$$\begin{array}{c}
R_9 \\
R_7 \\
R_8
\end{array}$$

$$\begin{array}{c}
R_{10} \\
R_{11}
\end{array}$$
(II)

and

if n is 2,

 R_1 is unsubstituted or C_1 - C_4 alkyl- or hydroxy-substituted phenylene or naphthylene; or is - R_{12} -X- R_{13} -, R_2 , R_3 , R_4 and R_5 independently of one another are hydrogen, chlorine, hydroxyl, C_1 - C_{25} alkyl, C_7 - C_9 phenylalkyl, unsubstituted or C_1 - C_4 alkyl-substituted phenyl; unsubstituted or C_1 - C_4 alkyl-substituted C_5 - C_8 cycloalkyl; C_1 - C_{18} alkoxy, C_1 - C_{18} alkylthio, C_1 - C_4 alkylamino, di(C_1 - C_4 alkyl)amino, C_1 - C_2 5alkanoyloxy, C_1 - C_2 5alkanoyloxy, C_3 - C_2 5alkanoyloxy which is interrupted by

oxygen, sulfur or $N-R_{14}$; C_6-C_9 cycloalkylcarbonyloxy, benzoyloxy or C_1-C_{12} alkyl-substituted

benzoyloxy; or else the radicals R_2 and R_3 or the radicals R_3 and R_4 or the radicals R_4 and R_5 , together with the carbon atoms to which they are attached, form a benzo ring, R_4 is additionally - $(CH_2)_p$ - COR_{15} or - $(CH_2)_q$ OH or, if R_3 , R_5 and R_6 are hydrogen, R_4 is additionally a radical of the formula III

$$R_{2}$$

$$R_{16}$$

$$R_{17}$$

$$R_{16}$$

$$R_{17}$$

$$R_{17}$$

$$R_{18}$$

$$R_{19}$$

$$R_{19}$$

$$R_{11}$$

$$R_{11}$$

in which R_1 is defined as indicated above for n=1, R_6 is hydrogen or a radical of the formula IV

$$R_2$$
 R_3
 R_4
 R_5
 R_4
 R_5

where R_4 is not a radical of the formula III and R_1 is defined as indicated above for n = 1,

 R_7 , R_8 , R_9 , R_{10} and R_{11} independently of one another are hydrogen, halogen, hydroxyl, C_1 - C_{25} alkyl, C_2 - C_{25} alkyl interrupted by oxygen, sulfur or $N-R_{14}$; C_1 - C_{25} alkoxy, C_2 - C_{25} alkoxy interrupted by

oxygen, sulfur or $N - R_{14}$; $C_1 - C_{25}$ alkylthio, $C_3 - C_{25}$ alkenyl, $C_3 - C_{25}$ alkenyloxy, $C_3 - C_{25}$ alkynyl, $C_3 - C_{25}$

 C_{25} alkynyloxy, C_7 - C_9 phenylalkyl, C_7 - C_9 phenylalkoxy, unsubstituted or C_1 - C_4 alkyl-substituted phenyl; unsubstituted or C_1 - C_4 alkyl-substituted C_5 - C_8 cycloalkyl; unsubstituted or C_1 - C_4 alkyl-substituted C_5 - C_8 cycloalkoxy; C_1 - C_4 alkylamino, di(C_1 -

 C_4 alkyl)amino, C_1 - C_{25} alkanoyl, C_3 - C_{25} alkanoyl interrupted by oxygen, sulfur or $N - R_{14}$;

 C_1 - C_{25} alkanoyloxy, C_3 - C_{25} alkanoyloxy interrupted by oxygen, sulfur or $N - R_{14}$;

 C_1 - C_{25} alkanoylamino, C_3 - C_{25} alkenoyl, C_3 - C_{25} alkenoyl interrupted by oxygen, sulfur or N- R_{14} ;

 C_3 - C_{25} alkenoyloxy, C_3 - C_{25} alkenoyloxy interrupted by oxygen, sulfur or N- R_{14} ; C_6 -

