

Para responder esto, aproximamos: Primuro: Aírea de la sup. del cil: Area = 2Trh 21Tr

Por qué vimos todo esto?

Suma todos $2\pi\sqrt{1+f'(x)^2}f(x)\Delta X$ LOS LONOS al dividir división más y mas 21 VI+f'(x)2 f(x) dx

Ej: Consider la Sup. Obtenida al rotar la $f(x) = \sqrt{4-x^2}$, $f(x) = \sqrt{4-x^2}$, $f(x) = \sqrt{4-x^2}$, antre $f(x) = \sqrt{4-x^2}$. Calcule el area de esa Sup. Como Sc interpreta esa × va entre - 2 VIII + (K) + F(X) - 211 0/X

$$f'(x)^2 = x^2$$

$$f'(x) = \frac{1}{2} \left(\frac{4 - x^2}{4 - x^2} \right)^{\frac{1}{2}} - 2x$$

$$= -x$$

$$\sqrt{4 - x^2}$$

 $f(x) = \sqrt{4 - x^2} = (4 - x^2)^{\frac{1}{2}}$

$$\begin{aligned}
(1 + f'(x)^2 &= \sqrt{4 - x^2} &= \frac{2}{\sqrt{4 - x^2}} \\
f(x) \sqrt{1 + f'(x)^2} &= \sqrt{4 - x^2} \cdot \frac{2}{\sqrt{4 - x^2}} &= 2
\end{aligned}$$

$$Area &= \sqrt{2\pi f(x)} \sqrt{1 + f'(x)^2} \, dx = \sqrt{2\pi \cdot 2} \, dx$$

 $=4\pi\int_{-1}^{1}1dx=4\pi\cdot 2=8\pi$

E, 2: ca/cule el area de la sup. generada al rotar la curva $y = e^x$, $0 \le x \le 1$ en torno de ge X: $f(x) = e^x$ $f'(\chi)^2 = (e^{\chi})^2 = e^{2\chi}$ $1 + f'(x)^2 = 1 + e^{x}$

$$\int 1 + f'(x)^2 = VI + e^{2x}$$

$$f(x) \cdot VI + f'(x)^2 = e^x VI + e^x$$

$$Area = \int_{6}^{2\pi} e^x VI + e^x dx$$

$$U = e^x dx$$

$$= \int_{1}^{2\pi} VI + u^2 du \qquad U = tans$$

$$= TT \left(e \sqrt{1 + e^{z}} + \ln \left(e + \sqrt{1 + e^{z}} \right) - \sqrt{z} - \ln \left(\sqrt{z} + 1 \right) \right)$$

Que pasa Si rotamos en torno al eje y?

$$A rea = \int_{f(u)}^{2\pi x} \sqrt{1 + \left(\frac{dx}{dy} \right)^{2}} dy$$

$$= \int_{a}^{2\pi x} \sqrt{1 + \left(\frac{dy}{dy} \right)^{2}} dx$$

Ej: colcule d'airea de la sup generada
al votar
$$y = x^2$$
 entre $x = 1$ $y = x = 2$,
en torno al eje y .
Sol: • Obs: nos dan la función de la
forma $y = f(x)$ (no $x = g(y)$)

Area =
$$\int_{0}^{2\pi} 2\pi \times \sqrt{1 + \left(\frac{dy}{dx}\right)^{2}} y = x^{2}$$

Arou =
$$\int_{a}^{b} 2\pi \times \sqrt{1 + 4x^{2}} dx$$

= $\frac{TT}{6} (17\sqrt{17} - 5\sqrt{5})$
Sol alternativa: pensemos en \times como
Función de y : $X = \sqrt{y}$ y entre $\int_{dy}^{dx} dy = \frac{1}{2\sqrt{y}}$

$$Acca = \int_{1}^{4} z \sqrt{1 + \frac{1}{4y}} dy$$

$$= \prod_{1} \left(\frac{4}{4} \right) \left(\frac{4}{4} \right) + 1 \left(\frac{4}{1} \right) = \prod_{1} \left(\frac{1}{1} \right) \left(\frac{1}{1} \right) \left(\frac{1}{1} \right) = \frac{1}{6} \left(\frac{1}{1} \right) \left(\frac{1}{1} \right) \left(\frac{1}{1} \right) = \frac{1}{6} \left(\frac{1} \right) = \frac{1}{6} \left(\frac{1}{1} \right) = \frac{1}{6} \left(\frac{1}{1} \right) = \frac{1}{6} \left$$

 $y = X^{5} + X^{4} + 7x^{7} + 3$ $X = 9(y)^{7.7}$

Ej: calcole el área (le la syp obtenida al rotar
$$y = cos(2x)$$
, $0 \le x \le \sqrt{6}$, in torno de eje x

$$f(x) = cos(2x)$$

$$f'(x) = -2 sen(2x)$$

$$f'(x)^2 = 4 sen^2(2x)$$

$$1 + f'(x)^2 = 1 + 4 sen^2(2x)$$

Arou = $\int_{277}^{110} \cos(2x) \sqrt{1 + 4 \sin^2(2x)} dx$ X 3.75 ... considere la curva $y = \frac{1}{x}$ con $x \ge 1$. Muestre que el volumen de la sup generada al rotar esta curva en torno al fie x es

Segunda parte: Muestre que el airea de esta sup. es infinita. $= \int_{1}^{\infty} T \left(f(x)\right)^{2} dx \quad Area = \int_{1}^{2\pi} 2\pi x \sqrt{1+f'(x)^{2}} dx$ $f(x) = \frac{1}{x}$ Cuerno de Gabriel/Trompeta de Gabriel