

AG35-CEN Hardware Design

LTE Module Series

Rev. AG35-CEN_Hardware_Design_V1.0

Date: 2018-03-19

Status: Released

Our aim is to provide customers with timely and comprehensive service. For any assistance, please contact our company headquarters:

Quectel Wireless Solutions Co., Ltd.

7th Floor, Hongye Building, No.1801 Hongmei Road, Xuhui District, Shanghai 200233, China

Tel: +86 21 5108 6236 Email: info@quectel.com

Or our local office. For more information, please visit:

http://quectel.com/support/sales.htm

For technical support, or to report documentation errors, please visit:

http://quectel.com/support/technical.htm

Or email to: support@quectel.com

GENERAL NOTES

QUECTEL OFFERS THE INFORMATION AS A SERVICE TO ITS CUSTOMERS. THE INFORMATION PROVIDED IS BASED UPON CUSTOMERS' REQUIREMENTS. QUECTEL MAKES EVERY EFFORT TO ENSURE THE QUALITY OF THE INFORMATION IT MAKES AVAILABLE. QUECTEL DOES NOT MAKE ANY WARRANTY AS TO THE INFORMATION CONTAINED HEREIN, AND DOES NOT ACCEPT ANY LIABILITY FOR ANY INJURY, LOSS OR DAMAGE OF ANY KIND INCURRED BY USE OF OR RELIANCE UPON THE INFORMATION. ALL INFORMATION SUPPLIED HEREIN IS SUBJECT TO CHANGE WITHOUT PRIOR NOTICE.

COPYRIGHT

THE INFORMATION CONTAINED HERE IS PROPRIETARY TECHNICAL INFORMATION OF QUECTEL WIRELESS SOLUTIONS CO., LTD. TRANSMITTING, REPRODUCTION, DISSEMINATION AND EDITING OF THIS DOCUMENT AS WELL AS UTILIZATION OF THE CONTENT ARE FORBIDDEN WITHOUT PERMISSION. OFFENDERS WILL BE HELD LIABLE FOR PAYMENT OF DAMAGES. ALL RIGHTS ARE RESERVED IN THE EVENT OF A PATENT GRANT OR REGISTRATION OF A UTILITY MODEL OR DESIGN.

Copyright © Quectel Wireless Solutions Co., Ltd. 2018. All rights reserved.

About the Document

History

Revision	Date	Author	Description
1.0	2018-03-19	Eden LIU/ Dominic GONG	Initial

Contents

Ab	About the Document	2
Со	Contents	3
Та	Table Index	6
Fiç	Figure Index	8
1	1 Introduction	10
	1.1. Safety Information	11
2	Product Concept	12
	2.1. General Description	12
	2.2. Key Features	13
	2.3. Functional Diagram	16
	2.4. Evaluation Board	17
3	3 Application Interfaces	18
	3.1. General Description	18
	3.2. Pin Assignment	19
	3.3. Pin Description	20
	3.4. Operating Modes	31
	3.5. Power Saving	32
	3.5.1. Sleep Mode	32
	3.5.1.1. UART Application	33
	3.5.1.2. USB Application with USB Remote Wakeup Fur	nction33
	3.5.1.3. USB Application with USB Suspend/Resume ar	
	3.5.1.4. USB Application without USB Suspend Function	
	3.5.2. Airplane Mode	35
	3.6. Power Supply	36
	3.6.1. Power Supply Pins	36
	3.6.2. Decrease Voltage Drop	
	3.6.3. Reference Design for Power Supply	
	3.6.4. Monitor the Power Supply	38
	3.7. Turn on and off Scenarios	
	3.7.1. Turn on Module Using the PWRKEY	
	3.7.2. Turn off Module	
	3.7.2.1. Turn off Module Using the PWRKEY Pin	
	3.7.2.2. Turn off Module Using AT Command	
	3.7.3. Reset the Module	
	3.8. (U)SIM Interface	
	3.9. USB Interface	
	3.10. UART Interfaces	
	3.11. PCM and I2C Interfaces	
	3.12. SD Card Interface	
	3.13. SGMII Interface*	53

	3.14. Wireless Connectivity Interfaces	55
	3.14.1. WLAN Interface	58
	3.14.2. BT Interface*	58
	3.15. ADC Interfaces	58
	3.16. Network Status Indication	59
	3.17. STATUS	61
	3.18. Behaviors of RI	61
	3.19. USB_BOOT Interface	62
4	GNSS Receiver	
	4.1. General Description	
	4.2. GNSS Performance	
	4.3. Layout Guidelines	65
5	Antenna Interfaces	
	5.1. Main/Rx-diversity Antenna Interface	
	5.1.1. Pin Definition	
	5.1.2. Operating Frequency	
	5.1.3. Reference Design of RF Antenna Interfaces	
	5.1.4. Reference Design of RF Layout	
	5.2. GNSS Antenna Interface	
	5.3. Antenna Installation	
	5.3.1. Antenna Requirements	
	5.3.2. Recommended RF Connector for Antenna Installation	71
6	Electrical, Reliability and Radio Characteristics	
	6.1. Absolute Maximum Ratings	
	6.2. Power Supply Ratings	
	6.3. Operation and Storage Temperatures	
	6.4. Current Consumption	
	6.5. RF Output Power	
	6.6. RF Receiving Sensitivity	
	6.7. Electrostatic Discharge	
	6.8. Thermal Consideration	
7		
	7.1. Mechanical Dimensions of the Module	
	7.2. Recommended Footprint	
	7.3. Design Effect Drawings of the Module	86
8	Storage, Manufacturing and Packaging	
	8.1. Storage	
	8.2. Manufacturing and Soldering	
	8.3. Packaging	88
9	Appendix A References	
10	O Appendix B GPRS Coding Schemes	94

11	Appendix C GPRS Multi-slot Classes	. 95
12	Appendix D EDGE Modulation and Coding Schemes	. 97

Table Index

TABLE 1: FREQUENCY BANDS OF AG35-CEN MODULE	12
TABLE 2: AG35-CEN KEY FEATURES	13
TABLE 3: I/O PARAMETERS DEFINITION	20
TABLE 4: PIN DESCRIPTION	20
TABLE 5: OVERVIEW OF OPERATING MODES	31
TABLE 6: VBAT AND GND PINS	36
TABLE 7: PWRKEY PIN DESCRIPTION	39
TABLE 8: RESET_N PIN DESCRIPTION	42
TABLE 9: PIN DEFINITION OF (U)SIM INTERFACE	43
TABLE 10: PIN DEFINITION OF USB INTERFACE	45
TABLE 11: PIN DEFINITION OF MAIN UART INTERFACE	47
TABLE 12: PIN DEFINITION OF UART2 INTERFACE (FOR BT FUNCTION*)	47
TABLE 13: PIN DEFINITION OF DEBUG UART INTERFACE	48
TABLE 14: LOGIC LEVELS OF DIGITAL I/O	48
TABLE 15: PIN DEFINITION OF PCM AND I2C INTERFACES	51
TABLE 16: PIN DEFINITION OF SD CARD INTERFACE	52
TABLE 17: PIN DEFINITION OF SGMII INTERFACE	54
TABLE 18: PIN DEFINITION OF WIRELESS CONNECTIVITY INTERFACES	56
TABLE 19: PIN DEFINITION OF ADC INTERFACES	
TABLE 20: CHARACTERISTICS OF ADC INTERFACES	59
TABLE 21: PIN DEFINITION OF NETWORK CONNECTION STATUS /ACTIVITY INDICATOR	60
TABLE 22: WORKING STATE OF THE NETWORK CONNECTION STATUS /ACTIVITY INDICATOR	60
TABLE 23: PIN DEFINITION OF STATUS	61
TABLE 24: DEFAULT BEHAVIORS OF RI	62
TABLE 25: PIN DEFINITION OF USB_BOOT INTERFACE	62
TABLE 26: GNSS PERFORMANCE	64
TABLE 27: PIN DEFINITION OF RF ANTENNA INTERFACES	66
TABLE 28: MODULE OPERATING FREQUENCIES	66
TABLE 29: PIN DEFINITION OF GNSS ANTENNA INTERFACE	70
TABLE 30: GNSS FREQUENCY	70
TABLE 31: ANTENNA REQUIREMENTS	71
TABLE 32: ABSOLUTE MAXIMUM RATINGS	74
TABLE 33: POWER SUPPLY RATINGS	75
TABLE 34: OPERATION AND STORAGE TEMPERATURES	
TABLE 35: AG35-CEN CURRENT CONSUMPTION	
TABLE 36: AG35-CEN GNSS CURRENT CONSUMPTION	78
TABLE 37: RF OUTPUT POWER	
TABLE 38: AG35-CEN RF RECEIVING SENSITIVITY	
TABLE 39: ELECTROSTATIC DISCHARGE CHARACTERISTICS	
TABLE 40: RELATED DOCUMENTS	
TABLE 41: TERMS AND ABBREVIATIONS	90

TABLE 42: DESCRIPTION OF DIFFERENT CODING SCHEMES	94
TABLE 43: GPRS MULTI-SLOT CLASSES	95
TABLE 44: EDGE MODUL ATION AND CODING SCHEMES	97

Figure Index

FIGURE 1: FUNCTIONAL DIAGRAM	16
FIGURE 2: PIN ASSIGNMENT (TOP VIEW)	19
FIGURE 3: SLEEP MODE CURRENT CONSUMPTION DIAGRAM	32
FIGURE 4: SLEEP MODE APPLICATION VIA UART	33
FIGURE 5: SLEEP MODE APPLICATION WITH USB REMOTE WAKEUP	34
FIGURE 6: SLEEP MODE APPLICATION WITH RI	
FIGURE 7: SLEEP MODE APPLICATION WITHOUT SUSPEND FUNCTION	35
FIGURE 8: POWER SUPPLY LIMITS DURING BURST TRANSMISSION	37
FIGURE 9: STAR STRUCTURE OF THE POWER SUPPLY	38
FIGURE 10: REFERENCE CIRCUIT OF POWER SUPPLY	38
FIGURE 11: TURN ON THE MODULE USING DRIVING CIRCUIT	39
FIGURE 12: TURN ON THE MODULE USING KEYSTROKE	40
FIGURE 13: TIMING OF TURNING ON MODULE	40
FIGURE 14: TIMING OF TURNING OFF MODULE	41
FIGURE 15: REFERENCE CIRCUIT OF RESET_N BY USING DRIVING CIRCUIT	42
FIGURE 16: REFERENCE CIRCUIT OF RESET_N BY USING BUTTON	42
FIGURE 17: TIMING OF RESETTING MODULE	43
FIGURE 18: REFERENCE CIRCUIT OF (U)SIM INTERFACE WITH AN 8-PIN (U)SIM CARD CONNECTO	
FIGURE 19: REFERENCE CIRCUIT OF (U)SIM INTERFACE WITH A 6-PIN (U)SIM CARD CONNECTOR	
FIGURE 20: REFERENCE CIRCUIT OF USB APPLICATION	
FIGURE 21: REFERENCE CIRCUIT WITH TRANSLATOR CHIP	
FIGURE 22: REFERENCE CIRCUIT WITH TRANSISTOR CIRCUIT	
FIGURE 23: PRIMARY MODE TIMING	
FIGURE 24: AUXILIARY MODE TIMING	
FIGURE 25: REFERENCE CIRCUIT OF PCM APPLICATION WITH AUDIO CODEC	
FIGURE 26: REFERENCE CIRCUIT OF SD CARD APPLICATION	
FIGURE 27: REFERENCE CIRCUIT OF THE NETWORK INDICATOR	
FIGURE 28: REFERENCE CIRCUIT OF THE STATUS	61
FIGURE 29: REFERENCE CIRCUIT OF USB_BOOT INTERFACE	
FIGURE 30: REFERENCE CIRCUIT OF RF ANTENNA INTERFACES	
FIGURE 31: MICROSTRIP LINE DESIGN ON A 2-LAYER PCB	
FIGURE 32: COPLANAR WAVEGUIDE LINE DESIGN ON A 2-LAYER PCB	68
FIGURE 33: COPLANAR WAVEGUIDE LINE DESIGN ON A 4-LAYER PCB (LAYER 3 AS REFERENCE	
GROUND)	69
FIGURE 34: COPLANAR WAVEGUIDE LINE DESIGN ON A 4-LAYER PCB (LAYER 4 AS REFERENCE	
GROUND)	
FIGURE 35: REFERENCE CIRCUIT OF GNSS ANTENNA	
FIGURE 36: DIMENSIONS OF THE U.FL-R-SMT CONNECTOR (UNIT: MM)	
FIGURE 37: MECHANICALS OF U.FL-LP CONNECTORS	
FIGURE 38: SPACE FACTOR OF MATED CONNECTOR (UNIT: MM)	73

FIGURE 39: REFERENCED HEATSINK DESIGN (HEATSINK AT THE TOP OF THE MODULE)	82
FIGURE 40: REFERENCED HEATSINK DESIGN (HEATSINK AT THE BACKSIDE OF CUSTOME	RS' PCB)
	82
FIGURE 41: MODULE TOP AND SIDE DIMENSIONS	83
FIGURE 42: MODULE BOTTOM DIMENSIONS (TOP VIEW)	84
FIGURE 43: MODULE BOTTOM DIMENSIONS (TOP VIEW)	85
FIGURE 44: TOP VIEW OF THE MODULE	86
FIGURE 45: BOTTOM VIEW OF THE MODULE	86
FIGURE 46: RECOMMENDED REFLOW SOLDERING THERMAL PROFILE	88
FIGURE 47: TAPE SPECIFICATIONS	89
FIGURE 48: REEL SPECIFICATIONS	89

1 Introduction

This document defines the AG35-CEN module and describes its air interface and hardware interface which are connected with customers' applications.

