

SECOND HANKEL DETERMINANT FOR SUBCLASSES OF PASCU CLASSES OF ANALYTIC FUNCTIONS

M. S. SAROA, GURMEET SINGH AND GAGANDEEP SINGH

Abstract: We define two subclasses of the class of Pascu functions. For any real μ , we are interested in determining the upper bound of $|a_2a_4 - \mu a_3^2|$ for an analytic function $f(z) = z + a_2z^2 + a_3z^3 + \dots$ ($|z| < 1$) belonging to these classes.

1. INTRODUCTION AND DEFINITION:

PRINCIPLES OF SUBORDINATION: Let $f(z)$ and $F(z)$ be two analytic functions in the unit disc $E = \{z : |z| < 1\}$. Then, $f(z)$ is said to be subordinate to $F(z)$ in the unit disc E if there exists an analytic function $w(z)$ in E satisfying the condition $w(0) = 0$, $|w(z)| < 1$ such that $f(z) = F(w(z))$ and we write as $f(z) \prec F(z)$. In particular if $F(z)$ is univalent in D , the above definition is equivalent to $f(0) = F(0)$ and $f(E) \subset F(E)$.

FUNCTIONS WITH POSITIVE REAL PART: Let P denotes the class of analytic functions of the form

$$(1.1) \quad P(z) = 1 + p_1z + p_2z^2 + \dots$$

with $\operatorname{Re} P(z) > 0$, $z \in D$.

Let A denote the class of functions of the form

$$(1.2) \quad f(z) = z + \sum_{k=2}^{\infty} a_k z^k$$

which are analytic in the open unit disc $D = \{z : |z| < 1\}$.

S is the class of functions of the form (1.2) which are univalent.

The Hankel determinant: ([9],[10])

Let $f(z) = \sum_{n=0}^{\infty} a_n z^n$ be analytic in D . For $q \geq 1$, the qth Hankel determinant is defined by

$$H_q(n) = \begin{vmatrix} a_n & a_{n+1} & \dots & a_{n+q-1} \\ a_{n+1} & a_{n+2} & \dots & a_{n+q} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n+q-1} & a_{n+q} & \dots & a_{n+2q-2} \end{vmatrix}.$$

2010 Mathematics Subject Classification: 30C45.

Key words and phrases: Subordination, Hankel determinant, functions with positive real part, univalent functions and close to star functions.

The Hankel determinant was studied by various authors including Hayman[3] and Ch. Pommerenke ([13],[14]). For $q=2$ and $n=2$, the second Hankel determinant for the analytic function $f(z)$ is defined by

$$H_2(2) = \begin{vmatrix} a_2 & a_3 \\ a_3 & a_4 \end{vmatrix} = (a_2 a_4 - a_3^2)$$

R_0 represents the class of functions $f(z) \in A$ and satisfying the condition

$$(1.3) \quad \operatorname{Re} \left[\frac{f(z)}{z} \right] > 0, z \in D.$$

R_0 is a particular case of the class of close to star function defined by Reade[17]. The class R_0 and its subclasses were vastly studied by several authors including Mac-Gregor[7].

Let R be the class of functions $f(z) \in A$ and satisfying

$$(1.4) \quad \operatorname{Re} f'(z) > 0, z \in D.$$

The class R was introduced by Noshiro [11] and Warschawski[18] (known as N-W class) and it was shown by them that R is a class of univalent functions. The class R and its subclasses were investigated by various authors including Goel and the author ([1], [2]).

For $\alpha \geq 0$, $R_1(\alpha)$ and $R_2(\alpha)$ denote the classes of functions in A which satisfy, respectively, the conditions

$$(1.5) \quad \operatorname{Re} \left[(1-\alpha) \frac{f(z)}{z} + \alpha f'(z) \right] > 0, z \in D$$

and

$$(1.6) \quad \operatorname{Re} [f'(z) + \alpha z f''(z)] > 0, z \in D.$$

The classes $R_1(\alpha)$ and $R_2(\alpha)$ were introduced by Pascu [12] and are called Pascu classes of functions. It is obvious that $f(z) \in R_1(\alpha)$ implies that $zf'(z) \in R_2(\alpha)$.

We shall deal with the following classes

$$(1.7) \quad R_1(\alpha; A, B) = \left\{ f \in A : \left[(1-\alpha) \frac{f(z)}{z} + \alpha f'(z) \prec \frac{1+Az}{1+Bz}, \alpha \geq 0, -1 \leq B < A \leq 1, z \in D \right] \right\}$$

and

$$(1.8) \quad R_2(\alpha; A, B) = \left\{ f \in A : \left[f'(z) + \alpha z f''(z) \prec \frac{1+Az}{1+Bz}, \alpha \geq 0, -1 \leq B < A \leq 1, z \in D \right] \right\}.$$

$R_1(\alpha; 1, -1) \equiv R_1(\alpha)$ and $R_2(\alpha; 1, -1) \equiv R_2(\alpha)$. $R_1(\alpha; A, B)$ is a subclass of $R_1(\alpha)$ and $R_2(\alpha; A, B)$ is a subclass of $R_2(\alpha)$. The classes $R_1(\alpha; A, B)$ and $R_2(\alpha; A, B)$ were studied by the author[8]. Througout the paper, we assume that $\alpha \geq 0, -1 \leq B < A \leq 1$ and $z \in D$.

