Operations Research 04. Optimization Fundamentals

The Chain Rule

Definition (The Jacobian). Let V be open in \mathbb{R}^n , $\mathbf{x} \in V$, and $g_i : V \to \mathbb{R}$, i = 1, 2, ..., m be C^1 on V. The Jacobian of $\mathbf{g}(\mathbf{x}) : \mathbb{R}^n \to \mathbb{R}^m$ is defined as

$$D\mathbf{g}(\mathbf{x}) = \begin{pmatrix} \frac{\partial g_1}{\partial x_1} & \frac{\partial g_1}{\partial x_2} & \cdots & \frac{\partial g_1}{\partial x_n} \\ \frac{\partial g_2}{\partial x_1} & \frac{\partial g_2}{\partial x_2} & \cdots & \frac{\partial g_2}{\partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial g_m}{\partial x_1} & \frac{\partial g_m}{\partial x_2} & \cdots & \frac{\partial g_m}{\partial x_n} \end{pmatrix} (\mathbf{x})$$

Theorem (Rudin (1976) 9.15; Apostol (1974) Theorem 12.7; Wade (2009) 11.28). Suppose that \mathbf{f} and \mathbf{g} are vector functions. If \mathbf{g} is differentiable at \mathbf{a} and \mathbf{f} is differentiable at $\mathbf{g}(\mathbf{a})$, then $\mathbf{f} \circ \mathbf{g}$ is differentiable at \mathbf{a} and

$$D(\mathbf{f} \circ \mathbf{g})(\mathbf{a}) = D \mathbf{f}(\mathbf{g}(\mathbf{a})) D \mathbf{g}(\mathbf{a})$$

More explicitly, if f is a differentiable function of x_1, x_2, \ldots, x_n , and each x_j is a differentiable function of $t_1, t_2, \ldots, t_m, n, m \geqslant 1$; then f is a differentiable function of t_1, t_2, \ldots, t_m with

$$\frac{\partial f}{\partial t_i} = \frac{\partial f}{\partial x_1} \frac{\partial x_1}{\partial t_i} + \frac{\partial f}{\partial x_2} \frac{\partial x_2}{\partial t_i} + \dots + \frac{\partial f}{\partial x_n} \frac{\partial x_n}{\partial t_i}$$

Example. Let w=f(xz,yz), where f is a differentiable function. Prove that $x\frac{\partial w}{\partial x}+y\frac{\partial w}{\partial y}=z\frac{\partial w}{\partial z}$.

Solution. Write u(x,y,z)=xz and v(x,y,z)=yz so that w(x,y,z)=f(u(x,y,z),v(x,y,z)). By the chain rule,

$$\begin{split} &\frac{\partial w}{\partial x}(x,y,z) = \frac{\partial}{\partial x} \big[f\big(u(x,y,z), v(x,y,z) \big) \big] \\ &= \frac{\partial f}{\partial u} \big(u(x,y,z), v(x,y,z) \big) \frac{\partial u}{\partial x}(x,y,z) + \frac{\partial f}{\partial v} \big(u(x,y,z), v(x,y,z) \big) \frac{\partial v}{\partial x}(x,y,z) \\ &= z \frac{\partial f}{\partial u}(xz,yz) \end{split}$$

$$\begin{split} &\frac{\partial w}{\partial y}(x,y,z) = \frac{\partial}{\partial y} \big[f\big(u(x,y,z), v(x,y,z) \big) \big] \\ &= \frac{\partial f}{\partial u} \big(u(x,y,z), v(x,y,z) \big) \frac{\partial u}{\partial y}(x,y,z) + \frac{\partial f}{\partial v} \big(u(x,y,z), v(x,y,z) \big) \frac{\partial v}{\partial y}(x,y,z) \\ &= z \frac{\partial f}{\partial v}(xz,yz) \end{split}$$

$$\begin{split} &=\frac{\partial f}{\partial u}\big(u(x,y,z),v(x,y,z)\big)\frac{\partial u}{\partial z}(x,y,z)+\frac{\partial f}{\partial v}\big(u(x,y,z),v(x,y,z)\big)\frac{\partial v}{\partial z}(x,y,z)\\ &=x\frac{\partial f}{\partial u}(xz,yz)+y\frac{\partial f}{\partial v}(xz,yz) \end{split}$$
 So

 $= z \left[x \frac{\partial f}{\partial u}(xz, yz) + y \frac{\partial f}{\partial w}(xz, yz) \right] = z \frac{\partial w}{\partial z}$

 $\frac{\partial w}{\partial x} + y \frac{\partial w}{\partial y} = xz \frac{\partial f}{\partial y}(xz, yz) + yz \frac{\partial f}{\partial y}(xz, yz)$

 $\frac{\partial w}{\partial z}(x, y, z) = \frac{\partial}{\partial z} [f(u(x, y, z), v(x, y, z))]$

Unconstrained Optimization Problems

Theorem (Rudin (1976) 4.16; Apostol (1974) Theorem 4.27; Wade (2009) 9.57). Given $S \subseteq \mathbb{R}^n$ and continuous $f: S \to \mathbb{R}$; if S is compact, then

$$M = \sup \{ f(\mathbf{x}) : \mathbf{x} \in S \}$$
 and $m = \inf \{ f(\mathbf{x}) : \mathbf{x} \in S \}$

are finite real numbers. Moreover, there exists points \mathbf{x}_{M} , $\mathbf{x}_{\mathrm{m}} \in S$ such that $M = f(\mathbf{x}_{\mathrm{M}})$ and $m = f(\mathbf{x}_{\mathrm{m}})$.

