第9讲网络流问题(中)

罗国杰

gluo@pku.edu.cn

2025年春季学期

算 P 法 K 设U 与 0 分 4 · 实 验 0

Review: Max-flow Algorithms

https://visualgo.net/en/maxflow

Ford-Fulkerson: O(E |f*|) Edmunds-Karp: O(VE²)

Dinic: $O(V^3) \sim O(EV^2)$

最大流 预流推进算法

- ► 预流推进 (preflow-push) 算法
 - ▶ 预流的概念
 - ▶预流推进算法的思想
 - ▶算法正确性证明
 - ▶ 算法时间复杂性分析
- ▶ 预流推进算法的优化
 - ▶ 重标记前置 (relabel-front) 预流推进算法
 - ▶ 算法性质证明和时间复杂性分析

增广路径与预流推进的对比

- 基于增广路径的算法
 - ▶从零流(可行解)出发
 - ▶每步基于增广路径构造一个更大的流
 - ▶流不能增大时为止
- 基于预流推进的算法
 - ▶ 从源点出发
 - ▶或者把预流(松弛解)尽可能地向前推(push)
 - ▶或者重新标记中间结点的高度 (relabel)
 - ▶不能继续操作时为止

预流 (preflow)

- ► 预流 (preflow) 的性质:
 - ▶ 预流函数 f: V×V→R
 - ▶容量限制
 - $f(u, v) \le c(u, v)$
 - ▶松弛的流量平衡——超额流 (excess flow) 非负
 - $e(u) = \Sigma_v f(v,u) \Sigma_v f(u,v) \ge 0$, for $\forall u \in V \{s\}$
- ► 溢出 (overflow) 结点
 - ▶ e(u) > 0

预流推进算法的直观思想

- 洪水流经河网和水库流向大海的过程
 - ▶最上游水库开闸,洪水迅速涌向下游水库
 - 此时下泄流量只与河道容量有关(割的容量)
 - ▶洪峰到达,下游水库开闸,洪水继续涌向下游(push)
 - 流出量只和与下游水库间的河网总容量有关
 - ▶流出量小于流入量时,水库水位不断增高 (relabel)
 - 可能会出现新的泄洪渠道
 - 或减弱入库流量(洪水回涌)
 - ▶最后最上游水库出库流量与河网泄洪流量一致
 - 泄洪过程的动态平衡

预流推进的基本操作

- ■基本操作
 - ▶推进流: push
 - ▶重标记: relabel
- ■高度函数
 - ▶流网络 G 上的预流 f 的高度函数 h
 - $\blacktriangleright h[s] = |V|, h[t] = 0$
 - ▶ $h[u] \le h[v] + 1$, for $\forall (u, v) \in E_f$ (E_f 是预流对应的余量网络 N_f 的边集)
- ■高度函数与余量网络边的关系(引理26.12)
 - $\blacktriangleright h[u] > h[v] + 1 \Rightarrow (u, v) \notin E_f$

推进流 (PUSH)

PUSH(u, v)

- 1 > Applies when: u is overflowing, $c_f(u, v) > 0$, and h[u] = h[v] + 1.
- 2 ightharpoonup Action: Push $\Delta_f(u, v) = \min(e[u], c_f(u, v))$ units of flow from u to v.
- 3 $\Delta_f(u, v) \leftarrow \min(e[u], c_f(u, v))$
- 4 if $(u,v) \in E$ then $f[u,v] \leftarrow f[u,v] + \Delta_f(u,v)$
- 5 else $f[v, u] \leftarrow f[v, u] \Delta_f[u, v]$
- 6 $e[u] \leftarrow e[u] \Delta_f(u, v)$
- 7 $e[v] \leftarrow e[v] + \Delta_f(u, v)$

乡 关于PUSH

- \rightarrow PUSH(u, v)
 - ▶从u到v推进流(满足条件时才能推进)
- **■**饱和推进(saturating push)
 - ▶如果推进后边的流量饱和(剩余容量 $c_f(u,v)=0$)
- ●不饱和推进 (unsaturating push)
 - ▶如果推进后边的流量不饱和(剩余容量 $c_t(u, v) > 0$)
 - ▶不饱和推进把溢出结点转变为非溢出结点(引理26.13)

重标号(RELABLE)

RELABEL(u)

