Analysis II

Theorems and Corollaries

Theo Pigott

Michaelmas 2014

1 Uniform convergence

Proposition. Let $f_n, f: E \to \mathbb{R}$. Then $f_n \to f$ uniformly on E if and only if $\sup_{x \in E} |f_n(x) - f(x)| \to 0$.

Theorem (Cauchy criterion for uniform convergence). Let $f_n : E \to \mathbb{R}$. Then (f_n) converges uniformly on E if and only if

$$\forall \epsilon > 0 \quad \exists N = N(\epsilon) \quad \text{such that} \quad n, m \ge N, \ x \in E \implies |f_n(x) - f_m(x)| < \epsilon$$

Theorem. Let $f_n, f: E \to \mathbb{R}$ and suppose that $f_n \to f$ uniformly on E. If $x \in E$ is a point of continuity for each f_n then x is a point of continuity for f.

Corollary. If f_n are continuous on E and $f_n \to f$ uniformly on E then f is continuous on E.

Theorem. Let $f_n, f: [a, b] \to \mathbb{R}$. Suppose that f_n and f are Riemann integrable on [a, b] and that $f_n \to f$ uniformly on [a, b]. Then $\int_a^b f_n(x) dx \to \int_a^b f(x) dx$.

Theorem. Let a < b and $f_n : [a, b] \to \mathbb{R}$ be differentiable (with one-sided derivatives at the end points). Suppose that

- (i) $(f_n(c))$ converges for some $c \in [a, b]$;
- (ii) (f'_n) converges uniformly on [a, b].

Then $f_n \to f$ uniformly on [a, b] (for some function f) and f is differentiable with $f'(x) = \lim_{n \to \infty} f'_n(x)$ for all $x \in [a, b]$.

Theorem (Weierstrass M-test). Let $g_n : E \to \mathbb{R}$ for $n = 0, 1, 2, \ldots$ Suppose there exists $M_n \ge 0$ such that

- (i) $|g_n(x)| \leq M_n$ for all $x \in E$ and
- (ii) $\sum_{n=0}^{\infty} M_n$ converges.

Then $\sum_{n=0}^{\infty} g_n$ converges absolutely uniformly on E.

Theorem (Radius of convergence). Let $\sum_{n=0}^{\infty} c_n(x-a)^n$ be a power series. Then there exists a unique $R \in [0, \infty]$ (the radius of convergence) such that

- (i) If |x-a| < R then $\sum_{n=0}^{\infty} c_n (x-a)^n$ converges absolutely.
- (ii) If |x-a| > R then $\sum_{n=0}^{\infty} c_n (x-a)^n$ diverges.
- (iii) If R > 0 and 0 < r < R then $\sum_{n=0}^{\infty} c_n (x-a)^n$ converges absolutely uniformly on the set $\{x : |x-a| \le r\}$.

Theorem (Term-wise differentiation of power series). Let $\sum_{n=0}^{\infty} c_n(x-a)^n$ be a power series with radius of convergence R > 0. Then

- (i) the derived series $\sum_{n=1}^{\infty} nc_n(x-a)^{n-1}$ has radius of convergence R;
- (ii) if $f(x) = \sum_{n=0}^{\infty} c_n(x-a)^n$ is the function defined by the power series on $\{x : |x-a| < R\}$ then f is differentiable on $\{x : |x-a| < R\}$ with $f'(x) = \sum_{n=1}^{\infty} nc_n(x-a)^{n-1}$ for all $x \in \{x : |x-a| < R\}$.

2 Uniform continuity

Theorem. Let $a < b \in \mathbb{R}$. If $f : [a, b] \to \mathbb{R}$ is continuous then f is uniformly continuous.

Theorem. Let $a < b \in \mathbb{R}$ and let $f : [a, b] \to \mathbb{R}$ be a bounded, Riemann integrable function with $|f(x)| \leq M$. Let $g : [-M, M] \to \mathbb{R}$ be continuous. Then the composite function $g \circ f : [a, b] \to \mathbb{R}$ is Riemann-integrable.

