Ubungen zur Vorlesung Graphischer Mittlerer Kümmungsfluss

Blatt 2

Aufgabe 5. (8 Punkte)

Seien $X_0, Y_0: \mathbb{S}^1 \to \mathbb{R}^2$ reguläre, glatte Kurven und $X, Y: \mathbb{S}^1 \times [0, T) \to \mathbb{R}^2$ erfüllen

$$\begin{cases} \frac{\partial X}{\partial t}(x,t) = -\kappa(x,t)\nu(x,t) & \text{für } (x,t) \in \mathbb{S}^1 \times (0,T)\,, \\ X(x,0) = X_0(x) & \text{für } x \in \mathbb{S}^1 \end{cases}$$

und

$$\begin{cases} \frac{\partial Y}{\partial t}(y,t) = -\kappa(y,t)\nu(y,t) & \text{für } (y,t) \in \mathbb{S}^1 \times (0,T)\,, \\ Y(y,0) = Y_0(y) & \text{für } y \in \mathbb{S}^1\,. \end{cases}$$

Definiere $d: \mathbb{S}^1 \times \mathbb{S}^1 \times [0,T) \to \mathbb{R}$ durch

$$d(x, y, t) = ||X(x, t) - Y(y, t)||_{\mathbb{R}^2},$$

die Ableitungen

$$\frac{\partial}{\partial s_x} := \frac{1}{v(x,t)} \frac{\partial}{\partial x} \qquad \text{und} \qquad \frac{\partial}{\partial s_y} := \frac{1}{v(y,t)} \frac{\partial}{\partial y}$$

und die Tangentialvektoren

$$\tau_x := \tau(x,t) := \frac{\partial X}{\partial s_x}(x,t) \quad \text{und} \quad \tau_y := \tau(y,t) := \frac{\partial Y}{\partial s_y}(y,t).$$

Die Zweipunkt-Differentiation definieren wir durch

$$(\tau_x \oplus \tau_y)(f) = \tau_x(f) + \tau_y(f)$$
 und $(\tau_x \oplus \tau_y)(f) = \tau_x(f) - \tau_y(f)$

für $f: \mathbb{S}^1 \times \mathbb{S}^1 \to \mathbb{R}$.

(i) Berechne die Ableitungen

$$au_x(d)\,,\quad au_y(d)\,,\quad (au_x\oplus au_y)(d)\,,\quad (au_x\oplus au_y)(d)\,,\quad (au_x\oplus au_y)^2(d)\,,\quad (au_x\ominus au_y)^2(d)\,,\quad \frac{\partial d}{\partial t}\,.$$

- (ii) Seien X_0 und Y_0 disjunkt. Zeige, dass $X(\mathbb{S}^1,t)$ und $Y(\mathbb{S}^1,t)$ disjunkt für alle $t \in [0,T)$ sind. *Hinweis:* Benutze, dass an einem Minimum von d gilt, dass $\xi(d) = 0$ und $\xi^2(d) \ge 0$ für alle $\xi(x,y,t) \in T_{X(x,t)}X(\mathbb{S}^1,t) \bigoplus T_{Y(y,t)}Y(\mathbb{S}^1,t) \text{ gilt.}$ (iii) Sei X_0 eingebettet. Zeige, dass $X(\mathbb{S}^1,t)$ eingebettet für alle $t \in [0,T)$ sind.
- *Hinweis:* Benutze (ii) und die Distanzfunktion $d_{\varepsilon}(x,y,t) = d(x,y,t) + \varepsilon t$.

Aufgabe 6. (8 Punkte)

Seien M^n, N^n kompakte differenzierbare Mannigfaltigkeiten. Sei $X_0: M^n \to \mathbb{R}^{n+1}$ eine glatte Einbettung und $X: M^n \times [0,T) \to \mathbb{R}^{n+1}$ erfülle

$$\begin{cases} \frac{\partial X}{\partial t}(x,t) = -H(x,t)\nu(x,t) & \text{für } (x,t) \in M^n \times (0,T)\,, \\ X(x,0) = X_0(x) & \text{für } x \in M^n\,. \end{cases}$$
 Sei $Y_0: N^n \to \mathbb{R}^{n+1}$ eine glatte Einbettung und $Y: N^n \times [0,T) \to \mathbb{R}^{n+1}$ erfülle

$$\begin{cases} \frac{\partial Y}{\partial t}(y,t) = -H(y,t)\nu(y,t) & \text{für } (y,t) \in N^n \times (0,T)\,, \\ Y(y,0) = Y_0(y) & \text{für } y \in N^n\,. \end{cases}$$

Definiere $d: M^n \times N^n \times [0,T) \to \mathbb{R}$ durch

$$d(x, y, t) = ||X(x, t) - Y(y, t)||_{\mathbb{R}^{n+1}}.$$

(i) Berechne die Ableitungen

$$\frac{\partial d}{\partial x}\,,\quad \frac{\partial d}{\partial y}\,,\quad \left(\frac{\partial}{\partial x}+\frac{\partial}{\partial y}\right)d\,,\quad \left(\frac{\partial}{\partial x}-\frac{\partial}{\partial y}\right)d\,,\quad \left(\frac{\partial}{\partial x}+\frac{\partial}{\partial y}\right)^2d\,,\quad \left(\frac{\partial}{\partial x}-\frac{\partial}{\partial y}\right)^2d\,,\quad \frac{\partial d}{\partial t}\,.$$

- (ii) Seien $X_0(M^n)$ und $Y_0(N^n)$ disjunkt. Zeige, dass $X(M^n,t)$ und $Y(N^n,t)$ disjunkt für alle $t\in [0,T)$ sind.
- (iii) Sei X_0 eingebettet. Zeige, dass $X(\mathbb{S}^1, t)$ eingebettet für alle $t \in [0, T)$ sind. Hinweis: Benutze (ii) und die Distanzfunktion $d_{\varepsilon}(x, y, t) = d(x, y, t) + \varepsilon t$.

Abgabe: Bis Donnerstag, 17.05.2018, 10.00 Uhr, in die Mappe vor Büro F 402.