Fundamentals of Electric Circuits Chapter 4

Circuit Theorems

4.1 Introduction

- In this chapter, the concept of superposition will be introduced.
- Source transformation will also be covered.
- Thevenin and Norton's theorems will be covered.
- Examples of applications for these concepts will be presented.

4.2 Linearity Property

- Linearity in a circuit means that as current is changed, the voltage changes proportionally
- It also requires that the response of a circuit to a sum of sources will be the sum of the individual responses from each source separately
- A resistor satisfies both of these criteria

Linearity

current is increased by a constant k.

$$v = iR \longrightarrow kiR = kv$$

additivity property

$$v_1 = i_1 R$$
 $v_2 = i_2 R$
 $v_3 = i_2 R$
 $v_4 = i_1 R$
 $v_5 = i_1 R + i_2 R$
 $v_7 = i_1 R + i_2 R$
 $v_8 = i_1 R + i_2 R$
 $v_9 = i_1 R$

$$p_1 = Ri_1^2$$
 $p_3 = R(i_1 + i_2)^2$
 $p_2 = Ri_2^2$ $= Ri_1^2 + Ri_2^2 + 2Ri_1i_2$
 $\neq p_1 + p_2$

The Power relationship is nonlinear.

A linear circuit

Suppose $v_s = 10 \text{ V gives } i = 2 \text{ A}$.

i = 1 mA must be due to $v_s = 5 \text{ mV}$

Example 4.1

find I_o when $v_s = 12 \text{ V}$ and $v_s = 24 \text{ V}$

KVL to the two loops

$$12i_{1} - 4i_{2} + v_{s} = 0$$

$$-4i_{1} + 16i_{2} - 3v_{x} - v_{s} = 0$$

$$v_{x} = 2i_{1}$$

$$-10i_{1} + 16i_{2} - v_{s} = 0$$

$$\Rightarrow i_1 = -6i_2 12i_1 - 4i_2 + v_s = 0 \Rightarrow i_2 = \frac{v_s}{76}$$

$$\mathbf{v}_{\mathrm{s}} = 12 \; \mathbf{V} \Rightarrow \mathbf{I}_{\mathrm{o}} = \mathbf{i}_{2} = \frac{12}{76} \mathbf{A}$$

when the source value is doubled,

$$v_s = 24 \text{ V} \Rightarrow I_o = i_2 = \frac{24}{76} \text{A}$$

 \longrightarrow I_o doubles.

4.3 Superposition

- If there are two or more independent sources there are two ways to solve for the circuit parameters:
 - Nodal or Mesh analysis
 - Use superposition
- Superposition
 - voltage across (or current through) an element in a linear circuit
 - = the algebraic sum of the voltages across (or currents through) that element due to each independent source acting alone.

Applying Superposition

- Superposition
 - applying one independent source at a time
- Dependent sources are left alone
- The steps are:
 - 1. Turn off all independent sources except one source.
 - Find the output (voltage or current) due to that active source using the techniques covered in Chapters 2 and 3.
 - 2. Repeat step 1 for each of the other independent sources.
 - 3. Find the total contribution by adding algebraically all the contributions due to the independent sources.

Example 4.3 Use the superposition theorem

 Ω 8

to find V in the circuit

Since there are two sources:

$$v=v_1+v_2$$

 $v=v_1+v_2$ v_1 due to the 6-V voltage source

 V_2 due to the 3-A current source

Applying KVL:
$$12i_1 - 6 = 0 \implies i_1 = 0.5 \text{ A}$$

$$\Rightarrow v_1 = 4i_1 = 2 \text{ V}$$

or voltage division to get:

