Exercise: Kalman Filter

Consider the following stochastic linear dynamical system:

$$y_{t} = x_{t}^{(1)} + x_{t}^{(2)} + r_{t}$$

$$x_{t}^{(1)} = q_{t}^{(1)}$$

$$x_{t}^{(2)} = \gamma x_{t-1}^{(2)} + \alpha W_{t-1} x_{t-1}^{(1)} + q_{t}^{(2)}$$

$$W_{t-1} = \begin{cases} 0 & y_{t-1} \ge \theta \\ -1 & y_{t-1} < \theta \end{cases}$$

with parameters $\gamma<1$ and $m_0=0$. $q_t^{(i)}\in\mathcal{N}\big(0,Q^{(i)}\big)$ and $r_t\in\mathcal{N}(0,R)$ are Gaussian distributed white noise (i.i.d.). As discussed in the lecture, this system describes the pitch trajectory of a bird during the reinforcement learning task where y_t is the mean-subtracted pitch of syllable rendition t, and where the hidden state $x_t^{(1)}$ determines the exploration and $x_t^{(2)}$ integrates the learned changes. The bird learns by correlating exploration and reward (whether or not it gets punished) with a learning rate α . W_{t-1} is zero if the bird escapes punishment (pitch y_{t-1} was above threshold θ) and negative if a white noise burst was delivered for punishment (pitch y_{t-1} was below threshold θ).

Analyze the system step by step:

- 1. Let's only look at $x_t^{(2)}$ and set $\alpha=0$ ($x_t=\gamma x_{t-1}+q_t$). What is the variance of x_t after t timesteps? How does the variance behave for large t ($t\to\infty$)?
- 2. Assume $\gamma = 1$: how does the variance of x_t grow as a function of t?
- 3. Now let's assume we have noisy measurements y_t of x_t (keep $\alpha=0$ and ignore $x_t^{(1)}$, thus $y_t=x_t+r_t$). Using the Kalman filter, what is the variance of the estimation of x_t given all the measurements up to time t?
- 4. What happens now for $\gamma = 1$?

Matlab:

5. Simulate the dynamical system from question 3 and describe the behavior of y_t . Vary $0 \le \gamma \le 1$ and the proportion of state and measurement noise and discuss extreme cases. What is the influence of each of the two noise sources (R and Q) on the observed trajectories y_t ?

Reinforcement learning of pitch:

- 6. Use the given Matlab program to simulate pitch reinforcement data using the equations above. Double α or divide it by two and describe the behavior of the trajectory.
- 7. Add the Kalman filter equations to the code and use them to estimate the hidden state $x_t^{(2)}$ from the generated measurements. How similar is the estimated state to the original one? Use 2α or $\frac{\alpha}{2}$ for the Kalman filter estimation (without changing the simulated data. How does the estimated state compare to the one where the correct α is used?