Introduction to machine learning Exercise 3

Fall 2024/25

Submission guidelines, read and follow carefully:

- The exercise **must** be submitted in pairs.
- Submit via Moodle.
- The submission should be only a PDF file with your answers to all the questions.
- No need to submit code for Question 1.
- For questions, use the exercise forum, or if they are not of public interest, send them to the course staff email intromlbgu25@gmail.com.
- Grading: Q.1: 21 points, Q.2: 16 points, Q.3: 20 points, Q.4: 18 points, Q.5: 15 points, Q.6: 10 points
- **Question 1.** Implement the ridge-regression algorithm. **No need to submit your code**. Run the algorithm on the dataset regdata.mat provided on the course web page, you may use the following code to load the math file with python:

```
import scipy.io as sio
data = sio.loadmat('regdata.mat')
X = data['X']
Y = data['Y']
Xtest = data['Xtest']
Ytest = data['Ytest']
```

Run the regression using $\lambda \in \{0, 1, 2, \dots, 30\}$ on the training set X, Y provided in the data file. Try training-set sizes between 10 and 100. For each training set size that you try, find the value of λ that obtains the smallest mean-squared-error (the average squared loss) on the test set provided in the data file.

- (a) Submit a plot of the value of λ that minimizes the mean squared error on the test set as a function of the training set size m.
- (b) What trend to you expect in the plot based on what we learned in class? Explain.
- (c) Did you get this trend in the plot you submitted? If there are any differences, explain why they could occur.

- (d) In this data set, the label y of each example x was generated by setting $y = \langle w, x \rangle + \eta$, where w is a fixed vector which is the same for all examples in the data set, and η is a standard Gaussian random variable, $\eta \sim N(0,\sigma)$ for some $\sigma>0$. η is drawn independently for each example in the data set. What is the Bayes-optimal predictor for this problem with respect to the squared loss? And how about the absolute loss? Prove your claims.
- Question 2. We are given a training sample $S = \{(x_1, y_1), \dots, (x_m, y_m)\}$ where the input space is $\mathcal{X} = \mathbb{R}^d$ and the output space is $\mathcal{Y} = \mathbb{R}$. Consider the learning of linear regression predictor by the following optimization problem that has two hyperparameters $\lambda_1 \geq 0$ and $\lambda_2 > 0$:

$$\widehat{w} = \operatorname*{argmin}_{w \in \mathbb{R}^d} \lambda_1 ||w||_1 + \lambda_2 ||w||_2^2 + \sum_{i=1}^m (\langle w, x_i \rangle - y_i)^2.$$

Let us define the $d \times m$ matrix of training input examples as $\mathbf{X}_s = [x_1, \dots, x_m]$, and the vector of training output examples as $\mathbf{y}_s = [y_1, \dots, y_m]^T$.

Clarification: The solution for this question should not involve quadratic programming.

(a) In this section consider $\lambda_1 = 0$.

Formulate a closed-form solution for \widehat{w} that solves the optimization defined in this question. In the formula you may use only \mathbf{X}_s , \mathbf{y}_s and λ_2 , that were defined in this question, and basic mathematical elements (including the identity matrix).

(b) In this section consider $\lambda_1 > 0$.

Assume that the gradient descent algorithm is used for solving the optimization problem in this question with the training sample S and step size η . Formulate the update formula of the $(t+1)^{\text{th}}$ iteration of the gradient descent. Specifically, formulate $w^{(t+1)}$ using η , $w^{(t)}$, λ_1 , λ_2 , \mathbf{X}_s , \mathbf{y}_s and basic mathematical elements (including the identity matrix).

Question 3. Consider a regression problem with input space $\mathcal{X} = \mathbb{R}^d$ and output space $\mathcal{Y} = \mathbb{R}^q$ for q > 1. The unknown distribution \mathcal{D} is defined over $\mathcal{X} \times \mathcal{Y}$. The given sample $S = \{(x_i, y_i)\}_{i=1}^m$ includes m input-output examples i.i.d. from \mathcal{D} . Specifically, note that the outputs in this problem are vectors. Define $\mathbf{X} = [x_1, \dots, x_m]^T$ as the $m \times d$ matrix of the input examples from S organized as the matrix rows (note the transpose), and $\mathbf{Y} = [y_1, \dots, y_m]^T$ as the $m \times q$ matrix of the output examples from S organized as the matrix rows (note the transpose).

The task is to learn a $d \times q$ matrix **W** that can be used as a linear prediction operator for a given $x \in \mathcal{X}$: $\widehat{y} = \mathbf{W}^T x$. The performance is measured by the loss function of $\ell(y, \widehat{y}) = \|y - \widehat{y}\|_2^2$.

