

Propriedades periódicas dos elementos

Vanize Caldeira da Costa

Uruguaiana, agosto de 2020

A tabela periódica pode ser utilizada para relacionar as propriedades dos elementos com suas estruturas atômicas

Propriedades periódicas

À medida que o número atômico aumenta, assumem valores crescentes ou decrescentes em cada período, ou seja, repetem-se periodicamente.

Exemplo: energia de ionização

Propriedades aperiódicas

Valores variam (crescem ou decrescem) à medida que o número atômico aumenta, contudo, não se repetem em períodos regulares.

Tamanho atômico

Raio atômico – metade da distância entre os centros de dois átomos (de um mesmo elemento) ligados quimicamente.

O tamanho do átomo é uma característica difícil de ser determinada, pois a eletrosfera de um átomo não possui limites bem estabelecidos.

De maneira geral, para comparar o tamanho dos átomos, devemos levar em conta dois fatores:

Número de níveis (camadas): quanto maior o número de níveis, maior será o tamanho do átomo.

Caso os átomos comparados apresentem o mesmo número de níveis (camadas), devese utilizar outro critério.

Número de prótons: o átomo que apresenta maior número de prótons exerce uma maior atração sobre seus elétrons, o que ocasiona uma redução no seu tamanho.

Raio atômico

Ao longo de um mesmo período, ocorre um aumento no número de prótons no núcleo dos elementos. Como todos elementos têm o mesmo número de camadas e o núcleo passa a atrair os elétrons mais fortemente a medida que o número de prótons aumenta, o raio atômico tende a ser menor da esquerda para direita ao longo de um período.

(níveis de energia)

Raios atômicos (pm) dos elementos representativos (fonte: OLIVEIRA; FERNANDES, 2006)

Raio atômico

Com base no que foi discutido até o momento, qual dos elementos abaixo apresenta maior raio atômico?

Sr apresenta 5 camadas, enquanto, o Mg apresenta apenas 3

Por possuir mais prótons, o núcleo do Br atrai mais fortemente a eletrosfera, tendo um raio atômico menor que o Ga

Raio iônico (cátion)

Existe uma variação entre o raio atômico do elemento e de seu íon...

Com a formação de um cátion orbitais de maior energia são desocupados, por consequência, <u>os cátions são menores que os átomos que lhes deram origem</u>.

Exemplo

O Li (1s² 2s¹) possui um raio atômico de 1,34 Å, enquanto seu cátion Li⁺ (1s²) possui um raio de 0,68 Å. Esta variação ocorre porque ao perder um elétron, o lítio acaba eliminando uma camada.

Raio iônico

Existe uma variação entre o raio atômico do elemento e de seu íon...

Quando um átomo neutro ganha elétrons, o aumento nas repulsões elétron-elétron faz com que os elétrons se estendam mais ao longo do espaço. Assim, os <u>ânions</u> são maiores que os átomos que os deram origem.

Exemplo:

O Cl, ao ganhar um elétron, passa de um raio de 0,99 Å para 1,81 Å. Com um mesmo número de camadas e de prótons, agora o íon acomoda um elétron a mais. Isso aumenta a repulsão elétron-elétron e, por consequência, o seu raio.

Energia de ionização

Energia necessária para a remoção de um elétron da camada de valência de um átomo no estado gasoso, levando à formação de cátions.

$$Mg_{(g)} \rightarrow Mg_{(g)}^{+} + e^{-}$$
 $EI = 738kJ/mol$
 $1s^{2}2s^{2}2p^{6}3s^{2}$ $1s^{2}2s^{2}2p^{6}3s^{1}$
 $Mg_{(g)}^{+} \rightarrow Mg_{(g)}^{2+} + e^{-}$ $EI = 1451\,kJ/mol$
 $1s^{2}2s^{2}2p^{6}3s^{1}$ $1s^{2}2s^{2}2p^{6}$
 $Mg_{(g)}^{2+} \rightarrow Mg_{(g)}^{3+} + e^{-}$ $EI = 7733\,kJ/mol$
 $1s^{2}2s^{2}2p^{6}$ $1s^{2}2s^{2}2p^{5}$ Flétrons de camadas ma

Elétrons de camadas mais internas são mais difíceis de serem removidos, devido a sua maior proximidade com o núcleo

Energia de ionização

Quanto maior for o raio atômico, menor será a energia de ionização, visto que os elétrons da camada de valência estarão mais afastados do núcleo.

 A energia de ionização tende a diminuir com o aumento do período (maior número de camadas);

 A energia de ionização tende a aumentar com o número atômico ao longo de um período (aumento da carga nuclear).

Fonte: OLIVEIRA; FERNANDES, 2006.

Energia de ionização

Com base no que foi discutido até o momento, indique qual elemento apresenta a maior energia de ionização em cada um dos pares mostrados abaixo.

- a) Na e Rb
- b) P e Cl

A capacidade de um átomo, na fase gasosa, capturar elétrons é avaliada pela sua afinidade eletrônica. Quanto maior for a afinidade eletrônica, maior será a energia liberada durante a adição de um elétron a um átomo e, por consequência, mais negativo será o seu valor.

