PCT/AU02003/001133 September 3, 2003 10/526692 DT01 Rec'd PCT/PTC 0 3 MAR 2005

AMENDMENTS TO THE CLAIMS

1. (Original) A pest controlling composition comprising at least one compound of formula (I) or a tautomer thereof:

$$R_1$$
 R_2
 R_3
 R_3
 R_3
 R_4
 R_4
 R_5
 R_5
 R_5
 R_5
 R_7
 R_7

wherein:

X is selected from the group consisting of O, S or N-R₄;

when $\frac{1}{2}$ is a single bond attached to Y, Y is selected from the group consisting of H, $[C(R_7)_2]_n halo, [C(R_7)_2]_n OR_5, [C(R_7)_2]_n SR_5, [C(R_7)_2]_n (C=O)R_6, [C(R_7)_2]_n (C=S)R_6, \\ [C(R_7)_2]_n N(R_4)_2, [C(R_7)_2]_n (C=NR_4)R_6, [C(R_7)_2]_n NO_2 \text{ and } [C(R_7)_2]_n NR_4 OR_8;$

when ----- is a double bond attached to Y, Y is O;

when $\frac{----}{1}$ is a single bond attached to R_1 , R_1 is selected from the group consisting of H, OH, SH, C_1 - C_{10} alkyl, C_2 - C_{10} alkenyl, C_2 - C_{10} alkynyl, C_6 - C_{10} aryl, C_7 - C_{12} arylalkyl, C_8 - C_{13} arylalkenyl, C_3 - C_6 cycloalkyl, C_3 - C_6 cycloalkenyl, C_4 - C_{10} cycloalkylalkyl, C_4 - C_{10} cycloalkenylalkyl, C_3 - C_{10} heterocyclyl, C_4 - C_{12} heterocyclylalkyl, C_5 - C_{13} heterocyclylalkenyl, C_1 - C_{10} alkoxy, C_2 - C_{10} alkenyloxy, C_1 - C_{10} alkylthio, C_2 - C_{10} alkenylthio, $[C(R_7)_2]_n$ halo, $[C(R_7)_2]_n(C=O)R_6$, $[C(R_7)_2]_n(C=S)R_6$, $[C(R_7)_2]_nN(R_4)_2$, $[C(R_7)_2]_n(C=NR_4)R_6$, $[C(R_7)_2]_nNO_2$ and $[C(R_7)_2]_nNR_4OR_8$;

when $\frac{----}{----}$ is a double bond attached to R_1 , R_1 is $CR_{1a}R_{1b}$ wherein R_{1a} and R_{1b} are independently selected from C_1 - C_{10} alkyl;

 R_2 and R_3 are independently selected from the group consisting of H, OH, SH, C_1 - C_{10} alkyl, C_2 - C_{10} alkenyl, C_2 - C_{10} alkynyl, C_6 - C_{10} aryl, C_7 - C_{12} arylalkyl, C_8 - C_{13} arylalkenyl, C_3 - C_6 cycloalkyl,

PCT/AU02003/001133 September 3, 2003

 C_3 - C_6 cycloalkenyl, C_4 - C_{10} cycloalkylalkyl, C_4 - C_{10} cycloalkenylalkyl, C_3 - C_{10} heterocyclyl, C_4 - C_{12} heterocyclylalkyl, C_5 - C_{13} heterocyclylalkenyl, C_1 - C_{10} alkoxy, C_2 - C_{10} alkenyloxy, C_1 - C_{10} alkylthio, C_2 - C_{10} alkenylthio, $[C(R_7)_2]_n$ halo, $[C(R_7)_2]_n$ (C=O)R₆, $[C(R_7)_2]_n$ (C=S)R₆, $[C(R_7)_2]_n$ N(R₄)₂, $[C(R_7)_2]_n$ (C=NR₄)R₆, $[C(R_7)_2]_n$ NO₂ and $[C(R_7)_2]_n$ NR₄OR₈;

each R_4 is independently selected from the group consisting of H, OH, C_1 - C_{10} alkyl, C_2 - C_{10} alkenyl, C_6 - C_{10} aryl, C_7 - C_{12} arylalkyl, C_8 - C_{13} arylalkenyl, C_3 - C_6 cycloalkyl, C_3 - C_6 cycloalkenyl, C_4 - C_{10} cycloalkylalkyl, C_3 - C_{10} heterocyclyl, C_4 - C_{12} heterocyclylalkyl, C_5 - C_{13} heterocyclylalkenyl, C_1 - C_{10} alkoxy and C_2 - C_{10} alkenyloxy;

 R_5 is selected from the group consisting of H, C_1 - C_{10} alkyl, C_2 - C_{10} alkenyl, C_6 - C_{10} aryl, C_7 - C_{12} arylalkyl, C_8 - C_{13} arylalkenyl, C_3 - C_6 cycloalkyl, C_3 - C_6 cycloalkenyl, C_4 - C_{10} cycloalkylalkyl, C_5 - C_{13} heterocyclylalkenyl, C_6 - C_{10} 0 heterocyclylalkyl, C_5 - C_{13} 1 heterocyclylalkenyl, C_7 - C_{12} 2 arylalkenyl, C_8 - C_{13} 3 heterocyclylalkenyl, C_8 - C_{13} 4 heterocyclylalkenyl, C_9 - C_{13} 5 heterocyclylalkenyl, C_9 - C_{13} 6 and C_9 2, and C_9 3, arylalkenyl, C_9 - C_{13} 5 heterocyclylalkenyl, C_9 - C_{13} 6 heterocyclylalkenyl, C_9 - C_{13} 8 heterocyclylalkenyl, C_9 0 heterocyclylalkenyl,

 R_6 is selected from the group consisting of H, OH, C_1 - C_{10} alkoxy, C_1 - C_{10} alkyl, C_2 - C_{10} alkenyloxy, C_2 - C_{10} alkenyl, C_6 - C_{10} aryl, C_6 - C_{10} aryloxy, C_3 - C_6 cycloalkyl, C_3 - C_6 cycloalkenyloxy, C_3 - C_6 cycloalkenyloxy, C_3 - C_{10} heterocyclyl, C_3 - C_{10} heterocyclyloxy, C_1 - C_{10} alkenylthio, C_1 - C_{10} alkenylthio, C_6 - C_{10} arylthio, C_3 - C_6 cycloalkylthio, and C_3 - C_{10} heterocyclylthio;

