- (α) Να δώσετε τον ορισμό της παραγώγου μιας συνάρτησης f σε ένα σημείο x_0 του πεδίου ορισμού της.
 - (β) Να αποδείξετε ότι $(x^2)' = 2x$ για κάθε $x \in \mathbb{R}$.
 - (γ) Να χαρακτηρίσετε τις παρακάτω προτάεις ως σωστές η λανθασμένες.
 - i. Ισχύει ότι $(\sqrt{3})' = \frac{1}{2\sqrt{3}}$.
 - ii. Το πεδίο ορισμού της f' είναι υποσύνολο του πεδίου ορισμού της f .
 - iii. Ισχύει ότι $\left(\frac{1}{x}\right)' = \frac{1}{x^2}$.
 - iv. Ισχύει ότι συν $x = \eta \mu x$
 - v. Ισχύει ότι (cf(x))' = cf'(x).
 - (δ) Να αποδείξετε ότι (c f(x))' = c f'(x).
- (α) Να βρεθούν οι παράγωγοι των παρακάτω συναρτήσεων

i.
$$f(x) = \frac{x^3}{3} - \frac{x^2}{2} - 2x + \sqrt{2}$$
 ii. $f(x) = \eta \mu x - 2\sigma v x + \eta \mu \pi$ $x \neq \kappa \pi + \frac{\pi}{2}$ iii. $f(x) = 2\sqrt{x} + 3\varepsilon \varphi x$,

- (β) Να βρεθούν οι παράγωγοι των παρακάτω συναρτήσεων

iii.
$$f(x) = (x^2 - 2x) \cdot \varepsilon \varphi x$$

i. $f(x) = x \cdot \eta \mu x$ ii. $f(x) = \eta \mu x \cdot \sigma \upsilon v x$

iii.
$$f(x) = (x^2 - 2x) \cdot \varepsilon \varphi x$$
, $x \neq \kappa \pi + \frac{\pi}{2}$

(γ) Να βρεθούν οι παράγωγοι των παρακάτω συναρτήσεων

$$i. \ f(x) = \frac{x}{x - 1}$$

ii.
$$f(x) = \frac{\eta \mu x}{x}$$

- 3. Δίνεται η συνάρτηση $f(x) = \frac{x^2}{x-2}$.
 - (α) Να βρεθεούν οι πρώτη και η δεύτερη παράγωγος της f.
 - (β) Να αποδείξετε ότι για κάθε $x \neq 2$ ισχύει

$$-(x-2)^2 f''(x) - (x-2)f'(x) + f(x) = 4$$

- 4. Δίνεται η συνάρτηση $f(x) = x^2 + (a-3)x + a 4$ της οποίας η γραφική παράσταση διέρχεται από το σημείο
 - (α) Να αποδείξετε ότι a=2.
 - (β) Να δείξετε ότι για κάθε $x \in \mathbb{R}$ ισχύει

$$x^{2}f''(x) - xf'(x) + f(x) = x^{2} - 2$$

(γ) Να υπολογίσετε το όριο

$$\lim_{x \to 2} \frac{\sqrt{f'(x)} - \sqrt{3}}{x - 2}$$