Upper bounding the commuting operator value of a nonlocal game

Angus Lowe

December 2020

 $\boldsymbol{\cdot}$ Nonlocal games, classical strategies, linear programming

- · Nonlocal games, classical strategies, linear programming
- (Commuting operator) quantum strategies, semidefinite programming, necessary conditions

- · Nonlocal games, classical strategies, linear programming
- (Commuting operator) quantum strategies, semidefinite programming, necessary conditions
- · The NPA hierarchy, example for CHSH game

- · Nonlocal games, classical strategies, linear programming
- (Commuting operator) quantum strategies, semidefinite programming, necessary conditions
- · The NPA hierarchy, example for CHSH game
- · Convergence to the commuting operator value

- · Nonlocal games, classical strategies, linear programming
- (Commuting operator) quantum strategies, semidefinite programming, necessary conditions
- · The NPA hierarchy, example for CHSH game
- · Convergence to the commuting operator value
- Conclusion

Nonlocal games

•
$$x, y \sim \pi(x, y)$$

Nonlocal games

- $x, y \sim \pi(x, y)$
- Win condition checker $V(a,b,x,y) \in \{0,1\}$

Nonlocal games

- $x, y \sim \pi(x, y)$
- Win condition checker $V(a, b, x, y) \in \{0, 1\}$

win prob. =
$$\sum_{x,y} \pi(x,y) \sum_{a,b} p_{abxy} V(a,b,x,y)$$
 (1)

Example: CHSH game

• $a, b, x, y \in \{0, 1\}$. x, y given uniformly at random.

$$V(a,b,x,y) = \begin{cases} 1 & \text{if } a \oplus b = x \land y \\ 0 & \text{otherwise} \end{cases}$$
 (2)

Example: CHSH game

• $a, b, x, y \in \{0, 1\}$. x, y given uniformly at random.

$$V(a,b,x,y) = \begin{cases} 1 & \text{if } a \oplus b = x \land y \\ 0 & \text{otherwise} \end{cases}$$
 (2)

• The maximum winning probability is 3/4

3

· Alice and Bob should use a deterministic strategy (d_{abxy})

• Alice and Bob should use a deterministic strategy (d_{abxy})

Definition

The $local\ set\ \mathcal{L}$ of a game is the convex hull of its deterministic points.

4

• Alice and Bob should use a deterministic strategy (d_{abxy})

Definition

The local set $\mathcal L$ of a game is the convex hull of its deterministic points.

• Alice and Bob should use a deterministic strategy (d_{abxy})

Definition

The local set $\mathcal L$ of a game is the convex hull of its deterministic points.

The classical value

 \max_{n} win prob.

s.t. $p \in \mathcal{L}$

• Alice and Bob should use a deterministic strategy (d_{abxy})

Definition

The local set $\mathcal L$ of a game is the convex hull of its deterministic points.

The classical value

max win prob.

s.t. $p \in \mathcal{L}$

$$p_{abxy} = \langle \psi | M_{a|x} M_{b|y} | \psi \rangle$$
$$\forall a, b, x, y$$

Measurement operators satisfy:

$$p_{abxy} = \langle \psi | M_{a|x} M_{b|y} | \psi \rangle$$
$$\forall a, b, x, y$$

Measurement operators satisfy:

1. Orthogonal projectors i.e., $M_{a|x}M_{a'|x}=\delta_{aa'}M_{a|x}$, likewise for Bob's measurements.

$$p_{abxy} = \langle \psi | M_{a|x} M_{b|y} | \psi \rangle$$
$$\forall a, b, x, y$$

Measurement operators satisfy:

- 1. Orthogonal projectors i.e., $M_{a|x}M_{a'|x}=\delta_{aa'}M_{a|x}$, likewise for Bob's measurements.
- 2. Completeness i.e., $\sum_a M_{a|x} = 1 \forall x$, likewise for Bob's measurements.

$$p_{abxy} = \langle \psi | M_{a|x} M_{b|y} | \psi \rangle$$
$$\forall a, b, x, y$$

Measurement operators satisfy:

- 1. Orthogonal projectors i.e., $M_{a|x}M_{a'|x}=\delta_{aa'}M_{a|x}$, likewise for Bob's measurements.
- 2. Completeness i.e., $\sum_a M_{a|x} = 1 \forall x$, likewise for Bob's measurements.
- 3. Commutativity i.e., $[M_{a|x}, M_{b|y}] = 0 \ \forall a, b, x, y$.

$$p_{abxy} = \langle \psi | M_{a|x} M_{b|y} | \psi \rangle$$
$$\forall a, b, x, y$$

Measurement operators satisfy:

- 1. Orthogonal projectors i.e., $M_{a|x}M_{a'|x}=\delta_{aa'}M_{a|x}$, likewise for Bob's measurements.
- 2. Completeness i.e., $\sum_a M_{a|x} = 1 \forall x$, likewise for Bob's measurements.
- 3. Commutativity i.e., $[M_{a|x}, M_{b|y}] = 0 \ \forall a, b, x, y$.

