Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/EP05/051147

International filing date: 14 March 2005 (14.03.2005)

Document type: Certified copy of priority document

Document details: Country/Office: DE

Number: 10 2004 019 152.2

Filing date: 21 April 2004 (21.04.2004)

Date of receipt at the International Bureau: 11 April 2005 (11.04.2005)

Remark: Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

BUNDESREPUBLIK DEUTSCHLAND

PCT/EP200 5 / 05 1 1 4 7

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen:

10 2004 019 152.2

Anmeldetag:

21. April 2004

Anmelder/Inhaber:

ROBERT BOSCH GMBH, 70469 Stuttgart/DE

Bezeichnung:

Verfahren zum Betreiben eines Magnetventils

zur Mengensteuerung

IPC:

F 02 M, F 16 K, H 01 F

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

München, den 21. Februar 2005

Deutsches Patent- und Markenamt

Der Präsident

Im Auftrag

. Johnes

A 9161

19.04.04 Sm/Oy

5

15

20

30

35

ROBERT BOSCH GMBH, 70442 Stuttgart

10 <u>Verfahren zum Betreiben eines Magnetventils zur Mengensteuerung</u>

Stand der Technik

Die Erfindung geht aus von einem Verfahren zum Betreiben eines Magnetventils zur Mengensteuerung sowie einer Vorrichtung zur Kraftstoffversorgung einer Brennkraftmaschine mit einem Magnetventil zur Mengensteuerung nach der Gattung der unabhängigen Ansprüche.

Weiterhin betrifft die Erfindung ein Steuergerät zur Ausführung eines Verfahrens zum Betreiben eines Magnetventils zur Mengensteuerung sowie ein Computerprogramm-Produkt zur Durchführung des Verfahrens auf einem Computer.

Aus der DE 199 13 477 ist bereits ein Verfahren zum Betreiben einer Kraftstoffzuführeinrichtung mit einem Mengensteuerventil bekannt. Das Mengensteuerventil ist stromlos offen und wird zum Schließen mit einer konstanten Spannung - der Batteriespannung - angesteuert, wobei der Strom in charakteristischer Weise ansteigt. Nach dem Abschalten der Spannung fällt der Strom wiederum in charakteristischer Weise ab und das Ventil öffnet kurz nach dem der Strom abgefallen ist.

Aus der DE 102 01 453 ist ein Verfahren der zum Betreiben eines Magnetventils für einen Bremszylinder bekannt. Das offenbarte Magnetventil ist stromlos offen und wird zum Schließen mit einer konstanten Spannung angesteuert. Beim Erreichen eines maximalen Anzugstroms wird die Spule des Magnetventils mit einer gepulsten Spannung angesteuert, sodass der Strom durch die Spule auf einen minimal zulässigen Haltestrom abfällt. Zum Öffnen des Magnetventils wird die am Magnetventil anliegende Spannung abge-

schaltet, wobei der Stromabfall ausgehend vom Haltestrom zeitlich schneller erfolgt als bei einem vorliegenden maximalen Anzugstroms.

Das erfindungsgemäße Verfahren mit den Merkmalen des unabhängigen Anspruchs hat demgegenüber den Vorteil, dass zunächst eine erste Spannung an eine Spule eines Magnetventils bis zu einem ersten Zeitpunkt und anschließend ein zweite Spannung, die im Wert kleiner ist als die erste Spannung, angelegt wird. Die Umschaltung auf die zweite Spannung zum ersten Zeitpunkt erfolgt vor Erreichen einer Endposition des Magnetventils. Der besondere Vorteil dieses erfindungsgemäßen Vorgehens liegt darin, dass mit der ersten angelegten Spannung der Spulenstrom und somit auch die Magnetkraft rasch aufgebaut wird, wobei ein schneller Bewegungsbeginn des Magnetventils erzielt wird. Durch das Umschalten auf einen zweiten niedrigeren Spannungswert wird ein unnötiges Ansteigen des Spulenstromes vermieden. Der erste Zeitpunkt kann sowohl vor als auch nach Erreichen eines bestimmen Kraftwertes liegen, bei der sich der Magnetanker in Bewegung setzt. Wichtig ist, dass durch die erfindungsgemäße Ansteuerung ein sicheres Anziehen des Magnetankers sichergestellt ist. Prinzipiell lässt sich das erfindungsgemäße Verfahren sowohl auf stromlos geöffnete als auch stromlos geschlossen Ventile anwenden. Durch Umschalten auf eine zweite Spannung, die im Wert niedriger ist als die erste Spannung wird vermieden, dass der Spulenstrom bei einer weiteren Ansteuerung des Magnetventils einen maximal zulässigen Strom überschreitet.

Durch diese in den Unteransprüchen aufgeführten Maßnahmen sind weitere vorteilhafte Weiterbildungen und Verbesserungen der erfindungsgemäße Vorrichtung möglich.

Besonders vorteilhaft ist es, wenn die zweite Spannung mindestens so groß ist, dass sich die Bewegung des Magnetventils fortsetzt und somit ein sicheres Schließen/Öffnen des Magnetventils gewährleistet ist.

Gemäß einer weiteren vorteilhaften Ausgestaltung ist die zweite Spannung in vorteilhafter Weise so gewählt, dass der Strom durch die Spule und somit die auf das Magnetventil einwirkende Kraft weiter ansteigt, wodurch die Zuverlässigkeit der Schließbewegung/Öffnungsbewegung weiter erhöht wird.