- 1 \triangleright Applies when: u is overflowing and for all $v \in V$ such that $(u, v) \in E_f$, we have $h[u] \leq h[v]$.
- 2 \triangleright Action: Increase the height of u.
- $3 \ h[u] \leftarrow 1 + \min \{h[v] : (u, v) \in E_f\}$

通用的预流推进算法

INITIALIZE-PREFLOW(G, s)

- 1 for each vertex $u \in V[G]$
- 2 do $h[u] \leftarrow 0$
- $e[u] \leftarrow 0$
- 4 for each edge $(u, v) \in E[G]$
- 5 do $f[u, v] \leftarrow 0$
- $6 h[s] \leftarrow |V[G]|$

•••

• • •

7 for each vertex $u \in Adj[s]$

8 do $f[s, u] \leftarrow c(s, u)$

9 $e[u] \leftarrow c(s, u)$

10 $e[s] \leftarrow e[s] - c(s, u)$

GENERIC-PUSH-RELABEL

GENERIC-PUSH-RELABEL(G)

- 1 INITIALIZE-PREFLOW(G, s)
- 2 while 如果能够应用PUSH或RELABEL操作
- 3 do 任意选取结点做PUSH或RELABEL操作

- 任何溢出结点(引理26.14)
 - ▶或者可以应用PUSH
 - ▶或者可以应用RELABEL
- 证明:用高度函数的定义和不能应用PUSH蕴含着可以应用RELABEL的条件即可证明。

预流推进算法的正确性

- 证明思路
 - ▶算法终止时,所得预流即最大流
 - ▶算法一定会终止

引理26.15 结点高度不会降低

- ●结点高度h[u]不会减小, 并且重标号使结点高度h[u]至少增加1
- ●证明:
 - ▶因为h[u]只在RELABEL过程中改变,
 - ▶而当结点u可以应用RELABEL时, 对于余量网络任意满足 $(u,v) \in E_f$ 的结点 $v, h[u] \le h[v]$
 - ▶所以 $h[u] < 1 + \min\{h[v] : (u, v) \in E_f\}$, 即h[u]必增大

引理26.16 始终满足高度函数性质

- 在通用预流推进算法过程中,结点高度始终保持遵从高度函数的性质(循环不变式)。
- 证明: (归纳法)
 - ▶初始时遵从高度函数性质
 - ▶ RELABEL(u)操作不改变高度函数性质
 - ●任意出边 $(u, v) \in E_f$, 重标号后 $h[u] \le h[v]+1$
 - ●任意入边 $(w,u) \in E_f$, 重标号前 $h[w] \le h[u]+1$, 而重标号后h[u]至少增加1, 故h[w] < h[u]+1
 - ▶ PUSH(u, v)可能在 E_f 中增加边(v, u)或删除边(u, v)
 - 增加时: h[v] = h[u] 1 < h[u]+1
 - ●删除时: *h[v] 与 h[u]* 间无约束

引理26.17 G_f 中无从s到t的路径

- 流网络G=<V, E>上预流f的余量网络 G_f 中无从S到t的路径
- → 证明:
 - ▶反证法,设 $p = \langle v_0, v_1, ..., v_k \rangle$ 是 G_f 中从s到t的路径,其中 $v_0 = s$, $v_k = t$
 - ▶不失一般性, p是一条简单路径, 故k < |V|
 - ▶而对于 $(v_i, v_{i+1}) \in E_f$, (i=1..k-1)有 $h[v_i] \le h[v_{i+1}]+1$
 - ▶于是|V| = h[s] ≤ h[t]+k = k
 - ▶矛盾。

定理26.18: 通用预流推进算法是正确的

- 如果在流网络*G*=<*V*, *E*>上GENERIC-PUSH-RELABEL算法能结束,则得到的预流*f*就是 *G*的最大流。
- 证明:循环不变量(每一步得到的f总是一个预流)
 - ▶初始:初始化后,得到的f显然是预流
 - ▶保持:循环中只涉及PUSH和RELABEL操作。
 - ●RELABEL操作只改变高度,不改变流;
 - ●PUSH不会使任何结点的超额为负,同时保持的斜对称性和容量限制。
 - ▶结束:不存在溢出结点,即对于 $\forall u \in V \{s, t\}$,e[u] = 0。而f始终是预流,故f是G上的流。又 G_f 中不存在从s到t的路径,故f是最大流。

