О точках кручения порядка 2g+1 на гиперэллиптических кривых рода g

Федоров Глеб Владимирович Университет "Сириус" (Сочи), НИИСИ РАН (Москва) fedorov.gv@talantiuspeh.ru

Секция: Алгебраическая геометрия

Пусть гиперэллиптическая кривая C рода g, определенная над алгебраически замкнутым полем K характеристики 0, задана уравнением $y^2 = f(x)$, где многочлен f свободен от квадратов и имеет нечетную степень 2g+1. Существует классическое вложение (вложение Альбанезе) C(K) в группу K-точек J(K) якобиева многообразия J кривой C, отождествляющее бесконечно удаленную точку 0 с единичным элементом группы J(K). При таком вложении образ в J(K) отождествляют с точками кривой C(K). Тем самым групповая структура якобиана J частично переносится на K-точки кривой C.

В недавней работе [1] рассмотрена задача о верхней оценке количества классов эквивалентности гиперэллиптических кривых C, заданных уравнением $y^2 = f(x)$, $\deg f = 2g+1$, для которых существует 2, 4, 6 или более точек кручения P порядка 2g+1, лежащих в $C_{tor}(K) \cap J(K)$, где K — алгебраически замкнутое поле. Важно отметить, что таких точек порядка m, $3 \le m \le 2g$, быть не может.

Целью наших исследований в этом направлении был ответ на вопрос (поставленный в работе [1]) о явном виде представителей классов бирациональной эквивалентности, таких гиперэллиптических кривых C, что множество $C_{tor}(K) \cap J(K)$ содержит не менее 6 точек кручения порядка 2g+1. При g=2 в статьях [2] и [3] было изучено семейство гиперэллиптических кривых рода 2, якобианы которых обладают точками кручения порядка 5. В частности, было показано, что при g=2 над алгебраически замкнутым полем K существует ровно 5 классов бирациональной эквивалентности, таких гиперэллиптических кривых C, что множество $C_{tor}(K) \cap J(K)$ содержит не менее 6 точек кручения порядка 5. В статье [4] нам удалось явно найти представители этих классов. При g=3 и g=5 мы доказали, что таких представителей нет. При g=4 нами доказано, что существует единственный класс бирациональной эквивалентности, и явно выписан его представитель. Наконец, нами улучшена оценка из [1] в 27 раз.

Исследование выполнено за счет гранта Российского научного фонда (проект 22-71-00101).

- [1] Bekker B. M., Zarhin Y. G. Bekker B. M., Zarhin Y. G. Torsion points of small order on hyperelliptic curves // European Journal of Mathematics. 2022. Vol. 8, №2. P. 611-624.
- [2] Boxall J., Grant D., Leprévost F. 5-torsion points on curves of genus 2 // Journal of the London Mathematical Society. 2001. Vol. 64, №1. P. 29-43.
- [3] Elkies N. D. Contemporary Mathematics Volume 796, 2024 // LuCaNT: LMFDB, Computation, and Number Theory. 2024. Vol. 796. P. 165-186.
- [4] Fedorov G.V. On hyperelliptic curves of odd degree and genus g with 6 torsion points of order 2g+1 // Doklady Mathematics. 2024.