Binære heaps IN2010 – Algoritmer og Datastrukturer

Lars Tveito

Institutt for informatikk, Universitetet i Oslo larstvei@ifi.uio.no

Høsten 2023

Oversikt

- Vi konsentrer oss først og fremst om *prioritetskøer*
- Vi skal lære om binære heaps, som er en måte å lage prioritetskøer
- Vi skal se på huffman-koding som er en nydelig anvendelse av prioritetskøer

L

Prioritetskøer

- En prioritetskø er en samling elementer, som støtter følgende operasjoner:
 - insert(e) plasserer et element i køen
 - removeMin() fjerner og returnerer det *minste* elementet fra køen
 - Ofte brukes push(e) og pop() i stedet.
- Mulige underliggende datastrukturer:
 - En usortert lenket liste, hvor minste kan ligge hvor som helst
 - $\mathcal{O}(1)$ på insert, men $\mathcal{O}(n)$ på removeMin
 - En sortert lenket liste, hvor minste alltid ligger først i lista
 - $\mathcal{O}(n)$ på insert, men $\mathcal{O}(1)$ på removeMin
 - Et balansert binært søketre, hvor minste ligger lengst til venstre
 - $\mathcal{O}(log(n))$ på insert og $\mathcal{O}(log(n))$ på removeMin
 - En heap som vi skal lære om denne uken
- Merk at vi må kunne *ordne* elementene som skal plasseres i køen

Litt om totale ordninger

- Vi kjenner allerede til mange totale ordninger
- Intuisjonen er at dersom du vet hvordan du ville sortert noe
 - så tenker du på en total ordning
- Vi klarer for eksempel å sortere personer etter alder
 - Det er fordi alder vanligvis er representert ved et naturlig tall
 - ullet og \leq utgjør en total ordning på de naturlige tallene

Litt om totale ordninger

- - Hvis $x, y, z \in A$ så har vi følgende:
 - $x \leq x$ (Refleksivitet)
 - Hvis $x \leq y$ og $y \leq x$ så er x = y (Antisymmetri)
 - Hvis $x \leq y$ og $y \leq z$ så er $x \leq z$ (Transitivitet)
 - $x \leq y$ eller $y \leq x$ (Total)
- Hvis en klasse implmenterer Comparable i Java
 - så er det en total ordning over objekter av den klassen
 - ...med mindre implementasjonen bryter med kravene ovenfor
- Hvis en klasse implmenterer __lt__ i Python
 - så er det en total ordning over objekter av den klassen
 - ...med mindre implementasjonen bryter med kravene ovenfor

Binære heaps

Binære heaps

- En binær heap er et binærtre som oppfyller følgende egenskaper:
 - 1. Hver node *v* som ikke er rotnoden, er større en foreldrenoden
 - 2. Binærtreet må være komplett
- Et komplett binærtre er et tre som «fylles opp» fra venstre mot høyre

- Hvis treet har høyde h
 - Så er det 2^i noder med dybde i for $0 \le i < h$
 - Noder med dybde *h* er plassert så langt til venstre som mulig

Binære heaps og balanserte søketrær

- Vi vil se at binære heaps får $\mathcal{O}(log(n))$ på innestting og sletting av minste
- Det er samme kompleksitet som vi får med balanserte søketrær
- Hva er da poenget?
 - Heaps støtter færre operasjoner og har en svakere invariant
 - Heaps er komplette, så de er alltid balanserte
 - De er mer balanserte enn både AVL- og rød-svarte trær
 - Vi trenger ingen rotasjoner
 - Kan implementeres effektivt med arrayer

Binære heaps – eksempel

- Merk at hver node er større enn foreldrenoden
- Og at treet er komplett!
- Det tilsvarende arrayet ser slik ut:

0	1	7	2	4	11	10	5	10	6	9	29	14	28	21	19	19	15	22	23
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19

7

Binære heaps – idé bak innsetting

- Hovedidéen er å alltid legge til på neste ledige plass
 - Altså, der neste node *må* være for at treet fortsatt skal være komplett
- Hvis noden på den nye plassen er mindre enn foreldrenoden
 - så må de bytte plass!
 - (fortsett rekursivt)

Binære heaps – idé bak sletting

- Bytt verdien i rotnoden med verdien i den siste noden i treet
 - Altså, den eneste noden som kan fjernes og treet fortsatt er komplett
- Hvis noden er større enn en av barna
 - så må den bytte plass med den minste
 - (fortsett rekursivt)

Binære heaps – Tre- vs arrayimplementasjon

- Heaps er vanligvis implementert med arrayer
- Dette er fordi nodene ligger plassert så ryddig og pent
- Med en tre-implementasjon trenger man
 - Elementet og venstre- og høyre barn i hver node, som vanlig
 - I tillegg trenger hver node peker til foreldernoden
 - Vi trenger en peker til siste node
 - (dette kan bli litt klønete)
 - Alternativt trenger man bare vite størrelsen på treet
 - for å finne siste node på $\mathcal{O}(\log(n))$ tid
 - (nøtt: hvorfor?)

