TEST REPORT

Reference No. : WTS16S0654485E

FCC ID : 2ACQ5LYD003

Applicant: Revogi Innovation Co., Ltd.

Guangdong, China.

Manufacturer : SkyRC Technology Co., Ltd.

Address...... : 4/F, Building No. 6, Meitai Industry Park, Guanguang South Road,

Guihua, Guanlan, 518110, Baoan District, Shenzhen, CHINA

Product Name.....: Delite 1100 CT

 Model No.
 :
 LYD003

 Brand.
 :
 revogi

Date of Receipt sample : Jun. 29, 2016

Date of Test...... : Jun. 29 – Jul. 03, 2016

Date of Issue...... : Jul. 11, 2016

Test Result..... : Pass

Remarks:

The results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

Prepared By:

Waltek Services (Shenzhen) Co., Ltd.

Address: 1/F., Fukangtai Building, West Baima Road, Songgang Street, Baoan District, Shenzhen, Guangdong, China

Tel:+86-755-83551033 Fax:+86-755-83552400

Tested by:

Zero Zhou / Tested Engineer

de Z

Philo Zhong / Manager

Reference No.: WTS16S0654485E Page 2 of 42

2 Test Summary

Test Items	Test Requirement	Result
Radiated Emissions	15.205(a)	PASS
Nadiated Emissions	15.209(a)	1 700
Conducted Emissions	15.207(a)	PASS
6dB Bandwidth	15.247(a)(2)	PASS
Maximum Peak Output Power	15.247(b)(3),(4)	PASS
Power Spectral Density	15.247(e)	PASS
Band Edge	15.247(d)	PASS
Antenna Requirement	15.203	PASS
Maximum Permissible Exposure (Exposure of Humans to RF Fields)	1.1307(b)(1)	PASS

3 Contents

4	COVER PAGE	Page			
1 2	TEST SUMMARY				
3	CONTENTS				
4	REPORT REVISION HISTORY				
5	GENERAL INFORMATION				
	5.1 GENERAL DESCRIPTION OF E.U.T. 5.2 DETAILS OF E.U.T. 5.3 CHANNEL LIST. 5.4 TEST MODE. 5.5 TEST FACILITY.				
6	EQUIPMENT USED DURING TEST				
	6.1 EQUIPMENTS LIST				
7	CONDUCTED EMISSION				
	 7.1 E.U.T. OPERATION 7.2 EUT SETUP 7.3 MEASUREMENT DESCRIPTION 7.4 CONDUCTED EMISSION TEST RESULT 				
8	RADIATED EMISSIONS				
	8.1 EUT OPERATION				
9	BAND EDGE MEASUREMENT				
	9.1 TEST PRODUCE	20			
10	6 DB BANDWIDTH MEASUREMENT				
	10.1 TEST PROCEDURE	22			
11	MAXIMUM PEAK OUTPUT POWER				
	11.1 TEST PROCEDURE				
12	POWER SPECTRAL DENSITY				
	12.1 TEST PROCEDURE	20			
13	ANTENNA REQUIREMENT	28			
14	RF EXPOSURE				
	14.1 REQUIREMENTS				
15	PHOTOGRAPHS -MODEL LYD003 TEST SETUP	31			
Wal	15.1 PHOTOGRAPH – CONDUCTED EMISSION TEST SETUP AT TEST Saltek Services (Shenzhen) Co.,Ltd.	SITE 1#			

Reference No.: WTS16S0654485E Page 4 of 42

	15.2	RADIATED EMISSION	31
16	PHOT	OGRAPHS - CONSTRUCTIONAL DETAILS	33
	16.1	MODEL LYD003 - EXTERNAL PHOTOS	33
	16.2	MODEL LYDOO3 - INTERNAL PHOTOS	36

Reference No.: WTS16S0654485E Page 5 of 42

4 Report Revision History

Report No.	Report Version	Description	Issue Date
WTS16S0654485E	NONE	Original	Jul. 11, 2016

