Using GLRM on H20.ai

to Predict Customer Value ——
Corinne Powers, PhD

About Me

Sr. Data Scientist at Retina Al

Math, Optimization and Signals Modeling Background

R and Python

New to LA Community (8 months)

This Talk

Business Value

Modeling & Data

R Usage in H2O.ai

Motivation

333

- You sell Animal Cookies through your website
- Customers may buy animal packs or subscribe monthly
- You track session data of site visits, even if they don't purchase

How do we **infer** behavior to **target** customers who could be valuable?

Clustering!

Big Picture: Seek people who "look" similar to high-value customers.

Supervised Learning

Unsupervised Learning

Decision tree

K-Means clustering

K-nearest neighbors

But where can this fail? Any why?

Mixed Data Types

Numerical

Categorical

Boolean

	Total Spend	Device Type	Acquisition Channel	Favorite Shape	Favorite Flavor	Subscriber
Customer A	\$\$	Mobile	Facebook	Tiger	Sprinkles	No
Customer B	\$	Mobile	Google	Elephant	Chocolate	No
Customer C	\$\$\$\$\$	Desktop	Bing	Lion	Sprinkles	Yes
Customer D	\$\$\$	Tablet	Google	Elephant	Sprinkles	No

Semi Supervised Learning

Numerical

Categorical

Boolean

	Total Spend	Device Type	Acquisition Channel	Favorite Shape	Favorite Flavor	Subscriber
Customer A	\$\$	Mobile	Facebook	Tiger	Sprinkles	No
Customer B	\$	Mobile	Google	Elephant	Chocolate	No
Customer C	\$\$\$\$\$	Desktop	Bing	Lion	Sprinkles	Yes
Customer D		Tablet	Google	Elephant	Sprinkles	

Missing Data

Numerical

Categorical

Boolean

	Total Spend	Device Type	Acquisition Channel	Favorite Shape	Favorite Flavor	Subscriber
Customer A	\$\$	Mobile	Facebook	Tiger	Sprinkles	No
Customer B	\$	Mobile	Google			No
Customer C	\$\$\$\$\$	Desktop	Bing	Lion		Yes
Customer D		Tablet	Google	Elephant	Sprinkles	

Generalized Low Rank Models (GLRMs)

Capabilities: handle missing data, handle weird types of data, you pick feature importance

Special Cases: SVM, K-means clustering, PCA

Business Value: Build Personas and Predict \$\$\$, Consumer Preferences, etc.

GLRM parameters on H2O.ai

```
library(h2o)
h2o.init()
# GLRM parameters
glrm_loss <- "Quadratic"  # Least squares</pre>
glrm_regx <- "UnitOneSparse" # Assign to one cluster</pre>
glrm_gammax <- 1.0
glrm_gammay <- 1.0
glrm_regy <- "NonNegative" # Interpretable cluster</pre>
glrm_k <- 8
                                # Number of clusters
```

https://cran.r-project.org/web/packages/h2o/index.html

Train a GLRM

```
visits.glrm <- h2o.glrm(</pre>
     training_frame = visits.train,
     cols = union(glrm_features, glrm_responses),
     k = glrm k
     loss = glrm_loss,
     regularization_x = glrm_regx, regularization_y = glrm_regy,
6
     gamma_x = glrm_gammax, gamma_y = glrm_gammay,
     transform = "NONE",
     max_iterations = 1000, max_updates = 2000,
     svd_method = "GramSVD", min_step_size = 1e-6,
10
      ignore_const_cols = FALSE, seed = 10)
11
```

Impute Labels via Clusters

```
# impute missing values
visits.predict <- h2o.reconstruct(visits.glrm,
visits.train[,union(glrm_features, glrm_responses)])</pre>
```

	Arch1	Arch2	Arch3	Arch4	Arch5	Arch6	Arch7	Arch8	reconst	r_revenue
[1,]	0	0	0	0	0	0	1	Θ	1	104.7450
[2,]	1	0	0	0	0	0	0	Θ	2	110.5066
[3,]	0	0	0	0	1	0	0	Θ	3	108.6246
[4,]	0	0	0	0	1	0	0	Θ	4	108.6246
[5,]	0	0	0	0	0	0	1	0	5	104.7450

Target Valuable Customers

- GLRM to create Personas that are **descriptive** and **predictive**
- Match customers to closest Persona to make behavioral inferences
- Even with little data, can match using subset of features as needed

Acknowledgements

Adam Brownell, Emad Hasan, Brad Ito (Retina AI)

- Craft Customer Value business cases
- Support an H2O.ai environment in daily workflow
- Feedback from earlier talks

Anqi Fu (Stanford University)

- Work on GLRM tools for H2O.ai in R

Questions?

corinne@retina.ai

GLRM paper: https://web.stanford.edu/~boyd/papers/pdf/glrm.pdf

H2O.ai Cran: https://cran.r-project.org/web/packages/h2o/index.html

GLRM on H2O.ai: http://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/glrm.html