EE6550 Machine Learning

Lecture Seven – Multi-Class Classification

Chung-Chin Lu
Department of Electrical Engineering

National Tsing Hua University

April 24, 2017

Motivations

- Real-world problems often have multiple classes: documents, speeches, images, biological sequences.
- Algorithms studied so far: designed for binary classification problems.
- How do we design multi-class classification algorithms?
 - Can the algorithms used for binary classification be extended to multi-class classification?
 - Can we reduce a multi-class classification problem to multiple binary classification problems?

The Contents of This Lecture

- Multi-class classification problem.
- Generalization bound.
- Uncombined multi-class algorithms.
- Aggregated multi-class algorithms.

دری

Multi-Class Classification Problem

- Training data: a sample $S = (\omega_1, \ldots, \omega_m)$ of size m drawn i.i.d. from an input space \mathscr{I} according to some fixed but unknown distribution D with labels $(c(\omega_1), \ldots, c(\omega_m))$ from a fixed but unknown concept c.
 - Mono-label case : the label space is $\mathscr{Y} = \{1, 2, \dots, k\}$.
 - Multi-label case: the label space is $\mathscr{Y} = \{-1, +1\}^k$.
- Problem: finding a classifier $h_S: \mathscr{I} \to \mathscr{Y}$ in the hypothesis set \mathcal{H} with small generalization error by training the learning algorithm with the labeled sample S.
 - Mono-label case : $R(h_S) = \underset{\omega \sim D}{E} [1_{h_S(\omega) \neq c(\omega)}].$
 - Multi-label case : $R(h_S) = \underset{\omega \sim D}{E} \left[\frac{1}{k} \sum_{i=1}^{k} 1_{h_S(\omega)_i \neq c(\omega)_i}\right] = \underbrace{E_{\omega \sim D}\left[\frac{1}{k} d_H(h_S(\omega), c(\omega))\right]}_{\omega \sim D}$, where d_H is the Hamming distance.

Remarks

- In most tasks considered, the number k of classes is ≤ 100 .
- For large k, the problem is often not treated as a multi-class classification problem (ranking or density estimation, e.g., automatic speech recognition).
 - Computational efficiency issues arise for larger k's.
- In general, classes are not balanced.
 - Some classes may be represented by less than 5 percent of the labeled sample, while others may dominate a very large fraction of the data.

- When separate binary classifiers are used to define the multi-class solution, we may need to train a classifier distinguishing between two classes with only a small representation in the training sample. This implies training on a small sample, with poor performance guarantees.
- Alternatively, when a large fraction of the training instances belong to one class, it may be tempting to propose a hypothesis always returning that class, since its generalization error as defined earlier is likely to be relatively low. However, this trivial solution is typically not the one intended.
- Instead, the loss function may need to be reformulated by assigning different misclassification weights to each pair of classes.

- The relationship between classes may be hierarchical.
 - For example, in the case of document classification, the error of misclassifying a document dealing with world politics as one dealing with real estate should naturally be penalized more than the error of labeling a document with sports instead of the more specific label baseball.
 - Thus, a more complex and more useful multi-class classification formulation would take into consideration the hierarchical relationships between classes and define the loss function in accordance with this hierarchy.
 - More generally, there may be a graph relationship between classes as in the case of the GO ontology in computational biology.
 - The use of hierarchical relationships between classes leads to a richer and more complex multi-class classification problem.

The Contents of This Lecture

- Multi-class classification problem.
- Generalization bound.
- Uncombined multi-class algorithms.
- Aggregated multi-class algorithms.

Multi-Class Classifiers – Mono-Label Case

• In the binary setting, a classifier (a hypothesis) $h: \mathscr{I} \to \mathscr{Y}$ is often defined based on the sign of a scoring function $\tilde{h}: \mathscr{I} \to \mathbb{R}$, i.e.,

$$h(\omega) = \operatorname{sgn}(\tilde{h}(\omega)) \ \forall \ \omega \in \mathscr{I}.$$

• In the multi-class setting, a classifier (a hypothesis) $h: \mathscr{I} \to \mathscr{Y}$ is defined based on a scoring function $\tilde{h}: \mathscr{I} \times \mathscr{Y} \to \mathbb{R}$ such that the label of an item ω in the input space \mathscr{I} predicted by h is

$$h(\omega) \triangleq \arg \max_{y \in \mathscr{Y}} \tilde{h}(\omega, y).$$

- There is an arbitration if there are more than one $y \in \mathscr{Y}$ which reaches the maximum value of $\tilde{h}(\omega,\cdot)$.

 ∞

ဗ

Margin of a Multi-Class Classifier – Mono-Label Case

• Margin : the margin of the scoring function \tilde{h} at a labeled item $(\omega, c(\omega))$ is defined as

$$\rho_{\tilde{h}}(\omega, c(\omega)) = \tilde{h}(\omega, c(\omega)) - \max_{y \in \mathscr{Y}, y \neq c(\omega)} \tilde{h}(\omega, y).$$

- The classifier h misclassifies item ω only if $\rho_{\tilde{h}}(\omega, c(\omega)) \leq 0$.
- Empirical ρ -margin loss: for each $\rho > 0$, the empirical ρ -margin loss of a hypothesis h for multi-class classification w.r.t. the concept c on the labeled sample $S = (\omega_1, \ldots, \omega_m)$ of size m is defined as

$$\hat{R}_{S,\rho}(h) \triangleq \frac{1}{m} \sum_{i=1}^{m} \Phi_{\rho}(\rho_{\tilde{h}}(\omega_i, c(\omega_i))),$$

where

$$\Phi_{\rho}(x) = \begin{cases}
1, & \text{if } x \leq 0, \\
1 - \frac{x}{\rho}, & \text{if } 0 \leq x \leq \rho, \\
0, & \text{if } x \geq \rho
\end{cases}$$

is the ρ -margin loss function.

• $\hat{R}_{S,\rho}(h)$ is upper bounded by the fraction of the training items misclassified by h or correctly classified but with margin less than or equal to ρ :

$$\hat{R}_S(h) \le \frac{1}{m} \sum_{i=1}^m 1_{\rho_{\tilde{h}}(\omega_i, c(\omega_i)) \le 0} \le \hat{R}_{S, \rho}(h) \le \frac{1}{m} \sum_{i=1}^m 1_{\rho_{\tilde{h}}(\omega_i, c(\omega_i)) \le \rho}.$$

A Lemma

Lemma 8.1: Let

- $\mathcal{H}_1, \ldots, \mathcal{H}_l$: l hypothesis sets, each consisting of measurable functions from the input space \mathscr{I} to the output space $\mathscr{I}' \subseteq \mathbb{R}$;
 - Assume that $\sup_{h_i \in \mathcal{H}_i} |h_i(\omega)| < +\infty$ for all $\omega \in \mathscr{I}$ and for all $i \in [1, l]$.
- $\mathcal{G} = \{ \max(h_1, \dots, h_l) \mid h_i \in \mathcal{H}_i, i \in [1, l] \}.$

Then, for any sample S of size m, the empirical Rademacher complexity of \mathcal{G} can be upper bounded as follows:

$$\hat{\mathfrak{R}}_S(\mathcal{G}) \leq \sum_{j=1}^l \hat{\mathfrak{R}}_S(\mathcal{H}_j).$$

Proof.

- $S = (\omega_1, \ldots, \omega_m)$: a sample of size m.
- When l = 2, $\max(h_1, h_2) = \frac{1}{2}(h_1 + h_2 + |h_1 h_2|)$ for all $h_1 \in \mathcal{H}_1, h_2 \in \mathcal{H}_2$.

Thus we have

$$\hat{\mathfrak{R}}_{S}(\mathcal{G})$$

$$= \frac{1}{2^{m}} \sum_{\sigma_{1}, \sigma_{2}, \dots, \sigma_{m} \in \{-1, +1\}} \sup_{g \in \mathcal{G}} \frac{1}{m} \sum_{i=1}^{m} \sigma_{i} g(\omega_{i})$$

$$= E \left[\sup_{g \in \mathcal{G}} \frac{1}{m} \sum_{i=1}^{m} \sigma_{i} g(\omega_{i}) \right] \text{ where } \sigma = (\sigma_{1}, \dots, \sigma_{m}) \text{ is a random }$$
vector with uniform distribution over $\{-1, +1\}^{m}$

$$= E \left[\sup_{h_1 \in \mathcal{H}_1, h_2 \in \mathcal{H}_2} \frac{1}{m} \sum_{i=1}^m \sigma_i \max(h_1(\omega_i), h_2(\omega_i)) \right]$$

$$= \frac{1}{2}E \left[\sup_{h_1 \in \mathcal{H}_1, h_2 \in \mathcal{H}_2} \frac{1}{m} \sum_{i=1}^m \sigma_i (h_1(\omega_i) + h_2(\omega_i) + |(h_1 - h_2)(\omega_i)|) \right]$$

$$\leq \frac{1}{2}E \left[\sup_{h_1 \in \mathcal{H}_1} \frac{1}{m} \sum_{i=1}^m \sigma_i h_1(\omega_i) + \sup_{h_2 \in \mathcal{H}_2} \frac{1}{m} \sum_{i=1}^m \sigma_i h_2(\omega_i) + \sup_{h_1 \in \mathcal{H}_1, h_2 \in \mathcal{H}_2} \frac{1}{m} \sum_{i=1}^m \sigma_i |(h_1 - h_2)(\omega_i)| \right]$$

by the subadditivity of sup, i.e., $\sup_i (u_i + v_i) \leq \sup_i u_i + \sup_i v_i$. Since $||u| - |v|| \leq |u - v| \, \forall \, u, v \in \mathbb{R}$ implies that the mapping $u \mapsto |u|$ is a 1-Lipschitz function from \mathbb{R} to \mathbb{R} . Since $\sup_{h_i \in \mathcal{H}_i} |h_i(\omega)| < +\infty$ for all $\omega \in \mathscr{I}$ and for all i = 1, 2, we have

$$\sup_{h_1 \in \mathcal{H}_1, h_2 \in \mathcal{H}_2} \left(\sum_{i=1}^j \sigma_i |(h_1 - h_2)(\omega_i)| + \sum_{i=j+1}^m \sigma_i (h_1 - h_2)(\omega_i) \right) < +\infty$$

for all $\sigma_i \in \{-1, +1\}, i \in [1, m]$, for all $j \in [0, m]$ and for all samples

 $S = (\omega_1, \ldots, \omega_m)$ of size m. Now we have

$$E \left[\sup_{h_1 \in \mathcal{H}_1, h_2 \in \mathcal{H}_2} \frac{1}{m} \sum_{i=1}^m \sigma_i |(h_1 - h_2)(\omega_i)| \right]$$

$$\leq E \left[\sup_{h_1 \in \mathcal{H}_1, h_2 \in \mathcal{H}_2} \frac{1}{m} \sum_{i=1}^m \sigma_i (h_1 - h_2)(\omega_i) \right]$$

by applying Talagrand's lemma in Lecture 3 to the hypothesis set $\mathcal{H} = \mathcal{H}_1 - \mathcal{H}_2$ and the 1-Lipschitz function $\Phi = |\cdot|$

$$\leq E \left[\sup_{h_1 \in \mathcal{H}_1} \frac{1}{m} \sum_{i=1}^m \sigma_i h_1(\omega_i) + \sup_{h_2 \in \mathcal{H}_2} \frac{1}{m} \sum_{i=1}^m (-\sigma_i) h_2(\omega_i) \right]$$

again by the subadditivity of sup. We conclude that

$$\hat{\mathfrak{R}}_{S}(\mathcal{G}) \leq \frac{1}{2}\hat{\mathfrak{R}}_{S}(\mathcal{H}_{1}) + \frac{1}{2}\hat{\mathfrak{R}}_{S}(\mathcal{H}_{2}) + \frac{1}{2}\hat{\mathfrak{R}}_{S}(\mathcal{H}_{1}) + \frac{1}{2}\hat{\mathfrak{R}}_{S}(\mathcal{H}_{2})$$

$$= \hat{\mathfrak{R}}_{S}(\mathcal{H}_{1}) + \hat{\mathfrak{R}}_{S}(\mathcal{H}_{2}).$$

• For the general case of $l \geq 2$, we repeatedly use the case of l = 2 by noting that

$$\max(h_1,\ldots,h_l) = \max(h_1,\max(h_2,\ldots,h_l))$$

and

$$\sup_{h_2 \in \mathcal{H}_2, \dots, h_l \in \mathcal{H}_l} |\max(h_2, \dots, h_l)(\omega)| = \max_{j \in [2, l]} \sup_{h_j \in \mathcal{H}_j} |h_j(\omega)| < +\infty$$

for all $\omega \in \mathscr{I}$.

