ELECTRA

10조 고현지 김병진 차지윤

Efficiently Learning an **E**ncoder that Classifies Token Replacements **A**ccurately

METHOD

BERT vs ELECTRA

Figure 1: Replaced token detection pre-training consistently outperforms masked language model pre-training given the same compute budget. The left figure is a zoomed-in view of the dashed box.

METHOD

Generator G

 $x=[x_1,x_2,...,x_n]$ 에 대해서마스킹할 위치 $m=[m_1,m_2,...,m_k]$ 을 랜덤하게 결정 $^{-1}$

 $mi \sim unif\{1,n\} \ \ for \ \ i=1 \ to \ k$

Generator G

2 마스킹된 토큰들은 [MASK] 토큰으로 대체

 $x^{masked} = REPLACE(x, m, [MASK])$

Generator G

3 마스킹 된 입력 시퀀스 x^{masked} 에 대해서 generator는 아래와 같이 원래 토큰이 무엇인지 예측

$$p_G(x_t|x^{masked}) =$$

$$exp(e(x_t)^T h_G(x^{masked})_t) / \sum_{x'} exp(e(x')^T h_G(x^{masked})_t)$$

$$p_G(x_t|x^{masked})$$

 $\Rightarrow x^{masked}$ 라는 시퀀스 주어졌을 때 특정 위치 t에 단어 x_t가 들어갈 확률

$$exp(e ullet x_i) / \sum_j exp(e ullet x_j)$$

⇒ softmax 함수

$$e(x_t)^T h_G(x^{masked})_t$$

 \Rightarrow token을 임베딩(e)하여 example의 hidden state 값을 곱

Discriminator D

Discriminator D input 생성 $[\mathsf{MASK}]$ 에서 $p_G(x_t|x)$ 으로 샘플링한 토큰으로 치환(corrupt)

$$x^{corrupt} = REPLACE(x, m, \hat{x})$$

$$\hat{x} \sim p_G(x_i|x^{masked}) \ for \ i \ \in m$$

Discriminator D

 $oxed{2}$ Discriminator D는 $x^{corrupt}$ 가 원본 입력 토큰과 동일한건지, Generator G가 만들어낸 것인지 예측

$$D(x^{corrupt},t) = sigmoid(w^T h_D(x^{corrupt})_t)$$

Target Class (이진)

• Original : 원본 문장의 토큰과 같은 토큰

Replaced : 원본 문장의 토큰과 다른 토큰

Generator G와 Discriminator D 의 학습

Generator G

$$L_{MLM}(x,\Theta_G) = E(\sum_{i \in m} -log p_G(x_i|x^{masked}))$$

Discriminator D

$$L_{Disc}(x, heta_D) = E(\sum_{t=1}^n -(x_t^{corrupt} = x_t)logD(x^{corrupt},t) - (x_t^{corrupt}
eq x_t)log(1 - D(x^{corrupt},t)))$$

대용량 코퍼스에 대해서 generator loss와 discriminator loss의 합을 최소화하도록 학습

$$\min_{\theta_G, \theta_D} \sum_{\mathbf{x} \in \mathcal{X}} \mathcal{L}_{\text{MLM}}(\mathbf{x}, \theta_G) + \lambda \mathcal{L}_{Disc}(\mathbf{x}, \theta_D)$$

$$\lambda = 50$$

GAN

Generator : 진짜같은 image를 만들어내서 Discriminator를 속임

Discriminator : Generator가 만들어낸 이미지인지 실제 이미지인지 구분

GAN vs ELECTRA

1. Generator가 원래 토큰과 동일한 토큰을 생성한다면?

GAN : negetive sample (fake)로 간주

ELECTRA: positive sample로 간주

GAN vs ELECTRA

2. 학습 방법?

GAN: generator와 discriminator가 adversarial하게 학습

ELECTRA: generator와 discriminator가 각자 학습

$$\min_{\theta_g} \max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log (1 - D_{\theta_d}(G_{\theta_g}(z))) \right]$$

Alternate between:

Gradient ascent on discriminator

$$\max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log (1 - D_{\theta_d}(G_{\theta_g}(z))) \right]$$

Gradient descent on generator

$$\min_{\theta_g} \mathbb{E}_{z \sim p(z)} \log(1 - D_{\theta_d}(G_{\theta_g}(z)))$$

GAN vs ELECTRA

3. Generator의 입력으로 노이즈 벡터?

GAN : 넣음

ELECTRA: 넣지 않음

EXPERIMENTS

Experiments

Experiments: SETUP

- GLUE RTE, MNLI, QNLI, MRPC, QQP, STS, SST, and CoLA.
- SQuAD dataset 벤치마크
- BERT와 동일한 사전학습 데이터셋 으로 훈련
 (3.3 Billion tokens from Wikipedia and BooksCorpus)
- 모델 구조와 대부분의 하이퍼파라미터는 BERT와 동일
- fine-tuning 을 위해 간단한 linear classifiers 레이어 추가
- fine-tuning시 작은 평가 데이터셋의 랜덤시드 의존성을 고려해
 동일 체크포인트에서 평가의 정확도는 10회 중앙값 보고