Reference No.: WTS16S0654485E Page 6 of 42

5 General Information

5.1 General Description of E.U.T.

Product Name: Delite 1100 CT

Model No.: LYD003

Model Difference: N/A

Operation Frequency: 2402MHz ~ 2480MHz, separated by 2MHz,40 channels in total

The lowest oscillator: 32.768kHz

Type of modulation: GFSK(BLE only)

5.2 Details of E.U.T.

Technical Data: AC 100-120V, 50/60Hz, 13W

5.3 Channel List

Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)
0	2402	1	2404	2	2406	3	2408
4	2410	5	2412	6	2414	7	2416
8	2418	9	2420	10	2422	11	2424
12	2426	13	2428	14	2430	15	2432
16	2434	17	2436	18	2438	19	2440
20	2442	21	2444	22	2446	23	2448
24	2450	25	2452	26	2454	27	2456
28	2458	29	2460	30	2462	31	2464
32	2466	33	2468	34	2470	35	2472
36	2474	37	2476	38	2478	39	2480

5.4 Test Mode

All test mode(s) and condition(s) mentioned were considered and evaluated respectively by performing full tests, the worst data were recorded and reported.

Table 1 Tests Carried Out Under FCC part 15.247

Test mode	Low channel	Middle channel	High channel
Transmitting	2402MHz	2440MHz	2480MHz

Table 2 Tests Carried Out Under FCC part 15.207&15.209

Test Item	Test Mode
Conducted Emissions	Communication
Radiated Emissions	Communication

Reference No.: WTS16S0654485E Page 7 of 42

5.5 Test Facility

The test facility has a test site registered with the following organizations:

• IC - Registration No.: 7760A-1

Waltek Services (Shenzhen) Co., Ltd. has been registered and fully described in a report filed with the Industry Canada. The acceptance letter from the Industry Canada is maintained in our files. Registration 7760A-1, October 15, 2015

FCC Test Site 1# Registration No.: 880581

Waltek Services(Shenzhen) Co., Ltd. EMC Laboratory `has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 880581, April 29, 2014.

FCC Test Site 2# Registration No.: 328995

Waltek Services(Shenzhen) Co., Ltd. EMC Laboratory `has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 328995, December 3, 2014.

6 Equipment Used during Test

6.1 Equipments List

Conducted Emissions at Mains Terminals Disturbance Voltage(1#)							
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date	
1	EMI Test Receiver	R&S	ESCI	100947	2015.09.14	2016.09.13	
2	LISN	R&S	ENV216	100115	2015.09.14	2016.09.13	
3	Cable	Тор	TYPE16(3.5M)	-	2015.09.14	2016.09.13	
Cond	ucted Emissions at M	lains Terminals Dis	sturbance Volta	ge(2#)			
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date	
1	EMI Test Receiver	R&S	ESCI	101155	2015.09.14	2016.09.13	
2	LISN	SCHWARZBECK	NSLK 8128	8128-289	2015.09.14	2016.09.13	
3	Limiter	York	MTS-IMP-136	261115-001- 0024	2015.09.14	2016.09.13	
4	Cable	Laplace	RF300	-	2015.09.14	2016.09.13	
3m Se	emi-anechoic Chambe	er for Radiation(1#)				
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date	
1	Spectrum Analyzer	R&S	FSP	100091	2016.04.08	2017.04.07	
2	Amplifier	Agilent	8447D	2944A10178	2016.01.14	2017.01.13	
3	Active Loop Antenna	Beijing Dazhi	ZN30900A	0703	2016.10.17	2017.10.16	
4	Trilog Broadband Antenna	SCHWARZBECK	VULB9163	336	2016.04.18	2017.04.17	
5	Coaxial Cable (below 1GHz)	Тор	TYPE16(13M)	-	2015.09.14	2016.09.13	
6	Broad-band Horn Antenna	SCHWARZBECK	BBHA 9120 D	667	2016.04.18	2017.04.17	
7	Broadband Preamplifier	COMPLIANCE DIRECTION	PAP-1G26	2004	2016.03.23	2017.03.22	
8	Coaxial Cable (above 1GHz)	Тор	1GHz-25GHz	EW02014-7	2016.03.23	2017.03.22	
9	Broad-band Horn Antenna	SCHWARZBECK	BBHA 9170	335	N/A	N/A	
3m Semi-anechoic Chamber for Radiation(2#)							
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date	
1	Test Receiver	R&S	ESCI	101296	2016.03.23	2017.03.22	
2	Trilog Broadband Antenna	SCHWARZBECK	VULB9160	9160-3325	2016.04.18	2017.04.17	
3	Amplifier	ANRITSU	MH648A	M43381	2016.04.18	2017.04.17	
W/alta	Waltek Services (Shenzhen) Co.,Ltd.						