2. PRELIMINARY LEMMAS

SECOND HANKEL DETERMINANT

Lemma 2.1 [15]. Let $P(z) \in \mathcal{P}(z)$, then

$$|p_n| \leq 2 \quad (n = 1, 2, 3, \dots)$$

Lemma 2.2 [5]. Let $P(z) \in \mathcal{P}(z)$, then

$$2p_2 = p_1^2 + (4 - p_1^2)x,$$

$$4p_3 = p_1^3 + 2p_1(4 - p_1^2)x - p_1(4 - p_1^2)x^2 + 2(4 - p_1^2)(1 - |x|^2)z$$

for some x and z with $|x| \leq 1, |z| \leq 1$ and $p_1 \in [0, 2]$.

3. MAIN RESULTS

Theorem 3.1: Let $f \in R_1(\alpha; A, B)$, then

$$|a_2a_4 - \mu a_3^2| \leq$$

$$(3.1) \quad \left[\left(\frac{1-B}{A-B} \right)^2 \left[\frac{\{3(1+2\alpha)^2 - 2\mu(1+\alpha)(1+3\alpha)\}^2}{2(1+\alpha)(1+3\alpha)(1+2\alpha)^2 \{ (1+2\alpha)^2 - \mu(1+\alpha)(1+3\alpha) \}} - \frac{4\mu}{(1+2\alpha)^2} \right] \text{ if } \mu \leq 0; \right.$$

$$(3.2) \quad \left[\left(\frac{1-B}{A-B} \right)^2 \left[\frac{\{3(1+2\alpha)^2 - 4\mu(1+\alpha)(1+3\alpha)\}^2}{2(1+\alpha)(1+3\alpha)(1+2\alpha)^2 \{ (1+2\alpha)^2 - \mu(1+\alpha)(1+3\alpha) \}} + \frac{4\mu}{(1+2\alpha)^2} \right] \right. \\ \left. \text{ if } 0 \leq \mu \leq \frac{3(1+2\alpha)^2}{4(1+\alpha)(1+3\alpha)}; \right]$$

$$(3.3) \quad \left[\left(\frac{1-B}{A-B} \right)^2 \left[\frac{4\mu}{(1+2\alpha)^2} \right] \text{ if } \frac{3(1+2\alpha)^2}{4(1+\alpha)(1+3\alpha)} \leq \mu \leq \frac{3(1+2\alpha)^2}{2(1+\alpha)(1+3\alpha)}; \right]$$

$$(3.4) \quad \left[\left(\frac{1-B}{A-B} \right)^2 \left[\frac{\{2\mu(1+\alpha)(1+3\alpha) - 3(1+2\alpha)^2\}^2}{2(1+\alpha)(1+3\alpha)(1+2\alpha)^2 \{ \mu(1+\alpha)(1+3\alpha) - (1+2\alpha)^2 \}} + \frac{4\mu}{(1+2\alpha)^2} \right] \right. \\ \left. \text{ if } \mu \geq \frac{3(1+2\alpha)^2}{2(1+\alpha)(1+3\alpha)}. \right]$$

Proof. By definition of subordination,

$$(1-\alpha) \frac{f(z)}{z} + \alpha f'(z) = \frac{1+Aw(z)}{1+Bw(z)},$$

Taking real parts,

$$\operatorname{Re} \left[(1-\alpha) \frac{f(z)}{z} + \alpha f'(z) \right] = \operatorname{Re} \left[\frac{1+Aw(z)}{1+Bw(z)} \right]$$

$$\geq \frac{1-Ar}{1-Br} > \frac{1-A}{1-B} \quad (|z|=r)$$

which implies that

$$(3.5) \quad 1 + \frac{1-B}{A-B} [(1+\alpha)a_2 z + (1+2\alpha)a_3 z^2 + (1+3\alpha)a_4 z^3 + \dots] = P(z) .$$

Equating the coefficients in (3.5), we get

$$(3.6) \quad \begin{cases} a_2 = \left(\frac{1-B}{A-B} \right) \frac{p_1}{(1+\alpha)} \\ a_3 = \left(\frac{1-B}{A-B} \right) \frac{p_2}{(1+2\alpha)} \\ a_4 = \left(\frac{1-B}{A-B} \right) \frac{p_3}{(1+3\alpha)} \end{cases}$$

System (3.6) ensures that

$$(3.7) \quad C(\alpha)(a_2 a_4 - \mu a_3^2) = (1+2\alpha)^2 p_1 (4p_3) - \mu(1+\alpha)(1+3\alpha)(2p_2)^2 ,$$

$$(3.8) \quad C(\alpha) = 4 \left(\frac{A-B}{1-B} \right)^2 (1+\alpha)(1+3\alpha)(1+2\alpha)^2 .$$

