Lecture Notes for Information Theory (ECE 587/STA 563)

Jyunyi Liao

Contents

1	Mea	asure of Information	2			
	1.1	Entropy and Conditional Entropy	2			
	1.2	Mutual Information	4			
	1.3	The Typical Set and Asymptotic Equipartition Property	7			
	1.4	Entropy Rates	ç			
2 Lossless Compression						
	2.1	Kraft-McMillan Inequality	12			
	2.2	Fundamental Limits of Compression	14			
	2.3	Shannon-Fano-Elias Coding	16			
	2.4	Huffman Coding	18			

1 Measure of Information

Throughout this section, we assume that all random variables we study are discrete variables. We use capital letters like X, Y, Z to denote random variables, and their probability mass functions $p_X(x), p_Y(y), p_Z(z)$. For simplicity, we drop the subscripts and use the shorthand p(x), p(y), p(z) instead. We use calligraphy letters like $\mathcal{X}, \mathcal{Y}, \mathcal{Z}$ to denote the finite support of random variables.

1.1 Entropy and Conditional Entropy

Definition 1.1 (Entropy). Let X be a random variable supported on a finite state space \mathcal{X} , with probability mass function p(x). The entropy of X is a function of the distribution p(x):

$$H(X) := \sum_{x \in \mathcal{X}} p(x) \log \frac{1}{p(x)} = -\mathbb{E} \left[\log p(X) \right].$$

Likewise, for a collection X_1, \dots, X_n of random variables, the (joint) entropy of X_1, \dots, X_n is defined as the entropy of the random vector (X_1, \dots, X_n) :

$$H(X_1, \dots, X_n) = \sum_{x_1 \in \mathcal{X}_1, \dots, x_n \in \mathcal{X}_n} p(x_1, \dots, x_n) \log \frac{1}{p(x_1, \dots, x_n)}.$$

Remark I. The entropy provides a measure of uncertainty of random variables. We also frequently use the binary entropy function $h:[0,1] \to \mathbb{R}_+$, which is defined as the entropy of a Bernoulli variable:

$$h(\alpha) = H(\text{Bernoulli}(\alpha)) = -\alpha \log \alpha - (1 - \alpha) \log(1 - \alpha), \quad \alpha \in [0, 1]$$

with the convention $0 \log 0 = 0$.

Remark II. Given any base b > 0, we define the entropy of X under base b to be

$$H_b(X) = \sum_{x \in \mathcal{X}} p(x) \log_b \frac{1}{p(x)} = H(X) \log_b e.$$

Clearly we have $H(X) = H_e(X)$. Another commonly used entropy is the bit entropy, in which the base b = 2:

$$H_2(X) = \sum_{x \in \mathcal{X}} p(x) \log_2 \frac{1}{p(x)} = H(X) \log_2 e.$$

Proposition 1.2. We have the following estimate for the entropy of a random variable X:

$$0 < H(X) < \log |\mathcal{X}|$$
.

Proof. The lower bound follows from the definition of entropy. For the upper bound, note that

$$\sum_{x \in \mathcal{X}} p(x) \log \frac{1}{p(x)} = \sum_{x \in \mathcal{X}} p(x) \log \frac{|\mathcal{X}|}{p(x)|\mathcal{X}|} = \log |\mathcal{X}| + \sum_{x \in \mathcal{X}} p(x) \log \frac{1}{p(x)|\mathcal{X}|}$$

$$\leq \log |\mathcal{X}| + \sum_{x \in \mathcal{X}} p(x) \left(\frac{1}{p(x)|\mathcal{X}|} - 1\right) = \log |\mathcal{X}|.$$

Then we complete the proof.

Remark. If $|\mathcal{X}| = \infty$, the entropy of a random variable can be ∞ . For example, let $A = \sum_{n=2}^{\infty} \frac{1}{n(\log n)^2}$, which is less than infinity. Define random variable X by

$$\mathbb{P}(X = n) = \frac{1}{An(\log n)^2}, \quad n = 2, 3, \dots$$

Then

$$H(X) \ge \int_2^\infty \frac{\log A}{x \log x} dx = \infty.$$

We may also wonder the uncertainty of a random variable when given potentially relevant observation.

Definition 1.3 (Conditional Entropy). Let X and Y be two random variables in the same probability space. The entropy of Y conditioned on the event X = x is a function of the conditional distribution p(y|x):

$$H(Y|X=x) := \sum_{y \in \mathcal{Y}} p(y|x) \log \frac{1}{p(y|x)} = \mathbb{E}\left[\log \frac{1}{p(Y|x)} \middle| X = x\right].$$

The conditional entropy of Y given X is a function of the joint distribution p(x,y):

$$H(Y|X) := \sum_{x \in \mathcal{X}, y \in \mathcal{Y}} p(x, y) \log \frac{1}{p(y|x)} = \mathbb{E}\left[\log \frac{1}{p(Y|X)}\right].$$

Remark. Note that H(Y|X) is a deterministic quantity rather than a random variable. In fact, we have

$$H(Y|X) = \sum_{x \in \mathcal{X}} p(x)H(Y|X = x).$$

Next, we study the relation between joint entropy and conditional entropy.

Proposition 1.4 (Chain rule for entropy). The joint entropy of X and Y has the following decomposition:

$$H(X,Y) = H(Y|X) + H(X).$$
 (1.1)

More generally,

$$H(X_1, X_2, \dots, X_n) = H(X_1) + H(X_2|X_1) + H(X_3|X_2, X_1) + \dots + H(X_n|X_{n-1}, \dots, X_1). \tag{1.2}$$

Proof. We first verify the bivariate case (1.1):

$$\begin{split} H(Y|X) + H(X) &= \sum_{x \in \mathcal{X}, y \in \mathcal{Y}} p(x,y) \log \frac{1}{p(y|x)} + \sum_{x \in \mathcal{X}} p(x) \log \frac{1}{p(x)} \\ &= \sum_{x \in \mathcal{X}, y \in \mathcal{Y}} p(x,y) \log \frac{1}{p(y|x)} + \sum_{x \in \mathcal{X}, y \in \mathcal{Y}} p(x,y) \log \frac{1}{p(x)} \\ &= \sum_{x \in \mathcal{X}, y \in \mathcal{Y}} p(x,y) \log \frac{1}{p(x,y)} = H(X,Y). \end{split}$$

The general case (1.2) follows from mathematical induction.

Remark. The equality (1.1) also implies the chain rule for conditional entropy:

$$H(X,Y|Z) = H(X|Y,Z) + H(Y|Z)$$

Finally, we introduce an important property of entropy as the function of distribution.

