1 MD	& &	tor .1) a04 1.7) 30# 2# 23.72 41.2 STABLE 10.5 30.3 2.35 8.4 2.3 1.9 2.4 51 15.60	s m h Gy h ms h m s m m s s	(>300 ns) (>300 ns) 0.06 0.2 0.3 0.6 0.03 0.3 0.1 0.3 0.3	3/2 ⁻ # 7/2 ⁺ # 3/2 ⁻ 5/2 ⁺ 1/2 ⁻ 3/2 ⁻ 1/2 ⁺ 9/2 ⁻ 3/2 ⁻ 13/2 ⁺ (1/2 ⁺) (9/2 ⁻)	92 91 92 91 91 91 91 91 91 99	99Be63 99Be63	I	$\begin{array}{l} \beta^-?\\ \beta^-=100\\ \text{IS}=62.60\ 2;\ \beta^-=100;\ \dots\\ \text{IS}=1.96\ 2\\ \beta^+=100\\ \text{IT}=100\\ \beta^+=100;\ \alpha=0.003\#\\ \text{IT}=100\\ \beta^+=100;\ \alpha>0.03\#\\ \text{IT}=100\\ \beta^+=100;\ \alpha>2.5e-4\\ \beta^+<100;\ \alpha?\\ \text{IT}=?;\ \beta^+\ ?;\ \alpha=0.15\ 5\\ \end{array}$	*** **
186W 186W" 186Rem 186Rem 186Irm 186FI 186FI 186FI 186FI 187Hf 187Ta 187Ta 187Ta 187Tr 187Ir 187Ir 187Au	T: limit is T: lower I T: uncerta T: uncerta T: uncerta T: uncerta T: average E: E is po I: identifie E: 374.0(0 T: average - 32980# - 34070# - 34070# - 340716 - 39530 - 36713 - 33005 - 32884 - 28118 - 28059 - 22444 - 22109 - 14980	2β ⁻ d mit is inty es e 91Be/c inty es e 91Be/c itive a dd as dd 2.2) ke v 02An 400# 1.7 1.4 6 6 6 28 25 14 20 8 8 8 8	3 ms; upp timated by 25=1.90(cm delow below becard level when the second level of the second becard level of the second becard the second becard level of the second becard level of the second becard the second because the	er limit 3 y ENSDF' 1.0.05) 70F 1.5 keV from ¹⁹⁰ 1671''' 0.04 0.04 0.16 16 3	80 s 89 ev Fi.A=2 Bi in a21=1 MD	alua .0(0 91Va 55.0(tor .1) a04 1.7) 30# 2# 23.72 41.2 STABLE 10.5 30.3 2.35 8.4 2.3 1.9 2.4 51 15.60 15.2	s m h Gy h ms h m s m m s s s s	(>300 ns) (>300 ns) 0.06 0.2 0.3 0.6 0.03 0.3 0.1 0.3 0.3	3/2 ^{-#} 7/2 ⁺ # 3/2 ⁻ 5/2 ⁺ 1/2 ⁻ 3/2 ⁻ 1/2 ⁺ 9/2 ⁻ 3/2 ⁻ 13/2 ⁺ (1/2 ⁺) (9/2 ⁻) (3/2 ⁻)	92 91 92 91 91 91 91 91 99 99	99Be63 99Be63	I	$\begin{array}{l} \beta^-?\\ \beta^-=100\\ \mathrm{IS}=62.60\ 2;\ \beta^-=100; \dots\\ \mathrm{IS}=1.96\ 2\\ \beta^+=100\\ \mathrm{IT}=100\\ \beta^+=100\\ \beta^+\approx100;\ \alpha=0.003\#\\ \mathrm{IT}=100\\ \beta^+=100;\ \alpha>1.2\mathrm{e}-4\\ \beta^+=100;\ \alpha>2.5\mathrm{e}-4\\ \beta^+<100;\ \alpha?\\ \mathrm{IT}=?;\ \beta^+\ ?;\ \alpha=0.15\ 5\\ \beta^+=93\ 2;\ \alpha=7\ 2 \end{array}$	*** **
186W 186W 186W 186W 186K 186Rem 186Irm 186Irm 186Irm 186TI 186Bi 187Hf 187Ta 187W 187Re 187Os 187Ir 187Irm 187Pu 187Au 1	T: limit is T: lower I T: uncerta T: uncerta T: uncerta T: uncerta T: average E: E: is po I: identifie E: 374.0(t T: average - 32980# - 36770# - 39904.8 - 41215.2 - 39716 - 39530 - 36713 - 33005 - 32884 - 28118 - 28059 - 22444 - 22109 - 14980 - 14969	2\(\beta^-\) dimit is inty es \(\epsilon\) 91Be's inty es \(\epsilon\) 91Be's itive a da as de 0.2) ke\(\epsilon\) e 02An 400# 1.7 1.4 6 6 28 28 25 14 20 8 8 8	3 ms; upp timated by timated by 25=1.90(c) molecular by 25=1.90(c) which should be shown as a pleveled of above 18 above	er limit 3 y ENSDF' 1.05) 70F 1.5 keV from ¹⁹⁰ 36TI ^m 0.8) 97Ba 0.04 0.16	80 s 89 ev Fi.A=2 Bi in a21=1 MD	alua .0(0 91Va 55.0(30# 2# 23.72 41.2 530.3 2.35 8.4 2.3 1.9 2.4 51 15.60 15.2 18.3	s m h Gy h ms h m s m m s s s s	(>300 ns) (>300 ns) 0.06 0.2 0.3 0.6 0.03 0.3 0.1 0.3 0.3 0.12 0.3 0.3	3/2 ⁻ # 7/2 ⁺ # 3/2 ⁻ 5/2 ⁺ 1/2 ⁻ 3/2 ⁻ 1/2 ⁻ 3/2 ⁻ 1/2 ⁺ 9/2 ⁻ 3/2 ⁻ 13/2 ⁺ (1/2 ⁺) (9/2 ⁻) (3/2 ⁻) (13/2 ⁺)	92 91 92 91 91 91 91 91 99 99 00 00	99Be63 99Be63	I	$\begin{array}{l} \beta^-?\\ \beta^-:100\\ \text{IS}=62.60\ 2;\ \beta^-=100; \dots\\ \text{IS}=1.96\ 2\\ \beta^+=100\\ \text{IT}=100\\ \beta^+\approx100;\ \alpha=0.003\#\\ \text{IT}=100\\ \beta^+=100;\ \alpha>0.03\#\\ \text{IT}=100\\ \beta^+=100;\ \alpha>0.003\#\\ \text{IT}=100;\ \alpha>0.003\#\\ \text{IT}=1000;\ \alpha>0.003\#\\ \text{IT}=1000;\ \alpha>0.003\#\\ \text{IT}=1000;\ \alpha>0.003\#\\ \text{IT}=1000;\ \alpha>0.003\#\\ \text{IT}$	*** **
186 W 186 W ⁿ 186 R ^m 186 Ir ^m 186 Ir ^m 186 Ir ^m 186 Tl 186 Tl 187 Hf 187 Ta 187 W 187 Ro 187 Ir 187 Ir 187 Ir 187 Pt 187 Au 187 Hg	T: limit is T: lower I T: uncerta T: average E: E: E: po D: i: identifite E: 374.0(C T: average S:	2\(\beta^-\) dimit is inty ese e 91Be/6; sitive a dd as dd as dd as dd 20.2) ke\(\beta^-\) e 02An \(\beta^-\) 1.4 \(\beta^-\) 1.4 \(\beta^-\) 28 \(\beta^-\) 25 \(\beta^-\) 25 \(\beta^-\) 14 \(\beta^-\) 28 \(\beta^-\) 8 \(\beta^-\) 11 \(\beta^-\) 15	3 ms; upp timated by 25=1,90((ms tell points) and below scay level by above 18 .A=14.8((186.15 120.51 59 335 11	er limit 3 y ENSDF' y ENSDF' N.05) 70F 1.5 keV from ¹⁹⁰ 0.86 TI ^m 0.8) 97Ba 0.04 0.16 16 3 11	80 s 89 ev 8	alua .0(0 91Va 55.0(30# 2# 23.72 41.2 STABLE 10.5 30.3 2.35 8.4 2.3 1.9 2.4 51 15.60 15.2 18.3 32	s m h Gy h ms h m s m m s s s s ms	(>300 ns) (>300 ns) 0.06 0.2 0.3 0.6 0.03 0.3 0.1 0.3 0.3 0.3 0.3 0.3	3/2 ⁻ # 7/2 ⁺ # 3/2 ⁻ 5/2 ⁺ 1/2 ⁻ 3/2 ⁻ 3/2 ⁻ 1/2 ⁺ 9/2 ⁻ 3/2 ⁻ 13/2 ⁺ (1/2 ⁺) (9/2 ⁻) (3/2 ⁻) (13/2 ⁻) (13/2 ⁻) (13/2 ⁻ #	92 91 92 91 91 91 91 91 99 99 00 00 01	99Be63 99Be63	I	$\begin{array}{l} \beta^-?\\ \beta^-=100\\ \text{IS}=62.60\ 2;\ \beta^-=100;\ \dots\\ \text{IS}=1.96\ 2\\ \beta^+=100\\ \text{IT}=100\\ \beta^+=100\\ \beta^+=100;\ \alpha=0.003\#\\ \text{IT}=100\\ \beta^+=100;\ \alpha>1.2e-4\\ \beta^+=100;\ \alpha>2.5e-4\\ \beta^+<100;\ \alpha?\\ \text{IT}=?;\ \beta^+\ ?;\ \alpha=0.15\ 5\\ \beta^+=93\ 2;\ \alpha^-2\\ \beta^+=88\ 2;\ \alpha=12\ 2\\ \alpha>50;\ \beta^+\ ? \end{array}$	** ** ** ** ** ** **
186W 186W" 186Rem 186Rem 186Rem 186RIm 186RIm 186TI 186TI 186TI 187Ta 187Ta 187Ta 187 Iv 187 Iv 187 Iv 187 Au 187 Au 187 Au 187 Au 187 Au 187 Au 187 Fb 187 Fb 187 Fb 187 Fb	T: limit is T: lower I T: uncerta T: uncerta T: uncerta T: uncerta T: average E: E: is po I: identifie E: 374.0(t T: average - 32980# - 36770# - 39904.8 - 41215.2 - 39716 - 39530 - 36713 - 33005 - 32884 - 28118 - 28059 - 22444 - 22109 - 14980 - 14969	2\(\beta^-\) dimit is inty es \(\epsilon\) 91Be's inty es \(\epsilon\) 91Be's itive a da as de 0.2) ke\(\epsilon\) e 02An 400# 1.7 1.4 6 6 28 28 25 14 20 8 8 8	3 ms; upp timated by 25=1.90(cm delow below becard level when the second level of the	er limit 3 y ENSDF' 1.0.05) 70F 1.5 keV from ¹⁹⁰ 1671''' 0.04 0.04 0.16 16 3	80 s 89 ev Fi.A=2 Bi in a21=1 MD	alua .0(0 91Va 55.0(30# 2# 23.72 41.2 530.3 2.35 8.4 2.3 1.9 2.4 51 15.60 15.2 18.3	s m h Gy h ms h m s m m s s s s	(>300 ns) (>300 ns) 0.06 0.2 0.3 0.6 0.03 0.3 0.1 0.3 0.3 0.12 0.3 0.3	3/2 ⁻ # 7/2 ⁺ # 3/2 ⁻ 5/2 ⁺ 1/2 ⁻ 3/2 ⁻ 1/2 ⁺ 9/2 ⁻ 3/2 ⁻ 1/2 ⁺ (1/2 ⁺) (9/2 ⁻) (3/2 ⁻) (13/2 ⁺) 9/2 ⁻ # 1/2 ⁺ #	92 91 92 91 91 91 91 91 99 99 00 00 01 01	99Be63 99Be63	T	$\begin{array}{l} \beta^-?\\ \beta^-=100\\ \mathrm{IS=62.60\ 2;}\ \beta^-=100; \dots\\ \mathrm{IS=1.96\ 2}\\ \beta^+=100\\ \mathrm{IT=100}\\ \beta^+=100\\ \beta^+=100;\ \alpha=0.003\#\\ \mathrm{IT=100}\\ \beta^+=100;\ \alpha>1.2\mathrm{e}-4\\ \beta^+=100;\ \alpha>2.5\mathrm{e}-4\\ \beta^+=100;\ \alpha>2.5\mathrm{e}-4$	** ** ** ** ** ** **
186 W 186 W 186 Rem 186 Rem 186 Irm 186 Irm 186 Irl 186 TI 186 TI 186 TI 187 Hf 187 Ta 187 W 187 Re 187 Os 187 Ir 187 Au 187 Au 187 Au 187 Au 187 Au 187 Au 187 Fe 187 Ir 187 Ff	T: limit is T: lower I T: uncerta T: average E: E: E: po Di I: identifit E: 374.0(0 T: average A: 36770# — 39904.8 — 41215.7 — 41218.2 — 39716 — 39530 — 36713 — 33005 — 328818 — 28059 — 22444 — 22109 — 14969 — 14969 — 6373 — 6272	2β ⁻ d mit is inty es e 91Be/s itive a ed as de 0.2) ke\text{e 02An} 400# 200# 1.7 1.4 6 6 6 28 25 14 20 8 8 8 11 15 15 18 15	3 ms; upp timated by 25=1.90((nd below scay level V above 1	er limit 3 y ENSDF' y ENSDF' 1.5 keV from ¹⁹⁰ 66TI ^m 0.8) 97Ba 0.04 0.16 16 3 11 20	80 s 89 ev 8	alua .0(0 91Va 55.0(30# 2# 23.72 41.2 STABLE 10.5 30.3 2.35 8.4 2.3 1.9 2.4 51 15.60 15.2 18.3 32 32 32	s m h Gy h ms h m s m m s s s s ms µs	(>300 ns) (>300 ns) 0.06 0.2 0.3 0.6 0.03 0.3 0.1 0.3 0.3 0.3 0.3 0.3 0.3 0.3	3/2 ⁻ # 7/2 ⁺ # 3/2 ⁻ 5/2 ⁺ 1/2 ⁻ 3/2 ⁻ 3/2 ⁻ 1/2 ⁺ 9/2 ⁻ 3/2 ⁻ 13/2 ⁺ (1/2 ⁺) (9/2 ⁻) (3/2 ⁻) (13/2 ⁻) (13/2 ⁻) (13/2 ⁻ #	92 91 92 91 91 91 91 91 99 99 00 00 01 01	99Be63 99Be63 01Ga01	T	$\begin{array}{l} \beta^-?\\ \beta^-=100\\ \mathrm{IS=62.60\ 2;}\ \beta^-=100; \dots\\ \mathrm{IS=1.96\ 2}\\ \beta^+=100\\ \mathrm{IT=100}\\ \beta^+=100\\ \beta^+=100;\ \alpha=0.003\#\\ \mathrm{IT=100}\\ \beta^+=100;\ \alpha>1.2\mathrm{e}-4\\ \beta^+=100;\ \alpha>2.5\mathrm{e}-4\\ \beta^+=100;\ \alpha>2.5\mathrm{e}-4$	*** *** *** *** ***

Nuclide	Mass ex (keV			Excitation nergy(keV			H	Ialf-	-life	J^{π}	Ens	Referen	ce	Decay modes and intensities (%)	
¹⁸⁸ Hf ¹⁸⁸ Ta ¹⁸⁸ W ¹⁸⁸ Re	-30880# -33810# -38667	200#					20# 20# 69.78	s s d	(>300 ns) (>300 ns) 0.05	0 ⁺	02 02 02	99Be63 99Be63		β^{-} ? β^{-} ? β^{-} =100	_
¹⁸⁸ Re ^m ¹⁸⁸ Os ¹⁸⁸ Ir	-39016.1 -38844.0 -41136.4 -38328	1.4 1.4 1.4 7	172.069	0.009			17.0040 18.59 STABLE 41.5	h m h	0.0022 0.04 0.5	1 ⁻ (6) ⁻ 0 ⁺ 1 ⁻	02 02 02 02			β ⁻ =100 IT=100 IS=13.24 8 β ⁺ =100	
¹⁸⁸ Ir ^m ¹⁸⁸ Pt ¹⁸⁸ Au	-37360 -37823 -32301	30 5 20	970	30			4.2 10.2 8.84	ms d m		7 ⁺ # 0 ⁺ 1 ⁽⁻⁾	02 02 02	ABBW	Е	IT \approx 100; β ⁺ ? ϵ =100; α =2.6e–5 3 β ⁺ =100	*
¹⁸⁸ Hg ¹⁸⁸ Hg ^m ¹⁸⁸ Tl ¹⁸⁸ Tl ^m	-30202 -27478 -22350	12 12 30	2724.3	0.4	*		3.25 134 71	m ns s	0.15 15 2	0^{+} (12^{+}) (2^{-})	02 02 02			$\beta^{+}=100; \alpha=3.7e-5 8$ IT=100 $\beta^{+}=100$	
¹⁸⁸ Tl ⁿ ¹⁸⁸ Pb ¹⁸⁸ Pb ^m	-22307 -22038 -17815 -15237	10 10 11 11	40 310 2578.2	30 30 0.7	MD *		71 41 25.5 830	ms s ns	1 4 0.1 210	(7^+) (9^-) 0^+ (8^-)	02 02 02 02			$\beta^{+}=100$ IT \approx 100; β^{+} ? $\beta^{+}=?$; $\alpha=9.3$ 8 IT=100	*
¹⁸⁸ Pb ⁿ ¹⁸⁸ Pb ^p ¹⁸⁸ Bi	-15102 -15020 -7200	11 50 50	2713.0 2800	0.6	*	&	94 797 44	ns ns ms	21	(11 ⁻) 3 ⁺ #	02 02 02	97Wa05	Т	IT=100 IT=100 α=?; β ⁺ ?	*
¹⁸⁸ Bi ^m ¹⁸⁸ Po * ¹⁸⁸ Ir ^m			210# keV above 9		el, from		220 430 ISDF	ms μs	40 180	(10 ⁻) 0 ⁺	02 02	97Wa05	T	$\alpha=?; \beta^+? \\ \alpha=?; \beta^+?$	*
* ¹⁸⁸ Tl ⁿ * ¹⁸⁸ Pb ^p * ¹⁸⁸ Bi * ¹⁸⁸ Bi ^m	E: 2700.5 T: averag	above e 97Wa	V above ¹⁸⁸ unknown le 05=46(7) 8 05=218(50	evel, see I 4Sc.A=4	Ensdf'() 4(3))2									** ** **
¹⁸⁹ Ta ¹⁸⁹ W	-31830#						3#	s	(>300 ns)	,	0.1	99Be63		β-?	
¹⁸⁹ Re ¹⁸⁹ Os ¹⁸⁹ Os	-35480 -37978 -38985.4 -38954.6	200 8 1.5 1.5	30.814	0.018			11.6 24.3 STABLE 5.8	m h	0.3 0.4 0.1	(3/2 ⁻) 5/2 ⁺ 3/2 ⁻ 9/2 ⁻	91 91 91 91	97Ya03	1	β ⁻ =100 β ⁻ =100 IS=16.15 5 IT=100	*
¹⁸⁹ Ir ¹⁸⁹ Ir ^m ¹⁸⁹ Ir ⁿ	-38453 -38081 -36120	1.3 13 13	372.18 2333.3	0.018 0.04 0.4			13.2 13.3 3.7	h d ms ms	0.1 0.3	$3/2^{+}$ $11/2^{-}$ $(25/2)^{+}$	91 91			ε=100 ε=100 IT=100 IT=100	
¹⁸⁹ Pt ¹⁸⁹ Pt ^m ¹⁸⁹ Au	-36483 -36291 -33582	11 11 20	191.6	0.4			10.87 143 28.7	h μs m	0.12	3/2 ⁻ (13/2 ⁺) 1/2 ⁺	92			$\beta^{+}=100$ $\beta^{+}=100$; α <3e-5	
¹⁸⁹ Au ^m ¹⁸⁹ Hg ¹⁸⁹ He ^m	-33335 -29630 -29549	20 30 18	247.23 80	0.17 30	MD		4.59 7.6 8.6	m m m	0.11 0.1 0.1	11/2 ⁻ 3/2 ⁻ 13/2 ⁺	92 96 96	01Sc41	E	$\beta^{+} \approx 100$; IT=? $\beta^{+} = 100$; $\alpha < 3e-5$ $\beta^{+} = 100$; $\alpha < 3e-5$	
¹⁸⁹ Tl ¹⁸⁹ Tl ^m ¹⁸⁹ Pb	-24602 -24319 -17880	11 10 30	283	6	AD *		2.3 1.4 51	m m s	0.2 0.1 3	$(1/2^+)$ $9/2^{(-)}$ $(3/2^-)$		85Bo46 ABBW	J	$\beta^{+}=100$ $\beta^{+}\approx100; \text{IT}<4$ $\beta^{+}>99; \alpha\approx0.4$	*
¹⁸⁹ Pb ^m ¹⁸⁹ Bi ¹⁸⁹ Bi ^m ¹⁸⁹ Bi ⁿ	-17840# -10060 -9880 -9700	50# 50 50 50	40# 181 357	30# 6 1	* AD		1# 674 6.6 880	m ms ms		$(13/2^+)$ $(9/2^-)$ $(1/2^+)$ $(13/2^+)$	98 98		J J TJ	β^{+} ?; IT ? $\alpha > 50$; $\beta^{+} < 50$ $\alpha > 50$; $\beta^{+} < 50$	* * *
189Po *189W *189Pb	-1415	22 e 97Ya	03=11.7(0.5		7=11.5(0	0.3)	5	ms		3/2-#				$\alpha = ?; \beta^+ ?$	**
* ¹⁸⁹ Pb ^m * ¹⁸⁹ Bi * ¹⁸⁹ Bi ^m * ¹⁸⁹ Bi ⁿ	$J : from \alpha$ T : averag T : averag	decay e 02Hu e 97An	from ¹⁹³ Po' 14=667(13) 09=4.8(0.5) ; also 01An	97Wa05 97Wa05	=5.2(0.0										** ** **

