TEMA NR.17: NUMĂRĂTOARELE

- 1. Noțiuni de bază și clasificarea numărătoarelor.
- 2. Sinteza numărătoarelor sincrone.
- 3. Sinteza numărătoarelor sincrone cu modulo diferit de 2ⁿ.
- 1. În orice calcul în una din microoperațiile de bază este numărătoarea care se realizează cu ajutorul unui element funcțional secvențial numit numărător. Numărătoarelor (contoarele) nu numai numărăr semnalele care se aplică la intrările lor ci și memorează permement numărul de semnale aplicate la intrarea lui. Componenta de bază a oricărui numărător sunt bistabilele. Numărul de stări care îl pot avea aceste bistabile determină numărul de semnale care pot fi numărate de la intrarea numărătorului Şi se numește modulo acestui numărător. De cele mai dese ori modulo numărătoruli este egal cu 2ⁿ, unde **n** este numărul bistabilelor utilizate în numărător. Modulo poate fi diferit de 2ⁿ dar în acest caz în componența lui intră circuite suplimentari cu ajutorul cărora se realizează valoarea modulului respectiv.

Numărătoarele se clasifică după 2 criterii:

a) După modul de comutare a bistabilelor în numărător: Numărătoarele se împart în sincrone și asincrone.

Numărătoarele sincrone: toate bistabilele se comutează (trec dintr-o stare în alta) concomitent. În cele asincrone comutarea bistabilelor se efectuiază succesiv (pe rînd).

- b) După modulul de modificare a stărilor numărătorului. Numărătoarele se împart în: directe, inverse și reversibile.
- În numărătoarele directe orice semnal aplicat la intrarea numărătorului schimbă starea lui spre mărire, în numărătoarele inverse starea se schimbă spre micșorare. Cele reversibile numărarea se poate face atît directă cît și inversă.

Notă: În acest caz la început se stabilește regimul de funcținare.

- 2. Sinteza numărătoarelor are loc după aceleași principii ca și sinteza oricaror elemente funcționale secvențiale.
- La început se elaborează un tabel de tranziție în care sunt indicate stările numărătorului în momentul **t**, starea numărătorului în momentul **t**+1, după aplicare semnalului de la intrarea și informația care trebuie aplicată la intrările bistabilelor pentru a asigura traziția bistabilelor dintr-o stare în alta.
- Etapa a doua> minimizarea tutror funcților care se aplica la intrarea
- Etapa a treia asamblarea schemei numaratorului.

SUCCESIUNEA STARILOR NUMARATORULUI IN ORDINEADIRECTA SI INVERSE.

Nr. de	Numărare directă			Numărare inversă			
impulsu ri		rang			rang		
	Q3	Q2	Q1	Q3	Q2	Q1	
0	0	0	0	1	1	1	
1	0	0	1	1	1	0	
2	0	1	0	1	0	1	
3	0	1	1	1	0	0	
4	1	0	0	0	1	1	
5	1	0	1	0	1	0	
6	1	1	0	0	0	1	
7	1	1	1	0	0	0	
8*	0	0	0	1	1	1	

EXEMPLU NR.1: SINTEZA UNUI NUMĂRĂTOR SINCRON DIRECT

			,	
	$\mathbf{H} \cap \mathbf{Q}$			ILE JK
MUDI	JLU 0		IAD	
		7		

		t			t+1		1	0 0 1 *	0
Num.stări	Q₃	Q_2	Q_1	Q ₃	Q_2	Q_1	J ₃ K ₃	J_2K_2	J_1K_1
0	0	0	0	0	0	1	0 *	0 *	1 *
1	0	0	1	0	1	0	0 *	1 *	* 1
2	0	1	0	0	1	1	0 *	* 0	1 *
3	0	1	1	1	0	0	1 *	* 1	* 1
4	1	0	0	1	0	1	* 0	0 *	1 *
5	1	0	1	1	1	0	* 0	1 *	* 1
6	1	1	0	1	1	1	* 0	* 0	1 *
7	1	1	1	0	0	0	* 0	* 1	* 1

Q3,Q2	00	01	11	10
Q1				
0	*	*	*	*
1	1	1	1	1

$K_1 = 1 \ J_1 = 1$

Q3,Q2	00	01	11	10
Q1				
0	*			*
1	*	1	1	*

$$\mathbf{K}_2 = \mathbf{Q}_1$$

Q3,Q2	00	01	11	10
Q1				
0			*	*
1		1	*	*

Q3,Q2	00	01	11	10
Q1				
0		*	*	
1	1	*	*	1

$J_2 = Q_1$

Q3,Q2	00	01	11	10
Q1				
0	*	*		
1	*	*	1	

$$K_3 = Q_2Q_1$$

$$\mathbf{J}_3 = \mathbf{Q}_2 \mathbf{Q}_1$$

EXEMPLU NR.2: SINTEZA UNUI NUMĂRĂTOR SINCRON INVERS MODULO 8 ÎN BAZA BISTABILELOR **RS**.

