What do algebras form?

Rebecca Wei

Northwestern University

Jan 25, 2017

Outline

- Question: What do algebras form?
- **Answer 1:** A category in categories (*HH*⁰)
- Derived Answer 1: A category in dg cocategories (Hochschild cochains...)
- **Answer 2:** A 2-category with a trace functor (HH_0)
- Derived Answer 2: A category in dg cocategories with a trace functor (Hochschild chains...)

Outline

- Question: What do algebras form?
- **Answer 1:** A category in categories (*HH*⁰)
- Derived Answer 1: A category in dg cocategories (Hochschild cochains...)
- **Answer 2:** A 2-category with a trace functor (HH_0)
- Derived Answer 2: A category in dg cocategories with a trace functor (Hochschild chains...) up to homotopy

- Objects: algebras A, B, ...
- 1-Morphisms: bimodules _AM_B
- 1-Composition: _AM_B ⊗_{B B}N_C
- 2-Morphisms: morphisms of bimodules

- Objects: algebras A, B, ...
- 1-Morphisms: ${}_fB$, $f:A\to B$ map of algebras
- 1-Composition: ${}_{A}M_{B} \otimes_{B} {}_{B}N_{C}$
- 2-Morphisms: morphisms of bimodules

- Objects: algebras A, B, ...
- 1-Morphisms: ${}_{f}B, f: A \rightarrow B$ map of algebras
- 1-Composition: ${}_AM_B \otimes_B {}_BN_C$
- 2-Morphisms:

$$\{\text{maps of bimodules }_f B \to_g B\} \cong Z_A({}_g B_f) \cong HH^0(A, {}_g B_f)$$

$$M \mapsto M(1)$$

$$(M_b: b' \mapsto b \cdot b') \leftarrow b$$

- Objects: algebras A, B, ...
- 1-Morphisms: ${}_{f}B, f: A \rightarrow B$ map of algebras
- 1-Composition: _AM_B ⊗_{B B}N_C
- 2-Morphisms:

$$\{\text{maps of bimodules }_f B \to_g B\} \cong Z_A({}_g B_f) \cong HH^0(A, {}_g B_f)$$

$$M \mapsto M(1)$$

$$(M_b: b' \mapsto b \cdot b') \leftarrow b$$

Can we use Hochschild cohomology or cochains instead of HH⁰?

4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 9 Q Q

Derived Answer 1: Algebras form a category in dg cocategories.

- Objects: algebras A, B, ...
- Morphisms: a dg cocategory Bar(Hoch(A, B))
- Composition:
 - : $Bar(Hoch(A, B)) \otimes Bar(Hoch(B, C)) \rightarrow Bar(Hoch(A, C))$ associative map of dg cocategories

Defining Bar(Hoch(A, B))

- Hoch(A, B) is a dg category with
 - Objects: algebra maps $f: A \rightarrow B$
 - Morphisms: $Hoch(A)(f,g) = (C^{\bullet}(A, {}_{f}B_{g}), {}_{f}\delta_{g})$
 - Composition: cup product on cochains

$$\phi \in C^{p}(A,_{f}B_{g})$$

$$\psi \in C^{q}(A,_{g}B_{h})$$

$$(\phi \cup \psi)(a_{1},...,a_{p+q}) = \pm \phi(a_{1},...,a_{p})\psi(a_{p+1},...,a_{q})$$

Rebecca Wei (Northwestern University)

Defining Bar(Hoch(A, B))

- Hoch(A, B) is a dg category with
 - Objects: algebra maps $f: A \rightarrow B$
 - Morphisms: $Hoch(A)(f,g) = (C^{\bullet}(A, {}_{f}B_{g}), {}_{f}\delta_{g})$
 - Composition: cup product on cochains
- ② Bar : DGCat → DGCocat

Defining Bar(Hoch(A, B))

- Hoch(A, B) is a dg category with
 - Objects: algebra maps $f: A \rightarrow B$
 - Morphisms: $Hoch(A)(f,g) = (C^{\bullet}(A, {}_{f}B_{g}), {}_{f}\delta_{g})$
 - Composition: cup product on cochains
- **9** $Bar: DGCat \rightarrow DGCocat$ Bar(Hoch(A,B)) has the same objects as Hoch(A,B).

A morphism from f_0 to f_n in Bar(Hoch(A,B))

$$\Delta(\phi_1...\phi_n) = \sum_{0 \le i \le n} \pm \phi_1...\phi_i \otimes \phi_{i+1}...\phi_n$$
$$|\phi_1...\phi_n| = \sum_{1 \le i \le n} |\phi_i| - n$$
$$d_{Bar(Hoch(A,B))} = \tilde{d}_{Hoch(A,B)} + d_{\cup}$$

Rebecca Wei (Northwestern University)

Derived Answer 1: Algebra form a category in dg cocategories.

- Objects: algebras A, B, ...
- Morphisms: a dg cocategory Bar(Hoch(A, B))
- Composition:
 - : $Bar(Hoch(A, B)) \otimes Bar(Hoch(B, C)) \rightarrow Bar(Hoch(A, C))$ associative map of dg cocategories

$$\psi\{\phi_1,...,\phi_n\}(a_1,...,a_q) = \sum \pm \psi(f_0a_1,...,f_0a_{i_1},\phi_1(a_{i_1+1},...),f_1a_*,...,f_1a_*,$$
$$\phi_2(a_*,...),f_2a_*,...,f_na_q)$$

Rebecca Wei (Northwestern University)

◆ロ > ◆個 > ◆注 > ◆注 > ・注 ・ りへ ○

$$A \underbrace{\downarrow \phi}_{f_n} B \underbrace{\downarrow 1 \in k}_{g_1} C \overset{\bullet}{\longmapsto} A \underbrace{\downarrow \phi}_{g_1 f_n} C \qquad A \underbrace{\downarrow 1 \in k}_{f_n} B \underbrace{\downarrow \psi}_{g_1} C \overset{\bullet}{\longmapsto} A \underbrace{\downarrow \psi \psi}_{g_1 f_n} C$$

Braces are associative. (Getzler-Jones; Voronov-Gerstenhaber, Lyubashenko-Manzyuk; Keller)

_yubashenko-ivianzyuk, ikener)

Outline

- Question: What do algebras form?
- **Answer 1:** A category in categories (*HH*⁰)
- Derived Answer 1: A category in dg cocategories (Hochschild cochains...)
- **Answer 2:** A 2-category with a trace functor (HH_0)
- Derived Answer 2: A category in dg cocategories with a trace functor (Hochschild chains...) up to homotopy

