(19)日本国特許庁(JP)

(12) 公開特許公報 (A) (11) 特許出願公開番号

特開平11-314117

(43)公開日 平成11年(1999)11月16日

(51) Int. Cl. 6

B 2 1 D

識別記号

FΙ

B 2 1 D 5/02

5/02

審査請求 未請求 請求項の数2

OL

(全7頁)

(21)出願番号

特願平10-120506

(22)出願日

平成10年(1998)4月30日

(71)出願人 390014672

株式会社アマダ

神奈川県伊勢原市石田200番地

(72)発明者 内藤 義紀

神奈川県厚木市妻田北4-4-22

(74)代理人 弁理士 齊藤 明

(54) 【発明の名称】 プレスブレーキ

(57)【要約】

【課題】 プレスブレーキにおいて、製品の各工程に対 する金型の設置位置を正確、且つ短時間で決定し、各工 程ごとに使用される金型の位置を表示することにより、 不良製品を無くし、加工効率を向上させることにある。 【解決手段】 金型P1、P2、P3、D1、D2、D 3の上部テーブル1又は下部テーブル2に対する設置位 置情報 J を入力する入力手段 3、及び該入力手段 3 によ り入力された設置位置情報」に基づいて、工程①、②、 ③ごとに使用する金型P1、P2、P3、D1、D2、 D3の位置を表示する金型位置表示手段H1、H2・・ `・H15から成る。

【特許請求の範囲】

【請求項1】 上部テーブルと下部テーブルを有し、上部テーブルに取り付けられたパンチと、下部テーブルに取り付けられたダイから成る金型により、ワークに曲げ加工を施すプレスブレーキにおいて、

上記金型の上部テーブル又は下部テーブルに対する設置 位置情報を入力する入力手段、

及び該入力手段により入力された設置位置情報に基づいて、工程ごとに使用する金型の位置を表示する金型位置 表示手段から成ることを特徴とするプレスブレーキ。

【請求項2】 上記金型位置表示手段が、上部テーブル上であって、機械センタから金型の中心までの距離である曲げ位置に設置されている請求項1記載のプレスブレーキ。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明はプレスブレーキ、特に金型位置表示手段を設置したプレスブレーキに関する。

[0002]

【従来の技術】従来より、プレスブレーキにおいては、 同じテーブルに異なる金型を数種類取り付け、各金型を 使用することにより、多工程で製品を曲げ加工する場合 がある。

【0003】例えば、図5(A)に示す製品Sを作る場合には、第一工程①では、曲げ線Aを金型aにより、第二工程②では、曲げ線Bを金型bにより、第三工程③では、曲げ線Cを金型cにより、それぞれ曲げ加工する(図5(B))。

【0004】このため、図5 (C) に示すプレスブレー 30 キの各曲げ位置m1、m2、m3において、上部テーブル20にパンチa、b、cを、下部テーブル30にダイa'、b'、c'をそれぞれ取り付ける。

【0005】そして、上記パンチa、b、cとダイa'、b'、c'から成る金型により、ワークWに曲げ加工を施せば、上記の製品S(図5(A))を作ることができる。

【0006】この場合、各工程①、②、③と曲げ位置血 1、m2、m3、即ち金型a、b、cの位置の関係が、 予め明らかになっていなければ正確には曲げ加工ができ 40 ない。

【0007】そこで、従来は、図5(C)に示すように、その金型が使用される工程を、作業者がその都度書いていた。

【0008】例えば、図5(C)においては、紙テープ等を用いることにより、金型aには第一工程で使用されることを示す②を、金型bには、第二工程で使用されることを示す②を、金型cには、第三工程で使用されることを示す③を、それぞれ書いていた。

[0009]

【発明が解決しようとする課題】しかし、上記従来の技術には(図5)、次のような課題がある。

【0010】即ち、従来は、上述したように、各金型に、それら金型が使用される工程を、作業者がその都度 書いていた。

【0011】そのため、作業者が金型と、それが使用される工程を誤って認識していた場合には、金型に間違った工程を書くことがあった。

【0012】例えば、図5 (C) において、金型bは、 10 本来第二工程で使用されるにもかかわらず、第三工程で あることを示す②を間違って書くことがある。

【0013】また、従来は、上述したことと関連して、各工程①、②、③と、金型の設置位置m1、m2、m3との対応に慣れるのに時間がかかった。

【0014】即ち、作業者自身が、簡単な形状の製品Sについて、各工程①、②、③と、金型の設置位置m1、m2、m3との対応を覚えるのは、短時間で済む。

【0015】しかし、もっと複雑な形状の製品Sについて、各工程と、金型の設置位置との対応を覚えるのは、

20 容易でなく、長時間を要することは明らかである。

【0016】従って、このため、製品Sの加工時間が延びることになり、効率が極めて低い。

【0017】更に、従来は、各工程と、金型の設置位置との対応を誤り、不良製品を作る場合がある。

【0018】本発明の目的は、プレスブレーキにおいて、製品の各工程に対する金型の設置位置を正確、且つ短時間で決定し、各工程ごとに使用される金型の位置を表示することにより、不良製品を無くし、加工効率を向上させることにある。

