Database Management Systems ระบบจัดการฐานข้อมูล

Lecture 4 – Relational Database Model

A.Sukit Kuchaisit

วัตถุประสงค์การเรียนรู้

- เพื่อศึกษาคำศัพท์ที่เกี่ยวข้องของระบบฐานข้อมูลเชิงสัมพันธ์
- เพื่อศึกษาความหมายระบบฐานข้อมูลเชิงสัมพันธ์
- เพื่อศึกษาลักษณะการจัดเก็บในฐานข้อมูลเชิงสัมพันธ์
- เพื่อศึกษากฎที่เกี่ยวข้องกับคียในฐานข้อมูลเชิงสัมพันธ์

โครงเรื่อง

- เหตุผลที่เลือกใช้รูปแบบฐานข้อมูลเชิงสัมพันธ์
- คำศัพท์พื้นฐานในระบบฐานข้อมูลเชิงสัมพันธ์
- วิเคราะห์รูปแบบฐานข้อมูลเชิงสัมพันธ์
- ความหมายของฐานข้อมูลเชิงสัมพันธ์
- ข้อดีของฐานข้อมูลเชิงสัมพันธ์
- คุณลักษณะในการจัดเก็บข้อมูลรีเลชั่น
- ประเภทของ Key
- กฎที่เกี่ยวข้องกับคียในฐานข้อมูลเชิงสัมพันธ์
- ประเภทของรีเลชั่น

ฐานข้อมูลเชิงสัมพันธ์ (Relational Database)

ส่วนใหญ่ใช้รูปแบบเชิงสัมพันธ์มากกว่ารูปแบบอื่น เพราะมีข้อได้เปรียบดังนี้

- 1. เข้าใจง่าย ไม่มีความสลับซับซ้อน
- 2. มีเครื่องมือที่ช่วยให้ผู้ใช้สามารถปฏิบัติงานยากๆกับข้อมูล ได้ด้วยคำสั่งง่ายๆ
- 3. ค้นพบปัญหาที่เกิดขึ้นได้ง่ายและง่ายในการแก้ไขของการออกแบบที่ผิดพลาด
- 4. ส่วนการจัดเก็บข้อมูลจริงผู้ใช้ไม่ต้องพะวงกับรายละเอียดของการจัดเก็บ

• คำศัพท์ที่เกี่ยวข้อง

- Relation : เป็นการรวบรวมข้อมูลเป็นแถวและคอลัมน์ในลักษณะตาราง 2 มิติ
- Tuple : ค่าข้อมูลในแต่ละแถว (Row) หรือเรียกว่า Record
- 🗖 Cardinality : จำนวนแถวของข้อมูลในแต่ละ Relation
- Attribute : คุณสมบัติของเอนทิตี้ไทด์ หรือ Column หรือ Field

- Degree : จำนวนของ Attribute ในแต่ละ Relation
- Domain : ขอบเขตของค่าของข้อมูลที่ควรจะเป็นในแต่ละ Attribute
- Key: 1 Attribute หรือ หลาย Attribute ประกอบรวมกันเพื่อเป็น Key ที่ใช้ทำหน้าที่ใด หน้าที่หนึ่ง
- Primary Key(คีย์หลัก) : คีย์ที่มีค่าไม่ซ้ำ และไม่เป็นค่า Null (Candidate Key ที่ถูกเลือก)
- Candidate Key(คีย์คู่แข่ง) : คีย์ที่มีค่าไม่ซ้ำ และเป็นตัวเลือกที่จะเป็น Primary Key
- Alternate Key (คีย์รอง): Candidate Key ที่ไม่ได้ถูกเลือกเป็น Primary Key
- Composite Key(คีย์ผสม) : คีย์ที่ประกอบด้วย Attribute ตั้งแต่ 2 Attribute ขึ้นไป รวมเป็น คีย์
- Foreign Key(คีย์นอก) : คีย์ที่มีการอ้างอิงไปยังตารางอื่น และเป็น Primary Key ของตาราง นั้น
- Null : ค่าว่างหรือค่าที่ไม่รู้
- Normalization : กระบวนการการจัดรูปแบบให้อยู่ในรูปแบบที่เหมาะสม
- Cartesian Product : การจับคู่ของข้อมูลในตาราง 2 ตาราง

