VII. Interakce konstrukce a podloží

- 1. Podstata interakce
- 2. Zeminy při dynamickém zatížení
- 3. Výpočetní modely
- 4. Příklady

- DSSI Dynamic Soil Structure Interaction Interakce (spolupůsobení) konstrukce a podloží při dynamickém zatížení
- odezva společného systému konstrukce + podloží na dynamické zatížení
- zemětřesení
- kmitání strojů
- 2 základní případy podloží z hlediska tuhosti
- a) skalní (tuhé) podloží konstrukce a podloží se vzájemně neovlivňují
- b) poddajné podloží (zemina) konstrukce a podloží se vzájemně ovlivňují

Tuhé (skalní) podloží

Konstrukce **neovlivňuje** dynamické zatížení, zatížení na volném povrchu (bod A) a v základech konstrukce (bod B) je stejné lze modelovat tuhé uložení konstrukce v základové spáře

Podmínka pro skalní podloží:

rychlost smykových vln v_s >1100 m/s

(American seismic code for nuclear structures)

v_s > 20 f H H výška konstrukce f zákl. frekvence konstr. (Dowrick)

Poddajné podloží – vrstva na skalním podloží

Seismické vlny jsou modifikovány poddajným podložím i konstrukcí zatížení na povrchu (bod C) je odlišné od zatížení v základech (bod D) a samozřejmě i od zatížení na volném povrchu (bod A) Konstrukce a podloží se

vzájemně **ovlivňují**

- části nelze od sebe oddělit

Při dynamickém zatížení (seizmicita, stroje ...) se rozkmitá konstrukce, základ i okolní zemina a navzájem se začnou ovlivňovat – je nutné uvážit vzájemné spolupůsobení, interakci.

Odezva je určována dynamickými vlastnostmi:

- podloží
- základu
- konstrukce

Zemina

Mechanismy interakce mezi konstrukcí a podložím

a) setrvačná interakce

 setrvačné síly vyvolané kmitáním konstrukce zvyšují celkové síly a momenty v základové konstrukci a tak způsobují posuny a rotace v základech

b) kinematická interakce

– základová konstrukce je příčinou změny zatížení pod základem ve srovnání se zatížením na volném povrchu (lom, odraz vln apod.)

Mechanismy interakce mezi konstrukcí a podložím

kinematická interakce

E₀ – seizmické vlny

F₀ – vlny odražené (od základu do podloží)

E₁ – vlny prostupující (do konstrukce)

F₁ – vlny zpětné (odražené od vrchu konstrukce)

F₂ – vlny odražené (od základu zpět do konstrukce)

R₁ – vlny vyzářené (do podloží)

Důsledky dynamické interakce

- změna vstupního zatížení (většinou zvětšení zatížení, další složky např. rotační)
- větší poddajnost celého systému, snížení vlastní frekvence
- zvýšení celkového útlumu (geometrický útlum v podloží)

2. Zeminy při dynamickém zatížení Charaktorictiky zomin

Charakteristiky zemin

- objemová hmotnost
- tuhost
- materiálový útlum
- pevnost
- degradace při cyklickém zatížení

Dynamika zemin

- polonekonečné prostředí
- fiktivní hranici lze s jistotou umístit dostatečně daleko jen ve statických úlohách
- v dynamice hrozí odraz vln na nepropustné hranici
- projevuje se vliv geometrického (radiačního) útlumu,
 tj. ztráta energie v důsledku šíření vln v prostředí

2. Zeminy při dynamickém zatížení

Geometrický (radiační) útlum

- tvoří značnou část celkového útlumu v podloží
- je frekvenčně závislý

 vliv tuhého (skalního) podloží v malé hloubce pod povrchem způsobuje snížení geometrického útlumu (b) (odraz vlnové energie na hranici)

2. Zeminy při dynamickém zatížení

Vlastnosti zemin – obecně jsou závislé na deformaci smykový modul klesá se zvyšující se poměrnou deformací materiálový útlum **roste** se zvyšující se poměrnou deformací

smykový modul vs. poměrná deformace

materiálový útlum vs. poměrná deformace

- 1. Lineární pružiny
- 2. Frekvenčně závislé pružiny
- v obou případech se předpokládá:
- tuhá základová deska kruhového tvaru
- pružný (vrstevnatý) poloprostor
- podloží charakterizováno parametry tuhosti a útlumu

