České vysoké učení technické v Praze Fakulta elektrotechnická

Sbírka teorie a příkladů

Teorie grafů

Jakub Adamec Praha, 2025

Obsah

			Strana
1	Neo	prientované grafy	2
	1.1	Základní pojmy a definice	2
		1.1.1 Základní typy grafů	2
		1.1.2 Sled, tah, cesta	2
		1.1.3 Kružnice a cyklus	2
		1.1.4 Stupně vrcholů	3
	1.2	Skóre	3
	1.3	Hledání grafu ke skóre	4
	1.4	Příklad hledání grafu pro skóre	5
	1.5	Další pojmy založené na stupních vrcholů	5
	1.6	Tvrzení o podgrafech	5
	1.7	Souislý graf	6
	1.8	Pojmy založené na vzdálenosti	6
		1.8.1 Vzdálenost	6
		1.8.2 Průměr	6
		1.8.3 Excentricita	6
		1.8.4 Centrum	6
		1.8.5 Poloměr	7
2	Sou	vislé grafy	8
	2.1	<i>k</i> -souvislost	8
	2.2	Souvislost v grafu	8
	2.3	Vrcholový řez	8
	2.4	Vztah neúplnosti a vrcholového řezu	8
	2.5	Věta o vztahu podgrafu a souvislosti	8
		2.5.1 Pomocné lemma 1	9
		2.5.2 Pomocné lemma 2	9
	2.6	Artikulace	11
	2.7	Operace nad 2-souvislými grafy	11
	2.8	Tvrzení o 2-souvislých grafech a kružnicích	11
	2.9	Věta o vrcholech na společné kružnici	11
	2.10	Tvrzení o 2-souvislých grafech a % operaci	12
	2.11	Algoritmus sestrojení 2-souvislého grafu	13

	2.12	Příklad sestrojení 2-souvislého grafu	13		
	2.13	Komponenty 2-souvislosti - blok	14		
3	Hra	nově souvislé grafy	15		
	3.1	Hranový řez	15		
	3.2	Hranová souvislost	15		
	3.3	Most	15		
	3.4	Souvislost krajních vrcholů a mostů	15		
	3.5	Základní vlastnosti hranově souvislých grafů	15		
	3.6	Tvrzení o hranové a vrcholové souvislosti	15		
4	Extremální teorie				
	4.1	Věta o souvislosti vrcholů a hran (Mantel)	16		
	4.2	Věta o souvislosti hran a úplném grafu	16		
	4.3	Turánovy grafy	17		
	4.4	Tvrzení počtu hran a Turánově grafu	17		
5	Orientované grafy				
	5.1	Minimálně silně souvislý graf	19		
	5.2	Věta o minimálně silně souvislém grafu a jeho vrcholech	19		
		Algoritmus pro nalezení topologického očíslování	19		

Úvod

Tento text není psán jako učebnice, nýbrž jako soubor řešených příkladů, u kterých je vždy uveden celý korektní postup a případné poznámky řešitelů, které často nebývají formální, a tedy by neměly být používány při oficálním řešení problémů, například při zkoušce. Jedná se pouze o pokus předat probíranou látku z různých úhlů pohledu, pokud by korektní matematický nebyl dostatečně výřečný.

Autor velmi ocení, pokud čtenáři zašlou své podněty, úpravy anebo připomínky k textu. Budu rád za všechnu konstruktivní kritiku a nápady na změny. Dejte mi také prosím vědět, pokud v textu objevíte překlepy, chyby a jiné.

Errata a aktuální verse textu bude na stránce https://github.com/knedl1k/XP01TGR.

Poděkování. Rád bych poděkoval profesorce Marii Demlové nejen za zadání, okolo kterých je postavena celá sbírka, ale také za celý předmět Teorie grafů.

Text je vysázen makrem I₄TEX Leslieho Lamporta s využitím balíků hypperref Sebastiana Rahtze a Heiko Oberdiek. Grafy byly nakresleny pomocí maker TikZ Tilla Tantaua.

Stručné informace o textu

Všechny růžové texty jsou zároveň hypertextové odkazy.

U každého příkladu je pro ušetření místa a zpřehlednění sbírky řešení jednotlivých příkladů ihned pod zadáním.

1 Neorientované grafy

1.1 Základní pojmy a definice

Graf je soubor vrcholů, hran a vztahů incidence. Zapíšeme jako $G = (V, E, \varepsilon)$, kde V je neprázdná množina vrcholů, E množina hran a ε říká "co hrany představují", respektive

$$\varepsilon: E \to \{\{u, v\} \mid u, v \in V\}. \tag{1}$$

Jestliže pro dvě hrany $e_1, e_2 \in E$ platí, že $\varepsilon(e_1) = \varepsilon(e_2)$, pak se hrany e_1, e_2 nazývají **paralelní**. Pokud graf nemá paralelní hrany, nazýváme jej **prostý**. V takovém případě také stačí chápat graf jako dvojici G = (V, E), kde hrany jsou neprázdné maximálně dvouprvkové podmnožiny V.

Smyčkou nazveme takovou hranu, která je $e \in E$ a pro $\varepsilon(e) = \{u, v\}$ platí u = v.

