Principles of Programming Languages

Topic: Formal Languages, part A

Review

- See Sakai for
 - Syllabus
 - Rules and Procedures for Exams
 - Exam Schedule
- This class will teach you
 - some new ways of thinking about programs (new paradigms)
 - some common principles underlying most languages

 \mathcal{L}

Review

- A programming language should:
 - be as easy as possible for people to read, write, and learn
 - be as easy as possible for a compiler to compile into efficient machine code or an interpreter to execute
 - be as powerful as possible <u>for the task at hand:</u>
 scale, novelty, paradigm, ...

"The best chainsaw is no good at cutting paper. The best scissors are no good at cutting logs."

Traditional Two-Pass Compiler

Pass: read and write entire program

il = intermediate language

Scanner

- Maps characters → tokens
 - Tokens: basic unit of syntax
 - E.g., x = x + y; becomes<id, x> <operator, assign> <id, x> <operator +> <id, y>
 - Typical token types:number, id, operator (e.g., +), keyword (e.g., do, else)

Parser

- Parse: determine the grammatical structure of a sequence of tokens
- Grammar: set of rule like assignment → variable '=' expression ';'
- Analogy with grammars of human languages.
 - e.g., English: Sentence → Subject Verb Object
 The dog bit Bob
 Rob bit the dog ← different meaning
 - Bob bit the dog \leftarrow different meaning
 - **Dog Bob the bit** ← meaningless

Abstract Syntax Tree

For: x * 2 - y

Defining a Language

- To define a computer language we need to say
 - What are the parts of the text of the program and how are they related: syntax
 - What are the parts of the behavior specified by the program and how are they related: semantics
- Syntactic structure should mirror semantic structure

Text and Behavior

• Text of the program

$$a = b + c ;$$

Behavior of the program

calculate:

add the value of variable b to the value of variable c

and store the result in variable a

Parts

• Text of the program

Behavior of the program

Steinberg 314 L02-formlangA.odp 10

Defining a language

• Semantics:

several formal approaches but in practice we just use
 English to explain the meaning

• Syntax:

- tokens defined by a Regular Expression or Finite State Automaton
- Larger scale structure defined by a Context Free Grammar

Formal Languages

For now, we will use the following terms in a special technical sense:

- Alphabet: a set of symbols {a, b} or {if, while, for, ...}
- String: a sequence of symbols from the alphabet abbab
- Language: a set of strings
 - {ab, abab, ababab, ...}
 - Each string: finite length
 - Set: possibly infinite number of strings

Specifying a Language

- Languages can be infinite sets so we can't just list all strings in the language, must describe the set
 - "any string of alternating 'a' and 'b' that starts with 'a' and ends with 'b' "
- Formalisms for specifying a language
- - Grammars
 - Regular Expressions
 - Automata

Grammar

- A grammar is a formalism for specifying a language
 - A set of *Terminal Symbols*, the alphabet of the language
 a, b
 - A set of Non-terminal Symbols, the grammatical categories of the language, one of which is the "start" symbol

MultiAB, AB

- A set of Rules of the form Non-terminal => sequence of Symbols

MultiAB => MultiAB AB

MultiAB => AB

 $AB \Rightarrow a b$

Grammar Rules

- Another term for Rule is *Production*
- A rule is of the form

Left-side => *Right-side*

where Left-side is a single Non-terminal,

and *Right-side* is a sequence of Terminals and/or Non-terminals

Assignment => Variable '=' Expression ';'

Grammar

• Usually we just give the Rules, since you can see from them what the Terminals and Non-terminals are.

Grammar GAB:

Start symbol

MultiAB => MultiAB AB

MultiAB => AB

AB => a b

Grammar for (Part of) English

17

Steinberg 314 L02-formlangA.odp

The Language of a Grammar

Initialize a list of symbols to be just the Start Symbol

Repeatedly:

- Find the first Non-terminal in the list
- Find a rule whose Left-hand side is this non-Terminal
- Replace the Non-terminal with the Right-hand side of that rule

Until the list contains only Terminals

The Language of a Grammar

Grammar GAB:

MultiAB => MultiAB AB

MultiAB => AB

 $AB \Rightarrow a b$

Derivation of a b a b from

GAB

MultiAB

MultiAB AB

AB AB

a b AB

a b a b

The Language of a Grammar

• Proof that a b a b a b is in L(GAB):

MultiAB

MultiAB AB

MultiAB AB AB

AB AB AB

a b AB AB

a b a b AB

ababab

Steinberg 314 L02-formlangA.odp 20

• The order in which Non-terminals are replaced does not matter

MultiAB MultiAB

MultiAB AB MultiAB AB

AB AB MultiAB a b

a b AB AB a b

a b a b a b

Each internal node is a Non-terminal; its children make up the right-hand side of one of the productions for that Non-terminal.

