

1 DCGAGAGCCCGGAGTGAG TAGCAGCTGGCAAACCCAGGGTAGAAATTCGTCTTCACTTCAAGACTAGGACCATAATGATGCCAA
 12
 101 AATTACATAACCGCTGGGTTCAAGGAATATCAGATAAAATCTAACAGGAGATGGCAGACCATTAAGATGGTTGCAAACTTATGCATATC
 45
 201 GACCAAGACCTGAGAAAGGAGCTTATTTAACCTAGCTTACATCTCTCTTCAACCATCTGAAAGAATGTTCCATAC
 79
 301 TGGTAGCTGCTGCCTGCCTGATATTTAACCTGAGCTCTGAGCCTTACACATCCCCTGATAACAAAGGAAATATTTATGTTATAACAG
 112
 401 ACAGTTGAAAGGGCTAGAGGATACAAAGAGCCACAAATTCAGGATTTTACATCTGAGACACATGCTGGGTCAGTCATAAACTATGCTTAC
 145
 501 CAGTTAGAAAGATACCAATGAAATTTACCCAGCTATAACAGACCTTATTTCACTTAAACAATGCCACAAATCAGAAAGTCCATATGCTCAC
 179
 601 ACCTTATGAGCTCTATTATTTGAGGTGATACAGTGTCTGAGGAGCTTGGATACGGGTTACTAAATCTGGTACCTGCTCATAGAAATTAAACAA
 212
 701 GCAAGCATATGATTGGCAAAAGCTTACAGAGAGGACAGCTAACGCTTAACTTAAACAAATGTTTACAGGTTCTGATGCTGGGAA
 245
 801 ACATCTACGGCTTTGCTCAGACCATGTTGGACTTAATTTGGAGCTCTACAAATATGAGTCATITGCTGCTCTGTTTACCCAGCTTCA
 279
 901 TTAATTAAAGGAAATGAAATGAGGAGGCTACAGTGTAAACTACGGAAAAATGTTGGGCAAGGATTCAGAAATGGCTCTCAAAACAA
 312
 1001 GCCACTTTGGCAGTGCTACTTGGCAGGTTAATGATATGCTACCAATGCCCTGGGATGCTGAAATTGGCTAGCCATTGCTCAAGGACATCC
 345
 1101 GATTTAGCAAAAGACTTAAAGAGTATCTAAAGTCAAGGACATCACCTCAGGAGCTTAAAGACATGTTATGCTGCTCAAGGACATCC
 379
 1201 AAAGGAAATCTTCTGGCTCAATGATCACATGTTAACTTGTGAGAGAGGAAACATTAGACAAACGATGGAGCTTCAAGGAAATGGCTG
 412
 1301 TGCCAAATATAAGAAATGCTTACGAGGCTTGGCTCATACGGATGGCTGAAACAGATAGGATCAAAGACAAATTCTACATATATT
 445
 1401 CAAAATAGTATTGATCATCGACTACTTGCTGACGGCTTGGCTCATACGGATGGCTCACAATTAGAAACACTACAGAACGGATGAAATGCTT
 479
 1501 ACTTGATGCCCCACACTGGAAATTATGCTGAAACCATGAAATGCTGGAAATGCTGGGAAATGCTGGGAAATGCTGGGAAATGCTGG
 512
 1601 GATTAAGGAAACCAAAACAGTCAGTCAGGCTCAAGGGCATATTTCAAAAGTGTGTTTACAGAAATGCTGGGAAATGCTGGGAAATGCT
 545
 1701 ATGAAAGAAATTCACACAGGTGTTAGAAGAATGAGGAAATAAGAAGGAGTTACAGGATGCTGGGAAATGCTGGGAAATGCTGGGAAATGCT
 579
 1801 GTGTCGGTGAATAACTAAAGTTGGGCAACCCAAACAGCTTACAAACGCTTCTGGGAAATGCTGGGAAATGCTGGGAAATGCTGGGAAATGCT
 612
 1901 CATAGATACCCAAATCTATGCTCTTAAACAAAGTGAACAAATCAATAGCTGGAAACGGACATGAAAGATGAGGGTGTCCAACTGATCA
 645
 2001 ATCACAGGAGCTCTGAACTCTTAAAGCTCTTACATGCTGCTTACACATECCATCTCATTCATGCTGAAACATTCATGCTGCTGCT
 679
 2101 TGGATGATGAAAAAGTACGCAAGCTGCACTACAAATTCTGGAAACAGGAAAGCTTGGAAATGCTGCTGAAACATTCATGCTGCTGCT
 712
 2201 TGTGTTACATCACAAATCTAAAGGACCCCCCGCTCAAGGAAATATGCCATTCATGCTGCTGAAACATTCATGCTGCTGCTGCTGCT
 745
 2301 CAGATATTGAGGCTCTGCTAAAGGCTACATGCTGAAACCTGGAACTCTGGAAATGCTGCTGAAACATTCATGCTGCTGCTGCTGCT
 779
 2401 ATCAATTGCTGCTTGGAAATCTGGCTAGCTACTTCTGCTGAAAGATCTGCTGCTGAAATGCTGCTGCTGCTGCTGCTGCTGCT
 812
 2501 CGTCCAGATGAAGAAGTATCTCTGAGCAAAATGCTGCTGAAACATGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCT
 845
 2601 TCAGGAACTCTACCTTAAGGATGCTAACAAACATATTGCTGAGTGTGAGGACTTCAGAGAACAGGGGAAATGCTGCTGCTGCTGCTGCT
 879
 2701 GACTTGCTGCTGGGAGTCTATTGCTGAAACCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCT
 912

