TP1 Polynômes

Exercice 1 Représentation creuse par coefficients

On associe à chaque polynôme la liste des couples contenant le degré et le coefficient (flottant) correspondant, ces couples étant rangés par ordre croissant selon le degré. Par exemple, le polynôme $2 - X + 5X^3$ sera codé par [(0, 2.); (1, -1.); (3, 5.)]. On définira donc le type polynôme par

```
type poly = (int*float) list;;
```

- 1 Écrire une fonction qui calcule le coefficient de degré i d'un polynôme. Si ce polynôme ne contient pas de monôme de degré i, la fonction renverra 0.
- 2 Écrire une fonction qui calcule la somme de deux polynômes.
- **3 -** Écrire une fonction qui calcule le produit de deux polynômes avec l'algorithme de Karatsuba. On écrira d'abord les fonctions auxiliaires suivantes :
 - -- multCoeff : poly -> float -> poly : l'appel multCoeff p a renvoie le produit du polynôme p par la constante a;
 - degre : poly -> int : l'appel degre p renvoie le degré du polynôme p;
 - multXn : poly -> int -> poly : l'appel multXn p n renvoie le produit du polynôme p par le monôme X^n ;
 - cut : poly -> int -> poly * poly : l'appel cut p i renvoie le couple de polynômes (p_0, p_1) tel que $p = p_0 + X^i p_1$;
 - multNaive : poly -> poly -> poly : l'appel multNaive p q renvoie le produit des polynômes p et q, calculé par l'algorithme de multiplication naïve.
- 4 Écrire une fonction qui calcule le quotient et le reste de la division euclidienne de deux polynômes en utilisant la méthode de Newton. On écrira d'abord les fonctions auxiliaires suivantes :
 - -- renverse : int -> poly -> poly : l'appel renverse k p renvoie le renversé d'ordre k de p;
 - moduloXn: poly -> int -> poly: l'appel moduloXn p n renvoie le reste de la division de p par le monôme X^n ;
 - inverse_mod : poly -> int -> poly : l'appel inverse_mod p m renvoie l'inverse de p modulo X^m , obtenu par la méthode des itérations de Newton (voir cours et TD).
- 5 Écrire une fonction qui évalue un polynôme en une valeur selon le schéma de Horner.

Exercice 2 Interpolation de Lagrange

Soient $n \in \mathbb{N}^*$ et x_0, x_1, \dots, x_n une suite de nombres flottants distincts. On leur associe les polynômes L_0, L_1, \dots, L_n définis pour $0 \le j \le n$ par

$$L_j(X) = \prod_{\substack{k=0\\k\neq j}}^n \frac{X - x_k}{x_j - x_k}.$$

Soit f une fonction définie et continue sur un intervalle I de \mathbb{R} . On suppose que, pour tout entier k tel que $0 \le k \le n$, la valeur x_k appartient à I. On montre que le le polynôme d'interpolation de Lagrange défini par

$$P_f(X) = \sum_{j=0}^{n} f(x_j) L_j(X)$$

vérifie $P_f(x_i) = f(x_i)$ pour tout $i \in \{0, 1, \dots, n\}$.

- 1 Écrire la fonction qui retourne le polynôme L_i .
- 2 Écrire la fonction qui calcule le polynôme P_f .
- $\bf 3$ Déterminer le polynôme d'interpolation de $f:x\mapsto 64/(x^2+7)$ en considérant $x_0=-5,$ $x_1=-3,$ $x_2=-1,$ $x_3=1,$ $x_4=3$ et $x_5=5.$