Complementi di Algebra 1

APPUNTI DEL CORSO DI ALGEBRA 1 TENUTO DALLA PROF. DEL CORSO E DAL PROF. LOMBARDO

Leonardo Migliorini l.migliorini@studenti.unipi.it

Anno Accademico 2022-23

Indice

1	Insiemi di generatori	4	
2	Automorfismi di $(\mathbb{Z}/p\mathbb{Z})^n$		
3	Gruppo diedrale 3.1 Elementi del gruppo	8 11 11	
4	Automorfismi di un prodotto diretto		
5	Gruppo derivato		
6	renom at Brakke	20	
	6.1 Azioni transitive	22	
7	Gruppo simmetrico	26	
	7.1 Generatori di S_n		
	7.2 Sottogruppi abeliani massimali di S_n		
	7.3 Classi di coniugio in A_n		
	7.5 Sottogruppi normali di A_n		

Ringraziamenti

Diego Monaco, Niccolò Nannicini, Pietro Crovetto, Leonardo Alfani, Daniele Lapadula.

§1 Insiemi di generatori

Definizione 1.1. Dati un gruppo G e x_1, \ldots, x_n elementi di G, chiamiamo sottogruppo generato da x_1, \ldots, x_n il più piccolo sottogruppo $\langle x_1, \ldots, x_n \rangle$ di G contenente x_1, \ldots, x_n , cioè

$$\langle x_1, \dots, x_n \rangle = \bigcap_{\substack{H \leqslant G \\ \{x_1, \dots, x_n\} \subseteq H}} H$$

Osservazione 1.2 — La definizione è ben posta, infatti l'intersezione avviene su una famiglia non vuota di insiemi dal momento che G è un sottogruppo di se stesso contenente x_1, \ldots, x_n . Inoltre l'intersezione non è vuota in quanto contiene almeno l'identità e gli elementi x_1, \ldots, x_n .

La definizione data non dà informazioni su come sono fatti gli elementi di $\langle x_1, \ldots, x_n \rangle$, cerchiamo quindi di caratterizzare in modo diverso tale sottogruppo. Poiché chiuso per l'operazione indotta da G, $\langle x_1, \ldots, x_n \rangle$ deve contenere tutti i prodotti finiti, in qualsiasi ordine, delle potenze di x_1, \ldots, x_n , cioè deve contenere l'insieme

$$\{g_1^{\pm 1} \dots g_r^{\pm 1} \mid r \in \mathbb{N}, g_i \in \{x_1, \dots, x_n\} \ \forall i \in \{1, \dots, r\}\}$$

Proposizione 1.3

Dati un gruppo G e x_1, \ldots, x_n elementi di G, allora

$$\langle x_1 \dots x_n \rangle = \{ g_1^{\pm 1} \dots g_r^{\pm 1} \mid r \in \mathbb{N}, g_i \in \{x_1, \dots, x_n\} \ \forall i \in \{1, \dots, r\} \}$$

Dimostrazione. Poniamo $S=\{g_1^{\pm 1}\dots g_r^{\pm 1}\mid r\in\mathbb{N},g_i\in\{x_1,\dots,x_n\}\ \forall i\in\{1,\dots,r\}\},$ mostriamo che S è un sottogruppo di G. Effettivamente $e\in S$ in quanto è prodotto di nessuna potenza di x_1,\dots,x_n , il prodotto di due elementi di S è ancora un elemento di S in quanto prodotto finito di potenze di x_1,\dots,x_n e l'inverso di un elemento $g_1^{\pm 1}\dots g_r^{\pm 1}\in S$ è $(g_1^{\pm 1}\dots g_r^{\pm 1})^{-1}=g_r^{\mp 1}\dots g_1^{\mp 1}$, che è un elemento di S. Abbiamo quindi che S è un sottogruppo di G contenente x_1,\dots,x_n , pertanto $\langle x_1,\dots,x_n\rangle\subseteq S$ per minimalità di $\langle x_1,\dots,x_n\rangle$. D'altra parte, per quanto osservato sopra abbiamo che tutti gli elementi della forma $g_1^{\pm 1}\dots g_r^{\pm 1}$ con $r\in\mathbb{N},\ g_i\in\{x_1,\dots,x_n\}$ per ogni $i\in\{1,\dots,r\}$ devono essere contenuti in $\langle x_1,\dots,x_n\rangle$, pertanto i due sottogruppi coincidono. \square

Osservazione 1.4 — Se G è un gruppo ciclico abbiamo che esiste $x \in G$ tale che $\langle x \rangle = G$, cioè tutti gli elementi di G sono potenze di x.

Diciamo che $x_1, \ldots, x_n \in G$ sono **generatori** per G, o che l'insieme $\{x_1, \ldots, x_n\}$ **genera** G se $\langle x_1, \ldots, x_n \rangle = G$.

§2 Automorfismi di $(\mathbb{Z}/p\mathbb{Z})^n$

Dato p un primo, vogliamo determinare quanti sono gli automorfismi di $(\mathbb{Z}/p\mathbb{Z})^n$, per fare ciò è conveniente definire una struttura di spazio vettoriale, quindi un prodotto per scalari

$$\cdot: \mathbb{Z}/p\mathbb{Z} \times (\mathbb{Z}/p\mathbb{Z})^n \longrightarrow (\mathbb{Z}/p\mathbb{Z})^n: (\overline{\lambda}, v) \longmapsto \overline{\lambda}v$$

con $\overline{\lambda}v=\underbrace{v+\ldots+v}_{\tilde{\lambda}\text{ volte}}$ e $\tilde{\lambda}$ un qualsiasi rappresentante di $\overline{\lambda}$. Tale prodotto è ben definito,

infatti se $\lambda, \lambda' \in \mathbb{Z}$ sono tali che $\overline{\lambda} = \overline{\lambda'}$, cioè esiste $k \in \mathbb{Z}$ tale che $\lambda = \lambda' + kp$, allora

$$\overline{\lambda'}v = \underbrace{v + \ldots + v}_{\lambda' \text{ volte}} = \underbrace{v + \ldots + v}_{\lambda + kp \text{ volte}} = \underbrace{v + \ldots + v}_{\lambda \text{ volte}}$$

in quanto $\underbrace{v+\ldots+v}_{kp \text{ volte}}=0$. Si verifica che $((\mathbb{Z}/p\mathbb{Z})^n,+,\cdot)$ è effettivamente uno spazio vettoriale sul campo $\mathbb{F}_p=\mathbb{Z}/p\mathbb{Z}$ (dove · è il prodotto per scalari appena definito). Per

vettoriale sul campo $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$ (dove · è il prodotto per scalari appena definito). Per come abbiamo definito il prodotto per scalari, abbiamo che per ogni $\varphi \in \operatorname{Aut}((\mathbb{Z}/p\mathbb{Z})^n)$ vale $\varphi(\lambda v) = \lambda \varphi(v)$ per ogni $\lambda \in \mathbb{F}_p$, pertanto

$$\operatorname{Aut}((\mathbb{Z}/p\mathbb{Z})^n) = GL((\mathbb{F}_p)^n) = \{\varphi : (\mathbb{F}_p)^n \longrightarrow (\mathbb{F}_p)^n \mid \varphi \text{ isomorfismo di spazi vettoriali}\}.$$

Poiché $GL((\mathbb{F}_p)^n) \cong GL_n(\mathbb{F}_p) = \{M \in M_{n \times n}(\mathbb{F}_p) \mid \det M \neq 0\}$ possiamo rappresentare ogni automorfismo di $(\mathbb{Z}/p\mathbb{Z})^n$ con una matrice invertibile di taglia $n \times n$ a coefficienti in \mathbb{F}_p .

Proposizione 2.1

Dato p un primo, allora

$$|\operatorname{Aut}((\mathbb{Z}/p\mathbb{Z})^n)| = \prod_{i=0}^{n-1} (p^n - p^i)$$

Dimostrazione. Osserviamo che un elemento di $\operatorname{Aut}((\mathbb{Z}/p\mathbb{Z})^n)$ deve necessariamente mandare una base di $(\mathbb{Z}/p\mathbb{Z})^n$ in un'altra base, e si dermina univocamente in questo modo. Sia $\{v_1,\ldots,v_n\}$ una base di $(\mathbb{Z}/p\mathbb{Z})^n$ e $\varphi\in\operatorname{Aut}((\mathbb{Z}/p\mathbb{Z})^n)$, consideriamo $\varphi(v_1)$: $\varphi(1)$ può assumere qualsiasi valore non nullo, pertanto abbiamo (p^n-1) possibilità per l'immagine del primo vettore. Per quanto riguarda v_2 , $\varphi(v_2)$ può assumere qualsiasi valore non nullo che non sia multiplo di $\varphi(v_1)$, che sono p^n-p , analogamente $\varphi(v_3)$ può assumere qualsiasi valore non nullo che non sia combinazione lineare di v_1 e v_2 , che sono p^n-p^2 , e così via. Reiteriamo questo ragionamento fino a $\varphi(v_n)$, che può essere scelto in p^n-p^{n-1} modi, da cui

$$|\operatorname{Aut}((\mathbb{Z}/p\mathbb{Z})^n)| = \prod_{i=0}^{n-1} (p^n - p^i)$$

§3 Gruppo diedrale

§3.1 Elementi del gruppo

Definizione 3.1. Dato $n \ge 2$ un numero naturale consideriamo un poligono regolare di n vertici centrato nell'origine del piano \mathbb{R}^2 , chiamiamo **gruppo diedrale** su n vertici l'insieme D_n delle isometrie di \mathbb{R}^2 che fissano il poligono, cioè che mandano i vertici in se stessi (per n = 2 consideriamo le isometrie che mandano un segmento in se stesso).

Osservazione 3.2 — D_n è un gruppo, in quanto l'applicazione identità che fissa tutti i vertici è un'isometria dal poligono in se stesso, la composizione di isometrie è un'isometria e un'isometria ammette sempre un'inversa, che è anch'essa un'isometria.

Osservazione 3.3 — Una rotazione di angolo $\frac{2\pi}{n}$ è un elemento di D_n , così come una simmetria rispetto a un asse.

Proseguendo con questa intuizione geometrica, indicheremo con r una rotazione di angolo $\frac{2\pi}{n}$ e con s una simmetria rispetto a un qualsiasi asse. Notiamo che $\operatorname{ord}(r) = n$ e $\operatorname{ord}(s) = 2$ (per convenzione, indichiamo con un angolo positivo una rotazione in senso antiorario e con un angolo negativo una rotazione in senso orario).

Definizione 3.4. Data $r \in D_n$ una rotazione di ordine n, indichiamo con \mathcal{R} il sottogruppo delle rotazioni $\langle r \rangle$.

Osservazione 3.5 — Il sottogruppo \mathcal{R} contiene tutte le rotazioni di D_n , infatti se r' è una rotazione di angolo $\frac{2k\pi}{n}$, $k \in \mathbb{Z}$, allora $r^k = r'$ in quanto anche r^k è una rotazione di angolo $\frac{2k\pi}{n}$.

Per determinare come sono fatti gli elementi di D_n , studiamo il sottogruppo $\langle r, s \rangle$. Sicuramente $\langle r, s \rangle$ contiene il sottogruppo \mathcal{R} e tutti gli elementi della forma sr^k , sr^ks , sr^ksr^h e così via, vogliamo mostrare che in effetti D_n è generato da r e s.

Osservazione 3.6 — Gli elementi della forma r^k e sr^h sono distinti per ogni $h, k \in \mathbb{Z}$. Infatti sappiamo dall'algebra lineare che il determinante di una simmetria è -1 e che il determinante di una rotazione è 1, per la moltiplicatività del determinante quindi $\det(r^k) = (\det r)^k = 1$ e $\det(sr^h) = (\det s)(\det r)^h = -1$, da cui $r^k \neq sr^h$.

Lemma 3.7

Per ogni rotazione $r \in D_n$ e per ogni simmetria $s \in D_n$ vale

$$srs^{-1} = r^{-1}$$

Dimostrazione. Senza perdita di generalità possiamo supporre che r sia la rotazione di angolo $\frac{2\pi}{n}$ e che s sia la simmetria che a ogni punto x del piano associa il punto -x.

Possiamo rappresentare rispettivamente r e s tramite le matrici

$$\begin{pmatrix} \cos\left(\frac{2\pi}{n}\right) & -\sin\left(\frac{2\pi}{n}\right) \\ \sin\left(\frac{2\pi}{n}\right) & \cos\left(\frac{2\pi}{n}\right) \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$$

svolgendo esplicitamente il prodotto quindi

$$\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \cos\left(\frac{2\pi}{n}\right) & -\sin\left(\frac{2\pi}{n}\right) \\ \sin\left(\frac{2\pi}{n}\right) & \cos\left(\frac{2\pi}{n}\right) \end{pmatrix} \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} -\cos\left(\frac{2\pi}{n}\right) & -\sin\left(\frac{2\pi}{n}\right) \\ -\sin\left(\frac{2\pi}{n}\right) & \cos\left(\frac{2\pi}{n}\right) \end{pmatrix} = \begin{pmatrix} \cos\left(\frac{2\pi}{n}\right) & \sin\left(\frac{2\pi}{n}\right) \\ -\sin\left(\frac{2\pi}{n}\right) & \cos\left(\frac{2\pi}{n}\right) \end{pmatrix} = \begin{pmatrix} \cos\left(-\frac{2\pi}{n}\right) & -\sin\left(-\frac{2\pi}{n}\right) \\ \sin\left(-\frac{2\pi}{n}\right) & \cos\left(\frac{2\pi}{n}\right) \end{pmatrix}$$

che è la matrice associata alla rotazione di angolo $-\frac{2\pi}{n}$, cioè r^{-1} .

Proposizione 3.8

Se $n \geqslant 3$ allora $|D_n| = 2n$.

