INSTITUTO FEDERAL DO CEARÁ-IFCE CAMPUS FORTALEZA DEPARTAMENTO DE TELEMÁTICA CURSO 01502-ENGENHARIA DE COMPUTAÇÃO

Semestre 9

Cód.	Disciplina	Créditos		Horas	Nat.	Pré-
		Teóricos	Práticos			requisitos
CEME.157	Laboratório de Automação Industrial	2		40	OPT	TELM.094,
						TELM.078
TELM.082	Inteligência Computacional	4	-	80	OPT	TELM.056
TELM.083	Programação Paralela e Distribuída	2	2	80	OBR	TELM.074
TELM.084	Introdução à Automação Industrial e	4		80	OBR	TELM.092,
	Controle					TELM.078
TELM.085	Visão Computacional	2	2	80	OPT	TELM.068,
						TELM.078
TELM.131	Filtros Digitais	4		80	OPT	
TELM.098	Arquitetura de Software	4		80	OPT	TELM.073
	TOTAL	22	4	520		

SUMÁRIO

DISCIPLINA: LABORATORIO DE AUTOMAÇAO INDUSTRIAL	1
DISCIPLINA: INTELIGÊNCIA COMPUTACIONAL	3
DISCIPLINA: PROGRAMAÇÃO PARALELA E DISTRIBUIDA	5
DISCIPLINA: INTRODUÇÃO A AUTOMAÇÃO INDUSTRIAL E CONTROLE	7
DISCIPLINA: VISÃO COMPUTACIONAL	
DISCIPLINA: FILTROS DIGITAIS	11
DISCIPLINA: ARQUITETURA DE SOFTWARE	

PROGRAMA DE UNIDADE DIDÁTICA - PUD

DISCIPLINA: LABORATÓRIO DE AUTOMAÇÃO INDUSTRIAL			
Código:	CEME.157		
Carga Horária:	40		
Número de Créditos:	2		
Código pré-requisito:	TELM.094, TELM.078,		
Semestre:	9		
Nível:	Bacharelado		
Nível:	Bacharelado		

EMENTA

Controladores Lógicos Programáveis (CLP); Programação LADDER; Desenvolvimento de Aplicativos utilizando LADDER; Redes e protocolos industriais; Sistemas SCADA; Desenvolvimento de Aplicativos SCADA.

OBJETIVO

Implementar em laboratório sistemas de controle baseados em CLP, redes industriais e sistemas SCADA para sistemas de manufatura e controle de processos.

PROGRAMA

Unidade 1: Controladores Lógicos Programáveis

INSTITUTO FEDERAL DO CEARÁ-IFCE CAMPUS FORTALEZA DEPARTAMENTO DE TELEMÁTICA CURSO 01502-ENGENHARIA DE COMPUTAÇÃO

Programação LADDER;

Desenvolvimento de Aplicativos utilizando LADDER.

Unidade 2: Redes Industriais

Protocolos industriais.

Unidade 3: SCADA

Características dos sistemas SCADA;

Interface homem-máquina gráfica;

Desenvolvimento de Aplicativos SCADA.

METODOLOGIA DE ENSINO

Aulas práticas em laboratório de automação e controle de processos.

Relatórios de projetos práticos.

AVALIAÇÃO

A avaliação é realizada de forma processual e cumulativa. A saber: avaliações práticas no laboratório. A freqüência é obrigatória, respeitando os limites de ausência previstos em lei.

BIBLIOGRAFIA BÁSICA

D'AZZO, John J.; HOUPIS, Constantine H. **Análise e projeto de sistemas de controle lineares**. Rio de Janeiro (RJ): Guanabara, 1988. 660 p.

DORF, Richard C.; BISHOP, Robert H. **Sistemas de controle modernos**. 8.ed. Rio de Janeiro (RJ): LTC, 2001. 659 p.

OGATA, Katsuhiko. **Projeto de sistemas lineares de controle com matlab**. Rio de Janeiro (RJ): Prentice-Hall do Brasil, 1996. 202 p.

