Package 'MultiGroupO'

July 8, 2024

Type Package

Title MultiGroup Method and Simulation Data Analysis

Version 0.4.0

Maintainer Carolina Millap/an <cayoya19@gmail.com>

Description Two method new of multigroup and simulation of data.

The first technique called multigroup PCA (mgPCA) this multivariate exploration approach that has the idea of considering the structure of groups and / or different types of variables. On the other hand, the second multivariate technique called Multigroup Dimensionality

Reduction (MDR) it is another multivariate exploration method that is based on projections. In addition, a method called Single Dimension Exploration (SDE) was incorporated for to analyze the exploration of the data. It could help us in a better way to observe the behavior of the multigroup data with certain variables of interest.

License GPL-3

Encoding UTF-8

Imports mvtnorm, rlist, expm, stats, ggplot2, gridExtra, cowplot, plsgenomics, gplots, ggrepel, qgraph, mgm,lemon

Suggests knitr, rmarkdown

ByteCompile yes

VignetteBuilder knitr

RoxygenNote 7.2.3

NeedsCompilation no

Author Carolina Millap/'an [aut, cre],

Esteban Vegas [aut] (https://orcid.org/0000-0002-6869-4075), Ferran Reverter [aut] (https://orcid.org/0000-0002-9489-3350), Josep M Oller [aut] (https://orcid.org/0000-0002-9643-4406), Joel Mu/~noz [aut] (https://orcid.org/0000-0001-6767-4956)

Repository CRAN

Date/Publication 2024-07-07 23:20:03 UTC

2 BIplot

Contents

BIplot																					2
fun.sim																					3
$mdr \ \dots \ .$																					4
mgpca																					4
new.cov																					5
pca																					6
sde.method																					7

Index 8

BIplot

biplot methods

Description

biplot methods

Usage

```
BIplot(
  variates,
  loadings,
  prop_expl_var,
  comp = c(1, 2),
  group = NULL,
  rownamevar = T,
  rownameload = T
)
```

Arguments

variates is the size of groups loadings is a vector of classes

prop_expl_var data set

comp component numeric group is a vector of groups

rownamevar is a logical vector where TRUE is the label of the observations, if is FALSE, is

index

rownameload is a logical vector where TRUE is the label of the vectors of loadings, if is

FALSE, is index.

Value

return an grafics.

fun.sim 3

Examples

fun.sim Simulation function of quantitative multigroup data under a multivariate normal distribution

Description

Simulation function of quantitative multigroup data under a multivariate normal distribution

Usage

```
fun.sim(g, mean1, d, n.var, sds2, corr)
```

Arguments

g	An vector of the size of each group
mean1	An vector of the population means structure
d	distance d for the structure of population means
n.var	2x1 dimension vector whose first component is the number of random variables to simulate and the second component number of noise variables to simulate
sds2	An vector of the variances to simulate for each group noise variables
corr	An vector of the correlation to simulate for each group and noise variables

Value

return an grafics

Examples

```
fun.sim(g=c(20,20),mean1=2,d=0,sds2=c(1,1,1),corr=c(0.5,0.5,0),n.var=c(50,1))
```

4 mgpca

mdr	Performs a Multigroup Dimensionality Reduction (MDR) analysis in
	the given multigroup data matrix. Show MDR graphical output.

Description

Performs a Multigroup Dimensionality Reduction (MDR) analysis in the given multigroup data matrix. Show MDR graphical output.

Usage

```
mdr(group, data.x, c, Plot = T)
```

Arguments

group is a vector of classes
data.x quantitative data set
c component numeric
Plot grafics output of MDR

Value

return an grafics.

Examples

```
 \begin{split} & sim.list < -fun.sim(g = c(50,50,50), mean 1 = 2, d = 0, sds 2 = c(1,1,1,1), \\ & corr = c(0.5,0.5,0.5,0), n.var = c(30,30)) \\ & mdr(group = as.factor(sim.list $grp), \\ & data.x = sim.list $`lisx`, c = 2) \end{split}
```

mgpca

Performs a Multigroup PCA analysis in the given multigroup data matrix. Show mgpca graphical output.

