Лабораторная работа №5 Агрегатные функции

1. Цель работы

Изучить агрегатные функции и получить опыт работы с ними.

2. Теоретические сведения 2.1 Агрегатные функции

Почти каждая из функций имеет стандартный синтаксис:

<функция>([ALL | DISTINCT] <выражение>). Указанные параметры внутри квадратных скобок являются необязательными. Выражение может содержать столбец таблицы, константу, переменную, выражение и т.д.

- Функция AVG используется для получения среднего значения;
- Функция СОUNT используется для подсчета значений не равных NULL. Если вместо выражения указать звездочку (*) функция вернет количество строк в таблице:
- Функция LIST предназначена для объединения в строку элементов выборки, т.е. указав столбец в параметры данной функции, он выведет все значения в одной строке. Функция LIST имеет дополнительный параметр разделитель и имеет синтаксис: LIST([ALL | DISTINCT] <выражение> [, разделитель]);
- Функции MIN и MAX используются для получения минимального или максимального значения из выборки. При применении на строковые значения вернут результат в соответствии с сортировкой COLLATE. MIN вернет первую строку, MAX последнюю.
 - Функция SUM применяется, когда необходимо узнать сумму выборки.

В случае если выборка состоит из одних NULL агрегатная функция вернет значение NULL.

2.2 Параметры и операторы агрегатных функций

Агрегатные функции предназначены для вычисления на наборе значений и возвращают результат. При использовании одной агрегатной функции результатом будет всего одна ячейка. Исключая функцию СОUNT, агрегатные функции не учитывают значение NULL. У каждой агрегатной функции есть необязательный параметр, указывающий на использование экземпляров значения: [5]

- ALL при его использовании агрегатная функция будет применима ко всем значениям (является параметром по умолчанию).
- DISTINCT параметр, указывающий на использование только уникальных значений. При его использовании будут игнорироваться все значения что уже были использованы вне зависимости от количества повторений.

Агрегатные функции часто используется совместно с предложением GROUP BY. Оператор GROUP BY используется для объединения результатов выборки по одному или нескольким столбцам.

Таблица 1 **Таблица PROD. Стоимость продуктов в магазинах**

NAME_PROD	NAME_SHOP	COST
Молоко	Пятерочка	45
Хлеб	Магнит	23
Морковь	Пятерочка	11
Молоко	Магнит	42
Морковь	Магнит	13
Хлеб	Пятерочка	27

Пример:

Используем агрегатную функцию SUM, описанную ниже, и применим оператор ${\tt GROUP\ BY:}$

SELECT NAME_PROD, SUM(COST) FROM PROD GROUP BY NAME_PROD

Результатом данного запроса будет следующая таблица:

Результат запроса с агрегатной функцией sum

Таблица 2

NAME_PROD	SUM(COST)
Молоко	87
Хлеб	50
Морковь	24

В случае если необходимо применить фильтрацию к результату агрегатной функции используется оператор HAVING. Он аналогичен оператору WHERE, за исключением того, что применяется к агрегатной функции после использования GROUP BY.

Если добавить оператор HAVING с условием чтобы вывел результат функции SUM>30, получим следующие запрос и результат:

SELECT NAME_PROD, SUM(COST) FROM PROD GROUP BY NAME_PROD HAVING SUM(COST)>30

Таблица 3.3 Результат запроса с агрегатной функцией sum с использованием наving

NAME_P	ROD	SUM(COST)
Молоко		87
Хлеб		50

3. Задание на лабораторную работу

В соответствии со своим вариантом выполнить задания с использованием указанных агрегирующих функций. Для каждого задания необходимо реализовать отдельную кнопку-подпрограмму.

Вариант 1

Функция AVG

- 1. Найти среднюю оценку для всех студентов.
- 2. Найти среднее кол-во часов для заданной дисциплины.

Функция COUNT

- 1. Подсчитать количество студентов на заданном курсе.
- 2. Подсчитать количество студентов с указанной оценкой.

Функция LIST

- 1. Вывести список имён всех университетов.
- 2. Вывести список всех проставленных оценок по убыванию.

Функция МАХ

- 1. Вывести максимальную оценку у указанного студента
- 2. Вывести фамилии студентов с максимальной оценкой.

Функция MIN

- 1. Вывести наименование университета с минимальным рейтингом.
- 2. Вывести фамилии студентов с минимальной оценкой.

Функция SUM

- 1. Вывести сумму рейтингов всех университетов.
- 2. Вывести сумму рейтингов университетов заданного города

Вариант 2

Функция AVG

- 1. Найти среднюю оценку для всех студентов.
- 2. Найти среднюю стипендию студентов заданного курса

Функция COUNT

- 1. Количество городов студентов, из которых они приехали.
- 2. Количество университетов из заданного города.

