General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some
 of the material. However, it is the best reproduction available from the original
 submission.

and 1997年 1997年

THE MAGNETIC STATE OF THE EARTH AT EPOCH 1885.0

Adolf Schmidt

Gotha

(NASA-TM-77342) THE MAGNETIC STATE OF THE EARTH AT EPOCH 1885.0 (National Aeronautics and Space Administration) 90 p
HC A05/MF A01 CSCL 08N

N84-18774

Unclas G3/46 11786

Translation of "Der magnetis ... Zustand der Erde zur Epoche 1885.0," Archiv der Deutchen Seewarte, (Hamburg), XXI Jahrgang, No. 2, 1898, pp. 1-75.

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION WASHINGTON, D.C. 20546 JUNE 1983

ORIGINAL PAGE IS OF POOR QUALITY

STANDARD TITLE PAGE

1. Report No. NASA TM-77342	2. Government A	ccession No.	3. Recipient's Cole	log Ne.
4. Title and Subtitle THE MAGNETIC STATI 1885.0	E OF THE EAR	TH AT EPOCH	5. Report Data June 1983 6. Performing Organ	sization Code
7. Author(s)			8. Performing Organ	ization Report No.
Adolf Schmidt Gotha			10. Work Unit No.	
9. Performing Organization Name and	Address		11. Contract or Grant NASw-3541	No.
Leo Kanner Associates P. O. Box 5187			13. Type of Report o	nd Period Covered
Redwood City, CA 93 12. Spansoring Agency Name and Address	• •		Translation	
National Aeronautics and S Washington, DC 20546	pace Administ	tration	14. Sponsoring Agen	cy Code
16. Abstract		·		•
17. Key Words (Selected by Author(s))		18. Distribution State Unlimited -	- Unclassified	
19. Security Classif, (of this report)	20, Security Class		21. No. of Pages	22. Price
Unclassified	Unclassi	ried		

THE MAGNETIC STATE OF THE EARTH AT EPOCH 1885.0

Adolph Schmidt

Gotha

The general theoretical developments on which the investigations presented here are based, were presented in an earlier issue of this journal (XII, 2, 1889). A report of the most important results provided by the application of these developments to the state of the earth's magnetism in the year 1885 has also been published (Abhandlungen der k. bayer. Akademie der Wissensch., II.Kl., XIX Vol., Abth) On the following pages the fundamentals and the results of this investigation will be presented in greater detail and in addition, the calculations themselves will be presented. This is done with the intent of creating a reliable and comfortable basis for future investigations of a similar nature, but not because the results themselves might have a conclusive significance. These results doubtless require significant improvement and it has long been my intention to perform a definitive recalculation for this period of time as soon as the needed information becomes available. The presentation here is based entirely on the values of the earth's magnetic force components at 1800 points of the earth's surface derived by Dr. Neumayer. The observations on which these values are based, extend back to about 1887; the vast majority come from the time before 1885, to which the derived values presented in the earth atlas of magnetism pertain. The determination of these latter values had to be by extrapolation in most cases; this necessarily reduces This circumstance was unavoidable since the atlas their validity. naturally was to provide a representation for a short time segment. But in addition to this problem, there is the deficiency of the observation material for wide regions, as Dr. Neumayer discussed in detail in the notes on his atlas. It is clear that progress has been achieved in two ways through the incorporation of recent observations -- which it is hoped will be expanded considerably in coming years. The scope of valuable material has increased, both

in uniformity of geographic distribution, and the use of observations symmetrical to the normal epoch increases the reliability of application to the earth. If these considerations should make a future repitition of the present calculations seem expedient, then in addition it should be noted that observations made above 60° N-latitute have been entirely excluded.

In spite of the described, generally unavoidable deficiencies, it is hoped that the reporting of provisional results will not be thought unjustified, not only because of the simplification this means for a final working, but also because the anticipated observations from the South Polar regions will have to be delayed for several years, and also because no signficantly better results are likely to be available for some time.

The two papers mentioned above—which will be referenced below as A and B, contain such a detailed presentation of everything not relating exclusively to the performance of the numerical calculation, that I can limit this discussion almost entirely to an exposition of these calculations. Thus, replications have been prevented, except where absolutely necessary for the cohesion of this presentation.

Survey of Mathematic Aids in the Expansion

The empirical basis of the entire investigation is formed by the maps of the geomagnetic elements \mathbf{E} , $\mathbf{\delta}$, \mathbf{i} constructed by Dr. Neumayer for the beginning of the year 1885, or rather, by the values of these quantities taken by him for 1800 points where the meridians of 0° , 5° , 10° ... 355° East longitude from Greenwich and the parallel circles of 0° , 5° , 10° ... 60° North and Sough geographic latitude intersect. The mentioned, detailed text of the atlas of geomagnetism (the 4th part of Berghaus' Physical Atlas) provides information about the materials used in construction of the maps and about the applied methods of map-making; it is thus unnecessary to discuss these matters any further here.

ORIGINAL PAGE IS OF POOR QUALITY.

From the values of the elements H, δ , i, those of the components X, Y, Z were derived. These latter are presented in table III. 'X' means North, 'Y' means East, 'Z' means the downward, positive-measured component of force, so that the arrangement of positive semi-axes agrees with the present standard. The unit of measure used here and in all numbers in the present report, is 0.1^5 cm $^{-2}$ g $^{\frac{1}{2}}$ s $^{-1}$, i.e. the unit of the last place which still has some relevance in variation observations. Prof. Eschenhagen suggested the designation r as a remembrance of Gauss (see Terrestrial Magnetism, Vol. I, p. 57, note 2). I will use this designation hereafter.

The values of the components were then presented on each latitude by means of trigonometric series as functions of geographic longitude 1. The coefficients of this series developed to 4th order terms are presented in table IVa, b, c. They formed the starting data for my own calculation.

$$X = k_c + k_1 \cos \lambda + K_1 \sin \lambda + \dots + K_4 \sin 4\lambda$$

$$Y = l_0 + l_1 \cos \lambda + L_1 \sin \lambda + \dots + L_4 \sin 4\lambda$$

$$Z = m_0 + m_1 \cos \lambda + M_1 \sin \lambda + \dots + M_4 \sin 4\lambda$$

If the flattening of the earth is ignored, then the obtained numbers could be expressed by spherical functions of geographic latitude. But this is directly possible only for Z, since X and Y are inconstant at the poles because they approach equivocal expressions of the form

 $c_1 \cos(\lambda - \alpha_1)$ and $c_1 \sin(\lambda - \alpha_1)$ at the North pole $-c_2 \cos(\lambda - \alpha_2)$ and $c_2 \sin(\lambda - \alpha_2)$ at the South pole.

So whereas Z can be developed without change, X and Y must be represented by expressions formed in connection with Z, or by themselves, and these expressions must be free of all discontinuity. This can be done in a variety of ways. A limitation is introduced by the requirement that the selected expressions should permit a simple and a closed series development leading to a derivation of the potential on the earth's surface. The simplest possible values in this case, which are sufficient for a unique definition

ORIGINAL PAGE IS

of the force vector, are X sin u, Y sin u and Z, if u denotes the complement of the geographic latitude. Besides these, the following might also be taken into consideration:

 $X\cos\lambda+\Gamma\cos u\sin\lambda$, $X\sin\lambda-Y\cos u\cos\lambda$, Z and $-X\cos u\cos\lambda-Y\sin\lambda-Z\sin u\cos\lambda$, $X\sin u-Z\cos u\sin\lambda+\Gamma\cos\lambda-Z\sin u\sin\lambda$, $X\sin u-Z\cos u$.

The second group represents the components of force in three fixed axes, i.e. rectified at all points; these axes are parallel to the earth radii to the equatorial points of 0° and 90° East longitude and to the North pole.

Now if the deviation of the earth's surface from the spherical is to be taken into account, as is the case here, then this necessitates a modification of the calculation (see A, p. 13; B, p. 4). First, the geographic latitude has to be replaced by the geocentric latitude. Its complement, called v, is defined by the equation: $\log v = \sqrt{1+\epsilon^2} \log u = [0.0014542] \log u$

where the bracketed figure is the usual abbreviation for num log. The value of ϵ^2 used here is 0.00671922; it corresponds to the Bessel factor for flattening, 1:299.1528. The computed values of ϵ belonging to $u = 0^{\circ}$, ϵ° , 10° ...90° have been rounded off to whole seconds of degrees (see B, p. 5):

0°0′0° 5°1′0″ 10°1′58″ 15°2′58″ 20°8′42° 25°4′25″ 80°4′59″ 85°5′25″ 40°5′40″ 45°5′45″ 50°5′40″ 55°5′24″ 60°4′59″ 65°4′24″ 70°8′42″ 75°2′52″ 80°1′58″ 85°1′0″ 90°0′0″.

For $u_1 = 180^{\circ} - u$, we have $v_1 = 180^{\circ} - v$. All other calculations are based on the rounded values given here, and not on the equation presented above.

Another deviation of the calculation from that of a sphere is that instead of the force components X, Y, Z, we have to use the slightly different quantities aX, aY, aY where:

$$a = \sqrt{1 + e^2 \cos v^2} \qquad \beta = \sqrt{1 + e^2} \qquad \gamma = \sqrt{1 + e^2 \cos v^2} : \sqrt{1 + e^2}$$

$$= \frac{\sin v}{\sin u} \qquad = \frac{\cos v}{\cos u}$$

The quantities to be developed according to spherical functions of the argument v are now:

For the parallel circle of $u = 0^{\circ}$, 5° , 10° 90° 180° , the logarithms of the coefficients contained herein are (their numerical values have been given in B, p. 47, table II, in addition to those for α , β and γ):

*	log a sin v	log & sin v	log y	1	æ	log a sin v	log & sin v	log y	
0°			0.0000000	180°	45°	9.8509361	9.8516644	9.9992717	. 185*
5	8.9431807	8.9431918	9.9999889	175	50	9.8854533	9.8863078	9.9991455	130
10	9.2424871	9.2425311	9.9999560	170	55	9.9143187	9.9152956	9.9990231	125
15	9.4157098	9.4158075	9.9999023	165	60	9.9382561	9.9393477	9.9989084	120
20	9.5366174	9.5367880	9.9998294	160	65	9.9577935	9.9589687	9.9988048	115
25	9.6283366	9.6285970	9.9997396	155	70	9.9733253	9.9746099	9.9987154	110
30	9.7011483	9.7015128	9.9996355	150	75	9.9851378	9.9864949	9.9986429	105
35	9.7605416	9.7610211	9.9995205	145	80	9.9934389	9.9948494	9.9985895	100
40	9.8097714	9.8103734	9.9993980	140	85	9.9988663	9.9996095	9.9985568	95
45	9.8309361	9.8516644	9.9992717	135	90	0.0000000	0.0014542	9.9985458	90

Since X, Y and Z have already been developed by 2, the only problem left to solve is the representation of the coefficients $ak_m \sin v$, $aK_m \sin v$; $\beta l_m \sin v$, $\beta l_m \sin v$; γm_m , γM_m

by spherical functions of m-th rank $(P_m^m, P_m^{m+1}, \ldots)$. For each of these coefficients, 25 values are known which belong to the parallel circles of geographic North-pole distances $u = 30^{\circ}$, 35° ... $...150^{\circ}$, which I will denote by a second, lower index $i = 1, 2, \ldots 25$. For i+i'=26, we have $v_i+v_i'=180^{\circ}$, thus $\sin v_i = \sin v_i$, and $a_i=a_{i'}$ etc. Now it is clear that the sums:

$$a_i k_{m,i} \sin v_i + a_i k_{m,i} \sin v_i, \dots, \gamma_i M_{m,i} + \gamma_i M_{m,i}$$

$$i.e. \qquad a_i \sin v_i (k_{m,i} + k_{m,i}), \dots, \gamma_i (M_{m,i} + M_{m,i})$$

are even functions of cos v, and that the corresponding differences: $a_i \sin v_i(k_{m,i}-k_{m,\ell}), \dots, y_i(M_{m,i}-M_{m,\ell})$

are uneven functions of cos ${f v}$. The former depend only on spherical functions P_m^n with even difference (n-m) of the two indices; the

latter depend on those with uneven difference (n-m), and since the observation data can be expressed completely by those sums and differences (due to their symmetrical distribution about the equator), the unknowns—the coefficients of spherical functions—break down into two separately determined groups. With regard to this circumstance—which considerably simplifies the numerical calculation—I do not intend to report the quantities askaning.....

TMMan.** (in table Va, b, c), rather only the cited sums and differences.

The spherical function P_m^n (or $P^{n,m}$ in Gaussian notation) is defined by the equation:

$$\begin{split} P_{m}^{n}\left(\cos v\right) &= \sin v^{m} \left[\cos v^{n-m} - \frac{(n-m)\left(n-m-1\right)}{2\left(2n-1\right)}\cos v^{n-m-2} \right. \\ &+ \frac{(n-m)\left(n-m-1\right)\left(n-m-2\right)\left(n-m-3\right)}{2\cdot4\cdot\left(2n-1\right)\left(2n-3\right)}\cos v^{n-m-2} - \dots \right] \end{split}$$

For the functions up to 7th order used below, i.e. for those in which $n \le 7$, I intend to compile the resultant series since it is convenient for many purposes to have the numerical values of the coefficients at hand. As abbreviation, I write P_m^n instead of $P_m^n(\infty v)$, furthermore, c instead of ∞v and s instead of $\sin v$.

$$P_{0}^{0} = 1 \qquad P_{0}^{1} = c \qquad P_{0}^{2} = c^{2} - \frac{1}{8} \qquad P_{0}^{6} = c^{3} - \frac{8}{6}c$$

$$P_{1}^{1} = s \qquad P_{1}^{2} = sc \qquad P_{1}^{3} = s\left(c^{2} - \frac{1}{8}\right)$$

$$P_{2}^{3} = s^{2} \qquad P_{2}^{4} = s^{2}c$$

$$P_{3}^{4} = s^{4}$$

$$P_{0}^{4} = c^{4} - \frac{6}{7}c^{2} + \frac{8}{85} \qquad P_{0}^{4} = c^{4} - \frac{10}{9}c^{3} + \frac{5}{21}c$$

$$P_{1}^{4} = s\left(c^{2} - \frac{8}{7}c\right) \qquad P_{1}^{4} = s\left(c^{4} - \frac{2}{3}c^{2} + \frac{1}{21}\right)$$

$$P_{2}^{4} = s^{2}\left(c^{2} - \frac{1}{7}\right) \qquad P_{2}^{4} = s^{2}\left(c^{3} - \frac{1}{3}c\right)$$

$$P_{3}^{4} = s^{3}c \qquad P_{4}^{4} = s^{4}c$$

$$P_{1}^{4} = s^{4}c$$

$$P_{1}^{4} = s^{4}c$$

ORIGINAL PAGE IS OF POOR QUALITY

$$P_{0}^{4} = c^{4} - \frac{15}{11}c^{4} + \frac{5}{11}c^{2} - \frac{5}{281} \qquad P_{0}^{7} = c^{7} - \frac{21}{18}c^{3} + \frac{106}{148}c^{3} - \frac{85}{429}$$

$$P_{1}^{4} = s\left(c^{4} - \frac{10}{11}c^{4} + \frac{5}{88}c\right) \qquad P_{1}^{7} = s\left(c^{4} - \frac{15}{18}c^{4} + \frac{45}{148}c^{2} - \frac{5}{429}\right)$$

$$P_{2}^{4} = s^{2}\left(c^{4} - \frac{6}{11}c^{3} + \frac{1}{88}\right) \qquad P_{2}^{7} = s^{2}\left(c^{4} - \frac{10}{18}c^{4} + \frac{15}{148}c\right)$$

$$P_{3}^{4} = s^{3}\left(c^{4} - \frac{8}{11}c\right) \qquad P_{4}^{7} = s^{3}\left(c^{4} - \frac{6}{18}c^{2} + \frac{8}{148}\right)$$

$$P_{4}^{6} = s^{4}\left(c^{2} - \frac{1}{11}\right) \qquad P_{4}^{7} = s^{4}\left(c^{3} - \frac{3}{18}c\right)$$

$$P_{4}^{6} = s^{4}c \qquad P_{4}^{7} = s^{4}c$$

$$P_{4}^{7} = s^{4}c \qquad P_{5}^{7} = s^{5}c$$

For a numerical calculation of the functional values and in particular of their most-frequently used logarithms, a representation by products is preferred to this one using sums. P_m^n is a whole function of constant p, except for a factor sinstant p or sinstant p or sinstant p. If we break this down into its real, linear factors, we then obtain:

$$P_m^n(\cos v)=\sin v^m(\cos v-a_1)(\cos v-a_2)\cdot\ldots\cdot(\cos v-a_{n-m})$$
 with
$$a_1=-a_{n-m},\quad a_2=-a_{n-m-1}\cdot\ldots\cdot$$

In this form the equation is valid for all cases. Now if n-m is uneven, then the independent value $a_{1(n-m+1)}=0$ appears and P_m^n obtains the factor ∞ , as it must be.

Now if we set:
$$a_1 = \cos a_1$$
, $a_2 = \cos a_2$,: $a_{n-m} = \cos a_{n-m} = -\cos a_1$, and note that: $(\cos v - \cos a)(\cos v + \cos a) = -\sin (v + a)\sin (v - a) = \sin (v + a)\sin (v + a)\cos (v + a)$

In order to make this convenient formula applicable for the numerical calculation, it is sufficient to compute the occurring, constant angles $a_1, a_2, \ldots, a_{N-m}$ for the various spherical functions one time only. I have done this and present the results in the overview below. Naturally it was expedient to carry the computation out so that the results will be useful for all future applications. Therefore, although a much less stringent computation would be sufficient for present purposes, the calculation was performed with 10-place logarithms (from Vega's Thesaurus) and

_

ORIGINAL PAGE IS

the results are presented to 4 decimal places of seconds of arc. Their uncertainty is approximately 0".0002. It hardly need be stated that in the representation of P_0^n , the roots of the equation $P_0^n = 0$ already computed by Gauss could be used. The appropriate angles u_i are found in the tables published by Prof. Seeliger for the Neumann method of coefficient computation of spherical function series; the results are accurate to tenths of an arcsecond (Sitzungsberichte der math.-phys. Masse d. 1c. Akademie d. Wissenschaft zu Muenchen, 1890. page 499.)

```
P_m^n(\cos v) = \sin v^m \Pi \sin (v + a_v)
Pt. a: - 84° 44′ 8°1971
                                     P_a^3: \sigma_1 = 89^{\circ} 18' 58'4787
     a_2 = 125^{\circ} 15' 51.8029
                                           a_1 = 140^{\circ}46' 6.5268
P1: a1 = 63° 26′ 5.8158
                                     P_0^4: a_1 = 80^{\circ} 88' 20''.1802
                                                                      a_2 = 70^{\circ} 7' 27'4111
     c2 == 116° 83′ 54.1842
                                          a4 = 149° 26' 39'8698
                                                                      a = 109° 52′ 82′5889
Pi: ai = 49° 6'28'7792
                                                       Pt: at = 67'47'82'4446
     es = 180° 58' 86'2208
                                                            az = 112° 12' 27'5554
P_0^*: a_1 = 25^{\circ} 1' 2.4282
                                 cz = 57° 25' 18'8042
                                                            es == 90°
     as = 154° 58' 57.5768
                                 e4 = 122° 84' 46'1958
P_1^{\bullet}: a_1 = 40^{\circ} 8'17!1091
                                 es = 78° 25' 88°8284
     e4 = 189° 54' 42'8909
                                a = 106° 84' 21.'6766
Pt: 41 = 54°44′ 8'1971
                                                      P_3^{\circ}: a_1 = 70^{\circ} 81' 48'6067
                                ez = 90°
     a = 125° 15' 51'8029
                                                            ez = 109° 28' 16'8948
Po: 01 = 21° 10′ 86′8445
                                az = 48° 86′ 28°.1779
                                                            en = 76° 11' 41'.7914
     a = 158° 49' 28'1555
                                - 181° 28' 81.8221
                                                            e4 == 108° 48' 1872086
Pi: c1 = 88° 52' 41.7201
                                ca == 62° 2' 25'.4575
                                                            a = 90°
     as = 146° 7' 18:2799
                                et = 117° 87′ 34.5425
P: 45° 59' 84'7020
                                 gs = 78° 29' 21.0527
                                 as == 104° 80' 88'9478
     g4 = 184° 0'25.2980
                                                       P4: 41 = 72 27 5.7578
P: a1 = 58' 81' 4.2452
                                 en == 90°
                                                            es == 107° 82' 54'9428
     a = 121° 28' 55.7548
P_0^1: a_1 = 16^{\circ} 21' 28.2940
                                                            en = 66° 8' 21.2416
                                en - 42° 8' 16.7588
                                                            es = 118° 56' 88'7584
     en = 161° 88' 81.7060
                                 as == 187° 51' 48.2467
P_1^t: a_1 = 29^{\circ} 20' 18.6861
                                 Ex == 58° 48' 20'.0954
                                                            es = 77° 55' 758689
                                                            e4 = 102° 4' 52'6861
                                 - 126° 16' 89'9046
     a = 150° 89′ 41.8689
P!: 61 = 89° 41' 41'9905
                                es = 65° 6' 27.5168
                                                            es == 90°
     as == 140° 18' 18'0095
                                 e4 == 114° 58' 82.4882
P_3^7: a_1 = 50^{\circ} \text{ 9' 86'9108}
                                es = 76° 55' 59'8598
                                as = 108° 4' 0.6402
     a4 = 129° 50′ 28.0892
                                                      P1: 41 = 78° 58' 52'8905
P_4^{\dagger}: \frac{a_1}{a_2} = \frac{61^{\circ} 17' 22''.1467}{118'' 42' 87''.8588}
                                az == 90°
                                                            en = 106° 6' 7.6098
```

ORIGINAL PAGE IS

In this overview the functions P_n^n and P_{n-1}^n have been omitted because they already appear in the original formulas as products (six e^n and $e^n e^{n-1} \cos v$).

The various spherical functions P_m^n do not differ considerably from each other's average values. This is a disadvantage for numerical expansions which is noticed all the more, the farther the series is carried. Therefore, I have added to the functions P_m^n (see B, p. 6, 7) constant factors r_m^n of such magnitude that the quadratic average of the product $r_m^n P_m^n$, which I call R_m^n , taken over the entire spherical surface, is equal to 1 for all values of m and n. For this purpose we must set:

$$r_n^n = 1.8.5...(2n-1)\sqrt{\frac{s_m(2n+1)}{(n+m)!(n-m)!}}$$
 with $s_0 = 1$, $s_1 = s_2 = ... = 2$

(this results from the known properties of the functions P_m^n). For the factors of the 7th order functions using this formula, we obtain the following expressions, whose values have been reported in B, p. 47, table III to 7 significant figures.

$$r_{i}^{1} = 1 \quad r_{i}^{1} = \sqrt{3} \quad r_{i}^{2} = \frac{8}{2}\sqrt{5} \quad r_{i}^{2} = \frac{5}{2}\sqrt{7} \quad r_{i}^{4} = \frac{105}{8} \quad r_{i}^{4} = \frac{68}{8}\sqrt{11} \quad r_{i}^{4} = \frac{281}{16}\sqrt{18} \quad r_{i}^{5} = \frac{429}{16}\sqrt{15}$$

$$r_{i}^{1} = \sqrt{8} \quad r_{i}^{2} = \sqrt{15} \quad r_{i}^{1} = \frac{5}{4}\sqrt{42} \quad r_{i}^{4} = \frac{21}{4}\sqrt{10} \quad r_{i}^{4} = \frac{21}{8}\sqrt{165} \quad r_{i}^{4} = \frac{88}{8}\sqrt{278} \quad r_{i}^{1} = \frac{429}{52}\sqrt{105}$$

$$r_{i}^{2} = \frac{1}{2}\sqrt{15} \quad r_{i}^{2} = \frac{1}{2}\sqrt{105} \quad r_{i}^{4} = \frac{21}{4}\sqrt{5} \quad r_{i}^{4} = \frac{8}{4}\sqrt{1155} \quad r_{i}^{4} = \frac{88}{82}\sqrt{2780} \quad r_{i}^{2} = \frac{429}{52}\sqrt{70}$$

$$r_{i}^{4} = \frac{1}{4}\sqrt{70} \quad r_{i}^{4} = \frac{8}{4}\sqrt{70} \quad r_{i}^{4} = \frac{9}{16}\sqrt{770} \quad r_{i}^{4} = \frac{11}{16}\sqrt{2780} \quad r_{i}^{2} = \frac{429}{52}\sqrt{55}$$

$$r_{i}^{4} = \frac{8}{8}\sqrt{855} \quad r_{i}^{4} = \frac{8}{8}\sqrt{855} \quad r_{i}^{4} = \frac{88}{16}\sqrt{91} \quad r_{i}^{4} = \frac{39}{16}\sqrt{865}$$

$$r_{i}^{4} = \frac{8}{16}\sqrt{154} \quad r_{i}^{4} = \frac{3}{16}\sqrt{2002} \quad r_{i}^{4} = \frac{39}{52}\sqrt{10010}$$

$$r_{i}^{2} = \frac{1}{22}\sqrt{6006} \quad r_{i}^{4} = \frac{8}{32}\sqrt{715}$$

The logarithms of the functions $R_1^1 R_1^1 \dots R_n^n$ for the values of \bullet coming into consideration here, are found in table I; the function values themselves are presented in B, p. 48/50, table IV. The reported numbers (in whose computation I have not yet applied the products stated for P_m^n) have been calculated with 7-place

m; n:	0	1	2		4	8	6	7
0	0.0000000	0.2385607	0.5255763	0.8204890	1.1180993	1.4169469	1:7164637	2.0163830
1		0.2385607	0.5880457	0.9085347	1.2201598	1.5278713	1.8335053	2.1379030
2			0.2870157	0.7093647	1.0696443	1.4063523	1.7314452	2.049856
3)	Ì	1	0.3204890	0.7976108	1.1933679	1.5558540	1.899341
4				ì	0.8460658	0.8667617	1.2939146	1.6796756
			1		l	0.3667617	0.9237334	1.3786450
•	i	i			1	1	0.3841427	0.9721884
7		ł				1		0.399124

The logarithms of these numbers are:*

logs while omitting the last digit in the key values attainable only through the use of multi-place tables. This place will thus sometimes be inaccurate by somewhat more than half a unit; in the 7-place values, sometimes even by one whole unit.

The table of functions R_m^n is indeed sufficient for the derivation of ek_min v. Mm for the values of v contained therein; but it is convenient in many regards to be able to determine the coefficients $k_{m}^{}\dots M_{m}^{}$ directly from the applicable series for a Zain v. & Yain v. y Z. In order to do this, tables of the logs of $R_n^n: a\sin v, R_n^n: \beta\sin v, R_n^n: r_n^n$ are needed. Since these tables can be used repeatedly, I have prepared them for inclusion (as table II) at the end of the work. It seemed sufficient to cite values of these figures rounded to 4 decimal places since in future calculations of potential, only the deviations from the values determined here will come into consideration -- that is, relatively small values. In this severe rounding, $\log(R_n^n:a\sin r)$ and $\log(R_n^n:a\sin r)$ differ at most by 15 units in the last place. Therefore, I have reported only the compilation of values of the former function and specified the (dependent on the angle v, identical with log(1:r)) difference (log nin # - log nin a), which is to be subtracted from it in order to obtain $log(R_m^n: \#sinv)$. The pile-up of rounding errors occurring in many numbers, which could be eliminated by addition of +1 or -1 to the last decimal, is of no importance to the purpose of the table. I thus felt justified in omitting any reference to this

^{*}Line 3, 4 and 5. In $\log r_0^1$, $\log r_1^1$, $\log r_1^2$ & $\log r_2^2$, in the last place write a "6" instead of a "7".

ORIGINAL PAGE 19 OF POOR QUALITY

problem in the table.

Those figures under the functions $(R_m^n:a\sin v)$ and $(R_m^n:a\sin v)$ whose lower index m is equal to zero, become infinite for v=0 and $v=180^o$, i.e. at both poles. Thus, the part of the expansion of X and Y dependent on them must be transformed, and it is expedient to use this transformation for the other values of v. The expansion for X follows easily from the other reported conditional equations for the coefficients of the spherical function series, according to the infinite expressions:

$$\frac{R_s^{2n} - \sqrt{4r+1} R_s^a}{a \sin v} \quad \text{and} \quad \frac{R_s^{2n+1} - \sqrt{4(4n+5)} R_s^a}{a \sin v}$$

where only * is to be replaced by \$ for this representation (see also B, p. 25, 26). Thus, the logs of these values have been incorporated into table IIa.

The coefficients of the series used in the representation of **Isinv. **Psinv* and **Z* are subject to certain conditions, some of which have already been discussed. Since these will be discussed in detail in the coming sections, this passing mention will suffice at this time.

The expansion of the force components in fixed directions is simpler in an analytical respect—since only one very simple conditional equation has to be taken into account—it was already discussed above (p. 3). Therefore, it may be permissible to go into this in brief, even though no use is to be made of the appertinent series. I will call those components z, y, z and write them in the following form:

 $I = -X \sin u \cdot dg u \cos \lambda - Y \sin u \cdot \csc u \sin \lambda - Z \cdot \sin u \cos \lambda$ $H = -X \sin u \cdot dg u \sin \lambda + Y \sin u \cdot \csc u \cos \lambda - Z \cdot \sin u \sin \lambda$ $Z = X \sin u - Z \cdot \cos u$

from which follows:

 $Z \sin u = -\cos u (Z. \sin u \cos \lambda + B. \sin u \sin \lambda) + Z. (1-\cos u^2)$ $Y \sin u = -Z. \sin u \sin \lambda + B. \sin u \cos \lambda$ $Z = -(Z. \sin u \cos \lambda + B. \sin u \sin \lambda) - Z. \cos u$

These formulas are generally valid, but can only be used for a sphere since the expansion for the ellipsoid is performed by r and not by u. From this we see that for £, H, Z we obtain limited spherical function series when values for X in u, Y in u, Z are given, and that under certain conditions—the ones mentioned just above—the reverse will apply. In order to perform the real transformation, a number of identities has to be used through which the products

 $R_m^n(\cos u).\cos u$, $R_m^n(\cos u).\sin u$, $R_m^n(\cos u).\cos u$, $R_m^n(\cos u).\cos u$ are converted into sums of spherical functions, to which, however, for the last two products, expressions of another form appear, which consequently enable the conditional equations in x and x applicable for x sin x and y sin y to disappear. As can be derived from the known properties of spherical functions, we have an abbreviated notation with x = 1, x = x = ... = 2.

$$\begin{split} R_{m}^{n} \cdot \cos u &= \frac{r_{m}^{n}}{r_{m}^{n+1}} R_{m}^{n+1} + \frac{r_{m}^{n-1}}{r_{m}^{n}} R_{m}^{n-1} \\ R_{m}^{n} \cdot \sin u &= -\frac{r_{m}^{n}}{r_{m-1}^{n+1}} R_{m-1}^{n+1} + \frac{2}{\epsilon_{m-1}} \cdot \frac{r_{m-1}^{n-1}}{r_{m}^{n}} R_{m-1}^{n-1} & \text{for } m > 0 \\ &= \frac{r_{m}^{n}}{r_{m+1}^{n+1}} R_{m+1}^{n+1} - \frac{\epsilon_{m}}{2} \cdot \frac{r_{m+1}^{n-1}}{r_{m}^{n}} R_{m+1}^{n-1} \end{split}$$

These formulas generally apply if we specify that r_m^n is zero for n < m. From this follows the recursive formulas below, which provide the solution for the last two problems:

$$\begin{split} R_{m}^{n} \cdot \csc u &= \frac{r_{m}^{n}}{r_{m-1}^{n-1}} R_{m-1}^{n-1} + \frac{\epsilon_{m-1}}{2} \cdot \frac{r_{m}^{n} r_{m}^{n-2}}{(r_{m-1}^{n-1})^{2}} R_{m}^{n-2} \cdot \csc u \\ &= -\frac{r_{m}^{n}}{r_{m+1}^{n-1}} R_{m+1}^{n-1} + \frac{2}{\epsilon_{m}} \cdot \frac{r_{m}^{n} r_{m}^{n-2}}{(r_{m+1}^{n-1})^{2}} R_{m}^{n-2} \cdot \csc u \\ R_{m}^{n} \cdot ctg \, u &= \frac{r_{m}^{n}}{r_{m-1}^{n}} R_{m-1}^{n} + \frac{2n+1}{n+m} \cdot \frac{r_{m}^{n-1}}{r_{m}^{n}} R_{m}^{n-1} \cdot \csc u \\ &= -\frac{r_{m}^{n}}{r_{m+1}^{n}} R_{m+1}^{n} - \frac{n+1}{n-m} \cdot \frac{r_{m}^{n-1}}{r_{m}^{n}} R_{m}^{n-1} \cdot \csc u \end{split}$$

The doubled solutions appearing everywhere except at $R_m^n.com u$ are necessary because from the factor com u or sin u u always combined with R_m^n , through the factor com u or sin u occurring together with sin u, com u or com u, simultaneous functions of (m+1) u and of (m-1) u always appear, which necessarily require spherical functions with

ORIGINAL PAGE IS OF POOR QUALITY

the corresponding lower indices (m+1) and (m-1) as factors.

It has already been pointed out that the coefficients of the series pertaining to \mathbf{Z}_{sinv} and \mathbf{Z}_{sinv} are subject to certain conditions of a purely analytical nature, which is not the case for those of the series for $\mathbf{Z}, \mathbf{H}, \mathbf{Z}$. Now there is another condition due to physical considerations, which naturally must be expressed in both representations; that is, that the integral taken over the entire earth's surface of the force component perpendicular to this surface, must disappear. If we call the coefficients of $R_{m}^{n}(\cos v)\cos m\lambda$ and $R_{m}^{n}(\cos v)\sin m\lambda$ in the spherical function series applicable for any function f of v and λ , with

$$C_{\infty}^{*}(f)$$
 and $S_{\infty}^{*}(f)$.

then that condition is expressed in the simple equation:

$$C^{\bullet}_{\bullet}(Z) = 0$$

If we introduce the components \mathbf{z} , \mathbf{H} , \mathbf{z} , then by substitution of the expression specified for \mathbf{Z} , we immediately obtain the slightly more complicated equation

$$C_1^1(Z) + S_1^1(H) + C_2^1(Z) = 0.$$

All these comments apply essentially when taking into account the flattening of the earth. The formulas to be applied in this case (which can be easily derived from the foregoing by introduction of •), thus are:

$$\begin{array}{lll} \alpha_YZ=&-\alpha X\sin v\cdot dg\,v\cos\lambda-\beta Y\sin v\cdot y^2\cos v\sin\lambda-\gamma Z.\sin v\cos\lambda\\ \alpha_YH=&-\alpha X\sin v\cdot dg\,v\sin\lambda+\beta Y\sin v\cdot y^2\cos v\cos\lambda-\gamma Z.\sin v\sin\lambda\\ \alpha_YZ=&\beta^{-1}\cdot \alpha X\sin v-\gamma Z.\beta\cos v\\ \alpha X\sin v=&-\beta\cos v(\Xi.\sin v\cos\lambda+H.\sin v\sin\lambda)+Z.(1-\cos v^2)\\ \beta Y\sin v=&\beta(-\Xi.\sin v\sin\lambda+H.\sin v\cos\lambda)\\ \gamma Z=&-\beta^{-1}(\Xi.\sin v\cos\lambda+H.\sin v\sin\lambda)-Z.\cos v \end{array}$$

The conditional equation to be fulfilled is thus: $C^1_*(E) + S^1_*(H) + \beta C^1_*(Z) = 0.$

Since $\beta (= \sqrt{1+z^2})$ is a constant, then the derivative of $eX \sin v$, $\beta Y \sin v$, Z from Z, H, Z is no different and no more complicated than that of a sphere. The converse, but practically unimportant problem, undergoes an important modification inasmuch as a closed expansion does

ORIGINAL PAGE IS OF POOR QUALITY

not result for \mathbf{z} , \mathbf{H} , \mathbf{z} , but for the products of these quantities with $\mathbf{e}_{\mathbf{f}}$, that is, $\mathbf{g}^{-1}(1+\epsilon^2\cos v^2)$. The elimination of this factor is of course possible, but generally leads to infinite series. However, the factor \mathbf{r}^2 occurring in connection with $\mathbf{g}\mathbf{r}\sin v$, which can be used in the form $(1-\epsilon^2\mathbf{g}^{-1}\sin v^2)$, causes only a small expansion of the calculation, without changing anything about its nature.

Set-up and General Solution to the Normal Equations

Everything is now ready to derive the normal equations. If $f_{m,i}$ is one of the quantities belonging to the value v_i :

 $a_i k_{m,i} \sin v_i$; $a_i R_{m,i} \sin v_i$; $\beta_i l_{m,i} \sin v_i$; $\beta_i L_{m,i} \sin v_i$; $\gamma_i m_{m,i}$; $\gamma_i M_{m,i}$ and if F_m^n (mit n = m, m+1, m+2...) denotes the corresponding coefficients:

$$E_m^n$$
; C_m^n ; D_m^n ; E_m^n ; j_m^n ; k_m^n ,

then the system of error equations runs:

$$f_{m,i} = \sum_{n=0}^{n-m+1} F_n^n \cdot E_n^n (\cos v_i)$$
 $i = 1, 2, 3 \dots 25$

For reasons presented in detail in B, p. 22/24, I have given equal weight to all these equations. In the case (not initially treated here) that no secondary conditions are to be met, we then have the following normal equations:

 $\sum_{i=1}^{i=2} f_{m,i} R_m^p(\cos v_i) = \sum_{n=m}^{n=m+1} F_m \cdot \sum_{i=1}^{n=m} R_m^n(\cos v_i) R_m^p(\cos v_i) \qquad p=m, m+1, \dots m+p$ or, in standard, abbreviated notation:

$$[f_n R_n^2] = \sum_{n=1}^{\infty} F_n \cdot [R_n^n R_n^2]$$

Here, ν depends on the expansion of the series of spherical functions. For reasons given below, in the series for $\alpha X \sin \nu$, the expansion shall be carried one step farther, i.e. ν is to be set greater by 1 than in the series for $\beta Y \sin \nu$ and γZ .

