Relations and their Properties (Ch 9)

UM EECS 203 Lecture 16

Welcome Back

- Hope you had a good break!
- Reminders
 - Homework due Thursday
 - Regrade requests for Exam 1 due Thursday
- Individual office-hour appointments available with faculty
 - This week and next
 - If you want to discuss your exam, your progress in the course, or anything else in a 1-on-1 format
 - See 203 Office Hour calendar for times and info
- Exam 2 is Wednesday, March 23
 - 2 weeks from tomorrow
 - More info coming in Thursday's lecture

World Events

- The war in Ukraine is a source of anxiety and stress for many of us.
- We recognize that some students are more deeply affected by these current events than others.
- We want to support you
 - If you and/or your work is being affected, please reach out to us via the Admin Form so that we can look into potential supports and accommodations.

Learning Objectives

After today's lecture (and this week's readings, discussion & homework), you should be able to:

- Technical vocab: relation, reflexive, symmetric, anti-symmetric, transitive, reflexive closure, symmetric closure, transitive closure
- Explain the difference between a relation and a function
- Determine the properties of a given relation
- Provide examples of relations with specified combinations of properties
- Prove/disprove that a given relation has a particular property
- Compute reflexive closure and symmetric closure
- Compose two relations
- Compose a relation with itself to produce higher powers
- Compute transitive closure (for small relations)

Outline

- Relations
 - Definition
 - Representations of relations
- Properties
 - Reflexive, symmetric, antisymmetric, transitive
 - Asymmetric, irreflexive
- Relations as Sets
- Closure
 - Reflexive closure, symmetric closure
 - (Detour: composing relations & powering relations)
 - Transitive closure

May spill over into next lecture

Motivation

- Relations represent "knowledge of the world."
- Very relevant to real-world applications (e.g., Relational Database)
- Highly relevant to graphs (e.g., social network)

Functions vs Relations

A *function* maps each element of the domain to <u>exactly one</u> element in the co-domain.

Domain and co-domain are sets.

Q. why exactly one?

A. because that's what a function is.

the enrolled-in-discussion-section function

A *relation* does not have this restriction.

In a *relation*, an element of the domain can map to *zero or more* elements of the codomain.

the attends-discussion-section relation

Functions vs Relations

A *function* maps each element of the domain to <u>exactly one</u> element in the co-domain.

Domain and co-domain are sets.

Definition:

A **binary relation** R between sets D and C is a subset of $D \times C$.

Key feature:

An element of D can be related to <u>zero or more</u> elements of C.

the enrolled-in-discussion-section function

the attends-discussion-section relation

Representations of Relations

A **binary relation** R between sets D and C is a subset of $D \times C$.

* An element of *D* can be related to <u>zero or</u> <u>more</u> elements of *C*.

- 1. Graph representation
- **2. Set** representation \longrightarrow $R = \{ (Amira,1), (Amira,2), (Shruti,2) \}$
- 3. **0-1 Matrix** representation

can be used interchangeably:	"x relates to y (by R)" "xRy" "(x,y) \in R
	" $R(x,y)$ "

R	1	2			
Amira	1	1			
Katie	0	0			
Shruti	0	1			

the attends-discussion-section **relation**

Amira

Katie

Shruti

bipartite graph

Relations on the same set

Very common: Domain = Co-Domain

Example:

pMq ≡ "p and q have been in a movie together"

Binary Relation

- → Predicate
- → Directed Graph
- → Set of ordered pairs

Lecture 16 Handout: Relations & Properties

A binary relation R between D and C is a subset of $precent \sum P \times C$

Unlike a function, in a relation an element of the domain can relate
to zero or more elements of the codomain.

 \circ Very common: D = C

<u>Example</u>: Consider the relation \leq over $\{-5, 1, 2\} \leftrightarrow xRy$ iff $\chi \leq y$

- a) Domain $D = \{-5, 1, 2\}$ Codomain $C = \{-5, 1, 2\}$
- b) $D \times C = \{ (-5, -5), (-5, 1), (-5, 2), (1, -5), (1, 1), (1, 2), (2, -5), (2, 1), (2, 2) \}$
- c) Set representation: $R = \{ (-5,5), (-5,1), (-5,2), (1,1), (1,2), (2,2) \}$
- d) Graph representation e) Matrix representation

Outline

- Relations
 - Definition
 - Representations of relations
- Properties
 - Reflexive, symmetric, antisymmetric, transitive
 - Asymmetric, irreflexive
- Relations as Sets
- Closure
 - Reflexive closure, symmetric closure
 - (Detour: composing relations & powering relations)
 - Transitive closure

May spill over into next lecture

Properties of Relations [on the same set]

Very common: Domain = Co-Domain

on {-5, 1,2}

R is **REFLEXIVE**

For all x: $\chi^{k} \chi$

R is **SYMMETRIC**

For all x,y: $\times R_y \rightarrow y \times x$

R is **ANTISYMMETRIC** For all x,y: $(xRy \wedge yRx) \rightarrow x=y$

R is **TRANSITIVE**

For all x,y,z: (xky 1ykz) -> xkz

R is **asymmetric**

For all x,y: $\chi Ry \rightarrow y \chi \chi$

no

R is irreflexive

For all x:

X K X

nb

Relations on the same set

pMq ≡ p&q in a movie together

(representation of M is shown below, but not all edges are shown to avoid clutter)

Very common: Domain = Co-Domain

pMq ≡ p&q in a movie together

Is M REFLEXIVE?