SILVEIRA, Paulo Rogério da; SANTOS, Winderson E. dos. **Automação e controle discreto**. São Paulo (SP): Érica, 2002. 229 p.

BIBLIOGRAFIA COMPLEMENTAR

CARLSON, A. Bruce. **Communication systems:** an introduction to signals and noise in electrical communication. 3.ed. Boston (EUA): Irvin/McGraw-Hill, 1986. 686 p.

NATALE, Ferdinando. **Automação industrial**. 4.ed. São Paulo (SP): Érica, 2002. 234 p. (Série Brasileira de Tecnologia).

SPIEGEL, Murray R. **Transformadas de Laplace**. Rio de Janeiro (RJ): Makron Books do Brasil, 1971. 344 p. (Coleção Schaum).

TOLIYAT, Hamid A.; CAMPBELL, Steven. **DSP - Based electromechanical motion control**. Boca Raton (EUA): CRC, 2004. 344 p.

Coordenador do Curso	Setor Pedagógico

INSTITUTO FEDERAL DO CEARÁ-IFCE CAMPUS FORTALEZA DEPARTAMENTO DE TELEMÁTICA CURSO 01502-ENGENHARIA DE COMPUTAÇÃO

PROGRAMA DE UNIDADE DIDÁTICA - PUD

DISCIPLINA: INTELIGÊNCIA COMPUTACIONAL		
Código:	TELM.082	
Carga Horária:	80	
Número de Créditos:	4	
Código pré-requisito:	TELM.056	
Semestre:	9	
Nível:	Bacharelado	

EMENTA

Conceito de IA., Histórico e Metas, Agentes Inteligentes, Solução de Problemas, Busca com ou sem informação, Heurísticas, Aperfeiçoamento Iterativo, Busca local e em Feixe (Algoritmos Genéticos), Problemas de Satisfação de Restrições, Busca Competitiva e Jogos, Sistemas Lógicos. Conhecimento e Raciocínio. Sistemas Baseados em Conhecimento. Planejamento. Incerteza e Imprecisão, Lógica Nebulosa. Probabilidade e Teoria da Decisão. Aprendizado Simbólico e Conexionista. Redes Neurais Artificiais. Linguagem e Comunicação. Percepção. Robótica. Questões Filosóficas.

OBJETIVO

Esta disciplina deve fornecer aos alunos os conceitos fundamentais de inteligência artificial/computacional permitindo que os mesmos possuam conhecimentos necessários para o aprofundamento em qualquer campo da área e que possam desenvolver métodos, ferramentas e aplicações inteligentes.

PROGRAMA

Unidade 1: 1.1 Conceito de IA. 1.2 Histórico e Metas. 1.3 Agentes Inteligentes. Unidade 2: 2.1 Solução de Problemas. 2.2 Busca com ou sem informação. 2.3 Heurísticas. 2.4 Aperfeiçoamento Iterativo. 2.5 Busca local e em Feixe (Algoritmos Genéticos). 2.6 Problemas de Satisfação de Restrições. 2.7 Busca Competitiva e Jogos. Unidade 3: 3.1 Sistemas Lógicos. 3.2 Conhecimento e Raciocínio. 3.3 Sistemas Baseados em Conhecimento. Unidade 4: 4.1 Planejamento. 4.2 Incerteza e Imprecisão. Unidade 5: 5.1 Lógica Nebulosa. 5.2 Probabilidade e Teoria da Decisão. Unidade 6: 6.1 Aprendizado Simbólico e Conexionista. 6.2 Redes Neurais Artificiais. 6.3 Linguagem e Comunicação. 6.4 Percepção. 6.5 Robótica. 6.6 Questões Filosóficas.

METODOLOGIA DE ENSINO

A disciplina é desenvolvida no formato presencial:

- Aulas expositivas;
- Resolução de exercícios em sala de aula;
- Lista de exercícios.

AVALIAÇÃO

A avaliação é realizada de forma processual e cumulativa. A saber: avaliações escritas, trabalhos extra-sala de aula e dinâmicas em sala. A freqüência é obrigatória, respeitando os limites de ausência previstos em lei.

