Ejercicios 16-31

Arruti, Sergio

Lema 1. Sea f un morfismo en Sets, entonces

- a) $f:A\hookrightarrow B$ es un mono en Sets si y sólo si f es inyectiva;
- b) $f: A \rightarrow B$ es un epi en Sets si y sólo si f es suprayectiva.

Demostración. a) Notemos primeramente que una función vacía \varnothing_C , $C \in Sets$, es inyectiva por la vacuidad de su dominio. Más aún, es un mono en Sets, en efecto: si $g,h \in Sets$ son tales que $\varnothing_C f = \varnothing_A g$, entonces necesariamente $D = \varnothing_A g$ y así, dado que existe una única función de \varnothing en \varnothing , f = g. Con lo cual la afirmación es válida para funciones vacía y podemos suponer sin pérdida de generalidad que $A \neq \varnothing$ (y en consecuencia que $B \neq \varnothing$).

a) \Longrightarrow Sean $a, b \in A$ tales que f(a) = f(b), entonces las funciones

$$g: A \to A$$
$$x \mapsto a,$$
$$h: A \to A$$
$$x \mapsto b.$$

satisfacen que fg = fh, luego g = h por ser f mono y por tanto a = b. a bSupongamos que $g, h \in \text{son tales que } fg = fh$. Si $A' = \emptyset$ entonces

 $\overline{g=\varnothing_A}=h;$ en caso contrario sea $a\in A',$ así

$$\begin{split} f\left(g\left(a\right)\right) &= fg\left(a\right) = fh\left(a\right) = f\left(h\left(a\right)\right) \\ &\Longrightarrow g\left(a\right) = h\left(a\right), & f \text{ es inyectiva} \\ &\Longrightarrow g = h. \end{split}$$

- b) Verificaremos primero que la función \varnothing_\varnothing i.e. la única función cuyo dominio y contradominio es \varnothing es epi y suprayectiva. Si $g,h\in$ son tales que $g\varnothing_\varnothing=h\varnothing_\varnothing$, entonces $g=\varnothing_Z=h$; por su parte la suprayectividad de \varnothing_\varnothing se sigue por la vacuidad de su contradominio. Así, en adelante podemos suponer sin pérdida de generalidad que $B\neq\varnothing$.
- $b) \implies$ Notemos que necesariamente $A \neq \emptyset$, pues en caso contrario las apli-

caciones

$$\phi: B \to \{0, 1\}$$

$$x \mapsto 0,$$

$$\psi: B \to \{0, 1\}$$

$$x \mapsto 1,$$

son funciones bien definidas, pues $B \neq \emptyset$, las cuales satisfacen que $\phi \neq \psi$ y sin embargo $\phi f = \varnothing_{\{0,1\}} = \psi f$, lo cual contradeciría que f es epi. Así $1_B|_{f(A)}$ no es una función vacía y más aún satisface que

$$\begin{aligned} \mathbf{1}_{B}|_{f(A)}\,f &= f = \mathbf{1}_{B}f\\ &\implies \mathbf{1}_{B} = \mathbf{1}_{B}|_{f(A)}\,, & f \text{ es epi}\\ &\implies f\left(A\right) = B\\ &\implies f \text{ es suprayectiva.} \end{aligned}$$

b) \Leftarrow Sean $g, h \in Hom_{Sets}(B, C)$ tales que gf = hf y $b \in B$. Como f es suprayectiva $\exists a \in A \ f(a) = b$, así

$$g(b) = gf(a) = hf(a) = h(b)$$

 $\implies g = h.$

Ej 16.

Ej 17. Pruebe que, para un anillo R, La categoría Mod(R) tiene uniones.

