Quantum phase estimation

_

An example from chemistry

Bertrand Marchand PhD student @ LIX

November 30, 2021

Program

- 1. Some context with these slides.
- 2. Installation problems?
- 3. Your turn. Fill the "quantum_tp_pea.ipynb" according to "TP_instructions.pdf". You will find them in Teams: Files \rightarrow TP_programmation \rightarrow TP_kit_phase_estimation
- 4. Finish it and send it by **Thursday 14 January**.
- 5. Two important keyboard short-cuts to know: Shift+Enter and Ctrl+Enter.

¹the .ipynb file. Don't forget to save from time to time.

Prequisite: quantum circuits

- ▶ qubit: 2-level quantum system ($|0\rangle, |1\rangle$). quantum computer = n qubits.
- ightharpoonup quantum circuit \simeq quantum program = list of quantum instructions/gates.
- The circuit above computes: $|\psi\rangle = V \cdot (W \otimes I) \cdot CNOT_{0 \to 1} \cdot (H \otimes I)|00\rangle$

Quantum simulation: general motivation

- Efficient numerical simulation quantum phenomena on classical machines seems hard [?].
- ► Therefore quantum machines might be able to perform classically-intractable computation²
- And in particular they should be good at simulating quantum phenomena (e.g simulating QCD, solving condensed-matter problems, computing molecular energies etc.)

 \rightarrow But in practice, how would that work ? What **quantum** circuits would I run on my hypothetical quantum computers to solve these problems ?

 $^{^{2}\}mbox{basic}$ motivation behind quantum computing research

Quantum simulation: more precisely

Most of the time in the potential applications I mentioned (particle phycics, condensed matter, chemistry), the computation consists in **diagonalizing Hamiltonians** and in particular find their **ground** state energy.

You will see in these practical quantum programming sessions the two main frameworks for doing so on a quantum computer:

- **phase estimation** (this week) \rightarrow the "classic guaranteed-speedup quantum algorithmics approach".
- variational quantum algorithms [?] (next week, in a slightly more "combinatorial optimization"-oriented context) → the "more recent, empirical, practical approach".

This week's answer: quantum phase estimation

With
$$|\psi\rangle$$
 eigenvector of U with eigenvalue $e^{-2i\pi\phi}$, $(U|\psi\rangle = e^{-2i\pi\phi}|\psi\rangle$, $0 \le \phi < 1$)

The circuit above allows to compute the n_B most significant bits of ϕ in a **binary decomposition**.

Template for *all* quantum algorithms with **exponential speedup**, both in quantum simulation and other application contexts.

Iterative quantum phase estimation: what we will use

for k in range(n_B , 0, -1)³:

- 1. compute $\phi_k = 2\pi \cdot \sum_{l=k+1}^{n_B} \frac{b_l}{2^{l-k+1}}$
- 2. produce and execute the following circuit:

$$|0\rangle - H - RZ(\phi_k) - H - meas. = b_k$$

$$n_S \quad \Big|\psi\rangle \left\{ - U^{2^{k-1}} \right\} |\psi\rangle$$

which yields b_k .

With
$$H=rac{1}{\sqrt{2}}egin{pmatrix}1&1\1&-1\end{pmatrix}$$
 and $RZ(\phi_k)=egin{pmatrix}1&0\0&e^{i\phi_k}\end{pmatrix}$

³Python style

Recall that $\phi=0.b_1\cdots b_{n_B}$ in binary decomposition, $\phi_k=2\pi\cdot\sum_{l=k+1}^{n_B}\frac{b_l}{2^{l-k+1}}=0.0b_{k+1}\cdots b_{n_B}$ and $U|\psi\rangle=e^{-2i\pi\phi}|\psi\rangle$.

