▫ 분석 개요

- 의류 제품에 대한 거대한 글로벌 수요를 만족시키는 것은 주로 직원의 생산성에 달려 있음
 - 의류 산업은 수동 프로세스가 많은 노동 집약적인 산업
 - 목표 : 직원의 생산성을 예측

Dataset

- 의류 제조 공정의 중요한 특성과 업계 전문가가 검증한 직원의 생산성이 포함
- 총 1,197개의 데이터와 15개의 변수 존재
- https://drive.google.com/file/d/1MeLwel3qBAulJiomVswlVybehL_BjTOU/view?usp=sharing

Consideration

- 서로 연관된 변수가 많아 보이므로 변수 간의 상관관계를 고려하여 적절한 변수 선택
- 팀 또는 부서마다 생산성이 다를 것으로 예상됨으로 Cluster를 나누어 분석 진행

◉ 분석 개요

Variables Description

Name	Description
date	날짜 (MM-DD-YYYY)
day	요일
quarter	한 달 등분 (Quarter1 ~ Quarter5)
department	소속 부서 (finishing, sewing)
team_no	팀 번호 (1 ~ 12)
no_of_workers	노동자 수
no_of_style_change	특정 제품의 스타일 변경 수
targeted_productivity	매일 각 팀에 할당된 목표 생산성
smv	Standard Minute Value(작업에 할당된 표준 시간)
wip	Work in progress
over_time	각 팀의 초과 근무 시간(분)
incentive	동기를 부여하는 재정적 인센티브(BDT)의 양
idle_time	여러 가지 이유로 생산이 중단된 기간
idle_men	생산 중단으로 인해 쉬고 있는 노동자의 수
actual_productivity	실제 생산성 비율

▣ 주요 활용 알고리즘 설명

Linear Regression

- 회귀 알고리즘은 데이터가 주어졌을 때 데이터를 잘 설명하는 선을 찾고자 한다.
- 종속 변수 y와 한 개 이상의 독립 변수 (또는 설명 변수) X와의 선형 상관 관계를 모델링하는 회귀분석 기법이다.
- 한 개의 설명 변수에 기반한 경우에는 단순 선형 회귀(simple linear regression), 둘 이상의 설명 변수에 기반한 경우에는 다중 선형 회귀라 칭한다.
- 다중 선형 회귀는 주어진 데이터 집합에 대해, 종속 변수와 p개의 설명 변수 사이의 선형 관계를 모델링한다.

$$y_i = eta_1 x_{i1} + \dots + eta_p x_{ip} + arepsilon_i = \mathbf{x}_i^{\mathrm{T}} oldsymbol{eta} + arepsilon_i, \qquad i = 1, \dots, n,$$

- 예측 변수에 대한 모든 값이 주어졌을 때, 수립한 선형 회귀 모델을 사용해 예측 변수 x가 응답 변수 y에 미치는 영향을 확인할 수 있다.
- β 는 x가 한 단위 변했을 때, y의 기대 변화량을 의미한다.

■ 주요 활용 알고리즘 설명

• Linear Regression

$$y_i = eta_1 x_{i1} + \dots + eta_p x_{ip} + arepsilon_i = \mathbf{x}_i^{\mathrm{T}} oldsymbol{eta} + arepsilon_i, \qquad i = 1, \dots, n,$$

■ 주요 활용 알고리즘 설명

- Ridge Regression
 - 기본 회귀 알고리즘을 사용하다 보면 Ovefitting이 발생할 수 있다. Overfitting된 경우 데이터에 매우 적합 되어 극단적인 그래프가 생성되며 선형 회귀의 계수가 매우 크게 나타난다.
 - 이렇게 Variance 가 큰 상황을 막기 위해 계수 자체가 크면 페널티를 주는 수식을 추가 한 것이 Ridge Regression이다.
 - 즉 오차를 최소화하는 함수에 페널티를 줌으로써 보다 부드럽게 계수를 선택하는 차이가 있다.
 - λ가 크면 계수를 많이 줄이고 λ가 작으면 최소 제곱 법 문제를 풀게 된다. λ가커질수록 계수의 크기가 Shrink 되는 효과가 생기는 걸 볼 수 있다.

