

Network Security Architecture – Part 2

Dr. Sandra Scott-Hayward

CSC3064 Lecture 05

School of Electronics, Electrical Engineering and Computer Science

Session Overview

□ Software Defined Network (SDN) Architecture –
 Example of a Security Analysis

References:

- S. Scott-Hayward, S. Natarajan and S. Sezer, "A Survey of Security in Software Defined Networks," *IEEE Communications Surveys and Tutorials*, Vol. 18, No.1, pp.623-654, Jan. 2016
- S. Scott-Hayward, "Design and deployment of secure, robust, and resilient SDN Controllers", IEEE Conference on Network Softwarization (NetSoft), April 2015

Traditional Network

Control and Data Planes combined in Network Elements:

Software Defined Network

Separation of Control and Data Planes:

SDN Architecture

SDN Characteristics

Secure Communications Network

Confidentiality
Integrity
Availability
Controlled Access
Accountability

=> Secure data, network assets and communication transactions

SDN Potential Attacks and Vulnerabilities

Categorization of Security Issues

		SDN Layeı	Affected or Ta	ected or Targeted		
Security Issue/Attack	Application Layer	App-Ctl Interface	Control Layer	Ctl-Data Interface	Data Layer	
 Unauthorized Access e.g. Unauthorized Controller Access/Controller Hijacking Unauthorized/Unauthenticated Application 	X	X	X X	X	Х	
 Data Leakage e.g. Flow Rule Discovery (Side Channel Attack on Input Buffer) Credential Management (Keys, Certificates for each Logical Network) Forwarding Policy Discovery (Packet Processing Timing Analysis) 			X	X	X X X	
Data Modification e.g. • Flow Rule Modification to Modify Packets (Man-in-the-Middle attack)			X	X	Х	
Malicious/Compromised Applications e.g. • Fraudulent Rule Insertion	X	X	X			
 Denial of Service e.g. Controller-Switch Communication Flood Switch Flow Table Flooding 			Х	X	X X	
 Configuration Issues e.g. Lack of TLS (or other Authentication Technique) Adoption Policy Enforcement Lack of Secure Provisioning 	X X X	X X X	X X X	X X	x x	
System Level SDN Security e.g. Lack of Visibility of Network State			Х	Х	Х	

Security Challenges with SDN

Increased potential for Denial of Service:

- Switch Buffer
- •Flow Table
- •State Table
- Data Flows/Processes

Policy Conflict Resolution

Problem:

Verify that the current state of flow rules inserted in a switch's flow table(s) remain consistent with the current network security policy.

Evaluate the table against the non-bypass property: every packet that goes from source IP [5,6] to destination IP 6 must be dropped - (1) Coverage Violation, (2) Modify Violation

Flow	Condition			Action Set		
Table	Field 1 Src IP	Field 2 Src Port	Field 3 Dst IP	Field 4 Dst Port		
1	5	[0,19]	6	[0,19]	{ (drop) }	
1	5	[0,19]	[7,8]	[0,19]	{ (set <i>field</i> ₁ 10), (goto 2) }	
1	6	[0,19]	[6,8]	[0,19]	{ (forward) }	
2	[10,12]	[0,19]	[0,12]	[0,19]	{ (set field ₃ 6), (forward) }	

SDN Control Plane Attacks – Service Chain Attack

Control Message Drop

- (1) Packet-In to Controller; Pkt-In passed to App 1, App 2, App 3 as per service chain;
- (2) App 3 (malicious) drops Pkt-In w/out passing to FWD app;
- (3) FWD app does not reply to Pkt-In;
- (4) No flow rule installed in OF switch;
- (5) Host A cannot communicate with Host C

Infinite Loop Attack

App 3 programmed to fall into an infinite loop leading the controller instance to freeze.

SDN Control Plane Attacks – Northbound API Abuse

Application Eviction

- (1) App 2 (malicious) calls function to terminate App 3 via Northbound API;
- (2) Controller accepts the App 3 termination request;
- (3) Innocent App 3 terminated;

SDN Control Plane Attacks – Resource Exhaustion

Memory Leakage Attack

- (1) App continuously allocates memory;
- (2) System resource is increasingly consumed;
- (3) Loss of control plane functionality and connection to data plane devices.

Create Thread Attack

- (1) SDN App continuously generates threads'
- (2) Computing power is increasingly absorbed;
- (3) Loss of control plane functionality and connection to data plane devices.

Mitigating SDN Architecture threats using standard technologies

Example OpenFlow (SDN communication protocol) Threat Analysis

Threat Type	Data Flows	Data Stores	Processes	Interactors
Spoofing				-
Tampering	X ¹	X ²		
Repudiation			X ⁴	X ⁴
Information Disclosure	X ¹	X ^{2,3}		
DoS	-	-	-	
Elevation of Privilege			X ⁵	

¹mitigated with IPSec, ²mitigated with ACLs, ³mitigated by not storing secrets, ⁴auditing trails in logfile, ⁵run with least privileges

SDN Controller - Security Attributes

SDN Controller - Security Attributes

CENTRE

Features of a secure, robust, and resilient SDN Controller

Secure Controller Design

Control Process (Application) Isolation

Implementation of Policy Conflict Resolution

Multiple Controller Instances – Resilience

Multiple Application Instances – Resilience

Secure Storage

Secure Controller Interfaces

Secure Control Layer Communication

GUI/REST API Security

Controller Security Services

IDS/IPS Integration

Authentication and Authorization

Resource Monitoring

Logging/Security Audit Service

Recommended Best Practices

Summary

- Example of network security analysis applied to the Software Defined Network architecture
 - Categorization of security Issues
 - Mitigation of threats using standard security technologies
 - SDN Controller security features
 - Recommended SDN security best practices

Questions?

Next Session: Security of Internet Protocols – Part 1

Friday, 25 January 2019

