

Obsah

- Rovnice dráhy družice
- Keplerovské parametry
- Výpočet dráhy družice z keplerovských parametrů
- Výpočet dráhy družice GPS a Galileo
- Výpočet dráhy družice GLONASS

Roynice dráhy družice

- Na družici působí dvě síly
 - 1. Gravitační síla
 - 2. Síla podle druhého Newtonova zákona

Síla podle druhého Newtonova zákona

$$\mathbf{F}=m.\,\mathbf{g}$$

- *m* hmotnost družice
- g vektor zrychlení

$$\boldsymbol{g} = \frac{d^2 \boldsymbol{r}}{dt^2}$$

r polohový vektor družice

Gravitační síla

$$F = \frac{k.M.m}{r^2} = \frac{\mu.m}{r^2}$$

 $k = 6,672. \, 10^{-11} \, m^3/kg/s^2$ universální gravitační konstanta

M

hmotnost Země

vzdálenost družice od gravitačního středu Země

 $k.M = \mu$

standardní gravitační parametr Země

Rovnováha gravitační síly a síly podle II. Newtonova zákona

$$\frac{d^2\mathbf{r}}{dt^2} = -\frac{\mu \cdot \mathbf{r}}{r^3}$$

Rozepsání do složek

$$\frac{d^2x}{dt^2} = -\frac{\mu \cdot x}{r^3}; \frac{d^2y}{dt^2} = -\frac{\mu \cdot y}{r^3}; \frac{d^2x}{dt^2} = -\frac{\mu \cdot x}{r^3}$$

Řešení vede na dráhy ve tvaru kuželoseček, tj.

- Kružnice
- Elipsa
- Parabola
- Hyperbola

Keplerovské parametry

6 parametrů popisujících dráhu družice

- I. Skupina Orientace oběžné roviny vůči Zemi
 - inklinace oběžné dráhy družice i
 - zeměpisná délka vzestupného uzlu (rektascenze) Ω
 - argument perigea ω

II. Skupina - Tvar dráhy družice

- délka hlavní poloosy oběžné dráhy a
- excentricita oběžné dráhy e
- čas průchodu perigeem t_p

Dráha družice

Výpočet dráhy družice

- Střední anomálie M_k
 - Fiktivní úhel, který lineárně závisí na čase

$$M_k - M_0 = \sqrt{\frac{GM}{a^3}} (t - t_{0e})$$

G univerzální gravitační konstanta

 t_{0e} vztažný čas

Keplerova rovnice

• Vztah mezi střední E_k a excentrickou M_k anomálií

$$E_k - e.\sin(E_k) = M_k$$

(řeší se numericky prostou iterativní metodou)

Pravá anomálie v_k

$$v_k = tan^{-1} \left\{ \frac{\sqrt{1 - e^2} \sin E_k}{\cos E_k - e} \right\}$$

Geometrická interpretace

Poloha družice v oběžné rovině

Poloměr dráhy

$$r_k = A(1 - e \cdot \cos E_k)$$

Souřadnice v orbitální rovině

$$x_k' = r_k \cos v_k$$
$$y_k' = r_k \sin v_k$$

Transformace do ECEF

- Dvě rotace
 - 1. Kolem osy *x* o inklinaci *i*
 - 2. Kolem osy z o úhel $-\Omega_k$

$$\Omega_k = \Omega_0 + \dot{\Omega}t_k$$

 Ω_0 délka vzestupného uzlu v referenčním čase

 $\dot{\Omega}$ rychlost rotace Země

 t_k je doba, která uplynula od referenčního času

Transformace do ECEF

Výsledný vztah

$$x = x_k' \cdot \cos \Omega_k - y_k' \cdot \cos i \cdot \sin \Omega_k$$

$$y = x_k' \cdot \sin \Omega_k - y_k' \cdot \cos i \cdot \cos \Omega_k$$

$$z = y_k' \cdot \sin i$$

Výpočet dráhy GLONASS

$$\frac{d^2x}{dt^2} = -\frac{\mu \cdot x}{r^3}; \frac{d^2y}{dt^2} = -\frac{\mu \cdot y}{r^3}; \frac{d^2x}{dt^2} = -\frac{\mu \cdot x}{r^3}$$

- Almanach systému obsahuje
 - Polohový vektor družice (x_n, y_n, z_n) ve vztažném čase
 - Vektor rychlosti $(\dot{x_n}, \dot{y_n}, \dot{z_n})$ ve vztažném čase
 - Doba platnosti dat 30 minut
 - Vztažný čas je v půlce doby platnosti dat

Výpočet dráhy GLONASS

- Dvě metody výpočtu
 - 1. Základní metoda
 - velmi složitá kompenzace vlivu okolních těles
 - výpočet probíhá v ECI, pak transformace v ECEF
 - 2. Zjednodušená metoda
 - vlivy okolních těles a rozložení hmoty v zemském tělese korigováno vektorem zrychlení $(\ddot{x_n}, \ddot{y_n}, \ddot{z_n})$
 - výpočet probíhá v ECEF s využitím diferenciální rovnice, která prování transformaci z ECI do ECEF v průběhu numerického řešení

$$d\mathbf{r}/dt = \widetilde{d\mathbf{r}}/dt + \boldsymbol{\omega_m} \times \mathbf{r}$$

 Pro řešení diferenciálních rovnic se doporučuje použít čtyřbodovou metodu Runge-Kutta

Zjednodušená metoda

kde $r = \sqrt{x^2 + y^2 + z^2}$,

standardní gravitační parametr Země $\mu=398600,44.\,10^9~m^3/s^2$ délka hlavní poloosy Země $a_e=6378136~m$ druhý zonální harmonický koeficient geopotenciálu $J_0^2=1082625,7.\,10^{-9}$ rychlost rotace Země $\omega=7.292115.\,10^{-5} rad/s$

Metoda Runge-Kutta

Tvar řešené soustavy rovnic

$$\mathbf{Y}'(t) = \mathbf{F}(t, \mathbf{Y}(t))$$

• Algoritmus výpočtu

$$\mathbf{K}_{1} = \mathbf{F}(t_{n}, \mathbf{Y}_{n})$$

$$\mathbf{K}_{2} = \mathbf{F}\left(t_{n} + \frac{h}{2}, \mathbf{Y}_{n} + \frac{h}{2}\mathbf{K}_{1}\right)$$

$$\mathbf{K}_{3} = \mathbf{F}\left(t_{n} + \frac{h}{2}, \mathbf{Y}_{n} + \frac{h}{2}\mathbf{K}_{2}\right)$$

$$\mathbf{K}_{4} = \mathbf{F}\left(t_{n} + \frac{h}{2}, \mathbf{Y}_{n} + \frac{h}{2}\mathbf{K}_{3}\right)$$

$$\mathbf{Y}_{n+1} = \mathbf{Y}_{n} + \frac{h}{6}(\mathbf{K}_{1} + 2\mathbf{K}_{2} + 2\mathbf{K}_{3} + \mathbf{K}_{4})$$

Kde h je časový krok