 R_7 is selected from the group consisting of H, halogen, OR_5 , SR_5 , $N(R_4)_2$, $(C=O)R_6$, $(C=S)R_6$, C_1 - C_{10} alkyl, C_2 - C_{10} alkenyl, C_6 - C_{10} aryl, C_3 - C_{10} heterocyclyl, C_3 - C_6 cycloalkyl, C_7 - C_{12} arylalkyl, C_4 - C_{12} heterocyclylalkyl, C_4 - C_{10} cycloalkylalkyl, C_8 - C_{13} arylalkenyl, C_5 - C_{13} heterocyclylalkenyl, and NO_2 ;

 R_8 is selected from the group consisting of H, C_1 - C_{10} alkyl, C_2 - C_{10} alkenyl, C_6 - C_{10} aryl, C_7 - C_{12} arylalkyl, C_8 - C_{13} arylalkenyl, C_3 - C_6 cycloalkyl, C_3 - C_6 cycloalkyl, C_4 - C_{10} cycloalkylalkyl, C_5 - C_{10} cycloalkylalkenyl, C_3 - C_{10} heterocyclyl, C_4 - C_{12} heteocyclylalkyl and C_5 - C_{13} heterocyclylalkenyl;

n is 0 or an integer selected from 1 to 5;

PCT/AU02003/001133 September 3, 2003

represents , or ; and

wherein each alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl and heterocyclyl group is optionally substituted.

Claims 2-19 (Cancelled)

20. (Original) A pest controlling composition comprising more than one compound of formula (I) or a tautomer thereof:

$$R_1$$
 R_2
 R_3
 R_1
 R_2
 R_3
 R_1
 R_2
 R_3

wherein:

X is selected from the group consisting of O, S or N-R₄;

when ---- is a single bond attached to Y, Y is selected from the group consisting of H,

 $[C(R_7)_2]_n halo, [C(R_7)_2]_n OR_5, [C(R_7)_2]_n SR_5, [C(R_7)_2]_n (C=O)R_6, [C(R_7)_2]_n (C=S)R_6, [C(R_7)_2$

 $[C(R_7)_2]_nN(R_4)_2, [C(R_7)_2]_n(C=NR_4)R_6, [C(R_7)_2]_nNO_2 \text{ and } [C(R_7)_2]_nNR_4OR_8;$

when ____ is a double bond attached to Y, Y is O;

when $\frac{1}{2}$ is a single bond attached to R_1 , R_1 is selected from the group consisting of H, OH,

SH, C_1 - C_{10} alkyl, C_2 - C_{10} alkenyl, C_2 - C_{10} alkynyl, C_6 - C_{10} aryl, C_7 - C_{12} arylalkyl, C_8 - C_{13}

arylalkenyl, C_3 - C_6 cycloalkyl, C_4 - C_{10} cycloalkylalkyl, C_4 - C_{10}

cycloalkenylalkyl, C_3 - C_{10} heterocyclyl, C_4 - C_{12} heterocyclylalkyl, C_5 - C_{13} heterocyclylalkenyl, C_1 -

 C_{10} alkoxy, C_2 - C_{10} alkenyloxy, C_1 - C_{10} alkylthio, C_2 - C_{10} alkenylthio, $[C(R_7)_2]_n$ halo,

 $[C(R_7)_2]_n(C=O)R_6, \\ [C(R_7)_2]_n(C=S)R_6, \\ [C(R_7)_2]_nN(R_4)_2, \\ [C(R_7)_2]_n(C=NR_4)R_6, \\ [C(R_7)_2]_nNO_2 \\ and \\ [C(R_7)_2]_nNO$

 $[C(R_7)_2]_nNR_4OR_8;$

when $\frac{1}{2}$ is a double bond attached to R_1 , R_1 is $CR_{1a}R_{1b}$ wherein R_{1a} and R_{1b} are independently

PCT/AU02003/001133 September 3, 2003

selected from C1-C10alkyl;

 R_2 and R_3 are independently selected from the group consisting of H, OH, SH, C_1 - C_{10} alkyl, C_2 - C_{10} alkenyl, C_2 - C_{10} alkynyl, C_6 - C_{10} aryl, C_7 - C_{12} arylalkyl, C_8 - C_{13} arylalkenyl, C_3 - C_6 cycloalkyl, C_4 - C_{10} cycloalkylalkyl, C_4 - C_{10} cycloalkenylalkyl, C_3 - C_{10} heterocyclyl, C_4 - C_{12} heterocyclylalkyl, C_5 - C_{13} heterocyclylalkenyl, C_1 - C_{10} alkoxy, C_2 - C_{10} alkenyloxy, C_1 - C_{10} alkylthio, C_2 - C_{10} alkenylthio, $[C(R_7)_2]_n$ halo, $[C(R_7)_2]_n(C=O)R_6$, $[C(R_7)_2]_n(C=S)R_6$, $[C(R_7)_2]_nN(R_4)_2$, $[C(R_7)_2]_n(C=NR_4)R_6$, $[C(R_7)_2]_nNO_2$ and $[C(R_7)_2]_nNR_4OR_8$;

each R_4 is independently selected from the group consisting of H, OH, C_1 - C_{10} alkyl, C_2 - C_{10} alkenyl, C_6 - C_{10} aryl, C_7 - C_{12} arylalkyl, C_8 - C_{13} arylalkenyl, C_3 - C_6 cycloalkyl, C_3 - C_6 cycloalkyl, C_4 - C_{10} cycloalkylalkyl, C_3 - C_{10} heterocyclyl, C_4 - C_{12} heterocyclylalkyl, C_5 - C_{13} heterocyclylalkenyl, C_1 - C_{10} alkoxy and C_2 - C_{10} alkenyloxy;