Steinberg 314 L02-formlangA.odp 22

Derivation in a Grammar

Question: Write a leftmost

derivation of **aabb** in G2?

Answer:

G2:

$$\langle A \rangle = a \mid a \langle A \rangle$$

$$< B > = > b | < B > b$$

Derivation in a Grammar

Question: Write a leftmost derivation of baa in G2?

G2:

<Stmt> => <A> | <A> <A> => a | a <A> => b | b

Derivation in a Grammar

Question: Write a leftmost derivation of baa in G2?

Answer:

Impossible!

No way to get b left of a

G2:

$$=> a \mid a < A>$$

$$< B > => b | < B > b$$

Derivation vs Parse

- Derivation: <start> => ... => list of Terminals
- Parse: list of Terminals => ... => <start>

Each internal node is a nonterminal; its children make up the right-hand side of one of the productions for that nonterminal.

Steinberg 314 L02-formlangA.odp 27

Draw a parse tree for aabb in G2?

G2:

$$=> a \mid a < A>$$

$$< B > = > b | < B > b$$

Draw a parse tree for aabb in G2?

G2:

$$\langle A \rangle = a \mid a \langle A \rangle$$

$$< B > => b | < B > b$$

Grammars are not Unique

Consider a grammar G:

```
<stmt> ::= <ident> := <digit>
<ident> ::= <letter>
<ident> ::= <ident> <letter>
<ident> ::= <ident> <digit>
<letter> ::= a | b | c | ... | x | y | z
<digit> ::= 0 | 1 | ... | 8 | 9
```

Consider a grammar G':

The grammar G' generates the same language as G, but it has different parse trees.

G vs G'

```
<identifier> ::= <letter> | <identifier> <letter> |
                   <identifier><digit>
• G': ...
   <ident> ::= <letter> | <ident> <char>
   <char> ::= <letter> | <digit>
```

Grammars are not Unique

Parse Tree for G

32

Parse Tree for G'

Ambiguity within a grammar

John saw the man on the hill with the telescope

L02-formlangA.odp

Steinberg

Arithmetic Expressions

Here is a grammar for arithmetic expressions:

Using this grammar, how would we parse: x + 3 * y?

Two Parse Trees

Two Parse Trees

- in a PL we want to base meaning on parse so
- ambiguous parse -> ambiguous meaning ->

36

Steinberg 314 L02-formlangA.odp

Precedence

Modify the grammar to add precedence:

```
<expr> ::= <expr> + <expr> | <expr> - <expr> | <term>
<term> ::= <term> * <term> | <factor>
<factor> ::= <var> | <num> | (<expr>)
<var> ::= a | b | c | ... | x | y | z
<num> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
```

Using this grammar, how would we parse: x + 3 * y? Using this grammar, how would we parse: 7 - 4 - 2?

Only One Parse Tree

But there are two parse trees for the second example:

Associativity

Modify the grammar to add associativity:

Using this grammar, how would we parse: 7 - 4 - 2?

Only One Parse Tree

Solution

- Solution: encode precedence & associativity in grammar
 - non-terminal for each level of precedence

```
+ - <term>
```

```
* / <factor>
```

- for each level of precedence:

```
<nt1> ::= <nt2> (nt2 higher precedence)
```

How it works

Higher in the tree means lower precedence

$$(x+y)*z$$
 $x+(y*z)$

How it works: Precedence

```
NT1 \Rightarrow NT2 \mid NT1 + NT2 (NT1 is Start Symbol)
```

NT2 => NT3 | NT2 * NT3

NT3 => Number

To get 1+2*3:

Can only get + from an NT1 so start

NT1

NT1 + NT2

How it works: Precedence

 $NT1 \Rightarrow NT2 \mid NT1 + NT2$ (NT1 is Start Symbol)

