Определение местоположения с помощью инерционных датчиков

Макаров М., Зайнулина Э., Киселёва Е., Фатеев Д., Божедомов Н., Толканев А., Ночевкин В., Протасов В., Рябов А.

Московский физико-технический институт

20 марта 2019 г.

Цель работы

Задача

Позиционирование в помещениях и других условиях, когда глобальная навигационная система не может быть задействована, с использованием только инерционных датчиков телефона.

Проблема

Значение датчиков телефона неточно, поэтому наивные методы использовать нельзя.

Метод решения

Использовать априорное знание о расположении телефона для регрессии векторов скорости.

Пример регрессии

Литература

Основная статья

Hang Yan, Qi Shan, and Yasutaka Furukawa. Ridi: Robust imu double integration. CoRR, abs/1712.09004, 2017.

Дополнительная статья

Boyuan Wang, Xuelin Liu, Baoguo Yu, Ruicai Jia, and Xingli Gan. Pedestrian dead reckoning based on motion mode recognition using a smartphone. Sensors, 18(6):1811, 2018.

Постановка задачи

Структура данных

$$f: X \to Y$$

 $\mathbf{X} \in \mathbb{R}^{N imes T}$ - матрица признаков.

- Объект положение в определенный момент времени і.
- Признаки объекта угловые скорости и линейные ускорения в стабилизированной системе координат датчиков в моменты времени *i window _ size*, . . . , *i*, где *window _ size* размер окна (равен 200).

 $\mathbf{Y} \in \mathbb{R}^{2 imes T}$ - траектория пешехода, y(t) - координаты пешехода в момент времени t.

Постановка задачи

Подзадачи

- ① Определение класса P местоположения датчика: рука, нога, сумка, туловище. (P = $\{0,1,2,3\}$)
- ② Предсказание траектории на основе полученного класса

$$f = f_2 \circ f_1$$

$$f_1 : X \to P = \{0, 1, 2, 3\}$$

$$f_2 : X \times P \to Y$$

Оценка качества модели

Критерий суммы квадратов отклонений предсказанных скоростей от истинных, а также корреляция между предсказанной и истинной траекториями пешехода.

Базовая модель

Метод, используемый в основной статье

- Для классификации SVM-классификатор
- Для регрессии SVM-регрессор

Ядро:

$$K(x,x') = \exp\left(-\gamma \|x - x'\|^2\right)$$

Цель

Сравнить поведение различных моделей в каждой из подзадач при различных уровнях вычислительной сложности. Подобрать оптимальные гиперпапаметры.

Данные

Данные взяты из a . Траектории сняты при 4 различных положениях телефона и с нескольких людей.

^aHang Yan, Qi Shan, and Yasutaka Furukawa. Ridi: Robust imu double integration. CoRR, abs/1712.09004, 2017.

Рука

Нога

Туловище

Таблица: Зависимости MSE (m^2/s^2) от параметров моделей для выборки 1

Регрессор	C=1		C=10	
т егрессор	$\gamma = 0.001$	$\gamma = 0.01$	$\gamma = 0.001$	$\gamma = 0.01$
Сумка, 0	0.00948	0.00944	0.01029	0.00703
Туловище, 0	0.00205	0.00448	0.00212	0.00212
Рука, 0	0.00613	0.00604	0.00731	0.00702
Нога, 0	0.00464	0.00473	0.00457	0.00469

Таблица: Зависимости MSE (m^2/s^2) от параметров моделей для выборки 2

Регрессор	C=1		C=10	
т егрессор	$\gamma = 0.001$	$\gamma = 0.01$	$\gamma = 0.001$	$\gamma = 0.01$
Сумка, 0	0.0125	0.01255	0.01232	0.01234
Туловище, 0	0.00205	0.00206	0.00213	0.00212
Рука, 0	0.02699	0.02676	0.02176	0.02155
Нога, 0	0.0054	0.00546	0.00544	0.0055

Таблица: Зависимости MSE (m^2/s^2) от параметров моделей для выборки 3

Регрессор	C=1		C=10	
т егрессор	$\gamma = 0.001$	$\gamma = 0.01$	$\gamma = 0.001$	$\gamma = 0.01$
Сумка, 0	0.00579	0.00573	0.00591	0.00583
Туловище, 0	0.00379	0.00389	0.00384	0.00391
Рука, 0	0.02699	0.02676	0.02176	0.02155
Нога, 0	0.00395	0.00401	0.00403	0.00405

Оптимальные гиперпараметры

	Рука	Нога	Сумка	Туловище
С	10	1	1	1
γ	0.01	0.001	0.01	0.001

С помощью оптимальных моделей были построены траектории для каждого из классов на тестовой выборке Zhicheng с дополнительной оптимизацией предсказанных скоростей (синяя линия) и без (сиреневая линия).

Класс-рука

Класс-туловище

Класс-нога

Класс-сумка

Выводы

Выводы

- Предварительное определение класса расположения смартфона позволило установить более подходящие параметры моделей
- Дополнительное уточнение скоростей позволило лучше приблизить траектории

Планируется

- применить полученную модель на дополнительно собранных данных
- улучшить методы обработки для уменьшения шума (фильтр Калмана)
- рассмотреть другие способы оптимизации модели