

Which of the following do you agree with?

If you're using mini-batch gradient descent, this looks acceptable. But if you're using batch gradient descent, something is wrong.

Correct

- If you're using mini-batch gradient descent, something is wrong. But if you're using batch gradient descent, this looks acceptable.
- Whether you're using batch gradient descent or mini-batch gradient descent, something is wrong.
- Whether you're using batch gradient descent or mini-batch gradient descent, this looks acceptable.

Suppose the temperature in Casablanca over the first three days of January are the same:

Jan 1st:
$$heta_1=10^oC$$

Jan 2nd: $heta_2 10^o C$

(We used Fahrenheit in lecture, so will use Celsius here in honor of the metric world.)

Say you use an exponentially weighted average with eta=0.5 to track the temperature: $v_0=0$, $v_t=eta v_{t-1}+(1-eta) heta_t$. If v_2 is the value computed after day 2 without bias correction, and $v_2^{corrected}$ is the value you compute with bias correction. What are these values? (You might be able to do this without a calculator, but you don't actually need one. Remember what is bias correction doing.)

$$v_2=7.5$$
 , $v_2^{corrected}=10$

Correct

$$\bigcirc \quad v_2=10 \text{, } v_2^{corrected}=10 \\$$

$$v_2 = 7.5$$
, $v_2^{corrected} = 7.5$

$$v_2 = 10$$
, $v_2^{corrected} = 7.5$

6. Which of these is NOT a good learning rate decay scheme? Here, t is the epoch number.

$$\alpha = \frac{1}{1+2*t}\alpha_0$$

$$\alpha = \frac{1}{\sqrt{t}}\alpha_0$$

 $\alpha = 0.95^t \alpha_0$

7. You use an exponentially weighted average on the London temperature dataset. You use the following to track the temperature: $v_t = eta v_{t-1} + (1-eta) heta_t$. The red line below was computed using $\beta=0.9$. What would happen to your red curve as you vary β ? (Check the two that apply)

Decreasing β will shift the red line slightly to the right.

Un-selected is correct

Increasing β will shift the red line slightly to the right.

True, remember that the red line corresponds to $\beta=0.9.$ In lecture we had a green line \$\$\beta = 0.98) that is slightly shifted to the right.

Decreasing $\boldsymbol{\beta}$ will create more oscillation within the red line.

True, remember that the red line corresponds to eta=0.9. In lecture we had a yellow line \$\$\beta = 0.98 that had a lot of oscillations.

Increasing β will create more oscillations within the red line.

Un-selected is correct

Consider this figure:

		These piots were generated with gradient descent, with gradient descent with momentum (β = 0.9), which curve corresponds to which algorithm?
		(1) is gradient descent with momentum (small β). (2) is gradient descent. (3) is gradient descent with momentum (large β)
		(1) is gradient descent. (2) is gradient descent with momentum (large β) . (3) is gradient descent with momentum (small β)
		(1) is gradient descent with momentum (small β), (2) is gradient descent with momentum (small β), (3) is gradient descent
		(1) is gradient descent. (2) is gradient descent with momentum (small β). (3) is gradient descent with momentum (large β)
		Correct
1/1 point	9.	Suppose batch gradient descent in a deep network is taking excessively long to find a value of the parameters that achieves a small value for the cost function $\mathcal{J}(W^{[1]},b^{[1]},\ldots,W^{[L]},b^{[L]})$. Which of the following techniques could help find parameter values that attain a small value for \mathcal{J} ? (Check all that apply)
		Try tuning the learning rate $lpha$
		Correct
		Try better random initialization for the weights
		Correct
		Try mini-batch gradient descent
		Correct
		Try using Adam
		Correct
		Try initializing all the weights to zero
		Un-selected is correct
~	10.	Which of the following statements about Adam is False?
1 / 1 point		We usually use "default" values for the hyperparameters eta_1,eta_2 and ϵ in Adam ($eta_1=0.9,eta_2=0.999,\epsilon=10^{-8}$)
		Adam combines the advantages of RMSProp and momentum
		$ \qquad \text{The learning rate hyperparameter } \alpha \text{ in Adam usually needs to be tuned}. $
		Adam should be used with batch gradient computations, not with mini- batches.
		Correct