Demostración. Sean $A\in Mod(R),$ $\{\alpha_i:A_i\hookrightarrow A\}_{i\in I}$ en Mod(R)y la inclusión de submódulos

$$\nu \colon \sum_{i \in I} Im(\alpha_i) \longrightarrow A.$$

Recordemos que $\left(x \in \sum_{i \in I} Im(\alpha_i) \iff x = \sum_{i \in J} \alpha_j(a_j)\right)$ con J finito y $a_j \in A_j$ para cada $j \in J$.

$$\boxed{U_1) \quad (\alpha_i \le \nu \ \forall i \in I)}$$

Como $\alpha_i(x) \in Im(\alpha_i) \ \forall x \in A_i$, entonces definimos $\nu_i : A_i \to Im(\alpha_i)$ como $\nu_i(x) = \alpha_i(x)$. Observemos que $\nu_i(x) \in \sum_{i \in I} Im(\alpha_i)$ pues si $J = \{i\}$

entonces $\sum_{i\in J} \alpha_i(x) = \alpha_i(x) = \nu(x)$. Por lo tanto $\alpha_i(x) = \nu \circ \nu_i(x)$ y así $\alpha_i \leq \nu \ \forall i \in I$.

 $\overline{U_2)}$ Supongamos $f:A\to B$ en $\mathscr C$ es tal que cada u_i es llevado via f, a algún subobjeto $\mu:B'\hookrightarrow B$. Tal como se muestra en el siguiente diagrama:

Como para todo $x \in \sum_{j \in I} Im(\alpha_j), \quad x = \alpha_{i_0}(x_0) + \ldots + \alpha_{i_n}(x_n)$ donde $x_n \in A_{i_n}$ e $i_n \in J \ \forall i \in \{1, \ldots, n\},$ así definimos $g : \sum_{j \in I} Im(\alpha_j) \longrightarrow B'$

como $g(x) = f'_{i_0}(x_o) + \ldots + f'_{i_n}(x_n)$. Observemos que es morfismo de módulos:

Sean $r \in R$, $a, b \in \sum_{i \in I} Im(\alpha_i)$ y supongamos que

$$a = \alpha_{h_0}(a_0) + \ldots + \alpha_{h_n}(a_n)$$

$$b = \alpha_{k_0}(b_0) + \ldots + \alpha_{k_m}(b_m) \qquad n, m \in \mathbb{N}.$$

Así

$$g(ra+b) = g(r\alpha_{h_0}(a_0) + \dots + r\alpha_{h_n}(a_n) + r\alpha_{k_0}(b_0) + \dots + r\alpha_{k_m}(b_m))$$

$$= g(\alpha_{h_0}(ra_0) + \dots + \alpha_{h_n}(ra_n) + \alpha_{k_0}(b_0) + \dots + \alpha_{k_m}(b_m))$$

$$= f'_{h_0}(ra_0) + \dots + f'_{h_n}(ra_n) + f'_{k_0}(b_0) + \dots + f'_{k_m}(b_m)$$

$$= (rf'_{h_0}(a_0) + \dots + rf'_{h_n}(a_n)) + f'_{k_0}(b_0) + \dots + f'_{k_m}(b_m)$$

$$= r(f'_{h_0}(a_0) + \dots + f'_{h_n}(a_n)) + f'_{k_0}(b_0) + \dots + f'_{k_m}(b_m)$$

$$= ra(a) + a(b)$$

Por lo tanto es morfismo.

Así $\forall x \in \sum_{i \in I} Im(\alpha_i)$ se tiene que

$$\mu g(x) = \mu \left(\sum_{k=0}^{n} f'_{i_k}(x_k) \right) = \sum_{k=0}^{n} \mu f'_{i_k}(x_k)$$
$$= \sum_{k=0}^{n} f \alpha_{i_k}(x_k) = f \left(\sum_{k=0}^{n} \alpha_{i_k}(x_k) \right)$$
$$= f \nu(x).$$

Por lo tanto $\sum_{i \in I} Im(\alpha_i)$ es la unión categorica.