$$\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} \beta_j^2 = \text{RSS} + \lambda \sum_{j=1}^{p} \beta_j^2 \quad \text{Substitute} \quad \text{Income Limit Rating Student} \quad \text{Student}$$

▣ 주요 활용 알고리즘 설명

- Lasso Regression
 - Lasso Regression의 경우 Ridge Regression과 비슷하게 생겼지만 페널티 항에 절대값의 합을 주는 방식으로 진행된다.
 - Lasso Regression은 몇몇 유의미하지 않은 변수들에 대해 계수를 0에 가깝게 추정하여 변수 선택의 효과를 가지게 한다.
 - 파라미터 크기에 관계없이 같은 수준의 Regularization을 적용하기 때문에 작은 값의 파라미터를 **0**으로 만들어 해당 변수를 모델에서 삭제하고 따라서 모델을 단순하게 만들어주고 해석에 용이하게 만들어준다.

$$\sum_{i=1}^n \left(y_i - eta_0 - \sum_{j=1}^p eta_j x_{ij}
ight)^2 + \lambda \sum_{j=1}^p \left|eta_j
ight| = \mathrm{RSS} + \lambda \sum_{j=1}^p \left|eta_j
ight|.$$
 प्राथिक प्राथिक विशेष क्षेत्र है । स्वाप्त है । स्वाप्त क्षेत्र है

주요 활용 알고리즘 설명

XGBoost

- Bagging 방식의 Random Forest와 달리 여러 개의 의사결정나무를 Boosting 방식을 사용하여 ensemble한 모델이다.
- 예를 들어, 첫 번째 의사결정 나무를 통해 예측을 수행하고 이것의 오차 값을 다음 모델에 가중치를 반영하여 모델을 개선해 나가는 방식이다.
- GradientBoost(GBM) 알고리즘과 같은 방식이나, 병렬 학습이 지원되어 더 빠른 학습이 가능하고 과적합 방지를 위한 규제가 포함되어 있다.

<Bagging 개념도>

▣ 전처리(1/2)

- 형변환
 - int형인 team변수를 object형으로 변환
- 결측치 확인
 - wip 변수에만 506건의 결측치 존재
 - 모든 결측치는 마무리 부서에 속함. 마무리 부서는 재봉 부서에서 작업을 이어 받아야 하기에 재봉부의 작업이 끝날 때 까지 마무리 부서는 대기하여야 함. 따라서 null 값을 0으로 대체 가능

<부서에 따른 결측치 파악>

◉ 전처리(2/2)

- 더미 변수 생성
 - 회귀 모델은 설명변수가 연속형 변수여야 사용할 수 있기 때문에 범주형 변수를 더미변수로 변환
 - 범주형 변수인 day, department, quarter, team 변수에 대해 더미변수화 진행
 - 더미변수는 해당 더미에 속하면 1 아니면 0의 값을 가짐
 - 더미변수는 원래의 범주 개수보다 1개 적게 생성
 - 원래 변수가 성별(남,여) 이라면 남성여부 또는 여성여부 둘 중 하나만 만들면 두 범주 모두 표현 가능

남주인공 역 연예인의 본업	시간대
가수	오후
배우	오후
개그맨	오전
배우	오전
가수	오후

1	남주인공 _가수	남주인공 _개그맨	시간대_오전		
	1	0	0		
	0	0	0		
	0	1	1		
	0	0	1		
	1	0	0		

■ EDA(1/6)

■ EDA(2/6)

EDA(3/6)

