PATENT ABSTRACTS OF JAPAN

(11)Publication number:

10-124918

(43)Date of publication of application: 15.05.1998

(51)Int.CI.

G11B 7/135 G11B 7/13

(21)Application number: 09-257271

(71)Applicant: SAMSUNG ELECTRON CO LTD

(22)Date of filing:

22.09.1997

(72)Inventor: KIN CHINKAN

SHIN GENKOKU

(30)Priority

Priority number : 96 9642120

Priority date: 24.09.1996

Priority country : KR

(54) HOLOGRAM OPTICAL PICKUP UTILIZING TWO LIGHT SOURCES

(57)Abstract:

PROBLEM TO BE SOLVED: To increase interchangeability by making the light rays with different wavelengths are generated by light sources A, B incident selectively on disks varying in thicknesses, diffracting the reflected light rays the respective wavelength bands of holograms A, B, receiving these beams by photodetectors A. B and detecting electric signals. SOLUTION: At the time of reproduction of the thin/thick disks (DVD/CD, CD-R) 17/18, the light rays (solid lines/dotted lines) from the first/second light sources 11/11' of the long/short wavelengths are used. The respective light rays thereof advance rectilinearly as they are through the first/second holograms 13, 14 of a hologram plate 12 in the incident direction and are made into parallel beams by a collimating lens 15. The parallel beams are converged to the disks 17/18 by the entire/small part of the numerical aperture of an objective lens 16. The greater part of the light quantity of the reflected light rays are diffracted by the

holograms 13, 14 and are received by the first/second photodetectors 19/20. As a result, the problem of the increase in aberrations by a difference in the thicknesses between the disks is overcome and the reproduction of even the phase transition disk is made possible. The interchangeability is thus increased.

LEGAL STATUS

[Date of request for examination]

22.09.1997

[Date of sending the examiner's decision of

24.11.1998

rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or

BEST AVAILABLE COPY

application converted registration]

[Date of final disposal for application]

[Patent number] 3079075 [Date of registration] 16.06.2000 [Number of appeal against examiner's decision 11-02744

of rejection]

[Date of requesting appeal against examiner's 22.02.1999

decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19) 日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号

特開平10-124918

(43)公開日 平成10年(1998) 5月15日

(51) Int.Cl.⁶

識別記号

FΙ

G11B 7/135 7/13

G 1 1 B 7/135 7/13

A

審査請求 有 請求項の数6 OL (全 4 頁)

(21)出願番号

特顯平9-257271

(22)出廣日

平成9年(1997)9月22日

(31)優先権主張番号 42120/1996

(32) 優先日

1996年9月24日

(33)優先権主張国

韓国 (KR)

(71) 出顧人 390019839

三星電子株式会社

大韓民国京畿道水原市八達区梅雞洞416

(72) 発明者 金 鎮魚

大韓民国京畿道水原市八達區梅養洞 三星

1次アパート1洞1202号

(72)発明者 申 鉉國

大韓民国京畿道水原市八達區牛満洞 三星

1次アパート101棟1003号

(74)代理人 弁理士 伊東 忠彦 (外1名)

(54) 【発明の名称】 二つの光源を利用したホログラム光ピックアップ

(57)【要約】

【課題】 厚さが異なるディスクの互換だけでなくCD -R等の記録材料が異なるディスクの互換も可能に改善 して、ディスク各々に対して最適の光学環境で記録再生 できるホログラムを利用した光ピックアップを提供する ことにある。

【解決手段】 第1及び第2光源から各々波長が異なる 光を発生して厚さが異なるディスクに選択的に入射して 反射光を第1及び第2ホログラムの各波長帯で各々回折 させて、回折された反射光を第1及び第2光検出器で各 々受光して電気信号を検出する。

BEST AVAILABLE COPY

20

1

【特許請求の範囲】

【請求項1】 各々波長が異なる光を発生するための第 1及び第2光源と、

前記第1及び第2光源から放射される光を厚さが異なる ディスクに各々集束するための対物レンズと、

前記ディスクから各々反射される第1及び第2光源の反 射光を各波長帯で各々回折させる第1及び第2ホログラ ムが両面に形成されたホログラムプレートと、

前記第1及び第2ホログラムで回折される前記第1及び 第2光源の反射光を各々受光して電気信号を検出する第 1及び第2光源検出器とを含むことを特徴とする二つの 光源を利用したホログラム光ピックアップ。

