

01. Background

Context

- Intersection as Crash Hotspots
 - Multiple Modes Converge
- Limitations of Traditional Approaches
 - Reliance on local physical surveys & police-reported crash data
- Emergence of Big Data & Remote Sensing
 - Various resources (OSM, Google Maps) + Advances in Al

Data Collection

- 1. OpenStreetMap (OSM)
 - Extracted 900,000 intersection nodes (e,g., junction: roundabout)
- 2. Google Maps Static API
 - Downloaded 256 × 256 pixels color satellite images for each intersection

02. Data Preprocessing

Data Preprocessing

- 1. Gaussian Blur (3 x 3 Kernel)
 - Smooth minor noise
- 2. Grayscale Conversion
 - Remove color to emphasize lane and road outline
- 3. Scharr Operator
 - Sharp edge detection and Minimize vegetation and building texture

- 4. Fading Scheme
 - Maintain clarity in the intersection center
- 5. Fourier Transform Rotation
 - Ensure consistent orientation

03. Deep Autoencoder for Feature Extraction

CNN-Based Autoencoder

- Original images: 256*256=65,356 pixels → extremely high dimensional
- Reduce 65k-pixel image to 2048-dimensional latent feature vector
- ReLU Activation Function Adds nonlinearity to each convolution layer
- Loss function
 - L2 Norm on Weights ($\alpha \Sigma_k \| W_k \|_2$): Primarily helps prevent overfitting by penalizing large weights,
 - L1 Norm on Latent (β||z||₁): Promotes dimension reduction

$$\mathcal{L} = \sum_{i=1}^{256} \sum_{j=1}^{256} X_{ij} + \alpha \sum_{k} \|W_k\|_2 + \beta \|z\|_1$$
L2 Norm L1 Norm

Bottleneck

Decoder

(Rebuilding Original

Dimensions)

Encoder

(Reducing Spatial

Dimensions)

04. t-SNE & Telematics Integration

t-SNE

2,048-dimensional input space to a 2D

Telematics Integration

• Coordinate Matching: Linked each record to the nearest intersection from the autoencoder-based dataset

Manual Selection of Eight Regions (A-H)

05. Overall Takeaways & Insights

Large-Scale Feasibility

• Combining satellite imagery (Google Maps) with open data (OSM) and advanced AI (autoencoders) enables national or even global analysis.

Unsupervised Approach

- Autoencoders don't require labeled images, making them ideal for vast intersection datasets.
- The latent space (2,048-d) effectively captures essential geometry while discarding irrelevant details.

Link to Real-World Behavior

• Merging telematics (speed, abrupt stops) shows how design influences driver actions, revealing potential safety issues.

Practical Outcomes

- Identifies clusters of risky designs (e.g., multi-lane four-ways) vs. safer designs (roundabouts).
- Data-driven basis for prioritizing intersection redesign and targeted interventions.

