HIGGS BUNDLES — EXISTENCE OF SOLUTIONS

PEDRO NÚÑEZ

ABSTRACT. In this talk we introduce the stability condition for Higgs bundles and prove the Hitchin–Kobayashi correspondence. The main result is [Hit87, Theorem 4.3]. Relevant literature is [Hit87, §3 and §4] and [Wen14, §2 and §3]. Maybe we will also use [Wen16] every now and then.

This talk is related to Tanuj's talk on *Stable vector bundles*, for which the main reference is [Kob87]. Therefore we will also use [Kob87] as a default reference for generalities on complex vector bundles.

Contents

Notation and conventions 1. Stability References	1
	1
	_

NOTATION AND CONVENTIONS

We usually follow the notation of [Hit87]:

- M: compact Riemann surface of genus q.
- $O \to M$: trivial line bundle.
- $K \to M$: canonical line bundle.
- More generally, O_X resp. K_X denote the trivial resp. canonical line bundle on a complex manifold X.
- For a vector bundle $V \to M$ we denote $\mu(V) := \deg V / \operatorname{rk} V$.

1. Stability

Definition 1 (Higgs bundle). A *Higgs bundle* on M is a pair (V, Φ) , where $V \to M$ is a rank 2 vector bundle and Φ is a global section of End $V \otimes K$, called a *Higgs field* on V.

Date: 18th June 2020.

Supported by the DFG-Graduiertenkolleg GK1821 "Cohomological Methods in Geometry" at the University of Freiburg.

Remark 2. Using the canonical isomorphisms

$$H^0(M, \operatorname{End} V \otimes K) \cong \operatorname{Hom}(O, V^* \otimes V \otimes K) \cong \operatorname{Hom}(V, V \otimes K)$$

we may identify Φ with a morphism

$$\Phi \colon V \to V \otimes K$$
.

Example 3. Assume $g \geqslant 2$. Then $\deg K = 2g - 2 > 0$, so we can find a line bundle $K^{\frac{1}{2}}$ such that $K^{\frac{1}{2}} \otimes K^{\frac{1}{2}} \cong K$. Let $V = K^{\frac{1}{2}} \oplus K^{-\frac{1}{2}}$, where $K^{-\frac{1}{2}} = (K^{\frac{1}{2}})^{-1}$. We consider the Higgs field $\Phi_w \colon K^{\frac{1}{2}} \oplus K^{-\frac{1}{2}} \to (K^{\frac{1}{2}} \oplus K^{-\frac{1}{2}}) \otimes K$ given by a matrix

$$\begin{pmatrix} 0 & w \\ 1 & 0 \end{pmatrix}$$
,

where $w \in \text{Hom}(K^{-\frac{1}{2}}, K^{\frac{1}{2}} \otimes K) \cong H^0(M, K^2)$ can be regarded as a quadratic differential.

Definition 4 (Stability). A Higgs bundle (V, Φ) is said to be *stable* if for every Φ -invariant¹ line bundle $L \subseteq V$ we have $\mu(L) < \mu(V)$.

Remark 5. (V,0) is stable if and only if V is stable in the usual sense.

Exercise 1. There are no stable Higgs bundles on \mathbb{P}^1 . [Hint: Grothedieck's theorem allows us to write Φ as a matrix. What can we say about each entry?] [Solution in [Hit87]]

Example 6. Assume $g \geqslant 2$ and consider $V = K^{\frac{1}{2}} \oplus K^{-\frac{1}{2}}$ again. Then Φ_0 is stable, because $K^{-\frac{1}{2}}$ is the only Φ_0 -invariant line bundle and

$$\deg K^{-\frac{1}{2}} = 1 - g < 0 = \frac{\deg V}{2}.$$

Proposition 7. Assume $g \ge 2$ and let $V \to M$ be a rank 2 vector bundle. Then there exists Higgs field Φ on V such that (V, Φ) is stable if and only if there exists a dense Zariski open subset $U \subseteq H^0(M, \operatorname{End} V \otimes K)$ such that all $\Phi' \in U$ have the property that no line bundle $L \subseteq V$ is Φ' -invariant.

Proof. Let $p: P(V) \to M$ be the projectivisation of our rank 2 vector bundle, which is the \mathbb{P}^1 -bundle obtained by replacing each fibre V_x by its projectivisation $(V_x \setminus \{0\})/\mathbb{C}^\times$. Let $S \subseteq p^*V$ be the tautological line bundle on P(V), whose fibre over a point $[v] \in p^{-1}(x)$ is given by the line $\{\lambda v \mid \lambda \in \mathbb{C}\} \subseteq V_x$. Let $H := S^*$ be its dual, which fits into a short exact sequence

$$0 \to Q^* \to p^*V^* \to H \to 0.$$

¹Meaning that $\Phi(L) \subseteq L \otimes K$.

