

Zusatzbogen Rechnerarchitektur Wintersemester 20/21 Prof. Dr.-Ing. Jochen Schiller

Aufgabe 1: Carry-Lookahead-Addierer

Bearbeiten Sie die folgenden Aufgaben den Vorlesungsfolien entsprechend:

- 1. Lösen Sie die rekursive Berechnung vom Übertrag $\ddot{\mathbf{u}}_4$ in Und- und Oder-Verknüpfungen der Generate-Carry \mathbf{g}_i und Propagate-Carry Bits \mathbf{p}_i mit $i \leq 3$ auf.
- 2. Berechnen Sie nun \mathbf{g}_i und \mathbf{p}_i mit $i \leq 3$ für die konkreten Werte $\mathbf{a}_{3...0} = 1010$ und $\mathbf{b}_{3...0} = 0110.$
- 3. Berechnen Sie abschließend die ersten vier Ziffern s_i mit $i \leq 3$ der Summe von a und b aus 2 nach der Carry-Lookahead-Addierer-Methode.

Zusatzbogen Rechnerarchitektur Wintersemester 20/21 Prof. Dr.-Ing. Jochen Schiller

Aufgabe 2: Integer-Vector Rechner

Implementieren Sie eine Funktion in NASM, die zwei Integer-Vektoren miteinander verrechnet. Nutzen Sie dazu die Vektorbefehle Ihrer SSE-Unit um die Arrays aus dem Speicher direkt in jeweils ein xmm-Register zu laden und dann die jwg. Operationen auszuführen.

Die Arrays sind jeweils 128-Bit groß, das wird bei intel als "double quad-word" bezeichnet. Die einzelnen Operationen sollen dann auf sogenannten "packed words" arbeiten, sprich auf acht 16-Bit Zahlen gleichzeitig.

Parameter:

- a Array mit den ersten Operanden
- b Array mit den zweiten Operanden
- c Array für die Ergebnisse
- op Operation die ausgeführt werden soll, wobei op $\in \{+, -, *, =\}$.