FIG. 1-1

FIG. 1-2

161

55 LYLNLAH~~L~~ASDFF~~L~~KHPGKDVRLLVACC~~L~~ADIFR~~I~~YAPEAP~~Y~~TSPDK~~L~~KDIFMF~~I~~TRQLKG~~L~~

277

196 217 241 277
LDTVLVN~~L~~VPAHKN~~L~~NKQAYD~~L~~ MMLGKTS~~I~~SDLSEH~~V~~FDLILELYNIDSH~~L~~LLSVLPQL

404

319 355 375 404
LGRFNDIH~~V~~PIRLEC~~V~~KFASHC~~L~~MNH~~P~~D~~L~~A~~K~~DLTEY~~L~~ VTAAKKD~~I~~LLVNDH~~L~~LN~~F~~VRERT~~L~~DKRW~~R~~V

FIG. 2

Hank's conserved regions:	Subdomain I	Subdomain II	Subdomain III
Consensus: AS3 position: AS3 sequence:	<p>β-strand 1 YALQ . SA</p> <p>β-strand 2 (G x G x x G x V) 426</p> <p>β-strand 3 (x x x K x x x) 472</p> <p>α-helix C (x x x E x x x) 489</p> <p>VKALN E MWKC</p>	<p>β-strand 2 453</p> <p>LVERIF</p> <p>β-strand 3 (x x x K x x x) 472</p> <p>ERM K CLYYLYA</p>	<p>α-helix C (x x x E x x x)</p> <p>QAFKN E MQVL (Araf)</p> <p>TLALN E RIML (bARK1)</p> <p>YTRVR E IKFI (SMEI)</p>
Similar protein kinase sequences:	<p>YTLGVSA (Elm1)</p> <p>YALINLL (Tsl)</p> <p>YHLQNI (Cdc15)</p> <p>YKLVRKI (CK1a)</p> <p>IYIQUESTI (Akt5)</p>	<p>GeDrfGkV (Rot2)</p> <p>GsGsfGdI (CK1a)</p> <p>AeGesHiS (Ypka)</p> <p>HeSdfSeV (Mik1)</p>	<p>LLYELMD (YK1516)</p> <p>YLGEQVS (PKN2)</p> <p>YLCCLCN (BCK1)</p> <p>VAI K CIAKKAL (CamK1)</p>
Consensus: AS3 position: AS3 sequence:	<p>β-strand 4 LLDLIKQP</p> <p>β-strand 5 IFSK . VMV</p>	<p>β-strand 4 509</p> <p>β-strand 5 525</p>	<p>α-helix D 540</p> <p>GRAQDFMKK</p> <p>α-helix E 554</p> <p>EDDEKIRKQ . LEVL</p>
Similar protein kinase sequences:	<p>LLDIVKDP (TPCKII)</p> <p>LLDWFERP (Pim1)</p> <p>LLGLCREA (Klg)</p> <p>LVKLIGYC (APK1)</p>	<p>IFSCLVME (PvpK1)</p> <p>KFSCLVME (G11a)</p> <p>KFSCLVME (ZmPPK)</p>	<p>ERDADAVKQILEA ((CaMKIV)</p> <p>ECDANIMKQILSG (PfCPK)</p> <p>ADQLNIAKQISAG (TORRTK)</p> <p>ESVIMYTKQLL (NPK1)</p>
Hank's conserved regions:	Subdomain IV	Subdomain V	Subdomain VIa

