TESTUL nr. 5

1. Să se determine valorile $x \in \mathbb{Z}$ pentru care are sens $E = \sqrt[3+\sqrt{x^2 + x + 1}]$:

a) 0 și 1; b) 1 și 2;

c) 0; 1 si 2;

d) 0 si 2:

- c) nu are sens pentru nici o valoare $x \in \mathbb{Z}$;
- f) niciunul din răspunsurile precedente nu este corect.
- 2. Sã se afte $x \in \mathbb{R}$ soluții ale ecuației $\sqrt{x} + \sqrt{x} \sqrt{1-x} = 1$:

a) $\frac{1}{5}$ si 1; b) $\frac{1}{5}$; c) $\frac{16}{25}$ si $\frac{3}{4}$; d) $\frac{16}{25}$; e) $\frac{16}{5}$; f) $\frac{1}{25}$.

3. Să se rezolve ecuația $6^{2x+4} = 2^{8+x} \cdot 3^{3x}$

a) x = 0; b) x = 2; c) x = -2; d) x = 4; e) x = -1; f) x = -4.

4. În câte moduri se pot forma echipe din câte 3 elevi și un profesor, dacă sumi 12 elevi și 3 profesori?

a) 36:

b) 108:

c) 660:

d) S1; e) 144; f) 98.

5. Sá se afle suma primilor 13 termeni ai unei progresii aritmetice dacă $a_4 + a_6 + a_8 + a_{10} = 20$:

a) 9; b) 15; c) 18; d) 12; e) 24; f) 65.

((x+y)(x+y+z)=186. Să se determine toate soluțiile sistemului $\{(y+z)(x+y+z)=30\}$ (x+z)(x+y+z)=24

a) (1, -2, 3) și (-1, 2, 3);

b) (1, 2, 3) si (-1, -2, -3);

c) (-1, -2, 3) și (1, 2, -3);

d) (1, 2, 3);

c) (-1, 2, -3);

D(-1, 2, 3).

7. Så se determine $z \in \mathbb{C}$ astfel ca |z| + z = 1 + i:

$$c)-1+i$$

a)
$$1+i$$
; b) $1-i$; c) $-1+i$; d) $-1-i$; e) $i\sqrt{2}$;

8. Să se construiască un polinom de grad minim cu coeficienți raționali care admite rădăcina $x_1 = \sqrt{2} + \sqrt{3}$.

a)
$$X^4 - 2X^2 - 7$$
;

a)
$$X^4 - 2X^2 - 7$$
; b) $X^2 + 2X\sqrt{2} - 1$; c) $X^2 - 2X\sqrt{2} - 1$;

c)
$$X^2 - 2X\sqrt{2} - 1$$
;

d)
$$(X^2-1)^2$$
; c) X^2-8 ;

1)
$$X^4 - 10X^2 + 1$$
.

9. Să se rezolve ecuația $a^{2s} - b^{2s} - 2(ab)^s = 0$ dacă a, b > 1.

$$8) \frac{1}{\ln \frac{a}{b}};$$

a)
$$\frac{1}{\ln \frac{a}{b}}$$
; b) $\frac{\sqrt{2}}{\ln \frac{a}{b}}$; c) $\ln \frac{a}{b}$;

c)
$$\ln \frac{a}{b}$$
;

d)
$$\frac{\ln(1+\sqrt{2})}{\ln\frac{a}{b}}$$

d)
$$\frac{\ln(1+\sqrt{2})}{\ln\frac{a}{b}}$$
; c) $\frac{\ln(\sqrt{2}-1)}{\ln\frac{a}{b}}$; f) $\frac{\sqrt{2}}{\ln(ab)}$.

f)
$$\frac{\sqrt{2}}{\ln(ab)}$$

10. Să se calcu! ze $\lim_{n \to \infty} (n^2 + 3n + 2)^{\frac{1}{n-1}}$:

a) 1; b) 0; c) e; d)
$$\infty$$
; e) $\frac{1}{2}$; f) $\frac{1}{e}$.

