Rețele Petri și Aplicații

Asist. Dr. Oana Captarencu

http://www.infoiasi.ro/~otto/pn.html

otto@infoiasi.ro

Evaluare

Nota finala: 40% TS1 + 20% TS2 + 40%LSA

- TS1, TS2 teste scrise
- Activitate laborator/seminar (LSA):
 - **■** lucrare (30%)
 - proiect (50%)
 - activitatea în timpul seminarului (20%)
- Referat (opţional): 2 puncte (se adaugă la nota finală)
- Condiții minimale: $LSA \geq 5$, $TS1 + TS2 \geq 7$
- Nota finală: minim 5.

Rețele Petri: o metodă formală (matematică) folosită pentru modelarea și verificarea sistemelor (concurente/distribuite)

Reţele Petri: o metodă formală (matematică) folosită pentru modelarea şi verificarea sistemelor (concurente/distribuite) Noţiunea de sistem:

- A regularly interacting or interdependent group of items forming a unified whole (Webster Dictionary)
- A combination of components that act together to perform a function not possible with any of the individual parts (IEEE Standard Dictionary of Electrical and Electronic Terms)

Reţele Petri: o metodă formală (matematică) folosită pentru modelarea şi verificarea sistemelor (concurente/distribuite) Noţiunea de sistem:

- A regularly interacting or interdependent group of items forming a unified whole (Webster Dictionary)
- A combination of components that act together to perform a function not possible with any of the individual parts (IEEE Standard Dictionary of Electrical and Electronic Terms)

Sistemele:

- alcătuite din componente care interacţionează
- îndeplinesc o anumită funcționalitate
- evenimente şi stări
- concurență, comunicare, sincronizare

Exemple de sisteme:

- sisteme automatizate de producţie
- sisteme de control al traficului aerian
- sisteme de monitorizare şi control în industrie
- rețele de comunicare
- sisteme software distribuite
- etc...

Modelarea și verificarea sistemelor

- Verificarea sistemelor reale: are drept scop verificarea unor proprietăţi dezirabile, înca din stadiul de proiectare
- Un model surprinde caracteristici esenţiale ale sistemului
- Modele (formale) pentru verificarea sistemelor:
 - automate/sisteme tranziţionale
 - algebre de procese
 - logici temporale
 - reţele Petri
 - etc...

Reţele Petri:

■ Carl Adam Petri, 1962

- Carl Adam Petri, 1962
- grafuri bipartite

- Carl Adam Petri, 1962
- grafuri bipartite
- reprezentare explicită stărilor şi evenimentelor dintr-un sistem

- Carl Adam Petri, 1962
- grafuri bipartite
- reprezentare explicită stărilor şi evenimentelor dintr-un sistem
- reprezentare grafică intuitivă

- Carl Adam Petri, 1962
- grafuri bipartite
- reprezentare explicită stărilor şi evenimentelor dintr-un sistem
- reprezentare grafică intuitivă
- semantică formală

- Carl Adam Petri, 1962
- grafuri bipartite
- reprezentare explicită stărilor şi evenimentelor dintr-un sistem
- reprezentare grafică intuitivă
- semantică formală
- expresivitate (concurenţă, nedeterminism, comunicare,sincronizare)

- Carl Adam Petri, 1962
- grafuri bipartite
- reprezentare explicită stărilor şi evenimentelor dintr-un sistem
- reprezentare grafică intuitivă
- semantică formală
- expresivitate (concurenţă, nedeterminism, comunicare,sincronizare)
- existenţa metodelor de analiză a proprietăţilor

- Carl Adam Petri, 1962
- grafuri bipartite
- reprezentare explicită stărilor şi evenimentelor dintr-un sistem
- reprezentare grafică intuitivă
- semantică formală
- expresivitate (concurenţă, nedeterminism, comunicare,sincronizare)
- existenţa metodelor de analiză a proprietăţilor
- numeroase unelte software pentru editarea/verificarea proprietăților rețelelor Petri

Domenii de aplicabilitate:

- Protocoale de comunicare, reţele
- Sisteme software si hardware
- Algoritmi distribuiţi
- Protocoale de securitate
- Biologie, Chimie, Medicină
- Economie (fluxuri de lucru)
- etc..