BIBLIOGRAFIA BÁSICA

BARONE, Dante. **Sociedades artificiais:** a nova fronteira da inteligência nas máquinas. Porto Alegre (RS): Bookman, 2003. 332 p.

INSTITUTO FEDERAL DO CEARÁ-IFCE CAMPUS FORTALEZA DEPARTAMENTO DE TELEMÁTICA CURSO 01502-ENGENHARIA DE COMPUTAÇÃO

OLIVEIRA JÚNIOR, Hime Aguiar (Coord.). **Inteligência computacional aplicada à administração, economia e engenharia em MATLAB**. André Machado CALDEIRA et al. São Paulo (SP): Thomson Learning, 2007. 370 p.

RUSSEL, Stuart; NORVIG, Peter. Inteligência artificial. Rio de Janeiro (RJ): Elsevier, 2004. 1021 p.

BIBLIOGRAFIA COMPLEMENTAR

HAYKIN, Simon. Redes neurais: princípios e prática. 2.ed. Porto Alegre (RS): Bookman, 2001. 900 p.

LUGER, George F. **Inteligência artificial**: estruturas e estratégias para a resolução de problemas complexos. Porto Alegre (RS): Bookman, 2004. 774 p.

NASCIMENTO JÚNIOR, Cairo Lúcio; YONEYAMA, Takashi. **Inteligência artificial em controle e automação**. São Paulo (SP): Edgard Blucher : FAPESP, 2002. 218 p.

540 T 4410 (SI). Edgard Bidener : 1741 ESI; 2002. 210 p.	
Coordenador do Curso	Setor Pedagógico

INSTITUTO FEDERAL DO CEARÁ-IFCE CAMPUS FORTALEZA DEPARTAMENTO DE TELEMÁTICA CURSO 01502-ENGENHARIA DE COMPUTAÇÃO

PROGRAMA DE UNIDADE DIDÁTICA – PUD

DISCIPLINA: PROGRAMAÇÃO PARALELA E DISTRIBUIDA			
Código:	TELM.083		
Carga Horária:	80		
Número de Créditos:	4		
Código pré-requisito:	TELM.068 + TELM.074		
Semestre:	9		
Nível:	Bacharelado		

EMENTA

Introdução à Programação Paralela e Distribuída. Programação Paralela. Controle de Concorrência. Programação Distribuída. Comunicação entre Processos.

OBJETIVO

Apresentar os diferentes modelos de linguagens (ambientes) de programação paralela e distribuída (PD), de modo que o aluno possa avaliar as vantagens e desvantagens de cada um com relação ao desenvolvimento de programas.

PROGRAMA

Unidade 1: Introdução à Programação Paralela e Distribuída. Unidade 2: Programação Paralela. Unidade 3: Controle de Concorrência. Unidade 4: Programação Distribuída. Unidade 5: Comunicação entre Processos.

METODOLOGIA DE ENSINO

A disciplina é desenvolvida no formato presencial:

- Aulas expositivas;
- Resolução de exercícios em sala de aula;
- Lista de exercícios.

AVALIAÇÃO

A avaliação é realizada de forma processual e cumulativa. A saber: avaliações escritas, trabalhos extra-sala de aula e dinâmicas em sala. A freqüência é obrigatória, respeitando os limites de ausência previstos em lei.

BIBLIOGRAFIA BÁSICA

RIBEIRO, Uirá. **Sistemas distribuídos:** desenvolvendo aplicações de alta performance do Linux. Rio de Janeiro (RJ): Axcel, 2005. 384 p.

TANENBAUM, Andrew S.; STEEN, Maarten Van. **Sistemas distribuídos:** princípios e paradigmas. 2.ed. São Paulo (SP): Pearson Prentice Hall, 2008. 402 p.

BIBLIOGRAFIA COMPLEMENTAR

CASANOVA, Marco Antônio; MOURA, Arnaldo Vieira. **Princípios de sistemas de gerência de banco de dados distribuídos**. Rio de Janeiro (RJ): Campus, 1985. 355 p.

