

Advanced Robot Control and Learning

Prof. Sami Haddadin

Modern Methods of Robot Control II

Advanced Robot Control - Outline

Differential Geometry in Robotics

Basics of Task Space Modeling and Control

Modern Methods of Robot Control I

Modern Methods of Robot Control II

- Impedance and Admittance Control
- Port-Hamiltonian Systems in Robotics
 - Motivation
 - Dirac Structure and Power Ports
 - Port-based Modeling of a Manipulator
 - Passivity Analysis

Linear Parametrization of Robot Dynamics Robot Dynamics Identification Bio-Inspired Robot Control

References

- The content of this lecture is based on
 - Passivity-based Control and Estimation in Networked Robotics, T. Hatanaka et al., Springer international publishing, 2015
 - ➤ Slides of the lecture Sensor-based Robotic Manipulation and Locomotion, *Prof. Dr. Alin Albu-Schäffer*, Technical University of Munich, Wintersemester 2018/19
 - M. W. Spong, S. Hutchinson, M. Vydiasagar: Robot Modelling and Control, John Wiley & Sons, 2006
 - Takegaki M., Arimoto S., 1981, "A new feedback method for dynamic control of manipulators", Transactions ASME, Journal of Dynamic Systems, Measurement and Control, Vol. 103, pp. 119–125
 - Paden, B., & Panja, R. (1988). Globally asymptotically stable 'PD+'controller for robot manipulators. *International Journal of Control*, *47*(6), 1697-1712.
 - Slotine, J. J. E., & Li, W. (1991). Applied nonlinear control (Vol. 199, No. 1). Englewood Cliffs, NJ: Prentice hall.
 - Lynch, Kevin M., and Frank C. Park. Modern Robotics. Cambridge University Press, 2017.

Impedance/Admittance Control

Impedance & Admittance – Concept

- The robot end-effector is asked to render particular mass, spring, and damper properties.
- The dynamics for a one-dof robot rendering an impedance can be written as:

$$m\ddot{x} + b\dot{x} + kx = f$$

Taking the Laplace transform yields:

$$(ms^2 + bs + k)X(s) = F(s)$$

- The impedance is defined by the transfer function from position perturbations to forces: $Z(y) = \frac{F(s)}{X(s)}$
- The admittance is the inverse of the impedance: $Y(s) = Z^{-1}(s) = \frac{X(s)}{F(s)}$

Impedance & Admittance – Concept

From electrical circuits:

$$U = RI + L\dot{I} + \frac{1}{C} \int I \ dt$$

- Impedance: $Z(s) = \frac{U(s)}{I(s)}$ e.g. $Z(s) = R + Ls + \frac{1}{Cs}$
- Admittance: $Y(s) = \frac{I(s)}{U(s)}$ e.g. $Y(s) = \frac{1}{R + Ls + \frac{1}{Cs}}$
- Analogy between mechanical and electrical systems:

$$U = L\ddot{Q} + R\dot{Q} + \frac{1}{C}Q$$
$$F = M\ddot{X} + D\dot{X} + KX$$

- Impedance: $Z(s) = \frac{F(s)}{X(s)}$ Impedance causality: Input: X(s), Output: F(s)
- Admittance: $Y(s) = \frac{X(s)}{F(s)}$ Admittance causality: Input: F(s), Output: X(s)

$$U \leftrightarrow F$$
, $I \leftrightarrow \dot{X}$, $Q \leftrightarrow X$, $R \leftrightarrow D$, $L \leftrightarrow M$, $(\frac{1}{C}) \leftrightarrow K$

Impedance-Control Algorithm

- The goal of impedance control is to implement the task-space behavior: $M\ddot{x} + B\dot{x} + Kx = f_{ext}$
- The robot senses the endpoint motion x(t) and commands joint torques and forces to create $-f_{ext}$, the force to display to the user.
- Theoretically, an impedance-controlled robot should only be coupled to an admittance-type environment
- A good control law might be

$$\tau = J^{T}(\theta) \left(\underbrace{\tilde{\Lambda}(\theta)\ddot{x} + \tilde{\eta}(\theta, \dot{x})}_{arm \ dynamics \ compensation} - \underbrace{(M\ddot{x} + B\dot{x} + kx)}_{f_{ext}} \right)$$

