UNIVERSIDAD NACIONAL DE SAN AGUSTÍN DE AREQUIPA Facultad de Ingeniería de Producción y Servicios Escuela Profesional de Ciencia de la Computación

TRANSFORMACIONES

PRÁCTICA N°04

ALUMNO: YORDY W. SANTOS APAZA

DOCENTE: M.Sc. VICENTE E. MACHACA ARCEDA

Fecha de entrega: 5 de mayo de 2021

Arequipa, Perú

Índice de Contenidos

Índice de Contenidos

1.	Ejercicio #1:	1
2.	Ejercicio #2:	2
3.	Ejercicio #3:	3
4.	Ejercicio #4:	5
5.	Ejercicio #5:	6
6.	Ejercicio #6:	7
7.	Ejercicio #7:	9
Ín	lice de Figuras	
1.	Gráfico_01	. 2
2.	Gráfico_02	
3.	Gráfico_03	
4.	Gráfico 04	
5.	Gráfico_05	. 7
6.	Gráfico_06	. 9
7.	Gráfico_07	. 11
Ín	lice de Códigos	
1.	Código_01	. 1
2.	Código_02	. 2
3.	Código_03	. 3
4.	Código_04	. 5
5.	Código_05	. 6
6.	Código_06	. 7
7.	Código_07	. 9

Ejercicio #1:

1. Ejercicio #1:

Cree una matriz de transformación para trasladar un objeto 0.01 unidades en el eje x.

Código 1: Código_01

```
const transformation = new THREE.Matrix4();
2 transformation.set(
      1, 0, 0, 0.01,
      0, 1, 0, 0,
      0, 0, 1, 0,
      0, 0, 0, 1
7);
8 var cubeGeometry = new THREE.BoxGeometry(3, 3, 3);
9 var cubeMaterial = new THREE.MeshBasicMaterial( {color: 0xffff00, wireframe: true });
var cube = new THREE.Mesh( cubeGeometry, cubeMaterial );
11 cube.position.x = 2
12 cube.position.y = 2
cube.position.z = 2
14 var camera = new THREE.PerspectiveCamera(30,window.innerWidth/window.innerHeight);
camera.position.z = 30;
camera.position.y = 30;
var scene = new THREE.Scene();
scene.background = new THREE.Color(0x000000)
19 scene.add(cube);
20 axesHelper = new THREE.AxesHelper(100);
21 scene.add( axesHelper );
var renderer = new THREE.WebGLRenderer();
23 renderer.setSize( window.innerWidth, window.innerHeight );
24 document.body.appendChild( renderer.domElement );
25 var controls = new THREE.OrbitControls( camera, renderer.domElement);
26 controls.enableDamping = true;
var animate = () => \{
      requestAnimationFrame(animate)
29
      cube.geometry.applyMatrix4( transformation )
      controls.update()
30
      renderer.render( scene, camera)
31
32 }
33 animate()
```

Ejercicio #2:

Figura 1: Gráfico_01

2. Ejercicio #2:

Cree una matriz de transformación para trasladar un objeto 0.01 unidades en el eje x y 0.02 unidades en el eje z.

Código 2: Código_02

```
const transformation = new THREE.Matrix4();
transformation.set(
      1, 0, 0, 0.01,
      0, 1, 0, 0,
     0, 0, 1, 0.02,
      0, 0, 0, 1
7);
8 var cubeGeometry = new THREE.BoxGeometry(3, 3, 3);
9 var cubeMaterial = new THREE.MeshBasicMaterial( {color: 0xffff00, wireframe: true });
var cube = new THREE.Mesh( cubeGeometry, cubeMaterial );
11 cube.position.x = 2
12 cube.position.y = 2
cube.position.z = 2
14 var camera = new THREE.PerspectiveCamera(30,window.innerWidth/window.innerHeight);
15 camera.position.z = 30;
camera.position.y = 30;
var scene = new THREE.Scene();
scene.background = new THREE.Color(0x000000)
19 scene.add(cube);
20 axesHelper = new THREE.AxesHelper(100);
21 scene.add( axesHelper );
var renderer = new THREE.WebGLRenderer();
23 renderer.setSize( window.innerWidth, window.innerHeight);
```

Ejercicio #3:

```
document.body.appendChild( renderer.domElement );
var controls = new THREE.OrbitControls( camera, renderer.domElement );
controls.enableDamping = true;
var animate = () => {
    requestAnimationFrame(animate)
    cube.geometry.applyMatrix4( transformation )
    controls.update()
    renderer.render( scene, camera)
}
animate()
```


Figura 2: Gráfico_02

3. Ejercicio #3:

Cree una matriz de transformación que escale un objeto 1.001 unidades en el eje y.

