Chapter 5 Coordinate Descent

- Key Idea Update only one coordinate
- Results: Worse case d times more of iteration, under suitable condition results may improve.

Polyak-Łojasiewicz inequality

- Goal only to prove function values can converge to optimal, no care of complexity.
- Definition 5.1 Let $f: \mathbb{R}^d \to \mathbb{R} \in C^1$ has a global minimum \mathbf{x}^* . We say that f satisfies the *Polyak-Łojasiewicz inequality* (PL inequality) if $\exists \mu > 0$ s.t. $\forall \mathbf{x} \in \mathbb{R}^d, \frac{1}{2} \|\nabla f(\mathbf{x})\|^2 \ge \mu \left(f(\mathbf{x}) f(\mathbf{x}^*)\right)$.
- Lemma 5.2 (Strong Convexity -> PL ineq) The proof is in Lemma E of lecture 03.
- PL ineq is strictly weaker than strong convexity.
 - \circ E.g. $f(x_1,x_2)=x_1^2$ is not strongly convex, but satisfies PL ineq.
 - \circ Example of non-convex function that satisfies PL ineq: $f(x) = x^2 + \operatorname{Sigmoid}(\frac{x}{20}) \times 5x^2$.
- Theorem 5.3 (Exponential decay) Let $f: \mathbb{R}^d \to \mathbb{R} \in C^1$ has a global minimum \mathbf{x}^* . Suppose that f is L-smooth satisfies μ -PL ineq. Choosing stepsize $\gamma = L^{-1}$, then gradient descent starting with arbitrary \mathbf{x}_0 satisfies
 - $f\left(\mathbf{x}_{T}
 ight)-f\left(\mathbf{x}^{\star}
 ight)\leq\left(1-rac{\mu}{L}
 ight)^{T}\left(f\left(\mathbf{x}_{0}
 ight)-f\left(\mathbf{x}^{\star}
 ight)
 ight)$
 - Proof
 - lacksquare By sufficient descent $f(\mathbf{x}_{t+1}) \leq f(\mathbf{x}_t) rac{1}{2L} \|
 abla f(\mathbf{x}_t) \|^2$,
 - by PL ineq $\mathsf{RHS} \leq f(\mathbf{x}_t) \frac{\mu}{L}(f(\mathbf{x}_t) f(\mathbf{x}^\star))$, then we get what we want.

Coordinate Smoothness

- Definition 5.4 Let $f: \mathbb{R}^d \to \mathbb{R} \in C^1$ and $\mathcal{L} = (L_1, L_2, \dots, L_d) \in \mathbb{R}^d$. Function f is called coordinate-wise smooth (with parameter \mathcal{L}) if $\forall i \in [d]$, $\forall \mathbf{x} \in \mathbb{R}^d$, $\lambda \in \mathbb{R}$, $f(\mathbf{x} + \lambda \mathbf{e}_i) \leq f(\mathbf{x}) + \lambda \nabla_i f(\mathbf{x}) + \frac{L_i}{2} \lambda^2$
 - \circ If $\forall i, L_i = L$, f is said to be coordinate-wise smooth with parameter L.
- Coordinate-wise smoothness is more fine grined.
 - $f(x_1,x_2)=x_1^2+10x_2^2$ is (2,20)-coordinate-smooth, but only 20-smooth.
 - $f(x_1,x_2)=x_1^2+x_2^2+Mx_1x_2$ is (2,2)-coordinate-smooth, but only (M+2)-smooth.
- Algorithm
 - \circ (i) choose an active coordinate $i \in [d]$
 - \circ (ii) $\mathbf{x}_{t+1} := \mathbf{x}_t \gamma_i \nabla_i f(\mathbf{x}_t) \mathbf{e}_i$
- Lemma 5.5 (Sufficient Descent) A stepsize of $\gamma_i = L_i^{-1}$ gives $f(\mathbf{x}_{t+1}) \leq f(\mathbf{x}_t) \frac{1}{2L_i} |\nabla_i f(\mathbf{x}_t)|^2$.

Randomized CD

- Algorithm Change (i) sample $i \in [d]$ uniformly at random.
- Theorem 5.6 Let $f: \mathbb{R}^d \to \mathbb{R} \in C^1$ has a global minimum \mathbf{x}^\star . Suppose that f is coordinate-wise L-smooth and satisfies the μ -PL inequality. Choosing stepsize $\gamma_i = L^{-1}$, then randomized coordinate descent with arbitrary start satisfies

$$\mathbb{E}\left[f\left(\mathbf{x}_{T}
ight)-f\left(\mathbf{x}^{\star}
ight)
ight] \leq \left(1-rac{\mu}{dL}
ight)^{T}\left(f\left(\mathbf{x}_{0}
ight)-f\left(\mathbf{x}^{\star}
ight)
ight).$$