预流推进算法的时间效率分析

- ●方法:考察各种操作的执行次数上界
- ▶ 只有三种操作:
 - ▶RELABEL: 重标记
 - ▶PUSH: 推进流
 - ●饱和推进 (saturating push)
 - ●不饱和推进(unsaturating push)
- ■结论:
 - ▶通用预流推进算法的运行时间上界为O(V²E)

引理26.19 溢出结点u在 G_f 中可达s

- \blacksquare 在余量网络 G_f 中存在一条从溢出结点u到源点s的简单路径
- ➡ 证明: 反证法。
 - ▶设*U*={*v*|在*G_f*中*u*可达*v*},假设*s* ∉*U*,设Ū=*V*-*U*。
 - - ●否则,如果f(w, v) > 0,则 $c_f(v, w) = f(w, v) > 0,$ 即 $(v, w) \in E_f$, 这样 $w \in U$, 矛盾。
 - ▶于是f(Ū, U) = 0, 就有
 - $\bullet e[U] \le f(V, U) = f(\bar{U}, U) + f(U, U) = f(\bar{U}, U) = 0$
 - ▶既有e[u] ≠ 0,矛盾。

引理26.20 结点高度h[u]小于2|V|-1

- 在通用预流推进算法过程中, $\forall v \in V \in V \in I[u] \le 2 |V| 1$ 。
- 证明:
 - ▶根据定义,源点s和汇点t满足引理。
 - ▶ 对 $\forall u \in V \{s, t\}$, 初始时 $h[u] = 0 \le 2 |V| 1$ 。
 - ▶在RELABEL(u)后,u溢出,根据引理26.19,在 G_f 存在从u到s的简单路径 $p = < v_0, v_1, \dots, v_k > ,$ 其中 $v_0 = u, v_k = s, k \le |V|-1$ 。
 - ▶而对于 $(v_i, v_{i+1}) \in E_f$, (i=1...k-1)有 $h[v_i] \le h[v_{i+1}]+1$
 - ▶于是h[u] ≤ h[s]+k ≤ 2|V|-1

21 各种操作次数的上界

- \blacksquare RELABEL: $2|V|^2$
 - ▶每个结点最多重标记2|V|-1次,共|V|-2个结点。
- 饱和PUSH: 2|V||E|
 - ▶u和v间饱和PUSH的次数为2|V|-1
 - ▶当PUSH(*u*,*v*)时有*h*[*v*] = *h*[*u*] 1,再次PUSH(*u*,*v*)须发生在PUSH(*v*,*u*)之后(*h*[*v*] = h[u] + 1) , h[v]值增加2
- 不饱和PUSH: 4 | V|²(| V| + | E|)
 - ▶定义势函数**Φ** = Σ_{ν:e(ν)>0}h[ν] ≥ 0。
 - ▶RELABEL增加势: ≤2|V|;饱和PUSH增加势: ≤2|V|
 - ▶不饱和PUSH减少势至少1。

通用预流推进算法的时间效率

- ■通用预流推进算法一定能结束
 - ▶只需执行*O(V²E)*次操作,算法结束
- ■算法运行时间上界
 - ▶如果RELABEL操作的开销为*O(V)*; PUSH操作的开销为*O(1)*。
 - ▶则运行时间上界为*O(V²E)*

重标号前置预流推进算法

- ■通用预流推进算法
 - ▶对溢出结点做流推进或重标号操作
 - ▶操作的顺序是任意的
 - ▶时间界为*O(V²E)*
- 重标号前置预流推进算法(略)
 - ▶对溢出结点做流推进或重标号操作
 - ▶通过对重标号的结点前置规范结点被处理的顺序
 - ▶时间界为*O(V³)*
 - ▶借助于"允许边"的概念证明和分析

最小费用流

- 在容量网络 $N = \langle V, E, c, s, t \rangle$ 添加费用函数 $w: E \to R^*$ 称作<u>容量-费用网络</u>,记作 $N = \langle V, E, c, w, s, t \rangle$
- 设f是N上的可行流,f是的<u>费用</u>为

$$w(f) = \sum_{\langle i,j\rangle \in E} w(i,j)f(i,j)$$

■ 最小费用流:

流量为2的N上所有可行流中费用最小者

最小费用流算法

- ▶ 负回路算法:从可行流开始,迭代直至费用最低
- ▶ 最短路径算法: 从零流开始, 迭代直至满足流量约束

容量-费用网络的辅助网络

- 设容量-费用网络 $N = \langle V, E, c, w, s, t \rangle$, $f \in \mathbb{R}$ $f \in \mathbb{R}$ f
- ■其辅助网络的定义为

$$N(f) = \langle V, E(f), ac, aw, s, t \rangle$$

其中E(f)和ac的定义与最大流辅助网络一致

辅助费用 aw为

$$aw(i,j) = \begin{cases} w(i,j) & \langle i,j \rangle \in E^+(f) \\ -w(j,i) & \langle i,j \rangle \in E^-(f) \end{cases}$$

容量-费用网络与其辅助网络

费用流的可叠加性

■ 引理7.9 f是容量-费用网络N上的可行流, g是辅助网络N(f)上的可行流 f' = f + g,则 w(f') = w(f) + aw(g)

证明:略,类似引理7.5的证明。

圈流与环流量

- 设容量-费用网络 $N = \langle V, E, c, w, s, t \rangle$, $C \in \mathbb{N}$ 中一条边不重复的回路,
- C上的<mark>圈流 h^C </mark>定义为

$$\forall \langle i,j \rangle \in E(C), \quad h^{C}(i,j) = \delta;$$

 $\forall \langle i,j \rangle \in E - E(C), \quad h^{C}(i,j) = 0;$

其中
$$h^{C}$$
环流量 $\delta = \min_{\langle i,j \rangle \in E(C)} \{c(i,j)\} > 0$

 $-h^{c}$ 是一个可行流,流量为零但通常费用非零

$$v(h^{\mathcal{C}}) = 0, \qquad w(h^{\mathcal{C}}) = \delta \cdot w(\mathcal{C})$$

其中
$$w(C) = \sum_{\langle i,j \rangle \in E(C)} w(i,j)$$

圈流与环流量

f是容量-费用网络N上的可行流, h^{C} 是辅助网络N(f)上的圈流,

$$f'=f+h^C$$

f'是N上的可行流,且

$$v(f') = v(f)$$

$$w(f') = w(f) + \delta \cdot aw(C)$$

如果 $C \in N(f)$ 上关于aw的负回路,则

$$aw(C) < 0 \Rightarrow w(f') < w(f)$$

最小费用流负回路算法

- 1. 求得N上一个流量 v_0 为的可行流f
- 2. 构造辅助网络N(f)
- 3. 利用 Belllam-Ford 算法检查N(f)中是否存在负回路
- 4. 如果N(f)存在关于aw的负回路C
- 5. 令 $f' = f + h^{C}$, $f \leftarrow f'$, 重复步骤2
- 6. 否则,N(f)不存负回路,算法结束

带负权的最短路径问题

- 最短路存在性的充要条件: 无负回路
 - ▶必要性
 - 如果有负回路,每绕一圈路径权值和必减少
 - ▶充分性
 - 最短路必是简单路径 (无重复顶点)
 - 简单路径的数量是有限的,必有最短路
- ► 检测负回路的 Bellman-Ford 算法
 - ▶ 迭代 |V| 次后, 第 |V| + 1 次仍能降低最短路长度 ⇒ 存在负回路
 - ▶ 复杂度 O(|V||E|)

示例: 负回路算法(1)

示例: 负回路算法(2)

示例: 负回路算法(3)

负回路算法的正确性

■ 定理**7.5** 设f是容量-费用网络N上流量为 v_0 的可行流,则f是最小费用流 当且仅当 N(f)中不存在以辅助费aw为权的负回路

证明:

必要性显然:基于负回路可构造费用更小的流

充分性在于:假设存在费用更小的可行流f'

