[Questão 1 - (a)]

- Dados coletados de 9 participantes saudáveis, todos destros, com idades entre 25 e 35 anos.
- Utilização de 22 canais de EEG, com eletrodos Ag/AgCl posicionados segundo o sistema internacional 10-20, além de 3 canais de EOG para monitoramento de movimentos oculares.
- Frequência de amostragem de 250 Hz, com filtragem passa-banda de 0,5 a 100 Hz e filtro notch em 50 Hz para remoção de ruído da rede elétrica.
- Cada participante realizou 2 sessões em dias diferentes.
- Cada sessão é composta por 6 runs de 48 trials, totalizando 288 trials por sessão, distribuídos igualmente entre as 4 classes (72 trials por classe).
- O protocolo experimental é baseado em imaginação motora, envolvendo as classes: mão esquerda (classe 1), mão direita (classe 2), ambos os pés (classe 3) e língua (classe 4).
- Os eventos registrados indicam o início do trial, o cue (que informa qual classe imaginar) e possíveis artefatos, que sinalizam trials com ruídos para possível exclusão.
- O arquivo de treino contém os rótulos das classes, enquanto o arquivo de teste não os disponibiliza, simulando dados desconhecidos para avaliação de modelos.
- Não há feedback durante os trials.
- Os dados estão organizados em arquivos .gdf, contendo os sinais, eventos (início, cue, artefatos) e os metadados do experimento.

[Questão 1 - (b)]

Participante 3:

Participante 7:

A análise comparativa do PSD entre os participantes 3 e 7 revela padrões bastante característicos da atividade elétrica cerebral durante a imaginação motora. Antes da aplicação do filtro, ambos apresentam uma concentração maior de potência nas baixas frequências, além de sinais claros de ruído como componentes abaixo de 1 Hz, geralmente ligados a movimentos, variações lentas ou deriva dos eletrodos

Após o filtro passa-banda (4-38 Hz), o sinal fica visivelmente mais limpo passando a se destacar justamente as bandas de interesse que refletem a atividade neuronal.

Observando especificamente os eletrodos C3, Cz e C4, os dois participantes mostram picos bem definidos na banda alpha (8-13 Hz), principalmente entre 9 e 11 Hz. Esse padrão é típico do chamado ritmo mu, que aparece quando a pessoa está em repouso, especialmente na região sensório-motora. Também há presença de atividade na banda beta (13-30 Hz), embora com uma amplitude mais baixa, como é comum nesse tipo de tarefa.

Curiosamente, o sujeito 3 apresenta um pico mais evidente na faixa de beta, por volta de 20 Hz, especialmente no eletrodo Cz. Já o sujeito 7 tem uma maior ativação em beta na região de C4, em torno de 18 Hz. Isso pode indicar pequenas diferenças individuais, tanto na forma como cada um realiza a imaginação motora quanto na própria organização cortical.

Apesar dessas diferenças pontuais, o padrão geral se mantém bastante semelhante nos dois participantes. Ambos mostram a predominância do ritmo mu quando estão em repouso, acompanhada de uma leve ativação na faixa beta, que pode estar associada à atenção e ao

engajamento na tarefa. As variações na intensidade e na localização exata dos picos são absolutamente esperadas em EEG, pois refletem tanto características anatômicas individuais quanto fatores como qualidade da gravação ou estado mental no momento.

Em resumo, as PSDs dos participantes 3 e 7 são qualitativamente muito semelhantes. A aplicação do pré-processamento preserva as características fisiológicas essenciais do sinal, o que confirma a boa qualidade dos dados para as análises subsequentes como, por exemplo, a classificação das tarefas de imaginação motora.

[Questão 2 - (a)]

Ao testar três configurações distintas do EEGNet para classificação de tarefas motoras imaginadas no participante 7:

1 - Configuração Padrão (F1=8, D=2, kernel=64):

Acurácia de validação: 66.67% Acurácia no teste: 68.75% Desempenho por classe:

Pés: 16.67%

Mão esquerda: 58.33% Mão direita: 66.67% Língua: 91.67%

Observação: Acurácia de treino chegou a 100%, indicando algum overfitting

epoch 	train_accuracy	train_loss 	valid_acc	valid_accur	acy va 	lid_loss 	Ir	dur
1	0.4427	1.4056	0.3646	0.3646	1.3663	0.0100	2.292	7
2	0.4635	1.3214	0.3438	0.3438	1.3428	0.0100	1.727	8
3	0.5000	1.2058	0.3333	0.3333	1.3312	0.0100	1.729	9
4	0.5312	1.0883	0.3333	0.3333	1.3416	0.0100	1.692	9
5	0.4844	1.0574	0.3229	0.3229	1.4239	0.0100	2.205	9
6	0.4375	0.9763	0.3125	0.3125	1.6384	0.0099	1.853	1
7	0.4167	0.9106	0.2917	0.2917	1.9087	0.0099	1.680	4
8	0.3958	0.8560	0.2917	0.2917	2.1515	0.0099	1.674	8
9	0.4115	0.8523	0.2917	0.2917	2.3093	0.0098	1.6859	9
10	0.4635	0.6795	0.2917	0.2917	2.3735	0.0098	1.675	2
11	0.5625	0.6698	0.3125	0.3125	2.2201	0.0098	2.520	2
12	0.6354	0.6937	0.3646	0.3646	2.0306	0.0097	1.675	7
13	0.6927	0.5345	0.3750	0.3750	1.8725	0.0096	1.686	7
14	0.8906	0.5835	0.3854	0.3854	1.4494	0.0096	1.639	9
15	0.9115	0.5507	0.4375	0.4375	1.3527	0.0095	1.682	7
16	0.9010	0.4542	0.4167	0.4167	1.3602	0.0094	1.676	9
17	0.9115	0.3790	0.4688	0.4688	1.4389	0.0094	2.386	8
18	0.8802	0.4152	0.5000	0.5000	1.4640	0.0093	1.694	0
19	0.8646	0.3904	0.5104	0.5104	1.5032	0.0092	1.685	3

