Intro to Deep Q Networks

Jake Grigsby

University of Virginia

April 28, 2020

Agents and the Environment

Many problems in AI can be thought of as some autonomous agent interacting with an environment:

This concept is formalized as a Markov Decision Process...

Markov Decision Process

Definition

A Markov Decision Process (MDP) consists of:

- \circ \mathcal{S} , a set of states
- ullet \mathcal{A} , a set of actions
- ullet $\mathcal{R}\subseteq\mathbb{R}$, a set of rewards
- ullet a dynamics function $p: \mathcal{S} \times \mathcal{R} \times \mathcal{S} \times \mathcal{A}
 ightarrow [0,1]$

$$p(s', r|s, a) = Pr\{S_t = s', R_t = r|S_{t-1} = s, A_{t-1} = a\}$$

It's common to break the dynamics function p up into a **Transition** Function $T(s,a,s') = \sum_{r \in \mathcal{R}} p(s',r|s,a)$, and a **Reward Function**

$$R(s,a) = \sum_{r \in \mathcal{R}} r \sum_{s' \in \mathcal{S}} p(s',r|s,a)$$

A Quick Example

The RL Problem

The goal of RL agents is to find a **policy**¹ $\pi^*: \mathcal{S} \to \mathcal{A}$ that maximizes the expected discounted return

$$\pi^* = \operatorname*{argmax}_{\pi} \mathop{\mathbb{E}}_{ au \sim \pi} \left[\sum_{t=0}^{t=\infty} \gamma^t R_t
ight]$$

where $\gamma \in [0,1)$ is the *discount factor* that lets us deal with non-episodic tasks and τ is a *trajectory* (a sequence of states and actions that describe the agent's experience)

ake Grigsby (University of Virginia)

¹Policies can also be stochastic, in which case they're written $\pi(a|s): \mathcal{S}x\mathcal{A} \to [0,1]$

Simplifying Assumptions

We begin by making some assumptions about the task we are trying to solve:

- The dynamics of the model (p(s', r|s, a)) are known
- $|\mathcal{S}| \ll \infty$
- $|\mathcal{A}| \ll \infty$

Generalized Policy Iteration

Solution: Policy Iteration Dynamic Programming

We'll skip these details because knowledge of dynamics is such a limiting assumption in our case. More info can be found in [4]

Simplifying Assumptions

- The dynamics of the model (p(s', r|s, a)) are known
- $|\mathcal{S}| \ll \infty$
- $|\mathcal{A}| \ll \infty$

What if the environment dynamics are unknown?

Value Methods

Definition

Value methods attempt to learn the optimal Q Function

$$Q^*(s, a) = \max_{\pi} \mathbb{E} \left[\sum_{k=0}^{k=\infty} \gamma^k R_{t+k+1} \mid \mathcal{S}_t = s, \mathcal{A}_t = a
ight]$$

Why? Because given $Q^*(s, a)$, the optimal policy can easily be computed by

$$\pi^*(s) = \underset{a}{\operatorname{argmax}} Q^*(s, a)$$

Value Methods: Temporal Difference

- Randomly initialize Q(s, a) and use interactions with the environment as a sample to update this 'bootstrap'
- Updates based on the Bellman Equation:

$$Q^{\pi}(s,a) = \mathop{\mathbb{E}}_{s'}\left[r(s,a) + \gamma\mathop{\mathbb{E}}_{a' \sim \pi}\left[Q^{\pi}(s',a')\right]\right]$$

Value Methods: Temporal Difference

- Randomly initialize Q(s, a) and use interactions with the environment as a sample to update this 'bootstrap'
- Updates based on the Bellman Equation:

$$Q^{\pi}(s, a) = \underset{s'}{\mathbb{E}} \left[r(s, a) + \gamma \underset{a' \sim \pi}{\mathbb{E}} \left[Q^{\pi}(s', a') \right] \right]$$

We minimize the Bellman Error.

$$(r(s,a) + \gamma \max_{a'} Q(s',a')) - Q(s,a)$$

Value Methods: Temporal Difference

Q-learning (off-policy TD control) for estimating $\pi \approx \pi_*$

Algorithm parameters: step size $\alpha \in (0,1]$, small $\varepsilon > 0$ Initialize Q(s,a), for all $s \in \mathcal{S}^+, a \in \mathcal{A}(s)$, arbitrarily except that $Q(terminal, \cdot) = 0$ Loop for each episode: Initialize SLoop for each step of episode: Choose A from S using policy derived from Q (e.g., ε -greedy) Take action A, observe R, S' $Q(S,A) \leftarrow Q(S,A) + \alpha \big[R + \gamma \max_a Q(S',a) - Q(S,A) \big]$ $S \leftarrow S'$ until S is terminal

Figure: Q-Learning Pseudo-code [4]

