Project

Deep Learning [CSE477s]

Contents

Contents

1)	Team	n Members	4
2)	Githu	ıb Link	6
	2.1)	Github Link	7
3)	Deep	Learning Approaches Based on Transformer Architectures for Image Captioning Tasks	8
	3.1)	Overview & Problem Statement	9
	3.2)	Objectives & Achievements	9
		3.2.1) Outcome	10
	3.3)	Methodology	10
		3.3.1) Model: Show, Attend and Tell	10
		3.3.2) Loss Functions Compared	10
		3.3.3) Optimizers Compared	11
	3.4)	Other Applicable Methods	12
	3.5)	Preferred Alternatives & Rationale	13
	3.6)	Dataset & Generalizability	13
		3.6.1) Dataset Used	13
		3.6.2) Generalization Challenges	14
		3.6.3) Suggested Improvements	14

Contents (ii)

	3.7)	Results & Comparative Analysis	. 15
		3.7.1) Paper Results Summary	. 15
		3.7.2) Comparison with Other Methods	. 16
	3.8)	Critique & Suggestions	. 17
		3.8.1) Criticisms	. 17
		3.8.2) Suggested Enhancements	. 18
	3.9)	Personal Implementation	
		3.9.1) Implementation Summary	
		3.9.2) Result Comparison	. 19
		3.9.3) Reasons for Gaps	
	3.10)	Screenshots of Sample Outputs	
	3.11)	Training Loss Plot	. 23
	3.12)	Sample Captions	. 24
!)	Refer	rences	. 27
-		References	

1) Team Members

Contents (iv)

Name	ID
Mostafa Hamada Hassan Ahmed	2100587
Zeyad Magdy Roushdy	2100393
Mina Nasser Shehata	2100370
Mina Antony Samy Fahmy	2101022

2) Github Link

Github Link

2.1) Github Link

You can find our Github repository on the following link:

• https://github.com/7ksha/Image_Captioning-

3) Deep Learning Approaches Based on Transformer Architectures for Image

Captioning Tasks

Objectives & Achievements

3.1) Overview & Problem Statement

Image captioning aims to generate natural language descriptions from images. This paper explores:

- The Show, Attend and Tell model (CNN + LSTM + Attention)
- Effects of different loss functions (cross-entropy, MSE, KL divergence, NLL)
- Comparisons of optimizers (Adam, SGD, RMSProp, Adadelta)

This work contributes to AI systems capable of interpreting and describing visual data:

Building AI systems that can understand images and describe them in human language

3.2) Objectives & Achievements

- Evaluate loss functions and optimizers for image captioning tasks
- Study effects of hyperparameter tuning
- Replicate the Show, Attend and Tell model
- Offer practical insights for choosing configurations

Methodology

3.2.1) Outcome

- ✓ Achieved: Comparison of functions/optimizers, identified best combination (Adam + cross-entropy).
- X Limitations: Evaluated only one model; no transformer-based models compared.

3.3) Methodology

3.3.1) Model: Show, Attend and Tell

- Encoder: CNN extracts image features
- **Decoder**: LSTM generates captions with soft attention
- Training: Used teacher forcing

3.3.2) Loss Functions Compared

- Cross-Entropy
- KL Divergence
- Mean Squared Error
- Negative Log-Likelihood

Methodology (ii)

3.3.3) Optimizers Compared

- Adam
- RMSProp
- SGD
- Adadelta

Other Applicable Methods

3.4) Other Applicable Methods

METHOD	APPLICATION	
Vision Transformers (ViT)	Patch-based input encoding + transformer decoder	
DeiT	Efficient variant of ViT	
BLIP / BLIP-2	Multimodal vision-language transformers	
SCST	Reinforcement learning-based caption refinement	
UpDn	Uses object detection features	
CLIPCap	Zero-shot captioning via CLIP	
Hybrid Models	CNN-Transformer combination	
Contrastive Learning	Cross-modal representation learning	

Dataset & Generalizability

3.5) Preferred Alternatives & Rationale

Transformer-based models (ViT, BLIP) are preferred for:

- Better scalability
- Stronger long-range dependency modeling
- Higher accuracy and generalization

LSTM-based models are simpler and good for prototyping but limited in complexity and scope.

3.6) Dataset & Generalizability

3.6.1) Dataset Used

• MS COCO 2014: 120k images with 5 captions each

Dataset & Generalizability (ii)

3.6.2) Generalization Challenges

DOMAIN	GENERALIZATION RISK
Medical/Satellite Images	× Poor generalization
Low-resource Languages	× Poor performance
Smaller Datasets	X Less robust
Clinical Applications	× Not directly applicable

3.6.3) Suggested Improvements

- Test on datasets like Flickr8k/Flickr30k
- Apply domain adaptation or transfer learning
- Add metadata features (age, context, lighting)

Results & Comparative Analysis

3.7) Results & Comparative Analysis

3.7.1) Paper Results Summary

MODEL	RESULT
Best Optimizer	Adam
Best Loss Function	Cross-Entropy
Evaluation Metrics	Top-5 Accuracy, BLEU-4
Model	Show, Attend and Tell

~27–29% BLEU-4 estimated based on architecture.

