Performance Consideration 1

Prof. Seokin Hong

Agenda

- Memory Optimizations
 - More about Global Memory
 - Memory Coalescing to fully utilize global memory bandwidth
 - o Reducing Bank Conflict to fully utilize shared memory bandwidth
- Considering Control-Flow Divergence
 - Warps and SIMD Hardware
- Considering Occupancy
 - Dynamic Partitioning of Resources
- Considering Thread Granularity

More about Global Memory

CUDA Global Memory = DRAM

- The global memory of a CUDA device is implemented with DRAM (Dynamic Random Access Memory)
 - Graphic DRAM is built for much higher bandwidth
 - GDDR (Graphic DDR)
 - HBM (3D-stacked High Bandwidth Memory)

Global Memory is a major bottleneck

- DRAM is slow → long access latency (~ 300 cycles)
- Graphic DRAM has much higher bandwidth than standard DRAM
 E.g., P100 with 4 HBM : 1TB /s
- So, programming techniques are required to fully utilize the DRAM bandwidth!!
- Need to understand DRAM to know causes of the DRAM bandwidth problem in CUDA programming

Memory Bandwidth Comparison

P100 with 4 HBM: 1TB/s

Why do GPUs need higher bandwidth DRAM?

Lots of compute

24 Streaming Multiprocessors, each with 128 execution units

Lots of threads

- 64 warps of 32 threads per Streaming Multiprocessors
 - → 49,152 threads executing simultaneously on 3072 execution units
- → To feed the threads, GPU must be capable of moving extremely large amount of data in and out of Global memory

DRAM Subsystem Organization

- Channel
- Chip
- Bank
- Row/Column

Channel

Each memory channel operates independently

- Can serve memory requests independently to read or write cache blocks (32B or 64B)
- Typically 64-bits wide with the command and address bus

t is important to exploit channel-level parallelism by uniformly distributing memory

requests across memory channels

Chip

- All chips comprising a channel are controlled at the same time
 - Respond to a single command
 - o Share address and command buses, but provide different data

Bank

Bank (cont'd)

- A chip consists of multiple banks
- Banks share command/address/data buses
- Each bank operate independently
- It is important to exploit bank-level parallelism by uniformly distributing memory requests across banks

Breaking down a Bank

Breaking down a Bank

- A DRAM bank is a 2D array of cells: rows x columns
- A "DRAM row" is also called a "DRAM page"
- "Sense amplifiers" is also called "row buffer"

DRAM Bank Operation

- Each address is a <row, column> pair
- Access to an "close row"
 - Activate command opens row (placed into row buffer)
 - Read/write command reads/writes column in the row buffer
 - Precharge command closes the row and prepares the bank for next access
- Activation and Precharge are very slow!!!
- Access to an "open row"
 - No need for activation → Fast

DRAM Bank Operation

It is important to maximize the row buffer hit !!

Accesses on consecutive memory address → High row buffer hit rate!

DRAM Bursting

- DRAM Bursting: transfer a block (e.g., 64B) in N steps through a memory channel
- Modern DRAM systems are designed to be always accessed in burst mode.
 Burst bytes are transferred but discarded when accesses are not to sequential locations.

DRAM Bursting with Banking

Summary: To fully utilize the DRAM bandwidth

- Exploit channel-level parallelism by uniformly distributing memory requests across memory channels
- Exploit bank-level parallelism by uniformly distributing memory requests across banks
- Maximize the row buffer hit rate by referencing consecutive memory addresses
- Coalescing memory requests

Coalescing memory requests

Memory Coalescing to fully utilize global memory bandwidth

Coalesce: 합체하다

Memory Coalescing

- If an kernel uses data from **consecutive memory addresses**, the DRAMs work close to the peak memory bandwidth!!
- Off-chip memory is accessed in chunks (aka. Cache block)
 - Even if you read only a single word
 - If you don't use whole chunk, bandwidth is wasted
- Chunks are aligned to multiples of 32/64/128 bytes
 - Unaligned accesses will cost more !!

Multi-Bank burst timing, reduced dead time

 Recall, all threads in a warp execute the same instruction

- When all threads in a warp execute a load instruction, the hardware detects whether the threads access consecutive memory addresses
 - If so, the hardware coalesces all memory accesses into a consolidated access to consecutive DRAM locations
 - 32 threads x 4B = 128B
 - With Coalescing → 1 memory requests
 - Without Coalescing → 32 memory requests

From NVIDIA Programming Guide

If thread 0 accesses location 128, thread 1 accesses location 132, ... thread 31 accesses location 255, then all these accesses are *coalesced*, that is: combined into one single access

From NVIDIA Programming Guide

If thread 0 accesses location 128, thread 1 accesses location 132, ... thread 31 accesses location 255, then all these accesses are *coalesced*, that is: combined into one single access

From NVIDIA Programming Guide

If thread 0 accesses location 129, thread 1 accesses location 133, ... thread 31 accesses location 256, then all these accesses are *coalesced*, that is: combined into two accesses

Review: Row-major Matrix Layout in C/C++

logical layout:

physical layout: 1D array

■ re-interpret:

