令和 6 年度 修士学位論文

論文用テンプレート

- ○○所属
- ○○課程○○専攻
 - ○○分野

指導教員 〇〇 〇〇教授

令和〇年入学

学籍番号 82313206 氏名 八木颯仁

概要

We study a family of elliptic curves $y^2 = x(x - a^2)(x + b^2)$, where (a, b, c) are Pythagorean triples. This is the family of the Frey curves of degree 2. We can 1-parameterize Pythagorean triples by rational numbers and consider the family as an elliptic curve over a function field.

$$E_{1,s}: y^2 = x(x - 4s^2)(x + (s^2 - 1)^2)$$
(1)

It is known that the generic rank of the Mordell-Weil group of $E_{1,s}$ over $\overline{\mathbb{Q}}(s)$ is 0. We found an infinite subfamily of $E_{1,s}$ whose Mordell-Weil rank over $\overline{\mathbb{Q}}(s)$ is 1, which means that there are infinitely many $s \in \overline{\mathbb{Q}}$ such that the Mordell-Weil group of $E_{1,s}$ has positive rank over $\overline{\mathbb{Q}}$.

We use the theory of elliptic surfaces to prove it. Each elliptic curve over a function field corresponds to an elliptic surface. The Shioda-Tate formula gives the relation between the Mordell-Weil rank and the Néron-Severi rank of elliptic surfaces. We compute the types of special fibers of the elliptic surfaces and consider the upper bound of the rank of the Néron-Severi group.

目次

1.	Introduction · · · · · · · · · · · · · · · · · · ·	1
2.	Preliminaries · · · · · · · · · · · · · · · · · · ·	2
3.	Proof of Theorem 1.0.1 · · · · · · · · · · · · · · · · · · ·	3
4.	The Generic Rank of $E_{2,t}$ · · · · · · · · · · · · · · · · · · ·	4
5.	Reductions · · · · · · · · · · · · · · · · · · ·	7
5.1	$E_{0,s}^{(1+3s)}$	7
参考文献		Q

1. Introduction

Theorem 1.0.1. Let

$$E_{1,s}: y^2 = x(x - 4s^2)(x + (s^2 - 1)^2)$$
(1.1)

be an elliptic curve over $\overline{\mathbb{Q}}(s)$. Then, the Mordell-Weil group

$$E_{1,s}(\overline{\mathbb{Q}}(s)) \cong \mathbb{Z}/4\mathbb{Z} \oplus \mathbb{Z}/4\mathbb{Z},$$
 (1.2)

especially the rank is 0. The torsion subgroup is generated by

$$T_1 := (2s(s+1)^2, 2s(s+1)^2(s^2+1)),$$
 (1.3)

$$T_2 := (2is(s^2 - 1), 2is(s + i)^2(s^2 - 1)).$$
 (1.4)

Corollary 1.0.2.

$$E_{1,s}(\mathbb{Q}(s)) \cong \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/4\mathbb{Z}$$
 (1.5)

is generated by T_1 and $2T_2 = (0, 0)$.

Remark 1.0.3. 課題研究では,多項式の解の非存在から背理法を用いて 8-torsion point が存在しないことを示した.

Theorem 1.0.4. Let

$$E_{2,t}: y^2 = x(x - 4s^2)(x + (s^2 - 1)^2), \quad s = \frac{2t}{t^2 - 3}$$
 (1.6)

be an elliptic curve over $\overline{\mathbb{Q}}(t)$. Then, the Mordell-Weil group

$$E_{2,t}(\overline{\mathbb{Q}}(t)) \cong \mathbb{Z} \oplus \mathbb{Z}/4\mathbb{Z} \oplus \mathbb{Z}/4\mathbb{Z},$$
 (1.7)

especially the rank is 1. The torsion subgroup is generated by T_1 and T_2 in Theorem 1.0.1 and the free part is generated by

$$\left(s^2 - 1, is(s^2 - 1)\frac{t^2 + 3}{t^2 - 3}\right). \tag{1.8}$$

2. Preliminaries

In order to get the lower bound of the rank of the Mordell-Weil group, finding generators is enough. It is more difficult to get the upper bound of the rank. The following theorem behaves a key role in the proof of the main theorem.