20	0.8698	0.4129	0.4688	0.4688	1.5624 0.0091 1.6841
21	0.8958	0.3397	0.4792	0.4792	1.4887 0.0090 1.6691
22	0.9010	0.3111	0.4688	0.4688	1.4263 0.0089 2.0082
23	0.9062	0.2705	0.5000	0.5000	1.4745 0.0088 2.0649
24	0.9375	0.3331	0.5000	0.5000	1.4896 0.0087 1.7149
25	0.9479	0.2531	0.5417	0.5417	1.5466 0.0086 1.6786
26	0.9115	0.2212	0.4896	0.4896	1.7025 0.0085 1.6717
27	0.9219	0.2387	0.5104	0.5104	1.7765 0.0084 1.6778
28	0.9531	0.2413	0.5312	0.5312	1.5316 0.0083 2.3869
29	0.9740	0.2015	0.5312	0.5312	1.4699 0.0082 1.7031
30	0.9740	0.2370	0.5625	0.5625	1.3013 0.0080 1.6925
31	0.9792	0.1669	0.5521	0.5521	1.2545 0.0079 1.6803
32	0.9844	0.1370	0.5833	0.5833	1.2372 0.0078 1.6796
33	0.9844	0.1407	0.6146	0.6146	1.2760 0.0076 1.6801
34	0.9844	0.1840	0.6042	0.6042	1.3809 0.0075 2.5484
35	0.9844	0.1441	0.5938	0.5938	1.5485 0.0074 1.7036
36	0.9844	0.1441	0.5729	0.5729	1.5852 0.0072 1.6964
		0.1205			
37	0.9792		0.5833	0.5833	
38	0.9896	0.1763	0.6042	0.6042	1.5455 0.0069 1.6855
39	0.9896	0.1365	0.6250	0.6250	1.4445 0.0068 1.8942
40	0.9948	0.1651	0.6458	0.6458	1.3314 0.0066 2.2189
41	0.9948	0.1004	0.6771	0.6771	1.1982 0.0065 1.7056
42	1.0000	0.0948	0.6979	0.6979	1.0838 0.0063 1.6915
43	1.0000	0.1109	0.6875	0.6875	1.0419 0.0062 1.6938
44	1.0000	0.1235	0.6875	0.6875	1.0276 0.0060 1.6867
45	1.0000	0.1097	0.6875	0.6875	1.0305 0.0059 2.2682
46	1.0000	0.1138	0.6771	0.6771	1.0201 0.0057 1.8691
47	1.0000	0.0887	0.6667	0.6667	1.0713 0.0056 1.7198
48	1.0000	0.1299	0.6458	0.6458	1.1045 0.0054 1.7087
49	1.0000	0.1082	0.6354	0.6354	1.1157 0.0052 1.7158
50	1.0000	0.1285	0.6458	0.6458	1.1093 0.0051 1.7082
51	1.0000	0.0916	0.6562	0.6562	1.0853 0.0049 2.5797
52	1.0000	0.1011	0.6562	0.6562	1.0961 0.0048 1.6983
53	1.0000	0.0761	0.6562	0.6562	1.1032 0.0046 1.6884
54	1.0000	0.0563	0.6562	0.6562	1.1056 0.0044 1.6994
55	1.0000	0.0840	0.6667	0.6667	1.1046 0.0043 1.6899
56	1.0000	0.0989	0.6771	0.6771	1.0898 0.0041 1.9062
57	1.0000	0.0880	0.6771	0.6771	1.0998 0.0040 2.1827
58	1.0000	0.0941	0.6667	0.6667	1.1284 0.0038 1.6950
59	1.0000	0.0891	0.6562	0.6562	1.1356 0.0037 1.6499
60	1.0000	0.0830	0.6562	0.6562	1.1296 0.0035 1.7075
61	1.0000	0.0632	0.6354	0.6354	1.1278 0.0034 1.7151
62	1.0000	0.0673	0.6250	0.6250	1.1317 0.0032 2.2577
63					1.1401 0.0031 1.8361
	1.0000	0.0943	0.6250	0.6250	
64 65	1.0000	0.0719	0.6354	0.6354	1.1255 0.0029 1.6873
65	1.0000	0.0741	0.6458	0.6458	1.1062 0.0028 1.6766
66	1.0000	0.0505	0.6458	0.6458	1.0744 0.0026 1.6784
67	1.0000	0.1121	0.6458	0.6458	1.0754 0.0025 1.6845
68	1.0000	0.0848	0.6354	0.6354	1.0811 0.0024 2.5807
69	1.0000	0.0495	0.6458	0.6458	1.0899 0.0022 1.6871
70	1.0000	0.1070	0.6562	0.6562	1.0870 0.0021 1.6815
71	1.0000	0.0534	0.6562	0.6562	1.0680 0.0020 1.6834
72	1.0000	0.0628	0.6562	0.6562	1.0465 0.0018 1.6880
73	1.0000	0.0506	0.6562	0.6562	1.0303 0.0017 1.8438
74	1.0000	0.0687	0.6562	0.6562	1.0245 0.0016 2.2402