【請求項2】 前記第1光源は670m波長の光を発生 して、前記第2光源は780m波長の光を発生すること を特徴とする請求項1記載のホログラム光ピックアッ プ。

【請求項3】 前記厚さが異なるディスクは、DVDと CDとを含むことを特徴とする請求項2記載のホログラ ム光ピックアップ。

【請求項4】 前記厚さが異なるディスクは、DVDと CD-Rとを含むことを特徴とする請求項2記載のホロ グラム光ピックアップ。

【請求項5】 前記第1及び第2光源と前記第1及び第 2光検出器は、同一平面上に形成されることを特徴とす る請求項1記載のホログラム光ピックアップ。

【請求項6】 前記第1及び第2ホログラムは、各々対 応する前記第1及び第2光源の反射光だけを回折させて 反対光源の反射光は直進させることを特徴とする請求項 1 記載のホログラム光ピックアップ。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は厚さが異なるディス クの互換のための光ピックアップに係り、特に、ホログ ラムを利用した光ピックアップに係る。さらに、本発明 は波長が異なる二つの光源を利用して厚さが異なる光デ ィスクに対する互換性を向上させたホログラム光ピック アップに関するものである。

[0002]

【従来の技術】光記録媒体として現在広く知られている コンパクトディスク (CD) は基板の厚さが1.2 mmにな 40 っており、記録層として光が反射する反射面を持ち、こ の反射面に凹状に形成されるピット組合わせになる音 響、文字、グラフィック等の情報を貯蔵する。

【0003】また、大容量の映像情報を高密度で貯蔵で きる基板の厚さが0.6 mmであるデジタルビデオディスク (DVD)も出現している。DVD用光ピックアップ は、CD用光ピックアップとは違い短波長光源を使用し て、開口数(NA)が大きい対物レンズで光を集束して 髙密度再生のための微小スポットを形成する。一方、最 近では一回記録した後再生だけ可能な記録媒体として相 50 変化ディスク(CD-R)が実用化されている。CD-Rの基板の厚さはCDのそれと同様に1.2 mmになってお り、記録層としてはCDのピットとは違い特定波長帯で の記録波長と再生波長の反射率が変化する相変化材料に なっている。また、CD-RはCDと同一な光ピックア ップ環境で記録再生できる。

【0004】前記のように厚さまたは記録材料が異なる ディスクの出現によって使用者の立場ではそのディスク の互換が可能な光ピックアップが要求されて、従来にも DVDとCDの互換が可能な光ピックアップが提供され た。従来のDVD、CD互換用光ピックアップは短波長 (650m) 光源を一つ使用し、再生するディスクの厚 さによって対物レンズの開口数を調節する手段を有して いる。即ち、DVD再生時には対物レンズの全ての開口 数(NA:0.6)を利用して微小スポットを形成して、 CD再生時には光源から対物レンズに入射される光のビ ーム直径を制限するかまたは対物レンズで開口数が小さ い部位、例えば、近軸部位を利用する等開口数を0.45で 調整して前述の球面収差を補正した。

【0005】このように、ディスク互換光ピックアップ において、最近では光源としては面発光レーザダイオー ド(SEL)を使用して、対物レンズの開口数を調節す る手段としてはホログラムが利用されている。以下、添 付図面を参照して従来のホログラムを利用した光ピック アップについて説明する。図2は従来のホログラムを利 用した光ピックアップを示す光学配置図である。図2に 示されるように、光源1の前方には第1ホログラム3及 び第2ホログラム4が両面に形成されたホログラムプレ ート2が位置して、ホログラムプレート2の前方にはコ 30 リメーティングレンズ5と対物レンズ6が各々位置す る。

【0006】光源1で出射された後ホログラムプレート 2を経由した光は、コリメーティングレンズ5により平 行光になった後対物レンズ6に入射されて、この対物レ ンズ6によりDVD7またはСD8に集束される。ま た、DVD7またはCD8から反射された光は、逆に対 物レンズ6とコリメーティングレンズ5を経由した後第 1ホログラム3及び第2ホログラム4で回折されて第1 光検出器9及び第2光検出器10に各々受光される。

