Reti di calcolatori: introduzione (Capitolo 1 Kurose-Ross)

Marco Roccetti 21 febbraio 2024

(Capitolo 1 Kurose-Ross)

Reti di calcolatori e Internet: Un approccio top-down

3ª edizione Jim Kurose, Keith Ross Pearson Education Italia ©2005

Part I: Introduction

Chapter goal:

- get context, overview, "feel" of networking
- more depth, detail later in course
- □ approach:
 - descriptive
 - use Internet as example

Overview:

- what's the Internet
- what's a protocol?
- network edge
- network core
- access net, physical media
- performance: loss, delay
- protocol layers, service models
- backbones, NAPs, ISPs
- history
- ATM network

What's the Internet: "nuts and bolts" view

- millions of connected computing devices: hosts, end-systems
 - o pc's workstations, servers
 - PDA's phones, toasters
 - running network apps
- communication links
 - fiber, copper, radio, satellite
- routers: forward packets (chunks) of data thru network

What's the Internet: "nuts and bolts" view

- protocols: control sending, receiving of msgs
 - o e.g., TCP, IP, HTTP, FTP, PPP
- Internet: "network of networks"
 - loosely hierarchical
 - public Internet versus private intranet
- Internet standards
 - RFC: Request for comments
 - IETF: Internet Engineering
 Task Force

What's the Internet: a service view

- communication
 infrastructure enables
 distributed applications:
 - WWW, email, games, ecommerce, database., voting,
 - o more?
- communication services provided:
 - connectionless
 - o connection-oriented
- cyberspace [Gibson]:

"a consensual hallucination experienced daily by billions of operators, in every nation,"

What's a protocol?

<u>human protocols:</u>

- "what's the time?"
- "I have a question"
- introductions
- ... specific msgs sent
- ... specific actions taken when msgs received, or other events

network protocols:

- machines rather than humans
- all communication activity in Internet governed by protocols

protocols define format, order of msgs sent and received among network entities, and actions taken on msg transmission, receipt

What's a protocol?

a human protocol and a computer network protocol:

Q: Other human protocol?

A closer look at network structure:

- network edge: applications and hosts
- network core:
 - o routers
 - network of networks
- access networks,
 physical media:
 communication links

The network edge:

end systems (hosts):

- o run application programs
- o e.g., WWW, email
- o at "edge of network"

client/server model

- client host requests, receives service from server
- e.g., WWW client (browser)/ server; email client/server

peer-peer model:

- host interaction symmetric
- o e.g.: teleconferencing

Network edge: connection-oriented service

Goal: data transfer between end sys.

- handshaking: setup (prepare for) data transfer ahead of time
 - Hello, hello back human protocol
 - set up "state" in two communicating hosts
- TCP Transmission Control Protocol
 - Internet's connectionoriented service

TCP service [RFC 793]

- reliable, in-order bytestream data transfer
 - loss: acknowledgements and retransmissions
- □ flow control:
 - sender won't overwhelm receiver
- congestion control:
 - senders "slow down sending rate" when network congested

Network edge: connectionless service

Goal: data transfer between end systems

- o same as before!
- UDP User Datagram Protocol [RFC 768]: Internet's connectionless service
 - unreliable data transfer
 - no flow control
 - no congestion control

App's using TCP:

□ HTTP (WWW), FTP (file transfer), Telnet (remote login), SMTP (email)

App's using UDP:

 streaming media, teleconferencing, Internet telephony, gaming

The Network Core

- mesh of interconnected routers
- the fundamental question: how is data transferred through net?
 - o circuit switching: dedicated circuit per call: telephone net
 - o packet-switching: data sent thru net in discrete "chunks"

Network Core: Circuit Switching

End-end resources reserved for "call"

- link bandwidth, switch capacity
- dedicated resources: no sharing
- circuit-like (guaranteed) performance
- call setup required

Network Core: Circuit Switching

network resources (e.g., bandwidth) divided into "pieces"

- pieces allocated to calls
- resource piece idle if not used by owning call (no sharing)
- dividing link bandwidth into "pieces"
 - o frequency division
 - o time division

TDM:

All slots labelled 2 are dedicated to a specific sender-receiver pair.

Network Core: Packet Switching

each end-end data stream divided into packets

- user A, B packets share network resources
- each packet uses full link bandwidth
- resources used as needed,

Bandwidth division into "pieces"

Dedicated allocation

Resource reservation

resource contention:

- aggregate resource demand can exceed amount available
- congestion: packetsqueue, wait for link use
- store and forward: packets move one hop at a time
 - o transmit over link
 - wait turn at next link

Network Core: Packet Switching

Packet-switching versus circuit switching: human restaurant analogy

other human analogies?

Network Core: Packet Switching

Packet-switching:
store and forward behavior
Delays augments with the
number of hops, as each
packet has to be completely
received before it is
transmitted!!

Packet switching versus circuit switching

Packet switching allows more users to use network!

- ☐ 1 Mbit link
- each user:
 - 100Kbps when "active"
 - o active 10% of time
- circuit-switching:
 - 10 users
- packet switching:
 - with 35 users,probability > 10 activeless that .0004

Packet switching versus circuit switching

Is packet switching a "slam dunk winner?"

