- 2 点 $_{\it O}$ を中心とした半径 $_{\it 1}$ の円を $_{\it S}$ とする。
- (1) S の周上に 3 点 P , Q , R が , この順に反時計回りに並んでいる。 $\alpha=\angle POQ$, $\beta=\angle QOR$ とする。ただし , $0<\alpha<\pi$, $0<\beta<\pi$ である。 $\triangle PQR$ の面積は $\frac{1}{2}\{\sin\alpha+\sin\beta-\sin(\alpha+\beta)\}$ で与えられることを示せ。
- S の周上に 5 点 A , B , C , D , X が , この順に反時計回りに並んでいる。ただ し , $\angle AOB = \frac{\pi}{2}$, $\angle BOC = \frac{\pi}{3}$, $\angle COD = \frac{\pi}{3}$ であり , 点 X は D と A の間を動くものとする。 $\triangle XAB$ の面積と $\triangle XCD$ の面積の和の最大値を求めよ。また , そのときの $\angle AOX$ を求めよ。