UNIVERSIDAD DE CONCEPCION FACULTAD DE CIENCIAS FISICAS Y MATEMATICAS

DEPARTAMENTO DE MATEMATICA

Tiempo de desarrollo: 40 min.

06/10/2015

Test
$$n^{\circ}2$$
 - 521227 (Cálculo III)

Problema.- Sea $f: \mathbb{R}^2 \to \mathbb{R}$ definida por

$$f(x,y) = \begin{cases} \frac{x^2}{x^2 - y} &, y \neq x^2 \\ 0 &, y = x^2 \end{cases}$$

1. Decida la continuidad de f en (0,0) y en (1,1).

(05 ptos c/u)

Respuesta:

i) Continuidad de f en (0,0).

Como
$$\lim_{(x,y)\to(0,0)} \left(\frac{x^2}{x^2-y}\right) = 1$$
 y $f(0,0) = 0$, entonces f no es continua $(0,0)$.

ii) Continuidad de f en (1,1).

Como
$$\lim_{(x,y)\to(1,1)} (x^2) = 1$$
 y $\lim_{(x,y)\to(1,1)} x^2 - y = 0$, entonces $\lim_{(x,y)\to(1,1)} \left(\frac{x}{x-y^2}\right)$ no existe. Luego f no es continua en $(1,1)$

2. Calcule, si existe, $\frac{\partial f}{\partial \hat{u}}(0,0)$ en la dirección del vector $\vec{u} = \left(\sqrt{3},1\right)$.

Respuesta: Como
$$\|\vec{u}\| = 2$$
, entonces $\hat{u} = \left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$. (02 ptos)

Asi, si límite existe,

$$\frac{\partial f}{\partial \hat{u}}(0,0) = \lim_{t \to 0} \frac{f\left(t\frac{\sqrt{3}}{2}, t\frac{1}{2}\right) - f(0,0)}{t}$$

$$= \lim_{t \to 0} \frac{\frac{t^2 \frac{3}{4}}{t}}{\frac{t^2 \frac{3}{4} - t\frac{1}{2}}{t}}$$

$$= \lim_{t \to 0} \frac{t \frac{3}{4}}{\left(t \frac{3}{4} - \frac{1}{2}\right)t}$$

$$= -\frac{3}{2}$$

(08 ptos)

3. Encuentre $\frac{\partial f}{\partial x}(x,y)$ y $\frac{\partial f}{\partial y}(x,y)$ en cada punto $(x,y) \in \mathbb{R}^2$ tal que $y \neq x^2$. (05 pts c/u)

Respuesta:

$$\frac{\partial f}{\partial x}(x,y) = \frac{-2xy}{(y-x^2)^2}, \qquad \frac{\partial f}{\partial y}(x,y) = \frac{x^2}{(y-x^2)^2}$$

4. Calcule, si existen, $\frac{\partial f}{\partial x}(0,0)$ y $\frac{\partial f}{\partial y}(0,0)$. (05 ptos c/u)

Respuesta: Si límite existe,

i)
$$\frac{\partial f}{\partial x}(0,0) = \lim_{h \to 0} \frac{f(h,0) - f(0,0)}{h} = \lim_{h \to 0} \frac{1}{h} = \infty. \text{ Luego, } \frac{\partial f}{\partial x}(0,0) \text{ no existe en } \mathbb{R}.$$

ii)
$$\frac{\partial f}{\partial y}(0,0) = \lim_{h \to 0} \frac{f(0,h) - f(0,0)}{h} = 0$$
. Luego, $\frac{\partial f}{\partial y}(0,0) = 0$

5. Decida la diferenciabilidad de f en (1,1). (05 pts)

Respuesta: Como f no es continua en (1,1), entonces f no es diferenciable en (1,1)

6. Pruebe que f es diferenciable en (1,2) y exhiba la buena aproximación afin de f en una vecindad de (1,2).

Respuesta: Como f es racional en una vecindad de (1,2), entonces es diferenciable en (1,2).

La buena aproximación afin de f en una vecindad V de (1,2) esta dada por:

$$B(x,y) = f(1,2) + d_{(1,2)}f(x-1,y-2)$$
 ((05 pts))
= $f(1,2) + f_x(1,2)(x-1) + f_y(1,2)(y-2)$

en donde: f(1,2) = -1 , $f_x(1,2) = -4$ y $f_y(1,2) = 1$ Así,

$$B(x,y) = -1 - 4(x - 1) + (y - 2)$$
 ((05 pts))
= -4x + y + 1