Klidový membránový potenciál

- membránový potenciál
 - rozdíl elektrického potenciálu mezi stranami membrány
 - -> vzniká jako důsledek působení elektrochemického gradientu iontů
- difuze

Fickův zákon difuze

$$J = \mu \cdot S \cdot (c_2 - c_1)$$

- J...difuzní tok
- S...plocha
- c_{1,2}...koncentrace na stranách membrány
- μ...permeabilita jak moc bude membrána propustná pro danou substanci
- probíhá difuze iontů ve směru koncentračního gradientu
 - = přesun z místa s vysokou koncentrací na místo s nízkou koncentrací
 - -> dojde k ustálení koncentrace tak, že bude platit K⁺_{vně} = K⁺_{uvnitř}
- difuzí roste napětí na membráně –> vzniká elektrický gradient vnitřek se stává –

 el. gradient má opačný směr než koncentrační spád vnějšek se stává +

- klidový membránový potenciál
 - stav, kdy dojde k vyrovnání sil a zastavení toku iontů -> ustanoví se potenciál
 - určeno Nernstovou rovnicí

$$E_x = \frac{R \cdot T}{n \cdot F} \ln \frac{[X]_{vn\check{e}}}{[X]_{uvnit\check{f}}} \qquad \rightarrow \qquad E_x = \frac{61.5}{n} \ln \frac{[X]_{vn\check{e}}}{[X]_{uvnit\check{f}}} \quad [mV]$$

KMP pro vybrané ionty

- Goldmanova rovnice
 - membrána v lidské těle je propustná pro celou řadu iontů nutné využít tuto rovnici

$$E_{x} = \frac{R \cdot T}{n \cdot F} \ln \left(\frac{\mu_{Na} + [Na^{+}]_{vn\check{e}} + \mu_{K} + [K^{+}]_{vn\check{e}} + \mu_{Cl} - [Cl^{-}]_{uvnit\check{r}}}{\mu_{Na} + [Na^{+}]_{uvnit\check{r}} + \mu_{K} + [K^{+}]_{uvnit\check{r}} + \mu_{Cl} - [Cl^{-}]_{vn\check{e}}} \right) = -70 \, mV$$

- změny polarizace na membráně
 - 1) membrána je polarizovaná -> -70 mV
 - 2) hyperpolarizace = membrána je více polarizovaná -> klesne napětí
 - 3) depolarizace = membrána je méně polarizovaná -> vzroste napětí
 - -> změny na membráně oproti KMP jsou podstatou přenosu a zpracování informací v nervové buňce
- KMP je neustále aktivně udržován pomocí Na⁺/K⁺ ATPázy

- iontové kanály
 - zprostředkovávají změny membránového potenciálu
 - základní vlastnosti vedou ionty napříč membránou jsou selektivní pro specifické ionty otevírají se a zavírají v odpovědi na určité signály

- dva hlavní stavy otevřený stav = kanálem teče proud Х zavřený stav
 - navíc ještě refrakterní stav zavřený, ale nelze jej okamžitě otevřít
 - typ a množství momentálně otevřených kanálů určuje vodivost membrány

-> závislé na pst otevírání kanálů - ovládáno různými faktory

- membrána nervové buňky
 - fosfolipidová dvojvrstva polární hlavička + nepolární ocásky
 - -> impermeabilní vůči iontům -> prostoupení skrze iontové kanály
 - transport
 - zajišťuje regulaci membránových potenciálů
 - dělení (dle spotřeby ATP)
 - 1) pasivní
 - řízen chemickým gradientem koncentrace a membránovým potenciálem
 - -> udávají gradient elektrochemického potenciálu
 - = rozdílné napětí a koncentrace iontů na vnější a vnitřní straně membrány
 - probíhá samovolně nespotřebovává ATP
 - -> např. prostá difuze transport aminokyselin, proteinů...
 - 2) aktivní
 - spotřeba energie získané štěpením ATP
 - umožňuje transport i proti směru koncentračního gradientu
 - zprostředkován membránovými proteiny iontové pumpy a přenašečové proteiny
 –> např. Na⁺/K⁺ ATPáza

Akční potenciál

- akční potenciál
 - jedná se o náhlou změnu membránového potenciálu

- trvá zhruba půl milisekundy – buňka projde několika stavy 🖡

klidový stav depolarizace přestřelení repolarizace hyperpolarizace

olevřiní sodných leanailii: Na+

-2 hradla: altivační a inattivační

1: [] []

3: [] [] s latencí se zavře inattivační h.

