

การแข่งขันเคมีโอลิมปิก สอวน. ครั้งที่ 1 ณ มหาวิทยาลัยศรีนครินทรวิโรฒ วันที่ 10 พฤษภาคม 2548 เวลา 08.30 - 13.30 น.

ข้อสอบภาคทฤษฎี

	d d							
รห์เ	หที่นี่	เงสเ	อบ.	 	 	 	 	

คำชี้แจง

- 1. ข้อสอบมีจำนวน 11 ข้อ มีกระคาษคำถาม 13 หน้า และกระคาษคำตอบ 24 หน้า คะแนนรวมทั้งหมด 100 คะแนน
- 2. ให้ลงมือทำข้อสอบได้เมื่อกรรมการคุมสอบประกาศให้ "**ลงมือทำ**"
- 3. มีเวลาในการทำข้อสอบ 5 ชั่วโมง ทั้งนี้รวมถึงการกรอกคำตอบลงในกระดาษคำตอบ ด้วย เมื่อกรรมการคุมสอบประกาศว่า "หมดเวลา" นักเรียนต้องหยุดทำข้อสอบ และ ออกจากห้องสอบทันที
- 4. นักเรียนต้องเขียนตอบในกระคาษคำตอบด้วย**ปากกา**เท่านั้น โดยใส่คำตอบให้ตรงกับ ข้อและอยู่ในกรอบที่กำหนดให้ ถ้าเ**ขียนตอบไม่ชัดเจน** จะไม่ได้รับการตรวจให้ คะแนน ถ้าต้องการทดให้ทดในกระคาษคำถาม
- 5. ถ้าเขียนผิดให้ขีดฆ่าทิ้ง ห้ามลบด้วยหมึกลบคำผิด (liquid paper)
- 6. โจทย์คำนวณต้องแสดงวิธีทำ และในการคำนวณให้คำนึงถึงเลขนัยสำคัญ
- 7. ใช้อุปกรณ์ครื่องเขียน เครื่องคิดเลข และข้อมูลที่จัดเตรียมไว้ให้เท่านั้น และห้ามยืม กันใช้
- 8. หากพบการทุจริต นักเรียนจะหมคสิทธิ์ในการแข่งขัน และต้องออกจากห้องสอบ ทันที

โจทย์ข้อที่ 1 (10 คะแนน)

M เป็นโลหะแทรนซิชัน มีเลขอะตอม 23 มวลอะตอม 51 เมื่อเผาในอากาศจะได้ออกไซด์มี สูตร ${
m M_2O_5}$ นำออกไซด์นี้มาละลายในกรด ${
m H_2SO_4}$ จะได้ ${
m MO_2}^+$

- 1.1 (2.0 คะแนน) อะตอมของธาตุ M ในสถานะพื้น มีการจัดอิเล็กตรอนในออร์บิทัล อย่างไร และมีอิเล็กตรอนเคี่ยวกี่ตัว
- 1.2 (2.0 คะแนน) จงเขียนสมการใอออนิกแสดงปฏิกิริยาทั้งหมดที่เกิดขึ้น
- 1.3 (4.0 คะแนน) ถ้านำสารประกอบคลอไรด์ชนิดหนึ่งของโลหะ M หนัก 0.315 g มาละลายน้ำ เติมกรด H₂SO₄ เล็กน้อย แล้วไทเทรตกับสารละลาย KMnO₄ เข้มข้น 0.020 M ที่จุดยุติใช้สารละลาย KMnO₄ ไป 40.00 mL

กำหนดครึ่งปฏิกิริยาดังนี้ (ให้เฉพาะองค์ประกอบหลักและสมการยังไม่คุล)

$$MCl_x + H_2O \longrightarrow MO_2^+ + H^+ + Cl^- + e^-$$

 $MnO_4^- + H^+ + e^- \longrightarrow Mn^{2+} + H_2O$

จงแสคงวิธีหาเลขออกซิเคชัน (x) ของ M ในสารประกอบคลอไรค์ข้างต้น

1.4 (2.0 คะแนน) จงเปรียบเทียบค่า ${
m IE}_1$ ของชาตุ ${
m M}$ กับของแคลเซียมและอาร์กอน และให้เหตุผลประกอบคำตอบ

โจทย์ข้อที่ 2 (10 คะแนน)

X เป็นธาตุที่ว่องไวในการเกิดปฏิกิริยามาก จึงไม่พบเป็นธาตุอิสระในธรรมชาติ แต่จะอยู่ในรูปของโมเลกุล X_2 ธาตุ X สามารถเกิดได้ทั้งสารประกอบไอออนิกและโคเวเลนต์ เลขออกซิเคชันของ Xในสารประกอบมีได้หลายค่า ค่าต่ำสุดเป็น -1 และสูงสุดเป็น +7 สมบัติและปฏิกิริยาบางอย่างของ ธาตุ X มีดังนี้

