Haberman's Survival prediction

- 1. Using Maximum Likelihood Estimation with gradient ascent to get theta after multiple iterations. I used the theta from testing to predict whether or not the patient would survive after surgery.
 - a. With Alpha = .01, and trained for 100 iterations, All the predicted results are 1, and It cannot predict 0s. This is not valid.
 - i. Theta = [0.47330177 0.24403265 0.0662931 0.24772203]
 - ii. True Positive = 33
 - iii. True Negative = 0
 - iv. False Positive = 13
 - v. False Negative = 0
 - vi. Total = 46
 - vii. precision = 0.717391304347826
 - viii. recall = 1.0
 - ix. F1-Score = 0.8354430379746834
 - b. With Alpha = .01, and trained for 200 iterations
 - i. Theta = [0.46256371 0.11598576 0.07936131 0.21376874]
 - ii. True Positive = 32
 - iii. True Negative = 3
 - iv. False Positive = 10
 - v. False Negative = 1
 - vi. Total = 46
 - vii. precision = 0.7619047619047619
 - viii. recall = 0.9696969696969697
 - c. With Alpha = .01, and trained for 1000 iterations
 - i. Theta = $[0.35313874 0.01412703 \ 0.00901093 \ 0.23768925]$
 - ii. True Positive = 17
 - iii. True Negative = 10
 - iv. False Positive = 3
 - v. False Negative = 16
 - vi. Total = 46
 - vii. precision = 0.85
 - viii. recall = 0.5151515151515151
 - ix. F1-Score = 0.6415094339622641
- 2. I normalized the features of my data, and ran the same test. I learned that with the normalized data, theta converged much slower than the un normalized data. I was not

able to get a high F1 score until 1000 training iterations. Normalized data starts converging slowly from 0 to 1000.

- a. With Alpha = .01, and trained for 100 iterations
 - i. Theta = $[0.21957342 \ 0.5221817 \ 0.41226486 \ 0.44105889]$
 - ii. True Positive = 1
 - iii. True Negative = 13
 - iv. False Positive = 0
 - v. False Negative = 32
 - vi. Total = 46
 - vii. precision = 1.0
 - viii. recall = 0.030303030303030304
 - ix. F1-Score = 0.05882352941176471
- b. With Alpha = .01, and trained for 200 iterations
 - i. Theta = $[-0.00557061 \ 0.52612012 \ 0.3383237 \ 0.38747155]$
 - ii. True Positive = 3
 - iii. True Negative = 12
 - iv. False Positive = 1
 - v. False Negative = 30
 - vi. Total = 46
 - vii. precision = 0.75
 - viii. recall = 0.09090909090909091
 - ix. F1-Score = 0.16216216216214
- c. With Alpha = .01, and trained for 1000 iterations
 - i. Theta = $[-0.76989399 \ 0.37836963 \ 0.08360016 \ 0.21199508]$
 - ii. True Positive = 30
 - iii. True Negative = 6
 - iv. False Positive = 7
 - v. False Negative = 3
 - vi. Total = 46
 - vii. precision = 0.8108108108109
 - viii. recall = 0.9090909090909091
 - ix. F1-Score = 0.8571428571428571