# Содержание

| Ι | Oı  | тределения                                            | 21        |
|---|-----|-------------------------------------------------------|-----------|
| 1 | Пер | овообразная, неопределенный интеграл                  | 22        |
|   | 1.1 | Первообразная                                         | 22        |
|   | 1.2 | Неопределенный интеграл                               | 22        |
| 2 | Teo | рема о существовании первообразной                    | 23        |
| 3 | Таб | лица первообразных                                    | 24        |
| 4 | Рав | вномерная непрерывность                               | <b>25</b> |
| 5 | Пло | ощадь, аддитивность площади, ослабленная аддитивность | 26        |
|   | 5.1 | Первое определение площади                            | 26        |
|   | 5.2 | Второе определение площади                            | 26        |
|   | 5.3 | Площадь как сумма прямоугольников                     | 27        |
| 6 | Пол | пожительная и отрицательная срезки                    | 28        |
|   | 6.1 | Определение                                           | 28        |
|   | 6.2 | Некоторые свойства                                    | 28        |
|   | 6.3 | Подграфик                                             | 28        |
| 7 | Опр | ределённый интеграл                                   | 29        |
|   | 7.1 | Определение                                           | 29        |
|   | 7.2 | Свойства                                              | 29        |

| 8  | Среднее значение функции на промежутке                                           | 30 |
|----|----------------------------------------------------------------------------------|----|
| 9  | Кусочно-непрерывная функция                                                      | 31 |
| 10 | Почти первообразная                                                              | 32 |
| 11 | Дробление отрезка, ранг дробления, оснащение                                     | 33 |
| 12 | Риманова сумма                                                                   | 34 |
| 13 | Постоянная Эйлера                                                                | 35 |
| 14 | Функция промежутка. Аддитивная функция промежутка                                | 36 |
| 15 | Плотность аддитивной функции промежутка                                          | 37 |
| 16 | Гладкий путь, вектор скорости, носитель пути                                     | 38 |
|    | 16.1 Гладкий путь                                                                | 38 |
|    | 16.2 Вектор скорости                                                             | 38 |
|    | 16.3 Носитель пути                                                               | 38 |
| 17 | Длина гладкого пути                                                              | 39 |
| 18 | Формулы для длины пути: в $\mathbb{R}^m$ , в полярных координатах, длина графика | 40 |
|    | 18.1 Длина пути в $\mathbb{R}^m$                                                 | 40 |
|    | 18.2 Длина графика                                                               | 40 |
|    | 18.3 Длина кривой в полярных координатах                                         | 40 |
| 19 | Вариация функции на промежутке                                                   | 41 |
| 20 | Верхний и нижний пределы                                                         | 49 |

|            | 20.1 Верхняя и нижняя огибающая                            | 42        |
|------------|------------------------------------------------------------|-----------|
|            | 20.2 Верхний и нижний пределы                              | 42        |
| 21         | Частичный предел                                           | 43        |
| 22         | Допустимая функция                                         | 44        |
| 23         | Несобственный интеграл, сходимость, расходимость           | 45        |
|            | 23.1 Определение                                           | 45        |
|            | 23.2 Сходимость и расходимость                             | 45        |
| 24         | Критерий Больцано-Коши сходимости несобственного интеграла | 46        |
| <b>25</b>  | Гамма функция Эйлера                                       | 47        |
| 26         | Числовой ряд, сумма ряда, сходимость, расходимость         | 48        |
|            | 26.1 Числовой ряд                                          | 48        |
|            | 26.2 Сумма ряда                                            | 48        |
|            | 26.3 Сходимость и расходимость                             | 48        |
| 27         | 'n-й остаток ряда                                          | 49        |
| <b>2</b> 8 | Абсолютно сходящийся ряд                                   | 50        |
| 29         | Критерий Больцано-Коши сходимости числового ряда           | 51        |
| 30         | Преобразование Абеля                                       | <b>52</b> |
| 31         | Бесконечное произведение                                   | 53        |
| <b>32</b>  | Произведение рядов                                         | 54        |

| 33 | Произведение степенных рядов                                                   | 55   |
|----|--------------------------------------------------------------------------------|------|
| 34 | . Скалярное произведение, евклидова норма и метрика в $\mathbb{R}^m$           | 56   |
| 35 | Окрестность точки в $\mathbb{R}^m,$ открытое множество                         | 57   |
| 36 | Сходимость последовательности в $\mathbb{R}^m,$ покоординатная сходимость      | 58   |
| 37 | Предельная точка, замкнутое множество, замыкание                               | 59   |
| 38 | Компактность, секвенциальная компактность, принцип выбора Больцано-Вейерштрасс | a 60 |
|    | 38.1 Компактность                                                              | 60   |
|    | 38.2 Секвенциальная компактность                                               | 60   |
|    | 38.3 Принцип выбора Больцано-Вейерштрасса                                      | 60   |
| 39 | Координатная функция                                                           | 61   |
| 40 | Двойной предел, повторный предел                                               | 62   |
|    | 40.1 Повторный предел                                                          | 62   |
|    | 40.2 Двойной предел                                                            | 62   |
| 41 | Предел по направлению, предел вдоль пути                                       | 63   |
| 42 | Предел отображения (определение по Коши и по Гейне)                            | 64   |
|    | 42.1 По Коши                                                                   | 64   |
|    | 42.2 По Гейне                                                                  | 64   |
| 43 | Линейный оператор                                                              | 65   |
| 44 | Отображение бесконечно малое в точке                                           | 66   |

| 45 о(h) при $h \to 0$                                                     | 67         |
|---------------------------------------------------------------------------|------------|
| 46 Отображение, дифференцируемое в точке                                  | 68         |
| 47 Производный оператор, матрица Якоби, дифференциал                      | 69         |
| 47.1 Производный оператор                                                 | . 69       |
| 47.2 Матрица Якоби                                                        | . 69       |
| 47.3 Дифференциал                                                         | . 69       |
| 48 Частные производные                                                    | 70         |
| 49 Классы $C^r(E)$                                                        | 71         |
| 50 Мультииндекс и обозначения с ним                                       | 72         |
| 51 Формула Тейлора (различные виды записи)                                | 73         |
| <b>52</b> <i>n</i> -й дифференциал                                        | 74         |
| 53 Норма линейного оператора                                              | 75         |
| 54 Положительно-, отрицательно-, незнако- определенная квадратичная форма | <b>7</b> 6 |
| 55 Локальный максимум, минимум, экстремум                                 | 77         |
| II Теоремы                                                                | 78         |
| 56 Теорема Кантора о равномерной непрерывности                            | 79         |
| 56.1 Формулировка                                                         | . 79       |
| 56.2 Доказательство (от противного)                                       | . 79       |

| 57 Теорема Брауэра о неподвижной точке           | 80 |
|--------------------------------------------------|----|
| 57.1 Формулировка                                | 80 |
| 57.2 Доказательство                              | 80 |
| 57.2.1 Игра "Гекс"                               | 80 |
| 57.2.2 Сама теорема                              | 81 |
| 57.2.3 Доказательство                            | 81 |
| 57.2.4 Теперь к самой теореме                    | 81 |
| 57.2.5 Доска                                     | 82 |
| 58 Теорема о свойствах неопределенного интеграла | 84 |
| 59 Интегрирование неравенств. Теорема о среднем  | 85 |
| 59.1 Интегрирование неравенств                   | 85 |
| 59.1.1 Формулировка                              | 85 |
| 59.1.2 Доказательство                            | 85 |
| 59.1.3 Следствия                                 | 85 |
| 59.2 Теорема о среднем значении                  | 86 |
| 59.2.1 Формулировка                              | 86 |
| 59.2.2 Доказательство 1 (Кохась порофлил)        | 86 |
| 59.2.3 Нормальное доказательство                 | 86 |
| 60 Теорема Барроу                                | 87 |
| 60.1 Определение                                 | 87 |
| 60.2 Теорема (Барроу)                            | 87 |
| 60.3 Доказательство                              | 87 |

|    | 60.4 | Замечания                                                                                | 87 |
|----|------|------------------------------------------------------------------------------------------|----|
| 61 | Фор  | мула Ньютона-Лейбница, в том числе для кусочно-непрерывных функций                       | 88 |
|    | 61.1 | Формулировка теоремы                                                                     | 88 |
|    | 61.2 | Доказательство для непрерывных функций                                                   | 88 |
|    | 61.3 | Для кусочно-непрерывных функций                                                          | 88 |
| 62 |      | йства определенного интеграла: линейность, интегрирование по частям, замена пе-<br>енных | 89 |
|    | _    | Линейность определенного интеграла                                                       | 89 |
|    | 02.1 |                                                                                          |    |
|    |      | 62.1.1 Формулировка                                                                      |    |
|    |      | 62.1.2 Доказательство                                                                    | 89 |
|    | 62.2 | Интегрирование по частям                                                                 | 89 |
|    |      | 62.2.1 Формулировка                                                                      | 89 |
|    |      | 62.2.2 доказательство                                                                    | 89 |
|    | 62.3 | Замена переменных                                                                        | 90 |
|    |      | 62.3.1 Формулировка                                                                      | 90 |
|    |      | 62.3.2 Доказательство                                                                    | 90 |
|    |      | 62.3.3 Замечание                                                                         | 90 |
| 63 | Инт  | егральное неравенство Чебышева. Неравенство для сумм                                     | 91 |
|    | 63.1 | Интегральное неравенство Чебышева                                                        | 91 |
|    |      | 63.1.1 Формулировка                                                                      | 91 |
|    |      | 63.1.2 Доказательство                                                                    | 91 |
|    | 63.2 | Неравенство для сумм                                                                     | 92 |

|       | 63.2.1 Формулировка для сумм                   | 92  |
|-------|------------------------------------------------|-----|
|       | 63.2.2 Доказательство                          | 92  |
| 64 И  | ррациональность числа $\pi$                    | 93  |
| 64    | .1 Вспомогательный интеграл                    | 93  |
| 64    | .2 Теорема                                     | 94  |
| 64    | .3 Доказательство (от противного)              | 94  |
| 65 Ф  | ормула Тейлора с остатком в интегральной форме | 95  |
| 65    | .1 Формулировка                                | 95  |
| 65    | .2 Доказательство (по индукции)                | 95  |
| 66 Л  | емма об ускоренной сходимости                  | 96  |
| 66    | .1 Формулировка                                | 96  |
| 66    | .2 Доказательство                              | 96  |
| 67 П  | равило Лопиталя (с леммой)                     | 97  |
| 67    | .1 Формулировка                                | 97  |
| 67    | .2 Пример из жизни                             | 97  |
| 67    | .3 Доказательство                              | 97  |
| 67    | .4 Собственное доказательство                  | 97  |
| 68 Te | еорема Штольца                                 | 99  |
| 68    | .1 Формулировка                                | 99  |
| 68    | .2 Доказательство                              | 99  |
| 69 П  | ример неаналитической функции                  | 101 |

|            | 69.1 | Неалитическая функция                                         | 101         |
|------------|------|---------------------------------------------------------------|-------------|
|            | 69.2 | Утверждение                                                   | 101         |
|            | 69.3 | Доказательство                                                | 101         |
| <b>7</b> 0 | Инт  | еграл как предел интегральных сумм                            | L02         |
|            | 70.1 | Формулировка                                                  | 102         |
|            | 70.2 | Доказательство                                                | 102         |
| 71         | Теор | рема об интегральных суммах для центральных прямоугольников 1 | L <b>03</b> |
|            | 71.1 | Формулировка                                                  | 103         |
|            | 71.2 | Доказательство                                                | 103         |
| 72         | Teop | рема о формуле трапеций, формула Эйлера–Маклорена             | L <b>04</b> |
|            | 72.1 | Формулировка теоремы о формуле трапеций                       | 104         |
|            | 72.2 | Доказательство                                                | 104         |
|            | 72.3 | Простейший случай формулы Эйлера-Маклорена                    | 104         |
| 73         | Аси  | мптотика степенных сумм 1                                     | 106         |
| 74         | Аси  | мптотика частичных сумм гармонического ряда                   | L0 <b>7</b> |
| 75         | Фор  | мула Валлиса                                                  | 108         |
|            | 75.1 | Формулировка                                                  | 108         |
|            | 75.2 | Доказательство                                                | 108         |
| 76         | Фор  | мула Стирлинга                                                | 110         |
|            | 76.1 | Формулировка                                                  | 110         |
|            | 76.2 | Доказательство                                                | 110         |

| 77         | Теорема о вычислении аддитивной функции промежутка по плотности          | 111  |
|------------|--------------------------------------------------------------------------|------|
|            | 77.1 Формулировка                                                        | 111  |
|            | 77.2 Доказательство                                                      | 111  |
| 78         | В Обобщенная теорема о плотности                                         | 112  |
|            | 78.1 Формулировка                                                        | 112  |
|            | 78.2 Доказательство                                                      | 112  |
| <b>7</b> 9 | Площадь криволинейного сектора: в полярных координатах и для параметриче | ской |
|            | кривой                                                                   | 113  |
|            | 79.1 Формулировка для полярных координат                                 | 113  |
|            | 79.2 Доказательство                                                      | 113  |
|            | 79.3 Формулировка для параметрической кривой                             | 113  |
|            | 79.4 Доказательство                                                      | 114  |
| 80         | Изопериметрическое неравенство                                           | 115  |
|            | 80.1 Формулировка                                                        | 115  |
|            | 80.2 Доказательство                                                      | 115  |
| 81         | Вычисление длины гладкого пути                                           | 116  |
|            | 81.1 Формулировка                                                        | 116  |
|            | 81.2 Доказательство                                                      | 116  |
| 82         | 2 Объем фигур вращения                                                   | 118  |
|            | 82.1 Формулировка                                                        | 118  |
|            | 82.2 Доказательство                                                      | 118  |

| 83 | Нер  | авенство Йенсена для сумм                 | <b>120</b>  |
|----|------|-------------------------------------------|-------------|
|    | 83.1 | Формулировка                              | 120         |
|    | 83.2 | Доказательство                            | 120         |
| 84 | Нер  | авенство Йенсена для интегралов           | <b>12</b> 1 |
|    | 84.1 | Формулировка                              | 121         |
|    | 84.2 | Доказательство                            | 121         |
| 85 | Нер  | авенство Коши (для сумм и для интегралов) | 122         |
|    | 85.1 | Неравенство для сумм                      | 122         |
|    |      | 85.1.1 Формулировка                       | 122         |
|    |      | 85.1.2 Доказательство                     | 122         |
|    | 85.2 | Неравенство для интегралов                | 122         |
|    |      | 85.2.1 Формулировка                       | 122         |
| 86 | Нер  | авенство Гёльдера для сумм                | 124         |
|    | 86.1 | Формулировка                              | 124         |
|    | 86.2 | Доказательство                            | 124         |
| 87 | Нер  | авенство Гёльдера для интегралов          | 126         |
|    | 87.1 | Формулировка                              | 126         |
|    | 87.2 | Доказательство                            | 126         |
| 88 | Нер  | авенство Минковского                      | 127         |
|    | 88.1 | Формулировка                              | 127         |
|    | 88.2 | Замечания                                 | 127         |

|    | 88.3 Доказательство                                                    | . 127 |
|----|------------------------------------------------------------------------|-------|
| 89 | Свойства верхнего и нижнего пределов                                   | 128   |
|    | 89.1 Формулировка                                                      | . 128 |
|    | 89.2 Доказательство                                                    | . 128 |
| 90 | Техническое описание верхнего предела                                  | 130   |
|    | 90.1 Формулировка                                                      | . 130 |
|    | 90.2 Доказательство                                                    | . 130 |
| 91 | Теорема о существовании предела в терминах верхнего и нижнего пределов | 131   |
|    | 91.1 Формулировка                                                      | . 131 |
|    | 91.2 Доказательство                                                    | . 131 |
| 92 | Теорема о характеризации верхнего предела как частичного               | 132   |
|    | 92.1 Формулировка                                                      | . 132 |
|    | 92.2 Доказательство                                                    | . 132 |
| 93 | Простейшие свойства несобственного интеграла                           | 133   |
|    | 93.1 Формулировка                                                      | . 133 |
|    | 93.2 Доказательство                                                    | . 134 |
| 94 | Признаки сравнения сходимости несобственного интеграла                 | 135   |
|    | 94.1 Формулировка                                                      | . 135 |
|    | 94.2 Доказательство                                                    | . 135 |
| 95 | Интеграл Эйлера-Пуассона                                               | 137   |
|    | 95.1. Формулировка                                                     | 137   |

| 95.2 Доказательство                                                                                           | 137     |
|---------------------------------------------------------------------------------------------------------------|---------|
| 96 Гамма функция Эйлера. Простейшие свойства                                                                  | 139     |
| 96.1 Формулировка                                                                                             | 139     |
| 96.2 Доказательство                                                                                           | 139     |
| 97 Теорема об абсолютно сходящихся интегралах и рядах                                                         | 141     |
| 97.1 Формулировка                                                                                             | 141     |
| 97.2 доказательство                                                                                           | 141     |
| 97.3 Случай рядов                                                                                             | 141     |
| 98 Изучение сходимости интеграла $\int\limits_{2019}^{\infty} \frac{dx}{x^{lpha} (\ln x)^{eta}}$              | 142     |
| 98.1 Формулировка                                                                                             | 142     |
| 98.2 Доказательство                                                                                           | 142     |
| 99 Изучение интеграла $\int\limits_{1}^{\infty} \frac{\sin x  dx}{x^p}$ на сходимость и абсолютную сходимость | 143     |
| 100Признак Абеля-Дирихле сходимости несобственного интеграла                                                  | 144     |
| 100.1Формулировка                                                                                             | 144     |
| 100.2Доказательство                                                                                           | 144     |
| 101Интеграл Дирихле                                                                                           | 145     |
| 101.1Формулировка                                                                                             | 145     |
| 101.2Доказательство                                                                                           | 145     |
| 102Свойства рядов: линейность, свойства остатка, необх. условие сходимости, кр                                | оитерий |
| Больцано-Коши                                                                                                 | 146     |

|    | 102.1Линейность, свойства остатка                          | 146 |
|----|------------------------------------------------------------|-----|
|    | 102.1.1 Формулировка                                       | 146 |
|    | 102.1.2 Доказательство                                     | 146 |
|    | 102.2Необходимое условие сходимости рядов                  | 146 |
|    | 102.2.1 Формулировка                                       | 146 |
|    | 102.2.2 Доказательство                                     | 147 |
|    | 102.3Критерий Больцано-Коши                                | 147 |
|    | 102.3.1 Формулировка                                       | 147 |
|    | 102.4Доказательство                                        | 147 |
| 10 | ЭПризнак сравнения сходимости положительных рядов          | 148 |
|    | 103.1Лемма                                                 | 148 |
|    | 103.1.1 Формулировка                                       | 148 |
|    | 103.1.2 Доказательство                                     | 148 |
|    | 103.2Признак сравнения сходимости положительных рядов      | 148 |
|    | 103.2.1 Формулировка                                       | 148 |
|    | 103.2.2 Доказательство                                     | 149 |
| 10 | 94Признак Коши сходимости положительных рядов              | 150 |
|    | 104.1Формулировка                                          | 150 |
|    | 104.2Доказательство                                        | 150 |
| 10 | <b>5</b> Признак Коши сходимости положительных рядов (pro) | 151 |
|    | 105.1Формулировка                                          | 151 |
|    | 105.2 Локазательство                                       | 151 |

| 106Признак Даламбера сходимости положительных рядов    | 152 |
|--------------------------------------------------------|-----|
| 106.1Формулировка                                      | 152 |
| 106.2Доказательство                                    | 152 |
| 107Признак Раабе сходимости положительных рядов        | 154 |
| 107.1Лемма                                             | 154 |
| 107.1.1 Формулировка                                   | 154 |
| 107.1.2 Доказательство                                 | 154 |
| 107.2Теорема                                           | 154 |
| 107.2.1 Формулировка                                   | 154 |
| 107.2.2 Доказательство                                 | 155 |
| 108Интегральный признак Коши сходимости числовых рядов | 156 |
| 108.1Формулировка                                      | 156 |
| 108.2Доказательство                                    | 156 |
| 109Признак Лейбница                                    | 157 |
| 109.1Формулировка                                      | 157 |
| 109.2Доказательство                                    | 157 |
| 110Признаки Дирихле и Абеля сходимости числового ряда  | 158 |
| 110.1Формулировка                                      | 158 |
| 110.1.1 Дирихле                                        | 158 |
| 110.1.2 Абеля                                          | 158 |
| 110.2Доказательство                                    | 158 |
| 110.2.1 Лирихле                                        | 158 |

| 110.2.2 Абеля                                                       | 158 |
|---------------------------------------------------------------------|-----|
| 11Пеорема об условиях сходимости бесконечного произведения          | 159 |
| 111.1Формулировка                                                   | 159 |
| 111.2Доказательство                                                 | 159 |
| 112Лемма об оценке приближения экспоненты ее замечательным пределом | 160 |
| 112.1Лемма 1                                                        | 160 |
| 112.1.1 Формулировка                                                | 160 |
| 112.1.2 Доказательство                                              | 160 |
| 112.2Лемма 2                                                        | 160 |
| 112.2.1 Формулировка                                                | 160 |
| 112.2.2 Доказательство                                              | 160 |
| 113Формула Эйлера для гамма-функции                                 | 162 |
| 113.1Формулировка                                                   | 162 |
| 113.2Доказательство                                                 | 162 |
| 114Формула Вейерштрасса для Г-функции                               | 163 |
| 114.1Формулировка                                                   | 163 |
| 114.2Доказательство                                                 | 163 |
| 115Вычисление произведений с рациональными сомножителями            | 164 |
| 116Георема о группировке слагаемых                                  | 165 |
| 116.1Формулировка                                                   | 165 |
| 116.9 Hokazartani etteo                                             | 165 |

| 117Георема о перестановке слагаемых                         | 166           |
|-------------------------------------------------------------|---------------|
| 117.1Формулировка                                           | 166           |
| 117.2Доказательство                                         | 166           |
| 118Теорема о произведении рядов                             | 167           |
| 118.1Формулировка                                           | 167           |
| 118.2Доказательство                                         | 167           |
| 119Единственность производной                               | 168           |
| 119.1Формулировка                                           | 168           |
| 119.2Доказательство                                         | 168           |
| 120Пемма о дифференцируемости отображения и его координатны | х функций 169 |
| 120.1Формулировка                                           | 169           |
| 120.2Доказательство                                         | 169           |
| 121Необходимое условие дифференцируемости                   | 170           |
| 121.1Формулировка                                           | 170           |
| 121.2Доказательство                                         | 170           |
| 122Достаточное условие дифференцируемости                   | 171           |
| 122.1Формулировка                                           | 171           |
| 122.2Доказательство                                         | 171           |
| 123Пемма об оценке нормы линейного оператора                | 172           |
| 123.1Формулировка                                           | 172           |
| 123.2 Локазательство                                        |               |

| 124Дифференцирование композиции                                   | 173 |
|-------------------------------------------------------------------|-----|
| 124.1Формулировка                                                 | 173 |
| 124.2Доказательство                                               | 173 |
| 125Дифференцирование произведений                                 | 174 |
| 125.1Формулировка                                                 | 174 |
| 125.2Доказательство                                               | 174 |
| 126Георема Лагранжа для векторнозначных функций                   | 175 |
| 126.1Формулировка                                                 | 175 |
| 126.2Доказательство                                               | 175 |
| 127Экстремальное свойство градиента                               | 176 |
| 127.1Формулировка                                                 | 176 |
| 127.2Доказательство                                               | 176 |
| 128Независимость частных производных от порядка дифференцирования | 177 |
| 128.1Формулировка                                                 | 177 |
| 128.2Доказательство                                               | 177 |
| 129Полиномиальная формула                                         | 178 |
| 129.1Формулировка                                                 | 178 |
| 129.2Доказательство                                               | 178 |
| 130Пемма о дифференцировании "сдвига"                             | 179 |
| 130.1Формулировка                                                 | 179 |
| 130.2 Показатын стро                                              | 170 |

| 131Многомерная формула Тейлора (с остатком в форме Лагранжа и Пеано)   | 180 |
|------------------------------------------------------------------------|-----|
| 131.1Формулировка                                                      | 180 |
| 131.2Доказательство                                                    | 180 |
| 132 Теорема о пространстве линейных отображений                        | 181 |
| 132.1Формулировка                                                      | 181 |
| 132.2Доказательство                                                    | 181 |
| 133Пемма об условиях, эквивалентных непрерывности линейного оператора  | 182 |
| 133.1Формулировка                                                      | 182 |
| 133.2Доказательство                                                    | 182 |
| 134Георема Лагранжа для отображений                                    | 183 |
| 134.1Формулировка                                                      | 183 |
| 134.2Доказательство                                                    | 183 |
| 135Теорема об обратимости линейного отображения, близкого к обратимому | 184 |
| 135.1Вспомогательная лемма                                             | 184 |
| 135.2Доказательство                                                    | 184 |
| 135.3Формулировка                                                      | 184 |
| 135.4Доказательство                                                    | 184 |
| 136Теорема о непрерывно дифференцируемых отображениях                  | 185 |
| 136.1Формулировка                                                      | 185 |
| 136.2Доказательство                                                    | 185 |
| 137Георема Ферма. Необходимое условие экстремума. Теорема Ролля        | 186 |

| 137.1Теорема Ферма                                              | . 186 |
|-----------------------------------------------------------------|-------|
| 137.1.1 Формулировка                                            | . 186 |
| 137.1.2 Доказательство                                          | . 186 |
| 137.2Необходимое условие экстремума                             | . 186 |
| 137.2.1 Формулировка                                            | . 186 |
| 137.2.2 Доказательство                                          | . 186 |
| 137.3Теорема Ролля                                              | . 187 |
| 137.3.1 Формулировка                                            | . 187 |
| 137.3.2 Доказательство                                          | . 187 |
| 138Лемма об оценке квадратичной формы и об эквивалентных нормах | 188   |
| 138.1Формулировка                                               | . 188 |
| 138.2Доказательство                                             | . 188 |
| 139Достаточное условие экстремума                               | 189   |
| 139.1Формулировка                                               | . 189 |

# Часть І

# Определения

### 1 Первообразная, неопределенный интеграл

#### 1.1 Первообразная

$$f:\langle a,b\rangle\to\mathbb{R}$$

 $F:\langle a,b
angle
ightarrow\mathbb{R}$  — первообразная f на  $\langle a,b
angle$ , если для любого  $x\in\langle a,b
angle$  F дифференцируема в точке x и F'(x)=f(x).

#### Пример

$$f(x) = \sin x \iff F(x) = -\cos x + C$$

#### 1.2 Неопределенный интеграл

Неопределенным интегралом функции f на промежутке  $\langle a,b \rangle$  называют множество всех её первообразных.

Обозначение: 
$$\int f, \int f(x) \ dx = \{F+C, C \in \mathbb{R}\}$$
, где  $F$  — любая первообразная.

# 2 Теорема о существовании первообразной

Пусть f непрерывна на  $\langle a,b \rangle$ , тогда существует такая функция F на  $\langle a,b \rangle$ , что F'=f.

### 3 Таблица первообразных

$$1. \ f(x) = k, F(x) = kx$$

2. 
$$f(x) = x^n, F(x) = \frac{x^{n+1}}{n+1}$$
, где  $n \neq -1$ 

3. 
$$f(x) = \frac{1}{x}$$
,  $F(x) = \ln|x|$ 

4. 
$$f(x) = e^x$$
,  $F(x) = e^x$ 

5. 
$$f(x) = a^x$$
,  $F(x) = \frac{a^x}{\ln a}$ ,  $a > 0$ ,  $a \ne 1$ 

6. 
$$f(x) = \sin x, F(x) = -\cos x$$

7. 
$$f(x) = \cos x$$
,  $F(x) = \sin x$ 

8. 
$$f(x) = \frac{1}{\sin^2 x}$$
,  $F(x) = -\operatorname{ctg} x$ 

9. 
$$f(x) = \frac{1}{\cos^2 x}$$
,  $F(x) = \operatorname{tg} x$ 

10. 
$$f(x) = \frac{1}{\sqrt{1-x^2}}, F(x) = \arcsin x = -\arccos x$$

11. 
$$f(x) = \frac{1}{1+x^2}$$
,  $F(x) = \arctan x = -\arctan x$ 

12. 
$$f(x) = \frac{1}{\sqrt{x^2 + 1}}, F(x) = \ln |x + \sqrt{x^2 \pm 1}|$$

13. 
$$f(x) = \frac{1}{1 - x^2}$$
,  $F(x) = \frac{1}{2} \ln \left| \frac{1 + x}{1 - x} \right|$ 

# 4 Равномерная непрерывность

Отображение  $f:X\to Y$ , где X и Y — метрические пространства, а также  $A\subset X$ , называется равномерно непрерывным на A, если:

$$\forall \varepsilon > 0 : \exists \delta > 0 : \forall x_0, x \in A : \rho(x, x_0) < \delta \Longrightarrow \rho(f(x), f(x_0)) < \varepsilon$$

### 5 Площадь, аддитивность площади, ослабленная аддитивность

#### 5.1 Первое определение площади

Пусть E — множество всех ограниченных подмножество в  $\mathbb{R}^2$  (или множество всех фигур).

