

FAKULTA ELEKTROTECHNICKÁ KATEDRA TELEKOMUNIKAČNÍ TECHNIKY

B2B32DAT Datové sítě

Ing. Pavel Bezpalec, Ph.D.

Katedra telekomunikační techniky FEL ČVUT v Praze

Pavel.Bezpalec@fel.cvut.cz

Harmonogram přednášek

Týden	Datum	Náplň přednášek			
1.	27. 9.	Úvod do datových sítí, základní pojmy, rozdělení datových sítí, historický vývoj.			
2.	4. 10.	Internet, virtualizace, cloud, sociální sítě.			
3.	11. 10.	Modely datové komunikace, formální zápis funkce komunikačního protokolu.			
4.	18. 10.	Adresace v internetu – princip VLSM, přidělování, překlad.			
5.	25. 10.	Aplikační protokoly – socket, web, telnet.			
6.	1. 11.	Architektura systému doménových jmen.			
7.	8. 11.	Přenos elektronické pošty v Internetu.			
8.	15. 11.	Směrování v datových sítích. AS. Směrovací algoritmy.			
9.	22. 11.	Lokální sítě. Síťové prvky v datových sítích. Virtualizace datových sítí.			
10.	29. 11.	Ethernet – koncept, nasazení, využití.			
11.	6. 12.	Internet věcí.			
12.	13. 12.	Počítačová bezpečnost.			
13.	20. 12.	Sítě WAN (MPLS, VPN, PPP).			
14.	10. 1.	Základní principy správy a řízení datových sítí			

Ethernet – historie

- Havaii radiová síť ALOHA na propojení ostrovů
 - ½ 70. let 20. století
- PARC (Palo Alto Research Center) Ethernet
 - 2,94 Mbit/s XEROX (patentováno 1976)
 - 10 Mbit/s DEC, Intel, XEROX (DIX Ethernet, 1980)
- Standardizace
 - 1983 IEEE 802.3 CSMA/CD, ISO 8803.2

Ethernet – historie

Standardizace

- 1980 založena skupina IEEE802
- 1982 vzniká Ethernet II v konsorciu DIX, zvaný též DIX Ethernet
- 1985 pracovní skupina IEEE 802.3 vydává 1. standard
 - "IEEE 802.3 Carrier Sense Multiple Access with Collision Detection (CSMA/CD) Access Method and Physical Layer Specifications"
 - vůbec se tam nevyskytuje slovo "Ethernet"
 - licenční důvody (trademark vlastní Xerox)
- 2018 poslední konsolidace dokumentu IEEE 802.3
- Dnes se veškerý vývoj odehrává pouze ve skupině IEEE802

Ethernet

- Technologie pro přenos dat po sdíleném médiu
- Přístupová metoda CSMA/CD 1-persistentní
- Definován protokoly spojové a fyzické vrstvy RM OSI
- Spojová vrstva rozdělena na podvrstvy
 - LLC Logical Link Control (IEEE 802.2)
 - řízení logického spojení
 - nezávislá na fyzické interpretaci sítě
 - MAC Medium Access Control (IEEE 802.3)
 - řídí přístup na médium
 - závislá na fyzické interpretaci sítě a přístupové metodě
 - adresuje rámce pomocí fyzických adres
- Dnes převažuje přepínaný Ethernet, v kombinaci s full-duplex komunikací a mikrosegmentací, čímž se CSMA/CD obchází
 - médium je pořád volné
 - nemůže nastat kolize

Architektura Ethernetu, IEEE 802

- AUI Attachement Unit Interface (původní rozhraní připojení 10Mbit/s, 10Base2, 10Base5,10Base-T)
- PLS Physical Layer Signaling (rozhraní signalizace fyzické vrstvy)
- MAU Medium Attachement Unit (transceiver, vnější jednotka ethernet sítě)
- PMA Physical Media Attachement (blok specifický pro daný typ přenosového média)
- PMD Physical Medium Dependant (rozhraní specifické podle přenosového média)
- MDI Medium Dependant Interface (specifické rozhraní daného přenosového média)
- MII Medium Independant Interface (rozhraní nezávislé na typu média, tj. universální) pro 10 nebo 100 Mbit/s
- GMII Gibabit Medium Independant Interface (rozhraní nezávislé na typu média, tj. universální) pro 1000 Mbit/s
- XGMII DesetiGibabit (x)Medium Independant Interface (rozhraní nezávislé na typu média, tj. universální) pro 10 Gbit/s

CSMA/CD

- CS Carrier Sense
 - Hovoří někdo?
- MA Multiple Access
 - Slyším, co ostatní
- CD Collision Detection
 - Hovoří nás více!
 - Chvilku počkám a pak to zkusim znovu

 CSMA používáme při normálním telefonním hovoru

Struktura rámce

- Preambule tvar 10101010....,
 - dočasná synchronizace vysílače a přijímače
 - od 100Mb Ethernetu zbytečná, synchronizace se dělá jinak
- SoF Start of Frame Delimiter 10101011
 - signalizuje začátek rámce
- DA, SA adresní pole (cílová a zdrojová adresa)
- Type/Length
 - if hodnota < 0x0600 then délka datové části, else typ zapouzdřených dat
 - např. IPv4 protokol má hodnotu 0x0800
- Data užitečná data, LLC/SNAP
- FCS kontrolní součet pomocí CRC32

