Algorithms

Lecture Topic: Approximation Algorithms (Part 3)

Roadmap of this lecture:

- 1. Understand approximation algorithms by solving the "Set Covering Problem"
 - 1.1 Define "Set Covering Problem".
 - 1.2 A greedy approximation algorithm for "Set Covering Problem".
 - 1.3 Analyze the approximation ratio of the algorithm.

Set-Covering Problem

Input: A set $X = \{x_1, x_2, \dots, x_n\}$ of n elements.

A family $F = \{S_1, S_2, \dots, S_m\}$ of m subsets of X, whose union equals X. That is, $S_i \subseteq X$ for $i = 1, 2, \dots, m$; and $X = \bigcup S_i$.

Output: A minimum-size subfamily $C \subseteq F$ whose members cover all of X.

(That is, $X = \bigcup S$, and |C| is minimized.) $S \in C$

Set-Covering Problem

Input: A set $X = \{x_1, x_2, \dots, x_n\}$ of n elements.

A family $F = \{S_1, S_2, \dots, S_m\}$ of m subsets of X, whose union equals X.

That is, $S_i \subseteq X$ for $i = 1, 2, \dots, m$; and $X = \bigcup_{i=1}^{m} S_i$.

Output: A minimum-size subfamily $C \subseteq F$ whose members cover all of X.

(That is, $X = \bigcup_{S \in C} S$, and |C| is minimized.)

Set-Covering Problem

Input: A set $X = \{x_1, x_2, \dots, x_n\}$ of n elements.

A family $F = \{S_1, S_2, \dots, S_m\}$ of m subsets of X, whose union equals X.

That is, $S_i \subseteq X$ for $i = 1, 2, \dots, m$; and $X = \bigcup_{i=1}^{m} S_i$.

Output: A minimum-size subfamily $C \subseteq F$ whose members cover all of X.

(That is,
$$X = \bigcup_{S \in C} S$$
, and $|C|$ is minimized.)

$$F = \{S_1, S_2, S_3, S_4, S_5, S_6\}$$

Set-Covering Problem

Input: A set $X = \{x_1, x_2, \dots, x_n\}$ of n elements.

A family $F = \{S_1, S_2, \dots, S_m\}$ of m subsets of X, whose union equals X.

That is, $S_i \subseteq X$ for $i = 1, 2, \dots, m$; and $X = \bigcup_{i=1}^{m} S_i$.

Output: A minimum-size subfamily $C \subseteq F$ whose members cover all of X.

(That is,
$$X = \bigcup_{S \in C} S$$
, and $|C|$ is minimized.)

$$F = \{S_1, S_2, S_3, S_4, S_5, S_6\}$$

Set-Covering Problem

Input: A set $X = \{x_1, x_2, \dots, x_n\}$ of n elements.

A family $F = \{S_1, S_2, \dots, S_m\}$ of m subsets of X, whose union equals X.

That is, $S_i \subseteq X$ for $i = 1, 2, \dots, m$; and $X = \bigcup_{i=1}^{m} S_i$.

Output: A minimum-size subfamily $C \subseteq F$ whose members cover all of X.

(That is,
$$X = \bigcup_{S \in C} S$$
, and $|C|$ is minimized.)

$$F = \{S_1, S_2, S_3, S_4, S_5, S_6\}$$

Set-Covering Problem

Input: A set $X = \{x_1, x_2, \dots, x_n\}$ of n elements.

A family $F = \{S_1, S_2, \dots, S_m\}$ of m subsets of X, whose union equals X.

That is, $S_i \subseteq X$ for $i = 1, 2, \dots, m$; and $X = \bigcup_{i=1}^{m} S_i$.

Output: A minimum-size subfamily $C \subseteq F$ whose members cover all of X.

(That is,
$$X = \bigcup_{S \in C} S$$
, and $|C|$ is minimized.)

$$F = \{S_1, S_2, S_3, S_4, S_5, S_6\}$$

Set-Covering Problem

Input: A set $X = \{x_1, x_2, \dots, x_n\}$ of n elements.

A family $F = \{S_1, S_2, \dots, S_m\}$ of m subsets of X, whose union equals X.

That is, $S_i \subseteq X$ for $i = 1, 2, \dots, m$; and $X = \bigcup_{i=1}^{m} S_i$.

Output: A minimum-size subfamily $C \subseteq F$ whose members cover all of X.

