1 Question 1

1.1 Part a)

Let Ω be the sample space. Therefore $P(\{\Omega\}) = 1$. Adding all the joint pmf values must sum to 1:

$$\begin{split} \{\Omega\} &= \bigcup_{x} \bigcup_{y} \{\mathbf{X} = x\} \cap \{\mathbf{Y} = y\} \\ \mathbf{P}(\{\Omega\}) &= 1 \\ \implies 1 = \mathbf{P}((\{\mathbf{X} = -1\} \cap \{\mathbf{Y} = -1\}) \cup \ldots \cup (\{\mathbf{X} = 1\} \cap \{\mathbf{Y} = 1\})) \\ &= \mathbf{P}(\{\mathbf{X} = -1\} \cap \{\mathbf{Y} = -1\}) + \ldots + \mathbf{P}(\{\mathbf{X} = 1\} \cap \{\mathbf{Y} = 1\})) \\ &= (p - \frac{1}{16}) + (\frac{1}{4} - p) + (0) + (\frac{1}{8}) + (\frac{3}{16}) + (\frac{1}{8}) + (p + \frac{1}{16}) + (\frac{1}{16}) + (\frac{1}{4} - p) \\ 1 &= -\frac{1}{16} + \frac{4}{16} + \frac{7}{16} + \frac{1}{16} + \frac{4}{16} \\ 1 &= 1 \end{split}$$

Unfortunately, this tells us no information about p. From the definition of probability, $P(\{c\})$ for $c \in \Omega$ must be greater or equal to 0, $P(\{c \in \Omega\}) \ge 0$. This can be used to restrict the possible values of p:

$$P(A \subseteq \Omega) \ge 0$$

$$\Rightarrow P(\{X = -1\} \cap \{Y = -1\}) \ge 0$$

$$p - \frac{1}{16} \ge 0$$

$$p \ge \frac{1}{16}$$

$$\Rightarrow P(\{X = 0\} \cap \{Y = -1\}) \ge 0$$

$$\frac{1}{4} - p \ge 0$$

$$p \le \frac{1}{4}$$

$$\Rightarrow P(\{X = -1\} \cap \{Y = 1\}) \ge 0$$

$$p + \frac{1}{16} \ge 0$$

$$p \le \frac{1}{16}$$

Therefore, $\frac{1}{16} \le p \le \frac{1}{4}$, and can be any value within this range.

1.2 Part b)

Aim is to find $P({X = Y})$:

$$\begin{split} \mathbf{P}(\{\mathbf{X} = \mathbf{Y}\}) &= \sum_{a} \mathbf{P}(\{\mathbf{X} = a\} \cap \{\mathbf{Y} = a\}) \\ &= \mathbf{P}(\{\mathbf{X} = -1\} \cap \{\mathbf{Y} = -1\}) + \mathbf{P}(\{\mathbf{X} = 0\} \cap \{\mathbf{Y} = 0\}) + \mathbf{P}(\{\mathbf{X} = 1\} \cap \{\mathbf{Y} = 1\}) \\ &= (p - \frac{1}{16}) + (\frac{3}{16}) + (\frac{1}{4} - p) \\ &= \frac{6}{16} = \frac{3}{-} \end{split}$$

1.3 Part c)

The marginal pdf of X is $f_X(x)$, which is equal to P(X = x) and can be manually evaluated:

$$P(\{X = -1\}) = \sum_{y} P(\{X = -1\} \cap \{Y = y\})$$

$$= (p - \frac{1}{16}) + (\frac{1}{8}) + (p + \frac{1}{16})$$

$$= 2p + \frac{1}{8}$$

$$P(\{X = 0\}) = \sum_{y} P(\{X = 0\} \cap \{Y = y\})$$

$$= (\frac{1}{4} - p) + (\frac{3}{16}) + (\frac{1}{16})$$

$$= -p + \frac{1}{2}$$

$$P(\{X = 1\}) = \sum_{y} P(\{X = 1\} \cap \{Y = y\})$$

$$= (0) + (\frac{1}{8}) + (\frac{1}{4} - p)$$

$$= -p + \frac{3}{8}$$

$$\Rightarrow f_{X}(x) = P(\{X = x\}) = \begin{cases} 2p + \frac{1}{8} & x = -1 \\ -p + \frac{1}{2} & x = 0 \\ -p + \frac{3}{8} & x = 1 \\ 0 & \text{otherwise} \end{cases}$$

$$P(\{Y = -1\}) = \sum_{x} P(\{X = x\} \cap \{Y = -1\})$$

$$= (p - \frac{1}{16}) + (\frac{1}{8}) + (p + \frac{1}{16})$$

$$= p + \frac{1}{8}$$

$$P(\{Y = 0\}) = \sum_{x} P(\{X = x\} \cap \{Y = 0\})$$

$$= (\frac{1}{8}) + (\frac{3}{16}) + (\frac{1}{8})$$

$$= \frac{7}{16}$$

$$P(\{Y = 1\}) = \sum_{x} P(\{X = x\} \cap \{Y = 1\})$$

$$= (p + \frac{1}{16}) + (\frac{1}{16}) + (\frac{1}{4} - p)$$

$$= \frac{6}{18} = \frac{3}{8}$$

$$p(\{Y = y\}) = \begin{cases} p + \frac{1}{8} & y = -1\\ \frac{7}{16} & y = 0\\ \frac{3}{8} & y = 1\\ 0 & \text{otherwise} \end{cases}$$