ตัวอย่าง รีเลชั่น Supplier

S#	SNAME	STATUS	CITY	SEX
S1	Smith	20	London	М
S2	Jones	10	Paris	М
S3	Blake	30	Paris	F
S4	Clark	20	London	М
S5	Adams	30	Athens	М

รีเลชั่น Part

P#	PNAME	COLOR	WEIGHT
P1	Nut	Red	12
P2	Bolt	Green	17
Р3	Screw	Blue	17
P4	Screw	Red	14
P5	Cam	Blue	12
P6	Cog		19

รีเลชั่น SP

S#	P#	QTY
S1	P1	300
S1	P2	200
S1	Р3	400
S1	P4	200
S1	P5	100
S1	P6	100
S2	P1	300
S2	P2	400
S3	P2	200
S4	P2	200
S4	P4	300
S4	P5	400

การวิเคราะห์ Data Model มี 3 ประการ คือ

- 1. Data Structure
 - Domain (Atomic Value)
 - มี Relation เท่านั้น n-ary Relations (Attribute, Tuples)
 - ไม่มี Pointer หรือ Index ใดๆ ทั้งสิ้น
- 2. Integrity Constraints
 - Entity Integrity
 - Referential Integrity
- 3. Data Manipulation Language

มีความสามารถอย่างน้อยเท่ากับ Relational Algebra หรือ Relational

Calculus

• ความหมายของฐานข้อมูลเชิงสัมพันธ์

นิยาม ฐานข้อมูลเชิงสัมพันธ์ คือ การรวบรวมรีเลชั่นต่างๆที่มีความสัมพันธ์ระหว่างกัน โดยรีเลชั่น
 ต่างๆ นั้นได้ผ่านกระบวนการทำรีเลชั่นให้เป็นรูปแบบบรรทัดฐาน (Normalized) เพื่อลดความซับซ้อน และเพื่อให้การจัดการฐานข้อมูลเป็นไปอย่างมีประสิทธิภาพ

• ข้อดีของฐานข้อมูลเชิงสัมพันธ์

- 1. ฐานข้อมูลเชิงสัมพันธ์เป็นกลุ่มของรีเลชั่น หรือตารางที่ข้อมูลถูกจัดเก็บเป็น แถวและ คอลัมน์ ซึ่งทำให้ผู้ใช้เห็นภาพของข้อมูลได้ง่าย
- 2. ผู้ใช้ไม่ต้องรู้ว่าข้อมูลถูกจัดเก็บจริงอย่างไร รวมถึงวิธีการเรียกใช้ข้อมูล
- 3. ภาษาที่ใช้ในการเรียกดูข้อมูลเป็นลักษณะคล้ายภาษาอังกฤษและไม่จำเป็นต้องเขียน เป็นลำดับขั้นตอน เช่น ภาษาโครงสร้างฐานข้อมูล (SQL) เป็นต้น
- 4. การเรียกใช้หรือเชื่อมโยงข้อมูลทำได้ง่าย โดยใช้โอเปอเรเตอร์ทางคณิตศาสตร์ เช่น Join, Intersect เป็นต้น

• คุณลักษณะในการจัดเก็บข้อมูลรีเลชั่น

- 1. ข้อมูลแต่ละแถวไม่ซ้ำกัน
- 2. การเรียกลำดับของข้อมูลในแต่ละแถวไม่เป็นสาระสำคัญ
- 3. การเรียกลำดับของแอททริบิวต์จะเรียกลำดับก่อนหลังอย่างไรก็ได้
- 4. ค่าของข้อมูลในแต่ละแอททริบิวต์ของทูเพิลหนึ่งๆจะบรรจุข้อมูลได้เพียง ค่าเดียว นั่นหมายถึงว่า ไม่มี Repeating Group
 - 5. ค่าของข้อมูลในแต่ละแอททริบิวต์บรรจุค่าของข้อมูลประเภทเดียวกัน