		t			t+1		Q_3	Q_2	Q_1
Num.stăti	\mathbb{Q}_3	\mathbf{Q}_2	\mathbf{Q}_1	\mathbb{Q}_3	\mathbb{Q}_2	Q_1	S_3R_3	S_2R_2	S_1R_1
O	0	0	0	1	1	1	1 0	1 0	1 0
1	0	0	1	0	0	0	0 *	0 *	0 1
2	0	1	0	0	0	1	0 *	0 1	1 0
3	0	1	1	0	1	0	* 0	* 0	0 1
4	1	0	0	0	1	1	0 1	1 0	1 0
5	1	0	1	1	0	0	* 0	0 *	0 1
6	1	1	0	1	0	1	* 0	0 1	1 0
7	1	1	1	1	1	0	* 0	* 0	0 1

Q3,Q2	00	01	11	10
Q1				
0				
1	1	1	1	1

$R_1=Q_1$

Q3,Q2	00	01	11	10
Q1				
0	1	1	1	1
1				

$$S_1 = \overline{Q1}$$

Q3,Q2	00	01	11	10
Q1				
0		1	1	
1				

$$\mathbf{R}_2 = \mathbf{Q}_2 \overline{\mathbf{Q}}_1$$

Q3,Q2	00	01	11	10
Q1				
0	1			1
1		*	*	

$$S_2 = \overline{Q_2}\overline{Q_1}$$

Q3,Q2	00	01	11	10
Q1				
0		*		1
1	*			

$$R_3 = Q3Q_2\overline{Q_1}$$

Q3,Q2	00	01	11	10
Q1				
0	1		*	
1		*	*	*

$$S_3 = \overline{Q3Q2Q1}$$

- Exemplu nr.3:
- Unul și același numărător poate funcționa atît în regim direct cît și-n regim invers, în acest caz numărătorul se numește reversibil.
- La sinteza unui așa numărător trebuie de prevăzut în tabelul de tranziție un bit care va stabili regimul de funcționare a numărătorului.

y=0 – direct, y=1 – regim invers.

$$K_1 = 1 J_1 = 1$$

		t			t+1		Q3	Q2	Q1
У	Q3	Q2	Q1	Q3	Q2	Q1	ЈЗКЗ	J2K2	J1K1
							O *	O *	a 4
0	0	0	0	0	0	1	0 *	0 *	1 *
0	0	0	1	0	1	0	0 *	1 *	* 1
0	0	1	0	0	1	1	0 *	* 0	1 *
0	0	1	1	1	0	0	1 *	* 1	* 1
0	1	0	0	1	0	1	* 0	0 *	1 *
0	1	0	1	1	1	0	* 0	1 *	* 1
0	1	1	0	1	1	1	* 0	* 0	1 *
0	1	1	1	0	0	0	* 1	* 1	* 1
1	0	0	0	1	1	1	1 *	1 *	1 *
1	0	0	1	0	0	0	0 *	0 *	* 1
1	0	1	0	0	0	1	0 *	* 1	1 *
1	0	1	1	0	1	0	0 *	* 0	* 1
1	1	0	0	0	1	1	* 1	1 *	1 *
1	1	0	1	1	0	0	* 0	0 *	* 1
1	1	1	0	1	0	1	* 0	* 1	1 *
1	1	1	1	1	1	0	* 0	* 0	* 1

yQ3	00	01	11	10	
Q2Q1					
00			1	1	
01	1	1			
11	*	*	*	*	
10	*	*	*	*	

$J2=\overline{y}Q1Vy\overline{Q1}$

yQ3	00	01	11	10
Q2Q1				
00	*	*	*	*
01	*	*	*	*
11	1	1 /		
10			1	1

$$\mathbf{K}_2 = \overline{y} \mathbf{Q} \mathbf{1} \mathbf{V} \mathbf{y} \overline{\mathbf{Q} \mathbf{1}}$$

