ET DE LA RECHERCHE SCIENTIFIQUE

SECRETARIAT GENERAL

DIRECTION GENERALE DE L'ENSEIGNEMENT SUPERIEUR DIRECTION DE L'ENSEIGNEMENT SUPERIEUR PUBLIC et

PRIVE

Service d'Appui au Baccalaureat

SESSION 2016

Série

Code matière: 011

Epreuve de :

PHYSIQUE-CHIMIE

Durée

2 heures 15mn

Coefficients:

Obligatoire

A1: 1

Facultatif Bonification

A2: 2

Bonification

EXERCICE I (6 points)

(A1; A2)

Une lame vibrante munie de deux pointes détermine, en deux points S1 et S2 de la surface libre d'un liquide au repos, des mouvements vibratoires d'amplitude a = 4 mm. A l'instant t = 0 s, elle passe par sa position d'équilibre en allant dans le sens ascendant d'élongation, avec la célérité V = 20 cm/s.

1- Représenter à l'aide d'un schéma le dispositif permettant de visualiser ce phénomène.

(2; 1,5)

2-a) Calculer la distance entre deux crêtes consécutives, sachant que le diapason exécute 400 oscillations pendant 8 secondes.

b) Déterminer l'équation horaire des mouvements de S_1 et de S_2 sachant que $y_{S_1}(t) = y_{S_2}(t)$.

(1:0,5)

 $(y_{S_1} \text{ et } y_{S_2} \text{ en mm}; t \text{ en s}).$

3- On considère un point M appartenant à la surface libre du liquide tel que $d_1 = S_1 M = 11,5$ cm et $d_2 = S_2 M = 3.5 \text{ cm}.$

Trouver l'équation horaire du mouvement du point M.

(2;1)

Pour A2 seulement

4- Calculer le nombre de points mobiles sur le segment [S₁S₂]. On précisera leurs positions par rapport à S₁.

On donne $S_1S_2 = 4.4 \text{ mm}$.

(0; 2)

EXERCICE II (7 points)

On réalise une expérience d'interférence lumineuse avec le dispositif d'Young, en utilisant une lumière monochromatique de longueur d'onde $\lambda = 0.5 \mu m$. L'écran d'observation (E) est placé à la distance D = 2 m du plan contenant les deux fentes identiques F_1 et F_2 tels que $F_1F_2 = 2$ mm.

- 1- Indiquer, sur un schéma clair, le dispositif montrant :
 - a) la marche des rayons lumineux.

b) le champ d'interférence.

2- Calculer l'interfrange.

; 1)

3- A quelle distance D' du plan des fentes identiques F₁ et F₂ doit-on éloigner l'écran (E) parallèlement à sa position initiale, pour que l'interfrange devienne i' soit égal à 0,75mm? (2;1,5)Pour A2 seulement 4- Calculer la distance entre les milieux de la 3^{ème} frange brillante située d'un côté de la frange centrale et la 2ème frange obscure située de l'autre côté de la frange centrale. (0;1,5)**EXERCICE III** (7 points) 1- L'énergie d'extraction d'un électron d'une cellule photoémissive (césium) est $W_0 = 1.8$ eV. a) Compléter correctement la phrase : (1;0,5)La longueur d'onde seuil λ_0 est b) Calculer la valeur de λ_0 (2;1)2- On éclaire la cathode de cette cellule photoémissive par deux radiations monochromatiques de longueurs d'onde $\lambda_1 = 0,40 \mu m$ et $\lambda_2 = 0,75 \mu m$. (2;1,5)Laquelle de ces deux radiations donne l'effet photoélectrique ? Justifier. 3- Calculer le potentiel d'arrêt U₀. (2;2)Pour A2 seulement 4- Calculer la vitesse maximale avec laquelle les électrons quittent la cathode. (0;2)On donne: - Constante de Planck $h = 6,62.10^{-34}$ J.s - Masse d'un électron $m_e = 9, 1.10^{-31} \text{kg}$ - Vitesse de la lumière dans le vide : C = 3.108 m.s⁻¹ - Charge d'un électron $q = -e = -1,6.10^{-19}$ C $1\mu m = 10^{-6} \text{m} \text{ et } 1 \text{ eV} = 1.6.10^{-19} \text{J}.$

000000000000000000