CS 480

Introduction to Artificial Intelligence

March 07, 2024

Announcements / Reminders

- Please follow the Week 09 To Do List instructions (if you haven't already):
- Next week: Spring Break! No office hours.
- Programming Assignment #02: posted
- Written Assignment #04: posted

Plan for Today

- Inference in Bayes Networks
- Decision Networks

Joint Probability: Marginalization

H: grad	e: female	$P(H, e) = P(H \land e)$: $P(grad \land female)$
true	true	0.074
true	false	0.148
false	true	0.086
false	false	0.691
		SUM = 1

Probability P(e):

$$P(e) = P(female = true) = 0.074 + 0.086 \approx 13 / 81$$

Probability P(e): "sum of all probabilities where e true"

Joint Probability: Conditionals

H: grad	e: female	$P(H, e) = P(H \land e)$: $P(grad \land female)$
true	true	0.074
true	false	0.148
false	true	0.086
false	false	0.691
		SUM = 1

From product rule:

$$P(H \wedge e) = P(H \mid e) * P(e)$$

we can derive:

$$P(H \mid e) = \frac{P(H \land e)}{P(e)}$$

Joint Probability: Conditionals

From product rule:

$$P(H \wedge e) = P(H \mid e) * P(e)$$

we can derive:

$$P(H \mid e) = \frac{P(H \land e)}{P(e)} = \frac{0.074}{0.074 + 0.086} \approx 0.462$$

Inference in Bayes Networks

Inference In Bayes Networks

Inference by Enumeration: Example

Query (what is the probability distribution for the following conditional P()?):

 $P(Burglary | JohnCalls = true \land MaryCalls = true)$

Joint Probability: Marginalization

H: grad	e: female	$P(H, e) = P(H \land e)$: $P(grad \land female)$
true	true	0.074
true	false	0.148
false	true	0.086
false	false	0.691
		SUM = 1

Probability P(H):

$$P(H) = P(grad = true) = 0.074 + 0.148 \approx 18 / 81$$

Probability P(H): "sum of all probabilities where H true"

Joint Probability: Marginalization

H: grad	e: female	$P(H, e) = P(H \land e)$: $P(grad \land female)$
true	true	0.074
true	false	0.148
false	true	0.086
false	false	0.691
		SUM = 1

Probability P(e):

$$P(e) = P(female = true) = 0.074 + 0.086 \approx 13 / 81$$

Probability P(e): "sum of all probabilities where e true"

Joint Probability: Conditionals

From product rule:

$$P(H \wedge e) = P(H \mid e) * P(e)$$

we can derive:

$$P(H \mid e) = \frac{P(H \land e)}{P(e)} = \frac{0.074}{0.074 + 0.086} \approx 0.462$$

General Inference Procedure

Given:

- a query involving a single variable X (in our example: Cavity),
- \blacksquare a <u>list</u> of evidence variables E (in our example: just Toothache),
- a <u>list</u> of observed values e for E,
- a list of remaining unobserved variables Y (in our example: just Catch),

where X, E, and Y together are a COMPLETE set of variables for the domain, the probability $P(X \mid E)$ can be evaluated as:

$$P(X \mid e) = \alpha * P(X, e) = \alpha * \sum_{v} P(X, e, y)$$

where ys are all possible values for Ys, α - normalization constant.

P(X, e, y) is a subset of probabilities from the joint distribution

Query:

P(Burglary | JohnCalls = true | MaryCalls = true)

Given:

- a query involving a single variable X
- a <u>list</u> of evidence variables K,
- a <u>list</u> of observed values k for K,
- a list of remaining unobserved variables Y

the probability $P(X \mid \mathbf{K})$ can be evaluated as:

$$P(X \mid k) = \alpha * P(X, k)$$

$$= \alpha * \sum_{\mathbf{v}} P(X, \mathbf{k}, \mathbf{y})$$

where ys are all possible values for Ys, α -normalization constant.