Defn.: For all p: pMp

Is M **SYMMETRIC?**

Defn.: For all p,q: $pMq \leftrightarrow qMp$

Is M **ANTISYMMETRIC?**

Defn.: For all p,q: $(pMq \land qMp) \rightarrow p=q$

Is M TRANSITIVE?

Defn.: For all p,q,r: $(pMq \land qMr) \rightarrow pMr$

Very common: Domain = Co-Domain

pMq ≡ p&q in a movie together

Is M REFLEXIVE?

Defn.: For all p: pMp

Yes... If our domain is people who have been in a movie Not if our domain is all people

Is M **SYMMETRIC?**

Defn.: For all p,q: $pMq \leftrightarrow qMp$

Yes

Is M ANTISYMMETRIC?

Defn.: For all p,q: $(pMq \land qMp) \rightarrow p=q$

No

Is M TRANSITIVE?

Defn.: For all p,q,r: $(pMq \land qMr) \rightarrow pMr$

No

Very common: Domain = Co-Domain (in this case, positive integers)

"the Divides relation": aDb ≡ a divides b

Is D REFLEXIVE?

Defn.: For all a: aDa

Is D **SYMMETRIC?**

Defn.: For all a,b: aDb ↔ bDa

Is D ANTISYMMETRIC?

Defn.: For all a,b: $(aDb \land bDa) \rightarrow a=b$

Is D TRANSITIVE?

Defn.: For all a,b,c: $(aDb \land bDc) \rightarrow aDc$

Very common: Domain = Co-Domain (in this case, positive integers)

"the Divides relation": aDb = a divides b

Is D **REFLEXIVE?** Defn.: For all a: aDa

Yes: $a = 1 \cdot a$

Is D **SYMMETRIC?** Defn.: For all a,b: $aDb \leftrightarrow bDa$

No: 2D4, but $4\overline{D}2$

Is D **ANTISYMMETRIC?** Defn.: For all a,b: $(aDb \land bDa) \rightarrow a=b$

Yes: if aDb and bDa, then $a \le b$ and $b \le a$, so a = b

Is D **TRANSITIVE?** Defn.: For all a,b,c: $(aDb \land bDc) \rightarrow aDc$

Yes: if aDb and bDc, then $b=k_1a$ and $c=k_2b$, so $c=k_2k_1a$ and thus aDc

Which properties do these satisfy?

Relation	Domain	Ref.	Sym.	Antisym	Trans.
<	$ \mathbb{R} $	X	X	F > J E T	
	sets	V	X	/	V
=	\mathbb{Z}	V	V	V	
"has a non-empty intersection with"	sets	X False p		×	×
"is a sister of"	people	X	×	X	When x=Z
"is a sibling of"	people	X		×	×
"is a descendant of"	people	X	X	V F→UET	
"is divisible by"	Z	V	X	X Ex: - 4, 년	V

Winter 2022 a is divisible by b () a is a multiple of

Warnings: Properties of Binary Relations

The names for properties of relations can get confusing!

- antisymmetric: not equivalent to "not symmetric".
 Meaning: it's never the case for a ≠ b that both aRb and bRa hold.
- asymmetric: also not equivalent to "not symmetric".
 Meaning: it's never the case that both aRb and bRa hold.

(an asymmetric relation is also antisymmetric)

• *irreflexive*: *not* equivalent to "not reflexive". Meaning: it's <u>never</u> the case that *aRa* holds.

Exercise: Draw a graph for a relation that is

Outline

- Relations
 - Definition
 - Representations of relations
- Properties
 - Reflexive, symmetric, antisymmetric, transitive
 - Asymmetric, irreflexive
- Relations as Sets
- Closure
 - Reflexive closure, symmetric closure
 - (Detour: composing relations & powering relations)
 - Transitive closure

May spill over into next lecture

Relations are Sets: \cap , \cup , \oplus , - $\bar{,}$

Because relations are just sets, all the usual set theoretic operations are defined between relations that are subsets of the same Cartesian product.

Q: Suppose we have relations on $\{1,2\}$ given by $R = \{(1,1), (2,2)\}, S = \{(1,1), (1,2)\}.$ Find:

- 1. The union $R \cup S$
- 2. The intersection $R \cap S$
- 3. The symmetric difference $R \oplus S$
- 4. The difference *R-S*
- 5. The complement \bar{R}

Relations are Sets: $\cap, \cup, \oplus, -\overline{,}$

Suppose we have relations on $\{1,2\}$ given by $R = \{(1,1), (2,2)\}, S = \{(1,1), (1,2)\}.$ Find:

- 1. The union $R \cup S = \{(1,1), (1,2), (2,2)\}$
- 2. The intersection $R \cap S = \{(u_1)\}$
- 3. The symmetric difference $R \oplus S = \{(1,2), (2,2)\}$
- 4. The difference $R S = \{(2,2)\}$
- 5. The complement of R: $\bar{R} = \mathcal{U} R = \{(y_2), (z_1)\}$ $\mathcal{U} = \{(y_2), (z_1)\}$