Effective Exploiting of Statistical Relational Learning for Data Cleaning

Larysa Visengeriyeva

Technische Universität Berlin, Germany

Data Science Workflow

error propagation through the entire workflow

DATA CLEANSING IS THE FIRST STEP IN ANY DATA SCIENCE WORKFLOW, AND OFTEN THE MOST IMPORTANT.

 $\label{lem:http://radar.oreilly.com/2013/09/data-analysis-just-one-component-of-the-data-science-workflow.html?cmp=ot-strata-na-article-na_62643$

Problem Statement

Increasing need for a new approaches in data cleaning (for non-relational usecases, e.g Web data)

Effective Data Cleaning

GOAL

1. Cleaning relational data

2. Cleaning semistructured data

SYSTEM REQUIREMENTS:

- Joint modeling for data cleaning rules

- 2
- Defining "soft" and "hard" data cleaning rules
- Flexible rules modeling (non-constraints rules)

PROBLEM SPACE

Our Idea

... adapt **probabilistic graphical models** to a data cleaning.

The main goal is to translate the constraint-based data quality rules into a predictive model in order to infer errors in uncertain data and their sources by using joint inference.

Method

- 1. DQ Rules are data agnostic and therefore derived from data. (We assume that constraints are already defined for the data).
- 2a. Create predictive model: DQ Rules are expressed in first-order logic formulas and then as Markov logic formulas (which is a template for Markov Networks)2b. Existing data are evidence for the predictive model created in (2a).
- 3. Running inference on Markov Networks predicts the data correction.

Rules Taxonomie

"HARD" RULES

- Primary Key constraints
- Constant CFDs

"SOFT" RULES

(FOR SOME RULES MAY NOT EXIST SUFFICIENT KNOWLEDGE)

- ★ non-Primary Key constraints
- ★ CDFs, MDs, CINDs
- ★ "Soft" FDs
- ★ Similarity predicates

How to compile data quality rules into Markov logic?

Why Markov Logic?

RECAP TWO REQUIREMENTS:

Joint modeling for data cleaning rules

data cleaning rules

Modeling conflicting rules

Flexible rules modeling

(non-constraints rules)

Defining "soft" and "hard"

- Joint inference over hidden predicates (by using Markov Networks)
- Defining "soft" and "hard" first-order formulae
- Modeling contradicting formulas
- Declarative formalism

Whole Stack in one Example:

INPUT:

Dirty data D₀

id	name	zip	city
1	Dirk	10000	Hamburg
2	Dirk	10000	Berlin
3	Dirk	20000	Berlin

Data cleaning based on conditional functional dependencies (cfd₁ cfd₂)and matching rule (md₃):

cfd₁: [zip=10000]
$$\rightarrow$$
[city=Berlin]

cfd₂: [city=Hamburg]
$$\rightarrow$$
[zip=20000]

 $\mathbf{md_3}$: R[name, zip]=R[name,zip] \rightarrow R[city] \rightleftharpoons R[city]

Scenario I: CFD, + MD,

Dirty data ${\rm D_0}$

id	name	zip	city
1	Dirk	10000	Hamburg
2	Dirk	10000	Berlin
3	Dirk	20000	Berlin

Dirty data D₁ **cfd**₁: [zip=10000]→[city=Berlin]

Cleaned data D_2 md₃: R[name, zip]=R[name,zip] \rightarrow R[city] \rightleftharpoons R[city]

Scenario II: CFD2 + MD3

Dirty data D₀

id	name	zip	city
1	Dirk	10000	Hamburg
2	Dirk	10000	Berlin
3	Dirk	20000	Berlin

Dirty data D₁
cfd₂: [city=Hamburg]→[zip=20000]

 md_3 : R[name, zip]=R[name, zip] \rightarrow R[city] \rightleftharpoons R[city]

id	name	zip	city
1	Dirk	20000	Hamburg
2	Dirk	10000	Berlin
3	Dirk	20000	Berlin

TWO POSSIBLE REPAIRS

id	name	zip	city
1	Dirk	20000	Hamburg
2	Dirk	10000	Berlin
3	Dirk	20000	Berlin

 $D_{2.1}$

id	name	zip	city
1	Dirk	20000	Berlin
2	Dirk	10000	Berlin
3	Dirk	20000	Berlin

022

DATA CLEANING RULES

FIRST-ORDER LOGIC TRANSLATION

cfd₁: $[zip=10000] \rightarrow [city=Berlin]$

f₁:zip(id, 10000)⇒city(id, Berlin)

cfd₂: [city=Hamburg]→ [zip=20000]

