CS663 HW2

CS663: Fundamentals of Digital Image Processing Homework II

Yash Salunkhe, Scaria Kochidanadu, Rishabh Shetty

Question 5)

Answer:

Suppose you convolve an image f with a mean filter of size $(2a+1) \times (2a+1)$, where a > 0 is an integer, to produce a result f_1 . Then, you convolve the resultant image f_1 with the same mean filter once again to produce an image f_2 , and so on until you get image f_K in the Kth iteration.

Each convolution can be expressed as follows:

$$f_2 = f_1 * M_1$$

= $(f * M_1) * M_1$
= $f * (M_1 * M_1)$

Here, M_1 represents the mean filter of size $(2a+1) \times (2a+1)$.

For subsequent iterations, you can continue this process (using the fact that convolutions are commutative and associative):

$$f_3 = f_2 * M_1$$

$$= f * ((M_1 * M_1) * M_1)$$

$$f_4 = f_3 * M_1$$

$$= f * (((M_1 * M_1) * M_1) * M_1)$$

In each iteration, you convolve the original image f with a new kernel K_k , where K_k is obtained by convolving the previous kernel K_{k-1} with the mean filter M_1 . The kernel for the Kth iteration, K_K , can be expressed as:

$$K_K = K_{K-1} * M_1$$

So, you can express the image f_K as a convolution of the original image f with the kernel K_K , where K_K is recursively defined as $K_K = K_{K-1} * M_1$, starting with $K_1 = M_1$. M_1 will be the mean filter of size $(2a+1) \times (2a+1)$.

$$M_1 = \frac{1}{(2a+1)^2} \begin{bmatrix} 1 & 1 & \cdots & 1 \\ 1 & 1 & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \cdots & 1 \end{bmatrix}$$