75	1.0000	0.0778	0.6667	0.6667	1.0160	0.0015	1.6837
76	1.0000	0.0679	0.6562	0.6562	1.0091	0.0014	1.6937
77	1.0000	0.0693	0.6667	0.6667	1.0096	0.0013	1.6951
78	1.0000	0.0601	0.6667	0.6667	1.0084	0.0012	1.6939
79	1.0000	0.0315	0.6667	0.6667	1.0104	0.0011	2.2140
80	1.0000	0.0773	0.6667	0.6667	1.0092	0.0010	1.8922
81	1.0000	0.0609	0.6771	0.6771	1.0077	0.0009	1.7049
82	1.0000	0.0299	0.6771	0.6771	1.0045	0.0008	1.6985
83	1.0000	0.1021	0.6771	0.6771	0.9990	0.0007	1.6947
84	1.0000	0.0971	0.6771	0.6771	0.9933	0.0006	1.6972
85	1.0000	0.0470	0.6771	0.6771	0.9886	0.0006	2.5914
86	1.0000	0.0578	0.6771	0.6771	0.9838	0.0005	1.7034
87	1.0000	0.0884	0.6667	0.6667	0.9809	0.0004	1.6936
88	1.0000	0.0597	0.6771	0.6771	0.9782	0.0004	1.6937
89	1.0000	0.0473	0.6771	0.6771	0.9760	0.0003	1.6975
90	1.0000	0.0808	0.6771	0.6771	0.9746	0.0002	1.8074
91	1.0000	0.1033	0.6771	0.6771	0.9740	0.0002	2.2924
92	1.0000	0.0704	0.6771	0.6771	0.9739	0.0002	1.6807
93	1.0000	0.0714	0.6771	0.6771	0.9742	0.0001	1.6854
94	1.0000	0.0719	0.6771	0.6771	0.9736	0.0001	1.6792
95	1.0000	0.0695	0.6771	0.6771	0.9736	0.0001	1.7131
96	1.0000	0.0686	0.6771	0.6771	0.9737	0.0000	2.2149
97	1.0000	0.0551	0.6667	0.6667	0.9740	0.0000	1.8732
98	1.0000	0.0806	0.6667	0.6667	0.9745	0.0000	1.6810
99	1.0000	0.0620	0.6667	0.6667	0.9749	0.0000	1.6789
100	1.0000	0.0508	0.6667	0.6667	0.9753	0.0000	1.7002

2 - Configuração Grande (F1=16, D=2, kernel=128):Acurácia de validação: 55.21% (menor que o anterior)

Acurácia no teste: 52.78%

Desempenho por classe:

Pés: 16.67% (piorou) Mãos: ~66.67% (similar) Língua: 83.33% (piorou)

Observação: Overfitting severo (100% treino vs 55% validação)

Curva	de aprendiz	auo.						
epoch	train_accuracy	train_loss 	valid_acc	valid_accur	acy va 	lid_loss 	Ir	dur
1	0.4479	1.4634	0.3333	0.3333	1.3616	0.0100	2.6062	2
2	0.5365	1.3285	0.3542	0.3542	1.3258	0.0100	3.5339	9
3	0.5365	1.1303	0.3750	0.3750	1.3494	0.0100	2.4340)
4	0.4219	0.9619	0.3021	0.3021	1.6905	0.0100	2.4306	3
5	0.3438	0.8586	0.2604	0.2604	2.1713	0.0100	2.4454	1
6	0.3594	0.7341	0.2812	0.2812	2.4520	0.0099	3.7029	9
7	0.3646	0.6818	0.2812	0.2812	2.6388	0.0099	5.3538	3
8	0.4375	0.5249	0.3229	0.3229	2.6357	0.0099	3.4848	3
9	0.4635	0.5649	0.3125	0.3125	2.6389	0.0098	2.5893	3
10	0.5729	0.5043	0.3229	0.3229	2.5160	0.0098	3.655	5
11	0.6823	0.4679	0.3646	0.3646	2.3508	0.0098	6.287	9
12	0.7188	0.3846	0.3854	0.3854	2.3694	0.0097	2.682	8
13	0.7240	0.3475	0.4062	0.4062	2.4750	0.0096	2.545	6
14	0.7396	0.3903	0.4062	0.4062	2.6356	0.0096	2.636	1
15	0.7812	0.4098	0.4167	0.4167	2.5832	0.0095	3.038	0
16	0.8698	0.3238	0.4479	0.4479	2.2992	0.0094	2.484	3
17	0.8854	0.2642	0.4167	0.4167	2.4970	0.0094	2.464	0
18	0.8229	0.3119	0.4271	0.4271	3.0564	0.0093	2.990	7
19	0.7812	0.2936	0.4375	0.4375	3.5381	0.0092	2.548	9
20	0.7865	0.2418	0.4271	0.4271	3.7061	0.0091	2.469	9
21	0.8177	0.3114	0.4375	0.4375	3.6196	0.0090	2.454	6
22	0.9115	0.2220	0.4271	0.4271	3.1326	0.0089	3.417	3
23	0.9583	0.2248	0.4688	0.4688	2.5100	0.0088	3.150	3
24	1.0000	0.1937	0.4688	0.4688	2.1245	0.0087	2.468	9
25	1.0000	0.2267	0.5104	0.5104	2.0694	0.0086	2.511	3
26	0.9948	0.2170	0.4688	0.4688	2.2472	0.0085	3.130	5
27	0.9948	0.2124	0.4479	0.4479	2.5616	0.0084	2.463	9
28	0.9740	0.1658	0.4375	0.4375	2.7645	0.0083	2.452	9
29	0.9792	0.1823	0.4479	0.4479		0.0082		
30	0.9896	0.1502	0.4583	0.4583		0.0080		
31	0.9896	0.2055	0.4375	0.4375		0.0079		
32	1.0000	0.1384	0.4167	0.4167		0.0078		
33	0.9948	0.1469	0.4583	0.4583		0.0076		
34	0.9844	0.1433	0.4479	0.4479		0.0075		
35	0.9844	0.1927	0.4583	0.4583	2.8434	0.0074	2.451	8
36	0.9896	0.1043	0.4375	0.4375		0.0072		
37	1.0000	0.1295	0.4688	0.4688		0.0071		
38	1.0000	0.1363	0.4792	0.4792		0.0069		
39	1.0000	0.0889	0.5208	0.5208		0.0068		
40	1.0000	0.1207	0.4792	0.4792		0.0066		
41	0.9948	0.0956	0.5000	0.5000		0.0065		
42	1.0000	0.0983	0.5208	0.5208		0.0063		
43	1.0000		0.4792	0.4792		0.0062		
44	1.0000	0.0575	0.4896	0.4896	2.6001	0.0060	2.520	4

