Chapter 6 멀티미디어 (Multimedia)

2020 1학기

- 컴퓨터개론 -

금오공과대학교 컴퓨터소프트웨어공학과

Contents

1. 멀티미디어

- A. 특성
- B. 용량

2. 사운드 개념

- A. 사운드 개념
- B. 사운드 개념 코딩
- c. 사운드 개념 저장

3. Image 개념

- A. Image 개념
- B. Image 개념 색
- c. Image 개념 코딩

1. 멀티미디어 (Multimedia)

1. 멀티미디어

- A. 음성·문자·그림·동영상 등이 혼합된 다양한 매체 [네이버지식백과]
- B. 다중(Multi) + 미디어(매체) 다양한 콘텐츠 형태를 조합하여 정보를 전달하기 위한 방법

- ☞ 우리 생활에 있어서필수 불가결한 중요한 역할
- ☞ 멀티미디어가 없는 삶은 생각할 수 없음
- ☞ 컴퓨터가 처리해야 하는 대상

1.1 멀티미디어 특성

2. 멀티미디어의 특성

- A. 텍스트, 이미지, 그래픽, 비디오, 애니메이션, 사운드 등과 같은 다양한 미디어를 동시에 수용할 수 있어야 함
- B. 상호 작용성, 비선형성, 정보통합성의 특성으로 모든 정보를 디지털화하여 저장과 편집이 쉽도록 하여야 함

3. 디지털(Digital)

- A. 0과 1의 두 가지 상태로만 데이터를 생성, 저장, 처리하는 기술
- B. 이미지, 그래픽, 비디오, 애니메이션, 사운드 등의 다양한 데이터를 아날로그가 아닌 디지털로 변환하여 처리
- c. 데이터를 송수신 할 때 손실을 없앨 수 있으며 송수신할 때 발생하는 오류를 정정할 수 있는 장점이 있음
- D. 대용량의 데이터를 보관하기가 편리하므로 저장과 백업이 쉽고 데이터를 손상 없이 수정할 수 있음
- E. 불법적인 활용에 있어서 차단이 용이하지 않음

1.2 멀티미디어 처리 - 기술적인 문제

1. 자료 분량의 방대성

- A. 텍스트(Text): 50개 행, 각 행마다 80글자인 경우 50 x 80 x 1 byte/글자 = 4000Bytes, 약 4KBytes
- B. 디지털 음성(Audio) (1분, Stereo):
 - = 44,100 샘플링 x 2Bytes x 2(Stereo) x 60(초)
 - = 10 메가 바이트 용량
- c. 고해상도 정지영상 (HD급 영상):
 - = 1920x1080x3Bytes = 6MBytes
 - = 6 메가 바이트 용량
- D. **Full HD** 동영상 (1시간 크기, 30 FPS):
 - = 1920x1080(픽셀)x3Bytes(RGB)x60x60(초)x30(프레임)
 - = 671 기가 바이트 용량

2.1 사운드 정의

- A. 물체의 진동으로 인해 일어나는 물리적 현상 예) 바이올린 현을 켜거나 심벌즈를 부딪칠 때 나는 진동
- **B.** (**Wikipidia**) **Sound** is the vibration of matter, as perceived by the sense of hearing. Physically, sound is vibrational mechanical energy that propagates through matter as a wave.

2.2 사운드 원리

- A. 물체 진동이 주변 공기로 퍼지면서 형성된 압력으로 인하여 귀에 있는 고막이 떨리면서 사람이 차이를 인지함
- B. 파형 (Wave)
 - 일정 간격으로 같은 패턴을 반복하는 압력의 파동 모양

2.3 주기 (Cycle, Period)

- A. 같은 파형이 한 번 나타나는 데 소요되는 **시간** (단위 초)
- B. 주기적인 형태의 사운드 (periodic sounds)
 - 인지할 수 있는 주기성을 갖는 사운드
 - ❖ 새의 지저귐
- c. 비주기적인 형태의 사운드 (non-periodic sounds)
 - 주기적 사운드의 반대 개념
 - ❖ 재채기, 노이즈

2.4 주파수 (Frequency)