Answer 2: Algebras form a 2-category with a trace functor

Definition

(Kaledin): A <u>trace functor</u> on a 2-category C is:

- for each $A \in Obj(\mathcal{C})$, a functor $TR_A : \mathcal{C}(A,A) \to k mod$
- for each pair $A, B \in Obj(\mathcal{C})$, a natural transformation $\tau_!(A, B)$

• such that $\tau_!(B,A) \circ \tau_!(C,B) \circ \tau_!(A,C) = id$

→ロト → □ ト → 重 ト → 重 ・ の Q (*)

Answer 2: Algebras form a 2-category with a trace functor

Definition

(Kaledin): A <u>trace functor</u> on a 2-category C is:

- for each $A \in Obj(\mathcal{C})$, a functor $TR_A : \mathcal{C}(A,A) \to k mod$
- for each pair $A, B \in Obj(\mathcal{C})$, a natural transformation $\tau_!(A, B)$
- such that $\tau_{!}(B,A) \circ \tau_{!}(C,B) \circ \tau_{!}(A,C) = id$

Answer 2: Algebras form 2-category with a trace functor

Definition

(Kaledin): A $\underline{\text{trace functor}}$ on a 2-category $\mathcal C$ is:

• for each $A \in Obj(\mathcal{C})$, a functor $TR_A : \mathcal{C}(A,A) \to k - mod$ $TR_A : \text{bimodule }_A M_A \mapsto M/[A,M] \cong HH_0(A,M)$

Answer 2: Algebras form 2-category with a trace functor

Definition

(Kaledin): A <u>trace functor</u> on a 2-category C is:

- for each $A \in Obj(\mathcal{C})$, a functor $TR_A : \mathcal{C}(A,A) \to k mod$ $TR_A : \text{bimodule }_A M_A \mapsto M/[A,M] \cong HH_0(A,M)$
- for each pair $A, B \in Obj(\mathcal{C})$, a natural transformation $\tau_!(A, B)$

Answer 2: Algebras form 2-category with a trace functor

Definition

(Kaledin): A <u>trace functor</u> on a 2-category C is:

- for each $A \in Obj(\mathcal{C})$, a functor $TR_A : \mathcal{C}(A,A) \to k mod$ $TR_A : \text{bimodule }_A M_A \mapsto M/[A,M] \cong HH_0(A,M)$
- for each pair $A, B \in Obj(\mathcal{C})$, a natural transformation $\tau_!(A, B)$

Can we use Hochschild homology or chains instead of HH_0 to extend this to a trace functor on the category in dg cocategories?

10 / 27

Definition

(Kaledin): A <u>trace functor</u> on a 2-category C is:

• for each $A \in Obj(\mathcal{C})$, a functor $TR_A : \mathcal{C}(A,A) \to k - mod$

$$\mathcal{C}(A,A)(f,g)\otimes_k TR_A(g) \to TR_A(f)$$

• for each pair $A, B \in Obj(\mathcal{C})$, a natural transformation $\tau_!(A, B)$

• such that $\tau_1(B,A) \circ \tau_1(C,B) \circ \tau_1(A,C) = id$

- (ロ) (部) (注) (注) (2 のQで

Definition

(Kaledin): A <u>trace functor</u> on a <u>category in k-linear categories</u> C is:

• for each $A \in Obj(\mathcal{C})$, a functor $TR_A : \mathcal{C}(A,A) \to k - mod$

$$\mathcal{C}(A,A)(f,g)\otimes_k TR_A(g) \to TR_A(f)$$

• for each pair $A, B \in Obj(\mathcal{C})$, a natural transformation $\tau_!(A, B)$

• such that $\tau_1(B,A) \circ \tau_1(C,B) \circ \tau_1(A,C) = id$

- 4日 > 4日 > 4目 > 4目 > 1目 99(

Definition

(Kaledin): A trace functor on a category in k-linear categories C is:

• for each $A \in Obj(\mathcal{C})$, a left module T(A) over $\mathcal{C}(A,A)$

$$C(A,A)(f,g) \otimes_k TR_A(g) \to TR_A(f)$$

• for each pair $A, B \in Obj(\mathcal{C})$, a natural transformation $\tau_!(A, B)$

• such that $\tau_1(B,A) \circ \tau_1(C,B) \circ \tau_1(A,C) = id$

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q (

Definition

(Kaledin): A <u>trace functor</u> on a <u>category in k-linear categories</u> C is:

• for each $A \in Obj(\mathcal{C})$, a left module T(A) over $\mathcal{C}(A,A)$

$$\mathcal{C}(A,A)(f,g)\otimes_k TR_A(g) \to TR_A(f)$$

• for each pair $A, B \in Obj(\mathcal{C})$, a map of modules $\tau_!(A,B) : m^*T(A) \to \tau^*m^*T(B)$ over $\mathcal{C}(A,B) \otimes \mathcal{C}(B,A)$

• such that $\tau_!(B,A) \circ \tau_!(C,B) \circ \tau_!(A,C) = id$

Definition

(Kaledin): A <u>trace functor</u> on a <u>category in k-linear categories</u> C is:

• for each $A \in Obj(\mathcal{C})$, a left module T(A) over $\mathcal{C}(A,A)$

$$\mathcal{C}(A,A)(f,g)\otimes_k TR_A(g) \to TR_A(f)$$

• for each pair $A, B \in Obj(\mathcal{C})$, a map of modules $\tau_!(A, B) : m^*T(A) \to \tau^*m^*T(B)$ over $\mathcal{C}(A, B) \otimes \mathcal{C}(B, A)$

$$C(A,B) \otimes C(B,A) \xrightarrow{\tau} C(B,A) \otimes C(A,B)$$

$$\downarrow m \qquad \downarrow \qquad \qquad \downarrow m \qquad \downarrow \qquad \qquad \downarrow m \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \qquad$$

• such that $\tau^{*2}\tau_1(B,A)\circ\tau^*\tau_1(C,B)\circ\tau_1(A,C)=id$

Definition

(Kaledin): A trace functor on a category in dg cocategories C is:

• for each $A \in Obj(\mathcal{C})$, a left module T(A) over $\mathcal{C}(A,A)$

$$\mathcal{C}(A,A)(f,g)\otimes_k TR_A(g) \to TR_A(f)$$

• for each pair $A, B \in Obj(\mathcal{C})$, a map of modules $\tau_!(A, B) : m^*T(A) \to \tau^*m^*T(B)$ over $\mathcal{C}(A, B) \otimes \mathcal{C}(B, A)$

$$\begin{array}{c|c} \mathcal{C}(A,B)\otimes\mathcal{C}(B,A) & \xrightarrow{\tau} & \mathcal{C}(B,A)\otimes\mathcal{C}(A,B) \\ \downarrow^{m} & \downarrow^{m} & \downarrow^{m} \\ \mathcal{C}(A,A) & \uparrow_{R_{A}} & \mathcal{C}(B,B) \end{array}$$