- Actual Productivity vs Targeted Productivity
 - 팀, 부서별로 차이가 존재하는 모습
 - 마무리 부서의 경우 목표 생산량과 실제 생산량 간의 차이가 큰 편

EDA(4/6)

- 상관관계
 - no_of_workers와 smv간 상관관계가 매우 높음(0.91)
 - 작업에 할당된 시간이 많을 수록 근무자가 많이 투입
 - no_of_workers와 over_time간 상관관계가 높음(0.73)
 - smv와 over_time간 상관관계로 인함
 - smv와 over_time간 상관관계가 높음(0.67)
 - 작업에 할당된 시간이 많을 수록 초과근무 발생

EDA(5/6)

- 상관관계(더미변수 포함)
 - 봉재작업과 smv, no_of_workers, over_time간의 상관관계가 매우 큼
 - 해당 작업에 소요 시간과 인력이 많이 소모됨

■ EDA(6/6)

- 타겟 변수와의 상관관계(더미변수 포함)
 - 목표 생산량과 실제 생산성간에 양의 상관관계 존재
 - 스타일의 변화와 실제 생산성간에 음의 상관관계 존재
 - 쉬는 노동자와 실제 생산성간에 음의 상관관계 존재
- 변수 선택
 - 타겟 변수와의 상관관계가 0.05 이상인 변수만 포함
 - no_of_workers, department_sewing 제거
 - smv와의 높은 상관관계로 인함
 - idle_time, idle_men 제거
 - 0값의 빈도가 많기 때문

Features Correlating with actual_productivity

분석 과정(1/9)

- Clustering
 - K-means 알고리즘 사용
 - 클러스터 내 오차제곱합의 값이 최소가 되도록 클러스터의 중심을 결정해 나가는 방법
 - Elbow Chart 활용
 - Cluster 간 거리의 합을 나타내는 inertia가 급격히 떨어지는 구간을 최적의 군집 개수 K로 설정
 - 해당 분석에서는 4개의 Cluster가 적합할 것으로 판단됨

■ 분석 과정 (2/9)

- Cluster 시각화(PCA 사용)
 - PCA(Principal Component Analysis)는 데이터 하나 하나에 대한 성분을 분석하는 것이 아니라, 여러 데이터들이 모여 하나의 분포를 이룰 때 이 분포의 주 성분을 통해 여러 변수를 주 성분의 개수로 축소시킬 수 있음
 - PCA에서는 분산이 최대인 축을 찾고(첫번째 주성분), 이 첫번째 축에 직교하고 남은 분산을 최대한 보존하는 두번째 축(두번째 주성분)을 찾으면서 주성분을 추출
 - PCA를 통해 시각화한 결과 4개의 클러스터로 잘 나뉘는 것을 확인

- 분석 과정 (3/9)
 - Linear Regression 모델 학습 및 테스트
 - 0, 1번 클러스터의 정확도가 낮게 나타나는 모습
 - PCA를 통한 Cluster 시각화 그래프에서 군집의 중심에서 크게 벗어난 데이터 포인트가 존재하기 때문

Linear Regression for Cluster #0: R2 square: -0.05109049115183373

MAE: 0.14118468741088888 MSE: 0.032176437969241176

Linear Regression for Cluster #1: R2 square: 0.7310274580528067 MAE: 0.06695440332121363

MSE: 0.00813287848797873

Linear Regression for Cluster #2: R2 square: 0.798309490336124

MAE: 0.02825078259191317 MSE: 0.0018082450560791773

Linear Regression for Cluster #3: R2 square: 0.38931590989885556

MAE: 0.11982502560683106 MSE: 0.02594961399224148

- 분석 과정 (4/9)
 - Lasso Regression 모델 학습 및 테스트
 - 전체적으로 Linear Regression보다 성능이 매우 하락
 - 변수 제거의 효과를 보이기 때문에 성능이 하락한 것으로 파악됨

