

MEMORANDUM REPORT NO. 2757

SHOCK WAVE ATTENUATION BY PERFORATED PLATES WITH VARIOUS HOLE SIZES

Charles Kingery Richard Pearson George Coulter

June 1977

Approved for public release; distribution unlimited.

DTIC QUALITY INSPECTED 3

USA ARMAMENT RESEARCH AND DEVELOPMENT COMMAND USA BALLISTIC RESEARCH LABORATORY ABERDEEN PROVING GROUND, MARYLAND

Destroy this report when it is no longer needed. Do not return it to the originator.

Secondary distribution of this report by originating or sponsoring activity is prohibited.

Additional copies of this report may be obtained from the National Technical Information Service, U.S. Department of Commerce, Springfield, Virginia 22151.

The findings in this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

The use of trade names or manufacturers' names in this report does not constitute indorsement of any commercial product.

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER 2. GOVT ACCESSION	
BRL Memorandum Report No. 2757	
4. TITLE (and Subtitle)	5. TYPE OF REPORT & PERIOD COVERED
SHOCK WAVE ATTENUATION BY PERFORATED PLATES	Final
WITH VARIOUS HOLE SIZES	6. PERFORMING ORG. REPORT NUMBER
7. AU THOR(s)	8. CONTRACT OR GRANT NUMBER(*)
Charles Kingery	
Richard Pearson	
George Coulter	
9. PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
USA Ballistic Research Laboratory	AREA & WORK ON!! NUMBERS
Aberdeen Proving Ground, Maryland 21005	
11. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE
US Army Materiel Development & Readiness Commar	
5001 Eisenhower Avenue	13. NUMBER OF PAGES
Alexandria, Virginia 22304 14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office	71
14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office	b) 15. SECURITY CLASS. (of this report)
	Unclassified
	15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
Approved for public release; distribution unlim	ited.
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different	from Report)
18. SUPPLEMENTARY NOTES	
The work reported here was performed for, and f	anded by DA A4072 MAST
Project No. 5751264, Advanced Technology for Su	mnressive Shielding of
Hazardous Production and Supply Operations for	Production Base Modernization
and Expansion (Program)	
19. KEY WORDS (Continue on reverse elde if necessary and identify by block num	ber)
Blast Attenuation Shock Tube Tests	
Flow Restrictions Shock Waves	
Panel Venting Suppressive Structu	res
Perforated Plates	
20. ABSTRACT (Continue on reverse elde if necessary and identify by block numb	(1 io)
Results are presented for a set of experiments	
attenuation of shock waves passing through perf	orated plates as a function of
peak overpressure and hole size for a given per	centage of plate area vented
The venting hole size was varied from 1/8 inch	(0.32 cm) to 2-13/16 inches
(7.14 cm) as the vented area was varied from 5-	50 percent open. The perforated
plates were exposed to shock waves in a 4-inch	(10.2 cm) shock tube over a range
of peak shock overpressures from 200 psi (1379	kPa) down to 48 psi (331 kPa).

TABLE OF CONTENTS

		Page
	LIST OF FIGURES	5
	LIST OF TABLES	7
	AUTHORS' COMMENTS	9
I.	INTRODUCTION	11
	A. Background	11
	B. Objectives	11
II.	EXPERIMENT	11
	A. Instrumentation	11
	B. Plate Design	12
III.	RESULTS	12
	A. Shock Tube Calibration	12
	B. Transmitted Pressure	19
	C. Pressure Transmission Ratio	26
IV.	CONCLUSIONS	27
	APPENDIX - PRESSURE-TIME DATA	45
	LIST OF SYMBOLS	61
	DISTRIBUTION LIST	63

LIST OF FIGURES

Figure		Page
1.	Shock Tube Test Setup	13
2.	Arrangement of Holes in the Test Plates	15
3.	Input Pressure P $_{I}$ versus Transmitted Pressure P $_{T}$ for A $_{V}$ of 100 Percent	20
4.	Pressure versus Time Recorded at Stations 3 and 6 for an Input Pressure of 50 PSI (345 kPa)	21
5.	Pressure versus Time Recorded at Stations 3 and 6 for an Input Pressure of 119 PSI (830 kPa)	22
6.	Pressure versus Time Recorded at Stations 3 and 6 for an Input Pressure of 195 PSI (1344 kPa)	23
7.	Pressure versus Time at Stations 3 and 6 for Input Pressure of 50 PSI - 25 Percent Open	24
8.	Transmitted Pressure versus Input Pressure for Different Percentages of Area Vented	25
9.	Pressure Transmission Ratio as a Function of Percent of Area Vented	42
10.	Percent Pressure Attenuation as a Function of Percent of Area Vented	43
A-1	Pressure-Time Traces Recorded at Stations 3 and 6 - 4.69 Percent Open	47
A-2	Pressure-Time Traces Recorded at Stations 3 and 6 - 5.1 Percent Open	48
A-3	Pressure-Time Traces Recorded at Stations 3 and 6 - 7.8 Percent Open	49
A-4	Pressure-Time Traces Recorded at Stations 3 and 6 - 9.37 Percent Open	50
A-5	Pressure-Time Traces Recorded at Stations 3 and 6 - 10.2 Percent Open	51
A-6	Pressure-Time Traces Recorded at Stations 3 and 6 - 25 Percent Open, 1/2-Inch Holes	52

LIST OF FIGURES (Cont'd)

Figure						Page
A-7	Pressure-Time Traces Recorded at 25 Percent Open, 1/8-Inch Holes					53
A-8	Pressure-Time Traces Recorded at 26.6 Percent Open					54
A-9	Pressure-Time Traces Recorded at 30 Percent Open				•	55
A-10	Pressure-Time Traces Recorded at 38.2 Percent Open			•		56
A-11	Pressure-Time Traces Recorded at 41.0 Percent Open					57
A-12	Pressure-Time Traces Recorded at 49.4 Percent Open				•	58
A-13	Pressure-Time Traces Recorded at 50 Percent Open					59

LIST OF TABLES

Tab1e		Page
I.	Test Plates	14
II.	Pressure Attenuation, Plate 1 - 3, 1/2-Inch Holes - 4.69 Percent Open	28
III.	Pressure Attenuation, Plate 2 - 52, 1/8-Inch Holes - 5.1 Percent Open	29
IV.	Pressure Attenuation, Plate 3 - 5, 1/2-Inch Holes - 7.8 Percent Open	30
V.	Pressure Attenuation, Plate 4 - 6, 1/2-Inch Holes - 9.37 Percent Open	31
VI.	Pressure Attenuation, Plate 5 - 105, 1/8-Inch Holes - 10.2 Percent Open	32
VII.	Pressure Attenuation, Plate 6 - 16, 1/2-Inch Holes - 25 Percent Open	33
VIII.	Pressure Attenuation, Plate 7 - 256, 1/8-Inch Holes - 25 Percent Open	34
IX.	Pressure Attenuation, Plate 8 - 68, 1/4-Inch Holes - 26.6 Percent Open	35
Х.	Pressure Attenuation, Plate 9 - 307, 1/8-Inch Holes - 30 Percent Open	36
XI.	Pressure Attenuation, Plate 10 - 392, 1/8-Inch Holes - 38.2 Percent Open	37
XII.	Pressure Attenuation, Plate 11 - 105, 1/4-Inch Holes - 41.0 Percent Open	38
XIII.	Pressure Attenuation, Plate 12 - 1, 2-13/16-Inch Hole - 49.4 Percent Open	39
XIV.	Pressure Attenuation, Plate 13 - 32, 1/2-Inch Holes - 50 Percent Open	40
XV.	Pressure Attenuation versus Area Vented	41
A-I.	Data for Pressure-Time Records	46

AUTHORS' COMMENTS

Both the English system of units and SI units have been used in this report with the exception of the data tables where the gage calibrations and computer output for overpressure are in pounds per square inch. Dual scales were not used because the primary objective of the tables is to determine ratios and percentages of input pressure and transmitted pressure which would be the same in either system of units.

