Wahrscheinlichkeitstheorie und Statistik

Definitionen und Sätze

Prof. Dr. Christoph Karg

Studiengang Informatik Hochschule Aalen

Sommersemester 2024

Diskreter Wahrscheinlichkeitsraum

Definition 1.1 Sei Ω eine endliche oder abzählbar unendliche Menge. Sei $Pr: \Omega \mapsto \mathbb{R}$ eine Abbildung.

 (Ω, Pr) ist ein diskreter Wahrscheinlichkeitsraum, falls folgende Bedingungen erfüllt sind:

- 1. Für alle $\omega \in \Omega$ gilt: $0 \le Pr[\omega] \le 1$.
- 2. $\sum_{\omega \in \Omega} Pr[\omega] = 1$.

Ereignis

Definition 1.2. Sei (Ω, Pr) ein diskreter Wahrscheinlichkeitsraum. Eine Menge $A \subseteq \Omega$ heißt Ereignis. Die Wahrscheinlichkeit Pr[A] des Ereignisses A ist definiert als

$$Pr[A] = \sum_{\omega \in A} Pr[\omega].$$

Prinzip von Laplace

Prinzip von Laplace:

Wenn nichts dagegen spricht, kann man davon ausgehen, dass alle Elementarereignisse gleich wahrscheinlich sind.

Formal: Für alle $\omega \in \Omega$ gilt:

$$Pr[\omega] = \frac{1}{\|\Omega\|}.$$

Voraussetzung: $\|\Omega\| < \infty$

Additionssatz

Satz 2.1 (Additionssatz) Für zwei disjunkte Ereignisse *A* und *B* gilt:

$$Pr[A \cup B] = Pr[A] + Pr[B]$$
.

Allgemein: Sind die Ereignisse A_1, \ldots, A_n paarweise disjunkt, dann gilt:

$$Pr\left[\bigcup_{i=1}^{n} A_{i}\right] = \sum_{i=1}^{n} Pr[A_{i}].$$

Für eine unendliche Menge von disjunkten Ereignissen A_1, A_2, \ldots gilt:

$$Pr\left[\bigcup_{i=1}^{\infty} A_i\right] = \sum_{i=1}^{\infty} Pr[A_i].$$

Elementare Rechenregeln

Satz 2.2 Für zwei beliebige Ereignisse *A* und *B* gilt:

- 1. $Pr[\emptyset] = 0, Pr[\Omega] = 1.$
- 2. $0 \le Pr[A] \le 1$.
- 3. $Pr[\overline{A}] = 1 Pr[A]$.
- 4. Wenn $A \subseteq B$, dann $Pr[A] \le Pr[B]$.

Siebformel

Satz 2.3 (Siebformel) Für zwei Ereignisse *A* und *B* gilt:

$$Pr[A \cup B] = Pr[A] + Pr[B] - Pr[A \cap B]$$
.

Für drei Ereignisse A_1, A_2 und A_3 gilt:

$$Pr[A_{1} \cup A_{2} \cup A_{3}]$$

$$= Pr[A_{1}] + Pr[A_{2}] + Pr[A_{3}]$$

$$-Pr[A_{1} \cap A_{2}] - Pr[A_{1} \cap A_{3}]$$

$$-Pr[A_{2} \cap A_{3}] + Pr[A_{1} \cap A_{2} \cap A_{3}]$$

Allgemein: Für $n \ge 2$ Ereignisse A_1, \ldots, A_n gilt:

$$Pr[A_1 \cup \ldots \cup A_n]$$

$$= \sum_{S \subseteq \{1,\ldots,n\}} (-1)^{\|S\|+1} Pr\left[\bigcap_{i \in S} A_i\right]$$

Bedingte Wahrscheinlichkeiten

Definition 3.1 Gegeben sind die Ereignisse A und B, wobei Pr[B] > 0.