Dimostrazione. Indicando con $1, \ldots, n$ gli n vertici di un poligono regolare di n lati, notiamo che un elemento $g \in D_n$ è univocamente determinato da $g(1), \ldots, g(n)$. In particolare, fissato g(1), per il quale abbiamo n possibili scelte, abbiamo al massimo due valori per g(2), cioè $g(2) \in \{g(1) + 1, g(1) - 1\}$ (a meno di sommare n se uno dei due elementi è negativo). Poiché g(1) e g(2) individuano due vettori nel piano non allineati, cioè linearmente indipendenti, ne costituiscono una base: fissati i valori di g(1) e g(2) abbiamo quindi determinato ogni elemento di D_n in modo unico e, poiché possiamo farlo in al più 2n modi, $|D_n| \leq 2n$. Ricordiamo adesso che D_n contiene gli elementi della forma r^k , sr^h al variare di $h, k \in \mathbb{Z}$, mostriamo che questi sono infatti 2n. Gli elementi r^k appartengono al gruppo ciclico \mathcal{R} di ordine n, pertanto sono n elementi distinti, inoltre

$$sr^i = sr^j \iff r^i = r^j \iff i \equiv j \pmod{n}$$

pertanto anche questi sono n elementi distinti. Allora $|D_n| = 2n$.

Osservazione 3.9 — Abbiamo mostrato che effettivamente $D_n = \langle r, s \rangle$, quindi i suoi elementi sono tutti della forma r^k , sr^h al variare di $h, k \in \mathbb{Z}$.

Osservazione 3.10 — Il risultato è valido anche per D_2 , ma con motivazioni diverse. Se consideriamo un segmento nel piano \mathbb{R}^2 giacente sulla retta y=0, le isometrie che possiamo applicare sono l'identità, la rotazione di angolo π , la simmetria lungo la retta y=0 e la simmetria lungo l'asse passante per il suo punto medio. D_2 contiene quindi quattro elementi, l'identità e tre elementi di ordine 2, pertanto è isomorfo a $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$.

§3.2 Sottogruppi

Consideriamo un sottogruppo $H \leq D_n$, distinguiamo due possibilità: $H \subseteq \mathcal{R}$ oppure $H \nsubseteq \mathcal{R}$. Nel primo caso abbiamo che $|H| \mid n$, ed è l'unico sottogruppo di \mathcal{R} con questa proprietà in quanto \mathcal{R} è ciclico, in particolare H è ciclico della forma $\left\langle \frac{n}{d} \right\rangle$, con $d \mid n$. Studiamo quindi il caso $H \nsubseteq \mathcal{R}$: notiamo che $\mathcal{R} \leq D_n$ in quanto $[D_n : \mathcal{R}] = 2$, pertanto $D_n \not \mathcal{R}$ è un gruppo con l'operazione indotta da D_n e risulta essere isomorfo a $\mathbb{Z}/2\mathbb{Z}$. Consideriamo la proiezione al quoziente

$$\pi_{\mathcal{R}}: D_n \longrightarrow D_n/_{\mathcal{R}}: g \mapsto g\mathcal{R}$$

poiché $H \nsubseteq \mathcal{R}$ abbiamo che esiste $h \in H$ tale che $h \notin \mathcal{R}$, pertanto $\pi_{\mathcal{R}}(h) \neq \mathcal{R}$ e in particolare $\pi_{\mathcal{R}}(H) \nsubseteq \{\mathcal{R}\}$. Dato che i sottogruppi di $D_{n/\mathcal{R}}$ sono solo $\{\mathcal{R}\}$ e $D_{n/\mathcal{R}}$ abbiamo $\pi_{\mathcal{R}}(H) = D_{n/\mathcal{R}}$. Osserviamo inoltre che ker $\pi_{\mathcal{R}|H} = \ker \pi_{\mathcal{R}} \cap H = \mathcal{R} \cap H$, per il Primo Teorema di Omomorfismo allora $H/H \cap \mathcal{R} \cong \mathbb{Z}/2\mathbb{Z}$, quindi $|H \cap \mathcal{R}| = \frac{1}{2}|H|$. Dato che $R \cap H \subseteq \mathcal{R}$, esiste $k \in \mathbb{Z}$ tale che $H \cap \mathcal{R} = \langle r^k \rangle$ in particolare $\langle r^k \rangle$ e $\langle sr^h \rangle$, $h \in \mathbb{Z}$, sono contenuti in H.

Proposizione 3.11

Dati $H \leq D_n$ un sottogruppo tale che $H \nsubseteq \mathcal{R}$, se r è un generatore di \mathcal{R} tale che $H \cap \mathcal{R} = \langle r^k \rangle$ e s è una simmetria allora

$$H = \langle r^k \rangle \cdot \langle sr^h \rangle = \{ xy \mid x \in \langle r^k \rangle, y \in \langle sr^h \rangle \}, h, k \in \mathbb{Z}$$

Dimostrazione. Per quanto visto sopra vale $|\langle r^k \rangle| = \frac{1}{2}|H|$, inoltre ord $(sr^h) = 2$:

$$(sr^h)^2 = sr^h sr^h = (srs)^h r^h = (srs^{-1})^h r^h = r^{-h} r^h = e$$

pertanto $\langle sr^h \rangle \cong \mathbb{Z}/2\mathbb{Z}$. Da questo ricaviamo $\langle sr^h \rangle \subseteq N_{D_n}(\langle r^k \rangle)$, infatti per ogni $m \in \mathbb{Z}$

$$(sr^h)r^{mk}(sr^h)^{-1} = sr^{h+mk}sr^h = r^{-h-mk}r^h = r^{-mk} \in \langle r^k \rangle$$

cioè $\langle sr^h \rangle \subseteq N_{D_n}(\langle r^k \rangle)$ e quindi $\langle r^k \rangle \cdot \langle sr^h \rangle$ è un sottogruppo di D_n^1 . Poiché $\langle r^k \rangle$ e $\langle sr^h \rangle$ sono contenuti in H abbiamo che $\langle r^k \rangle \cdot \langle sr^h \rangle \subseteq H$, inoltre

$$|\langle r^k \rangle \cdot \langle sr^h \rangle| = \frac{1}{2} |H| \cdot 2 = |H|$$

in quanto $\langle r^k \rangle \cap \langle sr^h \rangle = \{e\}^2$, pertanto i due sottogruppi coincidono.

Osservazione 3.12 — Per $k \mid n \in 0 \leqslant h < k$, i sottogruppi $H_{k,h} = \langle r^k, sr^h \rangle$ e $H = \langle r^k \rangle \cdot \langle sr^h \rangle$ coincidono. Infatti $H_{k,h} \subseteq H$ in quanto r^k, sr^h sono elementi di H, d'altra parte $H \subseteq H_{k,h}$ in quanto $H_{h,k}$ contiene tutti i prodotti finiti delle potenze di r^k e sr^h , in particolare gli elementi di H.

¹Dati K, N sottogruppi di un gruppo G, se vale almeno una delle inclusioni $K \subseteq N_G(N)$, $N \subseteq N_G(K)$ allora HK = KH, quindi HK è un sottogruppo di G.

²Se H, K sono sottogruppi finiti di un gruppo G e $HK \leq G$ allora vale $|HK| = \frac{|H| \cdot |K|}{|H \cap K|}$

Osservazione 3.13 — Per $k \mid n \in 0 \leqslant h < k, \langle r^k, sr^h \rangle = \langle r^k, sr^{h+k} \rangle$. Infatti $\langle r^k, sr^h \rangle \subseteq \langle r^k, sr^{h+k} \rangle$ in quanto $sr^h = (sr^{h+k})r^{-k}$ è un elemento del secondo gruppo, simmetricamente $\langle r^k, sr^{h+k} \rangle \subseteq \langle r^k, sr^h \rangle$ in quanto $sr^{h+k} = (sr^h)r^k$ è un elemento del primo gruppo.

Teorema 3.14 (Classificazione dei sottogruppi di D_n)

I sottogruppi di D_n sono della forma

- (1) $\langle r^k \rangle \operatorname{con} k \mid n;$
- (2) $\langle r^k, sr^h \rangle$ con $k \mid n, 0 \leqslant h < k$,

con $r \in \mathcal{R}$ e s una simmetria. Inoltre tali sottogruppi sono tutti distinti.

Dimostrazione. Abbiamo già visto che i sottogruppi di D_n sono di questo tipo, mostriamo quindi che sono tutti distinti. A meno di cambiare k, possiamo supporre $\mathcal{R} = \langle r \rangle$, cioè ord(r) = n. Consideriamo $H, K \leq D_n$ due sottogruppi, abbiamo tre casi:

- se $H = \langle r^k \rangle$ e $K = \langle r^m \rangle$, $m \in \mathbb{Z}$, allora $H = K \iff k = m$ in quanto entrambi sottogruppi di \mathcal{R} , pertanto esiste un unico sottogruppo della forma $\langle r^k \rangle$ per $k \mid n$;
- se $H = \langle r^k \rangle$ e $K = \langle r^m, sr^h \rangle$, $m \mid n$, allora $H \neq K$ in quanto H è ciclico e K no;
- se $H = \langle r^k, sr^h \rangle$ e $K = \langle r^m, sr^l \rangle$, con $m \mid n \in 0 \leq l < m$, considerando le intersezioni $H \cap \mathcal{R} = \langle r^k \rangle$ e $K \cap \mathcal{R} = \langle r^m \rangle$ abbiamo

$$H \cap \mathcal{R} = K \cap \mathcal{R} \iff \langle r^k \rangle = \langle r^m \rangle \iff k = m$$

Inoltre, se $sr^h \in \langle r^m, sr^l \rangle = \langle r^m \rangle \cdot \langle sr^l \rangle$, allora esiste $t \in \mathbb{Z}$ tale che

$$sr^h = (r^m)^t sr^l \iff sr^h = s^2 r^{mt} sr^l \iff r^h = r^{-mt+l} \iff h \equiv l - mt \pmod n$$

da cui ricaviamo $h \equiv l \pmod{m}$ in quanto $m \mid n$. Ma allora h = l dato che $0 \le h < k \in 0 \le l < m$.

Lemma 3.15

Dati un gruppo G e A,B due sottogruppi tali che $A\leqslant B\leqslant G$, se $B\leqslant G$ e A è caratteristico in B allora $A\leqslant G$.

Dimostrazione. Fissato $g \in G$, consideriamo l'omomorfismo di coniugio

$$\varphi_q: G \longrightarrow G: x \longmapsto gxg^{-1}$$

poiché $B \leq G$ è ben definita la restrizione $\varphi_{g|B} \in \operatorname{Aut}(B)$. Dal momento che A è un sottogruppo caratteristico di B abbiamo che $\varphi_{g|B}(A) = \varphi_g(A) = A$, pertanto $A \leq G$. \square

Corollario 3.16

Ogni sottogruppo di \mathcal{R} è normale in D_n .

Dimostrazione. Siano $\langle r^k \rangle$ un sottogruppo di \mathcal{R} e $\varphi \in \operatorname{Aut}(\mathcal{R})$, allora $\varphi(\langle r^k \rangle) = \langle r^k \rangle$ in quanto φ preserva l'ordine del sottogruppo e $\langle r^k \rangle$ è l'unico sottogruppo di \mathcal{R} di tale ordine (\mathcal{R} è ciclico), pertanto $\langle r^k \rangle$ è caratteristico in \mathcal{R} . Poiché \mathcal{R} è un sottogruppo normale di D_n , per il Lemma 2.15 abbiamo $\langle r^k \rangle \leqslant D_n$.

Osservazione 3.17 — $\mathcal{R} = \langle r \rangle$ è caratteristico in D_n per $n \geqslant 3$. Infatti per ogni $\varphi \in \operatorname{Aut}(D_n)$ allora $\operatorname{ord}(r) = \operatorname{ord}(\varphi(r))$, da cui $|\langle \varphi(r) \rangle| = n$. Se fosse $\varphi(r) \notin \mathcal{R}$ avremmo $\operatorname{ord}(\varphi(r)) = 2$, quindi $|\langle \varphi(r) \rangle| = n = 2$, che è assurdo in quanto $|D_n| \geqslant 6$. Questo non è vero per D_2 , che contiene una rotazione e due simmetrie: poiché $\operatorname{Aut}(D_2) \cong S_3$ esiste un $\psi \in \operatorname{Aut}(D_2)$ che manda la rotazione in una riflessione.

Corollario 3.18

Per $k \mid n \in 0 \leq h < k$, il sottogruppo $H_{k,h} = \langle r^k, sr^h \rangle$ è normale in D_n se e solo se $r, s \in N_{D_n}(H_{k,h})$.

Dimostrazione.

- Se $H_{k,h} \leq D_n$ allora $N_{D_n}(H_{k,h}) = D_n$, in particulare $r, s \in N_{D_n}(H_{k,h})$;
- se $r, s \in N_{D_n}(H_{k,h})$, poiché il normalizzatore è un sottogruppo di D_n abbiamo che $D_n = \langle r, s \rangle \subseteq N_{D_n}(H_{k,h})$, pertanto $H_{k,h} \leq D_n$.

Vediamo quali sono i sottogruppi normali della forma $\langle r^k, sr^h \rangle$, consideriamo i coniugi

$$\varphi_s: D_n \longrightarrow D_n: x \longmapsto sxs^{-1} \qquad \varphi_r: D_n \longrightarrow D_n: x \longmapsto rxr^{-1}$$

e sia $x_1^{\pm 1} \dots x_m^{\pm 1} \in H_{k,h} = \langle r^k, sr^h \rangle$, allora

$$\varphi_s(x_1^{\pm 1} \dots x_m^{\pm 1}) = \varphi_s(x_1)^{\pm 1} \dots \varphi_s(x_m)^{\pm 1} \in \langle srs, r^h s^{-1} \rangle = \langle sr^k s, r^h s^{-1} \rangle = \langle r^k, sr^{-h} \rangle$$
$$\varphi_r(x_1^{\pm 1} \dots x_m^{\pm 1}) = \varphi_r(x_1)^{\pm 1} \dots \varphi_r(x_m)^{\pm 1} \in \langle r^k, rsr^{h-1} \rangle = \langle r^k, sr^{h-2} \rangle$$

Pertanto $H_{k,h} \leq D_n$ se e solo se $\langle r^k, sr^{h-2} \rangle = \langle r^k, sr^{-h} \rangle = \langle r^k, sr^h \rangle$, se e solo se $h \equiv h-2 \pmod{k}$, cioè $k \in \{1,2\}$.

