EGM0004

Sistemas Não Lineares

Prof. Josenalde Barbosa de Oliveira – UFRN

Programa de Pós-Graduação em Engenharia Mecatrônica

- Uso de aproximações para simplificação de análise sem comprometimento qualitativo (Taylor (ver slide class08) e Fourier)
- Este método permite analisar o fenômeno do ciclo-limite em sistemas não lineares através da representação da não linearidade por uma função descritiva N

• Seja uma função com domínio e contradomínio reais $g(x): R \to R$ com

$$z(t) = g(x(t)), \quad x(t) = Xsen(\omega t) = Xsen(\theta), \quad \theta = \omega t$$

- Visto a entrada ser periódica com período: $T=\frac{2\pi}{\omega}, \quad \int_{-\pi/\omega}^{\pi/\omega} z(t)dt=0$, supondo
- z função simétrica z(-x) = -z(x)

Sobre métodos de análise em não lineares

- Plano de fase: estabilidade e resposta temporal (só 2. ordem)
- Segundo método de Lyapunov: análise de estabilidade de qualquer sistema não linear (difícil encontrar funções de Lyapunov) métodos de pesquisa de funções: Krasoviski, Shultz e Gibson (gradiente variável), Zubov, etc.), IA
- Simulação: condições limitadas às usadas na experimentação (Monte Carlo?)
- Funções descritivas: só análise de estabilidade (sem info sobre resposta temporal), predição de ciclos limite, método aproximado (opções numéricas: <u>integrais abelianas</u>, método averaging (AU) etc.)

Clássicos: ATHERTON, Derek P. (1975, 1981): *Nonlinear control engineering: describing function analysis and design* <u>stability of nonlinear systems</u>

Ideia da função descritiva para analisar ciclo limite (van der Pol) Objetivo: determinar se existe ciclo limite e, se existir, calcular amplitude e frequé lideia é assumir que hé Cl. de determinada emplitude e frequência e então varifica

 $\ddot{x}+\alpha(x^2-1)\dot{x}+x=0, \alpha>0$ $s^2x+\alpha sxx^2-\alpha sx+x=0$ $s(\alpha x^2)x+(s^2-\alpha s+1)x=0$ NL Linear

Objetivo: determinar se existe ciclo limite e, se existir, calcular amplitude e frequência Ideia é assumir que há CL de determinada amplitude e frequência e então verificar se o sistema de fato mantém esta solução

Seja um ciclo limite representado pelo sinal x $x(t) = Xsen(\omega t)$

$$G(s) = \frac{\alpha}{s^2 - \alpha s + 1}$$

$$f(x, \dot{x}) = x^2 \dot{x}$$

$$\xrightarrow{0 \quad -x(t)} f(x, \dot{x}) \xrightarrow{q(t)} G(s)$$

Ideia da função descritiva para analisar ciclo limite (van der Pol)

$$\ddot{x}+\alpha(x^2-1)\dot{x}+x=0, \alpha>0$$

$$s^2x+\alpha sxx^2-\alpha sx+x=0$$

$$s(\alpha x^2)x+(s^2-\alpha s+1)x=0$$
 NL Linear

Analisando a entrada... $X \in \omega$ desconhecidos ou mesmo inexistentes

$$x(t) = Xsen(\omega t)$$

$$\dot{x}(t) = X\omega cos(\omega t)$$

$$q = -x^2 \dot{x} = -(Xsen(\omega t))^2 X\omega cos(\omega t)$$

$$q = -X^2 sen^2(\omega t) X\omega cos(\omega t)$$

$$= -X^3 \omega [sen^2(\omega t)] cos(\omega t)$$

$$= -\frac{X^3}{2} \omega [1 - cos(2\omega t)] cos(\omega t)$$

Lembrete:

$$cos^{2}(x) + sen^{2}(x) = 1, \quad cos^{2}(x) = 1 - sen^{2}(x)$$

$$cos(2x) = cos^{2}(x) - sen^{2}(x), \quad sen^{2}(x) = cos^{2}(x) - cos(2x)$$

$$sen^{2}(x) = 1 - sen^{2}(x) - cos(2x) \implies 2sen^{2}(x) = 1 - cos(2x) \implies sen^{2}(x) = \frac{1}{2}(1 - cos(2x))$$

Ideia da função descritiva para analisar ciclo limite (van der Pol)

Neste ponto, se desprezar segunda harmônica, dá uma aproximação com

$$= -\frac{X^3}{2}\omega[1 - \cos(2\omega t)]\cos(\omega t) = -\frac{X^3}{2}\omega\cos(\omega t) = \frac{X^2}{2}\frac{d}{dt}(-X\operatorname{sen}(\omega t)) \quad \operatorname{Como} x(t) = X\operatorname{sen}(\omega t)$$

$$q = N(X, \omega)(-x), \quad N(X, \omega) = \frac{X^2}{2}(j\omega)$$

Bloco não linear aproximado (quase-linear dependente de X) por $N(X,\omega)$

$$x = Xsen(\omega t) = G(j\omega)q = G(j\omega)N(X,\omega)(-x)$$

Equação característica em malha fechada:

$$1 + N(X, \omega)G(s) = 0$$
$$1 + \frac{X^2(j\omega)}{2} \frac{\alpha}{(j\omega)^2 - \alpha(j\omega) + 1} = 0$$