This proves the lemma.

Margin Bound for Multi-Class Classification – Mono-Label Case

Theorem 8.1: Let

- \mathscr{I} : the input space of all possible items ω , associated with a probability space $(\mathscr{I}, \mathcal{F}, P)$.
- $c: \mathscr{I} \to \mathscr{Y} = \{1, 2, \dots, k\}$: a fixed but unknown target concept in the concept class \mathscr{C} .
- \mathcal{H} : a set of hypotheses h defined based on corresponding measurable scoring functions $\tilde{h}: \mathscr{I} \times \mathscr{Y} \to \mathbb{R}$.
 - Assume that $\sup_{h\in\mathcal{H}} |\tilde{h}(\omega,y)| < +\infty$ for all $\omega \in \mathscr{I}$ and for all $y \in \mathscr{Y}$.
- $\Pi_1(\mathcal{H}) = \{ \omega \mapsto \tilde{h}(\omega, y) \mid h \in \mathcal{H}, y \in \mathscr{Y} \}.$
 - Members of $\Pi_1(\mathcal{H})$ are measurable functions from \mathscr{I} to \mathbb{R} .

- $S = (\omega_1, \ldots, \omega_m)$: a labeled sample of size m with labels $(c(\omega_1), \ldots, c(\omega_m))$.
- $\rho > 0$: a given margin.
- $\hat{R}_{S,\rho}(h) \triangleq \frac{1}{m} \sum_{i=1}^{m} \Phi_{\rho}(\rho_{\tilde{h}}(\omega_{i}, c(\omega_{i})))$: the empirical ρ -margin loss of the hypothesis h for multi-class classification w.r.t. the concept c on a labeled sample S of size m.

Then for any $\delta > 0$, with probability at least $1 - \delta$, the following multi-class classification generalization bound holds for all h in \mathcal{H} :

$$R(h) \leq \hat{R}_{S,\rho}(h) + \frac{2k^2}{\rho} \mathfrak{R}_m(\Pi_1(\mathcal{H})) + \sqrt{\frac{\ln \frac{1}{\delta}}{2m}},$$

$$R(h) \leq \hat{R}_{S,\rho}(h) + \frac{2k^2}{\rho} \hat{\mathfrak{R}}_S(\Pi_1(\mathcal{H})) + 3\sqrt{\frac{\ln\frac{2}{\delta}}{2m}}.$$

Proof.

• $g_h: \mathscr{I} \times \{1, 2, \dots, k\} \to [0, 1]$: the ρ -margin loss function associated with the hypothesis h, defined as

$$g_h(\omega, y) \triangleq \Phi_\rho(\rho_{\tilde{h}}(\omega, y)).$$

- $\mathcal{G} = \{g_h \mid h \in \mathcal{H}\}$: the family of ρ -margin loss functions associated with hypotheses in \mathcal{H} .
- $\mathscr{Z} = \mathscr{I} \times \{1, 2, ..., k\}$: the input set of ρ -margin loss functions g_h , associated with a probability space $(\mathscr{Z}, \tilde{\mathcal{F}}, \tilde{P})$ where \tilde{P} is an extension of P from on \mathcal{F} to on $\tilde{\mathcal{F}} = \mathcal{F} \times 2^{\{1, 2, ..., k\}}$.
- $\tilde{S} = ((\omega_1, c(\omega_1)), \dots, (\omega_m, c(\omega_m)))$: the labeled sample corresponding to S and regarded as drawn i.i.d. from \mathscr{Z} according to the probability distribution \tilde{P} .
- $\hat{A}_{\tilde{S}}(g_h) = \frac{1}{m} \sum_{i=1}^m g_h(\omega_i, c(\omega_i)) = \frac{1}{m} \sum_{i=1}^m \Phi_\rho(\rho_{\tilde{h}}(\omega_i, c(\omega_i))) = \hat{R}_{S,\rho}(h)$, the empirical ρ -margin loss of h w.r.t. c on sample S.

• $E_{z \sim \tilde{P}}[g_h(z)] = E_{\tilde{S} \sim \tilde{P}_m}[\hat{A}_{\tilde{S}}(g_h)] = E_{S \sim P_m}[\hat{R}_{S,\rho}(h)] \ge E_{S \sim P_m}[\hat{R}_{S}(h)] = R(h).$

By Theorem 3.1 of Lecture 2, for any $\delta > 0$, with probability at least $1 - \delta$, each of the following holds for all g_h in \mathcal{G} :

$$E_{z \sim \tilde{P}}[g_h(z)] \leq \frac{1}{m} \sum_{i=1}^m g_h(\omega_i, c(\omega_i)) + 2\Re_m(\mathcal{G}) + \sqrt{\frac{\ln \frac{1}{\delta}}{2m}}$$

$$E_{z \sim \tilde{P}}[g_h(z)] \leq \frac{1}{m} \sum_{i=1}^m g_h(\omega_i, c(\omega_i)) + 2\hat{\Re}_{\tilde{S}}(\mathcal{G}) + 3\sqrt{\frac{\ln \frac{2}{\delta}}{2m}}$$

so that

$$R(h) \leq \hat{R}_{S,\rho}(h) + 2\Re_{m}(\mathcal{G}) + \sqrt{\frac{\ln \frac{1}{\delta}}{2m}}$$

$$R(h) \leq \hat{R}_{S,\rho}(h) + 2\hat{\Re}_{\tilde{S}}(\mathcal{G}) + 3\sqrt{\frac{\ln \frac{2}{\delta}}{2m}}$$

• The margin $\rho_{\tilde{h}}$ of the scoring function \tilde{h} , defined as

$$\rho_{\tilde{h}}(\omega, y) = \tilde{h}(\omega, y) - \max_{z \in \mathscr{Y}, z \neq y} \tilde{h}(\omega, z) \ \forall \ \omega \in \mathscr{I}, y \in \mathscr{Y},$$

is a measurable function from $\mathscr{I} \times \mathscr{Y}$ to \mathbb{R} .

- $\mathcal{F} = \{ \rho_{\tilde{h}} \mid h \in \mathcal{H} \}.$
 - Since $\sup_{h\in\mathcal{H}} |\tilde{h}(\omega,y)| < +\infty$ for all $\omega \in \mathscr{I}$ and for all $y \in \mathscr{Y}$, $\sup_{h\in\mathcal{H}} |\rho_{\tilde{h}}(\omega,y)| \leq \sum_{j\in\mathscr{Y}} \sup_{h\in\mathcal{H}} |\tilde{h}(\omega,j)| < +\infty$ for all $\omega \in \mathscr{I}$ and for all $y \in \mathscr{Y}$.
- $\mathcal{G} = \Phi_{\rho} \circ \mathcal{F}$.

- $\Phi_{\rho}: \mathbb{R} \to [0,1]$ is a $1/\rho$ -Lipschitz function.
- Since $\sup_{h\in\mathcal{H}} |\rho_{\tilde{h}}(\omega, y)| < +\infty$ for all $\omega \in \mathscr{I}$ and for all $y \in \mathscr{Y}$, $\sup_{h\in\mathcal{H}} \left(\sum_{i=1}^{j} \sigma_{i} (\Phi_{\rho} \circ \rho_{\tilde{h}}) (\omega_{i}, c(\omega_{i})) + \sum_{i=j+1}^{m} \frac{1}{\rho} \sigma_{i} \rho_{\tilde{h}}(\omega_{i}, c(\omega_{i})) \right)$ is finite for all $\sigma_{i} \in \{-1, +1\}, i \in [1, m]$, for all $j \in [0, m]$ and for all labeled samples $S = (\omega_{1}, \ldots, \omega_{m})$ of size m.

By Talagrand's lemma, we have

$$\hat{\mathfrak{R}}_{\tilde{S}}(\mathcal{G}) \le \frac{1}{\rho} \hat{\mathfrak{R}}_{\tilde{S}}(\mathcal{F})$$

and then by taking expectation over \tilde{S} ,

$$\mathfrak{R}_m(\mathcal{G}) \leq \frac{1}{\rho} \mathfrak{R}_m(\mathcal{F}).$$

Now

$$\hat{\mathfrak{R}}_{\tilde{S}}(\mathcal{F})$$

$$= \frac{1}{2^{m}} \sum_{\sigma_{1},\sigma_{2},...,\sigma_{m} \in \{-1,+1\}} \sup_{h \in \mathcal{H}} \frac{1}{m} \sum_{i=1}^{m} \sigma_{i} \rho_{\tilde{h}}(\omega_{i}, c(\omega_{i}))$$

$$= \frac{1}{2^{m}} \sum_{\sigma_{1},\sigma_{2},...,\sigma_{m} \in \{-1,+1\}} \sup_{h \in \mathcal{H}} \frac{1}{m} \sum_{i=1}^{m} \sigma_{i} \sum_{y \in \mathscr{Y}} \rho_{\tilde{h}}(\omega_{i}, y) 1_{y=c(\omega_{i})}$$

$$\leq \sum_{y \in \mathscr{Y}} \frac{1}{2^{m}} \sum_{\sigma_{1},\sigma_{2},...,\sigma_{m} \in \{-1,+1\}} \sup_{h \in \mathcal{H}} \frac{1}{m} \sum_{i=1}^{m} \sigma_{i} \rho_{\tilde{h}}(\omega_{i}, y) 1_{y=c(\omega_{i})}$$

by the sub-additivity of sup. But for each $y \in \mathcal{Y}$, we have

$$\frac{1}{2^{m}} \sum_{\sigma_{1},\sigma_{2},...,\sigma_{m} \in \{-1,+1\}} \sup_{h \in \mathcal{H}} \frac{1}{m} \sum_{i=1}^{m} \sigma_{i} \rho_{\tilde{h}}(\omega_{i},y) 1_{y=c(\omega_{i})}$$