C₉cycloalkylcarbonyl, C₆-C₉cycloalkylcarbonyloxy, benzoyl or C₁-C₁₂alkyl-substituted benzoyl;

benzoyloxy or C_1 - C_{12} alkyl-substituted benzoyloxy; $-O - C_1 - C$

$$R_{20}$$
 R_{21} R_{21} R_{22} R_{23} , or else, in formula II, the radicals R_7 and R_8 or the radicals R_8 and R_{11} , R_{22}

together with the carbon atoms to which they are attached, form a benzo ring,

R₁₂ and R₁₃ independently of one another are unsubstituted or C₁-C₄alkyl-substituted phenylene or naphthylene,

 R_{14} is hydrogen or C_1 - C_8 alkyl,

$$R_{15}$$
 is hydroxyl, $\left[-O^{-}\frac{1}{r}M^{\Gamma^{+}}\right]$, C_{1} - C_{18} alkoxy or $-N$
 R_{25}

 R_{16} and R_{17} independently of one another are hydrogen, CF_3 , C_1 - C_{12} alkyl or phenyl, or R_{16} and R_{17} , together with the C atom to which they are attached, form a C_5 - C_8 cycloalkylidene ring which is unsubstituted or substituted from 1 to 3 times by C_1 - C_4 alkyl;

R₁₈ and R₁₉ independently of one another are hydrogen, C₁-C₄alkyl or phenyl,

R₂₀ is hydrogen or C₁-C₄alkyl,

R₂₁ is hydrogen, unsubstituted or C₁-C₄alkyl-substituted phenyl; C₁-C₂₅alkyl, C₂-C₂₅alkyl interrupted by

oxygen, sulfur or N-R₁₄; C₇-C₉phenylalkyl which is unsubstituted or substituted on the phenyl

radical from 1 to 3 times by C₁-C₄alkyl; C₇-C₂₅phenylalkyl which is unsubstituted or substituted on the

phenyl radical from 1 to 3 times by C_1 - C_4 alkyl and interrupted by oxygen, sulfur or $N - R_{14}$, or

else the radicals R_{20} and R_{21} , together with the carbon atoms to which they are attached, form a C_{5} - C_{12} cycloalkylene ring which is unsubstituted or substituted from 1 to 3 times by C_{1} - C_{4} alkyl; R_{22} is hydrogen or C_{1} - C_{4} alkyl,

R₂₃ is hydrogen, C₁-C₂₅alkanoyl, C₃-C₂₅alkenoyl, C₃-C₂₅alkanoyl interrupted by oxygen, sulfur or

N-R₁₄; C₂-C₂₅alkanoyl substituted by a di(C₁-C₆alkyl)phosphonate group;

C₆-C₉cycloalkylcarbonyl, thenoyl, furoyl, benzoyl or C₁-C₁₂alkyl-substituted benzoyl;

 R_{24} and R_{25} independently of one another are hydrogen or C_1 - C_{18} alkyl, R_{26} is hydrogen or C_1 - C_8 alkyl,

 R_{27} is a direct bond, C_1 - C_{18} alkylene, C_2 - C_{18} alkylene interrupted by oxygen, sulfur or

C₁₈alkenylene, C₂-C₂₀alkylidene, C₇-C₂₀phenylalkylidene, C₅-C₈cycloalkylene, C₇-C₈bicycloalkylene,

$$\sqrt{}$$
 or $\sqrt{}$

$$R_{28}$$
 is hydroxyl, $\left[--0^{-1} \frac{1}{r} M^{\Gamma^{+}}\right]$, C_{1} - C_{18} alkoxy or $-N < R_{24}$, R_{25}

$$R_{29}$$
 is oxygen, -NH- or $N - C - NH - R_{30}$,

R₃₀ is C₁-C₁₈alkyl or phenyl,

R₃₁ is hydrogen or C₁-C₁₈alkyl,

M is an r-valent metal cation,

X is a direct bond, oxygen, sulfur or -NR₃₁-,

n is 1 or 2,

p is 0, 1 or 2,

q is 1, 2, 3, 4, 5 or 6,

r is 1, 2 or 3, and

s is 0, 1 or 2;

(ii) a long chain N,N-dialkylhydroxylamine of formula (VI)

wherein T₁ and T₂ are independently straight or branched chain alkyl of 6 to 36 carbon atoms;

(iii) substituted hydroxylamines may be for example of the formula (VIII) or (IX)

wherein

 T_4 is straight or branched chain alkyl of 1 to 36 carbon atoms, cycloalkyl of 5 to 12 carbon atoms, aralkyl of 7 to 9 carbon atoms, or said aralkyl substituted by one or two alkyl of 1 to 12 carbon atoms or by one or two halogen atoms;

