CSE 103: Discrete Mathematics Chapter 1.1.-1.3: Propositional Logic

Outline

1 Propositions

² Logical Equivalences

Propositions

A proposition is a declarative sentence that is either true or false but not both. Examples of propositions:

- The Moon is made of green cheese.
- Trenton is the capital of New Jersey.
- Toronto is the capital of Canada.
- 1 + 0 = 1
- 0 + 0 = 2

Examples that are not propositions.

- Sit down!
- What time is it?
- x + 1 = 2
- x + y = z

Propositional Logic

Constructing Propositions

- Propositional Variables: p, q, r, s, . . .
- The proposition that is always true is denoted by **T** and the proposition that is always false is denoted by **F**.
- Compound Propositions; constructed from logical connectives and other propositions
- Negation ¬
- Conjunction ∧
- Disjunction ∨
- Implication →
- Biconditional ↔

Propositional Logic - negation

Suppose p is a proposition. The *negation* of p is written $\neg p$ and has meaning: "It is not the case that p."

Ex. CS1207 is NOT Belal's favorite class.

Disjunction

The disjunction of propositions p and q is denoted by $p \lor q$ and has this truth table:

Disjunction corresponds to English "or." $p \lor q$ is when p or q (or both) are true.

Ex. Michael is brave OR nuts.

p	q	p∨q
Т	Т	Т
Т	F	T
F	Т	T
F	F	F

Conjunction

The disjunction of propositions p and q is denoted by $p \land q$ and has this truth table:

Conjunction corresponds to English "and." $p \land q$ is true exactly when p and q are both true.

•Ex. Amy is curious AND clever.

p	q	pΛq
T	Т	T
Т	F	F
F	Т	F
F	F	F

Implication

- If p and q are propositions, then $p \rightarrow q$ is a conditional statement or implication which is read as "if p, then q" and has this truth table: 2 meaning
 - 1.If p then q that means if p is true then q must be true, the $p \rightarrow q$ will be true.
 - 2. p implies q means if p true then q will be true.

p	q	p →q
Т	Т	Т
Т	F	F
F	Т	Т
F	F	T

In $p \rightarrow q$, p is the hypothesis (antecedent or premise) and q is the conclusion (or consequence).

Implication can be expressed by $p \rightarrow q \equiv \neg p \lor q$

Understanding Implication

- In $p \rightarrow q$ there does not need to be any connection between the antecedent or the consequent. The meaning depends only on the truth values of p and q.
- One way to view the logical conditional is to think of an obligation or contract. "If I am elected, then I will lower taxes."
 Let p = I am elected & q = I will lower taxes

Different Ways of Expressing $p \rightarrow q$

```
if p, then q
if p, q
q unless \neg p
q if p
p is sufficient for q
q is necessary for p
a sufficient condition for q is p
```

```
p implies q
p only if q
q when p
q whenever p
q follows from p
a necessary condition for p is q
```

Converse, Contrapositive, and Inverse

- q → p is the **converse** of p → q
- $\neg q \rightarrow \neg p$ is the **contrapositive** of $p \rightarrow q$
- $\neg p \rightarrow \neg q$ is the **inverse** of $p \rightarrow q$

Example: Find the converse, inverse, and contrapositive of "It is raining is a sufficient condition for my not going to town."

Solution:

converse: If I do not go to town, then it is raining. inverse: If it is not raining, then I will go to town. contrapositive: If I go to town, then it is not raining.

How do the converse, contrapositive, and inverse relate to $p \to q$? $p \to q \equiv \neg p \lor q$ so $\neg (p \to q) \equiv p \lor \neg q$ so $p \to q \equiv \neg q \to \neg p$

- converse = contrapositive ?
- converse ≡ inverse ?
- contrapositive ≡ inverse ?

Biconditional

If p and q are propositions, then the biconditional proposition $p \leftrightarrow q$ has this truth table. "If I am elected, then I will lower taxes."

p	q	p ↔q
Т	Т	Т
Т	F	F
F	Т	F
F	F	Т

- $p \leftrightarrow q$ also reads as
 - p if and only if q
 - p iff q.
 - p is necessary and sufficient for q
 - if p then q, and conversely
 - p implies q, and vice-versa

Precedence of Logical Operators

- ¬
- ^
- \
- →

Thus $p \lor q \to \neg r$ is equivalent to $(p \lor q) \to \neg r$. If the intended meaning is $p \lor (q \to \neg r)$ then parentheses must be used.

