GROUPES, ANNEAUX, CORPS

Groupes

Solution 1

Tout d'abord, S(x) est bien une partie de S(E).

Ensuite, $Id_E \in S(x)$ puisque $Id_E(x) = x$.

Enfin, soient $\sigma, \sigma' \in S(x)$. Montrons que $\sigma^{-1} \circ \sigma' \in S(x)$. On a $\sigma^{-1} \circ \sigma'(x) = \sigma^{-1}(x)$ car $\sigma'(x) = x$. Or $\sigma(x) = x$ donc, en composant par σ^{-1} , $\sigma^{-1}(x) = x$. Donc $\sigma^{-1} \circ \sigma'(x) = \sigma^{-1}(x) = x$ et $\sigma^{-1} \circ \sigma' \in S(x)$.

S(x) est bien un sous-groupe de $(S(E), \circ)$.

Remarque. S(x) est appelé le stabilisateur de x.

Solution 2

1. Soient (x, y) et (x', y') dans G. Comme $x, x' \in \mathbb{R}^*$, $xx' \in \mathbb{R}^*$ et il est évident que $xy' + y \in \mathbb{R}$. Donc $(x, y) * (x', y') \in G$. Soient (x, y), (x', y') et (x'', y'') dans G. On voit facilement que :

$$((x,y)*(x',y'))*(x'',y'') = (x,y)*((x',y')*(x'',y''))$$
$$= (xx'x'',xx'y'' + xy' + y)$$

2. G possède un élément neutre à savoir (1,0). Soit $(x,y) \in G$ et cherchons $(x',y') \in G$ tel que (x,y)*(x',y') = (1,0). Ceci équivaut à résoudre

$$\begin{cases} xx' = 1 \\ xy' + y = 0 \end{cases} \iff \begin{cases} x' = \frac{1}{x} \\ y' = -\frac{y}{x} \end{cases} \text{ car } x \neq 0$$

Donc (x, y) admet pour inverse à droite $\left(\frac{1}{x}, -\frac{y}{x}\right)$. On vérifie facilement que c'est aussi l'inverse à gauche, donc l'inverse. En conclusion, (G, *) est bien un groupe. On voit qu'il n'est pas commutatif car (1, 1) * (2, 2) = (2, 4) et (2, 2) * (1, 1) = (2, 3).

3. A partir des premières valeurs de n, on conjecture $(x, y)^{*n} = (x^n, y + yx + \dots + yx^{n-1})$.

Initialisation : La formule est clairement vraie pour n = 0.

Hérédité: On suppose $(x, y)^{*n} = (x^n, y + yx + \dots + yx^{n-1})$ pour un certain n. Alors

$$(x,y)^{*(n+1)} = (x,y) * (x,y)^{*n}$$

= $(x,y) * (x^n, y + yx + \dots + yx^{n-1})$
= $(x^{n+1}, y + yx + \dots + yx^n)$

On conclut par récurrence.

En outre, en utilisant la somme des termes d'une suite géométrique, on a :

$$(x,y)^{*n} = \begin{cases} \left(x^n, y \cdot \frac{1-x^n}{1-x}\right) & \text{si } x \neq 1\\ (x,ny) & \text{sinon} \end{cases}$$

Solution 3

1. Soient $x, y \in G$. Comme th induit une bijection de \mathbb{R} sur]-1,1[, il existe $a,b \in \mathbb{R}$ tels que x= th a et y= th b. Alors x*y= th $(a+b) \in]-1,1[$.

Soient maintenant $x, y, z \in G$. De la même façon, il existe $a, b, c \in \mathbb{R}$ tels que $x = \operatorname{th} a, y = \operatorname{th} b$ et $z = \operatorname{th} c$. On voit alors facilement que

$$(x * y) * z = x * (y * z) = th(a + b + c)$$

1

En conclusion, * est une loi interne associative sur G.

- 2. Il est clair que 0 est l'élément neutre de (G, *) et que tout *x* ∈ G admet −*x* pour inverse. G est donc un groupe. L'expression de *x* * *y* est symétrique en *x* et *y* : le groupe est donc commutatif.
- 3. Soit $x \in G$ et $a \in \mathbb{R}$ tel que x = th a. On a donc $x^{*n} = \text{th}(na)$. Or $a = \operatorname{argth} x = \frac{1}{2} \ln \left(\frac{1+x}{1-x} \right)$. Par conséquent,

$$\operatorname{th}(na) = \frac{\left(\frac{1+x}{1-x}\right)^{\frac{n}{2}} - \left(\frac{1+x}{1-x}\right)^{-\frac{n}{2}}}{\left(\frac{1+x}{1-x}\right)^{\frac{n}{2}} + \left(\frac{1+x}{1-x}\right)^{-\frac{n}{2}}} = \frac{(1+x)^n - (1-x)^n}{(1+x)^n + (1-x)^n}$$

Remarque. On a en fait montré que th était un morphisme de $(\mathbb{R}, +)$ sur (G, *).