(That is,
$$X = \bigcup_{S \in C} S$$
, and $|C|$ is minimized.)

$$F = \{S_1, S_2, S_3, S_4, S_5, S_6\}$$

Set-Covering Problem

Input: A set $X = \{x_1, x_2, \dots, x_n\}$ of n elements.

A family $F = \{S_1, S_2, \dots, S_m\}$ of m subsets of X, whose union equals X.

That is, $S_i \subseteq X$ for $i = 1, 2, \dots, m$; and $X = \bigcup_{i=1}^{m} S_i$.

Output: A minimum-size subfamily $C \subseteq F$ whose members cover all of X.

(That is,
$$X = \bigcup_{S \in C} S$$
, and $|C|$ is minimized.)

$$F = \{S_1, S_2, S_3, S_4, S_5, S_6\}$$

Set-Covering Problem

Input: A set $X = \{x_1, x_2, \dots, x_n\}$ of n elements.

A family $F = \{S_1, S_2, \dots, S_m\}$ of m subsets of X, whose union equals X.

That is, $S_i \subseteq X$ for $i = 1, 2, \dots, m$; and $X = \bigcup_{i=1}^{m} S_i$.

Output: A minimum-size subfamily $C \subseteq F$ whose members cover all of X.

(That is,
$$X = \bigcup_{S \in C} S$$
, and $|C|$ is minimized.)

X: 12 elements

$$F = \{S_1, S_2, S_3, S_4, S_5, S_6\}$$

$$C = \{S_3, S_4, S_5\}$$

Vertex Cover Problem

Set-Covering Problem

reduction

$$k = 2$$

reduction

Vertex Cover Problem

$$X = \{x_1, x_2, x_3, x_4\}$$

$$X = \{x_1, x_2, x_3, x_4\}$$

reduction

Vertex Cover Problem

k = 2

$$X = \{x_1, x_2, x_3, x_4\}$$

$$F = \{S_1, S_2, S_3, S_4\}$$

Vertex Cover Problem

k = 2

reduction
$$X = \{x_1, x_2, x_3, x_4\}$$

$$F = \{S_1, S_2, S_3, S_4\}$$

$$k = 2$$

reduction

Vertex Cover Problem

k = 2

$$X = \{x_1, x_2, x_3, x_4\}$$

$$F = \{S_1, S_2, S_3, S_4\}$$

$$k = 2$$

$$C = \{S_1, S_3\}$$

Vertex Cover Problem

k=2

Set-Covering Problem

reduction
$$X = \{x_1, x_2, x_3, x_4\}$$

$$F = \{S_1, S_2, S_3, S_4\}$$

$$k = 2$$

$$C = \{S_1, S_3\}$$

The Set-Covering Problem (as a decision problem) is NP-complete.

Quiz questions:

- I. What is the relation between the "Set Covering Problem" and the "Vertex Cover Problem"?
- 2. Can we apply an approximation algorithm for "Vertex Cover Problem" to "Set Covering Problem" and get the same approximation ratio?

Roadmap of this lecture:

- 1. Understand approximation algorithms by solving the "Set Covering Problem"
 - 1.1 Pefine "Set Covering Problem".
 - 1.2 A greedy approximation algorithm for "Set Covering Problem".
 - 1.3 Analyze the approximation ratio of the algorithm.

Greedy-Set-Cover (X, F)

1.
$$U_0 = X$$

2.
$$C = \emptyset$$

3.
$$i = 0$$

- 4. while $U_i \neq \emptyset$
- 5. select $S \in F$ that maximizes $|S \cap U_i|$

6.
$$U_{i+1} = U_i - S$$

7.
$$C = C \cup \{S\}$$

8.
$$i = i + 1$$

9. return *C*

Greedy-Set-Cover (X, F)

- 1. $U_0 = X$ U_0 : the set of uncovered elements
- 2. $C = \emptyset$
- 3. i = 0
- 4. while $U_i \neq \emptyset$
- 5. select $S \in F$ that maximizes $|S \cap U_i|$
- 6. $U_{i+1} = U_i S$
- 7. $C = C \cup \{S\}$
- 8. i = i + 1
- 9. return *C*

Greedy-Set-Cover (X, F)

- 1. $U_0 = X$ U_0 : the set of uncovered elements
- 3. i = 0
- 4. while $U_i \neq \emptyset$
- 5. select $S \in F$ that maximizes $|S \cap U_i|$
- 6. $U_{i+1} = U_i S$
- 7. $C = C \cup \{S\}$
- 8. i = i + 1
- 9. return *C*