Satisfiability, Tautology, Contradiction

A proposition is

- satisfiable, if its truth table contains **true** at least once. Example: $p \land q$.
- a tautology, if it is always true. Example: $p \vee \neg p$.
- a contradiction, if it always false. Example: $p \land \neg p$.
- a contingency, if it is neither a tautology nor a contradiction. Example: *p*.

Logical Equivalence

Two compound propositions p and q are logically equivalent if the columns in a truth table giving their truth values agree. This is written as $p \equiv q$.

.... р

It is easy to show:

Fact

 $p \equiv q$ if and only if $p \leftrightarrow q$ is a tautology.

De Morgan's Laws

$$\neg(p \land q) \equiv \neg p \lor \neg q$$

$$\neg(p \lor q) \equiv \neg p \land \neg q$$

Truth table proving De Morgan's second law.

p	q	¬р	¬q	(pvq)	¬(p∨q)	¬рл¬q	
Т	Т	F	F	Т	F	F	
Т	F	F	Т	Т	F	F	
F	Т	Т	F	Т	F	F	
F	F	Т	Т	F	Т	Т	

Important Logical Equivalences

Domination laws: $p \lor T \equiv T, p \land F \equiv F$

Identity laws: $p \wedge T \equiv p, p \vee F \equiv p$

Idempotent laws: $p \land p \equiv p, p \lor p \equiv p$

Double negation law: $\neg(\neg p) \equiv p$

Negation laws: $p \lor \neg p \equiv \mathsf{T}, p \land \neg p \equiv \mathsf{F}$

The first of the Negation laws is also called "law of excluded middle". Latin: "tertium non datur".

Commutative laws: $p \land q \equiv q \land p, p \lor q \equiv q \lor p$

Associative laws: $(p \land q) \land r \equiv p \land (q \land r)$

 $(p \lor q) \lor r \equiv p \lor (q \lor r)$

Distributive laws: $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$

 $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$

Absorption laws: $p \lor (p \land q) \equiv p, p \land (p \lor q) \equiv p$

More Logical Equivalences

TABLE 7 Logical Equivalences Involving Conditional Statements.

$$p \rightarrow q \equiv \neg p \lor q$$

$$p \rightarrow q \equiv \neg q \rightarrow \neg p$$

$$p \lor q \equiv \neg p \rightarrow q$$

$$p \land q \equiv \neg (p \rightarrow \neg q)$$

$$\neg (p \rightarrow q) \equiv p \land \neg q$$

$$(p \rightarrow q) \land (p \rightarrow r) \equiv p \rightarrow (q \land r)$$

$$(p \rightarrow r) \land (q \rightarrow r) \equiv (p \lor q) \rightarrow r$$

$$(p \rightarrow q) \lor (p \rightarrow r) \equiv p \rightarrow (q \lor r)$$

$$(p \rightarrow r) \lor (q \rightarrow r) \equiv (p \land q) \rightarrow r$$

TABLE 8 Logical Equivalences Involving Biconditional Statements.

$$\begin{split} p \leftrightarrow q &\equiv (p \to q) \land (q \to p) \\ p \leftrightarrow q &\equiv \neg p \leftrightarrow \neg q \\ p \leftrightarrow q &\equiv (p \land q) \lor (\neg p \land \neg q) \\ \neg (p \leftrightarrow q) &\equiv p \leftrightarrow \neg q \end{split}$$

A Proof in Propositional Logic

To prove:
$$\neg(p \lor (\neg p \land q)) \equiv \neg p \land \neg q$$

$$\neg(p \lor (\neg p \land \qquad \equiv \neg p \land \neg(\neg p \land q))
\equiv \neg p \land (\neg(\neg p) \lor \neg q)
\equiv \neg p \land (p \lor \neg q)
\equiv (\neg p \land p) \lor (\neg p \land \neg q)
\equiv \mathbf{F} \lor (\neg p \land \neg q)
\equiv (\neg p \land \neg q) \lor \mathbf{F}
\equiv \neg p \land \neg q$$

by De Morgan's 2nd law

by De Morgan's first law by the double negation law by the 2nd distributive law

because $\neg p \land p \equiv \mathbf{F}$ by commutativity of disj. by the identity law for \mathbf{F}

Reference:

Discrete Mathematics and Its Applications

- Rosen