Predicting user's demographics.

By RMM - September 2018

Final Capstone.

This capstone corresponds to the final part of the Thinkful Data Science Bootcamp. You can visit this notebook at <u>my GitHub repository</u>.

Outline

- → Introduction
- **→** Dataset information
- → Dataset analysis & exploration
- **→** Data transformation
- → Training, testing and evaluation

Intro

We'll explore and model a dataset from China's largest third-party mobile data platform, TalkingData.

Understanding that everyday choices and behaviors draw a picture of who we are and what we value, we can use this information to optimize apps and manage marketing resources.

The dataset contains information regarding app usage, geolocation and mobile device properties.

My objective is to predict user's demographic characteristics, gender, based on the latter information, which in return gives us valuable information that can help developers and brand advertisers around the world pursue data-driven marketing efforts which are relevant to their users and catered to their preferences.

Dataset information - TalkingData mobile data platform

Dataset Structure.

6 separate files build this dataset.

Due to the size of the combined dataset, a sampling function was used to reduce and split the original datasets.

Dataset Exploration.

Age
72,486 users
Average age = 30
Concentrated
age between 25 & 35

Gender
72,486 users
Female users = 35 %
Male users = 65 %

Top 3 phone brands

```
小米 (Xiaomi)
三星 (Samsung Group)
Huawei (华为).
```

Gender distribution among top 20 phone brands Male users tend to double the size in relation to female users

Age distribution among top 20 phone brands

Average tends to be 30 , years

小米 OPPO 配減 vivo 三星 华为 努比亞 糖胺 HTC 全立 联组 索尼 LG 中兴中国移动飞L 海循 乐视 杂维 锤子 phone brand

Age distribution among top 20 phone brands Watching closer, 5 top brands have users

below 29 years

Predicting Gender.

Dataset information - TalkingData mobile data platform

Creating dummy variables and balancing the dataset.

Hyperparameter tuning: GridSearchCV

Logistic regression (Classification L2) classification report:

	precision	recall	f1-score
Male			
Female			
avg / total			

Accuracy Scores - Test Set: 0.6256

grid.best_score_: 0.623026108839 grid.best_params_: {'C': 1}

Hyperparameter tuning: GridSearchCV

Random Forest Classification classification report:

	precision	recall	f1-score
Male			
Female			
avg / total			

grid.best_score_ : 0.79811261403 grid.best_params_: {'bootstrap': False, 'max_depth': None, 'max_features': 'sqrt', 'min_samples_leaf': 1, 'min_samples_split': 2, 'n_estimators': 1}

Hyperparameter tuning: GridSearchCV

Decision Tree Classifier classification report:

	precision	recall	f1-score
Male			
Female			
avg / total			

Accuracy Scores - Test Set: 0.7664

grid.best_score_: 0.81981755269 grid.best_params_: {'criterion': 'gini', 'max_depth': 19, 'min_samples_split': 10}

Hyperparameter tuning: GridSearchCV

K-Nearest Neighbours Classifier classification report:

	precision	recall	f1-score
Male			
Female			
avg / total			

Accuracy Scores - Test Set: 0.7664

grid.best_score_: 0.776659326832 grid.best_params_: {'n_neighbors': 7}

Hyperparameter tuning: GridSearchCV

Ridge Classifier classification report:

	precision	recall	f1-score
Male			
Female			
avg / total			

Accuracy Scores - Test Set: 0.6329

grid.best_score_: 0.623843976093 grid.best_params_: {'alpha': 10}

Predicting gender using PCA.

83 to 53

Fitting PCA to the training matrix, and retaining 75 % of it's variance we reduced the number of features used from 83 to 53 and optimizing prediction score and computational time.

Applying PCA

Logistic regression (Classification L2) classification report:

	precision	recall	f1-score
Male			
Female			
avg / total			

Applying PCA

Random Forest Classification classification report:

	precision	recall	f1-score
Male			
Female			
avg / total			

Applying PCA

Decision Tree Classification classification report:

	precision	recall	f1-score
Male			
Female			
avg / total			

Applying PCA

K-Nearest Neighbours Classification classification report:

	precision	recall	f1-score
Male			
Female			
avg / total			

Applying PCA

Ridge Classification classification report:

	precision	recall	f1-score
Male			
Female			
avg / total			

Predicting gender using PCA & KMeans Clusters.

PCA is used before running the K-means model, and finally predictions

Logistic Regression (Classification L2) classification report:

	precision	recall	f1-score
Male			
Female			
avg / total			

Random Forest Classification classification report:

	precision	recall	f1-score
Male			
Female			
avg / total			

Decision Tree Classification classification report

	precision	recall	f1-score
Male			
Female			
avg / total			

K-Nearest Neighbours Classification classification report:

	precision	recall	f1-score
Male			
Female			
avg / total			

Ridge Classification classification report:

	precision	recall	f1-score
Male			
Female			
avg / total			

Predicting gender using Neural Nets.

Sequential model

We used a sequential model and KerasClassifier to predict our user's gender

Applying Neural Networks.

Individual dataframes were created to run the singular and the ensembled models respectively:

layers

model Sequential

1-model Multilayer perceptron result:

epochs

3/5/7/8/9

Accuracy Scores - Test Set: 0.6597

5-model ensembled Multilayer perceptron result:

Overall Performance

Overall Performance

	GridSearchCV	PCA	PCA/KMeans	Single	Ensembled
Logistic Regression					
Random Forest					
Decision Tree					
KNN					
Ridge C.					
Neural Networks				65.97	

Best model
performance for
predicting
gender.

Random Forest C.	81.00 %
Decision Tree	
Neural Networks	
Logistic Regression	
Ridge C.	

How can this information help us?

Marketing strategies

Advertising campaigns are user-oriented

Knowing your user

App developers can shape their software accordingly and generate higher ROI

R&D investments maximized

Investments go were matters and savings are wisely executed

Aspects we could improve to increase our predictability.

Increase power

Hyper parameter tuning

>>

Multiple algo testing

Ensemble + models

Multi target classification

Thank you Hoa Tran. Thank you.