 \mathcal{S} ... je množina všech neorientovaných prostých grafů bez smyček.

1.1.1 Základní typy grafů

Rozlišujeme 2 základní typy grafů, orientované a neorientované.

- (a) Orientovaný graf: $\varepsilon: E \to \{(u,v) \mid u,v \in V\}; u \in P_V(\varepsilon), v \in K_V(\varepsilon)$
- (b) Neorientovaný graf: $\varepsilon: E \to \{(u,v) \mid u,v \in V\}; u,v$ jsou krajní vrcholy ε

1.1.2 Sled, tah, cesta

- (a) Sled je taková posloupnost, která začíná a končí vrcholem a kde po každém vrcholu následuje hrana, tedy v₁, e₁, v₂, e₂,..., v_k.
 V orientovaném případě vždy platí P_V(e₁) = v_i, K_V(e_i) = v_{i+1}. Neorientovaný pouze říká, že v_i a v_{i+1} jsou krajní vrcholy.
- (b) Tah je sled, ve kterém se nesmí opakovat hrany.
- (c) Cesta je sled, ve kterém se nesmí opakovat vrcholy, s výjimkou počátečeního, ve kterém cesta může končit.

1.1.3 Kružnice a cyklus

Kružnice je uzavřená neorientovaná cesta v grafu, cyklus uzavřená orientovaná cesta.

Příklad kružnice:

1.1.4 Stupně vrcholů

Pokud $G = (V, E, \varepsilon)$, pak

- vstupní stupeň v $d^-(v) = \|\{e \mid K_V(e) = v\}\|$
- výstupní stupeň v $d^+(v) = \|\{e \mid P_V(e) = V\}\|$
- stupeň v $d(v) = d^{-}(v) + d^{+}(v)$

Příklad

Pro G = (V, E) je pouze $d(v) = \|\{e \mid v \text{ je krajní vrchol } e, \text{ smyčku počítáme } 2\times\}\|.$

Z toho máme důsledek

$$\sum_{v \in V} d(v) = 2\|E\| \tag{2}$$

Tedy každý graf má sudý počet vrcholů lichého stupně.

1.2 Skóre

Skóre grafu $(G\in\mathcal{S})$ je $D=(d_1,d_2,\ldots,d_n),$ kde d_i je stupeň vrcholu $v_i.$ G=(V,E) $\|V\|=d$

Mějme příklad skóre (1,1,1,2,2,3). Jak by mohl vypadat graf s takovým skóre?

Jak vidíme, skóre jednoznačně neurčuje graf. Můžeme ze skóre ale říct, jestli je takové skóre validním skóre nějakého grafu?

1.3 Hledání grafu ke skóre

Tvrzení. Máme $D = (d_1, d_2, ..., d_n), d_1 \le d_2 \le ... \le d_n$.

Pak D je skóre některého grafu G=(V,E) právě tehdy, když $D'=(d'_1,\ldots,d'_{n-1})$ definovaná tak, že

$$d_i = \begin{cases} d_i & \text{pokud } i < n - d_n \\ d_i - 1 & \text{pokud } i \ge n - d_n \end{cases}$$

je skóre nějakého $G' \in \mathcal{S}$.

Důkaz.

"⇐": Existuje G' pro D'. G vytvoříme tak, že k G' přidáme vrchol v_n a spojíme se všemi vrcholy $v_{n-d_n}, v_{n-d_1+1}, \ldots, v_{n-1}$. Pak G má skóre D. \blacksquare

" \Rightarrow ": Máme G s $D=(d_1,d_2,\ldots,d_n)$, kde d_1 je stupeň v_1,d_2 je stupeň v_2 a tak dále.

Mějme $\mathcal{G} = \{G \mid G \text{ má } D\} \neq \emptyset.$

Cíl: Chceme dokázat, že mezi všemi grafy \mathcal{G} existuje jeden, který má vlastnost, že poslední vrchol je spojen hranami s d_n předcházejícími vrcholy.

 $\forall G \in \mathcal{G}$ mějme j_G , což bude největší index vrcholu, tak že $\{v_{j_G}, v_n\} \notin E$, tedy není mezi nimi hrana. To znamená, že pro ideální G chceme docílit $j_G = n - d_n - 1$.

Jako G_1 označíme ten $G_1 \in \mathcal{G}$, že j_{G_1} je nejmenší. (Může být j_{G_1} menší jak $n - d_n - 1$? Ne. v_n má stupeň d_n , a kdyby bylo j_{G_1} menší, tak by bylo vrcholů více, tzn. ne všechny by měly hranu s v_n .)

Označme $j_1 = j_{G_1}$.

Víme $j_1 \ge n - d_n - 1$. Teď nás ale zajímá, jestli $j_1 = n - d_n - 1$. Dokažme sporem. Kdyby $j_1 > n - d_n - 1$, tak

Protože mezi d_n předcházejícími vrcholy je nějaký, který není spojen hranou s v_n , v našem případě v_{j_1} , nutně to znamená, že v_n musí mít hranu s nějakým vrcholem, řekněme v_k , který má ještě nižší index.

$$d(v_k) \le d(v_{j_1})$$

 v_k je v pořadí dříve, než v_{j_1} , tudíž musí mít nutně menší roven stupeň. To ale nutně znamená, že v_{j_1} musí být spojen s alespoň jedním vrcholem, označme si ho v_ℓ , se kterým není spojen v_k , protože v_k je spojen s v_n , zatímco v_{j_1} není.