Theorem 1.5 (Concavity of entropy). Let p and q be two probability distributions that are supported in a common space \mathcal{X} . Then for all $0 \le \lambda \le 1$, we have

$$H(\lambda p + (1 - \lambda)q) \ge \lambda H(p) + (1 - \lambda)H(q). \tag{1.3}$$

Proof. We simply employ the estimate $\log t \le t - 1$ on $\lambda H(p) + (1 - \lambda)H(q) - H(\lambda p + (1 - \lambda)q)$:

$$\lambda \sum_{x \in \mathcal{X}} p(x) \log \frac{1}{p(x)} + (1 - \lambda) \sum_{x \in \mathcal{X}} q(x) \log \frac{1}{q(x)} - \sum_{x \in \mathcal{X}} (\lambda p(x) + (1 - \lambda) q(x)) \log \frac{1}{\lambda p(x) + (1 - \lambda) q(x)}$$

$$= \lambda \sum_{x \in \mathcal{X}} p(x) \log \frac{\lambda p(x) + (1 - \lambda) q(x)}{p(x)} + (1 - \lambda) \sum_{x \in \mathcal{X}} q(x) \log \frac{\lambda p(x) + (1 - \lambda) q(x)}{q(x)}$$

$$\leq \lambda \sum_{x \in \mathcal{X}} (\lambda p(x) + (1 - \lambda) q(x) - p(x)) + (1 - \lambda) \sum_{x \in \mathcal{X}} (\lambda p(x) + (1 - \lambda) q(x) - q(x)) = 0.$$

Then the result follows. \Box

Remark. Using the concavity, we can interpret why a transfer of probability that makes the distribution more uniform increases the entropy. We consider the following transformation:

$$(p_1, \cdots, p_i, \cdots, p_j, \cdots, p_m) \rightarrow \left(p_1, \cdots, \frac{p_i + p_j}{2}, \cdots, \frac{p_i + p_j}{2}, \cdots, p_m\right), \quad p_1 + \cdots + p_m = 1.$$

Let $p = (p_1, \dots, p_i, \dots, p_j, \dots, p_m)$, and let $q = (p_1, \dots, p_j, \dots, p_i, \dots, p_m)$ be the probability vector with i-th and j-th elements exchanged. Then

$$H\left(\frac{p+q}{2}\right) \ge \frac{1}{2}H(p) + \frac{1}{2}H(q) = H(p).$$

1.2 Mutual Information

Definition 1.6 (Mutual information). Let X and Y be two discrete random variables in the same probability space. The mutual information of X and Y is defined as

$$I(X;Y) = \sum_{x \in \mathcal{X}, y \in \mathcal{Y}} p(x,y) \log \frac{p(x,y)}{p(x)p(y)}.$$

Proposition 1.7 (Properties of mutual information). Let X and Y be two discrete random variables.

- (i) (Symmetry). I(X;Y) = I(Y;X).
- (ii) (Reduction). I(X;Y) = H(X) H(X|Y) = H(Y) H(Y|X).
- (iii) (Measure of dependency). $I(X;Y) \ge 0$, and the equality holds if and only if X and Y are independent.

Proof. The assertion (i) follows from definition, and the second from direct calculation. Now we verify (iii):

$$\sum_{x \in \mathcal{X}, y \in \mathcal{Y}} p(x, y) \log \frac{p(x, y)}{p(x)p(y)} \ge \sum_{x \in \mathcal{X}, y \in \mathcal{Y}} p(x, y) \left(1 - \frac{p(x)p(y)}{p(x, y)}\right) = 0.$$

Clearly, the equality holds if and only if p(x,y) = p(x)p(y) for every $x \in \mathcal{X}$ and $y \in \mathcal{Y}$.

Remark. Combining (ii) and (iii), we know that conditioning does not increase entropy:

$$H(X|Y) \le H(X)$$
, and $H(Y|X) \le H(Y)$.

An alternative proof of Theorem 1.5. Let $X_1 \sim p$ and $X_2 \sim q$ be two independent random variables, and let $Z \sim \text{Bernoulli}(\lambda)$. Define

$$Y = X_1 \mathbb{1}_{\{Z=1\}} + X_2 \mathbb{1}_{\{Z=0\}}.$$

Then $Y \sim \lambda p + (1 - \lambda)q$, and

$$H(Y) \ge H(Y|Z) = \lambda H(Y|Z=1) + (1-\lambda)H(Y|Z=0) = \lambda H(X_1) + (1-\lambda)H(X_2).$$

This is in fact the equality (1.3).

Definition 1.8. Let X, Y and Z be discrete random variables in the same probability space. The conditional mutual information of X and Y given Z is defined as

$$I(X;Y|Z) = \sum_{x \in \mathcal{X}, y \in \mathcal{Y}, z \in \mathcal{Z}} p(x, y, z) \log \frac{p(x, y|z)}{p(x|z)p(y|z)}.$$

Similar to Proposition 1.7, conditional mutual information has the following properties.

Proposition 1.9 (Properties of conditional mutual information). Let X, Y and Z be discrete random variables in the same probability space.

- (i) (Symmetry). I(X;Y|Z) = I(Y;X|Z).
- (ii) (Reduction). I(X;Y|Z) = H(X|Z) H(X|Y,Z) = H(Y|Z) H(Y|X,Z).
- (iii) (Measure of dependency). $I(X;Y|Z) \ge 0$, and the equality holds if and only if X and Y are conditionally independent on Z.

By direct calculation and induction, we also have the following chain rule for mutual information.

Proposition 1.10 (Chain rule for mutual information). The mutual information I(X; Y, Z) has the following decomposition:

$$I(X; Y, Z) = I(X; Z) + I(X; Y|Z).$$

More generally,

$$I(X; Y_1, Y_2, \dots, Y_n) = I(X; Y_1) + I(X; Y_2|Y_1) + I(X; Y_3|Y_2, Y_1) + I(X; Y_n|Y_{n-1}, \dots, Y_1).$$

We can use this rule to derive the data processing inequality for Markov chains.

Definition 1.11 (Markov chain). Random variables X, Y and Z are said to form a Markov chain, written $X \to Y \to Z$, if X and Z are conditionally independent on Y:

$$p(x, z|y) = p(x|y)p(z|y).$$

Particularly, if Z = g(Y) is a function of Y, then $X \to Y \to Z$.

The following theorem asserts that no manipulation of Y can increase the mutual information.

Theorem 1.12 (Data processing inequality). If $X \to Y \to Z$, then

$$I(X;Y) > I(X;Z)$$
.

Particularly, for any function g defined on \mathcal{Y} , we have

$$I(X;Y) \ge I(X;g(Y)).$$

Proof. By chain rule, we have that

$$I(X;Y) + I(X;Z|Y) = I(X;Y,Z) = I(X;Z) + I(X;Y|Z).$$

Since $X \perp \!\!\! \perp Z \mid Y$, we have $I(X; Z \mid Y) = 0$. Since $I(X; Y \mid Z) \geq 0$, the result follows.