Solution 4

- 1. Notons e l'élément neutre de G. Comme H et K sont des sous-groupes de G, ils contiennent tous deux l'élément neutre e. Donc $e \in H \cap K$.
 - Soit $h, k \in H \cap K$. Comme H est un sous-groupe de G, $h^{-1}k \in H$. De même, $h^{-1}k \in K$. Par conséquent, $h^{-1}k \in H \cap K$. En conclusion, $H \cap K$ est un sous-groupe de G.
- 2. Si $H \subset K$ ou $K \subset H$, on a $H \cup K = K$ ou $H \cup K = H$. Donc $H \cup K$ est bien un sous-groupe de G. Réciproquement, supposons que $H \cup K$ est un sous-groupe de G. Supposons de plus que $H \not\subset K$ et montrons que $K \subset H$. Comme $H \not\subset K$, il existe $h_0 \in H \setminus K$. Soit maintenant $k \in K$. Comme $h_0, k \in H \cup K$ et que $H \cup K$ est un sous-groupe de G, $h_0k \in H \cup K$. On ne peut avoir $h_0k \in K$ car sinon $h_0 = (h_0k)k^{-1} \in K$, ce qui n'est pas. Donc $h_0k \in H$. Or $k = h_0^{-1}(h_0k) \in H$. Ceci étant vrai pour tout élément k de K, on a donc $K \subset H$.

Solution 5

On remarque que pour tout $x \in G$, $x^{-1} = x$. Soient $x, y \in G$. On a donc $(xy)^{-1} = xy$. Mais on a aussi $(xy)^{-1} = y^{-1}x^{-1} = yx$. Par conséquent, yx = xy. Ceci étant valable pour tous $x, y \in G$, G est commutatif.

Solution 6

Notons e l'élément neutre de G.

- Tout d'abord, pour tout $x \in G$, ex = xe = x donc $e \in Z(G)$.
- Soient $(a, b) \in Z(G)^2$ et $x \in G$. Alors

$$(ab)x = a(bx)$$
 par associativité
 $= a(xb)$ car $b \in Z(G)$
 $= (ax)b$ par associativité
 $= (xa)b$ car $a \in Z(G)$
 $= x(ab)$ par associativité

Ainsi $ab \in Z(G)$ de sorte que Z(G) est stable par produit.

• Soient $a \in Z(G)$ et $x \in G$. Alors ax = xa, puis $a^{-1}ax = a^{-1}xa$ i.e. $x = a^{-1}xa$. Enfin $xa^{-1} = a^{-1}xaa^{-1} = a^{-1}x$ de sorte que $a^{-1} \in Z(G)$. Z(G) est donc stable par inversion.

Ainsi Z(G) est un sous-groupe de G.

Solution 7

Pour tout $a \in \mathbb{R}$, a * 0 = 0 * a = a donc 0 est élément neutre. Mais pour tout $a \in \mathbb{R}$, $(-1) * a = -1 \neq 0$ donc -1 n'admet pas d'inverse pour la loi *. $(\mathbb{R}, *)$ n'est donc pas un groupe.

Solution 8

- **1.** Il suffit de chosir $n = \left| \frac{\beta}{\alpha} \right|$.
- **2.** Comme $G \neq \{0\}$ et $0 \in G$, G contient un élément non nul a. Si a > 0, $G \cap \mathbb{R}_+^*$ est non vide. Sinon, G étant un groupe, $-a \in G$ et à nouveau $G \cap \mathbb{R}_+^*$ est non vide.

De plus, $G \cap \mathbb{R}_+^*$ est minorée par 0. Ainsi $G \cap \mathbb{R}_+^*$ admet une borne inférieure.

- **3. a.** Comme $a = \inf G \cap \mathbb{R}_+^*$ et que a > 0, il existe $x \in G \cap \mathbb{R}_+^*$ tel que $a \le x < a + a = 2a$. Comme on a supposé $a \notin G$, on a en fait a < x < 2a. Puisque x a > 0, il existe $y \in G \cap \mathbb{R}_+^*$ tel que $a \le y < a + (x a) = x$. A nouveau $a \notin G$ donc a < y < x < 2a. Les réels x et y sont bien deux éléments distincts de $a \in A$.
 - **b.** Comme a < y < x < 2a, 0 < x y < a. Comme G est un sous-groupe de \mathbb{R} , $y x \in G$. On a donc $y x \in G \cap \mathbb{R}_+^*$ et y x < a, ce qui contredit le fait que $a = \inf G \cap \mathbb{R}_+^*$. On a donc $a \in G$.
 - **c.** Comme G est un sous-groupe de \mathbb{R} , $na \in G$ pour tout $n \in \mathbb{Z}$. On a donc $a\mathbb{Z} \subset G$.
 - **d.** D'après la question 1, il existe $n \in \mathbb{Z}$ tel que $na \le z < (n+1)a$. Comme z et a sont des éléments du sous-groupe G, z na est également un élément de G. Or $0 \le z na < a$ et $a = \inf G \cap \mathbb{R}_+^*$. On a donc nécessairement z na = 0 i.e. z = na.
 - e. Les deux questions précédentes montrent que $G \subset a\mathbb{Z}$. Par double inclusion, $G = a\mathbb{Z}$.
- **4. a.** Comme inf $G \cap \mathbb{R}_+^* = 0$, il existe $\varepsilon' \in G \cap \mathbb{R}_+^*$ tel que $0 < \varepsilon' < \varepsilon$. D'après la question **1**, il existe $n \in \mathbb{Z}$ tel que $n\varepsilon' \le t < (n+1)\varepsilon'$. Posons $g = n\varepsilon'$. $g \in G$ puisque $\varepsilon' \in G$. De plus, $0 \le t g < \varepsilon' < \varepsilon$ donc $|g t| < \varepsilon$.
 - **b.** On a prouvé que pour tout élément t de \mathbb{R} et tout $\varepsilon > 0$, il existe un élément de G dans $]t \varepsilon, t + \varepsilon[$: ceci signifie que G est dense dans \mathbb{R} .