Greedy-Set-Cover (X, F)

- 1. $U_0 = X$ U_0 : the set of uncovered elements
- 3. i = 0 i: the number of selected subsets
- 4. while $U_i \neq \emptyset$
- 5. select $S \in F$ that maximizes $|S \cap U_i|$
- 6. $U_{i+1} = U_i S$
- 7. $C = C \cup \{S\}$
- 8. i = i + 1
- 9. return *C*

Greedy-Set-Cover (X, F)

- 1. $U_0 = X$ U_0 : the set of uncovered elements
- 3. i = 0 i: the number of selected subsets
- 4. while $U_i \neq \emptyset$ U_i : the set of uncovered elements after i subsets have been chosen
- 5. select $S \in F$ that maximizes $|S \cap U_i|$
- 6. $U_{i+1} = U_i S$
- 7. $C = C \cup \{S\}$
- 8. i = i + 1
- 9. return *C*

Greedy-Set-Cover (X, F)

- 1. $U_0 = X$ U_0 : the set of uncovered elements
- 3. i = 0 i: the number of selected subsets
- 4. while $U_i \neq \emptyset$ U_i : the set of uncovered elements after i subsets have been chosen
- 5. select $S \in F$ that maximizes $|S \cap U_i|$ S: the subset that covers as many new elements as possible
- 6. $U_{i+1} = U_i S$
- 7. $C = C \cup \{S\}$
- 8. i = i + 1
- 9. return *C*

Greedy-Set-Cover (X, F)

- 1. $U_0 = X$ U_0 : the set of uncovered elements
- 3. i = 0 i: the number of selected subsets
- 4. while $U_i \neq \emptyset$ U_i : the set of uncovered elements after i subsets have been chosen
- 5. select $S \in F$ that maximizes $|S \cap U_i|$ S: the subset that covers as many new elements as possible
- 6. $U_{i+1} = U_i S$ U_{i+1} : the set of uncovered elements after i+1 subsets have been chosen
- 7. $C = C \cup \{S\}$
- 8. i = i + 1
- 9. return *C*

Greedy-Set-Cover (X, F)

- 1. $U_0 = X$ U_0 : the set of uncovered elements
- 3. i = 0 i: the number of selected subsets
- 4. while $U_i \neq \emptyset$ U_i : the set of uncovered elements after i subsets have been chosen
- 5. select $S \in F$ that maximizes $|S \cap U_i|$ S: the subset that covers as many new elements as possible
- 6. $U_{i+1} = U_i S$ U_{i+1} : the set of uncovered elements after i+1 subsets have been chosen
- 7. $C = C \cup \{S\}$ C: the subfamily of selected subsets
- 8. i = i + 1
- 9. return *C*

Greedy-Set-Cover (X, F)

- 1. $U_0 = X$ U_0 : the set of uncovered elements
- 3. i = 0 i: the number of selected subsets
- 4. while $U_i \neq \emptyset$ U_i : the set of uncovered elements after i subsets have been chosen
- 5. select $S \in F$ that maximizes $|S \cap U_i|$ S: the subset that covers as many new elements as possible
- 6. $U_{i+1} = U_i S$ U_{i+1} : the set of uncovered elements after i+1 subsets have been chosen
- 7. $C = C \cup \{S\}$ C: the subfamily of selected subsets
- 8. i = i + 1 i: the number of selected subsets
- 9. return *C*

Greedy-Set-Cover (X, F)

- 1. $U_0 = X$ U_0 : the set of uncovered elements
- 3. i = 0 i: the number of selected subsets
- 4. while $U_i \neq \emptyset$ U_i : the set of uncovered elements after i subsets have been chosen
- 5. select $S \in F$ that maximizes $|S \cap U_i|$ S: the subset that covers as many new elements as possible
- 6. $U_{i+1} = U_i S$ U_{i+1} : the set of uncovered elements after i+1 subsets have been chosen
- 7. $C = C \cup \{S\}$ C: the subfamily of selected subsets
- 8. i = i + 1 i: the number of selected subsets
- 9. return C C: the subfamily of selected subsets

Greedy-Set-Cover (X, F)

- 1. $U_0 = X$
- 2. $C = \emptyset$
- 3. i = 0
- 4. while $U_i \neq \emptyset$
- 5. select $S \in F$ that maximizes $|S \cap U_i|$
- 6. $U_{i+1} = U_i S$
- 7. $C = C \cup \{S\}$
- 8. i = i + 1
- 9. return *C*

Idea: Each time, pick a subset that covers as many new elements as possible.