В	Е	P(A B,E)
t	t	0.95
t	f	0.94
f	t	0.29
f	f	0.001

A	P(J A)
t	0.90
f	0.05

A	P(M A)
t	0.70
f	0.01

Query:

 $P(Burglary | JohnCalls = true \land MaryCalls = true)$

Given:

- a query involving a single variable X: Burglary
- a <u>list</u> of <u>evidence</u> variables K: JohnCalls, MaryCalls
- a <u>list</u> of <u>observed</u> values k for K: johnCalls, maryCalls
- a list of remaining unobserved
 variables Y: Earthquake, Alarm

the probability $P(X \mid \boldsymbol{K})$ can be evaluated as:

$$P(X \mid k) = \alpha * \sum_{y} P(X, k, y)$$

where ys are all possible values for Ys , α -normalization constant.

В	E	P(A B,E)
t	t	0.95
t	f	0.94
f	t	0.29
f	f	0.001

A	P(J A)
t	0.90
f	0.05

A	P(M A)
t	0.70
f	0.01

Query:

 $P(Burglary | JohnCalls = true \land MaryCalls = true)$

Given:

- a query involving a single variable X:
 B
- a <u>list</u> of evidence variables K: *J*, *M*
- a <u>list</u> of observed values k for K: j, m
- a list of remaining unobserved variables Y: E, A

the probability $P(X \mid \mathbf{K})$ can be evaluated as:

$$P(X \mid k) = \alpha * \sum_{v} P(X, k, y)$$

where ys are all possible values for Ys, α -normalization constant.

В	E	P(A B,E)
t	t	0.95
t	f	0.94
f	t	0.29
f	f	0.001

A	P(J A)
t	0.90
f	0.05

A	P(M A)
t	0.70
f	0.01

Query:

 $P(Burglary | JohnCalls = true \land MaryCalls = true)$

Given:

- a query involving a single variable B
- a <u>list</u> of evidence variables K: *J*, *M*
- a <u>list</u> of observed values k for K: j, m
- a list of remaining unobserved variables Y: E, A

the probability P(B | J, M) can be evaluated as:

$$P(B \mid j,m) = \alpha * \sum_{e} \sum_{a} P(B,j,m,e,a)$$

where ys are all possible values for Ys, α -normalization constant.

В	E	P(A B,E)
t	t	0.95
t	f	0.94
f	t	0.29
f	f	0.001

A	P(J A)
t	0.90
f	0.05

A	P(M A)
t	0.70
f	0.01

Query (let's change it a bit for simplicity):

 $P(Burglary = true | JohnCalls = true \land MaryCalls = true)$

Given:

- a query involving a single variable B
- a <u>list</u> of evidence variables K: *J*, *M*
- a <u>list</u> of observed values k for K: j, m
- a list of remaining unobserved variables Y: E, A

the query can be evaluated as:

$$P(b \mid j,m) = \alpha * \sum_{e} \sum_{a} P(b,j,m,e,a)$$

By Chain rule:

$$P(b, j, m, e | a)$$

= $P(b) * P(e) * P(a|b, e) * P(j|a) * P(m|a)$

P(B)	$P(\neg B)$	P(E)	$P(\neg E)$
0.001	0.999	0.002	0.998

В	Е	P(A B,E)
t	t	0.95
t	f	0.94
f	t	0.29
f	f	0.001

Α	P(J A)	
t	0.90	
f	0.05	

A	P(M A)
t	0.70
f	0.01

Query (let's change it a bit for simplicity):

 $P(Burglary = true | JohnCalls = true \land MaryCalls = true)$

Given:

- a query involving a single variable B
- a <u>list</u> of evidence variables K: *J*, *M*
- a <u>list</u> of observed values k for K: j, m
- a list of remaining unobserved variables Y: E, A

the query can be evaluated as:

 $P(b \mid j, m)$

$$= \alpha * \sum_{e} \sum_{a} P(b) * P(e) * P(a|b,e) * P(j|a) * P(m|a)$$

P(B)	$P(\neg B)$	P(E)	$P(\neg E)$
0.001	0.999	0.002	0.998

В	E	P(A B,E)
t	t	0.95
t	f	0.94
f	t	0.29
f	f	0.001

A	P(J A)	A	P(M A)
t	0.90	t	0.70
f	0.05	f	0.01

Query (let's change it a bit for simplicity):