Nuclide	Mass ex (keV			ergy(keV))]	Half-	life	J^{π}	Ens	Referen	ce	Decay modes and intensities (%)	
¹⁹⁰ Ta ¹⁹⁰ W	-28660# -34300	400# 160				300# 30.0	ms m	1.5	0_{+}	03			β ⁻ ? β ⁻ =100	
$^{190}W^{m}$	-31920	160	2381	5		< 3.1	ms		(10^{-})	03			IT=100	
¹⁹⁰ Re ¹⁹⁰ Re ^m	-35570 25260	150	210	c 0		3.1	m	0.3	(2)-	03	ADDW	г	$\beta^{-}=100$	
190Os	-35360 -38706.3	160 1.5	210	60		3.2 STABLE	h	0.2	$^{(6^{-})}_{0^{+}}$	03	ABBW	E	β^- =54.4 20; IT ? IS=26.26 2	*
¹⁹⁰ Os ^m	-37000.9		1705.4	0.2		9.9	m	0.1	(10)-	03			IT=100	
¹⁹⁰ Ir	-36751.2	1.7	170011	0.2		11.78	d	0.10	4-	03			$\beta^{+}=100$; e ⁺ <0.002	
$^{190}\mathrm{Ir}^m$	-36725.1	1.7	26.1	0.1		1.120	h	0.003	(1^{-})	03			IT=100	
¹⁹⁰ Ir ⁿ	-36374.8	1.7	376.4	0.1		3.087	h	0.012	$(11)^{-}$	03			β^+ =91.4 2; IT=8.6 2	
190 Irp	-36715.0	1.7	36.154	0.025		> 2	μs		(4)+	03			IT=100	
¹⁹⁰ Ir ^q ¹⁹⁰ Pt	-36433.6	1.7	317.56	0.04		90 650	ns	20	(5 ⁻) 0 ⁺	03			IT=100	
¹⁹⁰ Au	-37323 -32881	6 16			*	650 42.8	Gy m	30 1.0	1-	03			IS=0.014 1; α =100; β ⁺ =100; α <1e-6	*
	-32680#		200#	150#	*	125	ms	20	11-#	03			IT \approx 100; β ⁺ ?	
¹⁹⁰ Hg	-31370	16				20.0	m	0.5	0+	03			$\varepsilon \approx 100$; e ⁺ <1;	*
¹⁹⁰ Tl	-24330	50			*	2.6	m	0.3	2(-)	03			$\beta^{+}=100$	
$^{190}\text{Tl}^{m}$	-24200 #	70#	130#	90#	*	3.7	m	0.3	7(+#)	03			$\beta^{+}=100$	
$^{190}\text{Tl}^{n}$	-24040 #	90#	290#	70#		750	μs	40	(8^{-})	03			IT=100	*
¹⁹⁰ Tl ^p	-23920#	90#	410#	70#		> 1	μs		9-	03	91Va04	ET		*
¹⁹⁰ Pb ¹⁹⁰ Pb ^m	-20417	12	2614.0	0.0		71	S	1	0 ⁺	03			β^{+} ?; α =0.40 4	
¹⁹⁰ Pb ⁿ	-17802 -17799	12 23	2614.8 2618	0.8 20		150 25	ns µs		$(10)^+$ (12^+)	03			IT=100 IT ?	*
$^{190}\text{Pb}^p$	-17759	12	2658.2	0.8		7.2	μs	0.6	(11)	03			IT=100	T
¹⁹⁰ Bi	-10900	180				6.3	s	0.1	(3+)	03	91Va04	J	α =77 21; β ⁺ =?	
$^{190}\mathrm{Bi}^m$	-10483	10	420	180	MD	6.2	S	0.1	(10-)	03	91Va04	J	α =70 9; β ⁺ ?	
$^{190}\mathrm{Bi}^n$	-10210	10	690	180	MD	> 500		100	7+#	03	01An11	ET		*
190Po	-4563	13				2.46	ms	0.05	0+	03			$\alpha \approx 100; \beta^+=0.1#$	
* ¹⁹⁰ Re ^m * ¹⁹⁰ Re ^m	E : from lo					/3 and 2:	20 (s	ee Ensdf'	90)					**
* ¹⁹⁰ Pt	E: 210(29 D:; 2)		n differenc	e in beta-c	iecay									**
* 110 * 190 Hg	$D:\ldots;\alpha$		-7											**
*190Tln	E: 161.9k													**
$*^{190}\text{Tl}^p$	E: 236.2 k	eV abo	ove 190Tlm											**
$*^{190}Pb^{n}$	E: above													**
* ¹⁹⁰ Bi ⁿ	E: 273(1)	keV al	oove the (1	0−) isome	er									**
^{191}W	-31110#	200#				20#	s	(>300 ns)	3/2-#		99Be63	I	β^- ?	
¹⁹¹ Re	-34349	10				9.8	m	0.5	$(3/2^{+},1/2^{+})$	95			$\beta^{-}=100$	
¹⁹¹ Os	-36393.7	1.5				15.4	d	0.1	$9/2^{-}$	95			$\beta^{-}=100$	
¹⁹¹ Os ^m	-36319.3	1.5	74.382	0.003		13.10	h	0.05	3/2-	95			IT=100	
¹⁹¹ Ir ¹⁹¹ Ir ^m	-36706.4	1.7	171.24	0.05		STABLE		0.02	3/2+	95			IS=37.3 2	
¹⁹¹ Ir ⁿ	-36535.2 -34590	1.7 40	171.24 2120	0.05 40		4.94 5.5	S S	0.03 0.7	$11/2^{-}$	95 95	ABBW	E	IT=100 IT=100	*
¹⁹¹ Pt	-35698	4	2120	40		2.802	d	0.025	$3/2^{-}$	96	ADDW	L	ε=100	T
¹⁹¹ Pt ^m	-35549	4	149.04	0.02		95	μs	0.025	13/2+	, ,			C 100	
¹⁹¹ Au	-33810	40				3.18	h	0.08	$3/2^{+}$	99			$\beta^{+}=100$	
191 Au m	-33540	40	266.2	0.5		920	ms	110	$(11/2^{-})$	99			IT=100	
¹⁹¹ Hg	-30593	23				49	m	10	$3/2^{(-)}$	00	86U102		β^{+} =100; α <5e-6	
¹⁹¹ Hg ^m	-30470	30	128	22		50.8	m	1.5	13/2+	00	01Sc41	E	$\beta^{+}=100; \alpha<5e-6$	*
¹⁹¹ Tl ¹⁹¹ Tl ^m	-26281	8	205	_	D.D.	20#	m	0.16	$(1/2^+)$	95			β^+ ?	
¹⁹¹ Tl ^m	-25984	7	297	7	BD	5.22	m	0.16	$9/2^{(-)}$	95			$\beta^{+}=100$	
¹⁹¹ Pb ^m	-20250 -20231	40	20	50	* MD *	1.33 2.18	m	0.08	$(3/2^-)$ $13/2^{(+)}$	95 95	QQMA A	Ţ	$\beta^{+} \approx 100; \alpha = 0.013 5$ $\beta^{+} \approx 100; \alpha \approx 0.02$	
¹⁹¹ Bi	-20231 -13240	28 7	20	50	MD *	12.3	m s	0.08	$(9/2^{-})$	95	88Me.A 03Ke04		$\alpha = 60 \ 20; \ \beta^{+} = 40 \ 20$	*
¹⁹¹ Bi ^m	-13240 -13000	9	240	4	AD	12.3	ms	5	$(1/2^+)$	00	03Ke04		$\alpha = 00 \ 20, \beta = 40 \ 20$ $\alpha = 75 \ 25; \beta^{+} \approx 25$	*
¹⁹¹ Po	-5054	11		-		22	ms	1	3/2-#	00		-	$\alpha \approx 100; \beta^+$?	
191 Po m	-5020	10	34	12	AD	98	ms	8	$(13/2^+)$	00			$\alpha \approx 100; \beta^+$?	
* ¹⁹¹ Ir ⁿ	E: estimat	ed less	than 1501	keV above	2047.	level, f	rom l	Ensdf	. , ,				•	**
	E: origina	l error	(8 keV) inc	creased by	20 for	isomer+	grou	nd-state li	nes in trap					**
* ¹⁹¹ Bi									7=12.0(0.7)					**
$*^{191}Bi^{m}$	T : average	e 03Ke	:04=121(+8	5–5) 99Ar	136=11:	5(10) 811	Le23	=150(15)						**

Nuclide	Mass ex (keV			xcitation ergy(keV)	ı	I	Half-	-life	J^{π}	Ens	Referen	ce	Decay modes and intensities (%)	
¹⁹² W	-29650#					10#		(>300 ns)	0+		99Be63	I	β-?	
¹⁹² Re	-31710#					16	S	1	0.4	98			$\beta^-=100$	
¹⁹² Os	-35880.5 -33865.1	2.6	2015 40	0.11		STABLE		(>9.8 Ty)	0+	98			IS=40.78 19; $2\beta^-$?; α ?	*
192 Ir			2015.40	0.11		5.9	S	0.1	(10^{-}) 4^{+}	98			IT>87; β^- <13	
¹⁹² Ir ^m	-34833.2 -34776.5	1.7 1.7	56.720	0.005		73.827 1.45	d m	0.013 0.05	1-	98 98			β^- =95.13 14; ε =4.87 14 IT \approx 100; β^- =0.0175	
¹⁹² Ir ⁿ	-34770.3 -34665.1	1.7	168.14	0.003		241	y	9	(11^{-})	98			$11 \approx 100, p = 0.0173$ 1T = 100	
¹⁹² Pt	-36292.9	2.5	100.14	0.12		STABLE		,	0+	98			IS=0.782 7	
¹⁹² Au	-32777	16				4.94	h	0.09	1-	98			$\beta^{+}=100$	
	-32642	16	135.41	0.25		29	ms	0.05	5#+	98			IT=100	
	-32345	16	431.6	0.5		160	ms	20	(11^{-})	98			IT=100	
¹⁹² Hg	-32011	16				4.85	h	0.20	0+	00			ε =100; α <4e-6	
¹⁹² Tl	-25870	30				9.6	m	0.4	(2^{-})	99			$\beta^{+}=100$	
$^{192}\text{Tl}^{m}$	-25710	60	160	50		10.8	m	0.2	(7+)	99	91Va04	E	$\beta^{+}=100$	
$^{192}\text{Tl}^{p}$	-25694	25	180	40	AD				(3^{+})		91Va04	Е		
¹⁹² Pb	-22556	13				3.5	m	0.1	0_{+}	98			$\beta^{+} \approx 100; \alpha = 0.00597$	
	-19975	13	2581.1	0.1		164	ns	7	$(10)^{+}$	98			IT=100	
¹⁹² Pb ⁿ	-19931	13	2625.1	1.1		1.1	μs	0.5	(12^{+})	98			IT=100	
¹⁹² Pb ^p	-19813	13	2743.5	0.4		756	ns	21	(11)-	98			IT=100	
¹⁹² Bi	-13550	30	1.50	20		34.6	S	0.9	(3+)	98			$\beta^{+}=88.5; \alpha=12.5$	
¹⁹² Bi ^m ¹⁹² Po	-13399	9	150	30	MD	39.6	S	0.4	(10^{-})	98	0011 22		$\beta^{+}=90.3; \alpha=10.3$	
¹⁹² Po ^m	-8071 -5470#	12	2600#	500#		32.2	ms	0.3	0 ⁺	98	99He32 99He32		$\alpha = ?; \beta^{+} = 0.5 \#$	*
* ¹⁹² Os	-54/0# T : lower l					1	μs		12+#		99He32	1	IT=100	.11.
* Os * ¹⁹² Po					2(1.4) 9	R11 e23-	34(3	() outweigh	ed, not used	4				**
* 10	1. Oulcis	70AI2	7-31(4) 90.	D117-33	2(1.4)	31LC23-	J + (J	o) Outwergi	ica, not usco	1				ተተ
¹⁹³ Re	-30300#	200#				30#	s	(>300 ns)	5/2+#		99Be63	I	$oldsymbol{eta}^-$?	
¹⁹³ Os	-33392.6	2.6				30.11	h	0.01	$3/2^{-}$	98			$\beta^{-}=100$	
¹⁹³ Ir	-34533.8	1.7				STABLE			$3/2^{+}$	98			IS=62.7 2	
¹⁹³ Ir ^m	-34453.6	1.7	80.240	0.006		10.53	d	0.04	11/2-	98			IT=100	
¹⁹³ Pt	-34477.0	1.7				50	У	6	1/2-	98			ε=100	
¹⁹³ Pt ^m	-34327.2	1.7	149.78	0.04		4.33	d	0.03	13/2+	98			IT=100	
¹⁹³ Au	-33394 -33104	11	200.10	0.02		17.65	h	0.15	3/2+	98			$\beta^{+}=100; \alpha<1e-5$	
193 Hg		11 15	290.19	0.03		3.9 3.80	s h	0.3 0.15	11/2-	98 99			IT \approx 100; β ⁺ \approx 0.03 β ⁺ =100	
	-31051 -30910	15	140.76	0.05		11.8	h	0.13	3/2 ⁻ 13/2 ⁺	99			$\beta^{+}=100$ $\beta^{+}=92.85$; IT=7.25	
193Tl		110	140.70	0.03		21.6	m	0.2	1/2(+#)	99			$\beta = 92.83, 11 = 7.23$ $\beta = 100$	
¹⁹³ Tl ^m		110	369	4		2.11	m	0.8	9/2-	99			IT=75; β^+ =25	*
¹⁹³ Pb	-20930 -22190	50	309	4	*		m	0.15	$(3/2^{-})$	99	ABBW	ī	β^+ ?	*
	-22060#	90#	130#	80#	*		m	0.2	13/2 ⁽⁺⁾	99	88Me.A		$\beta^{+}=100$	r
¹⁹³ Bi	-15873	10	13011	0011	r	67	S	3	$(9/2^{-})$	98	001410.71	J	β^{+} ?; α =3.5 15	
$^{193}\text{Bi}^m$	-15564	12	308	7	AD	3.2	s	0.6	$(1/2^{+})$	98			$\alpha = 90\ 20; \beta^{+}$?	
¹⁹³ Po	-8360	30				420	ms	40	3/2-#	98			$\alpha = ?; \beta^{+} = 5#$	
$^{193}\text{Po}^{m}$	-8260#	50#	100#	30#		240	ms	10	$(13/2^+)$	98	ABBW	J	$\alpha = ?; \beta^{+} = 3#$	
¹⁹³ At	-150	50				40	ms		9/2-#	98			α=100	
$*^{193}Tl^{m}$	E: less tha	ın 13 k	eV above 3	362.5 leve	l, from	ENSDF								**
* ¹⁹³ Pb	$J: \text{from } \alpha$													**
* ¹⁹³ Pb	T: T=4.01	m repo	rted in Kar	Isruhe ch	arts 198	81 and 19	995.	Not tracea	ble					**
¹⁹⁴ Re	-27550#	300#				2#	c	(>300 ns)			99Be63	ī	β ⁻ ?	
¹⁹⁴ Os	-32432.7	2.6				6.0	y	0.2	0^{+}	96))DC03	1	$\beta^{-}=100$	
¹⁹⁴ Ir	-32432.7 -32529.3	1.7				19.28	h	0.13	1-	96			$\beta^{-}=100$ $\beta^{-}=100$	
$^{194}\mathrm{Ir}^m$	-32382.2	1.7	147.078	0.005		31.85		0.13	(4+)	96			IT=100	
194 Ir n	-32160	70	370	70	BD	171	d	11	(10, 11)(-#)				$\beta^{-}=100$	
¹⁹⁴ Pt	-34763.1	0.9				STABLE			0+	96			IS=32.967 99	
¹⁹⁴ Au	-32262	10				38.02		0.10	1-	96			$\beta^{+}=100$	
194 Au m	-32155	10	107.4	0.5		600	ms		(5^{+})	96			IT=100	
194 Au ⁿ	-31786	10	475.8	0.6		420	ms	10	(11^{-1})	96			IT=100	
	-32193	13				440	y	80	0^{+}	01			ε=100	
A-gro	oup is conti	nued o	n next page	e										

Nuclide	Mass ex (keV			Excitation nergy(keV		I	Half-	-life	J^{π}	Ens	s Referen	ce	Decay modes and intensities (%)	
A-9ro	oup continu	ied												
¹⁹⁴ Tl ¹⁹⁴ Tl ^m ¹⁹⁴ Pb		140	300#	200#	*	33.0 32.8 12.0	m m m	0.5 0.2 0.5	2- (7+) 0+	99 99 99			$\beta^{+}=100; \alpha<1e-7$ $\beta^{+}=100$ $\beta^{+}=100; \alpha=7.3e-6.29$	
¹⁹⁴ Bi	-15990	50	110	5 0	*	95	s	3	(3+)	96			$\beta^{+}\approx 100; \alpha=0.4625$	
194Bi ^m 194Bi ⁿ	$-15880 \\ -15760 \#$	50 70#	110 230#	70 90#	MD *	125 115	S S	2 4	$(6^+, 7^+)$ (10^-)	96 96			$\beta^{+} \approx 100; \alpha ?$ $\beta^{+} \approx 100; \alpha = 0.20 7$	
¹⁹⁴ Po	-13700π -11005	13	230π	90 11		392	ms	4	0+	96			$\alpha \approx 100$; β^+ ?	
$^{194}\text{Po}^m$	-8480	13	2525	2		15	μs	2	(11^{-})		99He32	TJE	• •	
¹⁹⁴ At ¹⁹⁴ At ^m	$-1190 \\ -711$	190 17	480	190	AD	40 250	ms ms		3 ⁺ # 10 ⁻ #	96 96			$\alpha \approx 100$; β^+ ? $\alpha \approx 100$; IT ?	
710	711	17	100	170	710	250	1113		10 "	70			w.=100,11 .	
¹⁹⁵ Os	-29690	500				6.5	m		3/2-#	99			β ⁻ =100	*
¹⁹⁵ Ir	-31689.8					2.5	h	0.2	$3/2^{+}$	99			$\beta^-=100$	
¹⁹⁵ Ir ^m ¹⁹⁵ Pt	-31590	5	100	5		3.8	h	0.2	11/2-	99			β^- =95 5; IT=5 5	
195 Pt ^m	-32796.8 -32537.5		259.30	0.08		STABLE 4.02	∃ d	0.01	$1/2^{-}$ $13/2^{+}$	99 99			IS=33.832 10 IT=100	
¹⁹⁵ Au	-32570.0		239.30	0.08		186.10		0.01	$\frac{13/2}{3/2^{+}}$	99			ε=100	
195 Au m	-32251.4		318.58	0.04		30.5	s	0.2	11/2-	99			IT=100	
	-31000	23				10.53	h	0.03	$1/2^{-}$	99	01Li17	T	$\beta^{+}=100$	
¹⁹⁵ Hg ^m	-30824	23	176.07	0.04		41.6	h	0.8	$13/2^{+}$	99			IT=54.2 20; β^+ =45.8 20	
¹⁹⁵ Tl	-28155 -27672	14	482.63	0.17		1.16	h	0.05	1/2+	99			$\beta^{+}=100$ IT=100	
195 Pb	-27672 -23714	14 23	482.03	0.17		3.6 15	s m	0.4	9/2 ⁻ 3/2# ⁻	99 99			$\beta^{+}=100$	
	-23714 -23511	23	202.9	0.7		15.0	m	1.2	$\frac{3/2\pi}{13/2^{+}}$	99			$\beta^{+}=100$ $\beta^{+}=100$	
¹⁹⁵ Bi	-18024	6				183	S	4	$(9/2^{-})$	99	ABBW	J	$\beta^{+}\approx 100; \alpha=0.03 \ 2$	
	-17624	8	399	6	AD	87	S	1	$(1/2^+)$	99	ABBW	J	β^{+} =67 17; α =33 17	*
¹⁹⁵ Po	-11070	40				4.64	S	0.09	3/2-#	99			α =75 15; β ⁺ =25 15	
¹⁹⁵ Po ^m ¹⁹⁵ At	-10964	28	110	50	AD	1.92	S	0.02	13/2+#		0217-04	т	$\alpha \approx 90; \beta^{+} \approx 10; \text{IT} < 0.01$	
195 Atm	-3476 -3443	9 8	34	7	AD &		ms ms	20 5	. , ,		03Ke04 03Ke04		$\alpha \approx 100; \beta^{+} ?$ $\alpha = ?; \beta^{+} < 25#$	
¹⁹⁵ Rn	5070	50	54	,	*	6	ms	3	3/2-#	00	01Ke06			
$^{195}\mathrm{Rn}^m$	5118	15	50	50	*	6	ms		13/2+#		01Ke06			
* ¹⁹⁵ Os	I: identifie													**
* ¹⁹⁵ Bi ^m	J : spins of	f grour	nd-state an	d of isome	er derive	d from a	lpha	decay						**
¹⁹⁶ Os	-28280	40				34.9	m	0.2	0^{+}	98			β ⁻ =100	
¹⁹⁶ Ir	-29440	40				52	s	1	(0^{-})	98			$\beta^{-}=100$	
¹⁹⁶ Ir ^m	-29229	20	210	40	BD	1.40	h	0.02	$(10,11^{-})$	98			$\beta^- \approx 100$; IT<0.3	
¹⁹⁶ Pt ¹⁹⁶ Au	-32647.4 -31140.0					STABLE 6.1669		0.0006	$0^{+} \\ 2^{-}$	98 98	01Li17	т	IS=25.242 41	
196 A 11 ^m	-31140.0 -31055	3.0	84.660	0.020		8.1	s	0.0006	5 ⁺	98	UILII/	1	$\beta^+=92.8 8; \beta^-=7.2 8$ IT=100	
196 Au ⁿ	-30544	3	595.66	0.04		9.6	h	0.1	12 ⁻	98			IT=100	
¹⁹⁶ Hg	-31826.7					STABLE	3	$(>2.5 \mathrm{Ey})$		98	90Bu28	T	IS=0.15 1; $2\beta^+$?	
¹⁹⁶ Tl	-27497	12				1.84	h	0.03	2-	98			$\beta^{+}=100$	
¹⁹⁶ Tl ^m ¹⁹⁶ Pb	-27103	12	394.2	0.5		1.41	h	0.02	(7+)	98			$\beta^{+}=95.5$; IT=4.5	
196 Pb ^m	-25361 -23623	14 14	1738.27	0.12		37	m	3	0^{+} 4^{+}	01			$\beta^{+}=100; \alpha \leq 3e-5$	
¹⁹⁶ Bi	-23023 -18009	24	1/36.2/	0.12		< 1 5.1	μs m	0.2	(3 ⁺)	01 99			$β$ ⁺ \approx 100; $α$ =0.00115 34	
$^{196}\mathrm{Bi}^m$	-17842	25	166.6	3.0	AD	0.6	S	0.5	(7+)	99			IT=?; β^+ ?	
$^{196}\mathrm{Bi}^n$	-17739	25	270	3	AD	4.00	m	0.05	(10^{-})	99			β^{+} =74.2 25; IT=25.8 25;	*
¹⁹⁶ Po	-13474	13				5.56	S	0.12	0+	98	93Wa04	TD	$\alpha = 94.5; \beta^{+} = 6.5$	*
¹⁹⁶ Po ^m ¹⁹⁶ At	-10984	13	2490.5	1.7		850	ns	90	(11-)	98	07D01	т	IT=100	
196 Atm	-3920 -3950	60 50	-30	80	* AD *	253 20#	ms ms		3 ⁺ # 10 ⁻ #	98	97Pu01 96En01		$\alpha = ?; \beta^{+} = 4#$ IT ?	
196 At ⁿ	-3930 -3760	60	-30 157.9	0.1	1110 ↑	11	μs		5 ⁺ #		00Sm06			
¹⁹⁶ Rn	1970	15				4.7	ms		0^{+}	98	01Ke06		$\alpha \approx 100; \beta^{+} = 0.2 \#$	
* ¹⁹⁶ Bi ⁿ	$D:\ldots;\alpha$												•	**
* ¹⁹⁶ Po	T : average	e 97Pu	01=5.5(0.	1) 93Wa0-	4=5.8(0.	2)								**

