

OPERATING SUMMARY

9

LAB

LIERARY EDBY JAN 2 9 1975

MINISTO: TH

3

LABORATORY & RICAT, LOT RY

TD 367 .A56 H349 1973 MOE

HAILEYBURY

TD 367 .A56

Haileybury: water pollution control plant.

56 82192

H349 1973

MINISTRY OF THE ENVIRONMENT

MINISTER Honourable William G. Newman

DEPUTY MINISTER E. Biggs

ASSISTANT DEPUTY MINISTER REGIONAL OPERATIONS
J. Barr

REGIONAL OPERATIONS DIVISION

DIRECTOR, NORTHEASTERN REGION R. Moore

MANAGER, UTILITY OPERATIONS J. Wesno

HAILEYBURY

WATER TREATMENT PLANT and

WATER POLLUTION CONTROL PLANT

MINISTRY OF THE ENVIRONMENT

1973 ANNUAL OPERATING SUMMARY

Digitized by the Internet Archive in 2015

https://archive.org/details/haileyburywaterp25461

CONTENTS

WATER TRE	ATM	EN	Т	P	LA	N	Т									
Flow Diag	ram	•	•	•	•	•	•	•	•	•	•	•	•			6
Design Da	.ta .	•	•	•		•	•	•	•	•	•	•	•	•		7
'73 Review	<i>v</i>	•	•	•		•	•	•	•	•	•	•	•	•	•	8
Process I	Data	•	•	•	•	•	•	•	•	•	•	•	•	•	•	10
WATER POL	LUTI	10.	1 (CC	N'	ΓF	RO:	L	PΙ	LΑ	ΓN	2				
Flow Diag	ram	•	•	•	•	•	•	•	•	•	•	•	•	•	•	18
Design Da	ıta .	•	•	•		•	•	•	•	•	•	•	•	•	•	19
'73 Review	W	•	•		•	•	•	•	•	•	•	•	•	•	•	20
Process I	Data															22

WATER	TREATMENT PLANT

DESIGN DATA

LAKE TIMISKAMING

NOMINAL CAPACITY 1.5 MIGD RAW WATER SOURCE Lake Timiskaming

INTAKE

910' of 18'' dia plastic gravity intake Design flow 5 MGD

LOW LIFT PUMPING

- 3 submersible pumps Capacity: 600 GPM ea.

WATER TREATMENT PLANT

FLASH MIXING

Capacity 520 gal

FLOCCULATION TANKS

Size:

15' x 24.5' x 9' (21,000 gal)

Detention: 40 minutes

SETTLING TANKS

Size:

55' x 23'-4" x 9' (154, 000gal, tot.)

Overflow rate: 550 gpd/sq.ft.

FILTERS

Type:

Gravity Anthracite & Sand

Size: Filter rate: Three 10' x 14' 2.4 gpm/sq.ft.

CLEAR WELL

Capacity:

55,000 gal.

HIGH LIFT PUMPING

Type:

PLEUGER Deep Well Submersible

Capacity: Three 580 IGPM @ 230' TDH

(2.4 MIGD total)

BACKWASH PUMP

Type:

PLEUGER

Capacity: 2600 gpm @ 26' TDH

STANDBY POWER

60 cps 3-phase STAMFORD alternator with 6 cyl. DORMAN diesel

STORAGE

Reservoir

0.4 MG

Old Reservoir: 0.2 M.G.

BOOSTER STATION

Pump Type

CRANE vertical turbine

Capacity: Two 700 gpm

One 1350 gpm

Standby power: BEDFORD horizontal Diesel

to #3 pump (1350 gpm)

73 Review

GENERAL

The Haileybury water treatment plant is a 1.5 million gallon per day complete treatment plant and is designed to provide for an ultimate treatment capacity of 3.0 million gallons per day.

The plant provides complete treatment to the water of Lake Timiskaming which in the untreated state is highly coloured, turbid and aggressive. The treatment process is designed to reduce the aggressive nature of the water and to bring colour, iron and turbidity levels to within the Ministry's water quality standards. Disinfection of the filtered water is effected by gas chlorination.

The treated water is pumped directly to a 600 thousand gallon capacity ground storage reservoir. Water is fed by gravity from this reservoir to the lower sections of the Town of Haileybury. Booster pumps located at the reservoir continuously supply water to areas of the town located at higher elevations.

