Preferential Attachment (BA Model)

Social Networks Analysis and Graph Algorithms

Prof. Carlos "ChaTo" Castillo — https://chato.cl/teach

Contents

- The BA or preferential attachment model
- Degree distribution under the BA model
- Distance distribution under the BA model
- Clustering coefficient under the BA model

Sources

- A. L. Barabási (2016). Network Science Chapter 05
- R. Srinivasan (2013). Complex Networks Chapter 12
- D. Easley and J. Kleinberg (2010): Networks, Crowds, and Markets – Chapter 18
- Data-Driven Social Analytics course by Vicenç Gómez and Andreas Kaltenbrunner

The number of nodes N increases: we need models of network growth

Growth of an Open Source Project: Python

We have seen what but not how, or why

- Power-law degree distributions are prevalent
- We will give a possible answer to how
- For now, we will not answer why

Preferential Attachment

Growth

- Suppose there are two web pages on a topic, one with many inlinks the other with few, which one am I most likely to link to?
- Which scientific papers are read?
- Which book authors sell more?
- Which actors are more sought after?

Preferential attachment simulation

https://www.youtube.com/watch?v=4GDqJVtPEGg

Exercise

Answer in Nearpod Poll https://nearpod.com/student/Code to be given during class

- Execute in Netlogo Web the <u>"Preferential Attachment" program</u>:
 - Click "setup"
 - Click "go"
 - Let it run to ~500 nodes
- Guess the slope of the degree distribution

Go to netlogoweb.org/launch – run "Sample Models / Networks / Preferential Attachment"

The Barabási-Albert (BA) model

- Network starts with m_0 nodes connected arbitrarily as long as their degree is ≥ 1
- At every time step we add 1 node
- This node will have $m \leq m_0$ outlinks
- The probability of an existing node of degree k_i to gain one such link is $\Pi(k_i) = \frac{k_i}{\sum_{i=1}^{N-1} k_i}$

In an ER network,
$$\Pi(k_i) = \frac{1}{N-1}$$

Example $(m_0 = 2; m=2)$

Network growth with m=2

https://www.youtube.com/watch?v=wocaGeNKn7Y

The Barabási-Albert (BA) model

- Network starts with m_0 nodes connected arbitrarily as long as their degree is ≥ 1
- At every time step we add 1 node
- This node will have m outlinks $(m \le m_0)$
- The probability of an existing node of degree k_i to gain one such link is $\Pi(k_i) = \frac{k_i}{\sum_{j=1}^{N-1} k_j}$

Write the formula for N(t) and L(t): at t=0 the network has m_0 nodes and L(0) links

Summary

Things to remember

- Preferential attachment
- How to create a BA network step by step

Practice on your own

- Describe step by step in pseudocode how to create a Barabási-Albert graph with N nodes having m_0 starting nodes and m outlinks per node.
- For your pseudocode to be valid, if at any point there is a randomized step, you must indicate what is the probability of each possible outcome

Additional contents

Video of degree distribution

