Analysis I

Thomas Fleming

November 18, 2021

Contents

1	Intro to Functional Analysis	1
2	Seperability and Bounded Linear Functionals	3
3	Bounded Linear Functionals	5

1 Intro to Functional Analysis

Lecture 22: L^p spaces

Thu 11 Nov 2021 19:29

I skipped a chapter on supporting lines and Jensen's inequality because the material was rather simple and well explained in Hagen's notes.

Definition 1.1 (Essential Supremum). Let $f:S\to \overline{\mathbb{R}}$ be measurable. Then, we denote the quantity

$$\operatorname{esssup} f = \inf\{M \in \overline{\mathbb{R}} : m\left(\{x \in S : f\left(x\right) > M\}\right) = 0\}$$

is called the **essentail supremum** of f. Note that $f \leq \operatorname{esssup} f$ almost everywhere.

Definition 1.2 (Lp space). Let $f: S \to \overline{\mathbb{R}}$ be measurable ,then

- For $1 \le p \le$ we define $||f||_p = \left(\int_S |f|^p\right)^{\frac{1}{p}}$ to be the L^p **norm** of f.
- $||f||_{\infty} = \text{esssup} |f| \text{ is the } L^{\infty} \text{ norm of } f.$

Definition 1.3 (Equivalent functions). For $1 \leq p \leq \infty$ let $V_p(s)$ be the set of all measurable functions $f: S \to \overline{\mathbb{R}}$ so that $\|_p < \infty$. Then, functions $f, g \in V_p(S)$ are **equivalent**, denoted $f \sim g$, if f = g almost everywhere in S.

The set of all equivalence classes $V_{p}\left(S\right)/\sim$ is denoted $L^{p}\left(S\right)$ and called the **Lebesque space**.

Remark. If $f \sim g$ in $L_P(S)$, then f = g almost everywhere (on S) hence $||f - g||_p = 0$. Hence the L^p norm can be extended to norms on equivalence classes by simply denoting $||[f]||_p = ||f||$ for some equivalence class $[f] \in L^p(S)$

Theorem 1.1 (Minkowski's Inequality). Suppose $f,g \in L^p(S)$ for a $1 \le p \le \infty$. Then, $\|f+g\|_p \le \|f\|_p + \|g\|_p$. Moreover, if $1 , then <math>\|f+g\|_p = \|f\|_p + \|g\|_p$ if and only if there is a $c \ge 0$ so that f = cg almost everywhere.

Proof. Let $x = ||f||_p$, $s = ||g||_p$. Then, we see the claim is trivial true if r = 0, s = 0, or $p = \infty$. Hence, define $\lambda = \frac{r}{r+s}$ and we may assume f, g are finite by definition of L^p space. Since $t \mapsto |t|^p$ is convex on \mathbb{R} and $\lambda \in (0,1)$, we see

$$\begin{split} \left|f+g\right|^p &= \left|\lambda \frac{f}{\lambda} + (1-\lambda) \frac{g}{1-\lambda}\right|^p \\ &\leq \lambda \left|\frac{f}{\lambda}\right|^p + (1-\lambda) \left|\frac{g}{1-\lambda}\right|^p \\ \Rightarrow \left\|f+g\right\|_p &\leq \lambda \left\|\frac{f}{\lambda}\right\|_p^p + (1-\lambda) \left\|\frac{g}{1-\lambda}\right\|_p^p \\ &= \lambda \left(r+s\right)^p + (1-\lambda) \left(r+s\right)^p \\ &= (\|f\|_p + \|g\|_p)^p \end{split}$$

Note that this last step comes from appealing to the definition of lambda and noting $r^p = \int |f|^p$ and similarly for g. Now, we note that $t \mapsto |t|^p$ is strictly convex for $1 , so equality occurs if and only if <math>\frac{f}{\lambda} = \frac{g}{1-\lambda}$ (almost everywhere if f,g are functions and not equivalence classes) hence f is a multiple of g.

Remark. Note that this implies $L^{p}(S)$ is closed under addition, and constant multiplication (this part is trivial), so it is a linear space.

