

Deep Learning

Mohammad Reza Mohammadi 2021

Recurrent Neural Networks

$$h_{3} = f_{W}(h_{2}, x_{3})$$

$$= f_{W}(f_{W}(h_{1}, x_{2}), x_{3})$$

$$= f_{W}(f_{W}(h_{0}, x_{1}), x_{2}), x_{3})$$

$$= g^{(3)}(x_{1}, x_{2}, x_{3})$$

$$y_{1}$$

$$y_{2}$$

$$h_{3}$$

$$y_{4}$$

$$y_{5}$$

$$h_{1}$$

$$h_{2}$$

$$h_{2}$$

$$h_{3}$$

$$h_{3}$$

$$h_{3}$$

$$h_{4}$$

$$h_{1}$$

$$h_{2}$$

$$h_{2}$$

$$h_{3}$$

$$h_{3}$$

$$h_{3}$$

$$h_{4}$$

$$h_{5}$$

$$h_{1}$$

$$h_{2}$$

$$h_{2}$$

$$h_{3}$$

$$h_{3}$$

$$h_{3}$$

$$h_{4}$$

$$h_{5}$$

$$h_{5}$$

$$h_{7}$$

$$h_{1}$$

$$h_{2}$$

$$h_{2}$$

$$h_{3}$$

$$h_{3}$$

$$h_{3}$$

$$h_{3}$$

$$h_{3}$$

$$h_{4}$$

$$h_{5}$$

$$h_{5}$$

$$h_{6}$$

$$h_{7}$$

$$h_{1}$$

$$h_{2}$$

$$h_{3}$$

$$h_{2}$$

$$h_{3}$$

$$h_{3}$$

$$h_{4}$$

$$h_{5}$$

$$h_{5}$$

$$h_{7}$$

$$h_{8}$$

$$h_{9}$$

$$h_{1}$$

$$h_{2}$$

$$h_{3}$$

$$h_{3}$$

$$h_{4}$$

$$h_{5}$$

$$h_{5}$$

$$h_{7}$$

$$h_{8}$$

$$h_{8}$$

$$h_{9}$$

$$h_{9}$$

$$h_{1}$$

$$h_{2}$$

$$h_{3}$$

$$h_{3}$$

$$h_{4}$$

$$h_{5}$$

$$h_{5}$$

$$h_{7}$$

$$h_{8}$$

$$h_{8}$$

$$h_{8}$$

$$h_{9}$$

$$h_{9}$$

$$h_{9}$$

$$h_{1}$$

$$h_{2}$$

$$h_{3}$$

$$h_{4}$$

$$h_{5}$$

$$h_{5}$$

$$h_{7}$$

$$h_{8}$$

$$h_{8}$$

$$h_{9}$$

$$h$$

Working with text data

- Text can be understood as either a sequence of characters or a sequence of words
- Deep learning for natural-language processing is pattern recognition applied to words, sentences, and paragraphs, in much the same way that deep learning for computer vision is pattern recognition applied to pixels
- Applications including document classification, sentiment analysis, author identification, and even question-answering (QA)

Text processing

- Like all other neural networks, deep-learning models don't take as input raw text: they only work with numeric tensors
- Vectorizing text:
 - Segment text into words, and transform each word into a vector
 - Segment text into characters, and transform each character into a vector
 - Extract n-grams of words or characters, and transform each n-gram into a vector
 - N-grams are overlapping groups of multiple consecutive words or characters

Tokenization

 The different units into which you can break down text (words, characters, or n-grams) are called tokens, and breaking text into such tokens is called tokenization

 All text-vectorization processes consist of applying some tokenization scheme and then associating numeric vectors with the generated tokens

One-hot encoding

Most basic way to turn a token into a vector

Associating a unique integer index with every word and then turning this

integer index i into a binary vector of size N (size of vocabulary)

