INTRODUCTION TO CALCULUS

LIMIT OF A SEQUENCE

WHY SHOULD WE CARE?

- A fundamental question that arises regarding infinite sequences is the behavior of the terms as n gets larger.
- Since a sequence is a function defined on the positive integers, it makes sense to discuss the limit of the terms as $n \to \infty$.

EXAMPLES

A
$$\{2^{n-1}\} = \{1, 2, 4, 8, \dots\}$$
B
$$\{(-1)^{n-1}\}$$

$$= \{1, -1, 1, -1, \dots\}$$
C
$$\left\{1 - \left(\frac{2}{3}\right)^{n}\right\}$$

$$= \left\{\frac{1}{3}, \frac{5}{9}, \frac{19}{27}, \frac{65}{81}, \dots\right\}$$
D
$$\left\{16(-\frac{1}{2})^{n-1}\right\}$$

$$= \{16, -8, 4, -2, \dots\}$$

The terms $\rightarrow 1$ as $n \rightarrow \infty$

The terms alternate but do not approach one single value as $n \to \infty$

The terms $\rightarrow 0$ as $n \rightarrow \infty$

The terms $\rightarrow \infty$ as $n \rightarrow \infty$

EXAMPLES

A
$$\{2^{n-1}\} = \{1, 2, 4, 8, \dots \}$$
 B
$$\{(-1)^{n-1}\} = \{1, -1, 1, -1, \dots \}$$
 C
$$\left\{1 - \left(\frac{2}{3}\right)^n\right\}$$

$$= \left\{\frac{1}{3}, \frac{5}{9}, \frac{19}{27}, \frac{65}{81}, \dots \right\}$$
 D
$$\left\{16(-\frac{1}{2})^{n-1}\right\} = \{16, -8, 4, -2, \dots \}$$

The terms
$$\rightarrow$$
 1 as $n \rightarrow \infty$ B

The terms alternate but do not approach one single value as $n \to \infty$

The terms
$$\to 0$$
 as $n \to \infty$
A
The terms $\to \infty$ as $n \to \infty$

GRAPHS OF THE FIRST TWO EXAMPLES

GRAPHS THE LAST TWO EXAMPLES

POSSIBILITIES FOR THE BEHAVIOR OF THE TERMS OF A SEQUENCE

As $n \to \infty$

- the terms approach a finite number
- the terms do not approach a finite number
 - $\rightarrow \infty$
 - Alternating

If the terms of a sequence approach a finite number L as $n \to \infty$ we say that the sequence is a convergent sequence and the real number L is the limit of the sequence.

CONVERGENT/DIVERGENT SEQUENCES

Definition

Given a sequence $\{a_n\}$, if the terms a_n become arbitrarily close to a finite number L as n becomes sufficiently large, we say $\{a_n\}$ is a **convergent sequence** and L is the **limit of the sequence**. In this case, we write

$$\lim_{n \to \infty} a_n = L.$$

If a sequence $\{a_n\}$ is not convergent, we say it is a **divergent sequence**.

EXAMPLE C

 $\left\{1 - \left(\frac{2}{3}\right)^n\right\} =$ $\left\{\frac{1}{3}, \frac{5}{9}, \frac{19}{27}, \frac{65}{81}, \dots\right\} \text{ is a }$ convergent sequence and its limit is 1.

EXAMPLE B

- $\{(-1)^{n-1}\} = \{1, -1, 1, -1, \dots\}$ are not approaching a finite number as n becomes larger.
- We say that it is a divergent sequence.

FROM INFORMAL TO FORMAL

- In the informal definition for the limit of a sequence, we used the terms "arbitrarily close" and "sufficiently large".
- Although these phrases help illustrate the meaning of a converging sequence, they are somewhat vague.
- To be more precise, we now present the more formal definition of limit for a sequence and show these ideas graphically.

FORMAL DEFINITION OF THE LIMIT

Definition

A sequence $\{a_n\}$ converges to a real number L if for all $\varepsilon > 0$, there exists an integer N such that $|a_n - L| < \varepsilon$ if $n \ge N$. The number L is the limit of the sequence and we write

$$\lim_{n \to \infty} a_n = L \text{ or } a_n \to L.$$

In this case, we say the sequence $\{a_n\}$ is a convergent sequence. If a sequence does not converge, it is a divergent sequence, and we say the limit does not exist.

EXPLANATION BY A FIGURE

FOR ALL $\varepsilon>0$, THERE EXISTS AN INTEGER N SUCH THAT $|a_n-L|<\varepsilon$ IF $n\geq N$.

Figure 5.4 As n increases, the terms a_n become closer to L. For values of $n \ge N$, the distance between each point (n, a_n) and the line y = L is less than ε .

EXPLANATION BY AN EXAMPLE

For all $\varepsilon > 0$, there exists an integer N such that $|a_n - L| < \varepsilon$ if $n \ge N$.

