The upper  $2 \times 2$  submatrix is a composite rotation and scale matrix, whereas  $t_x$  and  $t_y$  are composite translations. Calculating  $M \cdot P$  as a vector multiplied by a  $3 \times 3$  matrix takes nine multiplies and six adds. The fixed structure of the last row of Eq. (5.35), however, simplifies the actual operations to

$$x' = x \cdot r_{11} + y \cdot r_{12} + t_{x},$$

$$y' = x \cdot r_{21} + y \cdot r_{22} + t_{y},$$
(5.36)

reducing the process to four multiplies and four adds—a significant speedup, especially since the operation can be applied to hundreds or even thousands of points per picture. Thus, although  $3\times 3$  matrices are convenient and useful for composing 2D transformations, we can use the final matrix most efficiently in a program by exploiting its special structure. Some hardware matrix multipliers have parallel adders and multipliers, thereby diminishing or removing this concern.

## 5.7 MATRIX REPRESENTATION OF 3D TRANSFORMATIONS

Just as 2D transformations can be represented by  $3 \times 3$  matrices using homogeneous coordinates, 3D transformations can be represented by  $4 \times 4$  matrices, provided that we use homogeneous-coordinate representations of points in 3-space as well. Thus, instead of representing a point as (x, y, z), we represent it as (x, y, z, W), where two of these quadruples represent the same point if one is a nonzero multiple of the other; the quadruple (0, 0, 0, 0) is not allowed. As in 2D, a standard representation of a point (x, y, z, W) with  $W \neq 0$  is given by (x/W, y/W, z/W, 1). Transforming the point to this form is called **homogenizing**, as before. Also, points whose W coordinate is zero are called points at infinity. There is a geometrical interpretation as well. Each point in 3-space is being represented by a line through the origin in 4-space, and the homogenized representations of these points form a 3D subspace of 4-space that is defined by the single equation W = 1.

The 3D coordinate system used in this text is **right-handed**, as shown in Fig. 5.16. By convention, positive rotations in a right-handed system are such that, when looking from a positive axis toward the origin, a 90° *counterclockwise* rotation will transform one positive axis into the other. This table follows from this convention:

| Axis of rotation is | Direction of positive rotation |
|---------------------|--------------------------------|
| $\mathcal{X}$       | y to z                         |
| У                   | z to $x$                       |
| Z                   | x to $y$                       |
|                     |                                |

These positive directions are also depicted in Fig. 5.16. Be warned that not all graphics texts follow this convention.

We use a right-handed system here because it is the standard mathematical convention, even though it is convenient in 3D graphics to think of a left-handed



Figure 5.16
The right-handed coordinate system