Nuclide	Mass ex (keV			Excitation ergy(keV)		I	Half-	life	J^{π}	Ens	Reference	Decay modes and intensities (%)	
¹⁹⁷ Ir	-28268	20				5.8	m	0.5	3/2+	96		β ⁻ =100	
	-28153	21	115	5		8.9	m	0.3	11/2-	96		$\beta^- \approx 100$; IT=0.25 10	
	-30422.4 -30022.8	0.8	399.59	0.20		19.8915 95.41	n m	0.0019 0.18	$1/2^-$ $13/2^+$	96 96		$\beta^-=100$ IT=96.7 4; $\beta^-=3.3$ 4	
	-30022.8 -31141.1	0.6	399.39	0.20		STABLE	111	0.16	$3/2^{+}$	96		IS=100.	
197 Au m	-30732.0	0.6	409.15	0.08		7.73	S	0.06	11/2-	96		IT=100	
	-30541	3				64.94	h	0.07	$1/2^{-}$		01Li17 T	ε=100	*
	-30242 -28341	3	298.93	0.08		23.8	h	0.1	13/2+	96		IT=91.4 7; ε =8.6 7	
	-26341 -27733	16 16	608.22	0.08		2.84 540	h ms	0.04 10	$\frac{1/2^{+}}{9/2^{-}}$	96 96		$\beta^{+}=100$ IT=100	
	-24749	6	000.22	0.00		8	m	2	3/2-	01		$\beta^{+}=100$	
	-24429	6	319.31	0.11		43	m	1	13/2+	01		β^{+} =81 2; IT=19 2;	*
	-22835	6	1914.10	0.25		1.15	μ s	0.20	21/2-	01		IT=100	
	-19688 -19000	8 110	690	110	AD	9.3 5.04	m m	0.5 0.16	$(9/2^{-})$ $(1/2^{+})$			$\beta^{+}=100; \alpha=1e-4#$ $\alpha=55 \ 40; \beta^{+}=45 \ 40; \dots$	
	-13360	50	090	110	ΑD	53.6	S	1.0	$(3/2^{-})$			β^{+} ?; α =44 7	*
	-13120#	90#	230#	80#		25.8	S	0.1	$(13/2^{+})$			α =84 9; β ⁺ ?; IT=0.01#	
¹⁹⁷ At	-6340	50			*	350	ms	40	$(9/2^{-})$	96		$\alpha = 96 \ 4; \ \beta^{+} = 4 \ 4$	
¹⁹⁷ At ^m	-6293	13	50	50	AD *	3.7	S	2.5	$(1/2^+)$		0.CE 02 F	$\alpha \approx 100; \beta^{+} ?; IT < 0.004$	
¹⁹⁷ Rn ¹⁹⁷ Rn ^m	1480 1670#	60 50#	200#	60#		66 21	ms	16 5			96En02 T 96En02 T	$\alpha \approx 100; \beta^+ ?$ $\alpha \approx 100; \beta^+ ?$	*
			200# =64.14(0.05		varianc		ms ratio			90	90EH02 1	$\alpha \approx 100$; p^{-1}	*
	$D:\ldots;\alpha$) at strong	variane	c. Blige	uno	would be	D -7.5				**
$*^{197}\text{Bi}^m$	D : ; IT												**
			02=65(+25						10				**
*197 Rn‴	T : average	e 96En	102=19(+8-	4) 95Mo14	=18(+9	– 5)	J:	from α de	ecay to 19	⁵ Po"	ı		**
¹⁹⁸ Ir	-25820#					8	s	1	- 1	02		$\beta^{-}=100$	
	-29908	3				STABLE		(>320 Ty)			52Fr23 T	IS=7.163 55; $2\beta^-$?; α ?	*
	-29582.1 -29269.9	0.6	312.2200	0.0020		2.69517 124	ns	0.00021	2- 5+	02 02		$\beta^-=100$ IT=100	
	-28770.4	1.6	811.7	1.5		2.27	d	0.02	(12^{-})	02		IT=100 IT=100	
¹⁹⁸ Hg	-30954.4	0.3				STABLE			0+	02		IS=9.97 20	
¹⁹⁸ Tl	-27490	80				5.3	h	0.5	2-	02		$\beta^{+}=100$	
	-26950 26750	80	543.5	0.4		1.87	h	0.03	7+	02		$\beta^{+}=54\ 2;\ \text{IT}=46\ 2$	
	-26750 -26050	80 15	742.3	0.4		32.1 2.4	ms h	1.0 0.1	10 ⁻ #	02 02		IT=100 β^+ =100	
	-23909	15	2141.4	0.4		4.19	μs	0.10	(7)-	02		IT=100	
	-19369	28		***		10.3	m	0.3	$(2^+, 3^+)$			$\beta^{+}=100$	
	-19085	28	280	40	MD	11.6	m	0.3	(7+)	02		$\beta^{+}=100$	
¹⁹⁸ Bi ⁿ	-18837	28	530	40	MD	7.7	S	0.5	10-	02		IT=100	*
	-15473 -13619	17 17	1052 62	0.19		1.77 29	m ns	0.03	0^{+} 8^{+}	02 02		α =57 2; β ⁺ =43 2 IT=100	
	-13019 -12907	17	1853.63 2565.92	0.18 0.20		200	ns	20	11-	02		IT=100 IT=100	
198 Po p	-12781	17	2691.86	0.20		750	ns	50	12 ⁺	02		IT ?	
¹⁹⁸ At	-6670	50				4.2	s	0.3	(3^{+})		95Bi.A D	α >94; β ⁺ ?	
198 Atm	-6340#	70#	330#	90#		1.0	s	0.2	(10^{-})	02	95Bi.A D	$\alpha > 86; \beta^+$?	
¹⁹⁸ Rn ¹⁹⁸ Rn ^m	-1231	13		victor+	EIT	65 50	ms	3	0^{+}	02		$\alpha = ?; \beta^{+} = 1#$	
	T · lower l	imit ic	for $0v-2\beta^-$	xistent	EU	50	ms	9				α =?; β ⁺ =?; IT=?	*
			V above ¹⁹⁸		92Hu04	ļ							**
			ned to isom				ed by	y Nubase					**
¹⁹⁹ Ir	-24400	40				20#	s		3/2+#	01		β− ?	
	-27392	3				30.80	m	0.21	5/2-			$\beta^{-}=100$	
199 Pt m	-26968	4	424	2		13.6	s	0.4	$(13/2)^{+}$			TT=100	
	-29095.0	0.6				3.139	d	0.007	3/2+			$\beta^{-}=100$	
	-28546.1	0.6	548.9368	0.0021		440	μ s	30	(11/2)-			IT=100	
	-29547.1 -29014.6	0.4	532.48	0.10		STABLE		0.08	1/2-		011 i 17 T	IS=16.87 22 IT=100	.1.
			n next page			42.66	111	0.08	13/4	74	01Li17 T	11-100	*
A-gro	up is conti	nuea o	ni next page	· · · ·									

Nuclide	Mass ex (keV			xcitatior ergy(keV		Ha	lf-lif	ie .	J^{π}	Ens	Referen	ce	Decay modes and intensities (%)	
<i>A</i> -gro	up continu	ed												
¹⁹⁹ Tl	-28059	28				7.42	h	0.08	$1/2^{+}$	94			$\beta^{+}=100$	
¹⁹⁹ Tl ^m	-27309	28	749.7	0.3		28.4	ms	0.2	$9/2^{-}$	94			IT=100	
¹⁹⁹ Pb	-25228	26				90	m	10	3/2-	01			$\beta^{+}=100$	
¹⁹⁹ Pb ^m	-24799	26	429.5	2.7		12.2	m	0.3	$(13/2^+)$		ABBW	E	IT=93; β^+ =7	3
¹⁹⁹ Pb ⁿ	-22664	26	2563.8	2.7		10.1	μs	0.2	$(29/2^{-})$		ABBW	Е	IT=100	;
¹⁹⁹ Bi	-20798	12				27	m	1	9/2-	94			$\beta^{+}=100$	
¹⁹⁹ Bi ^m ¹⁹⁹ Po	-20131	12	667	4		24.70	m	0.15	$(1/2^+)$	94			β^+ =?; IT<2; $\alpha \approx 0.01$ β^+ =92.5 3; α =7.5 3	
199 Pom	-15215 -14903	23 23	312.0	2.8	AD	5.48 4.17	m m	0.16 0.04	$(3/2^{-})$ $13/2^{+}$	94 94			$\beta^{+}=73.5 \ 10; \ \alpha=24 \ 1; \ \text{IT}=2.5$	
¹⁹⁹ At	-8820	50	312.0	2.0	AD	7.2	S	0.5	$(9/2^{-})$	94			$\alpha = 89.6; \beta^{+}.$	
199Rn	-1520	60				620	ms	30	3/2-#	98			$\alpha = ?; \beta^{+} = 6#$	
¹⁹⁹ Rn ^m	-1334	29	180	70	AD	320	ms	20	13/2+#				$\alpha=?; \beta^+=3#$	
¹⁹⁹ Fr	6760	40				16	ms	7	1/2+#		99Ta20	T	$\alpha \approx 100; \beta^+$?	
¹⁹⁹ Hg ^m	T : averag	e 01Li	17=42.67(0.09) 69	K106=4	2.6(0.2)			,				•	*
¹⁹⁹ Pb ^m	E: 424.8	γ to lev	vel lower t	han 9.31	eV, fro	m ENSDF		D :	from 78L	e.A				*
199Pb ⁿ	E: 2559.1	to lev	el lower th	an 9.3 k	eV, froi	n Ensdf								*
²⁰⁰ Pt	-26603	20				12.5	h	0.3	0^{+}	95			β ⁻ =100	
²⁰⁰ Au	-20003 -27270	50				48.4	m	0.3	1(-)	95			$\beta = 100$ $\beta = 100$	
	-27270 -26300	50	970	70	BD	18.7	h	0.5	12-	95			$\beta^{-}=82.2$; IT=18.2	
200Hg	-20500 -29504.1		910	70	ББ	STABLE	11	0.5	0+	95			IS=23.10 19	
²⁰⁰ Tl	-27048	6				26.1	h	0.1	2-	95			$\beta^{+}=100$	
$^{200}Tl^{m}$	-26294	6	753.6	0.2		34.3	ms	1.0	7+	95			IT=100	
²⁰⁰ Pb	-26243	11	755.0	0.2		21.5	h	0.4	0^{+}	95			ε=100	
²⁰⁰ Bi	-20370	24			*	36.4	m	0.5	7+	95			$\beta^{+}=100$	
200 Bi m	-20270#	70#	100#	70#	*	31	m	2	(2^{+})	95			$\beta^{+} > 90$; IT<10	
200 Bi ⁿ	-19942	24	428.20	0.10		400	ms	50	(10^{-})	95			IT=100	
²⁰⁰ Po	-16954	14				11.5	m	0.1	0+	95			β^{+} =88.9 3; α =11.1 3	
²⁰⁰ At	-8988	24				43.2	S	0.9	(3^{+})	95	96Ta18	T	α =57 6; β ⁺ =43 6	
200 Atm	-8875	25	112.7	3.0	AD	47	S	1	(7^{+})	95			α =43 7; β ⁺ =?; IT ?	
200 At ⁿ	-8644	24	344	3	AD	3.5	S	0.2	(10^{-})	95		_	IT \approx 84; $\alpha \approx$ 10.5; β ⁺ \approx 4.5	-
²⁰⁰ Rn ²⁰⁰ Fr	-4006	13				1.03	S	0.05	0+	98	96Ta18	T	$\alpha = ?; \beta^{+} = 2#$,
²⁰⁰ Fr ^m	6120	80	60	110	*	24	ms	10	3 ⁺ #	97	96En01		$\alpha = 100$	
²⁰⁰ At	6180	70	60 18=44(2)	110	AD *	650	ms	210	10-#	97	95M014	ID	$\alpha \approx 100$; IT ?	
200 At ⁿ			V above ²⁰			EDE								*
²⁰⁰ Rn			18=0.96(0											*
²⁰¹ Pt	-23740	50				2.5	m	0.1	$(5/2^{-})$	94			$\beta^-=100$	
²⁰¹ Au	-26401	3				26	m	1	$3/2^{+}$	94			$\beta^{-}=100$	
²⁰¹ Hg	-27663.3					STABLE			3/2-	94			IS=13.18 9	
	-26897.1		766.23	0.15		94	μs		$13/2^{+}$					
²⁰¹ Tl	-27182	15	010.50	0.00		72.912			1/2+	94			ε=100	
²⁰¹ Tl ^m	-26263	15	919.50	0.09		2.035		0.007	$(9/2^{-})$	94			IT=100	
²⁰¹ Pb	-25258	22	620.14	0.17		9.33	h	0.03	5/2-	94			$\beta^{+}=100$	
	-24629	22	629.14	0.17		61	S	2	13/2+	94			IT>99; $\beta^+<1$	
²⁰¹ Bi ²⁰¹ Bi ^m	-21416 20570	15	916 24	0.21		108	m	3	9/2-	94			$\beta^{+}=100; \alpha<1e-4$	
²⁰¹ Po	-20570 -16525	15 6	846.34	0.21		59.1 15.3	m m	0.6	$\frac{1/2^{+}}{3/2^{-}}$	94 94			β^+ =92.9#; IT<6.8; α =? β^+ =98.4 3; α =1.6 3	
²⁰¹ Po ^m	-16323 -16101	6	424.1	2.4	AD	8.9	m	0.2	3/2 13/2 ⁺	94			IT=56 14; β^+ =41 10; $\alpha \approx 2.9$	
²⁰¹ At	-10701 -10789	8	747.1	2.4	M	85	s	3	$(9/2^{-})$	94	96Ta18	T	$\alpha = 71.7$; $\beta^{+} = 29.7$	
²⁰¹ Rn	-4070	70				7.0	s	0.4	$(3/2^{-})$		96Ta18	T	$\alpha = ??; \beta^{+} = 20 \#$	
201 Rn m	-3790#		280#	90#		3.8	s	0.1	$(3/2^+)$		96Ta18	T	$\alpha = ?; \beta^{+} = 10#; \text{IT} = 0.01#$	
²⁰¹ Fr	3600	70	200	,		61	ms	12	$(9/2^{-})$		96En01		$\alpha \approx 100; \beta^+ < 1$	
201 Bi m			bserved. It	s branch	ing rati							-	··, p- ·*	*
²⁰¹ At			18=83(2)											*
							. (-	*						*
²⁰¹ Rn	T: averag	E 901a	110-7.1(0.	0, 11110										

Nuclide	Mass ex (keV			xcitation ergy(keV]	Half	-life	J^{π}	Ens	Referen	ice	Decay modes and intensities (%)	
²⁰² Pt	-22600#	300#				44	h	15	0^{+}	97			β ⁻ =100	
²⁰² Au	-24400	170				28.8	S	1.9	(1^{-})	97			$\beta^{-}=100$	
²⁰² Hg	-27345.9	0.6				STABLE		0.02	0+	97			IS=29.86 26	*
²⁰² Tl ²⁰² Tl ^m	-25983 -25033	15	050 10	0.10		12.23	d	0.02	2 ⁻ 7 ⁺	97 97			$\beta^{+}=100$	
²⁰² Pb	-25934	15 8	950.19	0.10		572 52.5	μs ky	7 2.8	0+	97			ε≈100; α<1#	
	-23764	8	2169.83	0.07		3.53	h	0.01	9-	97			IT=90.5 5; β^+ =9.5 5	
²⁰² Bi	-20733	20	2107.03	0.07		1.72	h	0.05	5(+#)	97			$\beta^{+}=100; \alpha<1e-5$	*
$^{202}\mathrm{Bi}^m$	-20118	21	615	7		3.04	μs	0.06	(10#)-	97			p = = = = = = = = = = = = = = = = = = =	
²⁰² Po	-17924	15				44.7	m	0.5	0+	97			β^{+} =?; α =1.92 7	
$^{202}\text{Po}^{m}$	-15297	15	2626.7	0.7		> 200	ns		11^{-}	97			IT=100	
²⁰² At	-10591	28				184	S	1	$(2,3)^+$	97			$\beta^{+}=?; \alpha=18.3$	
²⁰² At ^m	-10401	28	190	40	MD	182	S	2	(7+)	97		_	IT ?; β^+ ?; α =8.7 15	
202 At ⁿ 202 Rn	-10010	28	580	40	MD	460	ms	50	(10^{-})	97	92Hu04		IT \approx 100; $\beta^+=0.25\#$;	*
²⁰² Fr	-6275 3140	18 50				9.94 290	S	0.18 30	0^+ (3^+)	97 97	96Ta18 96En01		$\alpha = ?; \beta^{+} = 14 \#$ $\alpha = ?; \beta^{+} = 3 \#$	*
$^{202}Fr^{m}$	3470#	70#	330#	90#		340	ms ms	40	(10^{-})	97	90EH01	1	$\alpha = ?, \beta^{+} = 3#$ $\alpha = ?; \beta^{+} = 3#$	*
²⁰² Ra	9210	60	330π	90π		2.6	ms	2.1	0+	98	96Le09	TD		
$*^{202}$ Hg	D : lower l		e limit for	²⁴ Ne de	cay T				Ü	,,,	,0200,		W 100	**
$*^{202}Bi$	J : re-evalu													**
$*^{202}At^{n}$	$D:\ldots;\alpha$													**
$*^{202}At^{n}$	E:391.7(0													**
* ²⁰² Rn	T : average													**
* ²⁰² Fr	T : average	e 96En	01=230(+	80–40) 9	95B1.A	=300(40)							**
²⁰³ Au	-23143	3				53	s	2	$3/2^{+}$	93			$\beta^{-}=100$	
²⁰³ Hg	-25269.1	1.7				46.612		0.018	5/2-	93			$\beta^{-}=100$	
²⁰³ Hg ^m ²⁰³ Tl	-24336.0	2.0	933.1	1.0		24	μs		$(13/2^+)$	02			IC 20 524 14	
²⁰³ Tl ^m	-25761.2 -22360	1.3 300	3400	300		STABLE 7.7	μs	0.5	$1/2^+$ $(25/2^+)$	93	98Pf02	ті	IS=29.524 14 IT=100	
²⁰³ Pb	-24787	7	3400	300		51.873		0.009	$\frac{(23/2)}{5/2^{-}}$	93	961 102	13	ε=100	
	-23962	7	825.20	0.09		6.3	s	0.2	13/2+	93			IT=100	
$^{203}{\rm Pb}^{n}$	-21838	7	2949.47	0.22		480	ms	20	$29/2^{-}$	93			IT=100	
203 Bi	-21540	22				11.76	h	0.05	9/2-	93			β^+ =100; α \approx1e-5	
$^{203}\text{Bi}^{m}$	-20442	22	1098.14	0.07		303	ms	5	$1/2^{+}$	93			IT=100	
²⁰³ Po	-17307	26				36.7	m	0.5	5/2-	93			$\beta^{+}\approx 100; \alpha=0.11\ 2$	
²⁰³ Po ^m	-16666	26	641.49	0.17		45	S	2	13/2+	93			IT≈100; α=0.04#	
²⁰³ At ²⁰³ Rn	-12163	12 24				7.4 43.5	m	0.2	9/2-	93	06To 19	т	$\beta^{+}=693; \alpha=313$	
203 Rn m	-6160 -5798	24	363	4	AD	26.7	S	2.1 0.5	$(3/2,5/2)^{-}$ $13/2^{(+)}$	93	96Ta18 87Bo29		α =66 9; β ⁺ =34 9 α =?; β ⁺ =20#	*
203 Fr	-3798 861	16	303	4	AD	550	s ms	20	9/2-#	98	87B029	J	$\alpha = ?, \beta^{+} = 5#$	*
²⁰³ Ra	8640	80				4	ms	3	$(3/2^{-})$	98	96Le09	TJD	$\alpha \approx 100; \beta^+$?	
203 Ra m	8860	40	220	90	AD	41	ms	17	$(13/2^{+})$				$\alpha \approx 100; \beta^+$?	
$*^{203}Rn$	T: average		18=42(3)	71Ho01=	=45(3)				` ' '				.,	**
* ²⁰³ Rn ^m	T: from 9	6Ta18												**
²⁰⁴ Au	-20750#	200#				39.8	s	0.9	(2^{-})	94			β ⁻ =100	
²⁰⁴ Hg	-24690.2	0.3				STABLE	i.		0+	94			IS=6.87 15; $2\beta^-$?	
²⁰⁴ Tl	-24346.0	1.3				3.78	у	0.02	2^{-}	94			β^- =97.10 12; ε =2.90 12	2
²⁰⁴ Tl ^m	-23242.0		1104.0	0.4		63	μs	2	(7)+	94			IT=100	
²⁰⁴ Tl ⁿ	-21850		2500	500		2.6	μs	0.2	(12^{-})		98Pf02		IT=100	
²⁰⁴ Tl ^p		500	3500	500		1.6	μs	0.2	(20^{+})	0.4	98Pf02	TJ	IT=100	
204Pb 204Pbm	-25109.7 -22923.9	1.2	2105 70	0.07		STABLE		(>140 Py)	0 ⁺	94			IS=1.4 1; α ? IT=100	
²⁰⁴ Bi	-22923.9 -20667	26	2185.79	0.05		67.2 11.22	m h	0.3 0.10	9 6 ⁺	94 94			$\beta^{+}=100$	
$^{204}\text{Bi}^m$	-20007 -19862	26	805.5	0.3		13.0	ms	0.10	10-	94			IT=100	
$^{204}\mathrm{Bi}^n$	-17834	26	2833.4	1.1		1.07	ms	0.03	(17+)	94			IT=100 IT=100	
²⁰⁴ Po	-18334	11				3.53	h	0.02	0+	94			β^{+} =99.34 1; α =0.66 1	
A-gro	oup is contin	nued o	n next pag	ge										

Nuclide	Mass ex (keV			Excitatior nergy(ke\			На	df-lif	e ·	J^{π}	Ens	Referen	ce	Decay modes and intensities (%)	
<i>A</i> -gro	oup continue														
²⁰⁴ At	-11875	24					9.2	m	0.2	7+	94			$\beta^{+}=96.2\ 2;\ \alpha=3.8\ 2$	
204 Atm	-11288	24	587.30	0.20			108	ms	10	(10^{-})	94			IT=100	
²⁰⁴ Rn ²⁰⁴ Fr	-7984	15					1.24	m	0.03	0+	95	0570: 4	-	$\alpha = 73.1; \beta^{+}.?$	
²⁰⁴ Fr ^m	608	25	50	4	A D		1.7	S	0.3	(3^+)	94	95Bi.A		$\alpha = 96.2; \beta^{+}.?$	
²⁰⁴ Fr ⁿ	658 934	25 25	50 326	4 4	AD AD		2.6 1.7	S	0.3	(7^+)	94 94	95Bi.A 94Le05	D T	α =90 2; β ⁺ ? α =74 8; IT=26 8	
²⁰⁴ Ra	6054	15	320	4	ΑD		60	s ms	11	(10^{-}) 0^{+}	98	95Le04		$\alpha = 74.8$; $11 = 20.8$ $\alpha \approx 100$; $\beta^+ = 0.3$ #	*
* ²⁰⁴ Fr ⁿ			ve ²⁰⁴ Fr ^m ,	from 95R	iΔ	г				om 95Bi. <i>A</i>		93LC04	1	$u \approx 100, p = 0.5 $ #	*
* ²⁰⁴ Ra)4=45(+55-					CHSIC	y 13 110	/III /3 /31	•				**
²⁰⁵ Au	-18750 #						31	S	2	$3/2^{+}$	97	94We02	T	$\beta^{-}=100$	
²⁰⁵ Hg	-22287	4					5.2	m	0.1	$1/2^{-}$	98			$\beta^{-}=100$	
²⁰⁵ Hg ^m		4	1556.53	0.24			1.10	ms	0.04	$(13/2^+)$				IT=100	
²⁰⁵ Tl	-23820.6	1.3					STABLE			1/2+	93			IS=70.476 14	
²⁰⁵ Tl ^m	-20530.0		3290.63	0.17			2.6	μs	0.2	25/2 ⁺	93			IT=100	
²⁰⁵ Pb ²⁰⁵ Pb ^m	-23770.1	1.2	1012.020	0.012			15.3	My	0.7	5/2-	93			ε=100	
²⁰⁵ Pb ⁿ	-22756.3		1013.839	0.013			5.54	ms	0.10	13/2+	93			IT=100	
²⁰⁵ Bi	-20574.5		3195.6	0.8			217	ns	5	$\frac{25}{2}$	93			IT=100 β^+ =100	
²⁰⁵ Po	-21062 -17509	7 20					15.31 1.66	d h	0.04 0.02	$9/2^{-}$ $5/2^{-}$	93 93			$\beta^{+} \approx 100; \alpha = 0.04 1$	
205 Po m	-17309 -16048	20	1461.20	0.21			58	ms	1	19/2-	93			$p \approx 100, \alpha = 0.04 \text{ I}$ IT=100	
205 Po ⁿ	-16629	20	880.30	0.21			645	μs	1	13/2+	93			11-100	
²⁰⁵ At	-10029 -12972	15	000.30	0.04			26.2	m m	0.5	$9/2^{-}$	93			$\beta^{+}=90.2; \alpha=10.2$	
$^{205}At^{m}$	-10909	15	2062.57	0.25			67.9	ns	0.5	25/2 ⁺	75			p = >0 2, u=10 2	
$^{205}At^n$	-10632	15	2339.60	0.25			7.8	μs		$\frac{23}{2}$					
²⁰⁵ Rn	-7710	50					2.8	m	0.1	5/2-	93			$\beta^{+}=77.4; \alpha=23.4$	
²⁰⁵ Fr	-1310	8					3.85	s	0.10	$(9/2^{-})$				$\alpha \approx 100; \beta^+ < 1$	
²⁰⁵ Ra	5840	90					220	ms	40	$(3/2^{-})$		96Le09	TJ	$\alpha=?;\beta^+?$	*
$^{205}Ra^{m}$	6150#	100#	310#	110#			180	ms	50	$(13/2^{+})$		96Le09	TJD	α=?; IT ?	
* ²⁰⁵ Ra	T : average	e 96Le(09=210(+60)–40) 87H	le10=2	220(60	0)								**
²⁰⁶ Hg	-20946	20					8.15	m	0.10	0^{+}	99			β ⁻ =100	
²⁰⁶ Tl	-20940 -22253.1	1.4					4.200		0.10	0-	99			$\beta^{-}=100$ $\beta^{-}=100$	
²⁰⁶ Tl ^m	-22233.1 -19610.0		2643.11	0.19			3.74	m	0.017	(12^{-})	99			IT=100	
²⁰⁶ Pb	-23785.4	1.2	2043.11	0.17			STABLE		0.05	0+	99			IS=24.1 1	
²⁰⁶ Pb ^m	-21585.3		2200.14	0.04			125	μs	2	7-	99			IT=100	
$^{206}\text{Pb}^n$	-19758.1		4027.3	0.7			202	ns	3	12 ⁺	99			IT=100	
²⁰⁶ Bi	-20028	8	-	•			6.243	d	0.003		99			$\beta^{+}=100$	
$^{206}\mathrm{Bi}^m$	-19968	8	59.897	0.017			7.7	μs	0.2	(4+)	99			IT=100	
$^{206}\mathrm{Bi}^n$	-18983	8	1044.8	0.5			890	μs	10	(10^{-})	99			IT=100	
²⁰⁶ Po	-18182	8					8.8	d	0.1	0+	99			β^+ =94.55 5; α =5.45 5	j
206 Po m	-16596	8	1585.85	0.11			222	ns	10	8+#	99			IT=100	*
206 Po ⁿ	-15920	8	2262.22	0.14			1.05	μ s	0.06	9-#	99			IT=100	
²⁰⁶ At	-12420	20					30.6	m	1.3	$(5)^{+}$	99			β^+ =99.11 8; α =0.89 8	,
$^{206}At^{m}$	-11613	20	807	3			410	ns	80	$(10)^{-}$		99Fe10	ETJ	IT=100	
²⁰⁶ Rn	-9116	15					5.67	m	0.17	0^+	99			α =62 3; β ⁺ =38 3	
²⁰⁶ Fr	-1243	28					16	S		$(2^+,3^+)$		92Hu04		$\beta^{+}=?; \alpha=42.24$	*
²⁰⁶ Fr ^m	-1048	28	190	40	MD		15.9	S	0.1	(7+)	99	92Hu04	D	α =42 24; β ⁺ ?; IT ?	
²⁰⁶ Fr ⁿ	-517	28	730	40	MD		700	ms	100	(10^{-})	99			IT=?; α≈12#	*
²⁰⁶ Ra	3565	18				^	240	ms	20	0+	99			α=100	
206 Ac	13510	70	00	50		* &	25	ms	7	(3^{+})	99			$\alpha \approx 100; \beta^{+} = 0.2 \#$	
206 A cm	13590	90	80	50		* &	15	ms	6	(10=)	99			α≈100	
206 Acn	13800#	80#	290#	110#	1 f	& ENG	41	ms	16	(10^{-})	99			$\alpha \approx 100$	
* ²⁰⁶ Po ^m * ²⁰⁶ Fr			V above 15					₹ 7.1		lood t					**
* ²⁰⁶ Fr * ²⁰⁶ Fr			mixture of					. vai	ue repl	iaced by					**
* ²⁰⁶ Fr ⁿ			istribution (e ²⁰⁶ Fr ^m , fro			11 ISOI	ner								**
* ""FF"	E: 331 Ke	v above	e "Fr", Ire	JIII ENSDI	1										**

