Analiza descendenta. Gramatici LL(k) - eliminare recursivitate stanga. factorizare.

Table of Contents

Eliminare recursivitate stanga

Productii 8

Factorizare stanga

Teorema

4.2.2, 4.2.3 Teorema. O gramatica LL(k) nu poate avea simbol nonterminal recursiv stanga.

Daca $X\Rightarrow X\omega,\omega
eq \varepsilon$ - X nonterminal recursiv stanga

- ightharpoonup E
 ightarrow E + T | T
- ightharpoonup T
 ightharpoonup T
 ightharpoonup T
 ightharpoonup F | F
- ightharpoonup F
 ightarrow (E)|id

are doua productii cu recursivitate stanga

Teorema

Teorema. Pentru orice gramatica CFG G = (T, N, P, Z) cu simboluri nonterminale recursive stanga exista o gramatica echivalenta G' = (T, N', P', Z) fara nonterminale recursive stanga.

Idee

$$X o X \alpha | \beta$$
 devine $\begin{cases} X o \beta X' \\ X' o \alpha X' | \varepsilon \end{cases}$

$$ightharpoonup E
ightarrow E + T | T$$

$$ightharpoonup T
ightharpoonup T
ightharpoonup T
ightharpoonup F | F$$

$$ightharpoonup E' o + TE' | \varepsilon$$

$$ightharpoonup$$
 $T' o *FT' | arepsilon$

Dar...

NU intra la examen vezi Testare online

- ightharpoonup S
 ightarrow Aa|b
- $ightharpoonup A
 ightharpoonup Ac|Sd|\varepsilon$

$$S \Rightarrow Aa \Rightarrow Sda$$

ne trebuie un algoritm care sa elimine toate nonterminalele cu recursivitate stanga

- ► Consideram ca $N = \{X_1, X_2, ... X_n\}$ simbolurile nonterminale sunt numerotate consecutiv.
- ▶ Daca putem alege indicii a.i. indicii sa respecte i < j pentru toate productiile $X_i \to X_j \omega$ atunci G nu are recursivitate stanga.
- Daca o astfel de numerotare nu este posibila pentru G, atunci se genereaza G'.

Exemple:

- ightharpoonup S
 ightharpoonup Aa|b
- $ightharpoonup A
 ightharpoonup Ac|Sd|\varepsilon$
- Daca S e 1, A e 2, prima productie respecta i < j dar nu si a doua
- ightharpoonup E
 ightarrow E + T nu respecta i < j

Algoritm de eliminare recursivitate stanga

NU intra la examen Testare online

- 1. Fie N' = N, P' = P. Se executa pasii 2,3 pentru i = 1,...n
- 2. Pentru j=1,...i-1 $X_i \to X_j \omega \in P'$ se inlocuiesc cu $\{X_i \to \chi_j \omega | X_j \to \chi_j \in P'\}$. In consecinta, $X_i \Rightarrow^+ X_j \gamma$ implica $i \leq j$.
- 3. Se inlocuiesc $X_i \to X_i \omega \in P'$ cu $\{Y_i \to \omega Y_i\} \cup \{Y_i \to \varepsilon\}$ adaugand un nou simbol Y_i la N'. + se inlocuiesc $X_i \to \chi, \chi \neq X_i \gamma$ cu $X_i \to \chi Y_i$. Simbolurile noi se numeroteaza cu n+1, n+2,...

$$\triangleright$$
 $E \rightarrow E + T | T$

$$ightharpoonup T
ightharpoonup T
ightharpoonup T
ightharpoonup F | F$$

presupunem ordinea E(1) < T(2) < F(3)

p p (-)			
i	pasul2	pasul 3	variabila noua
1	nu se executa	$E \rightarrow E + T T$ devin	E'(4)
		E' ightarrow + TE' ert arepsilon si	
		E ightarrow TE';	
2	j = 1	$T \to T * F F$ devin	T'(5)
	$ au o extstyle E\omega$ nu exista	T' o *FT' arepsilon	
		T o FT'	
3	j = 1, 2	$ extstyle F o F\omega$ nu exista	
	$ extstyle F o extstyle E\omega$ sau		
	$ extstyle F o T\omega$ nu exista		
45	nu se modifica nimic		

4,5 nu se modifica nimic

Rezultat:

- ightharpoonup E
 ightarrow E + T | T
- ightharpoonup T
 ightharpoonup T
 ightharpoonup T
 ightharpoonup F | F
- ightharpoonup F
 ightarrow (E)|id

- ightharpoonup E o TE'
- $ightharpoonup E'
 ightarrow + TE' | \varepsilon$
- ightharpoonup T o FT'
- $ightharpoonup T' o *FT' | \varepsilon$
- ightharpoonup F
 ightarrow (E)|id

- ightharpoonup S
 ightharpoonup Aa|b
- $ightharpoonup A
 ightharpoonup Ac|Sd|\varepsilon$

...pasul 2 al algoritmului: Pentru j=1,...i-1 $X_i \to X_j \omega \in P'$ se inlocuiesc cu $\{X_i \to \chi_j \omega | X_j \to \chi_j \in P'\}$.