Lasso Regression for Cluster #0: R2 square: -0.004539965604514862

MAE: 0.14585206760156383 MSE: 0.030751413092393997

Lasso Regression for Cluster #1: R2 square: 0.3435042798407272 MAE: 0.09977857567131936 MSE: 0.019850353055672447

Lasso Regression for Cluster #2: R2 square: 0.1297892133690759 MAE: 0.06619640919116886 MSE: 0.0078018264483268015

Lasso Regression for Cluster #3: R2 square: 0.00797708978362932 MAE: 0.16159198261394167

MSE: 0.042153728922774504

- 분석 과정 (5/9)
 - Ridge Regression 모델 학습 및 테스트
 - Linear Regression보다 다소 하락한 성능
 - 유의미하지 않은 변수의 계수를 아예 0으로 제한시키는 Lasso Regression보다는 나은 모습

Ridge Regression for Cluster #0: R2 square: -0.04367908282440247

MAE: 0.13998410733614805 MSE: 0.031949556723221174

Ridge Regression for Cluster #1: R2 square: 0.6890509922329333 MAE: 0.07287289758137018 MSE: 0.009402113977208878

Ridge Regression for Cluster #2: R2 square: 0.7196567494687665 MAE: 0.03114399131971725 MSE: 0.002513401833448108

Ridge Regression for Cluster #3: R2 square: 0.36526348744278303 MAE: 0.12021368626303042

MSE: 0.026971666291344322

- 분석 과정 (6/9)
 - Decision Tree Regression 모델 학습 및 테스트
 - Linear Regression 보다 0, 1번 클러스터의 성능은 상승하였지만, 2, 3번 클러스터의 성능은 하락

DT Regressor for Cluster #0: R2 square: -0.20113643567552586

MAE: 0.14446681360798122 MSE: 0.036769709497377734

DT Regressor for Cluster #1: R2 square: 0.680638594251612 MAE: 0.057370511861111105 MSE: 0.009656478270602202

DT Regressor for Cluster #2: R2 square: 0.6819472416018195 MAE: 0.023537502612000008 MSE: 0.0028514843306425624

DT Regressor for Cluster #3: R2 square: 0.5215114408542859 MAE: 0.08470207654838711 MSE: 0.02033226935301129

- 분석 과정 (7/9)
 - Random Forest Regression 모델 학습 및 테스트
 - 모든 클러스터에서 가장 좋은 성능을 보임

RF Regressor for Cluster #0: R2 square: 0.10083346111150582 MAE: 0.12819069022156726 MSE: 0.02752567605369345

RF Regressor for Cluster #1: R2 square: 0.7597367661425267 MAE: 0.05230251654732096 MSE: 0.00726479986375441

RF Regressor for Cluster #2: R2 square: 0.790051611501554 MAE: 0.022156407124928116 MSE: 0.001882280609865011

RF Regressor for Cluster #3: R2 square: 0.6011855792605241 MAE: 0.08335718365534998 MSE: 0.016946700332433284

- ▣ 분석 과정 (8/9)
 - XGBoost Regression 모델 학습 및 테스트
 - Random Forest 모델 보다 0, 1, 2번 클러스터에서 성능 하락을 보임
 - 3번 클러스터에 대해서는 Random Forest 모델 대비 성능 향상

XGB Regressor for Cluster #0: R2 square: 0.007018002567908188

MAE: 0.13853893814794424 MSE: 0.030397595558051268

XGB Regressor for Cluster #1: R2 square: 0.703255348412993 MAE: 0.056895842345690145 MSE: 0.008972619196901248

XGB Regressor for Cluster #2: R2 square: 0.6435325775816138 MAE: 0.02779458516054688 MSE: 0.003195888866142237

XGB Regressor for Cluster #3: R2 square: 0.7360884689178431 MAE: 0.06695660949028062 MSE: 0.011214312720262853