Retele de tip P/T

- Definiţie
- Regula de producere a tranziţiilor (comportament)
- Proprietăţi

Retele de tip P/T - Definiție

Definiție 1 O rețea Petri este un 4-uplu N=(P,T,F,W) astfel încât :

- 1. P mulţime de locaţii, T mulţime de tranziţii, $P \cap T = \emptyset$;
- 2. $F \subseteq (P \times T) \cup (T \times P)$ relația de flux;
- 3. $W: (P \times T) \cup (T \times P) \rightarrow \mathbb{N}$ ponderea arcelor $(W(x,y) = 0 \text{ ddacă } (x,y) \notin F)$.
 - $\blacksquare P = \{p_1, p_2, p_3\}$
 - $\blacksquare T = \{t_1, t_2, t_3\}$
 - $F = \{(p_1, t_1), (t_1, p_2), (t_1, p_3), (p_3, t_3), (t_3, p_1), (p_2, t_2)\}$
 - $W(p_1, t_1) = 1, W(t_1, p_2) = 1,$ $W(t_1, p_3) = 1, W(p_3, t_3) = 1,$ $W(t_3, p_1) = 1, W(p_2, t_2) = 2$

Rețele de tip P/T

Dacă $x \in P \cup T$, atunci:

- Premulţimea lui x: $\bullet x = \{y | (y, x) \in F\};$
- Postmulţimea lui x: $x \bullet = \{y | (x, y) \in F\}$.

-
$$\bullet t_1 = \{p_1\}, \bullet t_2 = \{p_2\}, \bullet t_3 = \{p_3\}$$

-
$$t_1 \bullet = \{p_2, p_3\}, t_2 \bullet = \emptyset, t_3 \bullet = \{p_1\}$$

-
$$\bullet p_1 = \{t_3\}, \bullet p_2 = \{t_1\}, \bullet p_3 = \{t_1\}$$

-
$$p_1 \bullet = \{t_1\}, p_2 \bullet = \{t_2\}, p_3 \bullet = \{t_3\}$$

Rețele de tip P/T

■ Definiție 2 O rețea este pură dacă, pentru orice $x \in P \cup T$,

$$\bullet x \cap x \bullet = \emptyset$$
.

■ **Definiție 3** O rețea este fără elemente izolate, dacă, pentru orice $x \in P \cup T$, • $x \cup x$ • $\neq \emptyset$

Marcare a unei rețele de tip P/T

Definiție 4 (Marcare, rețele marcate)

- Fie N = (P, T, F, W) o reţea P/T. O marcare a lui N este o funcţie $M: P \to \mathbb{N}$.
- Fie N = (P, T, F, W) o reţea P/T şi $M_0 : P \to \mathbb{N}$. Atunci (N, M_0) se numeşte reţea Petri marcată.

$$M = (1, 0, 0)$$

 Distribuţia punctelor în locaţiile unei reţele = marcarea reţelei (starea sistemului modelat)

- Tranziţii: reprezintă acţiuni sau evenimente din sistemul modelat
- Punctele din locaţii: pot modela resurse/valori booleene
- Locaţiile input: conţin resurse (reprezentate de punctele din locaţie) care vor fi folosite de către acţiune, precondiţii pentru producerea unui eveniment
- Ponderea unui arc input: câte resurse de un anumit tip sunt necesare producerii acţiunii
- Ponderea unui arc output: numărul de resurse de un anumit tip rezultate prin producerea acţiunii

- Producatorul (P) poate produce câte un produs (într-un buffer)
- Un consumator (C) preia câte două produse din buffer
- Stări producător: producător activ (pregătit să producă), producător în repaus.
- Evenimente: P produce un produs, C consumă produse, P redevine activ

- Producatorul (P) poate produce câte un produs (într-un buffer)
- Un consumator (C) preia câte două produse din buffer
- Stări producător: producător activ (pregătit să producă), producător în repaus.
- Evenimente: P produce un produs, C consumă produse, P redevine activ

Regula de producere a tranzițiilor

Fie N=(P,T,F,W) o reţea Petri, M o marcare a lui N şi $t\in T$ o tranziţie a lui N.

Regula de producere a tranzițiilor

Fie N=(P,T,F,W) o reţea Petri, M o marcare a lui N şi $t\in T$ o tranziţie a lui N.

■ Tranziţia t este posibilă la marcarea M ($M[t\rangle_N$) dacă $W(p,t) \leq M(p)$, pentru orice $p \in \bullet t$.

Regula de producere a tranzițiilor

Fie N=(P,T,F,W) o reţea Petri, M o marcare a lui N şi $t\in T$ o tranziţie a lui N.