 X_2 ทำปฏิกิริยากับแก๊ส H_2 จะได้ HX เป็นผลิตภัณฑ์ (ปฏิกิริยา n) ถ้า X_2 เกิดปฏิกิริยารีดอกซ์ ด้วยตัวเอง (disproportionation) กับ H_2O จะได้ HX เกิดขึ้นเช่นเดียวกันดังสมการ (1)

$$X_2 + H_2O \rightarrow HX + HOX$$
 ...(1)

สารละลาย HX เกิดปฏิกิริยาสะเทินกับสารละลาย NaOH (ปฏิกิริยา ข) ได้สารละลาย A ซึ่งเมื่อเติมสารละลาย AgNO3 ลงไปในสารละลาย A ได้ตะกอนสีขาว B ซึ่งเมื่อละลายใน สารละลาย NH, จะได้สารละลายของ<u>สารประกอบ C</u>

ตัวอย่างสารประกอบโคเวเลนต์ระหว่างชาตุ X กับฟอสฟอรัส ออกซิเจน และฟลูออริน ใค้แก่ PX_3 , PX_5 , X_2O , XO_2 , X_2O_6 , X_2O_7 , FXO_2 , FXO_3 และ F_3XO

เมื่อ PX_3 ทำปฏิกิริยากับน้ำมากเกินพอจะเกิดปฏิกิริยาดังสมการ (2)

$$PX_3 + H_2O \longrightarrow HX + \underline{Y}$$
 (สมการยังไม่ดูล) ... (2)

นอกจากนี้ ธาตุ X สามารถเกิดสารประกอบหรือไอออนกับธาตุ F และ I ได้ เช่น XF, $XF_3, XF_5, IX_2^-, I_2X^+$ และ IX_4^- เป็นต้น

จงตอบคำถามต่อไปนี้

- 2.1 (1.0 คะแนน) X คือชาตุใด
- 2.2 (2.0 คะแนน) จงเขียนสมการเคมีที่คุลแล้วของ<u>ปฏิกิริยา ก</u> และ<u>ปฏิกิริยา ข</u>
- 2.3 (1.0 กะแนน) จงเขียนสูตรของ<u>ตะกอนสีขาว B</u>
- 2.4 (1.0 คะแนน) จงเขียนสูตรโมเลกุลของ<u>สารประกอบ C</u>
- 2.5 (1.0 คะแนน) ออกซิเจนอะตอมในโมเลกุล \mathbf{X}_2 O เกิดไฮบริไคเซชันแบบใด และมุม \mathbf{X}_2 O เกิดไฮบริไคเซชันแบบใด และมุม
- 2.6 (1.0 คะแนน) จงใช้ทฤษฎี VSEPR พิจารณาและเขียนแสดงรูปทรงเรขาคณิตของ IX_2^- พร้อมแสดงตำแหน่งของอิเล็กตรอนคู่โดดเดี่ยว (ถ้ามี) รอบอะตอมกลางให้ ชัดเจน
- 2.7 (2.0 คะแนน) จงใช้ทฤษฎีไฮบริไดเซชันแสดงการเกิดโมเลกุล XF_3 และทำนาย รูปร่างโมเลกุล
- $2.8 \quad (1.0 \ \text{กะแนน}) \ \text{ จงเขียนสูตร โมเลกุลและชื่อของสาร } \mathbf{Y}$

โจทย์ข้อที่ 3 (10 คะแนน) กำหนดค่าพลังงานพันธะเฉลี่ย (kJ/mol) ให้ดังนี้

พันธะเคี่ยว อะตอม	-Н	-С	-O	พันธะคู่ อะตอม	= C	=0	พันธะสาม อะตอม	≡C
Н	436	413	463	-	-	-	-	-
С	413	348	336	С	614	799	С	839
N	391	305	201	N	615	-	N	891
0	463	336	146	О	803*	498	0	1072

^{*} ค่าสำหรับ C=O ใน CO₂

น้ำมันเชื้อเพลิงเป็นสินค้าจำเป็นที่ต้องนำเข้าจากต่างประเทศ ทำให้เศรษฐกิจประเทศ ผันผวนไปตามราคาน้ำมันในตลาดโลก การหาพลังงานทดแทนจึงมีความสำคัญอย่างยิ่ง โดยเฉพาะประเทศไทยที่ส่งออกสินค้าทางเกษตรในราคาต่ำ แต่ใช้สินค้ำนำเข้าราคาสูงกว่ามาก หน่วยงานของรัฐจึงได้รณรงค์ให้คนไทยหันมาใช้เชื้อเพลิงชีวภาพชนิดต่าง ๆ มากขึ้น

