On the hardness of the NTRU problem

Alice Pellet-Mary^{1,2} and Damien Stehlé³

¹ Université de Bordeaux, ² CNRS, ³ ENS de Lyon

Lattices: Algorithms, Complexity, and Cryptography reunion workshop

What is this talk about

Outline of the talk

The different NTRU problems

2 What we know about NTRU

Techniques

Outline of the talk

The different NTRU problems

2 What we know about NTRU

3 Techniques

NTRU instances

$$R = \mathbb{Z}[X]/(X^n + 1), \quad K = \mathbb{Q}[X]/(X^n + 1), \quad n = 2^k, \quad R_q = R/(qR)$$

NTRU instance

A (γ, q) -NTRU instance is $h \in R_q$ s.t.

- $h = f/g \mod q \qquad (\text{or } gh = f \mod q)$
- lacksquare $\|f\|, \|g\| \leq rac{\sqrt{q}}{\gamma}$ (if $y = \sum_{i=0}^{n-1} y_i X^i \in R$, then $\|y\| := \sqrt{\sum_i y_i^2}$)

The pair (f,g) is a trapdoor for h.

NTRU instances

$$R = \mathbb{Z}[X]/(X^n + 1), \quad K = \mathbb{Q}[X]/(X^n + 1), \quad n = 2^k, \quad R_q = R/(qR)$$

NTRU instance

A (γ, q) -NTRU instance is $h \in R_q$ s.t.

- $h = f/g \mod q \qquad (\text{or } gh = f \mod q)$
- lacksquare $\|f\|, \|g\| \leq rac{\sqrt{q}}{\gamma}$ (if $y = \sum_{i=0}^{n-1} y_i X^i \in R$, then $\|y\| := \sqrt{\sum_i y_i^2}$)

The pair (f,g) is a trapdoor for h.

Claim: if (f,g) and (f',g') are two trapdoors for the same h,

$$\frac{f'}{g'} = \frac{f}{g} =: h_K \in K$$
 (division performed in K)

Decisional NTRU problem

dNTRU

The (γ, q) -decisional NTRU problem $((\gamma, q)$ -dNTRU) asks, given $h \in R_q$, to decide whether

- ▶ $h \leftarrow \mathcal{D}$ where \mathcal{D} is a distribution over (γ, q) -NTRU instances
- ▶ $h \leftarrow \mathcal{U}(R_a)$

Search NTRU problems

$NTRU_{vec}$

The (γ, γ', q) -search NTRU vector problem $((\gamma, \gamma', q)\text{-NTRU}_{\text{vec}})$ asks, given a (γ, q) -NTRU instance h, to recover $(f, g) \in R^2$ s.t.

- $h = f/g \bmod q$
- $||f||, ||g|| \le \sqrt{q}/\gamma' \quad (\gamma' \le \gamma)$

Search NTRU problems

$NTRU_{vec}$

The (γ, γ', q) -search NTRU vector problem $((\gamma, \gamma', q)\text{-NTRU}_{\text{vec}})$ asks, given a (γ, q) -NTRU instance h, to recover $(f, g) \in R^2$ s.t.

- $h = f/g \bmod q$
- $||f||, ||g|| \le \sqrt{q}/\gamma' \quad (\gamma' \le \gamma)$

$NTRU_{mod}$

The (γ, q) -search NTRU module problem $((\gamma, q)\text{-}\mathrm{NTRU}_{\mathrm{mod}})$ asks, given a $(\gamma, q)\text{-}\mathrm{NTRU}$ instance h, to recover h_K .

