第2章:关系数据库

Relational Databases

邹兆年

哈尔滨工业大学 计算机科学与技术学院 海量数据计算研究中心 电子邮件: znzou@hit.edu.cn

2023 年春

◆□ > ◆□ > ◆ = > ◆ = > ● の へ ○

邹兆年 (CS@HIT)

第 2 章: 关系数据库

2023 年春

1/80

教学内容1

- 关系数据模型
 - ▶ 关系数据结构
 - ▶ 关系操作
 - ▶ 关系完整性约束
- ② 关系代数
 - ▶ 基本关系代数操作
 - ▶ 派生关系代数操作
 - ▶ 扩展关系代数操作
- ③ 关系演算
 - ▶ 元组关系演算
 - ▶ 域关系演算

2.1 关系数据模型

Relational Data Model

邹兆年 (CS@HIT)

育2章: 关系数据库

2023 年春

3/80

关系数据模型 (Relational Data Model)

- 关系数据模型 (relational data model)是一种被广泛使用的实现数据模型 (implementation data model)
- 关系数据模型是关系数据库管理系统的模型基础
 - Oracle
 - ► Microsoft SQL Server
 - ► IBM DB2
 - MySQL
 - PostgreSQL
 - openGauss
 - ► SQLite

关系数据模型的三要素

- 关系数据结构
- ② 关系操作
- ③ 关系完整性约束

关系数据模型要素 1: 关系数据结构

关系数据模型的三要素

- 关系数据结构
- ② 关系操作
- ③ 关系完整性约束
 - 关系数据模型使用的唯一数据结构—关系 (relation)
- 不严格地讲,关系就是一张二维表 (table)
 - ▶ 行—元组 (tuple)/记录 (record), 表示对象
 - ▶ 列—属性 (attribute)/域 (field),表示对象的性质

例 (关系)

Student				
PH-001	Nick	М	20	Physics
CS-001	Elsa	F	19	CS
CS-002	Ed	М	19	CS
MA-001	Abby	F	18	Math
MA-002	Cindy	F	19	Math

邹兆年 (CS@HIT)

第 2 章: 关系数据库

2023 年春

5 / 80

关系 (Relation) 的数学定义 I

定义 (关系)

设 D_1, D_2, \ldots, D_n 是 n 个值域 (domain), $D_1 \times D_2 \times \cdots \times D_n$ 的子集 R 称作 D_1, D_2, \ldots, D_n 上的关系 (relation), 记作 $R(D_1, D_2, \ldots, D_n)$ 。

- R—关系名
- n—关系 R 的度 (degree)
- $(d_1, d_2, ..., d_n) \in R$ —关系 R 的元组 (tuple),其中 d_i 是元组的分量 (component)

◆ロ > ◆ 個 > ◆ 恵 > ◆ 恵 > ・ 恵 * り へ ○

关系 (Relation) 的数学定义 II

例 (关系)

 $D_1 =$ 学号集合, $D_2 =$ 姓名集合, $D_3 = \{M, F\}$, $D_4 = \mathbb{N}$, $D_5 =$ 系名集合

Student

PH-001	Nick	М	20	Physics
CS-001	Elsa	F	19	CS
CS-002	Ed	М	19	CS
MA-001	Abby	F	18	Math
MA-002	Cindy	F	19	Math

因为 $Student \subseteq D_1 \times D_2 \times D_3 \times D_4 \times D_5$, 所以 Studnet 是一个关系

邹兆年 (CS@HIT)

第 2 章: 关系数据库

2023 年春

7/80

关系的正确性

- $D_1 \times D_2 \times \cdots \times D_n$ 的任意子集都是关系,但未必都是正确的关系
- 只有符合客观实际的关系才是正确的关系

例 (不正确的关系)

Student

PH-001	Nick	М	20	Physics
CS-001	Elsa	F	19	ČS
CS-002	Ed	М	19	CS
MA-001	Abby	F	18	Math
MA-002	Cindy	F	19	Math
MA-002	Cindy	F	20	Math

因为一个人不能同时有 2 个年龄,所以该 Student 关系是不正确的

关系的属性 (Attributes)

定义 (属性)

由于域可能相同,为了加以区分,可为关系 $R(D_1, D_2, ..., D_n)$ 的每个域 D_i 起一个不同的名字 A_i ,称作属性 (attribute),故关系 R 常表示为 $R(A_1, A_2, ..., A_n)$ 。

例 (属性)

		- 1	ı	
_	+1	10	er	١+
J	LL	JU	CI	ΙL

Sno	Sname	Ssex	Sage	Sdept
PH-001	Nick	М	20	Physics
CS-001	Elsa	F	19	CS
CS-002	Ed	М	19	CS
MA-001	Abby	F	18	Math
MA-002	Cindy	F	19	Math

属性 Sno 的域是学号集合, 属性 Sname 的域是姓名集合, 属性 Ssex 的域是 $\{M, F\}$, 属性 Sage 的域是 \mathbb{N} , 属性 Sdept 的域是系名集合

邹兆年 (CS@HIT)

第 2 章: 关系数据库

9/80

10/80

关系的键 (Keys)

关系的某些属性集合具有区分不同元组的作用,称作键 (key)

定义 (超键)

如果关系的某一组属性的值能唯一标识每个元组,则称该组属性为超键 (super key)。

例 (超键)

\sim	
. ``	L.

Sno	Cno	Grade
PH-001	1002	92
PH-001	2003	85
PH-001	3006	88
CS-001	1002	95
CS-001	3006	90
CS-002	3006	80
MA-001	1002	

属性集合 {Sno, Cno} 和 {Sno, Cno, Grade} 都是关系 SC 的超键

邹兆年 (CS@HIT) 第 2 章: 关系数据库 2023 年春

候选键 (Candidate Keys)

定义 (候选键)

如果一个超键的任意真子集都不是超键,则称该超键为候选键 (candidate key)。候选键 =极小的 (minimal) 超键。

例 (候选键)

	SC	
Sno	Cno	Grade
PH-001	1002	92
PH-001	2003	85
PH-001	3006	88
CS-001	1002	95
CS-001	3006	90
CS-002	3006	80
MA-001	1002	

{Sno} 和 {Cno} 都不是 SC 的超键,故 {Sno, Cno} 是 SC 的候选键

主键 (Primary Keys)

定义(主键)

每个关系都有至少一个候选键,<mark>人为指定</mark>其中一个作为主键 (primary key)。

例 (主键)

	SC	
Sno	Cno	Grade
PH-001	1002	92
PH-001	2003	85
PH-001	3006	88
CS-001	1002	95
CS-001	3006	90
CS-002	3006	80
MA-001	1002	

邹兆年 (CS@HIT) 第 2 章: 关系数据库 2023 年春 12/80

外键 (Foreign Keys) I

不同关系中的元组可以存在联系,这种联系是通过外键建立起来的

定义 (外键)

设 F 是关系 R 的属性子集。若 F 与关系 S 的主键 K 相对应,则称 F 是 R 的外键 (foreign key)

- R—参照关系 (referring relation)
- S—被参照关系 (referred relation)
- R与 S可以是同一关系 (什么情况下可以?)