Тогда площадь — это функция  $\sigma:E \to [0,+\infty)$  со свойствами:

1. аддитивность

Если 
$$A = A_1 \sqcup A_2$$
, то  $\sigma(A) = \sigma(A_1) + \sigma(A_2)$ 

2. нормировка

$$\sigma(\langle a, b \rangle \times \langle c, d \rangle) = (d - c)(b - a)$$

#### Замечание

1. Площадь монотонна, то есть:

$$A \subset B \Rightarrow \sigma(A) \leq \sigma(B)$$

Доказательство

$$B = A \cup (B \setminus A)$$

$$\sigma(B) = \sigma(A) + \sigma(B \setminus A) \ge \sigma(A)$$

2.  $\sigma$ (вертикального отрезка) = 0

Доказательство

Отрезок — прямоугольник, ширина которого стремится к 0, значит и площадь также стремится к 0

#### 5.2 Второе определение площади

$$\sigma: E \to [0, +\infty)$$

- монотонна
- нормировка

• ослабленная аддитивность:

$$E=E_1\cup E_2,\, E_1\cap E_2$$
 — вертикальный отрезок,  $E_1$  и  $E_2$  — по разные стороны этого отрезка. 
$$\sigma(E)=\sigma(E_1)+\sigma(E_2)$$

#### 5.3 Площадь как сумма прямоугольников

$$\sigma(A)=\inf\Big(\sum\sigma(P_i)\Big),$$
 где  $A\subset\bigcup P_i$ 

### 6 Положительная и отрицательная срезки

#### 6.1 Определение

Пусть 
$$f:\langle a,b\rangle \to \mathbb{R}$$

$$f_{+}(x) = \max(f(x), 0)$$
 — положительная срезка

$$f_{-}(x) = \max(-f(x), 0)$$
 — отрицательная срезка

#### 6.2 Некоторые свойства

• 
$$f = f_{+} - f_{-}$$

• 
$$f_+ + f_- = |f|$$

#### 6.3 Подграфик

Пусть  $E \subset \langle a, b \rangle$ 

$$f(E) \ge 0$$

Тогда  $\Pi\Gamma(f,E)$  — подграфик f на E, если:

$$\Pi\Gamma(f, E) = \{(x, y) \in \mathbb{R}^2, x \in E, 0 \le y \le f(x)\}$$

### 7 Определённый интеграл

#### 7.1 Определение

Определённым интегралом функции f по промежутку [a,b] называется  $f:\langle c,d\rangle\to\mathbb{R},\,[a,b]\subset\langle c,d\rangle$ 

$$\int_{a}^{b} f(x)dx = \sigma(\Pi\Gamma(f_{+}, [a, b])) - \sigma(\Pi\Gamma(f_{-}, [a, b]))$$

#### 7.2 Свойства

1. 
$$f \ge 0 \Rightarrow \int_{a}^{b} f \ge 0$$

2. 
$$f \equiv c \Rightarrow \int_{a}^{b} f = c(b-a)$$

Доказательство

$$c = 0$$
 — очевидно

$$c > 0 \int_{a}^{b} = \sigma(\Pi\Gamma(c, [a, b])) = c(b - a)$$

$$c < 0 \int_{a}^{b} = -\sigma(\Pi\Gamma(f_{-}, [a, b])) = -(-c)(b - a) = c(b - a)$$

$$3. \int_{a}^{b} -f = -\int_{a}^{b} f$$

Доказательство

$$(-f)_+ = f_-$$

$$(-f)_{-} = f_{+}$$

4. Можно считать, что разрешён случай, когда a=b

$$\int_{a}^{a} f = 0$$

# 8 Среднее значение функции на промежутке

Величина 
$$c=\frac{1}{b-a}\int\limits_a^b f(x)dx\;$$
 — среднее значение функции  $f$  на промежутке  $\langle a,b \rangle$ 

# 9 Кусочно-непрерывная функция

Если функция f всюду непрерывна на промежутке [a,b] кроме конечного числа точек, при этом все точки разрыва I рода, то такую функцию называют кусочно-непрерывной.

# 10 Почти первообразная

Пусть f — кусочно-непрерывная функция на [a,b]. Тогда  $F:[a,b] \to \mathbb{R}$  — почти первообразная, если существует такое F'(x), что F'(x)=f(x) для всех x кроме конечного числа точек и F(x) непрерывна на [a,b]

## 11 Дробление отрезка, ранг дробления, оснащение

Пусть задан невырожденный отрезок [a,b] Дробление отрезка — набор таких точек  $x_0,\,x_1,\,\ldots,\,x_n,$  что  $a=x_0< x_1< x_2<\ldots< x_n=b$  Оснащение — набор точек  $\xi_1,\,\xi_2,\,\ldots,\,\xi_n,$  что  $\forall k:\xi_k\in[x_{k-1},x_k]$  Ранг дробления — величина, равная  $\max_{k=1,\ldots,n}(x_k-x_{k-1})$ 

### 12 Риманова сумма

Пусть  $f:[a,b] \to \mathbb{R},$  а также задано дробление и оснащение. Тогда  $\sum_{k=1}^n f(\xi_k)(x_k-x_{k-1})$  — Риманова сумма

Если ранг дробления стремится к 0, то  $\sum_{k=1}^n f(\xi_k)(x_k-x_{k-1}) \to \int\limits_a^b f(x)\ dx$ . Это историческое определение интеграла

# 13 Постоянная Эйлера

Постоянная Эйлера — математическая константа  $\gamma$ , определяемая следующим образом:

$$\gamma = \lim_{n \to \infty} \left( \sum_{k=1}^{n} \frac{1}{k} - \ln n \right) = \lim_{n \to \infty} \left( 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} - \ln n \right)$$

## 14 Функция промежутка. Аддитивная функция промежутка

Пусть у нас задано  $\langle a,b \rangle$ . Тогда

Segm 
$$\langle a, b \rangle := \{ [p, q] \subset \langle a, b \rangle \}$$

Тогда:

- 1.  $\phi: \mathrm{Segm}\ \langle a,b\rangle \to \mathbb{R}\ -$ функция промежутка
- 2.  $\phi: \mathrm{Segm}\ \langle a,b\rangle \to \mathbb{R},\ -$ аддитивная функция промежутка, если

$$\forall [p,q] \subset \langle a,b \rangle : \forall c \in (p,q) \Longrightarrow \phi([p,q]) = \phi([p,c]) + \phi([c,q])$$

## 15 Плотность аддитивной функции промежутка

Пусть  $f:\langle a,b\rangle \to \mathbb{R}, \phi: \mathrm{Segm}\ \langle a,b\rangle \to \mathbb{R}\ -$  аддитивная функция промежутка  $f - \mathrm{плотность}\ \phi, \ \mathrm{если}\ \forall \Delta \in \mathrm{Segm}\ \langle a,b\rangle \Longrightarrow \inf_{x\in \Delta} f(x)\cdot l(\Delta) \leq \phi(\Delta) \leq \sup_{x\in \Delta} f(x)\cdot l(\Delta),$  где  $l(\Delta)$  — длина промежутка.

## 16 Гладкий путь, вектор скорости, носитель пути

Путь — непрерывное отображение  $\gamma:[a,b] \to \mathbb{R}^m$ 

 $\gamma(a)$  — начало пути

 $\gamma(b)$  — конец пути

#### 16.1 Гладкий путь

$$\gamma^{(t)} = (\gamma_1(t), \gamma_2(t), \dots, \gamma_m(t))$$

 $\gamma_i$  — координатная функция пути  $\gamma$ 

Путь  $\gamma^{(t)}$  называют гладким, если все  $\gamma_i \in C^1[a,b]$ 

#### 16.2 Вектор скорости

$$\gamma(t_0) := \lim_{t \to t_0} \frac{\gamma(t) - \gamma(t_0)}{t - t_0}$$

Покоординатно:  $\frac{\gamma_i(t)-\gamma_i(t_0)}{t-t_0} o \gamma_i'(t)$ 

 $\gamma'(t_0) = (\gamma_1'(t_0), \ \gamma_2'(t_0), \ \dots, \ \gamma_n'(t_0)) \ \ -$  вектор скорости в точке  $t_0$ 

#### 16.3 Носитель пути

Носитель пути — множество всех значений  $\gamma([a,b])\subset \mathbb{R}^m$ 

## 17 Длина гладкого пути

Длина гладкого путь — функция l, заданная на множестве гладких путей и удовлетворяющая свойствам:

- 1.  $l \ge 0$
- 2. l аддитивна:

$$\forall [a,b]: \forall \gamma [a,b]: \forall c \in [a,b]$$

$$l(\gamma) = l\left(\gamma \Big|_{[a,c]}\right) + l\left(\gamma \Big|_{[c,b]}\right)$$

3.  $\forall \gamma, \overline{\gamma}$  — гладкие пути,  $C_{\gamma}, C_{\overline{\gamma}}$  — их носители в  $\mathbb{R}^m$ 

Если существует такое  $T:C_{\gamma} \to C_{\overline{\gamma}}$  — сжатие, т.е.:

$$\forall M_1, M_2 \in C_{\gamma}$$

$$\rho(T(M_1), T(M_2)) \le \rho(M_1, M_2)$$

TO 
$$l(\overline{\gamma}) \leq l(\gamma)$$

4.  $\gamma$  — линейный путь  $(\gamma(t) = t\overline{v} + \overline{u})$ 

$$l(\gamma) = \rho(\gamma(a), \gamma(b))$$

#### Замечание

- 1. Длина хорды меньше длины дуги (это отображение сжатие)
- 2. При растяжении длины путей растут

Всякое сжатие является непрерывным, но для растяжений — неверно!!!

3. При движении  $\mathbb{R}^m$  длина пути не меняется (это сжатие и растяжение одновременно)

# 18 Формулы для длины пути: в $\mathbb{R}^m$ , в полярных координатах, длина графика

## 18.1 Длина пути в $\mathbb{R}^m$

Пусть 
$$\gamma:[a,b] \to \mathbb{R}^m, \, \gamma \in C^1$$

Утверждение: 
$$l(\gamma) = \int\limits_a^b \|\gamma'(t)\| dt$$

### 18.2 Длина графика

$$\gamma: [a,b] \to \mathbb{R}^2$$

$$t\mapsto (t,f(t))\ (f\in C^1)\ -$$
гладкий путь

$$\gamma' = (1, f'(t))$$

$$\|\gamma'\| = \sqrt{1^2 + (f'(t))^2}$$

$$l(f) = \int_{a}^{b} \sqrt{1 + (f'(t))^2} dt$$

## 18.3 Длина кривой в полярных координатах

$$r = r(\varphi)$$

$$\gamma: [\varphi_0, \varphi_1] \to \mathbb{R}^2$$

$$\gamma(\varphi) = (r(\varphi)\cos\varphi, r(\varphi)\sin\varphi)$$

$$\gamma' = (r'\cos\varphi - r\sin\varphi, r'\sin\varphi + r\cos\varphi)$$

$$\|\gamma'\|^2 = (r')^2 + r^2$$

$$l(\gamma) = \int\limits_{\varphi_0}^{\varphi_1} \sqrt{r^2(\varphi) + (r'(\varphi))^2} d\varphi$$

## 19 Вариация функции на промежутке

Пусть 
$$f:[a,b] \to \mathbb{R}$$
 — это «путь»

Рассмотрим все такие x, что

$$a = x_0 < x_1 < x_2 < \ldots < x_n = b$$

Тогда вариация f на [a,b]

$$\operatorname{Var}_{a}^{b} f = \sup \sum_{i=1}^{n} (|f(x_{i}) - f(x_{i-1})|)$$

При этом если 
$$f \in C^1\left([a,b]\right),$$
 то  $\mathrm{Var}_a^b f = \int\limits_a^b |f'(t)| dt$ 

## 20 Верхний и нижний пределы

### 20.1 Верхняя и нижняя огибающая

Пусть  $x_n$  — вещественная последовательность.

$$y_n = \sup(x_n, x_{n+1}, x_{n+2}, \ldots)$$
 — верхняя огибающая

$$z_n = \inf(x_n, x_{n+1}, x_{n+2}, \ldots)$$
 — нижняя огибащая

Тогда:

- 1.  $y_n$  убывает  $(y_n \le y_{n+1})$
- 2.  $z_n$  возрастают  $(z_n \ge z_{n+1})$
- 3. Если изменить конечное число членов  $x_n$ , изменится конечное число элементов  $y_n$  и  $z_n$ , тогда существуют  $\lim_{n\to\infty}y_n$  и  $\lim_{n\to\infty}z_n$

## 20.2 Верхний и нижний пределы

Верхний предел 
$$x_n$$
 —  $\overline{\lim}_{n\to+\infty} x_n = \lim_{n\to+\infty} \sup x_n := \lim y_n \in \overline{\mathbb{R}}$ 

Нижний предел 
$$x_n$$
 —  $\lim_{n\to +\infty} x_n = \lim_{n\to +\infty} \inf x_n := \lim z_n \in \overline{\mathbb{R}}$ 

# 21 Частичный предел

a — частичный предел  $x_n$   $(a \in \overline{\mathbb{R}})$ , если

$$\exists n_k: x_{n_k} \to a$$

 $\Pi$ ример

- 1.  $x_n = (-1)^n$ , 1 частничный предел
- 2.  $x_n = \sin n, \, \forall a \in [-1,1]$  частничный предел

# 22 Допустимая функция

Пусть  $f:[a,b) \to \mathbb{R}$ , где  $-\infty < a < b \le +\infty$  называют допустимой, если

 $\forall B: a < B < b: f\big|_{[a,B]} \ -$ кусочно-непрерывная функция.

## 23 Несобственный интеграл, сходимость, расходимость

### 23.1 Определение

Пусть 
$$\Phi(B) = \int\limits_a^B f(x) dx$$
, где  $B \in [a,b)$ , по логике  $f$  — допустима на  $[a,b)$ .

Если существует  $\lim_{B \to b-0} \Phi(b) \in \mathbb{R}$ , то этот предел называют несобственным интегралом. Обозначается  $\int\limits_a^{\to b} f(x) dx$ .

#### 23.2 Сходимость и расходимость

Если предела нет, то несобственного интеграла не существует

Если предел  $\lim_{B \to b-0} \Phi(B)$  конечен, то несобственный интеграл называют сходящимся

Если предел бесконечный, то несобственный интеграл расходится.

# 24 Критерий Больцано-Коши сходимости несобственного интеграла

Интеграл 
$$\int\limits_a^{\to b} f(x) dx \; -$$
 сходится тогда и только тогда, когда

$$\forall \varepsilon > 0 : \exists \Delta \in (a, b) : \forall B_1, B_2 : \Delta < B_1 < B_2 < b : \left| \int_{B_1}^{B_2} f(x) dx \right| < \varepsilon$$

Если же

$$\exists \varepsilon : \exists B_n : \overline{B_n} \to b - 0 : \left| \int_{B_n}^{\overline{B_n}} f(x) dx \right| \ge \varepsilon$$

то интеграл расходится

# 25 Гамма функция Эйлера

$$\Gamma(t) = \int_{0}^{+\infty} x^{t-1} e^{-x} dx, \ t > 0$$

## 26 Числовой ряд, сумма ряда, сходимость, расходимость

## 26.1 Числовой ряд

Пусть  $a_n$  — вещественная последовательность. Тогда

$$\sum_{n=1}^{+\infty}a_n$$
 называется числовым рядом, а  $a_n$  — его членами.

### 26.2 Сумма ряда

Последовательность  $S_N = \sum_{i=1}^N a_i$  называют последовательностью частичных сумм. Если последовательность  $S_n$  имеет предел, то

$$\lim_{n \to +\infty} S_n$$
 — сумма ряда.

#### 26.3 Сходимость и расходимость

Если предел существует и конечный, то ряд сходится. Если предела нет или он бесконечный  $\,-\,$  то расходится.

# 27 п-й остаток ряда

$$\displaystyle\sum_{k=n}^{+\infty}a_k$$
 — n-й остаток ряда.

# 28 Абсолютно сходящийся ряд

Ряд  $\sum a_n$  — абсолютно сходится, если

- 1.  $\sum a_n$  сходится
- 2.  $\sum |a_n| \text{сходится}$

# 29 Критерий Больцано-Коши сходимости числового ряда

Сходимость ряда  $\sum_{k=1}^\infty a_k$  равносильна условию

$$\forall \varepsilon > 0 : \exists N \in \mathbb{N} : \forall n > N : \forall p \in \mathbb{N} : \left| \sum_{k=n+1}^{n+p} a_k \right| < \varepsilon$$

# 30 Преобразование Абеля

Пусть  $a_k,\,b_k\,$  — числовые последовательности,  $A_k=\sum_{j=1}^k a_j$  при  $k\in\mathbb{N}.$  Тогда при всех  $n\in\mathbb{N}$ 

$$\sum_{k=1}^{n} a_k b_k = A_n b_n + \sum_{k=1}^{n-1} A_k (b_k - b_{k+1})$$

# 31 Бесконечное произведение

$$\prod_{k=1}^{+\infty} p_k := \lim_{n \to +\infty} \prod_{k=1}^n p_k$$

Если предел существует, конечен и не равен нулю, то произведение сходится, иначе расходится.

## 32 Произведение рядов

Пусть  $\sum_{k=1}^{\infty}a_k$  и  $\sum_{j=1}^{\infty}b_j$  — числовые ряды,  $\gamma:\mathbb{N}\to\mathbb{N}^2$  — биекция,  $k\longmapsto\gamma(k)=(\varphi(k),\psi(k))$  Тогда ряд

$$\sum_{k=1}^{\infty} a_{\varphi(k)} b_{\psi(k)}$$

называется произведением рядов  $\sum_{k=1}^{\infty} a_k$  и  $\sum_{j=1}^{\infty} b_j$ .

## 33 Произведение степенных рядов

Пусть  $\sum a_k \cdot x^k$  и  $\sum b_k \cdot x^k$  — степенные ряды. Тогда последовательность  $\sum c_k$  задаётся следующим образом:

$$c_n = a_0 b_n + a_1 b_{n-1} + \dots a_n b_0$$

и  $\sum c_k \cdot x^k$  — произведение степенных рядов.

# 34 Скалярное произведение, евклидова норма и метрика в $\mathbb{R}^m$

Скалярное произведение  $\langle x,y \rangle = \sum_{i=1}^n x_i y_i$ 

$$\|x\| = \sqrt{\langle x, x \rangle} \; -$$
евклидова норма

$$ho(x,y) = \|x-y\| \ -$$
 метрика в  $\mathbb{R}^m$ 

# 35 Окрестность точки в $\mathbb{R}^m$ , открытое множество

 $B(a,r) = \{x \in \mathbb{R}^m : |x-a| < r\} \ \ -$  открытый шар с центром в точке a и радиусом r

 $U(a)\ -$  окрестность точки a или любой шар B(a,r), где r>0

Множество A открыто, если для любой точки  $a \in A : a$  — внутренняя, то есть  $\exists U(a) \subset A$ 

# 36 Сходимость последовательности в $\mathbb{R}^m$ , покоординатная сходимость

Последовательность  $x^{(n)} \in \mathbb{R}^m \xrightarrow[n \to +\infty]{} a \Longleftrightarrow |x^{(n)} - a| \xrightarrow[n \to +\infty]{} 0$  — сходящаяся последовательность в  $\mathbb{R}^m$   $\forall k: 1 \le k \le m: x_k^{(n)} \xrightarrow[n \to +\infty]{} a_k$  — покоординатная сходимость.

## 37 Предельная точка, замкнутое множество, замыкание

 $a\,$  — предельная точка множества A,если любая проколотая окрестность точки aимеет непустое пересечение с множеством A

Замкнутое множество содержит все свои предельные точки

Замыкание множества A — объединение самого множества A и всех его предельных точек.

# 38 Компактность, секвенциальная компактность, принцип выбора Больцано-Вейерштрасса

#### 38.1 Компактность

Семейство множеств  $\{G_{\alpha}\}_{\alpha\in A}$  называется покрытием множества K, если  $K\subset\bigcup_{\alpha\in A}G_{\alpha}$ 

Покрытие открыто, если все его множества открыты.

Пусть  $K \in X$ ,  $(X, \rho)$  — метрическое пространство. K называется компактным, если из любого открытого покрытия множества K можно извлечь конечное покрытие.

#### 38.2 Секвенциальная компактность

K называется секвенциально компактным, если из любой ограниченной последовательности можно выделить сходящуюся подпоследовательность.

#### 38.3 Принцип выбора Больцано-Вейерштрасса

Из всякой ограниченной последовательности точек K в  $\mathbb{R}^m$  можно извлечь сходящуюся подпоследовательность b.

# 39 Координатная функция

 $F:\mathbb{R}^m o \mathbb{R}^l$  или  $F:\mathbb{C}^m o \mathbb{C}^l$  — векторнозначная функция.

Координатные функции f:

 $f_i:X\in(\mathbb{R}^m$  или  $\mathbb{C}^m) o(\mathbb{R}$  или  $\mathbb{C})$  — её координатная функция.

$$F(x) = (f_1(x), f_2(x), \dots, f_l(x))$$

## 40 Двойной предел, повторный предел

#### 40.1 Повторный предел

Пусть  $D_1,\,D_2\subset\mathbb{R},\,a_1\,$  — предельная точка  $D_1,\,a_2\,$  — предельная точка  $D_2$ 

Пусть 
$$D \supset (D_1 \setminus \{a_1\}) \times (D_2 \setminus \{a_2\}), f: D \to \mathbb{R}$$

Если  $\forall x_1 \in D_1 \setminus \{a_1\} : \exists \varphi(x_1) = \lim_{x_2 \to a_2} f(x_1, x_2)$  — конечен, то  $\lim_{x_1 \to a_1} \varphi(x_1)$  называют повторным пределом.

Аналогично 
$$\lim_{x_2 \to a_2} \left( \lim_{x_1 \to a_1} f(x_1, x_2) \right)$$

#### 40.2 Двойной предел

$$\lim_{\substack{x_1 \to a_1 \\ x_2 \to a_2}} f(x_1, x_2) = L$$

$$\forall U(l) : \exists V_1(a_1), V_2(a_2) : \forall x_1 \in \dot{V}_1(a_1), x_2 \in \dot{V}_2(a_2) : f(x_1, x_2) \in U(l)$$

# 41 Предел по направлению, предел вдоль пути

 $\lim_{t\to 0} f(a+tv)$ , где  $v\in \mathbb{R}^m,\, t\in \mathbb{R}^-$  предел по направлению к точке a.

Пусть  $x_1, \, x_2, \, \dots, \, x_m \,$  — координатные функцию, для всех  $x_i : x_i(0) = a_i.$ 

Тогда  $\lim_{t \to 0} f(x_1(t), x_2(t), \dots, x_m(t))$  — предел вдоль пути к точке a.

## 42 Предел отображения (определение по Коши и по Гейне)

Пусть задано  $f:D\subset X\to Y$  — метрические пространства, a — предельная точка D. Тогда A называют пределом отображения f в точке a, если:

## 42.1 По Коши

$$\forall \varepsilon > 0 : \exists \delta > 0 : \forall x \in D \setminus \{a\} : 0 < \rho_x(x, a) < \delta : \rho_y(f(x), A) < \varepsilon$$

## 42.2 По Гейне

$$\forall \{x_n\} : x_n \in D \setminus \{a\}, x_n \to a : f(x_n) \to A$$

# 43 Линейный оператор

Пусть  $X,\,Y\,$  — линейные пространства над  $\mathbb R$ 

 $f: X \to Y$  — линейное отображение, если:

$$\forall \alpha, \beta \in \mathbb{R} : \forall x_1, x_2 \in X : f(\alpha x_1 + \beta x_2) = \alpha f(x_1) + \beta f(x_2)$$

По факту, линейное отображение и линейный оператор одно и то же.

# 44 Отображение бесконечно малое в точке

Пусть  $\varphi: E \subset \mathbb{R}^m \to \mathbb{R}^l, \; x_0 \;$  — внутрення точка E

arphi — бесконечно малое в точке  $x_0,$  если  $\lim_{x o x_0} arphi(x) = \mathbf{0} \in \mathbb{R}^l$ 

# **45** о(h) при $h \to 0$

Пусть  $\varphi: E \subset \mathbb{R}^m \to \mathbb{R}^l, \, \mathbf{0} \in \text{Int } (E)$ 

$$arphi(h) = o(h)$$
 при  $h o 0,$  если  $\dfrac{arphi(h)}{|h|}$  — бесконечно малое

## 46 Отображение, дифференцируемое в точке

Пусть  $F:E\subset\mathbb{R}^m\to\mathbb{R}^l,~a\in {\rm Int}~(E),~F~$  — дифференцируема в точке a, если существует линейный оператор  $L:\mathbb{R}^m\to\mathbb{R}^l,$  существует бесконечно малое  $\alpha:E\to\mathbb{R}^l$  при  $h\to 0,$  что

$$F(a+h) = F(a) + Lh + \alpha(h) \cdot |h|$$

Или существует линейный оператор L и также существует бесконечно малое в точке a отображение  $\varphi,$  что

$$F(x) = F(a) + L(x - a) + |x - a|\varphi(x)$$

## 47 Производный оператор, матрица Якоби, дифференциал

### 47.1 Производный оператор

Оператор L — производный оператор [отображение F в точке a]

### 47.2 Матрица Якоби

Матрица, соответствующая производному оператору называется матрицей Якоби.

### 47.3 Дифференциал

По определению производной F(a+h) = F(a) + F'(a)h + o(h)

Выражение F'(a)h называется дифференциалом отображение F в точке а. Это

- 1. или линейное отображение  $h \longmapsto F'(a)h$
- 2. или отображение  $(a,h) \longmapsto F'(a)h$

# 48 Частные производные

Пусть  $f: E \subset \mathbb{R}^m \to \mathbb{R}, a \in \text{Int } (E).$  Фиксируем  $k \in \{1, \dots, m\}$ :

$$\varphi_k(u) := f(a_1, \dots, a_{k-1}, u, a_{k+1}, \dots, a_m)$$

Функция от одной переменной задана  $V(a_k)$ 

$$\lim_{t\to 0}\frac{\varphi_k(a_k+t)-\varphi_k(a_k)}{t}=\varphi_k'(a_k)$$
 называется частной производной функции  $f$  в точке  $a$ 

# **49** Классы $C^r(E)$

Пусть E открыто и  $E\subset \mathbb{R}^m,\,r\in\mathbb{N}\cup\{\infty\}.$  Тогда

 $C^r(E)$  — множество функций  $f:E \to \mathbb{R},$  у которых существуют все частные производные порядка  $\leq r$  и эти производные непрерывны.

# 50 Мультииндекс и обозначения с ним

Мультииндекс для  $\mathbb{R}^m$  — вектор  $(k_1,k_2,\ldots,k_m)$ , все  $k_i\in\mathbb{Z}^+.$ 

$$|k| = k_1 + k_2 + \ldots + k_m$$
 — высота мультииндекса.

$$k! = k_1!k_2! \dots k_m!$$

$$x^k = x_1^{k_1} x_2^{k_2} \dots x_m^{k_m}$$

$$f^{(k)} = f_{x_1^{k_1} x_2^{k_2} \dots x_m^{k_m}}^{(|k|)} = \frac{\partial^{|k|} f}{\partial x_1^{k_1} \partial x_2^{k_2} \dots \partial x_m^{k_m}}$$

# 51 Формула Тейлора (различные виды записи)

Пусть  $f:C^{r+1}(E),\,B(a,r)\subset E,\,x\in B(a,r)$ 

Тогда 
$$\exists \Theta \in [0,1]$$
, что  $f(x) = \sum_{|k| \le r} \frac{f^{(k)}(a)}{k!} (x-a)^k + \sum_{|k| = r+1} \frac{f^{(k)}(a + \Theta(x-a)}{k!} (x-a)^k$ 

И для любителей матана:

$$f(x) = \sum_{l=0}^{r} \left( \sum_{\substack{k_1 \ge 0, k_2 \ge 0, \dots, k_m \ge 0 \\ k_1 + k_2 + \dots + k_m = l}} \frac{\partial^l f(a)}{\partial x_1^{k_1} \partial x_2^{k_2} \dots \partial x_m^{k_m}} \cdot \frac{1}{k_1! k_2! \dots k_m!} \cdot h_1^{k_1} h_2^{k_2} \dots h_m^{k_m} \right) + \sum_{\substack{k_1 \ge 0, k_2 \ge 0, \dots, k_m \ge 0 \\ k_1 + k_2 + \dots + k_m = r + 1}} \frac{\partial f(a + \Theta(x - a))}{\partial x_1^{k_1} x_2^{k_2} \dots x_m^{k_m}} \cdot \frac{1}{k_1! k_2! \dots k_m!}$$

# n-й дифференциал

$$\sum_{n=0}^{r} \left( \frac{1}{n!} \sum \frac{n!}{k_1! k_2! \dots k_m!} \cdot \frac{\partial^n f(a)}{\partial x_1^{k_1} \partial x_2^{k_2} \dots \partial x_m^{k_m}} \cdot h_1^{k_1} h_2^{k_2} \dots h_m^{k_m} \right)$$

n-й дифференциал в точке a или однородный многочлен степени n из формулы Тейлора

# 53 Норма линейного оператора

$$||A||=||A||_{m,l}=\sup{(|Ax|)},$$
где  $x\in\mathbb{R}^m$  и  $|x|=1$ 

# 54 Положительно-, отрицательно-, незнако- определенная квадратичная форма

Квадратичная форма — однородный многочлен второй степени/

$$Q(h) = \sum a_{ij} h_i h_j, \ h \in \mathbb{R}^n$$

- $Q(h)\,$  положительно определенная форма, если для любого  $h\neq 0: Q(h)>0$
- $Q(h)\,$  отрицательно определенная форма, если для любого  $h\neq 0: Q(h)<0$
- $Q(h)\,$  незнако определенная форма, если существует такие  $h_1$  и  $h_2$ , что  $Q(h_1)>0$  и  $Q(h_2)<0$

# 55 Локальный максимум, минимум, экстремум

Пусть  $f: D \subset \mathbb{R}^m \to \mathbb{R}, x_0 \in \text{Int } (D)$ 

$$f \in C^2(\text{Int }(D))$$
 и grad  $(f(x_0)) = 0$ 

$$Q(h) := \partial^2 f(x_0)$$
. Тогда:

- 1. Q(h) положительно определенная, значит  $x_0$  точка локального минимума
- 2.  $Q(h)\,$  отрицательно определенная, значит  $x_0\,$  точка локального максимума
- 3.  $Q(h)\,\,-\,$  неопределенная, значит  $x_0\,\,-\,$  не точка экстремума.