A Quick Note on Exploration vs. Exploitation

- At each time step, the agent must choose between "exploiting" the
 action it currently thinks has the best return and "exploring"
 alternatives to learn more about them.
- Most convergence guarantees assume state coverage
 - Every state will be visited an infinite number of times in an infinite number of timesteps.
 - ▶ This can be acheived by enforcing:

$$\pi(a|s) > 0, \forall s \in \mathcal{S}$$

A Quick Note on Exploration vs. Exploitation

• The simplest way to do this is to make an existing policy ϵ -greedy:

$$\pi'(s) = egin{cases} \pi(s) & \text{with probability } (1-\epsilon); \\ \pi_{random}(s) & \text{with probability } \epsilon; \end{cases}$$

A Quick Note on Exploration vs. Exploitation

• The simplest way to do this is to make an existing policy ϵ -greedy:

$$\pi'(s) = egin{cases} \pi(s) & \text{with probability } (1-\epsilon); \\ \pi_{\mathit{random}}(s) & \text{with probability } \epsilon; \end{cases}$$

- This can be thought of as injecting noise into the action space
- All of the agent's we'll be talking about use this general approach, but there is a lot of interesting work on motivating agents to explore efficiently. [3] [5]

Simplifying Assumptions

- The dynamics of the model (p(s', r|s, a)) are known
- $|\mathcal{S}| \ll \infty$
- $|\mathcal{A}| \ll \infty$

What if the state space is too large for dynamic programming?

Tasks with Large State Spaces

Example: Video Games

- Pixel input makes $S = \mathbb{N}_{256}^{HxWxC}$
- Atari 2600 games make up one of the most popular benchmarks in modern RL.

Figure: Games in the Arcade Learning Environment [1] benchmark

Paramaterize Q with a neural network that can learn to recognize patterns between similar states.

 Train this network to minimize the Mean Squared Bellman Error (MSBE)

$$BE(s, a, r, s', d) = (r + \gamma(1 - d) \max_{a'} Q_{\theta'}(s', a')) - Q_{\theta}(s, a)$$

 Train this network to minimize the Mean Squared Bellman Error (MSBE)

$$BE(s, a, r, s', d) = (r + \gamma(1 - d) \max_{a'} Q_{\theta'}(s', a')) - Q_{\theta}(s, a)$$

- Kind of like supervised deep learning!
 - One important difference:
 - ★ The data distribution depends on the parameters (far from i.i.d)

DQNs [2] use a couple tricks to make this more like supervised learning:

- Create a replay buffer \mathcal{R} to store transitions (s, a, r, s', d)
 - ▶ Randomly sample from this buffer at each training step.
- Oreate a target network to generate the the bellman error targets.
 - ▶ This is a duplicate of the original network that is not trained but is updated with fresh params every ~ 10000 steps.

The original DQN was able to learn superhuman policies on many games with dense reward signals!

Algorithm 1: deep Q-learning with experience replay. Initialize replay memory D to capacity N Initialize action-value function Q with random weights θ Initialize target action-value function \hat{Q} with weights $\theta^- = \theta$ For episode = 1, M do Initialize sequence $s_1 = \{x_1\}$ and preprocessed sequence $\phi_1 = \phi(s_1)$ For t = 1,T do With probability ε select a random action a_t otherwise select $a_t = \operatorname{argmax}_{a} O(\phi(s_t), a; \theta)$ Execute action a_t in emulator and observe reward r_t and image x_{t+1} Set $s_{t+1} = s_t, a_t, x_{t+1}$ and preprocess $\phi_{t+1} = \phi(s_{t+1})$ Store transition $(\phi_t, a_t, r_t, \phi_{t+1})$ in DSample random minibatch of transitions $(\phi_j, a_j, r_j, \phi_{j+1})$ from D Set $y_j = \begin{cases} r_j & \text{if episode terminates at step } j+1 \\ r_j + \gamma \max_{a'} \hat{Q}(\phi_{j+1}, a'; \theta^-) & \text{otherwise} \end{cases}$ Perform a gradient descent step on $(y_i - Q(\phi_i, a_i; \theta))^2$ with respect to the network parameters θ Every C steps reset $\hat{O} = O$ End For End For

Figure: [2]

Results

Since 2015...

References I

- Marc G Bellemare et al. "The arcade learning environment: An evaluation platform for general agents". In: *Journal of Artificial Intelligence Research* 47 (2013), pp. 253–279.
- Volodymyr Mnih et al. "Human-level control through deep reinforcement learning". In: *Nature* 518.7540 (2015), pp. 529–533.
- Yuri Burda et al. "Large-scale study of curiosity-driven learning". In: arXiv preprint arXiv:1808.04355 (2018).
- Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.
- Adrià Puigdomènech Badia et al. "Never Give Up: Learning Directed Exploration Strategies". In: arXiv preprint arXiv:2002.06038 (2020).