邹兆年 (CS@HIT)

第 2 章: 关系数据库

2023 年春

13/80

外键 (Foreign Keys) II

例 (外键)

SC			
Sno	Cno	Grade	
PH-001	1002	92	
PH-001	2003	85	
PH-001	3006	88	
CS-001	1002	95	
CS-001	3006	90	
CS-002	3006	80	
MA-001	1002		

Sno	Sname	Ssex	Sage	Sdept
PH-001	Nick	М	20	Physics
CS-001	Elsa	F	19	CS
CS-002	Ed	М	19	CS
MA-001	Abby	F	18	Math
MA-002	Cindy	F	19	

C

- SC.Sno 和 Student.Sno 分别表示 SC 和 Student 的属性 Sno
- SC.Sno 是 SC 的外键,它参照 Student.Sno 下源示

关系数据模型要素 2: 关系操作

关系数据模型的三要素

- 关系数据结构
- ② 关系操作
- ③ 关系完整性约束
- 查询操作: 从关系数据库中查找数据
- 更新操作: 对关系数据库进行更新
 - ▶ 插入元组
 - ▶ 修改元组
 - ▶ 删除元组

邹兆年 (CS@HIT)

第 2 章: 关系数据库

2023 年春

15 / 80

查询语言 (Query Languages)

查询语言 (query language)是用于表示关系操作的语言

查询语言的类型

- 关系代数 (relational algebra) (第 2.2 节)
 - ▶ 使用关系代数表达式明确给出查询的执行过程
- 关系演算 (relational calculus) (第 2.3 节)
 - ▶ 使用谓词逻辑表达式描述查询
 - ▶ 元组关系演算 (tuple relational calculus): 谓词逻辑变量是元组
 - ▶ 域关系演算 (domain relational calculus): 谓词逻辑变量是域
- 结构化查询语言 SQL (第 3 章)
 - ▶ 具有关系代数和关系演算的双重特点
 - ▶ 集 DDL、DML、DCL 于一体

关系数据模型要素 3: 关系完整性约束

关系数据模型的三要素

- 关系数据结构
- ② 关系操作
- ③ 关系完整性约束
- 完整性约束 (integrity constraints): 关系数据库中的所有数据必须满足的约束条件
- 完整性约束的类型
 - ① 实体完整性 (entity integrity)
 - ② 参照完整性 (referential integrity)
 - ⑤ 用户定义完整性 (user-defined integrity)

< □ ▶ ◆ □ ▶ ◆ ■ ▶ ◆ ■ ◆ 9 Q ©

邹兆年 (CS@HIT)

第 2 章: 关系数据库

2023 年春

17 / 80

实体完整性约束I

实体完整性约束规则

- ① 关系中任意元组的主键值必须唯一 (unique)
- ② 关系中任意元组在主键中的属性值非空 (not null)
 - ▶ 空值 (null) 表示值不存在,它既不是 0,也不是空串

实体完整性约束 Ⅱ

例 (实体完整性约束)

	SC	
Sno	Cno	Grade
PH-001	1002	92
PH-001	2003	85
PH-001	3006	88
CS-001	1002	95
CS-001	3006	90
CS-002	3006	80
MA-001	1002	

- {Sno, Cno} 是 SC 的主键
- 所有元组的 Sno 和 Cno 属性值组合必须唯一 ▶ 演示
- 任意元组的 Sno 和 Cno 属性值必须非空 ▶ 演示

邹兆年 (CS@HIT)

第 2 章: 关系数据库

2023 年春

19/80

参照完整性约束 I

不同关系中的元组可以存在联系,这种联系是通过外键建立起来的

参照完整性约束规则

设 F 是关系 R 的外键,F 参照关系 S 的主键,则 R 中任意元组的 F 属性值必须满足以下两个条件之一:

- F 的值为空
- ② 若 F 的值不为空,则 F 的值必须在 S 中存在

参照完整性约束 II

例 (参照完整性约束)

SC					
Sno	Cno	Grade			
PH-001	1002	92			
PH-001	2003	85			
PH-001	3006	88			
CS-001	1002	95			
CS-001	3006	90			
CS-002	3006	80			
MA-001	1002				

Student					
Sno	Sname	Ssex	Sage	Sdept	
PH-001	Nick	М	20	Physics	
CS-001	Elsa	F	19	CS	
CS-002	Ed	М	19	CS	
MA-001	Abby	F	18	Math	
MA-002	Cindy	F	19		

- SC.Sno 和 Student.Sno 分别表示 SC 和 Student 的属性 Sno
- SC.Sno 是 SC 的外键, 它参照 Student.Sno
- SC.Sno 的属性值集合必须是 Student.Sno 属性值集合的子集 ▶ 演示

◆□▶ ◆□▶ ◆■▶ ◆■▶ ● ◆9

邹兆年 (CS@HIT)

第2章: 关系数据库

2023 年春

21/80

参照完整性约束 Ⅲ

例 (参照完整性约束)

Student

Sno	Sname	Ssex	Sage	Sdept
PH-001	Nick	М	20	Physics
CS-001	Elsa	F	19	CS
CS-002	Ed	М	19	CS
MA-001	Abby	F	18	Math
MA-002	Cindy	F	19	

Department

Dept	Addr
Physics	B1
CS	B2
Math	B3

- Sdept 是 Student 的外键,它参照 Department 的 Dept 属性
- Student 中元组的 Sdept 属性值可以为空,表示该学生的院系未知
- 如果 Student 中元组的 Sdept 属性值非空,则该 Sdept 属性值必须属于 Department 中 Dept 的属性值集合

用户定义完整性约束

根据应用需求定义的完整性约束

例 (用户定义完整性约束)

Student

Sno	Sname	Ssex	Sage	Sdept
PH-001	Nick	М	20	Physics
CS-001	Elsa	F	19	CS
CS-002	Ed	М	19	CS
MA-001	Abby	F	18	Math
MA-002	Cindy	F	19	Math

- Student.Sname 不可以为空
- Student.Ssex 的值只能是'M' 或'F'
- Student.Sage 的值必须大于 0 Digital

◆□▶◆□▶◆■▶ ◆■▶ ● 900

邹兆年 (CS@HIT)

第 2 章: 关系数据库

2023 年春

23 / 80

关系的模式 (Schema)

关系的模式 (schema)是对关系的结构与语义的描述

- 关系名、属性名、属性值域、主键、完整性约束、属性依赖关系等
- 关系模式是不经常变化的

例 (关系模式)

Student

Sno	Sname	Ssex	Sage	Sdept

查看关系模式

• PostgreSQL 和 openGauss: \d Student

• MySQL: describe Student

关系的实例 (Instance)

关系的实例 (instance)是关系在某一时刻的取值

- 关系实例必须符合关系模式
- 关系实例是动态变化的

关系模式与关系实例的关系如同面向对象程序设计中类 (class) 与对象 (object) 的关系

例 (关系实例)

c.			
Stı	ıd	Δn	1
- シに	uч		ı

Sno	Sname	Ssex	Sage	Sdept
PH-001	Nick	М	20	Physics
CS-001	Elsa	F	19	CS
CS-002	Ed	М	19	CS
MA-001	Abby	F	18	Math
MA-002	Cindy	F	19	Math

查看关系实例: SELECT * FROM Student;

邹兆年 (CS@HIT)

