Tick your teacher

- o Ms Cheng
- o Dr. Pearce
- o Ms Sindel
- o Ms Rimando

PERTH MODERN SCHOOL

YR11 MATHEMATICS SPECIALIST - 2018

TEST 3 – Vectors

NAME:	DATE: <u>14/05/2108</u>	Mark:	
Calculator Assumed	Time: 40 minutes	Mark: 35 marks	
Question 1		(4 mar	ks)
If $a=-2i+5j$ and $b=xi-2j$ are two ve (a) x if a and b are parallel.	ectors. Find:	(2 mark	s)
(b) <i>x</i> if <i>a</i> and <i>b</i> are perpendicular.		(2 mark	ks)
			-/
Question 2		(3 mar	ks)
Consider the points $A(-1,6)$, $B(-3,-2)$	and $C(7,3)$. Calculate the angle betwee	n <i>BA</i> and <i>BC</i> .	

(a) Find the scalar projection in the direction of 43° of a vector of magnitude 20 in the direction of 163°. (2 marks)

(b) Let a=i-j, b=i+3j. Find the vector projection of b in the direction of a. (2 marks)

Question 4 (5 marks)

A triangle is formed by three non-zero vectors a, b and c, so that c = a - b, and θ is the angle between a and b.

- (a) Sketch the triangle. (1 mark)
- (b) Explain why $c \cdot c = |c|^2$. (1 mark)
- (c) Use $c \cdot c = (a-b) \cdot (a-b)$ to deduce the cosine rule. (3 marks)

Consider the quadrilateral in the diagram below.

Use a vector method to

(a) find x and y if ABCD is a parallelogram.

(2 marks)

(b) determine the condition(s) required in terms of x and/or y so that ABCD is a trapezium. (4 marks)

(c) show that points A, B and the origin are collinear.

(2 marks)

A small boat that can maintain a steady speed of 5 ms⁻¹ is to cross a river from A to B, where $\overline{AB} = (35i - 105 j)$ m. A current of (-i - 2j) ms⁻¹ flows in the river. The velocity vector that the pilot of the small boat must set to travel from A to B is ai + bj, where a and b are constants.

(a) Explain why t(a-1)=35 and t(b-2)=-105, where t is a constant.

(3 marks)

(b) Eliminate t from the equations in (a) and hence express b in terms of a, simplifying your expression. (3 marks)

(c) Explain why $a^2 + b^2 = 25$.

(1 mark)

(d)	Use your equations from (b) and (c) to determine the values of a and b .	
(e)	Determine the time that the small boat will take to travel from A to B .	(1 mark)