Linear & Nonlinear Programming

Deng Chang

October 25, 2018

Exercise 2.6 (Caratheodory's theorem)

(a) $\forall y \in C$, let us consider $\Lambda = \left\{ (\lambda_1, ..., \lambda_n) \in \mathfrak{R}^n \middle| \sum_{i=1}^n \lambda_i \mathbf{A}_i = y, \lambda_1, ..., \lambda_n \geq 0 \right\}$, and mark $A = (A_1, A_2, ..., A_n)$, $\lambda = (\lambda_1, ..., \lambda_n)^{\mathrm{T}}$. Then $\Lambda = \{\lambda \in \mathfrak{R}^n \middle| A\lambda = y, \lambda \geq 0\}$. \therefore we require $y \in C$ at begin, then there exists a solution to $A\lambda = y$, from **theorem 2.5**, we can conclude : $\exists \tilde{A}, \tilde{y} \ s.t. \ \tilde{A}\lambda = \tilde{y}$ and rows of \tilde{A} are linear independent. Now we assume \tilde{A} has \bar{m} row, $\bar{m} \leq m$, \therefore from **theorem 2.4** one of basic feasible solution of Λ has at most \bar{m} non-zero λ_i , where $\bar{m} \leq m$.

(b) $\forall y \in P$, let us consider $\Lambda = \{(\lambda_1, ..., \lambda_n) \in \mathfrak{R}^n | \sum_{i=1}^n \lambda_i A_i = y, \sum_{i=1}^n \lambda_i = 1, \lambda_i \geq 0, 1 \leq i \leq n\}$, use the same notation as before, and mark $B = \begin{bmatrix} A \\ 1 \end{bmatrix}$, where $\mathbf{1}$ is a $1 \times n$ vector with all element being 1. Then $\Lambda = \left\{\lambda \in \mathfrak{R}^n | B\lambda = \begin{bmatrix} y \\ 1 \end{bmatrix}, \lambda \geq 0\right\} :: B\lambda = \begin{bmatrix} y \\ 1 \end{bmatrix}$ has solution, from **theorem 2.5**, $\exists \ \bar{B}.\bar{y} \text{ s.t. } \bar{B}\lambda = \bar{y}$, and rows of \tilde{B} are linear independent, and assume it has m' rows, $m' \leq m+1$, $\Lambda = \left\{\lambda \in \mathfrak{R}^n | \bar{B}\lambda = \bar{y}, \lambda \geq 0\right\}$, from **theorem 2.4** : one of basic feasible solution of Λ has at most m' non-zero λ_i where $m' \leq m+1$.

Exercise 2.10

- (a) True, according to our basic linear algebra knowledge, solution to Ax = b can be represented as $x = x_0 + \lambda \eta$, where $\lambda \in \mathbb{R}, \eta \in \mathbb{R}^n, \because n = m+1$, the freedom of η is one, it implies x is a linear (dimision = 1) in space (you can assume n = 2, 3 to help understand), notice theorem 2.3 basic feasible solution is extreme point and vertex, and two points determine one line.
- (b) False, min constant, $x \ge 0$
- (c) False, use example from (b)
- (d) True, because we consider linear optimization, objective function is linear, it is a convex problem, let x_1, x_2 be the optimal solution, then any convex combination of x_1, x_2 will be optimal.

(e) False.

only (1,0) is basic feasible optimal solutions

(f) False,

min max
$$\{x_1, 1 - x_1\}$$

s.t. $x_1 + x_2 = 1$
 $x_1, x_2 \ge 0$

the optimal point is (1/2,1/2) which is not extreme point

Exercise 2.12

True, this can be easily inferred by Corollary 2.2: every nonempty bounded polyhedron and every nonempty polyhedron in standard form has at least one basic feasible solution. we can transform (replace) every $x_i \leq 0$ to $\bar{x}_i = -x_i \geq 0$, and reformulate our problem into standard one, then use Corollary 2.2.

Or, by theorem 2.6, we need to prove The polyhedron P does not contain a line. Statement: for each x_i we have either the constraint $x_i \ge 0$ or constraint $x_i \le 0$ we know it is impossible to contain a line.