Часть II

Теоремы

# 56 Теорема Кантора о равномерной непрерывности

## 56.1 Формулировка

Пусть  $f:X\to Y$  — метрические пространства, f непрерывна на X,X — компактно. Тогда f — равномерное непрерывно на X.

## 56.2 Доказательство (от противного)

Воспользуемся тем свойством, что если X — компактно, то X и секвенциально компактно, поскольку X — метрическое пространство.

От противного:

$$\exists \varepsilon > 0: \delta = \frac{1}{n}: \exists x_n, \ \widetilde{x_n}: \rho(x_n, \widetilde{x_n}) < \frac{1}{n} \Longrightarrow \rho(f(x_n), f(\widetilde{x_n})) \geq \varepsilon$$

Тогда выберем сходящуюся подпоследовательность:  $x_{n_k} \to a \in X, \ \widetilde{x_{n_k}} \to a \in X.$ 

Тогда 
$$f(x_{n_k}) \to f(a)$$
 и  $f(\widetilde{x_{n_k}}) \to f(a)$ , значит

$$\rho(f(x_{n_k}),f(\widetilde{x_{n_k}})) \to 0$$
 (по неравенству треугольника)

Что и противоречит изначальному условию.

# 57 Теорема Брауэра о неподвижной точке

# 57.1 Формулировка

Пусть  $f: B(0,1) \subset \mathbb{R}^m \to B(0,1)$  — непрерывная, тогда

 $\exists x_0 : f(x_0) = x_0$ 

# 57.2 Доказательство

# 57.2.1 Игра "Текс"

Пусть есть поле  $n \times m$ , состоящее из правильных шестиугольников (гексов). Также два игрока на каждом своём ходу красят гексы в белый или чёрный цвет. Тогда для любой раскраски найдётся либо чёрная тропинка, соединяющая верхнюю и нижнюю часть поля, либо белая тропинка, соединяющая левую и правую часть поля.

Доказывается от противного (Кохась сказал, что можно не доказывать, поэтому мы и не будет этого делать)



#### 57.2.2 Сама теорема



Теперь заменим гексы на обычную координатную плоскость, причём игра, по сути, останется такой же. Теперь перейдём к самой теореме.

Шар с лёгкостью заменяется на обычный квадрат  $[0,1] \times [0,1]$ 

Пусть  $f:[0,1]^2 \to [0,1]^2$  — непрерывна. Тогда теорему можно переформулировать следующим образом:

$$\exists a \in [0,1]^2$$
, что  $f(a) = a$ 

$$a \in [0,1]^2$$
,  $a = (a_1, a_2)$ 

$$f(x) \in \mathbb{R}^2$$
,  $f(x) = (f(x)_1, f(x)_2)$ 

#### 57.2.3 Доказательство

Пусть  $\rho$  — функция, заданная на  $[0,1]^2 \times [0,1]^2$ 

$$ho(x,y) = \max (|x_1-y_1|,|x_2-y_2|)$$
 — непрерывна на  $[0,1]^2$ 

$$x_n \to a, y_n \to b \Longrightarrow \rho(x_n, y_n) \to \rho(a, b)$$

Очевидно, что для любых  $x,y:x\neq y\Longrightarrow \rho(x,y)>0$ 

#### 57.2.4 Теперь к самой теореме

Пусть для любого  $x \in [0,1]^2: f(x) \neq x$ . Тогда  $\rho(x,f(x))>0$ , но  $\rho$  непрерывно по x и  $[0,1]^2$  — компакт, значит по теореме Вейерштрасса существует такое  $\varepsilon>0$ , что

$$\min_{x \in [0,1]^2} \rho(x,f(x)) = \varepsilon > 0$$

По теореме Кантора для этого  $\varepsilon$  найдётся такая  $\delta$  (будем считать, что  $\delta \cdot \sqrt{2} < \varepsilon$ ), что

$$\forall x, \widehat{x} \in [0, 1]^2 : \|x - \widehat{x}\| < \delta \cdot \sqrt{2} \Longrightarrow \|f(x) - f(\widehat{x})\| < \varepsilon$$

Берём 
$$\varepsilon > \frac{1}{n}$$



#### 57.2.5 Доска

Узел 
$$(l,k) o \left(\frac{l}{n},\frac{k}{n}\right) \in [0,1]^2$$

$$0 \le l, k \le n$$

Красим узлы

 $v\,\,-\,$ логический узел,  $v=(v_1,v_2)$ 

$$c(v) = \min \left\{ i : \left\| f\left(\frac{v}{n}\right)_i - \frac{v_i}{n} \right\| \ge \varepsilon \right\}$$

По лемме об игре в гексы есть одноцветная тропинка.

Путь  $v^0-$  начальная точка тропинки,  $v^N-$  конечная, а тропинка первого цвета (если это не так, то просто переобозначим)

$$v_1^0 = 0$$

$$f\left(\frac{v^0}{n}\right) \in [0,1]^2$$
, r.e.  $f\left(\frac{v^0}{n}\right)_1 \geq 0$ 

$$\varepsilon \le \left| f\left(\frac{v^0}{n}\right)_1 - \frac{v_1^0}{n} \right| = f\left(\frac{v^0}{n}\right)_1$$

Аналогично для  $v_1^N=1$ 

$$\begin{split} f\left(\frac{v^N}{n}\right)_1 &\leq 1 \\ f\left(\frac{v^N}{n}\right)_1 - \frac{v_1^N}{n} &\leq -\varepsilon \\ f\left(\frac{v^0}{n}\right)_1 - \frac{v_1^0}{n} &\geq \varepsilon \end{split}$$

Поскольку для любых x верно, что  $|f(x)_1-x_1|\geq \varepsilon$ , то из этого следует, что какой-то прыжок был длиной не меньше  $2\varepsilon$ , но такое невозможно, поскольку по условию если  $\|x-\widehat{x}\|<\frac{1}{n}$ , то  $\|f(x)-f(\widehat{x})\|<\varepsilon$ 

# 58 Теорема о свойствах неопределенного интеграла

Пусть f, g имеют первообразную на  $\langle a, b \rangle$ . Тогда:

1. 
$$\int f + \int g = \int (f + g)$$
$$\forall \alpha \in \mathbb{R} \int (\alpha f) = \alpha \int f$$

2.  $\forall \varphi: \langle c, d \rangle \rightarrow \langle a, b \rangle, \, \varphi$  дифференцируема

$$\int f(arphi(t))arphi'(t)dt = F(arphi(t)) + C$$
, где  $F$  — первообразная  $f$ 

3. 
$$\forall \alpha, \beta \in \mathbb{R}, \ \alpha \neq 0 : \int f(\alpha x + \beta) dx = \frac{1}{\alpha} F(\alpha x + \beta) + C$$

4. f, g — дифференцируемы на  $\langle a, b \rangle$ 

 $f' \cdot g$  имеет первообразную на  $\langle a,b \rangle$ 

Тогда  $f \cdot g'$  тоже имеет первообразную и

$$\int f'g = fg - \int fg'$$

#### Доказательство

1. 
$$(F+G)' = f+g$$

$$(\alpha F)' = \alpha f$$

2. 
$$(F(\varphi(t)))' = f(\varphi(t))\varphi'(t)$$

3. 
$$\left(\frac{1}{\alpha}F(\alpha x + \beta)\right)' = f(\alpha x + \beta)$$

4. 
$$(fg)' = f'g + fg'$$
, r.e.  $fg = \int f'g + \int fg'$ 

# 59 Интегрирование неравенств. Теорема о среднем

# 59.1 Интегрирование неравенств

#### 59.1.1 Формулировка

$$f, g \in C[a, b], f \leq g \Rightarrow \int_{a}^{b} f \leq \int_{a}^{b} g$$

#### 59.1.2 Доказательство

Если  $0 \le f \le g$ 

$$\int\limits_a^b f = \sigma(\Pi\Gamma(f,[a,b])) \leq \sigma(\Pi\Gamma(g,[a,b])) = \int\limits_a^b g$$

В общем случае

$$\Pi\Gamma(f_+,[a,b])\subset\Pi\Gamma(g_+,[a,b])$$

$$\Pi\Gamma(f_{-}, [a, b]) \supset \Pi\Gamma(g_{-}, [a, b])$$

$$\sigma(\Pi\Gamma(f_+,[a,b])) - \sigma(\Pi\Gamma(f_-,[a,b])) \leq \sigma(\Pi\Gamma(g_+,[a,b])) - \sigma(\Pi\Gamma(g_-,[a,b]))$$

$$\int_{a}^{b} f \le \int_{a}^{b} g$$

#### 59.1.3 Следствия

1. 
$$f \in C[a, b]$$

$$\min_{[a,b]} f \cdot (b-a) \le \int_{a}^{b} f \le \max_{[a,b]} f \cdot (b-a)$$

2. 
$$f \in C[a, b]$$

$$\left| \int_{a}^{b} f \right| \le \int_{a}^{b} |f|$$

T.K. 
$$-\int\limits_a^b |f| \leq \int\limits_a^b f \leq \int\limits_a^b |f|$$

# 59.2 Теорема о среднем значении

## 59.2.1 Формулировка

Пусть f непрерывна на  $[a,b]\Rightarrow \exists c\in [a,b]:\int\limits_a^b f=f(c)(b-a)$ 

### 59.2.2 Доказательство 1 (Кохась порофлил)

Просто берём прямую и двигаем её сверху вниз, тем самым по теореме о бутерброде мы найдём такое значение c, что  $\int\limits_{-a}^{b}f=f(c)(b-a)$ 

#### 59.2.3 Нормальное доказательство

Если a=b — очевидно.

Пусть a < b

$$\min f \le \frac{1}{b-a} \int_{a}^{b} f \le \max f$$

по теореме Больцано-Коши о промежуточном значении

$$\exists c : \frac{1}{b-a} \cdot \int_{a}^{b} f = f(c)$$

$$\int_{a}^{b} f = f(c)(b - a)$$

# 60 Теорема Барроу

## 60.1 Определение

$$f \in C[a,b], \, \varphi : [a,b] \to \mathbb{R}$$

$$arphi(x) = \int\limits_{a}^{x} f(t) dt$$
 — интеграл с верхним переменным пределом

## 60.2 Теорема (Барроу)

В условиях определения оказывается, что  $\varphi$  — дифференцируема на [a,b] и  $\varphi'(x)=f(x)$  для любого  $x\in [a,b]$ 

#### 60.3 Доказательство

Фиксируем x и при y > x

$$\lim_{y \to x+0} \frac{\varphi(y) - \varphi(x)}{y - x} = \lim_{y \to x+0} \frac{1}{y - x} \left( \int_{a}^{y} f - \int_{a}^{x} f \right) = \lim_{y \to x+0} \frac{1}{y - x} \int_{x}^{y} f = \lim_{y \to x+0} f(c) = f(x)$$

 $\exists c \in [x,y] \ -$  следует из теоремы о среднем значении.

Аналогично доказываем, что  $\lim_{y\to x-0}=\ldots=f(c)$ 

#### 60.4 Замечания

• Интеграл с нижним переменным пределом

$$\psi(x) = \int\limits_{x}^{b} f$$
. Тогда  $\psi'(x) = -f$ 

• Эта теорема также доказывает теорему о существовании неопределенного интеграла при условии, что функция непрерывна.

# 61 Формула Ньютона-Лейбница, в том числе для кусочно-непрерывных функций

## 61.1 Формулировка теоремы

Пусть f непрерывна (кусочно-непрерывна) на [a,b], F — первообразная (почти) f.

Тогда 
$$\int_{a}^{b} f = F(b) - F(a)$$

# 61.2 Доказательство для непрерывных функций

 $\varphi$  (из теоремы Барроу) — тоже первообразная, значит

$$\exists c: F = \varphi + c$$

$$F(b) - F(a) = \Phi(b) - \Phi(a) = \int_{a}^{b} f - \int_{a}^{a} f = \int_{a}^{b} f$$

$$\int_{a}^{b} f = F(b) - F(a)$$

При 
$$a > b \int_{a}^{b} f \stackrel{\text{def}}{=} - \int_{b}^{a} f$$

## 61.3 Для кусочно-непрерывных функций

Для кусков функции распишем формулу Ньютона-Лейбница, получим телескопическую сумму, останется только F(b)-F(a)

# 62 Свойства определенного интеграла: линейность, интегрирование по частям, замена переменных

## 62.1 Линейность определенного интеграла

#### 62.1.1 Формулировка

$$f, g \in C[a, b], \alpha, \beta \in \mathbb{R}$$

$$\int_{a}^{b} \alpha f + \beta g = \alpha \int_{a}^{b} f + \beta \int_{a}^{b} g$$

#### 62.1.2 Доказательство

Из формулы Ньютона-Лейбница

$$\int_{a}^{b} f = F(b) - F(a) = F(x) \Big|_{a}^{b}$$

Для  $F,\,G: \alpha F + \beta G\,\,$  — первообразная  $\alpha f + \beta g$ 

$$\left(\alpha F(x) + \beta G(x)\right)\Big|_a^b = \alpha F(b) + \beta G(b) - \alpha F(a) - \beta G(a) = \alpha (F(b) - F(a)) + \beta (G(b) - G(a)) = \alpha \int_a^b f + \beta \int_a^b g(a) da$$

#### 62.2 Интегрирование по частям

#### 62.2.1 Формулировка

$$f,g\in C^1[a,b]$$
. Тогда

$$\int\limits_a^b fg' = fg \bigg|_a^b - \int\limits_a^b f'g$$

#### 62.2.2 доказательство

Из свойств для неопределенного интеграла

$$\int_{a}^{b} fg' = \left(\int fg'\right)\Big|_{a}^{b} = \left(fg - \int f'g\right)\Big|_{a}^{b} = fg\Big|_{a}^{b} - \int_{a}^{b} f'g$$

# 62.3 Замена переменных

## 62.3.1 Формулировка

 $f \in C(\langle a, b \rangle)$ 

$$\varphi: \langle \alpha, \beta \rangle \to \langle a, b \rangle, \ \varphi \in C^1(\langle a, b \rangle), \ [p, q] \in \langle \alpha, \beta \rangle$$

Тогда 
$$\int\limits_{p}^{q}f(\varphi(t))\varphi'(t)\ dt=\int\limits_{\varphi(p)}^{\varphi(q)}f(x)\ dx$$

#### 62.3.2 Доказательство

Пусть F — первообразная f

$$F(\varphi(t))$$
 — первообразная  $f(\varphi(t))\varphi'(t)$  на  $[p,q]$ 

Тогда обе части:  $F(\varphi(q)) - F(\varphi(p))$ 

#### 62.3.3 Замечание

- 1. Возможен случай  $\varphi([p,q])\supset [\varphi(p),\varphi(q)]$
- 2. В другую сторону

$$\int_{u}^{v} f(x) \ dx = \int_{p}^{q} f(\varphi(t))\varphi'(t) \ dt$$

Тогда подбираем такие p и q, что когда t ходит от p до q и  $\varphi(t)$  ходит от v до u

# 63 Интегральное неравенство Чебышева. Неравенство для сумм

# 63.1 Интегральное неравенство Чебышева

#### 63.1.1 Формулировка

$$I_f = \frac{1}{b-a} \int_a^b f$$

 $f,g \in C[a,b]$  — монотонно возрастают

Тогда  $I_f \cdot I_y \leq I_{fg}$ 

$$\int\limits_a^b f \cdot \int\limits_a^b g \leq (b-a) \int\limits_a^b fg \ - \ \text{неравенство Чебышева}$$

#### 63.1.2 Доказательство

$$\forall x, y \in [a, b] \ (f(x) - f(y))(g(x) - g(y)) \ge 0$$

Проинтегрируем по переменной x по отрезку [a,b]

$$f(x)g(x) - f(y)g(x) - f(x)g(y) + f(y)g(y) \ge 0$$

$$\int\limits_a^b fg-f(y)\int\limits_a^b g-\int\limits_a^b g(y)+(b-a)f(y)g(y)\geq 0 \ (\text{мы домножили все слагаемые на }(a-b))$$

$$I_{fg} - f(y)I_g - I_fg(y) + f(y)g(y) \ge 0$$

Интегрируем по y на [a,b]

$$I_{fg}(b-a) - I_g \int_{a}^{b} f(y) - I_f \int_{a}^{b} g(y) + \int_{a}^{b} fg \ge 0$$

Снова поделим на (b-a)

$$I_{fg} - I_f \cdot I_g - I_f \cdot I_g + I_{fg} \ge 0$$

$$I_{fg} \ge I_f \cdot I_g$$

## 63.2 Неравенство для сумм

## 63.2.1 Формулировка для сумм

Пусть задана последовательность  $a_n:a_1\geq a_2\geq\ldots\geq a_n$  и  $b_n:b_1\geq b_2\geq\ldots\geq b_n.$  Тогда

$$\frac{1}{n} \sum_{k=1}^{n} a_k b_k \ge \left(\frac{1}{n} \sum_{k=1}^{n} a_k\right) \left(\frac{1}{n} \sum_{k=1}^{n} b_k\right)$$

#### 63.2.2 Доказательство

По неравенству Чебышёва

$$I_{fg} \ge I_f I_g$$

Пусть 
$$I_f = \frac{1}{n} \int_0^n f = \frac{1}{n} \sum a_k$$

 $f(x) = a_{[x+1]}, \, x \in [0,n]$  (где [x] — округление к ближайшему целому вниз)

$$I_g = \frac{1}{n} \int_0^n g = \frac{1}{n} \sum b_k$$

$$g(x) = b_{[x+1]}, x \in [0, n]$$

Отсюда следует, что

$$\frac{1}{n} \sum a_k b_k \ge \left(\frac{1}{n} \sum a_k\right) \left(\frac{1}{n} \sum b_k\right)$$

# 64 Иррациональность числа $\pi$

### 64.1 Вспомогательный интеграл

Пусть 
$$H_n = \frac{1}{n!} \int_{-\pi/2}^{\pi/2} \left(\frac{\pi^2}{4} - t^2\right)^n \cos t \ dt$$

$$H_n = \begin{bmatrix} f = \left(\frac{\pi^2}{4} - t^2\right)^n & g = \sin t \\ f' = -2nt \left(\frac{\pi^2}{4} - t^2\right)^{n-1} & g' = \cos t \end{bmatrix}$$

$$H_n = \frac{1}{n!} \left( \frac{\pi^2}{4} - t^2 \right)^n \sin t \Big|_{-\pi/2}^{\pi/2} + \frac{2n}{n!} \int_{-\pi/2}^{\pi/2} t \left( \frac{\pi^2}{4} - t^2 \right)^{n-1} \sin t \ dt$$

$$H_n = \frac{2n}{n!} \int_{-\pi/2}^{\pi/2} t \left(\frac{\pi^2}{4} - t^2\right)^{n-1} \sin t \ dt$$

$$H_n = \begin{bmatrix} f = t \left(\frac{\pi^2}{4} - t^2\right)^{n-1} & g = -\cos t \\ f' = \left(\frac{\pi^2}{4} - t^2\right)^{n-1} - 2(n-1)t^2 \left(\frac{\pi^2}{4} - t^2\right)^{n-2} & g' = \sin t \end{bmatrix}$$

$$f' = \left(\frac{\pi^2}{4} - t^2\right)^{n-1} + 2(n-1)\left(\frac{\pi^2}{4} - t^2\right)^{n-1} - 2(n-1)\left(\frac{\pi^2}{4} - t^2\right)^{n-1} - 2(n-1)t^2\left(\frac{\pi^2}{4} - t^2\right)^{n-2}$$

Вынесем общие части за скобки

$$f' = (2n-1)\left(\frac{\pi^2}{4} - t^2\right)^{n-1} - \frac{\pi^2}{2}(n-1)\left(\frac{\pi^2}{4} - t^2\right)^{n-2}$$

$$\frac{2t}{(n-1)!} \left(\frac{\pi^2}{4} - t^2\right)^{n-1} \left(-\cos t\right) \Big|_{-\pi/2}^{\pi/2} + \frac{2}{(n-1)!} \int_{-\pi/2}^{\pi/2} \left((2n-1)\left(\frac{\pi^2}{4} - t^2\right)^{n-1} - \frac{\pi^2}{2}(n-1)\left(\frac{\pi^2}{4} - t^2\right)^{n-2}\right) \cos t \, dt$$

$$H_n = (4n - 2) \frac{1}{(n - 1)!} \int_{-\pi/2}^{\pi/2} \left(\frac{\pi^2}{4} - t^2\right)^{n - 1} \cos t \ dt - \pi^2 \frac{1}{(n - 2)!} \int_{-\pi/2}^{\pi/2} \left(\frac{\pi^2}{4} - t^2\right)^{n - 2} \cos t \ dt$$

Пусть  $n \ge 2$ , тогда

$$H_n = (4n-2)H_{n-1} - \pi^2 H_{n-2} = \dots + H_2 + \dots + H_0$$

$$H_0 = 2$$

$$H_1 = 2 \int_{-\pi/2}^{\pi/2} \frac{t}{f} \cdot \frac{g'}{\sin t} = 2t(-\cos t) \Big|_{-\pi/2}^{\pi/2} + 2 \int_{-\pi/2}^{\pi/2} \cos t \ dt = 4$$

# 64.2 Теорема

Число  $\pi^2$  — иррациональное (и тогда  $\pi$  тоже)

## 64.3 Доказательство (от противного)

Пусть 
$$\frac{1}{n!} \int_{-\pi/2}^{\pi/2} \left(\frac{\pi^2}{4} - t^2\right)^n \cos t = P_n(\pi^2)$$
, где  $P_n$  — многочлен с целыми коэффициентами.

 $\deg P \le n$ 

Этого не может быть

Пусть 
$$\pi^2 = \frac{m}{k} \in \mathbb{Q}$$
. Тогда  $k^n P_n\left(\frac{m}{k}\right)$  — целое число

Значит 
$$k^n \cdot P_n\left(\frac{m}{k}\right) \ge 1$$
, т.е.

$$\frac{k^n}{n!} \int_{-\pi/2}^{\pi/2} \left(\frac{\pi^2}{4} - t^2\right)^n \cos t \, dt \ge 1$$

$$\frac{k^n}{n!} \int_{-\pi/2}^{\pi/2} \left(\frac{\pi^2}{4} - t^2\right)^n \cos t \ dt \le \frac{k^n}{n!} \left(\frac{\pi^2}{4}\right)^n \cdot \pi \xrightarrow[n \to +\infty]{} 0$$

Получили противоречие

# 65 Формула Тейлора с остатком в интегральной форме

## 65.1 Формулировка

Пусть 
$$\langle a, b \rangle \in \overline{\mathbb{R}}, f \in c^{n+1}(\langle a, b \rangle)$$

 $x, x_0 \in \langle a, b \rangle$ . Тогда

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + \frac{1}{n!} \int_{x_0}^{x} (x - t)^n f^{(n+1)}(t) dt$$

# 65.2 Доказательство (по индукции)

• 
$$n = 0 : f(x) = f(x_0) + \int_{x_0}^{x} f'(t) dt$$

По формуле Ньютона-Лейбница

• Переход от n к n+1

$$f(x) = T_n + \frac{1}{n!} \int_{x_0}^x (x - t)^n f^{(n+1)}(t) dt = \begin{bmatrix} u' = (x - t)^n & u = -\frac{(x - t)^{n+1}}{n+1} \\ v = f^{(n+1)} & v' = f^{(n+2)} \end{bmatrix}$$

$$T_n + \frac{1}{n!} \left( -\frac{(x - t)^{n+1}}{(n+1)} \cdot f^{(n+1)}(t) \Big|_{t=x_0}^{t=x} + \int_{x_0}^x \frac{(x - t)^{n+1}}{n+1} \cdot f^{(n+2)}(t) dt \right)$$

$$T_n + \frac{f^{(n+1)}(x_0)}{(n+1)!} (x - x_0)^{n+1} + \frac{1}{(n+1)!} \int_{x_0}^x (x - t)^{n+1} f^{(n+2)}(t) dt$$

$$f(x) = T_{n+1} + \frac{1}{(n+1)!} \int_{x_0}^x (x - t)^{n+1} f^{(n+2)}(t) dt$$

# 66 Лемма об ускоренной сходимости

#### 66.1 Формулировка

Пусть  $f, g: D \to \mathbb{R}, a$  — предельная точка  $D \subset \mathbb{R}, a \in \overline{\mathbb{R}}$ 

Пусть также существует  $U(a): f \neq 0$  и  $g \neq 0$  в  $\dot{U}(a)$ 

Пусть  $\lim_{x \to a} f(x) = 0$  и  $\lim_{y \to a} g(x) = 0$  (Также возможен вариант, что  $\lim_{x \to a} f(x) = +\infty$  и  $\lim_{y \to a} g(x) = +\infty$ )

Тогда для любой последовательности  $x_k \to a, x_k \in D, x_k \neq a$  найдётся такая последовательность  $y_k \to a$   $(y_k \in D, y_k \neq a),$  что

$$\lim_{k \to +\infty} \frac{f(y_k)}{g(x_k)} = 0 \text{ и } \lim_{k \to +\infty} \frac{f(y_k)}{f(x_k)} = 0$$

#### 66.2 Доказательство

1. Пусть  $f, g \to 0$ , тогда можно добиться того, что  $\left| \frac{f(y_k)}{f(x_k)} \right| < \frac{1}{k}$  и  $\left| \frac{f(y_k)}{g(x_k)} \right| < \frac{1}{k}$ 

Тогда найдётся такое K, что  $\left| \frac{f(x_k)}{f(x_{2019})} \right| < \frac{1}{2019}$  для любых  $k > K \Longrightarrow y_{2019} = x_k$ 

Продолжаем так до бесконечности

$$\left| \frac{f(x_i)}{f(x_k)} \right| < \frac{1}{k}$$

$$\exists i > k \left| \frac{f(x_i)}{f(x_k)} \right| < \frac{1}{k} \Rightarrow y_k := x_i$$

Теперь пусть 
$$\left| \frac{f(x_i)}{g(x_k)} \right| < \frac{1}{k}$$
 при  $x \to +\infty$  и  $\left| \frac{f(x_i)}{g(x_k)} \right| < \frac{1}{k}$  также при  $i \to +\infty$ 

Тогда для каждого k найдётся такое K, что для всех i>K выполняется сразу оба условия, значит присвоим  $y_k:=x_i$ , где i — какое-то число большее K.

2. Пусть  $f, g \to +\infty$ . Считаем, что f > 0 и g > 0. Пусть  $f(x_k)$  и  $g(x_k)$  — возрастающие последовательности (остальные случаи рассматриваются аналогично). Тогда

$$i = \min n : \begin{cases} f(x_n) \ge \sqrt{g(x_k)} \\ f(x_n) \ge \sqrt{f(x_k)} \end{cases}$$

Возьмём  $y_k := x_{i-1}$ 

Тогда 
$$\dfrac{f(y_k)}{f(x_k)}<\dfrac{\sqrt{f(x_k)}}{f(x_k)}=\dfrac{1}{\sqrt{f(x_k)}}\to 0$$

$$\frac{f(y_k)}{g(x_k)} < \frac{\sqrt{g(x_k)}}{g(x_k)} = \frac{1}{\sqrt{g(x_k)}} \to 0$$

# 67 Правило Лопиталя (с леммой)

## 67.1 Формулировка

Пусть f,g — дифференцируемы на  $(a,b), g' \neq 0$  на (a,b) и существует  $\lim_{x \to a} \frac{f'(x)}{g'(x)} = A \in \overline{\mathbb{R}}$ 

Не стоит забывать, что  $\lim_{x\to a+0}\frac{f(x)}{g(x)}$  — неопределенно.