Waltek Services (Shenzhen) Co.,Ltd.

http://www.waltek.com.cn

Reference No.: WTS16S0654485E Page 9 of 42

4	Cable	HUBER+SUHNER	CBL2	525178	2016.03.23	2017.03.22
---	-------	--------------	------	--------	------------	------------

6.2 Description of Support Units

Equipment	Manufacturer	Manufacturer Model No.	
/	/	/	/

6.3 Measurement Uncertainty

Parameter	Uncertainty
Radio Frequency	± 1 x 10 ⁻⁶
RF Power	± 1.0 dB
RF Power Density	± 2.2 dB
	± 5.03 dB (Bilog antenna 30M~1000MHz)
Radiated Spurious Emissions test	± 4.74 dB (Horn antenna 1000M~25000MHz)
Conducted Spurious Emissions test	± 3.64 dB (AC mains 150KHz~30MHz)

6.4 Test Equipment Calibration

All the test equipments used are valid and calibrated by CEPREI Certification Body that address is No.110 Dongguan Zhuang RD. Guangzhou, P.R.China.

Reference No.: WTS16S0654485E Page 10 of 42

7 Conducted Emission

Test Requirement: FCC CFR 47 Part 15 Section 15.207

Test Method: ANSI C63.10:2013

Test Result: PASS

Frequency Range: 150kHz to 30MHz

Class/Severity: Class B

Limit: 66-56 dB_uV between 0.15MHz & 0.5MHz

 $56~dB\mu V$ between 0.5MHz & 5MHz $60~dB\mu V$ between 5MHz & 30MHz

Detector: Peak for pre-scan (9kHz Resolution Bandwidth)

7.1 E.U.T. Operation

Operating Environment:

Temperature: 25.5 °C
Humidity: 51 % RH
Atmospheric Pressure: 101.2kPa

EUT Operation:

The test was performed in transmitting mode, the test data were shown in the report.

7.2 EUT Setup

The conducted emission tests were performed using the setup accordance with the ANSI C63.10:2013.

7.3 Measurement Description

The maximised peak emissions from the EUT was scanned and measured for both the Live and Neutral Lines. Quasi-peak & average measurements were performed if peak emissions were within 6dB of the average limit line.

7.4 Conducted Emission Test Result

Live line:

Neutral line:

Reference No.: WTS16S0654485E Page 13 of 42

8 Radiated Emissions

Test Requirement: FCC CFR47 Part 15 Section 15.209 & 15.247

Test Method: ANSI C63.10:2013

Test Result: PASS
Measurement Distance: 3m

Limit:

	Littit.						
_	Field Strength		Field Strength Limit at 3m Measurement Dist				
Frequency (MHz)	(MHz) uV/m		uV/m	dBuV/m			
0.009 ~ 0.490	2400/F(kHz)	300	10000 * 2400/F(kHz)	20log ^{(2400/F(kHz))} + 80			
0.490 ~ 1.705	24000/F(kHz)	30	100 * 24000/F(kHz)	20log ^{(24000/F(kHz))} + 40			
1.705 ~ 30	30	30	100 * 30	20log ⁽³⁰⁾ + 40			
30 ~ 88	100	3	100	20log ⁽¹⁰⁰⁾			
88 ~ 216	150	3	150	20log ⁽¹⁵⁰⁾			
216 ~ 960	200	3	200	20log ⁽²⁰⁰⁾			
Above 960	500	3	500	20log ⁽⁵⁰⁰⁾			

8.1 EUT Operation

Operating Environment:

Temperature: 25.5 °C
Humidity: 51 % RH
Atmospheric Pressure: 1016 mbar

EUT Operation:

The test was performed in transmitting mode, the test data were shown in the report.

