Geração de Números Pseudo-Aleatórios

Carlos M. Fonseca
Departamento de Engenharia Informática
Universidade de Coimbra

MEI 2020/2021

Bibliografia

- Ronald T. Kneusel, Random Numbers and Computers, Springer, 2018.
- Pierre L'Ecuyer, "Efficient and portable combined random number generators," *Communications of the ACM*, vol. 31, no. 6, June 1988. https://doi.org/10.1145/62959.62969

Aleatoriedade

- Muitos sistemas exibem comportamentos imprevisíveis
 - Por exemplo, o tempo de serviço numa cantina
- Simular esses sistemas obriga à modelação desses comportamentos
 - Por exemplo, para prever o tempo de espera numa fila
- Modelos probabilísticos (ou estocásticos)

- O que é uma experiência aleatória?
 - Experiência cujo resultado é imprevisível
- O que é uma sequência aleatória?
 - "Sequência de números numa dada gama de valores tal que não é possível prever o próximo valor com base nos valores que o precedem"
 - Normalmente considera-se uma distribuição uniforme.

- Geração de sequências aleatórias
 - Atirar uma moeda ao ar
 - Lançar um dado (justo)
 - Decaimento radioativo
 - "Estática" apanhada por um recetor de rádio ou televisão não sintonizado
 - Outros?

Moeda ao ar

- 1^a sequência 11 caras (H) e 15 coroas (T) (p = 0.2786)
- 2^a sequência 13 caras (H) e 13 coroas (T) (p = 1.0)

Gerar números de 0 a 7

- A aleatoriedade dos humanos não é em geral muito boa...
- Experiência
 - Pedir a cada estudante da turma para escolher um número à sorte entre 0 e 255
 - O que deveria acontecer?
 - O que se pode esperar que aconteça?

Sequências Pseudo-Aleatórias

- O que é uma sequência pseudo-aleatória?
 - "Sequência de números gerada deterministicamente que é indistinguível de uma verdadeira sequência de números aleatórios"
- Indistinguível?
 - Qualquer procedimento aritmético nunca pode gerar números aleatórios!

Sequências Pseudo-Aleatórias

- Gerador de números pseudo-aleatórios
 - Geração de bytes pseudo-aleatórios (p.ex.)
 - Agrupando esses bytes, pode-se obter inteiros de qualquer tamanho, ou mesmo números de vírgula flutuante (p.ex., usando apenas a mantissa)
 - Dado um valor r ∈ [0,1[, um inteiro em [a,b[pode ser facilmente obtido como i = floor($r \cdot (b-a)$) + a

Sequências Pseudo-Aleatórias

- O método "Middle Square"
 - Tomar um inteiro de 32 bits
 - Elevá-lo ao quadrado e guardá-lo como um inteiro de 64 bits
 - Retornar os 32 bits do meio...
 - Usar esse resultado como valor inicial para gerar o próximo número

Método "Middle Square"

```
def middle_square(seed=0xfedcb2ed):
    while True:
        seed *= seed
        seed = (seed >> 16) & 0xffffffff
        yield seed # 32 bits
rng = middle_square()
x = next(rng)
```

Método "Middle Square"

- Foi uma das primeiras tentativas de gerar uma sequência de números pseudo-aleatórios (von Neumann, 1951)
- Ilustra bem a ideia por trás destes geradores
- Não é um bom método
 - Uma vez encontrado um zero, a sequência passa a ser zero daí em diante
- A ideia foi recentemente retomada com modificações simples mas importantes

Método "Middle Weyl"

- Modificação do método Middle Square
- Simples e muito rápido
 - A implementação em C compila para apenas 4 instruções máquina
- Período maior ou igual a 264 (bastante respeitável)
- Distribuição uniforme (discreta)
- Escolha da seed permite gerar sequências diferentes (mesmo em paralelo!)
- Excelentes resultados em testes de aleatoriedade

