

EMC Test Data

Client:	Thales Avionics, Inc.	Job Number:	JD101779
Model:	CWAR	T-Log Number:	T103414
	CVVAP	Project Manager:	Irene Rademacher
Contact:	Marcus Madray	Project Coordinator:	-
Standard:	FCC 15.207, 15.209, 15.247, 15.407, RSS-247	Class:	N/A

Maximum Permissible Exposure / SAR Exclusion

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Date of Evaluation: 3/9/2018 Test Engineer: David Bare

General Test Configuration

Calculation uses the free space transmission formula:

 $S = (PG)/(4 \pi d^2)$

Where: S is power density (W/m²), P is output power (W), G is antenna gain relative to isotropic, d is separation distance from the transmitting antenna (m).

Summary of Results

Device complies with Power Density requirements at 20cm separation:	No I
If not, required separation distance (in cm):	22

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

EMC Test Data

Client:	Thales Avionics, Inc.	Job Number:	JD101779
Model:	CWAR	T-Log Number:	T103414
	CWAP	Project Manager:	Irene Rademacher
Contact:	Marcus Madray	Project Coordinator:	-
Standard:	FCC 15.207, 15.209, 15.247, 15.407, RSS-247	Class:	N/A

FCC MPE Calculation
Use: General

Antenna: 2.4 GHz - Integral 8.9 dBi (effective gain); 5 GHz - Integral 10.7 dBi (effective gain)

	El	JT	Cable Loss	Ant	Power		Power Density (S)	MPE Limit
Freq.	Po	wer	Loss	Gain	at Ant	EIRP	at 22 cm	
MHz	dBm	mW*	dB	dBi	dBm	mW	mW/cm^2	mW/cm^2
2412	17.9	61.7	0	8.9	17.9	478.8	0.079	1.000
2437	22.9	193.9	0	8.9	22.9	1505.9	0.248	1.000
2462	15.5	35.5	0	8.9	15.5	275.5	0.045	1.000

For the cases where S > the MPE Limit

Freq. MHz	S @ 22 cm mW/cm^2	MPE Limit mW/cm^2	Distance where S <= MPE Limit	% of MPE Limit
2412	0.079	1.000	6.2cm	7.9%
2437	0.248	1.000	10.9cm	24.8%
2462	0.045	1.000	4.7cm	4.5%

	El	JT	Cable Loss	Ant	Power		Power Density (S)	MPE Limit
Freq.	Po	wer	Loss	Gain	at Ant	EIRP	at 22 cm	
MHz	dBm	mW*	dB	dBi	dBm	mW	mW/cm^2	mW/cm^2
5755	23.8	240.5	0	10.7	23.8	2819.8	0.464	1.000
5795	23.7	236.7	0	10.7	23.7	2775.4	0.456	1.000
5825	23.3	212.4	0	10.7	23.3	2490.7	0.410	1.000

For the cases where S > the MPE Limit

Freq.	Power Density (S) at 22 cm	MPE Limit at 20 cm	Distance where S <= MPE Limit	
MHz	mW/cm^2	mW/cm ²	cm	% of MPE Limit
5755	0.464	1.000	15.0cm	46.4%
5795	0.456	1.000	14.9cm	45.6%
5825	0.410	1.000	14.1cm	41.0%

Worst case RF exposure is the sum of the ratios for the two radios, 24.8% + 46.4% = 71.2 % of the limit.

EMC Test Data

Client:	Thales Avionics, Inc.	Job Number:	JD101779
Model:	CWAR	T-Log Number:	T103414
	CWAP	Project Manager:	Irene Rademacher
Contact:	Marcus Madray	Project Coordinator:	-
Standard:	FCC 15.207, 15.209, 15.247, 15.407, RSS-247	Class:	N/A

Industry Canada MPE Calculation

Use: General

Antenna: 2.4 GHz - Integral 8.9 dBi (effective gain); 5 GHz - Integral 10.7 dBi (effective gain)

USE THIS FOR 300-6000 MHz single transmitters (General use)

	El	JT	Cable Loss	Ant	Power		Power Density (S)	MPE Limit
Freq.	Po	wer	Loss	Gain	at Ant	EIRP	at 22 cm	
MHz	dBm	mW*	dB	dBi	dBm	mW	mW/cm^2	mW/cm^2
2412	17.9	61.7	0	8.9	17.9	478.76	0.079	0.537
2437	22.9	193.9	0	8.9	22.9	1505.88	0.248	0.540
2462	15.5	35.5	0	8.9	15.5	275.50	0.045	0.544

For the cases where S > the MPE Limit

-	II (0)			
	Power Density (S)	MPE Limit	Distance where	
Freq.	at 22 cm	at 20 cm	S <= MPE Limit	
MHz	mW/cm ²	mW/cm^2	cm	% of MPE Limit
2412	0.079	0.537	8.4	14.7%
2437	0.248	0.540	14.9	45.8%
2462	0.045	0.544	6.3	8.3%

	El	JT	Cable Loss	Ant	Power		Power Density (S)	MPE Limit
Freq.	Po	wer	Loss	Gain	at Ant	EIRP	at 22 cm	
MHz	dBm	mW*	dB	dBi	dBm	mW	mW/cm ²	mW/cm^2
5755	23.8	240.5	0	10.7	23.8	2819.82	0.464	0.972
5795	23.7	236.7	0	10.7	23.7	2775.37	0.456	0.977
5825	23.3	212.4	0	10.7	23.3	2490.70	0.410	0.980

For the cases where S > the MPE Limit

Freq.	Power Density (S) at 22 cm	MPE Limit at 20 cm	Distance where S <= MPE Limit	
MHz	mW/cm^2	mW/cm^2	cm	% of MPE Limit
5755	0.464	0.972	15.2	47.7%
5795	0.456	0.977	15.0	46.7%
5825	0.410	0.980	14.2	41.8%

Worst case RF exposure is the sum of the ratios for the two radios, 45.8% + 47.7% = 93.5% of the limit.

Worst case MPE value is 0.248 + 0.464 = 0.712 mW/cm² (7.12 W/m²)