WHAT IS CLAIMED IS:

l	1. A method for depositing an undoped silicon oxide film on a substrate
2	disposed in a process chamber, the method comprising:
3	flowing a process gas comprising SiF4, H2, a silicon source, and an oxidizing
4	gas reactant into the process chamber;
5	forming a plasma having an ion density of at least 1011 ions/cm3 from the
5	process gas; and
7	depositing the undoped silicon oxide film over the substrate with the plasma
8	using a process that has simultaneous deposition and sputtering components, wherein a
9	temperature of the substrate during such depositing is greater than 450°C.
1	2. The method recited in claim 1 wherein the temperature of the substrate
2	during such depositing is substantially between 500 and 800°C.
1	3. The method recited in claim 1 wherein the temperature of the substrate
2	during such depositing is substantially between 700 and 800°C.
1	4. The method recited in claim 1 wherein the silicon source comprises
2	SiH ₄ .
1	5. The method recited in claim 4 wherein a ratio of a flow rate of SiF ₄ to
2	the process chamber to a flow rate of SiH ₄ to the process chamber is substantially between
3	0.5 and 3.0.
1	6. The method recited in claim 4 wherein the oxidizing gas reactant
2	comprises O ₂ .
1	7. The method recited in claim 6 wherein a flow rate of H ₂ to the process
2	chamber is less than 1500 sccm.
1	8. The method recited in claim 6 wherein a flow rate of O ₂ to the process
2	chamber is greater than a factor times a sum of the flow rate of SiF4 and the flow rate of SiH4
3	to the process chamber, the factor being less than about 1.8 for a flow rate of H ₂ to the
4	process chamber less than about 300 sccm and being between about 1.8 and 3.0 for a flow
5	rate of H ₂ to the process chamber greater than about 300 sccm.

1	9	€.	The method recited in claim 1 wherein the process gas further
2	comprises an inc	ert gas	.
1	1	10.	The method recited in claim 9 wherein the inert gas comprises He.
1	1	11.	The method recited in claim 1 wherein the undoped silicon oxide film
2	is a first portion	of an	undoped silicon oxide layer, the method further comprising:
3	d	deposit	ing a second portion of the undoped silicon oxide layer over the
4	substrate; and		
5	e	etching	g one of the first and second portions of the undoped silicon oxide layer
6	between deposit	ting th	e undoped silicon oxide film and depositing the second portion of the
7	undoped silicon	oxide	layer.
1	1	12.	The method recited in claim 11 wherein depositing the second portion
2			oxide layer is performed before the etching and depositing the
3	•		e film is performed after the etching.
1	1	13.	The method recited in claim 11 wherein depositing the second portion
2	of the undoped	silicor	n oxide layer comprises:
3	f	flowin	g a second process gas comprising SiF ₄ , H ₂ , the silicon source, and the
4	~ ~		t into the process chamber; and
5	i	formin	ng a second plasma having an ion density of at least 10 ¹¹ ions/cm ³ from
6	the second proc	cess ga	s,
7	•	wherei	in a temperature of the substrate during such depositing the second
8	portion of the u	ındope	d silicon oxide layer is greater than 450°C.
1		14.	A method for depositing an undoped silicon oxide film on a substrate
2			chamber, the substrate having a trench formed between adjacent raised
3	surfaces, the me		
4	•		g a process gas comprising SiF ₄ , H ₂ , SiH ₄ , and O ₂ into the process
5			atio of a flow rate of SiF ₄ to a flow rate of SiH ₄ is substantially between
6	0.5 and 3.0;		
7		formir	ng a plasma having an ion density of at least 10 ¹¹ ions/cm ³ from the
8	process gas; an		

9	depositing the undoped silicon oxide film over the substrate and within the
10	trench with the plasma using a process that has simultaneous deposition and sputtering
11	components, wherein a temperature of the substrate during such depositing is greater than
12	450°C.
1	15. The method recited in claim 14 wherein the temperature of the
2	substrate during such depositing is substantially between 500 and 800°C.
1	16. The method recited in claim 14 wherein the temperature of the
2	substrate during such depositing is substantially between 700 and 800°C.
1	17. The method recited in claim 14 wherein a flow rate of O_2 to the
2	process chamber is greater than a factor times a sum of the flow rate of SiF4 and the flow rate
3	of SiH ₄ to the process chamber, the factor being less than about 1.8 for a flow rate of H ₂ to
4	the process chamber less than about 300 sccm and being between about 1.8 and 3.0 for a flow
5	rate of H ₂ to the process chamber greater than about 300 sccm.
1	
1	18. The method recited in claim 14 wherein the process gas further
2	comprises an inert gas.
1	19. The method recited in claim 14 wherein the undoped silicon oxide film
2	is a first portion of an undoped silicon oxide layer, the method further comprising:
3	depositing a second portion of the undoped silicon oxide layer over the
4	substrate and within the trench; and
5	etching one of the first and second portions of the undoped silicon oxide layer
6	between depositing the undoped silicon oxide film and depositing the second portion of the
7	undoped silicon oxide layer.
1	20. A method for depositing an undoped silicon oxide layer on a substrate
2	disposed in a process chamber, the substrate having a trench formed between adjacent raised
3	surfaces, the method comprising, in the recited order:
4	depositing a first portion of the undoped silicon oxide layer over the substrate
5	and within the trench by forming a high-density plasma that has simultaneous deposition and
6	sputtering components;

etching at least part of the first portion of the undoped silicon oxide layer; and

8	depositing a second portion of the undoped silicon oxide layer over the		
9	substrate and within the trench by forming a high-density plasma that has simultaneous		
10	deposition and sputtering components,		
11	wherein depositing at least one of the first portion and the second portion		
12	comprises:		
13	flowing a process gas comprising SiF ₄ , H ₂ , SiH ₄ , and O ₂ into the		
14	process chamber;		
15	forming the high-density plasma from the process gas; and		
16	depositing the at least one of the first portion and the second portion		
17	•		
1	21. The method recited in claim 20 wherein depositing the at least one of		
2	the first portion and the second portion comprises depositing the second portion.		
-	the first pertien and the second pertion comprises depositing the second portion.		
1	22. The method recited in claim 20 further comprising:		
2	etching at least a part of the second portion of the undoped silicon oxide layer;		
3	and		
4	depositing a third portion of the undoped silicon oxide layer over the substrate		
5	and within the trench by forming a high-density plasma that has simultaneous deposition and		
6	sputtering components.		
1	23. The method recited in claim 20 wherein the temperature is		
2	substantially between 500 and 800°C.		
-	busining between 500 and 600 C.		
1	24. The method recited in claim 20 wherein the temperature is		
2	substantially between 700 and 800°C.		
1	25. The method recited in claim 20 wherein a flow rate of O ₂ to the		
2	process chamber is greater than a factor times a sum of the flow rate of SiF ₄ and the flow rate		
3	of SiH ₄ to the process chamber, the factor being less than about 1.8 for a flow rate of H ₂ to		
4	the process chamber less than about 300 sccm and being between about 1.8 and 3.0 for a flow		
5	rate of H ₂ to the process chamber greater than about 300 sccm.		
1	26 The mothed maited in all 200 to 1 to 1		
1 2	26. The method recited in claim 20 wherein the process gas further comprises an inert gas.		
<u> </u>	COMDITION AN INCIL YAS.		