Classificação de Demandas do Fala.BR

Projeto do Bootcamp Machine Learning

Anderson Alves Monteiro - Presidência da República Léo Maranhão de Mello - SUSEP

Descrição do projeto de machine learning

- **1- Descrição do problema ou tarefa:** O problema consiste em classificar as demandas recebidas pela Ouvidoria da SUSEP, por meio do sistema Fala.BR.
- **2- Descrição da solução de IA:** Utilizamos processamento de NLP e testamos os modelos SGD, XGBoost e Random Forest, todos com treinamento supervisionado, além da utilização e treinamento de uma LLM (BERTimbau). A solução incluiu, dentre outros aspectos, uma pipeline para pré-processamento, treinamento e avaliação do modelo.
- **3- Fonte de dados:** A Ouvidoria forneceu um dataset com 1531 textos das demandas e suas classificações, no formato de planilha ODS. A classificação dos textos foi realizada pela própria Ouvidoria.
- **4- Variáveis independentes (preditoras ou "features"):** A variável independente é o texto recebido do Fala.BR.

Descrição do projeto de machine learning

5- Variável dependente (resposta ou "target"): A variável dependente é a classificação do texto em uma das 17 classificações utilizadas pela Ouvidoria:

- Cadastro
- Capitalização
- Consulta Técnica
- DPVAT/SPVAT
- Não identificada
- Previdência Complementar Aberta
- Seguro Compreensivo
- Seguro de Automóveis
- Seguro de Crédito Interno

- Seguro de Danos
- Seguro de Pessoas
- Seguro de Responsabilidade
- Seguro de Transportes
- Seguro Fiança Locatícia
- Seguro Garantia
- Seguro Garantia Estendida
- Seguro Rural

Dados (limitações encontradas)

Propostas de solução

- Classes desbalanceadas + GridSearchCV + SGD/RandomForest/XGBoost + Optuna (f1 macro)
- Classes desbalanceadas + GridSearchCV + SGD/RandomForest/XGBoost + Optuna (balanced accuracy)
- Classes balanceadas com oversampling + GridSearchCV + SGD/RandomForest/XGBoost + Optuna
- 4) Classes balanceadas com SMOTE + GridSearchCV + SGD/RandomForest/XGBoost + Optuna
- 5) Classes balanceadas com ChatGPT + GridSearchCV + SGD/RandomForest/XGBoost + Optuna + Ensemble (Llama -> Alpaca)
- 6) Classes balanceadas com ChatGPT + BERT embeddings + GridSearchCV + SGD/RandomForest/XGBoost + Ensemble
- Classes balanceadas com ChatGPT + BERT

Pré-processamento

		Proposta		
	ML, Oversampling e SMOTE	ML, ChatGPT	ML, ChatGPT, BERT	ChatGPT + BERT
Pré-processamento	Agrupamento das classes com menor ocorrência;	Agrupamento das classes com menor ocorrência;	Agrupamento das classes com menor ocorrência;	Agrupamento das classes com menor ocorrência;
	Proposta 3, aplicação do RandomOverSampler;	Transformação das classes de texto para número;	Transformação das classes de texto para número;	Transformação das classes de texto para número;
	Transformação das classes de texto para número; Separação em teste e treino; Transformação do texto em minúscula, remoção de stop words, remoção de números e sinais de pontuação, lematização e aplicação do TfidfVectorizer; Proposta 4, aplicação do SMOTE.	Separação em teste e treino; Exposição das classes de treino ao ChatGPT para a geração de novas linhas; Transformação do texto em minúscula, remoção de stop words, remoção de números e sinais de pontuação, lematização e aplicação do TfidfVectorizer.	Separação em teste e treino; Exposição das classes de treino ao ChatGPT para a geração de novas linhas;	Separação em teste e treino; Exposição das classes de treino ao ChatGPT para a geração de novas linhas;

Treinamento

	Proposta			Proposta		
	ML, Oversampling e SMOTE	ML, ChatGPT	ML, ChatGPT, BERT	ChatGPT + BERT		
Treinamento	Após a transformação dos dados de entrada em TFIDF, utilizamos os algoritmos SGDClassifier, RandomForestClassifier e XGBClassifier, inicialmente com o GridSearchCV e depois com o Optuna, para otimizar os hiperparâmetros.	Após a transformação dos dados de entrada em TFIDF, utilizamos os algoritmos SGDClassifier, RandomForestClassifier e XGBClassifier, inicialmente com o GridSearchCV e depois com o Optuna, para otimizar os hiperparâmetros. Ao final fizemos o ensemble do melhor modelo de cada um dos 3 classificadores.	Utilizamos a BERTimbau Base para obter os embeddings dos dados de entrada. Após, utilizamos os algoritmos SGDClassifier, RandomForestClassifier e XGBClassifier com o GridSearchCV. Ao final fizemos o ensemble do melhor modelo de cada um dos 3 classificadores.	Utilizamos os dados de entrada para retreinar a última camada da BERTimbau Base para as categorias dos nossos dados.		