- Tranziţia t este posibilă la marcarea M ($M[t\rangle_N$) dacă $W(p,t) \leq M(p)$, pentru orice $p \in \bullet t$.
- Dacă t este posibilă la marcarea M, atunci t se poate produce, rezultând o nouă marcare M' ($M[t\rangle_N M'$), unde M'(p) = M(p) W(p,t) + W(t,p), pentru toţi $p \in P$.

o tanziţie este posibilă dacă locaţiile input conţin suficiente puncte:

o tanziţie este posibilă dacă locaţiile input conţin suficiente puncte:

o tanziţie este posibilă dacă locaţiile input conţin suficiente puncte:

Producerea unei tranziţii modifică marcarea reţelei

Model producător consumator:

Model producător consumator:

Secvențe de apariție a tranzițiilor

Regula de producere a tranziţiilor se poate extinde la secvenţe de tranziţii:

Definiție 5 (secvențe de apariție)

■ Fie $\sigma = t_1 t_2 \dots t_k \in T^*$ şi M o marcare. σ se numeşte secvenţă finită de apariţie, posibilă la M, dacă există marcările M_1, M_2, \dots, M_k astfel încât:

$$M[t_1\rangle M_1[t_2\rangle M_2\dots M_{k-1}[t_k\rangle M_k$$

Se mai notează: $M[\sigma\rangle M_k$.

- Secvenţa vidă de tranziţii, notată cu ϵ , este secvenţă de apariţie posibilă la orice marcare M a reţelei, şi are loc: $M[\epsilon\rangle M$.
- O secvenţă infinită de tranziţii $\sigma = t_1, t_2, \ldots$ este secvenţă infinită de apariţie, posibilă la marcarea M, dacă: $M[t_1\rangle M_2[t_2\rangle M_3\ldots$

Notații

Fie $\gamma = (N, M_0)$ o reţea P/T marcată . Se definesc următoarele funcţii:

- \bullet $t^-: P \to \mathbb{N}, t^-(p) = W(p,t), \forall p \in P$
- \bullet $t^+: P \to \mathbb{N}, t^+(p) = W(t,p), \forall p \in P$
- lacksquare $\Delta t: P \to \mathbb{Z}$, $\Delta t(p) = W(t,p) W(p,t)$

Dacă $\sigma \in T^*$ este o secvență de tranziții, se definește $\Delta \sigma : P \to \mathbb{Z}$:

- Dacă $\sigma = \epsilon$, atunci $\Delta \sigma$ este funcția identic 0.
- Dacă $\sigma = t_1, \ldots, t_n$, atunci $\Delta \sigma = \sum_{i=1}^n \Delta t_i$.

Secvențe de apariție

Secvențe de apariție

$$\mathbf{I}_1^-(p_1) = 2, t_1^-(p_2) = 1, t_1^-(p_3) = 0$$

$$t_1^+(p_1) = 1, t_1^+(p_2) = 3, t_1^+(p_3) = 1$$

Propoziție 1 Fie t o tranziție, $\sigma \in T^*$ și M, M' marcări.

- Dacă $M[t\rangle M'$, atunci $M'=M+\Delta t$.
- Dacă $M[\sigma\rangle M'$, atunci $M'=M+\Delta\sigma$

Definiție 6 Fie $\gamma = (N, M_0)$ o rețea P/T marcată.

■ O marcare M' este accesibilă din marcarea M, dacă există o secvență finită de apariție σ astfel încât: $M[\sigma\rangle M'$.

Definiție 6 Fie $\gamma = (N, M_0)$ o rețea P/T marcată.

- O marcare M' este accesibilă din marcarea M, dacă există o secvență finită de apariție σ astfel încât: $M[\sigma\rangle M'$.
- Marcarea M este accesibilă în γ , dacă M este accesibilă din marcarea iniţială M_0 .

Definiție 6 Fie $\gamma = (N, M_0)$ o rețea P/T marcată.

- O marcare M' este accesibilă din marcarea M, dacă există o secvență finită de apariție σ astfel încât: $M[\sigma\rangle M'$.
- Marcarea M este accesibilă în γ , dacă M este accesibilă din marcarea iniţială M_0 .
- Mulţimea marcărilor accesibile dintr-o marcare M, în γ , se notează $[M\rangle_{\gamma}$ ($[M\rangle$ când este clar despre ce reţea este vorba).

Definiție 6 Fie $\gamma = (N, M_0)$ o rețea P/T marcată.