(Recall $h_K = f/g \in K$ for any trapdoor (f,g))

(The two problems exist in worst-case and average-case variants)

NTRU lattice

The NTRU (module) lattice associated to an NTRU instance h is

$$\Lambda(h) = \{(g, f)^T \in R^2 \mid gh = f \bmod q\}.$$

Fact:
$$\Lambda(h)$$
 has basis $B_h = \begin{pmatrix} 1 & 0 \\ h & q \end{pmatrix}$ (in columns)

NTRU lattice

The NTRU (module) lattice associated to an NTRU instance h is

$$\Lambda(h) = \{(g, f)^T \in R^2 | gh = f \mod q \}.$$

Fact:
$$\Lambda(h)$$
 has basis $B_h = \begin{pmatrix} 1 & 0 \\ h & q \end{pmatrix}$ (in columns)

• Gaussian heuristic: $\lambda_1(\Lambda(h)) \approx \sqrt{q}$ (if $h \leftarrow \mathcal{U}(R_q)$)

NTRU lattice

The NTRU (module) lattice associated to an NTRU instance h is

$$\Lambda(h) = \{(g, f)^T \in R^2 | gh = f \mod q \}.$$

Fact:
$$\Lambda(h)$$
 has basis $B_h = \begin{pmatrix} 1 & 0 \\ h & q \end{pmatrix}$ (in columns)

- Gaussian heuristic: $\lambda_1(\Lambda(h)) \approx \sqrt{q}$ (if $h \leftarrow \mathcal{U}(R_q)$)
- $\Lambda(h)$ has an unexpectedly short vector $\leq \sqrt{q}/\gamma$
 - ightharpoonup NTRU $_{
 m vec}$ asks to recover (a short multiple of) the short vector

NTRU lattice

The NTRU (module) lattice associated to an NTRU instance h is

$$\Lambda(h) = \{(g, f)^T \in R^2 | gh = f \mod q \}.$$

Fact:
$$\Lambda(h)$$
 has basis $B_h = \begin{pmatrix} 1 & 0 \\ h & q \end{pmatrix}$ (in columns)

- Gaussian heuristic: $\lambda_1(\Lambda(h)) \approx \sqrt{q}$ (if $h \leftarrow \mathcal{U}(R_q)$)
- $\Lambda(h)$ has an unexpectedly short vector $\leq \sqrt{q}/\gamma$
 - ▶ NTRU_{vec} asks to recover (a short multiple of) the short vector
- \bullet $\Lambda(h)$ has an unexpectedly dense sub-lattice (sub-module) of rank n
 - ightharpoonup NTRU $_{
 m mod}$ asks to recover the dense sub-lattice (sub-module)

Outline of the talk

The different NTRU problems

2 What we know about NTRU

Techniques

9 / 19

Reductions:

Alice Pellet-Mary Hardness of NTRU 14/06/2021 10 / 19

[[]SS11] Stehlé and Steinfeld. Making NTRU as secure as worst-case problems over ideal lattices. Eurocrypt. [WW18] Wang and Wang. Provably secure NTRUEncrypt over any cyclotomic field. SAC.

Reductions:

[Pei16] Peikert. A decade of lattice cryptography. Foundations and Trends in TCS.

Reductions:

[SS11, WW18] If
$$f, g \leftarrow D_{R,\sigma}$$
 with $\sigma \ge \operatorname{poly}(n) \cdot \sqrt{q}$

then $f/g \mod q \approx \mathcal{U}(R_q)$ (cyclotomic fields)

▶ dNTRU is provably hard when $\gamma \leq \frac{1}{\text{poly}(n)}$

[Pei16]
$$dNTRU \le RLWE$$

Attacks: (polynomial time)

[LLL82] dNTRU, NTRU_{mod} broken if
$$\gamma \ge 2^n$$

 $NTRU_{vec}$ broken if $\gamma > 2^n \cdot \gamma'$

10 / 19

[[]LLL82] Lenstra, Lenstra, Lovász. Factoring polynomials with rational coefficients. Mathematische Annalen.

