Growth of polynomials

MOPSS

3 June 2024

Suggested readings

- Evan Chen's
 - advice On reading solutions, available at https://blog.evanchen. cc/2017/03/06/on-reading-solutions/.
 - Advice for writing proofs/Remarks on English, available at https: //web.evanchen.cc/handouts/english/english.pdf.
- Evan Chen discusses why math olympiads are a valuable experience for high schoolers in the post on Lessons from math olympiads, available at https://blog.evanchen.cc/2018/01/05/lessons-from-math-olympiads/.

List of problems and examples

1.1	Example	(India BStat-BMath 2012)	10
1.2	Example	(India RMO 2015b P3)	10

§1 On the growth of polynomials

Example 1.1 (India BStat-BMath 2012). Show that the polynomial $x^8 - x^7 + x^2 - x + 15$ has no real root.

Summary — In absolute value, a higher degree polynomial dominates a smaller degree polynomial at large enough arguments.

Solution 1. Let α be a real number. Let us consider the following cases.

- 1. $\alpha > 1$,
- 2. $\alpha < 0$,
- 3. $0 \le \alpha \le 1$.

If $\alpha \geq 1$, then

$$\alpha^8 - \alpha^7 + \alpha^2 - \alpha + 15$$

$$= \alpha^7(\alpha - 1) + \alpha(\alpha - 1) + 15$$

$$\geq 15.$$

If $\alpha \leq 0$, then

$$\alpha^{8} - \alpha^{7} + \alpha^{2} - \alpha + 15$$

= $\alpha^{8} + (-\alpha^{7}) + \alpha^{2} + (-\alpha) + 15$
 ≥ 15 .

If $0 \le \alpha \le 1$, then

$$\alpha^{8} - \alpha^{7} + \alpha^{2} - \alpha + 15$$

$$= \alpha^{8} + (1 - \alpha^{7}) + \alpha^{2} + (1 - \alpha) + 13$$

$$> 13.$$

It follows that the polynomial $x^8 - x^7 + x^2 - x + 15$ has no real root.

Example 1.2 (India RMO 2015b P3). Let P(x) be a polynomial whose coefficients are positive integers. If P(n) divides P(P(n) - 2015) for all natural numbers n, then prove that P(-2015) = 0.

Summary — In absolute value, a higher degree polynomial dominates a smaller degree polynomial at large enough arguments.

Solution 2. Note that P(x) = 1 serves as a counterexample. Henceforth, let us assume that P(x) is a nonconstant polynomial.

Let Q(x), R(x) be polynomials with rational coefficients such that

$$P(P(x) - 2015) = P(x)Q(x) + R(x)$$

and R(x) = 0 or $\deg R(x) \le \deg P(x)$. Note that P(n) is positive for all integer $n \ge 1$ since the coefficients of P(x) are positive integers. By the given condition, it follows that P(n) divides R(n) for any integer $n \ge 1$.

Claim — Let f(x), g(x) be two nonzero polynomials with real coefficients. Suppose f(x) is a nonconstant polynomial, and deg $g(x) < \deg f(x)$. Then there exists an integer $n_0 \ge 1$ such that

for any $n \ge n_0$.

Proof of the Claim. Note that it suffices to the Claim if f(x) is a monomial, that is, a power of x. Indeed, write $f(x) = a_d x^d + a_{d-1} x^{d-1} + \cdots + a_0$ with $a_0, \ldots, a_d \in \mathbb{R}$ and d denoting the degree of f. Also write $g(x) = b_e x^e + b_{e-1} x^{e-1} + \cdots + b_0$ with $b_0, \ldots, b_e \in \mathbb{R}$ and e denoting the degree of g. Note that for a positive integer n, the inequality

$$a_d n^d + a_{d-1} n^{d-1} + \dots + a_0 > b_e n^e + b_{e-1} n^{e-1} + \dots + b_0$$

would follow if

$$a_d n^d > \frac{a_{d-1}}{a_d} n^{d-1} + \dots + \frac{a_0}{a_d} + \frac{b_e}{a_d} n^e + \frac{b_{e-1}}{a_d} n^{e-1} + \dots + \frac{b_0}{a_d}$$

holds, which can be concluded provided the Claim is known in the case when f is a monomial.

Let us assume that f is a monomial. Write $f(x) = x^d$ where d denotes the degree of f, and write $g(x) = b_e x^e + b_{e-1} x^{e-1} + \cdots + b_0$ with $b_0, \ldots, b_e \in \mathbb{R}$ and e denoting the degree of g. For any integer n, note that

$$f(n) - g(n) = \left(\frac{1}{e+1}n^d - b_e n^e\right) + \left(\frac{1}{e+1}n^d - b_{e-1}n^{e-1}\right) + \dots + \left(\frac{1}{e+1}n^d - b_0\right)$$

$$\geq \left(\frac{1}{e+1}n^{d} - |b_{e}|n^{e}\right) + \left(\frac{1}{e+1}n^{d} - |b_{e-1}|n^{e-1}\right) + \dots + \left(\frac{1}{e+1}n^{d} - |b_{0}|\right).$$

Since $d \geq e$, it follows that there exists an integer $n_0 \geq 1$ such that

$$\frac{1}{e+1}n^d - |b_e|n^e \frac{1}{e+1}n^d - |b_{e-1}|n^{e-1}, \dots, \frac{1}{e+1}n^d - |b_0|$$

are positive for any $n \geq n_0$. This proves the Claim.

By the above Claim, it follows that R(x) is the zero polynomial. This implies that

$$P(P(x) - 2015) = P(x)Q(x).$$

Since P(x) is a nonconstant polynomial, it has a root z in \mathbb{C} . Substituting x=z yields

$$P(-2015) = 0.$$

100