PERFECT SECURITY, ONE-TIME PAD, ETC.

ABHAY SHANKAR K: CS21BTECH11001

1. Recap

<u>Perfect Security</u>: We say that given $\Pi = (Gen, Enc, Dec), \forall c \in C, \forall m \in M$, with X as a random variable over M and Y over C,

$$P(X = m|Y = c) = P(X = m)$$

<u>Def 2</u>: $\forall m_0, m_1 \in M, c \in C$,

$$P\left(Enc\left(m_{0},k\right)=c\right)=P\left(Enc\left(m_{1},k\right)=c\right)$$

Def 3: Perfect Adversarial Indistinguishability:

- Adversary picks message randomly from $\{m_0, m_1\}$, sends to Alice.
- Alice encrypts, sends it back.
- Adversary guesses.

With $b \in \{0,1\}$, $c = Enc(m_b, k)$, and the adversary guesses $b' \in \{0,1\}$,

$$P(b = b') = 0.5$$

One-Time Pad: $K = M = C = \{0, 1\}^n$

$$c = m \oplus k$$

Issues:

- len(k) = len(m)
- The key cannot be reused.

2. Today

<u>Computational Security</u>: A scheme $\Pi = (Gen, Enc, Dec)$ is (t, ϵ) secure if an adversary can find information about m from c using time t (not really time, think big-O) with prob. of correctness $\geq \epsilon$

3. Problems

(1) Prove OTP is PS with Def 2 To prove: $P\left(Enc\left(m_{0},k\right)=c\right)=P\left(Enc\left(m_{1},k\right)=c\right)$ where $C=M=K=\left\{ 0,1\right\} ^{n}$

$$P\left(Enc\left(m_{0},k\right)=c\right)$$

$$=P\left(m_{0}\oplus k=c\right)$$

$$=P\left(k=c\oplus m_{0}\right)$$

$$=\frac{1}{2^{n}}$$

(2) Prove OTP is PS with Def 3