Experiments: MODEL EXTENSIONS

- Weight Sharing
- Smaller Generators
- Training Algorithms

Experiments: MODEL EXTENSIONS

- Weight Sharing
- Smaller Generators

*FLOPS는 1초당 부동 소수점 연산(곱셈)의 명령 실행 횟수를 나타내는 단위

Training Algorithms

Adversarial Contrastive Estimation

강화 학습을 이용하여 생성 모델을 GAN과 같이 적대적인 방법으로 학습하는 방법

Two-stage training

- 1. n 단계 동안 L MLM G만 훈련
- 2. 판별 모델의 weight를 생성 모델의 것으로 초기 화하고, 생성모델의 가중치를 고정된 상태로 유 지, 판별 모델만 n step 학습.

Training Algorithms result

Adversarial Contrastive Estimation

생성모델에 대해 판별모델의 목적함수로 옴겨 갈때 성능이 증가하였지만, 기존 방식 보다 성능 낮음

- Two-stage training problems
 - 1. poor sample efficiency
 - 2. 생성 모델의 낮은 엔트로피 출력 분포

기존방식사용

Efficiency Analysis

ELECTRA 15%

원래 ELECTRA와 동일하나, 판별 모델의 loss는 마스킹된 15%의 토큰에서 온 것만을 사용

Model	ELECTRA	All-Tokens MLM	Replace MLM	ELECTRA 15%	BERT	
GLUE score	85.0	84.3	82.4	82.4	82.2	

Table 5: Compute-efficiency experiments (see text for details).

Efficiency Analysis

Replace MLM

MLM과 비슷하지만, 마스킹된 토큰 [MASK]를 인풋으로 받는 대신, 생성 모델이 만들어낸 토큰으로 대체하여 MLM을 진행

Model	ELECTRA	All-Tokens MLM	Replace MLM	ELECTRA 15%	BERT	
GLUE score	85.0	84.3	82.4	82.4	82.2	

Table 5: Compute-efficiency experiments (see text for details).

Efficiency Analysis

All-Tokens MLM

BERT와 ELECTRA를 합친 것으로 mask된 토큰이 아닌 모든 토큰을 예측하는 모델이다.

Model	ELECTRA	All-Tokens MLM	Replace MLM	ELECTRA 15%	BERT
GLUE score	85.0	84.3	82.4	82.4	82.2

Table 5: Compute-efficiency experiments (see text for details).

MODEL-DETAIL

Small-model

Model	Train / Infer FLOPs	Speedup	Params	Train Time + Hardware	GLUE
ELMo	3.3e18 / 2.6e10	19x / 1.2x	96M	14d on 3 GTX 1080 GPUs	71.2
GPT	4.0e19 / 3.0e10	1.6x / 0.97x	117M	25d on 8 P6000 GPUs	78.8
BERT-Small	1.4e18 / 3.7e9	45x / 8x	14M	4d on 1 V100 GPU	75.1
BERT-Base	6.4e19 / 2.9e10	1x / 1x	110M	4d on 16 TPUv3s	82.2
ELECTRA-Small	1.4e18 / 3.7e9	45x / 8x	14M	4d on 1 V100 GPU	79.9
50% trained	7.1e17 / 3.7e9	90x / 8x	14M	2d on 1 V100 GPU	79.0
25% trained	3.6e17 / 3.7e9	181x / 8x	14M	1d on 1 V100 GPU	77.7
12.5% trained	1.8e17 / 3.7e9	361x / 8x	14M	12h on 1 V100 GPU	76.0
6.25% trained	8.9e16 / 3.7e9	722x / 8x	14M	6h on 1 V100 GPU	74.1
ELECTRA-Base	6.4e19 / 2.9e10	1x / 1x	110M	4d on 16 TPUv3s	85.1

ELECTRA-small 결과 같은 계산량의 BERT-small보다 성능이 좋음, 훨씬 계산이 많이 필요했던 GPT보다도 좋음

MODEL-DETAIL

Large Models

Model	Train FLOPs	Params	CoLA	SST	MRPC	STS	QQP	MNLI	QNLI	RTE	Avg.
	1.9e20 (0.27x) 6.4e20 (0.90x) 3.2e21 (4.5x) 3.9e21 (5.4x)	356M 356M	60.6 66.1 68.0 69.0	95.6	88.0 91.4 90.9 90.8	92.2 92.1	91.3 92.0 92.2 92.3	86.6 89.3 90.2 90.8	92.3 94.0 94.7 94.9	70.4 82.7 86.6 85.9	87.9 88.9
BERT (ours) ELECTRA-400K ELECTRA-1.75M	\ /	335M 335M 335M	67.0 69.3 69.1		89.1 90.6 90.8	92.1	91.5 92.4 92.4	89.6 90.5 90.9	93.5 94.5 95.0	79.5 86.8 88.0	89.0