เชื้อเพลิงชีวภาพที่ใช้ทดแทนหรือนำไปใช้ร่วมด้วย ได้แก่ เอทานอล ให้นักเรียนใช้ความรู้ ทางเคมีเปรียบเทียบพลังงานความร้อนที่ได้จากการใช้น้ำมันเบนซินกับการใช้เอทานอล (95 %) โดยกำหนดสมมติฐานให้ดังตาราง

ชนิด	เชื้อเพลิง	องค์ประกอบ	สูตรเคมี	% โดย	ความหนาแน่น
ที่				น้ำหนัก	(g/mL)
1	เบนซิน	นอร์มัล-ออกเทน (n-octane)	C ₈ H ₁₈	100	0.7025
2	เอทานอล	เอทานอล : น้ำ	$C_2H_5OH:H_2O$	95 : 5	0.7893

- 3.1 (1.0 คะแนน) จงเขียนโครงสร้างแบบเส้นของ *นอร์มัล*-ออกเทน และเอทานอล
- 3.2 (2.0 คะแนน) จงเขียนสมการการเผาใหม้อย่างสมบูรณ์ของเชื้อเพลิงทั้ง 2 ชนิด

- 3.3 (3.0 คะแนน) ค่าความร้อนที่ได้จากการเผาใหม้เชื้อเพลิงแต่ละชนิดมีค่ากี่**กิโลจูลต่อ**โมล (kJ/mol) ให้แสดงวิธีคิด โดยให้คิดเฉพาะโมลของสารที่ให้ความร้อนจากการ
 เผาใหม้เท่านั้น
- 3.4 (2.0 คะแนน) ความร้อนที่ได้จากการเผาไหม้เชื้อเพถิงแต่ละชนิดมีค่ากี่**กิโลจูลต่อลิตร** (kJ/L)
- 3.5 (1.0 คะแนน) ถ้าปั้มน้ำมันขายน้ำมันเบนซินราคา 20 บาทต่อลิตร คนไทยควรซื้อ เอทานอลในราคาลิตรละไม่เกินกี่บาทจึงจะได้พลังงานความร้อนที่เท่ากัน
- 3.6 (1.0 คะแนน) ถ้าน้ำมันเบนซินนำเข้ามีราคา (ไม่รวมภาษี) ประมาณ 50 เหรียญสหรัฐ หรือ 2,000 บาทต่อบาร์เรล (1 บาร์เรล ≈ 160 ลิตร) ผู้ผลิตน้ำมันเชื้อเพลิงทดแทน ชาวไทยควรลงทุนผลิตเอทานอลด้วยต้นทุนไม่เกินกี่บาทต่อลิตร จึงจะแข่งขันกับ บริษัทนำเข้าน้ำมันเชื้อเพลิงต่างประเทศได้ (ระบุเลขทศนิยม 2 ตำแหน่ง)

โจทย์ข้อที่ 4 (9.5 คะแนน)

สารประกอบ A มีน้ำหนักโมเลกุล 134 จากการตรวจสอบหาธาตุองค์ประกอบพบว่า A ประกอบด้วยการ์บอน 80.6 % ใชโครเจน 7.5 % ส่วนที่เหลือเป็นออกซิเจน

เมื่อนำ \mathbf{A} 2.02 g ไปทำปฏิกิริยาโดยมีเอนไซม์เป็นตัวเร่ง พบว่า ให้ผลิตภัณฑ์เป็นสาร $\mathbf{B_1}$ และ $\mathbf{B_2}$ ซึ่งเป็นอิแนนชิโอเมอร์ซึ่งกันและกัน หลังจากใช้เทคนิคโครมาโทกราฟีขั้นสูงแยก $\mathbf{B_1}$ และ $\mathbf{B_2}$ ออกจากกันจะได้สารในปริมาณ 1.37 g และ 0.41 g ตามลำดับ

หากนำ $\mathbf{B_1}$ ไปทำปฏิกิริยาต่อ ไปตามลำดับดังแสดงในแผนภาพ จะได้สารประกอบ $\mathbf{C} - \mathbf{F}$

