Image Selection

I tried to use my keyboard to control the car, but it cannot turn smoothly, so i just choose the default udacity data.

Image Preprocess

- If we only have normal driving data, we cannot get the car back on track
 when the car is off trak, so I use images from left/right camera for training,
 pretend to be off track.
- 2 tracks have more left turn than right turn, so I flip the image to make neural network see the more right turn cases.
- Random change the lightness of image to prevent neural network overfitting.
- Crop images. The sky and headstock is not informative and may cause overfitting.
- Resize images. Decrese the image size without lossing information can make the neural network feel comfortable and train faster.

original

brightness

crop

resize

Network Architecture

 Because the image from this task is more complex than the traffic sign task, So I think NN need more conv layer and full-connected layer. And I

- think the architecture from the paper that udacity suggested is a good starting point.
- I use 5 conv/maxpooling layer and 5 full-connected layer. The feature map depth is from 24 to 64 because I think the low level feature such as edges, lines is limited and the high level features are more diversiform because it combines the low level features.
- I didn't use dropout because it trains slower and no dropout is just work well.
- Learning rate 0.001, 0.0001, 0.00001 all works, but i found 0.00001 works better.