Gemäß einer weiteren vorteilhaften Ausführungsform wird ab einem zweiten Zeitpunkt eine dritte Spannung an der Spule des Magnetventils angelegt, die im Wert kleiner ist als

10

5

15

20

30

die zweite Spannung und gegenüber der zweiten Spannung den Strom nicht weiter ansteigen lässt. So wird in vorteilhafter Weise vermieden, dass der Spulenstrom weiter ansteigt und einen maximal zulässigen Strom überschreitet.

Gemäß einer weiteren vorteilhaften Ausführungsform liegt ab einem dritten Zeitpunkt eine vierte Spannung an der Spule des Magnetventils an, die im Wert kleiner ist als die dritte Spannung und es stellt sich ein Strom ein, der mindestens so groß ist, dass in vorteilhafter Weise eine Mindesthaltekraft des Magnetventils gewährleistet ist.

Gemäß einer weiteren vorteilhaften Ausführungsform wird mindestens eine der an der Spule des Magnetventil anliegenden Spannung durch Pulsweitenmodulation in ihrer effektiven Spannung beeinflusst. Dies hat den Vorteil, dass alle Spannungen ausgehend von einer Basisspannung allein durch Pulsweitenmodulation entsprechend der gewünschten Spannungshöhe eingestellt werden können.

Gemäß einer weiteren vorteilhaften Ausführungsform ist ein Vorrichtung zum Ansteuern eines Magnetventils vorgesehen, insbesondere ein Steuergerät in einem Kraftfahrzeug, wobei die Vorrichtung das Magnetventil so ansteuert, dass zunächst eine erste Spannung an einer Spule eines Magnetventils anliegt bis eine Bewegung des Magnetventils ausgelöst ist und anschließend eine zweite Spannung, die im Wert kleiner ist als die erste Spannung.

Gemäß einer weiteren vorteilhaften Ausführungsform ist es vorgesehen, die Zeitpunkte an denen die Spannungen umgeschaltet werden und die elektrischen Spannung in Abhängigkeit von Betriebsgrößen, bspw. der Brennkraftmaschine, der Hochdruckpumpe etc., in einem Kennfeld abzulegen.

Gemäß einer weiteren vorteilhaften Ausführungsform ist es vorgesehen das erfindungsgemäße Verfahren und Vorgehen als Computerprogramm-Produkt mit Programmcode auf einem maschinenlesbaren Träger abzuspeichern, wobei bei Ablauf des Programm auf einem Computer, Recheneinheit, Steuergerät etc. das Verfahren erfindungsgemäß ausgeführt wird. In vorteilhafter Weise können als maschinenlesbare Träger auch Disketten, Speicherbausteine, Flash-Rom, optische Speicher, Festplatten etc. eingesetzt werden.

Zeichnungen

5

10

15

20

30

Weitere Merkmale, Anwendungsmöglichkeiten und Vorteile der Erfindung ergeben sich aus der nachfolgenden Beschreibung von Ausführungsbeispielen der Erfindung, die in den Zeichnungen dargestellt sind. Dabei bilden alle beschriebenen oder dargestellten Merkmale für sich oder in beliebiger Kombination den Gegenstand der Erfindung, unabhängig von ihrer Zusammenfassung in den Patentansprüchen oder deren Rückbeziehung sowie unabhängig von ihrer Formulierung bzw. Darstellung in der Beschreibung bzw. in den Zeichnungen.

10 Es zeigen:

5

15

20

30

35

Figur 1 zeigt schematisch eine Vorrichtung zu Kraftstoffversorgung einer Brennkraftmaschine;

Figur 2 zeigt schematisch verschiedene Funktionszustände einer Hochdruckpumpe mit einem zugehörigen Zeitdiagramm;

Figur 3 zeigt schematisch den zeitlichen Verlauf des Hubs des Magnetventils und deren darauf wirkenden Kraft nach Bestromung des Magnetventils;

Figur 4 zeigt schematisch den zeitlichen Verlauf des Drucks in der Hochdruckpumpe; Figur 5 zeigt schematisch den zeitlichen Verlauf der an der Spule des Magnetventils anliegenden Spannung;

Figur 6 zeigt schematisch den zeitlichen Verlauf des durch die Spule fließenden Stroms; Figur 7 zeigt schematisch den zeitlichen Verlauf von Strom und Spannung an der Spule des Magnetventils für eine bestimmte Ansteuerungsdauer;

Die Beschreibung bezieht sich der Einfachheit halber im Wesentlichen auf ein stromlos offenes Magnetventil, das erfindungsgemäße Vorgehen ist jedoch nicht auf diese Ausführungsform beschränkt, sondern umfasst insbesondere auch stromlos geschlossene Magnetventile.