Método "Middle Weyl"

```
# Ver também https://arxiv.org/abs/1704.00358
def middle weyl(seed=0xb5ad4eceda1ce2a9):
    x = w = 0
    while True:
        x = x * x
        W = W + seed \% (2**64) # 64 bits
        x = (x + w) \% (2**64) # 64 bits
        x = ((x >> 32) | (x << 32)) % (2**64)
        yield x % (2**32) # yield only 32 bits
rng = middle_weyl()
x = next(rng)
```

Geração de números pseudo-aleatórios

- Dado um valor $r \in [0,1[$, um inteiro em [a,b[pode ser facilmente obtido como $i = floor(r \cdot (b-a)) + a$
- Do mesmo modo, dado um valor inteiro $P \in [0,m[$, um valor real $w \in [0,1[$ pode ser facilmente obtido como w = P / m

Gerador congruencial linear (LCG) misto

$$x_{n+1} = (a x_n + c) \bmod m$$

onde $a \in o$ multiplicador (0 < a < m), $c \in o$ incremento $(0 \le c < m)$ e $m \in o$ módulo.

- Qualidade da sequência depende da escolha dos parâmetros *a*, *c* e *m*.
 - Período necessariamente menor ou igual a *m*

```
# Exemplo simples
def lcg_10(seed=7):
    m = 10
    a = 3
    c = 9
    while True:
        seed = (a * seed + c) % m
        yield seed
```

- Diferentes escolhas de a e c, bem como do valor inicial, influenciam o período do gerador
 - No exemplo anterior, o período só será máximo (10) se a = 1 e $c \in \{1,3,7,9\}$.
- No entanto, não basta o período ser longo
 - Para a = c = 1, a sequência é "0 1 2 3 4 5 6 7 8 9"

- Regras para a escolha de m, $a \in c \neq 0$:
 - *m* e *c* serem primos entre si
 - -a-1 ser divisível pelo fatores primos de m
 - a−1 ser divisível por 4 se m for divisível por 4
- Se todas a condições forem satisfeitas, o período será igual a m para todos os valores iniciais (seed).
- *m* deve ser tão grande quanto possível. É comum ser uma potência de 2.

- Para c = 0 (LCG multiplicativo), m é normalmente um primo ou uma potência de 2 e a escolha de a segue outras regras. O valor inicial (seed) tem que ser diferente de zero.
- Exemplos de LCGs "clássicos"

```
1)MINSTD Apple CarbonLib C++ (a = 16807, c = 0, m = 2^{31}-1)
```

- 2)MINSTD C++ (a = 48271, c = 0, m = $2^{31}-1$)
- 3) RANDU (a = 65539, c = 0, m = 2^{31}) NÃO USAR!!!
- Período igual a $m \ (\approx 10^9)$ é hoje em dia insuficiente

Análise do gerador RANDU

$$x_{n+1} = ((2^{16}+3) x_n) \mod 2^{31}$$

 $x_{n+2} = ((2^{16}+3)^2 x_n) \mod 2^{31}$
 $= ((2^{32}+6(2^{16})+9) x_n) \mod 2^{31}$
 $= (6(2^{16}+3)-9) x_n) \mod 2^{31}$
 $= (6 x_{n+1}-9 x_n) \mod 2^{31}$

 É fácil ver que cada valor está relacionado linearmente com os dois valores anteriores

- Em estudos de simulação, é muitas vezes necessário gerar sequências pseudo-aleatórias independentes
- Dividir o período de um LCG em várias partes disjuntas sem ter que iterar
- No caso dos LCGs multiplicativos (c = 0)

 $x_{i+j} = (a^j x_i) \mod m = ((a^j \mod m) x_i) \mod m$

onde (ai mod m) pode ser facilmente pré-calculado

Implementação de LCGs

- Supondo que a e x_n são ambos inteiros de 32 bits, o seu produto irá ocupar até 64 bits
- A decomposição de Schrage permite calcular o produto ax sem overflow $(a x) \mod m = A(x) + B(x) m$

onde, usando sempre divisão inteira,

$$A(x) = a (x \mod q) - r (x / q) \mod q = m / a$$
 e $r = m \mod a$
 $B(x) = 1$ se $A(x) < 0$ e 0 caso contrário

• Notar que m = a q + r e que x < m.

