Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский университет "Высшая школа экономики"

Дисциплина: «Электротехника, электроника и метрология»

<u>ОТЧЕТ</u> по домашней работе №1

Студент: Рыбаковский Никита Алексеевич

<u>Группа:</u> БИВ204 <u>Подгруппа:</u> 2 <u>Бригада:</u> 5 (Вариант 22)

Преподаватель: Рябов Никита Иванович

<u>Дата сдачи отчёта:</u> 06.02.2022

<u>Дано:</u>

вариант 22

R1	R2	R3	R4	R5	R6	R7	R8	E1	E2	E3	E4	E5	E6	J, A
	Ом В													
4	4	5	3	2	3	2	3	20	40	50	60	30	15	1

Исходная схема:

Построенная схема в LTspice:

1) Написать по законам Кирхгофа систему уравнений для определения неизвестных токов и напряжений в ветвях схемы.

2) Определить неизвестные токи и напряжения в ветвях схемы, решив полученную систему уравнений.

Листинг программы математического моделирования MatLAB:

```
1 -
       syms i1 i2 i3 i4 i5 i6 i7 uj
       r1=4; r2=4; r3=5; r4=3; r5=2; r6=3; r7=2; r8=3;
2 -
3 -
4 -
       e1=20;e2=40;e3=50;e4=60;e5=30;e6=15;
5
6 -
       [i1, i2, i3, i4, i5, i6, i7, uj] = solve( ...
            i2-i3-i4 == 0, ...
7
8
            i3+i5-j-i1 == 0, ...
9
            i7-i5-i2-i6==0, ...
10
            i4+i1+j-i7==0, ...
            i2*r2+i3*r3-i5*r5==e2+e3-e5, ...
11
            i1*r1==e1+uj, ...
12
            i4*r4-i3*r3==e4-e3+uj, ...
13
            i5*r5+i7*r7==e5-uj);
14
15
16 -
       fprintf(sprintf('i1= %0.5f\n',vpa(i1,5)))
       fprintf(sprintf('i2= %0.5f\n',vpa(i2,5)))
17 -
       fprintf(sprintf('i3= %0.5f\n', vpa(i3,5)))
18 -
19 -
       fprintf(sprintf('i4= %0.5f\n',vpa(i4,5)))
20 -
       fprintf(sprintf('i5= %0.5f\n', vpa(i5,5)))
       fprintf(sprintf('i6= %0.5f\n',vpa(i6,5)))
21 -
22 -
       fprintf(sprintf('i7= %0.5f\n',vpa(i7,5)))
       fprintf(sprintf('uj= %0.5f\n', vpa(uj,5)))
23 -
```

Результаты:

I	MatLAB:	LTSpice:		
		I(I1)	1	device_current
	i1= 4.51087	I(R7)	13.8804	device_current
	i2= 11.78261	I(R2)	11.7826	device_current
	12- 11.70201	I(R4)	-8.36957	device_current
	i3= 3.41304	I(R6)	4.14483e-15	device_current
		I(R5)	-2.09783	device_current
	i4= 8.36957	I(R3)	-3.41304	device_current
	i5= 2.09783	I(R1)	-4.51087	device_current
		I(V1)	-4.51087	device_current
	i6= 0.00000	I(V5)	-2.09783	device_current
		I(V4)	-8.36957	device_current
	i7= 13.88043	I(V3)	-3.41304	device_current
	uj = -1.95652	I(V2)	-11.7826	device_current
	uj= 1133032	I(V6)	3.55271e-15	device_current
		1		

Uj=-1.95(B), I1=4.51(A), I2=11.78(A), I3=3.41(A), I4=8.36(A), I5=2.09(A), I6=0(A), I7=13.88(A)

3) Составить баланс мощностей для исходной схемы.

 P_{Π} =I1²×R1 + I2²×R2 + I3²×R3 + I4²×R4 + I5²×R5 + I6²×R6 + I7²×R7 = 1298.2883(B_T)

 $P_A = I1 \times E1 + I2 \times E2 + I3 \times E3 + I4 \times E4 + I5 \times E5 + I6 \times E6 + Uj \times J = 1298.15 (B_T)$

 $P_A = P_\Pi$ с погрешностью 0.01% (допустимая 5%). Погрешность вызвана тем, что при расчете сила тока округлялась.

4) Определить напряжение измеряемое вольтметрами. U1=-E6+R6*I6+R7*I7=-15+0+13.88*2=12.76(B)

U2=E4-I4*R4=60-8.36*3=34,92(B)

Сверяя с показателями на схеме, мы видим, что расчеты верны с незначительной погрешностью, которая вызвана округлением значений токов.

5) Рассчитать режим схемы с помощью программы SPICE.

```
Operating Bias Point Solution:
                   -7.23913
V(n004)
                              voltage
V(n002)
                    10.8043
                              voltage
V(n003)
                   -39.1957
                              voltage
V(a)
                -22.1304
                          voltage
V(n005)
                         15
                              voltage
V(n008)
                        -15
                              voltage
V(n007)
                        -15
                              voltage
V(b)
                 12.7609
                           voltage
V(n001)
                    37.8696
                              voltage
V(n006)
                         25
                              voltage
I(I1)
                        1
                            device_current
I(R7)
                  13.8804
                            device_current
                  11.7826
I(R2)
                            device_current
I(R4)
                 -8.36957
                            device_current
I(R6)
             4.14483e-15
                            device_current
I(R5)
                 -2.09783
                            device_current
I(R3)
                 -3.41304
                            device_current
I(R1)
                 -4.51087
                            device current
                 -4.51087
I(V1)
                            device_current
I(V5)
                 -2.09783
                            device current
I(V4)
                 -8.36957
                            device_current
I(V3)
                 -3.41304
                            device_current
I(V2)
                 -11.7826
                            device_current
I(V6)
             3.55271e-15
                            device_current
```

Данные, полученные из расчёта вручную (из решения системы уравнений Кирхгофа) и полученные в программе LTspice, совпадают с точностью до знака.