微积分 A(上)期末试题(A卷)

座与	座号	班级	_ 学号	姓名
----	----	----	------	----

(试卷共6页,十个大题. 解答题必须有过程. 试卷后面空白纸撕下做草稿纸. 试卷不得拆散.)

题号	 11	111	四	五	六	七	八	九	+	总分
得分										
签名										

一、填空(每小题4分,共20分)

3.
$$\int_0^1 \frac{\sqrt{x}}{1 + \sqrt{x}} dx = \underline{\qquad}$$

$$4. \int \frac{\ln(\cos x)}{\cos^2 x} dx = \underline{\qquad}.$$

5. 设
$$xy' + y = xe^x$$
, 则 $y =$ ______

- 二、计算题(每小题5分,共20分)
- 1. 求极限 $\lim_{n\to\infty} n^3 \left(\sin\frac{1}{n} \frac{1}{2}\sin\frac{2}{n}\right)$.

2. 设
$$y = x^{\sin x} + \sin^2 x$$
, 求 dy .

3. 计算
$$\int_{\sqrt{e}}^{e^{\frac{3}{4}}} \frac{dx}{x\sqrt{\ln x(1-\ln x)}}.$$

4. 求
$$\frac{dy}{dx} = \frac{1}{x+y}$$
 的通解.

三、(8分) 已知 $\lim_{x\to +\infty} (\sqrt{x^2-x+1}-ax+b)=0$,试确定常数 a 和 b 的值.

四、(6分) 已知 $y_1 = 10, y_{n+1} = \sqrt{6 + y_n} (n = 1, 2, ...)$. 证明:数列 $\{y_n\}$ 极限存在;并求此极限.

五、(8分) 求函数 $y = \frac{x^3 - 1}{x}$ 的单调区间和极值,凹凸区间和拐点,渐近线.

六、(8分) 设曲线 $x = y^2 (y > 0)$, $x = 2 - y^2 (y > 0)$ 及 y = 0 围成一平面图形 D.

- (1) 求平面图形 D的面积;
- (2) 求平面图形 D 绕 y 轴旋转所得旋转体的体积.

- 七、(8分) 由方程 $y = 2x^2$, y = 4 所确定的抛物型薄片铅直地浸入水中,顶端与水面 持平.
 - (1) 试求薄片一侧所受到的水压力;
 - (2) 如果此后水面以每秒0.5米的速度开始上涨,试计算薄片一侧所受水压力的变化率. (长度单位: m,重力加速度 $g(m/s^2)$,水的密度 $\rho(kg/m^3)$).

八、(8分)设 f(x)在[-1,1]上具有三阶连续导数,且 f(-1)=0, f(1)=1, f'(0)=0, 证明在开区间(-1,1)内至少存在一点 ξ ,使 $f^{(3)}(\xi)=3$.

九、(8分) 设 $f(x) = e^{-x} + \int_0^x (x-t)f(t)dt$, 其中 f(x) 连续,求 f(x) 的表达式.

十、(6分)已知f(x)在闭区间[1,6]上连续,在开区间(1,6)内可导,且

$$f(1) = 5$$
, $f(5) = 1$, $f(6) = 12$.

证明: 存在 $\xi \in (1,6)$, 使 $f'(\xi) + f(\xi) - 2\xi = 2$ 成立.