As mentioned earlier (p. 6), the system of normal equations now breaks down into two completely separate systems, one of which contains only F_m^m , F_m^{m+1}, and the other contains only F_m^{m+1} , F_m^{m+2} as unknowns, because in general:

$$R_m^n(\cos v_{M-l}) = (-1)^{n-m} R_m^n(\cos v_l)$$

and since consequently the sum $[E_n^*R_n^*]$, i.e. disappears for uneven values of (n-p) through an easily understood abbreviation:

$$\sum_{i=1}^{i=12} R_{m,i}^{n} R_{p,i}^{n} \left[1 + (-1)^{n+p-2m} \right] + R_{m,12}^{n} R_{m,12}^{p}$$

Let us write the two groups of equations in the form:

$$\sum_{\mu=0,1,2,...} F_m^{m+2\mu} . \left[R_m^{m+2\mu} R_m^{m+2n} \right] = \left[f_m R_m^{m+2n} \right] = q_m^{m+2n} \qquad \pi = 0, 1, 2 \dots$$

$$\sum_{\mu=0,1,2,...} F_m^{m+2\mu+1} . \left[R_m^{m+2\mu+1} R_m^{m+2n+1} \right] = \left[f_m R_m^{m+2n+1} \right] = q_m^{m+2n+1} \qquad \pi = 0, 1, 2 \dots$$

or in shortened form, omitting the lower index m:

(A)
$$\sum_{\mu} a_{2\mu,2\pi} F_{2\mu} = q_{2\mu}; \quad \sum_{\mu} a_{2\mu+1,2\pi+1} F_{2\pi+1} = q_{2\pi+1} \qquad \pi = 0, 1, 2 \dots$$

For the numerical calculation on which tables I and V are based, we naturally set:

$$\begin{split} a_{2\mu,2\pi} &= 2\sum_{i=1}^{i=19} R_{m,i}^{m+2\mu} R_{m,i}^{m+2\mu} + R_{m,13}^{m+2\mu} R_{m,13}^{m+2\mu}; \quad a_{2\mu+1,2n+1} = 2\sum_{i=1}^{i=19} L_{m,i}^{m+2\mu+1} \cdot R_{m,i}^{m+2\mu+1} \\ q_{2\pi} &= \sum_{i=1}^{i=19} (f_{m,i} + f_{m,2i-i}) R_{m,i}^{m+2\mu} + f_{m,11} R_{m,13}^{m+2\mu}; \quad q_{2\pi+1} = \sum_{i=1}^{i=19} (f_{m,i} - f_{m,2i-i}) R_{m,i}^{m+2\mu+1} \end{split}$$

The coefficients 'a' do not depend on the observation data, but only on the selection of the parallel circle to which these data relate. Thus, they can be used for every other calculation which is based on the same parallel circle. Naturally, its application is by no means limited to geomagnetic problems. Primarily for this reason, I have computed the solution of the individual equation systems, even though a frequent application of the obtained formulas (presented in the following pages) seems unlikely. In general, for similar problems, the Neumann method or a graphic derivation will be preferred (see A, p. 25, 26, and due to the reasons which induced me to select this method, B, p. 21, 22).

Regarding the coefficients 'a' presented in the following table, it should be noted that they have been derived from the values of $[P_{n}^{n+n}P_{n}^{n+n}]$ computed initially by me and rounded to 8 decimal places, through multiplication with $r_{n}^{n+n}r_{n}^{n+n}$. The reason for this is that after some delay and after a considerable part of the numerical calculations had been completed, I decided on the deviation from the usual method in the introduction of the functions R. I mention this because in a direct calculation of 'a' from R, the last decimal places were found not always to agree with those given here.

ORIGINAL PAGE 19 OF POOR QUALITY

The differences are practically meaningless, which is why I omitted the time-consuming re-calculation.

Coefficients of the Normal Equations (A)

		an [$R_n^{m+\mu}$, R_n^m	۳)		
		m	- 0			
a ₆₀ ; = 25.00000		- 1.87202 17.68068	a42 -	- 7.14895 - 9.58386		- 4.52886 - 8.44497
•			a44 —	18.88245		- 4.58588 22.75595
$a_{11} = 23.82561$		- 7.87997 16.18116		-10.15889 - 7.51818		- 8.75241 - 5.58246
	··			21.88857	415 -	- 8.12799 21.95444
•		m	- 1			
a.e = 51.67489	a ₂₀ —			- 4.55287	- •	- 6.18189
	a ₂₂ —	52.78554		- 7.64619 88.15086		-17.60242 -15.60996
			•			89.05169
	a11 —	56.96852		0.89181		-11.89867
			a11 —	44.68674		-18.99684 86.42590
		**	— 2			•••
	a,, -	50.85086	a ₂₀ —	5.59272	a	- 0.47484
			a ₂₂ =	58.53060	G 42 -	2.90692
		******				49.88171
	a ₁₁ —	56.80878		6.22129 55.62099		- 8.88884 - 8.18960
•				-0.02000		48.08946
		**	— 8		•	
	a =	49.27458		4.69178	e., -	0.59175
			a 22 =	58.52248	e42 —	7.04328 57.85657
			a11 —	54.98 2 97		6.92004 59.46148
		18 . 1	- 4	• •		
			a•• —	48.56728	a ₂₀ = a ₂₁ =	8.79217 56.99 944
	•		a11 -	53.27065	a31 -	6.16905
	•	** *	- 5		a11 —	59.45207
			a. ==	48.09689	620 =	8.11497
			•••			55.48200
				•	4 11 —	52.08705
	•	m ·	- 6		a _{**} =	47.76858
					6 ₁₁	51.18567
		# •	- 7	. *		
					£# -	47.52800

ORIGINAL PAGE IS OF POOR QUALITY

The expansions of the normal equations then run: $F_{2\mu} = \sum_{\alpha_{2\mu}, 2\alpha} q_{2\alpha}; \quad F_{2\mu+1} = \sum_{\alpha_{2\mu}+1, 2\alpha+1} q_{2\alpha+1} \qquad \mu = 0, 1, 2 \dots$

The coefficients a appearing here are functions of the reported quantities 'a' formed in the known manner. Their logarithms rounded to 6 decimal places (which could be shortened even more for most applications) are found in the following table, as series shown for different limitations on the series expansion.

Logarithms of the Coefficients of the Solutions of Normal Equations $(A)^*$

	# =	= V	
$log \ a_{00} = 9.007269$	$log \alpha_{20} = 9.08881\overline{5}$	log a 40 = 9.100947	log a 8.958866
	$log a_{22} = 9.455399$	$log a_{42} = 9.382101$	$log a_{62} = 9.251214$
		log a 44 = 9.433688	$log \alpha_{44} = 9.227006$
			log ass == 9.209016
$log a_{00} = 8.704756$	$log a_{20} = 8.350643$	$\log a_{40} = 8.497846$	-
	$log a_{22} = 8.948616$	$\log a_{42} = 8.741774$	
	-	$log a_{44} = 8.980707$	•
$\log a_{00} = 8.605516$	$log a_{20} = 7.680816$		
•	$log a_{22} = 8.755960$		
$\log a_{00} = 8.602060$	•		
$log a_{11} = 9.642880$	$log a_{21} = 9.700518$	$\log a_{k1} = 9.627701$	log a:1 = 9.420154
• ••	$log a_{22} = 9.819725$	$log a_{11} = 9.715381$	$\log a_{12} = 3.515889$
		$\log a_{11} = 9.673406$	$log \alpha_{13} = 9.484078$
			$\log a_{12} = 9.827872$
$log a_{11} = 9.055500$	$log a_{21} = 8.983011$	$log a_{k1} = 8.944128$	
•	log = 22 = 9.191057	$log a_{12} = 9.001887$	
	•	log ass - 9.098688	
$log \alpha_{11} = 8.710228$	$log a_{21} = 8.397743$	• • • • • • • • • • • • • • • • • • • •	
•	$log a_{22} = 8.869052$		
$log \alpha_{11} = 8.682167$			
	## ==	• 1	
$log a_{00} = 8.308738$	$log a_{20} = 6.755958$	$log a_{40} = 7.676051$	$log a_{44} = 7.780408$
	$log a_{22} = 8.419957$	$log a_{42} = 8.087296$	$\log a_{42} = 8.226187$
		$\log a_{44} = 8.579862$	$\log a_{44} = 8.331509$
•		• ••	$\log a_{44} = 8.629620$
$log a_{00} = 8.294030$	$\log a_{20} = 7.191095_n$	log au == 7.309080	
•	$log a_{22} = 8.293420$	$\log \alpha_{42} = 7.574440$	
	-	• ••	
	$log a_{22} = 8.293420$	log a ₄₂ == 7.574440 log a ₄₄ == 8.484688	

Lines 9-12, 19-22: The values of logan ...logan and logan ...logan belonging to m = 0 (not used in further calculations and presented here only for the sake of completeness) are somewhat inaccurate because they were computed from provisional normal equations whose coefficients and and and deviate sometimes by several units in the last place, from the final values presented on p. 16.

$log a_{44} = 8.290651$	log azo - 7.268846	
	log at = 8.281828	
log an = 8.286725		*
	•	•
log a 11 - 8.278682	les - 2 2000000	•
my all _ 0.210002	$log e_{21} = 7.805811$	$log a_{k1} - 7.843844$
	log = 20 = 8.409722	log =10 = 8.023462
•		log ass — 8.528641
log a ₁₁ — 8.244891	$log a_{21} = 6.187220_{0}$	-
,	log an - 8.850884	
log = 11 - 8.944865		
	m — 2	
log and - 8.802727	log eze - 7.286395a	les
my 200 — 0.502121		log at = 6.485218
	$log a_{22} = 8.238579$	$log a_{42} = 7.014794$
• • • • • • • • • • • • • • • • • • • •	•	log a44 - 8.806308
log a 🏎 🕳 8.802627	$\log a_{20} = 7.282867_{n}$	·
	<i>log €</i> 22 — 8.237251	
log a 🐽 💳 8.297993		
		•
$\log a_{11} = 8.25815\overline{5}$	$\log a_{21} = 7.283283_a$	log = 1 - 7.164930
my 211 — 0.200100	$log a_{22} = 8.261529$	
	109 235 — 0.201029	$\log a_{10} = 7.071828$
200 - 0 0F000F	7	$log a_{11} = 8.869694$
$log a_{11} = 8.250987$	$\log a_{21} = 7.299579_n$	
• • • • • • •	$log a_{33} = 8.260114$	
$\log a_{11} = 8.24558\overline{5}$		•
-	m — 8	
7 0.010000		•
$log a_{00} = 8.810706$	$\log a_{24} = 7.214404_a$	$\log a_{40} = 4.9915_{n}$
	$log a_{21} = 8.242418$	$log a_{42} = 7.828176_{n}$
_		log a44 = 8.247888
$\log \alpha_{00} = 8.310705$	$log = 20 = 7.214716_0$	
	$log a_{22} = 8.286006$	
log a 8.307378	•	•
3		
$\log \alpha_{11} = 8.266581$	log as = 7.882454	
wy w 11 - 0.200001		
1	$log a_{33} = 8.232179$	•
$log a_{11} = 8.260167$		•
•	m — 4	
$log \alpha_{00} = 8.315919$	log my = 7.188986,	
0.210212		
1 0	log azz = 8.246891	
log a == 8.818657		
•		
$log a_{11} = 8.278761$	$log a_{31} = 7.294812$	
	$log a_{22} = 8.231068$	
$log a_{11} = 8.278510$	2	
	•	

In several cases, conditional equations have to be taken into account. The resultant changes in the solutions will be given now.

In the Z-series (as I will call the series used for the expansion of γZ), only the condition $j_0^* = 0$ has to be met. A modification of the computation only occurs here for the first of the two equation systems characterized by m = 0. The coefficients

ORIGINAL PAGE 19 OF POOR QUALITY

the others (which I will call *) obtain values whose logarithms are:

The problem for the two equation systems belonging to m=0 is only a little more complicated for the expansion of aximu and aximu. In this case, if F is again to be set in series for B, C, D, E, in all 4 cases the conditional equations (B, p. 11)

apply:
$$a_{0}^{n} F_{0}^{n} + a_{0}^{n} F_{0}^{n} + a_{0}^{n} F_{0}^{n} + \dots = 0$$

$$a_{0}^{n} F_{0}^{n} + a_{0}^{n} F_{0}^{n} + a_{0}^{n} F_{0}^{n} + \dots = 0$$
where
$$a_{0}^{n} = 2^{n} \frac{n! \, n!}{(2n)!} \, r_{0}^{n} = \sqrt{2n+1}$$

denotes the value of the function R_O^n at the North pole (i.e. for v=0). The coefficients of the sought solutions computed with respect to these conditional equations will be called r. Their logarithms are:

	· · · · · · · · · · · · · · · · · · ·	• 0	
log yee = 8.555270	$log \gamma_{20} = 7.829511_n$ $log \gamma_{22} = 8.493678$	$log \gamma_{44} = 6.878826_n$ $log \gamma_{42} = 7.928084_n$ $log \gamma_{44} = 8.428585$	$log \gamma_{44} = 7.711288_n$ $log \gamma_{42} = 8.017281_n$ $log \gamma_{44} = 8.220089_n$
log yoo = 8.540271	$\log_{720} = 7.9647\overline{50}_{n}$ $\log_{722} = 8.417877$	$log \gamma_{40} = 7.671407_{n}$ $log \gamma_{42} = 8.215791_{n}$	log yee = 8.886278
log 700 = 8.519842	$\log \gamma_{24} = 8.170857_{a}$ $\log \gamma_{22} = 7.820872$	log 744 — 8.140841	
$log \gamma_{11} = 8.514684$	$log_{731} = 7.516348_n$ $log_{733} = 8.519360$	$log \gamma_{51} = 7.097879_n$ $log \gamma_{53} = 7.965791_n$ $log \gamma_{55} = 8.416568$	$log \gamma_{11} = 8.053581_n$ $log \gamma_{12} = 8.120704_n$ $log \gamma_{12} = 6.189589_n$ $log \gamma_{12} = 8.486642$
$log \gamma_{11} = 8.447558$	$log \gamma_{21} = 7.941971_n$ $log \gamma_{22} = 8.426269$	$log y_{01} = 7.884080_n$ $log y_{00} = 8.228190_n$ $log y_{00} = 8.288924$	
log 711 = 8.891718	log ys: = 8.207724. log yss = 8.028786		•
$\log \gamma_{11} = -\infty$		•	

ORIGINAL PAGE 19 OF POOR QUALITY

The solution for the X and Y-series is much more complex, provided m>0, because in the conditional equations appearing here, the coefficients of these two series are not separate. If we state in general:

$$a_n^n F_n^{n+1} + a_n^{n+2} F_n^{n+2} + a_n^{n+4} F_n^{n+4} + \dots = {}^0 F_n$$

 $a_n^{n+1} F_n^{n+1} + a_n^{n+2} F_n^{n+3} + a_n^{n+2} F_n^{n+3} + \dots = {}^1 F_n$
 $a_n^n = 2^{n-m} \frac{n!(n+m)!}{m!(2m)!} F_n^n$

with

then the conditional equations are (see B, p. 11):

$${}^{\circ}B_{m} - {}^{\downarrow}E_{m} = 0$$
, ${}^{\downarrow}B_{m} - {}^{\circ}E_{m} = 0$, ${}^{\circ}C_{m} + {}^{\downarrow}D_{m} = 0$, ${}^{\downarrow}C_{m} + {}^{\circ}D_{m} = 0$.

The importance of a_m^n is that $a_m^n \sin v^m$ represents the value of R_m^n for infinitely small values of v. The logarithms of the a_m^n coming into consideration here are:

The simplest method would be to determine the coefficients of both expansions linked by a conditional equation, by means of a common balancing. Accordingly, I have done this by suggesting a detour which permits a certain judgement about the reliability of the final results (see B, p. 36, 37). The cited conditional equations are of a purely analytical nature; they tell us that the horizontal force at both poles is unequivocally determined in its magnitude and direction. They would have to be inherently fulfilled if the coefficients of the series for X and Y were computed on the basis of our knowledge of the force distribution over the entire earth's surface and if this distribution were expressed without remainder. Now this knowledge is missing for the calculation to be performed here, for the two polar spherical indentations (the other side of 60° N. and S. latitude) and related to this,

ORIGINAL PAGE IS OF POOR QUALLITY

the computed, first coefficients of the series expansion are not dependent on the others, which are neglected. Consequently, the numbers obtained in the independent calculation of the coefficients of both series need not necessarily satisfy the conditional equations, and they will also in general not satisfy them. The amount of the remaining error apparently permits a view of the level of reliability of the results.

Consequently, I first computed the values B,C,D,E independently and used the general solutions with the found coefficients ..

To the found values (printed in B, p. 54, 55 under II), which I will call B', C', D', E', I have added those corrections (after calculation of the remaining error of the conditional equations) which make these errors disappear and the sum of the error-squares of the original equations are brought to a minimum. (The final results thus agree completely with those which would result from a direct, joint balancing using the least squares method—this must be stated in order to prevent any misunderstanding).

For the sake of brevity, I shall be satisfied with a statement of the numerical results without their somewhat cumbersome, but easy derivation.

By insertion of the corresponding values of B' and E', let: ${}^{\circ}B'_{m}-{}^{\circ}E'_{m}=\Delta_{m}, {}^{\circ}B'_{m}-{}^{\circ}E'_{m}=E_{m}$

Then we have, depending on the expansion of the series, the following equations:

```
\begin{array}{lll} B_1^1 &= B_1^{1'} - [7.54483] \, \Delta_1 & E_1^2 &= E_1^{2'} + [7.54077] \, \Delta_1 \\ B_1^3 &= B_1^{3'} - [8.05082] \, \Delta_1 & E_1^4 &= E_1^{4'} + [7.8514\hat{b}] \, \Delta_1 \\ B_1^4 &= B_1^{4'} - [8.22913] \, \Delta_1 & E_1^4 &= E_1^{4'} + [8.0582\hat{b}] \, \Delta_1 \\ B_1^5 &= B_1^{5'} - [8.8254\hat{b}] \, \Delta_1 & E_1^6 &= E_1^{6'} + [7.90274] \, \Delta_1 \\ B_1^6 &= B_1^{6'} - [8.31750] \, \Delta_1 & E_1^6 &= E_1^{6'} + [8.40597] \, \Delta_1 \\ B_1^6 &= B_1^{6'} - [8.65646] \, \Delta_1 & E_1^6 &= E_1^{6'} + [8.79728] \, \Delta_1 \\ B_1^6 &= B_1^{6'} - [9.04700] \, \Delta_1 & E_1^6 &= E_1^{6'} + [8.79728] \, \Delta_1 \end{array}
```

$B_1^0 = B_1^0 - [7.97157] E_1$	$E_i^* = E_i^* + [7.95897] E_i$
$B_1' = B_1' - [8.28226] E_1$	$E_1^0 = E_1^0 + [7.89110] E_1$
$B_1^0 = B_1^0 - [8.48906] E_1$	$E_i^* = E_i^* + [8.28007] E_i$
$B_1^a = B_1^{a'} - [8.88812] E_1$	$E_i = E_i' + [7.85182] E_i$
$B_i = B_i' - [8.88685] E_i$	$E_i^0 = E_i^0 + [0.30020] E_i$
•	
$B_1^0 = B_1^{0'} - [9.82542] E_1$	$E_i^* = E_i^* + [9.01829] E_i$
$B_1^0 = B_1^0 - [7.12788] \Delta_2$	$E_1^n = E_1^n + [7.44682] \Delta_2$
$B_1' = B_1' - [7.84655] \Delta_2$	$E_1^0 = E_1^{0} + [0.16544] A_2$
$B_1^* = B_1^* - [8.40487] \lambda_2$	_, _,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
$D_1 = D_1 - \{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	
$B_1^0 - B_1^{0'} - [7.9470\overline{5}] \Delta_2$	$E_i^* = E_i^* + [8.61066] \lambda_i$
$B_1' = B_1' - [8.88897] A_2$	• • • •
$B_1^a = B_2^{a} - [7.82148] E_2$	$E_1^* = E_1^* + [6.69167] E_2$
$B_1^b = B_1^b - [7.79147] E_2$	$E_1 = E_1^{\prime} + [7.41069] B_1$
$B_1' = B_1' - [8.21259] E_2$	$E_{i}^{i} = E_{i}^{i} + [7.96901] E_{i}$
$B_2^4 = B_2^{2'} - [7.90636] E_2$	$E_1^* = E_1^* + [7.48888] E_2$
	$E_1' = E_1' + [8.37775] B_2$
$B_1^* = B_2^* - [8.62298] E_2$	
$B_1^0 = B_1^{0'} - [9.22554] E_2$	$E_1^2 = E_2^{2} + [8.85540] E_2$
$B_3^0 = B_3^0 - [6.61810] \Delta_0$	$E_1^a = E_2^a + [7.10906] \Delta_0$
$B_1^* = B_1^* - [7.48569] \Delta_1$	$E_1^* = E_2^* + [7.96182] A_2$
$B_8^{\prime} = B_8^{\prime} - [8.20895] \Delta_8$	
$B_1^0 = B_1^{0'} - [7.69679] \Delta_0$	$E_1' - E_1' + [8.45298] \Delta_1$
$B_1^* = B_1^* - [8.76710] \Delta_0$	
21 - 21 - (2.00.0) - 1	
D4 D1'_ [7 40098] E-	$E_1^0 = E_1^0 + [7.12612] E_0$
$B_1^i = B_2^{i\prime} - [7.60088] E_3$	
$B_i^c = B_i^{c'} - [8.46087] E_i$	$E_1' = E_1' + [8.19642] E_2$
$B_1^* = B_1^{*} - [9.15167] E_2$	$E_1^0 = E_2^0 + [8.72176] E_0$
21 - 21 (00000)20	2, 2,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
$B_4^4 = B_4^4 - [7.50526] \Delta_4$	$E_4^a = E_4^a + [8.81789] A_4$
	24 — 24 ±[cont.on] at
$B_4^a = B_4^a - [8.67180] \Delta_4$	
mi mi ra	THE THE . P. A.L. A.
	$E_i^* = E_i^* + [6.87118] E_i$
$B_4^7 = B_4^{7} - [8.32968] E_4$	$E_4^* = E_4^* + [8.06772] E_4.$
DA DA fa casses S	TH THE SECTION W.
$B_4^b = B_4^b - [9.09196] E_6$	$E_i - E_i' + [8.61141] E_i$

A glance at the conditional equations teaches that the coefficients B and E can be replaced in the reported formulas by C and -D. This substitution naturally must also be performed in the quantities \triangle and E, so that these can be defined by the equations:

$${}^{\circ}C_{m}^{\prime}+{}^{\dagger}D_{m}^{\prime}=A_{m},\quad {}^{\dagger}C_{m}^{\prime}+{}^{\dagger}D_{m}^{\prime}=B_{m}$$

ORIGINAL PAGE IS OF POOR QUALITY.

Numerical Resolution of the Normal Equations to Derive the Series Expansion of a X sin v, \$Y sin v and 7Z.

Now in order to obtain the coefficients of the series for the three force components, one only has to insert the values in table V, which express the state of the geomagnetic force at the earth's surface, into the formulas reported above.

First determine the values of \P . For any value of m, we have: $\P = \P^{m+1} = [f_n R^{m+1}],$

where $f_{m,i}$ stands for the earlier cited 6 quantities ($a_ik_{m,i}\sin a_i$ etc., see p. 11). The computation provides the following numbers:

<u></u>	ak sin v	aK sin v	Al sin v	eL sin o	77	_ 'X _
[f, R]	546744		- 1221		8017	
[f, R]	-226880		844		24985	
[f, R]	- 40649		- 58		- 29 870	
[f, R]	- 16184		88		- 1062	
[f, R]	10264		1789		886948	•
[/, R!]	- 22 077	•	- 1848		-811774	
[f, R]	14668		807		-852686	
[/, R]	2534					
[f, R]	- 96828	19809	-176276	69808	159309	-855690
$[f, R_i^*]$	29022	-22969	- 99 57	-84124	118922	- 14570
$[f, R_i^*]$	9822	128	17923	15882	- 50622	47557
[f,R]	- 4518	8418				
[f, R]	11829	101860	18765	72567	-217583	57284
[f, R]	- 44449	10272	— 5278	8967	- 40228	- 18878
[f, R]	20798	-29197	- 2662	-17889	58594	- 12069
[f, R]	- 87484	- 2444	- 62197	26323	- 52837	- 96111
$[f,R_1]$	18907	2514	- 1511	24107	- 51502	9642
$[f,R_i^a]$	19467	- 822	- 1996	- 288	6479	- 1801
[f, R]	- 7592	88861	1266	61877	-127010	- 3485
$[f, R^*]$	20810	- 2584	28	19840	- 86416	4917
[f, R]	44	694				
$[f, R_1^0]$	8258	7948	~ 868 70	25864	- 28841	- 54065
$[f, R_1]$	- 8748	- 2341	2566	1648	- 4464	- 9907
[f, R]	- 122	266	*			
$[f, B_i]$	7478	12399	11468	-18298	81299	24947
[f, R]	8798 ,	1896	8871	- 9586	28741	18806
[f, R]	. 8880	2219	12894	8072	- 8669	6901
[f. Ri	- 2602	116	- 8077	4472	7881	11900
[f, R)	5480	- 961	6900	- 4816	- 4796	6171
[/, R]	- 49	- 178				*
J0	_ =					

By substitution of these values into the formulas of the preceeding section, we obtain the desired coefficients of the series needed for representation of aline, Aleine, yZ. of spherical functions Their values are found in table VI for three different limits of these series. A comparison of the values of the first, common coefficients in these three cases permits a certain view of the attained approximation of the true values of these coefficients. The occurring differences are a result of the fact that the valuable observation material does not include the entire earth's surface. If this were the case, then the individual normal equations would contain only one of the coefficients and these would then not be interdependent; the computed ones could thus not be affected by the ones neglected in the expansion, and change with alternating extension of the expansion. It would thus also be formally possible to reduce the mentioned differences by taking into account the unused observations in the polar regions. As long as our knowledge of the geomagnetic force distribution in these regions remains so deficient, particularly in the Southern hemisphere as is presently the case, only little more than an apparent increase in accuracy would be attained by this.

In order to have a completely well-defined analytical expression for further calculations, I rounded off the computed coefficients where possible, to whole units of the introduced unit (7). This is the case without exception for those of 72. For those belonging to X and Y which are linked by a number of conditional equations with irrational factors, one of those appearing in the same equation as a function of the others (all of which were rounded off) would always have to be computed and thus would not permit any arbitrary modification. These coefficients are given in the table to two decimal places. Originally I had selected those of the lowest order (see B, p. 25, 26). The values computed under this assumption form table VIII of my previous report (B, p. 57). Later it seemed better to choose one of the latter coefficients of each conditional equation belonging to the highest order, as a function of the others. On the one hand, the corrections occurring

in the rounding are smaller in this case than for the first method (as a glance at the conditional equations will show); on the other hand, the coefficients of the first orders are those which analytically define the represented state, whereas the very first one cannot be given accurately as a function of the following one and it is of no importance for the definition of the status.

Thus, the coefficients of the X and Y-series compiled here in table VI₁ do deviate in part from those of the earlier report (B), and the same applies for the computed coefficients of the series for U, W, V and i. (However, due to an untimely discovered failure in B, table XIa, b, p. 60, 61, those values of the computed coefficients $k_1 \dots k_4$, $l_1 \dots l_4$ were printed which result from the quantities B, C, D, E rounded off by the second method and reported here. Only for k_0 and l_0 are the coefficients B and D based on the first type. Let us take this opportunity to correct another minor error which showed up in a repeated, thorough examination of all figures in tables XIa, b, c. The values of M_1 belonging to $v = sv^a$ and $r = 100^a$ should be changed to -11000.7 and -12784.3).

In the following tables VIIa, b, c we now find the values of the coefficients of the trigonometric series computed from the numbers of VI₁ which represent X, Y, Z, for $u = 0^{\circ}$, 5° , 10° , 15° ... 180° . The k_{\circ} , l_{\circ} , m_{\circ} independent of the geographic location, are given directly; all others whose numerical values are found in B, are given by their logarithms. They were computed to hundredths of r and then rounded off to tenths of this unit.

The tables VIIIa, b, c based on this, finally give the values of the force components X, Y, Z in whole units r for all points separated by 5° longitude (in the calculation, tenths of a unit were carried over).

The three tables VI₁, VIIa, b, c, VIIIa, b, c contain the main result of the present investigation. They present the same dis-

tribution of geomagnetic forces in three different forms. However, only VI, (which contains the coefficients of a series of spherical functions) defines the distribution without additional information, because accordingly the calculation can be carried out for each point of the earth's surface. The numbers of VII, the coefficients of the trigonometric series belonging to 35 parallel circles (except the poles), define the state of the force initially only for all points of these parallel circles (and for the poles). In VIII finally, this state is shown for 2522 separate, regularly distributed points. All three representations are theoretically entirely equivalent if we add the condition to VII and VIII that the force distribution be expressed by a 6th order (for X, 7th order) series terminated with spherical functions, and for VIII the added condition that the trigonometric development along the geographic longitude be terminated with the functions of the 4-fold angle.

The state defined in three ways is also characterized by the fact that of all possible states, it most closely approximates the state observed by the numbers illustrated in tables III (or IV)—a statement that has a certain, though practically insignificant incongruity that it depends on a specific setting of the weightings.

The main value of the figures reported here lies in the fact that they form a convenient starting point for any future computation of potential based on new material. In order to perform such a computation, one will calculate that value of the measured element for each location where a valuable observation is made; said element results from the analytical representation provided here, and then the difference between observation and calculation—which naturally also contains the secular revision—will be selected as the basis for a refined calculation. (See the discussion by E. Schering in Geogr. Jahrbuch, XV, 1891, p. 143/146, which is still accurate if we proceed in a non-Gaussian manner by using graphic methods or Neumann's formulas).

ORIGINAL PAGE IS

In order to determine the computed values of X, Y, Z (and thus also those of E.S.i) for the individual, randomly distributed observation points, it would be best to proceed so that first the tables VIII are expanded for each full degree of longitude and latitude by interpolation, and then to pass to the observation point through a second interpolation. If no greater accuracy is needed for the computed value than about 5 to 10 r -- which should be sufficient with regard to the accuracy of most observations in general--then in the second operation one can get by everywhere with linear interpolations; if more accurate values are desired for individual locations where particularly accurate observations were made, then under all circumstances it is sufficient to take the second differences into account. The first operation, the expansion of table VIII to degree-intervals, does require an interpolation with fourth, and sometimes even with fifth differences if the values are to be obtained to approximately 1, accuracy. This rather complicated method for a table with double entries will be difficult to apply to the interpolation of a single value and is thus subject to a significant simplification such that the computation is always to be performed for the same, very convenient interval of + 1/5, + 2/5. The pertinent formula will be derived below and a practical example of its application will be given.

Let Δ_2 be the value of a component belonging to the tabular value of u, let Δ_2 and Δ_4 be the 2nd and 4th difference of the values standing in the same line, Δ_1' , Δ_3' , Δ_4'' , and Δ_1'' , Δ_3'' , Δ_4'' are those of the 1st, 3rd and 5th differences in the preceding and following spaces. Then we obtain the values belonging to $(u-2^\circ)$, $(u-1^\circ)$, $(u+1^\circ)$, $(u+2^\circ)$ of the quantity to be interpolated by substituting in the expression

$$\Delta_{0} + \frac{n}{1} \cdot \frac{\Delta_{1}' + \Delta_{1}''}{2} + \frac{n^{2}}{1 \cdot 2} \Delta_{2} + \frac{n(n^{2}-1)}{1 \cdot 2 \cdot 3} \cdot \frac{\Delta_{2}' + \Delta_{3}''}{2} + \frac{n^{2}(n^{2}-1)}{1 \cdot 2 \cdot 3 \cdot 4} \Delta_{4} + \frac{n(n^{2}-1)(n^{2}-4)}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5} \cdot \frac{\Delta_{3}' + \Delta_{3}''}{2}$$

for n, the series using the values -2/5, -1/5, +1/5, +2/5. We thus obtain the four functional values:

$$A-(B'+B'')$$
, $C-(D'+D'')$, $C+(D'+D'')$, $A+(B'+B'')$

if we use as an abbreviation:

$$A = \Delta_0 + \frac{2}{25}\Delta_2 - \frac{7}{1250}\Delta_4, \quad B = \frac{1}{5}\Delta_1 - \frac{7}{250}\Delta_0 + \frac{84}{18625}\Delta_6$$

$$C = \Delta_0 + \frac{1}{50}\Delta_2 - \frac{1}{625}\Delta_4, \quad D = \frac{1}{10}\Delta_1 - \frac{2}{125}\Delta_0 + \frac{99}{81280}\Delta_6$$

(The factors of Δ_4 and Δ_6 can be rounded off without causing any notable error if one does not wish to prepare a few small secondary tables. Equivalences are: $\frac{7}{1250}$, $\frac{84}{15625}$, $\frac{99}{81250}$ with $\frac{1}{180}$, $\frac{1}{190}$, $\frac{1}{820}$.)

As an arbitrary example, let us use the calculation of Z for a few points of the 15° East meridian. The difference outline and the compilation of the auxiliary quantities obtained from the differences then look as follows:

From this, we have for $u = 33^{\circ}$, $34^{\circ} \dots 42^{\circ}$, the following values of Z:

To check the calculation it is simplest to use the difference series of the found number series. In the present case it turns out that the second differences—which alone have any significant value—are sufficiently regular. The small anomalies in their profile can be attributed to rounding errors. (It may be important to note that the irregularities caused in some cases in the fifth differences of the original series, are intensified somewhat by a special circumstance. Strictly speaking, the numbers cited in

ORIGINAL PAGE IS

the tables are not exactly equidistant because they (see p. 4) are derived from the values of v rounded to whole arc-seconds; their attendant u differs from the round numbers used as arguments for the tables. This difference is a few tenths of an arc-second. Practically speaking, this inaccuracy is meaningless; for none of the computed values of X, Y or Z does it cause an error of 0.5 r).

Perhaps even more convenient, though it contains three successive interpolations, is another method which is somewhat better than the above method, at least for regions with numerous and accurate observations. It consists in first finding the functional values for the middle of the 50-intervals by interpolation, and then interpolating for every $\frac{1}{2}^{0}$. The first operation where the differences of uneven ordering numbers drop out, need only be carried out to the fourth difference, the second operation where the above-developed formulas are used, is carried out only to the third difference. The last interpolation within the $\frac{1}{2}$ °interval which leads to the values for the individual observation points, is performed linearly only. Through the repeated interpolations (longitude and latitude) a pile-up of rounding errors occurs, in addition to the errors due to neglect of the higher differences; the total uncertainty of the final values will then not generally exceed 2 to 3 r.

If Δ_0 and Δ_0' are two sequential functional values (belonging to u, λ and $u+5^{\circ}, \lambda$ or to u, λ and $u, \lambda+5^{\circ}$) and $\Delta_2, \Delta_3', \Delta_4, \Delta_4'$ are the second and fourth differences standing in the same line with them, then the interpolation for the middle of the interval gives the value:

$$\frac{\Delta_0 + \Delta_0'}{2} - \frac{1}{8} \cdot \frac{\Delta_1 + \Delta_1'}{2} + \frac{8}{128} \cdot \frac{\Delta_4 + \Delta_4'}{2}$$

or when

$$\Delta_0 - \frac{1}{8} \left(\Delta_2 - \frac{8}{16} \Delta_4 \right) = P, \quad \Delta_0' - \frac{1}{8} \left(\Delta_2' - \frac{8}{16} \Delta_4' \right) = P$$

is used, ½(P+P').

The next interpolation occurs, as mentioned, by using the earlier formulas which are simplified by elimination of Δ_{i} . We thus have:

ORIGINAL PAGE IS OF POOR QUALITY.

$$A = A_0 + \frac{2}{25}A_2$$
, $B = \frac{1}{5}A_1 - \frac{7}{250}A_2$, $C = A_0 + \frac{1}{50}A_2$, $D = \frac{1}{10}A_1 - \frac{2}{125}A_2$

and the following values must be formed:

$$A-(B'+B'')$$
, $C-(D'+D'')$, $C+(D'+D'')$, $A+(B'+B'')$

An example may serve to illustrate the method. The values of Z reported above give the following values of P for $u = 30^{\circ}$, 35° , 40° and 45° :

46875.7 44925.1 42558.4 89568.2.

The average values of the sequential $\frac{1}{2}(P+P')$ are: 45900 43742 41063 and denote the values of Z for 32.5°, 37.5°, 42.5°.

The following outline contains an additional interpolation for all intermediate points from $\frac{1}{2}^{0}$ to $\frac{1}{2}^{0}$.

		$C \longrightarrow T(D+D)$
46852	•	
— 952		
		102.8
		44870.9 ±215.0
		—112.7
		43739.4 ±238.5
		—125.s
		42476.9 ±267.2
	— 282.s	-141.4
	-	
		•
89471		
	46852 - 952 45900 - 75	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

The following table results from this; it fully agrees with the results of the earlier calculation:

	Z	86	\boldsymbol{z}		Z
_		~~~			
8490	45295	36.5	44209	89.0	48002
34.5	45086	87.0	48978	89.5	42744
85.0	44878	87.5	43742	40.0	42480
85.5	44656	8890	43501	40.5	42210
86.0	44435	38.5	43254	41.0	41988

The differences formed to check the calculation exhibit a quite regular profile.

Calculation of the Coefficients of the Potential

From the series computed above for aline and Aline, the potential of the horizontal force, provided one exists, can be determined and illustrated likewise in a closed form. For this purpose we have to calculate the functions:

$$U = \int_{0}^{1} a X dv = U_{0} + f(v, \lambda), \qquad W = \psi(v) - \int_{0}^{1} \beta Y \sin v d\lambda = W_{0} + \chi(v).\lambda$$

which generally each contain a part $(f(\mathbf{r},\lambda)$ and $\chi(\mathbf{r}),\lambda)$ which cannot be represented by a finite series of spherical functions. $\psi(\mathbf{r})$ denotes the λ -independent part of U_0 which can be expressed by spherical functions (see B, p. 9).

If it turns out that U = W, in which case f and z always disappear, then the entire magnetic horizontal force at the earth's surface can be defined by a potential which is determined by

$$V = bU = bW$$

with $b = 6,365 \cdot 10^8$ cm as the polar radius of the earth. In fact, we then have:

$$X = \frac{1}{a} \frac{\partial \overline{U}}{\partial v} = \frac{1}{ab} \frac{\partial \overline{V}}{\partial v}, \quad Y = -\frac{1}{\beta \sin v} \frac{\partial \overline{W}}{\partial \lambda} = -\frac{1}{\beta b \sin v} \frac{\partial \overline{V}}{\partial \lambda}$$

as it must be according to the definition of the potential (see A,p. 7).

If U and W are not equal, then that part of the force to which a potential is ascribed, remains undefined to a certain extent (see A, p. 17). If we take it to be as large as possible—which is evidently useful, even though not entirely sufficient for an unequivocal definition—then in the simplest case we set:

$$\nabla = \frac{b}{2} \left(U_{\bullet} + W_{\bullet} \right)$$

To characterize that part f the horizontal force to which no potential will correspond, we use the statement of the difference (W-U), through which (W_O-U_O) is given with consideration to the 'a priori' specified form of f and f.

The determination of U now takes place by means of the following formulas (see A, p. 20; B, p. 12).

