are formed in this way in the inside bore of the ceramic carrier, which rings form the inside electrode. Following this, the respective valves for the air and material supplies are closed, and the tubes of the spraying head pulled out of the ceramic carrier. The ceramic carrier is then dried and subsequently instreed.

Exemplary Embodiment 2

Application of an inside electrode for a sensor ceramic carrier for gas sensors II.

Creating the suspension containing precious metals (electrode paste):

Composition: 40% in weight platinum powder

5% in weight α-Al₂O₃ powder in 25% in weight terroineol

24% in weight ethanol
3% in weight alkyl cellulose and

3% in weight additive.

The mixture is then homogenized for 2 h in a suitable device(e.g., planetary mill).

The suspension with precious metals is placed into a storage container 9 with a plastic liner. Inside the storage container, the suspension is stirred at approximately 500 RPM with a wing-type stirrer. The storage container with spray head (tubes) is fastened to a three-axis CNC controlled positioning unit (see FIG. 2).

The outside electrode is then applied and the ceramics subsequently sintered.

In order to apply the inside electrode, the sensor element, which is also CNC-controlled and can rotate, is inserted into a holder that permits a rotation around a longitudinal axis of the ceramic carrier. The material and air tubes are inserted vertically into the inside bore of the ceramic carrier or sensor element. The valves for the air and material supply are opened as soon as the discharge opening for the tubes enter the inside bore. The material is squeezed out of the tube (inside diameter=0.8 mm) with a pressure of approximately 0.5 bar. The air has a pressure of 2.5 bar (tube: inside diameter 0.6 mm; closed at the end, with a side discharge opening of 0.2 mm inside diameter). Accordingly, the material is sprayed to the side. The tube is inserted approximately 20 mm into the inside bore of the ceramic carrier, where the conductive lead line is to be applied. The ceramic carrier is then turned or rotated around the longitudinal axis by 360° within one second. Subsequently, the tube is pulled back approximately 0.8 mm and the ceramic carrier is turned or rotated a second time by 360°. Two rings of electrode paste are produced in this manner or the inner carrier surface within the inside bore of the ceramic carrier. Following this, the valves for the air and material supplies are closed and the tubes pulled out of the bore of the ceramic carrier. The ceramic carrier is dried, and the inside electrode is subsequently baked in a reducing atmosphere (5% H2 in N2).

According to the invention, it is also possible to provide for a feeding of the material or air through more than one tube respectively. In such a case, a device for carrying out the inventive process has a corresponding multiple number of feed tubes, for example three or four.

It will be understood that the above description of the present invention is susceptible to various modifications, changes and adaptations, and the same are intended to be comprehended within the meaning and range of equivalents of the appended claims.

What is claimed is:

1. A process of applying an electrode to a carrier of ceramic material, said process comprising the steps of: providing a tube-shaped carrier of ceramic material;

- supplying electrode material to a spray tube which produces a laterally directed spray of the electrode material.
- advancing the spray tube into the hollow space of the tube-shaped carrier along a longitudinal axis of the tube-shaped ceramic carrier while non-rotating and while spraying the electrode material to apply a lead-in conductive track of the electrode material on the inner side wall of the tube-shaped ceramic carrier; and
- subsequently, rotating the tube-shaped ceramic carrier about its longitudinal axis relative to the spray-tube while continuing the spraying to produce a first ring-shaped electrode on the inner side wall of the tube-shaped ceramic carrier and in contact with the conductive treat.
- 2. A process according to claim 1, wherein the step of spraying includes separably supplying the electrode material and air used for the spraying to the spray tube, and subsequently atomizing the electrode material with the air.
- 3. A process according to claim 2, wherein the air is supplied through a first tube under a pressure greater than
- 4. A process according to claim 3, wherein the electrode material is supplied through a second tube under lower pressure.
- pressure.
 5. A process according to claim 4, wherein the step of atomizing includes disposing discharge openings for the
- tubes at an acute angle or at a right angle to each other.