Remark. By Proposition 1.7, we also have $H(X|Z) \geq H(X|Y)$ when $X \to Y \to Z$.

Next, we introduce an alternative definition of mutual information.

Definition 1.13 (Kullback-Leibler divergence/relative entropy). Let p and q be two probability distributions such that $\mathcal{X} = \operatorname{supp} q \supset \operatorname{supp} p$. The Kullback-Leibler divergence of q from p is defined as

$$D(p||q) := \sum_{x \in \mathcal{X}} p(x) \log \frac{p(x)}{q(x)} = \mathbb{E}_{X \sim p} \left[\log \frac{p(X)}{q(X)} \right].$$

This is also known as the relative entropy.

Remark. By definition, we have

$$D(p||q) = \sum_{x \in \mathcal{X}} p(x) \log \frac{p(x)}{q(x)} \ge \sum_{x \in \mathcal{X}} p(x) \left(1 - \frac{q(x)}{p(x)} \right) = 0.$$

Therefore, $D(p||q) \ge 0$, and the equality holds if and only if p = q. Moreover, by definition, we have the following result:

$$I(X;Y) = D(p_{X,Y} || p_X p_Y) = \mathbb{E}_{X \sim p_X} [D(p_{Y|X} || p_Y)].$$

In other words, the mutual information of X and Y is the relative entropy of their marginal product $p_X p_Y$ from their joint distribution $p_{X,Y}$.

Application: Misclassification Rate. To end this section, we introduce a useful application of mutual information. We discuss the estimation of a discrete random variable X from an observation Y. To deal with this problem, we construct a function $\phi: \mathcal{Y} \to \mathcal{X}$. The probability of error of the estimator $\widehat{X} = \phi(Y)$ is

$$p_e = \mathbb{P}(\widehat{X} \neq X).$$

The following Fano's inequality provide a lower bound of the error rate p_e .

Theorem 1.14 (Fano's inequality). For any estimator \widehat{X} of X such that $X \to Y \to \widehat{X}$, we have

$$p_e \ge \frac{H(X|Y) - \log 2}{\log |\mathcal{X}|}.$$

Proof. Let $B = \mathbb{1}_{\{X = \widehat{X}\}}$, which is a Bernoulli variable with parameter p_e . By the chain rule, the conditional entropy of (B, X) given \widehat{X} is

$$H(B|\widehat{X}) + H(X|B,\widehat{X}) = H(B,X|\widehat{X}) = H(X|\widehat{X}) + H(B|X,\widehat{X}).$$

Now we analyze the four terms in the equality.

- (i) Since conditioning does not increase entropy, $H(B|\hat{X}) \leq H(B) = h(p_e)$.
- (ii) The conditional entropy $H(X|B, \hat{X})$ has the following estimate:

$$H(X|B,\widehat{X}) = \sum_{b \in \{0,1\}} \sum_{x \in \mathcal{X}} \sum_{\widehat{x} \in \mathcal{X}} \mathbb{P}(B = b, X = x, \widehat{X} = \widehat{x}) \log \frac{1}{\mathbb{P}(X = x|B = b, \widehat{X} = \widehat{x})}$$

$$= \sum_{x \in \mathcal{X}} \sum_{\widehat{x} \in \mathcal{X}} \mathbb{P}(B = 0, X = x, \widehat{X} = \widehat{x}) \log \frac{1}{\mathbb{P}(X = x|B = 0, \widehat{X} = \widehat{x})}$$

$$= \sum_{\widehat{x} \in \mathcal{X}} \mathbb{P}(B = 0, \widehat{X} = \widehat{x}) \sum_{x \in \mathcal{X}} \mathbb{P}(X = x|B = 0, \widehat{X} = \widehat{x}) \log \frac{1}{\mathbb{P}(X = x|B = 0, \widehat{X} = \widehat{x})}$$

$$\leq p_e \log |\mathcal{X}|.$$

- (iii) Since $X \to Y \to \widehat{X}$, the data processing inequality implies $H(X|\widehat{X}) \ge H(X|Y)$.
- (iv) Since B is a function of X and \widehat{X} , we have $H(B|X,\widehat{X})=0$.

Combining these estimates, we obtain

$$H(X|Y) \le h(p_e) + p_e \log |\mathcal{X}| \le \log 2 + p_e \log |\mathcal{X}|.$$

Then we complete the proof.

1.3 The Typical Set and Asymptotic Equipartition Property

In this section, we investigate a sequence of i.i.d. copies X_1, X_2, \cdots of a random variable $X \sim p(x)$ with finite support \mathcal{X} . We write for a random vector of length n and its realization

$$X_{1:n} = (X_1, \dots, X_n), \quad x_{1:n} = (x_1, \dots, x_n).$$

The joint distribution of $X_{1:n}$ is given by

$$p(x_{1:n}) = \mathbb{P}(X_{1:n} = x_{1:n}) = \prod_{i=1}^{n} p(x_i).$$

In this section, our key task is to find a confidence set $A \subset \mathcal{X}^n$ that contains our observation $X_{1:n}$ with a high probability. Formally, we require

$$\mathbb{P}(X_{1:n} \in A) > 1 - \epsilon$$

where $\epsilon > 0$ is an arbitrarily given small quantity.

Typical Sets. We first propose an idea of constructing high probability sets. Let $g: \mathcal{X} \to \mathbb{R}$ be a function such that $\mathbb{E}|g(X)| < \infty$. By the weak law of large number, for each $\epsilon > 0$, there exists $N_{\epsilon} > 0$ such that

$$\mathbb{P}\left(\left|\frac{1}{n}\sum_{i=1}^{n}g(X_{i})-\mathbb{E}[g(X)]\right|\leq\epsilon\right)\geq1-\epsilon\quad\forall n\geq N_{\epsilon}.$$

Consequently, almost all probability mass is concentrated on the following set A:

$$A = \left\{ x_{1:n} \in \mathcal{X}^n : \mathbb{E}\left[g(X)\right] - \epsilon \le \frac{1}{n} \sum_{i=1}^n g(x_i) \le \mathbb{E}\left[g(X)\right] + \epsilon \right\}.$$

In the last display, the constraint can be equivalently expressed as

$$2^{-n(\mathbb{E}[g(X)]+\epsilon)} < 2^{-\sum_{i=1}^{n} g(x_i)} < 2^{-n(\mathbb{E}[g(X)]-\epsilon)}.$$

The construction of typical sets follows by plugging in $g(x) = \log_2 \frac{1}{p(x)}$.

