Presentation on Bauer and Kohler (2019)

1

Chencheng Fang

Bonn Graduate School of Economics

2022-06-27

¹Bauer, B. and Kohler, M. (2019), On Deep Learning as a Remedy for the Curse of Dimensionality in Nonparametric Regression, The Annuals of Statistics 47(4): 2261-2285

Curse of Dimensionality

Recap: Curse of Dimensionality

• Write a **one-dimensional** non-parametric model

$$Y = g(X) + U, E[U|X] = 0$$

Main result:

$$\int (\hat{g}(x)-g(x))^2 f_X(x) dx = O_p(K_n/n+K_n^{-2\alpha})$$

• In case of fastest rate of convergence, the variance and squared bias need to converge at the same rate. Then,

$$\int (\hat{g}(x) - g(x))^2 f_X(x) dx = \boxed{O_p(n^{-\frac{2\alpha}{1+2\alpha}})}$$

• With more smoothness, i.e., higher α , we have higher rate of convergence.

Recap: Curse of Dimensionality

• However, now write a higher-dimensional non-parametric model

$$Y = g(X^{(1)}, X^{(2)}, \dots, X^{(d)}) + U, E[U|X] = 0$$

• Then, the mean square rate of convergence is

$$O_p(K_n^d/n+K_n^{-2\alpha})$$

• By following similar arguments as before, $K_n \approx n^{\frac{1}{d+2\alpha}}$ in case of fastest rate of convergence. Then, mean square rate of convergence becomes

$$O_p(n^{-\frac{2\alpha}{d+2\alpha}})$$

• Here comes the problem of curse of dimensionality

Main result of paper

Additive and Interaction Model

• Stone (1985) assumes an additivity condition:

$$m(X^{(1)}, X^{(2)}, \cdots, X^{(d)}) = m_1(X^{(1)}) + \cdots + m_d(X^{(d)})$$

Now, the optimal rate of convergence of additive model is

$$O_p(n^{-\frac{2p}{1+2p}}).$$

• Stone (1994) generalized this to interaction model. Suppose for some $d^* \in \{1, \ldots, d\}$, the model is:

$$m(X) = \sum_{I \subseteq \{1,\ldots,d\}, |I| = d^*} m_I(X_I)$$

where $X=(X^{(1)},\ldots,X^{(d)})^T\in\mathbb{R}^d$, all m_I are smooth functions defined on $\mathbb{R}^{|I|}$ and for $I=\{i_1,\cdots,i_{d^*}\}$ with $1\leq i_1\leq\cdots\leq i_{d^*}\leq d$, the abbreviation $X_I=(X^{(i_1)},\cdots,X^{(i_{d^*})})^T$ is used. \ Now, the optimal convergence rate of interaction model is $O_p(n^{-\frac{2p}{d^*+2p}})$.

Single Index Models and Projection Pursuit

• Single index model:

$$m(X) = g(a^T X), (X \in \mathbb{R}^d)$$

where $g: \mathbb{R} \to \mathbb{R}$ and $a \in \mathbb{R}^d$.

• Single index model is extended to so called projection pursuit:

$$m(X) = \sum_{k=1}^{K} g_k(a_k^T X), (X \in \mathbb{R}^d)$$

where $K \in \mathbb{N}$, $g_k : \mathbb{R} \to \mathbb{R}$ and $a_k \in \mathbb{R}^d$.

 Horowitz and Mammen (2007) further studies the following model (simplified):

$$m(X) = F(m_1(X^1) + \cdots + m_d(X^{(d)})) + U$$

• A univariate rates of convergence, i.e., $O_p(n^{-\frac{2p}{1+2p}})$ has been proved for above three models, up to some logarithmic factor.

Generalized Hierarchical Interaction Model

- Motivation: Applications in complex technical system, which are constructed in modular form. Each modulars depends only on a few of the components of a high-dimensional input.
- Let $d \in \mathbb{N}$, $d^* \in \{1, \dots, d\}$ and $m : \mathbb{R}^d \to \mathbb{R}$
 - **1** m is a gerneralized hierarchical interaction model of order d^* and level 0, if $\exists a_1, \dots, a_{d^*} \in \mathbb{R}^d$ and for $f : \mathbb{R}^{d^*} \to \mathbb{R}$, s.t. for all $X \in \mathbb{R}^d$,

$$m(X) = f(a_1^T X, \cdots, a_{d^*}^T X)$$

2 m is a gerneralized hierarchical interaction model of order d^* and level l+1, if $\exists \quad K \in \mathbb{N}, \ g_k : \mathbb{R}^{d^*} \to \mathbb{R} (k=1,\cdots,K)$ and $f_{1,k},\cdots,f_{d^*,k} : \mathbb{R}^d \to \mathbb{R} (k=1,\cdots,K)$, s.t. $f_{1,k},\cdots,f_{d^*,k} (k=1,\cdots,K)$ satisfy a generalized hierarchical interation model of order d^* and level l, for all $X \in \mathbb{R}^d$.:

$$m(X) = \sum_{k=1}^{K} g_k(f_{1,k}(X), \cdots, f_{d^*,k}(X))$$

Generalized Hierarchical Interaction Model (Example)

FIG. 2. Illustration of the components of a function from $\mathcal{H}^{(l)}$.