COULOURIS, George; DOLLIMORE, Jean; KINDBERG, Tim. **Sistemas distribuídos:** conceitos e projeto. 4.ed. Porto Alegre (RS): Bookman, 2008. 784 p.

VIANA, Gerardo Valdísio Rodrigues. **Meta-heurísticas e programação paralela em otimização combinatória**. Fortaleza (CE): Edições UFC, 1998. 248 p.

INSTITUTO FEDERAL DO CEARÁ-IFCE CAMPUS FORTALEZA DEPARTAMENTO DE TELEMÁTICA CURSO 01502-ENGENHARIA DE COMPUTAÇÃO

Coordenador do Curso	Setor Pedagógico

INSTITUTO FEDERAL DO CEARÁ-IFCE CAMPUS FORTALEZA DEPARTAMENTO DE TELEMÁTICA CURSO 01502-ENGENHARIA DE COMPUTAÇÃO

PROGRAMA DE UNIDADE DIDÁTICA – PUD

DISCIPLINA: INTRODUÇÃO A AUTOMAÇÃO INDUSTRIAL E CONTROLE

Código:TELM.084Carga Horária:80Número de Créditos:4Código pré-requisito:TELM.092Semestre:9Nível:Bacharelado

EMENTA

Introdução aos problemas de controle. Propriedades dos sistemas, Aspectos de análise de sistemas, Método do Lugar Geométrico das Raízes, Controle Discreto, Projeto em controladores

OBJETIVO

Introduzir aos alunos os conceitos de controle moderno e suas aplicações.

PROGRAMA

Unidade 1: Introdução aos problemas de controle — 1.1 Modelagem matemática de sistemas físicos: elétricos, mecânicos, eletromecânicos e térmicos. 1.2 Equivalências entre sistemas físicos. 1.3 Sistemas de primeira e segunda ordem. Unidade 2: Propriedades dos sistemas. — 2.1 Estabilidade: critérios de Routh-Hurwitz e de Jury. 2.2 Controlabilidade e observabilidade: sistemas contínuos e discretos. Unidade 3: Aspectos de análise de sistemas — 3.1 Erro estacionário. 3.2 Resposta transitória: sistemas de primeira e segunda ordem. Unidade 4: Método do Lugar Geométrico das Raízes — 4.1 Conceito. 4.2 Regras para traçado. 4.3 Aplicações. Unidade 5: Controle Discreto — 5.1 Aproximação digital de Funções de Transferência contínuas. 5.2 Métodos Forward, Backward e Bilinear. 5.3 Aspectos para implementação em controladores digitais. Unidade 6: Projeto em controladores — 6.1 Utilizando o Lugar Geométrico das Raízes.

METODOLOGIA DE ENSINO

A disciplina é desenvolvida no formato presencial:

- Aulas expositivas;
- Resolução de exercícios em sala de aula;
- Lista de exercícios.

AVALIAÇÃO

A avaliação é realizada de forma processual e cumulativa. A saber: avaliações escritas, trabalhos extra-sala de aula e dinâmicas em sala. A freqüência é obrigatória, respeitando os limites de ausência previstos em lei.

BIBLIOGRAFIA BÁSICA

D'AZZO, John J.; HOUPIS, Constantine H. **Análise e projeto de sistemas de controle lineares**. Rio de Janeiro (RJ): Guanabara, 1988. 660 p.

DORF, Richard C.; BISHOP, Robert H. **Sistemas de controle modernos**. 8.ed. Rio de Janeiro (RJ): LTC, 2001. 659 p.

OGATA, Katsuhiko. **Projeto de sistemas lineares de controle com matlab**. Rio de Janeiro (RJ): Prentice-Hall do Brasil, 1996. 202 p.

INSTITUTO FEDERAL DO CEARÁ-IFCE CAMPUS FORTALEZA DEPARTAMENTO DE TELEMÁTICA CURSO 01502-ENGENHARIA DE COMPUTAÇÃO

SILVEIRA, Paulo Rogério da; SANTOS, Winderson E. dos. **Automação e controle discreto**. São Paulo (SP): Érica, 2002. 229 p.

