Amendments to the Claims

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

(Withdrawn) A method of manufacturing metal nanostructures comprising:
identifying a desired shape for the metal nanostructures,

forming the metal nanostructures under reaction conditions optimized to yield the desired shape at a higher percentage than any other nanostructure shape,

separating the nanostructures having the desired shape from nanostructures of other shapes.

- 2. (Withdrawn) The method of claim 1, wherein the separating comprises filtering nanostructures having the described shape from nanostructures of other shapes.
- 3. (Withdrawn) The method of claim 1, wherein the separating is achieved by gravity.

4. (Currently amended) A method of manufacturing silver nanostructures nanopyramids having a desired shape and size such as nanospheres, nanocubes, nanowires, nanopyramids and multiply twinned nanoparticles, the method comprising:

obtaining a solution of silver nitrate in ethylene glycol a solvent,

obtaining a solution of poly(vinyl pyrrolidone) in ethylene glycol a solvent;

selecting reaction conditions to yield a silver nanostructure nanopyramid

having a desired shape and size, wherein the reaction conditions comprise a

silver nitrate concentration, a poly(vinyl pyrrolidone) concentration, a reaction

temperature and reaction a growth time; and

combining the solution of silver nitrate in ethylene glycol solvent and the solution of poly(vinyl pyrrolidone) in ethylene glycol solvent together, and allowing a reaction to occur at the reaction temperature over the growth time.

- 5. (Currently amended) The method of claim 4, wherein the reaction conditions are selected to yield a desired shape <u>and size of nanopyramid</u> at a percentage higher than any other <u>nanostructure nanopyramid</u> shape <u>and size</u>.
- 6. (Currently amended) The method of claim 5, wherein the method further comprises separating nanostructures nanopyramids having the desired shape and size from nanostructures of other shapes and sizes.

- 7. (Currently amended) The method of claim 4, wherein the solution of silver nitrate in ethylene glycol solvent and the solution of poly(vinyl pyrrolidone) in ethylene glycol solvent are combined simultaneously to with a separate volume of ethylene glycol a solvent.
- 8. (Currently amended) The method of claim 4, wherein the nanostructures are nanocubes wherein the poly(vinyl pyrrolidone) has a molecular weight ranging from about 40,000 to about 1,300,000 and wherein the concentration and amount of poly(vinyl pyrrolidone) solution is sufficient to provide a ratio of poly(vinyl pyrrolidone) to silver nitrate ranging from about 1 to about 4.
- 9. (Currently amended) The method of claim 4, wherein the nanostructures are nanowires wherein the solution of silver nitrate in solvent includes silver nitrate at a concentration ranging from approximately 0.20 mol/dm³ to approximately 0.30 mol/dm³; and wherein the reaction temperature ranges from approximately 90° C to approximately 110° C, and the growth time ranges from approximately 4 hours to approximately 10 hours.
- 10. (Currently amended) The method of claim 4 claim 9, wherein the nanostructures are nanopyramids reaction temperature is approximately 100° C and the growth time is approximately 5 hours.

11. (Original) The method of claim 4, wherein the nanostructures are multiply

twinned particles.

12. (Original) A method of manufacturing silver nanocubes comprising:

preparing a solution of silver nitrate in ethylene glycol, wherein the

concentration of silver nitrate ranges from about 0.1 mol/dm³ to about 0.3

mol/dm³;

preparing a solution of poly(vinyl pyrrolidone) in ethylene glycol, wherein

the concentration and amount of poly(vinyl pyrrolidone) solution is sufficient to

provide a ratio of poly(vinyl pyrrolidone) to silver nitrate ranging from about 1.5 to

about 3; and

combining the silver nitrate solution and poly(vinyl pyrrolidone) solution

and allowing the mixture to react at a temperature ranging from about 155° C to

about 175° C for a time ranging from about 10 minutes to about 60 minutes.

13. (Original) The method of claim 12, wherein the poly(vinyl pyrrolidone) has

a molecular weight ranging from about 40,000 to about 1,300,000.

14. (Original) The method of claim 12 where the poly(vinyl pyrrolidone) has a

molecular weight of about 55,000.