Aumento da carga nuclear

Aumento da atração entre o núcleo e os elétrons de valência

Em geral, a afinidade eletrônica se torna mais negativa ao longo de um período conforme se avança no sentido dos halogênios

Os halogênios possuem uma elevada afinidade eletrônica por adquirem a configuração de um gás nobre (subcamada p completa) ao ganharem um elétron, formando um íon estável

A afinidade eletrônica dos gases nobres tem um valor positivo, o que indica que o ânion teria uma energia mais elevada que a do átomo e do elétron separados

A adição de um elétron a um gás nobre envolveria o preenchimento de uma nova subcamada de maior energia

• Em um mesmo grupo, quanto mais acima o átomo se encontra, menor o seu tamanho e mais próximo do núcleo o elétron será adicionado, o que geralmente resulta em uma maior afinidade eletrônica.

H -73							He >0
Li	Be >0	B	C	N	O	F	Ne
-60		−27	-122	>0	-141	-328	>0
Na -53	Mg >0	Al -43	Si -134	P -72	S -200	Cl -349	Ar >0
K	Ca	Ga	Ge	A s	Se	Br	Kr >0
-48	-2	-30	-119	-78	-195	-325	
Rb	Sr	In	Sn	Sb	Te	I	Xe
-47	-5	-30	-107	-103	-190	-295	>0
1A	2A	3A	4A	5A	6A	7A	8A

Com base no que foi discutido até o momento, indique qual elemento apresenta a maior afinidade eletrônica em cada um dos pares mostrados abaixo.

- a) Cle I
- b) Mg e S

Eletronegatividade

É a tendência de um átomo em atrair elétrons para si. Por isso, segue a mesma tendência observada para a afinidade eletrônica.

Variação da eletronegatividade na tabela periódica

Eletronegatividade

Com base no que foi discutido até o momento, qual dos elementos abaixo apresenta maior eletronegatividade?

- 1. Indique a alternativa que mostra a ordem crescente de raio atômico (tamanho), quando comparados os metais alumínio, magnésio e sódio.
 - a) alumínio, magnésio e sódio
 - b) sódio, magnésio, alumínio
 - c) magnésio, sódio e alumínio
 - d) alumínio, sódio e magnésio
- 2. Considere as afirmativas abaixo:
 - A primeira energia de ionização é a energia necessária para remover um elétron de um átomo neutro no estado gasoso.
 - A primeira energia de ionização do sódio é maior do que a do magnésio.
 - III. Nos períodos da tabela periódica, o raio atômico sempre cresce com o número atômico.
 - IV. A segunda energia de ionização de qualquer átomo é sempre maior do que a primeira.

São afirmativas CORRETAS:

- a) I, II, III e IV b) I e II

- c) I e IV
- d) II e III e) II e IV

3. Dentre os elementos mostrados abaixo, aquele que necessita de uma menor energia para retirar um elétron do seu átomo neutro é:

a) Li

b) Na

c) K

d) Rb

e) Cs

4. Dados os elementos **A** (Z = 49), **B** (Z = 55) e **D** (Z = 36), coloque-os em ordem crescente com relação à afinidade eletrônica.

- 5. (PUC modificada) Com relação à classificação periódica dos elementos, pode-se afirmar que:
 - a) O rubídio é o elemento de menor tamanho do 5° período.
 - b) O silício é mais eletronegativo que o enxofre.
 - c) O xenônio é o elemento de maior energia de ionização do 5° período.
 - d) O magnésio apresenta uma maior afinidade eletrônica que o alumínio.

- 6. Considere as seguintes propriedades periódicas:
 - Baixa energia de ionização;
 - Alta eletronegatividade;
 - Baixa afinidade eletrônica.

A sequência dos elementos que apresentam as propriedades relacionadas, na respectiva ordem, é:

- a) Li, Be, O
- b) Ne, F, Br
- c) He, K, K
- d) Cs, O, Li
- e) K, Rb, F

7. (ITA-SP) Dadas as configurações eletrônicas de átomos no estado fundamental:

- I. $1s^2 2s^2 2p^6 3s^2 3p^6$
- II. $1s^2 2s^2 2p^6 3s^2$
- III. 1s² 2s² 2p⁶ 3s² 3p⁶ 4s¹
- IV.1s² 2s² 2p⁶ 3s² 3p⁵

É errado afirmar que:

- a) dentre os átomos mostrados acima, o átomo I tem a maior energia de ionização.
- b) a perda de dois elétrons pelo átomo II leva à formação do cátion Mg²⁺.
- c) Dentre os átomos mostrados acima, o átomo III possui a maior afinidade eletrônica.
- d) O átomo IV é o mais eletronegativo.

8. Com base na tabela periódica a seguir, na qual as letras representam elementos

químicos, indique:

- a) O elemento com o maior e o menor raio atômico (tamanho).
- b) Dentre os elementos representativos, aquele que apresenta a maior energia de ionização.
- c) O elemento que apresenta a maior eletronegatividade.
- d) Dentre os elementos do segundo período, aquele que apresenta a maior afinidade eletrônica.
- e) Dentre os elementos do quinto período, aquele que apresenta a menor energia de ionização.