

LaplacesDemon Examples

Statisticat, LLC

Abstract

The **LaplacesDemon** package is a complete environment for Bayesian inference within R. Virtually any probability model may be specified. This vignette is a compendium of examples of how to specify different model forms.

Keywords: Bayesian, LaplacesDemon, LaplacesDemonCpp, R.

LaplacesDemon (Statisticat LLC. 2014), often referred to as LD, is an R package that is available at http://www.bayesian-inference.com/software. **LaplacesDemonCpp** is an extension package that uses C++. A formal introduction to **LaplacesDemon** is provided in an accompanying vignette entitled "**LaplacesDemon** Tutorial", and an introduction to Bayesian inference is provided in the "Bayesian Inference" vignette.

The purpose of this document is to provide users of the **LaplacesDemon** package with examples of a variety of Bayesian methods. It is also a testament to the diverse applicability of **LaplacesDemon** to Bayesian inference.

To conserve space, the examples are not worked out in detail, and only the minimum of necessary materials is provided for using the various methodologies. Necessary materials include the form expressed in notation, data (which is often simulated), the Model function, and initial values. The provided data, model specification, and initial values may be copy/pasted into an R file and updated with the LaplacesDemon or (usually) LaplaceApproximation functions. Although many of these examples update quickly, some examples are computationally intensive.

All examples are provided in R code, but the model specification function can be in another language. A goal is to provide these example model functions in C++ as well, and some are now available at www.bayesian-inference.com/cpp/LaplacesDemonExamples.txt.

Initial values are usually hard-coded in the examples, though the Parameter-Generating Function (PGF) is also specified. It is recommended to generate initial values with the GIV function according to the user-specified PGF.

Notation in this vignette follows these standards: Greek letters represent parameters, lower case letters represent indices, lower case bold face letters represent scalars or vectors, probability distributions are represented with calligraphic font, upper case letters represent index limits, and upper case bold face letters represent matrices. More information on notation is

available at http://www.bayesian-inference.com/notation.

This vignette will grow over time as examples of more methods become included. Contributed examples are welcome. Please send contributed examples or discovered errors in a similar format in an email to software@bayesian-inference.com for review and testing. All accepted contributions are, of course, credited.

Contents

- ANCOVA 1
- ANOVA, One-Way 2
- ANOVA, Two-Way 3
- Approximate Bayesian Computation (ABC) 4
- ARCH-M(1,1) 5
- Autoregression, AR(1) 6
- Autoregressive Conditional Heteroskedasticity, ARCH(1,1) 7
- Autoregressive Moving Average, ARMA(1,1) 8
- Beta Regression 9
- Beta-Binomial 10
- Binary Logit 11
- Binary Log-Log Link Mixture 12
- Binary Probit 13
- Binary Robit 14
- Binomial Logit 15
- Binomial Probit 16
- Binomial Robit 17
- Change Point Regression 18
- Cluster Analysis, Confirmatory (CCA) 19
- Cluster Analysis, Exploratory (ECA) 20
- Collaborative Filtering (CF) 34
- Conditional Autoregression (CAR), Poisson 21
- Conditional Predictive Ordinate (CPO) 22

- Contingency Table 23
- Covariance Separation Strategy 24
- Discrete Choice, Conditional Logit 25
- Discrete Choice, Mixed Logit 26
- Discrete Choice, Multinomial Probit 27
- Distributed Lag, Koyck 28
- Dynamic Linear Model (DLM) 32 88 89 90
- Exponential Smoothing 29
- Factor Analysis, Approximate Dynamic (ADFA) 30
- Factor Analysis, Confirmatory (CFA) 31
- Factor Analysis, Dynamic (DFA) 32
- Factor Analysis, Exploratory (EFA) 33
- Factor Analysis, Exploratory Ordinal (EOFA) 34
- Factor Regression 35
- Gamma Regression 36
- GARCH(1,1) 37
- GARCH-M(1,1) 38
- Geographically Weighted Regression 39
- Hidden Markov Model 40
- Hierarchical Bayes 48
- Horseshoe Regression 96
- Inverse Gaussian Regression 41
- Kriging 42
- Kriging, Predictive Process 43
- Laplace Regression 44
- LASSO 95
- Latent Dirichlet Allocation (LDA) 45
- Linear Regression 46
- Linear Regression, Frequentist 47

• Linear Regression, Hierarchical Bayesian 48

- Linear Regression, Multilevel 49
- Linear Regression with Full Missingness 50
- Linear Regression with Missing Response 51
- Linear Regression with Missing Response via ABB 52
- Linear Regression with Power Priors 53
- Linear Regression with Zellner's g-Prior 54
- LSTAR 55
- MANCOVA 56
- MANOVA 57
- Missing Values 50 51 52
- Mixture Model, Dirichlet Process 20
- Mixture Model, Finite 19 58
- Mixture Model, Infinite 20 59
- Mixture Model, Poisson-Gamma 60
- Model Averaging 98 97
- Multilevel Model 49
- Multinomial Logit 61
- Multinomial Logit, Nested 62
- Multinomial Probit 63
- Multiple Discrete-Continuous Choice 64
- Multivariate Binary Probit 65
- Multivariate Laplace Regression 66
- Multivariate Regression 67
- Negative Binomial Regression 68
- Normal, Multilevel 69
- Ordinal Logit 70
- Ordinal Probit 71
- Panel, Autoregressive Poisson 72

- Penalized Spline Regression 73
- Poisson Regression 74
- Poisson Regression, Overdispersed 60 68
- Poisson-Gamma Regression 60
- Polynomial Regression 75
- Power Priors 53
- Proportional Hazards Regression, Weibull 76
- Quantile Regression 77
- Revision, Normal 78
- Ridge Regression 79
- Robust Regression 80
- Seemingly Unrelated Regression (SUR) 81
- Simultaneous Equations 82
- Space-Time, Dynamic 83
- Space-Time, Nonseparable 84
- Space-Time, Separable 85
- Spatial Autoregression (SAR) 86
- STARMA(1,1) 87
- State Space Model (SSM), Dynamic Factor Analysis (DFA) 32
- State Space Model (SSM), Linear Regression 88
- State Space Model (SSM), Local Level 89
- State Space Model (SSM), Local Linear Trend 90
- State Space Model (SSM), Stochastic Volatility (SV) 91
- Stochastic Volatility (SV) 91
- Survival Model 76
- T-test 2
- TARCH(1) 92
- Threshold Autoregression (TAR) 93
- Topic Model 45

- Time Varying AR(1) with Chebyshev Series 94
- Variable Selection, BAL 95
- Variable Selection, Horseshoe 96
- Variable Selection, RJ 97
- Variable Selection, SSVS 98
- Variety Model 64
- Vector Autoregression, VAR(1) 99
- Weighted Regression 100
- Zellner's g-Prior 54
- Zero-Inflated Poisson (ZIP) 101

1. ANCOVA

This example is essentially the same as the two-way ANOVA (see section 3), except that a covariate $X_{,3}$ has been added, and its parameter is δ .

1.1. Form

$$\mathbf{y}_{i} \sim \mathcal{N}(\mu_{i}, \sigma_{1}^{2})$$

$$\mu_{i} = \alpha + \beta[\mathbf{X}_{i,1}] + \gamma[\mathbf{X}_{i,2}] + \delta \mathbf{X}_{i,2}, \quad i = 1, \dots, N$$

$$\epsilon_{i} = \mathbf{y}_{i} - \mu_{i}$$

$$\alpha \sim \mathcal{N}(0, 1000)$$

$$\beta_{j} \sim \mathcal{N}(0, \sigma_{2}^{2}), \quad j = 1, \dots, J$$

$$\beta_{J} = -\sum_{j=1}^{J-1} \beta_{j}$$

$$\gamma_{k} \sim \mathcal{N}(0, \sigma_{3}^{2}), \quad k = 1, \dots, K$$

$$\gamma_{K} = -\sum_{k=1}^{K-1} \gamma_{k}$$

$$\delta \sim \mathcal{N}(0, 1000)$$

$$\sigma_{m} \sim \mathcal{HC}(25), \quad m = 1, \dots, 3$$

1.2. Data

```
N <- 100
J <- 5 #Number of levels in factor (treatment) 1
K <- 3 #Number of levels in factor (treatment) 2</pre>
X \leftarrow cbind(rcat(N,rep(1/J,J)), rcat(N,rep(1/K,K)), runif(N,-2,2))
alpha \leftarrow runif(1,-1,1)
beta <- runif(J-1,-2,2)
beta <- c(beta, -sum(beta))
gamma <- runif(K-1,-2,2)
gamma <- c(gamma, -sum(gamma))</pre>
delta \leftarrow runif(1,-2,2)
y \leftarrow alpha + beta[X[,1]] + gamma[X[,2]] + delta*X[,3] + rnorm(N,0,0.1)
mon.names <- c("LP", "beta[5]", "gamma[3]", "s.beta", "s.gamma", "s.epsilon")
parm.names <- as.parm.names(list(alpha=0, beta=rep(0,J-1), gamma=rep(0,K-1),
    delta=0, sigma=rep(0,3)))
pos.alpha <- grep("alpha", parm.names)</pre>
pos.beta <- grep("beta", parm.names)</pre>
pos.gamma <- grep("gamma", parm.names)</pre>
pos.delta <- grep("delta", parm.names)</pre>
pos.sigma <- grep("sigma", parm.names)</pre>
PGF <- function(Data) return(c(rnorm(1,0,1), rnorm(Data$J-1,0,1),
     rnorm(Data$K-1,0,1), rnorm(1,0,1), rhalfcauchy(3,5)))
MyData <- list(J=J, K=K, N=N, PGF=PGF, X=X, mon.names=mon.names,
    parm.names=parm.names, pos.alpha=pos.alpha,
    pos.beta=pos.beta, pos.gamma=pos.gamma, pos.delta=pos.delta,
    pos.sigma=pos.sigma, y=y)
1.3. Model
Model <- function(parm, Data)</pre>
    ### Parameters
     alpha <- parm[Data$pos.alpha]</pre>
    beta <- parm[Data$pos.beta]</pre>
    beta <- c(beta, -sum(beta)) #Sum-to-zero constraint
     gamma <- parm[Data$pos.gamma]</pre>
    gamma <- c(gamma, -sum(gamma)) #Sum-to-zero constraint
    delta <- parm[Data$pos.delta]</pre>
    sigma <- interval(parm[Data$pos.sigma], 1e-100, Inf)</pre>
    parm[Data$pos.sigma] <- sigma</pre>
    ### Log-Prior
     alpha.prior <- dnormv(alpha, 0, 1000, log=TRUE)
```

beta.prior <- sum(dnorm(beta, 0, sigma[2], log=TRUE))
gamma.prior <- sum(dnorm(gamma, 0, sigma[3], log=TRUE))</pre>

delta.prior <- dnormv(delta, 0, 1000, log=TRUE)</pre>

```
sigma.prior <- sum(dhalfcauchy(sigma, 25, log=TRUE))</pre>
### Log-Likelihood
mu <- alpha + beta[Data$X[,1]] + gamma[Data$X[,2]] +</pre>
    delta*Data$X[,3]
LL <- sum(dnorm(Data$y, mu, sigma[1], log=TRUE))</pre>
### Variance Components
s.beta <- sd(beta)
s.gamma <- sd(gamma)
s.epsilon <- sd(Data$y - mu)
### Log-Posterior
LP <- LL + alpha.prior + beta.prior + gamma.prior + delta.prior +
    sigma.prior
Modelout <- list(LP=LP, Dev=-2*LL, Monitor=c(LP, beta[Data$J],</pre>
    gamma[Data$K], s.beta, s.gamma, s.epsilon),
    yhat=rnorm(length(mu), mu, sigma[1]), parm=parm)
return(Modelout)
}
```

1.4. Initial Values

Initial. Values $\leftarrow c(0, rep(0, (J-1)), rep(0, (K-1)), 0, rep(1,3))$

2. ANOVA, One-Way

When J = 2, this is a Bayesian form of a t-test.

2.1. Form

$$\mathbf{y} \sim \mathcal{N}(\mu, \sigma_1^2)$$

$$\mu_i = \alpha + \beta[\mathbf{x}_i], \quad i = 1, \dots, N$$

$$\alpha \sim \mathcal{N}(0, 1000)$$

$$\beta_j \sim \mathcal{N}(0, \sigma_2^2), \quad j = 1, \dots, J$$

$$\beta_J = -\sum_{j=1}^{J-1} \beta_j$$

$$\sigma_{1:2} \sim \mathcal{HC}(25)$$

```
N <- 100
J <- 3
x <- rcat(N, rep(1/J, J))
alpha <- runif(1,-1,1)</pre>
```

```
beta \leftarrow runif(J-1,-2,2)
beta <- c(beta, -sum(beta))</pre>
y \leftarrow alpha + beta[x] + rnorm(N,0,0.2)
mon.names <- c("LP","beta[3]")</pre>
parm.names <- as.parm.names(list(alpha=0, beta=rep(0,J-1), sigma=rep(0,2)))
pos.alpha <- grep("alpha", parm.names)</pre>
pos.beta <- grep("beta", parm.names)</pre>
pos.sigma <- grep("sigma", parm.names)</pre>
PGF <- function(Data) return(c(rnorm(1,0,1), rnorm(Data$J-1,0,1),
    rhalfcauchy(2,5)))
MyData <- list(J=J, N=N, PGF=PGF, mon.names=mon.names,
    parm.names=parm.names, pos.alpha=pos.alpha, pos.beta=pos.beta,
    pos.sigma=pos.sigma, x=x, y=y)
2.3. Model
Model <- function(parm, Data)</pre>
    ### Parameters
     alpha <- parm[Data$pos.alpha]</pre>
    beta <- parm[Data$pos.beta]</pre>
    beta <- c(beta, -sum(beta)) #Sum-to-zero constraint
    sigma <- interval(parm[Data$pos.sigma], 1e-100, Inf)</pre>
    parm[Data$pos.sigma] <- sigma</pre>
    ### Log-Prior
    alpha.prior <- dnormv(alpha, 0, 1000, log=TRUE)
    beta.prior <- sum(dnorm(beta, 0, sigma[2], log=TRUE))</pre>
    sigma.prior <- sum(dhalfcauchy(sigma, 25, log=TRUE))</pre>
    ### Log-Likelihood
    mu <- alpha + beta[Data$x]</pre>
    LL <- sum(dnorm(Data$y, mu, sigma[1], log=TRUE))
    ### Log-Posterior
    LP <- LL + alpha.prior + beta.prior + sigma.prior
    Modelout <- list(LP=LP, Dev=-2*LL, Monitor=c(LP,beta[Data$J]),</pre>
         yhat=rnorm(length(mu), mu, sigma[1]), parm=parm)
    return(Modelout)
    }
```

```
Initial. Values <- c(0, rep(0, (J-1)), rep(1,2))
```

3. ANOVA, Two-Way

In this representation, σ^m are the superpopulation variance components, s.beta and s.gamma

are the finite-population within-variance components of the factors or treatments, and s.epsilon is the finite-population between-variance component.

3.1. Form

$$\mathbf{y}_{i} \sim \mathcal{N}(\mu_{i}, \sigma_{1}^{2})$$

$$\mu_{i} = \alpha + \beta[\mathbf{X}_{i,1}] + \gamma[\mathbf{X}_{i,2}], \quad i = 1, \dots, N$$

$$\epsilon_{i} = \mathbf{y}_{i} - \mu_{i}$$

$$\alpha \sim \mathcal{N}(0, 1000)$$

$$\beta_{j} \sim \mathcal{N}(0, \sigma_{2}^{2}), \quad j = 1, \dots, J$$

$$\beta_{J} = -\sum_{j=1}^{J-1} \beta_{j}$$

$$\gamma_{k} \sim \mathcal{N}(0, \sigma_{3}^{2}), \quad k = 1, \dots, K$$

$$\gamma_{K} = -\sum_{k=1}^{K-1} \gamma_{k}$$

$$\sigma_{m} \sim \mathcal{HC}(25), \quad m = 1, \dots, 3$$

```
N <- 100
J <- 5 #Number of levels in factor (treatment) 1
K <- 3 #Number of levels in factor (treatment) 2</pre>
X <- cbind(rcat(N,rep(1/J,J)), rcat(N,rep(1/K,K)))</pre>
alpha <- runif(1,-1,1)
beta <- runif(J-1,-2,2)
beta <- -sum(beta)
gamma <- runif(K-1,-2,2)
gamma <- -sum(gamma)</pre>
y \leftarrow alpha + beta[X[,1]] + gamma[X[,2]] + rnorm(N,0,0.1)
mon.names <- c("LP","beta[5]","gamma[3]","s.beta","s.gamma","s.epsilon")</pre>
parm.names <- as.parm.names(list(alpha=0, beta=rep(0,J-1), gamma=rep(0,K-1),
    sigma=rep(0,3))
pos.alpha <- grep("alpha", parm.names)</pre>
pos.beta <- grep("beta", parm.names)</pre>
pos.gamma <- grep("gamma", parm.names)</pre>
pos.sigma <- grep("sigma", parm.names)</pre>
PGF <- function(Data) return(c(rnorm(1,0,1), rnorm(Data$J-1,0,1),
    rnorm(Data$K-1,0,1), rhalfcauchy(3,5)))
MyData <- list(J=J, K=K, N=N, PGF=PGF, X=X, mon.names=mon.names,
    parm.names=parm.names, pos.alpha=pos.alpha, pos.beta=pos.beta,
```

```
pos.gamma=pos.gamma, pos.sigma=pos.sigma, y=y)
```

3.3. Model

```
Model <- function(parm, Data)</pre>
    ### Parameters
     alpha <- parm[Data$pos.alpha]</pre>
    beta <- parm[Data$pos.beta]</pre>
    beta <- c(beta, -sum(beta)) #Sum-to-zero constraint
    gamma <- parm[Data$pos.gamma]</pre>
     gamma <- c(gamma, -sum(gamma)) #Sum-to-zero constraint
     sigma <- interval(parm[Data$pos.sigma], 1e-100, Inf)</pre>
    parm[Data$pos.sigma] <- sigma</pre>
    ### Log-Prior
     alpha.prior <- dnormv(alpha, 0, 1000, log=TRUE)
    beta.prior <- sum(dnorm(beta, 0, sigma[2], log=TRUE))</pre>
    gamma.prior <- sum(dnorm(gamma, 0, sigma[3], log=TRUE))</pre>
     sigma.prior <- sum(dhalfcauchy(sigma, 25, log=TRUE))</pre>
     ### Log-Likelihood
    mu <- alpha + beta[Data$X[,1]] + gamma[Data$X[,2]]</pre>
    LL <- sum(dnorm(Data$y, mu, sigma[1], log=TRUE))</pre>
    ### Variance Components
    s.beta <- sd(beta)
     s.gamma <- sd(gamma)
     s.epsilon <- sd(Data$y - mu)
    ### Log-Posterior
    LP <- LL + alpha.prior + beta.prior + gamma.prior + sigma.prior
    Modelout <- list(LP=LP, Dev=-2*LL, Monitor=c(LP, beta[Data$J],</pre>
         gamma[Data$K], s.beta, s.gamma, s.epsilon),
         yhat=rnorm(length(mu), mu, sigma[1]), parm=parm)
    return(Modelout)
    }
```

3.4. Initial Values

```
Initial. Values \leftarrow c(0, rep(0, (J-1)), rep(0, (K-1)), rep(1,3))
```

4. Approximate Bayesian Computation (ABC)

Approximate Bayesian Computation (ABC), also called likelihood-free estimation, is not a statistical method, but a family of numerical approximation techniques in Bayesian inference. ABC is especially useful when evaluation of the likelihood, $p(\mathbf{y}|\Theta)$ is computationally prohibitive, or when suitable likelihoods are unavailable. The current example is the application of ABC in the context of linear regression. The log-likelihood is replaced with the negative

sum of the distance between \mathbf{y} and \mathbf{y}^{rep} as the approximation of the log-likelihood. Distance reduces to the absolute difference. Although linear regression has an easily calculated likelihood, it is used as an example due to its generality. This example demonstrates how ABC may be estimated either with MCMC via the LaplacesDemon function or with Laplace Approximation via the LaplaceApproximation function. In this method, a tolerance (which is found often in ABC) does not need to be specified, and the logarithm of the unnormalized joint posterior density is maximized, as usual. The negative and summed distance, above, may be replaced with the negative and summed distance between summaries of the data, rather than the data itself, but this has not been desirable in testing.

4.1. Form

$$\mathbf{y} = \mu + \epsilon$$

$$\mu = \mathbf{X}\beta$$

$$\beta_j \sim \mathcal{N}(0, 1000), \quad j = 1, \dots, J$$

4.2. Data

```
Model <- function(parm, Data)
    {
     ### Parameters
     beta <- parm[Data$pos.beta]
     ### Log-Prior
     beta.prior <- sum(dnormv(beta, 0, 1000, log=TRUE))
     ### Log-Likelihood Approximation
     mu <- as.vector(tcrossprod(Data$X, t(beta)))
     epsilon <- Data$y - mu
     sigma <- sd(epsilon)
     LL <- -sum(abs(epsilon))
     ### Log-Posterior Approximation</pre>
```

Initial.Values <- c(rep(0,J))</pre>

5. ARCH-M(1,1)

5.1. Form

$$\mathbf{y}_{t} \sim \mathcal{N}(\mu_{t}, \sigma_{t}^{2}), \quad t = 1, \dots, T$$

$$\mathbf{y}^{new} \sim \mathcal{N}(\mu_{T+1}, \sigma_{new}^{2})$$

$$\mu_{t} = \alpha + \phi \mathbf{y}_{t-1} + \delta \sigma_{t-1}^{2}, \quad t = 1, \dots, (T+1)$$

$$\epsilon_{t} = \mathbf{y}_{t} - \mu_{t}$$

$$\alpha \sim \mathcal{N}(0, 1000)$$

$$\phi \sim \mathcal{N}(0, 1000)$$

$$\delta \sim \mathcal{N}(0, 1000)$$

$$\sigma_{new}^{2} = \omega + \theta \epsilon_{T}^{2}$$

$$\sigma_{t}^{2} = \omega + \theta \epsilon_{t-1}^{2}$$

$$\omega \sim \mathcal{HC}(25)$$

$$\theta \sim \mathcal{U}(0, 1)$$

```
-0.12, 0.16, 0.17, 0.00, 0.18, 0.06, -0.36, 0.22, 0.14,
    -0.17, 0.10, -0.01, 0.00, -0.18, -0.02, 0.07, -0.06, 0.06,
    -0.05, -0.08, -0.07, 0.01, -0.06, 0.01, 0.01, -0.02, 0.01,
    0.01, 0.12, -0.03, 0.08, -0.10, 0.01, -0.03, -0.08, 0.04,
    -0.09, -0.08, 0.01, -0.05, 0.08, -0.14, 0.06, -0.11, 0.09,
    0.06, -0.12, -0.01, -0.05, -0.15, -0.05, -0.03, 0.04, 0.00,
    -0.12, 0.04, -0.06, -0.05, -0.07, -0.05, -0.14, -0.05, -0.01,
    -0.12, 0.05, 0.06, -0.10, 0.00, 0.01, 0.00, -0.08, 0.00,
    0.00, 0.07, -0.01, 0.00, 0.09, 0.33, 0.13, 0.42, 0.24,
    -0.36, 0.22, -0.09, -0.19, -0.10, -0.08, -0.07, 0.05, 0.07,
    0.07, 0.00, -0.04, -0.05, 0.03, 0.08, 0.26, 0.10, 0.08,
    0.09, -0.07, -0.33, 0.17, -0.03, 0.07, -0.04, -0.06, -0.06,
    0.07, -0.03, 0.00, 0.08, 0.27, 0.11, 0.11, 0.06, -0.11,
    -0.09, -0.21, 0.24, -0.12, 0.11, -0.02, -0.03, 0.02, -0.10,
    0.00, -0.04, 0.01, 0.02, -0.03, -0.10, -0.09, 0.17, 0.07,
    -0.05, -0.01, -0.05, 0.01, 0.00, -0.08, -0.05, -0.08, 0.07,
    0.06, -0.14, 0.02, 0.01, 0.04, 0.00, -0.13, -0.17
T <- length(y)
mon.names <- c("LP", "ynew", "sigma2.new")</pre>
parm.names <- c("alpha", "phi", "delta", "omega", "theta")</pre>
pos.alpha <- grep("alpha", parm.names)</pre>
pos.phi <- grep("phi", parm.names)</pre>
pos.delta <- grep("delta", parm.names)</pre>
pos.omega <- grep("omega", parm.names)</pre>
pos.theta <- grep("theta", parm.names)</pre>
PGF <- function(Data) return(c(rnorm(3,0,1), rhalfcauchy(1,5), runif(1)))
MyData <- list(PGF=PGF, T=T, mon.names=mon.names, parm.names=parm.names,
    pos.alpha=pos.alpha, pos.phi=pos.phi, pos.delta=pos.delta,
    pos.omega=pos.omega, pos.theta=pos.theta, y=y)
5.3. Model
Model <- function(parm, Data)</pre>
    ### Parameters
    alpha <- parm[Data$pos.alpha]; phi <- parm[Data$pos.phi]</pre>
    delta <- parm[Data$pos.delta]</pre>
    omega <- interval(parm[Data$pos.omega], 1e-100, Inf)</pre>
    parm[Data$pos.omega] <- omega</pre>
    theta <- interval(parm[Data$pos.theta], 1e-10, 1-1e-5)
    parm[Data$pos.theta] <- theta</pre>
    ### Log-Prior
    alpha.prior <- dnormv(alpha, 0, 1000, log=TRUE)</pre>
    phi.prior <- dnormv(phi, 0, 1000, log=TRUE)</pre>
    delta.prior <- dnormv(delta, 0, 1000, log=TRUE)</pre>
```

omega.prior <- dhalfcauchy(omega, 25, log=TRUE)

```
theta.prior <- dunif(theta, 0, 1, log=TRUE)</pre>
### Log-Likelihood
mu <- c(alpha, alpha + phi*Data$y[-Data$T])</pre>
epsilon <- Data$y - mu
sigma2 <- c(omega, omega + theta*epsilon[-Data$T]^2)</pre>
mu <- mu + delta*sigma2
sigma2.new <- omega + theta*epsilon[Data$T]^2</pre>
ynew <- rnorm(1, alpha + phi*Data$y[Data$T] + delta*sigma2[Data$T],</pre>
    sigma2.new)
LL <- sum(dnormv(Data$y, mu, sigma2, log=TRUE))
### Log-Posterior
LP <- LL + alpha.prior + phi.prior + delta.prior + omega.prior + theta.prior
Modelout <- list(LP=LP, Dev=-2*LL, Monitor=c(LP, ynew, sigma2.new),
    yhat=rnormv(length(mu), mu, sigma2), parm=parm)
return(Modelout)
}
```

Initial. Values $\leftarrow c(rep(0,3), rep(0.5,2))$

6. Autoregression, AR(1)

6.1. Form

$$\mathbf{y}_{t} \sim \mathcal{N}(\mu_{t}, \sigma^{2}), \quad t = 1, \dots, T$$

$$\mathbf{y}^{new} = \alpha + \mu_{T+1}$$

$$\mu_{t} = \alpha + \phi \mathbf{y}_{t-1}, \quad t = 1, \dots, (T+1)$$

$$\alpha \sim \mathcal{N}(0, 1000)$$

$$\phi \sim \mathcal{N}(0, 1000)$$

$$\sigma \sim \mathcal{HC}(25)$$

```
y <- c(0.02, -0.51, -0.30, 1.46, -1.26, -2.15, -0.91, -0.53, -1.91, 2.64, 1.64, 0.15, 1.46, 1.61, 1.96, -2.67, -0.19, -3.28, 1.89, 0.91, -0.71, 0.74, -0.10, 3.20, -0.80, -5.25, 1.03, -0.40, -1.62, -0.80, 0.77, 0.17, -1.39, -1.28, 0.48, -1.02, 0.09, -1.09, 0.86, 0.36, 1.51, -0.02, 0.47, 0.62, -1.36, 1.12, 0.42, -4.39, -0.87, 0.05, -5.41, -7.38, -1.01, -1.70, 0.64, 1.16, 0.87, 0.28, -1.69, -0.29, 0.13, -0.65, 0.83,
```

16

```
0.62, 0.05, -0.14, 0.01, -0.36, -0.32, -0.80, -0.06, 0.24,
    0.23, -0.37, 0.00, -0.33, 0.21, -0.10, -0.10, -0.01, -0.40,
    -0.35, 0.48, -0.28, 0.08, 0.28, 0.23, 0.27, -0.35, -0.19,
    0.24, 0.17, -0.02, -0.23, 0.03, 0.02, -0.17, 0.04, -0.39,
    -0.12, 0.16, 0.17, 0.00, 0.18, 0.06, -0.36, 0.22, 0.14,
    -0.17, 0.10, -0.01, 0.00, -0.18, -0.02, 0.07, -0.06, 0.06,
    -0.05, -0.08, -0.07, 0.01, -0.06, 0.01, 0.01, -0.02, 0.01,
    0.01, 0.12, -0.03, 0.08, -0.10, 0.01, -0.03, -0.08, 0.04,
    -0.09, -0.08, 0.01, -0.05, 0.08, -0.14, 0.06, -0.11, 0.09,
    0.06, -0.12, -0.01, -0.05, -0.15, -0.05, -0.03, 0.04, 0.00,
    -0.12, 0.04, -0.06, -0.05, -0.07, -0.05, -0.14, -0.05, -0.01,
    -0.12, 0.05, 0.06, -0.10, 0.00, 0.01, 0.00, -0.08, 0.00,
    0.00, 0.07, -0.01, 0.00, 0.09, 0.33, 0.13, 0.42, 0.24,
    -0.36, 0.22, -0.09, -0.19, -0.10, -0.08, -0.07, 0.05, 0.07,
    0.07, 0.00, -0.04, -0.05, 0.03, 0.08, 0.26, 0.10, 0.08,
    0.09, -0.07, -0.33, 0.17, -0.03, 0.07, -0.04, -0.06, -0.06,
    0.07, -0.03, 0.00, 0.08, 0.27, 0.11, 0.11, 0.06, -0.11,
    -0.09, -0.21, 0.24, -0.12, 0.11, -0.02, -0.03, 0.02, -0.10,
    0.00, -0.04, 0.01, 0.02, -0.03, -0.10, -0.09, 0.17, 0.07,
    -0.05, -0.01, -0.05, 0.01, 0.00, -0.08, -0.05, -0.08, 0.07,
    0.06, -0.14, 0.02, 0.01, 0.04, 0.00, -0.13, -0.17
T <- length(v)
mon.names <- c("LP", "ynew")</pre>
parm.names <- c("alpha", "phi", "sigma")</pre>
PGF <- function(Data) return(c(rnorm(2,0,1), rhalfcauchy(1,5)))
MyData <- list(PGF=PGF, T=T, mon.names=mon.names, parm.names=parm.names,</pre>
    y=y)
6.3. Model
Model <- function(parm, Data)</pre>
    ### Parameters
    alpha <- parm[1]; phi <- parm[2]</pre>
                                           sigma <- interval(parm[3], 1e-100, Inf)
    parm[3] <- sigma
    ### Log-Prior
    alpha.prior <- dnormv(alpha, 0, 1000, log=TRUE)</pre>
    phi.prior <- dnormv(phi, 0, 1000, log=TRUE)</pre>
    sigma.prior <- dhalfcauchy(sigma, 25, log=TRUE)</pre>
    ### Log-Likelihood
    mu <- c(alpha, alpha + phi*Data$y[-Data$T])</pre>
    ynew <- rnorm(1, alpha + phi*Data$y[Data$T], sigma)</pre>
    LL <- sum(dnorm(Data$y, mu, sigma, log=TRUE))</pre>
    ### Log-Posterior
    LP <- LL + alpha.prior + phi.prior + sigma.prior
    Modelout <- list(LP=LP, Dev=-2*LL, Monitor=c(LP,ynew),</pre>
```

```
yhat=rnorm(length(mu), mu, sigma), parm=parm)
return(Modelout)
}
```

Initial. Values $\leftarrow c(rep(0,2), 1)$

7. Autoregressive Conditional Heteroskedasticity, ARCH(1,1)

7.1. Form

$$\mathbf{y}_{t} \sim \mathcal{N}(\mu_{t}, \sigma_{t}^{2}), \quad t = 1, \dots, T$$

$$\mathbf{y}^{new} \sim \mathcal{N}(\mu_{T+1}, \sigma_{new}^{2})$$

$$\mu_{t} = \alpha + \phi \mathbf{y}_{t-1}, \quad t = 1, \dots, (T+1)$$

$$\epsilon_{t} = \mathbf{y}_{t} - \mu_{t}$$

$$\alpha \sim \mathcal{N}(0, 1000)$$

$$\phi \sim \mathcal{N}(0, 1000)$$

$$\sigma_{new}^{2} = \omega + \theta \epsilon_{T}^{2}$$

$$\sigma_{t}^{2} = \omega + \theta \epsilon_{t-1}^{2},$$

$$\omega \sim \mathcal{HC}(25)$$

$$\theta \sim \mathcal{U}(0, 1)$$

```
y <- c(0.02, -0.51, -0.30, 1.46, -1.26, -2.15, -0.91, -0.53, -1.91, 2.64, 1.64, 0.15, 1.46, 1.61, 1.96, -2.67, -0.19, -3.28, 1.89, 0.91, -0.71, 0.74, -0.10, 3.20, -0.80, -5.25, 1.03, -0.40, -1.62, -0.80, 0.77, 0.17, -1.39, -1.28, 0.48, -1.02, 0.09, -1.09, 0.86, 0.36, 1.51, -0.02, 0.47, 0.62, -1.36, 1.12, 0.42, -4.39, -0.87, 0.05, -5.41, -7.38, -1.01, -1.70, 0.64, 1.16, 0.87, 0.28, -1.69, -0.29, 0.13, -0.65, 0.83, 0.62, 0.05, -0.14, 0.01, -0.36, -0.32, -0.80, -0.06, 0.24, 0.23, -0.37, 0.00, -0.33, 0.21, -0.10, -0.10, -0.01, -0.40, -0.35, 0.48, -0.28, 0.08, 0.28, 0.23, 0.27, -0.35, -0.19, 0.24, 0.17, -0.02, -0.23, 0.03, 0.02, -0.17, 0.04, -0.39, -0.12, 0.16, 0.17, 0.00, 0.18, 0.06, -0.36, 0.22, 0.14, -0.17, 0.10, -0.01, 0.00, -0.18, -0.02, 0.07, -0.06, 0.06, -0.05, -0.08, -0.07, 0.01, -0.06, 0.01, 0.01, -0.02, 0.01, 0.01, 0.12, -0.03, 0.08, -0.10, 0.01, -0.03, -0.08, 0.04,
```

}

```
-0.09, -0.08, 0.01, -0.05, 0.08, -0.14, 0.06, -0.11, 0.09,
    0.06, -0.12, -0.01, -0.05, -0.15, -0.05, -0.03, 0.04, 0.00,
    -0.12, 0.04, -0.06, -0.05, -0.07, -0.05, -0.14, -0.05, -0.01,
    -0.12, 0.05, 0.06, -0.10, 0.00, 0.01, 0.00, -0.08, 0.00,
    0.00, 0.07, -0.01, 0.00, 0.09, 0.33, 0.13, 0.42, 0.24,
    -0.36, 0.22, -0.09, -0.19, -0.10, -0.08, -0.07, 0.05, 0.07,
    0.07, 0.00, -0.04, -0.05, 0.03, 0.08, 0.26, 0.10, 0.08,
    0.09, -0.07, -0.33, 0.17, -0.03, 0.07, -0.04, -0.06, -0.06,
    0.07, -0.03, 0.00, 0.08, 0.27, 0.11, 0.11, 0.06, -0.11,
    -0.09, -0.21, 0.24, -0.12, 0.11, -0.02, -0.03, 0.02, -0.10,
    0.00, -0.04, 0.01, 0.02, -0.03, -0.10, -0.09, 0.17, 0.07,
    -0.05, -0.01, -0.05, 0.01, 0.00, -0.08, -0.05, -0.08, 0.07,
    0.06, -0.14, 0.02, 0.01, 0.04, 0.00, -0.13, -0.17
T <- length(y)
mon.names <- c("LP", "ynew", "sigma2.new")</pre>
parm.names <- c("alpha", "phi", "omega", "theta")</pre>
PGF <-function(Data) return(c(rnorm(2,0,1), rhalfcauchy(1,5), runif(1)))
MyData <- list(PGF=PGF, T=T, mon.names=mon.names, parm.names=parm.names,</pre>
    y=y)
7.3. Model
Model <- function(parm, Data)</pre>
    ### Parameters
    alpha <- parm[1]; phi <- parm[2]
    parm[3] <- omega <- interval(parm[3], 1e-100, Inf)</pre>
    parm[4] <- theta <- interval(parm[4], 1e-10, 1-1e-5)</pre>
    ### Log-Prior
    alpha.prior <- dnormv(alpha, 0, 1000, log=TRUE)</pre>
    phi.prior <- dnormv(phi, 0, 1000, log=TRUE)</pre>
    omega.prior <- dhalfcauchy(omega, 25, log=TRUE)</pre>
    theta.prior <- dunif(theta, 0, 1, log=TRUE)</pre>
    ### Log-Likelihood
    mu <- c(alpha, alpha + phi*Data$y[-Data$T])</pre>
    epsilon <- Data$y - mu
    sigma2 <- c(omega, omega + theta*epsilon[-Data$T]^2)</pre>
    sigma2.new <- omega + theta*epsilon[Data$T]^2</pre>
    ynew <- rnormv(1, alpha + phi*Data$y[Data$T], sigma2.new)</pre>
    LL <- sum(dnormv(Data$y, mu, sigma2, log=TRUE))
    ### Log-Posterior
    LP <- LL + alpha.prior + phi.prior + omega.prior + theta.prior
    Modelout <- list(LP=LP, Dev=-2*LL, Monitor=c(LP, ynew,</pre>
         sigma2.new), yhat=rnormv(length(mu), mu, sigma2), parm=parm)
    return(Modelout)
```

Initial. Values $\leftarrow c(rep(0,2), rep(0.5,2))$

8. Autoregressive Moving Average, ARMA(1,1)

8.1. Form

$$\mathbf{y}_{t} \sim \mathcal{N}(\mu_{t}, \sigma^{2}), \quad t = 1, \dots, T$$

$$\mathbf{y}^{new} = \alpha + \phi \mathbf{y}_{T} + \theta \epsilon_{T}$$

$$\mu_{t} = \alpha + \phi \mathbf{y}_{t-1} + \theta \epsilon_{t-1}$$

$$\epsilon_{t} = \mathbf{y}_{t} - \mu_{t}$$

$$\alpha \sim \mathcal{N}(0, 1000)$$

$$\phi \sim \mathcal{N}(0, 1000)$$

$$\sigma \sim \mathcal{HC}(25)$$

$$\theta \sim \mathcal{N}(0, 1000)$$

```
y \leftarrow c(0.02, -0.51, -0.30, 1.46, -1.26, -2.15, -0.91, -0.53, -1.91,
    2.64, 1.64, 0.15, 1.46, 1.61, 1.96, -2.67, -0.19, -3.28,
    1.89, 0.91, -0.71, 0.74, -0.10, 3.20, -0.80, -5.25, 1.03,
    -0.40, -1.62, -0.80, 0.77, 0.17, -1.39, -1.28, 0.48, -1.02,
    0.09, -1.09, 0.86, 0.36, 1.51, -0.02, 0.47, 0.62, -1.36,
    1.12, 0.42, -4.39, -0.87, 0.05, -5.41, -7.38, -1.01, -1.70,
    0.64, 1.16, 0.87, 0.28, -1.69, -0.29, 0.13, -0.65, 0.83,
    0.62, 0.05, -0.14, 0.01, -0.36, -0.32, -0.80, -0.06, 0.24,
    0.23, -0.37, 0.00, -0.33, 0.21, -0.10, -0.10, -0.01, -0.40,
    -0.35, 0.48, -0.28, 0.08, 0.28, 0.23, 0.27, -0.35, -0.19,
    0.24, 0.17, -0.02, -0.23, 0.03, 0.02, -0.17, 0.04, -0.39,
    -0.12, 0.16, 0.17, 0.00, 0.18, 0.06, -0.36, 0.22, 0.14,
    -0.17, 0.10, -0.01, 0.00, -0.18, -0.02, 0.07, -0.06, 0.06,
    -0.05, -0.08, -0.07, 0.01, -0.06, 0.01, 0.01, -0.02, 0.01,
    0.01, 0.12, -0.03, 0.08, -0.10, 0.01, -0.03, -0.08, 0.04,
    -0.09, -0.08, 0.01, -0.05, 0.08, -0.14, 0.06, -0.11, 0.09,
    0.06, -0.12, -0.01, -0.05, -0.15, -0.05, -0.03, 0.04, 0.00,
    -0.12, 0.04, -0.06, -0.05, -0.07, -0.05, -0.14, -0.05, -0.01,
    -0.12, 0.05, 0.06, -0.10, 0.00, 0.01, 0.00, -0.08, 0.00,
    0.00, 0.07, -0.01, 0.00, 0.09, 0.33, 0.13, 0.42, 0.24,
```

```
-0.36, 0.22, -0.09, -0.19, -0.10, -0.08, -0.07, 0.05, 0.07,
    0.07, 0.00, -0.04, -0.05, 0.03, 0.08, 0.26, 0.10, 0.08,
    0.09, -0.07, -0.33, 0.17, -0.03, 0.07, -0.04, -0.06, -0.06,
    0.07, -0.03, 0.00, 0.08, 0.27, 0.11, 0.11, 0.06, -0.11,
    -0.09, -0.21, 0.24, -0.12, 0.11, -0.02, -0.03, 0.02, -0.10,
    0.00, -0.04, 0.01, 0.02, -0.03, -0.10, -0.09, 0.17, 0.07,
    -0.05, -0.01, -0.05, 0.01, 0.00, -0.08, -0.05, -0.08, 0.07,
    0.06, -0.14, 0.02, 0.01, 0.04, 0.00, -0.13, -0.17)
T <- length(y)
mon.names <- c("LP", "ynew")</pre>
parm.names <- c("alpha", "phi", "sigma", "theta")</pre>
PGF <- function(Data) return(c(rnorm(2,0,1), rhalfcauchy(1,5),
    rnorm(1,0,1)))
MyData <- list(PGF=PGF, T=T, mon.names=mon.names, parm.names=parm.names,
    y=y)
8.3. Model
Model <- function(parm, Data)</pre>
    {
    ### Parameters
    alpha <- parm[1]; phi <- parm[2]; theta <- parm[3]</pre>
    parm[4] <- sigma <- interval(parm[4], 1e-100, Inf)</pre>
    ### Log-Prior
    alpha.prior <- dnormv(alpha, 0, 1000, log=TRUE)</pre>
    phi.prior <- dnormv(phi, 0, 1000, log=TRUE)</pre>
    sigma.prior <- dhalfcauchy(sigma, 25, log=TRUE)</pre>
    theta.prior <- dnormv(theta, 0, 1000, log=TRUE)
    ### Log-Likelihood
    mu <- c(alpha, alpha + phi*Data$y[-Data$T])</pre>
    epsilon <- Data$y - mu
    mu <- c(mu[1], mu[-1] + theta * epsilon[-Data$T])</pre>
    ynew <- rnorm(1, alpha + phi*Data$y[Data$T] + theta*epsilon[Data$T],</pre>
         sigma)
    LL <- sum(dnorm(Data$y, mu, sigma, log=TRUE))</pre>
    ### Log-Posterior
    LP <- LL + alpha.prior + phi.prior + sigma.prior + theta.prior
    Modelout <- list(LP=LP, Dev=-2*LL, Monitor=c(LP, ynew),</pre>
         yhat=rnorm(length(mu), mu, sigma), parm=parm)
    return(Modelout)
    }
```

8.4. Initial Values

```
Initial. Values \leftarrow c(rep(0,2), 0, 1)
```

9. Beta Regression

9.1. Form

$$\mathbf{y} \sim \mathcal{BETA}(a, b)$$

$$a = \mu \phi$$

$$b = (1 - \mu)\phi$$

$$\mu = \Phi(\beta_1 + \beta_2 \mathbf{x}), \quad \mu \in (0, 1)$$

$$\beta_j \sim \mathcal{N}(0, 10), \quad j = 1, \dots, J$$

$$\phi \sim \mathcal{HC}(25)$$

where Φ is the normal CDF.

9.2. Data

```
N <- 100
x <- runif(N)
y <- rbeta(N, (0.5-0.2*x)*3, (1-(0.5-0.2*x))*3) mon.names <- "LP"
parm.names <- c("beta[1]","beta[2]","phi")
pos.beta <- grep("beta", parm.names)
pos.phi <- grep("phi", parm.names)
PGF <- function(Data) return(c(rnormv(2,0,10), rhalfcauchy(1,5)))
MyData <- list(PGF=PGF, mon.names=mon.names, parm.names=parm.names, pos.beta=pos.beta, pos.phi=pos.phi, x=x, y=y)</pre>
```

9.4. Initial Values

Initial. Values \leftarrow c(rep(0,2), 0.01)

10. Beta-Binomial

10.1. Form

$$\mathbf{y}_i \sim \mathcal{BIN}(\mathbf{n}_i, \pi_i), \quad i = 1, \dots, N$$

$$\pi_i \sim \mathcal{BETA}(\alpha, \beta) \in [0.001, 0.999]$$

10.2. Data

```
N <- 20
n <- round(runif(N, 50, 100))
y <- round(runif(N, 1, 10))
mon.names <- "LP"
parm.names <- as.parm.names(list(pi=rep(0,N)))
PGF <- function(Data) return(rbeta(Data$N,1,1))
MyData <- list(N=N, PGF=PGF, mon.names=mon.names, n=n, parm.names=parm.names, y=y)</pre>
```

}

10.4. Initial Values

Initial.Values <- c(rep(0.5,N))</pre>

11. Binary Logit

11.1. Form

$$\mathbf{y} \sim \mathcal{BERN}(\eta)$$

$$\eta = \frac{1}{1 + \exp(-\mu)}$$

$$\mu = \mathbf{X}\beta$$

$$\beta_j \sim \mathcal{N}(0, 1000), \quad j = 1, \dots, J$$

11.2. Data

```
data(demonsnacks)
J <- 3
y <- ifelse(demonsnacks$Calories <= 137, 0, 1)
X <- cbind(1, as.matrix(demonsnacks[,c(7,8)]))
for (j in 2:J) {X[,j] <- CenterScale(X[,j])}
mon.names <- "LP"
parm.names <- as.parm.names(list(beta=rep(0,J)))
PGF <- function(Data) return(rnormv(Data$J,0,1000))
MyData <- list(J=J, PGF=PGF, X=X, mon.names=mon.names, parm.names=parm.names, y=y)</pre>
```

```
Model <- function(parm, Data)
    {
     ### Parameters
     beta <- parm[1:Data$J]
     ### Log-Prior
     beta.prior <- sum(dnormv(beta, 0, 1000, log=TRUE))
     ### Log-Likelihood
     mu <- tcrossprod(Data$X, t(beta))
     eta <- invlogit(mu)
     LL <- sum(dbern(Data$y, eta, log=TRUE))
     ### Log-Posterior</pre>
```

11.4. Initial Values

Initial.Values <- rep(0,J)</pre>

12. Binary Log-Log Link Mixture

A weighted mixture of the log-log and complementary log-log link functions is used, where α is the weight. Since the log-log and complementary log-log link functions are asymmetric (as opposed to the symmetric logit and probit link functions), it may be unknown *a priori* whether the log-log or complementary log-log will perform better.

12.1. Form

$$\mathbf{y} \sim \mathcal{BERN}(\eta)$$

$$\eta = \alpha \exp(-\exp(\mu)) + (1 - \alpha)(1 - \exp(-\exp(\mu)))$$

$$\mu = \mathbf{X}\beta$$

$$\alpha \sim \mathcal{U}(0, 1)$$

$$\beta_j \sim \mathcal{N}(0, 1000), \quad j = 1, \dots, J$$

12.2. Data

```
Model <- function(parm, Data)
{</pre>
```

```
### Parameters
parm[Data$J+1] <- alpha <- interval(parm[Data$J+1], -700, 700)</pre>
beta <- parm[1:Data$J]</pre>
### Log-Prior
alpha.prior <- dunif(alpha, 0, 1, log=TRUE)</pre>
beta.prior <- sum(dnormv(beta, 0, 1000, log=TRUE))</pre>
### Log-Likelihood
mu <- tcrossprod(Data$X, t(beta))</pre>
eta <- alpha*invloglog(mu) + (1-alpha)*invcloglog(mu)
LL <- sum(dbern(Data$y, eta, log=TRUE))</pre>
### Log-Posterior
LP <- LL + alpha.prior + beta.prior
Modelout <- list(LP=LP, Dev=-2*LL, Monitor=c(LP,alpha),</pre>
     yhat=rbern(length(eta), eta), parm=parm)
return(Modelout)
}
```

Initial.Values <- c(rep(0,J), 0)</pre>

13. Binary Probit

13.1. Form

$$\mathbf{y} \sim \mathcal{BERN}(\mathbf{p})$$

$$\mathbf{p} = \phi(\mu)$$

$$\mu = \mathbf{X}\beta \in [-10, 10]$$

$$\beta_j \sim \mathcal{N}(0, 1000), \quad j = 1, \dots, J$$

where ϕ is the CDF of the standard normal distribution, and J=3.

```
data(demonsnacks)
J <- 3
y <- ifelse(demonsnacks$Calories <= 137, 0, 1)
X <- cbind(1, as.matrix(demonsnacks[,c(7,8)]))
for (j in 2:J) {X[,j] <- CenterScale(X[,j])}
mon.names <- "LP"
parm.names <- as.parm.names(list(beta=rep(0,J)))
PGF <- function(Data) return(rnormv(Data$J,0,1000))
MyData <- list(J=J, PGF=PGF, X=X, mon.names=mon.names,</pre>
```

```
parm.names=parm.names, y=y)
```

13.3. Model

```
Model <- function(parm, Data)</pre>
     ### Parameters
    beta <- parm[1:Data$J]</pre>
     ### Log-Prior
     beta.prior <- sum(dnormv(beta, 0, 1000, log=TRUE))</pre>
     ### Log-Likelihood
     mu <- tcrossprod(Data$X, t(beta))</pre>
    mu <- interval(mu, -10, 10, reflect=FALSE)</pre>
     p <- pnorm(mu)</pre>
     LL <- sum(dbern(Data$y, p, log=TRUE))
     ### Log-Posterior
    LP <- LL + beta.prior
     Modelout <- list(LP=LP, Dev=-2*LL, Monitor=LP,</pre>
          yhat=rbern(length(p), p), parm=parm)
     return(Modelout)
     }
```

13.4. Initial Values

Initial.Values <- rep(0,J)</pre>

14. Binary Robit

14.1. Form

$$\mathbf{y} \sim \mathcal{BERN}(\mathbf{p})$$

$$\mathbf{p} = \mathbf{T}_{\nu}(\mu)$$

$$\mu = \mathbf{X}\beta \in [-10, 10]$$

$$\beta_{j} \sim \mathcal{N}(0, 1000), \quad j = 1, \dots, J$$

$$\nu \sim \mathcal{U}(5, 10)$$

where \mathbf{T}_{ν} is the CDF of the standard t-distribution with ν degrees of freedom.

```
data(demonsnacks)
y <- ifelse(demonsnacks$Calories <= 137, 0, 1)</pre>
```

```
X <- cbind(1, as.matrix(demonstacks[,c(7,8)]))</pre>
J \leftarrow ncol(X)
for (j in 2:J) {X[,j] <- CenterScale(X[,j])}</pre>
mon.names <- "LP"
parm.names <- as.parm.names(list(beta=rep(0,J), nu=0))</pre>
PGF <- function(Data) return(c(rnormv(Data$J,0,1),
    runif(1,5,10)))
MyData <- list(J=J, PGF=PGF, X=X, mon.names=mon.names,</pre>
    parm.names=parm.names, y=y)
14.3. Model
Model <- function(parm, Data)</pre>
    ### Parameters
    beta <- parm[1:Data$J]</pre>
    parm[Data$J+1] <- nu <- interval(parm[Data$J+1], 5, 10)</pre>
    ### Log-Prior
    beta.prior <- sum(dnormv(beta, 0, 1000, log=TRUE))</pre>
    nu.prior <- dunif(nu, 5, 10, log=TRUE)
    ### Log-Likelihood
    mu <- tcrossprod(Data$X, t(beta))</pre>
    mu <- interval(mu, -10, 10, reflect=FALSE)
    p <- pst(mu, nu=nu)</pre>
    LL <- sum(dbern(Data$y, p, log=TRUE))</pre>
    ### Log-Posterior
    LP <- LL + beta.prior + nu.prior
    Modelout <- list(LP=LP, Dev=-2*LL, Monitor=LP,</pre>
         yhat=rbern(length(p), p), parm=parm)
    return(Modelout)
    }
```

Initial.Values <- c(rep(0,J), 5)</pre>

15. Binomial Logit

15.1. Form

$$\mathbf{y} \sim \mathcal{BIN}(\mathbf{p}, \mathbf{n})$$
$$\mathbf{p} = \frac{1}{1 + \exp(-\mu)}$$
$$\mu = \beta_1 + \beta_2 \mathbf{x}$$

```
\beta_i \sim \mathcal{N}(0, 1000), \quad j = 1, \dots, J
```

15.2. Data

15.3. Model

15.4. Initial Values

Initial.Values <- rep(0,J)</pre>

16. Binomial Probit

16.1. Form

$$\mathbf{y} \sim \mathcal{BIN}(\mathbf{p}, \mathbf{n})$$

 $\mathbf{p} = \phi(\mu)$

$$\mu = \beta_1 + \beta_2 \mathbf{x} \in [-10, 10]$$

 $\beta_j \sim \mathcal{N}(0, 1000), \quad j = 1, \dots, J$

where ϕ is the CDF of the standard normal distribution, and J=2.