Definition 1.15. The ϵ -typical set is defined by

$$A_{\epsilon}^{(n)} = \left\{ x_{1:n} \in \mathcal{X}^n : 2^{-n(H_2(X) + \epsilon)} \le p(x_{1:n}) \le 2^{-n(H_2(X) - \epsilon)} \right\},\,$$

or equivalently, the set of all tuples $x_{1:n} \in \mathcal{X}^n$ obeying

$$H_2(X) - \epsilon \le -\frac{1}{n} \log_2 p(x_{1:n}) \le H_2(X) + \epsilon.$$

Clearly, there exists N_{ϵ} such that $A_{\epsilon}^{(n)}$ contains $X_{1:n}$ with probability at least $1 - \epsilon$ whenever $n > N_{\epsilon}$.

Size of Typical Sets. When n increased, the number of possible realizations of $X_{1:n}$ would rise very quickly, which is $|\mathcal{X}|^n$. The idea of typical sets is to concentrate the probability mass of $X_{1:n}$ on a smaller set $A_{\epsilon}^{(n)}$:

$$A_{\epsilon}^{(n)} = \left\{ x_{1:n} \in \mathcal{X}^n : 2^{-n(H_2(X) + \epsilon)} \le p(x_{1:n}) \le 2^{-n(H_2(X) - \epsilon)} \right\}.$$

In this set, all tuples have roughly the same probability mass. This is know as the *Asymptotic Equipartition* property (AEP). Here is an intuition of this typical set:

- For the low probability tuples $p(x_{1:n}) < 2^{-n(H_2(X)+\epsilon)}$, they are too unlikely to matter;
- For the high probability tuples $p(x_{1:n}) > 2^{-n(H_2(X)-\epsilon)}$, they are too few to matter;
- Therefore, we exclude those unimportant tuples and retain only the average probability tuples.

We now study the size of the reduced set.

Proposition 1.16. Let $A_{\epsilon}^{(n)}$ be the ϵ -typical set for $X_{1:n}$. Then there exists $N_{\epsilon} > 0$ such that

$$\mathbb{P}\left(X_{1:n} \in A_{\epsilon}^{(n)}\right) \ge 1 - \epsilon, \quad \forall n \ge N_{\epsilon}.$$

Furthermore, the upper bound of the typical set is given by

$$\left| A_{\epsilon}^{(n)} \right| \le 2^{n(H_2(X) + \epsilon)}, \quad \forall n \ge 1;$$

and the lower bound of the typical set is given by

$$\left| A_{\epsilon}^{(n)} \right| \ge (1 - \epsilon) 2^{n(H_2(X) - \epsilon)}, \quad \forall n \ge N_{\epsilon}.$$

Proof. For the upper bound, note that

$$1 = \sum_{x_{1:n} \in \mathcal{X}^n} p(x_{1:n}) \ge \sum_{x_{1:n} \in A_{\epsilon}^{(n)}} p(x_{1:n}) \ge \left| A_{\epsilon}^{(n)} \right| 2^{-n(H_2(X) + \epsilon)}.$$

For the lower bound, when $n \geq N_{\epsilon}$, we have

$$1 - \epsilon \le \mathbb{P}\left(X_{1:n} \in A_{\epsilon}^{(n)}\right) = \sum_{x_{1:n} \in A_{\epsilon}^{(n)}} p(x_{1:n}) \le \left|A_{\epsilon}^{(n)}\right| 2^{-n(H_2(X) - \epsilon)}.$$

Rearranging each inequality completes the proof.

1.4 Entropy Rates

In this section, we study a discrete-time stochastic process $X = (X_t)_{t \in \mathbb{N}}$, where each X_t is a random variable in a finite range \mathcal{X} . These random variables do not need to be i.i.d..

Definition 1.17. Let $X = (X_t)_{t \in \mathbb{N}}$ be a stochastic process.

(i) Average entropy per symbol

$$H(X) = \lim_{n \to \infty} \frac{H(X_{1:n})}{n}$$

(ii) The k-th order entropy

$$H^{k}(X) = H(X_{k}|X_{k-1}, \cdots, X_{1})$$

(iii) Rate of information innovation

$$H^{\infty}(X) = \lim_{k \to \infty} H^k(X) = \lim_{k \to \infty} H(X_k | X_{k-1}, \cdots, X_1)$$

Remark. If $X = (X_t)_{t \in \mathbb{N}}$ is an i.i.d. sequence, we have

$$H(X) = H^{\infty}(X) = H(X_1).$$

Stationarity. Recall that a stochastic process $X = (X_t)_{t \in \mathbb{N}}$ is said to be (strongly) stationary if

$$\mathbb{P}(X_1 = x_1, \dots, X_n = x_n) = \mathbb{P}(X_{k+1} = x_1, \dots, X_{n+k} = x_n)$$

for every $n \in \mathbb{N}$, every lapse $k \in \mathbb{N}$ and all $x_1, \dots, x_n \in \mathcal{X}$.

Theorem 1.18. For a stationary process $X = (X_t)_{t \in \mathbb{N}}$,

$$H(X) = H^{\infty}(X).$$

Proof. We first prove the existence of rate of information innovation. By stationarity,

$$H^{n}(X) = H(X_{n}|X_{n-1}, \dots, X_{2}, X_{1}) \le H(X_{n}|X_{n-1}, \dots, X_{2}) = H(X_{n-1}|X_{n-2}, \dots, X_{1})$$

Therefore, $H(X_n|X_{n-1},\dots,X_1)$ is decreasing in n. Since conditional entropy is nonnegative, the monotone sequence converges: $H^n \searrow H^{\infty}$. Next, by the chain rule of entropy,

$$\frac{1}{n}H(X_1,\dots,X_n) = \frac{1}{n}\sum_{i=1}^n H(X_i|X_{i-1},\dots,X_1).$$

The right-hand side of the last display, which is a Cesàro mean, has the same limit as $H(X_n|X_{n-1},\dots,X_1)$, which is $H^{\infty}(X)$. Since the limit of the left-hand side is the average entropy per symbol, the result follows. \square

Kolmogorov extension. If $(X_t)_{t\in\mathbb{N}}$ is a stationary process, then all finite-dimensional marginal distributions of this process are determined. By Kolmogorov extension theorem, we can extend the index of this process to the integer set \mathbb{Z} and obtain a stationary process $(X_t)_{t\in\mathbb{Z}}$. We write for the past history

$$X_{\leq 0} = (X_t)_{t \in -\mathbb{N}_0} = (X_0, X_{-1}, X_{-2}, \cdots).$$

Furthermore, we can define the conditional p.m.f. of X_1 given $X_{<0}$:

$$p(x_1|X_{\leq 0}) = \mathbb{E}\left[\mathbb{1}_{\{X_1 = x_1\}}|X_{\leq 0}\right] = \lim_{n \to \infty} \left[\mathbb{1}_{\{X_1 = x_1\}}|X_0, X_{-1}, \cdots, X_{-n}\right]$$
$$= \lim_{n \to \infty} p(x_1|X_0, X_{-1}, \cdots, X_{-n}).$$