- O marcare M' este accesibilă din marcarea M, dacă există o secvență finită de apariție σ astfel încât: $M[\sigma\rangle M'$.
- Marcarea M este accesibilă în γ , dacă M este accesibilă din marcarea iniţială M_0 .
- Mulţimea marcărilor accesibile dintr-o marcare M, în γ , se notează $[M\rangle_{\gamma}$ ($[M\rangle$ când este clar despre ce reţea este vorba).
- $|M_0\rangle_{\gamma}$ se numeşte mulţimea marcărilor accesibile în reţeaua γ .

■ **Propoziție 2** Fie M o marcare și σ o secvență finită de apariție, astfel încât $M[\sigma\rangle M'$. Dacă σ' este o secvență de apariție (finită sau infinită) posibilă la marcarea M', atunci $\sigma\sigma'$ este secvență de apariție posibilă la M.

- **Propoziție 2** Fie M o marcare și σ o secvență finită de apariție, astfel încât $M[\sigma\rangle M'$. Dacă σ' este o secvență de apariție (finită sau infinită) posibilă la marcarea M', atunci $\sigma\sigma'$ este secvență de apariție posibilă la M.
- **Propoziție 3** O secvență infinită de apariție σ este posibilă la o marcare M ddacă orice prefix finit al lui σ este posibil la M.

- **Propoziție 2** Fie M o marcare și σ o secvență finită de apariție, astfel încât $M[\sigma\rangle M'$. Dacă σ' este o secvență de apariție (finită sau infinită) posibilă la marcarea M', atunci $\sigma\sigma'$ este secvență de apariție posibilă la M.
- **Propoziție 3** O secvență infinită de apariție σ este posibilă la o marcare M ddacă orice prefix finit al lui σ este posibil la M.
- **Propoziţie 4** Fie M şi \overline{M} marcări, σ o secvenţă de apariţie posibilă atât la M cât şi la \overline{M} , astfel încât: $M[\sigma\rangle M'$ şi $\overline{M}[\sigma\rangle \overline{M}'$. Atunci $M'(p)-M(p)=\overline{M}'(p)-\overline{M}(p)$, pentru orice locaţie $p\in P$.

Propoziție 5 Fie M, M' și L marcări, $\sigma \in T^*$ o secvență de tranziții, posibilă la M.

- Dacă σ finită şi $M[\sigma\rangle M'$, atunci $(M+L)[\sigma\rangle (M'+L)$.
- Dacă σ infinită și $M[\sigma)$, atunci $(M+L)[\sigma)$

Demonstrație:

- lacksquare σ finită: inducţie după $|\sigma|=n$.
- lacksquare or infinită: se arată că orice prefix finit al lui σ este posibil la M+L.

$$M = (2, 1, 1, 0)[t_1t_2\rangle(1, 0, 1, 2) = M'$$

(3, 2, 2, 0)[t₁t₂\?

Definiție 7 Fie M și M' două marcări.

- $lacksquare M \geq M'$ ddacă $M'(p) \geq M(p)$, $\forall p \in P$.
- lacksquare M > M' ddacă $M \geq M'$ și $\exists p \in P : M(p) > M'(p)$.

Propoziție 6 Fie M și M' două marcări astfel încât $M \geq M'$. Atunci orice secvență de apariție posibilă la marcarea M este posibilă și la marcarea M'.

 $M' \geq M \Longrightarrow \exists L \text{ marcare astfel încât } M' = M + L$

- $lacksquare{\bullet} \sigma \text{ infinită: } M[\sigma] \Longrightarrow M' = (M+L)[\sigma]$
- lacksquare σ finită: $M[\sigma
 angle \overline{M}$ și $M' = (M+L)[\sigma
 angle (\overline{M}+L)$

Lema 1 Fie N o reţea oarecare, $U, V \subseteq T$ astfel încât $V \bullet \cap \bullet U = \emptyset$. Dacă $\sigma \in (U \cup V)^*$ astfel încât $M[\sigma \rangle M'$, atunci $M[\sigma |_U \sigma |_V \rangle M'$.

$$t_1 \in V$$
 şi $t_2 \in U$.
 $t_1 \bullet \cap \bullet t_2 = \emptyset$
 $M[t_1t_2\rangle M'$, atunci:
 $M[t_2t_1\rangle M'$

Lema 1 Fie N o reţea oarecare, $U, V \subseteq T$ astfel încât $V \bullet \cap \bullet U = \emptyset$. Dacă $\sigma \in (U \cup V)^*$ astfel încât $M[\sigma \rangle M'$, atunci $M[\sigma |_U \sigma |_V \rangle M'$.