16.2. Data

16.3. Model

```
Model <- function(parm, Data)</pre>
     ### Parameters
     beta <- parm[1:Data$J]</pre>
     ### Log-Prior
     beta.prior <- sum(dnormv(beta, 0, 1000, log=TRUE))</pre>
     ### Log-Likelihood
     mu <- beta[1] + beta[2]*Data$x</pre>
     mu <- interval(mu, -10, 10, reflect=FALSE)
     p <- pnorm(mu)</pre>
     LL <- sum(dbinom(Data$y, Data$n, p, log=TRUE))</pre>
     ### Log-Posterior
     LP <- LL + beta.prior
     Modelout <- list(LP=LP, Dev=-2*LL, Monitor=LP,</pre>
          yhat=rbinom(length(p), Data$n, p), parm=parm)
     return(Modelout)
     }
```

16.4. Initial Values

```
Initial.Values <- rep(0,J)</pre>
```

17. Binomial Robit

17.1. Form

$$\mathbf{y} \sim \mathcal{BIN}(\mathbf{p}, \mathbf{n})$$

$$\mathbf{p} = \mathbf{T}_{\nu}(\mu)$$

$$\mu = \beta_1 + \beta_2 \mathbf{x} \in [-10, 10]$$

$$\beta_j \sim \mathcal{N}(0, 1000), \quad j = 1, \dots, J$$

$$\nu \sim \mathcal{U}(5, 10)$$

where \mathbf{T}_{ν} is the CDF of the standard t-distribution with ν degrees of freedom.

17.2. Data

```
Model <- function(parm, Data)</pre>
     {
     ### Parameters
     beta <- parm[1:Data$J]</pre>
     parm[Data$J+1] <- nu <- interval(parm[Data$J+1], 5, 10)</pre>
     ### Log-Prior
     beta.prior <- sum(dnormv(beta, 0, 1000, log=TRUE))</pre>
     nu.prior <- dunif(nu, 5, 10, log=TRUE)</pre>
     ### Log-Likelihood
     mu <- beta[1] + beta[2]*Data$x</pre>
     mu <- interval(mu, -10, 10, reflect=FALSE)</pre>
     p <- pst(mu, nu=nu)</pre>
     LL <- sum(dbinom(Data$y, Data$n, p, log=TRUE))</pre>
     ### Log-Posterior
     LP <- LL + beta.prior + nu.prior
     Modelout <- list(LP=LP, Dev=-2*LL, Monitor=LP,</pre>
          yhat=rbinom(length(p), Data$n, p), parm=parm)
     return(Modelout)
     }
```

Initial.Values <- c(rep(0, J), 5)</pre>

18. Change Point Regression

This example uses a popular variant of the stagnant water data set.

18.1. Form

$$\mathbf{y} \sim \mathcal{N}(\mu, \sigma^2)$$

$$\mu = \alpha + \beta_1 \mathbf{x} + \beta_2 (\mathbf{x} - \theta) [(\mathbf{x} - \theta) > 0]$$

$$\alpha \sim \mathcal{N}(0, 1000)$$

$$\beta \sim \mathcal{N}(0, 1000)$$

$$\sigma \sim \mathcal{HC}(25)$$

$$\theta \sim \mathcal{U}(-1.3, 1.1)$$

18.2. Data

```
N <- 29
y \leftarrow c(1.12, 1.12, 0.99, 1.03, 0.92, 0.90, 0.81, 0.83, 0.65, 0.67, 0.60,
    0.59, 0.51, 0.44, 0.43, 0.43, 0.33, 0.30, 0.25, 0.24, 0.13, -0.01,
    -0.13, -0.14, -0.30, -0.33, -0.46, -0.43, -0.65)
x \leftarrow c(-1.39, -1.39, -1.08, -1.08, -0.94, -0.80, -0.63, -0.63, -0.25, -0.25,
    -0.12, -0.12, 0.01, 0.11, 0.11, 0.11, 0.25, 0.25, 0.34, 0.34, 0.44,
    0.59, 0.70, 0.70, 0.85, 0.85, 0.99, 0.99, 1.19
mon.names <- "LP"
parm.names <- as.parm.names(list(alpha=0, beta=rep(0,2), sigma=0, theta=0))
pos.alpha <- grep("alpha", parm.names)</pre>
pos.beta <- grep("beta", parm.names)</pre>
pos.sigma <- grep("sigma", parm.names)</pre>
pos.theta <- grep("theta", parm.names)</pre>
PGF <- function(Data) return(c(rnorm(1), rnorm(2), runif(1), runif(1)))
MyData <- list(N=N, PGF=PGF, mon.names=mon.names, parm.names=parm.names,</pre>
    pos.alpha=pos.alpha, pos.beta=pos.beta, pos.sigma=pos.sigma,
    pos.theta=pos.theta, x=x, y=y)
```

```
Model <- function(parm, Data)
{
### Parameters
alpha <- parm[Data$pos.alpha]</pre>
```

```
beta <- parm[Data$pos.beta]</pre>
sigma <- interval(parm[Data$pos.sigma], 1e-100, Inf)</pre>
parm[Data$pos.sigma] <- sigma</pre>
theta <- interval(parm[Data$pos.theta], -1.3, 1.1)
parm[Data$pos.theta] <- theta</pre>
### Log-Prior
alpha.prior <- dnormv(alpha, 0, 1000, log=TRUE)</pre>
beta.prior <- sum(dnormv(beta, 0, 1000, log=TRUE))</pre>
sigma.prior <- dhalfcauchy(sigma, 25, log=TRUE)</pre>
theta.prior <- dunif(theta, -1.3, 1.1, log=TRUE)
### Log-Likelihood
mu \leftarrow alpha + beta[1]*x + beta[2]*(x - theta)*(x - theta) > 0
LL <- sum(dnorm(Data$y, mu, sigma, log=TRUE))</pre>
### Log-Posterior
LP <- LL + alpha.prior + beta.prior + sigma.prior + theta.prior
Modelout <- list(LP=LP, Dev=-2*LL, Monitor=LP,</pre>
yhat=rnorm(length(mu), mu, sigma), parm=parm)
return(Modelout)
}
```

18.4. Initial Values

Initial. Values <-c(0.2, -0.45, 0, 0.2, 0)

19. Cluster Analysis, Confirmatory (CCA)

This is a parametric, model-based, cluster analysis, also called a finite mixture model or latent class cluster analysis, where the number of clusters C is fixed. When the number of clusters is unknown, exploratory cluster analysis should be used (see section 20). The record-level cluster membership parameter vector, θ , is a vector of discrete parameters. Discrete parameters are not supported in all algorithms. The example below is updated with the Griddy-Gibbs sampler.

19.1. Form

$$\mathbf{Y}_{i,j} \sim \mathcal{N}(\mu_{\theta[i],j}, \sigma_{\theta[i]}^2), \quad i = 1, \dots, N, \quad j = 1, \dots, J$$

$$\theta_i \sim \mathcal{CAT}(\pi_{1:C}), \quad i = 1, \dots, N$$

$$\pi_{1:C} \sim \mathcal{D}(\alpha_{1:C})$$

$$\alpha_c = 1$$

$$\mu_{c,j} \sim \mathcal{N}(0, \nu_j^2)$$

$$\sigma_c \sim \mathcal{HC}(25)$$

$$\nu_j \sim \mathcal{HC}(25)$$

19.2. Data

Log-Posterior

```
data(demonsnacks)
Y <- as.matrix(log(demonsnacks + 1))
N \leftarrow nrow(Y)
J \leftarrow ncol(Y)
for (j in 1:J) {Y[,j] <- CenterScale(Y[,j])}</pre>
C <- 3 #Number of clusters
alpha <- rep(1,C) #Prior probability of cluster proportion
mon.names <- c("LP", paste("pi[", 1:C, "]", sep=""))</pre>
parm.names <- as.parm.names(list(theta=rep(0,N), mu=matrix(0,C,J),</pre>
    nu=rep(0,J), sigma=rep(0,C)))
pos.theta <- grep("theta", parm.names)</pre>
pos.mu <- grep("mu", parm.names)</pre>
pos.nu <- grep("nu", parm.names)</pre>
pos.sigma <- grep("sigma", parm.names)</pre>
PGF <- function(Data) return(c(rcat(N, p=rep(1/C, C)),
     rnorm(Data$C*Data$J,0,1), rhalfcauchy(Data$J+Data$C,5)))
MyData <- list(C=C, J=J, N=N, PGF=PGF, Y=Y, alpha=alpha,
    mon.names=mon.names, parm.names=parm.names, pos.theta=pos.theta,
    pos.mu=pos.mu, pos.nu=pos.nu, pos.sigma=pos.sigma)
19.3. Model
Model <- function(parm, Data)</pre>
    ### Parameters
    theta <- parm[Data$pos.theta]</pre>
    mu <- matrix(parm[Data$pos.mu], Data$C, Data$J)</pre>
    parm[Data$pos.nu] <- nu <- interval(parm[Data$pos.nu], 1e-100, Inf)</pre>
    pi <- rep(0, Data$C)</pre>
    tab <- table(theta)
    pi[as.numeric(names(tab))] <- as.vector(tab)</pre>
    pi <- pi / sum(pi)
     sigma <- interval(parm[Data$pos.sigma], 1e-100, Inf)</pre>
    parm[Data$pos.sigma] <- sigma</pre>
    ### Log-Prior
    theta.prior <- sum(dcat(theta, pi, log=TRUE))</pre>
    mu.prior <- sum(dnorm(mu, 0, matrix(rep(nu,Data$C), Data$C,</pre>
         Data$J, byrow=TRUE), log=TRUE))
    nu.prior <- sum(dhalfcauchy(nu, 25, log=TRUE))</pre>
    pi.prior <- ddirichlet(pi, Data$alpha, log=TRUE)</pre>
    sigma.prior <- sum(dhalfcauchy(sigma, 25, log=TRUE))</pre>
    ### Log-Likelihood
    LL <- sum(dnorm(Data$Y, mu[theta,], sigma[theta], log=TRUE))
```

```
LP <- LL + theta.prior + mu.prior + nu.prior + pi.prior +
    sigma.prior
Modelout <- list(LP=LP, Dev=-2*LL, Monitor=c(LP,pi),
    yhat=rnorm(prod(dim(mu[theta,])), mu[theta,], sigma[theta]),
    parm=parm)
return(Modelout)
}</pre>
```

19.4. Initial Values

Initial. Values $\leftarrow c(rcat(N,rep(1/C,C)), rep(0,C*J), rep(1,J), rep(1,C))$

20. Cluster Analysis, Exploratory (ECA)

In "exploratory cluster analysis", the optimal number of clusters C is unknown before the model update. This is a nonparametric, model-based, infinite mixture model that uses truncated stick-breaking within a truncated Dirichlet process. The user must specify the maximum number of clusters (mixture components), C to explore, where C is discrete, greater than one, and less than the number of records, N. The records in the $N \times J$ matrix \mathbf{Y} are clustered, where J is the number of predictors. The record-level cluster membership parameter vector, θ , is a vector of discrete parameters. Discrete parameters are not supported in all algorithms. The example below is updated with the Griddy-Gibbs sampler.

20.1. Form

$$\mathbf{Y}_{i,j} \sim \mathcal{N}(\mu_{\theta[i],j}, \sigma_{\theta[i]}^2), \quad i = 1, \dots, N, \quad j = 1, \dots, J$$

$$\theta_i \sim \mathcal{CAT}(\pi_{1:C}), \quad i = 1, \dots, N$$

$$\pi_{1:C} \sim \text{Stick}(\gamma)$$

$$\mu_{c,j} \sim \mathcal{N}(0, \nu_j^2)$$

$$\alpha \sim \mathcal{HC}(25)$$

$$\beta \sim \mathcal{HC}(25)$$

$$\gamma \sim \mathcal{G}(\alpha, \beta)$$

$$\sigma_c \sim \mathcal{HC}(25)$$

$$\nu_j \sim \mathcal{HC}(25)$$

```
data(demonsnacks)
Y <- as.matrix(log(demonsnacks + 1))
N <- nrow(Y)
J <- ncol(Y)</pre>
```

```
for (j in 1:J) {Y[,j] <- CenterScale(Y[,j])}</pre>
C <- 3 #Number of clusters to explore
mon.names <- c("LP", paste("pi[", 1:C, "]", sep=""))</pre>
parm.names <- as.parm.names(list(theta=rep(0,N), mu=matrix(0,C,J),
    nu=rep(0,J), sigma=rep(0,C), alpha=0, beta=0, gamma=0))
pos.theta <- grep("theta", parm.names)</pre>
pos.mu <- grep("mu", parm.names)</pre>
pos.nu <- grep("nu", parm.names)</pre>
pos.sigma <- grep("sigma", parm.names)</pre>
pos.alpha <- grep("alpha", parm.names)</pre>
pos.beta <- grep("beta", parm.names)</pre>
pos.gamma <- grep("gamma", parm.names)</pre>
PGF <- function(Data) return(c(rcat(Data$N, p=rep(1/Data$C,Data$C)),
    rnorm(Data$C*Data$J,0,1), rhalfcauchy(Data$J+Data$C,5),
    rhalfcauchy(2,5), rgamma(1,rhalfcauchy(2,5))))
MyData <- list(C=C, J=J, N=N, PGF=PGF, Y=Y, mon.names=mon.names,
    parm.names=parm.names, pos.theta=pos.theta, pos.mu=pos.mu,
    pos.nu=pos.nu, pos.sigma=pos.sigma, pos.alpha=pos.alpha,
    pos.beta=pos.beta, pos.gamma=pos.gamma)
20.3. Model
Model <- function(parm, Data)</pre>
    ### Hyperhyperparameters
     alpha <- interval(parm[Data$pos.alpha], 1e-100, Inf)</pre>
    parm[Data$pos.alpha] <- alpha</pre>
    beta <- interval(parm[Data$pos.beta], 1e-100, Inf)
    parm[Data$pos.beta] <- beta</pre>
    ### Hyperparameters
    gamma <- interval(parm[Data$pos.gamma], 1e-100, Inf)</pre>
    parm[Data$pos.nu] <- nu <- interval(parm[Data$pos.nu], 1e-100, Inf)</pre>
    ### Parameters
    theta <- parm[Data$pos.theta]</pre>
    mu <- matrix(parm[Data$pos.mu], Data$C, Data$J)</pre>
    pi <- rStick(Data$C-1, gamma)</pre>
     sigma <- interval(parm[Data$pos.sigma], 1e-100, Inf)</pre>
    parm[Data$pos.sigma] <- sigma</pre>
    ### Log-Hyperhyperprior
    alpha.prior <- dhalfcauchy(alpha, 25, log=TRUE)</pre>
    beta.prior <- dhalfcauchy(beta, 25, log=TRUE)</pre>
    ### Log-Hyperprior
    gamma.prior <- dgamma(gamma, alpha, beta, log=TRUE)</pre>
    nu.prior <- sum(dhalfcauchy(nu, 25, log=TRUE))</pre>
    ### Log-Prior
```

theta.prior <- sum(dcat(theta, pi, log=TRUE))</pre>

20.4. Initial Values

Initial.Values <- c(rcat(N,p=rep(1/C,C)), rep(0,C*J), rep(1,J), rep(1,C), rep(1,3))

21. Conditional Autoregression (CAR), Poisson

This CAR example is a slightly modified form of example 7.3 (Model A) in Congdon (2003). The Scottish lip cancer data also appears in the WinBUGS (Spiegelhalter, Thomas, Best, and Lunn 2003) examples and is a widely analyzed example. The data \mathbf{y} consists of counts for $i=1,\ldots,56$ counties in Scotland. A single predictor \mathbf{x} is provided. The errors, ϵ , are allowed to include spatial effects as smoothing by spatial effects from areal neighbors. The vector ϵ_{μ} is the mean of each area's error, and is a weighted average of errors in contiguous areas. Areal neighbors are indicated in adjacency matrix \mathbf{A} .

21.1. Form

$$\mathbf{y} \sim \mathcal{P}(\lambda)$$

$$\lambda = \exp(\log(\mathbf{E}) + \beta_1 + \beta_2 \mathbf{x} + \epsilon)$$

$$\epsilon \sim \mathcal{N}(\epsilon_{\mu}, \sigma^2)$$

$$\epsilon_{\mu[i]} = \rho \sum_{j=1}^{J} \mathbf{A}_{i,j} \epsilon_j, \quad i = 1, \dots, N$$

$$\beta_j \sim \mathcal{N}(0, 1000), \quad j = 1, \dots, J$$

$$\rho \sim \mathcal{U}(-1, 1)$$

$$\sigma \sim \mathcal{HC}(25)$$

```
N <- 56 #Number of areas
NN <- 264 #Number of adjacent areas
y \leftarrow c(9,39,11,9,15,8,26,7,6,20,13,5,3,8,17,9,2,7,9,7,16,31,11,7,19,15,7,
     10,16,11,5,3,7,8,11,9,11,8,6,4,10,8,2,6,19,3,2,3,28,6,1,1,1,1,0,0)
E \leftarrow c(1.4,8.7,3.0,2.5,4.3,2.4,8.1,2.3,2.0,6.6,4.4,1.8,1.1,3.3,7.8,4.6,
     1.1, 4.2, 5.5, 4.4, 10.5, 22.7, 8.8, 5.6, 15.5, 12.5, 6.0, 9.0, 14.4, 10.2, 4.8,
     2.9,7.0,8.5,12.3,10.1,12.7,9.4,7.2,5.3,18.8,15.8,4.3,14.6,50.7,8.2,
     5.6,9.3,88.7,19.6,3.4,3.6,5.7,7.0,4.2,1.8) #Expected
x \leftarrow c(16,16,10,24,10,24,10,7,7,16,7,16,10,24,7,16,10,7,7,10,7,16,10,7,1,1,
     7,7,10,10,7,24,10,7,7,0,10,1,16,0,1,16,16,0,1,7,1,1,0,1,1,0,1,1,16,10
A <- matrix(0, N, N)
A[1,c(5,9,11,19)] <-1 #Area 1 is adjacent to areas 5, 9, 11, and 19
A[2,c(7,10)] \leftarrow 1 \text{ #Area 2 is adjacent to areas 7 and 10}
A[3,c(6,12)] \leftarrow 1; A[4,c(18,20,28)] \leftarrow 1; A[5,c(1,11,12,13,19)] \leftarrow 1
A[6,c(3,8)] \leftarrow 1; A[7,c(2,10,13,16,17)] \leftarrow 1; A[8,6] \leftarrow 1
A[9,c(1,11,17,19,23,29)] \leftarrow 1; A[10,c(2,7,16,22)] \leftarrow 1
A[11,c(1,5,9,12)] \leftarrow 1; A[12,c(3,5,11)] \leftarrow 1; A[13,c(5,7,17,19)] \leftarrow 1
A[14,c(31,32,35)] \leftarrow 1; A[15,c(25,29,50)] \leftarrow 1
A[16,c(7,10,17,21,22,29)] \leftarrow 1; A[17,c(7,9,13,16,19,29)] \leftarrow 1
A[18,c(4,20,28,33,55,56)] \leftarrow 1; A[19,c(1,5,9,13,17)] \leftarrow 1
A[20,c(4,18,55)] \leftarrow 1; A[21,c(16,29,50)] \leftarrow 1; A[22,c(10,16)] \leftarrow 1
A[23,c(9,29,34,36,37,39)] \leftarrow 1; A[24,c(27,30,31,44,47,48,55,56)] \leftarrow 1
A[25,c(15,26,29)] \leftarrow 1; A[26,c(25,29,42,43)] \leftarrow 1
A[27,c(24,31,32,55)] \leftarrow 1; A[28,c(4,18,33,45)] \leftarrow 1
A[29,c(9,15,16,17,21,23,25,26,34,43,50)] <- 1
A[30,c(24,38,42,44,45,56)] \leftarrow 1; A[31,c(14,24,27,32,35,46,47)] \leftarrow 1
A[32,c(14,27,31,35)] \leftarrow 1; A[33,c(18,28,45,56)] \leftarrow 1
A[34,c(23,29,39,40,42,43,51,52,54)] \leftarrow 1; A[35,c(14,31,32,37,46)] \leftarrow 1
A[36,c(23,37,39,41)] \leftarrow 1; A[37,c(23,35,36,41,46)] \leftarrow 1
A[38,c(30,42,44,49,51,54)] \leftarrow 1; A[39,c(23,34,36,40,41)] \leftarrow 1
A[40,c(34,39,41,49,52)] \leftarrow 1; A[41,c(36,37,39,40,46,49,53)] \leftarrow 1
A[42,c(26,30,34,38,43,51)] \leftarrow 1; A[43,c(26,29,34,42)] \leftarrow 1
A[44,c(24,30,38,48,49)] <-1; A[45,c(28,30,33,56)] <-1
A[46,c(31,35,37,41,47,53)] \leftarrow 1; A[47,c(24,31,46,48,49,53)] \leftarrow 1
A[48,c(24,44,47,49)] \leftarrow 1; A[49,c(38,40,41,44,47,48,52,53,54)] \leftarrow 1
A[50,c(15,21,29)] \leftarrow 1; A[51,c(34,38,42,54)] \leftarrow 1
A[52,c(34,40,49,54)] \leftarrow 1; A[53,c(41,46,47,49)] \leftarrow 1
A[54,c(34,38,49,51,52)] \leftarrow 1; A[55,c(18,20,24,27,56)] \leftarrow 1
A[56,c(18,24,30,33,45,55)] <- 1
mon.names <- "LP"
parm.names <- as.parm.names(list(beta=rep(0,2), epsilon=rep(0,N), rho=0,
     sigma=0))
pos.beta <- grep("beta", parm.names)</pre>
pos.epsilon <- grep("epsilon", parm.names)</pre>
pos.rho <- grep("rho", parm.names)</pre>
```

```
pos.sigma <- grep("sigma", parm.names)</pre>
PGF <- function(Data) return(c(rnormv(2,0,1000), rnorm(Data$N,0,1),
    runif(1,-1,1), rhalfcauchy(1,5))
MyData <- list(A=A, E=E, N=N, PGF=PGF, mon.names=mon.names,
    parm.names=parm.names, pos.beta=pos.beta, pos.epsilon=pos.epsilon,
    pos.rho=pos.rho, pos.sigma=pos.sigma, x=x, y=y)
21.3. Model
Model <- function(parm, Data)</pre>
    {
    ### Parameters
    beta <- parm[Data$pos.beta]</pre>
    epsilon <- parm[Data$pos.epsilon]</pre>
    parm[Data$pos.rho] <- rho <- interval(parm[Data$pos.rho], -1, 1)</pre>
    epsilon.mu <- rho * rowSums(epsilon * Data$A)</pre>
    sigma <- interval(parm[Data$pos.sigma], 1e-100, Inf)</pre>
    parm[Data$pos.sigma] <- sigma</pre>
    ### Log-Prior
    beta.prior <- sum(dnormv(beta, 0, 1000, log=TRUE))</pre>
    epsilon.prior <- sum(dnorm(epsilon, epsilon.mu, sigma, log=TRUE))
    rho.prior <- dunif(rho, -1, 1, log=TRUE)</pre>
    sigma.prior <- dhalfcauchy(sigma, 25, log=TRUE)</pre>
    ### Log-Likelihood
    lambda <- exp(log(Data$E) + beta[1] + beta[2]*Data$x/10 + epsilon)</pre>
    LL <- sum(dpois(Data$y, lambda, log=TRUE))</pre>
    ### Log-Posterior
    LP <- LL + beta.prior + epsilon.prior + rho.prior + sigma.prior
    Modelout <- list(LP=LP, Dev=-2*LL, Monitor=LP,</pre>
         yhat=rpois(length(lambda), lambda), parm=parm)
    return(Modelout)
    }
```

21.4. Initial Values

Initial. Values $\leftarrow c(rep(0,2), rep(0,N), 0, 1)$

22. Conditional Predictive Ordinate

For a more complete introduction to the conditional predictive ordinate (CPO), see the vignette entitled "Bayesian Inference". Following is a brief guide to the applied use of CPO.

To include CPO in any model that is to be updated with MCMC, calculate and monitor the record-level inverse of the likelihood, $InvL_i$ for records i = 1, ..., N. CPO_i is the inverse of the posterior mean of $InvL_i$. The inverse CPO_i , or $ICPO_i$, is the posterior mean of $InvL_i$. ICPOs larger than 40 can be considered as possible outliers, and higher than 70 as extreme

values.

Here, CPO is added to the linear regression example in section 46. In this data, record 6 is a possible outlier, and record 8 is an extreme value.

22.1. Form

$$\mathbf{y} \sim \mathcal{N}(\mu, \sigma^2)$$

$$\mu = \mathbf{X}\beta$$

$$\beta_j \sim \mathcal{N}(0, 1000), \quad j = 1, \dots, J$$

$$\sigma \sim \mathcal{HC}(25)$$

22.2. Data

22.3. Model

```
Model <- function(parm, Data)
    {
        ### Parameters
        beta <- parm[Data$pos.beta]
        sigma <- interval(parm[Data$pos.sigma], 1e-100, Inf)
        parm[Data$pos.sigma] <- sigma
        ### Log-Prior
        beta.prior <- sum(dnormv(beta, 0, 1000, log=TRUE))
        sigma.prior <- dhalfcauchy(sigma, 25, log=TRUE)
        ### Log-Likelihood
        mu <- tcrossprod(Data$X, t(beta))
        LL <- dnorm(Data$y, mu, sigma, log=TRUE)
        InvL <- 1 / exp(LL)
        LL <- sum(LL)
        ### Log-Posterior</pre>
```

22.4. Initial Values

Initial.Values <- c(rep(0,J), 1)</pre>

23. Contingency Table

The two-way contingency table, matrix \mathbf{Y} , can easily be extended to more dimensions. Contingency table \mathbf{Y} has J rows and K columns. The cell counts are fit with Poisson regression, according to intercept α , main effects β_j for each row, main effects γ_k for each column, and interaction effects $\delta_{j,k}$ for dependence effects. An omnibus (all cells) test of independence is done by estimating two models (one with δ , and one without), and a large enough Bayes Factor indicates a violation of independence when the model with δ fits better than the model without δ . In an ANOVA-like style, main effects contrasts can be used to distinguish rows or groups of rows from each other, as well as with columns. Likewise, interaction effects contrasts can be used to test independence in groups of $\delta_{j,k}$ elements. Finally, single-cell interactions can be used to indicate violations of independence for a given cell, such as when zero is not within its 95% probability interval.

$$\mathbf{Y}_{j,k} \sim \mathcal{P}(\lambda_{j,k}), \quad j = 1, \dots, J, \quad k = 1, \dots, K$$

$$\lambda_{j,k} = \exp(\alpha + \beta_j + \gamma_k + \delta_{j,k}), \quad j = 1, \dots, J, \quad k = 1, \dots, K$$

$$\alpha \sim \mathcal{N}(0, 1000)$$

$$\beta_j \sim \mathcal{N}(0, \beta_{\sigma}^2), \quad j = 1, \dots, J$$

$$\beta_J = -\sum_{j=1}^{J-1} \beta_j$$

$$\beta_{\sigma} \sim \mathcal{HC}(25)$$

$$\gamma_k \sim \mathcal{N}(0, \gamma_{\sigma}^2), \quad k = 1, \dots, K$$

$$\gamma_K = -\sum_{k=1}^{K-1} \gamma_k$$

$$\gamma_{\sigma} \sim \mathcal{HC}(25)$$

$$\delta_{j,k} \sim \mathcal{N}(0, \delta_{\sigma}^2)$$

$$\delta_{J,K} = -\sum_{j=1}^{J-1} \delta_{-J,-K}$$

$\delta_{\sigma} \sim \mathcal{HC}(25)$

```
23.2. Data
```

```
J <- 3 #Rows
K <- 3 #Columns
alpha <- runif(1,10,20)
beta <- rnorm(J-1, 0, 2); beta <- c(beta, -sum(beta))
gamma <- rnorm(K-1, 0, 2); gamma <- c(gamma, -sum(gamma))</pre>
delta <- rnorm(J*K-1, 0, 0.5); delta <- c(delta, -sum(delta))
Y <- matrix(alpha + matrix(beta, J, K) + matrix(gamma, J, K, byrow=TRUE) +
    matrix(delta, J, K), J, K)
Y <- round(Y)
mon.names <- "LP"
parm.names <- as.parm.names(list(alpha=0, beta=rep(0,J-1),</pre>
    gamma=rep(0,K-1), delta=rep(0,J*K-1), b.sigma=0, g.sigma=0,
    d.sigma=0))
pos.alpha <- grep("alpha", parm.names)</pre>
pos.beta <- grep("beta", parm.names)</pre>
pos.gamma <- grep("gamma", parm.names)</pre>
pos.delta <- grep("delta", parm.names)</pre>
pos.b.sigma <- grep("b.sigma", parm.names)</pre>
pos.g.sigma <- grep("g.sigma", parm.names)</pre>
pos.d.sigma <- grep("d.sigma", parm.names)</pre>
PGF <- function(Data) return(c(rnorm(1,log(mean(Y)),1), rnorm(Data$J-1),
    rnorm(Data$K-1), rnorm(Data$J*Data$K-1), rhalfcauchy(3,5)))
MyData <- list(J=J, K=K, PGF=PGF, Y=Y, mon.names=mon.names,
    parm.names=parm.names, pos.alpha=pos.alpha, pos.beta=pos.beta,
    pos.gamma=pos.gamma, pos.delta=pos.delta, pos.b.sigma=pos.b.sigma,
    pos.g.sigma=pos.g.sigma, pos.d.sigma=pos.d.sigma)
23.3. Model
Model <- function(parm, Data)</pre>
    {
    ### Hyperparameters
    beta.sigma <- interval(parm[Data$pos.b.sigma], 1e-100, Inf)</pre>
    parm[Data$pos.b.sigma] <- beta.sigma</pre>
    gamma.sigma <- interval(parm[Data$pos.g.sigma], 1e-100, Inf)</pre>
    parm[Data$pos.g.sigma] <- gamma.sigma</pre>
    delta.sigma <- interval(parm[Data$pos.d.sigma], 1e-100, Inf)</pre>
    parm[Data$pos.d.sigma] <- delta.sigma</pre>
    ### Parameters
    alpha <- parm[Data$pos.alpha]</pre>
    beta <- parm[Data$pos.beta]</pre>
```

beta <- c(beta, -sum(beta))</pre>

rep(1,3))

```
gamma <- parm[Data$pos.gamma]</pre>
    gamma <- c(gamma, -sum(gamma))</pre>
    delta <- parm[Data$pos.delta]</pre>
    delta <- c(delta, -sum(delta))</pre>
    delta <- matrix(delta, Data$J, Data$K)</pre>
    ### Log-Hyperprior
    beta.sigma.prior <- dhalfcauchy(beta.sigma, 25, log=TRUE)</pre>
    gamma.sigma.prior <- dhalfcauchy(gamma.sigma, 25, log=TRUE)</pre>
    delta.sigma.prior <- dhalfcauchy(delta.sigma, 25, log=TRUE)
    ### Log-Prior
    alpha.prior <- dnormv(alpha, 0, 1000, log=TRUE)</pre>
    beta.prior <- sum(dnorm(beta, 0, beta.sigma, log=TRUE))</pre>
    gamma.prior <- sum(dnorm(gamma, 0, gamma.sigma, log=TRUE))</pre>
    delta.prior <- sum(dnorm(delta, 0, delta.sigma, log=TRUE))</pre>
    ### Log-Likelihood
    beta <- matrix(beta, Data$J, Data$K)</pre>
    gamma <- matrix(gamma, Data$J, Data$K, byrow=TRUE)</pre>
    lambda <- exp(alpha + beta + gamma + delta)</pre>
    LL <- sum(dpois(Data$Y, lambda, log=TRUE))</pre>
    ### Log-Posterior
    LP <- LL + alpha.prior + beta.prior + beta.sigma.prior +
         gamma.prior + gamma.sigma.prior + delta.prior +
         delta.sigma.prior
    Modelout <- list(LP=LP, Dev=-2*LL, Monitor=LP,</pre>
         yhat=rpois(length(lambda), lambda),
         parm=parm)
    return(Modelout)
23.4. Initial Values
Initial. Values <-c(\log(mean(Y)), rep(0,J-1), rep(0,K-1), rep(0,J*K-1),
```

24. Covariance Separation Strategy

A Seemingly Unrelated Regression (SUR) model is used to provide an example of a flexible way to estimate covariance or precision matrices with the "separation strategy" decomposition of Barnard, McCulloch, and Meng (2000). For more information on SUR models, see section 81.

The most common way of specifying a covariance matrix, such as for the multivariate normal distribution, may be with the conjugate inverse Wishart distribution. Alternatively, the conjugate Wishart distribution is often used for a precision matrix. The Wishart and inverse Wishart distributions, however, do not always perform well, due to only one parameter for

variability, and usually in the case of small sample sizes or when its dimension approaches the sample size. There are several alternatives. This example decomposes a covariance matrix into a standard deviation vector and a correlation matrix, each of which are easy to understand (as opposed to setting priors on eigenvalues). A precision matrix may be decomposed similarly, though the separated components are interpreted differently.

Barnard *et al.* (2000) prefer to update the covariance separation strategy with Gibbs sampling rather than Metropolis-Hastings, though the form presented here works well in testing with Adaptive MCMC.

24.1. Form

$$\mathbf{Y}_{t,j} \sim \mathcal{N}_{J}(\mu_{t,j}, \Sigma), \quad t = 1, \dots, T; \quad j = 1, \dots, J$$

$$\mu_{t,1} = \alpha_{1} + \alpha_{2}\mathbf{X}_{t-1,1} + \alpha_{3}\mathbf{X}_{t-1,2}, \quad t = 2, \dots, T$$

$$\mu_{t,2} = \beta_{1} + \beta_{2}\mathbf{X}_{t-1,3} + \beta_{3}\mathbf{X}_{t-1,4}, \quad t = 2, \dots, T$$

$$\Sigma = \mathbf{SRS}$$

$$\alpha_{k} \sim \mathcal{N}(0, 1000), \quad k = 1, \dots, K$$

$$\beta_{k} \sim \mathcal{N}(0, 1000), \quad k = 1, \dots, K$$

$$\mathbf{R}_{i,j} \sim \mathcal{N}(\rho_{\mu}, \rho_{\sigma}^{2}), \quad \mathbf{R}_{i,j} \in [-1, 1], \quad i = 1, \dots, J$$

$$\mathbf{S} = \sigma \mathbf{I}_{J}$$

$$\rho_{\mu} \sim \mathcal{N}(0, 2), \quad \in [-1, 1]$$

$$\rho_{\sigma} \sim \mathcal{HC}(25), \quad \in (0, 1000]$$

$$\sigma_{j} \sim \mathcal{N}(\sigma_{\mu}, \sigma_{\sigma})$$

$$\sigma_{\mu} \sim \mathcal{HN}(1000), \quad \in (0, 1000]$$

$$\sigma_{\sigma} \sim \mathcal{HC}(25)$$

```
737.2,760.5,581.4,662.3,583.8,635.2,723.8,864.1,1193.5,1188.9)
CW \leftarrow c(1.8, 0.8, 7.4, 18.1, 23.5, 26.5, 36.2, 60.8, 84.4, 91.2, 92.4, 86.0, 111.1,
     130.6,141.8,136.7,129.7,145.5,174.8,213.5)
J <- 2 #Number of dependent variables
Y <- matrix(c(IG,IW), T, J)
R \leftarrow diag(J)
mon.names <- "LP"
parm.names <- as.parm.names(list(alpha=rep(0,3), beta=rep(0,3),</pre>
    R=diag(J), rho.mu=0, rho.sigma=0, log.sigma=rep(0,J), sigma.mu=0,
    log.sig.sigma=0), uppertri=c(0,0,1,0,0,0,0,0)
pos.alpha <- grep("alpha", parm.names)</pre>
pos.beta <- grep("beta", parm.names)</pre>
pos.R <- grep("R", parm.names)</pre>
pos.rho.mu <- grep("rho.mu", parm.names)</pre>
pos.rho.sigma <- grep("rho.sigma", parm.names)</pre>
pos.log.sigma <- grep("log.sigma", parm.names)</pre>
pos.sigma.mu <- grep("sigma.mu", parm.names)</pre>
pos.log.sig.sigma <- grep("log.sig.sigma", parm.names)</pre>
PGF <- function(Data) return(c(rnormv(3,0,10), rnormv(3,0,10),
    runif(length(upper.triangle(diag(Data$J), diag=TRUE)), -1, 1),
    rtrunc(1, "norm", a=-1, b=1, mean=0, sd=2),
     log(rhalfcauchy(Data$J+1,5)), rhalfnorm(1, 10),
     log(rhalfcauchy(1,5))))
MyData <- list(J=J, PGF=PGF, T=T, Y=Y, CG=CG, CW=CW, IG=IG, IW=IW, VG=VG,
    VW=VW, mon.names=mon.names, parm.names=parm.names, )
    pos.alpha=pos.alpha, pos.beta=pos.beta, pos.R=pos.R,
    pos.rho.mu=pos.rho.mu, pos.rho.sigma=pos.rho.sigma,
    pos.log.sigma=pos.log.sigma, pos.sigma.mu=pos.sigma.mu,
    pos.log.sig.sigma=pos.log.sig.sigma)
24.3. Model
Model <- function(parm, Data)</pre>
    ### Hyperparameters
    rho.mu <- interval(parm[Data$pos.rho.mu], -1, 1)</pre>
    parm[Data$pos.rho.mu] <- rho.mu</pre>
    rho.sigma <- interval(parm[Data$pos.rho.sigma], 1e-100, Inf)</pre>
    parm[Data$pos.rho.sigma] <- rho.sigma</pre>
    sigma.mu <- interval(parm[Data$pos.sigma.mu], 1e-100, Inf)</pre>
    parm[Data$pos.sigma.mu] <- sigma.mu</pre>
    sigma.sigma <- sigma.sigma <- exp(parm[Data$pos.log.sig.sigma])</pre>
    ### Parameters
    alpha <- parm[Data$pos.alpha]</pre>
    beta <- parm[Data$pos.beta]</pre>
    R <- as.parm.matrix(R, Data$J, parm, Data, a=-1, b=1)</pre>
```

```
parm[Data$pos.R] <- upper.triangle(R, diag=TRUE)</pre>
sigma <- exp(parm[Data$pos.log.sigma])</pre>
S <- diag(sigma)
Sigma <- as.symmetric.matrix(S %*% R %*% S)
### Log-Hyperprior
rho.mu.prior <- dtrunc(rho.mu, "norm", a=-1, b=1, mean=0, sd=2,
    log=TRUE)
rho.sigma.prior <- dhalfcauchy(rho.sigma, 25, log=TRUE)</pre>
sigma.mu.prior <- dhalfnorm(sigma.mu, 1000, log=TRUE)</pre>
sigma.sigma.prior <- dhalfcauchy(sigma.sigma, 25, log=TRUE)</pre>
### Log-Prior
alpha.prior <- sum(dnormv(alpha, 0, 1000, log=TRUE))</pre>
beta.prior <- sum(dnormv(beta, 0, 1000, log=TRUE))</pre>
R.prior <- sum(dtrunc(upper.triangle(R, diag=TRUE), "norm",</pre>
    a=-1, b=1, mean=rho.mu, sd=rho.sigma, log=TRUE))
sigma.prior <- sum(dnorm(sigma, sigma.mu, sigma.sigma, log=TRUE))</pre>
### Log-Likelihood
mu <- Data$Y
mu[-1,1] \leftarrow alpha[1] + alpha[2]*Data$CG[-Data$T] +
    alpha[3] *Data$VG[-Data$T]
mu[-1,2] \leftarrow beta[1] + beta[2]*Data$CW[-Data$T] +
    beta[3] *Data$VW[-Data$T]
LL <- sum(dmvn(Data$Y[-1,], mu[-1,], Sigma, log=TRUE))
### Log-Posterior
LP <- LL + alpha.prior + beta.prior + R.prior + rho.mu.prior +
    rho.sigma.prior + sigma.prior + sigma.mu.prior +
    sigma.sigma.prior
Modelout <- list(LP=LP, Dev=-2*LL, Monitor=LP,</pre>
    yhat=rmvn(nrow(mu), mu, Sigma), parm=parm)
return(Modelout)
}
```

```
Initial.Values \leftarrow c(rep(0,3), rep(0,3), upper.triangle(R, diag=TRUE), rep(0,2), rep(0,J), rep(1,2))
```

25. Discrete Choice, Conditional Logit

$$\mathbf{y}_i \sim \mathcal{CAT}(\mathbf{p}_{i,1:J}), \quad i = 1, \dots, N, \quad j = 1, \dots, J$$

$$\mathbf{p}_{i,j} = \frac{\phi_{i,j}}{\sum_{j=1}^{J} \phi_{i,j}}$$

$$\phi = \exp(\mu)$$

$$\mu_{i,j} = \beta_{j,1:K} \mathbf{X}_{i,1:K} + \gamma \mathbf{Z}_{i,1:C} \in [-700, 700], \quad j = 1, \dots, (J-1)$$

$$\mu_{i,J} = \gamma \mathbf{Z}_{i,1:C}$$

$$\beta_{j,k} \sim \mathcal{N}(0, 1000), \quad j = 1, \dots, (J-1)$$

$$\gamma_c \sim \mathcal{N}(0, 1000)$$

25.2. Data

46

```
y \leftarrow x01 \leftarrow x02 \leftarrow z01 \leftarrow z02 \leftarrow c(1:300)
y[1:100] <- 1
y[101:200] <- 2
y[201:300] <- 3
x01[1:100] <- rnorm(100, 25, 2.5)
x01[101:200] <- rnorm(100, 40, 4.0)
x01[201:300] \leftarrow rnorm(100, 35, 3.5)
x02[1:100] <- rnorm(100, 2.51, 0.25)
x02[101:200] \leftarrow rnorm(100, 2.01, 0.20)
x02[201:300] \leftarrow rnorm(100, 2.70, 0.27)
z01[1:100] <- 1
z01[101:200] <- 2
z01[201:300] <- 3
z02[1:100] <- 40
z02[101:200] <- 50
z02[201:300] <- 100
N <- length(y)
J <- 3 #Number of categories in y
K <- 3 #Number of individual attributes (including the intercept)
C \leftarrow 2 #Number of choice-based attributes (intercept is not included)
X \leftarrow \text{matrix}(c(\text{rep}(1,N),x01,x02),N,K) \text{ #Design matrix of individual attrib.}
Z \leftarrow matrix(c(z01,z02),N,C) #Design matrix of choice-based attributes
mon.names <- "LP"
parm.names <- as.parm.names(list(beta=matrix(0,J-1,K), gamma=rep(0,C)))</pre>
pos.beta <- grep("beta", parm.names)</pre>
pos.gamma <- grep("gamma", parm.names)</pre>
PGF <- function(Data) return(c(rnormv((Data$J-1)*Data$K,0,10),
     rnormv(Data$C,0,10)))
MyData <- list(C=C, J=J, K=K, N=N, PGF=PGF, X=X, Z=Z, mon.names=mon.names,
     parm.names=parm.names, pos.beta=pos.beta, pos.gamma=pos.gamma, y=y)
```

25.3. Model

```
Model <- function(parm, Data)
{          ### Parameters</pre>
```

```
beta <- matrix(parm[Data$pos.beta], Data$J-1, Data$K)</pre>
gamma <- parm[Data$pos.gamma]</pre>
### Log-Prior
beta.prior <- sum(dnormv(beta, 0, 1000, log=TRUE))</pre>
gamma.prior <- sum(dnormv(gamma, 0, 1000, log=TRUE))</pre>
### Log-Likelihood
mu <- matrix(rep(tcrossprod(gamma, Data$Z), Data$J), Data$N, Data$J)</pre>
mu[,-Data$J] <- mu[,-Data$J] + tcrossprod(Data$X, beta)</pre>
mu <- interval(mu, -700, 700, reflect=FALSE)</pre>
phi <- exp(mu)
p <- phi / rowSums(phi)</pre>
LL <- sum(dcat(Data$y, p, log=TRUE))</pre>
### Log-Posterior
LP <- LL + beta.prior + gamma.prior
Modelout <- list(LP=LP, Dev=-2*LL, Monitor=LP, yhat=rcat(nrow(p), p),</pre>
    parm=parm)
return(Modelout)
}
```

Initial. Values $\leftarrow c(rep(0,(J-1)*K), rep(0,C))$

26. Discrete Choice, Mixed Logit

$$\mathbf{y}_{i} \sim \mathcal{CAT}(\mathbf{p}_{i,1:J}), \quad i = 1, \dots, N$$

$$\mathbf{p}_{i,j} = \frac{\phi_{i,j}}{\sum_{j=1}^{J} \phi_{i,j}}$$

$$\phi = \exp(\mu)$$

$$\mu_{i,j} = \beta_{j,1:K} \mathbf{X}_{i,1:K} + \gamma \mathbf{Z}_{i,1:C} \in [-700, 700], \quad j = 1, \dots, (J-1)$$

$$\mu_{i,J} = \gamma \mathbf{Z}_{i,1:C}$$

$$\beta_{j,k} \sim \mathcal{N}(0, 1000), \quad j = 1, \dots, (J-1)$$

$$\gamma_{c} \sim \mathcal{N}(\zeta_{\mu[c]}, \zeta_{\sigma[c]}^{2})$$

$$\zeta_{\mu[c]} \sim \mathcal{N}(0, 1000)$$

$$\zeta_{\sigma[c]} \sim \mathcal{HC}(25)$$

26.2. Data

```
y \leftarrow x01 \leftarrow x02 \leftarrow z01 \leftarrow z02 \leftarrow c(1:300)
y[1:100] <- 1
y[101:200] <- 2
y[201:300] <- 3
x01[1:100] \leftarrow rnorm(100, 25, 2.5)
x01[101:200] \leftarrow rnorm(100, 40, 4.0)
x01[201:300] \leftarrow rnorm(100, 35, 3.5)
x02[1:100] \leftarrow rnorm(100, 2.51, 0.25)
x02[101:200] <- rnorm(100, 2.01, 0.20)
x02[201:300] \leftarrow rnorm(100, 2.70, 0.27)
z01[1:100] <- 1
z01[101:200] <- 2
z01[201:300] <- 3
z02[1:100] <- 40
z02[101:200] <- 50
z02[201:300] <- 100
N <- length(y)
J <- 3 #Number of categories in y
K <- 3 #Number of individual attributes (including the intercept)
C <- 2 #Number of choice-based attributes (intercept is not included)
X \leftarrow \text{matrix}(c(\text{rep}(1,N),x01,x02),N,K) \# \text{Design matrix of individual attrib.}
Z \leftarrow matrix(c(z01,z02),N,C) #Design matrix of choice-based attributes
mon.names <- "LP"
parm.names <- as.parm.names(list(beta=matrix(0,J-1,K), gamma=rep(0,C),</pre>
     zeta.mu=rep(0,C), zeta.sigma=rep(0,C)))
pos.beta <- grep("beta", parm.names)</pre>
pos.gamma <- grep("gamma", parm.names)</pre>
pos.zeta.mu <- grep("zeta.mu", parm.names)</pre>
pos.zeta.sigma <- grep("zeta.sigma", parm.names)</pre>
PGF <- function(Data) return(c(rnormv((Data$J-1)*Data$K,0,1000),
    rnorm(Data$N*Data$C,
    matrix(rnormv(Data$C,0,1000), Data$N, Data$C, byrow=TRUE),
    matrix(rhalfcauchy(Data$C,5), Data$N, Data$C, byrow=TRUE)),
    rnormv(Data$C,0,1000), rhalfcauchy(Data$C,5)))
MyData <- list(C=C, J=J, K=K, N=N, X=X, Z=Z, mon.names=mon.names,
    parm.names=parm.names, pos.beta=pos.beta, pos.gamma=pos.gamma,
    pos.zeta.mu=pos.zeta.mu, pos.zeta.sigma=pos.zeta.sigma, y=y)
```

26.3. Model

```
zeta.mu <- parm[Data$pos.zeta.mu]</pre>
zeta.sigma <- interval(parm[Data$pos.zeta.sigma], 1e-100, Inf)</pre>
parm[Data$pos.zeta.sigma] <- zeta.sigma</pre>
### Log-Prior
beta.prior <- sum(dnormv(beta, 0, 1000, log=TRUE))</pre>
gamma.prior <- sum(dnorm(gamma, matrix(zeta.mu, Data$N, Data$C,</pre>
     byrow=TRUE), matrix(zeta.sigma, Data$N, Data$C, byrow=TRUE),
log=TRUE))
zeta.mu.prior <- sum(dnormv(zeta.mu, 0, 1000, log=TRUE))</pre>
zeta.sigma.prior <- sum(dhalfcauchy(zeta.sigma, 25, log=TRUE))</pre>
### Log-Likelihood
mu <- matrix(rep(rowSums(gamma * Data$Z),Data$J), Data$N, Data$J)</pre>
mu[,-Data$J] <- tcrossprod(Data$X, beta) + gamma * Data$Z</pre>
mu <- interval(mu, -700, 700, reflect=FALSE)</pre>
phi <- exp(mu)</pre>
p <- phi / rowSums(phi)</pre>
LL <- sum(dcat(Data$y, p, log=TRUE))</pre>
### Log-Posterior
LP <- LL + beta.prior + gamma.prior + zeta.mu.prior + zeta.sigma.prior
Modelout <- list(LP=LP, Dev=-2*LL, Monitor=LP, yhat=rcat(nrow(p), p),</pre>
    parm=parm)
return(Modelout)
}
```

Initial. Values $\leftarrow c(rep(0, (J-1)*K), rep(0,N*C), rep(0,C), rep(1,C))$

27. Discrete Choice, Multinomial Probit

$$\mathbf{W}_{i,1:(J-1)} \sim \mathcal{N}_{J-1}(\mu_{i,1:(J-1)}, \Sigma), \quad i = 1, \dots, N$$

$$\mathbf{W}_{i,j} \in \begin{cases} [0,10] & \text{if } \mathbf{y}_i = j \\ [-10,0] \end{cases}$$

$$\mu_{1:N,j} = \mathbf{X}\beta_{j,1:K} + \mathbf{Z}\gamma$$

$$\Sigma = \mathbf{U}^T \mathbf{U}$$

$$\beta_{j,k} \sim \mathcal{N}(0,10), \quad j = 1, \dots, (J-1), \quad k = 1, \dots, K$$

$$\gamma_c \sim \mathcal{N}(0,10), \quad c = 1, \dots, C$$

$$\mathbf{U}_{j,k} \sim \mathcal{N}(0,1), \quad j = 1, \dots, (J-1), \quad k = 1, \dots, (J-1), \quad j \geq k, \quad j \neq k = 1$$

```
N <- 50
J <- 5 #Categories of y
K <- 8 #Number of columns in design matrix X
C <- 2 #Number of choice-based attributes
X \leftarrow matrix(runif(N*K,-2,2), N, K)
X[,1] <- 1
beta <- matrix(runif((J-1)*K), J-1, K)
gamma <- runif(C)</pre>
Z \leftarrow matrix(runif(N*C), N, C) #Design matrix of choice-based attributes
Z[,1] <- 1
mu <- tcrossprod(X, beta) + as.vector(tcrossprod(Z, t(gamma)))</pre>
S \leftarrow diag(J-1)
u \leftarrow c(0, rnorm((J-2) + (factorial(J-1) /
     (factorial(J-1-2)*factorial(2))),0,1))
U \leftarrow diag(J-1)
U[upper.tri(U, diag=TRUE)] <- u</pre>
diag(U) <- exp(diag(U))</pre>
Sigma <- t(U) %*% U
Sigma[1,] <- Sigma[,1] <- U[1,]
mu <- tcrossprod(X, beta)</pre>
W \leftarrow rmvn(N, mu, Sigma) + matrix(rnorm(N*(J-1),0,0.1), N, J-1)
y <- max.col(cbind(W,0))</pre>
table(y)
mon.names <- "LP"
parm.names <- as.parm.names(list(beta=matrix(0,(J-1),K), gamma=rep(0,C),</pre>
    U=U, W=matrix(0,N,J-1)), uppertri=c(0,0,1,0))
parm.names <- parm.names[-which(parm.names == "U[1,1]")]</pre>
pos.beta <- grep("beta", parm.names)</pre>
pos.gamma <- grep("gamma", parm.names)</pre>
pos.U <- grep("U", parm.names)</pre>
pos.W <- grep("W", parm.names)</pre>
PGF <- function(Data) {</pre>
    beta <- rnormv((Data$J-1)*Data$K,0,1)
    gamma <- rnormv(Data$C,0,1)</pre>
    U <- rnorm((Data$J-2) + (factorial(Data$J-1) /</pre>
          (factorial(Data$J-1-2)*factorial(2))),0,1)
    W <- matrix(runif(Data$N*(Data$J-1),-10,0), Data$N, Data$J-1)
    Y <- as.indicator.matrix(Data$y)</pre>
    W <- ifelse(Y[,-Data$J] == 1, abs(W), W)
    return(c(beta, gamma, U, as.vector(W)))}
MyData <- list(C=C, J=J, K=K, N=N, PGF=PGF, S=S, X=X, Z=Z,
    mon.names=mon.names, parm.names=parm.names, pos.beta=pos.beta,
    pos.gamma=pos.gamma, pos.U=pos.U, pos.W=pos.W, y=y)
```

27.3. Model

```
Model <- function(parm, Data)</pre>
     ### Parameters
     beta <- matrix(parm[Data$pos.beta], Data$J-1, Data$K)</pre>
     gamma <- parm[Data$pos.gamma]</pre>
     u <- c(0, parm[Data$pos.U])
     U <- diag(Data$J-1)</pre>
     U[upper.tri(U, diag=TRUE)] <- u</pre>
     diag(U) <- exp(diag(U))</pre>
     Sigma <- t(U) %*% U
     Sigma[1,] <- Sigma[,1] <- U[1,]
     W <- matrix(parm[Data$pos.W], Data$N, Data$J-1)</pre>
     Y <- as.indicator.matrix(Data$y)</pre>
     temp <- which(Y[,-c(Data$J)] == 1)</pre>
     W[temp] <- interval(W[temp], 0, 10)
     temp <- which(Y[,-c(Data$J)] == 0)
     W[temp] <- interval(W[temp], -10, 0)</pre>
     parm[Data$pos.W] <- as.vector(W)</pre>
     ### Log-Prior
     beta.prior <- sum(dnormv(beta, 0, 10, log=TRUE))</pre>
     gamma.prior <- sum(dnormv(gamma, 0, 10, log=TRUE))</pre>
     U.prior <- sum(dnorm(u[-length(u)], 0, 1, log=TRUE))</pre>
     ### Log-Likelihood
     mu <- tcrossprod(Data$X, beta) +</pre>
          as.vector(tcrossprod(Data$Z, t(gamma)))
     #eta <- exp(cbind(mu,0))</pre>
     #p <- eta / rowSums(eta)</pre>
     LL <- sum(dmvn(W, mu, Sigma, log=TRUE))
     ### Log-Posterior
     LP <- LL + beta.prior + gamma.prior + U.prior
     Modelout <- list(LP=LP, Dev=-2*LL, Monitor=LP,</pre>
          yhat=max.col(cbind(rmvn(nrow(mu), mu, Sigma),0)), parm=parm)
     return(Modelout)
     }
```

27.4. Initial Values

Initial.Values <- GIV(Model, MyData, PGF=TRUE)</pre>

28. Distributed Lag, Koyck

This example applies Koyck or geometric distributed lags to k = 1, ..., K discrete events in covariate \mathbf{x} , transforming the covariate into a $N \times K$ matrix \mathbf{X} and creates a $N \times K$ lag matrix \mathbf{L} .