[0019]

【課題を解決するための手段】上記課題を解決するために、本発明は、図1に示すように、上部テーブル1と下部テーブル2を有し、上部テーブル1に取り付けられたパンチP1、P2、P3と、下部テーブル2に取り付けられたダイD1、D2、D3から成る金型により、ワークWに曲げ加工を施すプレスブレーキにおいて、(A)上記金型P1、P2、P3、D1、D2、D3の上部テーブル1又は下部テーブル2に対する設置位置情報Jを入力する入力手段3、(B)及び該入力手段3により入力された設置位置情報Jに基づいて、工程①、②、③ごとに使用する金型P1、P2、P3、D1、D2、D3の位置を表示する金型位置表示手段H1、H2・・・H15から成ることを特徴とするプレスブレーキという技術的手段を講じている。

【0020】従って、本発明の構成によれば、マウス等の入力手段3(図1)により、金型P1、P2、P3の例えば上部テーブル1に対する設置位置情報Jを入力すると、該設置位置情報Jに基づいて、例えばNC4が判断し、金型位置表示手段H3、H13、H8により、工50程①、②、③ごとに使用する金型P1、P2、P3の位

【0021】このため、製品の各工程に対する金型設置 位置が正確に、且つ短時間で決定されることになり、作 業者は工程ごとに使用する金型の表示に誘導されて加工 できるので、誤って異なる金型を使用しなくなり、不良

乗者は工程ことに使用する並至の扱不にあ事されて加工できるので、誤って異なる金型を使用しなくなり、不良製品が無くなって、加工効率を向上させることができる。

[0022]

置が表示される。

【発明の実施の形態】以下、本発明を、実施の形態により添付図面を参照して、説明する。図1は本発明の構成 10を示す図であり、同図において、参照符号1は上部テーブル、2は下部テーブル、3は入力手段、4はNC、5は記憶手段、6は点灯回路7は表示手段である。

【0023】図1において、プレスブレーキは、上部テーブル1と下部テーブル2を有し、上部テーブル1には、例えばパンチP1、P2、P3が、下部テーブル2には、例えばダイD1、D2、D3がそれぞれ取り付けられている。

【0024】このプレスブレーキは、よく知られているように、上記パンチP1、P2、P3とダイD1、D2、D3の協働により、ワークWに曲げ加工を施すようになっている。

【0025】例えば上昇式プレスブレーキでは、下部テーブル2が上昇することにより、下降式プレスブレーキでは、上部テーブル1が下降することにより、前記パンチP1、P2、P3とダイD1、D2、D3から成る金型により、ワークWに曲げ加工が施され、所定の製品S1やS2(図2)が加工される。

【0026】上部テーブル1には、金型位置表示手段H 1、H2・・・H15が設置されている。

【0027】この金型位置表示手段H1、H2・・・H 15は、工程①、②、③ごとに使用する金型P1、P 2、P3、D1、D2、D3の位置を表示し、例えばランプにより形成されている。

【0028】例えば、金型P2、D2を使用する場合には、ランプH13が点灯する(図1)。また、図示するように、金型P2、D2の長さ分だけ、ランプH12、H13、H14を点灯させるようにしてもよい。

【0029】この金型位置表示手段H1、H2・・・H 15は、機械センタMCから金型の中心までの距離であ 40 る曲げ位置BPに、それぞれ設置されている。

【0030】例えば、曲げ位置BP=0には、金型位置 表示手段H8が、曲げ位置BP=+100には、金型位 置表示手段H13が、曲げ位置BP=-100には、金 型位置表示手段H3がそれぞれ設置されている。

【0031】上記入力手段3は、例えばマウス、キーボード等であり、上記金型P1、P2、P3、D1、D2、D3の上部テーブル1又は下部テーブル2に対する設置位置情報Jを入力する。

【0032】この設置位置情報Jとしては、例えば工程 50 起こし部K1を、曲げ線Bの切起こし部K2を、曲げ線

ごとの金型の種類と、設置位置があり、入力手段3がキーボートの場合には、これらを数字で入力し、マウスの場合には、後述する表示手段7 (例えばCRT)の画面上で該当する情報を選択できるようになっている。