The plant is staffed by a superintendent, a maintenance man and three operators who divide their duties between the Haileybury water and sewage projects. The plant has had few operating difficulties during the year, and for the most part has provided a good quality water to consumers.

PLANT FLOWS

The total plant output for 1973 was 149.6 million gallons. The maximum daily flow occurred in October and was 0.81 million gallons. The average daily flow of 0.41 million gallons represents 27.3 per cent of the plant design capacity of 1.5 million gallons per day. The maximum daily flow at 0.81 represents 54 per cent of the plant design capacity.

The decrease in consumption from the previous year was due to the fact that the local dairy in Haileybury had closed.

PROCESS CHEMICALS

A total of 7,115 gallons of alum were used as a coagulant during 1973. The average dosage was 31 mg/l with a monthly average dosage range from 22 mg/l to 53 mg/l.

A total of 365 gallons of sodium silicate at an average dosage of 3.4 mg/l and a total of 912 pounds of sodium bicarbonate at an average dosage of 0.6 mg/l were used as flocculation aids.

A total of 19 thousand pounds of lime at an average dosage of 13 mg/l was added to the clear well to control the pH levels in the treated water.

A total of 3513 pounds of chlorine was used for disinfection during 1973. The average dosage of 2.3 mg/l was used to maintain a residual of 0.6 mg/l for the required 15-minute contact period.

WATER QUALITY

The Lake Timiskaming water con be considered very soft, with an average of 30 mg/l hardness as CaCO₃. The treated water averaged 46 mg/l hardness as CaCO₃ which is also in the 'soft' range.

The raw water iron content averaged 0.8 mg/l while the treated water averaged 0.12 mg/l, which is well within the Ministry of the Environment recommended limit of 0.30 mg/l.

The average colour and turbidity concentrations of 5 units and 2 FTU respectively indicate an improvement over the previous years average levels. However, turbidity levels still exceed the recommended Ministry standard of 1 FTU. Expected refinements in the treatment process in 1974 should bring this level within the Ministry standards as well.

Bacteriological samples collected from the treated water at the plant and the distribution system were all coliform free.

CONCLUSIONS

The plant produced a good quality water for potable purposes during 1973. Turbidity levels were slightly in excess of Ministry standards and it was anticipated that process changes will reduce these levels in 1974.

PROCESS DATA

FLOWS

DESIGN CAPACITY ______

PLANT PERFORMANCE

			FLOWS		RAW WATER TREATED WATER									
			PLOW3		KAW	WAILK	TURN							
монтн	TOTAL PLANT OUTPUT	AVERAGE DAILY FLOW	MAXIMUM DAY'S FLOW	MAXIMUM RATE		(AVERAGE)		MAXIMUM		MAXIMUM				
	million gallons	million gallons	million gallons	mgd	FTU	App. units	FTU	FTU	App.units	App. units	°F	° F		
JAN	14.3	0.46			9.4	60	2.8	2.8	15	15	34	34		
FEB	13.1	0.47	0.53		5.6	60	1.2	1.2	10	10	34	34		
MAR	14.5	0.47	0.52		5.5	60	1.2	1.3	< 5	5	34	34		
APR	12.8	0.42	0.49		15.0	45	1.3	1.9	< 8	10	35	37		
MAY	11.9	0.39	0.45		16.0	35	8.3	15.0	<10	15	42	45		
JUNE	11.7	0.39	0.64		7.4	63	1.8	2.0	< 5	< 5	54	63		
JULY	13.2	0.43	0.63		6.4	40	0.9	0.9	< 5	< 5	67	68		
AUG	11.4	0.37	0.43								68	7 0		
SEPT	11.0	0.37	0.44		4.0	30	0.6	0.8	< 5	< 5	62	68		
ОСТ	11.6	0.38	0.81		3.1	40	0.9	1.3	<5	< 5	54	56		
NOV	11.7	0.39	0.46		11.0	38	0.9	1.1	<5	< 5	42	50		
DEC	12.4	0.40	0.54		9.0	40	2.2	2.4	<5	< 5	35	37		
TOTAL	149.6													
AVG.		0.41	0.81	MAXIMUM	8.3	47	2.0	MAXIMUM 15.0	< 5	MAXIMUM 15	50	MAXIMUM 70		