• such that $\tau^{*2}\tau_1(B,A)\circ\tau^*\tau_1(C,B)\circ\tau_1(A,C)=id$

Definition

(Kaledin): A <u>trace functor</u> on a <u>category in dg cocategories</u> C is:

• for each $A \in Obj(\mathcal{C})$, a left dg comodule T(A) over $\mathcal{C}(A,A)$

$$\prod_{g \in Obj(\mathcal{C})} \mathcal{C}(A,A)^{\bullet}(f,g) \otimes_k TR_A^{\bullet}(g) \leftarrow TR_A^{\bullet}(f)$$

• for each pair $A, B \in Obj(\mathcal{C})$, a map of modules $\tau_!(A, B) : m^*T(A) \to \tau^*m^*T(B)$ over $\mathcal{C}(A, B) \otimes \mathcal{C}(B, A)$

• such that $\tau^{*2}\tau_1(B,A) \circ \tau^*\tau_1(C,B) \circ \tau_1(A,C) = id$

Jan 25, 2017

11 / 27

Definition

(Kaledin): A <u>trace functor</u> on a <u>category in dg cocategories</u> C is:

• for each $A \in Obj(\mathcal{C})$, a left dg comodule T(A) over $\mathcal{C}(A,A)$

$$\prod_{g \in Obj(\mathcal{C})} \mathcal{C}(A,A)^{\bullet}(f,g) \otimes_k TR_A^{\bullet}(g) \leftarrow TR_A^{\bullet}(f)$$

• for each pair $A, B \in Obj(\mathcal{C})$, a map of dg comodules $\tau_!(A, B) : m^*T(A) \to \tau^*m^*T(B)$ over $\mathcal{C}(A, B) \otimes \mathcal{C}(B, A)$

• such that $\tau^{*2}\tau(B,A)\circ\tau^*\tau(C,B)\circ\tau(A,C)=id$

Jan 25, 2017

11 / 27

Definition

Let $\mathcal C$ be a category in dg cocategories. Let $\chi(\mathcal C)$ be the dg category with

- Objects = $\{A_0 \rightarrow ... \rightarrow A_n \rightarrow A_0 : A_i \in Obj(\mathcal{C}), n \geq 0\}$
- Morphisms = {linear combinations of compositions of

rotations
$$\tau_n: \mathcal{A} \mapsto (A_n \to A_0 \to \dots \to A_n)$$
 coboundaries $\delta_{j,n}: \mathcal{A} \mapsto (A_0 \to \dots \to A_j \to A_{j+2 \pmod{n+1}} \to \dots \to A_0)$ codegeneracies $\sigma_{i,n}: \mathcal{A} \mapsto (A_0 \to \dots \to A_i \to A_i \to \dots \to A_0)$ where $\mathcal{A}:=(A_0 \to \dots \to A_n \to A_0)$, subject to the cyclic relations}[0]

Definition

Let \mathcal{D} be the dg category with

- Objects = $\{(\text{dg cocategory}, \text{dg comodule})\}$
- Morphisms:

$$\mathcal{D}^{p}((B_{1}, C_{1}), (B_{0}, C_{0})) := \begin{cases} F : B_{1} \to B_{0} \ dg \ functor, \\ F_{!} : C_{1} \to F^{*}C_{0} \ degree-p \ linear \ map \end{cases}$$

$$d_{\mathcal{D}}(F, F_{!}) = (F, [d, F_{!}] = d_{F^{*}C_{0}} \circ F_{!} \pm F_{!} \circ d_{C_{1}})$$

Definition

Let \mathcal{D} be the dg category with

- Objects = $\{(\text{dg cocategory}, \text{dg comodule})\}$
- Morphisms:

$$\mathcal{D}^{p}((B_{1}, C_{1}), (B_{0}, C_{0})) := \begin{cases} F : B_{1} \to B_{0} \ dg \ functor, \\ F_{!} : C_{1} \to F^{*}C_{0} \ degree-p \ linear \ map \end{cases} d_{\mathcal{D}}(F, F_{!}) = (F, [d, F_{!}] = d_{F^{*}C_{0}} \circ F_{!} \pm F_{!} \circ d_{C_{1}})$$

For us, F^*C_0 is the categorified version of co-extension of scalars:

$$F^*C_0 = ker(B_1 \otimes C_0 \rightrightarrows B_1 \otimes B_0 \otimes C_0)$$

4□ > 4□ > 4 = > 4 = > = 90

Let $\mathcal C$ be a category in dg cocategories. A trace functor on $\mathcal C$ gives a dg functor

$$\chi(\mathcal{C}) \to \mathcal{D}$$

Let $\mathcal C$ be a category in dg cocategories. A trace functor on $\mathcal C$ gives a dg functor

$$\chi(\mathcal{C}) \to \mathcal{D}$$

$$(A_0 \to \dots \to A_n \to A_0) \mapsto \begin{pmatrix} \mathcal{C}(A_0, A_1) \otimes \dots \otimes \mathcal{C}(A_n, A_0), \\ m^{*n} T(A_0), m^n : \mathcal{C}(A_0, A_1) \otimes \dots \otimes \mathcal{C}(A_n, A_0) \to \mathcal{C}(A_0, A_0) \end{pmatrix}$$

Let $\mathcal C$ be a category in dg cocategories. A trace functor on $\mathcal C$ gives a dg functor

$$\chi(\mathcal{C}) \to \mathcal{D}$$

$$(A_0 \to \dots \to A_n \to A_0) \mapsto \begin{pmatrix} \mathcal{C}(A_0, A_1) \otimes \dots \otimes \mathcal{C}(A_n, A_0), \\ m^{*n} T(A_0), & m^n : \mathcal{C}(A_0, A_1) \otimes \dots \otimes \mathcal{C}(A_n, A_0) \to \mathcal{C}(A_0, A_0) \end{pmatrix}$$

$$\delta_{j,n} \mapsto \begin{pmatrix} \dots \otimes \mathcal{C}(A_j, A_{j+1}) \otimes \mathcal{C}(A_{j+1}, A_{j+2}) \otimes \dots & \frac{\delta_{j,n} = m}{j} \dots \otimes \mathcal{C}(A_j, A_{j+2}) \otimes \dots \\ m^{*n} T(A_0) & \frac{\delta_{j,n}! = id}{j} & \delta_{j,n}^* m^{*n-1} T(A_0) \cong (m^{n-1} \delta_{j,n})^* T(A_0) \end{pmatrix}$$

