MP: Suites et Séries de fonctions

Coralie RENAULT

8 novembre 2014

Exercice

Vérifier que la suite de terme général

$$u_n = \int_0^{+\infty} \frac{\sin(nt)}{nt + t^2} \, \mathrm{d}t$$

est bien définie et étudier sa convergence.

Exercice

Etudier la limite de

$$\int_0^1 f(t^n) \, \mathrm{d}t$$

où $f:[0,1]\to\mathbb{R}$ est continue.

Exercice

Pour $n \in \mathbb{N}^*$ et $x \in \mathbb{R}$, on pose

$$f_n(x) = \frac{n}{\sqrt{\pi}} \left(1 - \frac{x^2}{2n^2} \right)^{2n^4}$$

Soit g une fonction continue sur \mathbb{R} et nulle en dehors d'un segment [a,b]. Montrer que

$$\lim_{n \to +\infty} \int_{\mathbb{R}} f_n(x)g(x) dx = g(0)$$

Exercice

Soit $f: \mathbb{R}^+ \to \mathbb{R}^+$ continue et intégrable.

Déterminer la limite quand $n \to +\infty$ de

$$n\int_0^1 \frac{f(nt)}{1+t} \, \mathrm{d}t$$

Exercice

On suppose qu'une suite de fonctions (f_n) de [a,b] vers \mathbb{R} converge uniformément vers f: $[a,b] \to \mathbb{R}$ continue et on considère une suite (x_n) d'éléments de [a,b] convergeant vers x. Montrer

$$f_n(x_n) \to f(x)$$

Exercice

Montrer que la limite uniforme d'une suite de fonctions uniformément continues d'un intervalle I de \mathbb{R} vers \mathbb{R} est elle-même une fonction uniformément continue.

Exercice (Deuxième théorème de Dini)

Soient $a, b \in \mathbb{R}$ avec a < b, et $(f_n)_{n \in \mathbb{N}}$ une suite de fonctions croissantes de [a, b] dans \mathbb{R} , qui converge simplement vers une fonction continue f. Alors, $(f_n)_{n \in \mathbb{R}}$ converge uniformément vers f sur [a, b].

Exercice

Trouver les fonctions $f \in \mathcal{C}([0,1],\mathbb{R})$ telles que

$$\forall x \in [0, 1], f(x) = \sum_{n=1}^{+\infty} \frac{f(x^n)}{2^n}$$

Exercice

Etudier la convergence simple, uniforme et normale de la série des fonctions

$$f_n(x) = \frac{(-1)^n}{n+x^2}$$
 avec $n \geqslant 1$ et $x \in \mathbb{R}$

Exercice

Soient $f:[0,1]\to\mathbb{R}$ continue et $f_n:[0,1]\to\mathbb{R}$ définie par

$$f_n(x) = x^n f(x)$$

Former une condition nécessaire et suffisante sur f pour que la suite de fonction (f_n) converge uniformément sur [0,1].