Data Structures and Algorithms Midterm

2017-02-21

- Stack is also called a Last-In-First-Out (LIFO) data structure, whereas queue is called a First-In-First-Out (FIFO) data structure.
- Operations on stack: initialize, pop, push, full, empty, peek.
- Applications of stack: recursive function calls, system stack.
- A system stack consists of a pointer to the previous frame, return address, and local variables.
- Example: implementation of stack <u>ArrayStack.c</u>
- Example: implementation of queue <u>ArrayQueue.c</u>
- Practice: implement a calculator and a maze solver using stack.
- [x] Homework: http://www.csie.ntu.edu.tw/~hsinmu/courses/ media/dsa 17spring/r1.pdf

2017-03-07

- **Time complexity T(n)**: the time required to complete the execution of the entire algorithm/program.
- **Space complexity S(n)**: the space (memory) required to complete the execution of the entire algorithm/program.
- **Input size** can be the size of the array, the dimensions of a matrix, the exponent of the highest order, or the number of bits in a binary number.
- Running time can be considered in the *worst case*, average case, and the best case.
- Average case is often as bad as the worst case.
- Running time comparison: constant < logarithm < linear < log-linear < quadratic < cubic < exponential.
- [x] Homework: <u>dsa_2017_hw1_3.pdf</u>
- Solutions: Solutions1.pdf, calculator.c, good_string.c

2017-03-14

- Running time can be denoted as:
 - O: upper bound. $\exists k > 0 \; \exists n_0 \; \text{such that} \; f(n) \leq k \cdot g(n) \; \forall n > n_0$
 - ullet Eight bound. $\exists k_1>0 \ \exists k_2>0 \ \exists n_0 \ ext{such that} \ k_1\cdot g(n)\leq f(n)\leq k_2\cdot g(n) \ orall n>n_0$
 - Ω : lower bound. $\exists k > 0 \; \exists n_0$ such that $k \cdot g(n) \leq f(n) \; \forall n > n_0$

- o: strict upper bound. $\forall k > 0 \; \exists n_0 \; \text{such that} \; f(n) < k \cdot g(n) \; \forall n > n_0$
- ω : strict lower bound. $\forall k > 0 \; \exists n_0 \; \text{such that} \; k \cdot g(n) < f(n) \; \forall n > n_0$
- The property of f(n) = O(g(n)) holds after some operations: summation, multiplication, and power, but does not hold after the following operations: logarithm, and exponential.
- Linked list can be implemented with array or by creating a real pointer pointing to the next node.
 - Singly v.s. doubly linked list
 - Circular v.s. non-circular linked list
- A brief list of abstract data type (ADT): bag (container), graph, list, map (associative array, dictionary, hash table), queue, set, stack, tree.
- Every ADT can be implemented with either <u>arrays</u> or <u>linked structures</u>.
- Creating a virtual head pointing to the real head of the data can reduce the complexity of the code of linked list.
- Linked list wastes O(n) to store the address of the next node.
- **Doubly linked list** makes accessing the tail node much more easily (if we are not going to use a tail pointer or a circular linked list).
- How to make a memory-efficient doubly linked list? http://goo.gl/qifrq2
- Practice:
 - Given a (singly) linked list of unknown length, design an algorithm to find the n-th node from the tail of the linked list. Your algorithm is allowed to traverse the linked list only once.
 - Reverse a given singly linked list using the original link nodes.
- [x] Homework: http://goo.gl/qifrq2

2017-03-21

- Recycling costs O(n) time complexity to free all nodes.
- An alternative to recycling is to collect all "deleted nodes", and use them when necessary.
- **Circular linked list** makes inserting a cluster of nodes into another linked list more efficient (if we are not going to use a tail pointer or a doubly linked list).
- Example: implementation of circular doubly linked list with efficient memory LinkedList.c
- **String-matching** problem: given a *pattern P* and *text T*, find pattern P occurs with **shift** s in text T.
- Definitions:
 - |x|: the length of the string x
 - xy: concatenation of two strings x and y
 - $P \sqsubset T$: P is the **prefix** of T
 - $P \supset T$: P is the **suffix** of T

• Overlapping-suffix lemma: Suppose that x, y, and z are strings such that $x \supset z$ and $y \supset z$.

- If $|x| \leq |y|$, then $x \supset y$.
- If $|x| \ge |y|$, then $y \supset x$.
- If |x| = |y|, then x = y.

• Native string matcher:

- Preprocessing time: 0
- Matching time: O((|T| |P| + 1)|P|) = O(|T||P|)

• Knuth-Morris-Pratt (KMP) algorithm:

- Preprocess the pattern with **prefix function**, or called **failure function**, which calculates the length of the longest prefix which is also a postfix at each position, and returns **prefix table**, or **fail table**, or **partial match talbe**.
- Take advantage of the preprocessed table and scan through the text to look for any matches.
- Preprocessing time: $\Theta(|P|)$
- Matching time: $\Theta(|T|)$

2017-03-28

• Rabin-Karp algorithm:

- Convert the pattern and every substring of the text to a hash value and then match the hash value.
- It is possible that the hash value is too large to fit a int or even uint64_t data type, so we may have to make computed hash value modulo a suitable *modulus q*.
- If a mod q equals b mod q, it is notated as $a \equiv b \pmod{q}$.
- However, it is possible that two different strings have the same remainder. Therefore, Any shift s for which $a \equiv b \pmod{q}$ must be tested further to see whether s is really valid or merely a **spurious hit**. If this happen, it takes addition O(|P|) to perform the extra checking.
- Thankfully, *spurious hits* occur infrequently enough that the cost of the extra checking is low.
- Preprocessing time: $\Theta(|P|)$
- $\quad \text{ Matching time: } O((|T|-|P|+1)|P|) = O(|T||P|) \\$
- Some terms related to sorting:
 - **Internal** v.s. **external**: *internal* sorting places all data in the memory, while *external* sorting occurs when the data is too large to fit entirely in the memory, which necessitates the use of other (slower) storage, e.g., hard drive, flash disk, network storage, etc.
 - **In-place**: directly sorts the keys at their current memory locations.
 - **Stable**: if a_i and a_j have equal key value, they maintain the same order before and after sorting.