$$= E \left[\sup_{h \in \mathcal{H}} \frac{1}{m} \sum_{i=1}^{m} \sigma_{i} \rho_{\tilde{h}}(\omega_{i},y) \frac{(\epsilon_{i}+1)}{2} \right], \quad \epsilon_{i} \triangleq 21_{y=c(\omega_{i})} - 1 \in \{-1,+1\}$$

$$\leq \frac{1}{2} \left(E \left[\sup_{h \in \mathcal{H}} \frac{1}{m} \sum_{i=1}^{m} \sigma_{i} \epsilon_{i} \rho_{\tilde{h}}(\omega_{i},y) \right] + E \left[\sup_{h \in \mathcal{H}} \frac{1}{m} \sum_{i=1}^{m} \sigma_{i} \rho_{\tilde{h}}(\omega_{i},y) \right] \right)$$
again by the sub-additivity of sup

$$= E \left[\sup_{\sigma} \frac{1}{m} \sum_{i=1}^{m} \sigma_i \rho_{\tilde{h}}(\omega_i, y) \right]$$

that
$$\hat{\mathfrak{R}}_{\tilde{S}}(\mathcal{F})$$

$$\leq \sum_{y \in \mathscr{Y}} E \left[\sup_{h \in \mathcal{H}} \frac{1}{m} \sum_{i=1}^{m} \sigma_{i} \rho_{\tilde{h}}(\omega_{i}, y) \right]$$

$$= \sum_{y \in \mathscr{Y}} E \left[\sup_{h \in \mathcal{H}} \frac{1}{m} \sum_{i=1}^{m} \sigma_{i} \left(\tilde{h}(\omega_{i}, y) - \max_{z \in \mathscr{Y}, z \neq y} \tilde{h}(\omega_{i}, z) \right) \right]$$

$$\leq \sum_{y \in \mathscr{Y}} E \left[\sup_{h \in \mathcal{H}} \frac{1}{m} \sum_{i=1}^{m} \sigma_{i} \tilde{h}(\omega_{i}, y) + \sup_{h \in \mathcal{H}} \frac{1}{m} \sum_{i=1}^{m} (-\sigma_{i}) \max_{z \in \mathscr{Y}, z \neq y} \tilde{h}(\omega_{i}, z) \right]$$

$$\leq \sum_{y \in \mathscr{Y}} \left(E \left[\sup_{f \in \Pi_{1}(\mathcal{H})} \frac{1}{m} \sum_{i=1}^{m} \sigma_{i} f(\omega_{i}) \right] + E \left[\sup_{f_{j} \in \Pi_{1}(\mathcal{H}), j \in [1, k-1]} \frac{1}{m} \sum_{i=1}^{m} \sigma_{i} \max(f_{1}, f_{2}, \dots, f_{k-1})(\omega_{i}) \right] \right).$$

By Lemma 8.1, we have

$$\hat{\mathfrak{R}}_{\tilde{S}}(\mathcal{F}) \leq k^2 E \left[\sup_{f \in \Pi_1(\mathcal{H})} \frac{1}{m} \sum_{i=1}^m \sigma_i f(\omega_i) \right] = k^2 \hat{\mathfrak{R}}_{S}(\Pi_1(\mathcal{H}))$$

and then

$$\hat{\mathfrak{R}}_{\tilde{S}}(\mathcal{G}) \le \frac{k^2}{\rho} \hat{\mathfrak{R}}_{S}(\Pi_1(\mathcal{H}))$$

and then by taking expectation over \tilde{S} ,

$$\mathfrak{R}_m(\mathcal{G}) \leq \frac{k^2}{\rho} \mathfrak{R}_m(\Pi_1(\mathcal{H})).$$

This completes the proof.

Remarks

- As other margin bounds presented in the previous chapters, the margin bounds in Theorem 8.1 show the trade-off between two terms: the larger the desired margin ρ , the smaller the middle term, at the price of a larger empirical multi-class classification margin loss $\hat{R}_{S,l}$.
- For the mono-label case of multi-class classification, there is additionally a quadratic dependency on the number k of classes. This suggests weaker guarantees when learning with a large number of classes or the need for even larger margins ρ for which the empirical margin loss would be small.
- We will derive a simple upper bound for the Rademacher complexity of $\Pi_1(\mathcal{H})$ for kernel-based hypotheses.

Kernel-Based Hypotheses for Multi-Class Classification

- $K: \mathscr{I} \times \mathscr{I} \to \mathbb{R}$: a PDS kernel over the input space \mathscr{I} .
- $\Phi: \mathscr{I} \to \mathscr{F}$: a feature mapping associated to the PDS kernel K from the input space \mathscr{I} to the feature space \mathscr{F} , which is a Hilbert space, so that

$$K(\omega, \omega') = \langle \Phi(\omega), \Phi(\omega') \rangle_{\mathscr{F}}.$$

• In multi-class classification, a kernel-based hypothesis is based on k weight vectors f_1, \ldots, f_k in the feature space \mathscr{F} .

• Each weight vector $f_y, y \in [1, k]$, defines a scoring function

$$\omega \to \langle f_y, \Phi(\omega) \rangle_{\mathscr{F}}$$

and the predicted class of the item $\omega \in \mathscr{I}$ is given by

$$\arg\max_{y\in\mathscr{Y}}\langle f_y,\Phi(\omega)\rangle_{\mathscr{F}}.$$

– If the feature space \mathscr{F} is the RKHS \mathbb{H} of K, the reproducing property gives

$$\langle f_y, \Phi(\omega) \rangle_{\mathbb{H}} = f_y(\omega).$$

- $\mathbf{f} = [f_1, \dots, f_k]^T$: the vector formed by the k weight vectors $f_y, y \in [1, k]$, in the feature space \mathscr{F} .
- $\|\mathbf{f}\|_{\mathscr{F},p} = \left(\sum_{i=1}^k \|f_i\|_{\mathscr{F}}^p\right)^{1/p}$: the $L_{\mathscr{F},p}$ -norm of \mathbf{f} , where $p \ge 1$.

- $\mathcal{H}_{K,\mathscr{F},p,\Lambda} = \{\omega \mapsto \arg\max_{y \in \mathscr{Y}} \langle f_y, \Phi(\omega) \rangle_{\mathscr{F}} \mid ||\mathbf{f}||_{\mathscr{F},p} \leq \Lambda$, where $\mathbf{f} = [f_1, \dots, f_k]^T\}$: the kernel-based hypothesis set we will consider.
 - The scoring function corresponding to a hypothesis $h \in \mathcal{H}_{K,\mathscr{F},p,\Lambda}$ is

$$\tilde{h}(\omega, y) = \langle f_y, \Phi(\omega) \rangle_{\mathscr{F}}$$

$$= f_y(\omega) \text{ if } \mathscr{F} \text{ is the RKHS } \mathbb{H} \text{ of } K.$$

Rademacher Complexity of Multi-Class Kernel-Based Hypotheses

Proposition 8.1: Let

- $K: \mathscr{I} \times \mathscr{I} \to \mathbb{R}$: a PDS kernel over the input space \mathscr{I} .
- $\Phi: \mathscr{I} \to \mathscr{F}$: a feature mapping associated to the PDS kernel K from the input space \mathscr{I} to the feature space \mathscr{F} so that $K(\omega, \omega') = \langle \Phi(\omega), \Phi(\omega) \rangle_{\mathscr{F}}$.
- $S = (\omega_1, \ldots, \omega_m)$: a sample of size m.

Assume that

• there is an r > 0 such that $K(\omega, \omega) \leq r^2$ for all $\omega \in \mathscr{I}$.

Then for any $m \geq 1$, we have

$$\hat{\mathfrak{R}}_S(\Pi_1(\mathcal{H}_{K,\mathscr{F},p,\Lambda})) \leq \sqrt{\frac{r^2\Lambda^2}{m}}.$$

ಲ

Proof.

• The condition $\|\mathbf{f}\|_{\mathscr{F},p} \leq \Lambda$ implies that $\|f_y\|_{\mathscr{F}} \leq \Lambda$ for all $y \in [1,k]$ since

$$||f_y||_{\mathscr{F}} = (||f_y||_{\mathscr{F}}^p)^{1/p} \le \left(\sum_{z=1}^k ||f_z||_{\mathscr{F}}^p\right)^{1/p} = ||\mathbf{f}||_{\mathscr{F},p} \le \Lambda.$$

درم

Now

$$\hat{\mathfrak{R}}_{S}(\Pi_{1}(\mathcal{H}_{K,\mathscr{F},p,\Lambda}))$$

$$= E \left[\sup_{f \in \Pi_{1}(\mathcal{H}_{K,\mathscr{F},p,\Lambda})} \frac{1}{m} \sum_{i=1}^{m} \sigma_{i} f(\omega_{i})\right]$$

$$\leq \frac{1}{m} E \left[\sup_{\|f\|_{\mathscr{F}} \leq \Lambda} \sum_{i=1}^{m} \sigma_{i} \langle f, \Phi(\omega_{i}) \rangle_{\mathscr{F}}\right]$$

$$= \frac{1}{m} E \left[\sup_{\|f\|_{\mathscr{F}} \leq \Lambda} \langle f, \sum_{i=1}^{m} \sigma_{i} \Phi(\omega_{i}) \rangle_{\mathscr{F}}\right]$$

$$\leq \frac{1}{m} E \left[\sup_{\|f\|_{\mathscr{F}} \leq \Lambda} \|f\|_{\mathscr{F}} \left\|\sum_{i=1}^{m} \sigma_{i} \Phi(\omega_{i})\right\|_{\mathscr{F}}\right]$$
by Cauchy-Schwartz inequality
$$= \frac{\Lambda}{m} E \left[\left\|\sum_{i=1}^{m} \sigma_{i} \Phi(\omega_{i})\right\|_{\mathscr{F}}\right].$$

Since $x \mapsto \sqrt{x}$ is concave for all $x \ge 0$, by Jensen's inequality, we have

$$E \left[\left\| \sum_{i=1}^{m} \sigma_{i} \Phi(\omega_{i}) \right\|_{\mathscr{F}} \right] = E \left[\sqrt{\left\| \sum_{i=1}^{m} \sigma_{i} \Phi(\omega_{i}) \right\|_{\mathscr{F}}^{2}} \right]$$

$$\leq \sqrt{E} \left[\left\| \sum_{i=1}^{m} \sigma_{i} \Phi(\omega_{i}) \right\|_{\mathscr{F}}^{2} \right] = \sqrt{E} \left[\sum_{i=1}^{m} \sum_{j=1}^{m} \sigma_{i} \sigma_{j} \langle \Phi(\omega_{i}), \Phi(\omega_{j}) \rangle_{\mathscr{F}} \right]$$

$$= \sqrt{\sum_{i=1}^{m} \sum_{j=1}^{m} E \left[\sigma_{i} \sigma_{j} \right] \langle \Phi(\omega_{i}), \Phi(\omega_{j}) \rangle_{\mathscr{F}}}$$

$$= \sqrt{\sum_{i=1}^{m} \langle \Phi(\omega_{i}), \Phi(\omega_{i}) \rangle_{\mathscr{F}}} = \sqrt{\sum_{i=1}^{m} K(\omega_{i}, \omega_{i})} \quad \text{since } E \left[\sigma_{i} \sigma_{j} \right] = \delta_{ij}$$

$$\leq \sqrt{mr^{2}}$$

We conclude that

$$\hat{\mathfrak{R}}_{S}(\Pi_{1}(\mathcal{H}_{K,\mathscr{F},p,\Lambda})) \leq \frac{\Lambda\sqrt{mr^{2}}}{m} = \sqrt{\frac{\Lambda^{2}r^{2}}{m}}.$$

Margin Bound for Multi-Class Classification with Kernel-Based Hypotheses

Corollary 8.1: Let

- \mathscr{I} : the input space of all possible items ω , associated with a probability space $(\mathscr{I}, \mathcal{F}, P)$.
- $c: \mathscr{I} \to \mathscr{Y} = \{1, 2, \dots, k\}$: a fixed but unknown target concept in the concept class \mathscr{C} .
- $K: \mathscr{I} \times \mathscr{I} \to \mathbb{R}$: a PDS kernel over the input space \mathscr{I} .
- $\Phi: \mathscr{I} \to \mathscr{F}$: a feature mapping associated to the PDS kernel K from the input space \mathscr{I} to the feature space \mathscr{F} so that $K(\omega, \omega') = \langle \Phi(\omega), \Phi(\omega') \rangle_{\mathscr{F}}$.
- $S = (\omega_1, \ldots, \omega_m)$: a labeled sample of size m with labels $(c(\omega_1), \ldots, c(\omega_m))$.