This document can help customers quickly understand module interface specifications, electrical and mechanical details, as well as other related information of the module. Associated with application note and user guide, customers can use AG35-CEN to design and set up automotive industry mobile applications easily.

1.1. Safety Information

The following safety precautions must be observed during all phases of the operation, such as usage, service or repair of any cellular terminal or mobile incorporating AG35-CEN module. Manufacturers of the cellular terminal should send the following safety information to users and operating personnel, and incorporate these guidelines into all manuals supplied with the product. If not so, Quectel assumes no liability for customers' failure to comply with these precautions.

Full attention must be given to driving at all times in order to reduce the risk of an accident. Using a mobile while driving (even with a handsfree kit) causes distraction and can lead to an accident. You must comply with laws and regulations restricting the use of wireless devices while driving.

Switch off the cellular terminal or mobile before boarding an aircraft. Make sure it is switched off. The operation of wireless appliances in an aircraft is forbidden, so as to prevent interference with communication systems. Consult the airline staff about the use of wireless devices on boarding the aircraft, if your device offers an Airplane Mode which must be enabled prior to boarding an aircraft.

Switch off your wireless device when in hospitals, clinics or other health care facilities. These requests are designed to prevent possible interference with sensitive medical equipment.

Cellular terminals or mobiles operating over radio frequency signal and cellular network cannot be guaranteed to connect in all conditions, for example no mobile fee or with an invalid (U)SIM card. While you are in this condition and need emergent help, please remember using emergency call. In order to make or receive a call, the cellular terminal or mobile must be switched on and in a service area with adequate cellular signal strength.

Your cellular terminal or mobile contains a transmitter and receiver. When it is ON, it receives and transmits radio frequency energy. RF interference can occur if it is used close to TV set, radio, computer or other electric equipment.

In locations with potentially explosive atmospheres, obey all posted signs to turn off wireless devices such as your phone or other cellular terminals. Areas with potentially explosive atmospheres include fuelling areas, below decks on boats, fuel or chemical transfer or storage facilities, areas where the air contains chemicals or particles such as grain, dust or metal powders, etc.

2 Product Concept

2.1. General Description

AG35-CEN is a series of LTE-FDD/LTE-TDD/WCDMA/TD-SCDMA/EVDO/CDMA/GSM wireless communication module with receive diversity. Also it can provide GNSS and voice functionality to meet customers' specific application demands.

The following table shows the frequency bands of AG35-CEN module.

Table 1: Frequency Bands of AG35-CEN Module

Network Type	AG35-CEN
LTE-FDD (with Rx-diversity)	B1/B3/B5/B8
LTE-TDD (with Rx-diversity)	B34/B38/B39/B40/B41
WCDMA (with Rx-diversity)	B1/B8
TD-SCDMA	B34/B39
EVDO/CDMA	BC0
GSM	900/1800MHz
GNSS	GPS, GLONASS, BeiDou/Compass, Galileo, QZSS

AG35-CEN is an SMD type module which can be embedded in applications through its 299-pin LGA pads. This, coupled with its compact profile of 33.0mm × 37.5mm × 3.0mm, makes AG35-CEN a ruggedized module for the most demanding applications and environments.

2.2. Key Features

The following table describes the detailed features of AG35-CEN module.

Table 2: AG35-CEN Key Features

Feature	Details
Power Supply	Supply voltage: 3.3V~4.3V
Power Supply	Typical supply voltage: 3.8V
	Class 4 (33dBm±2dB) for EGSM900
	Class 1 (30dBm±2dB) for DCS1800
	Class E2 (27dBm±3dB) for EGSM900 8-PSK
	Class E2 (26dBm±3dB) for DCS1800 8-PSK
Transmitting Power	Class 3 (24dBm+2/-1dB) for EVDO/CDMA BC0
	Class 3 (24dBm+1/-3dB) for WCDMA bands
	Class 2 (24dBm+1/-3dB) for TD-SCDMA bands
	Class 3 (23dBm±2dB) for LTE-FDD bands
	Class 3 (23dBm±2dB) for LTE-TDD bands
	Support up to non-CA Cat 4 FDD and TDD
	Support 1.4 to 20MHz RF bandwidth
LTE Features	Support Multiuser MIMO in DL direction
	FDD: Max 150Mbps (DL)/50Mbps (UL)
	 TDD: Max 130Mbps (DL)/30Mbps (UL)
	Support 3GPP R8 DC-HSDPA, HSPA+, HSDPA, HSUPA, WCDMA
	Support QPSK, 16-QAM and 64-QAM modulation
WCDMA Features	 DC-HSDPA: Max 42Mbps (DL)
	 HSUPA: Max 5.76Mbps (UL)
	 WCDMA: Max 384Kbps (DL)/384Kbps (UL)
TD CODMA F	Support CCSA Release 3 TD-SCDMA
TD-SCDMA Features	 Max 4.2Mbps (DL)/2.2Mbps (UL)
	Support 3GPP2 CDMA2000 1X Advanced, CDMA2000 1x EV-DO Rev.A
CDMA2000 Features	EVDO: Max 3.1Mbps (DL)/1.8Mbps (UL)
	1X Advanced: Max 307.2Kbps (DL)/307.2Kbps (UL)
	GPRS:
	Support GPRS multi-slot class 33 (33 by default)
	Coding scheme: CS-1, CS-2, CS-3 and CS-4
00145	Max 107Kbps (DL)/85.6Kbps (UL)
GSM Features	EDGE:
	Support EDGE multi-slot class 33 (33 by default)
	Support GMSK and 8-PSK for different MCS (Modulation and Coding
	Scheme)

	Downlink coding schemes: CS 1-4 and MCS 1-9 Uplink coding schemes: CS 1-4 and MCS 1-9 Max 296Kbps (DL)/236.8Kbps (UL)
Internet Protocol Features	Support TCP/UDP/PPP/PING/FTP(S)/HTTP(S)/SMTP/SSL/TLS/MMS/ NTP/DTMF*/FILE/QMI protocols Support the protocols PAP (Password Authentication Protocol) and CHAP (Challenge Handshake Authentication Protocol) usually used for PPP connections
SMS	Text and PDU mode Point to point MO and MT SMS cell broadcast SMS storage: ME by default
(U)SIM Interface	Support USIM/SIM card: 1.8V, 3.0V
Audio Features	Support one digital audio interface: PCM interface GSM: HR/FR/EFR/AMR/AMR-WB WCDMA: AMR/AMR-WB LTE: AMR/AMR-WB Support echo cancellation and noise suppression
PCM Interface	Used for audio function with external codec Support 16-bit linear data format Support long frame synchronization and short frame synchronization Support master and slave modes, but must be the master in long frame synchronization
SGMII Interface	Support 10/100Mbps
WLAN Interface	Compliant with 802.11, 4-bit, 1.8V WLAN interface
SD Card Interface	Compliant with SD 3.0 protocol
USB Interface	Compliant with USB 2.0 specification (slave only), and the data transfer rate can reach up to 480Mbps Used for AT command communication, data transmission, GNSS NMEA output, software debugging and firmware upgrade USB Driver: Windows XP, Windows Vista, Windows 7/8/8.1/10, Windows CE 5.0/6.0/7.0*, Linux 2.6/3.x/4.1~4.14, Android 4.x/5.x/6.x/7.x
UART Interfaces	Main UART: Used for AT command communication and data transmission Baud rate reach up to 921600bps, 115200bps by default Support RTS and CTS hardware flow control UART2: Used for BT function* Baud rate reach up to 921600bps, 115200bps by default Support RTS and CTS hardware flow control Debug UART:

Used for Linux console and log output	
	115200bps baud rate
Rx-diversity	Support LTE/WCDMA Rx-diversity
GNSS Features	Gen8C-Lite of Qualcomm
GNSS realures	Protocol: NMEA 0183
AT Commands	3GPP TS 27.007/3GPP TS 27.005 AT commands and Quectel enhanced AT commands
Network Indication	Two pins including NET_MODE and NET_STATUS to indicate network connectivity status
Antenna Interface	Including main antenna interface (ANT_MAIN), Rx-diversity antenna interface (ANT_DIV) and GNSS antenna interface (ANT_GNSS)
Physical Characteristics	Size: (33.0±0.15)mm × (37.5±0.15)mm × (3.0±0.2)mm Weight: Approx. 8.1g
	Operation temperature range: -35°C ~ +75°C 1)
Temperature Range	Extended temperature range: -40°C ~ +85°C ²⁾
	Storage temperature range: -40°C ~ +90°C
Circura I la cua da	USB interface
Firmware Upgrade	DFOTA
RoHS	All hardware components are fully compliant with EU RoHS directive

NOTES

- 1. 1) Within operation temperature range, the module is 3GPP compliant.
- 2. ²⁾ Within extended temperature range, the module remains fully functional and retains the ability to establish and maintain a voice, SMS, data transmission, emergency call, etc. There is no unrecoverable malfunction. There are also no effects on radio spectrum and no harm to radio network. Only one or more parameters like P_{out} might reduce in their value and exceed the specified tolerances. When the temperature returns to normal operation temperature levels, the module will meet 3GPP specifications again.
- 3. "*" means under development.

2.3. Functional Diagram

The following figure shows a block diagram of AG35-CEN and illustrates the major functional parts.

- Power management
- Baseband
- DDR+NAND flash
- Radio frequency
- Peripheral interface

Figure 1: Functional Diagram

2.4. Evaluation Board

In order to help customers develop applications with AG35-CEN conveniently, Quectel supplies the evaluation board (EVB), USB data cable, earphone, antenna and other peripherals to control or test the module. For more details, please refer to *document [3]*.

3 Application Interfaces

3.1. General Description

AG35-CEN is equipped with 299-pin LGA pads that can be connected to cellular application platform. Sub-interfaces included in these pads are described in detail in the following sub-chapters:

- Power supply
- (U)SIM interface
- USB interface
- UART interfaces
- PCM and I2C interfaces
- SD card interface
- SGMII interface
- Wireless connectivity interfaces
- ADC interfaces
- Status indication

3.2. Pin Assignment

The following figure shows the pin assignment of AG35-CEN module.

Figure 2: Pin Assignment (Top View)

NOTES

- 1. Pins 59, 65, 67, 144~147, 149 and 159 cannot be pulled up before power-up.
- 2. PWRKEY (pin 2) output voltage is 0.8V because of the diode drop in the Qualcomm chipset.
- 3. GND pins 215~299 should be connected to ground in the design.
- 4. Keep all RESERVED pins and unused pins unconnected.

3.3. Pin Description

The following tables show the pin definition and description of AG35-CEN.

Table 3: I/O Parameters Definition

Туре	Description
Ю	Bidirectional
DI	Digital input
DO	Digital output
PI	Power input
PO	Power output
Al	Analog input
AO	Analog output
OD	Open drain

Table 4: Pin Description

Power Supply						
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment	
VBAT_BB	155, 156	PI	Power supply for module's baseband part	Vmax=4.3V Vmin=3.3V Vnorm=3.8V	It must be able to provide sufficient current up to 0.8A.	
VBAT_RF	85, 86, 87, 88	PI	Power supply for module's RF part	Vmax=4.3V Vmin=3.3V Vnorm=3.8V	It must be able to provide sufficient current up to 1.8A in a transmitting burst.	
VDD_EXT	168	РО	Provide 1.8V for external circuit	Vnorm=1.8V I _o max=50mA	Power supply for external GPIO's pull up circuits.	
GND	10, 13, 16, 17, 30, 31, 35, 39, 44, 45, 54, 55,		Ground.			

63, 64, 69,
70, 75, 76,
81~84,
89~94,
96~100,
102~106,
108~112,
114,
116~118,
120~126,
128~131,
141, 142,
148, 153,
154, 157,
158, 167,
174, 177,
178, 181,
184, 187,
191,
196~299

Turn on/off						
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment	
PWRKEY	2	DI	Turn on/off the module	V _{IH} max=2.1V V _{IH} min=1.3V V _{IL} max=0.5V		
RESET_N	1	DI	Reset the module	V _{IH} max=2.1V V _{IH} min=1.3V V _{IL} max=0.5V		
Status Indica	ation					
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment	
STATUS	171	OD	Indicate the module's operation status	The drive current should be less than 0.9mA.	Require external pull-up. If unused, keep it open.	
NET_MODE	147	DO	Indicate the module's network registration status	V _{OH} min=1.35V V _{OL} max=0.45V	1.8V power domain. If unused, keep it open.	
NET_ STATUS	170	DO	Indicate the module's network activity status	V _{OH} min=1.35V V _{OL} max=0.45V	1.8V power domain. If unused, keep it open.	
USB Interface						

Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
USB_VBUS	32	PI	USB detection	Vnorm=5.0V	Typical 5.0V Maximum current: 1mA
USB_DM	33	Ю	USB differential data bus (-)	Compliant with USB 2.0 standard specification.	Require differential impedance of 90Ω .
USB_DP	34	Ю	USB differential data bus (+)	Compliant with USB 2.0 standard specification.	Require differential impedance of 90Ω .
(U)SIM Interfa	ice				
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
USIM_GND	24		Specified ground for (U)SIM card		
USIM_ PRESENCE	25	DI	(U)SIM card insertion detection	V _{IL} min=-0.3V V _{IL} max=0.6V V _{IH} min=1.2V V _{IH} max=2.0V	1.8V power domain. If unused, keep it open.
USIM_VDD	26	РО	Power supply for (U)SIM card	For 1.8V (U)SIM: Vmax=1.9V Vmin=1.7V For 3.0V (U)SIM: Vmax=3.05V Vmin=2.7V Iomax=50mA	Either 1.8V or 3V is supported by the module automatically
USIM_CLK	27	DO	Clock signal of (U)SIM card	For 1.8V USIM: V _{OL} max=0.45V V _{OH} min=1.35V For 3.0V USIM: V _{OL} max=0.45V V _{OH} min=2.55V	
USIM_RST	28	DO	Reset signal of (U)SIM card	For 1.8V USIM: V _{OL} max=0.45V V _{OH} min=1.35V For 3.0V USIM: V _{OL} max=0.45V V _{OH} min=2.55V	