- Se k=1 allora $H_{k,h}=\langle r,s\rangle=D_n;$
- se k=2 (e n pari) allora $H_{k,h}=\langle r^2,sr\rangle$ oppure $H_{k,h}=\langle r^2,s\rangle$.

Osservazione 3.19 — Il secondo caso si presenta solo se n è pari, questo corrisponde al fatto che in un poligono con un numero pari di lati gli assi di simmetria sono per metà passanti per i lati e metà passanti per i vertici opposti. In un poligono con un numero dispari di lati gli assi di simmetria sono tutti passanti per i lati.

§3.3 Classi di coniugio

Abbiamo visto che possiamo scrivere ogni elemento di D_n nella forma $s^h r^k$, dove s è una simmetria e r è una rotazione che genera \mathcal{R} , con $h \in \{0, 1\}$ e $k \in \{0, \ldots, n-1\}$ in quanto ord(s) = 2 e ord(r) = n. Inoltre tutti gli elementi della forma sr^h hanno ordine 2.

Consideriamo la classe di coniugio di r, $\mathcal{C}\ell(r) = \{grg^{-1} \mid g \in D_n\}$, fissato $g \in D_n$ abbiamo due possibili valori per grg^{-1} :

- se $g \in \mathcal{R}$ allora g è una potenza di r, pertanto i due elementi commutano e si ha $grg^{-1} = r$;
- se $g \notin \mathcal{R}$ allora $g = sr^h$ con $h \in \mathbb{Z}$, quindi

$$(sr^h)r(sr^h)^{-1} = (sr^h)r(sr^h) = sr^{h+1}sr^h = s^2r^{-1-h}r^h = r^{-1}$$

cioè $\mathcal{C}\ell(r)=\{r,r^{-1}\}$. In modo analogo si mostra che $\mathcal{C}\ell(r^k)=\{r^k,r^{-k}\}$ per ogni $k\in\mathbb{Z}$.

Osservazione 3.20 — Se n è pari, scriviamo n=2m e consideriamo la classe di coniugio di r^m . Poiché $r^m \neq e$ e $r^{2m} = (r^m)^2 = e$ abbiamo che ord $(r^m) = 2$, cioè $(r^m)^{-1} = r^m$. Allora $\mathcal{C}\ell(r^m) = \{r^m\}$, pertanto abbiamo trovato un elemento del centro di D_n (infatti se G è un gruppo e $x \in G$, allora $x \in Z(G)$ se e solo se $\mathcal{C}\ell(x) = \{x\}$).

Consideriamo adesso la classe di coniugio di sr^h , $\mathcal{C}\ell(sr^h) = \{g(sr^h)g^{-1} \mid g \in D_n\}$, fissato $g \in D_n$ abbiamo due possibili valori per $g(sr^h)g^{-1}$:

• se $g \in \mathcal{R}$ allora $g = r^k \text{ con } k \in \mathbb{Z}$, pertanto

$$r^k(sr^h)r^{-k} = sr^{-k}r^hr^{-k} = sr^{h-2k}$$

• se $g \notin \mathcal{R}$ allora $g = sr^k$ con $k \in \mathbb{Z}$, pertanto

$$(sr^k)(sr^h)(sr^k)^{-1} = (sr^k)(sr^h)(sr^k) = sr^{2k-h}$$

cioè $\mathcal{C}\ell(sr^h) = \{sr^{h-2k}, sr^{2k-h} \mid k \in \mathbb{Z}\}.$

Osservazione 3.21 — La classe di coniugio di sr^h contiene tutte le simmetrie in cui l'esponente di r ha la stessa parità di h. Se n è dispari tutte le simmetrie appartengono alla stessa classe, mentre se n è pari abbiamo due classi distinte: quella delle simmetrie rispetto agli assi passanti per i vertici opposti e quella delle simmetrie rispetto agli assi passanti per i lati.

§3.4 Legge di gruppo e omomorfismi

Se g è un elemento di D_n possiamo scrivere g in modo unico come $s^a r^b$ con $a \in \{0, 1\}$ e $b \in \{0, \ldots, n-1\}$, utilizziamo questa proprietà per esplicitare la legge di gruppo di D_n . Fissati $g_1, g_2 \in D_n$, scriviamo $g_1 = s^{a_1} r^{b_1}$ e $g_2 = s^{a_2} r^{b_2}$ con $a_1, a_2 \in \{0, 1\}$ e $b \in \{0, \ldots, n-1\}$,

$$g_1g_2 = (s^{a_1}r^{b_1})(s^{a_2}r^{b_2}) = s^{a_1}s^{a_2}(s^{a_2}r^{b_1}s^{-a_2})r^{b_2} = s^{a_1}s^{a_2}\varphi_{s^{a_2}}(r^{b_1})r^{b_2}$$

dove $\varphi_{s^{a_2}}$ è l'automorfismo di coniugio per s^{a_2} (ricordiamo che $s^{a_2}=s^{-a_2}$). Poiché $\varphi_{s^{a_2}}$ è un omomorfismo e $\varphi_x \circ \varphi_y = \varphi_{xy}$ per ogni $x,y \in G$, abbiamo $(\varphi_{s^{a_2}}(r^{b_1})) = (\varphi_s^{a_2}(r))^{b_1}$, quindi

$$g_1g_2 = s^{a_1}s^{a_2}(\varphi_s^{a_2}(r))^{b_1}r^{b_2} = s^{a_1+a_2}r^{(-1)^{a_2}b_1+b_2}$$

Per l'unicità della scrittura che stiamo usando (scegliendo $a \in \{0, 1\}$ e $b \in \{0, \dots, n-1\}$), possiamo identificare ogni elemento $g = s^a r^b \in D_n$ con la coppia (a, b), la legge di gruppo è quindi tale che

$$(a_1, b_1)(a_2, b_2) = (a_1 + a_2, (-1)^{a_2}b_1 + b_2)$$

Usiamo il risultato appena ottenuto per descrivere gli omomorfismi da D_n in un qualsiasi gruppo G. Poiché ogni elemento $g \in D_n$ si scrive come $s^a r^b$, con $a, b \in \mathbb{Z}$, un omomorfismo $\varphi \in \text{Hom}(D_n, G)$ è univocamente determinato da $\varphi(r)$ e $\varphi(s)$: infatti

$$\varphi(g) = \varphi(s^a r^b) = \varphi(s)^a \varphi(r)^b$$

Poniamo $x = \varphi(s)$, $y = \varphi(r)$, necessariamente ord $(x) \mid 2$ e ord $(y) \mid n$, cioè $x^2 = e_G$ e $y^n = e_G$, inoltre

$$xyx^{-1} = \varphi(s)\varphi(r)\varphi(s)^{-1} = \varphi(srs^{-1}) = \varphi(r^{-1}) = \varphi(r)^{-1} = y^{-1}$$

Mostriamo che effettivamente queste condizioni sono anche sufficienti:

Proposizione 3.22

Dati un gruppo G e un'applicazione

$$\varphi: D_n \longrightarrow G: s^a r^b \longmapsto x^a y^b$$

dove $x=\varphi(s)$ e $y=\varphi(r)$, allora φ è un omomorfismo se e solo se $x^2=e_G,\,y^n=e_G$ e $xyx^{-1}=y^{-1}$.

Dimostrazione. Mostriamo che tali condizioni sono sufficienti affinché φ sia un omomorfismo. Poiché $x^m = x^{-m}$ per ogni $m \in \mathbb{Z}$, fissati $a_1, a_2, b_1, b_2 \in \mathbb{Z}$ abbiamo

$$(x^{a_1}y^{b_1})(x^{a_2}y^{b_2}) = x^{a_1}x^{a_2}(x^{a_2}y^{b_1}x^{-a_2})y^{b_2} = x^{a_1+a_2}\varphi_{x^{a_2}}(y^{b_1})y^{b_2} =$$

$$= x^{a_1+a_2}(\varphi_x^{a_2}(y))^{b_1}y^{b_2} = x^{a_1+a_2}y^{(-1)^{a_2}b_1}y^{b_2} = x^{a_1+a_2}y^{(-1)^{a_2}b_1+b_2}$$

dove φ_g è l'automorfismo di coniugio per $g\in G$. Allora abbiamo che φ è un omomorfismo, infatti per ogni $h_1,h_2,k_1,k_2\in\mathbb{Z}$

$$\varphi((s^{h_1}r^{k_1})(s^{h_2}r^{k_2})) = \varphi(s^{h_1+h_2}r^{(-1)^{h_2}k_1+k_2}) =$$

$$= x^{h_1+h_2}y^{(-1)^{h_2}k_1+k_2} = (x^{h_1}y^{k_1})(x^{h_2}y^{k_2}) = \varphi(s^{h_1}r^{h_2})\varphi(s^{h_2}r^{h_2})$$

Osservazione 3.23 — Abbiamo visto che le condizioni $D_n = \langle r, s \rangle$ con ord(r) = n, ord(s) = 2 e $srs^{-1} = r^{-1}$ determinano in modo univoco la struttura astratta di D_n , racchiudiamo queste proprietà fondamentali nella scrittura

$$\langle r,s\mid r^n=s^2=e,srs^{-1}=r^{-1}\rangle$$

Tale scrittura si chiama presentazione di un gruppo e ne determina in modo

univoco la classe di isomorfismo. Senza scendere troppo nei dettagli, nella presentazione indichiamo un insieme di generatori minimale e il minor numero di proprietà che i generatori devono rispettare affinché il gruppo abbia la struttura desiderata. Altri esempi di presentazioni sono

$$\langle x \mid x^n = e \rangle$$

$$\langle x \rangle$$

$$\langle x, y \mid x^2 = y^2 = e, xy = yx \rangle$$

rispettivamente dei gruppi $\mathbb{Z}/n\mathbb{Z}$, \mathbb{Z} , $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ (notiamo che $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ e D_2 hanno la stessa presentazione, e questo ha senso in quanto i due gruppi sono isomorfi).

§3.5 Automorfismi

Studiamo separatamente gli automorfismi di D_n per $n \ge 3$ e di D_2 .

Per $n \geq 3$ consideriamo $\varphi \in \operatorname{Aut}(D_n)$, poiché $D_n = \langle r, s \rangle$ è sufficiente studiare le immagini di r, s per determinare φ . Osserviamo che necessariamente $\varphi(r) = r^k$ con (n, k) = 1, infatti φ deve preservare l'ordine di r e la sua immagine deve essere un generatore di \mathcal{R} , in quanto \mathcal{R} è caratteristico in D_n è isomorfo a $\mathbb{Z}/n\mathbb{Z}$. Per quanto riguarda $\varphi(s)$, se n è dispari allora le simmetrie sono gli unici elementi di ordine 2, pertanto $\varphi(s) = sr^h$ con $0 \leq h < n$. Se n è pari abbiamo apparentemente due possibilità:

- (1) $\varphi(s) = sr^h$, con $0 \leqslant h < n$;
- (2) $\varphi(s) = r^{\frac{n}{2}}$, se n è pari.

D'altra parte, se fosse $\varphi(s) = r^{\frac{n}{2}}$ allora φ non sarebbe né iniettiva né surgettiva, pertanto $\varphi(s) = sr^h$ con $0 \le h \le n$. Verifichiamo che φ è un omomorfismo, per la caratterizzazione che abbiamo dato sopra è sufficiente verificare che $\varphi(s)\varphi(r)\varphi(s)^{-1} = \varphi(r)^{-1}$:

$$\varphi(s)\varphi(r)\varphi(s)^{-1} = (sr^h)r^k(sr^h)^{-1} = sr^{h+k}r^{-h}s = sr^ks^{-1} = r^{-k} = \varphi(r)^{-1}$$

Inoltre φ è surgettiva, infatti $r^k, sr^h \in \text{Im}\varphi$, cioè

$$\langle r^k, sr^h \rangle = \langle r, sr^h \rangle = \langle s, r \rangle = D_n \subseteq \operatorname{Im} \varphi$$

da cui $\operatorname{Im}\varphi = D_n$. Poiché D_n è finito abbiamo che φ è un automorfismo. Gli automorfismi di $D_n = \langle r, s \rangle$ quindi sono tutti e soli gli omomorfismi da D_n in D_n che mandano r in un generatore di \mathcal{R} , che sono $\phi(n)$, e s in un'altra simmetria, che sono n, pertanto $|\operatorname{Aut}(D_n)| = n\phi(n)$.

Per n=2, sappiamo che $D_2\cong (\mathbb{Z}/2\mathbb{Z})^2$, pertanto

$$\operatorname{Aut}(D_2) \cong \operatorname{Aut}((\mathbb{Z}/2\mathbb{Z})^2) \cong S_3$$

Alternativamente possiamo considerare $(\mathbb{Z}/2\mathbb{Z})^2$ come spazio vettoriale su \mathbb{F}_2 , pertanto abbiamo

$$\operatorname{Aut}(D_2) \cong GL_2(\mathbb{F}_2)$$

Per quanto visto nella sezione (2), $GL_2(\mathbb{F}_2)$ contiene (4-1)(4-2)=6 elementi, inoltre GL_2 non è un gruppo commutativo (con l'operazione di prodotto tra matrici), pertanto $GL_2(\mathbb{F}_2) \cong S_3$. In particolare, gli elementi di $GL_2(\mathbb{F}_2)$ sono:

- $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, che è l'identità del gruppo;
- $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, $\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$, $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$, che sono gli elementi di ordine 2 corrispondenti alle trasposizioni;
- $\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$ che sono gli elementi di ordine 3 corrispondenti ai 3-cicli.

