Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	18 /05 /2020	Client	LoremIpsum

1 Input Parameters

Mod	ule			Fin Plate
MainMe	odule			Shear Connection
Connec	tivity			Column flange-Beam web
Shear(l	kN)*			150.0
`	,	Supporting So	ection	
	Supporti	ng Section		HB 400
	Material *			E 250 (Fe 410 W)A
т Ү	Ultimate stre	ngth, fu (MPa)		410
	Yield Streng	th , fy (MPa)		250
$(B-t)$ α	Mass	77.4	Iz(cm4)	281000000.0
ZZ D	Area(cm2) - A	9870.0	Iy(cm4)	27300000.0
	D(mm)	400.0	rz(cm)	169.0
R ₁	B(mm)	250.0	ry(cm)	52.5999999999994
В В	t(mm)	9.1	Zz(cm3)	1400000.0
Y	T(mm)	12.7	Zy(cm3)	218000.0
•	FlangeSlope	94	Zpz(cm3)	1530800.0
	R1(mm)	14.0	Zpy(cm3)	218000.0
	R2(mm)	7.0		
		Supported Se	ection	
		ed Section		LB 400
	Material *		E 250 (Fe 410 W)A	
<u> </u>		ngth, fu (MPa)	410	
		th , fy (MPa)	250	
(B-t)	Mass	56.9	Iz(cm4)	193000000.0
ZZ D	Area(cm2) -	7240.0	Iy(cm4)	7160000.0
	D(mm)	400.0	rz(cm)	163.0
R ₁	B(mm)	165.0	ry(cm)	31.5
В	t(mm)	8.0	Zz(cm3)	965000.0
¥	T(mm)	12.5	Zy(cm3)	86800.0
	FlangeSlope	98	Zpz(cm3)	1065500.0
	R1(mm)	16.0	Zpy(cm3)	86800.0
	R2(mm)	8.0		
		Bolt Deta	ils	
Diameter	` /			[12.0, 16.0, 20.0]
Grad			[3.6, 4.6	, 4.8, 5.6, 5.8, 6.8, 8.8, 9.8, 10.9, 12.9]
Туре				Bearing Bolt
Bolt hole	e type			Standard
Slip facto	r (µ_f)			0.3

Type of edges

a - Sheared or hand flame cut

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	18 /05 /2020	Client	LoremIpsum

Gap between beam and support (mm)	10.0
Are the members exposed to corrosive influences	False
Plate Det	ails
Thickness(mm)*	[3.0, 4.0, 5.0, 6.0, 8.0, 10.0, 12.0, 14.0, 16.0, 18.0, 20.0]
Material *	E 250 (Fe 410 W)A
Ultimate strength, fu (MPa)	410
Yield Strength , fy (MPa)	250
Weld Det	ails
Weld Type	Fillet
Type of weld fabrication	Shop Weld
Material grade overwrite (MPa) Fu	410.0

	Company Name	LoremIpsum	Project Title	Fossee
	Group/Team Name	LoremIpsum	Subtitle	
	Designer	LoremIpsum	Job Number	123
ĺ	Date	18 /05 /2020	Client	LoremIpsum

2 Design Checks

2.1 Bolt Design Checks

Check	Required	Provided	Remarks
Diameter (mm)*		16.0	
Grade *		6.8	
Shear Capacity (kN)		$V_{dsb} = \frac{f_u b \ n_n \ A_{nb}}{\sqrt{3} \ \gamma_{mb}}$ $= \frac{600.0 * 1 * 157}{\sqrt{3} \ * 1.25}$ $= 43.51$	
Bearing Capacity (kN)		$V_{dpb} = \frac{2.5 \ k_b \ d \ t \ f_u}{\gamma_{mb}}$ $= \frac{2.5 \ * 0.49 * 16.0 * 8.0 * 410}{1.25}$ $= 51.43$	
Capacity (kN)		$V_{db} = min (V_{dsb}, V_{dpb})$ $= min (43.51, 51.43)$ $= 43.51$	
No of Bolts	$R_{u} = \sqrt{V_{u}^{2} + A_{u}^{2}}$ $n_{trial} = R_{u}/V_{bolt}$ $R_{u} = \frac{\sqrt{150.0^{2} + 100.0^{2}}}{43.51}$ $= 5$	5	
No of Columns		1	
No of Rows		5	
Min. Pitch (mm)	$p/g_{min} = 2.5 d$ $= 2.5 * 16.0 = 40.0$	0.0	N/A
Max. Pitch (mm)	$p/g_{max} = \min(32 \ t, \ 300 \ mm)$ $= \min(32 * 8.0, \ 300 \ mm)$ $= 300$	0.0	N/A
Min. Gauge (mm)	$p/g_{min} = 2.5 d$ $= 2.5 * 16.0 = 40.0$	65	Pass
Max. Gauge (mm)	$p/g_{max} = \min(32 \ t, \ 300 \ mm)$ $= \min(32 * 8.0, \ 300 \ mm)$ $= 300$	65	Pass
Min. End Distance (mm)	$e/e'_{min} = [1.5 \text{ or } 1.7] * d_0$ = 1.7 * 18.0 = 30.6	35	Pass
Max. End Distance (mm)	$e/e'_{max} = 12 \ t \ \varepsilon$ $\varepsilon = \sqrt{\frac{250}{f_y}}$ $e/e'_{max} = 12 \ *8.0 * \sqrt{\frac{250}{250}}$ $= 96.0$	35	Pass