8.2 Test Setup

The radiated emission tests were performed in the 3m Semi- Anechoic Chamber test site, using the setup accordance with the ANSI C63.10:2013.

The test setup for emission measurement below 30MHz.

The test setup for emission measurement from 30 MHz to 1 GHz.

The test setup for emission measurement above 1 GHz.

8.3 Spectrum Analyzer Setup

Below 30MHz		
	Sweep Speed	. Auto
	IF Bandwidth	.10kHz
	Video Bandwidth	.10kHz
	Resolution Bandwidth	.10kHz
30MHz ~ 1GHz	Z	
	Sweep Speed	. Auto
	Detector	.PK
	Resolution Bandwidth	.100kHz
	Video Bandwidth	.300kHz
Above 1GHz		
	Sweep Speed	. Auto
	Detector	.PK
	Resolution Bandwidth	.1MHz
	Video Bandwidth	.3MHz
	Detector	.Ave.
	Resolution Bandwidth	.1MHz
	Video Bandwidth	.10Hz

Reference No.: WTS16S0654485E Page 16 of 42

8.4 Test Procedure

- 1. The EUT is placed on a turntable, which is above ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is moved from 1m to 4m to find out the maximum emissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Repeat above procedures until the measurements for all frequencies are complete.
- 7. The radiation measurements are performed in X,Y and Z axis positioning(X denotes lying on the table, Y denotes side stand and Z denotes vertical stand),the worst condition was tested putting the eut in X axis,so the worst data were shown as follow.
- 8. New battery was used during test.

8.5 Summary of Test Results

Test Frequency: 32.768kHz~30MHz

The measurements were more than 20 dB below the limit and not reported.

Test Frequency: 30MHz ~ 18GHz

Receiver				RX An	tenna	Corrected	Corrected		
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
			GF	SK Low	Channel				
192.22	21.42	QP	82	1.6	Н	10.63	32.05	46.00	-13.95
192.22	19.99	QP	306	1.2	V	10.63	30.62	46.00	-15.38
4804.00	53.83	PK	168	1.4	V	-1.02	52.81	74.00	-21.19
4804.00	44.90	Ave	168	1.4	V	-1.02	43.88	54.00	-10.12
7206.00	54.45	PK	137	1.2	Н	1.25	55.70	74.00	-18.30
7206.00	41.95	Ave	137	1.2	Н	1.25	43.20	54.00	-10.80
2342.14	45.41	PK	2	1.1	V	-13.01	32.40	74.00	-41.60
2342.14	39.11	Ave	2	1.1	V	-13.01	26.10	54.00	-27.90
2376.29	43.88	PK	12	1.9	Н	-12.95	30.93	74.00	-43.07
2376.29	37.62	Ave	12	1.9	Н	-12.95	24.67	54.00	-29.33
2494.93	43.93	PK	111	1.5	V	-12.74	31.19	74.00	-42.81
2494.93	37.25	Ave	111	1.5	V	-12.74	24.51	54.00	-29.49