 $P(Burglary = true | JohnCalls = true \land MaryCalls = true)$

Given:

- a query involving a single variable B
- a <u>list</u> of evidence variables K: *J*, *M*
- a <u>list</u> of observed values k for K: j, m
- a list of remaining unobserved variables Y: E, A

the query can be evaluated as:

 $P(b \mid j,m)$

$$= \alpha * \sum_{e} \sum_{a} P(b) * P(e) * P(a|b,e) * P(j|a) * P(m|a)$$

$$= \alpha * P(b) * \sum_{e} P(e) * \sum_{a} P(a|b,e) * P(j|a) * P(m|a)$$

P(B)	$P(\neg B)$	P(E)	$P(\neg E)$
0.001	0.999	0.002	0.998

В	E	P(A B,E)
t	t	0.95
t	f	0.94
f	t	0.29
f	f	0.001

A	P(J A)	A
t	0.90	t
f	0.05	f

Query (let's change it a bit for simplicity):

 $P(Burglary = true | JohnCalls = true \land MaryCalls = true)$

Query rewritten:

 $P(b \mid j, m)$

$$= \alpha * \sum_{e} \sum_{a} P(b) * P(e) * P(a|b,e) * P(j|a) * P(m|a)$$

$$= \alpha * P(b) * \sum_{e} P(e) * \sum_{a} P(a|b,e) * P(j|a) * P(m|a)$$

В	Е	P(A B,E)
t	t	0.95
t	f	0.94
f	t	0.29
f	f	0.001

P(M|A)

0.70

0.01

f

A	P(J A)	
t	0.90	
f	0.05	

Query (let's change it a bit for simplicity):

 $P(Burglary = true | JohnCalls = true \land MaryCalls = true)$

Query rewritten:

$$P(b | j,m)$$
= $\alpha * \sum_{e} \sum_{a} P(b) * P(e) * P(a|b,e) * P(j|a) * P(m|a)$
= $\alpha * P(b) * \sum_{e} P(e) * \sum_{a} P(a|b,e) * P(j|a) * P(m|a)$

В	Е	P(A B,E)
t	t	0.95
t	f	0.94
f	t	0.29
f	f	0.001

P(M|A)

0.70

0.01

A	P(J A)	A
t	0.90	t
f	0.05	f

Query (let's change it a bit for simplicity):

 $P(Burglary = true | JohnCalls = true \land MaryCalls = true)$

Query rewritten:

$$P(b | j,m)$$
= $\alpha * \sum_{e} \sum_{a} P(b) * P(e) * P(a|b,e) * P(j|a) * P(m|a)$
= $\alpha * P(b) * \sum_{e} P(e) * \sum_{a} P(a|b,e) * P(j|a) * P(m|a)$

В	E	P(A B,E)
t	t	0.95
t	f	0.94
f	t	0.29
f	f	0.001

P(M|A)

0.70

0.01

A	P(J A)	A
t	0.90	t
f	0.05	f

Query (let's change it a bit for simplicity):

 $P(Burglary = true | JohnCalls = true \land MaryCalls = true)$

$$P(b | j,m)$$
= $\alpha * \sum_{e} \sum_{a} P(b) * P(e) * P(a|b,e) * P(j|a) * P(m|a)$
= $\alpha * P(b) * \sum_{e} P(e) * \sum_{a} P(a|b,e) * P(j|a) * P(m|a)$

В	E	P(A B,E)
t	t	0.95
t	f	0.94
f	t	0.29
f	f	0.001

A	P(J A)	
t	0.90	
f	0.05	

A	P(M A)
t	0.70
f	0.01

Query (let's change it a bit for simplicity):

 $P(Burglary = true | JohnCalls = true \land MaryCalls = true)$

$$P(b | j,m)$$
= $\alpha * \sum_{e} \sum_{a} P(b) * P(e) * P(a|b,e) * P(j|a) * P(m|a)$
= $\alpha * P(b) * \sum_{e} P(e) * \sum_{a} P(a|b,e) * P(j|a) * P(m|a)$

