TOOLS AND TECHNIQUES

"FEEDING RECOMMENDER SYSTEMS WITH LINKED OPEN DATA"

Tommaso Di Noia

t.dinoia@poliba.it

Politecnico di Bari ITALY

Recommender Systems

A definition

Recommender Systems (RSs) are software tools and techniques providing suggestions for items to be of use to a user.

[F. Ricci, L. Rokach, B. Shapira, and P. B. Kantor, editors. Recommender Systems Handbook. Springer, 2011.]

Input Data:

A set of users $U=\{u_1, ..., u_M\}$ A set of items $X=\{x_1, ..., x_N\}$ The rating matrix $R=[r_{u,i}]$

Problem Definition:

Given user u and target item iPredict the rating $r_{u,i}$

The rating matrix

	The Matrix	Titanic	I love shopping	Argo	Love Actually	The hangover
Tommaso	5	1	2	4	3	??
Enrico	2	4	5	3	5	2
Sean	4	3	2	4	1	3
Natasha	3	5	1	5	2	4
Valentina	4	4	5	3	5	2

The rating matrix (in the real world)

	The Matrix	Titanic	I love shopping	Argo	Love Actually	The hangover
Tommaso	5			4	3	? ?
Enrico	2	4	5		5	
Sean		3		4		3
Natasha	3	5		5	2	
Valentina	4	4	5		5	2

Collaborative Recommender Systems

Collaborative RSs recommend items to a user by identifying other users with a similar profile

CB-RSs recommend items to a user based on their description and on the profile of the user's interests

Knowledge-based Recommender Systems

KB-RSs recommend items to a user based on their description and domain knowledge encoded in a knowledge base

User-based Collaborative Recommendation

Pearson's correlation coefficient

$$sim(u \downarrow i, u \downarrow j) = \sum x \in X \uparrow \equiv (r \downarrow u \downarrow i, x - r \downarrow u \downarrow i) * (r \downarrow j, x - r \downarrow u \downarrow i) / \sqrt{\sum} x \in X \uparrow \equiv (r \downarrow u \downarrow i, x - r \downarrow u \downarrow i) \uparrow 2 * \sqrt{\sum} x \in X \uparrow \equiv (r \downarrow u \downarrow i, x - r \downarrow u \downarrow i) \uparrow 2$$

$$u \downarrow j, x - r \downarrow u \downarrow j) \uparrow 2$$

	The Matrix	Titanic	Hove shoppii	Argo	Love Actually	The hangove	
Tommaso	5	1	2	4	3	??	
Enrico <	2	4	5	3	5	2	
Sean <	4	3	2	4	1	3	
Natasha <	3	5	1	5	2	4	
Valentin	4	4	5	3	5	2	

Rate prediction

$$r(u\downarrow i,x\uparrow')=r\downarrow u\downarrow i+\sum u\downarrow j\uparrow \equiv sim(u\downarrow i,u\downarrow j)*(r\downarrow i)$$

Item-based Collaborative Recommendation

$= X \downarrow u \downarrow i$

Cosine Similarity

$$sim(x \downarrow i , x \downarrow j) = x \downarrow i \cdot x \downarrow j / |x \downarrow i| * |x \downarrow j| = \sum u \uparrow ||x \uparrow u|,$$

$$x \downarrow i * r \downarrow u, x \downarrow j / \sqrt{\sum u} ||x \uparrow u|, x \downarrow i| \uparrow 2 * \sqrt{\sum u} ||x \uparrow u|, x \uparrow 2|$$

Adjusted Cosine Similarity

	The Matrix	Titanic	I love shopping	Argo	Love Actually	The hangover
Tommaso	5	1	2	4	3	??
Enrico	2	4	5	3	5	2
Sean	4	3	2	4	1	3
Natasha	3	5	1	5	2	4
Valentina	4	4	5	3	5	2

$$sim(x \downarrow i , x \downarrow j) = \sum u \uparrow (r \downarrow u, x \downarrow i - r \downarrow u) * (r \downarrow u, x \downarrow j - r \downarrow u) / \sqrt{\sum u} (r \downarrow u, x \downarrow i - r \downarrow u) \uparrow 2 * \sqrt{\sum u} (r \downarrow u, x \downarrow j - r \downarrow u) \uparrow 2$$

Rate prediction

 $r(u\downarrow i, x\uparrow') = \sum x \in X \downarrow u \downarrow i \uparrow \equiv sim(x, x\uparrow)$

- Items are described in terms of attributes/ features
- A finite set of values is associated to each feature
- Items representation is a (Boolean) vector

Compute similarity between items

Jaccard similarity

 $sim(x \downarrow i, x \downarrow j) = |x \downarrow i \cap x \downarrow j|/|x \downarrow i \cup x \downarrow j|$

Compute similarity between items

Cosine similarity

 $sim(x\downarrow i, x\downarrow j) = x\downarrow i \cdot x\downarrow j /|x\downarrow i| *|x\downarrow j|$

Compute similarity between items

Cosine similarity and TF-IDF

```
TF(v,x)=\# v appears in the description of x
IDF(v)=\log|X|/\# v appears in X
x=(TF(v\downarrow 1,x)*IDF(v\downarrow 1),...,TF(v\downarrow n,x)*IDF(v\downarrow n))
sim(x\downarrow i,x\downarrow j)=x\downarrow i\cdot x\downarrow j/|x\downarrow i|*|x\downarrow j|
```

Rate prediction

```
r(u\downarrow i,x\uparrow') = \sum x \in X \downarrow u\downarrow i \uparrow \equiv sim(x,x\uparrow') * r \downarrow x, u\downarrow i /\sum x \in X \downarrow u\downarrow i \uparrow \equiv sim(x,x\uparrow)
```

- Nearest neighbors
 - Given a set of items representing the user profile, select their most similar items which are not in the user profile
 - Predict the rate only for the N nearest neighbors

Nearest neighbors with kNN

Main CB RSs Drawback: Limited Content Analysis

No suggestion is available if the analyzed content does not contain enough information to discriminate items the user might like from items the user might not like.*

The quality of CB recommendations are correlated with the quality of the features that are explicitly associated with the items.

