

NRI INSTITUTE OF TECHNOLOGY

(AUTONOMOUS)

Pothavarappadu (V), Agiripalli (M), Eluru District, A.P., India, Pin: 521 212 URL: www.nriit.edu.in, email: principal@nriit.edu.in, Mobile: + 91 8333882444

What are the basic four steps of dynamic programming?
List the advantages of dynamic programming
Define state space tree?
Define NP-Complete?
Define maxclique problem?

Define a dead node

State the principle of Backtracking

What is a graph coloring problem?

Define NP-Hard?

What is job sequencing with deadlines problem

List the features of dynamic programming

Given 10 activities along with their start and finish time as $s=\{a1,a2,a3,a4,a5,a6a,a7,a8,a9,a10\}$

 $s_i = \{1,2,3,4,7,8,9,9,11,12\}$ $f_i = \{3,5,4,7,10,9,11,13,12,14\}$ compute a schedule where the largest number of activities takes place?

Explain optimal binary search tree with an example.

Let n=4 and (a1,a2,a3,a4) Construct optimal binary search for (a1, a2, a3, a4) = (do, if, int, while), p(1 : 4) = (3,3,1,1) q(0 : 4) = (2,3,1,1,1)

How to solve fractional knapsack problem in $\Theta(n)$ time?

How 8-Queen's problem can be solved using back tracking and explain with an example

Explain General method of Greedy method. Find the greedy solution for following job sequencing with deadlines problem n = 7, (p1, p2, p3, p4, p5, p6, p7) = (3,5,20,18,1,6,30), (d1, d2, d3, d4, ..., d7) = (1,3,4,3,2,1,2)

Write and explain the Cooks theorem

Discuss Draw the portion of state space tree generated by FIFOBB for the following instance of 0/1 knapsack n=5, M=12, (p1,p5) = (10,15,6,8,4) (w1, ...w5)=(4,6,3,4,2)

Give the solution to the m-coloring of a graph using backtracking

Solve the following instance of travelling sales person problem using Least Cost Branch Bound

 ∞ 12 5 7

11 ∞ 13 6

 $49 \propto 18$

10 3 2 ∞

Draw the portion of state space tree generated by FIFO knapsack for the instance N=4, (P1, P2, P3, P4)=(10, 10, 12, 18), (w1, w2, w3, w4) = (2, 4, 6, 9), m=15

Explain the method of reduction to solve travelling sales person problem using branch and bound

Discuss principle of LIFO branch and bound

NRI INSTITUTE OF TECHNOLOGY

(AUTONOMOUS)

Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE, EEE, IT & ME) An ISO 9001:2015 Certified Institution

Pothavarappadu (V), Agiripalli (M), Eluru District, A.P., India, Pin: 521 212 URL: www.nriit.edu.in, email: principal@nriit.edu.in, Mobile: + 91 8333882444

What is non deterministic algorithm explain.
Discuss in detail about the class P, NP, NP-hard and NP-complete problems. Give examples for each class
Explain Satisfiability problem
How to solve fractional knapsack problem in $\Theta(n)$ time?
How 8-Queen's problem can be solved using back tracking and explain with an example
Explain General method of Greedy method. Find the greedy solution for following job sequencing with
deadlines problem $n = 7$, $(p1, p2, p3, p4, p5, p6, p7) = (3,5,20,18,1,6,30)$, $(d1, d2, d3, d4,, d7) =$
(1,3,4,3,2,1,2)
Explain 0/1 knapsack problem with example
Sketch the state space tree degenerated by 4 queens problem