1. INTRODUCTION

1.1 Project Overview

This project aims to revolutionize liver healthcare by providing an intelligent liver cirrhosis prediction system using advanced machine learning models. It supports early detection and decision-making through a user-friendly application backed by medical data.

1.2 Purpose

The purpose is to assist patients and doctors in identifying liver cirrhosis risks using non-invasive clinical data, thereby enabling timely treatment and intervention.

2. IDEATION PHASE

2.1 Problem Statement

Liver cirrhosis often goes undetected until it's too late. Traditional diagnosis is invasive, time-consuming, and expensive. There's a need for a fast, Al-driven tool for early risk prediction.

2.2 Empathy Map Canvas

Sees: Confusing test reports, complex liver metrics

Hears: Doctor concerns, medical terms, "come back for follow-up"

Says: "I feel fine", "Do I need this test?", "It's just acidity"

Thinks: "Is something wrong?", "Should I be worried?"

Feels: Anxious, unaware, unprepared

2.3 Brainstorming

Predict liver cirrhosis using ML

Build a clean UI for patients and doctors

Provide risk scores with explanation

Store feedback to improve prediction

3. REQUIREMENT ANALYSIS

3.1 Customer Journey Map

Patient logs in \rightarrow Inputs test data \rightarrow Gets prediction \rightarrow Views result \rightarrow Downloads report \rightarrow Gives feedback

3.2 Solution Requirement

Functional: Registration, Login, Data input, Prediction, Report, Feedback

Non-functional: Usability, Accuracy, Speed, Security, Scalability

3.3 Data Flow Diagram

DFD Level 0:

User → Web Interface → Prediction Engine → Result → Feedback

DFD Level 1:

Input → Preprocessing → ML Model → Risk Stratification → Output

3.4 Technology Stack

Python (ML models, Flask)

Streamlit (Frontend)

Scikit-learn, XGBoost

HTML/CSS

SQLite (DB)

Pandas, NumPy

4. PROJECT DESIGN

4.1 Problem-Solution Fit

Medical diagnosis is slow; our solution makes it accessible, quick, and Al-based for common users.

4.2 Proposed Solution

A web-based liver cirrhosis prediction platform using patient data and a trained ML model for real-time risk classification.

4.3 Solution Architecture

Components:

User Interface (Web form/Streamlit)

Flask API Backend

Trained ML Model

Database for storage

PDF Report Generator

Feedback Collector

Architecture Diagram:

CSS

Copy code

User Input → Web UI → Flask API → ML Model → Prediction → Display + Report

 \uparrow

Preprocessed Data

5. PROJECT PLANNING & SCHEDULING

5.1 Project Planning

Sprint 1: Registration, Login

Sprint 2: ML model, prediction logic

Sprint 3: Frontend + Report generation

Sprint 4: Feedback system, admin panel

6. FUNCTIONAL AND PERFORMANCE TESTING

6.1 Performance Testing

Prediction time < 2 seconds

Accuracy > 87% on test data

Flask API response time: ~180ms

Streamlit load time: ~2s

7. RESULTS

7.1 Output Screenshots

Registration/Login Page

Data Input Form

Prediction Result Page

8. ADVANTAGES & DISADVANTAGES

Advantages:

Fast prediction

Non-invasive diagnosis

Easy to use

Feedback loop for improvement

Disadvantages:

Model may mispredict on outliers

Limited to dataset features

Needs continuous retraining for accuracy

9. CONCLUSION

The proposed system provides an innovative approach to early liver cirrhosis detection, leveraging machine learning and modern web technologies. It helps in raising awareness and provides medical support efficiently.

10. FUTURE SCOPE

Integration with hospital EMR systems

Android/iOS mobile app

Real-time alerts to physicians

AI explainability (SHAP, LIME integration)

Multi-disease diagnosis system

11. APPENDIX

Dataset Link: https://www.kaggle.com/uciml/indian-liver-patient-records