Need of domain knowledge! We need rich descriptions of the items!

(*) P. Lops, M. de Gemmis, G. Semeraro. Content-based Recommender Systems: State of the Art and Trends. In: P. Kantor, F. Ricci, L. Rokach and B. Shapira, editors, Recommender Systems Handbook: A Complete Guide for Research Scientists & Practitioners

A solution based on Linked Data

Use Linked Data to mitigate the limited content analysis issue

- Plenty of structured data available
- No Content Analyzer required

FRED: Transforming Natural Language text to RDF/OWL graphs

FRED: RDF/OWL graph output

Linked Data as structured information source for items descriptions

Select the domain(s) of your RS

```
SELECT count(?i) AS ?num ?c
WHERE {
    ?i a ?c .
    FILTER(regex(?c, "^http://dbpedia.org/ontology")) .
}
ORDER BY DESC(?num)
```

num	С
956476	http://dbpedia.org/ontology/Agent
763644	http://dbpedia.org/ontology/Person
572728	http://dbpedia.org/ontology/Place
387166	http://dbpedia.org/ontology/PopulatedPlace
348520	http://dbpedia.org/ontology/Settlement
333270	http://dbpedia.org/ontology/Work
277476	http://dbpedia.org/ontology/OrganisationMember
277476	http://dbpedia.org/ontology/SportsTeamMember

Tipalo: automatic typing of DBpedia entities

Input: natural language definition of an entity

Select the sub-graph you are interested in

```
select ?m ?p ?o1
where{
   ?m ?p ?o1 .
   ?m dcterms:subject ?o.
   dbpedia:The_Matrix dcterms:subject ?o.
   ?m a dbpedia-owl:Film.
   filter(regex(?p,"^http://dbpedia.org/ontology/")).
}
order by ?m
```

Enriching Annotations with Resources From the Web

Computing similarity in LOD datasets

<u>STARRING</u>	Al Pacino (v1)	Robert De Niro (v2)	Brian Dennehy (v3)
Righteous Kill (m1)	X	X	X
Heat (m2)	Χ	Χ	

Righteous Kill Heat

$w \downarrow AlPacino, Heat = tf \downarrow AlPacino, Heat * idf \downarrow AlPacino$

Righteous Kill (x1)	W _{v1,x1}	W _{v2,x1}	W _{v3,x1}
Heat (x2)	W _{v1,x2}	W _{v2,x2}	0

<u>STARRING</u>	Al Pacino (a1)	Robert De Niro (a2)	Brian Dennehy (a3)
Righteous Kill (x1)	0	0	0
Heat (x2)	0	0	

Righteous Kill Heat

 $w \downarrow AlPacino, Heat = tf \downarrow AlPacino, Heat * idf \downarrow AlPacino$

Righteous Kill (m1)	$oldsymbol{W}_{a1,m1}$	W _{a2,m1}	W _{a3,m1}
Heat (m2)	W _{a1,m2}	W _{a2,m2}	0

```
sim \downarrow starring(x \downarrow i, x \downarrow j) = w \downarrow v \downarrow 1, x \downarrow i * w \downarrow v \downarrow 1, x \downarrow j + w \downarrow v \downarrow 2, x \downarrow i * w \downarrow v \downarrow 2, x \downarrow j + w \downarrow v \downarrow 2
```

```
a \downarrow starring * sim \downarrow starring (x \downarrow i + x \downarrow j)
a \downarrow director * sim \downarrow director (x \downarrow i , x \downarrow j)
a \downarrow subject * sim \downarrow subject (x \downarrow i , x \downarrow j+)
... =
sim \downarrow starring (x \downarrow i , x \downarrow j)
```

LOD-based CB RS

Given a user profile defined as: $X \downarrow u \downarrow i = \{ \langle x \downarrow i, r \downarrow x \downarrow i, u \downarrow i > \}$

We can predict the rating using a **Nearest Neighbor Classifier** wherein the similarity measure is a linear combination of **local property similarities**

$$r(u \downarrow i, x') = \sum \langle x \downarrow i, r \downarrow x \downarrow i, u \downarrow i \rangle \in X \downarrow u \downarrow i \uparrow \sum p \uparrow \otimes \alpha \downarrow p * sim \downarrow p (x \downarrow i, x') / P * r \downarrow x \downarrow i, u \downarrow i / | X \downarrow u \downarrow i |$$

Missing in this presentation (not a complete list)

- Learning $\alpha \downarrow p$
- Explanation
 - Quite straight with a content-based approach
- Hybrid approaches
 - Mix a content based approach with a collaborative one
 - Collaborative similarity as a further vector space (property) of the content based approach?
 - Exploit the graph-based nature of both the rating matrix and the RDF graph

• ...

Many thanks to Vito Claudio Ostuni and Roberto Mirizzi