yQ3	00	01	11	10	
Q2Q1					
00		*	*	1)	
01		*	*		
11	1	*	*		
10		*	*		

 $J3=\overline{y}Q2Q1Vy\overline{Q1Q2}$

yQ3	00	01	11	10	
Q2Q1					
00	*		1	*	
01	*			*	
11	*	1		*	
10	*			*	

 $K3 = \overline{y}Q2Q1Vy\overline{Q1Q2}$

3. SINTEZA NUMĂRĂTOARELOR SINCRONE INCOMPLETE (MODUL ARBITRAR) M<2N:

SINTEZA NUMĂRĂTORULUI SINCRON DIRECT MODULO 9 ÎN BAZA

				t			t+	1						t+1			
		Q_3	Q_2	Q_1	Q_0	Q_3	Q_2	Q_1	Q_0	J ₃	K ₃	J ₂	K ₂	J ₁	K ₁	J ₀	K ₀
1	0	0	0	0	0	0	0	0	1	0	*	0	*	0	*	0	*
	1	0	0	0	1	0	0	1	0	0	*	0	*	1	*	*	1
	2	0	0	1	0	0	0	1	1	0	*	1	*	*	1	0	*
	3	0	0	1	1	0	1	0	0	0	*	1	*	*	0	*	1
	4	0	1	0	0	0	1	0	1	1	*	*	1	0	*	0	*
	5	0	1	0	1	0	1	1	0	1	*	*	1	1	*	*	1
	6	0	1	1	0	0	1	1	1	1	*	*	0	*	1	0	*
	7	0	1	1	1	1	0	0	0	1	*	*	0	*	0	*	1
11	8	1	0	0	0	0	0	0	0	*	1	0	*	0	*	1	*
	9	1	0	0	1	0	0	0	0	*	1	0	*	1	*	*	0
11	10	1	0	1	0	0	0	0	0	*	1	1	*	*	1	1	*
7	11	1	0	1	1	0	0	0	0	*	1	1	*	*	0	*	0
- a	12	1	1	0	0	0	0	0	0	*	1	*	1	0	*	1	*
\	13	1	1	0	1	0	0	0	0	*	1	*	1	1	*	*	0
	14	1	1	1	0	0	0	0	0	*	1	*	0	*	1	1	*
	15	1	1	1	1	0	0	0	0	*	1	*	0	*	0	*	0

097 057

yQ3	00	01	11	10
Q2Q1				
00				
01				
11				
10				

yQ3	00	01	11	10
Q2Q1				
00				
01				
11				
10				

yQ3	00	01	11	10
Q2Q1				
00				
01				
11				
10				

yQ3	00	01	11	10
Q2Q1				
00				
01				
11				
10				

De făcut minimizarea și circuitul logic

Sinteza numărătorului sincron invers modulo 9 în baza bistabilelor JK.

Stări interzise

K:			t			t+	1						t+1			
Q_t Q_{t+1} J K		Q_2	Q_1	Q_0	Q_3	Q_2	Q_1	Q_0	J ₃	K ₃	J ₂	K ₂	J ₁	K ₁	J ₀	K _o
0 0 0 * 0 1 1 * 1 0 * 1	0	0	0	0	1	0	0	0	1	*	0	*	0	*	0	*
1 1 * 0		0	0	1	0	0	0	0	0	*	0	*	0	*	*	1
2	0	0	1	0	0	0	0	1	0	*	0	*	*	1	1	*
3	0	0	1	1	0	0	1	0	0	*	0	*	*	0	*	1
4	0	1	0	0	0	0	1	1	0	*	*	1	1	*	1	*
5	0	1	0	1	0	1	0	0	0	*	*	0	0	*	*	1
6	0	1	1	0	0	1	0	1	0	*	*	0	*	1	1	*
7	0	1	1	1	0	1	1	0	0	*	*	0	*	0	*	1
8	1	0	0	0	0	1	1	1	*	1	1	*	1	*	1	*
9	1	0	0	1	0	0	0	0	*	1	0	*	0	*	*	1
111111111111111111111111111111111111111	1	0	1	0	0	0	0	0	*	1	0	*	*	1	0	*
097 057 11	1	0	1	1	0	0	0	0	*	1	0	*	*	1	*	1
12	1	1	0	0	0	0	0	0	*	1	*	1	0	*	0	*
13	1	1	0	1	0	0	0	0	*	1	*	1	*	1	*	1
14	1	1	1	0	0	0	0	0	*	1	*	1	0	*	0	*
15	1	1	1	1	0	0	0	0	*	1	*	1	*	1	*	1

K0 = 1	K3 = 1

Q3Q2	00	01	11	10
Q1Q0				
00		1		(1)
01	*	*	*	*
11	*	*	*	*
10	1	1		

$JO = \overline{Q}3Q2 \vee Q3\overline{Q}2\overline{Q}1 \vee \overline{Q}3Q1$

Q3Q2	00	01 11		10
Q1Q0				
00		*	*	1
01		*	*	
11		*	*	
10		*	*	

$$\mathbf{J2} = \mathbf{Q3} \ \bar{Q}1 \ \bar{Q}0$$

Q3Q2	00	01	11	10			
Q1Q0							
00		1		1			
01			*				
11	*	*	*	*			
10	*	*		*			
T4 0	<u> </u>	= a	<u>=</u>	= -			

$$\mathbf{J1} = \mathbf{Q3} \ \overline{Q} 2 \ \overline{Q} 0 \ \mathbf{V} \ \overline{Q} 3 \mathbf{Q} 2 \ \overline{Q} 0$$

Q3Q2	00	01	11	10
Q1Q0				
00	1		*	*
01			*	*
11			*	*
10			*	*

$\mathbf{J3} = \overline{Q} \, 2 \, \overline{Q} \, 1 \, \overline{Q} \, 0$

Q3Q2	00	01	01 11	
Q1Q0				
00	*	1	1	
01	*		1	*
11	*		1	*
10	*		1	Jk

$$\mathbf{K2} = \bar{Q}1\,\bar{Q}0\,\mathbf{V}\,\mathbf{Q3}$$

Q3Q2	00	01 11		10
Q1Q0				
00	*	*	*	**
01	*	*	1	*
11			1	1
10	1	1	*	

$$\mathbf{K1} = \mathbf{Q3} \, V \bar{Q} 0$$

SARCINI

Sinteza numărătorului sincron reversibil modulo 9 în baza bistabilelor RS.

Vă mulţumesc pentru atenție!