【0033】上記NC4は、入力手段3から入力された 設置位置情報」に基づいて、既述した金型位置表示手段 H1、H2・・・H15を制御し、該当するものを点灯 する(制御信号S4、S5)。その他、NC4は、図1 に示す装置全体を制御する。

【0034】上記記憶手段5は、入力手段3から入力された設置位置情報Jを一旦格納する(信号S2)。

【0035】記憶手段5は、例えばROMにより形成され、NC4は、この記憶手段5に格納された設置位置情報Jを読み込むことにより(信号S2)、前記金型位置表示手段H1、H2・・・H15を制御する。

【0036】上記点灯回路6は、前記NC4からの制御信号S4に基づき、該当する金型位置表示手段H1、H2・・・H15に電力S5を供給することにより、それを点灯する。

【0037】上記表示手段7は、例えばCRTであり、 その画面上には、図示するように、種々の設置位置情報 」が表示されている。

【0038】これら情報は、例えば入力手段3であるマウスで選択することにより、入力される。

【0039】画面上には、例えば工程①、②・・・、 設置位置m1、m2・・・、金型P1、P2・・・ ・、曲げ線B1B2・・・・がそれぞれ表示されている。

【0040】工程は、ある製品を曲げ加工する場合の工 30 程であり、①は第一工程を、②は第二工程・・・を、設 置位置は、その工程において使用する金型を設置する位 置であり、既述した機械センタMCから金型の中心まで の距離である曲げ位置BPを、それぞれ示す。

【0041】また、金型は、使用される金型の種類を、曲げ線は、製品の切起こし部の曲げ線の長さをそれぞれ示す。

【0042】この設置位置情報Jのうち、工程と金型と曲げ線については、予め記憶手段5に格納されている製品情報と金型情報に基づいて、NC4が自動的に検出することができる。

【0043】従って、作業者は、少なくとも、各工程ご との金型の設置位置を、例えばマウスを操作することに より入力する。

【0044】図2は、上記CRT7の画面上に表示される設置位置情報Jの例を示す。

【0045】図2(A)は、製品S1を曲げ加工する場合の設置位置情報J1であり、図2(B)は、製品S2を曲げ加工する場合の設置位置情報J2である。

【0046】製品S1は(図2(A))、曲げ線Cの切起こし部K1を、曲げ線Bの切起こし部K2を、曲げ線

Aの切起こし部K3を、それぞれ有する。この場合、切 起こし部K2、K3は、斜線部分の穴O1の縁に形成さ れている。

【0047】この製品S1を曲げ加工する場合、第一工 程〇では、金型P1を使用して曲げ線Cを、第二工程〇 では、金型P2を使用して曲げ線Bを、第三工程③で は、金型P3を使用して曲げ線Aを、それぞれ曲げ加工 する。これらの情報は、既に製品情報と金型情報とし て、NC4が記憶手段5に記憶している。

【0048】従って、この場合、作業者は、CRT7の 10 画面を見ながら、例えば第一工程①では金型P1の設置 位置-100を、第二工程②では金型P2の設置位置+ 100を、また第三工程③では金型P3の設置位置0、 即ち機械センタMCの位置(図1)を、それぞれマウス で選択することにより入力する(信号S3)。

【0049】そして、この入力された設置位置情報 J1 は、記憶手段5に格納され、NC4が金型位置表示手段 H1、H2・・・H15を制御する場合に使用される。

【0050】また、作業者は、既述したように、各工程 ごとに使用される金型の設置位置だけでなく、図2

(A) の破線で示すように、工程と設置位置と金型と曲 げ線の全ての情報を入力してもよい。

【0051】製品S2は(図2(B))、曲げ線Dの切 起こし部K4を、曲げ線Eの切起こし部K5を、曲げ線 Fの切起こし部K6を、それぞれ有する。この場合、切 起こし部K5、K6は、斜線部分の穴O2の縁に形成さ れている。

【0052】この製品S2を曲げ加工する場合、第一工 程①では、金型P3を使用して曲げ線Dを、第二工程② では、金型P1を使用して曲げ線Eを、第三工程③で は、金型P2を使用して曲げ線Fを、それぞれ曲げ加工 する。そして、これらの情報は、既に製品情報と金型情 報として、NC4が記憶手段5に記憶している。

