First we show that for $k \ge 2$ the decimal representation of $\frac{1}{3^k}$ has a periodicity divisor or equal to 3^{k-2} As by recurrence 3^k divide $10^{3^{k-2}}-1$ (True for k=2) and : $10^{3^{k-1}}-1=10^{3^{k-2}\times 3}-1=(10^{3^{k-2}})^3-1=(10^{3^{k-2}}-1)(10^{2\times 3^{k-2}}+10^{3^{k-2}}+1)$ by recurrence $(10^{3^{k-2}}-1)\equiv 0 \ mod(3^k)$ and $(10^{2\times 3^{k-2}}+10^{3^{k-2}}+1)\equiv 0 \ mod(3)$

For $\frac{1}{3^k} < (N-nb)$ the nb decimal digits beginning at the Nth are identical to digits beginning at $N \ mod(3^{k-2})$ and also beginning at $N \ mod(3^{k-2+i})$, $i \geq 0$ As 3^k is a multiple of the period 3^{k-2} the nb decimal digits are the same for $\frac{1}{3^k 10^{3^k}}$

For $K=33: \frac{1}{3^K} < (10^{16}-nb) < 10^{16} < \frac{1}{3^{K+1}}$ we need to compute nb digits begining at 10^{16} or $\Delta=(10^{16}\ mod\ 3^{K-2})$ of $\sum_{k=1}^K \frac{1}{3^k} = \frac{1-(\frac{1}{3})^{K+1}}{1-\frac{1}{3}} - 1 = \frac{1-\frac{1}{3^K}}{2}$

as we can compute digits for $\frac{1}{3^K}$ by recursion : $R_0 = 1$; $d_{n+1} = \lfloor \frac{R_n}{3^K} \rfloor$; $R_{n+1} = R_n - d_{n+1} \times 3^K$ to skip Δ digits we compute $R_{\Delta} = (10^{\Delta} \ mod(3^K))$ by fast exponentation.

Remark: to implement the division by 2, we compute $R_{\Delta-1}$