 6. A process according to claim 2, wherein a metered feeding of at least one of the air and the electrode material takes place.
- 7. A process according to claim 1, wherein the carrier is composed of one of sintered-on or sintered ceramic material or is coated with sintered ceramic material.
- 8. A process according to claim 1, wherein the material is supplied in the form of a paste or suspension.
- A process according to claim 1, wherein the electrode material is electrically conductive.
- 10. A process according to claim 9, wherein the electrode material is cormet.
- 11. A process according to claim 1, wherein the electrode material contains or is composed of perovskite, or a precious metal, from the group of platinum, palladium and rhodium.
- metal, from the group of platinum, palladium and rhodium.

 12. A process according to claim 1, wherein the electrode is applied to a carrier of an exhaust-gas sensor, subsequently,

rotating the tube-shaped ceramic carrier about its rotational axis, relative to the spray-tube while continuing the spraying to produce a ring-shaped electrode on the inner side wall of the tube-shaped ceramic carrier.

13. A process according to claim 1, wherein the step of rotating comprises rotating the tube-shaped carrier once by

14. A process according to claim 1, wherein the tubeshaped carrier is vertically oriented, and said step of advancing includes advancing the spray tube vertically into the hollow space of the tube-shaped carrier.

15. A process of applying an electrode to a carrier of ceramic material, said process comprising the steps of:

providing a tube-shaped carrier of ceramic material;

supplying electrode material to a spray tube which produces a laterally directed spray of the electrode mate-

advancing the spray tube into the hollow space of the tube-shaped carrier along a longitudinal axis of the tube-shaped ceramic carrier while non-rotating and while spraying the electrode material to apply a lead-in conductive track of the electrode material on the inner side wall of the tube-shaped ceramic carrier;

subsequently, rotating the tube-shaped ceramic carrier about its longitudinal axis relative to the spray-tube while continuing the spraying to produce a first ringshaped electrode on the inner side wall of the tubeshaped ceramic carrier; and,

following the step of rotating, stopping the rotation and linearly withdrawing the spray tube for a given distance and then again rotating the tube-shaped ceramic carrier about its rotation axis relative to the spray-tube to form a second ring-shaped electrode, that is linearly spaced from the first ring shaped electrode, on the inner side wall of the tube shaped ceramic carrier; and thereafter discontinuing the spraying and withdrawing the spray tube from the hollow interior space of the tube-shaped ceramic carrier.

16. A process according to claim 15, wherein the steps of rotating, in each case, comprise rotating the tube-shaped carrier once by 360°. 5

10

15

20

17. A method for manufacturing an O₂ sensor element having a cupshaped solid electrolyte member having an inside space with an opening, an outside electrode provided on an outside surface of the solid electrolyte member, and an inside electrode provided on an inside surface of the solid electrolyte member within the inside space, the method comprising steps of:

preparing a nozzle having a paste discharge hole at a front end thereof, the paste discharge hole being for discharging conductive paste for forming the inside electrode:

inserting the front end of the nozzle into the inside space of the solid electrolyte member;

relatively rotating the paste discharge hole of the nozzle with respect to the solid electrolyte member along the inside surface of the solid electrolyte member while discharging the paste from the paste discharge hole onto the inside surface of the solid electrolyte member;

removing the nozzle from the solid electrolyte member; and baking the solid electrolyte member.

18. The method of claim 17, wherein in the step of relatively rotating the paste discharge hole with respect to the solid electrolyte member, one of the paste discharge hole and the solid electrolyte member rotates. 19. A method for manufacturing an O₂ sensor element having a cupshaped solid electrolyte member having an inside space with an opening, and an inside electrode provided on an inside surface of the solid electrolyte member within the inside space, the method comprising steps of:

preparing a nozzle having a paste discharge hole at a front end thereof, the paste discharge hole being for discharging conductive paste for forming the inside electrode;

inserting the front end of the nozzle into the inside space of the solid electrolyte member;

relatively rotating the paste discharge hole of the nozzle with respect to the solid electrolyte member along the inside surface of the solid electrolyte member while discharging the paste from the paste discharge hole onto the inside surface of the solid electrolyte member; and

removing the nozzle from the solid electrolyte member.

20. The method of claim 19, wherein in the step of relatively rotating the paste discharge hole with respect to the solid electrolyte member, one of the paste discharge hole and the solid electrolyte member rotates.

25

5

10

15

20