Part III Combinatorics

Based on lectures by Prof B. Bollobás

Michaelmas 2016 University of Cambridge

Contents

1 Introduction 1

1 Introduction

Let X, Y, \ldots be sets

Definition. We call $A \subset \mathcal{P}(X)$ a **set system** or **family of sets**. A is naturally identified with a bipartite graph $G_A(U,W)$ with U = A, $W = \bigcup_{A \in A} A$ or W = X. Indeed, $Ax \in E(G_A) \iff x \in A$.

Definition. Given $A \in \mathcal{P}(X)$, a **set of distinct representatives** (SDR) is an injection $f: A \to X$ s.t. $f(A) \in A \ \forall A \in A$. In its bipartite graph, an SDR corresponds to a complete matching $U \to W$.

Theorem 1 (Hall, 1935). A set system \mathcal{A} has an SDR if $\forall \mathcal{A}' \subset \mathcal{A}$, $|\bigcup_{A \in \mathcal{A}'} A| \geq |\mathcal{A}|'$.

Theorem 1'. A bipartite graph G(U,W) has a complete matching $U \to W$ if $\forall S \subset U, |\Gamma(S)| \geq |S|$

Corollary 2. Suppose G(U,W) bipartite, $d(u) \ge d(w) \ \forall u \in U, \ w \in W$. Then $\exists \ a \ complete \ matching \ U \to W$.