 R_5 is selected from the group consisting of H, C_1 - C_{10} alkyl, C_2 - C_{10} alkenyl, C_6 - C_{10} aryl, C_7 - C_{12} arylalkyl, C_8 - C_{13} arylalkenyl, C_3 - C_6 cycloalkyl, C_3 - C_6 cycloalkenyl, C_4 - C_{10} cycloalkylalkyl, C_3 - C_{10} heterocyclyl, C_4 - C_{12} heterocyclylalkyl, C_5 - C_{13} heterocyclylalkenyl, C_6 - C_{12} heterocyclylalkyl, C_5 - C_{13} heterocyclylalkenyl, C_7 - C_{12} heterocyclylalkyl, C_7 - C_{13} heterocyclylalkenyl, C_7 - C_{12} heterocyclylalkyl, C_7 - C_{13} heterocyclylalkenyl, C_7 - C_{12} heterocyclylalkyl, C_7 - C_{13} heterocyclylalkenyl, C_7 - $C_$

 R_6 is selected from the group consisting of H, OH, C_1 - C_{10} alkoxy, C_1 - C_{10} alkyl, C_2 - C_{10} alkenyloxy, C_2 - C_{10} alkenyl, C_6 - C_{10} aryl, C_6 - C_{10} aryloxy, C_3 - C_6 cycloalkyl, C_3 - C_6 cycloalkenyloxy, C_3 - C_6 cycloalkyloxy, C_3 - C_6 cycloalkenyloxy, C_3 - C_{10} heterocyclyl, C_3 - C_{10} heterocyclylhio, and C_3 - C_{10} alkenylthio, C_1 - C_{10} alkenylthio, C_6 - C_{10} arylthio, C_3 - C_6 cycloalkylthio, and C_3 - C_{10} heterocyclylthio;

 R_7 is selected from the group consisting of H, halogen, OR_5 , SR_5 , $N(R_4)_2$, $(C=O)R_6$, $(C=S)R_6$, C_1-C_{10} alkyl, C_2-C_{10} alkenyl, C_6-C_{10} aryl, C_3-C_{10} heterocyclyl, C_3-C_6 cycloalkyl, C_7-C_{12} arylalkyl, C_4-C_{12} heterocyclylalkyl, C_4-C_{10} cycloalkylalkyl, C_8-C_{13} arylalkenyl, C_5-C_{13} heterocyclylalkenyl, and NO_2 ;

 R_8 is selected from the group consisting of H, C_1 - C_{10} alkyl, C_2 - C_{10} alkenyl, C_6 - C_{10} aryl, C_7 - C_{12} arylalkyl, C_8 - C_{13} arylalkenyl, C_3 - C_6 cycloalkyl, C_3 - C_6 cycloalkyl, C_4 - C_{10} cycloalkylalkenyl, C_5 - C_{10} cycloalkylalkenyl, C_3 - C_{10} heterocyclyl, C_4 - C_{12} heteocyclylalkyl and C_5 - C_{13}

PCT/AU02003/001133 September 3, 2003

heterocyclylalkenyl;

n is 0 or an integer selected from 1 to 5;

wherein each alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl and heterocyclyl group is optionally substituted.

Claims 21-25 (Cancelled)

26. (Original) A method for controlling pests, said method comprising exposing said pests to a pest-controlling effective amount of a compound of formula (I) or a tautomer thereof or a composition comprising at least one compound of formula (I) or a tautomer thereof:

$$R_1$$
 R_2
 R_3
 R_1
 R_2
 R_3
 R_1
 R_2
 R_3

wherein:

X is selected from O, S or N-R₄;

when ---- is a single bond attached to Y, Y is selected from the group consisting of H,

 $[C(R_7)_2]_n halo, \\ [C(R_7)_2]_n OR_5, \\ [C(R_7)_2]_n SR_5, \\ [C(R_7)_2]_n (C=O)R_6, \\ [C(R_7)_2]_n (C=S)R_6, \\ [C(R_7$

 $[C(R_7)_2]_nN(R_4)_2, [C(R_7)_2]_n(C=NR_4)R_6, [C(R_7)_2]_nNO_2 \text{ and } [C(R_7)_2]_nNR_4OR_8;$

when ____ is a double bond attached to Y, Y is O;

when $\frac{1}{2}$ is a single bond attached to R_1 , R_1 is selected from the group consisting of H, OH,

SH, C_1 - C_{10} alkyl, C_2 - C_{10} alkenyl, C_2 - C_{10} alkynyl, C_6 - C_{10} aryl, C_7 - C_{12} arylalkyl, C_8 - C_{13}

arylalkenyl, C_3 - C_6 cycloalkyl, C_3 - C_6 cycloalkenyl, C_4 - C_{10} cycloalkylalkyl, C_4 - C_{10}

cycloalkenylalkyl, C_3 - C_{10} heterocyclyl, C_4 - C_{12} heterocyclylalkyl, C_5 - C_{13} heterocyclylalkenyl, C_1 -

 $C_{10} \ alkoxy, C_2-C_{10} \ alkenyloxy, C_1-C_{10} \ alkylthio, C_2-C_{10} \ alkenylthio, [C(R_7)_2]_nhalo,$

PCT/AU02003/001133 September 3, 2003

 $[C(R_7)_2]_n(C=O)R_6, \\ [C(R_7)_2]_n(C=S)R_6, \\ [C(R_7)_2]_nN(R_4)_2, \\ [C(R_7)_2]_n(C=NR_4)R_6, \\ [C(R_7)_2]_nNO_2 \\ and \\ [C(R_7)_2]_nNR_4OR_8;$

when $\underline{----}$ is a double bond attached to R_1 , R_1 is $CR_{1a}R_{1b}$ wherein R_{1a} and R_{1b} are independently selected from C_1 - C_{10} alkyl;

