中級統計学:宿題7

村澤 康友

提出期限: 2024年1月31日

注意: すべての質問に解答しなければ提出とは認めない. 授業の HP の解答例を正確に再現すること(乱数は除く). グループで取り組んでよいが,個別に提出すること. 解答例をコピペしたり,他人の名前で提出した場合は,提出点を0点とし,再提出も認めない. すべての結果をワードに貼り付けて印刷し(A4縦・両面印刷可・手書き不可),2 枚以上の場合は向きを揃えて問題番号順に重ね,左上隅をホッチキスで留めること. gretl で回帰分析を実行する手順は次の通り:

- 1. メニューから「モデル」→「最小二乗法」を選択.
- 2.「従属変数」を1つ選択.
- 3. 「説明変数 (回帰変数)」を選択.
- 4. 「OK」をクリック.

また回帰分析の結果の画面でメニューから追加的な分析やグラフの表示ができる.

- 1.「グラフ」→「理論値・実績値プロット」→「対(説明変数名)」で回帰直線が図示される.
- 2. 「分析」→「係数の信頼区間」で回帰係数の 95 %信頼区間が求まる.

以下の分析を実行しなさい.

- 1. gretl のサンプル・データ data2-2 は、カリフォルニア大学サンディエゴ校 1 年生の大学での GPA (colgpa) と高校での GPA (hsgpa) である. hsgpa から colgpa への限界効果について以下の分析を行いなさい.
 - (a) colgpa の hsgpa 上への回帰モデルを推定しなさい.
 - (b) 回帰直線を図示しなさい.
 - (c) hsgpa から colgpa への限界効果の 95 %信頼区間を求めなさい.
 - (d) 回帰係数 β について以下の仮説を有意水準 5 %で検定しなさい.

$$H_0: \beta = 0 \text{ vs } H_1: \beta > 0$$

2. hsgpa に対する colgpa の弾力性について上と同じ分析を行いなさい. 注:変数の対数変換はメニューから「追加」→「選択された変数の対数」を選択.

解答例

1. (a) OLS

モデル 1: 最小二乗法 (OLS), 観測: 1-427

従属変数: colgpa

	係数	標準誤差	t 値	p 値	
const	0.920577	0.204631	. 11100	8.83e-06	
hsgpa	0.524173	0.057120	9.177	1.95e-01	8 ***
Mean depende	nt var 2	.785504	S.D. depend	lent var	0.540820
Sum squared :	resid 1	03.9935	S.E. of reg	gression	0.494662
R-squared	0	.165374	Adjusted R-	squared	0.163410
F(1, 425)	8	4.21012	P-value(F)		1.95e-18
Log-likeliho	od -3	04.3276	Akaike crit	erion	612.6551
Schwarz crit	erion 6	20.7687	Hannan-Quir	ın	615.8598

(b) 回帰直線

実績値と理論値 colgpa

(c) 信頼区間

t(425, 0.025) = 1.966

変数	係数	95% 信頼区	間
const	0.920577	0.518362	1.32279
hsgpa	0.524173	0.411899	0.636447

(d) t=9.177>1.65 より $H_0:\beta=0$ を棄却して $H_1:\beta>0$ を採択.

2. (a) OLS

モデル 1: 最小二乗法 (OLS), 観測: 1-427

従属変数: l_colgpa

	係数	標準誤差	1	t 値	p 値	_
const	0.162259	9 0.09738	303	1.666	0.0964	*
l_hsgpa	0.66680	1 0.07681	107	8.681	8.47e-01	7 ***
Mean depende	ent var	1.003658	S.D.	depend	ent var	0.211095
Sum squared	resid	16.12395	S.E.	of reg	ression	0.194779
Daggarand		0 150614	٠-: ۵	D		0 140616

R-squared 0.150614 Adjusted R-squared 0.148616 F(1, 425) 75.36154 P-value(F) 8.47e-17 Log-likelihood 93.64131 Akaike criterion -183.2826

Schwarz criterion -175.1691 Hannan-Quinn -180.0779

(b) 回帰直線

実績値と理論値 I_colgpa

(c) 信頼区間

t(425, 0.025) = 1.966

変数	係数	95% 信頼区間	5
const	0.162259	-0.0291483	0.353666
l_hsgpa	0.666801	0.515825	0.817777

(d) t=8.681>1.65 より $H_0:\beta=0$ を棄却して $H_1:\beta>0$ を採択.