- $\rho > 0$: a given margin.
- $\hat{R}_{S,\rho}(h) \triangleq \frac{1}{m} \sum_{i=1}^{m} \Phi_{\rho}(\rho_{\tilde{h}}(\omega_{i}, c(\omega_{i})))$: the empirical ρ -margin loss of the hypothesis h for multi-class classification w.r.t. the concept c on a labeled sample S of size m.
- $p \ge 1$.
- $\mathcal{H}_{K,\mathscr{F},p,\Lambda} = \{\omega \mapsto \arg\max_{y \in \mathscr{Y}} \langle f_y, \Phi(\omega) \rangle_{\mathscr{F}} \mid ||\mathbf{f}||_{\mathscr{F},p} \leq \Lambda$, where $\mathbf{f} = [f_1, \dots, f_k]^T\}$: the kernel-based hypothesis set.

Assume that

• there is an r > 0 such that $K(\omega, \omega) \le r^2$ for all $\omega \in \mathscr{I}$.

Then for any $\delta > 0$, with probability at least $1 - \delta$, the following multi-class classification generalization bound holds for all h in $\mathcal{H}_{K,\mathscr{F},p,\Lambda}$:

$$R(h) \leq \hat{R}_{S,\rho}(h) + 2k^2\sqrt{\frac{r^2\Lambda^2/\rho^2}{m}} + \sqrt{\frac{\ln\frac{1}{\delta}}{2m}}.$$

 $\frac{3}{7}$

Proof. We first justify that

$$\sup_{h \in \mathcal{H}_{K,\mathscr{F},p,\Lambda}} |\tilde{h}(\omega,y)| \leq \sup_{\|f\|_{\mathscr{F}} \leq \Lambda} |\langle f, \Phi(\omega) \rangle_{\mathscr{F}}|$$

$$\leq \sup_{\|f\|_{\mathscr{F}} \leq \Lambda} \|f\|_{\mathscr{F}} \|\Phi(\omega)\|_{\mathscr{F}} \text{ by Cauchy-Schwartz inequality}$$

$$\leq \Lambda \|\Phi(\omega)\|_{\mathscr{F}} < +\infty$$

for all $\omega \in \mathscr{I}$ and for all $y \in \mathscr{Y}$. The corollary now follows from Theorem 8.1 and Proposition 8.1.

Two Families of Multi-Class Classification Algorithms

- Single classifier:
 - Multi-class SVMs.
 - AdaBoost.MH.
 - Decision trees: often used as base classifiers in boosting.
- Combination of binary classifiers: reducing the problem of multi-class classification to that of multiple binary classification tasks, training a binary classification algorithm for each of these tasks independently and defining the multi-class predictor as a combination of the hypotheses returned by each of these algorithms.
 - One-vs-all.
 - One-vs-one.
 - Error-correcting codes.

The Contents of This Lecture

- Multi-class classification problem.
- Generalization bound.
- Uncombined multi-class algorithms.
- Aggregated multi-class algorithms.

A Generalization Guarantee of Kernel-Based Hypotheses for Multi-Class Classification

- \mathscr{I} : the input space of all possible items ω , associated with a probability space $(\mathscr{I}, \mathcal{F}, P)$.
- $c: \mathscr{I} \to \mathscr{Y} = \{1, 2, \dots, k\}$: a fixed but unknown target concept in the concept class \mathscr{C} .
- $S = (\omega_1, \ldots, \omega_m)$: a sample of size m drawn i.i.d. from \mathscr{I} according to the distribution P with labels $(c(\omega_1), \ldots, c(\omega_m))$.
- $K: \mathscr{I} \times \mathscr{I} \to \mathbb{R}$: a PDS kernel over the input space \mathscr{I} .
- $\Phi: \mathscr{I} \to \mathscr{F}$: a feature mapping associated to the PDS kernel K from the input space \mathscr{I} to the feature space \mathscr{F} so that $K(\omega, \omega') = \langle \Phi(\omega), \Phi(\omega') \rangle_{\mathscr{F}}$.

41

- $\mathcal{H}_{K,\mathscr{F},2,\Lambda} = \{\omega \mapsto \arg\max_{y \in \mathscr{Y}} \langle f_y, \Phi(\omega) \rangle_{\mathscr{F}} \mid \|\mathbf{f}\|_{\mathscr{F},2} = \sqrt{\sum_{y \in \mathscr{Y}} \|f_y\|_{\mathscr{F}}^2} \leq \Lambda$, where $\mathbf{f} = [f_1, \dots, f_k]^T\}$: the kernel-based hypothesis set.
 - Scoring functions are $\tilde{h}(\omega, y) = \langle f_y, \Phi(\omega) \rangle_{\mathscr{F}}$.
 - The margin function of the scoring function \tilde{h} is

$$\rho_{\tilde{h}}(\omega, y) = \tilde{h}(\omega, y) - \max_{z \in \mathscr{Y}, z \neq y} \tilde{h}(\omega, z)$$
$$= \langle f_y, \Phi(\omega) \rangle_{\mathscr{F}} - \max_{z \in \mathscr{Y}, z \neq y} \langle f_z, \Phi(\omega) \rangle_{\mathscr{F}}.$$

 $\frac{1}{2}$

• The 1-margin loss function $\Phi_1(y')$ is no more than the hinge loss function $\max(0, 1 - y')$ for all $y' \in \mathbb{R}$ so that

$$\Phi_1(\rho_{\tilde{h}}(\omega, y)) \le \max(0, 1 - \rho_{\tilde{h}}(\omega, y)),$$

that is,

$$\Phi_{1}\left(\langle f_{y}, \Phi(\omega)\rangle_{\mathscr{F}} - \max_{z \in \mathscr{Y}, z \neq y} \langle f_{z}, \Phi(\omega)\rangle_{\mathscr{F}}\right)$$

$$\leq \max\left(0, 1 - \langle f_{y}, \Phi(\omega)\rangle_{\mathscr{F}} + \max_{z \in \mathscr{Y}, z \neq y} \langle f_{z}, \Phi(\omega)\rangle_{\mathscr{F}}\right).$$

- The 1-margin loss function $\Phi_1(y')$ is neither convex nor concave; but the hinge loss function $\max(0, 1 - y')$ is convex.

 $\frac{1}{3}$

• $\hat{R}_{S,1}(h) \triangleq \frac{1}{m} \sum_{i=1}^{m} \Phi_1(\rho_{\tilde{h}}(\omega_i, c(\omega_i)))$: the empirical 1-margin loss of the hypothesis h for multi-class classification w.r.t. the concept c on a labeled sample S of size m, which is upper bounded by

$$\hat{R}_{S,1}(h) \le \frac{1}{m} \sum_{i=1}^{m} \eta_i,$$

where η_i is the slack variable which compensates the deficit of the margin $\tilde{h}(\omega_i, c(\omega_i))$ of the *i*-th item ω_i of the random sample S from 1:

$$\eta_i \triangleq \max\left(0, 1 - \langle f_{c(\omega_i)}, \Phi(\omega_i) \rangle_{\mathscr{F}} + \max_{z \in \mathscr{Y}, z \neq c(\omega_i)} \langle f_z, \Phi(\omega_i) \rangle_{\mathscr{F}}\right).$$

Assume that

• there is an r > 0 such that $K(\omega, \omega) \leq r^2$ for all $\omega \in \mathscr{I}$.

Then Corollary 8.1 shows that for any $\delta > 0$, with probability at least $1 - \delta$, the following multi-class classification generalization bound holds for all h in $\mathcal{H}_{K,\mathscr{F},2,\Lambda}$:

$$R(h) \leq \hat{R}_{S,1}(h) + 2k^2 \sqrt{\frac{r^2 \Lambda^2}{m}} + \sqrt{\frac{\ln \frac{1}{\delta}}{2m}}$$

$$\leq \frac{1}{m} \sum_{i=1}^{m} \eta_i + 2k^2 \sqrt{\frac{r^2 \Lambda^2}{m}} + \sqrt{\frac{\ln \frac{1}{\delta}}{2m}}.$$

• To minimize the upper bound of the generalization guarantee, we have to minimize $\sum_{i=1}^{m} \eta_i$ and $\sum_{y \in \mathscr{Y}} ||f_y||_{\mathscr{F}}^2$ (which can be set to Λ^2) simultaneously.

Multi-Class Kernel-Based SVMs

• Optimization problem:

Minimize
$$F(\mathbf{f}, \eta) = \frac{1}{2} \sum_{y=1}^{k} ||f_y||_{\mathscr{F}}^2 + C \sum_{i=1}^{m} \eta_i$$
Subject to
$$1 - \eta_i - \langle f_{c(\omega_i)}, \Phi(\omega_i) \rangle_{\mathscr{F}} + \langle f_y, \Phi(\omega_i) \rangle_{\mathscr{F}} \leq 0,$$

$$\forall i \in [1, m] \text{ and } y \in [1, k], y \neq c(\omega_i)$$

$$-\eta_i \leq 0, \ \forall i \in [1, m]$$

$$(\mathbf{f}, \eta) \in \mathscr{F}^k \times \mathbb{R}^m.$$

- If the feature space \mathscr{F} is the RKHS \mathbb{H} of the kernel K, we have $\langle f_y, \Phi(\omega_i) \rangle_{\mathbb{H}} = f_y(\omega)$.
- We will employ the RKHS \mathbb{H} of the kernel K as the feature space.

Remarks

- The parameter C > 0 determines the trade-off between margin-maximization (or minimization of $\sum_{y=1}^{k} ||f_y||_{\mathscr{F}}^2$) and the minimization of the slack penalty $\sum_{i=1}^{m} \eta_i$.
- The parameter C is typically determined via n-fold cross-validation.