As abbreviation, we write:

$$\alpha X \sin v = \sum A_m^n R_m^n$$
, i.e. $A_m^n = B_m^n \cos m\lambda + C_m^n \sin m\lambda$

and let:

$$\lambda_{m}^{0} = 1, \quad \lambda_{m}^{1} = 1, \quad \lambda_{m}^{p} = \lambda_{m}^{p-2} \frac{(m+p)(2m+p-1)(p-1)}{(m+p-1)(2m+2p-3)(2m+2p-1)}$$

$$\mu_{m}^{p} = \lambda_{m}^{p} r_{m}^{m+p}, \quad \nu_{m}^{p} = (m+p-1)\lambda_{m}^{p} r_{m}^{m+p-1}$$

$$II_{m} = \int_{-\infty}^{\infty} \frac{P_{m}^{m}(\cos v)}{\sin v} dv$$

so that:

$$\Pi_{1} = v \qquad \Pi_{2} = 1 - \cos v
\Pi_{3} = \frac{1}{2}v - \frac{1}{4}\sin 2v \qquad \Pi_{4} = \frac{2}{8} - \frac{8}{4}\cos v + \frac{1}{12}\cos 8v
\Pi_{5} = \frac{8}{8}v - \frac{1}{4}\sin 2v + \frac{1}{82}\sin 4v \qquad \Pi_{6} = \frac{8}{15} - \frac{5}{8}\cos v + \frac{5}{48}\cos 8v - \frac{1}{80}\cos 8v$$

Then:

$$\overline{U} = f(v, \lambda) + \overline{U}_0 = \sum_{n=1}^{\infty} \overline{U}_n + \sum_{n=1}^{\infty} F_n R^n$$

if we compute the quantities:

$$\pi_m = \eta_m \cos m\lambda + \zeta_m \sin m\lambda$$
, $F_m^h = G_m^h \cos m\lambda + H_m^h \sin m\lambda$

from the following equations:

$$\begin{array}{lll} \pi_m &=& \rho_m^1 A_m^{n} + \rho_m^2 A_m^{n+2} + \rho_m^4 A_m^{n+4} + \dots \\ \nu_m^1 F_m^{m+1} &=& \rho_m^2 A_m^{n+2} + \rho_m^4 A_m^{n+4} + \dots \\ \nu_m^4 F_m^{m+2} &=& \rho_m^4 A_m^{m+4} + \dots \\ \\ \nu_m^1 F_m^{m} &=& \rho_m^1 A_m^{n+1} + \rho_m^2 A_m^{n+2} + \rho_m^4 A_m^{n+4} + \dots \\ \nu_m^4 F_m^{m+2} &=& \rho_m^4 A_m^{n+2} + \rho_m^4 A_m^{n+2} + \dots \\ \nu_m^4 F_m^{m+4} &=& \rho_m^4 A_m^{n+2} + \dots \\ \end{array}$$

For m = 0 it is easy to see that μ_n^n equals the corresponding constant u_0^n introduced above (p. 14) which appears in the conditional equations for the coefficients B_0^n and C_0^n . By virtue of these conditional equations, we evidently obtain:

$$\pi_0=0\;,\qquad F_0^0=0.$$

The other equations run as follows after introduction of the numerical values of \boldsymbol{x} and \boldsymbol{y} .

ORIGINAL PAGE IS OF POOR QUALITY

```
F_{\bullet}^{1} = [0.2870156] A_{\bullet}^{2} + [0.4146518] A_{\bullet}^{4} + [0.4945028] A_{\bullet}^{4} + \dots
F_{\bullet}^{i} =
                             [9.8204890] 4; + [9.9008895] 4; + ....
F: -
                                                 [9.6005468] 🕰 + ....
F_a^2 = [9.9938827] A_a^2 + [0.0920806] A_a^2 + [0.1593794] A_a^2 + \dots
F_i =
                             [9.6967881] A_0^4 + [9.7641869] A_1^4 + \dots
F. -
                                                 [9.5217680] AL + ....
\pi_1 = [0.2385607] A_1^1 + [0.3856560] A_1^2 + [0.4786533] A_1^1 + [0.5443627] A_1^2 + \dots
F_1^* =
                             [0.0194590] A_1^3 + [0.1124568] A_1^4 + [0.1781657] A_1^2 + \dots
F: -
                                                 [9.7056520] A_1^3 + [9.7718614] A_1^7 + \dots
F_1^i =
                                                                     [9.5262454] A; + \dots
F_1^1 = [0.8494850] A_1^2 + [0.4655598] A_1^4 + [0.5426626] A_1^4 + \dots
F_{i}^{*}
                             [9.8345038] A_1^4 + [9.9116066] A_1^4 + \dots
F_1^i —
                                                 [9.6066640] 4! + \dots
\pi_{1} = [0.2870156] A_{1}^{2} + [0.8494850] A_{2}^{4} + [0.4170518] A_{3}^{4} + \dots
F: =
                             [9.8829583] A_{\bullet}^{\bullet} + [9.9505246] A_{\bullet}^{\bullet} + \dots
P_{i}^{i} =
                                                 [9,6261229] 4 + \dots
F_2^2 = [0.1215190] A_2^2 + [0.1950573] A_2^2 + [0.2553220] A_2^2 + \dots
F_i =
                             [9.7846480] A; + [9.7949127] A; + ....
F: —
                                                 [9.5402598] 4] + ....
\pi_1 = [0.3204890] A_1^2 + [0.3360354] A_1^2 + [0.3849838] A_1^2 + \dots
F_i =
                            [9.7986976] A_1^1 + [9.8426455] A_1^1 + \dots
F; -
                                                 [9.5658860] 4: + ....
F_1^2 = [0.0000000] A_1^4 + [0.0454098] A_2^4 + \dots
F_{i} =
                             [9.6680161] 4 <sup>4</sup> + . . . .
\pi_4 = [0.3460653] A_4^4 + [0.8317082] A_4^4 + \dots
                            [9.7281829] 4. + . . .
F_4^4 = [9.9186864] A_4^4 + [9.9441904] A_4^7 + \dots
F_{i} =
                             [9.6076091] 4; + ....
   [See note below*]
```

^{*}The numerical formulas compiled here are not given in the form used in the general presentation in order to simplify the usual logarithmic computation. But they can naturally be converted into this form immediately and this would be an advantage for a numerical calculation when using addition logarithms.

These equations whose coefficients were given as more highly accurate, permanently valid values than would be necessary for present purposes, show that the series for **Zsin** has to be developed down to 7th order terms if those for U are to be obtained to the 6th order (equal to those for Y, Z, W).

Now if we set the numerical values reported in table VI into the above, general formulas for the coefficients A_m^n (i.e. $B_m^n coeml+C_m^n sin mi$), then we obtain the coefficients of U specified in IX. For the case of the farthest expansion of the series, we also find these values printed in B, p. 58, table IX. The small differences existing in the last decimal place between the two statements are due to the different rounding of B_m^n and C_m^n (see p. 18).

The calculation of the coefficients of $W-\psi(v)$ from those of $F\sin v$ is very simple—in contrast to the derivation of U above. Evidently, since:

$$W-\psi(v) = -\int_{u}^{1} \beta Y \sin v \, d\lambda$$

$$\beta Y \sin v = \sum_{n=0}^{n=0} \sum_{m=0}^{m=n} (C_{m}^{n} \cos m\lambda + D_{m}^{n} \sin m\lambda) \, R_{m}^{n}$$

$$W-\psi(v) = -\lambda \sum_{n=0}^{n=0} C_{n}^{n} R_{0}^{n} + \sum_{n=0}^{n=0} \sum_{m=0}^{m=n} \frac{1}{m} \left(D_{m}^{n} \cos m\lambda - C_{m}^{n} \sin m\lambda \right) \, R_{m}^{n}$$

then:

The function $\psi(v)$ which appears as an integration constant with respect to λ , is as already remarked, the part in U_O free of λ : $\psi(v) = \sum_{i=1}^{n-1} F_i E_i^2$

By means of these expressions, W breaks down, like U, into a finite series of spherical functions W_{0} and into a part which cannot be represented in this form:

$$\chi(t) \cdot \lambda = -\lambda \sum_{n=0}^{\infty} C_n^n E_n^n$$

These latter, as well as the coefficients of W_O , are also found in table IX, which further contains the coefficients of $\frac{1}{2}(U_O + W_O)$, i.e. of V:b.

The two functions U and W or the equivalent expressions:

$$V: b = \sum (g_m^n \cos m\lambda + h_m^n \sin m\lambda) R_m^n = \frac{1}{4} (U_0 + W_0)$$

$$W - U = (W_0 - U_0) + \chi(v) \cdot \lambda - f(v, \lambda)$$

and

together determine the state of the magnetic field in the earth's surface uniquely and completely, as is done by axinv and alinv together.

V, the potential of the horizontal forces at the earth's surface, can be broken down into two parts, V_i and V_a , by means of the expression found for z; these parts represent potentials originating from agents in the interior of the earth and those in outer space. This is done by means of the formulas (see A, p. 23; B, p. 13):

$$V_i = b \sum (c_m^n \cos m\lambda + s_m^n \sin m\lambda) R_m^n$$

$$V_a = b \sum (y_m^n \cos m\lambda + s_m^n \sin m\lambda) R_m^n$$
with
$$c_m^n = s_m^n g_m^n - \delta_m^n j_m^n \qquad s_m^n = s_m^n h_m^n - \delta_m^n k_m^n$$

$$y_m^n = g_m^n - c_m^n \qquad s_m^n = k_m^n - s_m^n$$

The constants and an appearing herein, depend on the flattening of the earth. For the case of a sphere, we have:

$$d_n^n = \frac{n}{2n+1}$$
 $d_n^n = \frac{1}{2n+1}$

The only slightly different values which result from using the flattening derived by Bessel (1:299.1528), are found in B, p. 46, 47. Their logarithms are contained in the following compilation.

m; n:	0	1	2	8	4	8	8 .
				log &			
0	0.0019384	9.5240411	9.8024156	9.1563229	9.0471927	8.9600494	8.8875019
1		9.52520G4	9.3026905	9.1564525	9.0472680	8.9600987	8.8875372
2		1	9.8035222	9.1568398	9.0474942	8.9602518	8.8876427
3	·	1.		9.1574867	9.0478716	8.9604954	8.8878186
4					9.0484010	8.9608434	8.8880650
5		l .				8.9612914	6.8863628
6		,]	8.8887707
				log sm			
0		9.5240411	9.6024739	9.6822799	9.6480059	9.6577263	9.6643309
1		9.5222937	9.6022689	9.6322169	9.6479780	9.6577112	9.6643222
.3			9.6016439	9.6320244	9.6478933	9.6576707	9.6642961
3		1		9.6316994	9.6477521	9.6575926	9.6642523
4			1	1	9.6475528	9.6574881	9.6641908
5			1	l		9.6578582	9.6641110
6						1	9.6640138

The resulting series derived for V_i :b and V_a :b have the coefficients specified in table X. The same table also contains the presentation of a function abi obtained from (W-U) and which conversely is sufficient for the determination of (W-U) so that the data contained in X provides a new, complete and unique representation of the geomagnetic field. According to B, p. 13, we have:

$$a\beta bi = \frac{1}{4\pi\sin v} \cdot \frac{\partial^2 (W - U)}{\partial v \, \partial \lambda} = -\frac{1}{4\pi b\sin v} \left[\frac{\partial aX}{\partial \lambda} + \frac{\partial \beta Y \sin v}{\partial v} \right]$$

The function i introduced here, means that an electrical current penetrating perpendicularly into the earth's surface having surface density i, would generate just that part of the magnetic, horizontal force (also expressed in (W-U)) which is not generated from the potential V. Since the unit of the numbers given in X is equal to 0.1° cm -1 g¹₂-1, i.e. 0.1⁴ Ampere · cm⁻¹ and furthermore, b = 6.356 · 10⁸ cm, then we obtain from these figures the current strength (or rather the e\$-fold multiple of it which differs insignificantly) in the unit Ampere:km², if it is multiplied with0.1°.10¹⁰:(6.856.10°), i.e. with 1:635.6 or 0.001573. Note also that positive values of i would indicate a downward-directed flow.

To derive a\$bi from (W-U) we use the following formulas whose numerical coefficients which are again given to 7 places for the sake of overall accuracy, even though at the present at most 4 places are needed.

$$\begin{array}{llll} \frac{1}{\sin v} \frac{dR_{v}^{2}}{dv} &= -\left[0.3888007\right] R_{v}^{2} \\ \frac{1}{\sin v} \frac{dR_{v}^{2}}{dv} &= -\left[0.4224490\right] R_{v}^{2} - \left[0.8701818\right] R_{v}^{2} - \left[0.9978176\right] R_{v}^{2} \\ \frac{1}{\sin v} \frac{dR_{v}^{2}}{dv} &= -\left[0.8806486\right] R_{v}^{2} - \left[0.8701818\right] R_{v}^{2} - \left[0.9978176\right] R_{v}^{2} \\ \frac{1}{\sin v} \frac{dR_{v}^{2}}{dv} &= -\left[0.7186819\right] R_{v}^{2} - \left[0.8996708\right] R_{v}^{2} \\ \frac{1}{\sin v} \frac{dR_{v}^{2}}{dv} &= -\left[0.7186819\right] R_{v}^{2} - \left[0.8996708\right] R_{v}^{2} \\ \frac{1}{\sin v} \frac{dR_{v}^{2}}{dv} &= -\left[0.9000000\right] \sin v^{-1} \\ \frac{1}{\sin v} \frac{dR_{v}^{2}}{dv} &= \left[0.9000000\right] \sin v^{-1} \\ \frac{1}{\sin v} \frac{dR_{v}^{2}}{dv} &= \left[0.9771218\right] \sin v^{-1} - \left[0.9860445\right] R_{v}^{2} - \left[0.9186946\right] R_{v}^{2} \\ \frac{1}{\sin v} \frac{dR_{v}^{2}}{dv} &= \left[0.988807\right] \cos v \sin v^{-1} \\ \frac{1}{\sin v} \frac{dR_{v}^{2}}{dv} &= \left[0.8116247\right] \cos v \sin v^{-1} - \left[0.9978176\right] R_{v}^{2} - \left[1.0886820\right] R_{v}^{2} \\ \frac{1}{\sin v} \frac{dR_{v}^{2}}{dv} &= \left[0.8116247\right] \cos v \sin v^{-1} - \left[0.9978176\right] R_{v}^{2} - \left[1.0868820\right] R_{v}^{2} \\ \frac{1}{\sin v} \frac{dR_{v}^{2}}{dv} &= \left[0.0000000\right] \\ \frac{1}{\sin v} \frac{dR_{v}^{2}}{dv} &= \left[0.0000000\right] \\ \frac{1}{\sin v} \frac{dR_{v}^{2}}{dv} &= \left[0.8880486\right] \cos v \\ \frac{1}{\sin v} \frac{dR_{v}^{2}}{dv} &= \left[1.8882725\right] \cos v - \left[0.9821896\right] R_{v}^{2} \\ \frac{1}{\sin v} \frac{dR_{v}^{2}}{dv} &= \left[1.988275\right] \cos v - \left[1.9821896\right] R_{v}^{2} \\ \frac{1}{\sin v} \frac{dR_{v}^{2}}{dv} &= \left[1.988275\right] \sin v - \left[1.0791818\right] R_{v}^{2} \\ \frac{1}{\sin v} \frac{dR_{v}^{2}}{dv} &= \left[1.2747816\right] \sin v - \left[1.0791818\right] R_{v}^{2} \\ \frac{1}{\sin v} \frac{dR_{v}^{2}}{dv} &= \left[1.2747816\right] \sin v - \left[1.0457700\right] R_{v}^{2} - \left[1.1401878\right] R_{v}^{2} \\ \frac{1}{\sin v} \frac{dR_{v}^{2}}{dv} &= \left[1.6487720\right] \cos v \sin v \\ \frac{1}{\sin v} \frac{dR_{v}^{2}}{dv} &= \left[1.6487600\right] \cos v \sin v \\ \frac{1}{\sin v} \frac{dR_{v}^{2}}{dv} &= \left[1.6487600\right] \cos v \sin v \\ \frac{1}{\sin v} \frac{dR_{v}^{2}}{dv} &= \left[1.648866\right] \cos v \sin v - \left[1.0947276\right] R_{v}^{2} \\ \end{array}$$

^{*}Change 0.2385607 to read 0.2385606 and change 0.8996702 to read 0.89967,03.

$$\begin{split} &\frac{1}{\sin v} \frac{dR_d}{dv} = [0.0000000] \sin v^2 \\ &\frac{1}{\sin v} \frac{dR_d^4}{dv} = [1.4688217] \sin v^2 - [1.2196664] R_d^4 \\ &\frac{1}{\sin v} \frac{dR_d^4}{dv} = [0.9481255] \cos v \sin v^2 \\ &\frac{1}{\sin v} \frac{dR_d^4}{dv} = [1.8548619] \cos v \sin v^2 - [1.2058042] R_d^4 \end{split}$$

It is easy to see that when substituting these expressions into $\frac{1}{\sin \theta} \frac{\partial \{W-D\}}{\partial \theta}$, the coefficients of $\sin \theta^{-1}$, $\cos \theta \sin \theta^{-1}$, ... $\cos \theta \sin \theta^{-2}$ become aggregates of B_m^n , C_m^n , D_m^n , E_m^n which disappear due to the identical conditional equations valid for the expansion of $aZ\sin \theta$ and $\beta F\sin \theta$. For $a\beta bi$ we thus have a finite series of spherical functions comprising the first five orders here. That the coefficient of R_0^0 is equal to zero therein (likewise as in the series for V_i :b and V_a :b) expresses the fact that the algebraic sum of all the currents penetrating the earth's surface, i.e. the integral of $id\theta$ taken over the entire surface, disappears. The surface element $a\theta$ is equal to $a\beta b^2\sin \theta d\theta d\lambda$. This explains that the expansion is obtained not for i, but for ai, i.e. $i\sqrt{1+e^2\cos \theta^2}$ -except for constant factors.

Due to the results reported above, the problem to be solved has been completed. However, we still have to investigate the validity of the obtained results. Since this has already been done in sufficient detail in my preliminary report (see B, p. 34-43), I do not believe it necessary to go into detail again here, but I will limit the discussion to a brief presentation of results.

It turns out that the presentation of the force distribution defined by $_{a}Z_{sin}v$, $_{a}$

mainly in the fact that the individual series coefficients cannot be calculated independently of each other; this would require a knowledge of the force distribution over the entire earth's surface which we do not now have. Even though I still felt justified in giving a positive result in my preliminary report, this was done in the final analysis only through assuming very large and broad systematic errors in the observations of quantities to be explained and regular distribution of the value of 1 (see B, p. 43). Thus this decision is based primarily on the same principles used by L.A. Bauer (Terr. Magn. Vol. II, p. 11) and v. Bezold (Berlin Sitz.-Ber. f. 1887, p. 414) in their discussions. The investigations since published by Schuster, Rucker et al. reinforce the weight of the counterarguments so much that the real existance of V_{μ} and of i have to be designated as at least quite doubtful, and that the reliability of the empirical fundamentals to be evaluated in any new calculation of potential appear in fact to be significantly affected by systematic errors. This applies in particular for i which can be determined independently for each geomagnetically accurately investigated part of the earth's surface, and its calculation using the Rucker method now permits a check of the results obtained here (see A, p. 16). possibility for a mutual verification--which would lose its significance only if we had a complete empirical knowledge of the distribution of the earth's magnetism -- indicates the desirability of refining the expansions given here for the entire earth's surface; this would also be needed for a more accurate determination of V_a.

The most important task of future research related to the determination of the spatial force distribution of the earth's magnetism, must deal with filling the large gaps, especially in the polar regions, and then on the oceans and continental interiors.

I. Logarithms of the Functions R_m^a (cos v). $(tg\,v\,=\,V\overline{1+\epsilon^2}\,tg\,u\,=\,[0.0014542]\,tg\,u).$

*	log R	log R	leg R	$log R_1^2$	log R?	log R	log R1	
0.	0.2385607		0.3494850	−∞		0.4225490	—∞	180°
5	0.2368939	9.1802983	0.3444748	9.5281164	8.1704908	0.4124994	9.7491911	175
10	0.2318683	9.4796376	0.3292498	9.8224302	8.7691695	0.3815877	0.0359051	170
15	0.2234067	9.6529141	0.3031911	9.9872451	9.1157224	0.3272477	0.1877507	165
20	0.2113761	9.7738945	0.2651457	0.0961949	9.3576833	0.2440608	0.2778627	160
25	0.1955758	9.8657035	0.2131723	0.1722036	9.5413013	0.1207326	0.3283553	155
30	0.1757273	9.9356193	0.1440536	0.2252708	9.6871329	9.9300928	0.8479629	150
35	0.1514453	9.9981276	0.0521680	0.2604972	9.8061496	9.5755371	0.3397636	145
40	0.1222130	0.0474799	9.9267475	0.2806172	9.9048541	8.8744021	0.3031405	140
45	0.0873181	0.0887709	9.7430448	0.2870133	9.9874361	9.6764504m	0.2334380	135
50	0.0457736	0.1234144	9.4188925	0.2801123	0.0567230	9.9028911	0.1188076	130
55	9.9961761	0.1524021	8.2904097	0.2595025	0.1146983	0.0134475m	9.9279364	125
60	9.9364385	0.1764542	9.4528835		0.1628027	0.0639885	9.5343645	120
65	9.8633149	0.1960952	9.7178833.		0.2020847	0.0709396 _m	, ,	115
70	9.7713260	0.2117164	9.8621291.	0.0939667	0.2333270	0.0378423	9.8044843	110
75	9.6502031	0.2236014	9.9517010.	9.9847288	0.2370970	9.9592078	0.0188256	105
80	9.4768195	0.2319559	0.0075561,		0.2738061	9.8146544	0.1324854	100
85	9.1774103	0.2369160	0.0385108	9.5252506	0.2837262	9.5319934.	0.1912176	95
90	-∞	0.2385607	0.0484550 _m		0.2870157	-∞	0.2095647	1
	$log(-R_o^1)$	$log R_1^1$	log Ro	$log(-R_1^2)$	log R2	$log(-R_0^3)$	log R ³	u

(Continuation of I)

u	log R:	$log R_s^3$	$log~R_{\phi}^4$	$log R_1^4$	log R	log R	log R	
0°	_∞	∞	0.477121	∞		∞	-∞	180°
5	8.5913730	7.1457017	0.460306	9.911341	8.582281	7.621156	6.113016	175
10	9.1850261	8.0437198	0.407704	0.187804	9.469195	8.514149	7.310373	170
15	9.5231175	8.5635491	0.311442	0.321808	9.795533	9.025516	8.003479	165
20	9.7530477	8.9264903	0.151270	0.385133	0.009235	9.376427	8.487400	160
25	9.9208054	9.2019174	9.862996	0.397423	0.154872	9.636054	8.854637	155
30	0.0468484	9.4206648	8.776192	0.362769	0.252153	9.834953	9.146300	150
35	0.1415832	9.5991898	9.719059_n	0.274551	0.310318	9.989196	9.384333	145
40	0.2110554	9.7472467	9.983953 _a	0.107603	0.333242	0.108020	9.581742	140
45	0.2587425	9.8711196	0.087018	9.762709	0.320868	0.196998	9.746906	135
50	0.2864849	9.9750500	0.107859 _n	$9.14314\overline{5}_{n}$ 0.	0.268613	0.259384	9.885480	130
55	0.2948629	0.0620132	0.061330 _m	9.896182	0.163694	0.296750	0.001431	125
60	0.2832294	0.1341695	9.935148 _n	0.110783 _m	9.970280	0.309169	0.097639	120
65	0.2493879	0.1930924	9.661993,	0.202026	9.525913	0.294968	0.176203	115
70	0.1886413	0.2399560	7.759087.	0.220631m	9.440352	0.249843	0.238688	110
75	0.0912884	0.2756110	9.637733	0.175552 _m	9.922172	0.164375	0.286228	105
80	9.9346139	0.3006746	9.902953	0.052365	0.109124	0.016055	0.319646	100
85	9.6451248	0.3155548	0.017392	9 781673	0.197669	9.731526	0.339486	95
90	-∞	0.3204890	0.051153	-∞	0.224546 _a	∞	0.346065	90
	$log(-R_2^2)$	log R3	log R	$log(-R_1^4)$	log R;	$log(-R_3^4)$	log B	

(Continuation of I)

u	log R	log R	log R;	log R;	log R;	leg R;	log R	
0°	0.520697		-8	-8			0.55697	180
5	0.495350	0.038766	9.107059	7.96367G	6.632045	5.075450	0.52127	175
10	0.414265	0.302221	9.685487	8.850359	7.824377	6.572146	0.40378	170
15	0.256769	0.412958	9.997520	9.351026	8.509021	7.438529	0.15378	165
20	9.948884	0.439608	0.189405	9.686547	8.980912	8.043431	9.38983	160
25	7.975588 _n	0.394940	0.305249	9.925625	9.332348	8.502476	9.87869 _m	155
30	9.875583,	0.265649	0.362113	0.098114	9.604163	8.867055	0.13188 _m	150
35	0.089929	9.982352	0.364963	0.219028	9.817914	9.164596	0.17071 _m	145
40	0.143633 _n	7.078336 _m	0.309014	0.295986	9.986091	9.411358	0.06336 _m	140
45	0.093537,	9.937618	0.172999	0.331952	0.116360	9.617813	9.71711,	135
50	9.921477	0.171438 _m	9.876589	0.325689	0.213389	9.791030	9.33603	130
55	9.442768	C.244200m	8.756484	0.270157	0.279743	9.935969	9.92288	125
60	9.487472	0.216558	9.907324	0.145776	0.316213	0.056229	0.06745	120
65	9.900740	0.079218	0.138483	9.888895	0.321654	0.154434	0.05241	115
70	0.037531	9.715417	0.221982,	8.826804	0.292150	0.232540	9.87317	110
75	0.055342	9.397713	0.214201	9.797241	0.218567	0.291965	9.17378	105
80	9.968453	9.976786	0.113381.	0.082857	0.078601	0.333738	9.68141	100
85	9.717087	0.156100	9.854847	0.203648	9.799032	0.358538	9.97874m	95
90	–∞	0.205652	− ∞	0.239125 _m	∞	0.366762	0.05182 _m	90
	$log(-R_0^5)$	log R;	$log(-R_2^3)$	log R3	$log(-R_4^3)$	log R;	log R	×

u	log Ri	$log R_2^\epsilon$	log R	log R	log R	log R	log R	
0°							0.58805	180°
5	0.14305	9.29051	8.23601	7.01559	5.63075	4.03457	0.54011	175
10	0.39060	9.85865	9.11508	8.20208	7.12243	5.83060	0.37635	170
15	0.47184	0.15271	9.60271	8.87648	7.98035	6.87026	9.97165	165
20	0.44853	0.31737	9.91922	9.33366	8.57322	7.59615	9.63345m	160
25	0.31397	0.39376	0.13233	9.66551	9.01646	8.14700	0.12758	155
30	9.96843	0.39286	0.27032	9.91227	9.36119	8.58450	0.20059	150
35	9.45431.	0.30509	0.34551	0.09458	9.63445	8.94155	0.07449	145
40	0.10615	0.07814	0.36058	0.22358	9.85198	9.23766	9.57110	140
45	0.25822	9.26555	0.30808	0.30480	0.02354	9.48540	9.70528	135
50	0.25188	9.89569 _m	0.15960	0.33935	0.15521	9.69326	0.04642	130
55	0.09558	0.17271	9.79317	0.32331	0.25056	9.86719	0.09108	125
60	9.57454.	0.24574	9.44679	0.24370	0.31108	0.01150	9.93175	120
65	9.75000	0.19099	0.03089	0.06216	0.33616	0.12935	9.18237	115
70	0.11265	9.97009	0.20194	9.59099	0.32228	0.22308	9.76588	110
75	0.20986	8.89930	0.23632	9.62037	0.26058	0.29439	0.02537	105
80	0.16269	9.89024	0.15899	0.05248	0.12897	0.34451	0.04005	100
85	9.93121	0.14719	9.91281	0.20831 _m	9.85436	0.37427	9.83682	95
90	−∞	0.21293		0.25252 _n	-œ	0.38414		90
	$log(-R_1^4)$	log R.	$log(-R_1^4)$	log R	$log(-R_s^4)$	log R.	$log\left(-R_{\bullet}^{\dagger}\right)$	tı

(Continuation of I)

u	log R	log R;	log R	$log R_4^1$	log R	log R	log R	
0°								180
5	0.23068	9.44531	8.46312	7.82668	6.04896	4.62095	2.99129	175
10	0.45923	0.00133	9.33325	8.50586	7.53475	6.41196	5.08666	170
15	0.50353	0.27376	9.80543	9.16817	8.38272	7.44315	6.29960	165
20	0.41062	0.40443	0.09891	9.60779	8.96134	8.15701	7.14646	160
25	0.10921	0.42813	0.27963	9.91585	9.38563	8.69206	7.78912	155
30	9.83543	0.33923	0.37247	0.13189	9.70621	9.10971	8.29953	150
35	0.15439	0.06328	0.3×280	0.27305	9.94925	9.44247	8.71609	145
40	0.29394	8.99844 _m	0.29619	0.34854	0.12934	9.70936	9.06156	140
45	0.23421	0.07765	0.04450	0.35669	0.25440	9.92221	9.35060	135
50	9.91883	0.25320m	8.16390	0.28346	0.32748	0.08852	9.59310	130
55	9.49452	0.23475 _m	0.00100 _m	0.07829	0.34682	0.21285	9.79601	125
60	0.10188	0.01399	0.21752m	9.38384	0.30319	0.29743	9.96438	120
65	0.22385	7.86753 _m	0.24105	9.86001	0.16936	0.34215	0.10187	115
70	0.14881	9.99083	0.10141	0.16380 _m	9.83952	0.34389	0.21121	110
75	9.77378	0.19589	9.57991	0.24685 _m	9.31886 _m	0.29407	0.29441	105
80	9.64134	0.19266	9.78530	0.19430 _m	0.01739	0.17082	0.35289	100
85	0.10687	9.98170	0.13877	9.96069 _m	0.21164	9.90117	0.38761	95
90	0.20438 _a	∞	0.22113	-∞	0.26470 _m	-∞	0.89912	90
i	$log R^{?}$	$log(-R_2^7)$	$log R_1^{7}$	$log(-R_4^7)$	$log R_i^*$	$log(-R_4^{\dagger})$	$log R_1^2$	*

IIa. Logarithms of the Functions* used to Compute X and Y

u	$\log \frac{\beta}{\alpha}$	$\log \frac{R_0^2 - \sqrt{5} R_0^0}{\alpha \sin \theta}.$	$\log \frac{R_n^3 - V + R_0^3}{a \sin v}$	$\log \frac{R_0^4 - \sqrt{9} R_0^0}{\alpha \sin v}$	$\log \frac{R_0^3 - V^{\frac{11}{3}} R_0^1}{\alpha \sin v}$	$\log \frac{R_0^6 - \sqrt{13}R_0^6}{\alpha \sin y}$	$\log \frac{R_0^7 - \sqrt{11} R_0^1}{\alpha \sin \theta}$	
0°	0.0000	~ 80			-∝		8	180°
5	0	9.4659 _m	9.7591 _m	0.1135 _n	0.3007 _m	0.5110 _m	0.6478 _m	175
10	0	9.7652 _n	0.0535 _a	0.4041 _n	0.5837#	0.7877,	0.9144 _n	170
15	1	9.9386 _m	0.2163a	0.5627 _n	0.7294 _m	0.9229	1.0320 _a	165
20	2	0.0596 _a	0.3274	0.6630,	0.8110 _a	0.9897	1.0728 _n	160
25	3	0.1515 _n	0.4035,	0.7278 _n	0.8507	1.0105 _m	1.0574 ₈	155
30	4	0.2245 _m	0.4566a	0.7672n	0.8577	0.9944 _a	0.9924 _n	150
35	5	0.2842	0.4920 _n	0.786 5 _n	0.6354 _m	0.9459,	0.8786 _m	145
40	.6	0.3336 _n	0.5122 _n	0.7883 _m	0.7845 _m	0.8681 _a	0.7124,	140
45	7	0.3751 _m	0.5187	0.7746 _m	0.7031 _m	0.7647,	0.4967	135
50	9	0.4098 _a	0.5120 _m	0.7462,	0.5862,	0.6446 _n	0.2518 _m	130
55	10	0.4389 _m	0.4915 _n	0.7039 _a	0.4232 _m	0.5279 _a	0.0783 _m	125
60	11	0.4631 _m	0.4559 _a	0.6485 _m	0.1911,	0.4487,	0.0940,	120
65	12	0.4829 _n	0.4023 _m	0.5812,	9.8219,	0.4362,	0.2125 _m	115
70	13	0.4986 _m	0.3262 _m	0.5046 _m	8.6367 _m	0.4829,	0.3063 _a	110
75	14	0.5105 _n	0.2171,	0.4241,	9.4623	0.5435 _a	0.3286 _n	105
80	14	0.5189 _n	0.0521	0.8490 _n	9.5579	0.6178 _m	0.2538 _m	100
85	14	0.5239,	9.7577	0.2937,	9.3694	0.6604 _a	0.0116 _n	95
90	15	0.5256 _m	-∞	0.2730 _n	-∞	0.6751 _m	-∞	90

*To compute X, use the numbers of the tale; to compute Y, use the numbers derived by subtraction of well.

(Continuation of IIa)

N	(log f)	$\log \frac{R_1^{2^*})}{a\sin \tau}$	lug Rian	$\log \frac{R_1^4}{a \sin r}$	$\log \frac{R_1^3}{a \sin v}$	$\log \frac{R_1^6}{a \sin v}$	$\log \frac{R_1^2}{e \sin \tau}$	$\log \frac{R_2^2}{a \sin r}$	$\log \frac{R_2^2}{\pi \sin \tau}$	lay Ri	
0•	0	0.5866	0.8102	0.9757	1.1073	1.2166	1.8102				180°
5	0	0.5849	0.8060	0.9682	1.0956	1.1999	1.2875	9.2273	9.6482	9.9891	175
10	0	0.5799	0.7934	0.9453	1.0597	1.1481	1.2167	9.5267	9.9425	0.2267	170
15	1	0.5715	0.7720	0.9061	0.9972	1.0561	1.0878	9.7000	0.1074	0.3801	165
20	2	0.5596	0.7412	0.8485	0.9030	0.9119	0.8740	9.8211	0.2164	0.4726	160
25	3	0.5439	0.7000	0.7691	0.7666	0.6856	0.4509	9.9130	0.2925	0.5265	155
30	4	0.5241	0.6468	0.6616	0.5645	0.2673	9.F.43m	9.9860	0.8457	0.5510	150
35	5	0.5000	0.5792	0.5140	0.2218	9.6938 _m	0.3939	0.0456	0.3810	0.5498	145
40	6	0.4708	0.4934	0.2978	7.2686 _m	0.2964 _n	0.4842	0.0951	0.4018	0.5285	140
45	7	0.4361	0.3825	9.9118	0.0867 _m	0.4073	0.3833	0.1365	0.4078	0.4699	185
50	9	0.3947	0.2334	9.2577	0.2860 _a	0.5864a	0.0334	0.1713	0.4010	0.3832	130
55	10	0.3452	0.0136	9.9819	0.3299,	0.1813	9.5802	0.2004	0.8805	0.2494	125
60	11	0.2856	9.5961	0.1725 _m	0.2783	9.6363 _a	0.1636	0.2245	0.8450	0.0320	120
65	12	0.2125	9.2580m	0.2442	0.1214,	9.7922	0.2661	0.2443	0.2916	9.5681	115
70	13	0.1206	9.8312	0.2473	9.7421	0.1392	0.1755	0.2600	0.2153	9.4670 _n	110
75	14	9.9996	0.0337	0.1904n	9.4126	0 2247	9.7887	0.2720	0.1062	9.9370 _m	105
80	14	9.8263	0.1390	0.0589 _m	9.9833	0.1692	9.6479	0.2804	9.9412	0.1157 _a	100
85	14	9.5269	0.1929	9.7833	0.157	9.9328	0.1085	0.2854	9.6468	0.1993 _a	95
90	15	∞	0.2096 _m	-∞	0.2057		0.2044	· ·	-∞	0.2245 _m	90
	-	$\log \frac{-R_1^2}{\alpha \sin n}$	$\log \frac{R_1^3}{\alpha \sin \pi}$	$\log \frac{-P_1^4}{2\pi i \pi^2}$	$\log \frac{R_1^2}{\sigma \sin^2 r}$	$\log \frac{-R_1^4}{\alpha \sin x}$	$\log \frac{R_1^2}{\pi M^2}$	$\log \frac{R_1^2}{a \sin x}$	$\log \frac{-R_2^2}{a\sin v}$	$\log \frac{R_2^4}{a \sin 2}$	*

*We have $\log \frac{R_1^1}{\beta \sin \theta} = 0.2371$, $\log \frac{R_1^1}{\alpha \sin \theta} = 0.2371 + \log \frac{\beta}{\alpha}$.

u	(log f)	$\log \frac{R_2^3}{a \sin v}$	lug R. asino	$log \frac{R_1^7}{a sin v}$	$\log \frac{lt_3^3}{a \sin v}$	$\log \frac{R_3^4}{\alpha \sin v}$	log Ri	$\log \frac{R_{3}^{6}}{a \sin v}$	$\log \frac{R_3^7}{\alpha \sin \tau}$	log Ri	·
0°	0									-∞	180°
5	0	0.1639	0.3473	0.5021	8.2025	8.6780	9.0203	9.2928	9.5199	7.1698	175
10	0	0.4430	0.6162	0.7588	8.8012	9.2717	9.6079	9.8726	0.0908	8.0679	170
15	1	0.5818	0.7370	0.8580	9.1478	9.6098	9.9353	0.1870	0.3897	8.5878	165
20	2	0.6528	0.7818	0.8678	9.3899	9.8398	0.1499	0.3826	0.5623	8.9508	160
25	3	0.6769	0.7654	0.7998	9.5736	0.0077	0.2973	0.5040	0.6513	9.2263	155
30	4	0.6610	0.6917	0.6381	9.7195	0.1338	0.3970	0.5692	0.6713	9.4452	150
35	5	0.6044	0.5446	0.3027	9.8386	0.2287	0.4585	0.5850	0.6223	9.6238	145
40	6	0.4992	0.2684	9.1887	9.9375	0.2982	0.4862	0.5508	0.4864	9.7720	140
45	7	0.3221	9.4146	0.2267	0.0202	0.3461	0.4810	0.4571	0.1936	8.8960	185
50	9	9.9911	0.0102	0.3677	0.0896	0.3739	0.4402	0.2741	8.2785	0.0000	130
55	10	8.8422	0.2584 _m	0.3204	0.1477	0.3824	0.3558	9.8789	0.0867,	0.0871	125
60	11	9.9691	0.3075	0.0757	0.1959	0.3709	0.2075	9.3085 _m	0.2793,	0.1594	120
65	12	0.1807	0.2332	7.9097	0.2353	0.3372	9.9311	0.0731	0.2833 _m	0.2184	115
70	18	0.2487	9.9968	0.0175	0.2666	0.2765	8.8535	0.2286 _m	0.1281 _m	0.2654	110
75	14	0.2291	8.9142	0.2108	0.2903	0.2792	9.8121.	0.2512 _n	9.5948,	0.8011	105
80	14	0.1199 _n	9.8968	0.1992	0.3072	0.0226	0.0894a	0.1656 _m	9.7919	0.3262	100
85	14	9.8565	0.1488	9.9833	0.3172	9.7332	0.2053	9.9144,	0.1404	0.8411	95
90	15		0.2129	∞	0.3205	-∞	0.2391 _m		0.2211	0.8461	90
		$\log \frac{-R_2^3}{a\sin \theta}$	$log \frac{R_2^4}{a \sin \theta}$	$\log \frac{-R_2^2}{a \sin y}$	$\log \frac{R_3^3}{\alpha \sin \theta}$	$\log \frac{-R_3^4}{a\sin \theta}$	$\log \frac{R_1^3}{\alpha \sin \theta}$	$\log \frac{-R_2^6}{\pi \sin \theta}$	$\log \frac{R_2^7}{\alpha \sin \theta}$	lay Right	ĸ