Definition. Given $S \subseteq \mathbb{R}^n$, $f: S \to \mathbb{R}$ and $B(\mathbf{x}, h) \equiv \{\mathbf{y} \in \mathbb{R}^n \mid |\mathbf{y} - \mathbf{x}| < h\}$, f achieves

- global maximum $f(\mathbf{x}_{M})$ at $\mathbf{x}_{M} \in S$: $f(\mathbf{x}_{M}) \geqslant f(\mathbf{x}), \ \forall \ \mathbf{x} \in S$.
- global minimum $f(\mathbf{x}_{\mathrm{m}})$ at $\mathbf{x}_{\mathrm{m}} \in S$: $f(\mathbf{x}_{\mathrm{m}}) \leqslant f(\mathbf{x}), \ \forall \ \mathbf{x} \in S$.
- local maximum $f(\mathbf{x}_0)$ at $\mathbf{x}_0 \in S$: $\exists h_0 > 0$ s.t. $f(\mathbf{x}_0) \geqslant f(\mathbf{x}), \ \forall \ \mathbf{x} \in B(\mathbf{x}_0, h_0) \cap S$.
- local minimum $f(\mathbf{x}_1)$ at $\mathbf{x}_1 \in S$: $\exists h_1 > 0$ s.t. $f(\mathbf{x}_1) \leqslant f(\mathbf{x})$, $\forall \mathbf{x} \in B(\mathbf{x}_1, h_1) \cap S$.

Theorem (necessary conditions for extremum). Given $S \subseteq \mathbb{R}^n$ and differentiable $f: S \to \mathbb{R}$, if f achieves extremum at an interior $\mathbf{c} \in S$, then $\nabla f(\mathbf{c}) = \mathbf{0}$.

Proof. If $\mathbf{c} = (c_1, c_2, \dots, c_n)$, let

$$g_j(t) \equiv f(c_1,\,c_2,\,\dots,\,c_{j-1},\,t,\,c_{j+1},\,\dots,\,c_n), \quad j=1,\,2,\,\dots,\,n$$

For f achieves extremum at \mathbf{c} , $f(\mathbf{c}) = g_j(c_j)$, g_j achieves extremum at $c_j \implies g_j'(t) \big|_{t=c_j} = 0 \implies D_j f(\mathbf{c}) = 0 \; \forall \, j, \, \text{so } \nabla f(\mathbf{c}) = \mathbf{0}$.

Theorem. Given $S \subseteq \mathbb{R}^n$, if $f: S \to \mathbb{R}$ achieves extremum at $\mathbf{c} \in S$, then \mathbf{c} can possibly be a

- critical point: $\nabla f(\mathbf{c}) = \mathbf{0}$.
- singular point: f is non-differentiable at \mathbf{c} .
- boundary point of S.

Definition (Hessian Matrix). Given $S \subseteq \mathbb{R}^n$, an interior point **c** of S, and a differentiable function $f: S \to \mathbb{R}$,

$$\mathbf{H}(f,\mathbf{c}) = \begin{pmatrix} f_{11} & f_{12} & \cdots & f_{1n} \\ f_{21} & f_{22} & \cdots & f_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ f_{n1} & f_{n2} & \cdots & f_{nn} \end{pmatrix}, \quad f_{ij} = \frac{\partial^2 f}{\partial x_j \partial x_i}(\mathbf{c}), \quad i,\, j=1,\, 2,\, \ldots,\, n.$$

Definition (Matrix Positive/Negative Definiteness). Given an $n \times n$ real symmetric matrix **A**. For any $\mathbf{v} \in \mathbb{R}^n \neq \mathbf{0}$, **A** is

- positive-definite: $\mathbf{v}\mathbf{A}\mathbf{v}^{\top} > 0$
- negative-definite: $\mathbf{v}\mathbf{A}\mathbf{v}^{\top} < 0$
- positive-semidefinite: $\mathbf{v}\mathbf{A}\mathbf{v}^{\top} \geqslant 0$
- negative-semidefinite: $\mathbf{v}\mathbf{A}\mathbf{v}^{\top} \leqslant 0$

Definition (Minor). Given an
$$n \times n$$
 matrix $\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}$

and minor
$$\mathbf{A} \begin{pmatrix} i_1, i_2, \cdots, i_k \\ j_1, j_2, \cdots, j_k \end{pmatrix} = \begin{vmatrix} a_{i_1 j_1} & a_{i_1 j_2} & \cdots & a_{i_1 j_k} \\ a_{i_2 j_1} & a_{i_2 j_2} & \cdots & a_{i_2 j_k} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i_k j_1} & a_{i_k j_2} & \cdots & a_{i_k j_k} \end{vmatrix}, \ 1 \leqslant k \leqslant n, \ 1 \leqslant i_1 < i_2 < \cdots < i_k \leqslant n, \ 1 \leqslant j_2 < \cdots < j_k \leqslant n.$$

- $\Delta_k \equiv \mathbf{A} \begin{pmatrix} i_1, i_2, \cdots, i_k \\ i_1, i_2, \cdots, i_k \end{pmatrix}$ is the *k*-th order principal minor of *A*.
- $M_k \equiv \mathbf{A} \begin{pmatrix} 1, 2, \cdots, k \\ 1, 2, \cdots, k \end{pmatrix}$ is the k-th order leading principal minor of A.

Theorem (Criteria for Matrix Positive/Negative Definiteness). Given an $n \times n$ real symmetric matrix **A**, then $\forall k \leq n$, **A** is

- positive-definite $\iff M_k > 0$
- negative-definite $\iff (-1)^k M_k > 0$
- positive-semidefinite $\iff \Delta_k \geqslant 0$
- negative-semidefinite $\iff (-1)^k \Delta_k \geqslant 0$

 $\mathbf{v}\mathbf{A}\mathbf{v}^{\top} = \begin{pmatrix} a & b & c \end{pmatrix} \begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & 1 & 2 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} 2a - b & -a + 2b - c & -b + 2c \end{pmatrix}.$

Example. Consider the matrix $\mathbf{A} = \begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & 1 & 2 \end{pmatrix}$: Let $\mathbf{v} = \langle a, b, c \rangle$,

$$\begin{pmatrix} a \\ b \end{pmatrix} = (2a-b)a + (-a+2b-c)b + (-b+2c)c = 2a^2 - 2ab + 2b^2 - 2bc + 2c^2 = 2a^2 - 2ab + 2b^2 - 2bc + 2b^2 - 2b^2$$

$$\begin{pmatrix} a \\ b \\ c \end{pmatrix} = (2a-b)a + (-a+2b-c)b + (-b+2c)c = 2a^2 - 2ab + 2b^2 - 2bc + 2c^2 = a^2 + (a-b)^2 + (b-c)^2 + c^2 > 0, \text{ except when } a = b = c = 0, \text{ so it is positive-definite. Also, } \mathbf{A's} \ M_1, \ M_2, \ M_3 \ \text{are } 2, \ \begin{vmatrix} 2 & -1 \\ -1 & 2 \end{vmatrix} = 3, \ \begin{vmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{vmatrix} = 4$$

respectively, by the above criteria **A** is positive-definite.