Ej 18. Sean \mathscr{C} una categoría con ecualizadores $\alpha, \beta \colon A \to B$ y $\{\mu_i: A_i \hookrightarrow A\}_{i \in I}$ tal que existe $\mu: \bigcup_{i \in I} A_i \longrightarrow A$. Pruebe que $(\alpha \mu_i = \beta \mu_i \ \forall i \in I) \Rightarrow (\alpha \mu = \beta \mu)$.

$$(\alpha \mu_i = \beta \mu_i \ \forall i \in I) \Rightarrow (\alpha \mu = \beta \mu).$$

Demostración. Supongamos $\alpha \mu_i = \beta \mu_i \ \forall i \in I$ entonces se tiene el siguiente diagrama:

$$\begin{array}{c}
A_i \\
\downarrow^{\mu_i} \\
A \xrightarrow{\alpha} B
\end{array}.$$

Como $\mathscr C$ tiene ecualizadores, existe $\eta:K\to A$ tal que $\alpha\eta=\beta\eta$ y si $f: X \to A$ en $\mathscr C$ es tal que $\beta f = \alpha f$, entonces $\exists ! f': X \to K$ tal que $\eta f' = f$.

Así como $\alpha \mu_i = \beta \mu_i \ \forall i \in I$, entonces para cada $i \in I \ \exists ! \mu_i' : A_i \to K \ \text{tal}$ que $\eta \mu'_i = \mu_i$, es decir, se tiene que para cada $i \in I$ el siguiente diagrama conmuta:

$$\begin{array}{c}
A_i \\
\downarrow \\
K \xrightarrow{\eta} A \xrightarrow{\beta} B
\end{array}$$

es decir, $\eta f_i = \mu_i$. Ahora por (U_1) de las propiedades de la unión, se tiene que el siguiente diagrama conmuta

$$\bigcup_{i \in I} A_i \xrightarrow{\mu_i} A \xrightarrow{\alpha} B$$

por lo que $\mu f_i' = \mu_i = \eta f_i$.

Notemos entonces que, como $\alpha \eta = \beta \eta$, se tiene el siguiente diagrama para cada $i \in I$ y para f igual a α y β :

Entonces por (U_2) de las propiedades de la unión, existen $\gamma_{\alpha}, \gamma_{\beta}: \bigcup_{i \in I} A_i \longrightarrow K$ tal que $\alpha \eta \gamma_{\alpha} = \alpha \mu$ y $\alpha \eta \gamma_{\beta} = \beta \mu$. Pero $\beta \eta = \alpha \eta$ por lo tanto $\alpha \mu = \alpha \eta \gamma_{\alpha} = \beta \eta \gamma_{\beta} = \beta \mu$.

Además, como $\alpha \mu_i = \beta \mu_i$, entonces se tiene el siguiente diagrama conmutativo:

Entonces, por la propiedad universal de la unión existe $\theta:\bigcup_{i\in I}A_i\longrightarrow B$ tal que $\alpha\mu=Id\theta=\theta$. Análogamente se tiene que existe $\theta':\bigcup_{i\in I}A_i\longrightarrow B$ tal que $\beta\mu=Id\theta'=\theta'$, y como $\mathscr C$ tiene igualadores entonces existe $\gamma:X\to\bigcup_{i\in I}A_i$ tal que $\mu_i=\eta\mu_i'$.

Por lo que $\bigcup_{i \in I} A_i$

Ej 19.

Ej 20.

Ej 21. Pruebe que Sets tiene coimagenes.

Demostración. Sea $f: A \to B$ en Sets. Consideremos la relación \sim_f en A, donde $x \sim_f y$ si y sólo si f(x) = f(y).

Esta relación (que denotaremos por \sim por simplicidad) es una relación de equivalencia como se muestra a continuación:

Reflexividad Sea $x \in A$, como f(x) = f(x) entonces $x \sim x$.

Simetría Sean $a, b \in A$ tales que $a \sim b$, entonces f(a) = f(b), por lo que f(b) = f(a) y así $b \sim a$.

