"Bounding scalar operator dimensions in 4D CFT"中的 数值共形自举方法

余荫铠

2025年7月28日

本文是对 R. Rattazzi, V. Rychkov, E. Tonni, A. Vichi, Bounding scalar operator dimensions in 4D CFT, JHEP 12 (2008) 031 这篇文章中所提出的数值共形自举方法的思路总结。

我们知道,一个共形场论(conformal field theory, CFT)可以完全由其共形数据(即所有 primary fields 的维数 Δ 和自旋 l)和算符乘积展开(operator product expansion, OPE)系数 λ 所确定。现代的共形自举方法(conformal bootstrap)可以从 CFT 最基本的第一性原理出发——即关联函数的交叉对称性和幺正性——来约束甚至求解共形数据,这一方案是非微扰的,而且方法论上不依赖于具体的模型。

R. Rattazzi, V. Rychkov, E. Tonni, A. Vichi 的这篇开创性文章 "Bounding scalar operator dimensions in 4D CFT" [1] 展示了如何用数值方法通用的提取标量算符维数 Δ 的上限(而下限由幺正性约束)。

具体来说,该论文研究了任意 4D 幺正 CFT 中一个标量 primary operator ϕ (维度为 $d=[\phi]$) 与其 OPE 中出现的最低维标量算符 ϕ^2 (维度为 $\Delta_{\min}=[\phi^2]$) 之间的关系。他们证明了 Δ_{\min} 必然存在一个仅依赖于 d 的上限:

$$\Delta_{\min} < f(d)$$

并且这个连续的界限函数满足 f(1) = 2,保证了理论在 $d \to 1$ 时能够连续地过渡到自由场论。 本文重点关注原文第 4×5 节,梳理其核心方法论,包括:

- 1. 利用 OPE 和共形块分解建立四点函数的基本框架。
- 2. 如何从交叉对称性中推导出核心的求和规则。
- 3. 如何将求和规则问题转化为一个高维向量空间中的几何问题。
- 4. 如何利用线性泛函和线性规划等数值方法,从该几何问题中求解出最终的物理界限。

1 交叉对称性与共形块分解

考虑一个由四个相同的标量 primary operator ϕ (标度维为 d) 构成的四点关联函数。共形对称性极大地限制了其形式:

$$\langle \phi(x_1)\phi(x_2)\phi(x_3)\phi(x_4)\rangle = \frac{g(u,v)}{|x_{12}|^{2d}|x_{34}|^{2d}}$$

其中所有的动力学信息都包含在函数 g(u,v) 中。u 和 v 是共形不变的交比 (cross-ratios):

$$u = \frac{x_{12}^2 x_{34}^2}{x_{13}^2 x_{24}^2}, \quad v = \frac{x_{14}^2 x_{23}^2}{x_{13}^2 x_{24}^2}$$

由于四个算符完全相同,这个四点函数在交换任意两个坐标时必须保持不变。特别地,在交换 $x_1 \leftrightarrow x_3$ 时, $u \leftrightarrow v$ 。这要求函数 g(u,v) 必须满足一个强大的自治性约束,即**交叉对称方程**:

$$v^d g(u, v) = u^d g(v, u)$$

这个方程是共形自举的基石。

另一方面,我们可以通过算符乘积展开 (OPE) 来分析四点函数。 $\phi(x_1)\phi(x_2)$ 的乘积可以展开为无穷多个 primary operator $\mathcal{O}_{\Delta,l}$ 及其 de'cen'dent 的贡献之和。将此 OPE 代入四点函数,函数 g(u,v) 可以被分解为一系列普适的基底函数——**共形块** (conformal blocks) $g_{\Delta,l}(u,v)$ 的线性组合:

$$g(u,v) = 1 + \sum_{\mathcal{O} \in \phi \times \phi} \lambda_{\phi\phi\mathcal{O}}^2 g_{\Delta,l}(u,v)$$

这里的 "1" 代表单位算符的贡献。求和遍历所有出现在 $\phi \times \phi$ OPE 中的非单位 primary operator。 $g_{\Delta,l}(u,v)$ 是由对称性唯一确定的函数,仅依赖于交换算符的维度 Δ 和自旋 l。而 $\lambda_{\phi\phi\mathcal{O}}$ 是 OPE 系数,是理论的动力学数据。根据幺正性,OPE 系数的平方必须为正,我们记为 $p_{\Delta,l}=\lambda_{\phi\phi\mathcal{O}}^2>0$ 。 这是整个方法得以成立的另一个关键。

2 求和规则与几何视角

将交叉对称方程与共形块分解相结合,我们就能得到一个关于 CFT 谱数据的普适约束方程。

2.1 推导求和规则

求和规则(原文 4.5 式)是数值共形自举方法的关键,在这里我们补充求和规则的推导。我们将共形块分解式代入交叉对称方程 $v^dg(u,v)=u^dg(v,u)$ 。方程左边为:

LHS =
$$v^d \left(1 + \sum_{\Delta,l} p_{\Delta,l} g_{\Delta,l}(u,v) \right) = v^d + \sum_{\Delta,l} p_{\Delta,l} v^d g_{\Delta,l}(u,v)$$