Reductions:

[SS11, WW18] If
$$f, g \leftarrow D_{R,\sigma}$$
 with $\sigma \ge \text{poly}(n) \cdot \sqrt{q}$

then $f/g \mod q \approx \mathcal{U}(R_q)$ (cyclotomic fields) • dNTRU is provably hard when $\gamma \leq \frac{1}{\mathrm{poly}(p)}$

[Pei16]
$$dNTRU \le RLWE$$

Attacks: (polynomial time)

[LLL82]
$$dNTRU$$
, $NTRU_{mod}$ broken if $\gamma \geq 2^n$

 $\mathrm{NTRU}_{\mathrm{vec}}$ broken if $\gamma \geq 2^n \cdot \gamma'$

[ABD16, CLJ16] dNTRU, NTRU_{mod} broken if
$$(\log q)^2 \ge n \cdot \log \frac{\sqrt{q}}{\gamma}$$

[KF17] (e.g., $q \approx 2^{\sqrt{n}}$ and $\gamma = \sqrt{q/\text{poly}(n)}$)

[KF17] Kirchner and Fouque. Revisiting lattice attacks on overstretched NTRU parameters. Eurocrypt

10 / 19

[[]ABD16] Albrecht, Bai, and Ducas. A subfield lattice attack on overstretched NTRU assumptions. Crypto. [CJL16] Cheon, Jeong, and Lee. An algorithm for NTRU problems. LMS J Comput Math.

Our results

Worst-case γ -id-SVP: given any ideal lattice $I \subset R$ (for instance $I = \{gr \mid r \in R\}$), find $v \in I \setminus \{0\}$ such that $||v|| \leq \gamma \cdot \min_{w \in I \setminus \{0\}} ||w||$.

Alice Pellet-Mary Hardness of NTRU 14/06/2021 11/19

Our results

Remarks

- $a \approx b \Leftrightarrow a = \text{poly}(n) \cdot b$ (cyclotomic/NTRUPrime fields)
- ullet the reductions only work for certain distributions of NTRU instances
- the constraint $\frac{\sqrt{q}}{\gamma_4} \geq 2^n$ can be relaxed if the run time is increased

Worst-case γ -id-SVP: given any ideal lattice $I \subset R$ (for instance $I = \{gr \mid r \in R\}$), find $v \in I \setminus \{0\}$ such that $\|v\| \leq \gamma \cdot \min_{w \in I \setminus \{0\}} \|w\|$.

Alice Pellet-Mary Hardness of NTRU 14/06/2021 11/19

One big picture: poly time attacks and reductions (cyclotomics)

One big picture: poly time attacks and reductions (cyclotomics)

One big picture: poly time attacks and reductions (cyclotomics)

12 / 19

Outline of the talk

The different NTRU problems

What we know about NTRU

Techniques

From ideal-SVP to $NTRU_{vec}$

Objective: Transform an ideal I into an NTRU instance h

- $I = \langle z \rangle = \{ z \cdot r \mid r \in R \}$
- g short vector of I

From ideal-SVP to $NTRU_{vec}$

Objective: Transform an ideal I into an NTRU instance h

- $I = \langle z \rangle = \{ z \cdot r \, | \, r \in R \}$
- g short vector of I

$$g = z \cdot r \qquad (r \in R)$$

$$\Leftrightarrow g \cdot \frac{q}{z} = qr$$

$$\Leftrightarrow g \cdot h = f \mod q$$

- ▶ h = q/z, f = 0
- ightharpoonup ||f||, ||g|| small

From ideal-SVP to NTRUvec

Objective: Transform an ideal I into an NTRU instance h

- $I = \langle z \rangle = \{z \cdot r \mid r \in R\}$
- g short vector of I

$$g = z \cdot r \qquad (r \in R)$$

$$\Leftrightarrow g \cdot \frac{q}{z} = qr$$

$$\Leftrightarrow g \cdot h = f \mod q$$

- ▶ h = q/z, f = 0
- ▶ ||f||, ||g|| small

/!\ Not an NTRU instance $(h \in K \text{ is not in } R_q)$

From ideal-SVP to NTRUvec

Objective: Transform an ideal I into an NTRU instance h

- $\bullet I = \langle z \rangle = \{z \cdot r \mid r \in R\}$
- g short vector of I