Corollary. Let $a < b \in \mathbb{R}$ and $g : [a, b] \to \mathbb{R}$ be continuous. Then g is integrable.

Theorem (Riemann Criterion for Integrability). Let $f : [a, b] \to \mathbb{R}$. Then f is integrable if and only if $\forall \epsilon > 0$ there exists a partition P of [a, b] such that $U(P, f) - L(P, f) < \epsilon$.

Theorem. Let $f:[a,b] \to [A,B] \subseteq \mathbb{R}$ be integrable and $g:[A,B] \to \mathbb{R}$ be continuous. Then $g \circ f:[a,b] \to \mathbb{R}$ is integrable.

Theorem. Let $f_n:[a,b]\to\mathbb{R}$ be a sequence of integrable functions converging uniformly to a function $f:[a,b]\to\mathbb{R}$. Then f is integrable and $\int_a^b f_n(x)dx\to\int_a^b f(x)dx$.

Proposition. Let $f:[a,b] \to \mathbb{R}$ be integrable. Then ||f(x)|| is integrable and $||\int_a^b f(x)dx|| \le \int_a^b ||f(x)|| dx$.

Theorem (*Lebesgue's criterion for Riemann integrability*). Let $f : [a, b] \to \mathbb{R}$ be bounded. Then f is Riemann integrable if and only if the set of discontinuities of f has measure zero.

Theorem (*Weierstrass approximation theorem*). Let $f : [0,1] \to \mathbb{R}$ be continuous. Then there exists a sequence of polynomials converging to f uniformly on [0,1]. In fact, the sequence of *Bernstein polynomials*

$$f_n(x) = \sum_{k=0}^n f\left(\frac{k}{n}\right) \binom{n}{k} x^k (1-x)^{n-k}$$

converges uniformly to f on [0,1].

3 Normed spaces

Proposition (Young's inequality). Let $a, b \ge 0$ and $p, q \in (1, \infty)$ with $\frac{1}{p} + \frac{1}{q} = 1$. Then $ab \le \frac{a^p}{p} + \frac{b^q}{q}$.

Proposition (Hölder's inequality). Let $p, q \in (1, \infty)$ with $\frac{1}{p} + \frac{1}{q} = 1$. Then for any $f, g \in C([a, b]), \int_a^b |f(x)| |g(x)| dx \leq ||f||_p ||g||_q$.

Proposition (Minkowski inequality). Let $1 \le p < \infty$ and $f, g \in C([a, b])$. Then $||f + g||_p \le ||f||_p + ||g||_p$.

Proposition. Let $x^{(k)} = \left(x_1^{(k)}, x_2^{(k)}, \dots, x_n^{(k)}\right) \in \mathbb{R}^n$ for $k = 1, 2, \dots$ Then $x^{(k)} \to x = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$ (with respect to $\|\cdot\|_2$) if and only if $x_j^{(k)} \to x_j$ as $k \to \infty$ for each $1 \le j \le n$.

Proposition. Suppose that $\|\cdot\|$ and $\|\cdot\|'$ are equivalent norms on a vector space V. Then

- (i) A set $E \subseteq V$ is bounded with respect to $\|\cdot\|$ if and only if E is bounded with respect to $\|\cdot\|'$.
- (ii) $x_k \to x$ with respect to $\|\cdot\|$ if and only if $x_k \to x$ with respect to $\|\cdot\|'$.

Theorem (Bolzano-Weierstass for \mathbb{R}^n). Any bounded sequence in \mathbb{R}^n (with the Euclidean norm) has a convergent subsequence.

Theorem (*Arzela-Ascoli theorem*). If a sequence (f_k) in C([0,1]) is uniformly bounded and equicontinuous, then it has a uniformly convergent subsequence.

Proposition. Let $(V, \|\cdot\|)$ be a normed space. If $x_n \to x$ then (x_n) is Cauchy.

Proposition. Any Cauchy sequence is bounded.