Here the convergence holds both in L^1 and almost surely, since the sequence we take limit of is a uniformly integrable martingale. Furthermore, by Lebesgue's dominated convergence theorem,

$$\mathbb{E}\left[-\log p(X_1|X_{\leq 0})\right] = \lim_{n \to \infty} H^k(X) = H^{\infty}(X).$$

Ergodicity. Let (Ω, \mathscr{F}, P) be a measure space. A measurable mapping $T : (\Omega, \mathscr{F}) \to (\Omega, \mathscr{F})$ is said to be *ergodic*, if every set $A \in \mathscr{F}$ such that TA = A a.e. satisfies P(A) = 0 or P(A) = 1. We let T play a role of time shift. The stochastic process $X = (X_t)_{t \in \mathbb{N}}$ is said to be an *ergodic* process, where $X_t(\omega) = X_0(T^t\omega)$ for all $t \in \mathbb{N}$ and $X_0 : \Omega \to \mathcal{X}$ is a random variable.

According to Birkhoff's ergodic theorem, the strong law of large numbers holds for a stationary ergodic process $X = (X_t)_{t \in \mathbb{N}}$:

$$\overline{X}_n := \frac{1}{n} \sum_{k=1}^n X_k \to \mu = \mathbb{E}X_1, \quad a.s..$$

Lemma 1.19. For the process $(X_t)_{t\in\mathbb{Z}}$, define the k-th order Markov approximation by

$$p^{k}(X_{1:n}) = p(X_{1:k}) \prod_{j=k+1}^{n} p(X_{j}|X_{j-1}, \dots, X_{j-k}).$$

If $(X_t)_{t\in\mathbb{Z}}$ is a stationary ergodic process,

$$\frac{1}{n}\log\frac{1}{p^k(X_{1:n})}\to H^k(X)\ a.s.,\quad and\quad \frac{1}{n}\log\frac{1}{p(X_{1:n}|X_{\leq 0})}\to H^\infty(X)\ a.s..$$

Proof. Since $(X_t)_{t\in\mathbb{Z}}$ is an ergodic process, so is the process $Y_t = f(X_{\leq t})$, where f is any measurable function. Then both $\log p(X_n|X_{n-1},\cdots,X_{n-k})$ and $\log p(X_n|X_{\leq n-1})$ are stationary ergodic processes on $n\in\mathbb{N}$. By Birkhoff's ergodic theorem, we have

$$\frac{1}{n}\log\frac{1}{p^k(X_{1:n})} = \frac{1}{n}\log\frac{1}{p(X_{1:k})} + \frac{1}{n}\sum_{j=k+1}^n\log\frac{1}{p(X_j|X_{j-1},\cdots,X_{j-k})} \to 0 + H^k(X), \ a.s.,$$

$$\frac{1}{n}\log\frac{1}{p(X_{1:n}|X_{\leq 0})} = \frac{1}{n}\sum_{j=1}^n\log\frac{1}{p(X_j|X_{\leq j-1})} \to H^\infty(X), \ a.s..$$

Then we complete the proof.

Lemma 1.20 (Sandwich). Let $(X_t)_{t\in\mathbb{Z}}$ be a stationary ergodic process. Then

$$\limsup_{n \to \infty} \frac{1}{n} \log \frac{p^k(X_{1:n})}{p(X_{1:n})} \le 0 \ a.s., \quad \limsup_{n \to \infty} \frac{1}{n} \log \frac{p(X_{1:n})}{p(X_{1:n}|X_{<0})} \le 0 \ a.s..$$

Proof. Let A be the support set of $p(x_{1:n})$. Then

$$\mathbb{E}\left[\frac{p^k(X_{1:n})}{p(X_{1:n})}\right] = \sum_{x_{1:n} \in A} \frac{p^k(x_{1:n})}{p(x_{1:n})} p(x_{1:n}) = \sum_{x_{1:n} \in A} p^k(x_{1:n}) \le \sum_{x_{1:n} \in \mathcal{X}^n} p^k(x_{1:n}) = 1.$$

By Markov's inequality, we have

$$\mathbb{P}\left(\frac{1}{n}\log\frac{p^{k}(X_{1:n})}{p(X_{1:n})} \ge \frac{2\log n}{n}\right) = \mathbb{P}\left(\frac{p^{k}(X_{1:n})}{p(X_{1:n})} \ge n^{2}\right) \le \frac{1}{n^{2}}$$

By Borel-Cantelli Lemma, since $\sum_{n=1}^{\infty} n^{-2} < \infty$, the events

$$\left\{ \frac{1}{n} \log \frac{p^k(X_{1:n})}{p(X_{1:n})} \ge \frac{2 \log n}{n}, \quad n \in \mathbb{N} \right\}$$

happens finitely many times with probability 1, which proves the first result. On the other hand, let $B(X_{\leq 0})$ be the support set of $p(x_{1:n}|X_{\leq 0})$. Then

$$\mathbb{E}\left[\frac{p(X_{1:n})}{p(X_{1:n}|X_{\leq 0})}\right] = \mathbb{E}\left[\mathbb{E}\left[\frac{p(X_{1:n})}{p(X_{1:n}|X_{\leq 0})}\middle|X_{\leq 0}\right]\right] = \mathbb{E}\left[\sum_{x_{1:n}\in B(X_{< 0})}p(X_{1:n})\right] \leq 1.$$

The second result then follows from a similar procedure.

Now we point out that, the Asymptotic Equilibrium property holds not only for i.i.d. sequences, but also for stationary ergodic processes.

Theorem 1.21 (Shannon-McMillan-Breiman). Let $(X_t)_{t\in\mathbb{Z}}$ be a stationary ergodic process. Then

$$\lim_{n\to\infty}\frac{1}{n}\log\frac{1}{p(X_{1:n})}=H^\infty(X).$$

Proof. By Lemmas 1.19 and 1.20, almost surely,

$$\limsup_{n \to \infty} \frac{1}{n} \log \frac{1}{p(X_{1:n})} \le \liminf_{n \to \infty} \frac{1}{n} \log \frac{1}{p^k(X_{1:n})} = H^k(X),$$
$$\liminf_{n \to \infty} \frac{1}{n} \log \frac{1}{p(X_{1:n})} \ge \limsup_{n \to \infty} \frac{1}{n} \log \frac{1}{p(X_{1:n}|X_{\le 0})} = H^\infty(X).$$

Therefore, for all $k \in \mathbb{N}$, we have

$$H^{\infty}(X) \leq \liminf_{n \to \infty} \frac{1}{n} \log \frac{1}{p(X_{1:n})} \leq \limsup_{n \to \infty} \frac{1}{n} \log \frac{1}{p(X_{1:n})} \leq H^k(X).$$

Since X is stationary, $H^k(X) \searrow H^{\infty}(X)$ as $k \to \infty$. Hence $\frac{1}{n} \log \frac{1}{p(X_{1:n})} \stackrel{a.s.}{\to} H^{\infty}(X)$.

