Fundamentals of Cryptography Homework 2

周书予

2000013060@stu.pku.edu.cn

September 27, 2022

Problem 1

We construct PRG G' like this: on input x of length n,

- 1. G' first finds the largest m such that $m \leq n$ and $m \in \mathcal{I}$. If no such m exists, G' just simply outputs 0^{n+1} (an arbitrary string of length n+1).
- 2. Then it truncates x to m bits and stretches the input seed into length n+1 by repetitively replacing the last m bits (say x') with G(x').

According to the second property of polynomial-time-enumerable set, n = poly(m), which means any negligible function of m is also negligible of n. Thus the stretching procedure preserves pseudorandomness, which can be formally described as, for all PPT distinguisher D, there is a negligible function $\varepsilon(m) = \text{negl}(m)$, such that

$$\left| \Pr_{s \leftarrow \{0,1\}^m} [D(\mathsf{STRETCH}(s)) = 1] - \Pr_{r \leftarrow \{0,1\}^{n+1}} [D(r) = 1] \right| \leqslant \varepsilon(m)$$

Notice that

$$\Pr_{s \leftarrow \{0,1\}^m}[D(\mathsf{STRETCH}(s)) = 1] = \Pr_{s \leftarrow \{0,1\}^n}[D(G'(s)) = 1]$$

thus,

$$\left| \Pr_{s \leftarrow \{0,1\}^n} [D(G'(s)) = 1] - \Pr_{r \leftarrow \{0,1\}^{n+1}} [D(r) = 1] \right| \le \varepsilon(m) = \varepsilon'(n)$$

which finish the prove that G' is a PRG of stretch $\ell(n) = n + 1$.

Problem 2

Assume
$$|G(s)| = |G_0(s)| = |G_1(s)| = \ell(|s|)$$
.

Part A

G' is a PRG of stretch $\ell(n/2)$.

For any fixed PPT distinguisher D, define $\varepsilon : \mathbb{N} \to \mathbb{R}$ as

$$\varepsilon(n) = \left| \Pr_{s \leftarrow \{0,1\}^n} [D(G'(s)) = 1] - \Pr_{r \leftarrow \{0,1\}^{\ell(n/2)}} [D(r) = 1] \right|$$

By the definition of G', we know that

$$\Pr_{s \leftarrow \{0,1\}^n}[D(G'(s)) = 1] = \Pr_{s \leftarrow \{0,1\}^{n/2}}[D(G(s)) = 1]$$

thus

$$\varepsilon(n) = \left| \Pr_{s \leftarrow \{0,1\}^{n/2}} [D(G(s)) = 1] - \Pr_{r \leftarrow \{0,1\}^{\ell(n/2)}} [D(r) = 1] \right| \leqslant \varepsilon'(n/2)$$

where ε' is a negligible function since G is assumed to be a secure PRG. $\varepsilon(n) \leqslant \varepsilon'(n/2)$ means ε is also negligible, thus G' is a PRG.

Part B

G' may not be a PRG.

Let H be a PRG of stretch $\ell(n)$, and let $G(s) = s_1 || H(s_2, \dots, s_n)$. Obviously G is a PRG whose first bit of input and output are always the same.

When G' is constructed based on G, G' always outputs 0 as its first bit, which can be apparently distinguished from the uniform distribution over $\{0,1\}^{\ell(n+1)}$.

Part C

G' may not be a PRG.

Let G be a PRG who ignores its last bit of input, and consider a PPT distinguisher D who examines whether the two halves of the output of G' are the same.

With probability 1/2, the last bit of input s is 0, which indicates the output of G(s) and G(s+1) are totally the same. Thus,

$$\Pr_{s \leftarrow \{0,1\}^n} [D(G'(s)) = 1] \ge 1/2$$

meanwhile,

$$\Pr_{r \leftarrow \{0,1\}^{2\ell(n)}}[D(r) = 1] = 2^{-\ell(n)}$$

G' is not a PRG in this case.

Part D

G' is a PRG of stretch $\ell(n/2)$.

We will use a *hybird argument* to show this conclusion.

For any PPT distinguisher D of G', consider two distinguishers D_0 and D_1 , corresponding to G_0 and G_1 , respectively:

- D_0 takes input r_0 of length $\ell(n/2)$, randomly samples $r_1 \leftarrow \{0,1\}^{\ell(n/2)}$, and then outputs $D(r_0 \oplus r_1)$.
- D_1 takes input r_1 of length $\ell(n/2)$, randomly samples $s_0 \leftarrow \{0,1\}^{n/2}$, and then outputs $D(G_0(s_0) \oplus r_1)$.

