Information Theory: Principles and Applications Homework 2 - Due: April 16, 2010

1. Determine if the following binary code is uniquely decodable. If the code is not uniquely decodable, construct an ambiguous sequence.

$$\begin{array}{c|c} x_i & \mathcal{C}(x_i) \\ \hline x_1 & 010 \\ x_2 & 0001 \\ x_3 & 0110 \\ x_4 & 1100 \\ x_5 & 00011 \\ x_6 & 00110 \\ x_7 & 11110 \\ x_8 & 101011 \\ \hline \end{array}$$

- 2. A source with an alphabet of size 4 has symbol probabilities 1/3, 1/3, 2/9, 1/9.
 - (a) Use the Huffman algorithm to find an optimal binary prefix-free code for this source.
 - (b) Use the Huffman algorithm to find another optimal binary prefix-free code with a different set of lengths.
 - (c) Find another prefix-free code that is optimal but cannot result from using the Huffman algorithm.
- 3. Consider a source with an alphabet of 9 symbols with probability distribution given by (0.49; 0.26; 0.12; 0.03; 0.03; 0.03; 0.02; 0.01; 0.01).
 - (a) Find a binary Huffman code for this source.
 - (b) Find a quaternary Huffman code for this source.
 - (c) What is the average length of the codewords for both coders?
 - (d) Which one of the coders is more efficient?

- 4. Which of these codes cannot be Huffman codes for any probability assignment. Justify your answer.
 - (a) $\{0, 10, 11\}$
 - (b) {00, 01, 10, 110}
 - (c) $\{01, 10\}$
- 5. A source has an alphabet of 4 letters, x_1, x_2, x_3, x_4 with probabilities p_1, p_2, p_3, p_4 .
 - (a) Suppose that $p_1 > p_2 = p_3 = p_4$. Find the smallest number q such that $p_1 > q$ implies that the length of the codeword for x_1 , that is $l(x_1) = 1$, in a Huffman code.
 - (b) Show by example that if $p_1 = q$, then a Huffman code exists with $l(x_1) > 1$.
 - (c) Now assume the more general condition $p_1 > p_2 \ge p_3 \ge p_4$. Does $p_1 > q$ still imply that $l(x_1) = 1$? Justify your answer.
 - (d) Now assume that the source has an arbitrary number K of letters with $p_1 > p_2 \ge ... \ge p_K$. Does $p_1 > q$ still imply that $l(x_1) = 1$?
 - (e) Assume that $p_1 \geq p_2 \geq \dots p_K$. Find the largest number q' such that $p_1 < q'$ implies that $l(x_1) > 1$?
- 6. Consider a source with M equiprobable symbols
 - (a) Let $k = \lceil \log M \rceil$. Show that, for a binary Huffman code, the only possible codeword lengths are k and k-1.
 - (b) As a function of M, find how many codewords have length $k = \lceil \log M \rceil$. What is the expected codeword length, \overline{L} , in bits per source symbol?
 - (c) Define $y = M/2^k$. Express $\overline{L} \log M$ as a function of y. Find the maximum value of this function over $0.5 < y \le 1$. This illustrates that the entropy bound $\overline{L} < H(X) + 1$ is rather loose in this equiprobable case.
- 7. Consider the following method for generating a code for a random variable X which takes on M values $\{1, \ldots, M\}$ with probabilities p_1, \ldots, p_M , respectively. Assume that the probabilities are ordered so that $p_1 \geq p_2 \geq \ldots \geq p_M$. Let:

$$F_i = P(X \le i - 1) = \sum_{i=1}^{i-1} p_i$$
 $F_1 = 0;$

The codeword for i is the binary expansion of F_i rounded off to $\lceil \log 1/p_i \rceil$ bits. Example: 1/2 = .1000, 1/4 = .0100, 5/8 = .1010.

- (a) Show that the code constructed by this process is prefix-free and the average length satisfies $H(X) \leq \overline{L} \leq H(X) + 1$.
- (b) Construct the code for the following probability distribution: (0.5; 0.25; 0.125; 0.125) and determine the average length of the codewords?
- 8. Inequalities and Weak Law of Large Numbers
 - (a) (Markov's inequality) For any nonnegative random variable X and any a > 0 show that

$$P(X \ge a) \le \frac{E[X]}{a}$$

Find a random variable that achieves this inequality with equality.

