NAME:- AKSHIT DHAKE

ROLL NO :- 322

PRN:- 202201040177

Topic:-

Read any real-life dataset. Store the data in Data Frames. Identify 10 grains for the given dataset.

1	Α	В	С	D	E	F	G	Н	1
L	work_year	experiNewce_level	employment_type	job_title	salary Rs	salary_in_usd	employee_residNewce	company_location	company_size
2	2023	below10	Full	Principal Data SciNewtist	80000	85847	ES	ES	L
3	2021	above10	Part	ML Newgineer	30000	30000	US	US	S
4	2023	above10	Part	ML Newgineer	25500	25500	US	US	S
5	2023	below10	Full	Data SciNewtist	175000	175000	CA	CA	M
5	2023	below10	Full	Data SciNewtist	120000	120000	CA	CA	M
7	2021	below10	Full	Applied SciNewtist	222200	222200	US	US	L
3	2022	below10	Full	Applied SciNewtist	136000	136000	US	US	L
9	2023	below10	Full	Data SciNewtist	219000	219000	CA	CA	M
0	2023	below10	Full	Data SciNewtist	141000	141000	CA	CA	M
1	2023	below10	Part	Data SciNewtist	147100	147100	US	US	M
2	2021	below10	Full	Data SciNewtist	90700	90700	US	US	M
3	2022	below10	Part	Data Analyst	130000	130000	US	US	M
4	2020	below10	Part	Data Analyst	100000	100000	US	US	M
5	2020	New	Full	Applied SciNewtist	213660	213660	US	US	L
6	2019	New	Part	Applied SciNewtist	130760	130760	US	US	L
7	2019	below10	Full	Data Modeler	147100	147100	US	US	M
8	2020	below10	Full	Data Modeler	90700	90700	US	US	M
9	2023	below10	Part	Data SciNewtist	170000	170000	US	US	M
0	2023	below10	Full	Data SciNewtist	150000	150000	US	US	M
1	2023	above10	Full	Data Analyst	150000	150000	US	US	М
2	2022	above10	Full	Data Analyst	110000	110000	US	US	M
3	2021	below10	Part	Rebelow10arch Newgineer	275000	275000	DE	DE	М
4	2023	below10	Part	Rebelow10arch Newgineer	174000	174000	M	DE	М
5	2022	below10	Part	Analytics Newgineer	230000	230000	GB	GB	

```
import pandas as pd
data = "/content/company.csv"
df = pd.read_csv(data)
print(df)
```

output:-

T-TO Y	k waar ayna	riNewce level employm	ant time	<pre>job title \</pre>
0	2023	below10	Full	Principal Data SciNewtist
1	2021	above10	Part	ML Newgineer
2	2023	above10	Part	ML Newgineer
3	2023	below10	Full	Data SciNewtist
4	2023	below10	Full	Data SciNewtist
5	2021	below10	Full	Applied SciNewtist
6	2022	below10	Full	Applied SciNewtist
7	2023	below10	Full	Data SciNewtist
8	2023	below10	Full	Data SciNewtist
9	2023	below10	Part	Data SciNewtist
10	2021	below10	Full	Data SciNewtist
11	2022	below10	Part	Data Analyst
12	2020	below10	Part	Data Analyst
13	2020	New	Full	Applied SciNewtist
14	2019	New	Part	Applied SciNewtist
15	2019	below10	Full	Data Modeler
16	2020	below10	Full	Data Modeler
17	2023	below10	Part	Data SciNewtist
18	2023	below10	Full	Data SciNewtist
19	2023	above10	Full	Data Analyst
20	2022	above10	Full	Data Analyst
21	2021	below10	Part	Rebelow10arch Newgineer
22	2023	below10	Part	Rebelow10arch Newgineer
23	2022	below10	Part	Analytics Newgineer
				_
	salary Rs	salary_in_usd employ	vee_residNewce	company_location
com	pany_size			
0	80000	85847	ES	ES
L				
1	30000	30000	US	US
S	0.5.5.0.0	0==00		
2	25500	25500	US	US
S	175000	175000		
3	175000	175000	CA	CA
M	120000	120000	\sim 7	C7
4	120000	120000	CA	CA
M 5	222200	222200	US	US
	222200	222200	US	US
L 6	136000	136000	US	US
L	120000	130000	US	US
7	219000	219000	CA	CA
M	21000	217000	CA	<i>U</i> 11
T.T				