FIG. 3

54287 1 46 (42919)
 CCGGAGAG.... Exon 1ACCCGGAG * [REDACTED] gaga
 3347) 47 173 (475)
ttttcttgcccttag * GGGTAGAA.... Exon 2GATTAAG * [REDACTED] gagta...
 (16397) 174 377 (16602)
 ..ttttatTTTgtatag * ATGGTTGT.... Exon 3AACTAAAG * gcaagta...
 (22832) 378 464 (22920)
 ..ctttttttatTTAAG * GATATATT.... Exon 4TACTTGAG * gtaagca...
 (23028) 465 562 (23125)
ccttatttttag * AACATTGC.... Exon 5GTTATAAA * gtaagtt...
 (23747) 563 689 (23873)
tttgaatttcgag * CAATGGCC.... Exon 6CTCATAAG * gtgagta...
 (32357) 690 854 (32439)
tttatgttttcag * AATTTAAA.... Exon 7TTACCACT * gtaagtc...
 (37809) 855 911 (37951)
cttctccctaaag * TTTTTAA.... Exon 8AATTAAAG * gtaactt...
 (40437) 912 1027 (40554)
tttatTTTtag * AGCAATGA.... Exon 9TTGGGCAG * gatatg...
 (43428) 1028 1122 (43524)
 ...tttatTTTTCAG * GTTAAATG.... Exon 10....CTTAACAG * gtaactat...
 (48471) 1123 1268 (48617)
tgttatcttcag * AGTATCTT.... Exon 11....ACAAACGA * gtaagta...
 (51727) 1269 1420 (51880)
ttttgttttaag * TGGAGAGT.... Exon 12....GATGATCG * gtaagtt...
 (53049) 1421 1534 (53164)
 ...tctgcTTTTtag * ACTACTTG.... Exon 13....GCTGTGAA * gtagtt...
 (58816) 1535 1616 (58898)
tttgcTTTTtag * AGCATTGA.... Exon 14....AACCCAAA * gtaagta...
 (61447) 1617 1665 (61497)
 ...ttgtgtgatTTacag * ACAGATGC.... Exon 15....TATTACAA * gtaagtt...
 (64323) 1666 1805 (64464)
tttatttttaag * GAAATTAA.... Exon 16....GTTGTGTG * gtaagga...
 (65916) 1806 1921 (66033)
 ...taatctgtattacag * CGTGAAAT.... Exon 17....TCTATCAG * gtatttg...
 (71527) 1922 2027 (71633)
 ...ttggcatatTTtag * TGCTCTTA.... Exon 18....TGCTTAAG * gtaagta...
 (74539) 2028 2188 (74700)
 ...tgattcatTTtag * GTACTCTC.... Exon 19....ATCAGATC * gtgagtt...
 (96694) 2189 2312 (96818)
tttttttaatag * AGCCTTGC.... Exon 20....TATTGAG * gtaatga...
 (99765) 2313 2471 (99925)
 ...tcccctcattttcag * CCTCTGCA.... Exon 21....ATGATCGG * gtaattt...
 (105674) 2472 2540 (105744)
 ...ctcgTTatTTtag * CTTCCAGG.... Exon 22....TGGTCAAA * gtgagta...
 (107185) 2541 2677 (107322)
 ...ttgtcttttaatag * ATTCAAGGC.... Exon 23....AAAATTAG * gtagc...
 (110571) 2678 2801 (110696)
 ...ctactcattttcag * TAAACCAG.... Exon 24....CTATCAAC * gtaagga...
 [4319] 2802 3006 [4524]
ttgtgtctttacag * GATGAATG.... Exon 25....TGTTAGTG * gtaagca...
 [6829] 3007 3121 [6945]
tttctttttcag * AAAAATTA.... Exon 26....GTTAAAGA * gtaagac...
 [9074] 3122 3254 [9208]
tttttttttttag * ATGTCTT.... Exon 27....TGAATGAA * gtatgt...
 [9522] 3255 3374 [9642]
tatactatttcag * AAACGTGA.... Exon 28....CTGACAAG * gtagtta...
 [10614] 3375 3437 [10679]
 ...ttctctggTTtag * AATTCAG.... Exon 29....CTGGAAAA * gtatgt...
 [11561] 3438 3583 [11709]
 ...cattctcattttcag * CCTAAAC.... Exon 30....AAGGGGAG * gtaagt...
 [15476] 3584 3689 [15583]
 ...tgtctgtatTTaaag * GCTTGATA.... Exon 31....TTGTAAGG * gtgagat...
 [21107] 3690 4129 [21548]
ttttttttccctag * TCTGAATT.... Exon 32....CAGCAGAG * gtaagca...
 [21640] 4130 4354 [21866]
 ...tctccccaaagcag * AGCAGAAT.... Exon 33....TACACTAG * gtaagat...
 [26002] 4355 5253 [26902]
cttccTTtaag * GTACGGCG.... Exon 34....GAATGAGT * (poly-A)