Let $\mathcal C$ be a category in dg cocategories. A trace functor on $\mathcal C$ gives a dg functor

$$\chi(\mathcal{C}) \to \mathcal{D}$$

$$(A_0 \to \dots \to A_n \to A_0) \mapsto \begin{pmatrix} \mathcal{C}(A_0, A_1) \otimes \dots \otimes \mathcal{C}(A_n, A_0), \\ m^{*n} T(A_0), & m^n : \mathcal{C}(A_0, A_1) \otimes \dots \otimes \mathcal{C}(A_n, A_0) \to \mathcal{C}(A_0, A_0) \end{pmatrix}$$

$$\delta_{j,n} \mapsto \begin{pmatrix} \dots \otimes \mathcal{C}(A_j, A_{j+1}) \otimes \mathcal{C}(A_{j+1}, A_{j+2}) \otimes \dots & \frac{\delta_{j,n} = m}{j} & \dots \otimes \mathcal{C}(A_j, A_{j+2}) \otimes \dots \\ m^{*n} T(A_0) & \frac{\delta_{j,n}! = id}{j} & \delta_{j,n}^* m^{*n-1} T(A_0) \cong (m^{n-1} \hat{\delta}_{j,n})^* T(A_0) \end{pmatrix}$$

$$\sigma_{i,n} \mapsto \begin{pmatrix} \dots \otimes \mathcal{C}(A_i, A_{i+1}) \otimes \dots & \frac{\hat{\sigma}_{i,n}}{j} & \dots \otimes \mathcal{C}(A_i, A_i) \otimes \mathcal{C}(A_i, A_{i+1}) \otimes \dots \\ m^{*n} T(A_0) & \frac{\hat{\sigma}_{i,n}! = id}{j} & \hat{\sigma}_{i,n}^* m^{*n+1} T(A_0) \cong (m^{n+1} \hat{\sigma}_{i,n})^* T(A_0) \end{pmatrix}$$

Let $\mathcal C$ be a category in dg cocategories. A trace functor on $\mathcal C$ gives a dg functor

$$\chi(\mathcal{C}) \to \mathcal{D}$$

$$(A_0 \to \dots \to A_n \to A_0) \mapsto \begin{pmatrix} \mathcal{C}(A_0, A_1) \otimes \dots \otimes \mathcal{C}(A_n, A_0), \\ m^{*n} T(A_0), & m^n : \mathcal{C}(A_0, A_1) \otimes \dots \otimes \mathcal{C}(A_n, A_0) \to \mathcal{C}(A_0, A_0) \end{pmatrix}$$

$$\delta_{j,n} \mapsto \begin{pmatrix} \dots \otimes \mathcal{C}(A_j, A_{j+1}) \otimes \mathcal{C}(A_{j+1}, A_{j+2}) \otimes \dots & \frac{\delta_{j,n} = m}{2} & \dots \otimes \mathcal{C}(A_j, A_{j+2}) \otimes \dots \\ m^{*n} T(A_0) & \frac{\delta_{j,n!} = id}{2} & \delta_{j,n}^* m^{*n-1} T(A_0) \cong (m^{n-1} \hat{\delta}_{j,n})^* T(A_0) \end{pmatrix}$$

$$\sigma_{i,n} \mapsto \begin{pmatrix} \dots \otimes \mathcal{C}(A_i, A_{i+1}) \otimes \dots & \frac{\hat{\sigma}_{i,n}}{2} & \dots \otimes \mathcal{C}(A_i, A_i) \otimes \mathcal{C}(A_i, A_{i+1}) \otimes \dots \\ m^{*n} T(A_0) & \frac{\hat{\sigma}_{i,n!} = id}{2} & \hat{\sigma}_{i,n}^* m^{*n+1} T(A_0) \cong (m^{n+1} \hat{\sigma}_{i,n})^* T(A_0) \end{pmatrix}$$

$$\tau_n \mapsto \begin{pmatrix} \mathcal{C}(A_0, A_1) \otimes \dots \otimes \mathcal{C}(A_n, A_0) & \dots \otimes \mathcal{C}(A_n, A_0) \otimes \dots \otimes \mathcal{C}(A_{n-1}, A_n) \\ m^{*n} T(A_0) & \frac{\hat{\tau}_{n} = m^{*n-1} \tau_{!}(A_0, A_n)}{2} & \hat{\tau}_n^* m^{*n} T(A_n) \\ m^{n-1} : \left(\mathcal{C}(A_0, A_1) \otimes \dots \otimes \mathcal{C}(A_{n-1}, A_n) \right) \otimes \mathcal{C}(A_n, A_0) \to \mathcal{C}(A_0, A_n) \otimes \mathcal{C}(A_n, A_0) \right)$$

□ ▶ ◀昼 ▶ ◀돌 ▶ ◀돌 ▶ ○ 夏 ○ 釣९♡

Let $\mathcal C$ be a category in dg cocategories. A trace functor on $\mathcal C$ gives a dg functor

$$\chi(\mathcal{C}) \to \mathcal{D}$$

$$(A_0 \to \dots \to A_n \to A_0) \mapsto \begin{pmatrix} \mathcal{C}(A_0, A_1) \otimes \dots \otimes \mathcal{C}(A_n, A_0), \\ m^{*n} \mathcal{T}(A_0), & m^n : \mathcal{C}(A_0, A_1) \otimes \dots \otimes \mathcal{C}(A_n, A_0) \to \mathcal{C}(A_0, A_0) \end{pmatrix}$$

$$\tau_n \mapsto \begin{pmatrix} \mathcal{C}(A_0, A_1) \otimes \dots \otimes \mathcal{C}(A_n, A_0) & \frac{\hat{\tau}_n}{\hat{\tau}_n} \mathcal{C}(A_n, A_0) \otimes \dots \otimes \mathcal{C}(A_{n-1}, A_n) \\ m^{*n} \mathcal{T}(A_0) & \frac{\tau_{n!} = m^{*n-1} \tau_{!}(A_0, A_n)}{\hat{\tau}_n^* + m^{*n} \mathcal{T}(A_n)} \hat{\tau}_n^* m^{*n} \mathcal{T}(A_n) \\ m^{n-1} : \left(\mathcal{C}(A_0, A_1) \otimes \dots \otimes \mathcal{C}(A_{n-1}, A_n)\right) \otimes \mathcal{C}(A_n, A_0) \to \mathcal{C}(A_0, A_n) \otimes \mathcal{C}(A_n, A_0) \right)$$