28.1. Form

$$\mathbf{y} \sim \mathcal{N}(\mu, \sigma^{2})$$

$$\mu_{t} = \alpha + \phi \mathbf{y}_{t-1} + \sum_{k=1}^{K} \mathbf{X}_{t,k} \beta \lambda^{\mathbf{L}[t,k]}, \quad k = 1, \dots, K, \quad t = 2, \dots, T$$

$$\mu_{1} = \alpha + \sum_{k=1}^{K} \mathbf{X}_{1,k} \beta \lambda^{\mathbf{L}[1,k]}, \quad k = 1, \dots, K$$

$$\alpha \sim \mathcal{N}(0, 1000)$$

$$\beta \sim \mathcal{N}(0, 1000)$$

$$\lambda \sim \mathcal{U}(0, 1)$$

$$\phi \sim \mathcal{N}(0, 1000)$$

$$\sigma \sim \mathcal{HC}(25)$$

28.2. Data

 $y \leftarrow c(0.02, -0.51, -0.30, 1.46, -1.26, -2.15, -0.91, -0.53, -1.91,$ 2.64, 1.64, 0.15, 1.46, 1.61, 1.96, -2.67, -0.19, -3.28,1.89, 0.91, -0.71, 0.74, -0.10, 3.20, -0.80, -5.25, 1.03,-0.40, -1.62, -0.80, 0.77, 0.17, -1.39, -1.28, 0.48, -1.02, 0.09, -1.09, 0.86, 0.36, 1.51, -0.02, 0.47, 0.62, -1.36, 1.12, 0.42, -4.39, -0.87, 0.05, -5.41, -7.38, -1.01, -1.70,0.64, 1.16, 0.87, 0.28, -1.69, -0.29, 0.13, -0.65, 0.83, $0.62,\ 0.05,\ -0.14,\ 0.01,\ -0.36,\ -0.32,\ -0.80,\ -0.06,\ 0.24,$ 0.23, -0.37, 0.00, -0.33, 0.21, -0.10, -0.10, -0.01, -0.40,-0.35, 0.48, -0.28, 0.08, 0.28, 0.23, 0.27, -0.35, -0.19, 0.24, 0.17, -0.02, -0.23, 0.03, 0.02, -0.17, 0.04, -0.39,-0.12, 0.16, 0.17, 0.00, 0.18, 0.06, -0.36, 0.22, 0.14, -0.17, 0.10, -0.01, 0.00, -0.18, -0.02, 0.07, -0.06, 0.06, -0.05, -0.08, -0.07, 0.01, -0.06, 0.01, 0.01, -0.02, 0.01, 0.01, 0.12, -0.03, 0.08, -0.10, 0.01, -0.03, -0.08, 0.04,-0.09, -0.08, 0.01, -0.05, 0.08, -0.14, 0.06, -0.11, 0.09, 0.06, -0.12, -0.01, -0.05, -0.15, -0.05, -0.03, 0.04, 0.00, -0.12, 0.04, -0.06, -0.05, -0.07, -0.05, -0.14, -0.05, -0.01, -0.12, 0.05, 0.06, -0.10, 0.00, 0.01, 0.00, -0.08, 0.00, 0.00, 0.07, -0.01, 0.00, 0.09, 0.33, 0.13, 0.42, 0.24,-0.36, 0.22, -0.09, -0.19, -0.10, -0.08, -0.07, 0.05, 0.07, 0.07, 0.00, -0.04, -0.05, 0.03, 0.08, 0.26, 0.10, 0.08,0.09, -0.07, -0.33, 0.17, -0.03, 0.07, -0.04, -0.06, -0.06,0.07, -0.03, 0.00, 0.08, 0.27, 0.11, 0.11, 0.06, -0.11,-0.09, -0.21, 0.24, -0.12, 0.11, -0.02, -0.03, 0.02, -0.10, 0.00, -0.04, 0.01, 0.02, -0.03, -0.10, -0.09, 0.17, 0.07,-0.05, -0.01, -0.05, 0.01, 0.00, -0.08, -0.05, -0.08, 0.07,

```
0.06, -0.14, 0.02, 0.01, 0.04, 0.00, -0.13, -0.17
T <- length(y)
K <- length(which(x != 0))</pre>
L <- X <- matrix(0, T, K)
for (i in 1:K) {
  X[which(x != 0)[i]:T,i] <- x[which(x != 0)[i]]
  L[(which(x != 0)[i]):T,i] \leftarrow 0:(T - which(x != 0)[i]))
mon.names <- "LP"
parm.names <- c("alpha","beta","lambda","phi","sigma")</pre>
PGF <- function(Data) return(c(rnormv(2,0,1000), runif(1),
  rnormv(1,0,1000), rhalfcauchy(1,5)))
MyData <- list(L=L, PGF=PGF, T=T, X=X, mon.names=mon.names,
  parm.names=parm.names, y=y)
28.3. Model
Model <- function(parm, Data)</pre>
  ### Parameters
  alpha <- parm[1]; beta <- parm[2]</pre>
  parm[3] <- lambda <- interval(parm[3], 0, 1)</pre>
  phi <- parm[4]</pre>
  parm[5] <- sigma <- interval(parm[5], 1e-100, Inf)</pre>
  ### Log-Prior
  alpha.prior <- dnormv(alpha, 0, 1000, log=TRUE)</pre>
  beta.prior <- dnormv(beta, 0, 1000, log=TRUE)</pre>
  lambda.prior <- dunif(lambda, 0, 1, log=TRUE)</pre>
  phi.prior <- dnormv(phi, 0, 1000, log=TRUE)</pre>
  sigma.prior <- dhalfcauchy(sigma, 25, log=TRUE)</pre>
  ### Log-Likelihood
  mu <- c(alpha, alpha + phi*Data$y[-Data$T]) +</pre>
     rowSums(Data$X * beta * lambda^Data$L)
  LL <- sum(dnorm(Data$y, mu, sigma, log=TRUE))</pre>
  ### Log-Posterior
```

LP <- LL + alpha.prior + beta.prior + lambda.prior + phi.prior +

28.4. Initial Values

Initial. Values <- c(rep(0,2), 0.5, 0, 1)

29. Exponential Smoothing

29.1. Form

$$\mathbf{y} \sim \mathcal{N}(\mu, \sigma^2)$$

$$\mu_t = \alpha \mathbf{y}_{t-1} + (1 - \alpha)\mu_{t-1}, \quad t = 2, \dots, T$$

$$\alpha \sim \mathcal{U}(0, 1)$$

$$\sigma \sim \mathcal{HC}$$

29.2. Data

```
T <- 10
y <- rep(0,T)
y[1] <- 0
for (t in 2:T) {y[t] <- y[t-1] + rnorm(1,0,0.1)}
mon.names <- "LP"
parm.names <- c("alpha", "sigma")
PGF <- function(Data) return(c(runif(1), rhalfcauchy(1,5)))
MyData <- list(PGF=PGF, T=T, mon.names=mon.names, parm.names=parm.names, y=y)</pre>
```

29.3. Model

```
Model <- function(parm, Data)
    {
     ### Parameters
     parm[1] <- alpha <- interval(parm[1], 0, 1)
     parm[2] <- sigma <- interval(parm[2], 1e-100, Inf)
     ### Log-Prior
     alpha.prior <- dunif(alpha, 0, 1, log=TRUE)
     sigma.prior <- dhalfcauchy(sigma, 25, log=TRUE)</pre>
```

Initial. Values \leftarrow c(0.5, 1)

30. Factor Analysis, Approximate Dynamic

The Approximate Dynamic Factor Analysis (ADFA) model has many names, including the approximate factor model and approximate dynamic factor model. An ADFA is a Dynamic Factor Analysis (DFA) in which the factor scores of the dynamic factors are approximated with principal components. This is a combination of principal components and common factor analysis, in which the factor loadings of common factors are estimated from the data and factor scores are estimated from principal components. This is a two-stage model: principal components are estimated in the first stage and a decision is made regarding how many principal components to retain, and ADFA is estimated in the second stage. For more information on DFA, see section 32.

30.1. Form

$$\mathbf{Y}_{t,j} \sim \mathcal{N}(\mu_{t,j}, \sigma_j^2), \quad t = 2, \dots, T, \quad j = 1, \dots, J$$

$$\mu_{t,j} = \mathbf{F}_{t-1, \Lambda}$$

$$\Lambda_{p,j} \sim \mathcal{N}(0, 1000), \quad p = 1, \dots, P, \quad j = 1, \dots, J$$

$$\sigma_j \sim \mathcal{HC}(25), \quad j = 1, \dots, J$$

```
T <- 10 #Number of time-periods
J <- 20 #Number of variables
P <- 5 #Number of approximate dynamic factors
Lambda <- matrix(runif(J*P,-1,1), P, J)
Sigma <- matrix(runif(P*P), P, P); diag(Sigma) <- runif(P)*5
Sigma <- as.symmetric.matrix(Sigma); Sigma <- as.positive.definite(Sigma)</pre>
```

```
F <- rmvn(T, rep(0,P), Sigma)
Y <- tcrossprod(F, t(Lambda))
PCA <- prcomp(Y, scale=TRUE)
F \leftarrow PCA$x[,1:P]
mon.names <- c("LP", paste("ynew[", 1:J, "]", sep=""))</pre>
parm.names <- as.parm.names(list(Lambda=matrix(0,P,J), sigma=rep(0,J)))</pre>
pos.Lambda <- grep("Lambda", parm.names)</pre>
pos.sigma <- grep("sigma", parm.names)</pre>
PGF <- function(Data) return(c(rnormv(Data$P*Data$J,0,1000),
    rhalfcauchy(Data$J,5)))
MyData <- list(F=F, J=J, P=P, PGF=PGF, T=T, Y=Y, mon.names=mon.names,
    parm.names=parm.names, pos.Lambda=pos.Lambda, pos.sigma=pos.sigma)
30.3. Model
Model <- function(parm, Data)</pre>
    ### Parameters
    Lambda <- matrix(parm[Data$pos.Lambda], Data$P, Data$J)</pre>
     sigma <- interval(parm[Data$pos.sigma], 1e-100, Inf)</pre>
    parm[Data$pos.sigma] <- sigma</pre>
    ### Log-Prior
    Lambda.prior <- sum(dnormv(Lambda, 0, 1000, log=TRUE))</pre>
     sigma.prior <- sum(dhalfcauchy(sigma, 25, log=TRUE))</pre>
    ### Log-Likelihood
    mu <- rbind(rep(0, Data$J), tcrossprod(F[-Data$T,], t(Lambda)))</pre>
    Sigma <- matrix(sigma, Data$T, Data$J, byrow=TRUE)</pre>
    ynew <- rnorm(Data$J, tcrossprod(F[Data$T,], t(Lambda)), sigma)</pre>
    LL <- sum(dnorm(Data$Y, mu, Sigma, log=TRUE))
    ### Log-Posterior
    LP <- LL + Lambda.prior + sigma.prior
    Modelout <- list(LP=LP, Dev=-2*LL, Monitor=c(LP,ynew),</pre>
         yhat=rnorm(prod(dim(mu)), mu, Sigma), parm=parm)
    return(Modelout)
    }
```

30.4. Initial Values

```
Initial. Values \leftarrow c(rep(0,P*J), rep(1,J))
```

31. Factor Analysis, Confirmatory

Factor scores are in matrix \mathbf{F} , factor loadings for each variable are in vector λ , and \mathbf{f} is a vector that indicates which variable loads on which factor.

31.1. Form

$$\mathbf{Y}_{i,m} \sim \mathcal{N}(\mu_{i,m}, \sigma_m^2), \quad i = 1, \dots, N, \quad m = 1, \dots, M$$

$$\mu = \alpha^T + \mathbf{F}_{1:N,\mathbf{f}} \lambda^T$$

$$\mathbf{F}_{i,1:P} \sim \mathcal{N}_P(\gamma, \Omega^{-1}), \quad i = 1, \dots, N$$

$$\alpha_m \sim \mathcal{N}(0, 1000), \quad m = 1, \dots, M$$

$$\lambda_m \sim \mathcal{N}(0, 1000), \quad m = 1, \dots, M$$

$$\sigma_m \sim \mathcal{HC}(25), \quad m = 1, \dots, M$$

$$\Omega \sim \mathcal{W}_N(\mathbf{S}), \quad \mathbf{S} = \mathbf{I}_P$$

31.2. Data

Parameters

alpha <- parm[Data\$pos.alpha]</pre>

```
data(swiss)
Y <- cbind(swiss$Agriculture, swiss$Examination, swiss$Education,
    swiss$Catholic, swiss$Infant.Mortality)
M <- ncol(Y) #Number of variables
N <- nrow(Y) #Number of records
P <- 3 #Number of factors
f \leftarrow c(1,3,2,2,1) #Indicator f for the factor for each variable m
gamma <- rep(0,P)</pre>
S \leftarrow diag(P)
mon.names <- "LP"
parm.names <- as.parm.names(list(F=matrix(0,N,P), lambda=rep(0,M),</pre>
    U=diag(P), alpha=rep(0,M), sigma=rep(0,M)), uppertri=c(0,0,1,0,0))
pos.F <- grep("F", parm.names)</pre>
pos.lambda <- grep("lambda", parm.names)</pre>
pos.alpha <- grep("alpha", parm.names)</pre>
pos.sigma <- grep("sigma", parm.names)</pre>
PGF <- function(Data) return(c(rmvnpc(Data$N, Data$gamma,
    rwishartc(Data$N,Data$S)), rnormv(Data$M,0,1000),
    upper.triangle(rwishartc(Data$N,Data$S), diag=TRUE),
    rnormv(Data$M,0,1000), rhalfcauchy(Data$M,5)))
MyData <- list(M=M, N=N, P=P, PGF=PGF, S=S, Y=Y, f=f, gamma=gamma,
    mon.names=mon.names, parm.names=parm.names, pos.F=pos.F,
    pos.lambda=pos.lambda, pos.alpha=pos.alpha, pos.sigma=pos.sigma)
31.3. Model
Model <- function(parm, Data)</pre>
```

```
lambda <- parm[Data$pos.lambda]</pre>
sigma <- interval(parm[Data$pos.sigma], 1e-100, Inf)</pre>
parm[Data$pos.sigma] <- sigma</pre>
F <- matrix(parm[Data$pos.F], Data$N, Data$P)</pre>
U <- as.parm.matrix(U, Data$P, parm, Data, chol=TRUE)</pre>
diag(U) <- exp(diag(U))</pre>
### Log-Prior
alpha.prior <- sum(dnormv(alpha, 0, 1000, log=TRUE))</pre>
lambda.prior <- sum(dnormv(lambda, 0, 1000, log=TRUE))</pre>
sigma.prior <- sum(dhalfcauchy(sigma, 25, log=TRUE))</pre>
U.prior <- dwishartc(U, Data$N, Data$S, log=TRUE)</pre>
F.prior <- sum(dmvnpc(F, Data$gamma, U, log=TRUE))</pre>
### Log-Likelihood
mu <- matrix(alpha, Data$N, Data$M, byrow=TRUE) + F[,Data$f] *</pre>
    matrix(lambda, Data$N, Data$M, byrow=TRUE)
Sigma <- matrix(sigma, Data$N, Data$M, byrow=TRUE)</pre>
LL <- sum(dnorm(Data$Y, mu, Sigma, log=TRUE))
### Log-Posterior
LP <- LL + alpha.prior + lambda.prior + sigma.prior + F.prior +
    U.prior
Modelout <- list(LP=LP, Dev=-2*LL, Monitor=LP,</pre>
    yhat=rnorm(prod(dim(mu)), mu, Sigma), parm=parm)
return(Modelout)
}
```

31.4. Initial Values

```
Initial.Values <- c(rep(0,N*P), rep(0,M), upper.triangle(S, diag=TRUE),
    rep(0,M), rep(1,M))</pre>
```

32. Factor Analysis, Dynamic

The factor scores in **F** are dynamic with respect to time, and are estimated as in a state space model (SSM) or dynamic linear model (DLM) with constant variance in the state vector. For more information on SSMs, see section 88. For more information on exploratory factor analysis, see section 33.

$$\mathbf{Y}_{t,j} \sim \mathcal{N}(\mu_{t,j}, \sigma_j^2), \quad t = 1, \dots, T, \quad j = 1, \dots, J$$

$$\mu = \mathbf{F}\Lambda$$

$$\mathbf{F}_{1,1:P} \sim \mathcal{N}_P(0, \mathbf{S})$$

$$\mathbf{F}_{2,1:P} \sim \mathcal{N}_P(\mathbf{F}_{1,1:P}\Phi_{1:P,1:P,1}, \mathbf{S})$$

```
\mathbf{F}_{t,1:P} \sim \mathcal{N}_{P}(\mathbf{F}_{t-1,1:P}\Phi_{1:P,1:P,1} + \mathbf{F}_{t-2,1:P}\Phi_{1:P,1:P,2}, \mathbf{S}), \quad t = 3, \dots, 12
\mathbf{F}_{t,1:P} \sim \mathcal{N}_{P}(\mathbf{F}_{t-1,1:P}\Phi_{1:P,1:P,1} + \mathbf{F}_{t-2,1:P}\Phi_{1:P,1:P,2}, \mathbf{S} + \mathbf{F}_{t-12,1:P}\Phi_{1:P,1:P,3}), \quad t = 13, \dots, T
\Lambda_{p,j} \sim \mathcal{N}(0, 1000), \quad p = 1, \dots, P, \quad j = 1, \dots, J
\Phi_{p,q,r} \sim \mathcal{U}(-1,1), \quad p = 1, \dots, P, \quad q = 1, \dots, P, \quad r = 1, \dots, 3
\sigma_{j} \sim \mathcal{HC}(25)
```

32.2. Data

Parameters

F <- matrix(parm[Data\$pos.F], Data\$T, Data\$P)</pre>

```
T <- 20 #Number of time-periods
J <- 5 #Number of time-series
P <- 3 #Number of dynamic factors
Y.orig <- matrix(runif(J,0,100), T+1, J, byrow=TRUE)
for (j in 1:J)
    Y.orig[,j] <- interval(Y.orig[,j] +
         cumsum(rnorm(T+1,0,runif(1,0,10))), 1e-100, Inf)
Y.orig.last <- Y.orig[nrow(Y.orig),]</pre>
Y <- diff(log(Y.orig))
Y.scales <- sqrt(.colVars(Y))
Y <- Y / matrix(Y.scales, T, J, byrow=TRUE)
S \leftarrow diag(P)
mon.names <- "LP"
parm.names <- as.parm.names(list(F=matrix(0,T,P),</pre>
Phi=array(0,dim=c(P,P,3)), Lambda=matrix(0,P,J), sigma=rep(0,J)))
pos.F <- grep("F", parm.names)</pre>
pos.Phi <- grep("Phi", parm.names)</pre>
pos.Lambda <- grep("Lambda", parm.names)</pre>
pos.sigma <- grep("sigma", parm.names)</pre>
PGF <- function(Data) {</pre>
    F <- as.vector(rmvnp(Data$T, rep(0,Data$P), Data$S))
    Phi <- runif(Data$P*Data$P*3, -1, 1)
    Lambda <- rnormv(Data$P*Data$J, 0, 1000)
    sigma <- rhalfcauchy(Data$J, 5)</pre>
    return(c(F, Phi, Lambda, sigma))
MyData <- list(J=J, P=P, PGF=PGF, S=S, T=T, Y=Y, mon.names=mon.names,
    parm.names=parm.names, pos.F=pos.F, pos.Phi=pos.Phi,
    pos.Lambda=pos.Lambda, pos.sigma=pos.sigma)
32.3. Model
Model <- function(parm, Data)</pre>
```

```
Phi <- array(interval(parm[Data$pos.Phi], -1, 1),
    dim=c(Data$P, Data$P, 3))
parm[Data$pos.Phi] <- as.vector(Phi)</pre>
Lambda <- matrix(parm[Data$pos.Lambda], Data$P, Data$J)</pre>
sigma <- interval(parm[Data$pos.sigma], 1e-100, Inf)</pre>
parm[Data$pos.sigma] <- sigma</pre>
### Log-Prior
F.prior <- sum(dmvnpc(F,</pre>
    rbind(0, F[-Data$T,]) %*% Phi[■1] + # Lag 1
    rbind(0, 0, F[1:(Data$T-2),]) %*% Phi[■2] + #Lag 2
    rbind(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, #Lag 12
    F[1:(Data$T-12),]) %*% Phi[■3], Data$S, log=TRUE))
Phi.prior <- sum(dunif(Phi, -1, 1, log=TRUE)
Lambda.prior <- sum(dnormv(Lambda, 0, 1000, log=TRUE))</pre>
sigma.prior <- sum(dhalfcauchy(sigma, 25, log=TRUE))</pre>
### Log-Likelihood
mu <- F %*% Lambda
Sigma <- matrix(sigma, Data$T, Data$J, byrow=TRUE)</pre>
LL <- sum(dnorm(Data$Y, mu, Sigma, log=TRUE))</pre>
Yhat <- rnorm(prod(dim(mu)), mu, Sigma)</pre>
### Log-Posterior
LP <- LL + F.prior + Phi.prior + Lambda.prior + sigma.prior
Modelout <- list(LP=LP, Dev=-2*LL, Monitor=LP, yhat=Yhat, parm=parm)
return(Modelout)
}
```

32.4. Initial Values

Initial. Values $\leftarrow c(rep(0,T*P), rep(0,P*P*3), rep(0,P*J), rep(1,J))$

33. Factor Analysis, Exploratory

Factor scores are in matrix \mathbf{F} and factor loadings are in matrix Λ .

$$\mathbf{Y}_{i,m} \sim \mathcal{N}(\mu_{i,m}, \sigma_m^2), \quad i = 1, \dots, N, \quad m = 1, \dots, M$$

$$\mu = \alpha^T + \mathbf{F}\Lambda$$

$$\mathbf{F}_{i,1:P} \sim \mathcal{N}_P(\gamma, \Omega^{-1}), \quad i = 1, \dots, N$$

$$\alpha_m \sim \mathcal{N}(0, 1000), \quad m = 1, \dots, M$$

$$\gamma_p = 0, \quad p = 1, \dots, P$$

$$\Lambda_{p,m} \sim \mathcal{N}(0, 1000), \quad p = 1, \dots, P, \quad m = 1, \dots, M$$

$$\Omega \sim \mathcal{W}_N(\mathbf{S}), \quad \mathbf{S} = \mathbf{I}_P$$

$$\sigma_m \sim \mathcal{HC}(25), \quad m = 1, \dots, M$$

```
M <- 10 #Number of variables
N <- 20 #Number of records
P <- 3 #Number of factors
alpha <- runif(M)*10</pre>
Lambda <- matrix(runif(M*P,-1,1), P, M)</pre>
U <- diag(P) U[upper.tri(U, diag=TRUE)] <- runif(length(upper.triangle(U, diag=TRUE)))</pre>
F \leftarrow rmvnc(N, rep(0,P), U)
Y <- matrix(alpha, N, M, byrow=TRUE) + tcrossprod(F, t(Lambda))
gamma \leftarrow rep(0,P)
S <- diag(P)
mon.names <- "LP"
parm.names <- as.parm.names(list(F=matrix(0,N,P), Lambda=matrix(0,P,M),</pre>
    U=diag(P), alpha=rep(0,M), sigma=rep(0,M)), uppertri=c(0,0,1,0,0))
pos.F <- grep("F", parm.names)</pre>
pos.Lambda <- grep("Lambda", parm.names)</pre>
pos.alpha <- grep("alpha", parm.names)</pre>
pos.sigma <- grep("sigma", parm.names)</pre>
PGF <- function(Data) return(c(rmvnpc(Data$N, Data$gamma,
    rwishartc(Data$N, Data$S)), rnormv(Data$P*Data$M,0,1000),
    upper.triangle(rwishartc(Data$N, Data$S), diag=TRUE),
    rnormv(Data$M,0,1000), rhalfcauchy(Data$M,5)))
MyData <- list(M=M, N=N, P=P, PGF=PGF, S=S, Y=Y, gamma=gamma,
    mon.names=mon.names, parm.names=parm.names, pos.F=pos.F,
    pos.Lambda=pos.Lambda, pos.alpha=pos.alpha, pos.sigma=pos.sigma)
33.3. Model
Model <- function(parm, Data)</pre>
```

```
del <- function(parm, Data)
  {
    ### Parameters
    F <- matrix(parm[Data$pos.F], Data$N, Data$P)
    Lambda <- matrix(parm[Data$pos.Lambda], Data$P, Data$M)
    U <- as.parm.matrix(U, Data$P, parm, Data, chol=TRUE)
    diag(U) <- exp(diag(U))
    alpha <- parm[Data$pos.alpha]
    sigma <- interval(parm[Data$pos.sigma], 1e-100, Inf)
    parm[Data$pos.sigma] <- sigma
    ### Log-Prior
    F.prior <- sum(dmvnpc(F, Data$gamma, U, log=TRUE))
    Lambda.prior <- sum(dnormv(Lambda, 0, 1000, log=TRUE))</pre>
```

33.4. Initial Values

Initial.Values <- c(rep(0,N*P), rep(0,P*M), upper.triangle(S, diag=TRUE),
 rep(0,M), rep(1,M))</pre>

34. Factor Analysis, Exploratory Ordinal

This exploratory ordinal factor analysis (EOFA) model form is also suitable for collaborative filtering, and automatically handles missing values.

$$\begin{aligned} \mathbf{Y}_{i,m} &\sim \mathcal{CAT}(\mathbf{P}_{i,m,1:K}), \quad i = 1, \dots, N, \quad m = 1, \dots, M \\ \mathbf{P}_{,K} &= 1 - Q_{,,(K-1)} \\ \mathbf{P}_{,k} &= |Q_{,k} - Q_{,,(k-1)}|, \quad k = 2, \dots, (K-1) \\ \mathbf{P}_{,1} &= Q_{,,1} \\ Q &= \phi(\mu) \\ \mu_{,k} &= \alpha_k - \mathbf{F}\Lambda, \quad k = 1, \dots, (K-1) \\ \mathbf{F}_{i,1:P} &\sim \mathcal{N}_P(\gamma, \Omega^{-1}), \quad i = 1, \dots, N \\ \gamma_p &= 0, \quad p = 1, \dots, P \\ \Lambda_{p,m} &\sim \mathcal{N}(0, 1000), \quad p = 1, \dots, P, \quad m = 1, \dots, M \\ \Omega &\sim \mathcal{W}_N(\mathbf{S}), \quad \mathbf{S} &= \mathbf{I}_P \\ \alpha_k &\sim \mathcal{N}(0, 1) \in [(k-1), k] \in [-5, 5], \quad k = 2, \dots, (K-1) \end{aligned}$$

```
M <- 10 #Number of variables
N <- 20 #Number of records
K <- 3 #Number of discrete values
P <- 3 #Number of factors
alpha <- sort(rnorm(K-1))</pre>
Lambda <- matrix(runif(M*P,-1,1), P, M)</pre>
U <- diag(P)
U[upper.tri(U, diag=TRUE)] <- runif(length(upper.triangle(U, diag=TRUE)))</pre>
F \leftarrow rmvnc(N, rep(0,P), U)
mu \leftarrow aperm(array(alpha, dim=c(K-1, M, N)), perm=c(3,2,1))
mu <- mu - array(tcrossprod(F, t(Lambda)), dim=c(N, M, K-1))</pre>
Pr <- Q <- pnorm(mu)
Pr[,,-1] \leftarrow abs(Q[,,-1] - Q[,,-(K-1)])
Pr <- array(Pr, dim=c(N, M, K))</pre>
Pr[,,K] \leftarrow 1 - Q[,,(K-1)]
dim(Pr) \leftarrow c(N*M, K)
Y <- matrix(rcat(nrow(Pr), Pr), N, M) #Make sure Y has all values
gamma \leftarrow rep(0,P)
S \leftarrow diag(P)
mon.names <- "LP"
parm.names <- as.parm.names(list(F=matrix(0,N,P), Lambda=matrix(0,P,M),</pre>
    U=diag(P), alpha=rep(0,K-1)), uppertri=c(0,0,1,0))
pos.F <- grep("F", parm.names)</pre>
pos.Lambda <- grep("Lambda", parm.names)</pre>
pos.alpha <- grep("alpha", parm.names)</pre>
PGF <- function(Data) return(c(rmvnpc(Data$N, Data$gamma,
    rwishartc(Data$N, Data$S)), rnorm(Data$P*Data$M),
    upper.triangle(rwishartc(Data$N, Data$S), diag=TRUE),
     sort(rnorm(Data$K-1))))
MyData <- list(K=K, M=M, N=N, P=P, PGF=PGF, S=S, Y=Y, gamma=gamma,
    mon.names=mon.names, parm.names=parm.names, pos.F=pos.F,
    pos.Lambda=pos.Lambda, pos.alpha=pos.alpha)
34.3. Model
Model <- function(parm, Data)</pre>
    ### Parameters
    F <- matrix(parm[Data$pos.F], Data$N, Data$P)</pre>
    Lambda <- matrix(parm[Data$pos.Lambda], Data$P, Data$M)</pre>
    U <- as.parm.matrix(U, Data$P, parm, Data, chol=TRUE)</pre>
    diag(U) <- exp(diag(U))</pre>
    alpha <- sort(interval(parm[Data$pos.alpha], -5, 5))</pre>
    parm[Data$pos.alpha] <- alpha</pre>
```

```
### Log-Prior
F.prior <- sum(dmvnpc(F, Data$gamma, U, log=TRUE))</pre>
Lambda.prior <- sum(dnormv(Lambda, 0, 1000, log=TRUE))</pre>
U.prior <- dwishartc(U, Data$N, Data$S, log=TRUE)</pre>
alpha.prior <- sum(dnormv(alpha, 0, 1000, log=TRUE))</pre>
### Log-Likelihood
mu <- aperm(array(alpha, dim=c(Data$K-1, Data$M, Data$N)),</pre>
    perm=c(3,2,1))
mu <- mu - array(tcrossprod(F, t(Lambda)),</pre>
    dim=c(Data$N, Data$M, Data$K-1))
P <- Q <- pnorm(mu)
P[ , , -1] \leftarrow abs(Q[ , , -1] - Q[ , , -(Data$K-1)])
P <- array(P, dim=c(Data$N, Data$M, Data$K))</pre>
P[ , , Data$K] <- 1 - Q[ , , (Data$K-1)]</pre>
y <- as.vector(Data$Y)</pre>
dim(P) <- c(Data$N*Data$M, Data$K)</pre>
LL <- sum(dcat(y, P, log=TRUE))
### Log-Posterior
LP <- LL + F.prior + Lambda.prior + U.prior + alpha.prior
Modelout <- list(LP=LP, Dev=-2*LL, Monitor=LP,</pre>
     yhat=matrix(rcat(nrow(P), P), Data$N, Data$M), parm=parm)
return(Modelout)
}
```

34.4. Initial Values

```
Initial.Values <- c(rep(0,N*P), rep(0,P*M), upper.triangle(S, diag=TRUE),
    seq(from=-1, to=1, len=K-1))</pre>
```

35. Factor Regression

This example of factor regression is constrained to the case where the number of factors is equal to the number of independent variables (IVs) less the intercept. The purpose of this form of factor regression is to orthogonalize the IVs with respect to \mathbf{y} , rather than variable reduction. This method is the combination of confirmatory factor analysis in section 31 and linear regression in section 46.

$$\mathbf{y} \sim \mathcal{N}(\nu, \sigma_{J+1}^2)$$

$$\nu = \mu \beta$$

$$\mu_{i,1} = 1$$

$$\mu_{i,j+1} = \mu_{i,j}, \quad j = 1, \dots, J$$

$$\mathbf{X}_{i,j} \sim \mathcal{N}(\mu_{i,j}, \sigma_j^2), \quad i = 1, \dots, N, \quad j = 2, \dots, J$$

```
\mu_{i,j} = \alpha_j + \lambda_j \mathbf{F}_{i,j}, \quad i = 1, \dots, N, \quad j = 2, \dots, J
\mathbf{F}_{i,1:J} \sim \mathcal{N}_{J-1}(0, \Omega^{-1}), \quad i = 1, \dots, N
\alpha_j \sim \mathcal{N}(0, 1000), \quad j = 1, \dots, (J-1)
\beta_j \sim \mathcal{N}(0, 1000), \quad j = 1, \dots, J
\lambda_j \sim \mathcal{N}(0, 1000), \quad j = 1, \dots, (J-1)
\sigma_j \sim \mathcal{HC}(25), \quad j = 1, \dots, (J+1)
\Omega \sim \mathcal{W}_N(\mathbf{S}), \quad \mathbf{S} = \mathbf{I}_J
```

```
data(demonsnacks)
N <- nrow(demonsnacks)
y <- log(demonsnacks$Calories)
X <- as.matrix(log(demonsnacks[,c(1,4,10)]+1))</pre>
J \leftarrow ncol(X)
for (j in 1:J) {X[,j] <- CenterScale(X[,j])}</pre>
S \leftarrow diag(J)
mon.names <- "LP"
parm.names <- as.parm.names(list(alpha=rep(0,J), beta=rep(0,J+1),</pre>
     lambda=rep(0,J), sigma=rep(0,J+1), F=matrix(0,N,J), U=diag(J)),
    uppertri=c(0,0,0,0,0,1))
pos.alpha <- grep("alpha", parm.names)</pre>
pos.beta <- grep("beta", parm.names)</pre>
pos.lambda <- grep("lambda", parm.names)</pre>
pos.sigma <- grep("sigma", parm.names)</pre>
pos.F <- grep("F", parm.names)</pre>
PGF <- function(Data) return(c(rnormv(Data$J,0,1000),
    rnormv(Data$J+1,0,1000), rnormv(Data$J,0,1000),
    rhalfcauchy(Data$J+1,5), rmvnpc(Data$N, rep(0,Data$J), Data$S),
                                                                               upper.triangle(rw
diag=TRUE)))
MyData <- list(J=J, N=N, PGF=PGF, S=S, X=X, mon.names=mon.names,
    parm.names=parm.names, pos.alpha=pos.alpha, pos.beta=pos.beta,
    pos.lambda=pos.lambda, pos.sigma=pos.sigma, pos.F=pos.F, y=y)
35.3. Model
Model <- function(parm, Data)</pre>
```

```
Model <- function(parm, Data)
{
    ### Parameters
    alpha <- parm[Data$pos.alpha]
    beta <- parm[Data$pos.beta]
    lambda <- parm[Data$pos.lambda]
    sigma <- interval(parm[Data$pos.sigma], 1e-100, Inf)</pre>
```

```
parm[Data$pos.sigma] <- sigma</pre>
F <- matrix(Data$pos.F], Data$N, Data$J)</pre>
U <- as.parm.matrix(U, Data$J, parm, Data, chol=TRUE)</pre>
diag(U) <- exp(diag(U))</pre>
### Log-Prior
alpha.prior <- sum(dnormv(alpha, 0, 1000, log=TRUE))</pre>
beta.prior <- sum(dnormv(beta, 0, 1000, log=TRUE))</pre>
lambda.prior <- sum(dnormv(lambda, 0, 1000, log=TRUE))</pre>
sigma.prior <- sum(dhalfcauchy(sigma, 25, log=TRUE))</pre>
F.prior <- sum(dmvnpc(F, rep(0,Data$J), U, log=TRUE))</pre>
U.prior <- dwishartc(U, Data$J+1, Data$S, log=TRUE)</pre>
### Log-Likelihood
mu <- matrix(alpha, Data$N, Data$J, byrow=TRUE) + F *</pre>
    matrix(lambda, Data$N, Data$J, byrow=TRUE)
nu <- tcrossprod(beta, cbind(rep(1,Data$N),mu))</pre>
LL <- sum(dnorm(Data$X, mu, matrix(sigma[1:Data$J], Data$N, Data$J,
    byrow=TRUE)), dnorm(Data$y, nu, sigma[Data$J+1], log=TRUE))
### Log-Posterior
LP <- LL + alpha.prior + beta.prior + lambda.prior + sigma.prior +
    F.prior + U.prior
Modelout <- list(LP=LP, Dev=-2*LL, Monitor=LP,</pre>
    yhat=rnorm(Data$N, nu, sigma[Data$J+1]), parm=parm)
return(Modelout)
}
```

```
Initial.Values <- c(rep(0,J), rep(0,J+1), rep(0,J), rep(0,J+1), rep(0,N*J), S[upper.tri(S, diag=TRUE)])
```

36. Gamma Regression

36.1. Form

$$\mathbf{y} \sim \mathcal{G}(\lambda \tau, \tau)$$

$$\lambda = \exp(\mathbf{X}\beta)$$

$$\beta_j \sim \mathcal{N}(0, 1000), \quad j = 1, \dots, J$$

$$\tau \sim \mathcal{HC}(25)$$

36.2. Data

N <- 20 J <- 3

```
X <- matrix(runif(N*J,-2,2),N,J); X[,1] <- 1</pre>
beta \leftarrow runif(J,-2,2)
y <- round(exp(tcrossprod(X, t(beta)))) + 0.1 #Must be > 0
mon.names <- c("LP", "sigma2")</pre>
parm.names <- as.parm.names(list(beta=rep(0,J), tau=0))</pre>
pos.beta <- grep("beta", parm.names)</pre>
pos.tau <- grep("tau", parm.names)</pre>
PGF <- function(Data) return(c(rnormv(Data$J,0,1000), rhalfcauchy(1,5)))
MyData <- list(J=J, N=N, PGF=PGF, X=X, mon.names=mon.names,
    parm.names=parm.names, pos.beta=pos.beta, pos.tau=pos.tau, y=y)
36.3. Model
Model <- function(parm, Data)</pre>
    ### Parameters
    beta <- parm[Data$pos.beta]</pre>
    tau <- interval(parm[Data$pos.tau], 1e-100, Inf)</pre>
    parm[Data$pos.tau] <- tau</pre>
    sigma2 <- 1/tau
    ### Log-Prior
    beta.prior <- sum(dnormv(beta, 0, 1000, log=TRUE))</pre>
    tau.prior <- dhalfcauchy(tau, 25, log=TRUE)</pre>
    ### Log-Likelihood
    lambda <- exp(tcrossprod(Data$X, t(beta)))</pre>
    LL <- sum(dgamma(Data$y, tau*lambda, tau, log=TRUE))</pre>
    ### Log-Posterior
    LP <- LL + beta.prior + tau.prior
    Modelout <- list(LP=LP, Dev=-2*LL, Monitor=c(LP,sigma2),</pre>
         yhat=rgamma(nrow(lambda), tau*lambda, tau), parm=parm)
    return(Modelout)
    }
```

Initial.Values <- c(rep(0,J), 1)</pre>

37. GARCH(1,1)

$$\mathbf{y}_t \sim \mathcal{N}(\mu_t, \sigma_t^2), \quad t = 1, \dots, T$$

$$\mathbf{y}^{new} \sim \mathcal{N}(\mu_{T+1}, \sigma_{new}^2)$$

$$\mu_t = \alpha + \phi \mathbf{y}_{t-1}, \quad t = 1, \dots, (T+1)$$

$$\epsilon_t = \mathbf{y}_t - \mu_t$$

$$\alpha \sim \mathcal{N}(0, 1000)$$

$$\phi \sim \mathcal{N}(0, 1000)$$

$$\sigma_{new}^2 = \theta_1 + \theta_2 \epsilon_T^2 + \theta_3 \sigma_T^2$$

$$\sigma_t^2 = \theta_1 + \theta_2 \epsilon_{t-1}^2 + \theta_3 \sigma_{t-1}^2$$

$$\theta_k = \frac{1}{1 + \exp(-\theta_k)}, \quad k = 1, \dots, 3$$

$$\theta_k \sim \mathcal{N}(0, 1000) \in [-10, 10], \quad k = 1, \dots, 3$$

37.2. Data

```
y \leftarrow c(0.02, -0.51, -0.30, 1.46, -1.26, -2.15, -0.91, -0.53, -1.91,
    2.64, 1.64, 0.15, 1.46, 1.61, 1.96, -2.67, -0.19, -3.28,
    1.89, 0.91, -0.71, 0.74, -0.10, 3.20, -0.80, -5.25, 1.03,
    -0.40, -1.62, -0.80, 0.77, 0.17, -1.39, -1.28, 0.48, -1.02,
    0.09, -1.09, 0.86, 0.36, 1.51, -0.02, 0.47, 0.62, -1.36,
    1.12, 0.42, -4.39, -0.87, 0.05, -5.41, -7.38, -1.01, -1.70,
    0.64, 1.16, 0.87, 0.28, -1.69, -0.29, 0.13, -0.65, 0.83,
    0.62, 0.05, -0.14, 0.01, -0.36, -0.32, -0.80, -0.06, 0.24,
    0.23, -0.37, 0.00, -0.33, 0.21, -0.10, -0.10, -0.01, -0.40,
    -0.35, 0.48, -0.28, 0.08, 0.28, 0.23, 0.27, -0.35, -0.19,
    0.24, 0.17, -0.02, -0.23, 0.03, 0.02, -0.17, 0.04, -0.39,
    -0.12, 0.16, 0.17, 0.00, 0.18, 0.06, -0.36, 0.22, 0.14,
    -0.17, 0.10, -0.01, 0.00, -0.18, -0.02, 0.07, -0.06, 0.06,
    -0.05, -0.08, -0.07, 0.01, -0.06, 0.01, 0.01, -0.02, 0.01,
    0.01, 0.12, -0.03, 0.08, -0.10, 0.01, -0.03, -0.08, 0.04,
    -0.09, -0.08, 0.01, -0.05, 0.08, -0.14, 0.06, -0.11, 0.09,
    0.06, -0.12, -0.01, -0.05, -0.15, -0.05, -0.03, 0.04, 0.00,
    -0.12, 0.04, -0.06, -0.05, -0.07, -0.05, -0.14, -0.05, -0.01,
    -0.12, 0.05, 0.06, -0.10, 0.00, 0.01, 0.00, -0.08, 0.00,
    0.00, 0.07, -0.01, 0.00, 0.09, 0.33, 0.13, 0.42, 0.24,
    -0.36, 0.22, -0.09, -0.19, -0.10, -0.08, -0.07, 0.05, 0.07,
    0.07, 0.00, -0.04, -0.05, 0.03, 0.08, 0.26, 0.10, 0.08,
    0.09, -0.07, -0.33, 0.17, -0.03, 0.07, -0.04, -0.06, -0.06,
    0.07, -0.03, 0.00, 0.08, 0.27, 0.11, 0.11, 0.06, -0.11,
    -0.09, -0.21, 0.24, -0.12, 0.11, -0.02, -0.03, 0.02, -0.10,
    0.00, -0.04, 0.01, 0.02, -0.03, -0.10, -0.09, 0.17, 0.07,
    -0.05, -0.01, -0.05, 0.01, 0.00, -0.08, -0.05, -0.08, 0.07,
    0.06, -0.14, 0.02, 0.01, 0.04, 0.00, -0.13, -0.17
T <- length(y)
```

mon.names <- c("LP", "ynew", "sigma2.new")</pre> parm.names <- c("alpha", "phi", "omega", "theta[1]", "theta[2]")</pre>

```
PGF <- function(Data) return(c(rnormv(2,0,1000), rhalfcauchy(1,5),
    runif(2)))
MyData <- list(PGF=PGF, T=T, mon.names=mon.names, parm.names=parm.names,
    y=y)
37.3. Model
Model <- function(parm, Data)</pre>
    {
    ### Parameters
    alpha <- parm[1]; phi <- parm[2]</pre>
    parm[3] <- omega <- interval(parm[3], 1e-100, Inf)</pre>
    theta <- interval(parm[4:5], 1e-5, 1-1e-5)
    if(sum(theta) >= 1) theta[2] <- 1 - 1e-5 - theta[1]
                              ### Log-Prior
    parm[4:5] <- theta
    alpha.prior <- dnormv(alpha, 0, 1000, log=TRUE)</pre>
    phi.prior <- dnormv(phi, 0, 1000, log=TRUE)</pre>
    omega.prior <- dhalfcauchy(omega, 25, log=TRUE)</pre>
    theta.prior <- sum(dunif(theta, 0, 1, log=TRUE))</pre>
```

}

Log-Likelihood

Log-Posterior

return(Modelout)

epsilon <- Data\$y - mu

theta[2]*sigma2[Data\$T]

mu <- c(alpha, alpha + phi*Data\$y[-Data\$T])</pre>

LL <- sum(dnormv(Data\$y, mu, sigma2, log=TRUE))</pre>

sigma2 <- c(omega, omega + theta[1]*epsilon[-Data\$T]^2)
sigma2[-1] <- sigma2[-1] + theta[2]*sigma2[-Data\$T]
sigma2.new <- omega + theta[1]*epsilon[Data\$T]^2 +</pre>

ynew <- rnormv(1, alpha + phi*Data\$y[Data\$T], sigma2.new)</pre>

yhat=rnormv(length(mu), mu, sigma2), parm=parm)

LP <- LL + alpha.prior + phi.prior + omega.prior + theta.prior
Modelout <- list(LP=LP, Dev=-2*LL, Monitor=c(LP, ynew, sigma2.new),</pre>

```
Initial. Values \leftarrow c(rep(0,2), rep(0.4,3))
```

38. GARCH-M(1,1)

38.1. Form

$$\mathbf{y}_{t} \sim \mathcal{N}(\mu_{t}, \sigma_{t}^{2}), \quad t = 1, \dots, T$$

$$\mathbf{y}^{new} \sim \mathcal{N}(\mu_{T+1}, \sigma_{new}^{2})$$

$$\mu_{t} = \alpha + \phi \mathbf{y}_{t-1} + \delta \sigma_{t-1}^{2}, \quad t = 1, \dots, (T+1)$$

$$\epsilon_{t} = \mathbf{y}_{t} - \mu_{t}$$

$$\alpha \sim \mathcal{N}(0, 1000)$$

$$\phi \sim \mathcal{N}(0, 1000)$$

$$\sigma_{new}^{2} = \omega + \theta_{1}\epsilon_{T}^{2} + \theta_{2}\sigma_{T}^{2}$$

$$\sigma_{t}^{2} = \omega + \theta_{1}\epsilon_{t-1}^{2} + \theta_{2}\sigma_{t-1}^{2}$$

$$\omega \sim \mathcal{HC}(25)$$

$$\theta_{k} \sim \mathcal{U}(0, 1), \quad k = 1, \dots, 2$$

```
y \leftarrow c(0.02, -0.51, -0.30, 1.46, -1.26, -2.15, -0.91, -0.53, -1.91,
    2.64, 1.64, 0.15, 1.46, 1.61, 1.96, -2.67, -0.19, -3.28,
    1.89, 0.91, -0.71, 0.74, -0.10, 3.20, -0.80, -5.25, 1.03,
    -0.40, -1.62, -0.80, 0.77, 0.17, -1.39, -1.28, 0.48, -1.02,
    0.09, -1.09, 0.86, 0.36, 1.51, -0.02, 0.47, 0.62, -1.36,
    1.12, 0.42, -4.39, -0.87, 0.05, -5.41, -7.38, -1.01, -1.70,
    0.64, 1.16, 0.87, 0.28, -1.69, -0.29, 0.13, -0.65, 0.83,
    0.62,\ 0.05,\ -0.14,\ 0.01,\ -0.36,\ -0.32,\ -0.80,\ -0.06,\ 0.24,
    0.23, -0.37, 0.00, -0.33, 0.21, -0.10, -0.10, -0.01, -0.40,
    -0.35, 0.48, -0.28, 0.08, 0.28, 0.23, 0.27, -0.35, -0.19,
    0.24, 0.17, -0.02, -0.23, 0.03, 0.02, -0.17, 0.04, -0.39,
    -0.12, 0.16, 0.17, 0.00, 0.18, 0.06, -0.36, 0.22, 0.14,
    -0.17, 0.10, -0.01, 0.00, -0.18, -0.02, 0.07, -0.06, 0.06,
    -0.05, -0.08, -0.07, 0.01, -0.06, 0.01, 0.01, -0.02, 0.01,
    0.01, 0.12, -0.03, 0.08, -0.10, 0.01, -0.03, -0.08, 0.04,
    -0.09, -0.08, 0.01, -0.05, 0.08, -0.14, 0.06, -0.11, 0.09,
    0.06, -0.12, -0.01, -0.05, -0.15, -0.05, -0.03, 0.04, 0.00,
    -0.12, 0.04, -0.06, -0.05, -0.07, -0.05, -0.14, -0.05, -0.01,
    -0.12, 0.05, 0.06, -0.10, 0.00, 0.01, 0.00, -0.08, 0.00,
    0.00, 0.07, -0.01, 0.00, 0.09, 0.33, 0.13, 0.42, 0.24,
    -0.36, 0.22, -0.09, -0.19, -0.10, -0.08, -0.07, 0.05, 0.07,
    0.07, 0.00, -0.04, -0.05, 0.03, 0.08, 0.26, 0.10, 0.08,
    0.09, -0.07, -0.33, 0.17, -0.03, 0.07, -0.04, -0.06, -0.06,
    0.07, -0.03, 0.00, 0.08, 0.27, 0.11, 0.11, 0.06, -0.11,
    -0.09, -0.21, 0.24, -0.12, 0.11, -0.02, -0.03, 0.02, -0.10,
    0.00, -0.04, 0.01, 0.02, -0.03, -0.10, -0.09, 0.17, 0.07,
    -0.05, -0.01, -0.05, 0.01, 0.00, -0.08, -0.05, -0.08, 0.07,
```

```
0.06, -0.14, 0.02, 0.01, 0.04, 0.00, -0.13, -0.17
T <- length(y)
mon.names <- c("LP", "ynew", "sigma2.new")</pre>
parm.names <- c("alpha", "phi", "delta", "omega", "theta[1]", "theta[2]")</pre>
PGF <- function(Data) return(c(rnormv(3,0,1000), rhalfcauchy(1,5),
    runif(2)))
MyData <- list(PGF=PGF, T=T, mon.names=mon.names, parm.names=parm.names,
    y=y)
38.3. Model
Model <- function(parm, Data)</pre>
    ### Parameters
     alpha <- parm[1]; phi <- parm[2]; delta <- parm[3]</pre>
    parm[4] <- omega <- interval(parm[4], 1e-100, Inf)</pre>
    parm[5:6] <- theta <- interval(parm[5:6], 1e-10, 1-1e-5)</pre>
    ### Log-Prior
    alpha.prior <- dnormv(alpha, 0, 1000, log=TRUE)</pre>
    phi.prior <- dnormv(phi, 0, 1000, log=TRUE)</pre>
     delta.prior <- dnormv(delta, 0, 1000, log=TRUE)</pre>
    omega.prior <- dhalfcauchy(omega, 25, log=TRUE)</pre>
    theta.prior <- sum(dunif(theta, 0, 1, log=TRUE))</pre>
    ### Log-Likelihood
    mu <- c(alpha, alpha + phi*Data$y[-Data$T])</pre>
    epsilon <- Data$y - mu
     sigma2 <- c(omega, omega + theta[1]*epsilon[-Data$T]^2)</pre>
     sigma2[-1] \leftarrow sigma2[-1] + theta[2]*sigma2[-Data$T]
    sigma2.new <- omega + theta[1]*epsilon[Data$T]^2 +</pre>
         theta[2]*sigma2[Data$T]
    mu <- mu + delta*sigma2
    ynew <- rnormv(1, alpha + phi*Data$y[Data$T] + delta*sigma2[Data$T],</pre>
         sigma2.new)
    LL <- sum(dnormv(Data$y, mu, sigma2, log=TRUE))
    ### Log-Posterior
    LP <- LL + alpha.prior + phi.prior + delta.prior + omega.prior +
         theta.prior
    Modelout <- list(LP=LP, Dev=-2*LL, Monitor=c(LP, ynew, sigma2.new),</pre>
         yhat=rnormv(length(mu), mu, sigma2), parm=parm)
    return(Modelout)
    }
```

```
Initial. Values \leftarrow c(rep(0,3), rep(0.3,3))
```