In Figur 1 ist beispielhaft eine Vorrichtung 10 zur Kraftstoffversorgung einer Brenn-kraftmaschine gezeigt. Die Vorrichtung 10 weist eine elektrische Kraftstoffpumpe 11 auf , mit der Kraftstoff aus einem Kraftstofftank 12 gefördert und über ein Kraftstofffilter 13 weitergepumpt wird. Die Kraftstoffpumpe 11 ist dazu geeignet, einen Niederdruck zu erzeugen. Zur Steuerung und/oder Regelung dieses Niederdrucks ist ein Niederdruckregler 14 vorgesehen, der mit dem Ausgang des Kraftstofffilter 13 verbunden ist, und über den Kraftstoff wieder zum Kraftstofftank 12 zurückgeführt werden kann. An dem Ausgang

des Kraftstofffilters 13 ist des Weiteren eine Serienschaltung aus einem Mengensteuerventil 15 und einer mechanischen Hochdruckpumpe 16 angeschlossen. Der Ausgang der Hochdruckpumpe 16 ist über ein Überdruckventil 17 an den Eingang des Mengensteuerventil 15 zurückgeführt. Der Ausgang der Hochdruckpumpe 16 ist weiterhin mit einem Druckspeicher 18 verbunden, an dem eine Mehrzahl von Einspritzungsventilen 19 angeschlossen sind. Der Druckspeicher 18 wird häufig auch als Rail oder Common Rail bezeichnet. Des Weiteren ist am Druckspeicher 18 ein Drucksensor 20 angeschlossen. Die in Figur 1 dargestellte Vorrichtung zur Kraftstoffversorgung dient im vorliegenden Beispiel dazu, die Einspritzungsventile 19 einer vierzylindrigen Brennkraftmaschine mit ausreichenden Kraftstoff und notwendigen Kraftstoffdruck zu versorgen, sodass eine zuverlässige Einspritzung und ein sicherer Betrieb der Brennkraftmaschine gewährleistet ist.

Die Funktionsweise des Mengensteuerventil 15 und der Hochdruckpumpe 16 sind in Figur 2 im Einzelnen dargestellt. Das Mengensteuerventil 15 ist als stromlos offenes Magnetventil aufgebaut und weist eine Spule 21 auf, über die durch Anlegen oder Abschalten eines elektrischen Stroms bzw. einer elektrischen Spannung das Magnetventil 22 geschlossen oder geöffnet werden kann. Die Hochdruckpumpe 16 weist einen Kolben 23 auf, der von einem Nocken 24 der Brennkraftmaschine betätigt wird. Des Weiteren ist die Hochdruckpumpe 16 mit einem Ventil 25 versehen. Zwischen dem Magnetventil 22, den Kolben 23 und dem Ventil 25 ist ein Förderraum 26 der Hochdruckpumpe 16 vorhanden.

Mit dem Magnetventil 22 kann der Förderraum 26 von einer Kraftstoffzufuhr durch die elektrische Kraftstoffpumpe 11 und damit von dem Niederdruck abgetrennt werden. Mit dem Ventil 25 kann der Förderraum 26 von dem Druckspeicher 18 und damit von dem Hochdruck abgetrennt werden.

Im Ausgangszustand wie er in der Figur 2 links dargestellt ist, ist das Magnetventil 22 geöffnet und das Ventil 25 geschlossen. Das geöffnete Magnetventil 22 entspricht dem stromlosen Zustand der Spule 21. Das Ventil 25 wird durch den Druck einer Feder oder entsprechendes geschlossen gehalten.

In der linken Darstellung der Figur 2 ist der Saughub der Hochdruckpumpe 16 dargestellt. Bei einer Drehbewegungen des Nockens 24 in Richtung des Pfeils 27 bewegt sich der Kolben 23 in Richtung des Pfeils 28. Aufgrund des geöffneten Magnetventil 22 strömt

5

10

15

20

30

somit Kraftstoff, der von der elektrischen Kraftstoffpumpe 11 gefördert worden ist, in den Förderraum 26.

In der mittleren Darstellung der Figur 2 ist der Förderhub der Hochdruckpumpe 16 gezeigt, wobei jedoch die Spule 21 noch stromlos und damit das Magnetventil 22 noch geöffnet ist. Auf Grund der Drehbewegungen der Nocke 24 bewegt sich der Kolben 23 in Richtung des Pfeils 29. Aufgrund des geöffneten Magnetventils 22 wird damit Kraftstoff aus dem Förderraum 26 zurück in Richtung zu der elektrischen Kraftstoffpumpe 11 gefördert. Dieser Kraftstoff gelangt dann über den Niederdruckregler 14 zurück in den Kraftstofftank 12.

5

10

15

20

30

35

In der rechten Darstellung der Figur 2 ist - wie in der mittleren Darstellung - weiterhin der Förderhub der Hochdruckpumpe 16 gezeigt. Im Unterschied zu der mittleren Darstellung ist jedoch nunmehr die Spule 21 erregt und damit das Magnetventil 22 geschlossen. Dies hat zur Folge, dass durch die weitere Hubbewegung des Kolbens 23 im Förderraum 26 ein Druck aufgebaut wird. Mit Erreichen des Druckes, welcher im Druckspeicher 18 herrscht, wird das Ventil 25 geöffnet und die Restmenge in den Druckspeicher gefördert.

Die Menge des zu dem Druckspeicher 18 geförderten Kraftstoffs hängt davon ab, wann das Magnetventil 22 in seinen geschlossenen Zustand übergeht. Je früher das Magnetventil 22 geschlossen wird, desto mehr Kraftstoff wird über das Ventil 25 in den Druckspeicher 18 gefördert. Dies ist in der Figur 2 durch einen mit einem Pfeil gekennzeichneten Bereich B dargestellt.

Sobald bei der rechten Darstellung der Figur 2 der Kolben 23 seinen maximalen Kolbenhub erreicht hat, kann von dem Kolben 23 kein weiterer Kraftstoff über das Ventil 25 in den Druckspeicher 18 gefördert werden. Das Ventil 25 schließt. Des weiteren wird die Spule 21 wieder stromlos gesteuert, sodass das Magnetventil 22 wieder öffnet. Daraufhin kann der sich nunmehr entsprechend der linken Darstellung der Figur 2 in Richtung des Pfeils 28 bewegende Kolben 23 wieder Kraftstoff der elektrischen Kraftstoffpumpe in den Förderraum 26 ansaugen.

