Cusps for congruence subgroups

Let $U = \{\pm \begin{bmatrix} 1 & \mathbb{Z} \\ 0 & 1 \end{bmatrix}\}$ be the stabilizer subgroup of $\infty \in \mathbb{P}^1(\mathbb{Q})$. Let $\frac{a}{c} \in \mathbb{Q} \subset \mathbb{P}^1(\mathbb{Q})$, with $\gcd(a,c) = 1$. Send it to

$$\gamma = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \mathrm{SL}_2(\mathbb{Z})$$

for some $c,d\in\mathbb{Z}$, so that $\gamma\infty=rac{a}{c}$.

Proposition

It is an $\mathrm{SL}_2(\mathbb{Z})$ -equivariant bijection $\mathbb{P}^1(\mathbb{Q}) \simeq \mathrm{SL}_2(\mathbb{Z})/U$.

Proof.

The action of $\mathrm{SL}_2(\mathbb{Z})$ on $\mathbb{P}^1(\mathbb{Q})$ is transitive.

Corollary

Let $\Gamma \subset \operatorname{SL}_2(\mathbb{Z})$ be a subgroup. Then, there is a bijection $\Gamma \backslash \operatorname{SL}_2(\mathbb{Z}) / U \simeq \Gamma \backslash \mathbb{P}^1(\mathbb{Q})$.

Corollary

Let $\Gamma \subset \operatorname{SL}_2(\mathbb{Z})$ be a subgroup of finite index. Then, the cusps of Y_{Γ} are in bijection with double cosets $\Gamma \backslash \operatorname{SL}_2(\mathbb{Z}) / U$.

Consider the principal congruence subgroup $\Gamma(N)$. We let U act on $\mathrm{SL}_2(\mathbb{Z}/N\mathbb{Z})$ via the map $U \to \mathrm{SL}_2(\mathbb{Z}) \to \mathrm{SL}_2(\mathbb{Z}/N\mathbb{Z})$.

Proposition

The cusps of $\Gamma(N)$ are in bijection with $\mathrm{SL}_2(\mathbb{Z}/N\mathbb{Z})/U$.

Proof.

The cusps of $\Gamma(N)$ are in bijection with the double cosets $\Gamma(N)\backslash \mathrm{SL}_2(\mathbb{Z})/U$. One can show that

$$\Gamma(N)\gamma U \mapsto \bar{\gamma} U$$

induces a bijection $\Gamma(N)\backslash \mathrm{SL}_2(\mathbb{Z})/U\simeq \mathrm{SL}_2(\mathbb{Z}/N\mathbb{Z})/U$.

The cosets

$$\mathrm{SL}_2(\mathbb{Z}/N\mathbb{Z})/U$$

can be described explicitly. Let

$$N = \prod_{p} N_{p}$$

be the factorization of N into prime powers. Observe that

$$\mathrm{SL}_2(\mathbb{Z}/N\mathbb{Z}) \simeq \prod_p \mathrm{SL}_2(\mathbb{Z}/N_p\mathbb{Z})$$

by Chinese remainder theorem. Also, we have

$$\operatorname{Im} (U o \operatorname{SL}_2(\mathbb{Z}/N\mathbb{Z})) = \prod_p \operatorname{Im} (U o \operatorname{SL}_2(\mathbb{Z}/N_p\mathbb{Z})).$$

So we may work 'prime-by-prime'.

Lemma

For all $r \geq 0$, we have

$$\#\mathrm{GL}_2(\mathbb{Z}/p^{r+1}\mathbb{Z}) = (p^2 - 1)(p^2 - p)p^{4r}.$$

Proof.

If r = 0, use linear algebra to count all bases of $(\mathbb{Z}/p\mathbb{Z})^2$. To handle the case $r \geq 1$, use the subnormal series

$$\mathrm{GL}_2(\mathbb{Z}/p^{r+1}\mathbb{Z})\supset 1+\mathrm{M}_2(p\mathbb{Z})\supset 1+\mathrm{M}_2(p^2\mathbb{Z})\supset\cdots$$

with successive quotients isomorphic to $(\mathbb{Z}/p\mathbb{Z})^4$.

Corollary

$$\#\mathrm{SL}_2(\mathbb{Z}/p^{r+1}\mathbb{Z}) = (p^3 - p)p^{3r}$$

Proof.

Use
$$\#(\mathbb{Z}/p^{r+1}\mathbb{Z}) = (p-1)p^r$$
.

Consider

$$\overline{U} = \operatorname{Im} \left(U \to \operatorname{SL}_2(\mathbb{Z}/p^{r+1}\mathbb{Z}) \right).$$

Proposition

We have

$$\#\overline{U} = \begin{cases} 2 & \text{if } p^{r+1} = 2\\ 2 \times p^{r+1} & \text{otherwise.} \end{cases}$$

Proof.

Look at the image of $\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$.

Corollary

The cardinality of

$$\Gamma(
ho^{r+1})ackslash \mathbb{P}^1(\mathbb{Q})$$

is given by

$$\#\left(\operatorname{SL}_2(\mathbb{Z}/p^{r+1}\mathbb{Z})/U\right) = \begin{cases} 3 & \text{if } p^{r+1} = 2\\ \frac{1}{2}(p^2 - 1)p^{2r} & \text{otherwise.} \end{cases}$$

Proof.

Combine the previous formulas.

An orbit in

$$\mathrm{SL}_2(\mathbb{Z}/N\mathbb{Z})/U$$

has two representatives

$$\gamma = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
 and $\gamma' \begin{bmatrix} a' & b' \\ c' & d' \end{bmatrix}$,

then, we have

$$\begin{bmatrix} a \\ c \end{bmatrix} = \pm \begin{bmatrix} a' \\ c' \end{bmatrix}$$
 .