Ideia da função descritiva para analisar ciclo limite (van der Pol)

$$1 + \frac{X^2(j\omega)}{2} \frac{\alpha}{(j\omega)^2 - \alpha(j\omega) + 1} = 0$$

$$X=1.415, \quad \omega=1, \quad s_{1,2}=\pm 0.99.. j$$

$$s_{1,2} = \frac{-1}{4}\alpha(X^2 - 2) \pm \sqrt{\frac{1}{16}\alpha^2(X^2 - 2)^2 - 1}$$

Para convergência exata, avançar uma harmônica na aproximação...

$$= -\frac{X^3}{2}\omega[1 - \cos(2\omega t)]\cos(\omega t)$$

$$= -\frac{X^3}{4}\omega[\cos(\omega t) - \cos(3\omega t)] = \frac{X^2}{4}\frac{d}{dt}(-X\operatorname{sen}(\omega t))$$

$$s_{1,2} = \frac{-1}{8}\alpha(X^2 - 4) \pm \sqrt{\frac{1}{64}\alpha^2(X^2 - 4)^2 - 1}$$

$$X = 2, \quad \omega = 1, \quad s_{1,2} = \pm j$$

Figure 5.2: Quasi-linear approximation of the Van der Pol oscillator

$$N(X,\omega) = \frac{X^2}{4}(j\omega)$$

QUASI-LINEAR

Prof. Josenalde Oliveira

Ideia da função descritiva para analisar ciclo limite (van der Pol)

Figure 5.2: Quasi-linear approximation of the Van der Pol oscillator

• Relembrando a expansão em Série de Fourier

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos(\omega_n t) + b_n \sin(\omega_n t), \quad \omega_n = n\omega, \quad \omega = \frac{2\pi}{T} \implies \omega_n = n\frac{2\pi}{T}$$

$$a_0 = \frac{1}{T/2} \int_{-T/2}^{T/2} f(t) dt \quad \text{N\'{i}vel DC do sinal}$$

$$a_n = \frac{1}{T/2} \int_{-T/2}^{T/2} f(t) \cos(\omega_n t) dt$$

$$b_n = \frac{1}{T/2} \int_{-T/2}^{T/2} f(t) sen(\omega_n t) dt$$

(1768-1830) Jean-Baptiste Joseph Fourier

• Expandindo o termo não linear em série de Fourier...

$$z(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos(n\omega t) + b_n \sin(n\omega t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos(n\theta) + b_n \sin(n\theta)$$

Coeficientes:

$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t)dt$$

$$a_n = rac{1}{\pi} \int_{-\pi}^{\pi} f(t) cos(nt) dt$$
 n é o número da harmômica

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) sen(nt) dt$$

Exemplo: expandir em série de Fourier...

$$f(t) = \begin{cases} 0, & -\pi < t < -1 \\ 1, & -1 \le t \le 1 \\ 0, & 1 < t < \pi \end{cases}$$

$$f(t) = f(t + 2\pi)$$

Seno é impar: sen(-x) = -sen(x)

Cosseno é par: cos(-x) = cos(x)

Observação: se g é ímpar (simétrica em relação à origem), g(-x)=-g(x)

- Hipótese do filtro:
 - a medida que n cresce, a amplitude das harmônicas ficam menores (dado o resultado da integral).
 - Visto que as plantas se comportam como filtros passa baixa, as harmônicas de ordem maior ou igual a 2 são fortemente atenuadas pela parte linear

$$G(s)=rac{1}{ au s+1}$$
 Parte linear de 1. ordem $H(\omega)_{dB}=20log_{10} \ |H(\omega)|_{\omega=2}$ Oitava $H(\omega)_{dB}=20log_{10} rac{\sqrt{5}}{5}=-6.9897$ Oitava $H(\omega)_{dB}=20log_{10} rac{\sqrt{5}}{5}=-6.9897$ Oitava $H(\omega)_{dB}=20log_{10} rac{\sqrt{5}}{5}=-6.9897$

100

Angular frequency (rad/s)

1000

Primeira harmônica Conclusão: $z(t) = a_0 + a_1 cos(\theta) + b_1 sen(\theta)$

- No caso linear, entrada senoidal, saída senoidal de mesma frequência
 - Seja uma função de transferência linear invariante no tempo G(s)
 - $G(j\omega) \in C$, calculados para todo $\omega \in R$, define sua resposta em frequência
 - G sendo assintoticamente estável, em regime permanente, excitado por senoide

$$y(t) = X|G(j\omega)|sen(\omega t + \angle G(j\omega))$$

$$y(t) = XRe(G(j\omega))sen(\omega t) + XIm(G(j\omega))cos(\omega t)$$

• Definição de função descritiva:

Seja $g(x): R \to R$ uma função de variável real.

