RACHUNEK PRAWDOPODOBIEŃSTWA 1R LISTA ZADAŃ NR 4

- 1*. Zapoznaj się z dowodem twierdzenia Kołmogorowa (dowód można znaleźć np. w rozdziale C.4 [JS]).
- **2.** Ola poszła do kasyna mając 100 złotych. Postanowiła grać tak długo aż albo zbankrutuje, albo osiągnie 500 złotych. W każdej pojedynczej grze może wygrać 10zł z prawdopodobieństwem 1/3, przegrać 10zł z prawdopodobieństwem 1/2 lub utrzymać swój stan posiadania z prawdopodobieństwem 1/6. Pokaż, że z prawdopodobieństwem 1 Ola skończy grę w skończonym czasie.
- 3. Losujemy niezależnie nieskończenie wiele punktów z koła o promieniu 1 i środku (0,0). Dla jakich wartości ε z prawdopodobieństwem 1 w kole o promieniu ε i środku (0,0) znajdzie się nieskończenie wiele punktów?
- **4.** Zdarzenia A_1 , A_2 ,.. są niezależne i $\mathbb{P}(A_n)=p_n\in(0,1)$. Wykaż, że z prawdopodobieństwem 1 zachodzi co najmniej jedno ze zdarzeń A_n wtedy i tylko wtedy, gdy z prawdopodobieństwem 1 zachodzi nieskończenie wiele zdarzeń A_n .
- 5^* . Rzucamy nieskończenie wiele razy monetą, w której orzeł wypada w prawdopodobieństwem $p \ge 1/2$. Niech A_n oznacza zdarzenie, że pomiędzy rzutem 2^n a 2^{n+1} otrzymano ciąg n kolejnych orłów. Pokaż, że zdarzenia A_n z prawdopodobieństwem 1 zachodzą nieskończenie wiele razy.
- 6. Niech X_1, \ldots, X_n będą zmiennymi losowymi określonymi na przestrzeni probabilistycznej $(\Omega, \mathcal{F}, \mathbb{P})$ i niech $B_1, B_2, \ldots, B_n \in \mathcal{F}$ będzie rozbiciem Ω (tzn. zbiory te są rozłączne i ich sumą jest Ω). Niech $Z(\omega) = X_i(\omega)$ dla $\omega \in B_i$. Uzasadnij, że Z jest zmienną losową.
- 7. Dana jest przestrzeń probabilistyczna $(\Omega, \mathcal{F}, \mathbb{P})$ oraz funkcja $X: \Omega \to \mathbb{R}$. Uzasadnij, że jeżeli $X^{-1}(a,b) \in \mathcal{F}$ dla dowolnych $a,b \in \mathbb{R}$, to X jest zmienną losową.
- 8. Podaj przykład przestrzeni probabilistycznej $(\Omega, \mathcal{F}, \mathbb{P})$ i funkcji $X: \Omega \to \mathbb{R}$, która nie jest zmienną losową.
- 9. Pokaż, że jeżeli X jest zmienną losową, to dla każdego $\varepsilon>0$ istnieje ograniczona zmienna losowa X_ε (tzn. $|X_\varepsilon|< M$ dla pewnej stałej M) taka, że

$$\mathbb{P}[X \neq X_{\varepsilon}] \leq \varepsilon.$$

- 10. Niech $\{X_n\}_{n\in\mathbb{N}}$ będzie ciągiem zmiennych losowych. Wykaż, że jeżeli funkcja $f:\mathbb{R}^n\mapsto\mathbb{R}$ jest mierzalna, to $f(X_1,\ldots,X_n)$ jest zmienną losową. Wywnioskuj, że X_1+X_2 oraz $X_1\cdot X_2$ są zmiennymi losowymi. Uzasadnij, że $\inf_n X_n$, $\sup_n X_n$, $\lim\inf_n X_n$, $\lim\sup_n X_n$ są również zmiennymi losowymi.
- 11. Dystrybuanta zmiennej losowej X dana jest wzorem

$$F(t) = \left\{ \begin{array}{ll} 0 & \mathrm{dla} \ t < 0 \\ t^2 & \mathrm{dla} \ 0 \leq t < 1/2 \\ 1/4 & \mathrm{dla} \ 1/2 \leq t < 4 \\ 1 & \mathrm{dla} \ t \geq 4. \end{array} \right.$$

Oblicz $\mathbb{P}[X = 5]$, $\mathbb{P}[X = 4]$, $\mathbb{P}[1/3 < X \le 5]$, $\mathbb{P}[0 < X < 1]$.

- **12.** Niech X będzie zmienną losową o ciągłej dystrybuancie F. Pokaż, że Y = F(X) jest zmienną losową (tzn. że jest mierzalna) o rozkładzie U([0,1]).
- **13.** Niech U będzie zmienną losową o rozkładzie jednostajnym na [-1,1]. Znajdź dystrybuanty i rozkłady zmiennych losowych Y=(U+1)/2, $Y=U^2$, Y=1/(U+2), $Y=\log(U+1)$, Y=|U|.

- **14.** a) Niech X będzie zmienna losową o rozkładzie jednostajnym na przedziale [-1,1]. Oblicz $\mathbb{P}[X>0]$, $\mathbb{P}[-1/2 < X < 2]$, $\mathbb{P}[2X^2 1 > 0]$, $\mathbb{P}[X \in \mathbb{Q}]$.
- b) Rozwiąż to samo zadanie, ale przy założeniu, że X jest liczbą losową z przedziału [-1,1] o rozkładzie zadanym gestością f(x)=2|x|.
 - c) Znajdź dystrybuantę zmiennej losowej z pkt b).
- **15.** Rozważmy ciąg n prób Bernoulliego z prawdopodobieństwem sukcesu w pojedynczej próbie p. Oblicz prawdopodobieństwo otrzymania a) parzystej liczby sukcesów; b) liczby sukcesów podzielnej przez 3.
- **16.** Punkt x nazywamy punktem skokowym rozkładu μ na \mathbb{R} , gdy $\mu(\{x\}) > 0$.
- a) Pokaż, że rozkład prawdopodobieństwa μ może mieć co najwyżej przeliczalną liczbę punktów skokowych.
- b) Czy zbiór punktów nieciągłości może mieć punkt skupienia?
- c) Czy zbiór punktów nieciągłosci może być gęsty w \mathbb{R} ?
- 17^* . Skonstruuj przestrzeń probabilistyczną na której można określić wynik nieskończenie wielu niezależnych rzutów niesymetryczną monetą, tzn. monetą, w której orzeł wypada w prawdopodobieństwem $p \in (0, 1/2)$.