- 분석 과정 (9/9)
 - General Model 모델 학습 및 테스트
 - 가장 좋은 성능을 보인 Random Forest 모델을 최종 모델로 선정
 - 성능이 좋지 않은 0번 클러스터를 제외한 1, 2, 3번 클러스터를 모두 활용하여 모델 학습 진행
 - Train set / Test set을 0.85: 0.15 비율로 분리
 - n_estimators = 300

R2 square: 0.7226378296002253 MAE: 0.046405762492953806 MSE: 0.007778087169517802

■ 결과 분석 (1/2)

- 모델 성능 평가
 - 4개 클러스터의 평균 R2 score는 Random Forest 모델이 가장 우수
 - 앞선 EDA과정에서 이미 변수를 선택하는 과정을 거쳤기 때문에 Lasso와 Ridge모델의 성능이 하락한 것으로 추정

	Linear Reg	Lasso Reg	Ridge Reg	Decision Tree Regressor	Random Forest Regression	XGBRegressor
Cluster0	-0.051090	-0.004540	-0.043679	-0.201136	0.100833	0.007018
Cluster1	0.731027	0.343504	0.689051	0.680639	0.759737	0.703255
Cluster2	0.798309	0.129789	0.719657	0.681947	0.790052	0.643533
Cluster3	0.389316	0.007977	0.365263	0.521511	0.601186	0.736088

Linear Reg	0.466891
Lasso Reg	0.119183
Ridge Reg	0.432573
Decision Tree Regressor	0.420740
Random Forest Regression	0.562952
XGBRegressor	0.522474

<Test Score 요약>

<Test Score 평균>

- ▣ 결과 분석 (2/2)
 - 모델 성능 평가 General Model
 - 대부분 실제 값과 거의 유사하게 맞추는 모습

▣ 분석 개요

- 기계 예측 유지보수분류 데이터 세트이며 분석을 통해 고장유형과 실패 여부를 검출하는 과정
 - 기계의 고장여부 혹은 어떤 유형으로 고장유형이 나타나는지 예측하기위한 데이터 셋이다
 - 대기온도 , 프로세스 온도 , 회전 속도 등 고장 유발에 관련된 변수들이 존재

Dataset

- 14개로 이루어진 열이 있으며 10000개의 행으로 이루어져 있다.
- 고장 여부에는 Failure 및 No Failure 이며 고장 유형은 6개로 이루어져 있다.
- https://drive.google.com/file/d/1uvwHXJfuVCsanbpHng7dWrhZLJ0-lzNX/view?usp=sharing

Consideration

- 고장 여부에 어떠한 변수가 영향을 미치는지에 대해서 고려해 봐야 하며 또한 고장 유형에 어떤 변수가 영향을 미치는지 변수간 상관관계를 고려하여 분류 모델을 설계해야 한다.
- 고장 여부 및 고장 유형의 레이블 불균형이 심하여 사전 처리가 필요하다
- 따라서 Over Sampling 또는 Under Sampling 등 레이블 불균형을 조절하는 과정이 필요

주요 활용 알고리즘 설명

- Naïve Bayesian Classification
 - 데이터가 각 클래스에 속할 확률을 구하는 조건부 확률 기반의 분류 방법
 - Feature들은 서로 독립관계라는 가정하에 계산
 - 사전확률 P(B|A)을 통해 사후확률 P(A|B) 을 계산할 수 있음
 - 장점
 - -Feature 간의 연관 관계를 고려하지 않아 계산이 간단하고 빠르며 효율적
 - -Training 시 데이터의 크기에 관계 없이 잘 처리함
 - 단점
 - Feature 간의 독립성이 있어야함 실제 데이터에선 Feature 간 독립인 경우가 적음

- 주요 활용 알고리즘 설명
 - Naïve Bayesian Classification
 - Bayesian 의 사후확률을 공식으로 나타낼 수 있다.