Empnum	Empname	Salary	Position	Depno	Mgrno
1001	Siriwan	9000	Salesman	10	1002
				20	2001

ตารางนี้ มี Repeating Group คือใน 1 แถว มีค่ามากกว่า 1 ค่า คือในคอลัมน์ Depno และ คอลัมน์ Mgrno มี 2 ค่า

• ประเภทของ Key

- 1. คีย์หลัก (Primary Key (PK))
- 2. คียนอก (Foreign Key (FK))

PK FK FK

Empnum	Empname	Salary	Position	Depno	Mgrn
1001	Sirwan	33000	Manager	10	
3001	Arlee	17000	Salesman	20	1001
4001	Jintana	13000	Salesman	20	1001

PΚ

Depno	Depname	Location
10	Accounting	Silom
20	Marketing	Ratchada
30	Information	Ratchada

• กฎที่เกี่ยวข้องกับคียในฐานข้อมูลเชิงสัมพันธ์

1.กฎความบูรณภาพของ entity(The Entity Integrity Rule)

คีย์หลักของข้อมูลจะต้องเป็น ค่าเอกลักษณะ(Unique) และเป็นค่าว่างไม่ได้ (Null)

2.กฎความบูรณภาพของการอ้างอิง (The Referential Integrity Rule)
ค่าของคีย์นอกจะต้องสามารถอ้างอิงให้ตรงกับค่าของคีย์หลักได้ จึงจะเชื่อมโยงหรือ
อ้างอิงข้อมูลระหว่าง 2 รีเลชั่น

ในกรณีการลบข้อมูลหรือแก้ไขข้อมูลของแอททริบิวต์ที่เป็นคีย์หลักในรีเลชั่นหนึ่ง ซึ่งมีคีย์นอกจากอีกรีเลชั่นหนึ่งอ้างอิงถึง จะทำการลบหรือแก้ไขข้อมูลได้ 4 ทาง เลือก คือ

- การลบข้อมูลหรือแก้ไขข้อมูลแบบมีข้อจำกัด (Restrict)
 การลบหรือแก้ไขข้อมูลจะกระทำได้ เมื่อข้อมูลของคีย์หลักในรีเลชั่นหนึ่งไม่มีข้อมูลที่ถูก อ้างอิงโดยคีย์นอกจากรีเลชั่นหนึ่ง
- การลบหรือแก้ไขข้อมูลแบบต่อเรียง (Cascade)
 จะเป็นแบบลูกโซ่คือ หากมีการแก้ไขหรือลบข้อมูลของคีย์หลักในรีเลชั่นหนึ่ง ระบบฐานข้อมูล ก็จะทำการลบหรือแก้ไขข้อมูลของคีย์นอกในอีกรีเลชั่นหนึ่ง ที่อ้างอิงถึงข้อมูลของคีย์หลักนั้น
- 3. การลบหรือแก้ไขข้อมูลโดยเปลี่ยนเป็นค่าว่าง(Nullify)
 การลบหรือแก้ไข คีย์หลักจะทำได้เมื่อมีการเปลี่ยนค่าของคีย์นอกที่ถูกอ้างอิงให้เป็นค่าว่าง เสียก่อน
- การแก้ไขข้อมูลของคีย์หลักสามารถทำได้ โดยถ้าหากมีคีย์นอกที่อ้างอิงถึงคีย์หลักที่ถูกแก้ไข ก็จะทำให้การปรับค่าของคีย์นอกนั้นเป็นค่า Default Value ที่ถูกกำหนดขึ้น

4. การแก้ไขข้อมูลโดยกำหนดค่าปริยาย(Default)