4: [] []

5: [] []

- šíření AP
 - postup je možný pouze vpřed
 - -> v místě vzniku předchozího AP je membrána v absolutní refrakterní fázi
 - refrakterní perioda všechny kanály deaktivovány –> nelze hned aktivovat další AP
 musíme počkat na aktivaci kanálů cca -30 mV
 - myelinizované axony
 - AP se šíří skokově vznikají pouze v místě Ranvierových zářezů (zbytek axonu izolován)
 - -> myelin: snižuje kapacitanci membrány neztrácím tolik proudu -> AP se šíří déle

Synapse

- synapse = štěrbiny oddělující od sebe neurony
- typy synapsí
 - 1) chemické
 - signál je přenášen pomocí neurotransmiteru
 - složení presynaptická část neuron sekretující neurotransmiter
 synaptická štěrbina (20-30 nm)
 postsynaptická část neuron s receptory
 - je zde synaptické zpoždění (1-4 ns)
 - oproti elektrickým synapsím je složitější, ale dá se modulovat a řídit výhodné
 - –> umožňuje signálové zesílení, modulaci a prostorový kontext

2) elektrické

- cytoplazma jednotlivých neuronů je propojena prostřednictvím gap junction
 - póry mezi neurony -> přímý přestup iontů
- není zde žádné synaptické zpoždění
- procesy na synapsích
 - presynaptický terminál
 - velké množství napěťově řízených vápníkových kanálů
 - -> příchod AP (depolarizace membrány) = jejich otevření -> výlev neurotransmiteru
 - koloběh neurotransmiteru
 - 1) dokování přilepení na membránu
 - 2) primování ATP dependentní cestou natlačení do membrány
 - 3) čekání na Ca²⁺
 - 4) výlev
 - 5) fúze s membránou jiná část se uštípne a vznikne nový váček kiss-and-go vyleje se a hned se uštípne pryč
 - 6) recyklace
 - V-ATPáza = membránový protein, který spotřebovává ATP
 - pomocí ATP dochází k okyselení váčků (uvnitř mnohem více H⁺ než venku)
 - -> využití gradientu H⁺ na naplnění váčku neurotransmitery
 - 7) váček je znovu připraven k vylití
 - synaptická štěrbina
 - nutné odstranění/recyklace neurotransmiterů
 - 1) odstranění pomocí presynaptické části
 - speciální transportéry import pomocí sodíkového gradientu
 - 2) odstranění pomocí astrocytů (gliové buňky)
 - funguje na podobném principu transportéry
 - postsynaptická část
 - 1) přímý přenos ionotropní receptor
 - naváže se neurotransmiter -> dojde ke změně konformace membránového proteinu otevření
 - 2) nepřímý přenos
 - naváže se neurotransmiter -> dojde k rozdělení G-proteinu způsobí otevření jiných kanálů
 - postsynaptické efektorové jednotky
 - a) excitační ionotropní receptor typu AMPA
 - naváže se glutamát -> kanál se stane okamžitě propustný pro Na⁺ a K⁺ NMDA receptor
 - naváže se glutamát -> otevřou se AMPA receptory -> depolarizace
 -> z NMDA receptoru vypadne Mg²⁺ -> kanál se stane propustný
 - pomalejší než AMPA receptory, ale silnější
 - b) inhibiční GABA
 - primárně receptory spřažené s iontovým kanálem vodivý pro Cl⁻ glycin receptor