 R_2 and R_3 are independently selected from the group consisting of H, OH, SH, $C_1\text{-}C_{10}$ alkyl, $C_2\text{-}C_{10}$ alkenyl, $C_2\text{-}C_{10}$ alkynyl, $C_6\text{-}C_{10}$ aryl, $C_7\text{-}C_{12}$ arylalkyl, $C_8\text{-}C_{13}$ arylalkenyl, $C_3\text{-}C_6$ cycloalkyl, $C_3\text{-}C_6$ cycloalkylalkyl, $C_4\text{-}C_{10}$ cycloalkenylalkyl, $C_3\text{-}C_{10}$ heterocyclyl, $C_4\text{-}C_{12}$ heterocyclylalkyl, $C_5\text{-}C_{13}$ heterocyclylalkenyl, $C_1\text{-}C_{10}$ alkoxy, $C_2\text{-}C_{10}$ alkenyloxy, $C_1\text{-}C_{10}$ alkylthio, $C_2\text{-}C_{10}$ alkenylthio, $[C(R_7)_2]_n\text{halo}$, $[C(R_7)_2]_n(C=O)R_6$, $[C(R_7)_2]_n(C=S)R_6$, $[C(R_7)_2]_nN(R_4)_2$, $[C(R_7)_2]_n(C=NR_4)R_6$, $[C(R_7)_2]_nNO_2$ and $[C(R_7)_2]_nNR_4OR_8$;

each R_4 is independently selected from the group consisting of H, OH, C_1 - C_{10} alkyl, C_2 - C_{10} alkenyl, C_6 - C_{10} aryl, C_7 - C_{12} arylalkyl, C_8 - C_{13} arylalkenyl, C_3 - C_6 cycloalkyl, C_3 - C_6 cycloalkyl, C_4 - C_{10} cycloalkylalkyl, C_3 - C_{10} heterocyclyl, C_4 - C_{12} heterocyclylalkyl, C_5 - C_{13} heterocyclylalkenyl, C_1 - C_{10} alkoxy and C_2 - C_{10} alkenyloxy;

 R_5 is selected from the group consisting of H, C_1 - C_{10} alkyl, C_2 - C_{10} alkenyl, C_6 - C_{10} aryl, C_7 - C_{12} arylalkyl, C_8 - C_{13} arylalkenyl, C_3 - C_6 cycloalkyl, C_3 - C_6 cycloalkenyl, C_4 - C_{10} cycloalkylalkyl, C_5 - C_{10} heterocyclyl, C_4 - C_{10} heterocyclylalkyl, C_5 - C_{13} heterocyclylalkenyl, C_7 - C_{12} heterocyclylalkyl, C_7 - C_{13} heterocyclylalkenyl, C_7 - C_9 - $C_$

 R_6 is selected from the group consisting of H, OH, C_1 - C_{10} alkoxy, C_1 - C_{10} alkyl, C_2 - C_{10} alkenyloxy, C_2 - C_{10} alkenyl, C_6 - C_{10} aryl, C_6 - C_{10} aryloxy, C_3 - C_6 cycloalkyl, C_3 - C_6 cycloalkenyloxy, C_3 - C_6 cycloalkenyloxy, C_3 - C_{10} heterocyclyl, C_3 - C_{10} heterocyclyloxy, C_1 - C_{10} alkenylthio, C_1 - C_{10} alkenylthio, C_6 - C_{10} arylthio, C_3 - C_6 cycloalkylthio, and C_3 - C_{10} heterocyclylthio;

 R_7 is selected from the group consisting of H, halogen, OR_5 , SR_5 , $N(R_4)_2$, $(C=O)R_6$, $(C=S)R_6$, C_1-C_{10} alkyl, C_2-C_{10} alkenyl, C_6-C_{10} aryl, C_3-C_{10} heterocyclyl, C_3-C_6 cycloalkyl, C_7-C_{12} arylalkyl, C_4-C_{12} heterocyclylalkyl, C_4-C_{10} cycloalkylalkyl, C_8-C_{13} arylalkenyl, C_5-C_{13} heterocyclylalkenyl, and NO_2 ;

PCT/AU02003/001133 September 3, 2003

 R_8 is selected from the group consisting of H, C_1 - C_{10} alkyl, C_2 - C_{10} alkenyl, C_6 - C_{10} aryl, C_7 - C_{12} arylalkyl, C_8 - C_{13} arylalkenyl, C_3 - C_6 cycloalkyl, C_3 - C_6 cycloalkenyl, C_4 - C_{10} cycloalkylalkyl, C_5 - C_{10} cycloalkylalkenyl, C_3 - C_{10} heterocyclyl, C_4 - C_{12} heteocyclylalkyl and C_5 - C_{13} heterocyclylalkenyl;

n is 0 or an integer selected from 1 to 5;

wherein each alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl and heterocyclyl group is optionally substituted.

27. (Currently amended) A method according to claim <u>3</u> <u>26</u> wherein the compound of formula (I) is a compound of formula (II):

$$R_1$$
 R_2
 R_3
 R_1
 R_2
 R_3
 R_3
 R_1
 R_2
 R_3
 R_3

wherein:

X is selected from the group consisting of O, S or N-R₄;

Y is selected from the group consisting of H, $[C(R_7)_2]_n$ halo, $[C(R_7)_2]_n$ OR₅, $[C(R_7)_2]_n$ SR₅, $[C(R_7)_2]_n$ (C=O)R₆, $[C(R_7)_2]_n$ (C=S)R₆, $[C(R_7)_2]_n$ N(R₄)₂, $[C(R_7)_2]_n$ (C=NR₄)R₆, $[C(R_7)_2]_n$ NO₂ and $[C(R_7)_2]_n$ NR₄OR₈;

 R_1 , R_2 and R_3 are independently selected from the group consisting of H, OH, SH, C_1 - C_{10} alkyl, C_2 - C_{10} alkenyl, C_2 - C_{10} alkynyl, C_6 - C_{10} aryl, C_7 - C_{12} arylalkyl, C_8 - C_{13} arylalkenyl, C_3 - C_6 cycloalkyl, C_3 - C_6 cycloalkenyl, C_4 - C_{10} cycloalkylalkyl, C_4 - C_{10} cycloalkenylalkyl, C_3 - C_{10} heterocyclyl, C_4 - C_{12} heterocyclylalkyl, C_5 - C_{13} heterocyclylalkenyl, C_1 - C_{10} alkoxy, C_2 - C_{10} alkenyloxy, C_1 - C_{10} alkylthio, C_2 - C_{10} alkenylthio, $[C(R_7)_2]_n$ halo, $[C(R_7)_2]_n(C=O)R_6$, $[C(R_7)_2]_n(C=S)R_6$, $[C(R_7)_2]_nN(R_4)_2$, $[C(R_7)_2]_n(C=NR_4)R_6$, $[C(R_7)_2]_nNO_2$ and $[C(R_7)_2]_nNR_4OR_8$;