39. Geographically Weighted Regression

39.1. Form

$$\mathbf{y}_{i,k} \sim \mathcal{N}(\mu_{i,k}, \tau_{i,k}^{-1}), \quad i = 1, \dots, N, \quad k = 1, \dots, N$$

$$\mu_{i,1:N} = \mathbf{X}\beta_{i,1:J}$$

$$\tau = \frac{1}{\sigma^2} \mathbf{w} \nu$$

$$\mathbf{w} = \frac{\exp(-0.5\mathbf{Z}^2)}{\mathbf{h}}$$

$$\alpha \sim \mathcal{U}(1.5, 100)$$

$$\beta_{i,j} \sim \mathcal{N}(0, 1000), \quad i = 1, \dots, N, \quad j = 1, \dots, J$$

$$\mathbf{h} \sim \mathcal{N}(0.1, 1000) \in [0.1, \infty]$$

$$\nu_{i,k} \sim \mathcal{G}(\alpha, 2), \quad i = 1, \dots, N, \quad k = 1, \dots, N$$

$$\sigma_i \sim \mathcal{HC}(25), \quad i = 1, \dots, N$$

```
crime <- c(18.802, 32.388, 38.426, 0.178, 15.726, 30.627, 50.732,
    26.067, 48.585, 34.001, 36.869, 20.049, 19.146, 18.905, 27.823,
    16.241, 0.224, 30.516, 33.705, 40.970, 52.794, 41.968, 39.175,
    53.711, 25.962, 22.541, 26.645, 29.028, 36.664, 42.445, 56.920,
    61.299, 60.750, 68.892, 38.298, 54.839, 56.706, 62.275, 46.716,
    57.066, 54.522, 43.962, 40.074, 23.974, 17.677, 14.306, 19.101,
    16.531, 16.492)
income <- c(21.232, 4.477, 11.337, 8.438, 19.531, 15.956, 11.252,
    16.029, 9.873, 13.598, 9.798, 21.155, 18.942, 22.207, 18.950,
    29.833, 31.070, 17.586, 11.709, 8.085, 10.822, 9.918, 12.814,
    11.107, 16.961, 18.796, 11.813, 14.135, 13.380, 17.017, 7.856,
    8.461, 8.681, 13.906, 14.236, 7.625, 10.048, 7.467, 9.549,
    9.963, 11.618, 13.185, 10.655, 14.948, 16.940, 18.739, 18.477,
    18.324, 25.873)
housing <- c(44.567, 33.200, 37.125, 75.000, 80.467, 26.350, 23.225,
    28.750, 18.000, 96.400, 41.750, 47.733, 40.300, 42.100, 42.500,
    61.950, 81.267, 52.600, 30.450, 20.300, 34.100, 23.600, 27.000,
    22.700, 33.500, 35.800, 26.800, 27.733, 25.700, 43.300, 22.850,
    17.900, 32.500, 22.500, 53.200, 18.800, 19.900, 19.700, 41.700,
    42.900, 30.600, 60.000, 19.975, 28.450, 31.800, 36.300, 39.600,
    76.100, 44.333)
easting <- c(35.62, 36.50, 36.71, 33.36, 38.80, 39.82, 40.01, 43.75,
    39.61, 47.61, 48.58, 49.61, 50.11, 51.24, 50.89, 48.44, 46.73,
    43.44, 43.37, 41.13, 43.95, 44.10, 43.70, 41.04, 43.23, 42.67,
```

```
41.21, 39.32, 41.09, 38.3, 41.31, 39.36, 39.72, 38.29, 36.60,
    37.60, 37.13, 37.85, 35.95, 35.72, 35.76, 36.15, 34.08, 30.32,
    27.94, 27.27, 24.25, 25.47, 29.02)
northing \leftarrow c(42.38, 40.52, 38.71, 38.41, 44.07, 41.18, 38.00, 39.28,
    34.91, 36.42, 34.46, 32.65, 29.91, 27.80, 25.24, 27.93, 31.91,
    35.92, 33.46, 33.14, 31.61, 30.40, 29.18, 28.78, 27.31, 24.96,
    25.90, 25.85, 27.49, 28.82, 30.90, 32.88, 30.64, 30.35, 32.09,
    34.08, 36.12, 36.30, 36.40, 35.60, 34.66, 33.92, 30.42, 28.26,
    29.85, 28.21, 26.69, 25.71, 26.58)
N <- length(crime)</pre>
J <- 3 #Number of predictors, including the intercept
X <- matrix(c(rep(1,N), income, housing),N,J)</pre>
D <- as.matrix(dist(cbind(northing,easting), diag=TRUE, upper=TRUE))</pre>
Z <- D / sd(as.vector(D))</pre>
y \leftarrow matrix(0,N,N); for (i in 1:N) {for (k in 1:N) {y[i,k] <- crime[k]}}
mon.names <- "LP"
parm.names <- as.parm.names(list(alpha=0, beta=matrix(0,N,J), H=0,
    nu=matrix(0,N,N), sigma=rep(0,N)))
pos.alpha <- grep("alpha", parm.names)</pre>
pos.beta <- grep("beta", parm.names)</pre>
pos.H <- grep("H", parm.names)</pre>
pos.nu <- grep("nu", parm.names)</pre>
pos.sigma <- grep("sigma", parm.names)</pre>
PGF <- function(Data) return(c(runif(1,1.5,100),
    rnormv(Data$N*Data$J,0,1000), runif(1, 0.1, 1000),
    rgamma(Data$N*Data$N,runif(1,1.5,100),2), rhalfcauchy(Data$N,5)))
MyData <- list(J=J, N=N, PGF=PGF, X=X, Z=Z, latitude=northing,
    longitude=easting, mon.names=mon.names, parm.names=parm.names,
    pos.alpha=pos.alpha, pos.beta=pos.beta, pos.H=pos.H, pos.nu=pos.nu,
    pos.sigma=pos.sigma, y=y)
39.3. Model
Model <- function(parm, Data)</pre>
    {
    ### Parameters
    alpha <- interval(parm[Data$pos.alpha], 1.5, 100)</pre>
    parm[Data$pos.alpha] <- alpha</pre>
    beta <- matrix(parm[Data$pos.beta], Data$N, Data$J)</pre>
    parm[Data$pos.H] <- H <- interval(parm[Data$pos.H], 0.1, Inf)</pre>
    parm[Data$pos.nu] <- nu <- interval(parm[Data$pos.nu], 1e-100, Inf)</pre>
    nu <- matrix(nu, Data$N, Data$N)</pre>
                                            sigma <- interval(parm[Data$pos.sigma],</pre>
1e-100, Inf)
    parm[Data$pos.sigma] <- sigma</pre>
    ### Log-Prior
    alpha.prior <- dunif(alpha, 1.5, 100, log=TRUE)</pre>
```

```
beta.prior <- sum(dnormv(beta, 0, 1000, log=TRUE))</pre>
h.prior <- dhalfnorm(H-0.1, 1000, log=TRUE)</pre>
nu.prior <- sum(dgamma(nu, alpha, 2, log=TRUE))</pre>
sigma.prior <- sum(dhalfcauchy(sigma, 25, log=TRUE))</pre>
### Log-Likelihood
w \leftarrow \exp(-0.5 * Data$Z^2) / H
tau <- (1/sigma^2) * w * nu
mu <- tcrossprod(Data$X, beta)</pre>
LL <- sum(dnormp(Data$y, mu, tau, log=TRUE))
#WSE <- w * nu * (Data$y - mu)^2; w.y <- w * nu * Data$y
#WMSE <- rowMeans(WSE); y.w <- rowSums(w.y) / rowSums(w)</pre>
\#LAR2 \leftarrow 1 - WMSE / sd(y.w)^2
### Log-Posterior
LP <- LL + alpha.prior + beta.prior + h.prior + nu.prior + sigma.prior
Modelout <- list(LP=LP, Dev=-2*LL, Monitor=LP,</pre>
     yhat=rnormp(prod(dim(mu)), mu, tau), parm=parm)
return(Modelout)
}
```

39.4. Initial Values

Initial. Values <- c(runif(1,1.5,100), rep(0,N*J), 1, rep(1,N*N), rep(1,N))

40. Hidden Markov Model

40.1. Form

This introductory hidden Markov model (HMM) includes N discrete states. Discrete draws of the states of θ are updated with the Griddy-Gibbs sampler.

$$\mathbf{y}_{t} \sim \mathcal{N}(\mu_{\theta}, \sigma_{\theta}^{2}), \quad t = 1, \dots, T$$

$$\mu \sim \mathcal{N}(\mu_{0}, \lambda \sigma^{2})$$

$$\sigma^{2} \sim \mathcal{G}^{-1}(\nu, \sigma_{0}^{2})$$

$$\theta \sim \mathcal{CAT}(\phi)$$

$$\phi_{1:N} \sim \mathcal{D}(\alpha_{1:N})$$

$$\lambda \sim \mathcal{HC}(25)$$

$$\mu_{0} \sim \mathcal{N}(0, 1000)$$

$$\nu \sim \mathcal{HC}(25)$$

$$\sigma_{0}^{2} \sim \mathcal{HC}(25)$$

40.2. Data

```
T <- 10 #Number of time-periods
N <- 2 #Number of discrete (hidden) states
y <- cumsum(rnorm(T))</pre>
alpha <- rep(1,N) #Concentration hyperparameter
mon.names <- "LP"
parm.names <- as.parm.names(list(lambda=rep(0,N), mu0=rep(0,N),
    mu1=rep(0,N), nu=rep(0,N), phi=rep(0,N), sigma0=rep(0,N),
     sigma2=rep(0,N), theta=rep(0,T)))
pos.lambda <- grep("lambda", parm.names)</pre>
pos.mu0 <- grep("mu0", parm.names)</pre>
pos.mu1 <- grep("mu1", parm.names)</pre>
pos.nu <- grep("nu", parm.names)</pre>
pos.phi <- grep("phi", parm.names)</pre>
pos.sigma0 <- grep("sigma0", parm.names)</pre>
pos.sigma2 <- grep("sigma2", parm.names)</pre>
pos.theta <- grep("theta", parm.names)</pre>
PGF <- function(Data) {</pre>
                               phi <- runif(Data$N)</pre>
    phi <- phi / sum(phi)</pre>
    return(c(runif(Data$N), rnorm(Data$N),
    rnorm(Data$N), runif(Data$N), phi, runif(Data$N), runif(Data$N),
    rcat(Data$T, rep(1/Data$N,Data$N))))}
MyData <- list(N=N, PGF=PGF, T=T, alpha=alpha, mon.names=mon.names,
    parm.names=parm.names, pos.lambda=pos.lambda, pos.mu0=pos.mu0,
    pos.mu1=pos.mu1, pos.nu=pos.nu, pos.phi=pos.phi,
    pos.sigma0=pos.sigma0, pos.sigma2=pos.sigma2, pos.theta=pos.theta,
    y=y)
40.3. Model
Model <- function(parm, Data)</pre>
    {
    ### Parameters
    lambda <- interval(parm[Data$pos.lambda], 1e-100, Inf)</pre>
    parm[Data$pos.lambda] <- lambda</pre>
    mu0 <- parm[Data$pos.mu0]</pre>
    mu <- parm[Data$pos.mu1]</pre>
    parm[Data$pos.mu1] <- mu <- mu[order(mu)]</pre>
    parm[Data$pos.nu] <- nu <- interval(parm[Data$pos.nu], 1e-100, Inf)</pre>
    phi <- abs(parm[Data$pos.phi])</pre>
    parm[Data$pos.phi] <- phi <- phi / sum(phi)</pre>
    sigma0 <- interval(parm[Data$pos.sigma0], 1e-100, Inf)</pre>
    parm[Data$pos.sigma0] <- sigma0</pre>
    sigma2 <- interval(parm[Data$pos.sigma2], 1e-100, Inf)</pre>
```

parm[Data\$pos.sigma2] <- sigma2</pre>

```
theta <- parm[Data$pos.theta]</pre>
### Log-Prior
lambda.prior <- sum(dhalfcauchy(lambda, 25, log=TRUE))</pre>
mu0.prior <- sum(dnormv(mu0, 0, 1000, log=TRUE))</pre>
mu.prior <- sum(dnormv(mu, mu0, lambda*sigma2, log=TRUE))</pre>
nu.prior <- sum(dhalfcauchy(nu, 25, log=TRUE))</pre>
phi.prior <- sum(ddirichlet(phi, Data$alpha, log=TRUE))</pre>
sigma0.prior <- sum(dhalfcauchy(sigma0, 25, log=TRUE))</pre>
sigma2.prior <- sum(dinvgamma(sigma2, nu, sigma0, log=TRUE))</pre>
theta.prior <- sum(dcat(theta, phi, log=TRUE))</pre>
### Log-Likelihood
LL <- sum(dnormv(Data$y, mu[theta], sigma2[theta], log=TRUE))
### Log-Posterior
LP <- LL + lambda.prior + mu0.prior + mu.prior + nu.prior +
    phi.prior + sigma0.prior + sigma2.prior + theta.prior
Modelout <- list(LP=LP, Dev=-2*LL, Monitor=LP,</pre>
    yhat=rnormv(length(theta), mu[theta], sigma2[theta]), parm=parm)
return(Modelout)
}
```

40.4. Initial Values

Initial.Values <- c(runif(N), rnorm(N), rnorm(N), runif(N), runif(N), runif(N), rcat(T, rep(1/N,N)))</pre>

41. Inverse Gaussian Regression

41.1. Form

$$\mathbf{y} \sim \mathcal{N}^{-1}(\mu, \lambda)$$

$$\mu = \exp(\mathbf{X}\beta) + C$$

$$\beta_j \sim \mathcal{N}(0, 1000), \quad j = 1, \dots, J$$

$$\lambda \sim \mathcal{HC}(25)$$

where C is a small constant, such as 1.0E-10.

```
N <- 100 
 J <- 3 #Number of predictors, including the intercept 
 X <- matrix(1,N,J) 
 for (j in 2:J) \{X[,j] <- rnorm(N,runif(1,-3,3),runif(1,0.1,1))\} 
 beta.orig <- runif(J,-3,3)
```

```
e < - rnorm(N, 0, 0.1)
y <- exp(tcrossprod(X, t(beta.orig)) + e)
mon.names <- "LP"
parm.names <- as.parm.names(list(beta=rep(0,J), lambda=0))</pre>
pos.beta <- grep("beta", parm.names)</pre>
pos.lambda <- grep("lambda", parm.names)</pre>
PGF <- function(Data) return(c(rnormv(Data$J,0,1000), rhalfcauchy(1,5)))
MyData <- list(J=J, PGF=PGF, X=X, mon.names=mon.names,</pre>
    parm.names=parm.names, pos.beta=pos.beta, pos.lambda=pos.lambda, y=y)
41.3. Model
Model <- function(parm, Data)</pre>
    ### Parameters
    beta <- parm[Data$pos.beta]</pre>
    lambda <- interval(parm[Data$pos.lambda], 1e-100, Inf)</pre>
    parm[Data$pos.lambda] <- lambda</pre>
     ### Log-Prior
    beta.prior <- sum(dnormv(beta, 0, 1000, log=TRUE))</pre>
     lambda.prior <- dhalfcauchy(lambda, 25, log=TRUE)</pre>
    ### Log-Likelihood
    mu <- exp(tcrossprod(Data$X, t(beta))) + 1.0E-10</pre>
    LL <- sum(dinvgaussian(Data$y, mu, lambda, log=TRUE))</pre>
    ### Log-Posterior
    LP <- LL + beta.prior + lambda.prior</pre>
    Modelout <- list(LP=LP, Dev=-2*LL, Monitor=LP,</pre>
          yhat=rinvgaussian(length(mu), mu, lambda), parm=parm)
    return(Modelout)
```

41.4. Initial Values

}

Initial.Values <- c(rep(0,J), 1)</pre>

42. Kriging

This is an example of universal kriging of \mathbf{y} given \mathbf{X} , regression effects β , and spatial effects ζ . Euclidean distance between spatial coordinates (longitude and latitude) is used for each of $i=1,\ldots,N$ records of \mathbf{y} . An additional record is created from the same data-generating process to compare the accuracy of interpolation. For the spatial component, ϕ is the rate of spatial decay and κ is the scale. κ is often difficult to identify, so it is set to 1 (Gaussian), but may be allowed to vary up to 2 (Exponential). In practice, ϕ is also often difficult to identify. While Σ is spatial covariance, spatial correlation is $\rho = \exp(-\phi \mathbf{D})$. To extend this to a large data set, consider the predictive process kriging example in section 43.

42.1. Form

$$\mathbf{y} \sim \mathcal{N}(\mu, \sigma_1^2)$$

$$\mu = \mathbf{X}\beta + \zeta$$

$$\mathbf{y}^{new} = \mathbf{X}\beta + \sum_{i=1}^{N} \left(\frac{\rho_i}{\sum \rho} \zeta_i\right)$$

$$\rho = \exp(-\phi \mathbf{D}^{new})^{\kappa}$$

$$\zeta \sim \mathcal{N}_N(\zeta_{\mu}, \Sigma)$$

$$\Sigma = \sigma_2^2 \exp(-\phi \mathbf{D})^{\kappa}$$

$$\beta_j \sim \mathcal{N}(0, 1000), \quad j = 1, \dots, 2$$

$$\sigma_j \sim \mathcal{HC}(25) \in [0.1, 10], \quad j = 1, \dots, 2$$

$$\phi \sim \mathcal{U}(1, 5)$$

$$\zeta_{\mu} = 0$$

$$\kappa = 1$$

```
N <- 20
longitude <- runif(N+1,0,100)</pre>
latitude <- runif(N+1,0,100)</pre>
D <- as.matrix(dist(cbind(longitude, latitude), diag=TRUE, upper=TRUE))
Sigma < -10000 * exp(-1.5 * D)
zeta <- as.vector(apply(rmvn(1000, rep(0,N+1), Sigma), 2, mean))</pre>
beta <- c(50,2)
X \leftarrow matrix(runif((N+1)*2,-2,2),(N+1),2); X[,1] \leftarrow 1
mu <- as.vector(tcrossprod(X, t(beta)))</pre>
y <- mu + zeta
longitude.new <- longitude[N+1]; latitude.new <- latitude[N+1]</pre>
Xnew <- X[N+1,]; ynew <- y[N+1]</pre>
longitude <- longitude[1:N]; latitude <- latitude[1:N]</pre>
X \leftarrow X[1:N,]; y \leftarrow y[1:N]
D <- as.matrix(dist(cbind(longitude,latitude), diag=TRUE, upper=TRUE))</pre>
D.new <- sqrt((longitude - longitude.new)^2 + (latitude - latitude.new)^2)</pre>
mon.names <- c("LP", "ynew")</pre>
parm.names <- as.parm.names(list(zeta=rep(0,N), beta=rep(0,2),</pre>
     sigma=rep(0,2), phi=0))
pos.zeta <- grep("zeta", parm.names)</pre>
pos.beta <- grep("beta", parm.names)</pre>
pos.sigma <- grep("sigma", parm.names)</pre>
pos.phi <- grep("phi", parm.names)</pre>
PGF <- function(Data) return(c(rmvn(1, rep(0, Data$N),
```

```
rhalfcauchy(1,25)^2 *exp(-runif(1,1,5)*Data$D)),
    rnormv(2,0,1000), rhalfcauchy(2,5), runif(1,1,5)))
MyData <- list(D=D, D.new=D.new, latitude=latitude, longitude=longitude,
    N=N, PGF=PGF, X=X, Xnew=Xnew, mon.names=mon.names,
    parm.names=parm.names, pos.zeta=pos.zeta, pos.beta=pos.beta,
    pos.sigma=pos.sigma, pos.phi=pos.phi, y=y)
42.3. Model
Model <- function(parm, Data)</pre>
    ### Parameters
    beta <- parm[Data$pos.beta]</pre>
    zeta <- parm[Data$pos.zeta]</pre>
    kappa <- 1
    sigma <- interval(parm[Data$pos.sigma], 0.1, 10)</pre>
    parm[Data$pos.sigma] <- sigma</pre>
    parm[Data$pos.phi] <- phi <- interval(parm[Data$pos.phi], 1, 5)</pre>
    Sigma <- sigma[2]*sigma[2] * exp(-phi * Data$D)^kappa
    ### Log-Prior
    beta.prior <- sum(dnormv(beta, 0, 1000, log=TRUE))</pre>
    zeta.prior <- dmvn(zeta, rep(0, Data$N), Sigma, log=TRUE)</pre>
    sigma.prior <- sum(dhalfcauchy(sigma - 1, 25, log=TRUE))</pre>
    phi.prior <- dunif(phi, 1, 5, log=TRUE)</pre>
    ### Interpolation
    rho <- exp(-phi * Data$D.new)^kappa</pre>
    ynew <- rnorm(1, sum(beta * Data$Xnew) + sum(rho / sum(rho) * zeta),</pre>
         sigma[1])
    ### Log-Likelihood
    mu <- tcrossprod(Data$X, t(beta)) + zeta</pre>
    LL <- sum(dnorm(Data$y, mu, sigma[1], log=TRUE))</pre>
    ### Log-Posterior
    LP <- LL + beta.prior + zeta.prior + sigma.prior + phi.prior</pre>
    Modelout <- list(LP=LP, Dev=-2*LL, Monitor=c(LP,ynew),</pre>
         yhat=rnorm(length(mu), mu, sigma[1]), parm=parm)
    return(Modelout)
    }
```

42.4. Initial Values

```
Initial. Values \leftarrow c(rep(0,N), rep(0,2), rep(1,2), 1)
```

43. Kriging, Predictive Process

The first K of N records in \mathbf{y} are used as knots for the parent process, and the predictive

process involves records $(K+1), \ldots, N$. For more information on kriging, see section 42.

43.1. Form

$$\mathbf{y} \sim \mathcal{N}(\mu, \sigma_{1}^{2})$$

$$\mu_{1:K} = \mathbf{X}_{1:K,1:J}\beta + \zeta$$

$$\mu_{(K+1):N} = \mathbf{X}_{(K+1):N,1:J}\beta + \sum_{p=1}^{N-K} \frac{\lambda_{p,1:K}}{\sum_{q=1}^{N-K} \lambda_{q,1:K}} \zeta^{T}$$

$$\lambda = \exp(-\phi \mathbf{D}_{P})^{\kappa}$$

$$\mathbf{y}^{new} = \mathbf{X}\beta + \sum_{k=1}^{K} (\frac{\rho_{k}}{\sum \rho} \zeta_{k})$$

$$\rho = \exp(-\phi \mathbf{D}^{new})^{\kappa}$$

$$\zeta \sim \mathcal{N}_{K}(0, \Sigma)$$

$$\Sigma = \sigma_{2}^{2} \exp(-\phi \mathbf{D})^{\kappa}$$

$$\beta_{j} \sim \mathcal{N}(0, 1000), \quad j = 1, \dots, 2$$

$$\sigma_{j} \sim \mathcal{HC}(25), \quad j = 1, \dots, 2$$

$$\phi \sim N(0, 1000) \in [1, 5]$$

$$\kappa = 1$$

```
N <- 100
K <- 30 #Number of knots
longitude <- runif(N+1,0,100)</pre>
latitude <- runif(N+1,0,100)</pre>
D <- as.matrix(dist(cbind(longitude, latitude), diag=TRUE, upper=TRUE))
Sigma < -10000 * exp(-1.5 * D)
zeta <- as.vector(apply(rmvn(1000, rep(0,N+1), Sigma), 2, mean))</pre>
beta <- c(50,2)
X \leftarrow matrix(runif((N+1)*2,-2,2),(N+1),2); X[,1] \leftarrow 1
mu <- as.vector(tcrossprod(X, t(beta)))</pre>
y <- mu + zeta
longitude.new <- longitude[N+1]; latitude.new <- latitude[N+1]</pre>
Xnew \leftarrow X[N+1,]; ynew \leftarrow y[N+1]
longitude <- longitude[1:N]; latitude <- latitude[1:N]</pre>
X \leftarrow X[1:N,]; y \leftarrow y[1:N]
D <- as.matrix(dist(cbind(longitude[1:K],latitude[1:K]), diag=TRUE,
     upper=TRUE))
D.P <- matrix(0, N-K, K)</pre>
for (i in (K+1):N) {
```

```
D.P[K+1-i,] <- sqrt((longitude[1:K] - longitude[i])^2 +</pre>
          (latitude[1:K] - latitude[i])^2)}
D.new <- sqrt((longitude[1:K] - longitude.new)^2 +</pre>
     (latitude[1:K] - latitude.new)^2)
mon.names <- c("LP", "ynew")</pre>
parm.names <- as.parm.names(list(zeta=rep(0,K), beta=rep(0,2),</pre>
     sigma=rep(0,2), phi=0))
pos.zeta <- grep("zeta", parm.names)</pre>
pos.beta <- grep("beta", parm.names)</pre>
pos.sigma <- grep("sigma", parm.names)</pre>
pos.phi <- grep("phi", parm.names)</pre>
PGF <- function(Data) return(c(rmvn(1, rep(0, Data$K),
    rhalfcauchy(1,5)^2 *exp(-runif(1,1,5)*Data$D)),
    rnormv(2,0,1000), rhalfcauchy(2,5), runif(1,1,5)))
MyData <- list(D=D, D.new=D.new, D.P=D.P, K=K, N=N, PGF=PGF, X=X,
     Xnew=Xnew, latitude=latitude, longitude=longitude,
    mon.names=mon.names, parm.names=parm.names, pos.zeta=pos.zeta,
    pos.beta=pos.beta, pos.sigma=pos.sigma, pos.phi=pos.phi, y=y)
43.3. Model
Model <- function(parm, Data)</pre>
     {
    ### Parameters
    beta <- parm[Data$pos.beta]</pre>
    zeta <- parm[Data$pos.zeta]</pre>
    kappa <- 1
     sigma <- interval(parm[Data$pos.sigma], 1, Inf)</pre>
    parm[Data$pos.sigma] <- sigma</pre>
    parm[Data$pos.phi] <- phi <- interval(parm[Data$pos.phi], 1, 5)</pre>
    Sigma <- sigma[2] * exp(-phi * Data$D)^kappa
    ### Log-Prior
    beta.prior <- sum(dnormv(beta, 0, 1000, log=TRUE))</pre>
    zeta.prior <- dmvn(zeta, rep(0, Data$K), Sigma, log=TRUE)</pre>
     sigma.prior <- sum(dhalfcauchy(sigma - 1, 25, log=TRUE))</pre>
    phi.prior <- dunif(phi, 1, 5, log=TRUE)</pre>
    ### Interpolation
    rho <- exp(-phi * Data$D.new)^kappa</pre>
    ynew <- rnorm(1, sum(beta * Data$Xnew) + sum(rho / sum(rho) * zeta),</pre>
         sigma)
    ### Log-Likelihood
    mu <- tcrossprod(Data$X, t(beta))</pre>
    mu[1:Data$K] <- mu[1:Data$K] + zeta</pre>
    lambda <- exp(-phi * Data$D.P)^kappa</pre>
    mu[(Data$K+1):Data$N] <- mu[(Data$K+1):Data$N] +</pre>
```

rowSums(lambda / rowSums(lambda) *

43.4. Initial Values

Initial. Values \leftarrow c(rep(0,K), c(mean(y), 0), rep(1,2), 3)

44. Laplace Regression

This linear regression specifies that \mathbf{y} is Laplace-distributed, where it is usually Gaussian or normally-distributed. It has been claimed that it should be surprising that the normal distribution became the standard, when the Laplace distribution usually fits better and has wider tails (Kotz, Kozubowski, and Podgorski 2001). Another popular alternative is to use the t-distribution (see Robust Regression in section 80), though it is more computationally expensive to estimate, because it has three parameters. The Laplace distribution has only two parameters, location and scale like the normal distribution, and is computationally easier to fit. This example could be taken one step further, and the parameter vector β could be Laplace-distributed. Laplace's Demon recommends that users experiment with replacing the normal distribution with the Laplace distribution.

44.1. Form

$$\mathbf{y} \sim \mathcal{L}(\mu, \sigma^2)$$

$$\mu = \mathbf{X}\beta$$

$$\beta_j \sim \mathcal{N}(0, 1000), \quad j = 1, \dots, J$$

$$\sigma \sim \mathcal{HC}(25)$$

```
N <- 10000
J <- 5
X <- matrix(1,N,J)
for (j in 2:J) {X[,j] <- rnorm(N,runif(1,-3,3),runif(1,0.1,1))}
beta <- runif(J,-3,3)
e <- rlaplace(N,0,0.1)
y <- tcrossprod(X, t(beta)) + e
mon.names <- "LP"</pre>
```

44.3. Model

```
Model <- function(parm, Data)</pre>
    ### Parameters
    beta <- parm[Data$pos.beta]</pre>
    sigma <- interval(parm[Data$pos.sigma], 1e-100, Inf)</pre>
    parm[Data$pos.sigma] <- sigma</pre>
    ### Log-Prior
    beta.prior <- sum(dnormv(beta, 0, 1000, log=TRUE))</pre>
    sigma.prior <- dhalfcauchy(sigma, 25, log=TRUE)</pre>
    ### Log-Likelihood
    mu <- tcrossprod(Data$X, t(beta))</pre>
    LL <- sum(dlaplace(Data$y, mu, sigma, log=TRUE))
    ### Log-Posterior
    LP <- LL + beta.prior + sigma.prior
    Modelout <- list(LP=LP, Dev=-2*LL, Monitor=LP,</pre>
          yhat=rlaplace(length(mu), mu, sigma), parm=parm)
    return(Modelout)
    }
```

44.4. Initial Values

Initial.Values <- c(rep(0,J), 1)</pre>

45. Latent Dirichlet Allocation

45.1. Form

$$\mathbf{Y}_{m,n} \sim \mathcal{CAT}(\phi[\mathbf{Z}_{m,n},]), \quad m = 1, \dots, M, \quad n = 1, \dots, N$$

$$\mathbf{Z}_{m,n} \sim \mathcal{CAT}(\theta_{m,1:K})$$

$$\phi_{k,v} \sim \mathcal{D}(\beta)$$

$$\theta_{m,k} \sim \mathcal{D}(\alpha)$$

$$\alpha_k = 1, \quad k = 1, \dots, K$$

```
\beta_v = 1, \quad v = 1, \dots, V
```

```
K <- 2 #Number of (latent) topics</pre>
M <- 4 #Number of documents in corpus
N \leftarrow 15 #Maximum number of (used) words per document
V <- 5 #Maximum number of occurrences of any word (Vocabulary size)
Y <- matrix(rcat(M*N,rep(1/V,V)), M, N)
rownames(Y) <- paste("doc", 1:nrow(Y), sep="")</pre>
colnames(Y) <- paste("word", 1:ncol(Y), sep="")</pre>
#Note: Y is usually represented as w, a matrix of word counts.
if(min(Y) == 0) Y \leftarrow Y + 1 \#A zero cannot occur, Y must be 1,2,...,V.
V <- max(Y) #Maximum number of occurrences of any word (Vocabulary size)
alpha <- rep(1,K) # hyperparameters (constant)</pre>
beta <- rep(1,V)
mon.names <- "LP"
parm.names <- as.parm.names(list(phi=matrix(0,K,V), theta=matrix(0,M,K),</pre>
     Z=matrix(0,M,N))
pos.phi <- grep("phi", parm.names)</pre>
pos.theta <- grep("theta", parm.names)</pre>
pos.Z <- grep("Z", parm.names)</pre>
PGF <- function(Data) {</pre>
    phi <- matrix(runif(Data$J*Data$V), Data$K, Data$V)</pre>
    phi <- phi / rowSums(phi)</pre>
    theta <- matrix(runif(Data$M*Data$K), Data$M, Data$K)
    theta <- theta / rowSums(theta)
    z <- rcat(Data$M*Data$N, rep(1/Data$K,Data$K))</pre>
     return(c(as.vector(phi), as.vector(theta), z))}
MyData <- list(K=K, M=M, N=N, PGF=PGF, V=V, Y=Y, alpha=alpha, beta=beta,
    mon.names=mon.names, parm.names=parm.names, pos.phi=pos.phi,
    pos.theta=pos.theta, pos.Z=pos.Z)
45.3. Model
Model <- function(parm, Data)</pre>
    ### Parameters
    phi <- matrix(interval(parm[Data$pos.phi], 0, 1), Data$K, Data$V)</pre>
    phi <- phi / rowSums(phi)</pre>
    parm[Data$pos.phi] <- as.vector(phi)</pre>
    theta <- matrix(interval(parm[Data$pos.theta], 0, 1), Data$M, Data$K)
    theta <- theta / rowSums(theta)
    parm[Data$pos.theta] <- as.vector(theta)</pre>
    Z <- matrix(parm[Data$pos.Z], Data$M, Data$N)</pre>
    ### Log-Prior
```

```
phi.prior <- sum(ddirichlet(phi, beta, log=TRUE))
theta.prior <- sum(ddirichlet(theta, alpha, log=TRUE))
### Log-Likelihood
LL <- Z.prior <- 0
Yhat <- Data$Y
for (m in 1:Data$M) {for (n in 1:Data$N) {
        Z.prior + Z.prior + dcat(Z[m,n], theta[m,], log=TRUE)
        LL <- LL + dcat(Data$Y[m,n], as.vector(phi[Z[m,n],]), log=TRUE)
        Yhat[m,n] <- rcat(1, as.vector(phi[Z[m,n],]))}}
### Log-Posterior
LP <- LL + phi.prior + theta.prior + Z.prior
Modelout <- list(LP=LP, Dev=-2*LL, Monitor=LP, yhat=Yhat, parm=parm)
return(Modelout)
}</pre>
```

45.4. Initial Values

Initial.Values <- c(rep(1/V,K*V), rep(1/K,M*K), rcat(M*N,rep(1/K,K)))</pre>

46. Linear Regression

46.1. Form

$$\mathbf{y} \sim \mathcal{N}(\mu, \sigma^2)$$

$$\mu = \mathbf{X}\beta$$

$$\beta_j \sim \mathcal{N}(0, 1000), \quad j = 1, \dots, J$$

$$\sigma \sim \mathcal{HC}(25)$$

```
N <- 10000
J <- 5
X <- matrix(1,N,J)
for (j in 2:J) {X[,j] <- rnorm(N,runif(1,-3,3),runif(1,0.1,1))}
beta <- runif(J,-3,3)
e <- rnorm(N,0,0.1)
y <- tcrossprod(X, t(beta)) + e
mon.names <- "LP"
parm.names <- as.parm.names(list(beta=rep(0,J), sigma=0))
pos.beta <- grep("beta", parm.names)
pos.sigma <- grep("sigma", parm.names)
PGF <- function(Data) return(c(rnormv(Data$J,0,1000), rhalfcauchy(1,5)))
MyData <- list(J=J, PGF=PGF, X=X, mon.names=mon.names,</pre>
```

parm.names=parm.names, pos.beta=pos.beta, pos.sigma=pos.sigma, y=y)

46.3. Model

```
Model <- function(parm, Data)</pre>
     ### Parameters
     beta <- parm[Data$pos.beta]</pre>
     sigma <- interval(parm[Data$pos.sigma], 1e-100, Inf)</pre>
     parm[Data$pos.sigma] <- sigma</pre>
     ### Log-Prior
     beta.prior <- sum(dnormv(beta, 0, 1000, log=TRUE))</pre>
     sigma.prior <- dgamma(sigma, 25, log=TRUE)</pre>
     ### Log-Likelihood
     mu <- tcrossprod(Data$X, t(beta))</pre>
     LL <- sum(dnorm(Data$y, mu, sigma, log=TRUE))</pre>
     ### Log-Posterior
     LP <- LL + beta.prior + sigma.prior
     Modelout <- list(LP=LP, Dev=-2*LL, Monitor=LP,</pre>
          yhat=rnorm(length(mu), mu, sigma), parm=parm)
     return(Modelout)
     }
```

46.4. Initial Values

Initial.Values <- c(rep(0, J), 1)</pre>

47. Linear Regression, Frequentist

By eliminating prior probabilities, a frequentist linear regression example is presented. Although frequentism is not endorsed here, the purpose of this example is to illustrate how the **LaplacesDemon** package can be used for Bayesian or frequentist inference.

47.1. Form

$$\mathbf{y} \sim \mathcal{N}(\mu, \sigma^2)$$
$$\mu = \mathbf{X}\beta$$

```
N <- 10000
J <- 5
X <- matrix(1,N,J)
```

47.3. Model

47.4. Initial Values

Initial.Values <- c(rep(0,J), 1)</pre>

48. Linear Regression, Hierarchical Bayesian

48.1. Form

$$\mathbf{y} \sim \mathcal{N}(\mu, \sigma^2)$$

$$\mu = \mathbf{X}\beta$$

$$\beta_j \sim \mathcal{N}(\gamma, \delta), \quad j = 1, \dots, J$$

$$\gamma \sim \mathcal{N}(0, 1000)$$

$$\delta \sim \mathcal{HC}(25)$$

```
\sigma \sim \mathcal{HC}(\tau)
\tau \sim \mathcal{HC}(25)
```

```
data(demonsnacks)
y <- log(demonsnacks$Calories)
X \leftarrow \text{cbind}(1, \text{ as.matrix}(\log(\text{demonsnacks}[,c(1,4,10)]+1)))
J \leftarrow ncol(X)
for (j in 2:J) {X[,j] <- CenterScale(X[,j])}</pre>
mon.names <- "LP"
parm.names <- as.parm.names(list(beta=rep(0,J), gamma=0, delta=0, sigma=0,
     tau=0))
pos.beta <- grep("beta", parm.names)</pre>
pos.gamma <- grep("gamma", parm.names)</pre>
pos.delta <- grep("delta", parm.names)</pre>
pos.sigma <- grep("sigma", parm.names)</pre>
pos.tau <- grep("tau", parm.names)</pre>
PGF <- function(Data) return(c(rnormv(Data$J,0,1000), rnormv(1,0,1000),
     rhalfcauchy(3,5)))
MyData <- list(J=J, PGF=PGF, X=X, mon.names=mon.names,</pre>
     parm.names=parm.names, pos.beta=pos.beta, pos.gamma=pos.gamma,
pos.delta=pos.delta, pos.sigma=pos.sigma, pos.tau=pos.tau, y)
48.3. Model
Model <- function(parm, Data)</pre>
     {
     ### Hyperparameters
     gamma <- parm[Data$pos.gamma]</pre>
     delta <- interval(parm[Data$pos.delta], 1e-100, Inf)</pre>
     parm[Data$pos.delta] <- delta</pre>
     parm[Data$pos.tau] <- tau <- interval(parm[Data$pos.tau], 1e-100, Inf)</pre>
     ### Parameters
     beta <- parm[Data$pos.beta]</pre>
     sigma <- interval(parm[Data$pos.sigma], 1e-100, Inf)</pre>
     parm[Data$pos.sigma] <- sigma</pre>
     ### Log-Hyperprior
     gamma.prior <- dnormv(gamma, 0, 1000, log=TRUE)</pre>
     delta.prior <- dhalfcauchy(delta, 25, log=TRUE)</pre>
     tau.prior <- dhalfcauchy(tau, 25, log=TRUE)</pre>
     ### Log-Prior
     beta.prior <- sum(dnormv(beta, gamma, delta, log=TRUE))</pre>
     sigma.prior <- dhalfcauchy(sigma, tau, log=TRUE)</pre>
```

```
### Log-Likelihood
mu <- tcrossprod(Data$X, t(beta))
LL <- sum(dnorm(Data$y, mu, sigma, log=TRUE))
### Log-Posterior
LP <- LL + beta.prior + gamma.prior + delta.prior + sigma.prior +
    tau.prior
Modelout <- list(LP=LP, Dev=-2*LL, Monitor=LP,
        yhat=rnorm(length(mu), mu, sigma), parm=parm)
return(Modelout)
}</pre>
```

48.4. Initial Values

Initial. Values $\leftarrow c(rep(0,J), 0, rep(1,3))$

49. Linear Regression, Multilevel

49.1. Form

$$\mathbf{y} \sim \mathcal{N}(\mu, \sigma^2)$$

$$\mu_i = \mathbf{X} \beta_{\mathbf{m}[i], 1:J}$$

$$\beta_{g,1:J} \sim \mathcal{N}_J(\gamma, \Omega^{-1}), \quad g = 1, \dots, G$$

$$\Omega \sim \mathcal{W}_{J+1}(\mathbf{S}), \quad \mathbf{S} = \mathbf{I}_J$$

$$\gamma_j \sim \mathcal{N}(0, 1000), \quad j = 1, \dots, J$$

$$\sigma \sim \mathcal{HC}(25)$$

where **m** is a vector of length N, and each element indicates the multilevel group (g = 1, ..., G) for the associated record.

```
N <- 30
J <- 2 ### Number of predictors (including intercept)
G <- 2 ### Number of Multilevel Groups
X <- matrix(rnorm(N,0,1),N,J); X[,1] <- 1
Sigma <- matrix(runif(J*J,-1,1),J,J)
diag(Sigma) <- runif(J,1,5)
Sigma <- as.positive.definite(Sigma)
gamma <- runif(J,-1,1)
beta <- matrix(NA,G,J)
for (g in 1:G) {beta[g,] <- rmvn(1, gamma, Sigma)}
m <- rcat(N, rep(1/G,G)) ### Multilevel group indicator</pre>
```

```
y \leftarrow rowSums(beta[m,] * X) + rnorm(N,0,0.1)
S \leftarrow diag(J)
mon.names <- "LP"
parm.names <- as.parm.names(list(beta=matrix(0,G,J), gamma=rep(0,J),
     sigma=0, U=S), uppertri=c(0,0,0,1)
pos.beta <- grep("beta", parm.names)</pre>
pos.gamma <- grep("gamma", parm.names)</pre>
pos.sigma <- grep("sigma", parm.names)</pre>
PGF <- function(Data) return(c(rmvnpc(Data$G, rnormv(Data$J,0,100),
    rwishartc(Data$J+1, Data$S)), rnormv(Data$J,0,100), rhalfcauchy(1,5),
     upper.triangle(rwishartc(Data$J+1, Data$S), diag=TRUE)))
MyData <- list(G=G, J=J, N=N, PGF=PGF, S=S, X=X, m=m, mon.names=mon.names,
    parm.names=parm.names, pos.beta=pos.beta, pos.gamma=pos.gamma,
    pos.sigma=pos.sigma, y=y)
49.3. Model
Model <- function(parm, Data)</pre>
    ### Parameters
    beta <- matrix(parm[Data$pos.beta], Data$G, Data$J)</pre>
     gamma <- parm[Data$pos.gamma]</pre>
    sigma <- interval(parm[Data$pos.sigma], 1e-100, Inf)</pre>
    parm[Data$pos.sigma] <- sigma</pre>
    U <- as.parm.matrix(U, Data$J, parm, Data, chol=TRUE)</pre>
    diag(U) <- exp(diag(U))</pre>
    ### Log-Prior
    U.prior <- dwishartc(U, Data$J+1, Data$S, log=TRUE)</pre>
    beta.prior <- sum(dmvnpc(beta, gamma, U, log=TRUE))</pre>
    gamma.prior <- sum(dnormv(gamma, 0, 100, log=TRUE))</pre>
    sigma.prior <- dhalfcauchy(sigma, 25, log=TRUE)</pre>
    ### Log-Likelihood
    mu <- rowSums(beta[Data$m,] * Data$X)</pre>
    LL <- sum(dnorm(Data$y, mu, sigma, log=TRUE))</pre>
    ### Log-Posterior
    LP <- LL + U.prior + beta.prior + gamma.prior + sigma.prior
    Modelout <- list(LP=LP, Dev=-2*LL, Monitor=LP,</pre>
         yhat=rnorm(length(mu), mu, sigma), parm=parm)
    return(Modelout)
    }
```

49.4. Initial. Values

```
Initial.Values <- c(rep(0,G*J), rep(0,J), 1,
    upper.triangle(S, diag=TRUE))</pre>
```

50. Linear Regression with Full Missingness

With 'full missingness', there are missing values for both the dependent variable (DV) and at least one independent variable (IV). The 'full likelihood' approach to full missingness is excellent as long as the model is identifiable. When it is not identifiable, imputation may be done in a previous stage, such as with the MISS function. In this example, matrix α is for regression effects for IVs, vector β is for regression effects for the DV, vector γ is for missing values for IVs, and δ is for missing values for the DV.

50.1. Form

$$\mathbf{y}^{imp} \sim \mathcal{N}(\nu, \sigma_J^2)$$

$$\mathbf{X}^{imp} \sim \mathcal{N}(\mu, \sigma_{-J}^2)$$

$$\nu = \mathbf{X}^{imp}\beta$$

$$\mu = \mathbf{X}^{imp}\alpha$$

$$\mathbf{y}^{imp} = \begin{cases} \delta & \text{if } \mathbf{y}^{mis} \\ \mathbf{y}^{obs} \end{cases}$$

$$\mathbf{X}^{imp} = \begin{cases} \gamma & \text{if } \mathbf{X}^{mis} \\ \mathbf{X}^{obs} \end{cases}$$

$$\alpha_{j,l} \sim \mathcal{N}(0, 1000), \quad j = 1, \dots, (J-1), \quad l = 1, \dots, (J-1)$$

$$\beta_j \sim \mathcal{N}(0, 1000), \quad j = 1, \dots, J$$

$$\gamma_m \sim \mathcal{N}(0, 1000), \quad m = 1, \dots, M$$

$$\delta_p \sim \mathcal{N}(0, 1000), \quad p = 1, \dots, P$$

$$\sigma_j \sim \mathcal{HC}(25), \quad j = 1, \dots, J$$

```
sigma=rep(0,J)))
pos.alpha <- grep("alpha", parm.names)</pre>
pos.beta <- grep("beta", parm.names)</pre>
pos.gamma <- grep("gamma", parm.names)</pre>
pos.delta <- grep("delta", parm.names)</pre>
pos.sigma <- grep("sigma", parm.names)</pre>
PGF <- function(Data) return(c(rnormv((Data$J-1)*(Data$J-1),0,10),
    rnormv(Data$J,0,10),
    rnormv(sum(is.na(Data$X)),0,10),
    rnormv(sum(is.na(Data$y)),mean(Data$y, na.rm=TRUE),1),
    rhalfcauchy(Data$J,5)))
MyData <- list(J=J, N=N, PGF=PGF, X=X, mon.names=mon.names,
    parm.names=parm.names, pos.alpha=pos.alpha, pos.beta=pos.beta,
    pos.gamma=pos.gamma, pos.delta=pos.delta, pos.sigma=pos.sigma, y=y)
50.3. Model
Model <- function(parm, Data)</pre>
    ### Parameters
     alpha <- matrix(parm[Data$pos.alpha], Data$J-1, Data$J-1)</pre>
    beta <- parm[Data$pos.beta]</pre>
     gamma <- parm[Data$pos.gamma]</pre>
    delta <- parm[Data$pos.delta]</pre>
     sigma <- interval(parm[Data$pos.sigma], 1e-100, Inf)</pre>
    parm[Data$pos.sigma] <- sigma</pre>
    ### Log-Prior
     alpha.prior <- sum(dnormv(alpha, 0, 1000, log=TRUE))</pre>
    beta.prior <- sum(dnormv(beta, 0, 1000, log=TRUE))</pre>
     gamma.prior <- sum(dnormv(gamma, 0, 1000, log=TRUE))</pre>
    delta.prior <- sum(dnormv(delta, 0, 1000, log=TRUE))</pre>
     sigma.prior <- sum(dhalfcauchy(sigma, 25, log=TRUE))</pre>
     ### Log-Likelihood
    mu <- X.imputed <- Data$X
    X.imputed[which(is.na(X.imputed))] <- gamma</pre>
    y.imputed <- Data$y</pre>
    y.imputed[which(is.na(y.imputed))] <- delta</pre>
    for (j in 2:Data$J) {mu[,j] <- tcrossprod(X.imputed[,-j],</pre>
         t(alpha[,(j-1)]))}
    nu <- tcrossprod(X.imputed, t(beta))</pre>
    LL <- sum(dnorm(X.imputed[,-1], mu[,-1],
         matrix(sigma[1:(Data$J-1)], Data$N, Data$J-1), log=TRUE),
         dnorm(y.imputed, nu, sigma[Data$J], log=TRUE))
     ### Log-Posterior
    LP <- LL + alpha.prior + beta.prior + gamma.prior + delta.prior +
         sigma.prior
```

50.4. Initial Values

```
Initial.Values \leftarrow c(rep(0, (J-1)^2), rep(0,J), rep(0, sum(is.na(X))), rep(0, sum(is.na(y))), rep(1,J))
```

51. Linear Regression with Missing Response

This is an introductory example to missing values using data augmentation with auxiliary variables. The dependent variable, or response, has both observed values, \mathbf{y}^{obs} , and missing values, \mathbf{y}^{mis} . The α vector is for missing value imputation, and enables the use of the full-likelihood by augmenting te state with these auxiliary variables. In the model form, M is used to denote the number of missing values, though it is used as an indicator in the data.

