Barabasi-Albert

			Approximation				I	G	reedy			Ge	enetic		ILP		
	V	E	EXT	AR	CF	VCS	EXT	AR	CF	VCS	$_{\rm ExT}$	AR	CF	VCS	$_{\rm ExT}$	CF	VCS
m = 1	64	63	0.021	1.64	3752.51	28	0.0247	1.05	4732.42	18	1.366	1.11	4734.80	19	0.0363	4854.30	17
m = 3	64	183	0.020	2.2	1498.54	48	0.0263	1.6	2519.53	34	0.4941	2	2702.77	42	0.3088	2284.42	21
m = 8	64	448	0.023	NR	977.61	56	0.0259	NR	2087.64	45	0.4238	NR	3829.13	52	NR	NR	NR
m = 1	128	127	0.041	1.76	6217.07	60	0.0509	1.08	8244.56	37	7.533	1.38	8393.66	47	0.0782	8280.75	34
m = 3	128	375	0.040	NR	3446.53	92	0.0431	NR	5974.57	66	7.554	NR	7554.51	83	NR	NR	NR
m = 8	128	960	0.043	NR	3200 37	108	0.0633	NR	6119.13	89	1.2152	NR	12317.88	103	NR	NR	NR
m = 1	256	255	0.122	1.61	12096.63	127	0.142	1.02	16346,34	80	22.392	1.26	17062.14	99	0.1587	16260.24	78
m = 3	256	759	0.118	NR	9991.89	176	0.1271	NR	15948.10	127	7.6216	NR	20213.48	146	NR	NR	NR
m = 8	256	1984	0.105	NR	9175.27	228	0.1946	NR	23828.37	182	3.4397	NR	54844.29	202	NR	NR	NR
m = 1	512	511	0.468	1.72	25169.55	272	0.509	1.03	36592.49	164	87.12	1.37	39449.04	217	0.6933	36950.95	158
m = 3	512	1527	0.406	NR	33823.91	379	0.4602	NR	61257.26	264	28.48	NR	79522.86	330	NR	NR	NR
m = 8	512	4032	0.478	NR	47196.73	440	0.8199	NR	100365.45	358	11.742	NR	233526.26	392	NR	NR	NR
m = 1	1024	1023	4.192	1.71	81269.18	534	2.407	1.02	116151.27	321	368.45	1.38	124501.55	433	1.310	117625.16	312
m = 3	1024	3063	1.833	NR	144784.55	732	2.053	NR	250635.65	517	115.00	NR	332645.54	634	NR	NR	NR
m = 8	1024	8128	2.145	NR	157996.72	904	3.2084	NR	423542.24	701	58.1213	NR	936801.81	791	NR	NR	NR

			Approximation				l	G	reedy			G	enetic	ILP			
	V	E	EXT	AR	CF	VCS	EXT	AR	CF	VCS	ExT	AR	CF	VCS	$_{\rm ExT}$	CF	VCS
$k_L = 2$	64	99	0.0243	NR	64.0	64	0.0283	NR	2821.53	35	0.4967	NR	2514.96	41	NR	NR	NR
$k_L = 4$	64	194	0.0244	NR	64.0	64	0.0238	NR	1442.30	47	0.3114	NR	3196.69	48	NR	NR	NR
$k_L = 7$	64	287	0.0236	NR	64.0	64	0.0271	NR	1570.44	51	0.312	NR	3618.70	54	NR	NR	NR
$k_L = 2$	128	191	0.0564	NR	128.0	128	0.0504	NR	5147.98	72	1.399	NR	6212.21	81	NR	NR	NR
$k_L = 4$	128	389	0.0436	NR	128.0	128	0.048	NR	3495.86	94	0.9190	NR	7416.55	99	NR	NR	NR
$k_L = 7$	128	580	0.0476	NR	128.0	128	0.052	NR	3104.33	102	0.8005	NR	8444.13	108	NR	NR	NR
$k_L = 2$	256	400	0.1614	NR	256.0	256	0.162	NR	11187.54	154	5.2896	NR	14206.98	166	NR	NR	NR
$k_L = 4$	256	764	0.1164	NR	256.0	256	0.1259	NR	8555.45	188	3.0085	NR	19147.82	198	NR	NR	NR
$k_L = 7$	256	1144	0.0973	NR	256.0	256	0.1267	NR	9418.7	206	2.4849	NR	31716.450	209	NR	NR	NR
$k_L = 2$	512	763	0.5105	NR	512.0	512	0.5051	NR	27571.52	290	25.899	NR	35845.13	330	NR	NR	NR
$k_L = 4$	512	1529	0.434	NR	512.0	512	0.4891	NR	35829.82	368	10.986	NR	79931.84	389	NR	NR	NR
$k_L = 7$	512	2303	0.4402	NR	512.0	512	0.5464	NR	38984.10	408	8.841	NR	124304.65	416	NR	NR	NR
$k_L = 2$	1024	1528	2.4698	NR	1024.0	1024	2.368	NR	109849.12	580	110.31	NR	149304.38	659	NR	NR	NR
$k_L = 4$	1024	3072	1.848	NR	1024.0	1024	2.1536	NR	140270.02	742	58.156	NR	316953.56	789	NR	NR	NR
$k_L = 7$	1024	4635	1.9649	NR	1024.0	1024	2.973	NR	155346.43	817	38.55	NR	530868.49	840	NR	NR	NR