The Primal Problem for Multi-Class Kernel-Based SVM

Minimize
$$F(\mathbf{f}, \eta) = \frac{1}{2} \sum_{y=1}^{k} ||f_y||_{\mathbb{H}}^2 + C \sum_{i=1}^{m} \eta_i$$
Subject to
$$1 - \eta_i - f_{c(\omega_i)}(\omega_i) + f_y(\omega_i) \leq 0,$$

$$\forall i \in [1, m] \text{ and } y \in [1, k], y \neq c(\omega_i)$$

$$-\eta_i \leq 0, \ \forall i \in [1, m]$$

$$(\mathbf{f}, \eta) \in \mathbb{H}^k \times \mathbb{R}^m.$$

- How do we solve this primal problem when the RKHS \mathscr{F} of the kernel K is an infinite-dimensional Hilbert space?
- We need a generalization of the Representer Theorem in Lecture 4.

A Generalization of the Representer Theorem

Let

- $K: \mathscr{I} \times \mathscr{I} \to \mathbb{R}$: a PDS kernel over an input space \mathscr{I} .
- $\mathscr{F} = \mathbb{H}$: a feature space, which is the reproducing kernel Hilbert space (RKHS) associated to the PDS kernel K.
- $(\omega_1, \omega_2, \dots, \omega_m)$: a given *m*-tuple over the input space \mathscr{I} .
- $G: (\mathbb{R}^+)^k \to \mathbb{R}$: a non-decreasing function in each of the k arguments.
- $L: \mathbb{R}^{km} \to \mathbb{R} \cup \{\infty\}$: any function.

Any solution of the optimization problem

Minimize_{$$f_1,...,f_k \in \mathbb{H}$$} $F(f_1,...,f_k) = G(||f_1||_{\mathbb{H}},...,||f_k||_{\mathbb{H}})$
+ $L(f_1(\omega_1),...,f_k(\omega_1),...,f_1(\omega_m),...,f_k(\omega_m))$

admits a solution of the form

$$f_j^* = \sum_{i=1}^m \alpha_{i,j} K(\omega_i, \cdot), \ j \in [1, k]$$

for some real numbers $\alpha_{i,j}$, $i \in [1, m]$, $j \in [1, k]$. If G is further assumed to be strictly increasing in each of the k arguments, then any solution has this form.

Proof.

- $\mathbb{H}_1 = \text{Span}(\{K(\omega_i, \cdot), i \in [1, m]\})$: a finite-dimensional subspace of the RKHS \mathbb{H} , which is a closed subspace.
 - Closedness: if a sequence $\{h_n\}_{n=1}^{\infty}$ in \mathbb{H}_1 converges to an $h \in \mathbb{H}$, then h must be in \mathbb{H}_1 .

- $\mathbb{H}_1^{\perp} = \{h \in \mathbb{H} : \langle h, h' \rangle = 0 \ \forall \ h' \in \mathbb{H}_1\}$: the orthogonal complement of \mathbb{H}_1 , which is a closed subspace of \mathbb{H} .
- Since \mathbb{H}_1 is closed, $\mathbb{H} = \mathbb{H}_1 \oplus \mathbb{H}_1^{\perp}$, i.e., \mathbb{H} is the direct sum of \mathbb{H}_1 and \mathbb{H}_1^{\perp} , which means that for each $f_j \in \mathbb{H}$, there exist unique $h_j \in \mathbb{H}_1$ and $h_j^{\perp} \in \mathbb{H}_1^{\perp}$ such that $f_j = h_j + h_j^{\perp}$.
- \bullet Since G is non-decreasing in each of the k arguments, we have

$$G(\|h_1\|_{\mathbb{H}}, \|h_2\|_{\mathbb{H}}, \dots, \|h_k\|_{\mathbb{H}})$$

$$\leq G(\|f_1\|_{\mathbb{H}}, \|h_2\|_{\mathbb{H}}, \dots, \|h_k\|_{\mathbb{H}}) \text{ since} \|h_1\|_{\mathbb{H}} \leq \|f_1\|_{\mathbb{H}}$$

$$\vdots$$

$$\leq G(\|f_1\|_{\mathbb{H}}, \|f_2\|_{\mathbb{H}}, \dots, \|f_k\|_{\mathbb{H}}).$$

57

- By the reproducing property, for all $i \in [1, m], j \in [1, k],$ $f_j(\omega_i) = \langle f_j, K(\omega_i, \cdot) \rangle = \langle h_j, K(\omega_i, \cdot) \rangle = h_j(\omega_i).$ Thus, $L(f_1(\omega_1), \dots, f_k(\omega_1), \dots, f_1(\omega_m), \dots, f_k(\omega_m)) =$ $L(h_1(\omega_1), \dots, h_k(\omega_1), \dots, h_1(\omega_m), \dots, h_k(\omega_m)).$
- $F(h_1, \ldots, h_k) \leq F(f_1, \ldots, f_k)$ for all $f_1, \ldots, f_k \in \mathbb{H}$, which proves the first part of the theorem.
- If G is further strictly increasing, then $F(f_1, \ldots, h_j, \ldots, f_k) < F(f_1, \ldots, f_j, \ldots, f_k) \text{ when } ||h_j^{\perp}||_{\mathbb{H}} > 0$ and any solution of the optimization problem must be in \mathbb{H}_1^k .

Reformulation of Primal Problem for Multi-Class Kernel-Based SVM

- \mathscr{I} : the input space of all possible items, associated with a probability space $(\mathscr{I}, \mathcal{F}, P)$, where P is unknown.
- $c: \mathscr{I} \to \mathscr{Y} = \{1, 2, \dots, k\}$: a fixed but unknown concept.
- $K: \mathscr{I} \times \mathscr{I} \to \mathbb{R}$: a PDS kernel over the input space \mathscr{I} .
- $\mathscr{F} = \mathbb{H}$: a feature space, which is the reproducing kernel Hilbert space (RKHS) \mathbb{H} associated to the PDS kernel K with the feature mapping $\Phi : \mathscr{I} \to \mathbb{H}$ such that $\Phi(\omega) = K(\omega, \cdot)$.
- $S = (\omega_1, \omega_2, \dots, \omega_m)$: a sample of size m drawn i.i.d. from the input space \mathscr{I} according to the distribution P with labels $(c(\omega_1), c(\omega_2), \dots, c(\omega_m))$.

The primal problem for multi-class SVM in the RKHS feature space \mathbb{H} associated to the PDS kernel K is

Minimize
$$F(\mathbf{f}, \eta) = \frac{1}{2} \sum_{y=1}^{k} \|f_y\|_{\mathbb{H}}^2 + C \sum_{i=1}^{m} \eta_i$$
Subject to
$$1 - \eta_i - f_{c(\omega_i)}(\omega_i) + f_y(\omega_i) \leq 0,$$

$$\forall i \in [1, m] \text{ and } y \in [1, k], y \neq c(\omega_i)$$

$$-\eta_i \leq 0, \ \forall i \in [1, m]$$

$$(\mathbf{f}, \eta) \in \mathbb{H}^k \times \mathbb{R}^m.$$

which is equivalent to

Minimize<sub>f₁,...,f_k∈ℍ
$$\tilde{F}(f_1,...,f_k) = \frac{1}{2} \sum_{y=1}^{k} ||f_y||_{\mathbb{H}}^2$$

+ $C \sum_{i=1}^{m} \max(0, 1 - f_{c(\omega_i)}(\omega_i) + \max_{y \in [1,k], y \neq c(\omega_i)} f_y(\omega_i)).$</sub>

By letting

- $G(||f_1||_{\mathbb{H}}, \dots, ||f_k||_{\mathbb{H}}) = \frac{1}{2} \sum_{j=1}^k ||f_j||_{\mathbb{H}}^2$ with $G(x_1, \dots, x_k) = \frac{1}{2} \sum_{j=1}^k x_j^2$ strictly increasing in each of the k arguments;
- $L(f_1(\omega_1), \dots, f_k(\omega_1), \dots, f_1(\omega_m), \dots, f_k(\omega_m)) =$ $C \sum_{i=1}^m \max(0, 1 - f_{c(\omega_i)}(\omega_i) + \max_{y \in [1,k], y \neq c(\omega_i)} f_y(\omega_i)),$

any solution of the optimization problem

Minimize_{$$f_1,...,f_k \in \mathbb{H}$$} $\tilde{F}(f_1,...,f_k) = \frac{1}{2} \sum_{y=1}^k ||f_y||_{\mathbb{H}}^2$

$$+C\sum_{i=1}^{m} \max(0, 1 - f_{c(\omega_i)}(\omega_i) + \max_{y \in [1,k], y \neq c(\omega_i)} f_y(\omega_i)).$$

must be of the form $f_j^* = \sum_{i=1}^m \alpha_{i,j} K(\omega_i, \cdot)$ by the generalization of the representer theorem.

55

Let

$$\mathbb{H}_{S} \triangleq \operatorname{Span}\{K(\omega_{i},\cdot), i = 1, 2, \dots, m\}$$

$$= \left\{ \sum_{i=1}^{m} \beta_{i} K(\omega_{i},\cdot) \mid \beta_{i} \in \mathbb{R}, 1 \leq i \leq m \right\},$$

which is a finite-dimensional Hilbert space. Then we have

Minimize_{$$f_1,...,f_k \in \mathbb{H}$$} $\tilde{F}(f_1,...,f_k) = \frac{1}{2} \sum_{y=1}^k ||f_y||_{\mathbb{H}}^2$

$$+C\sum_{i=1}^{m} \max(0, 1 - f_{c(\omega_i)}(\omega_i) + \max_{y \in [1,k], y \neq c(\omega_i)} f_y(\omega_i))$$

$$\Leftrightarrow \text{Minimize}_{f_1,\dots,f_k \in \mathbb{H}_S} \tilde{F}(f_1,\dots,f_k) = \frac{1}{2} \sum_{y=1}^k \|f_y\|_{\mathbb{H}_S}^2$$

$$+C\sum_{i=1}^{m} \max(0, 1 - f_{c(\omega_i)}(\omega_i) + \max_{y \in [1,k], y \neq c(\omega_i)} f_y(\omega_i)).$$

Thus the primal problem for multi-class SVM in the RKHS feature space \mathbb{H} associated to the PDS kernel K is equivalent to

Minimize
$$F(\mathbf{f}, \eta) = \frac{1}{2} \sum_{y=1}^{k} \|f_y\|_{\mathbb{H}_S}^2 + C \sum_{i=1}^{m} \eta_i$$
Subject to
$$1 - \eta_i - f_{c(\omega_i)}(\omega_i) + f_y(\omega_i) \leq 0,$$

$$\forall i \in [1, m] \text{ and } y \in [1, k], y \neq c(\omega_i)$$

$$-\eta_i \leq 0, \ \forall i \in [1, m]$$

$$(\mathbf{f}, \eta) \in \mathbb{H}_S^k \times \mathbb{R}^m.$$

which is equivalent to

Minimize
$$F(\mathbf{f}, \eta) = \frac{1}{2} \sum_{y=1}^{k} \|f_y\|_{\mathbb{H}_S}^2 + C \sum_{i=1}^{m} \eta_i$$
Subject to
$$1 - \eta_i - \langle f_{c(\omega_i)}, \Phi(\omega_i) \rangle + \langle f_y, \Phi(\omega_i) \rangle \leq 0,$$

$$\forall i \in [1, m] \text{ and } y \in [1, k], y \neq c(\omega_i)$$

$$-\eta_i \leq 0, \ \forall i \in [1, m]$$

$$(\mathbf{f}, \eta) \in \mathbb{H}_S^k \times \mathbb{R}^m.$$

Qualification of the Primal Problem for Multi-Class Kernel-Based SVM

- The object function $F(\mathbf{f}, \eta) = \frac{1}{2} \sum_{y=1}^{k} ||f_y||_{\mathbb{H}_S}^2 + C \sum_{i=1}^{m} \eta_i$ is infinitely differentiable and convex so that it is pseudoconvex at any feasible point.
 - Each f_y in \mathbb{H}_S is regarded as the coordinate vector with respective to a basis of the finite-dimensional Hilbert space \mathbb{H}_S .
- The inequality constraint functions $g_{iy}(\mathbf{f}, \eta) = 1 \eta_i \langle f_{c(\omega_i)}, \Phi(\omega_i) \rangle_{\mathbb{H}_S} + \langle f_y, \Phi(\omega_i) \rangle_{\mathbb{H}_S}, i \in [1, m]$ and $y \in [1, k], y \neq c(\omega_i)$ and $h_i(\mathbf{f}, \eta) = -\eta_i, i \in [1, m]$, are affine functions so that they are infinitely differentiable and convex and then quasiconvex at any feasible point.