【0053】この場合も、作業者は、図2(A)と同様 にCRT7の画面を見ながら、各工程ごとに金型の設置 位置を入力する。

【0054】例えば第一工程①では金型P3の設置位置 -120を、マウスで選択することにより入力する(図 2 (A) の実線)。

は、記憶手段5に格納され、NC4が金型位置表示手段 H1、H2・・・H15を制御する場合に使用される。

【0056】しかし、作業者は、各工程ごとに使用され る金型の設置位置だけでなく、図2(A)の場合と同様 に、工程と設置位置と金型と曲げ線の全ての情報を入力 してもよい(図2(B)の破線)。

【0057】図3は、本発明による具体的な操作画面を 示す図である。例えば、NC4(図1)は、製品S3の 形状と、その製品S3を曲げ加工する場合に使用する金

して記憶手段5に既に記憶している。

【0058】また、第一工程では金型P1を、第二工程 では金型P2を、第三工程では金型P3をそれぞれ使用 する。

【0059】これを前提として、図3の画面上には、こ の製品S3の形状と、使用される金型P1、P2、P3 が表示されていると共に、機械センタMCを基準とした 金型設置位置の目盛70が表示されている。

【0060】更に、画面の左上の工程71の欄は、各工 程ごとに表示が切り換わり、例えば第一工程の場合には 1/3が、第二工程の場合には2/3が、第三工程の場 合には3/3がそれぞれ表示される。

【0061】このような画面上で、作業者は、入力手段 3であるマウスで、例えば第一工程で使用する金型P1 をピックすることにより選択し、金型P1をピックした 状態で目盛70を見ながら左右方向に移動させ、所定の 位置(例えば-100)に来たときにピック状態を解除 する。

【0062】これにより、選択した金型P1の位置-1 20 00が設置位置情報 J 3 として、N C 4 に入力されると 共に、画面の金型位置72の欄に表示される。

【0063】このようにして、以下の第二工程と第三工 程で使用される金型P2とP3の位置を画面上で順次入 力する。

【0064】以下、上記構成を有する本発明の動作を、 図4に基づいて説明する。また、この場合、プレスプレ ーキは、図2(A)の製品S1を曲げ加工し、CRT7 の画面には、図2(A)の設置位置情報 J1が映し出さ れている。

【0065】先ず、図4のステップ101において、工。 程ごとに、金型の設置位置情報 J 1 を入力する。

【0066】即ち、作業者は、入力手段3であるマウス により画面(図2(A))上のカーソルを移動させ、カ ーソルが所定の設置位置まで移動したときに該マウスの ボタンを押すと、選択信号S1がNC4に入力され、該 選択信号S1に対応した座標信号S3がCRT7に入力 される。

【0067】これにより、第一工程①では金型P1の設 置位置-100が、第二工程②では金型P2の設置位置 【0055】そして、この入力された設置位置情報 J2 40 +100が、また第三工程③では金型 P3の設置位置 0 が、それぞれ選択され、NC4を介して記憶手段5に格 納される(信号S3、S2)。

> 【0068】このようにして、工程ごとに、金型の設置 位置情報 J 1を入力し、ステップ102において、入力 が完了すると、ステップ103において、作業が開始さ れる。

> 【0069】作業が開始されると、ステップ104にお いて、第一工程①の金型位置が表示される。

【0070】即ち、NC4は、記憶手段5から、前記ス 型P1、P2、P3を、それぞれ製品情報と金型情報と 50 テップ101において入力された第一工程①で使用され

る金型P1の設置位置-100、及び製品S1について の製品情報と金型情報を読み込み(図1の信号S2)、 点灯回路6に制御信号S4を送信する。

【0071】制御信号S4を受信した点灯回路6は、上 記設置位置-100に設置されている金型位置表示手段 H3に電力S5を供給する。

【0072】これにより、金型位置表示手段H3が点灯 するので、作業者は、この点灯された金型位置表示手段 H3に誘導され、パンチP1とD1の間にワークWを挿 入すれば、該パンチP1とD1の協働により曲げ線Cが 10 (図2(A))曲げ加工され、切起こし部K1が形成さ れる。

【0073】この間、ステップ105において、第一工 程①について、曲げ加工が終了したか否かが判断され、 曲げ加工が終了しない場合には(NO)、ステップ10 4に戻って、金型位置表示手段H3を点灯したままにし

【0074】そして、第一工程①について曲げ加工が終 了した場合には(YES)、ステップ106に進む。

【0075】ステップ106においては、第二工程②の 20 金型位置が表示される。

【0076】即ち、NC4は、記憶手段5から、前記ス テップ101において入力された第二工程②で使用され る金型P2の設置位置+100(図2(A))、及び製 品S1についての製品情報と金型情報を読み込み(図1 の信号S2)、点灯回路6に制御信号S4を送信する。