Since G_0 and G_1 are both PRGs, there is two negligible functions $\varepsilon_0(n)$, $\varepsilon_1(n)$ such that

$$\left| \Pr_{s_0 \leftarrow \{0,1\}^{n/2}} [D_0(G_0(s_0)) = 1] - \Pr_{r_0 \leftarrow \{0,1\}^{\ell(n/2)}} [D_0(r_0) = 1] \right| \leqslant \varepsilon_0(n)$$

$$\left| \Pr_{s_1 \leftarrow \{0,1\}^{n/2}} [D_1(G_1(s_1)) = 1] - \Pr_{r_1 \leftarrow \{0,1\}^{\ell(n/2)}} [D_1(r_1) = 1] \right| \leqslant \varepsilon_1(n)$$

and notice that

$$\Pr_{s_{1} \leftarrow \{0,1\}^{n/2}}[D_{1}(G_{1}(s_{1})) = 1] = \Pr_{s_{0} \leftarrow \{0,1\}^{n/2}}[D(G_{0}(s_{0}) \oplus G_{1}(s_{1})) = 1]$$

$$\Pr_{s_{0} \leftarrow \{0,1\}^{n/2}}[D_{0}(G_{0}(s_{0})) = 1] = \Pr_{s_{0} \leftarrow \{0,1\}^{n/2}}[D(G_{0}(s_{0}) \oplus r_{1}) = 1]$$

$$\Pr_{r_{1} \leftarrow \{0,1\}^{\ell(n/2)}}[D_{1}(r_{1}) = 1] = \Pr_{s_{0} \leftarrow \{0,1\}^{n/2}\atop r_{1} \leftarrow \{0,1\}^{\ell(n/2)}}[D(G_{0}(s_{0}) \oplus r_{1}) = 1]$$

$$\Pr_{r_{0} \leftarrow \{0,1\}^{\ell(n/2)}}[D_{0}(r_{0}) = 1] = \Pr_{r_{0} \leftarrow \{0,1\}^{\ell(n/2)}\atop r_{1} \leftarrow \{0,1\}^{\ell(n/2)}}[D(r_{0} \oplus r_{1}) = 1]$$

which indicates that

$$\left| \Pr_{\substack{s_0 \leftarrow \{0,1\}^{n/2} \\ s_1 \leftarrow \{0,1\}^{n/2}}} [D(G_0(s_0) \oplus G_1(s_1)) = 1] - \Pr_{\substack{r_0 \leftarrow \{0,1\}^{\ell(n/2)} \\ r_1 \leftarrow \{0,1\}^{\ell(n/2)}}} [D(r_0 \oplus r_1) = 1] \right| \leqslant \varepsilon_0(n) + \varepsilon_1(n)$$

The choice of distinguisher D is arbitrary, which means $G'(s) = G_0(s_0) \|G_1(s_1)\|$ is a PRG.

Part E

G' may not be a PRG.

By using the similar argument in **Part B**, we let G_0 be a PRG who has its first bit of output always equal to its first bit of input, and let G_1 be just the opposite, i.e. has its first bit of output always differ from its first bit of input.

We can find that $G'(s) = G_{s_1}(s)$ always outputs 0 as its first bit, which can be easily distinguished.

Part F

G' is a PRG of stretch $\ell(n-1)+1$.

For any PPT distinguisher D of G', consider two distinguishers D_0 and D_1 , corresponding to G_0 and G_1 , respectively:

- D_0 takes input r of length $\ell(n-1)$ and outputs D(0||r).
- D_1 takes input r of length $\ell(n-1)$ and outputs D(1||r).

Since G_0 and G_1 are both PRGs, there is two negligible functions $\varepsilon_0(n)$, $\varepsilon_1(n)$ such that

$$\begin{aligned} & \left| \Pr_{s \leftarrow \{0,1\}^{n-1}} [D_0(G_0(s)) = 1] - \Pr_{r \leftarrow \{0,1\}^{\ell(n-1)}} [D_0(r) = 1] \right| \leqslant \varepsilon_0(n) \\ & \left| \Pr_{s \leftarrow \{0,1\}^{n-1}} [D_1(G_1(s)) = 1] - \Pr_{r \leftarrow \{0,1\}^{\ell(n-1)}} [D_1(r) = 1] \right| \leqslant \varepsilon_1(n) \end{aligned}$$