- Proof
 - Take expectation over sufficient descent with each coordiate of probability 1/d, $\mathbb{E}\left[f(\mathbf{x}_{t+1})|\mathbf{x}_t\right] \leq f(\mathbf{x}_t) \frac{1}{2L}\sum_{i=1}^d \frac{1}{d}|\nabla_i f(\mathbf{x}_t)|^2 = f(\mathbf{x}_t) \frac{1}{2dL}\|\nabla f(\mathbf{x}_t)\|^2$
 - ullet With PL ineq, $\mathsf{RHS} \leq f(\mathbf{x}_t) rac{\mu}{dL} (f(\mathbf{x}_t) f(\mathbf{x}^\star))$
 - lacktriangle Take expectation over condition $\mathbb{E}[\cdot|\mathbf{x}_t]$, we arrive at our conclusion.
- \circ Comment $\left(1-rac{\mu}{L}
 ight)pprox \left(1-rac{\mu}{dL}
 ight)^d$, this is nearly the same as vanilla GD, need improvement.

Importance Sampling

- ullet Algorithm Change (i) when L_i not the same, sample $i \in [d]$ with probability $rac{L_i}{\sum_{j=1}^d L_j}$
- Theorem 5.7 Let $f: \mathbb{R}^d \to \mathbb{R} \in C^1$ has a global minimum \mathbf{x}^\star . Suppose that f is coordinate-wise \mathcal{L} -smooth and satisfies the μ -PL inequality. Let $\bar{L} = \frac{1}{d} \sum_{i=1}^d L_i$ be the average of all coordinate-wise smoothness constants. Then coordinate descent with importance sampling with arbitrary start satisfies $\mathbb{E}\left[f\left(\mathbf{x}_T\right) f\left(\mathbf{x}^\star\right)\right] \leq \left(1 \frac{\mu}{d\bar{L}}\right)^T \left(f\left(\mathbf{x}_0\right) f\left(\mathbf{x}^\star\right)\right)$

- Proof
 - $lacksquare \mathbb{E}\left[f(\mathbf{x}_{t+1})|\mathbf{x}_t
 ight] \leq f(\mathbf{x}_t) \sum_{i=1}^d rac{1}{2L} rac{L_i}{\sum_{i=1}^d L_i} |
 abla_i f(\mathbf{x}_t)|^2 = f(\mathbf{x}_t) rac{1}{2dar{L}} \|
 abla f(\mathbf{x}_t)\|^2$
- \circ Comment $ar{L}$ can be much smaller than $L=\max_{i=1}^d L_i$, this is a improvement in constant. When all L are equal, no improvement.

Steepest Coordinate Descent

- Algorithm Change (i) Choose $i = \operatorname{argmax} |\nabla_i f(\mathbf{x}_t)|$, also called Gauss-Southwell rule.
- Since $\max_i |\nabla_i f(\mathbf{x})|^2 \geq \frac{1}{d} \sum_{i=1}^d |\nabla_i f(\mathbf{x})|^2$, for a coordinate-L-smooth function, we have $\circ \ f(\mathbf{x}_{t+1}) \leq f(\mathbf{x}_t) \frac{1}{2L} \max_i |\nabla_i f(\mathbf{x})|^2 \leq f(\mathbf{x}_t) \frac{1}{2L} \sum_{i=1}^d \frac{1}{d} |\nabla_i f(\mathbf{x}_t)|^2$

 - \circ Then we arrive at Corollary 5.8, still $f(\mathbf{x}_T) f(\mathbf{x}^\star) \leq \left(1 \frac{\mu}{dL}\right)^T \left(f(\mathbf{x}_0) f(\mathbf{x}^\star)\right)$

Better Convergence of Steepest Descent with ℓ_1 norm strong convexity (Also known as Steeper)

- Lemma 5.9 (ℓ_1 norm μ -strong convexity -> ℓ_∞ norm μ -PL inequality) This is a natual resutl for Lemma E, as the dual norm of $\|\cdot\|_1$ is $\|\cdot\|_{\infty}$.
- Proof of dual norm $\|\cdot\|_{p*}=\|\cdot\|_q$ where $p^{-1}+q^{-1}=1$ is by Hölder inequality $\sum_{k=1}^n|x_ky_k|\leq \left(\sum_{k=1}^n|x_k|^p\right)^{\frac{1}{p}}\left(\sum_{k=1}^n|y_k|^q\right)^{\frac{1}{q}}$ (equality holds if x^p and y^q are proportional.)
 - Proof of special case of $(1, \infty)$ is simple.
- Theorem 5.10 Let $f: \mathbb{R}^d \to \mathbb{R} \in C^1$ has a global minimum \mathbf{x}^* . Suppose that f is coordinate-wise L-smooth and satisfies the μ_1 -PL inequality under ℓ_1 norm. Then steepest coordinate descent with step size $\gamma_i=L^{-1}$ arbitrary start satisfies

$$f(\mathbf{x}_T) - f(\mathbf{x}^{\star}) \leq \left(1 - \frac{\mu_1}{L}\right)^T (f(\mathbf{x}_0) - f(\mathbf{x}^{\star})).$$