p-TsCl = p-toluenesulfonyl chloride

- 4.1 (1.5 คะแนน) จงเขียนสูตรโมเลกุลและสูตรโครงสร้างของสาร ${f A}$
- 4.2 (5.0 คะแนน) จงเขียนสูตรโครงสร้างที่แสดงสเตอริโอเคมี (ถ้ามี) ของสาร $\mathbf{B_1}, \mathbf{B_2}, \mathbf{C},$ \mathbf{D} และ \mathbf{F}
- 4.3 (1.0 คะแนน) จงคำนวณร้อยละผลได้ของผลิตภัณฑ์แต่ละไอโซเมอร์ ($\mathbf{B_1}$ และ $\mathbf{B_2}$) เมื่อ \mathbf{A} ทำปฏิกิริยาโดยมีเอนไซม์เป็นตัวเร่ง
- 4.4 (0.5 คะแนน) ปฏิกิริยาระหว่าง ${f B}_1$ กับ $p ext{-TsCl}$ เป็นปฏิกิริยาประเภทใด
- 4.5 (0.5 คะแนน) ปฏิกิริยาระหว่างสาร ${f C}$ กับ ${f KCN}$ จัดเป็นปฏิกิริยาประเภทใด
- 4.6 (0.5 คะแนน) ปฏิกิริยาการเตรียม ${f F}$ จาก ${f E}$ จัดเป็นปฏิกิริยาประเภทใด
- 4.7 (0.5 คะแนน) สาร F ให้ฟองแก๊สเมื่อให้ทำปฏิกิริยากับสารใดได้บ้าง

โจทย์ข้อที่ 5 (10 คะแนน)

เมื่อให้ความร้อนกับไกลซีน ($H_2NCH_2CO_2H$) จะได้ผลิตภัณฑ์เป็น "ไกลซีนแอนไฮไดรด์" ซึ่งเป็น ของแข็งสีขาว ผลการวิเคราะห์ชาตุองค์ประกอบพบว่า สารนี้มีการ์บอน 42.10 % ไฮโครเจน 5.30 % และ ในโตรเจน 24.55 % ส่วนที่เหลือเป็นออกซิเจน สารนี้มีมวลโมเลกุล 114 ไม่ทำปฏิกิริยากับทั้ง สารละลายกรดเจือจางและสารละลายเบสเจือจางที่อุณหภูมิปกติ แต่เมื่อนำไปต้มในสารละลายกรด หรือเบสจะได้ไกลซีนในรูปของเกลือกับกรดหรือเบสนั้นกลับคืนมาเป็นผลิตภัณฑ์เพียงชนิดเดียว

- 5.1 (2.0 คะแนน) จงแสดงวิธีหาสูตรโมเลกุลของใกลซีนแอนใฮใดรด์
- 5.2 (2.0 คะแนน) จงแสดงสูตรโครงสร้างของใกลซีนแอนใฮใดรด์
- 5.3 (2.0 คะแนน) จงแสดงสูตรโครงสร้างของอะลานีนแอนไฮไดรด์ ซึ่งเกิดจากการให้ ความร้อนกับอะลานีน [$H_2NCH(CH_3)CO_2H$] แบบราซีมิก ให้แสดงทุกโครงสร้างที่ เป็นไปได้ โดยเขียนแสดงสเตอริโอเคมีของแต่ละโครงสร้างให้ชัดเจน
- 5.4 (2.0 คะแนน) จงระบุโครงสร้างของอะลานีนแอนไฮไครค์ในข้อ 5.3 ทุกสเตอริโอ ใอโซเมอร์ที่สามารถหมุนระนาบแสงโพลาไรซ์ได้
- 5.5 (2.0 คะแนน) ถ้านำสารผสมของอะลานีนแอนไฮไดรด์ที่ได้จากข้อ 5.3 มาแยกด้วย เทคนิคทินแลร์โครมาโทกราฟี (Thin Layer Chromatography) โดยใช้ซิลิกาเจลเป็น ตัวดูดซับและเอทิลอะซีเตต-เฮกเซนเป็นตัวทำละลาย (รายละเอียดของหลักการอยู่ใน โจทย์ข้อที่ 8) ภายใต้ภาวะการแยกที่ดีที่สุดจะสามารถแยกสารออกมาได้กี่ องค์ประกอบ จงแสดงสเตอริโอเคมีของสารในแต่ละองค์ประกอบอย่างชัดเจน

ข้อมูลกำหนดให้ สำหรับโจทย์ข้อที่ 6 และข้อที่ 7

 $R = 0.082 \text{ L}\cdot\text{atm/K}\cdot\text{mol}$ = 8.314 J/K·mol

ความจุความร้อนของไม้ = 0.50 kcal/kg $^{\circ}$ C

ความจุกวามร้อนของตะกั่ว = $0.030 \text{ kcal/kg} ^{\circ}\text{C}$

ความจุความร้อนของการระเหยของน้ำ = 540 kcal/kg °C

และ 1 cal = 4.184 J

โจทย์ข้อที่ 6 (10.5 คะแนน)