 $\tau_n^{n+1} = id$ is preserved:

- n=2 cocyle relation,
- n > 2 pullback of cocycle relation,
- n=1 cocycle relation for A, B, C = B and the fact that $\sigma_{1,1!}$ is an identity map

14 / 27

Let $\mathcal C$ be a category in dg cocategories. A trace functor on $\mathcal C$ gives a dg functor

$$\chi(\mathcal{C}) \to \mathcal{D}$$

$$(A_0 \to \dots \to A_n \to A_0) \mapsto \begin{pmatrix} \mathcal{C}(A_0, A_1) \otimes \dots \otimes \mathcal{C}(A_n, A_0), \\ m^{*n} T(A_0), & m^n : \mathcal{C}(A_0, A_1) \otimes \dots \otimes \mathcal{C}(A_n, A_0) \to \mathcal{C}(A_0, A_0) \end{pmatrix}$$

$$\tau_n \mapsto \begin{pmatrix} \mathcal{C}(A_0, A_1) \otimes \dots \otimes \mathcal{C}(A_n, A_0) & \frac{\hat{\tau}_n}{\hat{\tau}_n} \mathcal{C}(A_n, A_0) \otimes \dots \otimes \mathcal{C}(A_{n-1}, A_n) \\ m^{*n} T(A_0) & \frac{\hat{\tau}_{n!} = m^{*n-1} \tau_1(A_0, A_n)}{\hat{\tau}_n^*} \hat{\tau}_n^* m^{*n} T(A_n) \\ m^{n-1} : \left(\mathcal{C}(A_0, A_1) \otimes \dots \otimes \mathcal{C}(A_{n-1}, A_n)\right) \otimes \mathcal{C}(A_n, A_0) \to \mathcal{C}(A_0, A_n) \otimes \mathcal{C}(A_n, A_0) \right)$$

Functor is DG: $\delta_{i,n!} = id$, $\sigma_{i,n!} = id$, $\tau_{n!} = m^{*n-1}\tau_{!}$ are maps of DG comodules.

Question: Can we give a dg functor

$$\chi(\mathcal{C}) \to \mathcal{D}$$
where $(A_0 \to \ldots \to A_n \to A_0) \mapsto \begin{pmatrix} B(A_0 \to \ldots \to A_n \to A_0) := \\ := Bar(Hoch(A_0, A_1)) \otimes \ldots \otimes Bar(Hoch(A_n, A_0)), \\ C(A_0 \to \ldots \to A_n \to A_0) := m^{*n} T(A_0) \end{pmatrix}$?

Question: Can we give a dg functor

$$\chi(\mathcal{C}) \to \mathcal{D}$$
where $(A_0 \to \ldots \to A_n \to A_0) \mapsto \begin{pmatrix} B(A_0 \to \ldots \to A_n \to A_0) := \\ := Bar(Hoch(A_0, A_1)) \otimes \ldots \otimes Bar(Hoch(A_n, A_0)), \\ C(A_0 \to \ldots \to A_n \to A_0) := m^{*n} T(A_0) \end{pmatrix}$?

Answer: No, but we can give an A_{∞} -functor.

This will imply that algebras form a category in dg cocategories with a trace functor up to homotopy.

Question: Can we give a dg functor

$$\chi(\mathcal{C}) \to \mathcal{D}$$
where $(A_0 \to \ldots \to A_n \to A_0) \mapsto \begin{pmatrix} B(A_0 \to \ldots \to A_n \to A_0) := \\ := Bar(Hoch(A_0, A_1)) \otimes \ldots \otimes Bar(Hoch(A_n, A_0)), \\ C(A_0 \to \ldots \to A_n \to A_0) := m^{*n} T(A_0) \end{pmatrix}$?

No, but we can give an A_{∞} -functor.

This will imply that algebras form a category in dg cocategories with a trace functor up to homotopy.

Rest of this talk:

- Define dg comodules $C(A_0 \rightarrow ... \rightarrow A_0)$ using Hochschild chains
- Describe the A_{∞} -functor: $\tau_{1!}$, $\tau_{n!}^{n+1} = m^{*n-1}\tau_{1!} \sim id$

Fix algebras $A_0, ..., A_n$. Let $\mathcal{A} = (A_0 \to ... \to A_n \to A_0)$. Define a dg comodule $C(\mathcal{A})$ over $B(\mathcal{A})$:

$$C(A)^{\bullet}(\underbrace{A_0 \stackrel{f_{0,0}}{\rightarrow} \dots \rightarrow A_n \stackrel{f_{n,0}}{\rightarrow} A_0}_{\in Obj(B(A))}) :=$$

Rebecca Wei (Northwestern University)

Fix algebras $A_0, ..., A_n$. Let $\mathcal{A} = (A_0 \to ... \to A_n \to A_0)$. Define a dg comodule $C(\mathcal{A})$ over $B(\mathcal{A})$:

$$C(A)^{\bullet}(\underbrace{A_0 \stackrel{f_{0,0}}{\rightarrow} \dots \rightarrow A_n \stackrel{f_{n,0}}{\rightarrow} A_0}_{\in Obj(B(A))}) :=$$

Fix algebras $A_0, ..., A_n$. Let $\mathcal{A} = (A_0 \to ... \to A_n \to A_0)$. Define a dg comodule $C(\mathcal{A})$ over $B(\mathcal{A})$:

$$C(A)^{\bullet}(\underbrace{A_0 \stackrel{f_{0,0}}{\rightarrow} ... \rightarrow A_n \stackrel{f_{n,0}}{\rightarrow} A_0}_{\in Obj(B(A))}) :=$$

$$:= \{ A_0 \underbrace{\int_{f_{0,k_0}}^{f_{0,0}} A_1}_{id_{A_0}} \underbrace{\vdots}_{A_n} \underbrace{\int_{f_{n,k_n}}^{f_{n,0}} A_0}_{id_{A_0}} = \underbrace{(\phi_{0,1}|\dots|\phi_{0,k_0}) \otimes \dots \otimes (\phi_{n,1}|\dots|\phi_{n,k_n}) \otimes \alpha:}_{\alpha \in C_{-\bullet}(A_0,f_{n,k_n}\dots f_{0,k_0}A_0)} \}$$

$$d_{C(A_0 \to \dots \to A_0)} = d_B \otimes id_{C_{-\bullet}} + id_B \otimes b + \tilde{\iota}$$