Vytvořme

$$G_{0} = (V_{0}, E_{0})$$

$$V_{0} = V_{1} = V$$

$$E_{0} = (E_{1} \setminus \{\{v_{n}, v_{k}\}, \{v_{\ell}, v_{j_{1}}\}\}) \cup \{\{v_{k}, v_{\ell}\}, \{v_{n}, v_{j_{1}}\}\}$$

 G_0 má skóre D a zároveň $j_{G_0} < j_1$. To ale znamená, že G_1 nebyl graf s nejmenším j_G , což je spor. A proto nejmenší j_G je $j_{G_0} = n - d_n - 1$.

Ověřili jsme, že takový graf určitě existuje, takže G' dostaneme z G_0 odstraněním v_n . G' pak má skóre D'.

1.4 Příklad hledání grafu pro skóre

Mějme
$$D = (1, 1, 2, 3, 3); n = 5, d_n = 3; n - d_n = 2.$$

$$D_1 = (1, 0, 1, 2) \stackrel{\text{uspo.}}{\rightarrow} (0, 1, 1, 2); n_1 = 4, d_{n_1} = 2; n_1 - d_{n_1} = 2.$$

 $D_2 = (0,0,0)$. . . tento graf je určitě existuje, jedná se o diskrétní graf.

Kresleme postupně, začněme u D_2 .

$$x$$
 y z

Pak přidejme vrchol a hrany tak, aby skóre odpovídalo D_1 .

A nakonec tak, aby odpovídalo D.

1.5 Další pojmy založené na stupních vrcholů

Definice. Je dán neorientovaný prostý graf bez smyček. Pak definujme

- $\delta(G) = \min \{ d(v) \mid v \in V \}$ je minimální stupeň grafu G.
- $\Delta(G) = \max\{d(v) \mid v \in V\}$ je maximální stupeň grafu G.
- $d(G) = \frac{2|E|}{|V|} = \frac{\sum_{v \in V} d(v)}{|V|}$ je průměrný stupeň grafu G.
- $\varepsilon(G) = \frac{|E|}{|V|} = \frac{1}{2}d(G)$ je poměr počtu hran ku počtu vrcholů.

Označme n=|V| a m=|E|. Pak $d(G)=\frac{2m}{n}$ a $\varepsilon(G)=\frac{m}{n}.$

Zřejme platí $\delta(G) \leq d(G) \leq \Delta(G)$.

1.6 Tvrzení o podgrafech

Tvrzení. Pro každý $G \in \mathcal{S}$ s $|E| \ge 1$ existuje podgraf H takový, že $\delta(H) > \varepsilon(H) \ge \varepsilon(G)$.

5

Důkaz. Máme dvě situace

- 1. Bud $\delta(G) > \varepsilon(G)$, pak H = G.
- 2. Nebo $\delta(G) \leq \varepsilon(G)$, tj. $v_1 \in V$, $d(v_1) = \delta(G) \leq \frac{m}{n}$.

Dokažme tedy ještě platnost pro 2.

Označme $G_1 := G \setminus v_1$. A tedy $m_1 = m - \delta(G)$ a $n_1 = n - 1$.

Cheeme
$$\underbrace{\frac{m_1}{n_1}}_{\varepsilon(G_1)} \ge \underbrace{\frac{m}{n}}_{\varepsilon(G)}$$
.

$$\frac{m_1}{n_1} - \frac{m}{n} = \frac{m - \delta(G)}{n - 1} - \frac{m}{n} = \frac{nm - n\delta(G) - nm + m}{(n - 1)n} = \frac{m - n\delta(G)}{(n - 1)n}, \delta(G) \le \frac{m}{n}, m \ge n\delta(G) \quad (3)$$

A tedy

$$m - n\delta(G) \ge 0$$
$$n(n-1) \ge 0$$

Což dává

$$m \geq n\delta(G)$$
, tj. $\varepsilon(G_1) \geq \varepsilon(G)$

Algoritmus dále pokračuje:

Pokud
$$\begin{cases} \delta(G_1) > \varepsilon(G_1), & \text{tak } H := G_1, \\ \delta(G_1) \le \varepsilon(G_1), & \text{tak } v_2 \in V \setminus \{v_1\}, d_{G_1}(v_2) = \delta(G_1). \end{cases}$$

A tedy $G_2 := G_1 \setminus v_2$, $\varepsilon(G_2) \ge \varepsilon(G_1)$. A takto postupně dále. Algoritmus končí a nikdy nedostaneme prázdný graf, díky předpokladu, že G mělo alespoň jednu hranu, tedy $\varepsilon(G) > 0$.

1.7 Souislý graf

Graf nazýváme souvislým, jestliže každé jeho dva vrcholy jsou spojeny neorientovanou cestou.