- 6.1 (5.5 คะแนน) ลูกกระสุนตะกั่วหนัก 12.0 g วิ่งด้วยความเร็ว 600 m/s ฝังเข้าไปใน ชิ้นไม้ที่หนัก 2.00 kg กำหนดให้ลูกกระสุนตะกั่วและชิ้นไม้เริ่มต้นอยู่ที่อุณหภูมิ
 25 °C สมมุติว่า ไม่มีการสูญเสียความร้อนให้กับสิ่งแวดล้อม
 - (ก) (2.5 คะแนน) ให้หาพลังงานจลน์ของลูกกระสุนที่วิ่งไปเป็น **kJ** และ **kcal** (สมมุติว่า ไม่มีพลังงานจากการหมุนและการสั่น)
 - (ข) (3.0 คะแนน) ให้หาอุณหภูมิสุคท้ายของชิ้นไม้ที่มีกระสุนฝังอยู่ (สมมุติให้ ความร้อนกระจายทั่วทั้งเนื้อไม้)
- 6.2 (5.0 คะแนน) เมื่อแก๊สอีเทน (C₂H₆) เกิดการเผาใหม้จะให้ความร้อน 368 kcal/mol แต่เพียง 60 % ของความร้อนเท่านั้นที่นำไปใช้ประโยชน์ใค้ คังนั้นถ้าต้องการเปลี่ยน น้ำ 50 kg ที่ 10 °C ให้เป็นใอน้ำที่ 100 °C จะต้องใช้ความร้อนจากการเผาใหม้ แก๊สอีเทนที่ STP กี่ลูกบาศก์เมตร จึงจะได้ความร้อนที่เพียงพอต่อการเปลี่ยนแปลงนี้

โจทย์ข้อที่ 7 (10 คะแนน)

การเตรียมแก๊ส ${\rm CO_2}$ วิธีหนึ่งทำได้โดยใช้ผง ${\rm CaCO_3}$ ทำปฏิกิริยากับกรด HCl ถ้าใช้ ${\rm CaCO_3}$ บริสุทธิ์ ${\rm 20~g}$ ทำปฏิกิริยากับ HCl เข้มข้น ${\rm 1.0~M}$ ปริมาตร ${\rm 200~mL}$

จงตอบคำถามต่อไปนี้

- 7.1 (1.5 คะแนน) ถ้าปฏิกิริยาเกิดอย่างสมบูรณ์ จะได้แก๊ส ${
 m CO}_2$ กี่กรัม
- 7.2 (1.0 คะแนน) ถ้าเก็บแก๊ส ${\rm CO_2}$ ที่เกิดขึ้นนี้ ที่อุณหภูมิ 57 $^{\circ}{\rm C}$ ความดัน 1.0 atm จะได้แก๊สกี่ลิตร
- 7.3 (1.5 คะแนน) ถ้าเก็บแก๊ส ${
 m CO_2}$ ในภาชนะขนาด 5.0 L ที่ 300 K และในการเตรียมแก๊ส ${
 m CO_2}$ ครั้งนี้ พบว่า มีไอน้ำผสมอยู่ด้วย $0.18~{
 m g}$ จงคำนวณความดันรวมของแก๊สผสม
- 7.4 (2.0 คะแนน) ในกรณีที่เตรียมแก๊ส CO_2 โดยใช้ CaCO_3 1 mol ทำปฏิกิริยาพอดีกับ HCl จงคำนวณพลังงานของปฏิกิริยาการเตรียมแก๊ส CO_2 ที่อุณหภูมิ 298 K ความดัน 1 atm

กำหนดให้ ที่อุณหภูมิ 298 K ความคัน 1 atm

$$Ca(s) + C(s) + 3/2 O_2(g) \longrightarrow CaCO_3(s)$$
 $\Delta H_1 = -1,200 \text{ kJ} \dots (1)$

$$1/2 \text{ H}_2(g) + 1/2 \text{ Cl}_2(g) \xrightarrow{\text{H}_2\text{O}} \text{HCl(aq)} \qquad \Delta \text{H}_2 = -200 \text{ kJ} \quad(2)$$

$$Ca(s) + Cl_2(g) \longrightarrow CaCl_2(aq)$$
 $\Delta H_3 = -450 \text{ kJ} \dots(3)$

$$H_2(g) + 1/2 O_2(g) \longrightarrow H_2O(1)$$
 $\Delta H_4 = -300 \text{ kJ} \dots (4)$

$$C(s) + O_2(g) \rightarrow CO_2(aq)$$
 $\Delta H_5 = -400 \text{ kJ} \dots (5)$

7.5 (2.0 คะแนน) ถ้าเตรียมแก๊ส ${\rm CO_2}$ ในภาชนะขนาด 5.0 L และเป็นระบบปิด เมื่อใช้ ${\rm CaCO_3~1.00~mol~n^1d}$ ฏิกิริยากับแก๊ส ${\rm HCl~2.00~mol~n^1}$ 298 K ${\rm d}$ ฏิกิริยาเกิดขึ้นดัง สมการ