$$g = z \cdot r \qquad (r \in R)$$

$$\Leftrightarrow g \cdot \frac{q}{z} = qr$$

$$\Leftrightarrow g \cdot \left\lfloor \frac{q}{z} \right\rceil = -g \cdot \left\{ \frac{q}{z} \right\} \mod q$$

$$\Leftrightarrow g \cdot h = f \mod q$$

$$\{x\} = x - \lfloor x \rceil$$

$$\{x\} = x - \lfloor x \rceil$$

- ▶ $h = |q/z|, f = -g\{q/z\}$
- $|f| \approx |g| \text{ small}$

From ideal-SVP to NTRUvec

Objective: Transform an ideal I into an NTRU instance h

- $I = \langle z \rangle = \{z \cdot r \mid r \in R\}$
- g short vector of I

$$g = z \cdot r \qquad (r \in R)$$

$$\Leftrightarrow g \cdot \frac{q}{z} = qr$$

$$\Leftrightarrow g \cdot \left\lfloor \frac{q}{z} \right\rceil = -g \cdot \left\{ \frac{q}{z} \right\} \mod q$$

$$\Leftrightarrow g \cdot h = f \mod q$$

$$\{x\} = x - \lfloor x \rceil$$

$$\{x\} = x - \lfloor x \rceil$$

- ▶ $h = |q/z|, f = -g\{q/z\}$
- $|f| \approx |g| \text{ small}$

This is an NTRU instance $(h \in K \text{ is not in } R_q)$

From ideal-SVP to $NTRU_{vec}$ (2)

Summing up: If
$$I = \langle z \rangle = \{z \cdot r \mid r \in R\}$$
 and z known

- can construct an NTRU instance h from I
 - ▶ any short $g \in I$ provides a trapdoor (f,g) for h

From ideal-SVP to $NTRU_{vec}$ (2)

Summing up: If
$$I = \langle z \rangle = \{z \cdot r \mid r \in R\}$$
 and z known

- can construct an NTRU instance h from I
 - ▶ any short $g \in I$ provides a trapdoor (f,g) for h

What we need to conclude the reduction:

- any trapdoor (f', g') for h is such that $g' \in I$
 - ightharpoonup g' solution to ideal-SVP in I

From ideal-SVP to $NTRU_{vec}$ (2)

Summing up: If
$$I = \langle z \rangle = \{z \cdot r \mid r \in R\}$$
 and z known

- can construct an NTRU instance h from I
 - ▶ any short $g \in I$ provides a trapdoor (f,g) for h

What we need to conclude the reduction:

- any trapdoor (f', g') for h is such that $g' \in I$
 - ▶ g' solution to ideal-SVP in I
- ullet for general ideals, $I=R\cap\langle z
 angle$ and z easily computed
 - everything still works with this z

From NTRU_{mod} to dNTRU

Objective: given $h=f/g \mod q$, recover $h_K=f/g \in K$ (division in K) Can use an oracle: given $h \in R_q$, outputs

- ▶ YES is $h = f/g \mod q$, with $f, g \text{ small } (\leq B)$
- ▶ NO otherwise

From NTRU_{mod} to dNTRU

Objective: given $h = f/g \mod q$, recover $h_K = f/g \in K$ (division in K)

Can use an oracle: given $h \in R_q$, outputs

- ▶ YES is $h = f/g \mod q$, with $f, g \text{ small } (\leq B)$
- ▶ NO otherwise

Idea:

- ▶ take $x, y \in R$
- ▶ create $h' = x \cdot h + y = \frac{xf + yg}{g} \mod q$
- ightharpoonup query the oracle on h'
- ▶ learn whether xf + yg is small or not

From NTRU_{mod} to dNTRU

Objective: given $h = f/g \mod q$, recover $h_K = f/g \in K$ (division in K)

Can use an oracle: given $h \in R_q$, outputs

- ▶ YES is $h = f/g \mod q$, with $f, g \text{ small } (\leq B)$
- ▶ NO otherwise

Idea:

- ▶ take $x, y \in R$
- ▶ create $h' = x \cdot h + y = \frac{xf + yg}{g} \mod q$
- ightharpoonup query the oracle on h'
- ▶ learn whether xf + yg is small or not
- \Rightarrow we can choose x and y
- \Rightarrow we can modify the coordinates one by one

Simplified problem

 $f,g \in \mathbb{R}$ secret, $B \geq 0$ unknown.