 $a^2 + (a-b)^2 + (b-c)^2 + c^2 > 0$, except when a = b = c = 0, so it is positive-

Theorem (Second Derivative Test). Given $S \subseteq \mathbb{R}^n$ and a differentiable function $f: S \to \mathbb{R}$, and f at an interior point \mathbf{c} of S has $\nabla f(\mathbf{c}) = 0$. If $\mathbf{H}(f, \mathbf{c})$ is

- positive-definite $\implies f$ has a local minimum at \mathbf{c} .
- negative-definite $\implies f$ has a local maximum at \mathbf{c} .

Fact. Given $S \subseteq \mathbb{R}^2$ and a differentiable function $f: S \to \mathbb{R}$, and f at an interior point (a,b) of S has $\nabla f(a,b) = 0$. Let

$$D = f_{xx}(a,b) \cdot f_{yy}(a,b) - (f_{xy}(a,b))^2$$

- If D > 0 and $f_{xx}(a, b) > 0$, then f has a local minimum at (a, b).
- If D > 0 and $f_{xx}(a, b) < 0$, then f has a local maximum at (a, b).
- If D < 0, then (a, b) is a saddle point.

Example. Find the critical points of $f(x,y) = x^3 + xy^2 - 3x^2 - 4y^2 + 4$ and classify them.

Solution. From $f_x(x,y) = 3x^2 + y^2 - 6x$, $f_y(x,y) = 2xy - 8y$, the critical points are (x,y) that simultaneously satisfy these two equations being zero. Therefore $\{3x^2 + y^2 - 6x = 0\} \land \{y(x-4) = 0\} \implies \{y = 0 \land 3x^2 - 6x = 0\} \lor \{x = 4 \land 3 \cdot 4^2 + y^2 + 6 \cdot 4 = 0\}$, So the critical points are (0,0), (2,0).

Álso	lso $f_{xx} = 6x - 6$, $f_{yy} = 2x - 8$, $f_{xy} = f_{yx} = 2y$, classified as follows:					
	Critical Point	$f_{xx}f_{yy} - f_{xy}^2$	f_{xx}	Classification		
	(0,0)	$(-6) \times (-8) - (0)^2 > 0$	-6	Local maximum		
	(2,0)	$6 \times (-4) - 0^2 < 0$		Saddle point		

Example. Find the critical points of f(x,y) = xy (5x + y - 15) and classify them.

Solution. From $f_x(x,y) = y (5x+y-15) + xy (5) = y (5x+y-15) + y (5x) = y (10x+y-15), f_y(x,y) = x (5x+y-15) + xy (1) = x (5x+y-15) + x (y) = x (5x+2y-15), the critical points are <math>(x,y)$ that simultaneously satisfy these two equations being zero. Therefore $\{y=0 \lor 10x+y-15=0\} \land \{x=0 \lor 5x+2y-15=0\} \implies \{y=0 \land x=0\} \lor \{y=0 \land 5x+2y=15\} \lor \{10x+y=15 \land x=0\} \lor \{10x+y=15 \land 5x+2y=15\},$ So the critical points are (0,0), (3,0), (0,15), (1,5). Also $f_{xx}=10y, f_{yy}=2x, f_{xy}=f_{yx}=10x+2y-15,$ classified as follows:

Critical Point	$f_{xx}f_{yy} - f_{xy}^2$	f_{xx}	Classification
(0,0)	$0 \times 0 - (-15)^2 < 0$		Saddle point
(3,0)	$0 \times 6 - 15^2 < 0$		Saddle point
(0, 15)	$150 \times 0 - 15^2 < 0$		Saddle point
(1, 5)	$50 \times 2 - 5^2 > 0$	50	Local minimum

Example. Find the maximum and the minimum of $f(x,y) = (x+y) e^{-x^2-y^2}$ on $S: x^2 + y^2 \le 1$.

Solution. Since f is differentiable, it has no singular points; the extrema of f occur at critical points ($\mathbf{c} \in S$, $\nabla f(\mathbf{c}) = 0$) and boundary points of S.

- From $f_x = e^{-x^2-y^2} + (x+y) e^{-x^2-y^2} (-2x) = (-2x^2-2xy+1) e^{-x^2-y^2},$ $f_y = e^{-x^2-y^2} + (x+y) e^{-x^2-y^2} (-2y) = (-2y^2-2xy+1) e^{-x^2-y^2},$ the critical points (x,y) satisfy $2x^2 + 2xy = 1$ and $2y^2 + 2xy = 1$, which gives $(x,y) = (\frac{1}{2},\frac{1}{2}), (-\frac{1}{2},-\frac{1}{2}).$
- Boundary points $x^2 + y^2 = 1$: Let $x = \cos t$, $y = \sin t$, $0 \le t \le 2\pi$, then f(x,y) becomes $g(t) \equiv (\cos t + \sin t) e^{-1}$; $g'(t) = (-\sin t + \cos t) e^{-1} = 0$ solves to $t = \frac{\pi}{4}, \frac{5\pi}{4}$; also consider boundary $t = 0, 2\pi$, i.e., $(x,y) = (\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}), (-\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}), (1,0)$.

Candidate Point	f(x,y)	Classification
$(\frac{1}{2}, \frac{1}{2}) \\ (-\frac{1}{2}, -\frac{1}{2}) \\ (\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}) \\ (-\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}) \\ (1, 0)$	$e^{-\frac{1}{2}} \\ -e^{-\frac{1}{2}} \\ \sqrt{2}e^{-1} \\ -\sqrt{2}e^{-1} \\ e^{-1}$	Maximum Minimum

Example. Find the maximum and the minimum of $f(x,y) = x^3 + xy^2 - 3x^2 - 4y^2 + 4$ on $S: x^2 + y^2 \le 1$.

Solution. Since f is differentiable, it has no singular points; the extrema of f occur at critical points ($\mathbf{c} \in S$, $\nabla f(\mathbf{c}) = 0$) and boundary points of S ($x^2 + y^2 = 1$).