FIG. 5

1 CGGAGAGGAGGAGGAACGGCAGGGCTGGCTGCCAAGGGGAGGGGGGGAGAAGGCAGTTGGATGCCCGCGGCCGATCCGGAGAGCCCCGGAG
 101 TGACCGGAGTAGCGAGTCGGCAACCGGAGGGTAGAAATATTCTGTATGGCTCATGGCTTACAAAGACTAGGACCAATGATGGAAAAATTACATATCCGCT
MetAlaHisSerLysThrArgThrAspGlyLysIleThrThrProPro 17
 201 GGGGTCAGGAAATATCAGATAAAATCTAAAGGGAGATGGTGAGACGATAAAAGATGGTGTGAAACATTATGGATATGGACCAAGGACTCTGAAG
GlyValLysGluIleSerAspLysIleSerLysGluGluMetValArgArgLeuLysMetValValLysThrPheMetAspMetAspGlnAspSerGluG 51
 301 AAGAAAAGGAGCTTATTAAACCTAGCTTACATCTTGCTCAGATTTCTCAAGCATCTGGTAAGAGATGTTGCTACTGGTAGCCTGCTGCCT
luGluLysGluLeuTyrLeuAsnLeuLeuAlaSerAspPhePheLysHisProGlyLysAspValArgLeuLeuValAlaCysCysLe 84
 401 TGCTGATATTCAGGATTATGCTCCTAACACCCCCGATAAAACTAAAGGATATATTATGTTATAACAAGACAGTTGAAGGGCTA
uAlaAspIlePheArgIleTyrAlaProGluAlaProTyrThrSerProAspLysLeuLysAspIlePheMetPheIleThrArgGlnLeuLysGlyLeu 117
 501 GAGGATACAAAGAGCCCACAATTCAATAGGTTTTACTTGAGAACATGCTGGCTCAAGTCATATAACATATGCTTGAGTTAGAAGATAGCA
GluAspThrLysSerProGlnPheAsnArgTyrPheTyrLeuLeuGluAsnIleAlaTrpValLysSerTyrAsnIleCysPheGluLeuGluAspSerA 151
 601 ATGAAATTTACCCAGCTATACAGAACCTTATTTCAAGTATAAACATGGCCACAATCAGAAAAGTCCATATGCACATGGTAGACCTTATGAGCTCTAT
snGluIlePheThrGlnLeuTyrArgThrLeuPheSerValIleAsnAsnGlyHisAsnGlnLysValHisMetValAspLeuMetSerSerI 184.
 701 TATTGTGAAGGTGATACTGCTCAGGGCTTGGATACGGTTAGTAAATCTGTCACCTGCTCATAAAGAATTAAACAAGCAAGCATATGATTG
eIleCysGluGlyAspThrValSerGlnGluLeuLeuAspThrValLeuValAsnLeuValProAlaHisLysAsnLeuAsnLysGlnAlaTyrAspLeu 217
 801 GCAAAGGCTTACTGAAGAGGACAGCTCAAGCTATTGAGCCATATAACCCTTTAACTCAGGTTCTGATGCTGGGAAACATCTATCAGCATT
AlaLysAlaLeuLeuLysArgThrAlaGlnAlaIleGluProTyrIleThrPhePheAsnGlnValLeuMetLeuGlyLysThrSerIleSerAspL 251
 901 TGTCAGAGCATGCTTGGACTTAATTGGCTCTACAATATTGATGACTTGTCTCTGTTACCCAGCTGAAATTAAAGAGCAA
euSerGluHisValPheAspLeuIleLeuGluLeuTyrAsnIleAspSerHisLeuLeuLeuSerValLeuProGluLeuGluPheLysLeuLysSerAs 284
 1001 TGATAATGAGGAGGCCACAAGTTAAACTACTGGCAAAAGGATTAGAATTGGCTCTCAAACAAAGCCACTTGGCAGTGC
nAspAsnGluGluArgLeuGlnValValLysLeuLysAspSerGluLeuAlaSerGlnAsnLysProLeuTrpGlnCys 317
 1101 TACTGGCAGGTTAATGATATCCATGTACCATCCGCTGGATGTTGAAATTGCTAGCCATTGTCATGAACCCTCTGATTAGC
TyrLeuArgPheAsnAspIleHisValProIleArgLeuGluCysValLysPheAlaSerHisCysLeuMetAsnHisProAspLeuAlaLysAspL 351
