

Machine Learning and Pattern Recognition A High Level Overview

Prof. Anderson Rocha

(Main bulk of slides kindly provided by **Prof. Sandra Avila**)
Institute of Computing (IC/Unicamp)

Data Compression

- Reduce time complexity: less computation required
- Reduce space complexity: less number of features
- More interpretable: it removes noise

• Data Compression

- Reduce time complexity: less computation required
- Reduce **space complexity**: less number of features
- More interpretable: it removes noise
- Data Visualization

• Data Compression

- Reduce time complexity: less computation required
- Reduce **space complexity**: less number of features
- More interpretable: it removes noise
- Data Visualization
- To mitigate "the curse of dimensionality"

Today's Agenda

- The Curse of Dimensionality
- PCA (Principal Component Analysis)
 - PCA Formulation
 - PCA Algorithm
 - \circ Choosing k

Even a basic 4D hypercube is incredibly hard to picture in our mind.

As the dimensionality of data grows, the density of observations becomes lower and lower and lower.

10 images 1 dimension: 5 regions

As the dimensionality of data grows, the density of observations becomes lower and lower and lower.

10 images

2 dimensions: 25 regions

As the dimensionality of data grows, the density of observations becomes lower and lower and lower.

10 images
3 dimensions: 125 regions

- 1 dimension: the sample density is 10/5 = 2 samples/interval
- 2 dimensions: the sample density is 10/25 = 0.4 samples/interval
- 3 dimensions: the sample density is 10/125 = 0.08 samples/interval

The Curse of Dimensionality: Solution?

The Curse of Dimensionality: Solution?

• Increase the size of the training set to reach a sufficient density of training instances.

The Curse of Dimensionality: Solution?

• Increase the size of the training set to reach a sufficient density of training instances.

• Unfortunately, the number of training instances required to reach a given density grows exponentially with the number of dimensions.

How to reduce dimensionality?

How to reduce dimensionality?

• Feature Extraction

Feature Selection

How to reduce dimensionality?

- **Feature Extraction:** create a subset of new features by combining the existing ones.
- **Feature Selection:** choosing a subset of all the features (the ones more informative).

PCA: Principal Component Analysis

Principal Component Analysis (PCA)

- The most popular dimensionality reduction algorithm.
- PCA have two steps:
 - It identifies the hyperplane that lies closest to the data.
 - It projects the data onto it.

• Reduce from 2-dimension to 1-dimension: Find a direction (a vector $u^{(1)} \subseteq \mathbb{R}^n$) onto which to project the data so as to minimize the projection error.

• Reduce from *n*-dimension to *k*-dimension: Find *k* vectors $u^{(1)}$, $u^{(2)}$, ..., $u^{(k)}$ onto which to project the data, so as to minimize the projection error.

3d **⇒**2d

Preserving the Variance

PCA Algorithm

Data Preprocessing

Training set: $x^{(1)}, x^{(2)}, ..., x^{(m)}$

Preprocessing (feature scaling/mean normalization):

$$\mu_j = \frac{1}{m} \sum_{i=1}^m x_j^{(i)}$$

Replace each $X_i^{(i)}$ with $X_j - \mu_j$.

Data Preprocessing

Training set: $x^{(1)}, x^{(2)}, ..., x^{(m)}$

Preprocessing (feature scaling/mean normalization):

$$\mu_j = \frac{1}{m} \sum_{i=1}^m x_j^{(i)}$$

Replace each $X_i^{(i)}$ with $X_i - \mu_i$.

If different features on different scales, scale features to have comparable range of values.

