Lesson 4

Digital Logic

Junying Chen

Boolean Equations Example

- You are going to the cafeteria for lunch
 - You won't eat lunch (E)
 - If it's not open (O) or
 - If they only serve corndogs (C)

Write a truth table for determining if you will eat lunch (E).

0	С	E
0	0	
0	1	
1	0	
1	1	

Boolean Equations Example

- You are going to the cafeteria for lunch
 - You won't eat lunch (E)
 - If it's not open (O) or
 - If they only serve corndogs (C)

Write a truth table for determining if you will eat lunch (E).

0	С	E
0	0	0
0	1	0
1	0	1
1	1	0

SOP & POS Form

• SOP – sum-of-products

0	С	E	minterm
0	0		OC
0	1		O C
1	0		$O\overline{C}$
1	1		ОС

POS – product-of-sums

0	С	Ε	maxterm
0	0		O + C
0	1		$O + \overline{C}$
1	0		O + C
1	1		$\overline{O} + \overline{C}$

SOP & POS Form

• SOP – sum-of-products

0	С	E	minterm
0	0	0	O C
0	1	0	O C
$\overline{1}$	0	1	O C
1	1	0	O C

$$E = O\overline{C}$$
$$= \Sigma(2)$$

POS – product-of-sums

0	С	Ε	maxterm		
0	0	0	O + C		
0	1	0	$O + \overline{C}$		
1	0	1	O + C		
(1	1	0	$\overline{O} + \overline{C}$		

$$E = (O + C)(O + \overline{C})(\overline{O} + \overline{C})$$

= $\Pi(0, 1, 3)$

Boolean Algebra

- Axioms and theorems to simplify Boolean equations
- Like regular algebra, but simpler: variables have only two values (1 or 0)
- Duality in axioms and theorems:
 - ANDs and ORs, 0's and 1's interchanged

Boolean Axioms

	Axiom		Dual	Name
A1	$B = 0 \text{ if } B \neq 1$	A1′	$B = 1 \text{ if } B \neq 0$	Binary field
A2	$\overline{0} = 1$	A2′	$\overline{1} = 0$	NOT
A3	$0 \bullet 0 = 0$	A3′	1 + 1 = 1	AND/OR
A4	1 • 1 = 1	A4′	0 + 0 = 0	AND/OR
A5	$0 \bullet 1 = 1 \bullet 0 = 0$	A5′	1 + 0 = 0 + 1 = 1	AND/OR

	Theorem		Dual	Name
T1	$B \bullet 1 = B$	T1'	B+0=B	Identity
T2	$B \bullet 0 = 0$	T2'	B + 1 = 1	Null Element
Т3	$B \bullet B = B$	T3'	B + B = B	Idempotency
T4		$\bar{\bar{B}} = B$		Involution
T5	$B \bullet \overline{B} = 0$	T5'	$B + \overline{B} = 1$	Complements

T1: Identity Theorem

- B 1 = B
- B + 0 = B

T1: Identity Theorem

- B 1 = B
- B + 0 = B

$$\begin{bmatrix} B \\ 0 \end{bmatrix} = B$$

T2: Null Element Theorem

- B 0 = 0
- B + 1 = 1

T2: Null Element Theorem

- B 0 = 0
- B + 1 = 1

$$\begin{bmatrix} B \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \end{bmatrix}$$

T3: Idempotency Theorem

- B B = B
- B + B = B

T3: Idempotency Theorem

- B B = B
- B + B = B

$$\begin{array}{c|c}
B \\
\hline
B
\end{array}$$

$$B \rightarrow B \rightarrow B$$

T4: Involution Theorem

$$\bullet \stackrel{=}{B} = B$$

T4: Involution Theorem

$$\bullet \stackrel{=}{B} = B$$

$$B \longrightarrow B$$

T5: Complement Theorem

•
$$B • B = 0$$

•
$$B + \overline{B} = 1$$

T5: Complement Theorem

- B B = 0
- $B + \overline{B} = 1$

$$\frac{B}{B} = 0$$

$$\frac{B}{B}$$
 $=$ 1

Boolean Theorems Summary

	Theorem		Dual	Name
T1	$B \bullet 1 = B$	T1'	B + 0 = B	Identity
T2	$B \bullet 0 = 0$	T2'	B + 1 = 1	Null Element
T3	$B \bullet B = B$	T3'	B + B = B	Idempotency
T4		$\bar{\bar{B}} = B$		Involution
T5	$B \bullet \overline{B} = 0$	T5′	$B + \overline{B} = 1$	Complements

Boolean Theorems of Several Vars

	Theorem		Dual	Name
T6	$B \bullet C = C \bullet B$	T6′	B + C = C + B	Commutativity
T 7	$(B \bullet C) \bullet D = B \bullet (C \bullet D)$	T7′	(B+C)+D=B+(C+D)	Associativity
T8	$(B \bullet C) + (B \bullet D) = B \bullet (C + D)$	T8'	$(B+C) \bullet (B+D) = B + (C \bullet D)$	Distributivity
T9	$B \bullet (B + C) = B$	T9′	$B + (B \bullet C) = B$	Covering
T10	$(B \bullet C) + (B \bullet \overline{C}) = B$	T10'	$(B + C) \bullet (B + \overline{C}) = B$	Combining
T11	$(B \bullet C) + (\overline{B} \bullet D) + (C \bullet D)$ = $B \bullet C + \overline{B} \bullet D$	T11′	$(B + C) \bullet (\overline{B} + D) \bullet (C + D)$ = $(B + C) \bullet (\overline{B} + D)$	Consensus
T12	$ B_0 \bullet B_1 \bullet B_2 \dots = (B_0 + B_1 + B_2 \dots) $	T12′	$B_0 + B_1 + B_2 \dots$ $= (\overline{B_0} \bullet \overline{B_1} \bullet \overline{B_2})$	De Morgan's Theorem

Note: T8' differs from traditional algebra: OR (+) distributes over AND (•)

Perfect induction: Use truth tables to prove theorems

Example 1:

$$Y = AB + \overline{A}B$$

Example 1:

$$Y = AB + \overline{AB}$$

$$= B(A + \overline{A}) \quad T8$$

$$= B(1) \quad T5'$$

$$= B \quad T1$$

Example 2:

$$Y = A(AB + ABC)$$

Example 2:

$$Y = A(AB + ABC)$$

$$=A(AB(1+C))$$

$$=A(AB(1))$$

$$=A(AB)$$

$$= (AA)B$$

$$=AB$$