16	$\left(\log \frac{B}{a}\right)$	$\log \frac{R_4^3}{a \sin \tau}$	$\log \frac{R_4^4}{a \sin v}$	$\log \frac{R_4^1}{a \sin \theta}$	$\log \frac{R_1^2}{a \sin \theta}$	log Ri	log Ring	lay Ra	$\log \frac{R_0^2}{a \sin y}$	$\log \frac{R_1^2}{a \sin y}$	
0°	0	, — ∞								-8	180°
5	. 0	7.6889	8.0724	8.3835	6.1323	6.6876	7.1058	5.0914	5.6778	4.0481	175
16	0	8.5819	8.9596	9.2634	7.3297	7.8799	8.2923	6.5881	7.1695	5.8442	170
15	1	9.0933	9.4608	0.7525	8.0228	8.5646	8.9670	7.4546	8.0274	6.8839	165
20	2	9.4443	-9.7970	0.0712	8.5068	9.0366	9.4247	8.0595	8.6204	7.6098	160
25	3	9.7040	0.0372	0.2875	8.8741	9.3881	9.7578	8.5187	9.0637	8.1608	155
80	4	9.9030	0.2111	0.4302	9.1659	9.6600	0.0051	8.8833	9.4086	8.5984	150
35	5	0.0574	0.3340	0.5125	9.3041	9.8739	0.1887	9.1510	9.6819	8.9556	145
40	6	0.1763	0.4138	0.5388	9.C016	0.0422	0.3196	9.4279	9.8996	9.2518	140
45	7	0.2654	0.4539	0.5058	9.7669	0.1726	0.4035	9.6345	0.0713	9.4997	185
50	9	0.3279	0.4539	0.3980	9.9056	0.2698	0.4420	9.8076	0.2031	9.7077	180
55	10	0.3654	0.4090	0.1630	0.0217	0.3362	0.4325	9.9529	0.2985	9.8817	125
60	11	0.3780	0.3054	9.4456	0.1180	0.3728	0.3649	0.0732	0.3592	0.0261	120
65	12	0.3639	0.1044	9.9022	0.1966	0.3784	0.2116	0.1716	0.3844	0.1441	115
70	13	0.3188	9.6176	0.1905 _m	0.2592	0.3490	9.8662	0.2498	0.3706	0.2379	110
75	14	0.2334	9.6352	0.2617	0.3068	0.2754	9.3337	0.3092	0.3089	0.3093	105
80	14	0.0852	0.0590 _m	0.2009 _m	0.3403	0.1355	0.0240 _m	0.3511	0.1774	0.3595	100
85	14	9.8007	0.2099	9.9623,	0.3602	9.8560	0.2133	0.3759	9.9028	0.3892	95
90	15	∞	0.2525 _m	∞	0.3668	-∞	0.2647 _m	0.3841	∞	0.3991	90
		$\log \frac{-R_4^5}{\alpha \sin y}$	$log \frac{R_4^6}{\alpha \sin v}$	$\log \frac{-R_4^2}{\alpha \sin v}$	$\log \frac{R_5^3}{\alpha \sin v}$	$\log \frac{-R_5^6}{\alpha \sin \tau}$	$log \frac{R_5^2}{\alpha \sin \theta}$	$log \frac{R_{\xi}^{4}}{\alpha sin v}$	$\log \frac{-R_4^2}{\alpha \sin \theta}$	$log \frac{R_1^2}{\alpha sin y}$	*

IIb. Logarithms of the Functions Used to Compute \boldsymbol{Z}

	$log \frac{R_1^1}{\gamma}$	$\log \frac{R_0^7}{\gamma}$	$log \frac{K_6^4}{\gamma}$	$log \frac{R_0^3}{\gamma}$	$log \frac{R_0^4}{\gamma}$	$log \frac{R_0^3}{\gamma}$	$log \frac{R_0^2}{\gamma}$	$log \frac{R_0^1}{\gamma}$	u
180	-8	0.5881	0.5570	0.5207	0.4771	0.4225	0.3495	0.2386	00
175	9.1803	0.5401	0.5213	0.4954	0.4603	0.4125	0.3445	0.2369	5
170	9.4797	0.3764	0.4038	0.4143	0.4077	0.3816	0.3293	0.2319	10
165	9.6530	9.9717	0.1538	0.2569	0.3115	0.3273	0.3033	0.2236	15
160	9.7741	9.6336,	9.3900	9.9491	0.1514	0.2442	0.2653	0.2116	20
155	9.8660	0.1278m	9.8740 _m	7.9759,	9.8633	0.1210	0.2134	0.1959	25
150	9.9390	0.2010 _m	0.1322 _m	9.8759 _m	8.7766	9.9305	0.1444	0.1762	30
145	9.9986	0.0750 _m	0.1712,	0.0905 _m	9.7195 _m	9.5760	0.0526	0.1520	35
140	0.0481	9.5717 _m	0.0640 _m	0.1442 _n	9.9846,	8.8750 _n	9.9273	0.1229	40
135	0.0895	9.7060	9.7178	0.0943 _m	0.0877	9.6772,	9.9438	0.0882	45
130	0.1243	0.0473	9.3369	9.9223,	0.1087	9.9037	9.4197	0.0468	50
125	0.1534	0.0921	9.9239	9.4437 _m	0.0623	0.0144,	8.2914n	9.9973	55
120	0.1775	9.9328	0.0685	9.4886	9.9362	0.0651 _m	9.4540 _m	9.9376	60
115	0.1973	9.1836	0.0536	9.9019	9.6632,	0.0721,	9.7191 _m	9.8646	65
110	0.2130	9.7672m	9.8745	0.0388	7.7604,	0.0391,	9.8634 _n	9.7727	70
105	0.2250	0.0267	9.1751	0.0567	9.6391,	9.9606,	9.9531 _m	9.6516	75
100	0.2334	0.0415 _m	9.6828 _m	9.9699	9.9044	9.8161 _m	0.0090 _m	9.4783	80
95	0.2384	9.8383,	9.9802 _m	9.7185	0.0188 _a	9.5334,	0.0400,	9.1789	85
90	0.2400		0.0583 _m		0.0526 _m	∞	0.0499 _m	-∞	90
	lag Ri	$\log \frac{-R_0^2}{2}$	lag Ro	$lag \frac{-R_0^b}{a}$	lag Ro	$\log \frac{-R_0^3}{n}$	$log = \frac{R_0^2}{}$	$\log \frac{-R_0^1}{\gamma}$	

(Continuation of IIb)

*	$log \frac{R_1^2}{\gamma}$	4 R1	log Ri	$\log \frac{R_1^3}{\gamma}$	149 Ri	lag Ri	leg - R1 y	$log \frac{R_0^2}{\gamma}$	lay Ki	
00										180°
5	9.5281	9.7492	9.9114	0.0388	0.1431	0.2307	8.1705	8.5914	8.6623	175
10	9.8225	0.0359	0.1878	0.3023	0.3906	0.4593	8.7692	9.1651	9.4692	170
15	9.9878	0.1878	0.3219	0.4131	0.4719	0.5036	9.1156	9.5232	9.7959	165
20	0.0964	0.2780	0.3853	0.4398	0.4487	0.4108	9.3579	9.7582	0.0094	160
25	0.1725	0.3286	0.3977	0.3952	0.3142	0.1093	9.5416	9.9211	0.1551	155
30	0.2256	0.3483	0.3631	0.2660	0.9688	9.3358.	9.6875	0.0472	0.2525	150
35	0.2610	0.3402	0.2750	9.9828	9.4548	0.1549	9.8066	0.1421	0.3108	145
40	0.2812	0.3037	0.1082	7.0789	0.1068	0.2945	9.9055	0.2117	0.3338	140
45	0.2877	0.2342	9.7634	9.9383	0.2589	0.2349	9.9882	0.2595	0.3216	135
50	0.2810	0.1197	9.1440 _m	0.1723	0.2527	9.9197	0.0576	0.2878	0.2695	180
55	0.2605	9.9289	9.8972	0.2452	0.0966	9.4955	0.1157	0.2958	0.1647	125
60	0.2249	9.5355	0.1119	0.2176	9.5756	0.1030	0.1639	0.2843	9.9714	120
65	0.1715	9.2170 _m	0.2032	0.0804	9.7512	0.2250	0.2033	0.2506	9.5272	115
70	0.0953	9.8058	0.2219	9.7167	0.1139	0.1501	0.2346	0.1899	9.4416	110
75	9.9861	0.0202	0.1769	9.3991	0.2112	9.7751	0.2585	0.0926	9.9235	105
80	9.8211	0.1339 _m	0.0538	9.9782	0.1641	9.6428	0.2752	9.9350	0.1105	100
85	9.5267	0.1927	9.7831	0.1575	9.9327	0.1083	0.2852	9.64GG	0.1991	95
90	-∞	0.2110 _m	-∞	0.2071	-∞	0.2058 _m	0.2885	-60	0.2260 _n	90
	$log \frac{-R_1^2}{\gamma}$	$log \frac{R_1^3}{\gamma}$	$\log \frac{-R_1^4}{\gamma}$	$log = \frac{R_1^b}{\gamma}$	$\log \frac{-R_1^4}{\gamma}$	$log \frac{R_1^2}{\gamma}$	$log = \frac{R_2^2}{\gamma}$	$\log \frac{-R_1^2}{r}$	lag R	*

(Continuation of IIb

и	$log \frac{R_g^3}{\gamma}$	$log \frac{R_2^6}{\gamma}$	$log \frac{R_2^7}{\gamma}$	$log \frac{R_2^3}{\gamma}$	$log \frac{R_1^4}{\gamma}$	$log \frac{R_3^5}{\gamma}$	$log \frac{R_3^6}{\gamma}$	$\log \frac{R_2^2}{\gamma}$	$lag \frac{R_i^4}{\gamma}$	
0°					- &	8	8			180°
5	9.1071	9.2905	9.4453	7.1457	7.6212	7.9637	8.2360	8.4G31	6.1130	175
10	9.6855	9.8587	0.0014	8.0838	8.5142	8.8504	9.1151	9.3333	7.3104	170
15	. 9.9976	0.1528	0.2739	8.5G3G	9.0256	9.3511	9.6028	9.8055	8.003G	165
20	0.1896	0.3175	0.4046	8.9267	9.3766	9.6867	9.9194	0.0991	8.4876	160
25	0.3055	0.3940	0.4284	9.2022	9.6363	9.9259	0.1326	0.2799	8.8549	155
30	0.3625	0.3932	0.3396	9.4210	9.8353	0.0985	0.2707	0.8728	9.1467	150
35	0.3654	0.3056	0.0638	9.5997	9.9897	0.2195	0.3460	0.8833	9.3848	145
40	0.3096	0.0787	8.9990 _m	9.7478	0.1086	0.2966	0.3612	0.2968	9.5823	140
45	0.1737	9.2663	0.0784	9.6718	0.1977	0.3327	0.3088	0.0452	9.7476	185
50	9.8774	9.8965 _m	0.2541.	9.9759	0.2602	0.3265	0.1605	8.1G48	9.8863	130
55	8.7575		0.2357	0.0630	0.2977	0.2711	9.7941	0.0020 _m	0.0015	125
60	9.9084		0.0151	0.1353	0.3103	0.1469	9.4479,	0.2186 _m	0.0987	120
65	0.1397	: ••	7.8687	0.1943	0.2962	9.8901	0.0321,	0.2422 _m	0.1774	115
70	0.2233	9.9714	9.9921	0.2412	0.2511	8.8281	0.2032	0.1027,	0.2400	110
75	0.2156	,	1	0.2770	0.1657	9.7986	0.2377	9.5813,	0.2876	105
80	0.1148	,	0.1941	0.3021	0.0175	0.0843	0.1604	9.7867	0.3211	100
85	1 -	0.1486	9.9831	0.3170	9.7330	·0.2051	9.9143	0.1402	0.3409	95
90		0.2144		0.3219	-00	0.2406 _n		0.2226	0.3475	90
	1				<u> </u>		1	7		
	$log \frac{-R_2^2}{\gamma}$	lag R1	$\log \frac{-R_2^2}{\gamma}$	$\log \frac{R_3^3}{\gamma}$	$\log \frac{-R_3^4}{\gamma}$	$lag = \frac{R_1^2}{\gamma}$	$\log \frac{-R_3^6}{\gamma}$	$log - \frac{R_3^2}{\gamma}$	10 Ki	

и	lag Ri	$log \frac{R_4^4}{\gamma}$	$log \frac{R_4^2}{7}$	$\log \frac{R_3^3}{\gamma}$	$\log \frac{R_3^4}{\gamma}$	$\log \frac{R_k^2}{\gamma}$	$log \frac{R_0^4}{\gamma}$	$\log \frac{R_4^1}{\gamma}$	$\log \frac{R_1^1}{\gamma}$	
0.	-8		-æ	-60		-æ	8		-8	180°
5	6.6321	7.0156	7.3267	5.0755	5.6308	6.0490	4.0346	4.6210	2.9913	175
10	7.8244	8.2021	8.5059	6.5722	7.1225	7.5348	5.8306	6.4120	5.0867	170
15	8.5091	8.8766	9.1683	7.4386	7.9804	8.3828	6.8704	7.4482	6.2997	165
20	8.9811	9.3337	9.6080	8.0436	8.5734	8.9615	7.5968	8.1572	7.1466	160
25	9.3326	9.6658	9.9161	8.5027	9.0167	9.3859	8.1478	8.6923	7.7894	155
30	9.6045	9.9126	0.1318	8.8674	9.3616	9.7066	8.5849	9.1101	8.2999	150
35	9.8184	0.0951	0.2735	9.1651	9.6349	9.9497	8.9420	9.4429	8.7166	145
40	9.9867	0.2242	0.3491	9.4120	9.8526	0.1299	9.2383	9.7100	9.0622	140
45	0.1171	0.3055	0.3574	9.6185	0.0243	0.2551	9.4861	9.9229	9.3513	135
50	0.2142	0.3402	0.2843	9.7919	0.1561	0.3283	9.6941	0.0894	9.5940	180
55	0.2807	0.3243	0.0793	9.9369	0.2515	0.3478	9.8682	0.2138	9.7970	125
60	0.3173	0.2448	9.3549	0.0573	0.3122	0.3043	0.0126	0.2985	9.9655	120
65	0.3228	0.0634	9.8612	0.1556	0.3374	0.1706	0.1305	0.8433	0.1081	115
70	0.2934	9.5929	0.1651	0.2338	0.3236	9.8408	0.2244	0.8452	0.2125	110
75	0.2199	9.6217	0.2482	0.2933	0.2619	9.3202	0.2957	0.2954	0.2958	105
80	0.0800	0.0539	0.1957	0.3351	0.1304	0.0188	0.3459	0.1722	0.3543	100
85	9.8005	0.2098	9.9621	1	9.8558	0.2131_	0.3757	9.9026	0.3891	95
90	− ∞	0.2540 _m	- 00	0.3682	-∞	0.2662 _a	0.3856		0.4006	90
	$\log \frac{-R_4^5}{\gamma}$	$leg \frac{R_4^6}{\gamma}$	$\log \frac{-R_4^7}{\gamma}$	$\log \frac{R_3^3}{\gamma}$	$log \frac{-R_3^6}{\gamma}$	$log \frac{R_k^2}{\gamma}$	$log \frac{R_6^4}{\gamma}$	$\log \frac{-R_6^7}{\gamma}$	$log \frac{R_1^2}{\gamma}$	*

III. Observed Values of the Force Components

•:	A: \$	O.	5*	10°	15°	20°	750	80°	35°	40°
30°	X	14031	14578	15043	15560	15961	16260	16498	16649	16740
	Y	— 5129	- 4373	— 3611	— 2744	- 2031	1137	240	601	1415
	Z	46564	46155	45791	46061	46379	46809	47470	48302	49088
33*	X	15901	16477	17019	17444	17706	18132	18550	18838	19081
	Y	- 5423	— 4647	— 3903	— 2997	— 2268	1454	— 647	263	1052
	Z	45013	44406	44136	43993	43813	44205	44809	45410	46067
40°	X	17808	18443	18918	19402	19775	90140	90605	21000	21291
	Y	— 5643	— 4965	— 4298	- 3526	— 2633	— 1797	— 1008	153	632
	Z	42791	43400	41994	41813	41360	41305	41376	41966	42412
45°	X	20016	20571	21095	21633	22059	22468	22895	22372	23760
	Y	— 5942	5288	— 4645	— 3892	— 3061	— 2243	— 1434	598	173
	Z	40541	39948	39507	38982	38443	38080	38179	38655	39155
50°	X	21992	22686	23286	23828	24405	24955	25477	26057	26418
	Y	6133	— 5530	— 4921	— 4230	— 3473	— 2696	— 1931	1100	307
	2	37500	36889	36187	35322	34880	34759	34740	35245	35596
55°	X	24140	24830	25478	26128	26774	27349	27893	28242	28706
	Y	— 6423	- 5808	— 5184	— 4544	3858	— 3156	— 2440	— 1645	— 835
	Z	34277	33132	32203	31234	30755	30486	30557	30515	30688
60*	* * * * * * * * * * * * * * * * * * *	25943 6725 29764	26658 — 6114 27994	27328 — 5519 26845	27974 4899 25873	28635 — 4262 25538	29230 3589 25375	29808 — 2914 25355	30372 - 2177 25475	31030 1373 85756
65°	X	27382	28039	28686	29368	30037	30737	31418	32089	32795
	Y	- 7150	— 6576	— 5967	5337	— 4686	— 4028	- 3394	— 2676	— 1910
	Z	23747	21702	20263	19323	18812	18561	16076	18779	19222
70*	X	28462	29092	29821	30572	31303	31926	32538	33151	33832
	Y	— 7680	- 7119	6539	5869	— 5191	- 4487	— 3803	3143	- 2445
	Z	17423	15370	13860	12894	12445	12268	12249	12340	12570
75*	X	29403	30066	30653	31378	31914	32488	33050	33630	34178
	Y	— 8293	- 7757	- 7124	6479	- 5704	- 4933	4234	- 3574	— 2890
	Z	11270	5903	7265	6228	5619	5401	5426	5558	5689
80°	y z	29857 - 8920 5355	30421 8361 3084	30952 - 7717 1393	31505 - 6985 282	32021 6224 332	32516 - 5393 - 575	32901 4663 696	33380 4000 684	34232 - 3377 - 600
85*	X	29667	29940	30324	30697	31154	31543	31580	32256	32644
	Y	— 9497	— 8850	- 8136	- 7417	— 6622	- 5846	- 5068	- 4438	3767
	Z	91	— 2046	- 3843	- 5096	— 6047	- 6819	- 7156	- 7318	7335
90°	y z	28143 — 9800 — 4056	28426 9145 6438	28689 - 8425 - 8668	28989 — 7722 —10574	29307 — 6946 —12017	29659 — 6196 —12810	30051 5497 13283	30471 - 4826 -13521	30975 — 4215 —13701
95*	X	26407	#6583	26762	26986	27239	27479	27779	28114	#\$627
	Y	10066	— 9414	— 8730	8011	— 7299	— 6555	5905	- 5253	— 4637
	Z	7660	—10637	—13277	15337	—16777	—17998	18738	-19170	—19623
100*	X	24412	24539	24593	24739	24941	25309	25548	25931	96365
	Y	-10362	— 9683	9033	- 5318	— 7625	6991	- 6370	- 5749	5188
	Z	-11257	—14224	16799	-18789	—20499	21856	-22587	-23776	24550
108*	Y	22359	#3342	22302	22406	22591	22862	23271	23684	#4198
	Y	—10450	9908	9238	8601	- 7985	- 7435	- 6893	— 6346	— 5808
	Z	—14368	16954	19260	21109	-22671	-23990	-25427	27322	—#8875
110*	J	20900	90787	90737	20778	20910	21137	21409	21751	22129
	J	10634	-10213	- 9670	— 9142	- 8576	- 8057	- 7546	— 7067	- 6485
	Z	17039	-19433	-21150	— 22899	-24635	-26563	-28453	—30350	-31707
115*	J	19813	19495	19352	19313	19342	19474	19677	19818	20185
	J	-10535	10366	-10038	9629	— 9226	- 8752	— 8285	— 7607	— 7346
	Z	-19335	21260	-23000	24898	—26781	-25818	—30719	—32181	—33760

(Continuation of III)

*;	λ:	ø	5°	10,	15°	30°	23°	30°	85°	40°
115**,	**************************************	19813 -10535 -19335	19495 —10366 —21260	19352 -10038 -23000	19313 — 9629 —24 598	19348 — 9226 —26781	19474 - 8752 -28818	19677 — 8285 —30719	19818 7807 32181	20185 7346 33760
120°	r r z	19054 —10217 —21558	18574 —10326 —23258	18277 —10200 —25018	18084 —10011 —36777	: \$026 9720 2\$74\$	18009 — 9397 —30398	-3204g - 4021 -3204g	18303 - 8665 -33970	- \$222 - \$224 -354\$4
195*	x r z	18530 — 9818 —23494	18030 10044 25250	17531 	17187 10090 28569	17006 — 9984 —30136	16885 — 9814 —31912	166:26 96:17 33567	16859 9313 35107	16966 8945 36533
130°	X Z	18429 — 9492 —25829	17830 — 9829 —27515	17168 — 9965 —28792	16701 —1006\$ —30259	16341 10081 31745	16060 10026 33328	15881 9873 34730	15768 - 9713 -36348	15744 — 9485 —37823
1839	X Y Z	18546 — 9193 —28491	17777 - 9572 -29746	17052 — 9845 —31007	16446 — 9947 —32306	'5913 -10024 -33588	15482 -10054 -34914	15149 —10015 —36891	14917 — 9948 —37874	14750 — 9875 —39251
140°	77	18730 - 8814 -31275	17874 — 9239 —32263	17052 — 9582 —33429	16315 - 9777 -34323	15713 — 9896 —35723	15156 — 9965 —36920	14685 —10019 —38368	14341 —10029 —39616	14037
1450	X Y Z	18897 — 8203 —34172	17963 — 8748 —35029	17103 — 9158 —36030	16283 — 9496 —37209	15605 — 9689 — 38284	14908 — 9743 —39080	14456 — 9698 —40454	13947 — 9997 —41600	13486 10052 42883
150°	I I Z	18966 - 7375 -37016	18070 — 7970 —37994	17178 — 8533 —38979	16239 — 8989 —39803	15515 — 9322 —40654	14895 — 9562 —41699	14275 — 9720 —42745	13664 9838 43870	13103 — 9946 —44992

^{*}Repeated in order to simplify the interpolation

(Continuation of III)

¥;	1 :	45°	50°	55°	60°	65°	70°	75*	80°	85°
	x	16722	16646	16492	16367	16077	15840	15580	15379	15238
30	7	2152	2560	3405	3794	4053	4170	4175	4035	3611
	Z	49907	50872	51573	52326	52852	53465	53878	54550	54733
	x	19084	19036	18941	15814	18654	18486	18306	18187	18097
35°	ָ ז׳ ן	1810	2506	3141	3572	3863	4030	4058	3599	3490
	Z	46858	47521	45330	49372	50149	50829	51514	52043	52777
	* 7	21482	21577	21670	21590	21556	21518	2146\$	21485	81553
40°	,) [1427	2100	2726	3227	3575	3794	3902	3808	3526
	Z	43025	43643	44634	45359	46329	46858	48629	49396	50183
	x	24061	24291	24492	24643	24798	24866	24944	24956	24971
45°	.	966	1699	2301	2793	3476	3421	3550	3641	3465
	Z	39814	40526	41350	42102	43012	43767	44541	45188	45793
	7	26788	27079	27378	27628	27873	28070	28217	28244	28316
50°	; y	374	1087	1691	2255	2667	3909	3132	3260	3943
	Z	36094	36524	37297	33037	38895	39685	40544	41110	41857
	I	29400	29846	30184	30563	30938	31194	31441	3:696	31719
55*	; ; ;	- 154	434	984	1495	1965	2318	2613	:804	2887
	Z	31528	32010	32450	33200	34028	34944	35870	36522	37406
	X	31643	32219	32797	33290	33727	34081	34293	34407	34499
60°	.	— 663	- 112	363	823	1237	1637	1997	2255	2508
	Z	26167	26639	27360	28025	18910	29748	30569	31228	32003
	I	33379	34045	34600	35199	35714	36165	36492	36638	36604
65°	r	- 1204	- 545	- 151	256	623	1031	1434	1766	2005
	Z	19544	19990	203 51	20572	21675	22359	23191	23972	24650

#:	λ:	45°	50°	35°	60°	65°	70°	75*	10"	85°
63.	X	33379	34045	34600	35199	35714	36165	36492	36632	3664
	Y	— 1204	545	151	256	623	1031	1434	1760	2005
	Z	19544	19990	20381	20872	21675	22389	23191	23970	24650
70°	I	34378	35024	- 558	36080	3/5599	37195	57625	35004	37981
	I	— 1701	1060	- 558	210	192	595	1040	1414	1714
	Z	18813	13101	13339	13670	14110	14654	15336	14013	16531
75*	X	34652	35127	35606	360e6	36460	37030	37643	3\$165	38471
	Y	— 2170	1534	— 984	566	— 191	237	718	1110	1478
	Z	5810	5989	6281	6569	6813	7254	7717	8e3a	8888
80°	7 7 2	34099 — 2634 — 497	34403 — 198 — 40:	34771 — 1417 — 208	35288 - 924 - 154	- 35696 - 519	36260 — 105 158	36899 343 328	37541 819 655	3\$130 1201 1110
85*	7	33008	33394	33801	34284	34748	35277	35\$40	36497	37130
	7	— 3062	- 2393	— 1821	1345	- 910	- 461	- 31	446	885
	2	— 7248	- 7116	— 7041	6613	- 6757	- 6698	- 6697	— 6545	— 6015
90°	X	31442	31922	32380	33950	33474	34088	34549	35320	36000
	Y	- 3536	2868	— 2274	— 1804	1344	- 892	- 422	81	303
	Z	-13758	13770	—13667	— 13613	13535	-13375	13205	—13068	-12567
95*	Х Г Z	29098 — 4055 —19817	29658 — 3379 —19882	30351 — 2789 —19794	31132 2341 19889	31747 - 1849 -19671	32430 1397 19768	33236 - 948 -19716	33876 498 19698	34550 —19481
100°	I	26873	27492	28148	28857	29499	30283	31090	31978	32791
	I	— 4577	— 3986	- 3373	— 2580	- 2443	- 2011	1584	— 1173	- 763
	Z	—25126	—25381	-25601	—25732	-25731	-25845	25891	—25836	-25703
105*	X	24668	25217	25799	26473	27149	27870	2\$606	39448	30308
	T	— 5244	— 4582	— 3948	- 3470	- 3053	- 2700	2318	— 1844	- 1588
	Z	—29967	—30545	—30630	-31078	-31152	-31372	31412	—31635	-31759
110°	X	22527	23061	#3633	24251	24842	25530	26208	26970	27770
	T	— 5952	— 5381	- 4722	4131	- 3727	3435	— 3179	— 2851	- 2478
	Z	—32868	—33610	-34207	34809	-35217	35660	—35895	—36208	-36554
115°	X	20533	20954	#1430	21967	23518	23032	23566	24197	24920
	Y	— 6771	6194	5642	- 5139	4684	4407	4155	— 3963	- 3613
	Z	—35052	36126	37125	-37795	35153	38518	35796	—39240	-39908
190°	X	18754	19071	19431	19825	90355	20751	21257	21742	22275
	T	— 7692	— 7130	— 6596	6093	— 5694	5431	— 5267	— 5046	— 4769
	Z	—36719	—37972	—39140	40126	—41057	41738	—42129	—42578	—43297
125°	X	17138	17344	17626	17923	18241	18570	18900	19834	19773
	T	— 8545	— 8118	— 7664	7241	6893	— 6576	— 6354	— 6158	— 5930
	Z	—38076	—39614	—40906	42091	43121	—43904	—44611	—45017	—45986
190°	X	15775	15884	16054	16252	16448	16676	16938	17232	17544
	Y	— 9255	— 8926	— 8596	— 8281	— 8022	— 7776	— 7565	- 7315	— 7000
	Z	—39462	—40668	—42148	—43498	—44731	—45850	—46 89 1	-47850	—48811
185°	Z ;	14640 — 9751 —40714	14585 — 9580 —42128	14581 — 9348 —43597	14626 9141 45094	14728 - 5585 -46415	14525 — 8721 —47688	14963 — 8523 —48627	15066 — 8302 —49751	15327 — 5064 —51810
140*	Y Z	13758 10020 42482	13524 — 9916 —43802	13347 - 9786 -45144	13219 — 9604 —46356	13196 — 9404 —47441	13101 — 9219 —48725	13078 — 9044 —50083	- \$45; - \$45; -51613	12989 — 8441 —52948
145*	X	13045	12660	12310	11946	11587	11316	10863	10590	10342
	Y	10071	—10059	— 9968	— 9577	— 0838	- 9778	— 9724	- 9535	— 9857
	Z	44078	—45453	—46531	—47330	—48700	-49703	—51127	-5244	—50163
150°	I I Z	12524 10021 45931	11965 —10088 —46863	11399 10115 47849	10831 10159 49013		9693 	9007 	\$453 -16074 -53943	7991 — 9780 —53816

######################################	λ:	9V*	95°	100°	105°	110°	115°	120°	125°	130°
30*	X	15199	15215	15306	15384	15515	- 15679	15866	14060	16089
	Y	3037	2383	1699	1053	406	- 159	656	— 1142	— 1521
	Z	55143	33530	56037	56237	54e81	56413	55994	53638	55231
35°	X Y	18047 2912 53090	17985 2208 53380	1 6040 1473 53577	18185 741 54133	18380 27 54668	15610 — 623 55012	18851 1208 55016	19028 — 1765 54570	- 19371 - 2236 54313
40*)	21601	21634	21652	21691	- 191	21951	23142	22396	22585
)	2040	2242	1438	599	- 191	— 905	— 1600	— 2157	- 2733
	2	50137	50624	51122	51749	52271	52464	52300	51953	51098
45*	X	25063	25192	25287	#5373	25419	25458	25478	25488	- 25531
	1'	2989	2337	1473	591	281	— 1052	— 1782	- 2394	- 2946
	2	46487	47250	47807	48240	48659	48773	48432	47810	46683
50°	J J	28369 2940 42549	28403 2360 4 3 060	28537 1562 43870	28522 664 44073	28500 — 182 44309	28401 1025 44043	28334 1773 43701	- 2323 - 2348 42866	2816a 2794 41825
55* .	X Y Z	31816 2812 38404	31808 2429 38812	31 504 1713 39331	31758 878 39622	31700 55 39734		31243 1528 38743	30988 - 2109 37717	30700 — 2488 36598
60°	X Y Z	34362 2604 32512	34312 2460 33123	34228 1693 33394	34120 1172 33549	3392 8 395 33537	33648 - 342 33261	33284 — 1017 32819	32881 1608 32070	- 1887 31010
ಣ.	r	36450	36250	36044	35830	35541	35199	34847	34366	33878
	r	2251	2408	2015	1460	776	154	— 456	1000	— 1232
	z	25256	25754	26228	26616	26789	26647	26452	25720	25009
70°	7	37\$10	37517	37277	37090	36782	36445	36100	35658	- 35236
	7	1937	2185	2171	1794	2135	615	105	311	- 513
	2	17254	18059	18685	19992	19773	19997	19874	19604	19067
75*	. 	38361 - 1731 9574	38249 1982 10262	38094 2032 11039	37900 1964 11723	37651 1479 12243	37367 1003 12625	37 096 561 12956	36750 235 12954	36300 105 12795
80°	A	38347	38658	3\$745	38545	38312	35125	37887	37594	37296
	Y	1585	1801	2076	2065	1729	1376	998	667	564
	Z	1564	#367	3224	4147	4822	5361	5777	5956	6130
83°	Х	37657	38064	38358	38653	35535	38668	35626	35336	38068
	У	1293	1573	1809	1913	1510	1576	1371	1026	975
	2	— 5743	— 5129	— 4375	— 3556	— 2720	— 2028	— 1462	— 1060	— 776
90°	X	36590	37138	37.568	3;963	38144	35329	3 ⁸ 573	38680	38779
	Y	005	1297	1553	1680	1665	1561	1459	1306	1286
	Z	—12602	—12254	—11616	—10896	—10052	— 9443	— 9089	— 8816	— 860s
95*	X	35208	35711	36412	36975	37,520	37590	37820	37956	38023
	Y	410	779	1166	1356	1390	1430	1450	1348	1439
	Z	—19184	—18860	—18562	—17913	—17412	16750	—16519	—16318	—16151
ioo.	X	- 33558	34299	34598	35543	36085	3648a	36\$32	37031	37117
	T	- 312	99	428	744	1029	1146	1157	1185	1567
	Z	-25596	—25380	—25042	—24586	—24350	—23855	—23552	—23152	—23440
105*	<i>x</i> 1	31235 - 1255 -31610	31 555 - 554 -31349	32796 — 496 —31399		34160 248 —31308	34755 556 —31034	35240 820 —31187	35605 1036 —31146	35890 1483 —31048
110°	I	28571	29405	30065	31014	31643	-35330	32996	33488	33971
	I	— 2123	— 1798	— 1454	- 993	498	19	450	577	1404
	I	—36891	— 37258	—37529	-37979	38098	22330	—38752	—38998	—38684
115*	7 7 2	25598 — 3219 —40550	96411 - 2815 -41371	27172 — 2417 —42142	27932 — 1953 —42643	#8667 — 1377 —43698	-44358	30000 44 —44595	30544 643 —45466	31016 1218 -45593

(Continuation of III)

# :	A:	90°	95*	100°	10%	110	115*	190°	125*	130°
115°	T Z	2559\$ - 3219 -40550	26411 — 2815 —41371	97178 — 2417 —48148	27932 1953 42543	#8667 1377 (3698	99372 - 663 -44368	70000 44 		31016 1918 45503
190*	X Y Z	23852 — 4442 —4394°;	23482 — 4000 —44800	9418a — 3399 —45767	94859 — 8832 —46793	#5555 - #200 -47904	- 1448 1448 1498		#7339 #78 90530	27883 957 51031
125*	X 7 2	20245 — 5583 —46727	90779 — 5117 —47506	21382 - 4545 -4558	21967 - 3140 -49630	21555 3050 30601	23149 — 2161 —52017	23707 — 1848 —53938	24150 — 155 — 54243	24540 676 -34905
130°	X T Z	17906 — 6647 —49757	18258 — 6257 — 50608	18709 - 5601 -51867	19146 — 4845 —53001	19592 4016 54213	90076 — 3018 —55774	20322 — 1778 —36560	- 681 - 58108	21997 309 -39056
135*	T T	- 7661 - 7651 -52524	15776 7245 53962	16075 - 6659 -55298	16401 - 5872 -57457	16769 — 4861 —59580	17064 - 3793 -61773	17348 — 8489 —63533	17576 — 1209 —65152	17749 103 66643
140*	X T Z	13014 — 8291 —54530	13046 — 7917 —56295	13189 - 7311 -38170	13419 6545 60480	13660 5565 62641	13918 — 4411 —44568	14186 — 3145 —65788	14391 1776 67066	14538 - 998 - 67485
145°	X T 2	10904 — \$870 —55743	10204 — 8263 —57792	10235 — 7497 —59656	10061 — 6600 —61334	10266 — 5613 —62620	10320 4505 63560	10466 — 3384 —64352	10610 — 5223 —64777	10827 — 1074 —69016
150°	J J Z	7735 - 9240 -57514	7704 - \$457 -5903\$	7664 — 7467 —60170	7560 - 6421 -61474	7449 - 5330 -63174	736a — 4221 —63604	7143 — 3255 —44712	- 2318 -64167	7964 1418 64930

(Continuation of III)

e :	λ:	183*	140°	145*	150°	155*	160°	163,	170°	175°
20"	1	16547	16802	17006	17968	17496	17686	17753	17783	17533
	1	— 1759	— 1815	1589	— 1056	— 366	401	1993	2124	3013
	2	54597	53873	51369	51210	50114	49497	49577	49580	49550
33°	X	19593	19851	20156	30466	20690	20\$;\$	20137	20562	80707
	T	— 2406	— 2437	- 2237	1491	— 650	273	1339	2408	3494
	Z	53032	51652	50195	43736	47683	47222	47010	47167	47546
40*	J	22754	22928	23172	23378	23493	23516	23345	23143	22506
	J	- 2996	3052	- 2436	1566	— 601	445	1398	2705	3054
	Z	49974	41493	46731	45169	44198	434 59	43158	43213	4354
45°	7	25628	25734	25818	26864	25518	25618	25168	24814	2432
	7	— 3147	- 2932	— 2297	— 1356	300	205	1915	3047	414
	2	45483	43824	42298	41049	40071	39467	39000	35867	3595
50°	X T Z	21149 — 2925 40417	25106 — 2624 39094	28037 — 1879 37562	27556 593 36470	27629 161 35578	27234 1205 34788	2501 2305 34430	3365 34406	9563 436 346
35°	¥ 7 2	30339 — 2476 35120	30083 — 2016 33880	29824 — 1259 32575	99558 - 343 31514	29192 663 30650	28791 1677 30814	26209 2730 37061	27680 3796 38067	97111 4600 3972
ø	7	31909	31533	31144	30779	30438	30000	3156	99090	2853
	7	- 1812	1303	- 616	197	1152	2166	3156	4040	477
	2	29630	85417	87398	26461	25741	25315	35441	95873	2636
CT*	X Y Z	33484 — 1050 84147	33934 — 610 23279	32480 472 22351	35081 790 '81469	31614 1703 20757	31130 20118	3554 3554 80518	30391 4343 21034	2997 492 2193

