$$\begin{pmatrix} 0 & 1 & x \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \quad \text{o} \quad \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad \text{o} \quad \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Para los propósitos de esta sección se pretende reducir por renglones una matriz a la forma triangular superior donde los números diferentes de cero en la diagonal principal no son necesariamente unos. Esto se logra no insistiendo en que cada pivote sea igual a 1.

EJEMPLO 2.7.1 Encuentre una factorización LU de una matriz A

Reduzca por renglones la matriz
$$A = \begin{pmatrix} 2 & 3 & 2 & 4 \\ 4 & 10 & -4 & 0 \\ -3 & -2 & -5 & -2 \\ -2 & 4 & 4 & -7 \end{pmatrix}$$
 a una matriz triangular superior y

después escriba A como un producto de una matriz triangular inferior y una matriz triangular superior.

SOLUCIÓN Se procede como antes; sólo que esta vez no se dividen los elementos de la diagonal (pivotes) por sí mismos:

$$\begin{pmatrix} 2 & 3 & 2 & 4 \\ 4 & 10 & -4 & 0 \\ -3 & -2 & -5 & -2 \\ -2 & 4 & 4 & -7 \end{pmatrix} \xrightarrow{R_2 \to R_2 - 2R_1} \begin{pmatrix} 2 & 3 & 2 & 4 \\ R_3 \to R_3 + \frac{3}{2}R_2 \\ R_4 \to R_4 - R_1 \\ \hline \end{pmatrix} \begin{pmatrix} 2 & 3 & 2 & 4 \\ 0 & 4 & -8 & -8 \\ 0 & \frac{5}{2} & -2 & 4 \\ 0 & 7 & 6 & -3 \end{pmatrix} \xrightarrow{R_3 \to R_3 - \frac{5}{8}R_2} \begin{pmatrix} 2 & 3 & 2 & 4 \\ 0 & 4 & -8 & -8 \\ 0 & 0 & 3 & 9 \\ 0 & 0 & 20 & 11 \end{pmatrix}$$

Usando las matrices elementales como en el ejemplo 2.6.5, se puede escribir

$$U = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & -\frac{20}{3} & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & -\frac{7}{4} & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & -\frac{5}{8} & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\times \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ \frac{3}{2} & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ -2 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} A$$

0

$$A = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -\frac{3}{2} & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -1 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$