- From $f_x = 3x^2 + y^2 6x$, $f_y = 2xy 8y$, the critical points (x, y) satisfy $3x^2 + y^2 6x = 0$ and 2xy 8y = 0, which gives (x, y) = (0, 0), (2, 0); (2, 0) is outside S and not applicable.
 - Boundary points $x^2 + y^2 = 1$: Substitute $y^2 = 1 x^2$ then f(x, y) becomes $g(x) = x^3 + x(1 x^2) 3x^2 4(1 x^2) + 4 = x + x^2$, $-1 \le x \le 1$; g'(x) = 1 + 2x = 0 solves to $x = -\frac{1}{2}$, i.e., the extrema of g(x) occur at $x = \pm 1$ and $-\frac{1}{2} \implies (x, y) = (-\frac{1}{2}, \pm \frac{\sqrt{3}}{2})$, (1, 0), (-1, 0).

		,, (2, 2),
Candidate Point	f(x,y)	Classification
(0,0)	4	Maximum
$\big(-\frac{1}{2},\pm\frac{\sqrt{3}}{2}\big)$	$-\frac{1}{4}$	Minimum
(1,0)	2	
(-1,0)	0	

Example. Find the maximum and the minimum of $f(x,y) = xy - x^3y^2$ on $S: 0 \le x \le 1, \ 0 \le y \le 1.$

Solution. Since f is differentiable, it has no singular points; the extrema of f occur at critical points ($\mathbf{c} \in S$, $\nabla f(\mathbf{c}) = 0$) and boundary points of S.

- From $f_x = y 3x^2y^2$, $f_y = x 2x^3y$, the critical points (x, y) satisfy $y 3x^2y^2 = y(1 3x^2y) = 0$ and $x 2x^3y = x(1 2x^2y) = 0$, so $y = 0 \lor 1 3x^2y = 0$ and $x = 0 \lor 1 2x^2y = 0$; which gives (x, y) = (0, 0).
- The boundary points consist of $L_1: x=0 \land 0 \leqslant y \leqslant 1, L_2: y=0 \land 0 \leqslant x \leqslant 1, L_3: x=1 \land 0 \leqslant y \leqslant 1, L_4: y=1 \land 0 \leqslant x \leqslant 1.$
 - $-L_1$: f(x,y) = 0.
 - $-L_2$: f(x,y) = 0.
 - L_3 : $x = 1, 0 \le y \le 1$, f(x,y) becomes $g(y) = y y^2$, g'(y) = 1 2y = 0 solves to $y = \frac{1}{2}$, i.e., the extrema of g(y) occur at $y = 0, 1, \frac{1}{2} \implies (x,y) = (1,0), (1,1), (1,\frac{1}{2})$
 - L_4 : y = 1, $0 \le x \le 1$, f(x, y) becomes $h(x) = x x^3$, $h'(x) = 1 3x^2 = 0$ solves to $x = \pm \frac{1}{\sqrt{3}}$ (negative not applicable), i.e., the

extrema of h(x) occur at $x = 0, 1, \frac{1}{\sqrt{3}} \implies (x, y) = (0, 1), (1, 1), (\frac{1}{\sqrt{3}}, 1).$

Candidate Point	f(x,y)	Classification
$(0, 0 \leqslant y \leqslant 1)$	0	Minimum
$(0 \leqslant x \leqslant 1, 0)$	0	Minimum
(0,0)	0	Minimum
(1,0)	0	Minimum
(1,1)	0	Minimum
$(1,\frac{1}{2})$	$\frac{1}{4}$	
$(0, \tilde{1})$	Õ	Minimum
$(\frac{1}{\sqrt{3}}, 1)$	$\frac{2}{3\sqrt{3}}$	Maximum

Example. Find the maximum and the minimum of f(x,y) = xy + 2x + y in the triangular region S formed by (0,0), (1,0), (0,2).

Solution. Since f is differentiable, it has no singular points; the extrema of f occur at critical points ($\mathbf{c} \in S$, $\nabla f(\mathbf{c}) = 0$) and boundary points of S.

- From $f_x=y+2,$ $f_y=x+1,$ the critical points (x,y) satisfy y+2=0 and x+1=0, so (x,y)=(-1,-2).
- The boundary points consist of $L_1: x=0 \land 0 \leqslant y \leqslant 2, L_2: y=0 \land 0 \leqslant x \leqslant 1, L_3: (1,0) (0,2). L_1: (x,y) = (0,0), (0,2).$
 - $-L_2: (x,y) = (0,0), (1,0).$
 - $-L_2: (x,y) = (0,0), (1,0).$
 - L_3 : y = -2x + 2, $0 \le x \le 1$, f(x,y) becomes $g(x) = x(-2x + 2) + 2x + (-2x + 2) = -2x^2 + 2x + 2$, g'(x) = -4x + 2 = 0 solves to $x = \frac{1}{2}$, i.e., the extrema of g(x) occur at $x = 0, 1, \frac{1}{2}$ $\implies (x,y) = (0,2), (1,0), (\frac{1}{2},1)$

Candidate Point	f(x,y)	Classification
(0,0)	0	Minimum
(0, 2)	2	
(1,0)	2	
$(\frac{1}{2}, 1)$	$\frac{5}{2}$	Maximum

Example. Find the maximum and the minimum of $f(x,y) = xy e^{-\frac{x^2+y^2}{2}}$ on $S: \{(x,y) | x^2 + y^2 \le 4, \ x \ge 0, \ y \ge 0\}.$

Solution. Since f is differentiable, it has no singular points; the extrema of f occur at critical points ($\mathbf{c} \in S$, $\nabla f(\mathbf{c}) = 0$) and boundary points of S.