X: 12 elements

$$F = \{S_1, S_2, S_3, S_4, S_5, S_6\}$$

$$C = \{S_3, S_4, S_5\}$$

Greedy-Set-Cover (X, F)

- 1. $U_0 = X$
- 2. $C = \emptyset$
- 3. i = 0
- 4. while $U_i \neq \emptyset$
- 5. select $S \in F$ that maximizes $|S \cap U_i|$
- 6. $U_{i+1} = U_i S$
- 7. $C = C \cup \{S\}$
- 8. i = i + 1
- 9. return *C*

Idea: Each time, pick a subset that covers as many new elements as possible.

X: 12 elements

$$F = \{S_1, S_2, S_3, S_4, S_5, S_6\}$$

$$C = \{S_3, S_4, S_5\}$$

Greedy-Set-Cover (X, F)

- 1. $U_0 = X$
- 2. $C = \emptyset$
- 3. i = 0
- 4. while $U_i \neq \emptyset$
- 5. select $S \in F$ that maximizes $|S \cap U_i|$
- $6. U_{i+1} = U_i S$
- 7. $C = C \cup \{S\}$
- 8. i = i + 1
- 9. return *C*

Idea: Each time, pick a subset that covers as many new elements as possible.

X: 12 elements

$$F = \{S_1, S_2, S_3, S_4, S_5, S_6\}$$

$$C = \{S_3, S_4, S_5\}$$

Greedy-Set-Cover (X, F)

- 1. $U_0 = X$
- 2. $C = \emptyset$
- 3. i = 0
- 4. while $U_i \neq \emptyset$
- 5. select $S \in F$ that maximizes $|S \cap U_i|$
- $6. U_{i+1} = U_i S$
- 7. $C = C \cup \{S\}$
- 8. i = i + 1
- 9. return *C*

Idea: Each time, pick a subset that covers as many new elements as possible.

X: 12 elements

$$F = \{S_1, S_2, S_3, S_4, S_5, S_6\}$$

$$C = \{S_3, S_4, S_5\}$$

Greedy-Set-Cover (X, F)

- 1. $U_0 = X$
- 2. $C = \emptyset$
- 3. i = 0
- 4. while $U_i \neq \emptyset$
- 5. select $S \in F$ that maximizes $|S \cap U_i|$
- 6. $U_{i+1} = U_i S$
- 7. $C = C \cup \{S\}$
- 8. i = i + 1
- 9. return *C*

Idea: Each time, pick a subset that covers as many new elements as possible.

X: 12 elements

$$F = \{S_1, S_2, S_3, S_4, S_5, S_6\}$$

$$C = \{S_3, S_4, S_5\}$$

Quiz questions:

- 1. What is main idea of the above approximation algorithm for "Set Covering Problem"?
- 2. Can you think of an instance for which the above algorithm outputs an optimal solution, and an instance for which it does not?

Roadmap of this lecture:

- 1. Understand approximation algorithms by solving the "Set Covering Problem"
 - 1.1 Define "Set Covering Problem".
 - 1.2 A greedy approximation algorithm for "Set Covering Problem".
 - 1.3 Analyze the approximation ratio of the algorithm.

Proof: Polynomial time.

Greedy-Set-Cover (X, F)

1.
$$U_0 = X$$

2.
$$C = \emptyset$$

3.
$$i = 0$$

- 4. while $U_i \neq \emptyset$ At most min{|X|, |F|} = O(|X| + |F|) iterations
- 5. select $S \in F$ that maximizes $|S \cap U_i|$
- 6. $U_{i+1} = U_i S$ In each iteration, time complexity is at most $O(|X| \cdot |F|)$
- 7. $C = C \cup \{S\}$
- 8. i = i + 1
- 9. return *C*

Time complexity of algorithm: $O(|X| \cdot |F| \cdot (|X| + |F|))$

Proof: Let's analyze the approximation ratio.