$$CaCO_3(s) + 2HCl(g) \rightleftharpoons CaCl_2(s) + H_2O(g) + CO_2(g)$$

เมื่อถึงภาวะสมคุลปรากฏว่าได้ไอน้ำ 0.40 mol จงคำนวณค่าคงที่สมคุลของปฏิกิริยานี้
7.6 (2.0 คะแนน) ถ้า CaCO₃ ที่ใช้ 20.0 g มีความบริสุทธิ์เพียง 40 % โดยมวล ทำปฏิกิริยา
กับ HCl มากเกินพอ จงคำนวณปริมาตรแก๊ส CO₂ ที่เกิดขึ้น (หน่วยเป็น L) ที่ 300 K
1.00 atm (กำหนดให้สารอื่น ๆ ที่ผสมอยู่ใน CaCO₃ ไม่ทำปฏิกิริยากับ HCl)

โจทย์ข้อที่ 8 (13 คะแนน)

ในการสังเคราะห์แอสไพรินจากปฏิกิริยาระหว่างกรคซาลิซิลิก (salicylic acid) กับแอซีติก แอนไฮไดรด์ (acetic anhydride) โดยมีกรคฟอสฟอริกเป็นคะตะลิสต์ ดังนี้

- 8.1 (1.0 คะแนน) จงเขียนสูตรโครงสร้างของแอสไพรินและสาร B
- 8.2 (1.5 คะแนน) ถ้าร้อยละผลได้ของแอสไพรินในปฏิกิริยานี้เท่ากับ 85 หากต้องการ แอสไพริน 0.45 g จะต้องใช้ปริมาณกรดซาลิซิลิกตั้งต้นกี่กรัม และแอซีติก แอนไฮไดรด์กี่มิลลิลิตร (มวลโมเลกุล : กรดซาลิซิลิก 138 g/mol; แอซีติก แอนไฮไดรด์ 102 g/mol; ความหนาแน่นของแอซีติกแอนไฮไดรด์ 1.082 g/mL)
- 8.3 (1.0 คะแนน) เมื่อนำแอสไพรินที่เตรียมได้ประมาณ 10 mg ใส่ในหลอดทดลอง เติม HCl เข้มข้น 0.1 M 5 หยด นำไปอุ่น ทิ้งไว้ให้เย็น แล้วเติม FeCl₃ 1 หยด จะเห็นการเปลี่ยนแปลงหรือไม่ อย่างไร
- 8.4 (2.5 คะแนน) เมื่อนำสารละลายของกรคซาลิซิลิก 0.138 g ในน้ำปริมาตร 500 mL ไปวัดค่า pH พบว่า มีค่า 3.00 จงคำนวณค่า pK ของกรคซาลิซิลิก พร้อมเปรียบเทียบ กับแอสไพรินว่า สารใคเป็นกรคที่แรงกว่ากัน (K_a ของแอสไพริน = 3.27×10^{-4})

ทินแลร์ โครมาโทกราฟี (Thin Layer Chromatography หรือ TLC) เป็นเทคนิคที่มีหลักการ คล้ายคลึงกับโครมาโทกราฟีกระดาษ ในเทคนิค TCL องค์ประกอบของสารแต่ละชนิดจะกระจาย ตัวอยู่ระหว่าง 2 วัฏภาค ได้แก่ วัฏภาคคงที่ ซึ่งมักเป็นซิลิกาที่เคลือบเป็นชั้นบางบนแผ่นกระจก และวัฏภาคเคลื่อนที่ ซึ่งมักเป็นตัวทำละลาย หากสารตัวอย่างเกิดแรงกระทำที่แข็งแรงกับซิลิกา ก็จะเคลื่อนที่ได้ช้า ซิลิกานับเป็นวัสดุที่สำคัญสำหรับการแยก ในการแยกสารบางประเภทอาจ ต้องใช้ซิลิกาที่ผ่านการดัดแปลงหมู่ฟังก์ชันเพื่อให้เหมาะสมกับสารที่นำมาวิเคราะห์ เช่น ซิลิกา ชนิด reversed phase จะมีหมู่ฟังก์ชันที่ไม่มีขั้ว และจะเกิดแรงกระทำกับสารที่ไม่มีขั้วได้ดี

ในการติดตามการดำเนินไปของปฏิกิริยาการสังเคราะห์แอสไพรินด้วย TLC ชนิด reversed phase โดยใช้สารละลายผสม เมทานอล-น้ำ (30:70) เป็นวัฏภาคเคลื่อนที่ พบว่า ตำแหน่งสารที่ ปรากฏบนแผ่น TLC เป็นดังภาพ

- 8.5 (1.0 คะแนน) หากในการตรวจวัดสามารถมองเห็นเพียงกรดซาลิซิลิกและแอสไพริน ระบุว่า จุด A คือสารใด และจุด B คือสารใด
- 8.6~~(1.0~กะแนน) คำนวณค่า $R_{_{
 m f}}$ ของจุค A