There is also a need to keep continuity of the present results with previously published results (Reference 1) conceived with the same subject matter. All equations developed in this report satisfy both systems of units.

I. INTRODUCTION

This is the second* in a series of reports which define the parameters affecting the attenuation of shock waves passing through vented wall plates. Results are reported here for the attenuation of shock waves through single perforated plates as a function of the number and size of vent holes in a plate.

A. Background

Under the US Army's Production Base Modernization (PBM) program for munition processing facilities, a two-phase program has been initiated to develop suppressive shields. One phase, the Category Shield program, will produce a series of shields for specific munition applications.

For the second phase, the Applied Technology Development Phase, a major responsibility has been given to the Ballistic Research Laboratory (BRL). The basic requirement of this phase is to develop a general technology base for suppressive shields. The basic design criteria require containment of fragments and attenuation of the blast wave from accidental explosions in munition processing plants. This report is concerned with the blast attenuation part of the requirement.

B. Objectives

- 1. Define and determine the suppressive structure parameters which affect the attenuation of the blast wave.
- 2. Develop an understanding of blast wave suppression so as to design an efficient blast suppressor.

The objective of this report is to present results obtained from a study of pressure attenuation of shock waves passing through perforated plates. The variables were hole size, number of holes, and incident peak overpressure.

II. EXPERIMENT

This section describes the experimental equipment and design of the perforated plates.

A. <u>Instrumentation</u>

The shock waves were generated inside a 4-inch (10.2 cm) inside diameter shock tube. The driver section used was 12 inches (30.48 cm)

^{*}The first report is entitled, "Shock Wave Attenuation by Single Perforated Plates," Charles Kingery and George Coulter, BR L Memorandum Report 2664, August 1976.

long; driver gas was helium. The test station was located 100 inches (254 cm) from the diaphragm at the driver section. Another 200 inches (508 cm) of tube was added downstream of the test station to delay the return of reflections from the closed end.

The short driver section was chosen so as to form a peaked decaying shock wave similar to that produced by a high explosive detonation. Calibrated aluminum and copper diaphragm materials were used to contain the driver gas in the compression chamber until the desired pressure was obtained. Figure 1 shows a sketch of the shock tube.

Pressure-time profiles of the shock waves were recorded at the locations shown in the sketch. The transducers were tourmaline crystal type, Model ST-4, manufactured by Susquehanna Instruments Company. They were threaded into the shock tube wall as nearly flush as possible. Charge amplifiers, Kistler Model 506; and oscilloscopes, Tektronix Model 502-A; completed the recording instrumentation.

B. Plate Design

The perforated plates were designed to investigate the effect of number of holes and hole size on shock wave attenuation for different incident peak overpressures*. Several vent areas, $A_{\rm V}$, in the range from 5-50 percent were chosen for testing. The number and diameter of the holes were varied for each of the several percentages of area vented.

Single steel plates, 0.25 inch (0.64 cm) thick, were bolted between the flanges of the shock tube at the point shown in Figure 1. The number, diameter, and size of the holes in the various plates are listed in Table I. Sketches of the plates are shown in Figure 2.

III. RESULTS

The test results are presented in three sections covering the shock tube calibration, the transmitted pressure, and the pressure transmission ratio.

A. Shock Tube Calibration

The shock tube was calibrated by measuring the attenuation of the shock waves with distance along the shock tube when no plates were installed; i.e., when $A_{_{\rm V}}$ = 100 percent open.

This was done by measuring a series of shock over-pressure levels between gage Station 3 and Station 6. The earlier work, as noted in

^{*}All pressures discussed in this report are overpressures, not absolute values.

• - GAGE PORTS 1/2 - 20 NF

Figure 1. Shock Tube Test Setup

Table I. Test Plates

						A _v
Plate No.	No. of Holes	Hole D	iameter	Hole	Area	Area Vented Percent
		inches	(cm)	inches ²	(cm ²)	
1	3	0.50	(1.27)	0.196	(1.267)	4.69
2	52	0.125	(0.32)	0.012	(0.080)	5.1
3	5	0.50	(1.27)	0.196	(1,267)	7.81
4	6	0.50	(1.27)	0.196	(1.267)	9.37
5	105	0.125	(0.32)	0.012	(0.080)	10.2
6	16	0.50	(1.27)	0.196	(1.267)	25.0
7	256	0.125	(0.32)	0.012	(0.080)	25.0
8	68	0.25	(0.64)	0.049	(0.322)	26.6
9	307	0.125	(0.32)	0.012	(0.080)	30.0
10	392	0.125	(0.32)	0.012	(0.080)	38.2
11	105	0.25	(0.64)	0.049	(0.322)	41.0
12	1	2.81	(7.14)	6.202	(40.04)	49.4
13	32	0.50	(1.27)	0.196	(1.267)	50.0
_	1	4.0	(10.2)	12.566	(81.073)	100.

 $A_{V} = \frac{\text{Hole Area x Number of Holes}}{\text{Cross-Section Area of Shock Tube}} \times 100$

Figure 2. Arrangement of Holes in the Test Plates

Figure 2. (Cont'd) Arrangement of Holes in the Test Plates

Figure 2. (Cont'd) Arrangement of Holes in the Test Plates

PLATE 13 - 50 % OPEN 32 HOLES, 1/2" DIA.

Figure 2. (Cont'd) Arrangement of Holes in the Test Plates

Reference 1, determined a calibration curve for the shock tube over a range of overpressure from 45 psi (310 kPa) to 218 psi (1503 kPa). This curve with data points is presented in Figure 3. The straight line fit is represented by Equation 1,

$$P_{T} 100 = 0.7855 P_{T}$$
 (1)

when P_{T} 100 is the transmitted pressure for A_{V} = 100 percent and P_{I} is the input pressure.

The peak overpressure measured at Station 6 when a perforated plate is in the shock tube will be compared to the value calculated from Equation 1 for the input pressure of a given shot.

Figures 4 through 6 show typical record traces within the calibrated range of the shock tube. The upper traces are the input condition at Station 3 and the lower traces are attenuated pressures recorded at Station 6 for the unobstructed shock tube.

B. Transmitted Pressure

Section A described the pressure transmitted down the unobstructed shock tube. This section will deal with the pressure transmitted down the shock tube when plates with various vented areas are inserted in the tube. Presented in Figure 7 is a typical set of traces from the shock tube when obstructed by a perforated plate. Other representative pressure-time traces are grouped in the Appendix.

Tables II through XIV list the attenuation results of the shock waveplate interactions. Columns 2 and 3 of the tables list the input pressure ($P_{\rm I}$) at Station 3 and the attenuated, transmitted pressure ($P_{\rm T}$) at Station 6, respectively. Column 5 lists the transmitted pressure for the unobstructed no-plate case ($A_{\rm V}$ = 100%) as calculated from Equation 1 above.

Figure 8 shows how the transmitted pressure (P_T) varies with input pressure (P_T) for various percentages of vented plate area. The family of curves (the solid lines) for the control plates with half-inch holes may be represented by the equation:

$$P_{T} = C P_{T}$$
 (2)

¹Charles Kingery and George Coulter, "Shock Wave Attenuation by Single Perforated Plates," BRL Memorandum Report 2664, August 1976. (AD #B013764L)

Input Pressure P_{I} versus Transmitted Pressure P_{T} for A_{v} of 100 Percent Figure 3.