Solution 9

Première méthode :

Notons p le produit recherché et e l'élément neutre de G. Dans le produit, les éléments x de G tels que $x \neq x^{-1}$ i.e. $x^2 \neq e$ se simplifient avec leur inverse. Notons $A = \{x \in G \mid x^2 = e\}$. On a donc $p = \prod_{x \in A} x$. Les éléments de A sont d'ordre 1 ou 2. Comme l'ordre de G est impair, les éléments de A sont tous d'ordre 1, autrement dit $A = \{e\}$ et p = e.

Seconde méthode :

L'application $x \mapsto x^{-1}$ est une permutation de G. Ainsi $p = \prod_{x \in G} x = \prod_{x \in G} x^{-1}$. D'où $p^2 = e$. p est donc d'ordre 1 ou 2. Comme G est d'ordre impair, p est d'ordre 1 i.e. p = e.

Solution 10

Associativité:

Soient $x, y, z \in H$.

$$x.(y.z) = f(f^{-1}(x) * f^{-1}(y.z))$$

$$= f(f^{-1}(x) * (f^{-1}(y) * f^{-1}(z)))$$

$$= f((f^{-1}(x) * f^{-1}(y)) * f^{-1}(z)) \text{ par associativit\'e de } *$$

$$= f(f^{-1}(x.y) * f^{-1}(z))$$

$$= (x.y).z$$

Elément neutre :

Notons *e* l'élément neutre de (G, *). Pour tout $x \in H$

$$f(e).x = f(e * f^{-1}(x)) = f(f^{-1}(x)) = x$$

 $x.f(e) = f(f^{-1}(x).e) = f(f^{-1}(x)) = x$

Donc (H, .) admet un élément neutre, à savoir f(e).

Inversibilité:

Soit $x \in H$.

$$x.f\left(\left(f^{-1}(x)\right)^{-1}\right) = f\left(f^{-1}(x) * \left(f^{-1}(x)\right)^{-1}\right) = f(e)$$

$$f\left(\left(f^{-1}(x)\right)^{-1}\right).x = f\left(\left(f^{-1}(x)\right)^{-1} * f^{-1}(x)\right) = f(e)$$

Ainsi tout élément x de G est inversible (d'inverse $(f^{-1}(x))^{-1}$).

Remarque. On a des résultats pour les anneaux et les corps. La bijection f permet de «transporter» la structure de G sur H.

Solution 11

Associativité:

Soient $x', y', z' \in H$. Comme f est surjective, x', y', z' admmettent des antécédents x, y, z par f dans G.

$$x'.(y'.z') = f(x).(f(y).f(z))$$

= $f(x).f(y*z)$
= $f(x*(y*z))$
= $f((x*y)*z)$ par associativité de *
= $f(x*y).f(z)$
= $(f(x).f(y)).f(z)$
= $(x'.y').z'$

Elément neutre:

Notons e l'élément neutre de G. Soit $x' \in G$. Comme f est surjective, x' admet un antécédent x par f dans G

$$x'.f(e) = f(x).f(e) = f(x*e) = f(x) = x'$$

 $f(e).x' = f(e).f(x) = f(e*x) = f(x) = x'$

Ainsi (H, .) admet un élément neutre, à savoir f(e).

Inversibilité:

Soit $x' \in G$. Comme f est surjective, x' admet un antécédent x par f dans G.

$$x'.f(x^{-1}) = f(x).f(x^{-1}) = f(x * x^{-1}) = f(e)$$

 $f(x^{-1}).x' = f(x^{-1}).f(x) = f(x^{-1} * x) = f(e)$

Ainsi tout élément de G est inversible.

Puisque G et H sont des groupes, f est un morphisme de groupes.

Remarque. On a des résultats pour les anneaux et les corps. La surjection f permet de «transporter» la structure de G sur H.

Solution 12

Notons e l'élément neutre de G.

Pour tout $x \in G$, $x = e^{-1}xe$ donc $x \sim x$. Ainsi \sim est réflexive.

Soit $(x, y) \in G^2$ tel que $x \sim y$. Il existe donc $g \in G$ tel que $y = g^{-1}xg$. Mais alors $x = gyg^{-1} = (g^{-1})^{-1}x(g^{-1})$ donc $y \sim y$. Ainsi \sim est symétrique.

Soit $(x, y, z) \in G^3$ tel que $x \sim y$ et $y \sim z$. Il existe donc $(g, h) \in G^2$ tel que $y = g^{-1}xg$ et $z = h^{-1}yh$. Mais alors $z = h^{-1}g^{-1}xgh = (gh)^{-1}x(gh)$ donc $x \sim z$. Ainsi \sim est transitive.