USIM_DATA	29	10	Data signal of (U)SIM card	For 1.8V USIM: V _{IL} max=0.6V V _{IH} min=1.2V V _{OL} max=0.45V V _{OH} min=1.35V For 3.0V USIM: V _{IL} max=1.0V			
				V_{IH} min=1.95 V V_{OL} max=0.45 V V_{OH} min=2.55 V			
Main UART In	iterface						
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment		
CTS	56	DO	Clear to send	V _{OL} max=0.45V V _{OH} min=1.35V	1.8V power domain. If unused, keep it open.		
RTS	57	DI	Request to send	V _{IL} min=-0.3V V _{IL} max=0.6V V _{IH} min=1.2V V _{IH} max=2.0V	1.8V power domain. If unused, keep it open.		
RXD	58	DI	Receive data	V _{IL} min=-0.3V V _{IL} max=0.6V V _{IH} min=1.2V V _{IH} max=2.0V	1.8V power domain. If unused, keep it open.		
DCD	59	DO	Data carrier detection	V _{OL} max=0.45V V _{OH} min=1.35V	1.8V power domain. If unused, keep it open.		
TXD	60	DO	Transmit data	V _{OL} max=0.45V V _{OH} min=1.35V	1.8V power domain. If unused, keep it open.		
RI	61	DO	Ring indicator	V _{OL} max=0.45V V _{OH} min=1.35V	1.8V power domain. If unused, keep it open.		
DTR	62	DI	Data terminal ready. Sleep mode control	V_{IL} min=-0.3V V_{IL} max=0.6V V_{IH} min=1.2V V_{IH} max=2.0V	1.8V power domain. Pull-up by default. Low level wakes up the module. If unused, keep it open.		
UART2 Interfa	UART2 Interface (for BT Function*)						

UART2_TXD	163	DO	Transmit data	V _{OL} max=0.45V V _{OH} min=1.35V	1.8V power domain. If unused, keep it open.		
UART2_CTS	164	DO	Clear to send	V _{OL} max=0.45V V _{OH} min=1.35V	1.8V power domain. If unused, keep it open.		
UART2_RXD	165	DI	Receive data	V _{IL} min=-0.3V V _{IL} max=0.6V V _{IH} min=1.2V V _{IH} max=2.0V	1.8V power domain. If unused, keep it open.		
UART2_RTS	166	DI	Request to send	V _{IL} min=-0.3V V _{IL} max=0.6V V _{IH} min=1.2V V _{IH} max=2.0V	1.8V power domain. If unused, keep it open.		
Debug UART	Interface						
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment		
DBG_TXD	71	DO	Transmit data	V _{OL} max=0.45V V _{OH} min=1.35V	1.8V power domain. If unused, keep it open.		
DBG_RXD	72	DI	Receive data	V _{IL} min=-0.3V V _{IL} max=0.6V V _{IH} min=1.2V V _{IH} max=2.0V	1.8V power domain. If unused, keep it open.		
ADC Interfac	es						
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment		
ADC2	172	Al	General purpose analog to digital converter interface	Voltage Range: 0.1V to 1.7V	If unused, keep it open.		
ADC0	173	Al	General purpose analog to digital converter interface	Voltage Range: 0.3V to VBAT_BB	If unused, keep it open.		
ADC1	175	Al	General purpose analog to digital converter interface	Voltage Range: 0.3V to VBAT_BB	If unused, keep it open.		
PCM Interfac	PCM Interface						
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment		
PCM_SYNC	65	Ю	PCM data frame synchronization signal	V _{OL} max=0.45V V _{OH} min=1.35V V _{IL} min=-0.3V	1.8V power domain. In master mode, it is an output signal. In		

PCM_IN 66 DI PCM data input Vi_min = -0.3V					V _{IL} max=0.6V V _{IH} min=1.2V V _{IH} max=2.0V	slave mode, it is an input signal. If unused, keep it open.		
PCM_CLK 67 IO PCM clock PCM_CLK 67 IO PCM clock PCM_OUT 68 DO PCM data output PCM_OUT 68 DO PCM data output PCM_OUT 68 DO PCM data output Pin Name Pin No. I/O Description I2C1_SDA 42 DD Used for external codec. I2C1_SCL 43 DD Used for external codec. I2C2 Interface Pin Name Pin No. I/O Description I2C3 serial data. I2C4 serial clock. I2C5 serial clock. I2C5 serial clock. I2C6 Interface I2C6 Interface Pin Name Pin No. I/O Description I2C6 Interface Pin Name Pin No. I/O Description I2C6 serial data IXV only. If unused, keep it open. IXV only. If unused, keep it open.	PCM_IN	66	DI	PCM data input	V _{IL} max=0.6V V _{IH} min=1.2V	1.8V power domain. If unused, keep it		
PCM_OUT 68 DO PCM data output Volmax=0.45V Volmin=1.35V If unused, keep it open. I2C1 Interface (for Codec Configuration by Default)	PCM_CLK	67	Ю	PCM clock	V_{OH} min=1.35V V_{IL} min=-0.3V V_{IL} max=0.6V V_{IH} min=1.2V	In master mode, it is an output signal. In slave mode, it is an input signal. If unused, keep it		
Pin Name Pin No. I/O Description DC Characteristics Comment I2C1_SDA 42 OD I2C1 serial data. Used for external codec. External pull-up resistor is required. 1.8V only. If unused, keep it open. I2C1_SCL 43 OD I2C1 serial clock. Used for external codec. External pull-up resistor is required. 1.8V only. If unused keep it open. I2C2 Interface Pin Name Pin No. I/O Description DC Characteristics Comment I2C2_SDA 73 OD I2C2 serial data External pull-up resistor is required. 1.8V only. If unused, keep it open. I2C2_SCL 74 OD I2C2 serial data External pull-up resistor is required. 1.8V only. If unused, keep it open.	PCM_OUT	68	DO	PCM data output		If unused, keep it		
I2C1_SDA 42	I2C1 Interfac	I2C1 Interface (for Codec Configuration by Default)						
I2C1_SDA 42 OD Used for external codec. External pull-up resistor is required. 1.8V only. If unused, keep it open.	Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment		
I2C1_SCL 43 OD Used for external codec. I2C2 Interface Pin Name Pin No. I/O Description DC Characteristics Comment External pull-up resistor is required. 1.8V only. If unused keep it open. I2C2_SDA 73 OD I2C2 serial data External pull-up resistor is required. 1.8V only. If unused, keep it open. External pull-up resistor is required. 1.8V only. If unused, keep it open. External pull-up resistor is required. 1.8V only. If unused, keep it open.	I2C1_SDA	42	OD	Used for external		resistor is required. 1.8V only. If unused,		
Pin Name Pin No. I/O Description DC Characteristics Comment I2C2_SDA	I2C1_SCL	43	OD	Used for external		resistor is required. 1.8V only. If unused,		
External pull-up resistor is required. 1.8V only. If unused, keep it open. External pull-up resistor is required. 1.8V only. If unused, resistor is required. External pull-up resistor is required. 1.8V only. If unused, keep it open.	I2C2 Interfac	ce						
I2C2_SDA 73 OD I2C2 serial data resistor is required. 1.8V only. If unused, keep it open. External pull-up resistor is required. 1.8V only. If unused, keep it open. 1.8V only. If unused, keep it open.	Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment		
I2C2_SCL 74 OD I2C2 serial data resistor is required. 1.8V only. If unused, keep it open.	I2C2_SDA	73	OD	I2C2 serial data		resistor is required. 1.8V only. If unused,		
SD Card Interface	I2C2_SCL	74	OD	I2C2 serial data		resistor is required. 1.8V only. If unused,		
	SD Card Into	erface						

Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
VDD_SDIO	46	РО	SDIO pull up power source for SD card	I _O max=50mA	Configurable power source. 1.8V/2.85V power domain. If unused, keep it open.
SDC2_ DATA2	47	Ю	SDIO data signal (bit 2) for SD card	For 1.8V Signaling: V _{OL} max=0.45V V _{OH} min=1.4V V _{IL} min=-0.3V V _{IL} max=0.58V V _{IH} min=1.27V V _{IH} max=2.0V For 3.0V Signaling: V _{OL} max=0.38V V _{OH} min=2.01V V _{IL} min=-0.3V V _{IL} max=0.76V V _{IH} min=1.72V V _{IH} max=3.34V	SDIO signal level can be selected according to the one supported by SD card. Please refer to SD 3.0 protocol for more details. If unused, keep it open.
SDC2_ DATA3	48	Ю	SDIO data signal (bit 3) for SD card	For 1.8V Signaling: V _{OL} max=0.45V V _{OH} min=1.4V V _{IL} min=-0.3V V _{IL} max=0.58V V _{IH} min=1.27V V _{IH} max=2.0V For 3.0V Signaling: V _{OL} max=0.38V V _{OH} min=2.01V V _{IL} min=-0.3V V _{IL} min=-0.3V V _{IL} max=0.76V V _{IH} min=1.72V V _{IH} max=3.34V	SDIO signal level can be selected according to the one supported by SD card. Please refer to SD 3.0 protocol for more details. If unused, keep it open.
SDC2_ DATA0	49	Ю	SDIO data signal (bit 0) for SD card	For 1.8V Signaling: V _{OL} max=0.45V V _{OH} min=1.4V V _{IL} min=-0.3V V _{IL} max=0.58V V _{IH} min=1.27V	SDIO signal level can be selected according to the one supported by SD card. Please refer to SD 3.0 protocol for more

				V _{IH} max=2.0V For 3.0V Signaling: V _{OL} max=0.38V V _{OH} min=2.01V V _{IL} min=-0.3V V _{IL} max=0.76V V _{IH} min=1.72V V _{IH} max=3.34V	details. If unused, keep it open.
SDC2_ DATA1	50	Ю	SDIO data signal (bit 1) for SD card	For 1.8V Signaling: V _{OL} max=0.45V V _{OH} min=1.4V V _{IL} min=-0.3V V _{IL} max=0.58V V _{IH} min=1.27V V _{IH} max=2.0V For 3.0V Signaling: V _{OL} max=0.38V V _{OH} min=2.01V V _{IL} min=-0.3V V _{IL} max=0.76V V _{IH} min=1.72V V _{IH} max=3.34V	SDIO signal level can be selected according to the one supported by SD card. Please refer to SD 3.0 protocol for more details. If unused, keep it open.
SDC2_CMD	51	Ю	SDIO command signal for SD card	For 1.8V Signaling: V _{OL} max=0.45V V _{OH} min=1.4V V _{IL} min=-0.3V V _{IL} max=0.58V V _{IH} min=1.27V V _{IH} max=2.0V For 3.0V Signaling: V _{OL} max=0.38V V _{OH} min=2.01V V _{IL} min=-0.3V V _{IL} max=0.76V V _{IH} min=1.72V V _{IH} max=3.34V	SDIO signal level can be selected according to the one supported by SD card. Please refer to SD3.0 protocol for more details. If unused, keep it open.
SD_INS_ DET	52	DI	SD card insertion detection	V _{IL} min=-0.3V V _{IL} max=0.6V V _{IH} min=1.2V V _{IH} max=2.0V	1.8V power domain. If unused, keep it open.

SDC2_CLK 53	3	DO	SDIO clock signal for SD card	For 1.8V Signaling: V _{OL} max=0.45V V _{OH} min=1.4V	SDIO signal level can be selected according to the one supported by SD card. Please refer to SD3.0
				For 3.0V Signaling: V _{OL} max=0.38V V _{OH} min=2.01V	protocol for more details. If unused, keep it open.
MDIO Interface					
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
VDD_MDIO	4	PO	SGMII_MDATA pull-up power source		If unused, keep it open.
EPHY_RST_N	6	DO	Ethernet PHY reset	V _{OL} max=0.45V V _{OH} min=2.55V	2.85V power domain. If unused, keep it open.
SGMII_MCLK	7	DO	SGMII MDIO (Management Data Input/Output) clock	V _{OL} max=0.45V V _{OH} min=2.55V	2.85V power domain. If unused, keep it open.
SGMII_ MDATA	8	Ю	SGMII MDIO (Management Data Input/Output) data	V _{IL} max=1.0V V _{IH} min=1.95V V _{OL} max=0.45V V _{OH} min=2.55V	2.85V power domain. External 1.5K resistor pulled up to VDD_MDIO is required. If unused, keep it open.
EPHY_INT_N	9	DI	Ethernet PHY interrupt	V _{IL} min=-0.3V V _{IL} max=0.6V V _{IH} min=1.2V V _{IH} max=2.0V	1.8V power domain. If unused, keep it open.
SGMII Interface					
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
SGMII_RX_M	11	Al	SGMII receiving (-)		If unused, keep it open.
SGMII_RX_P	12	Al	SGMII receiving (+)		If unused, keep it open.
SGMII_TX_P	14	AO	SGMII transmission (+)		If unused, keep it open.
SGMII_TX_M	15	АО	SGMII transmission (-)		If unused, keep it open.

