CS 498 VR

Lecture 7 - 2/7/18

go.illinois.edu/VRlect7

Last Time on CS 498

- What are the rotation matrices for pitch, yaw, and roll?
 - Exam question(s) detected.

• In $M_F = M_c \cdot M_p$ which rotation matrix is applied first?

Representation of Rotations: Unit Quaternions

$$q = (a, b, c, d) \in \mathbb{R}^{4}$$
, $a^{2}+b^{2}+c^{2}+d^{2}=1$

The set of all unit q is a hypersphere (S^{3})
 R^{1}
 (a, b, c, d)
 S^{2} lives in R^{3}
 S^{1} lives in R^{4}
 S^{1} lives in R^{4}

In Unity 3D; $(x, y, z, w) = (b, c, d, a)$

In math: $a+bi+cj+dk$
 R^{9}

$$q = \begin{pmatrix} a & b & c & d & d \\ cos \frac{\theta}{2}, & v_1 \cdot sin \frac{\theta}{2}, & v_2 \cdot sin \frac{\theta}{2}, & v_3 \cdot sin \frac{\theta}{2} \end{pmatrix}$$
What is the inverse of q ?
$$q = (a, b, c, d) \qquad q = (a, b, c, d) \qquad q = (a, b, c, d)$$

$$q = (a, b, c, d) \qquad q = (a, b, c, d) \qquad q = (a, b, c, d)$$

Unit Quaternions: Multiplication

Character Matrices in Global Coordinate Frame

Steve is a Minecraft character. His head is a cube. The center of his head is the origin of the *global* coordinate frame, in which his left pupil has coordinates (1, 0, 3).

Calculate the coordinates of Steve's left pupil after Steve's head is turned first by a yaw of 90 degrees followed by a roll of 90 degrees in the *global* coordinate frame.

Chaining Matrices in Global Coordinate Frame

Applying Quaternion Rotation to a Vector

Vector
$$(x, y, z) \in \mathbb{R}^3$$

Rotate by quaternion q
 $p = (x, y, z, 1)$
 $\beta = qo po q^{-1}$

Characterizing Object Motion

"Natural" with respect to global coord. frame.

"Natural" with respect to local coord. frame.

Another Formulation of the Same Problem

Steve is a Minecraft character. His head is a cube. Originally, his *local* coordinate frame coincides with the *global* coordinate frame and his left pupil has coordinates (1, 0, 3).

Calculate the coordinates of Steve's left pupil after Steve turns his head first by a yaw of 90 degrees and then by a roll of 90 degrees in the *global* coordinate frame.

Chaining Matrices in Local Coordinate Frame

Matrix Multiplication Property: Associativity

$$A \cdot B \cdot C \cdot \mathcal{D} = A \cdot B \cdot C \cdot \mathcal{D}$$

$$R_1 \cdot R_2 \cdot \begin{bmatrix} x \\ y \\ z \end{bmatrix} = R_1 \cdot R_2 \cdot \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

Transformations: Where are we?

Rotations Axis - Angle Exponential coordinates

Limitations of 3x3 Matrices

Chaining Translations and Rotations

Rotate by R, then translate by
$$t=(tx,ty,t_2)$$
 [R] [x] + [tx] ty + [tx] Hace parentheris in proper places

Translate by $t=(tx,ty,t_2)$, [R] [x] + [tx] then rotate by R [R] [x] + [tx] ty + [tx]

Homogeneous Transformations: DOFs?

Rotate by R, then

translate by
$$\vec{t} = (tx, ty, t_2)$$
 $\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} R \\ R \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ t_2 \end{bmatrix} + \begin{bmatrix} tx \\ ty \\ t_2 \end{bmatrix} = Rx + t$

Describes all: possible rotations and translations of a 3D rigid body

(3D rigid transformations)

Sanity check:

for \vec{t} 2 total of

Homogeneous Transformation Matrix

Rotate by R, then translate by
$$t = (tx, ty, t_2)$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} R \\ R \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ t_2 \end{bmatrix} + \begin{bmatrix} tx \\ ty \\ t_2 \end{bmatrix}$$
Have: $x = Rx + t$ Want: $x' = Ax$
Solution: Algebraic trick
$$\begin{bmatrix} x' \\ y' \\ t_2 \end{bmatrix} = \begin{bmatrix} x \\ x \\ y' \\ t_2 \end{bmatrix} = \begin{bmatrix} x \\ x \\ y' \\ t_2 \end{bmatrix}$$

Review

- Give an example of two different unit quaternions that result in the same rotation.
- Invert the quaternion Q = (a, b, c, d).
 - Now give a duplicate of the inversion.
- If Q = (a, b, c, d) is a **unit quaternion**, what constraint can we put on a, b, c, and d (what do we know about them)?
- Explain in English (or your prefered verbal language) why translations and rotations are not commutative.

Announcements

- MP 2.1 due Monday @ 4:00 PM.
 - o ... The rest's due the Monday after that.
- Team Formation Survey (Piazza) also due Monday
 - o Do it or your MP grade will suffer.

• Read Ch. 3.2 & 3.3

