

Heart Rate Monitor with the Arduino

Jens Gansloser Fabian Meyer

SS14 – Ubiquitos Computing Mini-Project

Project

Create a Heart Rate Monitor with the Arduino.

Advantages against commercial devices:

- Full source code available
- Full insight into the used technology
- Can be compared to commercial ones in precision and performance
- Higher performance/precision?

Measurement Principle

Light through skin

Light reflected

Heart Rate and Oxygen Saturation

- Red LED (660nm)
- IR LED (940nm)
- Rate: time between two maxima / minima
- Saturation: difference between red and infrared light intensity

Detect maxima / minima and calculate time difference.

Hardware

- Adafruit TSL Light Sensor
 - Broadband and IR Photodiode
 - Different integration times
 - Different sensitivity
 - I2C interface
- Red and IR LED
- Bluetooth Module (not used)
- Arduino
 - Needs I2C and USART support

Data Flow

Data Flow

Implementation not trivial: Prototype implemented on PC

Software

Libraries

- QSerialPort
 - Serial port control
- FFTW
 - Calculation of the Fourier Transform
- Qt
 - Graphical User Interface
- Qwt
 - Graphs

Heart Rate Monitor

- GUI
 - Debugging and information display
- Serial Interface
 - Get sensor data
 - Get sensor settings
 - Set sample rate
- FFT Module
 - Signal processing
- Arduino Software
 - Read sensor light value (extended driver)

Output signal from the light sensor (array of discrete light values):

How to get the Heart Rate (= Minima time difference)?

First Approach

- Determine the grade
- Is it declining or rising?
- Determine minima

First Approach

- Determine the grade
- Is it declining or rising?
- Determine minima

Does not work!

Input light signal contains a lot of noise, a lot of shifting in the Y-Offset, different environment light, ...

Fourier Transform

Elegant way to determine the heart rate

Fourier Transform

Unfortunately not that easy ...

Discrete Signal

Frequencies

Which Fourier Transformation?

- Complex, Real?
- Discrete, Continues?
- Periodic, Aperiodic?

Different application fields

→ Complex Discrete Fourier Transform (DFT) -Forward transform synthesis (polar form)

$$X[k] = \frac{1}{N} \sum_{n=0}^{N-1} x[n] e^{-j2\pi kn/N}$$

```
N samples
x[n] discrete input values
X[k] discrete output values
Calculation with complex numbers
```

Complex DFT

- Input values
 - Array of complex data (discrete input data)
 - Real part = Sensor values
 - Complex part = 0
- Output values
 - Array of complex data (discrete output data)
 - Rectangular coordinate system (complex and real values – cos and sin functions)
 - Transformation to polar coordinate system with magnitude and phase (human readable)

- A lot of things to consider:
 - Sample Frequency (Nyquist-Shannon theorem)
 - Segment Duration
 - Which Filter?
 - Filter Parameters
 - Target Frequency
 - Filter stabilization time
 - Correct data scaling
 - Zero Padding (interpolation) numer of samples
 - Find correct frequencies
 - Improving frequency resolution
 - Number of samples
 - Timeinterval for doing FFT
 - **—** ...

Further Steps / Improvement

- Port to Arduino
 - FFT library is available http://wiki.openmusiclabs.com/wiki/ArduinoFFT
 - Research needed, if performance is enough
 - Else do signal processing on smartphone
- Use smaller uC (ATtiny, ...)
- Add bluetooth module (trivial)
- Add oxygen saturation measurement (easy to implement - the technology is the same as the heart rate measurement)
- Create wrist band (smaller LED)
- Brighter LED (to get greater frequecy peaks)

Sources

- http://www.dspguide.com/
- Mastering the Discrete Fourier Transform in One, Two or Several Dimensions - Pitfalls and Artifacts, Isaac Amidror, Springer
- DFT Diskrete Fourier-Transformation, André Neubauer, Springer
- Signaltheorie, Alfred Mertins, Springer
- http://www.thefouriertransform.com/series/fourier.php
- https://ccrma.stanford.edu/~jos/mdft/
- http://paulbourke.net/miscellaneous/dft/
- <u>http://www.ignaciomellado.es/blog/Measuring-heart-rate-with-a-smartphone-camera</u>
- http://www-users.cs.york.ac.uk/~fisher/mkfilter/trad.html

