

**KANDIDAT** 

10208

PRØVE

# MA0301 1 Elementær diskret matematikk

| MA0301           |
|------------------|
| Hjemmeeksamen    |
| 18.05.2021 07:00 |
| 18.05.2021 11:00 |
| 09.06.2021 21:59 |
| 28.05.2021 10:12 |
|                  |

#### **Cover Letter**

| Oppgave | Status | Poeng | Oppgavetype |
|---------|--------|-------|-------------|
|         |        |       | Dokument    |

#### **Logic - Multiple choice (5 points)**

| Oppgave | Status | Poeng | Oppgavetype |
|---------|--------|-------|-------------|
| 1       | Riktig | 5/5   | Flervalg    |

## Compute negation (3 points)

| Oppgave | Status  | Poeng          | Oppgavetype   |
|---------|---------|----------------|---------------|
| 2       | Besvart | Rettes manuelt | Filopplasting |

## **New Logic Connective (12 points)**

| Oppgave | Status  | Poeng          | Oppgavetype   |
|---------|---------|----------------|---------------|
| 3       | Besvart | Rettes manuelt | Filopplasting |

# **Multiple Choice (Relation) (5 points)**

| Oppgave | Status | Poeng | Oppgavetype |
|---------|--------|-------|-------------|
| 4       | Feil   | 0/5   | Flervalg    |

## **Equivalence relation (5 points)**

| Oppgave | Status  | Poeng          | Oppgavetype   |
|---------|---------|----------------|---------------|
| 5       | Besvart | Rettes manuelt | Filopplasting |

#### Partial order (9 points)

| 1 1 Elementær dis<br><b>Oppgave</b> | skret matematikk<br><b>Status</b> | Poeng          | Candidate 102 Oppgavetype |
|-------------------------------------|-----------------------------------|----------------|---------------------------|
| 6                                   | Besvart                           | Rettes manuelt | Filopplasting             |
| nduction Part I                     | (6 points)                        |                |                           |
| Oppgave                             | Status                            | Poeng          | Oppgavetype               |
| ,                                   | Besvart                           | Rettes manuelt | Filopplasting             |
| nduction Part II                    | (6 points)                        |                |                           |
| Oppgave                             | Status                            | Poeng          | Oppgavetype               |
| <b>S</b>                            | Ubesvart                          | Rettes manuelt | Filopplasting             |
| Functions Part I                    | (3 points)                        |                |                           |
| Oppgave                             | Status                            | Poeng          | Oppgavetype               |
| 1                                   | Riktig                            | 3/3            | Flervalg                  |
| unctions Part I                     | ll (5 points)                     |                |                           |
| Oppgave                             | Status                            | Poeng          | Oppgavetype               |
| 10                                  | Besvart                           | Rettes manuelt | Filopplasting             |
| Combinatorics I                     | (5 points)                        |                |                           |
| Oppgave                             | Status                            | Poeng          | Oppgavetype               |
| 11                                  | Besvart                           | Rettes manuelt | Filopplasting             |
| Combinatorics I                     | II (6 points)                     |                |                           |
| Oppgave                             | Status                            | Poeng          | Oppgavetype               |
| 12                                  | Besvart                           | Rettes manuelt | Filopplasting             |

## Automata I (3 points)

| Oppgave | Status | Poeng | Oppgavetype |
|---------|--------|-------|-------------|
| 13      | Riktig | 3/3   | Flervalg    |

# Automata II (6 points)

| Oppgave | Status  | Poeng          | Oppgavetype   |
|---------|---------|----------------|---------------|
| 14      | Besvart | Rettes manuelt | Filopplasting |

## Automata III (6 points)

| Oppgave | Status  | Poeng          | Oppgavetype   |
|---------|---------|----------------|---------------|
| 15      | Besvart | Rettes manuelt | Filopplasting |

# **Graph Theory I (5 points)**

| Oppgave | Status  | Poeng          | Oppgavetype   |
|---------|---------|----------------|---------------|
| 16      | Besvart | Rettes manuelt | Filopplasting |

# **Graph Theory II (10 points)**

| Oppgave | Status  | Poeng          | Oppgavetype   |
|---------|---------|----------------|---------------|
| 17      | Besvart | Rettes manuelt | Filopplasting |

1  $(p \Box (p \Box q)) \Box q$  is

#### Select one alternative:

neither a tautology nor a contradiction



**2** Compute the negation of  $\Box x \Box y (\neg P(x,y) \Box Q(x,y))$ 



- **3** Consider the new logic connective  $\downarrow$ , where  $p \downarrow q$  is logically equivalent to  $\neg (p \Box q)$ .
  - 1. (3 points) Write down the truth table of this new connective  $\downarrow$ .
  - 2. (3 points) Is  $\neg p$  logically equivalent to  $p \downarrow p$ ? Give an argument about your answer. (Either use a truth table or laws of logic).
  - 3. (6 points) Is  $p \square q$  logically equivalent to  $(p \downarrow q) \downarrow (p \downarrow q)$ ? Give an argument about your answer **using laws of logic**. No point will be given if you use a truth table.