6 V

$$v_1 = rac{4}{4+8} \, (6) = 2 \, {
m V}$$

set the current source to zero

set the voltage source to zero

Using current division:
$$i_3 = \frac{8}{4+8}(3) = 2 \text{ A}$$
 $\Rightarrow v_2 = 4i_3 = 8 \text{ V}$

$$v = v_1 + v_2 = 2 + 8 = 10 \text{ V}$$

Practice Problem 4.3

Using the superposition theorem, find v_1 in the circuit

Example 4.4

Find io using superposition

$$i_o=i_o^\prime+i_o^{\prime\prime} \ =-rac{8}{17}=-0.4706\, A$$

For loop 1,
$$\Rightarrow i_1 = 4$$
 A

For loop 2,

 $-3i_1 + 6i_2 - 1i_3 - 5i'_o = 0$

For loop 3,

 $-5i_1 - 1i_2 + 10i_3 + 5i'_o = 0$

node 0, $\Rightarrow i_3 = i_1 - i'_o = 4 - i'_o$
 $\Rightarrow i_2 - 2i'_o = 8$
 $i_2 + 5i'_o = 20$
 $\Rightarrow i_1 = 4$ A

 $\Rightarrow i_2 - 2i'_o = 8$
 $\Rightarrow i_2 + 5i'_o = 20$

For loop 4,
$$6i_4-i_5-5i_o''=0$$
 for loop 5, Be careful! $-i_4+10i_5-20+5i_o''=0$ $i_5=-i_o''\Rightarrow \cfrac{6i_4-4i_o''=0}{i_4+5i_o''=-20}\Rightarrow i_o''=-$

i′′_o due to the 20-V voltage source

 Ω 8

24 V

mesh analysis:

For Loop
$$i_a \implies 16i_a - 4i_b + 24 = 0$$

$$\Rightarrow 4i_a - i_b = -6$$
For Loop $i_b \implies 7i_b - 4i_a = 0$

$$\Rightarrow i_a = \frac{7}{4}i_b$$

Example 4.5 Find i using superposition

$$i=i_1+i_2+i_3$$

nodal analysis:

For Node v_2

$$3 = rac{v_2}{8} + rac{v_2 - v_1}{4} \implies 24 = 3v_2 - 2v_1$$

$$i = i_1 + i_2 + i_3 \ = 2 - 1 + 1 = 2 ext{ A}$$

For Node v_1

$$rac{v_2-v_1}{4}=rac{v_1}{4}+rac{v_1}{3} \implies v_2=rac{10}{3}v_1$$

$$\Rightarrow v_1 = 3$$

$$\Rightarrow |i_3=rac{v_1}{3}\>=1~{
m A}$$

Prob. 4.19. Use superposition to solve for v_x

$$\begin{array}{ll}
\mathbf{v_1:} & i_x + \frac{v_1}{8} = 4 \\
i_x = \frac{v_1 - (-4i_x)}{2} \Rightarrow i_x = -\frac{v_1}{2} \\
\Rightarrow -\frac{v_1}{2} + \frac{v_1}{8} = 4 \\
\Rightarrow v_1 = -\frac{32}{3} = -10.6667(V)
\end{array}$$

$$v_x = v_1 + v_2$$

= -10.6667 - 16
= -26.6667

How do you check the coherence?

$$2 \cdot i_{x} = v_{x} + 4 \cdot i_{x}$$

$$\Rightarrow i_{x} = -\frac{v_{x}}{2} = 13.3333(V)$$

$$v_2: i_x = -\frac{v_2}{8} + 6$$

$$i_x = \frac{v_2 - (-4i_x)}{2} \Rightarrow i_x = -\frac{v_2}{2}$$

$$\Rightarrow -\frac{v_2}{2} = -\frac{v_2}{8} + 6$$

$$\Rightarrow v_2 = -\frac{48}{3} = -16(V)$$

KCL:
$$i_x + \frac{v_x}{8} = 6 + 4$$

4.4 Source Transformation

- Much like the Δ–Y transformation, it is possible to transform a source from one form to another
- This can be useful for simplifying circuits
- The principle behind all of these transformations is equivalence

Source Transformation

- A source transformation is the process of
 - replacing a voltage source v_s in series with a resistor R
 - by a current source is in parallel with a resistor R
 - or vice versa.