【0007】即ち、DVD7を再生する時には、第1ホ ログラム3を経由する光で対物レンズ6の全ての開口数 を利用することによりDVD7に微小スポットを形成し て、第1ホログラム3で回折される反射光を受光する第 1 光検出器 9 の信号により再生及び制御する。また、C D8を再生する時には、面積が小さい第2ホログラム4 により対物レンズ6の開口数が小さい部分(近軸部)を 利用することによりその厚さ差による収差が補正された スポットを形成して、第2ホログラム4で回折される反 射光を受光する第2光検出器10の信号により再生及び 制御する。

3

[0008]

【発明が解決しようとする課題】しかし、前述のような従来の光ピックアップは、DVDでの微小スポットの形成のため短波長光源を使用するため、短波長の光源として前述したCD-Rを再生する場合相変化材料の特性上データが損傷される等互換が不可能である問題点があった。

【0009】また、従来の光ピックアップは、光学環境が基本的に厚さが薄いDVDに合わされるためCDを最適の条件で再生できないだけではなく、特に、CDの再10生時に光源からCD用光検出器に到達する光量の損失が多いから再生信号が劣化する問題点があった。したがって、本発明は前記のような問題点を解決するため案出されたもので、その目的は厚さが異なるディスクの互換だけではなくCD-R等の記録材料が異なるディスクの互換も可能に改善されたホログラムを利用した光ピックアップを提供することにある。

【0010】本発明の他の目的は、厚さが異なるディスクの互換性を持つと共にディスク各々に対して最適の光学環境で記録再生できるホログラムを利用した光ピック 20アップを提供することにある。

[0011]

【課題を解決するための手段】前述の目的を達成するための本発明の特徴によると、第1及び第2光源から各々被長が異なる光を発生して厚さが異なるディスクに選択的に入射して反射光を第1及び第2ホログラムの各波長帯で各々回折させて、回折された反射光を第1及び第2光検出器で各々受光して電気信号を検出する。

【0012】例えば、第1光源は670m波長の光を発生して、第2光源は780m波長の光を発生する。また、厚さが異なるディスクはDVDとCDまたはDVDとCDーRを含む。本発明の他の特徴によると、第1及び第2光源と第1及び第2光液と第1及び第2光液と第1及び第2光液と第1及び第2光液と第1及び第2光液と第1及び第2光液と第1及び第2光液と第1及び第2光液と第1及び第2光液と第1及び第2光液と第1及び第2光液と第1及び第2光液と第1及び第2光液と第1及び第2光液と第1を発生を発生を発生される。

【0013】また、第1及び第2ホログラムは、各々対応する第1及び第2光源の反射光だけを回転させて反対光源の反射光は直進させる。

[0014]

【発明の実施の形態】本発明によるホログラムを利用したディスクの互換用光ピックアップは、波長が異なる二つの光源を再生するディスクによって各々に適合する波長の光源を選択して、ディスクの厚さ差を克服することではなく、各ディスクに対して最適の光学環境で記録再生できるようにしたもので、以下、添付図面を参照して本発明の好ましい実施形態について詳細に説明する。

【0015】図1は本発明によるホログラムを利用した 光ピックアップを示す光学配置図である。図示されるよ うに、本発明によるホログラムを利用した光ピックアッ プは、第1光源11及び第2光源11 と、両側面に第 1ホログラム13及び第2ホログラム14が彫られてい 50 るホログラムプレート12と、コリメーティングレンズ 15と、対物レンズ16と、第1光検出器19及び第2 光検出器20とで構成される。

【0016】一方、参照番号17及び18は厚さが異なるディスクを示すもので、例えば、薄いディスク17は前述のDVDに、厚いディスク18は前述のCD-Rに該当する。勿論、これらディスク17,18の中でいずれか一つだけが記録または再生のために対物レンズ16の焦点面にロードされる。第1光源11及び第2光源11、は各々波長が異なる、例えばDVD用で670mの光とCDまたはCD-R用で780mの光を各々放射する。このような、第1光源11及び第2光源11、は面発光レーザダイオード(SEL)を使用して各々第1光検出器19,及び第2光検出器20と共に同一平面上に配置されている。

