Višestruka diskriminantna analiza 1 (Multiple Discriminant Analysis)

Problem c-razreda:

 D_1, D_2, \ldots, D_c odnosno $\omega_1, \omega_2, \ldots, \omega_c$

Generalizirana FLD uključuje c-1 diskrimnantnih funkcija :

Projekcija d-dimenzionalnog prostora u (c-1)-dimenzionalni prostor $(d \ge c)$

Generalizirana matrica raspršenosti unutar razreda (within-class scatter matrix):

 $S_W = \sum_{i=1}^c S_i$, gdje je $S_i = \sum_{\vec{X} \in D_i} (\vec{X} - \vec{m_i}) (\vec{X} - \vec{m_i})^T$ i $\vec{m_i} = \frac{1}{n_i} \sum_{\vec{X} \in D_i} \vec{X}$ Matrica S_B kao generalizirana ne dobiva se tako očigledno:

- ukupan vektor srednje vrijednosti \vec{m} $\vec{m} = \frac{1}{n} \sum_{\vec{X}} \vec{X} = \frac{1}{n} \sum_{i=1}^{c} n_i \vec{m_i}$, gdje je n_i broj uzoraka u razredu D_i (ω_i), $\vec{m_i}$ vektor srednje vrijednosti vektora iz razreda ω_i
- ukupna matrica raspršenosti S_T $S_T = \sum_{\vec{X}} (\vec{X} - \vec{m})(\vec{X} - \vec{m})^T$ $S_{T} = \sum_{i=1}^{c} \sum_{\vec{X} \in D_{i}} (\vec{X} - \vec{m}_{i} + \vec{m}_{i} - \vec{m}) (\vec{X} - \vec{m}_{i} + \vec{m}_{i} - \vec{m})^{T}$ $S_{T} = \sum_{i=1}^{c} \sum_{\vec{X} \in D_{i}} (\vec{X} - \vec{m}_{i}) (\vec{X} - \vec{m}_{i})^{T} + \sum_{i=1}^{c} \sum_{\vec{X} \in D_{i}} (\vec{m}_{i} - \vec{m}) (\vec{m}_{i} - \vec{m})^{T}$ $S_{T} = S_{W} + \sum_{i=1}^{c} n_{i} (\vec{m}_{i} - \vec{m}) (\vec{m}_{i} - \vec{m})^{T}$

Drugi član:

 $\sum_{i=1}^{c} n_i (\vec{m_i} - \vec{m}) (\vec{m_i} - \vec{m})^T$ je po
općena matrica raspršenosti između razreda S_B $S_B = \sum_{i=1}^{c} n_i (\vec{m_i} - \vec{m}) (\vec{m_i} - \vec{m})^T$ $S_T = S_W + S_B$

Projekcija iz d-dimenzionalnog prostora u (c-1)dimenzionalni prostor uporabom (c-1)diskriminantnih funkcija $y_i = \vec{W}_i^T \vec{X}$ $i = 1, 2, \dots, c-1$

Ako y_i promatramo kao komponentu vektora \vec{Y} i težinske vektore $\vec{W_i}$ kao stupce $d\times(c-1)$ matrice W tada je projekcija:

$$\vec{Y} = W^T \vec{X}$$

Uzorci $\vec{x_1}, \vec{x_2}, \dots, \vec{x_n}$ projiciraju se u odgovarajući skup uzoraka $\vec{y_1}, \vec{y_2}, \dots, \vec{y_n}$ koji mogu biti opisani svojim srednjim vektorima i matricama raspršenosti:

$$\tilde{m_i} = \frac{1}{n_i} \sum_{\vec{y} \in \mathcal{Y}_i} \vec{y}$$

$$\begin{split} \tilde{m} &= \frac{1}{n} \sum_{n_i \tilde{m}_i} \\ \tilde{S}_W^c &= \sum_{i=1}^c \sum_{\vec{y} \in \mathcal{Y}_i} (\vec{y} - \tilde{m}_i) (\vec{y} - \tilde{m}_i)^T \\ \tilde{S}_B^c &= \sum_{i=1}^c n_i (\tilde{m}_i - \tilde{m}) (\tilde{m}_i - \tilde{m})^T \\ \tilde{S}_W^c &= W^T S_W W \\ \tilde{S}_B^c &= W^T S_B W \\ \tilde{S}_W^c &= \sum_{i=1}^c \sum_{\vec{y} \in \mathcal{Y}_i} (\vec{y} - \tilde{m}_i) (\vec{y} - \tilde{m}_i)^T \\ \vec{y} &= W^T \vec{X} \qquad \tilde{m}_i = W^T \vec{m}_i \\ \tilde{S}_W^c &= \sum_{i=1}^c \sum_{\vec{y} \in \mathcal{Y}_i} (W^T \vec{X} - W^T \vec{m}_i) (W^T \vec{X} - W^T \vec{m}_i)^T \\ \tilde{S}_W^c &= \sum_{i=1}^c \sum_{\vec{y} \in \mathcal{Y}_i} W^T (\vec{X} - \vec{m}_i) (\vec{X} - \vec{m}_i)^T W \end{split}$$