第 2 章: 关系数据库

2023 年春

25 / 80

2.2 关系代数

Relational Algebra

4□ ► 4□ ► 4 = ► 4 = ► 9 < 0

邹兆年 (CS@HIT)

第2章:关系数据库

2023 年春

26 / 80

关系代数 (Relational Algebra)

- 关系代数是一种使用关系代数表达式来表示查询的语言
- 关系代数表达式明确给出了查询的执行过程
- 关系代数操作的操作数 (operand): 关系
- 关系代数操作的结果: 关系
- 关系代数操作的操作符 (operator): 选择 σ 、投影 Π 、并 \cup 、差 -、 笛卡尔积 \times 、重命名 ρ 、交 \cap 、内连接 \bowtie 、外连接 \bowtie 等

例 (关系代数表达式)

 $\sigma_{Student.Sno=SC.Sno}(Student \times SC)$

- ◆ 关系 Student 和 SC 是关系代数操作 ×(笛卡尔积) 的操作数
- Student \times SC 的结果也是关系, 它是关系代数操作 σ (选择) 的操作 数
- 上述关系代数表达式给出了执行过程: 先执行 \times 操作, 后执行 σ 操 作

< □ > < 蕳 > < 冟 > < 冟 >

邹兆年 (CS@HIT)

2023 年春

27 / 80

基本关系代数操作

基本关系代数操作

- 负 选择 σ
- ❷ 投影 Ⅱ
- 3 并∪
- 4 差 -
- ⑤ 笛卡尔积 ×
- 重命名 ρ

电影《一代宗师》剧照

除一些特殊查询外,关系代数查询均可以由基本关系代数操作构成。

邹兆年 (CS@HIT) 28 / 80

选择操作 (Selection)

• 功能: 从一个关系中选出满足给定条件的元组

语法: σ_θ(R)

σ—选择操作符

▶ *R*—关系名

▶ θ —条件表达式,形如 A = 10, B > 5 的简单逻辑表达式,或由与 \land 、或 \lor 、非 \lnot 逻辑运算构成的复杂逻辑表达式

例 (选择操作)

① 找出计算机系的全体学生 $\sigma_{Sdept='CS'}(Student)$ ① 演示

② 找出计算机系的全体男同学 $\sigma_{Sdept='CS' \land Ssex='M'}(Student)$

Student				
Sno	Sname	Ssex	Sage	Sdept
PH-001	Nick	М	20	Physics
CS-001	Elsa	F	19	CS
CS-002	Ed	М	19	CS
MA-001	Abby	F	18	Math
MA-002	Cindy	F	19	Math

查询 1 的结果 Sno Sname Ssex Sage Sdept CS-001 F Elsa 19 CS CS-002 Ed М 19 查询 2 的结果 Sname Ssex Sage Sdept Sno CS-002 Ed M 19

《 □ ▶ 《 回 ▶ 《 壹 ▶ 《 壹 ▶ ○ 壹 ► ◇ Q (^) 邹兆年 (CS@HIT) 第 2 章: 关系数据库 2023 年春 29 / 80

投影操作 (Projection)

• 功能: 从一个关系中选出指定的列, 并去掉重复元组

语法: ∏_L(R)

▶ Ⅱ—投影操作符

▶ *R*—关系名

▶ L—投影属性列表

例 (投影操作)

① 找出全体学生的学号和姓名 $\Pi_{Sno,Sname}(Student)$ \mathbb{R}_{Sno}

② 找出全部的系 $\Pi_{Sdept}(Student)$ \bullet 演示

Student				
Sno	Sname	Ssex	Sage	Sdept
PH-001	Nick	М	20	Physics
CS-001	Elsa	F	19	CS
CS-002	Ed	М	19	CS
MA-001	Abby	F	18	Math
MA-002	Cindy	F	19	Math

查询1的约	查询 1 的结果					
Sno	Sname					
PH-001	Nick					
CS-001	Elsa					
CS-002	Eric					
MA-001	Abby					
MA-002	Cindy					

查询2的结果 Sdept Physics CS Math

并操作 (Union)

• 功能: 计算关系 R 和 S 的并集

语法: R∪S

- ► R, S—关系名
- ▶ ∪—并操作符
- 要求:
 - R和S必须具有相同个数的属性
 - ② R和 S对应属性的值域必须相容

例 (集合并操作)

● 找出计算机系和数学系的学生

 $\sigma_{Sdept='CS'}(Student) \cup \sigma_{Sdept='MA'}(Student)$ (还有什么方法?)

 $\sigma_{Sdent='CS'}(Student)$

Sno	Sname	Ssex	Sage	Sdept
CS-001	Elsa	F	19	CS
CS-002	Ed	М	19	CS

 $\sigma_{Sdept='MA'}(Student)$

Sno	Sname	Ssex	Sage	Sdept
				•
MA-001	Abby	F	18	Math
MA-002	Cindy	F	19	Math

查询 1 的结果

Sno	Sname	Ssex	Sage	Sdept
CS-001	Elsa	F	19	CS
CS-002	Ed	М	19	CS
MA-001	Abby	F	18	Math
MA-002	Cindy	F	19	Math

邹兆年 (CS@HIT)

第 2 章: 关系数据库

2023 年春

31 / 80

差操作 (Difference)

• 功能: 计算关系 R 和 S 的差集

● 语法: R – S

▶ R, S—关系名

▶ -—差操作符

● 要求:

■ R和S必须具有相同个数的属性

② R和 S对应属性的值域必须相容

	SC	
Sno	Cno	Grade
PH-001	1002	92
PH-001	2003	85
PH-001	3006	88
CS-001	1002	95
CS-001	3006	90
CS-002	3006	80
MA-001	1002	

例 (差操作)

 $\Pi_{Sno}(\sigma_{Cno='1002'}(SC))$ $\Pi_{Sno}(\sigma_{Cno='3006'}(SC))$

Sno	
PH-001	
CS-001	
MA-001	1

_

Sno
PH-001
CS-001
CS-002

查询 1 的结果 Sno MA-001

(ロ) (部) (注) (注) 注 り()

笛卡尔积操作 I

• 功能: 计算两个关系的笛卡尔积

● 语法: R×S

► R, S—关系名

▶ ×—笛卡尔积操作符

◆□ > ◆□ > ◆ = > ◆ = > ● の へ ○

邹兆年 (CS@HIT)

第 2 章: 关系数据库

2023 年春

33 / 80

笛卡尔积操作Ⅱ

例 (笛卡尔积操作)

Stud	lent
Juan	

Sno	Sname	Ssex	Sage	Sdept
PH-001	Nick	М	20	Physics
CS-001	Elsa	F	19	CS
CS-002	Ed	М	19	CS
MA-001	Abby	F	18	Math
MA-002	Cindy	F	19	Math

SC

SC							
Sno	Cno	Grade					
PH-001	1002	92					
PH-001	2003	85					
PH-001	3006	88					
CS-001	1002	95					
CS-001	3006	90					
CS-002	3006	80					
MA-001	1002						

Student × SC ▶ 演示

Student.Sno	Sname	Ssex	Sage	Sdept	SC.Sno	Cno	Grade
PH-001	Nick	М	20	Physics	PH-001	1002	92
PH-001	Nick	М	20	Physics	PH-001	2003	85
PH-001	Nick	М	20	Physics	PH-001	3006	88
PH-001	Nick	М	20	Physics	CS-001	1002	95
PH-001	Nick	М	20	Physics	CS-001	3006	90
PH-001	Nick	М	20	Physics	CS-002	3006	80

