Also published as:

JP3750523 (B2)

EP1215419 (A2)

EP1215419 (A3)

EP1215419 (B1)

US2002072441 (A1)

VARIABLE SPEED CONTROLLER OF CONTINUOUSLY VARIABLE TRANSMISSION FOR VEHICLE

Publication number: JP2002181180 (A)

Publication date:

2002-06-26

Inventor(s):

INOUE DAISUKE; SUGAYA MASAMI; YASUE HIDEKI; MORISAWA KUNIO; KONO KATSUMI; TAMURA TADASHI;

HANEBUCHI RYOJI; TANIGUCHI KOJI; MATSUO KENJI

Applicant(s):

TOYOTA MOTOR CORP

Classification:

- international:

F16H9/00; F16H61/02; F16H61/662; F16H61/682; **F16H9/00; F16H61/02; F16H61/66;** F16H61/68; (IPC1-7): F16H61/02; F16H9/00; F16H59/08; F16H59/14; F16H59/38; F16H59/70; F16H59/72; F16H63/06

- European:

F16H61/662H2

Application number: JP20000377367 20001212 **Priority number(s):** JP20000377367 20001212

Abstract of JP 2002181180 (A)

PROBLEM TO BE SOLVED: To provide a variable speed controller of a continuously variable transmission for a vehicle capable of obtaining a ratio at the most speed reduced side prior to the restarting, and preventing the abrasion of a frictional face of a rotating element. SOLUTION: Under a condition that a power transmitting condition determining means 94 determines that the motive power is not transmitted by a belt-type continuously variable transmission 18 in a state that a change gear ratio determining means 90 determines that the change gear ratio &gamma of the belt-type continuously variable transmission 18 is not the most speed reduced condition, and a rotation stopping condition determining means 92 determines that the rotation of variable pulleys 42, 46 of the belt-type continuously variable transmission 18 is stopped,; a variable speed ratio &gamma of a belt-type continuously variable transmission 18 is forcibly changed to a most speed reduced side by a variable speed ratio forcible changing means 96 to attain the change gear ratio &gamma max at the variable speed side prior to the re-starting. Further as the power is not transmitted by the belt-type continuously variable transmission 18 when the variable speed ratio &gamma is forcibly changed to the speed reduced side, its sliding speed is lowered, and the abrasion on its frictional face can be properly prevented.

Data supplied from the esp@cenet database — Worldwide

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2002-181180 (P2002-181180A)

(43)公開日 平成14年6月26日(2002.6.26)

(51) Int.Cl. ⁷		FΙ	7	ァーマコート*(参考)	
F16H 61/02		F 1 6 H 61/02		3 J 5 5 2	
9/00		9/00 A			
// F16H 59:08		59: 08			
59: 14		59: 14			
59: 38		59: 38			
	審査請求	未請求 請求項の数6	OL (全 13 頁)	最終頁に続く	
(21)出願番号	特顧2000-377367(P2000-377367)	(71)出願人 0000032	207		
,,,		トヨタロ	自動車株式会社		
(22) 出顧日	平成12年12月12日(2000.12.12)	愛知県	豊田市トヨタ町1番	地	
		(72)発明者 井上 2	大輔		
		愛知県	豊田市トヨ夕町1番	や地 トヨタ自動	
		車株式	会社内		
		(72)発明者 菅谷]			
		愛知県	豊田市トヨタ町1番	計地 トヨタ自動	
		車株式	会社内		
		(74)代理人 100085	361		
		弁理士	池田 治幸		
				最終頁に続く	

(54) 【発明の名称】 車両用無段変速機の変速制御装置

(57)【要約】

【課題】 再発進に先立って最減速側の変速比が得られ 且つ回転要素の摩擦面に摩耗を生じさせることを防止す る車両用無段変速機の変速制御装置を提供する。

【解決手段】 変速比判定手段90によりベルト式無段変速機18の変速比 γ が最減速状態でないと判定され且つ回転停止状態判定手段92によりそのベルト式無段変速機18の可変プーリ42、46の回転が停止していると判定されている状態において、動力伝達状態判定手段94によりそのベルト式無段変速機18が動力を伝達していない状態であると判定されていることを条件として、変速比強制変更手段96によりそのベルト式無段変速機18の変速比 γ が強制的に減速側へ変更されるので、再発進に先立って最減速側の変速比 γ max が得られる。また、変速比 γ が強制的に減速側へ変更されるときにはベルト式無段変速機18が動力を伝達していないので、その摺動速度が下がりその摩擦面における摩耗が好適に防止される。

【特許請求の範囲】

【請求項1】 原動機の回転を無段階に変速して駆動輪へ伝達する無段変速機構を備えた車両用無段変速機の変速制御装置であって、

前記無段変速機構が動力を伝達していない状態であるか 否かを判定する動力伝達状態判定手段と、

前記無段変速機構の変速比が最減速状態であるか否かを 判定する変速比判定手段と、

前記無段変速機構の回転要素が停止している状態である か否かを判定する回転停止状態判定手段と、

前記無段変速機構の変速比が最減速状態でなく且つ該無 段変速機構の回転要素が停止している状態において、該 無段変速機構が動力を伝達していない状態であることを 条件として、該無段変速機構の変速比を強制的に減速側 へ変更する変速比強制変更手段とを、含むことを特徴と する車両用無段変速機の変速制御装置。