In Figur 3 ist schematisch der zeitliche Verlauf des Hubs h_M des Magnetventils 22 und die auf das Magnetventil 22 wirkenden Kraft F_M beim Unterspannungssetzen der Spule

21 des Magnetventils 22 gezeigt. Sobald eine elektrische erste Spannung U_1 ab dem Ansteuerbeginn t_0 an der Spule 21 anliegt, baut sich ein Magnetfeld auf, das auf den Anker des Magnetventils 22 mit einer elektromagnetischen Kraft F_M wirkt. Dieser elektromagnetischen Kraft F_M steht einer Federkraft F_f des betrachteten Mengensteuerventils 15 entgegen. Erst wenn die elektromagnetischen Kraft F_M die Federkraft F_f überwindet, setzt sich das Magnetventil 22 zu einem Bewegungs-Zeitpunkt t_B in Bewegung. Im in Figur 3 skizzierten Fall ist zeitgleich zu diesem Bewegungs-Zeitpunkt t_B ein erster Zeitpunkt t_1 gesetzt, bei dem die zunächst anliegende erste Spannung U_1 auf eine niedrigere zweite Spannung U_2 umgeschaltet wird.

10

5

Die zweite Spannung U_2 ist mindestens so hoch, dass sich die durch das Anlegen der ersten Spannung U_1 initiierte Bewegung des Magnetventils fortsetzt. Im dargestellten Fall ist eine zweite Spannung U_2 vorgesehen, bei der mit zunehmender Ansteuerzeit der Spulenstrom und somit auch die elektromagnetische Kraft F_M mit geringerer Steigung als bis zum ersten Zeitpunkt t_1 ansteigt. Zu einem End-Zeitpunkt t_E befindet sich das Magnetventil 22 in seiner Endposition. Bei einem stromlos offenem Magnetventil ist das Magnetventil 22 zum End-Zeitpunkt t_E vollständig geschlossen und bei einem stromlos geschlossen Magnetventil vollständig offen. Im skizzierten Ausführungsbeispiel wird zeitgleich zum End-Zeitpunkt t_E ein zweiter Zeitpunkt t_2 gesetzt, ab dem die am Magnetventil anliegende elektromagnetische Kraft F_M im Wesentlichen konstant gehalten und ab einem dritten Zeitpunkt t_3 bspw. auf eine Mindesthaltekraft reduziert wird.

20

15

Der Bewegungs-Zeitpunkt t_B, bei dem sich das Magnetventil bei einer bestimmten Ansteuerung in Bewegung setzt, und der End-Zeitpunkt t_E sind prinzipiell für ein jeweiliges Magnetventil bekannt. Es kann jedoch auch vorgesehen sein, diesen Bewegungs-Zeitpunkt t_B über Sensoren bspw. direkt über die Bewegung oder indirekt über andere Größen zu bestimmen.

30

Vorzugsweise wird der erste Zeitpunkt t_1, bei dem von der ersten Spannung U_1 auf ein zweite Spannung U_2 umgeschaltet wird, so festgelegt, dass die Zeitdauer mit der die Spule 21 des Magnetventils 22 mit einer elektrischen ersten Spannung U_1 angesteuert wird mindestens so lang ist, dass eine Bewegung des Magnetventils 22 ausgelöst wird.

35

Je nach Ausführungsform kann dieser erste Zeitpunkt t_1 mit dem tatsächlichen Bewegungs-Zeitpunkt t_B des Magnetventils übereinstimmen, es kann jedoch auch vorgesehen

sein, den ersten Zeitpunkt t_1 vor oder nach dem tatsächlichen Bewegungs-Beginn t_B zu legen. So ist es denkbar, den ersten Zeitpunkt t_1 so früh zu wählen, dass sich zwar zum ersten Zeitpunkt t_1 das Magnetventil noch nicht in Bewegung gesetzt hat, die Zeitdauer der Ansteuerung jedoch so lang war, dass die in die Spule eingebrachte Energie ausreicht, um das Magnetventil zu einem späteren Zeitpunkt in Bewegung zu setzen. In diesem Fall wird die Bewegung des Magnetventils zwar durch das Anlegen einer ersten Spannung U_1 bis zu einem ersten Zeitpunkt t_1 ausgelöst, die tatsächliche Bewegung des Magnetventils erfolgt jedoch zu einem Bewegungs-Zeitpunkt t_B der zeitlich hinter dem ersten Zeitpunkt t_1 liegt.

10

15

5

Nachdem auf zum ersten Zeitpunkt t_1 auf die zweite Spannung U_2 umgeschaltet wurde ist eine Wartezeit Δts vorgesehen nach der im Anschluss zum zweiten Zeitpunkt t_2 auf eine dritte Spannung U_3 umgeschaltet wird. Die Wartezeit Δts ist in Figur 3 so bemessen, dass der zweite Zeitpunkt t_2 mit dem Erreichen der Endposition des Magnetventils 22 zum End-Zeitpunkt t_E übereinstimmt. Bei geringen Drehzahlen der Hochdruckpumpe 16 reicht es aus, die Wartezeit Δts so großzügig zu bemessen, dass der zweite Zeitpunkt t_2 zeitlich hinter dem End-Zeitpunkt t_E des Magnetventils 22 liegt, und so der zweite Zeitpunkt t_2 für eine Vielzahl von Betriebsbedingungen unverändert beibehalten werden kann.