笛卡尔积操作

- 笛卡尔积的作用仅仅是将 R 和 S 中的元组无条件地连接起来
- 笛卡尔积操作通常和选择操作一起使用,即连接 (join)

例 (笛卡尔积操作与选择操作结合)

● 查询已选课学生的信息

杳询	1	的结果
	_	ロコンロンハ

Student.Sno	Sname	Ssex	Sage	Sdept	SC.Sno	Cno	Grade
PH-001	Nick	М	20	Physics	PH-001	1002	92
PH-001	Nick	М	20	Physics	PH-001	2003	85
PH-001	Nick	М	20	Physics	PH-001	3006	88
CS-001	Elsa	F	19	CS	CS-001	1002	95
CS-001	Elsa	F	19	CS	CS-001	3006	90
CS-002	Ed	М	19	CS	CS-002	3006	80
MA-001	Abby	F	18	Math	MA-001	1002	

◆□▶ ◆□▶ ◆■▶ ◆■▶ ●

邹兆年 (CS@HIT)

第 2 章: 关系数据库

35 / 80

重命名操作 (Renaming)

- 功能: 修改关系名和 (或) 属性名
- 语法
 - ① $\rho_{B\leftarrow A}(R)$: 将关系 R 的属性 A 更名为 B
 - ② ρ_S(R): 将关系 R 更名为 S
 - ③ $\rho_{S(A_1,A_2,...,A_n)}(R)$: 将关系 R 更名为 S, 并将 R 的全部属性更名为 $A_1,A_2,...,A_n$
- 当把一个关系和它自身进行自连接 (self-join)时,需要区分同一个关系的两个副本。在这种情况下,重命名操作发挥着重要作用。

例 (重命名操作)

- ① 将关系 SC 的属性名 Grade 修改为 Score $ho_{Score\leftarrow Grade}(SC)$ $ho_{\overline{g}\overline{s}}$
- ③ ★★ 找出 3006 号课程的最高分 (课后练习)

邹兆年 (CS@HIT) 第 2 章: 关系数据库 2023 年春 36 / 80

基本关系代数习题I

使用关系代数运算器 ² 在数据库 (Database Systems The Complete Book - Exercise 2.4.1) 上完成下列习题

选择

- What PC models have a speed of at least 3.00 and ram of at least 1024MB?
- What PC models have a speed of at least 3.00 or ram of at least 1024MB?

投影

- What are the manufacturers?
- What models does the manufacturer A produce?
- Find the model numbers of all color laser printers

并

Find the model numbers and price of all PC's and all laptops

◆ロト ◆団ト ◆豆ト ◆豆 りへで

邹兆年 (CS@HIT)

第 2 章: 关系数据库

2023 年春

37 / 80

基本关系代数习题 II

差

Find the manufacturers that sell laptops but not PC's

笛卡尔积

- What manufactures make laptops with a hard disk of at least 100GB?
- What PC models with a price less than \$500 does the manufacturer A produce?

重命名

- Rename the hd attribute of a PC to ssd
- Find the model numbers of all printers that are cheaper than the printer model 3002

²https://dbis-uibk.github.io/relax

派生关系代数操作

- 目的: 只用基本关系代数操作来编写复杂查询是非常繁琐的,因此 我们引入派生 (derived) 关系代数操作来简化查询编写
- 任何一项派生关系代数操作都可以用基本关系代数操作来表示

派生关系代数操作

- 交 ○
- ② θ 连接 ⋈_θ
- ③ 自然连接 ⋈
- ④ 外连接: 左外连接 ⋈、右外连接 ⋈、全外连接 ⋈
- ⑤ 反连接 ▷
- **◎** 除÷

邹兆年 (CS@HIT)

第2章: 关系数据库

2023 年春

39 / 80

交操作 (Intersection)

- 功能: 计算关系 R 和 S 的交集
- 语法: R∩S
 - ► R, S—关系名
 - ▶ ∩—交操作符
- 要求:
 - R 和 S 必须具有相同个数的属性
 - ② R和 S对应属性的值域必须相容
- 等价变换: $R \cap S = R (R S)$

例

① 查询既选修了 1002 号课程,又选修了 3006 号课程的学生的学号 $\Pi_{Sno}(\sigma_{Cno='1002'}(SC)) \cap \Pi_{Sno}(\sigma_{Cno='3006'}(SC))$ ① 演示

θ 连接 (θ -Join) I

- 功能: 将关系 R 和 S 中满足给定连接条件 θ 的元组进行连接
- 语法: R ⋈_θ S
 - ▶ ⋈—内连接操作符
 - lacktriangleright heta—连接条件,条件表达式的语法与选择操作条件相同
- $R \bowtie_{\theta} S$ 的结果包含 R 和 S 中的全部属性,同名属性加关系名前缀

邹兆年 (CS@HIT)

第 2 章: 关系数据库

2023 年春

41/80

θ 连接 (θ -Join) II

例 (θ 连接)

Student						
Sno	Sname	Ssex	Sage	Sdept		
PH-001	Nick	М	20	Physics		
CS-001	Elsa	F	19	CS		
CS-002	Ed	М	19	CS		
MA-001	Abby	F	18	Math		
MA-002	Cindy	F	19	Math		

	SC	
Sno	Cno	Grade
PH-001	1002	92
PH-001	2003	85
PH-001	3006	88
CS-001	1002	95
CS-001	3006	90
CS-002	3006	80
MA-001	1002	

Student ⋈_{Student.Sno=SC.Sno} SC ▶ 演示

Student.Sno	Sname	Ssex	Sage	Sdept	SC.Sno	Cno	Grade
PH-001	Nick	М	20	Physics	PH-001	1002	92
PH-001	Nick	М	20	Physics	PH-001	2003	85
PH-001	Nick	М	20	Physics	PH-001	3006	88
CS-001	Elsa	F	19	CS	CS-001	1002	95
CS-001	Elsa	F	19	CS	CS-001	3006	90
CS-002	Ed	М	19	CS	CS-002	3006	80
MA-001	Abby	F	18	Math	MA-001	1002	

θ 连接 (θ -Join)

Property

 $R \bowtie_{\theta} S = \sigma_{\theta}(R \times S)$

例

查询计算机系学生的选课情况,列出学号、姓名、课号、得分 Π_{Student.Sno,Sname,Cno,Grade}(σ_{Sdept='}CS'(Student ⋈_{Student.Sno=SC.Sno}SC))

 $Student \bowtie_{Student.Sno=SC.Sno} SC$

Student.Sno	Sname	Ssex	Sage	Sdept	SC.Sno	Cno	Grade
PH-001	Nick	М	20	Physics	PH-001	1002	92
PH-001	Nick	М	20	Physics	PH-001	2003	85
PH-001	Nick	М	20	Physics	PH-001	3006	88
CS-001	Elsa	F	19	CS	CS-001	1002	95
CS-001	Elsa	F	19	CS	CS-001	3006	90
CS-002	Ed	М	19	CS	CS-002	3006	80
MA-001	Abby	F	18	Math	MA-001	1002	

