Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования «НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Кафедра теоретической и прикладной информатики

Лабораторная работа № 2 по дисциплине «Компьютерное моделирование»

Факультет: ПМИ

ГРУППА: ПМИ-61

Студенты: Ершов П.К., Мамонова Е.В., Цыденов З.Б.

ПРЕПОДАВАТЕЛЬ: Черникова О. С. Карманов В. С.

Новосибирск

2020

1. Цель работы

Научиться строить модели систем массового обслуживания.

2. Ход работы

1. Строим первичную модель банковского офиса

2. Задаём параметры эксперимента (запускаем в 10 режиме)

3. Проверка работоспособности модели

🦶 Bank_office : Simulation - AnyLogic Professional [ТОЛЬКО В ЦЕЛЯХ ОЗНАКОМЛЕНИЯ]

Создаём нового агента:

Добавляем 3D окно из палитры Презентация:

Используем новый тип агента в source:

Поместим 3D объект банкомат из палитры 3D объекты (вкладка супермаркет) в точечный узел:

Проверим работоспособность:

Проверяем работоспособность:

6. Добавляем область с консультантами

7. Добавляем анимацию второго канала

Создадим три Прямоугольных узла:

Левый назовём waiting Area;

Средний customerPlaces;

Укажем в service места агентов:

Укажем в ResourcePool место агентов:

Добавим тип ресурса Teller и выберем ему модель Служащий:

Выберем в ResourcePool Teller как ресурс:

Добавим столы в аттракторы в tellerPlaces из палитры 3D объекты (вкладка Офис):

Проверяем работоспособность:

8. Добавляем сбор параметров системы

Добавляем блоки измерения времени (так же добавим бегунок, для удобного управления количеством tellers):

Проверка работоспособности:

9. Тестирование системы

9.1. Результат работы системы с пятью (5) консультантами

При работе 4 консультантов среднее время в системе составляет около 4 минут.

При добавлении пятого консультанта время в системе сократилось:

9.2. Тестирование системы на поиск предельной интенсивности потока заявок без потери работоспособности

Для этого изменим параметр интенсивности в source:

Тестировать будем для четырёх консультантов.

№ теста	Интенсивность	Результат
1	1	Система потеряла работоспособность 22 мая 2020 г.
2	0.9	Система потеряла работоспособность 23 июня 2020 г.
3	0.8	Система сохраняет работоспособность.
4	0.89	Система сохраняет работоспособность.
5	0.899	Система сохраняет работоспособность.
6	0.8999	Система потеряла работоспособность 23 июня 2020 г

Таким образом, можно считать предельной интенсивностью потока заявок 0.899.

Пример потери работоспособности:

⚠	Ошибка при выполнении дискретного события	×
	Логическая ошибка в модели:	
	root.source: Areнт не смог покинуть этот порт: root.source.out в момент времени 191,987.148 / дату 23 июн. 2020 г., 7:47:08 (текущее модельное время: 191,987.184)	
	Увеличьте вместимости объектов и/или пропускную способность последующих объектов	
	Подробности смотрите в Консоли	

10. Поиск оптимального количества консультантов для определённой интенсивности

Интенсивность	Оптимальное количество консультантов (количество, при котором система не сломается и консультанты будут загружены не более	
	чем на 60 процентов)	
1	6	
0.9	5	
0.8999	5	

3. Выводы

В ходе проведённой работы была построена модель банковского офиса с одним банкоматом и четырьмя консультантами. Так же был поставлен эксперимент с целью определения предельной интенсивности потока заявок в минуту, при которой система сохранит свою работоспособность.