SAÜ BİLGİSAYAR VE BİLİŞİM BİLİMLERİ FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ DİFERENSİYEL DENKLEMLER DERSİ ARASINAVI

İŞLEM YAPILMADAN VERİLEN CEVAPLAR DİKKATE ALINMAYACAKTIR.

- 1. $y = c_1x + c_2e^x$ eğri ailesini çözüm kabul eden en düşük basamaktan diferensiyel denklemi bulunuz ve bulduğunuz denklemi mertebe, derece ve lineerlik yönünden nedenleriyle birlikte inceleyiniz.
- 2. $x^2y'+xy+\sqrt{y}=0$ Bernoulli denkleminin genel çözümünü bulunuz.
- 3. $2p^2(y-xp)=1$ denkleminin genel ve varsa tekil çözümlerini elde ediniz.
- 4. $y^{(4)} + 2y''' + 2y''' = 3x^2 + x + 2e^{-x}\cos x$ denklemi veriliyor. Bu denkleme ilişkin homojen kısma ait y_h çözümünü elde ediniz. Daha sonra ise y_p özel çözümünün belirsiz katsayılar metodu ile nasıl seçilmesi gerektiğini nedenleri ile belirtiniz. (Katsayıları bulmaya çalışmayınız.)

SÜRE: 80 DAKİKADIR BAŞARILAR DİLERİZ.

1)
$$y = c_1x + c_2e^{x}$$

5) $y' = c_1 + c_2e^{x}$
 $y'' = c_2e^{x}$
 $y'' = c_2e^{x}$
 $y'' = c_2e^{x}$
 $y'' = c_2e^{x}$
 $y'' = c_2e^{x}$

$$y = x(y'-y'') + y'' \Rightarrow y = xy'-xy'+y''$$

$$(1-x)y''+xy'-y=0$$
2. mrt.
1. drc.
1. drc.
1. drc.
1. drc.

2)
$$x^2y^1 + xy + \sqrt{y} = 0$$
 $y' + \frac{1}{x}y = -\frac{1}{x^2}y''^2$ (Bernoulli)

 $y' = \frac{1}{2x}y'' + \frac{1}$

$$\sqrt{x} = -\frac{1}{2} \int x^{-\frac{3}{2}} dx + C = -\frac{1}{2} \int \frac{x^{-\frac{3}{2}}}{-\frac{1}{2}} + C$$

$$2 = \frac{1}{x} + \frac{c}{\sqrt{x}}$$

$$\sqrt{y} = \frac{c}{\sqrt{x}} + \frac{1}{x}$$

3)
$$2\rho^{2}(y-xp) = 1$$
 $y = xp + \frac{1}{2p^{2}}$ (Chirout)
 $x = g^{2}e^{-\frac{1}{2}} + \frac{dp}{dx} - \frac{1}{p^{2}} + \frac{dp}{dx} \Rightarrow \frac{dp}{dx} \left(x - \frac{1}{p^{2}}\right) = 0$
 $x = g^{2}e^{-\frac{1}{2}} + \frac{dp}{dx} - \frac{1}{p^{2}} + \frac{dp}{dx} \Rightarrow \frac{dp}{dx} \left(x - \frac{1}{p^{2}}\right) = 0$
 $y = p + x + \frac{dp}{dx} - \frac{1}{p^{2}} + \frac{1}{2p^{2$

1=12=0