

实验报告

课程名称:_		DS	SP 的原理与应	用		
实验名称:_	<u> </u>	<u> </u>	ГЕК-F28335-	AF 教学系统	充简介	
专业-班级:	<u> 电气1</u> 5	<u>班</u> 学号: _	220330124	姓名:	舒晟超	
实验日期: _		F <u>4</u> 月_	1_日			
				试验台号	:	
				报告总分	数:	
教师评语:						
				助教签字	:	
				教师签字	:	
				日 斯]:	

一、实验目的

- 1. 学习配置 DSP 开发的软件环境,下载并设置 CCS 开发和仿真环境;
- 2. 学习配置硬件(Emulator)和软件(Similator)仿真配置文件。

二、实验过程

- 1.正确连接 ICETEK-DSP 教学实验箱的电源和仿真器;
- 2.设置 CCS 工作空间:
- 3.配置 DSP 软件仿真文件 F28335_Simulator.ccxml 并运行;
- 4.配置 DSP 硬件仿真文件 F28335_Emulator.ccxml 并运行;

三、实验结果

1.软件仿真文件 F28335_Simulator.ccxml 的配置结果:

2. 硬件仿真文件 F28335_Emulator.ccxml 的配置结果

导入 Lab301-led 工程后将仿真文件替换为 F28335_Emulator.ccxml,编译完成后点击调试按钮得到以下调试界面:

点击运行按钮,可以观察到 DSP 开发板上的 4 个 LED 灯开始闪烁。同时观察到 XDS100 仿真器上的 RUN 指示灯亮起。

四、问题与思考

1、建立 Simulator Target Configuration File 和 Emulator Target Configuration File 的过程有什么不一样? 这两种 Target Configuration Files 的作用分别是什么?(1 分)

建立 Simulator Target Configuration File:

- 1. 选择 TI 的软件仿真器 Texas Instruments Simulator
- 2. 选择仿真目标为 F283x CPU Cycle Accurate Simulator

建立 Emulator Target Configuration File:

- 1. 选择硬件调试器
- 2. 选择实际仿真目标 TMS320F28335

Simulator Target Configuration File 主要用于不需要硬件的调试,比如算法测试(Park 算法测试)等等,Emulator Target Configuration File 主要用于需要硬件的调试,比如外设调试。

不过 CCS6 及其以上版本均不支持软件调试, CCS9 及其以上版本不接受移植后的软件调试。

课程名称: __________DSP 的原理与应用

实验报告

实验名称:	实验	र्थे 1.2 Code Co	mposer Studio)	\i`]	
专业-班级:	电气1班	学号:	220330124	_ 姓名:	舒晟超
实验日期:	2024 年 4	_月1_日			
			试验台	台号:	
			报告总	总分数:	
教师评语:					
			助教会	签字:	
			教师会	签字:	
			日	期:	

一、实验目的

- 1. 学习创建工程和管理工程的方法。
- 2. 了解基本的编译和调试功能。
- 3. 学习使用观察窗口。
- 4. 了解图形功能的使用。

二、实验过程

- 1. 创建一个新的 CCS 工程,向工程中添加文件;
- 2. 修改工程文件使其通过编译;
- 3. 添加断点,测试基本调试功能,使用观察窗口查看变量值;
- 4. 添加断点,测试文件数据流的输入和输出功能,使用图形窗口观察文件数据。

三、实验结果

1. 新建 MLab102_Create_Project 工程:

导入文件如下:

编译结果:

点击调试按钮开始调试:

加入断点:

添加观察变量 num,str,使用单步调试到 write_buffer 函数内得到以下结果:

使用断点读取 sine.dat 文件并进行调试得到以下结果:

得到波形如下:

四、问题与思考

- 1、Code Composer Studio 软件调试断点的作用是什么? (0.5 分)
- 1. 实现基本调试功能,比如运行到程序的特定位置;
- 2. 可以设置断点关联事件,从而实现数据流的传输以及其他 DSP 与 PC 之间的操作(读取数据流,写入数据流等)。

实验报告

课程名称:	DS	P 的原理与/	並用		
实验名称:	实验 1.3 编写-	<u>一个以 C 语</u>	言为基础的 DS	P 程序	
专业-班级:	电气1班	_学号:	220330124	_ 姓名: _	舒晟超
实验日期: 2024	年4月1	日			
			试验台号:		
			报告总分数	:	
教师评语:					
			助教签字:		
			教师签字:		
			口 抽 .		

一、实验目的

- 1. 学习用标准 C 语言编制程序; 了解常用的 C 语言程序设计方法和组成部分。
- 2. 学习编制连接命令文件,并用来控制代码的连接。
- 3. 学会建立和改变 map 文件,以及利用它观察 DSP 内存使用情况的方法。
- 4. 熟悉使用软件仿真方式调试程序。
- 二、实验过程
- 1. 创建 CCS 工程并导入文件,进行编译:
- 2. 观察 CPU 寄存器和反汇编窗口,观察变量值和寄存器使用情况;
- 3. 观察.map 文件和.cmd 文件的内容。

三、实验结果

1. 创建工程并导入文件,进行编译得到以下结果

2. 进行调试,观察 CPU 寄存器得到以下结果:

3. 使用反汇编观察窗口观察到以下结果

4. 内存观察窗口观察到以下结果:

5. 运行程序,观察到 x,y,z 的变化:

6. 重新运行程序, PC, IC, STO 寄存器参加运算,进入循环后只有 PC, IC 寄存器参加运算

7. 观察.map 文件,看到程序的入口地址和内存使用情况

output				attributes/
section	page	origin	length	input sections
.pinit	0	00080000	00000000	UNINITIALIZED
.cinit	0	00008000	00000016	
		00008000	0000000a	rts2800_fpu32.lib : _lock.obj (.cinit)
		0000800a	0000000a	: exit.obj (.cinit)
		00008014	00000002	HOLE [fill = 0]
.text	0	00009000	0000008b	
		00009000	00000046	rts2800_fpu32.lib : boot.obj (.text)
		00009046	00000019	: args_main.obj (.text)
		0000905f	00000019	: exit.obj (.text)
		00009078	0000000a	CProgram.obj (.text)
		00009082	00000009	rts2800_fpu32.lib : _lock.obj (.text)
csm_rsvd	0	0033ff80	00000000	DSECT
csmpasswd	s			
*	0	0033fff8	00000000	DSECT
.reset	0	003fffc0	00000002	DSECT
		003fffc0	00000002	rts2800_fpu32.lib : boot.obj (.reset)
.stack	1	00000400	00000400	UNINITIALIZED
		00000400	00000400	HOLE
.ebss	1	0000c000	0000000b	UNINITIALIZED
		0000c000	00000004	rts2800_fpu32.lib : _lock.obj (.ebss)
		0000c004	00000004	: exit.obj (.ebss)
		0000c008	00000003	CProgram.obj (.ebss)

.cmd 文件的空间分配决定了程序和数据在 DSP 内存资源中的分配和位置;

.map 文件中描述了程序和数据所占用的实际尺寸和地址。

四、问题与思考

1、请修改程序完成计算 $\sin(2.3\pi) + \cos(1.7\pi)$ 的值。(0.5 分)

程序如上图所示,计算结果为 1.396802 实际上,可以使用 IQmath 库从而提高运算效率。