Terminal Equivalency

- These transformations work because the two sources have equivalent behavior at their terminals
- If the sources are turned off the resistance at the terminals are both R
- If the terminals are short circuited, the currents need to be the same
- From this we get the following requirement:

Dependent Sources

- Source transformation also applies to dependent sources
- But, the dependent variable must be handled carefully
- The same relationship between the voltage and current holds here:

Source transformation rules

- Note that the arrow of the current source is directed towards the positive terminal of the voltage source
- Source transformation is not possible when R=0 for an ideal voltage source
- For a realistic source, R≠0
- For an ideal current source, R=∞ also prevents the use of source transformation

Example 4.7

 v_{x}

 4Ω

 $0.25v_{x}$

 v_{x}

 4Ω

2 Ω 🔰

3 A

$$-3 + 5i + v_x + 18 = 0$$

2 Ω ≶

$$v_x = 3 - i$$

$$\Rightarrow$$
 15 + 5i + 3 - i = 0

$$i = -4.5 A$$

18 V

 1Ω

18 V

- In many circuits, one element will be variable
- An example of this is mains power; many different appliances may be plugged into the outlet, each presenting a different resistance
- This variable element is called the load
- Ordinarily one would have to reanalyze the circuit for each change in the load

- Thevenin's theorem states that a linear two terminal circuit may be replaced with a voltage source + resistor
- The voltage source's value is equal to the open circuit voltage at the terminals
- The resistance is equal to the resistance measured at the terminals when the independent sources are turned off.

• There are two cases to consider when finding the equivalent resistance

- Case 1: no dependent sources
 - ✓ the resistance may be found by simply turning off all the sources

- Case 2: dependent sources
 - ✓ still turn off all the independent sources.
 - \checkmark apply a voltage v_0 (or current i_0) to the terminals
 - \checkmark determine the current i_0 (voltage v_0).

- Thevenin's theorem is very powerful in circuit analysis.
- It allows one to simplify a circuit
- A large circuit may be replaced by
 - a single independent voltage source
 - and a single resistor.
- The equivalent circuit behaves externally exactly the same as the original circuit.

Negative Resistance?

- It is possible for the result of this analysis to end up with a negative resistance.
- This implies the circuit is supplying power
- This is reasonable with dependent sources
- Note that in the end, the Thevenin equivalent makes working with variable loads much easier.
- Load current can be calculated with a voltage source and two series resistors
- Load voltages use the voltage $V_L = R_L I_L =$ divider rule.

$$I_{L} = \frac{V_{Th}}{R_{Th} + R_{L}}$$

$$V_{L} = R_{L}I_{L} = \frac{R_{L}}{R_{Th} + R_{L}}V_{Th}$$

Example 4.8

Find the Thevenin equivalent circuit of the circuit to the left of the terminals a-b.

Find the current through $R_L = 6$, 16, and 36 Ω .

 R_{Th}

 \sim

12 Ω

Find R_{TH}

turning off the 32-V voltage source (short circuit) and the 2-A current source (open circuit).

$$R_{Th} = 4 \parallel 12 + 1 = \frac{4 \times 12}{16} + 1 = 4 \Omega$$

V_{TH} 30 V + R_L

mesh analysis

$$-32 + 4i_1 + 12(i_1 - i_2) = 0$$

$$i_2 = -2 A$$

$$\implies$$
 $i_1 = 0.5 A$

$$\rightarrow$$
 V_{Th} = 12(i₁ - i₂) = 12(0.5 + 2.0) = 30 V

$$I_{L} = \frac{V_{Th}}{R_{Th} + R_{L}} = \frac{30}{4 + R_{L}}$$

Example 4.9 Find the Thevenin equivalent of the

circuit at terminals a-b.

