Seminar 7 gr. III.

D. Sà se calculere cosinusur maghinleur format de cheptele:

$$d_1: \begin{cases} \chi - 3 - 4z - 5 = 0 \\ 2\chi + 3 - 2z - 4 = 0 \end{cases}, d_2: \begin{cases} \chi - 6y - 6z + 2 = 0 \\ 2\chi + 2\overline{z} + 9\overline{z} - 1 = 0 \end{cases}$$

Solutie

	1	
Pi	2,	1-1
181	-1	-4
2	1	- 2
	h /h	

1	PZ	22	12
1		1-6	-6
1	2	2	9
	l		1

$$P_{1} = \begin{vmatrix} -1 & -4 \\ 1 & -2 \end{vmatrix} = 6$$

$$2_{1} = -\begin{vmatrix} 1 & -4 \\ 2 & -2 \end{vmatrix} = -6$$

$$|P_{1}| = -|P_{2}| = -6$$

$$|P_{1}| = |P_{2}| = -2$$

$$|P_{1}| = |P_{2}| = -3$$
Sau $|P_{1}| = |P_{2}| = 3$

$$\begin{array}{c|c} P_2 = \begin{vmatrix} -6 & -6 \\ 2 & 9 \end{vmatrix} = -42 \\ 2_2 = -\begin{vmatrix} 1 & -6 \\ 2 & 9 \end{vmatrix} = -21 \end{array}$$

$$|\lambda_{2}| = |1 - 6| = 14$$

$$= |2 - 2| = 14$$

$$= |2 - 2| = 14$$

$$= |3 - 6| = 14$$

$$= |3 - 6| = 14$$

$$= |3 - 6| = 14$$

$$= |3 - 6| = 14$$

$$\cos \varphi = \frac{\vec{d}_{1} \cdot \vec{d}_{2}}{\|\vec{d}_{1}\| \cdot \|\vec{d}_{2}\|} = \frac{2 \cdot 6 - 2 \cdot 3 + 1 - 2}{4 + 4 + 1 \cdot \sqrt{36 + 9 + 4}} \cdot \frac{4}{21}$$

$$\cos \varphi = \frac{\vec{d}_{1} \cdot \vec{d}_{2}}{\|\vec{d}_{1}\| \cdot \|\vec{d}_{2}\|} = \frac{6 \cdot (-42) + (-6) \cdot (-21) + 3 \cdot 14}{\sqrt{36 + 36 + 9} \cdot \sqrt{42^{2} + 21^{2} + 14^{2}}} = \frac{21 \cdot (-12 + 6 + 2)}{\sqrt{9 \cdot (4 + 4 + 1)}} = \frac{24 \cdot (-4)}{24 \cdot 21}$$

$$= -\frac{4}{21}$$

_

_

-

-

3

3

3

3

3

3

3

3

3

3

8

C

(2) Gasiti coordonately simetricului a al puntului P (2,-5,7) în roport cu chapta determinată de puntule Ms (5,4,6) si Mz (-2,-17,-8).

Solutire Vectorul director al duplei M, M2

Solution Vectoral director al dupter Mim. est: Mim. (-2-5, -17-4, -8-6) = = Mim. (-7, -24, -14) som alt vector diedo este d'(1,3,2).

Ecuatia planului T care trece pulue P si este perpendicular pe dreapsta $d = 191 M_2$ est. T: 1(x-2) + 3(y+5) + 2(z-7) = 0

(=) 2+3y+2z -2+15-14=0

[]

intersection R delute d'si II este data-

de sistemul:

$$\int_{1}^{1} dx = \frac{3-4}{3} = \frac{z-6}{2} = +$$

T: x+3y +22-1=0

$$t+5+3(3t+4)+2(2t+6)-1=0$$
 $t+9t+4t+5+12+12-1=0$
 $14t+28=0 <=> t=-2$

$$= \frac{1}{2} \chi_{R} = \frac{1}{2} \chi_$$

Observation Restr modicitée lui P pe chapte

$$2 = \frac{\chi_{p+\chi_{Q}}}{2} = 3 = \frac{2+\chi_{Q}}{2} = \chi_{Q} = 4$$

$$2 = \frac{\chi_{p+\chi_{Q}}}{2} = -2 = \frac{-5+\chi_{Q}}{2} = \chi_{Q} = 4$$

$$2 = \frac{\chi_{p+\chi_{Q}}}{2} = 1$$

di: $\begin{cases} 2x + 2y - z - 10 = 0 \\ x - y - z - 22 = 0 \end{cases}$ di: $\begin{cases} 2x + 2y - z - 10 = 0 \\ -1 = 2 - 9 \end{cases}$ Sunt paralele si calculati distanța dintu ele.

Solute
$$P_1$$
 2_1 P_1 2_2 P_1 2_3 P_4 P_4 P_4 P_4 P_5 P_6 P_6

$$47 = 32 + 54 = 2 = \frac{32+54}{4}$$
 $4y = -2 - 32 = 3 = -\frac{2+34}{4}$

dui $S = \{(\frac{32+54}{4}), -\frac{2+34}{4}, 2\}\}$

pentur $d = 2$ resultar

 $M_1 (15, -9, 2) \in d_1$
 $M_2 (12, -8, -2) \in d_1$
 $M_2 (12, -8, -2) \in d_1$
 $M_3 (12, -8, -2) \in d_1$

4). Gasit: accordonatele proiectie: puncture lui
$$P(3,-4,-2)$$
 per planuel determinate de obseptele paralle de obseptele paralle $d_1: \frac{x-5}{13} = \frac{1}{4} = \frac{2+3}{-4}$ si $d_2: \frac{x-2}{13} = \frac{1}{4} = \frac{2+3}{-4}$. Solutie punctul $M_1(5,6,-3) \in d_1$ $M_2(2,3,-3) \in d_2$ Planuel est determinate de vertain $d_1 = d_2$ de coordonate $(13,1,-4)$ si $M_1M_2(2-5,3-6,-3+3)$ $(13,1,-4)$ si $M_1M_2(2-5,3-6,-3+3)$ $(13,1,-4)$ $(13,1,0)$

-8-

Scanned with CamScanner

Perpendiculara din P pe planul II ecuatrile:

$$J: \frac{\chi - 3}{1} = \frac{3 + 4}{-1} = \frac{2 + 2}{3} = +$$

d:
$$2y = -t-4$$
 $2z = 3t-2$
 $2-y + 3z + 10 = 0$

Juterscotia lui d cu II esti

Q - proiecte lui P pe II.

$$\Rightarrow$$
 Q(2,-3,-5).

(5). Calculate distanta dinte deptele:

$$\frac{1}{3} = \frac{1}{4} = \frac{2+3}{-2} \text{ si } d_2: \frac{x-21}{6} = \frac{1}{4} = \frac{2-2}{-1}$$
Solution
$$\frac{1}{4} = \frac{1}{4} = \frac{1}{4} = \frac{2+3}{4} = \frac{1}{4} = \frac{1$$

$$M_{1}(-7, -4, -3)$$

$$M_{2}(21, -5, 2) \Rightarrow M_{1}M_{2}(28, -4, 5)$$

$$\overline{d}_{1}(3, 4, -2)$$

$$\overline{d}_{2}(6, -4, -1)$$

$$|(M_{1}M_{2}, \overline{d}_{1}, \overline{d}_{2})| = |28 - 1 - 5| = |28 - 4 - 2| = |28 - 4 - 4| = |28 - 4| = |4 - 2| = |4 - 2| = |4 - 4| = |4 -$$