17. ODEs IV: Taylor methods

17. ODEs IV: Taylor methods

Last time

- Error control
- Variable step size algorithm

Goals for today

- Transforming non-autonomous to autonomous ODEs
- Taylor series solutions
- Taylor method
- Picard iteration

Non-autonomous ODEs

- \blacksquare A non-autonomous ODE is $\dot{x}(t)=f(t,x(t))$ where f depends explicitly on t
- $\blacksquare \text{ E.g. } \dot{x}(t) = -x(t) + \cos(t)$
- We can transform this into an autonomous ODE:
- Introduce a new variable z with $\dot{z}=1$ and z(0)=0
- $\blacksquare \text{ Then } z(t) = t$
- Get autonomous system

$$\dot{x} = -x + \cos(z)\dot{z} = 1$$

Taylor series solutions

- Methods we have seen reconstruct Taylor series
- But avoid derivative calculations (in a clever way)

Taylor series solutions

- Methods we have seen reconstruct Taylor series
- But avoid derivative calculations (in a clever way)
- Can we just calculate the Taylor series directly?
- Yes: Taylor method

Taylor method

- \blacksquare Solve $\dot{x}(t)=f(x(t)),$ initial condition $x(t=t_0)=x_0$
- lacktriangle Take $t_0=0$ for simplicity

Taylor method

- \blacksquare Solve $\dot{x}(t)=f(x(t)),$ initial condition $x(t=t_0)=x_0$
- lacktriangle Take $t_0=0$ for simplicity
- Suppose f is analytic
- i.e. is equal to its Taylor expansion

$$f(x) = \tilde{f}_0 + \tilde{f}_1 x + \tilde{f}_2 x^2 + \cdots$$

Taylor method II

$$x(t) = x_0 + x_1 t + x_2 t^2 + \cdots$$

Taylor method II

$$x(t) = x_0 + x_1 t + x_2 t^2 + \dots$$

- \blacksquare We want to calculate the Taylor coefficients x_i
- \blacksquare Note: we have $x(0)=x_0; \dot{x}(0)=x_1; \ddot{x}(0)=2x_2, \ldots$

Taylor method II

$$x(t) = x_0 + x_1 t + x_2 t^2 + \dots$$

- \blacksquare We want to calculate the Taylor coefficients x_i
- \blacksquare Note: we have $x(0)=x_0; \dot{x}(0)=x_1; \ddot{x}(0)=2x_2, \dots$
- \blacksquare How can we calculate the x_i ?

Taylor method III

- Let's **substitute** the Taylor series for x(t) into the ODE:
 - lacksquare on left-hand side, need $\dot{x}(t)$
 - $\ \ \, \ \ \,$ on right-hand side, need f(x(t))

Taylor method III

- Let's **substitute** the Taylor series for x(t) into the ODE:
 - lacksquare on left-hand side, need $\dot{x}(t)$
 - lacksquare on right-hand side, need f(x(t))
- Both of these give new Taylor series:

$$\dot{x}(t) = x_1 + 2x_2t + 3x_3t^2 + \cdots$$

Substituting x(t) into f(x(t)) gives series in t:

$$f(x(t)) = f_0 + f_1 t + f_2 t^2 + \dots$$

Taylor method IV

- lacksquare Since these two series are equal for all t coefficient of t^n must be equal for each n
- To prove this e.g. differentiate repeatedly

Taylor method IV

- Since these two series are equal for all t coefficient of tⁿ must be equal for each n
- To prove this e.g. differentiate repeatedly
- Equate coefficients of each power tⁿ:

$$x_1 = f_0$$

$$2x_2 = f_1$$

$$\vdots$$

$$nx_n = f_{n-1}$$

 \blacksquare Gives recurrence relations: x_n in terms of f_{n-1}

Taylor method V

- lacksquare For f_{n-1} : insert Taylor series for x(t) into f(x)
- \bullet f_{n-1} is coefficient of t^{n-1}
- \blacksquare So f_{n-1} can depend only on x_0 up to x_{n-1}
- lacksquare So from coefficients up to x_{n-1} , obtain $x_n!$
- lacktriangleright Recursively generates all coefficients x_n in the Taylor expansion one by one