20

Im Hinblick auf den Betrieb von Hochdruckpumpen in einem hohen Drehzahlbereich und den erforderlichen kurzen Ansteuerzeiten ist es jedoch angezeigt, die Zeitpunkte t_1, 2, 3 bei denen die Spannungen umgeschaltet werden möglichst früh zu setzen, um möglichst kurze Ansteuerzeiten zu realisieren.

30

35

Figur 4 zeigt schematisch den zeitlichen Verlauf des Drucks im Förderaum 26 der Hochdruckpumpe 16 mit einem stromlos offenem Magnetventil 22. Vor dem Erreichen der Endposition des Magnetventils herrscht bis zum End-Zeitpunkt t_E bzw. zweiten Zeitpunkt t_2 im Förderraum 26 im Wesentlichen ein konstanter Niederdruck, der durch die Kraftstoffpumpe 11 und dem Niederdruckregler 14 erzeugt und eingestellt wird. Nach dem Schließen des Magnetventils 22 zum End-Zeitpunkt t_E komprimiert der sich zum oberen Totpunkt bewegende Kolben 23 das Volumen im Förderaum 26, wodurch der Kraftstoffdruck ansteigt. Zu einem Druck-Zeitpunkt t_D erreicht der Druck im Förderaum 26 einen Haltedruck p_1. Die durch diesen Haltedruck p_1 auf das Magnetventil 22 ausgeübte Kraft entspricht im Wesentlichen der Federkraft F f. Die Druckkraft reicht

prinzipiell aus, um das Magnetventil auch ohne Ansteuerung im geschlossenen Zustand zu halten, d.h. prinzipiell wäre es möglich zum Druck-Zeitpunkt t_D die an der Spule 21 des Magnetventils 22 anliegende Spannung abzuschalten. Um unter anderem jedoch eine hohe Betriebsicherheit bzw. definierte Betriebszustände zu gewährleisten, ist es vorgesehen zum Druck-Zeitpunkt t_D einen dritten Zeitpunkt t_3 vorzusehen, beim dem auf eine vierte Spannung U_4 umgeschaltet wird und sich die anliegende elektromagnetische Kraft F_M auf eine Sicherheitshaltekraft reduziert.

5

10

15

20

30

35

Die zu verschiedenen Zeiten an der Spule 21 des Magnetventils 21 anliegenden Spannungen sind schematisch in Figur 5 gezeigt und in Figur 6 die dazu korrespondierenden Spulenströme. Den beiden Figuren ist zu entnehmen, dass zum Schließen des Magnetventils 22 eine erste Spannung U_1 an die Spule 21 des Magnetventils 22 angelegt wird. Im weiteren zeitlichen Verlauf wird nach einem ersten, zweiten und dritten Zeitpunkt t_1, t_2, t_3 jeweils eine zweite, dritte und vierte Spannung U_2, U_3, U_4 angelegt, wobei die jeweils nachfolgende Spannung im Wert kleiner ist als die vorhergehende. Die zu den Spannungen korrespondierenden Ströme, wie sie die Figur 6 zeigt, verhalten sich dementsprechend in charakteristischer Weise. Beim Anlegen der ersten Spannung U_1 steigt der Strom rasch an, um dann bei Vorliegen der zweiten Spannung U_2 zum Zeitpunkt t_1 mit einer geringeren Steigung anzusteigen, ab dem Zeitpunkt t_2 verläuft der Strom dann im Wesentlichen konstant und fällt nach dem dritten Zeitpunkt t_3 in charakteristischer Weise auf einen im Wesentlichen konstanten geringeren Wert ab.

Wie beschrieben wird zum Schließen des Magnetventils 22 an die Spule 21 eine erste Spannung U_1 angelegt. Der Spulenstrom steigt gemäß der bekannten Beziehung I = U / R (1 – exp(-t * R/L) an, wobei für die beispielhaft betrachteten Zeiträume der Exponential-Term in erster Näherung vernachlässigt werden kann. Der erste Stromanstieg entspricht di_1/dt (t=0) = U/L und hängt somit im Wesentlichen von der angelegten Spannung und der Induktivität der Spule ab. Im Hinblick auf kurze Schaltzeiten sind somit sowohl hohe anliegende Spannungen als auch geringe Induktivität der Spule 21 förderlich.

Mit zunehmender Dauer der Ansteuerung der Spule steigt sowohl der Spulenstrom I als auch die auf das Magnetventil 22 wirkende elektromagnetische Kraft F_M; d.h. je schneller der Strom ansteigt, desto schneller erhöht sich die anliegende Kraft F_M, desto früher beginnt die Schließbewegung und umso schneller schließt das Magnetventil 22.

Sobald das Magnetventil 22 zum ersten Zeitpunkt t_1 sich in Bewegung setzt, ist ein weiterer schneller Stromanstieg bzw. Kraftanstieg nicht mehr notwendig. Erfindungsgemäß ist es vorgesehen, den Stromanstieg zu verlangsamen. Ab dem ersten Zeitpunkt t_1 wird die Spule 21 mit einer zweiten Spannung U_2 versorgt, die im Wert kleiner ist als die erste Spannung U_1. Die zweite Spannung U_2 ist dabei so bemessen, dass der Strom I weiter ansteigt. Der zur zweiten Spannung U_2 korrespondierende zweite Stromanstieg di_2/dt ist kleiner als der zur höheren ersten Spannung U_1 korrespondierende erste Stromanstieg di_1/dt. Der zweite Stromanstieg di_2/dt bzw. die dazugehörige zweite Spannung U_2 ist vorzugsweise so bemessen, dass bis zu einem späteren zweiten und/oder dritten Zeitpunkt t_2, t_3 der maximal zulässige Spulenstrom des Magnetventils 22 nicht überschritten wird.