Die bedingte Wahrscheinlichkeit Pr[A|B] von A gegeben B ist definiert durch

$$Pr[A|B] = \frac{Pr[A \cap B]}{Pr[B]}.$$

Multiplikationssatz

Satz 3.5 (Multiplikationssatz) Gegeben sind die Ereignisse

 A_1, \ldots, A_n . Angenommen,

$$Pr[A_1 \cap \ldots \cap A_n] > 0.$$

Dann gilt:

$$Pr[A_1 \cap \ldots \cap A_n] = Pr[A_1] \cdot Pr[A_2|A_1] \cdot Pr[A_3|A_1 \cap A_2]$$
$$\cdot \ldots \cdot Pr[A_n|A_1 \cap \ldots \cap A_{n-1}].$$

Beispiel: Geburtstagsproblem

Approximation von 1-x durch e^{-x}

Beispiel: Geburtstagsproblem (Forts.)

Satz der totalen Wahrscheinlichkeit

Satz 3.7 (Satz der totalen Wahrscheinlichkeit) Angenommen die Ereignisse A_1, \ldots, A_n bilden eine Partition von Ω , d.h. $\bigcup_{i=1}^n A_i = \Omega$ und für alle $i \neq j$ gilt $A_i \cap A_i = \emptyset$.

Dann gilt für jedes Ereignis $B \subseteq \Omega$:

$$Pr[B] = \sum_{i=1}^{n} Pr[B|A_i] \cdot Pr[A_i].$$

Satz von Bayes

Satz 3.9 (Satz von Bayes) Gegeben sind die paarweise disjunkten Ereignisse A_1, \ldots, A_n . Falls $B \subseteq A_1 \cup \ldots \cup A_n$ mit Pr[B] > 0, dann ist für ein beliebiges $i \in \{1, \ldots, n\}$

$$Pr[A_i|B] = \frac{Pr[B|A_i] Pr[A_i]}{Pr[B]}$$
$$= \frac{Pr[B|A_i] \cdot Pr[A_i]}{\sum_{i=1}^{n} Pr[B|A_i] Pr[A_i]}.$$

Satz von Bayes (Forts.)

Satz 3.9 (Satz von Bayes) Für eine unendliche Folge von paarweise disjunkten Ereignissen A_1, A_2, \ldots mit $B \subseteq \bigcup_{i=1}^{\infty} A_i$ gilt analog, dass

$$Pr[A_i|B] = \frac{Pr[B|A_i] Pr[A_i]}{Pr[B]}$$
$$= \frac{Pr[B|A_i] \cdot Pr[A_i]}{\sum_{j=1}^{\infty} Pr[B|A_j] Pr[A_j]}.$$

Unabhängige Ereignisse

Definition 4.1 (Unabhängigheit) Die Ereignisse *A* und *B* sind unabhängig, falls

$$Pr[A \cap B] = Pr[A] Pr[B]$$

gilt.

Konsequenz: Für zwei unabhängige Ereignisse *A* und *B* gilt:

$$Pr[A|B] = Pr[A]$$
.

Unabhängige Ereignisse (Forts.)

Definition 4.3 (Unabhängigkeit) Die Ereignisse A_1, \ldots, A_n sind unabhängig, wenn für alle Teilmengen $S \subseteq \{1, \ldots, n\}$ gilt, dass

$$Pr\left[\bigcap_{i\in S}A_i\right]=\prod_{i\in S}Pr\left[A_i\right].$$

Eine nützliche Eigenschaft

Notation: $A^0 = \overline{A}$ und $A^1 = A$.

Satz 4.4 Seien A_1, \ldots, A_n beliebige Ereignisse. Sei $k \in \{1, \ldots, n\}$ und sei $\{i_1, \ldots, i_k\} \subseteq \{1, \ldots, n\}$ eine beliebige Auswahl von Indizes.

Angenommen, für alle $(b_1, \ldots, b_n) \in \{0, 1\}^n$ gilt:

$$Pr\left[A_1^{b_1}\cap\ldots\cap A_n^{b_n}\right]=Pr\left[A_1^{b_1}\right]\cdot\ldots\cdot Pr\left[A_n^{b_n}\right].$$

Dann gilt für alle $(b_{i_1},\ldots,b_{i_k})\in\{0,1\}^k$, dass

$$Pr\left[A_{i_1}^{b_{i_1}}\cap\ldots\cap A_{i_k}^{b_{i_k}}\right]=Pr\left[A_{i_1}^{b_{i_1}}\right]\cdot\ldots\cdot Pr\left[A_{i_k}^{b_{i_k}}\right].$$

Nachweis der Unabhängigkeit von Ereignissen

Satz 4.5 Die Ereignisse A_1, \ldots, A_n sind genau dann unabhängig, wenn für alle $(b_1, \ldots, b_n) \in \{0, 1\}^n$ gilt, dass

$$Pr\left[A_1^{b_1}\cap\ldots\cap A_n^{b_n}\right] = Pr\left[A_1^{b_1}\right]\cdot\ldots\cdot Pr\left[A_n^{b_n}\right],$$

wobei $A_i^0 = \overline{A}_i$ und $A_i^1 = A_i$.

