st99021seqlt.ST25 SEQUENCE LISTING

· • • • •

a - r 2 - r

```
<110> DARTEIL, Raphael
      CROUZET, Joel
      STAELS, Bart
      MAHFOUDI, Abderrahim
<120> SYSTEM OR REGULATION OF EXPRESSION USING PPAR NUCLEAR RECEPTORS
<130> ST99021 US PCT
<140> 10/018,729
<141> 2001-12-18
<150> FR 99/07957
<151> 1999-06-22
<150> US 60/149,721
<151> 1999-08-20
<150> PCT/FR00/01744
<151> 2000-06-22
<160> 28
<170> PatentIn version 3.0
<210> 1
<211> 19
<212> DNA
<213> Artificial
<220>
<223> sequence of a sige in the PPAR response element
<400> 1
                                                                            19
tcaaccttta ccctggtag
<210> 2
<211> 27
<212> DNA
<213> Artificial
<220>
<223> primer
<400> 2
                                                                            27
tcgccaagct tctcgtgatc tgcggca
<210> 3
<211> 37
<212> DNA
<213> Artificial
<220>
<223> primer
```

st99021seqlt.ST25 <400> 3 37 acgtgtcgac actagtggct agaggatctc taccagg <210> 4 <211> 48 <212> DNA <213> Artificial <220> <223> primer <400> 4 cgatggtacc ctcgagcaat gtgctagcga gatccttcaa cctttacc 48 <210> 5 <211> 13 <212> DNA <213> Artificial <220> <223> sequence of site in PPAR response element <400> 5 13 aggtcaaagg tca <210> 6 <211> 69 <212> DNA <213> Artificial <220> <223> primer <400> 6 acgtgtcgac actagtcaaa actaggtcaa aggtcacgga aaactaggtc aaaggtcacg 60 69 gaaaactag <210> 7 <211> 64 <212> DNA <213> Artificial <220> <223> primer <400> 7 cgatggtacc ctcgagcaat gtgctagccg tgacctttga cctagttttc cgtgaccttt 60

<210> 8 <211> 32 <212> DNA

gacc

64

<213> Artificial	st99021seqlt.ST25	
<220> <223> primer		
<400> 8	, ag	32
acgtagatet eggtaggegt gtaeggtggg	, ay	
<210> 9 <211> 29		
<212> DNA <213> Artificial		
<220>		
<223> primer		
<400> 9		29
acgtaagctt ctatggaggt caaaacagc	-	ر د
<210> 10		
<211> 21 <212> DNA		
<213> Artificial		
<220>		
<223> primer		
<400> 10 ggtttgctga atgtgaagcc c	2	21
<210> 11		
<211> 42		
<212> DNA <213> Artificial		
<220>		
<223> primer		
<400> 11		12
agtetetaga getaegegta caagteettg	f tagatotoot go	42
<210> 12		
<211> 32 <212> DNA		
<213> Artificial		
<220> <223> primer		
<pre><400> 12 agtcacgcgt gggcgatctt gacaggaaag</pre>	g ac	32
<210> 13		
<211> 21		

Page 3

. (1.3

<pre> <210> 14 <211> 35 <212> DNA <213> Artificial <220> <223> primer <400> 14 agtcactagt aagctttttg ccgccagaac acagg 3 <210> 15</pre>	
<pre><223> primer <400> 13 gcctttgagt gagctgatac c <210> 14 <211> 35 <212> DNA <213> Artificial <220> <223> primer <400> 14 agtcactagt aagctttttg ccgccagaac acagg 3 <210> 15</pre>	
<pre>gcctttgagt gagctgatac c <210> 14 <211> 35 <212> DNA <213> Artificial <220> <223> primer <400> 14 agtcactagt aagctttttg ccgccagaac acagg 3 <210> 15</pre>	
<211> 35 <212> DNA <213> Artificial <220> <223> primer <400> 14 agtcactagt aagctttttg ccgccagaac acagg 3 <210> 15	21
<223> primer <400> 14 agtcactagt aagctttttg ccgccagaac acagg 3 <210> 15	
agtcactagt aagctttttg ccgccagaac acagg 3 <210> 15	
	35
<211> 36 <212> DNA <213> Artificial	
<220> <223> primer	
<400> 15 agtcactagt ccatggctgc ccagtgcctc acgacc 3	36
<210> 16 <211> 21 <212> DNA <213> Artificial	
<220> <223> primer	
<400> 16 caggtttgct gaatgtgaag c	21
<210> 17 <211> 40 <212> DNA <213> Artificial	
<220> <223> primer	
<400> 17 tgacgtgtcg acctagtaca agtccttgta gatctcctgc 4	40

