概率论和数理统计公式集锦

一、随机事件与概率

公式名称	公式表达式
德摩根公式	$\overline{A \cup B} = \overline{A} \cap \overline{B}, \overline{A \cap B} = \overline{A} \cup \overline{B}$
古典概型	$P(A) = \frac{m}{n} = A$ 包含的基本事件数 基本事件总数
几何概型	$P(A) = \frac{\mu(A)}{\mu(\Omega)}$, 其中 μ 为几何度量(长度、面积、体积)
求逆公式	$P(\overline{A}) = 1 - P(A)$
加法公式	P(A∪B)=P(A)+P(B)-P(AB) 当P(AB)=0时,P(A∪B)=P(A)+P(B)
减法公式	$P(A-B)=P(A)-P(AB)$, $B \subset A \bowtie P(A-B)=P(A)-P(B)$
条件概率公式 与乘法公式	$P(B A) = \frac{P(AB)}{P(A)} \qquad P(AB) = P(A)P(B A) = P(B)P(A B)$ $P(ABC) = P(A)P(B A)P(C AB)$
全概率公式	$P(A) = \sum_{i=1}^{n} P(B_i) P(A B_i)$
贝叶斯公式 (逆概率公式)	$P(B_i A) = \frac{P(B_i)P(A B_i)}{\sum_{i=1}^{n} P(B_i)P(A B_i)}$
两个事件 相互独立	$P(AB) = P(A)P(B)$; $P(B A) = P(B)$; $P(B A) = P(B \overline{A})$;

二、随机变量及其分布

1、分布函数

$$F(x) = P(X \le x) = \begin{cases} \sum_{x_k \le x} P(X = x_k) \\ \int_{-x_k}^{x} f(t)dt \end{cases}, \quad P(a < X \le b) = F(b) - F(a)$$

2、离散型随机变量及其分布

分布名称	分布律		
0-1 分布 <i>X</i> ~ <i>b</i> (1, <i>p</i>)	$P(X = k) = p^{k} (1-p)^{1-k}, k = 0,1$		
二项分布 $X \sim b(n,p)$	$P(X = k) = C_n^k p^k (1-p)^{n-k}, k = 0,1,\dots,n$		
泊松分布 X ~ P(λ)	$P(X = k) = \frac{\lambda^k}{k!} e^{-\lambda}, k = 0, 1, 2, \dots$		

3、续型随机变量及其分布

分布名称	密度函数	分布函数
均匀分布 X ~ U(a,b)	$f(x) = \begin{cases} \frac{1}{b-a}, & a < x < b \\ 0, & 其他 \end{cases}$	$F(x) = \begin{cases} 0, & x < a \\ \frac{x-a}{b-a}, a \le x < b \\ 1, & x \ge b \end{cases}$

分布名称	密度函数	分布函数	
指数分布 X ~ e(λ)	$f(x) = \begin{cases} \lambda e^{-\lambda x}, & x > 0 \\ 0, & x \le 0 \end{cases}$	$F(x) = \begin{cases} 1 - e^{-\lambda x}, & x > 0 \\ 0, & x \le 0 \end{cases}$	
正态分布 $X \sim N(\mu, \sigma^2)$	$f(\mathbf{x}) = \frac{1}{\sqrt{2\pi} \sigma} e^{-\frac{(\mathbf{x} - \mu)^2}{2\sigma^2}}$ $-\infty < \mathbf{x} < +\infty$	$F(x) = \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{x} e^{-\frac{(t-\mu)^2}{2\sigma^2}} dt$	
标准正态分布 X~N(0,1)	$\varphi(\mathbf{x}) = \frac{1}{\sqrt{2\pi}} e^{-\frac{\mathbf{x}^2}{2}}$ $-\infty < \mathbf{x} < +\infty$	$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{1}{2}t^2} dt$	

4、随机变量函数 Y=g(X)的分布

离散型: $P(Y = y_i) = \sum_{g(x_i) = y_i} p_j, i = 1, 2, \dots,$

连续型: ①分布函数法, ②公式法 $f_{v}(y) = f_{v}(h(y)) \cdot |h'(y)|(x = h(y))$ 单调)

三、多维随机变量及其分布

1、离散型二维随机变量及其分布

分布律:
$$P(X = x_i, Y = y_j) = p_{ij}, i, j = 1, 2, \dots$$
 分布函数 $F(X, Y) = \sum_{X \leq X} \sum_{Y \leq X} p_{ij}$

