

Algebra of Matrices Ex 5.4 Q2

Given,

$$A = \begin{bmatrix} 3 \\ 5 \\ 2 \end{bmatrix}, B = \begin{bmatrix} 1 & 0 & 4 \end{bmatrix}$$

$$(AB)^{T} = B^{T} A^{T}$$

$$\Rightarrow \begin{bmatrix} \begin{bmatrix} 3 \\ 5 \\ 2 \end{bmatrix} \begin{bmatrix} 1 & 0 & 4 \end{bmatrix}^{T} = \begin{bmatrix} 1 & 0 & 4 \end{bmatrix}^{T} \begin{bmatrix} 3 \\ 5 \\ 2 \end{bmatrix}^{T}$$

$$\Rightarrow \begin{bmatrix} 3 & 0 & 12 \\ 5 & 0 & 20 \\ 2 & 0 & 8 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 4 \end{bmatrix} \begin{bmatrix} 3 & 5 & 2 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 3 & 5 & 2 \\ 0 & 0 & 0 \\ 12 & 20 & 8 \end{bmatrix} = \begin{bmatrix} 3 & 5 & 2 \\ 0 & 0 & 0 \\ 12 & 20 & 8 \end{bmatrix}$$

So,

$$(AB)^T = B^T A^T$$

Algebra of Matrices Ex 5.4 Q3(i)

Given,

$$A = \begin{bmatrix} 1 & -1 & 0 \\ 2 & 1 & 3 \\ 1 & 2 & 1 \end{bmatrix}, B = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \\ 0 & 1 & 1 \end{bmatrix}$$

$$\Rightarrow A^{T} = \begin{bmatrix} 1 & 2 & 1 \\ -1 & 1 & 2 \\ 0 & 3 & 1 \end{bmatrix}, B^{T} = \begin{bmatrix} 1 & 2 & 0 \\ 2 & 1 & 1 \\ 3 & 3 & 1 \end{bmatrix}$$

$$(A+B)^T = A^T + B^T$$

$$\Rightarrow \qquad \left(\begin{bmatrix} 1 & -1 & 0 \\ 2 & 1 & 3 \\ 1 & 2 & 1 \end{bmatrix} + \begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \\ 0 & 1 & 1 \end{bmatrix} \right)^T = \begin{bmatrix} 1 & -1 & 0 \\ 2 & 1 & 3 \\ 1 & 2 & 1 \end{bmatrix}^T + \begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \\ 0 & 1 & 1 \end{bmatrix}^T$$

$$\Rightarrow \begin{bmatrix} 1+1 & -1+2 & 0+3 \\ 2+2 & 1+1 & 3+3 \\ 1+0 & 2+1 & 1+1 \end{bmatrix}^{T} = \begin{bmatrix} 1 & 2 & 1 \\ -1 & 1 & 2 \\ 0 & 3 & 1 \end{bmatrix} + \begin{bmatrix} 1 & 2 & 0 \\ 2 & 1 & 1 \\ 3 & 3 & 1 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 2 & 1 & 3 \\ 4 & 2 & 6 \\ 1 & 3 & 2 \end{bmatrix}^{T} = \begin{bmatrix} 1+1 & 2+2 & 1+0 \\ -1+2 & 1+1 & 2+1 \\ 0+3 & 3+3 & 1+1 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 2 & 4 & 1 \\ 1 & 2 & 3 \\ 3 & 6 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 4 & 1 \\ 1 & 2 & 3 \\ 3 & 6 & 2 \end{bmatrix}$$

So,

$$(A+B)^T = A^T + B^T$$

Algebra of Matrices Ex 5.4 Q3(ii)

Given,

$$A = \begin{bmatrix} 1 & -1 & 0 \\ 2 & 1 & 3 \\ 1 & 2 & 1 \end{bmatrix}, B = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \\ 0 & 1 & 1 \end{bmatrix}$$

$$\Rightarrow A^{T} = \begin{bmatrix} 1 & 2 & 1 \\ -1 & 1 & 2 \\ 0 & 3 & 1 \end{bmatrix}, B^{T} = \begin{bmatrix} 1 & 2 & 0 \\ 2 & 1 & 1 \\ 3 & 3 & 1 \end{bmatrix}$$

$$(AB)^{T} = B^{T}A^{T}$$

$$\Rightarrow \begin{bmatrix} \begin{bmatrix} 1 & -1 & 0 \\ 2 & 1 & 3 \\ 1 & 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \\ 0 & 1 & 1 \end{bmatrix}^{T} = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \\ 0 & 1 & 1 \end{bmatrix}^{T} \begin{bmatrix} 1 & -1 & 0 \\ 2 & 1 & 3 \\ 1 & 2 & 1 \end{bmatrix}^{T}$$

$$\Rightarrow \begin{bmatrix} \begin{bmatrix} 1-2+0 & 2-1+0 & 3-3+0 \\ 2+2+0 & 4+1+3 & 6+3+3 \\ 1+4+0 & 2+2+1 & 3+6+1 \end{bmatrix}^{T} = \begin{bmatrix} 1 & 2 & 0 \\ 2 & 1 & 1 \\ 3 & 3 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 1 \\ -1 & 1 & 2 \\ 3 & 3 & 1 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} -1 & 1 & 0 \\ 4 & 8 & 12 \\ 5 & 5 & 10 \end{bmatrix}^{T} = \begin{bmatrix} 1-2+0 & 2+2+0 & 1+4+0 \\ 2-1+0 & 4+1+3 & 2+2+1 \\ 3-3+0 & 6+3+3 & 3+6+1 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} -1 & 4 & 5 \\ 1 & 8 & 5 \\ 0 & 12 & 10 \end{bmatrix} = \begin{bmatrix} -1 & 4 & 5 \\ 1 & 8 & 5 \\ 0 & 12 & 10 \end{bmatrix}$$

So,

 \Rightarrow

$$(AB)^T = B^T A^T$$

LHS = RHS

Algebra of Matrices Ex 5.4 Q3(iii)

Given,

$$A = \begin{bmatrix} 1 & -1 & 0 \\ 2 & 1 & 3 \\ 1 & 2 & 1 \end{bmatrix}, B = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \\ 0 & 1 & 1 \end{bmatrix}$$

$$\Rightarrow A^{T} = \begin{bmatrix} 1 & 2 & 1 \\ -1 & 1 & 2 \\ 0 & 3 & 1 \end{bmatrix}, B^{T} = \begin{bmatrix} 1 & 2 & 0 \\ 2 & 1 & 1 \\ 3 & 3 & 1 \end{bmatrix}$$

$$(2A)^{T} = 2A^{T}$$

$$\Rightarrow \begin{bmatrix} \begin{bmatrix} 1 & -1 & 0 \\ 2 & 1 & 3 \\ 1 & 2 & 1 \end{bmatrix} \end{bmatrix}^{T} = 2 \begin{bmatrix} 1 & -1 & 0 \\ 2 & 1 & 3 \\ 1 & 2 & 1 \end{bmatrix}^{T}$$

$$\Rightarrow \begin{bmatrix} 2 & -2 & 0 \\ 4 & 2 & 6 \\ 2 & 4 & 2 \end{bmatrix}^{T} = 2 \begin{bmatrix} 1 & 2 & 1 \\ -1 & 1 & 2 \\ 0 & 3 & 1 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 2 & 4 & 2 \\ -2 & 2 & 4 \\ 0 & 6 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 4 & 2 \\ -2 & 2 & 4 \\ 0 & 6 & 2 \end{bmatrix}$$

******* END ******

So,
$$(2A)^T = 2 \times A^T$$