- From $f_x(x,y) = y e^{-\frac{x^2+y^2}{2}} + xy e^{-\frac{x^2+y^2}{2}} (-x) = y(1-x^2) e^{-\frac{x^2+y^2}{2}},$ $f_y(x,y) = x e^{-\frac{x^2+y^2}{2}} + xy e^{-\frac{x^2+y^2}{2}} (-y) = x(1-y^2) e^{-\frac{x^2+y^2}{2}},$ the critical points (x,y) satisfy $y(1-x^2) = 0$ and $x(1-y^2) = 0$, which gives (x,y) = (0,0), (1,1), (1,-1), (-1,1), (-1,-1); only (0,0), (1,1) are inside S.
- The boundary points consist of L_1 : $x = 0 \land 0 \leqslant y \leqslant 2$, L_2 : $y = 0 \land 0 \leqslant x \leqslant 2$, L_3 : $x^2 + y^2 = 4$ in the first quadrant.
 - $-L_1$: f(x,y) = 0.
 - $-L_2$: f(x,y) = 0.
 - $\begin{array}{l} -\ L_3 \colon \text{Let}\ x = 2\cos t,\, y = 2\sin t,\, 0 \leqslant t \leqslant \frac{\pi}{2},\, \text{then}\ f(x,y) \text{ becomes} \\ g(t) \equiv 4\cos t \sin t\, e^{-2};\, g'(t) = \cos 2t\, 4e^{-2} = 0 \text{ solves to } t = \frac{\pi}{4};\, \text{also} \\ \text{consider boundary } t = 0,\, \frac{\pi}{2},\, \text{i.e., } (x,y) = (\sqrt{2},\sqrt{2}),\, (2,0),\, (0,2). \end{array}$

f(x, y)	Classification
0	Minimum
e^{-1}	Maximum
0	Minimum
0	Minimum
$2e^{-2}$	
0	Minimum
0	Minimum
	0

Equalities Constrained Optimization Problems: The Lagrange Multipliers Method

Theorem (Apostol (1974) Theorem 13.12; Wade (2009) 11.63). Given an open set $S \subseteq \mathbb{R}^n$, differentiable functions $f: S \to \mathbb{R}$ and $g_j: S \to \mathbb{R}$, $j=1,\,2,\,\ldots,\,m,\,m < n,$ and $X_0 = \{\mathbf{x} \in S \mid g_j(\mathbf{x}) = 0,\,j = 1,\,2,\,\ldots,\,m\}$. If f has an extremum at $\mathbf{x}_0 \in S \cap X_0$ and $\det\left(D_ig_j(\mathbf{x}_0)\right) \neq 0$, then

$$\exists \, \lambda_1, \, \lambda_2, \, \dots, \, \lambda_m \quad \text{s.t.} \quad D_i f(\mathbf{x}_0) + \sum_{i=1}^m \lambda_j D_i g_j(\mathbf{x}_0) = 0, \quad i = 1, \, 2, \, \dots, \, n$$

Remark. Let $\mathcal{L} \equiv f + \sum_{j=1}^{m} \lambda_j g_j$, the sufficient condition can be rewritten as

$$D_i \mathcal{L}(\mathbf{x}_0) = 0, \quad i = 1, 2, ..., n$$

 $g_j(\mathbf{x}_0) = 0, \quad j = 1, 2, ..., m$

Example. Find the maximum and minimum values of $x^2 - 10x - y^2$ on $x^2 + 4y^2 = 16.$

Solution. Let $\mathcal{L} = x^2 - 10x - y^2 + \lambda (x^2 + 4y^2 - 16)$, then

$$\frac{\partial \mathcal{L}}{\partial x} = 2x - 10 + 2\lambda x = 0 \implies x - 5 + \lambda x = 0$$

$$\frac{\partial \mathcal{L}}{\partial y} = -2y + 8\lambda y = 0 \implies -y + 4\lambda y = 0$$
(2)

$$\frac{\partial \mathcal{L}}{\partial y} = -2y + 8\lambda y = 0 \implies -y + 4\lambda y = 0 \tag{2}$$

$$x^2 + 4y^2 - 16 = 0 (3)$$

From (2) $(1-4\lambda)y = 0$, so $y = 0 \lor \lambda = \frac{1}{4}$. If y = 0, from (3) $x = \pm 4$; if $\lambda = \frac{1}{4}$, from (1) $(1 + \lambda) x = 5 \implies x = 4$, substituting into (3) gives y = 0. Therefore, the extremum points are $(x,y)=(4,0), (-4,0); x^2-10x-y^2$ has a maximum value of 56 (at (x,y) = (-4,0)), and a minimum value of -24 (at (x, y) = (4, 0)).

Example. Find the point on $x^2 = y^2 + z^2$ that is closest to (0, 1, 3).

Solution. The square of the distance is $x^2+(y-1)^2+(z-3)^2$, with the constraint $x^2-y^2-z^2=0$. Let $\mathcal{L}=x^2+(y-1)^2+(z-3)^2+\lambda(x^2-y^2-z^2)$, then

$$\frac{\partial \mathcal{L}}{\partial x} = 2x + 2\lambda x = 0 \implies (1 + \lambda)x = 0 \tag{4}$$

$$\frac{\partial \mathcal{L}}{\partial y} = 2(y-1) - 2\lambda y = 0 \implies (1-\lambda)y = 1 \tag{5}$$

$$\frac{\partial \mathcal{L}}{\partial z} = 2(z - 3) - 2\lambda z = 0 \implies (1 - \lambda)z = 3 \tag{6}$$

$$x^2 - y^2 - z^2 = 0 (7)$$

From (4) $(1 + \lambda)x = 0$, so $x = 0 \lor \lambda = -1$. If x = 0, from (7) y = z = 0; if $\lambda = -1$, from (5) $y = \frac{1}{2}$, from (6) $z = \frac{3}{2}$, substituting into (7) gives $x = \pm \sqrt{\frac{5}{2}}$. Therefore, the extremum points are (x, y, z) = (0, 0, 0), $\left(\pm \sqrt{\frac{5}{2}}, \frac{1}{2}, \frac{3}{2}\right)$; the minimum value of the square of the distance $x^2 + (y - 1)^2 + (z - 3)^2$ is 5, occurring at $(x, y, z) = \left(\pm \sqrt{\frac{5}{2}}, \frac{1}{2}, \frac{3}{2}\right)$.

Example. Find the maximum and minimum values of $f(x, y, z) = (x+z) e^y$ on $x^2 + y^2 + z^2 = 6$.

