Modal Logic

$Important\ Information:$

Exercises: nenad.savic@inf.unibe.ch Exam: Tuesday, December 17, 2019

Lecture starts 9:20

Exercises start in two weeks

Next week no lecture

mcs.unibnf.ch request for academia access

Chapter 1

Syntacs and Semantics of Normal Modal Logics

1.1 Introduction

<i>New Connectives:</i> \square and \lozenge
□A means A is necessary
$\Diamond A$ means A is possible
\Box A holds if A is true in all possible worlds \Diamond A holds if A is true in some possible worlds
\Box and \Diamond are dual operators $\Diamond A$ holds if $\neg\Box\neg A$
\Box and \Diamond are intensional operators (not possible to calculate if $\Box A$ truth-value from the truth value of A) in contrast to extensional operators $A \wedge B \to A$ and B
Epistic: \Box A means A is known or A is believed
Temporal: □A means always A ◊A means eventually A ∘A means in the next world is A
Deontic: □A means A is obligatory ◊A means A is permitted

Proof Theoretic:

\Box A means A is provable

Basic principles in modal logic:

 $\Box A \land \Box (A \rightarrow B) \rightarrow \Box B$

 $\Box(A \to B) \land \Box A \to \Box B$

 $\Box A \rightarrow A \\ \Box A \rightarrow \Box \Box A$ depends on the definition of \Box

If A is provable, so is \Box A (Neccessitation, you can proof A in every world, so \Box A holds)

1.2 Lecture notes: Boxes and Diamonds

1.2.1 Relations

Special properties (pages 178ff.):

Reflexivity:

A relation $R \subseteq X^2$ is reflexive iff, for every $x \in X$, R_{xx} .

Transitivity:

A relation $R \subseteq X^2$ is transitive iff, whenever R_{xy} and R_{yz} , then also R_{xz} .

Summetru:

A relation $R \subseteq X^2$ is symmetric iff, whenever R_{xy} , then also R_{yx} .

Anti-Symmetry:

A relation $R \subseteq X^2$ is antisymmetric iff, whenever both R_{xy} and R_{yx} , then x = y (or, in other words: if $x \neq y$ then either $\neg R_{xy}$ or $\neg R_{yx}$)

Connectivity:

A relation $R \subseteq X^2$ is connected if for all $x, y \in X$, if $x \neq y$, then either R_{xy} or R_{yx} .

Partial order:

A relation $R \subseteq X^2$ that is reflexive, transitive, and anti-symmetric is called a partial order.

Linear order:

A partial order that is also connected is called a *linear order*.

Equivalence relation:

A relation $R \subseteq X^2$ that is reflexive, symmetric, and transitive is called an *equivalence relation*. x and y are called R-equivalent if R_{xy} .

Equivalence class:

The R-equivalence class containing x, or $[x]_R$, or [x] if R is clear, is defined to be the set $\{y: R_xy\}$. x is said to be the *representative* of this R-equivalence class when we write $[x]_R$.

Orders (pages 180 ff.):

Preorder:

A relation which is both reflexive and transitive is called a *preorder*.

Partial order:

A preorder which is also antisymmetric is called a partial order.

Linear order:

A partial order which is also connected is called a total order or linear order.

Irreflexivity:

A relation R on X is called *irreflexive* if, for all $x \in X$, $\neg R_{xx}$.

Asymmetry:

A relation R on X is called asymmetric if for no pair $x,y \in X$ we have R_{xy} and R_{yx} .

Strict order:

A *strict order* is a relation which is irreflexive, asymmetric, and transitive.

Strict linear order:

A strict order whichh is also connected is called a *strict linear order*.

Proposition:

- 1. If R is a strict (linear) order on X, then $R^+ = R \cup Id_X$ is a partial order (linear order).
- 2. If R is a partial order (linear order) on X, then $R^- = R \setminus Id_X$ is a strict linear order.

1.2.2 Syntacs and Semantics

Formulas (pages 189 ff.)

- 1. A countable infinite set At_0 of propositional variables $p_0, p_1 \dots$
- 2. The propositional constant for falsity \perp .
- 3. The logical connectives: \neg (negation), \wedge (conjunction), \vee (disjunction), \rightarrow (conditional)
- 4. Punctuation marks: (,), and the comma.

1.2.3 Axiomatic Dervations

Axioms for the Propositional Connectives (page 203)

The set of Ax_0 of axioms for the propositional connectives comprises all formulas of the following forms:

- (D.1) $(A \wedge B) \to A$
- (D.2) $(A \wedge B) \rightarrow B$
- (D.3) $A \to (B \to (A \land B))$
- (D.4) $A \rightarrow (A \lor B)$
- (D.5) $A \to B \lor A$
- (D.6) $(A \to C) \to ((B \to C) \to ((A \lor B) \to C))$
- (D.7) $A \rightarrow (B \rightarrow A)$
- (D.8) $(A \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C))$
- (D.9) $(A \to B) \to ((A \to \neg B) \to \neg A)$
- (D.10) $\neg A \rightarrow (A \rightarrow B)$
- $(D.11) \top$
- (D.12) $\perp \rightarrow A$
- (D.13) $(A \rightarrow \bot) \rightarrow \neg A$
- $(D.14) \neg \neg A \rightarrow A$

Modus ponens

If B and B \rightarrow A already occur in a derivation, then A is a correct inference step.

Deduction Theorem

$$\Gamma \land \{A\} \vdash B \text{ iff } \Gamma \vdash A \to B$$
$$\{D\} \vdash D \text{ iff } \vdash D \to D$$

Soundness

IF $\Gamma \vdash A$ then $\Gamma \models A$

1.2.4 Tableaux

1.2.5 The Completeness Theorem

IF $\Gamma \vdash A$ then $\Gamma \models A$ is given

The proof of the other side round