Linear Algebra

Adam Kelly (ak2316@cam.ac.uk)

October 17, 2021

This article constitutes my notes for the 'Linear Algebra' course, held in Michaelmas 2021 at Cambridge. These notes are *not a transcription of the lectures*, and differ significantly in quite a few areas. Still, all lectured material should be covered.

Contents

1	Vector Spaces		
	1.1	Vector Spaces and Subspaces	
	1.2	Quotient Spaces	
	1.3	Basis and Dimension	

§1 Vector Spaces

§1.1 Vector Spaces and Subspaces

Linear algebra is, somewhat obviously, primarily about studying objects that are *linear* in nature. The objects we really care about are *vector spaces*, settings in which we can add elements and multiply by scalars. We are also going to consider *linear maps*, functions on vector spaces which preserve that linear structure – but more on that later.

Throughout the following discussion (and this course), \mathbb{F} is going to denote an arbitrary field¹

Definition 1.1 (\mathbb{F} -Vector Space)

An \mathbb{F} -vector space is an abelian group (V, +) together with a function $\mathbb{F} \times V \to V$, written $(\lambda, v) \mapsto \lambda v$ such that the following axioms hold:

- (i) Distributivity in V. $\lambda(v_1 + v_2) = \lambda v_1 + \lambda v_2$,
- (ii) Distributivity in \mathbb{F} . $(\lambda_1 + \lambda_2)v = \lambda_1 v + \lambda_2 v$,
- (iii) Associativity. $\lambda(\mu v) = (\lambda \mu)v$,
- (iv) Identity. 1v = v.

¹A field \mathbb{F} is a set \mathbb{F} equipped with two operations + ('addition') and · ('multiplication'). We require \mathbb{F} with addition to form an abelian group, and multiplication must be associative and have an identity element 1. We also require every element except 0 to have an inverse with respect to multiplication, and multiplication must be distributive over addition.

Informally, you can think of a field as something you can do arithmetic in.

We usually call elements of V vectors and elements of \mathbb{F} scalars. The identity element in V is usually called the zero vector, and is written 0_V (or just 0 if the context is clear).

If \mathbb{F} is \mathbb{R} or \mathbb{C} , we use the terms 'real vector space' and 'complex vector space', since they're so common.

Example 1.2 (Examples of Vector Spaces)

(i) The set of triples

$$\{(x, y, z) \mid x, y, z \in \mathbb{R}\}\$$

forms a real vector space called \mathbb{R}^3 , because you can add any two triples component wise.

(ii) The set

$$\mathbb{Q}[\sqrt{2}] = \{a + b\sqrt{2} \mid a, b \in \mathbb{Q}\}\$$

is a Q-vector space, where we add elements and scale by rational numbers in the obvious way.

(iii) The set $\mathcal{C}[0,1]$ of all continuous functions $f:[0,1]\to\mathbb{R}$ forms a real vector space.

As with many new objects, it's helpful to be able to discuss its substructure. In the case of a vector space V, there's a pretty natural notion for what it means for a subset $U \subseteq V$ to still act like a vector space.

Definition 1.3 (Subspace)

Let V be a \mathbb{F} -vector space. A subset $U \subseteq V$ is a **subspace** of V if U is also an \mathbb{F} -vector space. If U is a subspace of V, we will write $U \leq V$.

Example 1.4 (Examples of Subspaces)

- (i) The set of vectors $\{(x,y,z) \mid x,y,z \in \mathbb{R}, x+y+z=0\}$ is a subspace of \mathbb{R}^3 .
- (ii) The set of polynomials with terms of even degree $\{a_0 + a_2x^2 + a_4x^4 + \cdots + a_{2k}x^{2k} \mid \alpha_{2i} \in \mathbb{R}, k \in \mathbb{N}\}$ is a subspace of $\mathbb{R}[X]$, the vector space of polynomials with coefficients in \mathbb{R} .

As you would expect, checking that something is a subspace is usually easier than checking all of the axioms for a vector space. In particular, to check that U is a subspace of an \mathbb{F} -vector space V, you can just check that the following hold:

- Zero vector². $0_V \in U$.
- Closure under addition. $u_1, u_2 \in U$ to imply $u_1 + u_2 \in U$,
- Closure under scaling. $\lambda \in \mathbb{F}$ and $u \in U$ to imply $\lambda u \in U$.

There are various ways in which we can manipulate subspaces, for example we can take the intersection of two subspaces, and we will get back another subspace.

