

CURSO DE CIÊNCIA DE DADOS APLICADA AO PODER JUDICIÁRIO

SPARK PARA CIÊNCIA DE DADOS

Apresentação do curso

PROF. CARLOS M. D. VIEGAS

Apresentação pessoal

- Prof. Carlos M. D. Viegas
 - Professor Adjunto
 - Departamento de Engenharia de Computação e Automação (DCA)
 - Universidade Federal do Rio Grande do Norte (UFRN)
 - Formação:
 - Doutor em Engenharia Informática (2015)
 - Faculdade de Engenharia da Universidade do Porto, Porto, Portugal
 - Mestre em Engenharia Elétrica e de Computação (2009)
 - Universidade Federal do Rio Grande do Norte, Natal/RN, Brasil
 - Engenheiro de Computação (2006)
 - Universidade Federal do Rio Grande do Norte, Natal/RN, Brasil
 - Áreas de interesse/experiência:
 - Redes de Computadores, Segurança da Informação, Engenharia de Dados e Sistemas de Comunicação de Tempo Real

- Caracterização do Curso
 - Modalidade
 - Ensino à distância
 - Carga horária total
 - 36 horas
 - Carga horária semanal
 - 4 horas

- Duração do curso
 - 9 semanas
- Início da oferta
 - Março/2023 10/03/2023
- Fim da oferta
 - Maio/2023 25/05/2023

Objetivos

- Capacitar o(a) cursista a utilizar as soluções Apache Hadoop e Apache Spark para o desenvolvimento de aplicações para resolução de problemas na área da Ciência de Dados
- Ao final do curso, o(a) cursista terá como habilidades:
 - Capacidade para planejar e preparar a infraestrutura de dados de uma organização
 - Conhecimento das técnicas e ferramentas para o desenvolvimento de aplicações com Apache Spark para o processamento de dados em larga escala

Programa/Ementa

- Apresentação do Ecossistema Apache Hadoop
- Instalação e configuração do ambiente Apache Hadoop
- Estudo do sistema de arquivos HDFS (*Hadoop Distributed File System*) e do modelo de programação MapReduce
- Criação de cluster para processamento de dados
- Gerenciamento de recursos e escalonamento de tarefas com YARN
- Desenvolvimento de aplicações com MapReduce em linguagem Python
- Integração do Ecossistema Hadoop com módulos adicionais: bancos de dados e outras fontes de dados

- Introdução ao Apache Spark
- Instalação, configuração e integração do ambiente Apache Spark
- Abstrações de dados RDD (Resilient Distributed Dataset), Dataframe e Datasets
- Comparação Spark vs Hadoop
- Desenvolvimento de Aplicações com pySpark
- SparkSQL
- Estudo das bibliotecas Spark MLlib, Spark GraphX e aplicações práticas
- Noções de SparkR

- Conteúdo programático
 - Semanas 1 e 2: Apache Hadoop
 - Introdução ao Ecossistema Hadoop
 - Sistema de arquivos HDFS
 - Modelo de programação MapReduce
 - Gerenciamento de recursos com Yarn
 - Instalação e configuração do Hadoop (standalone e multi-node)
 - Análise de logs para diagnóstico e resolução de problemas
 - Desenvolvimento de aplicações com MapReduce
 - Execução e monitoramento de tarefas
 - Visão geral de módulos adicionais Hadoop:
 - · Hive, Hbase, Sqoop e Mahout

10/03/2023 a 23/03/2023

Conteúdo programático

- Semanas 3 e 4: Apache Spark
 - Introdução ao Ecossistema Spark
 - Comparação Spark vs Hadoop
 - Abstração de dados: RDD, Dataframe e Dataset
 - Instalação e configuração do Spark (standalone e cluster)
 - Integração com Apache Hadoop
 - Programação com pySpark: RDD
 - Spark Web UI: Interface de usuário e DAG
 - Programação com pySpark: Dataframe e Dataset
 - API Pandas no Spark
 - Interação com fontes de dados e Aplicações práticas

23/03/2023 a 13/04/2023*

- Conteúdo programático
 - Semana 5: Apache Spark SparkSQL
 - Programação com pySpark: SparkSQL
 - Manipulação de dados com SparkSQL
 - Aplicações práticas
 - Semana 6: Apache Spark MLlib
 - Fundamentos de Machine Learning
 - Machine Learning no Spark
 - Criação de pipelines com Machine Learning
 - Aplicações práticas

14/04/2023 a 27/04/2023*

28/04/2023 a 04/05/2023

- Conteúdo programático
 - Semana 7: Apache Spark Streaming
 - Modelo de programação Spark Structured Streaming
 - Criação de Streams com Dataframe e Dataset
 - Operações sobre Streams de dados
 - Aplicações práticas
 - Semana 8: Apache Spark Spark R
 - Introdução ao Spark R
 - Exemplos de programação em R para Spark

05/05/2023 a 11/05/2023

12/05/2023 a 18/05/2023

- Conteúdo programático
 - Semana 9: Apache Spark GraphX
 - Fundamentos de grafos
 - Análise de grafos com GraphX e GraphFrames

19/05/2023 a 25/05/2023

- Metodologia de ensino
 - Aulas expositivas (online)
 - Encontros síncronos às sextas-feiras às 08h30
 - Plantões de dúvidas (online)
 - Encontros síncronos às quintas-feiras às 08h30
 - Práticas interativas
 - Exercícios complementares
 - Trabalhos de implementação

Atividades previstas para os(as) cursistas

- Os(as) cursistas serão expostos a problemas e utilizarão o conhecimento adquirido durante as aulas para a resolução dos mesmos
- A cada semana os(as) cursistas deverão desenvolver as seguintes atividades:
 - 1. Estudar o material pré-aula como forma de preparo para a aula
 - 2. Assistir às aulas programadas para a semana no horário definido
 - 3. Trabalhar nos exercícios disponibilizados pelo professor
 - 4. Realizar o estudo individual dos materiais indicados, tais como leituras complementares, resolução de exercícios e acesso a vídeos adicionais
 - 5. Participar do fórum do curso contribuindo com tópicos para a discussão ou respondendo e complementando tópicos em aberto relacionados ao conteúdo apresentado (opcional)
 - 6. Realizar as tarefas de avaliação semanal, respondendo aos questionários aplicados

Carga horária do(a) cursista

4 horas/semana

•	Estudo individual de conteúdo pré-aula	00:30
•	Participação na aula ao vivo	01:30
•	Estudo individual pós aula	00:30
•	Participação no plantão de dúvidas	01:00
•	Participação no fórum	00:30

Pré-requisitos

- Conhecimentos em sistemas GNU/Linux ou Unix
- Conhecimentos em linguagem de programação Python
- Computador pessoal com pelo menos 8 GB de memória RAM e 40 GB de espaço em disco

- Avaliação dos(as) cursistas
 - Avaliação de Desempenho
 - Questionários semanais: questões teóricas e práticas
 - Média aritmética simples das notas obtidas nas tarefas semanais

- A frequência de participação será determinada pela realização das tarefas semanais de avaliação do curso e/ou questões do material pré-aula/pós-aula
- Receberão certificados de participação aqueles que obtiverem aproveitamento igual ou superior a 70% nessas atividades
- Avaliação de Reação
 - Ao final do curso será aplicada uma avaliação de reação com o intuito de a avaliar a percepção dos(as) cursistas quanto ao curso realizado no alcance dos objetivos

OBRIGADO

CONTATO: viegas@dca.ufrn.br

CURSO DE CIÊNCIA DE DADOS APLICADA AO PODER JUDICIÁRIO