• The task-space dynamics model $\{\widetilde{\Lambda},\widetilde{\eta}\}$ is expressed in terms of the coordinates

Admittance -Control Algorithm

- The robot senses f_{ext} using a wrist force—torque sensor and controls its motions in response.
- In an admittance-control algorithm the force f_{ext} applied by the user is sensed by the wrist load cell, and the robot responds with an end-effector acceleration.
- A simple approach is to calculate the desired end-effector acceleration \ddot{x}_d according to:

$$M\ddot{x}_d + B\dot{x} + Kx = f_{ext}$$

• Solving with respect to \ddot{x}_d , we get:

$$\ddot{x}_d = M^{-1}(f_{ext} - B\dot{x} - Kx)$$

• Considering $\dot{x} = J(\theta)\dot{\theta}$, the desired joint accelerations can be solved as:

$$\ddot{\theta}_d = J^{-1}(\theta)(\ddot{x}_d - \dot{J}(\theta)\dot{\theta})$$

• Then, the inverse dynamics can be used to calculate the commanded joint forces and torques.

Cartesian Controller with Impedance Causality

Inner loop: compliance

Outer loop: high stiffness

Cartesian Controller with Admittance Causality

- Inner loop: high stiffness
- Outer loop: compliance

Considerations – Cartesian Space vs. Joint Space

- For the non-redundant, non-singular robot, the same controllers can be applied as in joint space
- Robot model in SE(3) space

$$M_{\rm C}(q)\ddot{x} + C_{\rm C}(q,\dot{q})\dot{x} + F_{\rm g}(q) = F_{\rm in}$$

PD controller with gravity compensation

$$F_{\text{in}} = K_{\text{P}}(x_d - x) - K_{\text{D}}\dot{x}$$

$$\tau_{\text{in}} = J^T(q)F_{\text{in}} + g(q)$$

Closed loop dynamics

$$\Rightarrow M_{\rm C}(q)\ddot{x} + C_{\rm C}(q,\dot{q})\dot{x} + K_{\rm P}(x_d - x) - K_{\rm D}\dot{x} = 0$$

- Differences to joint control:
 - > All statements are only *local*, not global
 - In case of redundant robot, convergence of coordinate *x* does not imply stability of the whole system (Null space motion)

Chapter 5: Port-Hamiltonian Systems in Robotics

Motivation – Interconnection by Energy

- Energy
 - Transferable property of an object
 - Can be described in an equivalent nature in different domains
- Each system consists of subsystems, with their own network of interconnected atomic elements (Ports)
 that deal with a specific energy type
- Interconnection through exchange of energy per unit time: Power
- Power *P* as the dual product (i.e. $\langle \varepsilon | \zeta \rangle = \varepsilon^T \zeta$) of *Power-conjugate variable*, namely **effort** and **flow**

Power-conjugate variables

- Belonging to the dual spaces¹ (e.g. $\mathcal{F} = \mathbb{R}^k$, $\mathcal{E} := \mathcal{F}^* = (\mathbb{R}^k)^*$), flow $(f \in \mathcal{F})$ and effort $(e \in \mathcal{E})$ permit a power description in a unified way
- They can be defined for each subsystem according to its related domain
- Examples

Energy Domain	Effort	Flow
Kinetic – translational	Force	Linear velocity
Kinetic – rotational	Torque	Angular velocity
Electrical	Voltage	Current
Magnetic	Current	Voltage
Hydraulic	Pressure	Volume flow
Thermal	Temperature	Entropy flow

¹ See first lecture on Differential Geometry in Robotics, tangent and cotangent spaces

Dirac-structure and Power-ports

Dirac Structure

• On the space $\mathcal{T} \times \mathcal{T}^*$ a Dirac structure is a subspace \mathcal{D} such that

