<u>17 November 2020</u>

Hypothesis testing

1. Wald test

An approximate χ_1^2 statistic for testing

$$H_o: \beta_j = 0$$

$$H_i: \beta_i \neq 0$$

can be used by computing

$$\chi^2 = \frac{\hat{\beta}_j^2}{c^{jj}} \quad (j = 0, 1, \dots, p)$$

where the c^{jj} is the $(j+1)^{th}$ diagonal element of C^{-1} , where C^{-1} is the estimated variance-covariance matrix of estimates of regression coefficients and the $(i,j)^{th}$ element in C is defined as

$$c_{ij} = \frac{-\partial^2 \log L(\hat{\boldsymbol{\beta}})}{\partial \hat{\beta}_i \partial \hat{\beta}_j} \quad (i = 0, 1, \dots, p; \ j = 0, 1, \dots, p)$$

Wald statistic for testing $L^T \beta = d$ is defined by

$$(\boldsymbol{L}^T\hat{\boldsymbol{\beta}} - \boldsymbol{d})^T(\boldsymbol{L}^T\boldsymbol{C}^{-1}\boldsymbol{L})^{-1}(\boldsymbol{L}^T\hat{\boldsymbol{\beta}} - \boldsymbol{d})$$

where $\hat{\beta}$ is the maximum likelihood estimates and C^{-1} is its estimated covariance matrix. It is χ_r^2 , where r is the rank of L.

2. Likelihood ratio test

For testing

$$H_o: \boldsymbol{\beta}_1 = 0$$

$$H_1: \boldsymbol{\beta}_1 \neq 0$$

test statistic =
$$\lambda(\beta_1|\beta_2)$$

= $\lambda(\beta_2) - \lambda(\beta)$
 $\sim \chi^2_{(r)}$

That is, reject H_o if $\lambda(\boldsymbol{\beta}_1|\boldsymbol{\beta}_2) > \chi^2_{\alpha,r}$

3. Score test

Score statistic is defined to be

$$\boldsymbol{U}^{T}(\boldsymbol{\beta}_{0})\boldsymbol{I}^{-1}(\boldsymbol{\beta}_{0})\boldsymbol{U}(\boldsymbol{\beta}_{0}).$$

Under $\beta = \beta_0$, score statistic $\sim \chi_r^2$ with r is the dimension of β_0 . $U(\beta)$ is the vector of partial derivatives of the log-likelihood with respect to the parameter vector β and $I(\beta)$ is the matrix of the negative second partial derivatives of the log-likelihood with respect to β .

33