Using Lemma 2.2 in (3.7), we obtain

$$C(\alpha)(a_2 a_4 - \mu a_3^2) = (1+2\alpha)^2 p_1 \left[p_1^3 + 2p_1 (4-p_1^2)x - p_1 (4-p_1^2)x^2 + 2(4-p_1^2)(1-|x|^2)z \right] - \mu(1+\alpha)(1+3\alpha) \left[p_1^2 + (4-p_1^2)x \right]^2$$

for some x and z with $|x| \leq 1$, $|z| \leq 1$. or

$$(3.9) \quad C(\alpha)(a_2 a_4 - \mu a_3^2) = \left[(1+2\alpha)^2 - \mu(1+\alpha)(1+3\alpha) \right] p_1^4 + 2 \left[(1+2\alpha)^2 - \mu(1+\alpha)(1+3\alpha) \right] p_1^2 (4-p_1^2)x - (4-p_1^2) \left[\left\{ (1+2\alpha)^2 - \mu(1+\alpha)(1+3\alpha) \right\} p_1^2 + 4\mu(1+\alpha)(1+3\alpha) \right] x^2 + 2(1+2\alpha)^2 p_1 (4-p_1^2)(1-|x|^2)z$$

Replacing p_1 by $p \in [0, 2]$ and applying triangular inequality to (3.9), we get

$$C(\alpha)|a_2 a_4 - \mu a_3^2| \leq \begin{cases} \left| (1+2\alpha)^2 - \mu(1+\alpha)(1+3\alpha) \right| p^4 + 2 \left| (1+2\alpha)^2 - \mu(1+\alpha)(1+3\alpha) \right| p^2 (4-p^2) \delta \\ + (4-p^2) \left[\left| (1+2\alpha)^2 - \mu(1+\alpha)(1+3\alpha) \right| p^2 + 4\mu(1+\alpha)(1+3\alpha) \right] \delta^2 \\ + 2(1+2\alpha)^2 p (4-p^2)(1-\delta^2), (\delta = |x| \leq 1) \end{cases}$$

which can be put in the form

SECOND HANKEL DETERMINANT

$$\begin{aligned}
& \left[\left(1+2\alpha \right)^2 - \mu(1+\alpha)(1+3\alpha) \right] p^4 + 2(1+2\alpha)^2 p(4-p^2) \\
& + 2 \left[\left(1+2\alpha \right)^2 - \mu(1+\alpha)(1+3\alpha) \right] p^2(4-p^2)\delta \\
& + (4-p^2) \left[\left\{ \left(1+2\alpha \right)^2 - \mu(1+\alpha)(1+3\alpha) \right\} p^2 - 4\mu(1+\alpha)(1+3\alpha) - 2p(1+2\alpha)^2 \right] \delta^2 \\
& \text{if } \mu \leq 0; \\
& \left[\left(1+2\alpha \right)^2 - \mu(1+\alpha)(1+3\alpha) \right] p^4 + 2(1+2\alpha)^2 p(4-p^2) \\
& + 2 \left[\left(1+2\alpha \right)^2 - \mu(1+\alpha)(1+3\alpha) \right] p^2(4-p^2)\delta \\
(3.10) \quad C(\alpha) |a_2 a_4 - \mu a_3^2| \leq & + (4-p^2) \left[\left\{ \left(1+2\alpha \right)^2 - \mu(1+\alpha)(1+3\alpha) \right\} p^2 + 4\mu(1+\alpha)(1+3\alpha) - 2p(1+2\alpha)^2 \right] \delta^2 \\
& \text{if } 0 \leq \mu \leq \frac{(1+2\alpha)^2}{(1+\alpha)(1+3\alpha)}; \\
& \left[\mu(1+\alpha)(1+3\alpha) - (1+2\alpha)^2 \right] p^4 + 2(1+2\alpha)^2 p(4-p^2) \\
& + 2 \left[\mu(1+\alpha)(1+3\alpha) - (1+2\alpha)^2 \right] p^2(4-p^2)\delta \\
& + (4-p^2) \left[\left\{ \mu(1+\alpha)(1+3\alpha) - (1+2\alpha)^2 \right\} p^2 + 4\mu(1+\alpha)(1+3\alpha) - 2p(1+2\alpha)^2 \right] \delta^2 \\
& \text{if } \mu \geq \frac{(1+2\alpha)^2}{(1+\alpha)(1+3\alpha)} \\
= & F(\delta).
\end{aligned}$$

$F'(\delta) > 0$ and therefore $F(\delta)$ is increasing in $[0,1]$. $F(\delta)$ attains its maximum value at $\delta = 1$.