สารตัวอย่างชนิดหนึ่งมีกรดอ่อนชนิดโมโนโปรติก (คล้ายคลึงกับกรดออกซาลิก) เป็น องค์ประกอบหลัก เมื่อนำสารตัวอย่างนี้หนัก $0.500\,\mathrm{g}$ ในสารละลายปริมาตร $25.0\,\mathrm{mL}$ ไปไทเทรต กับสารละลาย NaOH เข้มข้น $0.100\,\mathrm{M}$ พบว่า ที่จุดยุติต้องใช้สารละลาย NaOH $25.00\,\mathrm{mL}$ (กรดอ่อน : มวลโมเลกุล = $122\,\mathrm{g/mol}$; $K_a = 6.14 \times 10^{-5}$)

<u>อินดิเคเตอร์</u>	<u>ช่วง pH</u>	<u>การเปลี่ยนสี</u>
เมทิลเรค (methyl red)	4.2 - 6.3	แดง – เหลือง
บรอมไทมอลบลู (bromthymol blue)	6.2 - 7.6	เหลือง – น้ำเงิน
ฟินอล์ฟทาลีน (phenolphthalein)	8.3 - 10.0	ไม่มีสี – แคง

- 8.7 (2.5 คะแนน) คำนวณค่า pH ของสารละลายที่จุดสมมูล
- 8.8 (1.0 คะแนน) ควรเลือกใช้สารใคเป็นอินดิเคเตอร์ และที่จุดยุติจะเห็นการเปลี่ยนแปลง อย่างไร
- 8.9 (1.5 คะแนน) คำนวณร้อยละโดยน้ำหนักของกรคอ่อนนี้ในสารตัวอย่าง

โจทย์ข้อที่ 9 (5 คะแนน)

ในการทดลองทางไฟฟ้าเคมีที่ 25 °C มีการจัดอุปกรณ์ดังนี้

- 9.1 (0.5 คะแนน) จงเขียนครึ่งปฏิกิริยาที่ขั้วไฟฟ้าทั้งสอง
- 9.2 (0.5 คะแนน) จงเขียนปฏิกิริยาของเซลล์
- $9.3 \quad (4.0 \
 m n$ ะแนน) จงแสดงวิธีคำนวณเพื่อหาก่ากงที่ผลกูณการละลาย ($m K_{sp}$) ของ $m CdCO_3$

$$Cd^{2+} + 2e^{-} \longrightarrow Cd(s)$$
 $E^{0} = -0.403 \text{ V}$

(กำหนดค่า R = 8.314 J/K·mol และ F = 96500 C)

โจทย์ข้อที่ 10 (5 คะแนน)

ออกซิเจนที่ละลายอยู่ในน้ำ (dissolved oxygen, DO) มีความสำคัญและจำเป็นอย่างยิ่ง สำหรับการคำรงชีวิตของพืชและสัตว์ที่อาศัยในแหล่งน้ำนั้น ปริมาณของออกซิเจนในน้ำจึงแสดง คุณภาพของน้ำ ในการหาปริมาณออกซิเจนโดย Winkler Method ซึ่งทำโดยเก็บน้ำตัวอย่างให้ เต็มขวดที่ปิดสนิทขนาด 250 mL เติมสารละลาย $MnSO_4$ ลงในน้ำตัวอย่าง ตามค้วยสารละลาย KI ใน NaOH ปิดฝาขวด แล้วเขย่าอย่างแรงให้สารละลายผสมกัน ตั้งทิ้งไว้ให้ตะกอนนอนกัน ได้สารละลายใสค้านบนประมาณ 1/3 ของขวด เติม H_2SO_4 เข้มข้น ปิดฝาขวด แล้วเขย่าให้ สารละลายผสมกัน ปิเปตสารละลายใสที่ได้ $50.00 \, \text{mL}$ มาไทเทรตค้วยสารละลาย $Na_2S_2O_3$ เข้มข้น $0.00101 \, \text{M}$ โดยใช้น้ำแป้งเป็นอินคิเคเตอร์ ปรากฏว่า ต้องใช้สารละลาย $Na_2S_2O_3$ 24.25 mL จึงจะถึงจุดยุติ ถ้าปฏิกิริยาที่เกิดขึ้นเป็นดังสมการ

$$Mn^{2^{+}} + 2OH^{-} \longrightarrow Mn(OH)_{2}$$

 $2Mn(OH)_{2} + O_{2} \longrightarrow 2MnO_{2} + 2H_{2}O$
 $MnO_{2} + 2I^{-} + 4H^{+} \longrightarrow Mn^{2^{+}} + I_{2} + 2H_{2}O$
 $2S_{2}O_{3}^{2^{-}} + I_{2} \longrightarrow S_{4}O_{6}^{2^{-}} + 2I^{-}$