CHLORINATION and DISINFECTION

		RAV	V WATE	R		PLA EFFL	UENT		BUTION TEM	СН	LORINA	TION	
				ES HAVING	0 ==1	NUMBER OF	NUMBER HAVING	NUMBER	NUMBER HAVING	TOTAL AMOUNT OF	DOS	RESIDUAL IN PLANT	
MONTH			0F 4 - 32	33-320	> 320	SAMPLES COLIFORM SAM		SAMPLES		CHLORINE USED	PRE - mg/l	POST - mg/l	EFFLUENT mg/l
	0	1 – 3	4 - 32	33-320	> 320	TAKEN	ORGANISMS	TAKEN	UNGANISNIS	pounds	nig/ t	my/t	mg/1
JAN	0	0	0	0	0	1	0	1	0	214		1.5	0.5
FEB	0	0	0	0	0	2	0	2	0	204		1.6	0.6
MAR	0	0	0	0	0	2	0	2	0	241		1.7	0.6
APR	0	0	0	0	0	2	0	2	0	234		1.8	0.7
MAY	0	0	0	0	0	2	0	2	0	217		1.8	0.5
JUNE	0	0	0	0	0	2	0	2	0	227		1.9	0.6
JULY	0	0	0	0	0	2	0	2	0	339		2.5	0.6
AUG	0	0	0	0	0	1	0	1	0	378		3.3	0.5
SEPT	0	0	0	0	0	2	0	2	0	367		3.3	0.6
ост	0	0	0	0	0	2	0	2	0	392		3.4	0.7
NOV	0	0	0	0	0	2	0	2	0	365		3.1	0.8
DEC	0	0	0	0	0	2	0	2	0	332		2.6	0.6
TOTAL	0	0	0	0	0					3513			
AVG.	(NOTE -	Average sho	own is the GE	EOMETRIC ME	(AN)	22	0	22	0	10 pounds per day		2.3	0.6

TURBIDITY

PLANT INFLUENT -----

WATER QUALITY

		RAW	WATER			TREATE	D WATER		DESIRABLE
PROPERTY	NUMBER OF SAMPLES	AVERAGE	MAXIMUM	MUMINIM MUMIXA		AVERAGE	MAXIMUM	MINIMUM	STANDARDS
HARDNESS in mg/l as CaCO ₃	21	30	40	17	20	46	56	32	80 - 100
ALKALINITY in mg/l as CaCO ₃	21	19	29	7	20	22	29	14	30 - 100
IRON in mg/l Fe	21	0.8	1.5	0.5	20	0.12	0.45	< 0.05	Less than 0.3
CHLORIDE in mg/t Ct-	21	3	7	2	20	4	5	3	Less than 250
pH in pH units	21	7.4	8.4	6.3	20	8.2	9.1	7.1	7.0 - 8.5
FLUORIDE in mg/L F	17	0.2	1.0	< 0.1	20	< 0.1	0.2	< 0.1	Less than 1.2
ALUMINUM in mg/l Al	7	0.7	1.4	0.4	8	0.5	1.5	0.1	

TREATMENT DATA

	FILTER (OPERATION			CHEMICAL	S USED		
	AVERAGE	BACKWASH	ALU	М	SODIUM SILICAT	E SOLUTION	LIME	
MONTH	TH RUN WATE hours million g		AMT. USED IO ³ gallons	DOSAGE mg/l	AMT. USED gallons	DOSAGE mg/l	AMT. USED IO ³ pounds	DOSAGE mg/l
JAN	80	0.32	627	29	31	3.0	1.7	12
FEB	51	0.29	434	22	28	3.0	1.7	13
MAR	54	0.30	833	37	31	3.0	1.7	12
APR	64	0.23	459	23	30	3.3	1.4	11
MAY	54	0.24	466	25	31	3.6	1.4	12
JUNE	60	0.21	475	26	30	3.6	1.4	12
JULY	5 8	0.21	620	31	31	3.3	1.8	13
AUG	113	0.12	520	30	31	3.9	1.8	15
SEPT	88	0.15	522	31	30	3.8	1.4	13
ОСТ	70	0.20	589	33	31	3.7	1.6	14
NOV	102	0.14	560	31	30	3.6	1.4	12
DEC	60	0.24	1010	53	31	3.5	1.7	14
TOTAL		2.65	7115		365		19.0	
AVG.	71	0.22	593	31	30	3.4	1.6	13

