Lecture - Thursday, September 3, 2020		Last class: & periodic sampling:	$2\ln 7 = 2c (nTs)$
		# Band-limited Signed: Xc	$(\omega) = 0$ for ω
			iquist rate = 2 WB
		* Sampling Theorem: perfect Signals is	reconstruction of band-limited
		Signals is	possible if ws > 2 wg.
Todays	Class:	A SA	
Sampl	ling Theore.	hard to prove in time-domain easy analysin using Fourier tra	
		hard to prove in time-domain	<u></u>
		easy analysin using rouries was	instorm
10	- a from	- hand died simple 2-41 to	:- simpled 7/m1
	al will	continuous-time signal 7c(t) to i	15 samples aling,
			. 6/1/
let	x=(+) }	p band-limited Sierd. (NA)	
let	n(4) b	e band-limited Stand. (WH) > $\chi_{\epsilon}(t)$ e an impulse - train	$ \longrightarrow $
7.0.	γω,	×0 /1 -2 T \	
	p(+) =	5 S (t-nTs)	
		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	
	$P(\omega) =$	$\frac{2\pi}{T_{s}} \sum_{-\infty}^{\infty} S\left(\omega - \frac{2\pi}{T_{s}}k\right) \qquad \omega_{s} = 0$	= <u>211</u> Ts
		15 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
	-	11.15.15.	
	% (t) =	2(t) p(t) : using multiplication pr	warb ot til
	V (a)	1 (x (c) x P(c))	
	×ρ (ω) -	$\frac{1}{2\pi} \left[\chi_{c}(\omega) \times P(\omega) \right]$	
		$= \frac{1}{2\pi} \times 2(\omega) \times \frac{2\pi}{T_S} \left(\frac{\infty}{2} \times S(\omega - \frac{1}{2}) \right)$	en ki
		277 Ts 1-00	Ts)
		$= \frac{1}{15} \sum_{\infty} \chi_{c}(\omega) * S(\omega - \frac{27}{15}k)$	
		15 .00	
		$= \frac{1}{T_s} \sum_{k} \chi_{c} \left(\omega - \frac{271}{T_s} k \right)$	
		[21]	

Time domain: By consoliding property of FT

$$x_{1}(t) = x_{1}(t) \times h_{LSF}(t)$$
 $x_{2}(t) = x_{2}(nT_{5}) \delta(t-nT_{5})$
 $h_{LSF}(t) = \int_{-\infty}^{\infty} x_{2}(nT_{5}) \delta(t-nT_{5})$
 $h_{LSF}(t) = \int_{-\infty}^{\infty} x_{2}(nT_{5}) \delta(t-nT_{5})$
 $x_{3}(t) = \left(\int_{-\infty}^{\infty} x_{2}(nT_{5}) \delta(t-nT_{5})\right) \times T_{5} \cdot \sin(\omega_{c}t)$
 $x_{4}(t) = T_{5} \cdot \int_{-\infty}^{\infty} x_{2}(nT_{5}) \delta(t-nT_{5})$
 $x_{5}(t) = \int_{-\infty}^{\infty} x_{5}(nT_{5}) \delta(t-nT_{5})$
 x