Theorem 2.0.1. (Shioda-Tate formula, [1, Corollary 5.3]) Let C be a smooth irreducible projective curve over an algebraically closed field k and E an elliptic curve over a function field k(C). Let $E \to C$ be the Néron model of E. Let $R \subset C$ be the set of points where the special fiber of E is singular. For each $v \in R$, let m_v be the number of components of the special fiber of E at v. Let e and e denote the rank of the Néron-Severi group of E. Then, we have

$$\rho(\mathcal{E}) = 2 + \sum_{v \in R} (m_v - 1) + \text{rank}(E(k(C))). \tag{2.1}$$

We can calculate R and m_v by Tate's algorithm, but it is still difficult to determine $\rho(\mathcal{E})$. We have the following theorem to get the upper bound of $\rho(\mathcal{E})$.

Theorem 2.0.2.

$$\rho(\mathcal{E}) \le \frac{5}{6}e(\tilde{S}) + 2,\tag{2.2}$$

$$e(\tilde{S}) := \sum_{v \in R} e(F_v). \tag{2.3}$$

where $e(\tilde{S})$ is the Euler number, $e(F_v)$ is the local Euler number of the special fiber of \mathcal{E} at v for each $v \in R$ and

$$e(F_{v}) = \begin{cases} m_{v} & \text{if the fiber has multiplicative reduction,} \\ m_{v} + 1 & \text{if the fiber has additive reduction.} \end{cases}$$
 (2.4)

証明 TODO: Naskrencki の PhD の 2.2.19(ii), 2.2.9, 2.2.10 (やその引用元)を引用する ロ

Theorem 2.0.3. ([2, Lem.3.5])

$$E(\overline{\mathbb{Q}}(s))_{\text{tors}} \hookrightarrow \prod_{v \in R} G(F_v)$$
 (2.5)

where $G(F_v)$ is the group generated by all simple components of the fiber at v. If F_v is of type I_n in Kodaira notation, then $G(F_v) \cong \mathbb{Z}/n\mathbb{Z}$.

証明 TODO

3. Proof of Theorem 1.0.1

証明 of Theorem 1.0.1

$$\Delta_{E_{1,s}} = 256s^4(s+1)^4(s-1)^4(s^2+1)^4 \tag{3.1}$$

Table 3.1 Singular fibers of $E_{1,s}$

Place	Type	m_v
s = 0	I_4	4
$s = \pm 1$	I_4	4
$s = \pm i$	I_4	4
$s = \infty$	I_4	4

$$e(\mathcal{E}_{1,s}) = 24 \tag{3.2}$$

したがって $\mathcal{E}_{1,s}$ は K3 曲面であり. $\rho(\mathcal{E}_{1,s}) \leq 20$ である. Theorem 2.0.1 より

$$\operatorname{rank}(E_{1,s}) = 0 \tag{3.3}$$

As for the torsion subgroup, we have

$$E_{1,s}(\overline{\mathbb{Q}}(s))[2] = \{O, (0,0), (4s^2, 0), (-(s^2 - 1)^2, 0)\}$$
(3.4)

$$2T_1 = (4s^2, 0) (3.5)$$

$$2T_2 = (0,0) (3.6)$$

Theorem 2.0.3 より

$$E_{2,t}(\overline{\mathbb{Q}}(t))_{\text{tors}} \hookrightarrow (\mathbb{Z}/4\mathbb{Z})^{12}$$
 (3.7)

なので位数8の点は存在しない.

4. The Generic Rank of $E_{2,t}$

In order to prove Theorem 1.0.4, Theorem 2.0.2 is not enough to get the exact upper bound of the ranks of the Néron-Severi group. Actually, we get rank $E_{2,t}(\overline{\mathbb{Q}}(t)) \leq 1$ from Theorem 2.0.1 and Theorem 2.0.2.

Table 4.1 Singular fibers of $E_{2,t}$

Place	Туре	m_v
t = 0	I_4	4
$t = \pm 1$	I_4	4
$t = \pm 3$	I_4	4
$t = \pm \sqrt{3}$	I_4	4
$t^4 - 2t^2 + 9 = 0$	I_4	4
$t = \infty$	I_4	4

証明

$$\Delta_{E_{2,t}} = 4096t^4(t-1)^4(t+1)^4(t-3)^4(t+3)^4(t^2-3)^4(t^4-2t^2+9)^4$$
(4.1)

$$e(\mathcal{E}_{4,t}) = 48\tag{4.2}$$

TODO: $\rho(\mathcal{E}_{4,t}) \leq 40$ である. Theorem 2.0.1 より

$$\operatorname{rank} E_{2,t}(\overline{\mathbb{Q}}(t)) \le 2 \tag{4.3}$$

On the other hand, we have only one point of infinite order in $E_{2,t}(\overline{\mathbb{Q}})$. Now, our goal is to show the upper bound of the rank of $E_{2,t}(\overline{\mathbb{Q}})$ is 1.