【請求項2】 車両の走行速度範囲を切り換えるために 運転者により操作されるシフト操作装置が設けられ、前 記動力伝達状態判定手段は、該シフト操作装置が走行位 置から非走行位置へ操作されてから所定時間を経過した ことに基づいて前記無段変速機構が動力を伝達していな い状態であることを判定するものである請求項1の車両 用無段変速機の変速制御装置。

【請求項3】 前記動力伝達状態判定手段は、前記無段変速機構の入力トルクが零であることに基づいて前記無段変速機構が動力を伝達していない状態であることを判定するものである請求項1の車両用無段変速機の変速制御装置。

【請求項4】 前記変速比強制変更手段は、前記無段変速機構の変速比を強制的に減速側へ変更する作動を開始してから所定時間が経過すると該作動を終了させるものである請求項1乃至3のいずれかの車両用無段変速機の変速制御装置。

【請求項5】 前記所定時間は、予め定められた関係から前記無段変速機構の実際の作動油温度に基づいて決定されるものである請求項4の車両用無段変速機の変速制御装置。

【請求項6】 前記所定時間は、予め定められた関係から前記無段変速機構の前記変速比強制変更手段による強制的な変速比の変更開始時点の変速比に基づいて決定されるものである請求項4または5の車両用無段変速機の変速制御装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、車両用無段変速機の変速制御装置の改良に関し、特に車両の再発進に先立って無段変速機構の変速比を確実に最減速側とする技術に関するものである。

[0002]

【従来の技術】車両用無段変速機においては、通常、車

両の停止に際してその変速比を最減速側の値とする変速 制御が行われるが、登坂路における車両の急停止時など のように、無段変速機構の変速比が最減速側の値となる 前に車両が停止させられる場合がある。車両用無段変速 機はその回転要素の回転が停止すると変速比を変化させ ることが困難であるので、車両の再発進時には最減速側 の値ではない変速比により駆動力が十分に得られず、再 発進が困難となるおそれがある。

【0003】これに対し、無段変速機構の変速比が最減速状態とならないで車両が停止した場合には、その無段変速機構の各回転要素の回転が開始する前であってもすなわち各回転要素が停止していても、無段変速機構の変速比を強制的に減速側へ変速させ、これにより再発進時に十分な駆動力得られるようにした変速制御装置が提案されている。たとえば、特開平3-292452号公報に記載された無段変速機の変速制御装置がそれである。

[0004]

【発明が解決しようとする課題】しかしながら、上記従来の無段変速機の変速制御装置によれば、再発進時において無段変速機構の動力が掛かっているときに強制的にその変速比が最減速側へ変速させられるので、回転要素の摩擦面には動力伝達方向のすべりが発生し、それが回転要素の摩擦面に摩擦を生じさせることになるという問題があった。

【0005】本発明は以上の事情を背景として為されたものであり、その目的とするところは、再発進に先立って最減速側の変速比が得られ且つ回転要素の摩擦面に摩耗を生じさせることを防止する車両用無段変速機の変速制御装置を提供することにある。

[0006]

【課題を解決するための手段】かかる目的を達成するための本発明の要旨とするところは、原動機の回転を無段階に変速して駆動輪へ伝達する無段変速機構を備えた車両用無段変速機の変速制御装置であって、(a) 前記無段変速機構が動力を伝達していない状態であるか否かを判定する動力伝達状態判定手段と、(b) 前記無段変速機構の変速比が最減速状態であるか否かを判定する変速比判定手段と、(c) 前記無段変速機構の回転要素が停止している状態であるか否かを判定する回転停止状態判定手段と、(d) 前記無段変速機構の変速比が最減速状態でなく且つその無段変速機構の回転要素が停止している状態において、その無段変速機構が動力を伝達している状態において、その無段変速機構が動力を伝達していない状態であることを条件として、その無段変速機構の変速比を強制的に減速側へ変更する変速比強制変更手段とを、含むことにある。

[0007]

【発明の効果】このようにすれば、前記変速比判定手段により無段変速機構の変速比が最減速状態でないと判定され且つ回転停止状態判定手段によりその無段変速機構の回転要素が停止していると判定されている状態におい

て、動力伝達状態判定手段によりその無段変速機構が動力を伝達していない状態であると判定されていることを 条件として、変速比強制変更手段によりその無段変速機構の変速比が強制的に減速側へ変更されるので、再発進に先立って最減速側の変速比が得られる。また、その変速比強制変更手段により無段変速機構の変速比を強制的に減速側へ変更する動作は無段変速機構が動力を伝達していない状態において行われることから、回転要素において動力伝達方向である周方向の摺動が防止され、その径方向の摺動のみとなるので、摺動速度が下がり回転要素の摩擦面における摩耗が好適に防止される。

[0008]

【発明の他の態様】ここで、好適には、車両の走行速度 範囲を切り換えるために運転者により操作されるシフト 操作装置が設けられ、前記動力伝達状態判定手段は、そ のシフト操作装置が走行位置から非走行位置へ操作され てから所定時間を経過したことに基づいて前記無段変速 機構が動力を伝達していない状態であることを判定する ものである。このようにすれば、シフト操作装置が走行 位置から非走行位置へ操作されることによって動力伝達 経路が開放されるので、確実に無段変速機構が動力を伝達していない状態であることが判定される。