51.1. Form

$$\mathbf{y}^{imp} \sim \mathcal{N}(\mu, \sigma^2)$$

$$\mathbf{y}^{imp} = \begin{cases} \alpha & \text{if } \mathbf{y}^{mis} \\ \mathbf{y}^{obs} \end{cases}$$

$$\mu = \mathbf{X}\beta$$

$$\alpha_m \sim \mathcal{N}(0, 1000), \quad m = 1, \dots, M$$

$$\beta_j \sim \mathcal{N}(0, 1000), \quad j = 1, \dots, J$$

$$\sigma \sim \mathcal{HC}(25)$$

```
data(demonsnacks)
N <- nrow(demonsnacks)
J <- ncol(demonsnacks)
y <- log(demonsnacks$Calories)
y[sample(1:N, round(N*0.05))] <- NA
M <- ifelse(is.na(y), 1, 0)
X <- cbind(1, as.matrix(demonsnacks[,c(1,3:10)]))
for (j in 2:J) {X[,j] <- CenterScale(X[,j])}
mon.names <- "LP"
parm.names <- as.parm.names(list(alpha=rep(0,sum(M)), beta=rep(0,J), sigma=0))
pos.alpha <- grep("alpha", parm.names)
pos.beta <- grep("beta", parm.names)</pre>
```

```
pos.sigma <- grep("sigma", parm.names)</pre>
PGF <- function(Data) return(c(rnorm(sum(Data$M),mean(y,na.rm=TRUE),1),
    rnormv(Data$J,0,1000), rhalfcauchy(1,5)))
MyData <- list(J=J, M=M, PGF=PGF, X=X, mon.names=mon.names,
    parm.names=parm.names, pos.alpha=pos.alpha, pos.beta=pos.beta,
    pos.sigma=pos.sigma, y=y)
51.3. Model
Model <- function(parm, Data)</pre>
     ### Parameters
     alpha <- parm[Data$pos.alpha]</pre>
    beta <- parm[Data$pos.beta]</pre>
     sigma <- interval(parm[Data$pos.sigma], 1e-100, Inf)</pre>
    parm[Data$pos.sigma] <- sigma</pre>
    ### Log-Prior
     alpha.prior <- sum(dnormv(alpha, 0, 1000, log=TRUE)
    beta.prior <- sum(dnormv(beta, 0, 1000, log=TRUE))</pre>
     sigma.prior <- dgamma(sigma, 25, log=TRUE)</pre>
    ### Log-Likelihood
    mu <- tcrossprod(Data$X, t(beta))</pre>
    y.imputed <- Data$y
    y.imputed[which(is.na(Data$y))] <- alpha</pre>
    LL <- sum(dnorm(y.imputed, mu, sigma, log=TRUE))</pre>
    ### Log-Posterior
    LP <- LL + alpha.prior + beta.prior + sigma.prior
    Modelout <- list(LP=LP, Dev=-2*LL, Monitor=LP,</pre>
         yhat=rnorm(length(mu), mu, sigma), parm=parm)
    return(Modelout)
```

51.4. Initial Values

}

```
Initial. Values <- c(rep(0,sum(M)), rep(0,J), 1)
```

52. Linear Regression with Missing Response via ABB

The Approximate Bayesian Bootstrap (ABB), using the ABB function, is used to impute missing values in the dependent variable (DV), or response, given a propensity score. In this example, vector α is used to estimate propensity score η , while vector β is for regression effects, and vector γ has the monitored missing values. For more information on ABB, see the ABB function.

52.1. Form

$$\mathbf{y}^{imp} \sim \mathcal{N}(\mu, \sigma^{2})$$

$$\mathbf{y}^{imp} = \begin{cases} \gamma & \text{if } \mathbf{y}^{mis} \\ \mathbf{y}^{obs} \end{cases}$$

$$\mu = \mathbf{X}\beta$$

$$\gamma \sim p(\mathbf{y}^{obs}|\mathbf{y}^{obs}, \mathbf{y}^{mis}, \eta)$$

$$\eta = \frac{1}{1 + \exp(-\nu)}$$

$$\nu = \mathbf{X}\alpha$$

$$\alpha_{j} \sim \mathcal{N}(0, 1000), \quad j = 1, \dots, J$$

$$\beta_{j} \sim \mathcal{N}(0, 1000), \quad j = 1, \dots, J$$

$$\sigma \sim \mathcal{HC}(25)$$

52.2. Data

```
data(demonsnacks)
N <- nrow(demonsnacks)</pre>
J <- ncol(demonsnacks)</pre>
y <- log(demonsnacks$Calories)
y[sample(1:N, round(N*0.05))] <- NA
M <- ifelse(is.na(y), 1, 0)</pre>
X <- cbind(1, as.matrix(demonsnacks[,c(1,3:10)]))</pre>
for (j in 2:J) {X[,j] <- CenterScale(X[,j])}</pre>
mon.names <- c("LP",paste("gamma[",1:sum(is.na(y)),"]",sep=""))</pre>
parm.names <- as.parm.names(list(alpha=rep(0,J), beta=rep(0,J), sigma=0))</pre>
pos.alpha <- grep("alpha", parm.names)</pre>
pos.beta <- grep("beta", parm.names)</pre>
pos.sigma <- grep("sigma", parm.names)</pre>
PGF <- function(Data) return(c(rnormv(Data$J,0,10), rnormv(Data$J,0,10),
    rhalfcauchy(1,5)))
MyData <- list(J=J, M=M, PGF=PGF, X=X, mon.names=mon.names,</pre>
     parm.names=parm.names, pos.alpha=pos.alpha, pos.beta=pos.beta
                                                                               pos.sigma=pos.sigm
y=y)
```

52.3. Model

```
Model <- function(parm, Data)
    {
     ### Parameters
     alpha <- parm[Data$pos.alpha]
     beta <- parm[Data$pos.beta]</pre>
```

```
sigma <- interval(parm[Data$pos.sigma], 1e-100, Inf)</pre>
parm[Data$pos.sigma] <- sigma</pre>
### Log-Prior
alpha.prior <- sum(dnormv(alpha, 0, 1000, log=TRUE))</pre>
beta.prior <- sum(dnormv(beta, 0, 1000, log=TRUE))</pre>
sigma.prior <- dgamma(sigma, 25, log=TRUE)</pre>
### Log-Likelihood
y.imputed <- Data$y
mu <- tcrossprod(Data$X, t(beta))</pre>
nu <- as.vector(tcrossprod(Data$X, t(alpha)))</pre>
eta <- invlogit(nu)
breaks \leftarrow as.vector(quantile(eta, probs=c(0,0.2,0.4,0.6,0.8,1)))
B <- matrix(breaks[-length(breaks)], length(Data$y), 5, byrow=TRUE)
z <- rowSums(eta >= B)
for (i in 1:5) {
     if(any(is.na(Data\$y[which(z == i)])))) {
         imp <- unlist(ABB(Data$y[which(z == i)]))</pre>
         y.imputed[which({z == i} & is.na(Data$y))] <- imp}}</pre>
gamma <- y.imputed[which(is.na(Data$y))]</pre>
LL <- sum(dbern(Data$M, eta, log=TRUE),
     dnorm(y.imputed, mu, sigma, log=TRUE))
### Log-Posterior
LP <- LL + alpha.prior + beta.prior + sigma.prior
Modelout <- list(LP=LP, Dev=-2*LL, Monitor=c(LP,gamma),</pre>
     yhat=rnorm(length(mu), mu, sigma), parm=parm)
return(Modelout)
}
```

52.4. Initial Values

Initial. Values \leftarrow c(rep(0,J), rep(0,J), 1)

53. Linear Regression with Power Priors

Power priors (Ibrahim and Chen 2000) are a class of informative priors when relevant historical data is available. Power priors may be used when it is desirable to take historical data into account while analyzing similar, current data. Both the current data, \mathbf{y} and \mathbf{X} , and historical data, \mathbf{y}_h and \mathbf{X}_h , are included in the power prior analysis, where h indicates historical data. Each data set receives its own likelihood function, though the likelihood of the historical data is raised to an exponential power, $\alpha \in [0, 1]$. In this example, α is a constant.

53.1. Form

$$\mathbf{y}_{h} \sim \mathcal{N}(\mu_{h}, \sigma^{2})^{\alpha}$$

$$\mu = \mathbf{X}\beta$$

$$\mu_{h} = \mathbf{X}_{h}\beta$$

$$\alpha = 0.5$$

$$\beta_{j} \sim \mathcal{N}(0, 1000), \quad j = 1, \dots, J$$

$$\sigma \sim \mathcal{HC}(25)$$

53.2. Data

```
N <- 100
J <- 5 #Number of predictors, including the intercept
X \leftarrow Xh \leftarrow matrix(1,N,J)
for (j in 2:J) {
    X[,j] \leftarrow rnorm(N,runif(1,-3,3),runif(1,0.1,1))
    Xh[,j] \leftarrow rnorm(N,runif(1,-3,3),runif(1,0.1,1))
beta.orig <- runif(J,-3,3)</pre>
e <- rnorm(N,0,0.1)
yh <- as.vector(tcrossprod(beta.orig, Xh) + e)</pre>
y <- as.vector(tcrossprod(beta.orig, X) + e)
mon.names <- "LP"
parm.names <- as.parm.names(list(beta=rep(0,J), sigma=0))</pre>
pos.beta <- grep("beta", parm.names)</pre>
pos.sigma <- grep("sigma", parm.names)</pre>
PGF <- function(Data) return(c(rnormv(Data$J,0,1000), rhalfcauchy(1,5)))
MyData <- list(alpha=0.5, J=J, PGF=PGF, X=X, Xh=Xh, mon.names=mon.names,
    parm.names=parm.names, pos.beta=pos.beta, pos.sigma=pos.sigma, y=y,
    yh=yh)
```

53.3. Model

```
Model <- function(parm, Data)
    {
     ### Parameters
     beta <- parm[Data$pos.beta]
     sigma <- interval(parm[Data$pos.sigma], 1e-100, Inf)
     parm[Data$pos.sigma] <- sigma
     ### Log-Prior
     beta.prior <- sum(dnormv(beta, 0, 1000, log=TRUE))
     sigma.prior <- dhalfcauchy(sigma, 25, log=TRUE)
     ### Log-Likelihood
     muh <- tcrossprod(Data$Xh, t(beta))
     mu <- tcrossprod(Data$X, t(beta))</pre>
```

53.4. Initial Values

Initial.Values <- c(rep(0,J), 1)</pre>

54. Linear Regression with Zellner's g-Prior

For more information on Zellner's g-prior, see the documentation for the dzellner function.

54.1. Form

$$\mathbf{y} \sim \mathcal{N}(\mu, \sigma^2)$$

$$\mu = \mathbf{X}\beta$$

$$\beta \sim \mathcal{N}_J(0, g\sigma^2(\mathbf{X}^T\mathbf{X})^{-1})$$

$$g \sim \mathcal{HG}(\alpha), \quad \alpha = 3$$

$$\sigma \sim \mathcal{HC}(25)$$

54.3. Model

```
Model <- function(parm, Data)</pre>
     ### Parameters
     beta <- parm[Data$pos.beta]</pre>
     parm[Data$pos.g] <- g <- interval(parm[Data$pos.g], 1e-100, Inf)</pre>
     sigma <- interval(parm[Data$pos.sigma], 1e-100, Inf)</pre>
     parm[Data$pos.sigma] <- sigma</pre>
     ### Log-Hyperprior
     g.prior <- dhyperg(g, alpha=3, log=TRUE)</pre>
     ### Log-Prior
     beta.prior <- dzellner(beta, g, sigma, Data$X, log=TRUE)</pre>
     sigma.prior <- dhalfcauchy(sigma, 25, log=TRUE)</pre>
     ### Log-Likelihood
     mu <- tcrossprod(Data$X, t(beta))</pre>
     LL <- sum(dnorm(Data$y, mu, sigma, log=TRUE))</pre>
     ### Log-Posterior
     LP <- LL + beta.prior + g.prior + sigma.prior
     Modelout <- list(LP=LP, Dev=-2*LL, Monitor=LP,</pre>
          yhat=rnorm(length(mu), mu, sigma), parm=parm)
     return(Modelout)
     }
```

54.4. Initial Values

Initial.Values <- c(rep(1,J), rep(1,2))</pre>

55. LSTAR

This is a Logistic Smooth-Threshold Autoregression (LSTAR), and is specified with a transition function that includes γ as the shape parameter, \mathbf{y} as the transition variable, θ as the location parameter, and d as the delay parameter.

55.1. Form

$$\mathbf{y}_{t} \sim \mathcal{N}(\mu_{t}, \sigma^{2}), \quad t = 1, \dots, T$$

$$\mu_{t} = \pi_{t}(\alpha_{1} + \phi_{1}\mathbf{y}_{t-1}) + (1 - \pi_{t})(\alpha_{2} + \phi_{2}\mathbf{y}_{t-1}), \quad t = 2, \dots, T$$

$$\pi_{t} = \frac{1}{1 + \exp(-(\gamma(\mathbf{y}_{t-d} - \theta)))}$$

$$\alpha_{j} \sim \mathcal{N}(0, 1000) \in [\mathbf{y}_{min}, \mathbf{y}_{max}], \quad j = 1, \dots, 2$$

$$\phi_{j} \sim \mathcal{N}(0, 1000), \quad j = 1, \dots, 2$$

$$\gamma \sim \mathcal{HC}(25)$$

$$\theta \sim \mathcal{U}(\mathbf{y}_{min}, \mathbf{y}_{max})$$

$\pi_1 \sim \mathcal{U}(0.001, 0.999)$ $\sigma \sim \mathcal{HC}(25)$

```
y \leftarrow c(26.73, 26.75, 26.24, 25.94, 27.40, 26.14, 23.99, 23.08, 22.55,
    20.64, 23.28, 24.92, 25.07, 26.53, 28.14, 30.10, 27.43, 27.24,
    23.96, 25.85, 26.76, 26.05, 26.79, 26.69, 29.89, 29.09, 23.84,
    24.87, 24.47, 22.85, 22.05, 22.82, 22.99, 21.60, 20.32, 20.80,
    19.78, 19.87, 18.78, 19.64, 20.00, 21.51, 21.49, 21.96, 22.58,
    21.22, 22.34, 22.76, 18.37, 17.50, 17.55, 12.14, 4.76, 3.75,
    2.05, 2.69, 3.85, 4.72, 5.00, 3.31, 3.02, 3.15, 2.50,
    3.33, 3.95, 4.00, 3.86, 3.87, 3.51, 3.19, 2.39, 2.33,
    2.57, 2.80, 2.43, 2.43, 2.10, 2.31, 2.21, 2.11, 2.10,
    1.70, 1.35, 1.83, 1.55, 1.63, 1.91, 2.14, 2.41, 2.06,
    1.87, 2.11, 2.28, 2.26, 2.03, 2.06, 2.08, 1.91, 1.95,
    1.56, 1.44, 1.60, 1.77, 1.77, 1.95, 2.01, 1.65, 1.87,
    2.01, 1.84, 1.94, 1.93, 1.93, 1.75, 1.73, 1.80, 1.74,
    1.80, 1.75, 1.67, 1.60, 1.61, 1.55, 1.56, 1.57, 1.55,
    1.56, 1.57, 1.69, 1.66, 1.74, 1.64, 1.65, 1.62, 1.54,
    1.58, 1.49, 1.41, 1.42, 1.37, 1.45, 1.31, 1.37, 1.26,
    1.35, 1.41, 1.29, 1.28, 1.23, 1.08, 1.03, 1.00, 1.04,
    1.04, 0.92, 0.96, 0.90, 0.85, 0.78, 0.73, 0.59, 0.54,
    0.53, 0.41, 0.46, 0.52, 0.42, 0.42, 0.43, 0.43, 0.35,
    0.35, 0.35, 0.42, 0.41, 0.41, 0.50, 0.83, 0.96, 1.38,
    1.62, 1.26, 1.48, 1.39, 1.20, 1.10, 1.02, 0.95, 1.00,
    1.07, 1.14, 1.14, 1.10, 1.05, 1.08, 1.16, 1.42, 1.52,
    1.60, 1.69, 1.62, 1.29, 1.46, 1.43, 1.50, 1.46, 1.40,
    1.34, 1.41, 1.38, 1.38, 1.46, 1.73, 1.84, 1.95, 2.01,
    1.90, 1.81, 1.60, 1.84, 1.72, 1.83, 1.81, 1.78, 1.80,
    1.70, 1.70, 1.66, 1.67, 1.69, 1.66, 1.56, 1.47, 1.64,
    1.71, 1.66, 1.65, 1.60, 1.61, 1.61, 1.53, 1.48, 1.40,
    1.47, 1.53, 1.39, 1.41, 1.42, 1.46, 1.46, 1.33, 1.16)
T <- length(y)
mon.names <- c("LP", "ynew", "pi.new")</pre>
parm.names <- as.parm.names(list(alpha=rep(0,2), phi=rep(0,2), gamma=0,</pre>
    theta=0, pi=0, sigma=0))
pos.alpha <- grep("alpha", parm.names)</pre>
pos.phi <- grep("phi", parm.names)</pre>
pos.gamma <- grep("gamma", parm.names)</pre>
pos.theta <- grep("theta", parm.names)</pre>
pos.pi <- grep("pi", parm.names)</pre>
pos.sigma <- grep("sigma", parm.names)</pre>
PGF <- function(Data) return(c(rnormv(2,0,10), rnormv(2,0,10),
    rhalfcauchy(1,5), runif(1,min(Data$y),max(Data$y)),
    runif(1,0.001,0.999), rhalfcauchy(1,5)))
```

```
MyData <- list(PGF=PGF, T=T, mon.names=mon.names, parm.names=parm.names,
     pos.alpha=pos.alpha, pos.phi=pos.phi, pos.gamma=pos.gamma,
    pos.theta=pos.theta, pos.pi=pos.pi, pos.sigma=pos.sigma, y=y)
55.3. Model
Model <- function(parm, Data)</pre>
    ### Parameters
     alpha <- interval(parm[Data$pos.alpha], min(Data$y), max(Data$y))</pre>
    parm[Data$pos.alpha] <- alpha</pre>
    parm[Data$pos.phi] <- phi <- interval(parm[Data$pos.phi], -1, 1)</pre>
    gamma <- interval(parm[Data$pos.gamma], 1e-100, Inf)</pre>
    parm[Data$pos.gamma] <- gamma</pre>
    theta <- interval(parm[Data$pos.theta], min(Data$y), max(Data$y))</pre>
    parm[Data$pos.theta] <- theta</pre>
    parm[Data$pos.pi] <- pi <- interval(parm[Data$pos.pi], 0.001, 0.999)</pre>
    sigma <- interval(parm[Data$pos.sigma], 1e-100, Inf)</pre>
    parm[Data$pos.sigma] <- sigma</pre>
    ### Log-Prior
     alpha.prior <- sum(dnormv(alpha, 0, 1000, log=TRUE))</pre>
    phi.prior <- sum(dnormv(phi, 0, 1000, log=TRUE))</pre>
     gamma.prior <- dhalfcauchy(gamma, 25, log=TRUE)</pre>
    theta.prior <- dunif(theta, min(Data$y), max(Data$y), log=TRUE)</pre>
    pi.prior <- dunif(pi, 0.001, 0.999, log=TRUE)</pre>
    sigma.prior <- dhalfcauchy(sigma, 25, log=TRUE)</pre>
    ### Log-Likelihood
    pi \leftarrow c(pi, 1 / (1 + exp(-(gamma*(Data$y[-Data$T]-theta)))))
    pi.new <- 1 / (1 + exp(-(gamma*(Data$y[Data$T]-theta))))</pre>
    mu <- pi * c(alpha[1], alpha[1] + phi[1]*Data$y[-Data$T]) +</pre>
         (1-pi) * c(alpha[2], alpha[2] + phi[2]*Data$y[-Data$T])
    ynew <- rnorm(1, pi.new * (alpha[1] + phi[1]*Data$y[Data$T]) +</pre>
         (1-pi.new) * (alpha[2] + phi[2]*Data$y[Data$T]), sigma)
    LL <- sum(dnorm(Data$y, mu, sigma, log=TRUE))</pre>
    ### Log-Posterior
    LP <- LL + alpha.prior + phi.prior + gamma.prior + theta.prior +
         pi.prior + sigma.prior
    Modelout <- list(LP=LP, Dev=-2*LL, Monitor=c(LP,sigma,ynew,pi.new),</pre>
         yhat=rnorm(length(mu), mu, sigma), parm=parm)
    return(Modelout)
```

55.4. Initial Values

}

```
Initial. Values \leftarrow c(rep(min(y), 4), 1, mean(y), 0.5, 1)
```

56. MANCOVA

Since this is a multivariate extension of ANCOVA, please see the ANCOVA example in section 1 for a univariate introduction.

56.1. Form

$$\mathbf{Y}_{i,1:J} \sim \mathcal{N}_{K}(\mu_{i,1:J}, \Sigma), \quad i = 1, \dots, N$$

$$\mu_{i,k} = \alpha_{k} + \beta_{k,\mathbf{X}[i,1]} + \gamma_{k,\mathbf{X}[i,1]} + \mathbf{X}_{1:N,3:(C+J)}\delta_{k,1:C}$$

$$\epsilon_{i,k} = \mathbf{Y}_{i,k} - \mu_{i,k}$$

$$\alpha_{k} \sim \mathcal{N}(0, 1000), \quad k = 1, \dots, K$$

$$\beta_{k,l} \sim \mathcal{N}(0, \sigma_{1}^{2}), \quad l = 1, \dots, (L-1)$$

$$\beta_{1:K,L} = -\sum_{l=1}^{L-1} \beta_{1:K,l}$$

$$\gamma_{k,m} \sim \mathcal{N}(0, \sigma_{2}^{2}), \quad m = 1, \dots, (M-1)$$

$$\gamma_{1:K,M} = -\sum_{m=1}^{M-1} \beta_{1:K,m}$$

$$\delta_{k,c} \sim \mathcal{N}(0, 1000)$$

$$\Omega \sim \mathcal{W}_{K+1}(\mathbf{S}), \quad \mathbf{S} = \mathbf{I}_{K}$$

$$\Sigma = \Omega^{-1}$$

$$\sigma_{1:J} \sim \mathcal{HC}(25)$$

```
C <- 2 #Number of covariates
J <- 2 #Number of factors (treatments)</pre>
K <- 3 #Number of endogenous (dependent) variables
L <- 4 #Number of levels in factor (treatment) 1
M <- 5 #Number of levels in factor (treatment) 2
N <- 100
X <- matrix(cbind(rcat(N, rep(1/L,L)), rcat(N, rep(1/M,M)),</pre>
    runif(C*N,0,1)), N, J + C)
alpha <- runif(K,-1,1)
beta <- matrix(runif(K*L,-2,2), K, L)
beta[,L] <- -rowSums(beta[,-L])</pre>
gamma <- matrix(runif(K*M,-2,2), K, M)</pre>
gamma[,M] <- -rowSums(gamma[,-M])</pre>
delta <- matrix(runif(K*C), K, C)</pre>
Y <- matrix(NA,N,K)
for (k in 1:K) {
```

```
Y[,k] \leftarrow alpha[k] + beta[k,X[,1]] + gamma[k,X[,2]] +
    tcrossprod(delta[k,], X[,-c(1,2)]) + rnorm(1,0,0.1)
S \leftarrow diag(K)
mon.names <- c("LP", "s.o.beta", "s.o.gamma", "s.o.epsilon",
     as.parm.names(list(s.beta=rep(0,K), s.gamma=rep(0,K),
     s.epsilon=rep(0,K))))
parm.names <- as.parm.names(list(alpha=rep(0,K), beta=matrix(0,K,(L-1)),</pre>
     gamma=matrix(0,K,(M-1)), delta=matrix(0,K,C), U=diag(K),
     sigma=rep(0,2)), uppertri=c(0,0,0,0,1,0))
pos.alpha <- grep("alpha", parm.names)</pre>
pos.beta <- grep("beta", parm.names)</pre>
pos.gamma <- grep("gamma", parm.names)</pre>
pos.delta <- grep("delta", parm.names)</pre>
pos.sigma <- grep("sigma", parm.names)</pre>
PGF <- function(Data) return(c(rnormv(Data$K,0,1000),
    rnorm(Data$K*(Data$L-1),0,rhalfcauchy(1,5)),
    rnorm(Data$K*(Data$M-1),0,rhalfcauchy(1,5)),
    rnormv(Data$K*Data$C,0,1000),
    upper.triangle(rwishartc(Data$K+1,Data$S), diag=TRUE),
    rhalfcauchy(2,5)))
MyData <- list(C=C, J=J, K=K, L=L, M=M, N=N, PGF=PGF, S=S, X=X, Y=Y,
    mon.names=mon.names, parm.names=parm.names, pos.alpha=pos.alpha,
    pos.beta=pos.beta, pos.gamma=pos.gamma, pos.delta=pos.delta,
    pos.sigma=pos.sigma)
56.3. Model
Model <- function(parm, Data)</pre>
    ### Parameters
    alpha <- parm[Data$pos.alpha]</pre>
    beta <- matrix(c(parm[Data$pos.beta], rep(0,Data$K)), Data$K, Data$L)</pre>
    beta[,Data$L] <- -rowSums(beta[,-Data$L])</pre>
     gamma <- matrix(c(parm[Data$[pos.gamma],</pre>
         rep(0,Data$K)), Data$K, Data$M)
    gamma[,Data$M] <- -rowSums(gamma[,-Data$M])</pre>
     delta <- matrix(parm[Data$pos.delta], Data$K, Data$C)</pre>
    U <- as.parm.matrix(U, Data$K, parm, Data, chol=TRUE)</pre>
     diag(U) <- exp(diag(U))</pre>
     sigma <- interval(parm[Data$pos.sigma], 1e-100, Inf)</pre>
    parm[Data$pos.sigma] <- sigma</pre>
    ### Log-Prior
     alpha.prior <- sum(dnormv(alpha, 0, 1000, log=TRUE))</pre>
    beta.prior <- sum(dnorm(beta, 0, sigma[1], log=TRUE))</pre>
    gamma.prior <- sum(dnorm(gamma, 0, sigma[2], log=TRUE))</pre>
    delta.prior <- sum(dnormv(delta, 0, 1000, log=TRUE))</pre>
```

```
U.prior <- dwishartc(U, Data$K+1, Data$S, log=TRUE)</pre>
sigma.prior <- sum(dhalfcauchy(sigma, 25, log=TRUE))</pre>
### Log-Likelihood
mu <- matrix(0,Data$N,Data$K)</pre>
for (k in 1:Data$K) {
    mu[,k] \leftarrow alpha[k] + beta[k,Data$X[,1]] + gamma[k,Data$X[,2]] +
    tcrossprod(Data$X[,-c(1,2)], t(delta[k,]))}
LL <- sum(dmvnpc(Data$Y, mu, U, log=TRUE))</pre>
### Variance Components, Omnibus
s.o.beta <- sd(as.vector(beta))</pre>
s.o.gamma <- sd(as.vector(gamma))</pre>
s.o.epsilon <- sd(as.vector(Data$Y - mu))</pre>
### Variance Components, Univariate
s.beta <- apply(beta,1,sd)</pre>
s.gamma <- apply(gamma,1,sd)
s.epsilon <- apply(Data$Y - mu,2,sd)
### Log-Posterior
LP <- LL + alpha.prior + beta.prior + gamma.prior + delta.prior +
    U.prior + sigma.prior
Modelout <- list(LP=LP, Dev=-2*LL, Monitor=c(LP, s.o.beta, s.o.gamma,
    s.o.epsilon, s.beta, s.gamma, s.epsilon),
    yhat=rmvnpc(nrow(mu), mu, U), parm=parm)
return(Modelout)
}
```

56.4. Initial Values

```
Initial.Values <- c(rep(0,K), rep(0,K*(L-1)), rep(0,K*(M-1)),
    rep(0,C*K), upper.triangle(S, diag=TRUE), rep(1,2))</pre>
```

57. MANOVA

Since this is a multivariate extension of ANOVA, please see the two-way ANOVA example in section 3 for a univariate introduction.

57.1. Form

$$\mathbf{Y}_{i,1:J} \sim \mathcal{N}_K(\mu_{i,1:J}, \Omega^{-1}), \quad i = 1, \dots, N$$

$$\mu_{i,k} = \alpha_k + \beta_{k,\mathbf{X}[i,1]} + \gamma_{k,\mathbf{X}[i,1]}$$

$$\epsilon_{i,k} = \mathbf{Y}_{i,k} - \mu_{i,k}$$

$$\alpha_k \sim \mathcal{N}(0, 1000), \quad k = 1, \dots, K$$

$$\beta_{k,l} \sim \mathcal{N}(0, \sigma_1^2), \quad l = 1, \dots, (L-1)$$

$$\beta_{1:K,L} = -\sum_{l=1}^{L-1} \beta_{1:K,l}$$

$$\gamma_{k,m} \sim \mathcal{N}(0, \sigma_2^2), \quad m = 1, \dots, (M-1)$$

$$\gamma_{1:K,M} = -\sum_{m=1}^{M-1} \beta_{1:K,m}$$

$$\Omega \sim \mathcal{W}_{K+1}(\mathbf{S}), \quad \mathbf{S} = \mathbf{I}_K$$

$$\sigma_{1:J} \sim \mathcal{HC}(25)$$

```
J <- 2 #Number of factors (treatments)</pre>
K <- 3 #Number of endogenous (dependent) variables
L \leftarrow 4 #Number of levels in factor (treatment) 1
M <- 5 #Number of levels in factor (treatment) 2
N <- 100
X <- cbind(rcat(N, rep(1/L,L)), rcat(N, rep(1/M,M)))</pre>
alpha <- runif(K,-1,1)
beta <- matrix(runif(K*L,-2,2), K, L)</pre>
beta[,L] <- -rowSums(beta[,-L])</pre>
gamma <- matrix(runif(K*M,-2,2), K, M)</pre>
gamma[,M] <- -rowSums(gamma[,-M])</pre>
Y <- matrix(NA,N,K)
for (k in 1:K) {
    Y[,k] \leftarrow alpha[k] + beta[k,X[,1]] + gamma[k,X[,2]] + rnorm(1,0,0.1)
mon.names <- c("LP", "s.o.beta", "s.o.gamma", "s.o.epsilon",
    as.parm.names(list(s.beta=rep(0,K), s.gamma=rep(0,K),
    s.epsilon=rep(0,K))))
parm.names <- as.parm.names(list(alpha=rep(0,K), beta=matrix(0,K,(L-1)),</pre>
    gamma=matrix(0,K,(M-1)), U=diag(K), sigma=rep(0,2)),
    uppertri=c(0,0,0,1,0))
pos.alpha <- grep("alpha", parm.names)</pre>
pos.beta <- grep("beta", parm.names)</pre>
pos.gamma <- grep("gamma", parm.names)</pre>
pos.sigma <- grep("sigma", parm.names)</pre>
PGF <- function(Data) return(c(rnormv(Data$K,0,1000),
    rnorm(Data$K*(Data$L-1),0,rhalfcauchy(1,5)),
    rnorm(Data$K*(Data$M-1),0,rhalfcauchy(1,5)),
    upper.triangle(rwishartc(Data$K+1,Data$S), diag=TRUE),
    rhalfcauchy(2,5)))
MyData <- list(J=J, K=K, L=L, M=M, N=N, PGF=PGF, S=S, X=X, Y=Y,
    mon.names=mon.names, parm.names=parm.names, pos.alpha=pos.alpha,
    pos.beta=pos.beta, pos.gamma=pos.gamma, pos.sigma=pos.sigma)
```

57.3. Model

```
Model <- function(parm, Data)</pre>
    ### Parameters
    alpha <- parm[Data$pos.alpha]</pre>
     beta <- matrix(c(parm[Data$pos.beta], rep(0,Data$K)),</pre>
    beta[,Data$L] <- -rowSums(beta[,-Data$L])</pre>
     gamma <- matrix(c(parm[Data$pos.gamma],</pre>
         rep(0,Data$K)), Data$K, Data$M)
    gamma[,Data$M] <- -rowSums(gamma[,-Data$M])</pre>
    U <- as.parm.matrix(U, Data$K, parm, Data, chol=TRUE)</pre>
     diag(U) <- exp(diag(U))</pre>
     sigma <- interval(parm[Data$pos.sigma], 1e-100, Inf)</pre>
    parm[Data$pos.sigma] <- sigma</pre>
    ### Log-Prior
     alpha.prior <- sum(dnormv(alpha, 0, 1000, log=TRUE))</pre>
    beta.prior <- sum(dnorm(beta, 0, sigma[1], log=TRUE))</pre>
    gamma.prior <- sum(dnorm(gamma, 0, sigma[2], log=TRUE))</pre>
    U.prior <- dwishartc(U, Data$K+1, Data$S, log=TRUE)</pre>
     sigma.prior <- sum(dhalfcauchy(sigma, 25, log=TRUE))</pre>
    ### Log-Likelihood
    mu <- matrix(0,Data$N,Data$K)</pre>
    for (k in 1:Data$K) {
         mu[,k] \leftarrow alpha[k] + beta[k,Data$X[,1]] + gamma[k,Data$X[,2]]
    LL <- sum(dmvnpc(Data$Y, mu, U, log=TRUE))
    ### Variance Components, Omnibus
     s.o.beta <- sd(as.vector(beta))</pre>
    s.o.gamma <- sd(as.vector(gamma))</pre>
     s.o.epsilon <- sd(as.vector(Data$Y - mu))</pre>
    ### Variance Components, Univariate
     s.beta <- apply(beta,1,sd)</pre>
     s.gamma <- apply(gamma,1,sd)</pre>
    s.epsilon <- apply(Data$Y - mu,2,sd)</pre>
    ### Log-Posterior
    LP <- LL + alpha.prior + beta.prior + gamma.prior + U.prior +
          sigma.prior
    Modelout <- list(LP=LP, Dev=-2*LL, Monitor=c(LP, s.o.beta, s.o.gamma,
          s.o.epsilon, s.beta, s.gamma, s.epsilon),
          yhat=rmvnpc(nrow(mu), mu, U), parm=parm)
    return(Modelout)
    }
```

57.4. Initial Values

```
Initial. Values \leftarrow c(rep(0,K), rep(0,K*(L-1)), rep(0,K*(M-1)),
```

upper.triangle(S, diag=TRUE), rep(1,2))

58. Mixture Model, Finite

This finite mixture model (FMM) imposes a multilevel structure on each of the J regression effects in β , so that mixture components share a common residual standard deviation, ν_j . Identifiability is gained at the expense of some shrinkage. The record-level mixture membership parameter vector, θ , is a vector of discrete parameters. Discrete parameters are not supported in all algorithms. The example below is updated with the Griddy-Gibbs sampler.

58.1. Form

$$\mathbf{y} \sim \mathcal{N}(\mu_{1:N,\theta}, \sigma^2)$$

$$\theta_i \sim \mathcal{CAT}(\pi_{1:M}), \quad i = 1, \dots, N$$

$$\mu_{1:N,\theta} = \mathbf{X}\beta_{\theta,1:J}$$

$$\beta_{m,j} \sim \mathcal{N}(0, \nu_j^2), \quad j = 1, \dots, J, \quad m = 1, \dots, M$$

$$\nu_j \sim \mathcal{HC}(25)$$

$$\sigma \sim \mathcal{HC}(25)$$

$$\pi_{1:M} \sim \mathcal{D}(\alpha_{1:M})$$

$$\alpha_m = 1$$

```
M <- 2 #Number of mixtures
alpha <- rep(1,M) #Prior probability of mixing probabilities
data(demonsnacks)
N <- nrow(demonsnacks)</pre>
y <- log(demonsnacks$Calories)
X \leftarrow \text{cbind}(1, \text{ as.matrix}(\log(\text{demonsnacks}[,c(1,4,10)]+1)))
J \leftarrow ncol(X)
for (j in 2:J) {X[,j] <- CenterScale(X[,j])}</pre>
mon.names <- "LP"
parm.names <- as.parm.names(list(theta=rep(0,N), beta=matrix(0,M,J),</pre>
     nu=rep(0,J), sigma=0)
pos.theta <- grep("theta", parm.names)</pre>
pos.beta <- grep("beta", parm.names)</pre>
pos.nu <- grep("nu", parm.names)</pre>
pos.sigma <- grep("sigma", parm.names)</pre>
PGF <- function(Data) return(c(rcat(Data$N, rep(1/Data$M, Data$M)),
     rnorm(Data$M*Data$J,0,1), rhalfcauchy(Data$J+1,5)))
MyData <- list(J=J, M=M, N=N, PGF=PGF, X=X, alpha=alpha,
     mon.names=mon.names, parm.names=parm.names, pos.theta=pos.theta,
```

```
pos.beta=pos.beta, pos.nu=pos.nu, pos.sigma=pos.sigma, y=y)
```

58.3. Model

```
Model <- function(parm, Data)</pre>
    ### Parameters
    beta <- matrix(parm[Data$pos.beta], Data$M, Data$J)</pre>
    theta <- parm[Data$pos.theta]</pre>
    parm[Data$pos.nu] <- nu <- interval(parm[Data$pos.nu], 1e-100, Inf)</pre>
    pi <- rep(0, Data$M)
    tab <- table(theta)
    pi[as.numeric(names(tab))] <- as.vector(tab)</pre>
    pi <- pi / sum(pi)</pre>
    sigma <- interval(parm[Data$pos.sigma], 1e-100, Inf)</pre>
    parm[Data$pos.sigma] <- sigma</pre>
    ### Log-Prior
    beta.prior <- sum(dnorm(beta, 0, matrix(rep(nu, Data$M), Data$M,
          Data$J, byrow=TRUE), log=TRUE))
     theta.prior <- sum(dcat(theta, p=pi, log=TRUE))</pre>
    pi.prior <- ddirichlet(pi, Data$alpha, log=TRUE)</pre>
    nu.prior <- sum(dhalfcauchy(nu, 25, log=TRUE))</pre>
    sigma.prior <- sum(dhalfcauchy(sigma, 25, log=TRUE))</pre>
    ### Log-Likelihood
    mu <- tcrossprod(Data$X, beta)</pre>
    mu <- diag(mu[,theta])</pre>
    LL <- sum(dnorm(Data$y, mu, sigma, log=TRUE))</pre>
    ### Log-Posterior
    LP <- LL + beta.prior + theta.prior + pi.prior + nu.prior +
          sigma.prior
    Modelout <- list(LP=LP, Dev=-2*LL, Monitor=LP,</pre>
         yhat=rnorm(length(mu), mu, sigma), parm=parm)
    return(Modelout)
    }
```

58.4. Initial Values

```
Initial. Values \leftarrow c(rcat(N,rep(1/M,M)), rep(0,M*J), rep(1,J), 1)
```

59. Mixture Model, Infinite

This infinite mixture model (IMM) imposes a multilevel structure on each of the J regression effects in β , so that mixture components share a common residual standard deviation, ν_j . The infinite number of mixture components is truncated to a finite number, and the user specifies the maximum number to explore, M, where M is discrete, greater than one, and less than

the number of records, N. A truncated stick-breaking process within a truncated Dirichlet process defines the nonparametric mixture component selection. The record-level mixture membership parameter vector, θ , is a vector of discrete parameters. Discrete parameters are not supported in all algorithms. The example below is updated with the Griddy-Gibbs sampler.

59.1. Form

$$\mathbf{y} \sim \mathcal{N}(\mu_{1:N,\theta}, \sigma^2)$$

$$\mu_{1:N,\theta} = \mathbf{X}\beta_{\theta,1:J}$$

$$\theta_i \sim \mathcal{CAT}(\pi_{1:M})$$

$$\beta_{m,j} \sim \mathcal{N}(0, \nu_j^2), \quad j = 1, \dots, J, \quad m = 1, \dots, M$$

$$\nu_j \sim \mathcal{HC}(25)$$

$$\sigma \sim \mathcal{HC}(25)$$

$$\pi \sim \text{Stick}(\gamma)$$

$$\alpha \sim \mathcal{HC}(25)$$

$$\iota \sim \mathcal{HC}(25)$$

$$\iota \sim \mathcal{HC}(25)$$

$$\iota \sim \mathcal{HC}(25)$$

```
M <- 3 #Maximum number of mixtures to explore
data(demonsnacks)
N <- nrow(demonsnacks)</pre>
y <- log(demonsnacks$Calories)</pre>
X \leftarrow \text{cbind}(1, \text{ as.matrix}(\log(\text{demonsnacks}[,c(1,4,10)]+1)))
J \leftarrow ncol(X)
for (j in 2:J) {X[,j] <- CenterScale(X[,j])}</pre>
mon.names <- c("LP", as.parm.names(list(pi=rep(0,M))))</pre>
parm.names <- as.parm.names(list(theta=rep(0,N), beta=matrix(0,M,J),</pre>
     nu=rep(0,J), sigma=0, alpha=0, iota=0, gamma=0))
pos.theta <- grep("theta", parm.names)</pre>
pos.beta <- grep("beta", parm.names)</pre>
pos.nu <- grep("nu", parm.names)</pre>
pos.sigma <- grep("sigma", parm.names)</pre>
pos.alpha <- grep("alpha", parm.names)</pre>
pos.iota <- grep("iota", parm.names)</pre>
pos.gamma <- grep("gamma", parm.names)</pre>
PGF <- function(Data) return(c(rcat(Data$N, rep(1/Data$M,Data$M)),
     rnorm(Data$M*Data$J,0,1), rhalfcauchy(Data$J,5), rhalfcauchy(1,5),
     rhalfcauchy(2,5), rgamma(1,rhalfcauchy(1,25),rhalfcauchy(1,5))))
MyData <- list(J=J, M=M, N=N, PGF=PGF, X=X, mon.names=mon.names,
```

```
parm.names=parm.names, pos.theta=pos.theta, pos.beta=pos.beta,
pos.nu=pos.nu, pos.sigma=pos.sigma, pos.alpha=pos.alpha,
pos.iota=pos.iota, pos.gamma=pos.gamma, y=y)
```

```
Model <- function(parm, Data)</pre>
     ### Hyperhyperparameters
     alpha <- interval(parm[Data$pos.alpha], 1e-100, Inf)</pre>
    parm[Data$pos.alpha] <- alpha</pre>
     iota <- interval(parm[Data$pos.iota], 1e-100, Inf)</pre>
    parm[Data$pos.iota] <- iota</pre>
    ### Hyperparameters
     gamma <- interval(parm[Data$pos.gamma], 1e-100, Inf)</pre>
    parm[Data$pos.gamma] <- gamma</pre>
    parm[Data$pos.nu] <- nu <- interval(parm[Data$pos.nu], 1e-100, Inf)</pre>
    ### Parameters
    beta <- matrix(parm[Data$pos.beta], Data$M, Data$J)</pre>
    theta <- parm[Data$pos.theta]</pre>
    pi <- rStick(Data$M-1, gamma)</pre>
    sigma <- interval(parm[Data$pos.sigma], 1e-100, Inf)</pre>
    parm[Data$pos.sigma] <- sigma</pre>
    ### Log-Hyperhyperprior
    alpha.prior <- dhalfcauchy(alpha, 25, log=TRUE)</pre>
     iota.prior <- dhalfcauchy(iota, 25, log=TRUE)</pre>
     ### Log-Hyperprior
     gamma.prior <- dgamma(gamma, alpha, iota, log=TRUE)</pre>
    nu.prior <- sum(dhalfcauchy(nu, 25, log=TRUE))</pre>
    ### Log-Prior
    beta.prior <- sum(dnorm(beta, 0, matrix(rep(nu, Data$M), Data$M,
          Data$J, byrow=TRUE), log=TRUE))
     theta.prior <- sum(dcat(theta, pi, log=TRUE))</pre>
    pi.prior <- dStick(pi, gamma, log=TRUE)</pre>
     sigma.prior <- sum(dhalfcauchy(sigma, 25, log=TRUE))</pre>
    ### Log-Likelihood
    mu <- tcrossprod(Data$X, beta)</pre>
    mu <- diag(mu[,theta])</pre>
    LL <- sum(dnorm(Data$y, mu, sigma, log=TRUE))</pre>
    ### Log-Posterior
    LP <- LL + beta.prior + theta.prior + pi.prior + nu.prior +
          sigma.prior + alpha.prior + iota.prior + gamma.prior
    Modelout <- list(LP=LP, Dev=-2*LL, Monitor=c(LP,pi),</pre>
          yhat=rnorm(length(mu), mu, sigma), parm=parm)
    return(Modelout)
    }
```

```
Initial. Values <- c(rcat(N, rep(1/M,M)), rep(0,M*J), rep(1,J), rep(1,4))
```

60. Mixture Model, Poisson-Gamma

60.1. Form

$$\mathbf{y} \sim \mathcal{P}(\lambda)$$

$$\lambda \sim \mathcal{G}(\alpha \mu, \alpha)$$

$$\mu = \exp(\mathbf{X}\beta)$$

$$\alpha \sim \mathcal{HC}(25)$$

$$\beta_j \sim \mathcal{N}(0, 1000), \quad j = 1, \dots, J$$

60.2. Data

```
N <- 20
J <- 3
X <- matrix(runif(N*J,-2,2),N,J); X[,1] <- 1</pre>
beta <- runif(J,-2,2)
y <- as.vector(round(exp(tcrossprod(X, t(beta)))))</pre>
mon.names <- "LP"
parm.names <- as.parm.names(list(alpha=0, beta=rep(0,J), lambda=rep(0,N)))
pos.alpha <- grep("alpha", parm.names)</pre>
pos.beta <- grep("beta", parm.names)</pre>
pos.lambda <- grep("lambda", parm.names)</pre>
PGF <- function(Data) return(c(rhalfcauchy(1,5),
    rnormv(Data$J,0,1), rgamma(Data$N,
    exp(tcrossprod(Data$X, t(rnormv(Data$J,0,1))))*rhalfcauchy(1,5),
    rhalfcauchy(1,5))))
MyData <- list(J=J, N=N, PGF=PGF, X=X, mon.names=mon.names,
    parm.names=parm.names, pos.alpha=pos.alpha, pos.beta=pos.beta,
    pos.lambda=pos.lambda, y=y)
```

```
Model <- function(parm, Data)
{
    ### Hyperparameters
    alpha <- interval(parm[Data$pos.alpha], 1e-100, Inf)</pre>
```

```
parm[Data$pos.alpha] <- alpha</pre>
### Parameters
beta <- parm[Data$pos.beta]</pre>
lambda <- interval(parm[Data$pos.lambda], 1e-100, Inf)</pre>
parm[Data$pos.lambda] <- lambda</pre>
mu <- exp(tcrossprod(Data$X, t(beta)))</pre>
### Log-Hyperprior
alpha.prior <- dhalfcauchy(alpha, 25, log=TRUE)
### Log-Prior
beta.prior <- sum(dnormv(beta, 0, 1000, log=TRUE))</pre>
lambda.prior <- sum(dgamma(lambda, alpha*mu, alpha, log=TRUE))</pre>
### Log-Likelihood
LL <- sum(dpois(Data$y, lambda, log=TRUE))</pre>
### Log-Posterior
LP <- LL + alpha.prior + beta.prior + lambda.prior</pre>
Modelout <- list(LP=LP, Dev=-2*LL, Monitor=LP,</pre>
    yhat=rpois(length(lambda), lambda), parm=parm)
return(Modelout)
}
```

60.4. Initial Values

Initial. Values <- c(1, rep(0,J), rep(1,N))

61. Multinomial Logit

61.1. Form

$$\begin{aligned} \mathbf{y}_{i} \sim \mathcal{CAT}(\mathbf{p}_{i,1:J}), & i = 1, \dots, N \\ \mathbf{p}_{i,j} &= \frac{\phi_{i,j}}{\sum_{j=1}^{J} \phi_{i,j}}, & \sum_{j=1}^{J} \mathbf{p}_{i,j} = 1 \\ \phi &= \exp(\mu) \\ \mu_{i,J} &= 0, & i = 1, \dots, N \\ \mu_{i,j} &= \mathbf{X}_{i,1:K} \beta_{j,1:K} \in [-700, 700], & j = 1, \dots, (J-1) \\ \beta_{j,k} &\sim \mathcal{N}(0, 1000), & j = 1, \dots, (J-1), & k = 1, \dots, K \end{aligned}$$

```
y \leftarrow x01 \leftarrow x02 \leftarrow c(1:300)

y[1:100] \leftarrow 1

y[101:200] \leftarrow 2
```

```
y[201:300] <- 3
x01[1:100] <- rnorm(100, 25, 2.5)
x01[101:200] <- rnorm(100, 40, 4.0)
x01[201:300] \leftarrow rnorm(100, 35, 3.5)
x02[1:100] \leftarrow rnorm(100, 2.51, 0.25)
x02[101:200] <- rnorm(100, 2.01, 0.20)
x02[201:300] \leftarrow rnorm(100, 2.70, 0.27)
N <- length(y)
J <- 3 #Number of categories in y
K <- 3 #Number of predictors (including the intercept)</pre>
X \leftarrow matrix(c(rep(1,N),x01,x02),N,K)
mon.names <- "LP"
parm.names <- as.parm.names(list(beta=matrix(0,J-1,K)))</pre>
PGF <- function(Data) return(rnormv((Data$J-1)*Data$K,0,1000))
MyData <- list(J=J, K=K, N=N, PGF=PGF, X=X, mon.names=mon.names,
    parm.names=parm.names, y=y)
61.3. Model
Model <- function(parm, Data)</pre>
    ### Parameters
    beta <- matrix(parm, Data$J-1, Data$K)</pre>
    ### Log-Prior
    beta.prior <- sum(dnormv(beta, 0, 1000, log=TRUE))</pre>
    ### Log-Likelihood
    mu <- matrix(0, Data$N, Data$J)</pre>
    mu[,-Data$J] <- tcrossprod(Data$X, beta)</pre>
    mu <- interval(mu, -700, 700, reflect=FALSE)</pre>
    phi <- exp(mu)
    p <- phi / rowSums(phi)</pre>
    LL <- sum(dcat(Data$y, p, log=TRUE))</pre>
    ### Log-Posterior
    LP <- LL + beta.prior
    Modelout <- list(LP=LP, Dev=-2*LL, Monitor=LP, yhat=rcat(nrow(p), p),</pre>
         parm=parm)
    return(Modelout)
    }
```

62. Multinomial Logit, Nested

61.4. Initial Values

Initial. Values $\leftarrow c(rep(0,(J-1)*K))$

62.1. Form

$$\mathbf{y}_{i} \sim \mathcal{CAT}(\mathbf{P}_{i,1:J}), \quad i = 1, \dots, N$$

$$\mathbf{P}_{1:N,1} = \frac{\mathbf{R}}{\mathbf{R} + \exp(\alpha \mathbf{I})}$$

$$\mathbf{P}_{1:N,2} = \frac{(1 - \mathbf{P}_{1:N,1})\mathbf{S}_{1:N,1}}{\mathbf{V}}$$

$$\mathbf{P}_{1:N,3} = \frac{(1 - \mathbf{P}_{1:N,1})\mathbf{S}_{1:N,2}}{\mathbf{V}}$$

$$\mathbf{R}_{1:N} = \exp(\mu_{1:N,1})$$

$$\mathbf{S}_{1:N,1:2} = \exp(\mu_{1:N,2:3})$$

$$\mathbf{I} = \log(\mathbf{V})$$

$$\mathbf{V}_{i} = \sum_{k=1}^{K} \mathbf{S}_{i,k}, \quad i = 1, \dots, N$$

$$\mu_{1:N,1} = \mathbf{X}\iota \in [-700, 700]$$

$$\mu_{1:N,2} = \mathbf{X}\beta_{2,1:K} \in [-700, 700]$$

$$\iota = \alpha\beta_{1,1:K}$$

$$\alpha \sim \mathcal{EXP}(1) \in [0, 2]$$

$$\beta_{j,k} \sim \mathcal{N}(0, 1000), \quad j = 1, \dots, (J-1) \quad k = 1, \dots, K$$

where there are J=3 categories of \mathbf{y} , K=3 predictors, \mathbf{R} is the non-nested alternative, \mathbf{S} is the nested alternative, \mathbf{V} is the observed utility in the nest, α is effectively 1 - correlation and has a truncated exponential distribution, and ι is a vector of regression effects for the isolated alternative after α is taken into account. The third alternative is the reference category.

```
y <- x01 <- x02 <- c(1:300)
y[1:100] <- 1
y[101:200] <- 2
y[201:300] <- 3
x01[1:100] <- rnorm(100, 25, 2.5)
x01[101:200] <- rnorm(100, 40, 4.0)
x01[201:300] <- rnorm(100, 35, 3.5)
x02[1:100] <- rnorm(100, 2.51, 0.25)
x02[101:200] <- rnorm(100, 2.01, 0.20)
x02[201:300] <- rnorm(100, 2.70, 0.27)
N <- length(y)
J <- 3 #Number of categories in y
K <- 3 #Number of predictors (including the intercept)
X <- matrix(c(rep(1,N),x01,x02),N,K)
mon.names <- c("LP", as.parm.names(list(iota=rep(0,K))))</pre>
```

```
parm.names <- as.parm.names(list(alpha=0, beta=matrix(0,J-1,K)))</pre>
pos.alpha <- grep("alpha", parm.names)</pre>
pos.beta <- grep("beta", parm.names)</pre>
PGF <- function(Data) return(c(rtrunc(1, "exp", a=0, b=2, rate=1),
     rnormv((Data$J-1)*Data$K,0,1)))
MyData <- list(J=J, K=K, N=N, PGF=PGF, X=X, mon.names=mon.names,
     parm.names=parm.names, pos.alpha=pos.alpha, pos.beta=pos.beta, y=y)
62.3. Model
Model <- function(parm, Data)</pre>
     {
     ### Hyperparameters
     alpha.rate <- 1
     ### Parameters
     parm[Data$pos.alpha] <- alpha <- interval(parm[Data$pos.alpha],0,2)</pre>
     beta <- matrix(parm[Data$pos.beta], Data$J-1, Data$K)</pre>
     ### Log-Prior
     alpha.prior <- dtrunc(alpha, "exp", a=0, b=2, rate=alpha.rate,
          log=TRUE)
     beta.prior <- sum(dnormv(beta, 0, 1000, log=TRUE))</pre>
     ### Log-Likelihood
     mu <- P <- matrix(0, Data$N, Data$J)</pre>
     iota <- alpha * beta[1,]</pre>
     mu[,1] <- tcrossprod(Data$X, t(iota))</pre>
     mu[,2] <- tcrossprod(Data$X, t(beta[2,]))</pre>
     mu <- interval(mu, -700, 700, reflect=FALSE)</pre>
     R \leftarrow \exp(mu[,1])
     S \leftarrow \exp(mu[,-1])
     V <- rowSums(S)</pre>
     I \leftarrow log(V)
     P[,1] \leftarrow R / (R + exp(alpha*I))
     P[,2] \leftarrow (1 - P[,1]) * S[,1] / V
     P[,3] \leftarrow (1 - P[,1]) * S[,2] / V
     LL <- sum(dcat(Data$y, P, log=TRUE))</pre>
     ### Log-Posterior
     LP <- LL + alpha.prior + beta.prior
     Modelout <- list(LP=LP, Dev=-2*LL, Monitor=c(LP,iota),</pre>
          yhat=rcat(nrow(P), P), parm=parm)
     return(Modelout)
     }
```

```
Initial.Values <- c(0.5, rep(0.1, (J-1)*K))
```

63. Multinomial Probit

63.1. Form

$$\mathbf{W}_{i,1:(J-1)} \sim \mathcal{N}_{J-1}(\mu_{i,1:(J-1)}, \Sigma), \quad i = 1, \dots, N$$

$$\mathbf{W}_{i,j} \in \begin{cases} [0,10] & \text{if } \mathbf{y}_i = j \\ [-10,0] & \end{cases}$$

$$\mu_{1:N,j} = \mathbf{X}\beta_{j,1:K}$$

$$\Sigma = \mathbf{U}^T \mathbf{U}$$

$$\beta_{j,k} \sim \mathcal{N}(0,10), \quad j = 1, \dots, (J-1), \quad k = 1, \dots, K$$

$$\mathbf{U}_{j,k} \sim \mathcal{N}(0,1), \quad j = 1, \dots, (J-1), \quad k = 1, \dots, (J-1), \quad j \ge k, \quad j \ne k = 1$$

```
N <- 50
J \leftarrow 5 #Categories of y
K <- 8 #Number of columns in design matrix X
X \leftarrow matrix(runif(N*K,-2,2), N, K)
X[,1] <- 1
beta <- matrix(runif((J-1)*K), J-1, K)
mu <- tcrossprod(X, beta)</pre>
S \leftarrow diag(J-1)
u \leftarrow c(0, rnorm((J-2) + (factorial(J-1) /
     (factorial(J-1-2)*factorial(2))),0,1))
U \leftarrow diag(J-1)
U[upper.tri(U, diag=TRUE)] <- u</pre>
diag(U) <- exp(diag(U))</pre>
Sigma <- t(U) %*% U
Sigma[1,] <- Sigma[,1] <- U[1,]
mu <- tcrossprod(X, beta)</pre>
W \leftarrow rmvn(N, mu, Sigma) + matrix(rnorm(N*(J-1),0,0.1), N, J-1)
y <- max.col(cbind(W,0))</pre>
table(y)
mon.names <- "LP"
parm.names <- as.parm.names(list(beta=matrix(0,(J-1),K),
     U=U, W=matrix(0,N,J-1)), uppertri=c(0,1,0))
parm.names <- parm.names[-which(parm.names == "U[1,1]")]</pre>
pos.beta <- grep("beta", parm.names)</pre>
pos.U <- grep("U", parm.names)</pre>
pos.W <- grep("W", parm.names)</pre>
PGF <- function(Data) {</pre>
    beta <- rnormv((Data$J-1)*Data$K,0,1)</pre>
     U <- rnorm((Data$J-2) + (factorial(Data$J-1) /</pre>
```

```
(factorial(Data$J-1-2)*factorial(2))),0,1)
W <- matrix(runif(Data$N*(Data$J-1),-10,0), Data$N, Data$J-1)
Y <- as.indicator.matrix(Data$y)
W <- ifelse(Y[,-Data$J] == 1, abs(W), W)
return(c(beta, U, as.vector(W)))}
MyData <- list(J=J, K=K, N=N, PGF=PGF, S=S, X=X, mon.names=mon.names,
parm.names=parm.names, pos.beta=pos.beta, pos.U=pos.U, pos.W=pos.W,
y=y)</pre>
```

```
Model <- function(parm, Data)</pre>
     ### Parameters
     beta <- matrix(parm[Data$pos.beta], Data$J-1, Data$K)</pre>
     u <- c(0, parm[Data$pos.U])</pre>
     U <- diag(Data$J-1)
     U[upper.tri(U, diag=TRUE)] <- u</pre>
     diag(U) <- exp(diag(U))</pre>
     Sigma <- t(U) %*% U
     Sigma[1,] <- Sigma[,1] <- U[1,]
     W <- matrix(parm[Data$pos.W], Data$J-1)</pre>
     Y <- as.indicator.matrix(Data$y)</pre>
     temp <- which(Y[,-c(Data$J)] == 1)</pre>
     W[temp] <- interval(W[temp], 0, 10)</pre>
     temp <- which(Y[,-c(Data$J)] == 0)</pre>
     W[temp] <- interval(W[temp], -10, 0)</pre>
     parm[Data$pos.W] <- as.vector(W)</pre>
     ### Log-Prior
     beta.prior <- sum(dnormv(beta, 0, 10, log=TRUE))</pre>
     U.prior <- sum(dnorm(u[-length(u)], 0, 1, log=TRUE))</pre>
     ### Log-Likelihood
     mu <- tcrossprod(Data$X, beta)</pre>
     #eta <- exp(cbind(mu,0))</pre>
     #p <- eta / rowSums(eta)</pre>
     LL <- sum(dmvn(W, mu, Sigma, log=TRUE))
     ### Log-Posterior
     LP <- LL + beta.prior + U.prior
     Modelout <- list(LP=LP, Dev=-2*LL, Monitor=LP,</pre>
          yhat=max.col(cbind(rmvn(nrow(mu), mu, Sigma),0)), parm=parm)
     return(Modelout)
     }
```

63.4. Initial Values

Initial.Values <- GIV(Model, MyData, PGF=TRUE)</pre>

64. Multiple Discrete-Continuous Choice

This form of a multivariate discrete-continuous choice model was introduced in Kim, Allenby, and Rossi (2002) and referred to as a variety model. The original version is presented with log-normally distributed errors, but a gamma regression form is used here instead, which has always mixed better in testing. Note that the γ parameters are fixed here, as recommended for identifiability in future articles by these authors.

