Wydział FilS	Imię i nazwisko 1. Kotłowska Karol		Rok 2	Grupa 2	Zespół 2
	2. Such Katarzyna				
PRACOWNIA	Temat:				Nr ćwiczenia 51
FIZYCZNA WFiIS AGH	Współczynnik załamania światła dla ciał stałych				
Data wykonania 12.04.2021	Data oddania 19.04.2021	Zwrot do popr.	Data oddania	Data zaliczenia	OCENA

1 Cel ćwiczenia

Wyznaczenie współczynnika załamania światła dla ciał stałych metodą pomiaru grubości pozornej płytki za pomocą mikroskopu.

2 Wykonanie ćwiczenia

2.1 Opis problemu

Do wykonania doświadczenia użyłyśmy następujących przedmiotów:

- Mikroskop wyposażony w czujnik mikrometryczny i nasadkę krzyżową
- Śruba mikrometryczna o dokładności 0,01 [mm]
- Zestaw płytek szklanych i z pleksiglasu, różnej grubości z trzema krzyżykami (kreskami na obu powierzchniach)
- Filtr barwny niebieski

Na początku zajęć zapoznałyśmy się z budową mikrospoku. Następnie zmierzyłyśmy śrubą mikrometryczną grubość płytki szklanej oraz z pleksiglasu. Włożyłyśmy kolejno płytki pod mikroskop oraz dokonałyśmy pomiarów: manipulowałyśmy ostrością obrazu tak, aby otrzymać obraz ostry na jednej, potem na drugiej powierzchni. W taki sposób odczytywałyśmy wskazówki czujnika mikrometrycznego, a wyniki zapisywałyśmy w tabeli. Taką czynność powtórzyłyśmy dla obu płytek po 3 razy na krzyżyk.

Następnie na źródłe światła umieściłyśmy filtr niebieski i wykonałyśmy takie same pomiary jak wyżej dla płytki szklanej.

3 Wyniki

 a_d oraz a_g - wskazania czujnika,
h $=a_d-a_g$ - grubość pozorna

materiał: szkło

grubość rzeczywista:3,79[mm]

niepewność pomiarowu: $\Delta d = 0,01 [\text{mm}]$

krzyżyk	ad [0,01mm]	ag [0,01mm]	h [0,01mm]
pierwszy	243	70	173
	246	70	176
	250,5	66	184,5
drugi	244	59	185
	243	65	178
	243,5	60	183,5
trzeci	246	74	172
	247	69	178
	247	68	179

Rysunek 1: Tabela 1: Wyniki pomiarów dla płytki wykonanej ze szła.

materiał: pleksiglas grubość rzeczywista:4,85[mm]

niepewność pomiarowu: $\Delta d = 0,01 [\text{mm}]$

krzyżyk	ad [0,01mm]	ag [0,01mm]	h [0,01mm]
pierwszy	328	61	267
	329	59	270
	325	60	265
drugi	320	56	264
	319	55	264
	321	55	266
trzeci	314	16	298
	312	16	296
	308	17	291

Rysunek 2: Tabela 2: Wyniki pomiarów dla płytki wykonanej z pleksiglasu.

płytka szklana oświetlona światłem z niebieskim filtem:

krzyżyk	ad [0,01mn	า] ลดู	g [0,01mm]	h [0,01mm]
pierwszy	2	40	65	175
	246	3,5	61	185,5
	244	1,5	65,5	179
drugi	2	33	52	181
	2	32	56	176
	2	32	56	176
trzeci	2	43	50	193
	2	39	51	188
	2	42	52	190

Rysunek 3: Tabela 1: Wyniki pomiarów dla płytki wykonanej ze szła oświetlonej niebieskim światłem.

