Photometrische Bestimmung von Vitamin C in Apfelsaft *

*normalerweise wird Vitamin C mit der Volumetrie zusammen mit dem Reagenz Dichlorindophenol (DCPIP, Tillmans Reagenz) bestimmt. Rein theoretisch müsste man die Bestimmung aber auch photometrisch durchführen können.

Für die Kalibrierung wurden folgende Werte gefunden:

Massenkonzentration an Vitamin C	Extinktion
500 mg/L	0,233
1000 mg/L	0,464
1500 mg/L	0,700
2000 mg/L	0,930

2.) Klarer Apfelsaft E= 0,557

M (VitaminC) =176 g/mol

Aufgaben:

- 1.) Bestimmen Sie die Massenkonzentration zeichnerisch für den klaren und naturtrüben Apfelsaft.
- 2.) Berechnen Sie die 4 Extinktionskoeffizienten.
- 3.) Berechnen Sie die Konzentration der Proben.
- 4.) Vitamin C hat einen ADI von 150 mg/kg. Kann man den Wert durch Trinken von Apfelsaft überschreiten?
- 5.) Man sollte täglich 150 mg Vitamin C zu sich nehmen, wie viel A-Saft muss man trinken?

Nur so als Information: Vitamin C in 100 g Lebensmittel:

Ananas: 1000 mg
Hagebutten: 1250 mg
Paprika: 120 mg
Brennnessel: 175 mg
Broccoli: 115 mg
Grünkohl: 105 mg
Blumenkohl: 30 mg

Johannisbeere, schwarz: 180 mg

Kiwi: 60 mg Zitrone: 53 mg Apfelsine: 50 mg Rinderleber: 31 mg Schweineleber: 23 mg

Analyse eines binären Gemisches

Quantitative photometrische bestimmung von Tartrazin (E 102) und Cochenillerot A (E124) im binären Farbstoffgemisch "Apfelsinchenbrause"

Apfelsinchenbrause ist eine Limonade, die die Farbstoffe Tartrazin und Cochenillerot A enthält.

Absorptionsspektren von Tartrazin und Cochillerot in Wasser

Extinktionswerte zur Anfertigung von Kalibriergraden bei λ = 516 nm und 423 nm :

Cochenillerot – Lösungen	E 516 nm	E _{423 nm}
β= 2 mg/L	0,085	0,021
β= 5 mg/L	0,213	0,055
β= 10 mg/L	0,425	0,109

Tartrazin– Lösungen	E 516 nm	E _{423 nm}
β= 2 mg/L	0,000	0,113
β= 5 mg/L	0,000	0,280
β= 10 mg/L	0,001	0,561

Extinktionswerte für die Probe Apfelsinchenbrause (Verdünnung 1:2)

$$E_{516 \text{ nm}} = 0,159$$
 $E_{423 \text{ nm}} = 0,433$

ADI Werte in mg pro Kilogramm und Tag:

Tartrazin: 7,5 mg/kg· d Cochenillerot: 0,15 mg/kg· d

Aufgaben:

- 1.) Ermitteln Sie die Farbstoffklasse der beiden Farbstoffe mit Hilfe eines Buches.
- 2.) Geben Sie λ_{max} für jeden der Farbstoffe an.
- 3.) Zeichen Sie für beide Stoffe Kalibriergraden (in jedem Diagramm beide Wellenlängen).
- 4.) Was muss man bei der Bestimmung von Tartrazin beachten?
- 5.) Bestimmen Sie die Massenkonzentration für beide Farbstoffe in der Brause (Verdünnung beachten!).
- 6.) Bewerten Sie die toxikologischen Risiken beim Genuss der Brause. Durchschnittsgewicht 70 kg (Erwachsene) 35 kg (Kind)

Lösung zu 5 : Cochenille: 3,75 mg/L bzw. 7,5 mg/L Tartrazin: 4 bzw. 14 mg/L

Lösung zu 6: Cochenille 0,75L/0,375L Tartrazin : 37,5L/ 18,8L