Nuclide	Mass ex (keV			xcitation ergy(keV)		Ha	lf-lif	e e	J^{π}	Ens	Referen	ice	Decay modes and intensities (%)	
207 Hg 207TI 207TI 207Pb 207Pb 207Pbi 207Bi 207Po 207Po ^a 207At 207Rn 207Rn 207Ra 207Ra 207Ra 207Ra 207Ra 207Ra	-16220 -21034 -19686 -22451.9 -20818.5 -20054.4 -17952.9 -17146 -15763 -16031 -13243 -8631 -7732 -2840 3540 4095 11130 D:; β ⁺ T: average T: average	96Le	1383.15 1115.073 899.0 560 # 09=63(16)				m m s y ms y ms h s ms h m ms s s ms ms	0.2 0.02 0.11 6 1.4 6 0.02 0.08 0.04 0.17 18 0.1 0.2 8	$ \begin{array}{c} (9/2^+) \\ 1/2^+ \\ 11/2^- \\ 11/2^- \\ 13/2^+ \\ 9/2^- \\ 21/2^+ \\ 5/2^- \\ 19/2^- \\ 13/2^+ \\ 9/2^- \\ 5/2^- \\ (13/2^+) \\ 9/2^- \\ (5/2^-, 3/2^-) \\ (13/2^+) \\ 9/2^- \# \end{array} $	94 94 94 94 94 94 94 94 94 94 94 98	96Le09 94Le05	T TD	$\begin{array}{l} \beta^-{=}100 \\ \beta^-{=}100 \\ \beta^-{=}100 \\ \Pi {\approx} 100; \beta^-{<}0.1 \# \\ \text{IS}{=}22.1 \text{ I} \\ \text{IT}{=}100 \\ \beta^+{=}100 \\ \text{IT}{=}100 \\ \beta^+{\approx} 100; \alpha{=}0.021 \text{ 2} \\ \text{IT}{=}100 \\ \beta^+{=}91.4 \text{ 10}; \alpha{=}8.6 \text{ 10} \\ \beta^+{=}79 \text{ 3}; \alpha{=}21 \text{ 3} \\ \text{IT}{=}100 \\ \alpha{=}95 \text{ 2}; \beta^+{=}5 \text{ 2} \\ \alpha{\approx}90; \beta^+{\approx}10 \\ \text{IT}{=}85 \#; \alpha{=}?; \dots \\ \alpha{=}100 \\ \end{array}$	* * * * * * * * * * * * * * * * * * *
208 Hg 208 Tl 208 Pb 208 Pb 208 Bi 208 Bi 208 Po 208 At 208 Ra 208 Ra 208 Ac 208 Ac 208 Ac *208 Ac *20	-13100# -16749.5 -21748.5 -16853.5 -18870.0 -17298.9 -17469.5 -12491 -9648 -2670 1714 3510 10760 11258 T:98Zh22 T: average E: if α dec	300# 2.0 1.2 2.3 2.4 2.4 1.8 26 11 50 0 60 28 241(+ 2961kO cay goo vill becovil becovil	4895 1571.1 1800 500 5-4) supers 01=83(+34- 2es to (7+) ² crome 234(2	2 0.4 200 50 seedes 94Z :19) 94Let 9 ⁴ Fr ^m , ins 2) keV	AD h02=4 05=95 tead o	42 3.053 STABLE 500 368 2.589 1.63 24.35 59.1 1.3 270 97 28 12(+24-16) (+24-16) f (10 ⁻) a	ns ky ms y h m s s ns ms ms constant ms		0 ⁺ 5(+) 0 ⁺ 10 ⁺ (5) ⁺ (10) ⁻ 0 ⁺ 6 ⁺ 0 ⁺ 7 ⁺ 0 ⁺ (8 ⁺) (3 ⁺) (10 ⁻) group	98 98 96 86 86 86 86 86 86 86 96	98Zh22 98Pf02 98Le.A 96Ik01 96Ik01	T	$\begin{array}{l} \beta^-{=}100 \\ \beta^-{=}100 \\ \text{IS}{=}52.4 \text{ 1} \\ \text{IT}{=}100 \\ \beta^+{=}100 \\ \text{IT}{=}100 \\ \alpha{\approx}100; \beta^+{=}0.00223 \text{ 23} \\ \beta^+{=}99.45 \text{ 6; } \alpha{=}0.55 \text{ 6} \\ \alpha{=}62 \text{ 7; } \beta^+{=}38 \text{ 7} \\ \alpha{=}90 \text{ 4; } \beta^+{=}10 \text{ 4} \\ \alpha{=}?; \beta^+{=}5\# \\ \alpha{=}?; \beta^+{=}1\# \\ \alpha{=}?; \text{IT}{<}10\#; \beta^+{=}1\# \end{array}$	*
209 Hg 209 Tl 209 Pb 209 Bi 209 Po 209 At 209 Rn 209 Fr 209 Fr 209 Th *209 Ac *209 Ac		8 1.8 1.4 1.8 7 20 20 15 50 50 100 e 00He	1173.98 17=98(+59 04=100(50)		01=82	37 2.161 3.253 19 102 5.41 28.5 13.4 50.0 4.6 92 7	h Ey y h m	8 0.007 0.014 2 5 0.05 1.0 0.3 0.2 11 5 Le05=9	9/2+# (1/2+) 9/2+ 9/2- 1/2- 9/2- 5/2- 13/2+ 9/2- 5/2- (9/2-) 5/2-# 91(+21-14)	91 91 91 91 91 91 91 91	98Zh22 94Ar23 03De11 00He17 96Ik01	T	$\begin{array}{l} \beta^-{=}100 \\ \beta^-{=}100 \\ \beta^-{=}100 \\ \beta^-{=}100 \\ \text{IS}{=}100; \ \alpha{=}100 \\ \alpha{\approx}100; \ \beta^+{=}0.484 \\ \beta^+{=}95.95; \ \alpha{=}4.15 \\ \beta^+{=}832; \ \alpha{=}172 \\ \alpha{=}893; \ \beta^+{=}113 \\ \alpha{\approx}90; \ \beta^+{\approx}10 \\ \alpha{=}?; \ \beta^+{=}1\# \\ \alpha{=}?; \ \beta^+{?} \end{array}$	* **

Nuclide	Mass excess (keV)	Excitation energy(ke		Half	-life	J^{π}	Ens	Referen	ce	Decay modes and intensities (%)	
210 Pb ^m 210 Bi 210 Bi ^m 210 Po 210 Po 210 Po ^m 210 At 210 At ^m 210 At ^p 210 Rn 210 Rn ^m 210 Fr 210 Ra 210 Ra ^m 210 Ra ^m 210 Th *210 Rn ^m	-11972 8 -9422 8 -7944 8 -5013 8 -9598 9 -7908 17 -5761 17 -3105 17 -3346 22 461 15 2260 200 8790 60 14043 25 E: ENSDF2003:	1278 5 4 271.31 0.1 4 433.49 0.1 2 1556.96 0.0 2549.6 0.2 4027.7 0.2 6959.3 0.6 1690 15 3837 15 6493 15 1800 200 less than 50 keV	0 57.: 138.3 98.9 8.1 48.2 5.66 98 2.4 644 1.00 1.0 3.1: 3.7 2.2: 350 17 above 1664.6	00 m y ns	10 0.002 2.5 0.4 6 0.07 2 0.1 40 0.05 0.07 0.06 0.2	0 ⁺ 5 ⁺ # 0 ⁺ 8 ⁺ 1 ⁻ 9 ⁻ 7 ⁻ 0 ⁺ 8 ⁺ (5) ⁺ (15) ⁻ (19) ⁺ (26 ⁻) 0 ⁺ 8 ⁺ # (17) ⁻ (22) ⁺ 6 ⁺ 0 ⁺ 0 ⁺ 0 ⁺	03 03 03 03 03 03 03 03 03 03 03 03 03 0	98Pf02 98Le.A 00He17	EJ	$β^-?$ $β^-=100; β^-n=0.009 6$ $β^-=100; α=1.9e-6 4$ IT=100 $β^-=100; α=13.2e-5 10$ α=100 IT=100 α=100 IT=100 $β^+\approx 100; α=0.175 20$ IT=100 IT=100 IT=100 $α=96 1; β^+?$ IT? IT=100 IT=100 $α=96 30; β^+=40 30$ $α=9; β^+=4#$ $α=?; β^+=9#$ $α=?; β^+=1#$	*
211Tl 211Pb 211Bi 211Bi ^m 211Po 211Po ^m 211Po ⁿ 211Po ⁿ 211Po ^p 211At 211Rn 211Fr 211Ra 211Ac	-6080# 200# -10491.4 2.7 -11858 6 -10631 6 -10601 12 -12432.5 1.3 -10970 5 -10298 5 -7559 5 -11647.1 2.8 -8756 7 -4158 21 836 26 7200 70 13910 70	1227.2 0.3 1257 10 3 1462 5 2135 5 4874 5	1# 36. 2.1- 70 1.4 516 AD 25: 2 7.21 14.4 3.10 13 215 48	m 1 m 4 m ns 5 ms 5 ms 6 ms 6 h 6 h 7 m 8	3 0.6 0.07 1 0.007 0.2 0.02 2 25	9/2+ 9/2- (21/2-) (25/2-) 9/2+ (25/2+) (31/2-) (43/2+) 9/2- 1/2- 9/2- 5/2(-) 9/2-#	91 91 91 96 96 91 91		T ETJ ETJ T	$\begin{array}{l} \beta^-?\\ \beta^-=100\\ \alpha\approx 100; \beta^-=0.276\ 4\\ IT=100\\ IT=100\\ \alpha=100\\ \alpha\approx 100; IT=0.016\ 4\\ IT\approx 100; \alpha?\\ IT\approx 100; \alpha?\\ IT\approx 100; \alpha?\\ S=58.20\ 8; \alpha=41.80\ 8\\ \beta^+=72.6\ 17; \alpha=27.4\ 17\\ \alpha>80; \beta^+<20\\ \alpha>93; \beta^+<7\\ \alpha\approx 100; \beta^+<0.2\\ \alpha=?; \beta^+=0.5\# \end{array}$	**
212Po ^m 212At 212At ^m 212At ⁿ 212Rn 212Fr 212Ra 212Ra	-1650# 300# -7547.4 2.2 -6212 10 -8117.3 2.0 -7870 30 -5920# 200# -10369.4 1.2 -7459 12 -8621 7 -8395 6 -3849 8 -8660 3 -3538 26 -191 11 1767 11 up is continued of	1335 10 250 30 2200# 200# 2911 12 226 9 4772 3 1958.4 0.5	AD 45. AD 119 152 23. 20. 13.	64 h μs 65 m 60 m 60 m 70 ns 11 s 71 ms 72 μs 79 m 70 m 70 m 70 s	0.06 0.2 0.3 2 0.6 2 3 5 1.2 0.6 0.2	$\begin{array}{c} 5^{+}\#\\ 0^{+}\\ (8^{+})\\ 1^{(-)}\\ (9^{-})\\ >15\\ 0^{+}\\ (18^{+})\\ (1^{-})\\ (9^{-})\\ (25^{-})\\ 0^{+}\\ 5^{+}\\ 0^{+}\\ (8)^{+}\\ \end{array}$	92 92 92 92 92 92 92 92 92 92 92 92 92	98Pf02 98Pf02 89Ha.A	T D	$\begin{array}{l} \beta^- ? \\ \beta^- = 100 \\ \text{IT} = 100 \\ \beta^- = 64.06 \ 6; \ \alpha = 35.94 \ 6; \dots \\ \alpha = 67 \ 1; \ \beta^- = 33 \ 1; \ \beta^- \alpha = 30 \ 1 \\ \beta^- \approx 100; \ \text{IT} \ ? \\ \alpha = 100 \\ \alpha \approx 100; \ \text{IT} = 0.07 \ 2 \\ \alpha \approx 100; \ \beta^+ < 0.03; \ \beta^- < 2e - 6 \\ \alpha > 99; \ \text{IT} < 1 \\ \text{IT} = 100 \\ \alpha = 100; \ 2\beta^+ \ ? \\ \beta^+ = 57 \ 2; \ \alpha = 43 \ 2 \\ \alpha = ?; \ \beta^+ = 15\# \\ \text{IT} = 100 \end{array}$	*

Nuclide	Mass ex (keV			citati rgy(k		Н	alf-li	fe	J^{π}	Ens	Referen	ce	Decay modes and intensities (%)	
	up continue					020		50	C+ 11	02	0011 17	T.	0 0+ 24	
²¹² Ac ²¹² Th	7280 12091	70 18				920 36	ms ms	50 15	6^{+} #	92 92	00He17	T	$\alpha = ?; \beta^{+} = 3#$ $\alpha \approx 100; \beta^{+} = 0.3#$	*
²¹² Pa	21610	70				8	ms	5	7+#	12	97Mi03	TD	$\alpha = 100$, $\beta = 0.5$ iii $\alpha = 100$	
	D:; β		014											**
	E: 1910 k	eV, if	100% β ⁻	deca	ay goes	to 2922	leve	1 in ²¹²	Po, and if	$\log f$	t for			**
			ition is 5											**
	T : averag J : ENSDF							feeds	the ²⁰⁸ Fr	7 ⁺ gr	ound-state	e		**
²¹³ Pb	2104	0				10.2		0.2	(0/2±)	02			R=_100	
²¹³ Bi	-3184 -5231	8 5				10.2 45.59		0.3	$(9/2^+)$ $9/2^-$	92 92			$\beta^-=100$ $\beta^-=97.91$ 3; $\alpha=2.09$ 3	
²¹³ Po	-6653	3				4.2	μs	0.8	9/2 ⁺	92			$\alpha = 100$	
²¹³ At	-6579	5				125	ns	6	$9/2^{-}$	92			$\alpha=100$	
²¹³ Rn	-5698	6				19.5		0.1	$(9/2^{+})$	92	00He17	T	$\alpha=100$	*
²¹³ Fr	-3550	8				34.6	s	0.3	9/2-	92			α =99.45 3; β ⁺ =0.55 3	
²¹³ Ra	358	20				2.74	m	0.06	$1/2^{-}$	92			α =80 5; β ⁺ ?	
²¹³ Ra ^m	2127	21	1769	6	AD	2.1	ms	0.1	17/2-#		76Ra37		IT≈99; α≈1	*
²¹³ Ac	6150	50				731	ms	17	9/2-#	92	00He17	T	$\alpha=?;\beta^+?$	
²¹³ Th ²¹³ Pa	12120	70 70				140	ms	25	5/2-#	92	051:05	TD	$\alpha=?;\beta+?$	
	19660 T: in sam		r 18 0/0	1) 10	0(0.5)	7	ms	3 her 70			95Ni05	ID	α=100	
* 213Rn			not used		.0(0.5),	not use	u. Oi	nei 70	va13-23.	0(0.2) at			**
	E : derive				α decay	v energy	in tl	ъе Амі	E evaluatio	on.				**
									level, thu		75(3) keV			**
* ²¹³ Ra ^m	J: 17/2- o	or 13/2	+ as prop	osed	by 76F	Ra37								**
²¹⁴ Pb	-181.3	2.4				26.8	m	0.9	0^{+}	95			β ⁻ =100	
²¹⁴ Bi	-1200	11				19.9	m	0.4	1^{-}	95	89Ha.A	D	$\beta^- \approx 100$; $\alpha = 0.021$ 1; $\beta^- \alpha = 0.003$	
²¹⁴ Po	-4469.9	1.5				164.3	•	2.0	0_{+}	95			α=100	
²¹⁴ At ²¹⁴ At ^m	-3380	4	50	0	A.D.	558	ns	10	1-	95			α=100	
214 At ⁿ	-3320 -3146	8 5	59 234	9 6	AD AD	268 760	ns ns		9-					
214 Rn	-4320	9	234	U	AD	270	ns	20	0 ⁺	95			$\alpha = 100; 2\beta^{+}$?	
214 Rn m	-2695	9	1625.1	0.5		6.5	ns	3.0	8+)5			u=100, 2p :	
²¹⁴ Fr	-958	9	102011	0.0		5.0	ms	0.2	(1^{-})	95			α=100	
214 Fr ^m	-835	9	123	6	AD	3.35	ms	0.05	(8-)	95			α=100	
²¹⁴ Ra	101	9				2.46	S	0.03	0^{+}	95			$\alpha \approx 100; \beta^{+} = 0.059 4$	
²¹⁴ Ac	6429	22				8.2	S	0.2	5+#	95			$\alpha \ge 89\ 3; \beta^+ \le 11\ 3$	
²¹⁴ Th	10712	17				100	ms	25	0_{+}	95	051105	ъ	$\alpha \approx 100; \beta^{+} = 0.1 \#$	
²¹⁴ Pa	19490	80				17	ms	3		95	95Ni05	D	<i>α</i> =100	
²¹⁵ Pb	4480#					36	s	1	5/2+#		96Ry.B	T	$\beta^{-}=100$	*
²¹⁵ Bi	1649	15	1045.5	2 -		7.6	m	0.2	$(9/2^{-})$	01	025 5	ъ	$\beta^-=100$	
²¹⁵ Bi ^m ²¹⁵ Po	2997	15	1347.5	2.5		36.4	m	2.5	$(25/2^{-})$		02Fr.B	D	IT=?; β^- =?	*
²¹⁵ Po ²¹⁵ At	-540.3	2.5						0.004		01			α =100; β ⁻ =2.3e-4 2	
²¹⁵ Rn	-1255 -1169	7 8				100		20 0.10	$9/2^{-}$ $9/2^{+}$	01 01			$\alpha = 100$ $\alpha = 100$	
²¹⁵ Fr	318	7				86	ns	5	$9/2^{-}$	01			$\alpha = 100$ $\alpha = 100$	
²¹⁵ Ra	2534	8						0.07	9/2+#				$\alpha = 100$ $\alpha = 100$	
215 Ra m	4412	8	1877.8	0.5		7.1	μs	0.2	$(25/2^+)$				IT=100	
215 Ra n	4781	8	2246.9			1.39		0.07	$(29/2^{-})$				IT=100	
²¹⁵ Ac	6012	21				170	ms	10	$9/2^{-}$	01			$\alpha \approx 100; \beta^{+} = 0.09 \ 2$	
²¹⁵ Th	10927	27				1.2	S	0.2	$(1/2^{-})$				α=100	
²¹⁵ Pa	17870	90				14	ms	2	9/2-#	01			α=100	
	T: other p													**
*B1	T: other p	renmi	nary resu	It U2	rr.B=36	0.9(0.6)	S							**

