ЛЬВІВСЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ імені ІВАНА ФРАНКА Факультет прикладної математики та інформатики

Бази даних та інформаційні системи

ЛАБОРАТОРНА РОБОТА №5

Нормалізація відношень бази даних

Виконав:
Студент Процьків Назарій
Група <u>ПМі-21</u>
Оцінка
Перевірила:
доц. Малець Р.Б.

Тема: Нормалізація відношень бази даних.

Мета роботи: Ознайомлення з поняттям нормалізації відношень бази даних та самим процесом нормалізації.

Завдання (Варіант 17):

Розробити базу даних для сайту соціальної мережі. Соціальна мережа підтримує реєстрацію користувачів зі збереженням усіх їхніх деталей (ім'я, прізвище, дата народження, місце проживання, телефони, сайти/е-mail/skype іт.д.), місця і періоди перебування, місця і періоди навчання, роботи, служби, приєднані файли (зображення, фільми, аудіо), які можна пов'язувати із місцями з деталей. Крім того, кожен користувач має можливість розміщувати свої повідомлення на власній сторінці, отримувати на повідомлення «лайки» та коментарі, а також додавати інших користувачів в друзі, або в «чорний список». Додатково користувач повинен мати змогу шукати нових друзів за довільними критеріями.

Хід роботи

- 1. Опрацював теоретичний матеріал.
- 2. Проаналізував створені відношення (таблиці) бази даних на відповідність нормальним формам:

Таблиця Users:

Таблиця ма ϵ унікальний ключовий атрибут – id, у таблиці нема ϵ рядків, які повторюються, а також всі значення атрибутів ϵ елементарними, тому ця таблиця ϵ у 1NF.

В таблиці первинний ключ ϵ простим (id), тому всі інші значення функціонально повно залежать від нього. З цього виплива ϵ , що таблиця users ϵ у 2NF.

В таблиці всі неключові атрибути (firstname, lastname, birthdate, phonenumber,

password, address, workPlace, studyPlace, servicePlace, beingPlace) взаємно незалежні між собою і повністю залежать лише від первинного ключа іd, тобто кожний неключовий атрибут не транзитивно залежить від ключа, тому дана таблиця ϵ у 3NF.

В цій таблиці функціональні залежності можна описати як id -> firstname, lastname, birthdate, phonenumber, password, address, workPlace, studyPlace, servicePlace, beingPlace. Цей ланцюг залежностей можна розбити на 10.

- 1. id -> firstname
- 2. id -> lastname
- 3. id -> birthdate
- 4. id -> phonenumber
- 5. id -> password
- 6. id -> address
- 7. id -> workPlace
- 8. id -> studyPlace
- 9. id -> servicePlace
- 10. id -> beingPlace

Оскільки детермінант кожної з цих залежностей ϵ ключем, то дана таблиця ϵ у BCNF.

У таблиці немає багатозначних залежностей, які не ϵ функціональними залежностями, тому ця таблиця ϵ у 4NF.

Таблиця не ма ϵ залежних сполучень, що не визначаються потенційними ключами, отже ця таблиця ϵ у 5NF.

3 цих пояснень випливає, що дану таблицю не потрібно оптимізовувати.

Таблиця має унікальний ключовий атрибут — pageid, у таблиці немає рядків, які повторюються, а також всі значення атрибутів є елементарними, тому ця таблиця є у 1NF.

В таблиці первинний ключ ϵ простим (pageid), тому всі інші значення функціонально повно залежать від нього. З цього виплива ϵ , що таблиця page ϵ у 2NF.

В таблиці всі неключові атрибути (message_id) взаємно незалежні між собою і залежать лише від первинного ключа pageid, тобто кожний неключовий атрибут не транзитивно залежить від ключа, тому дана таблиця ϵ у 3NF.

В цій таблиці функціональні залежності можна описати як іd -> message_id. Це одинарний ланцюг, тому його не потрібно розбивати на менші. Оскільки детермінант кожної з цих залежностей ϵ ключем, то дана таблиця ϵ у BCNF.

У таблиці немає багатозначних залежностей, які не ϵ функціональними залежностями, тому ця таблиця ϵ у 4NF.

Таблиця не ма ϵ залежних сполучень, що не визначаються потенційними ключами, отже ця таблиця ϵ у 5NF.

3 цих пояснень випливає, що дану таблицю не потрібно оптимізовувати.

Таблиця message:

Query History			12	#114	I am Nazarii14		
1 select * from message Data Output Messages Notifications =+			13	#115	I am Nazarii15		
			14	#116	I am Nazarii16		
	message_id message_text		15	#117	I am Nazarii17		
1	[PK] text #13	text I am Nazarii3	16	#118	I am Nazarii18		
2	#14	I am Nazarii4	17	#119	I am Nazarii19		
3	#15 #16	I am Nazarii5	18	#120	I am Nazarii20		
5	#17	I am Nazarii7	19	#121	I am Nazarii21		
6	#18	I am Nazarii8	20	#122	I am Nazarii22		
7	#19	I am Nazarii9		" 122	T GITT TGEGITIEE		
8	#110	I am Nazarii10	21	#123	I am Nazarii23		
9	#111	I am Nazarii11	22	#124	Lam Nazarii24		
10	#112	I am Nazarii12			· will i was will at		

Таблиця має унікальний ключовий атрибут — message_id, у таблиці немає рядків, які повторюються, а також всі значення атрибутів ϵ елементарними, тому ця таблиця ϵ у 1NF.

