Laplace Transform Pairs (Table 2.2.1)

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

X(s))	$x(t), t \ge 0$
1.		$\delta(t)$, unit impulse
2.	$\frac{1}{s}$	$u_s(t)$, unit step
3.	$\frac{c}{s}$	constant, c
4.	$\frac{s}{e^{-sD}}$	$u_s(t-D)$, shifted unit step
	$\frac{n!}{s^{n+1}}$	t^n
6.	$\frac{1}{s+a}$	e^{-at}
	$\frac{1}{(s+a)^n}$	$\frac{1}{(n-1)!}t^{n-1}e^{-at}$
8.	$\frac{b}{s^2 + b^2}$	$\sin bt$
9.	$\frac{s}{s^2 + b^2}$	$\cos bt$
10.	$\frac{b}{(s+a)^2 + b^2}$	$e^{-at}\sin bt$
11.	$\frac{s+a}{(s+a)^2+b^2}$	$e^{-at}\cos bt$
12.	$\frac{a}{s(s+a)}$	$1 - e^{-at}$
13.	$\frac{1}{(s+a)(s+b)}$	$\frac{1}{b-a}(e^{-at}-e^{-bt})$
14.	$\frac{s+p}{(s+a)(s+b)}$	$\frac{1}{b-a}[(p-a)e^{-at} - (p-b)e^{-bt}]$
15.	$\frac{1}{(s+a)(s+b)(s+c)}$	$\frac{e^{-c}}{(b-a)(c-a)} + \frac{e^{-c}}{(c-b)(a-b)} + \frac{e^{-c}}{(a-c)(b-c)}$
16.	$\frac{s+p}{(s+a)(s+b)(s+c)}$	$\frac{(p-a)e^{-at}}{(b-a)(c-a)} + \frac{(p-b)e^{-bt}}{(c-b)(a-b)} + \frac{(p-c)e^{-ct}}{(a-c)(b-c)}$
17.	$\frac{b}{s^2 - b^2}$	sinh bt
18.	$\frac{s}{s^2+b^2}$	cosh bt
19.	$\frac{a^2}{s^2(s+a)}$	$at-1+e^{-at}$
	$\frac{a^2}{s(s+a)^2}$	$1 - (at+1)e^{-at}$
21.		$\frac{\omega_n}{\sqrt{1-\zeta^2}}e^{-\zeta\omega_n t}\sin\omega_n\sqrt{1-\zeta^2}t$
22.	$\frac{s}{s^2 + 2\zeta \omega_n s + \omega_n^2}$	$-\frac{1}{\sqrt{1-\zeta^2}}e^{-\zeta\omega_n t}\sin\left(\omega_n\sqrt{1-\zeta^2}t-\phi\right),\phi=\tan^{-1}\frac{\sqrt{1-\zeta^2}}{\zeta}$
23.		$1 - \frac{1}{\sqrt{1 - \zeta^2}} e^{-\zeta \omega_n t} \sin\left(\omega_n \sqrt{1 - \zeta^2} t + \phi\right)$
24.		$\frac{1}{a^2 + b^2} \left[1 - \left(\frac{a}{b} \sin bt + \cos bt \right) e^{-at} \right], \phi = \tan^{-1} \frac{\sqrt{1 - \zeta^2}}{\zeta}$
25.	h ²	$1-\cos bt$
26.	$\frac{b^3}{s^2(s^2 + b^2)}$	$bt - \sin bt$
27.	$\frac{2b^3}{(s^2+b^2)^2}$	$\sin bt - bt \cos bt$
	$\frac{2bs}{(s^2+b^2)^2}$	$t \sin bt$
	$\frac{s^2 - b^2}{(s^2 + b^2)^2}$	t cos bt
		$\frac{1}{b_2^2 - b_1^2} \left(\cos b_1 t - \cos b_2 t\right), \left(b_1^2 \neq b_2^2\right)$
		$\frac{1}{2b}(\sin bt + bt\cos bt)$

Copyright @ McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

x(t)		$X(s) = \int_0^\infty f(t)e^{-st} dt$	
1.	af(t) + bg(t)	aF(s) + bG(s)	
2.	$\frac{dx}{dt}$	sX(s) - x(0)	
3.	$\frac{d^2x}{dt^2}$	$s^2X(s)-sx(0)-\dot{x}(0)$	
4.	$\frac{d^n x}{dt^n}$	$s^n X(s) - \sum_{k=1}^n s^{n-k} g_{k-1}$	
		$g_{k-1} = \left. \frac{d^{k-1}x}{dt^{k-1}} \right _{t=0}$	
5.	$\int_0^t x(t) dt$	$\frac{X(s)}{s} + \frac{g(0)}{s}$ $g(0) = \int x(t) dt \Big _{t=0}$	
6.	$x(t) = \begin{cases} 0 & t < D \\ g(t - D) & t \ge D \end{cases}$	$g(0) = \int x(t) dt \bigg _{t=0}$	
	$= u_s(t-D)g(t-D)$	$X(s) = e^{-sD}G(s)$	
7.	$e^{-at}x(t)$	X(s+a)	
8.	tx(t)	$-\frac{dX(s)}{ds}$	
9.	$x(\infty) = \lim_{s \to 0} s X(s)$		
10.	$x(0+) = \lim_{s \to \infty} sX(s)$		

For Entries 2, 3, 4, and 5, if $x \neq 0$ for t < 0, then replace the initial conditions at t = 0 with the pre-initial conditions at 0-.

Mass Moments of Inertia Table