notice that

$$\Pr_{s \leftarrow \{0,1\}^n}[D(G'(s)) = 1] = \frac{1}{2} \left(\Pr_{s \leftarrow \{0,1\}^{n-1}}[D_0(G_0(s)) = 1] + \Pr_{s \leftarrow \{0,1\}^{n-1}}[D_1(G_1(s)) = 1] \right)$$

$$\Pr_{r \leftarrow \{0,1\}^{\ell(n-1)+1}}[D(r) = 1] = \frac{1}{2} \left(\Pr_{r \leftarrow \{0,1\}^{\ell(n-1)}}[D_0(r) = 1] + \Pr_{r \leftarrow \{0,1\}^{\ell(n-1)}}[D_1(r) = 1] \right)$$

thus

$$\left| \Pr_{s \leftarrow \{0,1\}^n} [D(G'(s)) = 1] - \Pr_{r \leftarrow \{0,1\}^{\ell(n-1)+1}} [D(r) = 1] \right| \leqslant \frac{\varepsilon_0(n) + \varepsilon_1(n)}{2}$$

which finish the proof that G' is a PRG.

Problem 5

Part A

f' is an OWF.

FSOC we assume PPT adversary \mathcal{A}' breaks f' as OWF, which means that

$$\Pr_{x \leftarrow \{0,1\}^n} \left[\mathcal{A}'(f(x) || f(f(x))) \to x' : f(x) || f(f(x)) = f(x') || f(f(x')) \right] \geqslant \frac{1}{\text{poly}(n)}$$

then we can construct adversary \mathcal{A} which breaks f as OWF: on input y, call \mathcal{A}' with input y||f(y), and output whatever \mathcal{A}' outputs. It's clear that \mathcal{A} runs in poly-time, and

$$\Pr_{x \leftarrow \{0,1\}^n} \left[\mathcal{A}(f(x)) \to x' : f(x) = f(x') \right] \geqslant \frac{1}{\text{poly}(n)}$$

which indicates that f is not an OWF. A contradiction.

Part B

f' may not be an OWF.

Assume that there is a length-perserving OWF h, we construct f as $f(x_1||x_2) = 0^{n/2}h(x_1)$ where $|x_1| = |x_2| = n/2$. First we prove briefly that f is also a length-perserving OWF.

FSOC PPT adversary \mathcal{A} breaks f as OWF, which on input $0^{n/2} \| h(x_1)$ outputs $x_1' \| x_2'$ such that $0^{n/2} \| h(x_1') = 0^{n/2} \| h(x_1)$, with probability at least $\frac{1}{\text{poly(n)}}$. Then an adversary for h can be built, which simply concatenate $0^{n/2}$ before its input and then call \mathcal{A} , and outputs the first half of \mathcal{A} 's output.

By the construction of f', $f'(x_1||x_2) = x_1||(x_2 \oplus h(x_1))$. An adversary \mathcal{A} , with $\mathcal{A}(y_1||y_2) = y_1||(y_2 \oplus h(y_1))$, runs in poly-time and breaks f as OWF.

Part C

f' may not be an OWF.

Assume h is a length-perserving OWF, we construct f as

$$f(x_1||x_2) = \begin{cases} x_1||h(x_2), & x_1 \text{ starts with } 0\\ h(x_1)||x_2, & x_1 \text{ starts with } 1 \end{cases}$$

First we prove that f is also an OWF: with adversary \mathcal{A}' which breaks f, one can construct \mathcal{A} , on input g it calls \mathcal{A}' with input $0^n || g$ and outputs the second half of the output of \mathcal{A}' . Then A breaks h as OWF, an contradiction.

Depending on the first bit of input, the output of $f(x_1||x_2)$ must be in the form of either $x_1||h(x_2)||h(\overline{x_1})||\overline{x_2}$ or $h(x_1)||x_2||\overline{x_1}||h(\overline{x_2})$, so an adversary can be constructed, which on input $y_1||y_2||y_3||y_4$, simply tries $y_1||\overline{y_4}|$ and $\overline{y_3}||y_2|$ as answers and outputs the correct one (if there is). So f' here is not a OWF.

Part D

f' is an OWF.

If f' is not an OWF, a.k.a. there exists adversary \mathcal{A}' such that

$$\Pr_{x \leftarrow \{0,1\}^n} [\mathcal{A}'(f(G(x))) \to x' : f(G(x')) = f(G(x))] \geqslant \frac{1}{\text{poly}(n)}$$

We construct a PPT distinguisher \mathcal{D} that breaks G as PRG using \mathcal{A}' : on input r, it outputs $\mathbb{1}[f(r) = f(G(\mathcal{A}'(f(r))))]$. We use the notation U_n to indicate the uniform distribution over $\{0,1\}^n$ in the following statement.