Функция LIST

- 1. Список университетов, сгруппированный по городу и названию
- 2. Вывести список студентов из заданного университета.

Функция МАХ

- 1. Найти университет с наибольшим рейтингом.
- 2. Вывести студентов из университетов с максимальным рейтингом.

Функция MIN

- 1. Найти имена студентов с младшего курса, вывести без повторений.
- 2. Найти наименьший идентификатор студентов. Вывести имя этого студента и университет, в котором он обучается.

Функция SUM

- 1. Вывести сумму рейтингов всех университетов.
- 2. Вывести сумму рейтингов университетов заданного города

Вариант 3

Функция AVG

- 1. Найти средний рейтинг университетов.
- 2. Найти средний курс студентов из заданного города.

Функция COUNT

- 1. Найти количество студентов.
- 2. Найти количество студентов из университета с рейтингом выше введенного.

Функция LIST

- 1. Вывести список студентов из университета с максимальным рейтингом.
- 2. Вывести список оценок заданного студента.

Функция МАХ

- 1. Найти максимальную оценку заданного студента.
- 2. Найти максимальный рейтинг университета из заданного города.

Функция MIN

- 1. Найти минимальный курс для студентов из заданного города.
- 2. Вывести студентов с самого младшего курса.

Функция SUM

- 1. Вывести сумму оценок заданного студента.
- 2. Сумма оценок студентов из университета с минимальным рейтингом.

Вариант 4

Функция AVG

- 1. Средняя стипендия студентов из заданного города.
- 2. Средний рейтинг университетов из города, где учится заданный студент.

Функция COUNT

- 1. Общее количество университетов.
- 2. Количество студентов из заданного университета.

Функция LIST

- 1. Список фамилий студентов без повторений.
- 2. Список фамилий студентов с заданного университета.

Функция МАХ

- 1. Вывести студентов с максимальной оценкой.
- 2. Подсчитать количество студентов с максимальной оценкой.

Функция MIN

- 1. Вывести название университета с минимальным рейтингом и город, в котором он расположен.
 - 2. Вывести всех студентов университета с минимальным рейтингом.

Функция SUM

- 1. Вывести сумму рейтингов университетов.
- 2. Вывести сумму оценок по заданному университету.

Вариант 5

Функция AVG

- 1. Найти среднее для стипендии студентов из заданного города.
- 2. Найти среднюю оценку для заданного студента.

Функция COUNT

1. Найти количество студентов.

2. Подсчитать количество дисциплин, по которым заданный студент получил оценки.

Функция LIST

- 1. Вывести список фамилий и городов студентов; список сгруппирован по городам.
 - 2. Вывесим список фамилий и имён студентов с заданного курса.

Функция МАХ

- 1. По таблице студентов найти студентов с наибольшего курса.
- 2. По таблице оценок найти студентов с наибольшей оценкой.

Функция MIN

- 1. Найти университет с наименьшим рейтингом.
- 2. Вывести список студентов самого младшего курса.

Функция SUM

- 1. Найти сумму выплачиваемых стипендий студентов из заданного города.
 - 2. Найти сумму оценок студента с заданной фамилией.

Вариант 6

Функция AVG

- 1. Вывести среднею оценку студентов.
- 2. Вывести среднею оценку для заданного университета.

Функция COUNT

- 1. Общее количество студентов.
- 2. Количество студентов с заданной оценкой из заданного города.

Функция LIST

- 1. Вывести список университетов из заданного города.
- 2. Вывести список дисциплин указанного преподавателя.

Функция МАХ

- 1. Вывести наименование университета с максимальным рейтингом.
- 2. Найти максимальное значение идентификатора студента и все его оценки.

Функция MIN

- 1. Найти количество студентов с минимальной оценкой.
- 2. Найти минимальную оценку у заданного студента.

Функция SUM

- 1. Найти сумму рейтингов университетов.
- 2. Вывести студентов и сумму их оценок.

Вариант 7

Функция AVG

- 1. Вывести среднее значение идентификаторов для студентов.
- 2. Вывести среднее значение оценок по указанной дисциплине.

Функция COUNT

- 1. Вывести общее количество дисциплин.
- 2. Вывести количество студентов с заданной оценкой.

Функция LIST

1. Вывести список дисциплин.

2. Вывести список фамилий студентов с максимальной оценкой.

Функция МАХ

- 1. Вывести университет с максимальным рейтингом.
- 2. Вывести фамилию студента из заданного с максимальным идентификатором.

Функция MIN

- 1. Вывести минимальное количество часов из таблицы дисциплин.
- 2. Вывести дисциплины с самого младшего семестра.

Функция SUM

- 1. Вывести сумму рейтингов университетов.
- 2. Вывести сумму стипендий студентов из заданного города.

