SYSTEMES ALGEBRIQUES

Table des matières

1	Preuves 3	
	1.1 Proprietes de preuves formelles	3
	1.2 Ensembles 5	

List of Theorems

1	■ Definition (division d'entiers)	4
1	♦ Proposition (Division avec reste)	4
		4
2	♦ Proposition (Paradoxe de Russel)	5
	Proof	_

Parties

- preuves et ensembles
- Theorie des nombres
- Theorie des groupes

Une grande partie du bachelor est de faire des preuves, il est donc important de comprendre quand une preuve est correcte.

Il y a deux types de preuves :

- Preuves formellesTres precise, mais difficile a lire.
- Preuves d'habitude
 Approximation des preuves formelles, en remplacant ques parties par du texte "humain". Il faut s'assurer qu'on peut traduire cette preuve en preuve formelle.

1.1 Proprietes de preuves formelles

1 roprietes de predocs jorniedes
 Elles utilisent seulement des signes/symboles mathematiques.
— ∃ (existe)
— \forall (pour tout)
— ∃! (existe unique)
— ∧ (et)

- ∨ (ou)
- ¬ (non)
- \Rightarrow (implique)
- etc
- Elle consiste de lignes, et il y a des regles strictes que ces lignes doivent suivre.
- Regles

- Axiomes
- Propositions qu'on a deja montrees.
- Tautologies

Exemples

$$\neg (A \lor B) \iff ((\neg A) \lor (\neg B))$$

— Modus Ponens : Si on a que

$$\begin{cases} A \Rightarrow B \\ A \end{cases}$$

Alors B est vrai¹

Dans ce cours 0 n'est ni positif, ni negatif.

 Pour lire plus, regarder "Calcul des predicats" sur wikipedia

■ Definition 1 (division d'entiers)

q divise a (q|a) si il existe un entier r tel que $a=q\cdot r$.

♦ Proposition 1 (Division avec reste)

 $a, q \neq 0$ entiers non-negatifs,

 $\Rightarrow \exists$ entiers non-negatifs

b et r t.q.

$$a = b \cdot q + r$$

et

Proof

Unicite Supposons que $\exists b, r, b', r'$ entiers non-negatifs et r < q et r' < q.

$$a = bq + r$$

$$a = b'q + r'$$

Alors

$$\underbrace{(b-b')}_{-q,0,q}q = \underbrace{r'-r}_{-q< r'-r< q}$$

$$\Rightarrow r' - r = 0$$

$$(b-b')q=0 \Rightarrow b=b'$$

Existence

Par induction sur *a*.

•
$$a = 0 \Rightarrow b = 0$$
 et $r = 0$

0 supposons que on connait l'existence pour a remplace par a − 1. Alors, $\exists c$, s tq

$$a - 1 = cq + s$$
$$s < q$$

Alors, soit s < q - 1

$$a = (a-1) + 1$$
$$= cq + s + 1$$

Alors on peut dire que s + 1 = r. Sinon s = q - 1

$$a = (a-1) + 1$$
$$= cq + \underbrace{s+1}_{=q}$$
$$= (c+1) \cdot q + 0$$

1.2 Ensembles

Premiere approche:

ensemble = { collection de choses }

Exemple:

$$\underbrace{\{\{\{\emptyset\},\emptyset\}\emptyset\}}_A$$

$\Rightarrow A \in A$

♦ Proposition 2 (Paradoxe de Russel)

$$B = \{Aest \ un \ ensemble | A \in A\}$$

peut pas etre un ensemble.

Supposons que B est un ensemble et $B \subset B \iff B \not\subset B \iff B \subset B \dots$

Question:

Alors, qui sont les ensembles? Reponse :

Axiome de Zermelo-Fraenkel

Quelques exemples de Zermelo-Fraenkel

- 1) et 2) impliquent que \emptyset est un ensemble.
- 2)A ensemble, E(x) expression $\rightarrow \{a \in A | E(a) \text{vrai}\}$ 3) A_i ensembles ($i \in I$)

$$\rightarrow_{i\in I} A_i$$

est un ens. 4)...

- 5) axiome de l'ensemble puissance
- A ensemble

$$\rightarrow 2^A = \{B \subseteq A | B$$
sous-ens. $deA\}$

Exemple : $\{0,1\} = A$

$$2^A = \{\emptyset, \{0\}, \{1\}, \{0,1\}\}$$

6) A_i ensembles ($i \in I$) \rightarrow on peut choisir $a_i \in A_i$ a la meme fois 7) etc...

Consequences 1) Les ensembles finis existent.

- (i) Ø
- (ii) $\{\emptyset\}$

...

2)
$$\mathbb{N} = \{0, 1, 2, ...\}$$
 est un ensemble 3) $\mathbb{Z} = \{..., -2, -1, 0, 1, 2, ...\}$

4)
$$2 \cdot \mathbb{N} = \{x \in \mathbb{N} | 2|x\}$$
 5) $A \subseteq B$

Alors on peut definir la difference

$$B \setminus A = \{x \in B | x \notin A\}$$

6)
$$A, B \subseteq C$$

$$A \cap B = \{x \in C | x \in A, x \in B\}$$