Theorem. \mathbb{R}^n (with the Euclidean norm) is complete.

Theorem. C([a,b]) with the norm $\|\cdot\|_{\infty}$ is complete.

Proposition. Every open ball is an open set.

Proposition. A subset $E \subseteq V$ is closed if and only if its complement $V \setminus E$ is open.

Theorem. Let $(V, \|\cdot\|)$ be a normed space.

- (i) The union of any collection (finite, countable or uncountable) of open subsets is open.
- (ii) The intersection of a *finite* number of open sets is open.
- (iii) The empty set \emptyset and the whole set V are open.

Corollary. Let $(V, \|\cdot\|)$ be a normed space.

- (i) The intersection of any collection of closed subsets is closed.
- (ii) The union of a *finite* number of closed sets is closed.

(iii) The empty set \emptyset and the whole set V are closed.

Theorem. Let $E \subseteq V$ and $f: E \to V'$. Then f is continuous at $x \in E$ if and only if $f(x_n) \to f(x)$ for every sequence (x_n) in E with $x_n \to x$.

Proposition. Let $(V, \|\cdot\|)$ be a normed space. Then $\|\cdot\|: V \to \mathbb{R}$ is Lipschitz continuous.

Lemma. (i) If $(V, \|\cdot\|)$ is a normed space and $E \subseteq V$ is sequentially compact, then E is closed and bounded.

(ii) A closed, bounded subset $E \subseteq \mathbb{R}^n$ is sequentially compact.

Theorem. Let $(V, \|\cdot\|)$ be a normed space and let $K \subseteq \mathbb{R}^n$ be closed and bounded. Suppose $f: K \to V$ is continuous (where \mathbb{R}^n has the Euclidean norm). Then

- (i) f is uniformly continuous;
- (ii) f(K) is sequentially compact;
- (iii) f(K) is closed and bounded.

Corollary. If $K \subseteq \mathbb{R}^n$ is closed and bounded, and $f: K \to \mathbb{R}$ is continuous then f attains its sup and inf, i.e. there exists $x_1, x_2 \in K$ such that $f(x_1) = \sup_{x \in K} f(x)$ and $f(x_2) = \inf_{x \in K} f(x)$.

Theorem. Any two norms on \mathbb{R}^n are Lipschitz equivalent.

Corollary. Any two norms on a finite dimensional vector space are equivalent.

4 Metric spaces

Theorem. Let (X, d) be a metric space.

- (i) The union of any collection of open sets is open.
- (ii) The intersection of a *finite* collection of open sets is open.
- (iii) The empty set \emptyset and the whole set X are both open.

Theorem. A subset $E \subseteq X$ is closed if and only if its complement $X \setminus E$ is open.

Theorem. Let (X, d) be a metric space.

- (i) The intersection of any collection of closed sets is closed.
- (ii) The union of a *finite* collection of closed sets is closed.
- (iii) The empty set \emptyset and the whole set X are both closed.

Proposition. A singleton $\{x\} \subseteq X$ is a closed subset (regardless of the metric).

Corollary. Any finite set is closed (regardless of the metric).

Proposition. Let (X, d) be a metric space. Then $x_n \to x$ if and only if for any neighbourhood V of x in X, $x_n \in V$ for all but finitely many n.

Theorem. Let (X, d) and (X', d') be metric spaces and $f: X \to X'$ be a mapping. The following are equivalent:

- (i) f is continuous.
- (ii) $x_n, x \in X$ for $n \in \mathbb{N}$ with $x_n \to x \implies f(x_n) \to f(x)$
- (iii) For any open set V in X', $f^{-1}(V) = \{x \in X : f(x) \in V\}$ is open in X.
- (iv) For any closed set F in X', $f^{-1}(F)$ is closed in X.

Corollary. Let (X, d), (X', d') and (X'', d'') be metric spaces. Suppose $f: X \to X'$ and $g: X' \to X''$ are continuous. Then $g \circ f: X \to X''$ is continuous.