 1201 TAACAGAGTACTTAAAGTGGGGTACATGACCTGGAGAACGATTAGACATGATGTTATTGTCATAGCTGCTAAAAAGGATATTCTTCT
euThrGluTyrLeuLysValArgSerHisAspProGluGluAlaIleArgHisAspValIleValThrAlaAlaLysAspIleLeuLe 384
 1301 GGTCATGACTACTTAAATTGAGAGAGAGAACATTAGACAAACGATGGAGAGTACGCAAAGAACCCATGATGGACTGCCAAATTATAAG
uValAsnAspHisLeuLeuAsnPheValArgGluArgThrLeuAspLysArgTrpArgValArgLysGluAlaMetMetGlyLeuAlaGlnIleTyrLys 417
 1401 AAATATGCTTACAGTCAGCAGCTGGAAAAGATGCTGCAAACAGATAGCATGGATCAAAGACAAATTGCTACATATATATCAAATAGTATTGATG
LysTyrAlaLeuGlnSerAlaAlaGlyLysAspAlaAlaLysGlnIleAlaTrpIleLysAspLysLeuLeuHisIleTyrTyrGlnAsnSerIleAspA 451
 1501 ATCGACTACTTGTGAACGGATTTGCTCAATACATGGTCTCACAATTAGAACACTACAGGATGAAATTGCTTACTTGTGCTATGCCACACT
spArgLeuLeuValGluArgIlePheAlaGlnTyrMetValProHisAsnLeuGluThrPheArgMetLysCysLeuTyrTyrLeuTyrAlaThrLe 484
 1601 GGATTTAAATGCTGAAAGCATTGAATGAAATGTCGAAACATCTGCTCCGACATCAAGTAAAGGATTGCTGACTTGTGATTAAGCAACCCAAA
uAspLeuAsnAlaValLysAlaIleAsnGluMetTrpLysCysGlnAsnLeuLeuArgHisGlnValLysAspLeuLeuAspIleLysGlnProLys 517
 1701 ACAGATGCCAGTGTCAAGGCCATTTCAGGAAATTGTTTACAGGAAATTGCTGATCTGGTAAGGCTCAGGATTTCATGAAGAAATTCACAC
ThrAspAlaSerValAlaIleSerLysValMetValIleThrArgAsnLeuProAspProGlyLysAlaGlnAspPheMetLysPheThrG 551
 1801 AGGTGTTAGAAGATGATGAGAAAATAAGAACGATTAGAAGTACTTGTGTTAGCCAACATGCTCTGCAAGCAGGCTGAAGGTTGTCGCTGAAATTAC
InValLeuGluAspAspGluLysIleArgLysGlnLeuGluValLeuValSerProThrCysSerCysLysGlnAlaGluGlyCysValArgGluIleTh 584
 1901 TAAGAAGTTGGCAACCCCAACAGCCTACAAATCTTCTGGAAATGATCAAGTTCTCTGGAGAGGATAGCACCTGTGCACATAGATACCGAATCT
rLysLysLeuGlyAsnProLysGlnProThrAsnProPheLeuGluMetIleLysPheLeuLeuGluArgIleAlaProValHisIleAspThrGluSer 617
 2001 ATCAGTGTCTTAAACAGTGAACAAATCAATAGATGAAACAGCAGATGATGAAGATGAGGGTGTCCAACCTGATCAAGCCATCAGAGCAGGTCTG
IleSerAlaLeuIleLysGlnValAsnLysSerIleAspGlyThrAlaAspAspGluAspGluGlyValProThrAspGlnAlaIleArgAlaGlyLeuG 651
 2101 AACTGCTTAAGGTACTCTCATTTACACATCCATCTCATTCTGTCAGAACATTGAAATCTGCTTGTGCTGAAATGGATGATGAAAAAGT
IleLeuLeuLysValLeuSerPheThrHisProIleSerPheHisSerAlaGluMetIleLysPheLeuLeuAlaCysLeuLysMetAspAspGluLysVa 684
 2201 AGCAGAAGCTGCACTACAAATTTCAGGAAACGAGGAAATTGAAGAGGATTTCACACATCAGATCAGGCCCTGCTCCTGTTACATCACAAA