Finalement, ~ est bien une relation d'équivalence.

Solution 13

Notons e l'élément neutre de G.

Pour tout $x \in G$, x = xe et $e \in H$ car H est un sous-groupe de G donc $x \sim x$. Ainsi \sim est réflexive.

Soit $(x, y) \in G^2$ tel que $x \sim y$. Il existe donc $h \in H$ tel que y = xh. Mais alors $x = yh^{-1}$ et $h^{-1} \in H$ car H est un sous-groupe de G donc $y \sim y$. Ainsi \sim est symétrique.

Soit $(x, y, z) \in G^3$ tel que $x \sim y$ et $y \sim z$. Il existe donc $(h, k) \in H^2$ tel que y = xh et z = yk. Mais alors z = xhk et $hk \in H$ car H est un sous-groupe de G donc $x \sim z$. Ainsi \sim est transitive.

Finalement, ~ est bien une relation d'équivalence.

Remarque. On montrerait de la même manière que la relation binaire ~ définie par

$$\forall (x, y) \in G^2, \ x \sim y \iff \exists h \in H, \ y = hx$$

est également une relation d'équivalence.

Solution 14

- 1. On rappelle que $S(\mathbb{C})$ désigne l'ensemble des bijections de \mathbb{C} dans \mathbb{C} . On va montrer que G est un sous-groupe de $S(\mathbb{C})$.
 - Montrons que $G \subset S(\mathbb{C})$. Soit $f \in G$. Il existe donc $(a, b) \in \mathbb{C}^* \times \mathbb{C}$ tel que f(z) = az + b pour tout $z \in \mathbb{C}$. On montre alors que f est bijective en vérifiant que $z \mapsto \frac{1}{a}(z-b)$ est sa bijection réciproque.
 - Clairement, $Id_{\mathbb{C}} \in G$, puisque $Id_{\mathbb{C}}$ est par exemple la translation de vecteur nul ou une rotation d'angle nul (et de centre quelconque).
 - Montrons que G est stable par composition. Soit $(f,g) \in G^2$. Il existe donc $(a,b,c,d) \in \mathbb{C}^* \times \mathbb{C} \times \mathbb{C}^* \times \mathbb{C}$ tel que f(z) = az + b et g(z) = cz + d pour tout $z \in \mathbb{C}$. Alors $g \circ f(z) = caz + cb + d$ pour tout $z \in \mathbb{C}$. $g \circ f$ est bien une translation ou une similitude directe puisque $ca \neq 0$.
 - Montrons que G est stable par inversion. Soit $f \in G$. Il existe donc $(a, b) \in \mathbb{C}^* \times \mathbb{C}$ tel que f(z) = az + b pour tout $z \in \mathbb{C}$. On a montré précédemment que $f^{-1}(z) = \frac{1}{a}z \frac{b}{a}$ pour tout $z \in \mathbb{C}$. Ceci montre que f^{-1} est bien une translation ou une similitude directe puisque $\frac{1}{a} \neq 0$.

On a donc montré que G était un sous-groupe de $S(\mathbb{C})$ et donc un groupe.

- 2. A nouveau, Id_C ∈ H, puisque Id_C est par exemple la translation de vecteur nul ou une rotation d'angle nul (et de centre quel-conque).
 - Montrons que H est stable par composition. Soit $(f,g) \in H^2$. Il existe donc $(a,b,c,d) \in \mathbb{U} \times \mathbb{C} \times \mathbb{U} \times \mathbb{C}$ tel que f(z) = az + b et g(z) = cz + d pour tout $z \in \mathbb{C}$. Alors $g \circ f(z) = caz + cb + d$ pour tout $z \in \mathbb{C}$. $g \circ f$ est bien une translation ou une rotation puisque $ca \in \mathbb{U}$.
 - Montrons que H est stable par inversion. Soit $f \in H$. Il existe donc $(a,b) \in \mathbb{U} \times \mathbb{C}$ tel que f(z) = az + b pour tout $z \in \mathbb{C}$. On a montré précédemment que $f^{-1}(z) = \frac{1}{a}z \frac{b}{a}$ pour tout $z \in \mathbb{C}$. Ceci montre que f^{-1} est bien une translation ou une rotation puisque $ca \in \mathbb{U}$.

On a donc montré que H était un sous-groupe de G.

Morphismes de groupes

Solution 15

1. Pour tout $g, h \in G$ on a

$$(\varphi_{g^{-1}} \circ \varphi_g)(h) = g^{-1}(gh) = (g^{-1}g)h = h,$$

$$(\varphi_g \circ \varphi_{g^{-1}})(h) = g(g^{-1}h) = (gg^{-1})h = h.$$

Cela signifie que l'application ϕ_g est bijective, $\phi_{g^{-1}}$ étant son inverse.

2. $\forall g, g', h \in G$ on a

$$(\varphi_{gg'})(h) = (gg')h = g(g'h) = (\varphi_g \circ \varphi_{g'})(h),$$

d'où $\varphi_{gg'} = \varphi_g \circ \varphi_{g'}$.