1.8 Pojmy založené na vzdálenosti

1.8.1 Vzdálenost

Mějme $G \in \mathcal{S}$, G = (V, E), $x, y \in V$. Vzdálenost x, y je $d_G(x, y)$, což značí počet hran v nejméně početné cestě z x do y, když existuje cesta. Jinak $d_G(x, y) = \infty$.

1.8.2 Průměr

At G je souvislý. Průměr G je diam $(G) = \max \{d_G(x,y) \mid x,y \in V\}.$

1.8.3 Excentricita

At G je souvislý. Excentricita vrcholu $v \in V$ je $ex(V) = max \{d_G(v, x) \mid x \in V\}$.

1.8.4 Centrum

At $v \in V$ je centrální $\to ex(v)$ je nejmenší mezi $ex(x), x \in V$. Centrum (staře střed) grafu je $C(G) = \{v \mid v \text{ je centrální}\}.$

Uveďme si příklad.
$$5 - 2 - 1$$
 Zde $C(G) = \{2, 3, 5\}.$
$$4 - 3$$

1.8.5 Poloměr

Poloměr G je $rad(G) = ex(v), v \in C(G)$.

$$\operatorname{Plati} \, \operatorname{rad}(G) \leq \underbrace{\operatorname{diam}(G) \leq 2 \operatorname{rad}(G)}_{\star}.$$

Zdůvodnění *. Chceme $d_G(x,y) \leq 2 \operatorname{rad}(G) \forall x, y \in V$.

$$x \stackrel{P_1}{-\!\!\!-\!\!\!-} v \stackrel{P_2}{-\!\!\!\!-} y$$

 P_1, P_2 sled z x do y o $\leq 2 \operatorname{rad}(G)$.

 P_1, P_2 obsahuje cestu Pz x do yo $\leq P_1, P_2 \leq 2 \operatorname{rad}(G).$

2 Souvislé grafy

2.1 k-souvislost

 $G=(V,E)\in\mathcal{S}.$ Řekněme, že G je k-souvislý, pokud|V|>ka pro každou $X\subseteq V,\,|X|=k-1$ je $G\setminus X$ souvislý. Mějmě

Je souvislý, ale ne 2-souvislý.

Je 2-souvislý.

Každý graf je 0-souvislý, i nesouvislý graf je 0-souvislý. 1-souvislý je každý souvislý graf.

2.2 Souvislost v grafu

Souvislost v grafu G je největší k takové, že G je k-souvislý. Značíme $\kappa(G)$. Úplný graf má $\kappa(G) = |V| - 1$.

2.3 Vrcholový řez

Vrcholový řez grafu $G \in \mathcal{S}$ je množina vrcholů $X \subsetneq V$, že $G \setminus X$ je nesouvislý.

2.4 Vztah neúplnosti a vrcholového řezu

Je-li $G \in S$, G není úplný, pak $\kappa(G) = k$ právě tehdy, když nemá vrcholový řez o k-1 vrcholech a má vrcholový řez o k vrcholech.

2.5 Věta o vztahu podgrafu a souvislosti

Mějme $G \in \mathcal{S}$, G = (V, E), splňující $d(G) \geq 4k$. Pak G obsahuje podgraf, který je k-souvislý.

Důkaz.

- Pro k=0 triviální. Všechny grafy jsou 0-souvislé.
- Pro k=1: Pokud $\frac{2m}{n} \geq 4k$, tedy $m \geq 1$ (takže má hranu), tak sama hrana je 1-souvislý podgraf.
- Pro $k \ge 2$: tj. $\frac{2m}{n} \ge 4k$

$$2m \geq 4kn$$

$$m \geq 2kn$$

$$m \geq 4n \text{ (dosazeno } k \geq 2\text{)}$$

8

Průběh důkazu $d(G) \geq 4k, k \geq 2 \xrightarrow{\text{Lemma 1}}$ (i), (ii) $\xrightarrow{\text{Lemma 2}} G$ má k-souislost.

2.5.1 Pomocné lemma 1

Pokud $k \geq 2$ a $d(G) \geq 4k$, pak

(i) $n \ge 2k - 1$

(ii)
$$m \ge (2k-3)(n-k+1)+1$$

Důkaz. (i) Kdyby ne, tak n < 2k - 1.

$$n+1 < 2k$$
$$\frac{n+1}{2} < k$$

Teď použijme předpoklad $m \ge 2kn > (n+1)n$. A to nejde, protože úplný neorientovaný graf bez smyček má $\frac{n(n-1)}{2}$ hran.

(ii) Mějme

$$m \ge 2kn - ((2k-3)(n-k+1)+1) = 2kn - (2kn - 2k^2 + 2k - 3n + 3k - 3 + 1)$$
$$= 2k^2 - 5k + 3n + 2$$

Teď aplikujme již dokázané (i):

$$2k^2 - 5k + 3n + 2 \ge 2k^2 - 5k + 6k - 3 + 2 = 2k^2 + k - 1$$

Vyšetřeme průběh funkce

Funkce je očividně konvexní, a protože nás zajímá průběh funkce na $k \geq 2$, můžeme prohlásit, že $2k^2 + k - 1 > 0$.