Reduce data from *n*-dimensions to *k*-dimensions

Compute "covariance matrix":

$$\Sigma = \frac{1}{m} \sum_{i=1}^{n} (x^{(i)}) (x^{(i)})^{\mathrm{T}}$$

Reduce data from *n*-dimensions to *k*-dimensions

Compute "covariance matrix":

$$\Sigma = \frac{1}{m} \sum_{i=1}^{n} (x^{(i)}) (x^{(i)})^{\mathrm{T}} \longrightarrow n \times n \text{ matrix}$$

Reduce data from *n*-dimensions to *k*-dimensions

Compute "covariance matrix":

$$\Sigma = \frac{1}{m} \sum_{i=1}^{n} (x^{(i)}) (x^{(i)})^{\mathrm{T}} \longrightarrow n \times n \text{ matrix}$$

Compute "eigenvectors" of matrix Σ :

$$[U, S, V] = svd(sigma)$$
 Singular Value Decomposition

Reduce data from *n*-dimensions to *k*-dimensions

Compute "covariance matrix":

$$\Sigma = \frac{1}{m} \sum_{i=1}^{n} (x^{(i)}) (x^{(i)})^{\mathrm{T}} \longrightarrow n \times n \text{ matrix}$$

Compute "eigenvectors" of matrix Σ :

$$[U, S, V] = svd(sigma)$$
 Singular Value Decomposition

From [U, S, V] = svd(sigma), we get:

$$U = \left| \begin{array}{c} | & | & | \\ u^{(1)} \cdots u^{(n)} \end{array} \right| \in \mathbb{R}^{n \times n}$$

From [U, S, V] = svd(sigma), we get:

$$U = \begin{bmatrix} | & | & | \\ u^{(1)} \cdots u^{(n)} \end{bmatrix} \in \mathbb{R}^{n \times n}$$

$$x \in \mathbb{R}^n \to z \in \mathbb{R}^k$$

From [U, S, V] = svd(sigma), we get:

$$U = \begin{bmatrix} | & | & | \\ u^{(1)} \cdots u^{(n)} \end{bmatrix} \in \mathbb{R}^{n \times n}$$

$$x \in \mathbb{R}^n \to z \in \mathbb{R}^k$$

$$z = \begin{bmatrix} | & | & | & | \\ u^{(1)} & \cdots & u^{(k)} \\ x_{|} & | & | & | \end{bmatrix}^T$$

$$k \times n \qquad n \times 1$$

After mean normalization and optionally feature scaling:

$$\Sigma = \frac{1}{m} \sum_{i=1}^{n} (x^{(i)}) (x^{(i)})^{\mathrm{T}}$$

$$[U, S, V] = svd(sigma)$$

$$z = (U_{\text{reduce}})^T \mathbf{x} x$$

Choosing the Number of Principal Components

Choosing *k* (#Principal Components)

Typically, choose *k* to be smallest value so that:

$$\frac{1}{m} \sum_{i=1}^{m} ||x^{(i)} - x_{approx}^{(i)}||^{2}$$

$$\frac{1}{m} \sum_{i=1}^{m} ||x^{(i)}||^{2}$$

$$\leq 0.01$$

"99% of variance is retained"

Choosing *k* (#Principal Components)

Typically, choose *k* to be smallest value so that:

$$\frac{1}{m} \sum_{i=1}^{m} ||x^{(i)} - x_{approx}^{(i)}||^{2}$$
Average squared projection error
$$\frac{1}{m} \sum_{i=1}^{m} ||x^{(i)} - x_{approx}^{(i)}||^{2}$$
Total variation in the data

"99% of variance is retained"

Choosing *k* (#Principal Components)

$$[U, S, V] = svd(sigma)$$

$$\frac{1}{m} \sum_{i=1}^{m} ||x^{(i)} - x_{approx}^{(i)}||^{2}$$

$$\frac{1}{m} \sum_{i=1}^{m} ||x^{(i)}||^{2}$$

$$1 - \frac{\sum_{i=1}^{m} S_{ii}}{\sum_{i=1}^{m} S_{ii}}$$

References

_ _ _

Machine Learning Books

- Hands-On Machine Learning with Scikit-Learn and TensorFlow, Chap. 8 "Dimensionality Reduction"
- Pattern Recognition and Machine Learning, Chap. 12 "Continuous Latent Variables"
- Pattern Classification, Chap. 10 "Unsupervised Learning and Clustering"

Machine Learning Courses

• https://www.coursera.org/learn/machine-learning, Week 8