•
$$\nabla F = \begin{bmatrix} f_1 \\ \vdots \\ f_k \\ C\mathbf{1}^{(m)} \end{bmatrix}$$
, $\nabla g_{iy} = \begin{bmatrix} \Phi(\omega_i) \otimes (-\mathbf{e}_{c(\omega_i)}^{(k)} + \mathbf{e}_y^{(k)}) \\ -\mathbf{e}_i^{(m)} \end{bmatrix}$, and $\nabla h_i = \begin{bmatrix} \mathbf{0} \\ \vdots \\ \mathbf{0} \\ -\mathbf{e}_i^{(m)} \end{bmatrix}$, where $\mathbf{e}_i^{(k)}$ and $\mathbf{e}_i^{(m)}$ are standard unit

vectors in \mathbb{R}^k and \mathbb{R}^m respectively and the Kronecker product $\Phi(\omega_i) \otimes \mathbf{e}_y^{(k)}$ means $[0, \dots, 0, \Phi(\omega_i)^T, 0, \dots, 0]^T$.

• The Kuhn-Tucker necessary conditions are:

$$\nabla F + \sum_{i=1}^{m} \sum_{y=1, y \neq c(\omega_{i})}^{k} \lambda_{iy} \nabla g_{iy} + \sum_{i=1}^{m} \mu_{i} \nabla h_{i} = \mathbf{0}$$

$$\iff f_{y} = \sum_{i=1, c(\omega_{i}) = y}^{m} \sum_{z=1, z \neq y}^{k} \lambda_{iz} \Phi(\omega_{i})$$

$$- \sum_{i=1, c(\omega_{i}) \neq y}^{m} \lambda_{iy} \Phi(\omega_{i}), y \in [1, k]$$
and $C = \mu_{i} + \sum_{y=1, y \neq c(\omega_{i})}^{k} \lambda_{iy}, i \in [1, m],$

$$\lambda_{iy} g_{iy}(\mathbf{f}, \eta) = 0, \ i \in [1, m], y \in [1, k], y \neq c(\omega_{i}),$$

$$\mu_{i} \eta_{i} = 0, \ i \in [1, m],$$

$$\lambda_{iy} \geq 0, \ i \in [1, m], y \in [1, k], y \neq c(\omega_{i}),$$

$$\mu_{i} \geq 0, \ i \in [1, m].$$

• Any feasible point (\mathbf{f}, η) which satisfies the Kuhn-Tucker necessary conditions in above is a global minimum solution.

Support Vectors

• Support vectors for class $y, y \in \mathcal{Y}$: any vector $\Phi(\omega_i)$ which appears in the linear combination

$$f_y = \sum_{i=1, c(\omega_i)=y}^{m} \sum_{z=1, z\neq y}^{k} \lambda_{iz} \Phi(\omega_i) - \sum_{i=1, c(\omega_i)\neq y}^{m} \lambda_{iy} \Phi(\omega_i),$$

i.e., $\sum_{z=1,z\neq y}^{k} \lambda_{iz} \neq 0$ for those i such that $c(\omega_i) = y$ and $\lambda_{iy} \neq 0$ for those i such that $c(\omega_i) \neq y$.

- If $\lambda_{iy} \neq 0$, we must have $\langle f_{c(\omega_i)} f_y, \Phi(\omega_i) \rangle_{\mathbb{H}_S} = 1 \eta_i$ by the complementary slackness conditions.
 - Furthermore, if $\eta_i = 0$, then $\langle f_{c(\omega_i)} f_y, \Phi(\omega_i) \rangle_{\mathbb{H}_S} = 1$.
- If $\eta_i > 0$, then $\mu_i = 0$ and then $\sum_{z=1, z \neq c(\omega_i)}^k \lambda_{iz} = C > 0$ so that $\Phi(\omega_i)$ is a support vector of the weight vector $f_{c(\omega_i)}$. This $\Phi(\omega_i)$ is called an outlier w.r.t. the weight vector $f_{c(\omega_i)}$.

How to Determine Optimal Lagrangian Variables λ_{iy}^{SVM} ?

• Once optimal Lagrangian variables λ_{iy}^{SVM} are determined, we can compute

$$f_y^{SVM} = \sum_{i=1, c(\omega_i)=y}^{m} \sum_{z=1, z\neq y}^{k} \lambda_{iz}^{SVM} \Phi(\omega_i) - \sum_{i=1, c(\omega_i)\neq y}^{m} \lambda_{iy}^{SVM} \Phi(\omega_i).$$

• We will use the Lagrangian dual problem to determine optimal λ_{iu}^{SVM} .

Lagrangian Dual Function for Multi-Class Kernel-Based SVM

- $X = \mathbb{H}_S^k \times \mathbb{R}^m$: a nonempty open convex set.
- Lagrangian function: for all $\mathbf{f} \in \mathbb{H}_S^k$, $\eta \in \mathbb{R}^m$, and $\lambda \in \mathbb{R}^{m(k-1)}$, $\mu \in \mathbb{R}^m$,

$$L(\mathbf{f}, \eta, \lambda, \mu)$$

$$= F(\mathbf{f}, \eta) + \sum_{i=1}^{m} \sum_{y=1, y \neq c(\omega_{i})}^{k} \lambda_{iy} g_{iy}(\mathbf{f}, \eta) + \sum_{i=1}^{m} \mu_{i} h_{i}(\mathbf{f}, \eta)$$

$$= \frac{1}{2} \sum_{y=1}^{k} ||f_{y}||^{2} + C \sum_{i=1}^{m} \eta_{i} + \sum_{i=1}^{m} \sum_{y=1, y \neq c(\omega_{i})}^{k} \lambda_{iy} (1 - \eta_{i} - \langle f_{c(\omega_{i})} - f_{y}, \Phi(\omega_{i}) \rangle_{\mathbb{H}_{S}}) - \sum_{i=1}^{m} \mu_{i} \eta_{i}.$$

• For any fixed $\lambda \in \mathbb{R}^{m(k-1)}$, $\mu \in \mathbb{R}^m$, the gradient ∇L of the Lagrangian function w.r.t. (\mathbf{f}, η) is

$$\nabla L = \nabla F + \sum_{i=1}^{m} \sum_{y=1, y \neq c(\omega_i)}^{k} \lambda_{iy} \nabla g_{iy} + \sum_{i=1}^{m} \mu_i \nabla h_i$$

$$= \begin{bmatrix} f_1 \\ \vdots \\ f_k \\ C\mathbf{1}^{(m)} \end{bmatrix} + \sum_{i=1}^{m} \sum_{y=1, y \neq c(\omega_i)}^{k} \lambda_{iy} \begin{bmatrix} \Phi(\omega_i) \otimes (-\mathbf{e}_{c(\omega)}^{(k)} + \mathbf{e}_y^{(k)}) \\ -\mathbf{e}_i^{(m)} \end{bmatrix}$$

$$+ \sum_{i=1}^{m} \mu_i \begin{bmatrix} \mathbf{0} \\ \vdots \\ \mathbf{0} \\ -\mathbf{e}_i^{(m)} \end{bmatrix}$$

and the Hessian matrix is

$$\mathbf{H} = egin{bmatrix} I_{\mathbb{H}_S} & \cdots & \mathbf{0}_{\mathbb{H}_S} & \mathbf{0}_{\dim(\mathbb{H}_S) imes m} \ dots & \ddots & dots & dots \ \mathbf{0}_{\mathbb{H}_S} & \cdots & I_{\mathbb{H}_S} & \mathbf{0}_{\dim(\mathbb{H}_S) imes m} \ \mathbf{0}_{m imes \dim(\mathbb{H}_S)} & \cdots & \mathbf{0}_{m imes \dim(\mathbb{H}_S)} & \mathbf{0}_{m imes m} \end{bmatrix}$$

which is positive semi-definite.

• For any fixed $\lambda \in \mathbb{R}^{m(k-1)}$, $\mu \in \mathbb{R}^m$, the Lagrangian function is differentiable and convex over a non-empty open convex set X so that $(\hat{\mathbf{f}}, \hat{\eta})$ is an optimal solution to the minimization of $L(\mathbf{f}, \eta, \lambda, \mu)$ subject to $(\mathbf{f}, \eta) \in X$ if and only if $\nabla L(\hat{\mathbf{f}}, \hat{\eta}, \lambda, \mu) = \mathbf{0}$ if and only if

$$\hat{f}_y = \sum_{i=1, c(\omega_i)=y}^m \sum_{z=1, z\neq y}^k \lambda_{iz} \Phi(\omega_i) - \sum_{i=1, c(\omega_i)\neq y}^m \lambda_{iy} \Phi(\omega_i), y \in [1, k],$$

<u>5</u>

and

$$C = \mu_i + \sum_{z=1, z \neq c(\omega_i)}^k \lambda_{iz}, i \in [1, m].$$

- Note that for any fixed $\lambda \in \mathbb{R}^{m(k-1)}$, $\mu \in \mathbb{R}^m$, $C \neq \mu_i + \sum_{z=1, z \neq c(\omega_i)}^k \lambda_{iz}$ for some $i \in [1, m]$ if and only if the infimum of the Lagrangian function $L(\mathbf{f}, \eta, \lambda, \mu)$ is $-\infty$.