- When r is sampled from $G(U_n)$, by the assumption above \mathcal{D} outputs 1 with probability at least $\frac{1}{\text{poly}(n)}$.
- When r is sampled from U_{n+1} , recall that f is an OWF, so by definition, for the adversary $G \circ \mathcal{A}'$, we have

$$\Pr_{x \leftarrow \{0,1\}^{n+1}} [G \circ \mathcal{A}'(f(y)) \to y' : f(y') = f(y)] < \varepsilon(n)$$

which means that \mathcal{D} outputs 1 with probability less than $\varepsilon(n)$.

Thus \mathcal{D} breaks G as a PRG. An contradiction.

Part E

f' may not be an OWF.

Let f be the OWF mentioned in **Part B** $(f(x_1||x_2) = 0^{n/2}||h(x_2))$ and G be the PRG in **Problem 2 Part A** $(G(s) = G'(s_1, \dots, s_{n/2}))$.

Now $f \circ G \equiv f(G'(0^{n/2}))$ is constant, and is obviously not OWF.

Part F

f' is an OWF.

FSOC assume that adversary \mathcal{A} breaks f' as OWF, which is, for some polynomial p(n),

$$\Pr_{x \leftarrow \{0,1\}^n} [\mathcal{A}(f(x||0^{\log n})) \to x' : f(x'||0^{\log n}) = f(x||0^{\log n})] \geqslant \frac{1}{p(n)}$$

We can construct an adversary \mathcal{A}' which, on input x of length $n + \log n$, outputs A(x), with the last $\log n$ bits replaced with 0s. We assert that \mathcal{A}' breaks f as OWF.

$$\Pr_{x \leftarrow \{0,1\}^{n+\log n}}[\mathcal{A}'(f(x)) \to x' : f(x') = f(x)]
\geqslant \Pr_{x \leftarrow \{0,1\}^{n+\log n}}[\mathcal{A}'(f(x)) \to x' : f(x') = f(x) \land \text{ last log } n \text{ bits of } x \text{ are all 0s}]
= \frac{1}{2^{\log n}} \cdot \Pr_{x \leftarrow \{0,1\}^n}[\mathcal{A}'(f(x||0^{\log n})) \to x' : f(x') = f(x||0^{\log n})]
= \frac{1}{2^{\log n}} \cdot \Pr_{x \leftarrow \{0,1\}^n}[\mathcal{A}(f(x||0^{\log n})) \to x' : f(x'||0^{\log n}) = f(x||0^{\log n})]
\geqslant \frac{1}{np(n)}$$

np(n) is also a polynomial, so \mathcal{A} breaks f as OWF, which causes a contradiction.

Part G

f' may not be an OWF.

Suppose that we have a length-perserving OWF g, we can construct f as follows:

$$f(x_1||x_2) = \begin{cases} x_1||0^{n/2}, & x_2 = 0^{n/2} \\ g(x_1)||0^{n/2-1}1, & \text{otherwise} \end{cases}$$

We claim that f is an OWF and f', which removes the last $\log n$ bits of f's output, is not an OWF.

FSOC assume \mathcal{A} breaks f as OWF, which means

$$\frac{1}{\text{poly}(n)} \leqslant \Pr_{x_1, x_2 \leftarrow \{0,1\}^{n/2}} \left[\mathcal{A}(f(x_1 || x_2)) \to x_1' || x_2' : f(x_1' || x_2') = f(x_1 || x_2) \right]
= \frac{1}{2^{n/2}} \cdot \Pr_{x_1 \leftarrow \{0,1\}^{n/2}} \left[\mathcal{A}(x_1 || 0^{n/2}) \to x_1' || x_2' : f(x_1' || x_2') = x_1 || 0^{n/2} \right]
+ \frac{2^{n/2} - 1}{2^{n/2}} \cdot \Pr_{x_1 \leftarrow \{0,1\}^{n/2}, x_2 \neq 0^{n/2}} \left[\mathcal{A}(g(x_1) || 0^{n/2 - 1} 1) \to x_1' || x_2' : f(x_1' || x_2') = g(x_1) || 0^{n/2 - 1} 1 \right]
\leqslant \frac{1}{2^{n/2}} + 1 \cdot \Pr_{x_1, x_2} \left[\mathcal{A}(g(x_1) || 0^{n/2 - 1} 1) \to x_1' || x_2' : g(x_1') = g(x_1) \right]
= \frac{1}{2^{n/2}} + 1 \cdot \Pr_{x_1} \left[\mathcal{A}'(g(x_1)) \to x_1' : g(x_1') = g(x_1) \right]$$

then \mathcal{A}' breaks g as OWF which shows an contradiction. So f here is an OWF.

