Министерство образования Республики Беларусь Учреждение образования «Белорусский государственный университет информатики и радиоэлектроники»

Факультет инфокоммуникаций

Кафедра защиты информации

Е.С. Белоусова

КОМПЬЮТЕРНЫЕ СЕТИ IPV4 И IPV6 АДРЕСАЦИЯ ПРАКТИКУМ

СОДЕРЖАНИЕ

ПРАКТИЧЕСКАЯ РАБОТА №1 КОНВЕРТАЦИЯ ІРV4-АДРЕСОВ	5
1.1 Теоретическая часть	5
1.2 Практическое задание	
1.3 Содержание отчета	9
1.4 Контрольные вопросы	
ПРАКТИЧЕСКАЯ РАБОТА №2 СЕТЕВАЯ И УЗЛОВАЯ ЧАСТЬ ІРV4-АДРЕСА	
2.1 Теоретическая часть	11
2.2 Практическое задание	20
2.3 Содержание отчета	23
2.4 Контрольные вопросы	23
ПРАКТИЧЕСКАЯ РАБОТА №3 РАЗБИЕНИЕ СЕТЕЙ ІРV4 НА ПОДСЕТИ	
3.1 Теоретическая часть	24
3.2 Практическое задание	29
3.3 Содержание отчета	32
3.4 Контрольные вопросы	33
ПРАКТИЧЕСКАЯ РАБОТА №4 АДРЕСАЦИЯ VLSM	34
4.1 Теоретическая часть	34
4.2 Практическое задание	39
4.3 Содержание отчета	41
4.4 Контрольные вопросы	42
ПРАКТИЧЕСКАЯ РАБОТА №5 ПРЕДСТАВЛЕНИЕ ІРV6-АДРЕСОВ	43
5.1 Теоретическая часть	43
5.2 Практическое задание	50
5.3 Содержание отчета	52
5.4 Контрольные вопросы	52
ПРАКТИЧЕСКАЯ РАБОТА №6 РАЗБИЕНИЕ ІРV6-СЕТИ НА ПОДСЕТИ	53
6.1 Теоретическая часть	53

6.2 Практическое задание	54
6.3 Содержание отчета	57
6.4 Контрольные вопросы	57
ПРАКТИЧЕСКАЯ РАБОТА №7 РАСЧЕТ СУММАРНЫХ IPV4- И IPV6-	
МАРШРУТОВ	58
7.1 Теоретическая часть	58
7.2 Практическое задание	60
7.3 Содержание отчета	65
7.4 Контрольные вопросы	65

ПРАКТИЧЕСКАЯ РАБОТА №6 РАЗБИЕНИЕ IPV6-СЕТИ НА ПОДСЕТИ

Цель: овладеть навыками разделения IPv6-сетей на подсети с использованием идентификатора подсети и идентификатора интерфейса.

6.1 Теоретическая часть

Идентификатор подсети IPv6-адреса содержит 16 бит (рисунок 5.4). Разбиение на подсети с использованием 16 бит идентификатора подсети даёт 65 536 возможных подсетей с префиксом /64. Поэтому нет необходимости заимствовать биты из идентификатора интерфейса. Каждая такая IPv6-подсеть содержит примерно 18 квинтиллионов адресов.

Например, если выдан IPv6-адрес 2001:DB8:ACAD::/48, то изменяя шестнадцатеричное значение в четвертом гекстете, можно создавать сети с адресом от 2001:DB8:ACAD::/64 до 2001:DB8:ACAD:FFFF::/64. Так для сети представленной на рисунке 6.1 можно выделить следующие сети:

— для сети № 1 — 2001:DB8:ACAD:1::/64; — для сети № 2 — 2001:DB8:ACAD:2::/64; — для сети № 3 — 2001:DB8:ACAD:3::/64; — для сети № 4 — 2001:0DB8:ACAD:0004::/64; — для сети № 5 — 2001:DB8:ACAD:5::/64.

Рисунок 6.1 – Пример сети с IPv6-адресацией для разделения на подсети

Разбиение на подсети с использованием полубайта делается по соображениям безопасности, чтобы уменьшить число узлов в подсети и создавать дополнительные подсети. При расширении идентификатора подсети путём заимствования бит из идентификатора интерфейса рекомендуется создавать подсеть на границе полубайта. Полубайт —это 4 бита или одна шестнадцатеричная цифра. Префикс подсети /64 расширяется на четыре бита или один полубайт до подсети /68. Это позволяет уменьшить размер идентификатора на 4 бита (рисунок 6.2).