Review: CUDA Matrix Multiplication

- One block of threads compute matrix C
 - Each thread computes one element of C
- Each thread
 - loads a row of matrix A
 - loads a column of matrix B
 - Perform one multiply and addition for each pair of A and B elements

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$$

CUDA Matrix Multiplication Kernel

```
// kernel program for the device (GPU): compiled by NVCC
  _global___ void addKernel(int* c, const int* a, const int* b, const int WIDTH) {
  int x = threadIdx.x:
   int y = threadIdx.y;
   int i = y * WIDTH + x;  // [y][x] = y * WIDTH + x;
   int sum = 0;
  for (int k = 0; k < WIDTH; ++k) {
            sum += a[y * WIDTH + k] * b[k * WIDTH + x];
   c[i] = sum;
```

DRAM Access Patterns

- Multiple threads are working in a warp
- for A matrix,
 - a[y * WIDTH + k]
- for B matrix,
 - o b[k * WIDTH + x]

thread 0 thread 1 thread 2

B accesses are coalesced

- b[k * WIDTH + x]
- k = 0, 1, 2, ...
 - o thread 0: b[k * WIDTH + 0]
 - thread 1: b[k * WIDTH + 1]
 - thread 2: b[k * WIDTH + 2]
 - o thread 3: b[k * WIDTH + 3]

	→ x					
k	M _{0,0}	M _{0,1}	M _{0,2}	M _{0,3}		
	M _{1,0}	M _{1,1}	M _{1,2}	M _{1,3}		
	M _{2,0}	M _{2,1}	M _{2,2}	M _{2,3}		
	M _{3,0}	M _{3,1}	M _{3,2}	M _{3,3}		

A accesses are not coalesced

- a[y * WIDTH + k]
- k = 0, 1, 2, ...
 - o thread 0: a[0 * WIDTH + k]
 - o thread 1: a[1 * WIDTH + k]
 - o thread 2: a[2 * WIDTH + k]
 - thread 3: a[3 * WIDTH + k]

			▶ k		
y		M _{0,0}	M _{0,1}	M _{0,2}	M _{0,3}
		M _{1,0}	M _{1,1}	M _{1,2}	M _{1,3}
	/	M _{2,0}	M _{2,1}	M _{2,2}	M _{2,3}
		M _{3,0}	M _{3,1}	M _{3,2}	M _{3,3}

Shared Memory Matrix Multiplication

- make a thread block as a tile
- partition the global memory into tiles
- then, load it to the shared memory

Tiled Matrix Multiplication Kernel

```
global void matmul(float* g C, const float* g A, const float* g B, const int width) {
shared float's A[TILE WIDTH][TILE WIDTH];
shared float's B[TILE WIDTH][TILE WIDTH];
int by = blockldx.y; int bx = blockldx.x;
int ty = threadIdx.y; int tx = threadIdx.x;
int gy = by * TILE WIDTH + ty; // global y index
int gx = bx * TILE WIDTH + tx; // global x index
float sum = 0.0F:
for (register int m = 0; m < width / TILE WIDTH; ++m) {
  // read into the shared memory blocks
  s A[ty][tx] = g A[gy * width + (m * TILE WIDTH + tx)];
  s B[ty][tx] = g B[(m * TILE WIDTH + ty) * width + gx];
  syncthreads();
  // use the shared memory blocks to get the partial sum
  for (register int k = 0; k < TILE WIDTH; ++k) {
     sum += s A[ty][k] * s B[k][tx];
  __syncthreads();
g C[gy * width + gx] = sum;
```

Slide credit : Prof. Baek

B accesses are coalesced

- gx = bx * TILE_WIDTH + tx
- s_B[ty][tx] = g_B[(m * TILE_WIDTH + ty) * width + gx];
- tx = 0, 1, 2, ...
 - o thread 0: b[... + 0]
 - o thread 1: b[... + 1]
 - thread 2: b[... + 2]
 - o thread 3: b[... + 3]

		▶ X		
	M _{0,0}	M _{0,1}	M _{0,2}	M _{0,3}
	M _{1,0}	M _{1,1}	M _{1,2}	M _{1,3}
k	M _{2,0}	M _{2,1}	M _{2,2}	M _{2,3}
	M _{3,0}	M _{3,1}	M _{3,2}	M _{3,3}

A accesses are coalesced

- s_A[ty][tx] = g_A[gy * width + (m * TILE_WIDTH + tx)];
- tx = 0, 1, 2, ...
 - o thread 0: b[... + 0]
 - o thread 1: b[... + 1]
 - thread 2: b[... + 2]
 - o thread 3: b[... + 3]

		▶ X		
	M _{0,0}	M _{0,1}	M _{0,2}	M _{0,3}
	M _{1,0}	M _{1,1}	M _{1,2}	M _{1,3}
k	M _{2,0}	M _{2,1}	M _{2,2}	M _{2,3}
	M _{3,0}	M _{3,1}	M _{3,2}	M _{3,3}

Next?

- Memory Optimizations
 - More about Global Memory
 - Memory Coalescing to fully utilize global memory bandwidth
 - Reducing Bank Conflict to fully utilize shared memory bandwidth
- Considering Control-Flow Divergence
 - Warps and SIMD Hardware
- Considering Occupancy
 - Dynamic Partitioning of Resources
- Considering Thread Granularity