Kombination von unabhängigen Ereignissen

Satz 4.6 Sind A, B und C unabhängige Ereignisse, dann sind auch $A \cap B$ und C bzw. $A \cup B$ und C unabhängige Ereignisse.

Zufallsvariable

Definition 5.1 (Diskrete Zufallsvariable)

Gegeben ist ein diskreter Wahrscheinlichkeitsraum (Ω, Pr) .

Eine Abbildung $X : \Omega \mapsto \mathbb{R}$ heißt diskrete Zufallsvariable (über (Ω, Pr)).

Bedingte Zufallsvariable

Definition 5.2 (Bedingte Zufallsvariable) Sei X eine Zufallsvariable und A ein Ereignis mit Pr[A] > 0. Die bedingte Zufallsvariable X|A besitzt die Dichte

$$f_{X|A}(x) = Pr[X = x|A] = \frac{Pr[X^{-1}(x) \cap A]}{Pr[A]}.$$

Dichte und Verteilung einer Zufallsvariablen

Definition 5.3 (Dichte und Verteilung) Sei X eine diskrete Zufallsvariable über dem Wahrscheinlichkeitsraum Ω .

Die Dichtefunktion (kurz: Dichte) von X ist die Funktion $f_X : \mathbb{R} \mapsto [0;1]$ mit

$$f_X(x) = Pr[X = x] = \sum_{\omega \in X^{-1}(x)} Pr[\omega].$$

Die Verteilungsfunktion (kurz: Verteilung) von X ist die Funktion $F_X: \mathbb{R} \mapsto [0;1]$ mit

$$F_X(x) = Pr[X \le x] = \sum_{x' \le x} Pr[X = x'].$$

Beispiel: Summe zweier Würfel

Dichte der Augensumme zweier Würfel

Beispiel: Summe zweier Würfel (Forts.)

Kombination Zufallsvariable und Funktion

Satz 5.7 Sei X eine Zufallsvariable über dem Wahrscheinlichkeitsraum Ω und sei $f: \mathbb{R} \mapsto \mathbb{R}$ eine beliebige Abbildung. Dann ist f(X) eine Zufallsvariable über Ω .

Erwartungswert

Definition 6.1 (Erwartungswert) Der Erwartungswert Exp[X] einer diskreten Zufallsvariablen X ist definiert als

$$Exp[X] = \sum_{x \in W_X} x \cdot Pr[X = x]$$
$$= \sum_{x \in W_X} x \cdot f_X(x)$$

vorausgesetzt die obige Summe konvergiert absolut.

Berechnung von Erwartungswerten

Satz 6.4 Sei X eine diskrete Zufallsvariable. Sei A_1, \ldots, A_n eine Partition des Ereignisraums Ω .

Angenommen, es gilt $Pr[A_i] > 0$ für alle $i \in \{1, ..., n\}$.

Dann ist:

$$Exp\left[X\right] = \sum_{i=1}^{n} Exp\left[X|A_{i}\right] \cdot Pr\left[A_{i}\right].$$

Berechnung von Erwartungswerten (Forts.)

Satz 6.4 (Variante 2) Sei X eine diskrete Zufallsvariable. Sei A_1, A_2, A_3, \ldots eine Partition des Ereignisraums Ω .

Angenommen, es gilt $Pr[A_i] > 0$ für alle $i \in \{1, 2, 3, ...\}$, die Erwartungswerte $Exp[X|A_i]$ existieren und die Summe $\sum_{i=1}^{\infty} Exp[X|A_i] \cdot Pr[A_i]$ konvergiert.

Dann ist:

$$Exp\left[X\right] = \sum_{i=1}^{\infty} Exp\left[X|A_i\right] \cdot Pr\left[A_i\right].$$

Berechnung von Erwartungswerten (Forts.)

Satz 6.6 Sei X eine Zufallsvariable, deren Erwartungswert existiert.

