

| Course              | Methods_Test 3_ Year12                                                                                                                                  |
|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| Student name:       | Teacher name:                                                                                                                                           |
| Date:               |                                                                                                                                                         |
| Task type:          | Response                                                                                                                                                |
| Time allowed for th | is task:45 mins                                                                                                                                         |
| Number of question  | ns:9                                                                                                                                                    |
| Materials required: | Calculator with CAS capability (to be provided by the student)                                                                                          |
| Standard items:     | Pens (blue/black preferred), pencils (including coloured), sharpener, correction fluid/tape, eraser, ruler, highlighters                                |
| Special items:      | Drawing instruments, templates, notes on one unfolded sheet<br>of<br>A4 paper, and up to three calculators approved for use in the<br>WACE examinations |
| Marks available:    | 46 marks                                                                                                                                                |
| Task weighting:     | 10%                                                                                                                                                     |
| Formula sheet prov  | ided: Yes                                                                                                                                               |

 $\underline{\text{Note: All part questions worth more than 2 marks require working to obtain full marks.}}$ 

Q1 (3.1.6) (3 & 3 = 6 marks)Determine the exact gradient of each of the following at the given point. Show all working.

|    |                            | $(\pi_{-1})$                           |
|----|----------------------------|----------------------------------------|
| a) | $y = \cos 3x$ at the point | $\left(\frac{3}{3},\frac{1}{1}\right)$ |

$$y' = -3\sin 3x$$
$$=0$$

# **Specific behaviours**

✓ diff

✓ subs x value

✓ obtains derivative

b) 
$$y = 5\cos^2 x$$
 at the point  $\left(\frac{\pi}{6}, \frac{15}{4}\right)$ 

## **Solution**

$$y' = 10\cos x(-\sin x)$$

$$=10\left(\frac{\sqrt{3}}{2}\right)\left(-\frac{1}{2}\right)=-\frac{5\sqrt{3}}{2}$$

# **Specific behaviours**

✓ diff

✓ subs x value

✓ obtains derivative

Q2 (3.1.6) Determine the exact area shaded in the diagram below without the use of a classpad. (4 marks)

**Solution** 

$$\int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \sin 2x - \cos x \, dx$$

$$= \left[ \frac{-1}{2} \cos 2x - \sin x \right]_{\frac{\pi}{6}}^{\frac{\pi}{2}}$$

$$= \left( \frac{1}{2} - 1 \right) - \left( \frac{-1}{4} - \frac{1}{2} \right)$$

$$= \frac{1}{4}$$

# **Specific behaviours**

- ✓ sets up integral
- ✓ uses correct limits
- ✓ shows antiderivatives
- determines area



Q3 (3.1.6/3.1.10) (3 & 3 = 6 marks)

Consider the triangle drawn below with angle  $^{\chi}$  radians and fixed length sides 5 & 3 cm. Let  $^{A}$  represent the area of the triangle in  $^{cm^2}$ .



a) Determine  $\frac{dA}{dx}$  when  $x = \frac{\pi}{4}$ 

| $A = \frac{1}{2} (15) \sin x$                                      |
|--------------------------------------------------------------------|
| $\frac{dA}{dx} = \frac{15}{2} \cos x$                              |
| $= \frac{15}{2} (\frac{1}{\sqrt{2}}) or \frac{15\sqrt{2}}{4} cm^2$ |

# **Specific behaviours**

**Solution** 

- ✓ uses area formula
- ✓ states derivative
- ✓ subs to find exact value or approx
- b) Using the increments formula, determine the approximate change in the area when the angle changes from  $\frac{\pi}{4}$  to  $\frac{\pi}{4}$  + 0.01 radians.

|                                                                       | Solution |  |
|-----------------------------------------------------------------------|----------|--|
| $\Delta A \simeq \frac{dA}{dx} \Delta x$                              |          |  |
| $= \frac{15}{2} \left( \frac{1}{\sqrt{2}} \right) 0.01 \approx 0.053$ |          |  |

## Specific behaviours

- ✓ uses increments formula
- ✓ subs correct values
- ✓ determines approx. change

Q4 (3.3.1) (4 marks)

The expected value of the discrete probability distribution, X given below, is  $3\frac{2}{3}$ . Determine the values of the constants p & q and the variance of X to 3 decimal places.

|          | 0.00 |   | 10 0 0.00 |   |     |
|----------|------|---|-----------|---|-----|
| X        | 1    | 2 | 3         | 4 | 5   |
| P(X = X) | 0.1  | Р | 0.1       | q | 0.3 |



Q5 (3.3.13) (3 marks)

A binomial distribution has a mean of 6 and a standard deviation pf 1.9. Determine the values of n & p, the number of trials and the probability of a success.



