

Classe: 4^{ème} Math (Gr standard)

Serie I 0 physique Dipôle RL(I)

Prof: Karmous Med

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba / Jendouba / Sidi Bouzid / Siliana / Béja / Zaghouan

Exercice 1

Un dipôle AB est constitué par une association en série, d'une bobine d'inductance L, de résistance r et d'un résistor de résistance Ro. Le dipôle AB est alimenté par un

générateur de tension idéal de force électromotrice E (figure-4-). On ferme l'interrupteur K et on visualise à l'aide d'un oscilloscope à mémoire :

- la tension u_{AB}(t) aux bornes du dipôle AB sur la voie (I);
- la tension u_{Ro}(t) aux bornes du résistor sur la voie (II).

On obtient les courbes de la figure-5-

- Schématiser sur la figure-4- le branchement nécessaire pour visualiser simultanément uAB(t) et uRo(t).
- 2) a- Montrer que l'intensité du courant circulant dans le dipôle AB est $\frac{di}{dt} + \frac{1}{\tau}i = \frac{E}{L}$ où $\tau = \frac{L}{R}$ est la régie par l'équation différentielle : constante de temps du dipôle RL et R=R₀+r la résistance totale du

Figure-4-

b- Vérifier que i(t) = $\frac{E}{R}$ (1-e^{-t/t}) est solution

de cette équation différentielle.

- c- En déduire l'expression de u_{Ro}(t).
- 3) Attribuer, en le justifiant, chaque courbe à la tension correspondante. En déduire graphiquement la valeur de E.
- a- Etablir l'expression de l'intensité de courant Io circulant dans le dipôle AB en régime permanant en fonction de E, Ro, r.
 - b- Déterminer les valeurs de R₀ et r. On donne $R = 50\Omega$.
- 5) a- Montrer qu'à l'instant t₁ = τLn2 le

- le temps de demi-établissement du courant ».
- b- Déterminer graphiquement t₁ et en déduire la valeur de τ. c- En déduire la valeur de l'inductance L de la bobine.
- d- Calculer l'énergie magnétique emmagasinée dans la bobine à l'instant t₁.

Exercice 2

Le circuit électrique série représenté par la figure ci-contre comporte :

- * Un générateur idéal de tension de *f.e.m E*,
- * Une bobine d'inductance L et de résistance $r=20 \Omega$,
- * Un interrupteur K et un résistor de résistance **R**.

A la date **t=0** on ferme l'interrupteur K et à l'aide d'un dispositif informatisé on a pu représenter les variations des tensions u_{AB} et u_{BC} au cours du temps. (voir figures 2 et 3 page 4 à compléter)

- 1°) a- Quelle est l'influence de l'inductance L de la bobine dans cette expérience.
 - b- En exploitant les courbes données en le justifiant, la valeur de la f.e.m E du générateur.
 - c- Montrer qu'en régime permanent l'intensité de courant est $I_p = \frac{E}{R+r}$
 - d-Déduire alors la tension U_{Bmin} aux bornes de la bobine en fonction de E, R et r.
 - e-Déterminer la valeur de la résistance R. graphiquement sa valeur.
- 2°) a- Donner l'expression de la constante de temps τ puis déterminer sa valeur
 - b- en déduire la valeur de l'inductance L de la bobine.
- 3°) a- Etablir l'équation différentielle régissant les variations de l'intensité de courant dans le circuit *i(t)*.
 - b- La solution de cette équation différentielle s'écrit sous la forme $i=A(1 e^{-t/\tau})$ ou A est une constante positive dont on déterminera son expression en fonction de E, r et R
 - c- En utilisant cette solution, calculer la valeur de l'intensité i du courant dans le circuit à **t=4ms**. Retrouver cette valeur à partir de l'un des graphes.
 - d- Déterminer la valeur de l'énergie magnétique E_L emmagasinée par la bobine à la date t=4 ms.
- **4°)** On reprend le montage précédent en faisant varier l'une des grandeurs E, R ou L et on ferme l'interrupteur K à une date considérée comme origine des dates (t=0); en traçant le graphe de $u_{AB}(t)$, on obtient la courbe (C_1) (voir figure 3).
 - a- Quelle est la grandeur qui a été modifiée ? justifier la réponse.
 - b- Calculer sa nouvelle valeur.

 \mathbf{O} n réalise le circuit électrique représenté par la **figure-1**- portant, en série, un générateur de tension idéale de f.é.m E, une bobine d'inductance L et de résistance r, un interrupteur K et un résistor de résistance R. A l'instant t=0, on ferme l'interrupteur K et à l'aide d'un oscilloscope à mémoire, on enregistre la tension $u_B(t)$ aux bornes de la bobine (B) sur la voie Y_1 et la tension $u_R(t)$ sur la voie Y_2 , on obtient les courbes (a) et (b) de la figure -2-

- 1°) a-Reproduire le schéma du circuit électrique et indiquer le branchement de l'oscilloscope qui permet de visualiser les tensions $u_B(t)$ et $u_R(t)$.
 - b-Identifier en le justifiant, les deux courbes (a) et (b).
 - c-Interpréter le retard temporel de l'établissement du courant dans le circuit.
- 2°) a- Établir l'équation différentielle régissant les variations de la tension u_R(t) aux bornes du résistor.

b-verifieer que $u_R(t) = \frac{RE}{R+r}(1 - e^{\frac{-t}{\tau}})$ peut être une solution de l'équation différentielle si τ que l'on précisera en fonction de R, r et L.

