

Data Augmentation

Instructor: Tom Ko

Challenges in Speech recognition

- Speech signals are easily affected by a lot of factors:
 - Different Speakers
 - Channels
 - Speech type: read or conversational
 - Emotions -> affect speaking rate and volume
 - Environment: noisy or clean
 - Distance to the microphone
 - Sampling rate
- No existing technique can perfectly remove all of the above variations.
- Try to reduce the variations by carefully select the training data.

Solutions

- Reduce the mismatch between training data and test data.
- Carefully select training data according to the application
 - Voice search -> Read speech training data
 - Automatic meeting transcription -> Conversational speech
 - ASR system in a big room -> Data with reverberation
- Nowadays, people is trying to solve the problem with the use of BIG data in order to cover all the variations.

Amount of training data

• (numbers reported at 2015)

System	hours
Baidu	7,000
IFLYTEK	~100,000
Microsoft	>20,000

Microsoft Cortana

- Initialize an ASR system with 2000 hours training data.
- Put the system online and collect live data.
- Transcribe the live data and retrain the model.
- Update the system.
- Nothing is better than having live data from users.

Data Augmentation

- Some speech variations can be overcome by BIG data.
- It is difficult to collect so much data. (definition of BIG is also changing)
- Motivation: to simulate / generate BIG data from existing limited data.
- Make the model generalize better
- Simulate the target scenario
- Commonly used in computer vision (CV)

Mixing with the original data

Data Augmentation for CV

- In CV, augmentation methods involve:
 - Flipping
 - Zooming
 - Rotation
 - Cropping
 - Noise injection

Data Augmentation for speech

- Noise addition
- Speech perturbation
- Reverberation simulation
- Spectrum augmentation

Noise addition

Speed perturbation

Change the speed of the speech signal.

It is equivalent to changing pitch and speaking rate.

Speed perturbation

 In practice, the original data is augmented to make a 3-fold data with 10% faster speech and 10% slower speech

Experimental Results

LVCSR task	Hours	Baseline	Speed- perturbed	Rel. Improvemen t
GALE Mandarin	100	17.51	17.16	2.0
Tedlium	118	17.9	17.2	3.9
Switchboard	300	20.7	19.3	6.7
Librispeech	960	12.93	12.51	3.2

[&]quot;Audio Augmentation for Speech Recognition", Tom Ko, Vijayaditya Peddinti, Daniel Povey, Sanjeev Khudanpur in *Proceedings of Interspeech, September, 2015, Dresden, Germany*

Reverberation

Room Impulse Response (RIR)

Objectives

- Using clean training data will have 20-30% accuracy drop in reverberant environment
- Using reverberant training data can improve robustness of DNN-based acoustic models.
- Problem: Real reverberant data is difficult to collect
- Solution: Collect the RIRs and reverberate the data by myself

Measuring real RIRs

Measuring real RIRs

Measuring real RIRs

Motivation

- Real room impulse responses (RIRs) are difficult to acquire.
- To examine the impact of using simulated room impulse responses (RIRs)

Simulation of RIRs

The Image Method

- Room parameters and receiver position are uniformly sampled from the following ranges.
- Room width & length:
 - (small room set): 1 10m.
 - (medium room set): 10 30m.
 - (large room set): 30 50m.
- Room height: 2 5m
- Absorption coefficient of walls: 0.2 0.8

Comparison of simulated and real RIRs

Reverberation of training data

- For each speech recording,
 - A room is sampled based on P(r)
 - An RIR from the room is sampled based on P(h|r) to convolve with the speech recording
 - A noise recording is randomly selected
 - A separate RIR is sampled to convolve the noise.
 - Interpolation

RIRs and noises

- ▶ 325 real RIRs
 - RWCP, REVERB and Aachen
- 20,000 simulated RIRs from 200 rooms
- 843 point source noises from MUSAN

Experimental setup

- Evaluate on several LVCSR tasks:
 - SWBD (close-talking)
 - ASpIRE (far-field)
- Acoustic model:
 - time-delay neural network (TDNN)
 - bi-directional long-short term memory (BLSTM)

Results on Switchboard (SWBD)

SWBD 300-hour training data.

Training data	Hours	Epoch	ASpIRE	SWBD
clean only (Baseline)†	900	4	56.3	15.4
Mixing reverberated and clean data:				
sim-rvb (\mathcal{S}_{small})	1800	2	39.4	15.2
sim-rvb (\mathcal{S}_{med})	1800	2	40.4	14.9
sim-rvb (\mathcal{S}_{large})	1800	2	41.3	15.0
real-rvb	1800	2	38.6	14.9
With addition of noises:				
real-rvb + point-source	1800	2	34.7	15.1
sim-rvb (S_{med}) + point-source	1800	2	34.9	15.0
sim-rvb (S_{med}) + real-rvb + point-source	1800	2	34.3	15.0

^{† :} We perform a 3-fold augmentation of the 300-hour SWBD data to create a total of 900 hours of training set using *Speed Perturbation*

Results on ASpIRE

Table 2. Results on ASpIRE dev set with ~ 5100 hours of training data.

