第六章 定积分的应用

1. 如何理解和运用微元法来解定积分的应用问题?

答: 若在某区间上待求的量 A 满足两个条件(1)对区间的可加性(2)在长度为 Δx 的区间上的分量可表达为 $\Delta A = f(x)\Delta x + o(\Delta x)$ ($\Delta x \to 0$). 微元实际上就是在 $\Delta x \to 0$ 时, ΔA 的等价无穷小量 $dA = f(x)\Delta x$. 用定积分来解应用题关键就在于求出微元。从实际应用角度看,微元就是在 $\Delta x \to 0$ 的条件下,将一些变动的量视为常量而得到的与 dx 成正比的 ΔA 的近似值。因此一般来说比较容易求得。求得微元后再在相应的区间上积分就可得到待求的量 A。

2. 在计算三叶玫瑰线 $r = \sin 3\theta$ 的面积时,因 $r = \sin 3\theta$ 的周期是 $\frac{2}{3}\pi$,是否面积 $A = \int_0^{\frac{2}{3}\pi} \frac{1}{2} \sin^2 3\theta d\theta \text{ (图 6-8) ?}$

答:不是。在极坐标系中,函数 $r=r(\theta)$ 的周期并不等于使函数图形开始出现重叠的 θ 的

变化周期。对于本例,虽然
$$r\left(\theta + \frac{2}{3}\pi\right) = r\left(\theta\right)$$
 但

$$(r,\theta)$$
和 $\left(r,\theta+\frac{2}{3}\pi\right)$ 并不表示同一个点,实际上

$$r(\theta + \pi) = \sin[3(\theta + \pi)] = -\sin 3\theta = -r(\theta)$$
,

而 (r,θ) 和 $(-r,\theta+\pi)$ 表示同一个点。因此使图形开始出现重叠的 θ 的变化周期是 π ,故计算面积 A时考虑的 θ 变化范围应该是 $[0,\pi]$,由图可知三叶 玫 瑰 线 的 三 叶 θ 的 范 围 θ 别 是

$$\left[0,\frac{\pi}{3}\right], \left[\frac{\pi}{3},\frac{2}{3}\pi\right], \left[\frac{2}{3}\pi,\pi\right],$$
 再由对称性可得 $A=3\int_0^{\frac{\pi}{3}}\frac{1}{2}\sin^2 3\theta d\theta$ 。