Combinação de Geradores

- Geradores diferentes podem ser combinados de modo a obter novos geradores com período mais longo
 - 1) Sejam $W_1, ..., W_l$ variáveis aleatórias independentes (inteiras) tais que W_1 é uniformemente distribuída entre 0 e d-1, onde d é um inteiro positivo. Então, $W = (W_1 + ... + W_l)$ mod d também segue uma distribuição uniforme entre 0 e d-1.
 - 2) Dada uma família de I geradores com períodos p_j , j = 1,...,I, o período p da sequência $\{x_i = (x_{i,1},...,x_{i,l}), i = 1, 2,...\}$ é o menor múltiplo comum de $p_1,...,p_l$.

Combinação de Geradores

Então, dados / geradores

$$X_{j,i} = f_j(X_{j,i-1})$$

com período p_i , se $x_{1,i}$ mod p_1 for uniformemente distribuída entre 0 e p_1 –1,

$$Z_i = (x_{1,i} - x_{2,i} + x_{3,i} - \dots + (-1)^{i-1} x_{i,i}) \mod p_1$$

é uma sequência pseudo-aleatória uniformemente distribuída entre 0 e p_1 – 1

• Para que o período seja o mais longo possível, os valores de p_j devem ser primos entre si. No caso de geradores congruenciais lineares multiplicativos, onde m_j é primo e portanto o período $p_j = (m_j - 1)$ é par, os valores de p_j / 2 devem ser primos entre si

Teste de Geradores Pseudo-Aleatórios

Carlos M. Fonseca
Departamento de Engenharia Informática
Universidade de Coimbra

MEI 2020/2021

Bibliografia

- R. T. Kneusel, Random Numbers and Computers, Springer, 2018.
- J. Banks and J. S. Carson, *Discrete-Event System Simulation*, Prentice-Hall International, 1984.
- A. M. Law and W. D. Kelton, *Simulation Modeling and Analysis*, McGraw Hill Book Company, 3rd edition, 2000.
- A. Rukhin *et al.*, A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications, NIST Special Publication 800-22, Revision 1a, April 2010.
- E. L. Lehman and J. P. Romano, *Testing Statistical Hypothesis*, Springer, 2005.

Testes de aleatoriedade

- Boas sequências pseudo-aleatórias são "indistinguíveis" de verdadeiras sequências aleatórias (apesar de determinísticas)
 - Uniformidade
 - Independência
- A verificação destas propriedades é feita com recurso a testes empíricos

Testes empíricos

- Gerar uma sequência de valores U_i , i = 1, ..., n, no intervalo [0,1] (ou [0,1[, ou]0,1[, conforme o caso)
- Verificar se esses valores parecem seguir uma distribuição uniforme U(0,1)
- Testes de ajustamento
 - Teste de χ2, teste de Kolmogorov-Smirnov, ...
- Testes de independência
 - Testes de correlação, auto-correlação, ...

Teste de ajustamento de χ^2

- Dividir o intervalo [0,1] em k sub-intervalos de igual comprimento e gerar uma sequência de valores U_i , i = 1, ..., n
 - Regra geral, devemos ter $k \ge 100$ e $n \mid k \ge 5$
- Contar quantos valores caem em cada sub-intervalo, e designar esses números f_i , j = 1,...,k
- Para uma distribuição uniforme, a probabilidade de cada valor cair em cada sub-intervalo é $p_j = 1 / k$ e o número esperado de valores em cada intervalo é $n p_i = n / k$

Teste de ajustamento de χ^2

Calcular

$$\chi^{2} = \sum_{j=1}^{k} \frac{(f_{j} - n p_{j})^{2}}{n p_{j}} = \frac{k}{n} \sum_{j=1}^{k} \left(f_{j} - \frac{n}{k} \right)^{2}$$