- i. $\langle e|f\rangle = 0, \forall (f,e) \in \mathcal{D}$
- ii. $\dim \mathcal{D} = \dim \mathcal{F}$
- First condition ⇒ the power-conservation property of the physical systems
- Second condition ⇒ the impossibility in controlling of both effort and flow¹
- Belonging to the dual spaces¹ (e.g. $\mathcal{F} = \mathbb{R}^k$, $\mathcal{E} \coloneqq \mathcal{F}^* = (\mathbb{R}^k)^*$), flow $(f \in \mathcal{F})$ and effort $(e \in \mathcal{E})$ permit a power description in a unified way
- They can be defined for each subsystem according to its related domain
- Dirac structure as a power-conserving interconnection of atomic elements (i.e. ports)
- The subspace \mathcal{D} is called the space of *port variables*

¹ See fourth lecture on Modern Methods of Robot Control, Impedance control

Internal Ports

Energy Storage Port (S):

- Energy storage is describable by a finite-dimensional state space manifold \mathcal{H} with coordinates x, together with the energy function (namely Hamiltonian)
- $H: \mathcal{H} \to \mathbb{R}$ Examples:

Energy Domain	State
Kinetic – translational	Linear momentum (P)
Kinetic – rotational	Angular momentum (L)
Potential – translational	Linear displacement (x)
Potential – rotational	Angular displacement (θ)
Electrical	Charge (Q)
Magnetic	Magnetic flux linkage (λ)

• For the related port variables (f_S, e_S) , which are interconnected to the energy storage of the system we have

$$P_S = e_S^T f_S = \left(\frac{\partial H}{\partial x}\right)^T (-\dot{x}) = -\dot{H}$$

Energy Dissipation Port (\mathcal{R}) :

- Corresponds to internal energy dissipation (due to friction, resistance, etc.)
- Port variables are denoted by (f_R, e_R)
- Static resistive relation $R(f_R, e_R) = 0$, with the property of $\langle \varepsilon | f \rangle \leq 0 \ \forall \ (f_R, e_R)$
- Without the presence of additional external ports,
 Dirac structure of port-Hamiltonian system satisfies power balance

$$e_s^T f_s + e_R^T f_R = 0$$

Hence

$$\frac{d}{dt}H = -e_s^T f_s = e_R^T f_R \le 0$$

External Ports

Interaction Port (\mathcal{I}) :

- Corresponding with the interaction of the system with the environment
- Assumed to be known and described by the port variables (f_l, e_l)

Control Port (\mathcal{C}) :

- Corresponding to the control action driving the system
- Assumed to be known and to be described by the port variables (f_C, e_C)
- The presence of sources may be included in this port

All Ports Together

• Dirac structure \mathcal{D} of the port-Hamiltonian syste, satisfies the power balance

$$e_S^T f_S + e_R^T f_R + e_C^T f_C + e_I^T f_I = 0$$

Hence, for the energy balance

$$\frac{d}{dt}H = e_R^T f_R + e_C^T f_C + e_I^T f_I$$

The variation of internal energy is equal to the sum of the power provided by the external ports (interaction and control) and the power dissipated by the resistive port

Port-Hamiltonian Representation

- Multiple ways to represent Dirac structures resultion
- Kernel Representation:

Dirac structure $\mathcal{D} \subset \mathcal{F} \times \mathcal{E}$, with $\mathcal{E} = \mathcal{F}^*$

$$\mathcal{D} = \{ (f, e) \in \mathcal{F} \times \mathcal{F}^* | Ff + Ee = 0 \}$$

for linear maps F: $\mathcal{F} \to \mathcal{V}$ and E: $\mathcal{E} \to \mathcal{V}$ satisfying

- i. $EF^* + FE^* = 0$
- ii. $\operatorname{rank}(F + E) = \dim \mathcal{F}$

where \mathcal{V} is a linear space with same dimensions as \mathcal{F} with F^* : $\mathcal{V}^* \to \mathcal{E}$ and E^* : $\mathcal{V}^* \to (\mathcal{F}^*)^* = \mathcal{F}$ are adjoint maps of F and E

And for a system with all four mentioned ports:

$$\mathcal{D} = \{ (f_S, e_S, f_R, e_R, f_C, e_C, f_I, e_I) \in \mathcal{F} \times \mathcal{F}^* | F_S f_S + E_S e_S + F_R f_R + E_R e_R + F_C f_C + E_C e_C + F_I f_I + E_I e_I = 0 \}$$