- 3°) Déterminer en le justifiant, la valeur de la f.e.m E du générateur.
- **4°)***a* Etablir les expressions des tensions U_B et U_R respectivement des tentions $u_B(t)$ et $u_R(t)$ en régime permanent.
- b- Calculer la valeur du rapport $\frac{U_B}{V_{AB}}$
- 5°)Déterminer la valeur de la résistance \mathbf{R} et celle de \mathbf{r} sachant que $\mathbf{R} + \mathbf{r} = 90\Omega$
- 6°) Relever graphiquement la valeur de τ. Déduire la valeur de l'inductance L.
- 7°)Une modification de l'une des valeurs de E, R ou L donne la courbe (C) représentée sur la figure (2) ci-dessus et traduisant les variations de u_B(t) dans les nouvelle conditions a-Quel grandeur a-t-on modifié?
 - b Calculer sa valeur.

Exercice 4

On se propose d'étudier la réponse d'un dipôle RL à un échelon de tension. Pour cela on dispose le circuit électrique représenté par la figure ci-contre portant, en série, un générateur de tension idéale de fem **E**, une bobine d'inductance **L** et de résistance **r**, un interrupteur K et un résistor de résistance **R**.

A l'instant de date t=0, on ferme l'interrupteur K et à l'aide d'un oscilloscope à mémoire, on enregistre la tension $u_B(t)$ aux bornes

de la bobine sur la **voie** $\bf A$ et la tension $u_{\bf R}(t)$ sur la **voie** $\bf B$, on obtient les courbes de la **figure 2**

1°) a- Reproduire le schéma du circuit électrique et indiquer le branchement à l'oscilloscope. b- Identifier, en le justifiant, les courbes C₁ et C₂.

b-Interpréter le retard temporel de l'établissement du courant dans le circuit.

2°) Montrer l'équation que différentielle régissant les variations de la tension u_R(t) s'écrit :

 $\alpha \frac{du_R(t)}{dt} + u_R(t) = \beta$ des ou α , β constantes à exprimées en fonction des caractéristiques du circuit dont on donnera la signification physique.

3°) La solution de cette équation différentielle est de la forme $u_{\mathbb{R}}(t) = \beta(1 - e^{-\frac{t}{\alpha}})$.

a-Etablir l'expression de la tension $u_B(t)$, en déduire son expression U_{B0} en régime permanent. **b**-Représenter l'échelon de tension E. sur la **figure 2**

4°) Calculer le rapport

En déduire les valeurs de \mathbf{R} et \mathbf{r} sachant que \mathbf{R} - \mathbf{r} = 180 Ω .

5°) a- A l'instant de

date t_0 , $u_B(t_0) = u_R(t_0)$. $t_0 = \tau \cdot \ln(\frac{2R}{R-r})$. Montrer que

b- Sachant t0 = 1,87 ms, calculer t puis déduire la valeur de l'inductance L.

Exercice 5

Le circuit électrique représenté par la figure comportant, en série, un générateur de tension idéale de f.e.m E.une bobine B_1 d'inductance L_1 et de résistance $r_1=10 \Omega$, un interrupteur K et un résistor de résistance R.

A la date t=0 on ferme l'interrupteur K et à l'aide d'un oscilloscope à mémoire, on enregistre la tension u_B auxbornes de la bobine B₁, on obtient le chronogramme de la figure 2.

- 1°) Interpréter le retard temporel de l'établissement de la tension u_{B1} aux bornes de la bobine.
- **2°)** Etablir l'équation différentielle régissant les variations de l'intensité du courant électrique i(t) dans le circuit.

3°) verifier que est $i(t) = \frac{E}{R + r_1} . (1 - e^{-t/\tau})$ circuit.

avec $\tau = \frac{L_1}{R + r_1}$.

4°) *a*-Prélever du graphe de **la figure 3** la fem E du générateur et la constante de temps t.

b-Déterminer la valeur de la résistance R et celle de l'inductance L_1 de la bobine.

5°)Pour ralentir l'établissement du courant dans le circuit on remplace la bobine B1 par une bobine B2 de résistance $\mathbf{r_2}$ et d'inductance $\mathbf{L_2}$. Et à l'aide de l'oscilloscope on visualise la tension $\mathbf{u_R}$ au cours du temps voirfigure-4-En utilisant l'équation différentielle précédente, montrer que $\frac{d\mathbf{u_R}}{dt}$ _{t=0} = $\frac{RE}{L_2}$.

a-Déduire la valeur de L_2 . *b*-En utilisant les deux graphes, montrer sans calcul que $\mathbf{r_1}$ = $\mathbf{r_2}$.

Prof.karmous.Med