Definition 1.4 (Normed Linear Space). A linear space V is a **normed linear space** if there is a function $\|.\|:V\to\mathbb{R}$ called the **norm of** V so that the following hold

- $||v|| \ge 0$ for all $v \in V$,
- ||v|| = 0 if and only if v = 0,
- $\|\lambda v\| = |\lambda| \|v\|$ for all $\lambda \in R$, $v \in V$,
- $||v + w|| \le ||v|| + ||w||$ for all $v, w \in V$.

Remark. $V_p(S)$ is not itself a normed linear space as the function $f(x) = \begin{cases} 0, & x \notin \mathbb{Q} \\ 1, & x \in Q \end{cases}$ has ||f|| = 0 even though f is not the zero function. We rule out this possibility by considering only the equivalence classes, in which case $f \sim 0$, so $L^p(S)$ is in fact a normed metric space.

Definition 1.5 (Conjugate). For $p \in [1, \infty]$ we define the **conjugate** of p to be the extended real number $q \in [1, \infty]$ so that $\frac{1}{p} + \frac{1}{q} = 1$.

Lemma 1.1 (Young's Inequality). Suppose $p \in (1, \infty)$ with q its conjugate and $a, b \in \mathbb{R}$ with $a, b \geq 0$. Then, $ab \leq \frac{a^p}{p} + \frac{q^p}{p}$. Moreover equality holds if and only if $a^p = b^q$.

Specifically $\sqrt{ab} \leq \frac{a+b}{2}$, that is the geometric mean is at most the arithmetic mean.

Proof. It suffices to assume a,b positive as the 0 case is trivial. Then, define $F(t) = a^{p(1-t)}b^{qt} = a^p\left(\frac{b^q}{a^p}\right)^t$. We see F is convex on $\mathbb R$ as it is exponential. Hence

$$ab = F\left(\frac{1}{p} \cdot 0 + \left(1 - \frac{1}{p}\right)q\right)$$

$$\leq \frac{1}{p}F\left(0\right) + \left(1 - \frac{1}{p}\right)F\left(1\right)$$

$$= \frac{a^p}{p} + \frac{b^q}{q}.$$

As F is strictly convex (except in the case $\frac{b^q}{a^p} = 1$), we see equality will not arrive except in this exceptional case.

2 Seperability and Bounded Linear Functionals

Lecture 23: Separability of L^p spaces

Definition 2.1 (Step-Function). A step function, $\psi : \mathbb{R} \to \mathbb{R}$ is a simple function of the form

$$x \mapsto \sum_{k=1}^{m} a_k \chi_{J_k} \left(x \right)$$

where every set J_k is a bounded interval.

Theorem 2.1. (22.4).

Proof. 1. For the case $p = \infty$, we have f bounded almost everywhere. By splitting f into functions f^+ , f^- we can assume $f \ge 0$. Then, we see a sequence of simple functions (s_n) converging uniformly to f almost everywhere.

For $1 \leq p < \infty$ we find a sequence of simple functions (s_n) converging pointwise to f so that $|s_n| \leq |f|$. Consequently, we see

$$|f - s_n|^p \le (|f| + |s|)^p \le (2|f|)^p = 2^p |f|^p$$
.

So, we see dominated convergence implies

$$\int |f - s_n|^p = 0.$$

2 SEPERABILITY AND BOUNDED LINEAR FUNCTIONALS

Thu 18 Nov 2021 13:57

2. Assuming the case 1, we see we can assume f simple. Moreover, we can assume $f = \chi_S$, a characteristic function in $L^p(\mathbb{R})$.

Then, we see S is measurable with $\int \chi_S = m(S) < \infty$, hence $\int \chi_S^p < \infty$. Applying littlewoods first princple and finxing $\varepsilon > 0$ we find a finite disjoint collection of open intervals $\{J_k : 1 \le k \le n\}$ so that for $U = \bigcup_{k=1}^m J_k$, we find $m(S \triangle U) < \varepsilon^p$.

Then, we see

$$\int |\chi_S - \chi_U|^p = \int \chi_{S \triangle U}^p$$

$$= m (S \triangle U)$$

$$< \varepsilon^p.$$

Since $m(U \setminus S) < \infty$, we see each interval J_k must be bounded (else U would be of infinite measure), so χ_U is a step function on the interval $[a,b] \supseteq U$ satisfying the required conditions.