INPUT PRESSURE (P1) PSI

SHOT 8 CH3 SUPPRESSIVE STRUCTURES

(A) INPUT PRESSURE

(B) TRANSMITTED PRESSURE

Figure 4. Pressure versus Time Recorded at Station 3 and 6 for an Input Pressure of 50 psi (345 kPa)

(A) INPUT PRESSURE

(B) TRANSMITTED PRESSURE

Figure 5. Pressure versus Time Recorded at Station 3 and 6 for an Input Pressure of 119 psi (820 kPa)

(A) INPUT PRESSURE

(B) TRANSMITTED PRESSURE

Figure 6. Pressure versus Time Recorded at Station 3 and 6 for an Input Pressure of 195 psi (1344 kPa)

2

3

50

25

0

0

1

-1000

-500

10

8

g

PLATE 6 - IMPUT PRESSURE

5

TIME, MILLISECONDS

4

PLATE 6 - TRANSMITTED PRESSURE

Figure 7. Pressure versus Time at Stations 3 and 6 for Input Pressure of 50 PSI - 25 Percent Open

Figure 8. Transmitted Pressure versus Input Pressure for Different Percentages of Area Vented

where C is a function of the plate area vented. Values of C were calculated from a simple ratio of the data P_T for x percent opening (Column 3) divided by P_T (Column 2). The C values are listed in Column 4 of Tables II through XIV.

It can be seen from the average values of C listed in Tables II through XIV that there is no significant effect of the hole size or number of holes in a plate with the exception of Plate 2 and Plate 5 both with 1/8-inch diameter holes consisting of 52 and 105 in number.

C. Pressure Transmission Ratio

The last two columns of Tables II through XIV contain quantities that are helpful in defining the effectiveness of a perforated plate attenuator. The first quantity is defined as the transmission ratio (P_{TR}). It is defined as

$$P_{TR} = \frac{P_{T} \text{ with vented plate}}{P_{T} 100 \text{ without a plate}},$$
 (3)

where $P_{\overline{T}}$ is the transmitted pressure in each case.

A second quantity, the percentage of attenuation may be more helpful in some cases. It is equal simply to $(1 - P_{TR}) \times 100$. The average values listed of these quantities in Tables II through XIV are summarized in Table XV.

An equation of the form

$$P_{TR} = B A_{V}^{N}$$
 (4)

was used to fit the data for the transmission ratio (P_{TR}) as a function of area vented (A_V). B and N have the values of 0.1094 and 0.5135, respectively, for plates with half-inch holes for area vented below 50 percent.

The data from the new plates listed in Table XV show little scatter from the values established from plates with the one-half inch diameter holes.

For a given A $_{\rm V}$ and P $_{\rm I}$ the value of P $_{\rm T}$ can be determined by calculating P $_{\rm TR}$ from Equation 4 and P $_{\rm T}$ 100 from Equation 1 and substituting in to Equation 3 to obtain

$$P_{T} = (0.7855 P_{I}) P_{TR}$$
 (5)

It also follows that by dividing both sides of Equation 5 by $\mathbf{P}_{\mathbf{I}}$, one obtains from Equation 2,

$$C = 0.7855 P_{TR}$$
, and (6)

if C is determined from Tables II through XIV then

$$P_{TR} = C/0.7855.$$
 (7)

A direct comparison of the experimental values of the Pressure Transmission Ratio (P_{TR}) and the percent of pressure attenuation listed in Tables II through XIV has been made with values calculated using Equation 4. These comparisons are made in Table XV.

The values of pressure transmission ratio and pressure attenuation percent from Table XV have been plotted in Figures 9 and 10, respectively. The solid line represents the calculated values from Equation 4 which was established from the experimental values obtained from the plates with half-inch (1.27 cm) holes. The symbols indicate how well the data compare when obtained from plates with different hole sizes. The data from a A $_{\rm V}$ of 5.1 and 10.2 percent differ most from the trend established from previous tests. It should be noted in Table XV that when plates with a similar A $_{\rm V}$ are tested the values of attenuation percent are also similar.

IV. CONCLUSIONS

Based upon the experimental results obtained, a perforated plate did not change appreciably its ability to attenuate shock waves when the hole size was changed. It was only at the small values of A_{V} with 1/8 hole size that a deviation from the established trend was noted.

There was no trend established for pressure transmission ratio or attenuation percent as a function of input pressure (P $_{\rm I}$) for a given A $_{\rm V}.$ The expression

$$P_T = C P_I$$

appears to be valid for range of pressures and vent areas tested.

Table II. Pressure Attenuation Plate 1, 3, 1/2-Inch Holes - 4.69 Percent Open

Attenuation	76.8	74.2	78.5	75.4	78.2	74.6	75.8	77.1	76.3
Ratio (P _{TR}) P _T 4.69/P _T 100	0.232	0.258	0.215	0.246	0.218	0.254	0.242	0.229	0.237
Transmitted Pressure (P_T) $A_V = 100$ %	154.5	150.6	94.8	8.96	9.66	38.6	38.5	40.1	
Ratio (C) P _T 4.69/P _I	0.182	0.203	0.169	0.193	0.171	0.199	0.189	0.180	0.185
Transmitted Pressure (P_T) $A_V = 4.69\%$ psi	35.8	38.9	20.4	23.8	21.7	8.6	9.3	9.2	Average
Input Pressure (P _I) psi	197.0	192.0	120.9	123.3	127.0	49.3	49.1	51.2	Ave
Shot Number	18	19	20	21	22	23	24	25	

NOTE: Psi x 6.894757 = kPa.

Table III. Pressure Attenuation, Plate 2, 52, 1/8-Inch Holes - 5.1 Percent Open

Attenuation Percent	7.67	78.6	77.5	83.2	82.0	80.3	80.7	81.4	80.4
Ratio (P _{TR}) P _T 5.1/P _T 100	0.203	0.214	0.225	0.168	0.180	0.197	0.193	0.186	0.196
Transmitted Pressure (P_T) $A_V = 100\%$	152,1	156.4	99.1	99.1	100.8	36.5	37.4	36.5	
Ratio C P _T 5.1/P _L	0.160	0.168	0.177	0.132	0.141	0.155	0.151	0.146	0.154
Transmitted Pressure (P_T) $A_V = 5.1\%$ psi	30.9	33.5	22.3	16.6	18.1	7.2	7.2	6.8	Average
$\frac{\text{Input}}{\text{Pressure}}$	193.6	199.1	126.1	126.1	128.3	46.5	47.6	46.5	Ave
Shot	77	78	42	80	81	82	83	84	

Table IV. Pressure Attenuation, Plate 3, 5, 1/2-Inch Holes - 7.81 Percent Open

Attenuation	69.2	65.4	0.89	70.7	68.3
Ratio (P _{TR}) P _T 7.81/P _T 100	0.308	0.345	0.319	0.293	0.317
Transmitted Pressure (P_T) $A_V = 100\%$	155.0	154.1	53.2	55.0	
Ratio C P _T 7.8/P _I	0.242	0.271	0.250	0.229	0.248
Transmitted Pressure (P_T) A = 7.81% psi	47.8	53.3	17.0	16.1	Average
Input Pressure (P _I) psi	197.6	196.4	6.79	70.2	Av
Shot	296	297	282	283	