Demonstraţie:

Fie N o reţea oarecare, $t_1, t_2 \in T$ astfel încât $t_1 \in V$ şi $t_2 \in U$. Deci $t_1 \bullet \cap \bullet t_2 = \emptyset$. Se arată că:

$$M[t_1\rangle M_2[t_2\rangle M' \Longrightarrow M[t_2\rangle M'_2[t_1\rangle M'$$

- $lacksquare M[t_2
 angle$ (adică $\forall p\in ullet t_2: W(p,t_2)\leq M(p)$).
- Fie $M[t_2\rangle M_2'$. Se arată că $M_2'[t_1\rangle$.
- Se arată că $M[t_2\rangle M_2'[t_1\rangle M'$.

$$U = \{t_1, t_2\}, V = \{t_3, t_4\} M = (0, 1, 0, 1, 0)$$

$$U = \{t_1, t_2\}, V = \{t_3, t_4\} M = (0, 1, 0, 1, 0)$$

$$U = \{t_1, t_2\}, V = \{t_3, t_4\} M = (0, 1, 0, 1, 0)$$

$$U = \{t_1, t_2\}, V = \{t_3, t_4\} M = (0, 1, 0, 1, 0)$$

$$U = \{t_1, t_2\}, V = \{t_3, t_4\} M = (0, 1, 0, 1, 0)$$

$$U = \{t_1, t_2\}, V = \{t_3, t_4\} M = (0, 1, 0, 1, 0)$$

$$U = \{t_1, t_2\}, V = \{t_3, t_4\} M = (0, 1, 0, 1, 0)$$

$$\sigma = t_2 t_4 t_3 t_1 t_4$$

$$M = (1, 0, 1, 0) [t_2 t_4 t_3 t_1 t_4\rangle (0, 0, 2, 0, 2) = M'$$

$$M[t_2 t_1 t_4 t_3 t_4\rangle M'$$

$$U = \{t_1, t_2\}, V = \{t_3, t_4\} M = (0, 1, 0, 1, 0)$$

$$\sigma = t_2 t_4 t_3 t_1 t_4$$

$$M = (1, 0, 1, 0) [t_2 t_4 t_3 t_1 t_4\rangle (0, 0, 2, 0, 2) = M'$$

$$M[t_2 t_1 t_4 t_3 t_4\rangle M'$$

$$U = \{t_1, t_2\}, V = \{t_3, t_4\} M = (0, 1, 0, 1, 0)$$

$$\sigma = t_2 t_4 t_3 t_1 t_4$$

$$M = (1, 0, 1, 0) [t_2 t_4 t_3 t_1 t_4\rangle (0, 0, 2, 0, 2) = M'$$

$$M[t_2 t_1 t_4 t_3 t_4\rangle M'$$

$$U = \{t_1, t_2\}, V = \{t_3, t_4\} M = (0, 1, 0, 1, 0)$$

$$\sigma = t_2 t_4 t_3 t_1 t_4$$

$$M = (1, 0, 1, 0) [t_2 t_4 t_3 t_1 t_4\rangle (0, 0, 2, 0, 2) = M'$$

$$M[t_2 t_1 t_4 t_3 t_4\rangle M'$$

$$U = \{t_1, t_2\}, V = \{t_3, t_4\} M = (0, 1, 0, 1, 0)$$

$$\sigma = t_2 t_4 t_3 t_1 t_4$$

$$M = (1, 0, 1, 0) [t_2 t_4 t_3 t_1 t_4\rangle (0, 0, 2, 0, 2) = M'$$

$$M[t_2 t_1 t_4 t_3 t_4\rangle M'$$

$$U = \{t_1, t_2\}, V = \{t_3, t_4\} M = (0, 1, 0, 1, 0)$$

$$\sigma = t_2 t_4 t_3 t_1 t_4$$

$$M = (1, 0, 1, 0) [t_2 t_4 t_3 t_1 t_4\rangle (0, 0, 2, 0, 2) = M'$$

$$M[t_2 t_1 t_4 t_3 t_4\rangle M'$$

$$U = \{t_1, t_2\}, V = \{t_3, t_4\} M = (0, 1, 0, 1, 0)$$

$$\sigma = t_2 t_4 t_3 t_1 t_4$$

$$M = (1, 0, 1, 0) [t_2 t_4 t_3 t_1 t_4\rangle (0, 0, 2, 0, 2) = M'$$

$$M[t_2 t_1 t_4 t_3 t_4\rangle M'$$

Fie $\gamma = (M, M_0)$ o reţea Petri marcată.