Exercise 2.16

- 1. This can **not** be feasible set in standard form in \mathbb{R}^n
- 2. This can be feasible set in standard form in higher dimension. Because we can introduce a slack variable, x_{n+1}

and require $x_n + x_{n+1} = 1, x_{n+1} \ge 0$ then

$$\left\{ x \in \mathbb{R}^{n+1} | \begin{bmatrix} I_{n-1} & & \\ & 1 & 1 \end{bmatrix} x = [0 \dots 0 \ 1]^{\mathrm{T}}, x \ge 0 \right\}$$

Separating Hyperplane Theorem

Theorem 1 Suppose C and D are nonempty dis-joint convex sets, i.e., $C \cap D = \emptyset$. Then there exist $a \neq 0$ and b such that $a^T x \leq b$ for all $x \in C$ and $a^T x \geq b$ for all $x \in D$. In other words, the affine function $a^T x - b$ is non-positive on C and non-negative on D. The hyperplane $\{x | a^T x = b\}$ is called a separating hyperplane for the sets C and D, or is said to separate the sets C and D. (This theorem is copying from convex optimization Stephen Boyd)

Theorem 2 Let $C \subset \mathcal{E}$, where \mathcal{E} is either \mathcal{R}_n or \mathcal{M}_n , be a closed convex set and let b be a point exterior to C. Then there is a vector $a \subset \mathcal{E}$ such that

$$a^T b > \sup_{x \in C} a^T x, \quad x \subset C$$

where a is the norm direction of the hyperplane.

Proof

In this part, firstly, we prove **theorem 1** and, use it to prove **theorem 2**.

Figure 1: The hyperplane $\{x|a^Tx=b\}$ separates the disjoint convex sets C and D. The affine function a^Tx-b is nonpositive on C and nonnegative on D

Figure 2: Construction of a separating hyperplane between two convex sets. The points $c \in C$ and $d \in D$ are the pair of points in the two sets that are closest to each other. The separating hyperplane is orthogonal to, and bisects, the line segment between c and d.

Here we assume the distance between C and D, defined as

$$\mathbf{dist}(C,D) = \inf \left\{ \left\| u - v \right\|_2 | u \in C, v \in D \right\},\,$$

is positive, and that there exist points $c \in C$ and $d \in D$ that achieve the minimum distance, i.e., $||c - d||_2 = \mathbf{dist}(C, D)$. (These conditions are satisfied, for example, when C and D are closed and one set is bounded.)

define

$$a = d - c, \quad b = \frac{\|d\|_2^2 - \|c\|_2^2}{2}$$

We will show that the affine function

$$f(x) = a^{T}x - b = (d - c)^{T}(x - (1/2)(d + c))$$

is nonpositive on C and nonnegative on D, i.e., that the hyperplane $\{x|a^Tx=b\}$ separates C and D. This hyperplane is perpendicular to the line segment between c and d, and passes through its midpoint, as shown in figure 2.

we first show that f is nonnegative on D, The proof that f is nonpositive on C is similar (or follows by swapping C and D and considering -f). Suppose there were a point $u \in D$ for which

$$f(u) = (d-c)^{T}(u - (1/2)(d+c)) < 0$$

We can express f(u) as

$$f(u) = (d-c)^{T}(u-d+(1/2)(d-c)) = (d-c)^{T}(u-d)+1/2 \|\cdot c\|_{2}^{2}$$

We see that implies $(d-c)^T(u-d) < 0$. Now we observe that

$$\frac{d}{dt} \|d + t(u - d) - c\|_{2}^{2} \bigg|_{t=0} = 2(d - c)^{T} (u - d) < 0,$$

so for some small t > 0, with $t \le 1$, we have

$$||d + t(u - d) - c||_2 < ||d - c||_2$$

i.e., the point d + t(u - d) is closer to c than d is. Since D is convex and contain d and u, we have $d + t(u - d) \in D$. But t this is impossible, since d is assumed to be the point in D that is closest to C.

Until now, Theorem 1 is proven. Now let us focus on theorem 2. Because point b is exterior to C, we can find a small ball with radius ϵ (small enough), centering at b that isn't intersect with C, let us denote this small ball as $B(b, \epsilon)$.

$$B(b,\epsilon) \cap C = \emptyset$$

By theorem 1, we can find a separating hyperplane $\{x \mid a^Tx = d\}$ for C and $B(b, \epsilon)$, we can assume $\forall x \in B(b, \epsilon), a^Tx - d > 0$ and $\forall x \in C, a^Tx - d < 0$, (otherwise, we can use -a to replace a) $\therefore \sup_{x \in C} a^Tx < d$, \therefore point $b \in B(b, \epsilon), \therefore a^Tb > d > \sup_{x \in C} a^Tx$