1AlaGluAlaAlaLeuGlnIlePheLysAsnThrGlySerLysIleGluGluAspPheProHisIleArgSerAlaLeuLeuProValLeuHisLys 717
 2301 TCTAAAAAAGGCCAGGCCAGGCCAGCCAAATGCCATTGCTATCCATTGCTATGCCATTGCTATGCCATTGCTATGCCATTGCTATGCCATTGCT
SerLysLysGlyProProArgGlnAlaLysSerTyrAlaIleHisCysIleHisAlaIlePheSerSerLysGluThrGlnPheAlaGinIlePheGluProl 751
 2401 TGCTATAAGGCCAGTCAAGCAGCACCTGAGACATCTCATGAAACCATGCTCATGAAACCATGGTACTATTGCTCATATTGCTCTCTGCACTGATCA
euHisLysSerLeuAspProSerAsnLeuGluHisIleLeuIleThrProLeuValThrIleGlyHisIleAlaLeuLeuAlaProAspGlnPheAlaAlaPr 784
 2501 TTGGAAATCTGGTAGCTTCTCATGAAAGATCTCTCATGAAATGATCGGCTTCCAGGGAAAAGACAACTAAACATTGGTCTCAGATGAAGAA
oTrpLysSerTrpValAlaThrPheIleValLysAspLeuLeuMetAsnAspArgLeuProGlyLysLysThrLysLeuTrpValProAspGluGlu 817
 2601 GTATCTCTGAGACAATGTCAAAATTCAAGCTATTAAATGATGGTTCGATGGCTACTTGGAAATGAAAATAATCACAGTAAATCAGGAACTTCTACCT
ValSerProGluThrMetValLysIleGlnAlaIleLysMetValArgTrpLeuLeuGlyMetLysAsnAsnHisSerLysSerGlyThrSerIle 851
 2701 TAAGATTGCTAACACAAATTGCTAGTGTGAGACTTGAGAGAACAGGGAAAATTAGTAAACACAGATATGTCACGCTGAGACTTGCTGCTGGAG
euArgLeuLeuThrThrIleLeuHisSerAspGlyAspLeuThrGluGlnGlyLysIleSerLysProAspMetSerArgLeuArgLeuAlaGlySe 884
 2801 TGCTATTGTGAAGCTGGCACAAGAACCTGTTACCATGAAATCATCACATAGAACAAATCAGCTATGTCATTAGCTATCAACAGTGAATGCTATCAA
rAlaIleValLysLeuAlaGlnGluProCysTyrHisGluIleIleThrLeuGluGlnTyrGlnLeuCysAlaLeuAlaIleAsnAspGluCysTyrGln 917
 2901 GTAAAGACAAGTGTGCCCCAGAAACTCACAAAGGCCCTTCCGTTACGGCTTCCACTGAGTATGCAAGCAGCATGCCGAGTCTGCTGTTAGTGA
ValArgGlnValPheAlaGlnLysLeuHisLysSerArgLeuArgLeuProLeuGluTyrMetAlaIleCysAlaLeuAsnAspProv 951
 3001 TAAAGGAGAGAGAGGCTCATGCTAGGCAATGTTGGTGAAGAAATAATGTAAGGGGGAGATCTCAAGCAGCATGCGAGTCTGCTGTTAGTGA
allysGluArgArgAlaHisAlaArgGlnCysLeuValLysAsnIleAsnValArgArgGluTyrLeuLysGlnHisAlaAlaValSerGluLysLeu 984
 3101 GTCTCTTCTACCGAGATGTFGTCCATATCATATTACACCTTTGGCACATGACCCAGATTATGTCAGAAGTACAGGATTGAAACAACCTAAAGATGTT
uSerLeuLeuProGluTyrValValProTyrThrIleHisLeuLeuAlaHisAspProAspPheTyrValLysValGlnAspIleGluGlnLysAspVal 1017
 3201 AAAGAATGTCCTGGTTCTGGAAATATTAATGGCTAAAATGAAATAACAGTCAGCCTTATGAGAAATGGTAGAAATAACAAACAA
LysGluCysLeuTrpPheValLeuGluIleLeuMetAlaLysAsnGluAsnAsnSerHisAlaPheIleArgLysMetValGluAsnIleLysGlnThrL 1051