Table V. Pressure Attenuation, Plate 4, 6, 1/2-Inch Holes - 9.37 Percent Open

Attenuation	60.5	62.4	64.0	68.1	67.2	68.1	65.9	64.8	62.8	64.9
Ratio (P _{TR}) P _T 9.37 P _T 100	0.394	0.376	0.360	0.318	0.328	0.319	0.341	0.352	0.372	0.351
Transmitted Pressure (P_T) $A_V = 100\%$	164.8	152.8	149.9	94.9	94.9	97.9	39.6	38.6	38.2	
Ratio C P _T 9.3/P _I	0.309	0.295	0.283	0.250	0.257	0.251	0.267	0.276	0.291	0.276
Transmitted Pressure (P_T) $A_V = 9.37\%$ psi	65.0	57.5	54.0	30.2	31.1	31.2	13.5	13.6	14.2	Average
$\frac{\text{Input}}{\text{Pressure}}$	210.0	194.8	191.0	121.0	120.9	124.5	50.5	49.3	48.8	A
Shot	14	30	31	15	28	29	16	26	27	

Table VI. Pressure Attenuation, Plate 5, 105, 1/8-Inch Holes - 10.2 Percent Open

Attenuation Percent	8.89	64.0	69.5	67.5	6.99	63.9	8.99
Ratio (P _{TR}) P _T 10.2/P _T 100	0.312	0.360	0.305	0.325	0.331	0.361	0.332
Transmitted Pressure (P_T) $A_V = 100\%$	170.3	145.4	101.2	101.6	96.5	37.1	
Ratio (C) P _T 10.2/P _I	0.245	0.283	0.240	0.255	0.260	0.284	0.261
Transmitted Pressure (P_T) $A_V = 10.2\%$ psi	53.2	52.4	30.9	33.0	31.9	13.4	Average
$\frac{\text{Input}}{\text{Pressure}}$ $\frac{(P_{\text{I}})}{\text{psi}}$	216.8	185.1	128.9	129.4	122.8	47.2	1
Shot	75	92	72	73	74	71	

Table VII. Pressure Attenuation, Plate 6, 16, 1/2-Inch Holes - 25 Percent Open

Attenuation	38.5	38.2	37.8	43.3	42.3	40.6	44.1	41.0	43.8	41.1
Ratio (P _{TR}) P _T 25/P _T 100	0.615	0.617	0.622	0.567	0.576	0.594	0.559	0.590	0.562	0.589
Transmitted Pressure (P_T) $A_V = 100\%$	160.9	153.0	149.9	94.9	97.1	93.1	40.1	38.3	38.6	
Ratio (C) P _T 25/P _I	0.483	0.486	0.488	0.445	0.452	0.466	0.438	0.454	0.440	0.461
Pressure (P_T) $A_V = 25\%$ Psi	0.66	94.5	93.3	53.8	56.0	55.3	22.4	22.6	21.7	Average
Input Pressure (P _I)	205.0	195.0	191.0	121.0	123.8	118.6	51.2	49.8	49.3	Av
Shot Number	11	32	33	12	34	35	13	36	37	

Table VIII. Pressure Attenuation, Plate 7, 256, 1/8-Inch Holes - 25 Percent Open

uo							
Attenuation	39.7	40.4	37.2	36.0	47.3	47.3	41.3
Ratio (P _{TR}) P _T 25/P _T 100	0.603	0.596	0.628	0.640	0.527	0.527	0.587
Transmitted Pressure (P_T) $A_V = 100\%$	147.4	152.8	104,2	100.7	37.9	37.0	
Ratio (C) P _T 25/P _L	0.474	0.468	0.494	0.502	0.414	0.414	0.459
Pressure (P_T) $A_V = 25\%$ psi	88.9	91.1	65.5	64.4	20.0	20.0	Average
$\begin{array}{c} \text{Input} \\ \text{Pressure} \\ (P_{\mathrm{I}}) \\ \\ \text{psi} \end{array}$	187.7	194.5	132.7	128.2	48.3	48.3	
Shot	158	162	160	161	163	164	

Table IX. Pressure Attenuation, Plate 8, 68, 1/4-Inch Holes - 26.6 Percent Open

Attenuation	41.7	40.2	39.3	42.8	45.0	43.9	42.1	38.9	41.8
Ratio (P _{TR}) P _T 26.6/P _T 100	0.583	0.597	0.607	0.572	0.549	0.561	0.578	0.610	0.582
Transmitted Pressure (P_T) $A_V = 100\%$	153.3	155.1	91.1	93.0	93.0	37.1	37.9	38.3	
Ratio (C) P _T 26.6/P _I	0.458	0.469	0.476	0.449	0.432	0.441	0.454	0.479	0.457
Transmitted Pressure (P_T) $A_V = 26.6\%$ $P_V = P_V$	89.4	92.7	55.3	53.2	51.1	20.8	21.9	23.4	Average
$\begin{array}{c} \text{Input} \\ \text{Pressure} \\ \text{(P}_{\text{I}}) \\ \text{psi} \end{array}$	195.2	197.5	116.2	118.4	118.4	47.2	48.2	48.8	Ą
Shot	61	62	63	64	65	99	29	89	

Table X. Pressure Attenuation, Plate 9, 308, 1/8-Inch Holes - 30 Percent Open

Attenuation	31.8	30.7	33.8	33.0	33.8	41.5	42.9	43.6	36.4
Ratio (P_{TR}) P_{T} 30/ P_{T} 100	0.682	0.693	0.662	0.670	0.662	0.585	0.571	0.564	0.636
Transmitted Pressure (P_T) $A_V = 100\%$	148.3	147.4	102.8	106.0	102.4	38.6	40.5	40.0	
Ratio (C) $\frac{P_T 30/P_L}{T}$	0.535	0.544	0.520	0.527	0.520	0.459	0.449	0.443	0.500
Pressure (P_T) $A_V = 30\%$ psi	101.1	102.2	68.1	71.1	67.8	22.6	23.1	22.6	Average
Input Pressure (P _I) psi	188.8	187.7	130.9	135.0	130.4	49.2	51.2	51.0	7
Shot Number	156	157	153	154	155	150	151	152	

Table XI. Pressure Attenuation, Plate 10 392, 1/8-Inch Holes - 38.2 Percent Open

Attenuation Percent	31.3	30.8	23.2	27.6	28.3	28.8	28.3
Ratio (P _{TR}) P _T 38.2/P _T 100	0.687	. 0.693	0.767	0.723	0.717	0.712	0.716
Transmitted Pressure (P_T) $A_V = 100\%$	161.8	157.2	104.2	106.0	40.3	39.7	
Ratio (C) P _T 38.2/P _I	0.539	0.544	0.603	0.568	0.563	0.559	0.563
Pressure (P_T) $A_V = 38.2\%$ psi	111.1	108.9	80.0	76.7	28.9	28.3	Average
Input Pressure (P _I) psi	206.0	200.2	132.7	135.0	51.3	9.09	
Shot	165	166	167	168	169	170	

Table XII. Pressure Attenuation, Plate 11, 105, 1/4-Inch Holes - 41.0 Percent Open

Attenuation Percent	30.1	30.4	28.7	29.3	29.0	32.7	25.9	26.4	23.4	28.4
Ratio (P_{TR}) P_T 41/ P_T 100	0.699	0.696	0.713	0.707	0.710	0.673	0.741	0.736	992.0	0.716
Transmitted Pressure (P_T) $A_T = 100\%$	158.3	151.6	155.1	94.7	93.0	96.5	38.7	38.3	37.5	
Ratio (C) $\frac{P_T}{T} \frac{41/P_L}{1}$	0.549	0.547	0.560	0.556	0.557	0.529	0.582	0.578	0.602	0.562
Pressure (P_T) A = 41% Psi	110.6	105.5	110.6	0.79	0.99	64.9	28.7	28.2	28.7	Average
$\frac{\text{Input}}{\text{Pressure}}$ $\frac{(P_{\text{I}})}{\text{psi}}$	201.5	193.0	197.4	120.6	118.4	122.8	49.3	48.8	47.7	4
Shot	28	59	09	55	56	29	52	53	54	