方程右边为:

RHS =
$$u^d \left(1 + \sum_{\Delta,l} p_{\Delta,l} g_{\Delta,l}(v,u) \right) = u^d + \sum_{\Delta,l} p_{\Delta,l} u^d g_{\Delta,l}(v,u)$$

今 LHS = RHS, 并整理移项, 我们得到:

$$\sum_{\Delta,l} p_{\Delta,l} \left(v^d g_{\Delta,l}(u,v) - u^d g_{\Delta,l}(v,u) \right) = u^d - v^d$$

在 $u \neq v$ 的区域,两边同除以 $(u^d - v^d)$,便得到了核心的**求和规则 (sum rule)**。为了方便分析,我们通常使用与 (u,v) 等价的坐标 (z,\bar{z}) ,其中 $u = z\bar{z}, v = (1-z)(1-\bar{z})$ 。

$$\sum_{\Delta,l} p_{\Delta,l} F_{d,\Delta,l}(z,\bar{z}) = 1, \quad \cancel{\sharp} + p_{\Delta,l} > 0$$

$$F_{d,\Delta,l}(z,\bar{z}) \equiv \frac{v^d g_{\Delta,l}(u,v) - u^d g_{\Delta,l}(v,u)}{u^d - v^d}$$

$$(1)$$

这个方程将一个复杂的非线性函数方程,转化为了一个关于正实数 $p_{\Delta,l}$ 和已知函数 $F_{d,\Delta,l}$ 的线 性方程。这就是整个自举方法的出发点。

2.2 几何视角

为了系统性地分析求和规则,论文引入了直观的几何图像。首先,通过在对称点 $z = \bar{z} = 1/2$ 进行泰勒展开, 求和规则可以被转化为一组无穷多个线性方程:

$$1 = \sum p_{\Delta,l} F_{d,\Delta,l}^{(0,0)}$$

$$0 = \sum p_{\Delta,l} F_{d,\Delta,l}^{(2m,2n)} \quad \text{(for } m+n>0)$$
(2)

$$0 = \sum p_{\Delta,l} F_{d,\Delta,l}^{(2m,2n)} \quad \text{(for } m+n>0)$$
(3)

其中 $F^{(2m,2n)}$ 代表在对称点处的各阶导数值。我们可以将每个算符 $\mathcal{O}_{\Delta,l}$ 看作一个由其所有导数 值构成的无穷维向量 $\vec{V}_{d,\Delta,l}$ 。那么,求和规则就变成了一个向量方程。

所有这些基向量 $\vec{V}_{d,\Delta,l}$ 在向量空间中张成了一个**凸锥** (convex cone)。一个理论的谱是自 洽的、当且仅当由其谱张成的凸锥能够线性组合出目标向量(在这里是与齐次方程组相关的原 点向量,或是与完整方程相关的单位向量)。

因此,寻找物理界限 Δ_c 的问题,就转化为一个几何问题:对于一个假设的算符谱(例如, 所有标量算符维度都大于某个 Δ_{min}),它所张成的凸锥是否足够"宽",以至于能够满足求和规 则方程?

数值共形自举方法 3

本节总结如何将上述几何问题转化为一个可执行的数值算法,以求解出最终的物理界限。

3.1 用线性泛函来判断

在高维空间中直接判断一个点是否在凸锥内是困难的。一个更强大的工具是**线性泛函** Λ , 它 可以被看作是作用在向量上的线性算子。几何上, $\Lambda(\vec{V}) = 0$ 定义了一个超平面。

该方法的核心判据来源于凸集分离定理:

• **理论被排除** ($\Delta_{min} > \Delta_c$): 当假设的谱不自治时,其张成的(投影)凸锥的张角小于 π 。这 意味着,必然存在一个线性泛函 Λ (一个分离超平面),使得对于谱中所有算符对应的向量 \vec{V} , 都有 $\Lambda(\vec{V}) > 0$ 。如果能找到这样的 Λ , 就证明了该谱不可能存在。

$$\Delta_{\min} > \Delta_c \iff$$
 存在一个泛函 Λ 使得 $\Lambda(F_{d,\Delta,l}) > 0$ 对所有谱中算符成立 (4)

• 理论被允许 ($\Delta_{\min} < \Delta_c$): 当假设的谱是自洽的,其凸锥足够宽。这意味着,不存在任何一个线性泛函 Λ 能将所有基向量都置于其一侧。

$$\Delta_{\min} < \Delta_c \iff$$
不存在泛函 Λ 使得 $\Lambda(F_{d,\Delta,l}) \ge 0$ 对所有谱中算符成立 (5)

因此,寻找界限的问题,就变成了寻找是否存在这样一个"分离泛函"Λ的问题。

3.2 数值方法

上述问题仍然是无穷维的。为了让计算机能够处理,必须进行两步关键的**截断**:

- 1. **截断向量空间**: 只考虑有限个导数分量,例如原文中使用了 6 阶的 9 个导数,将问题简化 到一个 9 维向量空间。
- 2. **截断算符谱**: 构造一个有限的"试探集 (trial set)",它由大量离散的 (Δ , l) 值以及代表大 Δ 、大 l 极限的渐近行为向量组成。这个试探集必须能很好地代表整个谱的边界。