- změny účinnosti synapse (synaptická plasticita)
 - 1) LTP dlouhodobá potenciace
 - zvyšování síly na synapsích a tvorba nových synapsí
 - princip
 - 1) časná fáze
 - aplikujeme tetanickou stimulace (100 Hz, 1 s)
 - -> velký výlev glutamátu
 - 1. glutamát se váže na AMPA receptory -> depolarizace membrány
 - 2. depolarizace uvolní Mg²⁺ z NMDA receptorů umožní navázání glutamátu na NMDA receptory
 - 3. Ca²⁺ aktivuje signální kaskády (proteiny)
 - 4. dojde k fosforylaci receptorů = zvýšení aktivity
 - -> vystavení více AMP receptorů
 - -> signalizace pro zvýšení výlevu neurotrasmiteru glutamátu
 - = jedno podráždění trvalejší odpověď
 - 2) pozdní fáze
 - aktivované proteiny (3.) vstupují do jádra -> spouští proteosyntézu
 umožnění vzniku nových synapsí
 - 2) LTD dlouhodobá deprese
 - snížení účinnosti synaptického přenosu
 - princip
 - aplikujeme slabší stimulaci (1-10 Hz, 10 min)
 - -> opět dochází k aktivaci NMDA receptorů a propuštění Ca²⁺
 - aktivace defosforylujících enzymů (fosfatázy)
 - aktivované fosfatázy snižují citlivost glutamátových receptorů
 - -> redukce postsynaptické odpovědi na neurotransmiter

Neuropřenašeče

- obecně
 - zprostředkovávají chemickou komunikaci mezi neuronem a další buňkou
- neurotransmitery
 - hrají hlavní roli v rychlém přenosu
 - často navázané na iontové kanály
 - o glutamát
 - hlavní excitační neurotransmiter mozku výrazně se podílí na zpracování informací v CNS
 - jedná se o transportéry, které vychytávají zpátky do presynaptického neuronu
 - hlavní receptory AMPA iontový kanál, velmi rychlé

 NMDA pomalejší, potřebuje AMPA, propustný navíc pro Ca²⁺
 - GABA (kyselina gama-aminomáselná)
 - hlavní inhibiční neurotransmiter v mozku (inhibice = snížení aktivity enzymů)
 - -> regulace excitability neuronu, regulace signál/šum, regulace svalového tonu, aktivace plasticity, koordinace neuronální aktivity
 - o glycin
 - hlavní inhibiční neurotransmiter v míše
 - acetylcholin
 - uplatnění v paměti a orientované pozornosti modulace a konsolidace
 - př. neurosvalová ploténka (acetylcholin mediátor)
 - chemická synapse přenáší informaci z motorického neuronu na sval
 - AP -> depolarizace -> otevření napěťově řízených kanálů -> uvolnění acetylcholinu
 - nutná rychlá recyklace pokud se neodbourává dochází k trvalé kontrakci

- neuromodulátory
 - spíše modulují excitabilitu neuronů
 - o dopamin
 - důležitý v celém mozku výlev dopaminu signalizuje, že chování vede k odměně
 - -> pracovní paměť, orientovaná pozornost, regulace motorických funkcí, motivace, slast
 - degenerace -> Parkinsonova nemoc, schizofrenie, závislost, ADHD
 - o noradrenalin
 - umožňuje krátkodobou zvýšenou aktivitu
 - -> regulace bdělosti, kognitivních procesů, modulace bolestivých vjemů...
 - o serotonin
 - působí na receptory mnoha tříd
 - -> modulace nálad, agrese, spánku, sexuality, bolestivých vjemů...

Reflex

- reflex = základní funkční jednotka motoriky odpověď organismu na podnět
- reflexní oblouk
 - jedná se o základní uspořádání míšního reflexu
 - části
 - 1) receptor (volná nervová zakončení, Golgiho tělíska...) zaznamená stimul
 - 2) aferentní dráha (senzorický neuron) vede signál do míšního reflexního centra
 - 3) reflexní centrum vyhodnocení, přepojení s alfamotoneuronem
 - 4) eferentní dráha (motorický neuron) přenos signálu do efektoru
 - 5) efektor (sval) vykoná impuls
- klasifikace
 - 1) dle receptoru proprioceptivní reflex (vlastní)
 - receptor a efektor na témže orgánu (sval)
 - receptor svalové vřeténko: reaguje na protažení svalu udržuje délku šlachové tělísko: chrání sval a šlachu před přetržením
 - gama systém autoregulační zpětný systém (udržuje dráždivost svalů) exteroceptivní reflex (cizí)
 - receptor a efektor v různých orgánech (kůže–sval)
 - -> receptory pro bolest a dotyk
 - 2) dle způsobu přepojení
- monosynaptické reflexy
 - pouze jeden interneuron rychlá nekoordinovaná odpověď
 - napínací reflex
 - kompenzuje prudké a nečekané změny protažení
 - využití jako spolehlivého testu citlivosti a správné funkce CNS
 poklep na šlachu následný záškub