邹兆年 (CS@HIT)

第 2 章: 关系数据库

2023 年春

43 / 80

等值连接 (Equi-join)

等值连接 (equi-join): 连接条件 θ 仅涉及相等比较的 θ 连接

4□ ► 4□ ► 4 = ► 4 = ► 9 < 0

自然连接 (Natural Join) I

- 功能: 设 $\{A_1,A_2,\ldots,A_k\}$ 是关系 R 和 S 的同名属性集合 $R.A_1=S.A_1 \wedge R.A_2=S.A_2 \wedge \cdots \wedge R.A_k=S.A_k$
 - 4 从连接结果中去掉重复的同名属性(为什么?)
- 语法: R⋈S

邹兆年 (CS@HIT)

第2章: 关系数据库

2023 年春

45 / 80

自然连接 (Natural Join) II

例 (自然连接)

Sno	Sname	tudent Ssex	Sage	Sdept
PH-001	Nick	М	20	Physics
CS-001	Elsa	F	19	CS
CS-002	Ed	М	19	CS
MA-001	Abby	F	18	Math
MA-002	Cindy	F	19	Math

	SC	
Sno	Cno	Grade
PH-001	1002	92
PH-001	2003	85
PH-001	3006	88
CS-001	1002	95
CS-001	3006	90
CS-002	3006	80
MA-001	1002	

Student ⋈ SC ▶ 演示

Sno	Sname	Ssex	Sage	Sdept	Cno	Grade	
PH-001	Nick	М	20	Physics	1002	92	
PH-001	Nick	М	20	Physics	2003	85	
PH-001	Nick	М	20	Physics	3006	88	
CS-001	Elsa	F	19	CS	1002	95	
CS-001	Elsa	F	19	CS	3006	90	
CS-002	Ed	М	19	CS	3006	80	
MA-001	Abby	F	18	Math	1002		

自然连接与 θ 连接的区别

	自然连接	heta 连接
连接条件	隐含给出	明确给出
连接结果的属性	去除重复的同名属性	保留重复的同名属性

例 (自然连接)

① 查询计算机系学生的选课情况,列出学号、姓名、课号、得分 $\Pi_{Sno,Sname,Cno,Grade}(\sigma_{Sdept='CS'}(Student \bowtie SC))$

Stud	ent	M	SC

Sno	Sname	Ssex	Sage	Sdept	Cno	Grade
PH-001	Nick	М	20	Physics	1002	92
PH-001	Nick	М	20	Physics	2003	85
PH-001	Nick	М	20	Physics	3006	88
CS-001	Elsa	F	19	CS	1002	95
CS-001	Elsa	F	19	CS	3006	90
CS-002	Ed	М	19	CS	3006	80
MA-001	Abby	F	18	Math	1002	

◆□▶ ◆□▶ ◆臺▶ ◆臺▶ · 臺 · 夕久()

邹兆年 (CS@HIT)

第 2 章: 关系数据库

2023 年春

47 / 80

内连接 (Inner Join)

- 前面讲的连接都属于内连接 (inner join)
- R 和 S 的内连接 ($R \bowtie_{\theta} S$ 或 $R \bowtie S$) 的结果只包含 R 和 S 中满足连接条件的元组
- R 和 S 中不满足连接条件的元组均不会出现在连接结果中

例 (内连接)

① 查询选过课的学生的学号和姓名 $\Pi_{Sno,Sname}(Student ⋈ SC)$ ◆ 漢示

 $Student \bowtie SC$

Sno	Sname	Ssex	Sage	Sdept	Cno	Grade
PH-001	Nick	М	20	Physics	1002	92
PH-001	Nick	М	20	Physics	2003	85
PH-001	Nick	М	20	Physics	3006	88
CS-001	Elsa	F	19	CS	1002	95
CS-001	Elsa	F	19	CS	3006	90
CS-002	Ed	М	19	CS	3006	80
MA-001	Abby	F	18	Math	1002	

因为 Student ⋈ SC 是内连接, 所以学生 MA-002 不会出现在连接结果中

 邹兆年 (CS@HIT)
 第 2 章: 关系数据库
 2023 年春
 48 / 80

外连接 (Outer Join) I

- 除了要在 R 和 S 的连接结果中保留满足连接条件的全部元组外,在某些情况下,我们还需要在连接结果中保留 R 或 (和)S 中的不满足连接条件的元组
- 在这种情况下,仅用内连接无法完成查询,因此引入外连接 (outer join)

邹兆年 (CS@HIT)

92章:关系数据库

2023 年春

49 / 80

外连接 (Outer Join) II

例 (外连接)

● 查询全体学生的选课情况 (含未选课的学生)

Student							
Sno	Sname	Ssex	Sage	Sdept			
PH-001	Nick	М	20	Physics			
CS-001	Elsa	F	19	CS			
CS-002	Ed	М	19	CS			
MA-001	Abby	F	18	Math			
MA-002	Cindy	F	19	Math			

	SC	
Sno	Cno	Grade
PH-001	1002	92
PH-001	2003	85
PH-001	3006	88
CS-001	1002	95
CS-001	3006	90
CS-002	3006	80
MA-001	1002	

想要的查询结果

心女时旦尚纪木							
Student.Sno	Sname	Ssex	Sage	Sdept	SC.Sno	Cno	Grade
PH-001	Nick	М	20	Physics	PH-001	1002	92
PH-001	Nick	М	20	Physics	PH-001	2003	85
PH-001	Nick	М	20	Physics	PH-001	3006	88
CS-001	Elsa	F	19	CS	CS-001	1002	95
CS-001	Elsa	F	19	CS	CS-001	3006	90
CS-002	Ed	М	19	CS	CS-002	3006	80
MA-001	Abby	F	18	Math	MA-001	1002	
MA-002	Cindy	F	19	Math			

邹兆年 (CS@HIT)

第 2 章: 关系数据库

2023 年春

50/80

外连接的分类

- 左外连接 (left outer join)
- 右外连接 (right outer join)
- 全外连接 (full outer join)

邹兆年 (CS@HIT)

節 2 章・关系数据库

2023 年春

51/80

左外 θ 连接 (Left Outer θ -Join) I

指定 R 为左关系 (left relation), S 为右关系 (right relation)

- 功能:
 - ① 将 R 和 S 中满足给定连接条件 θ 的元组进行连接,即计算 $R \bowtie_{\theta} S$
 - ② 对于 R 中不满足给定连接条件 θ 的元组,左外连接结果中也包含该元组,只不过 S 中属性的值都为空 (null)
- 语法: R ⋈_θ S
 - ▶ ⋈—左外连接操作符

左外 θ 连接 (Left Outer θ -Join) II

例 (左外 θ 连接)

● 查询全体学生的选课情况 (含未选课的学生)

Student ™_{Student}, Sno=SC, Sno SC ▶演示

 $Student \bowtie_{Student.Sno=SC.Sno} SC$

Student.Sno	Sname	Ssex	Sage	Sdept	SC.Sno	Cno	Grade
PH-001	Nick	М	20	Physics	PH-001	1002	92
PH-001	Nick	М	20	Physics	PH-001	2003	85
PH-001	Nick	М	20	Physics	PH-001	3006	88
CS-001	Elsa	F	19	CS	CS-001	1002	95
CS-001	Elsa	F	19	CS	CS-001	3006	90
CS-002	Ed	М	19	CS	CS-002	3006	80
MA-001	Abby	F	18	Math	MA-001	1002	
MA-002	Cindy	F	19	Math			

Question

为什么没有左内 θ 连接?

