La loi d'Ohm (version polyfit et avec fonctions)

I (mA)	0	25	50	75	100	125
U (V)	0	1,8	3,3	5,2	6,8	8,5

tableau.png

In [1]:

```
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
```

In [2]:

```
# création de la fonction modelisation
# modélisation par une droite d'équation
# y=ax+b (polynôme de degré 1)

# la fonction polyfit permet de déterminer les
# coefficients a=coef[0] et b=coef[1] de la droite
# ymodel permet de déterminer les valeurs modélisées de y

def modelisation(x,y):
    coef=np.polyfit(x,y,1)
    ymodel=coef[0]*x+coef[1]
    print ('U= {0:.1f}'.format(coef[0]),'x I')
    print('Les valeurs de la tension modélisée sont',ymodel)
    return (ymodel)
```

In [3]:

In [4]:

```
# tableaux numpy obligatoires à cause de l'opération vectorisée
# permettant de créer Umodel
```

```
I=np.array([0,25e-3,50e-3,75e-3,100e-3,125e-3])
U=np.array([0,1.8,3.3,5.2,6.8,8.5])
Umodel=modelisation(I,U)
courbemodelisee(I,U,Umodel)
```

 $\begin{tabular}{ll} U=67.9 x I \\ Les valeurs de la tension modélisée sont [0.02380952 1.72095238 3.41809524 5.1152381 \\ 6.81238095 8.50952381] \\ \end{tabular}$

