传感器 实验报告

动力与机械学院

自动化专业

2011 年 5 月 22 日

实验名称	直流激励时霍尔式传感器位移特性实验						导教师	徐老师
姓 名	唐 禹	年 级	2008	学 号	2008301470078 成绩		成 绩	

- 一、预习部分
- 1. 实验目的
- 2. 实验基本原理
- 3. 主要仪器设备(含必要的元器件、工具)

目的和要求	:
-------	---

了解霍尔式传感器原理与应用

实验原理:

根据霍尔效应,霍尔电势 $U_H=K_HIB$,当霍尔元件处在梯度磁场中运动时,它的电势会发生变化,利用这一性质可以进行位移测量

实验仪器:

主机箱

霍尔传感器实验模板、霍尔传感器

测微头

二、实验操作部分

- 1. 实验数据、表格及数据处理
- 2. 实验操作过程(可用图表示)
- 3. 结论

实验步骤:

1、霍尔传感器和测微头的安装、使用参阅实验九。按图 14 示意图接线 (实验模板的输出 Vo1 接主机箱 电压表的 Vin),将主机箱上的电压表量程 (显示选择) 开关打到 2V 档。

图 14 霍尔传感器 (直流激励) 位移实验接线示意图

- 2、检查接线无误后,开启电源,调节测微头使霍尔片处在两磁钢的中间位置,再调节 R_{W1} 使数显表指示 为零。
- 3、以某个方向调节测微头 2mm 位移,记录电压表读数作为实验起始点;再反方向调节测微头每增加 0.2mm 记下一个读数(建议做 4mm 位移),将读数填入表 14。
- 4、实验完毕,关闭电源。

1

数据处理:

数据记录表格:

位移 mm	0	0. 2	0.4	0.6	0.8	1.0	1.2	1.4	1.6	1.8	2. 0
电压 mv	-1. 593	-1. 430	-1.266	-1.093	-0. 941	-0. 776	-0.619	-0. 469	-0.306	-0. 161	-0.001
位移 mm	2. 2	2. 4	2. 6	2.8	3. 0	3. 2	3. 4	3. 6	3.8	4.0	
电压 mv	0. 153	0. 304	0. 469	0. 623	0. 790	0. 954	1. 121	1. 304	1. 475	1. 665	

由表中实验所得数据绘制如下的电压--位移特性曲线,计算不同测量范围时的灵敏度和非线性误差。 申压--位移特性曲线:

实验数据处理表格—使用 Excel 处理绘图

3) 灵敏度分析:

灵敏度定义为测量元件的输出以相对于其输入x的变化率,故而全桥电路中金属箔应变片的灵敏度 为:

$$S = \frac{dU}{dX}$$

而由绘制的曲线可知 S=0.8006, 近似为一个常数。

4) 非线性误差:

由上面计算可得 U=SX → U=0.8006X-1.5916≈0.8*(X-2)

于是计算可得: U(0)=-1.6V, U(1.0)=-0.8V, U(2.0)=0V, U(3.0)=0.8V, U(4.0)=1.6V, 由此可得在各处的非线性误差为:

E(0) = 0.007V, E(1.0) = 0.004V, E(2.0) = 0.001V, E(3.0) = 0.01V, E(4.0) = 0.65V由上面的非线性误差计算可以得出如下结论:

在越远离平衡点(2.0mm)处的非线性误差越大,测量结果的非线性越明显,测量结果也就越不准确!

三、实验效果分析(包括仪器设备等使用效果)

误差分析:

实验中难免会有误差,本实验的误差主要来源于试验台数显表电压读数的相对不准确,同时,外界 的电磁波对霍尔传感器的影响也会带来实验的误差。

试验中对于平衡点的获取也会对结果造成一定的影响。人眼对测微仪的读书同样会带来误差,这是 在实验中不可避免的。

注意事项:

只有一点,就是注意在测量的过程中不要中途改变测量的方向,直到测量完完整的一边后在反向测 量。

思考题:

本实验中霍尔元件位移的线性度实际上反映的是什么量的变化?

答:

由霍尔传感器的工作原理可知, $U_H=K_HIB$;也就是说霍尔元件实际感应的是元件所在位置的磁场的 强度 B 的大小(在电流 I 一定的情况下)。

由上述分析即可得知,实验中霍尔元件位移的线性性实际上反映了空间磁场的线性分布!也就是说 它揭示了元件测量处磁场的线性分布!

教师				
评语				
	指导教师	——————————————————————————————————————		日
			教务部	制表