112 學年度學科能力測驗 數學 A 考科選擇(填) 題答案

題號	答案	題號	題號	答案	題號	答案
1	4	13	13-1	8	18	4
2	5		13-2	0	19	/
3	4		14-1	3	20	/
4	1	14	14-2	_		
5	2		14-3	9		
6	3	15	15-1	3		
7	3,5		15-2	4		
8	1,4	16	16-1	2		
9	3,5		16-2	2		
10	1,3,5	17	17-1	5		
11	2,5		17-2	2		
12	1,5					

※ 答案「/」者,表示該題為非選擇題。

112 學年度學科能力測驗數學 A 考科 非選擇題滿分參考答案與評分原則

數學 A 的題型有選擇(填)與混合題或非選擇題。非選擇題主要評量考生是否能夠清楚表達推理論證過程,答題時應將推理或解題過程說明清楚,且得到正確答案,方可得到滿分。如果計算錯誤,則酌給部分分數。如果只有答案對,但觀念錯誤,或過程不合理,則無法得到分數。

數學科非選擇題的解法通常不只一種,在此提供多數考生可能採用的解法以供各界參考,詳細評分原則說明與部分學生作答情形,請參閱本中心將於4月17日出刊的第336期《選才電子報》。112學年度學科能力測驗數學A考科非選擇題各題的參考答案說明如下:

第 19 題

一、滿分參考答案:

【法一】

由 $\overline{AP} = \overline{OA} = 1$ 以及 $\angle AOP = \theta$ 得 $\angle APO = \theta$,因此 $\angle OAP = \pi - 2\theta$ 。

另一方面由 $\overline{BQ} = \overline{OB}$ 以及 $\angle POQ = \frac{\pi}{2}$ 得 $\angle QOB = \angle OQB = \frac{\pi}{2} - \theta$,因此 $\angle OBQ = 2\theta$ 。

由 $\angle OAP + \angle OBQ = \pi$, 得證 \overrightarrow{AP} 與 \overrightarrow{BQ} 平行且同向。再加上 $\overrightarrow{BQ} = 2 = 2\overrightarrow{AP}$,

得證 $\overrightarrow{BQ} = 2\overrightarrow{AP}$ 。

又因 \overline{BQ} 和x軸正向夾角為 2θ ,以及 $\overline{BQ}=2$ 得 $\overline{BQ}=2(\cos 2\theta, \sin 2\theta)=(\frac{14}{25}, \frac{48}{25})$ 。

因 B 點 坐 標 為 (-2,0) , 得 Q 點 坐 標 為 $(-2,0)+(\frac{14}{25},\frac{48}{25})=(\frac{-36}{25},\frac{48}{25})$ 。

【法二】

由題設 $\angle AOP = \theta$ 且 $\sin \theta = \frac{3}{5}$,得直線 \overline{OP} 斜率為 $\frac{3}{4}$ 。設 P 點坐標為 (4t,3t),

由
$$\overline{AP}^2 = (4t-1)^2 + (3t)^2 = 1$$
解 得 $t = \frac{8}{25}$,故 P 點 坐 標 為 $(\frac{32}{25}, \frac{24}{25})$ 。

又依題設 $\angle POQ = \frac{\pi}{2}$,知直線 \overline{OQ} 斜率為 $\frac{-4}{3}$ 。設Q點坐標為(-3t,4t),

由
$$\overline{BQ}^2 = (3t-2)^2 + (4t)^2 = 4$$
 解得 $t = \frac{12}{25}$,故 Q 點坐標為 $(\frac{-36}{25}, \frac{48}{25})$ 。

根據上述,因為
$$\overline{BQ} = (\frac{-36}{25}, \frac{48}{25}) - (-2,0) = (\frac{14}{25}, \frac{48}{25})$$
, $\overline{AP} = (\frac{32}{25}, \frac{24}{25}) - (1,0) = (\frac{7}{25}, \frac{24}{25})$,

得證 $\overline{BQ} = 2\overline{AP}$ 。

【法三】

因 ΔPOA 為 腰 長 為 1 底 角 為 θ 的 等 腰 三 角 形 , 故 $\overline{OP} = 2\cos\theta = \frac{8}{5}$ 。 因 此 得 點 P 極 坐 標 為 $[\frac{8}{5},\theta]$, 即 點 P 坐 標 為 $\frac{8}{5}(\frac{4}{5},\frac{3}{5}) = (\frac{32}{25},\frac{24}{25})$ 。 又 依 題 設 $\angle POQ = \frac{\pi}{2}$,知 ΔQOB 為 腰 長 為 2 底 角 為 $\frac{\pi}{2} - \theta$ 的 等 腰 三 角 形 , 故 $\overline{OQ} = 2 \times 2\cos(\frac{\pi}{2} - \theta) = \frac{12}{5}$ 。 因 此 得 點 Q 極 坐 標 為 $[\frac{12}{5},\frac{\pi}{2} + \theta]$,