• The vector is all zeros except for the i^{th} entry, which is 1

One-hot encoding can be done at the character level

One-hot encoding

Listing 6.3 Using Keras for word-level one-hot encoding

```
Creates a tokenizer, configured
                                                                     to only take into account the
                                                                      1,000 most common words
           from keras.preprocessing.text import Tokenizer
           samples = ['The cat sat on the mat.', 'The dog ate my homework.']
           tokenizer = Tokenizer(num words=1000)
           tokenizer.fit_on_texts(samples)
Builds
                                                                               Turns strings into lists
                                                                               of integer indices
  the
           sequences = tokenizer.texts_to_sequences(samples)
word
        -> one_hot_results = tokenizer.texts_to_matrix(samples, mode='binary')
index
           word index = tokenizer.word index
           print('Found %s unique tokens.' % len(word_index))
                                                                           How you can recover
                                                                           the word index that
        You could also directly get the one-hot
                                                                           was computed
        binary representations. Vectorization
        modes other than one-hot encoding
        are supported by this tokenizer.
```

Word embeddings

- Word embeddings pack more information into far fewer dimensions
- They can be pre-trained on large amounts of text training data

Word embeddings:

- Dense
- Lower-dimensional
- Learned from data

One-hot word vectors:

- Sparse
- High-dimensional
- Hardcoded

Word embeddings

	Man (5391)	Woman (9853)	King (4914)	Queen (7157)	Apple (456)	Orange (6257)
1 Gerder	-1		-0.95	0.97	0.00	0.01
300 Royal	0.01	0.62	0.93	0.95	-0.01	0.00
Age	0.03	0.02	0.7	0.69	0.03	-0.02
Food :: size cost	6.09	0.01	0.02	0.01	0.95	0.97
I alive verb	C 5391	e 9853				Andrev

Word embeddings

- There are two ways to obtain word embeddings:
 - Learn word embeddings jointly with the main task
 - Start with random word vectors
 - Load word embeddings that were precomputed using a different machine-learning task
 - Called pretrained word embeddings

Word embeddings:

- Dense
- Lower-dimensional
- Learned from data

One-hot word vectors:

- Sparse
- High-dimensional
- Hardcoded

Learning word embeddings

- Associate a random vector to each word
- The problem with this approach is that the resulting embedding space has no structure
 - For instance, the words accurate and exact may end up with completely different embeddings, even though they're interchangeable in most sentences
- The geometric relationships between word vectors should reflect the semantic relationships between these words
- Word embeddings are meant to map human language into a geometric space
- In a reasonable embedding space, you would expect synonyms to be embedded into similar word vectors

Learning word embeddings

- We expect the geometric distance between any two word vectors to relate to the semantic distance between the associated words
- We may want specific directions in the embedding space to be meaningful
- The same vector allows us to go from cat to tiger and from dog to wolf
 - from pet to wild animal
- The same vector allows us to go from dog to cat and from wolf to tiger
 - from canine to feline

Learning word embeddings

- A good word-embedding space depends heavily on your task
- The perfect word-embedding space for an English-language movie-review sentiment analysis model may look different from the perfect embedding space for an English language legal-document-classification model, because the importance of certain semantic relationships varies from task to task
- Reasonable to learn a new embedding space with every new task

Embedding layer

- A dictionary that maps integer indices (which stand for specific words) to dense vectors
- Takes as input a 2D tensor of integers, of shape (samples, sequence_length)
 - (32, 10): batch of 32 sequences of length 10
- Returns a 3D floating-point tensor
 - (samples, sequence_length, embedding_dimensionality)

Listing 6.5 Instantiating an Embedding layer

from keras.layers import Embedding
embedding_layer = Embedding(1000, 64)

The Embedding layer takes at least two arguments: the number of possible tokens (here, 1,000: 1 + maximum word index) and the dimensionality of the embeddings

(here, 64).