Theorem. Let (X, d) and (X', d') be metric spaces. If $f: X \to X'$ is a uniformly continuous map and (x_n) is a Cauchy sequence in X, then $(f(x_n))$ is a Cauchy sequence in X'.

Proposition. If (x_n) is convergent in X then (x_n) is Cauchy.

Proposition. If (x_n) is Cauchy and has a subsequence (x_{n_j}) converging to $x \in X$ then (x_n) converges to x.

Proposition. Let (X, d) be a metric space and $Y \subseteq X$.

- (i) If Y with the subspace metric $d|_{Y\times Y}$ is complete then Y is closed in X.
- (ii) If (X, d) is complete then $(Y, d|_{Y \times Y})$ is complete if and only if Y is closed in X.

Proposition. If (X, d) is sequentially compact then X is complete and X is bounded.

Theorem. A metric space (X, d) is sequentially compact if and only if it is compact, i.e. it has the 'Heine-Borel property'.

Theorem. A metric space (X, d) is complete and totally bounded if and only if X is sequentially compact.

5 Contraction mapping theorem

Theorem (Contraction mapping theorem). If f is a contraction mapping on a complete metric space X, then f has a unique fixed point in X, i.e. there exists a unique $x \in X$ with f(x) = x.

Theorem. Let $f: X \to X$ be a mapping on a complete metric space X. Suppose $f^{(m)} = f \circ f \circ \ldots \circ f: X \to X$ is a contraction. Then f has a unique fixed point.

Theorem. Let $F:[a,b]\times\mathbb{R}^n\to\mathbb{R}^n$ be continuous and $x_0\in\mathbb{R}^n$. Suppose that there exists $k\geq 0$ such that $\forall t\in[a,b]$ and all $x,y\in\mathbb{R}^n$,

$$||F(t,x) - F(t,y)||_2 \le k||x - y||_2.$$

Then there exists a unique continuously differentiable function $f:[a,b]\to\mathbb{R}^n$ that satisfies

$$\frac{df}{dt} = F(t, f(t))$$
$$f(a) = x_0.$$

Theorem (Picard-Lindelöf existence theorem for ODEs). Let $F:[a,b]\times\mathbb{R}^n\to\mathbb{R}^n$ be continuous and $x_0\in\mathbb{R}^n$. Suppose that there exists $R,k\geq 0$ such that $\forall t\in[a,b]$ and all $x,y\in D_R(x_0)=\{x\in\mathbb{R}^n: \|x-x_0\|\leq R\}$,

$$||F(t,x) - F(t,y)||_2 \le k||x - y||_2.$$

Then

(i) There exists $\epsilon \in (0, b-a]$ and a unique continuously differentiable function f: $[a, a+\epsilon] \to \mathbb{R}^n$ that satisfies

$$\frac{df}{dt} = F(t, f(t)) \quad \forall t \in [a, a + \epsilon]$$
$$f(a) = x_0.$$

(ii) If $\sup_{[a,b]\times D_R(x_0)} ||F|| \leq \frac{R}{b-a}$ then we can take $\epsilon = b-a$ above, so that there exists a unique continuously differentiable function on the whole interval [a,b] satisfying the ODE system.

Theorem (Cauchy-Peano). Let $x_0 \in \mathbb{R}^n$. Suppose $F: U \to \mathbb{R}^n$ is continuous for some open set $U \in \mathbb{R} \times \mathbb{R}^n$ containing $(0, x_0) \in \mathbb{R} \times \mathbb{R}^n$. Then there exists $\epsilon > 0$ such that the ODE system

$$\frac{df}{dt} = F(t, f(t)) \quad \forall t \in [a, a + \epsilon]$$
$$f(0) = x_0.$$

has a continuously differentiable solution in $[0, \epsilon]$.