<210> 18

• 49 3

			st99021sec	lt.ST25	
<211> <212> <213>	31 DNA Artificial				
<220> <223>	primer				
<400> agtcgto	18 cgac gettegagea	gacatgataa	g		31
<210><211><211><212><213>					
<220> <223>	primer				
<400> agtcgct	19 Lagc gacggatect	tatcgatttt	accac		35
<210><211><211><212><213>	50				
<220> <223>	primer				
<400> gtcagct	20 cage ctactegage	caccatgggt	gaaactctgg	gagattetee	50
<210><211><211><212><213>					
<220> <223>	primer				
<400> tacgggg	21 gtac ccagacatga	taagatacat	tgatgagttt	gg	42
<210><211><211><212><213>	22 33 DNA Artificial				
<220> <223>	primer				
<400> gtcagct	22 agc cggtaggcgt	gtacggtggg	agg		33

st99021seqlt.ST25

<210> 23 <211> 33 <212> DNA <213> Artificial <220> <223> primer <400> 23 tacgctcgag cttctatgga ggtcaaaaca gcg <210> 24 <211> 750 <212> PRT <213> Homo sapiens <400> 24 Met Gly Glu Thr Leu Gly Asp Ser Pro Ile Asp Pro Glu Ser Asp Ser Phe Thr Asp Thr Leu Ser Ala Asn Ile Ser Gln Glu Met Thr Met Val Asp Thr Glu Met Pro Phe Trp Pro Thr Asn Phe Gly Ile Ser Ser Val Asp Leu Ser Val Met Glu Asp His Ser His Ser Phe Asp Ile Lys Pro 55 Phe Thr Thr Val Asp Phe Ser Ser Ile Ser Thr Pro His Tyr Glu Asp Ile Pro Phe Thr Arg Thr Asp Pro Val Val Ala Asp Tyr Lys Tyr Asp Leu Lys Leu Gln Glu Tyr Gln Ser Ala Ile Lys Val Glu Pro Ala Ser Pro Pro Tyr Tyr Ser Glu Lys Thr Gln Leu Tyr Asn Lys Pro His Glu 120 Glu Pro Ser Asn Ser Leu Met Ala Ile Glu Cys Arg Val Cys Gly Asp 135 Lys Ala Ser Gly Phe His Tyr Gly Val His Ala Cys Glu Gly Cys Lys Gly Phe Phe Arg Arg Thr Ile Arg Leu Lys Leu Ile Tyr Asp Arg Cys 170 Asp Leu Asn Cys Arg Ile His Lys Lys Ser Arg Asn Lys Cys Gln Tyr Cys Arg Phe Gln Lys Cys Leu Ala Val Gly Met Ser His Asn Ala Ile