T₂ is hydrogen, or independently has the same meaning as T₄; and

T₃ is allyl, straight or branched chain alkyl of 1 to 36 carbon atoms, cycloalkyl of 5 to 18 carbon atoms, cycloalkenyl of 5 to 18 carbon atoms or a straight or branched chain alkyl of 1 to 4 carbon atoms substituted by phenyl or by phenyl substituted by one or two alkyl groups of 1 to 4 carbon atoms or by 1 or 2 halogen atoms;

(iv) nitrones of the formula (X)

----wherein

L₁ is straight or branched chain alkyl of 1 to 36 carbon atoms, cycloalkyl of 5 to 12 carbon atoms, aralkyl of 7 to 9 carbon atoms, or said aralkyl substituted by one or two alkyl of 1 to 12 carbon atoms or by one or two halogen atoms;

L₂ and L₃ are independently hydrogen, straight or branched chain alkyl of 1 to 36 carbon atoms, cycloalkyl of 5 to 12 carbon atoms, aralkyl of 7 to 9 carbon atoms, or said aralkyl substituted by one or two alkyl of 1 to 12 carbon atoms or by one or two halogen atoms;

or L₁ and L₂ together form a five- or six-membered ring including the nitrogen atom; and

(v) amine oxides are for example saturated tertiary amine oxides as represented by general formula (XI):

wherein-G₄-and G₂ are independently a straight or branched chain alkyl of 6 to 36 carbonatoms, aryl of 6 to 12 carbon atoms, aralkyl of 7 to 36 carbon atoms, alkaryl of 7 to 36 carbon atoms, cycloalkyl of 5 to 36 carbon atoms, alkcycloalkyl of 6 to 36 carbon atoms or cycloalkylalkyl of 6 to 36carbon atoms: G₃ is a straight or branched chain alkyl of 1 to 36 carbon atoms, aryl of 6 to 12 carbon atoms, aralkyl of 7 to 36 carbon atoms, alkaryl of 7 to 36 carbon atoms, cycloalkyl of 5 to 36 carbon atoms, alkeveloalkyl of 6 to 36 carbon atoms or cycloalkylalkyl of 6 to 36 carbon atoms; with the proviso that at least one of G₄₇G₂ and G₃ contains a b carbon-hydrogen bond; and wherein said aryl groups may be substituted by one to three halogen, alkyl of 1 to 8 carbonatoms, alkoxy of 1 to 8 carbon atoms or combinations thereof; and wherein said alkyl, aralkyl, alkaryl, cycloalkyl, alkeycloalkyl and cycloalkylalkyl groupsmay be interrupted by one to sixteen -O-, -S-, -SO-, -SO₂ , -COO-, -CO-, -NG₄-, -CONG₄- and -NG₄CO- groups, or wherein said alkyl, aralkyl, alkaryl, cycloalkyl, alkcycloalkyl and cycloalkylalkylgroups may be substituted by one to sixteen groups selected from OG₄, SG₄, COOG₄, OCOG₄, COG₄ -N(G₄)₂ -CON(G₄)₂ -NG₄COG₄ and 5- and 6-membered rings containing the -C(CH₃)(CH₂R_x)NL(CH₂R_x)(CH₃)C- group or wherein said-alkyl, aralkyl, alkaryl, cycloalkyl, alkcycloalkyl and cycloalkylalkyl groups are both interrupted and substituted by the groups mentioned above; and -wherein G₄ is independently hydrogen or alkyl of 1 to 8 carbon atoms: R_x is hydrogen or methyl; L is hydrogen, hydroxy, C₁₋₃₀-straight or branched chain alkyl moiety, a -C(O)R moiety where R is a C₁₋₃₀ straight or branched chain alkyl group, or a -OR_v moiety; and R_y is C₁₋₃₀ straight or branched chain alkyl, C₂-C₃₀ alkenyl, C₂-C₃₀ alkynyl, C₅-C₄₂cycloalkyl, C₆-C₁₀-bicycloalkyl, C₅-C₈ cycloalkenyl, C₆-C₁₀-aryl, C₇-C₉ aralkyl, C₇-C₉-aralkyl substituted by alkyl or aryl, or -CO(D), where D is C₁-C₁₈ alkyl, C₁-C₁₈ alkoxy, phenyl, phenyl substituted by hydroxy, alkyl or alkoxy, or amino or amino mono- or di-substituted by alkyl or phenylwherein said edible organic substance is selected from the group consisting of potato flakes, bakery products, meat emulsions, precooked cereals, instant noodles, soybean milk, chicken products, sausage, mayonnaise, margarine, frozen fish, frozen pizza and cheese.