Código 3: Código_03

```
const transformation = new THREE.Matrix4();
transformation.set(
    1, 0, 0, 0,
    0, 1.001, 0, 0,
    0, 0, 1, 0,
    0, 0, 0, 1

);
var cubeGeometry = new THREE.BoxGeometry(3, 3, 3);
```

Ejercicio #3:

```
9 var cubeMaterial = new THREE.MeshBasicMaterial( {color: 0xffff00, wireframe: true });
var cube = new THREE.Mesh( cubeGeometry, cubeMaterial );
11 cube.position.x = 2
cube.position.y = 2
13 cube.position.z = 2
14 var camera = new THREE.PerspectiveCamera(30,window.innerWidth/window.innerHeight);
camera.position.z = 30;
camera.position.y = 30;
var scene = new THREE.Scene();
scene.background = new THREE.Color(0x000000)
19 scene.add(cube);
20 axesHelper = new THREE.AxesHelper(100);
21 scene.add( axesHelper );
var renderer = new THREE.WebGLRenderer();
23 renderer.setSize( window.innerWidth, window.innerHeight );
24 document.body.appendChild( renderer.domElement );
25 var controls = new THREE.OrbitControls( camera, renderer.domElement);
26 controls.enableDamping = true;
var animate = () => \{
      requestAnimationFrame(animate)
      cube.geometry.applyMatrix4( transformation )
      controls.update()
30
      renderer.render( scene, camera)
31
32 }
33 animate()
```


Figura 3: Gráfico_03

Ejercicio #4:

4. Ejercicio #4:

Cree una matriz de transformación que escale un objeto 1.001 unidades en todos los ejes.

Código 4: Código_04

```
const transformation = new THREE.Matrix4();
2 transformation.set(
      1.001, 0, 0, 0,
      0, 1.001, 0, 0,
      0, 0, 1.001, 0,
      0, 0, 0, 1
6
7);
8 var cubeGeometry = new THREE.BoxGeometry(3, 3, 3);
9 var cubeMaterial = new THREE.MeshBasicMaterial( {color: 0xffff00, wireframe: true });
var cube = new THREE.Mesh( cubeGeometry, cubeMaterial );
11 cube.position.x = 2
cube.position.y = 2
cube.position.z = 2
14 var camera = new THREE.PerspectiveCamera(30,window.innerWidth/window.innerHeight);
camera.position.z = 30;
camera.position.y = 30;
var scene = new THREE.Scene();
scene.background = new THREE.Color(0x000000)
19 scene.add(cube);
20 axesHelper = new THREE.AxesHelper(100);
21 scene.add( axesHelper );
var renderer = new THREE.WebGLRenderer();
23 renderer.setSize( window.innerWidth, window.innerHeight );
24 document.body.appendChild( renderer.domElement );
25 var controls = new THREE.OrbitControls( camera, renderer.domElement);
26 controls.enableDamping = true;
var animate = () => \{
      requestAnimationFrame(animate)
      cube.geometry.applyMatrix4( transformation )
29
      controls.update()
      renderer.render( scene, camera)
31
32 }
33 animate()
```

Ejercicio #5:

Figura 4: Gráfico_04

5. Ejercicio #5:

Cree una matriz de transformación que gire un objeto 0.01 unidades en el eje z.

Código 5: Código_05

```
const transformation = new THREE.Matrix4();
2 transformation.set(
      Math.cos(0.01), -Math.sin(0.01), 0, 0,
      Math.sin(0.01), Math.cos(0.01), 0, 0,
      0, 0, 1, 0,
      0, 0, 0, 1
6
7);
8 var cubeGeometry = new THREE.BoxGeometry(3, 3, 3);
9 var cubeMaterial = new THREE.MeshBasicMaterial( {color: 0xffff00, wireframe: true });
var cube = new THREE.Mesh( cubeGeometry, cubeMaterial );
11 cube.position.x = 2
12 cube.position.y = 2
cube.position.z = 2
14 var camera = new THREE.PerspectiveCamera(30,window.innerWidth/window.innerHeight);
15 camera.position.z = 30;
camera.position.y = 30;
var scene = new THREE.Scene();
scene.background = new THREE.Color(0x000000)
scene.add(cube);
20 axesHelper = new THREE.AxesHelper(100);
21 scene.add( axesHelper );
var renderer = new THREE.WebGLRenderer();
```

Ejercicio #6:

```
renderer.setSize( window.innerWidth, window.innerHeight );
document.body.appendChild( renderer.domElement );
var controls = new THREE.OrbitControls( camera, renderer.domElement );
controls.enableDamping = true;
var animate = () => {
    requestAnimationFrame(animate)
    cube.geometry.applyMatrix4( transformation )
    controls.update()
    renderer.render( scene, camera)
}
animate()
```


Figura 5: Gráfico_05

6. Ejercicio #6:

Cree una matriz de transformación que gire un objeto 0.01 unidades en el eje z y 0.02 unidades en el eje x. Aquí, deberá multiplicar matrices.

