Notes on Basic Formal Tools for Semantics

Sets

Set: 'a collection of distinct objects, considered as an object in its own right' (Wiki)

Defining sets

Extensionally: {a, b, c}Intensionally: {x | x is a girl}

Empty set: ∅ or {}

Set membership: $a \in \{a, b, c\}$

Relations between sets

Proper subset: A ⊂ B iff A ⊆ B and B ⊈ A
Equivalence: A = B iff A ⊆ B and B ⊆ A

• Superset: $B \supseteq A \text{ iff } A \subseteq B$

Power sets $\wp(A) = \{B \mid B \subseteq A\}$

 $\wp(A)$ is **partially ordered** iff for any X, Y, and Z in $\wp(A)$,

• Reflexivity: $X \subseteq X$.

• Transitivity: if $X \subseteq Y$ and $Y \subseteq Z$, then $Z \subseteq Z$.

• Antisymmetry: if $X \subseteq Y$ and $Y \subseteq X$, then X = Y.

Pairs $(a, b) \neq (b, a)$

*n***-tuples** (a, b, c, ...)

Set operations

Intersection: $A \cap B := \{x \mid x \in A \text{ and } x \in B\}$

Union $A \cup B := \{x \mid x \in A \text{ or } x \in B\}$

Complementation $\overline{A} := \{x \mid x \notin A\}$

Relations and Functions

Relations as sets of pairs (Cartesian products)

 $A \times B := \{(x, y) \mid x \in A \text{ and } y \in B\}$

Function: any relation where each input is paired with at most one output

Characteristic function: a function whose range is the set of truth values: $f: A \to \{1, 0\}$

Identity function: a function mapping anything to itself: f(x) = x

Currying: Given a function $f:(X \times Y) \to Z$, Currying constructs a new function:

$$g: X \to Y \to Z$$
; or $g': Y \to X \to Z$

Difference $A - B := \{x \mid x \in A \text{ and } x \notin B\}$

Exclusive union $A \underline{\cup} B := (A \cup B) - (A \cap B)$

Lambda Calculus

Lambda notation: Consider a function:

$$f: \mathbb{N} \to \mathbb{N}$$
 for every $x \in \mathbb{N}$. $f(x) = x + 1$

The function can be expressed as follows:

$$f = \lambda x : x \in \mathbb{N}.x + 1$$

The function which maps every x such that $x \in \mathbb{N}$ to x + 1

Semantics of Lambda terms

 $\lambda x \in A.E$ is a function f mapping any objects u in A to E[u/x].

Lambda reduction

 η -equivalence: $f = \lambda x. f(x)$

Two functions are equivalent iff they return the same values for every argument.

 β -reduction: $(\lambda x.E_1)(E_2) = E_1[E_2/x]$

" $E_1[E_2/x]$ " is the expression just like E_1 , but where every free occurrence of x has been replaced by E_2 .

 α -equivalence: $\lambda x.E = \lambda y.E[y/x]$

A specific choice of a bound variable doesnt matter.

Types of Lambda terms

Types are nothing more than sets of objects.

basic types | functional types

If x is of type a and E is of type b, then $\lambda x.E$ is a function of type $a \to b$.

 $a, b, \dots \mid a \rightarrow b$

Lambda abstraction

If x is of type a and E is of type b, then $\lambda x.E[x/y]$ is a function f of $a \to b$ for any variable y of type a.

Compositional rules

Functional Application

$$\frac{f :: a \to b \qquad x :: a}{f(x) :: b}$$

Predicate Modification

$$\frac{f :: a \to \mathsf{t} \qquad g :: a \to \mathsf{t}}{\lambda x. f(x) \land g(x) :: a \to \mathsf{t}}$$