

AMENDMENTS TO THE CLAIMS:

This listing of claims will replace all prior versions, and listings, of claims in the application:

- 1.-19. (Canceled).
- 20. (Currently Amended) The method for production of a two component polyurethane sealant, according to Claim 4926, wherein the blend ratio is adjusted so that the molar ratio of the bicyclic tertiary amine/the aliphatic monocarboxylic acid will be at least 0.7.
- 21. (Currently Amended) The method for production of a two component polyurethane sealant, according to Claim 1926, wherein the aliphatic monocarboxylic acid is selected from the group consisting of methacrylic acid and tiglic acid.
 - 22. (Canceled).
- 23. (Currently Amended) A method for producing a two component polyurethane sealant, which comprises reacting a <u>polyether polyol selected from the group consisting of polyether polyols, polyester polyols, polymer polyols and flame retardant polyols with an organic polyisocyanate and/or an isocyanate prepolymer selected from the group consisting of MDI, TDI, MDI base-prepolymer and TDI base-prepolymer, in the presence of a catalyst,</u>

wherein the catalyst comprises

a salt of 1,8-diaza-bicyclo(5,4,0)undecene-7 as a least one bicyclic tertiary amine selected from the group consisting of 1,8-diaza-bicyclo (5,4,0) undecene-7, 1,5-diaza-bicyclo (4,3,0) nonene-5 and 1,5-diaza-bicyclo (4,4,0) decene-5, with at least one unsaturated aliphatic monocarboxylic acid selected from the group consisting of vinylacetic acid, methacrylic acid, tiglic acid, angelic acid, isanic acid, behenolic acid, petroselinic acid, ricinoelaidic acid, ricinoelaidic acid, ricinoelaidic acid, 2-chloroacrylic acid, 3-chloroacrylic acid, 2-amino-3-butenoic acid and 2-amino-

KOMETANI et al Appl. No. 10/724,608 November 20, 2006

3-hydroxy-4-hexynoic acid, wherein the blend ratio is adjusted so that the molar ratio of the bicyclic tertiary amine/the aliphatic monocarboxylic acid is at most 1.3.

- 24. (Previously Presented) The method for production of a two component polyurethane sealant, according to Claim 23, wherein the blend ratio is adjusted so that the molar ratio of the bicyclic tertiary amine/the aliphatic monocarboxylic acid will be at least 0.7.
- 25. (Previously Presented) The method for production of a two component polyurethane sealant, according to Claim 23, wherein the aliphatic monocarboxylic acid is selected from the group consisting of methacrylic acid and tiglic acid.
- 26. (Currently Amended) A method for producing a two component polyurethane sealant, which comprises reacting a <u>polyester</u> polyol, <u>polymer polyol or flame retardant polyol</u> with an MDI prepolymer in the presence of a catalyst,

wherein the catalyst comprises

a salt of at least one bicyclic tertiary amine selected from the group consisting of 1,8-diaza-bicyclo (5,4,0) undecene-7, 1,5-diaza-bicyclo (4,3,0) nonene-5 and 1,5-diaza-bicyclo (4,4,0) decene-5, with at least one unsaturated aliphatic monocarboxylic acid selected from the group consisting of vinylacetic acid, methacrylic acid, tiglic acid, angelic acid, isanic acid, behenolic acid, petroselinic acid, ricinoelaidic acid, 2-chloroacrylic acid, 3-chloroacrylic acid, 2-amino-3-butenoic acid and 2-amino-3-hydroxy-4-hexynoic acid, wherein the blend ratio is adjusted so that the molar ratio of the bicyclic tertiary amine/the aliphatic monocarboxylic acid is at most 1.3.