(3.10) reduces to

$$\begin{aligned}
& \left[\left(1+2\alpha \right)^2 - \mu(1+\alpha)(1+3\alpha) \right] p^4 + 2 \left[\left(1+2\alpha \right)^2 - \mu(1+\alpha)(1+3\alpha) \right] p^2(4-p^2) \\
& + (4-p^2) \left[\left\{ \left(1+2\alpha \right)^2 - \mu(1+\alpha)(1+3\alpha) \right\} p^2 - 4\mu(1+\alpha)(1+3\alpha) \right] \text{if } \mu \leq 0; \\
& \left[\left(1+2\alpha \right)^2 - \mu(1+\alpha)(1+3\alpha) \right] p^4 + 2 \left[\left(1+2\alpha \right)^2 - \mu(1+\alpha)(1+3\alpha) \right] p^2(4-p^2) \\
C(\alpha) |a_2 a_4 - \mu a_3^2| \leq & + (4-p^2) \left[\left\{ \left(1+2\alpha \right)^2 - \mu(1+\alpha)(1+3\alpha) \right\} p^2 + 4\mu(1+\alpha)(1+3\alpha) \right] \text{if } 0 \leq \mu \leq \frac{(1+2\alpha)^2}{(1+\alpha)(1+3\alpha)}; \\
& \left[\mu(1+\alpha)(1+3\alpha) - (1+2\alpha)^2 \right] p^4 + 2 \left[\mu(1+\alpha)(1+3\alpha) - (1+2\alpha)^2 \right] p^2(4-p^2) \\
& + (4-p^2) \left[\left\{ \mu(1+\alpha)(1+3\alpha) - (1+2\alpha)^2 \right\} p^2 + 4\mu(1+\alpha)(1+3\alpha), \text{if } \mu \geq \frac{(1+2\alpha)^2}{(1+\alpha)(1+3\alpha)} \right]
\end{aligned}$$

$$(3.11) \quad C(\alpha) |a_2 a_4 - \mu a_3^2| \leq \max G(p),$$

$= G(p)$, or

Case (i) $\mu \leq 0$

$$G(p) = -2 \left[(1+2\alpha)^2 - \mu(1+\alpha)(1+3\alpha) \right] p^4 + 4 \left[3(1+2\alpha)^2 - 2\mu(1+\alpha)(1+3\alpha) \right] p^2 - 16(1+\alpha)(1+3\alpha)\mu$$

$G(p)$ is maximum for

$$G'(p) = -8 \left[(1+2\alpha)^2 - \mu(1+\alpha)(1+3\alpha) \right] p^3 + 8 \left[3(1+2\alpha)^2 - 2\mu(1+\alpha)(1+3\alpha) \right] p = 0$$

which implies that $p = \sqrt{\frac{3(1+2\alpha)^2 - 2\mu(1+\alpha)(1+3\alpha)}{(1+2\alpha)^2 - \mu(1+\alpha)(1+3\alpha)}}$.

Putting the corresponding value of $G(p)$ along with $C(\alpha)$ from (3.8) in (3.11), we get

(3.1)

Case (ii) $0 \leq \mu \leq \frac{(1+2\alpha)^2}{(1+\alpha)(1+3\alpha)}$

$$G(p) = -2 \left[(1+2\alpha)^2 - \mu(1+\alpha)(1+3\alpha) \right] p^4 + 4 \left[3(1+2\alpha)^2 - 4\mu(1+\alpha)(1+3\alpha) \right] p^2 + 16(1+\alpha)(1+3\alpha)\mu$$

Sub-case (a) $0 \leq \mu \leq \frac{3(1+2\alpha)^2}{4(1+\alpha)(1+3\alpha)}$

It is easy to see that $G(p)$ is maximum at

$$p = \sqrt{\frac{3(1+2\alpha)^2 - 4\mu(1+\alpha)(1+3\alpha)}{(1+2\alpha)^2 - \mu(1+\alpha)(1+3\alpha)}}.$$

Substituting the corresponding value of $G(p)$ and the value of $C(\alpha)$ in (3.11), (3.2) follows

Sub-case (b) $\frac{3(1+2\alpha)^2}{4(1+\alpha)(1+3\alpha)} \leq \mu \leq \frac{(1+2\alpha)^2}{(1+\alpha)(1+3\alpha)}$

$G'(p) < 0$ and $G(p)$ is maximum at $p=0$

In this sub-case $\max G(p) = 16(1+\alpha)(1+3\alpha)\mu$.

Case (iii) $\mu \geq \frac{(1+2\alpha)^2}{(1+\alpha)(1+3\alpha)}$

$$G(p) = -2 \left[\mu(1+\alpha)(1+3\alpha) - (1+2\alpha)^2 \right] p^4 + 4 \left[2\mu(1+\alpha)(1+3\alpha) - 3(1+2\alpha)^2 \right] p^2 + 16(1+\alpha)(1+3\alpha)\mu$$

Sub-case (a) $\frac{(1+2\alpha)^2}{(1+\alpha)(1+3\alpha)} \leq \mu \leq \frac{3(1+2\alpha)^2}{2(1+\alpha)(1+3\alpha)}$

SECOND HANKEL DETERMINANT

$G'(p) < 0$ and maximum $G(p) = G(0) = 16(1+\alpha)(1+3\alpha)\mu$

Combining the cases (ii)-(b) and (iii)-(a) we arrive at (3.3)

Sub-case (b) $\mu \geq \frac{3(1+2\alpha)^2}{2(1+\alpha)(1+3\alpha)}$

A simple calculus shows that $G(p)$ is maximum at $p = \sqrt{\frac{2\mu(1+\alpha)(1+3\alpha)-3(1+2\alpha)^2}{\mu(1+\alpha)(1+3\alpha)-(1+2\alpha)^2}}$

Substituting the corresponding value of $G(p)$ and the value of $C(\alpha)$ in (3.11), (3.4) follows

Remark 3.1 Put $A=1$ and $B=-1$ in the theorem we get the estimates for the class $R_1(\alpha)$.