<GLUE dev set에 대한 결과>

Model	Train FLOPs	CoLA	SST	MRPC	STS	QQP	MNLI	QNLI	RTE	WNLI	Avg.*	Score
BERT	1.9e20 (0.06x)	60.5	94.9	85.4	86.5	89.3	86.7	92.7	70.1	65.1	79.8	80.5
RoBERTa	3.2e21 (1.02x)	67.8	96.7	89.8	91.9	90.2	90.8	95.4	88.2	89.0	88.1	88.1
ALBERT	3.1e22 (10x)	69.1	97.1	91.2	92.0	90.5	91.3	_	89.2	91.8	89.0	_
XLNet	3.9e21 (1.26x)	70.2	97.1	90.5	92.6	90.4	90.9	_	88.5	92.5	89.1	_
ELECTRA	3.1e21 (1x)	71.7	97.1	90.7	92.5	90.8	91.3	95.8	89.8	92.5	89.5	89.4

큰 모델을 학습시켜 보았을 때, ELECTRA는 XLNet이나 RoBERTa 사전학습에 필요한 계산량의 1/4만 사용해도 비슷한 성능 결과

PRE-TRAINING, FINE-TUNING

PRE-TRAINING DETAILS

- 대부분 BERT와 동일한 하이퍼파라미터를 사용
- 손실에서 판별자 목적의 가중치인 λ를 50.8로 설정
- 전처리 대신에 즉석에서 결정된 마스킹된 위치와 함께 동적 토큰 마스킹을 사용
- 원본 BERT 논문에서 제안한 Next-sentenceprediction Objective를 사용하지 않음(최근 연구에 따르면 점수가 향상되지 않는 것으로 나타남)
- ELECTRA-Large 모델의 경우 더 높은 마스크 퍼센트 (15 대신 25)를 사용 : Generator가 15% 마스킹으로 높은 정확도를 달성하여 교체된 토큰이 거의 없음 을 확인함
- 초기 실험에서 [1e-4, 2e-4, 3e-4, 5e-4] 중 Base 및 Small 모델에 대한 최상의 학습률을 검색하고 [1, 10, 20, 50, 100] 중 λ를 선택

FINE-TUNING DETAILS

- 라지모델은 대부분 Clark et al.의 하이퍼파라미터를 사용.
- RoBERTa가 더 많은 training epoch(3이 아닌 10까지)를
 사용한다는 사실을 알게 된 후 ,각 작업에 대해 [10, 3] 중
 에서 가장 좋은 수의 train epoch를 찾음
- SQuAD의 경우 BERT 및 RoBERTa와 일치하도록 학습 epochs 수를 2로 줄임
- Base모델은 [3e-5, 5e-5, 1e-4, 1.5e-4]에서 학습률 선택, layer-wise learning-rate decay의 경우 [0.9, 0.8, 0.7]에서 선택, 나머지는 라지모델과 동일한 하이퍼파라미터를 사용
- 이에 반해 BERT, XLNet, RoBERTa 등의 GLUE에 대한 선행 연구에서 태스크별로 최적의 하이퍼파라미터를 별도 선택 (동일한 종류의 추가 초매개변수 검색을 수행하면 결과가 약간 향상될 것으로 예상)

Conclusion

- ✓ language representation learning을 위한 새로운 Self-supervised learning task인 Replaced Token Detection(RTD)을 제안
- ✓ 핵심은 text encoder가 작은 generator가 만들어낸 고품질의 negative sample과 입력 토큰을 구별하도록 텍스트 인코더를 학습시키는 것
- ✓ MLM과 비교해, 논문의 pre-training objective 계산이 훨씬 효율적이며 downstream task에 서 더 좋은 성능을 낼 수 있다는 것을 많은 실험을 통해 확인
- ✓ 이 연구를 통해 컴퓨팅 리소스에 대한 접근 권한이 적은 연구원과 실무자가 적은 컴퓨팅 리소스로도 pre-trained text encoder에 대해 많은 연구개발을 할 수 있길 바람
- ✓ pre-training과 관련된 향후 연구가 절대적 성능 지표만큼 계산량과 파라미터 수 등의 효율 성도 함께 고려했으면 하는 바람을 나타냄

Source Code

Source Code

Google-research / electra

https://github.com/google-research/electra

ELECTRA

Introduction

ELECTRA is a method for self-supervised language representation learning. It can be used to pre-train transformer networks using relatively little compute. ELECTRA models are trained to distinguish "real" input tokens vs "fake" input tokens generated by another neural network, similar to the discriminator of a GAN. At small scale, ELECTRA achieves strong results even when trained on a single GPU. At large scale, ELECTRA achieves state-of-the-art results on the SOuAD 2.0 dataset.

