- 1. (5') The relational algebra is closed under the operators. Explain what this means and give an example.
- 2. (5') SQL is a declarative data manipulation language. What are some pros and cons of declarative DMLs relative to procedural ones?
- 3. (15') Consider the following expressions, which use the result of a relational algebra operation as the input to another operation. For each expression, explain in words what the expression does.
- a. $\sigma_{year \geq 2009}(takes) \bowtie student$
- b. $\sigma_{vear>2009}(takes \bowtie student)$
- c. $\Pi_{ID,name,course_id}(student \bowtie takes)$
- 4. (15') Consider the relational database of Figure 1. Give an expression in the relational algebra to express each of the following queries:
 - a. Find the names of all employees who live in city "Miami".
 - b. Find the names of all employees whose salary is greater than \$100,000.
 - c. Find the names of all employees who live in "Miami" and whose salary is greater than \$100,000.

employee (person_name, street, city)
works (person_name, company_name, salary)
company (company_name, city)

Fig 1 Employee Database

- 5. (10') Consider the bank database of Figure 2. Give an expression in the relational algebra for each of the following queries.
 - a. Find the names of all branches located in "Chicago".
 - b. Find the names of all borrowers who have a loan in branch "Down-town".

branch(branch_name, branch_city, assets)
customer (ID, customer_name, customer_street, customer_city)
loan (loan_number, branch_name, amount)
borrower (ID, loan_number)
account (account_number, branch_name, balance)
depositor (ID, account_number)

Fig 2 Bank Database

6. (50') SQL Lab.