Suites arithmétiques

Quelques calculs généraux pour commencer

Calcul 1.1 — Des fractions.

0000

Écrire sous forme de fraction irréductible les nombres suivants.

a)
$$\frac{2}{3} + \frac{1}{2} \dots$$

b)
$$\frac{1}{3} - \frac{2}{5} \dots$$

b)
$$\frac{1}{3} - \frac{2}{5}$$
 c) $2 + \frac{2}{7}$ d) $2 - \frac{2}{7}$

d)
$$2 - \frac{2}{7} \dots$$

Calcul 1.2 — Des petites équations.

Résoudre les équations suivantes, en donnant la valeur de leur unique solution.

a)
$$\frac{2}{3}x = 6$$

c)
$$\frac{1}{3} - \frac{2x}{5} = -\frac{1}{5} + \frac{x}{3}$$
.

Calcul 1.3

Résoudre les équations suivantes, en donnant l'ensemble de leurs solutions.

a)
$$\left(x-\frac{1}{3}\right)^2=2$$

c)
$$x^2 - 6x + 9 = 0$$

b)
$$\left(2x - \frac{1}{2}\right)^2 = 4$$

d)
$$(x-1)^2 = (x+2)^2 \dots$$

Premières suites

Calcul 1.4

Soit $(u_n)_n$ la suite arithmétique de raison 4 et de premier terme $u_0 = 6$.

a)
$$u_1 = \dots$$

b)
$$u_2 = \dots$$

c)
$$u_3 = \dots$$

d)
$$u_{100} = \dots$$

Soit $(u_n)_n$ la suite arithmétique de raison 3 et de premier terme $u_1 = -5$.	
a) $u_2 = \dots$ c) $u_4 = \dots$	
b) $u_3 = \dots$ d) $u_{100} = \dots$	
Calcul 1.6	0000
Soit $(u_n)_n$ la suite arithmétique de raison -2 et de premier terme $u_1 = \frac{10}{3}$.	
a) $u_2 = \dots$ c) $u_4 = \dots$	
b) $u_3 = \dots$ d) $u_{10} = \dots$	
Calcul 1.7	0000
Soit $(u_n)_n$ la suite arithmétique de raison 3 telle que $u_5 = 8$.	
a) $u_1 = \dots$ c) $u_{101} = \dots$	
b) $u_{20} = \dots$ d) $u_{201} = \dots$	
Secondes suites	
Calcul 1.8	0000
Soit $(u_n)_n$ la suite arithmétique de raison r telle que $u_3=23$ et $u_8=7$.	
a) $r = \dots$ c) $u_{10} = \dots$	
b) $u_5 = \dots$ d) $u_0 = \dots$	
Calcul 1.9	0000
Soit $(u_n)_n$ la suite arithmétique de raison r telle que $u_7 = \frac{4}{3}$ et $u_{13} = \frac{17}{9}$.	
a) $r = \dots$	
b) $u_0 = \dots$	

Calcul 1.5

0000

Calcul 1.10

Soit $a \in \mathbb{R}$. On considère $(u_n)_n$ la suite arithmétique de raison a telle que $u_0 = a$.

Exprimer en fonction de a et de n :

a)
$$u_{10} = \dots$$

b)
$$u_n =$$

Calcul 1.11

Soit $a \in \mathbb{R}^*$. On considère $(u_n)_{n \in \mathbb{N}^*}$ la suite arithmétique de raison r définie, pour tout $n \in \mathbb{N}^*$, par

$$u_n = \frac{a^2 + (n-1)}{a}.$$

a)
$$r = \dots$$

b)
$$u_1 = \dots$$

Calcul 1.12

Soit $a \in \mathbb{R}$. On considère $(u_n)_n$ la suite définie, pout tout $n \in \mathbb{N}$, par $u_n = \frac{3+5an}{2}$.

Calcul 1.13

On considère la suite $(u_n)_n$ définie par $u_0 = 1$ et, pour tout entier naturel n, par

$$u_{n+1} = \sqrt{3 + u_n^2}.$$

On admet que la suite $(u_n)_n$ a tous ses termes positifs.

Puis, pour tout entier naturel n, on pose $v_n = u_n^2$. On admet que la suite $(v_n)_n$ est arithmétique.