【0009】また、好適には、前記動力伝達状態判定手段は、前記無段変速機構の入力トルクが零であることに基づいて前記無段変速機構が動力を伝達していない状態であることを判定するものである。このようにすれば、たとえば充電のためのジェネレータやエヤコンなどの補機がエンジンによって回転駆動されることによりエンジンの出力トルクと同等のトルクが補機により消費されているような期間においても、無段変速機構が動力を伝達していない状態であると判定されて変速比を最減速側へ強制的に変更する作動が行われる利点がある。

【 O O 1 O 】また、好適には、前記変速比強制変更手段は、前記無段変速機構の変速比を強制的に減速側へ変更する作動を開始してから所定時間が経過するとその作動を終了させるものである。このようにすれば、無段変速機構の変速比を強制的に最減速側へ変化させる作動が必要以上に実行されることが好適に防止される。

【0011】また、好適には、上記所定時間は、予め定められた関係から前記無段変速機構の実際の作動油温度に基づいて決定される。たとえば、作動油温度が高くなるほど所定時間が小さくなるように予め求められた関係から、無段変速機構の実際の作動油温度に基づいて決定される。このようにすれば、作動油の粘性の変化に拘らず必要かつ十分な時間だけ無段変速機構の変速比を強制的に最減速側へ変化させる作動が実行される。

【0012】また、好適には、上記所定時間は、予め定められた関係から前記無段変速機構の前記変速比強制変更手段による強制的な変速比の変更の開始時点の変速比に基づいて決定される。たとえば、強制的な変速比の変

更の開始時点の変速比が大きくなるほど所定時間が小さくなるように予め求められた関係から、実際の強制的な変速比の変更の開始時点の変速比に基づいて決定される。このようにすれば、強制的な変速比の変更の開始時点の変速比に拘らず必要かつ十分な時間だけ無段変速機構の変速比を強制的に最減速側へ変化させる作動が実行される。

[0013]

【発明の好適な実施の形態】以下、本発明の実施例を図面を参照しつつ詳細に説明する。

【0014】図1は、本発明の一実施例の制御装置が適用された車両用ベルト式無段変速機18を含む動力伝達装置10の骨子図である。この動力伝達装置10はたとえば横置き型FF(フロントエンジン・フロントドライブ)駆動車両に好適に採用されるものであり、走行用の動力源として用いられる内燃機関であるエンジン12を備えている。エンジン12の出力は、トルクコンバータ14から前後進切換装置16、ベルト式無段変速機(CVT)18、減速歯車20を介して差動歯車装置22に伝達され、左右の駆動輪24L、24Rへ分配されるようになっている。上記ベルト式無段変速機18は、エンジン12から左右の駆動輪(たとえば前輪)24L、24Rへ至る動力伝達経路に設けられている。

【0015】上記トルクコンバータ14は、エンジン12のクランク軸に連結されたポンプ翼車14p、およびタービン軸34を介して前後進切換装置16に連結されたタービン翼車14tと、一方向クラッチを介して非回転部材に回転可能に支持された固定翼車14sとを備えており、流体を介して動力伝達を行うようになっている。また、それ等のポンプ翼車14pおよびタービン翼車14tの間には、それ等を一体的に連結して相互に一体回転させることができるようにするためのロックアップクラッチ(直結クラッチ)26が設けられている。

【0016】上記前後進切換装置16は、ダブルピニオン型の遊星歯車装置にて構成されており、トルクコンバータ14のタービン軸34はサンギヤ16sに連結され、ベルト式無段変速機18の入力軸36はキャリア16cとサンギヤ16sとの間に配設された前進クラッチ38が係合させられると、前後進切換装置16は一体回転させられてタービン軸34が入力軸36に直結され、前進方向の駆動力が駆動輪24R、24Lに伝達される。また、リングギヤ16rとハウジングとの間に配設された後進ブレーキ40が係合させられるとともに上記前進クラッチ38が開放されると、入力軸36はタービン軸34に対して逆回転させられ、後進方向の駆動力が駆動輪24R、24Lに伝達される。

【0017】前記ベルト式無段変速機18は、上記入力 軸36に設けられた有効径が可変の入力側可変プーリ4 2と、出力軸44に設けられた有効径が可変の出力側可 変プーリ46と、それ等の可変プーリ42、46のV溝 に巻き掛けられた伝動ベルト48とを備えており、動力 伝達部材として機能する伝動ベルト48と可変プーリ4 2、46のV溝の内壁面との間の摩擦力を介して動力伝 達が行われるようになっている。可変プーリ42、46 は、それぞれのV溝幅すなわち伝動ベルト48の掛かり 径を変更するための入力側油圧シリンダ(アクチュエー タ) 42 c および出力側油圧シリンダ (アクチュエー タ) 46 cを備えて構成されており、入力側可変プーリ 42の油圧シリンダ42cに供給或いはそれから排出さ れる作動油の流量が油圧制御回路52内の変速制御弁装 置50 (図4参照)によって制御されることにより、両 可変プーリ42、46のV溝幅が変化して伝動ベルト4 8の掛かり径(有効径)が変更され、変速比γ(=入力 側回転速度N_{IN}/出力側回転速度N_{OUT})が連続的に変 化させられるようになっている。上記1対の可変プーリ 42、46およびそれに巻き掛けられた伝動ベルト48 は無段変速機構に対応し、その可変プーリ42、46は 無段変速機構の回転要素に対応し、伝動ベルト48は回 転要素に摩擦接触して動力を伝達する動力伝達部材に対 応している。