Solution. Let $\mathcal{L} = (x+z)e^y + \lambda(x^2+y^2+z^2-6)$, then

$$\frac{\partial \mathcal{L}}{\partial x} = e^y + 2\lambda x = 0 \tag{8}$$

$$\frac{\partial \mathcal{L}}{\partial y} = (x+z) e^y + 2\lambda y = 0 \tag{9}$$

$$\frac{\partial \mathcal{L}}{\partial z} = e^y + 2\lambda z = 0 \tag{10}$$

$$x^2 + y^2 + z^2 - 6 = 0 (11)$$

From (8), (10) $2\lambda(x-z)=0$, so $\lambda=0 \lor x=z$. If $\lambda=0$, then from (8) $e^y=0$ which is impossible, so x=z. From (8) $e^y=-2\lambda x$, substituting into (9) $2x(-2\lambda x)+2\lambda y=0 \implies y=2x^2$, substituting into (11) gives $x^2+4x^4+x^2=6 \implies (4x^2+6)(x^2-1)=0 \implies x=\pm 1$. Therefore, the extremum points are $(x,y,z)=(1,2,1), (-1,2,-1); (x+z)e^y$ has a maximum value of $2e^2$ (at (x,y,z)=(1,2,1)), and a minimum value of $-2e^2$ (at (x,y,z)=(-1,2,-1)).

Example. If L is the curve of intersection of $z^2 = x^2 + y^2$ and x - 2z = 3, find the point on L that is closest to the origin and the shortest distance.

Solution. The objective is $x^2 + y^2 + z^2$ with constraints $x^2 + y^2 - z^2 = 0$ and x-2z-3=0. Let $\mathcal{L}=x^2+y^2+z^2+\lambda_1(x^2+y^2-z^2)+\lambda_2(x-2z-3)$, then

$$\frac{\partial \mathcal{L}}{\partial x} = 2x + 2\lambda_1 x + \lambda_2 = 0 \implies 2(1 + \lambda_1)x + \lambda_2 = 0 \tag{12}$$

$$\frac{\partial \mathcal{L}}{\partial y} = 2y + 2\lambda_1 y = 0 \implies (1 + \lambda_1)y = 0$$

$$\frac{\partial \mathcal{L}}{\partial z} = 2z - 2\lambda_1 z - 2\lambda_2 = 0 \implies (1 - \lambda_1)z - \lambda_2 = 0$$
(13)

(13)

$$\frac{\partial z}{\partial z} - 2z - 2\lambda_1 z - 2\lambda_2 = 0 \implies (1 - \lambda_1)z - \lambda_2 = 0$$

$$x^2 + y^2 - z^2 = 0$$

$$x - 2z - 3 = 0$$
(15)

From (13)
$$(1 + \lambda_1)y = 0$$
, so $y = 0 \lor \lambda_1 = -1$. If $y = 0$, from (15) $x^2 = z^2 \implies x = \pm z$. If $x = z$, from (16) $x = z = -3$. If $x = -z$, from (16) $x = 1$, $z = -1$; if $\lambda_1 = -1$, from (12) $\lambda_2 = 0$, from (14) $z = 0$, substituting into (15) gives $x = y = 0$, which contradicts (16). Therefore, the extremum points are $(x, y, z) = (-3, 0, -3)$, $(1, 0, -1)$; the minimum value of the square of the distance $x^2 + y^2 + z^2$ is 2 (shortest distance is $\sqrt{2}$), occurring at $(x, y, z) = (1, 0, -1)$.

Descent Direction Iteration

Starting with a design point $\mathbf{x}^{(1)}$ and generate a sequence of points $\{\mathbf{x}^{(k)}\}$ to converge to a local minimum:

- Check whether $\mathbf{x}^{(k)}$ satisfies the termination conditions. If it does, terminate; otherwise proceed to the next step.
- Determine the descent direction $\mathbf{d}^{(k)}$ using local info such as the gradient or Hessian.
- Determine the step size or learning rate $\alpha^{(k)}$.
- Compute the next point $\mathbf{x}^{(k+1)}$ according to

$$\mathbf{x}^{(k+1)} \, \longleftarrow \, \mathbf{x}^{(k)} + \alpha^{(k)} \, \mathbf{d}^{(k)}$$

Each optimization methods has its own way of determining \mathbf{d} and α .

First Order Method

•
$$\mathbf{g}^{(k)} = \nabla f(\mathbf{x}^{(k)}), \ \mathbf{d}^{(k)} = -\frac{\mathbf{g}^{(k)}}{\|\mathbf{g}^{(k)}\|}$$

•
$$\alpha^{(k)} = \underset{\alpha}{\operatorname{argmin}} f(\mathbf{x}^{(k)} + \alpha \mathbf{d}^{(k)})$$

• The above optimization implies the directional derivative equals zero, i.e.

$$\nabla f(\mathbf{x}^{(k)} + \alpha \, \mathbf{d}^{(k)})^{\top} \, \mathbf{d}^{(k)} = 0$$

• We know that

$$\mathbf{d}^{(k+1)} = -\frac{\nabla f(\mathbf{x}^{(k)} + \alpha \, \mathbf{d}^{(k)})}{\|\nabla f(\mathbf{x}^{(k)} + \alpha \, \mathbf{d}^{(k)})\|}$$

Hence $\mathbf{d}^{(k+1)}^{\top} \mathbf{d}^{(k)} = 0$.

Second Order Method

Recall Newton's method of finding the root of f(x) = 0.

- Given initial x_0
- Update by $x_{n+1} = x_n \frac{f(x_n)}{f'(x_n)}$; n = 0, 1, 2, ...

Apply to $f(x) = x^2 - a$, we have the Python code:

```
def mysqrt(a):
    x = a
    for i in range(100):
        x -= (x ** 2 - a) / (2 * x)
    return x
```

- To find the optimal value of f(x), we are actually finding the critical points: the root of f'(x) = 0. So
 - Given initial x_0
 - Update by $x_{n+1} = x_n \frac{f'(x_n)}{f''(x_n)}$; n = 0, 1, 2, ...
- Another viewpoint: the univariate second order Taylor expansion of f(x) w.r.t. x_n is

$$f(x) \approx q(x) = f(x_n) + f'(x_n)(x - x_n) + \frac{1}{2}f''(x_n)(x - x_n)^2$$

• Evaluate the derivative and set to zero, we have

$$q'(x) = f'(x_n) + f''(x_n)(x - x_n) = 0$$

• Solve for the next iterate:

$$x_{n+1} = x_n - \frac{f'(x_n)}{f''(x_n)}$$

• The multivariate second order Taylor expansion of $f(\mathbf{x})$ w.r.t. $\mathbf{x}^{(k)}$ is

$$\begin{split} f(\mathbf{x}) &\approx q(\mathbf{x}) = f(\mathbf{x}^{(k)}) + \mathbf{g}^{(k)^\top}(\mathbf{x} - \mathbf{x}^{(k)}) \\ &\quad + \frac{1}{2}(\mathbf{x} - \mathbf{x}^{(k)})^\top \mathbf{H}^{(k)}(\mathbf{x} - \mathbf{x}^{(k)}) \end{split}$$

where $\mathbf{g}^{(k)}$, $\mathbf{H}^{(k)}$ are the local gradient and Hessian resp.

