Gilbert-Varshamov Bound

Mitsuru Takigahira

TL;DR

- 良い誤り訂正能力を維持しながら、伝達速度 $R = \frac{1}{n} \log_q M$ を最大化するために、与えられた q,n 及び t (または同値な d) に対して、可能な限り大きい値 M = |C| となる符号を探すことを目的とする。
- q, n, d が与えられたときの最大の符号語数について上界と下界を求め、伝送速度 R の下界をを求めていく。

符号語数の上界

定義

 $A_{q}(n,d)$ を任意の符号長 n、最小距離 d の q 元符号の符号語数の最大値と置く。 ここで d < n である。

ハミングの球充填限界式 (定理 6.15) から $A_{\alpha}(n,d)$ の上界は次のように与えら れる。

$$A_{q}(n,d)\left(1+\binom{n}{1}(q-1)+\binom{n}{2}(q-1)^{2}+\cdots+\binom{n}{t}(q-1)^{t}\right)\leq q^{n}$$

t = |(d-1)/2| (定理 6.10)

例 6.20

$$q=2$$
 と $d=3$ の場合、 $t=1$ で、例 6.16 で見たように、 $A_2(n,3) \leq \lfloor 2^n/(n+1) \rfloor$ よって、 $n=3,4,5,6,7,\ldots$ に対して、 $A_2(n,3)=2,3,5,9,16,\ldots$

練習 6.9

例 6.20 で $A_2(n,3)$ の上界を求めたように、 $A_3(n,3)$ の上界を求めよ。 ハミングの球充填限界式は $A_2(n,4)$ と $A_2(n,5)$ に関して何を意味するか?

定理 6.21

似たような議論から、与えられた q,n そして d に対して、与えられた最小の符号 語数を持つ符号が存在することを示すことによって、 $A_q(n,d)$ の下界が得られる。これが Gilbert-Varshamov 限界である。

定理 6.21

 $q \ge 2$ かつ $n \ge d \ge 1$ のとき

$$A_q(n,d)(1+\binom{n}{1}(q-1)+\binom{n}{2}(q-1)^2+\cdots+\binom{n}{d-1}^{d-1})\geq q^n$$

2017/09/08

証明: 定理 6.21

与えられた q,n 及び d を満たす全ての符号に関して、C を最大の符号語数を持つ符号と置く。つまり、 $M=|C|=A_q(n,d)$ である。 $\mathbf{u}\in C$ なる全ての球

$$S_{d-1}(\mathbf{u}) = {\mathbf{v} \in \mathcal{V} \mid d(\mathbf{u}, \mathbf{v}) \leq d-1}$$

は、 \mathcal{V} を覆う。なぜなら、もし $\mathbf{v} \in \mathcal{V}$ がどの $S_{d-1}(\mathbf{u})$ にも含まれないとすると、任意の $\mathbf{u} \in C$ に対して $d(\mathbf{u},\mathbf{v}) \geq d$ で、符号 $C' = C \cup \{\mathbf{v}\}$ は同じ q,n 及び d の値を持つが、これは C の選び方に反するからである。(6.6) を証明した議論によって、それぞれ M 個の球 $S_{d-1}(\mathbf{u})$ は $\sum_{i=0}^{d-1}\binom{n}{i}(q-1)^i$ 個のベクトルを含んでいる。以上から、これらの球は全ての \mathcal{V} 上 q^n 個の全てのベクトルを含んでいるのて、上式を満たす。

2017/09/08

例 6.22

例 6.22

q=2とd=3をとると (::t=1)、定理 6.21 は全ての $n \ge 3$ に対して、

$$A_2(n,3)(1+n+\frac{n(n-1)}{2})\geq 2^n$$

よって $A_2(n,3) \ge 2^{n+1}/(n^2+n+2)$ である。 $A_q(n,d)$ は整数より

$$A_2(n,3) \ge \lceil 2^{n+1}/(n^2+n+2) \rceil$$

 $n=3,4,5,6,7,\ldots$ に対して、 $A_2(n,3)\geq 2,2,2,3,5$

- 例 6.20 で、上界と下界を比べる場合、 $A_2(3,3) = 2$ である。 ex 2 元反復符号 \mathcal{R}_3 はこの境界を満たす。
- n = 4 のとき、 $2 \le A_2(4,3) \le 3$ で、 $A_2(4,3) = 2$ or 3 である。

7/11

Mitsuru Takigahira Gilbert-Varshamov Bound 2017/09/08

練習問題

練習 6.10

 $A_2(4,3) = 2$ を示し、この境界に達する符号を示せ。

練習 6.11

 $A_3(n,3)$ の下界を求めよ。

$A_q(n,d)$ の正確な値

- 多くの q, n と d に対して、 $A_a(n, d)$ の上界と下界には大きな差がある。
 - この正確な値を求めるのは難しい
 - 多くの場合この値はわからない。
- 場合によっては特殊な符号がこの値の存在を教えてくれる。
 - q=2, d=3 で n=7 のとき、ハミング符号 \mathcal{H}_7 は定理 6.15 から上界 $M\leq 16$ に達する。よって $A_2(7,3)=16$ である。
- $\S7.4$ ではより一般的に、n が $2^{\circ} 1$ の形をしているとき、 $A_2(n,3)$ は上界 2^{n-c} に達することを確認する。

9/11

2元符号の伝送速度

2元符号の場合、定理6.21は以下の形になる。

$$A_2(n,d)(1+\binom{n}{1}+\binom{n}{2}+\cdots+\binom{n}{d-1})\geq 2^n$$

今、練習 5.7 から $Q < \frac{1}{2}$ のとき

$$\sum_{i \le nQ} \binom{n}{i} \le 2^{nH_2(Q)}$$

よって、 $d \leq \lfloor n/2 \rfloor$ に対して、

$$\log_2 A_2(n,d) \ge n(1 - H_2(\frac{d-1}{n}))$$

◆ロト ◆部 ト ◆ 差 ト ◆ 差 ・ 釣 へ ②

Mitsuru Takigahira

Gilbert-Varshamov Bound

2元符号の伝送速度

2 元符号は伝送速度 $R=\frac{1}{n}\log_2 M$ なので、これは $d \leq \lfloor n/2 \rfloor$ のとき符号長が n、最小距離が d で、伝送速度が

$$R\geq 1-H_2(\frac{d-1}{n})$$

なるような符号が存在することを示している。 これは定理 6.10 によって $t = \lfloor (d-1)/2 \rfloor$ の下 $\S6.4$ で証明したハミングの漸近的上界

$$R \leq 1 - H_2(\frac{t}{n})$$

と比べることが出来る。

図 6.6 は R のこれら 2 つの境界によって定義される領域を表している。

◆□▶◆□▶◆□▶◆□▶ □ 釣९♡

11/11

Mitsuru Takigahira Gilbert-Varshamov Bound 2017/09/08