Dann gilt:

$$Exp[X] = \sum_{\omega \in \Omega} X(\omega) \cdot Pr[\omega].$$

Monotonie des Erwartungswerts

Satz 6.7 (Monotonie des Erwartungswerts) Seien X und Y Zufallsvariablen über dem Wahrscheinlichkeitsraum Ω .

Falls für alle $\omega \in \Omega$ die Ungleichung $X(\omega) \leq Y(\omega)$ gilt, dann gilt $Exp[X] \leq Exp[Y]$.

Linearität des Erwartungswerts

Satz 6.8 (Linearität des Erwartungswerts) Sei X eine Zufallsvariable und seien $a, b \in \mathbb{R}$ beliebige Zahlen.

Dann gilt:

$$Exp[a \cdot X + b] = a \cdot Exp[X] + b.$$

Nochmals Berechnung von Erwartungswerten

Satz 6.9 Sei X eine Zufallsvariable mit $W_X \subseteq \mathbb{N}_0$.

Dann gilt:

$$Exp[X] = \sum_{i=1}^{\infty} Pr[X \ge i].$$

Linearität des Erwartungswerts

Satz 6.10 (Linearität des Erwartungswerts) Seien X_1, \ldots, X_n Zufallsvariablen und $a_1, \ldots, a_n \in \mathbb{R}$ beliebige Zahlen.

Für die Zufallsvariable $X = a_1 X_1 + ... + a_n X_n$ gilt:

$$Exp[X] = a_1 \cdot Exp[X_1] + \ldots + a_n \cdot Exp[X_n].$$

Multipikativität des Erwartungswerts

Satz 6.12 (Multiplikativität des Erwartungswerts) Für unabhängige Zufallsvariablen X_1, \ldots, X_n gilt

$$Exp[X_1 \cdot \ldots \cdot X_n] = Exp[X_1] \cdot \ldots \cdot Exp[X_n].$$

Varianz und Standardabweichung

Definition 7.2 (Varianz) Sei X eine Zufallsvariable mit dem Erwartungswert $\mu = Exp[X]$.

Die Varianz Var[X] von X ist definiert als

$$Var[X] = Exp[(X - \mu)^2]$$

=
$$\sum_{x \in W_X} (x - \mu)^2 \cdot Pr[X = x].$$

Definition 7.3 (Standardabweichung) Die Standardabweichung (Streuung) von X ist definiert als

$$\sigma_X = \sqrt{Var[X]}$$
.

Berechnung der Varianz

Satz 7.6 Für eine beliebige Zufallsvariable X gilt

$$Var[X] = Exp[X^2] - Exp[X]^2$$
.

Varianz einer linearen Funktion

Satz 7.8 Für eine beliebige Zufallsvariable X und $a,b \in \mathbb{R}$ gilt

$$Var[a \cdot X + b] = a^2 \cdot Var[X]$$
.

Varianz unabhängiger Zufallsvariablen

Satz 7.10 Seien X_1, \ldots, X_n unabhängige Zufallsvariablen. Sei

$$X = X_1 + \ldots + X_n$$
.

Dann gilt:

$$Var[X] = Var[X_1] + \ldots + Var[X_n].$$

Gleichverteilung

Eine Zufallsvariable X mit $W_X = \{1, 2, ..., n\}$, $n \in \mathbb{N}$, ist gleichverteilt, falls

$$f_X(k)=\frac{1}{n}$$

für alle $k \in \{1, 2, ..., n\}$.

- $Exp[X] = \frac{n+1}{2}$
- $Var[X] = \frac{n^2 1}{12}$

Bernoulli-Verteilung

Eine Zufallsvariable X mit $W_X = \{0, 1\}$ ist Bernoulli-verteilt mit dem Parameter p, $0 \le p \le 1$, symbolisch $X \sim \text{Ber}(p)$, falls

$$f_X(x) = \begin{cases} p & x = 1, \\ 1 - p & x = 0. \end{cases}$$

- Exp[X] = p
- $Var[X] = p p^2$

Binomialverteilung

Eine Zufallsvariable X mit $W_X = \{0, 1, 2, ..., n\}$ ist binomialverteilt mit den Parametern n und p, symbolisch $X \sim \text{Bin}(n, p)$, falls

$$Pr[X=k] = \binom{n}{k} p^k (1-p)^{n-k}$$

für alle k = 0, 1, 2, ..., n.