В	Е	P(A B,E)
t	t	0.95
t	f	0.94
f	t	0.29
f	f	0.001

A	P(J A)	1
t	0.90	
f	0.05	

Α	P(M A)
t	0.70
\mathbf{f}	0.01

Query (let's change it a bit for simplicity):

 $P(Burglary = true | JohnCalls = true \land MaryCalls = true)$

$$P(b \mid j,m)$$

$$= \alpha * \sum_{e} \sum_{a} P(b) * P(e) * P(a|b,e) * P(j|a) * P(m|a)$$

$$= \alpha * P(b) * \sum_{e} P(e) * \sum_{a} P(a|b,e) * P(j|a) * P(m|a)$$

В	E	P(A B,E)
t	t	0.95
t	f	0.94
f	t	0.29
f	f	0.001

A	P(J A)
t	0.90
f	0.05

A	P(M A)
t	0.70
f	0.01

Query (let's change it a bit for simplicity):

 $P(Burglary = true | JohnCalls = true \land MaryCalls = true)$

$$P(b | j,m)$$
= $\alpha * \sum_{e} \sum_{a} P(b) * P(e) * P(a|b,e) * P(j|a) * P(m|a)$
= $\alpha * P(b) * \sum_{e} P(e) * \sum_{a} P(a|b,e) * P(j|a) * P(m|a)$

В	E	P(A B,E)
t	t	0.95
t	f	0.94
f	t	0.29
f	f	0.001

A	P(J A)
t	0.90
f	0.05

A	P(M A)
t	0.70
f	0.01

Query (let's change it a bit for simplicity):

 $P(Burglary = true | JohnCalls = true \land MaryCalls = true)$

$$P(b | j,m)$$
= $\alpha * \sum_{e} \sum_{a} P(b) * P(e) * P(a|b,e) * P(j|a) * P(m|a)$
= $\alpha * P(b) * \sum_{e} P(e) * \sum_{a} P(a|b,e) * P(j|a) * P(m|a)$

В	E	P(A B,E)
t	t	0.95
t	f	0.94
f	t	0.29
f	f	0.001

A	P(J A)
t	0.90
f	0.05

A	P(M A)
t	0.70
f	0.01

Query (let's change it a bit for simplicity):

 $P(Burglary = true | JohnCalls = true \land MaryCalls = true)$

$$P(b | j,m)$$
= $\alpha * \sum_{e} \sum_{a} P(b) * P(e) * P(a|b,e) * P(j|a) * P(m|a)$
= $\alpha * P(b) * \sum_{e} P(e) * \sum_{a} P(a|b,e) * P(j|a) * P(m|a)$

P(B)	$P(\neg B)$	P(E)	$P(\neg E)$
0.001	0.999	0.002	0.998

В	E	P(A B,E)
t	t	0.95
t	f	0.94
f	t	0.29
f	f	0.001

A	P(J A)
t	0.90
f	0.05

A	P(M A)
t	0.70
f	0.01

Query (let's change it a bit for simplicity):

 $P(Burglary = true | JohnCalls = true \land MaryCalls = true)$

P(B)	$P(\neg B)$	P(E)	$P(\neg E)$
0.001	0.999	0.002	0.998

В	Е	P(A B,E)
t	t	0.95
t	f	0.94
f	t	0.29
f	f	0.001

A	P(J A)
t	0.90
f	0.05

A	P(M A)
t	0.70
f	0.01

Query (let's change it a bit for simplicity):

 $P(Burglary = true | JohnCalls = true \land MaryCalls = true)$

$$P(b \mid j,m)$$

$$= \alpha * \sum_{e} \sum_{a} P(b) * P(e) * P(a|b,e) * P(j|a) * P(m|a)$$

$$= \alpha * P(b) * \sum_{e} P(e) * \sum_{a} P(a|b,e) * P(j|a) * P(m|a)$$

P(B)	$P(\neg B)$	P(E)	$P(\neg E)$
0.001	0.999	0.002	0.998

В	E	P(A B,E)
t	t	0.95
t	f	0.94
f	t	0.29
f	f	0.001

A	P(J A)
t	0.90
f	0.05

A	P(M A)
t	0.70
f	0.01

Query (let's change it a bit for simplicity):