- **A. 1초당 주기 수**, 주기 값의 역수
- B. 단위 **Hz**

2.5 사운드 신호의 가청 주파수

- A. 가청 주파수란 사람의 청력으로 들을 수 있는 주파수 대역을 의미
- B. 사람의 가청 주파수: 20 Hz ~ 20 kHz
 - 가청 주파수의 대역폭은 동물마다 다름: 예) 박쥐, 돌고래 ...
- c. 사운드 신호의 변조 및 하드웨어 설계 등 사운드 처리에 이용

구분	해당범위
초저주파(infra-sonic)	0Hz~20Hz
인간 가청영역(audio-sonic)	20Hz~20Khz
초음파(ultra-sonic)	20KHz~1GHz
극초음파(hypersonic)	1GHz~10THz

2.6 사운드 데이터 코딩 (Coding)

- A. 인코딩 (Encoding) Encoder
 - 아날로그 신호를 디지털 신호로 변환한 후 전송 선로를 통하여 전송하거나 기억 장소에 저장하기 전에 압축하는 과정
- в. 디코딩 (Decoding) Decoder
 - 전송되거나 기억 장소에 저장된 디지털 신호를 원래의 아날로그 사운드 신호로 복원하는 과정
- c. 인코딩 + 디코딩 모듈: **코덱 (Codec)**

2.7 사운드 코딩 기법

- A. 파형 코딩
- B. 음원 코딩
- c. 혼성 코딩

2.7.1 파형 코딩 (Waveform coding)

A. 사운드를 1 차원 시계열(Time-series) 데이터로 규정하여 사운드 파형 자체를 복원 가능하도록 코딩하는 방법

B. 방법들

- PCM (Pulse Code Modulation)
- DPCM (**Differential** PCM) 이전 데이터와 파이
- ADPCM (**Adaptive** DPCM) DPCM을 개선하기 위해 적응 예측 방식과 적응 형 양자화 방식을 이용

2.7.1.1 PCM (Pulse Code Modulation)

A. 연속적으로 변화하는 아날로그 신호의 강도를 주기적으로 샘플링하여 저장하는 방법

가령) 3비트로 표현되는 디지털 값으로 저장한다면 s1 = 4(100), s2 = 6(110), s3 = 7(111), s4 = 7(111), s5 = 7(111), s6 = 6(110) ...

2.7.1.1 PCM (Pulse Code Modulation) - 계속

- A. 샘플링 기법: 일정한 시간 간격으로 알아낸 아날로그 신호의 크기를 디지털 데이터의 형태(양자 단위)로 저장하는 방법
 - 가령, 실수를 정수로 저장, 정수를 4의 배수로 저장 등...
- B. 양자화 잡음 (quantization noise)
 - 원래 신호값과 양자로 표현된 신호값과 차이
 - 원래 아날로그 신호가 갖고 있는 변화폭이 작거나 디지털 데이터의 단위당 비트수가 클수록 그 크기가 감소

사람의 음성

- 대역폭: 약 4 kHz, 샘플링: 8 kHz
- 샘플 당 사용되는 데이터 최소 비트 수 : 2 bits
- 코딩에 필요한 최소 전송률 : 8 kHz * 2 bits = 16 Kbps
- 16 Kbps 이상 전송률을 사용시 원음과 가깝게 재현할 수 있음

CD의 음질

- 가청주파수 대역폭: 약 20 kHz, 샘플링: 44.1 kHz
- 샘플 당 사용되는 데이터 최소 비트 수 : 16 bits (2 bytes)
- 코딩에 필요한 최소 전송률 : 44.1 kHz * 16 bits * 2 Channel

2.7.2 음원 코딩 (source coding)

- A. 인간의 음성 생성 과정을 기본 모델로 하는 음성 코딩 기법
- B. 장점
 - 음성을 몇 개의 파라미터로 코딩하므로, 정보량이 작음
- c. 단점
 - 기존에 개발된 음성 생성 모델이 인간의 음성 생성 과정에 비해 매우 단순하여 고품질 합성음 코딩에 적절치 않음

2.7.3 혼성 코딩 (hybrid coding)

A. 파형 코딩을 이용하여 여기 (excitation) 신호를 생성하고, 음원 코딩을 사용하여 조음 기관의 공명 특성을 반영하는 정보를 재현

B. 적용 사례

- RELP(Residual Excited Linear Prediction),
- MBE(Multi-Band Excitation)
- MP-LPC(Multi Pulse LPC)
- CELP(Codebook Linear Excited Prediction)