For a detailed description and experimental results, please refer to our ICLR 2020 paper ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators.

This repository contains code to pre-train ELECTRA, including small ELECTRA models on a single GPU. It also supports fine-tuning ELECTRA on downstream tasks including classification tasks (e.g., GLUE), QA tasks (e.g., SQuAD), and sequence tagging tasks (e.g., text chunking).

This repository also contains code for **Electric**, a version of ELECTRA inspired by energy-based models. Electric provides a more principled view of ELECTRA as a "negative sampling" cloze model. It can also efficiently produce pseudo-likelihood scores for text, which can be used to re-rank the outputs of speech recognition or machine translation systems. For details on Electric, please refer to out EMNLP 2020 paper Pre-Training Transformers as Energy-Based Cloze Models.

Config – configure_pretraining.py

```
# model settings
self.model size = "small" # one of "small", "base", or "large"
# override the default transformer hparams for the provided model size; see
# modeling.BertConfig for the possible hparams and util.training utils for
# the defaults
self.model hparam overrides = (
    kwargs["model hparam overrides"]
    if "model hparam overrides" in kwargs else {})
self.embedding size = None # bert hidden size by default
self.vocab size = 30522 # number of tokens in the vocabulary
self.do lower case = True # lowercase the input?
 # batch sizes
 self.max seq length = 128
 self.train batch size = 128
 self.eval batch size = 128
# model settings
self.model size = "small" # one of "small", "base", or "large"
# override the default transformer hparams for the provided model size; see
# modeling.BertConfig for the possible hparams and util.training utils for
# the defaults
self.model hparam overrides = (
    kwargs["model hparam overrides"]
    if "model hparam overrides" in kwargs else {})
self.embedding_size = None # bert hidden size by default
self.vocab size = 30522 # number of tokens in the vocabulary
self.do lower case = True # lowercase the input?
```

```
def get bert config(config):
 """Get model hyperparameters based on a pretraining/finetuning config"""
 if config.model_size == "large":
    args = {"hidden_size": 1024, "num_hidden_layers": 24}
 elif config.model size == "base":
   args = {"hidden size": 768, "num hidden layers": 12}
 elif config.model size == "small":
   args = {"hidden size": 256, "num hidden layers": 12}
   raise ValueError("Unknown model size", config.model_size)
 args["vocab size"] = config.vocab size
 args.update(**config.model_hparam_overrides)
 # by default the ff size and num attn heads are determined by the hidden size
 args["num attention heads"] = max(1, args["hidden size"] // 64)
 args["intermediate size"] = 4 * args["hidden size"]
 args.update(**config.model hparam overrides)
 return modeling.BertConfig.from dict(args)
```

Tokenizer

road wasn although due major died village third knew 2016 asked turned wanted say ##p together received main son served different ##en himself felt members power football law voice play ##in near park history 30 having [Vocab] 2005