PCT/AU02003/001133 September 3, 2003

each R_4 is independently selected from the group consisting of H, OH, C_1 - C_{10} alkyl, C_2 - C_{10} alkenyl, C_6 - C_{10} aryl, C_7 - C_{12} arylalkyl, C_8 - C_{13} arylalkenyl, C_3 - C_6 cycloalkyl, C_3 - C_6 cycloalkyl, C_4 - C_{10} cycloalkylalkyl, C_3 - C_{10} heterocyclyl, C_4 - C_{12} heterocyclylalkyl, C_5 - C_{13} heterocyclylalkenyl, C_1 - C_{10} alkoxy and C_2 - C_{10} alkenyloxy;

 R_5 is selected from the group consisting of H, C_1 - C_{10} alkyl, C_2 - C_{10} alkenyl, C_6 - C_{10} aryl, C_7 - C_{12} arylalkyl, C_8 - C_{13} arylalkenyl, C_3 - C_6 cycloalkyl, C_3 - C_6 cycloalkenyl, C_4 - C_{10} cycloalkylalkyl, C_3 - C_{10} heterocyclyl, C_4 - C_{12} heterocyclylalkyl, C_5 - C_{13} heterocyclylalkenyl, C_7 - C_{12} heterocyclylalkyl, C_7 - C_{13} heterocyclylalkenyl, C_7 - C_{12} heterocyclylalkyl, C_7 - C_{13} heterocyclylalkenyl, C_7 - C_{13} heterocyclylalkenyl, C_7 - C_7

 R_6 is selected from the group consisting of H, OH, C_1 - C_{10} alkoxy, C_1 - C_{10} alkyl, C_2 - C_{10} alkenyloxy, C_2 - C_{10} alkenyl, C_6 - C_{10} aryl, C_6 - C_{10} aryloxy, C_3 - C_6 cycloalkyl, C_3 - C_6 cycloalkenyloxy, C_3 - C_6 cycloalkenyloxy, C_3 - C_{10} heterocyclyl, C_3 - C_{10} heterocyclyloxy, C_1 - C_{10} alkenylthio, C_1 - C_{10} alkenylthio, C_6 - C_{10} arylthio, C_3 - C_6 cycloalkylthio, and C_3 - C_{10} heterocyclylthio;

 R_7 is selected from the group consisting of H, halogen, OR_5 , SR_5 , $N(R_4)_2$, $(C=O)R_6$, $(C=S)R_6$, C_1 - C_{10} alkyl, C_2 - C_{10} alkenyl, C_6 - C_{10} aryl, C_3 - C_{10} heterocyclyl, C_3 - C_6 cycloalkyl, C_7 - C_{12} arylalkyl, C_4 - C_{12} heterocyclylalkyl, C_4 - C_{10} cycloalkylalkyl, C_8 - C_{13} arylalkenyl, C_5 - C_{13} heterocyclylalkenyl, and NO_2 ;

 R_8 is selected from the group consisting of H, C_1 - C_{10} alkyl, C_2 - C_{10} alkenyl, C_6 - C_{10} aryl, C_7 - C_{12} arylalkyl, C_8 - C_{13} arylalkenyl, C_3 - C_6 cycloalkyl, C_3 - C_6 cycloalkylalkenyl, C_4 - C_{10} cycloalkylalkenyl, C_5 - C_{10} cycloalkylalkenyl, C_3 - C_{10} heterocyclyl, C_4 - C_{12} heteocyclylalkyl and C_5 - C_{13} heterocyclylalkenyl;

n is 0 or an integer selected from 1 to 5;

----- represents a single or double bond; and

wherein each alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl and heterocyclyl group is optionally substituted.

28. (Cancelled)

PCT/AU02003/001133 September 3, 2003

29. (Currently amended) A method according to claim <u>3_26</u>, wherein at least one compound of formula (I) is a compound of formula (III):

$$R_{11}$$
 R_{12}
 R_{13}
 R_{11}
 R_{12}
 R_{13}
 R_{11}

wherein

 R_{11} is selected from the group consisting of C_2 - C_{10} alkenyl, C_7 - C_{12} arylalkyl, C_6 - C_{12} heteroarylalkyl and C_2 - C_{10} alkenyloxy wherein each C_2 - C_{10} alkenyloxy is optionally substituted with 1 to 3 halo, hydroxy, thiol or nitro groups; and

 R_{12} and R_{13} are independently selected from the group consisting of H, C_1 - C_{10} alkyl, C_2 - C_{10} alkenyl, C_2 - C_{10} alkynyl, C_6 - C_{10} aryl, C_7 - C_{12} arylalkyl, C_3 - C_{10} cycloalkyl, C_5 - C_{10} heteroaryl, C_6 - C_{12} heteroarylalkyl and C_1 - C_{10} alkoxy, wherein each C_1 - C_{10} alkyl and C_1 - C_{10} alkoxy is optionally substituted with 1 to 3 halo, hydroxy, thiol or nitro groups.