Remark. An example for stationary ergodic process is the irreducible and aperiodic Markov chain.

2 Lossless Compression

In this section, we study the problem of lossless coding. To begin with, we have a source alphabet \mathcal{X} and a D-ary alphabet $\{0, 1, \dots, D-1\}$. Our key goal is to transform a string of \mathcal{X} to a string of \mathcal{D} .

• A source code is a mapping $C: \mathcal{X} \to \mathcal{D}^*$, where \mathcal{D} is a D-ary alphabet $\{0, 1, \dots, D-1\}$, and

$$\mathcal{D}^* = \bigcup_{n=1}^{\infty} \mathcal{D}^n.$$

The elements of $C(\mathcal{X})$ are called *codewords*. For every symbol $x \in \mathcal{X}$, we denote by $\ell(x)$ the length of the codeword C(x) associated with x.

- A source code $C: \mathcal{X} \to \mathcal{D}^*$ is said to be *nonsingular* if it is injective.
- The extension $C^*: \mathcal{X}^* \to \mathcal{D}^*$ of a source code C is the mapping from finite length strings of \mathcal{X} to finite length strings of \mathcal{D} :

$$C^*(x_1x_2\cdots x_n)=C(x_1)C(x_2)\cdots C(x_n).$$

- A source code $C: \mathcal{X} \to \mathcal{D}^*$ is said to be uniquely decodable if its extension C^* is injective.
- A source code $C: \mathcal{X} \to \mathcal{D}^*$ is said to be *instantaneous* (or *prefix-free*) if no codeword of C is prefixed by any other codeword.
- We have the inclusions: $nonsingular\ codes\ \supset\ uniquely\ decodable\ codes\ \supset\ instantaneous\ codes.$

In general, some nice properties of a code are wanted:

- it is uniquely decodable;
- it is prefix free, so one can decode a string instantaneously while reading;
- it is efficient, i.e. given the distribution p of letters \mathcal{X} in a string, we would like to minimize the average codeword length:

$$\mathbb{E}\left[\ell(X)\right] = \sum_{x \in \mathcal{X}} p(x)\ell(x).$$

2.1 Kraft-McMillan Inequality

Tree representation. A D-ary code $C: \mathcal{X} \to \mathcal{D}$ can be represented as a D-ary tree that consists of a root with branches, nodes and leaves. The root and every node has exactly D children, with each branch labeled by a letter in \mathcal{D} . Starting from the root, each vertex is uniquely associated with a string $d \in \mathcal{D}^*$, specified by the path from the root to itself. Some examples of binary trees are given below.

We can determine whether a code is instantaneous right away by looking at its tree.

Proposition 2.1. A code $C: \mathcal{X} \to \mathcal{D}^*$ is instantaneous if and only if all its codeword are leaves.

Proof. If $C: \mathcal{X} \to \mathcal{D}^*$ is an instantaneous code, then each of its codeword has no descendant in the tree, which is a leaf; conversely, if each codeword of C is a leaf in the tree, it has no ancestor which is also a codeword, and C is instantaneous.

Using the tree representation, we can show a property which characterizes the instantaneous codes.

Theorem 2.2 (Kraft's inequality). Let $\ell: \mathcal{X} \to \mathbb{N}$ be a length function. Then ℓ is the length function of an instantaneous code if and only if it satisfies Kraft's inequality:

$$\sum_{x \in \mathcal{X}} D^{-\ell(x)} \le 1. \tag{2.1}$$

Proof. We first prove necessity. Let ℓ is the length function of an instantaneous code C, and let L be the depth of the tree. Then every codeword C(x) at depth $\ell(x)$ prunes away $D^{L-\ell(x)}$ leaves from the complete tree of depth L. Since there are no more than D^L leaves in the complete tree, we have

$$\sum_{x \in \mathcal{X}} D^{L-\ell(x)} \leq D^L \quad \Rightarrow \quad \sum_{x \in \mathcal{X}} D^{-\ell(x)} \leq 1.$$

Now we prove the sufficiency. To this end, we prove the following argument: at every step $k \in \mathbb{N}$, after all codewords of length $\ell(x) < k$ have been assigned, there is enough room left at the depth k for the codewords of length $\ell(x) = k$. More explicitly, we want to show

$$D^{k} - \sum_{x \in \mathcal{X}: \ell(x) < k} D^{k-\ell(x)} \ge \left| C^{-1}(\mathcal{D}^{k}) \right|, \quad \forall 1 \le k \le L.$$

Note that

$$\left|C^{-1}(\mathcal{D}^k)\right| = \sum_{x \in \mathcal{X}: \ell(x) = k} D^{k-\ell(x)}.$$

Then our conclusion holds if

$$\sum_{x \in \mathcal{X}: \ell(x) \le k} D^{-\ell(x)} \le 1, \quad \forall k \in \mathbb{N}.$$

Clearly this is valid by Kraft's inequality (2.1).

The Kraft's inequality is also a necessary condition for a code to be uniquely decodable.

Theorem 2.3 (McMillan). Every uniquely decodable code $C: \mathcal{X} \to \mathcal{D}^*$ satisfies Kraft's inequality (2.1).

Proof. Let $C: \mathcal{X} \to \mathcal{D}^*$ be a uniquely decodable code, and let $L = \max_{x \in \mathcal{X}} \ell(x)$, where ℓ is the length function of C. Then for a source string $x_{1:n}$, the length of the extended codeword $C^*(x_{1:n})$ is given by

$$\ell^*(x_{1:n}) = \sum_{i=1}^n \ell(x_i) \le nL.$$

Let N_k be the number of source strings of length n with $\ell^*(x_{1:n}) = k$. Since C is uniquely decodable, the source strings with codewords of length k are no more than D-ary strings of length k, i.e. $N_k \leq D^k$. Then

$$\sum_{x_{1:n} \in \mathcal{X}^n} D^{-\ell^*(x_{1:n})} = \sum_{k=1}^{nL} N_k D^{-k} \le \sum_{k=1}^{nL} D^k D^{-k} \le nL.$$

On the other hand,

$$\sum_{x_{1:n} \in \mathcal{X}^n} D^{-\ell^*(x_{1:n})} = \sum_{x_1 \in \mathcal{X}} \sum_{x_2 \in \mathcal{X}} \cdots \sum_{x_n \in \mathcal{X}} D^{-\ell(x_1)} D^{-\ell(x_2)} \cdots D^{-\ell(x_n)}$$

$$= \sum_{x_1 \in \mathcal{X}} D^{-\ell(x_1)} \sum_{x_2 \in \mathcal{X}} D^{-\ell(x_2)} \cdots \sum_{x_n \in \mathcal{X}} D^{-\ell(x_n)} = \left(\sum_{x \in \mathcal{X}} D^{-\ell(x)}\right)^n.$$

Therefore, we have

$$\sum_{x \in \mathcal{X}} D^{-\ell(x)} \le \inf_{n \in \mathbb{N}} \sqrt[n]{nL} = 1.$$

Then we complete the proof.