Training data	Model	Objective	WER
clean only	TDNN	CE	45
real-rvb + isotropic	TDNN	CE	31.0
clean only	TDNN	LF-MMI	40.9
real-rvb + isotropic	TDNN	LF-MMI	27.8
sim-rvb (S_{med}) + point-source	TDNN	LF-MMI	27.0
real-rvb + isotropic	BLSTM	LF-MMI	25.7
sim-rvb (S_{med}) + point-source	BLSTM	LF-MMI	24.6

"<u>A study on data augmentation of reverberant speech for robust</u>
speech recognition
", Tom Ko, Vijayaditya Peddinti, Daniel Povey,
Michael L. Seltzer, Sanjeev Khudanpur in ICASSP 2017

Spectrogram augmentation

 SpecAugment applies an augmentation policy directly to the audio spectrogram

Performance of SpecAugment

	LibriSpeech 960h		Switchbo	ard 300h
	test-clean	test-other	Switchboard	CallHome
Previous SOTA	2.95	7.50	8.3	17.3
Our Results	2.5	5.8	6.8	14.1

"SpecAugment: A Simple Data Augmentation Method for Automatic Speech Recognition", Daniel et.al in *Interspeech 2019*

Data Augmentation in NLP

- In natural language processing (NLP) field, it is hard to augment text due to high complexity of language.
- Consider you are working on a text classification task to classify if the sentence is a question or statement.
 - 你知不知道怎樣去學校
 - 可以教我怎樣踼波嗎
 - 我該做什么呢
 - 你懂不懂做這題
 - 有什么值得高興
 - 他怎么樣
 - 為何他不去
 - 為什么我過不了
 - 這次作業我多少分
 - 有沒有拿到學位
 - 從哪來的
 - 有沒有錢
 - 可否幫我檢查一下
 - ■你會么

Data Augmentation in NLP

- Imagine how people express when they want to check their bank account:
 - 我的銀行戶口有多少錢
 - 我要查一下帳戶餘額
 - 我要看看帳目
 - 告訴我我的總金額數目
 - 我有多少錢剩下
 - 我還有多少銀兩
 - 我要知道我的貨幣總值
 - 我的金子怎樣了
 - 秀一下我的財富
 - 顯示我的財寶

Data Augmentation in NLP

- There is never a perfect augmentation approach in NLP.
- However, the followings are approaches which people find useful in particular scenarios:
 - Word level augmentation
 - Character level augmentation
 - Back translation

Word level replacement

- Generate new sentences by replacing the original word with any of its similar words.
 - The thesaurus approach
 - Word embedding approach

The thesaurus approach

- The thesaurus is a specific dictionary that presents synonyms (words that have similar meaning) for every word listed.
- Original:
 - This article will focus on summarizing data augmentation techniques in NLP.
- Augmented Text:
 - This write-up will focus on summarizing data augmentation methods in NLP.

The word embedding approach

- Look for the similar words in the word embedding space.
- Original:
 - The quick brown fox jumps over the lazy dog.
- Augmented Text:
 - The quick gray fox jumps over the lazy dog.

Non-contextual word embeddings

- For word embeddings estimated from word2vec, they are non-contextual word embeddings.
- Original:
 - Do you like playing football?
- Augmented Text:
 - Do you like playing soccer?
- Original:
 - How much is a football?
- Augmented Text:
 - How much is a soccer?

Contextualized word embeddings

- The word "apple" has a different semantic meaning according to the context.
- With a contextualized language model, the word "apple" would have a different vector representation according to its context.
- Original:
 - I like apple pies.
- Augmented Text:
 - I like orange pies.
- Original:
 - I like Apple notebooks.
- Augmented Text:
 - Llike Lenovo notebooks.

Character level augmentation

- Simulate the real-world text, e.g. typo
- Original:
 - The quick brown fox jumps over the lazy dog
- Augmented Text:
 - The quick brown fox jumps over the lazy d0g
- Original:
 - The quick brown fox jumps over the lazy dog
- Augmented Text:
 - The 2uick hrown gox jumps over the lazy dog

Character level replacement

Character	Possible Replacement
0	o (zero), O
1	I (lower case of L), I (upper case of i)

е	2, @, 3, #, 4, \$, w, r, s, d, f
h	t, y, u, g, j, b, n, m

Back translation

This works for application like text classification.

Reading list

- "Audio Augmentation for Speech Recognition", Tom Ko, Vijayaditya Peddinti, Daniel Povey, Sanjeev Khudanpur in *Proceedings of Interspeech,* September, 2015, Dresden, Germany
- "A study on data augmentation of reverberant speech for robust speech recognition", Tom Ko, Vijayaditya Peddinti, Daniel Povey, Michael L. Seltzer, Sanjeev Khudanpur in ICASSP 2017