Гиперграфы. Некоторые определения и свойства

Гиперграф — это такое обобщение простого графа, когда ребрами могут быть не только двухвершинные и одновершинные, но и произвольные подмножества заданного множества вершин. Подобные объекты в математике известны давно, однако введение термина «гиперграф» связано с успешным распространением на них ряда важных понятий и методов теории графов. Существуют понятия, близкие понятию «гиперграф»: матроиды, как специальный класс гиперграфов, а также сети и блок-схемы, и ряд идей этих понятий нашли свое отражение в теории гиперграфов.

Отметим, что все недостающие термины и определения понятий теории графов достаточно полно изложены в монографиях [1,2]. Однако, в отличие от графов, в научной и учебной литературе на русском языке очень мало публикации, которые представляли бы основы теории гиперграфов [3]. Учитывая это обстоятельство, приведем определения используемых в настоящей работе терминов и понятий, относящихся к гиперграфам. При этом будем придерживаться терминологии и обозначений, принятых в [1].

Пусть V — конечное непустое множество, E — некоторое семейство непустых подмножеств множества V . Пара (V,E) называется гиперграфом G = (V,E) с множеством вершин $V = \{v\}$ и множеством ребер $E = \{e\}$.

Число |V| вершин гиперграфа G называется порядком или размерностью этого гиперграфа. Если |V|=n и |E|=m (с учетом кратности ребер), то G называется (n,m)-гиперграфом.

Если вершина $v \in V$ принадлежит ребру $e \in E$, то будем говорить, что они инцидентны. Каждой вершине $v \in V$ гиперграфа G сопоставим множество E(v) всех инцидентных ей ребер. Число $\deg(v) = |E(v)|$ называется степенью вершины v, а число вершин в ребре $\deg(e) = |e|$ — степенью ребра e . Поскольку ребрами гиперграфа могут быть лишь непустые подмножества вершин, то степень любого ребра не меньше единицы, т.е. $\deg(e) \ge 1$.

Если в гиперграфе G = (V, E) имеются пары ребер $e', e'' \in E$, представляющие собой равные подмножества вершин, то ребра e', e'' будем называть кратными, а сам гиперграф G, содержащий хотя бы одну пару кратных ребер, — мультигиперграфом.

Вершина гиперграфа, не инцидентная никакому ребру, называется изолированной. Две вершины v' и v'' гиперграфа G называются смежными, если существует ребро $e \in E$, содержащее обе эти вершины, и несмежными — в противном случае. Два некратных ребра e' и e'' гиперграфа G назовем смежными, если $e' \cap e'' \neq \emptyset$. Петлей назовем ребро, инцидентное только одной вершине. Гиперграф G называется простым, если он не содержит петель и кратных ребер.

Рис.1.1. Гиперграф G = (V, E)

На рис. 1.1 изображен гиперграф G = (V, E) с множеством вершин $V = \{v_1, v_2, ..., v_9\}$, n = 9, и множеством ребер $E = \{e_1, e_2, ..., e_7\}$, где $e_1 = \{v_1, v_2, v_8\}$, $e_2 = (v_2, v_3)$, $e_3 = (v_3, v_4, v_7)$, $e_4 = (v_6, v_7, v_8)$, $e_5 = (v_5, v_6)$, $e_6 = (v_7)$, $e_7 = (v_1, v_2, v_8)$. В гиперграфе G вершина v_9 является изолированной, а ребра e_1 и e_7 кратными. Ребра нарисованы в виде эллипсов, охватывающих инцидентные им вершины. Заметим, что ребра степени 2 можно изображать вместо эллипсов простыми линиями, как в случае обычных графов.

Гиперграфы G = (V, E) и G' = (V', E') называются изоморфными, если существует сохраняющее отношение инцидентности взаимно однозначное соответствие между множествами вершин V, V' и множествами ребер E, E'

Гиперграф G' = (V', E') называется частью гиперграфа G = (V, E), если $V' \subseteq V$ и $E' \subseteq E$. Часть G' = (V', E') гиперграфа G = (V, E) называется его подгиперграфом, если он образуется из исходного гиперграфа G путем удаления некоторых его вершин вместе с инцидентными им ребрами. Часть G' = (V', E') гиперграфа G = (V, E) назовем реберным подгиперграфом, если из G удаляются только ребра.

Сочетанием в гиперграфе G называется такое подмножество $E' \subseteq E$, для любых двух различных ребер e' и e'' которого их пересечение $e' \cap e'' = \emptyset$, т.е. любые два ребра из E' не смежные. Это сочетание называется максимальным, если оно содержит максимальное число несмежных ребер. Сочетание назовем совершенным, если его ребра покрывают все вершины гиперграфа G, и каждая вершина $v \in V$ инцидентна в точности одному ребру этого сочетания. Среди всех совершенных сочетаний выделяем такое, у которого число сочетания $\pi(G) = |E'|$ является минимальным, и называем его минимальным совершенным сочетанием данного гиперграфа G.

Если в гиперграфе G нет кратных ребер и степень всякого ребра $e \in E$ равна ℓ ($|e|=\ell$), то такой гиперграф называют ℓ -однородным. Из этого определения следует, что у n-вершинного ℓ -однородного гиперграфа G каждое сочетание является минимальным совершенным сочетанием, и число этого сочетания равно n/ℓ . Ясно, что всякий 2-однородный гиперграф является графом. При $\ell=3$ гиперграф G будем называть 3-однородным.