- Rejeitar a hipótese nula de uniformidade dos U_i se $\chi^2 > \chi^2_{k-1,1-\alpha}$, onde $\chi^2_{k-1,1-\alpha}$ representa o quantil $1-\alpha$ da distribuição de χ^2 com k-1 graus de liberdade
- Valores típicos de α incluem 0.05, 0.10, ou mesmo valores maiores
- Alguns autores consideram que $\chi^2 < \chi^2_{k-1,\alpha}$ também é indicativo de não aleatoriedade

Teste de ajustamento de χ^2

Exemplo:

```
-x = (19, 172, 244, 47, 2, 22, 43, 175, 5, 76, 137, 240, 50, 138, 213, 123, 21, 77, 14, 137, 24, 128, 31, 23, 74, 138, 201, 149, 174, 37, 83, 22, 69, 246, 43, 133, 30, 95, 176, 114, 101, 94, 86, 226, 214, 8, 66, 217, 217, 23, 197, 0, 199, 112, 219, 173, 83, 77, 78, 194, 17, 25, 195, 68, 54, 237, 89, 56, 176, 49, 48, 64, 11, 24, 69)
```

- -n = 75, $U_i = x_i / 256$
- -k = 8 intervalos [(j-1)/k, j/k[, j = 1,...,k]
- f = (18, 9, 16, 4, 7, 6, 10, 5)
- $-\chi^2 = 19.613 > \chi^2_{7,0.99} = 18.475 > \chi^2_{7,0.95} = 14.067$ (muito longe de ser uniforme)

Teste de Kolmogorov-Smirnov

- Compara a função de distribuição cumulativa $F_{\cup}(u) = u$, $0 \le u \le 1$, da distribuição U(0,1) com a função de distribuição cumulativa empírica $S_n(u)$ calculada a partir dos dados
- A estatística de teste é $D = \max |F_{\cup}(u) S_n(u)|$
- Rejeitar a hipótese de uniformidade se D exceder o valor crítico do teste para o número de pontos n e nível de significância α considerados

Teste de Kolmogorov-Smirnov

Teste série

- Generalização do teste de χ^2 para mais dimensões, d
- Por exemplo, para d=2, proceder como anteriormente, mas considerando a sequência de pares (U_1, U_2) , (U_3, U_4) , (U_5, U_6) , ..., e dividindo o quadrado unitário em k^2 subregiões
- Aplicar o teste de χ^2 tendo em conta que agora $p_j = 1 / k^2$, $j = 1, ..., k^2$, e que o número de graus de liberdade é k^2-1

Teste série

- Exemplo: sequência anterior
 - **X** = ((19, 172), (244, 47), (2, 22), (43, 175), (5, 76), (137, 240), (50, 138), (213, 123), (21, 77), (14, 137), (24, 128), (31, 23), (74, 138), (201, 149), (174, 37), (83, 22), (69, 246), (43, 133), (30, 95), (176, 114), (101, 94), (86, 226), (214, 8), (66, 217), (217, 23), (197, 0), (199, 112), (219, 173), (83, 77), (78, 194), (17, 25), (195, 68), (54, 237), (89, 56), (176, 49), (48, 64), (11, 24), (69, ...))
 - -n = 37, $U_i = x_i / 256$
 - -k = 8 daria origem a $k^2 = 64$ intervalos e a $n / k^2 = 0.578$ (muito menor que 5, dever-se-ia considerar um valor de k menor, como 3 ou mesmo 2)

Teste de separação (gap test)

- Em vez da frequência com que os valores (ou tuplos de valores) ocorrem numa sequência, este teste conta o comprimento das sub-sequências de valores fora de um dado intervalo
- Este teste requer uma sequência muito longa (n > 10⁸ valores) para ser fiável
- Considerando novamente a distribuição U(0,1) e o intervalo $[\alpha, \beta[$, é possível calcular as probabilidades de cada comprimento ocorrer.