45	1.0000	0.0932	0.5104	0.5104	2.5610 0.0059 3.0302
46	1.0000	0.0853	0.5104	0.5104	2.5269 0.0057 2.4696
47	1.0000	0.0587	0.5312	0.5312	2.4411 0.0056 2.4630
48	1.0000	0.1183	0.5104	0.5104	2.3258 0.0054 2.9989
49	1.0000	0.0682	0.5312	0.5312	2.2235 0.0052 2.5908
50	1.0000	0.0553	0.5000	0.5000	2.1294 0.0051 2.4500
51	1.0000	0.1004	0.5000	0.5000	2.0679 0.0049 2.4612
52	1.0000	0.0768	0.5312	0.5312	2.0614 0.0048 3.4300
53	1.0000	0.0598	0.5104	0.5104	2.0674 0.0046 2.4565
54	1.0000	0.0713	0.5000	0.5000	2.1148 0.0044 2.4569
55	1.0000	0.0742	0.4896	0.4896	2.2101 0.0043 2.4651
56	1.0000	0.0944	0.5000	0.5000	2.3256 0.0041 3.4595
57	1.0000	0.0731	0.5000	0.5000	2.3224 0.0040 2.4753
58	1.0000	0.0618	0.4896	0.4896	2.2786 0.0038 2.4617
59	1.0000	0.0602	0.5000	0.5000	2.2715 0.0037 2.4608
60	1.0000	0.0476	0.5104	0.5104	2.2634 0.0035 3.2622
61	1.0000	0.0724	0.5104	0.5104	2.2415 0.0034 2.4879
62	1.0000	0.0647	0.5208	0.5208	2.2365 0.0032 2.4704
63	1.0000	0.0401	0.5312	0.5312	2.2381 0.0031 2.7284
64	1.0000	0.0391	0.5312	0.5312	2.2534 0.0029 2.8411
65	1.0000	0.0739	0.5208	0.5208	2.2587 0.0028 2.4614
66	1.0000	0.0679	0.5000	0.5000	2.2654 0.0026 2.4553
67	1.0000	0.0748	0.5104	0.5104	2.2594 0.0025 3.2074
68	1.0000	0.0638	0.5208	0.5208	2.2555 0.0024 2.4550
69	1.0000	0.0534	0.5208	0.5208	2.2649 0.0022 2.4633
70	1.0000	0.0246	0.5417	0.5417	2.2807 0.0021 2.4920
71	1.0000	0.0287	0.5521	0.5521	2.2956 0.0020 3.4831
72	1.0000	0.0584	0.5521	0.5521	2.2896 0.0018 2.4542
73	1.0000	0.0387	0.5417	0.5417	2.2863 0.0017 2.4784
74	1.0000	0.0431	0.5521	0.5521	2.2889 0.0016 2.4797
75	1.0000	0.0414	0.5312	0.5312	2.2853 0.0015 3.4934
76	1.0000	0.0648	0.5312	0.5312	2.2858 0.0014 2.4806
77	1.0000	0.0399	0.5312	0.5312	2.2924 0.0013 2.4763
78	1.0000	0.0422	0.5312	0.5312	2.2881 0.0012 2.5061
79	1.0000	0.0451	0.5312	0.5312	2.2809 0.0011 3.0655
80	1.0000	0.0434	0.5417	0.5417	2.2716 0.0010 2.4625
81	1.0000	0.0477	0.5417	0.5417	2.2602 0.0009 2.4580
82	1.0000	0.0500	0.5417	0.5417	2.2492 0.0008 3.0217
83	1.0000	0.0410	0.5417	0.5417	2.2415 0.0007 2.5778
84	1.0000	0.0538	0.5417	0.5417	2.2373 0.0006 2.4521
85	1.0000	0.0350	0.5417	0.5417	2.2362 0.0006 2.4517
86	1.0000	0.0498	0.5417	0.5417	
87	1.0000	0.0407	0.5417	0.5417	
88	1.0000	0.0561	0.5417	0.5417	2.2383 0.0004 2.4892
89	1.0000	0.0394	0.5417	0.5417	
90	1.0000	0.0276	0.5417	0.5417	
91	1.0000	0.0494	0.5521	0.5521	
92	1.0000	0.0500	0.5521	0.5521	2.2313 0.0002 2.4589
93	1.0000	0.0428	0.5521	0.5521	2.2305 0.0001 2.4743
94	1.0000	0.0773	0.5521	0.5521	2.2302 0.0001 3.1878
95	1.0000	0.0406	0.5521	0.5521	2.2300 0.0001 2.4679
96	1.0000	0.0428	0.5521	0.5521	2.2295 0.0000 2.4740
97	1.0000	0.0414	0.5521	0.5521	
98	1.0000	0.0384	0.5521	0.5521	
99	1.0000	0.0586	0.5521	0.5521	2.2287 0.0000 2.4558
- •					

3 - Configuração Pequena (F1=4, D=1, kernel=32):