• Lagrangian dual function: for any $\lambda \in \mathbb{R}^{m(k-1)}, \mu \in \mathbb{R}^m$,

$$\theta(\lambda, \mu)$$

$$= \inf_{(\mathbf{f}, \eta) \in X} L(\mathbf{f}, \eta, \lambda, \mu)$$

$$= \begin{cases} \frac{1}{2} \sum_{y=1}^{k} \|\hat{f}_{y}\|^{2} + C \sum_{i=1}^{m} \hat{\eta}_{i} + \sum_{i=1}^{m} \sum_{y=1, y \neq c(\omega_{i})}^{k} \\ \lambda_{iy} (1 - \hat{\eta}_{i} - \langle \hat{f}_{c(\omega_{i})} - \hat{f}_{y}, \Phi(\omega_{i}) \rangle_{\mathbb{H}_{S}})) - \sum_{i=1}^{m} \mu_{i} \hat{\eta}_{i}, \\ \text{if } C = \mu_{i} + \sum_{y=1, y \neq c(\omega_{i})}^{k} \lambda_{iy}, i \in [1, m], \\ -\infty, \text{ otherwise} \end{cases}$$

$$= \begin{cases} \sum_{i=1}^{m} \lambda_{ic(\omega_{i})} - \frac{1}{2} \sum_{i,j=1}^{m} \sum_{y=1}^{k} (-1)^{\delta_{c(\omega_{i})y}} \lambda_{iy} \\ (-1)^{\delta_{c(\omega_{j})y}} \lambda_{jy} \langle \Phi(\omega_{i}), \Phi(\omega_{j}) \rangle_{\mathbb{H}}, \\ \text{if } C = \mu_{i} + \lambda_{ic(\omega_{i})}, \lambda_{ic(\omega_{i})} = \sum_{y=1, y \neq c(\omega_{i})}^{k} \lambda_{iy}, i \in [1, m], \\ -\infty, \text{ otherwise}. \end{cases}$$

Lagrangian Dual Problem for Multi-Class SVM

Maximize
$$\theta(\lambda, \mu) = \sum_{i=1}^{m} \lambda_{ic(\omega_i)} - \frac{1}{2} \sum_{i,j=1}^{m} \sum_{y=1}^{k} (-1)^{\delta_{c(\omega_i)y}} \lambda_{iy} (-1)^{\delta_{c(\omega_j)y}} \lambda_{jy} K(\omega_i, \omega_j),$$
Subject to
$$C = \mu_i + \lambda_{ic(\omega_i)}, \ i \in [1, m],$$

$$\lambda_{ic(\omega_i)} = \sum_{y=1, y \neq c(\omega_i)}^{k} \lambda_{iy}, \ i \in [1, m],$$

$$\lambda_{iy} \geq 0, \ i \in [1, m], \ y \in [1, k],$$

$$\mu_i \geq 0, \ i \in [1, m],$$

$$(\lambda, \mu) \in \mathbb{R}^{mk} \times \mathbb{R}^m.$$

Or equivalently,

Maximize
$$\theta(\lambda) = \sum_{i=1}^{m} \lambda_{ic(\omega_i)} - \frac{1}{2} \sum_{i,j=1}^{m} \sum_{y=1}^{k} (-1)^{\delta_{c(\omega_i)y}} \lambda_{iy} (-1)^{\delta_{c(\omega_j)y}} \lambda_{jy} K(\omega_i, \omega_j),$$
Subject to
$$\lambda_{iy} \geq 0, \ i \in [1, m], \ y \in [1, k],$$

$$C - \lambda_{ic(\omega_i)} \geq 0, \ i \in [1, m],$$

$$\lambda_{ic(\omega_i)} - \sum_{y=1, y \neq c(\omega_i)}^{k} \lambda_{iy} = 0, \ i \in [1, m],$$

$$\lambda \in \mathbb{R}^{mk}.$$

• A quadratic programming (QP) problem.

Qualification of the Dual Problem

• The object function

$$\theta(\lambda) = \sum_{i=1}^{m} \lambda_{ic(\omega_i)} - \frac{1}{2} \sum_{i,j=1}^{m} \sum_{y=1}^{k} (-1)^{\delta_{c(\omega_i)y}} \lambda_{iy} (-1)^{\delta_{c(\omega_j)y}} \lambda_{jy} K(\omega_i, \omega_j)$$

is infinitely differentiable and concave so that it is pseudoconcave at any feasible point.

• The inequality constraint functions $g_{iy}(\lambda) = \lambda_{iy}$, $i \in [1, m]$, $y \in [1, k]$, $\tilde{g}_i(\lambda) = C - \lambda_{ic(\omega_i)}$, $i \in [1, m]$, and the equality constraint function $h_i(\lambda) = \sum_{y=1}^k (-1)^{\delta_{c(\omega_i)y}} \lambda_{iy}$, $i \in [1, m]$, are affine functions so that they are infinitely differentiable, concave and convex and then quasiconcave and quasiconvex at any feasible point.

 \bullet Any feasible point λ which satisfies the Kuhn-Tucker necessary conditions is a global maximum solution.

Justification of Strong Duality for Multi-Class Kernel-Based SVM

- $X = \mathbb{H}_S^k \times \mathbb{R}^m$: a non-empty convex set.
- $F(\mathbf{f}, \eta) = \frac{1}{2} \sum_{y=1}^{k} ||f_y||^2 + C \sum_{i=1}^{m} \eta_i$: a convex function on X.
- $g_{iy}(\mathbf{f}, \eta) = 1 \eta_i \langle f_{c(\omega_i)} f_y, \Phi(\omega_i) \rangle_{\mathbb{H}_S}, i \in [1, m], y \in [1, k], y \neq c(\omega_i)$: affine functions so that they are convex functions on X.
- $h_i(\mathbf{f}, \eta) = -\eta_i, 1 \le i \le m$: affine functions so that they are convex functions on X.
- There exists an $(\mathbf{f}', \eta') \in X$ such that $\mathbf{g}(\mathbf{f}', \eta') < \mathbf{0}$ and $\mathbf{h}(\mathbf{f}', \eta') < \mathbf{0}$.

72

Then we have

$$\inf\{F(\mathbf{f},\eta): (\mathbf{f},\eta) \in X, \mathbf{g}(\mathbf{f},\eta) \leq \mathbf{0}, \mathbf{h}(\mathbf{f},\eta) \leq \mathbf{0}\}$$
$$= \sup\{\theta(\lambda,\mu): (\lambda,\mu) \geq \mathbf{0}\}.$$

- For a non-trivial labeled training sample, the inf is finite and can be achieved at some feasible point $(\mathbf{f}^{SVM}, \eta^{SVM})$. Then $\sup\{\theta(\lambda, \mu) \mid (\lambda, \mu) \geq \mathbf{0}\}$ is achieved at some $(\lambda^{SVM}, \mu^{SVM}) \geq \mathbf{0}$.
- The primal and dual problems are equivalent.

The Multi-Class Kernel-Based SVM Algorithm

- $S = (\omega_1, \ldots, \omega_m)$: a non-trivial labeled training sample of size m with labels $(c(\omega_1), \ldots, c(\omega_m))$.
- $h_S^{SVM}: \mathscr{I} \to \mathscr{Y}$: the hypothesis returned by the multi-class kernel-based SVM such that for all $\omega \in \mathscr{I}$,

$$h_{S}^{SVM}(\omega) = \arg\max_{y \in \mathscr{Y}} \left\langle f_{y}^{SVM}, \Phi(\omega) \right\rangle_{\mathbb{H}}$$

$$= \arg\max_{y \in \mathscr{Y}} \left\langle \sum_{i=1}^{m} (-1)^{\delta_{c(\omega_{i})y}} \lambda_{iy}^{SVM} \Phi(\omega_{i}), \Phi(\omega) \right\rangle_{\mathbb{H}}$$

$$= \arg\max_{y \in \mathscr{Y}} \sum_{i=1}^{m} (-1)^{\delta_{c(\omega_{i})y}} \lambda_{iy}^{SVM} K(\omega_{i}, \omega)$$

7

where the returned weight vectors are

$$f_y^{SVM} = \sum_{i=1}^m (-1)^{\delta_{c(\omega_i)y}} \lambda_{iy}^{SVM} \Phi(\omega_i).$$

• The hypothesis solution h_S^{SVM} depends only on kernel values between items and not directly on the feature vectors of items.

AdaBoost.MH: Multi-Class Hamming Loss

- AdaBoost.MH is a boosting algorithm for multi-class classification.
- AdaBoost.MH applies to the multi-label setting where the label space \mathscr{Y} is $\{-1, +1\}^k$.
- As in the binary case, it returns a convex combination of base classifiers selected from a hypothesis set \mathcal{H} .
- AdaBoost.MH reduces a multi-label training data of size m to a binary training data of size mk by splitting the ith multi-labeled item to k binary-labeled items as follows:

$$(\omega_i, c(\omega_i)) \to ((\omega_i, 1), c(\omega_i)_1), \dots, ((\omega_i, k), c(\omega_i)_k), i \in [1, m].$$

• The base classifiers are functions mapping from $\mathscr{I} \times \{1, 2, \dots, k\}$ to $\{-1, +1\}$.

- Adaboost.MH maintains a distribution on the double index set $[1, m] \times [1, k]$ which will be updated at each round of boosting. The initial distribution D_1 is set to be the uniform distribution, i.e., $D_1(i, l) = 1/(mk)$ for all $i \in [1, m], l \in [1, k]$. Let D_t be the distribution on $[1, m] \times [1, k]$ at the t-th round of boosting.
- At the t-th round of boosting, the base classifier $h_{S,t}$ is selected that minimizes the error on the training sample weighted by the distribution D_t :

$$h_{S,t} \in \arg\min_{h \in \mathcal{H}} P_{(i,l) \sim D_t}(h(\omega_i, l) \neq c(\omega_i)_l)$$

$$= \arg\min_{h \in \mathcal{H}} \sum_{i=1}^m \sum_{l=1}^k D_t(i, l) 1_{h(\omega_i, l) \neq c(\omega_i)_l}.$$

- Instead of a hypothesis with minimal weighted error, $h_{S,t}$ can be more generally the base classifier returned by a weak learning algorithm trained on the distribution D_t .

- Thus, AdaBoost.MH working on a multi-labeled sample $S = ((\omega_1, c(\omega_1)), \ldots, (\omega_m, c(\omega_m)))$ of size m is equivalent to AdaBoost working on a binary-labeled sample $S' = (((\omega_1, 1), c(\omega_1)_1), \ldots, ((\omega_m, k), c(\omega_m)_k))$ of size mk.
- The complexity of the AdaBoost.MH algorithm is that of the AdaBoost applied to a sample of size mk. For $\mathscr{I} \subseteq \mathbb{R}^N$, using boosting stumps as base classifiers, the complexity of the algorithm is therefore in $O((mk) \ln(mk) + mkNT)$. Thus, for a large number k of labels, the algorithm may become impractical using a single processor.
- The weak learning condition for the application of AdaBoost in this scenario requires that at each round there exists a base classifier $h_{S,t}: \mathscr{I} \times \{1,2,\ldots,k\} \to \{-1,+1\}$ such that $P_{(i,l)\sim D_t}(h_{S,t}(\omega_i,l)\neq c(\omega_i)_l)\leq \frac{1}{2}-\gamma$. This may be hard to achieve if classes are close and it is difficult to distinguish them.