Soit $g \in \text{Ker } \varphi$. Alors $\varphi_g = \text{Id}_G$, c'est-à-dire gh = h pour tout $h \in G$. En particulier $g = ge_G = e_G$. Ainsi $\text{Ker } \varphi = \{e_G\}$, c'est-à-dire φ est un morphisme injectif.

Solution 16

1. On a pour tous $x, y \in G$,

$$\varphi(x)\varphi(y) = axa^{-1}aya^{-1} = axya^{-1} = \varphi_a(xy).$$

Ainsi φ_a est bien un endomorphisme de G.

Pour $x, y \in G$,

$$y = \varphi_a(x) \iff y = axa^{-1} \iff a^{-1}ya = x \iff x = \varphi_{a^{-1}}(y)$$

Ainsi va_a est bien bijectif: c'est un automorphisme de G. On a en fait aussi prouvé que $\varphi_a^{-1} = \varphi_{a^{-1}}$.

2. Comme pour tout $a \in G$, φ_a est bijectif, $\mathfrak{F}(G) \subset Aut(G)$. On a $\mathrm{Id}_G = \varphi_e \in \mathfrak{F}(G)$.

De plus, on vérifie que pour $a, b \in G$, $\varphi_a \circ \varphi_b = \varphi_{ab} \in \mathfrak{F}(G)$.

Enfin, on a vu à la question précédente que pour $a \in G$, $\varphi_a^{-1} = \varphi_{a^{-1}} \in \mathfrak{F}(G)$.

Par conséquent, $\mathfrak{F}(G)$ est un sous-groupe de $(Aut(G), \circ)$.

3. On a montré à la question précédente que $\varphi_a \circ \varphi_b = \varphi_{ab}$ i.e. $\varphi(a) \circ \varphi(b) = \varphi(ab)$. Ainsi φ est un morphisme de groupes.

Solution 17

Si f est un automorphisme, c'est en particulier un morphisme. Donc pour tous $a, b \in G$, f(ab) = f(a)f(b) i.e.

$$(ab)^{-1} = a^{-1}b^{-1} \iff (ab)^{-1} = (ba)^{-1} \iff ab = ba$$

Ainsi G est commutatif.

Réciproquement si G est commutatif, le raisonnement inverse nous montre que f est un morphisme. De plus, $f \circ f = \mathrm{Id}_{G}$, donc f est bijectif (d'application réciproque lui-même). f est bien un automorphisme.

Solution 18

Soit $r \in \mathbb{Q}$. Montrons que f(r) = 0. Soit $n \in \mathbb{N}^*$. On a

$$f(r) = f\left(n\frac{r}{n}\right) = nf\left(\frac{r}{n}\right)$$

Or f(r), n et $f\left(\frac{r}{n}\right)$ sont des entiers. Donc f(r) est divisible par n.

Ainsi f(r) est divisible par tout entier $n \in \mathbb{N}^*$. On a forcément f(r) = 0. En conclusion, le seul morphisme de $(\mathbb{Q}, +)$ dans $(\mathbb{Z}, +)$ est le morphisme nul.

Solution 19

Il est clair que les homothéties sont bien des endomorphismes de $(\mathbb{R}, +)$.

Soit maintenant f est un endomorphisme de $(\mathbb{R}, +)$. On a donc pour tous $x, y \in \mathbb{R}$, f(x + y) = f(x) + f(y). On montre par récurrence que f(nx) = nf(x) pour tout $x \in \mathbb{R}$ et pour tout $n \in \mathbb{R}$ puis pour tout $n \in \mathbb{R}$ en passant à l'opposé. Soit maintenant r un rationnel. Il existe donc deux entiers p et q avec $q \ne 0$ tels que $r = \frac{p}{q}$. On a d'une part

$$f(p) = f(qr) = qf(r)$$

et d'autre part

$$f(p) = pf(1)$$

Donc f(r) = rf(1). Posons donc $\lambda = f(1)$. Soit maintenant $x \in \mathbb{R}$. On sait que x est limite d'une suite de rationnels (r_n) . Or f étant continue sur \mathbb{R} et donc en x, la suite $(f(r_n))$ tend vers f(x). Or $f(r_n) = \lambda r_n$ pour tout $n \in \mathbb{N}$. Par passage à la limite, on a donc $f(x) = \lambda x$.

Anneaux et corps

Solution 20

Évidemment 0 et 1 sont dans \mathbb{D} .

Soient $k, \ell \in \mathbb{Z}$ et $n, m \in \mathbb{N}$. Stabilité par produit.

$$\frac{k}{10^n} \times \frac{\ell}{10^m} = \frac{k\ell}{10^{n+m}} \in \mathbb{D}.$$

Stabilité par addition. On peut supposer $n \ge m$. Alors

$$\frac{k}{10^n} + \frac{\ell}{10^m} = \frac{k + 10^{n - m} \ell}{10^n} \in \mathbb{D}.$$

Ce n'est pas un sous-corps car $\frac{3}{10^0}$ ne possède pas d'inverse dans \mathbb{D} .