Wireless Conne	Wireless Connectivity Interface (WLAN)						
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment		
SDC1_CMD	18	Ю	WLAN SDIO command signal	V _{OL} max=0.45V V _{OH} min=1.35V	If unused, keep it open.		
SDC1_CLK	19	DO	WLAN SDIO clock signal	V _{OL} max=0.45V V _{OH} min=1.35V	If unused, keep it open.		
SDC1_DATA0	20	Ю	WLAN SDIO data bus (bit 0)	V_{OL} max=0.45V V_{OH} min=1.35V V_{IL} min=-0.3V V_{IL} max=0.6V V_{IH} min=1.2V V_{IH} max=2.0V	If unused, keep it open.		
SDC1_DATA1	21	Ю	WLAN SDIO data bus (bit 1)	V_{OL} max=0.45 V V_{OH} min=1.35 V V_{IL} min=-0.3 V V_{IL} max=0.6 V V_{IH} min=1.2 V V_{IH} max=2.0 V	If unused, keep it open.		
SDC1_DATA2	22	Ю	WLAN SDIO data bus (bit 2)	V_{OL} max=0.45V V_{OH} min=1.35V V_{IL} min=-0.3V V_{IL} max=0.6V V_{IH} min=1.2V V_{IH} max=2.0V	If unused, keep it open.		
SDC1_DATA3	23	Ю	WLAN SDIO data bus (bit 3)	V_{OL} max=0.45V V_{OH} min=1.35V V_{IL} min=-0.3V V_{IL} max=0.6V V_{IH} min=1.2V V_{IH} max=2.0V	If unused, keep it open.		
WLAN Control Interface							
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment		
PM_ENABLE	5	DO	External power control	V _{OL} max=0.45V V _{OH} min=1.35V	If unused, keep it open.		
WLAN_EN	149	DO	WLAN function enable control via Wi-Fi module	V _{OL} max=0.45V V _{OH} min=1.35V	If unused, keep it open.		
WAKE_ON_ WIRELESS	160	DI	Wake up the host (AG35-CEN module) via Wi-Fi	V _{IL} min=-0.3V V _{IL} max=0.6V V _{IH} min=1.2V	If unused, keep it open.		

			module	V _{IH} max=2.0V	
WLAN_ SLP_CLK	169	DO	WLAN sleep clock	V _{OL} max=0.45V V _{OH} min=1.35V	If unused, keep it open.
COEX Interface					
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
COEX_UART_ RX/ USB_BOOT	146	DI	LTE/WLAN&BT coexistence signal. Force the module to enter into emergency download mode.	V _{IL} min=-0.3V V _{IL} max=0.6V V _{IH} min=1.2V V _{IH} max=2.0V	If unused, keep it open.
COEX_ UART_TX	145	DO	LTE/WLAN&BT coexistence signal	V _{OL} max=0.45V V _{OH} min=1.35V	If unused, keep it open.
RF Interfaces					
Pin Name	Pin No.	I/O	Description	Characteristics	Comment
ANT_MAIN	107	Ю	Main antenna interface		50Ω impedance.
ANT_GNSS	119	Al	GNSS antenna interface		50Ω impedance. If unused, keep it open.
ANT_DIV	127	Al	Receive diversity antenna interface		50Ω impedance. If unused, keep it open.
GPIO Pins					
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
BT_EN*	3	DO	Bluetooth enable control	V _{OL} max=0.45V V _{OH} min=1.35V	
SLEEP_IND	144	DO	Sleep instruction	V _{OL} max=0.45V V _{OH} min=1.35V	
WAKEUP_IN	150	DI	Sleep mode control	V _{IL} min=-0.3V V _{IL} max=0.6V V _{IH} min=1.2V V _{IH} max=2.0V	1.8V power domain. Pull-up by default. Low level wakes up the module. If unused, keep it open.
W_DISABLE#	151	DI	Airplane mode control	V _{IL} min=-0.3V V _{IL} max=0.6V V _{IH} min=1.2V V _{IH} max=2.0V	1.8V power domain. Pull-up by default. In low voltage level, module can enter into

GPIO1	159	IO	General purpose input/output interface		airplane mode. If unused, keep it open.
RESERVED I	Pins		Interiace		
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
RESERVED	36~38, 40, 41, 95, 101, 113, 115, 77~80, 132~140, 143, 161, 162, 176, 179, 180, 182, 183, 185, 187~190, 192~195		Reserved		Keep these pins unconnected.

NOTE

- 1. "*" means under development.
- 2. Keep all RESERVED pins and unused pins unconnected.

3.4. Operating Modes

The table below briefly summarizes the various operating modes referred in the following chapters.

Table 5: Overview of Operating Modes

Mode	Details			
Normal Operation	Idle Software is active. The module has registered on the network it is ready to send and receive data.			
	Talk/Data	Network connection is ongoing. In this mode, the power consumption is decided by network setting and data transfer rate.		
Minimum Functionality Mode	AT+CFUN command can set the module to a minimum functionality mode without removing the power supply. In this case, both RF function and (U)SIM card will be			

	invalid.				
Airplane Mode	AT+CFUN command or W_DISABLE# pin can set the module to airplane mode. In this case, RF function will be invalid.				
Sleep Mode	In this mode, the current consumption of the module will be reduced to the minimal level. During this mode, the module can still receive paging message, SMS, voice call and TCP/UDP data from the network normally.				
Power down Mode	In this mode, the power management unit shuts down the power supply. Software is not active. The serial interfaces are not accessible. Operating voltage (connected to VBAT_RF and VBAT_BB) remains applied.				

3.5. Power Saving

3.5.1. Sleep Mode

AG35-CEN is able to reduce its current consumption to a minimum value during the sleep mode. This chapter mainly introduces some ways to enter into or exit from sleep mode. The diagram below illustrates the current consumption of AG35-CEN during sleep mode.

Figure 3: Sleep Mode Current Consumption Diagram

NOTE

DRX cycle index values are broadcasted by the wireless network.

3.5.1.1. UART Application

If the host communicates with module via UART interface, the following preconditions can let the module enter into sleep mode.

- Execute AT+QSCLK=1 command to enable sleep mode.
- Drive DTR to high level.

The following figure shows the connection between the module and the host.

Figure 4: Sleep Mode Application via UART

- Driving the host DTR to low level will wake up the module.
- When AG35-CEN has URC to report, RI signal will wake up the host. Refer to Chapter 3.18 for details about RI behavior.

3.5.1.2. USB Application with USB Remote Wakeup Function

If the host supports USB suspend/resume and remote wakeup functions, the following three preconditions must be met to let the module enter into sleep mode.

- Execute AT+QSCLK=1 command to enable sleep mode.
- Ensure the DTR is held in high level or keep it open.
- The host's USB bus, which is connected with the module's USB interface, enters into suspended state.

The following figure shows the connection between the module and the host.

Figure 5: Sleep Mode Application with USB Remote Wakeup

- Sending data to AG35-CEN through USB will wake up the module.
- When AG35-CEN has URC to report, the module will send remote wake-up signals via USB bus so as to wake up the host.

3.5.1.3. USB Application with USB Suspend/Resume and RI Functions

If the host supports USB suspend/resume, but does not support remote wake-up function, the RI signal is needed to wake up the host.

There are three preconditions to let the module enter into sleep mode.

- Execute **AT+QSCLK=1** command to enable sleep mode.
- Ensure the DTR is held in high level or keep it open.
- The host's USB bus, which is connected with the module's USB interface, enters into suspended state.

The following figure shows the connection between the module and the host.

Figure 6: Sleep Mode Application with RI

- Sending data to AG35-CEN through USB will wake up the module.
- When AG35-CEN has URC to report, RI signal will wake up the host.

3.5.1.4. USB Application without USB Suspend Function

If the host does not support USB suspend function, USB_VBUS should be disconnected via an external control circuit to let the module enter into sleep mode.

- Execute AT+QSCLK=1 command to enable sleep mode.
- Ensure the DTR is held in high level or keep it open.
- Disconnect USB_VBUS.

The following figure shows the connection between the module and the host.

Figure 7: Sleep Mode Application without Suspend Function

Switching on the power switch to supply power to USB_VBUS will wake up the module.

NOTE

Please pay attention to the level match shown in dotted line between the module and the host. Refer to **document [1]** for more details about the module's power management application.

3.5.2. Airplane Mode

When the module enters into airplane mode, the RF function does not work, and all AT commands correlative with RF function will be inaccessible. This mode can be set via the following ways.

Hardware:

The W_DISABLE# pin is pulled up by default. Driving it to low level will let the module enter into airplane mode.

Software:

AT+CFUN command provides choices of the functionality level, through setting <fun> into 0, 1, or 4.

- AT+CFUN=0: Minimum functionality mode. Both (U)SIM and RF functions are disabled.
- AT+CFUN=1: Full functionality mode (by default).
- AT+CFUN=4: Airplane mode. RF function is disabled.

NOTES

- 1. Airplane mode control via W_DISABLE# is disabled in firmware by default. It can be enabled by AT+QCFG="airplanecontrol" command. Please refer to *document [2]* for more details.
- 2. The execution of AT+CFUN command will not affect GNSS function.

3.6. Power Supply

3.6.1. Power Supply Pins

AG35-CEN provides six VBAT pins for connection with the external power supply. There are two separate voltage domains for VBAT.

- Four VBAT_RF pins for module's RF part
- Two VBAT BB pins for module's baseband part

The following table shows the details of VBAT pins and ground pins.

Table 6: VBAT and GND Pins

Pin Name	Pin No.	Description	Min.	Тур.	Max.	Unit
VBAT_RF	85, 86, 87, 88	Power supply for module's RF part	3.3	3.8	4.3	V
VBAT_BB	155, 156	Power supply for module's baseband part	3.3	3.8	4.3	V
GND	10, 13, 16, 17, 30, 31, 35, 39, 44, 45, 54, 55, 63, 64, 69, 70, 75, 76,	Ground	-	0	-	V


```
81~84, 89~94, 96~100,

102~106, 108~112,

114, 116~118,

120~126, 128~131,

141, 142, 148, 153,

154, 157, 158, 167,

174, 177, 178, 181,

184, 187, 191,

196~299
```

3.6.2. Decrease Voltage Drop

The power supply range of the module is from 3.3V to 4.3V. Please make sure the input voltage will never drop below 3.3V. The following figure shows the voltage drop during burst transmission in 2G network. The voltage drop will be less in 3G and 4G networks.

Figure 8: Power Supply Limits during Burst Transmission

To decrease voltage drop, a bypass capacitor of about 100µF with low ESR should be used, and a multi-layer ceramic chip capacitor (MLCC) array should also be reserved due to its low ESR. It is recommended to use three ceramic capacitors (100nF, 33pF, 10pF) for composing the MLCC array, and place these capacitors close to VBAT pins. The main power supply from an external application has to be a single voltage source and can be expanded to two sub paths with star structure. The width of VBAT_BB trace should be no less than 1mm, and the width of VBAT_RF trace should be no less than 2mm. In principle, the longer the VBAT trace is, the wider it will be.

In addition, in order to get a stable power source, it is suggested to use a zener diode with dissipation power more than 0.5W, and place it as close to the VBAT pins as possible. The following figure shows the star structure of the power supply.

Figure 9: Star Structure of the Power Supply

3.6.3. Reference Design for Power Supply

Power design for the module is very important, as the performance of the module largely depends on the power source. The power supply of AG35-CEN should be able to provide sufficient current up to 2A at least. If the voltage drop between the input and output is not too high, it is recommended to use an LDO to supply power for the module. If there is a big voltage difference between the input source and the desired output (VBAT), a buck converter is preferred to be used as the power supply.

The following figure shows a reference design for +5V input power source. The designed output for the power supply is about 3.8V and the maximum rated current is 3A.

Figure 10: Reference Circuit of Power Supply

3.6.4. Monitor the Power Supply

AT+CBC command can be used to monitor the VBAT_BB voltage value. For more details, please refer to **document [2]**.

3.7. Turn on and off Scenarios

3.7.1. Turn on Module Using the PWRKEY

The following table shows the pin definition of PWRKEY.

Table 7: PWRKEY Pin Description

Pin Name	Pin No.	Description	DC Characteristics	Comment
PWRKEY	2	Turn on/off the module	V _{IH} max=2.1V V _{IH} min=1.3V V _{IL} max=0.5V	The output voltage is 0.8V because of the diode drop in the Qualcomm chipset.

When AG35-CEN is in power down mode, it can be turned on to normal mode by driving the PWRKEY pin to a low level for at least 500ms. It is recommended to use an open drain/collector driver to control the PWRKEY. After STATUS pin (require external pull-up) outputting a low level, PWRKEY pin can be released. A simple reference circuit is illustrated in the following figure.

Figure 11: Turn on the Module Using Driving Circuit

Another way to control the PWRKEY is using a button directly. When pressing the key, electrostatic strike may generate from finger. Therefore, a TVS component is indispensable to be placed nearby the button for ESD protection. A reference circuit is shown in the following figure.

Figure 12: Turn on the Module Using Keystroke

The turn on scenario is illustrated in the following figure.

Figure 13: Timing of Turning on Module

NOTES

- 1. Please make sure that VBAT is stable before pulling down PWRKEY pin. The time between them is no less than 30ms.
- 2. Recommended pull-up level range is 1.3V~2.1V if there is any pull-up circuit added on PWRKEY pin.

3.7.2. Turn off Module

Either of the following methods can be used to turn off the module:

- Normal power down procedure: Turn off the module using the PWRKEY pin.
- Normal power down procedure: Turn off the module using AT+QPOWD command.

3.7.2.1. Turn off Module Using the PWRKEY Pin

Driving the PWRKEY pin to a low level voltage for at least 650ms, the module will execute power-down procedure after PWRKEY is released. The power-down scenario is illustrated in the following figure.

Figure 14: Timing of Turning off Module

3.7.2.2. Turn off Module Using AT Command

It is also a safe way to use **AT+QPOWD** command to turn off the module, which is similar to turning off the module via PWRKEY Pin.

Please refer to document [2] for details about the AT+QPOWD command.

NOTES

- In order to avoid damaging the internal flash, please do not switch off the power supply when the module works normally. Only after the module is shut down by PWRKEY or AT command, the power supply can be cut off.
- 2. When turn off module with AT command, please keep PWRKEY at high level after the execution of power-off command. Otherwise the module will be turned on again after successfully turn-off.

