

Claudia Cappelli claudia.cappelli@gmail.com

Sistemas de numeração e Base numérica

- Sistema de numeração são um sistema onde um conjunto de números é representado por numerais.
- A base de um sistema de numeração é a quantidade de dígitos disponíveis para representar qualquer número.
- Com a evolução das civilizações e da matemática houve necessidade de representar os números em diferentes bases numéricas.
- **Exemplos:**
 - **❖** Base decimal (0,1,2,3,4,5,6,7,8,9) − Base 10
 - ❖ Base binária (0,1) Base 2
 - ❖ Sistema hexadecimal (0,1,2,3,4,5,6,7,8,9, A,B,C,D,E,F) − Base 16
 - ❖ Sistema octal (0,1,2,3,4,5,6,7) − Base 8

Exemplo

Como o computador funciona?

- ❖ Toda comunicação e cálculos de um computador são realizados utilizando-se o sistema binário (0/1) – Base 2.
- Os computadores só entendem bits.
- ❖ O computador só consegue armazenar impulsos elétricos que são medidos/reconhecidos pela intensidade de 0 e 1.
- Para representar informações o computador precisa de mais do que um bit. Precisa de bytes (cada byte tem 8 bits).

Conversão de bases

Decimal / Binária

- Divide-se o numero decimal por 2.
- * Exemplo: Converter 4 (base 10) em Binário (Base 2)

- ❖17 (base 10) = ? (base 2)
- ❖30 (base 10) = ? (base 2)
- ❖10 (base 10) = ? (base 2)

Binária/Decimal

- Utiliza-se uma tabela para facilitar
- * Exemplo: Converter 100 (base 2) em Decimal (Base 10)

•••	27	2 ⁶	2 ⁵	24	2 ³	2 ²	2 ¹	2 º
	128	64	32	16	8	4	2	1
						1	0	0
						4	0	0
			4+() + 0 =	= 4 ₁₀			

```
❖1010 (base 2) = ? (base 10)
```

 128	64	32	16	8	4	2	1

Decimal / Hexadecimal

- Primeira conversão para binário
- Segunda conversão para hexadecimal

	DECABIN(A2;4)	DECAHEX(A2;4
Decimal	Binário	Hexadecimal
0	0000	0000
1	0001	0001
2	0010	0002
3	0011	0003
4	0100	0004
5	0101	0005
6	0110	0006
7	0111	0007
8	1000	0008
9	1001	0009
10	1010	000A
11	1011	000B
12	1100	000C
13	1101	000D
14	1110	000E
15	1111	000F

- ❖10 (base 10) = ? (base 16)
- ❖ 17 (base 10) = ? (base 16)
- ❖30 (base 10) = ? (base 16)
- *214 (base 10) = ? (base 16)

Hexadecimal / Decimal

- Primeira conversão para binário
- Segunda conversão para decimal

	DECABIN(A2;4)	DECAHEX(A2;4
Decimal	Binário	Hexadecimal
0	0000	0000
1	0001	0001
2	0010	0002
3	0011	0003
4	0100	0004
5	0101	0005
6	0110	0006
7	0111	0007
8	1000	0008
9	1001	0009
10	1010	000A
11	1011	000B
12	1100	000C
13	1101	000D
14	1110	000E
15	1111	000F

>11	AF ₁₆ =	1010	01111	2			
 128	64	32	16	8 8	4	2	1
1	0	1	0	1	1	1	1
128		32		8	4	2	1

- ❖ F (base 16) = ? (base 10)
- *2A (base 16) = ? (base 10)
- *83 (base 16) = ? (base 10)

Tabelas Verdade

Operadores Lógicos

- Por meio dos operadores lógicos os computadores conseguem realizar os mais diversos cálculos e processos existentes
- Existem vários operadores. Vamos ver aqui os mais simples:
 - * AND
 - ◆ OR
 - * NOT

1	Verdadeiro
0	Falso

AND (E)

- O resultado da operação será VERDADE, se e somente se, todas as variáveis de entrada forem VERDADE.

	Y = A * B					
Α	В	Υ				
0	0	0				
0	1	0				
1	0	0				
1	1	1				

OR (OU)

O resultado da operação será VERDADE, se um operando for VERDADEIRO.

Y	Y = A + B					
A	В	Y				
0	0	0				
0	1	1				
1	0	1				
1	1	1				

NOT (NÃO)

Conhecido como inversor, de modo a produzir na saída um VALOR OPOSTO ou INVERSO.

Y	= A
Α	Y
0	1
1	0

• Calcule:

X = (A + B) * C

Α	В	С	X
0	0	1	
1	1	0	
0	0	0	
0	1	1	

Tarefas

- Assista os vídeos sobre Adição em Binário, Octal e Hexadecimal:
 - https://www.youtube.com/watch?v=czrxHe6nQBg&list=PLdvD02W3316IGfKXNU5Yf5O D-BSla 21i&index=8
 - https://www.youtube.com/watch?v=pGxKo4vcRjo&list=PLdvD02W3316IGfKXNU5Yf5O D-BSla_21i&index=9
 - https://www.youtube.com/watch?v=-B0k0oB5NrU&list=PLdvD02W3316IGfKXNU5Yf5OD-BSIa_21i&index=10
- Assista os vídeos sobre Subtração em Binário, Octal e Hexadecimal:
 - https://www.youtube.com/watch?v=sbKAYKA5J1A&list=PLdvD02W3316IGfKXNU5Yf5 OD-BSla_21i&index=11
 - https://www.youtube.com/watch?v=P47DTzOcbvo&list=PLdvD02W3316IGfKXNU5Yf5 OD-BSla_21i&index=12
 - https://www.youtube.com/watch?v=gHRHII3rHoU&list=PLdvD02W3316IGfKXNU5Yf5O D-BSla 21i&index=13
- Resolva a lista de exercícios 1 e 2. Poste no AVA.