

#### 单元3.5 二元关系

第七章 二元关系 7.2 二元关系 7.3 关系的运算

讲义参考北京大学《离散数学》及电子科技大学《离散数学》讲义

## 内容提要

- n元关系
- 二元关系
- · A到B的二元关系
- · A上的二元关系
- 一些特殊关系
- 定义域、值域、域
- 关系的表示方法



- 关系理论历史悠久,与集合论、数理逻辑、 组合学、图论和布尔代数都有密切的联系。
- 关系是日常生活以及数学中的一个基本概念,如:兄弟关系,师生关系,位置关系, 大于关系,全等关系,包含关系等等。
- 关系理论广泛应用于数学领域及计算机领域:数据输入输出关系、以关系为核心的关系数据库、信息检索等。

#### n元关系

- n元关系: 其元素全是有序n元组的集合.
- 例1: F<sub>1</sub>={<a,b,c,d>,<1,2,3,4>, <物理,化学,生物,数学>},

F₁是4元关系. #

例2: F<sub>2</sub>={<a,b,c>,<α,β,γ>,
 <大李,小李,老李>}

F<sub>2</sub>是3元关系. #



## 二元关系

• 2元关系(关系): 元素全是有序对的集合.

• 例: R<sub>1</sub>={<1,2>,<α,β>,<a,b>} R<sub>1</sub>是2元关系. #

• 例: R<sub>2</sub>={<1,2>,<3,4>,<白菜,小猫>} R<sub>2</sub>是2元关系. #

• 例: A={<a,b>,<1,2>,a,α,1} 当a,α,1 不是有序对时, A不是关系. #

# 

- (1)  $R = \{ \langle x,y \rangle \mid x,y \in \mathbb{N}, x+y \langle 3 \}$ =  $\{ \langle 0,0 \rangle, \langle 0,1 \rangle, \langle 0,2 \rangle, \langle 1,0 \rangle, \langle 1,1 \rangle, \langle 2,0 \rangle \}$
- (2)  $C=\{\langle x,y\rangle \mid x,y\in R, x^2+y^2=1\}$ ,其中R代表实数集合, C是直角坐标平面上点的横、纵坐标之间的关系, C中的所有的点恰好构成坐标平面上的单位圆.
- (3) *R*={<*x*,*y*,*z*> | *x*,*y*,*z*∈*R*, *x*+2*y*+*z*=3}, *R*代表了空间直角坐标系中的一个平面.

#### 举例

| 员工号 | 姓名  | 年龄  | 性别  | 工资   |
|-----|-----|-----|-----|------|
| 301 | 张 林 | 50  | 男   | 1600 |
| 302 | 王晓云 | 43  | 女   | 1250 |
| 303 | 李鹏宇 | 47  | 男   | 1500 |
| 304 | 赵辉  | 21  | 男   | 900  |
| ••• | ••• | ••• | ••• | •••  |

5元组: <301,张林,50,男,1600>, <302,王晓云,43,女,1250>

#### 二元关系的记号

- 设F是二元关系,则
   <x,y>∈F ⇔ x与y具有F关系 ⇔ xFy
- 对比: xFy (中缀(infix)记号) F(x,y), Fxy (前缀(prefix)记号) <x,y>∈F, xyF (后缀(suffix)记号)
- 例如: 2<15 ⇔ <(2,15) ⇔ <2,15>∈<.

## A到B的二元关系

• A到B的二元关系: A×B的任意子集(含空集). R是A到B的二元关系

 $\Leftrightarrow R \subseteq A \times B \Leftrightarrow R \in P(A \times B)$ 

• 若|A|=m,|B|=n,则|A×B|=mn,故 |P(A×B)|=2<sup>mn</sup>

即A到B不同的二元关系共有2mn个

## A上的二元关系

- A上的二元关系: 是A×A的任意子集 R是A上的二元关系
  - $\Leftrightarrow R \subseteq A \times A \Leftrightarrow R \in P(A \times A)$
- 若|A|=m,则|A×A|=m²,故

 $|P(A \times A)| = 2^{m^2}$ 

即A上不同的二元关系共有 2<sup>m²</sup>个

• m=3?