Given any $x, y \in \mathbb{R}$, we can learn whether $|xf + yg| \ge B$ or not.

Objective: recover f/g

Simplified problem

 $f,g\in\mathbb{R}$ secret, $B\geq 0$ unknown.

Given any $x, y \in \mathbb{R}$, we can learn whether $|xf + yg| \ge B$ or not.

Objective: recover f/g

Remark: if f, g, B all multiplied by $\alpha \in \mathbb{R}$, same behavior

ightharpoonup can only learn f/g (not f and g)

ightharpoonup can assume g=1

Simplified problem

 $f,g\in\mathbb{R}$ secret, B>0 unknown.

Given any $x, y \in \mathbb{R}$, we can learn whether $|xf + yg| \ge B$ or not.

Objective: recover f/g

Remark: if f, g, B all multiplied by $\alpha \in \mathbb{R}$, same behavior

- ▶ can only learn f/g (not f and g) ▶ can assume g=1

Algorithm:

- Find x_0, y_0 such that $x_0 f + y_0 = B$
 - (Fix $x_0 \ll B/|f|$ and increase y_0 until the oracle says NO)
- Find x_1, y_1 such that $x_1 \neq x_0$ and $x_1 f + y_1 = B$

Simplified problem

 $f,g \in \mathbb{R}$ secret, B > 0 unknown.

Given any $x, y \in \mathbb{R}$, we can learn whether $|xf + yg| \ge B$ or not.

Objective: recover f/g

Remark: if f, g, B all multiplied by $\alpha \in \mathbb{R}$, same behavior

- ▶ can only learn f/g (not f and g) ▶ can assume g=1

Algorithm:

- Find x_0, y_0 such that $x_0 f + y_0 = B$
 - (Fix $x_0 \ll B/|f|$ and increase y_0 until the oracle says NO)
- Find x_1, y_1 such that $x_1 \neq x_0$ and $x_1 f + y_1 = B$

We obtain: $x_0 f + y_0 = x_1 f + y_1$, i.e., $f = \frac{y_1 - y_0}{x_0 - x_1}$

Some things I did not mention

For ideal-SVP to NTRUvec:

Alice Pellet-Mary Hardness of NTRU 14/06/2021 18/19

[[]BDPW20] de Boer, Ducas, Pellet-Mary, and Wesolowski. Random Self-reducibility of Ideal-SVP via Arakelov Random Walks. Crypto.

Some things I did not mention

For ideal-SVP to NTRU_{vec}:

For dNTRU to NTRU_{mod}:

We do not have a perfect oracle

- need to handle distributions
- use the "oracle hidden center" framework [PRS17]

[PRS17] Peikert, Regev, and Stephens-Davidowitz. Pseudorandomness of ring-LWE for any ring and modulus. STOC.

Alice Pellet-Mary Hardness of NTRU 14/06/2021 18 / 19

Conclusion and open problems

- Can we make the distributions of the reductions match?
- Can we relate NTRU_{mod} and ideal-SVP?
 - maybe not since any "natural reduction" would provide new attacks
- Can we prove reduction from module problems with rank ≥ 2 ?
 - ▶ for instance, uSVP in modules of rank-2?

Conclusion and open problems

- Can we make the distributions of the reductions match?
- Can we relate NTRU_{mod} and ideal-SVP?
 - maybe not since any "natural reduction" would provide new attacks
- Can we prove reduction from module problems with rank ≥ 2 ?
 - ▶ for instance, uSVP in modules of rank-2?

Questions?

19 / 19