Multilayer Feedforward Neural Networks

- Single hidden layer neural network:
 - 1 Barron(1994): L_2 error has a dimensionless rate of $\lfloor n^{-1/2} \rfloor$ (up to some logarithmic factor), provided the Fourier transform has a finite first moment.
 - 2 McCaffrey and Gallant(1994): L_2 error has a rate of $\left\lfloor n^{-\frac{2p}{2p+d+5}+\epsilon} \right\rfloor$ for a suitably defined single hidden layer neural network estimate for (p,C)-smooth functions.
- Two and multi-layer neural network:
 - 1 Kohler and Krzyżak (2005): Suitable two layer nn estimates achieve a rate of convergence of $n^{-\frac{2\rho}{2\rho+d^*}}$ (up to some logarithmic factor) for (ρ, C) -smooth interaction models with $\rho \leq 1$.
 - 2 Kohler and Krzyżak (2017): Suitable defined multilayer nn estimates achieve a rate of convergence of $n^{-\frac{2p}{2p+d^*}}$ (up to some logarithmic factor) for (p,C)-smooth interaction models with $p \leq 1$.

Multilayer Feedforward Neural Networks

- Bauer and Kohler (2019): L_2 errors of least squares nn estimates achieve the rate of convergence $n^{-\frac{2p}{2p+d^*}}$ (up to some logarithmic factor) for (p,C)-smooth generalized hierarchical interaction model of given order d^* and given level I. Here, p>0 might be arbitrarily large.
- Similar rates have been obtained in the literature. However, they have much more stringent assumptions on the functional class the regression function belongs to.
- To achieve the above-mentioned rate, completely new approximation results for sparse neural networks with several hidden layers were needed.

Sparse Multilayer Feedforward Neural

• For $M^* \in \mathbb{N}$, $d \in \mathbb{N}$, $d^* \in \{1, \dots, d\}$ and $\alpha > 0$, we denote the set of all functions $f : \mathbb{R}^d \to \mathbb{R}$ that satisfy:

$$f(X) = \sum_{i=1}^{M^*} \mu_i \cdot \sigma \left(\sum_{j=1}^{4d^*} \lambda_{i,j} \cdot \sigma \left(\sum_{v=1}^{d} \theta_{i,j,v} \cdot X^{(v)} + \theta_{i,j,0} \right) + \lambda_{i,0} \right) + \mu_0$$

 $X \in \mathbb{R}^d$ for some μ_i , $\lambda_{i,j}$ and $\theta_{i,j,v} \in \mathbb{R}$, where $|\mu_i| \leq \alpha$, $|\lambda_{i,j}| \leq \alpha$ and $|\theta_{i,j,v}| \leq \alpha$ for all $i \in \{0,1,\ldots,M^*\}$, $i \in \{0,\ldots,4d^*\}$, $v \in \{0,\ldots,d\}$, by $\left[\mathcal{F}_{M^*,d^*,d,\alpha}^{(\text{neural networks})}\right]$.

• The neural network has only $W(\mathcal{F}_{M^*,d^*,d,\alpha}^{(\text{neural networks})})$ weights.

$$W(\mathcal{F}_{M^*,d^*,d,\alpha}^{(\text{neural networks})}) = M^* + 1 + M^*(4d^* + 1) + M^*4d^*(d+1)$$

$$= M^*(4d^*(d+2) + 2) + 1$$

#11: 4d*M* **Sparse** Multilayer Feedforward Neural Network 4=3 hidden laver d=5 **•**Σinput output f(x)

Fig. 1. A not completely connected neural network $f: \mathbb{R}^5 \to \mathbb{R}$ from $\mathcal{F}_{3,1,5,\alpha}^{(\text{neural networks})}$ with the structure $f(x) = \sum_{i=1}^3 \mu_i \cdot \sigma(\sum_{j=1}^4 \lambda_{i,j} \cdot \sigma(\sum_{v=1}^5 \theta_{i,j,v} \cdot x^{(v)}))$ (all weights with an index including zero neglected for a clear illustration).

Hierarchical Neural Networks

• For l = 0, we define our space of hierarchical neural networks by

$$\mathcal{H}^{(0)} = \mathcal{F}_{ extbf{M}^*,d^*,d,lpha}^{ ext{(neural networks)}}$$

• For l > 0, we define recursively

$$\mathcal{H}^{(I)} = \left\{ h : \mathbb{R}^d \to \mathbb{R} : h(X) = \sum_{k=1}^K g_{\underline{k}}(f_{1,k}(X), \dots, f_{d^*,k}(X)) \right\}$$

for some $g_k \in \mathcal{F}_{M^*, d^*, d^*, q^*}^{\text{(neural networks)}}$ and $f_{i,k} \in \mathcal{H}^{(l-1)}$

• Theorem: With $M^* = \lceil c_{56} \cdot n^{\frac{d^*}{2p+d^*}} \rceil$ and some other assumptions,

$$\mathsf{E} \int |m_n(x) - m(x)|^2 \mathsf{P}_X(dx) \le c_4 \cdot \log(n)^3 \cdot n^{-\frac{2p}{2p+d^*}}$$

holds for sufficiently large n.