	Receiver		Turn	RX An	tenna	Corrected	Corrected		
Frequency		Detector	table Angle	Height	Polar	Factor	Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
	GFSK Middle Channel								
192.22	21.13	QP	191	1.4	Н	10.49	31.62	46.00	-14.38
192.22	18.06	QP	312	2.0	V	10.63	28.69	46.00	-17.31
4882.00	51.98	PK	284	1.6	V	-0.58	51.40	74.00	-22.60
4882.00	43.04	Ave	284	1.6	V	-0.58	42.46	54.00	-11.54
7323.00	53.18	PK	229	1.4	Н	2.15	55.33	74.00	-18.67
7323.00	43.82	Ave	229	1.4	Н	2.15	45.97	54.00	-8.03
2320.20	45.06	PK	260	1.9	V	-13.34	31.72	74.00	-42.28
2320.20	38.46	Ave	260	1.9	V	-13.34	25.12	54.00	-28.88
2384.97	42.36	PK	192	2.0	Н	-12.35	30.01	74.00	-43.99
2384.97	37.40	Ave	192	2.0	Н	-12.35	25.05	54.00	-28.95
2483.77	44.72	PK	198	1.8	V	-12.55	32.17	74.00	-41.83
2483.77	38.30	Ave	198	1.8	V	-12.55	25.75	54.00	-28.25

Receiver		eceiver		Turn RX Ant		Corrected	Corrected		
Frequency		Detector	table Angle	Height	Polar	Factor	Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
	GFSK High Channel								
192.22	20.36	QP	3	1.9	Н	10.54	30.90	46.00	-15.10
192.22	19.89	QP	117	1.2	V	10.54	30.43	46.00	-15.57
4960.00	52.43	PK	239	1.5	V	-0.21	52.22	74.00	-21.78
4960.00	43.73	Ave	239	1.5	V	-0.21	43.52	54.00	-10.48
7440.00	50.82	PK	329	2.0	Н	2.69	53.51	74.00	-20.49
7440.00	43.06	Ave	329	2.0	Н	2.69	45.75	54.00	-8.25
2316.17	45.06	PK	180	1.9	V	-13.11	31.95	74.00	-42.05
2316.17	37.73	Ave	180	1.9	V	-13.11	24.62	54.00	-29.38
2350.85	43.00	PK	155	1.1	Н	-13.14	29.86	74.00	-44.14
2350.85	38.00	Ave	155	1.1	Н	-13.14	24.86	54.00	-29.14
2493.13	44.47	PK	221	1.3	V	-13.03	31.44	74.00	-42.56
2493.13	37.75	Ave	221	1.3	V	-13.03	24.72	54.00	-29.28

Test Frequency: 18GHz~25GHz

The measurements were more than 20 dB below the limit and not reported

Reference No.: WTS16S0654485E Page 20 of 42

9 Band Edge Measurement

Test Requirement: Section 15.247(d) In addition, radiated emissions which fall in the

restricted bands. as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) and

15.205(c).

Test Method: KDB558074 D01 DTS Meas Guidance v03r05

Test Mode: Transmitting

9.1 Test Produce

1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.

- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set the spectrum analyzer: RBW = 100kHz, VBW = 300kHz, Sweep = auto

Detector function = peak, Trace = max hold

- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

9.2 Test Result

Band edge-left side

Band edge-right side

Reference No.: WTS16S0654485E Page 22 of 42

10 6 dB Bandwidth Measurement

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: KDB558074 D01 DTS Meas Guidance v03r05

10.1 Test Procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;

2. Set the spectrum analyzer: RBW = 100kHz, VBW = 300kHz

10.2 Test Result

Operation mode	Bandwidth (MHz)
Low channel	0.683
Middle channel	0.683
High channel	0.683

Test result plot as follows:

Mode: Low channel

Mode: Middle channel

Mode: High channel

Reference No.: WTS16S0654485E Page 24 of 42

11 Maximum Peak Output Power

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: KDB558074 D01 DTS Meas Guidance v03r05

11.1 Test Procedure

KDB558074 D01 DTS Meas Guidance v03r05 section 8.1.2 Option 2

- 1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.
- 2. Set the spectrum analyzer: RBW = 3MHz. VBW = 3MHz. Sweep = auto; Detector Function = Peak, Set the span to fully encompass the DTS bandwidth.
- 3. Keep the EUT in transmitting at lowest, medium and highest channel individually. Record the max value.

