

Departamento de Ciência da Computação - DCC

Prof. Ricardo Martins

Site: https://ricardofm.com

Email: ricardo.martins@udesc.br

Ramal: 348<u>1-7823</u>

Sala: Bloco F – 2° piso (sala 11)

LINGUAGENS FORMAIS E AUTÔMATOS

<u>LFA0001</u>: Ciência da Computação

4^a fase

Aula: 09 Versão: 232

- > AF com Saída
- ♦ O conceito básico de AF
 - ☐ aplicações restritas
 - □ saída
 - * limitada à lógica binária aceita/rejeita

- > AF com Saída
- ♦ Geração de uma palavra de saída
 - □ estende a definição de AF
 - \square *não* altera a capacidade de reconhecimento
 - * reconhece a classe de linguagens regulares
 - □ saída
 - * *não* pode ser lida
 - * não pode ser usada como memória auxiliar
 - ☐ as saídas podem ser associadas
 - * às *transições* Máquina de **Mealy**
 - * aos estados Máquina de Moore

- > AF com Saída
- ♦ Saída
 - ☐ definida sobre um alfabeto especial
 - * alfabeto de saída
 - * pode ser igual ao alfabeto de entrada
 - □ saída
 - * fita de saída independente da fita de entrada
 - □ cabeça da fita de saída
 - * move uma célula para a direita, a cada símbolo gravado
 - ☐ resultado do processamento
 - * estado final (condição de aceita/rejeita) + info (fita de saída)

- Máquina de Mealy
- ♦ Para cada transição
 - * gera uma palavra de saída
 - * pode ser vazia

- ♦ Definição. Máquina de Mealy
 - \Box 6-upla M = (Σ , Q, δ , q0, F, Δ)
 - □ Σ alfabeto de símbolos de entrada
 - □ Q conjunto finito de estados
 - □ δ função programa ou de transição
 - * $\delta: \mathbb{Q} \times \Sigma \to \mathbb{Q} \times \Delta^*$
 - * função parcial
 - \Box q₀ estado inicial tq q₀ \in Q
 - \Box F conjunto de estados finais tq F \subseteq Q
 - \square Δ alfabeto de símbolos de saída

- Máquina de Mealy
- **♦ Máquina de Mealy** × **AFD**
 - \square Σ , Q, F e q₀ são como no AFD
- ♦ Processamento para uma entrada w
 - ☐ sucessiva aplicação da função programa
 - □ para <u>cada símbolo</u> de w, da <u>esquerda</u> para a <u>direita</u> ...
 - □ até ocorrer uma condição de parada
- ♦ Palavra vazia como saída
 - □ nenhuma gravação é realizada >> <u>não move</u> a cabeça da fita de saída
 - □ se todas as transições geram saída vazia
 - * Máq. de Mealy processa como um AFD

- Máquina de Mealy
- ♦ Exemplo: programa × usuário
 - ☐ cria e atualiza arquivos
 - ☐ (...) entrada fornecida pelo usuário
 - □ "..." saída gerada pelo programa
 - ☐ [...] ação interna ao programa
 - ☐ (...) resultado de uma ação interna ao programa
 - * entrada no diagrama
 - \Box M = (Σ , {q0, q1, ..., q8, qf}, δ , q0, {qf}, Δ)
 - $* \Sigma = \Delta$
 - * símbolos válidos no diálogo

Máquina de Mealy

Exemplo: programa × usuário

- ☐ cria e atualiza arquivos
- ☐ (...) entrada fornecida pelo usuário
- □ "..." saída gerada pelo programa
- □ [...] ação interna ao programa
- ☐ (...) resultado de uma ação interna ao programa
 - * entrada no diagrama
- \Box M = (Σ , {q0, q1, ..., q8, qf}, δ , q0, {qf}, Δ)
 - * $\Sigma = \Delta$
 - * símbolos válidos no diálogo

Máquina de Moore

- □ para cada estado da máquina
 - * gera uma palavra de saída
 - * pode ser vazia
- □ possui uma função de saída

♦ Máquina de Moore

- \square 7-upla M = (Σ , Q, δ , q0, F, Δ , δ_s)
- \square Σ alfabeto de símbolos de entrada
- □ δ□ função programa ou de transição
 - * $\delta: \mathbb{Q} \times \Sigma \to \mathbb{Q}$
 - * função parcial
- □ Q conjunto finito de estados

- \square q₀ estado inicial tq q₀ \in Q
- \Box F conjunto de estados finais tq F \subseteq Q
- \square Δ alfabeto de símbolos de saída
- \square δ s função de saída
 - * $\delta s: Q \rightarrow \Delta^*$
 - * é total

- Moore × AFD × Mealy
 - \square Σ , Q, δ , F e qo são como no AFD
 - □ △ é como na Máquina de Mealy
- ♦ Processamento para uma entrada w
 - □ sucessiva aplicação da função programa
 - □ para cada símbolo de w
 - ☐ da esquerda para a direita
 - □ até ocorrer uma condição de parada

- ♦ Palavra vazia como saída
 - □ nenhuma gravação é realizada
 - * não move a cabeça da fita de saída
 - □ se todos os estados geram saída vazia
 - * Máquina de Moore processa
 - como um AFD

- ♦ Exemplo: Analisadores Léxicos
 - □ p/ compiladores ou tradutores de linguagens
 - □ analisador léxico
 - * basicamente é um AF
 - * em geral, determinístico
 - □ identifica os componentes básicos da linguagem
 - * números, identificadores, separadores, etc.
 - \square estado final
 - * associado a cada unidade léxica identificada
 - * saída: descreve ou codifica a unidade léxica
 - □ estado não-final
 - * saida: palavra vazia

- ♦ Equivalência
 - □ *não* é válida para a entrada vazia
 - ☐ Máquina de Moore
 - * gera a palavra correspondente ao estado inicial
 - ☐ Máquina de Mealy
 - * não gera saída
 - * não executa transição alguma
 - □ demais casos
 - * equivalência

- ♦ *Teorema*: Moore \rightarrow Mealy
 - □ qq Máq de Moore
 - □ pode ser simulada por uma Máq de Mealy
 - □ para *entradas não-vazias*
- **♦** Correspondente Máq de Mealy
 - ☐ simulação da saída do estado inicial de Moore?
 - * introduz um novo estado qe
 - * referenciado somente na primeira transição a ser executada
 - * saída referente ao estado inicial de Moore

Equivalência Moore × Mealy

Prova

```
\square MO = (Σ, Q, δMO, q0, F, Δ, δs), Máq de Moore qq
```

□ seja a Máquina de Mealy

```
ME = (\Sigma, \mathbf{Q} \cup \{q_e\}, \delta_{ME}, q_e, \mathbf{F}, \Delta)
```

 $\Box \Box \delta ME(q_e, a) = (\delta MO(q_0, a), \delta S(q_0)\delta S(\delta MO(q_0, a)))$

 $\Box \iota \Box \delta ME(q, a) = (\delta MO(q, a), \delta S(\delta MO(q, a)))$

- \square ou seja, δ ME construída a partir de
 - * δMO
 - * δs

- ♦ *Teorema*. Mealy \rightarrow Moore
 - ☐ Qq Máquina de Mealy
 - □ pode ser simulada por uma Máquina de Moore
- **♦ Correspondente Máq de Moore**
 - ☐ transições com saídas diferentes que atingem um mesmo estado
 - * um estado para cada símbolo de saída
 - * em geral, aumenta o número de estados