WWS 509 Generalized Linear Models: Precept 1 Section 2.1 through 2.5.6

Kristin E. Bietsch

Office of Population Research, Princeton University

September 2012

1 Introducing the data

This precept uses data from the United Nations about urbanization and fertility. Today we will focus on 50 Africa countries, the percentage of a population in each country classified as "urban," the country's total fertility rate (ask the demographer sitting closest to you for a definition), and the Human Development Index score in 2005. Please do not cite this data or the regressions.

2 Null and Saturated Models

- A null model postulates no systematic differences between units
 - In this week's example, the null model would be that all countries have the same percentage of population living in urban areas
- A saturated model has as many parameters in the linear predictor as it has observation.
 - In this week's example, imagine dummy variables for Ghana, Nigeria, South Africa, etc.

Neither of these models are very informative. Let's look in the middle!

3 Simple Linear Regression

3.1 Fertility and Urbanization

Presented below is the Stata output from a regression of TFR on urbanization:

Source	SS	df		MS		Number of obs F(1, 48)		50 21.61
Model	5161.91771	1	5161.	.91771		Prob > F		0.0000
Residual	11464.1449	48	238.4	B 36 35 2		R-squared		0. 3105
Total	16626.0626	49	339	9.3074		Adj R-squared Root MSE		0. 2961 15. 454
propurb05	Coef.	Std.	Err.	t	P> t	[95% Comf.	Int	erval]
tfr	-7.188698	1.546	304	-4.65	0.000	-10.29775	-4.	079645
_coms	76.86343	8.00	1464	9.60	0.000	60.76902	92	.95784

Figure 1: Regression of TFR on Proportion Urban

- 1. Interpret the coefficient for the constant and TFR
- 2. Construct the Likelihood ratio where this model is nested in the null
- 3. Test the significance for the coefficient for TFR
- 4. How would you calculate the R^2 by hand?
- 5. Calculate Pearson's r

3.2 HDI and Urbanization

Presented below is the Stata output from a regression of HDI on urbanization:

Source	SS	df	1	MS .		Number of obs		50
Model	5796.67508	T.	5796.0	57508		F(1, 48) Prob > F	=	25.69
Residual	10829.3875	48	225.0			R-squared	=	0. 3486
32	Tanggaran and and	15205	217/08/0			Adj R-squared		0.3351
Total	16626.0626	49	339.	3074		Root MSE	=	15.0
propurb05	Coef.	Std.	Err.	t	P> t	[95% Comf.	Int	erval]
hdi	82.64527	16.30	459	5.07	0.000	49.86269	11	L5.4278
_cons	6.954846	7.056	541	0.99	0.329	-7.233282	21	L. 1429

Figure 2: Regression of HDI on Proportion Urban

- 1. Interpret the coefficient for the constant and HDI
- 2. Construct the Likelihood ratio where this model is nested in the null
- 3. Test the significance for the coefficient for HDI
- 4. How would you calculate the R^2 by hand?
- 5. Calculate Pearson's r

4 Multiple Linear Regression

In this section we look at the additive model which includes TFR and HDI. In an additive model, the effect of each perdictor on the response is assumed to be the same for all values of the other predictors.

Presented below is the Stata output from a regression of HDI and TFR on urbanization:

Source	55	df	MS		Number of obs	
Model	6103, 2542	2	3051.6271		F(2, 47) Prob > F	= 13.63 = 0.0000
Residual	10522.8084	47	223.88954		R-squared	= 0.3673
KL314EL	1012210001	Per	EL5100531		Adj R-squared	
Total	16626.0626	49	339.3074		Root MSE	= 14.96
propurbO5	Coef.	Std. E	rr. t	P≻ t	[95% Comf.	Interval:
tfr	-2.975143	2.5424	56 -1.17	0. 248	-8.089904	2.139619
hdi	56.55783	27.582	73 2.05	0.046	1.068542	112.047
_coms	32.53766	22.964	55 1.42	0.163	-13.66105	78.7363

Figure 3: Regression of HDI and TFR on Proportion Urban

- 1. Interpret the coefficient for the constant, HDI, and TFR
- 2. Test the significance for HDI and TFR
 - Has significance changed from the previous models?

4.1 Gross and Net Effects

- Gross effect: the change in the response that can be associated with a given predictor in a simple linear regression
 - What is the gross effect of TFR on proportion urban? (Fill in the box below)
 - What is the gross effect of HDI on proportion urban?
- Net effect: the change in the response that can be associated with a given predictor for fixed values of other predictors
 - What is the net effect of TFR on proportion urban?
 - What is the net effect of HDI on proportion urban?

Predictor	Gross	Net
TFR		
HDI		

4.2 ANOVA for Multiple Regression

Fill in the following table for the Analysis of Variance for Multiple Regression of Proportion Urban by TFR and HDI:

Source of variation	Sum of squares	Degrees of freedom	Mean squared	F-ratio
Regression				
Residual				
Total				

4.2.1 Hierarchical Table 1

Fill in the following table for the Hierarchical Analysis of Variance for Multiple Regression of Proportion Urban by TFR and HDI:

Source of variation	Sum of squares	Degrees of freedom	Mean squared	F-ratio
TFR				
HDI TFR				
Residual				
Total				

4.2.2 Hierarchical Table 2

Fill in the following table for the Hierarchical Analysis of Variance for Multiple Regression of Proportion Urban by TFR and HDI:

Source of variation	Sum of squares	Degrees of freedom	Mean squared	F-ratio
HDI				
$TFR\ HDI$				
Residual				
Total				

4.3 Partial and Multiple Correlation

- Multiple Correlation Coefficient: square root of the proportion of variance explained
- Partial Correlation Coefficient: square root of the proportion of variation explained by the second variable out of the amount left unexplained by the first
 - What are the parital correlations for TFR and Urbanization?