Binære heaps – Array representasion

- Husk at vi bygger et komplett tre
- La A være arrayen som representerer heapen
- og la *n* være elementer på heapen, der n < |A|
- Da gir A[0] roten av treet
- A[n-1] korresponderer til siste noden i treet
- Sett inn på plass A[n] og bobbler opp hvis nødvendig
 - (vi må passe på at det er nok plass i arrayet)
- Slett ved å flytte A [n-1] til roten og bobble ned hvis nødvendig
- Foreldrenoden til A [i] er på plass $|\frac{i-1}{2}|$
- Venstre barn til A [i] er på plass $2 \cdot i + 1$
- Høyre barn til A[i] er på plass $2 \cdot i + 2$

```
Procedure ParentOf(i)
   return \left| \frac{i-1}{2} \right|
```

```
Procedure LeftOf(i)
```

```
return 2 \cdot i + 1
```

```
Procedure RightOf(i)
  return 2 \cdot i + 2
```


Lag en node på den siste plassen, som er indeks 20

Sammenlign med foreldrenoden, som er index ParentOf(20) = $\lfloor \frac{20-1}{2} \rfloor = 9$

 $3 \text{ og } 6 \text{ bytter plass, fordi } 3 \leq 6$

Igjen, sammenlign med foreldernoden, som er index ParentOf(9) = 4

og 4 bytter plass, fordi $3 \leq 4$

Igjen, sammenlign med foreldrenoden, som er index ParentOf(4) = 1

Algoritmen terminerer, fordi $3\not\leq 1$

Binære heaps – innsetting (implementasjon)

ALGORITHM: INNSETTING I HEAP

```
Input: Et array A som representerer en heap med n elementer, og et element x
Output: Et array som representerer en heap, som inneholder x
Procedure Insert(A, x)

A[n] ← x
i ← n
while 0 < i and A[i] < A[ParentOf(i)] do
A[i], A[ParentOf(i)] ← A[ParentOf(i)], A[i]
i ← ParentOf(i)</pre>
```

- Merk at vi antar at A er stor nok.
- Dette kan for eksempel håndteres med en dynamisk array (som ArrayList)
- Eventuelt, lage et nytt array når A blir full
 - Da må alle elementer kopieres over
 - En vanlig strategi er å gjøre arrayet dobbelt så stort
 - Arrayet kan gjøres mindre igjen dersom det blir veldig få elementer

Vi skal fjerne den minste noden, som alltid ligger i rotnoden

Flytt siste element til roten

Sammenlign med venstre og høyre barn, som ligger på plass $LeftOf(0) = 0 \cdot 2 + 1 = 1$ og $RightOf(0) = 0 \cdot 2 + 2 = 2$

6 bytter plass med 1 fordi $1 \le 6$ og $1 \le 7$

Sammenlign med venstre og høyre barn, som ligger på plass Left0f(1) = 3 og Right0f(1) = 4

6 bytter plass med 2 fordi $2 \le 6$ og $2 \le 3$

Sammenlign med venstre og høyre barn, som ligger på plass Left0f(3) = 7 og Right0f(3) = 8

6 bytter plass med 5 fordi $5 \le 6$ og $5 \le 10$

Sammenlign med venstre og høyre barn, som ligger på plass Left0f(7) = 15 og Right0f(7) = 16

Algortimen terminerer, fordi $19 \not\leq 6$

Binære heaps – fjern minste (implementasjon)

ALGORITHM: FJERNING AV MINSTE ELEMENT FRA HEAP

10

11

12

13

```
Input: Et ikke-tomt array A som representerer en heap med n elementer
  Output: Et array som representerer en heap der minste verdi er fjernet
1 Procedure RemoveMin(A)
       x \leftarrow A [0]
       A[0] ← A.pop() // delete and return last element
       i \leftarrow 0
       while RightOf(i) < n-1 do
            j \leftarrow \mathbf{if} \land [\mathsf{LeftOf(i)}] < \land [\mathsf{RightOf(i)}] \mathbf{then} \land [\mathsf{LeftOf(i)}] \mathbf{else} \land [\mathsf{RightOf(i)}]
            if A[i] > A[i] then
                 break
            A[i], A[i] \leftarrow A[i], A[i]
       if LeftOf(i) < n-1 and A[LeftOf(i)] < A[i] then
            A[i], A[LeftOf(i)] ← A[LeftOf(i)], A[i]
       return x
```