We use another method to estimate the upper bound of the rank of Néron-Severi group, which we will explain in Chapter 5. Beforehand, we express the rank of $E_{2,t}(\overline{\mathbb{Q}})$ in terms of ranks of elliptic curves with lower order coefficients in the Weierstrass equations to make the later computation feasible.

Definition 4.0.1. Let C be a smooth curve over an algebraically closed field k. Let E be an elliptic curve over a function field k(C) given by the Weierstrass equation

$$E: y^2 = x^3 + a_2 x^2 + a_4 x + a_6 (4.4)$$

where $a_2, a_4, a_6 \in k(C)$. For a fixed $u \in k(C)^*$, we denote

$$E^{(u)}: uy^2 = x^3 + a_2x^2 + a_4x + a_6 (4.5)$$

to be the quadratic twist of E by u.

Theorem 4.0.2. ([3, Exercise 10.16]) Let E be an elliptic curve over a function field k(C) and $u \in k(C)^*$. Then, the following equation holds

$$\operatorname{rank} E(k(C)) + \operatorname{rank} E^{(u)}(k(C)) = \operatorname{rank} E(k(C)(\sqrt{u})). \tag{4.6}$$

Theorem 4.0.3.

$$E_{2,t}(\overline{\mathbb{Q}}(t)) = E_{1,s}(\overline{\mathbb{Q}}(s)(\sqrt{1+3s^2}))$$
(4.7)

$$E_{1,s}^{(1+3s^2)}: (1+3s^2)y^2 = x(x-4s^2)(x+(s^2-1)^2)$$
 (4.8)

$$\operatorname{rank} E_{1,s}(\overline{\mathbb{Q}}(s)) + \operatorname{rank} E_{1,s}^{(1+3s^2)}(\overline{\mathbb{Q}}(s)) = \operatorname{rank} E_{2,t}(\overline{\mathbb{Q}}(t))$$
(4.9)

さらに

$$E_{0.s}: y^2 = x(x-4s)(x+(s-1)^2)$$
 (4.10)

$$E_{0,s}^{(1+3s)}: (1+3s)y^2 = x(x-4s)(x+(s-1)^2)$$
 (4.11)

$$E_{0,s}^{(s(1+3s))}: s(1+3s)y^2 = x(x-4s)(x+(s-1)^2)$$
 (4.12)

$$\operatorname{rank} E_{0,s}^{(1+3s)}(\overline{\mathbb{Q}}(s)) + \operatorname{rank} E_{0,s}^{(s(1+3s))}(\overline{\mathbb{Q}}(s)) = \operatorname{rank} E_{1,s}^{(1+3s^2)}(\overline{\mathbb{Q}}(s))$$
(4.13)

証明

$$s = \frac{2t}{t^2 - 3} \tag{4.14}$$

を t について解くと

$$t = \frac{1 \pm \sqrt{1 + 3s^2}}{s} \tag{4.15}$$

したがって

$$E_{2,t}(\overline{\mathbb{Q}}(t)) = E_{1,s}(\overline{\mathbb{Q}}(s)(\sqrt{1+3s^2}))$$
(4.16)

Theorem 4.0.4. TODO

$$\operatorname{rank} E_{0,s}^{(1+3s)}(\overline{\mathbb{Q}}(s)) \le 1 \tag{4.17}$$

証明

$$\Delta(E_{0,s}^{(1+3s)}) = 256s^2(s-1)^4(s+1)^4(3s+1)^6 \tag{4.18}$$

$$e(\mathcal{E}_{0,s}^{(1+3s)}) = 24$$
 (4.19)

Theorem 2.0.1 からは

$$\operatorname{rank} E_{0,s}^{(1+3s)}(\overline{\mathbb{Q}}(s)) \le 1 \tag{4.20}$$

Theorem 4.0.5.

$$\operatorname{rank} E_{0,s}^{(s(1+3s))}(\overline{\mathbb{Q}}(s)) = 1 \tag{4.21}$$

証明

$$(s-1, i(s-1)) \in E_{0,s}^{(s(1+3s))}(\overline{\mathbb{Q}}(s))$$
(4.22)