²You may wonder why we need to check this when we already check that we are closed under scaling. To see why, notice that we still have to ensure U is non-empty!

Proposition 1.5 (Intersecting Subspaces)

Let $U, W \leq V$. Then $U \cap W \leq V$.

Proof. Since U and V are both subspaces of V, we have $0_V \in U \cap V$, and also since they are both closed under addition and scaling, $u_1, u_2 \in U \cap W$ implies that $u_1 + u_2 \in U \cap W$, and $\lambda \in \mathbb{F}$ implies $\lambda u \in U \cap W$. Thus $U \cap W$ is a subspace of V.

However we can't manipulate subspaces however we want and expect magic. For example, the union of two subspaces is generally not a subspace, as it is typically not closed under addition. In fact, the union is only ever a subspace if one of the subspaces is contained in the other.³

We can however try to 'complete' the union so that it becomes a subspace.

Definition 1.6 (Sum of Subspaces)

Let V be a vector space over \mathbb{F} , and let $U, W \leq V$. We define the **sum** of U and W to be the set

$$U + W = \{u + w \mid u \in U, w \in W\}.$$

This definition immediately forces $U + W \leq V$, and indeed it is the minimal such space (in that any subspace of V containing both U and W must also contain U + W).

§1.2 Quotient Spaces

Since a vector space V forms an abelian group (V, +), we are able to take the quotient by any subspace $U \leq V$.

Definition 1.7 (Quotient Space)

Let V an \mathbb{F} -vector space, and let $U \leq V$. The **quotient space** V/U is the abelian group V/U equipped with the scalar multiplication $F \times V/U \to V/U$ written $(\lambda, v + U) \mapsto \lambda v + U$.

With this definition, we need to check that this scalar multiplication operation is well defined. Indeed, if $v_1 + U = v_2 + U$ then

$$v_1 - v_2 \in U$$

$$\implies \lambda(v_1 - v_2) \in U$$

$$\implies \lambda v_1 + U = \lambda v_2 + U \in V/U,$$

so our operation is indeed well defined.

As you would expect, taking a quotient gives you back a vector space.

Proposition 1.8 (Quotient Spaces are Vector Spaces)

V/U is an \mathbb{F} -vector space.

³There are some more exercises of this flavour on the example sheet.

Proof Sketch. Check definitions (most properties are inherited from V being a vector space).

§1.3 Basis and Dimension

You are likely informally familiar with the idea of *dimension*, a measure how much freedom exists in a system. Dimensionality is a rather natural concept with respect to vector spaces, but we will need to move through some technicalities to establish the results we want.

To discuss the amount of freedom, we first need a way to quantify what it means for a set of vectors to be independent from one another. This is the idea of *linear independence*.

Definition 1.9 (Linear Independence)

We say that $\{v_1, \ldots, v_n\} \in V$ are linearly independent if

$$\lambda_1 v_1 + \lambda_2 v_2 + \dots + \lambda_n v_n = 0$$

implies that $\lambda_1 = \cdots = \lambda_n = 0$.

Remark. For an infinite subset $S \subseteq V$, we say it's linearly independent if every finite subset is linearly independent.

If a set of vectors is not linearly independent, then there's some vector in that set that can be written as a linear combination of the others – so it's not independent of them!

The next idea we need to pin down is being able to see if our set of vectors can 'generate' the rest of our vector space.

Definition 1.10 (Span)

Let V be a vector space over \mathbb{F} , and let $S \subset V$. We define the **span** of S, $\langle S \rangle$ to be the set of finite combinations of elements of S.

If $\langle S \rangle = V$, then we say S is **spans** or **generates** V.

Remark. By convention, we also take $\langle \emptyset \rangle = \{0\}$. An equivalent definition is that $\langle S \rangle$ is the smallest subspace of V that contains S.

Example 1.11 (Quadratic Polynomials)

Let V be the vector space of quadratic polynomials over \mathbb{R} ,

$$V = \{ax^2 + bx + c \mid a, b, c \in \mathbb{R}\}.$$

Then the subset $S \subseteq V$ with $S = \{1, x, x^2\}$ spans V.

Putting these two concepts together gives us the idea of *bases*, which are sets of linearly independent vectors that span a vector space.

Definition 1.12 (Basis)

A subset S of a vector space V is a **basis** if S is a set of linearly independent vectors that span V.

Example 1.13 (Basis for \mathbb{R}^n)

The **canonical basis** of \mathbb{R}^n is the set of vectors

$$S = \left\{ \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix}, \dots, \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix} \right\}.$$

Importantly, this is not the *only* basis of \mathbb{R}^n , just one that is quite convenient most of the time.

