Adapters: A Unified Library for Parameter-Efficient and Modular Transfer Learning

Clifton Poth*, Hannah Sterz*, Indraneil Paul, Sukannya Purkayastha, Leon Engländer, Timo Imhof, Ivan Vulic, Sebastian Ruder, Iryna Gurevych, Jonas Pfeiffer

https://github.com/adapter-hub/adapters

pip install adapters

Adapters is an add-on to Hugging Face's Transformers

Why Parameter-Efficiency?

As LM sizes grow, full model fine-tuning becomes expensive

→ Fine-tuning a smaller set of parameters can be more time and memory efficient

| Palm | Bloom | Yalm | 20B | GPT-NeoX | 20B | 176B | 100B | GPT-NeoX | 176B | 100B | GPT-NeoX | 176B | 100B | GPT-NeoX | 176B | 100B | 176B | 100B | 176B | 176B

Supported Adapter Methods

- Single Method
 - Implemented: Bottleneck, Compacter, LoRA, (IA)³, Prefix Tuning, Prompt Tuning, Invertible Adapters
- Complex Method
 - Flexible combination of single methods in joint adapters
 - Examples: Mix-and-Match adapters or Unipelt

Code Demo: Configure adapters

Why Modularity?

- It's infeasible to have a specialized model for each use case.
- There are a lot of low resource use cases with insufficient training data
- ightarrow Modular composition enables transfer to new scenarios in a zero- or few-shot setup

Adapters uses composition blocks to enable modularity

Example Compositions

Code Demo: Composing pre-trained adapters

Adapter methods can match full fine-tuning performance

Method	Sequence Classification							Regression	Mult. Choice	Extract. QA	Tagging	
	CoLA Dev MCC	MNLI Dev Acc.	MRPC Dev F1	QNLI Dev Acc.	QQP Dev F1	RTE Dev Acc.	SST-2 Dev Acc.		Cosmos QA Dev Acc.	SQuAD v2 Dev F1	CoNLL-2003 Test F1	Avg.
double_seq_bn	63.58	87.61	93.31	92.84	91.58	80.87	94.73	90.85	70.99	84.89	96.24	86.14
	(±19.19)	(±26.41)	(±4.52)	(±17.17)	(±36.83)	(±11.09)	(±17.51)	(±27.16)	(±16.87)	(±5.52)	(±17.65)	(±18.17
seq_bn	71.22	87.5	92.91	93.15	89.69	79.42	95.18	89.44	69.68	82.88	96.21	86.12
	(±23.40)	(±20.39)	(±4.54)	(±15.83)	(±21.31)	(±9.81)	(±13.26)	(±20.33)	(±16.44)	(±1.04)	(±11.48)	(±14.34
par_bn	63.95	87.44	93.24	93.04	88.32	77.98	94.95	90.33	80.10	82.56	91.95	85.81
	(±23.72)	(±21.66)	(±4.65)	(±17.26)	(±33.14)	(±10.95)	(±16.97)	(±5.64)	(±18.47)	(±6.70)	(±27.60)	(±16.98
compacter	55.52	86.10	90.43	92.42	86.68	68.59	94.15	90.06	67.91	79.20	91.27	82.03
	(±13.67)	(±1.99)	(±3.58)	(±2.68)	(±2.14)	(±4.91)	(±0.81)	(±23.27)	(±10.42)	(±8.87)	(±8.58)	(±7.36
prefix_tuning	61.62	86.98	91.06	92.46	87.07	71.12	95.18	90.13	66.13	78.16	95.15	83.19
	(±4.93)	(±18.91)	(±4.09)	(±9.55)	(±15.58)	(±6.06)	(±0.54)	(±29.23)	(±3.44)	(±2.41)	(±2.49)	(±8.84
lora	63.99	87.59	92.60	93.11	88.48	80.26	94.99	90.72	70.63	82.46	91.85	85.15
	(±20.64)	(±4.29)	(±4.39)	(±3.77)	(±2.57)	(±9.28)	(±8.48)	(±19.31)	(±8.65)	(±8.86)	(±21.68)	(±10.17
ia3	63.03	86.19	92.32	91.88	86.41	76.89	94.42	90.65	66.85	78.52	91.56	83.52
	(±21.39)	(±5.08)	(±3.94)	(±3.73)	(±13.46)	(±7.17)	(±2.13)	(±29.16)	(±9.69)	(±10.11)	(±21.94)	(±11.62
Full Fine-tuning	63.66	87.63	90.20	92.81	91.92	78.77	94.81	91.20	68.87	82.91	95.23	85.27

Differences from AdapterHub v1

	AdapterHub v1	Adapters		
Design	Fork of Transformers	Self-contained add-on		
Adapter methods	2	10		
Complex configurations	×	∠		
Composition blocks	×	(6)		
Model architectures	3	20		
AdapterHub.ml/HFHub integration	/ / ×	V / V		

Summary

Adapters..

- is an add-on to *Transformers* for easy parameter-efficient fine tuning and modular transfer
- supports 10 different adapter methods for 20 different models
- comes with 6 composition blocks for easy transfer
- provides access to 700+ pretrained adapters