经过截断后,寻找分离泛函 Λ 的问题就变成了一个标准的**线性规划**问题:寻找一组泛函系数 $\lambda_{2m,2n}$,使得对于试探集中的所有向量 \vec{V}_i ,都满足约束 $\Lambda(\vec{V}_i) \geq \varepsilon > 0$ 。

整个数值自举算法的核心流程可以总结如下伪代码:

Algorithm 1: 数值共形自举算法流程 (包含实现细节)

- 1. 参数设置 (基于 Mathematica 代码示例)
- 1: **输入:** 外部算符维度 *d*。
- 2: **导数基底** *B*: 选定一组偏导数阶数 (*m*, *n*) 来定义向量空间。 例: *9* 维空间 *B* = {(6,0),(4,2),(2,4),(0,6),(4,0),(2,2),(0,4),(2,0),(0,2)}。
- 3: 试探集参数:
 - 最大自旋 $l_{\text{max}} = 10$ 。
 - 标量维度的采样上限 $\Delta_{\text{max}} = 20$ 。
 - 高自旋维度采样范围: 对于自旋 l, 采样 $\Delta \in [l+2, l+10]$ 。
 - 采样步长: $\delta \Delta = 0.2$, $\delta l = 2$ 。
- 4: 搜索参数:
 - 二分搜索初始区间 [$\Delta_{low}, \Delta_{high}$] = [2.0, 3.0]。
 - 迭代次数 $N_{\text{iter}} = 6$ (或更高以获得所需精度)。
- 5: **线性规划公差:** $\varepsilon = 10^{-5}$ 。
 - 2. 算法主体
- 6: **procedure** FIND-BOUND(d)
- 7: **for** i = 1 to N_{iter} **do**
- 8: $\Delta_{\text{mid}} \leftarrow (\Delta_{\text{low}} + \Delta_{\text{high}})/2$ ▷ 检验假设: 谱中所有标量算符维度 $\Delta \geq \Delta_{\text{mid}}$
- 9: **构建算符试探集** *V*:
- 10: \mathcal{V} ← empty set \triangleright a) 添加标量算符 (l=0)

```
11:
           for \Delta from \Delta_{\text{mid}} to \Delta_{\text{max}} step \delta \Delta do
               Add ComputeDerivativeVector(d, \Delta, 0, B) to \mathcal{V}.
12:
           end for
                                                                          ▷ b)添加高自旋算符 (l ≥ 2)
13:
           for l from 2 to l_{\text{max}} step \delta l do
14:
               for \Delta from l+2 to l+10 step \delta\Delta do
15:
                   Add ComputeDerivativeVector(d, \Delta, l, B) to \mathcal{V}.
16:
               end for
17:
           end for
                                                               ▷ c) 添加大自旋/维度极限的渐近向量
18:
                                                                                   ▷ x 是一个渐近参数
           for x from 0 to 10 step 0.2 do
19:
               Add ComputeAsymptoticVector(x, B) to \mathcal{V}.
20:
           end for
21:
22:
           用线性规划寻找分离泛函 Λ:
           \Diamond M 为一个矩阵, 其行由试探集 \mathcal{V} 中的所有向量 \vec{V} 构成。
23:
           求解线性规划可行性问题: 寻找一个列向量 \vec{\alpha} (泛函 \Lambda 的系数),
24:
         使得 M \cdot \vec{\alpha} \ge \vec{\epsilon}, 其中 \vec{\epsilon} 是所有分量均为 \epsilon 的常数向量。
      (这等价于最小化一个零成本函数 c(\vec{\alpha}) = \vec{0} \cdot \vec{\alpha})。
           if 线性规划问题有可行解 \vec{\alpha} then
25:
                                                                   ▷ 成功找到分离泛函, 假设不成立。
26:
               \Delta_{\mathrm{mid}} 被排除 \Longrightarrow 真实的界限更低。
27:
               \Delta_{\text{high}} \leftarrow \Delta_{\text{mid}}
28:
           else
29:
                                                                     ▷ 找不到分离泛函,未发现矛盾。
30:
               \Delta_{\text{mid}} 被允许 \Longrightarrow 真实的界限更高或就在此处。
31:
               \Delta_{\text{low}} \leftarrow \Delta_{\text{mid}}
32:
           end if
33:
       end for
34:
35:
                                                               \triangleright 作为维度上限 f(d) 的高精度数值解。
36:
       return \Delta_{\text{high}}
37: end procedure
    本文所总结的数值共形自举方法的详细 Mathematica 代码实现, 我已开源至: https://
```

参考文献

[1] R. Rattazzi, V. S. Rychkov, E. Tonni and A. Vichi, "Bounding scalar operator dimensions in 4D CFT," JHEP 12 (2008), 031, doi:10.1088/1126-6708/2008/12/031 [arXiv:0807.0004 [hep-th]].

github.com/YinkaiYu/Numerical-Conformal-Bootstrap-in-4D