【0018】また、出力側可変プーリ46の油圧シリンダ46c内の油圧P。は、可変プーリ46の伝動ベルト48に対する挟圧力および伝動ベルト48の張力にそれぞれ対応するものであって、伝動ベルト48の張力すなわち伝動ベルト48の両可変プーリ42、46のV溝内壁面に対する押圧力に密接に関係しているので、ベルト張力制御圧、ベルト挟圧力制御圧、ベルト押圧力制御圧とも称され得るものであり、伝動ベルト48が滑りを生じないように、油圧制御回路52内の挟圧力制御弁60により調圧されるようになっている。

【0019】図2は、ベルト式無段変速機18の構成を 説明するためにその一部を切り欠いて示している。入力 側可変プーリ42は、入力軸36に固定された固定回転 体42fと、その固定回転体42fとの間にV溝を形成 する状態で入力軸36に軸方向の移動可能且つ軸まわり の相対回転不能に取付られた可動回転体42∨と、入力 軸36に固定されてその可動回転体42vと摺動可能に 嵌合するシリンダボデー42bとから構成されており、 ピストンとして機能する可動回転体42 vおよびシリン ダボデー42bにより前記油圧シリンダ42cが構成さ れている。また、出力側可変プーリ46は、出力軸44 に固定された固定回転体46fと、その固定回転体46 fとの間にV溝を形成する状態で出力軸44に軸方向の 移動可能且つ軸まわりの相対回転不能に取付られた可動 回転体46 vと、出力軸44 に固定されてその可動回転 体46 vと摺動可能に嵌合するシリンダボデー46 bと から構成されており、ピストンとして機能する可動回転 体46 vおよびシリンダボデー46 bにより前記油圧シ リンダ46cが構成されている。これら油圧シリンダ4

2 c および 4 6 c は、その 摺動部分に作動油の漏出を防 止するためのシール部材47が設けられているにも拘ら ず、多少の作動油の漏れが発生するようになっている。 【0020】図3および図4は上記油圧制御回路52の 一例を示す図であって、図3はベルト張力制御圧の調圧 作動に関連する回路、図4は変速比制御に関連する回路 をそれぞれ示している。図3において、オイルタンク5 6に還流した作動油は、エンジン12により駆動される 油圧ポンプ54により圧送され、図示しないライン圧調 圧弁によりライン圧P』に調圧された後、リニアソレノ イド弁58および挟圧力制御弁60に元圧として供給さ れる。リニアソレノイド弁58は、電子制御装置66 (図5参照)からの励磁電流が連続的に制御されること により、油圧ポンプラ4から供給された作動油の油圧か ら、その励磁電流に対応した大きさの制御圧Psを発生 させて挟圧力制御弁60に供給する。挟圧力制御弁60 は、制御圧Psが高くなるに従って上昇させられる油圧 P。を発生させ、出力側可変プーリ46の油圧シリンダ 46 c に供給することにより、伝動ベルト48が滑りを 生じない範囲で可及的にその伝動ベルト48に対する挟 圧力すなわち伝動ベルト48の張力が小さくなるように する。その油圧P。は、その上昇に伴ってベルト挟圧力 すなわち可変プーリ42、46と伝動ベルト48との間 の摩擦力を増大させる。

【0021】リニアソレノイド弁58には、カットバッ ク弁62のON時にそれから出力される制御圧Ps が供 給される油室58aが設けられる一方、カットバック弁 62のOFF時には、その油室58aへの制御圧Psの 供給が遮断されて油室58aが大気に開放されるように なっており、カットバック弁62のオン時にはオフ時よ りも制御圧P。の特性が低圧側へ切り換えられるように なっている。上記カットバック弁62は、前記トルクコ ンバータ14のロックアップクラッチ26のON(係 合)時に、図示しない電磁弁から信号圧Ponが供給され ることによりONに切り換えられるようになっている。 【0022】図4において、前記変速制御弁装置50 は、前記ライン圧PLの作動油を専ら入力側可変プーリ 42の油圧シリンダ42cへ供給し且つその作動油流量 を制御することによりアップ方向の変速速度を制御する アップ変速制御弁50』、およびその油圧シリンダ42 cから排出される作動油の流量を制御することによりダ ウン方向の変速速度を制御するダウン変速制御弁50g から構成されている。このアップ変速制御弁50』は、 ライン圧PLを導くライン油路Lと入力側油圧シリンダ 42cとの間を開閉するスプール弁子50uvと、そのス プール弁子50世を閉弁方向に付勢するスプリング50 usと、アップ側電磁弁64u から出力される制御圧を導 く制御油室50ucとを備えている。また、ダウン変速制 御弁50pは、ドレン油路Dと入力側油圧シリンダ42 cとの間を開閉するスプール弁子50pvと、そのスプー

ル弁子50gvを閉弁方向に付勢するスプリング50 psと、ダウン側電磁弁64p から出力される制御圧を導 く制御油室50pcとを備えている。上記アップ側電磁弁 64』およびダウン側電磁弁64』は、電子制御装置6 6によってデューティ駆動されることにより連続的に変 化する制御圧を制御油室501cおよび制御油室502cへ 供給し、ベルト式無段変速機18の変速比ァをアップ側 およびダウン側へ連続的に変化させる。なお、上記ダウ ン変速制御弁500には、そのスプール弁子500の閉 位置においてライン油路しと入力側油圧シリンダ42c との間を僅かな流通断面積の流通路61が形成されるよ **うになっており、上記アップ変速制御弁50』およびダ** ウン変速制御弁50」が共に閉状態であるときには、変 速比ァを変化させないために、ライン油路しから絞り6 3、一方向弁65、上記流通路61を通して作動油が僅 かに供給されるようになっている。前記入力側油圧シリ ンダ42cおよび出力側油圧シリンダ46cは、その回 転軸心に対して偏った荷重が加えられることなどによ り、シール部材47が摺動部分に設けられているにも拘 らず作動油の僅かな漏れが存在するからである。