mesh analysis

Loop 1

$$-2v_x + 2(i_1 - i_2) = 0 \implies v_x = i_1 - i_2$$

 $-4i_2 = v_x = i_1 - i_2 \implies i_1 = -3i_2$

Loop 2

$$4i_2 + 2(i_2 - i_1) + 6(i_2 - i_3) = 0$$

Loop 3

$$6(i_3 - i_2) + 2i_3 + 1 = 0$$

$$\implies i_3 = -\frac{1}{6}A$$

$$\implies i_0 = -i_3 = \frac{1}{6}A$$

$$\frac{\mathbf{R}_{\mathsf{Th}}}{i_O} = 6\Omega$$

Example 4.9 Find the Thevenin equivalent of the circuit at terminals a-b.

Find V_{Th}

Loop 1

$$\Rightarrow$$
 $i_1 = 5$

Loop 2

$$\implies$$
 $-2v_x + 2(i_3 - i_2) = 0$

$$\Rightarrow v_x = i_3 - i_2$$

$$4(i_1 - i_2) = v_x$$

Loop 3

$$\Rightarrow$$
 4(i₂ - i₁) + 2(i₂ - i₃) + 6i₂ = 0

 $2v_x$

 2Ω

 2Ω

$$\implies$$
 12 $i_2 - 4i_1 - 2i_3 = 0$

Example 4.10 Determine the Thevenin equivalent of the circuit at terminals a-b. $2i_x$

• When you have no independent sources, the value for V_{Th} will be equal to zero, so you will only have to find R_{Th}.

Find R_{Th}

Assuming $i_0 = 1 \text{ A}$

Nodal Analysis:

$$2i_x + (v_o - 0)/4 + (v_o - 0)/2 + (-1) = 0$$

$$i_x = (0 - v_0)/2 = -v_0/2$$

$$\implies$$
 2(- v_o /2) + (v_o - 0)/4 + (v_o - 0)/2 + (-1) = 0

$$\Rightarrow$$
 $v_o = -4 \text{ V}$

$$R_{Th} = v_o / 1 = -4\Omega$$

The negative value of the resistance tells us that, according to the passive sign convention, the circuit is supplying power.

Example 4.10

Providing a load to the original circuit

Mesh Analysis:

mesh 1:

$$8i_x + 4i_1 + 2(i_1 - i_2) = 0$$

 $i_x = i_2 - i_1$
 $\Rightarrow -2i_1 + 6i_2 = 0$

mesh 2:

$$2(i_2 - i_1) + 9i_2 + 10 = 0$$

 $\Rightarrow -2i_1 + 11i_2 = -10$

$$\Rightarrow i_2 = -2$$
 (A) load current

Providing the load to the Thevenin equivalent circuit

$$-4i + 9i + 10 = 0$$

$$\Rightarrow i = -2 \text{ (A)} \mid \text{load current}$$

4.6 Norton's Theorem

• Similar to Thevenin's theorem, Norton's theorem states that a linear two terminal circuit may be replaced with an equivalent circuit containing: /// a resistor + current source

The Norton resistance will be exactly the same as the Thevenin

$$R_N = R_{Th}$$

Norton's Theorem

- The Norton current I_N is found by:
 - short circuiting the circuit's terminals
 and measuring the resulting current

Norton vs. Thevenin

- These two equivalent circuits can be related to each other
- The Norton current and Thevenin voltage are related to each other as follows:

Norton vs. Thevenin

- With V_{TH} , I_N , and $(R_{TH}=R_N)$ related, finding the Thevenin or Norton equivalent circuit requires:
 - The open-circuit voltage across terminals a and b.
 - The short-circuit current at terminals a and b.
 - The equivalent or input resistance at terminals a and b
 when all independent sources are turned off.

Example 4.11 Find the Norton equivalent circuit

at terminals a-b.

