More Logic Functions: NAND, NOR, XOR

Overview

- More 2-input logic gates (NAND, NOR, XOR)
- Extensions to 3-input gates
- Converting between sum-of-products and NANDs
 - SOP to NANDs
 - NANDs to SOP
- Converting between sum-of-products and NORs
 - SOP to NORs
 - NORs to SOP
- Positive and negative logic
 - We use primarily positive logic in this course.

Logic functions of N variables

- Each truth table represents one possible function (e.g. AND, OR)
- ° If there are N inputs, there are 22
- For example, is N is 2 then there are 16 possible truth tables.
- So far, we have defined 2 of these functions
 - 14 more are possible.
- ° Why consider new functions?
 - · Cheaper hardware, more flexibility.

X	У	G
0	0	0
0	1	0
1	0	0
1	1	1

The NAND Gate

- This is a NAND gate. It is a combination of an AND gate followed by an inverter. Its truth table shows this...
- NAND gates have several interesting properties...
 - NAND(a,a)=(aa)' = a' = NOT(a)
 - NAND'(a,b)=(ab)" = ab = AND(a,b)
 - NAND(a',b')=(a'b')' = a+b = OR(a,b)

Α	В	Υ
0	0	1
0	1	1
1	0	1
1	1	0

The NAND Gate

- These three properties show that a NAND gate with both of its inputs driven by the same signal is equivalent to a NOT gate
- A NAND gate whose output is complemented is equivalent to an AND gate, and a NAND gate with complemented inputs acts as an OR gate.
- Therefore, we can use a NAND gate to implement all three of the elementary operators (AND,OR,NOT).
- Therefore, ANY switching function can be constructed using only NAND gates. Such a gate is said to be primitive or functionally complete.

NAND Gates into Other Gates

The NOR Gate

- This is a NOR gate. It is a combination of an OR gate followed by an inverter. It's truth table shows this...
- NOR gates also have several interesting properties...
 - NOR(a,a)=(a+a)' = a' = NOT(a)
 - NOR'(a,b)=(a+b)" = a+b = OR(a,b)
 - NOR(a',b')=(a'+b')' = ab = AND(a,b)

Α	В	Υ
0	0	1
0	1	0
1	0	0
1	1	0

Functionally Complete Gates

- Oust like the NAND gate, the NOR gate is functionally complete...any logic function can be implemented using just NOR gates.
- Both NAND and NOR gates are very valuable as any design can be realized using either one.
- It is easier to build an IC chip using all NAND or NOR gates than to combine AND,OR, and NOT gates.
- NAND/NOR gates are typically faster at switching and cheaper to produce.

NOR Gates into Other Gates

The XOR Gate (Exclusive-OR)

- This is a XOR gate.
- XOR gates assert their output when exactly one of the inputs is asserted, hence the name.
- ° The switching algebra symbol for this operation is ⊕, i.e.

$$1 \oplus 1 = 0$$
 and $1 \oplus 0 = 1$.

А	В	Υ
0	0	0
0	1	1
1	0	1
1	1	0

The XNOR Gate

- This is a XNOR gate.
- This functions as an exclusive-NOR gate, or simply the complement of the XOR gate.
- The switching algebra symbol for this operation is ⊙, i.e.
 1 ⊙ 1 = 1 and 1 ⊙ 0 = 0.

Α	В	Υ
0	0	1
0	1	0
1	0	0
1	1	1

NOR Gate Equivalence

° NOR Symbol, Equivalent Circuit, Truth Table

DeMorgan's Theorem

° A key theorem in simplifying Boolean algebra expression is DeMorgan's Theorem. It states:

$$(a + b)' = a'b'$$
 $(ab)' = a' + b'$

Complement the expression
 a(b + z(x + a')) and simplify.

$$(a(b+z(x+a')))' = a' + (b + z(x + a'))'$$

$$= a' + b'(z(x + a'))'$$

$$= a' + b'(z' + (x + a')')$$

$$= a' + b'(z' + x'a'')$$

$$= a' + b'(z' + x'a)$$

Example

Oetermine the output expression for the below circuit and simplify it using DeMorgan's Theorem

Universality of NAND and NOR gates

Universality of NOR gate

 Equivalent representations of the AND, OR, and NOT gates

Example

Interpretation of the two NAND gate symbols

 Determine the output expression for circuit via DeMorgan's Theorem

Interpretation of the two OR gate symbols

 Determine the output expression for circuit via DeMorgan's Theorem

Summary

- Basic logic functions can be made from NAND, and NOR functions
- The behavior of digital circuits can be represented with waveforms, truth tables, or symbols
- Primitive gates can be combined to form larger circuits
- Boolean algebra defines how binary variables with NAND, NOR can be combined
- DeMorgan's rules are important.
 - Allow conversion to NAND/NOR representations