(b) (Chebyshev's inequality) Let Y be a random variable with mean m_Y and variance σ_Y^2 . Show that for any $\epsilon > 0$

$$P(|Y - m_Y| \ge \epsilon) \le \frac{\sigma_Y^2}{\epsilon^2}$$

(c) Let Z_1, \ldots, Z_n be a sequence of independent and identically distributed random variables with mean μ and variance σ^2 . Let $\overline{Z} = \frac{1}{n} \sum_{i=1}^n Z_i$ be the sample mean. Show that:

$$P(|\overline{Z} - \mu| \ge \epsilon) \le \frac{\sigma^2}{n\epsilon^2}$$

Therefore $P(|\overline{Z} - \mu| \ge \epsilon) \to 0$ as $n \to \infty$. This is known as the weak law of large numbers.

- 9. A discrete memoryless source emits a sequence of statistically independent binary digits with probabilities P(X = 1) = 0.005 and P(X = 0) = 0.995. The digits are taken 100 at a time and a binary codeword is provided for every sequence of 100 digits containing three or fewer ones.
 - (a) Assuming that all codewords are the same length, find the minimum length required to provide codewords for all sequences with three or fewer ones.
 - (b) Calculate the probability of observing a source sequence for which no codeword has been assigned.

- (c) Use Chebyshev's inequality to bound the probability of observing a source sequence for which no codeword has been assigned. Compare this bound with the actual probability computed in part (b).
- 10. Finding the typical set: Suppose a discrete memoryless source emits 0 and 1 with probability 0.6 and 0.4 respectively. For $\epsilon = 0.1$, what is $A_{\epsilon}^{(25)}$? What is the probability of $A_{\epsilon}^{(25)}$? How many sequences belong to $A_{\epsilon}^{(25)}$? Compare this result with the upper and lower bounds.

Obs.: Use a computer to build a table of probabilities for sequences with k zeros, $0 \le k \le 25$, and to find those sequences that are in the typical set.

11. (Extra) The typical set $A_{\epsilon}^{(n)}$ defined last class is often called a weakly typical set, in contrast to another kind of typical set called strongly typical set. Assume a discrete memoryless source and let $N_i(\mathbf{x}^n)$ be the number of symbols in a string \mathbf{x}^n of length n taking on the value i. The probability for symbol i is p_i . Then the strongly typical set $A_{\epsilon}^{*(n)}$ is defined as follows:

$$A_{\epsilon}^{*(n)} = \left\{ \mathbf{x}^n : p_i(1 - \epsilon) < \frac{N_i(\mathbf{x}^n)}{n} < p_i(1 + \epsilon); \text{ for all } i \in \mathcal{X} \right\}$$

- (a) Show that $p_{\mathbf{X}^n}(\mathbf{x}^n) = \prod_i p_i^{N_i(\mathbf{x}^n)}$
- (b) Show that every $\mathbf{x}^n \in A_{\epsilon}^{*(n)}$ has the following property

$$H(X)(1-\epsilon) < \frac{-\log p_{\mathbf{X}^n}(\mathbf{x}^n)}{n} < H(X)(1+\epsilon)$$

- (c) Show that if $\mathbf{x}^n \in A_{\epsilon}^{*(n)}$, then $\mathbf{x}^n \in A_{\tilde{\epsilon}}^{(n)}$ with $\tilde{\epsilon} = H(X)\epsilon$, that is, $A_{\epsilon}^{*(n)} \subset A_{\tilde{\epsilon}}^{(n)}$.
- (d) Show that for any $\delta > 0$ and all sufficiently large n,

$$P(\mathbf{X}^n \in A_{\epsilon}^{*(n)}) \le \delta$$

Hint: Taking each letter i separately, $1 \le i \le |\mathcal{X}|$, show that for all sufficiently large n, $P(|N_i/n - p_i| \ge \epsilon) \le \delta/|\mathcal{X}|$.

(e) Show that for all $\delta > 0$ and all sufficiently large n.

$$(1-\delta)2^{n(H(X)-\epsilon)} < |A_{\epsilon}^{*(n)}| < 2^{n(H(X)+\epsilon)} \tag{1}$$

Note that parts (d) and (e) constitute the same theorem for the strong typical set as the results showed in the class establishes for the weakly typical set. Typically the n required for (1) to hold (with the correspondence in part (c) between ϵ and $\tilde{\epsilon}$ is considerably larger than the one required for the weakly typical set result to hold. Strong typical sets are used to prove results in rate-distortion theory.