§4 Automorfismi di un prodotto diretto

Consideriamo due gruppi finiti H, K, studiamo il gruppo degli automorfismi di $H \times K$. Chiaramente esiste un'inclusione di $\operatorname{Aut}(H) \times \operatorname{Aut}(K)$ in $\operatorname{Aut}(H \times K)$ data dall'omomorfismo

$$\iota: \operatorname{Aut}(H) \times \operatorname{Aut}(K) \longrightarrow \operatorname{Aut}(H \times K) : (\varphi_1, \varphi_2) \longmapsto \varphi_1 \times \varphi_2$$

con

$$\varphi_1 \times \varphi_2 : H \times K \longrightarrow H \times K : (g_1, g_2) \longmapsto (\varphi_1(g_1), \varphi_2(g_2))$$

Mostriamo che ι è ben definita e che è un omomorfismo iniettivo:

• per ogni $(\varphi_1, \varphi_2) \in \text{Aut}(H) \times \text{Aut}(K)$, per ogni $(g_1, g_2), (h_1, h_2) \in H \times K$ abbiamo

$$(\varphi_1 \times \varphi_2)((g_1, g_2)(h_1, h_2)) = (\varphi_1(g_1h_1), \varphi_2(g_2h_2)) = (\varphi_1(g_1)\varphi_1(h_1), \varphi_2(g_2)\varphi_2(h_2)) = (\varphi_1(g_1), \varphi_2(g_2))(\varphi_1(h_1), \varphi_2(h_2)) = ((\varphi_1 \times \varphi_2)(g_1, g_2))((\varphi_1 \times \varphi_2)(h_1, h_2))$$

cioè $\varphi_1 \times \varphi_2$ è un omomorfismo. Inoltre

$$\ker(\varphi_1 \times \varphi_2) = \{(g_1, g_2) \in H \times K \mid (\varphi_1(g_1), \varphi_2(g_2)) = (e_H, e_K)\} = \{(0, 0)\}$$

quindi $\varphi_1 \times \varphi_2 \in \text{Aut}(H \times K)$ in quanto $H \times K$ è finito, pertanto ι è ben definita;

• per ogni $(\varphi_1, \varphi_2), (\psi_1, \psi_2) \in \operatorname{Aut}(H) \times \operatorname{Aut}(K)$, per ogni $(g_1, g_2) \in H \times K$ abbiamo

$$\iota((\varphi_1, \varphi_2)(\psi_1, \psi_2))(g_1, g_2) = \iota(\varphi_1 \psi_1, \varphi_2 \psi_2)(g_1, g_2) = (\varphi_1 \psi_1 \times \varphi_2 \psi_2)(g_1, g_2) =$$

$$= (\varphi_1(\psi_1(g_1)), \varphi_2(\psi_2(g_2))) = (\varphi_1 \times \varphi_2)(\psi_1(g_1), \psi_2(g_2)) =$$

$$= ((\varphi_1 \times \varphi_2)(\psi_1 \times \psi_2))(g_1, g_2) = (\iota(\varphi_1, \varphi_2)\iota(\psi_1, \psi_2))(g_1, g_2)$$

cioè $\iota((\varphi_1, \varphi_2)(\psi_1, \psi_2)) = \iota(\varphi_1, \varphi_2)\iota(\psi_1, \psi_2)$, quindi ι è un omomorfismo;

• ι è iniettiva, infatti

$$\ker \iota = \{ (\varphi_1, \varphi_2) \in \operatorname{Aut}(H) \times \operatorname{Aut}(K) \mid \iota(\varphi_1, \varphi_2) = e_{\operatorname{Aut}(H \times K)} \} =$$

$$= \{ (\varphi_1, \varphi_2) \in \operatorname{Aut}(H) \times \operatorname{Aut}(K) \mid (\varphi_1(g_1), \varphi_2(g_2)) = (e_H, e_K) \, \forall (g_1, g_2) \in H \times K \}$$

Poiché gli unici elementi $\varphi_1 \in \text{Aut}(H), \ \varphi_2 \in \text{Aut}(K)$ tali che $\varphi_1(H) = \{e_H\}$ e $\varphi_2(K) = \{e_K\}$ sono rispettivamente $e_{\text{Aut}(H)}, e_{\text{Aut}(K)}$ abbiamo

$$\ker \iota = \{(e_{\operatorname{Aut}(H)}, e_{\operatorname{Aut}(K)})\} = \{e_{\operatorname{Aut}(H \times K)}\}\$$

Proposizione 4.1

Dati due gruppi finiti H, K, $\operatorname{Aut}(H) \times \operatorname{Aut}(K) \cong \operatorname{Aut}(H \times K)$ se e solo se $H \times \{e_K\}$ e $\{e_H\} \times K$ sono sottogruppi caratteristici di $H \times K$.

Dimostrazione. Sia ι l'immersione da $\operatorname{Aut}(H) \times \operatorname{Aut}(K)$ in $\operatorname{Aut}(H \times K)$ definita come sopra, se ι è surgettiva allora ogni elemento di $\operatorname{Aut}(H \times K)$ può essere scritto come $\varphi_1 \times \varphi_2$ con $\varphi_1 \in \operatorname{Aut}(H)$ e $\varphi_2 \in \operatorname{Aut}(K)$. Allora abbiamo

$$(\varphi_1 \times \varphi_2)(H \times \{e_K\}) = (\varphi_1(H), \varphi_2(\{e_K\})) = H \times \{e_K\}$$

$$(\varphi_1 \times \varphi_2)(\{e_H\} \times K) = (\varphi_1(\{e_H\}), \varphi_2(K)) = \{e_H\} \times K$$

cioè $H \times \{e_K\}$ e $\{e_H\} \times K$ sono caratteristici in $H \times K$. Viceversa, se i due sottogruppi sono caratteristici, dato $\varphi \in \operatorname{Aut}(H \times K)$ poniamo $\varphi_1 \in \operatorname{Aut}(H)$ tale che $\varphi(g_1, e_K) = (\varphi_1(g_1), e_K)$ e $\varphi_2 \in \operatorname{Aut}(K)$ tale che $\varphi(e_H, g_2) = (e_H, \varphi_2(g_2))$ per ogni $g_1 \in H$, per ogni $g_2 \in K$ (questo possiamo farlo in quanto $H \times \{e_K\}$ e $\{e_H\} \times K$ sono caratteristici). Allora abbiamo

$$\varphi(g_1, g_2) = \varphi((g_1, e_K)(e_H, g_2)) = \varphi(g_1, e_K)\varphi(e_H, g_2) =$$

$$= (\varphi_1(g_1), e_K)(e_H, \varphi_2(g_2)) = (\varphi_1(g_1), \varphi_2(g_2)) = (\varphi_1 \times \varphi_2)(g_1, g_2)$$

cioè ι è surgettiva e quindi un isomorfismo tra $\operatorname{Aut}(H) \times \operatorname{Aut}(K)$ e $\operatorname{Aut}(H \times K)$.

Esempio 4.2

Consideriamo il gruppo $G = \mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$, osserviamo che il sottogruppo $\{0\} \times \mathbb{Z}/n\mathbb{Z}$ è caratteristico in quanto un automorfismo φ di G deve preservare gli ordini degli elementi, in particolare quello di un generatore, quindi l'immagine di un generatore è un altro generatore del sottogruppo. Poiché gli elementi di G di ordine finito sono tutti della forma (0,d) abbiamo che $\varphi(\{0\} \times \mathbb{Z}/n\mathbb{Z}) = \{0\} \times \mathbb{Z}/n\mathbb{Z}$. Viceversa, l'immagine di φ su un generatore di $\mathbb{Z} \times \{0\}$, ad esempio $\varphi(1,0)$, è della forma (a,b), e questo implica che $\mathbb{Z} \times \{0\}$ non è caratteristico. Se φ è surgettivo, necessariamente esiste $(x,y) \in \mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$ tale che $\varphi(x,y) = (\pm 1,0)$, da cui, posti $\varphi(1,0) = (a,b)$ e $\varphi(0,1) = (0,d)$ con n e d coprimi, abbiamo

$$\varphi(x,y) = \varphi(x(1,0) + y(0,1)) = x\varphi(1,0) + y\varphi(0,1) =$$

$$= x(a,b) + y(0,d) = (xa,xb + yd) = (\pm 1,0) \iff a = \pm 1$$

Viceversa, se $a=\pm 1$ allora φ è surgettiva, infatti per ogni $(x_0,y_0)\in \mathbb{Z}\times \mathbb{Z}/n\mathbb{Z}$, scegliendo $x=x_0a$ e $y\equiv d^{-1}(y_0-x_0ab)\pmod{n}$ abbiamo

$$\varphi(x,y) = (x_0a^2, x_0ab + dd^{-1}(y_0 - x_0ab)) = (x_0, y_0)$$

e questo ci permette di concludere che $\mathbb{Z} \times \{0\}$ non è un sottogruppo caratteristico. In questo caso abbiamo solo un'immersione del gruppo $\operatorname{Aut}(\mathbb{Z}) \times \operatorname{Aut}(\mathbb{Z}/n\mathbb{Z})$ dentro a $\operatorname{Aut}(\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z})$, in quanto gli automorfismi che mandano $(\pm 1,0)$ in (a,b) con $a = \pm 1$ e $b \neq 0$ non possono essere ristretti ad automorfismi di $\mathbb{Z} \times \{0\}$.

È utile riuscire a determinare se i sottogruppi $H \times \{e_K\}$, $\{e_H\} \times K$ sono caratteristici in $H \times K$, da cui il seguente risultato:

Proposizione 4.3

Dati due gruppi finiti H, K, se (|H|, |K|) = 1 allora $H \times \{e_K\}$ e $\{e_H\} \times K$ sono sottogruppi caratteristici di $H \times K$.

Dimostrazione. Posti n = |H|, m = |K|, consideriamo l'insieme

$$S = \{(g_1, g_2) \in H \times K \mid (g_1, g_2)^n = (e_H, e_K)\}$$

Osserviamo che $H \times \{e_K\} = S$, infatti $H \times \{e_K\} \subseteq S$ in quanto tutti gli elementi di $H \times e_K$ hanno ordine che divide n. D'altra parte dato $(g_1, g_2) \in S$, se ord $(g_1, g_2) \mid n$ allora ord $(g_1) \mid n$ e ord $(g_2) \mid n$, ma ord $(g_2) \mid m$ per il Teorema di Lagrange, quindi

 $\operatorname{ord}(g_2)=1$ e $S\subseteq H\times\{e_K\},$ da cui l'uguaglianza. Con un ragionamento analogo possiamo caratterizzare $\{e_H\}\times K$ come

$$\{e_H\} \times K = \{(g_1, g_2) \in H \times K \mid (g_1, g_2)^m = (e_H, e_K)\}$$

Poiché un automorfismo di $H \times K$ deve preservare gli ordini degli elementi, per la caratterizzazione data abbiamo che i due sottogruppi sono caratteristici.

Corollario 4.4

Se $m, n \geqslant 2$ sono interi coprimi allora

$$\operatorname{Aut}(\mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/m\mathbb{Z}) \cong \operatorname{Aut}(\mathbb{Z}/n\mathbb{Z}) \times \operatorname{Aut}(\mathbb{Z}/m\mathbb{Z})$$

§5 Gruppo derivato

Definizione 5.1. Dati un gruppo G e x, y elementi di G, chiamiamo **commutatore** di x e y l'elemento $[x, y] = xyx^{-1}y^{-1}$. Chiamiamo **sottogruppo derivato** di G, oppure **sottogruppo dei commutatori** di G il sottogruppo

$$G' = \langle \{ [x, y] \mid x, y \in G \} \rangle$$

Osservazione 5.2 — [x, y] = e se e solo se x e y commutano.

Proposizione 5.3

Dato un gruppo G, valgono i seguenti fatti:

- (1) G' è un sottogruppo caratteristico di G;
- (2) $G_{G'}$ è un gruppo abeliano;
- (3) dato A un gruppo abeliano e $\varphi \in \text{Hom}(G, A)$, allora $G' \subseteq \ker \varphi$.

Dimostrazione. Mostriamo le affermazioni singolarmente:

(1) consideriamo $\varphi \in \operatorname{Aut}(G)$, poiché φ preserva la struttura di gruppo è sufficiente descrivere come φ agisce sui generatori di G' per determinare $\varphi(G')$. Fissati $x,y\in G$ abbiamo

$$\varphi([x,y]) = \varphi(xyx^{-1}y^{-1}) = \varphi(x)\varphi(y)\varphi(x)^{-1}\varphi(y)^{-1} \in G'$$

pertanto $\varphi(G') \subseteq G'$, da cui l'uguaglianza in quanto φ è bigettiva;

- (2) dati $x, y \in G$, $xG' \cdot yG' = yG' \cdot xG'$ se e solo se xyG' = yxG', che è equivalente a richiedere $xyx^{-1}y^{-1} \in G'$. Dato che effettivamente $xyx^{-1}y^{-1} = [x, y]$ è un elemento di G' abbiamo che $G_{G'}$ è abeliano;
- (3) dati $x, y \in G$, abbiamo

$$\varphi([x,y])=\varphi(xyx^{-1}y^{-1})=\varphi(x)\varphi(y)\varphi(x)^{-1}\varphi(y)^{-1}$$

e questo coincide con l'identità di A in quanto A è abeliano. Poiché l'immagine di φ è un sottogruppo di A allora $G' \subseteq \ker \varphi$, in quanto il commutatore di ogni coppia di elementi di G è contenuto in $\ker \varphi$.