64.1. Form

$$\mathbf{Y} \sim \mathcal{G}(\lambda \tau, \tau)$$

$$\lambda_{i,j} = \exp(\mathbf{Z}_{i,j} \log(\psi 1_{m[i],j}) + \mathbf{X} \mathbf{1}_{i,1:K} \log(\beta) + \mathbf{X} \mathbf{2}_{i,1:L} \log(\delta)) (\mathbf{Y}_{i,j} + \gamma_j)_j^{\alpha}), \quad i = 1, \dots, N, j = 1, \dots, J$$

$$\alpha_j \sim \mathcal{U}(0,1), \quad j = 1, \dots, J$$

$$\log(\beta_k) \sim \mathcal{N}(0, 1000), \quad k = 1, \dots, K$$

$$\gamma_j = 1, \quad j = 1, \dots, J$$

$$\log(\delta_{j,l}) \sim \mathcal{N}(0, 1000), \quad j = 1, \dots, (J-1), \quad l = 1, \dots, L$$

$$\log(\psi 0_j) \sim \mathcal{N}(0, 1000), \quad j = 1, \dots, J$$

$$\log(\psi 1_{g,j}) \sim \mathcal{N}_J(\log(\psi 0), \Omega^{-1}), \quad g = 1, \dots, G, \quad j1 = , \dots, J$$

$$\Omega \sim \mathcal{W}_{J+1}(\mathbf{S}), \quad \mathbf{S} = \mathbf{I}_J$$

$$\tau_j \sim \mathcal{HC}(25), \quad j = 1, \dots, J$$

```
G <- 6 #Number of Multilevel Groups (decision-makers, households, etc.)
J <- 3 #Number of products
K <- 4 #Number of product attributes
L <- 5 #Number of decision-maker attributes
N <- 30 #Number of records
X1 <- matrix(rnorm(N*K), N, K) #Product attributes
X2 <- matrix(rnorm(N*L), N, L) #Decision-maker attributes
Sigma <- matrix(runif((J-1)*(J-1),-1,1),J-1,J-1)
diag(Sigma) <- runif(J-1,1,5)
Sigma <- as.positive.definite(Sigma) / 100
alpha <- runif(J)
log.beta <- rnorm(K,0,0.1)
log.delta <- matrix(rnorm((J-1)*L,0,0.1), J-1, L)
log.psi0 <- rnorm(J)
log.psi1 <- rmvn(G, log.psi0, Sigma)</pre>
```

```
m <- rcat(N, rep(1/G,G)) # Multilevel group indicator</pre>
Z <- as.indicator.matrix(m)</pre>
Y <- matrix(0, N, J)
Y <- round(exp(tcrossprod(Z, t(cbind(log.psi1,0))) +
    matrix(tcrossprod(X1, t(log.beta)), N, J) +
    tcrossprod(X2, rbind(log.delta, colSums(log.delta)*-1))) *
     (Y + 1)^matrix(alpha,N,J,byrow=TRUE) +
    matrix(rnorm(N*J,0,0.1),N,J))
S \leftarrow diag(J)
mon.names <- "LP"
parm.names <- as.parm.names(list(alpha=rep(0,J), log.beta=rep(0,K),</pre>
     log.delta=matrix(0,J-1,L), log.psi0=rep(0,J),
    log.psi1=matrix(0,G,J), tau=rep(0,J), U=S),
    uppertri=c(0,0,0,0,0,0,1))
pos.alpha <- grep("alpha", parm.names)</pre>
pos.log.beta <- grep("log.beta", parm.names)</pre>
pos.log.delta <- grep("delta", parm.names)</pre>
pos.log.psi0 <- grep("log.psi0", parm.names)</pre>
pos.log.psi1 <- grep("log.psi1", parm.names)</pre>
pos.tau <- grep("tau", parm.names)</pre>
PGF <- function(Data) {</pre>
    log.psi0 <- rnorm(Data$J,0,0.1)</pre>
    U <- rwishartc(Data$J+1, Data$S)</pre>
    return(c(runif(Data$J,0.9,1), rnorm(Data$K,0,0.1),
    rnorm((Data$J-1)*Data$L,0,0.1), log.psi0, rmvnpc(Data$G, log.psi0, U),
    runif(Data$J), upper.triangle(U, diag=TRUE)))}
MyData <- list(G=G, J=J, K=K, L=L, N=N, PGF=PGF, S=S, X1=X1, X2=X2, Y=Y,
     Z=Z, m=m, mon.names=mon.names, parm.names=parm.names,
    pos.alpha=pos.alpha, pos.log.beta=pos.log.beta,
    pos.log.delta=pos.log.delta, pos.log.psi0=pos.log.psi0,
    pos.log.psi1=pos.log.psi1, pos.tau=pos.tau)
64.3. Model
Model <- function(parm, Data)</pre>
     {
    ### Parameters
     parm[Data$pos.alpha] <- alpha <- interval(parm[Data$pos.alpha], 0, 1)</pre>
     log.beta <- parm[Data$pos.log.beta]</pre>
    log.delta <- matrix(parm[Data$pos.log.delta], Data$J-1, Data$L)</pre>
    log.psi0 <- parm[Data$pos.log.psi0]</pre>
    log.psi1 <- matrix(parm[Data$pos.log.psi1], Data$G, Data$J)</pre>
    parm[Data$pos.tau] <- tau <- interval(parm[Data$pos.tau], 1e-100, Inf)</pre>
    U <- as.parm.matrix(U, Data$J, parm, Data, chol=TRUE)</pre>
    diag(U) <- exp(diag(U))</pre>
    lambda <- tcrossprod(Data$Z, t(log.psi1)) +</pre>
```

```
matrix(tcrossprod(Data$X1, t(log.beta)), Data$N, Data$J) +
    tcrossprod(Data$X2, rbind(log.delta, colSums(log.delta)*-1))
### Log-Prior
U.prior <- dwishartc(U, Data$J+1, Data$S, log=TRUE)</pre>
alpha.prior <- sum(dunif(alpha, 0, 1, log=TRUE))</pre>
log.beta.prior <- sum(dnormv(log.beta, 0, 1000, log=TRUE))</pre>
log.delta.prior <- sum(dnormv(log.delta, 0, 1000, log=TRUE))</pre>
log.psi0.prior <- sum(dnormv(log.psi0, 0, 1000, log=TRUE))</pre>
log.psi1.prior <- sum(dmvnpc(lambda,</pre>
    matrix(log.psi0, Data$N, Data$J, byrow=TRUE), U, log=TRUE))
tau.prior <- sum(dhalfcauchy(tau, 25, log=TRUE))</pre>
### Log-Likelihood
alpha <- matrix(alpha, Data$N, Data$J, byrow=TRUE)</pre>
lambda <- exp(lambda)*(Data$Y + 1)^alpha</pre>
tau <- matrix(tau, Data$N, Data$J, byrow=TRUE)</pre>
LL <- sum(dgamma(Data$Y+1, lambda*tau, tau, log=TRUE))</pre>
### Log-Posterior
LP <- LL + U.prior + alpha.prior + log.beta.prior + log.delta.prior +
    log.psi0.prior + log.psi1.prior + tau.prior
Modelout <- list(LP=LP, Dev=-2*LL, Monitor=LP,</pre>
    yhat=rgamma(prod(dim(lambda)), lambda*tau, tau)-1,
    parm=parm)
return(Modelout)
}
```

64.4. Initial Values

```
Initial.Values <- c(runif(J,0.9,1), rnorm(K,0,0.1),
    rnorm((J-1)*L,0,0.1), rnorm(J,0,0.1),
    rmvnpc(G, rnorm(J,0,0.1), rwishartc(J+1,S)), runif(J),
    upper.triangle(rwishartc(J+1,S), diag=TRUE))</pre>
```

65. Multivariate Binary Probit

65.1. Form

$$\mathbf{Z}_{i,1:J} \sim \mathcal{N}_{J}(\mu_{i,1:J}, \Sigma), \quad i = 1, \dots, N$$

$$\mathbf{Z}_{i,j} \in \begin{cases} [0,10] & \text{if } \mathbf{y}_{i} = j \\ [-10,0] & \text{} \end{cases}$$

$$\mu_{1:N,j} = \mathbf{X}\beta_{j,1:K}$$

$$\Sigma \sim \mathcal{IW}_{J+1}(\mathbf{S}^{-}1), \quad \mathbf{S} = \mathbf{I}_{J}, \quad \Sigma[1,1] = 1$$

$$\beta_{j,k} \sim \mathcal{N}(0,1000), \quad j = 1, \dots, (J-1), \quad k = 1, \dots, K$$

$$\beta_{J,k} = -\sum_{j=1}^{J-1} \beta_{j,k}$$
$$\mathbf{Z}_{i,j} \sim \mathcal{N}(0, 1000) \in [-10, 10]$$

```
N <- 30
J <- 2 #Number of binary dependent variables
K \leftarrow 3 #Number of columns to be in design matrix X
X \leftarrow matrix(1, N, K)
for (k \text{ in } 2:K) \{X[,k] \leftarrow rnorm(N, runif(1,-3,3), runif(1,0.1,3))\}
beta <- matrix(runif(J*K), J, K)</pre>
mu <- tcrossprod(X, beta)</pre>
S \leftarrow diag(J)
u \leftarrow c(0, rnorm((J-1) + (factorial(J) /
     (factorial(J-2)*factorial(2))),0,1))
U \leftarrow diag(J)
U[upper.tri(U, diag=TRUE)] <- u</pre>
diag(U) <- exp(diag(U))</pre>
Sigma <- t(U) %*% U
Sigma[1,] <- Sigma[,1] <- U[1,]
W <- rmvn(N, mu, Sigma) + matrix(rnorm(N*J,0,0.1), N, J)
Y < -1 * (W >= 0)
mon.names <- "LP"
parm.names <- as.parm.names(list(beta=matrix(0,J,K),</pre>
     U=U, W=matrix(0,N,J), uppertri=c(0,1,0))
parm.names <- parm.names[-which(parm.names == "U[1,1]")]</pre>
pos.beta <- grep("beta", parm.names)</pre>
pos.U <- grep("U", parm.names)</pre>
pos.W <- grep("W", parm.names)</pre>
PGF <- function(Data) {
    beta <- rnormv(Data$J*Data$K,0,1)
     U <- rnorm((Data$J-1) + (factorial(Data$J) /</pre>
          (factorial(Data$J-2)*factorial(2))),0,1)
     W <- matrix(runif(Data$N*Data$J,-10,0), Data$N, Data$J)</pre>
     W \leftarrow ifelse(Y == 1, abs(W), W)
     return(c(beta, U, as.vector(W)))}
MyData <- list(J=J, K=K, N=N, PGF=PGF, S=S, X=X, Y=Y,
     mon.names=mon.names, parm.names=parm.names, pos.beta=pos.beta,
     pos.U=pos.U, pos.W=pos.W)
65.3. Model
```

```
Model <- function(parm, Data)</pre>
     {
```

```
### Parameters
beta <- matrix(parm[Data$pos.beta], Data$J, Data$K)</pre>
u <- c(0, parm[Data$pos.U])</pre>
U <- diag(Data$J)</pre>
U[upper.tri(U, diag=TRUE)] <- u</pre>
diag(U) <- exp(diag(U))</pre>
Sigma <- t(U) %*% U
Sigma[1,] <- Sigma[,1] <- U[1,]
W <- matrix(parm[Data$pos.W], Data$N, Data$J)</pre>
W[Data\$Y == 0] \leftarrow interval(W[Data\$Y == 0], -10, 0)
W[Data$Y == 1] <- interval(W[Data$Y == 1], 0, 10)</pre>
parm[Data$pos.W] <- as.vector(W)</pre>
### Log-Prior
beta.prior <- sum(dnormv(beta, 0, 1000, log=TRUE))</pre>
U.prior <- sum(dnorm(u[-length(u)], 0, 1, log=TRUE))</pre>
### Log-Likelihood
mu <- tcrossprod(Data$X, beta)</pre>
LL <- sum(dmvn(W, mu, Sigma, log=TRUE))
### Log-Posterior
LP <- LL + beta.prior + U.prior
Modelout <- list(LP=LP, Dev=-2*LL, Monitor=LP,</pre>
     yhat=1*(rmvn(prod(nrow(mu)), mu, Sigma) >= 0), parm=parm)
return(Modelout)
}
```

65.4. Initial Values

Initial.Values <- GIV(Model, MyData, PGF=TRUE)</pre>

66. Multivariate Laplace Regression

66.1. Form

$$\mathbf{Y}_{i,k} \sim \mathcal{L}_K(\mu_{i,k}, \Sigma), \quad i = 1, \dots, N; \quad k = 1, \dots, K$$

$$\mu_{i,k} = \mathbf{X}_{1:N,k} \beta_{k,1:J}$$

$$\Sigma = \Omega^{-1}$$

$$\Omega \sim \mathcal{W}_{K+1}(\mathbf{S}), \quad \mathbf{S} = \mathbf{I}_K$$

$$\beta_{k,j} \sim \mathcal{N}(0, 1000), \quad j = 1, \dots, J$$

```
N <- 100 $\rm J <- 6 #Number of columns in design matrix
```

```
K <- 3 #Number of DVs
X <- matrix(runif(N*J),N,J); X[,1] <- 1</pre>
Y <- mu <- tcrossprod(X, matrix(rnorm(J*K),K,J))
Sigma <- matrix(runif(K*K),K,K); diag(Sigma) <- runif(K,1,K)</pre>
Sigma <- as.symmetric.matrix(Sigma)</pre>
for (i in 1:N) {Y[i,] <- colMeans(rmvn(1000, mu[i,], Sigma))}</pre>
S \leftarrow diag(K)
mon.names <- "LP"
parm.names <- as.parm.names(list(beta=matrix(0,K,J), U=diag(K)),</pre>
    uppertri=c(0,1)
pos.beta <- grep("beta", parm.names)</pre>
PGF <- function(Data) return(c(rnormv(Data$K*Data$J,0,1),</pre>
    upper.triangle(rwishartc(Data$K+1,Data$S), diag=TRUE)))
MyData <- list(J=J, K=K, N=N, PGF=PGF, S=S, X=X, Y=Y, mon.names=mon.names,
    parm.names=parm.names, pos.beta=pos.beta)
66.3. Model
Model <- function(parm, Data)</pre>
    ### Parameters
    beta <- matrix(parm[Data$pos.beta], Data$K, Data$J)</pre>
    U <- as.parm.matrix(U, Data$K, parm, Data, chol=TRUE)</pre>
    diag(U) <- exp(diag(U))</pre>
    ### Log-Prior
    beta.prior <- sum(dnormv(beta, 0, 1000, log=TRUE))</pre>
    U.prior <- dwishart(U, Data$K+1, Data$S, log=TRUE)</pre>
    ### Log-Likelihood
    mu <- tcrossprod(Data$X, beta)</pre>
    LL <- sum(dmvlc(Data$Y, mu, U, log=TRUE))
    ### Log-Posterior
    LP <- LL + beta.prior + U.prior
    Modelout <- list(LP=LP, Dev=-2*LL, Monitor=LP,</pre>
         yhat=rmvlc(nrow(mu), mu, U), parm=parm)
    return(Modelout)
    }
```

```
Initial.Values <- c(rep(0,J*K), upper.triangle(S, diag=TRUE))</pre>
```

67. Multivariate Regression

67.1. Form

```
\mathbf{Y}_{i,k} \sim \mathcal{N}_K(\mu_{i,k}, \Omega^{-1}), \quad i = 1, \dots, N; \quad k = 1, \dots, K
\mu_{i,k} = \mathbf{X}_{1:N,k} \beta_{k,1:J}
\Omega \sim \mathcal{W}_{K+1}(\mathbf{S}), \quad \mathbf{S} = \mathbf{I}_K
\beta_{k,j} \sim \mathcal{N}(0, 1000), \quad j = 1, \dots, J
```

67.2. Data

```
N <- 100
J <- 6 #Number of columns in design matrix
K <- 3 #Number of DVs
X <- matrix(runif(N*J),N,J); X[,1] <- 1</pre>
Y <- mu <- tcrossprod(X, matrix(rnorm(J*K),K,J))
Sigma <- matrix(runif(K*K),K,K); diag(Sigma) <- runif(K,1,K)</pre>
Sigma <- as.symmetric.matrix(Sigma)</pre>
for (i in 1:N) {Y[i,] <- colMeans(rmvn(1000, mu[i,], Sigma))}</pre>
S <- diag(K)
mon.names <- "LP"
parm.names <- as.parm.names(list(beta=matrix(0,K,J), U=diag(K)),</pre>
    uppertri=c(0,1)
pos.beta <- grep("beta", parm.names)</pre>
PGF <- function(Data) return(c(rnormv(Data$K*Data$J,0,1),</pre>
    upper.triangle(rwishartc(Data$K+1,Data$S), diag=TRUE)))
MyData <- list(J=J, K=K, N=N, PGF=PGF, S=S, X=X, Y=Y, mon.names=mon.names,
    parm.names=parm.names, pos.beta=pos.beta)
```

```
Model <- function(parm, Data)
    {
     ### Parameters
     beta <- matrix(parm[Data$pos.beta], Data$K, Data$J)
     U <- as.parm.matrix(U, Data$K, parm, Data, chol=TRUE)
     diag(U) <- exp(diag(U))
     ### Log-Prior
     beta.prior <- sum(dnormv(beta, 0, 1000, log=TRUE))
     U.prior <- dwishartc(U, Data$K+1, Data$S, log=TRUE)
     ### Log-Likelihood
     mu <- tcrossprod(Data$X, beta)
     LL <- sum(dmvnpc(Data$Y, mu, U, log=TRUE))
     ### Log-Posterior
     LP <- LL + beta.prior + U.prior
     Modelout <- list(LP=LP, Dev=-2*LL, Monitor=LP,</pre>
```

```
yhat=rmvnpc(nrow(mu), mu, U), parm=parm)
return(Modelout)
}
```

Initial.Values <- c(rep(0,J*K), upper.triangle(S, diag=TRUE))</pre>

68. Negative Binomial Regression

This example was contributed by Jim Robison-Cox.

68.1. Form

$$\mathbf{y} \sim \mathcal{NB}(\mu, \kappa)$$

$$p = \frac{\kappa}{\kappa + \mu}$$

$$\mu = \exp(\mathbf{X}\beta)$$

$$\beta_j \sim \mathcal{N}(0, 1000), \quad j = 1, \dots, J$$

$$\kappa \sim \mathcal{HC}(25) \in (0, \infty]$$

68.2. Data

```
Model <- function(parm, Data)
{</pre>
```

```
### Parameters
beta <- parm[Data$pos.beta]</pre>
parm[Data$J + 1] <- kappa <- interval(parm[Data$pos.kappa],</pre>
     .Machine$double.xmin, Inf)
### Log-Prior
beta.prior <- sum(dnormv(beta, 0, 1000, log=TRUE))</pre>
kappa.prior <- dhalfcauchy(kappa, 25, log=TRUE)</pre>
### Log-Likelihood
mu <- as.vector(exp(tcrossprod(Data$X, t(beta))))</pre>
#p <- kappa / (kappa + mu)</pre>
LL <- sum(dnbinom(Data$y, size=kappa, mu=mu, log=TRUE))
### Log-Posterior
LP <- LL + beta.prior + kappa.prior
Modelout <- list(LP=LP, Dev=-2*LL, Monitor=LP,</pre>
     yhat=rnbinom(length(mu), size=kappa, mu=mu), parm=parm)
return(Modelout)
}
```

68.4. Initial Values

Initial.Values <- c(rep(0,J), 1)</pre>

69. Normal, Multilevel

This is Gelman's school example (Gelman, Carlin, Stern, and Rubin 2004). Note that **LaplacesDemon** is slower to converge than WinBUGS through the **R2WinBUGS** package (Gelman 2013), an R package on CRAN. This example is very sensitive to the prior distributions. The recommended, default, half-Cauchy priors with scale 25 on scale parameters overwhelms the likelihood, so uniform priors are used.

69.1. Form

$$\mathbf{y}_{j} \sim \mathcal{N}(\theta_{j}, \sigma_{j}^{2}), \quad j = 1, \dots, J$$

$$\theta_{j} \sim \mathcal{N}(\theta_{\mu}, \theta_{\sigma}^{2})$$

$$\theta_{\mu} \sim \mathcal{N}(0, 1000000)$$

$$\theta_{\sigma[j]} \sim \mathcal{N}(0, 1000)$$

$$\sigma \sim \mathcal{U}(0, 1000)$$

```
J <- 8
y <- c(28.4, 7.9, -2.8, 6.8, -0.6, 0.6, 18.0, 12.2)
```

```
sd <- c(14.9, 10.2, 16.3, 11.0, 9.4, 11.4, 10.4, 17.6)
mon.names <- "LP"
parm.names <- as.parm.names(list(theta=rep(0,J), theta.mu=0,</pre>
    theta.sigma=0))
pos.theta <- 1:J
pos.theta.mu <- J+1
pos.theta.sigma <- J+2
PGF <- function(Data) return(c(rnorm(Data$J, rnormp(1,0,1E-6),
    runif(1,0,10)), rnormp(1,0,1E-6), runif(1,0,10)))
MyData <- list(J=J, PGF=PGF, mon.names=mon.names, parm.names=parm.names,
    pos.theta=pos.theta, pos.theta.mu=pos.theta.mu,
    pos.theta.sigma=pos.theta.sigma, sd=sd, y=y)
69.3. Model
Model <- function(parm, Data)</pre>
    {
    ### Hyperparameters
    theta.mu <- parm[Data$pos.theta.mu]</pre>
    theta.sigma <- interval(parm[Data$pos.theta.sigma], 1e-100, Inf)
    parm[Data$pos.theta.sigma] <- theta.sigma</pre>
    ### Parameters
    theta <- parm[Data$pos.theta]</pre>
    ### Log-Hyperprior
    theta.mu.prior <- dnormp(theta.mu, 0, 1.0E-6, log=TRUE)
    theta.sigma.prior <- dunif(theta.sigma, 0, 1000, log=TRUE)
    ### Log-Prior
    theta.prior <- sum(dnorm(theta, theta.mu, theta.sigma, log=TRUE))
    sigma.prior <- sum(dunif(Data$sd, 0, 1000, log=TRUE))</pre>
    ### Log-Likelihood
    LL <- sum(dnorm(Data$y, theta, Data$sd, log=TRUE))
    ### Log-Posterior
    LP <- LL + theta.prior + theta.mu.prior + theta.sigma.prior +
         sigma.prior
    Modelout <- list(LP=LP, Dev=-2*LL, Monitor=LP,</pre>
         yhat=rnorm(length(theta), theta, Data$sd), parm=parm)
    return(Modelout)
    }
69.4. Initial Values
```

Initial.Values <- c(rep(mean(y), J), mean(y), 1)</pre>

70. Ordinal Logit

70.1. Form

$$\mathbf{y}_{i} \sim \mathcal{CAT}(P_{i,1:J})$$

$$P_{,J} = 1 - Q_{,(J-1)}$$

$$P_{,j} = |Q_{,j} - Q_{,(j-1)}|, \quad j = 2, \dots, (J-1)$$

$$P_{,1} = Q_{,1}$$

$$Q = \frac{1}{1 + \exp(\mu)}$$

$$\mu_{,j} = \delta_{j} - \mathbf{X}\beta, \quad \in [-5, 5]$$

$$\beta_{k} \sim \mathcal{N}(0, 1000), \quad k = 1, \dots, K$$

$$\delta_{j} \sim \mathcal{N}(0, 1) \in [(j-1), j] \in [-5, 5], \quad j = 1, \dots, (J-1)$$

70.2. Data

```
data(demonsnacks)
N <- nrow(demonsnacks)
J <- 3 #Number of categories in y
X <- as.matrix(demonsnacks[,c(1,3:10)])</pre>
K <- ncol(demonsnacks) #Number of columns in design matrix X
y <- log(demonsnacks$Calories)
y \leftarrow ifelse(y < 4.5669, 1, ifelse(y > 5.5268, 3, 2)) #Discretize
for (k in 1:K) {X[,k] <- CenterScale(X[,k])}</pre>
mon.names <- "LP"
parm.names <- as.parm.names(list(beta=rep(0,K), delta=rep(0,J-1)))</pre>
pos.beta <- grep("beta", parm.names)</pre>
pos.delta <- grep("delta", parm.names)</pre>
PGF <- function(Data)
    {
    delta <- rnorm(Data$J-1,0,1)
    delta <- delta[order(delta)]</pre>
    return(c(rnormv(Data$K,0,10), delta))
MyData <- list(J=J, K=K, N=N, PGF=PGF, X=X, mon.names=mon.names,
parm.names=parm.names, pos.beta=pos.beta, pos.delta=pos.delta, y=y)
```

```
Model <- function(parm, Data)
    {
     ### Parameters
     beta <- parm[Data$pos.beta]
     delta <- interval(parm[Data$pos.delta], -5, 5)</pre>
```

```
delta <- delta[order(delta)]</pre>
parm[Data$pos.delta] <- delta</pre>
### Log-Prior
beta.prior <- sum(dnormv(beta, 0, 1000, log=TRUE))</pre>
delta.prior <- sum(dtrunc(delta, "norm", a=-5, b=5, log=TRUE,</pre>
    mean=0, sd=1)
### Log-Likelihood
mu <- matrix(delta, Data$N, Data$J-1, byrow=TRUE) -</pre>
    matrix(tcrossprod(Data$X, t(beta)), Data$N, Data$J-1)
P <- Q <- invlogit(mu)
P[,-1] \leftarrow abs(Q[,-1] - Q[,-(Data$J-1)])
P \leftarrow cbind(P, 1 - Q[,(Data$J-1)])
LL <- sum(dcat(Data$y, P, log=TRUE))</pre>
### Log-Posterior
LP <- LL + beta.prior + delta.prior
Modelout <- list(LP=LP, Dev=-2*LL, Monitor=LP, yhat=rcat(nrow(P), P)
    parm=parm)
return(Modelout)
}
```

Initial.Values <- c(rep(0,K), seq(from=-1, to=1, len=(J-1)))</pre>

71. Ordinal Probit

71.1. Form

$$\mathbf{y}_{i} \sim \mathcal{CAT}(P_{i,1:J})$$

$$P_{,J} = 1 - Q_{,(J-1)}$$

$$P_{,j} = |Q_{,j} - Q_{,(j-1)}|, \quad j = 2, \dots, (J-1)$$

$$P_{,1} = Q_{,1}$$

$$Q = \phi(\mu)$$

$$\mu_{,j} = \delta_{j} - \mathbf{X}\beta, \quad \in [-5, 5]$$

$$\beta_{k} \sim \mathcal{N}(0, 1000), \quad k = 1, \dots, K$$

$$\delta_{j} \sim \mathcal{N}(0, 1) \in [(j-1), j] \in [-5, 5], \quad j = 1, \dots, (J-1)$$

```
data(demonsnacks)
N <- nrow(demonsnacks)</pre>
```

```
J <- 3 #Number of categories in y
X <- as.matrix(demonsnacks[,c(1,3:10)])</pre>
K <- ncol(demonsnacks) #Number of columns in design matrix X
y <- log(demonsnacks$Calories)</pre>
y \leftarrow ifelse(y < 4.5669, 1, ifelse(y > 5.5268, 3, 2)) #Discretize
for (k in 1:K) \{X[,k] \leftarrow CenterScale(X[,k])\}
mon.names <- "LP"
parm.names <- as.parm.names(list(beta=rep(0,K), delta=rep(0,J-1)))</pre>
pos.beta <- grep("beta", parm.names)</pre>
pos.delta <- grep("delta", parm.names)</pre>
PGF <- function(Data)
    {
    delta <- rnorm(Data$J-1,0,1)</pre>
    delta <- delta[order(delta)]</pre>
    return(c(rnormv(Data$K,0,10), delta))
     }
MyData <- list(J=J, K=K, N=N, PGF=PGF, X=X, mon.names=mon.names,
parm.names=parm.names, pos.beta=pos.beta, pos.delta=pos.delta, y=y)
71.3. Model
Model <- function(parm, Data)</pre>
     {
    ### Parameters
    beta <- parm[Data$pos.beta]</pre>
    delta <- interval(parm[Data$pos.delta], -5, 5)</pre>
    delta <- delta[order(delta)]</pre>
    parm[Data$pos.delta] <- delta</pre>
    ### Log-Prior
    beta.prior <- sum(dnormv(beta, 0, 1000, log=TRUE))</pre>
    delta.prior <- sum(dtrunc(delta, "norm", a=-5, b=5, log=TRUE,
         mean=0, sd=1)
    ### Log-Likelihood
    mu <- matrix(delta, Data$N, Data$J-1, byrow=TRUE) -</pre>
         matrix(tcrossprod(Data$X, t(beta)), Data$N, Data$J-1)
    P <- Q <- pnorm(mu)
    P[,-1] \leftarrow abs(Q[,-1] - Q[,-(Data$J-1)])
    P \leftarrow cbind(P, 1 - Q[,(Data$J-1)])
    LL <- sum(dcat(Data$y, P, log=TRUE))</pre>
    ### Log-Posterior
    LP <- LL + beta.prior + delta.prior
    Modelout <- list(LP=LP, Dev=-2*LL, Monitor=LP, yhat=rcat(nrow(P), P)</pre>
         parm=parm)
    return(Modelout)
    }
```

Initial.Values <- c(rep(0,K), seq(from=-1, to=1, len=(J-1)))</pre>

72. Panel, Autoregressive Poisson

72.1. Form

$$\mathbf{Y} \sim \mathcal{P}(\Lambda)$$

$$\Lambda_{1:N,1} = \exp(\alpha + \beta \mathbf{x})$$

$$\Lambda_{1:N,t} = \exp(\alpha + \beta \mathbf{x} + \rho \log(\mathbf{Y}_{1:N,t-1})), \quad t = 2, \dots, T$$

$$\alpha_i \sim \mathcal{N}(\alpha_{\mu}, \alpha_{\sigma}^2), \quad i = 1, \dots, N$$

$$\alpha_{\mu} \sim \mathcal{N}(0, 1000)$$

$$\alpha_{\sigma} \sim \mathcal{HC}(25)$$

$$\beta \sim \mathcal{N}(0, 1000)$$

$$\rho \sim \mathcal{N}(0, 1000)$$

```
N <- 10
T <- 10
alpha <- rnorm(N,2,0.5)
rho <- 0.5
beta <- 0.5
x <- runif(N,0,1)
Y <- matrix(NA,N,T)
Y[,1] <- exp(alpha + beta*x)
for (t in 2:T) \{Y[,t] \leftarrow \exp(alpha + beta*x + rho*log(Y[,t-1]))\}
Y <- round(Y)
mon.names <- "LP"
parm.names <- as.parm.names(list(alpha=rep(0,N), alpha.mu=0,
    alpha.sigma=0, beta=0, rho=0))
pos.alpha <- 1:N
pos.alpha.mu <- grep("alpha.mu", parm.names)</pre>
pos.alpha.sigma <- grep("alpha.sigma", parm.names)</pre>
pos.beta <- grep("beta", parm.names)</pre>
pos.rho <- grep("rho", parm.names)</pre>
PGF <- function(Data) return(c(rnorm(Data$N, rnormv(1,0,10),
    rhalfcauchy(1,5)), rnormv(1,0,10), rhalfcauchy(1,5),
    rnormv(2,0,10)))
MyData <- list(N=N, PGF=PGF, T=T, Y=Y, mon.names=mon.names,
    parm.names=parm.names, pos.alpha=pos.alpha, pos.alpha.mu=pos.alpha.mu,
```

```
pos.alpha.sigma=pos.alpha.sigma, pos.beta=pos.beta, pos.rho=pos.rho,
x=x)
```

72.3. Model

```
Model <- function(parm, Data)</pre>
    ### Hyperparameters
    alpha.mu <- parm[Data$pos.alpha.mu]</pre>
    alpha.sigma <- interval(parm[Data$pos.alpha.sigma], 1e-100, Inf)
    parm[Data$pos.alpha.sigma] <- alpha.sigma</pre>
    ### Parameters
    alpha <- parm[Data$pos.alpha]</pre>
    beta <- parm[Data$pos.beta]</pre>
    rho <- parm[Data$pos.rho]</pre>
    ### Log-Hyperprior
    alpha.mu.prior <- dnormv(alpha.mu, 0, 1000, log=TRUE)
    alpha.sigma.prior <- dhalfcauchy(alpha.sigma, 25, log=TRUE)
    ### Log-Prior
    alpha.prior <- sum(dnorm(alpha, alpha.mu, alpha.sigma, log=TRUE))</pre>
    beta.prior <- dnormv(beta, 0, 1000, log=TRUE)
    rho.prior <- dnormv(rho, 0, 1000, log=TRUE)</pre>
    ### Log-Likelihood
    Lambda <- Data$Y
    Lambda[,1] <- exp(alpha + beta*x)</pre>
    Lambda[,2:Data$T] <- exp(alpha + beta*Data$x +
         rho*log(Data$Y[,1:(Data$T-1)]))
    LL <- sum(dpois(Data$Y, Lambda, log=TRUE))</pre>
    ### Log-Posterior
    LP <- LL + alpha.prior + alpha.mu.prior + alpha.sigma.prior +
         beta.prior + rho.prior
    Modelout <- list(LP=LP, Dev=-2*LL, Monitor=LP,</pre>
         yhat=rpois(prod(dim(Lambda)), parm=parm)
    return(Modelout)
    }
```

72.4. Initial Values

```
Initial. Values \leftarrow c(rep(0,N), 0, 1, 0, 0)
```

73. Penalized Spline Regression

This example applies penalized splines to one predictor in a linear regression. The user selects the degree of the polynomial, D, and the number of knots, K.

73.1. Form

$$\mathbf{y} \sim \mathcal{N}(\mu, \sigma_1^2)$$

$$\mu = \mathbf{X}\beta + \mathbf{S}$$

$$\mathbf{S} = \mathbf{Z}\gamma$$

$$\mathbf{Z}_{i,k} = \begin{cases} (\mathbf{x}_i - k)^D & \text{if } \mathbf{Z}_{i,k} > 0 \\ 0 & \end{cases}$$

$$\beta_d \sim \mathcal{N}(0, 1000), \quad d = 1, \dots, (D+1)$$

$$\gamma_k \sim \mathcal{N}(0, \sigma_2^2), \quad k = 1, \dots, K$$

$$\sigma_j \sim \mathcal{HC}(25), \quad j = 1, \dots, 2$$

73.2. Data

```
N <- 100
x < -1:N
y \leftarrow \sin(2*pi*x/N) + runif(N,-1,1)
K <- 10 #Number of knots
D <- 2 #Degree of polynomial
x <- CenterScale(x)
k <- as.vector(quantile(x, probs=(1:K / (K+1))))</pre>
X <- cbind(1, matrix(x, N, D))</pre>
for (d in 1:D) \{X[,d+1] \leftarrow X[,d+1]^d\}
Z <- matrix(x, N, K) - matrix(k, N, K, byrow=TRUE)</pre>
Z \leftarrow ifelse(Z > 0, Z, 0); Z \leftarrow Z^D
mon.names <- c("LP", paste("S[", 1:nrow(X) ,"]", sep=""))</pre>
parm.names <- as.parm.names(list(beta=rep(0,1+D), gamma=rep(0,K),</pre>
    log.sigma=rep(0,2)))
pos.beta <- grep("beta", parm.names)</pre>
pos.gamma <- grep("gamma", parm.names)</pre>
pos.sigma <- grep("sigma", parm.names)</pre>
PGF <- function(Data) return(c(rnormv(1+Data$D,0,10), rnorm(Data$K,0,10),
    rhalfcauchy(2,5)))
MyData <- list(D=D, K=K, N=N, PGF=PGF, Z=Z, X=X, mon.names=mon.names,
    parm.names=parm.names, pos.beta=pos.beta, pos.gamma=pos.gamma,
    pos.sigma=pos.sigma, y=y)
```

```
Model <- function(parm, Data)
{
    ### Parameters
    beta <- parm[Data$pos.beta]
    gamma <- parm[Data$pos.gamma]</pre>
```

```
sigma <- interval(parm[Data$pos.sigma], 1e-100, Inf)</pre>
    parm[Data$pos.sigma] <- sigma</pre>
    ### Log-Prior
    beta.prior <- sum(dnormv(beta, 0, 1000, log=TRUE))</pre>
    gamma.prior <- sum(dnorm(gamma, 0, sigma[2], log=TRUE))</pre>
    sigma.prior <- sum(dhalfcauchy(sigma, 25, log=TRUE))</pre>
    ### Log-Likelihood
    S <- as.vector(tcrossprod(Data$Z, t(gamma)))</pre>
    mu <- as.vector(tcrossprod(Data$X, t(beta))) + S</pre>
    LL <- sum(dnorm(Data$y, mu, sigma[1], log=TRUE))</pre>
    ### Log-Posterior
    LP <- LL + beta.prior + gamma.prior + sigma.prior
    Modelout <- list(LP=LP, Dev=-2*LL, Monitor=c(LP,S),</pre>
         yhat=rnorm(length(mu), mu, sigma[1]), parm=parm)
    return(Modelout)
}
```

73.4. Initial Values

Initial. Values \leftarrow c(rep(0,1+D), rep(0,K), c(1,1))

74. Poisson Regression

74.1. Form

$$\mathbf{y} \sim \mathcal{P}(\lambda)$$

$$\lambda = \exp(\mathbf{X}\beta)$$

$$\beta_{j} \sim \mathcal{N}(0, 1000), \quad j = 1, \dots, J$$

```
N <- 10000
J <- 5
X <- matrix(runif(N*J,-2,2),N,J); X[,1] <- 1
beta <- runif(J,-2,2)
y <- round(exp(tcrossprod(X, t(beta))))
mon.names <- "LP"
parm.names <- as.parm.names(list(beta=rep(0,J)))
PGF <- function(Data) return(rnormv(Data$J,0,1000))
MyData <- list(J=J, PGF=PGF, X=X, mon.names=mon.names, parm.names=parm.names, y=y)</pre>
```

74.3. Model

74.4. Initial Values

Initial.Values <- rep(0,J)</pre>

75. Polynomial Regression

In this univariate example, the degree of the polynomial is specified as D. For a more robust extension to estimating nonlinear relationships between \mathbf{y} and \mathbf{x} , see penalized spline regression in section $\mathbf{??}$.

75.1. Form

$$\mathbf{y} \sim \mathcal{N}(\mu, \sigma^2)$$

$$\mu = \mathbf{X}\beta$$

$$\mathbf{X}_{i,d} = \mathbf{x}_i^{d-1}, \quad d = 1, \dots, (D+1)$$

$$\mathbf{X}_{i,1} = 1$$

$$\beta_d \sim \mathcal{N}(0, 1000), \quad d = 1, \dots, (D+1)$$

$$\sigma \sim \mathcal{HC}(25)$$

```
data(demonsnacks)
N <- nrow(demonsnacks)
D <- 2 #Degree of polynomial
y <- log(demonsnacks$Calories)</pre>
```

```
x <- log(demonsnacks[,10]+1)
mon.names <- "LP"
parm.names <- as.parm.names(list(beta=rep(0,D+1), sigma=0))</pre>
pos.beta <- grep("beta", parm.names)</pre>
pos.sigma <- grep("sigma", parm.names)</pre>
PGF <- function(Data) return(c(rnormv(Data$D+1,0,1000), rhalfcauchy(1,5)))
MyData <- list(D=D, N=N, PGF=PGF, mon.names=mon.names,</pre>
    parm.names=parm.names, pos.beta=pos.beta, pos.sigma=pos.sigma, x=x,
    y=y)
75.3. Model
Model <- function(parm, Data)</pre>
    ### Parameters
    beta <- parm[Data$pos.beta]</pre>
    sigma <- interval(parm[Data$pos.sigma], 1e-100, Inf)</pre>
    parm[Data$pos.sigma] <- sigma</pre>
    ### Log-Prior
    beta.prior <- sum(dnormv(beta, 0, 1000, log=TRUE))</pre>
    sigma.prior <- dhalfcauchy(sigma, 25, log=TRUE)</pre>
    ### Log-Likelihood
    X <- matrix(Data$x, Data$N, Data$D)</pre>
    for (d in 2:Data$D) {X[,d] <- X[,d]^d}</pre>
    X \leftarrow cbind(1,X)
    mu <- tcrossprod(X, t(beta))</pre>
    LL <- sum(dnorm(Data$y, mu, sigma, log=TRUE))</pre>
    ### Log-Posterior
    LP <- LL + beta.prior + sigma.prior
    Modelout <- list(LP=LP, Dev=-2*LL, Monitor=LP,</pre>
         yhat=rnorm(length(mu), mu, sigma), parm=parm)
    return(Modelout)
    }
```

75.4. Initial Values

```
Initial.Values <- c(rep(0,D+1), 1)</pre>
```

76. Proportional Hazards Regression, Weibull

Although the dependent variable is usually denoted as \mathbf{t} in survival analysis, it is denoted here as \mathbf{y} so Laplace's Demon recognizes it as a dependent variable for posterior predictive checks. This example does not support censoring, but it will be included soon.

76.1. Form

```
\mathbf{y}_i \sim \mathcal{WEIB}(\gamma, \mu_i), \quad i = 1, \dots, N
\mu = \exp(\mathbf{X}\beta)
\beta_j \sim \mathcal{N}(0, 1000), \quad j = 1, \dots, J
\gamma \sim \mathcal{G}(1, 0.001)
```

76.2. Data

```
Model <- function(parm, Data)</pre>
    ### Parameters
    beta <- parm[Data$pos.beta]</pre>
    gamma <- interval(parm[Data$pos.gamma], 1e-100, Inf)</pre>
    parm[Data$pos.gamma] <- gamma</pre>
    ### Log-Prior
    beta.prior <- sum(dnormv(beta, 0, 1000, log=TRUE))</pre>
    gamma.prior <- dgamma(gamma, 1, 1.0E-3, log=TRUE)</pre>
    ### Log-Likelihood
    mu <- exp(tcrossprod(Data$X, t(beta)))</pre>
    LL <- sum(dweibull(Data$y, gamma, mu, log=TRUE))
    ### Log-Posterior
    LP <- LL + beta.prior + gamma.prior
    Modelout <- list(LP=LP, Dev=-2*LL, Monitor=LP,</pre>
          yhat=rweibull(length(mu), gamma, mu), parm=parm)
    return(Modelout)
    }
```

76.4. Initial Values

Initial.Values <- c(rep(0, J), 1)</pre>

77. Quantile Regression

77.1. Form

$$\mathbf{y} \sim \mathcal{N}(\phi, \sigma^{2})$$

$$\phi = \frac{(1 - 2P)}{P(1 - P)} \zeta + \mu$$

$$\mu = \mathbf{X}\beta$$

$$\sigma = \frac{P(1 - P)\tau}{2\zeta}$$

$$\beta \sim \mathcal{N}(0, 1000)$$

$$\tau \sim \mathcal{HC}(25)$$

$$\zeta \sim \mathcal{EXP}(\tau)$$

where P is the user-specified quantile in (0,1).

77.2. Data

```
data(demonsnacks)
y <- log(demonsnacks$Calories)
X <- cbind(1, as.matrix(log(demonsnacks[,c(1,4,10)]+1)))</pre>
N \leftarrow nrow(X)
J \leftarrow ncol(X)
P <- 0.5 #Quantile in (0,1)
for (j in 2:J) {X[,j] <- CenterScale(X[,j])}</pre>
mon.names <- "LP"
parm.names <- as.parm.names(list(beta=rep(0,J), tau=0, zeta=rep(0,N)))</pre>
pos.beta <- grep("beta", parm.names)</pre>
pos.tau <- grep("tau", parm.names)</pre>
pos.zeta <- grep("zeta", parm.names)</pre>
PGF <- function(Data) return(c(rnormv(Data$J,0,10), rhalfcauchy(1,5),
    rexp(Data$N)))
MyData <- list(J=J, N=N, P=P, PGF=PGF, X=X, mon.names=mon.names,
    parm.names=parm.names, pos.beta=pos.beta, pos.tau=pos.tau,
    pos.zeta=pos.zeta, y=y)
```

```
Model <- function(parm, Data)
{</pre>
```

```
### Parameters
beta <- parm[Data$pos.beta]</pre>
parm[Data$pos.tau] <- tau <- interval(parm[Data$pos.tau], 1e-100, Inf)</pre>
zeta <- interval(parm[Data$pos.zeta], 1e-100, Inf)</pre>
parm[Data$pos.zeta] <- zeta</pre>
### Log-Prior
beta.prior <- sum(dnormv(beta, 0, 1000, log=TRUE))</pre>
tau.prior <- dhalfcauchy(tau, 25, log=TRUE)</pre>
zeta.prior <- sum(dexp(zeta, tau, log=TRUE))</pre>
### Log-Likelihood
mu <- tcrossprod(Data$X, t(beta))</pre>
phi <- (1 - 2*Data$P) / (Data$P*(1 - Data$P))*zeta + mu
sigma <- (Data$P*(1 - Data$P)*tau) / (2*zeta)</pre>
LL <- sum(dnorm(Data$y, phi, sigma, log=TRUE))
### Log-Posterior
LP <- LL + beta.prior + tau.prior + zeta.prior
Modelout <- list(LP=LP, Dev=-2*LL, Monitor=LP,</pre>
     yhat=rnorm(length(phi), phi, sigma), parm=parm)
return(Modelout)
```

Initial. Values $\leftarrow c(rep(0,J), 1, rep(1,N))$

78. Revision, Normal

This example provides both an analytic solution and numerical approximation of the revision of a normal distribution. Given a normal prior distribution (α) and data distribution (β) , the posterior (γ) is the revised normal distribution. This is an introductory example of Bayesian inference, and allows the user to experiment with numerical approximation, such as with MCMC in LaplacesDemon. Note that, regardless of the data sample size N in this example, Laplace Approximation is inappropriate due to asymptotics since the data (β) is perceived by the algorithm as a single datum rather than a collection of data. MCMC, on the other hand, is biased only by the effective number of samples taken of the posterior.