HAILEYBURY WPCP

DESIGN DATA

PROJECT NO.	1-0069-67	PUMPING STATION	AEROBIC DIGESTER
DESIGN FLOW	0.350 mgd	Two - 625 IGPM @ 61 ft TDH One Diesel engine	Volume: 15,000 ft ³ or 93,400 gal Loading: 4,3 ft ³ /capita
BOD - Raw Sewage - Removal	170 mg/l 90%	GRIT REMOVAL	<u>SEDIMENTATION</u>
SS - Raw Sewage - Removal	200 mg/l 90%	Type: Manually cleaned channels Size: Two	Volume: 12,100 ft ³ or 75,500 gal Detention: 5.7 hr @ 350,000 Igpd Loading: Surface weir
		SCREENING	CHLORINE CONTACT CHAMBER
		Bar Screen 1 3/4" openings	Volume: 8600 gal Detention: 35 min @ 0.35 mg
		AERATION	Dottellion of mill & 0, 50 mg
		Volume: 8, 300 ft ³ or 52, 400 gal Detention: 3.6 hr @ 0.35 mgd	

Diffusers: S & L Aluminum

Volume: 21,330 ft³ or 132,900 gal Detention: 7.6 hr @ max. return rate of 417,600 Igpd

REAERATION SECTION

73 Review

GENERAL

The Haileybury sewage project consists of a 350 thousand gallon per day prefabricated contact stabilization treatment plant, and a custom-built sewage pumping station. The plant is operated jointly with the Haileybury water treatment plant and the Haileybury South sewage lagoon project.

The plant was hydraulically overloaded 85 per cent of the time during 1973; however a good quality effluent was produced throughout the year. The final effluent concentrations averaged 6 mg/l and 28 mg/l for BOD and suspended solids respectively.

The Town of Haileybury has applied to this Ministry for an expansion of the plant. This will correct the hydraulic overloading condition, and provide additional treatment capacity for future needs.

PLANT FLOWS AND CHLORINATION

The average daily flow of 502 thousand gallons during 1973 was 143 per cent of the design flow capacity. This represented an increase of approximately 22 per cent over the 1972 average daily flow.

A total of 2580 pounds of chlorine was required at an average dosage of 2.1 mg/l to produce a chlorine residual of 0.5 mg/l in the final effluent. Chlorination was carried out only between the months of March and November.

PLANT EFFICIENCY

The raw sewage BOD and suspended solids concentrations were 130 mg/l and 170 mg/l respectively. The total organic loading was 238,810 pounds of BOD and 312,290 pounds of suspended solids. Of these totals, 227,788 pounds of BOD and 260,854 pounds of suspended solids were removed by the treatment process representing a removal efficiency of 95.4 per cent and 83.5 per cent respectively.

The average BOD and suspended solids concentrations in the final effluent were 6 mg/l and 28 mg/l respectively. The mixed liquor suspended solids concentration averaged 3300 mg/l which was the same level as in the previous year. The F/M ratio averaged 0.12.

SLUDGE DIGESTION AND DISPOSAL

A total of 925 cubic feet of grit was removed from the plant during the year. An estimated total of 42.3 thousand gallons of sludge was wasted to the aerobic digester, and a total of 44 thousand gallons of treated sludge were removed therefrom by tank truck. The volatile solids content of the digested sludge was 48 per cent.

CONCLUSION

The plant has continued to produce a reasonably good quality effluent during the year. However, the average of 28 mg/l suspended solids in the final effluent exceeded this Ministry's standard of 15 mg/l. This is directly attributed to the hydraulic overload on the plant.

