



# 14. TOPIC MODELING

#### **LESSON 14**

# LEARNING OBJECTIVES

- Topic Modeling
- Latent Semantic Analysis
- Latent Dirichlet Allocation

# REVIEW OF LESSON 13

#### **LAST LESSON REVIEW**

- Feature extraction from documents
- Bag of words
- TF-Idf
- CountVectorizer, Tf-Idf Vectorizer, HashingVectorizer
- Scikit Pipeline

# **LAB REVIEW**

Text Classification - Lab 20 mn

# LATENT VARIABLE MODELS - TOPIC MODELING

#### **LATENT VARIABLE MODELS**

Attempting to uncover structure or organization inherent in the text.

Unsupervised learning techniques

#### **APPLICATION**

#### **TOPIC MODELING**

These techniques are commonly used for recommending news articles or mining large troves of data data and trying to find commonalities.

Topic modeling, is used in the NY times recommendation engine by mapping the NYT articles to a **latent space of topics**.

#### LATENT SPACE OF TOPICS



- Documents are about several topics at the same time. Topics are associated with different words.
- Topics in the documents are expressed through the words that are used

#### **GOAL OF TOPIC MODELING**

Fast and easy birds eye view of the large datasets.

- What are the documents about?
- What are the key themes?

Very powerful when coupled with different covariates: year of publication, author...

- Longitudinal analysis: How the key themes change over time?
- Focus of discussion: Who is focussing on one topic

#### Examples:

 Topic Modeling in Presidential Debates

#### **MIXTURE MODEL**

#### **Topics**

gene 0.04 dna 0.02 genetic 0.01

life 0.02 evolve 0.01 organism 0.01

brain 0.04 neuron 0.02 nerve 0.01

data 0.02 number 0.02 computer 0.01

#### **Documents**

#### Topic proportions and assignments

#### Seeking Life's Bare (Genetic) Necessities

Haemophilus

genome 1703 genes

COLD SPRING HARBOR, NEW YORK—How many genes does an organism need to survive. Last week at the genome meeting here,\* two genome researchers with radically different approaches presented complementary views of the basic genes needed for life. One research team, using computer analyses to compare known genomes, concluded that today's organisms can be sustained with just 250 genes, and that the earliest life forms required a mere 128 genes. The

other researcher mapped genes in a simple parasite and estimated that for this organism, 800 genes are plenty to do the job—but that anything short of 100 wouldn't be enough.

Although the numbers don't match precisely, those predictions

\* Genome Mapping and Sequencing, Cold Spring Harbor, New York,

May 8 to 12.

"are not all that far apart," especially in comparison to the 75,000 genes in the human genome, notes Siv Andersson of Sensala University in Swerbar, the arrived at the 800 number. But coming up with a consensus answer may be more than just a genetic numbers game, particularly as more and more genomes are completely mapped and sequenced. "It may be a way of organizing any newly sequenced genome," explains Arcady Mushegian, a computational mo-

lecular biologist at the National Center for Biotechnology Information (NCBI) in Bethesda, Maryland. Comparing an



Stripping down. Computer analysis yields an estimate of the minimum modern and ancient genomes

SCIENCE • VOL. 272 • 24 MAY 1996

#### **TECHNIQUES**

#### Vector-based techniques:

 Latent Semantic Analysis (LSA) (a.k.a Latent Semantic Indexing -LSI)

#### Probabilistic techniques

- Probabilistic Latent Semantic Analysis (pLSA)
- Latent Dirichlet Allocation (LDA)
  - Many LDA extensions
  - Hierachical Dirichlet Process

# LATENT SEMANTIC ANALYSIS (LSA)

#### This is our corpus

- D1: modem the steering linux. modem, linux the modem. steering the modem. linux!
- D2: linux; the linux. the linux modem linux. the modem, clutch the modem. petrol.
- D3: petrol! clutch the steering, steering, linux. the steering clutch petrol. clutch the petrol; the clutch.
- D4: the the clutch clutch clutch! steering petrol; steering petrol petrol; steering petrol!!!!

#### **PREPROCESSED**

- D1: modem the steering linux modem linux the modem steering the modem linux
- D2: linux the linux the linux modem linux the modem clutch the modem petrol
- D3: petrol clutch the steering steering linux the steering clutch petrol clutch the petrol the clutch
- D4: the the clutch clutch steering petrol steering petrol petrol steering petrol

#### **DOCUMENT TERM MATRIX**

|          | D1 | D2 | D3 | D4 |
|----------|----|----|----|----|
| linux    | 3  | 4  | 1  | 0  |
| modem    | 4  | 3  | 0  | 1  |
| the      | 3  | 4  | 4  | 3  |
| clutch   | 0  | 1  | 4  | 3  |
| steering | 2  | 0  | 3  | 3  |
| petrol   | 0  | 1  | 3  | 4  |

$$\mathbf{t}_i^T 
ightarrow egin{bmatrix} \mathbf{d}_j \ \downarrow \ x_{1,1} & \dots & x_{1,n} \ dots & \ddots & dots \ x_{m,1} & \dots & x_{m,n} \end{bmatrix}$$

This matrix can be huge

How can we reduce it and at the same time uncover the topics?