5

10

15

20

30

35

Zum zweiten Zeitpunkt t_2 ist, wie schon beschrieben, das Magnetventil 22 geschlossen. Ein weiterer Anstieg der auf das Magnetventil 22 wirkenden elektromagnetischen Kraft F_M verbessert insofern den sicheren Verschluss des Magnetventils nicht. Erfindungsgemäß ist daher kein weiterer Stromanstieg bzw. Anstieg der elektromagnetischen Kraft F_M vorgesehen. Zu diesem Zweck wird die an der Spule 21 anliegende Spannung weiter auf die dritte Spannung U_3 abgesenkt, die so bemessen ist, dass der Spulenstrom I im Wesentlichen nicht weiter ansteigt.

Im weiteren zeitlichen Verlauf erreicht der Druck p zum dritten Zeitpunkt t_3 im Förderraum 26 einen Druck p_1, bei dem davon ausgegangen werden kann, dass das Magnetventil 22 im Wesentlichen allein schon durch Kraft des aufgebauten Drucks verschlossen gehalten werden kann. Erfindungsgemäß wird die auf das Magnetventil 22 wirkende elektromagnetisch Kraft F_M durch eine weitere Reduzierung der Spannung auf eine vierte Spannung U_4 verringert. Durch Anlegen der vierten Spannung U_4 fällt der korrespondierende Spulenstrom I in charakteristischer Weise auf einen im Wesentlichen konstanten Haltestrom ab.

Exemplarisch ist in Figur 7 in schematischer Weise eine Ansteuerung der erfindungsgemäßen Vorrichtung mit einer Ansteuerdauer/-zeit ta und dem zeitlichen Verlauf von Strom und Spannung an der Spule 21 des Magnetventils 22 gezeigt. Die Ansteuerung des Magnetventils 22 beginnt zum Zeitpunkt t_0 und endet kurz nach dem zweiten Zeitpunkt t_2 zum Zeitpunkt ta. Ab dem Zeitpunkt t_0 liegt die erste Spannung U_1 an und wird,

wie beschrieben zum ersten und zweiten Zeitpunkt t_1, t_2 jeweils auf die zweite und dritte Spannung U_2, U_3 reduziert. Der Stromverlauf verhält sich entsprechend, indem zuerst der Strom rasch und dann mit flacher Steigung ansteigt und ab dem zweiten Zeitpunkt t_2 im Wesentlichen konstant bleibt. Zum Ende der Ansteuerdauer ta wird die anliegende dritte Spannung U_3 abgeschaltet und der Strom fällt in charakteristischer Weise ab.

Ab Unterschreiten eines bestimmten Stromwerts wird der Einfachheit halber angenommen, dass die Spule 21 stromlos ist und keine wesentliche elektromagnetische Kraft F_M mehr am Magnetventil 22 anliegt, sodass bei entsprechender Druckabnahme im Förderraum 26 das Magnetventil 22 öffnet. Die relevante Zeit zur Löschung des magnetischen Feldes ergibt sich im Wesentlichen aus der bekannten Beziehung $I = I_{max} * exp(-t*R/L)$. Die sich zur Ansteuerdauer ta ergebenden Löschzeit ΔtL_1 ist in Figur 7 entsprechend eingezeichnet.

Ab dem ersten Zeitpunkt t_1 ist mit gepunkteter Linie schematisch ein erhöhter Stromverlauf dargestellt, der sich ohne Spannungsreduzierung bei einer beibehaltenen ersten Spannung U_1 einstellen würde. Wenn im vorliegenden Fall davon ausgegangen wird, dass zum Abschaltzeitpunkt ta der erhöhte Stromverlauf noch nicht zur Zerstörung der Spule geführt hat, so ist der Figur 7 leicht zu entnehmen, dass die Löschzeit ΔtL_x bei einem erhöhten Strom deutlich länger ist als die Löschzeit ΔtaL, die sich bei dem erfindungsgemäß geringeren Strom einstellt.

Durch das erfindungsgemäße Vorgehen ist es möglich, dass Magnetventil 22 und insbesondere ein Mengensteuerventil im Hinblick auf kurze Ansteuerzeiten bei hohen Drehzahlen der Hochdruckpumpe zu optimieren. Beispielsweise kann es vorgesehen sein, das Einlassventil nur lose am Magnetstößel anliegen zu lassen, wobei über eine zusätzliche Vorrichtung im Förderraum 26 eine Feder auf das Einlassventil/Magnetventil 22 drückt. Dadurch kann der Stößelhub deutlich kleiner ausgeführt werden, was wiederum dazu beiträgt, die für hohe Drehzahlen erforderlichen kurzen Schalt-/Ansteuerzeiten zu erzielen. Eine weitere Maßnahmen ist der Einsatz einer niederohmigen Spule mit reduzierter Windungszahl, was zu einem schnellen Stromanstieg bzw. schnellen Anstieg der elektromagnetischen Kraft führt.

