$\begin{array}{c} \mathsf{File} \to \mathsf{F} \\ \mathsf{R} \to \mathsf{TME} \\ \mathsf{TMB} \to \mathsf{F} \\ \mathsf{R} \to \mathsf{File} \end{array}$

Data input/output TMB and stock assessment

Arni Magnusson Anders Nielsen

ICES, 2-6 Nov 2015

Data flow

file
$$\rightarrow$$
 R \rightarrow TMB \rightarrow R \rightarrow file

Read into R

file
$$\rightarrow$$
 R \rightarrow TMB \rightarrow R \rightarrow file

Read into R

$$\textbf{file} \ \rightarrow \ \textbf{R} \ \rightarrow \ \mathsf{TMB} \ \rightarrow \ \mathsf{R} \ \rightarrow \ \mathsf{file}$$

Text file

read.table
read.csv

scan

Read into R

$$\textbf{file} \ \rightarrow \ \textbf{R} \ \rightarrow \ \mathsf{TMB} \ \rightarrow \ \mathsf{R} \ \rightarrow \ \mathsf{file}$$

Text file

read.table
read.csv
scan

Sometimes no data file

simulated data, URL, database, example dataset, etc.

file
$$\rightarrow$$
 R \rightarrow TMB \rightarrow R \rightarrow file

$$\mathsf{file} \ \to \ \textbf{R} \ \to \ \textbf{TMB} \ \to \ \mathsf{R} \ \to \ \mathsf{file}$$

R

file
$$\rightarrow$$
 R \rightarrow TMB \rightarrow R \rightarrow file

R TMB

list(x=10, y=c(1.1, 2.2)) DATA_INTEGER(x)
DATA_VECTOR(y)

file
$$ightarrow$$
 R $ightarrow$ TMB $ightarrow$ R $ightarrow$ file

R TMB

list(x=10, y=c(1.1, 2.2)) DATA_INTEGER(x)
DATA_VECTOR(y)

data <- list()
data\$x <- 10
data\$y <- c(1.1, 2.2)
data\$z <- mymatrix</pre>

DATA ARRAY(z)

Passing data to TMB

data\$z <- mymatrix

file
$$ightarrow$$
 R $ightarrow$ TMB $ightarrow$ R $ightarrow$ file

TMB data types

Integer DATA_INTEGER DATA_IVECTOR DATA_IARRAY

Double DATA_SCALAR DATA_VECTOR DATA_ARRAY

Pass list
TMB data types
Size
Indexing from 0

TMB data types

Integer	DATA_INTEGER	DATA_IVECTOR	DATA_IARRAY
Double	DATA_SCALAR	DATA_VECTOR	DATA_ARRAY
Matrix			DATA_MATRIX
Sparse			DATA_SPARSE_MATRIX
Factor		DATA_FACTOR	

Exercise

Multiple linear regression in R

```
lm(1/mpg \sim wt + hp, data=mtcars)
```

Now implement this model in TMB

Size

Automatic size allocation

Automatic size allocation

Size can be accessed within C++

```
Length .size()
Rows .dim[0]
Columns .dim[1]
```

Indexing from 0

In C++ the first element is number 0

Indexing from 0

In C++ the first element is number 0

Indexing from 0

In C++ the first element is number 0

Report to R

file
$$\rightarrow$$
 R \rightarrow TMB \rightarrow R \rightarrow file

Report to R

file
$$\rightarrow$$
 R \rightarrow TMB \rightarrow R \rightarrow file

Estimated parameters, derived quantities, random effects, SE

Report to R

file
$$\rightarrow$$
 R \rightarrow TMB \rightarrow R \rightarrow file

Estimated parameters, derived quantities, random effects, SE

TMB	R
ADREPORT(y)	<pre>sdreport(model) summary(sdreport(model))</pre>
REPORT(x)	model\$report()

Parameter list

Convert estimates and SE from tabular to list format

```
pl <- model$env$parList()
jointrep <- sdreport(model, getJointPrecision=TRUE)
allsd <- sqrt(diag(solve(jointrep$jointPrecision)))
plsd <- model$env$parList(par=allsd)</pre>
```

Becomes useful when we work with larger models

Write to file

$$\mathsf{file} \ \to \ \mathsf{R} \ \to \ \mathsf{TMB} \ \to \ \boldsymbol{\mathsf{R}} \ \to \ \boldsymbol{\mathsf{file}}$$

Write to file

$$\mathsf{file} \ \to \ \mathsf{R} \ \to \ \mathsf{TMB} \ \to \ \boldsymbol{\mathsf{R}} \ \to \ \boldsymbol{\mathsf{file}}$$

Text file

```
write.table
write.csv
write
```