より rank は正である.

$$\Delta(E_{0,s}^{(s(1+3s))}) = 256s^8(s-1)^4(s+1)^4(3s+1)^6$$
(4.23)

上と同様に

$$\operatorname{rank} E_{0,s}^{(s(1+3s))}(\overline{\mathbb{Q}}(s)) \le 1 \tag{4.24}$$

Theorem 4.0.6. TODO

$$\operatorname{rank} E_{1,s}^{(1+3s^2)}(\overline{\mathbb{Q}}(s)) = ? \tag{4.25}$$

証明

$$\Delta(E_{1,s}^{(1+3s^2)}) = (1+3s^2)^6 \Delta(E_{1,s}) \tag{4.26}$$

$$e(\mathcal{E}_{1,s}^{(1+3s^2)}) = 36 \tag{4.27}$$

Theorem 2.0.1 からは

rank
$$E_{1,s}^{(1+3s^2)}(\overline{\mathbb{Q}}(s)) \le 2$$
 (4.28)

しか分からない。K3 ですらないので, H^2 の次元が分からず,reduction を取る方法でも計算が進められない.

$$\operatorname{rank} E_{1,s}^{(1+3s^2)}(\overline{\mathbb{Q}}(s)) = ?(1or2) \tag{4.29}$$

Theorem 4.0.7. TODO

$$\operatorname{rank} E_{0,s}^{(1+3s)}(\overline{\mathbb{Q}}(s)) \le 1 \tag{4.30}$$

証明

$$\Delta(E_{0,s}^{(1+3s)}) = 256s^2(s-1)^4(s+1)^4(3s+1)^6 \tag{4.31}$$

$$e(\mathcal{E}_{0,s}^{(1+3s)}) = 24$$
 (4.32)

Theorem 2.0.1 からは

$$\operatorname{rank} E_{0,s}^{(1+3s)}(\overline{\mathbb{Q}}(s)) \le 1 \tag{4.33}$$

Theorem 4.0.8.

$$\operatorname{rank} E_{0,s}^{(s(1+3s))}(\overline{\mathbb{Q}}(s)) = 1 \tag{4.34}$$

証明

$$(s-1, i(s-1)) \in E_{0,s}^{(s(1+3s))}(\overline{\mathbb{Q}}(s))$$
(4.35)

より rank は正である.

$$\Delta(E_{0,s}^{(s(1+3s))}) = 256s^8(s-1)^4(s+1)^4(3s+1)^6 \tag{4.36}$$

上と同様に

$$\operatorname{rank} E_{0,s}^{(s(1+3s))}(\overline{\mathbb{Q}}(s)) \le 1 \tag{4.37}$$

5. Reductions

5.1 $E_{0,s}^{(1+3s)}$

K3 なので

$$\dim_{\mathbb{Q}_l} H^2_{\text{\'et}}(\tilde{S}, \mathbb{Q}_l) = 22 \tag{5.1}$$

である. Let V be the subspace of $NS(\tilde{S})$ generated by the singular fibers and the zero section. Then V is of rank 19, on which the Frobenius automorphism acts by multiplication by p.

$$char(\Phi_{\tilde{S}}^*|V) = (x-5)^{19}$$
(5.2)

Note that all the multiplicative fibers are split.

$$t_m := \text{Tr}((\Phi_{\tilde{S}, H_{\acute{e}t}^2/V}^*)^m) = \#\tilde{S}(\mathbb{F}_{5^m}) - 1 - 5^{2m} - 19 \cdot 5^m$$
(5.3)

m	1	2	3
$\# \tilde{S}(\mathbb{F}_{5^m})$	120	1080	18264
t_m	-1	-21	263

$$char(\Phi_{\tilde{S}, H_{\acute{e}t}^2/V}^*) = x^3 + x^2 + 11x - 77$$
 (5.4)

参考文献

- [1] T. Shioda. On the Mordell-Weil Lattices. Commentarii Mathematici Universitatis Sancti Pauli 39, (1990).
- [2] B. Naskręcki. Mordell-Weil ranks of families of elliptic curves associated to Pythagorean triples. eng. Acta Arithmetica 160.2, pp. 159–183, (2013). URL: http://eudml.org/doc/279803.
- [3] J. H. Silverman. The arithmetic of elliptic curves. eng. 2nd ed. Graduate texts in mathematics; 106. New York: Springer, 2009.