wherein R when taken individually is H; R¹ when taken individually is H or OH; R and R¹ when taken together represent a double bond;

 R^2 is an alpha-branched [C₃-C₈ alkyl, alkenyl,] C_4 -C₈ alkynyl, C_3 -C₈ alkoxyalkyl or C_3 -C₈ alkylthio group; a C_5 -C₈ cycloalkylalkyl group wherein the alkyl group is an alpha-branched C_2 -C₅ alkyl group; a C_3 -C₈ cycloalkyl or C_5 -C₈ cycloalkenyl group, either of which many be substituted by methylene or one or more C_1 -C₄ alkyl groups or halo atoms; or a 3 to 6 membered oxygen or sulphur containing heterocyclic ring which may be saturated, or fully or partially unsaturated and which may be substituted by one or more C_1 -C₄ alkyl groups or halo atoms;

R³ is hydrogen or methyl;

R⁴ is H or a 4'-(alpha-L-oleandrosyl)-alpha-L-oleandrosyloxy group of the formula:

$$CH_3$$
 OCH_3 OCH_3

[with the proviso that when R^2 is alkyl it is not isopropyl or sec-butyl; and when R^4 is H, R^2 is not 2-buten-2-yl, 2-penten-2-yl or 4-methyl-2-penten-2-yl].

Cancel claims 36-39 without waiver or prejudice.