Gap test

• Probabilidades de ocorrência de cada comprimento

$$p_0 = \beta - \alpha$$
 $p_i = p_0 (1 - p_0)^i$, para $0 < i < t$
 $p_{>t} = (1 - p_0)^t = 1 - p_0 - p_1 - \dots - p_{t-1}$

• Aplicar o teste de χ^2 tendo em conta que agora há diferentes valores de p_j , j=0,...,t. O número de graus de liberdade é t, porque há t+1 classes

Gap test

- Exemplo: sequência anterior (valores arredondados por simplicidade de visualização, $\alpha = 0$, $\beta = 0.5$)
 - -x = (0.07, 0.67, 0.95, 0.18, 0.01, 0.09, 0.17, 0.68, 0.02, 0.30, 0.54, 0.94, 0.20, 0.54, 0.83, 0.48, 0.08, 0.30, 0.05, 0.54, 0.09, 0.50, 0.12, 0.09, 0.29, 0.54, 0.79, 0.58, 0.68, 0.14, 0.32, 0.09, 0.27, 0.96, 0.17, 0.52, 0.12, 0.37, 0.69, 0.45, 0.39, 0.37, 0.34, 0.88, 0.84, 0.03, 0.26, 0.85, 0.85, 0.09, 0.77, 0.00, 0.78, 0.44, 0.86, 0.68, 0.32, 0.30, 0.30, 0.76, 0.07, 0.10, 0.76, 0.27, 0.21, 0.93, 0.35, 0.22, 0.69, 0.19, 0.19, 0.25, 0.04, 0.09, 0.27)

Teste do máximo de t

- Teste de frequência para o máximo de *t* amostras
- Dividir a sequência em sub-sequências de comprimento *t*, tomar o máximo de cada uma e elevar esse valor a *t*
- A distribuição dos valores resultantes deverá ser uniforme (porquê?)
- Aplicar o teste de χ^2 tendo em conta que agora o número de amostras é $n \mid t$. O número de graus de liberdade depende do número de intervalos usados para testar a uniformidade.

Teste do máximo de t

- Exemplo: sequência anterior (valores arredondados por simplicidade de visualização, t=5)
 - -X = ((0.07, 0.67, 0.95, 0.18, 0.01), (0.09, 0.17, 0.68, 0.02, 0.30), (0.54, 0.94, 0.20, 0.54, 0.83), (0.48, 0.08, 0.30, 0.05, 0.54), (0.09, 0.50, 0.12, 0.09, 0.29), (0.54, 0.79, 0.58, 0.68, 0.14), (0.32, 0.09, 0.27, 0.96, 0.17), (0.52, 0.12, 0.37, 0.69, 0.45), (0.39, 0.37, 0.34, 0.88, 0.84), (0.03, 0.26, 0.85, 0.85, 0.09), (0.77, 0.00, 0.78, 0.44, 0.86), (0.68, 0.32, 0.30, 0.30, 0.76), (0.07, 0.10, 0.76, 0.27, 0.21), (0.93, 0.35, 0.22, 0.69, 0.19), (0.19, 0.25, 0.04, 0.09, 0.27))
- *n | t* deverá ser pelo menos 10⁶

Teste de correlação série

 Calcula o coeficiente de correlação entre cada valor na sequência e o valor seguinte

$$C = \frac{n(U_0U_1 + U_1U_2 + \dots + U_{n-2}U_{n-1} + U_{n-1}U_0) - (U_0 + U_1 + \dots + U_{n-1})^2}{(U_0^2 + U_1^2 + \dots + U_{n-1}^2) - (U_0 + U_1 + \dots + U_{n-1})^2}$$

• Para U_i uniformes, C deverá estar no intervalo $[m-2\sigma, m+2\sigma]$, com m=-1 / (n-1) e $\sigma=\frac{1}{n-1}\sqrt{\frac{n(n-3)}{n+1}}$, para $\alpha\approx 0.05$.

Teste de permutação

- Dividir a sequência em sub-sequências de comprimento $t \le 5$, e tomar as permutações que ordenariam cada sub-sequência
- Há t! permutações possíveis
- Aplicar o teste de χ^2 notando que o número de amostras é n / t, e que o número de classes é t!