Transitividad Sean $x, y, z \in A$ tales que $x \sim y, y \sim z$, entonces f(x) = f(y) = f(z) por lo tanto f(x) = f(z) y en consecuencia $x \sim z$.

Sea $\pi: a \to A/\sim$ el epi canonico donde $\pi(a) = [a] := \{x \in A \mid x \sim a\}$, se afirma que es una coimagen de f.

Observemos que, si $A, B \neq \emptyset$, para toda $b \in B$ tal que b = f(a) con $a \in A$ se tiene que $\pi(a) = [a]$ por lo que se puede definir $f' : A / \sim B$ como f'([a]) = f(a). Así se tiene que:

(1) f' está bie definida.

Sean $[a][b] \in [x]$ con $[x] \in A/\sim$, entonces $a \sim x \sim b$, por lo que f(a) = f(x) = f(b), es decir, f'([a]) = f'([b]).

(2) $(f = f'\pi)$.

Sea $a \in A$. $f'\pi(a) = f'([a]) = f(a)$.

Para ver que $(CoIm_2)$ se cumple, supongamos que existe $p': A \to J'$ un objeto cociente de A tal que $\exists f'': J' \to B$ donde f = f''p'. Sea $a \in A$, entonces $\pi(a) = [a]$ y $p'(a) = a' \in J'$. Como p' es epi en Sets entonces es supra, así para todo $x \in J'$ existe $a_x \in A$ tal que $p'(a_x) = x$, así definimos $\nu: J' \to A/\sim \text{como } \nu(x) = \pi(a_x)$.

Se tiene entonces que $\forall a \in A$, $\nu p'(a) = \nu(p'(a)) = \pi(a)$.

En el caso de que B sea el conjunto vacio, entonces A tiene que ser el conjunto vacio y $f:A\to B$ es la función vacia, así f=p tiene que ser su coimagen pues si $f':B\to B$ es la función identidad en B, entonces

f = f'p y si $p' : B \rightarrow B$ es un objeto cociente de A tal que $f'' : J' \rightarrow B$ con f''p' = f entonces $f'' : J' \rightarrow B$ es la función vacia y J' es el conjunto vacio. Así $p' : A \rightarrow J'$ es la función vacia y por lo tanto p' = p y $Id_{J'} \circ p' = p$.

En caso de que A sea el conjunto vacio y B sea distinto del vacio, entonces $(CoIm_1)$ se cumple igual que en el caso anterior, tomando a $p: \emptyset \to \emptyset$.

Para probar $(CoIm_2)$ supongamos que $p': A \to J'$ es un objeto cociente de A tal que $existsf'': J' \to B$ tal que f = f''p', pero p' es epi, y como $A = \emptyset$ entonces $J' = \emptyset$. Así, si definimos u como la identidad en el vacio se tiene que p = up'.

Ej 22. Pruebe que Mod(R) tiene coimagenes.

Demostración. Sea $A \in Obj(Mod(R))$, entonces $A \neq \emptyset$. Se afirma que el epi canonico $\pi: A \to A/Ker(f)$ es una coimagen.

Sea $a \in A$, entonces $f(a) \in B$. Definimos $f': \frac{A}{Ker(f)} \to B$ como f'([a]) = f(a).

Probemos que está bien definido. Sean $a, b \in [x]$ entonces $a + k_1 = b + k_2 = x$ con $k_1, k_2 \in Ker(f)$, asi

$$f'([a]) = f(a) = f(a) + f(K_1) = f(a + K_1)$$

= $f(b + K_2) = f(b) + f(K_2) = f(b) = f'([b]).$

Veamos que es morfismo. Sean $r \in R$, $[a], [b] \in {}^{A}/_{Ker(f)}$ entonces

$$f'(r[a] + [b]) = f'([ra + b]) = f(ra + b) = rf(a) + f(b) = f'(r[a]) + f'([b]).$$

En consecuencia se tiene que π cumple $(CoIm_1)$.