 $P(Burglary = true | JohnCalls = true \land MaryCalls = true)$

We can now calculate:

$$P(b \mid j, m) = \alpha * 0.00059224$$

And through similar process (not shown):

$$P(\neg b \mid j, m) = \alpha * 0.0014919$$

В	E	P(A B,E)
t	t	0.95
t	f	0.94
f	t	0.29
f	f	0.001

A	P(J A)	A	P(M A)
t	0.90	t	0.70
f	0.05	f	0.01

Query (now we can get joint distribution):

 $P(Burglary | JohnCalls = true \land MaryCalls = true)$

We can now calculate:

 $P(B \mid j, m) = \alpha * < 0.00059224, 0.0014919 >$

And after normalization:

 $P(B \mid j, m) \approx < 0.284, 0.716 >$

В	E	P(A B,E)
t	t	0.95
t	f	0.94
f	t	0.29
f	f	0.001

A	P(J A)	A	P(M A
t	0.90	t	0.70
f	0.05	f	0.01

More On Conditional Independence

Node \boldsymbol{X} is conditionally independent of ALL other nodes in the network its given its

Markov blanket.

Why do we care?

An unconstrained joint probability distribution with N binary variables involves 2^N probabilities. Bayesian network with at most k parents per each node (N) involves $N * 2^k$ probabilities (k < N).

Decision Networks

Decision Theory

- Decisions: every plan (actions) leads to an outcome (state)
- Agents have preferences (preferred outcomes)
- Preferences → outcome utilities
- Agents have degrees of belief (probabilities) for actions

Decision theory = probability theory + utility theory

Decision Theory

- Decisions: every plan (actions) leads to an outcome (state)
- Agents have preferences (preferred outcomes)
- Preferences → outcome utilities
- Agents have degrees of belief (probabilities) for actions

Decision theory = probability theory + utility theory

BELIEFS

DESIRES

Maximum Expected (Average) Utility

$$MEU(M) = P(S10) * U(S10) + P(S15) * U(S15) + P(S55) * U(S55)$$

$$MEU(N) = P(S20) * U(S20) + P(S15) * U(S15) + P(S12) * U(S12)$$

Agents Decisions

Recall that agent **ACTIONS** change the state:

- if we are in state s
- action a is expected to
- lead to another state s' (outcome)

Given uncertainty about the current state s and action outcome s' we need to define the following:

- probability (belief) of being in state s: P(s)
- probability (belief) of action a leading to outcome s': P(s' | s, a)

Now:

$$P(s' \mid s, a) = P(RESULT(a) = s') = \sum_{s} P(s) * P(s' \mid s, a)$$

Expected Action Utility

The expected utility of an action a given the evidence is the average utility value of all possible outcomes s' of action a, weighted by their probability (belief) of occurence:

$$EU(a) = \sum_{s'} \sum_{s} P(s) * P(s' \mid s, a) * U(s') = \sum_{s'} P(Result(a) = s') * U(s')$$

Rational agent should choose an action that maximizes the expected utility:

chosen action =
$$\underset{a}{\operatorname{argmax}}$$
 EU(a)

State Utility Function

Agent's preferences (desires) are captured by the Utility function $U(\mathbf{s})$.

Utility function assigns a value to each state s to express how desirable this state is to the agent.

Decision Network (Influence Diagram)

Decision networks (also called influence diagrams) are structures / mechanisms for making rational decisions.

Decision networks are based on Bayesian networks, but include <u>additional nodes</u> that represent actions and utilities.

