Construction of the Integral

Definition 1

Let $(\Omega, \mathcal{F}, \mu)$ be a measure space. A nonnegative measurable function f is called simple if f may be written as a finite sum $f = \sum_{k=1}^m a_k I_{A_k}$ where $a_k \in [0, \infty]$ and $A_k \in \mathcal{F}$. We then define the integral of f with respect to μ by $\int f d\mu = \sum_{k=1}^m a_k \mu(A_k)$.

Theorem 1

- a) The integral $\int f d\mu$ is well-defined
- b) If f, g are simple functions and $c \ge 0$ then f + g and cf are simple functions and $\int (f + g) d\mu = \int f d\mu + \int g d\mu$, $\int cf d\mu = c \int f d\mu$.
- c) If f and g are simple functions with $f \le g$ then $\int f \ d\mu \le \int g \ d\mu$.
- d) If f and g are simple functions then $f \wedge g$ and $f \vee g$ are simple functions

a) For distinct nonnegative values b_j of f define $B_j = \{\omega \in \Omega : f(\omega) = b_j\}$. Then

$$\sum b_{j}\mu(B_{j}) = \sum \mu(B_{j}) \sum \{a_{k} : A_{k} \supseteq B_{j}\}$$

$$= \sum a_{k} \sum \{\mu(B_{j}) : B_{j} \subseteq A_{k}\}$$

$$= \sum a_{k}\mu(A_{k}).$$

This proves that f is well-defined.

b) Note that $f + g = \sum (a_i + b_j) I_{A_i \cap B_j}$ and $cf = \sum ca_i I_{A_i}$. So that f + g and cf are both simple. Now

$$\int (f+g)d\mu = \sum_{i} a_{i} \sum_{j} \mu(A_{i} \cap B_{j}) + \sum_{j} b_{j} \sum_{i} \mu(A_{i} \cap B_{j})$$

$$= \sum_{i} a_{i} \mu(A_{i}) + \sum_{j} b_{j} \mu(B_{j})$$

$$= \int f d\mu + \int g d\mu$$

and

$$\int cfd\mu = c\sum a_iI_{A_i} = c\int fd\mu .$$

c) Note that for fixed i, j we have $a_i \mu(A_i \cap B_j) \le b_j \mu(A_i \cap B_j)$. It follows from this that

$$\int f d\mu = \sum_{i} a_{i} \mu(A_{i}) = \sum_{i} \sum_{j} a_{i} \mu(A_{i} \cap B_{j})$$

$$\leq \sum_{i} \sum_{j} b_{j} \mu(A_{i} \cap B_{j}) \leq \sum_{j} b_{j} \mu(B_{j}) = \int g d\mu.$$

d) Note that $f \wedge g = \sum \min(a_i, b_j) I_{A_i \cap B_j}$ and $f \vee g = \sum \max(a_i, b_j) I_{A_i \cap B_j}$. Hence, both $f \wedge g$ and $f \vee g$ are simple.

Definition 2

Let $(\Omega, \mathcal{F}, \mu)$ be a measure space and f be a nonnegative measurable function, we define $\int f \ d\mu = \sup \{ \int g \ d\mu : 0 \le g \le f, \ g \ \text{simple} \}.$

Theorem 2

For any measurable $f \ge 0$, there exists an increasing sequence of simple functions f_n with $f = \lim_{n \to \infty} f_n$. Moreover for any such sequence $\{f_n\}$, $\int f \ d\mu = \lim_{n \to \infty} \int f_n d\mu$.

Let $A_{ni} = f^{-1}((j/2^n, (j+1)/2^n)), j = 0, ..., 2^n n - 1$ 1 and $A_n = f^{-1}((n, \infty])$. Define the simple functions $f_n = \sum_{i=0}^{2^n n-1} j 2^{-n} I_{A_{n,i}} + n I_{A_n}$. Then f_n are increasing with $f = \lim_{n \to \infty} f_n$. Since f_n are increasing then so are $\int f_n d\mu$ and thus $\lim \int f_n d\mu = c$ for some $c \in [0, \infty]$. Now, $f \ge f_n$ for all n so that $\int f d\mu \ge \int f_n d\mu$ for all n. This implies that $\int f d\mu \ge \lim_{n \to \infty} \int f_n d\mu = c.$

To show that $\int f d\mu \le c$ let g be a simple function with $0 \le g \le f$. Assume, without loss of generality, that $g = \sum a_i I_{A_i}$ where A_i are disjoint and their union is Ω . Note that $\int f_n d\mu = \sum \int f_n I_{A_i} d\mu$ and $\int g d\mu = \sum a_i \mu(A_i)$. This implies that to prove that $c = \lim_{n \to \infty} \int f_n d\mu \ge \int g d\mu$ it is enough to show that for each i, $\lim_{n\to\infty} \int f_n I_{A_i} d\mu \ge a_i \mu(A_i)$. If $a_i = 0$, this is clear. Let $A_{ni} = \{ \omega \in A_i : f_n(\omega) > (1 - \varepsilon)a_i \}$. Note that $\{A_{ni}\}_{n=1}^{\infty}$ is an increasing sequence in \mathcal{F} .