Nuclide	Mass e (ke			Excitati ergy(k		Н	alf-li	fe	J^{π}	Ens	Referen	ce	Decay modes and intensities (%)	
²¹⁶ Bi ²¹⁶ Po	5874 1783.8	11 2.2				2.17 145	m ms	0.05	1-# 0 ⁺	97 97	96Ry.B	Т	$\beta^{-}=100$ $\alpha=100; 2\beta^{-}?$	*
²¹⁶ At	2257	4				300	μs	30	$1^{(-)}$	97			$\alpha \approx 100; \beta^- < 0.006; \varepsilon < 3e-7$	
²¹⁶ At ^m	2670	6	413	5		100#	•	_	(9-)	97			α=100	
²¹⁶ Rn ²¹⁶ Fr	256 2979	7 14				45 700	μs ns	5 20	0^{+} (1^{-})	97 97			$\alpha = 100$	
²¹⁶ Ra	3291	9				182	ns	10	0+	97			α =100; β ⁺ <2e-7# α =100; ε <1e-8	
²¹⁶ Ac	8123	27				440	μs	16	(1^{-})	97	00He17	T	$\alpha = 100; \beta = 7e - 5\#$	
$^{216}Ac^m$	8166	26	44	7	AD	443	μs	7	(9-)	97	00He17	T	$\alpha = 100; \beta^{+} = 7e - 5\#$	
²¹⁶ Th	10304	13				26.8	ms	0.3	0^{+}	97	01Ha46	T	$\alpha \approx 100; \beta^{+} = 0.006 \#$	*
$^{216}{ m Th}^{m}$	12346	16	2042	13	AD	137	μ s	4	(8^{+})	97	01Ha46		IT=94 4; α=?	*
²¹⁶ Th ⁿ	12941	24	2637	20		615	ns	55	(11^{-})	97	01Ha46	TJ	IT=100	
²¹⁶ Pa * ²¹⁶ Bi	17800	70	2 ((0, 4)	4		105	ms	12		97	96An21	T	$\alpha = ?; \beta^{+} = 2#$	*
* ²¹⁶ Th			=3.6(0.4)) · ot1	har 68'	Va18=28(2	2) out	waighad			**
* 111 *216Thm		_	a46=23.4 a46=128(i), Oti	1101 00	va10-20(.	2) Out	weighed			**
* ²¹⁶ Pa		_	in 00He1				nined	satisf	actorily"					**
²¹⁷ Bi	8820#	200#				97	s	3	9/2-#		96Ry.B	T	$\beta^{-}=100$	
²¹⁷ Po	5901	7				1.47	s	0.05	5/2+#	91	96Ry.B	T	$\alpha > 95; \beta^- < 5$	
²¹⁷ At	4396	5				32.3	ms	0.4	$9/2^{-}$	91	97Ch53	D	$\alpha \approx 100; \beta^- = 0.008 \ 2$	*
²¹⁷ Rn	3659	4				540	μ s	50	$9/2^{+}$	91			α =100	
²¹⁷ Fr ²¹⁷ Ra	4315	7				16.8	•	1.9	9/2-	94	90An19	T	α=100	*
²¹⁷ Ra ²¹⁷ Ac	5887 8707	9				1.63	μs	0.17	$(9/2^+)$	91	90An19	T	$\alpha=100$	*
$^{217}Ac^m$	10719	13 19	2012	20	AD	69 740	ns ns	40	$9/2^-$ $(29/2)^+$	91 91			α =?; β ⁺ \leq 2 IT=95.7 10; α =4.3 10	
²¹⁷ Th	12216	21	2012	20	AD	240	μs	5	$(9/2^+)$	91	02He29	T	$\alpha = 100$	*
²¹⁷ Pa	17070	50				3.48		0.09	9/2-#	91	02He29	T	α=100	*
217 Pa m	18930	50	1860	7	AD	1.08	ms	0.03	29/2+#	91	02He29	TD	α=73 4; IT ?	
²¹⁷ U	22700	90				26	ms	14	$1/2^{-}$ #		00Ma65	TD	$\alpha=?$	
* ²¹⁷ At * ²¹⁷ Fr			97Ch53=)12(4	1)						**
* ²¹⁷ Ra			.n19=16(2 .n19=1.7(**
* Ka * ²¹⁷ Th			le29=237(h Rir	oe rati	o B-2 8					**
* ²¹⁷ Pa		_	le29=3.8(ge run	0 B-2.0					**
²¹⁸ Bi	13340#	360#				33	S	1	1-#	0 -	02Fr.B	TD	$\beta^{-}=100$	
²¹⁸ Po ²¹⁸ At	8358.3	2.4				3.10		0.01	0+	96			$\alpha \approx 100; \beta^{-} = 0.020 \ 2$	
218Rn	8099 5217.5	12 2.4				1.5 35	s ms	0.3 5	1-# 0+	96 96			$\alpha \approx 100; \beta^{-}=0.1$ $\alpha = 100$	
²¹⁸ Fr	7059	5				1.0	ms	0.6	1 ⁻	96			$\alpha=100$ $\alpha=100$	
218 Fr m	7146	6	86	4	AD	22.0		0.5	1	96			$\alpha \approx 100$; IT ?	
$^{218}Fr^{p}$		150#		150#					high					
²¹⁸ Ra	6651	11				25.6	μs	1.1	0_{+}	96			α =100; $2\beta^+$?	
²¹⁸ Ac	10840	50					μs	0.09	1-#	96			α=100	
218 Acm	10990#	70#	150#	50#		32	ns	9	(9-)	0 -	94De04	ET		*
²¹⁸ Ac ⁿ ²¹⁸ Th	11420#	70#	584#	50#		103	ns	11	(11^{+})	96			** 100	*
²¹⁸ Pa	12374 18669	13 25				109 113	ns µs	13 10	0_{+}	96 96	00He17	T	α=100 α=100	
²¹⁸ U	21920	30				6	ms	5	0^{+}	96 96	ooner/	1	$\alpha=100$ $\alpha=100$	*
* ²¹⁸ Ac ^m			5 in 94De	04		U	1113	5	0	70			W 100	**
$*^{218}Ac^n$			eV above		, from E	ENSDF								**
$*^{218}Pa$			6An21=1											**
	-													

Nuclide	Mass excess (keV)	Excitation energy(keV)		Half-	life	J^{π}	Ens	Referenc	e	Decay modes and intensities (%)	
²¹⁹ Po ²¹⁹ At ²¹⁹ Rn ²¹⁹ Fr ²¹⁹ Ra	12800# 360# 10397 4 8830.8 2.5 8618 7 9394 8		2# 56 3.96 20 10	m s s ms	(>300 ns) 3 0.01 2 3	7/2 ⁺ # 5/2 ⁻ # 5/2 ⁺ 9/2 ⁻ (7/2) ⁺	01 01 01 01	98Pf02	I	β^- ?; α ? $\alpha \approx 97$; $\beta^- \approx 3$ $\alpha = 100$ $\alpha = 100$ $\alpha = 100$	
²¹⁹ Ac ²¹⁹ Th ²¹⁹ Pa ²¹⁹ U	11570 50 14470 50 18520 50 23210 60		11.8 1.05 53 55	μs μs ns μs	1.5 0.03 10 25	9/2 ⁻ 9/2 ⁺ # 9/2 ⁻ 9/2 ⁺ #	01 01 01			α =100; β ⁺ =1e-6# α =100; β ⁺ =1e-7# α =100; β ⁺ =5e-9# α =100; β ⁺ =1.4e-5#	
220 Po 220 At 220 Rn 220 Fr 220 Ra 220 Ac 220 Pa 220 Pa 220 U *220 Ra *220 Ac		7=18(2) 90An19=1 9=26.4(0.2) 70Bo1			(>300 ns) 0.04 0.1 0.3 1.4 0.19 0.6 160	$0^{+}\\ 3^{(-\#)}\\ 0^{+}\\ 1^{+}\\ 0^{+}\\ (3^{-})\\ 0^{+}\\ 1^{-}\#\\ 0^{+}$	97 97 97 97 97 97	98Pf02 00He17 90An19	Т	β^- ? β^- =92 2; α =8 2 α =100; $2\beta^-$? α ≈100; β^- =0.35 5 α =100 α =100; β^+ =5e-4# α =100; ε =2e-7# α =100; β^+ =3e-7# α ?; β^+ ?	* * * * * * * * * * * * * * * * * * * *
221 At 221 Rn 221 Fr 221 Ra 221 Ac 221 Th 221 Pa 221 U	16810# 200# 14472 6 13278 5 12964 5 14520 50 16938 9 20380 50 24590# 100#		2.3 25 4.9 28 52 1.68 5.9 700#	m m s ms ms ms	0.2 2 0.2 2 2 0.06 1.7	3/2 ⁻ # 7/2 ⁽⁺⁾ 5/2 ⁻ 5/2 ⁺ 9/2 ⁻ # (7/2 ⁺) 9/2 ⁻ 9/2 ⁺ #	90 90 90 90 90 90	97Ch53 94Bo28		$\beta^{-}=100$ $\beta^{-}=78 \text{ 1; } \alpha=22 \text{ 1}$ $\alpha\approx100; \beta^{-}=0.0048 \text{ 15; } \dots$ $\alpha=100; {}^{14}\text{C}=1.2\text{e}-10 \text{ 9}$ $\alpha=100$ $\alpha=100$ $\alpha=100$ $\alpha:=100$ $\alpha:=100$ $\alpha:=100$ $\alpha:=100$	*
* ²²¹ Fr * ²²¹ Fr * ²²¹ Th	D:; 14 C=8.8e- D: β^- intensity is T: also 00He17=2	from 97Ch53; 14C	intensity	y is fr	om 94Bo28	;					** **
222 At 222 Rn 222 Fr 222 Ra 222 Ac 222 Ac 222 Th 222 Pa 222 U *224 Ac ^m *225 Ac ^m *226 Ac ^m *227 Pa *227 Pa	17203 12 22120# 70# 24300# 100# D: derived from 0 T: average 00He1 T: average 95Ni.A	200# 150# * $0.7\% < \beta^+ < 2\%$, i. $7=2.0(0.1)$ 99Gr28 $A=3.3(0.3)$ 79Sc095) at variance, not	=2.1(0.1 =2.9(+0.0	m s s m ms ms ps	10 0.0003 0.3 0.5 0.5 0.07 0.07 0.3 0.7	0^{+} 2^{-} 0^{+} 1^{-} high 0^{+} 0^{+}	96 96 96 96 96 96 96 96	00He17 95Ni.A	T T	β^{-} =100 α =100 β^{-} =100 α =100; ¹⁴ C=3.0e-8 10 α =99 1; β^{+} =1 1 α =?; IT≤10; β^{+} =1.4 4 α =100; ε <1.3e-8# α =100 α =100; β^{+} <1e-6#	* * * * * * * * * * * * * * * * * * *
223At 223Rn 223Fr 223Ra 223Ac 223Th 223Pa 223U *223Pa	23460# 400# 20300# 300# 18383.8 2.4 17234.7 2.5 17826 7 19386 9 22320 70 25840 70 T: average 99Ho2	28=4.9(0.4) 95Ni.A	50 24.3 22.00 11.43 2.10 600 5.1 21 =5.0(1.0	s m m d m ms ms us ps	7 0.4 0.07 0.05 0.05 20 0.3 8 013=6.5(1.9	3/2 ^{-#} 7/2 3/2 ⁽⁻⁾ 3/2 ⁺ (5/2 ⁻) (5/2) ⁺ 9/2 ^{-#} 7/2 ^{+#} 0)	01 01 01 01 01 01	99Но28	Т	$\beta^- \approx 100$; $\alpha = 0.008\#$ $\beta^- = 100$; $\alpha = 0.0004\#$ $\beta^- \approx 100$; $\alpha = 0.006$ $\alpha = 100$; $^{14}C = 8.9e - 8.4$ $\alpha = 99$; $\varepsilon = 1$ $\alpha = 100$ $\alpha = 100$; $\beta^+ < 0.001\#$ $\alpha \approx 100$; $\beta^+ = 0.2\#$	*

Nuclide	Mass excess (keV)	Excitation energy(keV)	I	Half-l	ife	J^{π}	Ens	Referen	ce	Decay modes and intensities (%)	
224Rn 224Fr 224Ra 224Ac 224Th 224Pa 224U *224Pa *224U	22440# 300# 21660 50 18827.2 2.2 20235 4 19996 11 23870 16 25714 25 T: average 96Li0 T: average 92T00				3 0.10 0.04 0.17 0.02 19 270	0 ⁺ 1 ⁻ 0 ⁺ 0 ⁻ 0 ⁺ 5 ⁻ # 0 ⁺	97 97 97 97 97 97	96Li05 92To02	T T	$β^-$ =100 $β^-$ =100 $α$ =100; 14 C=4.0e-9 12 $β^+$ =90.6 17; $α$ =9.4 17; $β^-$ <1.6# $α$ =100; $2β^+$? $α$ ≈100; $β^+$ =0.1# $α$ =100; $β^+$ <1.2e-4#	* * * * * * * * * * * * * * * * * * * *
²²⁵ Rn ²²⁵ Fr ²²⁵ Ra ²²⁵ Ac ²²⁵ Th	26490# 300# 23810 30 21994.0 3.0 21638 5 22310 5		4.66 4.0 14.9 10.0 8.72	m d d m	0.04 0.2 0.2 0.1 0.04	7/2 ⁻ 3/2 ⁻ 1/2 ⁺ (3/2 ⁻) (3/2) ⁺		97Bu03 93Bo26		$β^{-}=100$ $β^{-}=100$ $β^{-}=100$ $α=100; {}^{14}C=6.0e-10 13$ $α\approx90; ε\approx10$	
²²⁵ Pa ²²⁵ U ²²⁵ Np * ²²⁵ U * ²²⁵ U	24340 70 27377 12 31590 70 T: 00He17=59(+5 T: 89He13=8	5–2); others 94An 0(+40–10) outwei		45–2		5/2 ⁻ # 5/2 ⁺ # 9/2 ⁻ #	90 90 97	00He17 94Ye08	T ID	α=100 α=100 α=100	* ** **
226Rn 226Fr 226Ra 226Ac 226Th 226Pa 226U 226Np *226Ra *226U	28770# 400# 27370 100 23669.1 2.3 24310 3 23197 5 26033 11 27329 13 32740# 90# D: 14°C: average 9 T: average 01Ca.			h m m ms ms =2.9(1			96 96 96 96 96 96 96 96	90We01 01Bo11 01Ca.B	D	$\beta^{-}=100$ $\beta^{-}=100$ $\alpha=100; {}^{14}C=2.6e-9 6; 2\beta^{-}?$ $\beta^{-}=83 3; \varepsilon=17 3; \alpha=0.006 2$ $\alpha=100; {}^{18}O<3.2e-12$ $\alpha=74 5; \beta^{+}=26 5$ $\alpha=100$ $\alpha=100; \beta^{+}=0.003\#$	****
227Rn 227Fr 227Ra 227Ac 227Th 227Pa 227U 227Np	32980# 420# 29650 100 27179.0 2.4 25850.9 2.4 25806.2 2.5 26832 7 29022 17 32560 70		20.8 2.47 42.2 21.772 18.68 38.3 1.1 510	s m m y d m m ms	0.7 0.03 0.5 0.003 0.09 0.3 0.1 60	5/2 ^(+#) 1/2 ⁺ 3/2 ⁺ 3/2 ⁻ 1/2 ⁺ (5/2 ⁻) (3/2 ⁺) 5/2 ⁻ #	01 01 01 01 01 01	97Ku20	J	β^- =100 β^- =100 β^- =100 β^- =98.62 36; α =1.38 36 α =100 α =85 2; ε =15 2 α =100; β^+ <0.001# α ≈100; β^+ =0.05#	
228 Rn 228 Fr 228 Ra 228 Ac 228 Th 228 Pa 228 U 228 Np 228 Pu *228 Np	35380# 410# 33280# 200# 28941.8 2.4 28896.0 2.5 26772.2 2.2 28924 4 29225 15 33700# 200# 36090 30 D: β ⁺ SF=0.0200	9)% defined by 94	65 38 5.75 6.15 1.9116 22 9.1 61.4 10# Kr13 re	h m s ms	$\begin{array}{c} 2\\ 1\\ 0.03\\ 0.02\\ 0.0016\\ 1\\ 0.2\\ 1.4\\ (>2\mu s)\\ \text{to }\varepsilon, \text{ thu} \end{array}$		97 97 97 97 97 97 97 97	94Kr13 94An02 of total		$β^-=100$ $β^-=100$ $β^-=100$ $β^-=100$ $α=100; ^{20}O=1.13e-1122$ $β^+=98.02; α=2.02$ α>95; ε<5 $ε=607; α=407; β^+SF=0.0126$ $α\approx100; β^+=0.1#$	*

_	Nuclide	Mass ex (keV			citation gy(keV)	На	lf-li	fe	J^{π}	Ens	Referen	ce	Decay modes and intensities (%)	
-	²²⁹ Fr ²²⁹ Ra	35820 32563	40 19			50.2 4.0	s m	0.4 0.2	1/2 ⁺ # 5/2 ⁽⁺⁾	90	92Bo05	Т	β ⁻ =100 β ⁻ =100	,
	²²⁹ Ac ²²⁹ Th ²²⁹ Th ^m	30750 29586.5 29586.5	30 2.8 2.8	0.0035	0.0010	62.7 7.34 70		0.5 0.16 50	$(3/2^+)$ $5/2^+$ $3/2^+$	90 90	94He08	TEJ	β^- =100 α =100 IT ?	*
	²²⁹ Pa	29898.0	2.7			1.50		0.05	$(5/2^+)$	90			$\varepsilon \approx 100$; $\alpha = 0.485$	
	²²⁹ Pa ^m ²²⁹ U	29909.6	2.7	11.6	0.3	420	ns	30	$3/2^{-}$	00	98Le15	EJD		
	²²⁹ Np	31211 33780	6 90			58 4.0	m m	3 0.2	$(3/2^+)$ $5/2^+ \#$	90 90			$\beta^+ \approx 80; \alpha \approx 20$ $\alpha > 50; \beta^+ < 50$	
	$^{229}Np^{p}$		100#	70#	50#				5/2-#				, р	
	²²⁹ Pu	37400	50			120	s	50			01Ca.B	TD	$\alpha=100$	
	* ²²⁹ Th ^m * ²²⁹ Th ^m				on assigned b									**
	* ²²⁹ Th ^m			n vacuo.	to be due to N	N ₂ disci	arge	emis	ssion. 990	101 8	sees			**
	²³⁰ Fr ²³⁰ Ra ²³⁰ Ac ²³⁰ Th	39600# 4 34518 33810 3 30864.0	450# 12 300 1.8			19.1 93 122 75.38	s m s kv	0.5 2 3 0.30	$0^{+} \ (1^{+}) \ 0^{+}$	93 93 94 93	01Yu03	D	$\beta^{-}=100$ $\beta^{-}=100$ $\beta^{-}=100; \beta^{-}SF=1.19e-6 40$ $\alpha=100; SF<5e-11;$	*
	²³⁰ Pa	32175	3			17.4	ď	0.5	(2^{-})	93			β^+ =91.6 13; β^- =8.4 13;	*
	²³⁰ U	31615	5			20.8	d		0_{+}	93	01Bo11	D	α=100; 22Ne=4.8e-12 20;	*
	$^{230}{ m Np}_{^{230}{ m Np}^p}$	35240 35540# 2	50	300#	200#	4.6	m	0.3	am	93			$\beta^+ \leq 97; \alpha \geq 3$	
	²³⁰ Pu	36934	15	300#	200#	1.70	m	0.17	$\frac{am}{0^+}$	93	01Ca.B	Т	α =?; β ⁺ ?	*
>	× ²³⁰ Th			6.6e-11 10								-	, ,	**
	²³⁰ Pa	D:; <i>a</i>												**
	²³⁰ U ²³⁰ Pu			le–10#; 2β		m a t 1100	.1							**
,	ĸPu	1 : aiso 9	UAII22	2=134(00)S	outweighed,	not use	1							**
	²³¹ Fr ²³¹ Ra	42330# 4				17.6	s	0.6	1/2+#	01			$\beta^-=100$	
	231 Ra m	38400# 3 38470# 3		66.21	0.09	103 53	s µs	3	$(5/2^+)$ $(1/2^+)$	01 01			β ⁻ =100 IT=100	
	²³¹ Ac		100	00.21	0.00	7.5	•	0.1	$(1/2^+)$	01			$\beta^{-}=100$	
	²³¹ Th	33817.3	1.8			25.52			5/2+	01			β^- =100; α =4e-11#	
	²³¹ Pa	33425.7	2.3			32.76	-		3/2-	01			α =100; SF \leq 3e-10;	*
	²³¹ U ²³¹ Np	33807	3			4.2	d		$(5/2)^{(+\#)}$				$\varepsilon \approx 100$; $\alpha = 0.004 \ 1$ $\beta^+ = 98 \ 1$; $\alpha = 2 \ 1$	
	$^{231}\text{Np}^p$	35630 35690#	50 60#	60#	40#	48.8	Ш	0.2	$(5/2)^{(+\#)}$ $5/2^{-\#}$	01			$\rho^{*}=981; \alpha=21$	
	²³¹ Pu	38285	26	00		8.6	m	0.5	3/2+#	01	99La14	D	$\beta^{+}=87.5; \alpha=13.5$	
	²³¹ Am		300#			30#	s		,				β^+ ?; α ?	
>	²³¹ Pa	D:; 2	⁴ Ne=1	3.4e-10 17	'; ²³ F=9.9e–1	3								**
	²³² Fr	46360#	540#			5	s	1		97	90Me13	T	$\beta^- = 100$	
	²³² Ra	40650# 2	280#			250	s	50	0^+	91			$\beta^{-}=100$	
	²³² Ac		100			119	s	5	(1^{+})	91	0570 10		β ⁻ =100	
	²³² Th ²³² Pa	35448.3 35948	2.0 8			14.05			0^{+}	91 91	95Bo18	D	IS=100.; α =100; SF=11e-10 3; β ⁻ \approx 100; ε =0.003 1	*
	²³² U	34610.7				1.31 68.9			(2^{-}) 0^{+}		90Bo16	D	$\alpha = 100$; $\epsilon = 0.003$ 1 $\alpha = 100$; $\epsilon = 0.003$ 1 $\alpha = 100$; $\epsilon = 0.003$ 1	*
	²³² Np	37360#				14.7			(4 ⁺)	91		_	$\beta^+ \approx 100; \alpha \approx 0.003$	
	²³² Pu	38366	18			33.7			0^{+}		ABBW	D	ε =?; α =11#	*
	²³² Am	43400# 3		6N -2.70	10. 20= 2	1.31	m	0.04		91			β^{+} =?; α =2#; β^{+} SF=0.069 10	
>	× ²³² Th × ²³² U			°Ne<2.78€ 5e–12; SF<	$=10; 2\beta^{-}?$									**
	* ²³² U				ted by 91Bo2	20. of 2	resu	lts fro	om their o	roun				**
>	× ²³² Pu				0.8) 73Ja06=3				gi	P				**
>	× ²³² Pu	D : derive	d fron	n 1.6%# <	$\alpha < 20\%$ #,	in ENSD	F							**

Nuclide	Mass e (ke'			citation ergy(keV)		На	ılf-li	fe	J^{π}	Ens	Referen	ce	Decay modes and intensities (%)	_
²³³ Ra ²³³ Ac ²³³ Th ²³³ Pa	44770# 41500# 38733.2 37490.1					30 145 22.3 26.967	s s m d	5 10 0.1 0.002	1/2 ⁺ # (1/2 ⁺) 1/2 ⁺ 3/2 ⁻		90Me13	Т	$\beta^{-}=100$ $\beta^{-}=100$ $\beta^{-}=100$ $\beta^{-}=100$	_
²³³ U ²³³ Np ²³³ Np	36920.0 37950 38000#	2.7 50 60#	50#	30#		159.2 36.2	ky m	0.2	5/2 ⁺ (5/2 ⁺) (5/2 ⁻)	96 90	91Pr02	D	α =100; SF<6e-9; β + \approx 100; α <0.001	*
²³³ Cm	40050 43170# 47290	70		M .12	10	20.9 3.2 1#	m m m	0.4 0.8	5/2+# 3/2+#		00Sa52 01Ca.B		$\beta^{+} \approx 100; \alpha = 0.125$ $\beta^{+} ?; \alpha > 3$ $\alpha = ?; \beta^{+} ?$	
* ²³³ U	D:;	24Ne=7	7.2e–11 9; ²⁸	'Mg<1.3e	=13								k	*
²³⁴ Ra ²³⁴ Ac ²³⁴ Th ²³⁴ Pa ²³⁴ Pa ^m	47230# 45100# 40614 40341 40419	400# 3 5 4	78	3		30 44 24.10 6.70 1.17	s s d h m	10 7 0.03 0.05 0.03	0 ⁺ 0 ⁺ 4 ⁺ (0 ⁻)	94 94 94 94 94	78Ga07 78Ga07		β^- =100 β^- =100 β^- =100 β^- =100; SF<3e-10 β^- ≈100; IT=0.16 4; SF<1e-10	
²³⁴ U ²³⁴ U ^m ²³⁴ Np ²³⁴ Pu	38146.6 39567.9 39956 40350	1.8 1.8 9	1421.32	0.10		245.5 33.5 4.4 8.8	ky μs d h	0.6 2.0 0.1 0.1	$0^{+} \\ 6^{-} \\ (0^{+}) \\ 0^{+}$	94 94 94			IS=0.0055 2; α =100; β^{+} =100 $\varepsilon \approx 94; \alpha \approx 6$	*
²³⁴ Am ²³⁴ Cm * ²³⁴ U	44530# 46724	210# 18	'3e-9 10; ²⁸	Mg=1.4e-	·11 3; ²⁴	2.32 51	m s	0.08 12	0+	94	90Ha02 01Ca.B		$\beta^{+} \approx 100; \alpha = 0.039 \ 12; \dots$ $\alpha = ?; \beta^{+} = 47#; SF = 3$	*
* ²³⁴ Am	D:;	β+SF=	0.0066 18										k	**
²³⁵ Cm	47720# 44260 42330 40920.5 40920.6 41044.7 42184 44660# 47910#	50 50 1.8 1.8 2.0 21 120# 200#	0.0765	0.0004		40# 7.2 24.44 704 26 396.1 25.3 9.9 5#	s m My m d m m	0.1 0.11 1 1.2 0.5 0.5	1/2+# 1/2+# (3/2-) 7/2- 1/2+ 5/2+ (5/2+) 5/2-# 5/2+#	03 03 03 03 03 03 03			β^- ? β^- =100 β^- =100 IS=0.7200 51; α =100; IT=100 \approx 100; α =0.00260 13 $\beta^+\approx$ 100; α =0.0028 7 $\beta^+\approx$ 100; α =0.40 5 β^+ ?; α ?	*
²³⁵ Cm ^p ²³⁵ Bk	47960# 52700#		50#	50#		20#	s		am				β ⁺ ?; α ?	
* ²³⁵ U			-9 2; ²⁰ Ne=	8e-10 4; ²	⁵ Ne≈8			8e–10						**
²³⁶ Ac ²³⁶ Th ²³⁶ Pa ²³⁶ U	42446.3	200# 200 1.8					m m m	0.2 0.1 0.03	0+ 1(-) 0+	91 91 91			β^- ? β^- =100 β^- =100; β^- SF=6e-8 4 α =100; SF=9.6e-8 6	*
²³⁶ U ^m ²³⁶ Np ²³⁶ Np ^m ²³⁶ Np ^p	45196 43380 43439 43618	10 50 7 14	2750 60 240	10 50 50	* * AD	115 154 22.5	ns ky h	6 0.4	0^{+} (6^{-}) 1 3^{-}	91 91			ε =87.3 5; β ⁻ =12.5 5; α =0.16 4 ε =52 1; β ⁻ =48 1	
²³⁶ Pu ²³⁶ Am ²³⁶ Cm ²³⁶ Bk	42902.7 46180# 47890# 53400#	2.2 100# 200# 400#				2.858 30# 10# 1#	y m m	0.008	0 ⁺	91 91 91	90Og01	D	α =100; SF=1.36e-7 4; β ⁺ ?; α ? β ⁺ ?; α ? β ⁺ ?; α ?	*
* ²³⁶ Pa * ²³⁶ U			y questioned $< 4e-10%$											** **
* ²³⁶ Pu			$2e-12; 2\beta^+$		vII.A									** **