NT2 => NT3 | NT2 * NT3

NT3 => Number 1+2*3

NT1 + NT2 * NT3

How it works: associativity

 $NT1 \Rightarrow NT2 \mid NT1 + NT2$ (NT1 is Start Symbol)

NT2 => NT3 | NT2 * NT3

NT3 => Number 1+2+3

Can only get + from an NT1

Concrete vs. Abstract Syntax

Abstract Syntax

Types of Grammars

- Grammars can be classified into types
 - Type is based on form of rules
 - Different types -> parsing is a harder / easier computation

Types of Grammars

- Context Free Grammars:
 - Every rule has a single nonterminal on the left-hand side:
 <A> =>...
 - Disallowed: <X> <A> => <X> a
- Regular Grammars:
 - Rules all take the forms:

```
<A> => c \text{ or } <A> => <B> c (left-linear)
```

- Or rules all take the forms:

```
<A> => c or <A> => c <B> (right-linear)
```

- Disallowed: $S \Rightarrow a S b$
- Cannot generate the language $\{a^nb^n \mid n = 1,2,3,...\}$

Types of Grammars

- Context Free Grammars (CFGs) are used to specify the overall structure of a programming language:
 - if/then/else, ...
 - brackets: (), {}, begin/end, ...
- Regular Grammars (RGs) are used to specify the structure of tokens:
 - identifiers, numbers, keywords, ...
- RGs are a subset of CFGs

Extended BNF (EBNF)

A language for defining the grammar of a language.

Write nonterminals as usual. (Variant: Write them with initial capital letters, or using a different font.)

Use additional *metasymbols*, as shortcuts:

- {...} means repeat the enclosed text zero or more times
- [...] means the enclosed text is optional
- (...) is used for grouping, usually with the alternation symbol, e.g., (... | ...).
- If { }, [], or () are used as terminal symbols in the language being defined, then they must be quoted. (Variant: They must be underlined.)

Extended BNF (EBNF)

Examples:

```
<expr> ::= <term> { ( + | - ) < term> }
<term> ::= <factor> { ( * | / ) < factor> }
<factor> ::= <var> | <num> | '(' < expr> ')'
<if-stmt> ::= if < expr> then < stmt> [ else < stmt> ]
<identifier> ::= < letter> { ( < letter> | < digit> ) }
```

Formal Language Theory

- Offers a way to describe computation problems formulated as language recognition problems
 - Enables proofs of relative difficulty of certain computational problems
- Provides a mechanism to aid description of programming language constructs
 - Regular expressions ~ PL tokens (e.g. real numbers, keywords)
 - Context-free grammars ~ PL statements

Specifying a Language

- Formalisms for specifying a language
 - Grammars
 - Regular Expressions
 - Automata

- Formalism for describing simple PL constructs
 - reserved words
 - identifiers
 - numbers

Steinberg

314

- Simplest sort of grammatical structure
- Defined recursively
- Actually are expressions on languages, ie on sets of strings

L02-formlangA.odp 54

	RE Notation	<u>Language</u>
	an empty RE	{}
symbol a	a	{a}
null symbol	ε	{3}
R,S regular exprs	RIS	$\mathrm{L}_{\mathrm{R}} \cup \mathrm{L}_{\mathrm{S}}$
	alb (alternation)	$\{a,b\}$
R,S regular exprs	RS	$\mathrm{L_{R}L_{S}}$
	ab (concatenation)	<i>{ab}</i>

|--|

a

b

ab

a l b

ab | ac

 $(a \mid b)(c \mid d)$

(abc | ε) d

Language

{a}

{b}

{ab}

{a, b}

{ab, ac}

{ac, ad, bc, bd}

{abcd, d}

RE Notation Language

Note: ε a = a ε = a

Precedence is +* concatenation |

high

to

low

(all are left associative operators)

RE Notation

a*

ab*

(ab)*

 $(a \mid b)^*$

a+

ab+

Language

 $\{\varepsilon, a, aa, aaa, \ldots\}$

{a, ab, abb, abbb, ...}

 $\{\varepsilon, ab, abab, ababab, ...\}$

 $\{\varepsilon, a, b, aa, ab, ba, bb, \ldots\}$

{a, aa, aaa, ...}

{ab, abb, abbb, ...}