$$\tilde{S_W} = W^T \sum_{i=1}^c \sum_{\vec{y} \in \mathcal{Y}_i} (\vec{X} - \vec{m_i}) (\vec{X} - \vec{m_i})^T W$$

$$S_W = \sum_{i=1}^c S_i$$

$$S_i = \sum_{\vec{X} \in D_i} (\vec{X} - \vec{m_i}) (\vec{X} - \vec{m_i})^T$$

$$\tilde{S_W} = W^T S_W W$$

$$\tilde{S_B} = W^T S_B W$$

$$\tilde{S_W} = W^T S_W W$$

Gornje jednadžbe pokazuju kako se tzv. within-class i between-class matrice raspršenja TRANSFORMIRAJU projekcijom u višedimenzionalni prostor. TRAŽIMO TRANSFORMACIJSKU MATRICU W koja maksimizira omjer between-

class raspršenost s within-class raspršenost!! $J(W) = \frac{|\tilde{S_B}|}{|\tilde{S_W}|}$

Jednostavna SKALARNA mjera raspršenosti je <u>determinanta matrice raspršenosti</u> Determinanta je PRODUKT svojstvenih vrijednosti matrice.

PROBLEM TRAŽENJA (I NALAŽENJA) PRAVOKUTNE(!) MATRICE W koja maksimizira J(.) je težak problem.

RJEŠENJE:

Stupci optimalne matrice W su generalizirani svojstveni vektori koji odgovaraju najvećim svojstvenim vrijednostima u $S_B \vec{W}_i = \lambda_i S_W \vec{W}_i$. Ako je S_W nesingularna onda se problem može pretvoriti u konvencionalni problem svojstvenih vrijednosti. Međutim to zahtjeva računanje inverzne matrice $S_W.S_W^{-1}S_B \vec{W} = \lambda \vec{W}$. Umjesto toga možemo naći svojstvene vrijednosti kao korijene karakterističnog polinoma:

$$|S_B - \lambda_i S_W| = 0$$

$$J(W) = \frac{|\tilde{S_B}|}{|\tilde{S_W}|} = \frac{|W^T S_B W|}{|W^T S_W W|}$$

Naći W koja maksimizira J(W)! $S_B \vec{W_i} = \lambda_i S_W \vec{W_i}$ Naći svojstvene vrijednosti kao korijene karakterističnog polinoma: $|S_B - \lambda_i S_W| = 0$ i zatim rješiti: $(S_B - \lambda_i S_W) \vec{W_i} = \vec{0}$

Slika 1: Primjer MDA

Stupci optimalne (pravokutne) matrice W (koja maksimizira J(W)) su generalizirani svojstveni vektori koji odgovaraju najvećim svojstvenim vrijednostima u $S_B \vec{W}_i = \lambda_i S_W \vec{W}_i$.

Ako je S_W nesingularna onda se problem pretvara u konvencionalan problem svojstvenih vrijednosti. Međutim, umjesto računanja inverzne matrice S_W^{-1} mogu se naći svojstvene vrijednosti karakterističnog polinoma $|S_B - \lambda_i S_W| = 0$

i rješiti $(S_B - \lambda_i S_W) \vec{W}_i = \vec{0}$ izravno po \vec{W}_i . $S_B = \sum_{i=1}^c n_i (\vec{m}_i - \vec{m}) (\vec{m}_i - \vec{m})^T$ $S_B = n_1 (\vec{m}_1 - \vec{m}) (\vec{m}_1 - \vec{m})^T + n_2 (\vec{m}_2 - \vec{m}) (\vec{m}_2 - \vec{m})^T + \dots + n_c (\vec{m}_c - \vec{m}) (\vec{m}_c - \vec{m})^T$ Matrica S_B je suma c matrica! Matrice su ranga 1 ili manje i samo c-1 od njih su nezavisne. S_B je ranga c-1 ili manje.