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ○

where $\tilde{\iota}$ is given as follows:

where $\tilde{\iota}$ is given as follows:

$$C(A_0 \to \dots \to A_0)^{\bullet}(f_{0,0}, \dots, f_{n,0}) \xrightarrow{\tilde{\iota}} C_{-\bullet}(A_0, f_{n,0} \dots f_{0,0} A_0)$$

$$\stackrel{\text{extend as a}}{\underset{\text{coderivation}}{\tilde{\iota}}} C(A_0 \to \dots \to A_0)^{\bullet}(f_{0,0}, \dots, f_{n,0})$$

$$\widetilde{\iota}\big((\phi_{0,1}|\ldots|\phi_{0,k_0})\otimes\ldots\otimes(\phi_{n,1}|\ldots|\phi_{n,k_n})\otimes\alpha\big) = \iota_{(\phi_{0,1}|\ldots|\phi_{0,k_0})\bullet\ldots\bullet(\phi_{n,1}|\ldots|\phi_{n,k_n})}\alpha$$

$$\iota_{\phi}(a_0\otimes\ldots a_p) = \pm\phi(a_{d+1},\ldots,a_p)\cdot a_0\otimes a_1\otimes\ldots\otimes a_d \quad \text{where } |\phi| = p-d$$

$$C(A_0 \to A_1 \to A_0)^{\bullet}(f,g) \xrightarrow{\tau_{1!}} C(A_1 \to A_0 \to A_1)^{\bullet}(g,f)$$

$$\downarrow f_{0,0} \qquad f_{1,0} \qquad f_{0,0} \qquad f_{0$$

$$C(A_0 \to A_1 \to A_0)^{\bullet}(f,g) \xrightarrow{\tau_{1!}} C(A_1 \to A_0 \to A_1)^{\bullet}(g,f)$$

$$A_0 \xrightarrow{f_{0,0}} A_1 \xrightarrow{f_{1,0}} A_0 \xrightarrow{?} A_1 \xrightarrow{f_{1,0}} A_0 \xrightarrow{f_{0,0}} A_1$$

$$Q \xrightarrow{id_A} A_1 \xrightarrow{id_A} A_1$$

$$C(A_0 \to A_1 \to A_0)^{\bullet}(f,g) \xrightarrow{\tau_{1!}} C(A_1 \to A_0 \to A_1)^{\bullet}(g,f)$$

$$A_0 \xrightarrow{f_{0,0}} A_1 \xrightarrow{f_{1,0}} A_0 \xrightarrow{?} A_1 \xrightarrow{f_{1,0}} A_0 \xrightarrow{f_{0,0}} A_1$$

$$\alpha = a_0 \otimes \ldots \otimes a_n \mapsto \alpha' = f_{0,0}(a_0) \otimes \ldots \otimes f_{0,0}(a_n)$$

$$C(A_0 \to A_1 \to A_0)^{\bullet}(f,g) \xrightarrow{\tau_{1!}} C(A_1 \to A_0 \to A_1)^{\bullet}(g,f)$$

$$A_0 \xrightarrow{f_{0,0}} A_1 \xrightarrow{f_{1,0}} A_0 \xrightarrow{f_{1,0}} A_0 \xrightarrow{f_{0,0}} A_1$$

$$A_0 \xrightarrow{id_A} A_1 \xrightarrow{f_{1,0}} A_0 \xrightarrow{id_A} A_1$$

$$C(A_0 \to A_1 \to A_0)^{\bullet}(f,g) \xrightarrow{\tau_{1!}} C(A_1 \to A_0 \to A_1)^{\bullet}(g,f)$$

$$A_0 \xrightarrow{f_{0,0}} A_1 \xrightarrow{f_{1,0}} A_0 \xrightarrow{?} A_1 \xrightarrow{f_{1,0}} A_0 \xrightarrow{f_{0,0}} A_1$$

$$\overline{\tau_{1!} \circ d}(\phi \otimes \alpha) = \overline{d \circ \tau_{1!}}(\phi \otimes \alpha)$$

$$C(A_0 \to A_1 \to A_0)^{\bullet}(f,g) \xrightarrow{\tau_{1!}} C(A_1 \to A_0 \to A_1)^{\bullet}(g,f)$$

$$A_0 \xrightarrow{f_{0,0}} A_1 \xrightarrow{f_{1,0}} A_0 \xrightarrow{?} A_1 \xrightarrow{f_{1,0}} A_0 \xrightarrow{f_{0,0}} A_1$$

$$\alpha \xrightarrow{id_{A_0}} A_1 \xrightarrow{f_{1,0}} A_0 \xrightarrow{id_{A_1}} A_1$$

$$[b, \bar{\tau}_{1!}](\phi \otimes \alpha) \pm \bar{\tau}_{1!}(\delta \phi \otimes \alpha) = [\bar{\tau}_{1!}, \iota_{\phi}](\alpha)$$

$$C(A_0 \to A_1 \to A_0)^{\bullet}(f,g) \xrightarrow{\tau_{1!}} C(A_1 \to A_0 \to A_1)^{\bullet}(g,f)$$

$$A_0 \xrightarrow{f_{0,0}} A_1 \xrightarrow{f_{1,0}} A_0 \xrightarrow{?} A_1 \xrightarrow{f_{1,0}} A_0 \xrightarrow{f_{0,0}} A_1$$

$$\alpha \xrightarrow{id_{A_0}} A_0 \xrightarrow{id_{A_0}} A_0 \xrightarrow{f_{0,0}} A_1$$

$$[b, \bar{\tau}_{1!}](\phi \otimes \alpha) \pm \bar{\tau}_{1!}(\delta \phi \otimes \alpha) = [\bar{\tau}_{1!}, \iota_{\phi}](\alpha)$$

$$L_{\phi}(\alpha) = \sum_{k \geq 1} \pm a_0 \otimes ... \otimes \phi(a_k, ...) \otimes a_r \otimes ... \otimes a_n +$$

$$\sum_{k \geq 1} \pm \phi(a_k, ..., a_n, a_0, ...) \otimes a_s \otimes ... \otimes a_{k-1}$$
 $[b, L_{\phi}] \pm L_{\delta \phi} = 0$