邹兆年 (CS@HIT)

第 2 章: 关系数据库

2023 年春

53 / 80

左外自然连接 (Left Outer Natural Join) I

指定 R 为左关系 (left relation), S 为右关系 (right relation)

- 功能:
 - 将 R 和 S 中满足自然连接条件的元组进行连接,即计算 RθS
 - ② 对于 R 中不满足自然连接条件 θ 的元组,左外自然连接结果中也包含该元组,只不过那些在 S 而不在 R 中的属性的值都为空 (null)
- 语法: R ⋈ S
 - ▶ ⋈—左外连接操作符

左外自然连接 (Left Outer Natural Join) II

例 (左外自然连接)

● 找出没选过课的同学的学号和姓名

 $\Pi_{Sno,Sname}(\sigma_{Cno=NULL}(Student \bowtie SC))$

Student \bowtie SC

Student.Sno	Sname	Ssex	Sage	Sdept	Cno	Grade
PH-001	Nick	М	20	Physics	1002	92
PH-001	Nick	М	20	Physics	2003	85
PH-001	Nick	М	20	Physics	3006	88
CS-001	Elsa	F	19	CS	1002	95
CS-001	Elsa	F	19	CS	3006	90
CS-002	Ed	М	19	CS	3006	80
MA-001	Abby	F	18	Math	1002	
MA-002	Cindy	F	19			

邹兆年 (CS@HIT)

筆 🤈 音・关系数据库

2023 年春

55 / 80

右外连接 (Right Outer Join)

指定 R 为左关系 (left relation), S 为右关系 (right relation)

右外 θ 连接

- 功能:
 - **①** 将 R 和 S 中满足给定连接条件 θ 的元组进行连接,即计算 $R \bowtie_{\theta} S$
 - ② 对于 S 中不满足给定连接条件 θ 的元组,右外连接结果中也包含该元组,只不过 R 中属性的值都为空 (null)
- 语法: R ⋈_θ S
 - ▶ ⋈—右外连接操作符

右外自然连接

- 功能:
 - 将 R 和 S 中满足自然连接条件的元组进行连接,即计算 R ⋈ S
 - ② 对于 S 中不满足自然连接条件的元组,右外自然连接结果中也包含该元组,只不过那些在 R 而不在 S 中的属性的值都为空 (null)
- 语法: R ⋈_θ S
 - ▶ ⋈—右外连接操作符

全外连接 (Full Outer Join)

指定 R 为左关系 (left relation), S 为右关系 (right relation)

全外 θ 连接

- 功能:
 - **①** 将 R 和 S 中满足给定连接条件 θ 的元组进行连接,即计算 $R \bowtie_{\theta} S$
 - ② 对于 R 中不满足给定连接条件 θ 的元组,全外连接结果中也包含该元组,只不过 S 中属性的值都为空 (null)
 - ③ 对于 S 中不满足给定连接条件 θ 的元组,全外连接结果中也包含该元组,只不过 R 中属性的值都为空 (null)
- 语法: R ∞ S
 - ▶ □<<p>工—全外连接操作符

全外自然连接: 定义留作练习

Property

- $R \bowtie_{\theta} S = (R \bowtie_{\theta} S) \cup (R \bowtie_{\theta} S)$
- $R \bowtie S = (R \bowtie S) \cup (R \bowtie S)$

邹兆年 (CS@HIT)

第 2 章: 关系数据库

2023 年春

57 / 80

反连接 (Anti Join) I

指定 R 为左关系, S 为右关系

θ 反连接

- 功能:
 - ① 找出 R 中不满足与 S 的连接条件 θ 的元组
- 语法: R ▷_θ S
 - ▶ ▷—反连接操作符

自然反连接

- 功能:
 - 找出 R 中不满足与 S 的自然连接条件的元组
- 语法: R⊳S

反连接 (Anti Join) II

例 (反连接)

Student					
Sno	Sname	Ssex	Sage	Sdept	
PH-001	Nick	М	20	Physics	
CS-001	Elsa	F	19	CS	
CS-002	Ed	М	19	CS	
MA-001	Abby	F	18	Math	
MA-002	Cindy	F	19	Math	

	SC	
Sno	Cno	Grade
PH-001	1002	92
PH-001	2003	85
PH-001	3006	88
CS-001	1002	95
CS-001	3006	90
CS-002	3006	80
MA-001	1002	

Student ⊳ SC					
Sno	Sname	Ssex	Sage	Sdept	
MA-002	Cindy	F	19	Math	

◆ロト ◆卸 ▶ ◆ 重 ▶ ◆ 重 ▶ りへの

邹兆年 (CS@HIT)

第 2 章: 关系数据库

2023 年春

59 / 80

除 (Division)

- 目的: 我们经常要做下面这种查询: 找出选修了<mark>所有</mark>课程的学生。 用基本关系代数操作来编写这种查询非常不便,因此引入除操作。
- 整数除法: 设 x 和 y 为正整数, $x \div y$ 的商是使得 $yz \le x$ 的最大的整数 z
- 关系除法
 - Arr $R \div S$ 的结果是一个关系,它只包含 R 中的属性,但不包含 S 中的属性
 - ▶ $R \div S$ 的结果是使得 $S \times T \subseteq R$ 的最大的关系 T
- 语法: R÷S
 - ▶ :—除操作符

Sno	Cno]			
PH-001	1002]			
PH-001	2003		Cno]	Sno
PH-001	3006	<u>.</u>	1002)] =	PH-001
CS-001	1002	•	3006	_	CS-001
CS-001	3006		3000	J	C3-001
CS-002	3006				
MA-001	1002				

除 (Division)

例 (除)

① 找出选修了所有课程的学生的学号 $\Pi_{Sno,Cno}(SC) \div \Pi_{Cno}(Course)$ \bullet 演示

$$\Pi_{Sno,Cno}(SC)$$

Sno	Cno
PH-001	1002
PH-001	2003
PH-001	3006
CS-001	1002
CS-001	3006
CS-002	3006
MA-001	1002

邹兆年 (CS@HIT)

第 2 章: 关系数据图

2023 年春

61/80

派生关系代数习题I

使用关系代数运算器 ³ 在数据库 (Database Systems The Complete Book - Exercise 2.4.1) 上完成下列习题

交

Find the manufacturers that sell both laptops and PC's

θ 连接

- Find those pairs of PC models that have both the same speed and RAM. A pair should be listed only once
- ② ★ Find those hard-disk sizes that occur in two or more PC's
- 3 ★★ Find the PC model with the highest available speed
- ★★ Find the manufacturers of PC's with at least three different speeds 自然连接
 - What manufacturers make laptops with a hard disk of at least 100GB?
 - ② ★ Explain the result of *Product* ⋈ *Printer*

◆ロ → ◆ 個 → ◆ 夏 → ◆ 夏 → り へ ()

派生关系代数习题 II

左外连接

- **1** Execute $Product \bowtie PC$
- ② ** Find the PC model with the highest available speed (第 2 次出现,上一次怎么做的?)