Greedy-Set-Cover (X, F)

1.
$$U_0 = X$$

2.
$$C = \emptyset$$

3.
$$i = 0$$

4. while $U_i \neq \emptyset$

5. select $S \in F$ that maximizes $|S \cap U_i|$

6.
$$U_{i+1} = U_i - S$$

7.
$$C = C \cup \{S\}$$

8.
$$i = i + 1$$

9. return *C*

 k^* : size of an optimal set cover

k: size of the set cover returned by the algorithm

Claim: Every U_i can be covered by at most k^* subsets

Proof: Let's analyze the approximation ratio.

Greedy-Set-Cover (X, F)

1.
$$U_0 = X$$

2.
$$C = \emptyset$$

3.
$$i = 0$$

4. while
$$U_i \neq \emptyset$$

5. select
$$S \in F$$
 that maximizes $|S \cap U_i|$

6.
$$U_{i+1} = U_i - S$$

7.
$$C = C \cup \{S\}$$

8.
$$i = i + 1$$

9. return *C*

 k^* : size of an optimal set cover

k: size of the set cover returned by the algorithm

Claim: Every U_i can be covered by at most k^* subsets

Claim: S covers at least $\frac{|U_i|}{k^*}$ elements in U_i

Proof: Let's analyze the approximation ratio.

Greedy-Set-Cover (X, F)

1.
$$U_0 = X$$

2.
$$C = \emptyset$$

3.
$$i = 0$$

4. while
$$U_i \neq \emptyset$$

5. select
$$S \in F$$
 that maximizes $|S \cap U_i|$

$$6. U_{i+1} = U_i - S$$

7.
$$C = C \cup \{S\}$$

8.
$$i = i + 1$$

9. return *C*

 k^* : size of an optimal set cover

k: size of the set cover returned by the algorithm

Claim: Every U_i can be covered by at most k^* subsets

Claim: S covers at least $\frac{|U_i|}{k^*}$ elements in U_i

$$|U_{i+1}| \le |U_i| - \frac{|U_i|}{k^*} = |U_i|(1 - 1/k^*)$$

Proof: Let's analyze the approximation ratio.

Greedy-Set-Cover (X, F)

1.
$$U_0 = X$$

2.
$$C = \emptyset$$

3.
$$i = 0$$

4. while
$$U_i \neq \emptyset$$

5. select
$$S \in F$$
 that maximizes $|S \cap U_i|$

6.
$$U_{i+1} = U_i - S$$

7.
$$C = C \cup \{S\}$$

8.
$$i = i + 1$$

9. return *C*

 k^* : size of an optimal set cover

k: size of the set cover returned by the algorithm

Claim: Every U_i can be covered by at most k^* subsets

Claim: S covers at least $\frac{|U_i|}{k^*}$ elements in U_i

$$|U_{i+1}| \le |U_i| - \frac{|U_i|}{k^*} = |U_i|(1 - 1/k^*)$$

$$|U_0| = |X|$$

$$|U_1| \le |U_0|(1 - 1/k^*) = |X|(1 - 1/k^*)$$

$$|U_2| \le |U_1|(1 - 1/k^*) \le |X|(1 - 1/k^*)^2$$

• • •

$$|U_i| \le |X| (1 - 1/k^*)^i$$

Proof: Let's analyze the approximation ratio.

Greedy-Set-Cover (X, F)

1.
$$U_0 = X$$

2.
$$C = \emptyset$$

3.
$$i = 0$$

4. while
$$U_i \neq \emptyset$$

5. select $S \in F$ that maximizes $|S \cap U_i|$

6.
$$U_{i+1} = U_i - S$$

7.
$$C = C \cup \{S\}$$

8.
$$i = i + 1$$

9. return *C*

 k^* : size of an optimal set cover

k: size of the set cover returned by the algorithm

$$|U_i| \le |X| (1 - 1/k^*)^i$$

Let $c = \lceil \ln |X| \rceil$, then

$$|U_{ck^*}| \le |X|(1-1/k^*)^{ck^*} = |X|[(1-1/k^*)^{k^*}]^c$$

Proof: Let's analyze the approximation ratio.

Greedy-Set-Cover (X, F)

1.
$$U_0 = X$$

2.
$$C = \emptyset$$

3.
$$i = 0$$

4. while
$$U_i \neq \emptyset$$

5. select
$$S \in F$$
 that maximizes $|S \cap U_i|$

6.
$$U_{i+1} = U_i - S$$

7.
$$C = C \cup \{S\}$$

8.
$$i = i + 1$$

9. return *C*

 k^* : size of an optimal set cover

k: size of the set cover returned by the algorithm

$$|U_i| \le |X| (1 - 1/k^*)^i$$

Let $c = \lceil \ln |X| \rceil$, then

$$|U_{ck^*}| \le |X|(1-1/k^*)^{ck^*} = |X|[(1-1/k^*)^{k^*}]^c$$

Known fact: $1 + x \le e^x$ for all real x

Proof: Let's analyze the approximation ratio.

