2022-PH-27-39

AI24BTECH11011 - Himani Gourishetty

1)	The	ordinary	differential	equation
----	-----	----------	--------------	----------

$$(1 - x^2)y'' - xy' + 9y = 0$$

has a regular singularity at

- a) -1
- b) 0
- c) +1
- d) no finite value of x
- 2) For a bipolar junction transistor, which of the following statements are true?
 - a) Doping concentration of emitter region is more than that in collector and base region
 - b) Only electrons participate in current conduction
 - c) The current gain β depends on temperature
 - d) Collector current is less than the emitter current
- 3) Potassium metal has electron concentration of $1.4 \times 10^{28}~m^{-3}$ and the corresponding density of states at Fermi level is $6.2 \times 10^{46} \ Joule^{-1} m^{-3}$. If the Pauli paramagnetic susceptibility of Potassium is $n \times 10^{-k}$ in standard scientific form, then the value of k (an integer) is (Magnetic moment of electron is $9.3 \times 10^{-24} Joule T^{-1}$; permeability of free space is $4\pi \times 10^{-7} TmA^{-1}$)
- 4) A power supply has internal resistance R_S and open load voltage $V_S = 5V$. When a load resistance R_L is connected the power supply, a voltage drop of $V_L = 4V$ is measured across the load. The value _____ (Round off to the nearest integer)
- 5) Electric field is measured along the axis of a uniformly charged disc of radius 25 cm. At a distance d from the centre, the field differs by 10% from that of a infinite plane having same charge density. The value of d is ____ cm. (Round off to one decimal place)
- 6) In a solid, a Raman line observed at 300cm⁻¹ has intensity of Stokes line four times that of the anti-Stokes line. The temperature of the sample is _____K. (Round of to nearest integer) $(1cm^{-1} \equiv 1.44K)$
- 7) An electromagnetic pulse has pulse width of 10^{-3} s. The uncertainty in the momentum of the correspoding photo is of the order of $10^{-N} kgms^{-1}$, where N is an integer. The value of N is (speed of light = $3 \times 10^8 ms^{-1}$, $h = 6.6 \times 10^{-34} Js$)
- 8) The wavefunction of a particle in a one-dimensional infinite well of size 2a at a certain time is $\varphi(x) = \frac{1}{\sqrt{6a}} \left[\sqrt{2} sin\left(\frac{\pi x}{a}\right) + \sqrt{3} cos\left(\frac{\pi x}{2a}\right) + cos\left(\frac{3\pi x}{2a}\right) \right]$. Probability of finding the particle in n = 2 state at that time is _____% (Round off to the nearest integer)
- 9) A spectrometer is used to detect plasma oscillations in a sample. The spectrometer can work in the range of $3 \times 10^{12} rads^{-1}$ to $30 \times 10^{12} rads^{-1}$. The minimum carrier concentration that can be detected by using this spectrometer is $n \times 10^{21} m^{-3}$. The value of n is ______ (Round off to two decimal places) (Charge of an electron = $-1.6 \times 10^{-1} C$, mass of an electron = $9.1 \times 10^{-31} kg$ and $\epsilon_0 = 8.85 \times 10^{-12} C^2 N^{-1} m^{-2}$)
- 10) Consider a non-interacting gas of spin 1 particles, each with magnetic moment μ , placed in a weak magnetic field B, such that $\frac{\mu B}{k_B T} \ll 1$. The average magnetic moment of a particle is

 - a) $\frac{2\mu}{3} \left(\frac{\mu B}{k_B T}\right)$ b) $\frac{\mu}{2} \left(\frac{\mu B}{k_B T}\right)$ c) $\frac{\mu}{3} \left(\frac{\mu B}{k_B T}\right)$

d)
$$\frac{3\mu}{4} \left(\frac{\mu B}{k_B T} \right)$$

11) Water at 300 K can be brought to 320 K using one of the following processes.

Process 1: Water is brought in equilibrium with a reservoir at 320 K directly.

Process 2: Water is first brought in equilibrium with a reservoir at 310 K and then with the reservoir at 320 K.

Process 3: Water is first brought in equilibrium with a reservoir at 350 K and then with the reservoir at 320 K.

The corresponding changes in the entropy of the universe for these processes are ΔS_1 , ΔS_2 , ΔS_3 respectively. Then

- a) $\Delta S_2 > \Delta S_1 > \Delta S_3$
- b) $\Delta S_3 > \Delta S_1 > \Delta S_2$
- c) $\Delta S_3 > \Delta S_2 > \Delta S_1$
- d) $\Delta S_1 > \Delta S_2 > \Delta S_3$
- 12) A student sets up Young's double slit experiment with electrons of momentum p incident normally on the slits with width w separated by distance d. In order to observe interference fringes on a screen at a distance D from the slits, which of the following conditions should be satisfied?

 - a) $\frac{h}{p} > \frac{Dw}{d}$ b) $\frac{h}{p} > \frac{dw}{D}$ c) $\frac{h}{p} > \frac{d^2}{D}$ d) $\frac{h}{p} > \frac{d^2}{\sqrt{Dw}}$
- 13) Consider a particle in three different boxes of width L. The potential inside the boxes vary as shown in figures (i), (ii) and (iii) with $V_0 \ll \frac{h^2\pi^2}{2mL^2}$. The corresponding ground-state energies of the particle are E_1 , E_2 and E_3 , respectively. Then

- a) $E_2 > E_1 > E_3$
- b) $E_3 > E_1 > E_2$
- c) $E_2 > E_3 > E_1$
- d) $E_3 > E_2 > E_1$