Norton equivalent

Find R_N

Set all the independent sources equal to zero.

$$R_N = 5 \parallel (8 + 4 + 8) = 5 \parallel 20 = \frac{20 \times 5}{25} = 4 \Omega$$

Find In

b

Mesh Analysis:

Mesh 1: $i_1 = 2 A$

Mesh 2: $20i_2 - 4i_1 - 12 = 0$

$$\implies$$
 $i_2 = 1 A = i_{sc} = I_N$

Thevenin equivalent

$\mathbf{R}_{\mathrm{TH}} = \mathbf{R}_{\mathrm{N}}$

Find V_{TH}

Mesh 3: $i_3 = 2 A$

Mesh 4: $25i_4 - 4i_3 - 12 = 0$

$$\implies$$
 $i_4 = 0.8 A$

$$V_{\text{Th}} = v_{\text{oc}}$$
 $\mathbf{v_{oc}} = \mathbf{V_{Th}} = 5\mathbf{i_4} = 4 \mathbf{V}$

$$I_{N} = \frac{v_{Th}}{R_{Th}} = \frac{4}{4} = 1 A$$

1 A

 Ω 8

 4Ω

Example 4.12 Using Norton's theorem, find R_N and I_N at terminals ab.

Find R_N

- set the independent voltage source equal to zero
- connect a voltage source of $v_0 = 1 \text{ V}$ (or any unspecified voltage vo) to the terminals

 $2i_x$

$$R_{\rm N} = \frac{v_{\rm o}}{i_{\rm o}} = \frac{1}{0.2} = 5 \,\Omega$$

 $Find\ I_N$ • short-circuit terminals a and b and find the current isc

$$i_x = \frac{10}{4} = 2.5 \text{ A}$$

KCL at node a gives:

$$i_{sc} = \frac{10}{5} + 2i_{x} = 2 + 2(2.5) = 7 \text{ A}$$

$$\implies I_{N} = 7 \text{ A}$$

4.8 Maximum Power Transfer

- In many applications, a circuit is designed to power a load
- Among those applications there are many cases where we wish to maximize the power transferred to the load
- Unlike an ideal source, internal resistance will restrict the conditions where maximum power is transferred.

Maximum Power Transfer

- We can use the Thevenin equivalent circuit for finding the maximum power in a linear circuit
- We will assume that the load resistance can be varied
- Looking at the equivalent circuit with load included, the power transferred is:

Maximum Power Transfer

- For a given circuit, V_{TH} and R_{TH} are fixed.
- By varying the load resistance R_L,
 ⇒ the power delivered to the load varies as
- as R_L → 0 and ∞
 ⇒ the power transferred → 0
- The maximum power transferred \rightarrow when $R_L=R_{TH}$

Example 4.13 Find the value of R_L for maximum power transfer in the circuit. Find the maximum power.

 2Ω

2 A

Thevenin equivalent

Find R_{TH}

Find V_{TH}

12 V

 6Ω

 \sim

$$R_{Th} = 2 + 3 + 6 \parallel 12 = 5 + \frac{6 \times 12}{18} = 9 \Omega^{b}$$

Mesh Analysis:

Mesh 1:
$$-12 + 18i_1 - 12i_2 = 0$$

Mesh 2:
$$i_2 = -2 A$$

$$\Rightarrow$$
 $i_1 = -2/3$.

maximum power transfer:

 \geq 12 Ω

$$R_L = R_{Th} = 9 \Omega$$

$$p_{\text{max}} = \frac{V_{\text{Th}}^2}{4R_L} = \frac{22^2}{4 \times 9} = 13.44 \text{ W}$$

 3Ω

KVL:

 V_{Th}

$$-12 + 6i_1 + 3i_2 + 2(0) + V_{Th} = 0$$

 $\Rightarrow V_{Th} = 22 \text{ V}$

Thevenin's & Norton's

Prob. 4.38. Apply Thevenin's theorem to find Vo

Thevenin's & Norton's

Thevenin's & $+V_{\circ}$ - Norton's 10 k Ω 20 k Ω + $4V_{\circ}$ Prob. 4.40.