- $Exp[X] = n \cdot p$
- $Var[X] = n \cdot p \cdot (1 p)$

Binomialverteilung (Forts.)

Binomialverteilung (Forts.)

Satz 9.1 Wenn $X \sim \text{Bin}(n_X, p)$ und $Y \sim \text{Bin}(n_Y, p)$, dann gilt für Z = X + Y, dass $Z \sim \text{Bin}(n_X + n_Y, p)$.

Geometrische Verteilung

Eine Zufallsvariable X mit $W_X = \mathbb{N}$ ist geometrisch verteilt mit dem Parameter p, symbolisch $X \sim \text{Geo}(p)$, falls

$$Pr[X=k] = (1-p)^{k-1} \cdot p$$

für alle $k \in \mathbb{N}$

- $Exp[X] = \frac{1}{p}$ $Var[X] = \frac{1-p}{p^2}$

Geometrische Verteilung (Forts.)

Geometrische Verteilung (Forts.)

Satz 9.2 (Gedächtnislosigkeit) Falls $X \sim \text{Geo}(p)$, dann gilt

$$Pr[X > y + x \mid X > x] = Pr[X > y].$$

Poisson Verteilung

Eine Zufallsvariable X mit $W_X = \mathbb{N}_0$ ist Poisson verteilt mit dem Parameter λ , symbolisch $X \sim \text{Poi}(\lambda)$, falls

$$Pr[X = k] = \frac{e^{-\lambda}\lambda^k}{k!}$$

für alle $k \in \mathbb{N}_0$.

- $Exp[X] = \lambda$
- $Var[X] = \lambda$

Poisson Verteilung (Forts.)

Poisson Verteilung (Forts.)

Gesetz der seltenen Ereignisse: Für alle $\lambda \in \mathbb{N}$ gilt:

$$\lim_{n\to\infty} \binom{n}{k} \left(\frac{\lambda}{n}\right)^k \left(1 - \frac{\lambda}{n}\right)^{n-k} = \frac{\lambda^k}{k!} e^{-\lambda}$$

Poisson Verteilung (Forts.)

Satz 9.5 (Summe von Poisson Verteilungen) Seien X_1, \ldots, X_n unabhängige Zufallsvariablen, wobei $X_i \sim \text{Poi}(\lambda_i)$ für alle $i = 1, \ldots, n$. Sei $X = X_1 + \ldots + X_n$. Dann gilt: $X \sim \text{Poi}(\lambda_1 + \ldots + \lambda_n)$.

Hypergeometrische Verteilung

Seien N, M, n näturliche Zahlen mit der Eigenschaft $M \le N$ und n < N.

Die Zufallsvariable X ist hypergeometrisch verteilt mit den Parametern N, M und n (symbolisch: $X \sim \text{Hyp}(N, M, n)$), falls

$$Pr[X = k] = \frac{\binom{M}{k} \binom{N-M}{n-k}}{\binom{N}{n}}$$

für alle $k \in \{0, 1, ..., n\}$.

- $Exp[X] = \frac{n \cdot M}{N}$
- $Var[X] = \frac{n \cdot M}{N!} \left(1 \frac{M}{N}\right) \frac{N-n}{N-1}$

Hypergeometrische Verteilung (Forts.)

Markov Ungleichung

Satz 10.1 (Markov Ungleichung) Sei X eine Zufallsvariable, die nur nicht-negative Werte annimmt.

Dann gilt für alle $t \in \mathbb{R}$ mit t > 0, dass

$$Pr[X \ge t] \le \frac{Exp[X]}{t}.$$

Äquivalent:

$$Pr[X \ge t \cdot Exp[X]] \le \frac{1}{t}.$$

Ungleichung von Chebyshev

Satz 10.2 (Ungleichung von Chebyshev) Sei X eine Zufallsvariable und $t \in \mathbb{R}$ mit t > 0.