Вариант 8

Функция AVG

- 1. Вывести среднею стипендию студентов.
- 2. Вывести средний рейтинг университетов из заданного города.

Функция COUNT

- 1. Общее количество университетов.
- 2. Количество университетов с рейтингом выше среднего.

Функция LIST

- 1. Вывести список имён всех университетов, разделенных символом "|"
- 2. Вывести список студентов из заданного университета.

Функция МАХ

- 1. Вывести наименование университета с максимальным рейтингом.
- 2. Вывести дисциплины с самого старшего семестра.

Функция MIN

- 1. Вывести название университета с минимальным рейтингом и город, в котором он расположен.
 - 2. Вывести студентов с наименьшей стипендией.

Функция SUM

- 1. Вывести сумму рейтингов университетов.
- 2. Вывести сумму оценок по заданному университету.

Вариант 9

Функция AVG

- 1. Найти среднюю оценку для всех студентов.
- 2. Вывести среднее значение идентификаторов для студентов из Москвы.

Функция COUNT

- 1. Общее количество студентов из введенного города.
- 2. Вывести общее количество экзаменов у заданного студента.

Функция LIST

- 1. Вывести список университетов из заданного города.
- 2. Вывести список дисциплин указанного преподавателя.

Функция МАХ

- 1. Найти университет с наибольшим рейтингом.
- 2. Вывести студентов из университетов с максимальным рейтингом.

Функция MIN

- 1. Вывести минимальное количество часов из таблицы дисциплин и название дисциплины с минимальным количеством часов.
 - 2. Вывести наименование университета с минимальным рейтингом.

Функция SUM

- 1. Найти сумму рейтингов университетов.
- 2. Вывести сумму стипендий студентов.

Вариант 10

Функция AVG

- 1. Найти средний курс всех студентов.
- 2. Вывести среднею оценку для заданного студента.

Функция COUNT

- 1. Подсчитать количество оценок «5» у заданного студента.
- 2. Подсчитать количество студентов с максимальной оценкой.

Функция LIST

- 1. Вывести список всех университетов.
- 2. Вывести список всех студентов с максимальной оценкой.

Функция МАХ

- 1. Найти университет с наибольшим рейтингом.
- 2. Найти максимальное значение идентификатора студента и все его оценки.

Функция MIN

- 1. Вывести фамилии студентов с минимально оценкой.
- 2. Найти имена студентов с младшего курса, вывести без повторений.

Функция SUM

- 1. Вывести сумму рейтингов университетов из указанного города.
- 2. Найти сумму оценок студента с заданной фамилией.

Вариант 11

Функция AVG

- 1. Найти средний курс всех студентов из заданного города.
- 2. Вывести среднею оценку для заданного студента.

Функция COUNT

- 1. Общее количество университетов.
- 2. Общее количество студентов из введенного города.

Функция LIST

- 1. Вывести список имён всех студентов, разделенных символом "|", без повторений.
 - 2. Вывести список всех университетов.

Функция МАХ

- 1. Вывести наименование и город университета с максимальным рейтингом.
 - 2. Вывести максимальную оценку для заданного студента.

Функция MIN

- 1. Вывести дисциплины с самого младшего семестра.
- 2. Найти минимальное значение идентификатора студента и все его оценки.

Функция SUM

- 1. Вывести сумму стипендий студентов.
- 2. Сумма оценок студентов из университета с минимальным рейтингом.

Вариант 12

Функция AVG

- 1. Найти среднее для стипендии студентов из заданного университета.
- 2. Найти среднюю оценку для заданного студента.

Функция COUNT

- 1. Найти общее количество студентов из заданного университета.
- 2. Общее количество студентов из введенного города.

Функция LIST

- 1. Получить список всех студентов из заданного университета.
- 2. Получить список всех университетов.

Функция МАХ

- 1. Найти фамилии студентов со старшего курса, вывести без повторений.
- 2. Вывести максимальную оценку для заданного студента.

Функция MIN

- 1. Вывести фамилии студентов с минимальной оценкой.
- 2. Найти имена студентов с младшего курса, вывести без повторений.

Функция SUM

- 1. Вывести сумму рейтингов университетов из указанного города.
- 2. Найти сумму оценок студентов из заданного университета.

Вариант 13

Функция AVG

- 1. Найти среднюю оценку для всех студентов.
- 2. Найти среднее кол-во часов для заданной дисциплины.

Функция COUNT

- 1. Найти общее количество студентов из заданного университета.
- 2. Общее количество студентов с заданной оценкой.

Функция LIST

- 1. Вывести список имён всех студентов, разделенных символом "+|", без повторений.
 - 2. Вывести список всех университетов из заданного города.

Функция МАХ

- 1. Вывести наименование университета с максимальным рейтингом.
- 2. Вывести дисциплины с самого старшего семестра в алфавитном порядке по убыванию.