Remark. To summarize, the Kraft's inequality (2.1) is a

- sufficient condition for the existence of an instantaneous code;
- necessary condition for a code to be uniquelt decodable.

2.2 Fundamental Limits of Compression

In this section, we study the limits of lossless compression. Given a source distribution p on \mathcal{X} , we want to minimize the average codeword length of our code. By Kraft-McMillan inequality, the search for optimal code can be expressed as the following optimization problem:

$$\min_{l:\mathcal{X}\to\mathbb{N}} \sum_{x\in\mathcal{X}} p(x)\ell(x) \quad subject \ to \quad \sum_{x\in\mathcal{X}} D^{-\ell(x)} \leq 1.$$

Following is a fundamental result of lossless compression.

Theorem 2.4. For any source distribution $X \sim p$ on \mathcal{X} , the expected length $\mathbb{E}[\ell(X)]$ of an optimal uniquely decodable D-ary code satisfies

$$\frac{H(X)}{\log D} \le \mathbb{E}\left[\ell(X)\right] < \frac{H(X)}{\log D} + 1. \tag{2.2}$$

Proof. UPPER BOUND. By Theorem 2.2, it suffices to construct a length function $\ell: \mathcal{X} \to \mathbb{N}$ that satisfies both the Kraft's inequality and the second (strict) inequality given in (2.2). Consider Shannon's length function:

$$\ell(x) = \left\lceil \log_D \frac{1}{p(x)} \right\rceil, \quad x \in \mathcal{X}, \tag{2.3}$$

Since

$$\sum_{x \in \mathcal{X}} D^{-\ell(x)} \le \sum_{x \in \mathcal{X}} D^{\log_D p(x)} = \sum_{x \in \mathcal{X}} p(x) = 1,$$

there exists an instantaneous code $C: \mathcal{X} \to \mathcal{D}^*$ whose length function is ℓ . On the other hand,

$$\mathbb{E}[\ell(X)] = \sum_{x \in \mathcal{X}} p(x)\ell(x) < \sum_{x \in \mathcal{X}} p(x) \left(\log_D \frac{1}{p(x)} + 1 \right) = \frac{H(X)}{\log D} + 1.$$

Hence the upper bound holds.

LOWER BOUND. We consider the following relaxed optimization problem:

$$\min_{l:\mathcal{X} \to \mathbb{R}} \sum_{x \in \mathcal{X}} p(x) \ell(x) \quad subject \ to \quad \sum_{x \in \mathcal{X}} D^{-\ell(x)} \leq 1.$$

Note that the range of ℓ is \mathbb{R}_+ . The Lagrange function is

$$L(l,\lambda) = \sum_{x \in \mathcal{X}} p(x)\ell(x) + \lambda \left(\sum_{x \in \mathcal{X}} D^{-\ell(x)} - 1\right),$$

with KKT conditions

$$\begin{cases} \frac{\partial L}{\partial l(x)} = p(x) - \lambda D^{-l(x)} \log D = 0, \\ \lambda \ge 0, \ \sum_{x \in \mathcal{X}} D^{-\ell(x)} - 1 \le 0, \\ \lambda \left(\sum_{x \in \mathcal{X}} D^{-\ell(x)} - 1 \right) = 0. \end{cases}$$

The optimal solution is given by

$$\lambda = \frac{1}{\log D}, \quad l(x) = \log_D \frac{\lambda \log D}{p(x)} = \log_D \frac{1}{p(x)}, \ x \in \mathcal{X},$$

and the optimal value is

$$\sum_{x \in \mathcal{X}} p(x)\ell(x) = \sum_{x \in \mathcal{X}} p(x)\log_D \frac{1}{p(x)} = \frac{H(X)}{\log D}.$$
 (2.4)

Since our problem is relaxed, the primal problem (2.3) has optimal value no less than (2.4). Hence the lower bound holds for all uniquely decodable codes.

Remark. In fact, we proved the existence of an *instantaneous* code with

$$\mathbb{E}\left[\ell(X)\right] < \frac{H(X)}{\log D} + 1.$$

Coding over blocks. Using integer codeword lengths may lead to waste of memory. To overcome this effect, we consider coding over blocks of input symbols. If the input data X_1, X_2, \cdots is an i.i.d. sequence of symbols, we partition it into blocks of size n and create a new source $\widetilde{X}_1, \widetilde{X}_2, \cdots$, where

$$\widetilde{X}_1 = (X_1, \dots, X_n), \ \widetilde{X}_2 = (X_{n+1}, \dots, X_{2n}), \ \dots, \ \widetilde{X}_k = (X_{(k-1)n+1}, \dots, X_{kn}), \ \dots$$

Consequently, every vector \widetilde{X}_k can be viewed as a symbol from the alphabet $\widetilde{\mathcal{X}} = \mathcal{X}^n$, and we can find an optimal code $\widetilde{C} : \widetilde{X} \to \mathcal{D}$, whose length function ℓ satisfies

$$\frac{H(\widetilde{X})}{\log D} \le \mathbb{E}\left[\ell(\widetilde{X})\right] \le \frac{H(\widetilde{X})}{\log D} + 1.$$

Note that $H(\widetilde{X}) = nH(X)$, the average codeword length per symbol (in X) satisfies

$$\frac{H(X)}{\log D} \le \frac{1}{n} \mathbb{E}\left[\ell(\widetilde{X})\right] < \frac{H(X)}{\log D} + \frac{1}{n}.$$

As the block size n increases, the integer effect becomes negligible. However, we also introduce delay in our system and increase the complexity of our code.

2.3 Shannon-Fano-Elias Coding

In this section, we introduce a specific coding approach that is near-optimal.

Midpoints of CDF. Without loss of generality, we assume that the source alphabet is $\mathcal{X} = \{1, 2, \dots, m\}$, and $p(1) \geq p(2) \geq \dots \geq p(m)$. The cumulative distribution function of p is

$$F(r) = \sum_{j=1}^{m} \mathbb{1}_{\{j \le r\}} p(j), \quad r \in \mathbb{R}.$$

We define $\overline{F}(x)$ to be the midpoint of the interval [F(x-1), F(x)]:

$$\overline{F}(x) = \sum_{j=1}^{x-1} p(j) + \frac{p(x)}{2}, \quad x = 1, \dots, m.$$

Then $\overline{F}(x)$ is a real number in (0,1) that uniquely identifies $x \in \mathcal{X}$.