Dann gilt

$$Pr[|X - Exp[X]| \ge t] \le \frac{Var[X]}{t^2}.$$

Beispiel Glücksrad

Stetige Zufallsvariable

Definition 11.2 (Stetige Zufallsvariable)

Eine stetige Zufallsvariable X ist definiert durch eine integrierbare Dichtefunktion $f_X : \mathbb{R} \mapsto \mathbb{R}_0^+$ mit der Eigenschaft

$$\int_{-\infty}^{\infty} f_X(x) \ dx = 1.$$

Die zu f_X gehörende Verteilungsfunktion F_X ist definiert als

$$F_X(x) = Pr[X \le x] = \int_{-\infty}^x f_X(t) dt$$

Ereignis

Definition 11.3 (Ereignis)

Sei X eine stetige Zufallsvariable.

Eine Menge $A \subseteq \mathbb{R}$, die durch Vereinigung $A = \bigcup_k I_k$ abzählbar vieler paarweise disjunkter Intervalle beliebiger Art (offen, halboffen, geschlossen, einseitig unendlich) gebildet werden kann, heißt Ereignis.

Das Ereignis A tritt ein, wenn X einen Wert aus A annimmt. Die Wahrscheinlichkeit von A ist definiert als

$$Pr[A] = \int_A f_X(x) dx = \sum_k \int_{I_k} f_X(x) dx.$$

Erwartungswert und Varianz

Definition 11.7 (Erwartungswert und Varianz)

Sei X eine stetige Zufallsvariable. Der Erwartungswert von X ist

$$Exp[X] = \int_{-\infty}^{\infty} t \cdot f_X(t) dt,$$

falls das Integral $\int_{-\infty}^{\infty} |t| \cdot f_X(t) dt$ endlich ist.

Die Varianz von X ist

$$Var[X] = Exp[(X - Exp[X])^{2}]$$
$$= \int_{-\infty}^{\infty} (t - Exp[X])^{2} f_{X}(t) dt,$$

wenn $Exp\left[(X - Exp\left[X\right])^2\right]$ existiert.

Formel zur Berechnung des Erwartungswerts

Satz 11.8 Sei X eine stetige Zufallsvariable und sei $g: \mathbb{R} \to \mathbb{R}$ eine Abbildung. Für die Zufallsvariable Y = g(X) gilt:

$$Exp[Y] = \int_{-\infty}^{\infty} g(t) \cdot f_X(t) dt.$$

Gleichverteilung

Die stetige Zufallsvariable X ist gleichverteilt über dem Intervall [a, b], wobei a < b, falls sie die Dichte

$$f_X(x) = \begin{cases} \frac{1}{b-a} & x \in [a;b], \\ 0 & \text{sonst.} \end{cases}$$

besitzt. Die entsprechende Verteilung ist:

$$F_X(x) = \begin{cases} 0 & x < a, \\ \frac{x-a}{b-a} & a \le x \le b, \\ 1 & x > b. \end{cases}$$

•
$$Exp[X] = \frac{a+b}{2}$$

•
$$Exp[X] = \frac{a+b}{2}$$

• $Var[X] = \frac{(a-b)^2}{12}$

Normalverteilung

Eine stetige Zufallsvariable X ist normalverteilt mit den Parametern $\mu \in \mathbb{R}$ und $\sigma \in \mathbb{R}$, symbolisch $X \sim \mathcal{N}(\mu, \sigma^2)$, falls sie die Dichte

$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \cdot \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

besitzt. Hierbei ist $\exp(x) = e^x$. Anstatt $f_X(x)$ schreibt man auch $\varphi(x; \mu, \sigma)$.

 $\mathcal{N}(0,1)$ nennt man die Standardnormalverteilung.

Normalverteilung (Forts.)

Die Verteilungsfunktion von $X \sim \mathcal{N}(\mu, \sigma^2)$ ist

$$\Phi(\textbf{x}; \mu, \sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} \int_{-\infty}^{\textbf{x}} \exp\left(-\frac{(t-\mu)^2}{2\sigma^2}\right) \, dt$$

Diese Funktion nennt man Gauß'sche Phi-Funktion. Falls $\mu=0$ und $\sigma=1$, dann schreibt man kurz $\Phi(x)$.

- $Exp[X] = \mu$
- $Var[X] = \sigma^2$

Normalverteilung (Forts.)

Transformation einer Normalverteilung

Satz 12.2 Sei X eine normalverteilte Zufallsvariable mit $X \sim \mathcal{N}(\mu, \sigma^2)$.