bisynaptické reflexy

- zajišťují souhru svalů – reciproční inervace

¹polysynaptické reflexy

- zapojeno více interneuronů
- flexorový reflex
 - únik od bolestivého stimulu (např. žhavý předmět)
- 3) dle podmínek nepodmíněné, podmíněné
- 4) dle efektoru somatické, autonomní
- 5) dle centra extracentrální, centrální

Podstata vzniku EEG

- metoda snímání záznamu elektrické aktivity z mozku
 - -> EEG křivka důsledek aktivity neuronů mozkové kůry v blízkosti elektrody
 - -> funkční vyšetření diagnostika funkčních onemocnění (především epilepsie a poruch spánku)
- princip
 - zdrojem EEG je synaptická aktivita
 - 1) EPSP excitační postsynaptický potenciál
 - přijde AP -> vylití glutamátu -> navázání na receptory -> otevření do buňky teče Na⁺ a Ca²⁺
 -> depolarizace buňky na buňce změřím změnu v membránovém napětí (trvání asi 20 ms)

otevření kanálů (Na+)

- -> do buňky poteče proud pozitivně nabitých iontů
 - okolí se bude tvářit negativně
 - proud uniká a vytvoří smyčkuzpůsobuje změny potenciálů
- ECL1 registruje negativní výchylku ECL2 registruje pozitivní výchylku
- SEEG registruje to, k čemu je blízko
 - -> negativní výchylka s nižší amplitudou (dále od zdroje)
- 2) IPSP inhibiční postsynaptický potenciál
 - přijde AP -> vylití GABA -> navázání na receptory -> otevření do buňky teče Cl
 -> polarizace membrány

otevření kanálů (Cl⁻)

-> do buňky poteče proud negativně nabitých iontů

- okolí se bude tvářit pozitivně
- proud uniká a vytvoří smyčku
 - -> způsobuje změny potenciálů

ECL1 – registruje pozitivní výchylku

ECL2 – registruje negativní výchylku

SEEG – registruje to, k čemu je blízko

-> pozitivní výchylka s nižší amplitudou (dále od zdroje)

- vlivy na morfologii, trvání a závislost EEG
 - a) pozice a vzdálenost elektrody od zdroje
 - buňka se chová jako dipól -> kolem vzniká elektrické pole

b) počtu synchronně aktivovaných synapsí

- pozn. AP nepřispívají do EEG \rightarrow jen hrotík s trváním cca 300 μ s (pst součtu je velmi malá)
- c) anatomické orientaci neuronů
 - palisádovité uspořádání buněk vedle sebe (= paralelně) -> lze sčítat proudy

čas [s] 4

Motorické funkce – kůra, basální ganglia, mozeček

- senzomotorický systém
 - klíčové struktury motorické oblasti frontální kůry, mozkový kmen, bazální ganglia, mozeček, páteřní mícha, senzorické oblasti

- motorická kůra
 - oblasti
 - 1) primární motorická kůra
 - leží před středovou mozkovou rýhou
 - -> celá oblast se nazývá motorický kinestetický analyzátor
 - klíčová struktura pro řízení úmyslných pohybů ovládání distálních svalů končetin
 - 2) premotorická kůra
 - příprava motorických vzorců a následných pohybů
 - 3) doplňková motorická kůra
 - příprava motorických vzorců a následných změn pohybu
 - činnost pod vnitřní kontrolou (z paměti)
- bazální ganglia
 - struktury viditelné na koronálním či horizontálním řezem mozku
 - -> nukleus candatus, putamen, ventrolaterální jádro thalamu, subthalamické jádro, substancia nigra...
 - funkce regulují tonus kosterního svalstva
 účastní se pohybů při jejich vlastním provádění ale i při jejich přípravě a plánování podílejí se na tvorbě návyků ovlivňují pracovní paměť, pozornost, poznávání, emoce, chování...
 - poškození -> snížení/zvýšení svalového tonu, snížená hybnost (Parkinson)
- mozeček
 - úloha použití dostupných signálů k modulaci eferentních motorických povelů
 - -> vestibulární a proprioceptivní signály udržování vzpřímené polohy těla a rovnováhy proprioceptivní signály reflexní regulace napětí svalstva integrace všech signálů koordinace střídavých a diferencovaných pohybů končetin
 - nekontroluje přímo svaly nepřímá kontrakce
 - -> posílá výstup do jiných struktur (primární mozková kůra, premotorická kůra)
 - poškození -> poruchy rovnováhy a koordinace, trhaná řeč, dysmetrie špatný odhad vzdálenosti...