Acurácia de validação: 59.38% (mais balanceado) Acurácia no teste: 66.67% (mais balanceado)

Desempenho por classe:

Pés: 58.33% (melhorou)

Mão esqueda: 75.00% (melhorou) Mão direita: 58.33% (similar) Língua: 91.67% (melhorou)

Observação: Menos overfitting (89% treino vs 59% validação)

epoch	train_accurac	y train_lo	oss valid_acc	: valid_aco	curacy v	alid_loss	s Ir	dur
1	0.3594	1.4015	0.3646	0.3646	1.3831	0.0100	1.8143	
2	0.3802	1.3502	0.3229	0.3229	1.3780	0.0100	1.2943	
3	0.5000	1.3359	0.4062	0.4062	1.3630	0.0100	1.2899	
4	0.5938	1.2843	0.3854	0.3854	1.3406	0.0100	1.2758	
5	0.5885	1.2395	0.4167	0.4167	1.3178	0.0100	1.2973	
6	0.5833	1.1787	0.3750	0.3750	1.3015	0.0099	1.2979	
7	0.5052	1.1098	0.3646	0.3646	1.3250	0.0099	1.5212	
8	0.5260	1.0790	0.3333	0.3333	1.3386	0.0099	1.7759	
9	0.6354	1.0680	0.3750	0.3750	1.2871	0.0098	1.2938	
10	0.6875	1.0166	0.4167	0.4167	1.2486	0.0098	1.2995	
11	0.7135	0.8939	0.4271	0.4271	1.2446	0.0098	1.3013	
12	0.7031	0.9345	0.4479	0.4479	1.2441	0.0097	1.3148	
13	0.7240	0.9249	0.4167	0.4167	1.2362	0.0096	1.3013	
14	0.7344	0.8981	0.3438	0.3438	1.2374	0.0096	1.3141	

15	0.6979	0.8550	0.3646	0.3646	1.2596 0.0095 1.9196
16	0.6719	0.8925	0.3646	0.3646	1.2793 0.0094 1.3053
17	0.7240	0.7893	0.3750	0.3750	1.2634 0.0094 1.2920
18	0.7188	0.8299	0.3958	0.3958	1.2584 0.0093 1.3073
19	0.7031	0.7985	0.4062	0.4062	1.2657 0.0092 1.3006
20	0.6927	0.7678	0.3958	0.3958	1.2816 0.0091 1.2879
21	0.6458	0.7325	0.3750	0.3750	1.3536 0.0090 1.2932
22	0.4792	0.8153	0.3125	0.3125	1.5372 0.0089 2.4229
23	0.5677	0.7250	0.3229	0.3229	1.4254 0.0088 1.3091
24	0.5833	0.7096	0.3229	0.3229	1.4203 0.0087 1.3000
25	0.6198	0.7682	0.3542	0.3542	1.3692 0.0086 1.3099
26	0.5312	0.7154	0.3438	0.3438	1.5190 0.0085 1.2887
27	0.5573	0.6818	0.3854	0.3854	1.5429 0.0084 1.6236
28	0.6615	0.6769	0.4167	0.4167	1.3271 0.0083 1.3062
29	0.8333	0.6933	0.4583	0.4583	1.1504 0.0082 1.9279
30	0.8802	0.6032	0.5208	0.5208	1.1358 0.0080 1.3561
31	0.8646	0.6281	0.5208	0.5208	1.1188 0.0079 1.3095
32	0.8281	0.6375	0.5000	0.5000	1.1208 0.0078 1.2940
33	0.8802	0.6726	0.5938	0.5938	1.0938 0.0076 1.3132
34	0.9115	0.6263	0.6354	0.6354	1.1068 0.0075 1.3004
35	0.9062	0.5518	0.6250	0.6250	1.1043 0.0074 1.3099
36	0.9010	0.6163	0.5938	0.5938	1.0621 0.0072 1.7999
37	0.8906	0.5375	0.5938	0.5938	1.0113 0.0071 1.5068
38	0.9062	0.5096	0.6042	0.6042	0.9750 0.0069 1.2940
39	0.8802	0.4805	0.5521	0.5521	1.0448 0.0068 1.3195
40	0.8125	0.5476	0.5104	0.5104	1.1950 0.0066 1.3077
41	0.7656	0.4606	0.4896	0.4896	1.2991 0.0065 1.3135
42	0.7344	0.5733	0.4792	0.4792	1.3520 0.0063 1.3271
43	0.6979	0.4863	0.4583	0.4583	1.4369 0.0062 1.6382
44	0.6823	0.4907	0.4271	0.4271	1.4933 0.0060 1.6550
45	0.6979	0.4355	0.4479	0.4479	1.4892 0.0059 1.3322
46	0.7083	0.4745	0.4688	0.4688	1.4296 0.0057 1.8336
47	0.7083	0.4400	0.4688	0.4688	1.3753 0.0056 1.3394
48	0.6719	0.4937	0.4896	0.4896	1.3635 0.0054 1.3290
49	0.6146	0.4193	0.4583	0.4583	1.4785 0.0052 1.3380
50	0.6094	0.4536	0.4375	0.4375	1.5767 0.0051 1.7958
51	0.5677	0.3804	0.4167	0.4167	1.7792 0.0049 1.5208
52	0.5260	0.4947	0.3750	0.3750	
53	0.5000	0.3695	0.3646	0.3646	
54	0.4844	0.3992	0.3542	0.3542	
55	0.4896	0.4331	0.3438	0.3438	
56	0.4948	0.3787	0.3542	0.3542	
57	0.5521	0.4633	0.3958	0.3958	
58	0.6146	0.3864	0.4167	0.4167	
59	0.6354	0.4145	0.4583	0.4583	
60	0.6927	0.3542	0.4792	0.4792	
61	0.7083	0.3588	0.5000	0.5000	1.4624 0.0034 1.3172
62	0.6927	0.3515	0.5104	0.5104	1.4556 0.0032 1.3305
63	0.6719	0.3774	0.4896	0.4896	1.5246 0.0031 1.3315
64	0.6667	0.3376	0.4792	0.4792	1.5523 0.0029 1.5665
65	0.6823	0.3332	0.4583	0.4583	1.5294 0.0028 1.7498
66	0.6771	0.4191	0.4583	0.4583	
67	0.6875	0.3290	0.4583	0.4583	
68	0.7135	0.3583	0.4688	0.4688	
69	0.7240	0.3215	0.4583	0.4583	1.4683 0.0022 1.3376
	-				