Wordpiece Vocabulary

:1929, "空":1930, "立":1931, "章":1932, "竹":1933, "糹":1934, "美":1935, "義":1935, "義":1936, "耳":1937, "良":1938, "艹":1939, "花":1940, "英":1941, "華":1942, "葉":1942, "葉":1943, "藤":1944, "行":1945, "街":194 ." (":1987.") ":1988.", ":1989."-":1990.", ":1991."/":1992.":":1993."?":1994."~":1995."the":1996."of":1997."and":1998."in":1999."to":2000."was":2001."he":2002."is":2003 ":2014,"##s":2015,"she":2016,"you":2017,"had":2018,"an":2019,"were":2020,"but":2021,"be":2022,"this":2023,"are":2024,"not":2025,"my":2026,"they":2027,"one":2028,"which":2029 ,"who":2040,"out":2041,"been":2042,"when":2043,"after":2044,"there":2045,"into":2046,"new":2047,"two":2048,"its":2049,"##a":2050,"time":2051,"would":2052,"no":2053,"what":205 :2064,"if":2065,"like":2066,"back":2067,"them":2068,"only":2069,"some":2070,"could":2071,"##i":2072,"where":2073,"just":2074,"##ing":2075,"during":2076,"before":2077,"##n":20 ,"world":2088,"may":2089,"between":2090,"down":2091,"well":2092,"three":2093,"##d":2094,"year":2095,"while":2096,"will":2097,"##ed":2098,"##r":2099,"##y":2100,"later":2101,"# ople":2111."part":2112."know":2113."against":2114."vour":2115."many":2116."second":2117."university":2118."both":2119."national":2120."##er":2121."these":2122."don":2123."kno didn":2134,"##ly":2135,"team":2136,"american":2137,"because":2138,"de":2139,"##l":2140,"born":2141,"united":2142,"film":2143,"since":2144,"still":2145,"long":2146,"work":2147 ight": 2157, "man": 2158, "eyes": 2159, "house": 2160, "season": 2161, "war": 2162, "states": 2163, "including": 2164, "took": 2165, "life": 2166, "north": 2167, "same": 2168, "each": 2169, "called": 2 ":2179,"won":2180,"area":2181,"here":2182,"going":2183,"10":2184,"away":2185,"series":2186,"left":2187,"home":2188,"music":2189,"best":2190,"make":2191,"hand":2192,"number":2 :":2202,"end":2203,"good":2204,"too":2205,"following":2206,"released":2207,"game":2208,"played":2209,"little":2210,"began":2211,"district":2212,"##m":2213,"old":2214,"want":22 ,"west":2225,"##u":2226,"face":2227,"think":2228,"##es":2229,"2010":2230,"government":2231,"##h":2232,"march":2233,"came":2234,"small":2235,"general":2236,"town":2237,"june" 246, "along": 2247, "international": 2248, "2011": 2249, "air": 2250, "july": 2251, "club": 2252, "went": 2253, "january": 2254, "october": 2255, "our": 2256, "august": 2257, "april": 2258, "york": 2258, "york": 2254, "october": 2255, "our": 2256, "august": 2257, "april": 2258, "york": 2258, "york": 2254, "october": 2255, "our": 2256, "august": 2257, "april": 2258, "york": 2258, "york": 2254, "october": 2255, "our": 2256, "august": 2257, "april": 2258, "york": 2258, "york": 2257, "april": 2258, "york": 2258, "york" , "father": 2269, "public": 2270, "##us": 2271, "come": 2272, "men": 2273, "five": 2274, "set": 2275, "station": 2276, "church": 2277, "##c": 2278, "next": 2279, "former": 2280, "november": 2281, "roor tem": 2291, "let": 2292, "love": 2293, "2006": 2294, "though": 2295, "every": 2296, "2014": 2297, "look": 2298, "song": 2299, "water": 2300, "century": 2301, "without": 2302, "body": 2303, "black": 230 ulation":2313,"river":2314,"named":2315,"band":2316,"white":2317,"started":2318,"##an":2319,"once":2320,"15":2321,"20":2322,"should":2323,"18":2324,"2015":2325,"service":2324 . 335. "children": 2336. "february": 2337. "book": 2338. "why": 2339. "11": 2340. "door": 2341. "need": 2342. "president": 2343. "order": 2344. "final": 2345. "road": 2346. "wasn": 2347. "although": 234 2357, "st":2358, "wanted":2359, "say":2360, "##p":2361, "together":2362, "received":2363, "main":2364, "son":2365, "served":2366, "different":2367, "##en":2368, "behind":2369, "himself":2 r":2379."park":2380."history":2381."30":2382."having":2383."2005":2384."16":2385."##man":2386."saw":2387."mother":2388."##al":2389."army":2390."point":2391."front":2392."help oung":2402,"14":2403,"put":2404,"published":2405,"country":2406,"division":2407,"across":2408,"told":2409,"13":2410,"often":2411,"ever":2412,"french":2413,"london":2414,"cent 424, "tell": 2425, "among": 2426, "species": 2427, "really": 2428, "according": 2429, "central": 2430, "half": 2431, "2004": 2432, "form": 2433, "original": 2434, "gave": 2435, "office": 2436, "makir german": 2446, "player": 2447, "run": 2448, "business": 2449, "woman": 2450, "community": 2451, "cup": 2452, "might": 2453, "million": 2454, "land": 2455, "2000": 2456, "court": 2457, "development", 67, "become": 2468, "sure": 2469, "research": 2470, "almost": 2471, "director": 2472, "council": 2473, "la": 2474, "##2": 2475, "career": 2476, "things": 2477, "using": 2478, "island": 2479, "##2": 24 ."support":2490."control":2491."field":2492."students":2493."2003":2494."education":2495."married":2496."##b":2497."nothing":2498."worked":2499."others":2500."record":2501."t ry": 2510, "established": 2511, "non": 2512, "returned": 2513, "feel": 2514, "does": 2515, "title": 2516, "written": 2517, "thing": 2518, "feet": 2519, "william": 2520, "far": 2521, "co": 2522, "assoc "100":2531,"##na":2532,"department":2533,"hall":2534,"role":2535,"various":2536,"production":2537,"21":2538,"19":2539,"heart":2540,"2001":2541,"living":2542,"fire":2543,"vers :2552, "case":2553, "society":2554, "region":2555, "present":2566, "radio":2557, "period":2558, "looking":2559, "least":2560, "total":2561, "keep":2562, "england":2563, "wife":2564, "prog n":2574,"##6":2575,"political":2576,"george":2577,"services":2578,"taken":2579,"created":2580,"##7":2581,"further":2582,"able":2583,"reached":2584,"david":2585,"union":2586 ."##x":2595,"appeared":2596,"position":2597,"ground":2598,"lead":2599,"rock":2600,"dark":2601,"election":2602,"23":2603,"board":2604,"france":2605,"hair":2606,"course":2607 ,"moment":2617,"##te":2618,"someone":2619,"##8":2620,"summer":2621,"project":2622,"announced":2623,"san":2624,"less":2625,"wrote":2626,"past":2627,"followed":2628,"##5":2629 ne": 2638, "1999": 2639, "design": 2640, "considered": 2641, "northern": 2642, "god": 2643, "stop": 2644, "battle": 2645, "toward": 2646, "european": 2647, "outside": 2648, "described": 2649, "tracked of the control of the control

