Deep Learning Topics: Special Connections, Encoder-Decoders, Transformers

Outline

Part I

Gate connection idea
Skip and Residual connections
Programing connections and Keras Model API
Encoder-Decoder (Autoencoder)
Exercise MNIST Autoencoder
Autoencoder with Stable Diffusion

Part II
 Attention Head and Transformers,

Recall: the logistic unit

Example: 1 input into 2 logistic units with these activations

If you add these 2 units into a final output unit what would the output function look like?

Example: 2 input into 2 logistic units with these activations

Example: 2 input into 2 logistic units with these activations

What if you multiply these?
What is the output function doing?

Example: 2 input into 2 logistic units with these activations

What if you multiply these?
For linear activation, what is the output function doing?

$$= \begin{cases} 0 & \text{if } X_1 < 0 \\ h(X_2) & \text{if } X_1 > 0 \end{cases}$$

X₁"gates" X₂ activation

2

A recurrent unit for sequence learning can be replaced by a gated unit

A recurrent unit for sequence learning can be replaced by a gated unit

A recurrent unit for sequence learning can be replaced by a gated unit

Use the gate to either keep previous output or update it with current input

'Gated Recurrent Unit' Cho, Bengio 2015

Redrawing the gate for two sets of hidden units

Input layer Hidden layer

Use softmax for G(X) to get gating weights

Recall: softmax normalizes outputs into probability weights

Scaled Dot-Product Attention (very rough summary)

"Attention" mechanism in language transformers use a softmax gate

The gate is applied to possible Values (V) for decoding

Q,K,V depend on input

Vaswani, et al. 2017 Attention Is All You Need (for Transformers)

Recall the Multilayer Perceptron (MLP)

Input layer Hidden layer Output layer

To help the MLP learn directly from input carry input forward

Input layer Hidden layer Output layer

Concatenate input with hidden units into new layer

Can be done for any (or all) previous layer and skip any number of layers

Recall: CNN architecture for MNIST classification

ENCODER

more feature maps & downsampling : 'encoding' features

Consider: CNN architecture for MNIST classification

ENCODER

more feature maps & downsampling : 'encoding' features

ENCODER

ENCODER DECODER

ENCODER DECODER

ENCODER DECODER

NOTE the 28x28x64 encoded maps have to be skipped ahead to where the 28x28x64 decoding maps are – which axis is concatenated?

Image Encoder-Decoder is a "UNET" architecture

pause

Consider: Can we keep adding deep layers?

Given some deep network, should I add another layer? What should a new layer learn?

Consider: Can we keep adding deep layers?

If H1(X) is good then this new layer could be unnecessary,

Eg H2(X) should be just H1(X)

Skip with addition makes a 'residual' connection

Make it easy for next layer to learn nothing - e.g. use F(X)=H2(X)+H1(X) so that H2(X)=F(X)-H1(X). The H2() function learned is a residual function

"Resnet" residual connections help deeper learning

Deep Residual Learning, He et.al, 2015

Summary: useful connections for architectures, and the intuitions

Softmax for gating

Skip connections for feature reuse

UNET, also feedforward nets..

Residual connections help deeper learning

Resnet, large image classification

language transformer nets

Recurrent nets,

Programing connections and Keras Model API

Keras: Sequential API VS Functional API

A sequence of layers: the inputs are assumed to be in order

Keras: Sequential API VS Functional API

A sequence of layers: the inputs are assumed to be in order

A sequence of functions: Input layer(s) are specified

Keras: Sequential API VS Functional API

```
#specify the neural network model and learning parameters
my_model = tf.keras.models.Sequential([
                   tf.keras.layers.Flatten(input shape=(28, 28)),
                   tf.keras.layers.Dense(32,activation='relu'),
                   tf.keras.layers.Dense(10,activation='softmax')])
mv model.summarv()
```

A sequence of layers: the inputs are assumed to be in order

A sequence of functions: Input layer(s) are specified #specify the neural network model and learning parameters

```
inputs
                    = tf.keras.layers.Input(shape=(28, 28, 1,))
                   = tf.keras.layers.Flatten()(inputs)
inputs flattened
hidden layer
                    = tf.keras.layers.Dense(32,activation='relu')(inputs_flattened)
output layer
                    = tf.keras.layers.Dense(10,activation='softmax')(hidden_layer)
my_model = tf.keras.Model(inputs,output_layer)
my_model.summary()
```

The Model() function figures out the full path(s) to connect the input(s) to output(s)

Exercise

- MNIST autoencoder, reconstruct digits from noisy inputs
- Add skip connections with concatenation

Note: make sure you see how the outputs from encoding layers are matched up to inputs for decoding layers!

14x14 encoding feature maps should be concatenated with 14x14 decoding maps

Review outputs to see improvements

\$ jupyter-gpu-shared-tensorflow

In jupyter notebook session open the MNIST_Autoencoder notebook \

Follow instructions in the notebook

 $https://oxford-liftoff-munchkin.expanse-user-content.sdsc.edu/notebooks/CIML22_DL/CIML22_DL_MNIST_INTRO INTRO IN$