Table XIII. Pressure Attenuation, Plate 12, 1, 2-13/16-Inch Hole - 49.4 Percent Open

Attenuation	21.6	20.1	19.7	22.0	22.8	20.5	19.1	18.4	20.0	20.5
Ratio (P _{TR}) P _T 49.4/P _T 100	0.784	0.799	0.803	0.780	0.772	0.795	0.809	0.816	0.800	0.795
Transmitted Pressure (P_T) $A_V = 100\%$	148.1	153.5	151.9	91.0	92.0	91.9	36.8	37.9	37.9	
Ratio (C) P _T 49.4/P _I	0.616	0.627	0.631	0.613	909.0	0.625	0.635	0.641	0.629	0.625
Pressure (P_T) $A_V = 49.48$ Psi	116.1	122.6	122.0	71.0	71.0	73.1	29.8	30.9	30.3	Average
$\frac{\text{Input}}{\text{Pressure}}$ $\frac{(P_{\text{I}})}{\text{psi}}$	188.6	195.4	193.4	115.9	117.1	117.0	46.9	48.2	48.2	
Shot	43	44	45	46	47	48	49	50	51	

Table XIV. Pressure Attenuation, Plate 13, 32, 1/2-Inch Holes - 50 Percent Open

Attenuation Percent	26.6	19.1	24.3	21.8	13.1	16.9	22.2	20.4	20.4	20.5
Ratio (P _{TR}) P _T 50/P _T 100	0.734	0.809	0.757	0.782	0.869	0.831	0.778	962.0	962.0	0.795
Transmitted Pressure (P_T) $A_V = 100\%$	155.3	156.9	153.4	94.9	89.1	91.8	38.6	39,2	31.2	
Ratio (C) P _T 50/P _I	0.575	0.635	0.594	0.613	0.681	0.652	0.610	0.624	0.624	0.623
Pressure (P_T) $A_V = 50\%$ Psi	114.0	127.0	116.1	74.2	77.4	76.3	30.0	31.2	31.2	Average
$\frac{\text{Input}}{\text{Pressure}}$ $\frac{(P_{\mathbf{I}})}{\text{psi}}$	198.0	200.0	195.5	121.0	113.6	117.0	49.2	50.0	50.0	A
Shot	4	2	42	9	40	41	7	38	39	

Table XV. Pressure Attenuation versus Area Vented

ation ent	Calculated	75.8	74.7	9.89	65.5	64.0	42.9	42.9	41.0	37.3	29.0	26.3	19.0	18.5
Attenua Perce	Experimental	73.6	80.4	68.3	64.9	8.99	41.1	41.3	41.8	36.4	28.3	28.4	20.5	20.5
ssion	Calculated	0.242	0.253	0.314	0.345	0.360	0.571	0.571	0.590	0.627	0.710	0.737	0.810	0.815
Transmis Rati	Experimental	0.237	0.196	0.317	0.351	0.332	0.589	0.587	0.582	0.636	0.716	0.716	0.795	0.795
Area Vented	Percent	4.69	5.10	7.81	9.37	10.2	25.0	25.0	26.6	30.0	38.2	41.0	49.4	50.0
Number of Holes		3*	52***	5*	*9	105***	16*	256***	**89	308***	392***	105**	1	32*
Plate Number		1	2	3	4	S	9	7	∞	6	10	11	12	13
	Number of Holes	Number Area Transmission Attenuat of Holes Vented Ratio Percen Percent Experimental Calculated Experimental	Number Area Transmission Attenuat Of Holes Vented Ratio Percent Experimental Calculated Experimental 3* 4.69 0.237 0.242 73.6	Number Area Transmission Attenuat of Holes Vented Ratio Percent Percent Experimental Experimental 3* 4.69 0.237 0.242 73.6 52*** 5.10 0.196 0.253 80.4	Number Area Transmission Attenuat of Holes Vented Ratio Percen Percent Experimental Calculated Experimental 3* 4.69 0.237 0.242 73.6 52*** 5.10 0.196 0.253 80.4 5* 7.81 0.317 0.314 68.3	Number Area Transmission Attenuat of Holes Vented Ratio Percen Percent Experimental Calculated Experimental 3* 4.69 0.237 0.242 73.6 52*** 5.10 0.196 0.253 80.4 5* 7.81 0.317 0.314 68.3 6* 9.37 0.351 0.345 64.9	Number Area Transmission Attenuat of Holes Vented Ratio Percen Percent Experimental Calculated Experimental 3* 4.69 0.237 0.242 73.6 52*** 5.10 0.196 0.253 80.4 5* 7.81 0.317 0.314 68.3 6* 9.37 0.351 0.345 64.9 105*** 10.2 0.352 0.360 66.8	Number Area Transmission Attenuat of Holes Vented Ratio Percen Percent Experimental Calculated Experimental 3* 4.69 0.237 0.242 73.6 52*** 5.10 0.196 0.253 80.4 5* 7.81 0.317 0.314 68.3 6* 9.37 0.351 0.345 64.9 105*** 10.2 0.332 0.360 66.8 16* 25.0 0.589 0.571 41.1	Number Area Transmission Attenuat Percent 3* 4.69 0.237 0.242 73.6 52*** 5.10 0.196 0.253 80.4 5* 7.81 0.317 0.314 68.3 6* 9.37 0.351 0.345 64.9 105*** 10.2 0.589 0.571 41.1 256*** 25.0 0.587 0.571 41.3	Number Area Transmission Attenuat Percent 3* 4.69 0.237 0.242 73.6 52*** 5.10 0.196 0.314 68.3 6* 9.37 0.351 0.345 64.9 105*** 10.2 0.351 0.345 64.9 16* 25.0 0.589 0.571 41.1 256*** 25.0 0.587 0.571 41.3 68** 26.6 0.582 0.590 41.8	Number Area Transmission Attenuat of Holes Vented Ratio Percen Percent Experimental Calculated Experimental 3* 4.69 0.237 0.242 73.6 52*** 5.10 0.196 0.253 80.4 5* 7.81 0.317 0.314 68.3 6* 9.37 0.351 0.345 64.9 105*** 10.2 0.352 0.360 66.8 16* 25.0 0.589 0.571 41.1 256*** 25.0 0.589 0.571 41.3 68** 26.6 0.582 0.590 41.8 308*** 30.0 0.636 0.627 36.4	Number Area Transmission Attenuat of Holes Vented Ratio Percen Percent Experimental Calculated Experimental 3* 4.69 0.237 0.242 73.6 52*** 5.10 0.196 0.253 80.4 5* 7.81 0.317 0.314 68.3 6* 9.37 0.351 0.345 64.9 105*** 10.2 0.352 0.360 66.8 16* 25.0 0.589 0.571 41.1 256*** 25.0 0.587 0.571 41.3 68** 26.6 0.587 0.571 41.3 308*** 30.0 0.636 0.590 41.8 392*** 38.2 0.716 0.710 28.3	Number Artennamission Attenuat Percent Ratio Fation Attenuat Percent Percent Percent Percent Percent Ratio 3* 4.69 0.237 0.242 73.6 52*** 5.10 0.196 0.253 80.4 5* 7.81 0.317 0.314 68.3 6* 9.37 0.351 0.345 64.9 105*** 10.2 0.332 0.360 66.8 16* 25.0 0.589 0.571 41.1 256*** 25.0 0.587 0.571 41.3 68** 26.6 0.582 0.571 41.8 302*** 36.4 36.4 36.4 392*** 38.2 0.716 0.737 28.4 105** 41.0 0.716 0.737 28.4	Number Area Transmission Attenuat Percent Ratio Percent Percent Percent Ratio 3* 4.69 0.237 0.242 73.6 52*** 5.10 0.196 0.253 80.4 5* 7.81 0.317 0.314 68.3 6* 9.37 0.351 0.345 64.9 105*** 10.2 0.352 0.360 66.8 16* 25.0 0.589 0.571 41.1 256*** 25.0 0.587 0.571 41.8 308*** 30.0 0.656 0.657 36.4 392*** 38.2 0.716 0.710 28.3 105** 41.0 0.716 0.737 28.4 1 49.4 0.795 0.810 20.5

Hole Diameter 0.50 in. (1.27 cm). **Hole Diameter 0.25 in. (0.64 cm). *Hole Diameter 0.125 in. (0.32 cm).