Тогда 
$$\lim_{x \to a} \frac{f(x)}{g(x)} = A$$

## 67.2 Пример из жизни

Пусть  $f, g: [0, +\infty) \to \mathbb{R}$ 

Пусть f — сколько прошёл студент,

g — сколько прошёл Кохась.

Тогда  $f, g \to +\infty$ , но если сравним скорости f' и g', то легко узнать, на сколько больше прошёл Кохась, чем студент.

#### 67.3 Доказательство

 $g' \neq 0 \Rightarrow g'$ сохраняет знак (по теореме Дарбу), значит g~ — строго монотонна

1.  $g \to +\infty \Rightarrow g > 0$  в окрестности точки a

 $2. g \rightarrow 0,$ 

 $g \uparrow \Rightarrow g > 0$  в окрестности точки a

 $g\downarrow\Rightarrow g<0$ в окрестности точки a

### 67.4 Собственное доказательство

Берём последовательность  $y_k \to a$  из леммы.

По теореме Коши  $\exists \xi_k \in [x_k,y_k]$  (не факт, что  $x_k \leq y_k)$ 

$$\frac{f(x_k) - f(y_k)}{g(x_k) - g(y_k)} = \frac{f'(\xi_k)}{g'(\xi_k)}$$

Домножаем правую и левую часть на  $\dfrac{g(x_k)-g(y_k)}{g(x_k)}$ 

$$\frac{f(x_k)}{g(x_k)} = \frac{f(y_k)}{g(x_k)} + \frac{f'(\xi_k)}{g'(\xi_k)} \left(1 - \frac{g(y_k)}{g(x_k)}\right)$$

$$\frac{f(x_k)}{g(x_k)} \to \frac{f'(\xi_k)}{g'(\xi_k)}$$

# 68 Теорема Штольца

# 68.1 Формулировка

Пусть  $x_n, y_n \to 0$ 

$$\lim_{n \to +\infty} \frac{x_n}{y_n} = \left[\frac{0}{0}\right]$$

Тогда если существует  $\lim_{n\to +\infty} \frac{x_n-x_{n-1}}{y_n-y_{n-1}}=a\in [0,+\infty]$ 

Также  $y_n$  — строго монотонна (если a=0, то  $x_n$  — тоже строго монотонна)

Тогда 
$$\exists \lim_{n \to +\infty} \frac{x_n}{y_n} = a$$

## 68.2 Доказательство

1. Пусть  $a>0,\ a$  — конечное, тогда можно считать, что  $y_n\geq y_{n-1}$  из монотонности и  $x_n\geq x_{n-1}$  при больших n.

Заметим обидный факт, что  $\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}$  и  $\frac{a}{b} : \frac{c}{d} = \frac{a:c}{b:d}$ , но  $\frac{a}{b} + \frac{c}{d} \neq \frac{a+c}{b+d}$ . Кохасю обидно, поэтому будем считать, что  $\frac{a}{b} + \frac{c}{d} = \frac{a+c}{b+d}$ . Если вы с этим не согласны, то окей, но заметим, что справедливо:

$$0 < \alpha < \frac{a}{b} < \beta$$

$$0 < \alpha < \frac{c}{d} < \beta$$

$$\alpha < \frac{a+c}{b+d} < \beta$$

Вернёмся к самой теореме

$$\forall \varepsilon > 0 : (\varepsilon < a) : \exists N_1 : \forall n > N \ge N_1$$

$$a - \varepsilon < \frac{x_{N+1} - x_N}{y_{N+1} - y_N} < a + \varepsilon$$

$$a - \varepsilon < \frac{x_{N+2} - x_{N+1}}{y_{N+2} - y_{N+1}} < a + \varepsilon$$

:

$$a - \varepsilon < \frac{x_n - x_{n-1}}{y_n - y_{n-1}} < a + \varepsilon$$

Складываем всё

$$a - \varepsilon < \frac{x_n - x_N}{y_n - y_N} < a + \varepsilon$$

Устремляем n к  $+\infty$ 

$$a - \varepsilon \le \frac{x_N}{y_N} < a + \varepsilon$$

2. Если  $a=+\infty$  — аналогично

$$\forall E > 0 : \exists N_1 : \forall n > N \ge N_1 : \frac{x_{N+1} - x_N}{y_{N+1} - y_N} > E$$

$$E < \frac{x_n - x_N}{y_n - y_N}$$

$$E \le \frac{x_N}{y_N}$$

- 3. Если a=0, то  $\lim_{n\to +\infty} \frac{y_n}{x_n} = +\infty$
- 4. Если a < 0 меняем знаки

# 69 Пример неаналитической функции

# 69.1 Неалитическая функция

$$f(x) = \begin{cases} e^{-1/x^2}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$

## 69.2 Утверждение

f — бесконечное дифференцируема на  $\mathbb R$ 

$$\forall x \in \mathbb{R} : \forall k \in \mathbb{N} : \exists f^{(k)}(x)$$

## 69.3 Доказательство

Если  $x \neq 0$  — то очевидно

Пусть x = 0, тогда для любого k существует  $f^{(k)}(0) = 0$ 

Из теоремы Лагранжа:

Если 
$$\exists \lim_{x \to a+0} f'(x) = \lim_{x \to a-0} f'(x) = L$$
, где  $L \in \mathbb{R}$ , то

f — дифференцируема и f'(a) = L

$$f'(x) = \frac{2}{x^3} \cdot e^{(-1/x^2)}, \ x \neq 0$$

$$\lim_{x \to 0} \frac{1/x^3}{e^{(1/x^2)}} = \left[\frac{\infty}{\infty}\right] = \lim_{x \to 0} \frac{-3/x^4}{(-2/x^3)e^{(1/x^2)}} = \lim_{x \to 0} \frac{3}{2} \cdot \frac{1/x}{e^{(1/x^2)}} = \lim_{x \to 0} \frac{-1/x^2}{-(2/x^3)e^{(1/x^2)}} = \lim_{x \to 0} \frac{3}{4} \cdot x \cdot e^{\left(-1/x^2\right)} \to 0$$

Итого

$$f'(x) = \frac{2}{x^3} \cdot e^{(-1/x^2)}, x \neq 0$$

$$f'(0) = 0$$

# 70 Интеграл как предел интегральных сумм

## 70.1 Формулировка

Пусть  $f \in C[a, b]$ 

Тогда  $\forall \varepsilon > 0: \exists \delta > 0: \forall \mathcal{T}: a = x_0 < x_1 < \ldots < x_n = b$  ранга меньше  $\delta$  и  $\forall \xi_1, \xi_2, \ldots, \xi_n$ 

$$\left| \sum_{k=1}^{n} f(\xi_k)(x_k - x_{k-1}) - \int_{a}^{b} f(x) \ dx \right| < \varepsilon$$

#### 70.2 Доказательство

1. Поделим на отрезки в соответствии с дроблением. Очевидно, что  $\int\limits_a^b f(x)dx = \sum\limits_{k=1}^n \int\limits_{x_{k-1}}^{x_k} f(x)dx$ . Тогда рассмотрим разность

$$\int\limits_{x_{k-1}}^{x_k} f(\xi_k) \ dx - \int\limits_{x_{k-1}}^{x_k} f(x) \ dx$$
 
$$\int\limits_{x_k}^{x_k} (f(\xi_k) - f(x) \ dx) \to 0, \text{ t.k. } x_{k-1} \to x_k, \text{ a } \xi_k \in [x_{k-1}, x_k]$$

2. По теореме Кантора о равномерной непрерывности

$$\forall \varepsilon>0: \exists \delta>0: \forall x_1,x_2: |x_1-x_2|<\delta \Longrightarrow |f(x_1)-f(x_2)|<\frac{\varepsilon}{b-a} \ \text{«Китайский } \varepsilon \text{»}$$

Берём  $x_0, x_1, \dots, x_n, \xi_1, \xi_2, \dots, \xi_n$ 

$$\left| \sum_{k=1}^{n} f(\xi_k)(x_k - x_{k-1}) - \int_{a}^{b} f(x) \ dx \right| = \left| \sum_{k=1}^{n} \int_{x_{k-1}}^{x_k} f(\xi_k) \ dx - \sum_{k=1}^{n} \int_{x_{k-1}}^{x_k} f(x) \ dx \right| = \left| \sum_{k=1}^{n} \int_{x_{k-1}}^{x_k} (f(\xi_k) - f(x)) \ dx \right| \le C \left| \sum_{k=1}^{n} \int_{x_{k-1}}^{x_k} f(x) \ dx \right| \le C \left| \sum_{k=1}^{n} \int_{x_{k-1}}^{x_k} f(x) \ dx \right| \le C \left| \sum_{k=1}^{n} \int_{x_{k-1}}^{x_k} f(x) \ dx \right| \le C \left| \sum_{k=1}^{n} \int_{x_{k-1}}^{x_k} f(x) \ dx \right| \le C \left| \sum_{k=1}^{n} \int_{x_{k-1}}^{x_k} f(x) \ dx \right| \le C \left| \sum_{k=1}^{n} \int_{x_{k-1}}^{x_k} f(x) \ dx \right| \le C \left| \sum_{k=1}^{n} \int_{x_{k-1}}^{x_k} f(x) \ dx \right| \le C \left| \sum_{k=1}^{n} \int_{x_{k-1}}^{x_k} f(x) \ dx \right| \le C \left| \sum_{k=1}^{n} \int_{x_{k-1}}^{x_k} f(x) \ dx \right| \le C \left| \sum_{k=1}^{n} \int_{x_{k-1}}^{x_k} f(x) \ dx \right| \le C \left| \sum_{k=1}^{n} \int_{x_{k-1}}^{x_k} f(x) \ dx \right| \le C \left| \sum_{k=1}^{n} \int_{x_{k-1}}^{x_k} f(x) \ dx \right| \le C \left| \sum_{k=1}^{n} \int_{x_{k-1}}^{x_k} f(x) \ dx \right| \le C \left| \sum_{k=1}^{n} \int_{x_{k-1}}^{x_k} f(x) \ dx \right| \le C \left| \sum_{k=1}^{n} \int_{x_{k-1}}^{x_k} f(x) \ dx \right| \le C \left| \sum_{k=1}^{n} \int_{x_{k-1}}^{x_k} f(x) \ dx \right| \le C \left| \sum_{k=1}^{n} f(x) \ dx \right| \le C \left|$$

$$\sum_{k=1}^{n} \int_{x_{k-1}}^{x_k} |f(\xi_k) - f(x)| dx$$

 $|\xi_k - x_k| < \delta$  для любых  $[x_{k-1}, x_k]$  (по условию)

$$\leq \sum_{k=1}^{n} \int_{x_{k-1}}^{x_k} \frac{\varepsilon}{b-a} \ dx = \int_{a}^{b} \frac{\varepsilon}{b-a} \ dx = \varepsilon$$

# 71 Теорема об интегральных суммах для центральных прямоугольников

### 71.1 Формулировка

Пусть  $f \in C^2[a,b]$  и  $a = x_0 < x_1 < \ldots < x_n = b$  и  $\delta := \max |x_k - x_{k-1}|$ 

Также 
$$\xi_i = \frac{x_i + x_{i-1}}{2}$$

Тогда

$$\left| \sum_{i=1}^{n} f\left(\frac{x_i + x_{i-1}}{2}\right) (x_i - x_{i-1}) - \int_{a}^{b} f(x) \ dx \right| \le \frac{\delta^2}{8} \cdot \int_{a}^{b} |f''|$$

#### 71.2 Доказательство

$$\int_{x_{i-1}}^{x_i} f(x)dx = \int_{x_{i-1}}^{\xi_i} f(x)dx + \int_{\xi_i}^{x_i} f(x)dx = \begin{bmatrix} u = f & u' = f' \\ v' = 1 & v = x - x_{i-1} \end{bmatrix} \mathbf{M} \begin{bmatrix} u = f & u' = f' \\ v' = 1 & v = x - x_i \end{bmatrix}$$

$$f(x)(x-x_{i-1})\Big|_{x=x_{i-1}}^{x=\xi_i} - \int_{x_{i-1}}^{\xi_i} f'(x)(x-x_{i-1}) dx + f(x)(x-x_i)\Big|_{x=\xi_i}^{x=x_i} - \int_{\xi_i}^{x_i} f'(x)(x-x_i) dx = f(\xi_i)(\xi_i - x_{i-1}) + \int_{x=\xi_i}^{x_i} f'(x$$

$$f(\xi_i)(x_i - \xi_i) - \left(f'(x)\frac{(x - x_{i-1})^2}{2}\Big|_{x = x_{i-1}}^{x = \xi_i} - \int_{x_{i-1}}^{\xi_i} f''(x)\frac{(x - x_{i-1})^2}{2} dx + f'(x)\frac{(x - x_i)^2}{2}\Big|_{\xi_i}^{x_i} - \int_{\xi_i}^{x_i} f''(x)\frac{(x - x_i)^2}{2} dx + f'(x)\frac{(x - x_i)^2}{2}\Big|_{\xi_i}^{x_i} - \int_{\xi_i}^{x_i} f''(x)\frac{(x - x_i)^2}{2} dx + f'(x)\frac{(x - x_i)^2}{2}\Big|_{\xi_i}^{x_i} - \int_{\xi_i}^{x_i} f''(x)\frac{(x - x_i)^2}{2} dx + f'(x)\frac{(x - x_i)^2}{2}\Big|_{\xi_i}^{x_i} - \int_{\xi_i}^{x_i} f''(x)\frac{(x - x_i)^2}{2} dx + f'(x)\frac{(x - x_i)^2}{2}\Big|_{\xi_i}^{x_i} - \int_{\xi_i}^{x_i} f''(x)\frac{(x - x_i)^2}{2} dx + f'(x)\frac{(x - x_i)^2}{2}\Big|_{\xi_i}^{x_i} - \int_{\xi_i}^{x_i} f''(x)\frac{(x - x_i)^2}{2} dx + f'(x)\frac{(x - x_i)^2}{2}\Big|_{\xi_i}^{x_i} - \int_{\xi_i}^{x_i} f''(x)\frac{(x - x_i)^2}{2} dx + f'(x)\frac{(x - x_i)^2}{2}\Big|_{\xi_i}^{x_i} - \int_{\xi_i}^{x_i} f''(x)\frac{(x - x_i)^2}{2} dx + f'(x)\frac{(x - x_i)^2}{2}\Big|_{\xi_i}^{x_i} - \int_{\xi_i}^{x_i} f''(x)\frac{(x - x_i)^2}{2} dx + f'(x)\frac{(x - x_i)^2}{2}\Big|_{\xi_i}^{x_i} - \int_{\xi_i}^{x_i} f''(x)\frac{(x - x_i)^2}{2} dx + f'(x)\frac{(x - x_i)^2}{2}\Big|_{\xi_i}^{x_i} - \int_{\xi_i}^{x_i} f''(x)\frac{(x - x_i)^2}{2} dx + f'(x)\frac{(x - x_i)^2}{2}\Big|_{\xi_i}^{x_i} - \int_{\xi_i}^{x_i} f''(x)\frac{(x - x_i)^2}{2} dx + f'(x)\frac{(x - x_i)^2}{2}\Big|_{\xi_i}^{x_i} - \int_{\xi_i}^{x_i} f''(x)\frac{(x - x_i)^2}{2} dx + f'(x)\frac{(x - x_i)^2}{2}\Big|_{\xi_i}^{x_i} - \int_{\xi_i}^{x_i} f''(x)\frac{(x - x_i)^2}{2} dx + f'(x)\frac{(x - x_i)^2}{2}\Big|_{\xi_i}^{x_i} - \int_{\xi_i}^{x_i} f''(x)\frac{(x - x_i)^2}{2} dx + f'(x)\frac{(x - x_i)^2}{2}\Big|_{\xi_i}^{x_i} - \int_{\xi_i}^{x_i} f''(x)\frac{(x - x_i)^2}{2} dx + f'(x)\frac{(x - x_i)^2}{2}\Big|_{\xi_i}^{x_i} - \int_{\xi_i}^{x_i} f''(x)\frac{(x - x_i)^2}{2} dx + f'(x)\frac{(x - x_i)^2}{2}\Big|_{\xi_i}^{x_i} - \int_{\xi_i}^{x_i} f''(x)\frac{(x - x_i)^2}{2} dx + f'(x)\frac{(x - x_i)^2}{2}\Big|_{\xi_i}^{x_i} - \int_{\xi_i}^{x_i} f''(x)\frac{(x - x_i)^2}{2} dx + f'(x)\frac{(x - x_i)^2}{2}\Big|_{\xi_i}^{x_i} - \int_{\xi_i}^{x_i} f''(x)\frac{(x - x_i)^2}{2}\Big|_{\xi_i}^{x_$$

$$f(\xi_i)(x_i - x_{i-1}) + \int_{x_{i-1}}^{x_i} f''(x) \varphi(x) dx$$

$$\varphi(x) = \begin{cases} \frac{(x - x_{i-1})^2}{2}, & x \in [x_{i-1}, \xi_i] \\ \frac{(x - x_i)^2}{2}, & x \in [\xi_i, x_i] \end{cases}$$

Тогда  $\varphi(x)$  определена на [a,b]

$$\left| \sum_{i=1}^{n} f\left(\frac{x_{i-1} + x_{i}}{2}\right) (x_{i} - x_{i-1}) - \int_{a}^{b} f(x) \, dx \right| = \left| \sum_{i=1}^{n} \left( f(\xi_{i})(x_{i} - x_{i-1}) - \int_{x_{i-1}}^{x_{i}} f(x) dx \right) \right| = \left| \sum_{i=1}^{n} \left( - \int_{x_{i-1}}^{x_{i}} f''(x) \varphi(x) \, dx \right) \right| = \left| \int_{a}^{b} f''(x) \varphi(x) \, dx \right| \le \int_{a}^{b} |f''(x)| \varphi(x) \, dx \le \frac{\delta^{2}}{8} \int_{a}^{b} |f$$

Поскольку 
$$\max \varphi(x) = \frac{(\frac{\delta}{2})^2}{2} = \frac{\delta^2}{8}$$

# 72 Теорема о формуле трапеций, формула Эйлера-Маклорена

## 72.1 Формулировка теоремы о формуле трапеций

Пусть 
$$f \in C^2[a,b]$$
  $a = x_0 < x_1 < \ldots < x_n = b$  и  $\delta = \max(x_i - x_{i-1})$ 

Тогда 
$$\left| \sum_{i=1}^n \frac{f(x_{i-1}) + f(x_i)}{2} (x_i - x_{i-1}) - \int_a^b f(x) \ dx \right| \leq \frac{\delta^2}{8} \int_a^b |f''|$$

#### 72.2 Доказательство

$$\int\limits_{x_{i-1}}^{x_i}f(x)dx=\begin{bmatrix}u=f&u'=f'\\v'=1&v=x-\xi_i\end{bmatrix},$$
 причём  $\xi_i$  — середина промежутка  $[x_{i-1},x_i].$ 

$$f(x)(x-\xi_i)\Big|_{x_{i-1}}^{x_i} - \int_{x_{i-1}}^{x_i} f'(x)(x-\xi_i)dx = f(x_i)(x_i-\xi_i) - f(x_{i-1})(x_{i-1}-\xi_i) - \left(f'(x)\frac{(x-\xi_i)^2}{2}\Big|_{x_{i-1}}^{x_i} - \int_{x_{i-1}}^{x_i} f''\frac{(x-\xi_i)^2}{2}dx\right) = 0$$

$$(f(x_i) + f(x_{i-1})) \frac{x_i - x_{i-1}}{2} - \left( f'(x) \left( -\frac{1}{2} \psi(x) \right) \Big|_{x_{i-1}}^{x_i} - \int_{x_{i-1}}^{x_i} f'' \left( -\frac{1}{2} \psi(x) \right) dx \right)$$

$$\begin{bmatrix} u = f' & u' = f'' \\ v' = (x - \xi_i) & \psi(x) = (x - x_{i-1})(x_i - x) \end{bmatrix} \quad x \in [x_{i-1}, x_i] \text{ Ha } [a, b]$$

$$v = -\frac{1}{2}\psi(x)$$

$$(f(x_i) + f(x_{i-1})) \cdot \frac{(x_i - x_{i-1})}{2} - \frac{1}{2} \int_{x_{i-1}}^{x_i} f'' \psi(x) dx$$

$$\left| \sum_{i=1}^{n} \frac{f(x_{i-1}) + f(x_i)}{2} \cdot (x_i - x_{i-1}) - \int_{a}^{b} f(x) \ dx \right| = \left| \sum_{i=1}^{n} \left( \frac{f(x_{i-1}) + f(x_i)}{2} (x_i - x_{i-1}) - \int_{x_{i-1}}^{x_i} f(x) \ dx \right) \right|$$

$$\left| \sum_{i=1}^{n} \frac{1}{2} \int_{x_{i-1}}^{x_i} f''(x) \psi(x) dx \right| = \frac{1}{2} \int_{a}^{b} |f''(x)| \, \psi(x) \, dx \le \frac{\delta^2}{8} \int_{a}^{b} |f''|$$

## 72.3 Простейший случай формулы Эйлера-Маклорена

$$m,n\in\mathbb{Z},f\in C^2[m,n]$$
. Тогда

$$\int_{m}^{n} f(x) \ dx = \left(\sum_{i=m}^{n}\right)^{\nabla} f(i) - \frac{1}{2} \int_{m}^{n} f''(x) \left\{x\right\} \left(1 - \left\{x\right\}\right) \ dx$$

x — дробная часть числа x,  $\triangledown$  — крайние суммы, т.е. крайние члены берутся с множителем 0.5.

Очевидно $^{TM},$  что это формула трапеции.

$$[a,b] \leftrightarrow [m,n] \ x_0 = m, x_1 = m+1, \dots, x_{last} = n$$

$$\{x\}\,(1-\{x\})\$$
— парабола между двумя целыми точками

# 73 Асимптотика степенных сумм

$$f(x) = x^p, \ p \neq -1$$

$$1^p + 2^p + \dots + n^p = \int_1^n x^p dx + \frac{n^p + 1}{2} + \frac{1}{2} \int_1^n (x^p)'' \{x\} (1 - \{x\}) dx$$

$$1^p + 2^p + \dots + n^p = \frac{n^{p+1}}{p+1} - \frac{1^{p+1}}{p+1} + \frac{n^p}{2} + \frac{1}{2} + \frac{p(p-1)}{2} \int_1^n x^{p-2} \{x\} (1 - \{x\}) dx$$

$$1^p + 2^p + \dots + n^p = \frac{n^{p+1}}{p+1} + \frac{n^p}{2} + \mathcal{O}(\max(1, n^{p-1}))$$

# 74 Асимптотика частичных сумм гармонического ряда

$$1 + \frac{1}{2} + \ldots + \frac{1}{n} = \int_{1}^{n} \frac{1}{x} dx + \frac{1}{2} + \frac{1}{2n} + \int_{1}^{n} \frac{1}{x^{3}} \{x\} (1 - \{x\}) dx$$

$$1 + \frac{1}{2} + \ldots + \frac{1}{n} = \ln n + \frac{1}{2} + \frac{1}{2n} + \int_{1}^{n} \frac{\{x\} (1 - \{x\})}{x^3} dx$$

Интеграл постоянной возрастает и ограничен сверху  $\frac{1}{4}\int\limits_{1}^{n}\frac{1}{x^{3}}dx=-\frac{1}{x^{2}}\cdot\frac{1}{8}\bigg|_{x=1}^{x=n}<\frac{1}{8}$ 

Всё, что правее логарифма — постоянная Эйлера или  $\gamma$ 

Итого

$$1 + \frac{1}{2} + \ldots + \frac{1}{n} = \ln n + \gamma + o(1)$$

# 75 Формула Валлиса

#### 75.1 Формулировка

$$\lim_{n \to \infty} \left( \frac{(2n)!!}{(2n-1)!!} \right)^2 \cdot \frac{1}{2n} = \frac{\pi}{2}$$

#### 75.2 Доказательство

$$I_{n} = \int_{0}^{\pi/2} \sin^{n} x dx = \begin{bmatrix} u = \sin^{n-1} x & u' = (n-1)\sin^{n-2} x \cos x \\ v' = \sin x dx & v = -\cos x \end{bmatrix}$$

$$-\cos x \sin^{n-1} x \Big|_{0}^{\pi/2} + (n-1) \int_{0}^{\pi/2} \sin^{n-2} x \cos^{2} x dx = (n-1) \int_{0}^{\pi/2} (\sin^{n-2} x - \sin^{n} x) dx = (n-1)(I_{n-2} - I_{n})$$

$$I_{n} = \frac{n-1}{n} I_{n-2}$$

$$I_{0} = \int_{0}^{\pi/2} 1 dx = \frac{\pi}{2}$$

$$I_{1} = \int_{0}^{\pi/2} \sin x dx = -\cos x \Big|_{0}^{\pi/2} = 1$$

$$I_{n} = \frac{n-1}{n} I_{n-2} = \frac{n-1}{n} \cdot \frac{n-3}{n-4} I_{n-4} = \dots$$

Посчитаем отдельно для случая чётного и нечётного n

$$I_{2n+1} = \frac{2n}{2n+1} \cdot \frac{2n-2}{2n-1} \cdot \dots \cdot 1 = \frac{(2n)!!}{(2n+1)!!}$$

$$I_{2n} = \frac{2n-1}{2n} \cdot \frac{2n-3}{2n-2} \cdot \frac{\pi}{2} = \frac{(2n-1)!!}{(2n)!!} \cdot \frac{\pi}{2}$$

Так как при  $x \in \left[0, \frac{\pi}{2}\right] - \sin^{2k+1} x \le \sin^{2k} x$ 

То и  $I_{n+1} \leq I_n$ 

Также,  $I_{2n+1} \leq I_{2n} \leq I_{2n-1}$ 

$$\frac{(2n)!!}{(2n+1)!!} \le \frac{\pi}{2} \frac{(2n-1)!!}{(2n)!!} \le \frac{(2n-2)!!}{(2n-1)!!}$$

$$\frac{1}{2n+1} \left( \frac{(2n)!!}{(2n-1)!!} \right)^2 \leq \frac{\pi}{2} \leq \frac{1}{2n} \left( \frac{(2n)!!}{(2n-1)!!} \right)^2$$

Разность правой и левой части стремится к 0, значит

$$\exists \lim_{k \to +\infty} \frac{1}{2k} \left( \frac{(2k)!!}{(2k-1)!!} \right)^2 = \frac{\pi}{2}$$

# 76 Формула Стирлинга

# 76.1 Формулировка

$$n! \sim n^n e^{-n} \sqrt{2\pi n}$$
при  $n \to +\infty$ 

$$\sqrt{\pi} = \frac{1}{\sqrt{k}} \frac{(2k)!!}{(2k-1)!!} = \lim_{k \to +\infty} \frac{2 \cdot 4 \cdot 6 \cdot \dots \cdot (2k)}{1 \cdot 3 \cdot \dots \cdot (2k-1)} \cdot \frac{1}{\sqrt{k}}$$

$$\sqrt{\pi} = \lim_{k \to +\infty} \frac{(2 \cdot 4 \cdot \dots \cdot (2k))^2}{(2k)!} \cdot \frac{1}{\sqrt{k}} = \lim_{k \to +\infty} \frac{2^{2k} (k!)^2}{(2k)!} \cdot \frac{1}{\sqrt{k}}$$

$$\sqrt{\pi} = \lim_{k \to +\infty} \frac{2^{2k} (k^k \cdot e^{-k} \sqrt{k} \cdot c)^2}{\sqrt{k} (2k)^{2k} e^{-2k} \sqrt{2k} \cdot c} = \lim_{k \to +\infty} \frac{2^{2k} \cdot k^{2k} \cdot e^{-2k} \cdot k \cdot c^2}{\sqrt{2} \cdot k \cdot 2^{2k} \cdot k^{2k} \cdot e^{-2k} \cdot c} = \frac{c}{\sqrt{2}}$$

$$c = \sqrt{2\pi}$$

# 77 Теорема о вычислении аддитивной функции промежутка по плотности

#### 77.1 Формулировка

Пусть заданы f и  $\phi$  на  $\langle a,b \rangle, f$  — непрерывна,  $\phi$  — аддитивная функция промежутка, f — плотность  $\phi$  Тогда  $\forall [p,q] \subset \langle a,b \rangle \ \phi([p,q]) = \int\limits_p^q f(x) \ dx$ 

#### 77.2 Доказательство

Можно принять за факт, что у нас дан промежуток [a,b] (если это не так, то уменьшим его чуть-чуть и переобозначим)

$$F(x) = \begin{cases} 0, & x = a \\ & - \text{первообразная } f \\ \phi([a,x]), & x > a \end{cases}$$

$$\inf_{[x,x+h]} f \leq \frac{\phi([x,x+h])}{h} \leq \sup_{[x,x+h]} f$$

$$x:F'_+(x)=\lim_{h o 0+0}rac{F(x+h)-F(x)}{h}=\limrac{\phi([a,x+h])-\phi([a,x])}{h}=\limrac{\phi([x,x+h])}{h}=\lim_{h o 0+0}f(x+\Theta h)=f(x),$$
 где

$$0 < \Theta < 1$$

$$\Theta = \Theta(h)$$

Аналогично посчитаем и  $F'_{-}(x)$ 

$$\phi([p,q]) = F(q) - F(p) = \int_{p}^{q} f(x) dx$$

# 78 Обобщенная теорема о плотности

#### 78.1 Формулировка

Пусть  $f:\langle a,b\rangle \to \mathbb{R}$  — непрерывная функция,  $\phi: \mathrm{Segm}\ \langle a,b\rangle \to \mathbb{R}$  — аддитивная функция.