Nuclide	Mass exces (keV)		xcitation ergy(keV)		На	alf-l	ife	J^{π}	Ens	s Referenc	e	Decay modes and intensities (%)	
²³⁷ Th	50200# 360#	‡			4.8	m	0.5	, .		00Xu02	Г	β-=100	*
225	47640 100	0			8.7	m	0.2	$(1/2^+)$	95			$\beta^-=100$	
	45391.9 1. 44873.3 1.						0.01	$\frac{1/2^{+}}{5/2^{+}}$	95 95	89Pr.A	D	$\beta^-=100$ $\alpha=100$; SF<2e-10; 30 Mg<4e-12	*
	45093.3 2.				45.2			7/2-	95	0,11111		$\varepsilon \approx 100$; $\alpha = 0.00424$	·
	45238.8 2.	2 145.544	0.010		180	ms	20	$1/2^{+}$	95			IT=100	
	46570# 60#				73.0		1.0	5/2(-)				$\beta^{+} \approx 100; \alpha = 0.025 3$	
	49280# 210#		150#		20#	m		5/2+#	95			β^+ ?; α ?	
	49480# 260# 53100# 220#		150#		1#	m		7/2 ⁻ 7/2 ⁺ #				β^+ ?; α ?	
	53170# 230#		30#	Nm	1"	***		$(3/2^{-})$				ρ ., ω .	
	57820# 500#				2.1	s	0.3	5/2+#	98	95La09	TD	α ?; SF \approx 10; β ⁺ ?	
	T : average 0						_						**
* ²³⁷ Np	D : and clust	er (Z=10-14)	< 1.8e–12	2%, fro	om 92N	1003	3						**
220	52630# 280#	‡					2.0	0+	02	05D 57	_	$\beta^-=100$	
220	50770 60 47308.9 1.	0					0.09	3 ⁻ #		85Ba57 1 91Tu02 1		β^- =100; β^- SF<2.6e-6 IS=99.2745 106; α =100;	*
220		0 2557.9	0.5			ns	6	0^{+}	02	911u02	υ	IT=?; SF=2.6 4; α <0.5	*
220	47456.3 1.		0.5				0.002	2^+	02			$\beta^{-}=100$	
$^{238}Np^{m}$	49760# 200#		200#		112	ns	39		02			SF≈100; IT ?	
	46164.7 1.	8			87.7	У	0.1	0^{+}		89Wa10	D		*
238 A mm	48420 50 50920# 210#	+ 2500#	200#		98 35	m	2 10	1+	02 02			β ⁺ =100; $α$ =1.0e–4 4 SF≈100; IT ?	
238Cm		r 2300#	200#		2.4	μs h	0.1	0^{+}	02			ε ?; $\alpha \le 10$	
	54290# 290#	‡					0.08	Ü		94Kr03	D	$\beta^{+} \approx 100; \alpha ?; \beta^{+} \text{SF} = 0.048 2$	
	54490# 330#		150#					am					
	57200# 400#		2- 22 1	0.7	21.1	ms	1.3	0_{+}	02	01Og08	ΤD	SF \approx 100; $\alpha\approx$ 0.2; β^+ ?	*
	D:; SF=. D: $2\beta^-=2.2$				nalf life	. T-	2 0(0)	5) 7v in ()1T\	102			**
	D: $2p = 2.2$ D:; 32 Si					1 –	2.0(0.	5) Zy, III :	7110	102			**
	T : average 0					2)							**
²³⁹ Pa	53340# 200#	‡			1.8	h	0.5	(3/2)(-#	03			β ⁻ =100	
^{239}U	50573.9 1.	9			23.45	m	0.02	5/2+	03			$\beta^{-}=100$	
220	50594# 20#		20#		> 250			$(5/2^+)$				$\beta^{-}=100$	
220	50707.7 1. 49312.4 2.		0.0010)	780		40 0.003	$\frac{1/2^{+}}{5/2^{+}}$	03			IT=100 β^- =100; α =5e-10#	
220	49312.4 2. 48589.9 1.				24.11			$1/2^{+}$	03			$\alpha = 100$; SF=3.1e-10 6	
	48981.5 1.		0.003		193		4	7/2-	03			IT=100	
	49392.0 2.	4			11.9	h	0.1	$(5/2)^{-}$	03			$\varepsilon \approx 100$; $\alpha = 0.010 \ 1$	
	51890 200	2500	200		163	ns	12	$(7/2^+)$				SF≈100; IT ?	
	51190# 100# 51340# 140#		100#		2.9	h		$(7/2^{-})$	03			$\beta^+ \approx 100; \alpha < 0.1$	
	54290# 230#		100#		3#	m		$\frac{1}{2^{+}}$ $\frac{7}{2^{+}}$ #	03			β^+ ?; α ?	
	54330# 230#		11	AD	511	111		$(3/2^{-})$	03			ρ ., ω :	
220	58150# 210#				60	s	30	5/2+#	03			$lpha$ =?; eta^+ ?	
²⁴⁰ Pa	56800# 300#	‡			2#	m						β- ?	
²⁴⁰ U	52715 5				14.1	h	0.1	0^+	96			β^- =100; α <1e-10	
	52315 15	4.		*				(5^{+})	96		_	$\beta^-=100$	
²⁴⁰ Np ^m ²⁴⁰ Pu		20	15	*	7.22			1 ⁽⁺⁾		81Hs02		$\beta^- \approx 100$; IT=0.11 3	2
²⁴⁰ Pu ²⁴⁰ Am	50127.0 1. 51512 14	0			6.564 50.8	ky h	0.011	0^{+} (3 ⁻)	01 96	89Pr.A	υ	α =100; SF=5.7e-6 2; 34Si<1.3e-1 β +=100; α \approx 1.9e-4	3
²⁴⁰ Cm	51725.4 2.	3			27	d	1	0+	96			$\alpha \approx 100$; $\epsilon < 0.5$; SF=3.9e-6 8	
240 Bk	55670# 150#	‡			4.8	m	0.8	-	96			β^{+} ?; α =10#; β^{+} SF=0.0020 13	
240 Bk p	55910# 180#		100#					am					
²⁴⁰ Cf	58030# 200#				1.06		0.15	0_{+}	96	95La09	D	$\alpha \approx 98$; SF ≈ 2 ; β^+ ?	
²⁴⁰ Es	64200# 400#	Ŧ			1#	S						$\alpha ?; \beta^+ ?$	

241 Np 52 241 Pu 52 241 Pu ^m 53 241 Pu ⁿ 53 241 Am 52 241 Am ^m 53 241 Cm 53	66200# 300# 64260 70	er	Excitation nergy(keV)	Н	alf-li	ife	J^{π}	Ens	Referen	ce	Decay modes and intensities (%)	
241 Pu 52 241 Pu ^m 53 241 Pu ⁿ 53 241 Am 52 241 Am ^m 53 241 Cm 53	i4260 70				5#	m		7/2+#				β-?	
241 Pu ^m 53 241 Pu ⁿ 53 241 Am 53 241 Am ^m 53 241 Cm 53					13.9	m	0.2	$(5/2^+)$	94			$\beta^{-}=100$	
²⁴¹ Pu ⁿ 53 ²⁴¹ Am 53 ²⁴¹ Am ^m 53 ²⁴¹ Cm 53	2956.8 1.8	1.51.50	0.10		14.35	y	0.10	5/2+	96			$\beta^- \approx 100; \alpha = 0.00245 2; \dots$	*
²⁴¹ Am 52 ²⁴¹ Am ^m 53 ²⁴¹ Cm 53	3118.4 1.8	161.60	0.10		880	ns	2	$1/2^{+}$					
²⁴¹ Am ^m 53 ²⁴¹ Cm 53	5160 200 52936.0 1.8	2200	200		21	μs	3	5 /2-	94			or-100, SE-4.2s, 10.19,	
²⁴¹ Cm 53		2200	100		432.2 1.5	y μs	0.7	5/2-	94			α =100; SF=4.3e-10 18;	*
	3703.4 2.2	2200	100		32.8	μs d	0.2	1/2+	94			ε =99.0 1; α =1.0 1	
BK 50	6100# 200#				4.6	m	0.4	$(7/2^+)$		03As01	Т	α ?; β ⁺ ?	
	6150# 200#	51	3	AD				3/2-				, , ,	
²⁴¹ Cf 59	9360# 260#				3.8	m	0.7	7/2-#	94			$\beta^+ \approx 75$; $\alpha \approx 25$	
	9510# 270#	150#	100#	Nm				$(1/2^{+})$					
	3840# 230#				10	S	5	$(3/2^{-})$	97	96Ni09	TJD	α =?; β ⁺ ?	
	54240# 300#	400#	200#					$(7/2^{+})$					
	D:; SF<2.4												**
* ²⁴¹ Am D	D:; ³⁴ Si<7	.4e–14											**
²⁴² U 58	8620# 200#				16.8	m	0.5	0^+	02			β ⁻ =100	
	7420 200			*	2.2	m	0.2	(1^{+})	02			$\beta^{-}=100$	
	7420# 210#	0#	50#	*	5.5	m	0.1	6+#	02			$\beta^{-}=100$	
²⁴² Pu 54	54718.4 1.9				375	ky	2	0^{+}	02			α=100; SF=5.50e-4 6	
²⁴² Am 55 ²⁴² Am ^m 55	55469.7 1.8	10.00	0.05		16.02		0.02	1-	02			$\beta^-=82.7$ 3; $\varepsilon=17.3$ 3	
$^{242}Am^n$ 5'		48.60 2200	0.05 80		141 14.0	y	2 1.0	5^{-} $(2^{+}, 3^{-})$	02 02			IT \approx 100; α =0.45 2; SF $<$ 4.7e $-$ 9 SF \approx 100; IT=?; α ?	
	54805.2 1.8	2200	80		162.8		0.2	0+	02			α =100; SF=6.2e-6 3;	*
	7740# 200#				7.0	m	1.3	2-#	02	80Ga07	D	$\beta^{+} \approx 100$; β^{+} SF<3e-5; α ?	*
	7740# 280#	200#	200#		600	ns	100	- "	02	000007	_	SF≈100; IT ?	
	7990# 220#	250#	100#		000	11.0	100	4^{-}	02			511100,111	
	9340 40				3.49	m	0.15	0^{+}	02	70Si19	T	α =80 20; β ⁺ ?; SF<0.014	*
	54970# 330#				13.5	s	2.5		02	94Ke.B	D	$\alpha = ?; \beta^{+} = ?; \beta^{+} SF = 0.6$	*
	8400# 400#				800	μs	200	0_{+}	02			SF=?; α?	
	D:; ³⁴ Si=1.												**
	Γ : average 70S D: β +SF=0.6%					Fi04	=3.2(0	0.5) 67IIO	1=3.	7(0.3)			**
*ES D): p · Sr=0.0%	assumm	gαanαρ	are ec	luai								**
²⁴³ Np 59	2000011 2011				1.05		0.15	(5 (0-)	02			0- 100	
	9880# 30# 9925 11	50#	30#	Nim	1.85	m	0.15	$(5/2^{-})$	93			$\beta^{-}=100$	
	9925 11 7756 3	30#	30#	Nm	1 056	h	0.003	$(5/2^-)$ $7/2^+$	93			$\beta^{-}=100$	
	is 140 3	383.6	0.4		330	ns	30	$(1/2^+)$	93			IT=100	
	7176.1 2.3	303.0	0.1		7.37		0.04	5/2-	93			α =100; SF=3.7e-9 2	
²⁴³ Pu ^m 58					29.1	y	0.1	5/2+	93			$\alpha \approx 100$; $\varepsilon = 0.29$ 3; SF=5.3e-9 9	
²⁴³ Pu ^m 58 ²⁴³ Am 5	7183.6 2.1		9	AD		•		$7/2^{+}$					
²⁴³ Pu ^m 58 ²⁴³ Am 57 ²⁴³ Cm 57 ²⁴³ Cm ^p 57		129	7									$\beta^+ \approx 100$; $\alpha \approx 0.15$	
²⁴³ Pu ^m 58 ²⁴³ Am 57 ²⁴³ Cm 57 ²⁴³ Cm ^p 57 ²⁴³ Bk 58		129	9		4.5	h	0.2	$(3/2^{-})$	93			p 100, w -0.15	
243 Pu ^m 58 243 Am 5' 243 Cm 5' 243 Cm ^p 5' 243 Bk 58 243 Bk ^p 58	7312 10	129 50#	30#		4.5	h	0.2	$(3/2^-)$ $(7/2^-)$	93			•	
243 Pu ^m 58 243 Am 57 243 Cm 57 243 Cm ^p 57 243 Bk 58 243 Bk ^p 58 243 Cf 60	57312 10 58691 5 58740# 30# 50950# 140#				10.7	h m	0.5	$(7/2^{-})$ $(1/2^{+})$	93			$\beta^+ \approx 86; \alpha \approx 14$	
243 Pu ^m 58 243 Am 57 243 Cm 57 243 Cm ^p 57 243 Bk 58 243 Bk ^p 58 243 Cf 60 243 Es 64	7312 10 8691 5 8740# 30# 50950# 140# 54780# 230#	50#	30#					(7/2 ⁻) (1/2 ⁺) 3/2 ⁻ #	93			•	
243 Pu ^m 52 243 Am 5 ^r 243 Cm 5 ^r 243 Cm ^p 5 ^r 243 Bk 58 243 Bk ^p 58 243 Bk 66 243 Es 66 243 Es 66	7312 10 8691 5 8740# 30# 60950# 140# 64780# 230# 55180# 310#				10.7 21	m s	0.5	(7/2 ⁻) (1/2 ⁺) 3/2 ⁻ # am	93 93			$\beta^+ \approx 86; \alpha \approx 14$ $\beta^+ \leq 70; \alpha \geq 30$	
243 Pu ^m 52 243 Am 5 ^o 243 Cm 5 ^o 243 Cm ^p 5 ^o 243 Bk 50 243 Bk ^p 50 243 Cf 60 243 Es 6 ^o 243 Es 6 ^o 244 Es 6 ^o 245 Es 6 ^o 246 Es 6 ^o 247 Es 6 ^o 248 Es 6 ^o	7312 10 8691 5 8740# 30# 60950# 140# 64780# 230# 55180# 310# 69260# 220#	50#	30#		10.7 21 210	m s ms	0.5 2 60	(7/2 ⁻) (1/2 ⁺) 3/2 ⁻ # am	93 93	ABBW	D	$\beta^+ \approx 86; \alpha \approx 14$	*
243 Pu ^m 52 243 Am 5 ^o 243 Cm 5 ^o 243 Cm ^p 5 ^o 243 Bk 5 ^o 243 Bk ^p 5 ^o 243 Cf 60 243 Es 6 ^o 243 Es 6 ^o 244 Es 6 ^o 245 Es 6 ^o 245 Es 6 ^o 246 Es 6 ^o 247 Es 6 ^o 248 Es 6 ^o	7312 10 8691 5 8740# 30# 60950# 140# 64780# 230# 55180# 310#	50#	30#		10.7 21 210	m s ms	0.5 2 60	(7/2 ⁻) (1/2 ⁺) 3/2 ⁻ # am	93 93	ABBW	D	$\beta^+ \approx 86; \alpha \approx 14$ $\beta^+ \leq 70; \alpha \geq 30$	*
243 Pu ^m 53 243 Am 5' 243 Cm 5' 243 Cm ^p 5' 243 Bk 55 243 Bk 55 243 Bk 6 243 Bk 6 243 Bk 6 243 Bk 6 243 Fin 64 *243 Fin 64	7312 10 8691 5 8740# 30# 90950# 140# 44780# 230# 55180# 310# 92260# 220# O: α=40(20)%	50#	30#		10.7 21 210 100%, se	m s ms ee Ei	0.5 2 60 NSDF	(7/2 ⁻) (1/2 ⁺) 3/2 ⁻ # am 7/2 ⁻ #	93 93 93	ABBW	D	$\beta^{+} \approx 86; \ \alpha \approx 14$ $\beta^{+} \leq 70; \ \alpha \geq 30$ $\alpha = 60 \ 40; \ \beta^{+} \ ?; \ SF=0.57#$	
243 Pu ^m 53 243 Am 57 243 Cm 57 243 Cm ^p 57 243 Bk 53 243 Bk 53 243 Bk 53 243 Bk 53 243 Bk 64 243 Bk 65 243 Fin 64 *244 Np 65	7312 10 8691 5 8740# 30# 80950# 140# 44780# 230# 55180# 310# 99260# 220# 0: \alpha = 40(20)\alpha	50#	30#		10.7 21 210 100%, se	m s ms ee Ei	0.5 2 60 NSDF	(7/2 ⁻) (1/2 ⁺) 3/2 ⁻ # am 7/2 ⁻ #	93 93 93			$\beta^{+} \approx 86; \ \alpha \approx 14$ $\beta^{+} \leq 70; \ \alpha \geq 30$ $\alpha = 60 \ 40; \ \beta^{+} \ ?; \ SF=0.57\#$ $\beta^{-}=100$	**
243 Pu" 52 243 Am 52 243 Cm 52 243 Cm 52 243 Bk 55 243 Cf 66 243 Es 62 243 Em 66 244 Fm 67 244 Pu 55	17312 10 18691 5 18740# 30# 160950# 140# 14780# 230# 15180# 310# 19260# 220# 10: α=40(20)% 153200# 300# 19806 5	50#	30#		10.7 21 210 100%, se 2.29 80.0	m s ms ee Ei m My	0.5 2 60 NSDF	(7/2 ⁻) (1/2 ⁺) 3/2 ⁻ # am 7/2 ⁻ # (7 ⁻) 0 ⁺	93 93 93 03 03	ABBW 92Mo25		$\beta^{+} \approx 86; \ \alpha \approx 14$ $\beta^{+} \leq 70; \ \alpha \geq 30$ $\alpha = 60 \ 40; \ \beta^{+} \ ?; \ SF = 0.57 \#$ $\beta^{-} = 100$ $\alpha \approx 100; \ SF = 0.121 \ 4; \dots$	
243 Pu ^m 53 243 Am 55 243 Cm 55 243 Cm ^p 55 243 Bk 55 243 Bk 66 243 Es 66 243 Es 66 243 Fm D	17312 10 18691 5 18740# 30# 140# 14780# 230# 1580# 230# 1580# 310# 159260# 220# 220# 220# 23200# 300# 159806 5 159881.0 2.1	50# 400# if α brane	30# 200# ching of ²³	⁹ Cf is 1	10.7 21 210 100%, se 2.29 80.0 10.1	m s ms ee Ei m My h	0.5 2 60 NSDF 0.16 0.9 0.1	(7/2 ⁻) (1/2 ⁺) 3/2 ⁻ # am 7/2 ⁻ # (7 ⁻) 0 ⁺ 6 ⁻ #	93 93 93 03 03 03			$\beta^{+}\approx86; \alpha\approx14$ $\beta^{+}\leq70; \alpha\geq30$ $\alpha=60 \ 40; \beta^{+} \ ?; \ SF=0.57\#$ $\beta^{-}=100$ $\alpha\approx100; \ SF=0.121 \ 4; \dots$ $\beta^{-}=100$	**
243 Pu" 52 243 Am 57 243 Cm 57 243 Bk 55 243 Bk 55 243 Bk 66 243 Es 66 243 Es 66 243 Fm 66 243 Fm D 244 Np 66 244 Pu 55 244 Am 55 244 Am 55	17312 10 18691 5 18740 30# 180950# 140# 14780# 230# 164780# 220# 200# 2	50#	30#		10.7 21 210 100%, si 2.29 80.0 10.1 26	m s ms ee Ei m My h m	0.5 2 60 NSDF 0.16 0.9 0.1	(7/2 ⁻) (1/2 ⁺) 3/2 ⁻ # am 7/2 ⁻ # (7 ⁻) 0 ⁺ 6 ⁻ # 1 ⁺	93 93 93 03 03 03 03			$β^{+}\approx86; α\approx14$ $β^{+}\leq70; α\geq30$ $α=60 40; β^{+} ?; SF=0.57#$ $β^{-}=100$ $α\approx100; SF=0.121 4;$ $β^{-}=100$ $β^{-}\approx100; ε=0.0361 13$	**
243 Pu ^m 53 243 Am 55 243 Cm 55 243 Cm ^p 55 243 Bk 55 243 Bk 66 243 Es 66 243 Es 66 243 Fm D	(7312 10 (8691 5 (8740# 30# 140# 14780# 230# 15180# 310# 15180# 310# 15200# 300# 153200# 300# 159260# 220# 153200# 300# 159881.0 2.1 159969.5 2.3 18453.7 1.8	50# 400# if α brane	30# 200# ching of ²³	⁹ Cf is ¹ RQ	10.7 21 210 100%, se 2.29 80.0 10.1	m s ms ee Ei m My h m	0.5 2 60 NSDF 0.16 0.9 0.1	(7/2 ⁻) (1/2 ⁺) 3/2 ⁻ # am 7/2 ⁻ # (7 ⁻) 0 ⁺ 6 ⁻ #	93 93 93 03 03 03			$\beta^{+}\approx86; \alpha\approx14$ $\beta^{+}\leq70; \alpha\geq30$ $\alpha=60 \ 40; \beta^{+} \ ?; \ SF=0.57\#$ $\beta^{-}=100$ $\alpha\approx100; \ SF=0.121 \ 4; \dots$ $\beta^{-}=100$	**