Greedy-Set-Cover (X, F)

1.
$$U_0 = X$$

2.
$$C = \emptyset$$

3.
$$i = 0$$

4. while
$$U_i \neq \emptyset$$

5. select
$$S \in F$$
 that maximizes $|S \cap U_i|$

6.
$$U_{i+1} = U_i - S$$

7.
$$C = C \cup \{S\}$$

8.
$$i = i + 1$$

9. return *C*

 k^* : size of an optimal set cover

k: size of the set cover returned by the algorithm

$$|U_i| \le |X|(1 - 1/k^*)^i$$

Let $c = \lceil \ln |X| \rceil$, then

$$|U_{ck^*}| \le |X|(1-1/k^*)^{ck^*} = |X|[(1-1/k^*)^{k^*}]^c$$

Known fact: $1 + x \le e^x$ for all real x

$$|U_{ck^*}| < |X| [(e^{-1/k^*})^{k^*}]^c = |X| e^{-c} = |X| e^{-\lceil \ln|X| \rceil}$$

$$\le |X| e^{-\ln|X|} = |X| \cdot \frac{1}{|X|} = 1$$

Proof: Let's analyze the approximation ratio.

Greedy-Set-Cover (X, F)

1.
$$U_0 = X$$

2.
$$C = \emptyset$$

3.
$$i = 0$$

4. while
$$U_i \neq \emptyset$$

5. select
$$S \in F$$
 that maximizes $|S \cap U_i|$

6.
$$U_{i+1} = U_i - S$$

7.
$$C = C \cup \{S\}$$

8.
$$i = i + 1$$

9. return *C*

 k^* : size of an optimal set cover

k: size of the set cover returned by the algorithm

$$|U_i| \le |X| (1 - 1/k^*)^i$$

Let $c = \lceil \ln |X| \rceil$, then

$$|U_{ck^*}| \le |X|(1-1/k^*)^{ck^*} = |X|[(1-1/k^*)^{k^*}]^c$$

Known fact: $1 + x \le e^x$ for all real x

$$|U_{ck^*}| < |X|[(e^{-1/k^*})^{k^*}]^c = |X|e^{-c} = |X|e^{-\lceil \ln|X| \rceil}$$

$$\leq |X|e^{-\ln|X|} = |X| \cdot \frac{1}{|X|} = 1$$

$$k \le ck^*$$

The algorithm is a polynomial-time $O(\lg X)$ -approximation algorithm. Theorem:

Let's analyze the approximation ratio. Proof:

Greedy-Set-Cover (X, F)

1.
$$U_0 = X$$

2.
$$C = \emptyset$$

3.
$$i = 0$$

4. while
$$U_i \neq \emptyset$$

5. select
$$S \in F$$
 that maximizes $|S \cap U_i|$

6.
$$U_{i+1} = U_i - S$$

7.
$$C = C \cup \{S\}$$

8.
$$i = i + 1$$

 k^* : size of an optimal set cover

k: size of the set cover returned by the algorithm

$$|U_i| \le |X| (1 - 1/k^*)^i$$

Let $c = \lceil \ln |X| \rceil$, then

$$|U_{ck^*}| \le |X|(1-1/k^*)^{ck^*} = |X|[(1-1/k^*)^{k^*}]^c$$

Known fact: $1 + x \le e^x$ for all real x

$$|U_{ck^*}| < |X|[(e^{-1/k^*})^{k^*}]^c = |X|e^{-c} = |X|e^{-\lceil \ln|X| \rceil}$$

$$\leq |X|e^{-\ln|X|} = |X| \cdot \frac{1}{|X|} = 1$$

$$\leq ck^*$$

$$k \le ck^* \qquad \qquad \frac{k}{k^*} \le c = \lceil \ln|X| \rceil$$

 $O(\ln X)$

Quiz questions:

- I. What is the main method we used to find the approximation ratio of the algorithm for "Set Covering Problem"?
- 2. Is the above approximation ratio a constant, or a function that grows with the input size of the problem?