BIBLIOGRAFIA COMPLEMENTAR

CARLSON, A. Bruce. **Communication systems:** an introduction to signals and noise in electrical communication. 3.ed. Boston (EUA): Irvin/ McGraw-Hill, 1986. 686 p.

NATALE, Ferdinando. **Automação industrial**. 4.ed. São Paulo (SP): Érica, 2002. 234 p. (Série Brasileira de Tecnologia).

SPIEGEL, Murray R. **Transformadas de Laplace**. Rio de Janeiro (RJ): Makron Books do Brasil, 1971. 344 p. (Coleção Schaum).

TOLIYAT, Hamid A.; CAMPBELL, Steven. **DSP - Based electromechanical motion control**. Boca Raton (EUA): CRC, 2004. 344 p.

Coordenador do Curso	Setor Pedagógico

INSTITUTO FEDERAL DO CEARÁ-IFCE CAMPUS FORTALEZA DEPARTAMENTO DE TELEMÁTICA CURSO 01502-ENGENHARIA DE COMPUTAÇÃO

PROGRAMA DE UNIDADE DIDÁTICA – PUD

DISCIPLINA: VISÃO COMPU	JTACIONAL
Código:	TELM.085
Carga Horária:	80
Número de Créditos:	4
Código pré-requisito:	TELM.068 + TELM.078
Semestre:	9
Nível:	Bacharelado
EMENULA	

EMENTA

Introdução, Filtragem de imagens, Segmentação, Ferramentas para análise de formas, Reconhecimento de padrões

OBJETIVO

Passar ao aluno uma visão de geral das técnicas de análise e reconhecimento de imagens e dos métodos de Visão Computacional, desde métodos e algoritmos básicos até técnicas de Inteligência Artificial. Propiciar ao aluno experiência prática na utilização destes métodos e técnicas através da implementação de trabalhos utilizando uma ferramenta-laboratório de análise de imagens.

PROGRAMA

Unidade 1: Introdução – 1.1 Representação de imagens. 1.2 Convolução 2-D Unidade 2: Filtragem de imagens – 2.1 Filtragem no domínio do tempo. 2.2 Filtragem no domínio da freqüência. Unidade 3: Segmentação – 3.1 Segmentação simples. 3.2 Crescimento de Regiões. 3.3 Segmentação com Filtros. 3.4 Segmentação a Cores. Unidade 4: Ferramentas para análise de formas – 4.1 Detecção de Bordas. 4.2 Esqueletonização. 4.3 Morfologia Matemática. 4.4 Análise de Texturas. 4.5 Análise de Texturas Multiescalar. 4.6 6 Quadtrees e Octrees. Unidade 5: Reconhecimento de padrões – 5.1 Técnicas Estatísticas. 5.2 Fractais. 5.3 Redes Neurais. 5.4 Reconhecimento de Formas. 5.5 Representação de Objetos.

METODOLOGIA DE ENSINO

A disciplina é desenvolvida no formato presencial:

- Aulas expositivas;
- Resolução de exercícios em sala de aula;
- Lista de exercícios.

AVALIAÇÃO

A avaliação é realizada de forma processual e cumulativa. A saber: avaliações escritas, trabalhos extra-sala de aula e dinâmicas em sala. A freqüência é obrigatória, respeitando os limites de ausência previstos em lei.

BIBLIOGRAFIA BÁSICA

GONZALEZ, Rafael C.; WOODS, Richard E. **Digital image processing**. 3.ed. Upper Saddle River (NJ): Pearson Education, 2008. 954 p.

GONZALEZ, Rafael C.; WOODS, Richard E. **Processamento de imagens digitais**. São Paulo (SP): Edgard Blücher, 2005. 509 p.

OLIVEIRA, Hélio Magalhães de. **Análise de sinais para engenheiros:** uma abordagem via Wavelets. Rio de Janeiro (RJ): Brasport Livros e Multimídia, 2007. 244 p.