边缘分布律: $p_{i.} = P(X = x_i) = \sum_{i} p_{ij}$ $p_{.j} = P(Y = y_j) = \sum_{i} p_{ij}$

条件分布律:
$$P(X = x_i | Y = y_j) = \frac{p_{ij}}{p_{\cdot j}}, i = 1, 2, \dots, P(Y = y_j | X = x_i) = \frac{p_{ij}}{p_{i\cdot}}, j = 1, 2, \dots$$

- 2、连续型二维随机变量及其分布
- ①分布函数及性质

分布函数:
$$F(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(u,v) du dv$$

性质:
$$F(+\infty, +\infty) = 1$$
, $\frac{\partial^2 F(x, y)}{\partial x \partial y} = f(x, y)$, $P((x, y) \in G) = \iint_G f(x, y) dx dy$

②边缘分布函数与边缘密度函数

分布函数:
$$F_X(x) = \int_{-\infty}^x \int_{-\infty}^{+\infty} f(u, v) dv du$$
 密度函数: $f_X(x) = \int_{-\infty}^{+\infty} f(x, v) dv$

$$F_Y(y) = \int_{-\infty}^y \int_{-\infty}^{+\infty} f(u, v) du dv \qquad f_Y(y) = \int_{-\infty}^{+\infty} f(u, v) du$$

③条件概率密度

$$f_{Y|X}(y|x) = \frac{f(x,y)}{f_X(x)}, -\infty < y < +\infty$$
, $f_{X|Y}(x|y) = \frac{f(x,y)}{f_Y(y)}, -\infty < x < +\infty$

3、随机变量的独立性

随机变量 X、Y 相互独立 $\Leftrightarrow F(x,y) = F_x(x)F_y(y)$,

离散型: $p_{ii} = p_{ii}p_{,i}$, 连续型: $f(x,y) = f_X(x)f_Y(y)$

4、二维随机变量和函数的分布

离散型: $P(Z=z_k) = \sum_{x,y,y=z} P(X=x_i, Y=y_j)$

连续型: $f_Z(z) = \int_{-\infty}^{+\infty} f(x, z - x) dx = \int_{-\infty}^{+\infty} f(z - y, y) dy$

四、随机变量的数字特征

1、数学期望

①定义: 离散型
$$E(X) = \sum_{k=1}^{+\infty} x_k p_k$$
, 连续型 $E(X) = \int_{-\infty}^{+\infty} x f(x) dx$

②性质: E(C) = C, E[E(X)] = E(X), E(CX) = CE(X), $E(X \pm Y) = E(X) \pm E(Y)$ $E(aX \pm b) = aE(X) \pm b$, 当 X、Y 相互独立时: E(XY) = E(X)E(Y)2、方差

①定义: $D(X) = E[(X - E(X))^2] = E(X^2) - E^2(X)$

②性质: D(C) = 0, $D(aX \pm b) = a^2 D(X)$, $D(X \pm Y) = D(X) + D(Y) \pm 2Cov(X, Y)$ 当 X、Y 相互独立时: $D(X \pm Y) = D(X) + D(Y)$

3、协方差与相关系数

①协方差: Cov(X,Y) = E(XY) - E(X)E(Y), 当 X、Y 相互独立时: Cov(X,Y) = 0

②相关系数: $\rho_{XY} = \frac{Cov(X,Y)}{\sqrt{D(X)}\sqrt{D(Y)}}$, 当 X、Y 相互独立时: $\rho_{XY} = 0$ (X, Y 不相关)

③协方差和相关系数的性质: Cov(X,X) = D(X), Cov(X,Y) = Cov(Y,X)

 $Cov(X_1+X_2,Y)=Cov(X_1,Y)+Cov(X_2,Y)\;,\quad Cov(aX+c,bY+d)=abCov(X,Y)$

4、常见随机变量分布的数学期望和方差

市九随机文里方印的数子别主作方名				
数学期望	方差			
p	<i>p</i> (1- <i>p</i>)			
пр	<i>np(1-p)</i>			
λ	λ			
$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$			
μ	σ^2			
$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$			
	数学期望 p np λ $\frac{a+b}{2}$ μ			

五、大数定律与中心极限定理

1、切比雪夫不等式

若 $E(X) = \mu, D(X) = \sigma^2$, 对于任意 $\varepsilon > 0$ 有 $P\{|X - E(X)| \ge \varepsilon\} \le \frac{D(X)}{\varepsilon^2}$

