1. Transactions

A.

(a)

(i) Assume that the initial balance in two accounts are *a* and *b*, respectively.

$$(T_1, T_2)$$
: A : $a * 0.9$; B : $b + a * 0.1$; $sum = a + b$; (T_2, T_1) : $sum = a + b$; A : $a * 0.9$; B : $b + a * 0.1$;

(ii)

T_1	T_2
read(A)	
temp: = A * 0.1	
A:=A-temp	
write(A)	
	read(A)
read(B)	
B := B + temp	
write(B)	
	read(B)
	write(sum)

Assume that the initial balance of two accounts are a and b respectively primary value: A = 0.9, B = b + a = 0.1, C = a + b,

(iii) $\frac{T_1}{read(A)} \frac{T_2}{\text{https://powcoder.com}} \\
temp: = A * 0.1 \\
A: = A - temp \\
write(A) Add \\
we Chat powcoder \\
read(B) \\
read(B) \\
B: = B + temp$

write(sum)

Assume that the initial balance in two accounts are a and b respectively final value: A: a * 0.9; B: b + a * 0.1; sum = a * 0.9 + b;

- (b)
- (i) One possible schedule:

 $r_1(A); w_1(A); r_1(B); r_2(A); w_1(B); r_2(B); w_2(sum);$

(ii) One possible schedule:

write(B)

$$r_1(A); r_2(A); w_1(A); r_1(B); r_2(B); w_1(B); w_2(sum);$$

- (c)
- (i) Yes
- (ii) No, $r_2(A)$; $r_2(B)$; $r_1(A)$; $w_1(A)$; $r_1(B)$; $w_1(B)$; $w_2(sum)$;

В.

```
(a) Yes, one example schedule: w_2(A); w_1(A); w_1(B); r_2(B); w_2(C); c_2; r_1(C); c_1; (b) Yes, one example schedule: w_1(A); w_2(A); w_1(B); r_2(B); r_1(C); w_2(C); c_2; c_1; (c) no (d) no (e) Yes, one example schedule: w_1(A); w_2(A); r_2(B); w_2(C); w_1(B); r_1(C); c_2; c_1; (f) Yes, one example schedule: w_1(A); w_1(B); w_2(A); r_1(C); r_2(B); c_1; w_2(C); c_2; (g) Yes, one example schedule: w_1(A); w_2(A); r_2(B); w_2(C); w_1(B); c_2; r_1(C); c_1; (h) Yes, one example schedule: w_1(A); w_2(A); w_1(B); r_1(C); c_1; r_2(B); w_2(C); c_2;
```

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

2. Distributed Query Processing

```
The sample answers here may NOT be the ones with the lowest data transmission cost.
```

(a)

(ii)

Site 2:

 $Temp1 \leftarrow \prod_{SNO}(VOL)$

Ship Temp1 to site 1. Cost = 8 * (20,000*0.4)=64,000 bytes

Site 1:

 $Temp2 \leftarrow \prod_{SNO,SNAME,DEP}(STU \bowtie Temp1)$

Ship Temp2 to site 2. Cost = (8+30+30) * (20,000*0.4)=544,000 bytes

Site 3:

 $Temp3 \leftarrow \prod_{ANO,DEP}(ACT)$

Ship Temp3 to site 2. Cost = (6+30) * 1,200=43,200 bytes

Site 2:

 $Temp4 \leftarrow \prod_{SNAME,DUTY,ANO}(VOL \bowtie Temp2 \bowtie Temp3)$

Ship Temp4 to site 3. Cost = (30+40+6)*6,000=456,000 bytes

Site 3:

 $Result \leftarrow \prod_{SNAME,DUTY,ANAME}(ACT \bowtie Temp4)$

Total data transmission cost: 1,107,200 bytes

(b) Assignment Project Exam Help

Site 2:

Temp1 $\leftarrow \prod_{SNO}(VOL)$ Ship **Plub Do**site/1**DQVV CO,61e1.**4(£0)**bn** bytes

Site 1:

 $Temp2 \leftarrow \prod_{SNO,DEP}(STU \bowtie Temp1)$

Ship 72mp (the sixe). east = (18:30) *(70000)*(24) 30 (2000) bytes

Site 3:

 $Temp3 \leftarrow \prod_{ANO,DEP}(ACT)$

Ship Temp3 to site 2. Cost = (6+30) * 1,200=43,200 bytes

Site 2:

 $Temp4 \leftarrow \prod_{SNO,ANO,DUTY}(VOL \bowtie Temp2 \bowtie Temp3)$

Ship Temp4 to site 3. Cost = (8+6+40) * 6,000=324,000 bytes

Site 1:

 $Temp5 \leftarrow \prod_{SNO,SNAME}(STU \bowtie Temp1)$

Ship Temp4 to site 3. Cost = (8+30) * (20,000*0.4)=304,000 bytes

Site 3:

 $Result \leftarrow \prod_{SNAME, DUTY, ANAME} (ACT \bowtie Temp4 \bowtie Temp5)$

Total data transmission cost: 1,039,200 bytes