Evolution of the system:

$$\begin{split} &|0\rangle|\psi\rangle \xrightarrow[]{H} \left(\frac{|0\rangle+|1\rangle}{\sqrt{2}}\right)|\psi\rangle = \left(\frac{|0\rangle|\psi\rangle+|1\rangle|\psi\rangle}{\sqrt{2}}\right) \\ & \underset{\bullet - U}{\longleftrightarrow} \left(\frac{|0\rangle|\psi\rangle+e^{-2i\pi\cdot 2^{k-1}\phi}|1\rangle|\psi\rangle}{\sqrt{2}}\right) = \left(\frac{|0\rangle+e^{-2i\pi\cdot 0.b_k\cdots b_{n_B}}|1\rangle}{\sqrt{2}}\right)|\psi\rangle \\ & \underset{RZ(\phi_k)}{\longleftrightarrow} \left(\frac{|0\rangle+e^{-2i\pi\cdot 0.b_k}|1\rangle}{\sqrt{2}}\right)|\psi\rangle = \left(\frac{|0\rangle+(-1)^{b_k}|1\rangle}{\sqrt{2}}\right)|\psi\rangle \xrightarrow[H]{} |b_k\rangle|\psi\rangle \end{split}$$

Our example: molecular ground state energy calculation

General problem: Given \mathcal{H} , electronic structure Hamiltonian of a molecule, we want to compute its ground state energy.

Actually, usually ${\cal H}$ depends on some structural/geometric parameters. The purpose is then to compute a *ground state energy landscape* as a function of these parameters. May provide insight on reaction mechanisms 4 .

Our instance: H_2 and its dissociation curve. We will use data from [?], where they solve it on an actual small quantum chip. ⁴Potential futuristic applications: CO_2 capture [?], H_2O cracking...

We will therefore work with:

- $U = e^{-i\mathcal{H}dt}$, for some value of dt to be chosen.
- $|\psi\rangle$ the ground state of H, whose energy E we want to compute.
- we then have $U|\psi\rangle=e^{-iEdt}|\psi\rangle=e^{-2i\pi\frac{Edt}{2\pi}}$

Problem 1: the algorithm only allows us to compute $\phi = \frac{Edt}{2\pi} \mod [1] \ (\in [0,1])$

Following [?], we will use an *interval guess* $[E_{min}, E_{max}]$ for E. Then $\mathcal{H} \leftarrow \mathcal{H} - E_{min} \cdot I$ ensures E > 0 and choosing $dt = \frac{2\pi}{E_{max}}$ ensures $\frac{Edt}{2\pi} < 1$

Other problems

Problem 2 In general we do not have access to the ground state.

ightarrowuse an **ansatz**⁵ with theoretical good overlap with ground state. As suggested in [?], we will use here the Hartree-Fock approxiamtion to our problem, namely $|10\rangle = X \otimes I |00\rangle$

Problem 3 How do we implement $U^{2^k} = e^{-i\mathcal{H}2^k dt}$?

- ightarrow usually $\mathcal H$ comes as a sum of simpler terms $\sum_l \mathcal H_l$ (e.g Pauli products) for which $e^{-i\mathcal H_l dt}$ is simple to implement.
- \rightarrow and use **Trotter's formula** [?]

$$e^{-i\left(\sum_{l}\mathcal{H}_{l}\right)dt}\simeq\left(\prod_{l}e^{-rac{i\mathcal{H}_{l}dt}{p}}
ight)^{p}$$

with p integer, as large as possible.

⁵easy-to-prepare approximation

- ► We will reproduce the curves from [?].
- ▶ In this example:
 - $ightharpoonup n_S = 2$
 - $H(R) = g_0 I + g_1 Z I + g_2 I Z + g_3 Z Z + g_4 Y Y + g_5 X X^6$
 - ► The coefficients are stored in hamiltonian_data.json
- The purpose is to reproduce

FIG. 3. Computed H₂ energy curve and errors. (a) Ene

⁶This Hamiltonian is the output of (1) a conversion from an *electronic* structure Hamiltonian to a spin Hamiltonian expressed with Pauli matrices and (2) simplifications leveraging theoretical chemistry knowledge

The programming framework we will use: myqlm

What you need to know:

- quantum circuits are first written as Program and then exported as circuit.
- ► A **job** is created from a circuit and sent to a **qpu** (a simulator)
- ► **AbstractGates** allow to define custom parameterized gates. They will come handy in programming Hamiltonian simulation.
- QRoutines allow to program arbitrary parametrized sub-circuits, which are then pluggable anywhere into a larger circuit.
- see the minimal notebook and https://myqlm.github.io/ for more details