Hierarchical Neural Networks (Example)

Settings

- Alternative approaches:
 - 1 Simple Nearest Neighbor Estimate (neighbor)
 - 2 Interpolation with radical basis functions (RBF)
 - 3 Fully connected neural networks with predefined numbers of layers but adaptively chosen numbers of neurons per layer (neural-1, neural-3, neural-6)
- Model functions:
 - 1 m_1 represents some ordinary general hierarchical interaction models
 - 2 m_4 is an additive model with $d^* = 1$
 - 3 m_5 is an interaction model with $d^* = d$
- Data generation:

$$Y = m_i(X) + \sigma_i \cdot \lambda_i \cdot \epsilon$$

where $i \in \{1, 2, 3, 4, 5, 6\}$ and $j \in \{1, 2\}$. X is uniformly distributed on $[0, 1]^d$ and ϵ is standard normally distributed and independent of X. σ_i and λ_i are predetermined.

 $\begin{tabular}{ll} TABLE\ 1\\ Median\ and\ IQR\ of\ the\ scaled\ empirical\ L_2\ error\ of\ estimates\ for\ m_1,\ m_2\ and\ m_3\\ \end{tabular}$

Noise $ \begin{aligned} &Sample \ size \\ &\bar{\varepsilon}_{L_2,\bar{N}}(avg) \\ &Approach \end{aligned} $	m_1				
	5%		20%		
	n = 100 596.52 Median (IQR)	n = 200 597.61 Median (IQR)	n = 100 596.51 Median (IQR)	n = 200 597.63 Median (IQR)	
neural-1	0.2622 (2.7248)	0.1064 (0.3507)	0.3004 (2.1813)	0.1709 (3.8163)	
neural-3	0.1981 (0.4732)	0.0609 (0.1507)	0.2784 (0.4962)	0.0848 (0.1239	
neural-6	0.2953 (0.9293)	0.1207 (0.1672)	0.2663 (0.5703	0.1106 (0.2412)	
neural-x	0.0497 (0.2838)	0.0376 (0.2387)	0.0596 (0.2460)	0.0200 (0.1914)	
RBF	0.3095 (0.4696)	0.1423 (0.0473)	0.3182 (0.5628)	0.1644 (0.0639)	
neighbor	0.6243 (0.1529)	0.5398 (0.1469)	0.6303 (0.1014)	0.5455 (0.1562)	

Table 2 Median and IQR of the scaled empirical L_2 error of estimates for m_4 , m_5 and m_6

Noise Sample size $ar{arepsilon}_{L_2,ar{N}}(avg)$ Approach	m_4					
	5%		20%			
	n = 100 1.60 Median (IQR)	n = 200 1.59 Median (IQR)	n = 100 1.61 Median (IQR)	n = 200 1.61 Median (IQR)		
neural-1	0.0140 (0.0040)	0.0050 (0.0020)	0.0370 (0.0150)	0.0240 (0.0090)		
neural-3	0.0160 (0.0060)	0.0080 (0.0020)	0.0450 (0.0110)	0.0240 (0.0050)		
neural-6	0.0210 (0.0080)	0.0090 (0.0030)	0.0530 (0.0130)	0.0290 (0.0090)		
neural-x	0.0311 (0.1026)	0.0085 (0.0205)	0.2623 (1.5689)	0.1042 (0.2296)		
RBF	0.0188 (0.0084)	0.0148 (0.0030)	0.1594 (0.0589)	0.1386 (0.0299)		
neighbor	0.3024 (0.07565)	0.2033 (0.0321)	0.2868 (0.0952)	0.2211 (0.0355)		

Noise $Sample \ size \\ \bar{\varepsilon}_{L_2,\bar{N}}(avg) \\ Approach$	m_5				
	5%		20%		
	n = 100 1.49 Median (IQR)	n = 200 1.49 Median (IQR)	n = 100 1.49 Median (IQR)	n = 200 1.49 Median (IQR)	
					neural-1
neural-3	0.3954 (0.9887)	0.1087 (0.1909)	1.5671 (7.0394)	0.2370 (1.4065)	
neural-6	0.1023 (0.3572)	0.0716 (0.0760)	0.2482 (0.6611)	0.0836 (0.1646)	
neural-x	0.1386 (0.4205)	0.0637 (0.0499)	0.3699 (1.3039)	0.1854 (0.3660)	
RBF	0.0127 (0.0044)	0.0112 (0.0033)	0.1445 (0.0671)	0.1352 (0.0298)	
neighbor	0.3263 (0.0842)	0.2471 (0.0381)	0.3360 (0.0707)	0.2620 (0.0464)	

Vielen Dank! ;) 😜