Teste de permutação

- Exemplo: sequência anterior (valores arredondados por simplicidade de visualização, t = 5)
 - -X = ((0.07, 0.67, 0.95, 0.18, 0.01), (0.09, 0.17, 0.68, 0.02, 0.30), (0.54, 0.94, 0.20, 0.54, 0.83), (0.48, 0.08, 0.30, 0.05, 0.54), ...)
 - -P = ((5, 1, 4, 2, 3), (4, 1, 2, 5, 3), (3, 1, 4, 5, 2), (4, 2, 3, 1, 5), ...)
- Para t = 4 ou t = 5, n deverá ser pelo menos 108

- Testes de hipóteses
 - Hipótese de investigação
 - Hipótese nula, H_0
 - Hipótese alternativa, H₁
 - Pressupostos subjacentes ao processo de amostragem
 - Estatística de teste
 - Distribuição da estatística de teste sob a hipótese nula

- Aplicação de um teste de hipóteses
 - Nível de significância, α
 - Região crítica
 - Valor observado da estatística de teste
 - Decisão
 - Rejeitar H₀ em favor de H₁ quando o valor observado da estatística de teste pertence à região crítica
 - Caso contrário, $n\tilde{a}o$ rejeitar H_0 por falta de evidência nesse sentido

- Aplicação de um teste de hipóteses (em alternativa)
 - Nível de significância, α
 - Valor observado da estatística de teste
 - Cálculo do p-valor
 - Decisão
 - Rejeitar H_0 em favor de H_1 quando o p-valor é menor ou igual que o nível de significância α
 - Caso contrário, $n\tilde{a}o$ rejeitar H_0 por falta de evidência nesse sentido

p-valor

- É o menor valor de significância α que conduziria à rejeição da hipótese nula
- Sugere quão fortemente os dados contradizem a hipótese nula
- Não é a probabilidade de alguma das hipóteses estar correta ou incorreta!!!
- Hoje em dia pode ser calculado (ou aproximado) facilmente para cada conjunto de observações (usando o computador)

- Tipos de erro
 - Tipo I: Rejeitar H_0 quando ela é de facto verdadeira
 - Tipo II: Não rejeitar H_0 quando ela é de facto falsa
- A probabilidade de cometer um erro de Tipo I é menor ou igual a α
- A probabilidade de cometer um erro de Tipo II está relacionada com a potência do teste

- Experiência 1
 - Gerar uma sequência pseudo-aleatória de um dado comprimento, n
 - Aplicar o teste de uniformidade de χ^2 considerando $\alpha = 0.05$
 - O *p*-valor \acute{e} p = 0.032
 - O que é que isto diz sobre o gerador?

- Experiência 2
 - Gerar 100 sequências pseudo-aleatórias de um dado comprimento, n
 - Aplicar o teste de uniformidade de χ^2 considerando $\alpha = 0.05$
 - Há 4 p-valores menores ou iguais a 0.05
 - O que é que isto diz sobre o gerador?

- Experiência 3
 - Gerar 100 sequências pseudo-aleatórias de um dado comprimento, n
 - Aplicar todos os testes referidos a cada sequência
 - Como é que podemos decidir se o gerador é bom ou mau?

- Recordar que todos os testes podem falhar mesmo que a sequência seja verdadeiramente aleatória
 - A probabilidade de um dado teste falhar nas condições da hipótese nula é menor ou igual que α
 - Uma possibilidade é comparar a proporção de testes falhados de cada tipo com o que acontece com (uma realização de) uma sequência verdadeiramente aleatória, enquanto estimativa das probabilidades de erro de Tipo I

- Comparação de geradores
 - Calcular a proporção de testes falhados de cada tipo para cada gerador e para uma sequência verdadeiramente aleatória
 - Calcular a diferença absoluta entre essas proporções e considerar a norma do vetor resultante
 - Ordenar os diversos geradores em conformidade
 - Resultados são relativos, mas não absolutos

- Observações finais
 - Considerar que um teste de aleatoriedade falha quando p < 0.05 ou p > 0.95 leva a que o teste deva falhar em média até 1/10 das vezes mesmo para um gerador ideal
 - Importa distinguir entre testes para geradores pseudoaleatórios e os testes estatísticos subjacentes