MAC adresa

- 48 bitů dlouhá
 - zápis: xx:xx:xx:xx
- nehierarchická struktura
- povinné označení
 - zdrojová stanice
 - cílová stanice

- I/G Individual / Group address
 - adresa stanice
 - skupinová adresa
 - multicast
 - broadcast
 - FF:FF:FF:FF:FF
- U/L Universal / Local admin.
 - globální správa MAC
 - lokální správa MAC
- OUI Organizational Unique Id
 - označení výrobce
- VSI Vendor Specific Id
 - sériové číslo, výrobní číslo ...

Velikost rámce

Minimální velikost rámce

64 B (46 B datové pole)

- šíření kolizí
- Maximální velikost rámce 1518 B (1500 B datové pole)
 - více (historických) důvodů:
 - větší rámec = větší max. zpoždění na segmentu
 - stanice musí čekat konec vysílání, před svým pokusem, a čím delší rámec je, tím déle
 - větší rámec = větší PRST výskytu chyby a nutná retransmise
 - teoreticky nekonečně velký rámec bude vždy obsahovat chybu a nikdy se nepřenese
 - větší rámec = větší nárok na vyrovnávací pamět v NIC
 - hlavní důvod pro 1500B rámec v 70. letech cena pamětí
- Maximální délka se několikrát zvětšovala
 - 802.1q ~ 1522B
 - GE Jumbo Frames (až 9216 octets)
 - non-standard vendor specific

Typy rámců

Technologie ... 10 Mbit/s

10BASE-5

- Přenos v základním pásmu bez předmodulace
- Max. délka segmentu 500m, 1024 stanic
- Medium: tlustý koaxiální kabel
 - Topologie: sběrnice

• 10BASE-2

- Přenos v základním pásmu bez předmodulace
- Max. délka segmentu 185m
- Medium: tenký koaxiální kabel
- Topologie: sběrnice

10BASE-T

- Přenos v základním pásmu bez předmodulace
- Max. délka segmentu 100m
- Medium: UTP Cat 3, 4, 5; používá 2 páry
- Topologie: strom

10 BASE-T, NLP - Normal Link Pulse

- zajištění integrity spojení
- nevysílají-li se data
 - 100 ns puls
 - každých 16 ± 8 ms

Technologie ... 100 Mbit/s

- FastEthernet IEEE 802.3u,y
- Změny oproti 10 Mbit/s Ethernetu
 - 10× zkrácení bitového intervalu
 - efektivnější kódování
 - 10 Mbit: Manchester
 - 100 Mbit: 4B/5B a NRZI/MLT3
 - mechanismus detekce rychlosti a řízení toku
 - délka segmentu max. 100m
 - topologie: strom
 - 10× zmenšení IFG
 - 9,6 μ s \rightarrow 0,96 μ s
 - rozdělelní fyzické vrstvy
 - PHY, MII

- přenos v základním pásmu bez předmodulace
- kódování 4B5B, scrambling MLT-3
- médium: UTP Cat 5 a STP
 - s využitím dvou párů

100BASE-T2

- modulace PAM-5
- kódování 4B5B, scrambling MLT-3
- médium: UTP Cat 3, 4, 5
 - s využitím dvou párů

100BASE-T4

- modulace PAM-3
- kódování 8B5T, scrambling MLT-3
- médium: UTP Cat 3, 4, 5
 - s využitím čtyř párů

100BASE-Fx

- délka segmentu max. 200m
- médium: multimodové optické vlákno
- max. délka opt. vlákna
 - Full duplex 2000m
 - Half duplex 412m

10/100 BASE-x – překódování bitů

Technologie ... 1000 Mbit/s

- 1996 založena GE aliance
- Změny oproti 100 Mbit/s Ethernetu
 - plný duplex
 - bezkolizní prostředí
 - neplatí omezení na max. vzdálenost
 - polovičního duplexu
 - prodloužení "slot time"
 - 64B → 512 B
 - nelze použít hub, pouze switch

• 1000BASE-T/CX

IEEE802.3ab

- kódování 4B5B
- modulace PAM5 (4 dimenze, 5 úrovní)
- max. délka segmentu 100m
- médium: UTP Cat 5+
 - s využitím čtyř párů
- full duplex
- topologie: strom
- 1000BASE-SX/LX

IEEE802.3z

- kódování 8B10B
- max. délka vlákna 5000m
- médium: optické vlákno
 - krátkovlnný laser (SX), dlouhovlnný laser (LX)
 - singlemod (LX), multimod (LX i SX)
- full duplex
- topologie: strom