70	0.7188	0.3760	0.4583	0.4583	1.4819 0.0021 1.3148
71	0.6979	0.3543	0.4583	0.4583	1.5420 0.0020 1.4864
72	0.6979	0.3051	0.4583	0.4583	1.5829 0.0018 1.8412
73	0.7083	0.3676	0.4583	0.4583	1.5953 0.0017 1.3406
74	0.6875	0.3224	0.4583	0.4583	1.6068 0.0016 1.3290
75	0.6927	0.3330	0.4583	0.4583	1.5983 0.0015 1.3221
76	0.7083	0.3234	0.4896	0.4896	1.5639 0.0014 1.3384
77	0.7135	0.3203	0.4896	0.4896	1.5039 0.0013 1.3226
78	0.7396	0.2809	0.4896	0.4896	1.4199 0.0012 1.4105
79	0.7708	0.3771	0.5000	0.5000	1.3386 0.0011 1.9095
80	0.8073	0.2985	0.5208	0.5208	1.2774 0.0010 1.3296
81	0.8073	0.3582	0.5312	0.5312	1.2368 0.0009 1.3134
82	0.8281	0.3106	0.5312	0.5312	1.2163 0.0008 1.3339
83	0.8177	0.3112	0.5312	0.5312	1.2078 0.0007 1.3138
84	0.8229	0.3407	0.5312	0.5312	1.2084 0.0006 1.3217
85	0.8177	0.2780	0.5417	0.5417	1.2129 0.0006 1.3343
86	0.8177	0.2719	0.5417	0.5417	1.2024 0.0005 1.9555
87	0.8229	0.3841	0.5521	0.5521	1.1959 0.0004 1.3232
88	0.8385	0.3086	0.5521	0.5521	1.1826 0.0004 1.3138
89	0.8438	0.3090	0.5521	0.5521	1.1704 0.0003 1.3364
90	0.8438	0.3686	0.5417	0.5417	1.1576 0.0002 1.3125
91	0.8490	0.2729	0.5521	0.5521	1.1456 0.0002 1.3242
92	0.8490	0.3153	0.5521	0.5521	1.1309 0.0002 1.3133
93	0.8542	0.2973	0.5521	0.5521	1.1165 0.0001 1.9100
94	0.8646	0.3365	0.5521	0.5521	1.1014 0.0001 1.4081
95	0.8750	0.2431	0.5625	0.5625	1.0849 0.0001 1.3170
96	0.8802	0.3158	0.5729	0.5729	1.0691 0.0000 1.3354
97	0.8854	0.2521	0.5729	0.5729	1.0537 0.0000 1.3265
98	0.8854	0.3490	0.5729	0.5729	1.0393 0.0000 1.3588
99	0.8854	0.3480	0.5729	0.5729	1.0256 0.0000 1.3235
100	0.8906	0.2642	0.5938	0.5938	1.0118 0.0000 1.8353

Principais Conclusões:

A configuração menor (F1=4, kernel=32) mostrou-se mais eficaz, especialmente para movimentos de pés que eram problemáticos nas outras versões. O modelo maior (F1=16) apresentou overfitting significativo, enquanto a versão padrão teve desempenho intermediário.

O tamanho menor do kernel (32 amostras) parece capturar melhor os padrões temporais característicos dos movimentos de pés. Já para língua, todas as configurações tiveram bom desempenho, sugerindo que este movimento gera padrões EEG mais distintos.

Esses resultados demonstram como a escolha de hiperparâmetros pode impactar significativamente o desempenho em tarefas de classificação de sinais EEG, especialmente quando se trabalha com abordagem intra-sujeito.

[Questão 2 - (B)]

A melhor configuração para o participante 7 foi a configuração pequena (F1=4, D=1, kernel_length=32). Sendo assim, o mesmo teste foi aplicado ao participante 3 para comparação.

Configuração Pequena (F1=4, D=1, kernel=32):

Acurácia de validação: 81.25% (melhorou)
Acurácia no teste: 81.60% (melhorou)

Desempenho por classe: Pés: 83.33% (melhorou)

Mão esquerda: 58.33% (melhorou) Mão direita: 100.00% (melhora drástica)

Língua: 91.67% (manteve)

Oui ve	de apronaiz	uuo.						
epoch	train_accuracy	train_loss	s valid_acc	valid_accu	racy va	lid_loss	Ir	dur
1	0.3594	1.3860	0.2708	0.2708	 1.3742	0.0100	1.6353	
2	0.5312	1.3233	0.3750	0.3750	1.3494	0.0100	1.0604	
3	0.4375	1.2159	0.3229	0.3229	1.3181	0.0100	1.0549	
4	0.3958	1.0958	0.3333	0.3333	1.3533	0.0100	1.0618	
5	0.4010	1.0213	0.3021	0.3021	1.4735	0.0100	1.0643	
6	0.3750	0.9408	0.3021	0.3021	1.7872	0.0099	1.0655	
7	0.3646	0.8781	0.3021	0.3021	2.2707	0.0099	1.0653	
8	0.3906	0.8681	0.3021	0.3021	2.4494	0.0099	1.0664	
9	0.4167	0.8715	0.3125	0.3125	2.2948	0.0098	1.3591	
10	0.4531	0.8186	0.3333	0.3333	2.1842	0.0098	1.5515	5
11	0.4271	0.7283	0.3021	0.3021	2.5177	0.0098	1.0448	3
12	0.3906	0.7016	0.3021	0.3021	2.9620	0.0097	1.0647	7
13	0.3698	0.7487	0.2917	0.2917	3.7104	0.0096	1.1419	9

