Embedded Systems

1. Introduction

Lothar Thiele

Organization

- WWW: http://www.tik.ee.ethz.ch/tik/education/lectures/ES/
- Lecture: Lothar Thiele, thiele@ethz.ch
- Coordination: Olga Saukh, olga.saukh@tik.ee.ethz.ch
- References:
 - P. Marwedel: Embedded System Design (paperback),
 Springer Verlag, December 2011, ISBN: 978-94-007-0256-1.
 - G.C. Buttazzo: Hard Real-Time Computing Systems. Springer Verlag, 2011.
 - W. Wolf: Computers as Components Principles of Embedded System Design. Morgan Kaufman Publishers, 2012.
 - J. Teich: Digitale Hardware/Software Systeme, Springer Verlag, 2007.
- ▶ The slides contain material of J. Rabaey, K. Keuzer, Wayne Wolf, Peter Marwedel, Philip Koopman and from the above books of J. Teich, G.C. Buttazzo, W. Wolf and P. Marwedel.

Communicating Embedded Systems

- Example: BTnodes
 - complete platform including OS
 - especially suited for pervasive computing applications

BTnode Platform

Institute of Technology

- generic platform for wireless distributed embedded computing
- complete platform including OS
- especially suited for pervasive computing applications (IoT)

Where are sensor nodes used?

Logistics

Maintenance

Factory Automation

Natural Hazards

Building Automation

Health Care

PermaSense Project

Jan Beutel – ETH Zurich

Development in ES Exercise

Contents of Course

Contents of Course

Embedded Systems

1

Embedded systems (ES) = information processing systems embedded into a larger product

Main reason for buying often is **not** information processing

Embedded Systems

Examples of Embedded Systems

Car as an integrated control-, communication and information system.

Examples of Embedded Systems

Consumer electronics, for example MP3 Audio, digital camera, home electronics,

Examples of Embedded Systems

Production systems

Smart World

Sometimes denoted as: cyber-physical system (CPS)

Use feedback to influence the dynamics of the physical world by taking smart decisions in the cyber world

© http://www.satiztpm.it/

Telemedicine & helthcare

Internet of Things (IOT) infrastructure will be omnipresent.

Predictability & Dependability

CPS = cyber-physical system

"It is essential to **predict** how a CPS is going to behave under any circumstances [...] **before** it is deployed." Maj14

"CPS must **operate dependably**, safely, securely, efficiently and in real-time." Raj10

Maj14 R. Majumdar & B. Brandenburg (2014). Foundations of Cyber-Physical Systems.

Raj10 R. Rajkumar et al. (2010). Cyber-Physical Systems: The Next Computing Revolution.

Characteristics of Embedded Systems (1)

- Must be dependable:
 - Reliability: R(t) = probability of system working correctly provided that it was working at t=0
 - Maintainability: M(d) = probability of system working correctly d time units after error occurred.
 - Availability: probability of system working at time t
 - Safety: no harm to be caused
 - Security: confidential and authentic communication

Making the system dependable must not be an after-thought, it must be considered from the very beginning.

Characteristics of Embedded Systems (2)

- Must be efficient:
 - Energy efficient
 - Code-size and data memory efficient
 - Run-time efficient
 - Weight efficient
 - Cost efficient
- ▶ **Dedicated** towards a certain **application**: Knowledge about behavior at design time can be used to minimize resources and to maximize robustness.

Characteristics of Embedded Systems (3)

- Many ES must meet real-time constraints:
 - A real-time system must react to stimuli from the controlled object (or the operator) within the time interval dictated by the environment.
 - For real-time systems, right answers arriving too late are wrong.

"A real-time constraint is called hard, if not meeting that constraint could result in a catastrophe" [Kopetz, 1997].

- All other time-constraints are called soft.
- A guaranteed system response has to be explained without statistical arguments.

Characteristics of Embedded Systems (4)

Typically, ES are reactive systems:

"A reactive system is one which is in continual interaction with is environment and executes at a pace determined by that environment" [Bergé, 1995]

- Frequently connected to physical environment through sensors and actuators (CPS).
- ▶ In these cases, the analog and digital system aspects need to be considered: hybrid systems.

Comparison

Embedded Systems

- Few applications that are known at design-time.
- Not programmable by end user.
- Fixed run-time requirements (additional computing power not useful).
- Criteria:
 - cost
 - power consumption
 - predictability
 - . . .

General Purpose Computing

- Broad class of applications.
- Programmable by end user.
- Faster is better.

- Criteria:
 - cost
 - power consumption
 - average speed

Trends ...

- Since long time, embedded systems overtook the market of PCs and Laptops.
- Ubiquitous and pervasive computing, Internet of Things:
 - Information anytime, anywhere; building ambient intelligence into our environment; internet of things:
 - Wearable computers
 - "Smart Labels" on consumer products
 - Intelligent buildings
 - Environmental Monitoring
 - Traffic control and communicating automobiles
 - Embedded systems provide the basic technology.

Trends ...

- Embedded systems are communicating, very often wireless.
- Higher degree of integration on a single chip:
 - Memory + processor + I/O-units + (wireless) communication.
 - Network on chip for communication between units.
 - Multiprocessor Systems on a Chip (MPSoC).
 - Microsystems that contain energy harvesting, energy storage, sensing, processing and communication ("zero power systems").
 - Software increasing (amount and complexity).
- Low power and energy constraints (portable or unattended devices) are increasingly important, as well as temperature constraints (overheating). Increased interest in energy harvesting to achieve long term autonomous operation.

Multiprocessor systems-on-a-chip (MPSoCs)

Samsung Galaxy Note II

- Eynos 4412 System on a Chip (SoC)
- ARM Cortex-A9 processing core
- 32 nanometer: transistor gate width
- Four processing cores

Example ST2012/STHORM

Swiss Federal

Institute of Technology

Zero Power Systems and Sensors

Zero Power Systems and Sensors

IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 48, NO. 1, JANUARY 2013

Zero Power Systems and Sensors