Hufman-koding

- Huffman-koding brukes for å komprimere data
- Du er gitt en mengde med symboler, kalt et alfabet
 - der hvert symbol har en gitt relativ frekvens
- Vi ønsker å representere hvert symbol med en bitstreng
 - slik at strenger over alfabetet blir så korte så mulig
- Vi kaller en slik mapping fra symboler til bitstrenger en enkoding
- Vi kaller disse bitstrengene kodeord

Hufman-koding – fast lengde

- Anta at vi jobber med bitstrenger av (fast) lengde n
- Med n bits kan vi representere 2^n forskjellige symboler
 - For å kunne representere m symboler trenger vi $\lceil log_2(m) \rceil$ bits
- Med en fast lengde n og en gitt streng X
 - ∘ brukes det |X| · n bits for å representere den

Hufman-koding – variabel lengde

- Som regel vil noen symboler forekomme oftere enn andre
- En Huffman-koding konstrueres på bakgrunn av den relative frekvensen til symbolene i alfabetet, slik at
 - symboler som forekommer ofte representeres med en relativt kort bitstreng
 - symboler som forekommer sjeldent representeres med en relativt lang bitstreng

Hufman-koding – variabel lengde (prefiks)

- Med bitstrenger av variabel lengde er det vanskeligere å vite når et symbol slutter og et annet begynner
- For å unngå tvetydighet må vi sørge for at ingen kodeord er *prefiks* av et annet
 - Ingen kodeord kan være en forlengelse av et annet
 - Hvis 010 er et kodeord kan 0001 være et kodeord
 - Hvis 010 er et kodeord kan ikke 0101 være et kodeord

Huffman-koding – frekvenstabell

«det er veldig vanskelig å finne på en eksempelsetning»

Setningen over har f
ølgende frekvenstabell

```
Symbol a d e f g i k l m n p r s t v å
Frekvens 8 1 2 10 1 3 4 2 3 1 6 2 1 3 2 2 2
```

- Med fast lengde trenger vi 5 bits for hvert symbol
 - Det gir $53 \cdot 5 = 265$ bits for å representere hele setningen
- Med huffman-koding trenger vi bare 198 bits
 - Dette er optimalt

Huffman-koding – Huffman trær

- En Huffman-koding konstrueres ved å bygge et binært tre
 - der hvert symbol i alfabetet forekommer som en løvnode
- Hver sti fra rot til løv gir opphav til et kodeord for det aktuelle symbolet
 - En gren mot venstre tolkes som 0
 - En gren mot høyre tolkes som 1
- Hver node *v* har en assosiert frekvens
 - $\, \bullet \,$ som er gitt av summen av alle løvnoder som er etterfølgere av v sine frekvenser
- Symboler som forekommer sjeldent vil ligge dypere i det Huffman-treet enn symbolene som forekommer ofte

Huffman-koding – Bygge Huffman-trær

- Å bygge et Huffman-tre er ganske enkelt når man har en prioritetskø!
- Noder i et Hufman-tre har
 - Et element, samt venstre og høyre som vanlig
 - I tillegg en frekvens freq som nodene ordnes etter
- Algoritmen er som følger:
 - Opprett en tom prioritetskø
 - For hvert par av symbol og frekvens
 - Opprett en node (uten barn) og sett noden inn i køen
 - Så lenge det er mer enn ett element i køen
 - Fjern de to minste nodene v_1 og v_2
 - Lag en ny node u der v_1 og v_2 er barn av u og u. freq = v_1 . freq + v_2 . freq
 - Plasser u på køen
 - Til slutt returneres (den eneste) noden som ligger på køen

Huffman-koding – Bygge Huffman-trær (implementasjon)

ALGORITHM: BYGGE HUFFMAN TRÆR **Input:** En mengde C med par (s, f) der s er et symbol og f er en frekvens Output: Et Huffman-tre 1 Procedure Huffman(C) $Q \leftarrow \text{new} \text{PriorityQueue}$ for $(s, f) \in C$ do Insert(Q, new Node(s, f, null, null)) while Size(Q) > 1 do $v_1 \leftarrow RemoveMin(Q)$ $v_2 \leftarrow RemoveMin(Q)$ $f \leftarrow v_1. \mathsf{freq} + v_2. \mathsf{freq}$ $Insert(Q, new Node(null, f, v_1, v_2))$ return RemoveMin(Q)

8

10