Formulario di Calcolo Matriciale e Ricerca Operativa

Modellazione: vincoli logici

Vincoli o gruppi di vincoli utili a modellare condizioni logiche tra variabili binarie.

Condizione	Vincoli
$x_1 \lor x_2$	$x_1 + x_2 \ge 1$
$x \implies y$	$x \leq y$
$x_1 \wedge x_2 \implies y$	$x_1 + x_2 - 1 \le y$
$x_1 \wedge x_2 \wedge \cdots \wedge x_k \implies y$	$\sum_{i=1}^{k} x_i - (k-1) \le y$
$x_1 \lor x_2 \implies y$	$x_1 + x_2 \le 2y$
$x_1 \lor x_2 \lor \cdots \lor x_k \implies y$	$\sum_{i=1}^{k} x_i \le ky$
Oppure, in alternativa:	$x_i \leq y \qquad \forall i = 1, \dots, k$

Algebra Lineare: Gauss-Jordan

Esito della riduzione:
$$(\mathbf{A}' \, | \, \mathbf{b}') = \begin{pmatrix} 1 & 0 & \dots & 0 & \alpha_{1,k+1} & \dots & \alpha_{1n} & \beta_1 \\ 0 & 1 & \dots & 0 & \alpha_{2,k+1} & \dots & \alpha_{2n} & \beta_2 \\ \dots & \dots & \dots & \dots & \dots & \vdots \\ 0 & 0 & \dots & 1 & \alpha_{k,k+1} & \dots & \alpha_{kn} & \beta_k \\ \hline 0 & 0 & \dots & 0 & 0 & \dots & 0 & \beta_{k+1} \\ \vdots & \vdots & \ddots & 0 & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 0 & 0 & \dots & 0 & \beta_n \end{pmatrix} .$$

Algebra Lineare: indipendenza lineare

Sono condizioni equivalenti:

- (i) $x_1 \mathbf{v}_1 + x_2 \mathbf{v}_2 + \dots + x_k \mathbf{v}_k = \mathbf{0} \implies x_1 = x_2 = \dots = x_k = 0.$
- (ii) $\mathbf{0} \notin S$, e per nessun nessun \mathbf{v}_j risulta $\mathbf{v}_j \in \mathcal{L}(S \setminus \{\mathbf{v}_j\})$.
- (iii) ogni $\mathbf{w} \in \mathcal{L}(S)$ si esprime con un'unica combinazione lineare $\mathbf{w} = \sum_{j=1}^k x_j \mathbf{v}_j$ (i coefficienti x_j sono univocamente determinati).

Programmazione Lineare: Cambio di base

Si consideri un programma lineare in forma standard riformulato rispetto a una base $B \subseteq \{x_1, \ldots, x_n\}$; $N = \{x_i : x_i \notin B\}$ è l'insieme di variabili fuori base.

$$\begin{pmatrix} 1 & 0 & 0 & \dots & 0 & \alpha_{1,m+1} & \dots & \alpha_{1n} & \beta_1 \\ 0 & 1 & 0 & \dots & 0 & \alpha_{2,m+1} & \dots & \alpha_{2n} & \beta_2 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & 1 & \alpha_{2,m+1} & \dots & \alpha_{2n} & \beta_m \end{pmatrix} \iff \begin{aligned} \max & z = z(B) + \sum_{j \in N} r_j x_j \\ x_i = \beta_i + \sum_{j \in N} (-\alpha_{ij}) x_j & \forall x_i \in B \\ x_i > 0 & \forall i \end{aligned}$$

Si sceglie la variabile entrante $x_q \in N$ tale che $r_q = \max\{r_k : x_k \in N\} > 0$. L'elemento di **pivot** che determina la variabile uscente $x_q \in B$ è determinato come $\frac{\beta_p}{\alpha_{pq}} = \min\left\{\frac{\beta_i}{\alpha_{iq}} : x_i \in B, \ \alpha_{iq} > 0\right\}$

Attenzione al cambio di segno degli α_{ij} tra la matrice a sinistra e la riformulazione a destra.