DNS - Domain Name System

- Converte nome de máquinas para seu endereço IP.
- Faz o mapeamento de nome para endereço e de endereço para nome.
- É mais fácil lembramos dos nomes.
- Internamente, softwares trabalham com endereços.
 ftp ftp.pucrs.br ou ftp 128.252.135.4
- Inicialmente, existia uma tabela ou arquivo, hosts.txt, mantida pelo DDN-NIC e que era distribuída a todos os computadores da Internet.

Redes e Sistemas Distribuídos

Profa. Cristina Nunes

DNS - Domain Name System

- Em 1983 a tabela hosts.txt foi substituída por um banco de dados hieráquico distribuído - RFC 1034.
- Sob este sistema n\u00e3o existe nenhum reposit\u00f3rio central que contenha informa\u00f3\u00f3es sobre todos os computadores ligados \u00e0 Internet.
- Esta informação é distribuída por milhares de computadores, denominados servidores de nomes, ou name servers.
- Estes servidores encontram-se organizados hieraquicamente na forma de uma árvore lógica.

Redes e Sistemas Distribuídos

Profa. Cristina Nunes

Hierarquia de Nomes

Redes e Sistemas Distribuídos

Profa. Cristina Nunes

Hierarquia de Nomes

- O DNS possui um domínio raiz (root domain → .), localizado no topo da hierarquia de domínios.
- Um DNS é composto de um banco de dados de nomes.
- Estes nomes estabelecem uma estrutura de árvore lógica chamada de domain name space.
- Cada nó ou domínio tem uma designação e pode conter subdomínios.
- · Domínios e sub-domínios são agrupados em zonas.
- O nome do domínio identifica a posição deste na hierarquia em relação ao seu superior, sendo que cada ramo da árvore tem a sua separação lógica identificada por um ponto "."

Redes e Sistemas Distribuídos

Profa. Cristina Nunes

Hierarquia de Nomes

- Quando nos referimos a um domínio escrevendo o seu nome por completo, por exemplo, pucrs.br, estamos usando um FQDN (Full Qualified Domain Name).
- Os domínios do topo, que são atribuídos a países, seguem a padronização IS 3166.
- Cada domínio superior contém
 - um domínio inferior no seu espaço.
 - referências sobre quem responde as consultas sobre estes sub-domínios (name servers).
- Nomes de hosts e de domínios permitidos: "a-z", "A-Z", '0-9" e "-".

Redes e Sistemas Distribuídos

Profa. Cristina Nunes

Hierarquia de Nomes

· Domínios de mais alto nível

Nome de Domínio	Significado
com	Comercial
edu	Educacional
gov	Governamental
mil	Militar
net	Rede (provedores)
org	Outras organizações
Código do país	br, it, fr, pt,

Redes e Sistemas Distribuídos

Implementação do DNS

- No Microsoft Windows: serviço TCP/IP DNS Server. No Unix: Bind.
- Este é um sistema cliente/servidor.
- O lado cliente do MS DNS é chamado cliente DNS (no Unix: resolver).
 - Ele envia perguntas relativas a informações contidas no DNS a servidores de nomes.
 - O servidor DNS responde à estas perguntas.
- O lado servidor do DNS chama-se serviço DNS (no Unix: named).

Redes e Sistemas Distribuídos

Profa. Cristina Nunes

Zonas

- O termo Zona (Zone) se refere a porção de informações contidas em um arquivo do servidor de DNS.
- Estas informações definem, por exemplo, os hosts que fazem parte de um domínio.
- Para cada domínio teremos um arquivo de zonal
- Arquivo físico composto de registros que define um domínio.

Redes e Sistemas Distribuídos

Profa. Cristina Nunes

Servidor

- A informação de um domínio fica armazenada fisicamente em servidores de nomes (*name servers*).
- · Podem ter um ou mais arquivos de zona.
- · Servidores tem "autoridade" para o domínio.
- · Servidores podem ser classificados como:
 - caching-only: somente possui dados derivados das últimas requisições
 - servidor de DNS primário: servidor com autoridade sobre os dados de um domínio
 - servidor de DNS secundário: servidor que possui autoridade sobre os dados de um domínio, mas os têm replicados, podendo atender uma requisição de um resolvedor

Redes e Sistemas Distribuídos

Profa. Cristina Nunes

Resolução de Nomes - Recursiva

- Resolução Recursiva
 - O resolver (dns client) envia uma pergunta a um servidor de nomes para obter informações a respeito de um domínio.
 - O servidor de nomes deve obter os dados solicitados ou retornar um erro informando que os dados solicitados não existem ou que o domínio em questão é inexistente.
 - O servidor de nomes n\u00e3o pode redirecionar o cliente para outro servidor de nomes.