 $\mathbf{f_2}$:city(id, Hamburg) \Rightarrow zip(id, 20000)

md₃:
R[name, zip]=R[name,zip]→R[city] ←R[city]

 $\begin{array}{c} \boldsymbol{f_3}\!\!:\!\! \text{name}(\mathrm{id}_{1}\!,\!n) \, \wedge \, \mathrm{zip}(\mathrm{id}_{1}\!,\!z) \, \wedge \, \mathrm{name}(\mathrm{id}_{2}\!,\!n) \, \wedge \\ \hspace{1cm} \mathrm{zip}(\mathrm{id}_{2}\!,\!z) \Rightarrow \mathrm{matchCity}(\mathrm{id}_{1}\!,\,\mathrm{id}_{2}\!) \end{array}$

MARKOV LOGIC TO FACTOR-GRAPH TRANSLATION

Semistructured Data Model and Schema

DATA MODEL

SCHEMA

From: "Jaql: A scripting language for large scale semistructured data analysis"

Semistructured Data: FD Definition

Functional dependencies on semistructured data [21] is an expression of the form $\varphi: L \to R$, where L and R are paths (similar to the XPATH notation). Semistructured data satisfies φ iff for any tree tuples t_1 , t_2 , if $t_1.L = t_2.L$, then $t_1.R = t_2.R$.

FDs in Clausal Form

 $\omega: P_c(P_t(S \rightarrow \epsilon))$

RELATIVE KEY DEFINITION

$$\forall P_{c1}, P_{t1}, P_{c2}, P_{t2}, L, R_1, R_2 \Big(P_{c1}(P_{t1}(L \to \epsilon)) \land P_{c2}(P_{t2}(L \to \epsilon))$$
$$\land P_{c1}(P_{t1}(R_1 \to \epsilon)) \land P_{c2}(P_{t2}(R_2 \to \epsilon)) \Rightarrow R_1 = R_2 \Big)$$

The clausal form of φ will be useful for the later translation into the Markov logic program:

$$\forall P_{c1}, P_{t1}, P_{c2}, P_{t2}, L, R_1, R_2 \Big(\neg P_{c1}(P_{t1}(L \to \epsilon)) \lor \neg P_{c2}(P_{t2}(L \to \epsilon)) \lor \neg P_{c1}(P_{t1}(R_1 \to \epsilon)) \lor \neg P_{c2}(P_{t2}(R_2 \to \epsilon)) \lor R_1 = R_2 \Big)$$

Compilation into Markov Logic

MARKOV LOGIC PREDICATE S(tree-tuple-id(P_//P_), value)

 $\vee R_1 = R_2$

Compilation into Markov Logic

$$\varphi: L \rightarrow R$$

$$\forall P_{c1}, P_{t1}, P_{c2}, P_{t2}, L, R_1, R_2 \Big(\neg P_{c1}(P_{t1}(L \to \epsilon)) \lor \neg P_{c2}(P_{t2}(L \to \epsilon)) \lor \neg P_{c1}(P_{t1}(R_1 \to \epsilon)) \lor \neg P_{c2}(P_{t2}(R_2 \to \epsilon)) \lor R_1 = R_2 \Big)$$

$$\begin{array}{c} \text{L(id}_1(P_c/\!/P_t)\text{, l)} \, \wedge \, \text{L(id}_2(P_c/\!/P_t)\text{, l)} \, \wedge \, \text{R(id}_1(P_c/\!/P_t)\text{, r}_1\text{)} \, \wedge \, \text{R(id}_2(P_c/\!/P_t)\text{, r}_2\text{)} \Rightarrow \\ \text{(r}_1\text{= r}_2\text{)} \end{array}$$

 $\label{eq:name} name(id(country1//province1), n) $$ \land name(id(country1//province2), n) $$ \land capital(id(country1//province1), cname_1) $$ \land capital(id(country1//province1), id(country1//province2)) $$$

Evaluation Strategy

PARAMETERS Inference Noise % Data Various data size cleaning rules parameters Method quality (F₁score) Method accuracy **Efficiency (runtime** and memory consumption)

Initial Experiments

METHOD QUALITY:

Cleaning relational data: Deduplication (Matching Dependencies) + Improving Accuracy (Conditional Functional Dependencies)

