

Calcul symbolique

(Sympy)

Outils Numériques / Semestre 5 / Institut d'Optique / B1_4

Trucs et Astuces

Affichage propre type Latex

from IPython.display import *

display(expression)

Intéressant avec Sympy

Déjà intégré dans Jupyter

display
$$-x(t)-\sin{(t)}+\frac{d^2}{dt^2}x(t)$$
 print
$$-x(t)-\sin{(t)}+\mathrm{Derivative}(x(t),\ (t,\ 2))$$

Approche analytique

$$V_s = -R_1.C_1.\frac{dV_s}{dt}$$

Equation différentielle d'ordre 1 dont une solution est

$$V_{s} = K \cdot e^{-at}$$

Calcul formel

Le calcul formel, ou parfois calcul symbolique, est le domaine des mathématiques et de l'informatique qui s'intéresse aux algorithmes opérant sur des objets de nature mathématique par le biais de représentations finies et exactes.

Wikipedia / Calcul formel

Premier exemple

```
import math
math.sqrt(9)
math.sqrt(8)
```

???

```
import sympy
math.sqrt(9)
```

math.sqrt(8)

Premier exemple

```
import math
math.sqrt(9)
math.sqrt(8)
```

```
3.0
2.828427...
```

```
import sympy
math.sqrt(9)
math.sqrt(8)
```

```
3 \\ 2\sqrt{2}
```


Premier exemple

```
import math
math.sqrt(9)
math.sqrt(8)
3.0
2.828427...
```

```
m = 3/2 print(m) ???
```

```
import sympy
math.sqrt(9)
math.sqrt(8)
```

 $3 \\ 2\sqrt{2}$

```
k = sympy.Rational(3,2) print(k)
```


Premier exemple

```
import math
math.sqrt(9)
math.sqrt(8)
```

3.0 2.828427...

m = 3/2 print(m)

1.5

import sympy
math.sqrt(9)

math.sqrt(8)

 $3 \\ 2\sqrt{2}$

k = sympy.Rational(3,2)

print(k)

3/2

Expressions

```
x, y = sympy.symbols('x y')
expr = x**2 - 4 * x + 5
expr
```

???

expr.subs(x, 1)

Expressions

x, y =
$$sympy.symbols('x y')$$

expr = $x**2 - 4 * x + 5$
expr

$$x^2 - 4x + 5$$

x*expr

???

???

Expressions

x, y =
$$sympy.symbols('x y')$$

expr = $x**2 - 4 * x + 5$
expr

$$x^2 - 4x + 5$$

x*expr

$$x(x^2 - 4x + 5)$$

$$x^3 - 4x^2 + 5x$$

$$x(x^2 - 4x + 5)$$

Fonctions

```
f = sympy.Function('f')
f = x**2 + y
f
```

$$x^2 + y$$

f = sympy.Function('f')(x, y)

Limites

```
g = sympy.Function('g')(x)
g = sympy.sin(x/2 + sympy.sin(x))
g
```

```
lg = sympy.limit(g, x, sympy.pi)
```

```
h = 2*sympy.exp(1/x)/(sympy.exp(1/x)+1)
h
lhplus = sympy.limit(h, x, 0, dir='+')
lhplus
```

```
m = (sympy.cos(x)-1)/x
m
lm = sympy.limit(m, x, sympy.oo)
print(f'Limit in +inf = {lm}')
```


Dérivées

```
f = x^{**}2 + y
```

$$dfx = sympy.diff(f, x)$$

 dfx

$$dfy = sympy.diff(f, y)$$
 dfy

Intégrales

inte_f

```
inte_f = sympy.integrate(f, x)
inte_f
```

```
f = sympy.exp(x)/

(sympy.sqrt(sympy.exp(2*x)+9))

inte_f = sympy.integrate(f, (x, 0, sympy.log(4)))
```


S'ENTRAINER

• Résolution formelle

$$V_s = -R_1.C_1.\frac{dV_s}{dt}$$

- + Donner la solution analytique
- + Tracer la solution en fonction du temps pour R = $100k\Omega$ et C = 1μ F

Equation différentielle d'ordre 1

sympy.dsolve(equation, fonction, cond_init)

fonction = vs(t)

init conds = $\{vs\mu.subs(t,0): 5\}$

sympy.lambdify([params], fonction)

Circuits similaires / Généralisation

• Réponse à un échelon

Régime forcé

$$\frac{dV_s}{dt} = -\frac{1}{R_1 \cdot C_1} \cdot (V_s - V_e)$$

S'ENTRAINER

Résolution formelle

- + Donner la solution analytique à la réponse à un signal sinusoïdal de fréquence f donnée
- + Tracer la solution en fonction du temps pour R = $100k\Omega$ et C = 1μ F pour un signal sinusoïdal à 10 Hz

$$\frac{dV_s}{dt} = -\frac{1}{R_1.C_1}.(V_s - V_e)$$

Equation différentielle d'ordre 1

Autre cas / Equation du second ordre

ALLER PLUS LOIN

Circuit RLC

$$V_e = L_1 \cdot C_1 \cdot \frac{d^2 V_s}{dt^2} + R_1 \cdot C_1 \cdot \frac{d V_s}{dt} + V_s$$

Equation différentielle d'ordre 2

- + Donner la solution analytique
- + Tracer la solution en fonction du temps pour R = 1 k Ω , L = 1 mH et C = 1 μ F

Bibliographie

Document rédigé par Julien VILLEMEJANE LEnsE / Institut d'Optique / France

http://lense.institutoptique.fr/

Création : Avril 2023

• **Python pour le calcul symbolique**- WikiBooks https://fr.wikibooks.org/wiki/Python pour le calcul scientifique/Calcul symbolique

 Ordinary Differential Equations - SymPy Tutorial 10 - TM Quest https://www.youtube.com/watch?v=Z2havWsxa-E

• Le calcul symbolique et ses principales applications - Paul LEVY http://www.numdam.org/article/AUG 1945 21 41 0.pdf