| Din fil ble la        | istet opp og lagret i besvar | elsen din.       |
|-----------------------|------------------------------|------------------|
| ~ Last ned            | Fjern                        | ☐ Erstatt        |
| Filnavn:              |                              | Oppgave 3.pdf    |
| Filtype:              |                              | application/pdf  |
| Filstørrelse:         |                              | 263.14 KB        |
| Opplastingstidspunkt: |                              | 18.05.2021 07:27 |
| Status:               |                              | Lagret           |

**4** (5 points) Consider the relation  $R := \{(x,y) \ \Box \ Z \times Z \ \Box \ x+y=6\}$ . Which of the following statements about R is true?

#### Select one alternative:

None of the choices here

- •
- It is reflexive, transitive, and not antisymmetric
- It is transitive, not reflexive, and antisymmetric
- It is symmetric, reflexive, and not antisymmetric



5 (5 points) Let  $A := \{0, 1, 2, 3\}$ . Define the relation  $R := \{(0, 0), (1, 1), (2, 2), (2, 3), (3, 2)\}.$ 

Is R an equivalence relation? If it is not, how to turn R into an equivalence relation by adding the minimum amount of elements?

| Din :                 | fil ble lastet opp og lagret i besvarelse | en din.          |
|-----------------------|-------------------------------------------|------------------|
| ~ Last ned            | Fjern                                     | ☐ Erstatt        |
| Filnavn:              |                                           | Oppgave 5.pdf    |
| Filtype:              |                                           | application/pdf  |
| Filstørrelse:         |                                           | 139.02 KB        |
| Opplastingstidspunkt: |                                           | 18.05.2021 09:18 |
| Status:               |                                           | Lagret           |
|                       |                                           |                  |

**6** (9 points) Let  $A := \{3, 4, 6, 12, 20\}$  be ordered by divisibility. Compute the minimal and maximal elements. Moreover, draw the Hasse diagram.



7 (6 points) Use induction to show that for all integers  $m \geq 0$   $\sum_{i=1}^m 2i - 1 = m(m+1) - 1$ 

| Din fil               | ble lastet opp og lagret i besvare | elsen din.       |
|-----------------------|------------------------------------|------------------|
| <sup>~</sup> Last ned | Fjern                              | □ Erstatt        |
| Filnavn:              |                                    | Oppgave 7.pdf    |
| Filtype:              |                                    | application/pdf  |
| Filstørrelse:         |                                    | 170.89 KB        |
| Opplastingstidspunkt: |                                    | 18.05.2021 10:52 |
| Status:               |                                    | Lagret           |

**8** (6 points) Consider the sequence  $\{a_n\}_{n\geq 0}$ , where  $a_1=3, a_2=6$  and, for integers  $k>2, a_k=a_{k-1}+a_{k-2}$ .

Use induction to show that, for all integers  $n \ge 0$ ,  $a_n$  can be divided by 3.

Upload your file here. Maximum one file.

Alle filtyper er tillatt. Maksimal filstørrelse er 50 GB.

Upload your file here. Maximum one file.

Velg fil for opplasting

9 (3 points) Which of the following statements is true?

#### Select one alternative:

If the functions  $f:A\to B$  and  $g:B\to C$  are injective, then the composite  $g\ \Box\ f:A\to C$  is injective.



- None of them
- If the functions  $f:A\to B$  and  $g:B\to C$  are injective, then the composite  $f\ \Box\ g:B\to C$  is injective.

10 (5 points) Consider the function f(x) = x - 7 with integers as domain and codomain (namely,  $f: Z \to Z$ ). Is it injective, surjective, or bijective? Give an argument to justify your answer.

| Din fil ble laste     | et opp og lagret i besvarelsen din. |
|-----------------------|-------------------------------------|
| <sup>~</sup> Last ned | │ Fjern │ □ Erstatt                 |
| Filnavn:              | Oppgave 10.pd                       |
| Filtype:              | application/pd                      |
| Filstørrelse:         | 78.89 KE                            |
| Opplastingstidspunkt: | 18.05.2021 10:53                    |
| Status:               | Lagre                               |

11 (5 points) According to the binomial formula, what is the coefficient of  $x^6y^6$  in the expansion of  $(3x^3+2y)^8$ ? What is the coefficient of  $x^4y^3$ ?

| Din fil               | ble lastet opp og lagret i besvare | elsen din.       |
|-----------------------|------------------------------------|------------------|
| <sup>~</sup> Last ned | Fjern                              | □ Erstatt        |
| Filnavn:              |                                    | Oppgave 11.pdf   |
| Filtype:              |                                    | application/pdf  |
| Filstørrelse:         |                                    | 121.47 KB        |
| Opplastingstidspunkt: |                                    | 18.05.2021 10:17 |
| Status:               |                                    | Lagret           |

**12** (6 points) What is the number of permutations formed from the letters of "ALLTALK"? How about with the restriction that the two A's must be next to each other?