D-ary expansion and truncation. The *D*-ary expansion of a real number $\overline{F}(x) \in (0,1)$ is given by

$$\overline{F}(x) = (0.z_1 z_2 \cdots)_D = \sum_{k=1}^{\infty} z_k D^{-k} = z_1 D^{-1} + z_2 D^{-2} + \cdots, \quad z_1, z_2, \dots \in \{0, 1, \dots, D-1\}.$$

Given a positive integer $\ell \in \mathbb{N}$, one have the ℓ -truncation of the D-ary expansion of $\overline{F}(x)$:

$$C(x) = (0.z_1 z_2 \cdots z_\ell)_D = \sum_{k=1}^{\ell} z_k D^{-k}$$

To ensure that the codeword of x is unique, we let $\overline{F}(x) - C(x) < \frac{p(x)}{2}$, so that

$$C(x-1) < \overline{F}(x-1) < F(x-1) < C(x).$$

To this end, we set

$$\ell = \left\lceil \log_D \frac{1}{p(x)} \right\rceil + 1,$$

then

$$\overline{F}(x) - C(x) < D^{-\ell} \le D^{-\log_D \frac{1}{p(x)} - 1} \le \frac{p(x)}{D} \le \frac{p(x)}{2}.$$

Construction of the Shannon-Fano-Elias code. For each $x \in \mathcal{X}$:

- Let z be the D-ary expansion of x;
- Choose the length of the codeword of x:

$$\ell(x) = \left\lceil \log_D \frac{1}{p(x)} \right\rceil + 1;$$

• Choose the codeword of x to be the first most significant D-ary digits:

$$z = 0.\underbrace{z_1 z_2 \cdots z_{\ell(x)}}_{C(x)} z_{\ell(x)+1} \cdots.$$

An example of binary Shannon code. Here we let $\mathcal{X} = \{1, 2, 3, 4, 5\}$, and D = 2.

\overline{x}	p(x)	F(x)	$\overline{F}(x)$	$\overline{F}(x)$ in binary	$\ell(x) = \left\lceil \log_2 \frac{1}{p(x)} \right\rceil + 1$	codeword
1	0.25	0.25	0.125	0.001	3	001
2	0.25	0.5	0.375	0.011	3	011
3	0.2	0.7	0.6	0.10011	4	1001
4	0.15	0.85	0.775	0.1100011	4	1100
5	0.15	1.0	0.925	0.1110110	4	1110

Shannon code is instantaneous. If the codeword $C(x) = (0.z_1 \cdots z_{\ell(x)})_D$ is a prefix of another codeword, this codeword lies in the half-open interval

$$\left[(0.z_1 \cdots z_{\ell(x)})_D, (0.z_1 \cdots z_{\ell(x)})_D + \frac{1}{D^{l(x)}} \right).$$

However, a contradiction rises because

$$C(x+1) - C(x) > F(x) - \overline{F}(x) = \frac{p(x)}{2} \ge D^{-l(x)}.$$

Average codeword length. The average codeword length is given by

$$\mathbb{E}[\ell(X)] = \sum_{x \in \mathcal{X}} p(x) \left(\left\lceil \log_D \frac{1}{p(x)} \right\rceil + 1 \right),$$

which satisfies

$$\frac{H(X)}{\log D} + 1 \le \mathbb{E}\left[\ell(X)\right] < \frac{H(X)}{\log D} + 2.$$

It is revealed that the Shannon code is sub-optimal.

2.4 Huffman Coding

The search for binary optimal code was discovered by David Huffman (1952).

Construction of Huffman tree. The construction procedure is greedy.

- Take the two least probable symbols, which will be assigned the longest codewords having equal lengths and differing only at the last digit;
- Merge these two symbols into a new symbol with combined probability mass and repeat.

Codeword	x	p(x)	
0	1	0.40	0
110	2	0.15	
100	3	0.15	0 0.6 1
101	4	0.10	
1110	5	0.10	0 0.35
11110	6	0.05	
111110	7	0.04	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
111111	8	0.01	1 0.00

Optimality of Huffman code. Let $\mathcal{X} = \{1, 2, \dots, m\}$. Without loss of generality, assume probabilities are in descending order $p(1) \geq p(2) \geq \cdots \geq p(m)$. We prove the optimality of Huffman code through three step.

Lemma 2.5. In an optimal code, shorter codewords are assigned larger probabilities, i.e. p(i) > p(j) implies $\ell(i) \leq \ell(j)$.

Proof. Argue by contradiction. If there exists $i, j \in \mathcal{X}$ with $\ell(i) \leq \ell(j)$ and p(i) > p(j), then we can exchange these codewords and reduce the expected length. Hence the code is not optimal.

Lemma 2.6. There exists an optimal code for which the codewords assigned to the smallest probabilities are siblings, i.e., they have the same length and differ only in the last symbol.

Proof. Consider any optimal code. By Lemma 2.5, the codeword C(m) has the longest length. Assume for the sake of contradiction, its sibling is not a codeword. Then the expected length can be decreased by moving C(m) to its parent. Thus, the code is not optimal and a contradiction is reached.

Now, we know the sibling of C(m) is a codeword. If it is C(m-1), we are done. If it is some C(i) for $i \neq m-1$ and the code is optimal, by Lemma 2.5, we have p(i) = p(m-1). Therefore, C(i) and C(m-1) can be exchanged without changing expected length.

Theorem 2.7 (Optimality of Huffman coding). Huffman's coding algorithm produces an optimal code tree.

Proof. Let ℓ be the length function of the optimal code. By Lemmas 2.5 and 2.6, C(m) and C(m-1) are siblings and the longest codewords. Then we merge the two symbols and let $\tilde{p}_1 \geq \cdots \geq \tilde{p}_{m-1}$ denote the reordered probabilities after merging p(m) and p(m-1), and denote by $\tilde{C}_1, \cdots, \tilde{C}_{m-1}$ the corresponding codewords. The reduced length function $\tilde{\ell}$ satisfies

$$\mathbb{E}\left[\ell(X)\right] = \mathbb{E}\left[\widetilde{\ell}(\widetilde{X})\right] + \mathbb{P}\left(\ell(X) \neq \widetilde{\ell}(\widetilde{X})\right) = \mathbb{E}\left[\widetilde{\ell}(\widetilde{X})\right] + p(m-1) + p(m).$$

Hence ℓ is the length function of an optimal code if and only if $\tilde{\ell}$ is the length function of an optimal code for the reduced alphabet. The problem then is reduced to finding an optimal code tree for $\tilde{p}_1 \geq \cdots \geq \tilde{p}_{m-1}$. Repeat the merging procedure above for m times, and the result follows.