 $A_{\rm v} < 55$ Pressure Transmission Ratio (P_{TR}) = 0.1094 $A_{V}^{0.5135}$

Pressure Attenuation Percent

 $= (1 - P_{TR}) \times 100$

Figure 9. Pressure Transmission Ratio as a Function of Percent of Area Vented

Figure 10. Percent Pressure Attenuation as a Function of Percent of Area Vented

APPENDIX

PRESSURE-TIME DATA

This Appendix shows a selection of records which represent the pressure as a function of time at Station 3 (CH3) and Station 6 (CH6). Station 3 was located 0.75 tube diameter upstream from the target plate. Station 6 was located 7 tube diameters downstream of the target plate - a distance sufficient to allow the transmitted shock wave (P_T) to reform after passing the perforated plate.

Table A-I presents data for the target plates. Plate number, shot number, area vented, and hole diameter describe the target plates.

The pressure-time records are listed according to percent of area open. The upper trace (CH3) is the input record ($P_{\rm I}$). The initial peak is the side-on value; the second peak is the portion of the shock wave reflected upstream from the target plate. The lower trace is the transmitted pressure at Station 6 (CH6).

Table A-I. Data for Pressure-Time Records

Plate No.	Shot No.	Area Vented Percent	Hole Diameter inches
1	22	4.69	1/2
2	81	5.1	1/8
3	297	7.81	1/2
4	29	9.37	1/2
5	76	10.2	1/8
6	32	25.0	1/2
7	160	25,0	1/8
8	63	26.6	1/4
9	153	30.0	1/8
10	168	38.2	1/8
11	66	41.0	1/4
12	51	49.4	2-13/16
13	7	50.0	1/2

SHOT 22 CH3 SUPPRESSIVE STRUCTURES

PLATE I -INPUT PRESSURE

Figure A-1. Pressure-Time Traces Recorded at Stations 3 and 6 - 4.69 Percent Open

PLATE 2 - TRANSMITTED PRESSURE

Figure A-2. Pressure-Time Traces Recorded at Stations 3 and 6 - 5.1 Percent Open

SUPPRESSIVE STRUCTURES

SHOT NO. 297

PLATE 3 - INPUT PRESSURE

SUPPRESSIVE STRUCTURES

SHOT NO. 297

PLATE 3-TRANSMITTED PRESSURE

Figure A-3. Pressure-Time Traces Recorded at Stations 3 and 6 - 7.8 Percent Open

PLATE 4 - INPUT PRESSURE

Figure A-4. Pressure-Time Traces Recorded at Stations 3 and 6 - 9.37 Percent Open

PLATE 5-INPUT PRESSURE

PLATE 5-TRANSMITTED PRESSURE

Figure A-5. Pressure-Time Traces Recorded at Stations 3 and 6 - 10.2 Percent Open

PLATE 6-INPUT PRESSURE

Figure A-6. Pressure-Time Traces Recorded at Stations 3 and 6 - 25 Percent Open, 1/2-Inch Holes

SUPPRESSIVE STRUCTURES SHOT NO. 160 CH. 3

PLATE 7 - INPUT PRESSURE

PLATE 7-TRANSMITTED PRESSURE

Figure A-7. Pressure-Time Traces Recorded at Stations 3 and 6 - 25 Percent Open, 1/8-Inch Holes

SHOT 63 CH3 SUPPRESSIVE STRUCTURES

PLATE 8-IMPUT PRESSURE

SHOT 63 CH6 SUPPRESSIVE STRUCTURES

PLATE 8-TRANSMITTED PRESSURE

Figure A-8. Pressure-Time Traces Recorded at Stations 3 and 6 - 26.6 Percent Open

PLATE 9 - INPUT PRESSURE

Figure A-9. Pressure-Time Traces Recorded at Stations 3 and 6 - 30 Percent Open

PLATE 10 - INPUT PRESSURE

TIME, MILLISECONDS

PLATE 10 - TRANSMITTED PRESSURE

Figure A-10. Pressure-Time Traces Recorded at Stations 3 and 6 - 38.2 Percent Open

SHOT 54 CH3 SUPPRESSIVE STRUCTURES

PLATE II - INPUT PRESSURE

PLATE II-TRANSMITTED PRESSURE

Figure A-11. Pressure-Time Traces Recorded at Stations 3 and 6 - 41.0 Percent Open

PLATE 12 - INPUT PRESSURE

PLATE 12-TRANSMITTED PRESSURE

Figure A-12. Pressure-Time Traces Recorded at Stations 3 and 6 - 49.4 Percent Open

SHOT 7 CH3 SUPPRESSIVE STRUCTURES

PLATE 13 - INPUT PRESSURE

PLATE 13 - TRANSMITTED PRESSURE

Figure A-13. Pressure-Time Traces Recorded at Stations 3 and 6 - 50 Percent Open

LIST OF SYMBOLS

A_v Percent of plate vented =
$$\frac{\text{area vented}}{\text{area of tube}} \times 100$$

$$\mathbf{P}_{\mathbf{T}}$$
 Transmitted peak overpressure

$$P_{_{\mbox{\scriptsize T}}}$$
 100 Transmitted peak overpressure for unobstructed tube

$$P_{TR}$$
 Pressure transmission ratio = $\frac{P_{T}}{P_{T}}$ for Plate

NOTE: Psi x
$$6.894757 = kPa$$
.

No. of No. of Copies Organization Copies Organization 12 Commander 1 Chairman Defense Documentation Center Department of Defense Explosives ATTN: DDC-TCA Safety Board Cameron Station Forrestal Building, GB-270 Washington, DC 20314 Alexandria, Virginia 22314 1 Director 2 Director Defense Advanced Research Defense Nuclear Agency Projects Agency ATTN: Mr. J. F. Moulton, SPAS 1400 Wilson Boulevard Dr. E. Sevin, SPSS Arlington, Virginia 22209 Washington, DC 20305 1 Director 4 Director Weapons Systems Evaluation Defense Nuclear Agency ATTN: SPTL Tech Lib (2 cys) Group ATTN: CPT Donald E. McCoy SPSI (ARCHIVES) Washington, DC 20305 **STSP** Washington, DC 20305 3 Director Institute for Defense Analyses 1 Commander ATTN: Dr. J. Menkes Field Command Dr. J. Bengston Defense Nuclear Agency Tech Info Ofc ATTN: Tech Lib, FCWS-SC 400 Army-Navy Drive Kirtland AFB Arlington, Virginia 22202 New Mexico 87115 Assistant to the Secretary 1 Chief of Defense (Atomic Energy) Las Vegas Liaison Office ATTN: Document Control Field Command TD, DNA Washington, DC 20301 P.O. Box 2702 ATTN: Document Control Director of Defense Research Las Vegas, Nevada 89104 and Engineering ATTN: Mr. J. Persh, Staff 1 DNA Information and Analysis Specialist Materials and Center Structures TEMPO, General Electric Co. Washington, DC 20301 Center for Advanced Studies ATTN: DASIAC 2 Chairman 816 State Street Joint Chiefs of Staff Santa Barbara, California ATTN: J-3, Operations 93102 J-5, Plans & Policy (R&D Division) 1 Director

