

머신러닝 응용 교과목 소개

인공지능의 핵심, 머신러닝을 배웁니다.

이론과 실습을 통해 AI 프로그래밍 기초를 익힙니다.

안재목 교수: 스마트IoT(소프트웨어학부), 화1-2교시

실습조교: 이다해 (컴퓨터공학과 석사과정), 목1-2교시

교과목 구성

이론 학습

머신러닝 알고리즘의 원리와 개념 이해

실습

파이썬을 이용한 AI 프로그래밍 실습

회귀 분석

분류 알고리즘

kNN

가장 가까운 이웃을 기반으로 분류

의사결정 트리

규칙 기반의 분류 방법

SVM

최적의 결정 경계를 찾는 방법

클러스터링

K-means

1 데이터를 K개의 그룹으로 나누기

SOM

고차원 데이터의 2D 시각화

DBSCAN

3

밀도 기반 클러스터링

트랜스포머

1 자연어 처리의 혁명 언어 모델의 새로운 패러다임 2주의 메커니즘문맥을 고려한 효과적인 학습

3 응용 분야 번역, 요약, 감성 분석 등

실습 환경

Q

파이썬

AI 프로그래밍의 기본 언어

주피터 노트북/스파이더 더

대화형 코딩 환경

텐서플로우

딥러닝 프레임워크

사이킷런

머신러닝 라이브러리

학습 목표

이론 이해	알고리즘의 원리와 작동 방식 파악
코딩 능력	파이썬으로 AI 모델 구현
문제 해결	실제 데이터에 알고리즘 적용
창의적 사고	새로운 AI 솔루션 구상

평가 기준

- 과제 참여도: 수업 참여 및 과제 제출 (20%)
- 이론 이해도: 시험 및 퀴즈를 통한 평가 (중간고사 30% 및 기말고사 30%)
- 실습 능력: 파이썬 코드 구현 및 결과 분석 (20%)