MATH 3100 – Homework #1

posted August 22, 2022; due Monday, August 29, in class or under my door by 5 PM

Section and exercise numbers correspond to the online notes. Assignments are expected to be **neat** and **stapled**. **Illegible work may not be marked**.

- 1. §1.1: Exercise 4.
- 2. §1.1: Exercise 5.
- 3. §1.1: Exercise 8.
- 4. §1.2: Exercise 5.
- 5. §1.2: Exercise 10.
- 6. §1.2: Exercise 14(b).
- 7. In class we considered the following statement: For every $n \in \mathbb{N}$ with $n \geq 12$, one can make n cents postage out of 4 cent and 5 cent stamps. Use ideas discussed in class to fill in the details of the following proof. For your submission, you are expected to write out the complete argument, on your own sheet of paper!

Let $S = \{n \in \mathbb{N} : \text{one can make } n \text{ cents postage out of 4 and 5 cent stamps}\}$. We want to show that $S \supseteq \{n \in \mathbb{N} : n \ge 12\}$. We apply complete induction with base case $n_0 = 12$.

First, $12 \in S$, since [fill this in!].

Now let $n \in \mathbb{N}$ where $n \geq 12$, and assume that all of $12, 13, \ldots n \in S$. We will show $n+1 \in S$. If n=12, 13, or 14, then $n+1 \in S$ since [fill this in !].

Thus, we can assume $n \ge 15$. Then $n + 1 \ge 16$, and $(n + 1) - 4 \ge 12$. Therefore, [fill this in!].

Hence, $n+1 \in S$. By complete induction, S contains all natural numbers $n \geq 12$, as desired.

- 8. §1.2: Exercise 19.
- 9. Define real numbers α and β by $\alpha = \frac{1+\sqrt{5}}{2}$ and $\beta = \frac{1-\sqrt{5}}{2}$.
 - (a) Check that α and β are roots of the polynomial $x^2 x 1$.
 - (b) Using (a), deduce that $\alpha^{n+1} = \alpha^n + \alpha^{n-1}$ and $\beta^{n+1} = \beta^n + \beta^{n-1}$, for every integer n. (First use (a) to explain why this holds when n = 1. Then deduce the general case. For the general case you don't need induction, just algebra!)
 - (c) Recall that the Fibonacci sequence $\{F_n\}$ is defined by $F_1 = 1$, $F_2 = 1$, and the recurrence $F_{n+1} = F_n + F_{n-1}$ for $n \ge 2$.

Use complete induction to prove that $\frac{\alpha^n - \beta^n}{\sqrt{5}} = F_n$ for all natural numbers n.

Hint: The result of (b) will be useful.

10. The following argument is an *alleged* proof that in any finite group of people, all of them have the same height:

Let S be the set of natural numbers n for which the statement "every group of n people share the same height" is true. Obviously the statement is true if there is just one person, so $1 \in S$. Now we suppose that $n \in S$, and we prove that $n + 1 \in S$. Take any group of n + 1 people, say A_1, \ldots, A_{n+1} . Since $n \in S$, it must be that A_1, \ldots, A_n all share the same height, and similarly for A_2, \ldots, A_{n+1} . But these two groups overlap; for instance, the second person A_2 is in both. So all of our n + 1 people have the same height (indeed, everyone is the same height as A_2). Thus, $n + 1 \in S$. So by induction, S is all of the natural numbers.

Clearly explain the mistake in the proof.