RELATÓRIO EXERCÍCIO 6

Gabriel Saraiva Espeschit – 2015065541

15 de setembro de 2020

Utilizando o módulo *Pandas*, os dados do *Breast Cancer (diagnostic)* e *Statlog (Heart)* foram lidos e colocados no formato de *dataframes* do *Pandas*. Em seguida, os atributos foram normalizados utilizando a função dada na guia para restringi-los para valores entre 0 e 1:

$$z_i = \frac{x_i - min(x)}{max(x) - min(x)}$$

Visualizamos os dados do *dataframe* de câncer e coração (dispostos abaixo) para verificar que estavam corretamente normalizados e pronto para serem divididos em atributos e classes de teste e de treino.

	Diagnosis	1	2	3	4	5	6	7	8	9	 21	22	23	24	25	26	27	28	29	30
842302																			0.598462	
842517						0.289880					0.606901									
84300903					0.449417								0.508442							
84348301														0.094008			0.548642	0.884880	1.000000	
84358402					0.489290								0.506948				0.319489			
rows × 3	1 columns																			

	1	2	3	4	5	6	7	8	9	10	11	12	13	Diagnosis
0	0.854167	1.0	1.000000	0.339623	0.447489	0.0	1.0	0.290076	0.0	0.387097	0.5	1.000000	0.0	2
1	0.791667	0.0	0.666667	0.198113	1.000000	0.0	1.0	0.679389	0.0	0.258065	0.5	0.000000	1.0	1
2	0.583333	1.0	0.333333	0.283019	0.308219	0.0	0.0	0.534351	0.0	0.048387	0.0	0.000000	1.0	2
3	0.729167	1.0	1.000000	0.320755	0.312785	0.0	0.0	0.259542	1.0	0.032258	0.5	0.333333	1.0	1
4	0.937500	0.0	0.333333	0.245283	0.326484	0.0	1.0	0.381679	1.0	0.032258	0.0	0.333333	0.0	1

Em seguida os *dataframes* de cada *dataset* foram convertidos em duas *arrays* de *Numpy*. Uma contendo somente os atributos e outra contendo somente as classes (diagnósticos) referente a cada atributo. Para cada *dataset* as classes foram convertidas para que ficasse inteligível para as funções de *Perceptreon* e *ELM* desenvolvidas para os exercícios passados. Isto é, as classificações ficaram expressas em -1/1 e 0/1 para serem usadas nos métodos de *ELM* e *Perceptron* respectivamente.

Utilizando a função *train_test_split* do módulo *SciKitLearn*, dividimos os datasets em instâncias para treino e instâncias para validação numa quantia de 70/30 para treinar as ELMs. Sendo assim, ficamos com vetores de treino e teste com as seguintes dimensões:

Dimensão do vetor de classes de teste *dataset* de câncer: (171, 1)

Dimensão atributos de treino *dataset* de coração: (189, 13)

Dimensão do vetor de classes de treino *dataset* de coração: (189, 1)

Dimensão atributos de teste *dataset* de coração: (81, 13)

Dimensão do vetor de classes de teste *dataset* de coração: (81, 1)

Em seguida, treinou a função ELM desenvolvida anteriormente com 5, 10, 20, 50, 100 e 300 neurônios. Calculamos a média da acurácia e o desvio padrão em cima dos dados de teste para 5 execuções de treinamento do algoritmo. Os resultados se encontram abaixo para cada *dataset*.

Acurácia câncer com 5 neurônios: 0.89 ± 0.03 % Acurácia câncer com 10 neurônios: 0.93 ± 0.03 % Acurácia câncer com 30 neurônios: 0.97 ± 0.01 % Acurácia câncer com 50 neurônios: 0.98 ± 0.0 % Acurácia câncer com 100 neurônios: 0.97 ± 0.01 % Acurácia câncer com 300 neurônios: 0.86 ± 0.02 %

Acurácia coração com 5 neurônios: 0.67 ± 0.0 % Acurácia coração com 10 neurônios: 0.77 ± 0.0 % Acurácia coração com 30 neurônios: 0.8 ± 0.0 % Acurácia coração com 50 neurônios: 0.75 ± 0.0 % Acurácia coração com 100 neurônios: 0.72 ± 0.0 % Acurácia coração com 300 neurônios: 0.62 ± 0.0 %

Podemos ver que, para a base de dados de câncer de mama o melhor número de neurônios é 50, pois apresenta melhor acurácia e menor desvio padrão, ou seja, os resultados são bem consistentes. Para a base de dados Heart, todos os resultados são consistentes entre si, porém apresentam uma acurácia mais baixa que para base de dados de câncer, o que é de se esperar, pois há um maior número de atributos e entidades na base de dados de câncer que na do coração.