Redes e Sistemas Distribuídos

Profa. Cristina Nunes

Resolução de Nomes - Recursiva

 Se o servidor de nomes não for o servidor oficial do domínio a respeito do qual se quer obter informações, ele terá que perguntar a outros servidores de nomes até obter a informação solicitada.

Redes e Sistemas Distribuídos

Profa. Cristina Nunes

Resolução de Nomes - Interativa

- · Resolução Iterativa
 - O servidor de nomes retorna ao cliente a melhor resposta que já conhece.
 - Não existem perguntas adicionais.
 - O servidor de nomes consultado pesquisa seus arquivos locais (todas os arquivos de zona inclusive o arquivo de cache).
 - Se não encontra a informação desejada, ele tenta fornecer ao cliente a melhor informação que puder que possibilite a continuação da resolução do nome desejado.
 - Normalmente esta informação consiste de nomes e endereços de servidores que estejam mais próximos dos dados que se procura.

Redes e Sistemas Distribuídos

Definindo um Domínio

- Para se definir um domínio num servidor de nomes é preciso construir um arquivo de zona.
- Este arquivo conterá as entradas ou registros deste domínio.
- A maior parte das entradas nos arquivos de banco de dados do DNS são chamadas de Resource Records (RR).
- As pesquisas feitas pelo DNS ignoram se as letras são maiúsculas ou minúsculas ou misturadas.
- Os RRs precisam iniciar na primeira coluna.

Redes e Sistemas Distribuídos

Profa. Cristina Nunes

Definindo um Domínio

- Principais RRs encontrados nos arquivos de configuração do DNS:
 - SOA (start-of-authority)
 - NS (nameserver)
 - A (host)
 - CNAME (cannonical name)
 - MX (mail exchange)
 - PTR (pointer record)

Redes e Sistemas Distribuídos

Profa. Cristina Nunes

Definindo um Domínio

- SOA (start-of-authority) Indica a autoridade para os dados deste domínio. Parâmetros:
 - Nome de Servidor
 - $-\,$ E-mail do responsável (o @ é substituído por .).
 - Version [serial number]
 - Refresh time [s] indica o intervalo para que o(s) servidor(es) secundário(s) tentem uma tranferência de zona.
 - Retry time [s] indica tempo entre tentativas de transf. de zona com erro.
 - Expire time [s] indica o tempo que o secundário tentará a transf. de zona. Após isto a zona secundária expirará e não poderá mais ser usada para responder consultas.

Redes e Sistemas Distribuídos

Profa. Cristina Nunes

Definindo um Domínio

- TTL [s] (time-to-live) indica quanto tempo um registro deve ficar no cache de outros servidores.
- Nota: uma @ indica o domínio como sendo o do mesmo nome do arquivo .dns.

Redes e Sistemas Distribuídos

Exemplo de configuração

```
ns.linux.br.
10 mail.linux.br.
20 mail2.linux.br.
                            MX
                   IN
                            MX
                  IN
IN
IN
                                      ns.linux.br.
127.0.0.1
192.168.196.2
192.168.196.4
                            CNAME
   www
   localhost
   ns
mail
  Redes e Sistemas Distribuídos
                                                      Profa. Cristina Nunes
```

Exemplo de configuração

```
· Arquivo "linux.br.revzone"
              SOA
                      ns.linux.br. root.ns.linux.br. (
          2000022801
          172800
           3600
          1728000
           172800 )
                          ns.linux.br.
                          afrodite.linux.br.
          IN
                  PTR
                          ns.linux.br.
```

Ferramenta de Troubleshooting

- Nslookup
 - Nslookup

 Exibe informações fornecidas pelos servidores do nomes.

 Exemplo:

 nslookup

 set type=soa
 inf.pucrs.br

 Resposta:
 Server: tauros.pucrs.br
 Address: 200.132.10.12

pucrs.br

origin = tauros.pucrs.br

mail addr = root.tauros.pucrs.br

serial = 200110500

refresh = 3600 (1H)

retry = 900 (15M)

expire = 2592000 (2592000)

minimum ttl = 3600 (1H)

Redes e Sistemas Distribuídos

Profa. Cristina Nunes

Ferramenta de Troubleshooting

set q=MX

 $> \inf. ufrgs.br$

Server: tauros.pucrs.br Address: 200.132.10.12

Redes e Sistemas Distribuídos

 $inf.ufrgs.br \quad preference = 0, mail\ exchanger = caracol.inf.ufrgs.br$

Authoritative answers can be found from:

caracol.inf.ufrgs.br inet address = 143.54.11.7

Redes e Sistemas Distribuídos

Profa. Cristina Nunes