Function

Definition: If X and Y are two non- empty sets and f gives a unique $y \in Y$ for each $x \in X$ then f is called a function from the set X to the set Y.

Let, $f: X \to Y$ is a function. Then X is called domain (D_f) of f, Y is called co-domain (C_f) of f and the image in Y of all f related elements is called range (R_f) .

1) The function $f: \{0,1,2,3\} \rightarrow \{2,5,8,11,15\}$ is defined by f(x) = 3x + 2, then find domain, co — domain and range of f.

Solution: Given, f: $\{0,1,2,3\} \rightarrow \{2,5,8,11,15\}$ defined by f(x) = 3x + 2

$$D_f = \{0,1,2,3\}$$

$$C_f = \{2,5,8,11,15\}$$

and,
$$R_f = \{f(0), f(1), f(2), f(3)\} = \{2,5,8,11\}$$

2) The function $f: \{-2, -1, 0, 1, 2\} \to \mathbb{R}$ is defined by $f(x) = x^2$, then find domain and range of f.

Solution: Given, f: $\{-2, -1, 0, 1, 2\} \rightarrow \mathbb{R}$ defined by $f(x) = x^2$

$$\therefore R_f = \{f(-2), f(-1), f(0), f(1), f(2)\} = \{4,1,0,1,4\} = \{0,1,4\}$$

3) Find the domain and range of the following functions:

$$(i)f(x) = \frac{1}{x-2}$$

(ii)
$$f(x) = \frac{2}{x+3}$$

Solution: (i)
$$f(x) = \frac{1}{x-2}$$

f(x) gives real values for all real values except x=2

$$\div D_f = \mathbb{R} - \{2\}$$

Let,
$$y = \frac{1}{x-2}$$

$$\Rightarrow$$
 x - 2 = $\frac{1}{y}$

$$\Rightarrow$$
 x = $\frac{1}{y}$ + 2

x gives real values for all real values of y except y = 0

$$\mathrel{\div} R_f = \mathbb{R} - \{0\}$$

Solution: (ii)
$$f(x) = \frac{2}{x+3}$$

f(x) gives real values for all real values except x=-3

$$\mathrel{\div} D_f = \mathbb{R} - \{-3\}$$

Let,
$$y = \frac{2}{x+3}$$

$$\Rightarrow x + 3 = \frac{2}{y}$$

$$\Rightarrow x = \frac{2}{y} - 3$$

x gives real values for all real values of y except y = 0

$$\therefore R_f = \mathbb{R} - \{0\}$$

H. W:: (i)
$$f(x) = \frac{x}{x+1}$$
 (ii) $f(x) = \frac{x-3}{2x+1}$ (iii) $f(x) = \frac{1}{7x-1}$ (iv) $f(x) = \frac{2x}{5x-4}$

$$(ii)f(x) = \frac{x-3}{2x+1}$$

(iii)
$$f(x) = \frac{1}{7x - 1}$$

(iv)
$$f(x) = \frac{2x}{5x - 4}$$