Le Théorème Fondamental de l'Arithmétique

Pierre VARNIER Antoine GRENIER

18 janvier 2025

Contents

1	Introduction	2
2	Notation et définition	2
	2.1 Définition nombre premier	2
	2.2 Théorème fondamental de l'arithmétique	3
	2.3 Preuve	3
	2.4 Exemple d'une décomposition	3
3	Algorithmes	4
	3.1 Algorithme de décomposition	4
	3.2 Algorithme de PGCD	4
	3.3 Algorithme de PPCM	4
4	Image	5
5	Références	5

1 Introduction

Le théorème fondamental de l'arithmétique prouve que tout entier supérieur ou égal à 2 possède une décomposition unique en facteurs de nombres premiers.

2 Notation et définition

Notons $\mathbb N$ l'ensemble des entiers naturels

Exemple: 1. Desentiers naturels sont parexemples 0, 1, 2...

2.1 Définition nombre premier

Définition : 1. Nombres Premiers

Un nombre premier est un nombre qui ne peut être divisé que par lui-même et par 1.

Exemple: 2. Desexemples denombre spremiers sont 2, 3, 5, 7...

Définition : 2. Le PGCD (Plus Grand Dénominateur Commun)

Le PGCD de 2 nombres est le plus grand entier naturel qui divise simultanément ces 2 nombres.

Exemple : 3. PGCD(24; 36) = 12

Grâce au PGCD, on peut donc trouver les diviseurs communs de 24 et 36, qui sont les diviseurs de 12 : 1; 2; 3; 4; 6; 12

Définition : 3. Le PPCM (Plus Petit Multiple Commun)

Le PPCM de 2 nombres est le plus petit entier strictement positif qui soit multiple de ces deux nombres.

Exemple : 4. PPCM(16; 24) = 48

 $16 \times 3 = 48$ $24 \times 2 = 48$

2.2 Théorème fondamental de l'arithmétique

Théorème : 1. Tout entier naturel $\mathbb{N} \geq 2$ peut être écrit de manière unique (à l'ordre des facteurs près) comme un produit de nombres premiers.

2.3 Preuve

On va d'abord démontrer l'existence d'une décomposition, puis son unicité.

2.3.1 Existence

Lemme: 1. Pour démontrer l'existence, on peut utiliser une recurrence :

- Initialisation : Pour n=2, qui est un nombre premier, la décomposition est lui même soit 2.
- Recurrence:
 - Hypothèse : Supposons que $\forall k \in \mathbb{N} \in [2; n]$, on peut l'écrire comme un produit de nombres premiers.
 - Recurrence : On veut montrer que n+1 peut aussi être écrit comme un produit de nombre premiers :
 - 1. Si n+1 est un nombre premier, alors il est déjà une décomposition en produit de nombres premiers, avec un seule facteur.
 - 2. Si n+1 n'est pas premier, alors il existe 2 entiers a et b tels que n+1=a*b, avec $2 \le a \le b < n+1$. Par hypothèse de recurrence, a et b peuvent être décomposés en produits de nombres premiers. En multipliant ces décompositions, on obtient alors une décomposition de n+1
- Conclusion: On a donc $\forall n \in \mathbb{N}, n > 1$, qui peut être écrit comme un produit de nombres premiers.

2.3.2 Unicité

Lemme : 2. La preuve de l'unicité peut être obtenue à partir du lemme d'Euclide selon lequel, si un nombre premier p divise un produit ab, alors il divise a ou il divise b. Maintenant, prenons deux produits de nombres premiers qui sont égaux. Prenons n'importe quel nombre premier p du premier produit.

2.4 Exemple d'une décomposition

Exemple: 5. 60 peut se décomposer comme:

- $60 = 2 \times 30$
- $60 = 2 \times 2 \times 15$
- $60 = 2^2 \times 3 \times 5$ C'est la décomposition unique.

3 Algorithmes

3.1 Algorithme de décomposition

Algorithme de décomposition

- 1. Entrer un entier $n \geq 2$
- 2. implémenter un i qui va de 2 à \sqrt{n}
- 3. Verifier n modulo i == 0
 - (a) si n% i == 0 i sera un des facteurs premiers de n prendra la valeur de $\frac{n}{i}$ i prendra la valeur 2
 - (b) sinon i prendra la valeur de i + 1
 - (c) si i > sqrtn: n est un nombre premier et fera partie de la factorisation. n prendra la valeur de $\frac{n}{n} = 1$
- 4. On reproduit les étapes précédentes jusqu'à avoir n=1

3.2 Algorithme de PGCD

Algorithme de PGCD

- 1. On peut réutiliser l'algorithme de décomposition précédent sur 2 nombres a et b.
- 2. On compare les valeurs de chacune des 2 décompositions.
 - (a) Si il y a des valeurs en communs : On gardera la plus grande valeur commune.
 - (b) sinon PGCD(a; b) = 1

3.3 Algorithme de PPCM

Algorithme de PPCM

- 1. Entrer 2 nombres a et b.
- 2. Implémenter un i dont les valeurs vont de 2 à b et un j dont les valeurs vont de 2 à a.
- 3. On compare chaque valeur de $b \times j$ et $a \times i$
- 4. On garde les valeurs communes et on retiens la plus petite c'est le PPCM.

4 Image

Voici une image d'écran
4. beginfigure[hbtp] caption Capture centering include
graphics[scale=1].../../../tmp/Captures d'écran/Capture d'écran du 2024-12-03 end
figure

5 Références

• Page Wikipédia sur la décomposition en produit de facteurs premiers.