Dann gilt für beliebige $a \in \mathbb{R} - \{0\}$ und $b \in \mathbb{R}$, dass Y = aX + b normalverteilt ist mit $Y \sim \mathcal{N}(a\mu + b, a^2\sigma^2)$.

Additivität der Normalverteilung

Satz 12.5 (Additivität der Normalverteilung) Die

Zufallsvariablen X_1, \ldots, X_n seien unabhängig und normalverteilt mit den Parametern μ_i und σ_i für $i = 1, \ldots, n$.

Dann ist die Zufallsvariable

$$Z = a_1 X_1 + \ldots + a_n X_n$$

normalverteilt mit Erwartungswert $\mu = a_1 \mu_1 + \ldots + a_n \mu_n$ und Varianz $\sigma^2 = a_1^2 \sigma_1^2 + \ldots + a_n^2 \sigma_n^2$.

Exponentialverteilung

Eine Zufallsvariable X ist exponentialverteilt mit Parameter $\lambda \in \mathbb{R}$, symbolisch $X \sim \mathcal{EXP}(\lambda)$, falls sie die Dichte

$$f_X(x) = \begin{cases} \lambda \cdot e^{-\lambda x} & x \ge 0, \\ 0 & \text{sonst} \end{cases}$$

besitzt.

Die Verteilungsfunktion einer exponentialverteilten Zufallsvariable X ist für x > 0

$$F_X(x) = \int_0^x \lambda e^{-\lambda t} dt = 1 - e^{-\lambda x}.$$

Für x < 0 ist $F_X(x) = 0$.

Exponentialverteilung (Forts.)

Angenommen, $X \sim \text{Exp}(\lambda)$.

Dann gilt:

- $Exp[X] = \frac{1}{\lambda}$
- $Var[X] = \frac{1}{\lambda^2}$

Exponentialverteilung (Forts.)

Multiplikation mit einer Konstanten

Satz 12.7 Sei X eine exponentialverteilte Zufallsvariable mit Parameter λ .

Für jedes a > 0 ist die Zufallsvariable Y = aX exponentialverteilt mit Parameter $\frac{\lambda}{a}$.

Gedächtnislosigkeit

Satz 12.8 (Gedächtnislosigkeit) Eine stetige Zufallsvariable X mit Wertebereich \mathbb{R}^+ ist genau dann exponentialverteilt, wenn für alle x,y>0 gilt:

$$Pr[X > x + y \mid X > y] = Pr[X > x].$$

Satz 12.9 Gegeben sind die paarweise unabhängigen Zufallsvariablen X_1, \ldots, X_n .

Angenommen, X_i ist exponentialverteilt mit Parameter λ_i für $i=1,\ldots,n$.

Dann ist die Zufallsvariable $X = \min\{X_1, \dots, X_n\}$ exponentialverteilt mit dem Parameter $\lambda_1 + \dots + \lambda_n$.

Der Zentrale Grenzwertsatz

Satz 13.1 (Zentraler Grenzwertsatz) Angenommen, die Zufallsvariablen X_1, \ldots, X_n besitzen jeweils dieselbe Verteilung und seien unabhängig. Erwartungswert und Varianz von X_i existieren für $i=1,\ldots,n$ und seien mit μ bzw. σ^2 bezeichnet, wobei $\sigma^2>0$ gelten soll.

Betrachte die Zufallsvariablen $Y_n = X_1 + ... + X_n$ für $n \ge 1$. Es gilt: Die Folge der Zufallsvariablen

$$Z_n = \frac{Y_n - n\mu}{\sqrt{\sigma^2 n}}$$

konvergiert gegen die Standardnormalverteilung. Formal: Für alle $x \in \mathbb{R}$ gilt:

$$\lim_{n\to\infty} \Pr\left[Z_n \le x\right] = \Phi(x).$$

Grenzwertsatz von DeMoivre

Satz 13.3 (Grenzwertsatz von DeMoivre) Die Zufallsvariablen X_1, \ldots, X_n seien Bernoulli-verteilt mit gleicher Erfolgswahrscheinlichkeit p. Dann gilt für die Zufallsvariable

$$H_n = X_1 + \ldots + X_n$$

dass die Verteilung der Zufallsvariablen

$$Z_n = \frac{H_n - np}{\sqrt{np(1-p)}}$$

für $n \to \infty$ gegen die Standardnormalverteilung konvergiert.