

Question Paper 2005 Delhi Set-2 Class-12 Chemistry

General Instructions

- 1. All questions are compulsory.
- 2. Marks for each question are indicated against it.
- 3. Question numbers 1 to 5 are very short-answer questions, carrying 1 mark each. Answer these in one word or about one sentence each.
- 4. Question numbers 6 to 12 are short-answer questions, carrying 2 marks each. Answer these in about 30 words each.
- 5. Question numbers 13 to 24 are short-answer questions of 3 marks each. Answer these in about 40 words each.
- 6. Question numbers 25 to 27 are long-answer questions of 5 marks each. Answer these in about 70 words each.
- 7. Use Log Tables, if necessary Use of calculators is not permitted.
- **1.** How many atoms can be assigned to its unit cell if an element forms (i) body centred cubic cell, and (ii) a face centred cubic cell? **[1]**
- 2. What would be the value of Van't Hoff factor for a dilute solution of K₂SO₄ in water? [1]
- **3.** Express the relation between the half-life periodof a reactant and its initial concentration for a reaction of nth order. [1]
- 4. Mention a chemical property in which methanoic acid differs from acetic acid. [1]
- **5.** How is the basic strength of aromatic amines affected by the presence of an electron releasing group on the benzene ring? **[1]**
- **6.** State that de Broglie relationship. How do de Broglie waves of a moving particle differ from electromagnetic waves? [2]

Or

Show that the uncertainty principle is of little significance for an object of mass

$$10^{-3} g \left(\frac{h}{4\pi} = 0.527 \times 10^{-34} kg m^2 s^{-1} \right)$$

- 7. Predict the products of electrolysis obtained at the electrodes in each case when the electrodes used are of platinum: [2]
- (i) An aqueous solution of $AgNO_3$.
- (ii) An aqueous solution of H_2SO_4 .
- 8. State the basic reason of each of the following statements: [2]
- (i) In CI undergoes disproportionate reaction but TICI does not.
- (ii) AICI₃ acts as a Lewis acid.
- 9. Write chemical equations for the following reactions: [2]

(i)
$$Ca_3(PO_4)_2 + SiO_2 + C \rightarrow$$

(ii)
$$XeF_6 + H_2O \rightarrow$$

10. Identify and mark the presence of centres of chirality's, if any, in the following molecules. Mention the number of stereoisomer possible in each case. **[2]**

(ii)

11. Explain how an OH group attached to a carbon in the benzene ring activates benzene towards electrophilic substitution. **[2]**

- **12.** How are polymers classified on the basis of forces operating between their molecules? To which, of these classes does nylon-66 belong? **[2]**
- **13.** (a) Use the LCAO method for the formation of molecular orbitals in case of homonuclear diatomic hydrogen molecule.
- (b) Which of the following has higher bond dissociation energy and why?
- (i) N^{2+}
- (ii) O_3^{2+} [3]

Or

What kinds of molecular forces exist between the species in the following pairs of particles and why?

- (i) He and N₂
- (ii) Cl_2 and NO^{3-}
- (iii) NH₃ and CO [3]
- **14.** Aluminum crystallizes in a face centred cubic close-packed structure its atomic radius is $125 \times 10^{-12} \ m$.
- (a) What is the length of the edge of the unit cell?
- (b) How many such unit cells are there in a 1.00 m piece of aluminium? [3]
- **15.** State Henry's law for solubility of a gas in a liquid Explain the significance of Henry's law constant (At the same temperature, hydrogen Is more soluble in water than helium. Which of them will have a higher value of KH and why? **[3]**
- **16.** The activation energy of a reaction is $75.2 \, kJ \, mor^{-1}$ in the absence of a catalyst and $50.14 \, kJ \, mol^{-1}$ with a catalyst. How many times will the rate of reaction grow in the presence of the catalyst if the reaction proceeds at $25^{\circ} \, C? \, (R = 8.314 \, JK^{-1} \, mol^{-1})$ [3]