Results & Comparative Analysis (ii)

3.7.2) Comparison with Other Methods

MODEL	DATASET	BLEU-4	NOTES
Show, Attend and Tell	MS COCO	27%	Baseline
UpDn	MS COCO	36%	Uses object detection
SCST	MS COCO	39%	Reinforcement learning
BLIP	MS COCO	45%	Transformer-based
CLIPCap	MS COCO	42%	Zero-shot capable
User Implementation	Flickr8k	9.71%	Educational demo

Critique & Suggestions

3.8) Critique & Suggestions

3.8.1) Criticisms

- Narrow model choice (only Show, Attend and Tell)
- No transformer or hybrid models
- Only used MS COCO
- Lacks newer metrics (CIDEr, SPICE)
- No qualitative examples (e.g., attention maps)

Personal Implementation

3.8.2) Suggested Enhancements

IMPROVEMENT	BENEFIT	
Use $ViT/DeiT$	Higher accuracy & generalization	
Add examples & maps	Interpretability	
Add beam search	Better output quality	
Report CIDEr/METEOR	Improved evaluation	
Use more/larger datasets	Better robustness	

3.9) Personal Implementation

3.9.1) Implementation Summary

• Encoder: EfficientNetB7

• Decoder: LSTM with attention

• Dataset: Flickr8k

• Training: Cross-entropy + Adam + teacher forcing

Personal Implementation (ii)

3.9.2) Result Comparison

Aspect	Paper (Show, Attend and Tell + $ResNet/VGG$)	Your Implementation
Best Optimizer	Adam	✓ Used Adam
Best Loss Function	Cross-Entropy	✓ Used Cross-Entropy
BLEU-4 Score	1934%	X Achieved 9.71%
METEOR	Not explicitly reported	✓ Measured but low
CIDEr	Not reported	✓ Measured
Caption Quality	High semantic accuracy	Fair, some redundancy
Encoder Used	VGG-16 / ResNet	${\bf Efficient Net B7}$
Attention Visualization	Yes	× Not yet implemented
Beam Search	Yes	X Currently using greedy search

Personal Implementation (iii)

Aspect	Paper (Show, Attend and Tell + ResNet/VGG)	Your Implementation
Multi-GPU Support	Implied	X Single GPU used
Training Time	Longer (full COCO)	Shorter (subset used)

Personal Implementation (iv)

3.9.3) Reasons for Gaps

DIFFERENCE	REASON	
Smaller Dataset	Flickr8k vs MS COCO	
Shorter Training	Fewer epochs	
Greedy Decoding	No beam search	
No Attention Visualization	Omitted	
Simplified Hyperparams	Limited resources	

Screenshots of Sample Outputs

3.10) Screenshots of Sample Outputs

Example format:

a snowboarder is jumping off a jump

a man in a black shirt is sitting on a table

a boy is playing on a toy

a man is surfing on a wave

a group of people are standing on a red building

a black dog is running in the snow

a man is walking on a dog

a black dog is running through the water

a boy in a red shirt is playing in the grass

Training Loss Plot

3.11) Training Loss Plot

Plot showing training vs validation loss:

Sample Captions

3.12) Sample Captions

Image	Ground Truth Caption	Generated Caption
	A child climbing stairs	A girl climbing up the stairs

Sample Captions (ii)

Image	Ground Truth Caption	Generated Caption
Par S	A black dog and a spotted dog are fighting	Two dogs are fighting on the road

Sample Captions (iii)

4) References

References

4.1) References

- [1] R. Castro, I. Pineda, W. Lim, and M. E. Morocho-Cayamcela, "Deep Learning Approaches Based on Transformer Architectures for Image Captioning Tasks," *IEEE Access*, vol. 10, pp. 33679–33694, 2022, doi: 10.1109/ACCESS.2022.3161428.
- [2] "[1502.03032)] Article identifier not recognized." [Online]. Available: https://arxiv.org/abs/1502.03032)
- [3] "Self-critical Sequence Training for Image Captioning." [Online]. Available: http://arxiv.org/abs/1612.00563
- [4] "Baby talk: Understanding and generating simple image descriptions," in CVPR 2011, Jun. 2011, pp. 1601–1608. doi: 10.1109/CVPR.2011.5995466.
- [5] "Corpus-Guided Sentence Generation of Natural Images," in *Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing*, Edinburgh, Scotland, UK.: Association for Computational Linguistics, Jul. 2011, pp. 444–454. [Online]. Available: https://aclanthology.org/D 11-1041/

References (ii)

- [6] M. Tan and Q. V. Le, "EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks." [Online]. Available: http://arxiv.org/abs/1905.11946
- [7] "NLTK :: Natural Language Toolkit." [Online]. Available: https://www.nltk.org/
- [8] "PyCOCOEvalCap Automatic Caption Evaluation Google Search." [Online]. Available: https://www.google.com/search?client=firefox-b-d&q=PyCOCOEvalCap+%E2%80%93+Automatic+Caption+Evaluation
- [9] "Show, Attend and Tell: Neural Image Caption Generation with Visual Attention." [Online]. Available: http://arxiv.org/abs/1502.03044