

Reference No.: WTS19S01006323-1W V1 Page 86 of 115

13 Maximum Peak Output Power

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: KDB 558074 D01 15.247 Meas Guidance v05 August 24, 2018;

ANSI C63.10:2013

13.1 Test Procedure:

KDB 558074 D01 15.247 Meas Guidance v05 August 24, 2018

section 8.3.1.2 (For WIFI)

This procedure may be used when the maximum available RBW of the measurement instrument is less than the DTS bandwidth.

- a)Set the RBW = 1% to 5% of the OBW, not to exceed 1 MHz..
- b)Set the VBW \geq 3 x RBW
- c)Set the span \geq 1.5 x OBW.
- d)Detector = RMS.
- e)Sweep time = auto couple.
- f) trigger = free run..
- g) Number of points in sweep $_$ [2 \times span / RBW]. (This gives bin-to-bin spacing $_$ RBW / 2, so that narrowband signals are not lost between frequency bins.)
- h) Trace average at least 100 traces in power averaging (rms) mode.
- i) Compute power by integrating the spectrum across the OBW of the signal using the instrument's band power measurement function, with band limits set equal to the OBW band edges. If the instrument does not have a band power function, sum the spectrum levels (in power units) at intervals equal to the RBW extending across the entire OBW of the spectrum.

Reference No.: WTS19S01006323-1W V1 Page 87 of 115

13.2 Test Result:

Operation	Channel Frequency	Maximum Peak Output Power (dBm)				
mode	(MHz)	ANT0	ANT1	Total		
TX 11b	Low-2412	22.86	21.60	1		
	Middle-2437	24.10	22.80	1		
	High-2462	22.17	22.55	1		
TX 11g	Low-2412	21.27	20.55	1		
	Middle-2437	22.36	21.85	1		
	High-2462	21.83	21.79	1		
TX 11n HT20	Low-2412	20.65	20.69	23.68		
	Middle-2437	21.91	22.04	24.99		
	High-2462	21.57	21.26	24.43		
TX 11n HT40	Low-2422	22.62	21.84	25.26		
	Middle-2437	23.59	22.83	26.24		
	High-2452	23.63	22.47	26.10		
Directional antenna Gain = Antenna Gain + 10 lg (ANT _N) = 2.5+10 lg (2)=5.5dBi						

Test Plot

ANT 0

Mode: TX 11b channel 1

Mode: TX 11b channel 6

ANT 1

Mode: TX 11b channel 1

Mode: TX 11b channel 6

Reference No.: WTS19S01006323-1W V1 Page 100 of 115

14 Power Spectral density

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: KDB 558074 D01 15.247 Meas Guidance v05 August 24, 2018;

ANSI C63.10:2013

14.1 Test Procedure:

KDB 558074 D01 15.247 Meas Guidance v05 August 24, 2018 section 10.2

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

- 2. Set the spectrum analyzer: RBW = 3kHz. VBW = 10kHz , Span = 1.5 times the DTS channel bandwidth(6 dB bandwidth). Sweep = auto; Detector Function = Peak. Trace = Max hold.
- 3. Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. The limit is specified in one of the subparagraphs of this Section Submit this plot.

14.2 Test Result:

Operation	Channel Frequency	Power Spectral density (dBm)				
mode	(MHz)	ANT0	ANT1	Total		
TX 11b	Low-2412	-10.219	-13.631	1		
	Middle-2437	-11.022	1.660	1		
	High-2462	-1.163	0.927	1		
TX 11g	Low-2412	-19.469	-18.751	1		
	Middle-2437	-17.431	-17.600	1		
	High-2462	-17.792	-17.381	1		
TX 11n HT20	Low-2412	-18.986	-18.368	-15.61		
	Middle-2437	-17.136	-17.101	-14.11		
	High-2462	-17.648	-17.589	-14.61		
TX 11n HT40	Low-2422	-22.064	-23.605	-19.76		
	Middle-2437	-20.602	-22.807	-18.56		
	High-2452	-20.820	-22.911	-18.73		
Directional antenna Gain = Antenna Gain + 10 lg (ANT _N) = 2.5+10 lg (2)=5.5dBi						

Test Plot

ANT 0 Mode: TX 11b channel 1

ANT 1 Mode: TX 11b channel 1

15 Antenna Requirement

According to the FCC Part 15 Paragraph 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. This product has an integrated antenna fulfill the requirement of this section.

Reference No.: WTS19S01006323-1W V1 Page 114 of 115

16 RF Exposure

Remark: refer to MPE report: WTS19S01006323-3W.

Reference No.: WTS19S01006323-1W V1 Page 115 of 115

17 Photographs of test setup and EUT.

Note: Please refer to appendix: WTS19S01006323W_Photo.

====End of Report=====