В таблиці первинний ключ ϵ простим (message_id), тому всі інші значення функціонально повно залежать від нього. З цього виплива ϵ , що таблиця раде ϵ у 2NF.

В таблиці всі неключові атрибути (message_text) взаємно незалежні між собою і залежать лише від первинного ключа message_id, тобто кожний неключовий атрибут не транзитивно залежить від ключа, тому дана таблиця ϵ у 3NF.

В цій таблиці функціональні залежності можна описати як message_id -> message_text. Це одинарний ланцюг, тому його не потрібно розбивати на менші. Оскільки детермінант кожної з цих залежностей ϵ ключем, то дана таблиця ϵ у BCNF.

У таблиці немає багатозначних залежностей, які не ϵ функціональними залежностями, тому ця таблиця ϵ у 4NF.

Таблиця не має залежних сполучень, що не визначаються потенційними ключами, отже ця таблиця ϵ у 5NF.

3 цих пояснень випливає, що дану таблицю не потрібно оптимізовувати.

Таблиця commentary:										
Query Query History										
1 select * from commentary										
Data Output Messages Notifications										
	commentary_id text	userid bigint	message_id text	commentary_text text						
1	&21	2	#11	Wow! Cool! 21						
2	&22	2	#11	Wow! Cool! 22						
3	&23	2	#11	Wow! Cool! 23						
4	&41	4	#31	Wow! Cool! 41						
5	&42	4	#31	Wow! Cool! 42						
6	&43	4	#51	Wow! Cool! 43						
7	&51	5	#11	Wow! Cool! 51						
8	&52	5	#11	Wow! Cool! 52						
9	&53	5	#11	Wow! Cool! 53						

Таблиця має унікальний ключовий атрибут — commentary_id, у таблиці немає рядків, які повторюються, а також всі значення атрибутів ϵ елементарними, тому ця таблиця ϵ у 1NF.

В таблиці первинний ключ ϵ простим (commentary_id), тому всі інші значення

функціонально повно залежать від нього. З цього випливає, що таблиця раде є у 2NF.

В таблиці всі неключові атрибути (userid, message_text, commentary_text) взаємно незалежні між собою і залежать лише від первинного ключа commentary_id, тобто кожний неключовий атрибут не транзитивно залежить від ключа, тому дана таблиця ϵ y 3NF.

В цій таблиці функціональні залежності можна описати як commentary_id -> userid, message id, message text.

Цей ланцюг залежностей можна розбити на 3.

- 1. commentary_id -> userid.
- 2. commentary_id -> message_id.
- 3. commentary_id -> message_text.

Оскільки детермінант кожної з цих залежностей ϵ ключем, то дана таблиця ϵ у BCNF.

У таблиці немає багатозначних залежностей, які не ϵ функціональними залежностями, тому ця таблиця ϵ у 4NF.

Таблиця не має залежних сполучень, що не визначаються потенційними ключами, отже ця таблиця ϵ у 5NF.

З цих пояснень випливає, що дану таблицю не потрібно оптимізовувати.

Таблиця friendslist: Query Query History 1 select * from friendslist Data Output Messages Notifications <u>*</u> =+ 🖺 🗸 📋 friendid â bigint bigint 2 1 2 1 3 3 1 4 4 1 5 5 2 3 6 2 4 7 2 5 8 2 1 9 3 1 10 3 5 4 1 11 2 12 4 3 13 4 14 5 1 15

Ця таблиця має лише два атрибути: ключ userid і залежний від нього friendid. Очевидно, що ця таблиця також ϵ у 1NF, 2NF, 3NF, BCNF, 4NF, 5NF.

Дану таблицю не потрібно оптимізовувати.

Таблиця blacklist:

Ця таблиця за будовою ϵ такою самою як і таблиця friendslist, тому вона також ϵ у 1NF, 2NF, 3NF, BCNF, 4NF, 5NF.

Таблиця likes:

Ця таблиця також ма ϵ два атрибути: userid — ключ, message_id — залежний від ключа. Ця таблиця також ϵ у 1NF, 2NF, 3NF, BCNF, 4NF, 5NF.

Останніх 4 таблиці мають однакову будову, тому я їх всіх буду розглядати одночасно. Таблиці beingplaces, studyplaces, serviceplaces, workplaces:

Beingplaces:

Studyplaces:

Serviceplaces:

Workplaces:

Data Output Messages Notifications									
	workid text	company text	startdate date	enddate date					
1	work1	Google	2015-12-12	2015-12-27					
2	work1	Amazon	2015-12-28	2016-02-21					
3	work1	Starlink	2016-02-12	2016-06-17					
4	work1	Google	2016-06-18	2023-03-19					
5	work2	Amazon	2016-12-12	2016-12-27					
6	work2	Facebook	2016-12-28	2017-02-21					
7	work2	Starlink	2017-02-12	2017-07-17					
8	work2	Glovo	2017-07-18	2023-03-19					
9	work3	Bolt	2016-12-12	2016-12-27					

Ці таблиці мають 4 атрибути з першою колонкою як ключ і іншими трьома як залежними, в цих таблицях немає повторень кортежів, а також всі значення атрибутів ϵ елементарними, тому ці таблиці ϵ у 1NF.

3 попередніх пояснень очевидно, що ці таблиці також ϵ у 1NF, 2NF, 3NF, BCNF, 4NF, 5NF.

Висновок: моя база даних не потребувала нормалізації жодної з таблиць, тому у звіті до цієї лабораторної роботи я просто пояснив чому. Під час виконання лабораторної роботи я ознайомився з поняттям нормалізації відношень бази даних та власне самим процесом нормалізації.