우도 사건약물
$$P(A_k|B) = \frac{P(B|A_k)P(A_k)}{P(B)}$$
 주변우도(Marginal Likelihood)

◉ 주요 활용 알고리즘 설명

- Support Vector Classification
 - 다양한 데이터 분포에도 잘 작동하는 분류기법 중 최상의 기법
 - 정확도 측면에서 다른 분류기법보다 우수하다.
 - SVM 알고리즘은 주어진 데이터 집합을 바탕으로 하여 새로운 데이터가 어느 카테고리에 속할지 판단하는 비 확륙적 이진 선형 모델을 만든다.

▣ 전처리(1/2)

- 레이블 불균형 해결
 - 타겟 변수의 불균형한 레이블을 데이터 증강 혹은 데이터 감소로 해결하여 모델 학습을 용이하게 한다.

전처리(1/2)

SMOTE

- SMOTE는 대표적인 오버 샘플링 기법 중 하나이므로 먼저 오버 샘플링과 언더 샘플링의 개념을 알아보고자 한다. 언더 샘플링과 오버 샘플링은 클래스 불균형을 해결하기 위한 기법 중 하나이다.
- 본 분석에선 오버 샘플링을 통해 클래스 불균형을 해결한다

▣ 전처리(1/2)

- SMOTE
 - Over Sampling 후 Failure Type 에 대한 Label 이 조정 된 것을 볼 수 있다.

```
#OverSampling 진행

df_train=df.drop(df.columns[-3],axis=1)

df_train_val=df_train.values

smk=SMOTETomek(random_state=42)

X_res,y_res=smk.fit_resample(df_train_val,y)
```


■ 전처리(2/2)

- Robust Scaler
 - Robust Scaler 란 중앙값 0, 사분위수의 제3사분위수에서 제1사분위수를 뺀 값인 IQR이 1 이 되도록 변환하는 방법을 말한다.
 - 이상치 의 영향을 최소화한다는 특징을 가진다.
 - 본 분석에서 Target (고장 여부, 고장 타입) 이외에는 연속형 변수이므로 Robuster Sclaer 로 변수간 Scale 조정한다.

$$rac{n\sum_{i=1}^n(x_i-Q)^2(1-u_i^2)^4I(|u_i|<1)}{\left(\sum_i(1-u_i^2)(1-5u_i^2)I(|u_i|<1)
ight)^2},$$

$$u_i = rac{x_i - Q}{9 \cdot ext{MAD}}.$$

ro_scaler=RobustScaler()
X_train=ro_scaler.fit_transform(X_train)
X_valid=ro_scaler.transform(X_valid)

▫ 분석 과정

Stratified K-fold

• 데이터를 K개의 분할로 나누고 K개의 모델을 만들어 K-1 개의 분할에서 훈련하고 나머지 분할에서 평가하는 방법이다. 모델의 검증 평균 점수는 K개의 검증 점수의 평균이 된다.

```
from sklearn.naive_bayes import GaussianNB
acc_Gauss=[]
kf=model_selection.StratifiedKFold(n_splits=5)
for fold , (trn_,val_) in enumerate(kf.split(X=df_new,y=y_res)):
```


- 분석 과정 (1/3)
 - 모델학습 (Target)
 - Support Vector Classification

```
= SVC()
SVC
svc_clf = MultiOutputClassifier(estimator=svc)
svc_clf.fit(X_train, y_train)
print("Multi-Output Training Accuracy: ", svc_clf.score(X_train, y_train)*100, "%")
```

- 분석 과정 (2/3)
 - 모델학습 (Failure Type)
 - Naïve Bayesian Classification
 - Stratified K-fold 로 레이블 비율 일정하게

