Logic Circuits II

O10.133
Digital Computer Concept and Practice
Spring 2013

Lecture 04

Arithmetic Unit

- Integer addition and subtraction
- Two's complement representation

S ₁	S ₀	Y	$C_{in} = 0$	C _{in} = 1
0	0	00…0	F = A	F = A+1
0	1	В	F = A + B	F = A+B+1
1	0	B'	F = A+B'	F = A + B' + 1
1	1	11…1	F = A-1	F = A

Logic Unit

Bitwise OR, AND, XOR, and NOT

S ₁	S ₀	output	operation
0	0	$F = A \vee B$	OR
0	1	$F = A \wedge B$	AND
1	0	$F = A \oplus B$	XOR
1	1	F = A'	NOT

ALU

• Arithmetic unit + logic unit

S ₂	S ₁	S ₀	Cin	Operation
0	0	0	0	F = A
0	0	0	1	F = A+1
0	0	1	0	F = A + B
0	0	1	1	F = A+B+1
0	1	0	0	F = A+B'
0	1	0	1	F = A + B' + 1
0	1	1	0	F = A-1
0	1	1	1	F = A
1	0	0	Х	$F = A \lor B$
1	0	1	Х	$F = A \wedge B$
1	1	0	Χ	F = A⊕B
1	1	1	Х	F = A'

ALU in a Broader Sense

• ALU + shifter

ALU Symbol

Combinational Logic vs. Sequential Logic

- The outputs of a combinational logic circuit
 - Totally dependent on the current input values and determined by combining the input values using Boolean operations
- The outputs of a sequential logic circuit
 - Depend not only on the current input values but also on the past inputs
 - Logic gates + memory
 - Outputs are a function of the current input values and the data stored in memory
 - A function of time
 - States

Clock

- The clock signal is simultaneously broadcast to every circuit component
- Every operation in the circuit must be completed inside a clock cycle

Gate Delay

- Also known as propagation delay
- The time delay between the changes when an input change causes an output change

The D Flip-flop

Registers

• A register is a storage device that can store binary information

over time load It is a collection of one or more flip-flops MUX load n DO n-bit register clock Triggerring edges DI clock load DO Time

Binary Counters

- An n-bit counter is an n-bit register that goes through a predetermined sequence of states upon the application of the clock signal
- A counter that follows the binary number sequence is called a binary counter

Binary Counters (contd.)

Binary Counters (contd.)

Register Files

A register file is an array of registers in a CPU

Tristate Buffers

- Also known as tristate drivers
- A third state, called a high-impedance state and denoted as Hi Z, in addition to o and 1

Е	D	0
0	Χ	Hi-Z
1	0	0
1	1	0

RAM

- Random access memory
- A word is a unit of information stored to and read from memory
- Able to access randomly chosen words regardless of the order in which they are accessed
- Thought as an array of 2^m w- bit registers + some access circuits to transfer information from/into it
 - Each word has a unique address

Memory Cell

4 × **4 RAM**

Building a RAM with Bigger Words

Building a RAM with More Words