6 Differentiation in \mathbb{R}^n

Proposition. Let $U \subseteq \mathbb{R}^n$ be open, $a \in U$ and $f: U \to \mathbb{R}^m$. Suppose that there exist linear maps $A_1, A_2: \mathbb{R}^n \to \mathbb{R}^m$ such that $\lim_{h\to 0} \frac{f(a+h)-f(a)-A_i(h)}{\|h\|} = 0$ for i=1,2. Then $A_1 = A_2$, i.e. the derivative of f is well-defined (when it exists).

Proposition. If $U \subseteq \mathbb{R}^n$ is open and $f: U \to \mathbb{R}^m$ is differentiable at $a \in U$, then f is continuous at a.

Proposition. If $U \subseteq \mathbb{R}^n$ is open and $f = (f_1, f_2, \dots, f_m) : U \to \mathbb{R}^m$ then f is differentiable at $a \in U$ if and only if $f_j : U \to \mathbb{R}$ is differentiable at a for $j = 1, 2, \dots, m$.

Moreover, if we write Df(a) as an $m \times n$ real matrix then $Df_j(a)$ is the linear map $\mathbb{R}^n \to \mathbb{R}$ corresponding to the jth row of Df(a).

Proposition. If $U \subseteq \mathbb{R}^n$ is open, $f_1, f_2 : U \to \mathbb{R}^m$ are differentiable at $a \in U$ and $c_1, c_2 \in \mathbb{R}$ are constants, then $c_1 f_1 + c_2 f_2 : U \to \mathbb{R}^m$ is differentiable at a with $D(c_1 f_1 + c_2 f_2)(a) = c_1 D f_1(a) + c_2 D f_2(a)$.

Proposition. If $A: \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation then A is differentiable at every point $a \in \mathbb{R}^n$ with DA(a) = A.

Theorem (The chain rule). Let $U \subseteq \mathbb{R}^n$ and $V \subseteq \mathbb{R}^m$ be open. Let $f: U \to \mathbb{R}^m$ and $g: V \to \mathbb{R}^p$. Let $a \in U$ with $f(a) \in V$. Suppose that f is differentiable at a and g is differentiable at f(a). Then $g \circ f: U \to \mathbb{R}^p$ is differentiable at f(a) with $f(a) \in U$ and $f(a) \in U$ are the following problem.

Proposition. Let $A \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)$ and let $\|\cdot\|$ be the operator norm.

- (i) $||A|| < \infty$
- (ii) $\|\cdot\|$ is a norm on $\mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)$
- (iii) $||A|| = \sup_{x \in \mathbb{R}^n \setminus \{0\}} \frac{||A||}{x}$
- (iv) $||Ax|| \le ||A|| ||x||$
- (v) Let $b \in \mathcal{L}(\mathbb{R}^m, \mathbb{R}^p)$, and write $BA = B \circ A \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^p)$. Then $||BA|| \leq ||B|| ||A||$.
- (vi) Fix bases for \mathbb{R}^n and \mathbb{R}^m and identify $\mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)$ with the space of real $m \times n$ matrices. Then the norm

$$||A||' = \left(\sum_{\substack{1 \le i \le m \\ 1 \le j \le n}} A_{ij}^2\right)^{\frac{1}{2}}$$

is Lipshitz equivalent to the operator norm.

Proposition. Let $U \subseteq \mathbb{R}^n$ be open and $f: U \to \mathbb{R}^m$. If f is differentiable at $a \in U$ then for any u, $D_u f(a)$ exists and is given by $D_u f(a) = D f(a) u$.

Proposition. Let $U \subseteq \mathbb{R}^n$ be open and $f = (f_1, f_2, \dots, f_m) : U \to \mathbb{R}^m$. If f is differentiable at $a \in U$ then the partial derivatives $D_j f_i(a)$ exist for $1 \le i \le m$, $1 \le j \le n$ and the matrix for Df(a) with respect to the standard bases for \mathbb{R}^n and \mathbb{R}^m is $\left(\frac{\partial f_i(x)}{\partial x_i}\right)$.