3.7.3. Reset the Module

The RESET_N can be used to reset the module. The module can be reset by driving the RESET_N to a low level voltage for 150~460ms. As the RESET_N pin is sensitive to interference, the routing trace on the interface board of the module is recommended to be as short as possible and totally ground shielded.

Table 8: RESET_N Pin Description

Pin Name	Pin No.	Description	DC Characteristics	Comment
RESET_N	1	Reset the module	V _{IH} max=2.1V V _{IH} min=1.3V V _{IL} max=0.5V	Pull-up to 1.8V internally. Active low.

The recommended circuit is similar to the PWRKEY control circuit. An open drain/collector driver or button can be used to control the RESET_N.

Figure 15: Reference Circuit of RESET_N by Using Driving Circuit

Figure 16: Reference Circuit of RESET_N by Using Button

The reset scenario is illustrated in the following figure.

Figure 17: Timing of Resetting Module

NOTES

- 1. Use RESET_N only when turning off the module by **AT+QPOWD** command and PWRKEY pin both failed.
- 2. Please assure that there is no large capacitance on PWRKEY and RESET_N pins.

3.8. (U)SIM Interface

The (U)SIM interface circuitry meets ETSI and IMT-2000 requirements. Both 1.8V and 3.0V (U)SIM cards are supported.

Table 9: Pin Definition of (U)SIM Interface

Pin No.	I/O	Description	Comment
26	РО	Power supply for (U)SIM card	Either 1.8V or 3.0V is supported by the module automatically.
29	Ю	Data signal of (U)SIM card	
27	DO	Clock signal of (U)SIM card	
28	DO	Reset signal of (U)SIM card	
25	DI	(U)SIM card insertion detection	
24		Specified ground for (U)SIM card	
	26 29 27 28 25	26 PO 29 IO 27 DO 28 DO 25 DI	PO Power supply for (U)SIM card 10 Data signal of (U)SIM card 10 Down Signal of (U)SIM card 10 Clock signal of (U)SIM card 11 DO Reset signal of (U)SIM card 12 DI (U)SIM card insertion detection

AG35-CEN supports (U)SIM card hot-plug via the USIM_PRESENCE pin. The function supports low level and high level detections, and is disabled by default. Please refer to **document [2]** about **AT+QSIMDET** command for details.

The following figure shows a reference design of (U)SIM interface with an 8-pin (U)SIM card connector.

Figure 18: Reference Circuit of (U)SIM Interface with an 8-Pin (U)SIM Card Connector

If (U)SIM card detection function is not needed, please keep USIM_PRESENCE unconnected. A reference circuit for (U)SIM interface with a 6-pin (U)SIM card connector is illustrated in the following figure.

Figure 19: Reference Circuit of (U)SIM Interface with a 6-Pin (U)SIM Card Connector

In order to enhance the reliability and availability of the (U)SIM card in customers' applications, please follow the criteria below in the (U)SIM circuit design:

- Keep placement of (U)SIM card connector as close as possible to the module. Keep the trace length as less than 200mm as possible.
- Keep (U)SIM card signals away from RF and VBAT traces.
- Assure the ground between the module and the (U)SIM card connector short and wide. Keep the trace width of ground and USIM_VDD no less than 0.5mm to maintain the same electric potential.
- To avoid cross-talk between USIM_DATA and USIM_CLK, keep them away from each other and shield them with surrounded ground.
- In order to offer good ESD protection, it is recommended to add a TVS diode array with parasitic capacitance not exceeding 10pF. The 0Ω resistors should be added in series between the module and the (U)SIM card connector so as to suppress EMI spurious transmission and enhance ESD protection. The 33pFcapacitors are used for filtering interference of EGSM900. Please note that the (U)SIM peripheral circuit should be close to the (U)SIM card connector.
- The pull-up resistor on USIM_DATA line can improve anti-jamming capability when long layout trace and sensitive occasions are applied, and should be placed close to the (U)SIM card connector.

NOTE

The load capacitance of (U)SIM interface will affect rise and fall time of data exchange.

3.9. USB Interface

AG35-CEN contains one integrated Universal Serial Bus (USB) interface which complies with the USB 2.0 specification and supports high-speed (480Mbps) and full-speed (12Mbps) modes. The USB interface is used for AT command communication, data transmission, GNSS NMEA sentences output, software debugging, firmware upgrade and voice over USB*. The following table shows the pin definition of USB interface.

Table 10: Pin Definition of USB Interface

Pin Name	Pin No.	I/O	Description	Comment
USB_DP	34	Ю	USB differential data bus (+)	Require differential impedance of 90Ω
USB_DM	33	Ю	USB differential data bus (-)	Require differential impedance of 90Ω
USB_VBUS	32	PI	USB connection detection	Typical 5.0V Maximum current: 1mA
GND	30		Ground	

For more details about USB 2.0 specifications, please visit http://www.usb.org/home.

The USB interface is recommended to be reserved for firmware upgrade in application design. The following figure shows a reference circuit of USB interface.

Figure 20: Reference Circuit of USB Application

In order to ensure signal integrity of USB data lines, components R1, R2 and L1 must be placed close to the module, and also these resistors should be placed close to each other. The extra stubs of trace must be as short as possible.

The following principles should be complied with when design the USB interface, so as to meet USB 2.0 specification.

- It is important to route the USB signal traces as differential pairs with total grounding. The impedance
 of USB differential trace is 90Ω.
- Do not route signal traces under crystals, oscillators, magnetic devices or RF signal traces. It is important to route the USB differential traces in inner-layer with ground shielding on not only upper and lower layers but also right and left sides.
- Pay attention to the influence of junction capacitance of ESD protection components on USB data lines. Typically, the capacitance value should be less than 2pF.
- Keep the ESD protection components as close to the USB connector as possible.

NOTES

- 1. AG35-CEN can be used as a slave device only.
- 2. "*" means under development.

3.10. UART Interfaces

The module provides three UART interfaces: main UART interface, UART2 interface and debug UART interface. The following are the features of these UART interfaces.

- The main UART interface supports 9600, 19200, 38400, 57600, 115200, 230400, 460800 and 921600bps baud rates, and the default is 115200bps. The interface is used for data transmission and AT command communication.
- The UART2 interface supports 9600, 19200, 38400, 57600, 115200, 230400, 460800 and 921600bps baud rates, and the default is 115200bps. The interface is designed for BT function*.
- The debug UART interface supports 115200bps baud rate. It is used for Linux console and log output.

The following tables show the pin definition of the three UART interfaces.

Table 11: Pin Definition of Main UART Interface

Pin No.	I/O	Description	Comment
61	DO	Ring indicator	1.8V power domain
59	DO	Data carrier detection	1.8V power domain
56	DO	Clear to send	1.8V power domain
57	DI	Request to send	1.8V power domain
62	DI	Sleep mode control	1.8V power domain
60	DO	Transmit data	1.8V power domain
58	DI	Receive data	1.8V power domain
	61 59 56 57 62 60	61 DO 59 DO 56 DO 57 DI 62 DI 60 DO	61 DO Ring indicator 59 DO Data carrier detection 56 DO Clear to send 57 DI Request to send 62 DI Sleep mode control 60 DO Transmit data

Table 12: Pin Definition of UART2 Interface (for BT Function*)

Pin Name	Pin No.	I/O	Description	Comment
UART2_TXD	163	DO	Transmit data	1.8V power domain
UART2_CTS	164	DO	Clear to send	1.8V power domain
UART2_RXD	165	DI	Receive data	1.8V power domain
UART2_RTS	166	DI	Request to send	1.8V power domain

Table 13: Pin Definition of Debug UART Interface

Pin Name	Pin No.	I/O	Description	Comment
DBG_TXD	71	DO	Transmit data	1.8V power domain
DBG_RXD	72	DI	Receive data	1.8V power domain

The logic levels are described in the following table.

Table 14: Logic Levels of Digital I/O

Parameter	Min.	Max.	Unit
V_{IL}	-0.3	0.6	V
V _{IH}	1.2	2.0	V
V _{OL}	0	0.45	V
V _{OH}	1.35	1.8	V

The module provides 1.8V UART interfaces. A level translator should be used if customers' application is equipped with a 3.3V UART interface. A level translator TXS0108EPWR provided by *Texas Instruments* is recommended. The following figure shows a reference design.

Figure 21: Reference Circuit with Translator Chip

Please visit http://www.ti.com for more information.

Another example with transistor translation circuit is shown as below. The circuit design of dotted line section can refer to the design of solid line section, in terms of both module input and output circuit designs. But please pay attention to the direction of connection.

Figure 22: Reference Circuit with Transistor Circuit

NOTES

- 1. Transistor circuit solution is not suitable for applications with high baud rates exceeding 460Kbps.
- 2. "*" means under development.

3.11. PCM and I2C Interfaces

AG35-CEN provides one Pulse Code Modulation (PCM) digital interface for audio design. The interface supports the following modes:

- Primary mode (short frame synchronization, works as both master and slave)
- Auxiliary mode (long frame synchronization, works as master only)

In primary mode, the data is sampled on the falling edge of the PCM_CLK and transmitted on the rising edge. The PCM_SYNC falling edge represents the MSB. In this mode, the PCM interface supports 256kHz, 512kHz, 1024kHz or 2048kHz PCM_CLK at 8kHz PCM_SYNC, and also supports 4096kHz PCM_CLK at 16kHz PCM_SYNC.

In auxiliary mode, the data is sampled on the falling edge of the PCM_CLK and transmitted on the rising edge. The PCM_SYNC rising edge represents the MSB. In this mode, the PCM interface operates with a 256kHz, 512kHz, 1024kHz or 2048kHz PCM CLK and an 8kHz, 50% duty cycle PCM SYNC.

AG35-CEN supports 16-bit linear data format. The following figures show the primary mode's timing relationship with 8kHz PCM_SYNC and 2048kHz PCM_CLK, as well as the auxiliary mode's timing relationship with 8kHz PCM_SYNC and 256kHz PCM_CLK.

Figure 23: Primary Mode Timing

Figure 24: Auxiliary Mode Timing

The following table shows the pin definition of PCM and I2C interfaces which can be applied on audio codec design.

Table 15: Pin Definition of PCM and I2C Interfaces

Pin Name	Pin No.	I/O	Description	Comment
PCM_IN	66	DI	PCM data input	1.8V power domain
PCM_OUT	68	DO	PCM data output	1.8V power domain
PCM_SYNC	65	Ю	PCM data frame sync signal	1.8V power domain
PCM_CLK	67	Ю	PCM data bit clock	1.8V power domain
I2C1_SCL	43	OD	I2C serial clock	Require external pull-up to 1.8V
I2C1_SDA	42	OD	I2C serial data	Require external pull-up to 1.8V

Clock and mode can be configured by AT command, and the default configuration is master mode using short frame synchronization format with 2048kHz PCM_CLK and 8kHz PCM_SYNC. Please refer to **document [2]** about **AT+QDAI** command for details.

The following figure shows a reference design of PCM interface with external codec IC.

Figure 25: Reference Circuit of PCM Application with Audio Codec

NOTES

- 1. It is recommended to reserve an RC (R=22 Ω , C=22pF) circuit on the PCM lines, especially for PCM CLK.
- 2. AG35-CEN works as a master device pertaining to I2C interface.
- 3. I2C1 is used for codec configuration by default. I2C2 does not support it.

3.12. SD Card Interface

AG35-CEN provides one SD card interface which supports SD 3.0 protocol. The following tables show the pin definition.

Table 16: Pin Definition of SD Card Interface

Pin Name	Pin No.	I/O	Description	Comment
SDC2_DATA3	48	Ю	SDIO data signal (bit 3) for SD card	
SDC2_DATA2	47	Ю	SDIO data signal (bit 2) for SD card	
SDC2_DATA1	50	Ю	SDIO data signal (bit 1) for SD card	
SDC2_DATA0	49	Ю	SDIO data signal (bit 0) for SD card	
SDC2_CLK	53	DO	SDIO clock signal for SD card	
SDC2_CMD	51	Ю	SDIO command signal for SD card	
VDD_SDIO	46	РО	SDIO pull up power source for SD card	1.8V/2.85V configurable output. Cannot be used for SD card power supply.
SD_INS_DET	52	DI	SD card insertion detection	

The following figure shows a reference design of SD card interface.

Figure 26: Reference Circuit of SD Card Application

Please follow the principles below in the SD card circuit design:

- The voltage range of SD card power supply VDD_3V is 2.7~3.6V and a sufficient current up to 0.8A should be provided. As the maximum output current of VDD_SDIO is 50mA which can only be used for SDIO pull-up resistors, an externally power supply is needed for SD card.
- To maximally limit the surge current caused by SD card insertion, the bypass capacitor (C7) of SD card power source should not exceed 5uF.
- To avoid jitter of bus, resistors R7~R11 are needed to pull up the SDIO to VDD_SDIO. Value of these
 resistors is among 10~100kohm and the recommended value is 100kohm.
- In order to improve signal quality, it is recommended to add 0Ω resistors R1~R6 in series between the module and the SD card. The bypass capacitors C1~C6 are reserved and not mounted by default. All resistors and bypass capacitors should be placed close to the module.
- In order to offer good ESD protection, it is recommended to add TVS with capacitance value less than 2pF on SD card pins.
- It is important to route the SDIO signal traces with total grounding. The impedance of SDIO data trace is 50Ω (±10%).
- Keep SDIO signals far away from other sensitive circuits/signals such as RF circuits, analog signals, etc., as well as noisy signals such as clock signals, DCDC signals, etc.
- It is recommended to keep the trace length difference between CLK and DATA/CMD less than 1mm and the total routing length less than 50mm. The total trace length inside the module is 23mm, so the exterior total trace length should be less than 27mm.
- Make sure the adjacent trace spacing is two times of the trace width and the load capacitance of SDIO bus should be less than 40pF.

