Coding Details

Minah Yang

November 12, 2018

Governing Equations

Momentum

$$\partial_{t}\vec{m_{1}} + \nabla \cdot \left(\frac{1}{h_{1}}\vec{m_{1}}\vec{m_{1}}\right) + \frac{1}{Ro}\left(\hat{k} \times \vec{m_{1}}\right) = -\frac{1}{Fr^{2}}h_{1}\nabla\left(h_{1} + h_{2}\right) - \frac{\vec{m_{1}}}{h_{1}}\left(\beta\frac{\hat{Q}}{H}\hat{P}(Q) - \frac{T}{T_{RC}}(h_{2} - h_{1})\mathcal{H}(h_{2} - h_{1})\right) + \kappa\nabla^{2}\vec{m_{1}}$$
(1)

$$\partial_{t}\vec{m_{2}} + \nabla \cdot \left(\frac{1}{h_{2}}\vec{m_{2}}\vec{m_{2}}\right) + \frac{1}{Ro}\left(\hat{k} \times \vec{m_{2}}\right) = -\frac{1}{Fr^{2}}h_{1}\nabla\left(h_{1} + \alpha h_{2}\right) + \frac{\vec{m_{1}}}{h_{1}}\left(\beta\frac{\hat{Q}}{H}\hat{P}(Q) - \frac{T}{T_{RC}}(h_{2} - h_{1})\mathcal{H}(h_{2} - h_{1})\right) + \kappa\nabla^{2}\vec{m_{2}}$$
(2)

Height/Mass

$$\partial_t h_1 + \nabla \cdot (\vec{u_1} h_1) = -\left(\beta \frac{\hat{Q}}{H} \hat{P}(Q) - \frac{T}{T_{RC}} (h_2 - h_1) \mathcal{H}(h_2 - h_1)\right) + \kappa \nabla^2 h_1 \tag{3}$$

$$\partial_t h_2 + \nabla \cdot (\vec{u_2}h_2) = \left(\beta \frac{\hat{Q}}{H} \hat{P}(Q) - \frac{T}{T_{RC}} (h_2 - h_1) \mathcal{H}(h_2 - h_1)\right) + \kappa \nabla^2 h_2 \tag{4}$$

Moisture

$$\partial_t Q + \nabla \cdot (\vec{u_1}Q) = \left(-1 + \frac{1}{\epsilon}\right)\hat{P}(Q) + \kappa \nabla^2 q \tag{5}$$

Nondimensionalization Constants and Parameters

Nondimensionalization Constants

\hat{L}	$10^{6} { m m}$
Н	5000 m
U	$5~\mathrm{ms^{-1}}$
$T = \frac{L}{U}$	$2 \times 10^5 \mathrm{s}$
\hat{Q}	50 mm = 0.05 m
T_{RC}	16 days = 1,382,400 s

We approximate the Coriolis parameter $f=2\Omega\sin(\phi)$, where ϕ represents the latitude (° north or south from the equator). The arclength is our $y\Rightarrow r\phi=y\Rightarrow \phi=\frac{y}{RE}$, where RE is the radius of the Earth.

 $\sin(\frac{y}{r}) \approx \frac{y}{r} = \hat{L}\frac{y}{r}$, where the second y is the new y, and Ω is the angular velocity of Earth's rotation. That is, $\frac{2\pi}{day}$. So,

$$f = 2\Omega \sin(\phi) \approx 2 \times \frac{2\pi}{\text{day in s}} \hat{L}\phi = \frac{4\pi}{3600 \times 24s} \hat{L}\phi = \frac{4\pi}{3600 \times 24s} \hat{L}\frac{y}{RE}$$

$$\frac{1}{Ro} = Tf \approx \frac{2 \times 10^5 s \times 4\pi \hat{L}}{24 \times 3600 s} \phi = \frac{10^3 \times \pi \hat{L}}{3 \times 36} \phi \approx 2.909 \times 10^7 \text{m} \phi$$

$$\approx \frac{2 \times 10^5 s \times 4\pi \hat{L}}{24 \times 3600 s} \frac{y}{6371000 \text{m}} = \frac{10^3 \times \pi \times 10^6 \text{m}}{3 \times 36} \frac{y}{6371000 \text{m}} \approx 4.57 y$$

$$\frac{1}{Fr^2} = \frac{gH}{U^2} \frac{ms^{-2}m}{(ms^{-1})^2} \approx 1960$$
(6)

Parameters

We desire units in terms of: seconds, meters, and kilograms. Note that for water:

$$\begin{split} \frac{kg}{m^2} &= \frac{L}{m^2} = \frac{1000mL}{m^2} \\ &= \frac{1000cm^3}{(100cm)^2} = \frac{1}{10}cm = 1mm = 0.001m \end{split}$$

