Reading Quiz Section 4.3

- 1. The range of a function $f: A \to B$ is (select all that apply):
 - (a) A subset of the domain.
- (b) A subset of the codomain.
- (c) Always equal to the codomain.
- (d) Also called the image of the function.

- (e) Equal to f(A).
- 2. Suppose $f:A\to B$ and $g:B\to C$ are functions. If $g\circ f$ is bijective, which of the following *must* be true?
 - (a) *f* is injective.

(b) *g* is injective.

(c) *f* is surjective.

- (d) *g* is surjective.
- 3. True or False: We can always make a function surjective by making its domain smaller.
- 4. True or False: If $A \subseteq B$, there is an injective function $f : A \to B$.

Practice Problems Section 4.3

- 1. (a) Explain why the 'rule' g: {all lines in the plane} $\to \mathbb{R}$ which sends a line ℓ to the slope of ℓ does *not* define a function.
 - Video Solution
 - (b) Let L be the set of all *non-vertical* lines in the plane. The rule $f: L \to \mathbb{R}$ sending ℓ to its slope is a well-defined function.
 - i. Find f(Z) where Z is the set of lines intersecting y = 2x + 5 at exactly one point. Video Solution
 - ii. Let $U = \{-2\}$. Describe the inverse image $f^{-1}(U)$. Video Solution
 - iii. Explain why f is not bijective. Find a subset $B \subseteq L$ so that $f : B \to \mathbb{R}$ is a bijection. Video Solution 1 Video Solution 2
- 2. Suppose $f: A \to B$ and $g: B \to C$ are functions. For each of the following, either find an example or explain why no such example exists.
 - (a) f surjective, g not surjective and $g \circ f$ surjective.
 - (b) f not surjective, g surjective and $g \circ f$ surjective.
 - (c) f surjective, g surjective and $g \circ f$ not surjective.
 - (d) f injective, g not injective and $g \circ f$ injective.
 - (e) f not injective, g injective and $g \circ f$ injective.
 - (f) f injective, g injective and $g \circ f$ not injective.

Video Solution (parts (a)-(c))

- 3. Suppose $f: A \to B$ is a function. Prove or disprove the following statements:
 - (a) Let *X* and *Y* be subsets of *A*. If $X \cap Y = \emptyset$ then $f(X) \cap f(Y) = \emptyset$.
 - (b) Let W and Z be subsets of B. If $W \cap Z = \emptyset$ then $f^{-1}(W) \cap f^{-1}(Z) = \emptyset$.

Video Solution