21. Cauchyscher Integralsatz (Homotopieversionen)

Satz 21.1 (CIS, Version I)

Sei $D \subseteq \mathbb{C}$ offen, $f \in H(D)$ und $\gamma_0, \gamma_1 : [0,1] \to \mathbb{C}$ seien Wege mit $\text{Tr}(\gamma_0), \text{Tr}(\gamma_1) \subseteq D$, $\gamma_0(0) = \gamma_1(0), \gamma_0(1) = \gamma_1(1)$.

Sind γ_0 und γ_1 in D homotop, so gilt:

$$\int_{\gamma_0} f(z)dz = \int_{\gamma_1} f(z)dz$$

Beweis

Ohne Beweis

Satz 21.2 (CIS, Version II)

Sei $D\subseteq\mathbb{C}$ offen, $f\in H(D)$ und γ sei ein geschlossener Weg mit $\mathrm{Tr}(\gamma)\subseteq D$.

Ist γ nullhomotop in D, so gilt

$$\int_{\gamma} f(z)dz = 0$$

Beweis

21.1

Satz 21.3 (CIS, Version III)

 $G \subseteq \mathbb{C}$ sei ein einfach zusammenhängendes Gebiet, es sei $f \in H(G)$ und γ ein geschlossener Weg mit $\mathrm{Tr}(\gamma) \subseteq G$. Dann

$$\int_{\alpha} f(z)dz = 0$$

Beweis

21.2

Satz 21.4 (Charakterisierung von Elementargebieten, II)

Sei G ein Gebiet in \mathbb{C} .

G ist ein Elementargebiet \Leftrightarrow G ist einfach zusammenhängend

Beweis

" \Rightarrow " Fall 1: $G = \mathbb{C} \Rightarrow G$ konvex, also einfach zusammenhängend (siehe 20.4)

Fall 2: $G \neq \mathbb{C} \stackrel{19.1}{\Rightarrow} \exists f \in H(G) : f(G) = \mathbb{D}$ und f ist auf G injektiv.

Sei γ ein geschlossener Weg mit $\operatorname{Tr}(\gamma) \subseteq G$. $z_o := \operatorname{Anfangspunkt}$ von γ .

Zu zeigen: γ und γ_{z_0} sind in G homotop

 $\Gamma:=f\circ\gamma.$ Γ ist ein geschlossener Weg in $\mathbb{D}.$ \mathbb{D} ist konvex $\stackrel{10.4}{\Rightarrow}$ \mathbb{D} ist einfach zusammenhängend.

Also existiert eine Homotopie \tilde{H} von Γ nach $\gamma_{f(z_0)}$ in \mathbb{D} . $H:=f^{-1}\circ \tilde{H}$ ist eine Homotopie von γ nach γ_{z_0} in G

"←" Zu zeigen: $\forall f \in H(G) \exists F \in H(G)$: F' = f auf G

Sei $f \in H(G)$. Sei $z_0 \in G$ (fest).

Für $z \in G$ sei $\gamma^{(z)}$ ein Weg mit $\text{Tr}(\gamma^{(z)}) \subseteq G$, $\gamma^{(z)}(0) = z_0$, $\gamma^{(z)}(1) = z$. (Parameterintervall von $\gamma^{(z)}$ sei [0,1])

$$F(z) := \int_{\gamma(z)} f(w)dw \ (z \in G)$$

Voraussetzung + 21.1, 21.3 \Rightarrow diese Definition ist unabhängig von der Wahl von $\gamma^{(z)}$. Fast wörtlich wie im Beweis von 9.2.: $F \in H(G), F' = f$ auf G.

Satz 21.5 (Charakterisierung von Elementargebieten, III)

Sei $G \subseteq \mathbb{C}$ ein Gebiet. Dann sind die folgenden Aussagen äquivalent.

- (1) G ist ein Elementargebiet
- (2) G ist einfach zusammenhängend
- (3) $\int\limits_{\gamma} f(z)dz = 0 \ \forall f \in H(G)$ und für jeden geschlossenen Weg γ mit $\mathrm{Tr}(\gamma) \subseteq G$
- (4) $\forall f \in H(G) \text{ mit } Z(f) = \emptyset \exists g \in H(G) : e^g = f \text{ auf } G$
- (5) $\forall f \in H(G) \text{ mit } Z(f) = \emptyset \ \exists g \in H(G) : \ g^2 = f \text{ auf } G$
- (6) $G = \mathbb{C}$ oder $G \sim \mathbb{D}$

Beweis

- $(1)\Leftrightarrow(2): 21.4$
- $(3)\Rightarrow(1)$: wie im Beweisteil " \Leftarrow " von 21.4
- $(3) \Rightarrow (4), (5)$: 11.4
- $(4) \Rightarrow (5)$: siehe Beweis von 11.4

 $(5) \Rightarrow (6)$: 19.6

 $(6)\Rightarrow(1)$: wie im Beweisteil " \Rightarrow "von 21.4

 $(2) \Rightarrow (3)$: 21.2

Definition

Sei $A\subseteq\widehat{\mathbb{C}}$. A heißt in $\widehat{\mathbb{C}}$ zusammenhängend : \Leftrightarrow jede lokal konstante Funktion $f:A\to\mathbb{C}$ ist auf A konstant.

Satz 21.6 (Charakterisierung von Elementargebieten, IV)

Sei $G\subseteq \mathbb{C}$ ein Gebiet. Dann sind äquivalent:

- (1) G ist einfach zusammenhängend
- (2) $\widehat{\mathbb{C}}\backslash G$ ist zusammenhängend in $\widehat{\mathbb{C}}$
- (3) Aus $\mathbb{C}\backslash G=A\cup K,\ A\subseteq\mathbb{C}$ abgeschlossen, $K\subseteq\mathbb{C}$ kompakt und $A\cap K=\emptyset$ folgt: $K=\emptyset$

Beweis

Ohne Beweis.