# Modelo TCP/IP Introdução



# Introdução



- Alguém consegue passar um dia sem fazer qualquer tipo de acesso a internet?
- Apesar de parecer simples, existe uma complexidade por trás dessa conectividade de bilhões de dispositivos diferentes trocando informações.
- TCP/IP o protocolo base da internet que permite que toda essa comunicação ocorra independente da condição do nó ou da rede.
- Transmissão confiável de dados para qualquer destino sob qualquer circunstância.

### Modelo OSI x TCP/IP





### Modelo OSI x TCP/IP



- As duas camadas inferiores podem ser chamadas de camadas de interface de redes.
- A camada de rede é chamada de camada internet, no modelo TCP/IP.
- Os termos pacote (packet) e datagrama (datagram) são praticamente intercambiáveis. Entretanto, um datagrama IP é uma unidade de transmissão fim-a-fim da camada de rede (antes da fragmentação e depois da remontagem), enquanto um pacote é uma unidade de dados (PDU) passada entre as camadas de rede e de enlace de dados.
- Um pacote pode conter um datagrama completo ou "pedaços" menores a serem transmitidos (fragmentos).
- A camada de transporte é funcionalmente similar nos dois modelos.
- As camadas de sessão, apresentação e aplicação do modelo OSI correspondem à camada
- de aplicação na arquitetura TCP/IP.
- O modelo TCP/IP é real e usado na prática, enquanto o modelo OSI é mais utilizado para fins acadêmicos.





- Protocolos de alto nível.
- Realiza a interface com o usuário através de softwares como navegadores, por exemplo.
- Vários protocolos operam nessa camada, da um deles é utilizado para uma função específica.
- Utilizam protocolos das camadas inferiores para realizar a comunicação através da rede.
- Representação de dados, a forma como os dados são representados para as aplicações.
- DNS, HTTP, HTTPS, NAT, SPF, LDAP, DHCP, RADIUS, etc.











- Serviços de comunicação Fim a Fim entre aplicações rodando em hosts diferentes.
- Permite que múltiplas aplicações rodando em um mesmo host compartilhem a mesma conexão de rede, através de portas.
- Segmentação e remontagem divisão dos dados da camada de aplicação em segmentos menores para facilitar a transmissão.
- Controle de conexão fornece serviços orientados ou não a conexão dependendo das necessidades da aplicação.
- Entrega confiável sem perdas, duplicidade e em ordem correta.
- Controles de fluxo e congestionamento evitar sobrecarregamento do receptor e responder a congestionamentos na rede.
- Qualidade de Serviço priorização de tráfego.





- Padrões de porta são definidos pela IANA.
  - 0 a 1023: privilegiadas e usadas em servidor (RFC).
  - 1024 a 49151: registradas no servidor, livres no cliente (pode sem solicitadas a IANA).
  - 49152 a 65535: dinâmicas ou privadas, uso livre em servidor e cliente.







- Protocolos UDP.
  - User Datagram Protocol.
  - Não orientado a conexão.
  - Não existe confirmação de entrega, não confiável.
  - Sem controle de fluxo ou congestionamento.
  - Baixa sobrecarga menor cabeçalho.
  - Transmissão rápida.
  - DHCP, DNS, Streaming de vídeo, Voz e jogos.







- Protocolos TCP.
  - Transmission Control Procotol.
  - Orientado a conexão conexão virtual entre transmissor e receptor (three-way handshake).
  - Mais complexo que o UDP.
  - Confiável garante a entrega dos dados, sequenciamento, acknowledgements (ACK) e retransmissão.
  - Confirmação entre a origem e o destino.
  - Responsável por abrir, manter e fechar as conexões.
  - Controle de fluxo e congestionamento.
  - Utilizado por aplicações que exigem entrega confiável de dados HTTP(S), SMTP, SSH.





- No TCP quando um processo deseja enviar dados para outro processo, primeiro ele vai solicitar a abertura de uma conexão entre as entidades TCP de origem e de destino.
- No TCP a comunicação tem 3 fases: abertura da conexão, transferência de dados e fechamento da conexão.

#### Cabeçalho UDP

| Número da porta de origem | Número da porta de destino |
|---------------------------|----------------------------|
| (16 bits)                 | (16 bits)                  |
| Comprimento total         | Checksum                   |
| (16 bits)                 | (16 bits)                  |

#### Cabeçalho do protocolo TCP

| Endereço da porta de origem<br>(16 bits) |                       |             |             |     |             |       | Endereço da porta de destino<br>(16 bits)           |                                |
|------------------------------------------|-----------------------|-------------|-------------|-----|-------------|-------|-----------------------------------------------------|--------------------------------|
| Número de Sequência<br>(32 bits)         |                       |             |             |     |             |       |                                                     |                                |
| Número de Confirmação<br>(32 bits)       |                       |             |             |     |             |       |                                                     |                                |
| HLEN<br>(4 bits)                         | Reservado<br>(6 bits) | U<br>R<br>G | A<br>C<br>K | PSH | R<br>S<br>T | s × z | н — Z                                               | Tamanho da janela<br>(16 bits) |
| Checksum<br>(16 bits)                    |                       |             |             |     |             |       | Ponteiro de Urgência ou Urgent pointer<br>(16 bits) |                                |
| Opções e Preenchimento                   |                       |             |             |     |             |       |                                                     |                                |



#### Three-way Handshake ou Triple Handshake

- Processo fundamental para estabelecer uma conexão confiável.
- Garante que ambos os lados estejam prontos para iniciar a transferência de dados.
- Envolve 3 etapas:
  - SYN (Synchronize)
    - O cliente envia uma requisição de conexão com a flag (SYN Syncronize Sequence Number) ativada.
    - Informa ao servidor que o cliente deseja estabelecer uma conexão e também inclui o número de sequência inicial (ISN Initial Sequence Number) do cliente. Este número é aleatório e usado para rastrear a ordem dos pacotes durante a comunicação.