Taking $A=1$, $B=-1$ and $\alpha=0$ in the theorem we have

Corollary 3.1 If $f \in R_0$, then

$$\left| a_2 a_4 - \mu a_3^2 \right| \leq \begin{cases} \frac{(3-2\mu)^2}{2(1-\mu)} - 4\mu, \mu \leq 0; \\ \frac{(3-4\mu)^2}{2(1-\mu)} + 4\mu, 0 \leq \mu \leq \frac{3}{4}; \\ 4\mu, \frac{3}{4} \leq \mu \leq \frac{3}{2}; \\ \frac{(2\mu-3)^2}{2(\mu-1)} + 4\mu, \mu \geq \frac{3}{2}. \end{cases}$$

Letting $A=1$, $B=-1$ and $\alpha=1$ we get

Corollary 3.2 If $f \in R$, then

$$\left| a_2 a_4 - \mu a_3^2 \right| \leq \begin{cases} \frac{(27-16\mu)^2}{144(9-8\mu)} - \frac{4\mu}{9}, \mu \leq 0; \\ \frac{(27-32\mu)^2}{144(9-8\mu)} + \frac{4\mu}{9}, 0 \leq \mu \leq \frac{27}{32}; \\ \frac{4\mu}{9}, \frac{27}{32} \leq \mu \leq \frac{27}{16}; \\ \frac{(16\mu-27)^2}{144(8\mu-9)} + \frac{4\mu}{9}, \mu \geq \frac{27}{16}. \end{cases}$$

This results was proved by Janteng et al [4]

Theorem 3.2 Let $f \in R_2(\alpha; A, B)$, then

$$\left| a_2 a_4 - \mu a_3^2 \right| \leq$$

$$(3.12) \quad \left(\frac{1-B}{A-B} \right)^2 \left[\frac{\left\{ 27(1+2\alpha)^2 - 16\mu(1+\alpha)(1+3\alpha) \right\}^2}{144(1+\alpha)(1+3\alpha)(1+2\alpha)^2 \left\{ 9(1+2\alpha)^2 - 8\mu(1+\alpha)(1+3\alpha) \right\}} - \frac{4\mu}{9(1+2\alpha)^2} \right]$$

if $\mu \leq 0$;

$$(3.13) \quad \left(\frac{1-B}{A-B} \right)^2 \left[\frac{\left\{ 27(1+2\alpha)^2 - 32\mu(1+\alpha)(1+3\alpha) \right\}^2}{144(1+\alpha)(1+3\alpha)(1+2\alpha)^2 \left\{ 9(1+2\alpha)^2 - 8\mu(1+\alpha)(1+3\alpha) \right\}} + \frac{4\mu}{9(1+2\alpha)^2} \right]$$

if $0 \leq \mu \leq \frac{27(1+2\alpha)^2}{32(1+\alpha)(1+3\alpha)}$;

$$(3.14) \quad \left(\frac{1-B}{A-B} \right)^2 \left[\frac{4\mu}{9(1+2\alpha)^2} \right]$$

if $\frac{27(1+2\alpha)^2}{32(1+\alpha)(1+3\alpha)} \leq \mu \leq \frac{27(1+2\alpha)^2}{16(1+\alpha)(1+3\alpha)}$;

$$(3.15) \quad \left(\frac{1-B}{A-B} \right)^2 \left[\frac{\left\{ 16\mu(1+\alpha)(1+3\alpha) - 27(1+2\alpha)^2 \right\}^2}{144(1+\alpha)(1+3\alpha)(1+2\alpha)^2 \left\{ 8\mu(1+\alpha)(1+3\alpha) - 9(1+2\alpha)^2 \right\}} + \frac{4\mu}{9(1+2\alpha)^2} \right]$$

if $\mu \geq \frac{27(1+2\alpha)^2}{16(1+\alpha)(1+3\alpha)}$.

Proof. We have

$$f'(z) + \alpha z f''(z) = \frac{1 + Aw(z)}{1 + Bw(z)}$$

Taking real parts,

$$\operatorname{Re}[f'(z) + \alpha z f''(z)] = \operatorname{Re} \left[\frac{1 + Aw(z)}{1 + Bw(z)} \right] \geq \frac{1 - Ar}{1 - Br} > \frac{1 - A}{1 - B} \quad (|z| = r)$$

This implies that

$$(3.16) \quad 1 + \left(\frac{1-B}{A-B} \right) [2(1+\alpha)a_2 z + 3(1+2\alpha)a_3 z^2 + 4(1+3\alpha)a_4 z^3 + \dots] = P(z)$$

