

Tutorial 1

Introducing Artificial Intelligence

Learning Objectives

- General Problems in AI
 - Human actions/thinking
- Strong versus (Weak versus) Narrow AI
- Intelligent Agents
 - Framework for Intelligent Agents
 - Agent Function / Program
- Rational Agents and Performance Measures
- Describing Task Environments (PEAS)
 - Properties of Task Environments
- Types of Agents

Questions?

https://forms.gle/ZGSmSa2YUMrhGr6e8

Kahoot!

Join at kahoot.it or with the Kahoot! app

Key points Revisited

Agent

- = AI mechanism (in our case, the agent function)
- More generically, agent = the agent function f, such that a = f(s)
 (s: a collection of inputs; a: one of many possible actions/decisions)

Rationality

• Rational mechanism: selects an action that is expected to maximise its performance measure for each possible percept sequence, given the evidence provided by the percept sequence and the agent's built-in knowledge.

Key points Revisited (Cont.)

• Rational Agent Structure

2. Agent function uses percepts (current, and sometimes also historical) as input data to generate an output (i.e., an action)

Key points Revisited (Cont.)

- PEAS task environment specification
 - Performance measure, Environment, Actuators, Sensors
- Other environmental properties
 - Fully vs. partially observable
 - Deterministic vs. stochastic
 - Static vs. dynamic
 - Episodic vs. sequential
 - Discrete vs. continuous
 - o Known vs. unknown
 - Single vs. multiagent

helps determine ─── what data is obtainable,

what representations may be utilised,

difficulty of the problem

Key points Revisited (Cont.)

- Type of agents
 - Reflex agent
 - Model-based (reflex) agent
 - o Goal-based agent
 - Utility-based agent

helps determine

representation (i.e., form/structure) of **f**

- 4 elements of learning agents
 - Learning element
 - Performance element
 - o Critic
 - Problem generator

Applied Questions

Tic-Tac-Toe vs Hanabi

https://www.ultraboardgames.com/hanabi/game-rules.php

Tic-Tac-Toe vs Hanabi

المالي	

	Environment characteristic	Tic-Tac-Toe	Hanabi
*	Fully/partially observable?	Fully observable	Partially observable
	Single/multi-agent?	Multi-agent	Multi-agent
*	Deterministic/stochastic?	Deterministic	Stochastic
*	Episodic/sequential?	Sequential	Sequential
	Static/dynamic?	Static	Static
	Discrete/continuous?	Discrete	Discrete

Tic-Tac-Toe vs Hanabi (1)

• Fully or partially observable?

Tic-Tac-Toe

- Each agent can see everything the opponent has done and is doing
- All aspects of the task environment that are *relevant* can be detected by sensors
- Agents need not maintain internal state

\Rightarrow Fully observable

Hanabi

- ♣ Agents cannot see their own cards → Do not have complete knowledge of all the cards that can be played (i.e. available actions at each state)
- ❖ Agents cannot see the cards in the deck

 \Rightarrow Partially observable

Tic-Tac-Toe vs Hanabi (2)

• Single or multi-agent?

Tic-Tac-Toe

- Has 2 players
- Opponent's performance measure depends on other player's behaviour (competitive)

 \Rightarrow Both are multi-agent

Hanabi

- For 2-5 players
- Players play together as a team to achieve a common objective (cooperative) → players need to communicate

Tic-Tac-Toe vs Hanabi (3)

• Deterministic or stochastic?

Tic-Tac-Toe

- Next state is completely determined by current state + action taken by agent
- Even though each agent cannot predict opponent's action with certainty

 \Rightarrow Deterministic

more about states in later topics!

Hanabi

- Drawing cards from a randomised deck introduces uncertainty (wrt the available actions in a state)
- ❖ Taking the same action (drawing a card) from the same initial state does not result in the same resultant state with certainty

 \Rightarrow Stochastic

Tic-Tac-Toe vs Hanabi (4)

• Episodic or sequential?

Tic-Tac-Toe

Hanabi

- Current decision can affect all future decisions (agent needs to think ahead)
- Current decision depends on all past decisions
- ❖ If we define a *series of games* (e.g. a tournament), then each game can be an *episode*
 - ➤ Each game can be considered independently

 \Rightarrow Both are sequential

Tic-Tac-Toe vs Hanabi (4)

• Episodic or sequential?

Tic-Tac-Toe

- Current d
- Current de
- If we define
 - > Each
- \Rightarrow Both are seq

Episodic:

- Agent's experience is divided into independent episodes; agent receives a percept and performs a single action in each episode
- Next episode does not depend on previous, e.g. classifying a series of objects on a conveyor belt
- Current decisions do not affect future states

pisode

Tic-Tac-Toe vs Hanabi (5)

• Static or dynamic?

Tic-Tac-Toe

Hanabi

- Task environment does not change while agent is deliberating
 - Is the environment continuously asking the agent what it wants to do?
 - Does taking time to decide on an action count as deciding to do nothing?
- ❖ Agents need not keep looking at the environment while deciding
- Agents need not worry about the passage of time
 - There are also *semi-dynamic* environments: environment itself does not change with time but agent's performance score does

 \Rightarrow Both are static

Tic-Tac-Toe vs Hanabi (6)

Discrete or continuous?

Tic-Tac-Toe

- Finite, discrete set of actions that can be taken (i.e. play an X or O at one of the 9 spaces that is not already occupied)
- * Environment state is discrete
- Turn-based (or discrete time-steps)

Hanabi

- Finite, discrete set of actions that can be taken (give information, discard a card, play a card)
- Environment state is discrete
- Turn-based (or discrete time-steps)

 \Rightarrow Both are discrete

Tic-Tac-Toe vs Hanabi (6)

• Discrete or continuous?

Tic-Tac-Toe

- Finite, discre taken (i.e. pla spaces that is
- Environment
- Turn-based (

 \Rightarrow Both are discret

Examples of continuous state spaces:

- Space for an autonomous vehicle
- Money (where we are not restricted by cents)

(Do not need to concern ourselves with non-discrete time-steps)

→ Can divide continuous state spaces into discrete ones

ections that can be on, discard a card,

liscrete -based)

Tic-Tac-Toe Reflex Agent

• Reflex agent

- Uses condition-action rules
 - ➤ Matches "cases" in lookup table
 - Does not try to predict
- Action is selected based *only* on the current percept
 - Percept history is ignored

Note: tic-tac-toe grid is symmetric by flipping and rotation, so the number of configurations is relatively small:)

Tic-Tac-Toe Reflex Agent (1)

Priority	Percepts	Action
1	❖ Win! Player has 2 in a row, and the remaining cell is not blocked.	Place the 3rd.
2	 Block the opponent Opponent has 2 in a row, and the remaining cell is not blocked. 	Place the 3rd.

Refer to https://en.wikipedia.org/wiki/Tic-tac-toe#Strategy for more!

Questions?

https://forms.gle/ZGSmSa2YUMrhGr6e8

Thank you!