Reg. No.				

B.Tech. DEGREE EXAMINATION, DECEMBER 2023

First and Second Semester

18CYB101J - CHEMISTRY

(For the candidates admitted from the academic year 2018-2019 to 2021-2022)

(i) (ii)	Part - A should be answered in OMR sheet within first 40 over to hall invigilator at the end of 40 th minute. Part - B & Part - C should be answered in answer booklet.	minutes and OMR sheet should	d be hand	ed
Time: 3	hours	Max. N	Marks: 10)0
	PART – A (20 × 1 = 20 Marks) Answer ALL Questions	Marks	BL CO	РО
1.	The wave function ψ describes (A) Intensity (C) State of the system (B) Energy density (D) Probability	sity	1 6	1
2.	Points inside the box where $\psi = 0$ are called (A) Anti nodes (B) Nodes (C) Radial points (D) Angular points		1 1	3
3.	Bond order for O_2^- and O_2^{2-} are and respective. (A) 1, 2.5 (B) 1.5, 1 (C) 2.5, 3 (D) 1.5, 2	ectively	3 1	3
4.	Identify the incorrect statement regarding aromaticity (A) It is the extra stability (B) p – orbital possessed by a molecule overlap (C) Cyclic delocalization take (D) It does not for place		3 1	1
5.	The magnetic moment (spin only) of $[NiCl_4]^{2-}$ is (A) 1.82 BM (B) 5.46 BM (C) 2.82 BM (D) 1.41 BM	1	1 2	1
6.	The vibrational rotational spectrum is observed in the _ (A) Near IR (B) Microwave (C) Visible (D) Radio frequ		3 2	4
7.	An atom has two unpaired electrons. The total spin of total (A) 0 (B) 1 (C) 1.5 (D) 2	his atom will be	4 2	5
8.	Which of the following is not a type of bending molecum (A) Scissoring (B) Symmetric (C) Wagging (D) Rocking	lar vibration?	4 3	5

Note:

9.	Which of the following is also spectroscopy?	kno	wn as X ray photo electron	1	2	3	1
	(A) Anger electron spectroscopy(C) Electron spectroscopy for Chemical analysis						
10.	Compute the miller indices for the in (A) (412) (C) (101)	(B)		1	3	2	4
11.	In XPS, the photon ejects electrons fr (A) 1s electron (C) 2s electron	(B)	which orbital? 3s electron All of the above	1	2	2	1
12.	Choose the correct order of ionization (A) N>O>F (C) N>O <f< td=""><td>(B)</td><td>rgy F>O>N O>F>N</td><td>1</td><td>2</td><td>3</td><td>1</td></f<>	(B)	rgy F>O>N O>F>N	1	2	3	1
13.	 In a reversible process Δsystem + Δst (A) Infinity (C) Greater than zero 	(B)	nding is Zero Less than zero	1	4	2	5
14.	If the enthalpy change for a reaction (A) $T \Delta 5^{\circ}$ (C) $-\Delta H^{\circ}$	(B)	o, ΔG° is equal to -T ΔS° ln k_{eq}	1	4	2	5
15.	The energy related when an electron called as (A) Ionisation energy (C) Electron affinity	(B)	dded to gaseous neutral atoms is Electro negativity Electropersitivity	1	1.	4.	1
16.	In pourbaix diagram the following eq (A) pH dependent (C) solvent dependent	(B)	in $Fe^{3+} + e^{-} \rightarrow Fe^{2+}$ is pH independent Solvent independent				
17.		(B)	um for Staggered conformation Gauche conformation	1	3	5	4
18.	The rate of nucleophilic substitution	reacti	ons are higher in the presence of	1	4	4	5
	(A) Electron with drawing groups(C) Both electron with-drawing and releasing groups						
19.	Which of the following substances ca (A) KMnO ₄ (C) HNO ₃	(B)	as reducing agent? NaBH ₄ H ₂ O ₂	1	1	4	1
20.	Analgesics are used to (A) Reduce pain (C) Increase ache	. ,	Reduce nausea Increase pain	1	3	4	1

	PART – B ($5 \times 4 = 20$ Marks) Answer ANY FIVE Questions	Marks	BL	СО	PO
21.	Explain Heisenberg uncertainty principle.	4	2	1	3
22.	Sketch the molecular orbital energy level diagram for $\mathrm{H_2}^+$ ion and calculate its bond order.	4	3	1	3
23.	What are allowed and for-bidden transitions in spectroscopy? Explain with an example.	4	4	2	3
24.	What is Inter-plane spacing in lattices? Give the expression taking an example.	4	2	3	1
25.	Write note on hard and soft bases with example for each.	4	2	6	1
26.	Explain briefly Newmann projection with an example.	4	2	6	3
27.	Discuss Dieckmann condensation with an example.	4	2	5	3
	$PART - C (5 \times 12 = 60 \text{ Marks})$	Marks	BL	СО	PO
	Answer ALL Questions				
28. a.	Derive Schrodinger equation for one-dimensional box and obtain the eigen value and eigen function by solving the equation.	12	2	6	1
	Derive Schrodinger equation for one-dimensional box and obtain the eigen	12	2	6	1
b.i.	Derive Schrodinger equation for one-dimensional box and obtain the eigen value and eigen function by solving the equation. (OR)	6			4 4
b.i. ii.	Derive Schrodinger equation for one-dimensional box and obtain the eigen value and eigen function by solving the equation.	6		6	1 4 4
b.i. ii. 29. a.i.	Derive Schrodinger equation for one-dimensional box and obtain the eigen value and eigen function by solving the equation.	6	4	6	4
b.i. ii. 29. a.i. ii.	Derive Schrodinger equation for one-dimensional box and obtain the eigen value and eigen function by solving the equation.	6 6 4	4 3	6 4	4 4
b.i. ii. 29. a.i. ii. b.i.	Derive Schrodinger equation for one-dimensional box and obtain the eigen value and eigen function by solving the equation.	6 6 4 8	4 3 2 4	6 4 6	4 4 1 1

(OR)

b.i.	Define the terms a) Critical temperature b) Critical volume c) Critical pressure	6	3	3	4
ii.	What is electron affinity? Arrange Br, F, I and Cl in the order of increasing affinity.	6	3	3	4
31. a.	Derive Nernst equation and give its applications.	12	2	4	1
	(OR)				
b.	Write a neat sketch explaining Pourbaix diagram of Iron.	12	1	4	1
32. a.	Explain in detail the conformational analysis of n-butane with potential energy diagram.	12	3	5	4
b.	(OR) Explain in detail in case of co-ordination compounds. i. Structural isomerism ii. Stereoisomerism in coordination compounds	12	4	6	4
	11. Stereoisomerism in coordination compounds				

* * * * *

Page 4 of 4