Description

Performs a Multigroup PCA analysis in the given multigroup data matrix. Show mgpca graphical output.

new.cov 5

Usage

```
mgpca(
  mat.to.diag,
  mat.x,
  cls,
  Plot = TRUE,
  ncomp = 2,
  center = TRUE,
  scale = TRUE
)
```

Arguments

mat.to.diag	is a matrix with the data
mat.x	is a vector of classes
cls	group
Plot	grafics output of mgpca
ncomp	number of component
center	is a logical vector where TRUE is center (whether the variables should be shifted to be zero centered), if is FALSE, is original data.
scale	is a logical vector where TRUE is scale (indicating whether the variables should

Value

If simplify == TRUE class values. If simplify == FALSE, the result is a list of length nsim data.tables.

Examples

```
library(plsgenomics)
data(SRBCT)
mydata<-SRBCT$X
mydata<-mydata[1:50,1:5]
groups<-as.factor(SRBCT$Y)[1:50]
mat.to.diag1<-new.cov(x=mydata,cls=groups,A=diag(ncol(mydata)))
mgpca(mat.to.diag=mat.to.diag1,mat.x=as.matrix(mydata),
cls=groups,Plot=TRUE,ncomp=2,center = TRUE,scale = TRUE)</pre>
```

be scaled), if is FALSE, is original data.

new.cov

Function for the new covariance matrix in the multigroup PCA method

Description

Generates covariance matrix...

6 pca

Usage

```
new.cov(x, cls, A)
```

Arguments

x is a matrix with the data cls is a vector of classes

A is a symmetric and positive definite matrix associated to inner product respect

to the base of its vectorial space.

Value

return an grafics.

Examples

```
library(plsgenomics)
data(SRBCT)
mydata<-SRBCT$X
mydata<-mydata[1:50,1:20]
groups<-as.factor(SRBCT$Y)[1:50]
new.cov(x=mydata,cls=groups,A=diag(ncol(mydata)))</pre>
```

рса

Performs a principal components analysis in the given data matrix. Show PCA graphical output.

Description

Performs a principal components analysis in the given data matrix. Show PCA graphical output.

Usage

```
pca(datos, grupos, Plot = TRUE, center = TRUE, scale = TRUE)
```

Arguments

datos is a matrix with the data grupos is a vector of classes

Plot vector logic for grafic center data set center by columns scale data set scaled by columns

Value

return an grafics.

sde.method 7

Examples

```
library(plsgenomics)
data(SRBCT)
mydata<-SRBCT$X
mydata<-mydata[1:30,1:20]
groups<-as.factor(SRBCT$Y)[1:30]
pca(datos=mydata,grupos=groups,Plot=TRUE,center=TRUE,scale=TRUE)</pre>
```

sde.method

Performs a Single Dimension Exploration (SDE) analysis in the given multigroup data matrix. Show SDE graphical output.

Description

Performs a Single Dimension Exploration (SDE) analysis in the given multigroup data matrix. Show SDE graphical output.

Usage

```
sde.method(mydata, groups, plt = FALSE)
```

Arguments

mydata data set

groups is a vector of classes

plt grafics

Value

return an grafics.

Examples

```
 \begin{aligned} & sim.list2 <- fun.sim(g=c(20,50,10),mean1=0.5,d=0,sds2=c(1,1,1,1),corr=c(0.1,0.5,0.5,0),\\ & n.var=c(20,20))\\ & datos2 <- as.data.frame(sim.list2$x)\\ & datos2 <- subset(datos2,select=-grp)\\ & grupos <- sim.list2$grp\\ & grupos<-factor(grupos,labels=c(1,2,3))\\ & sde.method(mydata=datos2,groups=grupos,plt=FALSE) \end{aligned}
```

Index

```
BIplot, 2
fun.sim, 3
mdr, 4
mgpca, 4
new.cov, 5
pca, 6
sde.method, 7
```