3.13. SGMII Interface

AG35-CEN includes an integrated Ethernet MAC with an SGMII interface and two management interfaces. Key features of the SGMII interface are shown below:

- IEEE802.3 compliance
- Half/full duplex for 10/100Mbps
- Support VLAN tagging
- Support IEEE1588 and Precision Time Protocol (PTP)
- Can be used to connect to external Ethernet PHY like AR8033, or to an external switch
- Management interfaces support 2.85V power domain.

The following table shows the pin definition of SGMII interface.

Table 17: Pin Definition of SGMII Interface

Pin Name	Pin No.	I/O	Description	Comment
MDIO Interface				
EPHY_RST_N	6	DO	Ethernet PHY reset	2.85V power domain
EPHY_INT_N	9	DI	Ethernet PHY interrupt	1.8V power domain
SGMII_ MDATA	8	Ю	SGMII MDIO (Management Data Input/Output) data	2.85V power domain
SGMII_MCLK	7	DO	SGMII MDIO (Management Data Input/Output) clock	2.85V power domain
VDD_MDIO	4	РО	SGMII MDIO pull-up power source	2.85V power domain. External pull-up power source for SGMII MDIO pins.
SGMII Signal Pa	art			
SGMII_TX_M	15	AO	SGMII transmission (-)	Connect with a 0.1uF capacitor, close to the PHY side.
SGMII_TX_P	14	АО	SGMII transmission (+)	Connect with a 0.1uF capacitor, close to the PHY side.
SGMII_RX_P	12	Al	SGMII receiving (+)	
SGMII_RX_M	11	Al	SGMII receiving (-)	

The following figure shows the simplified block diagram for Ethernet application.

Figure 25: Simplified Block Diagram for Ethernet Application

The following figure shows a reference design of SGMII interface with PHY AR8033 application.

Figure 26: Reference Circuit of SGMII Interface with PHY AR8033 Application

In order to enhance the reliability and availability of customers' application, please follow the criteria below in the Ethernet PHY circuit design:

- Keep SGMII data and control signals away from RF and VBAT traces.
- Keep the maximum trace length less than 10 inches and keep skew on the differential pairs less than 20 mils.
- The differential impedance of SGMII data trace is $100\Omega \pm 10\%$.
- To minimize crosstalk, the distance between separate adjacent pairs that are on the same layer must be equal to or larger than 40 mils.

3.14. Wireless Connectivity Interfaces

AG35-CEN supports a low-power SDIO 3.0 interface for WLAN function, and UART2 & PCM interfaces for BT function*.

The following table shows the pin definition of wireless connectivity interfaces.

Table 18: Pin Definition of Wireless Connectivity Interfaces

Pin Name	Pin No.	I/O	Description	Comment
WLAN Part				
SDC1_DATA3	23	Ю	SDIO data bus (bit 3)	1.8V power domain
SDC1_DATA2	22	Ю	SDIO data bus (bit 2)	1.8V power domain
SDC1_DATA1	21	Ю	SDIO data bus (bit 1)	1.8V power domain
SDC1_DATA0	20	Ю	SDIO data bus (bit 0)	1.8V power domain
SDC1_CLK	19	DO	SDIO clock signal	1.8V power domain
SDC1_CMD	18	Ю	SDIO command signal	1.8V power domain
WLAN_EN	149	DO	WLAN function control via Wi-Fi module. Active high.	1.8V power domain
Coexistence a	nd Control	Part		
WLAN_ SLP_CLK	169	DO	WLAN sleep clock	1.8V power domain
PM_ENABLE	5	DO	External power control	1.8V power domain
WAKE_ON_ WIRELESS	160	DI	Wake up the host (AG35-CEN module) by Wi-Fi module	
COEX_ UART_RX/ USB_BOOT	146	DI	LTE/WLAN&BT coexistence signal	1.8V power domain
COEX_ UART_TX	145	DO	LTE/WLAN&BT coexistence signal	1.8V power domain
BT Part*				
BT_EN*	3	DO	Bluetooth enable control	V _{OL} max=0.45V V _{OH} min=1.35V
UART2_TXD	163	DO	Transmit data	1.8V power domain
UART2_CTS	164	DO	Clear to send	1.8V power domain
UART2_RXD	165	DI	Receive data	1.8V power domain
UART2_RTS	166	DI	Request to send	1.8V power domain
PCM_IN	66	DI	PCM data input	1.8V power domain

PCM_OUT	68	DO	PCM data output	1.8V power domain
PCM_SYNC	65	IO	PCM data frame sync signal	1.8V power domain
PCM_CLK	67	Ю	PCM data bit clock	1.8V power domain

The following figure shows a reference design for the connection between wireless connectivity interfaces and Quectel FC20 module.

Figure 27: Reference Circuit for Connection with FC20 Module

3.14.1. WLAN Interface

AG35-CEN provides a low power SDIO 3.0 interface and a control interface for WLAN design.

The WLAN interface (SDIO interface) supports the following modes:

- Single data rate (SDR) mode (up to 208MHz)
- Double data rate (DDR) mode (up to 50MHz)

As SDIO signals are very high-speed signals, in order to ensure the SDIO interface design corresponds with the SDIO 3.0 specification, please comply with the following principles:

- It is important to route the SDIO signal traces with total grounding. The impedance of SDIO signal trace is 50Ω (±10%).
- Keep SDIO signals far away from other sensitive circuits/signals such as RF circuits, analog signals, etc., as well as noisy signals such as clock signals, DCDC signals, etc.
- It is recommended to keep the trace length difference between CLK and DATA/CMD less than 1mm and the total routing length less than 50mm. The total length of SDIO signal traces inside AG35-CEN module is 12mm and that inside FC20 is 10mm, so the exterior total trace length should be less than 28mm.
- Keep termination resistors within 15~24Ω on clock lines near the module and keep the route distance from the module clock pins to termination resistors less than 5mm.
- Make sure the adjacent trace spacing is two times of the trace width and the bus capacitance is less than 40pF.

3.14.2. BT Interface*

More information about BT interface will be added in the future version of this document.

"*" means under development.

3.15. ADC Interfaces

The module provides three analog-to-digital converter (ADC) interfaces. The voltage value on ADC pins can be read via AT+QADC=<port> command, through setting <port> into 0, 1 or 2. For more details about the AT command, please refer to document [2].

- AT+QADC=0: read the voltage value on ADC0
- AT+QADC=1: read the voltage value on ADC1

AT+QADC=2: read the voltage value on ADC2

In order to improve the accuracy of ADC, the trace of ADC interfaces should be surrounded by ground.

Table 19: Pin Definition of ADC Interfaces

Pin Name	Pin No.	Description
ADC2	172	General purpose analog to digital converter interface
ADC0	173	General purpose analog to digital converter interface
ADC1	175	General purpose analog to digital converter interface

The following table describes the characteristics of ADC interfaces.

Table 20: Characteristics of ADC Interfaces

Parameter	Min.	Тур.	Max.	Unit
ADC2 Voltage Range	0.1		1.7	V
ADC0 Voltage Range	0.3		VBAT_BB	V
ADC1 Voltage Range	0.3		VBAT_BB	V
ADC Resolution		15		bits

NOTES

- 1. The input voltage for each ADC interface must not exceed its corresponding voltage range.
- 2. It is prohibited to supply any voltage to ADC pins when VBAT is removed.
- 3. It is recommended to use resistor divider circuit for ADC application.

3.16. Network Status Indication

The network indication pins can be used to drive network status indication LEDs. The module provides two network indication pins: NET_MODE and NET_STATUS. The following tables describe the pin definition and logic level changes in different network status.

Table 21: Pin Definition of Network Connection Status / Activity Indicator

Pin Name	Pin No.	I/O	Description	Comment
NET_MODE	147	DO	Indicate the module's network registration status	1.8V power domain
NET_STATUS	170	DO	Indicate the module's network activity status	1.8V power domain

Table 22: Working State of the Network Connection Status / Activity Indicator

Pin Name	Logic Level Changes	Network Status
NET MODE	Always High	Registered on LTE network
NET_MODE	Always Low	Others
	Flicker slowly (200ms High/1800ms Low)	Network searching
NIET STATUS	Flicker slowly (1800ms High/200ms Low)	Idle
NET_STATUS	Flicker quickly (125ms High/125ms Low)	Data transfer is ongoing
	Always High	Voice calling

A reference circuit is shown in the following figure.

Figure 27: Reference Circuit of the Network Indicator

3.17. STATUS

The STATUS pin is an open drain output for indicating the module's operation status. It can be connected to a GPIO of DTE with a pull up resistor, or as an LED indication circuit as shown below. When the module is turned on normally, the STATUS pin will present a low level state. Otherwise, it will present high-impedance state.

Table 23: Pin Definition of STATUS

Pin Name	Pin No.	I/O	Description	Comment
STATUS	171	OD	Indicate the module's operation status	Require external pull-up

The following figure shows different design circuits of STATUS, and customers can choose either one according to application demands.

Figure 28: Reference Circuit of the STATUS

NOTE

In sleep state, STATUS will still output a low voltage to drive the LED, causing an extra current consumption on VBAT. So it is recommended to replace VBAT with an external controllable power supply, and use it to switch off the power source during sleep state so as to reduce power consumption.

3.18. Behaviors of RI

AT+QCFG="risignaltype", "physical" command can be used to configure RI behavior.

No matter on which port URC is presented, URC will trigger the behavior of RI pin.

NOTE

URC can be outputted from UART port, USB AT port and USB modem port by **AT+QURCCFG** command. The default port is USB AT port.

The default behaviors of RI are shown as below.

Table 24: Default Behaviors of RI

State	Response
Idle	RI keeps in high level
URC	RI outputs 120ms low pulse when new URC returns

The default RI behaviors can be configured flexibly by **AT+QCFG="urc/ri/ring"** command. Please refer to **document [2]** for more details.

3.19. USB_BOOT Interface

AG35-CEN provides a USB_BOOT pin which is multiplexed with COEX_UART_RX. Developers can pull up USB_BOOT to VDD_EXT before powering on the module, thus the module will enter into emergency download mode when powered on. In this mode, the module supports firmware upgrade over USB interface.

Table 25: Pin Definition of USB_BOOT Interface

Pin Name	Pin No.	I/O	Description	Comment
COEX_ UART_RX/ USB_BOOT	146	DI	Force the module to enter into emergency download mode	1.8V power domain. Active high. If unused, keep it open.

The following figure shows a reference circuit design of USB_BOOT interface.

Figure 29: Reference Circuit of USB_BOOT Interface

4 GNSS Receiver

4.1. General Description

AG35-CEN includes a fully integrated global navigation satellite system solution that supports Gen8C-Lite of Qualcomm (GPS, GLONASS, BeiDou, Galileo and QZSS).

AG35-CEN supports standard NMEA-0183 protocol, and outputs NMEA sentences at 1Hz data update rate via USB interface by default.

By default, AG35-CEN GNSS engine is switched off. It has to be switched on with AT command. For more details about GNSS engine technology and configurations, please refer to *document* [4].

4.2. GNSS Performance

The following table shows the GNSS performance of AG35-CEN.

Table 26: GNSS Performance

Parameter	Description	Conditions	Тур.	Unit
	Cold start	Autonomous	-146	dBm
Sensitivity (GNSS)	Reacquisition	Autonomous	-158	dBm
,	Tracking	Autonomous	-162	dBm
	Cold start	Autonomous	35	S
TTFF	@open sky	XTRA enabled	18	S
(GNSS)	Warm start @open sky	Autonomous	26	S
		XTRA enabled	2.2	S

	Hot start	Autonomous	2.5	S
	@open sky	XTRA enabled	1.8	S
Accuracy (GNSS)	CEP-50	Autonomous @open sky	< 2.5	m

NOTES

- 1. Tracking sensitivity: the lowest GNSS signal value at the antenna port on which the module can keep on positioning for 3 minutes.
- 2. Reacquisition sensitivity: the lowest GNSS signal value at the antenna port on which the module can fix position again within 3 minutes after loss of lock.
- 3. Cold start sensitivity: the lowest GNSS signal value at the antenna port on which the module fixes position within 3 minutes after executing cold start command.

4.3. Layout Guidelines

The following layout guidelines should be taken into account in application design.

- Maximize the distance among GNSS antenna, main antenna and Rx-diversity antenna.
- Digital circuits such as (U)SIM card, USB interface, camera module, display connector and SD card should be kept away from the antennas.
- Use ground vias around the GNSS trace and sensitive analog signal traces to provide coplanar isolation and protection.
- Keep the characteristic impedance for ANT_GNSS trace as 50Ω.

Please refer to *Chapter 5* for GNSS antenna reference design and antenna installation information.

5 Antenna Interfaces

AG35-CEN includes a main antenna interface, an Rx-diversity antenna interface which is used to resist the fall of signals caused by high speed movement and multipath effect, and a GNSS antenna interface. The antenna ports have an impedance of 50Ω .

5.1. Main/Rx-diversity Antenna Interface

5.1.1. Pin Definition

The pin definition of main antenna and Rx-diversity antenna interfaces are shown below.

Table 27: Pin Definition of RF Antenna Interfaces

Pin Name	Pin No.	I/O	Description	Comment
ANT_MAIN	107	Ю	Main antenna interface	50Ω impedance
ANT_DIV	127	Al	Receive diversity antenna interface	50Ω impedance

5.1.2. Operating Frequency

Table 28: Module Operating Frequencies

3GPP Band	Transmit	Receive	Unit
EGSM900	880~915	925~960	MHz
DCS1800	1710~1785	1805~1880	MHz
WCDMA B1	1920~1980	2110~2170	MHz
WCDMA B8	880~915	925~960	MHz
EVDO/CDMA BC0	824~849	869~894	MHz
TD-SCDMA B34	2010~2025	2010~2025	MHz

TD-SCDMA B39	1880~1920	1880~1920	MHz
LTE-FDD B1	1920~1980	2110~2170	MHz
LTE-FDD B3	1710~1785	1805~1880	MHz
LTE-FDD B5	824~849	869~894	MHz
LTE-FDD B8	880~915	925~960	MHz
LTE-TDD B34	2010~2025	2010~2025	MHz
LTE-TDD B38	2570~2620	2570~2620	MHz
LTE-TDD B39	1880~1920	1880~1920	MHz
LTE-TDD B40	2300~2400	2300~2400	MHz
LTE-TDD B41	2555~2655	2555~2655	MHz

5.1.3. Reference Design of RF Antenna Interfaces

A reference design of main and Rx-diversity antenna interfaces is shown as below. It is recommended to reserve a π -type matching circuit for better RF performance, and the π -type matching components (R1/C1/C2 and R2/C3/C4) should be placed as close to the antennas as possible. The capacitors are not mounted by default.