即點 Q 坐標為 $\frac{12}{5}(\frac{-3}{5},\frac{4}{5}) = (\frac{-36}{25},\frac{48}{25})$ °

根據上述,因為
$$\overline{BQ} = (\frac{-36}{25}, \frac{48}{25}) - (-2,0) = (\frac{14}{25}, \frac{48}{25})$$
, $\overline{AP} = (\frac{32}{25}, \frac{24}{25}) - (1,0) = (\frac{7}{25}, \frac{24}{25})$,

得證 $\overline{BQ} = 2\overline{AP}$ 。

- 二、評分原則:
- 1.根據題意所給條件,正確推論 $\overline{BQ} = 2\overline{AP}$,且理由須正確。
- 2.正確解出 Q 點坐標為 $(\frac{-36}{25},\frac{48}{25})$,且過程正確。

第 20 題

一、滿分參考答案:

【法一】

由 $\angle OBQ = 2\theta$ 得 A 點到 \overline{BQ} 的距離為 $\overline{AB}\sin 2\theta = 3 \times \frac{24}{25} = \frac{72}{25}$ 。

因四邊形 PABQ 為兩底分別為 $\overline{AP}=1$, $\overline{BQ}=2$ 的梯形,故得面積為 $\frac{3}{2}\times\frac{72}{25}=\frac{108}{25}$ 。

【法二】

直線 \overline{BQ} 的斜率為 $\tan 2\theta = \frac{24}{7}$ 且通過 B(-2,0),故方程式為 $y = \frac{24}{7}(x+2)$,

因此點
$$A(1,0)$$
到 \overline{BQ} 的距離為 $\frac{3 \times \frac{24}{7}}{\sqrt{1^2 + (\frac{24}{7})^2}} = \frac{72}{25}$ 。

因四邊形 PABQ 為兩底分別為 $\overline{AP}=1$, $\overline{BQ}=2$ 的梯形,故得面積為 $\frac{3}{2}\times\frac{72}{25}=\frac{108}{25}$ 。

【法三】

點 Q 的 y 坐標為 $\frac{48}{25}$,故三角形 AQB 面積為 $\frac{1}{2} \times 3 \times \frac{48}{25} = \frac{72}{25}$ 。

又 $\overline{BQ} = 2$,故 A點到 \overline{BQ} 的距離 h滿足 $\frac{1}{2} \times 2 \times h = \frac{72}{25}$,得 $h = \frac{72}{25}$ 。

因四邊形 PABQ 為兩底分別為 $\overline{AP}=1$, $\overline{BQ}=2$ 的梯形,故得面積為 $\frac{3}{2}\times\frac{72}{25}=\frac{108}{25}$ 。

【法四】

 ΔBOQ 底為 2 高為 $\frac{48}{25}$ (或底為 $\frac{12}{5}$ 高為 $\frac{8}{5}$),故面積為 $\frac{48}{25}$ 。

 ΔPOQ 為兩股分別為 $\frac{12}{5}$ 、 $\frac{8}{5}$ 的直角三角形,故面積為 $\frac{48}{25}$ 。

 $\triangle AOP$ 底為1高為 $\frac{24}{25}$ (或底為 $\frac{8}{5}$ 高為 $\frac{3}{5}$),故面積為 $\frac{12}{25}$ 。

因此四邊形 PABQ 的面積為 $\Delta BOQ + \Delta QOP + \Delta POA = \frac{48}{25} + \frac{48}{25} + \frac{12}{25} = \frac{108}{25}$ 。

四邊形 PABQ 為兩底分別為 $\overline{AP}=1$, $\overline{BQ}=2$ 的梯形,

故 A點到 \overline{BQ} 的距離 h滿足 $\frac{3}{2} \times h = \frac{108}{25}$,得 $h = \frac{72}{25}$ 。

二、評分原則:

- 1.正確寫出點 A 到直線 BQ 的距離為 $\frac{72}{25}$,且過程正確。
- 2.正確寫出四邊形的面積為 108/25, 且過程正確。