【0023】図5の電子制御装置66には、シフト操作 装置として機能するシフトレバー67の操作位置を検出 する操作位置検出センサ68からの操作位置PsHを表す 信号、イグニションキーにより操作されるイグニション スイッチ69からのイグニションキーのオン操作を表す 信号、スロットル弁70の開度を変化させるアクセルペ ダル71の開度 θ_{ACC} を検出するアクセル操作量センサ 72からのアクセル開度 θ_{ACC} を表す信号、エンジン12の回転速度N_Eを検出するエンジン回転速度センサ7 3からの回転速度Ng を表す信号、車速V(具体的には 出力軸 44の回転速度 N_{OUT})を検出する車速センサ (出力側回転速度センサ)74からの車速Vを表す信 号、入力軸36の入力軸回転速度N_{IN}を検出する入力側 回転速度センサ76からの入力軸回転速度NINを表す信 号、動力伝達装置10すなわちベルト式無段変速機18 内の作動油温度Toil を検出する油温センサ78からの 作動油温度Toil を表す信号、出力側可変プーリ46の 油圧シリンダ46cの内圧Pgすなわち実際のベルト挟 圧力制御圧P_Rを検出する圧力センサ80からのその油 圧P_R を表す信号がそれぞれ供給されるようになってい る。

【0024】上記電子制御装置66は、CPU、RO M、RAM、入出力インターフェースなどから成る所謂 マイクロコンピュータを含んで構成されており、RAM の一時記憶機能を利用しつつROMに予め記憶されたプログラムに従って信号処理を行うことにより、上記無段変速機 18の変速制御や挟圧力制御を行うものである。具体的には、変速制御では、たとえば図6に示す予め記憶された関係(マップ)から実際の運転者の要求出力量を表すアクセル操作量すなわちアクセル開度 θ_{ACC}

(%)および車速V(出力側回転速度 N_{OUT} に対応)に基づいて目標回転速度 N_{IN} を算出し、実際の入力側回転速度 N_{IN} を算出し、実際の入力側回転速度 N_{IN} と一致するように変速制御弁装置50を作動させることにより、入力側可変プーリ42の油圧シリンダ42c内へ供給される作動油或いはその油圧シリンダ42c内から排出される作動油の流量を制御する。上記図6は、エンジン12をその出力および燃費が最適となる最適曲線に沿って作動させるための目標回転速度 N_{IN} を決定するために予め求められた関係であって、その γ_{max} は最大変速比で、 γ_{min} は最小変速比である。図6から明らかなように、上記電子制御装置66による変速制御により、車両の停止直前には無段変速機18の変速比が再発進に備えて最大変速比 γ_{max} とされる。

【0025】また、上記電子制御装置66は、ベルト挟圧力制御では、必要かつ十分な必要油圧(理想的なベルト挟圧力に対応する目標油圧)を得るために予め定められた図示しない関係(マップ)からベルト式無段変速機 180実際の入力トルク T_{IN} 或いは伝達トルクに対応するアクセル操作量 θ_{ACC} および実際の変速比 τ に基づいてベルト挟圧力制御圧(目標値)を算出し、そのベルト挟圧力制御圧が得られるように油圧制御回路52内の挟圧力制御弁60に調圧させる。この挟圧力制御により、アクセルペダルの非操作時においては伝達すべきトルクが極めて小さい(略零)ので、上記ベルト挟圧力制御圧は最低値とされる。

【0026】図7は、上記電子制御装置66の制御機能 の要部すなわち変速比制御を説明する機能ブロック線図 である。図7において、変速制御手段88は、車両の走 行中において、たとえば図6に示す予め記憶された関係 (マップ)から実際のアクセル開度 θ_{ACC} (%)および 車速V (出力側回転速度Nour に対応)に基づいて目標 回転速度N_{IN}^I を算出し、実際の入力側回転速度N_{IN}が その目標回転速度N_{IN}Iと一致するように変速制御弁装 置50のアップ変速制御弁50』(アップ側電磁弁64 』)或いはダウン変速制御弁50g(ダウン側電磁弁6 4_D)の駆動デューティ比D(%)を決定してその駆動 デューティ比Dで作動させるフィードバック制御を実行 することにより、入力側可変プーリ42の油圧シリンダ 42 c 内へ供給される作動油或いはその入力側油圧シリ ンダ42c内から排出される作動油の流量を制御する。 上記駆動デューティ比Dとベルト式無段変速機18の変 速速度とはたとえば図8に示す関係にある。

【0027】変速比判定手段90は、ベルト式無段変速機18の変速比 γ が最減速状態であるか否かを、たとえばそのベルト式無段変速機18の実際の変速比 γ (=N $_{IN}/N_{OUT}$)が予め最大変速比 γ_{max} 付近に定められた判定値 γ_{A} よりも小さいことに基づいて判定する。回転停止状態判定手段92は、ベルト式無段変速機18の可変プーリ42、46の回転が停止している状態であるか