- 2. (original). The composition of claim 1 wherein the benzofuranone is at least one compound of formula I wherein n=1, R_1 is phenyl which is unsubstituted or substituted in para-position by C_1 - C_{18} alkylthio or di(C_1 - C_4 alkyl)amino; mono- to penta-substituted alkyphenyl containing together a total of at most 18 carbon atoms in the 1 to 5 alkyl substituents; naphthyl, biphenyl, terphenyl, phenanthryl, anthryl, fluorenyl, carbazolyl, thienyl, pyrrolyl, phenothizinyl or 5,6,7,8-tetrahydronaphthyl, each of which is unsubstituted or substituted by C_1 - C_4 alkyl, C_1 - C_4 alkoxy, C_1 - C_4 alkylthio, hydroxy or amino.
- 3. (original). The composition of claim 1 wherein the benzofuranone is a compound of formula I wherein n is 2, R_1 is $-R_{12}$ -X- R_{13} -, R_{12} and R_{13} are phenylene, X is oxygen or $-NR_{31}$ -, and R_{31} is C_1 - C_4 alkyl.
- 4. (original). The composition of claim 1 wherein the benzofuranone is at least one compound selected from the group consisting of 3-[4-(2-acetoxyethoxy)phenyl]-5,7-di-tert-butyl-benzofuran-2-one; 5,7-di-tert-butyl-3-[4-(2-stearoyloxyethoxy)phenyl]benzofuran-2-one; 3,3'-bis[5,7-di-tert-butyl-3-(4-[2-hydroxyethoxy]phenyl)benzofuran-2-one]; 5,7-di-tert-butyl-3-(4-ethoxyphenyl)benzofuran-2-one; 3-(4-acetoxy-3,5-dimethylphenyl)-5,7-di-tert-butylbenzofuran-2-one; 3-(3,5-dimethyl-4-pivaloyloxy-phenyl)-5,7-di-tert-butyl-benzofuran-2-one; 5,7-di-tert-butyl-3-phenylbenzofuran-2-one; 5,7-di-tert-butyl-3-(2,3-dimethylphenyl)benzofuran-2-one.

5-13. (cancelled).

14. (currently amended). The composition of claim 1 wherein the antioxidant <u>of component (i) is</u> present in an amount of from about 0.005% by weight to about 5% by weight, based on the weight of the edible organic substance.

- 15. (currently amended). The composition of claim 1 wherein the antioxidant of component (i) is present in an amount of from about 0.01% by weight to about 1% by weight, based on the weight of the edible organic substance.
- 16. (original). The composition of claim 1 wherein the composition further comprises additional food additives selected from food antioxidants in addition to those specified in claim 1, emulsifiers, suspension agent and colorings.
- 17. (original). The composition of claim 1 wherein the composition further comprises food antioxidants selected from the group consisting of butylated hydroxytoluene, butylated hydroxyanisole, tocopherol, ascorbic acid, benzylphosphonates, esters of b-(3,5-di-tert-butyl-4-hydroxyphenyl)propionic acid with mono- or polyhydric alcohols, esters of b-(5-tert-butyl-4-hydroxy-3-methylphenyl)propionic acid with mono- or polyhydric alcohols, esters of b-(3,5-dicyclohexyl-4-hydroxyphenyl)propionic acid with mono- or polyhydric alcohols, esters of 3,5-di-tert-butyl-4-hydroxyphenyl acetic acid with mono- or polyhydric alcohols, phosphites and phosphonites.
- 18. (cancelled).
- 19. (original). The composition of claim 1 wherein the edible organic substance is a food containing fatty acid glycerides, edible fats and fatty oils.
- 20. (original). The composition of claim 1 wherein the edible organic substance is a pet food or animal feed.