4.4	0.0540	0.7464	0.0047	0.0047	1 1070 0 0000 1 0007
14	0.3542	0.7461	0.2917	0.2917	4.1879 0.0096 1.0697
15	0.4167	0.7524	0.3021	0.3021	3.4297 0.0095 1.0680
16	0.5469	0.6406	0.3438	0.3438	2.2433 0.0094 1.0739
17	0.6458	0.6111	0.4792	0.4792	1.4663 0.0094 1.1107
18	0.7188	0.5679	0.5729	0.5729	1.1716 0.0093 1.4304
19	0.7708	0.6152	0.6042	0.6042	1.0989 0.0092 1.4514
20	0.7760	0.6172	0.6354	0.6354	1.1718 0.0091 1.0706
21	0.7396	0.5323	0.5938	0.5938	1.5223 0.0090 1.0675
22	0.6979	0.4919	0.5521	0.5521	1.9369 0.0089 1.0789
23	0.6771	0.4423	0.5312	0.5312	2.1493 0.0088 1.1306
24	0.6615	0.4639	0.5625	0.5625	2.1979 0.0087 1.0622
25	0.7135	0.4827	0.5729	0.5729	2.0567 0.0086 1.0491
26	0.7448	0.3837	0.5833	0.5833	1.9304 0.0085 1.0680
27	0.7656	0.4256	0.6146	0.6146	1.8354 0.0084 1.4975
28	0.7552	0.3461	0.6354	0.6354	2.0384 0.0083 1.4136
29	0.7656	0.3857	0.6042	0.6042	2.0161 0.0082 1.0705
30	0.8125	0.4605	0.6354	0.6354	1.6075 0.0080 1.1094
31	0.8281	0.2951	0.6250	0.6250	1.5299 0.0079 1.0743
32	0.8073	0.3813	0.5938	0.5938	1.7880 0.0078 1.1034
33	0.8021	0.3013	0.6146	0.6146	2.0448 0.0076 1.0584
34	0.7604	0.2702	0.5833	0.5833	2.4334 0.0075 1.1645
3 4 35		0.2702	0.5729	0.5729	2.5792 0.0074 1.0640
	0.7448				
36	0.7604	0.3577	0.6250	0.6250	2.3355 0.0072 1.5878
37	0.8229	0.3554	0.6354	0.6354	1.9158 0.0071 1.3001
38	0.8802	0.3225	0.6667	0.6667	1.5905 0.0069 1.0674
39	0.8958	0.2755	0.6875	0.6875	1.4259 0.0068 1.0733
40	0.9062	0.3164	0.7083	0.7083	1.3096 0.0066 1.0713
41	0.8802	0.2740	0.6979	0.6979	1.4988 0.0065 1.0677
42	0.8594	0.2563	0.6667	0.6667	1.7965 0.0063 1.0647
43	0.8177	0.2214	0.6458	0.6458	2.0248 0.0062 1.0746
44	0.8177	0.2618	0.6562	0.6562	2.1441 0.0060 1.0773
45	0.8125	0.2675	0.6458	0.6458	2.3245 0.0059 1.6748
46	0.8125	0.2570	0.6562	0.6562	2.4952 0.0057 1.2479
47	0.7917	0.2435	0.6354	0.6354	2.6910 0.0056 1.0681
48	0.7917	0.1906	0.6250	0.6250	2.7213 0.0054 1.0635
49	0.8438	0.2410	0.6458	0.6458	2.3894 0.0052 1.1210
50	0.8542	0.2923	0.6667	0.6667	2.1340 0.0051 1.0663
51	0.8698	0.2956	0.6875	0.6875	1.8537 0.0049 1.1361
52	0.9115	0.2518	0.7188	0.7188	1.5556 0.0048 1.0423
53	0.9427	0.2819	0.7188	0.7188	1.3262 0.0046 1.0758
54	0.9583	0.1742	0.7083	0.7083	1.2711 0.0044 1.5931
55	0.9531	0.1975	0.7083	0.7083	1.2083 0.0043 1.2139
56	0.9688	0.1642	0.7083	0.7083	1.1686 0.0041 1.0766
<i>57</i>	0.9635	0.2194	0.7083	0.7083	1.1364 0.0040 1.1270
58	0.9740	0.2058	0.7292	0.7292	1.0744 0.0038 1.0794
59	0.9844	0.2030	0.7292	0.7396	1.0492 0.0037 1.0594
60 61	0.9792	0.1872	0.7500	0.7500	1.0784 0.0035 1.0624
61	0.9792	0.1729	0.7396	0.7396	1.1739 0.0034 1.0704
62	0.9792	0.1986	0.7292	0.7292	1.2129 0.0032 1.2039
63	0.9740	0.1653	0.7292	0.7292	1.1997 0.0031 1.6973
64	0.9792	0.1870	0.7292	0.7292	1.1374 0.0029 1.0702
65	0.9792	0.1696	0.7292	0.7292	1.0784 0.0028 1.0547
66	0.9792	0.2193	0.7292	0.7292	1.0497 0.0026 1.0809
67	0.9792	0.2273	0.7292	0.7292	1.0080 0.0025 1.1202
68	0.9844	0.2120	0.7396	0.7396	0.9701 0.0024 1.0739