Defense Communications Agency

ATTN: NMCSSC (Code 510) Washington, DC 20305

Washington, DC 20301

No. o	f	No. o	£
Copie	_	Copies	
_			
2	Director Defense Intelligence Agency ATTN: DT-1C, Dr. J. Vorona DT-2 Washington, DC 20301	5	Commander US Army Missile Research and Development Command ATTN: DRDMI-R DRDMI-AOA, Lib DRDMI-RSS, Mr. B. Cobb
1	Commander US Army Materiel Development and Readiness Command ATTN: DRCDMA-ST 5001 Eisenhower Avenue	2	DRDMI-RX, Mr. W. Thomas DRDMI-RR, Mr. L. Lively Redstone Arsenal, AL 35809 Commander
	Alexandria, VA 22333		US Army Tank Automotive Development Command
1	Commander US Army Materiel Development and Readiness Command ATTN: DRCPM-CS		ATTN: DRDTA DRDTA-RWL Warren, MI 48090
	5001 Eisenhower Avenue Alexandria, VA 22333	2	Commander US Army Mobility Equipment Research & Development Command
1	Commander US Army Construction Engineeri Research Laboratory P. O. Box 4005 Champaign, IL 61820	ng 2	ATTN: Tech Docu Cen, Bldg. 315 DRSME-RZT Fort Belvoir, VA 22060 Commander
1	Commander US Army Aviation Systems Command ATTN: DRSAV-E 12th and Spruce Streets		US Army Armament Materiel Readiness Command ATTN: DRSAR-RDN DRSAR-MT Rock Island, IL 61202
	St. Louis, MO 63166	3	Commander
1	Director US Army Air Mobility Research and Development Laboratory Ames Research Center Moffett Field, CA 94035		US Army Armament Materiel Readiness Command ATTN: DRSAR-SC, C. Hudson DRSAR-SF, R. Young DRSAR-PPI, CPT Burnsteel Rock Island, IL 61202
1	Commander US Army Electronics Command ATTN: DRSEL-RD Fort Monmouth, NJ 07703	3	Commander US Army Armament Materiel Readiness Command ATTN: Joint Army-Navy-Air Force Conventional Ammunition Prod Coord Gp/E. Jordan Rock Island, IL 61202

No. of Copies		No. of Copies	
_	Commander US Army Frankford Arsenal ATTN: SARFA-L6100, P. Flynn Philadelphia, PA 19137	1	Commander Iowa Army Ammunition Plant Burlington, IA 52502
4	Commander US Army Armament Research and Development Command	1	Commander Joliet Army Ammunition Plant Joliet, IL 60436
	ATTN: SARPA-V Mr. G. Demitrack Mr. M. Weinstein SARPA-MT-F	1	Commander Kansas Army Ammunition Plant Parsons, KS 67357
	Mr. John Canavan Mr. L. Saffian Mr. P. Price DRCPM-PBM-E, Mr.Dybacki		Commander Lone Star Army Ammunition Plant Texarkana, TX 75502
1	Dover, NJ 07801		Commander Longhorn Army Ammunition Plant
1	Commander US Army Rock Island Arsenal Rock Island, IL 61202	1	Marshall, TX 75671 Commander
1	Commander US Army Dugway Proving Ground		Louisiana Army Ammunition Plant Shreveport, LA 71102
	ATTN: STEDP-TO-H, Mr. Miller Dugway, UT 84022	1	Commander Milan Army Ammunition Plant Milan, TN 38358
	Commander US Army Watervliet Arsenal Watervliet, NY 12189	1	Commander Radford Army Ammunition Plant Radford, VA 24141
1	Commander Pine Bluff Arsenal Pine Bluff, AR 71601	1	Commander Ravenna Army Ammunition Plant Ravenna, OH 44266
1	Commander Cornhusker Army Ammunition Pla Grand Island, NE 68801	int 1	Director US Army Engineer School
1	Commander Indiana Army Ammunition Plant Charlestown, IN 47111		Fort Belvoir, VA 22060

No. of Copies		No. of Copies	
1	Commander US Army Harry Diamond Labs ATTN: DRXDO-TI 2800 Powder Mill Road	2	HQDA (DAMA-AR; NCL Div) Washington, DC 20310 Commander U.S. Army Research Office
1	Adelphi, MD 20783 Commander US Army Materials and		P.O. Box 12211 Research Triangle Park North Carolina 27709
	Mechanics Research Center ATTN: DRXMR-ATL Watertown, MA 02172	1	Director U.S. Army Advanced BMD Technology Center
1	Commander US Army Natick Research and Development Command		ATTN: M. Whitfield Huntsville, Alabama 35807
	ATTN: DRXRE, Dr. D. Sieling Natick, MA 01762	1	Commander U.S. Army Ballistic Missile Defense Systems Command ATTN: J. Veeneman
1	Commander US Army Foreign Science and Technology Center ATTN: Rsch & Data Branch Federal Office Building	1	P.O. Box 1500, West Station Huntsville, Alabama 35807 HQDA (DAEM-MCE-D/Mr. R. Wright)
	220 7th Street, NE Charlottesville, VA 22901	1	
1	Director DARCOM Field Safety Activity ATTN: DRXOS-ES	1	Washington, DC 20314 Director
1	Charlestown, IN 47111 Director		US Army Engineer Waterways Experiment Station P.O. Box 631
	DARCOM, ITC ATTN: Dr. Chiang Red River Depot Texarkana, TX 75501	1	Vicksburg, MS 39180 Division Engineer U.S. Army Engineer Division Fort Belvoir, VA 22060
1	Commander US Army TRADOC Systems Analysis Activity ATTN: ATAA-SA	1	U.S. Army Eng Div ATTN: Mr. Char P. O. Box 1600
	White Sands Missile Range NM 88002		Huntsville, AL 35809

No. of Copies		No. o	_
2	Director Joint Strategic Target Planning Staff ATTN: JLTW JPTP Offutt AFB Omaha, Nebraska 68113	3	Commander U.S. Naval Surface Weapons Center ATTN: Mr. F. Sancher Mr. J. C. Talley Dr. W. Soper Dahlgren, Virginia 22448
4	Chief of Naval Operations ATTN: OP-03EG OP-97 OP-754 OP-985FZ Department of the Navy Washington, DC 20350	3	Commander U.S. Naval Surface Weapons Center ATTN: Dr. Leon Schindel Dr. Victor Dawson Dr. P. Huang Silver Spring, Maryland 20910
1	Assistant Secretary of the Na (Research & Development) Navy Department Washington, DC 20350	wy 2	Commander Naval Surface Weapons Center ATTN: Code 241 (Mr. Proctor) (Mr. Kushner) Silver Spring, Maryland 20910
1	Chief of Naval Material Navy Department ATTN: Code 418, Dr. T. Quint Arlington, Virginia 22217	_	Commander U.S. Naval Weapons Center ATTN: Code 6031 Dr. W. Stronge
1	Commander Bureau of Naval Weapons ATTN: Code F121 Mr. H. Roylance Department of the Navy Washington, DC 20360	1	China Lake, California 93555 Commander Naval Ammunition Depot ATTN: ORD-04M/B/X-5/L. Leonard Crane, IN 47522
1	Commander Naval Ordnance Systems Comman ATTN: Code ORD 43B Mr. Fernandes Washington, DC 20360	1 nd	Commander Naval Explosive Ord Disposal Facility ATTN: Code 501/L. Wolfson Indianhead, MD 20640
2	Commander David W. Taylor Naval Ship Research & Development Ctr ATTN: Mr. A. Wilner, Code 1 Dr. W.W.Murray, Code Bethesda, MD 20084		Commander US Naval Ship Research and Development Center Facility ATTN: Mr. Lowell T. Butt Underwater Explosions Research Division Portsmouth, VA 23709