2.5.2 Pomocné lemma 2

Pokud G splňuje (i) a (ii), tak G má k-souvislý podgraf.

Důkaz. G není k-souvislý.

Indukcí podle |V| = n.

Základní krok: n = 2k-1, $m \ge (2k-3)(n-k+1)+1$. Dosaďme $k = \frac{n+1}{2}$:

$$m \ge (n+1-3)\left(n-\frac{n+1}{2}+1\right)+1 = \frac{(n-2)(n+1)}{2}+1 = \frac{n(n-1)}{2}$$
 (4)

A tedy graf je úplný na n vrcholech. Teď potřebujeme n > k.

$$n = 2k - 1 = k + \underbrace{k - 1}_{\geq 1} \geq k + 1 \tag{5}$$

Indukční krok: Každý graf G' splňující (i) a (ii) s méně než n vrcholy (s alespoň 2k-1 vrcholy) má k-souvislý podgraf.

Vezmeme G splňující (i) a (ii) s n vrcholy.

(a) Kdyby $\delta(G) \leq 2k - 3$, tak $v \in V$ s $d_G(v) \leq 2k - 3$. $G \setminus v = G_1, n_1 = n - 1$,

$$m_1 \ge m - (2k - 3) \ge (2k - 3)(n - k + 1) + 1 - (2k - 3) = (2k - 3)(\underbrace{n - 1}_{n_1} - k + 1) + 1$$

Tudíž G_1 má k-souvislý podgraf, tedy i ho má G.

(b) At $\delta(G)>2k-3m$, $\delta(G)\geq 2k-2$; $\forall v\in G, d_G(v)\geq 2k-2$. G není k-souvislý, tj. $X\subseteq V,$ |X|=k-1 a X je vrcholový řez.

 $G \setminus X$ je nesouvislý. Všech je (k-1) + (k-1) + 1. $d_G(x) \ge 2k - 2$.

 G_1 graf indukovaný C_1 v
 Xmá alespoň 2k-1vrcholů.

Kdyby G_1 i G_2 nesplňovaly (ii), G_i má n_i vrcholů a m_i hran, i = 1, 2.

$$m_i \ge (2k-3)(n_i-k+1)+1, \quad \text{tj. } m_i \le (2k-3)(n_i-k+1)$$
 (6)

 $m_1 + m_2 \ge m$ víme. $n_1 + n_2 = n + (k - 1)$, počítali jsme vrcholy v X dvakrát.

$$m \le n_1 + n_2 \le (2k - 3)(n_1 - k + 1) + (2k - 3)(n_2 - k + 1) = (2k - 3)(n_1 + n_2 - 2k + 2)$$

= $(2k - 3)(n + (k - 1) - 2k + 2)$
= $(2k - 3)(n - k + 1)$

Tedy spor s (ii).

2.6 Artikulace

Vrchol v grafu G se nazývá artikulace, jestliže $G \setminus v$ má více komponent souvislosti, než G. **Platí.** $G \in \mathcal{S}$ s alespoň 3 vrcholy je 2-souvislý \iff je 1-souvislý a nemá artikulaci.

Není 2-souvislý.

Je 2-souvislý.

2.7 Operace nad 2-souvislými grafy

Mějme operace

- (a) $G \in \mathcal{S}$ a $e \in \{u, v\}$; $u, v \in V(G)$, $e \notin E(G)$, pak G + e je graf sV(G) a $E(G) \cup \{e\}$. Je-li G 2-souvislý, tak G + e je 2-souvislý.
- (b) $G \in \mathcal{S}$, G = (V, E), $e \in E$, pak $G\%e = (V \cup \{w\}, (E \setminus \{e\}) \cup \{e_1, e_2\})$. "Do hrany e vložíme vrchol se stupněm 2."

2.8 Tvrzení o 2-souvislých grafech a kružnicích

Každý 2-souvislý graf obsahuje kružnici.

Důkaz. Každý 2-souvislý graf je souvislý. Kdyby souvislý neobsahoval kružnici, jedná se o strom. A každý strom s alespoň 3 vrcholy má artikulaci. Protože stromy nemohou být 2-souvislé, a zároveň všechny ostatní souvislé grafy obsahují kružnici, i každý 2-souvislý graf obsahuje kružnici. ■

2.9 Věta o vrcholech na společné kružnici

 $G \in \mathcal{S}, G = (V, E)$ je 2-souvislý právě tehdy, když každé 2 vrcholy $u \neq v$ leží na společné kružnici.

Důkaz.

" \Leftarrow ": Předpokládejme, že pro každé $u \neq v$ existuje kružnice K, která je obsahuje.

To znamená, že graf je souvislý. Musíme ještě dokázat, že v něm neexistuje artikulace. Kdyby graf měl artikulaci v:

Znamenalo by to, že v jedné komponentě souvislosti by ležely alespoň 2 vrcholy (protože máme minimálně 3 vrcholy). Zároveň ale vrchol $x \in C_1$ a $y \in C_2$ rozhodně neleží na společné kružnici, tudíž graf nemůže mít artikulaci, takže G je 2-souvislý.