- $ilde{\mathbf{x}} \sim ext{Key Idea } f\left(\mathbf{x}_{t+1}
 ight) \leq ilde{f}\left(\mathbf{x}_{t}
 ight) rac{1}{2L} \max_{i} |
 abla_{i}f(\mathbf{x})|^{2} = f\left(\mathbf{x}_{t}
 ight) rac{1}{2L} \|
 abla f\left(\mathbf{x}_{t}
 ight)\|_{\infty}^{2}$
- Comment Since $\|\mathbf{y} \mathbf{x}\|_1 \ge \|\mathbf{y} \mathbf{x}\| \ge \|\mathbf{y} \mathbf{x}\|_1 / \sqrt{d}$
 - \circ If f is ℓ_1 μ -strong convex -> f is ℓ_2 μ -strong convex.
 - \circ If f is ℓ_2 μ -strong convex -> f is ℓ_1 μ/d -strong convex.
 - \circ Seems no better than ℓ_2 case, but cases like $f(x) = x^ op \mathrm{diag}\{\lambda_i\}x/2$ shows ℓ_1 gives much better results. (Appendic C of this)
 - Has sth to do with convex conjugates.

Greedy coordinate descent

- ullet Algorithm Change (ii) $\mathbf{x}_{t+1} := \operatorname{argmin} f\left(\mathbf{x}_t + \lambda \mathbf{e}_i
 ight)$
 - \circ Might be easier when f is analytic.
- Problem May stuck at non-minimum.
 - \circ Example: $f(\mathbf{x}) := \|\mathbf{x}\|^2 + |x_1 x_2|$, (x,x) is minimal for all single coordinate in range $|x| \leq 1/2$.
 - The following form is guaranteed to not be.
- Theorem 5.11 Let $f:\mathbb{R}^d o\mathbb{R}$ be of the form $f(\mathbf{x}):=g(\mathbf{x})+h(\mathbf{x})$ where $h(\mathbf{x})=\sum_i h_i\left(x_i\right)$, g,f_i all convex, $g\in C^1$, then whenever greedy coordinate descent makes no improvement, its in minimum.
 - - No improvement means $\forall \lambda, i \in [d], f(\mathbf{x} + \lambda \mathbf{e}_i) \geq f(\mathbf{x}),$
 - then $f(\mathbf{x} + (y_i x_i)\mathbf{e}_i) \geq f(\mathbf{x})$
 - lacksquare let $p(z):=g(z,x_{-i})-\partial_i g(x_i)(z-x_i)$ and $q(z):=h_i(z)+\partial_i g(x_i)(z-x_i)$, since g convex and differentiabl, p(z) reach global minimum at $z=x_i$, $f_i:=f(z;x_{-i})=p(z)+q(z)$, so f_i also reach global minimum at $z=x_i$.
 - lacksquare Since p(z) differentiabl, $\partial p(x_i) = 0$, if q does not reach global minimum at $z = x_i$, then $\exists y$ s.t. $q(y) < q(x_i)$, then by convexit $q(x_i + \lambda(y - x_i)) \leq q(x_i) + \lambda(q(y) - q(x_i))$ is bounded by a negative slopt of $-(q(x_i) - q(y))$ at $z=x_i$.
 - lacksquare This leads to contradiction where f=p+q reaches minimum at z=x.
 - Therefore, q(z) also reaches minimal at $z=x_i$.
 - ullet The above discussion means $orall y_i, q(y_i) \geq q(x_i)$, equivalently $h_i(y_i) + \partial_i g(\mathbf{x})(y_i x_i) h(x_i) \geq 0$
 - Since g convex,

$$f(\mathbf{y}) \geq g(\mathbf{x}) +
abla g(\mathbf{x})^ op (\mathbf{y} - \mathbf{x}) + h(\mathbf{y}) - h(\mathbf{x}) = f(\mathbf{x}) + \sum_{i=1}^d \underbrace{\left(
abla_i g(\mathbf{x}) \left(y_i - x_i
ight) + h_i \left(y_i
ight) - h_i \left(x_i
ight)
ight)}_{\geq 0} \geq f(\mathbf{x})$$

- \circ Comment LASSO $\min_{\mathbf{x} \in \mathbb{R}^n} \|A\mathbf{x} \mathbf{b}\|^2 + \lambda \|\mathbf{x}\|_1$ is of this form
 - Under mild regularity on g, convergence is affirmative.