Домашний сервер часть 2

Работа с СУБД

- 1. Создание БД, таблиц, полей
- 2. Программа на С++ для вывода и занесения данных (тестовых).
- 3. Вывод табличных данных на веб-страницу
- 4. Вывод данных в виде графика
- 5. Архивирование БД и настроек сервера (пользователей и т.д.)
- 6. Дополнительное задание на «отлично»

Выполнение

Все имена, кроме заданных, должны однозначно ассоциироваться с выполняющим работу студентом.

1. Создание базы данных, таблиц и полей

Создаем БД с именем DATA<u>FIO</u>, создаем таблицы Sensor, Place, MCU, SData по следующей диаграмме:

Поля таблиц должны содержать (помимо служебных, необходимых):

Sensor: имя или тип сенсора, вид данных, получаемых с сенсора (температура, влажность, освещенность, напряжение и т.п.), поле дополнительной информации\комментарий;

MCU: имя микроконтроллера, MAC-адрес, поле дополнительной информации\комментарий;

Place: имя расположения, поле дополнительной информации\комментарий;

SDATA: дату и время записи (автоматически), значение с сенсора

Таблица связи SMC_P_Cross должна содержать диапазон даты времени действия (от начала - это текущее время при создании записи и до конца) и поле включено\выключено

Через phpMyAdmin создаем БД и таблицы, заполняем тестовыми данными (по 2 датчика, MCU, места, несколько связей и несколько записей в SDATA.

Проверяем, что текстовые поля могут содержать данные в Юникод (русские названия).

2. Программа на С++ для чтения данных из базы и программа для заполнения тестовыми данными

Создаем программу на C++ с подключением к SQL серверу по локальной сети (для подключения должен быть отдельный специальный пользователь с правами читателя нужной БД), читаем по очереди все таблицы, выводим в консоль.

Проверяем работу программы.

Создаем программу для генерации случайных данных в таблицу SDATA (соединение под другим пользователем с правами записи-чтения). Генерируем для нескольких датчиков не менее 10^5 записей для каждого, в том числе с данными на русском языке. Поля с датой и временем для разных датчиков должны быть различными и покрывать диапазон в несколько дней со случайным интервалом между записями.

Демонстрируем преподавателю результат.

3. Вывод табличных данных на веб-страницу

Проверяем наличие библиотек для работы с MySQL для PHP.

Создаем РНР страницу для подключения к БД и вывода табличных данных.

Одна общая страница с именами таблиц (генерируется налету) со ссылками на вторую страницу, которая принимает название таблицы (метод GET) и выводит на страницу строки, с листанием по 10\20\30\50 строк на ваш выбор, обязателен переход на первую страницу.

Демонстрируем преподавателю результат.

4. Вывод данных в виде графика

Создаем php страницу с внедренным графиком на котором выведены данные из таблицы SDATA для определенного датчика\MCU\места за последние 1\2\6\12\24 часа на ваш выбор.

Демонстрируем преподавателю результат.

5. Архивирование

Настраиваем архивирование созданной БД.

Настраиваем архивирование пользователей и настроек сервера СУБД.

Задаем интервал архивирования.

Проверяем корректность архивирования\восстановления, удалив часть БД и пользователей, затем восстановив их из архива.

Демонстрируем преподавателю результат.

6. Дополнительное задание на «отлично»

В php страницу включить календарь (на месяц), на котором выделены (в виде ссылок и цветом) дни в которые есть данные и есть возможность переходить по датам (месяцы, годы) и видеть график на соответствующую дату с выбранного датчика. Также должна быть возможность выбрать временной диапазон для отображения графика для выбранной даты на календаре.

Демонстрируем преподавателю результат.

Делаем отчет и загружаем в ББ.