Identifying the terms in (3.16), we get

$$(3.17) \quad \begin{cases} a_2 = \left(\frac{A-B}{1-B} \right) \frac{p_1}{2(1+\alpha)} \\ a_3 = \left(\frac{A-B}{1-B} \right) \frac{p_2}{3(1+2\alpha)} \\ a_4 = \left(\frac{A-B}{1-B} \right) \frac{p_3}{4(1+3\alpha)} \end{cases}$$

System (3.17) yields

$$(3.18) \quad C(\alpha)(a_2 a_4 - \mu a_3^2) = 9(1+2\alpha)^2 p_1 (4p_3) - 8\mu(1+\alpha)(1+3\alpha)(2p_2)^2,$$

SECOND HANKEL DETERMINANT

$$(3.19) \quad C(\alpha) = \left(\frac{A-B}{1-B} \right)^2 \left[288(1+\alpha)(1+3\alpha)(1+2\alpha)^2 \right]$$

By Lemma 2.2, (3.19) can be written as

$$\begin{aligned} C(\alpha)(a_2a_4 - \mu a_3^2) &= 9(1+2\alpha)^2 p_1 \left[p_1^3 + 2p_1(4-p_1^2)x - p_1(4-p_1^2)x^2 + 2(4-p_1^2)(1-|x|^2)z \right] \\ &\quad - 8\mu(1+\alpha)(1+3\alpha) \left[p_1^2 + (4-p_1^2)x \right]^2 \\ &\text{for some } x \text{ and } z \text{ with } |x| \leq 1, |z| \leq 1. \end{aligned}$$

or

$$\begin{aligned} (3.20) \quad C(\alpha)(a_2a_4 - \mu a_3^2) &= \left[9(1+2\alpha)^2 - 8\mu(1+\alpha)(1+3\alpha) \right] p_1^4 + 2 \left[9(1+2\alpha)^2 - 8\mu(1+\alpha)(1+3\alpha) \right] p_1^2 (4-p_1^2)x \\ &\quad - (4-p_1^2) \left[\left\{ 9(1+2\alpha)^2 - 8\mu(1+\alpha)(1+3\alpha) + 32\mu(1+\alpha)(1+3\alpha) \right\} \right] x^2 \\ &\quad + 18(1+2\alpha)^2 p_1 (4-p_1^2) (1-|x|^2) z. \end{aligned}$$

Replacing p_1 by $p \in [0, 2]$ and applying triangular inequality to (3.20), we get

$$\begin{aligned} C(\alpha)|a_2a_4 - \mu a_3^2| &\leq \left| 9(1+2\alpha)^2 - 8\mu(1+\alpha)(1+3\alpha) \right| p^4 \\ &\quad 2 \left| 9(1+2\alpha)^2 - 8\mu(1+\alpha)(1+3\alpha) \right| p^2 (4-p^2) \delta \\ &\quad + (4-p^2) \left[\left| 9(1+2\alpha)^2 - 8\mu(1+\alpha)(1+3\alpha) \right| p^2 + \left| 32\mu(1+\alpha)(1+3\alpha) \right| \right] \delta^2 \\ &\quad + 18(1+2\alpha)^2 p (4-p^2) (1-|\delta|^2). \quad (\delta = |x| \leq 1) \end{aligned}$$

which can be put in the form

$$\begin{aligned}
C(\alpha) |a_2 a_4 - \mu a_3^2| &\leq \left[\begin{array}{l} \left[9(1+2\alpha)^2 - 8\mu(1+\alpha)(1+3\alpha) \right] p^4 + 18(1+2\alpha)^2 p(4-p^2) \\ + 2 \left[9(1+2\alpha)^2 - 8\mu(1+\alpha)(1+3\alpha) \right] p^2 (4-p^2) \delta \\ + (4-p^2) \left[\begin{array}{l} \left\{ 9(1+2\alpha)^2 - 8\mu(1+\alpha)(1+3\alpha) \right\} p^2 - 32\mu(1+\alpha)(1+3\alpha) \\ - 18(1+2\alpha)^2 p \end{array} \right] \delta^2 \text{ if } \mu \leq 0; \end{array} \right] \\
&\quad \left[\begin{array}{l} \left[9(1+2\alpha)^2 - 8\mu(1+\alpha)(1+3\alpha) \right] p^4 + 18(1+2\alpha)^2 p(4-p^2) \\ + 2 \left[9(1+2\alpha)^2 - 8\mu(1+\alpha)(1+3\alpha) \right] p^2 (4-p^2) \delta \\ + (4-p^2) \left[\begin{array}{l} \left\{ 9(1+2\alpha)^2 - 8\mu(1+\alpha)(1+3\alpha) \right\} p^2 + 32\mu(1+\alpha)(1+3\alpha) \\ - 18(1+2\alpha)^2 p \end{array} \right] \delta^2 \end{array} \right] \delta^2 \\
&\quad \text{if } 0 \leq \mu \leq \frac{9(1+2\alpha)^2}{8(1+\alpha)(1+3\alpha)}; \\
&\quad \left[\begin{array}{l} \left[8\mu(1+\alpha)(1+3\alpha) - 9(1+2\alpha)^2 \right] p^4 + 18(1+2\alpha)^2 p(4-p^2) \\ + 2 \left[8\mu(1+\alpha)(1+3\alpha) - 9(1+2\alpha)^2 \right] p^2 (4-p^2) \delta \\ + (4-p^2) \left[\begin{array}{l} \left\{ 8\mu(1+\alpha)(1+3\alpha) - 9(1+2\alpha)^2 \right\} p^2 + 32\mu(1+\alpha)(1+3\alpha) \\ - 18(1+2\alpha)^2 p \end{array} \right] \delta^2 \end{array} \right] \delta^2 \\
&\quad \text{if } \mu \geq \frac{9(1+2\alpha)^2}{8(1+\alpha)(1+3\alpha)}. \\
&= F(\delta)
\end{aligned}$$