PEDRINI, Hélio; SCHWARTZ, William Robson. Análise de imagens digitais: princípios, algoritmos e

INSTITUTO FEDERAL DO CEARÁ-IFCE CAMPUS FORTALEZA DEPARTAMENTO DE TELEMÁTICA CURSO 01502-ENGENHARIA DE COMPUTAÇÃO

aplicações. São Paulo (SP): Thomson Learning, 2008. 508 p.		
BIBLIOGRAFIA COMPLEMENTAR		
HAYKIN, Simon. Redes neurais: princípios e prática. 2.ed. Porto Alegre (RS): Bookman, 2001. 900 p. KOVÁCS, Zsolt László. Redes neurais artificiais: fundamentos e aplicações: um texto básico. São Paulo (SP): Livraria da Física, 2002. 174 p. RUSSEL, Stuart; NORVIG, Peter. Inteligência artificial . Rio de Janeiro (RJ): Elsevier, 2004. 1021 p.		
Coordenador do Curso	Setor Pedagógico	

INSTITUTO FEDERAL DO CEARÁ-IFCE CAMPUS FORTALEZA DEPARTAMENTO DE TELEMÁTICA CURSO 01502-ENGENHARIA DE COMPUTAÇÃO

PROGRAMA DE UNIDADE DIDÁTICA - PUD

DISCIPLINA: FILTROS DIGITAIS		
Código:	TELM131	
Carga Horária:	80	
Número de Créditos:	4	
Código pré-requisito:		
Semestre:	9	
Nível:	Engenharia	

EMENTA

Tipos de filtros, filtros analógicos, principais aproximações: Butterworth, Bessel, Chebyshev, Gauss, Elíptico. Projeto de filtros digitais baseados em filtros analógicos. Filtros digitais FIR e IIR. Noções sobre filtros adaptativos e algoritmo LMS.

OBJETIVO

Ao final da disciplina o aluno deverá ser capaz de projetar filtros digitais para as mais diversas aplicações envolvendo sinais unidimensionais.

PROGRAMA

Unidade 1. Filtros Analógicos.

- 1.1 Tipos de filtros (PB, PA, PF e RF), filtros de 1ª e 2ª ordem, filtros passivos e filtros ativos, gabarito
- 1.2 Projeto de filtros analógicos com as principais aproximações: Butterworth, Bessel, Chebyshev, Gauss, Elíptico.

Unidade 2. Filtros Digitais IIR.

- 2.1 Projeto de filtros digitais a partir de filtros analógicos.
- 2.2 Método da Invariância ao Impulso.
- 2.3 Transformação Bilinear.

Unidade 3. Filtros Digitais FIR.

- 3.1 Técnicas de Janelamento.
- 3.2 Filtros FIR de fase linear.

Unidade 4. Noções sobre os efeitos da aritmética de ponto-fixo.

- 4.1 Implementação de filtros digitais.
- 4.2 Quantização de coeficientes de filtros.
- 4.3 Efeitos da precisão finita dos processadores digitais.

Unidade 5. Filtros Adaptativos.

- 5.1 Filtragem de Wiener.
- 5.2 Algoritmo LMS.
- 5.3 Sistemas variantes e filtragem adaptativa.

METODOLOGIA DE ENSINO

INSTITUTO FEDERAL DO CEARÁ-IFCE CAMPUS FORTALEZA DEPARTAMENTO DE TELEMÁTICA CURSO 01502-ENGENHARIA DE COMPUTAÇÃO

- Aulas expositivas;
- Resolução de exercícios em sala de aula;
- Uso de software para projeto e análise de filtros digitais.

AVALIAÇÃO

Avaliação institucional. Provas ao final de cada etapa. Trabalho individual ou em grupo de poucos alunos valendo nota.

