

StableMate:

A statistical method to select stable predictors in omics data

Yidi Deng (Melbourne Integrative Genomics)

Supervised by:

Prof. Kim-Anh Lê Cao

Dr. Jarny Choi

Dr. Jiadong Mao

Motivation

Infer biological relationship from statistical association

Example: gene regulatory network

Retrieved from https://en.wikipedia.org/wiki/Gene_expression_profiling

Network

Retrieved from https://www.ese.wustl.edu/~nehorai/research/genomic/grn.html

Limitation of current methods

1. Lack of interpretability:

Statistical association

Biological hypothesis for validation

2. Lack of generalizability:

Study1

Study2

Stable association

Robust to perturbation
 Generalizable

2. Causal implication Interpretable

Stabilized Regression (Pfister et al. 2021)

Goal of Stabilized Regression (SR)

Infer generalizable functional dependency on the response

Markov Blanket and Stable Blanket

MB: The most predictive set

SB: The most predictive stable set

SR algorithm

Given a response, predictors and environments

$$S_{all}$$

Random sample

$${S_1, S_2, S_3, \dots, S_K}$$

$$\{S_1, S_3, \dots, S_M\}$$

$${S_1, \ldots, S_M}$$

Aggregate

Inaccurate:

 Hard to generate enough subsets to test.

Solution:

 Over sample
 Pre-filtering

StableMate (Deng et al. 2023)

Deng, Y., Mao, J., Choi, J., & Lê Cao, K. A. (2023). StableMate: a statistical method to select stable predictors in omics data. bioRxiv, 2023-09.

StableMate algorithm

based on stochastic stepwise (ST2, Xin et al, 2012) variable selection

Classic

- 1. Fit regression model.
- 2. Add or remove one variable per step.
- 3. Stop until no improvement.

ST2

- 1. Fit regression model.
- 2. Randomly subsample some predictor sets.
- 3. Add or remove one set per step
- 4. Stop until no improvement.

StableMate algorithm

 S_{all}

ST2: select predictive sets

$$\begin{cases} S_1^p, S_2^p, S_3^p, \dots, S_K^p \\ & \\ & \\ & \\ ST2: \text{ select stable and predictive sets } S_k^{sp} \subseteq S_k^p \\ \\ \{S_1^{sp}, S_2^{sp}, S_3^{sp}, \dots, S_K^{sp} \} \end{cases}$$

SB must be the subset of MB

Objectives

 S_{all}

ST2: minimize BIC

$$\{S_1^p, S_2^p, S_3^p, \dots, S_K^p\}$$

$$\{S_1^{sp}, S_2^{sp}, S_3^{sp}, \dots, S_K^{sp}\}$$

Calculate selection frequency

Make selection

THE UNIVERSITY OF MELBOURNE

Add a pseudo-predictor

(Can be selected but doesn't influence model

fitting).

Predictive and stable

$$\{S_1^{sp}, S_2^{sp}, S_3^{sp}, \dots, S_K^{sp}\}$$

Calculate selection frequency

Simulation study

Setting

Simulate a structural causal model (SCM) in different environments

Differs by exogenous perturbation

 Generate data according to the SCM (Three training, one testing environment)

- Mask the SCM
- Identify SB from observational data

StableMate makes better selections

StableMate extrapolate better, with greatly reduced running time

MELBOURNE

A case study on breast cancer RNA-seq data with BRCA gene mutation

- Source: TCGA (The Cancer Genome Atlas Program) consortium
- Data: RNA-seq (gene expression, a count matrix)
- Response: ESR1 (estrogen receptor 1) gene expression
- Environment: disease status (113 normal or 778 ER+ samples)

ESR1 vs other genes

ESR1 vs principal components

(Estrogen receptor 1)

PC1 relates to hormonic regulation

PC3 relates to epidermis development

ESR1 vs principal components

Consistent pattern

Inconsistent pattern

External validation on two consortium studies (GTEX, METABRIC)

Summary

 StableMate is a method for selecting consistent and inconsistent functional dependencies across heterogeneous datasets.

StableMate outperform Stabilized Regression.

 StableMate makes interpretable inference of biological relationships via variable selection

What else?

Metagenomic data: predict colon cancer incidence with fecal microbiome abundance

scRNA-seq data: Characterizing cell identity transition of glioblastoma tumor-infiltrating microglia

Deng, Y., Mao, J., Choi, J., & Lê Cao, K. A. (2023). StableMate: a statistical method to select stable predictors in omics data. bioRxiv, 2023-09.