Decision Networks

The most basic decision network needs to include:

- information about current state s
- possible actions
- resulting state s' (after applying chosen action a)
- utility of the resulting state U(s')

Decision Network Nodes

Decision networks are built using the following nodes:

chance nodes:

decision nodes:

utility (or value) nodes

Decision Network: Evaluation

The algorithm for decision network evaluation is as follows:

- 1. Set the evidence variables for the current state
- 2. For each possible value a of decision node:
 - a. Set the decision node to that value
 - Calculate the posterior probabilities for the parent nodes of the utility node
 - c. Calculate the utility for the action / value a
- 3. Return the action with highest utility

Decision Network: Simplified Form

(Single-Stage) Decision Networks

General Structure

Decision Network

Simplified Structure

Decision Network

(Single-Stage) Decision Networks

General Structure

Utility Table

S	low	low	low	low	high	high	high	high
Q	low	low	high	high	low	low	high	high
F	low	high	low	high	low	high	low	high
U	10	20	5	50	70	150	100	200

Simplified Structure

Action-Utility Table (not all columns shown)

AT	low	low	low	 	high	high	high
L	low	low	high	 	low	high	high
С	low	high	low	 	high	low	high
AS	A	A	A	 	В	В	В
U	10	20	5	 	150	100	200

Decision Network: Evaluation

The algorithm for decision network evaluation is as follows:

- 1. Set the evidence variables for the current state
- 2. For each possible value a of decision node:
 - a. Set the decision node to that value
 - Calculate the posterior probabilities for the parent nodes of the utility node
 - c. Calculate the utility for the action / value a
- 3. Return the action with highest utility

Agent's Decisions

Recall that agent **ACTIONS** change the state:

- if we are in state s
- action a is expected to
- lead to another state s' (outcome)

Given uncertainty about the current state s and action outcome s' we need to define the following:

- probability (belief) of being in state s: P(s)
- probability (belief) of action a leading to outcome s': P(s' | s, a)

Now:

$$P(s' \mid s, a) = P(RESULT(a) = s') = \sum_{s} P(s) * P(s' \mid s, a)$$

Expected Action Utility

The expected utility of an action a given the evidence is the average utility value of all possible outcomes s' of action a, weighted by their probability (belief) of occurence:

$$EU(a) = \sum_{s'} \sum_{s} P(s) * P(s' \mid s, a) * U(s') = \sum_{s'} P(Result(a) = s') * U(s')$$

Rational agent should choose an action that maximizes the expected utility:

chosen action =
$$\underset{a}{\operatorname{argmax}}$$
 EU(a)

Decision: take umbrella

Decision: leave umbrella

take

take

20

70

sun

rain

Decision: take umbrella

$$EU(a) = \sum_{s'} P(Result(a) = s') * U(s')$$

D	W	U
leave	sun	100
leave	rain	0
take	sun	
take	rain	70

$$EU(take) = ???$$

Decision: leave umbrella

$$EU(a) = \sum_{s'} P(Result(a) = s') * U(s')$$

D	W	U
leave	sun	100
leave	rain	0
take	sun	20
take	rain	70

$$EU(leave) = ???$$

Decision: take umbrella

$$EU(a) = \sum_{s'} P(Result(a) = s') * U(s')$$

D	W	U
leave	sun	100
leave	rain	0
take	sun	
take	rain	70

$$EU(take) = 35$$

Decision: leave umbrella

$$EU(a) = \sum_{s'} P(Result(a) = s') * U(s')$$

D	W	U
leave	sun	100
leave	rain	0
take	sun	20
take	rain	70

$$EU(leave) = 70$$

Which action to choose: take or leave Umbrella?

S_3' : D = leave, W = sun
S_4 ': D = leave, W = rain
EU(leave) =
$P(Result(leave) = \frac{S_3'}{})*U(\frac{S_3'}{}) +$
$P(Result(leave) = S_4') U(S_4') =$
0.70 * 100 + 0.30 * 0 = 70

D	W	U
leave	sun	100
leave	rain	0
take	sun	20
take	rain	70

action =
$$\underset{a}{\operatorname{argmax}}$$
 EU(a) | max(EU(take), EU(leave)) = max(35, **70**) \rightarrow leave