- b) Exprimer v_n en fonction de n......

Calculs plus avancés

Calcul 1.14

Soit $(u_n)_n$ la suite définie pour tout $n \in \mathbb{N}$ par $\begin{cases} u_0 = 2 \\ u_{n+1} = \frac{5u_n - 1}{u_n + 3} \end{cases}$ et soit $(v_n)_n$ la suite définie pour tout $n \in \mathbb{N}$ par $v_n = \frac{1}{u_n - 1}$. On admet que la suite $(v_n)_n$ est arithmétique.

Calcul 1.15

On considère $(u_n)_n$ l'unique suite arithmétique de raison non nulle telle que $u_4 = 1$ et $\frac{1}{u_1u_2} + \frac{1}{u_2u_3} = 2$.

- b) Exprimer u_n en fonction de n

Réponses mélangées

Fiche nº 1. Suites arithmétiques

Réponses

1.4 d)	1.8 d) $ \frac{163}{5} $
1.5 b)	1.9 a)
	1.9 b) $37/54$
1.6 a) $\frac{4}{3}$	1.10 a)
1.6 b) $-\frac{2}{3}$	1.10 b)
	1.11 a)
	1.12 $\frac{4}{5}$
1.7 a)4	1.13 a)
1.7 b)	1.13 b) $1 + 3n$
1.7 d)	1.14 a) $\left[\frac{1}{4}\right]$
1.8 a) $\left[-\frac{16}{5} \right]$	1.14 b) $\left\lfloor \frac{4+n}{4} \right\rfloor$
1.8 b) $ \frac{83}{5} $	1.15 a) $\left[\frac{4}{3}\right]$
1.8 c) $\frac{3}{5}$	1.15 b) $\frac{4n-13}{3}$
	1.5 a) -2 1.5 b) 1 1.5 c) 4 1.5 d) 292 1.6 a) $\frac{4}{3}$ 1.6 b) $-\frac{2}{3}$ 1.6 c) $-\frac{8}{3}$ 1.7 a) -4 1.7 b) 53 1.7 c) 296 1.7 d) 596 1.8 a) $-\frac{16}{5}$ 1.8 b) $\frac{83}{5}$

Corrigés

1.3 a) On a
$$\left(x - \frac{1}{3}\right)^2 = 2 \iff (x - \frac{1}{3}) = \pm \sqrt{2}$$
.

1.3 c) On a
$$x^2 - 6x + 9 = (x - 3)^2$$
. Ainsi, on a $x^2 - 6x + 9 = 0 \iff x = 3$.

1.3 d) On a
$$(x-1)^2 = (x+2)^2 \iff x^2 - 2x + 1 = x^2 + 4x + 4 \iff -6x = 3 \iff x = -\frac{1}{2}$$
.

1.8 a) On sait que
$$u_n = u_p + (n-p) \times r$$
. Donc $u_8 = u_3 + 5r$. D'où $5r = u_8 - u_3$. Ainsi $r = \frac{1}{5}(u_8 - u_5) = -\frac{16}{5}$.

.....

1.9 a) On a
$$u_{13} - u_7 = (13 - 7)r$$
. D'où $r = \frac{u_{13} - u_7}{6} = \frac{\frac{17}{9} - \frac{4}{3}}{6} = \frac{\frac{17}{9} - \frac{12}{9}}{6} = \frac{\frac{5}{9}}{6} = \frac{5}{54}$.

1.9 b) On a
$$u_7 = u_0 + 7r$$
. D'où $u_0 = u_7 - 7r = \frac{4}{3} - 7 \times \frac{5}{54} = \frac{4 \times 18}{3 \times 18} - \frac{35}{54} = \frac{72}{18} - \frac{35}{54} = \frac{37}{54}$.

1.10 a) On a
$$u_{10} = u_0 + 10 \times a = a + 10a = 11a$$
.

1.10 b) Soit
$$n \in \mathbb{N}$$
. On a $u_n = a + n \times a = (n+1)a$.

1.11 a) Soit
$$n \in \mathbb{N}$$
. On a $u_{n+1} - u_n = \frac{a^2 + (n+1-1)}{a} - \frac{a^2 + (n-1)}{a} = \frac{a^2 + n - a^2 - n + 1}{a} = \frac{1}{a}$.