ORIGINAL PAGE 19' OF POOR QUALITY

(Continuation of III)

u;	λ:	185*	140°	145*	150°	1550	100"	1650	1:00	1:50
	X Y	. 33454	32934	32480	33021	31614	31230	30796	30391	29978
cs.	2	- 1050 94147	23279	478 88351	795 21469	1703	20418	3554	4343	4987 41937
				(· · ·				[· -	1
70°	ř	34778 - 354	34300 30	33814 590	33352 1378	32872 2251	324E 310E	32109 3942	31734	31414
	Z	18663	17919	17232	16643	16013	16033	3948 16847	16695	17517
	X Y	35860	35494	35050	34643	34186	34009	33463	33143	jelle
75*	j' Z	261	12281	1894	1997	2791	3696 11968	11269	11918	\$257 12 69 4
		12530		11791	11555	11311] _	1
80°	X	36912	36481 1168	30070 1785	1(713	35349 3279	34971	35185 4718	13906	34570
~	Ż	751 6123	5945	5721	5670	5623	4005 5785	6039	5447	7858
ļ	7	37812	37464	17031	36679	30,211	35955	35756	11604	35461
85*	X Y	1158	1658	2265	2994	3717	4373	4972	5358	3596
1	Z	– 770	- 518	- 756	- 642	- 425	105	683	1519	, 2510
	Į.	38718	3\$190	37730	37283	36856	36403	26078	36078	phas
90"	r Z	- \$413	- \$247	- \$041	3456 - 7731	4069 — 7096	- 6306	— 5an6 — 5a60	- 4590	5791 — 3887
			_ `	Ī					464	36780
95*	X	3 5030 1927	37819 2479	37501 3116	37172 3743	36793 4355	36521 4916	36454 5394	36594 5796	3881
	2	-16033	-15828	-13523	-15095	-14288	-13591	-11973	-10799	— 969 1
	x	37124	37060	gigal	36714	36413	36152	36150	36010	36003
100,	ľ	2054	2722	3361	3058 21898	4579		-18371	5843 17234	-15949
		-23007	-22772	-23437						
105°	X Y	360:5	36065 2891	36023	35933 4221	35827 4823	35704	35 630 5749	35594 5903	35549 5987
100	Z	2152 -30816	-30539	- 3575 - 30019	- 29038	-27990	-26713	-25585	-24032	2000
j	,	4252	34453	34561	34601	34554	34539	34483	34421	34338
110	X	2175	2954	3714	4403	5041	5530	3822	5945	5952
j	Z	-58679	- 35404	37494	-36330	-34717	-13497	—32327	-31065	-29941
	X.	31433 2060	31740	31863	31993	32050	330fo	32123	33112 6068	32118
115*	r z	-4554B	2870 44956	3724 -44154	- 43124	5076 -41658	5512 -40196	-1818 -18167	-36722	-35169
			_		25566	·			secto	29724
120*	X Y	28240 1851	25647 275\$	25771 3635	4400	29070 5021	29137 5458	99314 5893	6177	- Tils
	Z	-51055	-51146	- 30230	-45918	-47672	-48096	- 44590	-43283	-41433
	x Y	24849	25057	25268	25452	25725	26001	26344	26616	26913
125°	Z	1598	2456	3439	4221 —53890	4561 52130	-51001	3824 -49691	-48±88	-676
	_	-54550	-54494	-53946	_					
130°	X y	21424 1248	21770	21597 3139	3976	22430 4618	22523 5164	23907 5714	23623 6100	\$4040 \$4040
	Z	-58695	-58521	-57624	-56510	-55287	-34032	-53661	-52525	-51253
	x	17950	1\$114	18499	18503	19215	19652	20137	and46	81144
135*)	116	1771	2737	3627	4348	9009	5597	5998	6183
	Z		65038	-6;;30	- 60614	- 59458	-57503	56506	-55431	-54399
140°	J.	14716	14941	13252	15601	16063	16630 4768	17278	17890 5778	18305
140.	2	364 - 67797	-67475	2270 - 66791	-65348	-63560	-60737	-5393 -40460	-59147	58130
	7	11050	11394	11577	19395	12514	13370	33047	14577	15061
145*	T Y	_ **	750	1718	2714	3568	مثغه	13947 4593	5267	5494
	2	-64572	-64768	-64746	-64424	-63943	-63770	63180	-66167	-61246
	I T	7558	7946	8376	8867	9481	senif.	10715	11401 4800	19151
150	Z	-4455E	-65536	-63597	-62761	-63107	9661 60935	4311 -64198		-6346s

•;	λ:	180°	160	190°	195°	\$00°	30%	210*	215*	220*
	J.	17314	16976	16555	26005	15660	14814	14143	13300	19471
30"	2	17314 3865 50096	4719	5399 51783	5965 53890	588a 54446	6751 54960	7000 56065	7176	7000
l		Section.	30931)solo				57093	58113
250	7	20457	20115 5296	19603 5968	19157	18619	18035	17384	16631	15873
~	2	4432 48136	49002	49594	6596 50782	70e3 31841	7410 13000	7619 34 07 7	7755 55377	7809 56711
1	· ,	22455	2307\$	81732		11001	20502		10617	
40*	J.			6129	21354 4699	7197	7631	20155 7900	Logs	3171
	2	4739 44066	5532 44668	45788	46746	47971	49323	30595	şanêş	53690
	7,	23860	23478	93177	23913	22708	22505	22366	22110	21698
45°	7	4912	5520	5994	6440 43067	6816	7940	7579	7830	7963
į		39366	49143	41051	45007	43386	44932	. 46160	47719	49307
50°	X,	25078	24713	24380	24198	24118	245)	24060	24007	23897
30	Z	35100	35938	5838 36706	8144 37710	6387 38789	40000	41417	7225 42845	7443
1	- 1		į	T .				1	1]
550	7	26539 5183	26093 5467	8578a 5676	25643 1842	25667	2516 8198	25907 6379	25994	96007 6796
_	2	31382	32055	32835	3842 33866	35066	36431	37636	38781	40132
1	7	28075	27676	87418	272\$1	27304	27462	27594	27 See	25041
60*	7	5187	\$413 25004	6611	1441	5638	5712	5815	5943	4114
1	Z	27156	25004	28953	29854	30964	32268	13308	34653	35824
	J.	29658	29381	29211	29066	29057	29115	29254	29526	29861
en.	r Z	5141 23027	5269 24178	5256 25349	5216 26297	5211 27129	1221	5246 29036	30000	31005
ļ	_								1	1
:0-	X)	31167	31008 5189	30888 5058	30844 4830	30851 4701	3638	30963	31157	31449
	Z	18614	19646	207 62	21928	23087	23925	4181	4638 25660	244
1	7	32727	32678	32635	32672	33605	32591	32590	32660	30813
75*	7	3281	5175	4897	4640	4389	4194	4840	3960	3051
	Z	14071	15250	16334	17423	18237	18972	19473	20003	20335
	7	34174	34114	34106	34069	33999	33995	33520	33824	33913
80°	7 2	5413 9056	5149	4844 11194	4,36 12115	12753	3915 13280	3674 13630	11852	14117
	_	70,0	.0.20	Ī	,,,,	/,,,				1
830	X y	35399 5460	36146	35284 4575	35170 4526	35036	34903	34670	34419	34308
	Z	3607	5174 4647	3452	6146	6592	3720 6576	3338 7046	7239	7297
	7	36414	36260	-4	35554	***	35376	35091	34790	34490
90°	7,	3659	5333	36053 5014	4618	35657 4168	3014	3117	2980	411
	Z	- 2013	- 1336	- 423	157	522	627	1005	1217	1359
	I	36795	36690	36457	36097	35786	35450	35095	34680	34264
25"	T	- 5486	- 1456	5228	- 6821	4358	- 560s	3194	_ 4485	2900
	_	- oten	. — 44	- 7604	- 0021	- 6149	1	- 5057	,	- 4497
· 100°	3 3	36198	36094	35963	35773	35414 4663	35190	34798 3760	34330	34039
.100	Z		-14023	5354 -13394	5070 -12676	-12163	-11555	-11378	3427 -10767	3327 —10456
	-		ļ	1	34860	34628	****		****	33317
105°	7	3545 6 5 56 0	35291 5716	35095 5475	5231	4949	34340	33990 4394	33633	3943
	Z	—sigla	-20637	-19420	-18743	-15339	-17910	-17457	-17015	-10545
	X Y	34220	34060	33907	33750	33521	33254	32992	30581	39375
110°	y	5931	3 Sea	5603	5406	5159	4950	4735	4574	4454
	1 1	-25714	-27319	-26394	-25446	-24645	-84199	-13410	83107	1
115*	X Y	32180	32210	32170	39495	31468	3!777	31539	31276	Met.
+13	2	-34104	-33:33	5750 —323 9 6	-3173B	-31126	-30700	-jaqs	-09524	-steen

#;	λ:	180*	185°	190*	195*	300°	307,	210	215*	230*
	<u> </u>									
	$\{x\}$	32180	32210	32170	230 0 8	31968	31777	31539	31276	30056
115*	ÿ	6081	5921	5750	5583	5397	5204	5042	4916	4834
	Z	-34104	-33133	32396	-31738	-31126	-30700	—3 0098	-29524	28905
	x	20914	30068	30186	30190	30137	3006\$	29916	29729	29556
120°	ŝ	6249	6099	5913	5732	5585	5410	5293	5197	5141
120.	Z	-39947	-38918	-35099	-37389	-36744	—36087	-35361	-34933	-34309
	•	-37747	-309.0	30099	3,3-7					
	X	27275	27645	27506	28054	2\$127	28134	28101	28032	27931
125*	Î	6330	6196	6031	5861	5705	5571	5479	5415	5418
120	Ź	-45395	-44413	-43255	-42225	-41370	40582	—3989 1	—39296	-38565
	-	43373	1	1 13-33				_	1	
	X	24561	25061	25446	25762	25991	26100	26169	26188	26209
130°	3	6314	6217	6070	5948	5841	5723	5642	5598	5603
	2	-50131	-49180	-45181	-47212	—46297	-45002	-44261	-43417	-42834
	_				23176	23594	23764	23769	24080	24155
	X	21733	22255	22727		5897	5793	5705	5768	5836
135	J' Z	6198	6116	6054	5958 50624	-49863	-45275	-47623	-47247	-46737
	2	—53460	—52454	-51413	30024	-49003	400	1,55	1	1
	x	19071	19604	20144	20633	21027	21375	21646	21874	23069
1404	î	6025	5993	5935	5865	5831	5506	5841	5916	6037
140	Z	-57005	-55718	-54803	-53901	-53115	- 521 S 2	51563	-51054	—50674
	-	3,003	,,,,		1	1	1	1		
	1 7	15995	16666	17285	17857	18325	18731	19085	19406	19716
145°	T	5611	5657	5700	5716	5731	5774	5847	5958	6141
	Z	-60101	-59417	—58795	-58166	-57494	—56923	-56627	56283	—55725
						15578	16200	16558	16964	17356
	X	12950	13748	14415	15019	5619	5779	5907	6107	6403
150*	J'	5320	5425	5476	5516		-63520	-63033	-62\$77	-62454
	Z	—63853	-64020	-63576	-63542	—63273	- 23420	-3-33	1	1

W;	λ: ¦	225*	230*	235°	240°	245*	230	255*	260°	265*
	.7	11592	10693	9783	8909	8032	7248	6539	5826	5177
30°) i	7150	6944	6598	6104	5350	4441	3356	2121	589
	Z	59390	60416	61662	63181	63538	63847	63687	62857	61616
	<i>x</i>	15120	14255	13290	12494	11569	10831	10175	9359	8692
35.	1.	7771	7527	7126	6643	5029	5166	4180	2906	1377
	Z	57885	58791	59162	60488	61164	62906	64016	63672	62615
	X	18299	17540	16556	16180	15523	14777	14022	13359	12802
40°	. Y	8071	7883	7575	7176	6632	5871	4920	3768	2257
	Z	54950	55848	57158	58197	59853	61114	61502	61927	62500
	x	21279	20753	20192	19605	19171	18762	19000	17508	1678
45"	J.	7991	7883	7670	7330	6915	6326	5475	4392	3036
	Z	50853	52300	53686	55488	57551	59177	60566	61066	61171
	X	23749	23509	23228	22879	22646	22340	21994	21339	20530
50°	J .	7549	7578	7473	7250	6924	6406	5702	4698	3557
- 1	Z	45898	47448	49118	50698	52364	54093	55674	56675	57411
	x	26022	36059	26043	25886	25752	25615	25466	25081	24660
55.	J. [6932	7064	7125	7017	6780	6387	5763	4875	3796
	Z	41205	42654	44304	45835	47390	45961	50696	51810	5250
	7	28362	28529	28662	28704	28593	28462	28379	28285	28109
60.	3"	€ 88	6456	6547	6563	6487	6154	5619	4860	390
	Z	37183	38465	39612	40909	42364	43581	44591	46239	47232
	X T	30238	30596	30002	31089	31193	31158	31056	31009	31018
65"	r	5587	5744	5848	5931	5922	5728	5271	4680	4031
	Z	32122	33383	34522	35773	36956	33250	39838	40000	40830

e ;	λ:	225*	230*	235*	240*	245°	250*	235*	260*	265*
	X	30238	30396	30402	31089	31193	31158	31056	31009	31018
es.) Z	5587	5744	5848	5931	5922	5728	5271	4680	4038
		32122	33383	34522	35773	36956	38250	39535	40000	12204
	I I	31852	32167	32600	32962	33233	33390	33379	33269	33105
70 °	Z	4855 27228	4980 27965	5124 28880	5270 29793	5343	5249 31952	4989 33166	4560	4095
			;	i	-7/73	30934	3.7	33.00	33993	34747
73*	J.	33077	33491	34019	34502	34885	35160	35220	35158	34950
13	Z	4022 21159	4172 21700	4378 22488	4542 23253	4696 24043	4754 25039	4689 25893	4545	4188 28167
			•	١.					ł	
80°	Y Y	34035 3357	34407 3465	34989 3657	35521 3943	36055	36538 4379	36681 4450	36529 4464	36233
	Z	14400	14738	15419	16037	16927	17684	18490	19361	20308
	1	34380	34830	****		-4	26:26	-4	26000	
\$5 *),	2887	3026	35345 3092	35751 3450	36202 3794	36576 4060	36540 4379	36294 4564	35907 4748
İ	Z	7596	7908	8409	\$976	9583	10437	11368	12239	13183
	X	34490	34780	35050	35306	35436	35468	35424	35270	35036
90°	J'	2730	2890	3050	3193	3620	4062	4434	4631	5131 6083
	Z	1561	1829	1998	2479	3012	3752	4384	5162	6083
	1	34280	34370	34448	34525	34508	34465	34413	34268	34040
3 5°	ľ	2880	2990	3014	3061	3530	4293	4755	5203	5615
	Z	- 4122	— 388o	- 3584	- 3185	- 2783	- 2175	- 1517	- 756	— 20t
	I 'i	33866	33750	33692	33657	33629	33390	33479	33399	33041
100*	Z	3340 —10080	3398	3561	3884 - 8815	4278	4721	5203	5689	6104
			— 9727	— 9343	- 0015	— 834 S	— 7831	— 709 8	- 6330	- 6025
1051	X Y	33110	32942	32864	32755	32654	32568	32417	32210	31844
105°	Z	3919 16082	3967 -15708	4113 -15152	4409 -14485	4764 -13782	5197 —13047	5619 —12356	60\$6 11394	6498 10874
	i		1	İ	, ,4403	3/	3 7	330		,4
110	I J	32095	31887	31724	31 559	31411	31251	31066	30795	30441
110	Z	4435 22129	4482	4628 21153	4857 —20472	5209 19639	5604 18702	6001 17599	6434 16261	6842 14994
	,		1					_		
115*	X Y	30754 4825	30512 4878	30332 5058	30179 5303	29986 5576	29815 5931	29580 6332	29290 6762	28952 7219
	Z	-28277	-27660	-27126	-26324	-25292	-24037	- 22657	-21244	-19751
	x	29351	29175	29018	28890	28744	28595	28400	28135	27849
120°	7	5158	5232	5422	5615	5935	6296	6750	7276	7723
	Z	—33683	-32918	-32122	-31285	-30393	-29110	-27629	-26090	-24250
•	X Y	27833	27712	27614	27538	27487	27440	27384	27317	27211
125°		3444	5537	5719	5979	6304	6757	7337	7876	8406
	Z	-38094	-37502	-36862	-36177	—35347	-34151	- 32708	31026	-29235
	x	26190	26176	26149	26174	26227	26271	26374	26459	26529
130	Z	5686 -42068	5843	6053	6380	6824	7351	7963	8597	9265
	•	-42000	-41617	-41016	-4044 7	39678	-38720	—37460	—36039	-34291
135*	J T	24230	24314	24425	24572	24761	24960	25179	25397	2556
133	Z	5951 46016	6152 -45495	6431 44890	6815 44316	7319 -43544	7066 42594	8670 41935	9369 40692	996 8 —39067
	l			, , ,		79377				
140*	<i>X</i>	22251	22447	22675	22941	23170	23486 8626	23832	2415\$ 10089	24500
•••	Z	6205 —50107	6465 49906	6825 -49572	7321 49300	7963 -48502	-47656	9348 46760	-45345	10738 45716
	_									
145*	J T	20023 6429	20351 6809	20673 7287	21042 7882	21430 8571	31802 9344	22218 10086	22648 10819	23106 11478
	Z	-55508	-55042	-34943	-34472	—53937	-53276	-32326	-51010	-490 Š 1
	ابرا	17748	18148	18558	19002	19379	19991	30476	20949	21418
150*	X Y	6784	7271	7852	\$460	9078	9537	10584	11296	11938
	Z	-62145	-62322	-61287	60636	-59332	—58806	—57630	56070	-54560

•;	λ:	270	275*	250	255*	290"	295*	300"	305°	310
	T	4384	3894	4009	4487	4517	5166	5639	6146	6343
30*	r	- 636	- 1573	- 2603	- 3923	— 5257	6304	- 7218	— 7914	- 8325
	Z	57355	55427	54636	62855	59208	59241	5 89 43	57810	56096
	Ĭ.	8000	7502	7320	7495	7755	\$020 6172	8153 — 7090	\$50\$	# \$30s
35.	Σ Z	60766	1390 59287	2668 59246	— 3902 60510	- 5133 61614	61030	59183	7796 57405	55415
	x	12227	1167\$	11308	11129	11096	11125	11209	11383	11575
40"	Î l	748	- 714	- 2006	- 3545	- 4825	- 5915	- 678ó	— 7534	- 8105
	Z	63022	62620	63045	62012	61296	60138	58287	56494	54636
	X Y	16210	15800	15441	15064	14803	14594	14397	14204	14235
45*	Z	1513	69 60948	- 1351 60661	— 2792 59957	4245 59547	— 5456 58146	- 6385 56474	- 7056 54413	- 7305 52333
į	•	60758			27731	37341		3-4,4		
	Ţ.	20394	19988	19690	19101	18497	17878	17322	16898	16640
50°	Z	2084	698	- 630	- 1951	— 3362	- 4557	- 5517	- 6346 · 51688	- 6995
	_	57624	58084	58595	57943	56736	55140	53404	-	50045
55 °	X S	24371	24164	23780 60	23148 - 1213	22363 — 2482	21496 - 3629	20635 — 463δ	19939 5561	19378 - 6471
 .	z	2518 53145	1323 \$4355	55128	54530	53875	52544	50851	48964	47174
	x	28069	28155	27392	26877	26550	25003	24036	23190	22475
60°	ĵ.	2917	2315	677	- 391	- 1624	- 2716	- 3771	- 4789	- 5757
	Z	48390	50272	50117	50377	50917	49182	47750	46474	44949
	I	30991	30865	30352	29628	28742	27847	26964	26107	25340
65°	l.	3239	2294	1307	345	669	- 1719	- 2715	- 3785	- 4849
	Z	42239	43124	43711	44067	44131	43794	43370	42770	41558
	X	32964	32690	32146	31483	30700	29991	29129	28375	27558
700),	3503	2688	1872	1026	196	741	- 1714	- 2666	— 38o8
	Z	35548	36428	37042	37209	37352	37603	37572	37480	36919
-,, i	X.	34596	34086	33411	32638	31717	30020	30342	29948	29336
75*	j' Z	3759 29115	3132 29931	2434 30429	1653 31103	923 30910	1 50 31191	706 31612	- 1762 31984	- 2911 31891
						32281	31418	30780	30487	
SO"	X	35557 4156	35005	34170 2959	33241 2305	1579	56\$	134	- 905	30320 - 2209
•	Z	21228	22497	23281	23982	24532	25001	25448	25973	26348
ļ	Ā	35494	34887	34205	33355	32377	31467	30794	30498	30411
85*	3	4673	4294	3635	2889	2169	1447	627	- 355	- 1727
	Z	14162	15041	16041	17059	17958	18740	19433	20158	20675
202	X	34677	34272	33766	32906	32001	31115	30482	30230	29971
90*	Z	5306	5040	4395	3575	2762	12387	13315	14097	- 1305
	1	7297	6423	9549	10595	11533	1	1	1	14794
95*	X	33709	33340	32810	32041	31219	30447	29901	29497	29182
- S-	Z	5893 1195	5679 22 66	5079 3489	4237 4638	3373 58 20	2503 6866	7836	439 8644	9300
	x	32702	32217	31593	30868	30192	29551	29035	28590	28352
100°	ŝ	6386	6262	5684	4871	3957	2975	1945	749	- 701
	Z	— 4337	- 3064	- 1776	— 433	886	2077	3187	3977	4493
	.F T	31444	30867	30222	29579	29012	28540 .	28120	27808	27498
105°	Ţ	6741	6674	6195	5411	4509	3471	2378	1117	- 384
Ì	Z	— 9171	— 7923	- 6652	- 5302	- 3865	- 2347	- 1150	- 364	200
110	X Y	29921	29404	28927	28430	28049	27631	27395	. 27078	26730
-110	Z	7091 —13584	7104 13119	6732 -10810	- 5974 - 9159	5047 77 26	4006 — 6446	- 5228	1514 - 4395	— 363 8
	r	28596	28186	27851	27703	27348	27091	26799	26512	26097
115*	X	7529	7553	7332	6692	5771	4549	3290	1900	379
i	Z	-18121	-16398	-14674	-13139	-11463	-10044	— 3 773	- 7706	- 7034

(Continuation of III)

* ;	1 :	270	275*	280*	253°	330,	295-	300°	305°	310
	7	atras	28186	27851	27703	27348	27091	26799	26512	26097
115°	Î	28596		7332	6692	5771	4549	3290	1900	379
115	Z	7529 —18121	7553 —1639 8	-14674	-13139	-11463	-10044	— \$773	- 7706	— 7034
	I	27553	27399	27446	27459	27080	26770	26497	26199	25825
120	Î	\$031	\$203	8043	7443	6501	5252	3551	2407	872
120	ż	-22565	-20779	-18930	-17207	-15332	-13552	—12063	—10 5 53	—10005
	I	27106	27344	27601	27489	27191	26912	36511	26230	25864
125*	7	\$807	9043	8897	\$247	7286	6032	4556	2989	1356
	Z	-27283	-25555	-23765	-21627	-19468	-17514	—15792	-14584	-13687
	7	26688	27040	27102	27122	27050	26962	26697	26440	26125
130	· 7	9713	9913	9597	8917	7970	6772	5310	3716	1980
	Z	-32384	-30615	-28418	—25933	-23454	-21396	-19476	-18179	-17341
	7	25807	26113	26525	- 27106	27156	27074	26939	26712	26424
135*	· 7	10392	10515	10288	9732	\$649	7525	6096	4454	2684
	Z	-37031	-34929	32960	-31028	-28500	-26051	24009	-22456	-213lo
	7	24851	25313	25913	26533	27284	27256	27071	26904	26711
140*	· 7	11107	11200	10999	10407	9528	8333	6917	5295	3580
	Z	-41915	-41141	-37539	-35406	-33481	-30922	-25651	-27103	-26036
	x	23585	24244	24832	25756	26607	26985	26920	26822	266k2
145°	7	11862	11929	11618	11110	10213	9012	7702	6159	4505
	Z	-47140	-44969	-42223	—40259	-38050	-35724	-33465	-31658	-30372
	x	21945	22583	23388	24229	24963	25648	25822	25891	25874
150°	Î	12349	12475	12245	11687	10751	9293	£224	6921	5343
-50	ż	-52203	-49738	-47627	-45125	-42528	-40141	-35040	-36395	-35274

;	λ:	315	320*	325*	330°	?35*	340*	345°	350°	855*
30°	X	7219	7858	8565	9401	10256	11095	11931	12729	13442
	T	— 8603	8709	8716	8539	— 8231	7865	7287	- 6626	5901
	Z	54547	53368	52100	51254	50544	49884	49023	48187	47424
35*	X	9355	0883	10541	11229	11955	127 8 4	13655	14497	15225
	T	— 8648	- 8795	8845	- 8773	- 8554	— 8092	- 7543	- 6889	6151
	Z	53754	52413	51354	50360	49206	48084	47307	46394	45525
40°	X	11854	12180	12600	13002	13791	14539	15375	16285	17028
	Y	— 8455	- 8635	8714	— 8665	- 8462	8114	- 7599	— 6935	6254
	Z	53101	51222	49340	47611	46550	45745	44677	43809	43260
45*	X	14094	14289	14573	15062	15761	16583	17404	18307	19134
	T	— 7947	— 8250	— 8459	8510	8380	— 8088	— 7617	— 7003	- 6476
	Z	50395	48607	46803	45463	441 8 0	43465	42343	41559	40761
50°	X	16481	16554	16799	17281	17945	18703	19613	20473	21249
	Y	- 7482	— 7848	— 8145	— 8366	8368	— 8145	— 7726	— 7284	— 6768
	Z	47774	45726	44162	43124	42142	41066	39982	39068	38240
55°	I	19061	18972	19101	19454	19985	20864	21740	22570	23321
	I	— 7127	— 7633	— 8108	— 8425	— 8456	— 8289	— 7898	7552	7041
	Z	45175	43360	41923	40581	39013	38240	37257	36417	35334
60°	X	21941	21561	21520	21642	22157	22848	23619	24375	25164
	Y	— 6729	— 7508	- 8118	— 8525	— 8691	— 8505	— 8194	— 7826	— 7295
	Z	43163	41471	39571	37833	36649	35517	34096	32767	31745
દાં'	J J	24774 — 6039 40467	24158 — 7171 38559	23898 — 8089 36825	23819 — 8764 35147	24072 9000 33493	24651 — 8875 31972	25348 — 8547 29708	26029 — \$165 27599	26685 7652 25887

¥;	λ:	815°	320*	825°	830*	335*	340*	345*	350°	855*
63.	X	24774	24158	23898	23819	24072	24651	25348	26089	26685
	Y	— 6039	— 7171	— 8089	— 8764	— 9000	8875	— 8547	— 8165	7652
	Z	40467	38559	36825	35147	33493	31972	29708	27599	25887
70°	7	26865	26317	25008	25703	25763	26154	26659	27224	27830
	7	— 5182	— 6594	— 7550	— 8901	— 9419	— 9305	— 9006	— 8601	— 8156
	2	36046	34725	33243	31382	29160	26508	24533	23039	19561
75°	X	28729	28170	27674	27309	27143	27313	27643	28140	28729
	Y	— 4379	— 5988	— 7606	— 8891	— 9746	— 9896	— 9563	— 9180	8783
	Z	31254	29997	28368	26317	240 <u>5</u> 7	21693	19116	16464	13796
80°	X Y Z	29915 — 3761 25903	29485 — 5535 24951	28925 — 7373 23532	28447 — 8879 21651	28090 	28177 —10301 16973	28345 —10130 14036	28853 — 9888 11101	- 9479 - \$197
85.	X	30200	29945	29495	29024	28571	28436	28443	28755	29323
	Y	3307	— 5235	— 7154	— 8874	10211	—10640	10726	—10466	-10059
	Z	20621	19931	18599	16823	14417	11764	8717	5763	2803
90°	X	29646	29267	28782	28281	27848	27609	27530	27659	27887
	Y	— 3029	— 4580	— 6821	— \$601	— 9971	—10672	11011	—10821	—10334
	Z	14750	14047	13016	11446	9138	6698	3860	951	— 1558
95*	X Y Z	28863 — 2821 9423	28421 — 4654 8805	27916 — 6574 7774	27360 — \$261 6467	26837 — 9592 4514	26628 —10044 2323	26143 	26090 —11119 — 2731	26208 -10678 - 5118
100°	Х У 2	27986 — 2531 4576	275 70 - 4405 4253	26941 — 6220 3477	26297 - 7873 2201	25710 9062 634	25181 10071 1303	24698 	24406 11191 6035	24367 —10917 — 8547
105*	X Y Z	27057 — 2248 355	26488 - 4077 195	25867 — 5853 — 463	25241 - 7317 - 1377	24612 - 8475 - 2736	23991 — 9491 — 4549	23350 —10396 — 6769	22797 	22495 10907 11658
110*	X	26235	25663	25087	24432	23764	23091	22406	21725	21135
	Y	— 1850	- 3645	— 5348	6760	— 7890	- 8910	— 9836	-10479	—10768
	Z	— 3424	- 3489	— 3910	4813	— 6050	- 7567	— 9804	-12114	—14441
115*	X	25642	25087	24482	23807	23087	22387	21624	20927	20300
	Y	1381	- 3117	4759	— 6194	- 7353	— 8311	— 9253	— 9922	10381
	Z	6681	- 6695	7034	— 7874	- 9180	—10841	—12859	—14897	17233
120°	X	25337	24699	24097	23361	22618	21832	21071	20324	19601
	Y	- 811	— 2996	4141	- 5501	- 6736	- 7731	— 8656	- 9370	— 9901
	Z	- 9562	— 9592	10127	- 11064	-12329	-13779	—15608	-17590	—19600
125°	X	25359	24738	24024	23228	22393	21560	20772	10081	19225
	Y	- 258	- 2019	- 3519	- 4902	6140	— 7200	- 8113	- 8868	— 9446
	Z	-13202	-13197	-13784	-14453	15514	—16922	-18602	-20266	—21861
130*	X	25637	25024	24310	23510	22676	21781	20896	20006	19167
	Y	410	— 1348	- 2577	- 4301	- 5570	6742	— 7674	- 8458	— 9060
	Z	—16864	—16797	-17194	-18010	-18909	20196	—21497	-22955	—24388
135*	X	26019	25453	24753	23953	23099	22174	21243	20302	19375
	Y	1045	592	- 2195	- 3651	4980	- 6184	— 7232	8052	- 8728
	Z	—20987	20888	-21199	-21817	22686	-23672	—24849	26028	-27199
140°	7 2	26337 1826 —25316	25859 226 —25119	25211 1409 25250	24443 - 2857 -25783	23564 — 4226 —26588	22632 - 5538 -27410	21642 — 6617 —28146	20612 - 7504 -29257	19625 — 8229 —30297
145*	X	26399	25996	25395	24649	23865	22913	21908	30867	19861
	T	2736	1135	458	1943	- 3354	- 4648	— 5788	— 6746	- 7558
	Z	—29736	—29549	29600	30049	-30571	-31215	—31965	—32677	-33356
150°	Y Z	25734 3708 -34399	25419 2038 —34086	24966 479 —34160	24340 - 992 -34363	23590 — 2285 —34592	22736 — 3601 —34956	21841 - 4742 -35491	=0897 5697 35930	19915 — 6599 —36338

IVa. Coefficients of the Trigonometric Series for the North Component \boldsymbol{X}

N	k.	k ₁	K ₁	k ₂	K ₂	k _s	K,	k4	R,
30°	12930	-1590	5180	2820	1110	- 50	- 70		-
35	15690	—2290	4970	2470	1240	—100	1	-180	— 10
40	18530	—2650	4820	1590	1250	120	140	- 90	- 50
45	21300	-2640	4720	590	1280	360	230	- 50	— 60
50	23930	-2360	4570	- 440	1330		440	20	- 70
55	26520	-2010	4410	-1420		510	690	110	-100
60	28830	-1710	3970	-2210	1320	560	790	270	10
65	30770	-1550	3500		1350	360	830	840	70
70	32290	-1620	3030	-2660	1320	190	770	850	40
. 75	33400	—1960		-2820	1190	140	· 710	830	60
80	34070	—2470	2470	-2650	960	70	820	850	70
85	34160		1930	—2400	640	440	620 ·	400	90
90		-3240	1630	—1980	150	460	460	870	110
	33700	-4220	1380	—1720	— 2 80	310	340	200	160
95	32730	-5110	1100	—1500	— 610	140	170	280	· 160
100	31540	-5830	660	-1380	— 890	110	40	120	- 160
105	30110	63×0	70 -	-1140	-1320	50 -	- 30	70	40
110	28600	—6430	— 570	— 780	-1840	- 40	— 10	-190	— 20
115	26850	-5900	—1530	— 530	-1350	-140	-130	—260	
120	25160	5080	-2600	- 420	-1290	-250	—230	-270	- 10
125	23580	—3970	—3760	- 470	-1260	-360	-320	, 1	60
130	22090	-2620	-4800	- 440	-1220	-420		-210	170
135	20600	-1070	-5730	- 340	-1260	-500	-460	—170	180
140	19140	490	-6580	- 130	-1270	?	-580	-140	200
145	17480	2210	-7350		· - N	—630	-610	—170	200
150	15720	3760	—7710		-1130	—740	600	—230	160
	1	5.00	10	420	— 800	72 0	600	—230	140

IVb. Coefficients of the Trigonometric Series for the East Component \mathbf{Y}

*	' l _o	l ₁	L_1	l ₂	L ₂	ls .	L _a	<i>l</i> ₄	L_4
30°	40	-4350	1190	-1070	4910	- 90	- 510	300	-210
35	GO	-4620	770	—1090	5190	— 180	630	440	-210
40	110	-4780	350	—1230	5220	— 220	650	590	—300
45	150	4850	20	-1420	4960	— 300	— 550	700	-380
50	150	-4920	— 230	-1580	4500	— 400	360	780	—380
55	120	-5050	410	-1710	3980	— 480	— 150	850	300
60	100	-5180	- 520	-1850	3390	— 560	90	870	—150
€5	50	-5300	— 570	1980	2740	710	310	780	20
70	0	-5400	— 630	-2160	2110	— 930	500	700	170
75	— 50	5530	670	—2320	1500	—1190	680	620	810
80	-110	-5670	 750	2500	1000	-1420	820	570	450
85	-150	-5850	870	-2600	580	— 1600	1030	520	530
90	—13 0	-6010	-1130	2650	240	-1700	1170	510	570
95	— 110	—6170	1500	-2650	- 10	—1750	1270	490	570
100	80	6370	-2040	-2610	- 130	-1720	1320	390	530
105	60	6520	-2650	-2460	- 260	-1670	1340	270	440
110	- 80	-6670	-3300	-2310	— 450	—1630	1320	170	380
115	-150	-6770	-4030	-2110	690	—1580	1310	130	250
120	-210	-6820	-4810	-1910	- 940	-1530	1330	160	200
125	-250	-6780	5650	-1710	-1170	-1460	1390	190	190
130	-280	-6690	-6490	-1540	-1340	-1390	1510	210	220
135	-290	-6520	-7270	-1400	-1450	-1350	1600	190	210
140	-200	6230	—7940	-1360	-1530	<u> </u>	1630	190	160
145	- 60	-5830	-8520	-1390	1620	-1190	1600	170	200
150	140	-5390	-8980	-1360	-1700	— 950	1470	150	260

ORIGINAL PAGE IN

 $\ensuremath{\mathsf{IVc}}$. Coefficients of the Trigonometric Series for the Vertical Component Z

t i	m _o	mı ₁	¥ ₁	m ₂	M,	Mg	M ₃	m4	14
30°	53950	-2530	— 325 0	—4910	220	900	- 72 0	— 990	-110
35	52470	-2380	- 4540	—5770	- 500	850	— 2 80	— 510	320
40	50010	-1750	— 5800	—682 0	-1120	970	170	— 60	750
45	46810	— 830	6590	—7800	-1290	1130	500	160	59 0
50	42940	170	6950	—721 0	—1670	1280	— 2 0	400	700
55	38850	740	— 7510	6840	-2110	520	60	540	920
60	34270	1160	- 8430	6320	—258 0	0	- 640	250	810
65	28750	800	— 945 0	-5350	-3190	— 280	-1270	— 250	540
70	22920	240	10230	-4200	-8600	- 460	—1580	— 720	400
75	16760	— 160	-10810	-3200	-4060	— 860	—1690	— 850	270
80	10430	- 10	-11040	-2040	-4360	—1220	—1850	-1040	170
85	4050	340	-11280	-1110	-4670	-1440	-1980	— 99 0	10
90	— 2250	860	-11660	- 340	-4530	-1460	-2260	— 710	— 70
95	- 8220	1820	12280	170	—4280	1250	-2480	— 490	-140
100	-13770	3180	-12510	700	-4200	1090	-2440	— 8 50	150
105	—19050	5060	-13450	1220	-3780	-1000	-2860	- 60	20
110	-24030	7880	-13650	1400	-3200	—1230	-2220	140	20
115	-28430	9560	— 13590	1390	-2840	-1630	-2170	450	60
120	-32450	11520	-13180	1310	-2450	-1690	-2240	880	290
125	-35980	12820	-12130	1360	-2100	-1560	-2240	150	510
130	-39380	13870	-11150	1590	-1680	-1650	—2030	— 18 0	410
135	-43030	14800	-10680	2100	- 350	-2360	-2200	240	90
140	-46370	15220	- 9140	2260	60	-2360	-2370	70	280
145	-49030	1,830	6330	2020	— 950	-2000	-1780	— 320	200
150	-52210	14780	- 3710	2120	-2160	-1920	— 700	- 390	-170

Va. Coefficients of the Trigonometric Series for a X sin v.

f:	ak, sin v	ak, sin v	a K1 sin v	ak2 sin v	aK_2 sin v	ak, sin v	a K, sin v	ak, sin v	a K4, sin v
f_1+f_{25}	14397.0	1090.5	-1271.4	1628.2	155.8	-386.9	-336.7	-180.s	65.8
$f_2 + f_{24}$	19111.2	- 46.1	-1371.8	1509.8	63.4	-484.0	265.0	-184.4	63.4
$f_3 + f_{23}$	24309.0	-1393.9	-1135.8	942.1	- 12.9	—329. 1	-245.2	-142.0	90.s
f_4+f_{22}	29726.9	-2632.1	- 716.e	177.4	14.2	- 99.8	— 99.8	— 85.1	92.2
$f_s + f_{21}$	35350.8	-3×25.4	- 176.7	- 676.0	84.5	69.1	176.7	- 46.1	61.4
$f_6 + f_{20}$	41129.8	-4909.8	533.6	-1551.6	49.8	164.2	885.9	49.8	147.8
$f_1 + f_1$	46834.8	-5890.1	1185.4	-2281.5	52.0	95.4	520.5	60.7	112.8
$f_1 + f_1$	52283.s	-6760.1	1757.6	-2894.8	- 27.2	45.4	580.7	81.7	27.2
$f_0 + f_{11}$	57262.6	-7570.4	2313.4	−3385.€	-141.1	94.0	658.8	131.7	37.6
$f_{10}+f_{10}$	61373.4	-8059.4	2454.6	-3662.5	-347.9	116.0	821.4	405.9	106.8
$f_{11}+f_{13}$	64626.8	-8175.6	2551.2	-3723.8	-246.8	541.8	650.1	512.2	246.8
$f_{12} + f_{14}$	66638.8	-8318.6	2719.7	-3467.0	458.8	597.8	647.6	597.8	269.0
f_{13}	33700.o	-4220.0	1360.0	-1720.0	-280.0	310.0	380.0	200.0	160.0
J 18				4		1			
$f_1 - f_{25}$	—14 02.0	-2688.5	6477.4	1206.0	959.8	336.7	266.8	50.8	- 75.4
$f_2 - f_{24}$	-1031.8	-2592.7	7098.	1336.7	1365.8	368.7	426.4	80.7	-121.0
$f_3 - f_{23}$	- 393.6	-2026.8	7356.6	1109.9	1626.2	484.0	542.1	77.4	-167.8
$f_4 - f_{22}$	496.6	-1113.9	7414.0	659.8	1802.1	610.9	723.7	113.5	-191.s
$f_3 - f_{21}$	1413.4	199.7	7197.7	0.0	1958.8	714.3	883.4	215.1	-215.1
$f_0 - f_{20}$	2413.6	1609.1	6707.2	- 779.9	2118.1	755.8	911.8	394.1	-131.4
fr - f10	3183.6	2923.4	5699.8	-1552.8	2290.1	529.3	919.6	529.3	8.7
$f_0 - f_{10}$	3557.0	3947.1	4564.2	-1932.7	2422.7	299.4	816.6	558.6	45.4
$f_0 - f_{17}$	3470.2	4523.5	3355.8	-1918.a		169.3	677.1	489.0	75.2
$f_{10} - f_{10}$	3179.8	4271.8	2319.8	-1459.2	2203.8	19.3	768.4	270.6	29.0
$f_{11}-f_{13}$	2492.1	3309.6		-1004.7	1507.1	325.1	571.8	275.8	69.0
$f_{12}-f_{14}$	1424.6	1868.0		- 478.3	757.1	318.6	808.5	139.5	- 49.8