#### A到B的二元关系举例

・设 A={ $a_1$ , $a_2$ }, B={b}, 则A到B的二元关系共有4个: R<sub>1</sub>= $\varnothing$ , R<sub>2</sub>={ $<a_1$ ,b>}, R<sub>3</sub>={ $<a_2$ ,b>}, R<sub>4</sub>={ $<a_1$ ,b>, $<a_2$ ,b>}. B到A的二元关系也有4个: R<sub>5</sub>= $\varnothing$ , R<sub>6</sub>={<b, $a_1>$ }, R<sub>7</sub>={<b, $a_2>$ }, R<sub>8</sub>={<b, $a_1>$ ,<b, $a_2>$ }. #

#### A上的二元关系(例1)

• 例1: 设 A={a<sub>1</sub>,a<sub>2</sub>},

则A上的二元关系共有16个:

$$R_1 = \emptyset$$
,

$$R_2 = \{ < a_1, a_1 > \},$$

$$R_3 = \{ \langle a_1, a_2 \rangle \},$$

$$R_4 = {< a_2, a_1 >},$$

$$R_5 = \{ \langle a_2, a_2 \rangle \},$$



## A上的二元关系(例1)

$$R_{6} = \{ \langle a_{1}, a_{1} \rangle, \langle a_{1}, a_{2} \rangle \},\$$
 $R_{7} = \{ \langle a_{1}, a_{1} \rangle, \langle a_{2}, a_{1} \rangle \},\$ 
 $R_{8} = \{ \langle a_{1}, a_{1} \rangle, \langle a_{2}, a_{2} \rangle \},\$ 
 $R_{9} = \{ \langle a_{1}, a_{2} \rangle, \langle a_{2}, a_{1} \rangle \},\$ 
 $R_{10} = \{ \langle a_{1}, a_{2} \rangle, \langle a_{2}, a_{2} \rangle \},\$ 
 $R_{11} = \{ \langle a_{2}, a_{1} \rangle, \langle a_{2}, a_{2} \rangle \},\$ 

## A上的二元关系(例1)



## A上的二元关系(例2)

· 例2: 设 B={b}, 则B上的二元关系共有2个:  $R_1 = \emptyset$ ,  $R_2 = \{ \langle b, b \rangle \}$ . #



#### 一些特殊关系

- 空关系
- 恒等关系
- 全域关系
- 整除关系
- 小于等于关系....
- 包含关系。
- 真包含关系



## 特殊关系

设A是任意集合,则可以定义A上的:

- 空关系: Ø
- 恒等关系: I<sub>A</sub>={<x,x>|x∈A}
- 全域关系:

 $E_{\Delta}$ =A×A={<x,y>|x∈A $\wedge$ y∈A}



## 特殊关系

设A⊆R,则可以定义A上的:

• 小于等于(less than or equal to)关系:

$$LE_A = \{ \langle x,y \rangle \mid x \in A \land y \in A \land x \leq y \}$$

• 小于(less than)关系,

$$L_A = \{ \langle x,y \rangle \mid x \in A \land y \in A \land x \langle y \}$$

- ・大于等于(greater than or equal to)关系
- 大于(great than)关系,...

#### 特殊关系

设A⊂Z+,则可以定义A上的:

• 整除关系:

$$D_{\Delta} = \{ \langle x, y \rangle \mid x \in A \land y \in A \land x \mid y \}$$

• 例: A={1,2,3,4,5,6}, 则

#### 特殊关系

设A为任意集合,则可以定义P(A)上的:

• 包含关系:

$$\subseteq_A$$
 =  $\{ \langle x,y \rangle \mid x \subseteq A \land y \subseteq A \land x \subseteq y \}$ 

• 真包含关系:

$$\subset_A = \{ \langle x,y \rangle \mid x \subseteq A \land y \subseteq A \land x \subseteq y \}$$



#### 举例

例如, $A=\{1,2\}$ ,则 ·  $E_A=\{<1,1>,<1,2>,<2,1>,<2,2>\}$ ·  $I_A=\{<1,1>,<2,2>\}$ 

例如  $A=\{1,2,3\}, B=\{a,b\}, 则$   $\cdot LE_A=\{<1,1>,<1,2>,<1,3>,<2,2>,<2,3>,<3,3>\}$   $\cdot D_A=\{<1,1>,<1,2>,<1,3>,<2,2>,<3,3>\}$   $C=P(B)=\{\emptyset,\{a\},\{b\},\{a,b\}\}, 则 C \bot$  的包含关系是  $\cdot R_{\subseteq}=\{<\emptyset,\emptyset>,<\emptyset,\{a\}>,<\emptyset,\{b\}>,<\emptyset,\{a,b\}>,<\{a\},\{a\}>,$  $<\{a\},\{a,b\}>,<\{b\},\{b\}>,<\{b\},\{a,b\}>,<\{a,b\}>,$ 