From now on, we refer to these as the 3 CO requirements.

The quantum value

max win prob.

s.t. $p \in Q$

• Suppose Eve claims the quantum value of a game is > 2/3: can we certify this?

The quantum value

max win prob.

s.t. $p \in Q$

- Suppose Eve claims the quantum value of a game is > 2/3: can we certify this?
- Answer: no, but if she's lying we can always tell. $MIP^{co}(2,1) \subseteq coRE$ [NPA08].

- Suppose Eve claims the quantum value of a game is > 2/3: can we certify this?
- Answer: no, but if she's lying we can always tell. $MIP^{co}(2,1) \subseteq coRE$ [NPA08].

•
$$\mathbb{S}^d_+ = \{ M \in \mathbb{R}^{d \times d} : \langle \psi | M | \psi \rangle \ge 0 \ \forall \ | \psi \rangle \in \mathbb{R}^d \}$$

- $\mathbb{S}^d_+ = \{ M \in \mathbb{R}^{d \times d} : \langle \psi | M | \psi \rangle \ge 0 \ \forall \ | \psi \rangle \in \mathbb{R}^d \}$
- · Generalization of linear programs

· LP
$$(a_i^T x = b_i, x \ge 0)$$
 \longrightarrow SDP $(\text{Tr}(A_i X) = b_i, X \in \mathbb{S}_+^d)$

- $\mathbb{S}^d_+ = \{ M \in \mathbb{R}^{d \times d} : \langle \psi | M | \psi \rangle \ge 0 \ \forall \ | \psi \rangle \in \mathbb{R}^d \}$
- Generalization of linear programs
 - · LP $(a_i^T x = b_i, x \ge 0)$ \longrightarrow SDP $(Tr(A_i X) = b_i, X \in \mathbb{S}_+^d)$
 - Regions can have curved faces

- $\mathbb{S}^d_+ = \{ M \in \mathbb{R}^{d \times d} : \langle \psi | M | \psi \rangle \ge 0 \ \forall \ | \psi \rangle \in \mathbb{R}^d \}$
- Generalization of linear programs
 - · LP $(a_i^T x = b_i, x \ge 0)$ \longrightarrow SDP $(Tr(A_i X) = b_i, X \in \mathbb{S}_+^d)$
 - · Regions can have curved faces

$$\left\{M = \begin{bmatrix} x & y \\ y & z \end{bmatrix} : M \in \mathbb{S}^2_+, \operatorname{Tr}(M) = 1\right\}$$

7

- $\mathbb{S}^d_+ = \{ M \in \mathbb{R}^{d \times d} : \langle \psi | M | \psi \rangle \ge 0 \ \forall \ | \psi \rangle \in \mathbb{R}^d \}$
- Generalization of linear programs
 - · LP $(a_i^T x = b_i, x \ge 0)$ \longrightarrow SDP $(Tr(A_i X) = b_i, X \in \mathbb{S}_+^d)$
 - · Regions can have curved faces

$$\left\{M = \begin{bmatrix} x & y \\ y & z \end{bmatrix} : M \in \mathbb{S}^2_+, \operatorname{Tr}(M) = 1\right\}$$

$$\left\{ M = \begin{bmatrix} \gamma & x & y \\ x & \gamma & z \\ y & z & 1 - 2\gamma \end{bmatrix} : M \in \mathbb{S}^3_+ \right\}$$

$$\max_{Z \in \mathbb{R}^{n \times n}} \operatorname{Tr}(CZ)$$
s.t.
$$\operatorname{Tr}(A_i Z) = b_i, \quad i = 1, \dots, m$$

$$Z \succeq 0$$

$$\max_{Z \in \mathbb{R}^{n \times n}} \operatorname{Tr}(CZ)$$
s.t.
$$\operatorname{Tr}(A_i Z) = b_i, \quad i = 1, \dots, m$$

$$Z \succeq 0 \iff Z \in \mathbb{S}^n_+$$

$$\max_{Z \in \mathbb{R}^{n \times n}} \operatorname{Tr}(CZ)$$
s.t.
$$\operatorname{Tr}(A_i Z) = b_i, \quad i = 1, \dots, m$$

$$Z \succeq 0 \iff Z \in \mathbb{S}^n_+$$

Necessary conditions: the NPA hierarchy

The Big Idea

Expectations of products of operators must satisfy certain equalities because of the CO requirements. This leads to necessary conditions for the quantum set.