Vb. Coefficients of the Trigonometric Series for France.

f:	βl, sin v	ßl, sin v	BL1 sin v	Bh sinv	BL2 sin v	bla sin v	sL, sin v	Al sinv	\$L, sin v
	\	_ 4×98.6	-3917.0	-1222.1	1614.4	- 523.1	482.8	226.4	25.1
$f_1 + f_{2s}$	90.8		-4470.2	-1430.4	2059.2	- 790.2	559.8	851.8	- 5.8
$f_2 + f_{24}$	0.0	- 6027.8	-4904.7	-1678.7	2384.5	-1000.9	G33.8	504.0	- 77.5
$f_3 + f_{23}$	- 58.8	- 7114.8	-5152.8	-2004.1	2494.4	-1172.4	746.8	682.4	-120.8
f_1+f_{12}	- 99.	- 8080.2		-2401.4	2432.2	-1377.7	×85.1	762.0	-128.1
$f_{\lambda} + f_{\lambda}$	-100.0	— ×935.9	1	-2614.1	2312.1	-1596.8	1020.8	855.7	- 90.5
$f_6 + f_{20}$	—107.0	— 9733.8		-3269.0	2180.7	-1817.6	1234.0	895.8	48.3
$f_1 + f_{10}$	- 95.7	10435.9	1	-3721.4	1865.8	-2083.7	1474.0	828.0	245.7
$f_2 + f_3$	- 91.0	10982.4		-4216.2	1565.8	-2414.6	171G.4	820.4	471.6
$f_0 + f_{11}$	— 75. s	-11384.0		-4633.6	1202.0	-2772.4	1958.1	8G2.7	727.0
fio+fic	-106.6	-11681.1	1	-5049.8		-3103.0	2114.8	948.7	968.5
$f_{11}+f_{14}$	-187.8	—11898. 0	1		569.7	-3345.6	2299.0	1009.6	1099.8
J12+ J14	-259.9	-12014.7		-5247.8	240.8	-1705.7	1178.0	511.7	571.9
fia	—130.s	— 6030.2	—1133.s	—2658.9	240.5		1		ł
	1			1		432.6	- 995.8	754	-236.4
$f_1 - f_{2k}$	— 50.8	523.1		145.9		582.6	1	155.7	-236.5
$f_2 - f_{24}$	69.2	697.		173.0		717.8	-1478.3	256.5	-310.2
$f_3 - f_{23}$	200.8	937.0	1	84.0	1	746.2	1	362.4	-419.8
f_4-f_{22}	312.7	1186.	1	-14.8	1	762.0	1	488.7	-461.8
$f_1 - f_{21}$	331.0	1362.4		-30.8		80G.4	1	548.1	-408.2
$f_6 - f_{20}$	304.4	1423.		0.0		843.6	1	617.5	-804.4
$f_1 - f_{10}$	269.	1426.		52.2				591.4	-209.8
· - f10	182.0	1337.		118.		791.6	1	499.0	-150.9
- f11	75.8	1197.		141.5		660.		339.	-126.0
· f16	9.7	959.		135.7		465.1	1	177.9	- 79.1
fis	- 29.6	691.		108.7	1	296.	1 1111	30.0	- 40.0
54	- 20.0	319.	629.7	- 50.0	589.7	149.	- 239.5	1 20.0	- 40.5
,	ı		•		•	•			

Vc. Coefficients of the Trigonometric Series for ,2.

f:	ym,	7 m ₁	γ M ₁	γm_2	7 M2	y ms	7 M3	7184	7 14
6.4.6.	1738.6	12239.7	- 6954.2	-2787. 7	-1938.4	-1019.2	-1418.8	-1378.9	— 279.8
$\int_{1} + \int_{2\pi}$	343G.2	12436.8	-10858.0 1	-3745.8	-144×.4	-1:48.7	-2007.8	- 829.1	519.4
J2 + J2	3635.0	13451.8	-14919.8	-4553.7	-1058.5	-1388.1	-2197.0	10.0	1028.6
$\int_{2} + \int_{2}$	3773.7	13946.6	-17241.1	-5191.8	-1637.2	-1227.9	-1697.2	419.8	678.9
J. + J.22		14012.4	-18064.6	-5609.0	-3343.4	- 369.8	-204G.0	219.6	1107.8
$f_2 + f_{21}$	3553.0	13529.8	-19595.s	-54 G7.6	-4200.5	-1037.6	-2294.8	688.6	1426.8
$f_0 + f_{20}$	2×63.6	12648.2	-21555.8	-4997.4	-5017.4	-1685.8	-2872.8	628.4	1097.2
J; +J;	1815.4	10331.5	-22976.7	-3949.1	-G013.4	-190a.i	-3430.5	199.4	598.8
Js + Js	319.1 -1106.7	7597.8	-24008.s	-2791.8	-6780.0	-1685.0	-3738.9	- 578.8	418.9
Jo + J;			-24184.8	-1973.8	-7815.s	-1854.2	-4037.4	— 907.2	289.1
firt fie	-2282.9	3159.7	-23772.7	-1335.6	-6539 2	-2302.6	-4276.1	-1385.8	19.9
Ju+Ju	-3329.2		-23451.8	- 936.0	-8920.4	-2681.1	-4445.2	-1475.1	- 129.6
J12+ J14	-415G.2		-11621.1	— 338.9	-4514.9	-1455.1	-2252.8	- 707.7	— 69.s
f18	-2242.5	857.1	-11021.1	_ 556.5				1	}
	.00021 -		459.€	—7024.8	2378.1	2817.7	_ 20.0	— 599.s	60.0
$f_1 - f_2$	106071.0	—17295.5	1	—7781.4	449.6	2846.8	1448.4	— 189.s	119.0
f2 - f21	101388.1	-17191.0	1	-9067.6	-1178.4	3325.4	2536.5	- 129.8	469.4
$f_2 - f_{23}$	96246.6	-16946.	1	-9384.8	- 938.4	3484.2	2695.4	_ 59.0	499.2
$f_{i} - f_{i}$	89689.6	-15603.8		-8782.8	10.0	2924.8	2006.1	578.0	289.4
$f_2 - f_{21}$	82158.2	-13673.1	1	-8181.4	- 10.0	2075.8	2175.1	389.1	409.1
$\int_{\mathcal{S}} - \int_{20}$	74661.8	-12052.9	1	_7610.s	- 129.7	1685.8	1596.0	- 129.7	518.7
$f_i - f_{i0}$	66552.6	-10334.0		-6721A	- 849.0	1346.8	897.5	- 698.1	478.7
$f_0 - f_{10}$	57022.9	— 8735.8		—5583.s	- 398.5	767.7	688.0	- 857.5	378.9
$f_{\mathfrak{p}} - f_{\mathfrak{p}}$	46811.8	- 7119.0		-4406. \$	- 279.1	139.6	667.0	- 787.5	249.3
fio-fio	35698.8	- 5203.7		-2731.1	- 159.8	- 129.4	588.1	- 687.8	319.0
Ju-Ju	24121.6	- 3179.	1	-1275.8	- 388.7	- 189.4	498.3	- 498.2	149.5
f12- f14	12229.8	- 1475.1	996.7	-1213.6	- 200.1	1 - 200.00	1	4	I

VI. Coefficients of the Series for Representation of aline, strine, yl.

	1	ı.	
_	¥		

m; n:	0	1	2	8	4	8	6	7
0	21279	361	-10235	-933	695	535	-132.50	17.77
1		-1921 438	258 1736	789 442	-924 129	227 10	278.81 -221.57	55.06 . 95.78
2			- 788 - 54	-179 606	896 50	372 -114	252.18 - 19.18	-20.06 52.14
8				71 166	125 226	- 85 - 57	14.68 - 0.69	-68.14 -28.14
4					84 43	107 14	- 44.96 - 49.76	14.10 80.46

AY sin v

m; n:	0	1	2	8	4	8	6
0	-50	67	34	- 88	- 9	- 4.67	0.2
1		-3421 -1277	330 1261	132 496	-121 166	61 170	- 7 -38
2			-1247 483	23 1051	95 37 2	- 1 216	-64 - 2
3				-749 -518	202 -312	12 6	17 -81
4					275 160	108 - 84	-91 54

.. 2

m; n:	0	1	2	8	4	5	6
0	0	36388	701	-1412	-1273	291	- 40
1		2847 -6881	-3841 966	1900 445	- 909 - 483	-607 515	-189 -209
2			- 959 -1990	-2191 - 54	- 797 362	-410 95	168 77
3				- 582 -1089	517 481	- 30 - 82	421 181
4					- 190 114	- 89 116	141 201

VI. Coefficients of the Series for Representation of alsino, spaino, yz.

2.

	a Z sin v											
m; n:	, 0	1	2	8	4	8						
0	21247	368	-10299	-924	594.00	_ 544.00						
	; :	-1918	271	817	-790.11	309.05						
1	1	448	1708	-424	- 52.02	84.00						
_	•		- 761	-184	683.22	841.00						
2	.	_	- 58	606	10.14	-100.08						
	}			66	167.47	-144.27						
8	1			162	247.00	-106.74						
	ļ	1			0	54.87						
4	•				0	- 74.47						
	•	1										

8.

	6 4	### P	
0	1	2	8
21449	609	-9592.20	- 398.40
	-1872 450	- 455.71 1572.86	1128.41 - 856.92
		0	151.56 484.17

sY sin v

m; n:	0	1	2	8	4
0	-49	64	34	- 41.92	- 9.01
1		-8452 -1312	858 1250	- 19 -644	- 50 117
2			-1245 485	956	100 890
3				-741 508	182 297
4					247 182

AY sin v

0	1	2
-58	0	23.70
	-8517 -1019	896 1051
		-1281 401

, Z

	7-2												
m; n:	0	1	2	8	4								
0	0	36182	786	-1648	-1245								
•		2893 —6919	-8813 1008	1984 874	- 868 - 420								
2			- 962 -1988	-2236 - 44	- 788 858								
3				- 585 -1097	570 454								
4					- 179 130								

0	1	2
0	86788	1410
	3083 6883	-3819 1005
		-1049 -1949

VIIa. Numerical Values or Logarithms of the Computed Coefficients \boldsymbol{k} and \boldsymbol{K} in the Series Expansion of \boldsymbol{X}

	k.	$log k_1$	log K1	log k2	log K2	log ks	log Ks	log k.	log K.
00	0.0	8.411586	3.629155	8	x			-8	— ∞
5	1907.0	3.375041	3.6307×4	3.06×30	2.41631	1.3365. _n	0.842 ,	9.699.	9.000.
10	3869.	3.251322	3.685695	3.342%6	2.69992	1.9(42 · n	0.785 ,	0.556.	0.000.
15	5937.0	2.96156.	3.643×0×	3.47360	2.84844	2.19893 _n	0.690	1.0682	0.447.
20	8147.6	1.9504	3.654667	3.53203	2.93797	2.86399 _m	1.0258.	1.4188	0.672.
25	10517.0	3.029384 _m	3.667117	3.53732	2.99480	2.43981 _s	1.6902.	1.6758	0.699.
30	13046.8	3.274451 _n	3.679192	3.49241	8.03310	2.48489,	2.06371	1.8745	0.279.
85	15710.0	3.363959 _n	3.6×8322	3.38760	3.06213	2.33203 _m	2.82408	2.0318	0.792.
40	18460.8	3.422459,	3.691647	3.18794	3.08743	2.03623 _m	2.51614	2.1578	1.2856
45	21233.4	3.411232,	3.686359	2.71584	3.11099	1.4654.	2.65906	2.2598	1.5551.
50	23946.2	3.361652 _n	3.670023	2.69966 _M	3.18123	2.24279	2.76320	2.3424	1.7168,
55	26507.2	3.285985,	8.640779	3.14879 _n	3.14870	2.48173	2.83474	2.4094	1.8000,
60	28821.6	3.206718 _m	8.597553	3.32564n	3.14214	2.59528	2.87749	2.4623	1.8021
65	30798.4	3.162803 _m	8.540342	3.41047 _m	3.11886	2.63909	2.89409	2.5016	1.6893,
70	32358.9	3.191048,	3.470484	3.44185 _n	3.06348	2.63215	2.88615	2.5271	1.2504,
75	33443.6	3.287130 _m	3.390970	3.43463 _N	2.93856	2.56377	2.85425	2.5867	1.4456
80	34018.8	3.412326,	3.306017	3.39632 _a	2.76245	2.50010	2.79810	2.5272	1.9175
85	34079.2	3.533925,	3.21×798	8.33214 _m	2.28012	2.38846	2.71550	2.4935	2.1405
90	33653.8	3.636418m	3.126294	3.24765 _M	2.34163 _m	2.25959	2.60043	2.4262	2.2658
95	32797.2	3.714665 _m	3.010003	3.15088 ₈	2.78G04m	2.12516	2.43727	2.3073	2.3259
100	31591.7	8.767542 _n	2.81003.	3.053×5 _H	2.97557	1.9514.	2.17609	2.0878	2.8294
105	30133.0	3.794920	2.13001.	2.97095 _n	3.07715 _m	1.7634.	1.4713.	1.4886	2.2721
110	2×522.1	3.796200 _a	2.75020.	2.91185 _a	3.12882a	0.756	1.9410 m	1.8089 _m	2.1303
115	26851.9	3.769289 _n	3.1662×2m	2.87216 _n	3.14672m	1.8645.m	2.30211a	2.1875 _a	1.8096
120	25196.1	3.709092,	3.406574 _n	2.83296 _N	3.14085 _n	2.26305 _m	2.48869.	2.3600 _a	1.1335
125	23598.9	3.603740 _m	3.572802	2.76597,	3.11945 _n	2.50786 _m	2.60842m	2.4504 _n	1.9395
130	22070.4	3.421801,	3.692036	2.62818,	3.09068a	2.67348 _m	2.68744a	2.4883,	2.1611,
135	20585.7	3.033062	3.775421a	2.29248 _m	3.06221m	2.78483 _m	2.78456 _m	2.4849,	2.2541,
140	19090.4	2.76448	3.825G15 _n	1.9465	3.03926 _m	2.65101 _m	2.75220 _m	2.4436 _m	2.2739,
145	17510.8	8.352877	3.854974.	2.59528	3.02247m	2.87541,	2.78965 _m	2.8636 _a	2.2368
150	15765.8	3.586452	3.856898 _m	2.82763	3.00698 _m	2.85794 _n	2.69390 _m	2.2416	2.1455,
155	13786.8	3.726613	3.836792	2.94096	2.98367 _m	2.79463,	2.60927 _m	2.0686a	1.9952
160	11526.8	3.819965	3.795029a	2.97941	2.94067	2.67642,	2.47524a	1.8293 _n	1.7781,
165	8973.7	3.883463	3.746424	2.95027	2.86231 _m	2.48416 _m	2.27161,	1.4942	1.4502
170	6153.8	3.925013	3.691850 _m	2.83860	2.72173,	2.17260 _m	1.9523.	0.996	0.959.
175	3131.6	3.94%63%	3.648740 _a	2.57496	2.44279	1.5944 . ,,	1.3692 . m	0.114.	0.079.
180	0.0	3.956317	3.632103		—∞		_∞	—	-20

VIIb. Numerical Values or Logarithms of the Computed Coefficients I and L in the Series Expansion of Y.

	1 %	log l _i	log L1	log h	log Lz	log la	log L	log l ₄	log L
00	0.0	3.629155 _n	3.411586	- 8	-8	60			
5	32.0	8.630168 _a	8.403189	2.41747 _m	8.07295	0.362	1.8404 .	9.000.	9.699 .
10	62.2	3.633084 _n	3.377G70	2.70432 _n	3.36186	0.698	1.9217.n	0.000.	0.556.
15	89.0	3.637770 _m	3.333629	2.85763 _m	8.51767	1.1303.	2.23955 _n	0.862.	1.0569
20	110.7	3.643906 _n	3.268344	2.95255 _m	3.61402	1.1399.	2.44012 _m	0.380.	1.3945
25	126.4	3.651171 _m	8.177017	8.01414,	3.67386	0.491	2.56808 _m	G. 2 55.	1.6865
30	135.8	3.659203 _m	3.050650	8.05572m	3.70720	1.8945 a	2.64157 _n	1.1790	1.6142
35	187.0	3.667696 _a	2.87005.	3.05629	3.71924	1.8738	2.66717,	1.6284	1.9440
40	131.8	3.676392 _n	2.58024.	8.11801 _m	3.71279	2.17522 _n	2.64404 _n	1.9479	2.0354
45	120.2	3.685159 _a	1.7917	3.14139 _m	8.68946	2.89967 _n	2.55967	2.1942	2.0952
50	102.	3.693938 _m	2.29798 a	3.17461 _m	3.64997	2.57634.	2.37420 _n	2.3902	2.1291
55	81.2	3.702810m	2.59472 .a	8.21336 _n	3.59448	2.71925	1.8591 .	2.5472	2.1427
60	56.2	3.711908 ₈	2.71917.	3.25592 _m	8.52255	2.53620a	2.06408	2.6719	2.1436
65	29.8	3.721448 _a	2.77931.	3.29927a	8.43307	2.93252 _a	2.49471	2.7686	2.1421
70	1.6	. 3.731621 _m	2.81137 .m	8.33995,	3.32391	3.01157	2.70191	2.8400	2.1514
75	- 25.9	3.742576 _n	2.83916.	3.37493 _m	3.19114	3.07599	2.83136	2.8875	2.1833
80	- 52.0	8.754841,	2.88275	8.40192,	3.02682	8.12775a	2.91950	2.9116	2.2418
85	- 76.2	3.766807 ₈	2.95434 .m	3.41936 _n	2.61218	3.16844.	. 2.98236	2.9119	2.3214
90	- 98.1	3.779676 _m	3.053655 _m	3.42646 _m	2.48742	3.19926 _a	3.02918	2.8867	2.4108
95	-117.4	3.792469 _m	3.170262a	8.42295,	1.4683.	3.22110 _a	3.06595	2.8327	2.4989
100	-134.0	3.804589 _m	3.291702a	3.40919 _m	2.2977Gm	8.23467 _n	3.09677	2.7484	2.5777
105	-148.0	3.815312 _a	3.408596 _m	3.38612m	2.59428m	8.24037	3.12388	2.6056	2.6426
110	-159.5	3.823885,	3.515596 _m	3.35532	2.75511a	3.23830a	8.14799	2.3860	2.6906
115	-168.4	3.829567 _m	3.610287	3.31904 _m	2.86841a	3.22832 _a	8.16844	1.9499	2.7209
120	-174.8	3.831678 ₈	3.691894,	3.28015 _a	2.95799	3.20994 _a	3.18353	1.6503 _m	2.7818
125	-178.6	3.829632 _m	3.760573 _m	3.24175m	3.03201.	3.18239	3.19086	2.1688 _m	2.7224
130	-179.6	3.823018 _m	3.816924,	3.20642 _m	3.09276m	3.14445	3.18766	2.3286 _a	2.6914
135	-177.4	3.811G02 _m	3.861809,	3.17551m	3.14094 _a	3.09451.	3.17102	2.3818 _n	2.6370
140	-171.8	3.795428 _m	3.896256m	3.14820 _a	3.17272	3.03028 _m	3.18767	2.8718 _n	2.3565
145	-162.5 :	8.774858 _m	3.921421,	8.12138,	3.18907 _m	2.94866	. 3.08383	2.3090 _n	2.4463
150	-149.3	3.750640 _m	3.938590 _a	3.08976 _m	3.18670 _m	2.84516	3.00458	2.1976 _n	2.2997
155	-132.1	3.734063 _m	3.949185 _a	3.04681 _m	3.16221 _m	2.71299,	2.89298	2.0310 _m	2.1079
160	. —111.1	3.696941 _m	3.954749a	2.98372 _n	3.10998 _m	2.54083,	2.73767	1.7959.	1.8543
165	- 86.7	3.671617m	3.956864a	2.88750 _m	3.01974 _m	2.30814	2.51799	1.4624.	1.5079
170	- 59.5	3.650754m	8.957047 _m	2.78820 _m	2.86841,	1.9685.		0.964 .	1.0000
175	- 30.8	3.636949 _m	3.956577m	2.44576	2.58218.	1.3729.	1.5988.	0.079.	0.114.
180	0.0	3.632103 _m	3.956317.		-∞			—∞	

VIIc. Numerical Values or Logarithms of the Computed Coefficients m and M in the Series Expansion of Z.

į	M,	log m _i	log Mi	log m ₂	log M s	log m	leg Y,	log m.	log M.
GP	57×59.5				∞			-∞	
3	577 m8.7	3.141951a	2.76200 a	2.25575 _n	0.888	0.924	0.431	9.000	9.477.
10	57568.7	3.410271 _m	3.064196 _n	2.847G3 _m	1.4502.	1.5028.	1.2989.	0.114.	0.623 .
15	57147.4	3.580443 _m	3.243112 _n	3.18276 _n	1.6226.m	2.29292	1.7810	0.768	1.3010
20	564#3.8	3.573#34 _m	3.373390 _n	3.40619 _m	2.10488 _m	2.61342	2.08600	1.2068	1.7684
25	55499.1	3.559272 _m	3.475898 _a	3.56964,	2.84025 _m	2.63225	2.24061	1.5182	2.1011
30	54116.0	3.489523	8.569947	3.68702	2.54814a	2.97836	2.88810	1.7235	2.8560
35	52255.8	3.355356m	8.651807a	3.77048 _m	2.78608a	3.06502	2.40722	1.8500	2.5498
40	49448.8	8.124504 ₈	8.724863a	3.82558	2.90650 _m	3.09688	2.80081	1.8882	2.6928
45	4GM48.6	2.65520	3.790932a	3.85585 _m	3.05994 _m	3.07111	1.7993	1.7981	2.7987
50	43210.0	2.84850.	3.649211m	3.66122 _n	3.19623 _m	2.97230	2.19340 _n	1.3201	2.8559
55	3×951.2	2.79141.	3.899290 _a	3.84844	3.31507 _m	2.74780	2.64670 _n	1.8021	2.8809
60	34095.7	2.85582.	3.941074a	3.80113	3.41637m	1.9978.	2.86784 _m	2.2445 _n	2.8675
65	28709.1	2.7G125.	3.9749G3a	3,73216 _n	8.50014m	2.566084	8.04556a	2.4912,	2.8116
70	22484.9	2.49318.	4.001924a	3.63249	3.56656m	2.56743	3.15400 _m	2.6531 _m	2.7030
75	16743.6	1.4331	4.023458 ₈	3.49449 _n	3.G1581m	8.02457.	3.22850 _m	2.7597	2.5177
80	10422.6	0.041	4.041420m	3.30216	3.64513a	8.06142	3.27839a	2.8226 _n	2.1781
K5	4067.1	2.38489.	4.057704m	3.01220 _m	3.66375 _m	3.08962.	3.31057 _m	2.8459 _n	0.415.
90	- 217H.1	2.94503	4.073788m	2.39270 _m	3.66293a	3.36567.	3.33098 _m	2.8800,	2.0294
95	- MIM7.8	3.259728	4.090293,	2.51121	3.G4602m	3.03898.	8.34478 _n	2.7700 _n	2.1785
100	—13x5x.1	3.533G3#	4.106677m	2.85028	3.61351 _m	3.02477.	3.35585 _m	2.6588 _n	2.1082
105	-19123.1	3.716429	4.121254	2.97978	6.56619 _m	3.04548	3.36655 _m	2.4469,	1.7451.
110	-23958.8	3.856723	4.131467.	3.05092	3.50530 _m	3.10188 _m	3.37681 _m	2.0004,	1.6875
115	-25361.6	3.965004	4.134244	3.10541	3.43279 _m	3.17676a	3.38444	1.8096	2.2044
120	-323 1.8	4.047660	4.126323a	3.15933	3.35153a	3.24987.	3.38586 _m	2.2878	2.4073
125	-36107.o	4.108852	4.104374 _m	3.21476	3.26515 _m	3.30524.	3.37674 _n	2.4414	2.5015
130	-395×9.s	4.151302	4.064971	3.26614	3.17759 _m	3.33616	3.35261.	2.4887	2.5285
135	_4290H.6	4.176702	4.004317 _m	3.30542	3.09174m	3.33746	3.30903 _m	2.4701	2.5024
140	-4G118.0	4.185874	8.91752Gm	3.32517	3.00779a	3.30561	8.24135 _n	2.3978	2.4280
145	-49219.4	4.176791	3.799292	3.31906	2.92200m	3.23674.	8.14417.	2.2742	2.3043
150	-52204.4	4.154400	8.639297_	3.281CH	2.82653a	3.12519.	8.01047.	2.0952	2.1261
155	-55005.s	4.110228	3.421555 _m	3.20385	2.70995 _m	2.96185.	2.88001 _m	1.8506	1.8825
160	-57528.6	4.041841	3.111800 _m	3.07613	2.55642 _m	2.78094	2.58614 _m	1.5198	1.5527
1 *5	-59659.1	3.937869	2.60423.	2.87743	2.34143 _n	2.40209.	2.24778.	1.0645	1.0969
170	-61284.2	3.776941	1.5×99	2.56170	2.01576a	1.9063.	1.7459	0.380	0.481.
175	-G2303.4	8.484954	2.07700.	1.9514.	1.4298.m	1.0258	0.857	9.301	9.301.
140	-62651.0	∞	∞	_∞	-∞	∞	∞	-∞	

VIII. Computed VAlues of the Geomagnetic Force Components

	λ:	(P	90	10	130	30	239	20"	330	40"
	-									
•	X Y	2560 — 4258 57860	- 4016 57860	- 3745 57840	- 345 5756	- 3119 57860	- \$754 5764	- 4363 - 8397 57860	- 4555 - 2005 57840	- 1003 57860
•	7 7 2	5428 4495 56230	- 4054 56187	- 3551 - 3561	- 3044 - 3044	- 2570 - 2570 56152	4807 — 8048 56173	4944 1584	6950 — 1012	- 511
100	x y	7779 - 4733	35107 2504 4122	8549 - 3477	\$\$11 slop	5969 - 2133	9086 - 1461	- 9304 - 505	56054 9047 — 179	SO315 Spec
1	Z Z	54352 9683	54271 10143	54887 10513	54219 10783	54246 10959	54306 11037	54403 11003	545 9 9	\$46E4 10746
150	2	- 4963 52433	- 4217 52322	- 3434 52267	- 2630 52268	50303	- 1009 52432	- a65	52798	1116 53050
90 °	X S	11258 5179 50600	11761 — 4336 50464	18167 — 3453 50399	- 2549 50406	12676 — 1645 50481	12778 — 761 50683	1278a 83 90830	12696 872 51099	12526 1588 51488
250	X 5	12666 - 5331	13215 - 4479	13673 - 3533 48633	14033 — 8567	14994 — 1600	14456 661	14503 236	14499	14394
30°	X)	48874 14076 — 5574	45711 14673 — 4648	15194 - 3675	45635 15685 — 2661	45713 15966 1688	45566 16015 — 720	16373	16449 1056	16446 1825
	2 X	47169	46973 16275	46672 16861	46352	46913 17804	47048	47 368 18425	47556	47935 18730
350	j' Z	- 5768 45326	- 4547 45083	- 3879 44935	- #\$\$6 44 ³ 73	- 1894 44891	- 926 44983	45160	851 45481	1600 45774
40*	X Z	17392 - 5973 43152	18093 3063 42529	18744 - 4143 42609	19335 3176 42450	19859 — 2309 42434	20314 — 1363 42468	90498 — 358 48585	21013 483 43794	21264 1343 43105
430	Х Г 2	19387 6203	30130 - 52F1	20538 4466	21499 3544	22106 — 2616	23654 — 1706	23148 - 133	=3569 - 14	23940 734 39768
500	X	40461 31541 — 6466	40. 9 22313 — 5683	39694 - 23062 - 4546	39471 23777 — 3979	39341 24445 — 3102	25069 — 2236	3935a 25639 — 1399	39504 26158 — 606	37/00 26627 127
	2	37194 83797	36517 2450 8	36048 85877	35703 26001	35472	35349 273 9 8	35335 25023	35434 38604	35656 99142
350	X J Z	— 6769 33 09 3	- 6051 32276	- 5277 31627	- 4468 31133	- 3645 30784	- 1526 30572	2005 30493	- 1257 30547	- 533 3073.5
● 0°	X Z	25779 7114 28411	26546 — 6461 27350	27309 - 5749 26489	28054 — 4008 25821	28771 — 4227 25337	29456 — 3451 2502\$	30104 2682 24853	30717 1931 24597	31394 — 1210 25064
4	X Y Z	27523 7497 23211	25251 6907 21584	25951 — 6252	29699 - 5553	30395 — 4827	31066 4086 18874	31706 - 3341 18657	32322 2600 18605	32908 1873 18766
70*	Į.	255c6 7912	29470 — 7376	30790 30143 — 6771	19928 30807 6115	31457 5484	32087 — 4709	32697 3978	33156 - 3240	33858 2500
	Z Z	17684 20514	16090 30095	14754 30689	13656 31281	12883 31863	12339 38433	12031 32990	11339	12039 34077
• • • • • • • • • • • • • • • • • • •	2	— 6344 12056	— 7856 10313	- 7290 5640	— 6666 7368	- 5000 6382	— 5299 5691	- 4575 5969		- 3077 5120
80° .	I I Z	- 8781 - 6548	30081 — 5332 4456	30581 — 7795 2706	31066 — 7192 1219	31588 — 6537 52	30065 — 5844 — 604	32579 5119 1367	33074 4369 1667	33574 — 3404 — 1741
•	I Y	99068 9805 1351	29445 - 8788 - 876	29843 — 8271 — 2846	30055 7679 4518	30671 — 7009 — 5872	31092 6333 6906	31 520 — 5406 — 7636	31961 - 4851 - 8090	30400 4077 8305
90"	X T	28004 9601 3391	98270 — 6210 — 5734	26563 — 5706 — 7847	2550 5120 9553	29210 7468 	29557 6771 12433	29923 6040 13347	30313 5186 13981	30740 - 4317 -14368

(Continuation of VIII)

u;	λ:	ď	5°	10°	15*	20°	25*	30°	83°	40°
90°	x	25004	28270	28563	28880	· 29210	29557	29923	30313	30740
	y	- 9601	— 9210	— 8708	8120	— 7468	— 6771	— 6040	— 5286	4517
	z	- 3391	— 5734	— 7847	9683	—11215	—12433	—13347	—13981	14368
95*	X	26534	26683	26873	27096	27346	27626	27938	28290	25685
	Y	— 9950	— 9585	— 9093	— 8509	— 7856	— 7157	— 6429	5688	— 4941
	Z	— 7597	—10002	—12215	—14184	—15873	—17270	—18373	19199	—19776
100°	X	24823	24855	24940	25070	25245	25465	25733	26054	26434
	Y	—10239	— 9903	— 9427	— 8847	- 8196	— 7503	— 6790	— 6074	5369
	Z	—11242	—13661	—15931	—17996	-19816	—21369	—22648	—23664	24436
105*	X	23050	22960	23936	22976	23079	23244	23474	23770	24136
	Y	10453	10153	— 9700	— 9135	— 8498	— 7822	— 7138	— 6465	5818
	Z	14354	16746	—19030	—21150	—23062	—24741	—26172	—27357	28310
110°	X	21393	21173	21036	20982	21011	21122	#1313	21583	21931
	Y	10560	10329	— 9912	— 9378	8769	\$12\$	— 7488	6875	6305
	Z	17004	19335	—21593	—23725	25687	27449	—#8994	30316	31423
115*	x Y Z	20001 	19645 —10422 —21536	193 \$\$ —10061 —23751	19233 - 9576 -25831	19181 9017 27797	19229 — 8430 —29596	19373 7853 31209	19608 7315 32626	19996 — 6834 —33830
120°	X Y Z	18984 	18487 	18103 —10143 —25575	17837 - 9731 -27602	17692 — 9243 —29525	17664 — 8732 —31312	17745 - 8236 -32944	17926 7786 34411	18192 - 7408 -35713
125°	X	18396	17759	17243	16858	16606	16484	16480	16580	16766
	Y	—10348	—10342	—10155	— 9840	— 9449	— 9032	8632	— 8280	- 7996
	Z	—23362	—25320	—27275	— 29187	—31022	—32751	34357	—35831	-37171
130°	X	18225	17458	16514	16305	15934	15699	15583	15576	15651
	Y	10049	—10159	10091	— 9894	— 9620	— 9316	— 9025	— 8778	- 8592
	Z	25437	—27204	28985	—30744	—32451	—340 8 2	—35621	— 37062	-38403
1 3 5°	X	18396	17520	16760	16131	15636	15272	15027	14862	14816
	Y	— 9646	— 9877	— 9944	— 9883	— 9743	— 9566	— 9393	— 9251	— 9157
	Z	—27747	—29292	—30865	—32437	—33981	—35480	—36919	—38293	—39605
140*	X	18773	17822	16971	16234	15618	15121	14731	14433	14303
	Y	— 9129	— 9500	— 9710	— 9796	9800	- 9759	— 9706	— 9668	— 9657
	Z	—30428	—31723	—33061	—34419	35775	-37114	—38426	—39706	—40958
145*	X	19176	18193	17284	16464	15743	15118	14583	74124	13723
	Y	- 8532	9032	9386	— 9622	- 9773	— 9868	— 9935	9994	10058
	Z	-33578	34606	35693	—36820	-37969	—39129	—40292	41455	42620
1500	X	19402	18433	17506	16638	15837	15106	14439	13829	13263
	Y	— 7868	8489	— 8078	— 9356	9646	— 9871	- 10051	10201	10329
	Z	— 37233	37996	—38830	—39720	40655	—41623	- 42623	43646	44695
155*	X	19248	18338	17437	16558	15713	14906	14137	13401	12693
	Y	— 7167	- 7887	— 8494	8998	- 9413	— 9755	-10037	10267	10452
	Z	—41363	-41877	—42472	43135	-43858	—44632	-45454	46318	47224
160*	X Y Z	18543 — 6461 —45843	17729 7253 46130	16890 — 7952 —46536	16040 - 8557 -46993	15190 — 9076 —47516	14346 — 9516 —48100	13513 9884 48738	12690 —10184 —49427	11879
165*	X	17176	1647\$	15725	14937	14119	13280	12427	11563	10694
	Y	- 5786	6622	- 7379	— 8054	— 8649	— 9164	— 9600	9959	—10242
	Z	50479	50631	-50851	—51136	—51481	—51684	—52340	52846	—53398
170°	X	15099	14516	13867	13160	12405	11608	10777	9920	9042
	Y	— 5177	— 6023	— 6804	- 7517	8157	— 8721	— 9207	— 9613	— 9939
	Z	—55013	—55068	—55172	55324	55521	—55763	—56045	—56367	—56724
175*	X	12351	11871	11319	10702	10025	9297	8523	7711	6867
	Y	— 4669	5492	— 6264	— 6980	7634	— 8221	— 8738	— 9180	9544
	Z	—59163	59172	—59206	— 59263	59347	—59453	—59581	—59730	598 9 8
180°	X	9043	\$635	\$162	7626	7032	6384	5688	4949	4172
	Y	— 4287	— 5058	— 5792	— 6481	7121	— 7707	— 8234	— 8698	— 9096
	Z	—62651	—62651	—62651	—62651	—62651	—62651	—62651	—62651	—62651

u;	λ: i	45°	50°	55°	cor !	65°	70°	75"	80°	85°
	7	4834	4919	4967	4977	4949	4883	4750	4641	4466
or	Z	- 1157 57860	- 761 57860	- 329 57840	105 57 860	539 57860	96 8 57 86 0	1390 57360	1801 57860	2199 57860
1	1		- 1	ł	- 1		1		- 1	
5*	X	6880	423	6633 850	1242	1599	1919	5783 2203	5530 2451	5272 2664
Ĭ	Z	56369	56473	56567	56670	56780	56896	57016	57139	57263
1	x	8737	\$501	8224	7915	7587	7249	6912	6586	6279
10	Z	949	1433	1857	2216	250S 55786	2733 56047	2694 56312	2994 56577	3039 56437
	1	54863	55069	55293	55534	33,00				
15*	T.	10501	10200	9856 2642	9482	9093 3215	8701 3362	3323 3420	7969 3396	7652 3298
	Z	53343	53673	54036	34423	54830	55248	35469	56083	56487
	X T	12289	11991	11648	11276	10889	10504	10136	9800	950\$
:0°		2217	2749	3175	3490	3690	3778	3737	3635	3423 56073
i	Z	51815	52254	52739	53264	53818	54389	54966	55532	
25°	X,	14217	13981	13699	13387	13059	12731 3972	22418 3896	12136 3706	11 898 3414
20	Z	2476 50209	3022 50724	3449 51304	3751 51939	3925 52620	53329	54048	54756	55427
	7	16373	16243	16067	15857	15629	15393	15169	14966	14797
30"	X Y	2492	3045	3473	3769	1030	3956	3851	3622	3283
	Z	48400	48954	49592	50307	53 02 6	51908	52749	53579	54365
•••	I,	18795	18796	18751	18669	18963	18443	18330	18205	1\$110 3059
35°	Z	2292 46229	2848 46758	3279 47452	3577 46214	3738 49060	3762 49966	3651 50901	3413 51827	52704
	_		21593	21685	21738	21759	21755	21735	21706	21675
40°	X Y	21455 1912	2470	2908	3218	3395	3436	3343	3121	2783
	Z	43528	44071	44737	45519	46402	47360	42357	49348	50284
	X S	24256	24523	24743	24920	25059	25161	25232	25275	25294
45*	Z	1395 40154	1959 40672	2412 41324	2746 42107	2953 43001	3030 43981	2976 43005	2794 46026	2493 46987
	•					-	:	23601	25699	28753
50°	J Y	27047 788	27420 1363	27748 1842	25030 2213	28266 2467	28457 2597	2600	2477	2233
	Z	36010	36504	37:38	37906	38791	39764	40783	41797	42750
	X Y	29638	30091	30499	30861	31174	31432	31633	31772	31848
55°	Z	134 31070	731	1246 32159	1667	1ç81 33 762	2179 34702	2254 35685	2203 36662	37578
	1	,	31544		32904		_			
60°	X Y	31833 — 529	32339 100	32802 652	33221 1143	335 8 9 1529	33899 1803	34144 1661	34317 1992	34414 1899
••	Z	25380	25839	26432	27147	27962	28849	39772	30685	31540
	X	33467	33996	34492	34930	35359	35717	35999	36209	36336
65°	Z	- 1170	— 502	114	661	1123	1482	1724 23162	1839 23993	1827 24777
	; -	19064	19504	30070	20743	21502	22319	23,02	}	ł
70°	X	34412	34947	35461	35945	36391 760	36787 1198	37121 1523	37383	37560 1788
.0	Z	12304	12711	13236	13855	14543	15276	16028	16770	17472
	1	: : 34613	35143	35666	36173	36657	37104	37500	37832	38087
75°	F	- 2320	- 1574	- 855	- 184	417	925	1323	1593	1735
	Z	5327	5676	6138	6683	7256	7923	\$578	9226	9849
ent.	I.	34084	34603	35'35	35669	36196	36703	37179	37603	37961 1614
80°	Z	- 2524 - 1628	— 2051 — 1367	- 1299 - 996	- 587 - 543	- 42	621 493	1076	1409	2136
	i	Į.	1	1		25100	35680	36243	36777	37259
85*	Y	32905	33418	33958 1746	34522 1019	- 35100 - 350	239	730	1108	1366
	Z	— 3292 — 8322	- 8185	- 7932	- 7598	- 7211	- 6790	- 6349	— 5899	- 5442
90°	I	31203	31714	32269	32866	33498	34151	34510	35456	36061
	1 T	— 3744	- 2976	- 2227	- 1514	1 — 853	— 263	241	645 13046	94