Osservazione 5.4 — Come conseguenza del Primo Teorema di Omomorfismo abbiamo che $G_{/G'}$ è il "più grande" quoziente abeliano di G, o analogamente che G' è il "più piccolo" sottogruppo di G che produce un quoziente abeliano. In questo senso, G' misura quanto è abeliano il gruppo G.

Osservazione 5.5 — Dato A un gruppo abeliano, il Primo Teorema di Omomorfismo produce una bigezione naturale tra $\operatorname{Hom}(G,A)$ e $\operatorname{Hom}\left({}^{G}\!/_{G'},A\right)$. Consideriamo infatti $\varphi\in\operatorname{Hom}(G,A),\ \pi_{G'}:G\longrightarrow G'/_{G'}$ la proiezione al quoziente e $\overline{\varphi}:G'/_{G'}\longrightarrow A$, il Teorema fornisce un'unico omomorfismo $\overline{\varphi}:G'/_{G'}\longrightarrow A$ che

rende commutativo il diagramma

Viceversa, dato un omomorfismo $\overline{\varphi}: G'_{G'} \longrightarrow A$ otteniamo un'unico omomorfismo $\varphi: G \longrightarrow A$ con la composizione $\pi_{G'} \circ \overline{\varphi}$.

Esempio 5.6

Consideriamo il gruppo S_3 , chiaramente $(S_3)' \neq \{id\}$ in quanto $S_3/\langle id\rangle \cong S_3$ che non è abeliano, pertanto abbiamo due possibilità: $(S_3)' = S_3$ oppure $(S_3)' = \langle (1\ 2\ 3)\rangle^a$. D'altra parte $S_3/\langle (1\ 2\ 3)\rangle$ è isomorfo a $\mathbb{Z}/2\mathbb{Z}$, che è abeliano, pertanto $(S_3)'$ è contenuto in $\langle (1\ 2\ 3)\rangle$, da cui necessariamente $(S_3)' = \langle (1\ 2\ 3)\rangle$. Più in generale vedremo che $(S_n)' = \mathcal{A}_n$, dove \mathcal{A}_n è il sottogruppo di S_n delle permutazioni pari (sappiamo già che $(S_n)' \subseteq \mathcal{A}_n$ in quanto $S_n/\mathcal{A}_n \cong \mathbb{Z}/2\mathbb{Z}$).

^aGli unici sottogruppi normali di S_3 sono $\{id\}$, $\langle (1\ 2\ 3) \rangle$, S_3 .

§6 Azioni di gruppo

§6.1 Azioni transitive

Definizione 6.1. Siano G un gruppo e X un insieme, un'azione

$$\varphi: G \longrightarrow S(X): g \longmapsto \varphi_q$$

si dice **transitiva** se per ogni $x, y \in X$ esiste $g \in G$ tale che $\varphi_g(x) = y$, equivalentemente se $\mathrm{Orb}(x) = G$ per ogni $x \in X$. Diciamo anche che G **agisce transitivamente** su X tramite φ .

Lemma 6.2

Dato G un gruppo finito e $H \lneq G$ un suo sottogruppo proprio, allora

$$G \neq \bigcup_{g \in G} gHg^{-1}$$

Dimostrazione. Poniamo $K = \bigcup_{g \in G} gHg^{-1}$, osserviamo che gli elementi della forma xHx^{-1} con $x \in N_G(H)$ contribuiscono una sola volta all'unione, in quanto $xHx^{-1} = H$, pertanto K è unione di $[G:N_G(H)] = \frac{|G|}{|N_G(H)|}$ elementi distinti³. Poiché $H \subseteq N_G(H)$ e $|gHg^{-1}| = |H|$ per ogni $g \in G$, possiamo stimare la cardinalità di K nel seguente modo

$$|K| \leqslant \frac{|G|}{|N_G(H)|}|H| \leqslant \frac{|G|}{|H|}|H| = |G|.$$

D'altra parte, per il Principio di Inclusione-Esclusione abbiamo che |K| è somma delle cardinalità dei singoli termini dell'unione se e solo se l'unione è disgiunta, ma questo è falso in quanto ogni classe di coniugio di H contiene l'identità del gruppo, quindi |K| < |G|, cioè $G \neq K$.

Proposizione 6.3

Dati un gruppo G e un insieme X, se

$$\varphi: G \longrightarrow S(X): g \longmapsto \varphi_g$$

è un'azione transitiva valgono i seguenti fatti:

- (1) per ogni $x, y \in X$ esiste $g \in G$ tale che $g \operatorname{St}(x) g^{-1} = \operatorname{St}(y)$;
- (2) se $|X| \ge 2$ allora esiste $g \in G$ che agisce su X senza punti fissi, cioè tale che $\varphi_g(x) \ne x$ per ogni $x \in X$.

Dimostrazione. Mostriamo i due fatti singolarmente:

³Infatti, se $X = \{N \mid N \leq G\}$ e φ è l'azione di coniugio su X, per ogni $N \in X$ abbiamo $\operatorname{St}(N) = N_G(N)$ e $\operatorname{Orb}(N) = \mathcal{C}\ell(N) = \{gNg^{-1} \mid g \in G\}$. Vale quindi la relazione $|G| = |\mathcal{C}\ell(N)| \cdot |N_G(N)|$.

(1) sia $g \in G$ tale che $\varphi_g(x) = y$, dato $h \in g\operatorname{St}(x)g^{-1}$ esiste $w \in \operatorname{St}(x)$ tale che $h = gwg^{-1}$. Allora

$$\varphi_h(y) = \varphi_{qwq^{-1}}(y) = \varphi_g(\varphi_w(\varphi_q^{-1}(y))) = \varphi_g(\varphi_w(x)) = \varphi_g(x) = y$$

pertanto $g \operatorname{St}(x) g^{-1} \subseteq \operatorname{St}(y)$. Osservando che $\varphi_{g^{-1}}(y) = x$ e ragionando in modo simmetrico otteniamo l'inclusione $g^{-1} \operatorname{St}(y) g \subseteq \operatorname{St}(x)$, da cui $g \operatorname{St}(x) g^{-1} = \operatorname{St}(y)$;

(2) un elemento $g \in G$ con tali proprietà non può essere contenuto nello stabilizzatore di nessun elemento di X, cioè cerchiamo $g \in G$ tale che

$$g \in \bigcap_{x \in X} \operatorname{St}(x)^{\mathcal{C}}$$

che è equivalente a

$$g \notin \bigcup_{x \in X} \operatorname{St}(x) = \bigcup_{h \in G} h \operatorname{St}(x_0) h^{-1}$$

per il fatto precedente, fissato $x_0 \in G$. Osserviamo che $\operatorname{St}(x_0) \neq G$, infatti se fosse $\operatorname{St}(x_0) = G$ avremmo

$$|\operatorname{Orb}(x_0)| = \frac{|G|}{|\operatorname{St}(x_0)|} = 1$$

ma questo è assurdo in quanto $\operatorname{Orb}(x_0)=X$ per la transitività di φ e $|X|\geqslant 2$. Allora per il Lemma 6.2 abbiamo

$$G \neq \bigcup_{h \in G} h \operatorname{St}(x_0) h^{-1}$$

pertanto esiste almeno un elemento $g \in G$ con la proprietà voluta.

Proposizione 6.4

Dato G un gruppo finito e $H \leq G$ un sottogruppo proprio, se [G:H] = p con p il più piccolo primo che divide l'ordine di G allora H è normale in G.

 ${\it Dimostrazione}.$ Consideriamo l'azione di ${\it G}$ sull'insieme quoziente ${\it G}_{/H}$

$$\psi: G \longrightarrow S\left(G/H\right): g \longmapsto \psi_g$$

con

$$\psi_q: G_{/H} \longrightarrow G_{/H}: g'H \longmapsto gg'H$$

Poiché l'immagine di ψ è un sottogruppo di $S\left(G_{H}\right)$, che è isomorfo a S_{p} , abbiamo

che $|\operatorname{Im}\psi| \mid p!$, inoltre $|\operatorname{Im}\psi| = \frac{|G|}{|\ker\psi|}$ come conseguenza del Primo Teorema di Omomorfismo. Pertanto $|\operatorname{Im}\psi| \mid (p!,|G|) = p$, in quanto p è il più piccolo primo che divide |G|, quindi $|\operatorname{Im}\psi| \in \{1,p\}$. D'altra parte osserviamo che ψ è un'azione transitiva, infatti per ogni $g_1,g_2 \in G$ abbiamo $\psi_{g_2g_1^{-1}}(g_1H) = g_2g_1^{-1}g_1H = g_2H$, pertanto non è possibile $\operatorname{Im}\psi = \{id\}$, da cui $|\operatorname{Im}\psi| = p$ e $[G: \ker\psi] = p$. Consideriamo il nucleo di ψ

$$\ker \psi = \{g \in G \mid gg'H = g'H \ \forall g' \in G\}$$

indebolendo la condizione di appartenenza otteniamo l'inclusione

$$\ker \psi \subseteq \{g \in G \mid gH = H\} = H$$

Poiché $[G: \ker \psi] = [G: H] = p$ e G è un gruppo finito abbiamo che effettivamente $\ker \psi = H$, cioè H è normale in G.

§6.2 Teorema di Cauchy e Piccolo Teorema di Fermat

Vediamo una dimostrazione alternativa del Teorema di Cauchy e del Piccolo Teorema di Fermat, di cui ricordiamo gli enunciati, che fa uso del concetto di azione.

Teorema 6.5 (Teorema di Cauchy)

Dato un gruppo G e un numero primo p, se $p \mid |G|$ allora esiste $g \in G$ tale che $\operatorname{ord}(g) = p$.

Teorema 6.6 (Piccolo Teorema di Fermat)

Dato un numero primo p, se $n \in \mathbb{Z}$ è coprimo con p allora $n^{p-1} \equiv 1 \pmod{p}$.

Dati un gruppo G e un numero primo p, consideriamo l'insieme

$$X = \{(g_1, \dots, g_p) \in G^p \mid g_1 \dots g_p = e\}$$

osserviamo che $|X| = |G|^{p-1}$, possiamo infatti scegliere liberamente i primi p-1 elementi di ogni p-upla, che ne determinano l'ultimo in modo univoco (per unicità dell'inverso). Definiamo un'azione di $\mathbb{Z}/p\mathbb{Z}$ su X nel seguente modo:

$$\psi: \mathbb{Z}/p\mathbb{Z} \longrightarrow S(X): a \longmapsto \psi_a$$

con

$$\psi_q: X \longrightarrow X: (g_1, \dots, g_p) \longmapsto (g_{1+a}, \dots, g_p, g_1, \dots, g_a)$$

Fissato $x \in X$, poiché la cardinalità di $\operatorname{Orb}(x)$ divide l'ordine di $\mathbb{Z}/p\mathbb{Z}$ abbiamo che $|\operatorname{Orb}(x)| \in \{1,p\}$, in particolare le orbite di cardinalità 1 sono date dalle p-uple della forma (g,\ldots,g) con $g^p=e$. Poniamo $S=\{g\in G\mid \operatorname{ord}(g)=p\}$ e $\mathcal R$ un insieme di rappresentanti per la relazione di equivalenza indotta da ψ , poiché le orbite degli elementi di X formano una partizione dell'insieme abbiamo

$$|G|^{p-1} = |X| = \sum_{x \in \mathcal{R}} |\operatorname{Orb}(x)| = 1 + |S| + \sum_{x \in \mathcal{R} \setminus S} |\operatorname{Orb}(x)|$$

dove l'ultimo termine della somma è divisibile per p. Distinguiamo quindi due casi:

- se $p \mid |G|$, riducendo modulo p la formula sopra otteniamo $|S| \equiv -1 \pmod{p}$, in particolare esiste almeno un elemento di ordine p (Teorema di Cauchy);
- se $G = \mathbb{Z}/n\mathbb{Z}$ con p e n coprimi, $\mathbb{Z}/n\mathbb{Z}$ non contiene elementi di ordine p, pertanto riducendo modulo p la formula sopra otteniamo $n^{p-1} \equiv 1 \pmod{p}$ (Piccolo Teorema di Fermat).

Esercizio 6.7. Mostrare che i gruppi di ordine 15 sono ciclici.

Soluzione. Sia G un gruppo di ordine 15, poiché 5 è un primo che divide |G| esiste $h \in G$ tale che ord(h) = 15 per il Teorema di Cauchy. Inoltre, posto $H = \langle h \rangle$, abbiamo che [G:H] = 3 e quindi, dato che 3 è il più piccolo primo che divide |G|, H è un sottogruppo normale di G. Mostriamo che $H \subseteq Z(G)$, questo è equivalente a richiedere che l'omomorfismo

$$\varphi: G \longrightarrow \operatorname{Aut}(H): g \longmapsto \varphi_{a|H}$$

dove φ_q è il coniugio per g, abbia come unico elemento dell'immagine l'applicazione

$$id_H: H \longrightarrow H: h \longmapsto h$$

Poiché $H \cong \mathbb{Z}/5\mathbb{Z}$, abbiamo $\operatorname{Aut}(H) \cong (\mathbb{Z}/5\mathbb{Z})^* \cong \mathbb{Z}/4\mathbb{Z}$, d'altra parte $|\operatorname{Im}\varphi_{|H}|$ divide (|G|,|H|)=1, pertanto $|\operatorname{Im}\varphi=1$ e l'omomorfismo è banale, cioè $H\subseteq Z(G)$. Diamo adesso due modi per concludere l'esercizio:

- (1) osserviamo che se G è un gruppo abeliano, cioè se Z(G) = G, allora abbiamo che G è ciclico. Infatti posto $k \in G$ un elemento di ordine 3 (che esiste in virtù del Teorema di Cauchy), abbiamo che ord(hk) = ord(h) ord(k) = 15 in quanto i due elementi hanno ordine coprimo. D'altra parte, se G non fosse abeliano allora avremmo necessariamente Z(G) = H, quindi G/Z(G) sarebbe ciclico in quanto di ordine 3, pertanto G sarebbe un gruppo abeliano, da cui la tesi per quanto appena detto;
- (2) sia $k \in G$ un elemento di ordine 3, consideriamo il centralizzatore di k

$$Z_G(k) = \{ x \in G \mid xk = kx \}$$

Osserviamo che $k \in Z_G(k)$ e $Z(G) \subseteq Z_G(k)$, pertanto h è un elemento di $Z_G(k)$. Abbiamo quindi che ord $(h) \mid |Z_G(k)|$ e ord $(k) \mid |Z_G(k)|$, da cui $|Z_G(k)| = 15$. Abbiamo che tutti gli elementi di ordine 3 sono contenuti nel centro di G, che quindi coincide con G. Allora G è ciclico in quanto abeliano e contenente un elemento di ordine 3 e uno di ordine 5, quindi uno di ordine 15.