		Data repairing with CFDs							İ	Data repair
%noise	ADDR	CITY	COND	COUNT	HOSPNAME	MEASURE	PHONE	STATE	ZIP	with CFD and MD
2	0.9952	0.9944	0.9976	0.9941	1.0	0.9954	1.0	0.9954	1.0	0.9976
4	0.9944	0.9988	1.0	0.9978	0.9964	0.9899	0.9963	0.9957	0.9929	0.9957
6	0.9964	0.9967	0.9969	0.996	0.9963	0.997	0.9947	0.9943	0.9971	0.9992
8	0.9978	0.9931	0.9942	0.9955	0.9979	0.9976	0.997	0.9948	0.9977	0.9948
10	0.9949	0.9942	0.9955	0.9995	0.9972	0.9944	0.9951	0.9931	0.9977	0.9953
20	0.9963	0.996	0.9943	0.9957	0.995	0.9944	0.9955	0.9965	0.9959	0.9968
30	0.9963	0.9966	0.9962	0.9971	0.9954	0.9961	0.9971	0.9944	0.9962	0.9972
									·	

Table 3: Detailed HOSP evaluation: F_1 measure of each attribute and noise per cent. Repair and matching performed separately from each other.

Outlook

SEE MY PHD REPORT ...

Example (how data quality rules influence each other)

Data cleaning based on functional dependencies

fd1: [A] -> [B]
fd2:[B] -> [C]

dirty data D₀

	A	В	С
t1	a1	b1	c1
t2	a2	b2	c3
t3	a1	null	c1

repaired data D₁

	A	В	С
t1	a1	b1	c1
t2	a2	b2	c3
t3	a1	b1	c1

deduplicated data D₂

		A	В	С
>	t1'=t1+t3	a1	b1	c1
/	t2	a2	b2	сЗ

Null value imputation t3[B]

tuples deduplication t1 and t3

Going top-down

- 1. What is data quality?
- 2. What are constraint-based data quality rules?
- 3. How to compile data quality rules into the probabilistic graphical models?
- 4. What is Markov logic?
- 5. How we predict data correction with Markov logic?

What is Data Quality?

5 Dimensions of Data Quality:

- 1. Consistency
- 2. Currency
- 3. Accuracy
- 4. Deduplication
- 5. Information Completeness

Conditional Functional Dependency

Definition 2. A conditional functional dependency (CFD) defined on the relational schema R(U) is a pair $R(X \to Y, T_p)$, where

- 1. $X \rightarrow Y$ is a standard FD;
- 2. T_p is a set of constraints holding on the particular subset of tuples. \square

EXAMPLE:

```
\mathsf{cfd}_1 : \mathsf{TRANS}([\mathsf{ZIPCODE}] \to [\mathsf{CITY}], \ \mathsf{t}_1 = (90001 \ \| \ \mathsf{Los\ Angeles}))
```

Matching Dependency

Definition 3. A Matching Dependency (MD) for schemas R_1 and R_2 is syntacticly defined as:

$$R_1[X_1] \approx R_2[X_2] \rightarrow R_1[Y_1] \rightleftharpoons R_2[Y_2]$$

where X_1 and X_2 are pairwise compatible sets of attributes in R_1 and R_2 , respectively; similarly for Y_1 and Y_2 ; \approx indicates similar attributes and \rightleftharpoons is called the *matching operator*. \square

EXAMPLE:

 $md_1 : TRANS[LASTNAME, CITY, STREET] = CUST[LASTNAME, CITY, STREET]$

 $\land \mathsf{TRANS}[\mathsf{FIRSTNAME}] \approx \mathsf{CUST}[\mathsf{FIRSTNAME}] \rightarrow \mathsf{TRANS}[\mathsf{FirstName}] \Rightarrow \mathsf{CUST}[\mathsf{FirstName}]$

Example: Friends & Smokers

```
1.5 \forall x \ Smokes(x) \Rightarrow Cancer(x)

1.1 \forall x, y \ Friends(x, y) \Rightarrow \left(Smokes(x) \Leftrightarrow Smokes(y)\right)
```

Two constants: **Anna** (A) and **Bob** (B)

Markov Logic Networks

- MLN (weights+FO formulas) is template for ground Markov nets
- Probability of a world x:

- Typed variables and constants greatly reduce size of ground Markov net
- Functions, existential quantifiers, etc.
- Infinite and continuous domains

FD:[C_CUSTKEY -> C_NAME]

