ABSTRACT

Cryptography is very important now-a-days for data security and integrity as the ecommerce and internet applications has increased. But, it has least importance in many cases because of extra memory and other requirements needed for the implementation. The main aim of this work is to implement Advanced Encryption Standard (AES) Encryption using Verilog. To protect data like electronics, cryptographic algorithms are used. Each round of encryption associated with delay can be reduced by AES parallel design. This work proposes a low power and high throughput implementation of AES algorithm using key expansion approach. This minimizes the power consumption and critical path delay using the proposed highperformance architecture. The fundamental goal of the initiative is to increase data flow, although security considerations have become increasingly important over time. The use of encryption and decryption techniques inside VLSI has recently increased since cryptography can convert plaintext to cipher and vice versa. The most recent developments in cryptography technology will be applied in the hardware security module. by simultaneously writing a lot of HDL modules. The main objective is to send and receive data securely without allowing data to be hacked, as well as to improve the performance of a specific parameter. It is interesting to note that any encryption algorithm works in a digital environment and all the blocks in the system will handle digital data in security.

JUSTIFICATION FOR SDG & SAP

SDG No: 9

: Industry, Innovation and Infrastructure

SAP No: SAP090C

9 Support domestic technology development, research and innovation in developing countries, including by ensuring a conducive policy environment for, inter alia, industrial diversification and value addition to commodities.

TABLE OF CONTENTS

CHAPTER	TITLE	PAGE
NO.		NO.
	ABSTRACT	3
	JUSTIFICATION FOR SDG & SAP	4
	LIST OF FIGURES	7
1.	INTRODUCTION	8
	1.1 Objective	8
	1.2 Motivation	8
	1.3 Relevance of the project	8
2.	LITERATURE SURVEY	9
3.	EXISTING AND PROPOSED SYSTEM	
	3.1 Existing System	11
	3.2 Proposed System	11
4.	Requirement specification	
	4.1 Hardware Requirements	
	4.2 Software Requirements	
	4.1 Hardware Requirements	
	4.1.1 Hardware Security Module	12
	4.1.2 FPGA	14

	4.2 Software Requirements	
	4.2.1 VIVADO	16
5.	ALGORITHM	
	5.1 Advanced Encryption Module	18
6.	POWER AND LUT ANALYSIS	34
7.	EXPERIMENT OUTPUT	35
8.	CONCLUSION AND FUTURE SCOPE	36

List of Figures

FIGURE NO	TITLE	PAGE NO
4.1	HSM Structure	12
4.2	HSM	13
4.3	FPGA	15
4.4	VIVADO	17
5.1	Encryption & Decryption	18
5.2	AES Design	21
5.3	AES Vs DES encryption	22
5.4	AES 256 Encryption	23
5.5	Encryption	23
5.6	Add round key	24
5.7	Sub-bytes	24
5.8	Shift row	25
5.9	Mix columns	25
5.10	Add Round key	26
5.11	Encryption keying	26
5.12	Add Round Key	27
5.13	Sub-bytes	28
5.14	Shift rows	28
5.15	Mix columns	29
5.16	Add round key	29
5.17	AES encryption Output	30