Necessary conditions: the NPA hierarchy

The Big Idea

Expectations of products of operators must satisfy certain equalities because of the CO requirements. This leads to necessary conditions for the quantum set.

• Example 1: Let
$$S=M_{a|x}$$
 and $T=M_{b|y}$. Then
$$\langle \psi|S^{\dagger}T|\psi\rangle=\langle \psi|T^{\dagger}S|\psi\rangle=p_{abxv}.$$

Necessary conditions: the NPA hierarchy

The Big Idea

Expectations of products of operators must satisfy certain equalities because of the CO requirements. This leads to necessary conditions for the quantum set.

• Example 1: Let $S = M_{a|x}$ and $T = M_{b|y}$. Then

$$\langle \psi | S^{\dagger} T | \psi \rangle = \langle \psi | T^{\dagger} S | \psi \rangle = p_{abxy}.$$

• Example 2: Let $S = M_{a|x}$, $T = M_{a|x}$. Then

$$\langle \psi | \mathbf{S}^\dagger \mathbf{T} | \psi \rangle = \langle \psi | \mathbf{S} | \psi \rangle = \Pr[a | \mathbf{x}] = \sum_b p_{abxy}.$$

9

. Example 3: Let S =
$$M_{a|x}M_{b|y}$$
, $T=M_{a'|x}M_{b|y'}$. Then
$$\langle \psi|S^{\dagger}T|\psi\rangle=0$$

• Let S_n be the set containing all products up to length n e.g.,

$$S = \underbrace{M_{a|x}M_{a'|x'}\dots M_{b|y}M_{b'|y'}\dots}_{\leq n}$$

· Let S_n be the set containing all products up to length n e.g.,

$$S = \underbrace{M_{a|x}M_{a'|x'}\dots M_{b|y}M_{b'|y'}\dots}_{\leq n}$$

• Then we can define the $|\mathcal{S}_n| \times |\mathcal{S}_n|$ moment matrix Γ^n with entries $\Gamma^n_{S,T} = \langle \psi | S^\dagger T | \psi \rangle$ for all $S,T \in \mathcal{S}_n$. [BCP+14]

· Let S_n be the set containing all products up to length n e.g.,

$$S = \underbrace{M_{a|x}M_{a'|x'}\dots M_{b|y}M_{b'|y'}\dots}_{\leq n}$$

• Then we can define the $|\mathcal{S}_n| \times |\mathcal{S}_n|$ moment matrix Γ^n with entries $\Gamma^n_{S,T} = \langle \psi | S^{\dagger} T | \psi \rangle$ for all $S, T \in \mathcal{S}_n$. [BCP+14]

Properties of Γ^n

1.
$$\Gamma^n \succeq 0$$
. Why? $\sum_{S,T} V_S^* \langle \psi | S^{\dagger} T | \psi \rangle v_T = \langle \psi | A^{\dagger} A | \psi \rangle \ge 0$.

· Let S_n be the set containing all products up to length n e.g.,

$$S = \underbrace{M_{a|x}M_{a'|x'}\dots M_{b|y}M_{b'|y'}\dots}_{\leq n}$$

• Then we can define the $|\mathcal{S}_n| \times |\mathcal{S}_n|$ moment matrix Γ^n with entries $\Gamma^n_{S,T} = \langle \psi | S^{\dagger} T | \psi \rangle$ for all $S, T \in \mathcal{S}_n$. [BCP+14]

Properties of Γ^n

- 1. $\Gamma^n \succeq 0$. Why? $\sum_{S,T} v_S^* \langle \psi | S^{\dagger} T | \psi \rangle v_T = \langle \psi | A^{\dagger} A | \psi \rangle \geq 0$.
- 2. Γ^n satisfies some equalities of the form $\text{Tr}(A_i\Gamma^n) = b_i$. Why? e.g., $\langle \psi | S^{\dagger} T | \psi \rangle = p_{abxy} \iff \text{Tr}(|S\rangle \langle T | \Gamma^n) = p_{abxy}$.