Outro fenômeno que se pode observar é o *overfitting* que ocorre quando começa a se aumentar demais a quantidade de neurônios na modelo ELM.

Em seguida, se dividiu os dados para treinar o *perceptron* da mesma forma que fizemos com as ELMs resultando nas mesmas dimensionalidades que anteriormente. Calculamos a acurácia e o desvio padrão para 5 execuções de treino do *perceptron* tanto para o *dataset* de cancer, quanto para o do coração. Os resultados estão dispostos a seguir.

Acurácia câncer para perceptron: $0.98 \pm 0.0 \%$ Acurácia coração para perceptron: $0.78 \pm 0.02 \%$

Podemos concluir que ambas as formas de classificação produzem resultados semelhantes. Cada método tem suas vantagens e desvantagens: por um lado, as ELMs não precisam de um processo iterativo para chegar em uma solução, mas, por outro lado, para o caso dos *perceptrons* não é necessário ficar calibrando o número de neurônios a serem usados. Além disso, as operações feitas pelo *perceptron* são computacionalmente menos custosas que das ELMs, onde é necessário calcular a pseudo-inversa de uma matriz. O código utilizado para obter esse resultado, pode ser verificado no apêndice a seguir.

Apêndice

import pandas as pd	# Covertemos os dados do dataset de Cancer de pandas							
import numpy as np	dataframes para arrays de Numpy							
import func rna as func								
	X_cancer = breast_cancer.iloc[:,1:31].to_numpy()							
# Utilizando o módulo Pandas, lemos os datasets de cancer e hear disponibilizados no relatório	y_cancer = breast_cancer.Diagnosis.to_numpy().reshape((-1,1)) t							
colnames = list(map(str, range(1, 31)))	# Aqui nos vamos adequar o Y para que o algoritmo de perceptron e ELM consiga fazer a classificação corretamente							
colnames.insert(0, 'Diagnosis')	v. concorD = nn v.horo(v. concor == N.U. 1. 0)							
colnames_heart = list(map(str, range(1, 14)))	y_cancerP = np.where(y_cancer == 'M', 1, 0)							
colnames_heart.append('Diagnosis')	$y_{cancer} = M', 1, -1$							
breast_cancer = pd.read_csv('wdbc.data', index_col=0, names = colnames, header = None)	# Fazemos o mesmo para o dataset heart							
heart = pd.read_csv('heart.dat', header = None, delim_whitespace=True, names = colnames_heart, index_col = False)	<pre>X_heart = heart.iloc[:,0:13].to_numpy() y_heart = heart.Diagnosis.to_numpy().reshape((-1,1))</pre>							
# Fazemos a normalização dos features dos datasets								
" I azemos a normanzação dos realaies dos dadaseis	$y_heartP = np.where(y_heart == 1, 1, 0)$							
breast_cancer_x = breast_cancer.iloc[:,1:31]	y_heartELM = np.where(y_heart == 1, 1, -1)							
<pre>breast_cancer_x = (breast_cancer_x-breast_cancer_x.min())/(breast_cancer_x.max() breast_cancer_x.min())</pre>	()-print(f'X Cancer Shape: {X_cancer.shape}\nY Cancer shape: {y_cancerP.shape}')							
breast_cancer.iloc[:,1:31] = breast_cancer_x	print(f'X Heart Shape: {X_heart.shape}\nY Heart shape: {y_heartP.shape}')							
heart_x = heart.iloc[:,0:13]								
heart_x = (heart_x-heart_x.min())/(heart_x.max()-heart_x.min())	# Dividimos os dados para treinar o ELM							
heart.iloc[:,0:13] = heart_x	from sklearn.model_selection import train_test_split as tts							
# Visualizando o dataset								
	X_cancer_train, X_cancer_test, y_cancerELM_train, y_cancerELM_test = tts(X_cancer, y_cancerELM, test_size=0.3)							
<pre>print(breast_cancer.head())</pre>	X_heart_train, X_heart_test, y_heartELM_train, y_heartELM_test = tts(X_heart, y_heartELM, test_size=0.3)							
# Visualizando o dataset Heart print(heart.head())	print(f'X Cancer Training Shape: {X_cancer_train.shape}\nY Cancer Training shape: {y_cancerELM_train.shape}\nX Cancer Testing Shape: {X_cancer_test.shape}\nY Cancer Testing Shape: {y_cancerELM_test.shape}')							
r « ···································	$print(f'n\n X \ Heart \ Training \ Shape: \{X_heart_train.shape\} \n Y \ Heart \ Training \ shape: \{y_heartELM_train.shape\} \n X \ Heart$							

```
Testing Shape: {X heart test.shape}\nY Heart Testing Shape:
                                                            X cancer train, X cancer test, y cancerP train, y cancerP test
