蛍光顕微鏡

透過観察の原理

透過照明用光源 開口絞り 光源 肉眼 コンデンサー 視野絞り 観察サンプル 接眼レンズ 対物レンズ 結像レンズ カメラt

蛍光観察の原理

蛍光

https://www.olympus-lifescience.com/ja/microscope-resource/primer/techniques/confocal/fluoroexciteemit/

Jablonski Energy Diagram

Fluorophore Absorption and Emission Profiles

Excitation spectrum Emission spectrum 20 372 554 576 440 Excitation filter Emission filter

Mercury lamp spectrum

FITC / GFP Fluorescence Filter Combination

カメラ

擬似カラー Pseudocolor

Gray scale images

CCD vs CMOS

Fijiのダウンロード

https://imagej.net/software/fiji/downloads

Fiji is a distribution of ImageJ which includes many useful plugins contributed by the community.

Mexican Hat Filter Plug-inのダウンロード

https://imagej.nih.gov/ij/plugins/mexican-hat/index.html

home I news I docs I download I plugins I macros/dev I list I links

Mexican Hat Filter

Author: Dimiter Prodanov (dimiterpp at gmail.com)

History: 2012/11/10: First release

2012/11/24: Added "Separable" option; requires v1.47g

2012/11/26: Multi-threaded 2015/09/12: Bug fixes

2017/12/31: Fixed kernel calculation bug

Source: Mexican_Hat_Filter.java

Installation: Drag and drop Mexican_Hat_Filter.class onto the "ImageJ" window.

Description: This plugin applies a Laplacian of Gaussian (Mexican Hat) filter to a 2D image.

See Also: 3D Laplacian of Gaussian (LoG) plugin

Difference of Gaussians plugin

- Filter -

ノイズ(外れ値)を除去したい

- Filter -

Mean filtered

Median filtered

ノイズ (外れ値) を除去したい

- Filter -

Radius = 1

Kernel width/height = (Radius x 2) + 1 = 3

- Filter -

- Filter -

1	1	1
9	9	9
<u>1</u>	<u>1</u>	<u>1</u>
9	9	9
1	1	1
9	9	9

Kernel for 3 x 3 mean filter

- Filter -

3 x 3 median filtering

Gaussian Filter

$$Gauss(x, y) = \frac{1}{2\pi\sigma^2} exp(-\frac{x^2 + y^2}{2\sigma^2})$$

1/16	2/16	1/16
2/16	4/16	2/16
1/16	2/16	1/16

3×3の重みづけ

1/256	4/256	6/256	4/256	1/256
4/256	16/256	24/256	16/256	4/256
6/256	24/256	36/256	24/256	6/256
4/256	16/256	24/256	16/256	4/256
1/256	4/256	6/256	4/256	1/256

5×5の重みづけ

Mexican hat filter

Edge detection

Original 1st derivative 2nd derivative

プログラミング:

西己歹儿

細胞分裂の3つのモデル

Sizer: ある決まった大きさになったら分裂する

Timer: ある決まった時間が経過したら分裂する

Adder: ある決まった体積分成長したら分裂する

細胞分裂の3つのモデル

マイクロ流体デバイスを用いた分裂酵母のイメージング

自己相関係数の計算

オリジナルデータ
$$x[0]$$
 $x[1]$ $x[2]$ $x[3]$ $x[4]$ $x[5]$ $(N=6)$

$$\tau = 1 x[0] x[1] x[2] x[3] x[4] x[5] (x[0]x[1] + x[1]x[2] + x[2]x[3])/3$$

$$\tau = 2 x[0] x[1] x[2] x[3] x[4] x[5] (x[0]x[2] + x[1]x[3] + x[2]x[4])/3$$

$$\tau = 3 x[0] x[1] x[2] x[3] x[4] x[5] (x[0]x[3] + x[1]x[4] + x[2]x[5])/3$$

自己相関係数の計算

分散の定義と計算

Sample mean : \bar{x}

True mean: μ

Sample variance : $s^2 = \frac{1}{n} \sum_{i} (x_i - \bar{x})^2$

True variance : $\sigma^2 = E[(x_i - \mu)^2]$

$$s^{2} = \frac{1}{n} \sum_{i} (x_{i} - \bar{x})^{2}$$

$$= \frac{1}{n} \sum_{i} (x_{i} - \mu + \mu - \bar{x})^{2}$$

$$= \frac{1}{n} \sum_{i} (x_{i} - \mu)^{2} - 2(\bar{x} - \mu) \frac{1}{n} \sum_{i} (x_{i} - \mu) + (\bar{x} - \mu)^{2}$$

$$= \frac{1}{n} \sum_{i} (x_{i} - \mu)^{2} - 2(\bar{x} - \mu) \frac{1}{n} (n\bar{x} - n\mu) + (\bar{x} - \mu)^{2}$$

$$= \frac{1}{n} \sum_{i} (x_{i} - \mu)^{2} - (\bar{x} - \mu)^{2}$$

分散の定義と計算

Sample mean : \bar{x}

True mean: μ

Sample variance :
$$s^2 = \frac{1}{n} \sum_{i} (x_i - \bar{x})^2$$

True variance : $\sigma^2 = E[(x_i - \mu)^2]$

$$E[s^{2}] = E[\frac{1}{n} \sum_{i} (x_{i} - \mu)^{2} - (\bar{x} - \mu)^{2}]$$

$$= \frac{1}{n} \sum_{i} E[(x_{i} - \mu)^{2}] - E[(\bar{x} - \mu)^{2}]$$

$$= \sigma^{2} - E[(\bar{x} - \mu)^{2}]$$

$$= \sigma^{2} - E[\{\frac{1}{n}(x_{1} + x_{2} + \dots - n\mu)\}^{2}]$$

$$= \sigma^{2} - \frac{1}{n^{2}} \sum_{i} E[(x_{i} - \mu)^{2}]$$

$$= \sigma^{2} - \frac{1}{n} \sigma^{2} = \frac{n - 1}{n} \sigma^{2}$$