则g = f' - f将是N(f)中流量为零的可行流

g只能是一些环流的并,不存在负回路则 $w(g) \geq 0$

于是 $w(f') = w(f) + w(g) \ge w(f)$, 矛盾

负回路算法的有限终止性

- 假设边的容量都是整数
- ▶ 计算过程中的可行流都是整数值、圈流的环流量也是整数值
- -w(f) 的值是有限的整数每次消减负回路至少把w(f) 的值减少 1
- 计算流量为 v₀ 的可行流与循环消减负回路求得最小费用流均可在有限步内终止
- 时间复杂度 $O(|V||E|W_{init})$ 或 $O(|V||E|^2c_{max}w_{max})$
 - ▶ 单次负回路检测算法耗时 O(|V||E|), 最多检测 W_{init} 次
 - ▶其中 $W_{init} = w(f_{init})$ 是初始可行流 f_{init} 的费用
 - ▶ 费用 W_{init} 上界是 $|E|c_{max}w_{max}$, 其中 c_{max} 是最大边容量、 w_{max} 是最大边费用绝对值

最小费用流的最短路径算法

- 从初始最小费用流 (零流) 开始
- 通过费用最小的s-t增广链扩张流 f
- \blacksquare 直到 f 的流量值等于 v_0 为止

▶ 保证该算法正确,只需证明步骤2得到的始终是当前流量下的最小费用流

- 时间复杂度分析
 - ▶最多 v₀ 次迭代,每次迭代求一次最短路
 - ▶ 如果用堆优化的 Dijkstra 算法,总复杂度是 $O(v_0(|V| + |E| \log |V|))$

示例: 求最小费用最大流 v(f)=10

延最短路增加流再求辅助网络

再延最短路增加流并求辅助网络

再延最短路增加流并求辅助网络

最后得到最小费用最大流

算法的正确性

思路: 假设存在负回路则导出矛盾即可

引理 7.12

设有向图 $D = \langle V, E \rangle$ 没有孤立点,顶点s的出度比入度大1,t的入度比出度大1,其余顶点的出度等于入度,则D可表示成一条s-t路径与若干条回路的并。

5 沿最短路扩张一定得到最小费用流

```
定理 7.6
  设f是N上流量为v_0的最小费用流,
  P是N(f)中权 aw的s-t最短路径,
  g是P上流量为\theta的可行流,
  则f' = f + g是流量为v_0 + \theta的最小费用流。
其中对\forall \langle i, j \rangle \in E(f)
```

$$g(i,j) = \begin{cases} \theta & \langle i,j \rangle \in E(P) \\ 0 & otherwise \end{cases}$$
$$0 < \theta \le \min\{ac(i,j) | \langle i,j \rangle \in E(P)\}$$

定理 7.6 证明

反证法: 假设f'不是最小费用流,则N(f')中存在权aw的负回路C。

考察N(f)与N(f')间的差异 f与f'仅在对应P的增广链上不同

E(f') - E(f)定与P有关,即有 $\langle i, j \rangle \in E(f') - E(f) \Rightarrow \langle j, i \rangle \in E(P)$

定理 7.6 证明 (续)

负回路C中必有E(f') - E(f)中的边 因为f是最小费用流,N(f)中无负回路

设这些边为

$$\langle i_1, j_1 \rangle, \langle i_2, j_2 \rangle, \dots, \langle i_r, j_r \rangle$$

则有

$$\langle j_1, i_1 \rangle, \langle j_2, i_2 \rangle, \dots, \langle j_r, i_r \rangle \in E(P)$$

记这2r条的边集为H

 \mathcal{L} \mathcal{L} 和 \mathcal{L} 构成的子图中删除 \mathcal{L} (以及孤立点)记为 \mathcal{L}

定理 7.6 证明 (续)

子图D满足引理7.12它由一条s-t路径P'与若干条回路 $C_1, C_2, ..., C_l$ 组成

于是

$$aw(D) = aw(P') + \sum_{i=1}^{l} aw(C_i)$$

而
$$aw(H) = 0$$
,于是
$$aw(P) + aw(C) = aw(D) + aw(H)$$

6 定理 7.6 证明(续)

$$aw(P') = aw(P) + aw(C) - \sum_{i=1}^{l} aw(C_i)$$

假设条件

而

$$aw(C_i) \geq 0, i \in \{1, 2, ..., l\}$$

于是

与P是N(f)中权 aw的s-t最短路径矛盾

小结

■ 最大流

- ▶ (复习) Ford-Fulkerson类算法:从可行流开始,迭代增广至最大流
- ▶基于"预流"推进的算法:从"预流"/松弛解开始,迭代至可行流

■最小费用流

- ▶ 负回路算法:从可行流开始,迭代直至费用最低
- ▶最短路径算法:从零流开始,迭代直至满足流量约束