			Approximation					G	Freedy	reedy			Genetic	ILP			
	V	E	EXT	AR	CF	VCS	EXT	AR	CF	VCS	ExT	AR	CF	VCS	ExT	CF	VCS
p=0.2	64	394	0.0216	NR	307.76	62	0.0288	NR	1708.70	48	03792	NR	3498.15	55	NR	NR	NR
p=0.5	64	1003	0.0276	NR	385.08	62	0.0363	NR	1027.26	58	0.7371	NR	7651.58	59	NR	NR	NR
p=0.7	64	1417	0.0128	NR	518.44	62	0.034	NR	1200.11	59	1.462	NR	1010184	60	NR	NR	NR
p=0.2	128	1612	0.01379	NR	1162.52	124	0.0736	NR	5041.98	109	1116	NR	23480.76	114	NR	NR	NR
p=0.5	128	4054	0.0699	NR	1431.88	126	0.1522	NR	5343.53	120	2.3257	NR	68028.0	122	NR	NR	NR
p=0.7	128	3712	0.076	NR	1965.96	126	0.190	NR	4722.90	123	3.512	NR	95802.12	124	NR	NR	NR
p=0.2	256	6522	0.1936	NR	6552.64	250	0.3496	NR	23343.71	234	3.635	NR	229235.27	239	NR	NR	NR
p=0.5	256	16331	0.3777	NR	5514.58	254	1.018	NR	23919.62	247	9.323	NR	618366.53	248	NR	NR	NR
p=0.7	256	22951	0.4973	NR	256.0	256	1.34	NR	22429.10	250	13.38	NR	868933.56	252	NR	NR	NR
p=0.2	512	26207	1.3412	NR	8951.86	510	2479	NR	1102300,25	486	16.01	NR	1942119.08	490	NR	NR	NR
p=0.5	512	65574	2.867	NR	21632.86	510	7.719	NR	106116.31	5012	41.71	NR	5165041.22	501	NR	NR	NR
p=0.7	512	91762	3.526	NR	30068.60	510	14.17	NR	103960 , 13	505	56.11	NR	7271924.85	507	NR	NR	NR
p=0.2	1024	104927	9.0174	NR	68618.70	1020	22.3394	NR	440389.58	998	56.66	NR	16359885.61	999	NR	NR	NR
p=0.5	1024	262255	26.75	NR	85500.24	1022	58.05	NR	381167.11	1015	171.46	NR	41944465.43	1015	NR	NR	NR
p=0.7	1024	366916	31.10	NR	1024.0	1024	82.47	NR	355593.74	1018	280.11	NR	59156072.22	1018	NR	NR	NR

Binomial Tree

		Approximation					G	reedy	Genetic					ILP		
V	E	EXT	AR	CF	VCS	EXT	AR	CF	VCS	ExT	AR	CF	VCS	ExT	CF	VCS
64	63	0.0227	2	64.0	64	0.0204	1	3217.71	32	0.585	1	3623.29	32	0.0317	3371.40	32
128	127	0.0438	2	128.0	128	0.0412	1	6510.32	64	2.1467	1	7171.00	64	0.0742	6510.04	64
256	256	0.0106	2	256.0	256	0.102	1	12099.31	128	8.377	1	14766.39	128	0.1210	12099.31	128
512	511	0.406	2	512.0	512 —	0.441	1	27427.64	256	36.002	1	34354.79	256	0.505	27427.64	256
1024	1023	1.87	2	1024.0	1024	1.836	1	84872.029	512	147.58	1	108433.52	512	1.32	84872.03	512

		Approximation					Greedy		1		Gene	etic		ILP			
V	E	EXT	AR	CF	VCS	EXT	AR	CF	VCS	ExT	AR	CF	VCS	ExT	CF	VCS	
64	63	0.0207	2	5630.31	2	0.0204	1	0.019	1	5752.19	1	1.5824	1	0.0259	5752.19	1	
128	127	0.0342	2	5630.31	2	0.0412	1	0.03680	1	12639.10	1	7.015	1	0.0677	12639.10	1	
256	256	0.0913	2	24003.90	2	0.102	1	0.0900	1	24125.78	1	22.81	1	0.1094	24125.78	1	
512	511	0.3236	2	53895.35	2	0.441	1	0.3381	1	54017.23	1	107.36	1	0.2276	54017.23	1	
1024	1023	1.312	2	168392.52	2	1.836	1	1.4089	1	168556.29	1	443.81	1	0.6835	168556.29	1	