Definiție 8 (mărginire)

Fie $\gamma = (M, M_0)$ o reţea Petri marcată.

Definiție 8 (mărginire)

O locaţie p este mărginită dacă:

$$(\exists n \in \mathbb{N})(\forall M \in [M_0\rangle)(M(p) \leq n)$$

Fie $\gamma = (M, M_0)$ o reţea Petri marcată.

Definiție 8 (mărginire)

O locație p este mărginită dacă:

$$(\exists n \in \mathbb{N})(\forall M \in [M_0\rangle)(M(p) \leq n)$$

■ Reţeaua marcată γ este mărginită dacă orice locaţie $p \in P$ este mărginită.

Fie $\gamma = (M, M_0)$ o reţea Petri marcată.

Definiție 8 (mărginire)

O locaţie p este mărginită dacă:

$$(\exists n \in \mathbb{N})(\forall M \in [M_0\rangle)(M(p) \leq n)$$

- Reţeaua marcată γ este mărginită dacă orice locaţie $p \in P$ este mărginită.
- Reţeaua N este structural mărginită, dacă există o marcare M astfel încât (N,M) este mărginită.

Fie $\gamma = (M, M_0)$ o reţea Petri marcată.

Definiție 8 (mărginire)

O locaţie p este mărginită dacă:

$$(\exists n \in \mathbb{N})(\forall M \in [M_0\rangle)(M(p) \leq n)$$

- Reţeaua marcată γ este mărginită dacă orice locaţie $p \in P$ este mărginită.
- Reţeaua N este structural mărginită, dacă există o marcare M astfel încât (N,M) este mărginită.

reţeaua este mărginită: $M(p) \leq 1, \forall p \in P$

reţeaua este mărginită: $M(p) \leq 1, \forall p \in P$

reţeaua este mărginită: $M(p) \leq 1, \forall p \in P$

reţeaua este nemărginită:

 p_2 poate conţine o infinitate de puncte!

■ Propoziţie 7 O reţea P/T marcată $\gamma = (N, M_0)$ este mărginită ddacă mulţimea $[M_0\rangle$ este finită.

■ Propoziţie 7 O reţea P/T marcată $\gamma = (N, M_0)$ este mărginită ddacă mulţimea $|M_0\rangle$ este finită.

 (\Longrightarrow) Fie n astfel încât $(\forall M \in [M_0\rangle)(\forall p \in P)(M(p) \leq n)$. Numărul maxim de marcări este $(n+1)^{|P|}$.

 (\longleftarrow) Se consideră $n = max\{M(p)|M \in [M_0), p \in P\}.$

■ Propoziţie 7 O reţea P/T marcată $\gamma = (N, M_0)$ este mărginită ddacă mulţimea $|M_0\rangle$ este finită.

 (\Longrightarrow) Fie n astfel încât $(\forall M \in [M_0\rangle)(\forall p \in P)(M(p) \leq n)$. Numărul maxim de marcări este $(n+1)^{|P|}$.

 (\longleftarrow) Se consideră $n = max\{M(p)|M \in [M_0), p \in P\}.$

■ Propoziţie 8 Dacă $\gamma=(N,M_0)$ este mărginită, nu există două marcări $M_1,M_2\in[M_0\rangle$ astfel încât $M_1[*\rangle M_2$ şi $M_2>M_1$.

■ Propoziţie 7 O reţea P/T marcată $\gamma = (N, M_0)$ este mărginită ddacă mulţimea $|M_0\rangle$ este finită.

 (\Longrightarrow) Fie n astfel încât $(\forall M \in [M_0\rangle)(\forall p \in P)(M(p) \leq n)$. Numărul maxim de marcări este $(n+1)^{|P|}$.

 (\longleftarrow) Se consideră $n = max\{M(p)|M \in [M_0), p \in P\}.$

■ Propoziţie 8 Dacă $\gamma=(N,M_0)$ este mărginită, nu există două marcări $M_1,M_2\in[M_0\rangle$ astfel încât $M_1[*\rangle M_2$ şi $M_2>M_1$.