Пусть  $\forall \Delta \subset \text{Segm } \langle a,b \rangle$  заданы числа  $m_{\Delta},\ M_{\Delta}.$ 

1. 
$$m_{\Delta} \cdot l(\Delta) \leq \phi(\Delta) \leq M_{\Delta} \cdot l(\Delta)$$

2. 
$$\forall x \in \Delta \ m_{\Delta} \leq f(x) \leq M_{\Delta}$$

3. 
$$\forall x \in \langle a, b \rangle \ M_{\Delta} - m_{\Delta} \to 0$$
, если  $l(\Delta) \to 0$ ,  $x \in \Delta$ 

3-й пункт можно переформулировать по-другому:

$$\forall \varepsilon > 0: \exists \delta > 0: \forall \Delta \in \operatorname{Segm} \ \langle a, b \rangle: x \in \Delta: l(\Delta) < \delta \Longrightarrow |M_{\Delta} - m_{\Delta}| < \varepsilon$$

Тогда 
$$f$$
 — плотность  $\phi$  (и  $\forall [p,q] \ \phi([p,q]) = \int\limits_p^q f(x) \ dx)$ 

#### 78.2 Доказательство

$$F(x) = \begin{cases} 0, & x = 0\\ \phi([a, x]), & x > a \end{cases}$$

Дифференцируем  $F_+$ 

$$m_{\Delta} \le \frac{F(x+h) - F(x)}{h} \le M_{\Delta}$$

$$\left| \frac{F(x+h) - F(x)}{n} - f(x) \right| \le |M_{\Delta} - m_{\Delta}| \xrightarrow[h \to 0]{} 0, \ \Delta = [x, x+h]$$

$$\frac{F(x+h) - F(x)}{h} \xrightarrow[h \to 0]{} f(x)$$

Аналогично и с  $F_{-}$ 

# 79 Площадь криволинейного сектора: в полярных координатах и для параметрической кривой

#### 79.1 Формулировка для полярных координат

Пусть  $[\alpha,\beta]\subset [0,2\pi)$ 

$$ho: [lpha, eta] 
ightarrow \mathbb{R} \; -$$
 непрерывная,  $ho \geq 0$ 

$$A = \{(r,\phi): \phi \in [\alpha,\beta] \ 0 \leq r \leq \rho(\phi)\}$$
 — «Аналог ПГ»

Тогда 
$$\sigma(A) = \frac{1}{2} \int\limits_{\alpha}^{\beta} \rho^2(\phi) \ d\phi$$

#### 79.2 Доказательство

 $[\alpha,\beta]\longmapsto \sigma(A)\ -$ функция промежутка Segm $[\alpha,\beta]\ -$ аддитивная функция.

Проверим, что  $\frac{1}{2}\rho^2(\phi)$  — плотность

$$[\gamma, \delta]$$
 — строим  $A_{\gamma, \delta}$ 

$$\sigma(A_{\gamma,\delta}) \leq \sigma($$
Круговой сектор  $(0, \max_{[\gamma,\delta]} \rho(\phi), [\gamma,\delta]))$ 

$$\sigma(A_{\gamma,\delta}) \geq \sigma($$
Круговой сектор  $(0, \min_{[\gamma,\delta]} \rho(\phi), [\gamma,\delta]))$ 

$$\min_{[\gamma,\delta]} \frac{1}{2} \rho^2(\phi) l([\gamma,\delta]) \le \sigma(A_{\gamma,\delta}) \le \max_{[\gamma,\delta]} \frac{1}{2} \rho^2(\phi) l([\gamma,\delta])$$

По определению плотности получили то, что хотели

(если непонятно, откуда берётся  $\frac{1}{2} \rho^2(\phi)$ , то гуглим форму площади круга)

#### 79.3 Формулировка для параметрической кривой

$$\sigma(A) = \frac{1}{2} \int_{t_0}^{t_1} (y'(t)x(t) - x'(t)y(t))dt$$

#### 79.4 Доказательство

Пусть дано  $(x(t), y(t)), t \in [a, b]$ 

$$x = r \cos \varphi$$

$$y = r \sin \varphi$$

$$r = \sqrt{x^2 + y^2}$$

$$\varphi = \operatorname{arctg} \frac{y}{x}$$

Итого:

 $r(t) = x(t)^2 + y(t)^2$  и  $\varphi(t) = \operatorname{arctg} \frac{y(t)}{x(t)}$  — параметрическое задание того же пути в полярных координатах

$$\sigma(A) = \frac{1}{2} \int_{\varphi_0}^{\varphi_1} r^2(\varphi) d\varphi = \frac{1}{2} \int_{\varphi_0}^{\varphi_1} \left( x(t)^2 + y(t)^2 \right) \left( \operatorname{arctg} \frac{y(t)}{x(t)} \right) dt$$

$$\frac{1}{2} \int_{t_0}^{t_1} (x^2 + y^2) \frac{1}{1 + \frac{y^2}{x^2}} \cdot \frac{y'x - x'y}{x^2} dt = \frac{1}{2} \int_{t_0}^{t_1} (y'(t)x(t) - x'(t)y(t)) dt$$

# 80 Изопериметрическое неравенство

#### 80.1 Формулировка

Пусть G — замкнутая выпуклая фигура в  $\mathbb{R}^2$ 

diam
$$G \leq 1$$
 (diam $G = \sup_{x,y \in G} \rho(x,y))$ 

Тогда 
$$\sigma(G) \leq \frac{\pi}{4}$$

#### 80.2 Доказательство

Поскольку G выпукла, значит к ней можно провести касательные f(x) и g(x)

$$f(x) = \sup \{t : [(x,0),(x,t)] \cap G = \emptyset\}$$

g(x) — аналогично, только inf

$$\varphi \in \left[ -\frac{\pi}{2}, \frac{\pi}{2} \right]$$

$$r(-\frac{\pi}{2}) = r(\frac{\pi}{2}) = 0$$

 $r(\varphi)$  — непрерывная функция от  $\varphi$ 

$$\sigma(G) = \frac{1}{2} \int_{-\pi/2}^{\pi/2} r^2(\varphi) \ d\varphi = \frac{1}{2} \left( \int_{-\pi/2}^{0} + \int_{0}^{\pi/2} \right)$$

Проведём какую-нибудь прямую AB, полностью лежащую в фигуре G, а также отметим какую-нибудь точку O, что  $OA \perp OB$ . Тогда

$$\sigma(G) = \frac{1}{2} \int_{0}^{\pi/2} OA^2 + OB^2$$

$$\sigma(G) = \frac{1}{2} \int_{0}^{\pi/2} r^{2} (\varphi - \frac{\pi}{2}) + r^{2} (\varphi) \ d\varphi = \frac{1}{2} \int_{0}^{\pi/2} AB^{2} \ d\varphi \le \frac{1}{2} \int_{0}^{\pi/2} 1 \ d\varphi = \frac{\pi}{4}$$

# 81 Вычисление длины гладкого пути

#### 81.1 Формулировка

Пусть  $\gamma:[a,b]\to\mathbb{R}^m,\,\gamma\in C^1$  — путь.

Тогда 
$$l(\gamma) = \int\limits_a^b \|\gamma'(t)\| dt$$

#### 81.2 Доказательство

Будем дополнительно считать, что  $\gamma' \neq 0$  и что  $\gamma$  — инъективно. Если это не так, то разобьём на несколько частей, и каждую из них посчитаем отдельно.

Пусть  $\phi$ : Segm  $[a,b] \to \mathbb{R}$  и  $[p,q] \mapsto l\left(\gamma|_{[p,q]}\right)$ 

Пусть  $\phi$  — аддитивная функция промежутка по следующей аксиоме:

$$\forall [a,b] \text{ и } \forall \gamma: [a,b] \rightarrow \mathbb{R}^m \text{ и } \forall c \in (a,b) \Longrightarrow l(\gamma) = l\left(\gamma|_{[a,c]}\right) + l\left(\gamma|_{[c,b]}\right)$$

Проверим, что  $\|\gamma'(t)\|$  — её плотность

Это значит, что  $\forall \Delta: \exists m_\Delta, M_\Delta$  и выполняются следующие свойства:

1. 
$$l(\Delta)m_{\Delta} \leq \phi(\Delta) \leq M_{\Delta}l(\Delta)$$

2. 
$$m_{\Delta} \leq f(x) \leq M_{\Delta}, x \in \Delta$$

3. 
$$\Delta \to x \Longrightarrow M_\Delta - m_\Delta \to 0$$

$$\Delta \subset [a, b], \gamma(t) = (\gamma_1(t), \gamma_2(t), \dots, \gamma_m(t))$$

$$m_i(\Delta) = \min_{t \in \Delta} |\gamma_i'(t)|$$

$$M_i(\Delta) = \max_{\Delta} |\gamma_i'(t)|$$

$$m_{\Delta} = \sqrt{\sum m_i(\Delta)^2}$$

$$M_{\Delta} = \sqrt{\sum M_i(\Delta)^2}$$

Очевидно, что при любом  $t\in \Delta \Longrightarrow m_\Delta \leq \|\gamma'(t)\| \leq M_\Delta$ , где  $\|\gamma'(t)\| = \sqrt{\sum (\gamma_i'(t))^2}$ 

При  $\Delta \to x$  выражение  $M_\Delta - m_\Delta \to 0$  по непрерывности  $\gamma_i'(t)$  в точке t=x.

Проверим, что  $m_{\Delta}l(\Delta) \leq \phi(\Delta) \leq M_{\Delta}l(\Delta)$ 

$$\widetilde{\gamma}:\Delta \to \mathbb{R}^m, \widetilde{\gamma}(t)=(M_1(\Delta)t,M_2(\Delta)t,\dots,M_m(\Delta)t)=M\cdot t$$
, где  $M=(M_1(\Delta),M_2(\Delta),\dots,M_m(\Delta))$ 

Отображение  $T:C_{\gamma}\to C_{\overline{\gamma}}\Longrightarrow \gamma(t)\mapsto \overline{\gamma}(t)$  — проверим, что расстяжение

$$\rho(\gamma(t_0), \gamma(t_1)) = \sqrt{\sum_{i=1}^{n} (\gamma_i(t_0) - \gamma_i(t_1))^2} = \sqrt{\sum (\gamma_i'(\mathcal{T}_i))^2 (t_0 - t_1)^2} \le \sqrt{\sum M_i \Delta^2 |t_0 - t_1|} = \rho(T(\gamma(t_0)), T(\gamma(t_1))),$$

$$l(\gamma|_{\Delta}) \leq l(\widetilde{\gamma})$$
, r.e.  $\phi(\Delta) \leq M_{\Delta}l(\Delta)$ .

Аналогично  $\phi(\Delta) \ge m_{\Delta} l(\Delta)$  — сжатие.

Значит  $\|\gamma'\|$  — плотность

# 82 Объем фигур вращения

#### 82.1 Формулировка

Обозначим фигуры, полученную вращением по оси x за  $T_x(A) = \left\{ (x,y,z) : (x,\sqrt{y^2+z^2}) \in A \right\}$ 

По оси 
$$y - T_y(A) = \left\{ (x, y, z) : (\sqrt{x^2 + z^2}, y^2) \in A \right\}$$

Пусть  $f \in C[a,b], f \geq 0$ 

Тогда:

1. 
$$V(T_x(\Pi\Gamma(f, [a, b]))) = \pi \int_a^b f^2(x) dx$$

2. 
$$[a,b] \subset [0,+\infty) \ V(T_y(\Pi\Gamma(f,[a,b]))) = 2\pi \int_a^b x f(x) \ dx$$

#### 82.2 Доказательство

1.  $\phi:\Delta\in Segm([a,b])\mapsto V(T_{x\ or\ y}(\Pi\Gamma(f,\Delta)))$  — аддитивная функция.

$$\pi \min_{x \in \Delta} f^2(x) \cdot l(\Delta) = V(F_{\Delta}) \le \phi(\Delta) \le V(\varepsilon_{\Delta}) = \pi \max_{x \in \Delta} f^2(x) \cdot l(\Delta)$$

 $arepsilon_{\Delta}$  — цилиндр прямой круговой

$$\phi(\Delta)$$
 — плотность, значит  $V(T_x(\Pi\Gamma(f,[a,b]))) = \pi \int_a^b f^2(x) dx$ 

$$\Delta: m_{\Delta}, M_{\Delta}$$

(a) 
$$m_{\Lambda}l(\Delta) < \phi(\Delta) < M_{\Lambda}l(\Delta)$$

(b) 
$$m_{\Delta} \leq f(x) \leq M_{\Delta}, x \in \Delta$$

(c) 
$$\Delta \to x M_\Delta - m_\Delta \to 0$$

2. 
$$V(T_y(\Pi\Gamma(f, [a, b]))) = 2\pi \int_a^b x \cdot f(x) dx$$

$$F_{\Delta} = T_y(\Pi\Gamma(\min_{\Delta} f, \Delta))$$

$$\phi(\Delta) \leq V(\varepsilon_{\Delta}) = \sigma(ring) \cdot \max_{\Delta} f = \pi(q^2 - p^2) \cdot \max_{[p,q]} f = \pi(q+p) \max_{x \in [p,q]} f(x) \cdot (q-p) \leq \pi \cdot \max_{x \in [p,q]} (2x) \cdot \max_{x \in [p,q]} f(x) \cdot (q-p)$$

Аналогично

$$\pi \min_{x \in [p,q]} (2x) \cdot \min_{x \in [p,q]} f(x)(q-p)$$

(a) 
$$m_{\Delta}l(\Delta) \le \phi(\Delta) \le M_{\Delta}l(\Delta)$$
  

$$\phi(\Delta) = \pi \cdot 2x \cdot f(x) \le \pi \max(2x) \cdot maxf(x)$$

(b) 
$$m_{\Delta} \leq f(x) \leq M_{\Delta}$$

(c) 
$$p\to x_0,\, q\to x_0,\, {\rm Mtofo}\ V(T_y(\Pi\Gamma(f,[a,b])))=\pi\cdot 2x_0\cdot f(x_0)$$

# 83 Неравенство Йенсена для сумм

#### 83.1 Формулировка

Пусть f — выпукла на  $\langle a,b \rangle$ . Тогда

$$\forall x_1, x_2, \dots, x_n \in \langle a, b \rangle$$

$$\forall \alpha_1, \alpha_2, \dots, \alpha_n \ge 0, \sum_{i=1}^n \alpha_i = 1$$

$$f(\alpha_1 x_1 + \alpha_2 x_2 + \ldots + \alpha_n x_n) \le \alpha_1 f(x_1) + \alpha_2 f(x_2) + \ldots + \alpha_n f(x_n)$$

#### 83.2 Доказательство

Если все x совпадают, то тривиально.

Пусть 
$$x^* = \alpha_1 x_1 + \alpha_2 x_2 + \ldots + \alpha_n x_n$$

$$x_{\min} \sum_{i=1}^{n} \alpha_i \le x^* \le x_{\max} \sum_{i=1}^{n} \alpha_i$$

$$a \le x_{\min} \le x^* \le x_{\max} \le b$$

К любой выпуклой функции можно провести опорную прямую  $y = l(x) : f(x) \ge l(x)$ , при  $x = x_0$   $f(x_0) = l(x_0)$ 

Проведём к  $x^*$  опорную прямую l(x) = kx + b

$$f(x^*) = l(x^*) = k \sum_{i=1}^{n} \alpha_i x_i + b = \sum_{i=1}^{n} k \alpha_i x_i + \sum_{i=1}^{n} b \alpha_i = \sum_{i=1}^{n} \alpha_i (kx_i + b) = \sum_{i=1}^{n} \alpha_i l(x_i) \le \sum_{i=1}^{n} \alpha_i f(x_i)$$

# 84 Неравенство Йенсена для интегралов

#### 84.1 Формулировка

Пусть f — выпукла и непрерывна на  $\langle A, B \rangle$ 

 $\varphi:[a,b] o \langle A,B \rangle$  — непрерывна

$$\lambda:[a,b] o [0,+\infty], \int\limits_a^b \lambda = 1$$
 — непрерывна

Тогда 
$$f\left(\int\limits_a^b\lambda(x)\varphi(x)dx
ight)\leq\int\limits_a^b\lambda(x)f(\varphi(x))dx$$

#### 84.2 Доказательство

 $m := \inf \varphi(x)$ 

 $M := \sup \varphi(x)$ 

$$c:=\int\limits_a^b\lambda(x)\varphi(x)dx\leq\int\limits_a^b\lambda(x)dx\cdot M=M\leq$$

 $c \geq m = A \; - \;$ аналогично, значит $c \in \langle A, B \rangle$ 

Если m = M — тривиально

Пусть y = kx + b — опорная прямая к графику f в точке c

$$f(c) = kc + b = k \int_{a}^{b} \lambda \varphi + b \int_{a}^{b} \lambda = \int_{a}^{b} \lambda (k\varphi + b) \le \int_{a}^{b} \lambda (f \circ \varphi)$$

$$f\left(\int\limits_a^b\lambda\varphi\right)\leq\int\limits_a^b\lambda(f\circ\varphi)$$

# 85 Неравенство Коши (для сумм и для интегралов)

#### 85.1 Неравенство для сумм

#### 85.1.1 Формулировка

Пусть  $a_1, a_2, \ldots, a_n > 0$ 

Тогда 
$$\frac{a_1+a_2+\ldots+a_n}{n} \geq \sqrt[n]{a_1a_2\ldots a_n}$$

#### 85.1.2 Доказательство

$$\ln\left(\frac{1}{n}a_1 + \frac{1}{n}a_2 + \dots + \frac{1}{n}a_n\right) \ge \frac{1}{n}\ln(a_1a_2\dots a_n) = \frac{1}{n}\ln a_1 + \frac{1}{n}\ln a_2 + \dots + \frac{1}{n}\ln a_n$$

$$x_1 = a_1$$

$$x_2 = a_2$$

. . .

$$x_n = a_n$$

$$\alpha_1 = \alpha_2 = \ldots = \alpha_n = \frac{1}{n}$$

$$f(\sum \alpha_i x_i) \geq \sum \alpha f(x_i),$$
 поскольку функция l  
п — вогнута

#### 85.2 Неравенство для интегралов

#### 85.2.1 Формулировка

$$rac{1}{b-a}\int\limits_a^b f$$
 — среднее арифметическое  $f$  на  $[a,b]$ 

$$\exp\left(\frac{1}{b-a}\int\limits_a^b \ln f\right)$$
 — среднее геометрическое функции  $f$   $(f>0)$ 

Тогда если  $f\in C[a,b
angle,\,f>0$ 

$$\exp\left(\frac{1}{b-a}\int_{a}^{b}\ln f\right) \le \frac{1}{b-a}\int_{a}^{b}f$$

$$\frac{1}{b-a} \int_{a}^{b} \ln f \le \ln \left( \frac{1}{b-a} \int_{a}^{b} f \right)$$

$$\ln \longleftrightarrow f$$
 — вогнутая

$$f \longleftrightarrow \varphi$$

$$\frac{1}{b-a}\longleftrightarrow\lambda$$

# 86 Неравенство Гёльдера для сумм

#### 86.1 Формулировка

Пусть 
$$p > 1$$
,  $\frac{1}{p} + \frac{1}{q} = 1$ 

$$q = \frac{p}{p-1}$$

 $a_i, b_i > 0$  для всех i = 1..n

Тогда 
$$\sum_{i=1}^n a_i b_i \leq (\sum a_i^p)^{\frac{1}{p}} (\sum b_i^q)^{\frac{1}{q}}$$

Если  $(a_1^p,a_2^p,\ldots,a_n^p)\parallel (b_1^q,b_2^q,\ldots,b_n^q)$  — равенство

#### 86.2 Доказательство

 $x^p \,\,$  — строго выпукла при p>1 и x>0

$$(x^p)'' = p(p-1)x^{p-2} > 0$$

По неравенству Йенсена  $\left(\sum_{i=1}^n \alpha_i x_i\right)^p \leq \sum_{i=1}^n \alpha_i x_i^p$ 

$$\alpha_i := \frac{b_i^q}{\sum b_i^q}$$

$$\alpha_i > 0, \sum \alpha_i = 1$$

Выберем такие  $x_i$ , что

$$\alpha_i \cdot x_i = a_i \cdot b_i$$

$$x_i = \frac{a_i b_i}{\alpha_i} = \frac{a_i b_i}{b_i^q} \sum_{j=1}^n b_j^q = a_i b_i^{1-q} \sum_{j=1}^n b_j^q = a_i b_i^{1-\frac{p}{p-1}} \sum_{j=1}^n b_j^q = a_i b_i^{\frac{p-1-p}{p-1}} \sum_{j=1}^n b_j^q = a_i \cdot b_i^{-\frac{1}{p-1}} \sum_{j=1}^n b_j^q = a_i \cdot b_j^q = a_i \cdot b_i^{-\frac{1}{p-1}} \sum_{j=1}^n b_j^q = a_i \cdot b_j^q = a_i \cdot b_i^q = a_i$$

Тогда  $\alpha_i x_i = a_i b_i$ 

$$(\sum_{i=1}^{n} \alpha_i x_i)^p = (\sum_{i=1}^{n} a_i b_i)^p$$

Тогда 
$$\alpha_i x_i^p = a_i^p (\sum_{j=1}^n b_j^q)^{p-1}$$

Тогда 
$$\sum_{i=1}^n \alpha_i x_i^p = (\sum_{i=1}^n a_i^p) (\sum_{j=1}^n b_j^q)^{p-1} = (\sum_{i=1}^n a_i^p) (\sum_{j=1}^n b_j^q)^{\frac{p}{q}}$$

Тогда 
$$(\sum_{i=1}^n a_i b_i)^p \le (\sum_{i=1}^n a_i^p) (\sum_{j=1}^n b_j^q)^{\frac{p}{q}}$$

Возведём в степень  $\frac{1}{p}$  и получим исходное неравенство

# 87 Неравенство Гёльдера для интегралов

#### 87.1 Формулировка

Пусть 
$$\frac{1}{p} + \frac{1}{q} = 1, p > 1$$

Пусть также  $f,\,g\in C[a,b]$  и  $f,g\geq 0$  на [a,b]. Тогда

$$\int\limits_a^b fg \leq \left(\int\limits_a^b f^p\right)^{\frac{1}{p}} \left(\int\limits_a^b g^q\right)^{\frac{1}{q}}$$

#### 87.2 Доказательство

Делим [a,b] на n равных частей

$$x_k = a + k \cdot \frac{b - a}{n}$$

$$\Delta x_k = x_k - x_{k-1} = \frac{b-a}{n}$$

$$\xi_k := x_k$$

$$a_k := |f(x_k)| (\Delta x_k)^{\frac{1}{p}}$$

$$b_k := |g(x_k)| (\Delta x_k)^{\frac{1}{q}}$$

$$a_k \cdot b_k = |f(x_k)g(x_k)| \cdot \Delta x_k$$

$$\sum_{k=1}^{n} |f(x_k)g(x_k)| \Delta x_k \le \left(\sum |f(x_k)|^p \Delta x_k\right)^{\frac{1}{p}} \left(\sum |g(x_k)|^q \Delta x_k\right)^{\frac{1}{q}}$$

Из неравенства Гёльдера для сумм

$$\int_{a}^{b} |f(x)g(x)| dx \le \left(\int_{a}^{b} |f|^{p}\right)^{\frac{1}{p}} \left(\int_{a}^{b} |g|^{q}\right)^{\frac{1}{q}}$$

# 88 Неравенство Минковского

#### 88.1 Формулировка

Пусть  $p \ge 1$ 

Тогда 
$$\left(\sum_{i=1}^n|a_i+b_i|^p\right)^{\frac{1}{p}}\leq \left(\sum|a_i|^p\right)^{\frac{1}{p}}+\left(\sum|b_i|^p\right)^{\frac{1}{p}}$$
  $a_i,b_i\in\mathbb{R}$ 

#### 88.2 Замечания

- Здесь нет буквы q
- ullet Неравенство Минковского означает, что  $(a_1,a_2,\ldots,a_n)\mapsto \left(\sum |a_i|^p\right)^{\frac{1}{p}}$  является нормой

#### 88.3 Доказательство

При p=1 — очевидно

p>1 — применим Гёльдера

Пусть  $a_i, b_i > 0$ 

$$\sum |a_{i}||a_{i} + b_{i}|^{p-1} \leq \left(\sum |a_{i}|^{p}\right)^{\frac{1}{p}} \left(\sum |a_{i} + b_{i}|^{p}\right)^{\frac{1}{q}}$$

$$\sum |b_{i}||a_{i} + b_{i}|^{p-1} \leq \left(\sum |b_{i}|^{p}\right)^{\frac{1}{p}} \left(\sum |a_{i} + b_{i}|^{p}\right)^{\frac{1}{q}}$$

$$\sum |a_{i} + b_{i}|^{p} \leq \sum (|a_{i}| + |b_{i}|)|a_{i} + b_{i}|^{p-1} \leq \left(\left(\sum |a_{i}|^{p}\right)^{\frac{1}{p}} + \left(\sum |b_{i}|^{p}\right)^{\frac{1}{p}}\right) \left(\sum |a_{i} + b_{i}|^{p}\right)^{\frac{1}{q}}$$

$$\left(\sum |a_{i} + b_{i}|^{p}\right)^{\frac{1}{p}} \leq \ldots \leq \left(\sum |a_{i}|^{p}\right)^{\frac{1}{p}} + \left(\sum |b_{i}|^{p}\right)^{\frac{1}{p}}$$

# 89 Свойства верхнего и нижнего пределов

## 89.1 Формулировка

Пусть  $x_n, x_n'$  — произвольные последовательности. Тогда

- 1.  $\underline{\lim} x_n \le \overline{\lim} x_n$
- 2.  $\forall n \quad x_n \leq x'_n$ . Тогда

$$\overline{\lim} x_n \le \overline{\lim} x_n'$$

$$\underline{\lim} \, x_n \le \underline{\lim} \, x_n'$$

3.  $\forall \lambda > 0$ 

$$\overline{\lim}(\lambda x_n) = \lambda \cdot \overline{\lim} \, x_n$$

$$\underline{\lim}(\lambda x_n) = \lambda \cdot \underline{\lim} \, x_n$$

4. 
$$\overline{\lim}(-x_n) = -\underline{\lim}(x_n)$$

$$\underline{\lim}(-x_n) = -\overline{\lim}(x_n)$$

5. 
$$\overline{\lim}(x_n + x'_n) \le \overline{\lim} x_n + \overline{\lim} x'_n$$

$$\underline{\lim}(x_n + x_n') \ge \underline{\lim} \, x_n + \underline{\lim} \, x_n'$$

Если правые части имеют смысл

6. 
$$t_n \to l \in \overline{\mathbb{R}}$$

$$\overline{\lim}(x_n + t_n) = \overline{\lim} \, x_n + \lim t_n$$

Если правая часть имеет смысл

7. 
$$t_n \to l > 0, l \in \mathbb{R}$$

$$\overline{\lim}(x_n \cdot t_n) = l \cdot \overline{\lim} x_n$$

- 1. Следует из того факта, что  $z_n \leq x_n \leq y_n$
- $2. \ y_n \le y_n'$

3. 
$$\sup(\lambda A) = \lambda \sup(A)$$

$$4. \sup(-A) = -\inf(A)$$

5. 
$$\sup(x_n+x_n',x_{n+1}+x_{n+1};,\ldots) \leq y_n+y_n'$$
, т.к. это верхняя граница для всех сумм над sup

6. 
$$l \in \mathbb{R}$$
, тогда  $\forall \varepsilon > 0: \exists N_0: \forall k > N_0$ 

$$x_k + l - \varepsilon < x_k + t_k < x_k + l_k + \varepsilon$$

$$y_n+l-arepsilon \leq \sup(x_n+t_n,x_{n+1}+t_{n+1},\ldots) \leq y_n+l+arepsilon,$$
 при  $N o +\infty$ 

$$(\overline{\lim} x_n) + l - \varepsilon \le \overline{\lim} (x_n + y_n) \le (\overline{\lim} x_n) + l + \varepsilon$$