3. Assuming 2 we see it suffices to show case for the step function $f = \chi_{[c,d]}$ with $c \leq d$. Then, fixing $\varepsilon > 0$ and considering the function

$$x\mapsto g\left(x\right)=\chi_{\left[c,d\right]}+\left(1+\varepsilon^{-p}\left(x-c\right)\right)\chi_{\left(c-\frac{\varepsilon^{p}}{3},\right),c}+\left(1-e^{-p}\left(x-d\right)\right)\chi\left(d,d+\frac{\varepsilon^{p}}{3}\right).$$

We see this functions is continuous as it is simply piecewise linear, being 1 on [c,d] and a linear interpolation between 1 and 0 in a small interval either side of [c,d]. Importantly, $\int_{\left(c-\frac{1}{3}\varepsilon^p\right)}|g|\leq \frac{1}{3}\varepsilon^p$, the length of the interval.

Hence, we find

$$\int \left| \chi_{[c,d]} - g \right|^p \le \left(\frac{2}{3} \varepsilon^p \right)^p < \varepsilon^p.$$

This completes the proof.

Note that this proof essentially showed simple functions, step functions, and continuous functions are dense in $L^p(\mathbb{R})$ (given $1 \leq p < \infty$ for the last 2).

Definition 2.2 (Density). Let $(X, \|\cdot\|)$ be a normed linear space. If $S \subseteq T \subseteq X$, then S is **dense** in T if for all $v \in T, \varepsilon > 0$ we find a vector $u \in S$ so that $\|v - u\| < \varepsilon$.

Definition 2.3 (Seperability). A normed linear space $(X, \| \cdot \|)$ is **seperable** if it contains a countable, dense subset.

Theorem 2.2. For $1 \leq p < \infty$, $L^p(\mathbb{R})$ is separable.

Proof. If $\varphi = c\chi_{[a,b]}$ with $a,b,c \in R$, then for any $\varepsilon > 0$ we find an interval $I = [c,d] \subseteq [a,b]$ with $c,d \in \mathbb{Q}$ and an $r \in \mathbb{Q}$ so that $\int |\varphi - r\chi_I|^p < \varepsilon^p$ (the function vanishes except on an arbitrarily small interval). Letting Ψ be the

collection of all such step functions of the form $\psi = \sum_{i=1}^{n} c_k \chi_{I_k}$ with $c_k \in \mathbb{Q}$ and I_k having rational endpoints, then linearity combined with the preceding lemmas guarantees Ψ to be a countable dense subset, so $L^p(\mathbb{R})$ is separable. \square

3 Bounded Linear Functionals

Definition 3.1 (Functionals). • A function $\varphi : X \to \mathbb{R}$ on a linear space X is called a **linear functional** if the laws of linearity holds for φ .

- A linear functional $\varphi: X \to \mathbb{R}$ on a normed linear space $(X, \|\cdot\|)$ is called **bounded** if there is $M \ge 0$ so that $|\varphi(x)| \le M \|x\|$ for all $x \in X$.
- If φ is a bounded linear functional, the quantity

$$\|\varphi\| = \inf\{M \ge 0 : |\varphi(x)| \le M\|x\| \ \forall \ x \in X\}$$

is called the **norm** of φ .

Proposition 3.1. Let $\varphi: X \to \mathbb{R}$ be a bounded linear functional on a normed linear space $(X, \|\cdot\|)$. Then,

$$\|\varphi\| = \sup\{|\varphi(x)| : x \in X, \|x\| \le 1\}.$$

Definition 3.2 (Continuity). A linear functional $\varphi: X \to \mathbb{R}$ on $(X, \|\cdot\|)$ is **continuous at** x_0 if for every $\varepsilon > 0$ we find a $\delta > 0$ so that $|\varphi(x) - \varphi(x_0)| < \varepsilon$ if $||x - x_0|| < \delta$.

If φ is continuous for all $x \in X$, then φ is **continuous.**

Proposition 3.2. Let $\varphi: X \to \mathbb{R}$ be a linear functional on $(X, \|\cdot\|)$. Then, the following are equivalent

- φ is continuous.
- φ is continuous at some $x_0 \in X$.
- φ is bounded.