78.1. Form

$$\alpha \sim \mathcal{N}(0, 10)$$
$$\beta \sim \mathcal{N}(1, 2)$$
$$\gamma = \frac{\alpha_{\sigma}^{-2} \alpha + N \beta_{\sigma}^{-2} \beta}{\alpha_{\sigma}^{-2} + N \beta_{\sigma}^{-2}}$$

78.2. Data

```
N <- 10
mon.names <- c("LP","gamma")
parm.names <- c("alpha","beta")
PGF <- function(Data) return(c(rnorm(1,0,10), rnorm(1,1,2)))
MyData <- list(N=N, PGF=PGF, mon.names=mon.names, parm.names=parm.names)</pre>
```

```
Model <- function(parm, Data)</pre>
    ### Hyperparameters
    alpha.mu <- 0
    alpha.sigma <- 10
    beta.mu <- 1
    beta.sigma <- 2
    ### Parameters
    alpha <- parm[1]
    beta <- parm[2]
    ### Log-Prior
    alpha.prior <- dnorm(alpha, alpha.mu, alpha.sigma, log=TRUE)</pre>
    ### Log-Likelihood
    LL <- dnorm(beta, beta.mu, beta.sigma, log=TRUE)
    ### Posterior
    gamma <- (alpha.sigma^-2 * alpha + N * beta.sigma^-2 * beta) /</pre>
         (alpha.sigma^-2 + N * beta.sigma^-2)
    ### Log-Posterior
    LP <- LL + alpha.prior
    Modelout <- list(LP=LP, Dev=-2*LL, Monitor=c(LP,gamma),</pre>
         yhat=rnorm(1, beta.mu, beta.sigma), parm=parm)
    return(Modelout)
    }
```

Initial. Values \leftarrow c(0,0)

79. Ridge Regression

79.1. Form

$$\mathbf{y} \sim \mathcal{N}(\mu, \sigma_1^2)$$

$$\mu = \mathbf{X}\beta$$

$$\beta_1 \sim \mathcal{N}(0, 1000)$$

$$\beta_j \sim \mathcal{N}(0, \sigma_2^2), \quad j = 2, \dots, J$$

$$\sigma_k \sim \mathcal{HC}(25), \quad k = 1, \dots, 2$$

79.2. Data

79.4. Initial Values

Initial.Values <- c(rep(1,J), rep(1,2))</pre>

80. Robust Regression

By replacing the normal distribution with the Student t distribution, linear regression is often called robust regression. As an alternative approach to robust regression, consider Laplace regression (see section 44).

80.1. Form

$$\mathbf{y} \sim \mathbf{t}(\mu, \sigma^{2}, \nu)$$

$$\mu = \mathbf{X}\beta$$

$$\beta_{j} \sim \mathcal{N}(0, 1000), \quad j = 1, \dots, J$$

$$\sigma \sim \mathcal{HC}(25)$$

$$\nu \sim \mathcal{HC}(25)$$

```
N <- 100
J <- 5
X <- matrix(1,N,J)
for (j in 2:J) {X[,j] <- rnorm(N,runif(1,-3,3),runif(1,0.1,1))}
beta <- runif(J,-3,3)
e <- rst(N,0,1,5)
y <- tcrossprod(X, t(beta)) + e
mon.names <- "LP"
parm.names <- as.parm.names(list(beta=rep(0,J), sigma=0, nu=0))
pos.beta <- grep("beta", parm.names)
pos.sigma <- grep("sigma", parm.names)
pos.nu <- grep("nu", parm.names)
PGF <- function(Data) return(c(rnormv(Data$J,0,10), rhalfcauchy(2,5)))
MyData <- list(J=J, PGF=PGF, X=X, mon.names=mon.names,</pre>
```

```
parm.names=parm.names, pos.beta=pos.beta, pos.sigma=pos.sigma,
pos.nu=pos.nu, y=y)
```

80.3. Model

```
Model <- function(parm, Data)</pre>
     {
    ### Parameters
    beta <- parm[1:Data$J]
    sigma <- interval(parm[Data$pos.sigma], 1e-100, Inf)</pre>
    parm[Data$pos.sigma] <- sigma</pre>
    parm[Data$pos.nu] <- nu <- interval(parm[Data$pos.nu], 1e-100, Inf)</pre>
    ### Log-Prior
    beta.prior <- sum(dnormv(beta, 0, 1000, log=TRUE))</pre>
     sigma.prior <- dhalfcauchy(sigma, 25, log=TRUE)</pre>
    nu.prior <- dhalfcauchy(nu, 25, log=TRUE)
    ### Log-Likelihood
    mu <- tcrossprod(Data$X, t(beta))</pre>
    LL <- sum(dst(Data$y, mu, sigma, nu, log=TRUE))
    ### Log-Posterior
    LP <- LL + beta.prior + sigma.prior + nu.prior
    Modelout <- list(LP=LP, Dev=-2*LL, Monitor=LP,</pre>
         yhat=rst(length(mu), mu, sigma, nu), parm=parm)
    return(Modelout)
    }
```

80.4. Initial Values

Initial.Values <- c(rep(0,J), 1, 5)</pre>

81. Seemingly Unrelated Regression (SUR)

The following data was used by Zellner (1962) when introducing the Seemingly Unrelated Regression methodology. This model uses the conjugate Wishart distribution for precision in a multivariate normal distribution. See section 24 for a non-Wishart alternative that is more flexible and converges much faster.

81.1. Form

$$\mathbf{Y}_{t,k} \sim \mathcal{N}_{K}(\mu_{t,k}, \Omega^{-1}), \quad t = 1, \dots, T; \quad k = 1, \dots, K$$

$$\mu_{1,t} = \alpha_{1} + \alpha_{2} \mathbf{X}_{t-1,1} + \alpha_{3} \mathbf{X}_{t-1,2}, \quad t = 2, \dots, T$$

$$\mu_{2,t} = \beta_{1} + \beta_{2} \mathbf{X}_{t-1,3} + \beta_{3} \mathbf{X}_{t-1,4}, \quad t = 2, \dots, T$$

$$\Omega \sim \mathcal{W}_{K+1}(\mathbf{S}), \quad \mathbf{S} = \mathbf{I}_{K}$$

$$\alpha_j \sim \mathcal{N}(0, 1000), \quad j = 1, \dots, J$$

 $\beta_j \sim \mathcal{N}(0, 1000), \quad j = 1, \dots, J$

where J=3, K=2, and T=20.

```
T <- 20 #Time-periods
year <- c(1935,1936,1937,1938,1939,1940,1941,1942,1943,1944,1945,1946,
     1947, 1948, 1949, 1950, 1951, 1952, 1953, 1954)
IG <- c(33.1,45.0,77.2,44.6,48.1,74.4,113.0,91.9,61.3,56.8,93.6,159.9,
    147.2,146.3,98.3,93.5,135.2,157.3,179.5,189.6)
VG <- c(1170.6,2015.8,2803.3,2039.7,2256.2,2132.2,1834.1,1588.0,1749.4,
    1687.2,2007.7,2208.3,1656.7,1604.4,1431.8,1610.5,1819.4,2079.7,
    2371.6,2759.9)
CG \leftarrow c(97.8,104.4,118.0,156.2,172.6,186.6,220.9,287.8,319.9,321.3,319.6,
    346.0,456.4,543.4,618.3,647.4,671.3,726.1,800.3,888.9)
IW <- c(12.93,25.90,35.05,22.89,18.84,28.57,48.51,43.34,37.02,37.81,
    39.27,53.46,55.56,49.56,32.04,32.24,54.38,71.78,90.08,68.60)
VW <- c(191.5,516.0,729.0,560.4,519.9,628.5,537.1,561.2,617.2,626.7,
    737.2,760.5,581.4,662.3,583.8,635.2,723.8,864.1,1193.5,1188.9)
CW \leftarrow c(1.8, 0.8, 7.4, 18.1, 23.5, 26.5, 36.2, 60.8, 84.4, 91.2, 92.4, 86.0, 111.1,
    130.6,141.8,136.7,129.7,145.5,174.8,213.5)
J <- 2 #Number of dependent variables
Y <- matrix(c(IG,IW), T, J)
S \leftarrow diag(J)
mon.names <- "LP"
parm.names <- as.parm.names(list(alpha=rep(0,3), beta=rep(0,3),</pre>
    U=diag(J)), uppertri=c(0,0,1))
pos.alpha <- grep("alpha", parm.names)</pre>
pos.beta <- grep("beta", parm.names)</pre>
PGF <- function(Data) return(c(rnormv(3,0,10), rnormv(3,0,10),
    upper.triangle(rwishartc(Data$J+1,Data$S), diag=TRUE)))
MyData <- list(J=J, PGF=PGF, S=S, T=T, Y=Y, CG=CG, CW=CW, IG=IG, IW=IW,
    VG=VG, VW=VW, mon.names=mon.names, parm.names=parm.names,
    pos.alpha=pos.alpha, pos.beta=pos.beta)
81.3. Model
Model <- function(parm, Data)</pre>
    {
    ### Parameters
    alpha <- parm[Data$pos.alpha]</pre>
    beta <- parm[Data$pos.beta]</pre>
    U <- as.parm.matrix(U, Data$J, parm, Data, chol=TRUE)</pre>
    diag(U) <- exp(diag(U))</pre>
```

```
### Log-Prior
alpha.prior <- sum(dnormv(alpha, 0, 1000, log=TRUE))</pre>
beta.prior <- sum(dnormv(beta, 0, 1000, log=TRUE))</pre>
U.prior <- dwishartc(U, Data$J+1, Data$S, log=TRUE)</pre>
### Log-Likelihood
mu <- Data$Y
mu[-1,1] \leftarrow alpha[1] + alpha[2]*Data$CG[-Data$T] +
     alpha[3] *Data$VG[-Data$T]
mu[-1,2] \leftarrow beta[1] + beta[2]*Data$CW[-Data$T] +
    beta[3] *Data$VW[-Data$T]
LL <- sum(dmvnpc(Data$Y[-1,], mu[-1,], U, log=TRUE))
### Log-Posterior
LP <- LL + alpha.prior + beta.prior + U.prior</pre>
Modelout <- list(LP=LP, Dev=-2*LL, Monitor=LP,</pre>
     yhat=rmvnpc(nrow(mu), mu, U), parm=parm)
return(Modelout)
}
```

```
Initial.Values <- c(rep(0,3), rep(0,3), upper.triangle(S, diag=TRUE))</pre>
```

82. Simultaneous Equations

This example of simultaneous equations uses Klein's Model I (Kleine 1950) regarding economic fluctations in the United States in 1920-1941 (\mathbf{N} =22). Usually, this example is modeled with 3-stage least sqaures (3SLS), excluding the uncertainty from multiple stages. By constraining each element in the instrumental variables matrix $\nu \in [-10, 10]$, this example estimates the model without resorting to stages. The dependent variable is matrix \mathbf{Y} , in which $\mathbf{Y}_{1,1:N}$ is \mathbf{C} or Consumption, $\mathbf{Y}_{2,1:N}$ is \mathbf{I} or Investment, and $\mathbf{Y}_{3,1:N}$ is \mathbf{Wp} or Private Wages. Here is a data dictionary:

```
A = Time Trend measured as years from 1931
C = Consumption
G = Government Nonwage Spending
I = Investment
K = Capital Stock
P = Private (Corporate) Profits
T = Indirect Business Taxes Plus Neg Exports
Wg = Government Wage Bill
Wp = Private Wages
X = Equilibrium Demand (GNP)
See Kleine (1950) for more information.
```

82.1. Form

$$\mathbf{Y} \sim \mathcal{N}_{3}(\mu, \Omega^{-1})$$

$$\mu_{1,1} = \alpha_{1} + \alpha_{2}\nu_{1,1} + \alpha_{4}\nu_{2,1}$$

$$\mu_{1,i} = \alpha_{1} + \alpha_{2}\nu_{1,i} + \alpha_{3}\mathbf{P}_{i-1} + \alpha_{4}\nu_{2,i}, \quad i = 2, \dots, N$$

$$\mu_{2,1} = \beta_{1} + \beta_{2}\nu_{1,1} + \beta_{4}\mathbf{K}_{1}$$

$$\mu_{2,i} = \beta_{1} + \beta_{2}\nu_{1,i} + \beta_{3}\mathbf{P}_{i-1} + \beta_{4}\mathbf{K}_{i}, \quad i = 2, \dots, N$$

$$\mu_{3,1} = \gamma_{1} + \gamma_{2}\nu_{3,1} + \gamma_{4}\mathbf{A}_{1}$$

$$\mu_{3,i} = \gamma_{1} + \gamma_{2}\nu_{3,i} + \gamma_{3}\mathbf{X}_{i-1} + \gamma_{4}\mathbf{A}_{i}, \quad i = 2, \dots, N$$

$$\mathbf{Z}_{j,i} \sim \mathcal{N}(\nu_{j,i}, \sigma_{j}^{2}), \quad j = 1, \dots, 3$$

$$\nu_{j,1} = \pi_{j,1} + \pi_{j,3}\mathbf{K}_{1} + \pi_{j,5}\mathbf{A}_{1} + \pi_{j,6}\mathbf{T}_{1} + \pi_{j,7}\mathbf{G}_{1}, \quad j = 1, \dots, 3$$

$$\nu_{j,i} = \pi_{j,1} + \pi_{j,2}\mathbf{P}_{i-1} + \pi_{j,3}\mathbf{K}_{i} + \pi_{j,4}\mathbf{X}_{i-1} + \pi_{j,5}\mathbf{A}_{i} + \pi_{j,6}\mathbf{T}_{1} + \pi\mathbf{G}_{i}, \quad i = 1, \dots, N, \quad j = 1, \dots, 3$$

$$\alpha_{j} \sim \mathcal{N}(0, 1000), \quad j = 1, \dots, 4$$

$$\beta_{j} \sim \mathcal{N}(0, 1000), \quad j = 1, \dots, 4$$

$$\gamma_{j} \sim \mathcal{N}(0, 1000), \quad j = 1, \dots, 4$$

$$\pi_{j,i} \sim \mathcal{N}(0, 1000) \in [-10, 10], \quad j = 1, \dots, 4$$

$$\pi_{j,i} \sim \mathcal{N}(0, 1000) \in [-10, 10], \quad j = 1, \dots, 3$$

$$\alpha_{j} \sim \mathcal{H}(25), \quad j = 1, \dots, 3$$

$$\Omega \sim \mathcal{W}_{4}(\mathbf{S}), \quad \mathbf{S} = \mathbf{I}_{3}$$

82.2. Data

N <- 22

 $A \leftarrow c(-11, -10, -9, -8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10)$

 $C \leftarrow c(39.8,41.9,45,49.2,50.6,52.6,55.1,56.2,57.3,57.8,55,50.9,45.6,46.5,48.7,51.3,57.7,58.7,57.5,61.6,65,69.7)$

 $G \leftarrow c(2.4,3.9,3.2,2.8,3.5,3.3,3.3,4,4.2,4.1,5.2,5.9,4.9,3.7,4,4.4,2.9,4.3,5.3,6.6,7.4,13.8)$

 $I \leftarrow c(2.7,-0.2,1.9,5.2,3,5.1,5.6,4.2,3,5.1,1,-3.4,-6.2,-5.1,-3,-1.3,2.1,2,-1.9,1.3,3.3,4.9)$

K <- c(180.1,182.8,182.6,184.5,189.7,192.7,197.8,203.4,207.6,210.6,215.7,
216.7,213.3,207.1,202,199,197.7,199.8,201.8,199.9,201.2,204.5)</pre>

 $P \leftarrow c(12.7, 12.4, 16.9, 18.4, 19.4, 20.1, 19.6, 19.8, 21.1, 21.7, 15.6, 11.4, 7, 11.2, 12.3, 14, 17.6, 17.3, 15.3, 19, 21.1, 23.5)$

 $T \leftarrow c(3.4,7.7,3.9,4.7,3.8,5.5,7,6.7,4.2,4,7.7,7.5,8.3,5.4,6.8,7.2,8.3,6.7,7.4,8.9,9.6,11.6)$

 $Wg \leftarrow c(2.2,2.7,2.9,2.9,3.1,3.2,3.3,3.6,3.7,4,4.2,4.8,5.3,5.6,6,6.1,7.4,6.7,7.7,7.8,8,8.5)$

Wp <- c(28.8,25.5,29.3,34.1,33.9,35.4,37.4,37.9,39.2,41.3,37.9,34.5,29,28.5, 30.6,33.2,36.8,41,38.2,41.6,45,53.3)

```
X \leftarrow c(44.9, 45.6, 50.1, 57.2, 57.1, 61, 64, 64.4, 64.5, 67, 61.2, 53.4, 44.3, 45.1,
          49.7,54.4,62.7,65,60.9,69.5,75.7,88.4)
year <- c(1920,1921,1922,1923,1924,1925,1926,1927,1928,1929,1930,1931,1932,</pre>
          1933, 1934, 1935, 1936, 1937, 1938, 1939, 1940, 1941)
Y <- matrix(c(C,I,Wp),3,N, byrow=TRUE)
Z <- matrix(c(P, Wp+Wg, X), 3, N, byrow=TRUE)</pre>
S <- diag(nrow(Y))</pre>
mon.names <- "LP"
parm.names <- as.parm.names(list(alpha=rep(0,4), beta=rep(0,4),
          gamma=rep(0,4), pi=matrix(0,3,7), sigma=rep(0,3),
         U=diag(3), uppertri=c(0,0,0,0,0,1))
pos.alpha <- grep("alpha", parm.names)</pre>
pos.beta <- grep("beta", parm.names)</pre>
pos.gamma <- grep("gamma", parm.names)</pre>
pos.pi <- grep("pi", parm.names)</pre>
pos.sigma <- grep("sigma", parm.names)</pre>
PGF <- function(Data) return(c(rnormv(4,0,10), rnormv(4,0,10),
         rnormv(4,0,10), rnormv(3*7,0,10), rhalfcauchy(3,5),
         upper.triangle(rwishartc(nrow(Data$S)+1,Data$S), diag=TRUE)))
\label{eq:mydata} $$\operatorname{Iist}(A=A, C=C, G=G, I=I, K=K, N=N, P=P, PGF=PGF, S=S, T=T, Wg=Wg, I=I, K=K, N=I, R, Wg=Wg, I=I, R, Wg, I=I, R, Wg,
         Wp=Wp, X=X, Y=Y, Z=Z, mon.names=mon.names, parm.names=parm.names,
         pos.alpha=pos.alpha, pos.beta=pos.beta, pos.gamma=pos.gamma,
         pos.pi=pos.pi, pos.sigma=pos.sigma)
82.3. Model
Model <- function(parm, Data)</pre>
         {
         ### Parameters
         alpha <- parm[Data$pos.alpha]</pre>
         beta <- parm[Data$pos.beta]</pre>
         gamma <- parm[Data$pos.gamma]</pre>
         parm[Data$pos.pi] <- pi <- interval(parm[Data$pos.pi], -10, 10)</pre>
         pi <- matrix(pi, 3, 7)</pre>
                                                                      sigma <- interval(parm[Data$pos.sigma], 1e-100,</pre>
Inf)
         parm[Data$pos.sigma] <- sigma</pre>
                                                                                  U <- as.parm.matrix(U, nrow(Data$S), parm,</pre>
Data, chol=TRUE)
         parm[grep("Omega", Data$parm.names)] <- upper.triangle(Omega,</pre>
                    diag=TRUE)
         diag(U) <- exp(diag(U))</pre>
         ### Log-Prior
         alpha.prior <- sum(dnormv(alpha, 0, 1000, log=TRUE))</pre>
         beta.prior <- sum(dnormv(beta, 0, 1000, log=TRUE))</pre>
          gamma.prior <- sum(dnormv(gamma, 0, 1000, log=TRUE))</pre>
         pi.prior <- sum(dnormv(pi, 0, 1000, log=TRUE))</pre>
```

sigma.prior <- sum(dhalfcauchy(sigma, 25, log=TRUE))</pre>

```
U.prior <- dwishartc(U, nrow(Data$S)+1, Data$S, log=TRUE)</pre>
### Log-Likelihood
mu <- nu <- matrix(0,3,Data$N)</pre>
for (i in 1:3) {
    nu[i,1] <- pi[i,1] + pi[i,3]*Data$K[1] + pi[i,5]*Data$A[1] +</pre>
         pi[i,6]*Data$T[1] + pi[i,7]*Data$G[1]
    nu[i,-1] <- pi[i,1] + pi[i,2]*Data$P[-Data$N] +</pre>
         pi[i,3]*Data$K[-1] + pi[i,4]*Data$X[-Data$N] +
         pi[i,5]*Data$A[-1] + pi[i,6]*Data$T[-1] +
         pi[i,7]*Data$G[-1]}
LL <- sum(dnorm(Data$Z, nu, matrix(sigma, 3, Data$N), log=TRUE))
mu[1,1] \leftarrow alpha[1] + alpha[2]*nu[1,1] + alpha[4]*nu[2,1]
mu[1,-1] <- alpha[1] + alpha[2]*nu[1,-1] +
    alpha[3]*Data$P[-Data$N] + alpha[4]*nu[2,-1]
mu[2,1] \leftarrow beta[1] + beta[2]*nu[1,1] + beta[4]*Data$K[1]
mu[2,-1] \leftarrow beta[1] + beta[2]*nu[1,-1] +
    beta[3]*Data$P[-Data$N] + beta[4]*Data$K[-1]
mu[3,1] <- gamma[1] + gamma[2]*nu[3,1] + gamma[4]*Data$A[1]</pre>
mu[3,-1] <- gamma[1] + gamma[2]*nu[3,-1] +
    gamma[3]*Data$X[-Data$N] + gamma[4]*Data$A[-1]
LL <- LL + sum(dmvnpc(t(Data$Y), t(mu), U, log=TRUE))</pre>
### Log-Posterior
LP <- LL + alpha.prior + beta.prior + gamma.prior + pi.prior +
    sigma.prior + U.prior
Modelout <- list(LP=LP, Dev=-2*LL, Monitor=LP,</pre>
    yhat=t(rmvnp(ncol(mu), t(mu), U)), parm=parm)
return(Modelout)
}
```

82.4. Initial Values

```
Initial.Values <- c(rep(0,4), rep(0,4), rep(0,4), rep(0,3*7), rep(1,3),
     upper.triangle(S, diag=TRUE))</pre>
```

83. Space-Time, Dynamic

This approach to space-time or spatiotemporal modeling applies kriging to a stationary spatial component for points in space $s=1,\ldots,S$ first at time t=1, where space is continuous and time is discrete. Vector ζ contains these spatial effects. Next, SSM (State Space Model) or DLM (Dynamic Linear Model) components are applied to the spatial parameters $(\phi, \kappa, \text{ and }\lambda)$ and regression effects (β) . These parameters are allowed to vary dynamically with time $t=2,\ldots,T$, and the resulting spatial process is estimated for each of these time-periods. When time is discrete, a dynamic space-time process can be applied. The matrix Θ contains the dynamically varying stationary spatial effects, or space-time effects. Spatial coordinates are given in longitude and latitude for $s=1,\ldots,S$ points in space and measurements are

taken across discrete time-periods t = 1, ..., T for $\mathbf{Y}_{s,t}$. The dependent variable is also a function of design matrix \mathbf{X} (which may also be dynamic, but is static in this example) and dynamic regression effects matrix $\beta_{1:J,1:T}$. For more information on kriging, see section 42. For more information on SSMs or DLMs, see section 88. To extend this to a large spatial data set, consider incorporating the predictive process kriging example in section 43.

83.1. Form

$$\mathbf{Y}_{s,t} \sim \mathcal{N}(\mu_{s,t}, \sigma_{1}^{2}), \quad s = 1, \dots, S, \quad t = 1, \dots, T$$

$$\mu_{s,t} = \mathbf{X}_{s,1:J}\beta_{1:J,t} + \Theta_{s,t}$$

$$\Theta_{s,t} = \frac{\sum_{s,s,t}}{\sum_{r=1}^{S} \sum_{r,s,t}} \Theta_{s,t-1}, \quad s = 1, \dots, S, \quad t = 2, \dots, T$$

$$\Theta_{s,1} = \zeta_{s}$$

$$\zeta \sim \mathcal{N}_{S}(0, \Sigma_{1:S,1:S,1})$$

$$\Sigma_{1:S,1:S,t} = \lambda_{t}^{2} \exp(-\phi_{t}\mathbf{D})^{\kappa[t]}$$

$$\sigma_{1} \sim \mathcal{HC}(25)$$

$$\beta_{j,1} \sim \mathcal{N}(0, 1000), \quad j = 1, \dots, 2$$

$$\beta_{1,t} \sim \mathcal{N}(\beta_{1,t-1}, \sigma_{2}^{2}), \quad t = 2, \dots, T$$

$$\beta_{2,t} \sim \mathcal{N}(\beta_{2,t-1}, \sigma_{3}^{2}), \quad t = 2, \dots, T$$

$$\phi_{1} \sim \mathcal{H}\mathcal{N}(1000)$$

$$\phi_{t} \sim \mathcal{N}(\phi_{t-1}, \sigma_{4}^{2}) \in [0, \infty], \quad t = 2, \dots, T$$

$$\kappa_{1} \sim \mathcal{H}\mathcal{N}(1000)$$

$$\kappa_{t} \sim \mathcal{N}(\kappa_{t-1}, \sigma_{5}^{2}) \in [0, \infty], \quad t = 2, \dots, T$$

$$\lambda_{1} \sim \mathcal{H}\mathcal{N}(1000)$$

$$\lambda_{t} \sim \mathcal{N}(\lambda_{t-1}, \sigma_{6}^{2}) \in [0, \infty], \quad t = 2, \dots, T$$

```
S <- 20
T <- 10
longitude <- runif(S,0,100)
latitude <- runif(S,0,100)
D <- as.matrix(dist(cbind(longitude,latitude), diag=TRUE, upper=TRUE))
beta <- matrix(c(50,2), 2, T)
phi <- rep(1,T); kappa <- rep(1.5,T); lambda <- rep(10000,T)
for (t in 2:T) {
   beta[1,t-1] <- beta[1,t-1] + rnorm(1,0,1)
   beta[2,t-1] <- beta[2,t-1] + rnorm(1,0,0.1)
   phi[t] <- phi[t-1] + rnorm(1,0,0.1)</pre>
```

```
if(phi[t] < 0.001) phi[t] <- 0.001
    kappa[t] \leftarrow kappa[t-1] + rnorm(1,0,0.1)
    lambda[t] \leftarrow lambda[t-1] + rnorm(1,0,1000)
Sigma <- array(0, dim=c(S,S,T))</pre>
for (t in 1:T) {
     Sigma[ , ,t] <- lambda[t] * exp(-phi[t] * D)^kappa[t]}</pre>
zeta <- as.vector(apply(rmvn(1000, rep(0,S), Sigma[ , ,1]), 2, mean))</pre>
Theta <- matrix(zeta,S,T)</pre>
for (t in 2:T) {for (s in 1:S) {
     Theta[,t] \leftarrow sum(Sigma[,s,t] / sum(Sigma[,s,t]) * Theta[,t-1]) \} 
X \leftarrow matrix(runif(S*2,-2,2),S,2); X[,1] \leftarrow 1
mu <- tcrossprod(X, t(beta))</pre>
Y <- mu + Theta + matrix(rnorm(S*T,0,0.1),S,T)
mon.names <- "LP"
parm.names <- as.parm.names(list(zeta=rep(0,S), beta=matrix(0,2,T),</pre>
    phi=rep(0,T), kappa=rep(0,T), lambda=rep(0,T), sigma=rep(0,6)))
pos.zeta <- grep("zeta", parm.names)</pre>
pos.beta <- grep("beta", parm.names)</pre>
pos.phi <- grep("phi", parm.names)</pre>
pos.kappa <- grep("kappa", parm.names)</pre>
pos.lambda <- grep("lambda", parm.names)</pre>
pos.sigma <- grep("sigma", parm.names)</pre>
PGF <- function(Data) return(c(rmvn(1, rep(0,Data$S),
    rhalfnorm(1,sqrt(1000))^2 *
     exp(-rhalfnorm(1,sqrt(1000))*Data$D)^rhalfnorm(1,sqrt(1000))),
    rnormv(2*Data$T,0,1000), rhalfnorm(Data$T,sqrt(1000)),
    rhalfnorm(Data$T,sqrt(1000)), rhalfnorm(Data$T,sqrt(1000)),
     rhalfcauchy(6,5)))
MyData <- list(D=D, PGF=PGF, S=S, T=T, X=X, Y=Y, latitude=latitude,
     longitude=longitude, mon.names=mon.names, parm.names=parm.names,
    pos.zeta=pos.zeta, pos.beta=pos.beta, pos.phi=pos.phi,
    pos.kappa=pos.kappa, pos.lambda=pos.lambda, pos.sigma=pos.sigma)
83.3. Model
Model <- function(parm, Data)</pre>
     ### Parameters
    beta <- matrix(parm[Data$pos.beta], 2, Data$T)</pre>
    zeta <- parm[Data$pos.zeta]</pre>
    parm[Data$pos.phi] <- phi <- interval(parm[Data$pos.phi], 1e-100, Inf)</pre>
    kappa <- interval(parm[Data$pos.kappa], 1e-100, Inf)</pre>
    parm[Data$pos.kappa] <- kappa</pre>
    lambda <- interval(parm[Data$pos.lambda], 1e-100, Inf)</pre>
    parm[Data$pos.lambda] <- lambda</pre>
     sigma <- interval(parm[Data$pos.sigma], 1e-100, Inf)</pre>
```

```
parm[Data$pos.sigma] <- sigma</pre>
Sigma <- array(0, dim=c(Data$S, Data$T))</pre>
for (t in 1:Data$T) {
    Sigma[ , ,t] <- lambda[t]^2 * exp(-phi[t] * Data$D)^kappa[t] 
### Log-Prior
beta.prior <- sum(dnormv(beta[,1], 0, 1000, log=TRUE),</pre>
    dnorm(beta[,-1], beta[,-Data$T], matrix(sigma[2:3], 2,
    Data$T-1), log=TRUE))
zeta.prior <- dmvn(zeta, rep(0,Data$S), Sigma[ , , 1], log=TRUE)</pre>
phi.prior <- sum(dhalfnorm(phi[1], sqrt(1000), log=TRUE),</pre>
    dtrunc(phi[-1], "norm", a=0, b=Inf, mean=phi[-Data$T],
    sd=sigma[4], log=TRUE))
kappa.prior <- sum(dhalfnorm(kappa[1], sqrt(1000), log=TRUE),</pre>
    dtrunc(kappa[-1], "norm", a=0, b=Inf, mean=kappa[-Data$T],
    sd=sigma[5], log=TRUE))
lambda.prior <- sum(dhalfnorm(lambda[1], sqrt(1000), log=TRUE),</pre>
    dtrunc(lambda[-1], "norm", a=0, b=Inf, mean=lambda[-Data$T],
    sd=sigma[6], log=TRUE))
sigma.prior <- sum(dhalfcauchy(sigma, 25, log=TRUE))</pre>
### Log-Likelihood
mu <- tcrossprod(Data$X, t(beta))</pre>
Theta <- matrix(zeta, Data$S, Data$T)</pre>
for (t in 2:Data$T) {
    for (s in 1:Data$S) {
         Theta[,t] \leftarrow Sigma[,s,t] / sum(Sigma[,s,t]) * Theta[,t-1]}}
mu <- mu + Theta
LL <- sum(dnorm(Data$Y, mu, sigma[1], log=TRUE))</pre>
### Log-Posterior
LP <- LL + beta.prior + zeta.prior + sum(phi.prior) +
    sum(kappa.prior) + sum(lambda.prior) + sigma.prior
Modelout <- list(LP=LP, Dev=-2*LL, Monitor=LP,</pre>
    yhat=rnorm(prod(dim(mu)), mu, sigma[1]), parm=parm)
return(Modelout)
}
```

```
Initial.Values <- c(rep(0,S), rep(c(mean(Y),0),T), rep(1,T), rep(1,T), rep(1,T), rep(1,T), rep(1,S))
```

84. Space-Time, Nonseparable

This approach to space-time or spatiotemporal modeling applies kriging both to the stationary spatial and temporal components, where space is continuous and time is discrete. Matrix Ξ contains the space-time effects. Spatial coordinates are given in longitude and latitude for

s = 1, ..., S points in space and measurements are taken across time-periods t = 1, ..., T for $\mathbf{Y}_{s,t}$. The dependent variable is also a function of design matrix \mathbf{X} and regression effects vector β . For more information on kriging, see section 42. This example uses a nonseparable, stationary covariance function in which space and time are separable only when $\psi = 0$. To extend this to a large space-time data set, consider incorporating the predictive process kriging example in section 43.

84.1. Form

$$\mathbf{Y}_{s,t} \sim \mathcal{N}(\mu_{s,t}, \sigma_1^2), \quad s = 1, \dots, S, \quad t = 1, \dots, T$$

$$\mu = \mathbf{X}\beta + \Xi$$

$$\Xi \sim \mathcal{N}_{ST}(\Xi_{\mu}, \Sigma)$$

$$\Sigma = \sigma_2^2 \exp\left(-\frac{\mathbf{D}_S}{\phi_1}^{\kappa} - \frac{\mathbf{D}_T}{\phi_2}^{\lambda} - \psi \frac{\mathbf{D}_S}{\phi_1}^{\kappa} \frac{\mathbf{D}_T}{\phi_2}^{\lambda}\right)$$

$$\beta_j \sim \mathcal{N}(0, 1000), \quad j = 1, \dots, J$$

$$\phi_k \sim \mathcal{U}(1, 5), \quad k = 1, \dots, 2$$

$$\sigma_k \sim \mathcal{HC}(25), \quad k = 1, \dots, 2$$

$$\psi \sim \mathcal{HC}(25)$$

$$\Xi_{\mu} = 0$$

$$\kappa = 1, \quad \lambda = 1$$

```
S <- 10
T <- 5
longitude <- runif(S,0,100)</pre>
latitude <- runif(S,0,100)</pre>
D.S <- as.matrix(dist(cbind(rep(longitude,T),rep(latitude,T)), diag=TRUE,
     upper=TRUE))
D.T <- as.matrix(dist(cbind(rep(1:T,each=S),rep(1:T,each=S)), diag=TRUE,
    upper=TRUE))
Sigma \leftarrow 10000 * exp(-D.S/3 - D.T/2 - 0.2*(D.S/3)*(D.T/2))
Xi <- as.vector(apply(rmvn(1000, rep(0,S*T), Sigma), 2, mean))</pre>
Xi <- matrix(Xi,S,T)</pre>
beta <- c(50,2)
X <- matrix(runif(S*2,-2,2),S,2); X[,1] <- 1</pre>
mu <- as.vector(tcrossprod(X, t(beta)))</pre>
Y \leftarrow mu + Xi
mon.names <- "LP"
parm.names <- as.parm.names(list(Xi=matrix(0,S,T), beta=rep(0,2),</pre>
    phi=rep(0,2), sigma=rep(0,2), psi=0))
```

```
pos.Xi <- grep("Xi", parm.names)</pre>
pos.beta <- grep("beta", parm.names)</pre>
pos.phi <- grep("phi", parm.names)</pre>
pos.sigma <- grep("sigma", parm.names)</pre>
pos.psi <- grep("psi", parm.names)</pre>
PGF <- function(Data) return(c(rmvn(1, rep(0,Data$S*Data$T),</pre>
    rhalfcauchy(1,25)^2 * exp(-(Data$D.S / runif(1,1,5)) -
     (Data$D.T / runif(1,1,5)) -
    rhalfcauchy(1,5)*(Data$D.S / rhalfcauchy(1,5)))),
     rnormv(2,0,1000), runif(2,1,5), rhalfcauchy(3,25)))
MyData <- list(D.S=D.S, D.T=D.T, PGF=PGF, S=S, T=T, X=X, Y=Y,
     latitude=latitude, longitude=longitude, mon.names=mon.names,
    parm.names=parm.names, pos.Xi=pos.Xi, pos.beta=pos.beta,
    pos.phi=pos.phi, pos.sigma=pos.sigma, pos.psi=pos.psi)
84.3. Model
Model <- function(parm, Data)</pre>
    ### Hyperparameters
    Xi.mu <- rep(0,Data$S*Data$T)</pre>
    ### Parameters
    beta <- parm[Data$pos.beta]</pre>
    Xi <- parm[Data$pos.Xi]</pre>
    kappa <- 1; lambda <- 1
    sigma <- interval(parm[Data$pos.sigma], 1e-100, Inf)</pre>
    parm[Data$pos.sigma] <- sigma</pre>
    parm[Data$pos.phi] <- phi <- interval(parm[Data$pos.phi], 1, 5)</pre>
    parm[Data$pos.psi] <- psi <- interval(parm[Data$pos.psi], 1e-100, Inf)</pre>
    Sigma <- sigma[2] *sigma[2] * exp(-(Data$D.S / phi[1])^kappa -
          (Data$D.T / phi[2])^lambda -
         psi*(Data$D.S / phi[1])^kappa * (Data$D.T / phi[2])^lambda)
    ### Log-Prior
    beta.prior <- sum(dnormv(beta, 0, 1000, log=TRUE))</pre>
    Xi.prior <- dmvn(Xi, Xi.mu, Sigma, log=TRUE)</pre>
    sigma.prior <- sum(dhalfcauchy(sigma, 25, log=TRUE))</pre>
    phi.prior <- sum(dunif(phi, 1, 5, log=TRUE))</pre>
    psi.prior <- dhalfcauchy(psi, 25, log=TRUE)</pre>
    ### Log-Likelihood
    Xi <- matrix(Xi, Data$S, Data$T)</pre>
    mu <- as.vector(tcrossprod(Data$X, t(beta))) + Xi</pre>
    LL <- sum(dnorm(Data$Y, mu, sigma[1], log=TRUE))</pre>
    ### Log-Posterior
    LP <- LL + beta.prior + Xi.prior + sigma.prior + phi.prior + psi.prior
    Modelout <- list(LP=LP, Dev=-2*LL, Monitor=LP,</pre>
```

yhat=rnorm(prod(dim(mu)), mu, sigma[1]), parm=parm)

```
return(Modelout)
}
```

84.4. Initial Values

Initial. Values \leftarrow c(rep(0,S*T), mean(Y), 1, rep(1,2), rep(1,2), 1)

85. Space-Time, Separable

This introductory approach to space-time or spatiotemporal modeling applies kriging both to the stationary spatial and temporal components, where space is continuous and time is discrete. Vector ζ contains the spatial effects and vector θ contains the temporal effects. Spatial coordinates are given in longitude and latitude for s = 1, ..., S points in space and measurements are taken across time-periods t = 1, ..., T for $\mathbf{Y}_{s,t}$. The dependent variable is also a function of design matrix \mathbf{X} and regression effects vector β . For more information on kriging, see section 42. This example uses separable space-time covariances, which is more convenient but usually less appropriate than a nonseparable covariance function. To extend this to a large space-time data set, consider incorporating the predictive process kriging example in section 43.

85.1. Form

$$\mathbf{Y}_{s,t} \sim \mathcal{N}(\mu_{s,t}, \sigma_1^2), \quad s = 1, \dots, S, \quad t = 1, \dots, T$$

$$\mu_{s,t} = \mathbf{X}_{s,1:J}\beta + \zeta_s + \Theta_{s,t}$$

$$\Theta_{s,1:T} = \theta$$

$$\theta \sim \mathcal{N}_N(\theta_\mu, \Sigma_T)$$

$$\Sigma_T = \sigma_3^2 \exp(-\phi_2 \mathbf{D}_T)^{\lambda}$$

$$\zeta \sim \mathcal{N}_N(\zeta_\mu, \Sigma_S)$$

$$\Sigma_S = \sigma_2^2 \exp(-\phi_1 \mathbf{D}_S)^{\kappa}$$

$$\beta_j \sim \mathcal{N}(0, 1000), \quad j = 1, \dots, 2$$

$$\sigma_k \sim \mathcal{HC}(25), \quad k = 1, \dots, 3$$

$$\phi_k \sim \mathcal{U}(1, 5), \quad k = 1, \dots, 2$$

$$\zeta_\mu = 0$$

$$\theta_\mu = 0$$

$$\kappa = 1, \quad \lambda = 1$$

85.2. Data

S <- 20 T <- 10

```
longitude <- runif(S,0,100)</pre>
latitude <- runif(S,0,100)</pre>
D.S <- as.matrix(dist(cbind(longitude, latitude), diag=TRUE, upper=TRUE))
Sigma.S < -10000 * exp(-1.5 * D.S)
zeta <- as.vector(apply(rmvn(1000, rep(0,S), Sigma.S), 2, mean))
D.T <- as.matrix(dist(cbind(c(1:T),c(1:T)), diag=TRUE, upper=TRUE))</pre>
Sigma.T <- 10000 * exp(-3 * D.T)
theta <- as.vector(apply(rmvn(1000, rep(0,T), Sigma.T), 2, mean))
Theta <- matrix(theta,S,T,byrow=TRUE)</pre>
beta <- c(50,2)
X \leftarrow matrix(runif(S*2,-2,2),S,2); X[,1] \leftarrow 1
mu <- as.vector(tcrossprod(X, t(beta)))</pre>
Y <- mu + zeta + Theta + matrix(rnorm(S*T,0,0.1),S,T)
mon.names <- "LP"
parm.names <- as.parm.names(list(zeta=rep(0,S), theta=rep(0,T),</pre>
     beta=rep(0,2), phi=rep(0,2), sigma=rep(0,3))
pos.zeta <- grep("zeta", parm.names)</pre>
pos.theta <- grep("theta", parm.names)</pre>
pos.beta <- grep("beta", parm.names)</pre>
pos.phi <- grep("phi", parm.names)</pre>
pos.sigma <- grep("sigma", parm.names)</pre>
PGF <- function(Data) return(c(rmvn(1, rep(0,Data$S),
    rhalfcauchy(1,5)^2 * \exp(-\text{runif}(1,1,5)*\text{Data}D.S)),
    rmvn(1, rep(0,Data$T), rhalfcauchy(1,5)^2 *
     exp(-runif(1,1,5)*Data$D.T)), rnormv(2,0,1000), runif(2,1,5),
    rhalfcauchy(3,5)))
MyData <- list(D.S=D.S, D.T=D.T, PGF=PGF, S=S, T=T, X=X, Y=Y,
     latitude=latitude, longitude=longitude, mon.names=mon.names,
    parm.names=parm.namespos.zeta=pos.zeta, pos.theta=pos.theta,
    pos.beta=pos.beta, pos.phi=pos.phi, pos.sigma=pos.sigma)
85.3. Model
Model <- function(parm, Data)</pre>
    {
    ### Hyperparameters
    zeta.mu <- rep(0,Data$S)</pre>
    theta.mu <- rep(0,Data$T)
    ### Parameters
    beta <- parm[Data$pos.beta]</pre>
    zeta <- parm[Data$pos.zeta]</pre>
    theta <- parm[Data$pos.theta]</pre>
    kappa <- 1; lambda <- 1
    sigma <- interval(parm[Data$pos.sigma], 1e-100, Inf)</pre>
    parm[Data$pos.sigma] <- sigma</pre>
    parm[Data$pos.phi] <- phi <- interval(parm[Data$pos.phi], 1, 5)</pre>
```

```
Sigma.S <- sigma[2]^2 * exp(-phi[1] * Data$D.S)^kappa
Sigma.T <- sigma[3]^2 * exp(-phi[2] * Data$D.T)^lambda
### Log-Prior
beta.prior <- sum(dnormv(beta, 0, 1000, log=TRUE))</pre>
zeta.prior <- dmvn(zeta, zeta.mu, Sigma.S, log=TRUE)</pre>
theta.prior <- dmvn(theta, theta.mu, Sigma.T, log=TRUE)
sigma.prior <- sum(dhalfcauchy(25, log=TRUE))</pre>
phi.prior <- sum(dunif(phi, 1, 5, log=TRUE))</pre>
### Log-Likelihood
Theta <- matrix(theta, Data$S, Data$T, byrow=TRUE)</pre>
mu <- as.vector(tcrossprod(Data$X, t(beta))) + zeta + Theta</pre>
LL <- sum(dnorm(Data$Y, mu, sigma[1], log=TRUE))</pre>
### Log-Posterior
LP <- LL + beta.prior + zeta.prior + theta.prior + sigma.prior +
    phi.prior
Modelout <- list(LP=LP, Dev=-2*LL, Monitor=LP,</pre>
    yhat=rnorm(prod(dim(mu)), mu, sigma[1]), parm=parm)
return(Modelout)
}
```

85.4. Initial Values

Initial. Values $\leftarrow c(rep(0,S), rep(0,T), rep(0,2), rep(1,2), rep(1,3))$

86. Spatial Autoregression (SAR)

The spatial autoregressive (SAR) model in this example uses are aldata that consists of first-order neighbors that were specified and converted from point-based data with longitude and latitude coordinates.

86.1. Form

$$\mathbf{y} \sim \mathcal{N}(\mu, \sigma^2)$$

$$\mu = \mathbf{X}\beta + \phi \mathbf{z}$$

$$\beta_j \sim \mathcal{N}(0, 1000), \quad j = 1, \dots, J$$

$$\phi \sim \mathcal{U}(-1, 1)$$

$$\sigma \sim \mathcal{HC}(25)$$

```
N <- 100 latitude <- runif(N,0,100); longitude <- runif(N,0,100) J <- 3 #Number of predictors, including the intercept
```

```
X \leftarrow matrix(runif(N*J,0,3), N, J); X[,1] \leftarrow 1
beta.orig \leftarrow runif(J,0,3); phi \leftarrow runif(1,0,1)
D <- as.matrix(dist(cbind(longitude, latitude), diag=TRUE, upper=TRUE))
W <- exp(-D) #Inverse distance as weights
W \leftarrow ifelse(D == 0, 0, W)
epsilon <- rnorm(N,0,1)
y <- tcrossprod(X, t(beta.orig)) + sqrt(latitude) + sqrt(longitude) +
    epsilon
Z <- W / matrix(rowSums(W), N, N) * matrix(y, N, N, byrow=TRUE)</pre>
z <- as.vector(apply(Z, 1, sum))</pre>
mon.names <- "LP"
parm.names <- as.parm.names(list(beta=rep(0,J), phi=0, sigma=0))</pre>
pos.beta <- grep("beta", parm.names)</pre>
pos.phi <- grep("phi", parm.names)</pre>
pos.sigma <- grep("sigma", parm.names)</pre>
PGF <- function(Data) return(c(rnormv(Data$J,0,1000), runif(1,-1,1),
    rhalfcauchy(1,5)))
MyData <- list(J=J, PGF=PGF, X=X, latitude=latitude, longitude=longitude,
    mon.names=mon.names, parm.names=parm.names, pos.beta=pos.beta,
    pos.phi=pos.phi, pos.sigma=pos.sigma, y=y, z=z)
```

86.3. Model

```
Model <- function(parm, Data)</pre>
     ### Parameters
     beta <- parm[Data$pos.beta]</pre>
     parm[Data$pos.phi] <- phi <- interval(parm[Data$pos.phi], -1, 1)</pre>
     sigma <- interval(parm[Data$pos.sigma], 1e-100, Inf)</pre>
     parm[Data$pos.sigma] <- sigma</pre>
     ### Log-Prior
     beta.prior <- sum(dnormv(beta, 0, 1000, log=TRUE))</pre>
     phi.prior <- dunif(phi, -1, 1, log=TRUE)</pre>
     sigma.prior <- dhalfcauchy(sigma, 25, log=TRUE)</pre>
     ### Log-Likelihood
     mu <- tcrossprod(Data$X, t(beta)) + phi*Data$z</pre>
     LL <- sum(dnorm(Data$y, mu, sigma, log=TRUE))</pre>
     ### Log-Posterior
     LP <- LL + beta.prior + phi.prior + sigma.prior</pre>
     Modelout <- list(LP=LP, Dev=-2*LL, Monitor=LP,</pre>
          yhat=rnorm(length(mu), mu, sigma), parm=parm)
     return(Modelout)
     }
```

86.4. Initial Values

Initial. Values \leftarrow c(rep(0,J), 0.5, 1)

87. STARMA(1,1)

The data in this example of a space-time autoregressive moving average (STARMA) are coordinate-based, and the adjacency matrix \mathbf{A} is created from K nearest neighbors. Otherwise, an adjacency matrix may be specified as usual for areal data. Spatial coordinates are given in longitude and latitude for $s = 1, \ldots, S$ points in space and measurements are taken across time-periods $t = 1, \ldots, T$ for $\mathbf{Y}_{s,t}$.

87.1. Form

$$\mathbf{Y} \sim \mathcal{N}(\mu, \sigma^2)$$

$$\mu_{s,t} = \mathbf{X}_{s,t}\beta + \phi \mathbf{W} \mathbf{1}_{s,t-1} + \theta \mathbf{W} \mathbf{2}_{s,t-1}, \quad s = 1, \dots, S, \quad t = 2, \dots, T$$

$$\mathbf{W} \mathbf{1} = \mathbf{V} \mathbf{Y}$$

$$\mathbf{W} \mathbf{2} = \mathbf{V} \epsilon$$

$$\epsilon = \mathbf{Y} - \mu$$

$$\beta_j \sim \mathcal{N}(0, 1000), \quad j = 1, \dots, J$$

$$\phi \sim \mathcal{U}(-1, 1)$$

$$\sigma \sim \mathcal{HC}(25)$$

$$\theta \sim \mathcal{N}(0, 1000)$$

where **V** is an adjacency matrix that is scaled so that each row sums to one, β is a vector of regression effects, ϕ is the autoregressive space-time parameter, σ is the residual variance, and θ is the moving average space-time parameter.

```
S <- 100
T <- 10
K <- 5 #Number of nearest neighbors
latitude <- runif(S,0,100)
longitude <- runif(S,0,100)
X1 <- matrix(runif(S*T,-2,2), S, T)
X2 <- matrix(runif(S*T,-2,2), S, T)
for (t in 2:T) {
        X1[,t] <- X1[,t-1] + runif(S,-0.1,0.1)
        X2[,t] <- X2[,t-1] + runif(S,-0.1,0.1)}
beta.orig <- runif(3,-2,2); phi.orig <- 0.8; theta.orig <- 1
epsilon <- matrix(rnorm(S*T,0,0.1), S, T)
Z <- matrix(rnorm(S*T,0,0.1), S, T)</pre>
```

```
D <- as.matrix(dist(cbind(longitude, latitude), diag=TRUE, upper=TRUE))</pre>
A \leftarrow exp(-D)
A \leftarrow ifelse(D == 0, max(D), A)
A <- apply(A, 1, rank)
A \leftarrow ifelse(A \leftarrow K, 1, 0)
V <- A / rowSums(A) #Scaled matrix
V <- ifelse(is.nan(V), 1/ncol(V), V)</pre>
Y <- beta.orig[1] + beta.orig[2]*X1 + beta.orig*X2
W1 <- tcrossprod(V, t(Y))
Y \leftarrow Y + phi.orig*cbind(rep(0,S), W1[,-T])
W2 <- tcrossprod(V, t(epsilon))
Y <- Y + theta.orig*cbind(rep(0,S), W2[,-T])
mon.names <- "LP"
parm.names <- as.parm.names(list(beta=rep(0,3), phi=0, sigma=0, theta=0))
pos.beta <- grep("beta", parm.names)</pre>
pos.phi <- grep("phi", parm.names)</pre>
pos.sigma <- grep("sigma", parm.names)</pre>
pos.theta <- grep("theta", parm.names)</pre>
PGF <- function(Data) return(c(rnormv(3,0,1000), runif(1,-1,1),
    rhalfcauchy(1,5), rnormv(1,0,1000)))
MyData <- list(K=K, PGF=PGF, S=S, T=T, V=V, X1=X1, X2=X2, Y=Y,
     latitude=latitude, longitude=longitude, mon.names=mon.names,
    parm.names=parm.names, pos.beta=pos.beta, pos.phi=pos.phi,
    pos.sigma=pos.sigma, pos.theta=pos.theta)
87.3. Model
Model <- function(parm, Data)</pre>
    ### Parameters
    beta <- parm[Data$pos.beta]</pre>
    parm[Data$pos.phi] <- phi <- interval(parm[Data$pos.phi], -1, 1)</pre>
     sigma <- interval(parm[Data$pos.sigma], 1e-100, Inf)</pre>
    parm[Data$pos.sigma] <- sigma</pre>
    theta <- parm[Data$pos.theta]</pre>
    ### Log-Prior
    beta.prior <- sum(dnormv(beta, 0, 1000, log=TRUE))</pre>
    phi.prior <- dunif(phi, -1, 1, log=TRUE)</pre>
    sigma.prior <- dhalfcauchy(sigma, 25, log=TRUE)</pre>
    theta.prior <- dnormv(theta, 0, 1000, log=TRUE)
    ### Log-Likelihood
    W1 <- tcrossprod(Data$V, t(Data$Y))</pre>
    mu <- beta[1] + beta[2]*Data$X1 + beta[3]*Data$X2 +</pre>
         phi*cbind(rep(0, Data$S), W1[,-Data$T])
    epsilon <- Data$Y - mu
    W2 <- tcrossprod(Data$V, t(epsilon))
```

87.4. Initial Values

Initial. Values \leftarrow c(rep(0,3), 0, 1, 0)

88. State Space Model (SSM), Linear Regression

The data is presented so that the time-series is subdivided into three sections: modeled $(t = 1, ..., T_m)$, one-step ahead forecast $(t = T_m + 1)$, and future forecast $[t = (T_m + 2), ..., T]$. Note that Dyn must also be specified for the SAMWG and SMWG MCMC algorithms.