" \Rightarrow ": Předpokládejme, že G je 2-souvislý. Dokažme indukcí podle vzdálenosti d(u, v).

- (a) Základní krok: u, v s d(u, v) = 1. Budeme se snažit ukázat, že když zrušíme hranu, souvislost zůstane.
 - (1) $G \setminus e$ je souvislý. Kdyby ne, tak

Přitom G má alespoň 3 vrcholy, tedy v jedné komponentě leží alespoň 2 vrcholy. $B\acute{U}NO$ exsistuje $x \in C_1$, $x \neq u$, tj. u je artikulace. Což je spor. Takže $G \setminus e$ je souvislý. Tedy existuje cesta $P \neq u$ do v. Pak P je kružnice obsahující u, v.

- (b) Indukční předpoklad: Pro každé x, y s $d(x, y) = n \ge 1$ existuje kružnice obsahující x, y.
- (c) Indukční krok: Vezměme libovolné u, v s d(u, v) = n + 1. Vyberme nejkratší cestu:

Použijme I.P.: tj. existuje kružnice K_1 obsahující $x_1, v.$ x_1 není artikulace, tj. existuje cesta P z u do v neobsahující $x_1.$ w je prvním vrcholem cesty P, který leží na K_1 . Použijeme cestu P, abychom se dostali z u do w, následně se přes K_1 dostaneme do v. Dále po kružnici do x_1 , kde si musíme vybrat trasu, která nevede do w, tj. směrem do u. A tím uzavřeme kružnici obsahující u a v.

2.10 Tvrzení o 2-souvislých grafech a % operaci

 $G \in \mathcal{S}$ je 2-souvislý právě tehdy, když G%e, $e \in E(G)$ je 2-souvislý.

Důkaz.

"⇒": Předpokládejme, že G je 2-souvislý, tj. souvislý a nemá artikulaci.

Vrchol w, který vložíme do hrany e, není artikulace. A žádný jiný se nemohl stát artikulací, to by už musely být artikulací předtím, a tedy by se v prvé řadě nejednalo o 2-souvislý.

" \Leftarrow ": Předpokládejme, že G%e je 2-souvislý, tj. každé 2 vrcholy leží na společné kružnici.

$$x,y\in V(G)\dots \text{existuje } K\text{ v }G\%e\text{ obsahující }x,y\begin{cases}K\text{ neobsahuje }e_1,e_2&K\text{ je kružnice }G.\\\\K\text{ obsahuje }e_1,e_2&\text{z }K\text{ odstraníme }e_1,e_2,\\\\&\text{nahradíme }e\text{ a máme }K'.\end{cases}$$

2.11 Algoritmus sestrojení 2-souvislého grafu

Každý 2-souvislý graf $G \in \mathcal{S}$, G = (V, E) je možné sestrojit postupem:

$$G_0 := K$$
 je nějaká kružnice

Máme-li G_i , že $G_i \neq G$, tak G_{i+1} je G_i , ke kterému přidáme cestu P (v G), která vede mezi 2 vrcholy z G_i a zároveň všechny vrcholy této cesty nejsou v G_i .

2.12 Příklad sestrojení 2-souvislého grafu

Mějme 2-souvislý graf, tj. bez artikulace:

Začněme G_0 :

K' je kružnice v G.

Přidáme cestu z 1 do 2, tedy G_1 :

Teď přidáme cestu z 3 do 4, G_2 :

A posledně z 3 do 5, $G_3 = G$:

2.13 Komponenty 2-souvislosti - blok

Mějme $G \in \mathcal{S}$, G = (V, E), pak $A \subseteq V(G)$ se nazývá **blok**, jestliže je maximální podmnožina taková, že jí indukovaný podgraf je 2-souvislý.

Pozn. maximální v tomto kontextu neznamená nejpočetnější, nýbrž, že do takové podmnožiny již nelze přidat další vrchol.

Když nejsou jednotlivé bloky vzájemně disjunktní, tak jejich průnik je artikulace.

3 Hranově souvislé grafy

3.1 Hranový řez

Množině $F \subseteq E$, že $G \setminus F$ je nesouvislá, se říká hranový řez.

3.2 Hranová souvislost

Máme $G \in \mathcal{S}$, G = (V, E), pak G je k-hranově souvislý, jestliže neexistuje $F \subseteq E$, $|F| \le k - 1$, taková, že $G \setminus F$ je nesouvislý.

Hranová souvislost grafu G, značíme $\lambda(G)$, je největší k, že G je k-hranově souvislý. Pozn. největší znamená, že nemá hranový řez s $\lambda(G) - 1$ hranami, ale má s $\lambda(G)$ hranami.

Mějme 2-hranově souvislý graf:

3.3 Most

Nazvěme most hranu $e \in E(G)$, že $\{e\}$ je hranový řez.

3.4 Souvislost krajních vrcholů a mostů

Každý most má alespoň jeden krajní vrchol, který je artikulace.

3.5 Základní vlastnosti hranově souvislých grafů

G je 0-hranově souvislý pro každé G.