Рис. 1.2. 11-вершинный 3-дольный 3-однородный гиперграф $G = (V_1, V_2, V_3, E)$

Гиперграф G=(V,E) называется ℓ -дольным, если множество V его вершин разбито на доли (подмножества) V_s , $s=\overline{1,\ell}$ так, что выполняются два условия:

- 1) всякая пара вершин из одной доли является не смежной;
- 2) у всякого ребра $e \in E$ каждая пара вершин $v', v'' \in e$ принадлежит различным долям.

Гиперграф G называется 3-дольным 3-однородным, если множество вершин V разбито на три подмножества V_s , $s=\overline{1,3}$ так, что в каждом ребре $e=(v_1,v_2,v_3)\in E$ его вершины принадлежат различным долям, т.е. $v_s\in V_s$, $s=\overline{1,3}$. В этом случаем гиперграф G будем обозначать через $G=(V_1,V_2,V_3,E)$

.

Рассмотрим гиперграф $G=(V_1,V_2,V_3,E)$, $V_1=\{1,2,3,4\}$, $V_2=\{5,6,7\}$, $V_3=\{8,9,10,11\}$, $E=\{e_1,e_2,...,e_5\}$, где $e_1=(1,5,9)$, $e_2=(3,6,10)$, $e_3=(4,7,11)$, $e_4=(1,7,10)$, $e_5=(2,5,8)$, представленный на рис. 1.2. Нетрудно увидеть, что в рассматриваемом гиперграфе имеются три тупиковых сочетания $E_1=\{e_1,e_2,e_3\}$, $E_2=\{e_2,e_3,e_5\}$, $E_3=\{e_4,e_5\}$, $E_i\subset E$, $i=\overline{1,3}$. Сочетание $E_0\subset E$

называется тупиковым, если любое ребро $e \in (E \setminus E_0)$ пересекается хотя бы с одним ребром из E_0 . Отметим, что максимальное (совершенное) сочетание, согласно этого определения, также является тупиковым. Гиперграф, изображенный на рис. 1.2, содержит два максимальных сочетания E_1 и E_2 .

На рис.1.3 представлен 9-вершинный 3-дольный 3-однородный гиперграф $G=(V_1,V_2,V_3,E)$ с множеством ребер $E=\{e\}$, где $e_1=(1,4,7)$, $e_2=(2,5,8)$, $e_3=(3,6,9)$, $e_4=(1,5,8)$, $e_5=(2,4,7)$, $e_6=(3,5,8)$.

Рис.1.3. 9-вершинный 3-дольный 3-однородный гиперграф $G = (V_1, V_2, V_3, E)$

На рис.1.4 и рис.1.5 для гиперграфа $G=(V_1,V_2,V_3,E)$ представлены его совершенные сочетания $x_1=(V,E_{x_1})$ и $x_2=(V,E_{x_2})$, в которых $E_{x_1}=\{e_1,e_2,e_3\}$ и $E_{x_2}=\{e_3,e_4,e_5\}$.

Рис.1.4. Совершенное сочетание $x_1 = (V, E_{x_1})$

Рис.1.5. Совершенное сочетание $x_2 = (V, E_{x_2})$ $G = (V_1, V_2, V_3, E)$

В гиперграфе $G=(V_1,V_2,V_3,E)$ звездой называется такая его часть $z=(V_1^z,V_2^z,V_3^z,E_z),\ V_s^z\subseteq V_s, s=\overline{1,3},\$ в которой любые ребра $e',e''\in E_z$ пересекаются в одной и той же вершине $v\in V_1^z$, т.е. мощность $\left|V_1^z\right|=1,$ и не пересекаются ни в какой вершине $v\in V_3^z$. Звезда называется простой, если всякая пара ребер $e',e''\in E_z$ пересекается только в одной вершине $v\in V_1^z$. Степенью звезды r называют число рёбер в ней.

Если в подгиперграфе G' = (V', E') гиперграфа G = (V, E) каждая компонента связности является звездой с центром в некоторой вершине $v \in V_1$, то G' называем покрытием гиперграфа звездами. Допустимым является такое покрытие гиперграфа G простыми звёздами, степени которых равны r(v), и каждая вершина $v \in V_3$ инцидентна только одному ребру некоторой звезды с центром $v \in V_1$.

На рис.1.6 представлен 14-вершинный 3-дольный 3-однородный гиперграф $G=(V_1,V_2,V_3,E)$ с множеством ребер $E=\{e\}$, где $e_1=(1,3,9)$, $e_2=(1,5,10)$, $e_3=(1,6,11)$, $e_4=(2,4,12)$, $e_5=(2,7,13)$, $e_6=(2,8,14)$, $e_7=(1,4,9)$, $e_8=(2,6,13)$. По своему определению допустимое покрытие 3-дольного гиперграфа $G=(V,E)=(V_1,V_2,V_3,E)$ звездами представляет собой такой его подгиперграф $x=(V_x,E_x)$, $V_x\subseteq V$, $E_x\subseteq E$, в котором каждая компонента связности является звездой с центром в определенной вершине $v\in V_1$, причем

ее степень равна r(v). На рис.1.7 показано допустимое покрытие звездами с вектором степеней $r=(r_1,r_2)=(3,3)$ гиперграфа, изображенного на рис.1.6.

Рис.1.6. 14-вершинный 3-дольный 3-однородный гиперграф

Рис 1.7. Допустимое покрытие гиперграфа звездами

Ребро $e \in E$ гиперграфа G называется взвешенным (N-взвешенным), если ему поставлено в соответствие некоторое неотрицательное число $w(e) \ge 0$ (последовательность чисел $w_{\nu}(e) \ge 0$, $\nu = 1, 2, ..., N$). Гиперграф называется взвешенным (N-взвешенным), если каждое его ребро является взвешенным (N-взвешенным).