Credit Card Fraud Detection-Internship T1

```
In [31]: 1 import numpy as np
2 import pandas as pd
3 import matplotlib.pyplot as plt
4 import seaborn as sns
5 from sklearn.preprocessing import StandardScaler
6 from sklearn.model_selection import train_test_split
7 from imblearn.over_sampling import RandomOverSampler
8 from sklearn.linear_model import LogisticRegression
9 from sklearn.ensemble import RandomForestClassifier
10 from sklearn.metrics import accuracy_score
11 import warnings;
12 warnings.filterwarnings('ignore');
13
14
```

Importing dataset

```
In [32]: 1 data = pd.read_csv('creditcard.csv')
```

3 - Dataset Exploration

```
In [33]: 1 data.shape
Out[33]: (284807, 31)
In [34]: 1 data.head()
```

Out[34]:

	Time	V1	V2	V3	V4	V5	V6	V7	V8	V9
0	0.0	-1.359807	-0.072781	2.536347	1.378155	-0.338321	0.462388	0.239599	0.098698	0.363787
1	0.0	1.191857	0.266151	0.166480	0.448154	0.060018	-0.082361	-0.078803	0.085102	-0.255425
2	1.0	-1.358354	-1.340163	1.773209	0.379780	-0.503198	1.800499	0.791461	0.247676	-1.514654
3	1.0	-0.966272	-0.185226	1.792993	-0.863291	-0.010309	1.247203	0.237609	0.377436	-1.387024
4	2.0	-1.158233	0.877737	1.548718	0.403034	-0.407193	0.095921	0.592941	-0.270533	0.817739

5 rows × 31 columns

```
In [35]: 1 data.describe()
```

Out[35]:

	Time	V1	V2	V3	V4	V5	
count	284807.000000	2.848070e+05	2.848070e+05	2.848070e+05	2.848070e+05	2.848070e+05	2.8480
mean	94813.859575	1.168375e-15	3.416908e-16	-1.379537e-15	2.074095e-15	9.604066e-16	1.4873
std	47488.145955	1.958696e+00	1.651309e+00	1.516255e+00	1.415869e+00	1.380247e+00	1.3322
min	0.000000	-5.640751e+01	-7.271573e+01	-4.832559e+01	-5.683171e+00	-1.137433e+02	-2.6160
25%	54201.500000	-9.203734e-01	-5.985499e-01	-8.903648e-01	-8.486401e-01	-6.915971e-01	-7.6829
50%	84692.000000	1.810880e-02	6.548556e-02	1.798463e-01	-1.984653e-02	-5.433583e-02	-2.7418
75%	139320.500000	1.315642e+00	8.037239e-01	1.027196e+00	7.433413e-01	6.119264e-01	3.985€
max	172792.000000	2.454930e+00	2.205773e+01	9.382558e+00	1.687534e+01	3.480167e+01	7.3301

8 rows × 31 columns

In [26]: 1 data info()

In [36]: 1 data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 284807 entries, 0 to 284806
Data columns (total 31 columns):
Column Non-Null Count Dtype

#	Column	Non-Nul	ll Count	Dtype	
0	Time	284807	non-null	float64	
1	V1	284807	non-null	float64	
2	V2	284807	non-null	float64	
3	V3	284807	non-null	float64	
4	V4	284807	non-null	float64	
5	V5	284807	non-null	float64	
6	V6	284807	non-null	float64	
7	V7	284807	non-null	float64	
8	V8	284807	non-null	float64	
9	V9	284807	non-null	float64	
10	V10	284807	non-null	float64	
11	V11	284807	non-null	float64	
12	V12	284807	non-null	float64	
13	V13	284807	non-null	float64	
14	V14	284807	non-null	float64	
15	V15	284807	non-null	float64	
16	V16	284807	non-null	float64	
17	V17	284807	non-null	float64	
18	V18	284807	non-null	float64	
19	V19	284807	non-null	float64	
20	V20	284807	non-null	float64	
21	V21	284807	non-null	float64	
22	V22	284807	non-null	float64	
23	V23	284807	non-null	float64	
24	V24	284807	non-null	float64	
25	V25	284807	non-null	float64	
26	V26	284807	non-null	float64	
27	V27	284807	non-null	float64	
28	V28	284807	non-null	float64	
29	Amount	284807	non-null	float64	
30	Class	284807	non-null	int64	
	C 7	/			

dtypes: float64(30), int64(1)

memory usage: 67.4 MB

```
In [37]:
            1 data.isnull().sum()
Out[37]: Time
                     0
          ۷1
                     0
          V2
                     0
          V3
                     0
          ۷4
                     0
          V5
                     0
          ۷6
                     0
          ٧7
                     0
          ٧8
                     0
          V9
                     0
          V10
                     0
          V11
                     0
          V12
                     0
          V13
                     0
          V14
                     0
          V15
                     0
          V16
                     0
          V17
                     0
          V18
                     0
          V19
                     0
          V20
                     0
          V21
                     0
          V22
                     0
          V23
                     0
          V24
                     0
          V25
                     0
          V26
                     0
          V27
                     0
          V28
                     0
          Amount
                     0
          Class
                     0
          dtype: int64
```

4 - Data Preprocessing

4.1 - Data Cleaning

```
In [38]: 1 data.shape
Out[38]: (284807, 31)
In [39]: 1 data.drop_duplicates(inplace=True)
In [40]: 1 data.shape
Out[40]: (283726, 31)

4.2 - Identifying Data Imbalance
In [41]: 1 sns.set_theme()
```

0 2832531 473

Name: Class, dtype: int64

0 -> Genuine Transaction

1 -> Fraud Transaction

From above countplot, it seems dataset is highly imbalanced.