1.11 b) On a
$$u_1 = \frac{a^2 + (1-1)}{a} = \frac{a^2}{a} = a$$
.

1.12 Soit
$$n \in \mathbb{N}$$
. On a $u_{n+1} - u_n = \frac{3 + 5a(n+1)}{2} - \frac{3 + 5an}{2} = \frac{5a}{2}$. De plus, $\frac{5a}{2} = 2 \iff 5a = 4 \iff a = \frac{4}{5}$.

1.13 a) Soit
$$n \in \mathbb{N}$$
. On a $v_{n+1} - v_n = u_{n+1}^2 - u_n^2 = 3 + u_n^2 - u_n^2 = 3$. Ainsi, $(v_n)_n$ est arithmétique de raison 3.

1.13 b) On a
$$v_0 = u_0^2 = 1$$
. Donc pour tout entier n , on a $v_n = 1 + 3n$.

1.14 a) Soit $n \in \mathbb{N}$. On a

$$v_{n+1} - v_n = \frac{1}{u_{n+1} - 1} - \frac{1}{u_n - 1} = \frac{1}{\frac{5u_n - 1}{u_n + 3} - \frac{u_n + 3}{u_n + 3}} - \frac{1}{u_n - 1}$$
$$= \frac{1}{\frac{4(u_n - 1)}{u_n + 3}} - \frac{1}{u_n - 1} = \frac{u_n + 3}{4(u_n - 1)} - \frac{4}{4(u_n - 1)} = \frac{u_n - 1}{4(u_n - 1)} = \frac{1}{4}.$$

1.14 b) Soit
$$n \in \mathbb{N}$$
. On a $v_n = v_0 + n \times r = \frac{1}{u_0 - 1} + \frac{1}{4}n = \frac{1}{2 - 1} + \frac{1}{4}n = 1 + \frac{1}{4}n = \frac{4 + n}{4}$.

1.15 a) Notons r la raison de la suite arithmétique $(u_n)_n$. On a $u_4 = 1$, $u_3 = 1 - r$, $u_2 = 1 - 2r$ et $u_1 = 1 - 3r$.

Donc,
$$\frac{1}{u_1u_2} + \frac{1}{u_2u_3} = \frac{1}{(1-3r)(1-2r)} + \frac{1}{(1-2r)(1-r)} = 2$$
. En multipliant par $(1-3r)(1-2r)(1-r)$, on obtient $(1-r) + (1-3r) = 2(1-3r)(1-2r)(1-r)$.

Or, on a $(1-r) + (1-3r) - 2(1-3r)(1-2r)(1-r) = 12r^3 - 22r^2 + 8r = 2r(6r^2 - 11r + 4)$. Ainsi, on a r = 0 ou $6r^2 - 11r + 4 = 0$. On ne peut pas avoir r = 0 car la raison est supposée non nulle dans l'énoncé.

Le trinôme $6X^2 - 11X + 4$ a pour discriminant $(-11)^2 - 4 \times 6 \times 4 = 25$.

Ses deux racines sont $\frac{11-5}{2\times 6} = \frac{1}{2}$ et $\frac{11+5}{2\times 6} = \frac{4}{3}$.

Si $r = \frac{1}{2}$, on a $u_3 = \frac{1}{2}$, puis $u_2 = 0$; c'est impossible car on doit avoir $u_2 \neq 0$.

Si $r = \frac{4}{3}$, $u_3 = 1 - \frac{4}{3} = -\frac{1}{3}$, puis $u_2 = -\frac{5}{3}$ et $u_1 = -3$. Et la relation est bien vérifiée car : $\frac{1}{3 \times \frac{5}{3}} + \frac{1}{\frac{5}{3} \times \frac{1}{3}} = 2$.

1.15 b) On a
$$u_n = u_0 + n \times r$$
. Or $u_0 = u_4 - 4r = 1 - 4 \times \frac{4}{3} = \frac{3}{3} - \frac{16}{3} = -\frac{13}{3}$. Donc $u_n = -\frac{13}{3} + \frac{4}{3}n = \frac{4n - 13}{3}$.