2. 사운드 개념 - 저장

2.8 사운드 데이터 저장

- A. 사운드 카드
 - Analog-to-Digital 및 Digital-to-Analog 컨버터 역할
- B. 오디오 **화일 포맷(Format)**
 - Waveform (.wav)
 - ❖ MS와 IBM에 의해서 지원 받고 있는 포맷
 - ❖ 압축 없이 사운드 데이터를 저장
 - CD-Audio (.cda)
 - ❖ 필립스와 소니의 공동 연구로 등장한CD의 사운드 정보를 담기 위해 사용하고 있는 포맷
 - Real Audio (.ra, .ram, .rm)
 - ❖ 네트워크 상의 실시간 스트리밍 기술에 의해 만들어진 화일 포맷

2. 사운드 개념 - 저장

B. 오디오 **화일 포맷(Format)** - 계속

- MP3 (MPEG-1 Audio Layer-3)
 - ❖ 동영상 오디오 신호의 효과적 사용을 위한 압축 방식
 - ❖ 지각 코딩 (Perceptual Coding) 기법 사용 인간의 청각 심리 모델을 사용하여 감도가 낮은 정보를 생략하여 코딩량을 절감하는 방법
 - ❖ 방법) 인간의 가청 주파수를 32개 밴드로 분해 후 각각의 신호를 18개의 서브밴드 코딩, 변형 이산 코사인 변환, 허프만 코딩을 통 해 다시 코딩함. 각 밴드에서 가장 강한 음의 성분에 대한 정보만 을 선택하고, 나머지 음에 대한 정보를 삭제

• WMA, WMV

❖ MS사가 만들었으며, 스트리밍을 지원하고 데이터 용량이 MP3의 절반 수준인 화일 포맷 (wma, wmv)

• 기타

❖ OGG (무료 음악 파일 형식), VQF (NTF에 의한 압축 파일 포맷) 등

3. Image 개념

1. 이미지 개념

- A. 인간의 감각 기관 중에서 눈을 통해서 인지되는 매체를 일컬음
- B. 소리와 더불어 멀티미디어를 구성하는 가장 중요한 요소임
- c. 다른 매체보다 전달 효과가 우수해 다양한 응용들이 개발되고 있음

2. 이미지의 분류

- A. 이미지의 저장 및 전송 방식에 따라
 - 아날로그(analog) 이미지: 아날로그 신호
 - 디지털(digital) 이미지: 디지털 신호, 이진 신호
- B. 이미지의 동적 특성에 따라

•	정지(still)	영상:	시간에	따라	움직임이나	변화가	없는	이미지
---	-----------	-----	-----	----	-------	-----	----	-----

- 동(moving)영상: 시간에 따라 변화하고 움직이는 이미지
- c. 이미지의 표현 대상에 따라
 - 실(real) 이미지: 실제 존재하는 객체를 담은 이미지
 - 인공(artificial) 이미지: 인공적으로 생성된 이미지

구분	실 이미지	인공 이미지
정지영상	스캔 이미지, 캡쳐 이미지	그래픽 이미지, CAD/CAM
동영상	Computer 영화, 텔레비전	컴퓨터 애니메 이션, 가상 현실

3. Image 개념

3. 픽셀

- A. "Picture Element"의 합성어로서 그림을 구성하는 기본 요소가 되는 단위
- B. 픽셀을 활용하여 이미지는 그림을 픽셀 단위로 나타내는 **비트맵 방식**으 로 표현
- c. 비트맵 이미지는 픽셀을 많이 사용하여 표현할수록 이미지를 더욱 더 자 세하게 나타낼 수 있지만 저장히기 위한 용량이 커기게 됨
- D. 픽셀을 적게 사용하여 표현할수록 이미지의 선명도는 떨어지지만 저장하 기 위한 용량은 줄일 수 있음
- E. "X"의 비트맵 표현