Ahora supongamos que $p':A \to J'$ es un objeto cociente de A tal que existe $f'':J'\to B$ que cumple que f=f''p'. Como p' es epi, entonces es suprayectiva en Mod(R), porlo que para cada $x\in J'$ existe $a\in A$ tal que p'(a)=x.

Definimos $\nu: J' \to A/\ker(f)$ como $\nu(x) = [a]$ donde p'(a) = x. Esta función está bien definida pues si $a, b \in A$ son tales que p'(a) = p'(b) entonces f''p'(a) = f''p'(b) y así f(a) = f(b), entonces f(a - b) = 0, por lo que $a - b \in Ker(f)$ y en consecuencia [a] = [b].

Veamos que ν es morfismo. Si $r \in R$ $a, b \in J'$ donde $\nu(a) = [x], \nu(b) = [y], a = p'(x)$ y b = p'(y), entonces

$$\nu(ra+b) = \nu(rp'(x) + p'(y)) = \nu(p'(rx+y))$$

= $[rx+y] = r[x] + [y] = r\nu(a) + \nu(b).$

Así se tiene que $\forall a \in A \ \nu p'(a) = \nu(p'(a)) = [a] = \pi(a)$ por lo que $(CoIm_2)$ se cumple y Mod(R) tiene coimagenes.

Ej 23.

Ej 24.

Ej 25. Considere el siguiente diagrama conmutativo en una categoría $\mathscr C$

Pruebe que: si $\exists f^{-1}(B')$ y $B' \cap Y$, entonces $f^{-1}(I \cap B') = f^{-1}(B')$ en $Mon_{\mathscr{C}}(-,A)$.

Demostraci'on. Como $f^{-1}(B')$ y $B'\cap I$ existen, entonces se tienen los siguientes diagramas conmutativos:

 $I \cap B' \xrightarrow{\nu_1} I \xrightarrow{i} \mu$ $B' \xrightarrow{h} B$

Así se tiene que este diagrama

es conmutativo. Por lo tanto, como $I\cap B'$ es pull-back existe un único $\gamma:f^{-1}(B')\to I\cap B'$ tal que el siguiente diagrama conmuta:

Sean $\eta: X \to I \cap B'$, $\eta_2: X \to A$ tales que $i\eta_1 = f\eta_2$.

Observamos que, entonces, $\nu_2\eta_1:X\to B'$ y es tal que $h(\nu_2\eta_1)=i\eta_1=f\eta_2.$

Así, como $f^{-1}(B')$ es pull-back de $A \xrightarrow{f} B \xleftarrow{\mu} B'$, existe una única $\gamma': X \to f^{-1}(B')$ tal que $\nu_2 \gamma \gamma' = \nu_2 \eta_1$ y $\beta_1 \gamma' = \eta_2$ pero ν_2 es mono por ser i mono. Entonces $\gamma \gamma' = \eta_1$ y $\beta_1 \gamma' = \eta_2$.

Ahora, si existiera $\alpha: X \to f^{-1}(B')$ tal que $\beta_1 \alpha = \eta_2$ y $\gamma \alpha = \eta_1$, entonces $\nu_2 \gamma \alpha = \gamma_2 \eta_1$ y por lo anterior $\alpha = \gamma'$ pues es el único con esas propiedades. Por lo tanto $f^{-1}(B')$ es un pull-back, del diagrama (1), e implica que $f^{-1}(I \cap B')$ existe y sea igual a $f^{-1}(B)$ con los morfismos γ y β_1 .