#### 7. Без доказательства

# 90 Техническое описание верхнего предела

#### 90.1 Формулировка

- 1.  $\overline{\lim} x_n = +\infty \Longleftrightarrow x_n$  не ограничена сверху
- 2.  $\overline{\lim} x_n = -\infty \iff x_n \to -\infty$
- 3.  $\overline{\lim} x_n = l \in \mathbb{R} \Longrightarrow$ :
  - $\forall \varepsilon > 0 : \exists N : \forall n > N \quad x_n < l + \varepsilon$
  - $\forall \varepsilon > 0$  неравенство  $x_n > l \varepsilon$  выполняется для бесконечного множества номеров n

- 1. Очевидно, что  $x_n < y_n$ ,  $y_n$  убывает Таким образом, если  $\lim y_n = +\infty \Longrightarrow y_n = +\infty \Longleftrightarrow x_n$  не ограничена сверху
- $2. \ y_n \rightarrow -\infty, \, \forall E: \exists N: \forall n > N \ x_n \leq y_n < E \Rightarrow \forall E > 0: \exists N: \forall n > N: x_n < E, y_n < E$
- 3.  $x_n \leq y_n, y_n \to l$ 
  - $\Rightarrow$ )  $\forall \varepsilon>0:\exists N:\forall n>N:x_n\leq y_n< l+\varepsilon$  Если  $\exists N_0:\forall n>N_0:x_n< l-\varepsilon$ , то  $\forall n>N_0:y_n=\sup(\ldots)\leq l-\varepsilon$  и тогда  $y_n\nrightarrow l$
  - $\Leftarrow$ )  $\forall \varepsilon: \exists N: \forall n>N: y_n \leq l+\varepsilon, \ y_n$  супремум  $x_k \geq l-\varepsilon \Rightarrow y_n \geq l-\varepsilon \Rightarrow y_n \to l$

# 91 Теорема о существовании предела в терминах верхнего и нижнего пределов

#### 91.1 Формулировка

Пусть существует  $\lim x_n = l \in \overline{\mathbb{R}}$ , тогда и только тогда  $\overline{\lim} x_n = \underline{\lim} x_n = l$ 

- ullet  $\Rightarrow$ )  $\lim x_n = +\infty \Longleftrightarrow \underline{\lim} \, x_n = +\infty \Rightarrow \underline{\lim} \leq \overline{\lim} \, x_n = +\infty$   $\lim x_n = -\infty \Longleftrightarrow \underline{\lim} \, x_n \leq \overline{\lim} = -\infty$   $\lim x_n \in \mathbb{R}$  очевидно
- $\Leftarrow$ )  $z_n \le x_n \le y_n$ , то по теореме о сжатой последовательности  $x_n \to l$ , поскольку  $z_n \to l$  и  $y_n \to l$

# 92 Теорема о характеризации верхнего предела как частичного

# 92.1 Формулировка

- 1. Пусть l частный предел  $x_n$ , тогда  $\varliminf x_n \leq l \leq \varlimsup x_n$
- 2. Существуют такие  $n_k, \, m_k, \,$ что  $\lim x_{n_k} = \overline{\lim} \, x_n$  и  $\lim x_{m_k} = \underline{\lim} \, x_n$

1. Пусть 
$$x_{n_j} \to l$$

$$z_{n_j} \le x_{n_j} \le y_{n_j}$$
, где  $z_{n_j} \to \varliminf x_n, \ x_{n_j} \to l, \ y_{n_j} \to \varlimsup x_n$ 

2. 
$$\overline{\lim} x_k = \pm \infty$$
 — очевидно

$$\overline{\lim} x_k = l \in \mathbb{R}$$
 — очевидно

Для 
$$arepsilon = rac{1}{k} \; \exists x_{n_k} : l - rac{1}{k} \leq x_{n_k} \leq l + rac{1}{k}$$

#### 93 Простейшие свойства несобственного интеграла

#### 93.1Формулировка

1. Критерий Больцано-Коши сходимости несобственного интеграла

Сходимость интеграла  $\int f$  равносильна

 $\forall \varepsilon > 0 : \exists \Delta \in (a,b) : \forall B_1, B_2 : \Delta < B_1 < B_2 < b : \left| \int_{-\infty}^{B_2} f \right| < \varepsilon$ 

2. f — допустима на [a,b) и  $C \in (a,b)$ . Тогда

 $\int_{-\infty}^{\infty} f$  и  $\int_{-\infty}^{\infty} f$  сходятся и расходятся одновременно, и при этом в случае сходимости  $\int_{-\infty}^{\infty} f + \int_{-\infty}^{\infty} f + \int_{-\infty}^{\infty$ 

3. Пусть f, g — допустимы на [a, b), а также

 $\int f$  и  $\int g$  сходятся. Пусть  $\lambda \in \mathbb{R},$  тогда

 $\lambda f$  и  $f\pm g$  — допустимые функции на [a,b) и

$$\int_{a}^{\rightarrow b} \lambda f = \lambda \int_{a}^{\rightarrow b} f \text{ if } \int_{a}^{\rightarrow b} f \pm g = \int_{a}^{\rightarrow b} f \pm \int_{a}^{\rightarrow b} g$$

4. Пусть  $\int\limits_{-}^{+}^{+}f$  и  $\int\limits_{-}^{+}^{+}g$  существуют в  $\overline{\mathbb{R}},\,f\leq g$  на [a,b) Тогда

$$\int_{a}^{\to b} f \le \int_{a}^{\to b} g$$

5. Пусть f, g — дифференцируемы на  $[a,b), \, f', \, g'$  — допустимы на [a,b). Тогда (при существовании двух из трёх пределов)

$$\int\limits_{a}^{\rightarrow b}fg'=fg\bigg|_{a}^{\rightarrow b}-\int\limits_{a}^{\rightarrow b}f'g$$

6. Пусть  $\varphi: [\alpha, \beta) \to \langle A, B \rangle, \ \varphi \in C^1([\alpha, \beta)), \ f \in C(\langle A, B \rangle)$ . Пусть также существует  $\varphi(\beta - 0) \in \overline{\mathbb{R}}$ . Тогда  $\int\limits_a^b (f \circ \varphi) \cdot \varphi' = \int\limits_{\varphi(\alpha)}^{\varphi(\beta - 0)} f$ 

$$\int_{a}^{b} (f \circ \varphi) \cdot \varphi' = \int_{\varphi(\alpha)}^{\varphi(\beta - 0)} f$$

#### 93.2 Доказательство

1. Положим  $\Phi(A) = \int\limits_a^A f$ . Сходимость интеграла равносильна сходимости  $\Phi(A)$  при  $A \to b - 0$ . Вос-

пользуемся критерием Больцано-Коши, а также учтём, что  $\Phi(B) - \Phi(A) = \int\limits_a^B$ 

$$\forall \varepsilon > 0 : \exists \Delta \in (a,b) : \forall B_1, B_2 : \Delta < B_1 < B_2 < b : |\Phi(B_2) - \Phi(B_1)| < \varepsilon$$

2. При всех  $A \in (c, b)$  согласно аддитивности интеграла

$$\int_{a}^{A} f = \int_{a}^{c} f + \int_{c}^{A} f$$

3. Аналогично предыдущему пункту возьмём такие A и согласно линейности интеграла

$$\int_{a}^{A} (\alpha f + \beta g) = \alpha \int_{a}^{A} f + \beta \int_{a}^{A} g$$

4. Также выберем A и очевидно, что

$$\int_{a}^{A} f \le \int_{a}^{A} g$$

5. Устремим  $A \kappa \rightarrow b$ 

$$\int_{a}^{A} fg' = fg \bigg|_{a}^{A} - \int_{a}^{A} f'g$$

6. Кохась сказал, что без доказательства. На экзамене отвечаем ему то же самое

# 94 Признаки сравнения сходимости несобственного интеграла

#### 94.1 Формулировка

1. Пусть f — допустима на  $[a,b), f \geq 0, \Phi(B) = \int\limits_a^B f.$  Тогда сходимость  $\int\limits_a^b f$  равносильна ограниченности функции  $\Phi$  (это не признак сравнения)

2. Признаки сравнения

Пусть f, g > 0 и допустимы на [a, b)

• Если  $f \leq g$  на [a,b)

(а) 
$$\int_{a}^{b} g$$
 — сходится, значит и  $\int_{a}^{b} f$  — сходится

(b) 
$$\int\limits_a^b f$$
 — расходится, значит и  $\int\limits_a^b g$  — расходится

• Пусть существует  $\lim_{x \to b-0} \frac{f(x)}{g(x)} = l$ 

Тогда

(а) 
$$\int\limits_a^b g\ -$$
 сходится, значит и  $\int\limits_a^b f$  сходится, если  $l\in [0,+\infty)$ 

(b) 
$$\int\limits_a^b f$$
 и  $\int\limits_a^b g$  сходятся и расходятся одновременно, если  $l\in(0,+\infty)$ 

# 94.2 Доказательство

1. Очевидно, что  $\Phi$  — монотонно возрастает, тогда существование  $\lim_{B\to b-0}\Phi \Longleftrightarrow \Phi$  — ограничена

2. • Пусть 
$$\Phi(B)=\int\limits_a^B f,\,\psi(B)=\int\limits_a^B g,$$
 тогда  $\Phi,\,\psi\,$  — монотонные 
$$\Phi(B)\leq \psi(B)$$

(а) 
$$\int\limits_a^b g - \text{сходится}$$
, значит  $G(B)$  ограничено сверху, значит  $F(B)$  ограничено сверху, значит  $\int\limits_a^b f - \text{сходится}$ 

- (b)  $\int\limits_a^b f$  расходится, значит F(B) неограничено сверху, значит и G(B) неограничено, значит и  $\int\limits_a^b g$  расходится
- (а) Возьмём L>l. Тогда существует  $c\in[a,b): \forall x\in[c,b)$   $f(x)\leq L\cdot g(x) \text{ Заменим } \int\limits_a^b\text{ на }\int\limits_c^b.\text{ Тогда }\int\limits_c^bg\ -\text{ сходится, значит и }\int\limits_c^bLg\ -\text{ сходится}$ 
  - (b) Для l>0 аналогично и  $\lambda < l$  и по аналогии  $\lim \frac{g}{f} = \frac{1}{l}$  и  $\int\limits_a^b f$  сходится  $\Rightarrow \int\limits_a^b g$  сходится

# 95 Интеграл Эйлера-Пуассона

#### 95.1 Формулировка

$$\int\limits_{0}^{+\infty} e^{-x^2} dx = \frac{\sqrt{\pi}}{2}$$

#### 95.2 Доказательство

$$\varphi(t) = \int_{0}^{t} e^{-x^{2}} dx$$

 $1-x^2 \leq e^{-x^2} \leq \frac{1}{1+x^2},$  следует из неравенства  $e^t \geq 1+t$ 

$$1 + x^2 \le e^{x^2}$$

$$\frac{1}{1+x^2} \ge \frac{1}{e^{x^2}}$$

Интегрируем: 
$$\int\limits_0^1 (1-x^2)^n dx \leq \int\limits_0^1 e^{-nx^2} \leq \int\limits_0^{+\infty} e^{-nx^2} \leq \int\limits_0^{+\infty} \frac{1}{(1+x^2)^n} dx$$

Левая часть:  $x=\cos t$ , тогда делаем замену и  $\int\limits_{\pi/2}^0 \sin^{2n}t(-\sin t)dt=W_{2n+1}$  — формула Валлиса

Правая часть:  $x=\operatorname{tg} t$  и  $\frac{1}{1+\operatorname{tg}^2 t}=\cos^2 t$ 

$$\int_{0}^{\pi/2} \cos^{2n} t \cdot \frac{1}{\cos^{2} t} dt = \int_{0}^{\pi/2} \cos^{2n-2} dt = W_{2n-2}$$

Средняя часть: 
$$x=\frac{t}{\sqrt{n}}$$
 и  $\sqrt{n}\int\limits_{0}^{+\infty}e^{-t^{2}}dt$ 

$$\sqrt{n}W_{2n+1} \le \int_{0}^{+\infty} e^{-x^2} dx \le \sqrt{n}W_{2n-2}$$

$$W_n = \frac{(n-1)!!}{n!!}$$

$$W_{2n-2} = \frac{(2n-3)!!}{(2n-2)!!} \cdot \sqrt{n} \cdot \frac{\pi}{2} = \frac{1}{\underbrace{(2n-2)!!}{(2n-3)!!}} \cdot \frac{\sqrt{n}}{\sqrt{n}-1} \cdot \frac{\pi}{2} = \frac{1}{\sqrt{\pi}} \cdot 1 \cdot \frac{\pi}{2} = \frac{\sqrt{\pi}}{2}$$

$$W_{2n+1} = \frac{(2n)!!}{(2n+1)!!} \cdot \sqrt{n} = \frac{(2n)!!}{(2n-1)!!} \cdot \frac{1}{\sqrt{n}} \frac{n}{2n+1} = \frac{\sqrt{\pi}}{2}$$

# 96 Гамма функция Эйлера. Простейшие свойства

#### 96.1 Формулировка

$$\Gamma(T)=\int\limits_0^{+\infty}x^{t-1}e^{-x}dx,\,t>0\;$$
 — Гамма функция Эйлера

Свойства:

- 1. Интеграл сходится при t > 0
- 2. Функция выпукла, значит она непрерывна
- 3.  $\Gamma(t+1) = t\Gamma(t)$
- 4. Парабола, вершина примерно точка (1,1), ветви полностью лежат в первой четверти (когданибудь здесь будет рисунок, а так рисуйте примерно)

5. 
$$\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$$

#### 96.2 Доказательство

$$1. \int\limits_0^{+\infty} = \int\limits_0^1 + \int\limits_1^{+\infty}$$
 
$$\int\limits_0^1 x^{t-1} e^{-x} dx, \text{ при } x \to 0 \text{ эквивалентно } x^{t-1}, \, t > 1, \text{ значит сходится}$$
 
$$\int\limits_0^{+\infty} x^{t-1} e^{-x} dx = \left( x^{t-1} \cdot e^{-x/2} \right) \cdot e^{-x/2} \le e^{-x/2} \text{ при } x \ge x_0, \text{ где } x_0 < 1.$$
 
$$\int\limits_1^{+\infty} e^{-x/2} = \lim_{B \to +\infty} \left( 2 \cdot e^{-x_0/2} - 2 \cdot e^{-B/2} \right) \text{ — конечен}$$

2. Подынтыгральная функция  $h: t \mapsto x^{t-1} e^{-x}$  — выпукла.

Продифференцируем  $h'' = x^{t-1}e^{-x}\ln^2 x > 0$ 

$$\forall x \in [0,1]: h\left(\alpha t_1 + (1-\alpha)t_2, x\right) \leq \alpha h(t_1,x) + (1-\alpha)h(t_2,x)$$
 — неравенство Йенсена

$$\Gamma(\alpha t_1 + (1 - \alpha)t_2) \le \alpha \Gamma(t_1) + (1 - \alpha)\Gamma(t_2)$$

 $\Gamma(t)$  — выпукла, значит она непрерывна

$$3. \int\limits_0^{+\infty} x^t e^{-x} dx = \begin{bmatrix} f = x^t & f' = tx^{t-1} \\ g' = e^{-x} & g = -e^{-x} \end{bmatrix} = x^t (-e^{-x}) \Big|_0^{+\infty} + \int\limits_0^{+\infty} tx^{t-1} e^{-x} dx = t\Gamma(t)$$
 
$$\Gamma(1) = 1, \text{ значит } \Gamma(n) = n!$$

4. Просто рисуем график.

5. 
$$\int\limits_0^{+\infty} x^{-0.5} e^{-x} dx = 2 \int\limits_0^{+\infty} e^{-y^2} dy$$
 — интеграл Эйлера-Пуассона

# 97 Теорема об абсолютно сходящихся интегралах и рядах

## 97.1 Формулировка

Пусть f — допустима на [a,b). Тогда эквивалентны утверждения:

- 1.  $\int_{a}^{b} f$  абсолютно сходится
- 2.  $\int_{a}^{b} |f|$  сходится
- 3.  $\int\limits_a^b f^+$  и  $\int\limits_a^b f^-$  абсолютно сходятся

#### 97.2 доказательство

- $1 \Rightarrow 2$  очевидно
- $2 \Rightarrow 3$   $0 \le f^+ \le |f|$  и  $0 \le f^- \le |f|$
- $3\Rightarrow 1$   $f=f^+-f^-\Rightarrow \int f$  сходится  $|f|=f^++f^-\Rightarrow \int |f|$  сходится

## 97.3 Случай рядов

Аналогично интегралам. Доказывается с помощью интегрального признака Коши.

98 Изучение сходимости интеграла 
$$\int\limits_{2019}^{\infty} \frac{dx}{x^{lpha} (\ln x)^{eta}}$$

#### 98.1 Формулировка

Рассмотрим 
$$\int\limits_{2019}^{+\infty} \frac{dx}{x^{\alpha}}$$
, тогда

при  $\alpha > 1$  — сходится,  $\alpha \le 1$  — расходится

#### 98.2 Доказательство

Случай  $\alpha > 1$ :  $\alpha = 1 + 2a, \, a > 0$ , значит сходится

$$\frac{1}{x^{\alpha}(\ln x)^{b}} = \frac{1}{x^{1+a}} \cdot \frac{1}{x^{a}(\ln x)^{\beta}} = \frac{1}{x^{1+a}}$$

$$\lim_{x \to +\infty} \frac{1}{x^a (\ln x)^\beta} = 0$$

Если 
$$\beta \geq 0$$
, то всё ок. Если  $\beta < 0$ , то  $\lim \frac{(\ln x)^{-\beta}}{x^a} = \left(\lim \frac{\ln x}{x^{a/-\beta}}\right)^{-\beta} = 0$ 

Если  $\alpha < 1$ , то  $\alpha = 1 - 2\gamma, \, \gamma > 0 \,$  — расходится

$$rac{1}{x^{1-\gamma}} \cdot rac{1}{x^{-\gamma} (\ln x)^{eta}} \geq rac{1}{x^{1-\gamma}} \ \ -$$
 расходится

$$\alpha = 1, \int_{2010}^{+\infty} \frac{dx}{x(\ln x)^{\beta}} = \int_{2010}^{+\infty} \frac{dy}{y^{\beta}}$$

 $\beta > 1$  сходится,  $\beta \le 1$  расходится.

# 99 Изучение интеграла $\int\limits_{1}^{\infty} \frac{\sin x \, dx}{x^p}$ на сходимость и абсолютную сходимость

При 
$$p>1:\left|\frac{\sin x}{x^p}\right|\leq \frac{1}{x^p}$$
 — абсолютная сходимость

При 
$$p \le 0$$
 : 
$$\int\limits_{2\pi k}^{2\pi k+\pi} \frac{\sin x}{x^p} \ge \int\limits_{2\pi k}^{2\pi k+\pi} \sin x = 2$$
, значит интеграл расходится (и абсолютно тоже)

При 0 нет абсолютной сходимости, но есть обычная сходимость:

$$\int\limits_{1}^{+\infty} \frac{\sin x}{x^p} = \begin{bmatrix} f' = \sin x & f = -\cos x \\ g = \frac{1}{x^p} & g' = -p\frac{1}{x^{p+1}} \end{bmatrix} = -\cos x \cdot \frac{1}{x^p} \bigg|_{1}^{+\infty} - p \int\limits_{1}^{+\infty} \frac{\cos x}{x^{p+1}} dx - \text{сходится}$$

$$\int\limits_{1}^{+\infty} \frac{|\sin x|}{x^p} \geq \int\limits_{1}^{+\infty} \frac{\sin^2 x}{x^p} = \frac{1}{2} \int\limits_{1}^{+\infty} \left(\frac{1}{x^p} - \frac{\cos 2x}{x^p}\right) \ - \ \text{расходится, т.к.} \ \int\limits_{1}^{+\infty} \frac{1}{x^p} \ \text{расходится, a} \ \int\limits_{1}^{+\infty} \frac{\cos 2x}{x^p} \ \text{сходится.}$$

100 Признак Абеля—Дирихле сходимости несобственного интеграла

#### 100.1 Формулировка

1. (Дирихле) 
$$f$$
 — допустима на  $[a,b),\,g\in C^1\left([a,b)\right),\,g(x)\xrightarrow[x\to b-0]{}0$  монотонная

$$F(B) = \int\limits_a^B f$$
 — ограничена, тогда  $\int\limits_a^{
ightarrow b} fg$  — сходится

2. (Абеля) 
$$f$$
 — допустима на  $[a,b), \int\limits_a^{\to b} f$  — сходится

$$g \in C^1\left([a,b)\right)$$
, монотонная, ограниченная

Тогда 
$$\int\limits_{a}^{\rightarrow b}fg$$
 — сходится

1. Интегрируем по частям 
$$\int\limits_a^B fg = F(x)g(x)igg|_a^B - \int\limits_a^B F(x)g'(x)dx \;$$
 — конечен

$$\int\limits_{a}^{b} |F(x)| |g'(x)| dx \le k \int\limits_{a}^{b} |g'(x)| dx = \pm k \int\limits_{a}^{b} g'(x) = \pm k g(x) \bigg|_{a}^{b}$$

2. 
$$\alpha = \lim_{x \to b-0} g(x)$$
, поскольку  $g$  — ограниченная и монотонная, значит имеет предел

$$fg = f\alpha + f(g - \alpha)$$

$$\int f \alpha - \text{сходится}, \int\limits_a^b f(g-\alpha) - \text{сходится по уже доказанному}.$$

### 101 Интеграл Дирихле

#### 101.1 Формулировка

$$\int\limits_{0}^{+\infty} \frac{\sin x}{x} dx = \frac{\pi}{2}$$

#### 101.2 Доказательство

$$\cos x + \cos 2x + \dots + \cos nx = \frac{\sin (n + 0.5)x}{2\sin 0.5x} - \frac{1}{2} \text{ (просто запомните это)}$$

$$2\sin \frac{x}{2}\cos x + 2\sin \frac{x}{2}\cos^2 x + \dots = \sin \left(n + \frac{1}{2}\right)x - \sin \frac{x}{2}$$

$$\sin \frac{3}{2}x - \sin \frac{x}{2} + \left(\sin \frac{5}{2}x - \sin \frac{3}{2}x\right) + \dots = \sin \left(n + \frac{1}{2}\right)x - \sin \frac{x}{2}$$

$$0 = \int_{0}^{\pi} \cos x + \dots + \cos nx \, dx = \int_{0}^{\pi} \frac{\sin (n + 0.5)x}{2\sin 0.5x} - \frac{\pi}{2}$$

Рассмотрим следующие интегралы:

$$\int_{0}^{\pi} \frac{\sin((n+0.5)x)}{2\sin(0.5x)} - \int_{0}^{\pi} \frac{\sin((n+0.5)x)}{x} \to 0$$

$$\int_{0}^{\pi} \sin\left(n + \frac{1}{2}\right) x \cdot \left(\frac{1}{2\sin 0.5x} - \frac{1}{x}\right) dx$$

Пусть 
$$h(x) = \frac{1}{2\sin 0.5x} - \frac{1}{x}$$
, доопределим  $h(0)$ 

$$h(0) = \lim_{x \to 0} \frac{1}{2\sin 0.5x} - \frac{1}{x} = \lim_{x \to 0} \frac{x - 2\sin 0.5x}{2x\sin 0.5x}$$
 и по Тейлору найдём предел

$$\frac{x-2\left(0.5x-1/6\cdot x^3/8+o(x^3)\right)}{x^2+o(x^2)}$$
 и  $h'(0)=\frac{1}{24}$ 

$$\int_{0}^{\pi} \frac{\sin{(n+0.5)x}}{2\sin{0.5x}} - \int_{0}^{\pi} \frac{\sin{(n+0.5)x}}{x} = -\frac{\cos{(n+0.5)x}}{n+0.5} h(x) \Big|_{0}^{\pi} + \int_{0}^{\pi} \frac{\cos{(n+0.5)x}}{n+0.5} \cdot h'(x) \xrightarrow[n \to +\infty]{} 0$$

$$\int\limits_0^\pi \frac{\sin{(n+0.5)}x}{x} = \int\limits_0^{(n+0.5)\pi} \frac{\sin{y}}{y} dy$$
и при  $n \to +\infty$  заменяем на заданный в условии интеграл.

Итого:

$$\int\limits_{0}^{\pi} \frac{\sin{(n+0.5)x}}{2\sin{0.5x}} - \frac{\pi}{2} = 0, \ \text{значит} \ \int\limits_{0}^{+\infty} \frac{\sin{y}}{y} dy = \frac{\pi}{2}$$

# 102 Свойства рядов: линейность, свойства остатка, необх. условие сходимости, критерий Больцано-Коши

#### 102.1 Линейность, свойства остатка

#### 102.1.1 Формулировка

- 1. Пусть  $\sum a_n, \sum b_n$  сходятся, тогда и ряд  $\sum c_n,$  где  $c_n:=a_n+b_n$  тоже сходится
- 2. Пусть  $\sum a_n$  сходится, тогда и ряд  $\sum \lambda a_n$  тоже сходится, где  $\lambda \in \mathbb{R}$
- 3.  $\sum a_n$  сходится, тогда и любой остаток ряда сходится
  - Какой-нибудь остаток ряда сходится, значит и сам ряд сходится

• Пусть 
$$R_m = \sum_{k=m}^{+\infty} a_k$$
,  $\sum a_n - \text{сходится, значит и } R_m \xrightarrow[m \to +\infty]{} 0$ 

#### 102.1.2 Доказательство

1. 
$$\lim_{N \to +\infty} \sum_{n=1}^{N} (a_n + b_n) = \lim_{N \to +\infty} \sum_{n=1}^{N} a_n + \lim_{N \to +\infty} \sum_{n=1}^{N} b_n$$

$$2. \sum_{n=1}^{\infty} \lambda a_n = \lambda \sum_{n=1}^{\infty} a_n$$

- 3.  $S_n = \sum_{k=1}^n a_k = \sum_{k=1}^{m-1} a_k + \sum_{k=m}^N a_k$ , сумма и первое слагаемое конечна, значит и второе слагаемое конечное.
  - Аналогично предыдущему

• 
$$\sum_{k=1}^{+\infty} a_k = \sum_{k=1}^{m-1} a_k + \sum_{k=m}^{+\infty} a_k$$

#### 102.2 Необходимое условие сходимости рядов

#### 102.2.1 Формулировка

$$\sum a_n \; - \;$$
сходится, тогда  $a_n \xrightarrow[n o +\infty]{} 0$ 

#### 102.2.2 Доказательство

$$\sum_{n=1}^{+\infty} a_n = S, S_n \to S$$

$$a_N = S_N - S_{N-1} \xrightarrow[N \to +\infty]{} 0$$

### 102.3 Критерий Больцано-Коши

#### 102.3.1 Формулировка

Сходимость ряда  $\sum_{k=1}^{\infty} a_k$  равносильна условию

$$\forall \varepsilon > 0 : \exists N \in \mathbb{N} : \forall n > N : \forall p \in \mathbb{N} : \left| \sum_{k=n+1}^{n+p} a_k \right| < \varepsilon$$

### 102.4 Доказательство

По определению сходимость ряда  $\sum_{k=1}^{\infty} a_k$  равносильна сходимости последовательности  $S_n = \sum_{k=1}^n a_k$ . Воспользуемся критерием Больцано-Коши для последовательностей

$$\forall \varepsilon > 0 : \exists N \in \mathbb{N} : \forall n, m > N : |S_m - S_n| < \varepsilon$$

Не умаляя общности можно считать, что m>n. Остаётся переобозначить m=n+p, где  $p\in\mathbb{N}$  и заметить, что  $S_m-S_n=\sum_{k=n+1}^{n+p}a_k$ 

### 103 Признак сравнения сходимости положительных рядов

#### 103.1 Лемма

#### 103.1.1 Формулировка

Пусть  $a_k \geq 0$ , при всех  $k \in \mathbb{N}$ . Тогда сходимости  $\sum a_k$  равносильно тому, что последовательность  $S_n^{(a)}$  — ограничена

#### 103.1.2 Доказательство

Последовательность  $S_n$  возрастает, а по теореме о монотонной последовательности сходимость равносильна ограниченности сверху.

### 103.2 Признак сравнения сходимости положительных рядов

#### 103.2.1 Формулировка

Пусть  $a_k, b_k \ge 0$ . Тогда

1. 
$$\forall k: a_k \leq b_k$$
 (или даже  $\exists c > 0: \exists N: \forall k > N: a_k \leq cb_k$ )

Тогда

$$\sum a_k$$
 расходится. значит и  $\sum b_k$  расходится

$$\sum b_k$$
 сходится, значит и  $\sum a_k$  сходится

2. Пусть 
$$\exists \lim_{k \to +\infty} \frac{a_k}{b_k} = l \in [0, +\infty]$$

Тогда

При 
$$0 < l < +\infty$$
  $\sum a_k$  сходится тогда и только тогда, когда  $\sum b_k$  сходится

При 
$$l=0\sum b_k$$
 сходится, значит и  $\sum a_k$  сходится, или  $\sum a_k$  расходится, значит и  $\sum b_k$  расходится

При 
$$l=+\infty$$
  $\sum a_k$  сходится, значит и  $\sum b_k$  сходится, или  $\sum b_k$  расходится, значит и  $\sum a_k$  расходится

#### 103.2.2 Доказательство

1. Следует из леммы

$$\sum a_k$$
 сходится  $\Leftrightarrow \sum_{k=N}^{+\infty} a_k$  сходится

$$a_k \le cb_k \Rightarrow S_n^{(a)} \le c \cdot S_n^{(b)}$$

 $\sum a_k$  расходится  $\Rightarrow S_n^{(a)}$  не ограничено сверху, значит и  $S_n^{(b)}$  тоже не ограничено сверху

2. Следует из первого случа<br/>иl=0 и  $l=+\infty$ 

 $0 < l < +\infty$ . По определению предела

$$\exists N : \forall k > N : \frac{l}{2} < \frac{a_k}{b_k} < \frac{3l}{2}$$

 $a_k > \frac{1}{2}b_k$ , значит  $\sum a_n$  сходится, значит и  $\sum \frac{l}{2}b_n$  тоже сходится, значит и  $\sum b_n$  сходится. Аналогично разбираются и остальные 3 случая.