G je 1-hranově souvislý $\iff G$ je souvislý.

G je 2-hranově souvislý $\iff G$ je souvislý a nemá most.

3.6 Tvrzení o hranové a vrcholové souvislosti

Platí, že $\kappa(G) \leq \lambda(G)$.

4 Extremální teorie

4.1 Věta o souvislosti vrcholů a hran (Mantel)

Máme $G \in \mathcal{S}$ s n vrcholy, m hranami, který nemá K_3 . Pak $m \leq \frac{n^2}{4}$.

Důkaz.

Definice. Množina A je nezávislá $A \subseteq V(G)$ pokud pro každou $e = \{u, v\}$, jestliže $u \in A$, platí $v \notin e$. Množina A je nezávislá právě tehdy, když v ní žádné dva vrcholy nejsou spojené hranou.

At A je nejpočetnější nezávislá množina a $B = V \setminus A$. G nemá K_3 : každá množina sousedů vrcholů $v \in V$ je nezávislá množina.

$$m \le \sum_{N \in B} d(v) \le \underbrace{(n-k)}_{|B|} \cdot \underbrace{k}_{|A|} \tag{7}$$

Každá hrana má alespoň 1 krajní vrchol v B. Pro které k je (n-k)k největší?

$$f(x) = (n - x)x$$

$$f'(x) = n - 2x \implies f'(x) = 0 \iff x = \frac{n}{2}$$

$$f''(x) = -2$$

Protože jsme v \mathbb{N} , tak $\left\lceil \frac{n}{2} \right\rceil \cdot \left\lceil \frac{n}{2} \right\rceil = \frac{n+1}{2} \frac{n-1}{2} = \frac{n^2-1}{4} \leq \frac{n^2}{4}$.

4.2 Věta o souvislosti hran a úplném grafu

Máme $G \in \mathcal{S}$, který neobsahuje K_{r+1} (úplný graf na r+1 vrcholech), $r \geq 2$. Pak

$$m \le \frac{r-1}{r} \frac{n^2}{2}.\tag{8}$$

Důkaz. Vezměme graf G bez K_{r+1} s nejméně hranami (přidáním hrany by vznikl K_{r+1}). Tedy G má K_r . At A je množina vrcholů K_r a B je $V(G) \setminus A$, |B| = n - r. Každý vrchol $v \in B$ má max r-1 sousedů v A (jinak by $A \cup \{u\}$ tvořil K_{r+1}).

m rozdělíme na hrany v A (hrany úplného grafu), hrany mezi A a B a hrany v B

$$m = m_A + m_{A-B} + m_B \le \frac{r(r-1)}{2} + (n-r)(r-1) + m_B$$
(9)

a graf indukovaný B neobsahuje K_{r+1} a má maximální počet hran.

$$m_B < m$$
$$n - r = |B| < n$$

Použijme tedy silnou indukci, dle počtu vrcholů n = |V(G)|.

• Základní krok. $n = 1, 2, \dots, r$.

$$m \le \frac{n(n-1)}{2}$$

$$\frac{n(n-1)}{2} \le \frac{r-1}{r} \frac{n^2}{2}$$

$$\frac{r-1}{r} \frac{n^2}{2} - \frac{n(n-1)}{2} = \frac{n}{2} \left(n \frac{r-1}{r} - (n-1) \right)$$

$$= \frac{n}{2} \frac{nr - n - nr + r}{r} = \frac{n}{2} \underbrace{\frac{\geq 0}{r-n}}_{>0} \ge 0.$$

• Když budeme mít indukční předpoklad pro G_B , pak:

$$m \le \frac{r(r-1)}{2} + (n-r)(r-1) + \frac{r-1}{n} \frac{(n-r)^2}{2}$$
(10)

$$= \frac{r-1}{r} \left(\frac{r^2}{2} + r(n-r) + \frac{(n-r)^2}{2} \right) \tag{11}$$

$$=\frac{r-1}{r}\left(\frac{r^2+2rn+n^2-2nr+r^2}{2}\right)=\frac{r-1}{r}\frac{n^2}{2}.$$
 (12)

4.3 Turánovy grafy

Pro n, r < n. T(n,r) je r-partitní úplný graf. Označíme-li strany S_1, \ldots, S_r , pak $|S_i - S_j| \le 1$, $|S_i| = \lfloor \frac{n}{r} \rfloor$ nebo $\lceil \frac{n}{r} \rceil$. Takový graf má potom

$$\frac{r(r-1)}{2} \left(\frac{n}{r}\right)^2 = \frac{r-1}{r} \frac{n^2}{2}, n = k \cdot r,$$

hran.

4.4 Tvrzení počtu hran a Turánově grafu

Každý $G = (v, E) \in \mathcal{S}$ bez K_{r+1} s největším počtem hran je T(n, r).

Důkaz. Na V definujme $\mathcal{R}: u\mathcal{R}v \iff \{u,v\} \notin E$.

 \mathcal{R} je reflexivní, protože nemáme smyčky. \mathcal{R} je symetrické, protože se jedná o neorientovaný graf. Teď je potřeba ověřit tranzitivitu, tj. $(\{x,y\} \not\in E, \{y,z\} \not\in E) \Longrightarrow \{x,z\} \not\in E$.

