Deep & wide contextual bandits

Three directions

1) Develop library for implementing deep and wide contextual bandits

2) Use this library to demonstrate performance enhancements over deep-only contextual bandits for some problem

3) Outperform production model for Levi's / Dockers email marketing

Library

Several implementations developed;
Tengfei's version seems most comprehensive and versatile.

- Multiple enhancements over space bandits:
 - capability to include wide part in models;
 - additional action selection algorithms (LinUCB, ε -greedy);
 - GPU support for neural network and action selection;
 - simple, logical syntax: easier to build and iterate on models.

Levi's / Dockers marketing

- Applied deep and wide model + several alternative models:
 - user dictionary;discussed in previous demos

- grid sorting (next slide).
- Compared performance of these models to production model used for Levi's / Dockers email marketing

Grid sorting

Model comparison

All models, except deep only and wide only, outperform production model on accuracy, precision, and recall

^{*} Deep & wide 1 – User id embeddings crossed with categorical features in wide part Deep & wide 2 – Only user id embeddings in wide part

When to use deep and wide bandits

 Enhancement from wide part: variability in optimal action for users with similar feature values

	Grid sorting	User
	ε = 0.33	dictionary
Accuracy	0.86	0.86
Precision	0.60——	→ 0.68
Recall	0.57	→ 0.60

Balance between adding more features to reduce variability in optimal action or adding wide part to memorize user behavior Enhancement from exploration: under-explored action space, e.g., optimal action partially determined by option features, not user features

Recommender systems: a user likes horror, but reaction to a specific film is determined by features of that film.

Dockers email campaigns: user response determined almost exclusively by user features (especially retention and frequency scores), not by features of specific campaign.