Osservazione 6.8 — In generale dati $x, y \in G$, se x e y commutano allora $\operatorname{ord}(xy) = [\operatorname{ord}(x), \operatorname{ord}(y)]$ anche se G non è un gruppo abeliano.

Esercizio 6.9. Dato d un numero dispari, mostrare che ogni gruppo di ordine 2d ammette un sottogruppo normale di indice 2.

Soluzione. Consideriamo la rappresentazione regolare a sinistra di G

$$\lambda: G \longrightarrow S(G): g \longmapsto \lambda_q$$

con

$$\lambda_a: G \longrightarrow G: x \longmapsto gx$$

Fissato un isomorfismo $\psi: S(G) \longmapsto S_{2d}$ poniamo $\varphi = \psi \circ \lambda: G \longrightarrow S_{2d}$, φ è un omomorfismo iniettivo (infatti nella dimostrazione del Teorema di Cayley abbiamo visto che λ è un omomorfismo iniettivo). Consideriamo il sottogruppo $\varphi^{-1}(A_{2d})$, mostriamo che il suo indice in G è al più 2: posta $\pi_{A_{2d}}$ la proiezione al quoziente

$$\pi_{\mathcal{A}_{2d}}: G \longrightarrow S_{2d}/_{\mathcal{A}_{2d}} \cong \mathbb{Z}/2\mathbb{Z}$$

possiamo caratterizzare $\varphi^{-1}(\mathcal{A}_{2d})$ come

$$\varphi^{-1}(\mathcal{A}_{2d}) = \{ g \in G \mid \varphi(g) \in \mathcal{A}_{2d} \} = \ker(\pi_{\mathcal{A}_{2d}} \circ \varphi)$$

pertanto $\varphi^{-1}(\mathcal{A}_{2d}) \leqslant G$. Per il Primo Teorema di Omomorfismo abbiamo che esiste un omomorfismo iniettivo da $G_{\ker(\pi_{\mathcal{A}_{2d}} \circ \varphi)}$ in $\mathbb{Z}/2\mathbb{Z}$, da cui $[G : \ker(\pi_{\mathcal{A}_{2d}})] \leqslant 2$. Tale sottogruppo ha indice 1 se e solo se $G = \ker(\pi_{\mathcal{A}_{2d}} \circ \varphi)$, cioè $\varphi(G) \subseteq \mathcal{A}_{2d}$, mostriamo che in effetti esiste un elemento di G la cui immagine tramite φ è una permutazione dispari. Consideriamo $g \in G$ un elemento di ordine 2, poiché φ è un omomorfismo iniettivo abbiamo che ord $(\varphi(g)) = \operatorname{ord}(g) = 2$, pertanto la permutazione $\varphi(g)$ ha una decomposizione in d 2-cicli, cioè è dispari. Pertanto $G \neq \varphi^{-1}(\mathcal{A}_{2d})$, da cui $[G : \varphi^{-1}(\mathcal{A}_{2d})] = 2$,

Possiamo generalizzare il ragionamento appena usato nel seguente risultato

Proposizione 6.10

Dato un gruppo G e $H \subseteq G$ un sottogruppo tale che [G:H]=2, se K è un sottogruppo di G allora $H \cap K$ ha indice 1 o 2 in K, cioè $[K:H \cap K] \in \{1,2\}$.

Dimostrazione. Distinguiamo due casi:

- se $K \subseteq H$ allora $H \cap K = K$, da cui $[K : H \cap K] = 1$;
- se $K \subseteq H$ consideriamo la proiezione

$$\pi_H: G \longrightarrow G/_H: g \longmapsto gH$$

Poiché $G_{/H} \cong \mathbb{Z}/2\mathbb{Z}$ abbiamo che gli unici sottogruppi del quoziente sono $\{H\}$ e $G_{/H}$, pertanto $\pi_H(K) = G_{/H}$. Osserviamo che $\ker \pi_{H|K} = \ker \pi_H \cap K$, per il Primo Teorema di Omomorfismo allora $K_{/H} \cap K \cong \mathbb{Z}/2\mathbb{Z}$, cioè $[K: H \cap K] = 2$.

§6.3 Teorema di Poincaré

Vediamo un risultato che sarà utile nel futuro, che permette di esibire, se esistono, sottogruppi normali non banali di un gruppo finito.

Teorema 6.11 (Teorema di Poincaré)

Dato un gruppo G finito e $H \leq G$ un suo sottogruppo, se [G:H]=n allora esiste un sottogruppo normale $N \triangleleft G$ tale che:

- $(1) \ N \leqslant H \leqslant G;$
- (2) $n \mid [G:N] \mid n!$.

Dimostrazione. Consideriamo l'azione di G su ${}^{G}\!\!/_{H}$

$$\psi: G \longrightarrow S\left(G_{H}\right)S: g \longmapsto \psi_{g}$$

con

$$\psi_q: G_{/H} \longrightarrow G_{/H}: g'H \longmapsto gg'H$$

(1) Consideriamo il nucleo di ψ

$$\ker \psi = \{ g \in G \mid gg'H = g'H \ \forall g' \in G \}$$

indebolendo la condizione di appartenenza otteniamo l'inclusione

$$\ker \psi \subseteq \{g \in G \mid gH = H\} = H$$

pertanto $\ker \psi \leqslant H$;

(2) poiché $\ker \psi \leqslant H$ abbiamo $[G:H] \mid [G:\ker \psi]$, cioè $n \mid [G:\ker \psi]$. Dal Primo Teorema di Omomorfismo abbiamo che $G_{\ker \psi} \cong \operatorname{Im} \psi$, che è un sottogruppo di $S\left(G_{H}\right) \cong S_{n}$, pertanto $[G:\ker \psi] \mid n!$.

Poiché $\ker \psi$ è normale in G abbiamo che $N = \ker \psi$ è un sottogruppo con le proprietà cercate.

Osservazione 6.12 — In particolare, se G ha un sottogruppo di indice n e $n! \leq |G|$ allora G ammette sottogruppi normali non banali.

§7 Gruppo simmetrico

§7.1 Generatori di S_n

Esibiamo alcuni insiemi di generatori per S_n :

- $\{(i \ j) \mid i, j \in \{1, \dots, n\}, i < j\}$, abbiamo visto che ogni permutazione può essere scritta come prodotto di trasposizioni;
- $\{(1\ j)\ |\ j \in \{2,\dots,n\}\}$, infatti per ogni i < j abbiamo

$$(i \ j) = (1 \ i)(1 \ j)(1 \ i)$$

• $\{(i \ i+1) \mid i \in \{1, \dots, n-1\}\}$, infatti per ogni j abbiamo

$$(1 \ j) = (j-1 \ j)(1 \ j-1)(j-1 \ j)$$

• $\{(1\ 2), (1\ 2\ \dots\ n)\}$, infatti per ogni i abbiamo

$$(1 \dots n)^{i-1} (1 \ 2) (1 \dots n)^{1-i} = (i \ i+1)$$

Osservazione 7.1 — Non è vero in generale che una trasposizione e un *n*-ciclo generano S_n , consideriamo ad esempio $\langle \sigma, \rho \rangle \leqslant S_4$ con $\sigma = (1\ 2\ 3\ 4), \ \rho = (2\ 4)$. Abbiamo $\sigma^4 = \rho^2 = 1$ e $\rho \sigma \rho^{-1} = (1\ 4\ 3\ 2) = \sigma^{-1}$, pertanto $\langle \sigma, \rho \rangle$ è isomorfo a un quoziente di D_4 . D'altra parte $\langle \sigma \rangle \cap \langle \rho \rangle = \{id\}$ e $\rho \in N_{S_4}(\sigma)$, pertanto $\langle \sigma, \rho \rangle = \langle \sigma \rangle \langle \rho \rangle$ e $|\langle \sigma, \rho \rangle| = 8$, pertanto è isomorfo a D_4 .

§7.2 Sottogruppi abeliani massimali di S_n

Vogliamo studiare i sottogruppi abeliani di S_n , caratterizzando in particolare i suoi sottogruppi abeliani massimali.

Definizione 7.2. Un sottogruppo $G \leqslant S_n$ si dice transitivo se l'azione

$$\varphi: G \longrightarrow S_n: \sigma \longmapsto \sigma$$

indotta da G su $\{1, ..., n\}$ è transitiva, cioè se per ogni $i, j \in \{1, ..., n\}$ esiste $\sigma \in G$ tale che $\sigma(i) = j$.

Lemma 7.3

Dato G un sottogruppo abeliano di S_n , se G è transitivo allora |G| = n.

Dimostrazione. Consideriamo l'azione di G su $\{1,\ldots,n\}$

$$\psi: G \longrightarrow S_n: \sigma \longmapsto \sigma$$

poiché G è transitivo, per la Proposizione 6.3 gli stabilizzatori degli elementi di $\{1, \ldots, n\}$ sono tra loro coniugati. D'altra parte, poiché lo stabilizzatore è un sottogruppo di G, che è un gruppo abeliano, la restrizione del coniugio agli stabilizzatori coincide con

l'applicazione identità, da cui $\mathrm{St}(i)=\mathrm{St}(j)$ per ogni $i,j\in\{1,\ldots,n\}$. Osserviamo infine che

$$\bigcap_{i=1}^{n} \operatorname{St}(i) = \{id_{S_n}\}\$$

in quanto id_{S_n} è l'unica permutazione che fissa tutti gli elementi di $\{1,\ldots,n\}$, pertanto $\mathrm{St}(i)=\{id_{S_n}\}$ per ogni $i\in\{1,\ldots,n\}$. Fissato $i\in\{1,\ldots,n\}$, abbiamo

$$|G| = |\operatorname{Orb}(i)| \cdot |\operatorname{St}(i)| = |\operatorname{Orb}(i)| = n$$

in quanto G è transitivo.

Lemma 7.4

Se a_1, \ldots, a_k sono interi positivi tali che $\sum_{i=1}^k a_i = 3m$, con $m \geqslant k$ intero, allora

 $\prod_{i=1}^{\kappa} a_i \leq 3^m, \text{ e vale l'uguaglianza se e solo se } k=m \text{ e } a_i=3 \text{ per ogni } i \in \{1,\ldots,k\}.$

Dimostrazione. Senza perdita di generalità, a meno di aumentare k possiamo supporre $a_i \in \{1, 2, 3\}$ per ogni $i \in \{1, \dots, k\}$, infatti se uno degli a_i è uguale a 4 possiamo sostituirlo con 2 + 2, se uno degli a_i è uguale a 5 possiamo sostituirlo con $2 + (a_i - 2)$ e così via (queste sostituzioni mantengono inalterato il valore della somma). In particolare abbiamo che $a_i \leq 3$ per ogni $i \in \{1, \dots, n\}$, pertanto

$$\prod_{i=1}^{k} a_i \le 3^k \le 3^m$$

inoltre se k=me tutti gli a_i sono uguali a 3 abbiamo chiaramente

$$\prod_{i=1}^k a_i = 3^k = 3^m$$

Viceversa, se il prodotto degli a_i è uguale a 3^m allora necessariamente k=m e $a_i=3$ per ogni $i\in\{1,\ldots,k\}$ in quanto possiamo supporre $a_i\in\{1,2,3\}$ senza perdita di generalità.

Lemma 7.5

Dati $\sigma, \tau \in S_n$, se $\sigma = (x_1 \dots x_k)$ è un k-ciclo allora

$$\tau \sigma \tau^{-1} = (\tau(x_1) \dots \tau(x_k))$$

Dimostrazione.

$$(\tau \sigma \tau^{-1})(\tau(x_i)) = (\tau \sigma)(x_i) = \tau(x_{i+1})$$

per ogni $i \in \{1, \dots, k\}$, pertanto

$$\tau \sigma \tau^{-1} = (\tau(x_1) \dots \tau(x_k))$$

Esercizio 7.6. Posto n=3m, mostrare che la massima cardinalità di un sottogruppo abeliano di S_n è 3^m e caratterizzare la sua classe di isomorfismo.

