

When is a function a fold, or an unfold?

Jeremy Gibbons
Types, Thorsten, Theories; October 2022

1. Fold

Recall **foldr** in Haskell:

```
foldr :: (a->b->b) -> b -> [a] -> b
foldr f e [] = e
foldr f e (x:xs) = f x (foldr f e xs)
```

Abstractly:

```
fold: Functor F \Rightarrow (FA \rightarrow A) \rightarrow \mu F \rightarrow A

fold_F f (in_F x) = f (F (fold_F f) x)
```

For example, with $LA = 1 + Nat \times A$ for lists of naturals,

```
sum : \mu L \rightarrow Nat

sum = fold_L add where add(Inl()) = 0

add(Inr(m, n)) = m + n
```

2. When is a function a fold?

Universal property:

$$h = fold_{\mathsf{F}} f \Leftrightarrow h \circ \mathsf{in}_{\mathsf{F}} = f \circ \mathsf{F} h$$

for $h: \mu F \to A$ and $f: FA \to A$.

3. When is a function *not* a fold?

```
Consider allEqual: \mu L \rightarrow Bool:
```

```
allEqual[1] = True
allEqual[2] = True
allEqual[1,1] = True
allEqual[1,2] = False
```

3. When is a function *not* a fold?

```
Consider allEqual: \mu L \rightarrow Bool:
```

```
allEqual[1] = True
allEqual[2] = True
allEqual[1,1] = True
allEqual[1,2] = False
```

There is no $f: LBool \rightarrow Bool$ such that $allEqual = fold_L f$.

Altenfest

6

4. Non-answers

- the universal property says it all but *intensionally*, not extensionally
- injections are folds extensional, but only an *implication* (consider *sum*)

Neither is very helpful at showing that a function is *not* a fold.

5. Totally

Definition. The *kernel* ker p of total function $p: X \to Y$ is equivalence relation

$$\ker p = \{ (x, x') \mid x, x' \in X \land px = px' \}$$

Theorem (postfactors). Given $r: X \to Z$ and $p: X \to Y$ and $Y \to Z \neq \emptyset$,

$$(\exists q: Y \to Z \bullet r = q \circ p) \Leftrightarrow \ker r \supseteq \ker p$$

Proof. \Rightarrow : calculation. \Leftarrow : choose qy = rx when y = px, else arbitrary.

Corollary. If initial algebra (μF , in_F) exists, then for $h: \mu F \rightarrow A$,

$$(\exists f \bullet h = fold_{\mathsf{F}}f) \Leftrightarrow \ker(h \circ \mathsf{in}_{\mathsf{F}}) \supseteq \ker(\mathsf{F}h)$$

In particular, $((1,[1]),(1,[2])) \in \ker(id \times allEqual) - \ker(allEqual \circ cons)$

6. Dually

Definition. The *image* img p of total function $p: X \to Y$ is

$$img p = \{ y \in Y \mid \exists x \in X \bullet px = y \}$$

(Why dual? equivalence ker $p = p^{\circ} \circ p$, coreflexive img $p = p \circ p^{\circ}$.)

Theorem (prefactors). Given $r: X \to Z$ and $q: Y \to Z$ and $X \to Y \neq \emptyset$,

$$(\exists p : X \to Y \bullet r = q \circ p) \Leftrightarrow \operatorname{img} r \subseteq \operatorname{img} q$$

Proof. \Rightarrow : calculation. \Leftarrow : case analysis on $X = \emptyset \lor Y \neq \emptyset$.

Corollary. If final coalgebra (νF , out_F) exists, then for $h: A \rightarrow \nu F$,

$$(\exists g \bullet h = unfold_{\mathsf{F}}g) \Leftrightarrow \mathsf{img}(\mathsf{out}_{\mathsf{F}} \circ h) \subseteq \mathsf{img}(\mathsf{F}h)$$

7. Partially

Definition. The kernel ker p of partial function $p: X \rightarrow Y$ is equivalence

```
\ker p = \{ (x, x') \mid x, x' \in \operatorname{dom} p \land px = px' \}
\cup \{ (x, x') \mid x, x' \in (X - \operatorname{dom} p) \}
```

Theorem. For partial functions $r: X \rightarrow Z$ and $p: X \rightarrow Y$,

```
(\exists q: Y \Rightarrow Z \bullet r = q \circ p) \Leftrightarrow \ker r \supseteq \ker p \wedge \operatorname{dom} r \subseteq \operatorname{dom} p
```

Proof. More awkward, because involving a case analysis.

8. Allegorically

Definition. Relation *R* is *simple* if $R \circ R^{\circ} \subseteq id$.

Definition. *Left division* operator $T \subseteq S \setminus R \iff S \circ T \subseteq R$.

Definition. The kernel ker R of a relation $R: X \sim Y$ is equivalence

$$\ker R = (R \backslash R) \cap (R \backslash R)^{\circ}$$

Remark. Concretely, $\ker R = \{(x, x') \mid \forall y \bullet (x, y) \in R \Leftrightarrow (x', y) \in R\}.$

Theorem. For simple $T: X \sim Z$ and $R: X \sim Y$,

 $(\exists \text{ simple } S: Y \sim Z \bullet T = S \circ R) \Leftrightarrow \ker R \subseteq \ker T \wedge \operatorname{dom} R \supseteq \operatorname{dom} T$

Proof. Nice and straightforward, by calculation.

9. Categorically

Can that nice calculational proof be generalised?

Definition. The *kernel pair* of an arrow *p* is its pullback along itself:

Definition. A *partial map* $p: X \rightarrow Y$ is a span with a monomorphic left leg:

10. Regularly

Definition. A regular category is:

- finitely complete (so has all kernel pairs), such that
- every kernel pair has a coequaliser (a regular epimorphism), and
- regular epimorphisms are stable under pullbacks.

Lemma. In a regular category, every arrow $p: X \to Y$ *factorises* into a regular epimorphism followed by a monomorphism.

11. Postfactors

Theorem (Sam Staton). Given arrows $p: X \to Y$ and $r: X \to Z$ in a regular category, there exists a partial map $q: Y \to Z$ such that $r = q \circ p$ iff there exists an arrow $i: \ker p \to \ker r$ satisfying $u_0 = v_0 \circ i$ and $u_1 = v_1 \circ i$, where u_0, u_1 and v_0, v_1 are the kernel pairs of p and r respectively.

12. Discussion

A relation $R: X \sim Y$ is a jointly monic span $X \leftarrow R \rightarrow Y$.

Relational composition is defined in terms of *pullbacks of spans*.

Regular category is precisely the structure required for associativity.

Set is regular, so we get the story for total functions.

But any category of Eilenberg–Moore algebras over *Set* is also regular; so covers *partial functions* too ($Pfun \simeq EM$ -algebras for *Maybe*).

What about other monads? Relations are Kleisli arrows for powerset.

Story here only for folds.

Unfolds not quite dual (probably don't want to dualise 'partial function').

13. Acknowledgements

- preliminary version, for total functions, at WG2.1#55 (Jan 2001)
- proofs simplified by Lambert Meertens
- paper with *Graham Hutton and Thorsten Altenkirch* (CMCS 2001)
- suggestions from *Bart Jacobs* about congruences and images
- generalised to partial functions, at WG2.1#56 (Sep 2001...)
- Roland Backhouse encouraged relational definition of kernels
- completed relational proofs with *Shin Cheng Mu* (Oct 2005)
- encouragement from *José Oliveira*, because related to functional dependencies
- help especially from *Maciej Piróg* and *Sam Staton* with regular categories
- in JNO's festschrift (JLAMP 85:921–930, 2016)