Learning Where and When to Reason in Neuro-Symbolic Inference

Cristina Cornelio, Jan Stühmer, Shell Xu Hu, Timothy Hospedales

NeSy | 2023

(Presented at ICLR-23)

Intro/Motivation

- **SOTA:** "Soft"-constraints = enforced only at training time
 - (e.g., incorporation of constraints in the loss)
- Goal: Imposition of hard constrains at testing to ensure that the domain-specific knowledge is respected by the predictions
- Idea: Neuro-Symbolic integration method

- 3 components: Neuro-Solver, Mask-Predictor and Symbolic-Solver
- Symbolic reasoning is not feasible in many scenarios
- Mask predictor: makes the reasoning more efficient, directing the reasoning focus

Architecture - NASR

(Neural Attention for Symbolic Reasoning)

Given: a task to solve and a set of rules $\mathcal R$.

- 1. Neuro-Solver: outputs an approximate solution
- 2. Mask-Predictor: identifies the components of the symbolic-solution that do not satisfy the rules R
- **3. Adapter function:** Combines the symbolic-solution and the masking to form the masked solution (matching the Symbolic-Solver format)
- 4. Symbolic-Solver: uses the rules R to correct the masked components of the symbolic solution (any type of rules/constraint can be used)

olution INPUT Mask Neuro Masking **Predictor** Solver Ø Symbolic Solves the Identifies task errors **Reinforcement Learning** Masked Solution solution **Symbolic** Solver Corrects the Final errors OUTPUT Rules Symbolic Component

Symbolic-Solver corrects the Neuro-Solver prediction errors identified by the Mask-Predictor

Learning paradigm

 $oldsymbol{\mathcal{X}}$ is the set of all possible inputs for the task under

consideration

Learning paradigm

$$f_{\theta}(x) = sb \ (adapt(ns(x), argmax(mp(ns(x)))), \mathcal{R})$$

1- Supervised learning

- Neuro-Solver and the Mask-Predictor are first pre-trained individually (with supervision)
- They are then integrated together in the pipeline

NASR with RL

2 - Reinforcement learning

NASR is then refined using reinforcement learning

$$\mathcal{L}(x;\theta) = - r / \log P_{\theta}(m|ns(x))$$

Experiments – Visual Sudoku

- Perception: simple (CNN) for single MNIST digit classification
- SolverNN & Mask-Predictor: Transformer (4 sequential self-attention blocks)
- Adapter function: Pointwise product
- Symbolic-Solver: PySwip (Python interface to SWI-Prolog) & a brute force backtrack-based algorithm

Experiments - Visual Sudoku

Dataset → challenge

- big_kaggle → scaling
- minimal → minimal number of hints
- multiple_sol → multiple solutions
- satnet_data

dataset	# hints avg.	# hints [min , max]	size
big_kaggle	33.82	[29, 37]	100'000
minimal	17	[17, 17]	50'000
multiple_sol	34.75	[34, 35]	10'000
satnet_data	36.22	[31, 42]	10'000

Experiments – Visual Sudoku

Comparison between:

- NASR (our)
 - with RL or without RL (only pretrained)
- Symbolic baseline
 - o images → symbolic vector → symbolic solver
- NeurASP (Yang et al. IJCAI 2020)

- SatNet (Wang et al. ICML 2019)
- SatNet + NASR
 - SatNet as Neuro-Solver in NASR

Results - Visual Sudoku

Results summary:

- We significantly outperform the baseline in most of the cases (and never perform worst)
 - We are more robust to noise compared to the symbolic baseline.
- We **improve** the performance of an **existing method, by integrating it** in our pipeline;

	big kaggle	minimal 17	multiple sol	satnet data
Symbolic baseline	74.56	87.70	63.50	63.20
NeurASP	timeout	89.00*	timeout	timeout
SatNet	63.44	0.00	0.00	60.10
SatNet + NASR (our)	69.05	0.02	24.20	81.40
NASR (our)	84.24	87.00	73.00	82.20