จงแสคงวิธีคำนวณหาปริมาณออกซิเจนที่ละลายในน้ำตัวอย่างในหน่วย mg/L

โจทย์ข้อที่ 11 (7 คะแนน)

ให้ H_3T แทนกรดในไตรโลอะซีติก ($N(CH_2CO_2H)_3$) และ Na_3T แทนเกลือโซเดียมของกรดในไตรโลอะซีติกซึ่งเป็นสารคีเลต (มวลโมเลกุลของ $Na_3T=257~\mathrm{g/mol}$)

น้ำในบึงแห่งหนึ่งมี pH 7.00 ได้มีผู้ลักลอบทิ้ง Na_3T ลงไป ทำให้น้ำมี Na_3T เข้มข้น 25~mg/L และอยู่ในภาวะสมคุลกับ $PbCO_3$ ที่มีอยู่ในคินตะกอนก้นบึง กำหนคให้ ที่ pH 7.00 นี้ Na_3T เกือบ 100~% อยู่ในรูป HT^{2-} และน้ำกับคินตะกอนก้นบึงยังมีสมคุลระหว่าง CO_2 , HCO_3^- และ CO_3^{2-} โดยมีความเข้มข้นของ HCO_3^- เท่ากับ $1.00\times 10^{-3}~M$

ปฏิกิริยาการเกิดสารเชิงซ้อนระหว่าง Na₃T และ Pb(II) เป็นดังนี้

$$PbCO_3(s) + HT^{2-} \rightleftharpoons PbT^- + HCO_3^- K_1(A)$$

และกำหนดให้

 K_{a1}, K_{a2} และ K_{a3} ของ H_3T เท่ากับ $2.19\times 10^{-2}, 1.12\times 10^{-3}$ และ 5.25×10^{-11} ตามลำคับ K'_{a1} และ K'_{a2} ของ H_2CO_3 เท่ากับ 4.47×10^{-7} และ 4.69×10^{-11} ตามลำคับ

$$Pb^{2^{+}} + T^{3^{-}} \rightleftharpoons PbT^{-}$$
 $K_{f}(B) = 2.45 \times 10^{11}$
 $PbCO_{3}(s) \rightleftharpoons Pb^{2^{+}} + CO_{2}^{2^{-}}$ $K_{sp} = 1.48 \times 10^{-13}$

- 11.1 (4.0 คะแนน) จงคำนวณค่าคงที่สมคุล $\mathbf{K}_{t}(\mathbf{A})$ และอัตราส่วน [PbT] / [\mathbf{HT}^{2}]
- 11.2 (1.5 คะแนน) จงหาความเข้มข้นของ Pb(II) ในน้ำ ในหน่วย mg/L
- 11.3 (1.5 คะแนน) จากผลที่คำนวณได้ในข้อ 11.1 และ 11.2 Na₃T มีผลกระทบต่อ สิ่งแวคล้อมหรือไม่ เพราะเหตุใด

ตารางธาตุ

ตัวเลขในวงเล็บคือมวลอะตอมของไอโซโทปที่เสถียรมากที่สุด

LOGARITHMS

1.0	.000	3.3	.518	5.6	.748	7.9	.898
1.1	.041	3.4	.531	5.7	.756	8.0	.903
1.2	.079	3.5	.544	5.8	.763	8.1	.908
1.3	.114	3.6	.556	5.9	.771	8.2	.914
1.4	.146	3.7	.568	6.0	.778	8.3	.919
1.5	.176	3.8	.580	6.1	.785	8.4	.924
1.6	.204	3.9	.591	6.2	.792	8.5	.929
1.7	.230	4.0	.602	6.3	.799	8.6	.934
1.8	.255	4.1	.613	6.4	.806	8.7	.939
1.9	.279	4.2	.623	6.5	.813	8.8	.944
2.0	.301	4.3	.633	6.6	.820	8.9	.949
2.1	.322	4.4	.643	6.7	.826	9.0	.954
2.2	.342	4.5	.653	6.8	.832	9.1	.959
2.3	.362	4.6	.663	6.9	.839	9.2	.964
2.4	.380	4.7	.672	7.0	.845	9.3	.968
2.5	.398	4.8	.681	7.1	.851	9.4	.973
2.6	.415	4.9	.690	7.2	.857	9.5	.978
2.7	.431	5.0	.699	7.3	.863	9.6	.982
2.8	.447	5.1	.708	7.4	.869	9.7	.987
2.9	.462	5.2	.716	7.5	.875	9.8	.991
3.0	.477	5.3	.724	7.6	.881	9.9	.996
3.1	.491	5.4	.732	7.7	.886	10.0	1.000
3.2	.505	5.5	.740	7.8	.892		