No. of Copies		No. of Copies	
1	Commander US Naval Weapons Evaluation Facility	1	USAFTAWC (OA) Eglin AFB, FL 32542
	ATTN: Document Control Kirtland AFB Albuquerque, NM 87117	1	Ogden ALC/MMWRE (Mr. Ted E. Comins) Hill AFB, UT 84406
1	Commander US Naval Civil Engineering Lal		AFWL (WLA; WLD; WLRP, LTC H. C. McClammy)
	ATTN: J. Tancreto Port Hueneme, CA 93041		Kirtland AFB, NM 87117 AFWL (SYT, MAJ W.A. Whitaker;
1	Commander US Naval Research Laboratory ATTN: Code 2027, Tech		SRR; WSUL; SR) Kirtland AFB, NM 87117
2	Washington, DC 20375 Superintendent	1	AFCEC/DE, LTC Walkup Tyndall AFB Panama City, FL 32401
-	US Naval Postgraduate School ATTN: Tech Rpts Sec Code 57, Prof. R. Ball Monterey, CA 93940	2	
1	HQ USAF (AFNIE-CA) Washington, DC 20330	2	AFFDL/FDTR (Dr. F.J. Banik, Jr.; Dr. R. M. Bader) Wright-Patterson AFB, OH 45433
4	HQ USAF (AFRDQ; AFRDOSM; AFRDPM; AFRD) Washington, DC 20330	3	AFML (MAMD, Dr. T. Nicholas; MANC, Mr. D. Schmidt;
1	AFSC (DSCPSL) Andrews AFB		MAX, Dr. A. M. Lovelace) Wright-Patterson AFB, OH 45433
1	Washington, DC 20331 HQ AFSC	2	FTD (TDPTN; TDFBD, J.D.Pumphrey) Wright-Patterson AFB, OH 45433
,	Andrews AFB Washington, DC 20334	1	Headquarters Energy Research and Development Administration
1	AFRDL (M. Raleigh) Edwards AFB, CA 93523		Dept of Military Applications Washington, DC 20545
2	AFATL (ATRD, R. Brandt) Eglin AFB, FL 32542	1	Energy Research and Development Administration Deputy Manager of Engineering
1	ADTC (ADBPS-12) Eglin AFB, FL 32542		ATTN: W. H. Jackson P. O. Box E Oak Ridge, TN 37830

No. o Copie		No. of Copies	
1	Director ATTN: J. Nall P. O. Box 1925 Washington, DC 20505	1	National Academy of Sciences ATTN: Mr. D. G. Groves 2101 Constitution Avenue, NW Washington, DC 20418
2	Director National Aeronautics and Space Administration Lewis Research Center ATTN: Frank Belles G. Pinkas 21000 Brook Park Road Cleveland, OH 44135	1	Aeronautical Research Associates of Princeton, Inc. ATTN: Dr. C. Donaldson 50 Washington Road Princeton, New Jersey 08540 Aerospace Corporation ATTN: Dr. Harris Mayer
2	National Aeronautics and Space Administration Aerospace Safety Research and Data Institute ATTN: Mr. S. Weiss Mail Stop 6-2 Mr. R. Kemp Mail Stop 6-2 Lewis Research Center	2	P.O. Box 95085 Los Angeles, California 90045 AVCO Corporation Structures and Mechanics Dept. ATTN: Dr. William Broding Mr. J. Gilmore Wilmington, Massachusetts 01887
1	Cleveland, OH 44135 Director National Aeronautics and Space Administration Scientific and Technical Information Facility P. O. Box 8757 Baltimore/Washington International Airport, MD 2124	1 10	The Boeing Company Aerospace Group ATTN: Dr. Peter Grafton Dr. D. Strome Mail Stop 8C-68 Seattle, Washington 98124 Dr. J. C. Shang General American Research Div General American Transportation
1	Director Lawrence Livermore Laboratory Technical Information Division P. O. Box 808 Livermore, CA 94550		Corp 7449 N. Natchez Avenue Niles, Illinois 60648 Hercules, Inc.
1	Director Los Alamos Scientific Lab ATTN: Dr. J. Taylor P. O. Box 1663 Los Alamos, NM 87544		ATTN: Billings Brown Box 93 Magna, UT 84044 J. G. Engineering Research Associates 3831 Menlo Drive Baltimore, Maryland 21215

No. of Copies	Organization	No. of Copies	
ATT 83 Nor	an-Avidyne N: Dr. N. P. Hobbs Mr. S. Criscione Second Avenue thwest Industrial Park	2	Sandia Laboratories ATTN: Infor Distr Division Dr. W. A. von Riesemann Albuquerque, New Mexico 87115
3 Kam	lington, Massachusetts 018 an Sciences Corporation N: Dr. F. H. Shelton Dr. D. Sachs	303 2	Battelle Columbus Laboratories ATTN: Dr. L. E. Hulbert Mr. J. E. Backofen, Jr. 505 King Avenue Columbus, Ohio 43201
	Dr. R. Keefe O Garden of the Gods Road orado Springs, Colorado 80	1 0907	Brown University Division of Engineering ATTN: Prof. R. Clifton
ATT	lls Atomic Power Lab. N: Dr. R. A. Powell enectady, New York 12309		Providence, Rhode Island 02912
2 Mar ATT 145	tin Marietta Laboratories N: Dr. P. F. Jordan Mr. R. Goldman 0 S. Rolling Road	1	Georgia Institute of Technology ATTN: Dr. S. Atluri 225 North Avenue, N. W. Atlanta, Georgia 30332
1 McD Wes ATT 300	timore, Maryland 21227 onnell Douglas Astronautics tern Division N: Mr. Samuel D. Mihara O Ocean Park Blvd. ta Monica, California 9040		Massachusetts Institute of Technology Aeroelastic and Structures Research Laboratory ATTN: Dr. E. A. Witmer Cambridge, Massachusetts 02139
Mou ATT	santo Research Corporation nd Laboratory N: Frank Neff misburg, OH 45342	1	Ohio State University Department of Engineering Mechanics ATTN: Prof. K. K. Stevens Columbus, Ohio 43210
ATT	sics International N: Dr. G. Richard Fowles Leandro, California 94577		Southwest Research Institute ATTN: Dr. H. N. Abramson Dr. W. E. Baker
ATT P.O	Associates N: Mr. John Lewis . Box 9695 ina del Rey, CA 90291		Dr. U. S. Lindholm 8500 Culebra Road San Antonio, Texas 78228

No. of Copies Organization

- 1 Stanford Research Institute ATTN: Dr. W. Reuland 306 Wynn Drive, NW Huntsville, Alabama 35805
- 1 Texas A & M University
 Department of Aerospace
 Engineering
 ATTN: Dr. James A. Stricklin
 College Station, Texas 77843
- 1 University of Alabama ATTN: Dr. T. L. Cost P.O. Box 2908 University, Alabama 35486
- University of Delaware Department of Mechanical and Aerospace Engineering ATTN: Prof. J. R. Vinson Newark, Delaware 19711

Aberdeen Proving Ground

Marine Corps Ln Ofc Dir, USAMSAA

ATTN: Dr. J. Sperrazza

Mr. R. Norman, GWD

Cdr, APG

ATTN: STEAP-AD-R/RHA

Cdr, USAEA

ATTN: SAREA-MT-T

Mr. R. Thresher
Dr. D. Katsanis
Mr. B. Jezek
Mr. J. McKivrigan