{y heartELM test.shape}')
                                                            = tts(X cancer, y cancerP, test size=0.3)
                                                            X_heart_train, X_heart_test, y_heartP_train, y_heartP_test =
                                                            tts(X_heart, y_heartP, test_size=0.3)
# Treinando a ELM para base de dados Cancer
                                                            print(f'X Cancer Training Shape: {X cancer train.shape}\nY
num_neuronios = [5, 10, 30, 50, 100, 300]
                                                            Cancer Training shape: {y cancerP train.shape}\nX Cancer
                                                            Testing Shape: {X_cancer_test.shape}\nY Cancer Testing Shape:
for neuronio in num neuronios:
                                                            {y_cancerP_test.shape}')
  accuracy = []
                                                            for i in range(5):
                                                            Heart Training shape: {y_heartP_train.shape}\nX Heart Testing
                                                            Shape: {X_heart_test.shape}\nY Heart Testing Shape:
    W_cancer, H_cancer, Z_cancer =
                                                            {y_heartP_test.shape}')
func.ELM_train(X_cancer_train, y_cancerELM_train, neuronio)
    y_h_cancer = func.ELM_y(X_cancer_test, W_cancer,
                                                            # Treinando o perceptron para base de dados Cancer
Z_cancer)
    accuracy.append(((y_h_cancer -
y_cancerELM_test)**2/4).mean())
                                                            accuracy = []
  print(f'Accurácia CANCER com {neuronio} neuronios:
                                                            for i in range(5):
2)} %')
                                                              wt cancer, e cancer = func.trainperceptron(X cancer train,
                                                            y_cancerP_train, 0.0001, 0.0001, 100)
                                                              y_cancer_pred = func.yperceptron(X_cancer_test, wt_cancer)
# Treinando a ELM para base de dados Heart
                                                              accuracy = (y_cancer_pred == y_cancerP_test).mean()
                                                            print(f'Accurácia CANCER para perceptron:
for neuronio in num_neuronios:
                                                             {round(np.mean(accuracy), 2)} \u00B1 {round(np.std(accuracy),
                                                            2)} %')
  accuracy = []
  for i in range(5):
    W heart, H heart, Z heart = func.ELM train(X heart train, # Treinando o perceptron para base de dados Heart
y_heartELM_train, neuronio)
    y_h_heart = func.ELM_y(X_heart_test, W_heart, Z_heart)
                                                            accuracy = []
    accuracy = ((y h heart - y heartELM test)**2/4).mean()
                                                            for i in range(5):
  print(f'Accurácia HEART com {neuronio} neuronios:
                                                              wt heart, e heart = func.trainperceptron(X heart train,
{round(np.mean(accuracy), 2)} \u00B1 {round(np.std(accuracy),
                                                            y_heartP_train, 0.0001, 0.0001, 100)
2)} %')
                                                              y heart pred = func.yperceptron(X heart test, wt heart)
                                                              accuracy.append((y\_heart\_pred == y\_heartP\_test).mean())
# Agora dividimos os dados para treinar o perceptron
                                                            print(f'Accurácia HEART para perceptron:
                                                            {round(np.mean(accuracy), 2)} \u00B1 {round(np.std(accuracy),
                                                            2)} %')
```