2、大数定律: ①切比雪夫大数定律: 若 $X_1 \cdots X_n$ 相互独立,

$$E(X_i) = \mu_i, D(X_i) = \sigma_i^2 \perp \sigma_i^2 \leq C, \quad \text{M}: \quad \frac{1}{n} \sum_{i=1}^n X_i \xrightarrow{P} \frac{1}{n} \sum_{i=1}^n E(X_i), (n \to \infty)$$

②伯努利大数定律:设 n_A 是n次独立试验中事件A发生的次数,p是事件A在

每次试验中发生的概率,则
$$\forall \varepsilon > 0$$
,有: $\lim_{n \to \infty} P\left(\left|\frac{n_A}{n} - p\right| < \varepsilon\right) = 1$

- ③辛钦大数定律: 若 X_1, \dots, X_n 独立同分布,且 $E(X_i) = \mu$,则 $\frac{1}{n} \sum_{i=1}^n X_i \xrightarrow{p \to \infty} \mu$
- 3、中心极限定理
- ①列维—林德伯格中心极限定理: 独立同分布的随机变量 X_i $(i=1,2,\cdots)$,均值 为 μ ,方差为 $\sigma^2 > 0$,当 n 充分大时有: $Y_n = (\sum_{k=1}^n X_k n\mu) / \sqrt{n}\sigma \xrightarrow{\sim} N(0,1)$

②棣莫弗—拉普拉斯中心极限定理: 随机变量 $X \sim B(n, p)$, 则对任意 x 有:

$$\lim_{n \to \infty} P\{\frac{X - np}{\sqrt{np(1 - p)}} \le x\} = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^{2}}{2}} dt = \Phi(x)$$

③近似计算:
$$P(a \le \sum_{k=1}^{n} X_k \le b) \approx \Phi(\frac{b-n\mu}{\sqrt{n\sigma}}) - \Phi(\frac{a-n\mu}{\sqrt{n\sigma}})$$

六、数理统计的基本概念

1、总体和样本的分布函数

设总体 $X \sim F(x)$,则样本的联合分布函数 $F(x_1, x_2 \cdots x_n) = \prod_{i=1}^{n} F(x_k)$

2、统计量

样本均值:
$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
, 样本方差: $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i^2 - n \overline{X}^2)$

样本标准差:
$$S = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2}$$
 , 样本 k 阶原点距: $A_k = \frac{1}{n} \sum_{i=1}^{n} X_i^k$, $k = 1, 2 \cdots$

样本 k 阶中心距: $B_k = \frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})^k, k = 1, 2, 3 \cdots$

3、三大抽样分布

 $(1)\chi^2$ 分布: 设随机变量 $X_i \sim N(0,1)$ $(i = 1, 2, \dots, n)$ 且相互独立,则称统计量 $\chi^2 = X_1^2 + X_2^2 + \dots + X_n^2$ 服从自由度为n 的 χ^2 分布,记为 $\chi^2 \sim \chi^2(n)$

性质: ① $E[\chi^2(n)] = n, D[\chi^2(n)] = 2n$ ②设 $X \sim \chi^2(m), Y \sim \chi^2(n)$ 且相互独立,则 $X + Y \sim \chi^2(m + n)$

(2) t 分布: 设随机变量 $X \sim N(0,1), Y \sim \chi^2(n)$, 且 X 与 Y 独立,则称统计量:

$$T = \frac{X}{\sqrt{Y/n}}$$
 服从自由度为 n 的 t 分布,记为 $T \sim t(n)$

性质: ①
$$E(T) = 0$$
 $(n > 1)$, $D(T) = \frac{n}{n-2}$ $(n > 2)$ ② $\lim_{n \to \infty} f_n(x) = \varphi(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$

(3) F 分布: 设随机变量 $X \sim \chi^2(m), Y \sim \chi^2(n)$,且 X 与 Y 独立,则称统计量 $F(m,n) = \frac{X/m}{Y/n}$ 服从第一自由度为 m,第二自由度为 n 的 F 分布,记为

 $F \sim F(m,n)$,性质:设 $F \sim F(m,n)$,则 $\frac{1}{F} \sim F(n,m)$

七、参数估计

1. 参数估计

①定义: 用 $\hat{\theta}(X_1, X_2, \mathsf{L}, X_n)$ 估计总体参数 θ ,称 $\hat{\theta}(X_1, X_2, \mathsf{L}, X_n)$ 为 θ 的估

计量,相应的 $\hat{\theta}(x_1, x_2, \dots, x_n)$ 为总体 θ 的估计值。

②当总体是正态分布时,未知参数的矩估计值=未知参数的极大似然估计值

2. 点估计中的矩估计法:

基本思想: 用样本矩来估计相应的总体矩

求法步骤: 设总体 X 的分布中包含有未知参数 $\theta_1, \theta_2, \dots, \theta_k$, 它的前 k 阶原点

矩 $\mu_i = E(X^i)(i=1,2,\dots,k)$ 中包含了未知参数 $\theta_1,\theta_2,\dots,\theta_k$,

即 $\mu_i = g_i(\theta_1, \theta_2, \dots, \theta_k)$ $(i = 1, 2, \dots, k)$; 又设 x_1, x_2, L $, x_n$ 为总体 X 的 n 个样本值,用样本矩代替 μ_i ,在所建立的方程组中解出的 k 个未知参数即为参数

 $heta_1, heta_2, \cdots, heta_k$ 的矩估计量 $\hat{ heta}_1, \hat{ heta_2}, \cdots, \hat{ heta_k}$ 。

注意:分布中有几个未知参数,就求到几阶矩。

3. 点估计中的极大似然估计

设 X_1, X_2, L X_n 取自X 的样本,设 $X \sim f(x, \theta)$ 或 $X \sim P(x, \theta)$, 求法步骤:

①似然函数:
$$L(\theta) = \prod_{i=1}^{n} f(x_i, \theta)$$
(连续型)或 $L(\theta) = \prod_{i=1}^{n} P_i(x_i, \theta)$ (离散型)

②取对数:
$$\ln L(\theta) = \sum_{i=1}^{n} \ln f(x_i, \theta)$$
 或 $\ln L(\theta) = \sum_{i=1}^{n} \ln p_i(x_i, \theta)$

③解方程:
$$\frac{\partial \ln L}{\partial \theta_1} = 0$$
, $\frac{\partial \ln L}{\partial \theta_k} = 0$, 解得:
$$\begin{cases} \hat{\theta_1} = \hat{\theta_1}(x_1, x_2, \dots, x_n) \\ \dots \\ \hat{\theta_k} = \hat{\theta_k}(x_1, x_2, \dots, x_n) \end{cases}$$

4. 估计量的评价标准

	4. 目4 重用4 日本4				
估计	无偏性	设 $\hat{\boldsymbol{\theta}} = \hat{\boldsymbol{\theta}}(x_1, x_2, \mathbf{L}, x_n)$ 为未知参数 $\boldsymbol{\theta}$ 的估计量。若 $\mathbf{E}(\hat{\boldsymbol{\theta}}) = \boldsymbol{\theta}$ 则称 $\hat{\boldsymbol{\theta}}$ 为 $\boldsymbol{\theta}$ 的无偏估计量。			
量的评价	有效性	设 $\hat{\theta}_1 = \hat{\theta}_1(x_1, x_2, L, x_n)$ 和 $\hat{\theta}_2 = \hat{\theta}_2(x_1, x_2, L, x_n)$ 是未知参数 θ 的两个无偏估计量。若 $D(\hat{\theta}_1) < D(\hat{\theta}_2)$,则称 $\hat{\theta}_1$ 比 $\hat{\theta}_2$ 有效。			
标准	一致性	设 $\hat{\theta}_n$ 是 θ 的一串估计量,如 $\forall \varepsilon > 0$,有 $\lim_{n \to \infty} P(\hat{\theta}_n - \theta > \varepsilon) = 0$ 则称 $\hat{\theta}_n$ 为 θ 的一致估计量(或相合估计量)。			

5. 单正态总体参数的置信区间

条件	行 参数	枢轴量	松細重 分布	置信水平为1-α的置信区间
已知 $oldsymbol{\sigma}^2$	μ	$Z = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}}$	N(0,1)	$\left(\bar{x} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}}, \bar{x} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}\right)$
未知 σ^2	μ	$T = \frac{\overline{X} - \mu}{S / \sqrt{n}}$	$t(n-1) \left(\overline{x} - t_{\alpha/2}(n-1) \frac{S}{\sqrt{n}}, \overline{x} + t_{\alpha/2}(n-1) \right)$	
已知 <i>μ</i>	σ^2	$\chi^2 = \sum_{i=1}^n \left(\frac{X_i - \mu}{\sigma} \right)^2$	$\chi^2(n)$	$\left(\frac{\sum_{i=1}^{n} (X_{i} - \mu)^{2}}{\chi_{\alpha/2}^{2}(n)}, \frac{\sum_{i=1}^{n} (X_{i} - \mu)^{2}}{\chi_{1-\alpha/2}^{2}(n)}\right)$
未知 <i>μ</i>	σ^2	$\chi^2 = \frac{(n-1)S^2}{\sigma^2}$	$\chi^2(n-1)$	$\left(\frac{(n-1)S^{2}}{\chi^{2}_{\alpha/2}(n-1)}, \frac{(n-1)S^{2}}{\chi^{2}_{1-\alpha/2}(n-1)}\right)$