255,0,0	0,0,0	0,0,0	0,0,0	0,0,0	0,0,0	0,0,0	0,0,0	0,0,0	255,0,0
0,0,0	255,0,0	0,0,0	0,0,0	0,0,0	0,0,0	0,0,0	0,0,0	255,0,0	0,0,0
0,0,0	0,0,0	255,0,0	0,0,0	0,0,0	0,0,0	0,0,0	255,0,0	0,0,0	0,0,0
0,0,0	0,0,0	0,0,0	255,0,0	0,0,0	0,0,0	255,0,0	0,0,0	0,0,0	0,0,0
0,0,0	0,0,0	0,0,0	0,0,0	255,0,0	255,0,0	0,0,0	0,0,0	0,0,0	0,0,0
0,0,0	0,0,0	0,0,0	0,0,0	255,0,0	255,0,0	0,0,0	0,0,0	0,0,0	0,0,0
0,0,0	0,0,0	0,0,0	255,0,0	0,0,0	0,0,0	255,0,0	0,0,0	0,0,0	0,0,0
0,0,0	0,0,0	255,0,0	0,0,0	0,0,0	0,0,0	0,0,0	255,0,0	0,0,0	0,0,0
0,0,0	255,0,0	0,0,0	0,0,0	0,0,0	0,0,0	0,0,0	0,0,0	255,0,0	0,0,0
255,0,0	0,0,0	0,0,0	0,0,0	0,0,0	0,0,0	0,0,0	0,0,0	0,0,0	255,0,0

3. Image 개념

4. 해상도(Resolution)

- A. 스캔 해상도, 화면 해상도, 프린터 해상도가 있는데 데이터의 양이나 컬러 정보를 나타내는 것
- B. 단위는 dpi(dot per inch)로서 단위 길이당 표시할 수 있는 점의 수, 즉 픽셀의 수를 나타냄
- c. 스캔 해상도
 - 이미지를 스캔할 때 해상도를 지정하여 스캔할 수 있음
- D. 화면 해상도
 - 표준적으로 평균 72dpi ~ 75dpi 정도의 해상도를 가짐
- E. 프린터 해상도
 - 보통 600dpi

3. Image 개념 - 색

1. 색

A. 빛의 스펙트럼의 조성차에 의해서 성질의 차가 인정되는 시감각의 특성

2. 스펙트럼

- A. 파장 순으로 나눈 빛의 배열
- B. 이 성질에 의해 빛의 색이 결정됨

파장(nm)	20	00 40	00 76	0 1000	0000
감마선	X-선	자외선	가시광선	적외선	마이크로파

3. Image 개념 - 색

3. 전자기파

- A. 주파수, 파장
- B. 가시광선의 파장: 390nm 720nm

3. Image 개념 – 색

4. RGB 색상

- A. Red, Green, Blue의 약자로서 빛의 삼원색인 빨강, 녹색, 파란색이 기본이 되는 컬러 모델
- B. 이 세 가지 색의 혼합으로 색을 표현, 여러 가지의 색이 더해질수록 흰색에 가까워지며, 빛이 전혀 없을 때에는 검은색을 나타냄
- c. 가산 원색 모델(Additive Primary Model)이라고도 함
- D. RGB 모델의 색상 모델과 가산 혼합

3. Image 개념 – 색

5. CMYK 색상 모델

- A. 종이에 프린트된 잉크에 기초한 색상 구현원리를 사용하며, 청록색 (Cyan), 심홍색(Magenta), 노란색(Yellow), 검은색(Black)의 네 가지 색 상을 기본으로 함
- B. 네 가지 물감이 혼합되면 모든 색상을 흡수하여 검은색을 나타내기 때문에 감산 원색 모델(Subtractive Primary Model)이라고도 함
- c. 프린트 출력물과 밀접한 관련이 있기 때문에 RGB 모델보다 나타낼 수 있는 색의 수가 적지만 사용됨

3. Image 개념 – 색

6. HSB(Hue, Saturation, Brightness) 색상모델

- A. 색조(Hue)
 - 물체로부터 반사되거나 물체를 통해 전달되는 빛의 파장으로 순수한 색을 나타내기 위한 컬러 특성
- B. 채도(Saturation)
 - 색도라고도 하는데 색상의 강도 또는 농도를 표현하는 것
- c. 명도(Brightness)
 - 색상의 상대적 밝기 또는 어둡기를 나타냄