• Evaluate the gradient and set to zero, we have

$$\nabla q(\mathbf{x}) = \mathbf{g}^{(k)} + \mathbf{H}^{(k)}(\mathbf{x} - \mathbf{x}^{(k)}) = 0$$

• Solve for the next iterate:

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} - \mathbf{H^{(k)}}^{-1} \mathbf{g}^{(k)}$$

Numerical Differentiation: Finite Difference

$$f'(x) \approx \underbrace{\frac{f(x+h) - f(x)}{h}}_{\text{forward difference}} \approx \underbrace{\frac{f(x+\frac{h}{2}) - f(x-\frac{h}{2})}{h}}_{\text{central difference}} \approx \underbrace{\frac{f(x) - f(x-h)}{h}}_{\text{backward difference}}$$

Numerical Differentiation: Complex Step Method

•
$$f(x+ih) = f(x) + ihf'(x) - h^2 \frac{f''(x)}{2!} - ih^3 \frac{f'''(x)}{3!} + \cdots$$

• Take the imaginary part:
$$\operatorname{Im} f(x+ih) = hf'(x) - h^3 \frac{f'''(x)}{3!} + \cdots \implies f'(x) \approx \frac{\operatorname{Im} f(x+ih)}{h} + \mathcal{O}(h^2)$$

• Take the real part: Re
$$f(x+ih)=f(x)-h^2\frac{f''(x)}{2!}+\cdots \implies f(x)\approx \text{Re } f(x+ih)+\mathcal{O}(h^2)$$

Figure 1: Evaluation of the numerical derivative of $\sin x$ at $x = \frac{1}{2}$ via different schemes as the step size h is varied.

Automatic Differentiation (AD)

- No round-off errors in numerical differentiation
- NOT symbolic differentiation of computer algebra systems
- Every computer calculation executes a sequence of elementary arithmetic operations (+, -, ×, ÷, composite) and elementary functions (e.g. exp, log, sin, cos, etc.).
- Applying the chain rule repeatedly; partial derivatives of arbitrary order can be computed automatically
- Accurately to working precision, and using at most a small constant factor of more arithmetic operations than the original program
- Indispensable for modern applications, many implementations: e.g. autograd, JAX
- Two modes: forward and reverse
- Blog post about fine points of AD and implementations
- References: Naumann (2012); Griewank and Walther (2008)

AD: Forward Mode

Example. Given $z = x_1 x_2 + \sin x_1$, compute $\frac{\partial z}{\partial x_1}$ at $x_1 = 1.5$, $x_2 = 0.5$.

Solution.

Intermediate Var.	Expression	Value	Derivative
w_1	x_1	1.5	1
w_2^-	x_2^-	0.5	0
w_3	w_1w_2	0.75	0.5
w_4	$\sin w_1$	0.9974	0.07
w_5	$w_3 + w_4$	1.7474	0.57

$$\begin{split} \frac{\partial w_3}{\partial x_1} &= \frac{\partial w_3}{\partial w_1} \frac{\partial w_1}{\partial x_1} + \frac{\partial w_3}{\partial w_2} \frac{\partial w_2}{\partial x_1} = w_2 \cdot 1 + w_1 \cdot 0 = 0.5 \\ \frac{\partial w_4}{\partial x_1} &= \frac{\partial w_4}{\partial w_1} \frac{\partial w_1}{\partial x_1} = \cos w_1 \cdot 1 = \cos(1.5) = 0.07 \end{split}$$

Example (Griewank and Walther (2008) pp.5). $y = \left(\sin\frac{x_1}{x_2} + \frac{x_1}{x_2} - e^{x_2}\right)$.

$$\left(\frac{x_1}{x_2} - e^{x_2}\right)$$
, compute $\frac{\partial y}{\partial x_1}$ at $x_1 = 1.5$, $x_2 = 0.5$.

Solution.

Intermediate Var.	Expression	Value	Derivative
$\overline{w_1}$	x_1	1.5	1
w_2	x_2	0.5	0
w_3	$\frac{w_1}{w_2}$	3	2
w_4	$\sin w_3$	0.1411	-1.98
w_5	e^{w_2}	1.6487	0
w_6	$w_{3} - w_{5}$	1.3513	2
w_7	$w_4 + w_6$	1.4924	0.02
w_8	w_6w_7	2.0167	3.0118

$$\frac{\partial w_3}{\partial x_1} = \frac{\partial w_3}{\partial w_1} \frac{\partial w_1}{\partial x_1} + \frac{\partial w_3}{\partial w_2} \frac{\partial w_2}{\partial x_1} = \frac{1}{w_2} \cdot 1 + \frac{-w_1}{w_2^2} \cdot 0 = \frac{1}{w_2} = \frac{1}{0.5} = 2$$

$$\frac{\partial w_4}{\partial x_1} = \frac{\partial w_4}{\partial w_3} \frac{\partial w_3}{\partial x_1} = \cos w_3 \cdot \frac{1}{w_2} = \frac{\cos 3}{0.5} = \frac{-0.99}{0.5} = -1.98$$

AD: Reverse Mode

Example. Given $z = x_1 x_2 + \sin x_1$, compute $\frac{\partial z}{\partial x_1}$ at $x_1 = 1.5$, $x_2 = 0.5$.