Example

- \blacksquare E.g. Solve $\dot{x}=x^2$ with $x_0=1$
- Start with all coefficients unknown except x₀:

$$x(t) = x_0 + x_1 t + x_2 t^2 + \dots$$

where {red denotes as-yet-unknown coefficients

Example

- \blacksquare E.g. Solve $\dot{x}=x^2$ with $x_0=1$
- Start with all coefficients unknown except x_0 :

$$x(t) = x_0 + x_1 t + x_2 t^2 + \dots$$

where {red denotes as-yet-unknown coefficients

So

$$f(x(t)) = [x(t)]^{2}$$

$$= (x_{0} + x_{1}t + \cdots)^{2}$$

$$= x_{0}^{2} + \mathcal{O}(t)$$

 $\quad \blacksquare \text{ So } x_1=f_0/1=x_0^2$

- Now have $x(t)=x_0+x_1t+\frac{x_2}{2}t^2+\cdots$

- Now have $x(t)=x_0+x_1t+\frac{x_2}{2}t^2+\cdots$
- lacksquare Substitute into f(x) again:

$$f(x(t)) = x_0^2 + t(x_0x_1 + x_1x_0) + \mathcal{O}(t^2)$$

- Now have $x(t)=x_0+x_1t+\frac{\mathbf{x_2}}{2}t^2+\cdots$
- lacksquare Substitute into f(x) again:

$$f(x(t)) = x_0^2 + t(x_0x_1 + x_1x_0) + \mathcal{O}(t^2)$$

lacksquare Gives us f_1 = (coefficient of t) = $2x_0x_1$

- Now have $x(t)=x_0+x_1t+\frac{\mathbf{x_2}}{2}t^2+\cdots$
- lacksquare Substitute into f(x) again:

$$f(x(t)) = x_0^2 + t(x_0x_1 + x_1x_0) + \mathcal{O}(t^2)$$

- Gives us f_1 = (coefficient of t) = $2x_0x_1$
- $\blacksquare \text{ Hence } x_2=f_1/2=x_0\,x_1$

- Now have $x(t)=x_0+x_1t+{\color{red}x_2}t^2+\cdots$
- Substitute into f(x) again:

$$f(x(t)) = x_0^2 + t(x_0x_1 + x_1x_0) + \mathcal{O}(t^2)$$

- $\blacksquare \text{ Gives us } f_1 = \text{(coefficient of } t \text{)} = 2x_0x_1$
- $\blacksquare \text{ Hence } x_2 = f_1/2 = x_0 \, x_1$
- lacktriangle Repeat, including new coefficient to x(t)
- Note: previous f_i are recalculated inefficient

Alternative viewpoint: Integrals

Alternative viewpoint: integral formulation of the ODE:

$$x(t) = x_0 + \int_0^t f(x(s)) \, ds$$

■ Define nth order polynomial approximation:

$$x^{(n)}(t) := x_0 + \dots + x_n t^n$$

Picard iteration to calculate $x^{(n)}$ recursively:

$$x^{(n+1)} = x_0 + \int \hat{f}^{(n)} (x^{(n)})$$

Example using integrals

■ Back to example:

$$\dot{x} = x^2 \quad \text{with } x^{(0)} := x_0$$

Example using integrals

Back to example:

$$\dot{x}=x^2 \quad \text{with } x^{(0)}:=x_0$$

$$x^{(1)} = x_0 + \int (x^{(0)})^2 = x_0 + \int_0^t x_0^2 ds = x_0 + t x_0^2$$

Example using integrals

Back to example:

$$\dot{x} = x^2 \quad \text{with } x^{(0)} := x_0$$

$$x^{(1)} = x_0 + \int (x^{(0)})^2 = x_0 + \int_0^t x_0^2 ds = x_0 + t x_0^2$$

$$x^{(2)} = x_0 + \int \left(x^{(1)}\right)^2 = x_0 + \int_0^t (x_0 + s\,x_0^2)^2\,ds = x_0 + t\,x_0^2$$

Implementation

- How can we automate this in Julia?
- What operations do we need?

Implementation

- How can we automate this in Julia?
- What operations do we need?

- We are just manipulating polynomials!
- And truncating to a certain degree
- lacksquare So define operations like * on polynomials of degree n that return polynomials of the \emph{same} degree

Implementation

- How can we automate this in Julia?
- What operations do we need?

- We are just manipulating polynomials!
- And truncating to a certain degree
- So define operations like * on polynomials of degree n that return polynomials of the same degree
- These manipulations are done with *numeric* coefficients

Summary

- Can generate Taylor methods of arbitrary order
- Recursive calculation of coefficients
- Uses polynomial manipulation