The AdaBoost.MH Algorithm for $\mathcal{H} \subseteq (\{-1,+1\}^k)^{\mathscr{I}}$

AdaBoost.MH
$$(S = ((\omega_1, c(\omega_1)), \dots, (\omega_m, c(\omega_m))))$$

- 1. for $i \leftarrow 1$ to m do
- for $l \leftarrow 1$ to k do
- $D_1(i,l) \leftarrow \frac{1}{mk}$
- 4. for $t \leftarrow 1$ to T do
- $h_{S,t} \leftarrow \text{base classifier in } \mathcal{H} \text{ with small error}$

$$\epsilon_t = P_{(i,l)\sim D_t}(h_{S,t}(\omega_i, l) \neq c(\omega_i)_l) = \sum_{i=1}^m \sum_{l=1}^k D_t(i, l) 1_{h_{S,t}(\omega_i, l) \neq c(\omega_i)_l}$$

6.
$$\alpha_t \leftarrow \frac{1}{2} \log \frac{1 - \epsilon_t}{\epsilon_t}$$

6.
$$\alpha_t \leftarrow \frac{1}{2} \log \frac{1 - \epsilon_t}{\epsilon_t}$$
7. $Z_t \leftarrow 2[\epsilon_t (1 - \epsilon_t)]^{\frac{1}{2}}$ > normalization factor

8. for $i \leftarrow 1$ to m do

9. for $l \leftarrow 1$ to k do

10.
$$D_{t+1}(i,l) \leftarrow \frac{D_t(i,l) \exp(-\alpha_t h_{S,t}(\omega_i,l)c(\omega_i)_l)}{Z_t}$$

11.
$$g_S \leftarrow \sum_{t=1}^{T} \alpha_t h_{S,t}$$

12. return $h_S = \operatorname{sgn}(g_S)$

Definition 8.1: Binary Decision Trees

- \mathscr{I} : the input space associated with a probability space $(\mathscr{I}, \mathcal{F}, P)$.
- \mathscr{Y} : the label space.
- $\mathcal{X} = \mathcal{X}_1 \times \mathcal{X}_2 \times \cdots \times \mathcal{X}_N$: an N-dimensional feature space.
 - Each feature set \mathcal{X}_i is either a numerical set or a categorical set.
- $\mathbf{X} = (X_1, X_2, \dots, X_N) : \mathscr{I} \to \mathcal{X}$: a measurable feature mapping which associates an item ω with a feature vector $\mathbf{X}(\omega)$, where $X_i(\omega)$ is called the *i*th feature of item ω .
 - With the probability space $(\mathscr{I}, \mathcal{F}, P)$, **X** is a random vector and each feature variable X_i is a random variable.

A binary decision tree is a tree representation of a partition of the feature space \mathcal{X} . Each interior node of a decision tree corresponds to a question related to features. It can be a numerical question of the form $X_i \leq a$ for a continuous feature variable X_i and some threshold $a \in \mathbb{R}$ or a categorical question such as $X_i \in \{\text{blue}, \text{ white}, \text{ red}\}$, when feature X_i takes a categorical value such as a color. Each leaf is labeled with a label $l \in \mathcal{Y}$.

Left: An example of a binary decision tree with numerical quesions based on two variables X_1 and X_2 .

Right: The partition of the two-dimensional feature space induced by that decision tree.

Remarks

- Binary decision trees can be defined using more complex node questions, resulting in partitions based on more complex decision surfaces.
 - Binary space partition (BSP) trees partition the space with convex polyhedral regions, based on questions of the form $\sum_{j=1}^{N} \alpha_j X_j \leq b.$
 - Binary sphere trees partition with pieces of spheres based on questions of the form $\|\mathbf{X} \mathbf{a}_0\| \le r$, where \mathbf{X} is a feature vector, \mathbf{a}_0 a fixed vector, and r a fixed positive real number.
- More complex tree questions lead to richer partitions and thus hypothesis sets, which can cause overfitting in the absence of a sufficiently large training sample. They also increase the computational complexity of prediction and training.

- Binary decision trees can also be generalized to branching factors greater than two, but binary trees are most commonly used due to computational considerations.
- Each leaf defines a region of the feature space \mathcal{X} formed by the set of items corresponding exactly to the same node responses and thus the same traversal of the tree.
 - By definition, no two regions intersect and each item belongs to exactly one region.
 - Thus, leaf regions define a partition of the feature space \mathcal{X} .
- In multi-class classification, the label of a leaf is determined using the training sample: the class with the majority representation among the training items falling in a leaf region defines the label of that leaf, with ties broken arbitrarily.

Label Prediction by a Binary Decision Tree

• To predict the label of any item $\omega \in \mathscr{I}$, we take the feature vector $\mathbf{X}(\omega)$ and start at the root node of the binary decision tree and go down the tree until a leaf is found, by moving to the right child of a node when the response to the node question is positive, and to the left child otherwise. When we reach a leaf, we associate ω with the label of this leaf.

Training a Binary Decision Tree with a Greedy Algorithm

- The greedy algorithm consists of starting with a tree reduced to a single (root) node, which is a leaf whose label is the class that has majority over the entire sample.
- Next, at each round, a node n is split based on some question q. The pair (n,q) is chosen so that the node impurity is maximally decreased according to some measure of impurity F(n) of a node n.
- The decrease in node impurity after a split of node n based on question q is defined as follows:
 - $-n_{+}(n,q)$: the right child of n after the split.
 - $-n_{-}(q,n)$: the left child of n after the split.
 - $-\eta(n,q)$: the fraction of the items in the region defined by n that are moved to $n_{-}(n,q)$.

The total impurity of the leaves $n_{-}(n,q)$ and $n_{+}(n,q)$ is therefore

$$\eta(n,q)F(n_{-}(n,q)) + (1 - \eta(n,q))F(n_{+}(n,q)).$$

Thus, the decrease in impurity $\tilde{F}(n,q)$ by that split is given by

$$\tilde{F}(n,q) = F(n) - (\eta(n,q)F(n_{-}(n,q)) + (1-\eta(n,q))F(n_{+}(n,q)).$$

- In practice, the algorithm is stopped once all leaves have reached a sufficient level of purity, when the number of items per leaf has become too small for further splitting or based on some other similar heuristic.
- The general problem of determining partition with minimum empirical error is NP-hard.

Greedy Algorithm for Building a Binary Decision Tree

Greedy Decision Tree $(S = ((\omega_1, c(\omega_1)), \dots, (\omega_m, c(\omega_m))))$

- 1. tree $\leftarrow \{n_0\}$ \triangleright root node
- 2. for $t \leftarrow 1$ to T do
- 3. $(n_t, q_t) \leftarrow \arg\max_{(n,q)} \tilde{F}(n,q)$
- 4. Split(tree, n_t, q_t)
- 5. **return** tree

Three Most Commonly Used Measures of Node Impurity

Let

• $p_l(n)$: the fraction of items at a node n that belong to class $l \in [1, k]$.

The three commonly used measures of impurity F(n) of a node n are

- Misclassification : $F(n) = 1 \max_{l \in [1,k]} p_l[n]$.
- Entropy: $F(n) = -\sum_{l=1}^{k} p_l[n] \log_2 p_l[n]$.
- Gini index : $F(n) = \sum_{l=1}^{k} p_l[n](1 p_l[n])$.

Three most commonly used measures of node impurity as functions of the fraction of positive examples in the binary case: misclassification (in black), entropy (in green, scaled by 0.5), and the Gini index (in red).

Remarks

- All three impurity functions depend only on the class distribution $\{p_l(n), i \in [1, k]\}$ of items at a node n.
- The entropy and Gini index impurity functions are upper bounds on the misclassification impurity function.
- All three functions are concave, which ensures that

$$F(n) - (\eta(n,q)F(n_{-}(n,q)) + (1 - \eta(n,q))F(n_{+}(n,q))) \ge 0.$$

- However, the misclassification function is piecewise linear, so $\tilde{F}(n,q)$ is zero if the fraction of positive items, when k=2 so that each item is labeled with -1 or +1, remains less than (or more than) half after a split. In some cases, the impurity cannot be decreased by any split using that criterion.
- In contrast, the entropy and Gini functions are strictly convex,

which guarantees a strict decrease in impurity. Furthermore, they are differentiable which is a useful feature for numerical optimization. Thus, the Gini index and the entropy criteria are typically preferred in practice.

Node Questions for Binary Decision Trees

- $S = ((\omega_1, c(\omega_1)), \ldots, (\omega_m, c(\omega_m)))$: a labeled sample of size m.
- $S_n \triangleq \{\omega_i, i \in [1, m] \mid \omega_i \text{ is in the region defined by the node } n\}$: the reduced sample to a node n.
- $X_j \leq a$: numerical questions for a continuous feature variable $X_j \in \mathcal{X}_j$.
 - The threshold value a are selected from the set $\{X_j(\omega_i), i \in [1, m] \mid \omega_i \in S_n\}.$
- $X_j \in A$: categorical questions for a categorical feature variable $X_j \in \mathcal{X}_j$.
 - The set A is any subset of \mathcal{X}_j with size no more than half of $|\mathcal{X}_j|$.

Issues of the Greedy Algorithm

- The greedy nature of the algorithm: a seemingly bad split may dominate subsequent useful splits, which could lead to trees with less impurity overall.
 - This can be overcome to a certain extent by using a look-ahead of some depth d to determine the splitting decisions, but such look-aheads can be computationally very costly.
- To achieve some desired level of impurity, trees of relatively large sizes may be needed. But larger trees define overly complex hypotheses with high VC-dimensions (see Exercise 8.5) and thus could overfit.

Training a Binary Decision Tree with a Grow-Then-Prune Strategy

- First a very large tree is grown until it fully fits the training sample or until no more than a very small number of items are left at each leaf.
- Then, the resulting tree, denoted as *tree*, is pruned back to minimize an objective function,

$$G_{\lambda}(tree) = \sum_{n \in L_{tree}} |n| F(n) + \lambda |L_{tree}|,$$

defined based on generalization bounds as the sum of an empirical error and a complexity term that can be expressed in terms of the size of L_{tree} , the set of leaves of the tree.

-|n|: the size of the region defined by the node n.

- $-\lambda>0$: a regularization parameter determining the trade-off between misclassification, or more generally impurity, versus tree complexity.
- $-\lambda$ is determined by *n*-fold cross-validation.
- $\hat{R}(tree') = \sum_{n \in L_{tree'}} |n| F(n)$: the total empirical error of a tree tree'.
- We seek a sub-tree $tree_{\lambda}$ of the tree that minimizes G_{λ} and that has the smallest size.
 - $-tree_{\lambda}$ can be shown to be unique.
- To determine $tree_{\lambda}$, the following pruning method is used, which defines a finite sequence of nested sub-trees $tree^{(0)}, \ldots, tree^{(n)}$.
- We start with the full tree $tree^{(0)} = tree$ and for any $i \in [0, n-1]$, define $tree^{(i+1)}$ from $tree^{(i)}$ by collapsing an internal node n' of $tree^{(i)}$, that is by replacing the sub-tree tree'

rooted at n' with a leaf, or equivalently by combining the regions of all the leaves dominated by n'.

- n' is chosen so that collapsing it causes the smallest per node increase in $\hat{R}(tree^{(i)})$, that is the smallest $r(tree^{(i)}, n')$ defined by

$$r(tree^{(i)}, n') = \frac{|n'|F(n') - \hat{R}(tree')}{L_{tree'} - 1}.$$

- If several nodes n' in $tree^{(i)}$ cause the same smallest increase per node $r(tree^{(i)}, n')$, then all of them are pruned to define $tree^{(i+1)}$ from $tree^{(i)}$.
- This procedure continues until the tree $tree^{(n)}$ obtained has a single node.
- The optimal sub-tree tree_{λ} can be shown to be among the elements of the sequence $tree^{(0)}, \ldots, tree^{(n)}$.