- **Ej 26.** Sea $f:A\to B$ en una categoría $\mathscr C$. Consideremos subobjetos $A_1\subseteq A_2\subseteq A$ y $B_1\subseteq B_2\subseteq B$. Pruebe que se satisfacen las siguientes relaciones cada vez que ambos lados estén definidos.
 - a) $f(A_1) \subseteq f(A_2)$
 - b) $f^{-1}(B_1) \subseteq f^{-1}(B_2)$
 - $c) \quad A_1 \subseteq f^{-1}(f(A_1))$
 - $d) \quad f(f^{-1}(B_1)) \subseteq B_1$

Demostraci'on. Comenzaremos por nombrar monomorfismos correspondientes como subobjetos de Ay de B

$$A_1 \xrightarrow{\mu_1} A_2 \xrightarrow{\mu_2} A$$

$$B_1 \xrightarrow{\gamma_1} B_2 \xrightarrow{\gamma_2} B$$

a) Sabemos que $f(A_1) = Im(f\mu_2\mu_1)$ y $f(A_2) = Im(f\mu_2)$. Llamaremos

$$\mu'_1: Im(f\mu_2\mu_1) \to B$$
, $\alpha_1: A_2 \to Im(f\mu_2\mu_1)$, $\mu'_2: Im(f\mu_2) \to B$ y $\alpha_2: A_2 \to Im(f\mu_2)$

a los morfismos tales que $f\mu_2 = \mu_2'\alpha_2$ y $f\mu_2\mu_1 = \mu_1'\alpha_1$. Entonces $f\mu_2\mu_1 = (\mu_2'\alpha_2)\mu_1$. Por la propiedad universal de la imagen en $Im(f\mu_2\mu_1)$ existe $\gamma: Im(f\mu_2\mu_1) \to Im(f\mu_2)$ tal que $\mu_2'\gamma = \mu_1$. En particular γ es mono, entonces $Im(f\mu_2\mu_1) \subseteq Im(f\mu_2)$ y así $f(A_1) \subseteq f(A_2)$.

b) Como se tienen los siguientes diagramas conmutativos

en particular se tiene que $f\beta_1 = \nu_2(\nu_1\beta_2)$ y este diagrama es conmutativo:

$$\begin{array}{ccc}
f^{-1}(B_1) & \xrightarrow{\nu_1 \beta_2} & B_2 \\
& & \downarrow & \downarrow \\
& & A & \xrightarrow{f} & B
\end{array}$$

Entonces $\exists \eta: f^{-1}(B_1) \to f^{-1}(B_2)$ tal que $\beta'_2 \eta = \nu \beta_2$ y $\beta'_1 \eta = \beta_1$

Como $f^{-1}(B_2)$ es pull-back, y ν_2 es mono, entonces β_1' es mono y por lo tanto η es mono. Así $f^{-1}(B_1) \subseteq f^{-1}(B_2)$.

c) Puesto que $f^{-1}(f(A_1))$ es un pull back, tenemos un diagrama conmutativo de la siguiente forma:

$$\begin{array}{ccc}
f^{-1}(f(A_1)) & \xrightarrow{f_2} & f(A_1) \\
\downarrow^{f_1} & & \downarrow^{\mu'_1} \\
A & \xrightarrow{f} & B
\end{array}$$

Además (apoyandonos con la notación del inciso a)) tenemos que el siguiente diagrama conmuta $\,$

$$\begin{array}{ccc}
A_1 & \xrightarrow{\alpha_1} & f(A_1) \\
\downarrow^{\mu_2 \mu_1} & & \downarrow^{\mu'_1} \\
A & \xrightarrow{f} & B
\end{array}$$

Entonces, por ser $f^{-1}(f(A_1))$ un pull-back, $\exists ! g : A_1 \to f^{-1}(f(A_1))$ tal que $f_2g = \alpha_1$ y $f_1g = \mu_2\mu_1$.