• ประเภทของรีเลชั่น

1.รีเลชั่นหลัก (Base Relation) รีเลชั่นหลักที่ถูกกำหนดขึ้นเพื่อเก็บข้อมูลและนำข้อมูลไปใช้ เมื่อมีการสร้างรีเลชั่น ในภาษาสำหรับนิยามข้อมูล (DDL) หลังจากนั้นก็จะทำการเก็บข้อมูล เพื่อการเรียกใช้ข้อมูลภายหลัง รีเลชั่นหลักจะเป็นตารางที่มีการจัดเก็บข้อมูลจริงไว้

EMPLPYEE

EMPNUM	EMPNAME	SALARY	POSITION	DEPNO	MGRNO
1001	SIRIWAN	9000	CLERK	10	1002
3001	ARLEE	17000	SALESMAN	30	3004
4001	WICHAI	33000	MANAGER	40	2002
1002	JINTANA	30000	CONTROLLER	10	4001
3004	AMPORN	25000	SUPERVISOR	20	4001
2002	KANJANA	50000	DIRECTOR	20	

DEP

	DEP DEPNAME		LOCATION
-	10	ACCOUNTING	SILOM
	20	ADMINISTRATION	SUKUMVIT
	30 MARKETING		RATCHADA
	40	FINANCE	SILOM

2.วิว (View) เป็นรี่เลชั่นที่ถูกสร้างขึ้นตามความต้องการของใช้ข้อมูลแต่ละคน ทั้งนี้ ผู้ใช้แต่ละคนใช้ข้อมูล ในลักษณะที่แตกต่างกัน จึงทำการกำหนดวิวของตนเองขึ้นมาจากรีเลชั่นหลัก เพื่อความสะดวกในการใช้ข้อมูล และช่วยในการรักษาความปลอดภัยของฐานข้อมูลทำให้ง่ายขึ้น รีเลชั่นที่ถูกสมมุตินี้จะไม่มีการเก็บข้อมูลจริง ในระบบ ซึ่งจะแตกต่างจากรีเลชั่นหลักที่มีการเก็บข้อมูลจริงๆ ไว้

วิว ผู้ใช้คนที่ 1

EMPNUM	POSITION	SALARY
4001	MANAGER	33000
2002	DIRECTOR	50000

วิว ผู้ใช้คนที่ 2

EMPNUM	EMPNAME	DEPNAME
1001	SIRIWAN	ACCOUNTING
1002	JINTANA	ACCOUNTING
1003	KANJANA	ADMNISTRATION
1004	ARLEE	MARKETING

14

สรุปท้ายบทเรียน

- เหตุผลที่เลือกฐานข้อมูลเชิงสัมพันธ์
- คำศัพท์ที่เกี่ยวข้องกับฐานข้อมูลเชิงสัมพันธ์
- ความหมายของฐานข้อมูลเชิงสัมพันธ์
- ข้อดีของฐานข้อมูลเชิงสัมพันธ์
- คุณลักษณะในการจัดเก็บข้อมูลรี่เลชั่น
- ประเภทของ Key
 - คีย์หลัก (Primary Key)
 - คีย์นอก (Foreign Key)
- กฎที่เกี่ยวข้องกับคียในฐานข้อมูลเชิงสัมพันธ์
 - กฎความบูรณภาพของ entity (The Entity Integrity Rule)
 - กฎความบูรณภาพของการอ้างอิง (The Referential Integrity Rule)
- ประเภทของรีเลชั่น
 - วีเลชั่นหลัก (Base Relation)
 - ¬ วิว (View)

บรรณานุกรม

- รศ.ศิริลักษณ์ โรจนกิจอำนวย (2542), ระบบฐานข้อมูล(Database Systems) พิมพ์ครั้งที่ 3, บริษัท ดวงกมลสมัย จำกัด กรุงเทพ
- ดร.ดวงแก้ว สวามิภักดิ์(2521), ระบบฐานข้อมูล(Database Systems),
 ซีเอ็ดยูเคชั่น กรุงเทพ
- โอภาส เอี่ยมสิริวงศ์ (2551), ระบบฐานข้อมูล(Database Systems), ซี เอ็นยูเคชั่น กรุงเทพ