- 30. (Currently amended) A method according to claim 5 29, wherein R_{11} is C_2 - C_{10} alkenyl optionally substituted with a hydroxy, nitro or thiol group or 1 to 3 halo groups, and R_{12} and R_{13} are independently selected from C_1 - C_{10} alkyl optionally substituted with a hydroxy, nitro or thiol group or 1 to 3 halo groups.
- 31. (Currently amended) A method according to claim <u>3_26</u> wherein at least one compound of formula (I) is eremophilone.
 - 32. (Cancelled)

PCT/AU02003/001133 September 3, 2003

33. (Currently amended) A method according to claim <u>3_26</u> wherein at least one compound of formula (I) is a compound of formula (IV):

$$R_{21}$$
 R_{22}
 R_{23}
 R_{21}
 R_{22}
 R_{23}
 R_{24}

wherein R_{21} , R_{22} and R_{23} are independently selected from the group consisting of H, OH, SH, C_1 - C_{10} alkyl, C_2 - C_{10} alkenyl, C_2 - C_{10} alkynyl, C_6 - C_{10} aryl, C_7 - C_{12} arylalkyl, C_8 - C_{13} arylalkenyl, C_3 - C_6 cycloalkyl, C_3 - C_6 cycloalkenyl, C_4 - C_{10} cycloalkylalkyl, C_4 - C_{10} cycloalkenylalkyl, C_3 - C_{10} heterocyclyl, C_4 - C_{12} heterocyclylalkyl, C_5 - C_{13} heterocyclylalkenyl, C_1 - C_{10} alkoxy, C_2 - C_{10} alkenyloxy, C_1 - C_{10} alkylthio, C_2 - C_{10} alkenylthio, $[C(R_7)_2]_n$ halo, $[C(R_7)_2]_n(C=O)R_6$, $[C(R_7)_2]_n(C=S)R_6$, $[C(R_7)_2]_nN(R_4)_2$, $[C(R_7)_2]_n(C=NR_4)R_6$, $[C(R_7)_2]_nNO_2$ and $[C(R_7)_2]_nNR_4OR_8$; each R_4 is independently selected from the group consisting of H, OH, C_1 - C_{10} alkyl, C_2 - C_{10} alkenyl, C_6 - C_{10} aryl, C_7 - C_{12} arylalkyl, C_8 - C_{13} arylalkenyl, C_3 - C_6 cycloalkyl, C_3 - C_6 cycloalkenyl, C_4 - C_{10} cycloalkylalkyl, C_3 - C_{10} heterocyclyl, C_4 - C_{12} heterocyclylalkyl, C_5 - C_{13} heterocyclylalkenyl, C_1 - C_{10} alkoxy and C_2 - C_{10} alkenyloxy;

 R_6 is selected from the group consisting of H, OH, C_1 - C_{10} alkoxy, C_1 - C_{10} alkyl, C_2 - C_{10} alkenyloxy, C_2 - C_{10} alkenyl, C_6 - C_{10} aryl, C_6 - C_{10} aryloxy, C_3 - C_6 cycloalkyl, C_3 - C_6 cycloalkenyloxy, C_3 - C_6 cycloalkenyloxy, C_3 - C_{10} heterocyclyl, C_3 - C_{10} heterocyclyloxy, C_1 - C_{10} alkenylthio, C_1 - C_{10} alkenylthio, C_6 - C_{10} arylthio, C_3 - C_6 cycloalkylthio, and C_3 - C_{10} heterocyclylthio;

 R_7 is selected from the group consisting of H, halogen, OR_5 , SR_5 , $N(R_4)_2$, $(C=O)R_6$, $(C=S)R_6$, C_1-C_{10} alkyl, C_2-C_{10} alkenyl, C_6-C_{10} aryl, C_3-C_{10} heterocyclyl, C_3-C_6 cycloalkyl, C_7-C_{12} arylalkyl, C_4-C_{12} heterocyclylalkyl, C_4-C_{10} cycloalkylalkyl, C_8-C_{13} arylalkenyl, C_5-C_{13} heterocyclylalkenyl, and NO_2 ;

R₈ is selected from the group consisting of H, C₁-C₁₀ alkyl, C₂-C₁₀ alkenyl, C₆-C₁₀ aryl, C₇-C₁₂

Int'l Appl. No. : PCT/AU02003/001133 Int'l Filing Date : September 3, 2003

arylalkyl, C_8 - C_{13} arylalkenyl, C_3 - C_6 cycloalkyl, C_3 - C_6 cycloalkenyl, C_4 - C_{10} cycloalkylalkenyl, C_5 - C_{10} cycloalkylalkenyl, C_3 - C_{10} heterocyclyl, C_4 - C_{12} heteocyclylalkyl and C_5 - C_{13} heterocyclylalkenyl; and

n is 0 or an integer selected from 1 to 5;

wherein each alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl and heterocyclyl group is optionally substituted.

34. (Currently amended) A method according to claim $8_{-}33$ wherein R_{21} is selected from the group consisting of C_2 - C_{10} alkenyl, C_7 - C_{12} arylalkyl, C_6 - C_{12} heteroarylalkyl and C_2 - C_{10} alkenyloxy wherein each C_2 - C_{10} alkenyl or C_2 - C_{10} alkenyloxy is optionally substituted with 1 to 3 halo, hydroxy, thiol or nitro groups; and

 R_{22} and R_{23} are independently selected from the group consisting of H, C_1 - C_{10} alkyl, C_2 - C_{10} alkenyl, C_2 - C_{10} alkynyl, C_6 - C_{10} aryl, C_7 - C_{12} arylalkyl, C_3 - C_{10} cycloalkyl, C_5 - C_{10} heteroaryl, C_6 - C_{12} heteroarylalkyl and C_1 - C_{10} alkoxy, wherein each C_1 - C_{10} alkyl and C_1 - C_{10} alkoxy is optionally substituted with 1 to 3 halo, hydroxy, thiol or nitro groups.

- 35. (Currently amended) A method according to claim 9_34 wherein R_{21} is C_2 - C_{10} alkenyl, optionally substituted with a hydroxy, thiol or nitro group or 1 to 3 halo groups, and R_{22} and R_{23} are independently selected from C_1 - C_{10} alkyl, optionally substituted with a hydroxy, thiol or nitro group or 1 to 3 halo groups.
- 36. (Currently amended) A method according to claim <u>3_26</u> wherein at least one compound of formula (I) is 8-hydroxy-1(10)dihydroeremophilone.
 - 37. (Cancelled)
- 38. (Currently amended) A <u>method composition</u> according to claim <u>3</u> 1 comprising at least one compound of formula (V):

Int'l Appl. No. : PCT/AU02003/001133 Int'l Filing Date : September 3, 2003

wherein R_{31} is selected from the group consisting of C_2 - C_{10} alkenyl, C_7 - C_{12} arylalkyl, C_6 - C_{12} heteroarylalkyl and C_2 - C_{10} alkenyloxy wherein each C_2 - C_{10} alkenylox optionally substituted with 1 to 3 halo, hydroxy, thiol or nitro groups; and

 R_{32} and R_{33} are independently selected from the group consisting of H, C_1 - C_{10} alkyl, C_2 - C_{10} alkenyl, C_2 - C_{10} alkynyl, C_6 - C_{10} aryl, C_7 - C_{12} arylalkyl, C_3 - C_{10} cycloalkyl, C_5 - C_{10} heteroaryl, C_6 - C_{12} heteroarylalkyl and C_1 - C_{10} alkoxy, wherein each C_1 - C_{10} alkyl and C_1 - C_{10} alkoxy is optionally substituted with 1 to 3 halo, hydroxy, thiol or nitro groups.