15. (Withdrawn) A method of preparing hollow nanostructures comprising: obtaining a solution of solid nanostructures comprising at least one metal, selecting a salt of a second metal, wherein the first metal can reduce the salt, and

blending a sufficient amount of the salt with the solid nanostructure solution to enable the formation of hollow nanostructures.

- 16. (Withdrawn) The method of claim 15, wherein the salt is HAuCl₄.
- 17. (Withdrawn) The method of claim 15 wherein the amount of the salt is sufficient to yield hollow nanostructures comprising substantially non-porous walls.
- 18. (Withdrawn) The method of claim 15 wherein the amount of the salt is sufficient to yield hollow nanostructures comprising porous walls.
- 19. (Withdrawn) The method of claim 15 wherein the solid nanostructures comprise nanocubes and the hollow nanostructures comprise nanoboxes.
- 20. (Withdrawn) The method of claim 15 wherein the solid nanostructures comprise nanospheres and the hollow nanostructures comprise hollow nanospheres.

U.S. Patent Application Serial No. 10/732,910

Amendment and Response to Office Action November 21, 2007

Reply to Office Action of June 22, 2007

21. (Withdrawn) The method of claim 15 wherein the solid nanostructures

comprise half cubes and the hollow nanostructures comprise hollow half cubic boxes.

22. (Withdrawn) The method of claim 15, wherein the solid nanostructures

comprise nanowires and the hollow nanostructures comprise nanotubes.

23. (Withdrawn) The method of claim 15, wherein the sufficient amount of

metal salt is determined by preparing a solution of the salt, adding the solution dropwise

to the nanostructure solution, and examining the solution on a microscope to determine

the progress of the reaction following the addition of each drop.

24. (Withdrawn) The method of claim 15, wherein the solution of solid

nanostructures comprises 5 mL at a concentration of 4x109 particles/mL and the

amount of metal salt added is 1.5 mL at a concentration of 1 x 10⁻³ mol/dm³ in aqueous

solution.

25. (Withdrawn) The method of claim 15, wherein the solid nanostructures

comprise silver.

26. (Withdrawn) The method of claim 25, wherein the hollow nanostructures

comprise gold/silver alloy.

U.S. Patent Application Serial No. 10/732,910

Amendment and Response to Office Action November 21, 2007

Reply to Office Action of June 22, 2007

27. (Withdrawn) The method of claim 25, wherein the hollow nanostructures

comprise a metal alloy comprising at least one of palladium/silver alloy and

platinum/silver alloy.

28. (Withdrawn) The method of claim 15, wherein the solid nanostructures

comprise nickel/cobalt alloy.

29. (Withdrawn) The method of claim 28, wherein the hollow nanostructures

comprise at least one of (1) silver/nickel alloy and silver/cobalt alloy and (2) gold/nickel

alloy and gold/cobalt alloy.

30. (Withdrawn) A hollow nanostructure comprising:

a metal alloy, having a hollow shape and substantially non-porous walls,

wherein the nanostructure results from a replacement reaction with another

metal.

31. (Withdrawn) The nanostructure of claim 30 wherein the metal alloy

comprises gold/silver alloy.

- 32. (Withdrawn) The nanostructure of claim 30, wherein the metal alloy comprises at least one of (1) palladium/silver alloy, (2) platinum/silver alloy, (3) silver/nickel alloy and silver/cobalt alloy and (4) gold/nickel alloy and gold/cobalt alloy.
 - 33. (Withdrawn) A hollow nanostructure comprising:

a metal alloy, having a hollow shape and porous walls, wherein the nanostructure results from a replacement reaction with another metal.

- 34. (Withdrawn) The nanostructure of claim 33, wherein the metal alloy comprises gold/silver alloy.
- 35. (Withdrawn) The nanostructure of claim 33, wherein the metal alloy comprises at least one of (1) palladium/silver alloy, (2) platinum/silver alloy, (3) silver/nickel alloy and silver/cobalt alloy and (4) gold/nickel alloy and gold/cobalt alloy.
- 36. (Withdrawn) A method of preparing a nanostructure comprising a first structure encapsulated by a nanoshell comprising:

obtaining a solution of nanoparticles comprising a first metal;

plating the nanoparticles with a second metal which is different from the

first metal; and

reacting the plated nanoparticles with a solution containing a salt of a third metal, wherein the second metal is capable of reducing the salt.