Bolest

- bolest = senzorická nebo emocionální zkušenost -> varuje před poškozením
- dělení somatická povrchová rychlá ostrá, dobře lokalizovatelná pomalá palčivá, špatně lokalizovatelná hluboká svaly, klouby viscerální z pouzder vnitřních orgánů
- nociceptory = senzory bolesti
 - receptory aktivované podnětem, který způsobuje poškození tkáně nebo by ji mohl způsobit, jestliže bude podnět působit déle
 - mají velmi malou nebo žádnou adaptaci
 - chybí v mozkové, plicní a jaterní tkáni
 - dělení dle podnětu mechanické mechanicko-termické

polymodální – reagují na mechanický, termický i chemický podnět

- informace o bolesti je z těchto senzorů vedena nervovými vlákny do Rexedových zón míchy a dále do CNS mediátory přenosu bolesti
- mediatory premosa bolesti
 - glutamát, GABA, glycin + neuromodulátory ATP, růstové faktory, peptidy...
- oblasti mozku důležité pro vnímání bolesti somatosenzorická kůra
 periakveduální šeď a parabrachiální jádro
 modulace intenzity vnímání bolesti
 insula a přední cingulum, amygdala, orbitofrontální kůra
 vvědomění si kontextu
- kontrola vnímání bolesti (cenzura vstupních informací)
 - a) sestupní kontrola prováděno pomocí inhibičního vlivu sestupných drah ze somatosenzorické oblasti
 - b) opoidní peptidy endorfin, dynorfin...
 - c) vrátkový mechanismus dovolení průchodu jenom omezenému počtu vzruchů

vlákna tenká: $A\delta$ + C – podmiňují vznik bolesti (otevírají vrátka) silná: $A\beta$ – tlumení vedení bolesti (přivírají vrátka)

-> omezení vedení bolesti - aktivace vláken Aeta díky vibracím a chlazení

- př. __TENS (elektrická nervová stimulace)

tělo samo (inhibiční systém) – třepání ruky při popálení

- podráždění receptorů
 - na povrchu je uloženo spoustu kanálů, které se aktivují natažením
 - -> přechod sodných iontů -> depolarizace membrány -> klasické vedení AP

dvojí informace – kvalita stimulu + intenzita stimulu (frekvence AP – max 300 Hz)

Sluch

- zvuk
 - d) mechanické podélné vlnění střídající se zhuštění a zředění
- sluchové ústrojí vnější boltec a zvukovod –> zachycuje zvuk
 střední (kladívko, kovadlinka, třmínek) –> zesilovač a ochrana (spojeno s nosem)
 vnitřní –> přeměna tlakových vln na zvukové signály
 - e) vnitřní ucho Cortiho orgán
 - f) hlemýžď (kochlea)
 - g) z příchozího zvuku provede FT spektrální rozklad
 - h) různé iontové složení endolymfa a perilymfa
 - i) různá tvrdost a tuhost baziliární membrány
 - -> zvuk rezonuje v té části, která vibračně odpovídá tvrdostí té frekvenci
 - j) složení vnitřní vláskové buňky informace o zvuku, který dále vedou do mozku vnější vláskové buňky tvoří kochleární zesilovač (připojené k tektoriální membráně)
 - k) princip
 - 1) zvuk vstupuje do zvukovodu
 - I) zvukové volny se šíří zvukovodem a naráží na ušní bubínek
 - 2) ušní bubínek a sluchové kůstky se rozvibrují
 - m) ušní bubínek začne vibrovat a přenese vibrace na sluchové kůstky ve středním uchu
 - 3) pohyb kapaliny ve vnitřním uchu
 - n) vibrace se přenášejí kapalinou ve spirálově tvarovaném vnitřním uchu hlemýždi a vyvolávají v něm pohyb malých vláskových buněk –> detekce pohybu a přeměna na chemický signál rozechvěje se baziliární membrána