TO ZNAČI DA JE NAJVIŠE c-1 SVOJSTVENIH VRIJEDNOSTI RAZLIČI-TIH OD 0 I DA (ŽELJENI) SVOJSTVENI VEKTORI ODGOVARAJU TIM SVOJSTVENIM VRIJEDNOSTIMA RAZLIČITIM OD 0.

$$J(W) = \frac{\left|\tilde{S_B}\right|}{\left|\tilde{S_W}\right|} = \frac{\left|W^T S_B W\right|}{\left|W^T S_W W\right|}$$

- problem nalaženja (pravokutne) matrice W koja maksimizira J(.).->složen!

- stupci optimalne matrice W su generalizirani svojstveni vektori koji odgovaraju najvećim svojstvenim vrijednostima u $S_B \vec{W_i} = \lambda_i S_W \vec{W_i}$
- ako je S_W nesingularna onda se problem može transformirati u konvencionalni problem svojstvenih vrijednosti
- međutim, umjesto toga možemo naći svojstvene vrijednosti kao korijene karakterističnog polinoma $|S_B \lambda_i S_W| = 0$ i onda riješiti $(S_B \lambda_i S_W) \vec{W_i} = \vec{0}$

 $\underline{\rm IZRAVNO}$ za svojstvene vektore $\vec{W_i}$ budući da je S_B suma c matrica ranga jedan ili manje, i budući da su samo c-1 od njih nezavisni, S_B je ranga c-1 ili manje

- najviše c-1 svojstvenih vrijednosti različito od 0.

2 SKUP UZORAKA ZA UČENJE I SKUP UZO-RAKA ZA ISPITIVANJE - METODE ISPI-TIVANJA

Skupa uzoraka za učenje - uzorci s poznatom klasifikacijom (označeni uzorci) Važna pretpostavka: u uzorcima za učenje sadržana je većina informacija o svojstvima razreda kojima uzorci pripadaju

1. Holdout metoda

- ako imamo dovoljno veliki skup uzoraka s poznatom klasifikacijom

Slika 2: Skup uzoraka

 S_u - skup uzoraka za učenje, $\#S_u=N$

 S_i - skup uzoraka za ispitivanje

 $S = S_u \bigcup S_i; \quad S_u \cap S_i = \emptyset$

S - skup uzoraka s poznatom klasifikacijom

Nedostaci Holdout metode:

- smanjuje se veličina skupa za učenje i skupa za isptivanje
- kako podijeliti skup S na S_u i S_i ?
- Vjerojatnost greške klasifikatora koji se oblikuje uporabom konačnog skupa za učenje N je uvijek veća negoli je odgovarajuća asimptotska vjerojatnost pogreške $(N->\infty)$

Slika 3: Vjerojatnost pogreške

2. Leave-One-Out metoda

klasifikatora.

- metoda pokušava "zaobići" problem podjele skupa označenih uzoraka. Učenje se obavlja uporabom N-1 uzoraka, a ispitivanje se izvodi uporabom onog jednog preostalog uzorka. Ako je taj uzorak pogrešno razvrstan -> inkrementira se brojilo pogreške; Postupak se ponavlja N puta, ali tako da je svaki put isključen drugi uzorak. Ukupan broj pogrešaka nas upućuje na procjenu vjerojatnosti pogreške

Nedostatak metode: velika računska složenost

- 3. Resubstitution metoda (Metoda ponovne zmajene) Isti se skup podataka koristi, prvo za učenje, a zatim za ispitivanje.
 - optimistička procjena vjerojatnosti pogreške klasifiraktora

Od skupa uzoraka za učenje zahtijeva se (za svaki uzorak):

- dovoljnost informacija
- postojanost značajki
- geometrijska postojanost (mala udaljenost među uzorcima u prostoru značajki znači i malu razliku u svojstvima objekata)

N? Idealno $N->\infty$ Preporuka za N

- barem 3 do 5 puta više uzoraka za učenje po razredu od broja značajki (dimenzionalnost vektora značajki)

Primjer: sustav za autorizaciju osoba na temelju lica

580 korisnika (M=580)

110 - komponentni vektor značajki

N=5*110*580=319000!!! (slika lica)

Primjer: Klasifikacija brojčano-slovčanih znakova M=30+10=40

 $\omega_1, \omega_2, \ldots, \omega_{40}$

Dimenzionalnost vektora značajki n=18

N=5*18*40=3600 (slika brojčano-slovčanih znakova)