Decision: take umbrella

Decision: leave umbrella

Decision:take umbrella given e

$$EU(a \mid e) = \sum_{s'} P(Result(a) = s' \mid e) * U(s')$$

D	W	U
leave	sun	100
leave	rain	0
take	sun	20
take	rain	70

Decision: leave umbrella given e

$$EU(a \mid e) = \sum_{s'} P(Result(a) = s' \mid e) * U(s') \mid EU(a \mid e) = \sum_{s'} P(Result(a) = s' \mid e) * U(s')$$

take

take

20

70

sun

rain

Decision:take umbrella given e

$$EU(a \mid e) = \sum_{s'} P(Result(a) = s' \mid e) * U(s')$$

D	W	U
leave	sun	100
leave	rain	0
take	sun	20
take	rain	70

Conditional probabilities Assume that we are given:

F	W	P(F W)
sun	sun	0.80
rain	sun	0.20
sun	rain	0.10
rain	rain	0.90

By Bayes' Theorem:

$$P(W = \text{sun} \mid F = \text{sun}) = \frac{P(F = \text{sun} \mid W = \text{sun}) * P(W = \text{sun})}{P(F = \text{sun})} = \frac{0.80 * 0.70}{0.59} = 0.95$$

$$P(W = \text{sun} \mid F = \text{rain}) = \frac{P(F = \text{rain} \mid W = \text{sun}) * P(W = \text{sun})}{P(F = \text{rain})} = \frac{0.20 * 0.70}{0.41} = 0.34$$

$$P(W = rain \mid F = sun) = \frac{P(F = sun \mid W = rain) * P(W = rain)}{P(F = sun)} = \frac{0.10 * 0.30}{0.59} = 0.05$$

$$P(W = rain \mid F = rain) = \frac{P(F = rain \mid W = rain) * P(W = rain)}{P(F = rain)} = \frac{0.90 * 0.30}{0.41} = 0.66$$

70

Decision:take umbrella given sun

$$EU(a \mid e) = \sum_{s'} P(Result(a) = s' \mid e) * U(s')$$

EU(take given sun forecast) = ???

take

rain

Decision: leave umbrella given sun

$$EU(a \mid e) = \sum_{s'} P(Result(a) = s' \mid e) * U(s')$$

EU(leave given sun forecast) = ???

take

take

20

70

sun

rain

Decision:take umbrella given sun

$$EU(a \mid e) = \sum_{s'} P(Result(a) = s' \mid e) * U(s')$$

D	W	U
leave	sun	100
leave	rain	0
take	sun	
take	rain	70

EU(take given sun forecast) = 22.5

Decision: leave umbrella given sun

$$EU(a \mid e) = \sum_{s'} P(Result(a) = s' \mid e) * U(s')$$

D	W	U
leave	sun	100
leave	rain	0
take	sun	20
take	rain	70

EU(leave given sun forecast) = 95

70

Decision:take umbrella given rain

$$EU(a \mid e) = \sum_{s'} P(Result(a) = s' \mid e) * U(s')$$

EU(take given rain forecast) = ???

take

rain

Decision: leave umbrella given rain

$$EU(a \mid e) = \sum_{s'} P(Result(a) = s' \mid e) * U(s')$$

EU(leave given rain forecast) = ???

take

rain

70

Decision:take umbrella given rain

$$EU(a \mid e) = \sum_{s'} P(Result(a) = s' \mid e) * U(s')$$

W

sun

rain

sun

rain

100

70

EU(take given rain forecast) = 53

Decision: leave umbrella given rain

$$EU(a \mid e) = \sum_{s'} P(Result(a) = s' \mid e) * U(s')$$

D	W	U
leave	sun	
leave	rain	0
take	sun	20
take	rain	70

EU(leave given rain forecast) = 34

Decision:take umbrella given rain

EU(take given rain forecast) = 53

Decision: leave umbrella given rain

EU(leave given rain forecast) = 34

Decision:take umbrella given sun

EU(take given sun forecast) = 22.5

Decision:leave umbrella given sun

EU(leave given sun forecast) = 95

Decision:take umbrella given rain

EU(take given rain forecast) = 53

Decision: leave umbrella given rain

EU(leave given rain forecast) = 34

Decision:take umbrella given sun

EU(take given sun forecast) = 22.5

Decision: leave umbrella given sun

EU(leave given sun forecast) = 95

Value of Perfect Information

The value/utility of best action α without additional evidence (information) is :

