TP3 – Programmation dynamique (1/2)

Problème du maître-nageur

Le problème du maître-nageur, qui consiste à chercher le plus court chemin entre deux points dans un milieu non homogène, a été décrit en cours. Ce problème d'optimisation compliqué peut être résolu par *programmation dynamique*.

Tout algorithme de résolution d'un problème d'optimisation par programmation dynamique peut se ramener à la recherche du plus court chemin dans un graphe. Pour trouver le plus court chemin dans un graphe pondéré (de poids positifs), l'algorithme le plus connu est l'algorithme de Dijkstra (1959).

Exercice 1 : familiarisation avec la fonction dijkstra de Matlab

Commencez par lire la documentation de la fonction dijkstra de Matlab, en tapant doc dijkstra, puis écrivez un script de nom exercice_1 visant à résoudre le problème de plus court chemin vu en cours (graphe à six sommets A, B, C, D, E, F) par l'algorithme de Dijkstra. L'appel à la fonction s'écrit, par exemple :

[couts,chemins] = dijkstra(M,P,4)

où M est une matrice de booléens de taille 6×6 décrivant les adjacences du graphe, P est une deuxième matrice de taille 6×6 contenant les poids des arêtes du graphe, et 5 est l'indice du sommet E, si les six sommets sont ordonnés par ordre alphabétique. Attention : les matrices M et P doivent être symétriques.

Le script $exercice_1$ doit retourner les coûts optimaux menant de E aux six sommets du graphe, ainsi que les six chemins optimaux correspondants. Par exemple, le chemin optimal menant de E à A s'obtient en tapant la commande :

>> chemins{1}

Exercice 2 : résolution du problème du maître-nageur

Pour résoudre le problème du maître-nageur par l'algorithme de Dijkstra, il est nécessaire de construire un graphe tel que :

- Les sommets sont les pixels.
- Les arêtes correspondent au système de voisinage des « 8 plus proches voisins ».
- Le poids d'une arête est égal à la longueur de cette arête (cette longueur ne peut valoir que 1 ou $\sqrt{2}$) divisée par la vitesse de déplacement du maître-nageur, qui est proportionnelle à la moyenne des niveaux de gris des deux extrémités de l'arête.

Complétez le script exercice_2 de manière à mener à bien cette résolution sous forme interactive : l'utilisateur est invité à choisir la position du maître-nageur, puis celle du noyé. Le chemin optimal doit alors s'afficher quasi-instantanément.