- **Adaptive**: If *part of the sequence is sorted*, then the time complexity of the sorting algorithm reduces.
- **Online**: the ability to sort and take input at the same time.
- How much time do we need in the *best case* and *worst case* for sorting?
 - The *best-case* time complexity is (at least) $\Omega(n)$
 - Any *comparison-based* sorting algorithms have *worst-case* time complexity of (at least) $\Omega(n \log n)$.
- Decision tree for sorting *n* items:
 - A binary tree with each node representing a comparison & swap.
 - There are *n*! leaves since there are that many possible permutations.
 - In the *worst case*, the time it takes to sort is the height of the binary tree.
- **Selection sort**: best-case, average-case and worst-case are all $O(n^2)$, space complexity is O(1), (+) inplace, (-) stable, (-) adaptive.
- Insertion sort: best-case is O(n), average-case and worst-case are both $O(n \log n)$, space complexity is O(1), (+) in-place, (+) stable, (+) adaptive.
 - Use binary search can reduce time to look for the location to insert.
 - Use linked list to store the items can reduce time to insert an item.
 - The best case is when the array is already sorted.
 - The worst case is when the array is reversely sorted.
- Merge sort: best-case, average-case and worst-case are all $O(n \log n)$, space complexity is O(n), (-) in-place, (+) stable, (-) adaptive.
 - Use divide-and-conquer strategy
- Quick sort: best-case and average-case both $O(n \log n)$, worst-case is $O(n^2)$, space complexity is $O(\log n)$, (+) in-place, (-) stable, (-) adaptive.
 - Use divide-and-conquer strategy
 - The best case is when the array is partitioned to equal half each round.
 - The worst case is when the array is sorted or reversely sorted.
- [x] Homework: <u>dsa 2017 hw2 1.pdf</u>
- Solutions: <u>boo401062 hw2.pdf</u>, <u>string pair.c</u>, <u>secret code.c</u>

2017-04-11

- Tree: a tree is a finite set of one or more nodes such that
 - There is a specially designated node called the **root**.
 - The remaining nodes are partitioned into $n \geq 0$ disjoint sets, which are called the **subtrees** of

the root.

- Terminology for tree:
 - **Degree (of a node)**: the number of subtrees of a node
 - Level: the number of branches to reach that node from the root node
 - **Height/Depth**: the number of levels in a tree
 - **Size**: the number of nodes in a tree
 - Weight: the number of leaves in a tree
 - **Degree (of a tree)**: the maximum degree of any node in a tree
- Tree can be represented with array. Assume the degree (of the tree) is d
 - For node with index i, its parent's index is (i-1)/d.
 - For node with index *i*, its children's indices range from $i \cdot d + 1$ to $i \cdot d + 3$
- Representing a tree with linked structure:
 - Assume the degree of the tree = d, the size of the tree = n, then the number of null pointers in the tree is total number of pointers the number of branches = nd (n 1)
 - **Left child-right sibling (LCRS) representation**: similar to binary tree such that one pointer points to a *leftmost child*, and the other pointer points to a *immediately-right sibling*.
 - Root does not have a right child in LCRS because root does not have a sibling in the original tree.
- Binary tree: a binary tree is a finite set of nodes that is either empty or consists of a root and two
 disjoint binary trees called the left subtree and the right subtree.
- Some properties about binary tree:
 - The number of nodes at level i is at most 2^{i} .
 - A tree of height h has at most $2^h 1$ nodes.
 - \circ Given a tree with n_0 leaf nodes and n_2 degree-2 nodes, then $n_0=n_2+1$. Proof:

$$n_0 + n_1 + n_2 - 1 = n_1 + 2n_2$$

- Full binary tree: a binary tree of height h having $2^h 1$ nodes, i.e. all nodes except leaves have two children.
- **Complete binary tree**: a binary tree with *n* nodes and height *h* is complete iff its nodes correspond to the nodes numbered from 1 to n in the full binary tree of height *h*.
- Given a complete binary tree with n nodes, the height of the tree is the ceiling of $\log_2(n+1)$
- Binary tree traversal has 3 variations: **VLR (preorder)**, **LVR (inorder)**, **LRV (postorder)**.

 Traversal can be achieved through recursive method or non-recursive methods together with *stack*.
- Arithmetic expression represented with binary tree can be **prefix**, **infix**, **postfix**.
- **Binary search tree (BST)**: a binary tree whose left subtrees have smaller keys and right subtrees have larger keys.-

- How to insert a node? insert directly!
- How to delete a node?
 - Leave: delete directly!
 - $\circ~$ Degree-1 node: attach its only child to its parent.
 - Degree-2 node: find the largest node of the left subtree or the smallest of the right subtree and move it to the node to be deleted.