Sur les notions d'«universalité» en physique et ou cela nous a mener ?

Encadré par : Mouna Bouloudenine.

Présenter par : Haddad Abdelhamid.

Le plan

- I. Introduction.
- II. l'universalités:
 - A. En physique newtonienne et galiléenne.
 - B. En relativité restreintes.
- III. Invariance et symétrie.
- IV. Sur les phénomènes critiques.
- V. Concrètement...
- VI. Conclusion.

I. Introduction

(ou qu'est ce que la physique?)

• La physique est *la science de la nature*:

« physique » en grec s'écrit « φυσικός » qui signifie « étude de la nature ».

• Pour cela, elle se fonde sur un petit nombre de *lois fondamentales* ou *principes*.

• Et qui sont supposées **universelles** tant que les faits n'en ont pas montré leurs limites.

A. En physique newtonienne et galiléenne (la chute des corps et la relativité galiléenne)

• Parmi les principes les plus fondamentales en physique, le « <u>Principe</u> <u>d'équivalence</u> » qui stipule l'égalité entre masse grave et masse inerte.

• <u>Les lois de la 'mécanique'</u> sont <u>invariantes par changement de</u> <u>référentiel galiléen</u>, les formules de passage de l'un à l'autre se faisant par la <u>transformation de Galilée</u>.

B. En relativité restreintes (l'invariance de la vitesse de la lumière)

• Cette théorie étend <u>le principe d'invariance</u> des lois de la 'mécanique' par changement de référentiel galiléen 'à toutes les lois de la physique'.

• Elle stipule <u>l'invariance de la vitesse de la lumières</u> par rapport a tout les référentiels galiléens.

III. Invariance et symétrie

• la notion d'invariance est intimement associée a celle de symétrie.

- La symétrie d'un système physique <u>c'est dire qu'il est préservé</u> ou <u>reste</u> <u>inchangé</u> sous une certaine transformation:
 - symétries de translations c'est que ces lois restent les mêmes en tout point.
 - sous les rotations, c'est être invariant par transformation de rotation.
- La symétrie conforme est la propriété que possèdent certains systèmes de paraître semblables à eux-mêmes en changeant l'échelle d'observation.

IV. Sur les phénomènes critique (avant propos)

- Les systèmes contenant un grand nombre de particules présentent une grande variété de phases d'équilibre.
- Pour les transitions du $2^{\grave{e}me}$ ordre c'est la divergence de la <u>longueur de</u> <u>corrélation</u> ξ , <u>chaleur spécifique</u> et la <u>magnétisation</u> au voisinage du point critique.

• En conséquence, ces fonctions thermodynamiques montrent, près de T_c , un comportement de puissance comme $|T-T_c|^p$.

IV. Sur les phénomènes critiques (retour a la notion d'universalité)

• β étant l'indince du paramétre d'ordre : $Rb_2CoF_4(\beta=0.119)$, K_2CoF_4 (0.123), Ba_2FeF_6 (0.135).

• les modèles d'Ising sur 'réseau carré' et sur 'réseau triangulaire' possèdent <u>les mêmes exposants critiques</u>, qui sont **des quantités** universelles pour ce même système :

$$(\beta = 1/8=0,125)$$

Et ont parle alors de *classe d'universalité*.

 Au contraire une quantité comme la température de transition dépend des détails de l'interaction : elle n'est pas universelle.

V. Concrètement...

Considerons le hamiltonien de la forme:

$$H = H_0 + \lambda V$$

- Si les deux système H et H_0 sont de la même classe d'équivalence , alors les singularité et les comportement critiques ne seront pas affecter par cette perturbation.
- Avec le model exactement soluble d'Ising en 2D (H_0) et d'interaction (V) des spins plus distant, ont trouve par que les exposant critiques de la chaleur spécifique est insensible a la perturbation, ce qui est une forme d'universalité.

V. Concrètement...

de plus, on observe entre les exposants critiques, des relations (appelées lois d'échelle) présentent un caractère d'universalité encore plus grand que les exposants critiques –appeler aussi relation d'universalité - :

$$\nu d = 2 - \alpha = 2\beta + \gamma$$

$$2 - \eta = \frac{\gamma}{\nu} = d \frac{\delta - 1}{\delta + 1}$$

VI. Conclusion

- Sur la première remarque qu'on peut faire est que la physique en elle même ne serait pas ce qu'elle est aujourd'hui si ces lois n'était pas a temps soit peu universelles.
- La compréhension d'où vient vraiment cette « universalité » (si ont as pas déjà résolu tout les système d'ici la) nous fera gagner un temps et un effort considérables, et certainement nous ouvrira de nouveaux horizons sur notre capaciter a concevoir et imaginer de nouveau système.
- L'intuition (la fénéantise) de l'homme au fil des âges de vouloir construire une physique sur des notions d'universalité, d'invariance et de symétrie semble avoir portée leurs fruits, qu'il continue donc...

As Steven Weinberg puts it:

"Our job as physicists is to see things simply, to understand a great many complicated phenomena in a unified way, in terms of a few simple principles" (1980).

Merci de votre attentions!