Como $\mu_2\mu_1$ es mono por ser μ_2 y μ_1 monos, entonces g es mono y así $A_1\subseteq f^{-1}(f(A_1))$.

d) Observemos que, como $f^{-1}(B_1)$ es pull-back, el diagrama

$$\begin{array}{ccc}
f^{-1}(B_1) & \xrightarrow{\beta_2} & B_1 \\
& & \downarrow \\
\beta_1 & & \downarrow \\
A & \xrightarrow{f} & B
\end{array}$$

conmuta, entonces por propiedades de las imagenes, existen $\mu::Im(f\beta_1)\hookrightarrow B$ y $f':f^{-1}(B_1)\to Im(f\beta_1)$ tales que el siguiente diagrama

$$\begin{array}{ccc}
f^{-1}(B_1) & \xrightarrow{f'} & Im(f\beta_1) \\
\beta_2 & & & \downarrow \\
B_1 & \xrightarrow{f\beta_1} & & B
\end{array}$$

es un diagrama conmutativo, por lo que existe un único $g': Im(f\beta_1) \to B_1$, tal que $\nu_2\nu_1g' = \mu$ y $gf' = \beta_2$ dado por la propiedad universal de las imagenes. Mas aún, notemos que g' es mono, pues μ es mono y $\mu = \nu_2\nu_1g'$. Así $f\beta_1 = \nu_2\nu_1\beta_2$. Por lo que $Im(f\beta_1) = f(f^{-1}(B_1)) \subseteq B_1$.

Ej 27.

Ej 28.

Ej 29. Pruebe que Mod(R) tiene kerneles.

Demostración. Sea $f: A \to B$ morfismo en Mod(R), $K = \{x \in A \mid f(x) = 0\}$ y $\mu: K \to A$ la función inclusión.

Primero demostraremos que $K \leq A$.

Sean $r \in R$ $a, b \in K$, entonces $f(ra + b) = rf(a) + f(b) = r \cdot 0 + 0 = 0$, por lo tanto $ra + b \in K$, entonces $K \in Mod(R)$ y μ es morfismo.

 Ker_1 Como $f\mu: K \to B$ y para toda $x \in K$ se tiene que $f\mu(x) = f(\mu(x)) = f(x) = 0$ entonces $f\mu = 0$.

 Ker_2 Supongamos $g: X \to A$ es un morfismo tal que fg = 0, entonces $g(x) \in K$ pues f(g(x)) = 0. Así definimos el morfismo $h: X \to K$ tal que h(x) = g(x), entonces $\mu h(x) = \mu(g(x)) = g(x) \ \forall x \in X$, por lo tanto $\mu h = g$ y así K es kernel de f.

Por lo tanto Mod(R) tiene kernels.

Ej 30. Pruebe que Mod(R) tiene cokernels.

Demostración. Sea $f: M \to N$ en Mod(R). Como f es morfismo de R- módulos, entonces $im(f) \leq N$.

Consideremos $\pi: N \to N/Im(f)$, donde $\pi(k) = k + Im(f)$ es la proyección canónica. Se afirma que π es un cokernel de f.

CoKer₁ Para toda $x \in M$ se tiene que $\pi f(x) = \pi(f(x)) = 0$ pues $f(x) \in Im(f)$.

 $[CoKer_2]$ Propiedad universal. Supongamos existe $g: N \to X$ un morfismo de modulos tal que gf = 0, entonces definimos $g': {}^{N}/_{Im(f)} \to X$ de tal forma tal que $\forall [x] \in {}^{N}/_{Im(f)}$, g'([x]) = g(x), donde [x] es el representante de la clase de equivalenia de x.

Sean $[x], [y] \in ^{N}/_{Im(f)}$ y $r \in R$, entonces

$$g'(r[x] + [y]) = g'([rx + y]) = g(rx + y) = rg(x) + g(y) = rg'(x) + g'(y).$$

Observamos que g' está bien definida, pues si $a, b \in [x]$, etonces existen $k_1, k_2 \in Im(f)$ tales que $a + k_1 = b + k_2 = x$ y $g(k_1) = g(k_2) = 0$, entonces

$$g'([a]) = g(a) = g(a) + g(k_1) = g(a+k_1) = g(b+k_2) = g(b) + g(k_2) = g(b) = g([b]).$$

Por lo tanto g' es un morfismo de R-módulos y $g'\pi(x)=g'([x])=g(x)$ por lo que $g'\pi=g$ y así π es Cokernel.