

INTERNATIONAL QUALIFICATIONS

Please write clearly in	ո block capitals.
Centre number	Candidate number
Surname	
Forename(s)	
Candidate signature	I declare this is my own work.

INTERNATIONAL A-LEVEL FURTHER MATHEMATICS

(9665/FM03) Unit FP2 Pure Mathematics

Tuesday 14 January 2025 07:00 GMT Time allowed: 2 hours 30 minutes

Materials

- For this paper you must have the OxfordAQA Booklet of Formulae and Statistical Tables (enclosed).
- You may use a graphical calculator.

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 120.

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.
- Show all necessary working; otherwise marks may be lost.

For Examiner's Use				
Question	Mark			
1				
2				
3				
4				
5				
6				
7				
8				
9				
10				
11				
12				
13				
14				
15				
TOTAL				

Answer all questions in the spaces provided.

1 The diagram shows a parallelepiped and the four points A, B, C and D

The points A, B, C and D have position vectors

$$\mathbf{a} = \begin{bmatrix} 3 \\ 4 \\ 2 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} k+4 \\ 6 \\ 3 \end{bmatrix}, \quad \mathbf{c} = \begin{bmatrix} 6 \\ 7 \\ 3 \end{bmatrix} \quad \text{and} \quad \mathbf{d} = \begin{bmatrix} k+5 \\ 3 \\ 5 \end{bmatrix}$$

where k is a constant.

It is given that the volume of the parallelepiped has a magnitude of 4 cubic units.

Find the possible values of κ	[6 marks]

Answer	

2	(a)	Use the definitions of $\cosh x$ and $\sinh x$ in terms of e^x and e^{-x} to show that	
		. 2 2	
		$\cosh^2 x - \sinh^2 x = 1$	
		[2 marks]
			_
			_
			-
			_
			_
			_
			_
			_
2	/ L \	He the result gives in part (a) to salve the equation	
2	(b)	Use the result given in part (a) to solve the equation	
		$\sinh^2 x - \cosh x - 5 = 0$	
		$\sin \alpha = \cos \alpha = 0$	
		Cive any solutions as an exact natural logarithm	
		Give any solutions as an exact natural logarithm. [5 marks	1
		Le manne	•
			_
			_
			_
			_
			_
			-
			_
			-

		Do ou
_		
	Answer	

Turn over for the next question

3	Three non-singular square matrices A , B and R are such that
	AR = B
	The matrix $ {f R} $ represents a rotation about the x -axis through an angle $ heta $
	The matrix B is defined as
	$\begin{bmatrix} 0 & \cos \theta & -\sin \theta \end{bmatrix}$
	$\mathbf{B} = \begin{bmatrix} 0 & \cos\theta & -\sin\theta \\ 1 & 0 & 0 \\ 0 & \sin\theta & \cos\theta \end{bmatrix}$
3 (a)	Show that ${\bf A}$ is independent of $ heta$
	[3 marks]

3	(b)	Describe the single transformation represented by A	[2 marks]	outside th
				5

Turn over for the next question

	Explain why $\int_0^2 \frac{1}{\sqrt{4-x^2}} dx$ is an improper integral.	
		[1 mark]
_		
) E\	valuate $\int_0^2 \frac{1}{\sqrt{4-x^2}} dx$ showing the limiting process used.	
, –	$\int_0^{\infty} \sqrt{4-x^2} dx = 0.0000000000000000000000000000000000$	
		[3 marks]
		-

It is given that				
	$f(n) = 7^n$	$^{+1} + 11^n$		
Prove by induction tha	at $f(n)$ is a mul-	tiple of 4 for all i	integers $n \ge 1$	
•	()	•	J	[5 n
_				

5

6	(a)	Snow that	
		$(r+1)^5 - (r-1)^5 = 10r^4 + 20r^2 + 2$	
			[1 mark]
_	(I ₂)		
6	(b)	Hence use the method of differences to show that	
		$\sum_{r=1}^{n} r^4 = \frac{1}{30} n(n+1)(2n+1)(3n^2 + pn + q)$	
		where p and q are integers	
			[7 marks]

Do not write outside the box 8

7 A curve	С	is	defined	by	the	polar	equation
-----------	---	----	---------	----	-----	-------	----------

$$r = \sec^2 \theta \sqrt{2(1+\tan \theta)}$$
 where $-\frac{\pi}{4} \le \theta < \frac{\pi}{2}$

The point A on C is where $\theta = 0$

The point *B* on *C* is where $\theta = \frac{\pi}{6}$

The point O is the pole.

Show that the area of the region bounded by the curve C and the lines OA and OB is

$$\frac{m+n\sqrt{3}}{108}$$

where m and n are integers.

[5 marks]

	Do not write outside the box
	box
	-
	•
-	
	-
	-
	-
	-
	•
	5

[3 marks]

ıations
•

$$2x - y + 3z = 1$$

$$x + (k-1)y - z = 3$$

$$(k-3)x - y + z = 1$$

where k is a constant.

The planes **do not** meet at a unique point.