### 104 Признак Коши сходимости положительных рядов

### 104.1 Формулировка

Пусть  $a_n \geq 0$  для всех n и  $k_n = \sqrt[n]{a_n}$ 

- 1.  $\exists q < 1 : k_n \leq q$ , начиная с некоторого места, значит ряд сходится
- 2.  $k_n \geq 1$  для бесконечного числа номеров, значит ряд расходится

### 104.2 Доказательство

- 1.  $k_n \leq q \Longleftrightarrow a_n \leq q^n$  при  $n \to +\infty,$  а  $q^n$  сходится, значит и  $\sum a_n$  сходится
- 2.  $a_n \geq 1$  верно для бесконечного числа n, значит  $\exists n_k$ , что  $\lim a_{n_k} \neq 0$ , значит  $\sum a_n$  расходится.

### 105 Признак Коши сходимости положительных рядов (pro)

### 105.1 Формулировка

Пусть  $a_n \ge 0, k = \overline{\lim_{n \to \infty}} \sqrt[n]{a_n}$ 

- 1. k > 1, значит  $\sum a_n$  расходится
- $2. \ k < 1,$  значит  $\sum a_n \ -$  сходится

### 105.2 Доказательство

- 1. Пусть k>1, тогда для бесконечного числа номеров  $\sqrt[n]{a_n}>1$ , а значит  $a_n>1$ , значит  $a_n$  не стремится к 0, и поэтому ряд расходится.
- 2. Пусть k < 1. Обозначим за  $\varepsilon = \frac{1-k}{2} > 0, \ q = \frac{1+k}{2}$ . По свойствам верхнего предела существует такое N, что для всех n > N выполняется неравенство

$$\sqrt[n]{a_n} < k + \varepsilon = \frac{1+k}{2} = q \in (0,1)$$

Тогда  $a_n < q^n$  при всех n > N, и ряд  $\sum_{k=1}^{\infty} a_k$  сходится по признаку сравнения со сходящимся рядом

$$\sum_{k=1}^{\infty} q^k$$

#### Признак Даламбера сходимости положительных рядов 106

#### 106.1 Формулировка

Пусть 
$$a_n \ge 0$$
,  $D_n = \frac{a_{n+1}}{a_n}$ 

light

- 1.  $\exists q < 1$  начиная с некоторого места  $D_n \leq q$ , значит  $\sum a_n$  сходится
- 2.  $D_n \geq 1$ начиная с некоторого места, значит  $\sum a_n$  расходится

pro

Пусть 
$$\exists \lim \frac{a_{n+1}}{a_n} = D$$

- 1. D < 1, значит  $\sum a_n$  сходится
- 2. D>1, значит  $\sum a_n$  расходится

#### 106.2 Доказательство

light

1. 
$$\frac{a_{N+1}}{a_N} < q$$
$$\frac{a_{N+2}}{a_{N+1}} < q$$

$$\frac{a_{N+2}}{a_{N+1}} < \epsilon$$

$$\frac{a_{N+k}}{a_{N+k-1}} < q$$

$$a_{N+k} < q^k \cdot a_{N_0}$$
 — сходится

Значит  $a_n$  сходится

2.  $a_{N_0+k} \ge a_{N_0} > 0$ , значит  $a_k$  не стремится 0 -расходится

pro

1. 
$$\lim \frac{a_{n+1}}{a_n} = D$$
, значит НСНМ  $\frac{a_{n+1}}{a_n} < q$ , значит  $\sum a_n$  сходится

2. 
$$\lim \frac{a_{n+1}}{a_n} = D > 1$$
, значит НСНМ  $\frac{a_{n+1}}{a_n} > 1$ , значит  $\sum a_n$  расходится

### 107 Признак Раабе сходимости положительных рядов

#### 107.1 Лемма

#### 107.1.1 Формулировка

Пусть 
$$a_n, b_n > 0$$
 и  $\frac{a_{n+1}}{a_n} < \frac{b_{n+1}}{b_n}$  НСНМ. Тогда

 $b_n$  — сходится, значит и  $a_n$  сходится

или

 $a_n$  — расходится, значит и  $b_n$  расходится.

#### 107.1.2 Доказательство

Будем считать "НСНМ"как "1"

$$a_2 < a_1 \frac{b_2}{b_1}$$

$$a_3 < a_2 \frac{b_3}{b_2}$$

. .

$$a_n < a_{n-1} rac{b_n}{b_{n-1}},$$
 значит  $a_n < rac{a_1}{b_1} b_n,$  т.е.  $a_n < c \cdot b_n$ 

### 107.2 Теорема

#### 107.2.1 Формулировка

 $a_n > 0$ , тогда если

$$n\cdot\left(rac{a_n}{a_{n+1}}-1
ight)\geq r>1$$
 (НСНМ), тогда  $\sum a_n$  — сходится

$$n\cdot\left(rac{a_n}{a_{n+1}}-1
ight)\leq 1$$
 (НСНМ), тогда  $\sum a_n$  — расходится

#### 107.2.2 Доказательство

1. 
$$n \cdot \left(\frac{a_n}{a_{n+1}} - 1\right) \ge r \Rightarrow \frac{a_n}{a_{n+1}} \ge 1 + \frac{r}{n}$$

Пусть 
$$1 < s < r, b_n := \frac{1}{n^s}$$

Итак, НСНМ 
$$\frac{a_{n+1}}{a_n} < \frac{b_{n+1}}{b_n}$$

$$\sum b_n = \sum \frac{1}{n^s} - \text{сходится, значит } \sum a_n - \text{сходится}$$

2. 
$$n\left(\frac{a_n}{a_{n+1}} - 1\right) \le 1$$
,  $\frac{a_n}{a_{n+1}} \le \frac{n+1}{n} = \frac{\frac{1}{n}}{\frac{1}{n+1}}$ 

$$\frac{\frac{1}{n+1}}{\frac{1}{n}} \leq \frac{a_{n+1}}{a_n}, \sum \frac{1}{n}$$
 — расходится, значит и  $\sum a_n$  — расходится

### 108 Интегральный признак Коши сходимости числовых рядов

#### 108.1 Формулировка

Пусть  $f:[1,+\infty)\to\mathbb{R}$ , непрерывна,  $\geq 0$ , монотонна

Тогда  $\sum_{k=1}^{+\infty} f(k)$  и  $\int\limits_{1}^{+\infty} f(x) dx$  — сходится или расходится одновременно. Содержательный случай f — убывает и f(1)>0

### 108.2 Доказательство

ullet Ряд сходится, значит  $S_n^{(f)}$  — ограничена сверху

Тогда 
$$\Phi(A) = \int_{1}^{A} f(x)dx$$
 — ограничена сверху

$$S_n^{(f)} \le S$$

$$\Phi(A) < \Phi([A] + 1) = \int_{1}^{[A]+1} f(x)dx = \sum_{k=1}^{[A]} \int_{k}^{k+1} f(x)dx \le \sum_{k=1}^{K+1} \int_{k}^{k+1} f(k)dx = \sum_{k=1}^{[A]} f(k) \le S$$

• Интеграл сходится, значит и ряд сходится

$$\Phi(A) \leq S$$

Проверим, что  $S_n \leq S + f(1)$ 

$$S_n = \sum_{k=1}^n f(k) = f(1) + \sum_{k=2}^n \int_{k-1}^k f(k)dx \le f(1) + \sum_{k=2}^n \int_{k-1}^k f(x)dx = f(1) + \int_1^n f(x)dx \le f(1) + S$$

### 109 Признак Лейбница

### 109.1 Формулировка

Пусть 
$$a_1 \geq a_2 \geq a_3 \geq \ldots \geq 0, \ a_n \to 0.$$
 Тогда  $\sum_{k=1}^{+\infty} (-1)^{k-1} a_k$  — сходится

### 109.2 Доказательство

$$S_{2n} = (a_1 - a_2) + (a_3 - a_4) + \ldots + (a_{2n-1} - a_{2n})$$

$$S_{2n+2} = S_{2n} + a_{2n+1} - a_{2n+2} \ge S_{2n}$$

$$S_{2n} \le a_1, S_{2n} = a_1 - (a_2 - a_3) - \dots (a_{2n-2} - a_{2n-1}) - a_{2n}$$

$$S_{2n+1} = S_{2n} + a_{2n+1}$$
, итого  $S_{-}$  ограничено, значит ряд сходится

### 110 Признаки Дирихле и Абеля сходимости числового ряда

### 110.1 Формулировка

#### 110.1.1 Дирихле

Пусть  $S_n^{(a)}$  — ограничена

 $b_n$  — монотонна.  $b_n \to 0$ 

Тогда  $\sum_{k=1}^{+\infty} a_k b_k$  — сходится

#### 110.1.2 Абеля

Пусть  $\sum a_k$  — сходится,  $b_n$  — ограниченная, монотонная

Тогда  $\sum_{k=1}^{+\infty} a_k b_k$  — сходится

### 110.2 Доказательство

#### 110.2.1 Дирихле

Применим преобразование Абеля  $\sum_{k=1}^{n} a_k b_k = A_n b_n + \sum_{k=1}^{n-1} A_k (b_k - b_{k+1})$ 

Из того, что  $A_n$  ограничена, а  $b_n$  бесконечна мала, следует, что  $A_nb_n\to 0$ , поэтому сходимость эквивалентна сходимости ряда  $\sum_{k=1}^\infty A_k(b_k-b_{k+1})$ 

$$\sum_{k=1}^{n-1} |A_k(b_k-b_{k+1})| \leq c_a \sum_{k=1}^{n-1} |b_k-b_{k+1}| = c_a |b_1-b_n|$$
 — ограничена

#### 110.2.2 Абеля

Существует конечный  $\lim_{n \to +\infty} b_n = \beta$ 

 $\sum a_k b_k = \sum a_k \beta + \sum a_k (b_k - \beta)$ , первое сходится в силу сходимость  $\sum a_k$ , а второе сходится в силу признака Дирихле

## 111 Теорема об условиях сходимости бесконечного произведения

### 111.1 Формулировка

- 1. Пусть  $a_n>0$  НСНМ. Тогда равносильность  $\prod (1+a_n) \text{сходится} \Longleftrightarrow \sum a_n \text{сходится}$
- 2. Пусть  $\sum a_n \text{сходится}$ , а также  $\sum a_n^2 \text{тоже сходится}$ . Тогда  $\prod (1+a_n) \text{сходится}$

### 111.2 Доказательство

- 1.  $\prod$  сходится  $\Leftrightarrow$   $\sum \ln |1+a_n|$  сходится  $\Leftrightarrow$   $\sum a_n$  сходится. НСНМ  $\ln |1+a_n|$   $\sim a_n$  при  $n \to +\infty$
- 2.  $\prod$  сходится  $\Leftrightarrow \sum \ln(1+a_n)$  сходится

$$\ln(1+a_n) = a_n - \frac{a_n^2}{2} + o(a_n^2)$$

Докажем, что  $\sum |o(a_n^2)|$  абсолютно сходится

 $\lim_{n\to}\frac{o(a_n^2)}{a_n^2}=0$ из сходимости  $\sum a_n^2$  следует сходимость  $\sum |o(a_n^2)|,$  значит и  $\sum o(a_n^2)$  сходится

# 112 Лемма об оценке приближения экспоненты ее замечательным пределом

#### 112.1 Лемма 1

#### 112.1.1 Формулировка

$$\Pi(n,x)=\int\limits_0^n\left(1-rac{t}{n}
ight)^nt^{x-1}dt,$$
 где  $x>0$ 

Тогда 
$$\Pi(n,x) = \frac{1 \cdot 2 \cdot \ldots \cdot n}{x(x+1) \cdot \ldots (x+n)} \cdot n^x$$

#### 112.1.2 Доказательство

$$\Pi(n,x) = n^x \int\limits_0^1 (1-s)^n \cdot s^{x-1} ds = n^x \left( (1-s)^n \cdot \frac{s^x}{x} \bigg|_{s=0}^{s=1} + \frac{n}{x} \int\limits_0^1 (1-s)^{n-1} \cdot s^x ds \right) = n^x \cdot \frac{n}{x} \int\limits_0^1 (1-s)^{n-1} s^x ds = n^x \cdot \frac{n}{x} \cdot \frac{n}{x} \cdot \frac{n-1}{x+1} \cdot \int\limits_0^1 (1-s)^{n-2} s^{x-1} ds = \dots$$
 получаем то, что хотели

#### 112.2 Лемма 2

### 112.2.1 Формулировка

При  $0 \le t \le n$ 

$$0 \le e^{-t} - \left(1 - \frac{t}{n}\right)^n \le \frac{1}{n}t^2e^{-t}$$

#### 112.2.2 Доказательство

 $(1+y) \le e^y \le (1-y)^{-1}, \, y \in [0,1]$  в силу выпуклости  $e^x$ 

$$e^y \ge 1 + y$$

$$e^{-y} \ge 1 - y$$

возведём в 
$$(-n), y := \frac{t}{n}$$

$$\left(1+\frac{t}{n}\right)^{-n}\geq e^{-t}\geq \left(1-\frac{t}{n}\right)^n$$
 
$$0\leq e^{-t}-\left(1-\frac{t}{n}\right)^n=e^{-t}\left(1-e^t\left(1-\frac{t}{n}\right)^n\right)\leq e^{-t}\left(1-\left(1+\frac{t}{n}\right)^n\left(1-\frac{t}{n}\right)^n\right)$$
 
$$e^{-t}\left(1-\left(1-\frac{t^2}{n^2}\right)^n\right)\leq \frac{t^2}{n}e^{-t} \text{ (это неравенство Бернулли)}$$

### 113 Формула Эйлера для гамма-функции

#### 113.1 Формулировка

При x>0 верно, что

$$\lim_{n \to +\infty} \frac{1 \cdot 2 \cdot \ldots \cdot n}{x(x+1) \cdot \ldots (x+n)} \cdot n^x = \Gamma(x)$$

#### 113.2 Доказательство

$$\Gamma(x) - \lim_{n \to +\infty} \Pi(n,x) = \lim_{n \to +\infty} \left( \int\limits_0^n \left( e^{-t} - \left(1 - \frac{t}{n}\right)^n \right) t^{x-1} dt + \int\limits_n^{+\infty} t^{x-1} e^{-t} dt \right)$$

$$\int_{n}^{+\infty} e^{-t} t^{x-1} dt \xrightarrow[n \to +\infty]{} 0$$

$$\int_{0}^{n} \frac{1}{n} e^{-t} t^{2} t^{x-1} dt \le \frac{1}{n} \int_{0}^{+\infty} t^{x+1} e^{-t} dt \to 0$$

### 114 Формула Вейерштрасса для Г-функции

### 114.1 Формулировка

Пусть  $x>0,\,\gamma\,$  — постоянная Эйлера. Тогда

$$\frac{1}{\Gamma(x)} = xe^{\gamma x} \prod_{k=1}^{+\infty} \left(1 + \frac{x}{k}\right) e^{-\frac{x}{k}}$$

#### 114.2 Доказательство

$$\frac{1}{\Gamma(x)} = \lim_{n \to +\infty} n^{-x} \frac{x(x+1)\dots(x+n)}{1 \cdot 2 \dots \cdot n} = \lim_{n \to +\infty} \left( n^{-x} \cdot x \cdot \frac{x+1}{1} \cdot \frac{x+2}{2} \cdot \dots \cdot \frac{x+n}{n} \right) = \lim_{n \to +\infty} x \cdot n^{-x} \cdot \prod_{k=1}^{n} \left( 1 + \frac{x}{k} \right) = \lim_{n \to +\infty} x e^{x\left(1 + \frac{1}{2} + \dots + \frac{1}{n}\right)} \cdot e^{-x \ln n} \prod_{k=1}^{n} \left( 1 + \frac{x}{k} \right) e^{-\frac{x}{k}} = x \cdot e^{\gamma x} \prod_{k=1}^{+\infty} \left( 1 + \frac{x}{k} \right) e^{-\frac{x}{k}}$$

### 115 Вычисление произведений с рациональными сомножителями

Пусть  $u_n = A \cdot \frac{(n+a_1)(n+a_2) \cdot (n+a_k)}{(n+b_1)(n+b_2) \dots (n+b_l)}$ , где  $a_i$  и  $b_i \in \mathbb{Q}$ . Хотим найти  $\prod_{i=1}^{+\infty} u_i$ . Самый интересный случай, это то, что произведение сходится, тогда  $u_n \to 1$ , а значит k=l и A=1

$$u_n = \frac{\left(1+\frac{a_1}{n}\right)\left(1+\frac{a_2}{n}\right)\ldots\left(1+\frac{a_k}{n}\right)}{\left(1+\frac{b_1}{n}\right)\left(1+\frac{b_2}{n}\right)\ldots\left(1+\frac{b_k}{n}\right)}$$
 и при  $n\to+\infty$ 

$$\prod_{n=1}^{+\infty} \frac{\left(1 + \frac{b_1}{n}\right)\left(1 + \frac{b_2}{n}\right) \dots \left(1 + \frac{b_k}{n}\right)}{\left(1 + \frac{b_1}{n}\right)\left(1 + \frac{b_2}{n}\right) \dots \left(1 + \frac{b_k}{n}\right)} = \prod_{n=1}^{+\infty} \frac{\left(1 + \frac{a_1}{n}\right)e^{-\frac{a_1}{n}}\left(1 + \frac{a_2}{n}\right)e^{-\frac{a_2}{n}} \dots \left(1 + \frac{a_k}{n}\right)e^{-\frac{a_k}{n}}}{\left(1 + \frac{b_1}{n}\right)\left(1 + \frac{b_2}{n}\right) \dots \left(1 + \frac{b_k}{n}\right)e^{-\frac{b_k}{n}}} = \prod_{i=1}^{+\infty} \frac{\frac{1}{\Gamma(a_1)a_1e^{\gamma a_1}} \dots \frac{1}{\Gamma(a_k)a_ke^{\gamma a_k}}}{\left(1 + \frac{b_1}{n}\right)e^{-\frac{b_1}{n}}\left(1 + \frac{b_2}{n}\right)e^{-\frac{b_2}{n}} \dots \left(1 + \frac{b_k}{n}\right)e^{-\frac{b_k}{n}}} = \prod_{i=1}^{+\infty} \frac{\frac{1}{\Gamma(a_1)a_1e^{\gamma a_1}} \dots \frac{1}{\Gamma(b_k)b_ke^{\gamma b_k}}}{\frac{1}{\Gamma(1 + a_1) \dots \Gamma(1 + a_k)}} = \prod_{i=1}^{+\infty} \frac{\Gamma(1 + b_1) \dots \Gamma(1 + a_k)}{\Gamma(1 + a_1) \dots \Gamma(1 + a_k)}$$

### 116 Теорема о группировке слагаемых

### 116.1 Формулировка

Выберем  $n_0 = 0 < n_1 < n_2 < \dots$ 

Пусть 
$$\sum a_k = (a_1 + a_2 + \ldots + a_{n_1}) + (a_{n_1+1} + \ldots + a_{n_2}) + \ldots$$

$$b_k = \sum_{i=n_{k-1}+1}^{n_k} a_i$$

Тогда

1. 
$$\sum a_n$$
 — сходится  $\Rightarrow \sum b_k$  сходится и имеет ту же сумму

$$2. \ a_k \ge 0 \Rightarrow \sum a_k = \sum b_k$$

### 116.2 Доказательство

$$S_k^{(b)} = S_{n_k}^{(a)}$$

1. 
$$\lim_{k \to \infty} S_k^{(b)} = \lim_{k \to \infty} S_{n_k}^{(a)} = S^{(a)}$$

2. Если 
$$\sum a_n$$
 — сходится, то смотри пункт 1

Если  $\sum a_n$  — расходится, значит  $S_n^{(a)}$  не ограничено сверху, значит и  $S_n^{(b)}$  не ограничено сверху

### 117 Теорема о перестановке слагаемых

### 117.1 Формулировка

- 1. Пусть ряд  $\sum a_n$  абсолютно сходится, тогда ряд  $\sum b_n$ , полученный из ряда  $\sum a_n$  перестановкой, будет также абсолютно сходиться и иметь ту же сумму.
- 2. Также если  $a_k \geq 0$  при всех k, то  $\sum a_k = \sum b_k$

### 117.2 Доказательство

- 2. По определению  $S_n^{(b)} = a_{\varphi(1)} + \ldots + a_{\varphi(n)} \leq S_{\max \varphi(i)}^{(a)}$ . Устремим  $n \to +\infty$ ,  $S^{(b)} \leq S^{(a)}$ . Аналогично  $S^{(a)} \leq S^{(b)}$ .
- 1. Берём срезки  $a_n^+$  и  $a_n^-$ , тогда  $\sum a_n^+, \, \sum a_n^- \, -$  сходятся.

$$a_n^+ = \max(a_n^+,0),\, \sum b_n^+ \,\, -$$
 перестановка ряда $a_n^+$ 

$$a_n^- = \max(-a_n^-, 0).$$
 Аналогично  $\sum b_n^-$ 

И по второму пункту всё доказали

Р.Ѕ. доказательство идёт в обратном порядке

### 118 Теорема о произведении рядов

### 118.1 Формулировка

Пусть ряды (A) и (B) абсолютно сходятся к суммам  $S^{(a)}$  и  $S^{(b)}$ . Тогда  $\forall \gamma: \mathbb{N} \to \mathbb{N} \times \mathbb{N}$  — биекция, произведение рядов абсолютно сходится и имеют сумму  $S^{(a)}S^{(b)}$ 

#### 118.2 Доказательство

Пусть 
$$\sum |a_k| = A$$
 и  $\sum |b_k| = B$ , тогда

$$\sum_{k=1}^{N} |a_{\varphi(k)}b_{\psi(k)}| \leq \sum_{k=1}^{n} |a_n| \sum_{k=1}^{m} |b_k| \leq A \cdot B, \text{ где } n := \max(\varphi(1), \dots, \varphi(N)), \ m = \max(\psi(1), \dots, \psi(N))$$

Значит ряд  $\sum_{k=1}^N |a_{\varphi(k)}b_{\psi(k)}|$  — сходится, значит произведение рядов абсолютно сходится, значит его сумма не зависит от порядка слагаемых, следовательно не зависит и от выбора  $\gamma$ 

### 119 Единственность производной

### 119.1 Формулировка

Производный оператор единственный

### 119.2 Доказательство

Проверим, что  $\forall n \in \mathbb{R}^m \ L(n)$  задан однозначно

$$h:=tu,\,t\in\mathbb{R},\,u\in\mathbb{R}^m,\,t$$
 — "маленькое"

$$F(a+tu) = F(a) + L(tu) + o(tu)$$

$$F(a + tu) = F(a) + t \cdot L(u) + o(t)$$

$$L(u) = \frac{F(a+tu) - F(a)}{t} - \frac{o(t)}{t}$$

$$L(u) = \lim_{t \to 0} \frac{F(a+tu) - F(a)}{t}$$

# 120 Лемма о дифференцируемости отображения и его координатных функций

### 120.1 Формулировка

Пусть 
$$F: E \subset \mathbb{R}^m \to \mathbb{R}^l$$
,  $F = (F_1, \dots, F_l)$ ,  $a \in \text{Int } (E)$ 

Тогда

- 1. F дифференцируема в точке  $a \Leftrightarrow \mathrm{Bce}\ F_i$  дифференцируемы в точке a
- 2. Строки матрицы Якоби F равны матрицы Якоби функций  $F_i$

#### 120.2 Доказательство

1.  $\bullet \Rightarrow$ )

Пусть F дифференцируема в точке a. Тогда для каждой координатной функции должно выполняться следующее равенство:

$$f_i(x+h) = f_i(x) + A_i h + \alpha_i(h)|h|$$
 для всех  $i$ 

т.к. координатные функции линейного оператора A являются линейными, а также непрерывность и равенство нулю в нуле отображения  $\alpha$  равносильно такому же свойству его координатных функций, итого получили, что  $f_i$  дифференцируема в точке  $a_i$ 

• ⇐)

Пусть все  $f_i$  дифференцируемы в точке a. Тогда для каждого i существует линейная функция  $A_i$  и функция  $\alpha_i$ , непрерывная и равная нулю в нуле, для которых справедливо равенство. Значит для f также выполняется равенство

$$f(x+h) = f(x) + Ah + \alpha(h)|h|$$

2. Pachumem  $F(x) = F(a) + F'(a)(x-a) + \alpha(x)|x-a|$ 

$$\begin{pmatrix} F_1(x) \\ F_2(x) \\ \vdots \\ F_l(x) \end{pmatrix} = \begin{pmatrix} F_1(a) \\ F_2(a) \\ \vdots \\ F_l(a) \end{pmatrix} + \begin{pmatrix} \lambda_{11} & \lambda_{12} & \dots & \lambda_{1m} \\ \lambda_{21} & \lambda_{22} & \dots & \lambda_{2m} \\ \dots & \dots & \dots \\ \lambda_{l1} & \lambda_{l2} & \dots & \lambda_{lm} \end{pmatrix} \begin{pmatrix} x_1 - a_1 \\ x_2 - a_2 \\ \vdots \\ x_m - a_m \end{pmatrix} + \begin{pmatrix} \varphi_1(x) \\ \varphi_2(x) \\ \vdots \\ \varphi_m(x) \end{pmatrix} |x - a|$$

Откуда и получаем требуемое условие

### 121 Необходимое условие дифференцируемости

### 121.1 Формулировка

Пусть  $f: E \subset \mathbb{R}^m \to \mathbb{R}, a \in \text{Int } E$ 

f — дифференцируема в точке a

Тогда  $\exists f'_{x_1}(a),\dots,f'_{x_m}(a)$  и тогда  $(f'_{x_1}(a),\dots,f'_{x_m}(a))\ -$  матрица Якоби f в точке a

### 121.2 Доказательство

$$f(a+h) = f(a) + L \cdot h + \alpha(h) \cdot |h|$$

Пусть  $t \in \mathbb{R}$ ,

 $e_k = (0, 0, \dots, 1, \dots, 0)$ , где 1 находится на k-ом месте.

Тогда  $h_k := t \cdot e_k$ 

 $f(a+t\cdot e_k)=f(a)+l_k\cdot t+\alpha(t\cdot e_k)|t|$ , где  $l_k$  — строка матрицы Якоби функции F.

$$l_k = \varphi_k'(a_k) = \frac{\partial f}{\partial_{x_k}}(a_k)$$

### 122 Достаточное условие дифференцируемости

### 122.1 Формулировка

Пусть 
$$f: E \subset \mathbb{R}^m \to \mathbb{R}, a \in E, B(a,r) \subset E$$

Пусть в этом шаре  $\exists f'_{x_1}(x),\ldots,f'_{x_m}(x),\,x\in B(a,r)$ 

и все эти производные непрерывны в точке a. Тогда f — дифференцируемы в точке a

#### 122.2 Доказательство

Пусть m=2, на большую размерность обобщается легко

$$a = (a_1, a_2), x = (x_1, x_2)$$

$$f(x_1, x_2) - f(a_1, a_2) = (f(x_1, x_2) - f(a_1, x_2)) + (f(a_1, x_2) - f(a_1, a_2)) =$$

По теореме Лагранжа f(b) - f(a) = f'(c)(b-a), значит

$$=f'_{x_1}(\overline{x_1},x_2)(x_1-a_1)+f'_{x_2}(x_1,\overline{x_2})(x_2-a_2)=f'_{x_1}(a_1,a_2)(x_1-a_1)+f'_{x_2}(a_1,a_2)(x_2-a_2)+(f'_{x_1}(\overline{x_1},x_2)-f'_{x_2}(a_1,a_2))(x_1-a_1)+(f'_{x_2}(a,\overline{x_2})-f'_{x_2}(a_1,a_2))(x_2-a_2)\to 0$$
 при  $(x_1,x_2)\to (a_1,a_2)$ , поскольку

Пусть 
$$\alpha(h)|h|=(f_{x_1}'(\overline{x_1},x_2)-f_{x_1}'(a_1,a_2))(x_1-a_1)+(f_{x_2}'(a,\overline{x_2})-f_{x_2}'(a_1,a_2))(x_2-a_2),$$
 где  $|h|=\sqrt{(x_1-a_1)^2+(x_2-a_2)^2}$ 

Тогда в качестве примера рассмотрим первое слагаемое  $(f'_{x_1}(\overline{x_1},x_2)-f'_{x_1}(a_1,a_2))\cdot \frac{x_1-a_1}{|h|}$ , которое стремится к нулю, поскольку первый множитель стремится к нулю при  $(x_1,x_2)\to (a_1,a_2)$ , а второй множитель не превосходит по модулю 1.