【0077】制御信号S4を受信した点灯回路6は、上 記設置位置+100に設置されている金型位置表示手段 H13に電力S5を供給する。

【0078】これにより、金型位置表示手段H13が点 30 は勿論である。 灯するので、作業者は、この点灯された金型位置表示手 段H13に誘導され、パンチP2とD2の間にワークW を挿入すれば、該パンチP2とD2の協働により曲げ線 Bが(図2(A))曲げ加工され、切起こし部K2が形 成される。

【0079】この間、ステップ107において、第二工 程②について、曲げ加工が終了したか否かが判断され、 曲げ加工が終了しない場合には(NO)、ステップ10 6に戻って、金型位置表示手段H13を点灯したままに しておく。

【0080】そして、第二工程②について曲げ加工が終 了した場合には(YES)、ステップ108に進む。

【0081】ステップ108においては、第三工程③の 金型位置が表示される。

【0082】即ち、NC4は、記憶手段5から、前記ス テップ101において入力された第三工程③で使用され る金型P3の設置位置0(図2(A))、及び製品S1 についての製品情報と金型情報を読み込み(図1の信号 S2)、点灯回路6に制御信号S4を送信する。

【0083】制御信号S4を受信した点灯回路6は、上 50 加工すれば、作業者は曲げ順を間違えることが無くなる

記設置位置Oに設置されている金型位置表示手段H8に 電力S5を供給する。

【0084】これにより、金型位置表示手段H8が点灯 するので、作業者は、この点灯された金型位置表示手段 H8に誘導され、パンチP3とD2の間にワークWを挿 入すれば、該パンチP3とD3の協働により曲げ線Aが (図2(A))曲げ加工され、切起こし部K3が形成さ れる。

【0085】この間、ステップ109において、第三工 程③について、曲げ加工が終了したか否かが判断され、 曲げ加工が終了しない場合には(NO)、ステップ10 8に戻って、金型位置表示手段H8を点灯したままにし ておく。

【0086】そして、第三工程③について曲げ加工が終 了した場合には (YES)、全ての動作を停止する (E ND)。

【0087】尚、点灯される金型位置表示手段は、必ず しも金型P1、P2、P3の中心に設置された前記H 3、H13、H8だけでなく、その左右の金型位置表示 手段も含めて、例えば金型P2を使用する場合には、H 13の他H12とH14も点灯することができる(図 1)。これにより、作業者は、一層加工し易くなり、誤 って異なる金型を使用するといった弊害がなくなり、不 良製品を無くすことができる。

【0088】また、本実施形態においては、金型位置表 示手段H1、H2・・・H15を上部テーブル1に設置 する場合について詳述したが、本発明はこれには限定さ れず、金型位置表示手段H1、H2・・・H15を下部 テーブル2に設置した場合にも同様の効果を奏すること

[0089]

【発明の効果】上記のとおり、本発明によれば、プレス ブレーキを、金型の上部テーブル又は下部テーブルに対 する設置位置情報を入力する入力手段と、該入力手段に より入力された設置位置情報に基づいて、工程ごとに使 用する金型の位置を表示する金型位置表示手段から成る ように構成したことにより、マウス等の入力手段によ り、金型の例えば上部テーブルに対する設置位置情報を 入力すると、該設置位置情報に基づいて、例えばNCが 40 判断し、金型位置表示手段により、工程ごとに使用する 金型の位置が表示されるようになったので、製品の各工 程に対する金型設置位置が正確に、且つ短時間で決定さ れることになり、作業者は工程ごとに使用する金型の表 示に誘導されて加工できるので、誤って異なる金型を使 用しなくなり、不良製品が無くなって、加工効率を向上 させるという技術的効果を奏することとなった。

【0090】また、金型の長さは、ほぼ曲げ線の長さに 等しいので、工程ごとに使用する金型の位置が表示され るようになったことにより、この表示に誘導されて曲げ

特開平11-314117

という効果もある。

[0091]

【図面の簡単な説明】

【図1】本発明の構成を示す図である。

【図2】本発明による設置位置情報の実施形態を示す図 である。

【図3】本発明による具体的な操作画面を示す図であ

【図4】本発明の動作を説明するフローチャートであ る。

【図5】従来技術の説明図である。 【符号の説明】

- 上部テーブル
- 下部テーブル
- 入力手段
- NC
- 記憶手段
- 点灯回路
- 表示手段

10

【図1】

【図2】

【図5】

工程 1 → 曲げ線A → 金型 σ

工程 2 → 曲げ線B → 金型 b

工程 3 → 曲げ線C → 金型(

【図4】

