Inferential Statistics: Hypothesis Testing Part 3

Data Science Program

Hypothesis test for proportion

- ☐ Z test single population proportion
- ☐ Z test double population proportion
- Chi-Squared test more than two population proportion

Use Case: A/B Testing categorical measurements

- 1. An newly launched online store want to test whether their conversion rate is greater than 50% or not. So they **gathered 1000** visitor **data randomly** and observed whether they are buying or not. As a Data Scientist you are asked to perform a hypothesis testing whether their conversion rate is greater than 50%?
- 2. A few months later the online store launched a new web design. They **randomly assign** visitor to layout A or layout B and 1000 for each design. You are asked again to perform hypothesis testing whether the conversion rate is increasing or not? Similar Ex. Amazon, Ben, Ubisoft

Z-Test Single Population Proportion

Assumption:

- 1. Dichotomy categorical variable with population proportion *po*
- 2. Data collected using randomization
- 3. sample size (n) large enough:

$$n \times po \ge 15$$
 and $n \times (1 - po) \ge 15$

Hypothesis:

Ho:
$$p = po$$
 (ex. $p = 0.5$)

Ho:
$$p \neq po$$
 (two sided) or $p < po$ or $p > po$ (one sided)

Test Statistics z:

$$z = \frac{\hat{p} - p_0}{se_0} = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}$$

Rejection Criteria (spicy):

P-value $\leq \alpha$ (two-sided)

P-value/2 $\leq \alpha$ (one-sided)

Z-Test Double Population Proportion

Assumption:

- 1. Dichotomy categorical variable observed in two group
- 2. Data collected using randomization
- 3. sample size (n1 and n2) large enough that there are five successive and five failure in each group.

Hypothesis:

Ho: p1 = p2 (ex.p1 - p2 = 0)

Ho: $p \neq po$ (two sided) or

p1 < **p2** or **p1** > **p2** (one sided)

Test Statistics z:

$$z = \frac{(\hat{p}_1 - \hat{p}_2) - 0}{\text{se}_0} \text{ with se}_0 = \sqrt{\hat{p}(1 - \hat{p})\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}$$
 where \hat{p} is the pooled estimate.

Rejection Criteria (spicy):

P-value $\leq \alpha$ (two-sided)

P-value/2 $\leq \alpha$ (one-sided)

Use Case: A/B Testing categorical measurements more than two groups

- A few months later the online store launched a new web design. They
 randomly assign visitor to layout A (current design), layout B1, or layout B2
 and 1000 for each design.
- You are asked again to perform hypothesis testing whether the conversion rate is increasing or not and which design perform best?

Similar Ex. Zalora Case

Chi-Squared Test for Independence between Two Categorical Variables

Assumption:

- 1. Two categorical variable : check out (yes or no) vs web design (design A, B1, B2)
- 2. Randomization

Hypothesis:

Ho: The two variables are independent

Ho: The two variables are dependent.

Test Statistics z:

$$X^2 = \sum \frac{(observed\ count\ -\ expected\ count)^2}{expected\ count}$$

Rejection Criteria: P-value ≤ α

A/B Testing part 2

- Logistics Regression should be used in A/B Testing for Zalora use case.
- A/B Testing with more advanced method (ex using logistics regression) should be discuss in module 3 after learning regression and logistics regression.

Goodness of Fit Test

- We need normality assumption for some test
- We can check the distribution but that is very vulnerable to subjectivity
- ☐ To Test if sample data follow certain distribution (ex. Normal)
- ☐ Commonly used goodness of fit test:
 - Chi square
 - Anderson darling
 - Shapiro wilk
 - Kolmogorov smirnov

Hypothesis

Ho: The sample follow certain distribution

H1 : The sample do not follow the distribution

Rejection Region : P-Value < α

Non-Parametric

Non-parametric Statistics usually used when

- We don't have enough data (small sample size)
- We can't assume that our data population follow certain distribution. ex. result of our normality test is reject Ho

	Parametric	Non-parametric
Assumed distribution	Normal	Any
Assumed variance	Homogeneous	Any
Data set relationships	Independent	Any
Usual central measure	Mean	Median
Benefits	Can draw more conclusions	Simplicity; Less affected by outliers
Tests		
Correlation test	Pearson	Spearman
Independent measures, 2 groups	Independent-measures t-test	Mann-Whitney test
Independent measures, >2 groups	One-way, independent- measures ANOVA	Kruskal-Wallis test
Repeated measures, 2 conditions	Matched-pair t-test	Wilcoxon test
Repeated measures, >2 conditions	One-way, repeated measures ANOVA	Friedman's test

Hypothesis testing for mean: Non-Parametrics

- Mann Whitney for independence double population mean
- ☐ Wilcoxon for paired mean test
- ☐ Kruskal Walis for more than two population mean
- ✓ These method are usually used when normality assumption doesn't meet
- ✓ For example: Income data or money related data usually have right skew distribution.

Wilcoxon

Assumption:

- numerical value with population mean
 Mo
- 2. Data collected using randomization
- 3. Test for median of population
- 4. sample size too small

Test Statistics: Sumrank

Rejection Criteria (spicy):

P-value $\leq \alpha$ (two-sided)

P-value/2 $\leq \alpha$ (one-sided)

Hypothesis:

Ho: M = Mo (ex. $\mu = 40$)

Ho: $\mathbf{M} \neq \mathbf{Mo}$ (two sided) or

M < Mo or $\mu > \mu o$ (one sided)

Mann Whitney

Assumption:

- 1. numerical variable (ordinal, interval, ratio) in each group
- 2. Data collected using randomization
- 3. Test for median of population
- 4. sample size too small

Test Statistics: U-Statistics

Rejection Criteria (spicy):

P-value $\leq \alpha$ (two-sided)

P-value/2 $\leq \alpha$ (one-sided)

Hypothesis:

Ho: M1 = M2 (ex. M1 - M2 = 0)

Ho: $M1 \neq M2$ (two sided) or

M1 < M2 or M1 > M2 (one sided)

Kruskal-Wallis

Assumption:

- 1. The population distribution of the numerical variable is assumed to be normal
- 2. Data collected using randomization
- 3. Test for median of population
- 4. sample size too small

Hypothesis:

Ho: M1 = M2 = ... = Mk (there are k groups)

Ho: at least one pair of the population are not equal (and we don't know which)

Test Statistics: V-Statistics

Rejection Region: p-value < α

Another example of Hypothesis testing

Methods that you have learned can also be applied to another cases:

- Medicine, to understand if a drug works or not
- Economics, to understand human behavior
- Foreign aid and charitable work (the reputable ones at least), to understand which interventions are most effective at alleviating problems (health, poverty, etc)

Reference

Reference

https://towardsdatascience.com/data-science-you-need-to-know-a-b-testing-f2f12aff619a

https://towardsdatascience.com/data-science-fundamentals-a-b-testing-cb371ceecc27

https://www.niagahoster.co.id/blog/ab-testing-adalah/

https://vwo.com/blog/ab-testing-examples/

https://www.scribbr.com/methodology/sampling-methods/

