# 基于点对匹配的自动点云拼接

# 目录

1背景

2 算法实现

3 实验结果

# 点云拼接图示











# 目录

11背景

2 算法实现

3 实验结果

#### 用于三维扫描仪点云重建系统

算法实现

实验

结果

考古

三维扫描仪应用普及

医疗

娱乐

制造

教育

目前点云拼接算法不足

标定设备

增加成本

应用受限

自动拼接算法

SHOT

需要北极方向一致

PCA

需要模型非常相似

ICP及变种

效率和正确率都 可提高

...

# 目录

1背景

2 算法实现

3 实验结果

### 点云拼接通过两步配准实现

算法 实现

实验结果

总结



初始配准



二次配准

#### 初始配准——概述

算法 实现

实验结果

总结



二次高斯 曲率极值 采样 主曲率匹配

TCLP-SVD

Spin Images 匹配

# 算法 实现

实验结果

总结

#### 初始配准——向下采样

#### 向下采样

选取部分具有代表性的点,减少计算量

#### 二次高斯曲率极值采样

- 1. 选取点云表面的局部高斯曲率极大值或极小值进行初始采样
- 2. 在初始采样的基础上,选取曲率分布范围广,数量小的部分点集

# 算法 实现

实验结果

总结

#### 初始配准——向下采样





优点

简单、鲁棒性好

缺点

不适用于曲率变化较小模型

#### 初始配准——匹配

算法 实现

主曲率匹配

实验结果

总结

Spin Images匹配

# 算法 实现

实验结果

总结

#### 初始配准——主曲率匹配

匹配

$$/K1_p - K1_q / < D$$
,  $/K2_p - K2_q / < D$ 

K1和K2表示主曲率 下标p和q分别表示点云 D是给定阈值

# 算法 实现

实验结果

总结

#### 初始配准——主曲率匹配

#### 区域三角形去噪





黄色的点表示初始配准 的候选匹配点对 虚线表示长度不符合

# 算法 实现

实验结果

总结

### 初始配准——Spin Images匹配

Spin Images

反映局部点集分布特征

算法 实现

实验结果

总结

### 初始配准——Spin Images匹配

**Spin Images** 





模型采样点的及Spin Images:

左边image像素为200×200,右边images像素为50×50

# 算法 实现

实验结果

总结

#### 初始配准——TLCP-SVD

#### LCP(Largest Common Pointset)思想

- 1 选取部分点计算变换
- ② 计算此变换下模型的匹配度,即经该变换后,P与Q的最近点对满足阈值的个数
- 3 选取阈值内匹配度最好的变换关系

#### TLCP-SVD(Triangle LCP-SVD)

- 1 利用三角形稳定性,选取3个点对,用SVD分解求解空间变换
- 2 用P的随机采样模型计算匹配度
- 3 选取阈值内匹配度最好的变换关系

# 算法

实现

实验结果

总结

#### 二次配准——概述



均匀采样

随机采样

其他采样

最近点匹配

法线到面求交

SVD分解法

**ICRP** 

法线投射双向插补

LCSNS (局部坐标系法系投射)

# 算法 实现

实验结果

总结

#### 二次配准——ICP

**Iterative Closest Point** 

中心思想

反复查找最近点对集,计算变换,直至满足阈值或其他迭代结束条件

流程
果样 → 查找最近点对 → 计算变换 → 继续迭代
结束

#### 二次配准——局部坐标系法线投射

算法 实现

实验结果



法线投射

算法 实现

实验结果

总结

#### 二次配准——局部坐标系法线投射

主要思想



构建局部曲面块 → 法线与曲面求交

# 算法 实现

实验结果

总结

#### 二次配准——局部坐标系法线投射

主要步骤

构建局部坐标系 → 控制点采样

→ 法线投射求交

构建局部坐标系

随机选点 → 查找最近点集 → 用PCA建构局部坐标系

算法 实现

实验结果

总结

#### 二次配准——局部坐标系法线投射

#### 控制点采样

P的控制点



Q的控制点

取Q的控制点在P上的最近点

# 目录

1背景

2 算法实现

3 实验结果

算法 实现

# 实验 结果

总结

### happy扫描面配准结果





169与192初始配准

169与192二次配准

### happy扫描面配准结果

算法实现

# 实验 结果



192与216初始配准



192与216二次配准

# 算法实现

# 实验结果

总结

### bunny扫描面配准结果



top3与045初始配准



top3与045二次配准

算法实现





A) happy初始配准



C) dragon初始配准



B) happy二次配准



D) dragon二次配准

算法 实现

# 实验 结果



E) bunny初始配准



F) bunny二次配准

# 算法实现

# 实验结果

总结

#### 不同曲率变化程度点云初始配准时间对比



dragon表面曲率变化 较大

bunny表面曲率变化 较小



基于主曲率的配准适 用于表面曲率变化较 大的点云

基于Spin Images的配 准适用于表面曲率变 化较小的点云

# 算法实现

# 实验 结果

总结

#### 二次配准运行时间





LCSNS效率较高,且 相对于ICRP较稳定

# 算法 实现

# 实验 结果

总结

#### 二次配准迭代次数





LCSNS迭代次数少, 收敛快

# 目录

1背景

2 算法实现

3 实验结果

算法实现

实验结果

总结

#### 字现点云拼接主要算法

提出两种点云初始配准算法

实现ICRP算法,提出局部坐标系法线投影算法

实验证明可行性

#### ■论文工作有待完整

初始配准只能处理表面凹凸不均的模型

点云拼接系统的非主体部分未实现,如界面

没做点云预处理和拼接后的去重

# 谢谢!

# 附录

一次高斯曲率极值采样点的高斯曲率分布

生成Spin Image

**ICRP** 

双三次B样条曲面

直线与曲面求交

获取B样条曲面控制点:投影和最近点

#### dragon一次高斯曲率极值采样点的高斯曲率分布





#### 生成Spin Image

- 1 通过带法线的点建立圆柱坐标系
- 2 计算周围点到切平面距离( $\alpha$ )和到圆柱轴的距离( $\beta$ )



#### ICRP(Iterative Closest Reciprocal Point)



#### 双三次B样条曲面公式

$$S(u,v) = UNDN^{T}V^{T} \quad (0 \le u \le 1, \ 0 \le v \le 1)$$

$$N = \frac{1}{6} \begin{bmatrix} 1 & 4 & 1 & 0 \\ -3 & 0 & 3 & 0 \\ 3 & -6 & 3 & 0 \\ -1 & 3 & -3 & 1 \end{bmatrix}$$

$$D = \begin{bmatrix} P_{00} & P_{01} & P_{02} & P_{03} \\ P_{10} & P_{11} & P_{12} & P_{13} \\ P_{20} & P_{21} & P_{22} & P_{23} \\ P_{30} & P_{31} & P_{32} & P_{33} \end{bmatrix}$$

#### 直线与双三次B样条曲面求交

$$\begin{cases} x_0 + tn_x = S(u, v)_x = UND_x N^T V^T \\ y_0 + tn_y = S(u, v)_y = UND_y N^T V^T \\ z_0 + tn_z = S(u, v)_z = UND_z N^T V^T \\ \Phi(x) = x - (DF(x))^{-1} F(x) \end{cases}$$

$$DF(x) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \dots & \frac{\partial f_1}{\partial x_N} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \dots & \frac{\partial f_2}{\partial x_N} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_N}{\partial x_1} & \frac{\partial f_N}{\partial x_2} & \dots & \frac{\partial f_N}{\partial x_N} \end{bmatrix}$$

#### 二次配准时间对比





#### 二次配准迭代次数对比



