Università degli Studi di Milano-Bicocca

Identificazione efficiente di esoni

Relatore

Prof. Gianluca Della Vedova

Correlatore

Dott. Luca Denti

Candidato

Davide Cozzi

24 Luglio 2020

Introduzione e scaletta

Prerequisiti:

- concetti di biologia molecolare
- strumenti computazionali:
 - ▷ splicing graph, linearizzazione e bit vector
 - ▶ MEMs e MEMs graph

Introduzione e scaletta

Prerequisiti:

- concetti di biologia molecolare
- strumenti computazionali:
 - ▷ splicing graph, linearizzazione e bit vector

Innovazioni, riconoscimento di novel exons in ASGAL:

- riconoscimento degli introni
- estensione o ricostruzione del MEMs graph
- analisi dei risultati
- conclusioni e prospettive future

Prerequisiti: accenni di biologia molecolare

- ► DNA e RNA
- sintesi proteica
- esoni e introni
- splicing alternativo

Prerequisiti: splicing graph, linearizzazione e bit vector

Prerequisiti: Maximal Exact Matches e MEMs graph

$$m = (t, p, l)$$

Z = ... |GACTCAGATAGTTATTT|... m = (t, p, 5) R = ... |GATAGATATCCGCTATA...

Innovazioni: riconoscimento degli introni

- riconoscimento degli introni a partire dall'annotazione
- costruzione della linearizzazione degli introni
- costruzione della mappa degli introni

Mappa degli introni associata ai due trascritti

- $(E_1, E_2) = [I_1]$
- $(E_1, E_3) = [I_1, I_2, I_3, I_5]$
- $(E_2, E_3) = [I_3]$
- $(E_3, E_4) = [I_4]$

6 di 10

Innovazioni: estensione del MEMs graph

Innovazioni: sperimentazione e analisi dei risultati

- download del genoma e dell'annotazione
- manipolazione dell'annotazione
- simulazione dell'RNA-Seq sample (25000 reads lunghe 100)
- ► calcolo dei MEMs
- produzione e analisi dei risultati

- automatizzazione con Snakemake
- semplice modifica dei parametri
- parallelismo

cromosoma	error rate	tipo	match	≤10%	>10%	mismatch	tempo (s)	memoria (Mb)
9	1%	intron	24747	194	23	36	9.6	59.1
		noIntron	22993	64	6	1937	4.6	57.2
9	2%	intron	24748	194	23	35	9.6	59.2
		noIntron	22993	64	6	1937	4.6	57.9
9	10%	intron	24748	193	23	36	10.0	49.7
		noIntron	22991	64	6	1939	4.6	49.5

Conclusioni e prospettive future

Considerazioni sui risultati

- ✓ buona qualità dei risultati
- x performances (tempi medi di esecuzione) non ottimali

Conclusioni e prospettive future

Considerazioni sui risultati

- ✓ buona qualità dei risultati
- x performances (tempi medi di esecuzione) non ottimali

Prospettive future

- ottimizzazione dello studio degli introni
- perfezionamento del MEMs graph
- parallelizzazione dello studio delle reads

RINGRAZIAMENTI

Grazie per l'attenzione

Relatore

Prof. Gianluca Della Vedova

Correlatore

Dott. Luca Denti

Candidato

Davide Cozzi