Código 6: Código_06

```
const rotaZ = new THREE.Matrix4();
rotaZ.set(
    Math.cos(0.01), -Math.sin(0.01), 0, 0,
    Math.sin(0.01), Math.cos(0.01), 0, 0,
    0, 0, 1, 0,
    0, 0, 0, 1
   );
const rotaX = new THREE.Matrix4();
```

Ejercicio #6:

```
9 rotaX.set(
      1, 0, 0, 0,
      0, Math.cos(0.02), -Math.sin(0.02), 0,
      0, \text{ Math.sin}(0.02), \text{ Math.cos}(0.02), 0,
13
      0, 0, 0, 1
14);
15 const transformation = rotaZ.multiply(rotaX);
var cubeGeometry = new THREE.BoxGeometry(3, 3, 3);
var cubeMaterial = new THREE.MeshBasicMaterial( {color: 0xffff00, wireframe: true });
var cube = new THREE.Mesh( cubeGeometry, cubeMaterial );
19 cube.position.x = 2
cube.position.y = 2
cube.position.z = 2
22 var camera = new THREE.PerspectiveCamera(30,window.innerWidth/window.innerHeight);
camera.position.z = 30;
camera.position.y = 30;
var scene = new THREE.Scene();
scene.background = new THREE.Color(0x000000)
27 scene.add(cube);
28 axesHelper = new THREE.AxesHelper(100);
29 scene.add( axesHelper );
var renderer = new THREE.WebGLRenderer();
renderer.setSize(window.innerWidth, window.innerHeight);
32 document.body.appendChild( renderer.domElement );
33 var controls = new THREE.OrbitControls(camera, renderer.domElement);
34 controls.enableDamping = true;
_{35} var animate = () => {
      requestAnimationFrame(animate)
      cube.geometry.applyMatrix4( transformation )
37
      controls.update()
      renderer.render( scene, camera)
39
40 }
41 animate()
```

Ejercicio #7:

Figura 6: Gráfico_06

7. Ejercicio #7:

Cree una matriz de transformación que traslade un objeto 0.02 unidades en el eje x, que escale 1.002 unidades en todos los ejes y que gire 0.01 unidades en el eje x y y. Aquí, deberá multiplicar matrices.

Código 7: Código_07

```
var geometry = new THREE.BoxGeometry(3, 3, 3, 3, 3, 3);
var material = new THREE.MeshBasicMaterial({color: 0xffff00, wireframe: true});
3 var cube = new THREE.Mesh(geometry, material);
4 const translation = new THREE.Matrix4();
5 translation.set(
      1, 0, 0, 0.02,
      0, 1, 0, 0,
      0, 0, 1, 0,
      0, 0, 0, 1
10);
const scala = new THREE.Matrix4();
12 scala.set(
      1.002, 0, 0, 0,
13
14
      0, 1.002, 0, 0,
      0, 0, 1.002, 0,
15
      0, 0, 0, 1
16
17);
18 const rotaX = new THREE.Matrix4();
19 rotaX.set(
1, 0, 0, 0,
```

Ejercicio #7:

```
0, Math.cos(0.01), -Math.sin(0.01), 0,
      0, Math.sin(0.01), Math.cos(0.01), 0,
      0, 0, 0, 1
23
24);
25 const rotaY = new THREE.Matrix4();
26 rotaY.set(
      Math.cos(0.01), 0, -Math.sin(0.01), 0,
      0, 1, 0, 0,
28
      Math.sin(0.01), 0, Math.cos(0.01), 0,
29
      0, 0, 0, 1
30
31 );
var ejer07 = translation.multiply(scala).multiply(rotaY).multiply(rotaX);
var scene = new THREE.Scene();
34 const axesHelper = new THREE.AxesHelper(5);
35 scene.add(axesHelper);
36 scene.add(cube);
var camera = new THREE.PerspectiveCamera(30, window.innerWidth/window.innerHeight, 0.1,
      \hookrightarrow 1000);
38 camera.position.set(20, 20, 20);
39 var renderer = new THREE.WebGLRenderer();
40 renderer.setSize(window.innerWidth, window.innerHeight);
41 document.body.appendChild( renderer.domElement );
42 var controls = new THREE.OrbitControls( camera, renderer.domElement );
43 controls.minDistance = 5;
44 controls.maxDistance = 100;
45 var animate = function () {
      requestAnimationFrame(animate);
46
      cube.geometry.applyMatrix4(ejer07);
      renderer.render(scene, camera);
48
49 }
50 animate();
```

Ejercicio #7:

Figura 7: Gráfico_07