BIBLIOGRAFIA BÁSICA

HAYKIN, Simon; VEEN, Barry Van. **Sinais e sistemas**. Porto Alegre: Bookman, 2001/2007. 668p. 621.382 H419p

HAYKIN. S. **Sistemas de comunicação, analógicos e digitais**. 4.ed. Porto Alegre: Bookman, 2004/2007. 837p. 621.382 H419s

PERTENCE JR, A. Amplificadores operacionais e filtros ativos: teoria, projetos, aplicações e laboratório. São Paulo: McGraw-Hill, 1988. 359p. 621.395 P468a

BIBLIOGRAFIA COMPLEMENTAR

SERRA, C. P. Teoria e projeto de filtros, Campinas (SP): Cartgraf, 1983. (Ouro CPQD, v.,2) 621.3815324 S487t

Coordenador do Curso	Setor Pedagógico

INSTITUTO FEDERAL DO CEARÁ-IFCE CAMPUS FORTALEZA DEPARTAMENTO DE TELEMÁTICA CURSO 01502-ENGENHARIA DE COMPUTAÇÃO

PROGRAMA DE UNIDADE DIDÁTICA - PUD

DISCIPLINA: ARQUITETURA DE SOFTWARE		
Código:	TELM.098	
Carga Horária:	80	
Número de Créditos:	4	
Código pré-requisito:	TELM.073	
Semestre:	1	

EMENTA

Nível:

Características da Arquitetura de Software e Estilos Arquiteturais. Modelo MVC. Desenvolvimento Orientado a Aspectos. Arquitetura Orientada a Serviços. Modelo Dirigido à Arquitetura.

Bacharelado

OBJETIVO

Fornecer a base ao aluno para que este seja capaz de compreender os conceitos básicos da arquitetura de software e desenvolver aplicações em camadas, além de conhecer novas técnicas de desenvolvimento de aplicativos.

PROGRAMA

Unidade 1: Arquitetura de Software – 1.1 Conceito 1.2 Estilos Arquiteturais 1.3 Arquiteturas de Referência **Unidade 2: MVC** – 2.1 Histórico 2.2 Aplicação de MVC em projetos **Unidade 3: Desenvolvimento Orientado a Aspectos** – 3.1 Conceitos Básicos 3.2 Biblioteca para uso de Aspectos **Unidade 4: Arquitetura Orientada a Serviços** – 4.1 Conceitos Básicos 4.2 Ferramentas **Unidade 5: Modelo Dirigido à Arquitetura** – 5.1 Conceitos Básicos 5.2 Ferramentas.

METODOLOGIA DE ENSINO

- Aulas expositivas;
- Resolução de exercícios em sala de aula:
- Lista de exercícios;
- Seminários;
- Trabalhos de implementação.

AVALIAÇÃO

A avaliação é realizada de forma processual e cumulativa. A saber: avaliações escritas, trabalhos extra-sala de aula e dinâmicas em sala. A frequência é obrigatória, respeitando os limites de ausência previstos em lei.

BIBLIOGRAFIA BÁSICA

BRAUDE, Eric. **Projeto de software: da programação à arquitetura: uma abordagem baseada em Java**. Porto Alegre (RS): Bookman, 2005. 619 p.

PRESSMAN, Roger S. Engenharia de software. São Paulo (SP): Makron Books, 1995. 1056 p.

SOMMERVILLE, Ian. Engenharia de software. São Paulo (SP): Addison-Wesley, 2003. 592 p.

BIBLIOGRAFIA COMPLEMENTAR

METSKER, Steven John. Padrões de projeto em Java. Porto Alegre (RS): Bookman, 2004. 407 p.

INSTITUTO FEDERAL DO CEARÁ-IFCE CAMPUS FORTALEZA DEPARTAMENTO DE TELEMÁTICA CURSO 01502-ENGENHARIA DE COMPUTAÇÃO

PREISS, Bruno R. Estruturas de dados e algorítmos: padrô	<mark>óes de projetos orientados a objetos com Java.</mark> Ric
de Janeiro (RJ): Campus, 2000. 566 p.	

SHALLOWAY, Alan; TROTT, James R. Explicando padrões de projeto: uma nova perspectiva em projeto orientado a objeto. Porto Alegre (RS): Bookman, 2004. 328 p.

Coordenador do Curso	Setor Pedagógico