◆□▶ ◆□▶ ◆■▶ ◆■ めぬ○

Rebecca Wei (Northwestern University)

$$C(A_0 \to A_1 \to A_0)^{\bullet}(f,g) \xrightarrow{\tau_{1!}} C(A_1 \to A_0 \to A_1)^{\bullet}(g,f)$$

$$A_0 \xrightarrow{f_{0,0}} A_1 \xrightarrow{f_{1,0}} A_0 \xrightarrow{f_{1,0}} A_0 \xrightarrow{f_{0,0}} A_1$$

$$a_0 \xrightarrow{id_{A_0}} A_0 \xrightarrow{f_{1,0}} A_0 \xrightarrow{f_{0,0}} A_1$$

$$[b, \bar{\tau}_{1!}](\phi \otimes \alpha) \pm \bar{\tau}_{1!}(\delta \phi \otimes \alpha) = [\bar{\tau}_{1!}, \iota_{\phi}](\alpha)$$

$$\overline{\tau}_{1!}(\phi \otimes \alpha) = \sum_{k \geq 1} \pm f_{0,0} a_0 \otimes \ldots \otimes \phi(a_k, \ldots) \otimes f_{0,1} a_r \ldots \otimes f_{0,1} a_n + \\
\sum \pm \phi(f_{1,0} f_{0,1} a_k, \ldots, f_{1,0} f_{0,1} a_n, a_0, \ldots) \otimes f_{0,1} a_s \otimes \ldots \otimes f_{0,1} a_{k-1}$$

4 D > 4 D > 4 E > 4 E > E 900

$$\begin{split} \bar{\tau}_{1!} \big(\big(\phi_{0,1} | \dots | \phi_{0,k_0} \big) \otimes \big(\phi_{1,1} | \dots | \phi_{1,k_1} \big) \otimes \alpha \big) &= \\ &= \sum_{\substack{1 \leq i \leq j_1 \leq \dots \leq j_{2k_1} \leq k_0, \\ p}} \pm \phi_{0,1} \big(\underbrace{f_{1,0} f_{0,j_1} a_*, \dots, f_{1,0} \phi_{0,j_1} (a_*, \dots), f_{1,0} f_{0,j_1} a_*, \dots, f_{1,0} f_{0,j_1} (a_*, \dots), f_{1,0} f_{0,j_1} a_*, \dots, f_{1,0} f_{0,j_1} a_*, \dots, f_{0,j_1+1} (a_*, \dots), \dots), \dots, j} \big) \otimes \\ &\otimes f_{0,1} a_* \otimes \dots \otimes \phi_{1,k_1} \big(f_{0,j_2k_1-1} a_*, \dots, \phi_{0,j_2k_1-1} + 1 (a_*, \dots), \dots), \dots, a_0, \dots \big) \\ &\otimes f_{0,1} a_* \otimes \dots \otimes \phi_{0,2} \big(a_*, \dots \big) \otimes f_{0,2} a_* \otimes \dots \otimes \\ &\otimes \phi_{0,i} \big(a_*, \dots \big) \otimes f_{0,i} a_* \otimes \dots f_{0,i} a_{p-1} + \\ &\left(\sum \pm f_{0,0} a_0 \otimes \dots \otimes \phi_{0,1} \big(a_*, \dots \big) \otimes \dots \otimes \phi_{0,n_0} \big(a_*, \dots \big) \otimes \\ &\otimes f_{0,n_0} a_* \otimes \dots \otimes f_{0,n_0} a_n \quad \text{if } k_1 = 0 \right) \end{split}$$

First homotopy: $\tau_{11}^2 \sim id$

$$C(A_0 \to A_1 \to A_0) \xrightarrow{\tau_{1}} \hat{\tau}_1^* C(A_1 \to A_0 \to A_1) \xrightarrow{\hat{\tau}_1^* \tau_{1}} \hat{\tau}_1^{*2} C(A_0 \to A_1 \to A_0)$$

$$id$$

First homotopy: $\tau_{11}^2 \sim id$

$$C(A_0 \to A_1 \to A_0) \xrightarrow{\tau_{1}} \hat{\tau}_1^* C(A_1 \to A_0 \to A_1) \xrightarrow{\hat{\tau}_1^* \tau_{1}!} \hat{\tau}_1^{*2} C(A_0 \to A_1 \to A_0)$$

$$id$$

$$\alpha = \mathsf{a}_0 \otimes \ldots \otimes \mathsf{a}_n \overset{\tau_{1!}}{\mapsto} \mathsf{f}_{0,0} \mathsf{a}_0 \otimes \ldots \otimes \mathsf{f}_{0,0} \mathsf{a}_n \overset{\hat{\tau}_{1!}^* \tau_{1!}}{\mapsto} \mathsf{f}_{1,0} \mathsf{f}_{0,0} \mathsf{a}_0 \otimes \ldots \otimes \mathsf{f}_{1,0} \mathsf{f}_{0,0} \mathsf{a}_n$$

Rebecca Wei (Northwestern University)

First homotopy: $\tau_{1!}^2 \sim id$

$$C(A_0 \to A_1 \to A_0) \xrightarrow{\tau_{1}} \hat{\tau}_1^* C(A_1 \to A_0 \to A_1) \xrightarrow{\hat{\tau}_1^* \tau_{1}!} \hat{\tau}_1^{*2} C(A_0 \to A_1 \to A_0)$$

$$id$$

$$A_0 \xrightarrow{f_{0,0}} A_1 \xrightarrow{f_{1,0}} A_0$$

$$\alpha \xrightarrow{id_{A_0}}$$

$$\alpha = a_0 \otimes \ldots \otimes a_n \stackrel{\tau_{1!}}{\mapsto} f_{0,0} a_0 \otimes \ldots \otimes f_{0,0} a_n \stackrel{\hat{\tau}_{1!}^* \tau_{1!}}{\mapsto} f_{1,0} f_{0,0} a_0 \otimes \ldots \otimes f_{1,0} f_{0,0} a_n$$

$$f_{1,0}f_{0,0}\alpha - \alpha = [b, B](\alpha)$$

$$B(a_0 \otimes ... \otimes a_n) = \sum_{0 \le i \le n} \pm 1 \otimes f_{1,0}f_{0,0}a_i \otimes ... \otimes f_{1,0}f_{0,0}a_n \otimes a_0 \otimes ... \otimes a_{i-1}$$