否かを、たとえば実際の入力軸回転速度 N_{IN} が零付近に予め設定された判定値 N_B よりも低いことに基づいて判定する。動力伝達状態判定手段94は、ベルト式無段変速機18が動力を伝達していない状態であるか否かを、たとえばシフトレバー67の操作位置がD位置、N位置などの走行位置からP位置、N位置などの非走行位置へ操作されてから所定時間 t_c を経過したことに基づいて、或いはベルト式無段変速機18の入力トルク T_{IN} の推定値が予め零付近に定められた判定値 T_c 以下となったか否かに基づいて判定する。このシフトレバー67がP位置或いはN位置に操作されると、前進クラッチ38および後進ブレーキ40が開放されて動力伝達経路が遮断されるので、ベルト式無段変速機18が動力を伝達していない状態(無負荷状態)となるからである。

【0028】変速比強制変更手段96は、変速比判定手 段90によりベルト式無段変速機18の変速比ケが最減 速状態であると判定され且つ回転停止状態判定手段92 によりベルト式無段変速機18の可変プーリ42、46 の回転が停止している状態であると判定されている状態 において、上記動力伝達状態判定手段94によりベルト 式無段変速機18が動力を伝達していない状態であると 判定されたという強制ダウン変速条件の成立を契機とし て、変速制御弁装置50のダウン変速制御弁500を全 開として入力側油圧シリンダ42c内の作動油を排出さ せることにより、ベルト式無段変速機18の変速比ァを 強制的に減速側へ向かって変更させる。経過時間判定手 段98は、上記強制ダウン変速条件の成立或いは上記変 速比強制変更手段96による強制ダウン変速の開始から の経過時間tҕҕが予め設定された経過時間判定値tҕを 経過したか否かを判定する。上記変速比強制変更手段9 6は、この経過時間判定手段98により経過時間 t ELが 経過時間判定値t』を経過したと判定されるまでは強制 的ダウン変速を継続するが、経過時間telが経過時間判 定値t〟を経過したと判定されるとその強制的ダウン変 速を中止或いは終了する。

【0029】図9は、電子制御装置66の制御作動の要部、すなわち強制ダウン変速制御を説明するフローチャートであって、所定のサイクルタイムたとえば数十m秒の周期で繰り返し実行されるものである。図9において、前記変速比判定手段90に対応するステップ(以下、ステップを省略する)SA1では、ベルト式無段変速機18の実際の変速比 γ が予め設定された判定値 γ_A より小さいか否かが判断される。このSA1の判断が肯定される場合は、前記回転停止状態判定手段92に対応するSA2において、可変プーリ42、46の回転が停止している状態であるか否かが、入力軸回転速度 N_{IN} が予め設定された判定値 N_B よりも低いことに基づいて判断される。このSA2の判断が肯定される場合は、前記動力伝達状態判定手段94に対応するSA3において、

ベルト式無段変速機18が動力伝達状態でないか否かが、シフトレバー67がD位置、B位置、R位置の走行位置からP位置或いはN位置の非走行位置へ操作されてから所定の判定時間 t_c 秒経過したことに基づいて判断される。この判定時間 t_c は、シフトレバー67に連結する図示しないマニアル弁の切換えによる前進クラッチ38および後進ブレーキ40の開放までの遅れ時間に対応する値であって、ベルト式無段変速機18が確実に動力伝達状態でないことを判定するための値である。この判定時間 t_c は、ベルト式無段変速機18の作動油の粘度の影響を除去するために、好適には、たとえば図10に示す予め求められた関係から実際の作動油温度 T_{0IL} に基づいて、作動油温度 T_{0IL} が低くなるほど大きくなるように決定される。

【0030】上記SA3の判断が肯定される場合は、前 記経過時間判定手段98に対応するSA4において、S A3の判断が肯定されてからの経過時間すなわち強制ダ ウン変速条件の成立或いは後述のSA6による強制ダウ ン変速の開始からの経過時間tΕLが予め設定された経過 時間判定値t』を経過したか否かが判断される。この経 過時間判定値tpは、強制的ダウン変速を必要且つ十分 な期間内に制限するための2秒程度の値であり、このべ ルト式無段変速機18の作動油の粘度の影響を除去する ために予め求められた図11に示す予め記憶された関係 から実際の作動油温度T_{OIL} に基づいて、作動油温度T 011 が低くなるほど大きくなるように決定される。ま た、上記経過時間判定値t』は、強制的ダウン変速を必 要且つ十分な期間内に制限するために、強制ダウン変速 開始時の変速比 γ_s が大きくなるほど経過時間判定値も 。を小さくするように求められた図12に示す予め記憶 された関係から実際の強制ダウン変速開始時の変速比で 。 に基づいて決定される。上記経過時間判定値t₀は、 その経過時間判定値t」と作動油温度ToILと強制ダウ ン変速開始時の変速比ァ_S との三次元の関係から実際の 作動油温度Tollおよび強制ダウン変速開始時の変速比 γsに基づいて決定されてもよい。

【0031】上記SA4の判断が否定される場合は、前記変速比強制変更手段96に対応するSA6において、変速制御弁装置50のダウン変速制御弁50。が全開とされて入力側油圧シリンダ42c内の作動油が排出させられることにより、ベルト式無段変速機18の変速比ケが強制的に減速側へ向かって変更させられる。しかし、上記SA4の判断が肯定される場合は、前記変速比強制変更手段96に対応するSA5において、上記変速比ケを強制的に減速側へ向かって変更させる強制ダウン変速作動が中止或いは終了させられる。