Figure 30: Reference Circuit of RF Antenna Interfaces

NOTES

- 1. Keep a proper distance between the main antenna and the Rx-diversity antenna to improve receiving sensitivity.
- 2. ANT_DIV function is enabled by default. **AT+QCFG="diversity",0** command can be used to disable receive diversity. Please refer to **document [2]** for details.

5.1.4. Reference Design of RF Layout

For user's PCB, the characteristic impedance of all RF traces should be controlled as 50Ω . The impedance of the RF traces is usually determined by the trace width (W), the materials' dielectric constant, the distance between signal layer and reference ground (H), and the clearance between RF trace and ground (S). Microstrip line or coplanar waveguide line is typically used in RF layout for characteristic impedance control. The following are reference designs of microstrip line or coplanar waveguide line with different PCB structures.

Figure 31: Microstrip Line Design on a 2-layer PCB

Figure 32: Coplanar Waveguide Line Design on a 2-layer PCB

Figure 33: Coplanar Waveguide Line Design on a 4-layer PCB (Layer 3 as Reference Ground)

Figure 34: Coplanar Waveguide Line Design on a 4-layer PCB (Layer 4 as Reference Ground)

In order to ensure RF performance and reliability, the following principles should be complied with in RF layout design:

- Use impedance simulation tool to control the characteristic impedance of RF traces as 50Ω .
- The GND pins adjacent to RF pins should not be designed as thermal relief pads, and should be fully connected to ground.
- The distance between the RF pins and the RF connector should be as short as possible, and all the right angle traces should be changed to curved ones.
- There should be clearance area under the signal pin of the antenna connector or solder joint.
- The reference ground of RF traces should be complete. Meanwhile, adding some ground vias around RF traces and the reference ground could help to improve RF performance. The distance between the ground vias and RF traces should be no less than two times the width of RF signal traces (2*W).

For more details about RF layout, please refer to document [5].

5.2. GNSS Antenna Interface

The following tables show the pin definition and frequency specification of GNSS antenna interface.

Table 29: Pin Definition of GNSS Antenna Interface

Pin Name	Pin No.	I/O	Description	Comment
ANT_GNSS	119	Al	GNSS antenna interface	50Ω impedance

Table 30: GNSS Frequency

Туре	Frequency	Unit
GPS/Galileo/QZSS	1575.42±1.023	MHz
GLONASS	1597.5~1605.8	MHz
BeiDou	1561.098±2.046	MHz

A reference design of GNSS antenna interface is shown as below.

Figure 35: Reference Circuit of GNSS Antenna

NOTES

- 1. An external LDO can be selected to supply power according to the active antenna requirement.
- 2. If the module is designed with a passive antenna, then the VDD circuit is not needed.

5.3. Antenna Installation

5.3.1. Antenna Requirements

The following table shows the requirements on main antenna, Rx-diversity antenna and GNSS antenna.

Table 31: Antenna Requirements

Antenna Type	Requirements	
	Frequency range: 1561MHz~1615MHz	
	Polarization: RHCP or linear	
	VSWR: < 2 (Typ.)	
GNSS	Passive antenna gain: > 0dBi	
	Active antenna noise figure: < 1.5dB	
	Active antenna gain: > 0dBi	
	Active antenna embedded LNA gain: < 17dB	
	VSWR: ≤ 2	
	Efficiency: > 30%	
	Max input power: 50W	
	Input impedance: 50Ω	
	Cable insertion loss: < 1dB	
GSM/WCDMA/LTE	(EGSM900, WCDMA B8, LTE-FDD B5/B8, EVDO/CDMA BC0)	
	Cable insertion loss: < 1.5dB	
	(DCS1800, WCDMA B1, LTE-FDD B1/B3, LTE-TDD B34/B39,	
	TD-SCDMA B34/B39)	
	Cable insertion loss: < 2dB	
	(LTE-TDD B38/B40/B41)	

5.3.2. Recommended RF Connector for Antenna Installation

If RF connector is used for antenna connection, it is recommended to use U.FL-R-SMT connector provided by *HIROSE*.

Figure 36: Dimensions of the U.FL-R-SMT Connector (Unit: mm)

U.FL-LP serial connectors listed in the following figure can be used to match the U.FL-R-SMT.

	U.FL-LP-040	U.FL-LP-066	U.FL-LP(V)-040	U.FL-LP-062	U.FL-LP-088
Part No.	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	E 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3.4	87	S 58-1
Mated Height	2.5mm Max. (2.4mm Nom.)	2.5mm Max. (2.4mm Nom.)	2.0mm Max. (1.9mm Nom.)	2.4mm Max. (2.3mm Nom.)	2.4mm Max. (2.3mm Nom.)
Applicable cable	Dia. 0.81mm Coaxial cable	Dia. 1.13mm and Dia. 1.32mm Coaxial cable	Dia. 0.81mm Coaxial cable	Dia. 1mm Coaxial cable	Dia. 1.37mm Coaxial cable
Weight (mg)	53.7	59.1	34.8	45.5	71.7
RoHS			YES		

Figure 37: Mechanicals of U.FL-LP Connectors

The following figure describes the space factor of mated connector.

Figure 38: Space Factor of Mated Connector (Unit: mm)

For more details, please visit https://www.hirose.com.

6 Electrical, Reliability and Radio Characteristics

6.1. Absolute Maximum Ratings

Absolute maximum ratings for power supply and voltage on digital and analog pins of the module are listed in the following table.

Table 32: Absolute Maximum Ratings

Parameter	Min.	Max.	Unit
VBAT_RF/VBAT_BB	-0.3	4.7	V
USB_VBUS	-0.3	5.5	V
Peak Current of VBAT_BB	0	0.8	A
Peak Current of VBAT_RF	0	1.8	A
Voltage at Digital Pins	-0.3	2.3	V
Voltage at ADC0	0.3	VBAT_BB	V
Voltage at ADC1	0.3	VBAT_BB	V
Voltage at ADC2	0.1	1.7	V

6.2. Power Supply Ratings

Table 33: Power Supply Ratings

Parameter	Description	Conditions	Min.	Тур.	Max.	Unit
VBAT	VBAT_BB and VBAT_RF	The actual input voltages must stay between the minimum and maximum values.	3.3	3.8	4.3	V
	Voltage drop during burst transmission	Maximum power control level on EGSM900.			400	mV
I _{VBAT}	Peak supply current (during transmission slot)	Maximum power control level on EGSM900.		1.8	2.0	А
USB_VBUS	USB connection detection		3.0	5.0	5.25	V

6.3. Operation and Storage Temperatures

Table 34: Operation and Storage Temperatures

Parameter	Min.	Тур.	Max.	Unit
Operation Temperature Range 1)	-35	25	75	°C
Extended Temperature Range 2)	-40		85	°C
Storage Temperature Range	-40		90	°C

NOTES

- 1. 1) Within operation temperature range, the module is 3GPP compliant.
- 2. ²⁾ Within extended temperature range, the module remains fully functional and retains the ability to establish and maintain a voice, SMS, data transmission, emergency call, etc. There is no unrecoverable malfunction. There are also no effects on radio spectrum and no harm to radio network. Only one or more parameters like P_{out} might reduce in their value and exceed the specified tolerances. When the temperature returns to normal operation temperature levels, the module will meet 3GPP specifications again.

6.4. Current Consumption

Table 35: AG35-CEN Current Consumption

Parameter	Description	Conditions	Тур.	Unit
	OFF state	Power down	20	uA
		AT+CFUN=0 (USB disconnected)	1.2	mA
		GSM DRX=2 (USB disconnected)	2.3	mA
		GSM DRX=9 (USB disconnected)	1.6	mA
		WCDMA PF=128 (USB disconnected)	1.6	mA
	Sleep state	WCDMA PF=512 (USB disconnected)	1.4	mA
		LTE-FDD PF=128 (USB disconnected)	1.9	mA
		LTE-FDD PF=256 (USB disconnected)	1.6	mA
		LTE-TDD PF=128 (USB disconnected)	1.8	mA
		LTE-TDD PF=256 (USB disconnected)	1.6	mA
I_{VBAT}	Idle state	WCDMA PF=64 (USB connected)	28.0	mA
		WCDMA PF=64 (USB disconnected)	16.4	mA
		LTE-FDD PF=64 (USB connected)	28.5	mA
		LTE-FDD PF=64 (USB disconnected)	16.9	mA
		LTE-TDD PF=64 (USB connected)	28.5	mA
		LTE-TDD PF=64 (USB disconnected)	17.3	mA
		EGSM900 4DL/1UL @32.67dBm	240.55	mA
	GPRS data transfer	EGSM900 3DL/2UL @32.55dBm	408.24	mA
	(GNSS OFF)	EGSM900 2DL/3UL @30.65dBm	484.39	mA
		EGSM900 1DL/4UL @29.43dBm	561.25	mA

	DCS1800 4DL/1UL @29.75dBm	167.89	mA
	DCS1800 3DL/2UL @29.66dBm	269.48	mA
	DCS1800 2DL/3UL @29.53dBm	368.02	mA
	DCS1800 1DL/4UL @29.38dBm	468.22	mA
	EGSM900 4DL/1UL @27.42dBm	165.47	mA
	EGSM900 3DL/2UL @27.26dBm	263.20	mA
	EGSM900 2DL/3UL @27.14dBm	356.80	mA
EDGE data transfer	EGSM900 1DL/4UL @26.96dBm	452.79	mA
(GNSS OFF)	DCS1800 4DL/1UL @27.00dBm	148.27	mA
	DCS1800 3DL/2UL @26.88dBm	230.03	mA
	DCS1800 2DL/3UL @26.73dBm	309.87	mA
	DCS1800 1DL/4UL @26.63dBm	393.00	mA
EVDO/CDMA data transfer (GNSS OFF)	BC0 @24.69dBm	544.63	mA
TD-SCDMA data transfer (GNSS	B34 @23.08dBm	129.64	mA
OFF)	B39 @23.17dBm	131.14	mA
	WCDMA B1 HSDPA@21.92dBm	528.43	mA
WCDMA data	WCDMA B8 HSDPA@22.72dBm	524.75	mA
transfer (GNSS OFF)	WCDMA B1 HSUPA @21.25dBm	501.26	mA
	WCDMA B8 HSUPA @21.64dBm	486.28	mA
LTE data transfer	LTE-FDD B1 @23.15dBm	691.68	mA
LTE data transfer	LTE-FDD B3		

	LTE-FDD B5 @23.16dBm	633.65	mA
	LTE-FDD B8 @22.35dBm	552.74	mA
	LTE-TDD B34 @23.62dBm	342.68	mA
	LTE-TDD B38 @23.6dBm	470.22	mA
	LTE-TDD B39 @23.55dBm	345.04	mA
	LTE-TDD B40 @23.71dBm	488.58	mA
	LTE-TDD B41 @23.53dBm	484.02	mA
	EGSM900 PCL=5 @32.79dBm	240.47	mA
	EGSM900 PCL=12 @19.62dBm	107.25	mA
	EGSM900 PCL=19 @5.72dBm	76.08	mA
GSM voice call	DCS1800 PCL=0 @29.89dBm	163.25	mA
	DCS1800 PCL=7 @16.98dBm	118.82	mA
EVDO/CDMA voice call	DCS1800 PCL=15 @0.68dBm	98.78	mA
	BC0@24.35dBm	628.35	mA
	BC0@-59.72dBm	118.36	mA
	MODAIA DA		
WCDMA voice call	WCDMA B1 @22.97dBm	637.43	mA

Table 36: AG35-CEN GNSS Current Consumption

Parameter	Description	Conditions	Тур.	Unit
I_{VBAT}	Searching	Cold Start @Passive Antenna	50.5	mA
(GNSS)	(AT+CFUN=0)	Hot Start @Passive Antenna	49.7	mA

	Lost State @Passive Antenna	49.8	mA
Tracking (AT+CFUN=0)	Open Sky @Passive Antenna	28.8	mA

6.5. RF Output Power

The following table shows the RF output power of AG35-CEN module.

Table 37: RF Output Power

Frequency	Max.	Min.
EGSM900	33dBm±2dB	5dBm±5dB
DCS1800	30dBm±2dB	0dBm±5dB
WCDMA B1	24dBm+1/-3dB	<-49dBm
WCDMA B8	24dBm+1/-3dB	<-49dBm
EVDO/CDMA BC0	24dBm+2/-1dB	<-49dBm
TD-SCDMA B34	24dBm+1/-3dB	<-49dBm
TD-SCDMA B39	24dBm+1/-3dB	<-49dBm
LTE-FDD B1	23dBm±2dB	<-39dBm
LTE-FDD B3	23dBm±2dB	<-39dBm
LTE-FDD B5	23dBm±2dB	<-39dBm
LTE-FDD B8	23dBm±2dB	<-39dBm
LTE-TDD B34	23dBm±2dB	<-39dBm
LTE-TDD B38	23dBm±2dB	<-39dBm
LTE-TDD B39	23dBm±2dB	<-39dBm
LTE-TDD B40	23dBm±2dB	<-39dBm
LTE-TDD B41	23dBm±2dB	<-39dBm

NOTE

In GPRS 4 slots TX mode, the max output power is reduced by 3.0dB. This design conforms to the GSM specification as described in *Chapter 13.16* of *3GPP TS 51.010-1*.

