Common Pares.

Nai	me : .			
Rol	l No.			•••••
Inv		or's Signature :		
	Ci	S/B. TECH (CSE/IT)	71.79	EC-312/2010-11
	DIG	20 ITAL ELECTRON	10-11 ICS AND	LOGIC DESIGN
		otted : 3 Hours		Full Marks : 70
Co	andia		~ .	wers in their own words
		GRO	OUP – A	
		(Multiple Choice	e Type Q	uestions)
1.	Cho	pose the correct alterna	tives for ar	ny ten of the following :
				$10\times1=10$
	i)	The race-around cond	dition does	not occur in Flip-Flop
		a) J-K	b)	Master slave
		c) T	, d)	None of these.
•	ii)	A message bit is 0	10101. We	are using even parity
		generator, so that th	e parity b	t added to the message
_ *. 		bit is		
		a) 0	b)	1.4
		c) 0 & 1	d)	None of these.
			er Maria e La Cara	

3201

[Turn over

iii)	Ĭf.	(128) = (10	003) _b , the possil	ible base his			
	a)	3	b		. ,		
	e)	5		d) 6.			
iv)	Which of the following codes is not a BCD code?						
	a)	Gray	b)	o) Xs-3			
	c)	8421	d)	d) All of these.			
v)	(11	(11011) ₂ in BCD 8421 code is					
	a)	00011011	b)	o) 00100111			
	c)	11011001	d)	01101100.			
vi)	In which code do the successive code characters differ						
	in only one position?						
	a)	Gray	b)) Xs-3			
	e)	8421	d)) Hamming code.			
vii)	The	output of	a gate is low if	f and only if all its in	puts		
	are high. It is true for						
	a)	AND	b)) X-NOR			
	c) '	NOR	d)	NAND.			
viii)	The	no. of rows	in the truth tab	ble in the 4 input gate	is		
	a)	4	b)	8 7 7 8			
	c)	12	d)	16.			

A bubbled AND gate is equivalent to a

CS/B. TECH (CSE/IT)/SEM-3/EC-312/2010-11

	a)	OK gate	D)	NAND gate	
	c)	NOR gate	d)	X-OR gate.	
x)	Wha	at is the minimum no.	of N	IAND gates required to	
	reali	ze an X-OR gate?	•		
	a)	3	b)	4	
	c)	5	d)	6.	
xi)	A +	A'B + A'B'C + A'B'C'D +	•••••		
	a)	A + B + C +	b)	A' + B' + C' + D' +	
	c)		d)	0.	
xii)	A code used for labelling the cells of a K-map is				
*	a)	8-4-2-1 binary	b)	Hexadecimal	
•	c)	Gray	d)	Octal.	
xiii)	How	many full adders are	requ	ired to construct m bit	
	para	illel adder?			
	a)	m/2	b)	m-1	
	c)	m	d)	m+1.	

xiv) A PLA is

- a) Mask programmable
- b) Field programmable
- c) Can be programmed by a user
- d) Can be erased and programmed.
- xv) A carry look ahead adder is frequently used for addition because, it
 - a) is faster
- b) is more accurate
- c) uses fewer gates
- d) costs less.

GROUP - B

(Short Answer Type Questions)

Answer any three of the following.

 $3 \times 5 = 15$

- 2. Convert J-K to S-R and J-K to T.
- 3. Explain Master Slave Flip-Flop.
- 4. Design MOD-10 synchronous counter and draw the timing diagram.
- 5. With the help of a block diagram, explain the working principle of a serial adder.

3201

- 6. Define the following parameters of DACs:
 - a) Resolution
 - b) Offset error
 - c) Monotonicity
 - d) Settling error
 - e) Percentage resolution.

GROUP - C

(Long Answer Type Questions)

Answer any three of the following.

 $3\times15=45$

7. a) Simplify the following function by means of tabulation methods.

F (A, B, C, D) =
$$\Sigma$$
 m (0, 1, 4, 7, 9, 11, 13, 15) + Σ d (3, 5)

- b) Minimize the following expression using Karnaughmap:
 - i) $F(A,B,C,D) = \Pi M(0,1,3,8,10,15) + \Pi d(11,13,14)$
 - ii) $F(A, B, C, D) = \sum m(0, 4, 7, 9, 13, 15) + \sum d(10, 14)$
- 8. a) Implement the following function using 4:1 MUX only: $F(A, B, C, D) = \Sigma m(0, 2, 3, 6, 8, 9, 12, 14)$

3201

5

[Turn over

- b) Write down the excitation table of JK and D flip-flop and derive the excitation equation for these two flip-flops.
- c) Design a 4-bit up / down asynchronous counter using all JK flip-flops and other necessary logic gates. Use one direction control input. If M = 0, the counter will count up and for M = 1, the counter will count down. 3 + 6 + 6
- 9. a) With the help of a necessary circuit diagram, explain the operation of dual slope ADC.
 - b) Distinguish between ROM, PLA and PLDs as elements realising Boolean function.
 - c) Find the conversation time of a successive approximation A/D converter which uses a 2 MHz clock and a 5-bit binary ladder containing 8V reference. What is the conversion rate?

 6 + 5 + 4
- 10. a) Design an n-bit full subtracter using full subtracter only and explain its operation.
 - b) Implement the BCD to Excess-3 code conversion using ROM.
 - c) Design a bi-directional shift registers and explain its operation. 4+5+6

3201

- 11. Write short notes on any three of the following:
- 3×5

- a) Even Parity Generator and Checker
- b) SOP and POS canonical forms of binary subtraction
- c) 'Johnson Counter
- d) Priority Encoder
- e) BCD adder
- f) Flash memory
- g) BCD to 7-segment decoder.