$$MEU(\alpha) = \frac{max}{a} \sum_{s'} P(Result(a) = s') * U(s')$$

If we include new evidence/information ($E_j = e_j$) given by some variable E_j , value/utility of best action α becomes:

$$MEU(a_{e_j} \mid e_j) = \max_{a} \sum_{s'} P(Result(a) = s' \mid e_j) * U(s')$$

The value of additional evidence/information from Ej is:

$$VPI(E_j) = \left(\sum_{e_j} P(E_j = e_j) * MEU(a_{e_j} \mid E_j = e_j)\right) - MEU(a)$$

using our current beliefs about the world.

Decision network

The value of best action α without additional evidence

$$MEU(\alpha) = MEU(leave) = 70$$

With evidence information ($E_i = e_i$) given by Forecast:

$$MEU(a_{e_1} \mid e_1) = MEU(take \mid F = rain) = 53$$

$$MEU(a_{e_2} \mid e_2) = MEU(leave \mid F = sun) = 95$$

The value of additional evidence / information from F is:

$$\begin{aligned} \text{VPI}(E_j) = & \left(\sum_{e_j} \text{P}(E_j = e_j) * \text{MEU}(a_{e_j} \mid E_j = e_j) \right) - \text{MEU}(a) \\ \text{VPI}(F) = & \left(\text{P}(F = rain) * \text{MEU}(take \mid F = rain) + \text{P}(F = sun) * \right. \\ \text{MEU}(\text{leave} \mid F = sun)) - \text{MEU}(\text{leave}) = \\ & \left(0.41 * 53 + 0.59 * 95 \right) - 70 = 7.78 \end{aligned}$$

Outcome tree

Decision:leave umbrella

$$EU(leave) = 70$$

The value of best action α without additional evidence

$$MEU(\alpha) = MEU(leave) = 70$$

With evidence information ($E_i = e_i$) given by Forecast:

$$MEU(a_{e_1} | e_1) = MEU(take | F = rain) = 53$$

 $MEU(a_{e_2} | e_2) = MEU(leave | F = sun) = 95$

The value of additional evidence / information from F is:

$$\begin{aligned} \text{VPI}(E_j) = & \left(\sum_{e_j} \text{P}(E_j = e_j) * \text{MEU}(a_{e_j} \mid E_j = e_j) \right) - \text{MEU}(a) \\ \text{VPI}(F) = & \left(\text{P}(F = rain) * \text{MEU}(take \mid F = rain) + \text{P}(F = sun) * \right. \\ \text{MEU}(\text{leave} \mid F = sun)) - \text{MEU}(\text{leave}) = \\ & \left(0.41 * 53 + 0.59 * 95 \right) - 70 = 7.78 \end{aligned}$$

Decision:take umbrella given rain

EU(take given rain forecast) = 53

Decision: leave umbrella given sun

EU(leave given sun forecast) = 95

Utility & Value of Perfect Information

New information will not help here.

New information may help a lot here.

New information may help a bit here.

VPI Properties

Given a decision network with possible observations \mathbf{E}_{j} (sources of new information / evidence):

The expected value of information is nonnegative:

$$\forall_{j} \text{VPI}(E_{j}) \geq 0$$

VPI is not additive:

$$VPI(E_j, E_k) \neq VPI(E_j) + VPI(E_k)$$

VPI is order-independent:

$$VPI(E_i, E_k) = VPI(E_i) + VPI(E_k \mid E_i) = VPI(E_k) + VPI(E_i \mid E_k) = VPI(E_k, E_i)$$

Information Gathering Agent

function Information-Gathering-Agent(percept) returns an action persistent: D, a decision network

```
integrate percept into D
j \leftarrow the value that maximizes VPI(E_j) / C(E_j)
if VPI(E_j) > C(E_j)
then return Request(E_j)
else return the best action from D
```