		O_ORDERKEY	 C_CUSTKEY	C_NAME	C_ADDR	C_NATION_KEY	C_PHONE
		0_ID_1	C_ID_1	Customer#1	A1	N_ID_15	25-989-741-2988
customer 1 (C_NAME contains noisy data and	4	0_ID_100	C_ID_1	NULL	A1	N_ID_15	25-989-741-2988
missing values)		0_ID_101	C_ID_1	Customer#1xy	A1	N_ID_15	25-989-741-2988
<pre>customer 28 (C_ADDR contains</pre>		0_ID_128	C_ID_28	Customer#28	A28	N_ID_8	18-774-241-1462
noisy data)		0_ID_229	C_ID_28	Customer#28	A2XXX	N_ID_8	18-774-241-1462
customer 3 (no errors)		0_ID_3	C_ID_3	Customer#3	А3	N_ID_1	11-719-748-3364
		0_ID_103	C_ID_3	Customer#3	A3	N_ID_1	11-719-748-3364
		0_ID_255	C_ID_55	Customer#55	A55	N_ID_3	18-774-241-1462
		0_ID_149	C_ID_49	Customer#49	A49	N_ID_3	18-774-241-1462
		0_ID_14	C_ID_14	Customer#14	A14	N_ID_5	18-774-241-1462

MODELING INTEGRITY CONSTRAINTS: PREDICATES DECLARATION

Database attributes -> Predicates
Type -> Predicate type

Data -> domain data

MODELING INTEGRITY CONSTRAINTS: FIRST-ORDER LOGIC FORMULAS

1.0 Cust(id1, x) ^ Cust(id2, x) ^ CustName(id1, n1) ^ CustName(id2, n2) => (MayBeSimilar(id1, id2) ^ SameName(n1, n2))

0.9 Cust(id1, x) ^ Cust(id2, x) ^ MayBeSimilar(id1, id2) ^ (CustName(id1, n) v CustName(id2, n)) => (MayHaveName(id1, n) ^ MayHaveName(id2, n))

OUR TRICK

How we predict data correction with Markov logic?

The Database Analogy

Strata

MAP/MPE Inference

• **Problem:** Find most likely state of world given evidence

MAP/MPE Inference

Problem: Find most likely state of world given evidence

$$P(X = x) = \frac{1}{Z} \exp \left(\sum_{i} w_{i} n_{i}(x) \right) \quad \Longrightarrow \quad \arg \max_{y} \quad \sum_{i} w_{i} n_{i}(x, y)$$

Dirty Data: CUSTOMERS NAME 15 MISSING OR INCORRECT

O_ORDERKEY	 C_CUSTKEY	C_NAME	C_ADDR	C_NATION_KEY	C_PHONE
0_ID_1	C_ID_1	Customer#1	A1	N_ID_15	25-989-741-2988
0_ID_100	C_ID_1	NULL	A1	N_ID_15	25-989-741-2988
0_ID_101	C_ID_1	Customer#1xy	A1	N_ID_15	25-989-741-2988

DATA (EVIDENCE) FROM DATABASE

```
Customer(O_ID_1, C_ID_1)
```

CustName(O ID 1, Customer#1)

CustAddr(O ID 1, A1)

CustNation(O ID 1, N ID 15)

CustPhone(O ID 1, PHONE 25-989-741-2988)

Customer(**O ID 100**, C ID 1)

/* name is missing */

CustAddr(O ID 100, A1)

CustNation(O ID 100, N ID 15)

CustPhone(O ID 100, PHONE 25-989-741-2988)

Customer(O ID 101, C ID 1)

CustName(O ID 101, Customer#1xy)

CustAddr(O ID 101, A1)

CustNation(O ID 101, N ID 15)

CustPhone(O ID 101, PHONE 25-989-741-2988)

INFERENCE (HIDDEN PREDICATES) RESULTS

MayBeSimilar(O ID 101,**O ID 100**) 0.817574 MayBeSimilar(**O ID 100**,O ID 1) 0.817574

SameName(Customer#1xy,Customer#1) 0.622459

MayHaveName(**O_ID_100**,Customer'000000001) 0.588274 MayHaveName(**O_ID_100**,Customer'000000001xy) 0.588274

JOINT DEDUPLICATION AND NULL VALUE

COMPUTATION

Markov Logic Advantages for Data Cleaning

- 1. Defining "soft" and "hard" data cleaning rules
- 2. Joint inference of the hidden predicates (where are errors?)
- 3. Ability to model contradicting rules

Conflicting rules

CFD: $R([A]->[B], T_0)$

where T_0 consists of the two pattern tuples (-|b|) and (-|c|) with $b\neq c$.

Meaning: The first pattern requires t[B]=b, at the same time the second pattern says that t[B] must be c.

Can we model such conflicting rules with Markov Logic?

Modeling extended conditional dependencies (I)

CFDs extended allowing disjunction, negation and pattern tuples:

eCFD: R([city]->[AC], (NY||{212,718,646}))

"for tuples t such that t[city]=NY, their area code should come from a set {212, 718, 646}"

Can we model such extended constraints with Markov Logic?