5 Fold 로 데이터 분할 후 검증

```
from sklearn.naive bayes import GaussianNB
acc_Gauss=[]
kf=model_selection.StratifiedKFold(n_splits=5)
for fold , (trn_,val_) in enumerate(kf.split(X=df_new,y=y_
    X_train=df_new.loc[trn_,feature_col]
    y_train=df_new.loc[trn_,target_col]
    X_valid=df_new.loc[val_,feature_col]
    y_valid=df_new.loc[val_,target_col]
    ro_scaler=RobustScaler()
    X_train=ro_scaler.fit_transform(X_train)
    X_valid=ro_scaler.transform(X_valid)
    clf=GaussianNB()
    clf.fit(X_train,y_train)
    y_pred=clf.predict(X_valid)
    print(f"The fold is : {fold} : ")
    print(classification_report(y_valid,y_pred))
```

- 분석 과정 (3/3)
 - 모델학습 (Faliure Type)
 - Support Vector Classification
 - SVC 경우 Kernel을 지정 해줘야 한다.

```
from sklearn.svm import SVC
acc_svm_poly=[]
kf=model_selection.StratifiedKFold(n_splits=5)
for fold , (trn_,val_) in enumerate(kf.split(X=df_new,y=y_res)):
   X_train=df_new.loc[trn_,feature_col]
   y_train=df_new.loc[trn_,target_col]
   X_valid=df_new.loc[val_,feature_col]
   y_valid=df_new.loc[val_,target_col]
    ro_scaler=RobustScaler()
   X_train=ro_scaler.fit_transform(X_train)
    X_valid=ro_scaler.transform(X_valid)
   clf=SVC(kernel="poly")
    clf.fit(X_train,y_train)
   y_pred=clf.predict(X_valid)
    print(f"The fold is : {fold} : ")
   print(classification report(v valid.v pred))
```

- 분석 결과 (1/3)
 - Support Vector Classification (Target)
 - Accuracy: 0.9755


```
= confusion_matrix(y_test[:,0],
cm
                                 y_pred_svc[:,0])
              = ConfusionMatrixDisplay(confusion_matrix=cm,)
disp
fig, ax
              = plt.subplots(figsize = (5,5))
disp.plot(cmap = plt.cm.Blues,
         ax = ax
```

- 분석 결과 (2/3)
 - Naïve Baysian Classification (Failure Type)
 - 각 폴드 별 약 0.77의 Accuracy를 가진다