An example

$$\left\{1 - \left(\frac{2}{3}\right)^n\right\} = \left\{\frac{1}{3}, \frac{5}{9}, \frac{19}{27}, \frac{65}{81}, \dots\right\}$$

- $\epsilon = 1$

EXPLANATION BY AN EXAMPLE

EXPLANATION BY ANOTHER EXAMPLE

REMARK

- We remark that the convergence or divergence of a sequence $\{a_n\}$ depends only on what happens to the terms a_n as $n \to \infty$.
- Therefore, if a finite number of terms b_1, b_2, \dots, b_n are placed before a_1 to create a new sequence $b_1, b_2, \dots, b_n, a_1, a_2, \dots$, this new sequence will converge if $\{a_n\}$ converges and diverge if $\{a_n\}$ diverges.
- Further, if the sequence $\{a_n\}$ converges to L this new sequence will also converge to L.

REMARK

MORE ABOUT DIVERGENT SEQUENCES

- Different sequences can diverge in different ways.
 - $\rightarrow +\infty$
 - $\rightarrow -\infty$
 - Alternating
- It is important to recognize that this notation $\rightarrow +\infty$ or $\rightarrow -\infty$ does not imply that the limit of the sequence exists.
- Writing that the limit is infinity is intended only to provide more information about why the sequence is divergent.

HOW TO SHOW THAT A SEQUENCE IS CONVERGENT?

AN EXTREMELY USEFUL METHOD

Theorem 5.4: Squeeze Theorem for Sequences

Consider sequences $\{a_n\}$, $\{b_n\}$, and $\{c_n\}$. Suppose there exists an integer N such that

$$a_n \le b_n \le c_n$$
 for all $n \ge N$.

If there exists a real number *L* such that

$$\lim_{n \to \infty} a_n = L = \lim_{n \to \infty} c_n,$$

then $\{b_n\}$ converges and $\lim_{n\to\infty}b_n=L$ (**Figure 5.6**).

Figure 5.6 Each term b_n satisfies $a_n \le b_n \le c_n$ and the sequences $\{a_n\}$ and $\{c_n\}$ converge to the same limit, so the sequence $\{b_n\}$ must converge to the same limit as well.

SQUEEZE THEOREM FOR CALCULUS

PROOF

Hint!

- For all $\varepsilon > 0$,
 - There exists an integer N_1 such that $|a_n L| < \varepsilon$ if $n \ge N_1$.
 - There exists an integer N_2 such that $|c_n L| < \varepsilon$ if $n \ge N_2$.
- There exists an integer N such that $a_n \le b_n \le c_n$ if $n \ge N$.

PROOF

Proof

Let $\varepsilon > 0$. Since the sequence $\{a_n\}$ converges to L, there exists an integer N_1 such that $|a_n - L| < \varepsilon$ for all $n \ge N_1$. Similarly, since $\{c_n\}$ converges to L, there exists an integer N_2 such that $|c_n - L| < \varepsilon$ for all $n \ge N_2$. By assumption, there exists an integer N such that $a_n \le b_n \le c_n$ for all $n \ge N$. Let M be the largest of N_1, N_2 , and N. We must show that $|b_n - L| < \varepsilon$ for all $n \ge M$. For all $n \ge M$,

$$-\varepsilon < -|a_n-L| \le a_n - L \le b_n - L \le c_n - L \le |c_n-L| < \varepsilon.$$

 $-\varepsilon < -|a_n-L| \le a_n - L \le b_n - L \le c_n - L \le |c_n-L| < \varepsilon.$ Therefore, $-\varepsilon < b_n - L < \varepsilon$, and we conclude that $|b_n - L| < \varepsilon$ for all $n \ge M$, and we conclude that the sequence $\{b_n\}$ converges to L.

APPLICATION

Use the Squeeze Theorem to find the limit of each of the following sequences.

LOOK BACK ON GEOMETRIC SEQUENCES

- Using the idea from $\left\{\left(-\frac{1}{2}\right)^n\right\}$, we conclude that
- $r^n \to 0 \text{ for any real}$ number such that -1 < r < 0.

LOOK BACK ON GEOMETRIC SEQUENCES

• If r < -1, the sequence diverges because the terms oscillate and become arbitrarily large in magnitude.

LOOK BACK ON GEOMETRIC SEQUENCES

If r = -1, the sequence $\{((-1)^n\}$ diverges, as discussed earlier.

LOOK BACK ON GEOMETRIC SEQUENCES

- Using the idea from $\left\{ (-\frac{1}{2})^n \right\}$, we conclude that $r^n \to 0$ for any real number such that -1 < r < 0.
- If r < -1, the sequence diverges because the terms oscillate and become arbitrarily large in magnitude.
- If r = -1, the sequence $\{((-1)^n\}$ diverges, as discussed earlier.

A SUMMARY OF THE PROPERTIES FOR GEOMETRIC SEQUENCES

$$r^n \to 0$$
 if $|r| < 1$
 $r^n \to 1$ if $r = 1$
 $r^n \to \infty$ if $r > 1$
 $\{r^n\}$ diverges if $r \le -1$