- 39. (Currently amended) A <u>method composition</u> according to claim <u>12</u> <u>38</u> wherein R_{31} is C_2 - C_{10} alkenyl optionally substituted with a hydroxy, nitro or thiol group or 1 to 3 halo groups, and R_{32} and R_{33} are independently selected from C_1 - C_{10} alkyl optionally substituted with a hydroxy, nitro or thiol group or 1 to 3 halo groups.
- 40. (Currently amended) A <u>method composition</u> according to claim <u>3</u> wherein at least one compound of formula (I) is 8-hydroxyeremophila-1,11-dienone.
- 41. (Currently amended) A method according to claim <u>3_26</u> wherein the composition comprises an extract containing at least one compound of formula (I) obtained from a volatile oil bearing plant from the Myoporaceae family.
 - 42. (Cancelled)
 - 43. (Cancelled)
- 44. (Currently amended) A method according to claim <u>3_26</u> wherein the pest-controlling effective amount is a pesticidally effective amount.

Int'l Appl. No. : PCT/AU02003/001133 Int'l Filing Date : September 3, 2003

- 45. (Currently amended) A method according to claim <u>3_26</u> wherein the pest-controlling effective amount is a pest-repelling effective amount.
- 46. (Currently amended) A method according to claim <u>3_26</u> wherein the pest-controlling effective amount is a antifeedant effective amount.
- 47. (Currently amended) A method according to claim <u>3_26</u> wherein the pests are selected from the group consisting of insects, arachnids, helminths and molluscs.
- 48. (Currently amended) A method according to claim <u>3_26</u> wherein the pests are selected from the group consisting of termites, earwigs, cockroaches and wood borer beetles and their larvae.
- 49. (Currently amended) A method according to claim <u>3_26</u> wherein the pests are wood associated pests.
- 50. (Currently amended) A method according to claim <u>21</u> 49 wherein the wood associated pests are selected from the group consisting of termites and wood borer beetles.
- 51. (Currently amended) A method according to claim <u>22_50</u> wherein the wood associated pests are termites.
- 52. (Currently amended) A method according to claim <u>3_26</u> wherein pests are exposed to the pest-controlling effective amount of a compound of formula (I) or a composition comprising at least one compound of formula (I) by applying the compound or composition to a site of infestation, a potential site of infestation, a habitat of the pest or a potential habitat of the pest.
- 53. (Currently amended) A method according to claim <u>24 52</u> wherein the compound or composition is applied to a surface or impregnated into a material or article of manufacture.
- 54. (Currently amended) A method according to claim <u>25_53</u> wherein the compound or composition is applied to a surface by spraying, coating or painting the surface.
- 55. (Currently amended) A method according to claim <u>26</u> 54 wherein the surface is a soil surface, timber, buildings, wooden articles of manufacture or a physical barrier.

PCT/AU02003/001133 September 3, 2003

- 56. (Currently amended) A method according to claim 27 55 wherein the material or article of manufacture is soil, timber, timber or wooden products or buildings or parts of buildings.
- 57. (Currently amended) A method according to claim <u>24 52</u> wherein the compound or composition is applied in a band or furrow around a site of infestation or potential infestation or is mixed with a layer of soil at a site of infestation or a potential site of infestation.
- 58. (Currently amended) A material or article of manufacture for use in pest control that is coated or impregnated with at least one compound of formula (I) <u>as defined in claim 1</u> or a tautomer thereof or with a composition containing at least one compound of formula (I) <u>as defined in claim 1</u> or a tautomer thereof <u>and wherein the article of manufacture is selected from the group consisting of a pest shield, a pest barrier, soil and a timber product.÷</u>

$$R_1$$
 R_2
 R_3
 R_1
 R_2
 R_3
 R_4
 R_5

wherein:

X is selected from the group consisting of O, S or N-R₄;

when _____ is a single bond attached to Y, Y is selected from the group consisting of H, $[C(R_7)_2]_n halo, [C(R_7)_2]_n OR_5, [C(R_7)_2]_n SR_5, [C(R_7)_2]_n (C=O)R_6, [C(R_7)_2]_n (C=S)R_6, \\ [C(R_7)_2]_n N(R_4)_2, [C(R_7)_2]_n (C=NR_4)R_6, [C(R_7)_2]_n NO_2 \text{ and } [C(R_7)_2]_n NR_4 OR_8;$

when --- is a double bond attached to Y, Y is O;

when _____ is a single bond attached to R_1 , R_1 is selected from the group consisting of H, OH, SH, C_1 - C_{10} alkyl, C_2 - C_{10} alkenyl, C_2 - C_{10} alkynyl, C_6 - C_{10} aryl, C_7 - C_{12} arylalkyl, C_8 - C_{13} arylalkenyl, C_3 - C_6 cycloalkyl, C_3 - C_6 cycloalkenyl, C_4 - C_{10} cycloalkylalkyl, C_4 - C_{10} eycloalkenylalkyl, C_3 - C_{10} heterocyclyl, C_4 - C_{12} heterocyclylalkyl, C_5 - C_{13} heterocyclylalkenyl, C_4 - C_{10} -alkoxy, C_2 - C_{10} -alkenyloxy, C_1 - C_{10} -alkylthio, C_2 - C_{10} -alkenylthio, $[C(R_7)_2]_n$ halo,

