Obligatorisk Innlevering 04

Eirik Isene

17. september 2013

Oppgave 7.7

Hvis $(P \to Q)$ er sann og $(Q \to R)$ er sann, så er $(P \to R)$ sann

Oppgave a)

Ved direkte bevis:

- (1) Vi antar at $(P \to Q)$ er sann og at $(Q \to R)$ er sann, og skal vise at $(P \to R)$ er sann
- (2) Vi antar at P er sann, for dersom P er usann, blir $(P \to R)$ alltid sann.
- (3) Dersom $(P \to Q)$ er sann (1), og P er sann (2), må Q være sann.
- (4) Dersom $(Q \to R)$ er sann (1) og P er sann (2) og Q er sann (3), må R være sann
- (5) Dersom P er sann (2) og R er sann (4), så er $(P \to R)$ sann

Oppgave c)

Ved et motsigelsesbevis:

- (1) Vi antar at $(P \to R)$ er usann
- (2) Vi antar at $(P \to Q)$ er sann og $(Q \to R)$ er sann
- (3) Dersom $(P \to R)$ er usann (1), må P være sann og R være usann
- (4) Dersom P er sann (3) og $(P \to Q)$ er sann (2), må Q være sann
- (5) Dersom Q er sann (4) og R er usann (3) så er $(Q \to R)$ usann
- (6) Vi ser at $(Q \to R)$ er usann (5) og $(Q \to R)$ er sann (2), dette er en motsigelse.

Siden vi ender i en motsigelse ved å anta det motsatte, er den originale antakelsen sann!

Oppgave 7.10

Er påstanden sann eller usann? F står for en utsagnslogisk formel.

Oppgave g)

For alle F, så er F oppfyllbar eller $\neg F$ oppfyllbar.

- (1) Dersom F er en kontradiksjon vil $\neg F$ være en tautologi, altså oppfyllbar.
- (2) Dersom F ikke er en kontradiksjon, så er den oppfyllbar.

Oppgave h)

For alle F, så er F en tautologi eller $\neg F$ en tautologi.

(1) Dersom F er både oppfyllbar og falsifiserbar er verken F en tautologi, eller $\neg F$ en tautologi.