88.1. Form

$$\mathbf{y}_{t} \sim \mathcal{N}(\mu_{t}, \sigma_{1}^{2}), \quad t = 1, \dots, T_{m}$$

$$\mathbf{y}_{t}^{new} \sim \mathcal{N}(\mu_{t}, \sigma_{1}^{2}), \quad t = (T_{m} + 1), \dots, T$$

$$\mu_{t} = \alpha + \mathbf{x}_{t}\beta_{t}, \quad t = 1, \dots, T$$

$$\alpha \sim \mathcal{N}(0, 1000)$$

$$\beta_{1} \sim \mathcal{N}(0, 1000)$$

$$\beta_{t} \sim \mathcal{N}(\beta_{t-1}, \sigma_{2}^{2}), \quad t = 2, \dots, T$$

$$\sigma_{j} \sim \mathcal{HC}(25), \quad j = 1, \dots, 2$$

```
T <- 20
T.m <- 14
beta.orig <- cumsum(rnorm(T,0,0.1))
x <- cumsum(rnorm(T,0,0.01))
y <- 10 + beta.orig*x + rnorm(T,0,0.01)
y[(T.m+2):T] <- NA
mon.names <- rep(NA, (T-T.m))
for (i in 1:(T-T.m)) mon.names[i] <- paste("mu[",(T.m+i),"]", sep="")
parm.names <- as.parm.names(list(alpha=0, beta=rep(0,T), sigma=rep(0,2)))
pos.alpha <- grep("alpha", parm.names)
pos.beta <- grep("beta", parm.names)</pre>
```

```
pos.sigma <- grep("sigma", parm.names)</pre>
PGF <- function(Data) return(c(rnorm(1,0,1), rnorm(Data$T,0,1),
    rhalfcauchy(2,5)))
MyData <- list(PGF=PGF, T=T, T.m=T.m, mon.names=mon.names,</pre>
    parm.names=parm.names, pos.alpha=pos.alpha, pos.beta=pos.beta,
    pos.sigma=pos.sigma, x=x, y=y)
Dyn <- matrix(paste("beta[",1:T,"]",sep=""), T, 1)</pre>
88.3. Model
Model <- function(parm, Data)</pre>
    ### Parameters
    alpha <- parm[Data$pos.alpha]</pre>
    beta <- parm[Data$pos.beta]</pre>
    sigma <- interval(parm[Data$pos.sigma], 1e-100, Inf)</pre>
    parm[Data$pos.sigma] <- sigma</pre>
    ### Log-Prior
    alpha.prior <- dnormv(alpha, 0, 1000, log=TRUE)</pre>
    beta.prior <- sum(dnormv(beta[1], 0, 1000, log=TRUE),
         dnorm(beta[-1], beta[-Data$T], sigma[2], log=TRUE))
    sigma.prior <- sum(dhalfcauchy(sigma, 25, log=TRUE))</pre>
    ### Log-Likelihood
    mu <- alpha + beta*Data$x</pre>
    LL <- sum(dnorm(Data$y[1:Data$T.m], mu[1:Data$T.m], sigma[1],
         log=TRUE))
    yhat <- rnorm(length(mu), alpha + c(beta[1], rnorm(Data$T-1,</pre>
         beta[-Data$T], sigma[2])) * Data$x, sigma[1]) #One-step ahead
    ### Log-Posterior
    LP <- LL + alpha.prior + beta.prior + sigma.prior
    Modelout <- list(LP=LP, Dev=-2*LL, Monitor=mu[(Data$T.m+1):Data$T],</pre>
         yhat=yhat, parm=parm)
    return(Modelout)
```

```
Initial. Values \leftarrow c(0, rep(0,T), rep(1,2))
```

89. State Space Model (SSM), Local Level

The local level model is the simplest, non-trivial example of a state space model (SSM). As such, this version of a local level SSM has static variance parameters.

89.1. Form

$$\mathbf{y}_{t} \sim \mathcal{N}(\mu_{t}, \sigma_{1}^{2}), \quad t = 1, \dots, T$$

$$\mu_{t} \sim \mathcal{N}(\mu_{t-1}, \sigma_{2}^{2}), \quad t = 2, \dots, T$$

$$\mu_{1} \sim \mathcal{N}(0, 1000)$$

$$\sigma_{j} \sim \mathcal{HC}(25), \quad j = 1, \dots, 2$$

89.2. Data

89.3. Model

```
Model <- function(parm, Data)</pre>
    {
    ### Parameters
    mu <- parm[Data$pos.mu]</pre>
    sigma <- interval(parm[Data$pos.sigma], 1e-100, Inf)</pre>
    parm[Data$pos.sigma] <- sigma</pre>
    ### Log-Prior
    mu.prior <- sum(dnormv(mu[1], 0, 1000, log=TRUE),</pre>
         dnorm(mu[-1], mu[-Data$T], sigma[2], log=TRUE))
    sigma.prior <- sum(dhalfcauchy(sigma, 25, log=TRUE))</pre>
    ### Log-Likelihood
    LL <- sum(dnorm(Data$y[1:Data$T.m], mu[1:Data$T.m], sigma[1],
         log=TRUE))
    yhat <- rnorm(length(mu), c(mu[1], rnorm(Data$T-1, mu[-Data$T],</pre>
         sigma[2])), sigma[1]) #One-step ahead
                                                    ### Log-Posterior
    LP <- LL + mu.prior + sigma.prior
    Modelout <- list(LP=LP, Dev=-2*LL, Monitor=mu[(Data$T.m+1):Data$T],</pre>
```

```
yhat=yhat, parm=parm)
return(Modelout)
}
```

Initial.Values <- c(rep(0,T), rep(1,2))</pre>

90. State Space Model (SSM), Local Linear Trend

The local linear trend model is a state space model (SSM) that extends the local level model to include a dynamic slope parameter. For more information on the local level model, see section 89. This example has static variance parameters.

90.1. Form

$$\mathbf{y}_{t} \sim \mathcal{N}(\mu_{t}, \sigma_{1}^{2}), \quad t = 1, \dots, T$$

$$\mu_{t} \sim \mathcal{N}(\mu_{t-1} + \delta_{t-1}, \sigma_{2}^{2}), \quad t = 2, \dots, T$$

$$\mu_{1} \sim \mathcal{N}(0, 1000)$$

$$\delta_{t} \sim \mathcal{N}(\delta_{t-1}, \sigma_{3}^{2}), \quad t = 2, \dots, T$$

$$\delta_{1} \sim \mathcal{N}(0, 1000)$$

$$\sigma_{j} \sim \mathcal{HC}(25), \quad j = 1, \dots, 3$$

```
T <- 20
T.m < -14
mu.orig <- delta.orig <- rep(0,T)
for (t in 2:T) {
     delta.orig[t] \leftarrow delta.orig[t-1] + rnorm(1,0,0.1)
    mu.orig[t] \leftarrow mu.orig[t-1] + delta.orig[t-1] + rnorm(1,0,1)
y <- mu.orig + rnorm(T,0,0.1)
y[(T.m+2):T] <- NA
mon.names <- rep(NA, (T-T.m))
for (i in 1:(T-T.m)) mon.names[i] <- paste("yhat[",(T.m+i),"]", sep="")</pre>
parm.names <- as.parm.names(list(mu=rep(0,T), delta=rep(0,T),</pre>
     sigma=rep(0,3))
pos.mu <- grep("mu", parm.names)</pre>
pos.delta <- grep("delta", parm.names)</pre>
pos.sigma <- grep("sigma", parm.names)</pre>
PGF <- function(Data) return(c(rnormv(Data$T,0,10),
    rnormv(Data$T,0,10), rhalfcauchy(3,5)))
```

```
MyData <- list(PGF=PGF, T=T, T.m=T.m, mon.names=mon.names,</pre>
    parm.names=parm.names, pos.mu=pos.mu, pos.delta=pos.delta,
    pos.sigma=pos.sigma, y=y)
90.3. Model
Model <- function(parm, Data)</pre>
    ### Parameters
    mu <- parm[Data$pos.mu]</pre>
    delta <- parm[Data$pos.delta]</pre>
    sigma <- interval(parm[Data$pos.sigma], 1e-100, Inf)</pre>
    parm[Data$pos.sigma] <- sigma</pre>
    ### Log-Prior
    mu.prior <- sum(dnormv(mu[1], 0, 1000, log=TRUE),</pre>
         dnorm(mu[-1], mu[-Data$T]+delta[-Data$T], sigma[2],
         log=TRUE))
    delta.prior <- sum(dnormv(delta[1], 0, 1000, log=TRUE),</pre>
         dnorm(delta[-1], delta[-Data$T], sigma[3], log=TRUE))
    sigma.prior <- sum(dhalfcauchy(sigma, 25, log=TRUE))</pre>
    ### Log-Likelihood
    LL <- sum(dnorm(Data$y[1:Data$T.m], mu[1:Data$T.m], sigma[1],
         log=TRUE))
    yhat <- rnorm(length(mu), c(mu[1], rnorm(Data$T-1, mu[-Data$T],</pre>
         sigma[2])), sigma[1]) #One-step ahead
    ### Log-Posterior
    LP <- LL + mu.prior + delta.prior + sigma.prior</pre>
    Modelout <- list(LP=LP, Dev=-2*LL, Monitor=mu[(Data$T.m+1):Data$T],</pre>
         yhat=yhat, parm=parm)
    return(Modelout)
    }
90.4. Initial Values
```

91. State Space Model (SSM), Stochastic Volatility (SV)

Initial. Values $\leftarrow c(rep(0,T), rep(0,T), rep(1,3))$

91.1. Form

$$\mathbf{y} \sim \mathcal{N}(0, \sigma^2)$$
$$\sigma^2 = \frac{1}{\exp(\theta)}$$

$$\beta = \exp(\mu/2)$$

$$\theta_1 \sim \mathcal{N}(\mu + \phi(\alpha - \mu), \tau)$$

$$\theta_t \sim \mathcal{N}(\mu + \phi(\theta_{t-1} - \mu), \tau), \quad t = 2, \dots, T$$

$$\alpha \sim \mathcal{N}(\mu, \tau)$$

$$\phi \sim \mathcal{U}(-1, 1)$$

$$\mu \sim \mathcal{N}(0, 10)$$

$$\tau \sim \mathcal{HC}(25)$$

```
T <- 20
y \leftarrow rep(10,T); epsilon \leftarrow rnorm(T,0,1)
for (t in 2:T) {y[t] \leftarrow 0.8*y[t-1] + epsilon[t-1]}
mon.names <- c("LP",paste("sigma2[",1:T,"]",sep=""))</pre>
parm.names <- as.parm.names(list(theta=rep(0,T), alpha=0, phi=0, mu=0,
    tau=0))
pos.theta <- grep("theta", parm.names)</pre>
pos.alpha <- grep("alpha", parm.names)</pre>
pos.phi <- grep("phi", parm.names)</pre>
pos.mu <- grep("mu", parm.names)</pre>
pos.tau <- grep("tau", parm.names)</pre>
PGF <- function(Data) return(c(rnormv(Data$T,0,10),
    rnormv(1,rnorm(1,0,10),rhalfcauchy(1,5)),
    runif(1,-1,1), rnormv(1,0,10), rhalfcauchy(1,5))
MyData <- list(PGF=PGF, T=T, mon.names=mon.names, parm.names=parm.names,
                                                                                     pos.theta=pos
pos.alpha=pos.alpha, pos.phi=pos.phi,
    pos.mu=pos.mu, pos.tau=pos.tau y=y)
Dyn <- matrix(paste("theta[",1:T,"]",sep=""), T, 1)</pre>
91.3. Model
Model <- function(parm, Data)</pre>
     {
    ### Parameters
```

```
log=TRUE))
phi.prior <- dunif(phi, -1, 1, log=TRUE)
mu.prior <- dnormv(mu, 0, 10, log=TRUE)
tau.prior <- dhalfcauchy(tau, 25, log=TRUE)
### Log-Likelihood
beta <- exp(mu / 2)
sigma2 <- 1 / exp(theta)
LL <- sum(dnormv(Data$y, 0, sigma2, log=TRUE))
### Log-Posterior
LP <- LL + alpha.prior + theta.prior + phi.prior + mu.prior + tau.prior
Modelout <- list(LP=LP, Dev=-2*LL, Monitor=c(LP, sigma2), yhat=rnormv(length(Data$y), 0, sigma2), parm=parm)
return(Modelout)
}</pre>
```

91.4. Initial Values

Initial. Values $\leftarrow c(rep(0,T), 0, 0, 0, 1)$

92. TARCH(1)

In this TARCH example, there are two regimes, one for positive residuals in the previous time-period, and the other for negative. The TARCH parameters are the θ vector.

92.1. Form

$$\mathbf{y}_{t} \sim \mathcal{N}(\mu_{t}, \sigma_{t}^{2}), \quad t = 2, \dots, T$$

$$\sigma_{t}^{2} = \omega + \theta_{1}\delta_{t-1}\epsilon_{t-1}^{2} + \theta_{2}(1 - \delta_{t-1})\epsilon_{t-1}^{2}, \quad t = 2, \dots, T$$

$$\delta_{t} = \begin{cases} 1 & \text{if } \epsilon_{t} > 0 \\ 0 & \\ \epsilon = \mathbf{y} - \mu \end{cases}$$

$$\mu_{t} = \alpha + \phi \mathbf{y}_{t-1}, \quad t = 2, \dots, T$$

$$\alpha \sim \mathcal{N}(0, 1000)$$

$$\phi \sim \mathcal{U}(-1, 1)$$

$$\omega \sim \mathcal{HC}(25)$$

$$\theta_{j} \sim \mathcal{U}(0, 1), \quad j = 1, \dots, 2$$

```
epsilon <- rnorm(T)</pre>
epsilon <- ifelse(epsilon < 0, epsilon * 2, epsilon)
y \leftarrow rep(0,T)
for (t in 2:T) \{y[t] \leftarrow phi*y[t-1] + epsilon[t]\}
mon.names <- c("LP", "ynew", "sigma2.new")</pre>
parm.names <- as.parm.names(list(alpha=0, phi=0, omega=0, theta=rep(0,2)))
pos.alpha <- grep("alpha", parm.names)</pre>
pos.phi <- grep("phi", parm.names)</pre>
pos.omega <- grep("omega", parm.names)</pre>
pos.theta <- grep("theta", parm.names)</pre>
PGF <- function(Data) return(c(rnormv(1,0,1000), runif(1,-1,1),
    rhalfcauchy(1,5), runif(2)))
MyData <- list(PGF=PGF, T=T, mon.names=mon.names, parm.names=parm.names,</pre>
    pos.alpha=pos.alpha, pos.phi=pos.phi, pos.omega=pos.omega,
    pos.theta=pos.theta, y=y)
92.3. Model
Model <- function(parm, Data)</pre>
    {
    ### Parameters
     alpha <- parm[Data$pos.alpha]</pre>
    parm[Data$pos.phi] <- phi <- interval(parm[Data$pos.phi], -1, 1)</pre>
    omega <- interval(parm[Data$pos.omega], 1e-100, Inf)</pre>
    parm[Data$pos.omega] <- omega</pre>
    theta <- interval(parm[Data$pos.theta], 0.001, 0.999)
    parm[Data$pos.theta] <- theta</pre>
    ### Log-Prior
    alpha.prior <- dnormv(alpha, 0, 1000, log=TRUE)</pre>
    phi.prior <- dunif(phi, -1, 1, log=TRUE)</pre>
    omega.prior <- dhalfcauchy(omega, 25, log=TRUE)</pre>
    theta.prior <- sum(dunif(theta, 0, 1, log=TRUE))</pre>
    ### Log-Likelihood
    mu <- alpha + c(0, Data$y[-Data$T]) * phi</pre>
     epsilon <- Data$y - mu
    delta \leftarrow (epsilon > 0) * 1
     sigma2 <- omega + theta[1] * c(0,delta[-Data$T]) *</pre>
          c(0, epsilon[-Data$T]^2)
     sigma2[-1] \leftarrow sigma2[-1] + theta[2] * (1 - delta[-Data$T]) *
          epsilon[-Data$T]^2
    sigma2.new <- omega + theta[1] * delta[Data$T] * epsilon[Data$T]^2 +</pre>
         theta[2] * (1 - delta[Data$T]) * epsilon[Data$T]^2
    ynew <- rnormv(1, alpha + Data$y[Data$T] * phi, sigma2.new)</pre>
    LL <- sum(dnormv(Data$y[-1], mu[-1], sigma2[-1], log=TRUE))
    ### Log-Posterior
    LP <- LL + alpha.prior + phi.prior + omega.prior + theta.prior
```

92.4. Initial Values

Initial. Values \leftarrow c(0, 0, 1, 0.5, 0.5)

93. Threshold Autoregression (TAR)

93.1. Form

$$\mathbf{y}_{t} \sim \mathcal{N}(\nu_{t}, \sigma^{2}), \quad t = 1, \dots, T$$

$$\mathbf{y}^{new} = \alpha_{2} + \phi_{2}\mathbf{y}_{T}$$

$$\nu_{t} = \begin{cases} \alpha_{1} + \phi_{1}\mathbf{y}_{t-1}, & t = 1, \dots, T & \text{if } t \geq \theta \\ \alpha_{2} + \phi_{2}\mathbf{y}_{t-1}, & t = 1, \dots, T & \text{if } t < \theta \end{cases}$$

$$\alpha_{j} \sim \mathcal{N}(0, 1000) \in [-1, 1], \quad j = 1, \dots, 2$$

$$\phi_{j} \sim \mathcal{N}(0, 1000), \in [-1, 1], \quad j = 1, \dots, 2$$

$$\theta \sim \mathcal{U}(2, T - 1)$$

$$\sigma \sim \mathcal{HC}(25)$$

```
y \leftarrow c(0.02, -0.51, -0.30, 1.46, -1.26, -2.15, -0.91, -0.53, -1.91,
    2.64, 1.64, 0.15, 1.46, 1.61, 1.96, -2.67, -0.19, -3.28,
    1.89, 0.91, -0.71, 0.74, -0.10, 3.20, -0.80, -5.25, 1.03,
    -0.40, -1.62, -0.80, 0.77, 0.17, -1.39, -1.28, 0.48, -1.02,
    0.09, -1.09, 0.86, 0.36, 1.51, -0.02, 0.47, 0.62, -1.36,
    1.12, 0.42, -4.39, -0.87, 0.05, -5.41, -7.38, -1.01, -1.70,
    0.64, 1.16, 0.87, 0.28, -1.69, -0.29, 0.13, -0.65, 0.83,
    0.62, 0.05, -0.14, 0.01, -0.36, -0.32, -0.80, -0.06, 0.24,
    0.23, -0.37, 0.00, -0.33, 0.21, -0.10, -0.10, -0.01, -0.40,
    -0.35, 0.48, -0.28, 0.08, 0.28, 0.23, 0.27, -0.35, -0.19,
    0.24, 0.17, -0.02, -0.23, 0.03, 0.02, -0.17, 0.04, -0.39,
    -0.12, 0.16, 0.17, 0.00, 0.18, 0.06, -0.36, 0.22, 0.14,
    -0.17, 0.10, -0.01, 0.00, -0.18, -0.02, 0.07, -0.06, 0.06,
    -0.05, -0.08, -0.07, 0.01, -0.06, 0.01, 0.01, -0.02, 0.01,
    0.01, 0.12, -0.03, 0.08, -0.10, 0.01, -0.03, -0.08, 0.04,
    -0.09, -0.08, 0.01, -0.05, 0.08, -0.14, 0.06, -0.11, 0.09,
    0.06, -0.12, -0.01, -0.05, -0.15, -0.05, -0.03, 0.04, 0.00,
```

```
-0.12, 0.04, -0.06, -0.05, -0.07, -0.05, -0.14, -0.05, -0.01,
    -0.12, 0.05, 0.06, -0.10, 0.00, 0.01, 0.00, -0.08, 0.00,
    0.00, 0.07, -0.01, 0.00, 0.09, 0.33, 0.13, 0.42, 0.24,
    -0.36, 0.22, -0.09, -0.19, -0.10, -0.08, -0.07, 0.05, 0.07,
    0.07, 0.00, -0.04, -0.05, 0.03, 0.08, 0.26, 0.10, 0.08,
    0.09, -0.07, -0.33, 0.17, -0.03, 0.07, -0.04, -0.06, -0.06,
    0.07, -0.03, 0.00, 0.08, 0.27, 0.11, 0.11, 0.06, -0.11,
    -0.09, -0.21, 0.24, -0.12, 0.11, -0.02, -0.03, 0.02, -0.10,
    0.00, -0.04, 0.01, 0.02, -0.03, -0.10, -0.09, 0.17, 0.07,
    -0.05, -0.01, -0.05, 0.01, 0.00, -0.08, -0.05, -0.08, 0.07,
    0.06, -0.14, 0.02, 0.01, 0.04, 0.00, -0.13, -0.17)
T <- length(y)
mon.names <- c("LP", "ynew")</pre>
parm.names <- as.parm.names(list(alpha=rep(0,2), phi=rep(0,2), theta=0,
    sigma=0))
pos.alpha <- grep("alpha", parm.names)</pre>
pos.phi <- grep("phi", parm.names)</pre>
pos.theta <- grep("theta", parm.names)</pre>
pos.sigma <- grep("sigma", parm.names)</pre>
PGF <- function(Data) return(c(rtrunc(4, "norm", a=-1, b=1, mean=0,
    sd=sqrt(1000)), runif(1,2,Data$T-1), rhalfcauchy(1,5)))
MyData <- list(PGF=PGF, T=T, mon.names=mon.names, parm.names=parm.names,
    pos.alpha=pos.alpha, pos.phi=pos.phi, pos.theta=pos.theta,
    pos.sigma=pos.sigma, y=y)
93.3. Model
Model <- function(parm, Data)</pre>
    ### Parameters
    parm[Data$pos.alpha] <- alpha <- interval(parm[Data$pos.alpha], -1, 1)</pre>
    parm[Data$pos.phi] <- phi <- interval(parm[Data$pos.phi], -1, 1)</pre>
    theta <- interval(parm[Data$pos.theta], 2, Data$T-1)</pre>
    parm[Data$pos.theta] <- theta</pre>
    sigma <- interval(parm[Data$pos.sigma], 1e-100, Inf)</pre>
    parm[Data$pos.sigma] <- sigma</pre>
    ### Log-Prior
    alpha.prior <- sum(dtrunc(alpha, "norm", a=-1, b=1, mean=0,
         sd=sqrt(1000), log=TRUE))
    phi.prior <- sum(dtrunc(phi, "norm", a=-1, b=1, mean=0,
         sd=sqrt(1000), log=TRUE))
    alpha.prior <- sum(dnormv(alpha, 0, 1000, log=TRUE))</pre>
    phi.prior <- sum(dnormv(phi, 0, 1000, log=TRUE))</pre>
    theta.prior <- dunif(theta, 2, Data$T-1, log=TRUE)
    sigma.prior <- dhalfcauchy(sigma, 25, log=TRUE)</pre>
    ### Log-Likelihood
```

93.4. Initial Values

Initial. Values <- c(rep(0,4), T/2, 1)

94. Time Varying AR(1) with Chebyshev Series

This example consists of a first-order autoregressive model, AR(1), with a time-varying parameter (TVP) ϕ , that is a Chebyshev series constructed from a linear combination of orthonormal Chebyshev time polynomials (CTPs) and parameter vector β . The user creates basis matrix **P**, specifying polynomial degree D and time T. Each column is a CTP of a different degree, and the first column is restricted to 1, the linear basis. CTPs are very flexible for TVPs, and estimate quickly because each is orthogonal, unlike simple polynomials and splines.

94.1. Form

$$\mathbf{y}_{t} \sim \mathcal{N}(\mu_{t}, \sigma^{2}), \quad t = 1, \dots, T$$

$$\mu_{t} = \alpha + \phi_{t-1} \mathbf{y}_{t-1}$$

$$\phi_{t} = \mathbf{P}\beta$$

$$\alpha \sim \mathcal{N}(0, 1000)$$

$$\beta_{d} \sim \mathcal{N}(0, 1000), \quad d = 1, \dots, (D+1)$$

$$\sigma \sim \mathcal{HC}(25)$$

```
D <- 6 #Maximum degree of Chebyshev time polynomials T <- 100 P <- matrix(1, T, D+1) for (d in 1:D) \{P[,d+1] <- sqrt(2)*cos(d*pi*(c(1:T)-0.5)/T)\}
```

```
alpha.orig <- 0; alpha.orig
beta.orig <- runif(D+1,-0.3,0.3); beta.orig
phi.orig <- tcrossprod(P, t(beta.orig))</pre>
e \leftarrow rnorm(T,0,1)
y \leftarrow rep(0,T)
for (t in 2:T) \{y[t] \leftarrow alpha.orig + phi.orig[t-1]*y[t-1] + e[t]\}
mon.names <- c("LP", "ynew", as.parm.names(list(phi=rep(0,T-1))))</pre>
parm.names <- as.parm.names(list(alpha=0, beta=rep(0,D+1), sigma=0))</pre>
pos.alpha <- grep("alpha", parm.names)</pre>
pos.beta <- grep("beta", parm.names)</pre>
pos.sigma <- grep("sigma", parm.names)</pre>
PGF <- function(Data) return(c(rnormv(D+2,0,10), rhalfcauchy(1,5)))
MyData <- list(D=D, P=P, PGF=PGF, T=T, mon.names=mon.names,</pre>
    parm.names=parm.names, pos.alpha=pos.alpha, pos.beta=pos.beta,
    pos.sigma=pos.sigma, y=y)
94.3. Model
Model <- function(parm, Data)</pre>
    {
    ### Parameters
     alpha <- parm[Data$pos.alpha]</pre>
    beta <- parm[Data$pos.beta]</pre>
     sigma <- interval(parm[Data$pos.sigma], 1e-100, Inf)</pre>
    parm[Data$pos.sigma] <- sigma</pre>
    ### Log-Prior
    alpha.prior <- dnormv(alpha, 0, 1000, log=TRUE)</pre>
    beta.prior <- sum(dnormv(beta, 0, 1000, log=TRUE))</pre>
    sigma.prior <- dhalfcauchy(sigma, 25, log=TRUE)</pre>
    ### Log-Likelihood
    phi <- tcrossprod(Data$P[-Data$T,], t(beta))</pre>
    mu <- c(alpha, alpha + phi*Data$y[-Data$T])</pre>
    ynew <- rnorm(1, alpha + tcrossprod(Data$P[Data$T,], t(beta))*</pre>
          Data$y[Data$T], sigma)
    LL <- sum(dnorm(Data$y, mu, sigma, log=TRUE))</pre>
    ### Log-Posterior
    LP <- LL + alpha.prior + beta.prior + sigma.prior
    Modelout <- list(LP=LP, Dev=-2*LL, Monitor=c(LP, ynew, phi),</pre>
          yhat=rnorm(length(mu), mu, sigma), parm=parm)
    return(Modelout)
    }
```

```
Initial. Values \leftarrow c(rep(0,D+2), 1)
```

95. Variable Selection, BAL

This approach to variable selection is one of several forms of the Bayesian Adaptive Lasso (BAL). The lasso applies shrinkage to exchangeable scale parameters, γ , for the regression effects, β .

95.1. Form

$$\mathbf{y} \sim \mathcal{N}(\mu, \sigma^2)$$

$$\mu = \mathbf{X}\beta$$

$$\beta_1 \sim \mathcal{L}(0, 1000)$$

$$\beta_j \sim \mathcal{L}(0, \gamma_j), \quad j = 2, \dots, J$$

$$\gamma_j \sim \mathcal{G}^{-1}(\delta, \tau), \quad \in [0, \infty]$$

$$\delta \sim \mathcal{HC}(25)$$

$$\tau \sim \mathcal{HC}(25)$$

$$\sigma \sim \mathcal{HC}(25)$$

95.2. Data

```
data(demonsnacks)
J <- ncol(demonsnacks)</pre>
y <- log(demonsnacks$Calories)</pre>
X <- cbind(1, as.matrix(demonstracks[,c(1,3:10)]))</pre>
for (j in 2:J) {X[,j] <- CenterScale(X[,j])}</pre>
mon.names <- "LP"
parm.names <- as.parm.names(list(beta=rep(0,J), gamma=rep(0,J-1),</pre>
    log.delta=0, log.tau=0, log.sigma=0))
pos.beta <- grep("beta", parm.names)</pre>
pos.gamma <- grep("gamma", parm.names)</pre>
pos.delta <- grep("delta", parm.names)</pre>
pos.tau <- grep("tau", parm.names)</pre>
pos.sigma <- grep("sigma", parm.names)</pre>
PGF <- function(Data) return(c(rnormv(Data$J,0,10),
    rgamma(Data$J-1,rhalfcauchy(1,5),rhalfcauchy(1,5)), rhalfcauchy(3,5)))
MyData <- list(J=J, PGF=PGF, X=X, mon.names=mon.names,</pre>
    parm.names=parm.names, pos.beta=pos.beta, pos.gamma=pos.gamma,
    pos.delta=pos.delta, pos.tau=pos.tau, pos.sigma=pos.sigma, y=y)
```

95.3. Model

```
Model <- function(parm, Data)
{</pre>
```

```
### Hyperhyperparameters
delta <- interval(parm[Data$pos.delta], 1e-100, Inf)</pre>
parm[Data$pos.delta] <- delta</pre>
parm[Data$pos.tau] <- tau <- interval(parm[Data$pos.tau], 1e-100, Inf)</pre>
### Hyperparameters
gamma <- interval(parm[Data$pos.gamma], 1e-100, Inf)</pre>
parm[Data$pos.gamma] <- gamma</pre>
### Parameters
beta <- parm[Data$pos.beta]</pre>
sigma <- interval(parm[Data$pos.sigma], 1e-100, Inf)</pre>
parm[Data$pos.sigma] <- sigma</pre>
### Log-Hyperhyperprior
delta.prior <- dhalfcauchy(delta, 25, log=TRUE)</pre>
tau.prior <- dhalfcauchy(tau, 25, log=TRUE)</pre>
### Log-Hyperprior
gamma.prior <- sum(dinvgamma(gamma, delta, tau, log=TRUE))</pre>
### Log-Prior
beta.prior <- sum(dlaplace(beta, 0, c(1000, gamma), log=TRUE))</pre>
sigma.prior <- dhalfcauchy(sigma, 25, log=TRUE)</pre>
### Log-Likelihood
mu <- tcrossprod(Data$X, t(beta))</pre>
LL <- sum(dnorm(Data$y, mu, sigma, log=TRUE))
### Log-Posterior
LP <- LL + beta.prior + gamma.prior + delta.prior + tau.prior +
     sigma.prior
Modelout <- list(LP=LP, Dev=-2*LL, Monitor=LP,</pre>
    yhat=rnorm(length(mu), mu, sigma), parm=parm)
return(Modelout)
}
```

Initial. Values $\leftarrow c(rep(0,J), rep(0,J-1), rep(1,3))$

96. Variable Selection, Horseshoe

96.1. Form

$$\mathbf{y} \sim \mathcal{N}(\mu, \sigma^2)$$

$$\mu = \mathbf{X}\beta$$

$$\beta_1 \sim \mathcal{N}(0, 1000)$$

$$\beta_j \sim \mathcal{HS}(0, \lambda_j, \tau, \sigma), \quad j = 2, \dots, J$$

 $\sigma \sim \mathcal{HC}(25)$

```
96.2. Data
```

}

```
data(demonsnacks)
J <- ncol(demonsnacks)</pre>
y <- log(demonsnacks$Calories)</pre>
X <- cbind(1, as.matrix(demonstracks[,c(1,3:10)]))</pre>
for (j in 2:J) {X[,j] <- CenterScale(X[,j])}</pre>
mon.names <- "LP"
parm.names <- as.parm.names(list(beta=rep(0,J), lambda=rep(0,J-1),</pre>
     tau=0, sigma=0))
pos.beta <- grep("beta", parm.names)</pre>
pos.lambda <- grep("lambda", parm.names)</pre>
pos.tau <- grep("tau", parm.names)</pre>
pos.sigma <- grep("sigma", parm.names)</pre>
PGF <- function(Data) return(c(rnormv(Data$J,0,10), runif(Data$J,0,100),
    runif(2,0,100)))
MyData <- list(J=J, PGF=PGF, X=X, mon.names=mon.names,</pre>
    parm.names=parm.names, pos.beta=pos.beta, pos.lambda=pos.lambda,
    pos.tau=pos.tau, pos.sigma=pos.sigma, y=y)
96.3. Model
Model <- function(parm, Data)</pre>
    ### Parameters
    beta <- parm[Data$pos.beta]</pre>
    lambda <- interval(parm[Data$pos.lambda], 1e-100, 1000)</pre>
    parm[Data$pos.lambda] <- lambda</pre>
    parm[Data$pos.tau] <- tau <- interval(parm[Data$pos.tau], 1e-100, 1000)</pre>
    sigma <- interval(parm[Data$pos.sigma], 1e-100, 1000)</pre>
    parm[Data$pos.sigma] <- sigma</pre>
    ### Log-Prior
    beta.prior <- sum(dnormv(beta[1], 0, 1000, log=TRUE),</pre>
          dhs(beta[-1], lambda, tau, sigma, log=TRUE))
    sigma.prior <- dhalfcauchy(sigma, 25, log=TRUE)</pre>
    ### Log-Likelihood
    mu <- tcrossprod(Data$X, t(beta))</pre>
    LL <- sum(dnorm(Data$y, mu, sigma, log=TRUE))
    ### Log-Posterior
    LP <- LL + beta.prior + sigma.prior
    Modelout <- list(LP=LP, Dev=-2*LL, Monitor=LP,</pre>
          yhat=rnorm(length(mu), mu, sigma), parm=parm)
    return(Modelout)
```

Initial. Values $\leftarrow c(rep(0,J), rep(1,J), rep(1,2))$

97. Variable Selection, RJ

This example uses the RJ (Reversible-Jump) algorithm of the LaplacesDemon function for variable selection and Bayesian Model Averaging (BMA). Other MCMC algorithms will not perform variable selection with this example, as presented. This is an example of variable selection in a linear regression. The only difference between the following example, and the example of linear regression (46), is that RJ specifications are also included for the RJ algorithm, and that the RJ algorithm must be used.

97.1. Form

$$\mathbf{y} \sim \mathcal{N}(\mu, \sigma^2)$$

$$\mu = \mathbf{X}\beta$$

$$\beta_j \sim \mathcal{N}(0, 1000), \quad j = 1, \dots, J$$

$$\sigma \sim \mathcal{HC}(25)$$

```
N <- 1000
J <- 100 #Number of predictors, including the intercept
X \leftarrow matrix(1,N,J)
for (j in 2:J) \{X[,j] \leftarrow rnorm(N,runif(1,-3,3),runif(1,0.1,1))\}
beta.orig <- runif(J,-3,3)
zero <- sample(2:J, round(J*0.9)) #Assign most parameters to be zero
beta.orig[zero] <- 0
e <- rnorm(N,0,0.1)
y <- as.vector(tcrossprod(beta.orig, X) + e)
mon.names <- "LP"
parm.names <- as.parm.names(list(beta=rep(0,J), sigma=0))</pre>
pos.beta <- grep("beta", parm.names)</pre>
pos.sigma <- grep("sigma", parm.names)</pre>
PGF <- function(Data) return(c(rnormv(Data$J,0,1), rhalfcauchy(1,5)))
MyData <- list(J=J, PGF=PGF, X=X, mon.names=mon.names,</pre>
    parm.names=parm.names, pos.beta=pos.beta, pos.sigma=pos.sigma, y=y)
### Reversible-Jump Specifications bin.n <- J-1 #Maximum allowable model size
bin.p <- 0.4 #Most probable size: bin.p x bin.n is binomial mean and median
parm.p \leftarrow rep(1/J, J+1)
```

```
selectable=c(0, rep(1,J-1), 0)
97.3. Model
Model <- function(parm, Data)</pre>
     {
    ### Parameters
    beta <- parm[Data$pos.beta]</pre>
     sigma <- interval(parm[Data$pos.sigma], 1e-100, Inf)</pre>
    parm[Data$pos.sigma] <- sigma</pre>
    ### Log-Prior
    beta.prior <- sum(dnormv(beta, 0, 1000, log=TRUE))</pre>
    sigma.prior <- dhalfcauchy(sigma, 25, log=TRUE)</pre>
    ### Log-Likelihood
    mu <- tcrossprod(Data$X, t(beta))</pre>
    LL <- sum(dnorm(Data$y, mu, sigma, log=TRUE))
    ### Log-Posterior
    LP <- LL + beta.prior + sigma.prior
    Modelout <- list(LP=LP, Dev=-2*LL, Monitor=LP,</pre>
          yhat=rnorm(length(mu), mu, sigma), parm=parm)
    return(Modelout)
    }
```

97.4. Initial Values

Initial.Values <- GIV(Model, MyData, PGF=TRUE)</pre>

98. Variable Selection, SSVS

This example uses a modified form of the random-effects (or global adaptation) Stochastic Search Variable Selection (SSVS) algorithm presented in O'Hara and Sillanpaa (2009), which selects variables according to practical significance rather than statistical significance. Here, SSVS is applied to linear regression, though this method is widely applicable. For J variables, each regression effect β_j is conditional on γ_j , a binary inclusion variable. Each β_j is a discrete mixture distribution with respect to $\gamma_j = 0$ or $\gamma_j = 1$, with precision 100 or $\beta_{\sigma} = 0.1$, respectively. As with other representations of SSVS, these precisions may require tuning.

The binary inclusion variables are discrete parameters, and discrete parameters are not supported in all algorithms. The example below is updated with the Griddy-Gibbs sampler.

When the goal is to select the best model, each $\mathbf{X}_{1:N,j}$ is retained for a future run when the posterior mean of $\gamma_j \geq 0.5$. When the goal is model-averaging, the results of this model may be used directly, which would please L. J. Savage, who said that "models should be as big as an elephant" (Draper 1995).

98.1. Form

$$\mathbf{y} \sim \mathcal{N}(\mu, \sigma^2)$$

$$\mu = \mathbf{X}\beta$$

$$(\beta_j | \gamma_j) \sim (1 - \gamma_j) \mathcal{N}(0, 0.01) + \gamma_j \mathcal{N}(0, \beta_\sigma^2) \quad j = 1, \dots, J$$

$$\beta_\sigma \sim \mathcal{HC}(25)$$

$$\gamma_j \sim \mathcal{BERN}(1/(J-1)), \quad j = 1, \dots, (J-1)$$

$$\sigma \sim \mathcal{HC}(25)$$

```
data(demonsnacks)
J <- ncol(demonsnacks)</pre>
y <- log(demonsnacks$Calories)</pre>
X <- cbind(1, as.matrix(demonstracks[,c(1,3:10)]))</pre>
for (j in 2:J) {X[,j] <- CenterScale(X[,j])}</pre>
mon.names <- c("LP", "min.beta.sigma")</pre>
parm.names <- as.parm.names(list(beta=rep(0,J), gamma=rep(0,J-1),</pre>
    b.sd=0, sigma=0))
pos.beta <- grep("beta", parm.names)</pre>
pos.gamma <- grep("gamma", parm.names)</pre>
pos.b.sd <- grep("b.sd", parm.names)</pre>
pos.sigma <- grep("sigma", parm.names)</pre>
PGF <- function(Data) return(c(rnorm(Data$J,0,1), rcat(Data$J-1, p=rep(0.5,2)),
    rhalfcauchy(2,5)))
MyData <- list(J=J, PGF=PGF, X=X, mon.names=mon.names,</pre>
    parm.names=parm.names, pos.beta=pos.beta, pos.gamma=pos.gamma,
    pos.b.sd=pos.b.sd, pos.sigma=pos.sigma, y=y)
98.3. Model
```

```
Model <- function(parm, Data)
    {
    ### Hyperparameters
    beta.sigma <- interval(parm[Data$pos.b.sd], 1e-100, Inf)
    parm[Data$pos.b.sd] <- beta.sigma
    ### Parameters
    beta <- parm[Data$pos.beta]
    gamma <- parm[Data$pos.gamma]
    beta.sigma <- rep(beta.sigma, Data$J-1)
    beta.sigma[gamma == 0] <- 0.1
    sigma <- interval(parm[Data$pos.sigma], 1e-100, Inf)
    ### Log-Hyperprior</pre>
```

98.4. Initial Values

Initial. Values $\leftarrow c(rep(0,J), rep(1,J-1), rep(1,2))$

99. Vector Autoregression, VAR(1)

This is an example of a simple, unrestricted VAR with 1 lag that uses the Minnesota prior to estimate Σ .

99.1. Form

$$\mathbf{Y}_{t,j} \sim \mathcal{N}(\mu_{t,j}, \sigma_j^2), \quad t = 1, \dots, T, \quad j = 1, \dots, J$$

$$\mu_{t,j} = \alpha_j + \Phi_{1:J,j} \mathbf{Y}_{t-1,j}$$

$$\mathbf{y}_j^{new} = \alpha_j + \Phi_{1:J,j} \mathbf{Y}_{T,j}$$

$$\alpha_j \sim \mathcal{N}(0, 1000)$$

$$\sigma_j \sim \mathcal{HC}(25)$$

$$\Phi_{i,k} \sim \mathcal{N}(0, \Sigma), \quad i = 1, \dots, J, \quad k = 1, \dots, J$$

```
pos.alpha <- grep("alpha", parm.names)</pre>
pos.Phi <- grep("Phi", parm.names)</pre>
pos.sigma <- grep("sigma", parm.names)</pre>
PGF <- function(Data) return(c(rnormv(Data$J,0,1),
    rnormv(Data$J*Data$J,0,1), rhalfcauchy(Data$J,5)))
MyData <- list(J=J, PGF=PGF, T=T, Y=Y, mon.names=mon.names,
    parm.names=parm.names, pos.alpha=pos.alpha, pos.Phi=pos.Phi,
    pos.sigma=pos.sigma)
99.3. Model
Model <- function(parm, Data)</pre>
    ### Parameters
    alpha <- parm[Data$pos.alpha]</pre>
    Phi <- matrix(parm[Data$pos.Phi], Data$J, Data$J)
    sigma <- interval(parm[Data$pos.sigma], 1e-100, Inf)</pre>
    parm[Data$pos.sigma] <- sigma</pre>
    ### Log-Prior
    alpha.prior <- sum(dnormv(alpha, 0, 1000, log=TRUE))</pre>
    Sigma <- MinnesotaPrior(Data$J, lags=1, lambda=1, theta=0.5, sigma)
    Phi.prior <- sum(dnormv(Phi, 0, Sigma, log=TRUE))
    sigma.prior <- sum(dhalfcauchy(sigma, 25, log=TRUE))</pre>
    ### Log-Likelihood
    mu <- matrix(alpha, Data$T, Data$J, byrow=TRUE)</pre>
    mu[-1,] <- mu[-1,] + Data$Y[-Data$T,] %*% Phi
    Sigma <- matrix(sigma, Data$T, Data$J, byrow=TRUE)</pre>
    ynew <- rnorm(Data$J, alpha + as.vector(Data$Y[Data$T,] %*% Phi),</pre>
         sigma)
    LL <- sum(dnorm(Data$Y[-1,], mu[-1,], Sigma[-1,], log=TRUE))
    ### Log-Posterior
    LP <- LL + alpha.prior + Phi.prior + sigma.prior
    Modelout <- list(LP=LP, Dev=-2*LL, Monitor=c(LP,ynew),</pre>
         yhat=rnorm(prod(dim(mu)), mu, Sigma), parm=parm)
    return(Modelout)
    }
```

```
Initial.Values <- c(as.vector(colMeans(Y)), rep(0,J*J), rep(1,J))</pre>
```

100. Weighted Regression

It is easy enough to apply record-level weights to the likelihood. Here, weights are applied to the linear regression example in section 46.

100.1. Form

$$\mathbf{y} \sim \mathcal{N}(\mu, \sigma^2)$$

$$\mu = \mathbf{X}\beta$$

$$\beta_j \sim \mathcal{N}(0, 1000), \quad j = 1, \dots, J$$

$$\sigma \sim \mathcal{HC}(25)$$

100.2. Data

```
data(demonsnacks)
N <- nrow(demonsnacks)</pre>
J <- ncol(demonsnacks)</pre>
y <- log(demonsnacks$Calories)</pre>
X <- cbind(1, as.matrix(demonstracks[,c(1,3:10)]))</pre>
for (j in 2:J) \{X[,j] \leftarrow CenterScale(X[,j])\}
w \leftarrow c(rep(1,5), 0.2, 1, 0.01, rep(1,31))
w \leftarrow w * (sum(w) / N)
mon.names <- "LP"
parm.names <- as.parm.names(list(beta=rep(0,J), sigma=0))</pre>
pos.beta <- grep("beta", parm.names)</pre>
pos.sigma <- grep("sigma", parm.names)</pre>
PGF <- function(Data) return(c(rnormv(Data$J,0,1000), rhalfcauchy(1,5)))
MyData <- list(J=J, PGF=PGF, X=X, mon.names=mon.names,</pre>
     parm.names=parm.names, pos.beta=pos.beta, pos.sigma=pos.sigma, w=w,
     y=y)
```

100.3. Model

```
return(Modelout)
}
```

Initial.Values <- c(rep(0, J), 1)</pre>

101. Zero-Inflated Poisson (ZIP)

101.1. Form

$$\mathbf{y} \sim \mathcal{P}(\Lambda_{1:N,2})$$

$$\mathbf{z} \sim \mathcal{BERN}(\Lambda_{1:N,1})$$

$$\mathbf{z}_i = \begin{cases} 1 & \text{if } \mathbf{y}_i = 0 \\ 0 & \end{cases}$$

$$\Lambda_{i,2} = \begin{cases} 0 & \text{if } \Lambda_{i,1} \ge 0.5 \\ \Lambda_{i,2} & \end{cases}$$

$$\Lambda_{1:N,1} = \frac{1}{1 + \exp(-\mathbf{X}_1 \alpha)}$$

$$\Lambda_{1:N,2} = \exp(\mathbf{X}_2 \beta)$$

$$\alpha_j \sim \mathcal{N}(0, 1000), \quad j = 1, \dots, J_1$$

$$\beta_j \sim \mathcal{N}(0, 1000), \quad j = 1, \dots, J_2$$

```
N <- 1000
J1 <- 4
J2 <- 3
X1 <- matrix(runif(N*J1,-2,2),N,J1); X1[,1] <- 1
X2 <- matrix(runif(N*J2,-2,2),N,J2); X2[,1] <- 1
alpha <- runif(J1,-1,1)
beta <- runif(J2,-1,1)
p <- invlogit(tcrossprod(X1, t(alpha)) + rnorm(N,0,0.1))
mu <- round(exp(tcrossprod(X2, t(beta)) + rnorm(N,0,0.1)))
y <- ifelse(p > 0.5, 0, mu)
z <- ifelse(y == 0, 1, 0)
mon.names <- "LP"
parm.names <- as.parm.names(list(alpha=rep(0,J1), beta=rep(0,J2)))
pos.alpha <- grep("alpha", parm.names)
pos.beta <- grep("beta", parm.names)</pre>
```

```
PGF <- function(Data) return(c(rnormv(Data$J1,0,5), rnormv(Data$J2,0,5)))
MyData <- list(J1=J1, J2=J2, N=N, PGF=PGF, X1=X1, X2=X2,
    mon.names=mon.names, parm.names=parm.names, pos.alpha=pos.alpha,
    pos.beta=pos.beta, y=y, z=z)
101.3. Model
Model <- function(parm, Data)</pre>
    ### Parameters
    parm[Data$pos.alpha] <- alpha <- interval(parm[Data$pos.alpha], -5, 5)</pre>
    parm[Data$pos.beta] <- beta <- interval(parm[Data$pos.beta], -5, 5)</pre>
    ### Log-Prior
    alpha.prior <- sum(dnormv(alpha, 0, 5, log=TRUE))</pre>
    beta.prior <- sum(dnormv(beta, 0, 5, log=TRUE))</pre>
    ### Log-Likelihood
    Lambda <- matrix(NA, Data$N, 2)</pre>
    Lambda[,1] <- invlogit(tcrossprod(Data$X1, t(alpha)))</pre>
    Lambda[,2] <- exp(tcrossprod(Data$X2, t(beta))) + 1e-100
    Lambda[which(Lambda[,1] >= 0.5),2] <- 0
    LL <- sum(dbern(Data$z, Lambda[,1], log=TRUE),
         dpois(Data$y, Lambda[,2], log=TRUE))
    ### Log-Posterior
    LP <- LL + alpha.prior + beta.prior
    Modelout <- list(LP=LP, Dev=-2*LL, Monitor=LP,</pre>
         yhat=rpois(nrow(Lambda), Lambda[,2]), parm=parm)
```

101.4. Initial Values

}

return(Modelout)

Initial.Values <- GIV(Model, MyData, n=10000)</pre>

References

Barnard J, McCulloch R, Meng X (2000). "Modeling Covariance Matrices in Terms of Standard Deviations and Correlations, with Application to Shrinkage." *Statistica Sinica*, **10**, 1281–1311.

Congdon P (2003). Applied Bayesian Modelling. John Wiley & Sons, West Sussex, England.

Draper D (1995). "Assessment and Propagation of Model Uncertainty." *Journal of the Royal Statistical Society*, **B 57**(1), 45–97.

- Gelman A (2013). R2WinBUGS: Running WinBUGS and OpenBUGS from R / S-PLUS. R package version 2.1-19, URL http://cran.r-project.org/web/packages/R2WinBUGS/index.html.
- Gelman A, Carlin J, Stern H, Rubin D (2004). Bayesian Data Analysis. 2nd edition. Chapman & Hall, Boca Raton, FL.
- Ibrahim J, Chen M (2000). "Power Prior Distributions for Regression Models." *Statistical Science*, **15**, 46–60.
- Kim J, Allenby G, Rossi P (2002). "Modeling Consumer Demand for Variety." *Marketing Science*, **21**(3), 229–250.
- Kleine L (1950). Economic Fluctuations in the United States 1921-1940. John Wiley & Sons, New York, New York.
- Kotz S, Kozubowski T, Podgorski K (2001). The Laplace Distribution and Generalizations: A Revisit with Applications to Communications, Economics, Engineering, and Finance. Birkauser, Boston.
- O'Hara R, Sillanpaa M (2009). "A Review of Bayesian Variable Selection Methods: What, How and Which." *Journal of Bayesian Analysis*, **4**(1), 85–118.
- Spiegelhalter D, Thomas A, Best N, Lunn D (2003). WinBUGS User Manual, Version 1.4. MRC Biostatistics Unit, Institute of Public Health and Department of Epidemiology and Public Health, Imperial College School of Medicine, UK.
- Statisticat LLC (2014). *LaplacesDemon:* Complete Environment for Bayesian Inference. R package version 14.06.23, URL http://www.bayesian-inference.com/software.
- Zellner A (1962). "An Efficient Method of Estimating Seemingly Unrelated Regression Equations and Tests for Aggregation Bias." *Journal of the American Statistical Association*, **57**, 348–368.

Affiliation:

Statisticat, LLC Farmington, CT

E-mail: software@bayesian-inference.com

URL: http://www.bayesian-inference.com/software