Introduction to Statistical Data Science

October 4, 2018

1 Lecture 1

Basic Rules of Probability

Frequently we will say $p(x) \propto f(x)$ for some non-negative function f(x)

Then we can conclude that:

$$p(x) = \frac{f(x)}{\sum_{y} f(y)}$$

For joint distribution,

$$\sum_{x} p(x) = \sum_{x} \sum_{y} p(x, y) = 1$$

Independence

If p(x|y) = p(x) for all states of x and y, then the variables x and y are said to be independent as $x \perp y$.

If x and y are independent, then x and y are uncorrelated. However, in general, x and y are uncorrelated, then cannot conclude that x and y are independent.

Conditional Independence

$$\mathcal{X} \perp \!\!\! \perp \mathcal{Y} | \mathcal{Z}$$

$$p(\mathcal{X}, \mathcal{Y}|\mathcal{Z}) = p(\mathcal{X}|\mathcal{Z})p(\mathcal{Y}|\mathcal{Z})$$

and

$$p(\mathcal{X}|\mathcal{Y},\mathcal{Z}) = p(\mathcal{X}|\mathcal{Z})$$

Conditional independence does not imply marginal independence:

$$p(x,y) = \sum_{z} p(x|z)p(y|z)p(z) \neq \sum_{z} p(x|z)p(z) \sum_{z} p(y|z)p(z)$$