[Token]

ELECTRA Structure

Pretrain-Model - masking

```
# Mask the input
unmasked_inputs = pretrain_data.features_to_inputs(features)
masked_inputs = pretrain_helpers.mask(
    config, unmasked_inputs, config.mask_prob)
```

[run_pretraining.py]

```
# Update the input ids
replace with mask positions = masked lm positions * tf.cast(
   tf.less(tf.random.uniform([B, N]), 0.85), tf.int32)
inputs ids, = scatter update(
   inputs.input ids, tf.fill([B, N], vocab["[MASK]"]),
    replace with mask positions)
return pretrain_data.get_updated_inputs(
    inputs,
    input_ids=tf.stop_gradient(inputs_ids),
    masked lm positions=masked lm positions,
    masked_lm_ids=masked_lm_ids,
    masked lm weights=masked lm weights
```

```
[pretrain_helpers.py]
```

```
# model inputs - it's a bit nicer to use a namedtuple rather than keep the
# features as a dict

Inputs = collections.namedtuple(

"Inputs", ["input_ids", "input_mask", "segment_ids", "masked_lm_positions",

"masked_lm_ids", "masked_lm_weights"])
```

[pretrain_data.py]

$$mi \sim unif\{1,n\} \ \ for \ \ i=1 \ to \ k$$
 [마스킹 위치 랜덤]

$$oldsymbol{x}^{masked} = REPLACE(x, m, [MASK])$$
[MASK 토큰으로 대체]

B - Batch Size

L – Sequence Length

D – Depth

N – modeling.get_shape_list(position)[1]

Pretrain-Model – Generator - Config

[Generator setting]

[Generator Config List]

- 1. Generator is uniform at random
- 2. Generator is a two-tower cloze model
- 3. Tie generator / discriminator token embedding
- 4. Tie all generator / discriminator weights

```
if config.uniform generator:
61
62
             # simple generator sampling fakes uniformly at random
             mlm output = self. get masked lm output(masked inputs, None)
63
       def _get_masked_lm_output(self, inputs: pretrain_data.Inputs, model):
164
         """Masked language modeling softmax layer."""
         with tf.variable scope("generator predictions"):
           if self._config.uniform_generator:
             logits = tf.zeros(self. bert config.vocab size)
168
             logits tiled = tf.zeros(
169
170
                 modeling.get shape list(inputs.masked lm ids) +
171
                 [self. bert config.vocab size])
             logits tiled += tf.reshape(logits, [1, 1, self. bert config.vocab size])
172
             logits = logits tiled
173
174
           else:
175
             relevant reprs = pretrain helpers.gather positions(
176
                 model.get_sequence_output(), inputs.masked_lm_positions)
177
             logits = get_token_logits(
178
                 relevant_reprs, model.get_embedding_table(), self._bert_config)
           return get softmax output(
179
               logits, inputs.masked_lm_ids, inputs.masked_lm_weights,
180
181
               self. bert config.vocab size)
```

```
\sqrt{p_G(x_t|x^{masked})} = \left. exp(e(x_t)^T h_G(x^{masked})_t) / \sum_{x'} exp(e(x')^T h_G(x^{masked})_t) 
ight.
            p_G(x_t|x^{masked})
            \Rightarrow x^{masked}라는 시퀀스 주어졌을 때 특정 위치 t에 단어 \mathbf{x} t가 들어갈 확률
            exp(e ullet x_i) / \sum_j exp(e ullet x_j)
            ⇒ softmax 한수
            e(x_t)^T h_G(x^{masked})_t
             \Rightarrow token을 임베딩(e)하여 example의 hidden state 값을 곱
        def get softmax output(logits, targets, weights, vocab size):
  272
          oh_labels = tf.one_hot(targets, depth=vocab_size, dtype=tf.float32)
  273
          preds = tf.argmax(logits, axis=-1, output type=tf.int32)
  274
          probs = tf.nn.softmax(logits)
  275
          log_probs = tf.nn.log_softmax(logits)
  276
          label log probs = -tf.reduce sum(log probs * oh labels, axis=-1)
  277
          numerator = tf.reduce_sum(weights * label_log_probs)
          denominator = tf.reduce_sum(weights) + 1e-6
  278
          loss = numerator / denominator
  279
          SoftmaxOutput = collections.namedtuple(
  280
  281
              "SoftmaxOutput", ["logits", "probs", "loss", "per_example_loss", "preds",
  282
                                 "weights"])
  283
          return SoftmaxOutput(
  284
              logits=logits, probs=probs, per example loss=label log probs,
              loss=loss, preds=preds, weights=weights)
```

