Глобальная нормализация по основанию $2 (GN(2)) \Rightarrow BT\Phi$:

Условный подход, верифицированный в Соф

Григорий Деденко

Аннотация Мы представляем формулировку идеи Деденко с явным основанием, в которой единственной гипотезой является глобальная нормализация по основанию 2 (GN(2)): для любого предполагаемого натурального решения уравнения Ферма $x^n+y^n=z^n$ при n>2 должно выполняться равенство $2^n=2\cdot n$. В совокупности с элементарным фактом о росте $2^n>2\cdot n$ для всех $n\geq 3$ это немедленно приводит к противоречию и, следовательно, к Великой теореме Ферма (ВТФ). Результат формулируется как условная импликация Арифметика+GN(2) \Rightarrow ВТФ и полностью формализован в Сод. Ядро формального доказательства построено исключительно над натуральными числами; удобный вещественный предикат «покрытия» роw $2n=2\cdot \text{INR}\,n$ связан с $2^n=2\cdot n$ через лемму-мост. Стандартная параметризация $(z,x)=(m^n+p^n,\,m^n-p^n)$ и тождества четности включены только для мотивации/проверки согласованности и не играют роли в финальном шаге. Данное представление с GN(2) заменяет более раннюю формулировку с глобальным нормализатором o>1.

Keywords: Великая теорема Ферма \cdot GN(2) \cdot нормализация \cdot Coq \cdot формальная верификация

1 Введение

Рассмотрим уравнение Ферма

$$x^{n} + y^{n} = z^{n}, \qquad x, y, z \in \mathbb{N}, \ n \in \mathbb{N}. \tag{1}$$

В настоящей трактовке анализ сводится к одной-единственной гипотезе с явным основанием:

Definition 1 (Глобальная нормализация по основанию 2 (GN(2))). Для любого n > 2 и всех $x, y, z \in \mathbb{N}$,

$$x^n + y^n = z^n \implies 2^n = 2 \cdot n.$$

Комбинирование GN(2) с элементарным неравенством о росте $2^n > 2 \cdot n$ для $n \ge 3$ немедленно даёт ВТФ.

2 Мотивация: алгебраическая постановка и четность (не используется в ядре доказательства)

Следуя стандартному приему, положим $z := m^n + p^n$ и $x := m^n - p^n$ (изначально над \mathbb{R} , чтобы кольцевые равенства были прямолинейными). Тогда

$$y^n = z^n - x^n = (m^n + p^n)^n - (m^n - p^n)^n$$

представляет собой сумму нечетных членов биномиального разложения. Переходя к \mathbb{Z} , мы получаем, что $z \pm x$ четны; в Coq это отражено в леммах sum_diff_from_parameters_R, sum_diff_from_parameters_Z, и parity_condition_Z. Эти факты о четности логически не зависят от финального шага и включены только для полноты изложения.

3 Формализация в Coq: ядро для натуральных чисел и вещественная обертка

В разработке доказываются элементарные сравнения роста $2^n > 2n$ для $n \ge 3$ (и $3^n > 2n$ для $n \ge 1$) и они упаковываются в лемму о том, что $2^n = 2 \cdot n$ влечет $n \in \{1,2\}$ (pow_eq_linear_positive).

Гипотеза GN(2) кодируется непосредственно над \mathbb{N} :

GN(2) (Coq).

```
Definition GN2 : Prop :=
  forall (n x y z : nat),
    2 < n ->
    Nat.pow x n + Nat.pow y n = Nat.pow z n ->
    2 ^ n = 2 * n.
```

Из GN(2) немедленно следует противоречие для n > 2:

$BT\Phi$ из GN(2) (Coq).

```
Lemma FLT_from_GN2 :
  GN2 ->
  forall n x y z,
   2 < n ->
   Nat.pow x n + Nat.pow y n = Nat.pow z n -> False.
```

Для удобства также используется вещественный предикат «покрытия»:

$$pow 2 n = 2 \cdot INR n$$
,

который связывается обратно с $2^n=2\cdot n$ через леммы-мосты covers_two_nat, INR_two_mul_nat и импликацию GN2_R_implies_GN2. Это дает следствие fermat_last_theorem_from_GN2_R.

4 Что не предполагается

Данная трактовка ne опирается на какие-либо безусловные сравнения, такие как $(m^n + p^n)^n - (m^n - p^n)^n \equiv 0 \pmod{2n}$ (которое в общем случае неверно). Единственным дополнительным предположением является GN(2); алгебраическая параметризация и четность служат для мотивации/проверки согласованности и не используются в финальном шаге.

5 Соответствие между статьей и кодом Соф

Статья (пункт)	Формализация в Coq (лемма/теорема)
Алгебраическая параметризация над \mathbb{R} ; факты о четности целых чисел	<pre>sum_diff_from_parameters_R, sum_diff_from_parameters_Z, parity_condition_Z.</pre>
Гипотеза GN(2) над №	GN2 (определение Prop).
Сравнение роста с линейной функцией; $2^n = 2 \cdot n \Rightarrow n \in \{1,2\}$	<pre>pow2_gt_linear,</pre>
Вещественная обертка и мост обратно к $\mathbb N$	covers_two_nat, INR_two_mul_nat, GN2_R, GN2_R_implies_GN2.
ВТФ из GN(2) (напрямую) / через вещественную обертку	FLT_from_GN2 / fermat_last_theorem_from_GN2_R.

Таблица 1. Соответствие между шагами статьи и разработкой на Сод.

6 Заключение

При единственном предположении GN(2), примененном к любому гипотетическому контрпримеру, файл Coq выводит BTФ для всех n>2, используя только элементарные леммы о росте. Ограничения по четности из параметризации проверяются отдельно. Данное представление с GN(2) заменяет более ранний подход с глобальным нормализатором (o>1).

Приложение: избранные объявления Соф (имена)

sum_diff_from_parameters_R, sum_diff_from_parameters_Z, parity_condition_Z,
pow2_gt_linear, pow3_gt_linear, pow_eq_linear_positive, GN2, GN2_R, covers_two_nat,
INR_two_mul_nat, GN2_R_implies_GN2, FLT_from_GN2, fermat_last_theorem_from_GN2_R.

Список литературы

- 1. A. Wiles. Modular elliptic curves and Fermat's Last Theorem. Annals of Mathematics 141 (1995), 443–551. (Рус. пер.: Уайлс Э. Модулярные эллиптические кривые и Великая теорема Ферма)
- 2. G. L. Dedenko. The "Difficulties" in Fermat's Original Discourse on the Indecomposability of Powers Greater Than a Square: A Retrospect. Preprint, 2025. DOI: 10.13140/RG.2.2.24342.32321. (Рус. пер.: Деденко Г. Л. «Острые углы» в рассуждении Пьера Ферма о неразложимости степени выше квадрата (обзор) DOI: 10.13140/RG.2.2.24531.39207/12)
- 3. The Coq Development Team. The Coq Proof Assistant. https://coq.inria.fr. (Рус. пер.: Команда разработчиков Coq. Система доказательства теорем Coq)