Module: Théorie des graphes

Examen final

le 17/05/2015

1h 30mn

Exercice 1 : Peut-on construire un graphe simple ayant :

- a) 5 sommets et 11 arêtes. Justifier.
- b) 10 sommets et 46 arêtes. Justifier.

Exercice 2 : Donner une représentation de ce graphe au moyen :

- a) d'une liste d'adjacence,
- d'une matrice d'adjacence,
- c) d'une matrice d'incidence

Exerc	ice 3 : Soit le graphe donné par la matrice d'adjacence
suivan	te:
a)	Le graphe est-il orienté ? justifier.
	Déterminer par un paracura en les-

 Déterminer par un parcours en largeur si ce graphe est connexe, sans le tracer. Sinon, déterminer les composantes connexes. Utiliser une file pour effectuer le parcours

	A	В	C	d,	E	F	G	Н	1	J
٨	1	1	0	0	0	0	0	1	1)	10
B	1	0	0	0	0	0	0	1	ti	U
C	0	0	1	0	1	1	()	()	0	1
D	0	0	0	1	0	0	0	0	1	0
E	0	0	0	0	0	1	Ò	(1	0	1
F	0	0	0	0	1	Ó	0	0	0	ī
G	0	1	0	0	0	0	0	1	0	0
H	0	0	0	0	0	0	1	1	0	0
1	0	0	0	1	0	()	()	(1	1	0
3	0.	0	0	0	0	1	0	tr -	0	1

Exercice 4: Donner les composantes ce graphe.	tes Fortement connexes et le graphe réduit de				
ar Brahme.		1	2		

Exercice 5 : Le graphe suivant est-il biparti ? Justifiez votre réponse.

Exercice 6 : Soit G un graphe non orienté connexe et pondéré. On considère l'algorithme suivant :

trier les arêtes par poids décroissants dans F:
pour chaque arête a prise dans cet ordre faire
si F-a est connexe alors F = F-a;
retourner F

- a) Appliquer cet algorithme au graphe
- b) Quel est le résultat de cet algorithme?
- c) Donner un parcours en largeur, puis un parcours en profondeur à partir du sommet A de ce graphe.

F, リア, かっている)(いる)

Bonne Chance.