Рисунок 6.2 – Разбиение на подсети с использованием идентификатора интерфейса и полубайта

Разбиение на подсети по границе полубайта можно определить по значению длин префиксов IPv6-адресов подсетей. Начиная с /64, длины префиксов подсетей, полученных путем заимствования полубайта, будут являться маски /68, /72, /76, /80 и т. д. Разбиение на подсети по границе полубайта позволяет создать подсети использованием дополнительного c шестнадцатеричного значения. Разбиение на подсети в пределах полубайта снижает вероятность быстрого определения префикса из идентификатора интерфейса. Для примера на рисунке 6.2 в результате разбиение на подсети с использованием идентификатора интерфейса получены сети начиная 2001:DB8:ACAD::/68; 2001:DB8:ACAD::1000:0:0:0/68, И

заканчивая адресами 2001:DB8:ACAD::E000:0:0/68;

2001:DB8:ACAD::F000:0:0:0/68.

6.2 Практическое задание

В данной практической работе необходимо выполнить представленные ниже задания.

1. В соответствии с шифром выбрать из таблицы 6.1 выделенный для сети на рисунке 6.3 IPv6-адрес и количество устройств, находящихся в каждой из подсетей. Разделить заданную сеть, начиная с заданного IPv6-адреса, на подсети с использованием идентификатора подсети на необходимое количество подсетей и заполнить таблицу 6.2.

Топология сети в разработке

Рисунок 6.3 – Вариант сети для разделения на подсети

Таблица 6.1 – Варианты задания для разделения сети на подсети

Номер второй цифры шифра	Выделенный ІРv6-адрес	
0	200	
1		
2		
3		
4		
5		
6		
7		
8		
9		

Таблица 6.2 – Результаты разделения на подсети

Номер подсети	IPv6-адрес подсети с префиксом	IPv6-адрес последнего узла в сети

2. В соответствии с шифром выбрать из таблицы 6.3 выделенный для сети на рисунке 6.4 IPv6-адрес и количество устройств, находящихся в каждой из подсетей. Разделить заданную сеть, начиная с заданного IPv6-адреса, на подсети с использованием полубайта на необходимое количество подсетей и заполнить таблицу 6.2.

Топология сети в разработке

Рисунок 6.4 – Вариант сети для разделения на подсети

Таблица 6.3 – Варианты задания для разделения сети на подсети

Номер второй цифры шифра	Выделенный ІРv6-адрес
0	
1	
2	
3	
4	
5	
6	
7	
8	
9	

3. В соответствии с шифром выбрать из таблицы 6.4 выделенный для сети на рисунке 6.5 IPv6-адрес и количество устройств, находящихся в каждой из подсетей. Разделить заданную сеть, начиная с заданного IPv6-адреса, на подсети с использованием полубайта на необходимое количество подсетей и заполнить таблицу 6.2.

Топология сети в разработке

Рисунок 6.5 – Вариант сети для разделения на подсети

Таблица 6.4 – Варианты задания для разделения сети на подсети

Номер второй цифры шифра	Выделенный ІРv6-адрес
0	
1	
2	
3	
4	
5	
6	
7	
8	
9	

4. В соответствии с шифром выбрать из таблицы 6.5 IPv6-адреса и длины префиксов, определить IPv6-адреса подсетей и заполнить таблицу 6.6.

Таблица 6.5 – Варианты задания для разделения сети на подсети

Номер второй цифры шифра	IPv6-адрес	Номер третьей цифры шифра	Длина префикса
0			
1			
2			
3			
4			
5			
6			
7			
8			
9			

Заданный	IPv6-адрес подсети	IPv6-адрес последнего узла
IPv6-адрес		в сети

6.3 Содержание отчета

- 1. Цель работы, исходные данные в соответствии с заданным вариантом из таблиц 6.1 и 6.2.
- 2. Результаты произведенных расчетов (заполненная таблица 6.2 для всех заданий).
 - 3. Вывод по работе.
 - 4. Ответы на контрольные вопросы.

6.4 Контрольные вопросы

- 1. Использование идентификатора подсети для разбиения на IPv6-сети.
- 2. Использование идентификатора интерфейса для разбиения на IPv6сети.
 - 3. Отличительные особенности разбиения на IPv4-сети и IPv6-сети.
 - 4. Достоинства IPv6-сетей по сравнению с IPv4-сетями.
 - 5. Назначение полубайта и его использование.