13 (3 points) Let  $\Sigma := \{0, 1, 2\}$ . Which of the following words is **not** in the language L(r) for the regular expression  $r = 011^{\square}2^{\square}$ ?

#### Select one alternative:



**14** (6 points) See the given PDF file.



**15** (6 points) See the given PDF file.



**16** (5 points) See the given PDF file.



17 (10 points) See the given PDF file.

| Din fil ble lastet op | op og lagret i besvarelsen din.  |
|-----------------------|----------------------------------|
| ~ Last ned            | │ Fjern                  Erstatt |
| Filnavn:              | Oppgave 17.pdf                   |
| Filtype:              | application/pdf                  |
| Filstørrelse:         | 339.39 KB                        |
| Opplastingstidspunkt: | 18.05.2021 08:20                 |
| Status:               | Lagret                           |

olt is symmetric · It is transitive olt is not reflexive : This means that it isnt a equivalence relation 1x we add (3,3) it becomes reflexive and it becomes an equivalence relation



A: 53,4,6,12,206



Maximum: 12

Minimum 5 3,4

 $\leq_{i=1}^{m} 2_{i}^{2} - 1 = m(m+1) - 1$  m> 0 Base case m= 1 m(m+1)-1-> 1(2)-1=1 Z: 2:-1 = 2.1-1 = 1 True this implies & 1+3+··+2×-1 = KC++D-1 K(k+1)-1 + 2k+1 / (k+1) (k+2)-1 It is not equal, which means it doesn't hold for all m70 f(x) = x -7

As the function is

linear, for each y, there
is only one x.

This means that it is

bijective

word: ALLTALK

nletters = 7

Permutations = n!

mal mil mil mk!

 $= \frac{7!}{2! \cdot 3!} = \frac{5040}{12} = \frac{420}{12}$ 

with two A's next to each other;

- Put the two A's into one letter

<u>6!</u> : 6.5.4: 120

-There are 2! permutations of aa'

which gives us neamulations: 120-2=240

| ) | L | t |   |     |     |    |     |    |          |   |   |   |   |   |
|---|---|---|---|-----|-----|----|-----|----|----------|---|---|---|---|---|
|   | ٨ | 1 | 1 | \   | ,   |    |     |    | <u> </u> |   | u | J |   |   |
| - |   |   |   | CA  | L . | 6  |     | С  |          | a | , | L | C |   |
|   | 5 | 0 |   | 5 / |     | ష  |     | 54 |          | 0 |   | 1 | 1 |   |
|   | ς | 1 |   | 5.  | 2   | Se | , : | 59 |          | 1 |   | 9 | ပ |   |
|   | S | ጔ |   | S,  | ١   | S٥ |     | حر |          | ٦ | ) | 1 | 0 | ) |
|   |   |   | ١ |     |     |    |     |    | l        |   |   |   |   |   |



word: acabacab

| state   | 50  | 51 | 50 | 151 | 150 | 51 | 50 | 51       | 156 |
|---------|-----|----|----|-----|-----|----|----|----------|-----|
| Input   | a   | C  | a  | 6   | a 0 | C  | a  | <b>b</b> |     |
| output  | 0   | 0  | 0  | 0   | 10  | 0  | 0  | 10       |     |
| out put | i S | 00 | 00 | 0 0 | 000 |    |    |          |     |

| 15  |    |       |     |
|-----|----|-------|-----|
| بحـ | 5  | a     | 6   |
|     | 50 | 80    | 51  |
|     | SA | 51    | 52  |
|     | 52 | 52    |     |
|     | 7  | J 4 1 | - 1 |

The accepted language are words consisting or an even nuter of 'b". The letter "a" wond have any impact.







- 1) Choose V1 V3
- 2) ( hoose V7 V8
- 3) choose V2 V3 V1 V2 Would now form Cycle
- 4) -11- V3 V5 -D V2 V5 Would now form Cycle
- 5) -11- Vyv5 -b vzvy would now form Cycle
- 6) -11- V6V8 -D V6V7 would now form Cycle
- 7) -11- U5V6 -12 There are already palls
  for U5V7 and V4V6 50
  We are finished

& V1V3, V7 V8, V2 V3, V3 V5, V4V5, V6 V8, V5 V6

| 1) P 7 PV9 PV9 0 0 1 0 1 1 0 1 0 1 0                                                                    |               |
|---------------------------------------------------------------------------------------------------------|---------------|
| 2) PIPE 7 CPVP)  = 7P17P D.M.6  = 7P  P   17P   71                                                      | P17P          |
| They are logical  3) (PV9) V (PV9)                                                                      | 19 equivalent |
| =7([7(PV4)]V[7(PV4)])<br>=7[7(PV4)] / 7[7(PV4)]<br>= (PV4) / (PV4)<br>= PV4<br>= (PV4) / (PV4)<br>= PV4 |               |