PROCESS DATA FLOWS

DESIGN CAPACITY ______

PLANT PERFORMANCE

		FLOWS		BIOCHEA	NICAL OXYG	EN DE	MAND	SU	SPENDED	SOLID	S	PHOSPHORUS		
	TOTAL FLOW	AVERAGE	MAXIMUM		EFFLUENT		CTION	INFLUENT	EFFLUENT		UCTION	INFLUENT	EFFLUENT	
монтн	TOTAL TEOM	DAY	DAY	I II COCIVI	ETT ZOETT	I LEGO	103	IN LOCK	LIT LOCIVI	- KED	103	INFLOENT	EFFLUENT	
	million gallons	mil. gal	mgd	mg/l	mg/l	%	pounds	mg/l	mg/l	%	pounds	mg/L P	mg/LP	
JAN	14.7	0.48	0.78	200	10	95	28	160	10	94	22	8.8	3.3	
FEB	11.6	0.42	0.54	160	7	96	18	120	10	91	12	9.3	3.6	
MAR	17.1	0.55	0.81	7 8	10	87	12	270	195	28	12	5.1	1.5	
APR	23.4	0.7 8	0.92	120	5	96	`26	120	10	92	26	7.5	1.9	
MAY	23.9	0.77	1.12	140	5	96	31	140	20	85	28	5.6	1.0	
JUNE	15.2	0.50	0.62	140	3	98	22	320	8	97	47	7.6	2.0	
JULY	11.7	0.38	0.57	130	4	97	14	120	5	96	13	5.7	2.8	
AUG	11.5	0.37	0.52											
SEPT	11.1	0.37	0.41	200	3	99	22	200	10	95	22	6.6	4.2	
ост	14.5	0.43	0.57	140	3	98	21	150	13	91	20	6.9	2.5	
NOV	16.0*	0.52	0.68	93	8	91	13	88	13	85	12	5.5	1.1	
DEC	13.0*	0.43	0.58	100	5	95	13	120	10	92	15	6.1	2.2	
TOTAL	183.7	-	-	-	-	-		_	-	-		_	-	
AVG.		0.50	1.12	130	6	95	21	170	28	84	22	6.7	2.3	
No. of Sample	s –	_	-	20	20	-	-	22	20	-	-	20	19	

^{*} Estimate

BIOCHEMICAL OXYGEN DEMAND

PLANT INFLUENT -----

SUSPENDED SOLIDS

PHOSPHORUS

PLANT INFLUENT -----

TREATMENT DATA

	GRIT	CHLORIN	ATION	AE	RATION		WAST	TE SLUDGE		А	EROBIC D	IGESTE	R
	QUANTITY REMOVED	Cl2 USED	AVG. DOSAGE	MLSS.	F/M	AIR USED	QUANTITY	SUSPENDED		QUANTITY	SUSPENDED	1	AMOUNT
MONTH	cubic feet	pounds	mg/l	CONC mg/l	*, day-1	1000 ft 3	10 gallons	SOLIDS mg/l	SOLIDS	REMOVED 10 ³ gallons	SOLIDS mg/l	SOLIDS	HAULED cubic yards
JAN	108			2800	0.19	0.8	5.0				16000	44	
FEB	75			2900	0.12	1.7	2.8				22000	48	
MAR	66	350	2.3	2200	0.10	1.7	0.5				13000	45	
APR	87	340	1.4	2600	0.19	0.7	3.0				21000	47	
MAY	90	290	1.2	2700	0.21	0.8	0.5				18000	45	
JUNE	75	310	2.1	3400	0.12	1.7	8.0				5000	54	
JULY	81	300	2.6	4300	0.06	2.7	9,5				5000	50	
AUG	65	260	2.3	4300			3.0						
SEPT	60	280	2.5	5000	0.08	1.7	8.0				11000	51	
ост.	6 8	340	2.3	3500	0.10	2.0	2.0				8800	50	
NOV	84	110	1.9	3000	0.09	2.8	0				5500	53	
DEC	66			3100	0.08	3.1	0				4600	51	
TOTAL	925	2580	_	_	_	-	42.3	_	_		-	-	
AVG.	5.0 cu. ft/mil gal	290	2.1	3300	0.12	1.8					15000	48	

^{*} Reaeration Tank contents estimated to be twice Mixed Liquor concentration.

TD/227/H355/W38/1973/MOE
Ontario Ministry of the En
Haileybury:
operating summary 1973 atas
c.1 a aa

Environment Ontario

Laboratory Library
125 Flatources ad.
Etobicoke, Ontario M9P 3V€
Canada

TD Haileybury: water pollution control plant.

A56 82192

H349

1973