Nuclide	Mass e		e	Excitation energy(ke		На	alf-lii	fe	J^{π}	Ens	Referen	ce	Decay modes and intensities (%)	
A-gro	up contin	ued												
²⁴⁴ Bk	60716	14				4.35	h	0.15	4-#	03			β^+ ?; α =0.006 3	
²⁴⁴ Bk ^p ²⁴⁴ Cf	60860# 61479.2	50# 2.9	140#	50#		19.4	m	0.6	$\frac{am}{0^+}$	03			$\alpha \approx 100$; ε ?	
²⁴⁴ Es	66030#	180#				37	S	4	U	03			β^{+} =?; α =5 3; β^{+} SF=0.01	
$^{244}Es^{p}$	66230#		200#	150#					am				p ., , p	
²⁴⁴ Fm	69010#					3.3	ms	0.5	0_{+}	03			SF \approx 100; α =0.4#	
* ²⁴⁴ Pu * ²⁴⁴ Pu	D:;	,		· · · · · · · · · · · · · · · · · · ·	M-25, 4-	2 <i>0</i> -	. 7	2 - 0	0/					**
*-··Pu	1 : and 1	(2 p)	> 1.1 Ey	, from 921	W1025; tn	us 2p	< 1.	.s e-9	%					**
²⁴⁵ Pu	63106	14				10.5	h	0.1	$(9/2^{-})$	93			β ⁻ =100	
²⁴⁵ Am	61900	3				2.05	h		$(5/2)^{+}$	93			$\beta^{-}=100$	
²⁴⁵ Cm	61004.7	2.1	255.00	0.10		8.5	ky	0.1	7/2+	93			α=100; SF=6.1e-7 9	
$^{245}\text{Cm}^{m}$ ^{245}Bk	61360.6 61815.4	2.1 2.3	355.90	0.10		290 4.94	ns d	20 0.03	$\frac{1/2^{+}}{3/2^{-}}$	93 93			IT=100 $\varepsilon \approx 100$; $\alpha = 0.12 1$	
245 Bk p	61870#	30#	50#	30#		4.74	u	0.03	$(7/2^{-})$	93			$\epsilon \approx 100$, $\alpha = 0.12$ 1	
²⁴⁵ Cf	63386.9	2.9	20	50		45.0	m	1.5	$(5/2^+)$	93			$\beta^{+}=64\ 3;\ \alpha=36\ 3$	
$^{245}\mathrm{Cf}^p$	63540#	100#	150#	100#					7/2+				•	
²⁴⁵ Es	66440#	200#				1.1	m	0.1	$(3/2^{-})$	93			β^{+} =60 10; α =40 10	
$^{245}Es^{p}$ $^{245}Es^{q}$	66740# 66790#	220# 250#	300# 350#	100# 140#					am					
²⁴⁵ Fm	70220#	280#	330#	140#		4.2	s	1.3	<i>am</i> 1/2+#	93			α =?; β ⁺ =4.2#; SF=0.13#	
²⁴⁵ Md	75290#	320#			*	900	μs	250	1/2-#	97	96Ni09	TJD	SF=?; α ?	
$^{245}\mathrm{Md}^m$	75490#		200#	100#	*	400	ms		$(7/2^+)$				$\alpha=?;\beta^+?$	
²⁴⁶ Pu	65395	1.5				10.84	a	0.02	0^{+}	98			R=_100	
²⁴⁶ Am	64995	15 18				39	d m	3	(7^{-})	98 98			$\beta^-=100$ $\beta^-=100$	
$^{246}\text{Am}^{m}$		15	30	10		25.0	m	0.2	2(-)	98			$\beta^{-}\approx 100$; IT<0.02	
²⁴⁶ Cm	62618.4	2.1				4.76	ky	0.04	0^{+}	98			$\alpha \approx 100$; SF=0.02615 7	
²⁴⁶ Bk	63970	60				1.80	d	0.02	2(-)	98			$\beta^{+} \approx 100; \alpha = 0.1 \#$	
²⁴⁶ Cf	64091.7	2.1				35.7	h	0.5	0+	98			α =100; SF=2.5e-4 2; ε <4e-3	
²⁴⁶ Es ²⁴⁶ Es ^p	67900# 68250#	220# 300#	350#	200#		7.7	m	0.5	4 ⁻ #	98			β^+ =90.1 18; α =9.9 18;	*
²⁴⁶ Fm	70140	40	330#	200#		1.1	s	0.2	$\frac{am}{0^+}$	98	96Ni09	D	α =?; β ⁺ >10; SF=4.5 13;	*
²⁴⁶ Md	76280#	330#				1.0	s	0.4	Ü	98	,01,10,	_	α =?; β + ?; SF ?	
$^{246}\mathrm{Md}^m$	76490#		210	70	EU	1.0	s	0.4			96Ni09	TD	$\alpha=?;\beta^+?$	*
* ²⁴⁶ Es	D:;													**
* ²⁴⁶ Fm	D:;			to exist, se	. ENGDE	,06								**
* Mu	1 : 110 101	iger coi	isidered	io exist, se	E ENSDF	98								**
²⁴⁷ Pu	69000#	300#				2.27	d	0.23	1/2+#	93			β ⁻ =100	
²⁴⁷ Am	67150#	100#				23.0	m	1.3	5/2#	93			$\beta^{-}=100$	
²⁴⁷ Cm	65534	4				15.6	My	0.5	9/2-	93			α=100	
²⁴⁷ Bk ²⁴⁷ Cf	65491 66137	6 8				1.38	ky h	0.25	$(3/2^{-})$ $7/2^{+}$ #				$\alpha \approx 100$; SF? $\epsilon \approx 100$; $\alpha = 0.035$ 5	
²⁴⁷ Es	68610#	30#				3.11 4.6	m	0.03	7/2+#				$\beta^+ \approx 93$; $\alpha \approx 7$; SF $\approx 9e-5\#$	
$^{247}\mathrm{Es}^p$	68930#	200#	320#	200#				0.0	am	,,,			p>5, w, 51>c 5	
²⁴⁷ Fm	71580#	140#				35	s	4	5/2+#	93			$\alpha \ge 50; \beta^+ \le 50$	
²⁴⁷ Fm ^m		150		existent	EU	9.2	S	2.3	(m /= ! ·	93	67F115	I	$\alpha \approx 100$; IT ?	*
$^{247}\text{Fm}^{p}$ $^{247}\text{Fm}^{q}$		170#	150#	100# 150#	Nm				$(7/2^+)$					
²⁴⁷ Md	71980# 76040#	210# 320#	400#	130#	*	270	ms	160	1/2-#	93	93Ho.A	TD	SF=?; α?	
$^{247}\text{Md}^m$	76170#		130#	100#	Nm *	1.12	S		$(7/2^+)$,,			α =100; SF=0.0001#	
$*^{247}$ Fm ^m	I : existe	nce of t	his isom	er is discu	ssed in E	NSDF			,					**

Nuclide	Mass e			xcitation ergy(keV))	Н	alf-l	ife	J^{π}	Ens	Reference	Decay modes and intensities (%)	
²⁴⁸ Am	70560#					3#	m			99		β- ?	
²⁴⁸ Cm	67392	5				348	ky	6	0_{+}	99		α =91.61 16; SF=8.39 16;	*
²⁴⁸ Bk	68080#	70#			*		У		6+#	99		α ?	
248 Bk m		21	30#	70#	*	23.7	h	0.2	1(-)	99		β^- =70 5; ε =30 5; α =0.001#	
248Bkp		50	50#	50#					(5-)				
²⁴⁸ Cf	67240	5				334	d	3	0+	99		$\alpha \approx 100$; SF=0.0029 3	
²⁴⁸ Es ²⁴⁸ Es ^m	70300#	50#			DM	27	m	5	$2^{-}\#,0^{+}\#$	99	0011 07 1	$\beta^{+} \approx 100; \alpha \approx 0.25; \beta^{+} \text{SF} = 3e - 5$	•
²⁴⁸ Fm	71906	12	non ex	ristent	RN	41 36	m	3	0^{+}	99	89Ha27 I	α =93 7; β ⁺ =7 7; SF=0.10 5	
248Md	77150#					30 7	S S	3	0	99		$\beta^{+}=80\ 10;\ \alpha=20\ 10;\dots$	*
	77250#		100#	70#		,	3	3		"		$p = 30 10, \alpha = 20 10, \dots$	*
²⁴⁸ No	80660#		10011	7011		< 2	μs		0^{+}		03Be18 I	SF?	
* ²⁴⁸ Cm						`-	μ.,		Ü		052010 1	51 .	**
* ²⁴⁸ Md			< 0.05										**
²⁴⁹ Am	73100#	300#				1#	m					β- ?	
	70750	5				64.15	m	0.03	$1/2^{(+)}$	99		$\beta^{-}=100$	
$^{249}\text{Cm}^{m}$	70799	5	48.758	0.017		23	μs		$(7/2^+)$	99		α=100	
^{249}Bk	69849.6					330	d	4	$7/2^{+}$	99		$\beta^- \approx 100; \alpha = 0.00145 8; \dots$	*
	69858.4		8.80	0.10		300	μs		$(3/2^{-})$	99		IT=100	
²⁴⁹ Cf	69725.6					351	У	2	$9/2^{-}$	99		α =100; SF=5.0e-7 4	
²⁴⁹ Cf ^m	69870.6		144.98	0.05		45	μs	5	5/2+	99		IT=100	
²⁴⁹ Es	71180#	30#				102.2		0.6	7/2+	99		$\beta^{+} \approx 100; \alpha = 0.57 \ 8$	
²⁴⁹ Fm	73620#					2.6	m	0.7	7/2+#	99	0111 25 1	β^{+} ?; α =33 9	
249Md 249Mam	77330# 77430#		100#	100#		24	S	4	$(7/2^{-})$	99	01He35 J	α >60; β ⁺ ?	
249 No	81820#		100#	100#		1.9 57	s µs	0.9 12	$(1/2^{-})$ $5/2^{+}$ #	00	01He35 TJ 03Be18 T	β^+ ?; α ?	
	D:;		e-9 2			31	μ	12	3/2 11	,,	03BC10 1	ρ ., α .	**
250 ca	72 000					0200			ο±	0.1		07 74 10 0- 0	
	72989	11				8300#		0.005	0+	01		SF \approx 74; $\alpha \approx 18$; $\beta^- \approx 8$	
²⁵⁰ Bk	72951	4	25.50	0.05				0.005		01		$\beta^{-}=100$	
250 Bk m	73036	4	35.59	0.05	A.D.	29	μs	1	(4^+) (7^+)	01		IT=100	
250Cf	71171.8	5 2.1	84.1	2.1	AD	213 13.08	μs y	8 0.09	0+	01 01		IT ? $\alpha \approx 100$; SF=0.077 3	
²⁵⁰ Es	73230#				*		h	0.09	(6 ⁺)	01		$\beta^+>97$; α ?	
$^{250}\text{Es}^m$	73430#		200#	150#	*		h	0.05	1(-)	01		$\beta^{+}\approx 100; \alpha$?	
²⁵⁰ Fm	74074	12	20011	13011	7	30	m	3	0+	01		α >90; ε <10; SF=0.0069 10	
	75570#		1500#	300#		1.8	s	0.1	7,8#	01		IT>80; α <20; β ⁺ ?;	*
			150011	50011		52	s	6	7,011	01		β^{+} =93 3; α =7 3; β^{+} SF=0.02	
	78830#		190#	150#			-	-	am			p,	
²⁵⁰ No	81520#					5.7	μs	0.8	0^{+}	01	03Be18 T	SF \approx 100; α =0.1#;	*
$*^{250}$ Fm ^m	$D:\ldots;$	SF<8.	2E-5				•						**
	$D:\ldots;$	$\beta^{+}=0.0$	00025#										**
* ²⁵⁰ No	T : also	01Og0	8=36(+11-	6)									**
²⁵¹ Cm	76648	23				16.8	m	0.2	$(1/2^+)$	99		β ⁻ =100	
251 Bk	75228	11				55.6	m	1.1	3/2-#			$\beta^{-}=100$	
251 Bk m	75264	11	35.5	1.3		58	μs	4	7/2+#			IT=100	
²⁵¹ Cf	74135	4				900	у	40	$1/2^{+}$	99		$\alpha \approx 100$; SF ?	
²⁵¹ Es	74512	6				33	h	1	$(3/2^{-})$	99		ε?; α=0.5 2	
²⁵¹ Fm	75987	8				5.30	h	0.08	$(9/2^{-})$	99		β^{+} =98.20 13; α =1.80 13	
²⁵¹ Fm ^m		8	191	2		15.2	μs		$(5/2^+)$	99		IT=100	
	79030#		#C.:	20."		4.0	m	0.5	$7/2^{-}$ #	99		$\beta^{+}=95\#; \alpha=?$	
	79080#		50#	30#		5 .00		20	am		0111 05	00.15 01.0 07.05	
	82910#		110"	100#	*				7/2+#	99		$\alpha = 83 \ 16; \beta^+ ?; SF < 0.3$	
	83030#		110#	180#	*		S	1.0	9/2-#		97He29 E		*
²⁵¹ Lr	87900#		ignment in	0711-20	00014	150#		mad:	0111-25			eta^+ ?; $lpha$?	
*INO'''	i : tentat	ive ass	ignment in	9/He29,	could i	iot de co	nnr	med in	101He35				**

Nuclide	Mass ex (keV			Excitati nergy(k		На	alf-l	ife	J^{π}	Ens	Reference	ce	Decay modes and intensities (%)	
252Cm 252Bk 252Cf 252Es 252Fm 252Md 252Md	79060# 78530# 76034 77290 76817 80630# 80670#	200# 5 50 6 200#	40#	100#		< 1 1.8 2.645 471.7 25.39 2.3	d	0.5 0.008 1.9 0.04 0.8	0 ⁺ 0 ⁺ (5 ⁻) 0 ⁺ am	99 99 99 99 99	92Kr.A	TD	$β^-$? $β^-$ =?; $α$? α=96.908 8; SF=3.092 8 α=78 2; $ε$ =22 2 α≈100; SF=0.0023 2; $2β$ ⁺ ? β ⁺ >50; $α$ <50	
²⁵² No ²⁵² Lr	82881 88840#	13 250#				2.44 390	s ms	0.04 90	0+	99 99			$\alpha \approx 67$; SF=32.2 5; β^+ ? β^+ =71#; α =?; SF<1	*
²⁵² Lr ^p * ²⁵² No	89140# T : other 0		300# 3=2.38(+		.22)	D : S	F fı	om 01	Og08; α 6	estim	ated by N	UBAS	SE	**
253 Bk 253 Cf 253 Es 253 Fm 253 Md 253 No 253 No 253 No 253 Lr ^m 253 Lr ^m 253 Rf 253 Rf ^m *253 Rf ^m	80930# 79301 79013.7 79350 81300# 84470# 84590# 88690# 93790# 93990# I : possibl I : the stat	6 2.6 4 210# 210# 100# 220# 250# 450# 470# e ident		, in 911	* & * Kr.A. Nee	1.5 13 52 eds conf	d d d m m m µs ms s ms µs irm	0.3 5 14 ation	$(7/2^+)$ $7/2^+$ $(1/2)^+$ $7/2^-\#$ $8/2^-\#$ $5/2^+\#$ $(7/2^-)$ $(1/2^-)$ $(7/2)^{(+\#)}$ $(1/2)^{(-\#)}$			TJD TJD TJ	$\begin{array}{l} \beta^- ? \\ \beta^- \approx 100; \ \alpha = 0.31 \ 4 \\ \alpha = 100; \ SF = 8.7 e - 6 \ 3 \\ \varepsilon = 88 \ 1; \ \alpha = 12 \ 1 \\ \beta^+ \approx 100; \ \alpha = 0.6 \# \\ \alpha = ?; \ \beta^+ = 20 \#; \ SF = 0.001 \# \\ \alpha = ? \\ \alpha = 90 \ 10; \ SF = 2.6 \ 21; \ \beta^+ = 1 \# \\ \alpha = 90 \ 10; \ SF = 8 \ 5; \ \beta^+ = 1 \# \\ SF \approx 50; \ \alpha \approx 50 \\ SF = ?; \ \alpha = 5 \# \end{array}$	* ** **
254Bk 254Cf 254Es 254Es ^m 254Fm 254Md 254Md ^m 254No ^m 254Lr 254Lr ^p 254Rf	84390# 81341 81992 82076 80904.2 83510# 83560# 84724 85220# 89850# 89880# 93320#	12 4 3 2.8 100# 140# 18 100# 340# 340#	84.2 50# 500# 30#	2.5 100# 100# 70#	AD * *	10 28 51	d h	0.2 0.5 0.2 0.002 3 8 10 40 3	0^{+} (7^{+}) 2^{+} 0^{+} (0^{-}) (3^{-}) 0^{+}	01 01 01 01 01 01 01 01	97He29	TD	β ⁻ ? $SF\approx100$; $α=0.31$ 2; $2β$ ⁻ ? $α\approx100$; $ε=0.03\#$; β ⁻ = 98 2; $IT<3$; $α=0.32$ 1; $α\approx100$; $SF=0.0592$ 3 β ⁺ ≈100; $α$? β ⁺ ≈100; $α$? α=90 4; $β$ ⁺ =10 4; $SF=0.17$ 5 IT>80; $α$? α=76 11; $β$ ⁺ =24 11; SF ? SF=?; $α<1.5$	* *
* ²⁵⁴ Es * ²⁵⁴ Es ^m	$D:\ldots;\beta$ $D:\ldots;\epsilon$	=0.076	7; SF<	0.045	-6									** **
*254Lr 255Cf 255Es 255Fm 255Fm ^p 255Md 255No 255No 255Lr 255Rf 255Rf 255Db	T: also 01 84810# 84089 83799 84050# 84843 84850# 90060# 94400# 94320# 100040#	200# 11 5 100# 7 70# 10 70# 210# 180# 210#	250# 10# 100#	100# 70# 70# 180#		85 39.8 20.07 27 3.1 22 1.64 1.0 1.7	m d h m m s s s s s	18 1.2 0.07 2 0.2 4 0.11 0.4 0.5	$\begin{array}{c} (7/2^+) \\ (7/2^+) \\ 7/2^+ \\ 7/2^+ \\ (9/2^+) \\ (7/2^-) \\ am \\ (1/2^+) \\ (7/2^-) \\ 7/2^- \\ 9/2^- \\ 5/2^+ \\ \end{array}$	99 99 99 99 99 99 99	01He35 97He29		β^- =100; SF<0.001#; α =2e-7# β^- =92.0 4; α =8.0 4; SF=0.0041 2 α =100; SF=2.4e-5 10 β^+ =92 2; α =8 2; SF<0.15 α =61 3; β^+ =39 3 α =?; β^+ <30#; SF<1# α =?; SF=52 6 α =100 α ?; SF \approx 20	**
* ²⁵⁵ Lr	T: also 01	Ga20=	=21(8)											**

Nuclide	Mass e (ke		6	Excita energy(На	ılf-li	fe	J^{π}	Ens	Reference	ce	Decay modes and intensities (%)	
²⁵⁶ Cf ²⁵⁶ Es ²⁵⁶ Es ^m ²⁵⁶ Fm	87040# 87190# 87190# 85486	100# 140# 7	0#	100#		*	12.3 25.4 7.6 157.6	m m h	1.3	$0^{+} \\ (1^{+}, 0^{-}) \\ (8^{+}) \\ 0^{+}$	99 99			SF=100; α=6.2e-7#; 2β ⁻ ? β ⁻ =100 β ⁻ ≈100; β ⁻ SF=0.002 SF=91.9 3; α=8.1 3	
²⁵⁶ Md ²⁵⁶ Md ^p	87620 87700#	50 110#	80#	100#			77	m	2	(1 ⁻) am	99			β^+ =?; α =9.2 7; SF<3	
²⁵⁶ No ²⁵⁶ Lr ²⁵⁶ Lr ^p	87824 91870#	8 220# 230#	100	70	VI		2.91 27	s s	0.05	0+	99 99			$\alpha \approx 100$; SF=0.53 6; $\varepsilon < 0.01$ # $\alpha = 85\ 10$; $\beta^+ = 15\ 10$; SF<0.03	
²⁵⁶ Rf ²⁵⁶ Db * ²⁵⁶ Rf	91970# 94236 100720# T : averag	24 290#	100 e29=6.2	70 2(0.2) 8	XL 84Og()2=6.′	6.45 1.9 7(0.2)		0.14 0.4	0+	99 99	97He29 01He35		SF=?; α =0.32 17 α =?; β ⁺ =36 12; SF=?	* *
* ²⁵⁶ Db	T : averag	ge 01H	e35=1.6	5(+0.5-	-0.3) 8	33Og.	A=2.6	(+1.	4–0.8)					**
²⁵⁷ Es ²⁵⁷ Fm ²⁵⁷ Md ²⁵⁷ No ²⁵⁷ No	89400# 88589 88996.2 90241 90550#	6 2.8 22	310#	100#			7.7 100.5 5.52 25	d d h s	0.2 0.2 0.05 2	7/2 ⁺ # (9/2 ⁺) (7/2 ⁻) (7/2 ⁺) am	99 99 99	02Но11	D	β^- =100; α =4e-4# α ≈100; SF=0.210 4 ϵ =85 3; α =15 3; SF<4 α =?; β^+ =15 8	
²⁵⁷ Lr ²⁵⁷ Lr	92740# 92890#	210#		100#			646	ms	25	9/2 ⁺ # am	99			$\alpha \approx 100$; $\beta^+ = 0.01$ #; SF=0.001#	
257 Rf 257 Rf m 257 Rf p	95930# 96050# 96030#	100#	114 100#	17 70#	AD		4.7 3.9	s s	0.3 0.4	$(1/2^+)$ $(11/2^-)$ $(7/2^+)$		97He29 97He29	JD EJ	α =?; β ⁺ =11 1; SF<1.4 α \approx100; SF=0.7#; β ⁺ ?	*
²⁵⁷ Db ²⁵⁷ Db ^m * ²⁵⁷ Rf ^m	100340# 100450# E:97He2	250#		100# form	direct	* &		ms	130	(9/2 ⁺) (1/2 ⁻) pha lines	99 99			α >94; SF<6; β^+ =1# α >87; SF<13; β^+ =1#	**
²⁵⁸ Es	92700#	300#					3#	m						β-?;α?	
²⁵⁸ Fm	90430#	200#					370	μs	14	0_{+}	01	86Hu05		SF≈100; α?	*
²⁵⁸ Md	91688	5	0.11	20011		*	51.5	d	0.3	8-#	01	93Mo18		$\alpha \approx 100; \beta^{+} < 0.0015; \beta^{-} < 0.0015$	
²⁵⁸ Md ^m ²⁵⁸ No	91690# 91480#		0#	200#		*	57.0 1.2	m ms	0.9	1-# 0 ⁺	01 01	93Mo18	D	ε =?; SF<20; β ⁻ <10#; α <1.2 SF \approx 100; α =0.001#; 2 β ⁺ ?	*
²⁵⁸ Lr	94840#		• • • • •				4.1	S	0.3		01			$\alpha > 95; \beta^{+} < 5$	
²⁵⁸ Lr ^p ²⁵⁸ Rf	95040#		200#	150#			12	***	2	am 0^+	01			SF=87 2; α=13 2	
258Db	96400# 101750#					*	4.5	ms s	0.6	0.	01			$\alpha = 64.7$; $\beta^{+} = 36.7$; SF<1#	
$^{258}\mathrm{Dh}^m$	101810#		60#	100#		*	20	s	10		01			$\beta^+ \approx 100$; IT ?	
²⁵⁸ Sg	105420#	410#					3.3	ms	1.0	0_{+}	01			SF=?; α <20	
* ²⁵⁸ Fm	T : averag														**
* ²⁵⁸ Md * ²⁵⁸ Md	D : derive				,	,		_				in			**
	D: 9: D: SF<2									SF<1e- decay l		hes < 309	ó"		**
250-										- 4-1					
²⁵⁹ Fm	93700#						1.5	S	0.3	3/2+#	99	000 1 10	-	SF=100	
²⁵⁹ Md ²⁵⁹ No	93620# 94110#						1.60 58			7/2-#		93Mo18	I	SF=?; α <1.3 α =75 4; ε =25 4; SF<10	
259 No ^p	94110#	180#	280#	150#			50	m	5	9/2+#	27			u−13 4, c−23 4, S1 < 10	
²⁵⁹ Lr	95850#	70#	_50.1	-2011			6.2	s	0.3	9/2+#	99			α =78 2; SF=22 2; β ⁺ =0.6#	
$^{259}Lr^p$	96200#		350#	150#						,				•	
259Rf	98400#	70#					2.8	S	0.4	, ,	99	94Gr08	T	α =92 2; SF=8 2; β ⁺ =0.3#	*
$^{259}Rf^{p}$ $^{259}Rf^{q}$	98500#		100#		Nm					$(3/2^+)$					
259Db	98610# 102100#		Z1U#	110#	ıvm		510	me	160	$(9/2^+)$	99	01Ga20	TD	α-100	
²⁵⁹ Sg	102100#								210	1/2+#		010020	עו	α =90 10; SF<20	
* ²⁵⁹ Rf	T : averag		r08=1.7	(+0.8–	0.5) 8	35So0				,					**
* ²⁵⁹ Rf			3.2(0.8					,			,				**