Remark. Note that in the definition of a basis there is no requirement for the set of basis vectors $S \subseteq V$ to be finite – only that any element in V must be representable using finitely many elements of S.

We'd intuitively want to say that the *dimension* of a vector space is the number of elements in its basis. However, we first need to check that this is a well defined notion. We can at this point distinguish between finite and infinite dimensional vector spaces at this point though⁴.

Definition 1.14 (Finite & Infinite Dimension)

We say a vector space V is **finite dimensional** if it has a finite basis, and we say it is **infinite dimensional** otherwise.

The next result about bases we will prove is that they induce *unique* representations of elements in the vector space.

Lemma 1.15 (Unique Representations with a Basis)

Let V be a vector space over \mathbb{F} . Then $S \subseteq V$ is a basis of V if and only if any vector $v \in V$ can be written uniquely as a linear combination of elements $v_1, \ldots, v_n \in S$.

Proof. Suppose that S was a basis for V. Then if $v \in V$ can't be written as such a linear combination, then S wouldn't not span V, contradicting it being a basis. Also, if v can be written as such a linear combination non-uniquely, then taking

$$v = \lambda_1 v_1 + \dots + \lambda_n v_n = \mu_1 v_1 + \dots + \mu_n v_n.$$

where $\lambda_i \neq \mu_i$ for at least one value of i, we'd have $0 = v - v = (\lambda_1 - \mu_1)v_1 + \cdots + (\lambda_n - \mu_n)v_n$, and at least one of these coefficients must be non-zero, contradicting S being linearly independent.

Alternatively, if any element in V can be written uniquely, then if $v_1, \ldots, v_n \in S$ with $\lambda_1 v_1 + \cdots + \lambda_n v_n = 0$ implies that $\lambda_1 = \cdots = \lambda_n = 0$, giving that S must be linearly independent. Since S is also spanning by definition, we see that it therefore

⁴Can you see why this is well defined already?

must be a basis of V.

With that out of the way, we can prove some results about finite dimensional vector spaces which will help us get towards our definition of dimension.

Lemma 1.16 (Spanning Sets Contain a Basis)

Let V be a finite dimensional vector space, and let $S = \{v_1, \ldots, v_n\}$ be a set of vectors that spans V. Then there is some subset of S that is a basis of V.

Proof. If $\{v_1, \ldots, v_n\}$ is linearly independent, then we are done. If it's not, then (up to reordering) we have $v_n \in \langle \{v_1, \ldots, v_{n-1}\} \rangle$. But then $\langle \{v_1, \ldots, v_n\} \rangle = \langle \{v_1, \ldots, v_{n-1}\} \rangle$, so we can not include v_n in our subset. Not including elements in this way repeatedly, since there is finitely many elements in S, we must eventually get a linearly independent set that still spans V.

The next result it about two ideas: constructing bases and the size of linearly independent sets.

Theorem 1.17

Let V be a finite dimensional vector space. Then if $\{v_1, \ldots, v_m\}$ is a set of linearly independent vectors, and $\{w_1, \ldots, w_n\}$ spans V, then

- (i) $m \leq n$
- (ii) up to reordering, $\{v_1, \ldots, v_m, w_{m+1}, \ldots, v_n\}$ spans V.

Proof. We will prove this by induction. Suppose we have replaced $\ell \geq 0$ of the w_i , and that

$$\langle \{v_1, \dots, v_\ell, w_{\ell+1}, \dots, w_n\} \rangle = V.$$

If $m = \ell$, we are done, so assume that $\ell < m$. Then since this set is spanning, we can write $v_{\ell+1} \in V$ as

$$v_{\ell+1} = \alpha_1 v_1 + \dots + \alpha_{\ell} v_{\ell} + \beta_{\ell+1} w_{\ell+1} + \dots + \beta_n w_n.$$

Since having $\beta_i = 0$ for all $\ell + 1 \le i \le n$ would violate linear independence, we can suppose without loss of generality that $\beta_{\ell+1} \ne 0$. We also note that this implies that $\ell + 1 \le n$, as otherwise this would not be possible.

Then $w_{\ell+1} \in \langle \{v_1, \dots, v_{\ell+1}, w_{\ell+2}, \dots, w_n\} \rangle$, and this set spans V.

Repeating this process, we will be done after m steps, and we have also shown (at the final step) that $m \leq n$.