右外连接

• Execute $Product \bowtie PC$

全外连接

• Execute $Product \bowtie PC$

除

What manufacturers make all types of products (PC, laptop, and printer)?

3https://dbis-uibk.github.io/relax

邹兆年 (CS@HIT)

第 2 章: 关系数据库

2023 任寿

63 / 80

扩展关系代数操作

• 目的: 用基本关系代数操作能够实现的查询功能有限,为了增强关系代数的查询表示能力,我们引入扩展 (extended) 关系代数操作

扩展关系代数操作

- 分组操作 γ
- ❷ 赋值操作 =

◆ロ → ◆ 母 → ◆ き → き め へ ○

分组操作 (Group-By)

- 目的: 我们经常需要对数据进行统计,例如统计每名学生的选课数和平均分。基本关系代数操作无法实现这种功能,因此需要引入分组操作。
- 功能:
 - ① 根据指定的分组属性,对一个关系中的元组进行<mark>分组</mark>,分组属性值相 同元组的分为一组
 - ② 对每个组中元组的非分组属性的值进行聚集 (aggregation)—计数 count、求最小值 min、求最大值 max、求和 sum、求平均值 avg
 - ③ 聚集函数只作用于非空 (null) 值, count(*) 除外 (它计算分组内所有元组的数量)

SC						
Sno	Cno	Grade				
PH-001	1002	92				
PH-001	2003	85				
PH-001	3006	88				
CS-001	1002	95				
CS-001	3006	90				
CS-002	3006	80				
MA-001	1002					

每名学生的选课数和平均分

Sno	Amount	AvgGrade
PH-001	3	88.3
CS-001	2	92.5
CS-002	1	80
MA-001	1	

邹兆年 (CS@HIT)

第 2 章: 关系数据库

2023 年春

口》《圖》《意》《意》

65 / 80

分组操作 (Group-By)

- 语法: $\gamma_{L;agg}(R)$
 - *γ*—分组操作符
 - ▶ *R*—关系名
 - ▶ L—分组属性列表,用逗号分隔
 - ▶ agg—聚集函数表达式列表,用逗号分隔,每个聚集函数表达式形如 sum(score) → TotalScore (计算 score 属性值的和,并将结果命名为 属性 TotalScore)

例 (分组聚集)

● 统计每个系的男生人数和女生人数

② 统计每名已选课学生的选课数和平均分

 $\gamma_{Sno;count(*) o Amt,avg(Grade) o Score}(SC)$ **)** 演示

	SC	
Sdept	Ssex	Amt
Physics	М	1
CS	F	1
CS	М	1
Math	F	2

查询 2 的结果

Sno	Amt	Score
PH-001	3	88.3
CS-001	2	92.5
CS-002	1	80
MA-001	1	

邹兆年 (CS@HIT)

第 2 章: 关系数据库

2023 年春

66 / 80

赋值操作 (Assignment)

- 目的: 仅用一个关系代数表达式来编写复杂查询通常会太冗长,不 易理解。为了便于理解,需要将一个冗长的关系代数查询表达式分 解为一系列简单的表达式,这需要暂存一些中间结果。
- 功能: 将关系代数查询表达式的结果赋值给临时关系
- 语法: *R* = *expr*
 - ▶ R—临时关系名
 - ▶ =—赋值操作符
 - ▶ expr—关系代数查询表达式

邹兆年 (CS@HIT)

第 2 章: 关系数据库

2023 年春

67 / 80

扩展关系代数习题I

使用关系代数运算器 ⁴ 在数据库 (Database Systems The Complete Book - Exercise 2.4.1) 上完成下列习题

分组

- How many models does every manufacturer have?
- ② How many models does every manufacturer have for every type of products?
- ⑤ ★★ Find those hard-disk sizes that occur in two or more PC's (第 2 次 出现,上一次是怎么做的?)
- ★★ What manufacturers make all types of products (PC, laptop, and printer)? (第 2 次出现,上一次是怎么做的?)

赋值

① ** What manufacturers make all types of products (PC, laptop, and printer)? (第 3 次出现,以前两次是怎么做的?)

4https://dbis-uibk.github.io/relax

←□ → ←□ → ← = → ← ●
 ←□ → ← = → ← ●

2.3 关系演算

Relational Calculus

邹兆年 (CS@HIT)

第2章:关系数据库

2023 年春

69 / 80

元组关系演算 (Tuple Relational Calculus)

元组关系演算 (tuple relational calculus)用形如 $\{t|P(t)\}$ 的表达式表示查询

- t: 元组变量 (tuple variable)
- P: 谓词 (predicate)
- 元组关系演算表达式的结果是所有使谓词 P 为真的元组 t 的集合

记法

- t[A]: 元组 t 中属性 A 的值
- t ∈ R: t 是关系 R 中的元组
- 合取
- ∨: 析取
- ¬: 否定
- \Longrightarrow : 蕴含, $A \Longrightarrow B \equiv \neg A \lor B$: "如果 A 为真, 则 B 为真"
- \forall : 全称量词, $\forall t(Q(t))$ 为真当且仅当任意元组 t 均使谓词 Q 为真
- \exists : 存在量词, $\exists t(Q(t))$ 为真当且仅当存在元组 t 使谓词 Q 为真

邹兆年 (CS@HIT) 第 2 章: 关系数据库 2023 年春 70 / 80

元组关系演算

例 (元组关系演算)

- ① 找出计算机系的全体学生 $\{t|t \in Student \land t[Sdept] = 'CS'\}$
- ② 找出计算机系和数学系的学生 $\{t|t \in Student \land (t[Sdept] = 'CS' \lor t[Sdept] = 'MA')\}$
- ③ 找出全体学生的学号和姓名 $\{t|\exists s \in Student(t[Sno] = s[Sno] \land t[Sname] = s[Sname])\}$
- ④ 查询既选修了 1002 号课程,又选修了 3006 号课程的学生的学号 $\{t|\exists s \in SC\exists s' \in SC(t[Sno] = s[Sno] = s'[Sno] \land s[Cno] = '1002' \land s'[Cno] = '3006'))\}$
- **③** 查询选修了 1002 号课程,但没有选修 3006 号课程的学生的学号 $\{t|\exists s \in SC(s[Sno] = t[Sno] \land s[Cno] = '1002') \land \forall s' \in SC(\neg(s'[Sno] = t[Sno] \land s'[Cno] = '3006')))\}$ 或 $\{t|\exists s \in SC(s[Sno] = t[Sno] \land s[Cno] = '1002') \land \forall s' \in SC(s'[Sno] = t[Sno] \implies s'[Cno] \neq '3006'))\}$

邹兆年 (CS@HIT)

第 2 章: 关系数据库

2023 年春

71 / 80

元组关系演算

例 (元组关系演算)