[run_pretraining.py]

```
class TwoTowerClozeTransformer(object):
 """Build a two-tower Transformer used as Electric's generator."""
 def __init__(self, config, bert_config, inputs: pretrain_data.Inputs,
              is training, embedding size):
   ltr = build transformer(
        config, inputs, is_training, bert_config,
        untied_embeddings=config.untied_generator_embeddings,
        embedding size=(None if config.untied generator embeddings
                       else embedding size),
        scope="generator_ltr", ltr=True)
   rtl = build transformer(
        config, inputs, is_training, bert_config,
       untied embeddings=config.untied generator embeddings,
        embedding_size=(None if config.untied_generator_embeddings
                        else embedding size),
        scope="generator_rtl", rtl=True)
   ltr reprs = ltr.get sequence output()
   rtl_reprs = rtl.get_sequence_output()
   self._sequence_output = tf.concat([roll(ltr_reprs, -1),
                                      roll(rtl_reprs, 1)], -1)
   self._embedding_table = ltr.embedding_table
 def get sequence output(self):
   return self._sequence_output
 def get embedding table(self):
    return self. embedding table
```


Figure 1: Illustration of the model. Block_i is a standard transformer decoder block. Green blocks operate left to right by masking future time-steps and blue blocks operate right to left. At the top, states are combined with a standard multi-head self-attention module whose output is fed to a classifier that predicts the center token.

Figure 2: Illustration of fine-tuning for a singlesentence task where the output of the first and last token is fed to a task-specific classifier (W). Masking for the final combination layer (comb) is removed which results in representations based on all forward and backward states (cf. Figure 1).

Cloze-driven Pretraining of Self-attention Networks

```
def get_generator_config(config: configure_pretraining.PretrainingConfig,
338
                               bert config: modeling.BertConfig):
339
        """Get model config for the generator network."""
340
        gen config = modeling.BertConfig.from dict(bert config.to dict())
341
        gen_config.hidden_size = int(round(
342
            bert_config.hidden_size * config.generator_hidden_size))
343
        gen config.num hidden layers = int(round(
344
            <u>bert config.num hidden layers * config.generator layers)</u>)
345
346
        gen_config.intermediate_size = 4 * gen_config.hidden_size
347
        gen config.num attention heads = max(1, gen config.hidden size // 64)
        return gen config
348
```

[Generator setting]

[run_pretraining.py]

```
else:
```

```
# full-sized masked language model generator if using BERT objective or if
# the generator and discriminator have tied weights

generator = build_transformer(
    config, masked_inputs, is_training, self._bert_config,
    embedding_size=embedding_size)

mlm_output = self._get_masked_lm_output(masked_inputs, generator)
```

```
def get_bert_config(config):
        """Get model hyperparameters based on a pretraining/finetuning config"""
       if config.model_size == "large":
         args = {"hidden size": 1024, "num hidden layers": 24}
        elif config.model size == "base":
         args = {"hidden_size": 768, "num_hidden_layers": 12}
        elif config.model size == "small":
102
         args = {"hidden_size": 256, "num_hidden_layers": 12}
104
        else:
         raise ValueError("Unknown model size", config.model_size)
        args["vocab size"] = config.vocab size
        args.update(**config.model_hparam_overrides)
        # by default the ff size and num attn heads are determined by the hidden size
        args["num attention heads"] = max(1, args["hidden size"] // 64)
        args["intermediate size"] = 4 * args["hidden size"]
110
        args.update(**config.model_hparam_overrides)
111
        return modeling.BertConfig.from dict(args)
112
```

