

Description

The VSM3400E uses advanced trench technology to provide excellent $R_{DS(ON)}$, low gate charge and operation with gate voltages as low as 2.5V. This device is suitable for use as a Battery protection or in other Switching application. It is ESD protested.

General Features

• $V_{DS} = 30V, I_D = 5.3A$

 $R_{DS(ON)}$ < 57m Ω @ V_{GS} =2.5V

 $R_{DS(ON)}$ < 40m Ω @ V_{GS} =4.5V

 $R_{DS(ON)}$ < 33m Ω @ V_{GS} =10V

- High power and current handing capability
- Lead free product is acquired
- Surface mount package
- PWM applications
- Load switch
- Power management

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VSM3400E-S2	VSM3400E	SOT-23-3	Ø180mm	8 mm	3000 units

Absolute Maximum Ratings (T_A=25 ℃unless otherwise noted)

Parameter	Symbol	Limit	Unit
Drain-Source Voltage	V _{DS}	30	V
Gate-Source Voltage	Vgs	±12	V
Drain Current-Continuous	I _D	5.3	Α
Drain Current-Pulsed (Note 1)	I _{DM}	22	Α
Maximum Power Dissipation	P _D	1.4	W
Operating Junction and Storage Temperature Range	T_{J} , T_{STG}	-55 To 150	$^{\circ}\!\mathbb{C}$

Thermal Characteristic

Thermal Resistance, Junction-to-Ambient (Note 2)	R _{0JA}	89	°C/W

Electrical Characteristics (T_A=25°C unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit	
Off Characteristics							
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250μA	30	-	-	V	
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =30V,V _{GS} =0V	-	-	1	μΑ	

Gate-Body Leakage Current	I _{GSS}	$V_{GS}=\pm10V, V_{DS}=0V$	-	-	±10	μA	
On Characteristics (Note 3)							
Gate Threshold Voltage	hreshold Voltage $V_{GS(th)}$ $V_{DS}=V_{GS}$, $I_D=20$		0.6	0.9	1.2	V	
	R _{DS(ON)}	V _{GS} =2.5V, I _D =4A	-	27	57	mΩ	
ain-Source On-State Resistance		V _{GS} =4.5V, I _D =5A	-	23	40	mΩ	
		V _{GS} =10V, I _D =5.3A	-	21	33	mΩ	
Forward Transconductance	g FS	V_{DS} =5 V , I_{D} =5 A	10	-	-	S	
Dynamic Characteristics (Note4)							
Input Capacitance	C _{lss}	\\ 45\\\\ 0\\	-	597	-	PF	
Output Capacitance	Coss	V_{DS} =15V, V_{GS} =0V, F=1.0MHz	-	66.4	-	PF	
Reverse Transfer Capacitance	C _{rss}	r-1.0ivinz	-	58.8	-	PF	
Switching Characteristics (Note 4)							
Turn-on Delay Time	t _{d(on)}		-	3	-	nS	
Turn-on Rise Time	t _r	V_{DD} =15V, R_L =2.8 Ω	-	2.8	-	nS	
Turn-Off Delay Time	t _{d(off)}	V_{GS} =10 V , R_{GEN} =3 Ω	-	25	-	nS	
Turn-Off Fall Time	t _f		-	4	-	nS	
Total Gate Charge	Qg		-	9.1	-	nC	
Gate-Source Charge	Q _{gs}	V_{DS} =15V, I_{D} =5.3A, V_{GS} =4.5V	-	2.1	-	nC	
Gate-Drain Charge	Q_{gd}	V _{GS} -4.5V	-	2.8	-	nC	
Drain-Source Diode Characteristics							
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =5.3A	-	-	1.2	V	
Diode Forward Current (Note 2)	Is		-	-	5.3	Α	

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. Surface Mounted on FR4 Board, t ≤ 10 sec.
- **3.** Pulse Test: Pulse Width ≤ 300μ s, Duty Cycle ≤ 2%.
- **4.** Guaranteed by design, not subject to production

Typical Electrical and Thermal Characteristics

Figure 1:Switching Test Circuit

Figure 3 Power Dissipation

Figure 5 Output Characteristics

Figure 2:Switching Waveforms

Figure 4 Drain Current

Figure 6 Drain-Source On-Resistance

Figure 7 Transfer Characteristics

Vgs Gate-Source Voltage (V)

Figure 9 Rdson vs Vgs

Figure 11 Gate Charge

Figure 8 Drain-Source On-Resistance

Vds Drain-Source Voltage (V)

Figure 10 Capacitance vs Vds

Figure 12 Source- Drain Diode Forward

Vds Drain-Source Voltage (V)

Figure 13 Safe Operation Area

Square Wave Pluse Duration(sec)

Figure 14 Normalized Maximum Transient Thermal Impedance