- ① 查询已选课学生的学号和姓名 $\{t|\exists s \in Student \exists r \in SC(t[Sno] = s[Sno] = r[Sno] \land t[Sname] = s[Sname]) \}$
- ② 找出没选过课的同学的学号和姓名 $\{t|\exists s \in Student \forall r \in SC(t[Sno] = s[Sno] \land t[Sname] = s[Sname] \land s[Sno] \neq r[Sno])\}$
- ③ 找出选修了所有课程的学生的学号 $\{t|\exists s \in SC \forall c \in Course(t[Sno] = s[Sno] \land s[Cno] = c[Cno])\}$
- ④ 查询选修了 CS-001 号同学选修的所有课程的同学的学号 $\{t|\forall s\in SC(\exists s'\in SC(s'[Sno]=t[Sno]\land((s[Sno]='CS-001')\Longrightarrow(s'[Cno]=s[Cno])))\}$

域关系演算 (Domain Relational Calculus)

- 域关系演算 (domain relational calculus)表达式与元组关系演算表达式的定义类似,不同之处是表达式中使用域变量 (domain variable),而不是元组变量
- 域关系演算表达式的一般形式为 $\{(x_1, x_2, ..., x_n) | P(x_1, x_2, ..., x_n) \}$
 - ▶ *x*₁, *x*₂, . . . , *x*_n: 域变量
 - ▶ P: 域关系演算公式
 - ▶ 域关系演算表达式的结果是所有使 $P(x_1, x_2, ..., x_n)$ 为真的元组 $(x_1, x_2, ..., x_n)$ 的集合
- 记法
 - $(x_1, x_2, ..., x_n)$: 域变量 $x_1, x_2, ..., x_n$ 构成的元组
 - ▶ $(x_1, x_2, ..., x_n) \in R$: $(x_1, x_2, ..., x_n)$ 是关系 R 中的元组
 - ▶ ∧: 合取
 - ▶ ∨: 析取
 - ▶ ¬: 否定
 - ▶ ⇒ : 蕴含▶ ∀: 全称量词
 - ▶ ∃: 存在量词

邹兆年 (CS@HIT)

第 2 章: 关系数据库

2023 年春

73 / 80

域关系演算

例 (域关系演算)

- ① 找出计算机系的全体学生 $\{(n, m, s, a, d) | (n, m, s, a, d) \in Student \land d = 'CS'\}$
- ② 找出计算机系和数学系的学生 $\{(n, m, s, a, d) | (n, m, s, a, d) \in Student \land (d = 'CS' \lor d = 'MA')\}$
- ③ 找出全体学生的学号和姓名 $\{(n,m)|\exists s, a, d((n,m,s,a,d) \in Student)\}$
- ④ 查询既选修了 1002 号课程,又选修了 3006 号课程的学生的学号 $\{(n)|\exists g((n,'1002',g) \in SC) \land \exists g'((n,'3006',g') \in SC))\}$
- ⑤ 查询选修了 1002 号课程,但没有选修 3006 号课程的学生的学号 $\{(n)|\exists g((n,'1002',g) \in SC) \land \forall g'(\neg((n,'3006',g') \in SC)))\}$

域关系演算

例 (域关系演算)

- ① 查询已选课学生的学号和姓名 $\{(n,m)|\exists s,a,d((n,m,s,a,d) \in Student) \land \exists c,g((n,c,g) \in SC)\}$
- ② 找出没选过课的同学的学号和姓名 $\{(n,m)|\exists s,a,d((n,m,s,a,d)\in Student)\land \forall c,g(\neg((n,c,g)\in SC))\}$
- ③ 找出选修了所有课程的学生的学号 $\{n | \forall c (\exists t ((c, t) \in Course) \land \exists g ((n, c, g) \in SC))\}$
- 查询选修了 CS-001 号同学选修的所有课程的同学的学号 $\{(n)|\forall c(\exists g,g'((('CS-001',c,g)\in SC)))\}$

邹兆年 (CS@HIT)

筆 🤈 章・关系数据库

2023 年春

75 / 80

总结

- 关系数据模型
 - ▶ 关系数据结构: 关系、属性、键
 - ▶ 关系操作: 查询操作、更新操作 (插入、修改、删除)、查询语言 (关系代数、关系演算、SQL)
 - ▶ 关系完整性约束: 实体完整性、参照完整性、用户定义完整性
- ② 关系代数
 - ▶ 基本关系代数操作: 选择 σ 、投影 Π 、笛卡尔积 \times 、并 \cup 、差 -、重命名 ρ

 - ▶ 扩展关系代数操作: 分组操作 γ 、赋值操作 =
- ③ 关系演算
 - ▶ 元组关系演算
 - ▶ 域关系演算
- 在线练习: https://dbis-uibk.github.io/relax

◆ロ → ◆ 個 → ◆ 夏 → ◆ 夏 → り へ ()

习题I

- 用基本关系代数操作表示下列关系代数表达式
 - $ightharpoonup R \bowtie S$
 - ► R ÷ S
 - $Arr R \supset S$
- ② 判断下列命题是否成立。若不成立,请给出反例。
 - $\bullet \quad \sigma_{\theta_1}(\sigma_{\theta_2}(R)) = \sigma_{\theta_2}(\sigma_{\theta_1}(R)) = \sigma_{\theta_1 \wedge \theta_2}(R)$

 - $\Pi_L(R \cup S) = \Pi_L(R) \cup \Pi_L(S)$

 - $\bullet \quad \sigma_{\theta}(R \cap S) = \sigma_{\theta}(R) \cap S = R \cap \sigma_{\theta}(S)$
 - $\sigma_{\theta}(R-S) = \sigma_{\theta}(R) S = R \sigma_{\theta}(S)$

◆□▶ ◆□▶ ◆■▶ ◆■ りへ○

邹兆年 (CS@HIT)

第2章:关系数据库

2023 年春

77 / 80

习题Ⅱ

③ 设关系 R(A, B) 中包含 r > 0 个元组,关系 S(B, C) 中包含 s > 0 个元组,求下列关系代数表达式的结果中元组数的最小值和最大值

关系代数表达式	元组数最小值	元组数最大值
$\sigma_{A < B}(R)$		
$\Pi_{\mathcal{A}}(R)$		
$R\bowtie S$		
$R \bowtie S$		
$R \bowtie S$		
$\Pi_B(R) \cup \Pi_B(S)$		
$\Pi_B(R) \cap \Pi_B(S)$		
$\Pi_B(R) - \Pi_B(S)$		
$R \div \Pi_B(S)$		
$\gamma_{A;count(B)\to D}(R)$		

习题Ⅲ

- ④ 设属性 K 是关系 R 的主键,写一个关系代数表达式来验证 R 的实例是否违反实体完整性约束,说明如何用该关系代数表达式的结果来完成验证。
- ⑤ 设属性 K 是关系 R 的主键,关系 S 的外键 F 参照 R K ,写一个关系代数表达式来验证 R 和 S 的实例是否违反参照完整性约束,说明如何用该关系代数表达式的结果来完成验证。
- 在课上用的 College 数据库上,用关系代数查询 3006 号课程的最高分

▶ 方法 1: 只用基本关系代数操作

▶ 方法 2: 用外连接

邹兆年 (CS@HIT)

第 2 章: 关系数据库

2023 年春

79 / 80

致谢

- 感谢李治霖、詹儒彦 (1190202307)、王雨桐 (1190200527)、李世鹏 (1190201227)、王永琪 (1190201408) 同学指出课件中的错误
- 感谢龚利锋、王梓宣、肖潇、李一鸣同学提供课堂练习题的笔记

◆ロ > ◆昼 > ◆ き > ・ き ・ り へ ○