10

5

15

20

In einer weiteren Ausführungsform ist es vorgesehen, mindestens eine der an der Spule 21 des Magnetventils 22 anliegenden Spannung U_1,2,3,4 durch Puls-Weiten-Modulation (PWM) einzustellen. Durch Ändern der Puls- und Pausenzeiten ist es so möglich, beispielsweise ausgehend von einer ersten Betriebsspannung, die effektive Spannung der weiteren Spannungen so einzustellen, dass ein erfindungsgemäßer Strombzw. Kraftverlauf zu den gewünschten Zeitpunkten vorliegt. So kann beispielsweise als erste Spannung U_1 die Bordnetzspannung gewählt sein und alle weiteren Spannungen werden durch entsprechende Puls-Weiten-Modulation erfindungsgemäß reduziert.

10

5

Im normalen Betrieb der Hochdruckpumpe ist es, wie auch in Figur 2 gezeigt, vorgesehen, das Mengensteuerventil 15 während des Förderhubs anzusteuern, insbesondere sollte gewährleistet sein, dass das Mengensteuerventil 15 zum Beginn des Saughubs offen ist. Die Ansteuerung des Mengensteuerventils 15 endet typischerweise zwischen dem zweiten und dritten Zeitpunkt t_2, t_3. Das Mengensteuerventil 15 ist nach der der Ansteuerzeit nachfolgenden Löschzeit wieder geöffnet.

15

Eine Ansteuerung über den dritten Zeitpunkt t_3 hinaus tritt üblicherweise nur bei sehr geringen Drehzahlen, wie sie beispielsweise beim Start der Brennkraftmaschine vorliegen, auf. Durch das Umschalten auf einen geringen Haltestrom wird die Belastung der Spule 21 des Magnetventils 22 insbesondere beim Start reduziert.

20

In einer weiteren Ausführungsform ist es denkbar, die Zeitpunkte und notwendigen elektrischen Spannungen in Abhängigkeit von Betriebsgrößen in einem Kennfeld abzulegen, sodass beispielsweise über ein Steuergerät, Steuerelement oder einer Recheneinheit zu jeder vorliegenden Betriebsbedingung eine passende Ansteuerung des Mengensteuerventils 15 aus dem Kennfeld entnommen werden kann. Als typische Betriebsgrößen kommen beispielsweise in Frage, die Motordrehzahl nmot und dementsprechend die Drehzahl n_hdp der Hochdruckpumpe, der notwendige Förderbeginn bzw. Ansteuerzeitpunkt, die vorliegenden Batterie-/Betriebsspannung U_Bat, U_Bet, die Betriebstemperatur T_M des Magnetventils sowie weitere Größen.

30

Des Weiteren kann es vorgesehen sein, die Umschaltung zwischen den verschiedenen Spannungen nicht in Schritten, sondern kontinuierlich vorzunehmen.

Gemäß einer weiteren Ausführungsform ist es vorgesehen, den Stromanstieg ab dem ersten Zeitpunkt t_1 bis zum Zeitpunkt t_3 fortzuführen, wobei ein maximaler Strom jedoch nie überschritten wird.

Gemäß einer weiteren Ausführungsform ist es vorgesehen, nachdem das Magnetventil 22 zum Zeitpunkt t_2 geschlossen ist und der Druck im Förderraum 26 ansteigt, die elektromagnetische Kraft F_M, bzw. Strom und Spannung, im Gegenzug zum ansteigenden Druck, kontinuierlich auf eine Mindesthaltekraft abzusenken.

5

10

15

20

30

Gemäß einer weiteren bevorzugten Ausführungsform ist es vorgesehen, zunächst, wie bereits unter Figur 3 bis 7 beschrieben, eine hohe erste Spannung U_1 an die Spule 21 des Magnetventils 22 anzulegen und, sobald die Schließbewegung des Magnetventils zu einem ersten Zeitpunkt t_1 beginnt, eine zweite niedrigeren Spannung U_2 anzulegen. Die zweite Spannung U_2 ist so gewählt, dass der Strom zwar nicht weiter ansteigt aber die auf das Magnetventil 22 wirkende elektromagnetische Kraft F_M ausreicht, um die Schließbewegung des Magnetventils 22 fortzusetzen.

Gemäß einer weiteren bevorzugten Ausführungsform ist es vorgesehen, eine hohe erste Spannung U_1 an die Spule 21 des Magnetventils 22 anzulegen und vor Beginn der Schließbewegung des Magnetventils zu einem ersten Zeitpunkt t_1 eine zweite niedrigere Spannung U_2 anzulegen. Die zweite Spannung U_2 ist so gewählt, dass der weitere Magnetkraftaufbau der Kraft F_M ausreicht, das Magnetventil 22 sicher zu schließen.

In einem möglichen Ausführungsbeispiel ist die zweite Spannung im Wesentlichen gleich mit der dritten Spannung U_3, die erfindungsgemäß nach dem vollständigen Verschließen des Magnetventils 22 zum Zeitpunkt t_2 gewählt wird. Durch ein derartiges Vorgehen kann in vorteilhafte Weise auf ein Umschalten der Spannungen zum zweiten Zeitpunkt t_2 verzichten werden.

In einem weiteren Ausführungsbeispiel ist es vorgesehen, die zweite Spannung t_2 so zu wählen, dass der sich einstellende Strom I im Wert größer ist als der sich zur dritten Spannung t_3 einstellende Strom I.

In einem weiteren Ausführungsbeispiel ist es vorgesehen, die Ansteuerung des Magnetventils stromgesteuert vorzunehmen, und die zu den jeweiligen Zeitpunkten t_0, 1, 2, 3 4 zu wählenden Spannung von einem vorgegeben Stromanstieg abhängig zu machen.

