

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» $(M\Gamma T Y \text{ им. H. Э. Баумана})$

ФАКУЛЬТЕТ _	Фундаментальные науки	
КАФЕДРА	Прикладная математика	

Отчет по лабораторной работе №4 на тему:

"Методы решения проблемы собственных значений"

Студент	ФН2-51Б		И.Е. Дыбко
	(Группа)	(Подпись, дал	га) (И.О. Фамилия)
Студент	ФН2-51Б		С. И. Тихомиров
	(Группа)	(Подпись, даг	га) (И.О. Фамилия)
			17 4 17
Проверил			К.А. Касьянова
		(Подпись, дал	га) (И.О. Фамилия)

ОГЛАВЛЕНИЕ 2

Оглавление

L.	Описание использованных алгоритмов
	1.1. Метод QR -разложения для поиска собственных значений
	1.2. Метод обратных итераций и его модификации для нахождения соб-
	ственных векторов
2.	Ответы на контрольные вопросы
١.	Ответы на дополнительные вопросы
	1. Описание использованных алгоритмов
	1. Officential heriotiboobaminbix and opinimob
	1.1. Метод QR -разложения для поиска собственных значений
	1.2. Метод обратных итераций и его модификации
	для нахождения собственных векторов
	2. Ответы на контрольные вопросы
	1) Почему нельзя находить собственные числа матрицы А, прямо ре-
	шая уравнение $\det(A - \lambda E) = 0$, а собственные векторы — «по опреде-
	лению», решая систему $(A-\lambda_j E)e_j=0$?
	Нахождение собственных чисел через уравнение $\det(A-\lambda E)=0$ является
	вычислительно сложной задачей, так как требует решения полиномиального
	уравнения степени n (где n — размер матрицы), а для больших n это может
	быть крайне трудоёмко и неустойчиво к ошибкам округления. Также аналити-
	ческое решение существует только для низких степеней полиномов. Определе-
	ние собственных векторов через систему $(A - \lambda_j E)e_j = 0$ также невозможно.
	2) Докажите, что ортогональное преобразование подобия сохраняет сим-
	метрию матрицы.
	Запишем ортогональное преобразование подобия
	$R = P^{-1}AP,$
	где P — ортогональная матрица, т.е. $P^{-1} = P^T$, A — симметричная матрица,
	т.е. $A = A^T$. Тогда

 $R^{T} = (P^{-1}AP)^{T} = (P^{T}AP)^{T} = P^{T}A^{T}P = P^{T}AP = R.$

Получим, что:

$$R^T = R$$

3) Как преобразование подобия меняет собственные векторы матрицы? Преобразование подобия сохраняет собственные значения, но собственные векторы могут изменяться. Они преобразуются в новые векторы, которые соответствуют той же линейной комбинации базисных векторов после применения преобразования.

Рассмотрим собстсенные вектора матрицы R:

$$R\xi_i = \lambda_i \xi_i$$
.

Распишем преобразование подобия:

$$P^{-1}AP\xi_j = \lambda_j \xi_j,$$

$$A(P\xi_j) = \lambda_j(P\xi_j) \quad \Rightarrow \quad e_j = P\xi_j$$

То есть $e_j = P\xi_j$ — собственные вектора матрицы A, соответствующие набору собственных значений λ_j .

4) Почему на практике матрицу А подобными преобразованиями вращения приводят только к форме Хессенберга, но не к треугольному виду?

Преобразование матрицы к форме Хессенберга, а не к треугольной форме требует большего количества вычислений $(O(n^2)$ и $O(n^3)$ арифметических операций) и менее устойчиво к ошибкам округления, что делает невозможным приведение матрицы к треугольному виду с сохранением подобия, т.е. с сохранением собственных значений матрицы.

5) Оцените количество арифметических операций, необходимое для приведения произвольной квадратной матрицы A к форме Хессенберга. Так как в матрице Хессенберга все элементы ниже первой поддиагонали зануляются, то суммирование происходит до n-3. В каждом j-том столбце занулению подлежат элементы от j+2 до n-1.

$$\sum_{j=0}^{n-3} \sum_{i=j+2}^{n-1} (5 + 4(n-j) + 4n) \approx \frac{10}{3} n^3.$$

6) Сойдется ли алгоритм обратных итераций, если в качестве начального приближения взят собственный вектор, соответствующий другому собственному значению? Что будет в этой ситуации в методе обратной итерации, использующем отношение Рэлея? Метод обратной итерациии хадается следующим образом:

$$(A - \lambda_j^* E) y^{(k+1)} = x^{(k)}$$

$$x^{(k+1)} = \frac{y^{(k+1)}}{\|y^{(k+1)}\|}$$
(1)

За $x^{(0)}$ берется любой нормированный вектор. Система собственных векторов e_1, e_2, \ldots, e_n образует ортонормированный базис в пространстве \mathbb{R}^n .

Разложим вектора x и y по этому базису:

$$x = \sum_{i=1}^{n} \alpha_i e_i, \quad y = \sum_{i=1}^{n} \beta_i e_i.$$

Преобразуем систему:

$$\sum_{i=1}^{n} \lambda_i \beta_i e_i - \sum_{i=1}^{n} \lambda_j^* \beta_i e_i = \sum_{i=1}^{n} \alpha_i e_i$$

$$\sum_{i=1}^{n} (\lambda_i - \lambda_j^*) \beta_i e_i = \sum_{i=1}^{n} \alpha_i e_i$$

Выразим β_i :

$$\beta_i = \frac{\alpha_i}{\lambda_i - \lambda_j^*}$$

Возьмем в качестве начального приближения возьмем собственный вектор e_k , соответсвтвующий другому собственному значению $\lambda_k (k \neq j)$.