8	(a)	Find the	possible	values	of	k
---	-----	----------	----------	--------	----	---

Δ	nswer	

3 (b) (i)	Determine the number of solutions of the three equations when $k=3$		
	Fully justify your answer.	[3 marks]	
(b) (ii)	Hence give a geometric interpretation for the three planes when $k=3$	[1 mark]	

9	A curve is given parametrically by the equations
	$x = \sin \theta \cos \theta$ and $y = \sin^2 \theta$ for $0 \le \theta < \pi$
	The arc of the curve from $\theta = 0$ to $\theta = \frac{\pi}{6}$ is rotated through 2π radians about
	the <i>x</i> -axis to generate a surface with area <i>S</i>
	Find the value of S
	Give your answer in the form $\frac{\pi}{12} \Big(p\pi + q\sqrt{3} \Big)$ where p and q are integers.
	[8 marks]

Do not write outside the box

-	
-	
	Answer

10	The roots of the quartic equation
	$z^4 - 2z^3 - 21z^2 + pz + q = 0$
	are $lpha$, eta , γ and δ , where p and q are real.
	It is given that $\ \alpha$, $\ \beta$, $\ \gamma$ and $\ \delta$ form an arithmetic sequence.
10 (a)	Find the possible values of $ \alpha , \beta , \gamma $ and $ \delta $ [6 marks]

	Answer	
10 (b)	Hence find the value of $\ p$ and the value of $\ q$	
10 (5)	riched into the value of p and the value of q	[3 marks]
	p =	q =

11 The line L_1 has Cartesian equation

$$2x - 12 = \frac{y - 7}{2} = 5 - z$$

The line L_2 has equation

$$\begin{pmatrix} \mathbf{r} - \begin{bmatrix} 8 \\ w \\ 6 \end{bmatrix} \times \begin{bmatrix} -3 \\ 2 \\ 1 \end{bmatrix} = \mathbf{0}$$
 where w is a constant.

11 (a) It is given that L_1 and L_2 intersect at a point.

Answer	Find the value of w	[5 mark

11 (b)	It is given that $~L_1~$ and $~L_2~$ lie in the plane $~\Pi~$	
	Find an equation of the plane $\ \Pi$	
	Give your answer in the form $\mathbf{r} \bullet \mathbf{n} = d$	[3 marks]
	Answer	
	Question 11 continues on the next page	

Do not write outside the box

11 (c)	The point P has position vector $\begin{bmatrix} 5 \\ -3 \\ 1 \end{bmatrix}$
11 (c) (i)	The point ${\sf Q}$ is the image of ${\sf P}$ in a reflection in the plane Π
	Find the position vector of Q [4 marks]
	Answer

11 (c) (ii)	Find the exact distance of ${\it P}$ from Π [2 marks]	Do not write outside the box
	[2 marks]	
	Answer	14
	Turn over for the next question	
	·	

It is given that $y = f(x)$ satisfies the differential equation	
$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} - \frac{\mathrm{d}y}{\mathrm{d}x} - 2y = 6\mathrm{e}^{-x} - 10\cos x$	
and when $x = 0$ it is given that both $y = 10$ and $\frac{dy}{dx} = 1$	
Find $f(x)$	2 ma

	Do not write
	outside the box
f(x)=	12

13	The matrix IVI is defined as	
	$\mathbf{M} = \begin{bmatrix} 4 & 1 & -(k+1) \\ 1 & 3 & k+2 \\ 2 & 1 & 1 \end{bmatrix}$	
	where k is a constant.	
	It is given that M is a non-singular matrix.	
13 (a) (i)	Find any restrictions on the value of $\ k$	marks]
	Answer	
13 (a) (ii)) Find \mathbf{M}^{-1} in terms of k	
	[5	marks]
		marks]

	Answer	
b) Use your an	swer to part (a)(ii) to solve	
	4x + y - (k+1)z = 4 $x + 3y + (k+2)z = 3$ $2x + y + z = 1$	
Give your ar	nswer in terms of k	[3 mark

10

Do not write outside the box

14 (a)	Use de Moivre's theorem to express	$\sin^6 \theta$	in terms of	$\cos 6\theta$,	$\cos 4\theta$	and	cos2 <i>θ</i> [6 marks]
	Answer						

14 ('b)	Use	vour	answer	to	nart	(a)	to	show	that
17 (D)	USC	your	answei	w	part	(u,	w	311011	uia

$$\int_0^{\frac{\pi}{6}} \sin^6\theta \, d\theta = \frac{1}{96} \left(a\pi + b\sqrt{3} \right)$$

				J 0	30			
where	a	and	b	are integers.				[3 marks]
-								

Turn over for the next question

Turn over ► III

9

15	The general solution of the differential equation	
	$\frac{\mathrm{d}y}{\mathrm{d}x}\cos x + y\sin x = \frac{2x+5}{x^2+4x+5}\cos^2 x$	
	can be written in the form $y = f(x)$	
15 (a)	Find $f(x)$	[9 marks]

		_
		_
	f(x)=	
	f(x) =	
)	Find the particular solution of the differential equation where $f(0) = \tan^{-1}(2)$	
		[2 marks]
	y =	

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

There are no questions printed on this page DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED

Copyright information

For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.oxfordaqa.com

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and OxfordAQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.

Copyright © 2025 OxfordAQA International Examinations and its licensors. All rights reserved.

Do not write outside the