Arg Phe Gly Arg Met Pro Gln Ala Glu Lys Glu Lys Leu Leu Ala Glu

Page 6

33

	210	st99021seqlt.ST25 215 220													
Ile 225	Ser	Ser	Asp	Ile	Asp 230	Gln	Leu	Asn	Pro	Glu 235	Ser	Ala	Asp	Leu	Arg 240
Ala	Leu	Ala	Lys	His 245	Leu	Tyr	Asp	Ser	Tyr 250	Ile	Lys	Ser	Phe	Pro 255	Leu
Thr	Lys	Ala	Lys 260	Ala	Arg	Ala	Ile	Leu 265	Thr	Gly	Lys	Thr	Thr 270	Asp	Lys
Ser	Pro	Phe 275	Val	Ile	Tyr	Asp	Met 280	Asn	Ser	Leu	Met	Met 285	Gly	Glu	Asp
Lys	Ile 290	Lys	Phe	Lys	His	Ile 295	Thr	Pro	Leu	Gln	Glu 300	Gln	Ser	Lys	Glu
Val 305	Ala	Ile	Arg	Ile	Phe 310	Gln	Gly	Cys	Gln	Phe 315	Arg	Ser	Val	Glu	Ala 320
Val	Gln	Glu	Ile	Thr 325	Glu	Tyr	Ala	Lys	Ser 330	Ile	Pro	Gly	Phe	Val 335	Asn
Leu	Asp	Leu	Asn 340	Asp	Gln	Val	Thr	Leu 345	Leu	Lys	Tyr	Gly	Val 350	His	Glu
Ile	Ile	Tyr 355	Thr	Met	Leu	Ala	Ser 360	Leu	Met	Asn	Lys	Asp 365	Gly	Val	Leu
Ile	Ser 370	Glu	Gly	Gln	Gly	Phe 375	Met	Thr	Arg	Glu	Phe 380	Leu	Lys	Ser	Leu
Arg 385	Lys	Pro	Phe	Gly	Asp 390	Phe	Met	Glu	Pro	Lys 395	Phe	Glu	Phe	Ala	Val 400
Lys	Phe	Asn	Ala	Leu 405	Glu	Leu	Asp	Asp	Ser 410	Asp	Leu	Ala	Ile	Phe 415	Ile
Ala	Val	Ile	Ile 420	Leu	Ser	Gly	Asp	Arg 425	Pro	Gly	Leu	Leu	Asn 430	Val	Lys
Pro	Ile	Glu 435	Asp	Ile	Gln	Asp	Asn 440	Leu	Leu	Gln	Ala	Leu 445	Glu	Leu	Gln
Leu	Lys 450	Leu	Asn	His	Pro	Glu 455	Ser	Ser	Gln	Leu	Phe 460	Ala	Lys	Leu	Leu
Gln 465	Lys	Met	Thr	Asp	Leu 470	Arg	Gln	Ile	Val	Thr 475	Glu	His	Val	Gln	Leu 480
Leu	Gln	Val	Ile	Lys 485	Lys	Thr	Glu	Thr	Asp 490	Met	Ser	Leu	His	Pro 495	Leu
Leu	Gln	Glu	Ile 500	Tyr	Lys	Asp	Leu	Tyr 505	Ala	Trp	Ala	Ile	Leu 510	Thr	Gly
Lys	Thr	Thr 515	Asp	Lys	Ser	Pro	Phe 520	Val	Ile	Tyr	Asp	Met 525	Asn	Ser	Leu