Nuclide	Nuclide Mass excess (keV)			Excitation energy(keV)			Н	alf-li	fe	J^{π}	Ens	Reference	ce	Decay modes and intensities (%)	
²⁶⁰ Fm	95640#	500#			EU		1#	m		0+				SF?	*
²⁶⁰ Md	96550#	320#					27.8	d	0.8		99	92Lo.B	TD	SF=?; α <5; ϵ <5; β ⁻ <3.5	*
²⁶⁰ No	95610#	200#					106	ms	8	0_{+}	99			SF=100	
²⁶⁰ Lr	98280#						3.0	m	0.5	0.1	99			α =80 20; β ⁺ =20 20	
²⁶⁰ Rf ²⁶⁰ Db	99150#						21	ms	1	0^{+}	99			SF=?; α =2#; ε =0.01#	
$^{260}\mathrm{Db}^p$	103680# 103880#		200#	150#			1.52	S	0.13		99			$\alpha \ge 90.4 \text{ 6; SF} \le 9.6 \text{ 6; } \beta^+ < 2.5$	
²⁶⁰ Sg	105880#	40	200π	150π			3.8	ms	0.8	0^{+}	99			SF=60 30; α=40 30	
$^{260}\mathrm{Bh}$	113610#						300#		0.0	Ü	99			α =100	
*260Fm	I : half-lif		ns and S	SF=100	mode	were			the 92	2Lo.B in	ernal				**
*260Fm	I: rep	ort. N	ot confi	rmed ii	ı subs	equer	nt exper	imen	t by s	ame grou	ıp (97	Lo.A)			**
* ²⁶⁰ Fm			y of this					prove	n						**
* ²⁶⁰ Md	T : supers	edes 8	6Hu01=	=31.8(0	.5) of	same	group								**
²⁶¹ Md	98480#						40#	m		7/2-#				α?	
²⁶¹ No	98500#						3#	h	10	3/2+#	00			α?	
²⁶¹ Lr ²⁶¹ Rf	99560#					. 0	39	m	12	2 /2+#	99	0211-11	т	SF=?; α?	
261 Rf m	101315 101390#	29	70#	100#		* &		s s	2.5	3/2 ⁺ # 9/2 ⁺ #	99	02Ho11 02Ho11	T	α =?; SF=40 α =?; β ⁺ <15; SF<10	
261 Rf p	101330#	70	100	60	AD	* O	. 01	3	,	$3/2^{+}$ #		0211011	ıυ	$\alpha_{-1}, \beta_{-1}, \beta_{1} < 10$	
²⁶¹ Db	104380#		100	00			1.8	s	0.4	5/2	99			α >82; SF<18	
²⁶¹ Sg	108160#						230	ms	60	7/2+#	99			$\alpha \approx 100$; SF<1	
261 Sg p	108290#		130	50	AD					$(9/2^{+})$					
261 Sg q	108320#		160	50	AD					$(3/2^+)$					
²⁶¹ Bh	113330#	230#					13	ms	4		99			α=95 5; SF<10	
²⁶² Md	101410#						3#	m		0+	0.1			SF ?; α ?	
²⁶² No ²⁶² Lr	99950#						5 4	ms h		0^{+}	01 01			SF \approx 100; α ? β ⁺ =?; SF $<$ 10; α ?	
²⁶² Rf	102120# 102390#					*	2.3	S	0.4	0^{+}	01			$\beta = ?$, $SF < 10$; $\alpha ?$ $SF \approx 100$; $\alpha < 0.8$	
262 Rf ^m	102990#		600#	400#		*	47	ms	5	high	01	96La11	I	SF=100	*
²⁶² Db	106270#		00011	10011			35	S	5	111,511	01	JOLUII	•	$\alpha \approx 67$; SF ≈ 30 ; $\beta^+=3\#$	
$^{262}\mathrm{Db}^p$	106390#		120#	70#										α?	
262 Sg	108420#	280#					8	ms	3	0_{+}	01	01Ho06	TD	SF=?; α <22	
²⁶² Bh	114470#						290	ms	160		01	97Ho14		α =?; SF<20	*
²⁶² Bh ^m	114780#			60	AD		14	ms	4		01	97Ho14	T	α =?; SF<10	*
* ²⁶² Rf ^m * ²⁶² Bh	I : assigne							- 240	(1)	040	.12				**
* ²⁶² Bh ^m	T : 3 ever T : 11 eve						ng 175(+240	J - 04),	see 8450	:13				**
²⁶³ No	102980#	490#					20#	m						α?; SF?	
²⁶³ Lr	103670#						5#	h						α ?	
²⁶³ Rf	104840#						11	m	3	3/2+#	99	93Gr.C	TD	SF=?; α=30	*
²⁶³ Db	107110#						29	s	9		99	92Kr01	D	SF=56 14; α =?; β ⁺ =6.9 16	*
$^{263}{\rm Db}^{p}$	107510#		400#	200#											
²⁶³ Sg	110220#		1000			*	1.0	S	0.2	,				α >70; SF ?	
$^{263}\text{Sg}^{m}$	110320#		100#	70#	Nm	*	120	ms		$3/2^{+}$ #	99			α=?; IT ?	
²⁶³ Bh ²⁶³ Hs	114610#						200#			7/2+4	99			α ?	
263 Hs	119750# 120250#		500#	100#			1#	ms		7/2 ⁺ # am	99			α=100 α ?; SF ?	
					m 93	Gr.C-	=500(+3	00-2	2(00)		:600(-	+300 − 200)) s	α :, or :	**
***** KT															
* ²⁶³ Rf * ²⁶³ Db	D: SF fro	m 92K	rui = 5i	((+13-	15): 13	' ave	rage 03	Kr. I:	=3(+4	–1) 93Cii	:.C=8	(2)			**

Nuclide	Mass excess (keV)	Excitation energy(keV)	На	alf-lif	fe	J^{π}	Ens	Reference	ce	Decay modes and intensities (%)	
²⁶⁴ No	104650# 640#		1#	m		0+				α?; SF?	
²⁶⁴ Lr	106230# 440#		10#	h						α ?; SF ?	
264 Rf	106180# 450#		1#	h		0_{+}				α ?	
²⁶⁴ Db	109360# 230#		3#	m						α ?	
264 Sg	110780# 280#		400#	ms		0_{+}	99			α ?	
^{264}Bh	116070# 280#		1.3	S	0.5		99	02Ho11	T	α =?; β ⁺ ?	*
$^{264}\mathrm{Bh}^{p}$	116370# 310#	300# 150#				am					
²⁶⁴ Hs	119600 40		540	μs	300	0_{+}	99	95Ho.B	T	$\alpha \approx 50$; SF ≈ 50	*
* ²⁶⁴ Bh		e of 6 events 1.5 s									**
* ²⁶⁴ Hs		vents $76 \mu s$ and $825 \mu s$)			(1 ev	ent 80 μs).	Aver	age of			**
* ²⁶⁴ Hs	T: the 3 eve	ents: 327(+448–120) μs, s	see 84S	c13							**
²⁶⁵ Lr	107900# 710#		10#	h						α?; SF?	
²⁶⁵ Rf	108710# 420#		13	h		3/2+#	00	99Og.A	TD	α ?	*
²⁶⁵ Db	110480# 280#		15#	m		3/2 "	00))Og.11	110	α?	
²⁶⁵ Sg	112820 60		8	s	3	3/2+#	99			α >50; SF ?	
$^{265}\text{Sg}^p$	113120# 120#	300# 100#				11/2-#				w> 50, 51 .	
²⁶⁵ Bh	116570# 380#		500#	ms		/				α ?	
²⁶⁵ Hs	121170# 140#		2.1	ms	0.3	9/2+#	99			$\alpha \approx 100$; SF<1	
$^{265} Hs^{m}$	121480# 140#	300 70 AD	780	μs	150	3/2+#	99			$\alpha \approx 100$; IT ?	
²⁶⁵ Mt	126820# 460#		2#	ms		- /				α?	
$*^{265}Rf$	T: one case only	y after a 1.3 h measureme	nt								**
²⁶⁶ Lr	111130# 660#		1#	h						α ?; SF ?	
266 Rf	109880# 540#		10#	h		0^{+}				α?; SF?	
²⁶⁶ Db	112740# 360#		20#	m						α ?; SF ?	
²⁶⁶ Sg	113700# 290#		21	s	6	0+	01	98Tu01	T	α=34 9; SF=66 9	*
^{266}Bh	118250# 200#		5	s	3		01			$\alpha \approx 100$; β^+ ?; SF ?	*
²⁶⁶ Hs	121190# 280#		2.7	ms	1.0	0_{+}	01	01Ho06	TD	α=?; SF≈1.4#	
²⁶⁶ Mt	127890# 350#		1.2	ms	0.4		01	84Og03	D	α =?; SF<5.5	*
$^{266}Mt^m$	129120# 350#	1230 80 AD	6	ms	3		01	97Ho14	TD	$\alpha=100$	*
* ²⁶⁶ Sg		u01=21(+20–12) 94La22=			D:	from 18%	<α<	50% 50%	<sf<< td=""><td>82%</td><td>**</td></sf<<>	82%	**
* ²⁶⁶ Bh		0; estimated 1# s from sy	stemati	cs							**
* ²⁶⁶ Mt	•	elding 1.01(+0.47–0.24)									**
* ²⁶⁶ Mt ^m	T: 3 events at 7	.8, 2.0 and 5.0 yield 3.4(+	4.7–1.3	3)							**
²⁶⁷ Rf	113200# 580#		5#	h						α?; SF?	
²⁶⁷ Db	113990# 470#		2#	h						α?; SF?	
²⁶⁷ Sg	115900# 270#		19	ms				99Og.B	T	$\alpha=100$	
$^{267}\mathrm{Bh}$	118910# 260#		22	s	10			_	TD	α=100	
²⁶⁷ Hs	122760# 100#		32	ms	15	3/2+#	00			α=100	
$^{267}{\rm Hs}^{m}$		non existent EU	200	ms		-/		95Ho.A	TDI	α=?; IT ?	*
²⁶⁷ Mt	127900# 540#		10#	ms						α ?	
²⁶⁷ Ea	134450# 370#		10	μs	8	$9/2^{+}$ #	00	95Gh04	T	$\alpha = 100$	*
$*^{267}Hs^{m}$	I: tentative only	7		•		,					**
* ²⁶⁷ Ea	T : one single ev	vent, lifetime 4 μ s, thus T	=2.8(+1	13.0-	-1.3),	see 84Sc13	3				**
²⁶⁸ Rf	115170# 710#		1#	h		0_{+}				α ?; SF ?	
²⁶⁸ Db	116850# 530#		6#	h						α ?; SF ?	
²⁶⁸ Sg	117000# 540#		30#	S		0_{+}				α ?; SF ?	
²⁶⁸ Bh	120870# 380#		25#	S						α ?; SF ?	
²⁶⁸ Hs	123110# 410#		2#	S		0^{+}				α ?	
²⁶⁸ Mt	129220# 320#		53	ms	21	5+#,6+#	00	02Ho11	T	α=100	*
268Mt ^p	129470# 330#	250# 100#								α ?; SF ?	
²⁶⁸ Ea	133940# 500#		100#	μs		0_{+}				α ?	
* ²⁶⁸ Mt	I : mean lifetim	e of 6 events 60 ms									**

Nuclide	Mass ex (keV		Excitation energy(keV)			Н	Ialf-lif	e e	J^{π}	Ens	Reference	ce	Decay modes and intensities (%)		
²⁶⁹ Db	118730#	770#					3#	h						α?; SF?	
²⁶⁹ Sg	119930#	660#					35	S	23		00			α <100; SF ?	
²⁶⁹ Bh	121740#	410#					25#	S			00			α?	
²⁶⁹ Hs ²⁶⁹ Mt	124870#	120# 550#					27	S	17		00	02Ho11	T	α=100	*
²⁶⁹ Ea	129530# 135180#	140#					200# 230	ms µs	110	3/2+#	00	95Ho03	T	α? α=100	
* ²⁶⁹ Hs	T: 2 ever		7 and 22	2.0 s y	ield 14	(+26-		μ	110	5/2 "	00)311003		u=100	**
270															
²⁷⁰ Db ²⁷⁰ Sg	121760#	720#					1#	h		0.1				α ?; SF ?	
²⁷⁰ Sg ²⁷⁰ Bh	121400#	620#					10#	m		0_{+}				α?; SF?	
²⁷⁰ Hs	124460#	470# 290#					30#	S		0^{+}		01Tv D	D	α?; SF?	
²⁷⁰ Mt	125430# 131020#	290# 540#					30# 2#	s s		0		01Tu.B	D	$\alpha=100$ α ?	
270Ea	134810#	290#					160	μs	100	0^{+}		01Ho06	TD	$\alpha \approx 100$; SF ≈ 0.2	
$^{270}\text{Ea}^{m}$	135940#	290#	1140	70			10	ms	6	(10)(-#)		01Ho06	ETJ	α =?; IT ?	
²⁷¹ Sg	124330#	650#					2#	h						α ?; SF ?	
²⁷¹ Bh	125920#	560#					40#	S						α ?; SF ?	
²⁷¹ Hs	128230#	340#					40#	S						α ?; SF ?	
²⁷¹ Mt	131470#	570#					5#	S	150	11/2-11	00			α?	
²⁷¹ Ea	136060#	110#	20	20	A.D.	*	210	ms	170	11/2-#	00			α=100	
²⁷¹ Ea ^m	136090#	110#	29	29	AD	*	1.3	ms	0.5	9/2+#	00			α=100	
²⁷² Sg	125900#	770#					1#	h		0^{+}				α?; SF?	
^{272}Bh	128580#	610#					2#	m						α ?; SF ?	
²⁷² Hs	129530#	580#					40#	S		0^{+}				α ?; SF ?	
²⁷² Mt	133890#	480#					10#	s						α ?; SF ?	
²⁷² Ea	136290#	650#					1#	S		0^+				SF?	
²⁷² Eb * ²⁷² Eb	143090# T : mean	330#	of 6 ava	nto 2 i	2 mc		2.0	ms	0.8	5+#,6+#	00	02Ho11	T	α=100	*
* E0	1 . Ilicali	memme	or o eve	1118 2	3 1118										**
273 Sg	128750#	660#					1#	m						SF?	
²⁷³ Bh	130050#	830#					90#	m						α ?; SF ?	
²⁷³ Hs	132260#	830#			RN		50#	S		$3/2^{+}$ #	00	02Ni10	I	α ?	*
²⁷³ Mt	134990#	510#					20#	S						α ?; SF ?	
²⁷³ Ea	138670#	130#		•			360	μ s	280	13/2-#	00			α=100	
²⁷³ Ea ^m	138870#	130#	198	20	EU		120	ms		3/2+#	00			α=100	
²⁷³ Ea ^p ²⁷³ Eb	138950#	130# 610#	290	40	AD		с и							α?; SF?	
* ²⁷³ Hs	143150# T : 99Ni0		1.7–0.6)	alpha	decay	retra	5# cted by a	ms author	s in 02	Ni10				α?	**
^{274}Bh	132680#	780#					90#	m						α ?; SF ?	
²⁷⁴ Hs	133330#	650#					1#	m		0^{+}				α ?; SF ?	
²⁷⁴ Mt	137390#	560#					20#	S						α ?; SF ?	
²⁷⁴ Ea	139250#	490#					2#	S		0^{+}				α ?; SF ?	
²⁷⁴ Eb	145050#	620#					5#	ms						α?	
²⁷⁵ Bh	134370#	650#					40#	m						SF?	
²⁷⁵ Hs	135950#	710#					30#	m						α?; SF?	
²⁷⁵ Mt	138460#	590#					30#	s						α?; SF?	
²⁷⁵ Ea	141750#	450#					2#	s						α?; SF?	
²⁷⁵ Eb	145450#	690#					10#	ms						α ?	
-		-													

Nuclide	Mass ex (keV		Excitation energy(keV)	Н	alf-lif	e	J^{π}	Ens	Reference	e	Decay modes and intensities (%)	
²⁷⁶ Hs	137120#	820#		1#	h		0+				α ?; SF ?	
²⁷⁶ Mt	140800#	680#		40#	s		· ·				α ?; SF ?	
²⁷⁶ Ea	142550#	610#		5#	s		0^{+}				α ?; SF ?	
²⁷⁶ Eb	147640#	630#		100#	ms		Ü				α ?; SF ?	
²⁷⁷ Hs	139580#	730#		40	m	30	$3/2^{+}$ #	00	99Og10	TD	SF=100	*
²⁷⁷ Mt	141980#	880#		1#	m						α ?; SF ?	
²⁷⁷ Ea	144980#	960#	RN	5#	s		$11/2^{+}$ #	00	02Ni10	I	α ?	*
²⁷⁷ Eb	148590#	620#		1#	s						α ?; SF ?	
²⁷⁷ Ec	152710#	130#		1.1	ms	0.7	$3/2^{+}$ #	00	02Ho11	T	$\alpha=100$	*
*277Hs	T : one sin	gle event 1	6.5 m yields 11(+55-5))								**
* ²⁷⁷ Ea	T:99Ni03	3=3.0(+4.7-	1.5) alpha decay retrac	ted by au	ithors	in 021	Ni10					**
* ²⁷⁷ Ec	T: two ev	ents at 0.28	0 ms and 1.406 ms									**
2783.4	1.1.210#	0.40#		2011							0.000	
²⁷⁸ Mt	144210#	840#		30#	m		0.4				α?; SF?	
²⁷⁸ Ea	145750#	680#		10#	S		0_{+}				α?; SF?	
²⁷⁸ Eb	150530#	630#		1#	S		0+				α?; SF?	
²⁷⁸ Ec	153060#	530#		10#	ms		0_{+}				α ?; SF ?	
²⁷⁹ Mt	145490#	720#		6#	m						α?; SF?	
²⁷⁹ Ea	147980#	740#		10#	s						α ?; SF ?	
²⁷⁹ Eb	151340#	660#		3#	s						α ?; SF ?	
²⁷⁹ Ec	155140#	490#		100#	ms						α ?; SF ?	
LC	133140#	17011		10011	1113						w ., sr .	
²⁸⁰ Ea	148850#	850#		11	s	6	0^{+}		01Og01	TD	SF=100	*
²⁸⁰ Eb	153210#	740#		10#	S						α ?; SF ?	
²⁸⁰ Ec	155600#	640#		1#	s		0_{+}				α ?; SF ?	
* ²⁸⁰ Ea	T: 3 even	s at 6.93, 1	4.3 and 7.4 yield 6.6(+	9–2.4)								**
²⁸¹ Ea	150960#	730#		4	m	3	3/2+#	00	99Og10	TD	α=100	u.
²⁸¹ Eb	154040#	930#		1#	m	3	3/2 #	00	990g10	ID	$\alpha = 100$ $\alpha ?; SF ?$	*
²⁸¹ Ec	157690#	990#	RN	10#	S		3/2+#	00	02Ni10	I	α ?	
* ²⁸¹ Ea			.6 m yields 1.1(+5.3–0.				3/2 π	00	0211110	1	α:	*
* Ea * ²⁸¹ Ec			0–0.45) alpha decay re				02Ni10					**
* EC	1 . 991 v 10.	5=0.69(±1.5	0–0.4 <i>3)</i> aipila decay ie	macicu o	y auti	1015 111	0211110					ተተ
²⁸² Eb	156010#	890#		4#	m						α?; SF?	
²⁸² Ec	158140#	710#		30#	S		0^{+}				α ?; SF ?	
292		=										
²⁸³ Eb	156880#	780#		10#	m				006.00		α?; SF?	
²⁸³ Ec	160020#	770#		4.2	m	2.1			99Og05	TD	SF=100	*
²⁸³ Ed	164360#	730#		10#	S						α ?; SF ?	
* ²⁸³ Ec	T: 4 even	s at 99Og0	7=9.3 m, 3.8 m, 99Og0	05=3.0 m	and 0	.9 m y	ield 3(+3–	·1) m				**
²⁸⁴ Ec	160570#	850#		31		18	0^{+}		01Og01	TD	α=100	
²⁸⁴ Ed	165880#	850# 800#		31 1#	S	10	U.		orogor	עו	$\alpha = 100$ α ?; SF ?	
Eu	103000#	0UU#		1#	m						u 1, 31 1	
²⁸⁵ Ec	162180#	730#		40	m	30	5/2+#	00	99Og10	TD	α=100	*
²⁸⁵ Ed	166490#	980#		2#	m		- , =			_	α?; SF?	
²⁸⁵ Ee	171110#	1030#	RN	5#	s		3/2+#	00	02Ni10	I	α ?	*
* ²⁸⁵ Ec			5.4 s yields 11(+51–5),				- , =				* *	**
* ²⁸⁵ Ee			-290) alpha decay retr			rs in 0	2Ni10					**
		222(.070	,			0						

Nuclide	Mass excess (keV)		Excitation energy(keV)		Half-life			Ens	Reference	ce	Decay modes and intensities (%)	
²⁸⁶ Ed ²⁸⁶ Ee	168120# 171260#	940# 770#		5# 5#	m s		0+				α?; SF? α?; SF?	
²⁸⁷ Ed ²⁸⁷ Ee ²⁸⁷ Ef * ²⁸⁷ Ee	168640# 172880# 178090# T: 2 event	830# 770# 790# as at 1.32 s a	and 14.4 s yield 5.5(+1	20# 10 500# 0-2)	m s ms	7			99Og07	Т	α ?; SF ? α =100 α ?; SF ?	*
²⁸⁸ Ee ²⁸⁸ Ef	172970# 179310#	850# 850#		2.8 1#	s s	1.4	0^{+}		01Og01	TD	α=100 α ?; SF ?	
²⁸⁹ Ee ²⁸⁹ Ef ²⁸⁹ Eg * ²⁸⁹ Ee * ²⁸⁹ Eg			RN t 30.4 s yields 21(+101) –300) alpha decay reti		s s ms author	60 rs in 02	5/2+# 5/2+# 2Ni10	00	99Og10 02Ni10	TD I	α=100 α?; SF? α?	* * ** **
²⁹⁰ Ef ²⁹⁰ Eg	180840# 184990#	980# 840#		10# 50#	s ms		0^{+}				α?; SF? α?; SF?	
²⁹¹ Ef ²⁹¹ Eg ²⁹¹ Eh	181070# 186310# 192410#	890# 850# 880#		1# 100# 10#	m ms ms						α?; SF? α?; SF? α?; SF?	
²⁹² Eg ²⁹² Eh * ²⁹² Eg	186100# 193330# T : one sin	850# 940# gle event a	t 46.9 ms yields 33(+1:	120 50# 55–15)	ms ms	100	0+		01Og01	TD	α=100 α ?; SF ?	*
²⁹³ Ei * ²⁹³ Ei	199960# T : 99Ni03	1200# 3=120(+180	RN 0–60) alpha decay retra	5# acted by a	ms uthors	in 021	1/2+# Ni10	00	02Ni10	I	α?	*