The fold is:	0 :				The fold is:	1 :			
	precision	recall	f1-score	support		precision	recall	f1-score	support
0	0.79	0.92	0.85	1930	0	0.79	0.91	0.85	1929
1	0.69	0.45	0.54	1925	1	0.68	0.47	0.56	1925
2	0.81	0.92	0.86	1930	2	0.82	0.92	0.86	1931
3	0.84	0.76	0.80	1929	3	0.86	0.76	0.81	1929
4	0.59	0.67	0.63	1928	4	0.59	0.65	0.62	1928
5	0.88	0.89	0.88	1929	5	0.88	0.91	0.89	1929
accuracy			0.77	11571	accuracy			0.77	11571
macro avg	0.77	0.77	0.76	11571	macro avg	0.77	0.77	0.77	11571
weighted avg	0.77	0.77	0.76	11571	weighted avg	0.77	0.77	0.77	11571
The fold is:	2:				The fold is:	3 :			
The fold is :	2 : precision	recall	f1-score	support	The fold is :	3 : precision	recall	f1-score	support
	precision			20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		precision			
The fold is:	precision 0.79	0.92	0.85	1929	The fold is: 0	precision 0.81	0.94	0.87	1930
0	precision 0.79 0.70	0.92 0.48	0.85 0.57	1929 1925	0	precision 0.81 0.69	0.94 0.47	0.87 0.56	1930 1924
0 1 2	0.79 0.70 0.82	0.92 0.48 0.92	0.85 0.57 0.86	1929 1925 1931	0	precision 0.81	0.94	0.87	1930
0 1 2 3	0.79 0.70 0.82 0.86	0.92 0.48 0.92 0.75	0.85 0.57 0.86 0.80	1929 1925 1931 1929	0 1 2 3	0.81 0.69 0.82	0.94 0.47 0.92	0.87 0.56 0.86	1930 1924 1930
0 1 2	0.79 0.70 0.82	0.92 0.48 0.92	0.85 0.57 0.86	1929 1925 1931	0	0.81 0.69 0.82 0.87	0.94 0.47 0.92 0.74	0.87 0.56 0.86 0.80	1930 1924 1930 1930
0 1 2 3 4 5	0.79 0.70 0.82 0.86 0.60	0.92 0.48 0.92 0.75 0.67	0.85 0.57 0.86 0.80 0.64 0.88	1929 1925 1931 1929 1928 1929	0 1 2 3 4 5	0.81 0.69 0.82 0.87 0.60	0.94 0.47 0.92 0.74 0.68	0.87 0.56 0.86 0.80 0.64 0.89	1930 1924 1930 1930 1929 1928
0 1 2 3 4 5 accuracy	0.79 0.70 0.82 0.86 0.60 0.87	0.92 0.48 0.92 0.75 0.67 0.90	0.85 0.57 0.86 0.80 0.64 0.88	1929 1925 1931 1929 1928 1929	0 1 2 3 4 5 accuracy	0.81 0.69 0.82 0.87 0.60 0.87	0.94 0.47 0.92 0.74 0.68 0.91	0.87 0.56 0.86 0.80 0.64 0.89	1930 1924 1930 1930 1929 1928
0 1 2 3 4 5	0.79 0.70 0.82 0.86 0.60	0.92 0.48 0.92 0.75 0.67	0.85 0.57 0.86 0.80 0.64 0.88	1929 1925 1931 1929 1928 1929	0 1 2 3 4 5	0.81 0.69 0.82 0.87 0.60	0.94 0.47 0.92 0.74 0.68	0.87 0.56 0.86 0.80 0.64 0.89	1930 1924 1930 1930 1929 1928

- 분석 결과 (3/3)
 - Support Vector Classification (Failure Type)
 - 각 폴드 별 약 0.88 의 정확도를 가진다

The fold is:	0 :				The fold is:	1 :			
	precision	recall	f1-score	support		precision	recall	f1-score	support
0	0.97	0.93	0.95	1930	0	0.98	0.94	0.96	1929
1	1.00	0.67	0.80	1925	1	1.00	0.66	0.80	1925
2	0.74	1.00	0.85	1930	2	0.77	1.00	0.87	1931
3	0.99	0.92	0.95	1929	3	0.99	0.93	0.96	
4	0.78	0.92	0.85	1928	4	0.78	0.94	0.85	
5	0.92	0.83	0.87	1929	5	0.92	0.85	0.89	
accuracy			0.88	11571	accuracy			0.89	11571
macro avg	0.90	0.88	0.88	11571	macro avg	0.91	0.89	0.89	
weighted avg	0.90	0.88	0.88	11571	weighted avg	0.91	0.89	0.89	
The fold is :	2:				The fold is :	3:			
	precision	recall	f1-score	support		precision	recall	f1-score	support
0	0.98	0.92	0.95	1929	0	0.97	0.93	0.95	1930
1	1.00	0.67	0.80	1925	1	1.00	0.65	0.79	1924
2	0.74	1.00	0.85	1931	2	0.74	1.00	0.85	1930
3	0.99	0.94	0.96	1929	3 4	0.99	0.92	0.95	1930
4	0.79	0.94	0.86	1928	5	0.78 0.91	0.93 0.84	0.85 0.88	1929 1928
5	0.92	0.83	0.87	1929	Ü	0.31	0.04	0.00	1920
accuracy			0.88	11571	accuracy			0.88	11571
macro avg	0.90	0.88	0.88	11571	macro avg	0.90	0.88	0.88	11571
weighted avg	0.90	0.88	0.88	11571	weighted avg	0.90	0.88	0.88	11571