st99021seqlt.ST25

Met Met Gly Glu Asp Lys Ile Lys Phe Lys His Ile Thr Pro Leu Gln 535

Glu Gln Ser Lys Glu Val Ala Ile Arg Ile Phe Gln Gly Cys Gln Phe

Arg Ser Val Glu Ala Val Gln Glu Ile Thr Glu Tyr Ala Lys Ser Ile 570

Pro Gly Phe Val Asn Leu Asp Leu Asn Asp Gln Val Thr Leu Leu Lys

Tyr Gly Val His Glu Ile Ile Tyr Thr Met Leu Ala Ser Leu Met Asn

Lys Asp Gly Val Leu Ile Ser Glu Gly Gln Gly Phe Met Thr Arg Glu 615

Phe Leu Lys Ser Leu Arg Lys Pro Phe Gly Asp Phe Met Glu Pro Lys

Phe Glu Phe Ala Val Lys Phe Asn Ala Leu Glu Leu Asp Asp Ser Asp 645 650

Leu Ala Ile Phe Ile Ala Val Ile Ile Leu Ser Gly Asp Arg Pro Gly 665

Leu Leu Asn Val Lys Pro Ile Glu Asp Ile Gln Asp Asn Leu Leu Gln 685

Ala Leu Glu Leu Gln Leu Lys Leu Asn His Pro Glu Ser Ser Gln Leu

Phe Ala Lys Leu Gln Lys Met Thr Asp Leu Arg Gln Ile Val Thr 705

Glu His Val Gln Leu Leu Gln Val Ile Lys Lys Thr Glu Thr Asp Met 730

Ser Leu His Pro Leu Leu Gln Glu Ile Tyr Lys Asp Leu Tyr

<210> 25

<211> 467

<212> PRT

<213> Homo sapiens

<400> 25

Met Met Gly Glu Asp Lys Ile Lys Phe Lys His Ile Thr Pro Leu Gln

Glu Gln Ser Lys Glu Val Ala Ile Arg Ile Phe Gln Gly Cys Gln Phe

Arg Ser Val Glu Ala Val Gln Glu Ile Thr Glu Tyr Ala Lys Ser Ile

Pro Gly Phe Val Asn Leu Asp Leu Asn Asp Gln Val Thr Leu Leu Lys

4 15 4

50

st99021seqlt.ST25 55 60

Tyr 65	Gly	Val	His	Glu	Ile 70	Ile	Tyr	Thr	Met	Leu 75	Ala	Ser	Leu	Met	Asn 80
Lys	Asp	Gly	Val	Leu 85	Ile	Ser	Glu	Gly	Gln 90	Gly	Phe	Met	Thr	Arg 95	Glu
Phe	Leu	Lys	Ser 100	Leu	Arg	Lys	Pro	Phe 105	Gly	Asp	Phe	Met	Glu 110	Pro	Lys
Phe	Glu	Phe 115	Ala	Val	Lys	Phe	Asn 120	Ala	Leu	Glu	Leu	Asp 125	Asp	Ser	Asp
Leu	Ala 130	Ile	Phe	Ile	Ala	Val 135	Ile	Ile	Leu	Ser	Gly 140	Asp	Arg	Pro	Gly
Leu 145	Leu	Asn	Val	Lys	Pro 150	Ile	Glu	Asp	Ile	Gln 155	Asp	Asn	Leu	Leu	Gln 160
Ala	Leu	Glu	Leu	Gln 165	Leu	Lys	Leu	Asn	His 170	Pro	Glu	Ser	Ser	Gln 175	Leu
Phe	Ala	Lys	Leu 180	Leu	Gln	Lys	Met	Thr 185	Asp	Leu	Arg	Gln	Ile 190	Val	Thr
Glu	His	Val 195	Gln	Leu	Leu	Gln	Val 200	Ile	Lys	Lys	Thr	Glu 205	Thr	Asp	Met
Ser	Leu 210	His	Pro	Leu	Leu	Gln 215	Glu	Ile	Tyr	Lys	Asp 220	Leu	Tyr	Ala	Trp
Ala 225	Ile	Leu	Thr	Gly	Lys 230	Thr	Thr	Asp	Lys	Ser 235	Pro	Phe	Val	Ile	Tyr 240
Asp	Met	Asn	Ser	Leu 245	Met	Met	Gly	Glu	Asp 250	Lys	Ile	Lys	Phe	Lys 255	His
Ile	Thr	Pro	Leu 260	Gln	Glu	Gln	Ser	Lys 265	Glu	Val	Ala	Ile	Arg 270	Ile	Phe
Gln	Gly	Cys 275	Gln	Phe	Arg	Ser	Val 280	Glu	Ala	Val	Gln	Glu 285	Ile	Thr	Glu
Tyr	Ala 290	Lys	Ser	Ile	Pro	Gly 295	Phe	Val	Asn	Leu	Asp 300	Leu	Asn	Asp	Gln
Val 305	Thr	Leu	Leu	Lys	Tyr 310	Gly	Val	His	Glu	Ile 315	Ile	Tyr	Thr	Met	Leu 320
Ala	Ser	Leu	Met	Asn 325	Lys	Asp	Gly	Val	Leu 330	Ile	Ser	Glu	Gly	Gln 335	Gly
Phe	Met	Thr	Arg 340	Glu	Phe	Leu	Lys	Ser 345	Leu	Arg	Lys	Pro	Phe 350	Gly	Asp
Phe	Met	Glu 355	Pro	Lys	Phe	Glu	Phe 360	Ala	Val	Lys	Phe	Asn 365	Ala	Leu	Glu

.

<400> 28

cgactctaga agatcttgcc ccgcccagcg

Leu		Asp	Ser	Asp	Leu		Ile	st Phe	9902 Ile	1seq Ala		T25 Ile	Ile	Leu	Ser		
Clv	370	λνα	Pro	Clv	T.e.u	375	Acn	Val	Lve	Pro	380 Ile	Glu	Δen	Tle	Gln		
385	нар	ALG	PLO	GIY	390	Пец	ASII	Vai	шуз	395	110	Oia	vab	110	400		
Asp	Asn	Leu	Leu	Gln 405	Ala	Leu	Glu	Leu	Gln 410	Leu	Lys	Leu	Asn	His 415	Pro		
Glu	Ser	Ser	Gln 420	Leu	Phe	Ala	Lys	Leu 425	Leu	Gln	Lys	Met	Thr 430	Asp	Leu		
Arg	Gln	Ile 435	Val	Thr	Glu	His	Val 440	Gln	Leu	Leu	Gln	Val 445	Ile	Lys	Lys		
Thr	Glu 450	Thr	Asp	Met	Ser	Leu 455	His	Pro	Leu	Leu	Gln 460	Glu	Ile	Tyr	Lys		
Asp 465	Leu	Tyr															
<210> 26 <211> 30 <212> DNA <213> Artificial																	
<220 <223		orime	er														
<400> 26 cccgttacat aacttacggt aaatggcccg											3 0						
<210		27															
<211 <212 <213	:> I	30 DNA Artii	ficia	a l													
<220 <223) >	orime															
<400)> 2	27		caag	gc go	etgge	ccgaa	3									30
<210 <211 <212 <213	.> 3 !> I	28 30 ONA Arti	ficia	al													
<220 <223		prime	er											•			

30