Solution 21

Soit A un anneau commutatif intègre fini. Pour montrer que A est un corps, il suffit de montrer que tout élément non nul est inversible. Soit donc $a \in A^*$. Posons $\phi: \left\{ \begin{array}{l} A \longrightarrow A \\ x \longmapsto ax \end{array} \right.$ Soit $x,y \in A$ tels que $\phi(x) = \phi(y)$ i.e. a(x-y) = 0. Par intégrité de A, on a donc x=y. Ainsi ϕ est injective. Comme l'ensemble de départ et l'ensemble d'arrivée de ϕ ont le *même nombre fini* d'éléments, ϕ est bijective donc surjective. En particulier, il existe $x \in A$ tel que $\phi(x) = 1$. Ainsi ϕ admet ϕ pour inverse.

Solution 22

- **1.** On vérifie que $\mathbb{Z}[i]$ est un sous anneau de \mathbb{C} .
 - $1 = 1 + 0i \in \mathbb{Z}[i]$
 - $\forall z, z' \in \mathbb{Z}, z z' \in \mathbb{Z}[i],$
 - $\forall z, z' \in \mathbb{Z}, zz' \in \mathbb{Z}[i]$.
- 2. Posons $N(z) = z\overline{z}$. Pour $z = a + ib \in \mathbb{Z}[i]$, $N(z) = a^2 + b^2 \in \mathbb{N}$. Pour $z, z' \in \mathbb{Z}[i]$, N(zz') = N(z)N(z'). Soit $z \in (\mathbb{Z}[i])^*$. Il existe donc $z' \in \mathbb{Z}[i]$ tel que zz' = 1. On a alors N(z)N(z') = 1 et $N(z), N(z') \in \mathbb{N}$. Ceci implique que N(z) = 1. Si z = a + ib, on a donc $a^2 + b^2 = 1$. Les seuls couples d'entiers (a, b) possibles sont (1, 0), (-1, 0), (0, 1) et (0, -1), ce qui correspond à $z = \pm 1$ ou $z = \pm i$. Réciproquement on vérifie que ces éléments sont bien inversibles dans $\mathbb{Z}[i]$.

Solution 23

1. Supposons $x \times y$ nilpotent. Il existe donc $n \in \mathbb{N}$ tel que $(x \times y)^n = 0$. Alors

$$(y \times x)^{n+1} = y \times (x \times y)^n \times x = y \times 0_A \times x = 0_A$$

de sorte que $y \times x$ est nilpotent.

2. Supposons que x et y commutent et que l'un d'entre eux est nilpotent. Puisque x et y commutent, on peut supposer x nilpotent. Il existe donc $n \in \mathbb{N}$ tels que $x^n = 0$. Comme x et y commutent,

$$(x \times y)^n = x^n \times y^n = 0_{\Delta} \times y^n = 0_{\Delta}$$

de sorte que $x \times y$ est nilpotent.

3. Supposons x et y nilpotents. Il existe donc $(n, p) \in \mathbb{N}^2$ tel que $x^n = 0_A$ et $y^p = 0_A$. Posons q = n + p. Alors

$$(x+y)^q = \sum_{k=0}^q \binom{q}{k} x^k \times y^{q-k}$$

Soit alors $k \in [0, q]$.

- Si $k \ge n$, alors $x^k = 0_A$ puis $\binom{q}{k} x^k \times y^{q-k} = 0_A$.
- Si k < n, alors q k > q n = p donc $y^k = 0_A$ puis $\binom{q}{k} x^k \times y^{q-k} = 0_A$.

Ainsi $(x + y)^q = 0_A$ de sorte que x + y est bien nilpotent.

4. Supposons *x* nilpotent. Il existe donc $n \in \mathbb{N}$ tel que $x^n = 0_A$. On écrit :

$$1_{A} = 1_{A}^{n} - x^{n} = (1_{A} - x) \times \left(\sum_{k=0}^{n-1} x^{k}\right) = \left(\sum_{k=0}^{n-1} x^{k}\right) \times (1_{A} - x)$$

Ainsi $1_A - x$ est inversible d'inverse $\sum_{k=0}^{n-1} x^k$.

Solution 24

1. Soit $x \in A$. D'une part,

$$(x+1)^2 = x^2 + 2x + 1 = 3x + 1$$

D'autre part,

$$(x+1)^2 = x+1$$

D'où 2x = 0.

2. Soient $x, y \in A$. D'une part,

$$(x + y)^2 = x^2 + xy + yx + y^2 = x + xy + yx + y$$

D'autre part,

$$(x+y)^2 = x+y$$

D'où xy + yx = 0. Donc 2xy + yx = xy. Or 2xy = 0 d'après la question précédente donc yx = xy. Ceci étant valable pour tous $x, y \in A$, l'anneau est commutatif.

