Coding And Solutioning

Date	17 November 2022
Team ID	PNT2022TMID44529
Project Name	Project – DemandEst-AI Powered Food Demand Forecaster
Maximum Marks	10 Marks

Data Dictionary

Our base data consists of four csv files containing information about test data, train data and other required information.

• train.csv: Contains information like id, week, center id, meal id, checkout price, base price, emailer for promotion, homepage featured, number of orders. This file is used for training.

Variable	Definition
id	Unique ID
week	Week No
center_id	Unique ID for fulfillment center
meal_id	Unique ID for Meal
checkout_price	Final price including discount, taxes & delivery charges
base_price	Base price of the meal
emailer_for_promotion	Emailer sent for promotion of meal
homepage_featured	Meal featured at homepage
num_orders	(Target) Orders Count

- test.csv: Contains information like id, week, center id, meal id, checkout price, base price, emailer for promotion, homepage featured. This file is used for testing.
- fulfilment_center_info.csv: Contains information of each fulfilment center.

Variable	Definition
center_id	Unique ID for fulfillment center
city_code	Unique code for city
region_code	Unique code for region
center_type	Anonymized center type
op_area	Area of operation (in km^2)

• meal_info.csv: Contains information of each meal being served.

Variable	Definition
meal_id	Unique ID for the meal
category	Type of meal (beverages/snacks/soups)
cuisine	Meal cuisine (Indian/Italian/)

Libraries Used pandas, numpy, scikit learn, matplotlib, seaborn, xgboost, lightgbm, catboost

Data Pre-Processing

- There are no Missing/Null Values in any of the three datasets.
- Before proceeding with the prediction process, all the three data sheets need to be merged into a single dataset. Before performing the merging operation, primary feature for combining the datasets needs to be validated.
- The number of Center IDs in train dataset is matching with the number of Center IDs in the Centers Dataset i.e 77 unique records. Hence, there won't be any missing values while merging the datasets together.
- The number of Meal IDs in train dataset is matching with the number of Meal IDs in the Meals Dataset i.e 51 unique records. Hence, there won't be any missing values while merging the datasets together.
- As checked earlier, there were no Null/Missing values even after merging the datasets.

Feature Engineering

Feature engineering is the process of using domain knowledge of the data to create features that improves the performance of the machine learning models.

With the given data, We have derived the below features to improve our model performance.

- Discount Amount: This defines the difference between the "base_Price" and "checkout price".
- Discount Percent: This defines the % discount offer to customer.
- Discount Y/N: This defines whether Discount is provided or not 1 if there is Discount and 0 if there is no Discount.
- Compare Week Price: This defines the increase / decrease in price of a Meal for a particular center compared to the previous week.
- Compare Week Price Y/N: Price increased or decreased 1 if the Price increased and 0 if the price decreased compared to the previous week.

- Quarter: Based on the given number of weeks, derived a new feature named as Quarter which defines the Quarter of the year.
- Year: Based on the given number of weeks, derived a new feature named as Year which defines the Year.

Data Transformation

- Logarithm transformation (or log transform) is one of the most commonly used mathematical transformations in feature engineering. It helps to handle skewed data and after transformation, the distribution becomes more approximate to normal. □
 - In our data, the target variable 'num_orders' is not normally distributed. Using this without applying any transformation techniques will downgrade the performance of our model.
- Therefore, we have applied Logarithm transformation on our Target feature 'num_orders' post which the data seems to be more approximate to normal distribution.
- After Log transformation, We have observed 0% of Outlier data being present within the Target Variable num_orders using 3 IQR Method.

Evaluation Metric

The evaluation metric for this competition is 100*RMSLE where RMSLE is Root of Mean Squared Logarithmic Error across all entries in the test set.

Initial Approach

- Simple Linear Regression model without any feature engineering and data transformation which gave a RMSE: 194.402
- Without feature engineering and data transformation, the model did not perform well and could'nt give a good score.
- Post applying feature engineering and data transformation (log and log1p transformation), Linear Regression model gave a RMSLE score of 0.634.

Advanced Models

- With improvised feature engineering, built advanced models using Ensemble techniques and other Regressor algorithms.
- Decision Tree Regressors performed well on the model which gave much reduced RMSLE.

With proper hyper-parameter tuning, Decision Tree Regressor performed well on the model and gave the lease RMSLE of 0.5237