Submission date: 16 May 2019

Prof. Dr. Peter Bastian, Linus Seelinger

IWR, Universität Heidelberg

## **Exercise 1** *Updating dune-parsolve*

As we update the *dune-parsolve* module during the semester, you need to get the current state before starting to solve a new programming exercise:

- Navigate to your *dune-parsolve* directory in a terminal
- Execute the commands

```
git stash
git pull
git stash pop
```

These *git* commands temporarily move your local changes to the stash, download the updates and apply your changes to the new version again.

Note: In order to avoid merge conflicts during the update procedure, we highly recommend that you do not modify files that belong to exercises that have not officially started yet.

( 0 Points )

## **Exercise 2** Adjacency matrix

Let *I* be an index set and  $R \subset I \times I$  a symmetric and reflexive relation with

$$\max_{i} |\{j: (i,j) \in R\}| \le K$$

Define the associated Matrix E via

$$(E)_{ij} := \begin{cases} 1 & (i,j) \in R \\ 0 & \text{sonst} \end{cases}$$

Show that  $||E||_2 \le K$ . (5 Points)

## **Exercise 3** Optimal parameter for the Richardson iteration

Let A be a symmetric and positive definite Matrix. The Richardson iteration is given by

$$x_{k+1} = x_k + \omega \left( b - Ax_k \right).$$

Assume that the minimal and maximal eigenvalue  $\lambda_{\min}$  and  $\lambda_{\max}$  of A are known.

- 1. How can the eigenvalues of the iteration matrix be bounded?
- 2. Determine the optimal relaxation parameter  $\omega_{\text{opt}}$  and the corresponding spectral radius.

(5 Points)

In this exercise we want to consider the Laplace equation with homogeneous Dirichlet boundary conditions

$$\begin{aligned} -\Delta u &= 0 && \text{in } \Omega = (0,1)^2 \subset \mathbb{R}^2, \\ u &= 0 && \text{auf } \partial \Omega. \end{aligned}$$

The solution obviously reads u=0. We are going to make use of it in order to study the convergence behaviour of the linear solvers by specifying different starting vectors  $\neq 0$ .

The code skeleton for the exercise is provided in the file uebungen/uebung02/uebung02.cc. The program solves the Laplace equation with the starting vector  $u_1(x,y)$  defined below doing one Jacobi iteration. The program has been already prepared such that it creates VTK-outputs of the iterates calculated by the linear solvers in order to visualize the distribution of the error with ParaView.



In the file src/tutorial/istl.cc of the dune-parsolve module you will find some more linear solver and preconditioner objects created. In general, linear iterative methods such as the Jacobi and Gauss-Seidel iteration can be used as stand-alone iterations or as preconditioners. Using them as stand-alone iterations is accomplished by the class LoopSolver which simply applies the method in every iteration and checks the convergence criterion.

Modify the file uebung02.cc such that it creates VTK-outputs for the following combination of linear solvers, starting vectors and number of iterations:

- Solvers: Jacobi, Gauss-Seidel, Steepest Descent and Conjugate Gradient
- Starting vectors: Given by the functions

$$u_1(x,y) = 1,$$
  
 $u_2(x,y) = cos(10x) + sin(10y),$   
 $u_3(x,y) = cos(100x) + sin(100y)$ 

• Number of iterations: 1, 10 or 100 iterations

Examine the convergence rate of the linear solvers. Does the initial data have an influence on the convergence? (  $10\ Points$  )