We also approximate $\alpha = \frac{\theta_2}{\theta_1}$ via the relation $\sqrt{g'H} = \sqrt{g(\alpha - 1)H} \approx 30 \text{m} s^{-1}$ (speed of Kelvin wave). This yields $\alpha \approx 1 + \frac{900}{5000g} \approx 1.02$.

g	$9.80665m/s^2$
α	$\frac{\theta_2}{\theta_1} \approx 1.02$
β	≈ 750
ϵ	$\delta rac{Q}{Qs}$
δ	≈ 1.1
b	≈ 11.4
radius of earth	6,371,000 m
$P (kg m^{-2} day^{-1} = mm/day)$	$a(t)(e^{b\frac{Q}{Qs}}-1)$
$a(t) \approx P_{av}$	$= 8 \text{ mm/day} = \frac{8}{86,400,000} \text{m s}^{-1}$
$P \text{ (m s}^{-1})$	$= \frac{8}{86,400,000} \left(e^{b\frac{Q}{Q_s}} - 1\right)$

Precipitation Nondimensionalization

We will write the relationship between the dimensional and nondimensional precipitation functions as: $P(\hat{Q}K) = \frac{\hat{Q}}{T}\hat{P}(K)$. I will show derivations of the nondimensional precipitation functions for the Betts-Miller Parametrization and the model proposed by Craig and Mack in (Cite).

Betts-Miller Parametrization Nondimensionalization

We start with:

$$P(Q) = \frac{Q - Q_s}{\tau_q} \mathcal{H}(Q - Qs)$$

where $\mathcal{H}(\cdot)$ denotes the heaviside function.

Inserting the change of variables $Q = \hat{Q}K$ yields:

$$P(\hat{Q}K) = \frac{\hat{Q}(K - K_s)}{\tau_q} \mathcal{H}(\hat{Q}(K - K_s))$$
$$= \frac{\hat{Q}}{T} \hat{P}(K)$$
$$\hat{P}(K) := \frac{T}{\tau_q} (K - K_s) \mathcal{H}(K - K_s)$$

Craig and Mack Precipitation Model Nondimensionalization

The precipitation model is the following:

$$P(Q) = a(t) \left(\exp(b\frac{Q}{Qs}) - 1 \right), \tag{7}$$

where

$$a(t) = \frac{P_{ave}}{\frac{1}{A} \int \left(\exp(b\frac{Q}{Qs}) - 1 \right) dA}$$
 (8)

This a(t) is used to enforce a constant total amount of precipitation over the area at each time-step. We disregard this, and simply replace a(t) with P_{ave} divided by some large number PP such as 15,000. The quantity 8 kg m⁻² day⁻¹ is a reasonable estimate for P_{ave} in radiative-convective equilibrium (C&M). Recall that kg m⁻² day⁻¹ = mm day⁻¹ = $\frac{1}{86,400,000}$ m s⁻¹.

$$\begin{split} \hat{Q} &= 0.05 \text{m} \\ T &= \frac{\hat{L}}{U} = \frac{10^6 \text{m}}{5 \text{ms}^{-1}} = 2 \times 10^5 \text{s} \\ P(\hat{Q}K) &= a(t) \left(\exp(b \frac{\hat{Q}K}{\hat{Q}K_s}) - 1 \right) \text{ms}^{-1} \\ &\approx \frac{P_{ave}}{PP} \left(\exp(b \frac{K}{K_s}) - 1 \right) \\ &= \frac{8}{86,400,000 \times PP} \left(\exp(b \frac{K}{K_s}) - 1 \right) \text{ms}^{-1} \\ &= \frac{\hat{Q}}{T \times PP} \hat{P}(K) \\ \hat{P}(K) &:= \frac{8 \text{m} \div \hat{Q}}{86,400,000 \text{s} \div T \times PP} \left(\exp(b \frac{K}{K_s}) - 1 \right) \\ &= \frac{10}{27 \times PP} \left(\exp(b \frac{K}{K}) - 1 \right), \quad \text{for our specified nondimensional constants.} \end{split}$$

Grid, Discretizations, and Boundary Conditions

Grid

We are using the A-Grid where all of the dependent variables live on the same grids.