↓□▶ ↓□▶ ↓□▶ ↓□▶ □ ♥♀♡

First homotopy: $\tau_{1!}^2 \sim id$

$$C(A_0 \to A_1 \to \underbrace{A_0)} \xrightarrow{\tau_{1!}} \hat{\tau}_1^* C(A_1 \to A_0 \to A_1) \xrightarrow{\hat{\tau}_1^* \tau_{1!}} \hat{\tau}_1^{*2} C(A_0 \to A_1 \to A_0)$$

$$id$$

$$B((\phi_{0,1}|...|\phi_{0,k_0}) \otimes (\phi_{1,1}|...|\phi_{1,k_1}) \otimes \alpha) =$$

$$= \sum_{0 \leq j_1 \leq ... \leq j_{2k_1} \leq k_0} \pm 1 \otimes f_{1,0} f_{0,0} a_p \otimes ... \otimes f_{1,0} \phi_{0,1}(a_*,...) \otimes$$

$$\otimes f_{1,0} f_{0,1} a_* \otimes ... \otimes f_{1,0} \phi_{0,j_1}(a_*,...) \otimes$$

$$\otimes f_{1,0} f_{0,j_1} a_* \otimes ... \otimes \phi_{1,1}(f_{0,j_1} a_*,...,\phi_{0,j_1+1}(a_*,...),...) \otimes$$

$$\otimes ... \otimes \phi_{1,k_1}(f_{0,j_{2k_1-1}} a_*,...,\phi_{0,j_{2k_1-1}+1}(a_*,...),...) \otimes ... \otimes$$

$$\otimes a_0 \otimes ... \otimes a_{p-1}$$

<ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 る の へ ○ < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回

In the language of A_{∞} -functors

$$\chi(\mathcal{C}) \to \mathcal{D}$$

$$A:=(A_0 \to A_1 \to A_0) \mapsto \begin{pmatrix} B(\mathcal{A}), \\ C(\mathcal{A}) \end{pmatrix}$$

$$\tau_1 \mapsto \begin{pmatrix} \hat{\tau}_1 : B(\mathcal{A}) \to B(\tau_1 \mathcal{A}) \\ \tau_{1!} : C(\mathcal{A}) \to \hat{\tau}_1^* C(\tau_1 \mathcal{A}) \end{pmatrix}$$

$$(\tau_1, \tau_1) \mapsto \begin{pmatrix} id : B(\mathcal{A}) \to B(\mathcal{A}) \\ B : C(\mathcal{A}) \to C(\mathcal{A}) \end{pmatrix}$$

$$(\tau_1, \tau_1, \tau_1) \mapsto \begin{pmatrix} \hat{\tau}_1 : B(\mathcal{A}) \to B(\tau_1 \mathcal{A}) \\ 0 : C(\mathcal{A}) \to \hat{\tau}_1^* C(\tau_1 \mathcal{A}) \end{pmatrix}$$

$$\vdots$$

The A_{∞} relations mean:

- τ_{11} is a map of complexes
- $B^2 = 0$
- The following diagram commutes:

$$C(\mathcal{A}) \xrightarrow{\tau_{1!}} \hat{\tau}_{1}^{*} C(\tau_{1} \mathcal{A})$$

$$\downarrow_{\mathcal{B}} \qquad \qquad \downarrow_{\hat{\tau}_{1}^{*} \mathcal{B}}$$

$$C(\mathcal{A}) \xrightarrow{\tau_{1!}} \hat{\tau}_{1}^{*} C(\tau_{1} \mathcal{A})$$

For higher n > 1, we want to find a homotopy between " $\tau_{n!}^{n+1}$ " and id.

For higher n > 1, we want to find a homotopy between " $\tau_{n!}^{n+1}$ " and id. However, it is sufficient to find a homotopy between $\hat{\tau}_n^{*2}\delta_{0,n!} \circ \hat{\tau}_n^*\tau_{n!} \circ \tau_{n!}$ and $\hat{\delta}_{n-1,n}^* \tau_{n-1!} \circ \delta_{n-1,n!}$.

For higher n>1, we want to find a homotopy between " $\tau_{n!}^{n+1}$ " and id. However, it is sufficient to find a homotopy between $\hat{\tau}_n^{*2}\delta_{0,n!}\circ\hat{\tau}_n^*\tau_{n!}\circ\tau_{n!}$ and $\hat{\delta}_{n-1,n}^*\tau_{n-1!}\circ\delta_{n-1,n!}$.

$$\begin{bmatrix} n \end{bmatrix} \xrightarrow{\tau_n} \begin{bmatrix} n \end{bmatrix} \xrightarrow{\tau_n} \begin{bmatrix} n \end{bmatrix} \\
\downarrow^{\delta_{n-1,n}} \\
[n-1] \xrightarrow{\tau_{n-1}} \begin{bmatrix} n-1 \end{bmatrix}$$

Strategy: Find such a homotopy, \mathcal{B} , for n=2, and use $\hat{\delta}_0^{*n-2}\mathcal{B}$ for n>2.

$$\chi(\mathcal{C}) \to \mathcal{D}$$

$$\mathcal{A} \mapsto (\mathcal{B}(\mathcal{A}), \mathcal{C}(\mathcal{A}))$$

$$\mu = \tau_{n-1} \circ \delta_{n-1,n} = \delta_{0,n} \circ \tau_n^2 \mapsto \begin{pmatrix} \hat{\tau}_{n-1} \circ \hat{\delta}_{n-1,n} = \hat{\delta}_{0,n} \circ \hat{\tau}_n^2 \\ \hat{\tau}_n^{*2} \delta_{0,n!} \circ \hat{\tau}_n^* \tau_{n!} \circ \tau_{n!} \end{pmatrix}$$

$$(\delta_{0,n}, \tau_n^2) \mapsto \begin{pmatrix} \hat{\delta}_{0,n} \circ \hat{\tau}_n^2 \\ 0 \end{pmatrix}$$

$$(\tau_{n-1}, \delta_{n-1,n}) \mapsto \begin{pmatrix} \hat{\tau}_{n-1} \circ \hat{\delta}_{n-1,n} \\ \mathcal{B} \end{pmatrix}$$

$$(\tau_{n-1}, \delta_{n-1,n}, \lambda) \mapsto \begin{pmatrix} \hat{\tau}_{n-1} \circ \hat{\delta}_{n-1,n} \circ \hat{\lambda} \\ 0 \end{pmatrix}$$

For n > 1, the A_{∞} relations mean:

- $\tau_{n!}$ is a map of complexes
- $\mathcal{B}^2 = 0$
- We have a pair of homotopic maps:

For n > 1, the A_{∞} relations mean:

- $\tau_{n!}$ is a map of complexes
- $\mathcal{B}^2 = 0$
- They are homotopic via two homotopies:

Summary: We have a given an A_{∞} -functor $\chi(\mathcal{C}) \to \mathcal{D}$, which implies that algebras form a category in dg cocategories with a trace up to homotopy.

To get a category in dg categories with a trace up to homotopy, apply (categorified) Cobar(-).

Thank you!