Solution 25

1. On peut par exemple utiliser les fonctions indicatrices pour montrer l'associativité de Δ . Soit $(A, B, C) \in \mathcal{P}(E)^3$. On montre que :

$$\mathbb{1}_{(A\Delta B)\Delta C} = \mathbb{1}_A + \mathbb{1}_B + \mathbb{1}_C - 2(\mathbb{1}_A \mathbb{1}_B + \mathbb{1}_A \mathbb{1}_C + \mathbb{1}_B \mathbb{1}_C) + 4\mathbb{1}_A \mathbb{1}_B \mathbb{1}_C$$

La dernière expression est invariante par permutation de A, B et C. Par conséquent,

$$\mathbb{1}_{(A\Delta B)\Delta C} = \mathbb{1}_{(B\Delta C)\Delta A}$$

Finalement, $(A\Delta B)\Delta C = (B\Delta C)\Delta A = A\Delta(B\Delta C)$. La loi Δ possède un élément neutre en la personne de l'ensemble vide \emptyset . Tout élément $A \in \mathcal{P}(E)$ possède un inverse pour Δ à savoir \overline{A} . La loi Δ est clairement commutative. En conclusion, $(\mathcal{P}(E), \Delta)$ est un groupe commutatif.

L'intersection \cap est clairement associative. Elle possède un élément neutre, à savoir E. On peut à nouveau montrer la distributivité de \cap sur Δ en utilisant les fonctions indicatrices. Enfin, \cap est commutative donc $(\mathcal{P}(E), \Delta, \cap)$ est un anneau commutatif.

- 2. Soit A ∈ P(E). A est inversible pour ∩ si et seulement si il existe B ∈ P(E) tel que A ∩ B = E. On a donc nécessairement A = E. Or E possède un inverse pour ∩, à savoir E lui-même. On en déduit que le seul élément inversible pour ∩ est E.
- 3. Pour tout $A \in \mathcal{P}(E)$, $A \cap \overline{A} = \emptyset$. Comme E est non vide, $\mathcal{P}(E)$ possède des éléments A non nuls (i.e. des parties non vides de E). Donc l'anneau $(\mathcal{P}(E), \Delta, \cap)$ n'est pas intègre.

Solution 26

On montre que $\mathbb{Q}[\sqrt{3}]$ est un sous-corps de \mathbb{R} .

- $1 = 1 + 0\sqrt{3} \in \mathbb{Q}[\sqrt{3}].$
- Soient $x = a + b\sqrt{3}$ et $x' = a' + b'\sqrt{3}$ des éléments de $\mathbb{Q}[\sqrt{3}]$. Alors $x x' = (a a') + (b b')\sqrt{3} \in \mathbb{Q}[\sqrt{3}]$.
- On a également $xx' = (aa' + 3bb') + (ab' + a'b)\sqrt{3} \in \mathbb{Q}[\sqrt{3}].$

• Supposons $x \neq 0$. On a alors

$$\frac{1}{x} = \frac{a - b\sqrt{3}}{a^2 - 3b^2} = \frac{a}{a^2 - 3b^2} - \frac{b}{a^2 - 3b^2}\sqrt{3} \in \mathbb{Q}[\sqrt{3}]$$

Mais il aurait fallu montrer auparavant que $a^2 - 3b^2 \neq 0$. Supposons $a^2 - 3b^2 = 0$. En notant $a = \frac{p}{q}$ et $b = \frac{r}{s}$ avec p, q, r, s entiers, on a donc $p^2s^2 - 3r^2q^2 = 0$. Il existe donc des entiers m et n tels que $m^2 = 3n^2$. Quitte à les diviser par leur pgcd, on peut les supposer premiers entre eux. On a alors toujours la relation $m^2 = 3n^2$. En particulier, 3 divise m^2 . Mais 3 étant premier 3 divise m. Il existe donc $k \in \mathbb{Z}$ tel que m = 3k. On en déduit $9k^2 = 3n^2$ i.e. $3k^2 = n^2$ donc 3 divise n^2 et donc n. Ceci contredit le fait que m et n sont premiers entre eux. Finalement $a^2 - 3b^2 \neq 0$.

Solution 27

- 1. Soit $(x, y) \in A^2$ tel que $\varphi(x) = \varphi(y)$. Alors ax = ay i.e. a(x y) = 0. Puisque A est intègre et que $a \ne 0$, x y = 0 i.e. x = y. Ainsi φ est injective. Puisque A est de cardinal fini et que φ est une application de A dans A, φ est également bijective.
- 2. Soit a un élément non nul de A. Puisque l'application φ définie à la question précédente est bijective, elle est a fortiori surjective. Il existe donc b ∈ A tel que φ(b) = 1 i.e. ab = 1. Ceci prouve que a est inversible.
 Ainsi tout élément non nul de A est inversible : A est un corps.

Morphismes d'anneaux

Solution 28

1. Comme f est un morphisme de corps, on a f(1) = 1. De plus, pour $n \in \mathbb{Z}$,

$$f(n) = f(n1) = nf(1) = n1 = n$$

Soit $r = \frac{p}{q} \in \mathbb{Q}$. Alors f(p) = f(qr) = qf(r). Or $p \in \mathbb{Z}$ donc f(p) = p. Par conséquent, $f(r) = \frac{p}{q} = r$.