Prinzipiell können die physikalischen Zeitpunkte wie der Bewegungs-Zeitpunkt t_B, der End-Zeitpunkt t_E und der Druck-Zeitpunkt bspw. durch direktes oder indirektes Messen als auch durch Modellierung oder Emulationen ermittelt werden.

5

10

15

20

Die Umschaltzeitpunkte, also der erste, zweite und dritte Zeitpunkt t_1, 2, 3 und auch der Ansteuerungsbeginn t_0 werden zwar in Anlehnung an die physikalischen Gegebenheiten und Betriebsbedingungen bestimmt, die Umschaltzeitpunkte müssen jedoch nicht zwangläufig mit bestimmten Ereignissen bspw. den physikalischen Zeitpunkten übereinstimmen.

Insbesondere ist es auch denkbar, die Wartezeit Δts je nach Anwendungsfall bspw. wegzulassen, so dass der erste Zeitpunkt t_1 mit dem zweiten Zeitpunkt t_2 zusammenfällt und somit nach dem Anlegen der ersten Spannung U_1 gleich die dritte Spannung U_3. Auch kann es vorgesehen sein, dass die Wartezeit Δts so bemessen ist, dass der zweite Zeitpunkt t_2 mit dem dritten Zeitpunkt t_3 übereinstimmt und somit nach Anlegen der zweiten Spannung U_2 gleich die vierte Spannung U_4 folgt. Natürlich können auch alle Zwischenzeitpunkte realisiert werden.

Selbstverständlich sind die Ausführungsformen/-beispiele nicht auf das einzelne Beispiel beschränkt, sondern bilden auch in beliebiger Kombination den Gegenstand der Erfindung.

19.04.04 Sm/Oy

5

ROBERT BOSCH GMBH, 70442 Stuttgart

Ansprüche

10

15

1. Verfahren zum Ansteuern eines Magnetventils, insbesondere in einem Kraftfahrzeug, wobei zunächst eine erste Spannung (U_1) an eine Spule (21) des Magnetventils (22) bis zu einem ersten Zeitpunkt t_1 und anschließend eine im Wert kleinere zweite Spannung (U_2) angelegt wird, dadurch gekennzeichnet, dass der erste Zeitpunkt t_1 zeitlich vor dem Erreichen einer Endposition des Magnetventils (22) liegt.

20

 Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, dass die zweite Spannung (U_2) mindestens so groß ist, dass die Endposition des Magnetventils (22) erreicht wird.

 Verfahren nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass während die zweite Spannung (U_2) anliegt, der Strom (I) weiter ansteigt.

30

4. Verfahren nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass ab einem Zeitpunkt (t_2) eine dritte Spannung (U_3) an der Spule des Magnetventils angelegt wird, die im Wert im Wesentlichen gleich oder kleiner ist als die zweite Spannung (U_2) und gegenüber der zweiten Spannung (U_2) den Strom nicht weiter ansteigen lässt.

35

 Verfahren nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass ab einem dritten Zeitpunkt (t_3) eine vierte Spannung (U_4) an der Spule des Magnetventils anliegt, die im Wert kleiner ist als die dritte Spannung (U_3) und sich ein Strom einstellt, der mindestens so groß ist, dass eine Mindesthaltekraft des Mengensteuerventils gewährleistet ist.

5

6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass mindestens eine der an der Spule des Magnetventils anliegenden Spannung (U_1, U_2, U_3, U_4) durch Pulsweitenmodulation in ihrer effektiven Spannung beeinflusst wird.

10

7. Vorrichtung zum Ansteuern eines Magnetventils, insbesondere in einem Kraftfahrzeug, wobei zunächst eine erste Spannung (U_1) an eine Spule (21) des Magnetventils (22) bis zu einem ersten Zeitpunkt t_1 und anschließend eine im Wert kleinere zweite Spannung (U_2) angelegt wird, dadurch gekennzeichnet, dass der erste Zeitpunkt t_1 zeitlich vor dem Erreichen einer Endposition des Magnetventils (22) liegt.

15

8. Vorrichtung gemäß Anspruch 7, dadurch gekennzeichnet, dass die Zeitpunkte t_1, 2, 3, 4 und die elektrischen Spannungen U_1, 2, 3, 4 in Abhängigkeit von Betriebsgrößen in einem Kennfeld abgelegt sind.

20

9. Computerprogramm-Produkt mit Programmcode, der auf einem maschinenlesbaren Träger gespeichert ist, zur Durchführung des Verfahrens nach einem der Ansprüche 1 bis 6, wenn das Programm auf einem Computer ausgeführt wird. 19.04.04 Sm/Oy

5

ROBERT BOSCH GMBH, 70442 Stuttgart

Verfahren zum Betreiben eines Magnetventils zur Mengensteuerung

10

15

Zusammenfassung

Verfahren zum Ansteuern eines Magnetventils, insbesondere in einem Kraftfahrzeug, wobei zunächst eine erste Spannung (U_1) an eine Spule (21) des Magnetventils (22) bis zu einem ersten Zeitpunkt (t_1) und anschließend eine im Wert kleinere zweite Spannung (U_2) angelegt wird, wobei der erste Zeitpunkt t_1 zeitlich vor dem Erreichen einer Endposition des Magnetventils (22) liegt.

20 (Fig. 3)

Fig. 5

Fig. 6

Fig. 7