Dokažme sporem. Kdyby $\{x,y\} \notin E$ a $\{y,z\} \notin E$ a $\{x,z\} \in E$.

1) $d(y) \ge d(x)$ (obdobně $d(y) \ge d(z)$). Sporem. Kdyby d(y) < d(x).

Neighbourhood $N(v) = \{u \mid \{u, v\} \in E\}.$

Z G odstraníme hrany $\{y,t\}$, $t \in N(y)$ a přidáme $\{y,u\}$, $u \in N(x)$. Tím dostaneme G', to má více hran jak G.

G' nemá K_{r+1} , protože ani původní graf nebyl K_{r+1} . Což je spor.

2) $G'' = G \setminus \{x, y, z\}$. $m(G) \le m(G') + d(x) + d(y) + d(z) - 1$ (-1 za hranu $\{x, z\}$).

G'''z Godstraníme hrany $\left\{x,t\right\},t\in N(x)$ a $\left\{z,v\right\},v\in N(z)$ a přidáme hrany $\left\{x,u\right\},u\in N(y)$ a $\left\{z,u\right\},u\in N(y).$

$$m(G''') = m(G'') + 3d(y) > m(G'') + d(x) + d(y) + d(z) - 1 \ge m(G)$$

 $G^{\prime\prime}$ nemá $K_{r+1},$ což je spor.

 \mathcal{R} je tedy ekvivalence. Třídy ekvivalence \mathcal{R} jsou maximální množiny, že graf jimi indukovaný nemá hranu. G má nejvíce hran, tj. G má K_r , stran má r, je tedy úplný r-partitní graf.

Potřebujeme $||S_i| - |S_j|| \le 1$. Dokažme sporem. Kdyby ne, tak $|S_1| \ge |S_2| + 2$. Označme $|S_1| = n_1$ a $|S_2| = n_2$.

Graf měl původně $n_1 \cdot n_2$ hran. Nově má

$$(n_1 - 1)(n_2 + 1) = n_1 n_2 \underbrace{-n_2 + n_1}_{\geq 2} - 1.$$

A to je Turánův graf.

5 Orientované grafy

5.1 Minimálně silně souvislý graf

Silně souvislý graf se nazývá minimálně silně souvislý, jestliže $G \setminus \{e\}$ není silně souvislý pro každou hranu $e \in E(G)$.

5.2 Věta o minimálně silně souvislém grafu a jeho vrcholech

Každý minimálně silně souvislý graf G s alespoň 2 vrcholy má 2 vrcholy stupně 2. Důkaz. Indukcí podle rozdílu k = m - n, kde m je počet hran a n počet vrcholů.

- Základní krok. k=0, tj. m=n. Takže se jedná o cyklus. Všechny vrcholy cyklu mají stupeň 2.
- Indukční krok. Každý graf G (minimálně silně souvislý sm(G)-n(G)< k) má 2 vrcholy stupně 2.

Uvažujme G minimálně silně souvislý sm-n=k>0. V G si vybereme cyklus C s největším počtem hran (tedy vrcholů). C má l vrcholů:

 $\forall v \notin C$ existuje maximálně 1 hrana $(v, x_i), x_i \in C$. $\forall w \notin C$ existuje maximálně 1 hrana $(x_i, w), x_i \in C$.

Vytvořme G', což bude G, ve kterém nahradíme cyklus C vrcholem v_C .

$$m(G') - n(G') = m - l - (n - l + 1) = m - n - 1 = k - 1$$

G' má alespoň 2 vrcholy stupně 2, není-li ani jeden z nich v_C , jsou to vrcholy G stupně 2. Když G' bude mít pouze 2 vrcholy, v_C a x, stupně 2, tak musíme řešit 2 případy:

- 1) Když má cyklus alespoň 3 vrcholy $(l \ge 3)$, pak v C existuje vrchol stupně 2.
- 2) Když C má jen 2 vrcholy, když se zkombinují orientované hrany do neorientovaných, tak se jedná o strom. A každý strom s alespoň 2 vrcholy má 2 listy, tj. vrcholy stupně 1. A to jsou přesně ty 2 vrcholy stupně 2, které hledáme.

5.3 Algoritmus pro nalezení topologického očíslování

Algoritmus pro nalezení topologického očíslování v acyklickém grafu. Pozn.: Každý acyklický graf má alespoň 1 vrchol se stupněm 0.

- 1) Spočítáme vstupní stupně vrcholů. Do množiny M vložíme všechny v s $d^-(v) = 0$, i = 1.
- 2) Vybereme $v_i \in M$ a odstraníme. Pro každé $(v_i, w) \in E$: $d^-(w) := d^-(w) 1$, if $d^-(w) = 0$, pak $M := M \cup \{w\}$. i + +.
- 3) Algoritmus končí pokud $M=\emptyset$ a zároveň existuje alespoň jeden vrchol u s $d^-(u)>0$, pak topologické očíslování neexistuje, nebo jsou všechny vrcholy topologicky očíslované.