Assignment #1

Pros and Cons of Al-Based Mosquito Detection Using Audio

✓ Pros:

Non-Intrusive & Privacy-Friendly: It detects mosquito wingbeat frequencies rather than images or human voices, ensuring privacy.

Accurate Species Identification: The system can tell apart virus-carrying mosquitoes from harmless ones.

Cost-Effective & Scalable: Uses affordable microphones, works in all lighting conditions, and supports remote monitoring.

24/7 Monitoring: Operates continuously, including at night when mosquitoes are most active.

X Cons:

Noise Interference: Background sounds like rain, fans, and voices can interfere with detection.

Limited Range: Sensors need to be close to mosquitoes for accurate results.

Misclassification Risk: Some insect sounds overlap, requiring fine-tuning of AI models.

Data & Power Needs: Requires a stable power supply and network connection for real-time monitoring.

Privacy Considerations:

Human voices are filtered out, and audio is processed locally to avoid cloud-related privacy issues.

Data is encrypted and follows privacy regulations like GDPR.

Assignment #2 Comparison Between Microcontrollers and Single-Board Computers (SBC)				
Feature	Microcontroller	Single-Board Computer (SBC)		
Definition	A small integrated circuit for specific control tasks.	A full computer on a single board with CPU, RAM, and storage.		
Processing Power	Low processing power, designed for simple tasks.	Higher processing power, capable of running a full OS.		
Operating System	Usually doesn't run a full OS (bare-metal programming).	Runs full OS like Linux or Windows.		
Power Consumption	Very low; can run on batteries for a long time.	Higher power use; may need a dedicated power source.		
Complexity	Simple, designed for single-purpose tasks.	More complex, capable of multitasking.		
Cost	Cheaper (a few dollars).	More expensive (\$30 to \$100+).		
Connectivity	Limited (few I/O options).	Extensive (USB, Ethernet, Wi-Fi, HDMI).		
Use Cases	Ideal for embedded systems, automation, and IoT.	Suitable for computing, networking, and multimedia.		

When to Use a Microcontroller Over an SBC:

Energy Efficiency: Uses less power, ideal for battery-powered applications.

Real-Time Performance: Provides predictable, real-time performance — great for motor control and automation.

When to Use an SBC Over a Microcontroller:

More Processing Power: Suitable for multitasking, like running web servers or AI tasks.

Better Connectivity & Expandability: Supports USB devices, displays, and network options — useful for user interaction

Assignment #3: Research on Sensors and Actuators

Sensor: Light Dependent Resistor (LDR)

Function: Measures light levels by changing resistance — high resistance in low light, low resistance in

bright light.

Type: Analog (provides a continuous range of values).

Range: Outputs resistance from a few hundred ohms (bright light) to over $1M\Omega$ (darkness).

Actuator: Light Emitting Diode (LED)

Function: Emits light when powered — used as an indicator for environmental changes.

Type: Digital (ON/OFF state controlled by a microcontroller).

Range: Voltage (2-3V), current (10-20mA).

Example: Automatic light system using LDR and LED.

Hardware Components:

LDR (Light Dependent Resistor)

10kΩ Resistor (for voltage divider)

LED

Arduino Uno

Assignment #4: Protocol Comparison for IoT				
Criteria	мотт	AMQP	HTTP/HTTPS	
Protocol Type	Publisher-Subscriber	Message Queue	Request-Response	
Power Consumption	Very Low	Medium	High	
Transmission Speed	Fast	Medium	Slow	
Message Persistence	Yes (QoS 1 & 2)	Yes (Durable Queues)	No	
Security	SSL/TLS, Username/Password	SSL/TLS	SSL/TLS	
Best for IoT?	Perfect	Good	Not suitable	