Dacă $M_1[\sigma\rangle M_2$ și $M_2>M_1\Longrightarrow M_2[\sigma\rangle M_3$ (prop. 6) și $M_3>M_2$ (prop. 4). Deci $M_3[\sigma\rangle M_4,\,M_4>M_3$, etc.

Proprietăți: pseudo-viabilitate

- Definiţie 9 (pseudo-viabilitate)
 - O tranziţie $t \in T$ este pseudo-viabilă din marcarea M, dacă există o marcare $M' \in [M]$ astfel încât M'[t].
 - O tranziţie $t \in T$ este pseudo-viabilă dacă este pseudo-vaibilă din M_0 (există o marcare accesibilă $M \in [M_0\rangle$ astfel încât $M[t\rangle$). O tranziţie care nu este pseudo-viabilă se numeşte moartă.
 - Reţeaua marcată γ este pseudo-viabilă dacă toate tranziţiile sale sunt pseudo-viabile.

- t₁ este tranziţie moartă
- t₂ pseudo-viabilă
- t₃ este tranziţie moartă

Proprietăți: blocaje

Fie $\gamma = (N, M_0)$ o reţea Petri marcată.

Definiție 10 (blocaje)

- O marcare M a rețelei marcate γ este moartă dacă nu există o tranziție $t \in T$ astfel încât M[t).
- Reţeaua γ este fără blocaje, dacă nu există marcări accesibile moarte.

■ Marcarea (0,0,0,1,0) este moartă, deci reţeaua are blocaje.

Proprietăți: viabilitate

Definiție 11 (viabilitate)

Fie N=(P,T,F,W) o rețea de tip P/T și $\gamma=(N,M_0)$ o rețea Petri marcată.

- O tranziţie $t \in T$ este viabilă dacă $\forall M \in [M_0\rangle, t$ este pseudo-viabilă din M ($\exists M' \in [M\rangle$ astfel încât $M'[t\rangle$).
- Reţeaua marcată γ este viabilă dacă orice tranziţie $t \in T$ este viabilă.
- reţeaua N este structural viabilă dacă există o marcare M astfel încât (N,M) este viabilă.

Reţea pseudo-viabilă, viabilă si fără blocaje.

- $\blacksquare t_1, t_2, t_3$: nu sunt viabile
- $\blacksquare t_4, t_5$: viabile
- reţeaua este pseudo-viabilă

Reversibilitate

Definiție 12 Rețeaua marcată γ este reversibilă dacă marcarea sa inițială este accesibilă din orice marcare $M \in [M_0\rangle$.

Reversibilitate

Definiție 12 Rețeaua marcată γ este reversibilă dacă marcarea sa inițială este accesibilă din orice marcare $M \in [M_0\rangle$.

Fie $\gamma = (N, M_0)$ o reţea Petri marcată.

■ **Propoziţie 9** Orice reţea marcată viabilă este şi pseudo-viabilă.

- Propoziţie 9 Orice reţea marcată viabilă este şi pseudo-viabilă.
- **Propoziție 10** Orice rețea marcată viabilă, având cel puţin o tranziție, este fără blocaje.

- Propoziţie 9 Orice reţea marcată viabilă este şi pseudo-viabilă.
- Propoziţie 10 Orice reţea marcată viabilă, având cel puţin o tranziţie, este fără blocaje.
- **Propoziţie 11** Dacă o reţea fără locaţii izolate este viabilă, atunci orice locaţie poate fi marcată, din orice marcare accesibilă.

- Propoziţie 9 Orice reţea marcată viabilă este şi pseudo-viabilă.
- **Propoziție 10** Orice rețea marcată viabilă, având cel puţin o tranziție, este fără blocaje.
- Propoziţie 11 Dacă o reţea fără locaţii izolate este viabilă, atunci orice locaţie poate fi marcată, din orice marcare accesibilă.
- **Propoziţie 12** O reţea marcată reversibilă este viabilă ddacă este pseudo-viabilă.

- Propoziţie 9 Orice reţea marcată viabilă este şi pseudo-viabilă.
- **Propoziție 10** Orice rețea marcată viabilă, având cel puțin o tranziție, este fără blocaje.
- Propoziţie 11 Dacă o reţea fără locaţii izolate este viabilă, atunci orice locaţie poate fi marcată, din orice marcare accesibilă.
- **Propoziţie 12** O reţea marcată reversibilă este viabilă ddacă este pseudo-viabilă.
- Propoziție 13 O rețea marcată reversibilă este fără blocaje.

