بسم الله الرحمن الرحيم

تصميم الدوائر الرقمية العمليات المنطقية LEC (3)

المتغير المنطقي:

المتغير المنطقي هو متغير يمكن أن يأخذ قيمة واحدة فقط من قيمتين .

مثلا: صواب أو خطأ, يرمز لإحدى القيمتين بالرمز 1 وللقيمة الأخرى بالرمز 0.

العمليات المنطقية:

العمليات المنطقية هي العمليات التي يمكن إجراؤها على المتغيرات المنطقية بعض هذه العمليات هي عمليات أساسية وهي عمليات NOT - AND - NOR - AND by a sulphable and a sulphable and

عملية NOT:

يطلق عليها أيضا عملية العكس المنطقي وفيها يكون الخرج عبارة عن معكوس الدخل فإذا كان الدخل مساويا 1 فإن الخرج يكون مساويا 0 وإذا كان الدخل مساويا 0 فإن الخرج يكون مساويا 1 يرمز للعملية بوضع خط فوق المتغير مما يعني أنه معكوس .

X=NOTA $X=\bar{A}$

الجدول التالي يسمى جدول الصواب وهو جدول الصواب لعملية NOT وجدول الصواب يوضح جميع احتمالات الدخل والخرج المقابل لكل منها.

Α	Х
0	1
1	0

لاحظ أن الدخل هنا هو A والخرج X والدخل في هذه الحالة عبارة عن متغير واحد يمكن أن يأخذ إما 0 أو 1 البوابة المنطقية التي تقوم بإجراء هذه العملية هي البوابة NOT ويطلق عليها أيضا العاكس المنطقي ويمكن تمثيلها بأي من الشكلين التاليين :

عملية التكافؤ:

في هذه العملية يكون الخرج مساويا للدخل ويرمز لها بعلامة التساوي X=A.

وجدول الصواب للعملية هو:

Α	X
0	0
1	1

البوابة التي تقوم بإجراء هذه العملية تسمى العازل ويتم تمثيلها بالشكل التالي:

عملية AND:

في هذه العملية يكون الخرج مساويا 1 فقط إذا كانت جميع متغيرات الدخل مساوية 1, ويكون الخرج مساويا 0 إذا كان أي متغير من متغيرات الدخل مساويا 0 ويرمز لهذه العملية بأي من الطرق التالية

X = A AND B

X = A . B

X = AB

فيما يلى جدول الصواب لبوابة كالمدخلين:

Α	В	X
0	0	0
0	1	0
1	0	0
1	1	1

لاحظ أن نظرا لوجود متغيرين للدخل هنا هما Aو B فإنه توجد أربعة احتمالات للدخل. والقاعدة العامة في جدول الصواب هي أنه إذا كان عدد متغيرات الدخل هو N فإن احتمالات الدخل هو N.

البوابة التي تقوم بإجراء هذه العملية هي AND ويتم تمثيلها بالشكل التالي : x

1

قد يكون لبوابة AND أكثر من مدخلين .مثلا:

بوابة AND بثلاثة مداخل x بثلاثة مداخل

تمرين : قم بإنشاء جدول الصواب لبوابة AND بثلاثة مداخل .

عملية OR:

في هذه العملية يكون الخرج مساويا 1 إذا كان أي من متغيرات الدخل مساوية 1, ويكون الخرج مساويا 0 إذا كانت جميع متغيرات الدخل مساوية 0 ويرمز لهذه العملية بأي من الطريقتين التاليتين .

$$X = A OR B$$

 $X = A + B$

فيما يلي جدول الصواب لبوابة OR بمدخلين:

A	В	X
0	0	0
0	1	1
1	0	1
1	1	1

البوابة التي تقوم بإجراء هذه العملية هي OR, ويتم تمثيلها بالشكل التالي :

قد يكون لبوابة OR أكثر من مدخلين .مثلا:

بوابة OR بأربعة مداخل

عملية NAND:

عملية NAND هي عبارة عن عملية DND متبوعة بعملية NOT AND ويرمز لها بأي أنها عملية NOT AND ويرمز لها بأي من الطرق التالية:

X= A NAND B

X= A AND B

 $X = \overline{A \cdot B}$

 $X = \overline{AB}$

X= A Î B الجدول التالي هو جدول الصواب لعملية NAND, وهو عكس عملية AND :

Α	В	X
0	0	1
0	1	1
1	0	1
1	1	0

البوابة التي تقوم بإجراء هذه العملية هي NAND,ويتم تمثيلها بالشكل التالى:

عملية NOR:

عملية NOR هي عبارة عن عملية OR متبوعة بعملية NOT OR, أي أنها عملية NOT OR ويرمز لها بأي من الطرق التالية:

X = A NOR B

X = A OR B

 $X = \overline{A + B}$

 $X = A \downarrow B$

الجدول التالي هو جدول الصواب لعملية NOR, وهو عكس عملية OR:

Α	В	X
0	0	1
0	1	0
1	0	0
1	1	0

البوابة التي تقوم بإجراء هذه العملية هي NOR,ويتم تمثيلها بالشكل التالي: x ______ X

عملية XOR:

عملية XOR هي إختصار لعبارة XOR, وتسمى عملية NOT الاختلاف, حيث أن الخرج يساوي 1 إذا كان الدخلان مختلفين, ويساوي 0 إذا كانا متشابهين.

ويرمز لها

X = A XOR B

وبخلاف بوابات NOT, NAND, OR, AND لاتتوفر بوابات XOR بأكثر من مدخلين .

Α	В	X
0	0	0
0	1	1
1	0	1
1	1	0

عملية XNOR:

هي عكس عملية XOR حيث أن الخرج يساوي 1 إذا كان الدخلان متشابهان ويساوي 0 إذا كانا مختلفان.

Α	В	X
0	0	1
0	1	0
1	0	0
1	1	1