% of completely correct sudoku boards

Results - Visual Sudoku: Efficiency

We are **more efficient** in terms of trade-off between:

- performance (percentage of completely correct boards)
- computational time

Pareto front performance vs. computational time

Performance limiting the computational time

Results - Visual Sudoku: Robustness to noise

- Results shows that we are always better (or equal) to the baseline.
- However, our method is much more robust to noise compared to the baseline:

Results - Visual Sudoku: Attention maps

Looking at the attention in the Transformer:

- When considering a cell:
 - Average of all the attention layers for the Neuro-Solver and for the Mask-Predictor
 - Noticeable focus on the row, the column and the 3×3 block (corresponding to the 3 Sudoku rules)

It is learning the correct sudoku rules

Results – Scene Graph Prediction

Dataset:

- GQA dataset
 - Balanced version of Visual Genome

Constraints/Rules:

 Domain/Range of relations (e.g., domain(wear)=person)

Tasks: Predicate classification

- Input: ground truth bounding boxes for the objects and objects labels
- Output: Scene Graph

Results – Scene Graph Prediction

		R@20	R@50	R@100	R@200	R@300
ots	Baseline	29.22	42.35	48.48	50.75	51.11
-shots	Max-improvement (PSB)	0.12	0.23	0.32	0.35	0.36
₹ %	% improvement of NASR	99.71	99.58	99.69	99.64	99.64
-shots	Baseline	16.62	27.65	34.10	37.41	38.11
o-sh	Max-improvement (PSB)	0.91	1.43	1.93	2.18	2.33
Zero-	% improvement of NASR	100.00	100.00	100.00	100.00	100.00

NASR results: percentage of the max achievable improvement under the given ontology, defined by the Probabilistic Symbolic Baseline (PSB)

Learning Where and When to Reason in Neuro-Symbolic Inference

Check out our poster after the coffee break!
Looking for collaborations ©!

https://github.com/corneliocristina/NASR

Experiments – Visual Sudoku

RL scenario:

- Input state = solution board provided by the Neuro-Solver (Perception+SolverNN).
- Actions space = set of all possible complete masking boards configurations
- Action *m* = simultaneous execution of 81 independent sub-actions board + deterministic application of the Symbolic-Solver to the masked solution board
 - Sub-action m_i = decision of masking or not a single cell i in the solution board
- Final state = solution board provided as output by the Symbolic-Solver
- Rewards (positive & normalized) = sum of two types of rewards with different order of magnitude
 - the main reward, $r_e \in \{0, 10\}$, when the entire board is correct and a
 - marginal reward $r_c \in [0, 1]$ for each correct cell i

$$r=r_e+r_c=10\cdot\delta_{b',b}+rac{1}{81}\sum_{i=0}^{81}\delta_{b'_i,b_i}$$
 b' output board b ground truth board

Loss function, for each batch B:

$$\mathcal{L}(B;\theta) = -\sum_{x \in B} r \log P_{\theta}(\tilde{m}|ns(x)) = -\sum_{x \in B} \left(r \sum_{i=0}^{81} \log P_{\theta}(\tilde{m}_i|ns(x)) \right)$$

Results - Visual sudoku:

Analysis of the Components Roles

	% Perception errors corrected by NASR		% SolverNN errors identified by Mask-Predictor		
	by SolverNN	by Mask-Predictor	hint cells	solution cells	
big kaggle	85.90	14.10	53.17	77.42	
minimal 17	95.90	4.10	8.21	32.24	
multiple sol	87.21	12.79	42.09	24.73	
satnet data	85.43	14.57	44.76	71.16	

Experiment 1:

- hints cells that have been incorrectly predicted by the Perception but have been corrected by NASR, % that is corrected directly by the SolverNN or the Mask-Predictor
- Result: Perception errors are usually corrected by the SolverNN

Experiment 2:

- Mask-Predictor distinguishes between the errors in the hint cells and the errors in the solutions cells.
- Result: the Mask-Predictor does not systematically prefer either of the two

Architecture – Scene graph