FIG. 6-1

3301 AAGATGCCAAGGACCAG GCAAAAATGAATGAAAAACTGTACACTGTGTGTATGTTGCCTTATCATCATGTCAAAGAGTACTACATACAG
 ysAspAlaGlnGlyProAsp AlaLysMetAsnGluLysLeuTyrThrValCysAspValAlaMetAsnIleIleMetSerLysSerThrThrTyrSe 1084
 3401 TTTGGAAATCTCTAAAGACCCGGTACTACCAGCTCGTTCTTCACTCACCTGACAAGAATTTCAGTAACCAAAAATTATCTGCCTCCTGAAATGAAA
 rLeuGluSerProLysAspProValLeuProAlaArgPheThrGlnProAspLysAsnPheSerAsnThrLysAsnTyrLeuProProGluMetLys 1117
 3501 TCATTTTCACTCCTGGAAACCTAAAACAACCAATGTTAGGAGCTGTTAACAGCCACTTCATCAGCAGGCAAGCAATCTCAGACCAAATCATCAC
 SerPhePheThrProGlyLysProLysThrAsnValLeuGlyAlaValAsnLysProLeuSerSerAlaGlyLysGlnSerGlnThrLysSerSerA 1151
 3601 GAATGGAAACTGTAAAGCAAGCAGCAGCTCAAATCCAAGCTCTCCTGGAAGAATAAAGGGGAGGCTTGATAGTTCTGAAATGGATCACAGTGAAA
 rgMetGluThrValSerAsnAlaSerSerAsnProSerSerProGlyArgIleLysGlyArgLeuAspSerSerGluMetAspHisSerGluAs 1184
 3701 TGAAAGATTACACAAATGCTTCACCTTGCCTGGGGAAAAAAAGTGACAAGAGAGACGACTCTGATCTGTAAGGTCTGAATGGAGAAGCCTAGAGGCAGG
 nGluAspTyrThrMetSerSerProLeuProGlyLysLysSerAspLysArgAspAspSerAspLeuValArgSerGluLeuGluLysProArgGlyArg 1217
 3801 AAAAACGCCCCGTACAGAACAGGAGGAGAAATTAGGTATGGATGACTTGACTAAGTTGGTACAGGAACAGAAACCTAAAGGCAGTCAGCGAAGTCGGA
 LysLysThrProValThrGluGlnGluLysLeuGlyMetAspAspLeuThrLysLeuValGlnGluGlnLysProLysGlySerGlnArgSerArgL 1251
 3901 AAAAGGGCCATACGGCTTCAGAATCTGATGAAACAGCAGTGGCTGAGGAAAGAGGCTAAAGAAGATATAATTAGAAAATGAAAGATGAAACAGAATAGTCC
 ysArgGlyHisThrAlaSerGluSerAspGluGlnGlnTrpProGluGluLysArgLeuLysGluAspIleLeuGluAsnGluAspGluGlnAsnSerPr 1284
 4001 GCCAAAAAAGGGTAAAGAGGCCGACCACCAAAACCTCTGGTGGAGGTACACCAAAAGAAGAGCCAACATGAAAACCTCTAAAAAGGAAGCAAAAAA