Modeling extended conditional dependencies (II)

CFDs extended allowing predicate-patterns:

CFD: **R([book]->[price], (_||>0))**

"for every book, its price should be greater than zero"

Can we model such extended constraints with Markov Logic?

Modeling extended conditional dependencies (III)

CFDs with cardinality constraints and synonym rules:

CFD^c: R([country, zip]->[street], (UK, $_$ | | $_$), c) c $\subseteq \mathbb{N}$

"For all tuples t such that t[country, zip] \((UK,_), all tuples that are synonymous to t in county and zip can only have at most c distinct street values."

Can we model such extended constraints with Markov Logic?

 \approx is an operator, defining that either [country, zip]=(UK,_) or [country, zip]=(_,_)

Denial Constraints

$$\neg$$
(G(g,f,n,r,c,a,s), G(g',f',n',r',c',a',s'), (r=r'), (c='NYC'), (c' \neq 'NYC'), (s'>s))

states: Every time there are two employees with the same rank, one in NYC and one in a different city, there is a violation if the salary of the second is greater than the salary of the first.

Can we model denial constraints with Markov Logic?

Denial constraints are the first-order formulae:

 $\forall x \neg (R_1(x_1) \land ... \land R_n(x_n) \land P_1 \land ... \land P_m)$ where R_i is a relational atom and P_j is a predicate.

Quality Rules with Operators

(Build-in) predicates containing the following operators: =,<, >,≈,≤,≥,≠

CAN BE EXPRESSED AS DENIAL CONSTRAINTS

Quality improvement for schemaless data

ONGOING WORK ...

Cleaning semi-structured data

data analyzed have fundamental quality problems

data is in semi-structured form

need for a new approaches in data cleaning for nonrelational usecases

"garbage in, garbage out."

Schema vs. Schemaless

Database Schema	Schemaless data			
Describes a logical structure and semantic of data	Denotes data where the logical structure and semantic are (yet) unknown.			

	Title	Year	Length	Filmtype
r_0	Amelie	2001	NULL	color
r_1	Babe	1995	89	color
r_2	Cocktail	1988	NULL	color
r_4	NULL	1996	134	color
r_5	Frenzy	NULL	116	color
r_6	Gaslight	1944	114	bw
r_7	Hamlet	1990	242	NULL
r_8	NULL	1958	100	color
r_9	John Q	2002	116	color

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$											
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Title		Year	Fi	Filmtype					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	r_0	Amelie		2001							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Title	Ye	Year		Length F		lmtype			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	r_1	Babe	1995		89	89 c		olor			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Title		Year	·	Filmtyp		Noise-4			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	r_2	Cockta	il	1988 color		color		noiseval			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Length									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	r_3	75									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Year	Le	Length		Filmtype		Noise-2	2		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	r_4	1996	13	134		color		noiseva	ıl		
		Title	Filmty		ype Lengt		igth	Noise	9-4	Noise-	5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	r_5	Frenzy		116	cole		or	noiseval		noiseva	ıl
		Title	Title		· I	Length		Filmtype		Noise-1	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	r_6	Gaslight		194	1 1	114				noiseval	
		Title		Year	Length						
r_8 1958 color 100 noiseval Title Year Length Filmtype Noise-2 Noise-	r_7	Hamlet	t	1990		242					
Title Year Length Filmtype Noise-2 Noise-		Year	Filmtype		e I	Length		Noise-5	5		
8 31	r_8	1958	color			100		noiseva	ıl		
r_0 John Q 2002 116 color noiseval noiseval		Title		Year	Le	Length		Filmtype	•	Noise-2	Noise-
19 11111 4 11111	r_9	John Q 20		2002	1	16		color		noiseval	noisev

What is Markov Logic?

Markov Logic is a knowledge representation system that combines:

- → Weighted First-Order Logic
- → Markov Networks (undirected prob. graph. models)

What are constraint-based data quality rules?

We use data dependencies to formulate data quality rules.

ADVANTAGE:

Data dependencies specify semantic of data in a declarative way

Example: Functional Dependencies: $[A -> B_1, B_2,...]$

Two Challenges

SEMISTRUCTURED DATA

error propagation through the entire workflow

 $http://radar.oreilly.com/2013/09/data-analysis-just-one-component-of-the-data-science-workflow.html?cmp=ot-strata-na-article-na_62643$

Two Requirements on Data Cleaning Systems:

Joint modeling for data cleaning rules

- Defining "soft" and "hard" data cleaning rules
- Modeling conflicting rules
 Flexible rules modeling (non-constraints rules)