A função de variável complexa

$$N_g(X): X > 0 \to C$$
, dada por $N_g(X) = \frac{b_1 + ja_1}{X}$

é a função descritiva associada à função g(x)

Lembrete:
$$z = a + jb \equiv |z| \angle \theta$$

$$|z| = \sqrt{a^2 + b^2}, \quad \theta = tan^{-1} \frac{b}{a}$$

$$G(s) = \frac{4}{s+5}, x(t) = 2cos(\omega t), f = 0.5Hz$$

$$G(j\omega) = G(j\pi) = \frac{4}{j\pi+5} = \frac{4}{5.9 \angle 32^{\circ}} = 0.677 \angle -32^{\circ}$$

$$y(t) = 2|G(j\pi)|cos(\pi t + \angle G(j\pi)) = 1.3548cos(\pi t - 32^{\circ})$$

No caso particular linear, comparando com a definição de função descritiva

$$y(t) = X|G(j\omega)|sen(\omega t + \angle G(j\omega))$$

$$y(t) = XRe(G(j\omega))sen(\omega t) + XIm(G(j\omega))cos(\omega t)$$

$$N_G(\omega) = \frac{XRe(G(j\omega)) + jXIm(G(j\omega))}{X} = G(j\omega)$$

$$N_g(X): X > 0 \to C$$
, dada por $N_g(X) = \frac{b_1 + ja_1}{X}$

No caso não linear,

$$z(t) = X|N_g(X)|sen(\omega t + \angle N_g(X))$$

A função descritiva é interpretada com uma função de transferência que no regime permanente senoidal fornece a aproximação de primeira harmônica da saída (aproxima efeitos não lineares). Esta abordagem é importante para análise de estabilidade de soluções periódicas através de extensão ao critério de Nyquist

$$z(t) = X|N_g(X)|sen(\omega t + \angle N_g(X)) \qquad N = \frac{Z_1}{X} \angle \Phi_1 \qquad \xrightarrow{r \equiv 0} \xrightarrow{+ x} N_g(X) \qquad \xrightarrow{Z_1} G(s) \qquad \xrightarrow{Z_1} Z_1 = \sqrt{a_1^2 + b_1^2}, \quad \Phi_1 = tan^{-1} \left(\frac{a_1}{b_1}\right)$$

 $X \rightarrow$ amplitude do sinal de entrada

 $Z_1 \rightarrow \text{ amplitude da componente harmônica fundamental da saída}$

 $\Phi_1 \rightarrow \text{ defasagem da componente harmônica fundamental da saída em relação à entrada$

No caso especial com g(x) ímpar, com simetria em relação à origem,

$$z(t) = b_1 sen(\theta), b_1 = \frac{1}{\pi} \int_0^{2\pi} z(\theta) sen\theta d\theta = \frac{2}{\pi} \int_0^{\pi} z(\theta) sen\theta d\theta = \frac{4}{\pi} \int_0^{\pi/2} z(\theta) sen\theta d\theta$$
$$N = \frac{b_1}{X} \angle 0^{\circ}, \quad \text{pois } a_n = 0 \quad \forall n, \text{ a integral de f. impar num periodo \'e zero}$$

No caso do relé puro

• No caso especial com g(x) ímpar, com simetria em relação à origem,

$$z(t) = b_1 sen(\theta), b_1 = \frac{4}{\pi} \int_0^{\pi/2} M sen\theta d\theta = \frac{4M}{\pi} (-cos\theta)_0^{\pi/2} = \frac{4M}{\pi}$$
$$N = \frac{4M}{\pi} \angle 0^{\circ}$$

Funções descritivas de não linearidades comuns em controle

• No caso de inclinações K ou K1 = 0, suprimir das expressões

Funções descritas de não linearidades comuns em controle

Funções descritas de não linearidades comuns em controle

Funções descritas de não linearidades comuns em controle

Existência de ciclo limite

$$x(t) = -y(t)$$

$$y(t) = G(j\omega)z(t) \implies z(t) = N(X)x(t)$$

$$x(t) = -G(j\omega)N(X)x(t) \implies 1 = -G(j\omega)N(X)$$

$$G(j\omega) = -rac{1}{N(X)}$$
 Se há solução (intersecção) das curvas, há ciclo limite

Objetivo: obter
$$(X_c, \omega_c)$$
 tal que $G(j\omega_c) = -\frac{1}{N(X_c)} \forall X > 0$

Curva $Re(G(j\omega)) \times Im(G(j\omega))$

$$\left| -\frac{1}{N(X)} \right| = |G(j\omega_c)|$$

$$\angle \phi_1 = \angle G(j\omega)$$

$$\angle \phi_1 = \angle G(j\omega)$$