Q6 (3.3.7) (4 marks)
A teacher needs to scale the results of her class by first multiplying be a constant and then adding a

A teacher needs to scale the results of her class by first multiplying be a constant and then adding a second constant. The original mean was 72 with a standard deviation of 21, the teacher needs the scaled results to have a mean of 60 and a standard deviation of 15. Determine the values of a & b.



✓ solves for second constant

Q7 
$$(4.1.11)$$
 (3 & 3 = 6 marks)

The displacement of a car moving in straight line is given by s(t) km at t hours, where  $s(t) = 55 + t \ln(31t^2)$ 

The following questions require full working and answers only given by the classpad will not receive full marks.

a) Determine the velocity at t = 3.5 hours.

| $\frac{ds}{dt} = t \frac{62t}{31t^2} + \ln\left(31t^2\right)$ |
|---------------------------------------------------------------|
| $=2 + \ln\left(\frac{1519}{4}\right) \simeq 7.9$              |

## **Specific behaviours**

**Solution** 

- ✓ uses product rule
- ✓ diff log term
- ✓ obtains speed

b) Determine the time that the acceleration will be 0.2  $km/h^2$ .

| $v = 2 + \ln(31t^2) = 2 + \ln 31 + 2 \ln t$ |
|---------------------------------------------|
| $a = \frac{2}{t} = 0.2$                     |
| t =10                                       |

### **Specific behaviours**

**Solution** 

- ✓ shows how to diff velocity
- ✓ sets up equation
- ✓ solves for t

Q8 
$$(4.1.6)$$
 (3 & 3 = 6 marks)

Consider the function  $f(x) = \ln(x-2) + 3$ 

$$f(x) = \ln(x-2) + 3$$

a) Sketch the function on the axes below showing all major features.



- ✓ shape
- ✓ y less than 6 at x=10
- b) In terms of the constants  $p \otimes q$ , determine the x intercept of the function f(x+2p)-q.

Solution

$$f(x) = \ln(x-2) + 3$$
 $f(x+2p) - q = \ln(x+2p-2) + 3 - q$ 
 $0 = \ln(x+2p-2) + 3 - q$ 
 $q - 3 = \ln(x+2p-2)$ 
 $x + 2p - 2 = e^{q-3}$ 
 $x = e^{q-3} + 2 - 2p$ 

Specific behaviours

- ✓ replaces x with x+2p
- ✓ rearranges to an exponential equation
- ✓ obtains expression for x

| natics Department | Perth |
|-------------------|-------|
|                   |       |
|                   |       |
|                   |       |
|                   |       |
|                   |       |
|                   |       |
|                   |       |
|                   |       |
|                   |       |
|                   |       |
|                   |       |
|                   |       |
|                   |       |
|                   |       |
|                   |       |
|                   |       |
|                   |       |
|                   |       |
|                   |       |
|                   |       |
|                   |       |

Q9 (4.1.11/3.2.16)

$$(3 \& 4 = 7 \text{ marks})$$

This question must be answered without the use of a classpad to receive full marks.

a) 
$$\frac{d}{dx}[(x+1)\ln(1+x)]$$
 (Simplify)

#### Solution

$$\frac{d}{dx} [(x+1)\ln(1+x)] = (x+1)\frac{1}{1+x} + \ln(1+x) = 1 + \ln(1+x)$$

#### **Specific behaviours**

- ✓ uses product rule
- ✓ diff log term
- ✓ obtains simplified expression

b) Use the result from (a) above to determine  $\int_{-\infty}^{3} \ln(1+x) dx$  in exact simplified form.

#### Solution

$$\int \frac{d}{dx} \{ (x+1)\ln(1+x) \} dx = \int 1 + \ln(1+x)$$

$$(x+1)\ln(1+x) = x + \int \ln(1+x) dx$$

$$\int \ln(1+x) dx = (x+1)\ln(1+x) - x$$

$$\int_{2}^{3} \ln(1+x) dx = \left[ (x+1)\ln(1+x) - x \right]_{2}^{3} = (4\ln 4 - 3) - (3\ln 3 - 2)$$

$$= \ln 4^{4} - \ln 3^{3} - 1$$

$$= \ln \left( \frac{4^{4}}{3^{3}} \right) - 1 = \ln \left( \frac{4^{4}}{3^{3}} \right) - 1ne$$

#### **Specific behaviours**

- ✓ uses linearity principle (first line)
- ✓ uses fundamental theorem
- ✓ obtains antiderivative and subs correct limits

✓ gives simplified exact log expression