Let $U \subseteq M$ be an open subset trivialising V. Then the quotient map $p^*V^* \to H$ in the previous short exact sequence induces an isomorphism

$$H^0(p^{-1}(U), p^*V^*) \cong H^0(p^{-1}(U), H),$$

so the pushforward of the sheaf of sections of p^*V^* is isomorphic to the pushforward of the sheaf of sections of H. Since p has connected fibres we have $p_*\mathscr{O}_{P(V)}\cong\mathscr{O}_M$, so applying the projection formula [Har77, Exercise II.5.1.d] we deduce that the pushforward of the sheaf of sections of H is isomorphic to the sheaf of sections of V^* . Abusing slightly the notation we will express this as $V^*\cong p_*H$, and similarly we have $\operatorname{Sym}^2 V^*\cong p_*H^2$.

Let $x \in M$. Then every endomorphism $A \in \operatorname{End}(V_x)$ defines a quadratic map $V_x \to \Lambda^2 V_x$ sending v to $Av \wedge v$. Such a quadratic map can be naturally regarded as a degree 2 homogeneous polynomial on the coordinates coordinates of v with coefficients in $\Lambda^2 V_x$. Hence we have a vector bundle morphism $\operatorname{End}(V) \to S^2 V \otimes \Lambda^2 V$. Restricting to $\operatorname{End}_0(V)$ we get an injective morphism, because $A \in \operatorname{End}(V_x)$ is sent to $0 \in S^2 V_x \otimes \Lambda^2 V_x$ if and only if A is a multiple of the identity. Counting dimensions we see that we have in fact an isomorphism of vector bundles $\operatorname{End}_0(V) \cong S^2 V \otimes \Lambda^2 V$, and therefore

$$\operatorname{End}_0(V) \otimes K \cong p_* H^2 K \otimes \Lambda^2 V.$$

Using again that $p_*p^*(-)\cong (-)$ for vector bundles we have a \mathbb{C} -linear isomorphism

$$s \colon H^0(M, \operatorname{End}_0(V) \otimes K) \cong H^0(P(V), H^2p^*(K \otimes \Lambda^2V)).$$

Let now Φ be a traceless Higgs field on V, and assume it is non-zero. By construction, a non-zero vector $v \in V$ is an eigenvector of the twisted endomorphism over the corresponding fibre if and only if the section $s(\Phi)$ vanishes at the point $[v] \in P(V)$, i.e. if and only if [v] is in the divisor of zeros of the section $s(\Phi)$, which we denote $\operatorname{div}(s(\Phi))$. Let $L \subseteq V$ be a Φ -invariant subbundle, which defines a section of $p \colon P(V) \to M$ by functoriality of projectivisation on injective morphisms of vector bundles:

$$P(L) \xrightarrow{\sigma} P(L)$$

$$\downarrow \qquad \qquad p$$

$$M$$

Being Φ -invariant means precisely that $\sigma(M) \subseteq \operatorname{div}(s(\Phi))$. But then any non-zero $v \in L$ is a non-zero eigenvector of the endomorphism over the corresponding fibre. Since Φ was non-zero, we can assume that the

corresponding eigenvalue is non-zero as well. Since Φ is traceless, the other eigenvalue must be different, and there must be some non-zero eigenvector outside of L, call it $u \in V$. Since u is a non-zero eigenvector, $[u] \in \operatorname{div}(s(\Phi))$. And since $u \notin L$, $[u] \notin \sigma(M)$. Therefore $\sigma(M)$ is a proper irreducible component of the divisor $\operatorname{div}(s(\Phi))$. In conclusion: if $\operatorname{div}(s(\Phi))$ is irreducible, then no line bundle $L \subseteq V$ is Φ -invariant. \square

REFERENCES

- [Har77] R. Hartshorne. Algebraic geometry. Springer-Verlag, New York-Heidelberg, 1977. Graduate Texts in Mathematics, No. 52. \uparrow 3
- [Hit87] N. J. Hitchin. The self-duality equations on a Riemann surface. *Proc. London Math. Soc.* (3), 55(1):59–126, 1987. \uparrow 1, 2
- [Kob87] Shoshichi Kobayashi. Differential geometry of complex vector bundles, volume 15 of Publications of the Mathematical Society of Japan. Princeton University Press, Princeton, NJ; Princeton University Press, Princeton, NJ, 1987. Kanô Memorial Lectures, 5. ↑ 1
- [Wen14] Richard A. Wentworth. Higgs bundles and local systems on riemann surfaces, 2014. $\uparrow 1$
- [Wen16] Richard Wentworth. Higgs Bundles and Local Systems on Riemann Surfaces, pages 165–219. Springer International Publishing, Cham, 2016. ↑ 1

Pedro Núñez, Mathematisches Institut, Albert-Ludwigs-Universität Freiburg, Ernst-Zermelo-Strasse 1, 79104 Freiburg im Breisgau, Germany

Email address: pedro.nunez@math.uni-freiburg.de URL: https://home.mathematik.uni-freiburg.de/nunez