Геометрическая алгебра

Рис. 1.1: Вехи арифметики.

1.1 Диэдральные группы

Аннотация.

Цель: знакомство с языком алгебры.

1.1.1 План

- 1. Группа симметрий правильного треугольника, ее таблица Кэли.
- 2. Группа симметрий ромба (четверная группа Клейна), ее таблица Кэли.
- 3. Группа симметрий правильного многоугольника (снежинки).
- 4. Почему можно обойтись только одной симметрией для описания всех движений?
- 5. Понятие группы (G, \circ) и подгруппы, смежные классы, порядок элемента.
- 6. Несколько слов о базисе группы, порождающие эементы, эквивалентные базисы.
- 7. Базисы S_3 и V_4 .

1.1.2 Группа симметрий правильного треугольника

Представим себе, что есть дверь и в ней замок треугольной формы (треугольник правильный). Чтобы открыть дверь, нужно вставить в замок ключ (формы треугольной призмы) в правильном положении. Причем, вставить его можно как с одной стороны двери, так и с другой. Каковы шансы открыть дверь с первого раза?

Чтобы это описать математическим языком, рассмотрим все возможные соединения ключа и замка, которые сводятся к следующим действиям:

- а) вставить ключ так, что его бородка вертикальна,
- b) вынуть и повернуть ключ до совмещения следующих углов, снова вставить, и так далее,
- с) те же действия с другой стороны двери.

Таким образом, на треугольнике вводятся следующие элементарные операции, переводящие треугольник в себя (со сменой номеров вершин):

• id — тождественное преобразование (ничего не меняем),

- R_{φ} поворот на угол φ , где $\varphi \in \{120^{o}, 240^{o}\},$
- S_1 симметрия относительно биссектрисы, проходящей через 1-ю вершину треугольника (верхнюю).

Итого имеем 4 преобразования. Вопрос: могут ли быть еще какие-то преобразования и сколько их?

45 минут |

1.2 Движения окружности

Аннотация.

Цель: разобраться с группой O(2) и ее подгруппами.

Определение: преобразование пространства (прямой/плоскости), сохраняющее размеры (попарные расстояния), называется **движением** (изометрией).

План:

- 1. Классификация движений окружности: лемма о гвоздях.
- 2. Почему можно обойтись только одной симметрией? Все движения есть композиция вращений и одной выделенной симметрии.
- 3. Эквивалетность базисов группы движений: все вращения + одна симметрия, все симметрии.
- 4. Конечные подгруппы, соответствующие диэдральным и циклическим группам.
- 5. Бесконечные подгруппы: иррационалньость числа π и группа ($\mathbb{Z},+$) (вращение на несоизмеримый с π угол).
- 6. Арифметика остатков: конечные циклические группы и факторизация $\mathbb{Z}/n\mathbb{Z}$.

1.3 Движения и гомотетии вещественной прямой

Аннотация.

Цель: найти кольцо $(\mathbb{R},+, imes).$

План:

- 1. Классификация движений прямой: аналог теоремы Шаля.
- 2. Почему можено обойтись только одной симметрией? Все движения есть композиция смещений и одной выделенной симметрии (умножение на -1).
- 3. Эквивалетность базисов: все сдвиги + одна симметрия, все симметрии.
- 4. Все сдвиги образуют группу, изоморфную ($\mathbb{R}, +$).
- 5. Действие группы \mathbb{Z} на прямой. Понятие орбиты.
- 6. **Определение**: гомотетией с заданным центром и коэффициентом называется преобразование пространства (прямой/плоскости), при котором все векторы с началом в этом центре удлиняются на заданный коэффициент. Подобие на прямой это гомотетия + сдвиг.
- 7. Подобия на прямой можно описать с помощью кольца $(\mathbb{R}, +, \times)$.

1.4 Движения и подобия на плоскости

Аннотация.

Цель: найти кольцо $(\mathbb{C},+,\times)$.

План:

4

- 1. Классификация движений плоскости: теорема Шаля.
- 2. Почему можно обойтись только одной симметрией? Все движения есть композиция параллельных переносов, поворотов и одного выделенного отражения (умножение на -1 вдоль одной оси).
- 3. Эквивалетность базисов: все параллельные переносы + все повороты + одна симметрия, все отражения.
- 4. Все параллельные переносы образуют группу, изоморфную $(\mathbb{C},+)$.
- 5. Формула Эйлера и число e. Группа корней из 1. Связь умножения комплексных чисел со сложением в группе вычетов.
- 6. Мультиплика
ивная группа |z|=1, ее действие на комплексной плоскости. Орбиты.
- 7. Подобия на плоскости это поворотные гомотетии + параллельные переносы.
- 8. Подобия на плоскости описываются арифметикой кольца $(\mathbb{C}, +, \times)$.

1.5 Делимость в евклидовых кольцах

Аннотация.

Цель: общий вывод основной теоремы арифметики и ее следствий.

План:

- 1. Понятие кольца.
- 2. Понятие нормы и обратимых элементов кольца.
- 3. Алгоритм Евклида деления с остатком.
- 4. Представление НОД двух чисел в виде линейной комбинации этих чисел.
- 5. Основная теорема арифметики. Факториальное кольцо.
- 6. Приложение к кольцам: многочленов, гауссовых чисел.
- 7. Примеры нефакториальных колец.
- 8. Несколько теорем теории делимости: МТФ, РТФ,...