Daca S(1) < A(2)

- i = 1 nimic
- ▶ i = 2 la pasul 2 $A \rightarrow Sd$ se inlocuieste cu $\{A \rightarrow Aad | bd\}$

- ightharpoonup S
 ightarrow Aa|b
- $ightharpoonup A
 ightharpoonup Ac|Sd|\varepsilon$

...pasul 3 al algoritmului: Se inlocuiesc $X_i \to X_i \omega \in P'$ cu $\{Y_i \to \omega Y_i\} \cup \{Y_i \to \varepsilon\}$ adaugand un nou simbol Y_i la N'. + se inlocuiesc $X_i \to \chi, \chi \neq X_i \gamma$ cu $X_i \to \chi Y_i$.

Daca S(1) < A(2)

- i = 1 nimic
- ▶ i = 2 la pasul 2 $A \rightarrow Sd$ se inlocuieste cu $\{A \rightarrow Aad | bd\}$
- ▶ i = 2 la pasul 3 $A \rightarrow Ac|Aad|bd|\varepsilon$ se inlocuieste cu $A' \rightarrow cA', A' \rightarrow adA', A' \rightarrow \varepsilon$ si $A \rightarrow bdA', A \rightarrow A'$

Teorema. Daca sirul ω din $X_i \to X_i \omega$ nu incepe cu $X_j, j \le i$ atunci $X_i \to X_i \omega$ se poate inlocui cu $\{Y_i \to \omega, Y_i \to \omega Y_i\}$ si $X_i \to \chi$ cu $\{X_i \to \chi, X_i \to \chi Y_i\}$ la pasul 3.

pasul 3 anterior ...se inlocuiesc
$$X_i \to X_i \omega \in P'$$
 cu $\{Y_i \to \omega Y_i\} \cup \{Y_i \to \varepsilon\}$ adaugand un nou simbol Y_i la N' . + se inlocuiesc $X_i \to \chi, \chi \neq X_i \gamma$ cu $X_i \to \chi Y_i$.

Se evita introducerea productiilor ε .

Table of Contents

Eliminare recursivitate stanga

Productii ε

Factorizare stanga

Intra la examen

- \triangleright $E \rightarrow E + T | T$
- ightharpoonup T
 ightharpoonup T
 ightharpoonup T
 ightharpoonup F | F
- ightharpoonup F
 ightarrow (E)|id

Cu productii ε

- ightharpoonup E
 ightarrow TE'
- $ightharpoonup E'
 ightarrow + TE' | \varepsilon$
- ightharpoonup T
 ightharpoonup FT'
- $ightharpoonup T' o *FT' | \varepsilon$
- ightharpoonup F
 ightarrow (E)|id

Fara productii ε

- ightharpoonup E o TE' | T
- \triangleright $E' \rightarrow +T| + TE'$
- ightharpoonup T o FT'|F
- ightharpoonup T'
 ightharpoonup *F| *FT'
- ightharpoonup F
 ightarrow (E)|id

Observatii

- Recursivitatea stanga precum $E \to T|E+T$ utilizata pentru a reflecta asociativitatea stanga a operatorilor.
- lacktriangle Aceeasi proprietate avem si in E o TE', E' o + TE', E' o arepsilon
- ▶ Insa asociativitate dreapta $E \rightarrow T, E \rightarrow T + E$.

Productii ε

Productiile ε se pot elimina intotdeauna dintr-o gramatica LL(k), dar aceasta poate mari valoare lui k. 4.2.3

Teorema

TEOREMA. Pentru orice gramatica LL(k) cu productii ε exista o gramatica LL(k+1) fara productii ε care genereaza limbajul $L(G) - \varepsilon$.

Prin introducerea productiilor ε se poate reduce k.

Teorema

TEOREMA. Pentru orice gramatica LL(k+1), k > 0 fara productii ε exista o gramatica LL(k) echivalenta cu productii ε .

Table of Contents

Eliminare recursivitate stanga

Productii ε

Factorizare stanga

Factorizare stanga

Fie
$$P = \{ Z \rightarrow X \ X \rightarrow Yc | Yd \ Y \rightarrow a|bY \}$$

Productiile $X \to Yc$ si $X \to Yd$ nu pot fi distinse chiar prin examinarea oricarui numar fix de simboluri din sirul de intrare deoarece din Y se poate deriva un sir de lungime si mai mare.

Solutie: evitarea problemei prin amanarea deciziei. Ambele incep cu Y, nu trebuie facauta distinctie intre ele decat dupa ce Y a fost recunoscut.

Factorizare stanga

Fie
$$P = \{ Z \rightarrow X \\ X \rightarrow Yc | Yd \\ Y \rightarrow a | bY \}$$
devine
Fie $P = \{ Z \rightarrow X \\ X \rightarrow YX' \\ X' \rightarrow c | d \\ Y \rightarrow a | bY \}$

Se poate examina un singur caracter inainte pt a face diferente intre cele doua variante c sau d .

Factorizare stanga

```
Fie \ P = \{ \quad Z \rightarrow X \\  \qquad \qquad X \rightarrow if \ E \ then \ S|if \ E \ then \ S \ else \ S|a \\  \qquad \qquad E \rightarrow b \} devine Fie \ P = \{ \quad Z \rightarrow X \\  \qquad \qquad X \rightarrow if \ E \ then \ S \ S'|a \\  \qquad \qquad S' \rightarrow else \ S|\varepsilon \\  \qquad \qquad E \rightarrow b \}
```