Conversely, $\gamma U = \gamma' U$ if $\begin{bmatrix} a \\ c \end{bmatrix} = \pm \begin{bmatrix} a' \\ c' \end{bmatrix}$.

gcd(a, c) = gcd(a', c') = 1.

 $\begin{bmatrix} a \\ c \end{bmatrix} \equiv \pm \begin{bmatrix} a' \\ c' \end{bmatrix} \pmod{N}.$

$$\Gamma(N)\alpha = \Gamma(N)\alpha'$$
 if and only if

$$\alpha = \begin{bmatrix} \mathsf{a} \\ \mathsf{c} \end{bmatrix} \quad \alpha' = \begin{bmatrix} \mathsf{a}' \\ \mathsf{c}' \end{bmatrix}$$

Description of $\Gamma_1(N)$ -orbits. Let U_+ be the subgroup of $\mathrm{SL}_2(\mathbb{Z}/N\mathbb{Z})$ generated by $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$. Then,

$$U_{+}\backslash \mathrm{SL}_{2}(\mathbb{Z}/N\mathbb{Z})/U$$

is the set of cusps for $\Gamma_1(N)$. Recall that

$$\mathrm{SL}_2(\mathbb{Z}/N\mathbb{Z})/U$$

is classified by

$$\{ [a] \in (\mathbb{Z}/N\mathbb{Z})^2 \colon \gcd(a, c, N) = 1 \} / \{ \pm 1 \}.$$

We let U_+ act on it by multiplication on the left.

gcd(a, c) = gcd(a', c') = 1.

 $\begin{bmatrix} a \\ c \end{bmatrix} \equiv \pm \begin{bmatrix} a' + jc' \\ c' \end{bmatrix} \pmod{N}.$

$$\alpha = \begin{bmatrix} \mathsf{a} \\ \mathsf{c} \end{bmatrix} \quad \alpha' = \begin{bmatrix} \mathsf{a}' \\ \mathsf{c}' \end{bmatrix}$$

$$\Gamma_1(N)\alpha = \Gamma_1(N)\alpha'$$
 if and only if

$$\Gamma_1(N)\alpha = \Gamma_1(N)\alpha'$$
 if and only if

Keep the assumptions: gcd(a, c) = gcd(a', c') = 1 and $\alpha = \begin{bmatrix} a \\ c \end{bmatrix}, \alpha' = \begin{bmatrix} a' \\ c' \end{bmatrix}$

Description of $\Gamma_0(N)$ -orbits. Note that $\Gamma_0(N) \subset \Gamma_1(N)$ is normal with quotient isomorphic to $(\mathbb{Z}/N\mathbb{Z})^{\times}$. An element $x \in (\mathbb{Z}/N\mathbb{Z})^{\times}$ acts on $\Gamma_1(N)$ -orbits by

$$x \cdot \begin{bmatrix} a \\ c \end{bmatrix} = \begin{bmatrix} xa \\ x^{-1}c \end{bmatrix}$$

where x^{-1} denotes the multiplicative inverse modulo N.

Proposition

$$\Gamma_0(N)\alpha = \Gamma_0(N)\alpha'$$
 if and only if

$$\begin{bmatrix} xa \\ x^{-1}c \end{bmatrix} \equiv \begin{bmatrix} a'+jc' \\ c' \end{bmatrix} \pmod{N}.$$

A sample quiz problem

Let N = 10. The genus of $X_1(N)$ is zero.

- 1. List representatives for the orbits of $\Gamma_1(N)$ acting on $\mathbb{P}^1(\mathbb{Q})$.
- 2. Among the representatives listed above, determine which one is equivalent to $\frac{5}{12}$.
- 3. Compute the dimensions of $H^1_{\text{cusp}}(\Gamma_1(N), L_{k-2})$ for k = 2, 4.

Example N = 12

Figure 3.2. The cusps of $\Gamma(12)$ and of $\Gamma_1(12)$

We will use the dimension formula:

$$\begin{aligned} &\dim_F H^1_{\text{cusp}}(\Gamma_1(N), L_{k-2}(F)) \\ &= \begin{cases} (2g-2)(k-1) + (k-2)s + \delta_k t & \text{if } k > 2\\ 2g & \text{if } k = 2. \end{cases} \end{aligned}$$

If k is even, $\delta_k t = 0$. Therefore,

$$\dim_{\mathbb{Q}} H^1_{\operatorname{cusp}}(\Gamma_1(10)), L_0(\mathbb{Q})) = 2 \times 0 = 0$$

and

$$\dim_{\mathbb{Q}} H^{1}_{\operatorname{cusp}}(\Gamma_{1}(10)), L_{2}(\mathbb{Q}))$$

$$= (-2) \times (4-1) + (4-2) \times 10 = -6 + 20 = 14.$$

You my use the Imfdb website to check the answers. Warning: they display dimensions over \mathbb{C} , so our dimensions should be twice theirs.

Genus formula

In fact, one can compute the genus of $X_1(N)$, too.

- 1. $d = [PSL_2(\mathbb{Z}): \Gamma_1(N)]$
- 2. s: the number of cusps in $X_1(N)$.
- 3. $s^{(2)}$: the number of elliptic points of order two in $X_1(N)$
- 4. $s^{(3)}$: the number of elliptic points of order three in $X_1(N)$

Theorem

$$g_1(N) = 1 + \frac{d}{12} - \frac{s^{(2)}}{4} - \frac{s^{(3)}}{3} - \frac{s}{2}$$