Fizyka A5 - Egzamin (06.02.2015) - grupa A

Imię	i	nazwisko	nr albumu	Punkty	Ocena

Maksymalna liczba punktów: 20. Zaliczenie od 11 punktów

1. Całość fizyki (nazwać podstawowe prawa/wzory)

- 2. Proszę wyjaśnić, czy następująca wypowiedź: "Iloczyn skalarny wektorów \hat{i}, \hat{j} jest większy od długości wektora będącego iloczynem wektorowym tych wektorów" jest prawdziwa.
- 3. Wyrażenie na siłę ma postać: $F = -bv^2$, gdzie v oznacza prędkość. Jednostka dla b ma postać: (a) m kg/s; (b) kg/s; (c) m/(s kg); (d) kg²/(m s); (e) (kg/s)²; (f) kg/s²; (g) inna odpowiedź.
- 4. Zależność położenia od czasu dla punktu materialnego poruszającego się po osi x dana jest wzorem $x(t) = -2t^2 3t + 2$. Jaki to ruch? (a) jednostajny; (b) jednostajnie przyspieszony (a > 0); (c) jednostajnie opóźniony (a < 0); (d) punkt materialny spoczywa; (e) ruch harmoniczny tłumiony; (f) ruch harmoniczny nietłumiony; (f) inna odpowiedź.
- 5. Dwa punkty materialne o masach m_1 oraz $m_2 = 2 m_1$ oddziałują ze sobą. Na rysunku przedstawiono siłę działającą na drugie ciało (ze strony pierwszego). Narysować wektor siły działający na ciało pierwsze.

- 6. Napisać równanie Newtona dla punktu materialnego o masie M poruszającego się pod wpływem dwóch sił. Pierwsza ma wartość 2 i zwrot zgodny ze zwrotem osi x, druga ma postać $\vec{F} = \sin(t)\,\hat{j}$.
- 7. Na punkty materialne P_1, P_2 działają, odpowiednio, siły $\vec{F}_1 = 2\,\hat{i}, F_2 = -2\,\hat{k}$. Środek masy układu tych punktów porusza się ruchem (a) jednostajnym; (b) jednostajnie przyspieszonym; (c) niejednostajnie przyspieszonym; (d) drgającym; (e) spoczywa; (f) inna odpowiedź.
- 8. Dane jest równanie fali biegnącej: $u(x,t) = -2\sin(5x+3t)$. Obliczyć długość fali λ , okres drgań T, prędkość fazową v oraz określić kierunek rozchodzenia się fali. Wszystkie wielkości są wyrażone w jednostkach układu SI.

 $\lambda = T = v = kierunek$:

9. Oscylator harmoniczny (masa 10 kg na sprężynie) wykonuje drgania wzdłuż osi x opisane wzorem $x(t) = \sin(10t - \pi/8)$ (wszystkie wielkości w jednostkach układu SI). Stała sprężystości sprężyny wynosi, w jednostkach N/m, (a) 10^3 ; (b) 10^2 ; (c) 10; (d) 1; (e) 10^{-1} ; (f) inna odpowiedź.

10.	Ciśnienie stałej masy gazu idealnego zwiększyło się 6 razy, objętość gazu zmalała trzykrotnie. Temperatura gazu wzrosła (a) 6; (b) 3; (c) 2; (d) nie zmieniła się; (e) $1/3$; (f) $1/6$ razy; (g) inna odpowiedź.
11.	W jakich jednostkach mierzy się następujące wielkości fizyczne: energię mechaniczną; moment siły; przyspieszenie liniowe; prędkość
12.	Położenie punktu materialnego na osi x opisuje funkcja $x(t)=\sin(t)$, a jego prędkość - funkcja $v(t)=2\cos(t)$. Wytłumaczyć, czy to stwierdzenie jest prawdziwe
13.	Energia kinetyczna obracającej się bryły sztywnej wzrosła 16 razy. Wytłumaczyć, jakiej zmianie uległa prędkość kątowa tej bryły.
14.	Wektor stałej siły \vec{F} działającej na ciało i wektor przesunięcia \vec{s} tego ciała (pod wpływem siły \vec{F}) tworzą kąt $\pi/2$. Praca wykonana przez siłę \vec{F} wynosi: (a) Fs ; (b) $-Fs$; (c) 0; (d) $ \vec{F} \times \vec{s} $; (e) $\vec{F} \times \vec{s}$; (f) żadna z powyższych odpowiedzi nie jest poprawna.
15.	Proszę wyjaśnić, czy energia potencjalna ciała spadającego w polu grawitacyjnym jest stała.
	Energia kinetyczna pewnego punktu materialnego wynosi $E_k=810~\mathrm{J}.$ Ile może, na przykład, wynosić masa oraz prędkość tego punktu?
17.	Ω i ω oznaczają prędkości kątowe dużej (minutowej) i małej (godzinowej) wskazówki zegara. Wówczas: (a) $\omega=12\Omega$; (b) $\Omega=12\omega$; (c) $\omega=24\Omega$; (d) $\Omega=24\omega$.
18.	Biegacz biegający ze stałą prędkością po bieżni w kształcie okręgu (długość 400 m) przebiega jedno okrążenie w czasie 4 minut. Ile wynosi jego przyspieszenie liniowe?
19.	Spoczywająca kula rozpadła się na dwie równe części. Prędkość jednej z nich wynosi $(2\hat{i}+3\hat{j})$ m/s. Wyznaczyć wektor prędkości drugiej części. Wskazówka: prawo zachowania pędu; ile wynosi pęd przed rozpadem? Po rozpadzie?
20.	Moment bezwładności układu punktów materialnych względem pewnej osi wynosi I_0 . Następnie masy wszystkich punktów materialnych zwiększono 6 razy. Wyjaśnić, jak zmienił się moment

bezwładności układu.