# 定义域,值域,域

对任意集合A到集合B的一个关系R,可以定义:

• 定义域(domain):

dom R = 
$$\{x \mid \exists y(xRy)\}$$

• 值域(range):

$$ran R = \{ y \mid \exists x(xRy) \}$$

・域(field):

fld  $R = dom R \cup ran R$ 

22

#### 例

- $R = \{\langle a, \{b\} \rangle, \langle c, d \rangle, \langle \{a\}, \{d\} \rangle, \langle d, \{d\} \rangle\},$ 則  $dom R = \{a, c, \{a\}, d\}, ran R = \{\{b\}, d, \{d\}\}\}$   $fld R = \{a, c, \{a\}, d, \{b\}, \{d\}\}\}$
- 求下列定义在整数集Z上的关系的定义域、值域和域。

(1) 
$$R_1 = \{ \langle x, y \rangle | (x, y \in Z) \land (y = 2x) \}$$
  
 $dom R_I = Z$ ,  $ran R_I = E$  (偶数集),  $fld R_I = Z$   
(2)  $R_2 = \{ \langle x, y \rangle | (x, y \in Z) \land (|x| = |y| = 7) \}$   
 $dom R_2 = \{ 7, -7 \}$ ,  $ran R_2 = \{ 7, -7 \}$ ,  $fld R_2 = \{ 7, -7 \}$ 

#### 例

• 设H={f, m, s, d}为一个家庭中父母子女四个人的 集合,确定H上的一个长幼关系R,指出该关系的 定义域、值域和域。

解: 
$$R = \{ \langle f, s \rangle, \langle f, d \rangle, \langle m, s \rangle, \langle m, d \rangle \}$$
  
dom $R = \{ f, m \}, ran $R = \{ s, d \}, fldR = \{ f, m, s, d \}$$ 



## 关系的表示法

- 关系的表示
  - -集合
  - 关系矩阵
  - 关系图



#### 例

• A={a,b,c} R<sub>1</sub>={<a,a>,<a,b>,<b,a>,<b,c>} R<sub>2</sub>={<a,b>,<a,c>,<b,c>}

$$M(R_1) = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}, \quad M(R_2) = \begin{bmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}.$$

#### 关系矩阵

- A={a<sub>1</sub>,a<sub>2</sub>,...,a<sub>n</sub>}, R⊆A×A
- R的关系矩阵  $M(R) = (r_{ij})_{n \times n}$   $M(R)(i, j) = r_{ij} = \begin{cases} 1, & a_i R a_j \\ 0, & 否则 \end{cases}$
- 若 $A=\{x_1, x_2, ..., x_m\}$ , $B=\{y_1, y_2, ..., y_n\}$ ,R是从 A到B的关系,R的关系矩阵是布尔矩阵 $M_R=[r_{ij}]_{m\times n}$ ,其中  $r_{ij}=1\Leftrightarrow < x_i, y_j>\in R$ .

#### 关系图

- A={a₁,a₂,...,an}, R⊆A×A
- R的关系图 G(R)
  - 以 "o" 表示A中元素(称为顶点), 以 "→"表示 R中元素(称为有向边)
  - 若a¡Raj,则从顶点a¡向顶点aj引有向边<ai,aj>





• A={a,b,c}





#### 小结

- R⊆A×B, R⊆A×A; xRy
- $\varnothing$ ,  $I_A$ ,  $E_A$ ;
- dom(R), ran(R), fld(R);
- M(R), G(R)



#### 讨论

- · 当A中元素标定次序后,对于R\_A×A
  - G(R)与R的集合表达式可唯一互相确定
  - R的集合表达式,关系矩阵,关系图三者均可唯一 互相确定
- 对于R⊆A×B
  - |A|=n,|B|=m,关系矩阵M(R)是n×m阶
  - G(R)中边都是从A中元素指向B中元素