· Let S_n be the set containing all products up to length n e.g.,

$$S = \underbrace{M_{a|x}M_{a'|x'}\dots M_{b|y}M_{b'|y'}\dots}_{\leq n}$$

• Then we can define the $|\mathcal{S}_n| \times |\mathcal{S}_n|$ moment matrix Γ^n with entries $\Gamma^n_{S,T} = \langle \psi | S^\dagger T | \psi \rangle$ for all $S,T \in \mathcal{S}_n$. [BCP+14]

Properties of Γ^n

- 1. $\Gamma^n \succeq 0$. Why? $\sum_{S,T} v_S^* \langle \psi | S^{\dagger} T | \psi \rangle v_T = \langle \psi | A^{\dagger} A | \psi \rangle \geq 0$.
- 2. Γ^n satisfies some equalities of the form $\text{Tr}(A_i\Gamma^n) = b_i$. Why? e.g., $\langle \psi | S^{\dagger} T | \psi \rangle = p_{abxy} \iff \text{Tr}(|S\rangle \langle T | \Gamma^n) = p_{abxy}$.
- 3. There is a submatrix of Γ^n containing all values p_{abxy} .

Constraints on Γ^n

- 1. $\operatorname{Tr}(A_i\Gamma^n)=b_i, \quad i=1,\ldots,m.$
- 2. $\Gamma^n \succeq 0$.

Constraints on Γ^n

- 1. $\operatorname{Tr}(A_i\Gamma^n)=b_i, \quad i=1,\ldots,m.$
- 2. $\Gamma^n \succeq 0$.
 - Let Q^n be the set of all strategies p for which there exists a Γ^n satisfying the constraints. Then $Q \subseteq Q^n \subseteq Q^{n-1} \subseteq \cdots \subseteq Q^1$.

Constraints on Γ^n

- 1. $\operatorname{Tr}(A_i\Gamma^n)=b_i, \quad i=1,\ldots,m.$
- 2. $\Gamma^n \succeq 0$.
 - Let Q^n be the set of all strategies p for which there exists a Γ^n satisfying the constraints. Then $Q \subseteq Q^n \subseteq Q^{n-1} \subseteq \cdots \subseteq Q^1$.

 \max_{p} win prob.

s.t. $p \in Q^n$

Constraints on Γ^n

- 1. $Tr(A_i\Gamma^n) = b_i, i = 1,..., m.$
- 2. $\Gamma^n \succeq 0$.
 - Let Q^n be the set of all strategies p for which there exists a Γ^n satisfying the constraints. Then $Q \subseteq Q^n \subseteq Q^{n-1} \subseteq \cdots \subseteq Q^1$.

$$\max_{\rho} \quad \text{win prob.} \\ \text{s.t.} \quad p \in \mathcal{Q}^n \qquad \Longleftrightarrow \qquad \max_{\Gamma^n} \quad \text{Tr}(C\Gamma^n) \\ \text{s.t.} \quad \text{Tr}(A_i\Gamma^n) = b_i \\ \Gamma^n \succeq 0$$

Constraints on Γ^n

- 1. $\operatorname{Tr}(A_i\Gamma^n)=b_i, \quad i=1,\ldots,m.$
- 2. $\Gamma^n \succeq 0$.
 - Let Q^n be the set of all strategies p for which there exists a Γ^n satisfying the constraints. Then $Q \subseteq Q^n \subseteq Q^{n-1} \subseteq \cdots \subseteq Q^1$.

$$\max_{p} \quad \text{win prob.} \qquad \Longleftrightarrow \qquad \sum_{\Gamma^{n}} \quad \text{Tr}(C\Gamma^{n})$$
s.t. $P \in \mathcal{Q}^{n} \qquad \Longleftrightarrow \qquad \Gamma^{n} \succeq 0$

CHSH example revisited

- Tsirelson's bound [Cir80] tells us the quantum value of the CHSH game is \approx 0.85.

CHSH example revisited

- Tsirelson's bound [Cir80] tells us the quantum value of the CHSH game is \approx 0.85.
- For this game, it happens that $Q^1 = Q!$

CHSH example revisited

- Tsirelson's bound [Cir80] tells us the quantum value of the CHSH game is \approx 0.85.
- For this game, it happens that $Q^1 = Q!$

Convergence to the quantum value

Theorem (Sufficiency of the NPA hierarchy)

Let p be a strategy such that there exists a valid moment matrix Γ^n for all $n \ge 1$. Then p is in the quantum set.