4 Opracowanie wyników pomiarów

Średnia grubość pozorna dla płytki:

$$\bar{h} = \frac{\sum h_i}{n} = \frac{16,09}{9} = 1,788[mm]$$
 (1)

np. dla szkła oświetlonego światłem białym.

szkło: $\bar{h_1}=1,788[mm]$ pleksiglas: $\bar{h_2}=2,757[mm]$ szkło oświetlone niebieskim światłem: $\bar{h_3}=1,826[mm]$

Wartość współczynnika załamania n dla każdej płytki:

$$n = \frac{d}{h} = \frac{3,79}{1,788} = 2,12 \tag{2}$$

np. dla szkła oświetlonego światłem białym.

szkło: $n_1 = 2, 12$ pleksiglas: $n_2 = 1,759$

szkło oświetlone niebieskim światłem: $n_3 = 2,075$

Niepewność (typu B) wyznaczenia grubości płytki:

$$u(d) = \frac{\Delta d}{\sqrt{3}} = \frac{0.01}{\sqrt{3}} = 0.006[mm] \tag{3}$$

dla każdej z płytek: u(d) = 0.006[mm]

Niepewność typu A dla grubości pozornej:

$$u(h) = \sqrt{\frac{\sum (h_i - \bar{h})^2}{n(n-1)}} = \sqrt{\frac{0.018}{9*8}} = 0.016[mm]$$
(4)

np. dla szkła oświetlonego światłem białym.

szkło: $u(h_1)=0,016[mm]$ pleksiglas: $u(h_2)=0,049[mm]$ szkło oświetlone niebieskim światłem: $u(h_3)=0,022[mm]$

Niepewności złożona współczynnika załamania z prawa przenoszenia niepewności:

$$u(n) = \sqrt{\left[\frac{1}{\bar{h}}u(d)\right]^2 + \left[\frac{-d}{\bar{h}^2}u(h)\right]^2}$$
 (5)

względnie korzystając z wzoru wynikającego z prawa przenoszenia niepewności względnych:

$$\frac{u(n)}{n} = \sqrt{\left(\frac{u(d)}{d}\right)^2 + \left(\frac{u(h)}{\bar{h}}\right)^2} \tag{6}$$

$$u(n) = n\sqrt{\left(\frac{u(d)}{d}\right)^2 + \left(\frac{u(h)}{\bar{h}}\right)^2} = 2,12 \cdot \sqrt{\left(\frac{0,006}{3,79}\right)^2 + \left(\frac{0,016}{1,788}\right)^2} = 0,019$$
 (7)

np. dla szkła oświetlonego światłem białym.

```
szkło: u(n_1)=0,019[mm] pleksiglas: u(n_2)=0,031[mm] szkło oświetlone niebieskim światłem: u(n_3)=0,026[mm]
```

Materiał	Światło	n zmierzone	n tablicowe
Szkło	białe	2,12 +/- 0,019	
Pleksiglas	białe	1,76 +/- 0,031	1,49
Szkło	niebieskie	2,075 +/- 0,026	1,56

Rysunek 4: Tabela 4: Zestawienie wyników pomiarów z wartościami teoretycznymi.

5 Wnioski

5.1

Wyniki, które otrzymałyśmy nie są bliskie wartościom teoretycznym i nie leżą w granicach niepewności pomiarowych.

- \bullet dla szkła (oświetlonego światłem białym): 2,12 \pm 0,019
- \bullet dla pleksiglasu (oświetlonego światłem białym): 1,76 \pm 0,031
- \bullet dla szkła (oświetlonego światłem niebieskim): 2,075 \pm 0,026

5.2

Błędy pomiarowe mogły wynikać z czynnika ludzkiego - subiektywne odczytanie ostrości obrazu na mikoskopie uwarunkowane zdolnością skupiającą oka, oraz z niedokładności konstrukcji użytych sprzętów.

5.3

Problemami przy wykonaniu zadania było mierzenie "wymęczoną przez lata użytkowania" śrubą mikrometryczną szerokości płytek, co przyznał sam prowadzący. Również "krzyżyki" na płytkach były "rozmazane" przez co ciężko było ustawić odpowiednią ostrość oraz zczytać pomiary.