8	141000	141000	CA	CA
M 9	147100	147100	US	US
M 10	90700	90700	US	US
M 11	130000	130000	US	US
M 12 M	100000	100000	US	US
13 L	213660	213660	US	US
14 L	130760	130760	US	US
15 М	147100	147100	US	US
16 M	90700	90700	US	US
17 M	170000	170000	US	US
18 M	150000	150000	US	US
19 M	150000	150000	US	US
20 M	110000	110000	US	US
21 M	275000	275000	DE	DE
22 M	174000	174000	М	DE
M 23 NaN	230000	230000	GB	GB

qurries:-

```
# 1) ifnd which country has maximun number of companies
# Count the occurrences of each country in the 'country' column
country_counts = df['company_location'].value_counts()

# Get the country with the maximum occurrences
max_country = country_counts.idxmax()

# Print the country with the maximum occurrences
print("Country with the maximum occurrences:", max_country)
```

output: - Country with the maximum occurrences: US

```
# 2) Find the maximum occurring job title
most_common_job_title = df['job_title'].value_counts().idxmax()

# Print the most common job title
print("Most common job title:", most_common_job_title)
```

Output: - Most common job title: Data SciNewtist

```
# 3 TO find which size of company has most full job
full_employment_df = df[df['employment_type'] == 'Full']

# Count the occurrences of each company size in the filtered DataFrame
company_size_counts = full_employment_df['company_size'].value_counts()

# Find the company size with the most "full" employment type
most_common_company_size = company_size_counts.idxmax()

# Print the company size with the most "full" employment type
print("Company size with the most 'full time ' employment type:",
most_common_company_size)
```

Output: - ompany size with the most 'full time ' employment type: M

```
# 4) which job title has maximum salary

# Convert the salary column to numeric values

df['salary Rs'] = df['salary Rs'].replace('Rs', '',
    regex=True).astype(float)

# Find the job title with the highest salary
    highest_salary_job_title = df.loc[df['salary Rs'].idxmax(), 'job_title']

# Print the job title with the highest salary
    print("Job title with the highest salary:", highest_salary_job_title
```

Output: Job title with the highest salary: Rebelow10arch Newgineer

```
# 5) job title with least salary
# Sort the DataFrame by salary in ascending order
sorted_df = df.sort_values(by='salary Rs')
# Get the job title with the least salary
least_salary_job_title = sorted_df['job_title'].iloc[0]
```

```
# Get the value of the least salary
least_salary_value = sorted_df['salary Rs'].iloc[0]

# Print the job title with the least salary and its value
print("Job title with the least salary:", least_salary_job_title)
print("Value of the least salary:", least salary value)
```

Output:- Job title with the least salary: ML Newgineer

Value of the least salary: 25500.0

```
# 6) To find which employee does not reside in same country of there
company and this details

# Filter the DataFrame for employees who work in a different country
different_country_employees = df[df['company_location'] !=
df['employee_residNewce']]

# Print the employees who work in a different country
print("Employees who work in a different country:")
print(different_country_employees)
```

Output:-

Employees who work in a different country:

```
work_year experiNewce_level employment_type job_title

22 2023 below10 Part Rebelow10arch Newgineer

salary Rs salary_in_usd employee_residNewce company_location

company_size

22 174000.0 174000 M DE

M
```

```
# 7) To find which country has maximum number of Applied SciNewtist
employees

# Filter the DataFrame for employees with the job title "Applied
Scientist"
Applied_SciNewtist_employees = df[df['job_title'] == 'Applied SciNewtist']

# Count the occurrences of each country in the filtered DataFrame
```

```
country_counts =
Applied_SciNewtist_employees['company_location'].value_counts()

# Find the country with the maximum number of "Applied Scientist"
employees
country_with_max_employees = country_counts.idxmax()

# Print the country with the maximum number of "Applied Scientist"
employees
print("Country with the maximum number of 'Applied SciNewtist employees:",
country_with_max_employees)
```

```
# 8) to find which job title occur least time
# Find the minimum occurrence of job titles
min_occurrence = df['job_title'].value_counts().min()
# Find the job title(s) with the minimum occurrence
min_occurrence_job_titles =
df['job_title'].value_counts()[df['job_title'].value_counts() ==
min_occurrence]
# Print the minimum occurrence and the corresponding job title(s)
print("Minimum Occurrence:", min_occurrence)
print("Job Title(s) with Minimum Occurrence:")
print(min_occurrence_job_titles)
```

Ouput:-

```
job_title_counts = full_time_jobs['job_title'].value_counts()

# Get the job title with the most full-time occurrences and its count
most_common_job_title = job_title_counts.idxmax()
most_common_job_title_count = job_title_counts.max()

# Print the job title with the most full-time occurrences and its count
print("Job Title with the Most Full-Time job:", most_common_job_title)
print("Count:", most common job title count)
```

Ouput:-

```
Job Title with the Most Full-Time job: Data SciNewtist

Count: 6

# 10 )To find details of the part time employee who has maximum salary

# Filter the DataFrame for rows where employment_type is "Part"

part_time_jobs = df[df['employment_type'] == 'Part']

# Find the maximum salary among part-time jobs

max_salary = part_time_jobs['salary Rs'].max()

# Retrieve the details of the job with the maximum salary

max_salary_job = part_time_jobs[part_time_jobs['salary Rs'] == max_salary]

# Print the maximum salary and its details

print("Maximum Salary (Part-Time):", max_salary)

print("Job Details:")

print(max_salary_job)
```

Ouput:-