***		45°	50°	55°	60°	650	1 70"	75*	80°	85°
;	λ:	43	30	1 33 -		1 40	: 40	; •••		
	Ţ	31203	31714	32269	32\$66	33498	34151	34810	35456	36068
90°) Z	— 3744 —14549	- 2976 - 14365	— 2227 —14458	— 1514 —14261	- 853 -14005	. — 263 . —13709	-133 8 7	—13046	945 -12690
	x	29141	20651	30222	30552	31532	32252	32994	33741	34472
95°)	- 4200	- 3473	- 2769	- 2100	— 1478	— 915	- 423	- 11	319
	Z	- 20143	- 20335	-20393	-20353	-20243	-20065	—19 59 7	-19684	-19453
1000	.r ,r	26879	27392	27976	28629	29343	30109	30910	31730 - 860	32548
100°	Z	4682 24994	- 4021 -25373	- 3390 - 3390	- 2795 -25737	- 2240 -25787	— 1731 : —25786	— 1273 —25750	-25693	- 519 -25620
	r		25086	25672	26330	27053	27832	28654	29502	30359
105°	x	24573 — 5207	- 4634	- 4100	— 3601	— 31 <u>3</u> 6	- 2701	- 2293	- 1910	1548
	Z	-29053	-29617	-30034	-30338	-30562	-30734	—30876	-31005	-31129
	X	22355	22853	23423	24060	24758	25510	26303	27126	27963
110°	J'	- 5765 -32331	- 5317 -33067	- 4594 - 33660	- 4507 -34143	- 4144 -34550	— 3794 — 34912	- 3447 -35256	- 3091 -35600	- 2722 -35958
	x	•	20784	21311	21895	22529	23206	23919	24658	25413
115°	"	20320 — 6416	- 6060	- 5754	- 5481	- 5224	- 4961	- 4673	- 4350	- 3975
-	Z	—34895	-35782	-36538	—3719 8	— 37793	-38358	- 35920	-39502	-40118
	X	18532	18934	19387	19882	20411	20069	21551	22155	22774
120°	Z	— 7090 —36861	— 6644 —37874	— 6650 —38777	— 6483 —39603	— 6324 —40386	— 6140 —41156	— 5908 —41944	- 5609 -42771	- 5228 -43650
	x			17673	18043	18430	18831	19244	19669	20110
125°	J.	17022 — 7785	173 29 — 7640	- 7543	— 7467	- 738 5	— 7262	— 7072	- 6790	6400
	Z	-38387	—39498	- 40527	-41504	—42460	-43427	-44431	-45491	-46617
	X.	15788	15967	16170	16383	16601	16818	17035	17258	17495
130°	J'	— 8472 —39656	- 8411 -40835	— 8390 —41964	— 8380 —43068	- 8350 -44176	— 8267 —45313	— \$100 —46504	- 7823 -47762	- 7421 -49092
İ	-	_	_		14899		;		14972	15001
135°	<i>X</i>	14805 — 9116	14827 — 9119	14563 — 9148	- 9176	14927 — 9172	14945 — 9103	14957 — 8940	- 8657	- 8239
	<i>z.</i>	-40862	42079	—4327 5	-44473	-45695	-46963	-48293	-49694	-51166
	ŗ	14021	13865	13717	13564	13398	13219	13033	12849	12683
140°) Z	- 9679 -42188	- 9726 -43409	— 6782 —44635	- 9821 -45884	- 9817 -47173	— 9740 —48515	- 9563 -49922	- 9263 -51395	— 8827 —52929
	x	_		12683	_	11990	11623	11262	10904	10569
145*	3.	13361 10130	—13019 —10203	-10265	12342 —10296	-10272	- 10160	9965	9642	- 9189
	Z	-43791	-44977	-4618 9	-4743 8	-4 8734	—500¥6	51496	-52963	—54477
1500	X.	12727	12208	11694	11179	10659	10137	9620	9118	8646
150°) Z	-10440 -45773	-10528 -46883	—10554 —45032	— 10594 —49224	—10539 —50465	10402 51756	—10167 —53097	- 9521 -54479	- 9356 -55894
	x	12006	11331	10664	10001	9341	86\$8	8050	7437	6861
155*	J. ;	-10596	-10694	-10741	-10727	-10641	-10473	-10210	- 9846	- 9377
·	Z	-48173	-49163	—50198	-51277	52399	-53564	—54766	-55996	-57245
160*	X	11077	10283	9496	8718	7951	7200	6472	5776	5123
100	Z	—10595 —50951	-10700 -51781	—52654	-53567	-54516	-55497	—16147 —56505	-57530	— 9316 —58564
	7	9823	8954	8090	7235	6396	5577	4786	4030	3319
165*	X T	-10430	-10550	—10633	10606	—1049δ	10303	-10034	- 9678	- 9242
	Z	—53993	—54629	—55301	56006	-56739	—57495	—58269	-59054	-5 98 43
170*	X Y	8150 	7252	6354	5462 10422	4583	3724	2891	2093	1335
•••	Z	—10184 —57114	—10346 —57535	—10425 —57983	58454	—10336 —58943	10170 59452	— 9924 — 59970	9602 9602	— 9206 —61083
	x	6000	5116	4234	3330	2441	1566	710	- 120	- 917
175*	7 2	— 9830	-10035	-10159	-10303	-10165	10045	9853	- 9587	- 9247
•	1	-60064	602 86	-60504	-60734	-60973	—6:22 5	-61482 I	-61743	62008
180°	X	3363 — 9425	2529 — 9683	1676 — 4866	809 9975	- 63 -10007	- 935 - 9964	- 1800 - 9844	— 2651 — 9650	- 3482 - 9382
-70	Z	62651	62651	-62651	-62651	-62651	-60651		-62651	62651
•	•		•		•			•	·	

•;	λ:	90°	95*	100°	105°	110°	115*	150*	125*	130°
œ	X Y Z	4258 2580 57860	4016 2941 57860	3745 3260 57860	3445 3394 57860	3119 3880 57860	2768 4137 57860	2397 4363 57840	2008 4555 57840	1603 4713 57860
5*	X Y Z	5013 2846 57388	4757 2999 57512	4506 3127 57634	4264 3233 57753	4030 3323 57869	3805 3399 57940	35 8 9 3466 5 806 6	3380 3527 58187	3176 3585 58284
10°	X Y Z	5999 3037 57090	5753 2996 57331	5544 2923 57558	5376 2834 57769	5247 2733 57961	5158 2636 58134	5105 2549 5£269	5082 2481 56423	5083 2441 58544
15°	X Y Z	73 82 3137 56866	7168 2926 57216	7014 2679 57530	6923 2414 57804	6900 2144 58033	693\$ 1888 58218	7034 1660 58358	7178 1473 58457	7362 1343 58519
20°	X Y Z	9274 3135 56575	9106 2787	9012 2398 57406	8996 1988	9060 1578	9199 1190 58088	9409 844	96 8 1 559	10001 354
25°	X Y Z	11717 3034	57023 11602 2587	11563 2092	57714 11603 1575	57942 11725 1060	11927 572	55154 12903 137	12544 - 221	58074 12937 - 480
30°	X Y	56041 14676 2849	56573 14611 2340	57006 14611 17 8 0	57323 14682 1195	57516 14827 612	57540 15044 60	57521 15328 — 431	57345 15673 — 834	57078 16066 1125
35°	Z X	55074 18043	55673 1 8 015	56136 18034	56439 18103 867	565 69 18231	565#1 18414	56302 18651	55927 1 8 936	55421 19 26 0
	z X	2605 53486 21651	2072 54131 21642	1484 54604 21654	54875 21694	254 54926 21766	- 327 54752 21873	- 842 54361 22014	- 1262 53775 22186	- 1559 53029 22384
40"	r Z	2339 51111	1813 51780	1229 52246	614 52474	52444	- 577 52149	— 1087 51601	— 1498 50829	— 17 8 0 49 8 74
45°	r r z	25206 2086 47831	25286 1593 48500	25270 1039 48947	25254 452 49132	- 135 49033	25245 — 687 48645	25257 — 1170 47983	25283 — 1550 47079	25319 — 1799 45984
50°	X Y Z	28763 1882 43582	28739 1440 44234	286 8 0 934 44635	28596 392 44808	28491 — 152 44670	28373 - 662 44236	25246 — 1102 43524	28114 1438 42570	27979 — 1641 41427
55*	X Y Z	31862 1747 38374	31815 1369 38997	31713 921 39397	31560 434 39539	31363 - 37 39401	31135 - 516 38982	30879 — 904 38299	30604 1188 37389	30314 — 1339 36306
60°	X Y Z	34433 1689 32287	34373 1380 32877	34239 996 33267	34037 568 33426	33774 133 33336	33460 271 32996	33106 — 605 32423	32721 - 834 31651	32314 931 30730
(3°	X Y Z	36376 1694	36325 1455	36188 1136	35968 768	35675 389	353 30	34914 — 240	34469 416	33998 460
70"	X	25467 37647 1730	26027 37639 1561	26423 37536 2306	37343 998	26630 37069 676	26426 35723 381	26032 36320 154	25475 35872 29	24798 35394 35
75*	z x ï	38253 1748	18644 38326 1647	19060 38302 1457	19335 38183 1211	19459 37979 948	19430 37697 709	19258 37351	18964 36956 463	18580 36526 515
	Z X Y	10429 38241	10948 38431	#1391 38527	11746 38529	12003 38439	12159 3826 5	336 12220 38026	1219 Š 37729	12113 37 39 2
80°	Z	1693 2661 37675	1659 3159 3 8 010	1536 3623 38256	1356 4043 38400	1158 4418 38469	9h2 4735 38443	368 3006 38340	850 5226 38173	951 5405 37956
85*	y Z	1506 — 4982	1540 - 4521	1493 4061	1386 — 3607	1264 3163	- 2733	- 2318 - 2318	1162 — 1924	- 1547
90"	Y	36628 1141 —12316	37119 1245 —11925	37528 1275 —11514	37847 1259 —11cb3	38073 1228 —10635	3520E 1216 —10173	35259 1257 — 9700	38236 1377 — 9220	35153 1595 — 8736

•;	λ:	90°	95°	100°	105°	. 110°	115°	120°	125°	180°
90*	X	36628	37119	37528	37847	3\$073	3830\$	38259	38236	38153
	Y	1141	1243	1275	1259	1228	1216	1257	1377	1595
	Z	—12316	—11925	—11514	—11053	—10635	—10173	— 9700	— 9220	— 8736
95*	Х	35165	35802	36365	36844	37231	37525	37728	37848	37898
	У	567	744	864	950	1028	1126	1269	1481	1776
	2	—19200	—18923	18619	—18284	17917	—17515	—17081	—16615	—16119
100°	X	33342	34092	34780	35392	35916	36346	36683	36939	37094
	Y	- 222	31	251	454	658	853	1148	1468	1853
	Z	-25532	-25425	—25293	—25132	—24930	—24681	24380	—24031	—23599
105°	X	31304	32019	32784	33482	34102	34634	35075	35423	356 8 4
	Y	— 1304	— 872	546	- 216	127	495	897	1341	1 830
	Z	—31252	—31371	31475	-31554	-31593	—31574	-31482	31300	—31016
110°	X	28799	29616	30397	31128	31793	32353	32890	33311	33646
	Y	— 2334	— 1923	1487	— 1025	- 535	— 15	533	1110	1712
	Z	—36332	—36720	37109	—37480	-37609	—38070	-38233	-38271	—38162
115°	X	26177	26933	27669	28372	29030	29632	30168	30632	31021
	Y	— 3543	— 3057	— 2513	— 1922	— 1286	— 616	79	791	1508
	Z	—40770	—41453	—42150	—42834	— 43473	—44028	—44459	—44727	-44799
120*	x	23406	24042	24677	25300	25902	26473	27004	27484	27910
	Y	— 4759	— 4200	— 3559	— 2846	— 2076	— 1267	— 434	403	1230
	Z	—44584	—45560	—46558	—47543	—48474	—49304	—49981	—50459	—50696
125*	X	30567	21041	21531	22033	22541	23048	23544	24030	24467
	T	— 5895	- 5276	- 4551	- 3737	2854	— 1926	— 977	- 32	890
	Z	—47806	-49043	50305	- 51547	52722	—53776	—54652	55299	—55669
130°	X	17754	18040	18361	18716	19106	19325	19966	20419	20874
	Y	— 6885	— 6217	— 5429	— 4539	- 3572	- 2556	1521	— 493	501
	Z	— 50489	—51931	—53387	—54814	-56161	-57369	58381	—59142	— 59609
135°	X	15057	15152	15296	15497	15758	16076	16447	16862	17309
	T	— 7678	6977	6148	- 5212	- 4195	— 3127	— 2040	— 964	74
	Z	— 52696	54263	55832	-57359	-58791	—60074	—61154	—61978	—62506
140*	X	12550	12466	12445	12497	12629	12\$43	13134	13495	13916
	Y	— 8248	— 7530	6686	- 5735	- 4704	— 3622	2520	1431	- 379
	Z	—54510	—56113	57703	- 59239	60674	—61957	63041	63881	-64444
145*	Х	10274	10035	9869	9788	9800	9909	10113	10406	10778
	}`	— 8602	- 7853	— 7047	6110	— 5097	4037	— 2957	— 1887	- 852
	Z	— 56022	-57573	—59099	60564	—61927	63147	—64185	—65006	-65584
150°	X	8220	7858	- 7572	7377	7280	7257	7396	7603	7904
	T	— 8769	— 8066	- 7258	— 6360	— 5394	4363	- 3354	— 2331	1337
	Z	—57324	—58748	-60139	—61467	—62702	63812	64768	—65545	66125
155*	X	6336	5\$76	5493	5203	5007	4014	4923	5030	5231
	Y	— 8803	— 6129	— 7364	— 6523	- 5623	4683	— 3784	— 2766	1829
	Z	—58498	—59736	—60940	—62088	-63158	64127	—64977	— 65691	66257
160°	X	4523	3988	3528	3151	2863	2670	2570	2564	2643
	T	- 8768	8133	- 7424	- 6630	— 5825	— 4964	— 4083	— 3198	— 2323
	Z	-59595	60610	61596	-62537	—634 2 0	—64230	—64956	—65588	—66130
165*	X Y Z	2660 8728 60627	2062 — 8143 —61399	1532 — 7494 —62150	1076 — 6789 —62871	699 — 6040 —63554	404 — 5256 —64191	191 — 4449 —64776	61 - 3632 -65303	- 2\$13 -65767
170*	X	625	- 32	- 629	1164	- 1631	— 2028	- 2353	— 2608	- 2791
	T	— 8740	- 8210	- 7623	6984	- 6301	— 5583	- 4537	— 4071	- 3393
	Z	—61552	- 62072	-62581	63073	-63545	—63994	-64414	—64804	65161
175*	X	- 1676	— 2391	- 3057	— 3670	- 4226	- 4722	- 5155	- 5525	- 5828
	Y	- 8841	— 8370	- 7842	— 7260	6630	- 5959	- 5251	- 4512	- 3750
	Z	-62272	—62536	-62796	—63050	63297	-63535	-63762	-63977	-64178
180°	X	- 4287	— 5058	— 5792	- 6481	- 7121	— 7707	- 8234	- 8698	- 9096
	Y	- 9043	— 8635	— 8162	- 7626	- 7032	— 6384	- 5688	- 4949	- 4172
	Z	-62651	—62651	—62651	-62651	-62651	—63651	-62651	-62651	-62651

0;	λ:	. 135°	140°	145*	150°	155°	100°	165*	170°	175°
	7	1187	761		- 105	_ (20	968		— 1801	
o	X		4919	329 4967	4977	- 539 4949	4883	- 1390 4780	4641	- 2199 4466
	Z	4834 57 86 0	57860	57860	57860	57860	57860	57860	57860	57840
	X	2974	2770	2563	2347	2120	1878	1619	1342	1045
5°	7 2	3642 5837\$	3699 58461	3757 58542	3816 58619	3872 58691	3926 58758	3973 58622	4010 58881	4033
	l					•			l	58936
10°	<i>I</i>	5099 2434	5121 2463	5140 2533	5145 2644	5123 2790	5071 2969	4976 3173	4830 3393	4630 3621
••	Z	58649	58741	58823	58899	58972	59044	59119	59197	59280
	x	7572	1 7794	8012	8211	8373	2.2.	8530	8408	8379
15°	J Z	1 280	1258	1372	1533	1768	2070	2428	2829	3258
	1	58551	58560	58556	58546	58541	58548	58573	58627	58710
20°	X Y	10354	10723	11087	11427	11722	11951	12097	12143	13061
20	Z	243 57951	234 57793	336 57617	548 57442	867 57286	1284 57163	1786 57 99 3	2354 57083	57143
	,		13808	_	ļ	_		i		
25°	X Y	13365 — 624	— 639	14246 - 516	14656 - 255	15015	15301 660	15493 1287	15575	15532 2771
	Z	56734	56342	55931	55531	55171	54879	54677	54583	54610
	I	16491	16929	17360	17761	18109	18383	18563	18630	18573
30°	Z	— 1282 54818	— 1291 54156	- 1143 53478	- 835 52827	- 373 52245	232	959	1783	2676
	1		·				51769	51430	51254	51253
35°	X T	19608 1712	19963 — 1703	20312 1524	20631 - 1172	20899 654	21098	21210 817	1718	21117
	Z	52166	51239	50303	49416	48629	47991	47540	47305	47308
	x	22596	22812	23017	23193	23329	23405	23410	23331	23162
40*	1,	- 1911	- 1873	- 1658	- 1265	 703	13	856	1796	2797
	Z	48792	47647	46505	45435	44300	43753	43239	42986	43011
45°	X T	25360	25400	25427	25432	25404	25332	25209	25027	24785
30	Z	— 1893 44759	- 1817 43479	- 1562 42218	- 1132 41052	40030	39269	1061 38755	38536	38624
	X	27841	27696	27541	27.260	27177	26958	26709	26430	26122
50°	7	— 1689	- 1567	- 1272	27369 — 508	190	557	1403	2313	3249
	Z	40164	38856	37585	36427	35453	34721	34274	34136	34315
55°	X Y	30014	29706	29391	29067	28734	28391	28041	27686	27331
33	Z	- 1335 35117	- 1166 33899	- 830 32729	- 337 31683	293 30829	1032 30220	1847 29896	2699	3551
	x				1		1		_	1
60°).	31894 — 875	31465 - 659	31032 — 286	30599 230	30169 864	29744 1583	29329 2351	28930 3127	28554 387 3
	Z	29723	28698	27728	26882	26220	25791	25626	25740	26130
	X	33511	33017	32523	32035	31560	31100	30663	30255	29883
63°	J' Z	- 353	— 96	310	844 22014	1476	2167	2879	3570	4902
	į ,	24054	23301	23601	22014	21589	21367	21375	21622	22101
70°	X	34899 183	34398 482	33900 916	33412 1461	32941 2055	32494 2745	32074 3398	31689 4001	31346
••	Z	18144	17703	17309	17002	16828	16816	16988	17350	17895
	I	36076	35619	35165	34722	34298	33897	33523	33182	32879
75*	Y	708	1038	1494	2046	2658	3283	3881	4403	4816
	Z	11991	11864	11766	11732	11792	11971	12285	12740	13399
SO°	X T	37029	36653	36278	35910	35556	35221	34909	34621	34361
SU	Z	1184 5560	1545 5708	3018 5872	2574 6074	3173 633 6	3768 6677	4313 7109	4763 7638	solo Easi
	x	37705		37153	36873	36599	36335	36083	35848	35624
55°	.	1592	37434 1984	2474	3031	3617	4184	4686	5081	5337 2618
	Z	- 1183	— S23	- 455	- 66	360	834	1367	1963	2618
90"	Y	38024	37861	37678	37483	.37284	37084	36886	36690	36494
∌ ∪	Z	1919 — 8247	2344 7752	2851 - 7245	- 6718	3983 6163	4528 - 5573	4997 4942	5351 — 426 8	- 355 5
	(,	, ,,,,,			1	, ,,,,	494-	,	3333

₩.	λ:	185°	1404	145*	150°	155°	160°	165°	170*	175*
#; 	4:	100	447	140	, ,,,,,,			i	•••	
	x	38024	37861	37678	37483	37284	37064	36886	36690	36494
90°	1	1019	2344	2651	3411	3985	4525	4997	5351	3560
i	2	— 8247	— 7752	— 724 3	- 6718	- 6163	- 5573	- 4942	4268	- 3553
	X:	37882	37823	37728	37609	37472	37324	37166	37000	36823
95*	Z	2158	2622	3150	3714	4279	4504	5248	_ 5575	5758
4	•	-15593	-15036	-14447	-13823	-13161	-12459	—11717	- 10939	-10132
	X	37185	37216	37198	37142	37056	36948	36822	36678	36519
100.	Z	2305	2817	3371 -21927	3944	4504	5013 —19647	5443 18771	-17853	3928 —16910
1	-	-23110	22553	-2192/	-21231	-20470		, , , .	ĺ	,
	X	35864	35973	36021	36020	35980	35908	35812	35695	35560
105*	Z	2362 —30619	2929 —30103	3517 —29467	4103 -28712	4663 27849	5166 26890	5584 -25856	5590 24768	6065
1	i					-/-47		2,50,50	-4,00	
	X.	33899	34077	34188	34242	34251	34224	34169	34093	33999
110°	Z	2333 —37885	2963	3589	4194	4757	5256	5668 -32710	5974 31437	6159 -30139
I	1	- 3/003	—3743 1	-36796	-35987	-35019	-33916	_	3-431	32.37
	J.	31334	31576	31753	31872	31944	31978	31984	31970	31942
115	ľ	2220	2918	3587	4214	4784	5282	5692	6001	6199 -36184
· 1	i	-44649	-44261	-43633	-42774	-41706	-40466	- 39098	-37653	301 84
	X	28276	28582	28832	29029	29182	29300	29391	29465	29530
120°	Z	2031	2794	3506	4158	4738	5237	5647 —44846	5961	6173 -41681
	i	50662	-50337	-49720	-48825	-47683	-46337	-44440	-43272	-41001
	X	24878	25249	25578	25866	26117	26339	26538	26722	26898
125*	7 2	1769	2591	3344	4019	4611	5114	5525 -49861	5544 -48232	6070
1	-	-55731	—55465	-54873	—53972	— 52799	-51407	-4ya01	-40535	-46593
	X	21321	21752	22161	22543	22003	23239	23557	23861	24158
130°) ;	1440	2300	3095	3791	4394	4903	5318	5644	5883
- 1		59749	—5954 5	59001	-58139	-56999	—55639	-54127	—52539	-509 51
	X	17777	18256	18733	19206	19665	20111	20542	20961	21371
135*	Z	1032	1951	2760	3472	4083	4601	5024	5361	5619
- 1		-62710	—62578	-62116	61348	-60315	59075	-57693	—56248	—54806
	X	14383	14888	15411	15946	16482	17012	17534	18045	18543
140°) Z	611	1521	2340	3062	3684	4211	4647	5000	5282
		-64707	-64662	-64318	 63699	-62844	-61806	-62644	59425	-58214
	X	11218	11712	12244	12803	13375	13952	14524	15087	15637
145*) z	126	1029	1847	2572	3203	3744	4199	4579	4893
	2	65504	— 65961	- 65764	-65337	-64712	-63933	- 63052	62121	-61193
	<u>I</u>	82\$2	8727	9224	9758	10317	10585	11462	12030	12586
150°	Z	- 392	490	1296	2020	2661	3221	3706	4122	4482
İ		664 98	66662	66 626	66408	66033	-65540	-64960	-64337	63707
	X.	5513	5872	6286	6747	7240	7755	8280	8807	9327
155*	J' Z	— 929 444	- 79	710	1433	2088	2674	3197	3664	4082
	-	666 70	66930	-67043	67022	-66886	-66656	-66359	66019	-65662
	X	2807	3041	3337	3684	4071	4487	4924	5373	5827
160°) Z	- 1472	- 655	119	844	1517	2140	2713	3241	3730
	-	—66547	-66870	67094	67226	67276	07250	—67182	67066	-66923
	X Y	33	128	283	493	749	1045	1373	1727	2102
165*		— 200 5	- 1214	- 448	289	992	1660	2294	2895	3456
	Z	66168	—66503	66779	66993	-67152	-67260	-67324	-6 7350	-67343
	I	- 2906	- 2953	- 2940	- 2868	- 2741	- 2564	- 2341	- 2076	- 1772
170*	J'	- 2510	- 1729	- 955	- 195	550	1276	1980	2662	3322
	Z	65483	-65769	66019	-66234	-66413	66358	-66669	66730	66 8 00
.=	I	— 6066	— 6237	— 6343	- 6383	6360	- 6274	- 612 5	- 5921	— 565 8
175°	, ,	- 2969	- 2175	- 1374	' 570	231	1023	1807	2574	3322
	Z	64363	64535	-64689	-64825	-64944	-65043	-65124	65186	-65229
		i.				-10007	- 9964	9844		
	Ĭ.	- 9425	- 9683	— 9566	— 9975			- 4044	- 9650	— 9382
180°	7 7 2	— 9425 — 3363 —62651	- 9083 - 2529 -62651	- 9305 - 1676 62651	- 809 -62651	63 62651	935 62651	1800 62651	2651 62651	348s 62651

(Continuation of VIII)

): 	λ:	180°	185*	190°	195*	200*	205*	210	215°	220"
- 1	x	— 25 8 0	- 2941	- 3280	- 3594	- 3880	- 4137	- 4363	- 4555	- 4713
œ	r	4258	4016	3745 57 86 0	3445 57860	3110	2768	2397 57540	- 4555 2008	1603
,	2	57860	57860	57860	57860	57860	57860	57340	57860	5:660
5*	I.	728	392	39	- 329	- 706	- 1089	- 1471	- 1845	- 2206
 ;	2	4036 58987	59033	3963 59073	3878 59111	3755 59141	3589 59164	3379 59180	3121 591 88	2815 59186
1	-				1		1	1	1	l .
10"	X T	. 4372 3843	4053	36 \$ 0 4226	3230 4363	2772 4446	2253 4467	4416	\$137 4288	563 4076
	Z	59369	59465	59565	59670	59775	59879	59977	60067	60144
	X S	8168	7861	7460	6068	6393	5747	5044	4300	3533
15*	Z	3696 58826	4123 C\$007	4521	4871	5152	5350	5449	5439	5312
		_	58973	59155	59363	59594	59641	ease?	60348	60588
90°	J.	11598	11593	11165 4830	10620	9961	9322	\$401 640\$	7523	6611
	Z	3603 57277	4232 57487	57769	5370 58117	58:7 58:520	58966	59441	59927	60408
į	7	15357	15043	14594	14015	:3318	12517	11632	10685	9700
25°	X	3571	4369	513.	5826	6423	6900	7230	7399	7394
	Z	54763	55047	55451	\$59 ⁵ 5	56576	57262	Sicol	58768	59539
	X T	18383	18056	17596	17008	16306	15503	-14624	13686	12713
30,	Z	3601	4522	5402	6206	6902	7459	7856	8075	\$104
l		51440	51808	52350	53048	53879	54819	55534	56895	57968
35*	X T	20506	20554	20095	19529	18866	18123	17317	16468	15596
<u>.</u>	Z	3687 47536	45004	5622 48688	6481 49567	7223 50611	7817 51786	\$342 53955	\$482 54381	\$527 55726
1	x	22000	227.46	22107	ł	21008	20171	1	19016	1\$319
40"	7	3820	22546 4625	5774	21590 6632	7365	20375 7949	19707	8597	8643
	Z	43316	43890	44711	45750	46971	48335	49600	51325	53872
	X	24484	24127	23721	23279	22809	22325	21537	21353	20584
45°	Z	3986 39016	4951 3969\$	5830 40633	6649	7323 43136	7852 44617	\$220 46194	8421 47827	49478
1	_		39073	i .	41794	73.30	1	i	1	1
50°	X I	25790 4173	25441 5030	250\$4 5847	24731 6540	24391 7110	24073	23785	23530 7981	23307 7987
	Z	34801	35573	36594	37824	39219	7543 40734	42327	43962	45608
- 1	x	26984	26655	26353	26094	25882	25726	25639	25589	25600
55°	Γ .	4368	5117	5775	6324	6753	7061	7250	7327	7302
:	Z	30736	31575	32637	33879	35254	36720	36235	39777	41313
	Ţ	28211	27912	27668	27491	27388	27367	27,425	27560	27758
60°	Z	4560	5158	5651 25708	5030	6297 31200	6460	6532	6530	6469 36627
1		20777	27650	20,00	29906		32548	33917	35282	}
65°	X	29562 4746	29298 5181	29103	28989 5700	28963 5796	29031 5806	29191 5756	29436 5670	29753 5571
	Z	4746 22793	23666	5499 24680	25791	26958	26143	29318	30464	31573
ļ	7	31054	30822	30662	30583	30593	30696	30893	31176	31534
70°	7	4923	5200	5347	5374	5305	5169	4999	4831	4692
i	Z	18605	19449	20391	21391	22411	23418	24355	25306	26172
	X Y	32621	32413	32270	32196	32199	32283	39455	32706	33008
75°	Z	5094 14036	5229 14836	15697	5096 16584	4879 17463	4611 18306	4334 19091	4090 19806	3914 2045
	i			1	•		_		-	
BO* :	T	34132 5263	33941 5280	33792 5151	33695 4899	33657 4563	33682 4186	33776 3821	33937 3513	34161 3303
- - 1	Z	8958	9717	10508	11302	12069	12784	13429	13994	14488
	7	35417	35288	35061	34923	34821	34761	34748	34787	34876
65"	Y	543 <u>3</u>	5366	5147	4806	4383	3930	3495	3140	2899
	Z	3325	4064	4816	5555	6255	6594	7454	7928	8318
90"	X Y	36299	36103	35914	35730	35560	33410	35257	35198	35143
		5606	5487	5215	4533	4352	3853	3352 1264	2992	2727

u;	λ:	180°	185*	190°	195°	200*	203°	210°	215*	230*
	x	36290	36105	35914	35730	35560	35410	35287	25198	35143
90"	3.	3606	3487	3213	4523	4332	3553	3382	2992	2727
	Z	— ž811	- 2051	1293	- 564	119	733	1364	1703	2059
	X Y	36635	36436	36223	36005	35782	35360	35347	35149	34973
95°	Z	5780 9306	- \$480	- 7671	- 6901	- 6191	- 3947 - 3558	3463 - 5013	3060 456a	2782 4198
-	x		l		1			1	1	l
100	î	36342 5948	36146 5812	35932 5536	35700 5145	35452 4679	35193 4183	34929 3713	34665 3316	34411
]	Z	-15959	-15021	-14118	-13273	-12504	-11625	-11244	-10761	—1036 5
	X	35407	35234 5987	35043	34830	34598	34347	34081	33503	335#3
105*	J'	6098 22543	5987 —21463	5745 	5396 —1950 2	4974 —18663	4521 -17933	4085 -17315	3713 -16800	3446 —16371
I	_									
110°	X,	33 5 90 621 5	33767 6141	33629 5948	33472 5657	33296 5297	33100 4906	32883 4524	32647 4195	32394 3957
•••	Z	-28855	-27625	-26482	-25452	-24552	-23786	-23149	-22623	-23178
ļ	\boldsymbol{x}	31905	31859	31804	31736	31653	31530	31423	31271	31092
115*	3,	6282	6250	6114	3890	3604	5267	4974	4704	4510
.	Z	34746	—333 8 6	-32145	-31051	-30118	-29346	-28719	-28209	-27777
,,,,,	<i>x</i>	29588	29644	29696	29740	29773	29787	29776	29735	29661
120°	Z	6283 40137	6294 —36696	6215 37403	6062 36288	5854 35362	5619 -34619	5387 -34035	5189 -33572	5056 -33180
ł	$\frac{1}{x}$									
125*	?	27071 6206	27243 6258	27414 6233	27580 6150	27736 6022	27874 5873	279 8 6 5727	28065 5611	28107 5551
}	Z	—45020	-43568	-42286	-41803	-40327	-39647	-39133	-38738	-38403
	\boldsymbol{x}	24451	24741	23028	25310	25579	25830	26054	26244	26393
130*	Z	6046	6137	6167	6148	6098	6034	5977	5930	5978
1		-49435	-45 053	—46849	-45851	-45064	-44473	-44042	-43723	-43447
185*	X	21773 3807	22168	22333 6017	22931 6063	·23292 6088	23632 61 0\$	23944 6143	24223	24465
	Ż	-53439	5936 —52203	-51139	-50270	-49599	-49109	-48762	6203 —48507	6312 48281
- 1	x	19029	19502	19960	20402	20\$24	21223	#1594	21935	22246
1400	5	5502	56/3	5507	5917	6015	6117	6237	6358	6582
- 1	Z	-57069	-56040	-55160	-54449	53906	-53513	-53236	53025	-52825
1480	Į.	16170	16685	17181	17656	18107	18536	18939	19319	19677
145°	Z	5155 60315	-53/5 -59526	-5566 -55852	5742 —58307	-57888	-57578	6298 -57348	-57157	6804 —56957
-	7		_							
150°	J.	13126 4795	13647 5073	14147 5332	14625 5578	15082 5826	15519 6083	15937 6364	16340 6670	16733 7009
1	Z	-63165	-62559	-62056	-61693	-61383	-61136	60931	-60736	-60514
	X	9837	10333	10812	11276	11724	12160	12588	13012	13439
155*	Z	4461	4811	5143	5466	5790	6123	6472	6840	7230
}	- 6	-65309	64978	-64679	64417	64189	-63 <u>984</u>	-63786	63574	-63323
160*	X	6281	6733	7180	7623	8063	8503	8949	9403	9874
	Z	-66764	4620 66599	66432	-66265	-66096	65919	65723	7070 65496	7493 65224
1	\mathbf{z}	2493	2895	3316	3747	4192	4653	5134	5637	6168
165°	J.	4011	4532	5036	5524	6001	646\$	6927	7377	7816
1	Z	67309	-67249	-67168	-67064	66936	-66 7\$3	-66596	66372	66106
170*	7	- 1432	- 1058	- 651	- 211	260	764	1301	1873	2480
110	Z	3958 66820	4571 66812	5162 66775	5730 66710	6276 -66616	6797 — 66 491	7294 66336	7763 6148	8902 65925
1	ı					- 1				
. 175*	T	- 5339 4048	- 4967 4747	- 4542 5417	4068 6053	- 3546 6657	— 2977 7230	- 2363 7739	- 1711 \$213	- 1015 8637
`	Z	-65251	-65253	-65238	65202	-65147	-63071	-64977	-64862	-64729
	35	- 9043	— 8 635	- \$162	7626	— 7032	— 63 8 4	- 5688	- 4949 8698	4172
180	7	4287 62651	3038 62631	3792 62651	6481 62651	7121 62651	7707 63652	8234 —62651	8698 60651	9096 —60651

(Continuation of VIII)

w;	λ:	225*	2307	235*	240*	245*	250*	255"	200	265*
	7	- 4834	- 4919							
o	J.	1187	761	- 4967 330	- 4977 - 105	- 4949	- 4883	_ 47.b	- 4641 - 1801	- 4466
	Z	57860	57860	339 57 560	57860	57860	- 968 57860	57840	57860	- \$199 57860
5.	7,	- 2545	- 2856	- 3130	- 3361	- 3543	- 3069	- 3733	- 3736	- 3671
9-	Z	-59175	59153	1616 - 59120	39073	613 59018	58948	- 101	- 3736 - 1087	- 1673
	,					1			58772	58667
10°	X Y	3779	3398	- 1055 \$935	- 1515 2393	- 1914 17 8 6	1118	- 24E4	— 2638 — 263	- 9697 - 1183
	Z	60304	60343	60055	60841	60193	60115	60001	- 350 59851	39667
	J.	2762	loos	1289	623	29	- 480	_ \$\$q	1189	- 1372
15°	2	5064 60 8 07	4693 60995	4208 61142	3611	2914	2131	1877	371	- 569
		·		VI.45	61340	61250	61358	61169	61011	60753
20°	X Y	5 688 6232	4777 5869	3901 535 8	3082 4709	2339	1690	1148	723	499
	2	60865	61281	61640	61926	3935 62 125	3053 62237	ens 3	62109	61886
	J.	870 0	7712	6757	5858	5033	4302	3676	3165	
25°	z	7212	6852	6321	5632	4800	3846	2792	1663	2779 487
		60286	60983	61611	62141	62555	62838	40975	6095\$	60781
30°	J.	11729 7940	10753	9812	8920	8094	7348	6693	6138	5690 640
-	Z	39019	7584 60017	7043 60931	6336 61731	5475 62393	4484 62894	1357 63213	43343	980 63269
	7	14717	13850	_	12210		1			
33.	X Y	8375	8029	7498	6796	11460 5942	10768 4957	10142 3863	9587 2689	9107 1457
	Z	57052	58323	59504	60564	61473	62304	44713	43043	63120
40*	Ţ,	17625	16943	16283	15650	15043	14463	13917	13401	19919
•	Z	8498 54408	5170 55 880	7669 57271	7007 58543	6200 59666	526 8 60610	4230 61330	3108 61860	1923
	7		**	_	1				0.500	62123
45*	J.	8316	19990	19563 7570	19144	18726 6262	18303	17870 4496	17423 3475	16963 2383
	Z	51113	52701	54213	55620	56893	5430 5800\$	58933	59642	60109
	X.	23111	22933	22760	22577	22369	22121	21622	21464	21045
50°	ż	7860 47236	7605 48823	7231 50352	6745 51799	6153 53143	5461	4674	3797	2104} 2838
İ	-						54361	55425	56306	5 69 7 5
55*	7	25648 7185	25716 6984	257 83 6703	25826 6343	25820 5909	25744 53 5 9	255 8 0 47 8 2	25317 4051	24930 3283
[Z	42828	44311	45752	47140	48465	49709	50830	51859	52703
İ	X.	28003	28271	28533	25762	28925	25906	25953	28779	28468
60°	Z	6363 37946	6221 39238	6043	5830	5567	5241	4533	4328	3709
			39-30	40506	41751	42975	44168	45316	40395	47371
63 °	7	30123 5475	30522 5394	30912 5324	31265 5257	31546 5172	31724	31772	31678	31415
	Z	32648	33697	34737	35780	36839	5044 37917	39008	4538 40095	4104 4114 8
	I	31948	32390	32832	33238	33574	33809	33912	33864	33453
70"	Z	4605	4579	4610	4682	4766	4527	4524	4714	4459
1	i	26994	27789	28582	29397	30258	31178	32163	33204	34277
:3•	Ţ	33404 3831	33813 3849	34228	34616	34945	35184	35303	35261	35100
	Z	21054	21619	3965 221 84	4157 22780	4391 23441	4630 24190	4793 23044	4558 2600a	4768 27049
}	x!	34437	34747	35071	35381	35649	35846	- 1	1	
80"	X ,	3216	3266	3445 15678	3731	4062	4447	35944 4768	35980 4982	35758 5 035
1	Z	14907	15203	15675	16095	16583	17179	17903	18766	19766
. 85°	7	35011 2805	35188	35373	35564	35732	35851	35898	3544	35448
	Ź	8639	2871 8917	3090 9184	3438 9483	3872 9853	4337· 90335	4769 20959	5101 11748	3271
	\mathbf{z}	35129	35147	35189	35243	35290		35258	1.	
90"	X.	3631	2688	2924	3303	3784	35312 4312	4519	35197 5235	350ds. 5496 .
- 1	Z	2342	2574	2795	3043	3361	3791	4366	5109	Sepé .