Soluzione. Per prima cosa, osserviamo che S_n contiene sottogruppi abeliani di cardinalità 3m, ad esempio

$$\langle (1\ 2\ 3) \rangle \cdot \langle (4\ 5\ 6) \rangle \cdot \ldots \cdot \langle (n-2\ n-1\ n) \rangle$$

è un sottogruppo abeliano di \mathcal{S}_n di cardinalità $3^m,$ essendo isomorfo a

$$\langle (1\ 2\ 3) \rangle \times \langle (4\ 5\ 6) \rangle \times \ldots \times \langle (n-2\ n-1\ n) \rangle$$

Sia G un sottogruppo abeliano di S_n di ordine massimo, data

$$\psi: G \longrightarrow S_n: \sigma \longmapsto \sigma$$

l'azione naturale di G su $\{1,\ldots,n\}$ chiamiamo Ω_1,\ldots,Ω_k le orbite. Consideriamo le mappe $\varphi_i:G\longrightarrow S(\Omega_i)$ tali che, data $\sigma\in G$ e fissata $\rho_1\ldots\rho_k$ una sua decomposizione in cicli disgiunti, $\varphi_i(\sigma)=\rho_i$, poniamo $G_i=\mathrm{Im}\varphi_i=\mathrm{Im}\psi\cap S(\Omega_i)$. Possiamo quindi costruire l'omomorfismo

$$\varphi: G \longrightarrow G_1 \times \ldots \times G_k: g \longmapsto (\varphi_1(g), \ldots, \varphi_k(g))$$

che è iniettivo in quanto

$$\varphi(\sigma) = id \iff \varphi_i(\sigma) = id_{S(\Omega_i)} \iff \sigma_{|\Omega_i} = id_{S(\Omega_i)}$$

per ogni $i \in \{1, ..., k\}$, che è equivalente a $\sigma = id_{S_n}$ dato che le orbite ricoprono $\{1, ..., n\}$, da cui ker $\varphi = \{id_{S_n}\}$. Osserviamo adesso che ogni G_i è un gruppo abeliano poiché immagine omomorfa di G, che è un gruppo abeliano, inoltre è transitivo sull'orbita Ω_i per costruzione, pertanto per il Lemma 7.3 abbiamo $|G_i| = |\Omega_i|$ per ogni $i \in \{1, ..., k\}$. Vale quindi la seguente disuguaglianza, data dall'iniettività di φ

$$|G| \leqslant \prod_{i=1}^{k} |G_i| = \prod_{i=1}^{k} |\Omega_i|$$

D'altra parte

$$3m = \sum_{i=1}^{k} |\Omega_i|$$

pertanto per il Lemma 7.4 abbiamo $|G| \leq 3^m$, ma questa è effettivamente un'uguaglianza in quanto S_n contiene almeno un sottogruppo abeliano di ordine 3^m e G ha ordine massimo. Sempre per il Lemma 7.4 allora k = m e $|\Omega_i| = 3$ per ogni $i \in \{1, \ldots, k\}$. Abbiamo quindi che φ è un isomorfismo e che $G_1 \times \ldots \times G_k$ è isomorfo a $(\mathbb{Z}/3\mathbb{Z})^k$, pertanto G è isomorfo a $(\mathbb{Z}/3\mathbb{Z})^k$.

Osservazione 7.7 — Se a_1, \ldots, a_k sono interi tali che

$$3m + 2 = \sum_{i=1}^{k} a_i$$

ragionando come nella dimostrazione del Lemma 7.4 possiamo scrivere

$$3m + 2 = 2 + \sum_{i=1}^{k-1} a_i$$

da cui ricaviamo

$$\prod_{i=1}^{k} a_i \leqslant 2 \cdot 3^m$$

Inoltre questa è un'uguaglianza se e solo se esiste $j \in \{1, ..., k\}$ tale che $a_j = 2$, $a_i = 3$ per ogni $i \in \{1, ..., k\} \setminus \{j\}$ e k = m. Ragionando come sopra otteniamo $|G| \leq 2 \cdot 3^m$, d'altra parte osserviamo che S_n contiene un sottogruppo abeliano

$$\langle (1\ 2\ 3) \rangle \cdot \ldots \cdot \langle (3m-2\ 3m-1\ 3m) \rangle \cdot \langle (3m+1\ 3m+2) \rangle$$

di ordine $2 \cdot 3^m$ poiché isomorfo a

$$\langle (1\ 2\ 3)\rangle \times \ldots \times \langle (3m-2\ 3m-1\ 3m)\rangle \times \langle (3m+1\ 3m+2)\rangle$$

pertanto $|G| = 2 \cdot 3^m$ e $G \cong (\mathbb{Z}/3\mathbb{Z})^m \times \mathbb{Z}/2\mathbb{Z}$. Se n = 3m+1, ragionando in modo simile abbiamo che la somma delle cardinalità delle orbite $\Omega_1, \ldots, \Omega_k$ è 3m+1 e il loro prodotto è minore o uguale a $4 \times 3^{m-1}$, da cui $|G| \leq 4 \cdot 3^{m-1}$. D'altra parte S_n contiene almeno due tipi di sottogruppi abeliani di ordine 3m+1, uno isomorfo a $(\mathbb{Z}/3\mathbb{Z})^{m-1} \times \mathbb{Z}/4\mathbb{Z}$ e uno isomorfo a $(\mathbb{Z}/3\mathbb{Z})^{m-1} \times V_4$, dove

$$V_4 = \{(1\ 2)(3\ 4), (1\ 3)(2\ 4), (1\ 4)(2\ 3), id\}$$

è un sottogruppo abeliano non ciclico di S_4 , chiamato **gruppo di Klein** o **Klein 4-group**. Pertanto un sottogruppo abeliano di ordine massimo deve avere una di queste due forme.

Osservazione 7.8 — I sottogruppi di S_n di questo tipo sono tutti coniugati tra loro, infatti se

$$G = \langle (x_1 \ x_2 \ x_3) \rangle \cdot \ldots \cdot \langle (x_{n-2} \ x_{n-1} \ x_n)$$

$$G' = \langle (y_1 \ y_2 \ y_3) \rangle \cdot \ldots \cdot \langle (y_{n-2} \ y_{n-1} \ y_n) \rangle$$

sono due sottogruppi abeliani di S_n di ordine massimo (per semplicità supponiamo n=3m, gli altri due casi si studiano in modo analogo) consideriamo $\sigma \in S_n$ tale che $\sigma(y_i)=x_i$ per ogni $i\in\{1,\ldots,n\}$, è sufficiente mostrare che i generatori delle componenti del prodotto sono tra loro coniugate. Infatti, per il Lemma 7.5 abbiamo

$$\sigma(x_i \ x_{i+1} \ x_{i+2})\sigma^{-1} = (\sigma(x_i) \ \sigma(x_{i+1}) \ \sigma(x_{i+2})) = (y_i \ y_{i+1} \ y_{i+2})$$

per ogni $i \in \{1, ..., n-2\}$, pertanto $G \in G'$ sono coniugati.

§7.3 Classi di coniugio in A_n

Studiamo le classi di coniugio in \mathcal{A}_n . In particolare, fissato $\sigma \in \mathcal{A}_n$, vogliamo determinare una relazione tra $\mathcal{C}\ell_{\mathcal{A}_n}(\sigma)$ e $\mathcal{C}\ell_{S_n}(\sigma)$. Poiché valgono $|\mathcal{A}_n| = |\mathcal{C}\ell_{\mathcal{A}_n}(\sigma)| \cdot |Z_{\mathcal{A}_n(\sigma)}|$ e $Z_{\mathcal{A}_n}(\sigma) = Z_{S_n}(\sigma) \cap \mathcal{A}_n$, abbiamo

$$|\mathcal{C}\ell_{\mathcal{A}_n}(\sigma)| = \frac{|\mathcal{A}_n|}{|Z_{\mathcal{A}_n}(\sigma)|} = \frac{1}{2} \frac{|S_n|}{|Z_{S_n}(\sigma) \cap \mathcal{A}_n|}$$

Dato che $[S_n : \mathcal{A}_n] = 2$, per la Proposizione 6.10 abbiamo $[Z_{S_n}(\sigma) : Z_{S_n}(\sigma) \cap \mathcal{A}_n] \in \{1, 2\}$, distinguiamo quindi due casi:

- $|Z_{S_n}(\sigma) \cap \mathcal{A}_n| = \frac{1}{2}|Z_{S_n}(\sigma)|;$
- $|Z_{S_n}(\sigma) \cap \mathcal{A}_n| = |Z_{S_n}(\sigma)|$.

Nel primo caso otteniamo

$$|\mathcal{C}\ell_{\mathcal{A}_n}| = \frac{1}{2} \frac{|S_n|}{|Z_{S_n}(\sigma) \cap \mathcal{A}_n|} = \frac{|S_n|}{|Z_{S_n}(\sigma)|} = \mathcal{C}\ell_{S_n}(\sigma)$$

poiché $\mathcal{C}\ell_{\mathcal{A}_n}(\sigma) \subseteq \mathcal{C}\ell_{S_n}(\sigma)$ abbiamo che le due classi coincidono. In particolare questo succede se $Z_{S_n}(\sigma) \nsubseteq \mathcal{A}_n$.

Nel secondo caso invece, che si verifica se $Z_{S_n}(\sigma) \subseteq \mathcal{A}_n$,

$$|\mathcal{C}\ell_{\mathcal{A}_n}(\sigma)| = \frac{1}{2} \frac{|S_n|}{|Z_{S_n}(\sigma) \cap \mathcal{A}_n|} = \frac{1}{2} \frac{|S_n|}{|Z_{S_n}(\sigma)|} = \frac{1}{2} |\mathcal{C}\ell_{S_n}(\sigma)|$$

Più precisamente, abbiamo $\mathcal{C}\ell_{S_n}(\sigma) = \mathcal{C}\ell_{\mathcal{A}_n}(\sigma) \cup \mathcal{C}\ell_{\mathcal{A}_n}(\tau\sigma\tau^{-1})$ per ogni τ permutazione dispari. Infatti $\mathcal{C}\ell_{\mathcal{A}_n}(\sigma) \cup \mathcal{C}\ell_{\mathcal{A}_n}(\tau\sigma\tau^{-1}) \subseteq \mathcal{C}\ell_{S_n}(\sigma)$ (i coniugati di $\tau\sigma\tau^{-1}$ sono anche coniugati di σ), d'altra parte per ogni $\rho \in S_n$ abbiamo $\rho\sigma\rho^{-1} \in \mathcal{C}\ell_{\mathcal{A}_n}(\sigma)$ se ρ è pari, $\rho\sigma\rho^{-1} = (\rho\tau^{-1})(\tau\sigma\tau^{-1})(\rho\tau^{-1})^{-1} \in \mathcal{C}\ell_{\mathcal{A}_n}(\tau\sigma\tau)$ se ρ è dispari, da cui l'uguaglianza. Abbiamo altri due casi:

- $|\mathcal{C}\ell_{\mathcal{A}_n}(\tau\sigma\tau^{-1})| = |\mathcal{C}\ell_{S_n}(\tau\sigma\tau^{-1})|;$
- $|\mathcal{C}\ell_{\mathcal{A}_n}(\tau\sigma\tau^{-1})| = \frac{1}{2}|\mathcal{C}\ell_{S_n}(\tau\sigma\tau^{-1})|.$

Tuttavia se fosse $|\mathcal{C}\ell_{\mathcal{A}_n}(\tau\sigma\tau)| = |\mathcal{C}\ell_{S_n}(\tau\sigma\tau)|$ avremmo $\mathcal{C}\ell_{\mathcal{A}_n}(\sigma) = \mathcal{C}\ell_{\mathcal{A}_n}(\tau\sigma\tau^{-1})$, che è assurdo in quanto $\tau\sigma\tau^{-1} \notin \mathcal{C}\ell_{\mathcal{A}_n}(\sigma)$, pertanto

$$|\mathcal{C}\ell_{\mathcal{A}_n}(\tau\sigma\tau^{-1})| = \frac{1}{2}|\mathcal{C}\ell_{S_n}(\tau\sigma\tau^{-1})| = \frac{1}{2}|\mathcal{C}\ell_{S_n}(\sigma)| = |\mathcal{C}\ell_{\mathcal{A}_n}(\sigma)|$$

Poiché $|\mathcal{C}\ell_{S_n}(\sigma)| = |\mathcal{C}\ell_{\mathcal{A}_n}(\sigma)| + |\mathcal{C}\ell_{\mathcal{A}_n}(\tau\sigma\tau^{-1})|$, per il Principio di Inclusione-Esclusione abbiamo che l'unione è disgiunta, cioè

$$\mathcal{C}\ell_{S_n}(\sigma) = \mathcal{C}\ell_{\mathcal{A}_n}(\sigma) \cup \mathcal{C}\ell_{\mathcal{A}_n}(\tau\sigma\tau^{-1})$$

§7.4 Studio di S_5

Consideriamo gli elementi di S_5 $\sigma = (1\ 2\ 3\ 4\ 5), \tau = (2\ 5)(3\ 4)$, studiamo il sottogruppo $H = \langle \sigma, \tau \rangle$, in particolare siamo interessati a determinare una regola di commutazione per σ e τ . Osserviamo che

$$\tau \sigma \tau^{-1} = (\tau(1) \ \tau(2) \ \tau(3) \ \tau(4) \ \tau(5)) = (1 \ 5 \ 4 \ 3 \ 2)$$

e che questo coincide con σ^{-1} . Abbiamo quindi che H è generato da un elemento τ di ordine 2 e da un elemento σ di ordine 5 che soddisfano la relazione $\tau \sigma \tau^{-1} = \sigma^{-1}$, pertanto H è isomorfo a un sottogruppo del gruppo diedrale D_5 . D'altra parte, da questa relazione ricaviamo che $\langle \tau \rangle \subseteq N_{S_5}(\langle \sigma \rangle)$, pertanto possiamo scrivere $H = \langle \sigma \rangle \cdot \langle \tau \rangle$ in quanto $\langle \sigma \rangle \cdot \langle \tau \rangle$ è un sottogruppo di H che ha la sua stessa cardinalità. In particolare otteniamo che $|H| = 10 = |D_5|$, quindi $H \cong D_5$.