Discriminator D input 생성

```
fake_data = self._get_fake_data(masked_inputs, mlm_output.logits)

self.mlm_output = mlm_output

self.total_loss = config.gen_weight * (
    cloze_output.loss if config.two_tower_generator else mlm_output.loss)

[Update Generator loss]
```

```
[MASK]에서 p_G(x_t|x)으로 샘플링한 토큰으로 치환(corrupt)oxed{x}^{corrupt} = REPLACE(x,m,\hat{x}) \ \hat{x} \sim p_G(x_i|x^{masked}) \ for \ i \ \in m
```

```
FakedData = collections.namedtuple("FakedData", [
    "inputs", "is_fake_tokens", "sampled_tokens"])
    [FakedData Structure]
```

Pretrain-Model - Discriminator

```
# Discriminator
 99
          disc output = None
100
          if config.electra_objective or config.electric_objective:
101
            discriminator = build_transformer(
102
                config, fake_data.inputs, is_training, self._bert_config,
103
                reuse=not config.untied_generator, embedding_size=embedding_size)
104
            disc_output = self._get_discriminator_output(
105
                fake_data.inputs, discriminator, fake_data.is_fake_tokens,
106
107
                cloze_output)
            self.total_loss += config.disc_weight * disc_output.loss
108
                                                                 [run_pretraining.py]
```

Pretrain-Model - Discriminator

```
183
        def get discriminator output(
            self, inputs, discriminator, labels, cloze_output=None):
184
          """Discriminator binary classifier."""
185
          with tf.variable scope("discriminator predictions"):
186
            hidden = tf.layers.dense(
187
188
                discriminator.get sequence output().
189
                units=self. bert config.hidden size,
                activation=modeling.get_activation(self._bert_config.hidden_act),
190
                kernel initializer=modeling.create initializer(
191
                    self._bert_config.initializer_range))
193
            logits = tf.squeeze(tf.layers.dense(hidden, units=1), -1)
            if self. config.electric objective:
194
195
              log a = tf.reduce sum(
196
                  tf.nn.log softmax(cloze output.logits) * tf.one hot(
197
                      inputs.input_ids, depth=self._bert_config.vocab_size,
198
                      dtvpe=tf.float32), -1)
              log q = tf.stop gradient(log q)
199
              logits += log a
200
              logits += tf.log(self. config.mask prob / (1 - self. config.mask prob))
201
202
            weights = tf.cast(inputs.input mask, tf.float32)
204
            labelsf = tf.cast(labels, tf.float32)
            losses = tf.nn.sigmoid_cross_entropy_with_logits(
205
                logits=logits, labels=labelsf) * weights
            per_example_loss = (tf.reduce_sum(losses, axis=-1) /
207
208
                                (1e-6 + tf.reduce sum(weights, axis=-1)))
            loss = tf.reduce_sum(losses) / (1e-6 + tf.reduce_sum(weights))
209
            probs = tf.nn.sigmoid(logits)
210
            preds = tf.cast(tf.round((tf.sign(logits) + 1) / 2), tf.int32)
211
            DiscOutput = collections.namedtuple(
212
213
                "DiscOutput", ["loss", "per example loss", "probs", "preds",
214
                               "labels"])
```

Target Class (이진)

• Original : 원본 문장의 토큰과 같은 토큰

• Replaced : generator G가 만든 토큰

$$D(x^{corrupt},t) = sigmoid(w^T h_D(x^{corrupt})_t)$$
[Discriminator 공식]

Finetune-Model

```
def model fn(features, labels, mode, params):
  """The `model fn` for TPUEstimator."""
 utils.log("Building model...")
 is_training = (mode == tf.estimator.ModeKeys.TRAIN)
 model = FinetuningModel(
     config, tasks, is_training, features, num_train_steps)
# Add specific tasks
self.outputs = {"task_id": features["task_id"]}
losses = []
for task in tasks:
  with tf.variable_scope("task_specific/" + task.name):
    task_losses, task_outputs = task.get_prediction_module(
                                                                   Classification_tasks
        bert model, features, is training, percent done)
                                                                   Qa tasks
    losses.append(task_losses)
                                                                    Tagging_tasks
    self.outputs[task.name] = task_outputs
self.loss = tf.reduce sum(
    tf.stack(losses, -1) *
    tf.one_hot(features["task_id"], len(config.task_names)))
                                                                                                            [run_finetuning.py]
```

Thank you

Reference

ELECTRA-Code - https://github.com/google-research/electra

Vocab - https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt

Tokenizer - https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json

Paper

ELECTRA - https://arxiv.org/abs/2003.10555

BERT - https://arxiv.org/abs/1810.04805

Attention - https://arxiv.org/abs/1706.03762

Seq2Seq - https://arxiv.org/abs/1409.3215

LSTM / RNN

https://static.googleusercontent.com/media/research.google.com/ko//pubs/archive/43905.pdf

Cloze-driven Pretraining of Self-attention Networks (Two Tower Cloze Transformer) https://arxiv.org/abs/1903.07785