 oProLysLysGlyLysArgGlyArgProProLysProLeuGlyGlyThrProLysGluGluProThrMetLysThrSerLysGlySerLysLys 1317
 4101 AAATCTGGACCTCCGACCCAGAGGAGGAGGAGAAGAAGAACAGACAGTGGAAATACGGAACAGAACAGCAGCAGGTGTCAGGA
 LysSerGlyProProAlaProGluGluGluGluGluArgGlnSerGlyAsnThrGlnLysSerLysGlnHisArgValSerArgA 1351
 4201 GAGCACAGCAGAGCAGAACATCTCTGAATCTAGTGAATTGAAATCCACACAGTCCACACACAAAGGACGAGGACCATCAAAAACGCCATCACC
 rgAlaGlnArgAlaGluSerProGluSerSerAlaIleGluSerThrGlnSerThrProGlnLysGlyArgGlyArgProSerLysThrProSerPr 1384
 4301 ATCACAAACAAAAAAATGTGTAAGTTGAAATATTACATTCAAACCAATTCAAATTATTTGAAAGTTCTAAATTGTAACACATACATATTG
 oSerGlnProLysLysAsnValEnd 1391
 4401 TGATTTAAATTCCATATATTAGCCCCATTACACTAGGTACGGCGCGAAGTCTAAAGGGAAACGGCGATGAACAAATGTAATTAACTTCTG
 4501 TGAAAGCTTGGAAAAATCTTTTTTTTTTTTTGGTCAAGCTTGAGGCTGAATAAAGCCTTGTGACAAAAATGGACTGCTGAAGAGTGG
 4601 ACAGTTGGACCTACTTGGTACCCCATACTTGTGGTCACATGCTTAGCCATACACATGGTAACATTGACTATGGAGTCTTGTGAAAGTGTAAATGT
 4701 GCGATGGCTATGTAGACATAAAAAGAAGAAACTTGTAAATATCTTTTTCTTTTAATGTTCTGATTCTGAAAGTGTCTGTATAGCTTTATCTGCGG
 4801 CTTAAACTGACAGTACCCGACTGTTATTGGATCTATTGATTGAAAGAATTGTTAGGATAGATCTAACAGCTAACATGTCAGTGTGTTGATTG
 4901 ATTTCTGCAATTACTGTGAAAAAAATTGTTCAACAATTGGTGTCAATTCTGATGTCACTATTGTTGGAGAGTAAATGGCTCTCCCTT
 5001 TGTGTATCTTACCTAGTGTACTCCTGGCACCCCTAACCTCAGAGGTGCTAAATTGTCAGGCCATTACACCAGAAGGATGCCCTGATAGGAGGACAA
 5101 CCATGCAAATTGAAAGTCTGAAAGTCTGGATTACTTACACCTCAGTATTGATTGTCAGGCCATTACACCAGAAGGATGCCCTGATAGGAGGACAA
 5201 TAAGAAGAAAGATTTAAAGTATTTAATTAAAGAGTGTGTTAAAATAATGACTGAAATTCTTATCCCATTTATCATCCTTCAGTTTATTAA
 5301 TCTACTGTATCAATAAAATTCTGAAATTGAGTAAAAAAAAAAAAAA (5337)

FIG. 6-2