- 37. (Withdrawn) The method as recited in claim 36, wherein the first metal is an alloy.
- 38. (Withdrawn) The method as recited in claim 36, wherein the second metal is an alloy.
- 39. (Withdrawn) The method as recited in claim 36, wherein the first metal and third metal are the same.
- 40. (Withdrawn) A nanostructure comprising a first structure encapsulated by a nanoshell comprising:
 - a nanostructure core formed of a first metal, and
 - a nanoshell formed of a second metal, wherein the nanoshell encapsulates the nanostructure core, and
 - wherein the nanostructure core and nanoshell are separated by a space along at least a portion of the circumference of the nanostructure core.

is unattached to the first nanoshell so that it can move freely within the nanoshell.

42. (Withdrawn) The nanostructure as claimed in claim 40, wherein the

(Withdrawn) The nanostructure as claimed in claim 40, wherein the core

nanostructure is solid.

41.

43. (Withdrawn) The nanostructure as claimed in claim 40, wherein the

nanostructure is hollow.

44. (Withdrawn) The nanostructure as claimed in claim 40, wherein the

nanostructure comprises at least one additional nanoshell encapsulating the

nanostructure.

45. (Withdrawn) The nanostructure as claimed in claim 40, wherein the first

metal is an alloy.

46. (Withdrawn) The nanostructure as claimed in claim 40, wherein the

second metal is an alloy.

47. (New) A method of manufacturing silver nanowires having a desired

shape and size, the method comprising:

obtaining a solution of silver nitrate in a solvent;

obtaining a solution of poly(vinyl pyrrolidone) in a solvent;

selecting reaction conditions to yield a silver nanowire having a desired shape and size;

combining the solution of silver nitrate in solvent and the solution of poly(vinyl pyrrolidone) in solvent together, wherein the concentration of poly(vinyl pyrrolidone) relative to the concentration of silver nitrate is at a molar ratio ranging from approximately 1 to approximately 10; and

allowing a reaction to occur at the reaction temperature over the growth time.

48. (New) The method of claim 47, wherein the solution of silver nitrate in solvent has a concentration ranging from approximately 0.03 mol/dm³ to approximately 0.1 mol/dm³;

wherein the reaction temperature ranges from approximately 150° C to approximately 190° C, and the growth time ranges from approximately 20 minutes to approximately 60 minutes; and

wherein the concentration of poly(vinyl pyrrolidone) relative to the concentration of silver nitrate is at a molar ratio ranging from approximately 1 to approximately 10.

Reply to Office Action of June 22, 2007

49. (New) The method of claim 47, wherein the solution of silver nitrate in solvent has a silver nitrate concentration of approximately 0.085 mol/dm³ and the reaction temperature is approximately 160° C, and the growth time is approximately 40 minutes.

- 50. (New) The method of claim 47, wherein the solution of silver nitrate and the solution of poly(vinyl pyrrolidone) are simultaneously injected at an injection rate of 0.375 mL/minute into a separate volume of heated ethylene glycol.
 - 51. (New) A method of manufacturing silver nanowires the method comprising:

obtaining a solution of silver nitrate in solvent,

obtaining a solution of poly(vinyl pyrrolidone) in solvent;

selecting reaction conditions to yield a silver nanowire, wherein the reaction conditions comprise a silver nitrate concentration, a poly(vinyl pyrrolidone) concentration, a reaction temperature and a growth time; and

combining the solution of silver nitrate in solvent and the solution of poly(vinyl pyrrolidone) in solvent together, and allowing a reaction to occur at the reaction temperature over the growth time to synthesize silver nanowires.

- 52. (New) The method of claim 51 wherein the silver nanowires have an aspect ration of at least 10:1.
- 53. (New) The method of claim 51 wherein the silver nanowires have a pentagonal crossection.