Theorem. Let $U \subseteq \mathbb{R}^n$ be open and $f: U \to \mathbb{R}^m$. Suppose there exists an open ball $B_r(a) \subset U$ such that

- (i) $D_j f_i(x)$ exists for every $x \in B_r(a)$, for $1 \le i \le m, 1 \le j \le n$.
- (ii) $D_j f_i$ are continuous at a, for $1 \le i \le m, 1 \le j \le n$.

Then f is differentiable at a with

$$Df(a) = (D_j f_i(a))_{\substack{1 \le i \le m \\ 1 \le j \le n}}$$

Corollary. Let $U \subseteq \mathbb{R}^n$ be open. Then $f: U \to \mathbb{R}^m$ is continuously differentiable on U if and only if $D_j f_i(x)$ exists for each x and $D_j f_i$ are continuous on U for $1 \le i \le m$ and $1 \le j \le n$.

6.1 Mean value inequalities

Theorem. Let $f:[a,b] \to \mathbb{R}^m$ be continuous on [a,b] and differentiable on (a,b). Suppose there exists $M \ge 0$ such that $||f'(t)|| \le M$ for all $t \in (a,b)$. Then $||f(b)-f(a)|| \le M(b-a)$.

Theorem. Let $f: B_r(a) \to \mathbb{R}^m$ be differentiable at every point in $B_r(a)$. Suppose there exists $M \geq 0$ such that $||Df(x)|| \leq M$ for all $x \in B_r(a)$. If $b \in B_r(a)$ then $||f(b) - f(a)|| \leq M||b - a||$.

Corollary. If $f: B_r(a) \to \mathbb{R}^m$ is differentiable with Df(x) = 0 for all $x \in B_r(a)$ then f is constant.

Theorem. Let $U \subseteq \mathbb{R}^n$ be open and path connected. If $f: U \to \mathbb{R}^m$ is differentiable with $Df \equiv 0$ on U then f is constant on U.

6.2 Inverse function theorem

Theorem (Inverse function theorem). Let $U \subseteq \mathbb{R}^n$ be open and $f: U \to \mathbb{R}^n$ continuously differentiable. Let $a \in U$ be such that Df(a) is invertible (as a linear map $\mathbb{R}^n \to \mathbb{R}^n$). Then there exist open sets V and W such that $f|_V: V \to W$ is a bijection with continuously differentiable inverse.

Theorem (Implicit function theorem). Let $U \subseteq \mathbb{R}^{m+n} = \mathbb{R}^m \times \mathbb{R}^n$ be open and $f: U \to \mathbb{R}^n$ continuously differentiable. Let $S = \{(x,y) \in U : f(x,y) = 0\}$. Suppose $(a,b) \in S$ and that $D_y f$ is invertible at (a,b). Then there exist open subsets V of U containing (a,b) and W of \mathbb{R}^m containing a, and a continuously differentiable map $g: W \to \mathbb{R}^n$ such that $S \cap V = \text{graph } g$, where graph $g = \{(x,g(x)) : x \in W\}$.

6.3 Higher derivatives

Theorem. Let $U \subseteq \mathbb{R}^n$ be open and $f: U \to \mathbb{R}^n$. Suppose there exists $a \in U$ and $\rho > 0$ such that $B_{\rho}(a) \subseteq U$ and $D_{ij}f(x)$ and $D_{ji}f(x)$ exist for all $x \in B_{\rho}(a)$ and are continuous at x = a. Then $D_{ij}f(a) = D_{ji}f(a)$.

Theorem (Taylor's Theorem). Let $U \subseteq \mathbb{R}^n$ be open and $f: U \to \mathbb{R}^m$ differentiable k times in U. Then for any $a \in U$ and $h \in \mathbb{R}$ such that $[a, a+h] = \{a+th: 0 \le t \le 1\} \subseteq U$,

$$f(a+h) = f(a) + Df(a)[h] + \frac{1}{2!}D^2f(a)[h]^2 + \ldots + \frac{1}{(k-1)!}D^{k-1}f(a)[h]^{k-1} + \frac{1}{k!}D^k(b)[h]^k$$

for some $b \in [a, a+h]$.