Solution. Set

$$\begin{split} w_1 &= x_1 \\ w_2 &= x_2 \\ w_3 &= w_1 w_2 \\ w_4 &= \sin w_1 \\ w_5 &= w_3 + w_4 \\ z &= w_5 \end{split}$$

$$\begin{split} \frac{\partial z}{\partial x_1} &= \frac{\partial z}{\partial w_1} = \frac{\partial w_5}{\partial w_1} = \frac{\partial w_5}{\partial w_3} \frac{\partial w_3}{\partial w_1} + \frac{\partial w_5}{\partial w_4} \frac{\partial w_4}{\partial w_1} \\ &= w_2 + \cos w_1 = 0.5 + \cos(1.5) = 0.5 + 0.07 = 0.57 \end{split}$$

Example (Griewank and Walther (2008) pp.5). $y = \left(\sin\frac{x_1}{x_2} + \frac{x_1}{x_2} - e^{x_2}\right) \cdot \left(\frac{x_1}{x_2} - e^{x_2}\right)$, compute $\frac{\partial y}{\partial x_1}$ at $x_1 = 1.5$, $x_2 = 0.5$.

Solution. Set

$$\begin{split} w_1 &= x_1, \quad w_2 = x_2, \quad w_3 = \frac{w_1}{w_2}, \quad w_4 = \sin w_3, \quad w_5 = e^{w_2} \\ w_6 &= w_3 - w_5, \quad w_7 = w_4 + w_6, \quad w_8 = w_6 \cdot w_7, \quad y = w_8 \\ \frac{\partial y}{\partial x_1} &= \frac{\partial y}{\partial w_1} = \frac{\partial w_8}{\partial w_1} = \frac{\partial w_8}{\partial w_6} \frac{\partial w_6}{\partial w_1} + \frac{\partial w_8}{\partial w_7} \frac{\partial w_7}{\partial w_1} = w_7 \frac{\partial w_6}{\partial w_1} + w_6 \frac{\partial w_7}{\partial w_1} \\ &= w_7 \frac{\partial w_6}{\partial w_1} + w_6 \left(\frac{\partial w_4}{\partial w_1} + \frac{\partial w_6}{\partial w_1}\right) = (w_7 + w_6) \left(\frac{\partial w_3}{\partial w_1} - \frac{\partial w_5}{\partial w_1}\right) + w_6 \left(\frac{\partial w_4}{\partial w_1}\right) \\ &= (w_7 + w_6) \frac{\partial w_3}{\partial w_1} + w_6 \frac{\partial w_4}{\partial w_3} \frac{\partial w_3}{\partial w_1} = (w_7 + w_6(1 + \cos w_3)) \frac{\partial w_3}{\partial w_1} \\ &= \frac{w_7 + w_6(1 + \cos w_3)}{w_2}. \quad \text{Now } w_1 = x_1 = 1.5, \ w_2 = x_2 = 0.5, \ w_3 = 3, \\ w_4 = 0.1411, \ w_5 = 1.6487, \ w_6 = 3 - 1.6487 = 1.3513, \ w_7 = 0.1411 + 1.3513 = 1.4924, \ \text{so} \quad \frac{\partial y}{\partial x_1} = \frac{1.4924 + 1.3513 \cdot (1 + \cos 3)}{0.5} = 3.0118. \ (\cos 3 = -0.99) \end{split}$$

Choosing Forward / Reverse Mode

- The chain rule: the Jacobian of a operation is the matrix multiplication of all the Jacobians of sub-operations
- Let $\mathbf{y} = f(\mathbf{x}) = r(q(p(\mathbf{x})))$ and $\mathbf{a} = p(\mathbf{x}), \mathbf{b} = q(\mathbf{a}), y = r(\mathbf{b});$ the Jacobian reads

$$\frac{\partial \mathbf{y}}{\partial \mathbf{x}} = \underbrace{\frac{\partial r(\mathbf{b})}{\partial \mathbf{b}}}_{|\mathbf{y}| \times |\mathbf{b}|} \underbrace{\frac{\partial q(\mathbf{a})}{\partial \mathbf{a}}}_{|\mathbf{b}| \times |\mathbf{a}|} \underbrace{\frac{\partial p(\mathbf{x})}{\partial \mathbf{x}}}_{|\mathbf{a}| \times |\mathbf{x}|}$$

- The number of scalar multiplications required to multiply two matrices of sizes $\alpha \times \beta$ and $\beta \times \gamma$ is $\alpha \cdot \beta \cdot \gamma$
- Forward mode: $\frac{\partial \mathbf{y}}{\partial \mathbf{x}} = \frac{\partial r(\mathbf{b})}{\partial \mathbf{b}} \left(\frac{\partial q(\mathbf{a})}{\partial \mathbf{a}} \frac{\partial p(\mathbf{x})}{\partial \mathbf{x}} \right), |\mathbf{b}| \cdot |\mathbf{a}| \cdot |\mathbf{x}| + |\mathbf{y}| \cdot |\mathbf{b}| \cdot |\mathbf{x}|$ multiplications
- Reverse mode: $\frac{\partial \mathbf{y}}{\partial \mathbf{x}} = \left(\frac{\partial r(\mathbf{b})}{\partial \mathbf{b}} \frac{\partial q(\mathbf{a})}{\partial \mathbf{a}}\right) \frac{\partial p(\mathbf{x})}{\partial \mathbf{x}}, \ |\mathbf{y}| \cdot |\mathbf{b}| \cdot |\mathbf{a}| + |\mathbf{y}| \cdot |\mathbf{a}| \cdot |\mathbf{x}|$ multiplications
- Assume $|\mathbf{a}| = |\mathbf{b}|$. If $|\mathbf{y}| > |\mathbf{x}|$, forward mode involves fewer steps; else if $|\mathbf{y}| < |\mathbf{x}|$, reverse mode involves fewer steps

References

- Apostol, T.M., 1974. Mathematical Analysis. 2nd ed., Addison-Wesley, Boston.
- Griewank, A., Walther, A., 2008. Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation. 2nd ed., SIAM Publications, Philadelphia.
- Naumann, U., 2012. The Art of Differentiating Computer Programs: An Introduction to Algorithmic Differentiation. SIAM Publications, Philadelphia.
- Rudin, W., 1976. Principles of Mathematical Analysis. 3rd ed., McGraw-Hill, New York.
- Wade, W.R., 2009. Introduction to Mathematical Analysis. 4th ed., Pearson, Harlow, U.K.