Embedding layer

- When we instantiate an Embedding layer, its weights (its internal dictionary of token vectors) are initially random, just as with any other layer
- During training, these word vectors are gradually adjusted via backpropagation, structuring the space into something the downstream model can exploit

Listing 6.5 Instantiating an Embedding layer

from keras.layers import Embedding

embedding_layer = Embedding(1000, 64)

The Embedding layer takes at least two arguments: the number of possible tokens (here, 1,000: 1 + maximum word index) and the dimensionality of the embeddings

(here, 64).

Pretrained word embeddings

- Similar in concept to pretrained ConvNets
 - We don't have enough data available to learn truly powerful features on our own, but we expect the features that we need to be fairly generic
- Instead of learning word embeddings jointly with our problem, we can load embedding vectors from a precomputed embedding space
- Usually computed using word-occurrence statistics using a variety of techniques, some involving neural networks, others not
- <u>Word2vec</u> and <u>GloVe</u> are two of the most famous and successful wordembedding schemes

Recurrent Neural Networks

$$h_{3} = f_{W}(h_{2}, x_{3})$$

$$= f_{W}(f_{W}(h_{1}, x_{2}), x_{3})$$

$$= f_{W}(f_{W}(h_{0}, x_{1}), x_{2}), x_{3})$$

$$= g^{(3)}(x_{1}, x_{2}, x_{3})$$

$$y_{1}$$

$$y_{2}$$

$$h_{3}$$

$$y_{4}$$

$$y_{5}$$

$$h_{1}$$

$$h_{2}$$

$$h_{2}$$

$$h_{3}$$

$$h_{3}$$

$$h_{3}$$

$$h_{4}$$

$$h_{1}$$

$$h_{2}$$

$$h_{2}$$

$$h_{3}$$

$$h_{3}$$

$$h_{3}$$

$$h_{4}$$

$$h_{5}$$

$$h_{1}$$

$$h_{2}$$

$$h_{2}$$

$$h_{3}$$

$$h_{3}$$

$$h_{3}$$

$$h_{4}$$

$$h_{5}$$

$$h_{5}$$

$$h_{7}$$

$$h_{1}$$

$$h_{2}$$

$$h_{2}$$

$$h_{3}$$

$$h_{3}$$

$$h_{3}$$

$$h_{3}$$

$$h_{3}$$

$$h_{4}$$

$$h_{5}$$

$$h_{5}$$

$$h_{6}$$

$$h_{7}$$

$$h_{1}$$

$$h_{2}$$

$$h_{3}$$

$$h_{2}$$

$$h_{3}$$

$$h_{3}$$

$$h_{4}$$

$$h_{5}$$

$$h_{5}$$

$$h_{7}$$

$$h_{8}$$

$$h_{9}$$

$$h_{1}$$

$$h_{2}$$

$$h_{3}$$

$$h_{3}$$

$$h_{4}$$

$$h_{5}$$

$$h_{5}$$

$$h_{7}$$

$$h_{8}$$

$$h_{8}$$

$$h_{9}$$

$$h_{9}$$

$$h_{1}$$

$$h_{2}$$

$$h_{3}$$

$$h_{3}$$

$$h_{4}$$

$$h_{5}$$

$$h_{5}$$

$$h_{7}$$

$$h_{8}$$

$$h_{8}$$

$$h_{8}$$

$$h_{9}$$

$$h_{9}$$

$$h_{9}$$

$$h_{1}$$

$$h_{2}$$

$$h_{3}$$

$$h_{4}$$

$$h_{5}$$

$$h_{5}$$

$$h_{7}$$

$$h_{8}$$

$$h_{8}$$

$$h_{9}$$

$$h$$

Recurrent Neural Networks

- ullet We can process a sequence of vectors x by applying a recurrence formula at every time step
- The same function and the same set of parameters are used at every time step

(Simple) RNN

- The state consists of a single "hidden" vector h
- Sometimes called a "Vanilla RNN"

$$h_t = f_W(h_{t-1}, x_t)$$

$$h_t = \tanh(W_{hh}h_{t-1} + W_{xh}x_t)$$

$$y_t = W_{hy}h_t$$

