МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «Санкт-Петербургский национальный исследовательский университет ИТМО»

ФАКУЛЬТЕТ ПРОГРАММНОЙ ИНЖЕНЕРИИ И КОМПЬЮТЕРНЫХ ТЕХНОЛОГИЙ

ЛАБОРАТОРНАЯ РАБОТА №2

по дисциплине «ИНФОРМАТИКА»

Вариант № 82

Выполнил: Студент группы R3116 Митичев Иван Дмитриевич Преподаватель: Балакшин Павел Валерьевич

Содержание

Задание	
Основные этапы вычисления	
Вывод	7

Задание

Вариант			2	3		
82	87	10	38	78	81	294

	ALT	1	2	3	4	5	6	7
		r1	r2	i1	r3	i2	i3	i4
1.	87	0	0	1	1	1	1	0
1.	10	1	0	1	0	0	0	0
1	38	1	0	1	0	0	1	0
1	78	1	0	0	0	1	0	1

	ALT	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
		r1	r2	i1	r3	i2	i3	i4	r4	i5	i6	i7	i8	i9	i10	i11
2.	81	0	0	1	0	1	0	1	0	0	0	1	0	1	0	1

Основные этапы вычисления

Схема декодирования классического кода Хемминга (7;4):

<u>87</u>

Номер: 87	1	2	3	4	5	6	7	
Полученное сообщение:	0	0	1	1	1	1	0	
2 ^x	r_1	r_2	i ₁	r ₃	i ₂	i ₃	i ₄	S
1	0		1		1		0	0
2		0	1			1	0	0
4				1	1	1	0	1

Ошибка в разряде:4 Правильный код: 1110

<u>10</u>

Номер: 10	1	2	3	4	5	6	7	
Полученное сообщение:	1	0	1	0	0	0	0	
2 ^x	r_1	r ₂	i ₁	r ₃	i ₂	i ₃	İ4	S
1	1		1		0		0	0
2		0	1			0	0	1
4				0	0	0	0	0

Ошибка в разряде:2 Правильный код: 1000

<u>38</u>

Номер: 38	1	2	3	4	5	6	7	
Полученное сообщение:	1	0	1	0	0	1	0	
2 ^x	r_1	r ₂	i ₁	r ₃	i ₂	i ₃	i ₄	S
1	1		1		0		0	0
2		0	1			1	0	0
4				0	0	1	0	1

Ошибка в разряде:4

Правильный код: 1010 $\underline{78}$

Номер: 78	1	2	3	4	5	6	7	
Полученное сообщение:	1	0	0	0	1	0	1	
2 ^x	r_1	r ₂	i ₁	r ₃	i ₂	i ₃	İ ₄	S
1	1		0		1		1	1
2		0	0			0	1	1
4				0	1	0	1	0

Ошибка в разряде:3 Правильный код: 1101

Схема декодирования классического кода Хемминга (15;11):

Номер: 81(2)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
Сообщение:	0	0	1	0	1	0	1	0	0	0	1	0	1	0	1	
2 ^x	r_1	r ₂	i ₁	r ₃	i ₂	i ₃	İ4	r ₄	i ₅	i ₆	i ₇	i ₈	i ₉	i ₁₀	i ₁₁	S
1	0		1		1		1		0		1		1		1	0
2		0	1			0	1			0	1			0	1	0
4				0	1	0	1					0	1	0	1	0
8								0	0	0	1	0	1	0	1	1

Ошибка в разряде:8

Правильный код: 11010010101

Вычисление минимального числа проверочных разрядов и коэффициента избыточности для сообщения из 294-ех информационных разрядов

1 Найдем минимальное число проверочных разрядов по формуле:

$$2^r \ge r + i + 1$$

Где r – кол-во проверочных разрядов, i – кол-во информационных разрядов. Для сообщения из 744 информационных разрядов получаем:

$$2^r \ge r + 294 + 1$$

$$2^r \ge r + 295$$

При r=8, получаем: $2^r=256$; r+295=303

256 < 303, значит не подходит

При r=9, получаем: $2^r=512$; r+295=304

512 > 304, значит подходит

Таким образом, минимальное кол-во проверочных разрядов г для сообщения из 294 информационных разрядов равно 9.

2 Коэффициент избыточности — отношение числа проверочных разрядов (r) к общему числу разрядов n. Для сообщения из 294 информационных разрядов и 9 проверочных разрядов равно:

$$\frac{r}{n} = \frac{r}{r+i} = \frac{9}{9+294} = \frac{9}{303} = 0,0297029702970297$$

Вывод

В ходе выполнения работы я узнал о коде Хэмминга, о схемах кодирования и декодирования кода Хэмминга, научился выявлять ошибки с помощью кода Хэмминга и находить коэффициент избыточности, познакомился с операцией исключающего или.