$F'(\delta) > 0$ which means that $F(\delta)$ is increasing in $[0, 1]$ and $F(\delta)$ attains maximum value at $\delta = 1$

(3.21) reduces to

SECOND HANKEL DETERMINANT

$$C(\alpha) \left| (a_2 a_4 - \mu a_3^2) \right| \leq \begin{cases} \left[9(1+2\alpha)^2 - 8\mu(1+\alpha)(1+3\alpha) \right] p^4 + 2 \left[9(1+2\alpha)^2 - 8\mu(1+\alpha)(1+3\alpha) \right] p^2 (4-p^2) \\ + (4-p^2) \left[\left\{ 9(1+2\alpha)^2 - 8\mu(1+\alpha)(1+3\alpha) \right\} p^2 - 32\mu(1+\alpha)(1+3\alpha) \right], & \text{if } \mu \leq 0; \\ \\ \left[9(1+2\alpha)^2 - 8\mu(1+\alpha)(1+3\alpha) \right] p^4 + 2 \left[9(1+2\alpha)^2 - 8\mu(1+\alpha)(1+3\alpha) \right] p^2 (4-p^2) \\ + (4-p^2) \left[\left\{ 9(1+2\alpha)^2 - 8\mu(1+\alpha)(1+3\alpha) \right\} p^2 + 32\mu(1+\alpha)(1+3\alpha) \right] \\ \text{if } 0 \leq \mu \leq \frac{9(1+2\alpha)^2}{8(1+\alpha)(1+3\alpha)}; \\ \\ \left[8\mu(1+\alpha)(1+3\alpha) - 9(1+2\alpha)^2 \right] p^4 + 2 \left[8\mu(1+\alpha)(1+3\alpha) - 9(1+2\alpha)^2 \right] p^2 (4-p^2) \\ + (4-p^2) \left[\left\{ 8\mu(1+\alpha)(1+3\alpha) - 9(1+2\alpha)^2 \right\} p^2 + 32\mu(1+\alpha)(1+3\alpha) \right] \\ \text{if } \mu \geq \frac{9(1+2\alpha)^2}{8(1+\alpha)(1+3\alpha)}. \end{cases}$$

Or

$$(3.22) \quad C(\alpha) \left| (a_2 a_4 - \mu a_3^2) \right| \leq G(p) .$$

Case (i) $\mu \leq 0$

$$G(p) = -2 \left[9(1+2\alpha)^2 - 8\mu(1+\alpha)(1+3\alpha) \right] p^4 + 4 \left[27(1+2\alpha)^2 - 16\mu(1+\alpha)(1+3\alpha) \right] p^2 + 128(1+\alpha)(1+3\alpha)\mu .$$

$G(p)$ is maximum for

$$G'(p) = -8 \left[9(1+2\alpha)^2 - 8\mu(1+\alpha)(1+3\alpha) \right] p^3 + 8 \left[27(1+2\alpha)^2 - 16\mu(1+\alpha)(1+3\alpha) \right] p = 0$$

which gives

$$p = \sqrt{\frac{27(1+2\alpha)^2 - 16\mu(1+\alpha)(1+3\alpha)}{9(1+2\alpha)^2 - 8\mu(1+\alpha)(1+3\alpha)}} .$$

Putting the corresponding value of $G(p)$ along with the value of $C(\alpha)$ from (3.19) in (3.22), we get (3.12).

Case (ii) $0 \leq \mu \leq \frac{9(1+2\alpha)^2}{8(1+\alpha)(1+3\alpha)}$

$$G(p) = -2 \left[9(1+2\alpha)^2 - 8\mu(1+\alpha)(1+3\alpha) \right] p^4 + 4 \left[27(1+2\alpha)^2 - 32\mu(1+\alpha)(1+3\alpha) \right] p^2 + 128(1+\alpha)(1+3\alpha)\mu$$

$$\text{Sub-case (a)} \quad 0 \leq \mu \leq \frac{27(1+2\alpha)^2}{32(1+\alpha)(1+3\alpha)}$$

An elementary calculus shows that $G(p)$ is maximum at

$$p = \sqrt{\frac{27(1+2\alpha)^2 - 32\mu(1+\alpha)(1+3\alpha)}{9(1+2\alpha)^2 - 8\mu(1+\alpha)(1+3\alpha)}}.$$

With the corresponding value of $G(p)$ along with the value of $C(\alpha)$ in (3.22), we arrive at (3.13).