6.6. RF Receiving Sensitivity

Table 38: AG35-CEN RF Receiving Sensitivity

F		Rec	eive Sensitivity (T	¬yp.)
Frequency	Primary	Diversity	SIMO	3GPP(SIMO)
EGSM900	-109dBm	NA	NA	-102dBm
DCS1800	-109dBm	NA	NA	-102dBm
WCDMA B1	-109.6dBm	TBD	TBD	-106.7dBm
WCDMA B8	-109.8dBm	TBD	TBD	-103.7dBm
EVDO/CDMA BC0	-109dBm	NA	NA	-104dBm
TD-SCDMA B34	-109.1dBm	NA	NA	-108dBm
TD-SCDMA B39	-109.5dBm	NA	NA	-108dBm
LTE-FDD B1 (10M)	-98dBm	-99dBm	-102.4dBm	-96.3dBm
LTE-FDD B3 (10M)	-98.6dBm	-99dBm	-102.1dBm	-93.3dBm
LTE-FDD B5 (10M)	-98.5dBm	-100dBm	-102.5dBm	-94.3dBm
LTE-FDD B8 (10M)	-98.5dBm	-100dBm	-102.1dBm	-93.3dBm
LTE-TDD B34 (10M)	-98.1dBm	-99dBm	-101.8dBm	-96.3dBm
LTE-TDD B38 (10M)	-98.5dBm	-98dBm	-102.1dBm	-94.3dBm
LTE-TDD B39 (10M)	-98.4dBm	-99dBm	-102.1dBm	-96.3dBm
LTE-TDD B40 (10M)	-98.3dBm	-99dBm	-102.4dBm	-96.3dBm
LTE-TDD B41 (10M)	-97.6dBm	-98dBm	-101dBm	-94.3dBm

6.7. Electrostatic Discharge

The module is not protected against electrostatic discharge (ESD) in general. Consequently, it is subject to ESD handling precautions that typically apply to ESD sensitive components. Proper ESD handling and packaging procedures must be applied throughout the processing, handling and operation of any application that incorporates the module.

The following table shows the module electrostatic discharge characteristics.

Table 39: Electrostatic Discharge Characteristics

Tested Points	Contact Discharge	Air Discharge	Unit
VBAT, GND	±9	±16	kV
All Antenna Interfaces	±10	±16	kV
Other Interfaces	±0.5	±1	kV

6.8. Thermal Consideration

In order to achieve better performance of the module, it is recommended to comply with the following principles for thermal consideration:

- On customers' PCB design, please keep placement of the module away from heating sources, especially high power components such as ARM processor, audio power amplifier, power supply, etc.
- Do not place components on the opposite side of the PCB area where the module is mounted, in order to facilitate adding of heatsink when necessary.
- Do not apply solder mask on the opposite side of the PCB area where the module is mounted, so as
 to ensure better heat dissipation performance.
- The reference ground of the area where the module is mounted should be complete, and add ground vias as many as possible for better heat dissipation.
- Make sure the ground pads of the module and PCB are fully connected.
- According to customers' application demands, the heatsink can be mounted on the top of the module, or the opposite side of the PCB area where the module is mounted, or both of them.
- The heatsink should be designed with as many fins as possible to increase heat dissipation area.
 Meanwhile, a thermal pad with high thermal conductivity should be used between the heatsink and module/PCB.

The following shows two kinds of heatsink designs for reference and customers can choose one or both of them according to their application structure.

Figure 39: Referenced Heatsink Design (Heatsink at the Top of the Module)

Figure 40: Referenced Heatsink Design (Heatsink at the Backside of Customers' PCB)

NOTE

The module offers the best performance when the internal BB chip stays below 105°C. When the maximum temperature of the BB chip reaches or exceeds 105°C, the module works normal but provides reduced performance (such as RF output power, data rate, etc.). When the maximum BB chip temperature reaches or exceeds 115°C, the module will disconnect from the network, and it will recover to network connected state after the maximum temperature falls below 115°C. Therefore, the thermal design should be maximally optimized to make sure the maximum BB chip temperature always maintains below 105°C. Customers can execute **AT+QTEMP** command and get the maximum BB chip temperature from the first returned value.

7 Mechanical Dimensions

This chapter describes the mechanical dimensions of the module. All dimensions are measured in mm, and the tolerances for dimensions without tolerance values are ±0.05mm.

7.1. Mechanical Dimensions of the Module

Figure 41: Module Top and Side Dimensions

Figure 42: Module Bottom Dimensions (Top View)

7.2. Recommended Footprint

Figure 43: Module Bottom Dimensions (Top View)

NOTE

For convenient maintenance of the module, please keep about 3mm between the module and other components on the host PCB.

7.3. Design Effect Drawings of the Module

Figure 44: Top View of the Module

Figure 45: Bottom View of the Module

NOTE

These are design effect drawings of AG35-CEN module. For more accurate pictures, please refer to the module that you get from Quectel.

8 Storage, Manufacturing and Packaging

8.1. Storage

AG35-CEN is stored in a vacuum-sealed bag. The storage restrictions are shown as below.

- 1. Shelf life in the vacuum-sealed bag: 12 months at < 40°C/90%RH.
- 2. After the vacuum-sealed bag is opened, devices that will be subjected to reflow soldering or other high temperature processes must be:
 - Mounted within 168 hours at the factory environment of ≤ 30°C/60%RH.
 - Stored at <10% RH.
- 3. Devices require baking before mounting, if any circumstance below occurs:
 - When the ambient temperature is 23°C±5°C and the humidity indicator card shows the humidity is >10% before opening the vacuum-sealed bag.
 - Device mounting cannot be finished within 168 hours at factory conditions of ≤30°C/60% RH.
 - Stored at >10% RH after the vacuum-sealed bag is opened.
- 4. If baking is required, devices may be baked for 8 hours at 120°C±5°C.

NOTE

As the plastic package cannot be subjected to high temperature, it should be removed from devices before high temperature (120°C) baking. If shorter baking time is desired, please refer to *IPC/JEDECJ-STD-033* for baking procedure.

8.2. Manufacturing and Soldering

Push the squeegee to apply the solder paste on the surface of stencil, thus making the paste fill the stencil openings and then penetrate to the PCB. The force on the squeegee should be adjusted properly so as to produce a clean stencil surface on a single pass. To ensure the module soldering quality, the thickness of stencil for the module is recommended to be 0.15mm~0.18mm. For more details, please refer to **document [6]**.

It is suggested that the peak reflow temperature is 235~245°C (for SnAg3.0Cu0.5 alloy). The absolute maximum reflow temperature is 260°C. To avoid damage to the module caused by repeated heating, it is suggested that the module should be mounted after reflow soldering for the other side of PCB has been completed. Recommended reflow soldering thermal profile is shown below.

Figure 46: Recommended Reflow Soldering Thermal Profile

8.3. Packaging

AG35-CEN is packaged in tape and reel carriers. One reel is 10.56 meters long and contains 220 modules. The figures below show the package details, measured in mm.

Figure 47: Tape Specifications

Figure 48: Reel Specifications

9 Appendix A References

Table 40: Related Documents

SN	Document Name	Remark
[1]	Quectel_AG35_Power_Management_Application_ Note	AG35 Power Management Application Note
[2]	Quectel_AG35_AT_Commands_Manual	AG35 AT Commands Manual
[3]	Quectel_UMTS<E_EVB_User_Guide	UMTS<E EVB User Guide
[4]	Quectel_AG35_GNSS_AT_Commands_Manual	AG35 GNSS AT Commands Manual
[5]	Quectel_RF_Layout_Application_Note	RF Layout Application Note
[6]	Quectel_Module_Secondary_SMT_User_Guide	Module Secondary SMT User Guide

Table 41: Terms and Abbreviations

Description
Adaptive Multi-rate
Bits Per Second
Challenge Handshake Authentication Protocol
Coding Scheme
Circuit Switched Data
Clear To Send
Dual-carrier High Speed Packet Access
Delta Firmware Upgrade Over The Air
Downlink

DTR	Data Terminal Ready
DTX	Discontinuous Transmission
EFR	Enhanced Full Rate
ESD	Electrostatic Discharge
EVDO	Evolution-Data Optimized
FDD	Frequency Division Duplex
FR	Full Rate
GLONASS	GLObalnaya NAvigatsionnaya Sputnikovaya Sistema, the Russian Global Navigation Satellite System
GMSK	Gaussian Minimum Shift Keying
GNSS	Global Navigation Satellite System
GPS	Global Positioning System
GSM	Global System for Mobile Communications
HR	Half Rate
HSPA	High Speed Packet Access
HSDPA	High Speed Downlink Packet Access
HSUPA	High Speed Uplink Packet Access
I/O	Input/Output
LED	Light Emitting Diode
LNA	Low Noise Amplifier
LTE	Long Term Evolution
MIMO	Multiple Input Multiple Output
MO	Mobile Originated
MS	Mobile Station (GSM engine)
MT	Mobile Terminated
PAP	Password Authentication Protocol

PCB	Printed Circuit Board
PDU	Protocol Data Unit
PPP	Point-to-Point Protocol
QAM	Quadrature Amplitude Modulation
QPSK	Quadrature Phase Shift Keying
RF	Radio Frequency
RHCP	Right Hand Circularly Polarized
Rx	Receive
SIM	Subscriber Identification Module
SMS	Short Message Service
TDD	Time Division Duplexing
TDMA	Time Division Multiple Access
TD-SCDMA	Time Division-Synchronous Code Division Multiple Access
TX	Transmitting Direction
UL	Uplink
UMTS	Universal Mobile Telecommunications System
URC	Unsolicited Result Code
(U)SIM	(Universal) Subscriber Identity Module
Vmax	Maximum Voltage Value
Vnorm	Normal Voltage Value
Vmin	Minimum Voltage Value
V _{IH} max	Maximum Input High Level Voltage Value
V _{IH} min	Minimum Input High Level Voltage Value
V _{IL} max	Maximum Input Low Level Voltage Value
V _{IL} min	Minimum Input Low Level Voltage Value

V _I max	Absolute Maximum Input Voltage Value
V _I min	Absolute Minimum Input Voltage Value
V _Ω ax	Maximum Output High Level Voltage Value
V_{Ω} in	Minimum Output High Level Voltage Value
V _{OL} max	Maximum Output Low Level Voltage Value
V _{OL} min	Minimum Output Low Level Voltage Value
VSWR	Voltage Standing Wave Ratio
WCDMA	Wideband Code Division Multiple Access

10 Appendix B GPRS Coding Schemes

Table 42: Description of Different Coding Schemes

Scheme	CS-1	CS-2	CS-3	CS-4
Code Rate	1/2	2/3	3/4	1
USF	3	3	3	3
Pre-coded USF	3	6	6	12
Radio Block excl.USF and BCS	181	268	312	428
BCS	40	16	16	16
Tail	4	4	4	-
Coded Bits	456	588	676	456
Punctured Bits	0	132	220	-
Data Rate Kb/s	9.05	13.4	15.6	21.4

11 Appendix C GPRS Multi-slot Classes

Twenty-nine classes of GPRS multi-slot modes are defined for MS in GPRS specification. Multi-slot classes are product dependent, and determine the maximum achievable data rates in both the uplink and downlink directions. Written as 3+1 or 2+2, the first number indicates the amount of downlink timeslots, while the second number indicates the amount of uplink timeslots. The active slots determine the total number of slots the GPRS device can use simultaneously for both uplink and downlink communications.

The description of different multi-slot classes is shown in the following table.

Table 43: GPRS Multi-slot Classes

Multislot Class	Downlink Slots	Uplink Slots	Active Slots
1	1	1	2
2	2	1	3
3	2	2	3
4	3	1	4
5	2	2	4
6	3	2	4
7	3	3	4
8	4	1	5
9	3	2	5
10	4	2	5
11	4	3	5
12	4	4	5
13	3	3	NA
14	4	4	NA

15	5	5	NA	
16	6	6	NA	
17	7	7	NA	
18	8	8	NA	
19	6	2	NA	
20	6	3	NA	
21	6	4	NA	
22	6	4	NA	
23	6	6	NA	
24	8	2	NA	
25	8	3	NA	
26	8	4	NA	
27	8	4	NA	
28	8	6	NA	
29	8	8	NA	
30	5	1	6	
31	5	2	6	
32	5	3	6	
33	5	4	6	

12 Appendix D EDGE Modulation and Coding Schemes

Table 44: EDGE Modulation and Coding Schemes

Coding Scheme	Modulation	Coding Family	1 Timeslot	2 Timeslot	4 Timeslot
CS-1:	GMSK	/	9.05kbps	18.1kbps	36.2kbps
CS-2:	GMSK	/	13.4kbps	26.8kbps	53.6kbps
CS-3:	GMSK	/	15.6kbps	31.2kbps	62.4kbps
CS-4:	GMSK	/	21.4kbps	42.8kbps	85.6kbps
MCS-1	GMSK	С	8.80kbps	17.60kbps	35.20kbps
MCS-2	GMSK	В	11.2kbps	22.4kbps	44.8kbps
MCS-3	GMSK	A	14.8kbps	29.6kbps	59.2kbps
MCS-4	GMSK	С	17.6kbps	35.2kbps	70.4kbps
MCS-5	8-PSK	В	22.4kbps	44.8kbps	89.6kbps
MCS-6	8-PSK	A	29.6kbps	59.2kbps	118.4kbps
MCS-7	8-PSK	В	44.8kbps	89.6kbps	179.2kbps
MCS-8	8-PSK	A	54.4kbps	108.8kbps	217.6kbps
MCS-9	8-PSK	A	59.2kbps	118.4kbps	236.8kbps