### 123 Лемма об оценке нормы линейного оператора

### 123.1 Формулировка

Пусть  $A: \mathbb{R}^m \to \mathbb{R}^l$ , лин.  $A=(a_{ij})$ . Тогда  $\forall x \in \mathbb{R}^m$ 

$$|Ax| \leq C_a |x|$$
, где  $C_a = \sqrt{\sum_{ij} a_{ij}^2}$ 

### 123.2 Доказательство

$$|Ax|^2 = \sum_{i=1}^l \left( \sum_{j=1}^m a_{ij} x_j \right)^2 \le \sum_{i=1}^l \left( \left( \sum_{j=1}^m a_{ij}^2 \right) \left( \sum_{j=1}^m x_j^2 \right) \right) = |x|^2 \sum_{i=1}^l \sum_{j=1}^m a_{ij}^2$$

Это КБШ

### 124 Дифференцирование композиции

### 124.1 Формулировка

Пусть 
$$F:E\subset\mathbb{R}^m\to\mathbb{R}^l,\ G:I\subset\mathbb{R}^l\to\mathbb{R}^n,\ F(E)\subset I$$
  $a\in {\rm Int}\ (E),\ F(a)\in {\rm Int}\ (I),\ F$  — дифференцируема в точке  $a,\ G$  — дифференцируема в  $b=F(a).$  Тогда  $G\circ F$  — дифференцируема в точке  $a$  и  $(G\circ F)'(a)=G'(F(a))\cdot F'(a)$ 

### 124.2 Доказательство

$$F(a+h) = F(a) + F'(a)h + \alpha(h)|h|, \text{ пусть } k = F'(a)h + \alpha(h)|h|.$$
 
$$G(b+k) = G(b) + G'(b)k + \beta(k)|k|, \text{ где } b = F(a).$$
 
$$G(F(a+h)) = G(b) + G'(b)(F'(a)h + \alpha(h)|h|) + \beta(k)|k| =$$
 
$$= G(F(a)) + G'(F(a)) \cdot F'(a)h + G'(b)\alpha(h)|h| + \beta(k)|k|, \text{ где } G'(b)\alpha(h)|h| + \beta(k)|k| = o(h)$$
 
$$G'(b)\alpha(h)|h| \leq |G'(b)\alpha(h)|h|| \leq C_{G'(b)}|\alpha(h)|h|| = C_{G'(b)}|\alpha(h)|h| - \text{ бесконечно малое}$$
 
$$|\beta(k)|F'(a)h + \alpha(h)|h||| \leq |\beta(k)|\left(|F'(a)h| + |\alpha(h)||h|\right) = \left(|\beta(k)|\left|F'(a) \cdot \frac{h}{|h|}\right| + |\alpha(h)|\right)|h| - \text{ тоже бесконечно малое}.$$
 малое.

### 125 Дифференцирование произведений

#### 125.1 Формулировка

Пусть  $F,G:E\subset\mathbb{R}^m\to\mathbb{R}^l,\;\lambda:E\to\mathbb{R},\;a\in \mathrm{Int}\;E;\,F,G,\;\lambda\;$ — дифференцируемые в a, тогда:

- 1.  $(\lambda F)'(a)h = (\lambda'(a)h)F(a) + \lambda(a)(F'(a)h)$
- 2.  $\langle F, G \rangle'(a)h = \langle F'(a)h, G(a) \rangle + \langle F(a), G'(a)h \rangle$

#### 125.2 Доказательство

1. Пусть  $F = (f_1, f_2, \dots, f_m)$ , тогда  $\lambda F = (\lambda f_1, \lambda f_2, \dots, \lambda f_m)$ 

Рассмотрим i-ую строчку матрица Якоби:  $((\lambda F)'(a)) = ((\lambda f_i)'_{x_1}(a), \dots, (\lambda f_i)'_{x_m}(a))$ 

$$\lambda(a+h)f_{i}(a+h) - \lambda(a)f_{i}(a) = (\lambda(a) + \lambda'(a)h + \alpha(h)|h|)(f_{i}(a) + f'_{i}(a)h + \beta(h)|H|) - \lambda(a)f_{i}(a) = (\lambda(a) + \lambda'(a)h + \alpha(h)|h|)(f_{i}(a) + f'_{i}(a)h + \beta(h)|H|) - \lambda(a)f_{i}(a) = (\lambda(a) + \lambda'(a)h + \alpha(h)|h|)(f_{i}(a) + f'_{i}(a)h + \beta(h)|H|) - \lambda(a)f_{i}(a) = (\lambda(a) + \lambda'(a)h + \alpha(h)|h|)(f_{i}(a) + f'_{i}(a)h + \beta(h)|H|) - \lambda(a)f_{i}(a) = (\lambda(a) + \lambda'(a)h + \alpha(h)|h|)(f_{i}(a) + f'_{i}(a)h + \beta(h)|H|) - \lambda(a)f_{i}(a) = (\lambda(a) + \lambda'(a)h + \alpha(h)|h|)(f_{i}(a) + f'_{i}(a)h + \beta(h)|H|) - \lambda(a)f_{i}(a) = (\lambda(a) + \lambda'(a)h + \alpha(h)|h|)(f_{i}(a) + f'_{i}(a)h + \beta(h)|H|) - \lambda(a)f_{i}(a) = (\lambda(a) + \lambda'(a)h + \alpha(h)|h|)(f_{i}(a) + f'_{i}(a)h + \beta(h)|H|) - \lambda(a)f_{i}(a) = (\lambda(a) + \lambda'(a)h + \alpha(h)|h|)(f_{i}(a) + f'_{i}(a)h + \beta(h)|H|) - \lambda(a)f_{i}(a) = (\lambda(a) + \lambda'(a)h + \alpha(h)|h|)(f_{i}(a) + \beta(h)|H|) + \lambda(a)f_{i}(a) + \lambda(a$$

 $(\lambda'(a)h)f_i(a) + \lambda(a)(f_i'(a)h) + (\lambda'(a)h)(f_i'(a)h) + \alpha(h)|h|f_i(a) + \ldots, \text{ всё, кроме } (\lambda'(a)h)f_i(a) + \lambda(a)(f_i'(a)h)$ 

бесконечно малое.

2. 
$$\langle F,G \rangle'(a)h = \left(\sum_{i=1}^l f_i g_i\right)'(a)h = \sum_{i=1}^l (f_i g_i)'(a)h = \sum f_i'(a)h \cdot g_i(a) + f_i(a)g_i'(a)h$$
 — что и требовалось

### 126 Теорема Лагранжа для векторнозначных функций

### 126.1 Формулировка

Пусть  $F:[a,b] \to \mathbb{R}^l$  — непрерывна на [a,b], дифференцируема на [a,b]. Тогда

$$\exists c \in (a,b) : |F(b) - F(a)| \le |F'(c)| \cdot |b - a|$$

### 126.2 Доказательство

Пусть 
$$\varphi(t) := \langle F(b) - F(a), F(t) - F(a) \rangle, t \in [a, b]$$

$$\varphi(a) = 0$$
,  $\varphi(b) = |F(b) - F(a)|^2$ ,  $\varphi'(t) = \langle F(b) - F(a), F'(t) \rangle$ 

Теорема Лагранжа для  $\varphi$ 

$$\varphi(b) - \varphi(a) = \varphi'(c)(b - a)$$

$$|F(b) - F(a)|^2 = \langle F(b) - F(a), F'(c) \rangle (b - a) \le |F(b) - F(a)| |F'(c)| (b - a)$$

Для F(b) = F(a) неравенство тривиально, пусть  $F(b) \neq F(a)$ , тогда сократим

$$|F(b) - F(a)| \le |F'(c)| (b - a)$$

### 127 Экстремальное свойство градиента

### 127.1 Формулировка

Пусть  $f:E\subset\mathbb{R}^m\to\mathbb{R},$  а точка  $a\in {\rm Int}\;(E),$  причём f дифференцируема в точке a, тогда

$$f(a+h) = f(a) + \langle L, h \rangle + o(h),$$

тогда вектор L — градиент f в точке a.

Пусть grad  $f(a) \neq 0$  и  $l := \frac{\operatorname{grad} f(a)}{|\operatorname{grad} f(a)|}$ . Тогда l — направление наибольшего возрастания функции

 $\forall h \in \mathbb{R}^m, |h| = 1$  следует, что

$$-|\text{grad }f(a)| \leq \frac{\partial f}{\partial h}(a) \leq |\text{grad }f(a)|$$
 и при  $h=\pm l$  достигается равенство (правое или левое)

### 127.2 Доказательство

$$\frac{\partial f}{\partial h}(a) = \langle \mathrm{grad}\ f(a), h \rangle\ - \, \text{это снова KБШ}.$$

# 128 Независимость частных производных от порядка дифференцирования

#### 128.1 Формулировка

Пусть  $f: E \subset \mathbb{R}^2 \to \mathbb{R}$ , точка  $(x_0, y_0) \in E$ , а также существует r > 0, что  $B((x_0, y_0), r) \subset E$ , и в нём определены  $f''_{xy}$  и  $f''_{yx}$ . Если известно, что  $f''_{xy}$  и  $f''_{yx}$  непрерывны в  $B((x_0, y_0), r)$ , то  $f''_{xy}(x_0, y_0) = f''_{yx}(x_0, y_0)$ 

#### 128.2 Доказательство

$$\Delta^2 f(h,k) = f(x_0 + h, y_0 + h) - f(x_0 + h, y_0) - f(x_0, y_0 + k) + f(x_0, y_0)$$

Пусть  $\alpha(h) := \Delta^2 f(h,k)$  при фиксированном  $k,\,\alpha(0) = 0.$  Тогда

$$\alpha(h) = \alpha(h) - \alpha(0) = \alpha(\overline{h}) \cdot h = (f_x'(x_0 + \overline{h}, y_0 + k) - f_x'(x_0 + \overline{h}, y_0))h = f_{xy}''(x_0 + \overline{h}, y_0 + \overline{k}) \cdot hk.$$

Пусть  $\beta(k) := \Delta^2 f(h,k)$  при фиксированном h, аналогично

$$\beta(k) = f_{yx}''(x_0 + \widetilde{h}, y_0 + \widetilde{k}) \cdot hk$$

$$f_{yx}''(x_0+\widetilde{h},y_0+\widetilde{k})=f_{xy}''(x_0+\overline{h},y_0+\overline{k})$$
 при  $(h,k) o (0,0),$  для любых  $h,k
eq 0$ 

### 129 Полиномиальная формула

### 129.1 Формулировка

$$(a_1 + a_2 + \ldots + a_m)^r = \sum_{j:|j|=r} \frac{r!}{j!} a^j$$

### 129.2 Доказательство

По индукции:

 $\underline{r} = 1$ 

$$(a_1 + a_2 + \ldots + a_m)^1 = a_1 + a_2 + \ldots + a_m$$

#### Переход

Пусть верно для r, докажем для r+1

$$\begin{split} &(a_1+a_2+\ldots+a_m)^r(a_1+a_2+\ldots+a_m) = (a_1+a_2+\ldots+a_m) \sum \frac{r!}{j_1!j_2!\ldots j_n!} a_1^{j_1} a_2^{j_2}\ldots a_m^{j_m} = \sum \frac{r!}{j_1!\ldots j_m!} a_1^{j_1+1} a_2^{j_2}\ldots a_m^{j_m} + \sum \frac{r!}{j_1!\ldots j_m!} a_1^{j_1} a_2^{j_2}\ldots a_m^{j_m} + \sum \frac{r!}{j_1!\ldots j_m!} a_1^{j_1}\ldots a_m^{j_m+1} = \\ &= \sum_{|j|=r+1} \frac{r!j_1}{j_1!\ldots j_m!} a_1^{j_1}\ldots a_m^{j_m} + \ldots + \sum_{|j|=r+1} \frac{r!j_m}{j_1!j_2!\ldots j_m!} a_1^{j_1}\ldots a_m^{j_m} = \\ &= \sum_{|j|=r+1} \frac{r!(j_1+j_2+\ldots+j_m)}{j_1!\ldots j_m} a_1^{j_1}\ldots a_m^{j_m}, \text{ a cymma Bcex } j_i \text{ равна } r+1 \end{split}$$

### 130 Лемма о дифференцировании "сдвига"

### 130.1 Формулировка

Пусть  $f \in \mathbb{R}^m \to \mathbb{R}$  и  $f \in C^r(E)$ 

 $a \in E, h \in \mathbb{R}^m$ . Пусть  $\forall t \in [-1,1]$  выражение  $a+th \in E$ 

 $\varphi(t):=f(a+th),$ для  $t\in[-1,1].$  Тогда при  $k\leq r$ 

$$\varphi^{(k)}(0) = \sum_{|j|=k} \frac{k!}{j!} h^j \frac{\partial^k f}{\partial x^j}(a)$$

### 130.2 Доказательство

Рассмотрим пример:

k = 1

$$\varphi'(0) = \frac{d}{dt} (f(a+th)) = \frac{\partial f}{\partial x_1} \cdot h_1 + \ldots + \frac{\partial f}{\partial x_m} h_m$$

 $\underline{k=2}$ 

$$\varphi''(0) = f_{x_1 x_1}''(a) h_1^2 + f_{x_2 x_2}''(a) h_2^2 + \dots + f_{x_m x_m}''(a) h_m^2 + 2 \sum_{i < j} f_{x_i x_j}''(a) h_i h_j$$

В общем случае

$$\varphi^{(k)}(t) = \sum \sum \dots \sum \frac{\partial^k f(a+th)}{\partial x_{i_1} \dots \partial x_{i_k}} h_{i_1} \dots h_{i_k} = \sum \frac{k!}{j!} h^j \cdot \frac{\partial^k f}{\partial x^j} (a+th)$$

# 131 Многомерная формула Тейлора (с остатком в форме Лагранжа и Пеано)

#### 131.1 Формулировка

Пусть  $f: C^{r+1}(E), B(a,r) \subset E, x \in B(a,r)$ 

- 1. Тогда  $\exists \Theta \in [0,1]$ , что  $f(x) = \sum_{|k| \le r} \frac{f^{(k)}(a)}{k!} (x-a)^k + \sum_{|k|=r+1} \frac{f^{(k)}(a+\Theta(x-a))}{k!}$  остаток в форме Лагранжа
- 2. Тогда  $f(x+h)=\sum_{|k|\leq r} \frac{f^{(k)}(x)}{k!}h^k+o(|h|^r),$  причём  $h\to \mathbb O$

### 131.2 Доказательство

Доказывается одним образом:

 $\varphi(t):=f(a+th)$ , где x=a+h, а h=x-a. Тогда  $f(x)=\varphi(a)$  и применим одномерную формулу Тейлора к  $\varphi$ 

$$\varphi(1) = \varphi(0) + \varphi'(0) \cdot 1 + \ldots + \frac{f^{(r)}(a)}{r!} 1^r + \frac{\varphi^{(r+1)}(\Theta)}{(r+1)!} 1^{r+1}$$

По лемме о дифференцировании сдвига получили то, что хотели.

### 132 Теорема о пространстве линейных отображений

### 132.1 Формулировка

Пусть X,Y — линейные пространства, тогда L(X,Y) — множество линейных отображений из X в Y, Lin — множество всех линейных отображений из  $\mathbb{R}^m$  в  $\mathbb{R}^l$ 

Пусть 
$$A \in L(X,Y)$$
, тогда  $\|A\| = \|A\|_{m,l} = \sup\left(|Ax|, x \in \mathbb{R}^m, |x| = 1\right)$ 

Тогда

- 1. ||A|| норма в  $\operatorname{Lin}(\mathbb{R}^m, \mathbb{R}^l)$ , т.е.
  - $||A|| \ge 0$  и  $||A|| = 0 \Longleftrightarrow A = \mathbb{O}$
  - $\forall \lambda \in \mathbb{R}$  выполняется  $\|\lambda A\| = |\lambda| \|A\|$
  - $||A + B|| \le ||A|| + ||B||$
- 2.  $A, B \in \text{Lin}(\mathbb{R}^m, \mathbb{R}^l)$  выполняется, что  $\|BA\| \leq \|B\| \|A\|$

### 132.2 Доказательство

- 1. очевидно
  - очевидно
  - $|(A+B)x| \le |Ax| + |Bx| \le ||A|||x| + ||B|||x|$
- 2.  $|BAx| \le ||B|||Ax| \le ||B|||A|||x|$

# 133 Лемма об условиях, эквивалентных непрерывности линейного оператора

### 133.1 Формулировка

Пусть X, Y — нормированные пространства,  $A \in \text{Lin}(X,Y)$ . Тогда эквивалентны следующую утверждения:

- 1. A ограничена, т.е.  $||A|| < +\infty$
- 2. A непрерывна в  $O \in X$
- 3. A непрерывна всюду на X
- 4. A равномерно непрерывно, т.е.

$$\forall \varepsilon > 0 : \exists \delta > 0 : \forall x_1, x_2 : |x_1 - x_2| < \delta \Rightarrow |Ax_1 - Ax_2| < \varepsilon$$

### 133.2 Доказательство

 $4\Rightarrow 3$  и  $3\Rightarrow 2$  очевидны

$$2\Rightarrow 1$$
: возьмём  $arepsilon=1$ , тогда  $\exists \delta>a: \forall x\in \overline{B(0,\delta)}: |Ax|< 1$ . Тогда ясно, что  $\|A\|<rac{1}{\delta}\left(\overline{x}=rac{x}{\delta}: |A\overline{x}|<rac{1}{arepsilon}
ight)$ 

$$1 \Rightarrow 4 : \forall \varepsilon > 0 : \exists \delta = \frac{\varepsilon}{\|A\|} : \forall x_1, x_2 : |x_1 - x_2|$$

### 134 Теорема Лагранжа для отображений

### 134.1 Формулировка

Пусть  $F:E\subset\mathbb{R}^m\to\mathbb{R}^l$ , дифференцируемо в E, а также  $a,b\in E:[a,b]\subset E$  Тогда  $\exists c\in[a,b]$  (или  $\exists\Theta\in(0,1):c=a+\Theta(b-a)$ ), что  $|F(b)-F(a)|\leq ||F'(c)|||b-a|$ 

### 134.2 Доказательство

$$f(t)=F(a+t(b-a))$$
 при  $t\in[0,1]$  и  $f:[0,1]\to\mathbb{R}^l$  
$$f'(t)=F'(a+t(b-a))(b-a),$$
 по т. Лагранжа  $|f(1)-f(0)|\leq|f'(\Theta)|,$  т.е. 
$$|F(b)-F(a)|\leq|F'(c)||b-a|$$

# 135 Теорема об обратимости линейного отображения, близкого к обратимому

#### 135.1 Вспомогательная лемма

Пусть  $B\in {\rm Lin}(\mathbb{R}^m,\mathbb{R}^m)$  и  $\exists c>0: \forall x: |Bx|\geq C|x|,$  тогда  $B\in \Omega_m \text{ и } \|B^{-1}\|\leq \frac{1}{c}$ 

#### 135.2 Доказательство

 $\ker B = 0$  — эквивалентно обратимости, тогда

$$|B^{-1}y| \le \frac{1}{c}|y|$$
 (заменим  $|Bx| = |y|$  и  $|x| = |B^{-1}y|$ )

### 135.3 Формулировка

Пусть  $A \in \Omega_m$ ,  $B \in \text{Lin}(\mathbb{R}^m, \mathbb{R}^l)$  и  $||A - B|| < \frac{1}{||A^{-1}||}$ , B — близка к A ( $\Omega_m$  — множество всех обратимых операторов в  $\mathbb{R}^m$ ), тогда

- 1.  $B \in \Omega_m$  (т.е.  $\Omega_m$  открыто)
- 2.  $||B^{-1}|| \le \frac{1}{||A^{-1}|| ||A B||}$
- 3.  $||A^{-1} B^{-1}|| \le \frac{||A^{-1}||}{||A^{-1}||^{-1} ||A B||} ||A B||$

#### 135.4 Доказательство

1. (1) и (2):

$$|Bx| = |Ax + (B - A)x| \ge |Ax| - |(B - A)x| \ge \left(\frac{1}{\|A^{-1}\|} - \|B - a\|\right) \cdot |x|$$

по условию теоремы множитель  $\left(\frac{1}{\|A^{-1}\|} - \|B - A\|\right)$  больше нуля, значит выполняется условии вспомогательной леммы и B обратим, значит выполняется и условие (2)

2. 
$$A^{-1} - B^{-1} = A^{-1}(B - A)B^{-1}$$
, значит  $||A^{-1} - B^{-1}|| \le ||A^{-1}|| ||B - A|| ||B^{-1}||$ 

### 136 Теорема о непрерывно дифференцируемых отображениях

### 136.1 Формулировка

Пусть  $f:D\in\mathbb{R}^m\to\mathbb{R}^l,\,D$  — открытое и и F дифференцируемо на D, тогда эквивалентны следующие утверждения:

- 1.  $F \in C^1(D)$  (т.е. все частные производные непрерывны)
- 2.  $F': D \to \operatorname{Lin}(\mathbb{R}^m, \mathbb{R}^l)$  непрерывна, т.е.

$$\forall x \in D : \forall \varepsilon > 0 : \exists \delta > 0 : \forall \overline{x} : |x - \overline{x}| < \delta \Rightarrow ||F'(x) - F'(\overline{x})|| < \varepsilon$$

### 136.2 Доказательство

 $1. 1 \Rightarrow 2$ 

$$\|A\| \leq \sqrt{\sum a_{ij}^2}$$
, тогда  $\|F'(x) - F'(\overline{x})\| \leq \sqrt{\sum \left(rac{\partial f_i}{\partial x_j}(x) - rac{\partial f_i}{\partial x_j}(\overline{x})
ight)}$ 

Пусть 
$$\varepsilon > 0$$
, тогда возьмём такое  $\delta$ , что  $\left| \frac{\partial f_i}{\partial x_j}(x) - \frac{\partial f_i}{\partial x_j}(\overline{x}) \right| < \frac{\varepsilon}{\sqrt{ml}}$ 

Тогда 
$$||F'(x) - F'(\overline{x})|| \le \sqrt{\sum \frac{\varepsilon^2}{ml}} = \varepsilon$$

 $2. 2 \Rightarrow 1$ 

Возьмём 
$$h := (0, 0, \dots, 1, \dots, 0)$$
, тогда

$$|(F'(x)-F'(\overline{x}))h|<\|F'(x)-F'(\overline{x})\||h|<\varepsilon,$$
тогда

$$\sqrt{\sum \left(\frac{\partial f_i}{\partial x_j}(x) - \frac{\partial f_i}{\partial x_j}(\overline{x})\right)} < \varepsilon \text{ при всех } k = 1..m, \text{ значит и } \left|\frac{\partial f_i}{\partial x_j}(x) - \frac{\partial f_i}{\partial x_j}(\overline{x})\right| < \varepsilon$$

# 137 Теорема Ферма. Необходимое условие экстремума. Теорема Ролля

### 137.1 Теорема Ферма

### 137.1.1 Формулировка

Пусть  $f:D\subset\mathbb{R}^m\to\mathbb{R}^l,\ a$  — точка локального эсктремума,  $a\in {\rm Int}\ D,\ f$  — дифференцируема на D. Тогда

$$orall l \in \mathbb{R}^m$$
 и  $|l|=1$  верно, что  $\dfrac{\partial f}{\partial l}a=0$ 

#### 137.1.2 Доказательство

 $\langle l \rangle$  — прямая через точку aв направлении l

 $figg|_{\langle l
angle}$  — достаточный экстремум в точке a, значит arphi(t)=f(a+tl) — локальный экстремум при t=0 и  $arphi'(0)=rac{\partial f}{\partial l}(a)=0$ 

### 137.2 Необходимое условие экстремума

#### 137.2.1 Формулировка

Пусть  $f:D\subset\mathbb{R}^m\to\mathbb{R},\ D$  — открытое, a — точка локального экстремума, f — дифференцируема на D. Тогда f'(a) — нулевой оператор, т.е. все частные производные  $\frac{\partial f_i}{\partial x_i}(a)=0$  при любом i

#### 137.2.2 Доказательство

Пусть g(t) = f(a+tl), тогда по теореме Ферма g'(0) = 0, и из этого следует, что все частные производные равны нулю.

### 137.3 Теорема Ролля

#### 137.3.1 Формулировка

Пусть  $f:K\subset\mathbb{R}^m\to\mathbb{R},\ K$  — компакт, f дифференцируемо на Int  $K,\ f\in C(K)$  и  $f\bigg|_{\partial k}\equiv {\rm const.}$  Тогда существует такой  $x_0,$  что  $f'(x_0)=0$ 

#### 137.3.2 Доказательство

По теореме Вейерштрасса f достигает максимума и минимума на  $\partial k$ , точка  $f=\mathrm{const}$  и f'=0

Если хотя бы один из не на  $\partial k$ , то тогда теорема Ферма.

# 138 Лемма об оценке квадратичной формы и об эквивалентных нормах

### 138.1 Формулировка

- 1. Пусть Q(h) положительно определенная форма в  $\mathbb{R}^m$ , тогда  $\exists \gamma_Q>0$ , что  $\forall h\in\mathbb{R}^m: O(h)\geq \gamma_Q|h|^2$
- 2.  $\rho$  норма в  $\mathbb{R}^m$  и  $\exists c_1, c_2 > 0$ , тогда  $\forall x : c_1 |x| \leq \rho(x) \leq c_2 |x|$

#### 138.2 Доказательство

1. S(0,1) — единичная сфера в  $\mathbb{R}^m$  и пусть  $\gamma_Q:=\min_{h\in S}Q(h)$  — существует по т. Вейерштрасса и достигается, значит  $\gamma_Q>0$ 

$$Q(h) = Q\left(|h| \cdot \frac{h}{|h|}\right) = |h|^2 \cdot Q\left(\frac{h}{|h|}\right) \ge \gamma_Q \cdot |h|^2$$

2.  $c_1 := \min \rho(x)$  и  $c_2 := \max \rho(x)$  для всех x из S(0,1)

$$ho(x)=
ho\left(|x|rac{x}{|x|}
ight)=|x|\cdot
ho\left(rac{x}{|x|}
ight)\geq c_1|x|,$$
 аналогично доказывается и  $c_2$ 

Осталось только доказать, что  $\rho$  — непрерывна

$$\rho(x - y) = \rho(\sum (x_i - y_i)e_i) \le \sum \rho((x_i - y_i)e_i) \le \sum |x_i - y_i|\rho(e_i) \le |x - y| \cdot \sum \rho(e_i)$$

### 139 Достаточное условие экстремума

### 139.1 Формулировка

Пусть  $f:D\subset\mathbb{R}^m\to\mathbb{R},\ x_0\in {\rm Int}\ D$  и  $f\in C^2({\rm Int}\ D),\ {\rm grad}\ f(x_0)=0$   $Q(h):=\partial^2 f,\ {\rm тогдa}.$ 

- 1. Q(h) положительно определенная, значит  $x_0$  локальный минимум
- 2.  $Q(h)\,$  отрицательно определенная, значит  $x_0\,$  локальный максимум
- 3. Q(h) неопределенная, значит  $x_0$  не точка экстремума
- 4. Q(h) положительно/отрицательно определенная вырожденное, то информации недостаточно

### 139.2 Доказательство

 $f(x_0+h)-f(x_0)=0+\frac{1}{2}\partial^2 f(x_0+\overline{h},h)=\frac{1}{2}Q(h)+\frac{1}{2}\sum f_{x_i,x_i}''(x_0+\Theta h)+\sum \left(f_{x_i,x_j}''(x_0+\Theta h)-f_{x_i,x_j}''(x_0)\right)h_ih_j$ — последнее слагаемое стремится к 0 при  $h\to 0$ , значит при мелких h сумма меньше  $\frac{\gamma_Q}{2^2}|h|^2$  и

$$\geq \frac{1}{2}\gamma_q|h|^2 - \frac{1}{4}\gamma_q|h|^2 = \frac{1}{4}\gamma_Q|h|^2, \text{ т.е. } f(x_0+h) > f(x_0), \text{ значит } x_0 - \text{точка локального минимума}$$

Аналогично  $f(x_0 + \Theta h) < f(x_0)$  — точка локального максимума

Пусть теперь Q(h) — не знакоопределён, тогда

$$2(f(x_0+th)-f(a)) = Q(th) + \sum (f_{x_ix_j}''(a+\Theta th) - f_{x_ix_j}''(a))th_ith_j = t^2Q(h) + t^2\sum (f_{x_ix_j}''(a+\Theta th) - f_{x_ix_j}''(a))h_ih_j$$
— при  $t$  это сумма бесконечна мала по модулю