Функция MIN

- 1. Найти имена студентов с младшего курса, вывести без повторений.
- 2. Найти наименьший идентификатор студентов. Вывести имя этого студента и университет, в котором он обучается.

Функция SUM

- 1. Вывести сумму рейтингов университетов из заданного города.
- 2. Вывести сумму стипендий студентов. Суммироваться должны стипендии, если они больше заданного значения.

Вариант 14

Функция AVG

- 1. Вывести среднее значение идентификаторов для студентов из заданного города.
 - 2. Вывести среднее значение оценок по указанной дисциплине.

Функция COUNT

- 1. Общее количество университетов с рейтингом ниже заданного значения.
 - 2. Общее количество студентов из введенного города.

Функция LIST

- 1. Вывести список имён всех студентов, разделенных символом "+|", без повторений.
 - 2. Вывести список всех университетов в алфавитном порядке.

Функция МАХ

- 1. Найти фамилии студентов со старшего курса, вывести без повторений.
- 2. Найти минимальную оценку у заданного студента.

Функция MIN

- 1. Вывести название университета с минимальным рейтингом и город, в котором он расположен.
 - 2. Вывести всех студентов университета с минимальным рейтингом. Функция SUM
 - 1. Вывести сумму оценок всех студентов из заданного города.
 - 2. Вывести сумму рейтингов университетов заданного города.

Приложение

Запросы выполняются к данным таблицам

Student (Студент)

STUDENT ID	SURNAME	NAME	STIPEND	KURS	CITY	BIRTHDAY	UNIV_ID
1	Иванов	Иван	1500	1	Орел	3/12/1999	10
3	Петров	Петр	2000	3	Курск	1/12/2001	10
6	Сидоров	Вадим	1500	4	Москва	7/06/2002	22
10	Кузнецов	Борис	0	2	Брянск	8/12/1999	10
12	Зайцева	Ольга	2500	2	Липецк	1/05/2002	10
16	Зуева	Нина	3000	2	Москва	1/05/2002	22
17	Наумов	Денис	0	3	Нижний новгород	3/10/2001	14
265	Павлов	Андрей	0	3	Воронеж	5/12/2002	10
32	Котов	Павел	0	5	Белгород	NULL	14
654	Норкин	Артем	1100	3	Воронеж	1/12/2001	10
276	Петров	Антон	800	4	NULL	5/08/2002	22
55	Белкин	Вадим	2500	5	Воронеж	NULL	10

Рис. 1. Таблица «Студент»

Lecturer (Преподаватель)

LECTURER ID	SURNAME	NAME	CITY	UNIV ID
24	Колесников	Борис	Воронеж	10
46	Никонов	Иван	Воронеж	10
74	Лагутин	Павел	Москва	22
108	Струков	Николай	Москва	22
55	Бурунов	Виктор	Иванович	15
276	Николаев	Виктор	Воронеж	10
300	Курилов	Игорь	Муром	32
328	Сорокин	Андрей	Орел	10

Рис. 2. Таблица «Преподаватель»

Subject (Предмет обучения)

SUBJ ID	SUBJ NAME	HOUR	SEMESTER
10	Информатика	56	1
22	Физика	34	1
43	Математика	56	2
56	История	34	4
94	Английский	56	3
73	Физкультура	34	5
70	Проектирование	70	3
5	Программирование	20	4
6	Социология	45	5

Рис. 3. Таблица «Предмет обучения»

University (Университеты)

UNIV_ID	UNIV_NAME	RATING	CITY
22	МГУ	606	Москва
10	ВГУ	310	Воронеж
11	НГУ	345	Новосибирск
32	РГУ	416	Ростов
14	БГУ	326	Белгород
15	ТГУ	368	Томск
12	МИГУ	202	Курск
18	ВГМА	327	Воронеж
33	ВлГУ	620	Владимир

Рис. 4. Таблица «Университеты»

EXAM_MARKS (Экзаменационные оценки)

	•		<u> </u>	
EXAM_ID	STUDENT_ID	SUBJ_ID	MARK	EXAM_DATE
145	12	10	5	12/01/2010
34	32	10	4	23/01/2010
75	55	10	5	05/01/2008
70	17	5	2	10/01/2008
238	12	22	3	17/06/2007
639	55	22	NULL	22/06/2011
43	6	22	4	20/01/2011
140	16	5	NULL	20/01/2010
42	32	94	3	12/12/2010

Рис. 5. Таблица «Экзаменационные оценки»

Subj_Lect (Учебные дисциплины преподавателей)

LECTURER_JD	SUBJ_ID
24	24
46	46
74	74
108	108
276	276
328	328

Рис. 6. Таблица «Учебные дисциплины преподавателей»