Notowania akcji

XIV OIJ, próbne zawody II stopnia

29 lutego 2020

Firma Bajtex N dni temu wypuściła swoje akcje na bajtockiej giełdzie. Firma ta zastanawia się teraz jak przekonać nowych akcjonariuszy do zainwestowania w swoje akcje. Poza faktem, że akcje przynoszą zyski, firma chciałaby pokazać potencjalnym zainteresowanym, że ich akcje ciągle idą w górę. Aby to zrobić, zdecydowali się wybrać K-fragment, czyli ciąg **kolejnych** K dni, w którym cena akcji wyłącznie rosła i pokazać te dane potencjalnym zainteresowanym. Teraz zastanawiają się, ile takich K-fragmentów było dla różnych wartości K.

Dla przykładu, rozważmy następujące kursy akcji firmy Bajtex:

Jeżeli chcielibyśmy wybrać jedynie dwa dni (czyli jeśli rozważamy 2-fragmenty), to możemy to zrobić na pięć sposobów: $(2,3),\ (3,4),\ (4,5),\ (7,8),\ (8,9).$ Zauważ, że nie możemy wybrać dni (5,6), jako że cena akcji nie wzrosła, a jedynie się utrzymała. Z kolei, jeżeli chcielibyśmy wybrać trzy dni (czyli jeśli rozważamy 3-fragmenty), to możemy to zrobić na trzy sposoby: $(2,3,4),\ (3,4,5)$ oraz (7,8,9). Nie możemy wybrać dni (1,2,3), ponieważ zanotowaliśmy spadek pomiędzy pierwszym a drugim dniem.

Twoim zadaniem będzie dla różnych K obliczyć ile mamy K-fragmentów w danym ciągu.

Napisz program, który wczyta notowania akcji firmy Bajtex oraz zapytania o serie wzrostów, dla każdego zapytania K_i wyznaczy liczbę K_i -fragmentów (czyli spójnych ciągów notowań akcji o długości K_i , w których akcje firmy były ściśle rosnące) i wypisze wyniki na standardowe wyjście.

Wejście

W pierwszym wierszu wejścia znajduje się jedna liczba naturalna N $(1 \le N \le 500\,000)$, określająca liczbę dni przez które firma Bajtex była na giełdzie. W drugim wierszu wejścia znajduje się ciąg N nieujemnych liczb całkowitych A_i $(0 \le A_i \le 10^9)$, pooddzielanych pojedynczymi odstępami. Są to notowania akcji Bajtex w kolejnych dniach. W trzecim wierszu wejścia znajduje się jedna liczba naturalna Q $(1 \le Q \le 500\,000)$, określająca liczbę zapytań. W kolejnych Q wierszach znajduje się opis kolejnych zapytań, po jednym w wierszu. Opis każdego zapytania składa się z jednej liczby naturalnej K_i $(1 \le K_i \le N)$, określającej zapytanie o liczbę K_i -fragmentów w ciągu notowań akcji.

Wyjście

Twój program powinien wypisać na wyjście ciąg Q liczb całkowitych w osobnych wierszach. i-ta spośród nich powinna określać liczbę K_i -fragmentów.

Ocenianie

Poniższa tabela opisuje dodatkowe warunki, które spełniają pewne grupy testów oraz liczbę punktów, którą można otrzymać za rozwiązanie jedynie testów spełniające te warunki.

Dodatkowe ograniczenia	Liczba punktów
Q = 1, pytamy jedynie o 2-fragmenty	17
Q = 1	47

Przykłady

Wejście dla testu not0a:

10)									
4	3	5	6	7	7	4	5	6	4	
5										
2										
3										
1										
4										
5										

Wyjście dla testu not0a:

5			
5 3			
10			
1			
0			

Wejście dla testu not0b:

	٠,٠	٠. ٠	٠		 	OOD.				
5										
1	2	3	4	5						
5										
5										
4										
3										
2										
1										

Wyiście dla testu not.0b.

vvyjscie dia	testu notob.
1	
2	
3	
4	
5	

Wejście dla testu not0c:

vvejsere did testa ne oco.
10
1 1 2 2 3 3 4 4 5 5
4
3
2
10
1

Wyjście dla testu not0c:

0			
4			
0			
10			

Wejście dla testu not0d:

Wejsele ala testa notoa.
10
10 9 8 7 6 5 4 3 2 1
4
1
10
5
2

Wyjście dla testu not0d:

,,,			
10			
0			
0			
0			

Wejście dla testu not0e:

regacie dia testa notoe.
10
1 2 3 4 5 1 2 3 4 5
5
3 2 5
2
10
4

Wyjście dla testu not0e:

6			
8			
2			
0			
4			

Pozostałe testy przykładowe

- test not0f: $N = 500\,000$, notowania akcji składają się z ciągu $[1,2,3,\ldots,998,999,0]$ powtórzonego 500 razy, $Q = 500\,000$, i-te zapytanie dotyczy liczby i-fragmentów dla $i = 1,2,\ldots,500\,000$.