NAME: - PRATHAPANI SATWIKA

REG.NO: 20BCD7160

Title of the experiment:

wavelength of Light tmitting Diodes.

Objectives :-

To détermine—the wavelengths of the given LEDS Equipment list:

Power Supply, LED's, multimeter, milli ammeter, patch cords etc.

-thereby of the photons emitted by LED = $E = hv = \frac{hc}{\lambda} = eV_k$ The wavelength of LED is $\lambda = \frac{hc}{eV_k}$ nm

Where h is planck's constant = 6.63×1034 Js;

e is charge on electron = 1.602 × 10° c; Vk is the knee c is speed of light = 3×108 m/s. Voltage of the LED

S.NO	LEDI (BLUE)		LED2 (RED)		LED 3 (GREEN)	
	(volts)		voltagev (volts)	current I(mA)	voltage (volts)	current I(mA)
1	0	0.	0	0	0	0
2	0.25	0	0.25	0	0.25	0
3	0.5	0	0.5	D	0.5	, 0
4	0.75	D	0.75	0	0.75	0
5	1	0	1	0		0
6	1.25	0	1.25	0	1.25	0
7	1.5	0	1.5	0	1.5	0
8	1.75	0	1.35	0.6	1.75	0
9	2	0	2	3.7	2	0
10	2.25	0	2.25	45	2.25	0.3
11	2.5	0.1	2.5		2.5	1-6
12	2.35	0.95	2.75		2.75	4
	3	2.8	3		3	5

Result: The wavelengths of LED's

colour of LED	wavelength (nm)
BLUE	497
RED	727
GREEN	535

$$\frac{+1 = hc}{(blue) e^{V}E_{1}} = \frac{6.602 \times 10^{34} \times 3 \times 10^{8}}{1.602 \times 10^{19} \times 2.6} = \frac{19.89 \times 10^{34} + 8 + 19}{4.1652}$$
$$= 4.97 \times 10^{-3} = 497 \text{ mm}.$$

$$\frac{1}{1.602 \times 10^{19} \times 2.32} = \frac{4.77 \times 10}{1.602 \times 10^{19} \times 2.32} = \frac{19.89 \times 10^{3}}{2.7234} = 7.29 \times 10^{3}$$

$$\frac{1}{1.602 \times 10^{19} \times 2.32} = \frac{19.89 \times 10^{3}}{2.7234} = 7.27 \times 10^{3}$$

$$\frac{1}{1.602 \times 10^{19} \times 2.32} = \frac{19.89 \times 10^{3}}{3.71664} = 5.35 \times 10^{3}$$

$$\frac{1}{1.602 \times 10^{19} \times 2.32} = \frac{19.89 \times 10^{3}}{3.71664} = 5.35 \times 10^{3}$$

$$\Rightarrow \lambda = \frac{hC}{\text{eV}_{k}} = \frac{6.602 \times 10^{34} \times 3 \times 10^{8}}{1.602 \times 10^{19} \times 2.32} = \frac{19.89 \times 10^{4}}{3.71664} = 5.35 \times 10^{8}$$