Kmitání

- ve směru svislém
- ve směru vodorovném
- otáčivé kolem vodorovné osy
- otáčivé kolem svislé osy

$$C = \frac{r_0}{v_s} \gamma K \qquad M = \left(\frac{r_0}{v_s}\right)^2 \mu K$$

$$v_s = \sqrt{G/\rho}$$

 r_0 - poloměr základové desky

G - smykový modul podloží

ho - objemová hmotnost podloží

Statická tuhost K a koeficienty útlumu y a hmotnosti µ

		Dimensionless Coefficients of	
	Static Stiffness K	Dashpot y	Mass µ
směr vodorovný	$\frac{8Gr_0}{2-v}$	0.58	0.095
směr svislý	$\frac{4Gr_0}{1-v}$	0.85	0.27
otáčení kolem vodorovné osy	$\frac{8Gr_0^3}{3(1-v)}$ ~	$\frac{0.3}{1 + \frac{3(1 - v)m}{8r_0^5\rho}}$	0.24
otáčení kolem svislé osy	$\frac{16Gr_0^3}{3}$	$\frac{0.433}{1 + \frac{2m}{s^5}} \sqrt{\frac{m}{r_0^5 \rho}}$	0.045

v – Poissonovo číslo podloží
 m – hmotný moment setrvačnosti základové desky

3. Impedanční funkce

- zobecnění pro poddajnou desku obecného tvaru
- vrstevnaté podloží typu poloprostor
- frekvenčně závislé dynamické charakteristiky podloží v místě na kontaktu s konstrukcí

Calculation of generalised foundation stiffness matrix

4. MKP modely

- obecně nelineární modely
- možnost modelování ve 3-D
- obvykle spodní hranice pevná, boční hranice umělé (propustné)

4. MKP modely

a) přímé řešení

- konstrukce a podloží se modeluje jako jeden celek
- možnost modelovat libovolné systémy z hlediska tvaru a materiálu (nelineární vlastnosti)
- nutnost správného modelování okrajových podmínek (pevná vs. propustná hranice)

b) metoda subkonstrukcí

- 1. řešení odezvy podloží na seizmické zatížení kinematická interakce určení posunutí na hranici s konstrukcí
- 2. stanovení impedančních funkcí
- řešení odezvy konstrukce s frekvenčně závislým podepřením (viz 2) na seizmické zatížení (viz 1) – setrvačná interakce užití principu superpozice – omezení na lineární systémy

4. MKP – přímé řešení

4. MKP – metoda subkonstrukcí

4.1 Vliv tuhosti podloží

Mas: (M) =
$$1 \times 10^6$$
kg
Stiffness (K) = 2.5×10^{10} N/m
Height (H) = 15 m
Radius (R) = 20 m

$$f = \frac{1}{2\pi} \sqrt{\frac{K}{M}} = 2.5 Hz$$

$$K_R = \frac{8GR^3}{3(1-v)} = 9.1 \times 10^{11} \text{Nm/rad}$$

$$K_H = \frac{8GR}{2-v} = 2.8 \times 10^9 N/m$$

$$f = \frac{1}{2\pi\sqrt{\frac{M}{K_H} + \frac{H^2M}{K_R} + \frac{M}{K}}} = 0.63Hz$$

Podloží:

$$G = 30 \text{ MPa}$$

v = 0.3

systém konstrukce + podloží:

- nižší seizmické zatížení pro vyšší periodu (+)
- větší útlum systému díky podloží (+)
- větší absolutní posunutí díky poddajnosti podloží (-)

4.2 Vliv hloubky založení D

vetknutý tuhý základ, homogenní poloprostor

- vlastní frekvence konstrukce = 2 Hz (bez vlivu podloží)
- poměrný útlum 5 %

rezonanční křivka pro vodorovný posun vrcholu budovy

- vlastní frekvence systému konstrukce + podloží < 2 Hz (snížení tuhosti)
- s růstem D roste vlastní frekvence (zvýšení tuhosti)
- s růstem D klesá amplituda (zvýšení poměrného útlumu)