【0017】ホログラムプレート12はガラスのような 透明媒質を使用して、両側面に彫られた第1ホログラム 13及び第2ホログラム14は第1光源11及び第2光 源11'の各波長帯で反射光が回折されるように設計さ れている。即ち、第1ホログラム13はDVDのように 薄いディスク17から反射される第1光源11の反射光 は回折させて第2光源11'の反射光はそのまま直進さ せるように設計されて、第2ホログラム14はCDのよ うに厚いディスク18から反射される第2光源11'の 反射光は回折させて第1光源11の反射光はそのまま直 進させるように設計される。第1ホログラム13及び第 2ホログラム14は各々第1光源11及び第2光源1 1'の波長に合わせて設計されていることにより、設計 波長と異なる光源から反射される光は元来の水平位置と は異なるところに受光される。即ち、設計波長と異なる 光は受光信号に影響を及ぼさない。

【0018】一方、対物レンズ16は薄いディスク17に対する微小スポットを形成するため開口数が大きいものを使用する。開口数が大きい対物レンズ16に対して厚いディスク18を再生する場合、厚さ差による収差の増加を防止するための開口数調節手段としては通常のように第2ホログラム14の面積を制限して第2光源11'で放射角が小さい素子を使用する。

【0019】前記のように本発明のホログラムを利用した光ピックアップにおいて、例えば、高密度用DVDのような薄いディスク17の再生時には短波長の第1光源11を使用して、CDまたはCD-Rのような厚いディスク18の再生時には長波長の第2光源11を使用する。薄いディスク17を再生する場合には、第1光源11から出射された光は入射方向にホログラムプレート12の第1ホログラム13及び第2ホログラムプレート12の第1ホログラム13及び第2ホログラム14をそのまま直進してコリメーティングレンズ15により平行光になった後、対物レンズ16の全ての開口数でディスク17に微小スポットで集束される。薄いディスク17か

ら反射される反射光は逆に対物レンズ16とコリメーティングレンズ15を経由して第1ホログラム13で光量の大部分が回折されて第1光検出器19に受光される。

の大部分が回折されて第1光検出器19に受光される。 【0020】次に、厚いディスク18を再生する場合には、第2光源11'から出射された光が入射方向にホログラムプレート12の第1ホログラム13及び第2ホログラム14をそのまま直進してコリメーティングレンズ16により平行光になった後、対物レンズ16により開立ない時、入射光は前述の開口数により対物レンズ16の開口数が小さい前の分、即ち、近軸部を経由してディスク17及び18間の厚さ差による球面収差が補償される。ディスク18の反射光は同様に対物レンズ16とコリメーティングレンズ15を経由するとともに第1ホログラム13をそのまま透過して、第2ホログラム14で光量の大部分が回折されて第2光検出器20に受光される。

【0021】以上、本発明の好ましい実施形態について 詳細に記述したが、本発明が属する技術分野において通 常の知識を持つ者であれば、本発明の精神及び範囲を離 脱せず本発明を多様に変形または変更して実施できる。

[0022]

【発明の効果】本発明によるに、波長が異なる二つの光源を利用してディスクの厚さ差による収差増加の問題を簡単に克服するだけではなくて、相変化ディスクのような記録材料が異なるディスクに対してもデータの損傷な*

* しに再生が可能であるからその互換性を一層増大させる 効果がある。

【0023】また、本発明は、各ディスクに対して適合な波長で最適の光学環境を構成してその性能を増大させ、特に、ホログラムの回折環境が各波長帯に附合されて光損失を極小化して信号劣化問題の解決及び光効率の改善等に効果的である。

【図面の簡単な説明】

【図1】本発明によるホログラムを利用した光ピックア 10 ップを示す配置図である。

【図2】従来のホログラムを利用した光ピックアップを 示す配置図である。

【符号の説明】

1 光源

(4)

- 2.12 ホログラムプレート
- 3, 13 第1ホログラム
- 4,14 第2ホログラム
- 5, 15 コリメーティングレンズ
- 6.16 対物レンズ
- **) 7. 17 薄いディスク(DVD)**
 - 8, 18 厚いディスク (CD, CD-R)
 - 9,19 第1光検出器
 - 10,20 第2光検出器
 - 11 第1光源
 - 11' 第2光源

[図1]

[図2]