- Great for bursty data
 - o resource sharing
 - o no call setup
- Excessive congestion: packet delay and loss
 - protocols needed for reliable data transfer, congestion control
- Q: How to provide circuit-like behavior?
 - bandwidth guarantees needed for audio/video apps
 - still an unsolved problem (chapter 6)

Packet-switched networks: routing

- Goal: move packets among routers from source to destination
 - we'll study several path selection algorithms (chapter 4)
- datagram network:
 - o destination address determines next hop
 - o routes may change during session
 - analogy: driving, asking directions
- virtual circuit network:
 - each packet carries tag (virtual circuit ID), tag determines next hop
 - fixed path determined at call setup time, remains fixed thru call
 - o routers maintain per-call state

Access networks and physical media

- Q: How to connect end systems to edge router?
- residential access nets
- institutional access networks (school, company)
- mobile access networks

Keep in mind:

- bandwidth (bits per second) of access network?
- shared or dedicated?

Residential access: point to point access

- Dialup via modem
 - up to 56Kbps direct access to router (conceptually)
- □ ISDN: intergrated services digital network: 128Kbps all-digital connect to router
- ADSL: asymmetric digital subscriber line
 - o up to 1 Mbps home-to-router
 - o up to 8 Mbps router-to-home
 - ADSL deployment: fino a 50 Mbps?
 - Always-on, point-to-point

Residential access: cable modems

□ HFC: hybrid fiber coax

- asymmetric: up to 10Mbps upstream, 1 Mbps downstream
- network of cable and fiber attaches homes to ISP router
 - shared access to router among home
 - issues: congestion, dimensioning
- deployment: available via cable companies, e.g., MediaOne

Institutional access: local area networks

 company/univ local area network (LAN) connects end system to edge router

□ Ethernet:

- shared or dedicated cable connects end systems and router
- 10 Mbs, 100Mbps, Gigabit Ethernet
- deployment: institutions, home LANs soon
- □ LANs: chapter 5

Wireless access networks

shared wireless access network connects end system to router

□ wireless LANs:

- radio spectrum replaces wire
- o e.g., Wi-Fi > 11 Mbps
- wider-area wireless access
 - o 36: wireless access to ISP router via cellular network

Physical Media

- physical link: transmitted data bit propagates across link
- guided media:
 - signals propagate in solid media: copper, fiber, coax
- unguided media:
 - signals propagate freely e.g., radio, satellite or terrestrial

<u>Twisted Pair (TP)</u>

- two insulated copper wires
 - Category 3: traditional phone wires, 10 Mbps ethernet
 - Category 5 TP:100Mbps ethernet
 - < 100 meters</p>

Physical Media: coax, fiber

Coaxial cable:

- wire (signal carrier)within a wire (shield)
 - baseband: single channel on cable
 - broadband: multiple channel on cable
- bidirectional
- common use in 10MbsEthernet

Fiber optic cable:

- glass fiber carrying light pulses
- high-speed operation:
 - 100Mbps Ethernet
 - high-speed point-to-point transmission (e.g., 5 Gps)
- □ low error rate

Physical media: radio

- signal carried in electromagnetic spectrum
- no physical "wire"
- bidirectional
- propagation environment effects:
 - o reflection
 - obstruction by objects
 - o interference

Radio link types:

- microwave
 - o e.g. up to 45 Mbps channels
- □ LAN (e.g., waveLAN)
 - 2Mbps, 11Mbps, 45Mbps
- □ wide-area (e.g., cellular)
 - o e.g. 3G, 100's Kbps
- satellite
 - up to 50Mbps channel (or multiple smaller channels)
 - 270 Msec end-end delay
 - geosynchronous versus LEOS

ISP e backbone

- □ ISP 3 livelli (o tier)
- Alta capacita' da 622 Mbps a 10 Gbps
- ISP-1 o di backbone (decine):
 - Sono collegati a tutti gli altri ISP-1
 - Sono collegati a numerosi
 ISP-2 e reti clienti
 - Sono internazionali, come copertura
- ISP-2(decine): distrettuale o nazionale, si collega solo a ISP-1
- ISP di accesso (centinaia), livello inferiore cui si collegano utenti e fornitori di contenuto

POP e NAP:

POP

- Point of Presence
- Punto in cui un ISP si collega ad altri in peering
- Uno o piu' router a cui collegare i router di altri ISP o reti clienti
- peering

NAP Network Acc. Point

- Ad alta velocita' affittati da terze parti (telcom)
- ISP-1 si collegano tra loro con POP, ISP-2 convergono su NAP

Internet structure: network of networks

- roughly hierarchical
- national/international backbone providers (NBPs)
 - e.g. BBN/GTE, Sprint, AT&T, IBM, UUNet
 - interconnect (peer) with each other privately, or at public Network Access Point (NAPs)
- regional ISPs
 - connect into NBPs
- □ local ISP, company
 - o connect into regional ISPs

National Backbone Provider

e.g. BBN/GTE US backbone network