Quick overview of code

```
def encoder(inputs):

| Defines the encoder with two Conv2D and max pooling layers.''
| Conv_1 = tf.keras.layers.Conv2D(filters=64, kernel_size=(3,3), activation='relu', padding='same')(inputs)
| #padding same produces same output size
| Way neel 1 = tf keras layers MayDeeling2D(neel size=(3,3))(conv_1) #may neeling does the downsampling | With convolutions etc...
```

```
M def decoder(inputs, enc conv1,enc conv2):
    '''Defines the decoder path to upsample back to the original image size.'''
    #Notice that padding = same keeps the output same size as input

conv_1 = tf.keras.layers.Conv2D(filters=128, kernel_size=(3,3), activation='relu', padding=' with up sampling up_sample_1 = tf.keras.layers.UpSampling2D(size=(2,2))(conv_1)

(deconvolutions)
    etc...
```

```
def encoder(inputs):
     perines the encoder with two Conv2D and max pooling layers.'''
   conv_1 = tf.keras.layers.Conv2D(filters=64, kernel_size=(3,3), activation='relu', padding='same')(inputs)
                                                                  #padding same produces same output size
  max_pool_1 = tf.keras.layers.MaxPooling2D(pool_size=(2,2))(conv_1) #max pooling does the downsampling
   conv_2 = tf.keras.layers.Conv2D(filters=128, kernel_size=(3,3), activation='relu', padding='same')(max_pool_1)
  max_pool_2 = tf.keras.layers.MaxPooling2D(pool_size=(2,2))(conv_2)
                                                                                                        Return final output and
  return max_pool_2, conv_1, conv_2
                                                                                                        intermediate layer
                                                                                                        outputs,
def decoder(inputs, enc conv1,enc conv2):
    '''Defines the decoder path to upsample back to the original image size.'''
    #Notice that padding = same keeps the output same size as input
                 = tf.keras.layers.Conv2D(filters=128, kernel size=(3,3), activation='relu', padding='
    conv 1
    up sample 1 = tf.keras.layers.UpSampling2D(size=(2,2))(conv 1)
```

```
def encoder(inputs):
    perines the encoder with two Conv2D and max pooling layers.'''
 conv_1 = tf.keras.layers.Conv2D(filters=64, kernel_size=(3,3), activation='relu', padding='same')(inputs)
                                                              #padding same produces same output size
 max_pool_1 = tf.keras.layers.MaxPooling2D(pool_size=(2,2))(conv_1) #max pooling does the downsampling
 conv_2 = tf.keras.layers.Conv2D(filters=128, kernel_size=(3,3), activation='relu', padding='same')(max_pool_1)
 max_pool_2 = tf.keras.layers.MaxPooling2D(pool_size=(2,2))(conv_2)
                                                                                                  Return final output and
 return max_pool_2, conv_1, conv_2
                                                                                                  intermediate layer
                                                                                                  outputs,
def decoder(inputs, enc conv1,enc conv2):
   '''Defines the decoder path to upsample back to the original image size.
   #Notice that padding = same keeps the output same size as input
                                                                                                  and pass intermediate
               = tf.keras.layers.Conv2D(filters=128, kernel_size=(3,3), activation='relu', paddingayers on
   conv 1
   up sample 1 = tf.keras.layers.UpSampling2D(size=(2,2))(conv 1)
                                                                                                  then use it in
 #another optoin is transpose
                                                                                                  concatenation layer
 # up sample 1 = tf.keras.layers.Conv2DTranspose(128,kernel size=(2,2),strides=(2,2))(conv 1)
 # in a transpose convolutional layer,
   # ----->>>> before the conv 2 line add a
   # ----->>>> tf.keras.layers.concatenate statement to combine enc conv2 with decoding u
   # conv 2 = tf.keras.layers.Conv2D(filters=64, kernel size=(3,3), activation='relu', padding
   skip_concat_1 = tf.keras.layers.concatenate([up_sample_1, enc_conv2])
               = tf.keras.layers.Conv2D(filters=64, kernel size=(3,3), activation='relu', padding='s
   conv 2
                                      # ----->>> and change the input into conv 2
```


With out skip 20 epochs Loss 0.1664

With skip, 20 epochs loss 0.14

Are the numbers a little bit more reconstructed?

Autoencoding with Stable Diffusion

 Let's introduce the concepts and intuition behind stable diffusion In principle, our denoising autoencoder removed noise pixels and/or filled in number pixels

In principle, our denoising autoencoder removed noise pixels and/or filled in number pixels

What would would happen if we fed the denoised output back into the autoencoder?

In principle, our denoising autoencoder removed noise pixels and/or filled in number pixels

What would would happen if we fed the denoised output back into the autoencoder?

A: better reconstruction

B: all pixels would be removed

C: all pixels would be filled in

First step of denoising

first step of denoising

1 more step of denoising

Is it better?

First step of denoising

3 more steps of denoising

Frist step of denoising

3 more steps of denoising

Let's make this more stable, by training a network to just remove a little noise. It is like training to predict noise diffusion.

Stable Diffusion for Image Reconstruction

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. 2020.

Concept:

create a sequence of images with noise, t=1...T

Stable Diffusion for Image Reconstruction

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. 2020.

Concept:

create a sequence of images with noise, t=1...T

train the network to reconstruct image t-1 from image t

Note: this example is in pixel space, but it is often applied in embedding space

etc...

From Ho et al. 2020

Early denoising steps add overall structure Later denoising steps add more detail

Exercise

- MNIST stable diffusion, or incremental denoising
- Open and run the notebook
- Try changing T parameter (steps2use)

Set up the diffusion/incremental noise here. The steps2use is the T parameter

```
•[5]: # Either set up diffusion images or just addnoise

if 1:

dist2try ='norm' # use normal distribution for noise

mag2use = 1; #magnitude of noise, aka scale or standard deviation

steps2use = 10; #number of diffusion steps to mimic ⟨⟨⟨⟨⟨⟩⟩⟩

newN = X_train.shape[0]*(steps2use+1)
```


Sample output where T-1,T-2, are going down the columns

What would happen if the input was completely random?

end

