

Доказательство

Пусть p(x) — неприводим над \mathbb{R} и $\deg p(x) > 2$ По теореме Гаусса существует $x_0 \in \mathbb{C}$ — корень p(x) По лемме \overline{x}_0 — также корень p(x) Имеем

$$p(x) = (x - x_0)(x - \overline{x}_0)q(x),$$

где $\deg q(x) > 0$

Ясно, что
$$q(x) \in \mathbb{R}[x]$$
, тк $p(x) \in \mathbb{R}[x]$ и $(x - x_0)(x - \overline{x_0}) = = x^2 - (x_0 + \overline{x_0})\lambda + |x_0|^2 \in \mathbb{R}[x]$

Но равенство

$$p(x) = (x^2 - -(x_0 + \overline{x}_0)x + |x_0|^2)q(x)$$

противоречит неприводимости многочлена p(x)

Осталось заметить, что многочлены $ax^2 + bx + c$, $a \ne 0$, $b^2 - 4ac \ge 0$ не могут быть неприводимыми, т к имеют хотя бы один вещественный корень

Замечание

Если $f(x) \in F[x]$, $\deg f(x) = 2$ или 3, то вопрос о неприводимости f(x) эквивалентен вопросу об отсутствии корней f(x) в поле F В общем случае это утверждение неверно

Пример

$$F = \mathbb{R}, \ f(x) = x^4 + 4 = = (x^4 + 4x^2 + 4) - 4x^2 = = (x^2 + 2)^2 - 4x^2 = = (x^2 - 2x + 2)$$
$$(x^2 + 2x + 2)$$

Следствие 4

Всякий многочлен $f(x) \in \mathbb{R}[x]$, $\deg f(x) > 0$ представим в виде

$$f(x) = a(x-x_1)^{k_1}$$
 $(x-x_s)^k p_1(x)^{l_1}$ $p_t(x)^l$

Где x_1 , $x_s \in \mathbb{R}$ — попарно различные вещественные корни f(x) кратности k_1 , k_s соответственно, $p_i(x) = x^2 + c_i x + \cdots + d_i \in \mathbb{R}[x]$ — попарно различные многоч іены $c_i^2 - 4d_i < 0$ $(i = 1, \ldots, t)$

Пусть $F=\mathbb{Q}$ Можно доказать, что неприводимыми над \mathbb{Q} могут быть многочлены любой степени Например, многочлен $p(x)=x^n-2$, неприводим при любом $n\geq 1$ Для доказательства этого утверждения и других подобных обычно применяют признаки (достаточные условия) неприводимости Наиболее известным из них является так называемый признак Эйзенштейна

Теорема 13 (критерий Эйзенштейна)

Пусть
$$f(x) \in \mathbb{Z}[x]$$
, $f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$

Предположим, что существует гакое простое число p что

- 1 a_n не делится на p
- $2 \quad a_{n-1}, \quad , a_1, a_0$ делятся на p
- a_0 не делится на p^2

Тогдаf(x) неприводим над $\mathbb Q$

Доказательство этой теоремы опирается на нижеследующие леммы Гаусса

Лемма 1

Если $f(x) \in \mathbb{Z}[x]$ неприводим над \mathbb{Z} (те $f(x) \neq f_1(x) f_2(x)$, где $f_1(x) \in \mathbb{Z}[x]$ deg $f_1(x) > 0$, i = 1, 2), то f(x) неприводим и над \mathbb{Q}

<u>Опр</u> Содержанием многочлена f(x) называется НОД всех его коэффициентов Обозначение cont (f(x))

Лемма 2

Пусть $f(x), g(x) \in \mathbb{Z}[x]$ Тогда cont (f(x)) g(x) = cont (f(x)) cont (g(x))

- <u>Q</u> Как найти корни многочлена⁹ (и тем самым частично найти его каноническое разложение)
- **А** Для поля **Q** ответ в следующей теореме

Теорема 14

Пусть
$$f(x) \in \mathbb{Z}[x]$$
, $f(x) = a_n x^n + \cdots + a_1 x + a_0$ Если $p/q \in \mathbb{Q}$ — корень $f(x)$, причем НОД $(p, q) = 1$, то p — делитель $a_0 = q$ — делитель a_n

Замечание

Эта теорема дает очевидный алгоритм поиска всех рациональных корней данного многочлена $f(x) \in \mathbb{Q}[x]$

Доказательство

Имеем
$$f\left(\frac{p}{q}\right) = 0$$
, те
$$a_n \left(\frac{p}{q}\right)^n + + a_1 \left(\frac{p}{q}\right) + a_0 = 0$$

Избавимся от знаменателей

$$a_n p^n + a_{n-1} p^{n-1} q + + a_0 q^{n-1} + a_0 q^n = 0$$

Или

$$a_n p^n = q(-a_{n-1}p^{n-1} - -a_1pq^{n-2} - a_0q^{n-1})$$

Следовательно, $a_n p^n$ делится на q Т к $HOД(p^n,q)=1$ (это – следствие взаимной простоты p и q), то a_n делится на q (по соответствующему свойству взаимно простых чисел)

 \bigvee Аналогично доказывается, что $a_{m{o}}$ делится на p