Student: Phong Vo Date: 02/06/18 Instructor: Chuck Ormsby

Course: Multi-Variable and Vector Calculus -- Calculus III Spring 2018

Assignment: Section 12.4 Homework

1. Find the magnitude of the cross product of the vectors **u** and **v** given in the figure.

The magnitude of the cross product is

15

(Simplify your answer, including any radicals. Use integers or fractions for any numbers in the expression.)

2. Let $\mathbf{u} = \langle -3,0,0 \rangle$ and $\mathbf{v} = \langle 0,4,0 \rangle$. Compute $|\mathbf{u} \times \mathbf{v}|$. Then sketch \mathbf{u} , \mathbf{v} , and $\mathbf{u} \times \mathbf{v}$.

$$|\mathbf{u} \times \mathbf{v}| = 12$$

(Simplify your answer, including any radicals. Use integers or fractions for any numbers in the expression.)

Choose the correct graph below.

A.

○ B.

₩c

3. Let $\mathbf{u} = \langle 5,0,5 \rangle$ and $\mathbf{v} = \langle 5,5\sqrt{2},5 \rangle$. Compute $|\mathbf{u} \times \mathbf{v}|$. Then sketch \mathbf{u} , \mathbf{v} , and $\mathbf{u} \times \mathbf{v}$.

$$|\mathbf{u} \times \mathbf{v}| = 50$$

(Simplify your answer, including any radicals. Use integers or fractions for any numbers in the expression.)

Choose the correct graph below.

(E) A

○ B.

○ C.

4. Compute the following cross product. Then make a sketch showing the two vectors and their cross product.

$$-4\mathbf{k} \times 3\mathbf{j}$$

 $-4\mathbf{k} \times 3\mathbf{j} = \begin{pmatrix} 12 \\ \text{(Simplify your answers.)} \end{pmatrix} \mathbf{i} + \begin{pmatrix} 0 \\ \text{(Simplify your answers.)} \end{pmatrix} \mathbf{k}$

Choose the correct graph below. Let \mathbf{u} be the first vector, \mathbf{v} be the second vector, and $\mathbf{u} \times \mathbf{v}$ be the cross product. Note that the vector lengths are not to scale.

5. Find the area of the parallelogram that has adjacent sides $\mathbf{u} = \mathbf{i} - 3\mathbf{j} + 3\mathbf{k}$ and $\mathbf{v} = 3\mathbf{j} - \mathbf{k}$.

The area of the parallelogram is $\sqrt{46}$. (Type an exact answer, using radicals as needed.)

6. Find the area of the parallelogram that has adjacent sides $\mathbf{v} = 2\mathbf{i} + \mathbf{j} + 3\mathbf{k}$ and $\mathbf{w} = 4\mathbf{i} + \mathbf{j} - 2\mathbf{k}$.

The area of the parallelogram is $\sqrt{285}$. (Type an exact answer, using radicals as needed.)

7. Find the cross products $\mathbf{u} \times \mathbf{v}$ and $\mathbf{v} \times \mathbf{u}$ for the vectors $\mathbf{u} = \langle 3, 5, 0 \rangle$ and $\mathbf{v} = \langle 0, 3, -5 \rangle$.

 $\mathbf{u} \times \mathbf{v} = \begin{pmatrix} -25 \end{pmatrix} \mathbf{i} + \begin{pmatrix} 15 \end{pmatrix} \mathbf{j} + \begin{pmatrix} 9 \end{pmatrix} \mathbf{k}$ (Simplify your answers.)

 $\mathbf{v} \times \mathbf{u} = \begin{pmatrix} 25 \end{pmatrix} \mathbf{i} + \begin{pmatrix} -15 \end{pmatrix} \mathbf{j} + \begin{pmatrix} -9 \end{pmatrix} \mathbf{k}$ (Simplify your answers.)

8. Find the cross products $\mathbf{u} \times \mathbf{v}$ and $\mathbf{v} \times \mathbf{u}$ for the the vectors $\mathbf{u} = 3\mathbf{i} - \mathbf{j} - 3\mathbf{k}$ and $\mathbf{v} = \mathbf{i} + 3\mathbf{j} - 2\mathbf{k}$.

 $\mathbf{u} \times \mathbf{v} = \begin{pmatrix} 11 \\ \end{pmatrix} \mathbf{i} + \begin{pmatrix} 3 \\ \end{pmatrix} \mathbf{j} + \begin{pmatrix} 10 \\ \end{pmatrix} \mathbf{k}$ (Simplify your answers.)

 $\mathbf{v} \times \mathbf{u} = \begin{pmatrix} -11 \end{pmatrix} \mathbf{i} + \begin{pmatrix} -3 \end{pmatrix} \mathbf{j} + \begin{pmatrix} -10 \end{pmatrix} \mathbf{k}$ (Simplify your answers.)

9. Find a vector normal to (0,1,2) and (-2,2,0).

Choose the correct answer below.

- **SA.** $\langle -4, -4, 2 \rangle$
- \bigcirc **B.** $\langle -4,4,2 \rangle$
- \bigcirc **C.** $\langle 4, -4, 2 \rangle$
- D. 〈4,4,2〉

10. Another operation with vectors is the scalar triple product, defined to be $\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w})$ for vectors \mathbf{u} , \mathbf{v} , and \mathbf{w} in \mathbf{R}^3 . Express \mathbf{u} , \mathbf{v} , and \mathbf{w} in terms of their components and show that $\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w})$ equals the determinant shown on the right.

Which of the following is the correct expansion of both $\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w})$ and $\mathbf{v}_1 \quad \mathbf{v}_2 \quad \mathbf{v}_3$

- \bigcirc **A.** $u_1(v_3w_2-v_2w_3)+u_2(v_1w_3-v_3w_1)+u_3(v_2w_1-v_1w_2)$
- **B.** $u_1(v_2w_3 v_3w_2) u_2(v_1w_3 v_3w_1) + u_3(v_1w_2 v_2w_1)$
- \bigcirc **C.** $u_1(v_3w_2-v_2w_3)-u_2(v_1w_3-v_3w_1)+u_3(v_1w_2-v_2w_1)$
- \bigcirc **D**. $u_1(v_2w_3-v_3w_2)+u_2(v_1w_3-v_3w_1)+u_3(v_1w_2-v_2w_1)$