- 17. How do size of particles of adsorbent, pressure of gas and prevailing temperature influence the extent of adsorption of a gas on a solid? [3]
- **I8.** (a) Write the structural formula of hex-2-en-4ynoic acid.
- (b) To illustrate the following reactions write one chemical equation for each:
- (i) Cross aldol condensation
- (ii) Hofmann bromamide reaction [3]
- 19. Write the chemical reaction equation stating the reaction conditions required for each of the following conversions: [3]
- (i) Methyl bromide to ethylamine
- (ii) Aniline to phenol
- (iii) ptoluidine to 2-bromo-4-methylanilline
- 20. (a) Write the corresponding chemical reaction equation to show that
- (i) PbO₂ can act as an oxidizing agent.
- (ii) All the bonds in a molecule of PCI₅ are not equivalent.
- (b) Write the structural formula for either XeF_2 or IF_3 . [3]
- 21. Draw a sketch to show the splitting of d-orbital in an octahedral crystal field. State clearly how the actual configuration in split d-orbital in an octahedral crystal field is decided by the magnitudes of Δ_n and P values. [3]
- 22. The E° values at 298 K corresponding to the following two reduction electrode processes are:

(i)
$$Cu^+ / Cu = +0.52V$$

$$(ii) Cu^{2+} / Cu^{+} = +0.16 V$$

Formulate the galvanic cell for their combination. What will be the cell potential?

Calculate the $\Delta_r G^{\circ}$ for the cell reaction. $(F = 96500 \ C \ mol^{-1})$ [3]

- **23.** The radioactive isotope ${}_{27}^{50}Co$ can be made by an (n, p) or an (n, γ) nuclear reaction. State the appropriate target nucleus for each reaction. If the half-life of ${}_{27}^{60}C$ is 7 years, how long will it take for complete annihilation and why? **[3]**
- 24. Describe the following with an example each: [3]
- (i) Antimicrobials
- (ii) Acid dyes
- (iii) Antioxidants
- **25.** (a) The standard Gibbs energy change values $(\Delta_r G^\circ)$ at 1773 K are given for the following reactions:

$$4Fe + 3O_2 \rightarrow 2Fe_2O_3$$
; $\Delta_r G^{\circ} = -1487 \text{ kg mol}^{-1}$

$$4Al + 3O_2 \rightarrow 2Al_2O_3$$
; $\Delta, G^{\circ} = -22500 \text{ kg mol}^{-1}$

$$2CO + O_2 \rightarrow 2CO_2$$
; $\Delta_r G^\circ = -515 \text{ kg mol}^{-1}$

Find out the possibility of reducing Fe_2O_3 and Al_2O_3 with CO at this temperature.

- (b) Comment on the following statements giving reasons:
- (i) An exothermic reaction is sometimes not spontaneous.
- (ii) Reactions with $(\Delta_r G^\circ)$ values less than zero always have equilibrium constants greater than 1. **[5]**

Or

(a) The half-reactions are:

(i)
$$Fe^{3+} + e^{-} \rightarrow Fe^{2+}$$
. $E^{\circ} = 0.76 V$

(ii)
$$Ag^+ + e^- \to Ag, E^\circ = 0.80 V$$

Calculate K_c for the following reaction at 25° C:

$$Ag^+ + Fe^{2+} \rightarrow Fe^{3+} + Ag$$

 $(F=96500 \text{ C mol}^{-1})$

- (b) Define the following terms:
- (i) Isothermal and Adiabatic processes
- (ii) State variables / State functions [5]
- **26.** (a) Given below are the electrode potential values, E° for some of the first row of transition elements:

Element	V(23)	Cr(24)	Mn(25)	Fe(26)	Co(27)	Ni(28)	Cu(29)
$E^{\circ}M^{2+}/M(v)$	-1.18	-0.91	-1.18	-0.44	-0.28	-0.25	+0.34

Explain the irregularities in these values on the basis of electronic structures of atoms.

(b) Complete the following reaction equations: [5]

$$Cr_2O_7^{2-} + Sn^{2+} + H^+ \rightarrow$$

$$MnO_4^- + Fe^{2+} + H^+ \rightarrow$$

Or

- (a) How would you account for the following:
- (i) Cobalt (II) is stable in aqueous solution. but in the presence of complexing reagents it is easily oxidized.
- (ii) The transition elements exhibit high enthalpy of atomization.
- (iii) Of the d^4 species, Cr^{2+} is strongly reducing while Mn (III) is strongly oxidizing.
- (b) Name the chief ore of copper and write the reactions Involved in its extraction from that ore. [5]

- 27. (a) Write the chemical reactions of glucose with (i) NH_2OH and (ii) $(CH_3CO)_2$ o. Also draw simple Fischer projections of D-glucose and L-glucose.
- (b) Name the food sources and the deficiency diseases caused due to lack of any two of vitamins A, C, E and K. [5]

Or

- (a) State the composition and functional differences between DNA and RNA. Describe the mechanism of replication of DNA.
- (b) Define 'mutation'. [3, 2]

Modern Technology