【0032】上述のように、本実施例の変速制御装置によれば、変速比判定手段90(SA1)によりベルト式無段変速機18の変速比γが最減速状態でないと判定され且つ回転停止状態判定手段92(SA2)によりその

ベルト式無段変速機18の可変プーリ(回転要素)4 2、46の回転が停止していると判定されている状態に おいて、動力伝達状態判定手段94(SA3)によりそ のベルト式無段変速機18が動力を伝達していない状態 であると判定されていることを条件として、変速比強制 変更手段96(SA6)によりそのベルト式無段変速機 18の変速比γが強制的に減速側へ変更されるので、再 発進に先立って最減速側の変速比 γ_{max} が得られる。ま た、上記変速比強制変更手段96によりベルト式無段変 速機18の変速比γを強制的に減速側へ変更する動作は ベルト式無段変速機18が動力を伝達していない状態に おいて行われることから、可変プーリ42、44の摩擦 面(V溝内壁面)において動力伝達方向である周方向の 摺動が防止され、その径方向の摺動のみとなるので摺動 速度が下がり、その摩擦面における摩耗が好適に防止さ れる。

【0033】また、本実施例によれば、車両の走行速度 範囲を切り換えるために運転者により操作されるシフト レバー67が設けられ、動力伝達状態判定手段94は、 そのシフトレバー67が走行位置から非走行位置へ操作 されてから所定時間t。を経過したことに基づいてベル ト式無段変速機18が動力を伝達していない状態である ことを判定するものであることから、シフトレバー67 が走行位置から非走行位置へ操作されることによって、 動力伝達経路が開放されるので、確実にベルト式無段変 速機18が動力を伝達していない状態であることが判定 される。

【0034】また、本実施例によれば、変速比強制変更手段96は、ベルト式無段変速機18の変速比ヶを強制的に減速側へ変更する作動を開始してから所定時間 t₀が経過するとその作動を終了させるものであるので、ベルト式無段変速機18の変速比ヶを強制的に最減速側へ変化させる作動が必要以上に実行されることが好適に防止される。

【0035】また、本実施例によれば、上記所定時間t は、たとえば図11に示すような作動油温度 T_{OIL} が高くなるほど所定時間t が小さくなるように予め定められた関係からベルト式無段変速機18の実際の作動油温度 T_{OIL} に基づいて決定されるので、温度変化に伴う作動油の粘性の変化に拘らず必要かつ十分な時間だけベルト式無段変速機18の変速比 γ を強制的に最減速側へ変化させる作動が実行される。

【0036】また、本実施例によれば、上記所定時間も 」は、強制的な変速比の変更の開始時点の変速比が大き くなるほど所定時間が小さくなるように予め求められた 図12の関係から、変速比強制変更手段96による強制 的な変速比の変更の開始時点の変速比で。に基づいて決 定されるので、その強制的なダウン変速の開始時点の変 速比で。に拘らず必要かつ十分な時間だけベルト式無段 変速機18の変速比でを強制的に最減速側へ変化させる 作動が実行される。

【0037】次に、本発明の他の実施例を説明する。なお、以下の説明において前述の実施例と共通する部分には同一の符号を付して説明を省略する。

【0038】図13は、電子制御装置66による強制ダ ウン変速制御の他の例を説明するフローチャートであ る。前記変速比判定手段90に対応するSB1では、前 記SA1と同様に、ベルト式無段変速機18の実際の変 速比 γ が予め設定された判定値 γ_A より小さいか否かが 判断される。このSB1の判断が肯定される場合は、前 記回転停止状態判定手段92に対応するSB2におい て、前記SB2と同様に、可変プーリ42、46の回転 が停止している状態であるか否かが、入力軸回転速度N TNが予め設定された判定値N_Bよりも低いことに基づい て判断される。このSB2の判断が肯定される場合は、 前記動力伝達状態判定手段94に対応するSB3におい て、ベルト式無段変速機18が動力伝達状態でないか否 かが、その入力軸トルクTINの推定値が予め零付近に定 められた判断基準値T_C 以下であるか否かに基づいて判 断される。この入力軸トルクTINの推定値は、たとえば エンジン12を制御するエンジン用電子制御装置への出 力指令値、或いはその出力指令値から補機の駆動トルク を差し引いた値に基づいて算出される。

【0039】上記SB3の判断が肯定される場合は、前 記経過時間判定手段98に対応するSB4において、S B3の判断が肯定されてからの経過時間すなわち強制ダ ウン変速条件の成立或いは後述のSB6による強制ダウ ン変速の開始からの経過時間
t
に
が予め設定された経過 時間判定値t_D を経過したか否かが判断される。この経 過時間判定値t」は、強制的ダウン変速を必要且つ十分 な期間内に制限するための2秒程度の値であり、予め求 められた図11および/または図12に示す予め記憶さ れた関係から前述と同様にして決定される。上記SB4 の判断が否定される場合は、前記変速比強制変更手段9 6に対応するSB6において、変速制御弁装置50のダ ウン変速制御弁50nが全開とされて入力側油圧シリン ダ42c内の作動油が排出させられることにより、ベル ト式無段変速機18の変速比γが強制的に減速側へ向か って変更させられる。しかし、上記SB4の判断が肯定 される場合は、前記変速比強制変更手段96に対応する SB5において、上記変速比γを強制的に減速側へ向か って変更させる強制ダウン変速作動が中止或いは終了さ せられる。