11.2 Test Result

Maximum Peak Output Power (dBm)						
Low channel Middle channel High channel						
-1.58 -1.98 -1.83						
Limit						
1W/30dBm						

Test mode: Low channel

Test mode: Middle channel

Test mode: High channel

Reference No.: WTS16S0654485E Page 26 of 42

12 Power Spectral density

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: KDB558074 D01 DTS Meas Guidance v03r05

12.1 Test Procedure

KDB558074 D01 DTS Meas Guidance v03r05 section 9.1 Option 1

- 1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.
- 2. Set the spectrum analyzer: RBW = 3kHz. VBW = 10kHz , Span = 1.5 times the DTS channel bandwidth(6 dB bandwidth). Sweep = auto; Detector Function = Peak. Trace = Max hold.
- 3. Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. The limit is specified in one of the subparagraphs of this Section Submit this plot.

12.2 Test Result

Power Spectral Density						
Low channel Middle channel High channel						
-16.82	-17.14	-18.28				
Limit						
8dBm per 3kHz						

Test mode: Low channel

Test mode: Middle channel

Test mode: High channel

13 Antenna Requirement

According to the FCC Part 15 Paragraph 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. This product has a PCB printed antenna, fulfill the requirement of this section.

Reference No.: WTS16S0654485E Page 29 of 42

14 RF Exposure

Test Requirement: FCC Part 1.1307
Test Mode: FCC Part 2.1091

KDB 447498 D01 General RF Exposure Guidance v06

14.1 Requirements

Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess limit for maximum permissible exposure. In accordance with 47 CFR FCC Part 2 Subpart J, section 2.1091 this device has been defined as a mobile device whereby a distance of 0.2 m normally can be maintained between the user and the device.

14.2 The procedures / limit

(A) Limits for Occupational / Controlled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/ cm ²)	Averaging Time E ² , H ² or S (minutes)
0.3-3.0	614	1.63	(100)*	6
3.0-30	1842 / f	4.89 / f	(900 / f)*	6
30-300	61.4	0.163	1.0	6
300-1500			F/300	6
1500-100,000			5	6

(B) Limits for General Population / Uncontrolled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/ cm ²)	Averaging Time E ² , H ² or S (minutes)
0.3-1.34	614	1.63	(100)*	30
1.34-30	824/f	2.19/f	(180/f)*	30
30-300	27.5	0.073	0.2	30
300-1500			F/1500	30
1500-100,000			1.0	30

Note: f = frequency in MHz; *Plane-wave equivalent power density

Reference No.: WTS16S0654485E Page 30 of 42

14.3 MPE Calculation Method

$$\mathbf{S} = \frac{P \times G}{4 \times \pi \times R^2}$$

S = power density (in appropriate units, e.g. mW/cm²)

P = output power to the antenna (in appropriate units, e.g., mW).

G = power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor, is normally numeric gain.

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm)

From the peak EUT RF output power, the minimum mobile separation distance, R=20cm, as well as the gain of the used antenna, the RF power density can be obtained

Antenna Gain (dBi)	Antenna Gain (numeric)	Max. Peak Output Power (dBm)	Peak Output Power (mW)	Power Density (mW/cm ²)	Limit of Power Density (mW/cm²)
0.00	1.000	-1.58	0.70	0.000138	1

15 Photographs - Model LYD003 Test Setup

15.1 Photograph - Conducted Emission Test Setup at Test Site 1#

15.2 Radiated Emission

Test frequency below 30MHz Test Site 2#

Test frequency from 30MHz to 1GHz Test Site 2#

Test frequency above 1GHz Test Site 1#

16 Photographs - Constructional Details

16.1 Model LYD003 - External Photos

Reference No.: WTS16S0654485E Page 34 of 42

Reference No.: WTS16S0654485E Page 35 of 42

16.2 Model LYD003 - Internal Photos

Reference No.: WTS16S0654485E Page 37 of 42

Reference No.: WTS16S0654485E Page 38 of 42

Reference No.: WTS16S0654485E Page 39 of 42

Reference No.: WTS16S0654485E Page 40 of 42

Reference No.: WTS16S0654485E Page 41 of 42

====End of Report=====