1)

$$\Gamma^{n} = \begin{bmatrix} \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \end{bmatrix} \rightarrow \hat{\Gamma}^{n} = \begin{bmatrix} \cdot & \cdot & \cdot & 0 & 0 & \dots \\ \cdot & \cdot & \cdot & \vdots & \vdots & \vdots \\ \cdot & \cdot & \cdot & 0 & 0 & \dots \\ 0 & 0 & 0 & 0 & 0 & \dots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix}$$

$$\rightarrow X^{n} := \text{vec}(\Gamma^{n}) = [\dots, 0, 0, \dots]^{T}$$

$$X^{n} \in B_{\infty}(0, 1)$$

$$\Rightarrow X^{n_{i}} \rightarrow X^{\infty} \iff \hat{\Gamma}^{n_{i}} \rightarrow \Gamma^{\infty}$$
Banach-Alaoglu

Convergence to the quantum value

Theorem (Sufficiency of the NPA hierarchy)

Let p be a strategy such that there exists a valid moment matrix Γ^n for all $n \ge 1$. Then p is in the quantum set.

2)

There exists infinite set of vectors $V = \{|S\rangle : |S| = 1, 2, ...\}$ such that

$$\Gamma_{S,T}^{\infty} = \langle S|T \rangle$$
 (sequential Cholesky decomposition)

Then take $\mathcal{H} = \text{span}(V)$, and measurement operators

$$\hat{E}_{a|x} = \text{proj(span(}\{|M_{a|x}S\rangle : |M_{a|x}S| = 1, 2, \dots\})).$$

One can verify the following:

$$1. \ \hat{E}_{a|x}|\mathbb{1}\rangle = |M_{a|x}\rangle \implies \langle \mathbb{1}|\hat{E}_{a|x}^{\dagger}\hat{E}_{b|y}|\mathbb{1}\rangle = \Gamma_{M_{a|x},M_{b|y}}^{\infty} = p_{abxy}.$$

2.
$$\hat{E}_{a|x}\hat{E}_{a'|x} = \delta_{aa'}\hat{E}_{a|x}$$
.

3.
$$[\hat{E}_{a|x}, \hat{E}_{b|y}] = 0.$$

• $\omega_1 \geq \omega_2 \geq \cdots \geq \omega := \text{quanutm value}.$

- $\omega_1 \geq \omega_2 \geq \cdots \geq \omega := \text{quanutm value}.$
- For tensor product quantum strategies, it was shown in [JNV⁺20] that MIP* = RE. Perhaps MIP^{co} = coRE?

- $\omega_1 \geq \omega_2 \geq \cdots \geq \omega := \text{quanutm value}.$
- For tensor product quantum strategies, it was shown in [JNV⁺20] that MIP* = RE. Perhaps MIP^{co} = coRE?

- $\omega_1 \geq \omega_2 \geq \cdots \geq \omega := \text{quanutm value}.$
- For tensor product quantum strategies, it was shown in [JNV⁺20] that MIP* = RE. Perhaps MIP^{co} = coRE?
- Also interesting for foundations the existence of a quantum analogue of a joint probability measure implies the conditions of Q^1 [DHW14].

- $\omega_1 \geq \omega_2 \geq \cdots \geq \omega := \text{quanutm value}.$
- For tensor product quantum strategies, it was shown in [JNV⁺20] that MIP* = RE. Perhaps MIP^{co} = coRE?
- Also interesting for foundations the existence of a quantum analogue of a joint probability measure implies the conditions of Q^1 [DHW14].

- $\omega_1 \geq \omega_2 \geq \cdots \geq \omega := \text{quanutm value}.$
- For tensor product quantum strategies, it was shown in [JNV⁺20] that MIP* = RE. Perhaps MIP^{co} = coRE?
- Also interesting for foundations the existence of a quantum analogue of a joint probability measure implies the conditions of Q^1 [DHW14].
 - · How do we rule out alternate versions of quantum theory?

References i

Bell nonlocality.

Reviews of Modern Physics, 86(2):419-478, Apr 2014.

B. S. Cirel'son.

Quantum generalizations of bell's inequality. Letters in Mathematical Physics, 4(2):93–100, March 1980.

Fay Dowker, Joe Henson, and Petros Wallden.

A histories perspective on characterizing quantum non-locality.

New Journal of Physics, 16(3):033033, mar 2014.

Zhengfeng Ji, Anand Natarajan, Thomas Vidick, John Wright, and Henry Yuen.

Mip*=re, 2020.

References ii

Miguel Navascués, Stefano Pironio, and Antonio Acín.

A convergent hierarchy of semidefinite programs characterizing the set of quantum correlations.

New Journal of Physics, 10(7):073013, jul 2008.