

دانستیم که پاسخ least-squares معادله x=y، برداری است که مقدار تابع هدف $\|Ax-y\|^2$ را کمینه می کند. در این تمرین یکی از کاربردهای این مسئله را بررسی می کنیم.

ابتدا فایل btc_price.npy را با تابع load باز کنید و با استفاده از تابع plot در کتابخانه matplotlib آرایه لود شده را در قالب نمودار رسم کنید. نمودار رسم شده قیمت هر ۲ ساعت بیت کوین از اواخر سال ۲۰۲۰ تا بیستم ماه مِی است. همانطور که میبینید این نمودار دارای نوسان بسیاری است و کار کردن با آن می تواند مشکل باشد. در اینجا می خواهیم با استفاده از least-squares این نمودار را دی نویز کنیم.

فرض کنید بردار y بردار مقادیر قیمت بیت کوین، بردار مجهول x بردار بدون نویز قیمت که به دنبال آن هستیم و بردار v بردار نامشخص نویز است. یعنی داریم:

$$y = x + v$$

یا:

$$y = Ix + v$$

اگر برای معادله بالا، پاسخ least-squares معادله x=y را حل کنیم، در واقع تابع زیر را کمینه کردهایم.

$$\min_{x} ||Ix - y||^2$$

تمرین عملی سری دوم

کمینه کردن این تابع باعث میشود تا مقادیر بردار x نزدیک به y باشند. اما این شرط به تنهایی باعث دینویز شدن بردار نمیشود. شرط لازم دیگر، کم بودن اختلاف دو درایه مجاور از بردار x است. پس تابع هدف بالا را با اضافه کردن شرط دوم به شکل زیر مینویسیم (λ پارامتر مسئله است که نسبت تاثیر دو شرط گفته شده در پاسخ مسئله را تنظیم می کند).

$$\min_{x} ||Ix - y||^2 + \lambda \sum_{i=1}^{n-1} (x_{i+1} - x_i)^2$$

(n-1) imes n عبارت دوم را می توانیم به شکل $\|Dx\|^2$ نیز بنویسیم که در آن D برابر ماتریس

$$\begin{bmatrix} 1 & -1 & 0 & \dots & 0 & 0 & 0 \\ 0 & 1 & -1 & \dots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 1 & -1 & 0 \\ 0 & 0 & 0 & \dots & 0 & 1 & -1 \end{bmatrix}$$

است. پس در نهایت هدف ما کمینه کردن تابع

$$\min_{x} \|Ix - y\|^2 + \left\|\sqrt{\lambda}Dx\right\|^2$$

است. تابع بالا را در قالب ماتریسهای بلوکی زیر نیز می توان نوشت:

$$\min_{x} \left\| \begin{bmatrix} I \\ \sqrt{\lambda}D \end{bmatrix} x - \begin{bmatrix} y \\ 0 \end{bmatrix} \right\|^{2}$$

پس توانستیم تابع هدف خود را به شکل تابع هدف مسئله least-squares در بیاوریم.

در این تمرین شما باید با کمینه کردن تابع بالا به کمک پاسخ مسئله least-squares آرایه داده شده را دینویز کرده و آن را رسم کنید. این کار را برای مقادیر مختلفی از پارامتر λ امتحان کنید. به ازای چه مقداری از λ نمودار حاصل شباهت کافی به نمودار اصلی دارد و به خوبی نیز دینویز شده است؟

✓ کد پایتون خود را به همراه عکس از نمودارهای رسم شده در قالب یک فایل زیپ ارسال کنید. همچنین
استفاده از ژوپیتر برای اجرای مرحله به مرحله برنامه و دیدن نتایج آن توصیه می شود.