3. Image 개념 – 코딩

1. 이미지 데이터

A. 벡터 (vector) 이미지:

이미지 객체를 기하학적 도형들의 집합으로 표현하는 것

예)
 CAD/CAM 프로그램, 그래픽 편집기, Windows의 Power Point,
 지도 데이터 등

line 10,50, 70,80 rectangle 40,50, 70,70 circle 40,40, 20 fill

(a) 벡터 이미지

(b) 그림 (a)의 벡터 표현

벡터 이미지의 예

3. Image 개념 - 코딩

1. 이미지 데이터

B. 비트맵(bitmap) 이미지:

이미지를 기억 장치에 저장하거나, 래스터 디스플레이 (raster-scan display) 를 위하여 사용되는 비트들의 격자 모양 양식을 의미

(a) 비트맵 이미지

(b) 비트맵

비트맵 이미지의 예

3. Image 개념 – 코딩

2. 이미지 데이터 비교

- A. 벡터 이미지와 비트맵 이미지: 이미지의 처리 시간과 저장 공간의 측면에서 서로 다른 특성을 가짐
- B. 벡터 이미지:
 - 이미지를 구성하는 객체들에 대한 정보를 기록
 - 객체들이 다양하고 많을 수록 처리시간과 저장 공간이 많이 소요됨
- c. 비트맵 이미지:
 - 이미지의 픽셀에 대한 정보를 기록
 - 이미지의 품질에 따라 처리시간과 저장 공간이 정해짐
 - 비트맵 이미지의 크기 = (가로의 픽셀 수) X (세로의 픽셀 수) X (픽셀 깊이)

3. Image 개념 - 코딩

3. 이미지의 품질

- A. 화면에 이미지가 얼마나 선명한가를 나타내는 것
- B. 픽셀 깊이와 영상의 해상도에 따라 결정됨
- c. 픽셀 깊이(depth):
 - 픽셀의 색상을 표현하기 위하여 사용되는 비트들의 수
 - 단위: (bits per pixel : bpp)
- D. 해상도(resolution)
 - 화면 해상도: 이미지를 상영하는 모니터의 픽셀 수
 - 이미지 해상도: 이미지를 표현하기 위해 사용된 픽셀 수
- E. 재깅(Jagging) 현상:
 - 낮은 해상도의 모니터에서 사선이 계단형으로 나타나는 현상
 - 픽셀 깊이로 보완 가능

재깅 현상의 예

3. Image 개념 – 코딩

4. 이미지 데이터의 코딩

- A. RGB
 - Red, Green, Blue의 3가지 색상 신호를 사용하여 이루어짐
- B. YUV
 - 밝기 신호인 Y (luminance) 정보와 색채 U, V (chrominance) 정보를 사용

$$Y = 0.30R + 0.59G + 0.1B$$

 $U = (B - Y) \times 0.493$
 $V = (R - Y) \times 0.877$

- c. YIQ
 - NTSC 방식을 근간으로 함

$$Y = 0.30R + 0.59G + 0.11B$$

 $I = 0.60R - 0.28G - 0.32B$
 $Q = 0.21R - 0.52G + 0.31B$

3. Image 개념 - 코딩

4.1 YUV 모델

- A. 텔레비전 방송에 사용되는 방식으로서 인간의 눈이 색보다 밝기에 민감하다는 사실에 기반을 두어 만들어진 것
- в. 색을 밝기(luminance)인 Y와 색상(chrominance)인 U, V로 구분함
- c. Y값은 오류에 민감하므로 색상 원소(U, V)보다 상위 대역폭으로 코딩하며 전형적인 Y:U:V의 비율은 4:2:2임
- D. RGB 모델과의 관계

RGB 모델 → YUV 모델	YUV 모델 → RGB 모델
Y = 0.3R + 0.59G + 0.11B	R = 1.0Y + 0.956U + 0.621V
U = 0.493(B-Y)	G = 1.0Y - 0.272U - 0.647V
V = 0.877(R-Y)	B = 1.0Y - 1.1061U - 1.703V

3. Image 개념 – 코딩

4.2 YIQ 모델

- A. YUV 모델과 마찬가지로 텔레비전 방송에 사용되며 YUV 모델과 유사하지 만 NYSC신호로 인코딩하여 YUV모델과 약간 다른 공식을 사용함
- B. RGB 모델과의 관계

RGB 모델 → YIQ 모델	YIQ 모델 → RGB 모델
Y = 0.3R + 0.59G + 0.11B	R = 1.0Y + 0.956I + 9.62Q
I = 0.6R - 0.28G - 0.32B	G = 1.0Y - 0.272I - 0.647Q
Q = 0.21R - 0.52G + 0.31B	B = 1.0Y - 1.108I - 1.705Q