#### SYN-ACK (Synchronize-Acknowledge)

- Se o destinatário estiver disponível e ouvindo a porta de destino ele responde para o remetente com um pacote com as flags SYN e ACK
- SYN para sincronizar seu próprio número de sequência.
- ACK Para reconhecer o pacote SYN do cliente. O valor do acknowledgment number (número de confirmação) é o número de sequência inicial do cliente + 1. Isso indica que o servidor recebeu com sucesso o SYN do cliente e está esperando o próximo pacote com esse número de sequência

#### ACK (Acknowledge)

- O cliente, ao receber o SYN-ACK do servidor, envia um último pacote TCP com a flag ACK ativada.
- O valor do acknowledgment number neste pacote é o número de sequência inicial do servidor + 1, confirmando que o cliente recebeu o SYN do servidor e que a conexão TCP está agora estabelecida.
- Após este terceiro pacote, a transferência de dados real entre o cliente e o servidor pode começar.





### Three-way Handshake ou Triple Handshake







Para finalizar a conexão é enviado um pacote com a flag FIN habilitada (4 steps Handshake)







### **RTT – Round-Trip Time**

- Mede o tempo que um pacote de dados leva para ir do ponto de origem até o destino e retornar.
- Em outras palavras é o tempo entre o envio do pacote e o recebimento do ACK.
- É importante para medir a latência, o desempenho da aplicação, configurar timeouts em aplicações e otimizar a rede.
- É diretamente afetado pela distância, número de saltos, congestionamento, capacidade dos links e o processamento dos nós e do destino.
- O ping é a ferramenta mais utilizada para medir o RTT tempo entre o envio do echo request e o recebimento do echo reply.





#### Janela deslizante TCP

- Mecanismo de controle de fluxo utilizado para gerenciar a quantidade de dados que pode ser transmitida antes de um ACK ser necessário.
- Deslizante quer dizer que ela é ajustada dinamicamente entre transmissor e receptor ao longo da conexão.
- O tamanho da Janela é enviado pelo receptor no cabeçalho do TCP.
- Durante o 3-way handshake o receptor envia ao destinatário o tamanho da Janela de transmissão e o faz a cada ACK subsequente.
- A medida que vai recebendo os dados e enviando ACKs a Janela vai se deslocando para a frente permitindo que novos dados sejam enviados.
- Se o buffer do receptor ficar cheio ele pode enviar um valor de Janela igual a 0 que vai indicar ao remetente para parar de enviar dados.



### Recaptulando

- Ao receber pacote de dados, o protocolo TCP envia uma confirmação chamada ACK.
- Se o receptor não receber a confirmação dentro de um tempo, o pacote é retransmitido.
- O receptor em nenhum momento comunica o emissor que não recebeu o pacote, ele confirma apenas os recebidos.
- O transmissor é quem identifica a não confirmação após um determinado tempo.
- Este tempo é aleatório variando de acordo com o tamanho da rede e de como o receptor e o emissor "acertaram" esse tempo.
- O problema da retransmissão está no tempo perdido retransmitindo.
- O TCP não usa números sequencias para transmissão e sim o numero de bytes, o primeiro pacote continha 536 bytes, o próximo vai começar pelo 537 byte.













- Roteamento escolher o melhor caminho para os pacotes viajarem através da rede.
- Entrega de melhor esforço, não se preocupa com o conteúdo.
- Realiza o empacotamento dos datagramas em pacotes.
- Endereçamento lógico cada dispositivo recebe um ip único e roteável naquela rede.
- Fragmentação e remontagem fragmenta de acordo com o MTU e remonta no destino.
- Coopera com a camada de transporte no controle de congestionamento.
- QoS







#### Protocolos

- IP (Internet Protocol) fundamental para o endereçamento e roteamento de pacotes. Não confiável e não orientado a conexão. V4 e V6
- ICMP (Internet Control Message Protocol) Usado para enviar mensagens de controle e erro entre os dispositivos de rede. Ping e Traceroute, por exemplo.
- IGMP (Internet Group Management Protocol) gerencia a participação em grupos de multicast.
- ARP (Address Resolution Protocol) resolve endereços IP em endereços MAC (físicos) em uma mesma rede local.
- RARP (Reverse Address Resolution Protocol) utilizado para resolver o endereço IP a partir do endereço MAC. Obsoleto por conta das suas limitações e chegada de protocolos mais avançados.

### Camada de Acesso à Rede



- Lida com a interface física e controle de acesso ao meio.
- Realiza a interface com o hardware.
- Encapsulamento de frames.
- Detecção de erros.
- Endereçamento MAC o MAC roda tanto na camada de rede quanto na camada de acesso à rede.
- Controle de acesso ao meio.