- Note that $q_{i,j}$ is represented by q[j,i] in my code.
- I am using m to denote the zonal component of momentum, and n to denote the meridional component of momentum. That is, $\vec{m_i} = (m_i, n_i)^{\top}$ for i = 1, 2.
- RE is the radius of earth. ($\approx 6,371,000$)
- We convert latitudes/longitudes (in °(degrees)) to distances in meters by multiplying by $\frac{\pi}{180} \times \text{RE}$. As a result, $\delta_x = 0.25 \times \frac{\pi}{180} \times \text{RE}$.
- j ranges from 1 to 160. $y[1] = -19.875 \times \frac{\pi}{180} \times \text{RE}$, and $y[160] = 19.875 \times \frac{\pi}{180} \times \text{RE}$. As a result, $\delta_y = 0.25 \times \frac{\pi}{180} \times \text{RE}$.
- We nondimensionalize by dividing by \hat{L} .

Discretizations

$$\nabla \cdot \begin{pmatrix} \frac{1}{h} \vec{m} \vec{m} \end{pmatrix} = \begin{pmatrix} \left[\partial_x \quad \partial_y \right] \begin{bmatrix} \frac{1}{h} mm & \frac{1}{h} mn \\ \frac{1}{h} nm & \frac{1}{h} nn \end{bmatrix}^{\top} \end{pmatrix}^{\top} = \begin{bmatrix} \partial_x \left(\frac{1}{h} m^2 \right) + \partial_y \left(\frac{1}{h} mn \right) \\ \partial_x \left(\frac{1}{h} nm \right) + \partial_y \left(\frac{1}{h} n^2 \right) \end{bmatrix} = \begin{bmatrix} \partial_x \left(um \right) + \partial_y \left(vm \right) \\ \partial_x \left(un \right) + \partial_y \left(vn \right) \end{bmatrix}$$

Term Discretization
$$\partial_x(uq) \approx \frac{1}{4 * \delta_x} \left[(u_{i,j} + u_{i+1,j}) \left(q_{i,j} + q_{i+1,j} \right) - \left(u_{i-1,j} + u_{i,j} \right) \left(q_{i-1,j} + q_{i,j} \right) \right] \\
\partial_y(vq) \approx \frac{1}{4 * \delta_y} \left[(v_{i,j} + v_{i,j+1}) \left(q_{i,j} + q_{i,j+1} \right) - \left(v_{i,j-1} + v_{i,j} \right) \left(q_{i,j-1} + q_{i,j} \right) \right] \\
\partial_x(v^2) \approx \frac{1}{4 * \delta_x} \left[v_{i+1,j}^2 + 2v_{i,j} \left(v_{i+1,j} - v_{i-1,j} \right) - v_{i-1,j}^2 \right] \\
\partial_y(v^2) \approx \frac{1}{4 * \delta_x} \left[v_{i,j+1}^2 + 2v_{i,j} \left(v_{i,j+1} - v_{i,j-1} \right) - v_{i,j-1}^2 \right] \\
\nabla^2 q \approx \frac{1}{\delta_x^2} \left(q_{j,i+1} - 2q_{j,i} + q_{j,i-1} \right) + \frac{1}{\delta_y^2} \left(q_{j+1,i} - 2q_{j,i} + q_{j-1,i} \right)$$

Boundary Conditions

Note that we only approach the y-boundaries for the terms that include $\partial_y(quantity)$. Recall that I have denoted $\vec{m_i} = (m_i, n_i)^{\top}$.

- Recall that jj ranges from 1 to 160., and jj = 1 represents latitude -19.875° , and jj = 160 represents latitude 19.875° . With the convention that the increment of jj by 1 increases the latitude by 0.25° , the boundaries at $\pm 20^{\circ}$ are at jj = 0.5 and jj = 160.5
- (???) We assume that meridional momentum is conserved, and enforce this by setting the meridional momentums $n_i \equiv 0$ at the boundaries, $\pm 20^{\circ}$ (jj = 0.5, 160.5). In other words, we set $n_i["0.5", ii] = n_i["160.5", ii] = 0$. This appears whenever we have ∂_y of a term that has n_1 or n_2 in it.

For all other variables, we just use a first-order (forward or backward)FD for now, keeping in mind that we can force a one-sided second-rder FD later on.

- - Forward (order 1): $\partial_y(q(x,y))|_{y=-19.875\Rightarrow j=1} \approx \frac{1}{\delta_y}$ (q[2]-q[1])
- Forward (order 2): $\partial_y(q(x,y))|_{y=-19.875 \Rightarrow j=1} \approx \frac{1}{2*\delta_y} \ (-\text{q[3]} + 4\text{q[2]} 3\text{q[1]})$
- Backward (order 1): $\partial_y(q(x,y))|_{y=19.875 \Rightarrow j=160} \approx \frac{1}{2*\delta_y}$ (q[160]-q[159])
- Backward (order 2): $\partial_y(q(x,y))|_{y=19.875 \Rightarrow j=160} \approx \frac{1}{\delta_y} (3q[160]-4q[159]+q[158])$