Also, since $g \leq f$ and $f = \lim_{n \to \infty} f_n$ it follows that for each $\omega \in A_i$ there exists an n such that $f_n(\omega) > (1 - \varepsilon)g(s) = (1 - \varepsilon)a_i$. This implies that $A_i = \bigcup_n A_{ni}$. From continuity of measures it follows that $\lim_{n \to \infty} \mu(A_{ni}) = \mu(A_i)$. Thus

$$(1-\varepsilon)a_i\mu(A_i) = \lim_{n\to\infty} \int (1-\varepsilon)a_iI_{A_{ni}}d\mu \le \lim_{n\to\infty} \int f_nI_{A_i}d\mu.$$

Therefore, $\lim_{n\to\infty} \int f_n d\mu \ge \int g d\mu$ for any simple function $0 \le g \le f$. This implies that $\lim_{n\to\infty} \int f_n d\mu \ge \int f d\mu$. This completes the proof.

Theorem 3

If f is a nonnegative measurable function and $\int f d\mu = 0$, then $\mu(\{f > 0\}) = 0$.

Note $\{f > n^{-1}\}$ is an increasing sequence of elements in \mathcal{F} and $\bigcup \{f_n > n^{-1}\} = \{f > 0\}$. Hence, if $\mu(\{f > 0\}) > 0$ then for some n, $\mu(\{f > n^{-1}\}) > 0$. This implies that $\int f d\mu \ge \int n^{-1} I_{\{f > n^{-1}\}} d\mu > 0$, a contradiction.

Remark 1

A statement S about points ω of Ω is said to hold almost everywhere (a.e.) if $F = \{\omega : S(\omega) \text{ is false}\} \in \mathcal{F} \text{ and } \mu(F) = 0$. The previous theorem states that if a nonnegative measurable function has zero integral then it must be equal to 0 a.e.

Remark 2

For a measurable function f, let $f^+(s) = \max(f(s), 0)$, $f^-(s) = \max(-f(s), 0)$. Then f^+ , f^- are measurable, $f = f^+ - f^-$, and $|f| = f^+ + f^-$.

Definition 3

For a measurable function f, we say that f is integrable, and write $f \in \mathcal{L}^1(\Omega, \mathcal{F}, \mu)$ if

$$\int |f| d\mu = \int f^+ d\mu + \int f^- d\mu < \infty,$$

and then we define

$$\int f d\mu = \int f^+ d\mu - \int f^- d\mu .$$

Theorem 4

- a) If f and g are integrable and $f \leq g$, then $\int f d\mu \leq \int g d\mu$.
- b) For nonnegative real numbers α , β and nonnegative measurable functions f, g, we have $\int (\alpha f + \beta g) d\mu = \alpha \int f d\mu + \beta \int g d\mu$.
- c) If f and g are integrable and α,β are finite real numbers, then $\alpha f + \beta g$ is integrable and $\int (\alpha f + \beta g) d\mu = \alpha \int f d\mu + \beta \int g d\mu$.

- a) Note that $f^+ \leq g^+$ and $-f^- \leq -g^-$. Hence, $\int f^+ d\mu \leq \int g^+ d\mu \text{ and } \int f^- d\mu \geq \int g^- d\mu. \text{ Thus}$ $\int f d\mu = \int f^+ d\mu \int f^- d\mu \leq \int g^+ d\mu \int g^- d\mu = \int g d\mu.$
- b) Let $\{f_n\}$, $\{g_n\}$ be sequences of simple functions with $\lim_{n\to\infty} f_n = f$ and $\lim_{n\to\infty} g_n = g$. Then $\int (\alpha f + \beta g) d\mu = \alpha \cdot \lim \int f_n d\mu + \beta \cdot \lim \int g_n d\mu$ $= \alpha \int f d\mu + \beta \int g d\mu.$

c) First, $\alpha f + \beta g$ is integrable since $\int |\alpha f + \beta g| d\mu \le |\alpha| \int |f| d\mu + |\beta| \int |g| d\mu < \infty.$ For $\alpha \geq 0$, clearly $\int \alpha f \ d\mu = \alpha \int f \ d\mu$. By definition $\int -f \ d\mu = -\int f \ d\mu$. Combining this yields $\int \alpha f \ d\mu = \alpha \int f \ d\mu$ for all $\alpha \in \mathbb{R}$. Hence, we can assume without loss of generality, $\alpha = \beta = 1$. Now $(f+g)^+ - (f+g)^- = f+g = f^+ - f^- + g$ $q^{+} - q^{-}$.

Hence

$$\int (f+g)d\mu = \int (f+g)^{+} d\mu - \int (f+g)^{-} d\mu$$

$$= \int f^{+} d\mu - \int f^{-} d\mu + \int g^{+} d\mu - \int g^{-} d\mu$$

$$= \int f d\mu + \int g d\mu.$$

Corollary

If f is integrable then

$$\left| \int f \ d\mu \right| \le \int |f| \ d\mu \ .$$

$$\left| \int f \, d\mu \right| = \left| \int f^+ d\mu + \int -f^- d\mu \right|$$

$$\leq \left| \int f^+ d\mu \right| + \left| \int -f^- d\mu \right|$$

$$= \int f^+ d\mu + \int f^- d\mu = \int |f| \, d\mu$$