Machine Learning: Neural Nets

A Motivating Example: Ryan's Question

Let's think about using Euclidean distance here:

$$d(\mathbf{p,q}) = \sqrt{\left|\sum_{i=1}^n (q_i - p_i)^2
ight|}$$

On Learning: Every Program "Learns"

Newton's Method for Finding Roots

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

$$f(x_n) = f(x_n) = f(x_n)$$

$$f(x_{n+1}) = f(x_{n+1})$$

$$f(x_{n+1}) = f(x_n)$$

Newton's Method "learns" roots

On Learning: Every Program "Learns"

Traditional Program: Newton's Method for finding roots

Machine Learning: Curve fitting by linear regression

Every Machine Learning Method Requires:

- Choosing training data and an evaluation method
- Representation of the features
 - Representing examples by feature vectors (Remember our cobra and dart frog?!)
- Distance metric for feature vectors
 - ▶ What kind of distance between the vectors do we want to consider?
- Objective function and constraints
- Optimization method for learning the model
 - ▶ How do we improve our model based on its performance?

How can we learn to identify images?

How can we learn to identify images?

"Representation of the features"

Mathematicians turn to Nature

Mathematicians turn to Nature

The Artificial Neural Net (ANN)

- Weights (along edges)
- Activation Function

Learning Weights (training your ANN)

Learning Weights (training your ANN)

A Motivating Example: Ryan's Question

Instead of looking at a distance, we identify common features:

Ryan's Question

Deep Learning

Artificial Intelligence:

Mimicking the intelligence or behavioural pattern of humans or any other living entity.

Machine Learning:

A technique by which a computer can "learn" from data, without using a complex set of different rules. This approach is mainly based on training a model from datasets.

Deep Learning:

A technique to perform machine learning inspired by our brain's own network of neurons.

Deep Learning

MNIST Handwriting Classifier

CLASSIFIER	PREPROCESSING	TEST ERROR RATE (%)	Reference
	Linear Classifiers		
linear classifier (1-layer NN)	none	12.0	LeCun et al. 1998
linear classifier (1-layer NN)	deskewing	8.4	LeCun et al. 1998
pairwise linear classifier	deskewing	7.6	LeCun et al. 1998
	K-Nearest Neighbors		
K-nearest-neighbors, Euclidean (L2)	none	5.0	LeCun et al. 1998
K-nearest-neighbors, Euclidean (L2)	none	3.09	Kenneth Wilder, U. Chicago
K-nearest-neighbors, L3	none	2.83	Kenneth Wilder, U. Chicago
K-nearest-neighbors, Euclidean (L2)	deskewing	2.4	LeCun et al. 1998
K-nearest-neighbors, Euclidean (L2)	deskewing, noise removal, blurring	1.80	Kenneth Wilder, U. Chicago
K-nearest-neighbors, L3	deskewing, noise removal, blurring	1.73	Kenneth Wilder, U. Chicago
K-nearest-neighbors, L3	deskewing, noise removal, blurring, 1 pixel shift	1.33 Kenneth Wilder, U. Chicago	
K-nearest-neighbors, L3	deskewing, noise removal, blurring, 2 pixel shift	1.22	Kenneth Wilder, U. Chicago
K-NN with non-linear deformation (IDM)	shiftable edges	0.54	Keysers et al. IEEE PAMI 2007
K-NN with non-linear deformation (P2DHMDM)	shiftable edges	0.52	Keysers et al. IEEE PAMI 2007
K-NN, Tangent Distance	subsampling to 16x16 pixels	1.1	LeCun et al. 1998
K-NN, shape context matching	shape context feature extraction	0.63	Belongie et al. IEEE PAMI 2002

large conv. net, unsup pretraining [elastic distortions]	none	0.39	Ranzato et al., NIPS 2006
large conv. net, unsup pretraining [no distortions]	none	0.53	Jarrett et al., ICCV 2009
[large/deep conv. net, 1-20-40-60-80-100-120-120-10 [elastic distortions]	none	0.35	Ciresan et al. IJCAI 2011
committee of 7 conv. net, 1-20-P-40-P-150-10 [elastic distortions]	width normalization	0.27 +-0.02	Ciresan et al. ICDAR 2011
committee of 35 conv. net, 1-20-P-40-P-150-10 [elastic distortions]	width normalization	0.23	Ciresan et al. CVPR 2012

Fast Style Transfer

Fast Style Transfer

Fast Style Transfer

Now you try!

- "tf2 arbitrary image stylization.ipynb"
- Use TensorFlow to create style transferred images