Так как точное значение вектора e_k не известно, а известно только достаточно близкое значение e_k^* . Тогда разложение по базису вектора $x^{(0)}$ будет следующее:

$$x^{(0)} = \varepsilon_1 e_1 + \varepsilon_2 e_2 + \ldots + \varepsilon_i e_i + \ldots + \delta e_k + \varepsilon_n e_n,$$

где $|\varepsilon_j|\ll 1, \quad j=1,\dots,n, j\neq k, \delta\approx 1.$ Решение будет следующее:

$$y^{(1)} = \frac{\varepsilon_1}{\lambda_1 - \lambda_1^*} e_1 + \frac{\varepsilon_2}{\lambda_2 - \lambda_2^*} e_2 + \ldots + \frac{\varepsilon_j}{\lambda_j - \lambda_j^*} e_j + \ldots + \frac{\delta}{\lambda_k - \lambda_j^*} e_k + \ldots + \frac{\varepsilon_n}{\lambda_n - \lambda_j^*} e_n$$

Поскольку величина $|\lambda_j - \lambda_j^*| \ll 1$, то коэффициент разложения β_j при собственном векторе e_j , чем коэффициенты при других собственных векторах. При следующих итерациях нормировка вектора x приведет к сохранению соотношения между коэффициентами.

После нескольких итераций коэффициент β_j станет самым большим среди всех. и последовтельность векторов x^k сойдется к собственному вектору e_i .

7) Сформулируйте и обоснуйте критерий останова для QR-алгоритма отыскания собственных значений матрицы.

В результате выполнения метода QR-разложения получим последовательность матриц $\{A^{(k)}\}$, подобных матрице A. На каждой итерации подддиагональные элементы последней строки становятся близки к нулю и полученный элемент $a_{ii}^{(k)}$ можно принять за приблеженное значение собственного числа λ_i . Тогда критерий останова будет следующим:

$$\sum_{i=1}^{n-1} |a_{ni}^{(k)}| < \varepsilon.$$

8) Предложите возможные варианты условий перехода к алгоритму со сдвигами. Предложите алгоритм выбора величины сдвига.

Одним из условий перехода к QR-алгоритму со сдвигами может быть достижение малых вне диагональных элементов в Хессенберговой форме. Алгоритм выбора сдвига может основываться на величине последнего диагонального элемента или на наибольшем вне диагональном элементе. Один из популярных методов — использование значения последнего диагонального элемента для сдвига, известного как сдвиг Вилькинсона.

9) Для чего нужно на каждой итерации нормировать приближение к собственному вектору?

Если $|\lambda| > 1$, то последовательность норм векторов стремится к бесконечности, если $|\lambda| < 1$, то последовательность норм векторов стремится к нулю и возможно исчезновение порядка. Для предупреждения этих ситуаций вектор нормируют.

- 10) Приведите примеры использования собственных чисел и собственных векторов в численных методах.
 - (а) Вычисление числа обусловленности матрицы:

$$M_A = \frac{\lambda_{max}}{\lambda_{min}}$$

(b) Выбор итерационных параметров итерационных методов:

$$\tau = \frac{2}{\lambda_{max} + \lambda_{min}}$$

(с) Оценка скорости сходимости итерационных методов:

$$||E - \tau_0 A|| = \rho_0$$

где
$$\rho_0 = \frac{1-\xi}{1+\xi}, \; \xi = \frac{\lambda_{min}}{\lambda_{max}}$$

(d) Вычисление матричной нормы

$$||A||_2 = \sqrt{\max \lambda_i(A^T A)}$$

3. Ответы на дополнительные вопросы

1) Приведите пример ортогональных преобразований.

Поворот в пространстве

Поворот в двумерном пространстве вокруг начала координат можно записать как матрицу поворота:

$$R(\theta) = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$

где θ — угол поворота. В трёхмерном пространстве можно также записать матрицу поворота вокруг одной из осей.

2) Всегда ли можно составить из собственных векторов матрицы базис? Если собственные векторы матрицы A образую базис, то она представима в виде:

$$A = PDP^{-1}$$

где P — матрица, составленная из координат собственных векторов, D — диагональная матрица с соответствующими собственыыми значениями.

3) Как понять в какой момент необходимо переходить к алгоритму со сдвигами? (Как в ходе вычислений определить, что отношение пары собственных значений близко к единице?) Как выбрать величину сдвига?

Элементы $a_{ij}^{(k)}$ матриц $A^{(k)}$, стоящие ниже главной диагонали, сходятся к нулю со скоростью геометрической прогрессии, знаменатель которой равен модулю отношения соответствующей пары собственных значений, то есть

$$|a_{ij}^{(k)}| \le \left|\frac{\lambda_i}{\lambda_j}\right| |a_{ij}^{(k-1)}|, \quad i > j, \quad k = 1, 2, \dots$$

При приближении отношения пары собственных значений к еденице следует переходить к алгоритму со сдвигами.

Если среди собственных чисел матрицы A есть близкие по величине, то отношение пары их собственных значений будет близко к еденице.

В качестве величины сдвига σ можно взять $a_{n,n}^{(k)}$. Когда в последней строке матрицы $A^{(k)}$ внедиагональные элементы станут близки к нулю, будем считать соответствующее собственное значение найденным с достаточной точностью и перейдем к задаче меньшей размерности для поиска остальных собственных значений.

4) Почему у одной и той же матрицы норма собственного вектора может быть, как очень большой, так и очень маленькой?

Так собственные вектора определяются с точностью до константы, то значение его нормы может сильно варьироваться в зависимости от значения константы.