PCT/AU02003/001133 September 3, 2003

$$\begin{split} & [C(R_7)_2]_n (C=O)R_6, [C(R_7)_2]_n (C=S)R_6, [C(R_7)_2]_n N(R_4)_2, [C(R_7)_2]_n (C=NR_4)R_6, [C(R_7)_2]_n NO_2 \text{ and} \\ & [C(R_7)_2]_n NR_4 OR_8; \end{split}$$

when _____ is a double bond attached to R₁, R₁ is CR_{1a}R_{1b} wherein R_{1a} and R_{1b} are independently selected from C₁-C₁₀alkyl;

 $R_2 \text{-and } R_3 \text{-are independently selected from the group consisting of H, OH, SH, } C_1 \text{-} C_{10} \text{-} \text{alkyl, } C_2 \text{-} C_{10} \text{-} \text{alkynyl, } C_6 \text{-} C_{10} \text{-} \text{aryl, } C_7 \text{-} C_{12} \text{-} \text{arylalkyl, } C_8 \text{-} C_{13} \text{-} \text{arylalkenyl, } C_3 \text{-} C_6 \text{-} \text{cycloalkyl, } C_4 \text{-} C_{10} \text{-} \text{cycloalkylalkyl, } C_4 \text{-} C_{10} \text{-} \text{cycloalkenylalkyl, } C_3 \text{-} C_{10} \text{-} \text{heterocyclyl, } C_4 \text{-} C_{12} \text{-} \text{heterocyclylalkenyl, } C_5 \text{-} C_{12} \text{-} \text{heterocyclylalkenyl, } C_1 \text{-} C_{10} \text{-} \text{alkoxy, } C_2 \text{-} C_{10} \text{-} \text{alkenyloxy, } C_1 \text{-} C_{10} \text{-} \text{alkylthio, } C_2 \text{-} C_{10} \text{-} \text{alkenylthio, } [C(R_7)_2]_n \text{halo, } [C(R_7)_2]_n (C=O)R_6, [C(R_7)_2]_n (C=S)R_6, [C(R_7)_2]_n (C=NR_4)R_6, [C(R_7)_2]_n NO_2 \text{-} \text{and } [C(R_7)_2]_n NR_4 OR_8;$

each R_4 is independently selected from the group consisting of H, OH, C_1 - C_{10} alkyl, C_2 - C_{10} alkenyl, C_6 - C_{10} -arylalkyl, C_8 - C_{13} -arylalkenyl, C_3 - C_6 -cycloalkyl, C_3 - C_6 -cycloalkyl, C_4 - C_{10} -eycloalkylalkyl, C_3 - C_{10} -heterocyclyl, C_4 - C_{12} -heterocyclylalkyl, C_5 - C_{13} -heterocyclylalkenyl, C_4 - C_{10} -alkoxy and C_2 - C_{10} -alkenyloxy;

 R_5 is selected from the group consisting of H, C_1 - C_{10} -alkyl, C_2 - C_{10} -alkenyl, C_6 - C_{10} -aryl, C_7 - C_{12} -arylalkyl, C_8 - C_{13} -arylalkenyl, C_3 - C_6 -cycloalkyl, C_3 - C_6 -cycloalkenyl, C_4 - C_{10} -cycloalkylalkyl, C_3 - C_{10} -heterocyclyl, C_4 - C_{12} -heterocyclylalkyl, C_5 - C_{13} -heterocyclylalkenyl, $(C=0)R_6$, PO_3R_8 , SO_3R_8 and SO_2R_8 ;

 R_6 is selected from the group consisting of H, OH, C_1 - C_{10} -alkoxy, C_1 - C_{10} -alkyl, C_2 - C_{10} -alkenyl, C_6 - C_{10} -aryl, C_6 - C_{10} -aryloxy, C_3 - C_6 -cycloalkyl, C_3 - C_6 -cycloalkenyl, C_3 - C_6 -cycloalkenyloxy, C_3 - C_6 -cycloalkenyloxy, C_3 - C_{10} -heterocyclyl, C_3 - C_{10} -heterocyclyloxy, C_4 - C_{10} -alkenylthio, C_6 - C_{10} -arylthio, C_3 - C_6 -cycloalkylthio, and C_3 - C_{10} -heterocyclylthio;

 R_7 is selected from the group consisting of H, halogen, OR_5 , SR_5 , $N(R_4)_2$, $(C=O)R_6$, $(C=S)R_6$, C_4 - C_{10} -alkyl, C_2 - C_{10} -alkenyl, C_6 - C_{10} -aryl, C_3 - C_{10} -heterocyclyl, C_3 - C_6 -cycloalkyl, C_7 - C_{12} -arylalkyl, C_4 - C_{12} -heterocyclylalkyl, C_4 - C_{10} -cycloalkylalkyl, C_8 - C_{13} -arylalkenyl, C_5 - C_{13} -heterocyclylalkenyl, and NO_2 ;

PCT/AU02003/001133 September 3, 2003

 R_8 is selected from the group consisting of H, C_4 - C_{10} alkyl, C_2 - C_{10} alkenyl, C_6 - C_{10} aryl, C_7 - C_{12} arylalkyl, C_8 - C_{13} -arylalkenyl, C_3 - C_6 -cycloalkyl, C_3 - C_6 -cycloalkylalkenyl, C_4 - C_{10} -cycloalkylalkenyl, C_3 - C_{10} -heterocyclyl, C_4 - C_{12} -heteocyclylalkyl and C_5 - C_{13} -heterocyclylalkenyl;

n is 0 or an integer selected from 1 to 5;

wherein each alkyl, alkenyl, alkynyl, cycloalkyl, cyclolkenyl, aryl and heterocyclyl group is optionally substituted.

Claims 59-76 (Cancelled)

- 77. A pest control coating comprising a composition according to claim 1.
- 78. (Cancelled)
- 79. (Currently amended) A method of combating an already existing wood associated pest infestation comprising applying a composition according to claim 1 or claim 20 or a coating of claim 77 or claim 78 to a wood associated pest affected surface.
 - 80. (Cancelled)
 - 81. (Cancelled)
- 82. (New) A method of combating an already existing wood associated pest infestation comprising applying a coating of claim 31 to a wood associated pest affected surface.