八、假设检验

1. 假设检验的基本概念

1124 2	IV St				
基本	假设检验	验的统计思想是小概率原理。			
思想	見 │小概率事件的概率就是显著性水平α,常取α=0.05,0.01頁				
	①提出原	原假设 H ; ②选择检验统计量 $g(X_1, L_1, X_n)$; ③对于 α 查表找			
基本	分位数2	, 使 $P(g(X_1, L_n, X_n) \in W) = \alpha$, 从而定出拒绝域 W ;			
步骤	④由样本观测值计算统计量实测值 $g(x_1, \dots, x_n)$; 并作出判断: 当实				
	测值落)	$acksim W$ 时拒绝 $oldsymbol{\mathit{H}}$,否则认为接受 $oldsymbol{\mathit{H}}$ 。			
		当 H.为真时,而样本值却落入了拒绝域,应当否定 H.。这时,			
	第一类	我们把客观上 战成立判为 战为不成立(即否定了真实的假			
	错误	设),称这种错误为"弃真错误"或第一类错误,记 α 为犯			
		此类错误的概率,即: $P{$ 拒绝 H_0 为真 $}=\alpha$;			
		当 H.为真时,而样本值却落入了接受域,应接受 H。这时,			
两类	第二类	我们把客观上 抵不成立判为 抵成立(即接受了不真实的假			
错误	错误	设),称这种错误为"取伪错误"或第二类错误,记 β 为犯			
	.,,	此类错误的概率,即: $P{$ 接受 $H H$ 为真 $}=\beta$ 。			
	两类错	人们当然希望犯两类错误的概率同时都很小。但是,当			
	误的关	容量 n 一定时, α 变小,则 β 变大;相反地, β 变小,则 α			
	系	变大。取定 α 要想使 β 变小,则必须增加样本容量。			

2. 单正态总体均值和方差的假设检验

2. 单止念总体均值和方差的假设检验						
条件	原假设	检验统计量	统计量 分布	拒绝域		
已知 σ^2	$H_0: \mu = \mu_0$	_	N(0,1)	$ z > z_{\alpha/2}$		
	$H_0: \mu \leq \mu_0$	$Z = \frac{X - \mu_0}{\sigma / \sqrt{n}}$		$z > z_{\alpha}$		
	$H_0: \mu \geq \mu_0$	<i>O , </i>		$z < -z_{\alpha}$		
	$H_0: \mu = \mu_0$	_		$ t > t_{\alpha/2} (n-1)$		
未知 σ^2	$H_0: \mu \leq \mu_0$	$T = \frac{X - \mu_0}{S / \sqrt{n}}$	t(n-1)	$t > t_{\alpha}(n-1)$		
	$H_0: \mu \geq \mu_0$	~ · \ . · ·		$t < -t_{\alpha}(n-1)$		
	$H_0: \sigma^2 = \sigma^2$	$\chi^2 = \frac{(n-1)S^2}{\sigma_0^2}$	$\chi^2(n-1)$	$\chi^2 < \chi^2_{1-\alpha/2}(n-1)$		
未知 μ				或 $\chi^2 > \chi^2_{\alpha/2}(n-1)$		
ZICZIH PO	$H_0: \sigma^2 \le \sigma_0^2$			$\chi^2 > \chi_\alpha^2(n-1)$		
	$H_0: \sigma^2 \ge \sigma_0^2$			$\chi^2 < \chi^2_{1-\alpha} \ (n-1)$		
	$H_0: \sigma^2 = \sigma^2$	$\chi^2 = \frac{\sum_{i=1}^n (X_i - \mu)^2}{\sigma_0^2}$	$\chi^2(n)$	$\chi^2 < \chi^2_{1-\alpha/2}(n)$ 或		
已知 µ (少见)				$\chi^2 > \chi^2_{\alpha/2}(n)$		
	$H_0: \sigma^2 \le \sigma_0^2$			$\chi^2 > \chi^2_{\alpha}(n)$		
	$H_0: \sigma^2 \ge \sigma_0^2$			$\chi^2 < \chi^2_{1-\alpha} \ (n)$		