11. Derivata de ordin n, $n \ge 3$ a funcției $f(x) = x^2 \ln x$, x > 0 este:

a)
$$\frac{(-1)^n n!}{x^{n-1}}$$
; b) $\frac{(-1)^{n-1}(n-1)!}{x^n}$; c) $(-1)^n \frac{2}{x^{n-1}}$;

c)
$$(-1)^n \frac{2}{\sqrt{n-1}}$$
;

d)
$$\frac{2(-1)^{n-1}}{x^{n-2}}$$

e)
$$\frac{2(-1)^{n-1}n!}{x^{n-1}}$$

d)
$$\frac{2(-1)^{n-1}}{x^{n-2}}$$
; e) $\frac{2(-1)^{n-1}n!}{x^{n-1}}$; f) $\frac{2(-1)^{n-1}(n-3)!}{x^{n-2}}$.

12. Să se determine valoarea maximă a funcției

$$f(x) = \begin{cases} -x^2 + 4x + 3, & x \in [0, 2) \\ 2, & x = 2 \\ x^2 - 4x + 3, & x \in (2, 3] \end{cases}$$

a) 1; b) 0; c) 2; d)
$$\infty$$
; c) $\frac{1}{2}$; f) $\frac{2}{3}$.

13. Să se determine limitele laterale ale funcției $f(x) = x(e^{1/x} - e^{1/(x+1)})$ în punctul $x_0 \approx -1$.

a)
$$0 ext{ si } infty;$$
 b) $-\frac{1}{e} ext{ si } infty;$ c) $-\frac{1}{e} ext{ si } 0;$ d) $e ext{ si } -\infty;$ e) $0 ext{ si } \frac{1}{e};$ f) $-\frac{1}{e} ext{ si } e.$

14. În mulțimea numerolor complexe C se definește legea de compoziție $z_1 \circ z_2 = m i z_1 z_2 + m(z_1 + z_2) + i(1 - m), m = 0$. Să se determine $m \in \mathbb{R}$ ca în (C,*) să existe element neutru.

$$c) m = 0$$
;

c)
$$m = 1$$
; .f) $m = 1 + i$.

15. Să se determine rădăcinile comune ale ecuațiilor $x^2 - 3x + 2 = 0$ și $x^3 - 4x^2 + 5x - 2 = 0$

a)
$$x_1 = 1$$
; b) $x_1 = 1$ si $x_2 = 2$; c) $x_1 = 1$ si $x_2 = -2$;

$$c)x_1 = ! six_1 = -2$$
:

$$d)x_1=2; \quad e)x_1=2$$

d)
$$x_1 = 2$$
; e) $x_1 = x_2 = 1$, $x_3 = 2$; f) $x_1 = -2$.

$$0x_1 = -2.$$

16. Să se calculeze $\int x\sqrt{x^2+1} dx$:

a)
$$\sqrt{2}-1$$
; b) $2\sqrt{2}-1$; c) $\frac{\sqrt{2}-1}{2}$;

a)
$$\frac{2\sqrt{2}-1}{3}$$
;

d)
$$\frac{2\sqrt{2}-1}{3}$$
; e) $\frac{\sqrt{2}-1}{3}$; f) $\frac{\sqrt{2}}{3}$.

$$\mathfrak{f})\,\frac{\sqrt{2}}{3}.$$

17. Să se afle mulțimea punctelor în care $f(x) = \arcsin \frac{2x}{1+x^2}$, $x \in \mathbb{R}$ este derivabilă.

a)
$$x \in (-1, 1)$$
; b) $x \in (-\infty, -1) \cup (1, \infty)$; c) $x \in (-\infty, -1) \cup (-1, 1) \cup (1, \infty)$;
d) $x \in (-1, 1) \cup (1, \infty)$; c) $x \in (-\infty, -1) \cup (-1, 1)$; f) $x \in (-\infty, \infty)$.

18. Să se afle lungimea arcului de curbă $f(x) = \sqrt{x^3}$, $x \in [0, 1]$.

a)
$$\frac{12}{7}$$
;

b)
$$\frac{\sqrt{13}-2}{9}$$
;

c)
$$\frac{13\sqrt{13}}{27}$$
;

d)
$$\frac{13\sqrt{13}-8}{27}$$
;

e)
$$\frac{13\sqrt{13}-2}{27}$$
;

$$0 \frac{13\sqrt{13}-4}{27}.$$