69	0.9896	0.1811	0.7500	0.7500	0.9261 0.0022 1.0755
70	0.9896	0.1502	0.7604	0.7604	0.9008 0.0021 1.0815
71	0.9896	0.1720	0.7500	0.7500	0.8954 0.0020 1.3494
72	0.9844	0.1364	0.7500	0.7500	0.8833 0.0018 1.5744
73	0.9844	0.1800	0.7396	0.7396	0.8677 0.0017 1.1505
74	0.9948	0.1870	0.7708	0.7708	0.8214 0.0016 1.0863
75	0.9948	0.2217	0.7708	0.7708	0.7935 0.0015 1.1418
76	0.9948	0.1891	0.7812	0.7812	0.7729 0.0014 1.1111
77	0.9948	0.2063	0.7812	0.7812	0.7564 0.0013 1.0524
78	1.0000	0.1877	0.7917	0.7917	0.7449 0.0012 1.0744
79	1.0000	0.2114	0.7917	0.7917	0.7481 0.0011 1.0692
80	1.0000	0.1593	0.7917	0.7917	0.7519 0.0010 1.5210
81	1.0000	0.2108	0.7917	0.7917	0.7472 0.0009 1.3825
82	1.0000	0.1302	0.7917	0.7917	0.7310 0.0008 1.1354
83	1.0000	0.1678	0.7917	0.7917	0.7162 0.0007 1.0665
84	1.0000	0.1380	0.7917	0.7917	0.7011 0.0006 1.0400
85	1.0000	0.1728	0.7917	0.7917	0.6922 0.0006 1.0655
86	1.0000	0.1726	0.7917	0.7917	0.6849 0.0005 1.0400
87	1.0000	0.1618	0.7917	0.7917	0.6795 0.0004 1.0688
88	1.0000	0.1797	0.7917	0.7917	0.6744 0.0004 1.0687
89	0.9948	0.2399	0.7917	0.7917	0.6705 0.0003 1.6277
90	0.9948	0.0996	0.7917	0.7917	0.6660 0.0002 1.3690
91	0.9948	0.2138	0.7917	0.7917	0.6618 0.0002 1.0744
92	0.9948	0.1386	0.8021	0.8021	0.6570 0.0002 1.0704
93	0.9948	0.1606	0.8021	0.8021	0.6528 0.0001 1.0920
94	1.0000	0.2041	0.8021	0.8021	0.6490 0.0001 1.0701
95	1.0000	0.1426	0.8021	0.8021	0.6456 0.0001 1.0612
96	1.0000	0.1622	0.8021	0.8021	0.6424 0.0000 1.0793
97	1.0000	0.1609	0.8125	0.8125	0.6393 0.0000 1.1120
98	1.0000	0.1418	0.8125	0.8125	0.6360 0.0000 1.6057
99	1.0000	0.1868	0.8125	0.8125	0.6329 0.0000 1.1992
100	1.0000	0.1621	0.8125	0.8125	0.6301 0.0000 1.0624

Análise Comparativa dos Resultados entre Sujeitos:

Ao compararmos os desempenhos do classificador EEGNet entre os dois sujeitos, utilizando a mesma configuração otimizada (F1=4, D=1, kernel_length=32), observamos diferenças significativas. O Sujeito 3 alcançou uma acurácia geral de 81.60% no conjunto de teste, enquanto o Sujeito 7 obteve 66.67%, indicando que o primeiro teve um desempenho 22% superior. Essa superioridade foi especialmente marcante na classificação da mão direita, onde o Sujeito 3 atingiu 100% de acerto, enquanto o Sujeito 7 apresentou resultados mais modestos para as mãos (58.33% para a direita e 75% para a esquerda).

Ambos os sujeitos compartilharam padrões similares em relação às classes mais fáceis e difíceis. A língua foi a classe mais fácil para ambos, com acurácia acima de 91%, refletindo a maior distinção dos padrões EEG associados a esse movimento. Por outro lado, as tarefas envolvendo as mãos foram as mais desafiadoras para os dois sujeitos, com acurácias em torno de 58-75%, o que era esperado devido à similaridade dos sinais EEG gerados pelos movimentos contralaterais no córtex motor.

A diferença no desempenho geral entre os sujeitos pode ser atribuída a vários fatores intrínsecos à variabilidade inter-individual em experimentos de EEG. O Sujeito 3 provavelmente apresentou padrões neurais mais claros durante a imagética motora, além de possivelmente ter menos artefatos nos dados (como movimentos oculares ou tensionamento muscular). Já o Sujeito 7, embora tenha mantido um bom desempenho na classificação da língua, mostrou que a configuração hiperparamétrica otimizada para um usuário não necessariamente se transfere de forma ideal para outro. Isso reforça a importância de ajustes personalizados em sistemas de Interface Cérebro-Computador (BCI), especialmente quando a abordagem é intra-sujeito.

Em resumo, enquanto o Sujeito 3 demonstrou um desempenho excepcional, particularmente para movimentos de pés (83.33%) e mão direita (100%), o Sujeito 7 teve resultados mais equilibrados, mas com dificuldades persistentes na distinção entre as mãos. Esses resultados destacam não apenas a eficácia da configuração escolhida, mas também os desafios inerentes à classificação de sinais EEG em diferentes indivíduos, onde fatores como anatomia cerebral, estratégias cognitivas durante a tarefa e qualidade da captação dos sinais desempenham papéis cruciais. Para melhorar o desempenho em usuários como o Sujeito 7, estratégias como aumento de dados, ajuste fino de hiperparâmetros específicos ou inclusão de técnicas de regularização podem ser exploradas.