Abbiamo visto che le classi di coniugio in un gruppo simmetrico su n elementi sono parametrizzate dalle partizioni di n

Partizioni di 5	Cardinalità della classe di coniugio associata
5	$ \binom{5}{5} 4! = 4! = 24 $
4 + 1	$\binom{5}{4}3! = 30$
3 + 2	$\binom{5}{3}2!\binom{2}{2}1! = 20$
3 + 1 + 1	$\binom{5}{3}2! = 20$
2 + 2 + 1	$\frac{1}{2} \binom{5}{2} 1! \binom{3}{2} 1! = 15$
2 + 1 + 1 + 1	$\binom{5}{2}1! = 10$
1 + 1 + 1 + 1 + 1	1

(Nel calcolo della cardinalità della classe associata alla partizione 2+2+1 dividiamo per 2 in quanto contiamo i cicli a meno dell'ordine, e le coppie di trasposizioni che stiamo considerando commutano). Di queste, le permutazioni che appartengono a \mathcal{A}_5 sono quelle la cui classe di coniugio è associata alle partizioni 5, 3+1+1, 2+2+1, 1+1+1+1, cioè le permutazioni σ, τ, ρ aventi una decomposizione in cicli disgiunti della forma

$$\sigma = (a_1 \ a_2 \ a_3 \ a_4 \ a_5)$$
$$\tau = (b_1 \ b_2 \ b_3)$$
$$\rho = (c_1 \ c_2)(d_1 \ d_2)$$

e l'identità. Vediamo come sono fatte le loro classi di coniugio in \mathcal{A}_5 . Chiaramente $\mathcal{C}\ell_{\mathcal{A}_n}(id) = \mathcal{C}\ell_{S_n}(id) = \{id\}$, studiamo quindi le classi di σ, τ, ρ fissate come sopra.

• $Z_{S_5}(\sigma) = \langle (a_1 \ a_2 \ a_3 \ a_4 \ a_5) \rangle$, infatti

$$|Z_{S_5}(\sigma)| = \frac{|S_5|}{|\mathcal{C}\ell_{S_5}(\sigma)|} = \frac{5!}{4!} = 5$$

Allora $Z_{S_5}(\sigma)$ contiene solo permutazioni pari, fissata ψ una permutazione dispari la sua classe di coniugio in S_5 si scrive come

$$\mathcal{C}\ell_{S_5}(\sigma) = \mathcal{C}\ell_{\mathcal{A}_5}(\sigma) \cup \mathcal{C}\ell_{\mathcal{A}_5}(\psi\sigma\psi^{-1})$$

• $Z_{S_5}(\tau)$ non è contenuto in A_5 , infatti una trasposizione ψ disgiunta da τ è una permutazione dispari che appartiene al centralizzatore. Pertanto

$$\mathcal{C}\ell_{S_{\epsilon}}(\tau) = \mathcal{C}\ell_{A_{\epsilon}}(\tau)$$

• $Z_{S_5}(\rho)$ non è contenuto in \mathcal{A}_5 , infatti la trasposizione $(c_1 \ c_2)$ è una permutazione dispari che commuta con ρ (infatti $(c_1 \ c_2)$ e $(d_1 \ d_2)$ commutano in quanto cicli disgiunti e $(c_1 \ c_2)$ commuta con se stessa). Pertanto

$$\mathcal{C}\ell_{S_5}(\rho) = \mathcal{C}\ell_{A_5}(\rho)$$

§7.5 Sottogruppi normali di A_n

Esibiamo alcuni insiemi di generatori per A_n :

- $\{(i \ j)(k \ l) \mid i \neq j, k \neq l\}$, infatti ogni elemento di \mathcal{A}_n può essere scritto come prodotto di coppie di trasposizioni in quanto permutazione pari;
- $\{(i\ j\ k)\ |\ i,j,k\ \text{distinti}\}$. Infatti se $\{i,j\}=\{k,l\}$ allora $(i\ j)(k\ l)=id$ è un elemento generato dall'insieme, se invece $|\{i,j\}\cap\{k,l\}|=1$, ad esempio j=k, abbiamo $(i\ j)(k\ l)=(i\ j)(j\ l)=(i\ j\ l)$, che è un elemento generato dall'insieme. Nel caso $\{i,j\}\cap\{k,l\}=\emptyset$ abbiamo $(i\ j)(k\ l)=(i\ j)(j\ k)(j\ k)(k\ l)=(i\ j\ k)(j\ k\ l)$, che è un elemento generato dall'insieme. Possiamo quindi ottenere il precedente insieme di generatori a partire da questo;

Definizione 7.9. Un gruppo non banale G si dice **semplice** se i suoi unici sottogruppi normali sono $\{e\}$ e G.

Proposizione 7.10

 \mathcal{A}_5 è un gruppo semplice.

Dimostrazione. Ricordiamo le cardinalità delle classi di coniugio in A_5 :

Rappresentante della classe	Cardinalità della classe
$(1\ 2\ 3\ 4\ 5)$	12
$(2\ 1\ 3\ 4\ 5)$	12
$(1\ 2)(3\ 4)$	15
$(1\ 2\ 3)$	20
id	1

In generale, un sottogruppo è normale se e solo se è unione disgiunta delle classi di coniugio dei suoi elementi, quindi la cardinalità di $N \leq A_5$ deve essere somma di alcuni termini nella seconda colonna, compreso 1. D'altra parte $|N| \mid A_5 = 60$, da cui |N| = 1 oppure |N| = 60. Pertanto A_5 è semplice.

Lemma 7.11

Dati un gruppo G e $N \leq G$ un sottogruppo normale di indice finito, N contiene ogni elemento di G il cui ordine è coprimo con [G:N].

Dimostrazione. Sia $g \in G$ tale che $(\operatorname{ord}(g), [G:N]) = 1$, consideriamo la proiezione

$$\pi_N: G \longrightarrow {}^G\!\!/_N(x \longmapsto xN)$$

Poiché π_N è un omomorfismo abbiamo $\operatorname{ord}(\pi_N(g)) \mid (\operatorname{ord}(g), [G:N]) = 1$, pertanto $\pi_N(g) = N$, cioè $g \in N$.

Diamo adesso una dimostrazione alternativa della semplicità di A_5 .

Dimostrazione. Consideriamo un sottogruppo normale $N \leq A_5$. Distinguiamo tre casi:

- se 2 | $[A_5: N]$, per il Lemma7.11 N contiene tutti gli elementi di A_5 di ordine 2, cioè le permutazioni della forma $(a\ b)(c\ d)$ con $a \neq b$ e $c \neq d$, da cui $N = A_5$ in quanto contiene un suo insieme di generatori;
- se $3 \nmid [A_5 : N]$, per il Lemma7.11 N contiene tutti gli elementi di A_5 di ordine 3, cioè i 3-cicli, da cui $N = A_5$ in quanto contiene un suo insieme di generatori;
- se 6 | $[A_5 : N]$ allora |N| | 10, ma l'unica classe di coniugio di A_5 di cardinalità minore di 10 è $\{id\}$, pertanto $N = \{id\}$.

Quindi A_5 è semplice.

In effetti vale un risultato più generale

Proposizione 7.12

 \mathcal{A}_n è un gruppo semplice per $n \geq 5$.

Dimostrazione. Procediamo per induzione su n, per n=5 la tesi è garantita dalla Proposizione 7.10, supponiamo quindi che \mathcal{A}_n sia un gruppo semplice e mostriamo che anche \mathcal{A}_{n+1} lo è. Consideriamo un sottogruppo normale $N \leq \mathcal{A}_{n+1}$ e i sottogruppi

$$H_i = \{ \sigma \in \mathcal{A}_{n+1} \mid \sigma(i) = i \}, \ i \in \{1, \dots, n+1 \}$$

questi sono tutti isomorfi a \mathcal{A}_n (infatti gli elementi di H_i sono tutte e sole le permutazioni pari su n+1 elementi che fissano l'i-esimo, cioè sono permutazioni pari su n elementi). Notiamo che l'azione naturale di \mathcal{A}_{n+1} su $\{1, \ldots, n+1\}$

$$\psi: \mathcal{A}_{n+1} \longrightarrow S_{n+1}: \sigma \longmapsto \sigma$$

è transitiva, infatti per $i, j \in \{1, ..., n+1\}$ distinti la permutazione pari $\rho = (i \ j)(h \ k)$, con $(i \ j)$ disgiunta da $(h \ k)$, è tale che $\rho(i) = j$. Per costruzione vale $\mathrm{St}(i) = H_i$ per ogni $i \in \{1, ..., n+1\}$, pertanto per la Proposizione 6.3 abbiamo che gli H_i sono tutti coniugati.

Fissato $i \in \{1, ..., n+1\}$, consideriamo $N \cap H_i$: questo è un sottogruppo normale di H_i , infatti per ogni $h \in H_i$ si ha $h(N \cap H_i)h^{-1} = N \cap H_i$ in quanto N è normale in \mathcal{A}_{n+1} e $h \in H_i$, d'altra parte $H_i \cong \mathcal{A}_n$ è un gruppo semplice per ipotesi induttiva, pertanto $N \cap H_i$ coincide con $\{id\}$ oppure con H_i .

Se $N \cap H_i = H_i$ allora $H_i \subseteq N$, pertanto N contiene almeno un 3-ciclo $(i \ j \ k)$ e tutti i suoi coniugati in \mathcal{A}_{n+1} . Notiamo che una trasposizione $(a \ b)$ disgiunta da $(i \ j \ k)$ (che esiste in quanto $n \ge 5$) è una permutazione dispari in $Z_{S_{n+1}}((i \ j \ k))$, pertanto $\mathcal{C}\ell_{\mathcal{A}_{n+1}}((i \ j \ k)) = \mathcal{C}\ell_{S_{n+1}}((i \ j \ k))$ e N contiene l'insieme dei 3-cicli di S_{n+1} , quindi $N = \mathcal{A}_{n+1}$ dal momento che contiene un suo insieme di generatori.

Altrimenti $N \cap H_i = \{id\}$ per ogni $i \in \{1, \dots, n+1\}$, cioè l'unico elemento di N avente almeno un punto fisso è l'identità, vogliamo mostrare che in effetti $N = \{id\}$. Osserviamo che $\sigma \in N$ ha una decomposizione in cicli disgiunti della forma

$$\sigma = (x_1^{(1)} \dots x_{l_1}^{(1)}) \dots (x_1^{(k)} \dots x_{l_k}^{(k)})$$

con $l_1 \leq l_2 \leq \ldots \leq l_k$, allora i suoi cicli hanno tutti la stessa lunghezza, cioè $l_i = l_j$ per ogni $i \neq j$. Infatti, posto $r = \min\{l_i \mid 1 \leq i \leq k\} = l_1$, abbiamo

$$\sigma^{l_1} = id \cdot (x_1^{(2)} \dots x_{l_2}^{(2)})^{l_1} \dots (x_1^{(k)} \dots x_{l_k}^{(k)})^{l_1}$$

da cui $\sigma^{l_1}=id$ in quanto ha almeno un punto fisso e quindi $l_1=l_2=\ldots=l_k$. Fissata $\sigma\in N$ possiamo quindi scrivere $\sigma=\sigma_1\ldots\sigma_k$, dove σ_i sono l-cicli disgiunti con $l=\frac{n+1}{k}$. Supponiamo per assurdo $N\cap H_i\neq \{id\}$, distinguiamo tre casi:

• se k=1 abbiamo l=n+1, cioè σ è un n+1-ciclo. Scriviamo $\sigma=(a_1 \ldots a_l)$ e consideriamo la permutazione pari $\tau=(a_1 \ a_2)(a_3 \ a_4)$, poiché N è normale in \mathcal{A}_{n+1} contiene

$$\tau \sigma \tau^{-1} = (a_2 \ a_1 \ a_4 \ a_3 \ a_5 \ a_6 \ \dots \ a_l)$$

Consideriamo $\rho = (\tau \sigma \tau^{-1})\sigma \in N$, notiamo che $\rho \neq id$ in quanto

$$\rho(a_4) = (\tau \sigma \tau^{-1})(\sigma(a_4)) = (\tau \sigma \tau^{-1})(a_5) = a_6 \neq a_4$$

d'altra parte a_1 è un punto fisso per ρ , che è assurdo;

• se k > 1 e l > 2, poiché σ_1^{-1} è un l-ciclo disgiunto da $\sigma_2, \ldots, sigma_k$ la permutazione $\rho = \sigma^{-1}\sigma_2 \ldots \sigma_k$ è un elemento di N. Consideriamo $\alpha = \rho \sigma \in N$, osserviamo che

$$\alpha = \sigma_2^2 \dots \sigma_k^2 \neq id$$

in quanto $ord(\sigma_i) = l > 2$ per ogni $i \in \{1, ..., k\}$, tuttavia a_1 è un punto fisso per α , che è assurdo;

• se k > 1 e l = 2, scriviamo σ come prodotto di k trasposizioni disgiunte

$$\sigma = (a_1 \ b_1)(a_k \ b_k)$$

Consideriamo la permutazione pari $\tau = (a_1 \ a_2 \ b_1)$, poiché N è normale in \mathcal{A}_{n+1} contiene

$$\rho = \tau \sigma \tau^{-1} = (a_2 \ a_1)(b_1 \ b_2)(a_3 \ b_3) \dots (a_k \ b_k)$$

e anche la permutazione

$$\alpha = \rho \sigma = ((a_2 \ a_1)(b_1 \ b_2))((a_1 \ b_1)(a_2 \ b_2)) = (a_1 \ b_2)(a_2 \ b_1) \neq id$$

ma a_3 è un punto fisso per α , che è assurdo.

Pertanto $N \cap H_i = \{id\}$, cioè \mathcal{A}_{n+1} è un gruppo semplice.

Corollario 7.13

L'insieme $X = \{ \sigma \in S_n \mid \sigma \text{ è un 5-ciclo} \}$ genera \mathcal{A}_n per $n \geqslant 5$.

Dimostrazione. Sia $\sigma \in X$ un 5-ciclo, per ogni $\tau \in \mathcal{A}_n$ abbiamo che $\tau \sigma \tau^{-1}$ è ancora un elemento di X, pertanto $\langle X \rangle$ è un sottogruppo normale di \mathcal{A}_n , da cui $\langle X \rangle = \mathcal{A}_n$ in quanto diverso da $\{id\}$.