- Q: orice reţea pseudo-viabilă este şi viabilă?
- Q: orice reţea pseudo-viabilă este şi fără blocaje?
- Q: orice reţea viabilă este şi reversibilă ?

- Q: orice reţea pseudo-viabilă este şi viabilă?
- Q: orice reţea pseudo-viabilă este şi fără blocaje?
- Q: orice reţea viabilă este şi reversibilă ?

- Q: orice reţea pseudo-viabilă este şi viabilă?
- Q: orice reţea pseudo-viabilă este şi fără blocaje?
- Q: orice reţea viabilă este şi reversibilă ?

- Q: orice reţea pseudo-viabilă este şi viabilă?
- Q: orice reţea pseudo-viabilă este şi fără blocaje?
- Q: orice reţea viabilă este şi reversibilă ?

Reţea pesudo-viabilă (toate tranziţiile pseudo-viabile). Reţeaua are blocaje (marcarea (0,0,1,1) este moartă). Reţeaua nu este viabilă!

■ Reţea viabilă, care nu este reversibilă:

 $(1,0,0,0)[t_2\rangle(0,1,1,0)[t_1\rangle(1,0,1,0)[t_3\rangle(1,0,0,1).$ Marcarea iniţială (1,0,0,0) nu este accesibilă din (1,0,0,1).

Q: Există o relaţie între proprietatea de mărginire si cea de viabilitate?

Q: Există o relaţie între proprietatea de mărginire si cea de viabilitate?

Q: Există o relaţie între proprietatea de mărginire si cea de viabilitate?

$$(1,0)[t_1
angle[t_2
angle(0,1)[t_1
angle[t_2
angle(0,1)...$$

Retea mărginită și este viabilă

Q: Există o relaţie între proprietatea de mărginire si cea de viabilitate?

$$(1,0)[t_1
angle[t_2
angle(0,1)[t_1
angle[t_2
angle(0,1)...$$

Retea mărginită și este viabilă

Q: Există o relaţie între proprietatea de mărginire si cea de viabilitate?

$$(1,0)[t_1\rangle[t_2\rangle(0,1)[t_1\rangle[t_2\rangle(0,1)...$$

Retea mărginită și este viabilă

Retea nemărginită, este viabilă

Q: Există o relaţie între proprietatea de mărginire si cea de viabilitate?

$$(1,0)[t_1\rangle[t_2\rangle(0,1)[t_1\rangle[t_2\rangle(0,1)...$$

Retea mărginită și este viabilă

Retea nemărginită, este viabilă

Reţea nemărginită (locaţia p_4), neviabilă (M=(0,0,0,2,1) şi t_1)

Reţea nemărginită (locaţia p_4), neviabilă (M=(0,0,0,2,1) şi t_1)

Teorema 1 Orice rețea conexă (fără elemente izolate) mărginită și viabilă este tare conexă.

Teorema 1 Orice rețea conexă (fără elemente izolate) mărginită și viabilă este tare conexă.

Demonstrație: Se arată că pentru orice $(x, y) \in F$, există un drum de la y la x.

```
Caz 1: x \in P, y \in T.

Fie V = \{t \in T | \text{există drum de la y la t}\} (y \in V) U = \{t \in T | \text{nu există drum de la y la t}\} V \bullet \cap \bullet U = \emptyset.
```


Teorema 1 Orice rețea conexă (fără elemente izolate) mărginită și viabilă este tare conexă.

Demonstrație: Se arată că pentru orice $(x, y) \in F$, există un drum de la y la x.

```
Caz 1: x \in P, y \in T.

Fie V = \{t \in T | \text{există drum de la y la t}\} (y \in V) U = \{t \in T | \text{nu există drum de la y la t}\} V \bullet \cap \bullet U = \emptyset.
```


Teorema 1 Orice rețea conexă (fără elemente izolate) mărginită și viabilă este tare conexă.

Demonstrație: Se arată că pentru orice $(x, y) \in F$, există un drum de la y la x.

Caz 1: $x \in P, y \in T$. Fie $V = \{t \in T | \text{există drum de la y la t}\}$ $(y \in V)$ $U = \{t \in T | \text{nu există drum de la y la t}\}$ $V \bullet \cap \bullet U = \emptyset$.

Reţeaua nu este tare conexă ⇒ nu este viabilă sau mărginită:

Reciproca teoremei nu este adevărată: rețeaua este tare conexă, dar nu este viabilă.