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	18 /05 /2020	Client	LoremIpsum

Check	Required	Provided	Remarks
Min. Edge Distance (mm)	$e/e'_{min} = [1.5 \text{ or } 1.7] * d_0$ = 1.7 * 18.0 = 30.6	35	Pass
Max. Edge Distance (mm)	$e/e'_{max} = 12 t \varepsilon$ $\varepsilon = \sqrt{\frac{250}{f_y}}$ $e/e'_{max} = 12 * 8.0 * \sqrt{\frac{250}{250}}$ $= 96.0$	35	Pass
Capacity (kN)	50.62	51.11	Pass

	Company Name	LoremIpsum	Project Title	Fossee
	Group/Team Name	LoremIpsum	Subtitle	
	Designer	LoremIpsum	Job Number	123
ĺ	Date	18 /05 /2020	Client	LoremIpsum

2.2 Plate Design Checks

Check	Required	Provided	Remarks
Min. Plate Height (mm)	$0.6 * d_b = 0.6 * 400.0 = 240.0$	330	Pass
	$d_b - 2(t_{bf} + r_{b1} + gap)$		
Max. Plate Height (mm)	= 400.0 - 2 * (12.5 + 16.0 + 10)	330	Pass
	= 343.0		
	$2*e_{min} + (n \ c - 1)*p_{min}$	20.0	D
Min. Plate Length (mm)	= 2 * 30.6 + (1 - 1) * 40.0	80.0	Pass
M: Dl-4- TDl-:-l	=71.2	2.0	D
Min.Plate Thickness (mm)	$t_w = 8.0$	8.0	Pass
()		$V_{\cdot \cdot} = A_v * f_y$	
		$V_{dg} = \frac{A_v * f_y}{\sqrt{3} * \gamma_{mo}}$	
Shear yielding Capacity		$= \frac{330 * 8.0 * 250}{\sqrt{3} * 1.1}$	
$(V_dy) (kN)$			
		= 346.41	
		$V_{dn} = \frac{0.75 * A_{vn} * f_u}{\sqrt{3} * \gamma_{mo}}$	
Shear Rupture Capacity		= 1 * (330 - (5 * 18.0)) * 8.0 * 410)
(V_dn) (kN)		= 590.4	,
Block Shear Capacity in		355.42	
Shear (V_db) (kN)			
		$V_d = Min(V_{dy}, V_{dn}, V_{db})$	
Shear Capacity (V_d)	150.0	= Min(346.41, 590.4, 355.42)	Pass
(kN)		= 346.41	
		$T_{dg} = \frac{l * t_p * f_y}{\gamma_{mo}}$	
Tension Yielding Capacity		330 * 8.0 * 250	
(kN)		$=\frac{330*8.0*250}{1.1}$	
		=600.0	
		$T_{dn} = \frac{0.9 * A_n * f_u}{\gamma_{m1}}$	
Tension Rupture Capacity))
(kN)		$= \frac{0.9 * (330 - 5 * 18.0) * 8.0 * 410}{1.25}$) -
(****)		= 736.82	
Block Shear Capacity in		395.73	
Tension (T_db) (kN)			
		$T_d = Min(T_{dg}, T_{dn}, T_{db})$	
Tension Capacity (kN)	100.0	= Min(600.0, 736.82, 395.73)	Pass
	0.75	= 395.73	D.
Moment Capacity (kN-m)	6.75	49.5 6.75 100.0	Pass
Interaction Ratio	≤ 1	$\frac{6.75}{49.5} + \frac{100.0}{395.73} = 0.39$	Pass

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	18 /05 /2020	Client	LoremIpsum

2.3 Weld Checks

Check	Required	Provided	Remarks
Min Weld Size (mm)		5	Pass
Max Weld Size (mm)	Thickness of Thinner part $= Min(12.7, 8.0) = 8.0$ $t_{w_{max}} = 8.0$	5	Pass
Weld Strength (kN/mm)	$R_w = \sqrt{(T_{wh} + A_{wh})^2 + (T_{wv} + V_{wv})^2}$ $T_{wh} = \frac{M * y_{max}}{Ipw} = \frac{6750000.0 * 160.0}{5461333.33}$ $T_{wv} = \frac{M * x_{max}}{Ipw} = \frac{6750000.0 * 0.0}{5461333.33}$ $V_{wv} = \frac{V}{l_w} = \frac{150000.0}{640}$ $A_{wh} = \frac{A}{l_w} = \frac{100000.0}{640}$ $R_w = \sqrt{(197.75 + 156.25)^2 + (0.0 + 234.38)^2}$ $= 459.51$	$f_w = \frac{t_t * f_u}{\sqrt{3} * \gamma_{mw}}$ $= \frac{3.5 * 410}{\sqrt{3} * 1.25}$ $= 662.8$	Pass

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	18 /05 /2020	Client	LoremIpsum

3 3D View

Figure 1: 3D View