MA2101 Linear Algebra II

AY2021/22 Semester 1

Chapter 8 - General Vector Spaces

8.1. Fields

• (Proposition 8.1.11) Properties of the trace function:

(a) tr(A) + tr(B) = tr(A + B).

(b) tr(cA) = ctr(A).

(c) tr(AB) = tr(BA).

8.3. Subspaces

• Check whether W is a subspace of V:

(a) $0 \in W$. Hence W is non-empty; AND

(b) $\forall a, b \in \mathbb{F}, \mathbf{u}, \mathbf{v} \in W, a\mathbf{u} + b\mathbf{v} \in W$.

8.4. Linear Spans and Linear Independence

• Prove $u_1, u_2, ..., u_n$ are linearly independent: The function $c_1u_1 + c_2u_2 + \cdots + c_nu_n = \mathbf{0}$ has only the trivial solution.

8.5. Bases and Dimensions

- $\dim(W_1 + W_2) = \dim(W_1) + \dim(W_2) \dim(W_1 \cap W_2)$.
- (Theorem 8.5.15) If W is a subspace of V, then:
 - (a) $\dim(W) \leq \dim(V)$.
 - (b) If $\dim(W) = \dim(V)$, then W = V.
- · Find bases:

• Extend a set to a basis:

8.6. Direct Sums

• $W_1 + W_2$ is a direct sum if $W_1 \cap W_2 = \{0\}$.

8.7. Cosets and Quotient Spaces

• Basis for V/W:

 $\begin{aligned} & \text{Assume } V = span\{v_1, \dots, v_k, \pmb{w}_1, \dots, \pmb{w}_m\}. \\ & \text{Then } \{W + v_1, \dots, W + v_n\} \text{ forms a basis for } V/W. \end{aligned}$

Chapter 9 - Linear Transformation

9.1. Linear Transformations

• Check whether T is a linear operator:

For all $u, v \in V$ and $a, b \in \mathbb{F}$, check whether

 $T(a\mathbf{u} + b\mathbf{v}) = aT(\mathbf{u}) + bT(\mathbf{v}).$

9.2. Matrices for Linear Transformations

Matrix for T relative to B and C:

• Transition matrices from B to C:

$$[\boldsymbol{u}]_C = [I_V]_{C,B}[\boldsymbol{u}]_B.$$

9.3. Compositions of Linear Transformations

- $[T \circ S]_{C,A} = [T]_{C,B}[S]_{C,A}$.
- $[T]_B = [I_V]_{B,C}[T]_C[I_V]_{C,B}$.

9.4. The Vector Spaces $\mathcal{L}(V, W)$

• Dimension of the set for all linear transformations from V to W: $\dim(\mathcal{L}(V,W)) = \dim(V)\dim(W)$.

- Dual space: $\mathcal{L}(V, \mathbb{F}) = V^*$.
- $\dim(V) = \dim(V^*)$.

9.5. Kernels and Ranges

- (Dimension Theorem for Matrices) rank(A) + nullity(A) = n.
- (Dimension Theorem for Linear Transformation)
 dim(V) = dim(Ker(T)) + dim(R(T)).

9.6. Isomorphisms

- Check whether *T* is an isomorphism:
 - (a) T is a bijective mapping; OR
 - (b) [T] is invertible.
- Check whether *V* and *W* are isomorphic vector spaces:
 - (a) There exists an isomorphism $T: V \to W$; OR
 - (b) $\dim(V) = \dim(W)$. (*Theorem 9.6.13*)
- (First Isomorphism Theorem) $V/Ker(T) \cong R(T)$.