The Frobenius norm of the matrix $\mathbf{M} \in \mathbb{R}^{r \times c}$ is $\|\mathbf{M}\|_F = \sqrt{\sum_{i=1}^r \sum_{j=1}^c m_{r,c}^2}$ where $m_{r,c}$ is the component at the (r,c) coordinate of \mathbf{M} . The following derivation rule will be useful for solving this question:

$$\frac{d}{d\mathbf{M}} \|\mathbf{\Theta}\mathbf{M} - \mathbf{\Omega}\|_F^2 = 2\mathbf{\Theta}^T (\mathbf{\Theta}\mathbf{M} - \mathbf{\Omega})$$

where $\Theta \in \mathbb{R}^{b \times r}$ and $\Omega \in \mathbb{R}^{b \times c}$.

(a) In this section, the learning is defined as the optimization problem:

$$\widehat{\mathbf{W}} = \operatorname*{argmin}_{\mathbf{W} \in \mathbb{R}^{d \times q}} \|\mathbf{X}\mathbf{W} - \mathbf{Y}\|_F^2 + \lambda \|\mathbf{W}\|_F^2$$

where $\lambda > 0$ is a hyperparameter that determines the regularization strength.

- (i) Mathematically formulate the solution for $\widehat{\mathbf{W}}$ in a closed form. Provide the mathematical developments that prove the closed-form formula.
- (ii) Does this optimization problem (for $\lambda > 0$) have a unique solution? If the solution is not (necessarily) unique, formulate a mathematical condition that guarantees a unique solution.
- (b) In this section, the learning is defined as the optimization problem:

$$\widehat{\mathbf{W}} = \underset{\mathbf{W} \in \mathbb{R}^{d \times q}}{\operatorname{argmin}} \|\mathbf{X}\mathbf{W} - \mathbf{Y}\|_F^2$$

Does this optimization problem have a unique solution? If the solution is not unique, formulate a mathematical condition that guarantees a unique solution.

Question 4. Prove or disprove the following claims.

(a) Consider the dimensionality reduction problem for m vectors $x_1, \ldots, x_m \in \mathbb{R}^d$, and k < d:

$$\widehat{U}, \widehat{C} = \operatorname*{argmin}_{U \in \mathbb{R}^{d \times k}, C \in \mathbb{R}^{k \times d}} \sum_{i=1}^{m} \|x_i - UCx_i\|_2^2.$$

Claim: The rank of $\widehat{U}\widehat{C}$ is at most k.

- (b) $\mathcal{M} = \{U \in \mathbb{R}^{d \times k} \text{ such that } U^T U = I_k\}$ where k < d, and I_k is the $k \times k$ identity matrix. Claim: \mathcal{M} is a convex set.
- (c) Consider the dimensionality reduction problem for m vectors $x_1, \ldots, x_m \in \mathbb{R}^d$, and k < d:

$$\widehat{U} = \operatorname*{argmin}_{U \in \mathbb{R}^{d \times k} : U^T U = I_k} \sum_{i=1}^m \|x_i - U U^T x_i\|_2^2.$$

Then, the m low-dimensional vectors $z_1,\ldots,z_m\in\mathbb{R}^k$ are defined as

$$z_i = \widehat{U}^T x_i, \ \forall i \in \{1, \dots, m\}.$$

Define the matrix

$$Z = \sum_{i=1}^{m} z_i z_i^T$$

Claim: For $k > m \ge 1$, the matrix Z cannot have k nonzero eigenvalues.

- **Question 5.** Consider the algorithm that optimizes the k-means objective that we learned in class. For each of the 3 axioms, answer whether this algorithm satisfies them and prove your claim. Answer according to the following sub-questions:
 - (a) Scale invariance
 - (b) Richness

(c) Consistency

Hint: Consider the following example. There are 5 points x_1, \ldots, x_5 . There are no other points in the space (so the centroids must be one of these points). The distances between them are

$$\rho(x_i, x_j) = 1$$
 for all $i \neq j$ such that $i, j \leq 4$,

$$\rho(x_i, x_5) = 1 + \epsilon$$
 for all $i \le 4$,

where $\epsilon > 0$ is some small constant. Now consider changing the metric to ρ' such that

$$\rho'(x_1, x_2) = \rho'(x_3, x_4) = \alpha,$$

for some small $\alpha > 0$. All other distances stay the same. Show that for k = 2, there exists α, ϵ such that this example disproves consistency.

Question 6. Consider the distribution density $f_{\lambda}(x)$ with parameter $\lambda>0$ over the domain $[0,\infty)$, which is defined by

$$f_{\lambda}(x) := C_{\lambda} e^{-\lambda x},$$

where C_{λ} is a constant depending only on λ .

- (a) Find a formula for the value of C_{λ} as a function of λ . Prove your claim.
- (b) Let $S = \{x_1, \dots, x_m\}$ be an i.i.d. sample from the distribution with the density f_{λ} , where λ is unknown. Derive the Maximum Likelihood Estimator for the value of λ . Prove all your claims.