Singular value decomposition (SVD) of the document-term matrix:

Find three matrices  $U, \Sigma, V$  so that:  $X = U\Sigma V^t$ 

| 6x4      | DOC | JMEN | TS |   | 6x4    | TOF | PICS |   |     |    |            |   |     | 4x4    | DOCLI | N 417 N 17 |   |
|----------|-----|------|----|---|--------|-----|------|---|-----|----|------------|---|-----|--------|-------|------------|---|
| T        |     |      |    |   | Т      |     |      |   | ТОР | 0  | 0          | 0 |     | 4,4    | DOCU  | MENI       | 5 |
| E<br>  R |     |      |    | _ | E<br>R |     |      | V | 0   | IC | 0          | 0 |     | T<br>O |       |            |   |
| M<br>S   |     |      |    | _ | M<br>S |     |      | A | 0   | 0  | IMPO       | 0 | X P |        |       |            |   |
|          |     |      |    |   |        |     |      | 0 | 0   | 0  | RTAN<br>CE |   | C   |        |       |            |   |
|          |     |      |    |   |        |     |      |   |     |    |            |   |     |        |       |            |   |
|          |     |      |    |   |        |     |      |   |     |    |            |   |     |        |       |            |   |

 Cool Linear Algebra: Singular Value Decomposition

#### **DIMENSION REDUCTION**

For example with 5 topics, 1000 documents and 1000 word vocabulary

- Original Document Term matrix:  $1000 \times 1000 = 10^6$
- LSA representation:  $5 \times 1000 + 5 + 5 \times 1000 \times 10^4$ 
  - -> 100 times less space



Keep the 2 most important Eigenvalues (i.e topic importance)



#### Word assignment to topics





#### **Topic Importance**



# Topic distribution acr documents

| D1    | D2    | D3    | D4    |
|-------|-------|-------|-------|
| -0.42 | -0.48 | -0.57 | -0.51 |
| -0.56 | -0.52 | 0.45  | 0.46  |

cars

# LAB LSA

#### **LSA WITH SCIKIT**

Latent Semantic Analysis - LAB

#### PROBABILISTIC LSA

What is a topic?

A list of probabilities for each of the possible words in a vocabulary.

#### Example topic:

• dog: 5%

• cat: 5%

• hamster: 3%

• turtle: 1%

• calculus: 0.000001%

• analytics: 0.00001%

# PROBABILISTIC LSA



#### PROBABILISTIC LSA

Instead of finding lower-ranked matrix representation, we can try to find a **mixture** of *word -> topic & topic -> documents* distributions that are most likely given the observed documents.

- We define a statistical model of how the documents are being made (generated).
- Then we try to find parameters of that model that best fit the observed data

This is called a **generative process** in topic modeling terminology.

#### **GENERATIVE PROCESS**

We received a 50 word long document by our reporter John Doe. He is allowed to write only about one of the 6 possible topics, using only 6 words.

- For the first word, he throws a dice that tells him what is the topic of the first word. Say it is topic 1 (IT)
- Then he throws another dice to pick which word to use to describe topic 1. Say it is word 1 (linux)
- The process is repeated for all 50 words in the document.
- Dices are weighted!!!
  - The first dice for picking topics puts more weight on IT topic that on the other 5 topics.
  - Also, dice for IT topic, puts more weight on words 'linux' and 'modem'.
  - Likewise dice for topic 2 (cars) puts more weight on word 'petrol' and 'steering'

### **GENERATIVE PROCESS**



#### PROBABILISTIC LSA DECOMPOSITION



 $P(word/document) = \sum_{topics} p(topic/document). p(word/topic)$ 

### LDA: AN EXTENSION TO PLSA

- pLSA: Binomial distribution
- LDA: Dirichlet distribution

#### LDA ASSUMPTIONS

In LDA, we encode our assumptions about the data. Two important assumptions:

- 1. On average, how many topics are per document? more or less?
- 2. On average, how are words distributed across topics? Are topics strongly associated with more or less words?

Those assumptions are defined by two vectors  $\alpha$  and  $\beta$ :

- $\alpha$ : K dimensional vector that defines how K topics are distributed across documents. Smaller  $\alpha$ s favor fewer topics strongly associated with each document.
- β: V dimensional vector that defines how V words are associated across topics. **Smaller βs favor fewer words** strongly associated with each topics

#### **LDA**

We set K the number of topics

We work backwards from the documents to the find the  $\alpha$  and  $\beta$ 

# **LDA LAB**

Latent Dirichlet Allocation - Gensim

# **HOT TECHNOLOGY TOPICS**

https://github.com/alexperrier/gads/blob/master/14\_topic\_modeling/py/Hot%20Tech%20

#### **LINKS**

- Building the Next New York Times Recommendation Engine
- Topic Modeling in historical Newspapers
- Dissecting the Presidential Debates with an NLP Scalpel
- Clustering text documents using k-means
- Topic Modeling of Twitter Followers
- Dirichlet Distribution
- Topic Modeling in historical Newspapers
- Topic Modeling for the Social Sciences