MOwNiT, Laboratorium 5., Nikodem Korohoda

Podsumowanie różnych metod przybliżania funkcji

Wyznaczano przybliżenia funkcji $e^{4*cos2x}$ w dziedzinie $(-\pi,3\pi)$, za pomocą różnych metod.

Za każdym razem funkcję generowano dla = $4*\pi*100$ = 1256 punktów (punkty odległe o 0.01 w całej dziedzinie) oraz obliczano niedokładności za pomocą wzoru:

$$\max_{i=0..N} |f(x_i) - W(x_i)|$$

Metoda 1a.

Interpolacja za pomocą metody Lagrange'a oraz Newtona, dla punktów równoodległych oraz punktów Chebysheva.

Analizowane liczby węzłów: 3-80 w poszukiwaniu najlepszego przybliżenia.

Najlepsze przybliżenia:

Podsumowanie niedokładności:

Różnica (liczba węzłów)	Punkty równoodległe	Punty Chebysheva
Metoda Lagrange'a	~ 50,67 (10)	~ 1,69 (70)
Metoda Newtona	~ 50,67 (10)	~ 14,74 (29)

Tabela 1.

Wykryto efekt Rungego dla znacznej liczby węzłów równoodległych, efekt ten nie pojawia się dla rozkładu Chebysheva, jak widać na wykresie powyżej.

Metoda 1b.

Interpolacja za pomocą metody Hermita, dla punktów równoodległych raz punktów Chebysheva.

Analizowane liczby węzłów: 3-80 w poszukiwaniu najlepszego przybliżenia każdy węzeł liczony jako dwukrotny).

Najlepsze przybliżenia:

Podsumowanie niedokładności:

Różnica (liczba węzłów)	Punkty równoodległe	Punty Chebysheva
Metoda Lagrange'a	~ 46,59 (9)	~ 13,96 (19)

Tabela 2.

Ponownie występuje efekt Rungego, tym razem znacznie szybciej. Ponadto, dla rozkładu Chebysheva bardzo szybko powstają błędy podczas wyliczania wartości.

Metoda 2.

Interpolacja pomocą funkcji sklejanych drugiego i trzeciego stopnia, dla punktów równoodległych.

Analizowane liczby węzłów: 5-80 w poszukiwaniu najlepszego przybliżenia.

Dla funkcji rozważano kolejno następujące warunki brzegowe:

- 1. Warunek: Clamped Boundary (pochodna na krańcu jest równa iloczynowy różnicowemu)
- 2. Warunek: Natural Boundary (pochodna na krańcu jest zerowa)

Najlepsze przybliżenia:

Podsumowanie niedokładności:

Różnica (liczba węzłów)	Spline 2. stopnia	Spline 3. stopnia
Clamped Boundary	3,59 (80)	4,40 (41)
Natural Boundary	1,24 (80)	1,64 (80)

Tabela 3.

Metoda 3a.

Interpolacja pomocą aproksymacji średniokwadratowej wielomianami algebraicznymi, dla punktów równoodległych.

Analizowane stopnie i liczby węzłów: dla każdego stopnia 2 do 30 analizowano liczby punktów 3-80 (z wyłączeniem sytuacji gdy stopień >= I. punktów)

Najlepsze przybliżenie:

Otrzymana niedokładność wynosi 18,75

Metoda 3b.

Interpolacja pomocą aproksymacji wielomianami trygonometrycznymi, dla punktów równoodległych.

Analizowane stopnie i liczby węzłów: dla każdego stopnia 2 do 30 analizowano liczby punktów 3-80 (z wyłączeniem sytuacji gdy stopień >= 2*liczba punktów)

Najlepsze przybliżenie:

Otrzymana niedokładność wynosi 13,29

Wnioski

Tabelka podsumowująca dokładności konkretnych metod (pierwsza liczba w nawiasie to liczba punktów, druga to stopień):

	Punkty równoodległe		Punkty Chebysheva
Metoda Lagrage'a	50,67 (10)		1,69 (70)
Metoda Newtona	50,67 (10)		14,74 (29)
Metoda Hermita	46,59 (9)		13,96 (19)
	Clamped Boundary	Natural Boundary	
Spline 2. stopnia	3,59 (80)	1,24 (80)	
Spline 3. stopnia	4,40 (41)	1,64 (80)	
Wielomany algebraiczne	18,75 (21, 14)		
Wielomany trygonometryczne	13,29 (80, 12)		

Tabela 4.