Switches puzzle, hints and solution

Peter Rowlett

Sheffield Hallam University p.rowlett@shu.ac.uk

Switches puzzle

- ► For complicated reasons that don't matter, a set of switches is wired so that if the following rules are not followed, an alarm will sound:
 - 1. The switch on the right may be turned on and off at will;
 - 2. Any other switch may be turned on or off only if the switch to its immediate right is on and all other switches to its right are off.
- ➤ Starting with all switches on, what is the smallest number of moves to turn all switches off without activating the alarm if there are 6 switches in the row?

Problem-solving hints

1. Plan

Problem-solving

- ▶ Draw a diagram.
- ▶ Invent a notation (e.g. a grid of numbered switches with 1 for on and 0 for off).

Sw 1	Sw 2	Sw 3	Sw 4	Sw 5	Sw 6
1	1	1	1	1	1

Problem-solving

- ▶ Draw a diagram.
- ▶ Invent a notation (e.g. a grid of numbered switches with 1 for on and 0 for off).

Move	Sw 1	Sw 2	Sw 3	Sw 4	Sw 5	Sw 6
start	1	1	1	1	1	1
1	1	1	1	1	0	1
2	1	1	1	1	0	0
3	1	1	0	1	0	0
:	i	i	i	i	÷	i

Problem-solving

- Draw a diagram.
- ► Invent a notation (e.g. a grid of numbered switches with 1 for on and 0 for off).

Move	Sw 1	Sw 2	Sw 3	Sw 4	Sw 5	Sw 6
start	1	1	1	1	1	1
1	1	1	1	1	0	1
2	1	1	1	1	0	0
3	1	1	0	1	0	0
:	i	i	i	:	i	i

► Try a simpler problem (in this case, fewer switches).

Solution for 3 switches

Move	Sw 1	Sw 2	Sw 3
start	1	1	1
1			
:	:	:	:

Move	Sw 1	Sw 2	Sw 3
start	1	1	1
1	1	1	0
2			
:	:	:	:

Move	Sw 1	Sw 2	Sw 3
start	1	1	1
1	1	1	0
2	0	1	0
3			
i	:	:	i

Move	Sw 1	Sw 2	Sw 3
start	1	1	1
1	1	1	0
2	0	1	0
3	0	1	1
4			
:	:	:	÷

Move	Sw 1	Sw 2	Sw 3
start	1	1	1
1	1	1	0
2	0	1	0
3	0	1	1
4	0	0	1
5			

Move	Sw 1	Sw 2	Sw 3
start	1	1	1
1	1	1	0
2	0	1	0
3	0	1	1
4	0	0	1
5	0	0	0

Solution for 4 switches

Move	Sw 1	Sw 2	Sw 3	Sw 4
0	1	1	1	1
1				
:	:	:	:	:

Move	Sw 1	Sw 2	Sw 3	Sw 4
0	1	1	1	1
1	1	1	0	1
2				
:	:	:	:	:

Move	Sw 1	Sw 2	Sw 3	Sw 4
0	1	1	1	1
1	1	1	0	1
2	1	1	0	0
3				
:	:	:	:	:

Move	Sw 1	Sw 2	Sw 3	Sw 4
0	1	1	1	1
1	1	1	0	1
2	1	1	0	0
3	0	1	0	0
4				
:	:	:	:	:

Move	Sw 1	Sw 2	Sw 3	Sw 4
0	1	1	1	1
1	1	1	0	1
2	1	1	0	0
3	0	1	0	0
4	0	1	0	1
5				
:	:	:	:	:

Move	Sw 1	Sw 2	Sw 3	Sw 4
0	1	1	1	1
1	1	1	0	1
2	1	1	0	0
3	0	1	0	0
4	0	1	0	1
5	0	1	1	1
6				
:	:	:	:	:

Move	Sw 1	Sw 2	Sw 3	Sw 4
0	1	1	1	1
1	1	1	0	1
2	1	1	0	0
3	0	1	0	0
4	0	1	0	1
5	0	1	1	1
6	0	1	1	0
7				
:	:	:		:

Move	Sw 1	Sw 2	Sw 3	Sw 4
0	1	1	1	1
1	1	1	0	1
2	1	1	0	0
3	0	1	0	0
4	0	1	0	1
5	0	1	1	1
6	0	1	1	0
7	0	0	1	0
8				
:	:	:	:	:

Move	Sw 1	Sw 2	Sw 3	Sw 4
0	1	1	1	1
1	1	1	0	1
2	1	1	0	0
3	0	1	0	0
4	0	1	0	1
5	0	1	1	1
6	0	1	1	0
7	0	0	1	0
8	0	0	1	1
9				
:	:	:	i	i

Move	Sw 1	Sw 2	Sw 3	Sw 4
0	1	1	1	1
1	1	1	0	1
2	1	1	0	0
3	0	1	0	0
4	0	1	0	1
5	0	1	1	1
6	0	1	1	0
7	0	0	1	0
8	0	0	1	1
9	0	0	0	1
10				

Move	Sw 1	Sw 2	Sw 3	Sw 4
0	1	1	1	1
1	1	1	0	1
2	1	1	0	0
3	0	1	0	0
4	0	1	0	1
5	0	1	1	1
6	0	1	1	0
7	0	0	1	0
8	0	0	1	1
9	0	0	0	1
10	0	0	0	0

A hint: notice a pattern

Notice: 3 switches

Move	Sw 1	Sw 2	Sw 3
start	1	1	1
1	1	1	0
2	0	1	0
3	0	1	1
4	0	0	1
5	0	0	0

We deal with the first digit, then have to go from 1 0 to 0 0.

Notice:

4 switches

We deal with the first digit, then have to go from
1 0 0
to
0 0.

Move	Sw 1	Sw 2	Sw 3	Sw 4
start	1	1	1	1
1	1	1	0	1
2	1	1	0	0
3	0	1	0	0
4	0	1	0	1
5	0	1	1	1
6	0	1	1	0
7	0	0	1	0
8	0	0	1	1
9	0	0	0	1
10	0	0	0	0

Going from $0 \ 0 \ 0 \ to \ 1 \ 0 \ 0$

- So think about the number of moves required to convert n swithes from all off to only the leftmost switch on. Call this G_n and express this in terms of G_{n-1} .
- ► (Try some smaller cases!)
- ► (Convince yourself that it takes the same number of moves to turn the left-most switch on as off in these circumstances.)

A stronger hint

Notice:

4 switches

► The part before G_3 is the case with 2 fewer switches:

Move	Sw 1	Sw 2	Sw 3	Sw 4
start	1	1	1	1
1	1	1	0	1
2	1	1	0	0
3	0	1	0	0
4	0	1	0	1
5	0	1	1	1
6	0	1	1	0
7	0	0	1	0
8	0	0	1	1
9	0	0	0	1
10	0	0	0	0

2. Carry out your plan

A stronger hint

▶ Let M_n be the number of moves required if there are n swiches in the row. Express M_n in terms of M_{n-2} and G_{n-1} .

3. Review

Answers

Answer

- $ightharpoonup G_n = 2G_{n-1} + 1.$
- $M_n = M_{n-2} + G_{n-1} + 1.$

Answer

$$ightharpoonup G_n = 2G_{n-1} + 1.$$

$$ightharpoonup M_n = M_{n-2} + G_{n-1} + 1.$$

n	G_n
2	3
3	7
4	15
5	31

n	M_n
3	5
4	10
5	21
6	42

► Answer for 6 switches: 42.

Reflect on what happened

- ▶ In groups now, think about the process of solving this problem.
 - ► What went well?
 - ► What went wrong?
 - ► Could you have avoided the dead ends, or were they a necessary part of solving the problem?
 - ▶ What do you wish you had known when you first attempted the problem?
- ▶ Also think about what you have learned and whether you can use this to write down a different problem you can now solve.