Resultado

		Proposta		
	ML, Oversampling e SMOTE	ML, ChatGPT	ML, ChatGPT, BERT	ChatGPT + BERT
Resultado	As propostas 1, 2, 3 e 4 obtiveram um resultado inferior. Apresentamos os resultados do melhor classificador entre as 4 propostas: Proposta 4: XGBClassifier(random_state=42, eval_metric='logloss'), hiperparâmetros: {'classifier_learning_rate': 0.1, 'classifier_max_depth': 4, 'classifier_n_estimators': 400} F1 - macro: 0,64	Melhor resultado entre todas as propostas. Melhor classificador: SGDClassifier(alpha=1e-06, random_state=42), hiperparâmetros: {'clf_loss': 'log_loss', 'clf_penalty': 'l2'} F1 - macro: 0,91	Melhor classificador foi o ensemble dos melhores modelos ajustados: VotingClassifier, voting='hard': SGDClassifier(alpha=1e-06, random_state=42), hiperparâmetros: {'clf_loss': 'hinge', 'clf_penalty': 'elasticnet'} RandomForestClassifier(random_state=42), hiperparâmetros: {'classifier_max_depth': 20, 'classifier_max_features': 'sqrt', 'classifier_min_samples_leaf': 2, 'classifier_min_samples_split': 2, 'classifier_min_estimators': 100} XGBClassifier(random_state=42, eval_metric='logloss'), hiperparâmetros: {'classifier_learning_rate': 0.1, 'classifier_max_depth': 4, 'classifier_n_estimators': 350} F1 - macro: 0,91	A LLM foi treinada com os seguintes argumentos: num_train_epochs=3 per_device_train_batch_size=16 per_device_eval_batch_size=64 warmup_steps=500 weight_decay=0.01 logging_steps=10 evaluation_strategy="epoch" F1 - macro: 0,81

Avaliação - Propostas 1, 2, 3 e 4 - ML, Oversampling e SMOTE

Avaliação - Proposta 7 - ChatGPT + BERT

Avaliação - Proposta 6 - ML, ChatGPT, BERT

Avaliação - Proposta 5 - ML, ChatGPT

support	f1-score	recall	precision	
94	0.95	0.91	0.99	Cadastro
72	0.97	0.97	0.96	Seguro de Pessoas
46	0.82	0.89	0.76	Não identificada
36	0.94	0.94	0.94	Seguro de Automoveis
16	0.90	0.88	0.93	Previdência Complementar Aberta
13	0.92	0.92	0.92	Seguro de Danos
11	0.95	0.91	1.00	Outros
11	0.91	0.91	0.91	Seguro Garantia
7	0.86	0.86	0.86	DPVAT/SPVAT
306	0.92			accuracy
306	0.91	0.91	0.92	macro avg
306	0.93	0.92	0.93	weighted avg

Interpretação

As propostas 5 e 6 apresentaram resultados semelhantes, sendo a escolha pela classe 5 por conta da matriz de confusão, que apresentou um resultado melhor nas categorias "DPVAT/SPVAT" e "Seguro Garantia".

O melhor modelo da proposta 5 classificou, considerando a média ponderada das classes, 93% das vezes sem gerar falso positivo, e 92% das vezes na categoria correta.

A proposta 5 apresentou 23 classificações incorretas, sendo que 18 envolvem a categoria 2 - "Não Identificadas". Analisando a classificação realizada pela Ouvidoria, parece que critérios variados foram utilizados durante a classificação manual. Tais critérios podem ser melhorados e trariam reflexo em uma classificação mais adequada pelos algoritmos.

Aspectos interessantes, benefícios dos resultados, insight obtido, próximos passos, onde será publicado.

O aspecto interessante foi o desenvolvimento dos prompts para a geração de dados pelo GhatGPT. Dependendo da categoria usada para a classificação, o nível de RAG precisou ser mais detalhado.

Vimos a importância de uma quantidade maior de dados para o desempenho dos modelos de classificação.

O trabalho realizado ajudará a Ouvidoria da SUSEP, que hoje mantém um grupo de pessoas para a realização da classificação manual, faltando estabelecer o processo de trabalho no qual o algoritmo de ML será incluído.