

Отчет по задаче 9 КСР

Выполнила: Киселева Ксения

Команда 4 группы 3821Б1ПМоп2

Постановка задачи

Вариант 7. Остывание разогретого тела, помещенного с целью охлаждения в поток жидкости или газа, имеющего постоянную температуру **9**, описывается дифференциальным уравнением

$$du/dx = -a (u - \vartheta); u (0) = u_0$$
.

Здесь **а** — постоянный, положительный коэффициент пропорциональности, **u** (**x**) — температура тела в момент времени **x**, **u**₀ — температура тела в начальный момент времени. Исследуйте численно зависимость температуры от времени. Сравните результаты (траектории) с вариантом № 8. Параметры системы: **a**, **9**.

Явный метод Рунге-Кута 4го порядка

В общем виде:

$$\begin{cases} x_0, \ v_0 = u_0, \\ x_{n+1} = x_n + h_n, \\ v_{n+1} = v_n + \frac{h_n}{6} \cdot (k_1 + 4k_3 + k_4), \\ k_1 = f(x_n, v_n), \\ k_2 = f(x_n + \frac{h_n}{4}, v_n + \frac{h_n}{4}k_1), \\ k_3 = f(x_n + \frac{h_n}{2}, v_n + \frac{h_n}{2}k_2), \\ k_4 = f(x_n + h_n, v_n + h_n (k_1 - 2k_2 + 2k_3)). \end{cases}$$

Явный метод Рунге-Кута 4го порядка

Для нашей задачи:

$$\begin{cases} x_0, v_0 = u_0 \\ x_{n+1} = x_n + h_n \end{cases}$$

$$v_{n+1} = v_n + \frac{h_n}{6} \cdot (k_1 + 2 \cdot k_2 + 2 \cdot k_3 + k_4)$$

$$k_1 = -a \cdot (v_n - \theta)$$

$$k_2 = -a \cdot (v_n + \frac{h_n}{2} \cdot k_1 - \theta)$$

$$k_3 = -a \cdot (v_n + \frac{h_n}{2} \cdot k_2 - \theta)$$

$$k_4 = -a \cdot (v_n + h_n \cdot k_3 - \theta)$$

При открытии программы мы видим окно:

Мы можем изменить параметры задачи:

Так же можем выбрать строить график с контролем шага или без него:

○ Включить контроль шага

○ Выключить контроль шага

И параметры метода:

Когда введём все параметры можем нажать на кнопку:

Решить

После нажатия на кнопку появится график:

Теперь рассмотрим кнопки:

О Программе

Таблица

Таблица — 🗆 🗙									
n	х	v1	v2	v1-v2	IOLPI	h	половинный шаг	двойной шаг 🛆	
0	0	3	3	0	0	0,01	0	0	
1	0,01	2,98009	2,98009	3,22497	1,66456478230733E-12	0,01	0	0	
2	0,03	2,94089	2,94089	1,02021	5,26559536713952E-11	0,02	0	1	
3	0,07	2,86478	2,86478	3,19118	1,64706221994493E-09	0,04	0	1	
4	0,15	2,72141	2,72141	9,75722	5,03598476105556E-08	0,08	0	1	
5	0,31	2,46689	2,46689	2,85064	1,47129919506976E-06	0,16	0	1	
6	0,47	2,25000	2,25000	2,42916	1,2537609805463E-06	0,16	0	0	
7	0,63	2,06519	2,06518	2,06999	1,06838677093416E-06	0,16	0	0	
8	0,79	1,90769	1,90769	1,76394	9,10420973336083E-07	0,16	0	0	
9	0,95	1,77348	1,77348	1,50313	7,75811130656242E-07	0,16	0	0	
10	1,11	1,65912	1,65912	1,28088	6,61103959724111E-07	0,16	0	0	
11	1,27	1,56167	1,56167	1,09150	5,63356761063005E-07	0,16	0	0	
12	1,43	1,47862	1,47862	9,30119	4,80061925619187E-07	0,16	0	0	
13	1,75	1,34757	1,34755	2,48139	1,28071783395948E-05	0,32	0	1	
14	2,07	1,25241	1,25239	1,80199	9,30060277089713E-06	0,32	0	0	
15	2,39	1,18330	1,18328	1,30861	6,75411941746991E-06	0,32	0	0	
16	2,71	1,13311	1,13310	9,50316	4,90485726866533E-06	0,32	0	0	
17	3,03	1,09666	1,09666	6,90121	3,56191878481127E-06	0,32	0	0	
10	2.05	1 07000	1 07010	F 04400	2 5000727202000 00	000	^	^ >	

Порядок метода

На основе таблицы, проверим порядок метода:

Таблі	Таблица									<
n	Х	v1	v2	v1-v2	OLP	h	половинный шаг	двой	ной шаг	^
0	0	3	3	0	0	0,01	0	0		
1	0,01	2,98009	2,98009	3,22497	1,66456478230733E-12	0,01	0	0		
2	0,03	2,94089	2,94089	1,02021	5,26559536713952E-11	0,02	0	1		
3	0,07	2,86478	2,86478	3,19118	1,64706221994493E-09	0,04	0	1		

$$\frac{|OLP3|}{|OLP2|} \approx \frac{1,65 \cdot 10^{-9}}{5,27 \cdot 10^{-11}} \approx 31,3093$$

Справка

```
Справка
                    а – постоянный положительный коэффициент
   \frac{du}{dx} = -a(u - \vartheta);
a -  постоянный полож пропорциональности
                    u(x) – температура тела в момент времени x,
      u(0) = u_0
                    u_0 – температура тела в начальный момент
Введённые данные:
х - временная прямая,
x0 = 0 начальное время,
U(x0) = 3 начальная температура,
a = 1
teta = 1 постоянная температура жидкости,
eps = 1e-06 достаточно маленькое число для управления шагом,
ksi = 1e-16 достаточно маленькое число для контроля выхода на правую границу,
(b - ksi) = 100 выход на правую границу с допуском
N = 1000 максимально допустимое количество шагов
Результаты вычислений:
Выполнено шагов: 72
Конечная температура: 1 в момент времени х = 100
Максимальная оценка локальной погрешности |(V^{\wedge} - V)| * 16 / 15|: 1.52268e-05 в момент времени x = 34.71
Максимальный шаг: 2.56 в момент времени x = 16.79
Минимальный шаг: 0.01 в момент времени x = 0
Количество удвоений шага: 11
Количество делений шага: 4
```


Без контроля шага

С контролем шага

Без контроля шага Шаг h = 1

C контролем шага Шаг h = 1

Без контроля шага Шаг h = 1

Без контроля шага Шаг h = 0,1

C контролем шага $\xi=0.01$

C контролем шага $\xi = 1 \cdot 10^{-6}$

$$u_0 = \vartheta$$

$$u_0 > \vartheta$$

$$u_0 < \vartheta$$

$$a \gg 1$$
, $a = 10$

$$0 < a \ll 1, a = 0.5$$