【0040】本実施例の変速制御装置によれば、前述の実施例と同様の効果が得られるのに加えて、動力伝達状態判定手段94(SB3)は、ベルト式無段変速機18の入力トルクTINが零であることに基づいてベルト式無段変速機18が動力を伝達していない状態であることを判定するものであるので、たとえば充電のためのジェネレータやエヤコンなどの補機がエンジンによって回転駆

動されることによりエンジンの出力トルクと同等のトルクが補機により消費されているような期間においても、ベルト式無段変速機18が動力を伝達していない状態であると判定されて変速比ァを最減速側へ強制的に変更する作動が行われる利点がある。

【0041】以上、本発明の一実施例を図面に基づいて 説明したが、本発明はその他の態様においても適用され る。

【0042】たとえば、前述の実施例においては、伝動ベルト48が巻きかけられた1対の可変プーリ42、46を備えた所謂ベルト式無段変速機18が用いられていたが、トロイダル型無段変速機などの他の形式の無段変速機にも本発明は適用され得る。要するに、回転要素の間に挟圧状態で介在させられた動力伝達部材のその回転要素の摩擦面に対する接触位置が変更されることにより変速比が無段階に変化させられる無段変速機であればよいのである。

【0043】また、前述の実施例では、原動機としてエンジン12を備えた車両が用いられていたが、たとえばハイブリッド車両などの電気自動車が用いられてもよい。すなわちモータ、モータジェネレータなどの電動機、或いはエンジン12および電動機が原動機として用いられるものであってもよい。

【0044】また、前述の実施例の変速比rは入力側回 転速度 N_{IN} /出力側回転速度 N_{OUT} として定義されてい たが、その逆数であっても差し支えない。

【0045】また、前述の電子制御装置66において、図9の強制ダウン変速制御と図13の強制ダウン変速制御とが同時に実施されるようにしてもよい。

【0046】以上、本発明の実施例を図面に基づいて詳細に説明したが、これはあくまでも一実施形態であり、本発明は当業者の知識に基づいて種々の変更、改良を加えた態様で実施することができる。

【図面の簡単な説明】

【図1】本発明の一実施例の制御装置が適用された車両 用動力伝達装置の骨子図である。

【図2】図1のベルト式無段変速機の構成を詳しく説明するために一部を切り欠いた図である。

【図3】図1の車両用動力伝達装置におけるベルト式無

段変速機を制御するための油圧制御回路の要部を示す図であって、ベルト張力制御に関連する部分を示す図である。

【図4】図1の車両用動力伝達装置におけるベルト式無 段変速機を制御するための油圧制御回路の要部を示す図 であって、変速比制御に関連する部分を示す図である。

【図5】図1の実施例の制御装置の電気的構成を簡単に 説明する図である。

【図6】図5の電子制御装置が実行する変速比制御において目標回転速度を決定するために用いられる予め記憶された関係を示す図である。

【図7】図5の電子制御装置の制御機能の要部を説明する機能ブロック線図である。

【図8】図1のベルト式無段変速機において、アップ変速制御弁或いはダウン変速制御弁の駆動デューティ比Dと変速速度との関係を示す図である。

【図9】図5の電子制御装置の制御作動の要部を説明するフローチャートである。

【図10】図9のSA3において判定時間 t_c を作動油温度 T_{0IL} に基づいて決定するために予め記憶された関係を示す図である。

【図11】図9のSA4において経過時間判定値 t_p を作動油温度 T_{0IL} に基づいて決定するために予め記憶された関係を示す図である。

【図12】図9のSA4において経過時間判定値 t_0 を強制ダウン変速開始時の変速比 r_8 に基づいて決定するために予め記憶された関係を示す図である。

【図13】図5の電子制御装置の制御作動の他の例を説明するフローチャートである。

【符号の説明】

18:車両用ベルト式無段変速機(無段変速機)

42、46:可変プーリ(回転要素、無段変速機構)

48: 伝動ベルト (無段変速機構)

66:電子制御装置

67:シフトレバー(シフト操作装置)

90:変速比判定手段

92:回転停止状態判定手段

94:動力伝達状態判定手段

96:変速比強制変更手段

【図10】

【図11】

【図7】

【図13】

フロントページの続き

車株式会社内

(51) Int. Cl. F 1 6 H				59:70 59:72 63:06	(参考)
(72)発明者	安江 秀樹 愛知県豊田市トヨタ町1番地 車株式会社内	トヨタ自動	(72) 発明者	羽渕 良司 愛知県豊田市トヨタ町1番地 車株式会社内	トヨタ自動
(72)発明者	森沢 邦夫 愛知県豊田市トヨタ町1番地 車株式会社内	トヨタ自動	(72)発明者	谷口 浩司 愛知県豊田市トヨタ町1番地 車株式会社内	トヨタ自動
(72)発明者	河野 克己 愛知県豊田市トヨタ町1番地 車株式会社内	トヨタ自動	(72) 発明者	松尾 賢治 愛知県豊田市トヨタ町1番地 車株式会社内	トヨタ自動
(72)発明者	田村 忠司 愛知県豊田市トヨタ町1番地	トヨタ自動			

Fターム(参考) 3J552 MAO7 MA12 MA26 NAO1 NB01 PA15 PA63 RB02 SA34 SB02 SB05 VA32W VA34W VA37W VA48W VA62W VA63W VA65W VA66W VA74W VA76W