Standard 1000BASE-T

- definuje IEEE 802.3ab
- vlastnosti
 - plný duplex
 - dosah do 100 metrů
 - 4 páry UTP Cat 5+
 - všechny páry používají pro současné vysílání i příjem
 - způsob kódování
 - datový tok se rozloží do 4 párů vodičů
 - 250 Mbit/s na
 - frekvence signálu
 - 31,25 MHz

- autodetekce rychlosti přenosu
 - zpětná kompatibilita s
 100BaseT a 10BaseT
 - řeší se pomoc se pomocí pulsů
 NLP a FLP
 - není řešena v rámci optických variant
- negotiation
 - domluva parametrů
 - half/full duplex
 - flow control
 - ...
 - existuje u všech verzí GE
 - ne pulsy FLP, ale speciální rámce

1000 BASE-T

Auto-Negotiation

AUI — Attachment unit interface
AutoNeg — Auto-negotiation
MAU — Media attachment unit
MDI — Medium dependent interface
MII — Medium independent interface
PCS — Physical coding sublayer

PHY— Physical layer device
PLS—Physical layer signaling
PMA—Physical medium attachment
PMD— Physical medium dependent
RS— Reconciliation sublayer

- část standardu Ethernetu
 - volitelná
 - 10 BASE-T, 100 BASE-T
 - povinná
 - 1000 BASE-T
- umožňuje docílit nejlepší možný přenosový režim
 - přenosová rychlost
 - 10, 100, 1000 Mbit/s
 - mód přenosu
 - HDX, FDX
- pomocí FLP (Fast Link Pulse)
 - založeno na NLP

FLP - Fast Link Pulse

- FLP dávka (burst)
 - 17-33 pulsů
 - šířka pulsu 100 ns
 - perioda stejná jako NLP
 - 16 ± 8 ms
 - pulsy na liché pozici
 - synchronizace FLP
 - sudé pozice
 - datové slovo LCW

LCW – Link Code Word

kódování LCW

- kódování LCW
 - sudé pozice FLP
 - existence pulsu → log. 1
 - neexistence pulsu → log. 0
- rozlišení typu LCW
- dle bit D15, NP
 - 0 \rightarrow Base Page FLP
 - − 1 → Next Page FLP

Postup Auto-Negotiation

BasePage FLP

- dohodnutí parametrů spojení podle priority
- vyšší se vždy přizpůsobí

Next page FLP

- je pro 1000 BASE-T
- nastavení dalších parametrů
 - přenosová rychlost
 - mód přenosu
 - režim Master-Slave

Technology
1000BaseT — Full duplex
1000BaseT — Half duplex
100BaseT2 — Full duplex
100BaseTX — Full duplex
100BaseT2 – Half duplex
100BaseT4
100BaseTX – Half duplex
10BaseT – Full duplex
10BaseT – Half duplex

Auto-Negotiation – příklady

Technologie ... 10GE

- 1999 10GE aliance
- 2003 standard IEEE802.3ae
- Změny oproti 1 GE
 - pouze plný duplex
 - optické vlákno
 - dosah až 40km
 - "plné" vlákno
 - mnohovid
 - jednovid
 - "barvy" získané DWDM
 - metalika
 - CAT 6 dosah max 56m
 - CAT 7 dosah max 100m
 - modulace
 - PAM16

Technologie ... 40GE, 100GE, ...

Standard IEEE802.3ba

- 40GE = 4x 10GE paralelně
 - max 100m (
 - max 10km optické vlákno
- 100GE = 10x 10GE paralelně

Standard IEEE802.3df

200 Gb/s, 400 Gb/s, 800 Gb/s,1.6 Tb/s

PoE – Power over Ethernet

- 1999 první myšlenka
 - IP telefonie
 - jiná "malá" Eth. zařízení mají malý příkon … proč je tedy nenapájet po datovém kabelu
 - WiFi AP, kamery, čidla, čtečky karet, dveřní zámky ...
- Vlastnosti
 - -44-57V
 - max. 550mA
 - typicky: 10 350mA
 - klidový stav: max. 5mA
- IEEE802.3af 2003
 - max. 12,5W
- IEEE802.3at 2009
 - max. 25,5W
- IEEE802.3bt –2018
 - max. 60W, popř. 100W

PoE – model komunikace

- Detekce
 - -2,8-10V
 - detekce 25kΩ rezistoru
- Určení výkonové třídy
 - -15,5-20,5V
 - max. 75ms
- Aktivace PD
 - -30-44V
 - nabíjení kondenzátorů
- Napájení
 - -44-57V
- Klidový režim
 - -0-2,8V

PSE (Power Sourcing Equipment)

PD

(Powered Device)

Třída	Proud	Max. příkon PD	Max. výkon PSE	Popis
0	0 – 4 mA	12.95W	15.4W	Neznámý příkon PD se neidentifikoval
1	9 – 12 mA	3.84 W	4.0W	Nízký příkon PD
2	17 – 20 mA	6.49 W	7.0W	Střední příkon PD
3	26 – 30 mA	12.95 W	15.4W	Vysoký nebo plný příkon PD
4	36 – 44 mA	12.95 W	15.4W	Vyhrazeno pro budoucí použití

Dotazy