$$\text{Sub-case (b)} \quad \frac{27(1+2\alpha)^2}{32(1+\alpha)(1+3\alpha)} \leq \mu \leq \frac{9(1+2\alpha)^2}{8(1+\alpha)(1+3\alpha)}$$

$G'(p) < 0$ and $G(p)$ is maximum at $p = 0$.

$$\max G(p) = G(0) = 128(1+\alpha)(1+3\alpha)\mu.$$

$$\text{Case (iii)} \quad \mu \geq \frac{9(1+2\alpha)^2}{8(1+\alpha)(1+3\alpha)}$$

$$G(p) = -2 \left[8\mu(1+\alpha)(1+3\alpha) - 9(1+2\alpha)^2 \right] p^4 + 4 \left[16\mu(1+\alpha)(1+3\alpha) - 27(1+2\alpha)^2 \right] p^2 + 128(1+\alpha)(1+3\alpha)\mu.$$

$$\text{Sub-case (a)} \quad \frac{9(1+2\alpha)^2}{8(1+\alpha)(1+3\alpha)} \leq \mu \leq \frac{27(1+2\alpha)^2}{16(1+\alpha)(1+3\alpha)}$$

$G'(p) < 0$ and $\max G(p) = G(0) = 128(1+\alpha)(1+3\alpha)\mu$.

Combining the cases (ii-b) and (iii-a), (3.14) follows.

$$\text{Sub-case (b)} \quad \mu \geq \frac{27(1+2\alpha)^2}{16(1+\alpha)(1+3\alpha)}$$

An easy calculation shows that $G(p)$ is maximum at $p = \sqrt{\frac{16\mu(1+\alpha)(1+3\alpha) - 27(1+2\alpha)^2}{8\mu(1+\alpha)(1+3\alpha) - 9(1+2\alpha)^2}}$.

Substituting the corresponding value of $G(p)$ along with the value of $C(\alpha)$ in (3.22), we obtain (3.15).

Remark 3.2 Putting $A=1$ and $B=-1$ in the theorem we get the estimates for the class $R_2(\alpha)$.

Remark 3.3 Letting $A = 1, B = -1$ and $\alpha = 0$ in the theorem, corollary 3.2 follows.

SECOND HANKEL DETERMINANT

REFERENCES

- [1] R.M.Goel and B.S.Mehrok, A subclass of univalent functions, Houston J. Math., 8(1982), 343-357.
- [2] R.M.Goel and B.S.Mehrok, A subclass of univalent functions, J.Austral.Math.Soc. (Series A), 35(1983), 1-17.
- [3] W.K. Hayman, Multivalent functions, Cambridge Tracts in math. and math-physics, No. 48 Cambridge university press, Cambridge (1958).
- [4] A.Janteng , S.A.Halim and M.Darus, Estimates on the second Hankel functional for functions whose derivative has a positive real part, J. Quality Measurement and analysis, JQMA(1) (2008) 189-195.
- [5] R.J.Libera and E.J.Zlotkiewics, Early coefficients of the inverse of a regular convex function, Proceeding Amer. Math.Soc., 85(1982) , 225-230.
- [6] J.E. Littlewood , On inequalties in the theory of functions. Procc. London Math. Soc. 23 (1925) ,481-519 .
- [7] T.H. MacGregor, The radius of univalence of certain analytic functions, Proc. Amer. Math. Soc. 14 (1963) 514-520.
- [8] B S Mehrok. Two subclasses of certain analytic functions (to appear) .
- [9] J W Noonan and D K Thomas , Coefficient differences and Hankel Determinant of really p-val;ent functions , Proc. London Math Soc.[3],25 (1972), 503-524.
- [10] J W Noonan and D K Thomas , On the second Hankel determinant of a really mean p-valent functions. Trans. American Math Society (223) 1976, 337-346.
- [11] K.Noshiro, On the theory of schlicht functions,J. Fac. Soc. Hokkaido univ.Ser.1,2 (1934-1935), 129-155.
- [12] N N Pascu, Alpha- starlike functions, Bull. Uni Brasov CXIX, 1977.
- [13] C H Pommerenke, On the coefficients and Hankel determinant of univalent functions, J. London math. Soc. 41, 1966, 111-122.
- [14] C H Pommerenke , On the Hankel determinant of univalent functions, Mathematica 14 (C) , 1967, 108-112.
- [15] C.H. Pommerenke , Univalent functions wadenheoch and Ruprech, Gotingen, 1975
- [16] W.W. Rogosinski, On coefficients of subordinate functions, Proc. London Math. Zeith (1932), 92-123.
- [17] M O Reade, On close to convex univalent functions, Michhigan Math. J. 1955, 59-62.
- [18] S.S.Warszawski, On the higher derivative at the boundary in conformal mapping, Tran. Amer. Math.Soc., 38(1935), 310-340.

M. S. SAROA, MAHARISHI MARKANDESHAWAR UNIVERSITY, MULLANA

GURMEET SINGH (CORRESPONDING AUTHOR), KHALSA COLLEGE, PATIALA

GAGANDEEP SINGH, AMRITSAR