:	λ:	552.	230*	235*	240	245*	250*	255*	260*	265*
	x	35129	35147	35189	35243	35300	35312	35288	35197	350
90") ;	2621	2658	2924	3303	3744	4318	4819	5*35	541
	2	2341	2574	<i>\$</i> 795	3043	3361	3791	4366	5109	60
	X J	34826	34705	34609	34530	34458	34379	34277	34134	3392
95.	Z	2663	2721 - 3662	- 3428	- 3337 - 3166	- 3535 - 2532	4390 — 2358	4939 — 1797	- 1038	_ 571
4		— 3 907	_ ,		_ ,		_		_	
100	X Y	34169	33947	33743 3169	33557	33384 4029	33216 45 8 6	33041 5149	33847	3,960
100	Z	—1003 <u>\$</u>	- 9744	- 9455	- 9128	- 8722	- 8200	- 7528	_ \$649 _ \$689	- 56
			32967	31701	32448	32206	31974	31743	31511	3120
105.	X	33242 3319	3351	3547	3894	4361	4903	5461	5971	63
	2	-15999	-15651	-15267	-14863	-14347	-13697	-12890	-11912	-107
	x	32127	31853	31576	31301	31031	30768	30512	30061	300
110	3.	3642	3871	4052	4375	4816	5334	5877	6384	67
	Z	—21778	-21382	- 20943	-20418	-19769	-18964	-17985	—16827	-154
Į	x	30888	30662	30420	30168	29911	29657	2940\$	29168	2.89
115°),	4424	4463	4642	4950	5369	5864	6389	6886	72
	Z	—2737 \$	-26950	-26452	-25634	5057	-24093	-22932	-21576	-300
	X.	29552	29410	29240	29049	28844	28636	28431	22237	280
130) Z	5014 —32800	5083 -32372	-31\$37	5580 -31147	5987 —30262	6466 29159	6973 -27830	7459 —#6389	- 245
j			1	3.43/	1	1				1
	X Y	28107	35068	27994	27891	27770	27642	87517	27404	273
132.	2	5570 —35062	5683 - 37649	-37101	6824 -35355	6633 35404	7104 -34195	7599 -32738	-31049	-391
1	x	26.20			26606		1		-4	265
130*	ĵ.	26504 6063	26572 6237	26603 6499	6847	26590 7268	26569 7739	26553 8224	26553	90
	Z	-43150	-42760	-42213	-41457	-40453	-39186	-37654	-35877	-338
	X T	24660	24837	24973	25087	25189	25201	25405	#5541	257
135.		6482	6722	7035	7418	7858	\$331	¥\$07	9247	96
	Z	—48016	-47645	-47107	-46350	-45341	-44061	-42514	- 40722	—387
	X	22326	22779	23013	23236	23459	23693	23948	24233	245
140°	ì.	6529	7135	7500	7918	\$374	\$847	9305	9722	100
	Z	-52574	—52210	-51678	—50934	-49946	-45700	47199	-45463	-435
	X	20016	20343	20664	20001	21331	21695	22091	22524	229
145*	j' Z	7131	7485	7593	8336	8799	9262	9697	10074	103
		—56695	—56323	-55794	-55070	-54127	-52953	-51550	-49937	-451
150*	X J	17121	17512	17913	18337	16787	19273	19790	20368	209
130	Z	7382 60227	7789 —59836	-5930\$	8673 -58613	9128 -57734	9564 —56662	9958 -55399	10384 53960	—523
			i	1	!		1	1	1	1 .
155*	<i>X</i>	13576	14330	14500	15320	15870	16464	17102	17785	185
100	Z	7641 63007	-62599	-62078	-61425	9368	9757 -59682	58590	10352 —57361	105 —560
				Į	1			!	:	
100	X	10367 7922	10889	11445 876\$	13041	12680	13364	14093	14861	156
	Ż	-64892	-64486	63992	-63401	-62707	9459 -61907	61006	éocos	-589
	7	6730	7327	7963	\$639	9356	10113	10906	11731	125
ies.	X Y	8241	8646	9024	9365	9660	9898	10066	1014	101
	Z	-65788	-65415	64961	-64451	-63913	-63262	62586	-61831	-610
	X y	3123	3803	4519	5260	6053	6863	7701	8553	-4
170		\$606	5970	9259	9556	9765	990\$	9977	9967	94
	Z	65666	-65371	-65037	-64666	-64257	-63513	-63336	-62828	-623
	X	- 259	474	1263	1800	2917	3767	4606	5487	61
173°	Z	9007	9320	9571	9758	9875	9921	gligs	9756	63 96
	l	· .	•		•	-63797	-63564	-63319	63062	-627
150°	X	3363 9425	- 2529 9653	- 1676 9866	- Sog	10007	935 9964	1500 9544	9650	34
	Z	74-3	. 4001	, 7000						

•;	λ:	270*	275°	280*	349.	2HO*	395.	300 °	305°	\$10
ø	X 7 2	- 4258 - 2580 57860	— 4016 — 2941 57860	- 3745 - 3280 57860	- 3445 - 3594 57640	— 3119 — 3830 37860	- 2768 - 4137 57660	- 2397 - 4363 57660	— send — 4555 57860	- 1603 - 4713 57860
9	X Y	— 3539 — 2359 585 5 0	- 3337 - 2830 58423	— 3069 — 3380 58887	- 2737 - 3899 58144	- 2344 - 4378 57994	- 1896 - 4810 57841	— 1398 — 5169 5764	- 858 - 5507 57506	- 283 - 3760 57370
10	Y	2657 1902 59448	- 2518 - 2673 59198	— 2280 — 3420 58919	- 1946 - 4128 58615	- 1523 - 4786 58090	- 1017 - 5379 57949	- 437 - 5896 57598	- 6328 57841	- 448 - 448 800
139	772	— 1435 — 1522 60487	- 1374 - 2469 60187	- 1192 - 3359 59708	- 892 - 4964 59237	- 481 - 5075 58723	- 5806 18175	638 - 444 5760\$	- 6976 57003	2071 7391 54439
30°	X Y Z	263 1126 61544	235 2216 61099	- 338 - 3276 605;8	_ 4253 _ 59930	924 — 5221 59229	- 6065 5\$472	1962 6800 57677	- 7417 54861	- 7598 - 7598 Sécus
250	7 2	#522 - 712 62447	2396 1905 61960	- 3068 3068 61331	#532 - 4175 60575	2787 - 5205 59718	- 6136 58763	_ \$636 _ \$952 57753	- 7636 56713	- 8177 55446
30°	I I	- 5353 - 275 62993	- 1527 62517	- 2752 - 2752 61853	- 3923 61018	5148 - 5017 60036	5380 - 6012 58934	- \$717 - \$590 \$7747	6154 - 7634 56507	- 6684 - 8030 55252
354	I I	8707 193 62957	- 1075 62555	#164 - 2323 61922	8028 - 3525 61075	7989 — 4658 60039	- 5699 58645	- 6609 57531	8472 - 7428 56139	- \$833 - \$666 54712
40°	J J	12473 697 62126	12076 - 546 61861	- 1783 - 1783 - 61333	- 1445 2969 60553	11233 - 4142 59542	- 5217 58332	11071 6193 56962	- 7049 55477	- 7765 53908
45°	X Y Z	16493 1237 60315	16026 55 60244	15569 - 1143 59890	- 2333 59257	-14759 -3492 58357	14442 - 4596 57218	14209 - 5619 55873	14077 - 6533 54372	14057 - 7323 52762
50°	X Y Z	20569 1205 57403	90048 712 57563	19498 - 425 57443	18941 1583 57028	18403 - 2743 56322	17918 - 3574 55340	17494 — 4946 54111	- 5931 - 59671	16974 - 6801 51072
55°	X S Z	24483 2389 53348	23929 1405 53759	23309 343 53904	23630 - 779 53761	219 63 — 1934 53316	21344 3092 52569	90767 4220 51533	90284 5281 50240	19922 6241 48726
60°	X Y Z	28024 2968 48203	27459 2105 48854	26796 1125 49276	26066 47 49432	25305 - 1103 49291	24553 - 2291 48837	23852 - 3478 48065	23238 4621 46986	22744 5679 45630
es•	7 2	31003 3522 42126	30446 2783 48981	29769 1890 43661	29004 857 44114	28:88 - 257 44293	27364 — 1304 44161	26577 - 2751 43695	25868 - 3978 42858	25273 - 5137 41751
70*	37 - 2	33276 4032 35344	32746 3416 36356	320\$1 2609 37254	31314 1623 37976	30481 488 38460	29625 - 757 38653	25792 — 2061 35511	#8024 1370 38006	27360 4628 37131
7.50	3 5 2	34763 4486 28154	34269 3986 29268	33639 3163 30331	32598 2327 31275	33062 1205 32026	31230 — 60 32517	30356 1414 32687	29592 — 2798 32489	25555 - 4149 31897
80°	7 7 2	35451 4881 20866	35000 4490 82034	34417 3848 93209	33724 2964 24318	33030 1363 25284	32130 588 26047	31305 - 805 26473	30514 - 2253 26562	- 3658 - 3658 séc48
85°	3 7 2	35404 5227 13772	34994 4933 14963	34464 4370 16206	33831 3541 17489	33116 2470 18332	35349 1197 19492	31505 — 221 20163	30798 — 1719 20499	300de 3256- 30437
90°	T	34730 5543 7108	34375 5335 \$310	33599 4847 9596	33329 4078 10695	32682 3046 12128	31979 1768 13209	31249 340 14052	30521 	99805 - 8741 14787

u :	λ:	270"	275*	280"	285.	290"	397.	800"	305.	310
	7	34730	34375	33599	33329	32662	31979	31240	30521	3962
90"	j.	3543		4647	4075	3046	1788	360	- 1174	- 274
	2	7102	\$338		10395	12128	13209	14058	14580	1471
,	x	33666	13319	32500	32362	31805	31172	30504	apleS	2915
95"		5855	5788	1306	4599	3614	2354	.959	— 59 6	- 221
	Z	999	2238	3549	4987	6037	7416	\$379	botg	935
į	7 1	32350	39025	31639	31190	30681	30119	29518	22592	stot
100	1	6193	6123	5773	5130	4195	3004	1593	4044	- 160
i	Z,	- 4300	- 3194	- 1799	_ 377	999	1130	3297	4044	441
	<u> x</u> (30994	30690	30345	29953	29512	59051	28489	87961	_=73
105"	_ F ∜	6550	6563	6274	5691	4814	3663	2275	718	
1	2	- 9462	- S 041	- 6546	— yeys	- 3588	- 2369	- ::57	— 350	1
1		29749	29473	20176	25645	28473	2 Sofo	27599	27098	2654
110	7	7034	7058	6520	6293	5470	4364	3006	1449	- 4
i	Z	-14034	-12445	-10613	— 9190	- 7643	0245	- 5070	- 4173	— 36 1
	A S	28709	28480	25241	27952	27691	27358	26975	26536	stoj
150	.	7556	7610	7414	6934	6160	Sopt	3770	2226	51
.	Z	-18373	16609	-14511	-13046	-11383	9591	— 8634	— 7670	- 704
	.r ;	27540	27731	#7573	87408	27203	26466	26671	26306	2584
30		\$132	\$205	Sozi	7595	6861	5836	4542	3019	131
ļ	Z	-2: 193	-10743	-15772	-:6653	-1505\$	-:MH	-12103	11054	-1034
ļ		27234	37174	87120	27060	26974	26844	26649	26372	=391
125"	5	\$733	8813	\$662	8243	7548	6550	52,1	3796	211
	Z	-17135	-25023	-22900	-30740	-15916	-17196	-15739	-14592	-1371
	Į.	26621	20655	26764	26834	26877	265;1	26791	26614	2631
30		9317	9392	9243	8842	\$163	7203	5979	4519	25
1	Z	-31766	-29551	-2;325	-25163	-23139	-21315	-19760	-18508	-1751
	8	25896	26110	26333	26551	26738	26848	26914	26830	9669
133.	3.	9837	9895	9741	9342	Sólo	7750	6566	5154	355
	Z	—3ô57i	—3433 2	-32076	- 29577	-27504	-25924		-22943	-8191
	J.	24598	25270	25651	26022	26357	26628	26807	26366	2678
140	Г	10248	10279	10107	9705	9036	\$138	7030	5670	414
	2	-41443	-39271	-37073	—34917	-32868	30966	-29322	-27916	-2679
- 1	ŗ	23447	24023	24356	25074	25551	25960	36271	26457	264
145*		10514	.1050å	10311	9901	9263	\$401	72.9	6042	46
- 1	Z	-40211	-44191	-42139	-40113	-38170	— <u>36361</u>	-34731	-33318	-3214
	.г	21618	22279	22044	23590	24193	24723	25155	25464	256:
50°	r i	10615	10564	10336	9916	9293	Seci	7451	6260	49
	Z	—50657	-48566	-47039	-45224	-43465	-41505	-40253	-35929	-377
I	x	19258	20023	20770	21534	22232	#2859	23392	23509	240
155°	Σ 2	10552	10449	10157	9756	9148	8346	7419	6384	514
- 1	Z	-54570	—53m6z	-51519	-49977	-45470	-47009	-45684	-44461	-433
	Į	16458	17323	28151	18953	19710	20401	21005	21504	218
160.	ŗ	10347	10187	وذكو	9445	3854	6116	7242	6943	
	Z	-57779	54588	-55358	-54129	-529:8	-51749	-50640	-49618	
	Į	13441	14304 9521	15154 9434	15975	16752	17469	18106	18656	1914
165"	Ţ	10040		مثبه	9026	-	775#	- 54908	6039	30
	Z	-60177	-59299	—Sitos	-57500	56610	—5574 1	- 54900	-54122	-5334
	.r r	10283	11139	11974	12778	1353\$	14941	14878	15437	157
170"		9683	9403	9014	8549	7977	-7314	6564	5737	
	2	-61741		60593	-60016	-59442	-55350	—5 ⁸ 337	-57819	-573
	Ţ	7185	\$007	Heo	9556	10067	10905	11522	12052	199
175°	Z	9336	8991 	8567	2066 61693	7491	445	6134	-5364 -60645	45
		-62526	-62250	-61972		-6:421	-61133	dely3		-644
180"	J T	4287 9043	5058 8635	5792 8162	.6481 7606	7121 7033	7707 6384 —60651	2034 5625	Eégl	90 41
			: 4515					. 2835	4949	

_	·;		31:	33	3	25*	230.	. 82	72.	840	- T		9.0	17	-
	o	X			761 — 919 —	399	105		539		4		+	_	350
		<i>z</i>	57	57	122 T _s	22 -	1777	-57	22	- 41 578		47.00	-	41	- 44 578
	r	X		118	36	56:	2185		799		1	,,	57		578
		Z	578			996	606s 56790	1 - 5	233	- 37 - 57		3961 5546	1 - 5	***	- 32
10	r	X	- 5			157	3924	-	678	/ 5655 ****		jája 		243	şāai
	İ	Z	565			166 —	7016 5554	- 64 551	I Ball	- 33		433	او – ا		797 - 500
15	•	T	- 76			58	5402	'	38	5503	٠ ا	ubiā 	1	104	544;
		Z	336				7798 4 30 1	- 75	84	- 704 - 705	-	7for 4513	- 64	76	- 901 - 961
20	•	I T	- ::		3 50	4.	6736	76		5346	. "	3120	Şal	34	3060
		Z	3503		5 - 6. 537	43 -	8385 3069	- \$1	45	— 7771 — 7771	-	1945 1974	_ 22		1066
234	.	X T	, <u>560</u>		6 70	. •	loss	524 80:	- 1	51936	1 -	1483	511		596 5061
_	i	Ź	— 856 5463			5 - 1	776	- 85	J2 .	- 2751 - 2751		146a 1616	- 696		1203
20"		X j	729	797	5 27		- 1	\$113		50476		yeş	494		- 601 4918
	İ	Ż	- 5461		3 - yo.	<u> </u>	495 985	- 875		1110 6 - \$377	-";		1967 — 719		13400
25°		x i	9290			1	707	4951		49036	فه	390	4784		4746
_		Z	- \$577 53293	— \$90g	- 900	, ,		- \$85	š _	12631 Zozā -	1_'2	96.5 904	1417		14919
10"		r [11592	11979	1	. "	459	4841	•	47516	4		4615		- 6616 43677
		2	— 8327 52364	- \$722 50832	- 894	- 4	986	1368 - 8854		14394 - 5555	-18	36	1589	, ,	16653
	11	r !	14160	14387	1	.	- 1	46831		45744	44		— 7504 44174		- 6788 43594
5.			- 7963 \$1000	- 5438	- 873	- ii	98	13760 — 8798		16405 8564	171		17851		18623
	1	·	10006	19435 16080	47829	463	17	44936	•	43709	436		— 7631 41 76 0		- 6968 41037
•	2		- 7530 49367	- 8097	- 17197		49 96 .	1 8006 8719 —	1	18607 8563	192	73	30000		20763
	A	, !	19702	47613	45873	441	92	48617		41163	- &s.			~	7169 37884
,	J		— 706g	19638	- 8232	199		20372	1 :	20529	2154	,	22301	1	
ı	Z	1	47043	45230	42406	415		- 8650 39799		\$578 38133	— 633 3001	4 -	- 7935	-	22951 7435
,	X		22395 6614	22270	22193	2234		22652	1	3048	-	1	35260	1	34085
	Z	1	44037	- 7393 42260	- 7943 40360	- \$40 3\$40		- \$610 36444	-	6636 4549	- 346 - 346	3 -	\$4312 - \$140		15007 768a
•	X Y	<u>, </u>	24822 - 6182	24534	24419	2447	•	24701		507:	3276		31130	1	9673
	Z	ĺ	40311		7786 36712	- 530 3467	• : –	\$608 32369	-	6714	- 1634	-	#6155 \$388	_'	ii;
	X T		26\$31 - 57\$2	26459	26258	36524		26365	ĺ	6651	22430		a6 jeş	ı	4760
	Z	į	35497	- 6789 34336	7613 32494	- 823) 39437	-	\$643	1	lees	=/06] - 1645		67578 6473	_*	8167 1353
- [X T		28304	27867	27590	27477		25236		969	*3713		11540	81	7333 7314
1	Ž	-	30904	- 6527 29527	- 7454 27503	- 6195 85789	! -	7585 8706	- 8	719 998	etone Jest —	_ '	1846a 8987	_#	733 733
į	X J		29177	28680	18345	257 29	I	3558		190	18777		6399	- 4	136
	Z	. — ì	3047 25510	- 6073 84347	- 7322 22783	— I162	! -	8112 8777		105 .	si429 9337		5745		445
	X T		29449	28923	28523	20573	ł.	2679	164	186	inis		9313	_ [ı ı l İye
1	Z		4675	- 6004	- 7i6e	- \$113		ting tipe	- 91	192 193 -	aleşa edi:		lees	287	
1 .	Z T		9169	28637	17630 28186	15864	12	1746	114		- 9163 1901		700 700	— 94 37	197 76
i	₹ Z	_	4871	— 5 696 .	- 696s	- less	-	1630 1858	275		£7524	87	613	200	-
1	- i	'	4447	13717	12541	19946	-	765	- 24	* -	9 to 9	— •		- 77	-

;	λ:	815°	250	\$25°	3:30	335*	340*	345*	350°	855*
	x	29180	28637	28186	27849	27630	27524	27524	27613	27780
90°	7	- 4271	- 5696	- 6962	- Soz5	- 8858	- 9449	— 9Š00	- 9925	9550
	Z	14447	13717	12541	10946	8985	6730	4269	1698	- 357
	X	28528	27957	27464	27059	26751	26541	26423	26391	56432
25*	Z	- 3812 9248	- 5329 8701	- 6699 7797	- 7873 6286	- \$630 4483	- 9518 - 9518	- 9965	—10170 — 2509	-10156
	1.	l	-,0.			1				- 5072
100°	X	27644 — 32 8 4	27060 — 4884	26525 6356	26053 — 7643	25657 — 8703	25338 - 9511	25099 —10057	24938 10347	24848
	Z	4509	4107	3269	2010	366	— 1608	- 3840	- 6248	- 8744
	.r	26730	26136	25562	25023	24533	24103	23735	23436	23206
105°	5	2679	— 4355	5921	- 7316	- 8489	- 9409	-1005\$	-10436	-10559
	Z	298_	6	— 705	- 1824	- 3321	— 5147	— 7238	- 9522	-11921
	X	25963	25363	24752	24146	23561	23011	22509	23066	21691
110°	r Z	2000 3420	— 3741 — 3626	- 5392 - 4235	— 6887 — 5236	- 8168 - 5600	— 9197 — 8283	- 9950 -10234	-10422 -12384	-10633 -14664
					i			1	1	
115*	X Y	#5482 1258	24875 — 3051	24229 4774	#3557 6356	22877 - 7736	— 886 8	21566 - 9723	20974	20447 —1057\$
•••	Z	- 6785	- 6914	- 7432	— 832 3	- 9566	-11114	-12921	-14929	-17076
-	7	25341	24738	24063	23331	22561	21773	21000	20260	19581
120°	X Y	- 475	— 2302	→ 4078	— 5730	— 7194	- 8418	- 9369	10033	-10415
	Z	- 10013	-10056	-10476	-11257	-12370	-13778	-15436	-17290	-19286
	Ţ	25517	24929	24240	23452	22617	21731	20833	19960	19138
125*	}' Z	322 -13353	- 1517 -13289	— 3324 —13590	- 5023 -14239	- 6530 -15207	— 7851 —16457	\$889 17945	- 9648 -19626	-10125 -21448
								1	1	
130°	X Y	25900 1103	25346 - 724	24663 — 2533	23863 — 4253	22972 5818	22013 7176	- 828q	— 9138	19093 - 9719
	Z	-17036	-16839	-16993	-17481	-16273	-19336	-20627	-22104	-23722
ļ	x	26313	25817	25170	24383	23482	22492	21430	20394	19361
135°	J' !	1836	49	- 1733	— 3443	— 5021	- 6413	— 75 ⁵ 5	- 8513	- 9194
	Z	-21227	-20877	-20839	-21156	21741	-22582	-23643	-24884	- 26265
اسندا	Ţ	26541	26131	25554	24823	23956	22983	21942	20867	19798
140°	7 2	2493 —25983	774 -25477	- 952 25276	- 2623 -25364	- 4184 -25719	— 5587 —26313	- 6797 -27116	7792 28092	- 8567 -29307
l	-		- 1					-		
145*	<i>x</i>	26371 3048	26072 1422	25601 - 21¢	24965 — 1823	24185 — 3340	23286 4729	22300 5957	21262 — 7003	- 7860
	Z	-31240	-30:59	-30225	—30107	-30229	-30569	-31101	-31799	-32634
j	\boldsymbol{x}	25630	25463	25123	24623	23972	23195	22319	21374	20391
150°) 2	3482	1972	438	- 1074	- 2524	— 3875	5100	— 6178	- 7101
į	-	-36819	-360ξ ₃	-35579	-352\$6	-35198	-35501	-35576	36005	—36564
155*	I I	24219	24191	24002	23657	23167	22548	21823	21014	20148
133	Z	3785 —42458	2404 -41702	994 -41118	- 410 -40706	1773 40460	— 3067 —40372	4267 40432	— 5357 —40626	6325 40941
1	-	_ [Ī					
160°	<i>X</i> <i>Y</i>	22126 3951	22229	221 88 1425	22005 141	21686 — 1123	21242 — 2344	20689 3302	20043 4580	19322 5569
İ	Z	-47856	-47150	-46568	-46111	-45780	-45571	-45480	-45500	-45624
ł	X	19432	19642	19727	19688	19527	19230	18865	18383	17816
165*	Z	3952	2866	1716	552	- 607	- 1744	2842	- 3889	— 4873
ì	ì	—52735	—52151	-51646	-51225	—50891	—50643	—5c 180	50400	—504C1
170°	7	16287	16564	16737	16804	16764	16620	16376	16037	15609
1.0	Z	3887 —56883	2887 56475	1856 56112	806 -55798	— 230 —55534	1297 55324	- 2324 -55166	3320 55062	- 4574 -55012
	,	12886		}		l				_
175	7	3675	13180 2771	13388 1841	13506 891	- 13534 - 67	13471 1023	13320 — 1972	13080 — 2901	12756 — 3803
. [Z	-60189	-599 86	-59802	- 59640	—59499	—59382	5 9290	—59223	-59180
	7	9425	9683	9866	9975	10007	9964	9844	9630	9382
180	Z	3363	2529	1676	809	— 63	- 935	- 1500	— a651	3452
i	!	-62651	-62651	-02051	-62651	-62651	-62651	-62 651	—62651	6 2 651

VIIIa. Deviations of Computed Values of the Components from the Observations*

u;	λ:	15°	45°	75°	105°	135°	165	. 195°	275°	255°	255°	815°	345*
	3. F	- 65	349	411	702	56	\$10	983	-137	-154	-541	- 76	25
302	72.	- 63	-340	324	-142	-477	334	-241	-790	— 31	•	66	565
-	32	—791	1507	1129	302	221	-1853	-158	371	472	1897	538	433
	2.8	67	27	-267	- 3	1158	- 65	-236	674	105	-316	363	239
40*	- -	-350	-485	559	- 15	-1085	743	67	-427	690	-556	-128	501
	3 Z	-667	-503	272	—725	1152	~ 81	996	548	132	1459	737	—236
	: _ 	<u>5</u> 1	-250	-384	— 74	. 308	93	-539	618	172	160	—425	340
50°	37	-251	-414	532	272	-1236	903	- 396	-311	2cot	—366	48	515
30	. 3Z	—25; —35;		—239	—735	253	156	-114	-1338	249	915	-1593	72
	عد	- 2 0	-192		83	. 35	203	-210	359	-574	811	454	- 43
60°	71			149	604		805	-479	— 75	786	-438	-115	269
•••	ΔZ	99 52	134 787	. 797	123	-937 - 93	-181	- 52	—763	-425	945	-874	1331
	į	· >-	'-'	191		_ 73			'				
	7.1	-2 35	34	504	-323	-121	35	261	- 96	-533	. 169	34	-404
70	71	246	69	-483	726 .	539 ·	544	-544	250	165	-597	600	-161
	ΔZ	-792	508	—692	- 43	479	9 56	537	234	1003	767	149	230
	2.7	419	15	—28 0	16	-117	276	374	-402	737	483	738	- 84
80°	71	207	190	—733	709	-433	403	363	141	—318	-659	1286	793
	\ \\ \Z	937	1131	-720	102	563	- 850	813	-507	587	-336	.393	251
	7.1	100	237	-261	116	694	-608	154	-629	1:0	-423	457	6
90°	Δľ	398	208	663	421	-341	209	-205	109	- 355	-503	1242	-1211
	ΔZ	—891	791	182	-813	-166	-318	721	—780	:5	-300	303	-409
	AT	—33 1	- 6	180	151	— 61	-672	73	-303	438	-278	342	-461
100°	12	- 529	105	-311	290	-251	153	— 75	431	54	-259	753	853
	72	— 793	-132	-141	546	103	400	597	- 45	430	44	67	326
	3.7	-204	172	- 95	-114	353	314	278	- 32	554	-415	270	-103
110°	71	236	-167	268	32	-168	154	-251	593	124	-319	150	114
	ΔZ	826	-537	-639	-499	-794	383	6	-351	388	31	- 4	430
	77	247	222	-294	-441	- 36	- 27	450	-201	- 22	57	- 4	71
120°	27	-28o	-602	641	14	-180	246	-330	144	-223	-152	-336	713
1.0	ΔZ	825	142	-185	750	-393	- 44	-1101	-883	201	-354	451	-174
	1.1	396	- 13	- 97	430	103	! : -350	452	-314	-179	288	263	-128
130°	ΔΓ	174	-783	535	-306	-193	396	-200	-423	251	75	-693	615
190	3Z	485	194	-387	1613	1054	446	-1,61	1093	194	770	172	- 870
•	3.7	81	-263	45	922	331	-256	231	-275	-:16	511	204	—300
140*	1			519	810	-247	746	- 52	-624	40	702	-667	180
140	72	19	-341 -294	-101	-1241	-3090	184	548	2467	439	-489	667	-1030
	ΔĪ	į		613	185	-724	-747	394	627	677	-639	134	-478
1200		—399	-203	1 -	— 6ı	—724 —180	605	- 62	-598	626	1771	226	358
150°	71	367	419	57	1	1646	768	-1847	-1918	-2231	99	2430	85
	72	83	-158	743	- 7	1040	700	-1047	-19.0	3.	77	1	, ,,

^{*}This table (not mentioned in the text) has been added to provide an overview for the next two tables (IX and X). It contains the differences of the computed and observed values of X, Y. Z, i.e. the values in VIII and those in III, formed as (observed - computed). The corresponding differences for the intermediate points ($\lambda = 0^{\circ}$, 30° , 60° ... 330°) of the same parallel circles are found (according to provisional computation) in B, table XIVa, b, c, p. 64-66.

ORIGINAL PAGE IS

IX. Coefficients of the Series Representing U, W, V:b. (6 = 6.856.100 cm.)

1. *U*.

m; n:	0	1	2	8	4	5	6
0	0	-18428.2	— 233. 0	854.4	276.5	- 52.6	5.9
1		- 1167.0 3485.7	1202.8 - 304.9	-407.s - 92.7	147.s 61.7	110.7 - 89.6	18.s 32.s
2			308.9 716.9	527.4 21.1	189.1 — 29.4	106.4 8.1	- 7.s 18.1
3				141.s 225.s	-100.e - 55.s	6.7 - 0.8	-25.s -10.s
					101.5 15.9	- 24.1 - 26.6	5.9 12.8

 $U = U_0 + \Pi_1 (-533.5 \cos \lambda + 50.0 \sin \lambda) + \Pi_2 (27.9 \cos 2\lambda - 42.7 \sin 2\lambda) + \Pi_3 (-202.2 \cos 3\lambda + 154.6 \sin 3\lambda) + \Pi_4 (89.5 \cos 4\lambda - 11.4 \sin 4\lambda)$

W.

m; n:	0	1	2	8	4	8	6
0	0	-18428.2	- 233.0	854.4	276.8	- 52.4	5.9
1		- 1277.0 3421.0	1261.0 - 380.0	-496.0 -132.0	166.0 121.0	170.0 — 61. 0	-38.0 7.0
2			241.5 623.5	525.8 - 11.6	186.0 - 47.s	108.0 0.s	- 1.0 32.0
3				172.7 249.7	-104.0 - 67.8	2.0 - 4.0	-27.0 - 5.7
4					40.e 68.s	- 21.0 - 27.0	18.s 22.s

 $W = W_0 + \lambda (50 - 67R_0^1 - 34R_0^2 + 38R_0^2 + 9R_0^4 + 4.67R_0^3 - 0.27R_0^6)$

V:b

m; n:	0	1	2	8	4	8	6
0	0	-18428.3	— 233. 0	354.4	276.4	- 52.8	5.9
1		- 1222.0 3453.8	1231.6 - 317.5	-451.9 -112.8	156.s 91.s	140.s - 75.s	- 9.s 19.s
2			275.2 670.3	526.s 4.s	187.5 — 38.4	107.s - 3.s	- 4.1 25.0
3				157.0 237.4	-102.s - 61.s	4.4 - 3.2	-26.1 - 8.1
4					70.7 — 26.8	- 22.5 - 26.6	9.7 17.6

IX. Coefficients of the Series Representing U, W. V:b. (6 - 6.856.10 cm.)

	2. U.									
m; n:	0 .	1	2	8	4					
0	0	-18400.4 - 1702.1 3656.1	- 287.6 1254.6 - 838.7	393.0 539.7 35.5	271.1 156.9 43.0					
2			292.0 644.9	483.6 7.7	185.s — 54.s					
3				167.7 247.0	89.7 66.4					
4					45.3 - 61.a					

8.	
U •	
ſ	2
-18618.2	- 898.1
- 1019.0 3517.0	1180.1
	200.5
	640.5
	<i>U</i> ₀ f −18618.3

 $U = U_0 + \Pi_1(-397.4\cos\lambda - 8.2\sin\lambda) + \Pi_2(-57.7\cos2\lambda - 89.7\sin2\lambda) \qquad U = U_0 + \Pi_1(-499.7\cos\lambda - 88.0\sin\lambda)$ +173(-174.7coe32+107.5ein32)

	_	1	V		
m; n:	0	1	2	8 .	4
0	0	-18400.4	— 237.6	393.0	271.1
1		- 1312.0 3452.0	1250.e - 353.e	-644.0 19.0	. 117.0 50.0
2			242.5 622.5	· 478.0 — 1.0	195.0 - 50.0
3				167.7 247.0	- 99.0 - 60.7
4					45.5 61.8

W.								
0	1	2						
0	-18618.2	- 393.1						
	- 1019.0 3517.0	1051.0 - 396.0						
		200.s 640.s						

 $W = W_0 + \lambda (49 - 64 R_0^1 - 34 R_0^2 + 41.92 R_0^3 + 9.01 R_0^4)$

 $W = W_0 + \lambda (53 - 23.70 R_0^2)$

,		7	:8		
m; n:	0	1	2	8	4
0	0	-18400.4 - 1507.0 3554.0	- 237.6 1252.4 - 343.4	393.0 591.9 8.8	271.1 137.0 . 46.5
2			267.s 633.7	480.s 3.4	190.2 - 52.3
3				167.7 247.0	- 94.4 - 63.5
4			 :		45.6 - 61.8

V:0	
1	2
18618.s 1019.0 3517.0	- 393.1 1115.6 - 384.6 200.5 640.5
	1 -18618.9 - 1019.0

X. Coefficients of the Series Representing $V_i:b$, $V_a:b$, $a\beta bi$. $(b=6.856.10^3 \, cm.)^*$

			V ,	:8			
m; n:	Û	1	2	. 8	4	5	6
0	0	-18321.0	- 233.9	354.4	:64.0	- 50.e	5.0
,		- 1360.9 3455.8	1264.0. - 321.0	-466.2 -112.0	171.1 94.4	119.2 — 81.2	5.1 24.e
2			302.9 668.1	540.0 9.8	172.a — 57.a	86.2 - 10.4	-14.0 17.4
3				151.0 258.2	-103.2 - 75.2	4.7 6.5	44.s 17.s
4					52.7 - 24.7	- 2.1 - 22.0	- 64 - 74

•		:	ě
	_		

m; n:	U	1	2	8	L. Maren	5	6
0	0	-107.2	0.0	0.0	17.4	- 2.2	0.1
1		138.9 - 2.2	-32.4 3.5	14.s - 0.s	>∧.x 	21.1	-15.s - 5.o
2			-27.7 2.1	-13.6 - 5.0	15.s 19.1	21.1 6.6	10.s 7.s
3				6.0 -20.s	0.9 14.0	- 0.s - 8.7	18.7 9.7
4					18.0 - 2.1	-20.4 - 4.0	16.1 25.0

aßbi

m; n:	0	1	2	8	4	5
0	0	6.8	-20.7	- 5.7	- 3.7	0.4
1		- 3.7 -33.4	- 3.0 2.9	-15.7 -39.7	-23.1 47.9	-54.1 -54.1
2			10.s 2.s	-15.9 14.4	-14.9 2.4	-28.1 12.4
3			: .	-16.e -28.s	11.e -14.e	-154 - 54
4	•				2.1 16.4	-52.s

*The coefficients of the series expansion of abi differ strikingly at m = 3 and m = 4 from those reported in B, p. 59. This is due to the fact that the factor m had been omitted accidentally during the calculation.

X. Coefficients of the Series Representing V:b, Ve:b, esb. (b = 6.856.100 cm.)

	•	2). .		•
P _c : d					
m; #:	0	1	8	8	4
0	0	-18242.9	- 242.0	404.7	259.1
1		- 1470.s 3496.s	1266.7 — 339.s	-538.2 - 57.3	157.1 67.1
2			300.s 653.1	526.9 7.8	172. - 63.
. 8				155.8 268.4	-103. - 78.
4					40. - 42.

8. V _i :8		
0	1	2
0	-18501.s - 1857.s 8477.4	- 440.8 1218.8 - 355.7 .291.1 648.6
•		

	V _a :b					
m; n:	0	1	2	8	4	
0	0	-157.5 - 36.9 57.5	5.2 -14.3 - 3.6	-1 s.7 -53.7 46.9	-11.s -20.7 -21.0	
2	•	37.6	-33.0 -19.4	-46.1 - 4.4	17.7 11.0	
3	•		•	12.2 -16.4	11.3 15.4	
4					5.s -19.s	

Va:b			
0		1	2
-0		-116.7	47.2
	-	338.a 39.6	-97.4 -28.9
•			-90.e - 7.s

	αβbi			
m; n:	0	1	2	8
0	. 0	6.8	-19.7	- 5.7
1		1.8 -27.0	-28.2 -52.1	- 4.6 -26.0
2			11.e - 7.1	- 6.a 13.e
				-16.8 -26.6

αβbi			
0	1		
0	7.3		
	8.1 -10.4		

^{*}As coefficient of R_1^{i} sin λ in the series expansion of $\alpha\beta^{ij}$, insert the value-45.9 instead of -10.4.