Port-Hamiltonian Representation

• By a proper substitution for the matrices of Kernel representation one will reach to the well-known port-Hamiltonian system representation

$$\begin{cases} \dot{x} = [J(x) - R(x)] \frac{\partial H}{\partial x}(x) + G(x)u_C + K(x)u_I \\ y_C = G^T(x) \frac{\partial H}{\partial x} \\ y_I = K^T(x) \frac{\partial H}{\partial x} \end{cases}$$

(H, x): Storage port Hamiltonian and states

J(x): Skew-symmetric matrix (assuring the power-conservation)

R(x): Symmetric positive-definite matrix (representing the dissipation port)

 u_I, u_C, y_I, y_C : the input and output port-variables of external ports

G, K: Mapping matrices for the external ports

Port-based Modeling of a Manipulator

Modeling of a Robot

Storage port – Gravitational {H_a, q}

State: Joint positions: $x_q = q$

Hamiltonian: Robot's gravitational energy: $H_q = U(q)$

• Storage port – Kinetic $\{H_k, p_r\}$

State: Joint generalized momenta: $x_k = p_r = M(q)\dot{q}$ (M: mass matrix)

Hamiltonian: Robot's kinetic energy: $H_k = \frac{1}{2} p_r^T M^{-1}(q) p_r$

• Dissipative port (f_R, e_R)

Flow: Joint velocities: $f_R = \dot{q}$

Effort: Dissipative joint torques: $e_R = -D(p, q)\dot{q}$ (D: symmetric positive matrix)

• Control port (\dot{q}, τ)

Flow: Joint velocities: $f_C = \dot{q}$

Effort: Input joint torques: $e_C = \tau$

• Interaction port ${}^{0}T_{EE}^{0}$, ${}^{0}W_{\mathrm{env}}^{EE}$

Flow: Robot's end-effector twist with regard to and described in the base frame: $f_I = {}^0T_{EE}^0$ Effort: Wrench acting on the robot's end-effector described in the base frame: $e_I = {}^0W_{\rm env}^0$

Modeling of a Joint

• Storage port – Rotational kinetic $\{H_b, p_m\}$

State: Motor generalized momenta: $x_b = p_m = b\dot{q}$ (b: motor inertia)

Hamiltonian: Robot's kinetic energy: $H_b = \frac{1}{2} p_m^T b^{-1} p_m$

• Control port (\dot{q}, τ_m)

Flow: Joint velocities: $f_C = \dot{q}$

Effort: Input motor torques: $e_C = \tau_m$

• Interaction port (\dot{q}, τ)

Flow: Joint velocities: $f_C = \dot{q}$

Effort: Input joint torques: $e_C = \tau$

Modeling of Controller

• Storage port – Proportional term $\{H_s, (q_d - q)\}$

State: Position error: $x_s = q_d - q$

Hamiltonian: Energy stored in the controller due to the position error:

 $H_S = \frac{1}{2} x_S^T K_P x_S$ (K_P : controller proportional gain matrix)

• Dissipative port $(\dot{q}, -K_D\dot{q})$

Flow: Joint velocities: $f_R = \dot{q}$

Effort: Dissipative torques due to damping effect:

 $e_R = -K_D \dot{q}$ (K_D : controller damping gain matrix)

• Interaction port (\dot{q}, τ_m)

Flow: Joint velocities: $f_C = \dot{q}$

Effort: Input joint torques: $e_C = \tau_m$

Modeling of Object

• Storage port – Gravitational $\{H_a, x_o\}$

State: Object's center of mass position: $x_q = x_o$

Hamiltonian: Object's gravitational energy: $H_q = mg^T x_o$

(m: object's mass, q: gravity vector)

Storage port – Linear Kinetic {H_{Ik}, p_o}

State: Object's linear momentum: $x_{lk} = p_o = m\dot{x}_o$

Hamiltonian: Object's linear kinetic energy: $H_{lk} = \frac{1}{2m} p_o^T p_o$

• Storage port – Angular Kinetic $\{H_{rk}, l_o\}$

State: Object's rotational momentum: $x_{rk} = l_o = I_o \omega_o$

Hamiltonian: Object's rotational kinetic energy:

 $H_{rk} = \frac{1}{2} l_o^T I_o^{-1} l_o$ (I_o : inertia tensor, ω_o : angular velocity of object)

• Interaction port ${}^{0}T_{\rm cnt}^{0}$, ${}^{0}W_{\rm env}^{\rm cnt}$

Flow: Object's contact point twist with regard to and described in the base frame: $f_I = {}^0T_{\rm cnt}^0$

Effort: Wrench acting on the contact point of the object described in the base frame:

 $e_I = {}^{0}W_{\rm env}^{\rm cnt}$

Modeling of Contact

• Storage port – Elastic $\{H_s, x_s\}$

State: Contact elasticity's deflection: $x_s = x_{\text{cnt,1}} - x_{\text{cnt,2}}$ ($x_{\text{cnt,i}}$: the contact point's pose from side i)

Hamiltonian: Stored energy in contact's elastic element:

$$H_S = \frac{1}{2} x_S^T K_{\text{cnt}} x_S$$
 (K_{cnt} : the contact elasicity matrix)

Dissipative port (f_R, e_R)

Flow: Relative twists on the damping element of the contact: Joint $f_R = {}^0T_{\rm cnt.1}^0 - {}^0T_{\rm cnt.2}^0$

Effort: Wrench due to the contact's damping effect:

$$e_R = -D_{\rm cnt} f_R$$
 ($D_{\rm cnt}$: symmetric positive matrix)

Interaction port (to one side) ${}^{0}T_{\text{cnt},1}^{0}$, ${}^{0}W_{\text{cnt}}^{\text{cnt},1}$

Flow: Twist on one side of the contact are: $f_I = {}^{0}T_{\text{cnt},1}^{0}$

Effort: Wrench acting on the contact area from one side: $e_I = {}^{0}W_{\rm cnt}^{\rm cnt,1}$

• Interaction port (to another side) ${}^{0}T_{\text{cnt},2}^{0}$, ${}^{0}W_{\text{cnt},2}^{\text{cnt},2}$

Flow: Twist on another side of the contact are: $f_I = {}^{0}T_{\text{cnt},2}^{0}$

Effort: Wrench acting on the contact area from another side: $e_I = {}^{0}W_{\rm cnt}^{{\rm cnt},2}$

Overall System

Now, connecting all the aforementioned sub-systems, we reach to one unified system with the internal ports of:

The overall Hamiltonian function will be the summation of all Hamiltonians:

$$H_{tot} = H_{k,controller} + H_{k,robot} + H_{g,robot} + H_{s,contact} + H_{lk,object} + H_{rk,object} + H_{g,object}$$

Assumption: the dissipation port of the robot can be disregarded, and as a result there will be two
dissipation ports in the system for the controller and contact

Possible Extensions:

- One can consider an elastic joint, for which there would be an extra storage port for the elasticity, and an extra dissipative port for the damping effect
- One can consider a rigid contact, for which ${}^0T_{\mathrm{cnt,1}}^0 = {}^0T_{\mathrm{cnt,2}}^0$ and ${}^0W_{\mathrm{cnt}}^{\mathrm{cnt,1}} = -{}^0W_{\mathrm{cnt}}^{\mathrm{cnt,2}}$. This can be modelled as a constraint on the twists

After the proper connection, the whole system can be shown as a single port-based model.

Overall System

Passivity Analysis

How to Prove Passivity by Port-based Modeling?

As mentioned before, for a single system with all kinds of ports, the fundamental property in port-based modeling is:

$$\frac{d}{dt}H = e_R^T f_R + e_C^T f_C + e_I^T f_I$$

For our system, this means:

$$\frac{d}{dt}H_{tot} = e_{R,controller}^{T} \cdot f_{R,controller} + e_{R,contact}^{T} \cdot f_{R,contact}$$

$$\rightarrow \dot{H}_{tot} = -\dot{q}^{T}K_{D}\dot{q} - \left({}^{0}T_{\text{cnt},1}^{0} - {}^{0}T_{\text{cnt},2}^{0}\right)^{T}D_{\text{cnt}}\left({}^{0}T_{\text{cnt},1}^{0} - {}^{0}T_{\text{cnt},2}^{0}\right) \leq 0$$

Hence, the overall system is proven to be passive.