

Dynamic Programming

Algorithms: Design and Analysis, Part II

WIS in Path Graphs:
A Linear-Time Algorithm

The Story So Far

Upshot: If we knew whether or not v_n is in the max-weight IS, then could recursively compute the max-weight IS of G' or G'' and be done.

Proposed algorithm:

- Recursively compute $S_1 = \text{max-weight IS of } G'$
- Recursively compute $S_2 = \text{max-weight IS of } G''$
- Return S_1 or $S_2 \cup \{v_n\}$, whichever is better.

Good news: Correct. [Optional exercise - prove formally by induction]

Bad news: Exponential time.

The \$64,000 Question

Important question: How many <u>distinct</u> subproblems ever get solved by this algorithm?

A) $\Theta(1)$ B) $\Theta(n)$ C) $\Theta(n^2)$ D) $\Theta(2^n)$ Only 1 for each "prefix" of the graph!

[Recursion only plucks vertices off from the right]

Eliminating Redundancy

Obvious fix: The first time you solve a subproblem cache its solution in a global table for O(1)-time lookup later on. ["memoization"]

Even better: Reformulate as a bottom-up iterative algorithm. Let $G_i = 1$ st i vertices of G.

Plan: Populate array A left to right with A[i] = value of max-weight IS of G_i .

Initialization: $A[0] = 0, A[1] = w_1$

Main loop: For $i = 2, 3, \ldots, n$:

$$A[i] = \max\{A[i-1], A[i-2] + w_i\}$$

Case 1 - max-wt IS of G_{i-1} Case 2 - max-wt IS of $G_{i-2} + \{v_n\}$

Run time: Obviously O(n), Correctness: Same as recursive version.