Examen de rattrapage de Physique Documents et calculatrice non autorisés <u>Semestre 1</u>: Durée 45mn

Exercice 1 Cinématique (sur 5 points)

Les équations horaires en coordonnées cartésiennes d'un mouvement en spirale sont données par :

$$\begin{cases} x(t) = r_0 \cdot \exp(\omega t) \cos(\omega t) \\ y(t) = r_0 \cdot \exp(\omega t) \sin(\omega t) \end{cases}$$
 (r₀ et \omega sont des constantes positives)

- 1- Donner les composantes du vecteur vitesse \vec{V} (Ne pas oublier de dériver un produit !)
- 2- Donner les composantes du vecteur accélération \vec{a} (Ne pas oublier de dériver un produit !)
- 3- Sachant que pour un tel de mouvement, c'est nettement plus simple de travailler en coordonnées polaires, on se propose donc de recalculer les grandeurs cinématiques en polaires.
 - a) Ecrire le vecteur position \vec{OM} , sachant que $\vec{OM} = (\sqrt{x^2 + y^2}) \cdot \vec{e}_r$
 - b) En déduire les vecteurs \vec{V} et \vec{a} . On donne : $\frac{d\vec{e}_r}{dt} = \stackrel{\bullet}{\theta} \vec{e}_{\theta}$ et $\frac{d\vec{e}_{\theta}}{dt} = -\stackrel{\bullet}{\theta} \vec{e}_r$

Exercice 2 Dynamique (sur 5 points)

Une masse $m = 10^{-2}$ kg est lâchée du point A sans vitesse initiale. Le mouvement se fait dans un guide hémicylindrique de rayon R = 0.2m.

- 1- a) Représenter les forces extérieurs appliquées sur la masse m, en un point M entre A et B. On suppose **les frottements négligeables**.
 - b) Utiliser le théorème d'énergie cinétique pour calculer la vitesse V_B au point B, avec $g=10 ms^{-2}$
- 2- On suppose maintenant que la masse m est soumise à une force de frottement \vec{f} de norme constante.
 - a) Représenter les forces extérieures appliquées sur la masse m, en un point M entre A et B.
 - b) Utiliser le théorème d'énergie mécanique pour calculer le travail de \vec{f} : $W(\vec{f})$, sachant que la nouvelle vitesse au point B est $V_B = 1 \text{m.s}^{-1}$
 - c) En déduire la norme de la force de frottement \vec{f} . On prend $\pi \approx 3$

Formulaire 1

1- Théorème d'énergie mécanique

$$\Delta E_m = W(\vec{f}) = \int_l \vec{f} \cdot d\vec{l}$$
 Où \vec{f} est la force des frottements

2- Energie potentielle de pesanteur

$$E_p(z) = m.g.z$$

3- Energie mécanique

$$E_m = E_c + E_p$$

Semestre 2 : Durée 45mn

Exercice 1 Electrocinétique (Sur 5 points)

On considère un fil conducteur de rayon R, d'axe (Oz), traversé par un courant I de densité variable

$$J(r) = J_0 \cdot \frac{r}{R}$$

- 1- a) Exprimer le courant total I en fonction de J_0 et R. On donne : $dS = rdrd\theta$.
 - b) Faire le calcul numérique avec $J_0 = 10^5 A.m^{-2}$ et R = 3mm.
- 2- Calculer la tension U aux bornes du fil, sachant que sa résistance est de 0.5Ω .
- 3- On suppose maintenant que le conducteur est traversé par une densité de courant constante $J = 16.10^5 A.m^{-2}$
 - a) Calculer le champ électrique E à l'intérieur du fil, sachant que sa conductivité est $\gamma=2.10^7\Omega^{-1}$ ·m⁻¹.
 - b) Calculer la vitesse moyenne des électrons de densité $n_e = 10^{26} m^{-3}$. On donne : $|q_{e-}| = 1,6.10^{-19} c$

Exercice 2 Magnétostatique (Sur 5 points). Les questions I et II sont indépendantes

- I) On considère un fil infini traversé par un courant I, placé sur un axe (Oz). (Courant vers (z > 0))
 - 1) Utiliser la loi de Biot-Savart pour trouver la forme des lignes de champ magnétique créé par le courant I en point M extérieur au fil. Justifier votre réponse par un schéma.
 - 2) Utiliser le théorème d'Ampère pour exprimer le champ magnétique B(M) à la distance r du fil.
- II) On montre à l'aide de la loi de Biot-Savart que le champ magnétique en un point M de l'axe (Oz) d'une spire de rayon R, traversée par un courant I, à la distance OM = z, s'exprime par :

$$B(z) = \frac{\mu_0 . I . R^2}{2(z^2 + R^2)^{3/2}}$$

1- Utiliser cette relation pour exprimer les normes des champs magnétiques $\vec{B}_1(O)$ et $\vec{B}_2(O)$, créés au centre O, par les deux spires de rayons R_1 et R_2 ($R_2 > R_1$), traversées respectivement par des courants I_1 et I_2 .

- 2- Représenter les deux vecteurs $\vec{B}_1(O)$ et $\vec{B}_2(O)$
- 3- Donner l'expression de $B_{total}(O)$, dans le cas où $I_1 = I_2 = I$ et $R_2 = 2$ R_1 . Représenter $\vec{B}_{total}(O)$

Formulaire 2

1- Loi de Biot-Savart

$$d\vec{B}(M) = \frac{\mu_0 I}{4\pi} \cdot \frac{d\vec{l} \wedge P\vec{M}}{(PM)^3}$$

2- Théorème d'Ampère

$$\oint_C \vec{B}.d\vec{l} = \mu_0 (\sum I_s - \sum I_e)$$