rozechvěje se tektoriální membrána

přidají se vnější vláskové buňky

-> využití gradientu endolymfy (150 mM K+)

vůči perilymfě (5 mM K+) – otevření kanálu

mechanická reakce proteinu (prestin)

ve stěně buňky = stažení buňky

zpětná vibrace + repolarizace

- o) pozn. hluchota nevytváří se obohacená endolymfa –> nedochází k pumpování draslíku
- 4) přenos informace sluchovým nervem do mozku

povolení

- p) přenos informace do mozku ve formě elektrických impulsů
- tonotopie
 - q) uspořádání frekvencí podél prostorové domény drží se celou cestu sluchovým systémem
- směr zvuku
 - 1) vyšší frekvence
 - r) velmi tlumeny hlavou
 - s) detekce -> LSO = laterální superiorální oliva porovná z jaké strany to přišlo rychleji
 - 2) nižší ferkvence
 - t) nejsou tak moc stíněné lebkou
 - u) detekce -> MSO = mediální superiorální oliva kódováno daným neuronem

Mozková cirkulace

- lebka
 - mozek (80 % objemu) + mozkomíšní mok (10 % objemu) + krev uvnitř cév (10 % objemu)
 - -> platí zákon zachování hmoty změna objemu v jednom bude nahrazena změnou objemu ve zbylých
 - srdce tlačí objem krve k mozku -> nárůst tlaku a expanze mozku -> snížení objemu krve nebo mozkomíšního moku
 - mozek
 - viskoelastické těleso
 - -> při působení sil se může relativně dobře deformovat
 - -> část energie absorbuje kvůli návratu do původního tvaru
 - změny v tlaku/objemu mozku se přenáší systematicky na mozkomíšní mok
 - tlakové změny v nitrolebním prostoru jsou odráženy v průtoku zvýšení tlaku = zvětšení mozku
- průtok krve
 - je dán tlakovým gradientem a periferním odporem

$$Q = \frac{P}{R}$$

regulace průtoku se provádí především na základě změny odporu

$$Q = \frac{\pi P r^4}{8 \eta l}$$

 velmi ovlivněno poloměrem cévy – drobná změna poloměru vede k velmi dramatickým změnám v celkovém průtoku

- mozkový perfúzní tlak
 - = rozdíl mezi středním arteriálním tlakem (MAP) a intrakraniálním tlakem (ICP)

$$\mathit{CPP} = \mathit{MAP} - \mathit{ICP}$$
 -> menší průtok krve čím menší MAP větší ICP

- mechanismy autoregulace průtoku
 - 1) regulace pomocí nervové soustavy
 - regulace pomocí sympatického nervu role nebyla však zcela prokázána
 - 2) myogenní regulace
 - tlak působící na stěnu cévy přímo dráždí hladkou svalovinu -> reflexní stahování
 - 3) metabolická regulace
 - regulace na základě působení vazoaktivních látek ovládání tonu cév (CO2, H⁺, O2...)
 - regulace pomocí CO₂
 - hypokapnie pokles koncentrace CO₂
 -> stažení cév, snížení objemu krve
 - hyperkapnie nárůst koncentrace CO₂
 rozšíření cév, zvýšení objemu krve
- regulace na mikroskopické úrovni

- přenos látek do mozku
 - existence hematoencefalickou bariéry
 - komplexní systém složen z několika jednotek endotelové buňky spojené těsnými spoji pericyty astrocytální výběžky
 - zabránění volnému prostupu látek do mozku
 - -> zamezení vstupu látek, které mohou působit na receptory
 - -> udržování vlastního mezibuněčného prostředí
 - přestup látek
 - a) paracelulární vodní cesta prostup velmi malých ve vodě rozpustných látek
 - b) volný prostup látek rozpustných v tucích
 - c) využití bílkovinných nosičů
 - d) prostup receptorem mediované transcytózy
 - e) prostup pomocí adsorpční transcytózy