As for f', consider adversary \mathcal{A} such that $\mathcal{A}(x) = x \| 0^{\log n}$ for any input x of length $n - \log n$. In this case, for all $x \in \{0, 1\}^n$, $\mathcal{A}(f'(x))$ ends with at least n/2 0s, and the only thing f' then does is truncation, remaining the first $n - \log n$ bits of $\mathcal{A}(f'(x))$ unchanged.

Thus, $f'(\mathcal{A}(f'(x))) = f'(x)$ holds for all $x \in \{0,1\}^n$, which easily breaks f' as OWF.

Problem 6

Part A

$$\Pr[f(\hat{x}_1) = f(x_1), \dots, f(\hat{x}_m) = f(x_m)]$$

$$= \Pr[f(\hat{x}_1) = f(x_1), \dots, f(\hat{x}_m) = f(x_m) \land \text{ some } x_i \text{ is bad}]$$

$$+ \Pr[f(\hat{x}_1) = f(x_1), \dots, f(\hat{x}_m) = f(x_m) \land \text{ all } x_i \text{ are good}]$$

$$\leqslant \sum_{j=1}^{m} \Pr[f(\hat{x}_1) = f(x_1), \dots, f(\hat{x}_m) = f(x_m) \land x_j \text{ is bad}] + (\Pr[x \text{ is good}])^m$$

$$\leqslant \sum_{j=1}^{m} \Pr[f(\hat{x}_1) = f(x_1), \dots, f(\hat{x}_m) = f(x_m) | x_j \text{ is bad}] + (\Pr[x \text{ is good}])^m$$

$$\leqslant \sum_{j=1}^{m} m \cdot \Pr[\mathcal{A}(f(x_j)) \to x' : f(x') = f(x_j) | x_j \text{ is bad}] + (\Pr[x \text{ is good}])^m$$

$$\leqslant \frac{m^2}{r(n)} + (\Pr[x \text{ is good}])^m$$

Part B

Let m(n) = 2nq(n) and $r(n) = 2m(n)^2p(n)$.

From **Part A** we know that

$$\frac{1}{p(n)} < \frac{m(n)^2}{r(n)} + (\Pr[x \text{ is good}])^m \Rightarrow (\Pr[x \text{ is good}])^m > \frac{1}{2p(n)}$$

which implies $\Pr[x \text{ is good}] \geqslant 1 - \frac{1}{2q(n)}$ since otherwise we have

$$\frac{1}{2p(n)} < \left(\Pr[x \text{ is good}]\right)^m < \left(1 - \frac{1}{2q(n)}\right)^{2nq(n)} \approx \exp(-n)$$

RHS of this inequility is negligible while LHS is non-negligible, which shows a contradiction.

Thus, $\Pr[x \text{ is good}] \geqslant 1 - \frac{1}{2q(n)} \text{ and } \Pr[x \text{ is bad}] \leqslant \frac{1}{2q(n)}$.

Part C

We show that \mathcal{A}_{repeat} breaks f as weak-OWF.

$$\Pr[\mathcal{A}_{\text{repeat}}(f(x)) \to x' : f(x') \neq f(x)]$$

$$= \Pr[\mathcal{A}_{\text{repeat}}(f(x)) \to x' : f(x') \neq f(x) \land x \text{ is good}]$$

$$+ \Pr[\mathcal{A}_{\text{repeat}}(f(x)) \to x' : f(x') \neq f(x) \land x \text{ is bad}]$$

$$\leqslant \Pr[\mathcal{A}_{\text{repeat}}(f(x)) \to x' : f(x') \neq f(x) | x \text{ is good}] + \Pr[x \text{ is bad}]$$

$$\leqslant \left(1 - \frac{1}{r(n)}\right)^{n \cdot r(n)} + \frac{1}{2q(n)}$$

$$\approx \exp(-n) + \frac{1}{2q(n)}$$

$$< \frac{1}{q(n)}$$

which violates the definition (q(n)-weakness) of f.

So we have already finished the proof that f' is an OWF.