- 2. Soit $x \ge 0$. Il existe $a \in \mathbb{R}$ tel que $x = a^2$. Alors $f(x) = f(a^2) = f(a)^2 \ge 0$. Soit $x \le y$. Alors $f(y) f(x) = f(y x) \ge 0$ car $y x \ge 0$. Donc $f(x) \le f(y)$. Ainsi f est croissant.
- **3.** Soit $x \in \mathbb{R}$. Par densité de \mathbb{Q} dans \mathbb{R} , il existe deux suites de rationnels (r_n) et r'_n) convergeant respectivement vers x par valeurs inférieures et par valeurs supérieures. Ainsi, $\forall n \in \mathbb{N}$,

$$r_n \le x \le r'_n$$

Par croissance de f et en utilisant la première question,

$$r_n = f(r_n) \le f(x) \le f(r'_n) = r'_n$$

Par passage à la limite, on obtient f(x) = x. Ceci étant valable pour tout $x \in \mathbb{R}$, $f = \mathrm{Id}_{\mathbb{R}}$.

Solution 29

1. Tout d'abord $1 = 1 + 0\sqrt{3} \in \mathbb{Z}[\sqrt{3}]$. Soient $z_1 = a_1 + b_1\sqrt{3}$ avec $(a_1, b_1) \in \mathbb{Z}^2$ et $z_2 = a_2 + b_2\sqrt{3}$ avec $(a_2, b_2) \in \mathbb{Z}^2$. Alors

$$z_1-z_2=(a_1-a_2)+(b_1-b_2)\sqrt{3}\in\mathbb{Z}[\sqrt{3}]$$

et

$$z_1z_2 = (a_1a_2 + 3b_1b_2) + (a_1b_2 + a_2b_1)\sqrt{3} \in \mathbb{Z}[\sqrt{3}]$$

 $\mathbb{Z}[\sqrt{3}]$ est donc un sous-anneau de \mathbb{R} .

2. **a.** On reprend les notations de l'énoncé. On a donc $p^2 = 3q^2$. Ainsi 3 divise p^2 . Comme 3 est premier, 3 divise p. Il existe donc $k \in \mathbb{Z}$ tel que p = 3k. On a alors $9k^2 = 3q^2$ i.e. $3k^3 = q^2$. On prouve comme précédement que 3 divise q. Ainsi p et q ont un facteur premier commun, ce qui contredit $p \land q = 1$. En conclusion, $\sqrt{3} \notin \mathbb{Q}$.

b. On vérifie aisément que pour tout $(a, b, c, d) \in \mathbb{Z}^4$, f((a, b) + (c, d)) = f((a, b)) + f((c, d)), ce qui prouve que f est bien un morphisme de groupes.

Soit $(a, b) \in \text{Ker } f$. On a donc $a + b\sqrt{3} = 0$. Si on avait $b \neq 0$, $\sqrt{3}$ serait rationnel, ce qui n'est pas. Ainsi b = 0 puis a = 0. On a donc montré que $\text{Ker } f = \{(0, 0)\}$. Ainsi f est injective. f est surjective par définition de $\mathbb{Z}[\sqrt{3}]$.

3. **a.** Puisque $1 = 1 + 0\sqrt{3}$, $g(1) = \tilde{1} = 1 - 0\sqrt{3} = 1$.

Soient $z_1 = a_1 + b_1\sqrt{3}$ avec $(a_1, b_1) \in \mathbb{Z}^2$ et $z_2 = a_2 + b_2\sqrt{3}$ avec $(a_2, b_2) \in \mathbb{Z}^2$. Alors $z_1 + z_2 = (a_1 + a_2) + (b_1 + b_2)\sqrt{3}$ et donc

$$g(z_1 + z_2) = \widetilde{z_1 + z_2} = (a_1 + a_2) - (b_1 + b_2)\sqrt{3} = (a_1 - b_1\sqrt{3}) + (a_2 - b_2\sqrt{3}) = \widetilde{z}_1 + \widetilde{z}_2 = g(z_1) + g(z_2)$$

De plus, $z_1 z_2 = (a_1 a_2 + 3b_1 b_2) + (a_1 b_2 + a_2 b_1)\sqrt{3}$ donc

$$g(z_1z_2) = \widetilde{z_1z_2} = (a_1a_2 + 3b_1b_2) - (a_1b_2 + a_2b_1)\sqrt{3} = (a_1 - b_1\sqrt{3})(a_2 - b_2\sqrt{3}) = \widetilde{z}_1\widetilde{z}_2 = g(z_1)g(z_2)$$

Ainsi f est un endomorphisme d'anneau.

De plus, $f \circ f = \mathrm{Id}_{\mathbb{Z}[\sqrt{3}]}$ donc f est bijectif : c'est un automorphisme d'anneau.

- **b.** On a $N(xy) = xy\widetilde{x}\widetilde{y} = x\widetilde{x}y\widetilde{y} = N(x)N(y)$.
- c. Si x est inversible, il existe $y \in \mathbb{Z}[\sqrt{3}]$ tel que xy = 1. On a donc N(x)N(y) = N(1) = 1. Or N(x) et N(y) sont des entiers donc $N(x) = \pm 1$.

Si N(x) = 1, alors $x\tilde{x} = 1$, ce qui prouve que x est inversible d'inverse \tilde{x} . Si N(x) = -1, alors $x(-\tilde{x}) = 1$, ce qui prouve que x est inversible d'inverse $-\tilde{x}$.