4.3 - Data Standardization

```
In [43]: 1 scaler = StandardScaler()

In [44]: 1 # Standardizing 'Time' and 'Amount' column
2 data['Time'] = scaler.fit_transform(data['Time'].values.reshape(-1,1))
3 data['Amount'] = scaler.fit_transform(data['Amount'].values.reshape(-1,1))
```

```
In [45]: 1 data.head()
```

Out[45]:

	Time	V1	V2	V3	V4	V5	V6	V7	V8	
0	-1.996823	-1.359807	-0.072781	2.536347	1.378155	-0.338321	0.462388	0.239599	0.098698	0.3637
1	-1.996823	1.191857	0.266151	0.166480	0.448154	0.060018	-0.082361	-0.078803	0.085102	-0.2554
2	-1.996802	-1.358354	-1.340163	1.773209	0.379780	-0.503198	1.800499	0.791461	0.247676	-1.5146
3	-1.996802	-0.966272	-0.185226	1.792993	-0.863291	-0.010309	1.247203	0.237609	0.377436	-1.3870
4	-1.996781	-1.158233	0.877737	1.548718	0.403034	-0.407193	0.095921	0.592941	-0.270533	0.8177

5 rows × 31 columns

4.4 - Split the data into Features (X) and the Target (y)

```
In [46]: 1 x = data.drop(['Class'], axis = 1)
2 y = data['Class']
```

```
1 print(x)
                                                         V5 \
          Time
                     V1
                               V2
                                        ٧3
                                                 ۷4
      -1.996823 -1.359807 -0.072781 2.536347 1.378155 -0.338321
1
      -1.996823
               1.191857
                         0.266151 0.166480 0.448154 0.060018
      -1.996802 -1.358354 -1.340163 1.773209 0.379780 -0.503198
3
      -1.996802 -0.966272 -0.185226 1.792993 -0.863291 -0.010309
4
      -1.996781 -1.158233 0.877737 1.548718 0.403034 -0.407193
           . . .
                     . . .
                              . . .
                                       . . .
284802 1.642235 -11.881118
                         10.071785 -9.834783 -2.066656 -5.364473
284803 1.642257 -0.732789 -0.055080 2.035030 -0.738589 0.868229
               1.919565 -0.301254 -3.249640 -0.557828 2.630515
284804 1.642278
                         0.530483 0.702510 0.689799 -0.377961
284805 1.642278 -0.240440
۷6
                     ٧7
                             ٧8
                                      V9
                                                  V20
                                         . . .
      0.462388 0.239599 0.098698 0.363787
                                         ... 0.251412 -0.018307
      -0.082361 -0.078803 0.085102 -0.255425
                                         ... -0.069083 -0.225775
1
      1.800499 0.791461 0.247676 -1.514654
                                         ... 0.524980 0.247998
                                         ... -0.208038 -0.108300
3
       1.247203 0.237609 0.377436 -1.387024
       0.095921 0.592941 -0.270533 0.817739
                                              0.408542 -0.009431
                                         . . .
                   . . .
                            . . .
                                         . . .
                                                 . . .
284802 -2.606837 -4.918215 7.305334 1.914428
                                         ... 1.475829 0.213454
284803 1.058415 0.024330 0.294869 0.584800
                                         ... 0.059616 0.214205
284804 3.031260 -0.296827 0.708417 0.432454
                                         ... 0.001396 0.232045
284805 0.623708 -0.686180 0.679145 0.392087
                                              0.127434 0.265245
                                         . . .
284806 -0.649617 1.577006 -0.414650 0.486180 ... 0.382948 0.261057
                            V24
                                     V25
                                              V26
           V22
                    V23
                                                       V27
                                                                V28 \
       0.277838 -0.110474 0.066928 0.128539 -0.189115 0.133558 -0.021053
      1
       0.771679 0.909412 -0.689281 -0.327642 -0.139097 -0.055353 -0.059752
       0.005274 -0.190321 -1.175575 0.647376 -0.221929 0.062723 0.061458
3
       0.798278 -0.137458 0.141267 -0.206010 0.502292 0.219422 0.215153
                             . . .
                                     . . .
                                              . . .
284802 0.111864 1.014480 -0.509348 1.436807 0.250034 0.943651 0.823731
284803 0.924384 0.012463 -1.016226 -0.606624 -0.395255 0.068472 -0.053527
284804 0.578229 -0.037501 0.640134 0.265745 -0.087371 0.004455 -0.026561
284805 0.800049 -0.163298 0.123205 -0.569159 0.546668 0.108821 0.104533
Amount
0
      0.244200
1
      -0.342584
2
      1.158900
3
      0.139886
      -0.073813
284802 -0.350252
```

[283726 rows x 30 columns]

284803 -0.254325 284804 -0.082239 284805 -0.313391 284806 0.513290

In [47]:

```
In [48]:
              print(y)
                     0
          0
          1
                     0
          2
                     0
          3
                     0
          284802
                     0
          284803
                     0
          284804
                     0
          284805
                     0
          284806
          Name: Class, Length: 283726, dtype: int64
```

4.5 - Split the dataset into Training and Testing sets

5. Handling Data Imbalanace

6 - Building & Training Model

For this Classification task, we'll use machine learning models like Logstic Regression or Random Forest Classification.

7 - Model Evaluation

In [55]:		<pre># Accuracy of training data x_resampled_predictions = model.predict(x_resampled)</pre>
	4	<pre>accuracy_score = accuracy_score(x_resampled_predictions, y_resampled) print("Accuracy Score of training data:",accuracy_score)</pre>
,	Accı	uracy Score of training data: 0.9603869509956221
In []:	1	
In []:	1	
In []:	1	