

Mei-Chen Yeh

Divide-and-Conquer

Dynamic Programming

Combines solutions of subproblems to solve the original problem

Disjoint subproblems

Overlapping subproblems

小問題有可能是重複的,DP不會把它視為無關

Example

• Fibonacci numbers: 0, 1, 1, 2, 3, 5, 8, 13, 21, ...

Recurrence:

$$F(n)=F(n-1)+F(n-2)$$
 for $n>1$
 $F(0)=0$, $F(1)=1$

ALGORITHM F(n)if $n \le 1$ return nelse return F(n-1)+F(n-2)

Inefficient!

如果用divide&conquer的話, 有很多問題會重複計算

Exponential time complexity

Dynamic Programming Approach!

```
ALGORITHM F(n)
F[0] \leftarrow 0; F[1] \leftarrow 1;
for i \leftarrow 2 to n do 從2跑到n,只會跑一次
F[i] \leftarrow F[i-1] + F[i-2];
return F[n]
```

Time: O(n) Space: O(n)

Footprints in the sand show where one has been

凡走過請留下痕跡

 Use additional memory to save computation time

用記憶體換速度

The rod-cutting problem

n只能切成整數

 Given a rod of length n inches and a price table, determine the maximum revenue

Example: *n*=4

Which cut gives the maximal revenue?

Length i	1	2	3	4
Price p_i	1	5	8	9

An optimal decomposition

$$r_n = \max(p_n, r_1 + r_{n-1}, r_2 + r_{n-2}, \dots, r_{n-1} + r_1)$$

A simpler way

- Cut into a piece of length i and a remainder of length n-i
- Only the remainder may be further divided

A divide-and-conquer approach

```
CUT-ROD(p, n)

1. if n == 0 rod length

2. return 0

3. q = -\infty

4. for i = 1 to n recommendation return q

5. q = \max(q, p[i] + \text{CUT-ROD}(p, n-i))

6. return q
```

CUT-ROD(p, 4)

DP: Top-down approach

```
MEMOIZED-CUT-ROD(p, n)
```

- 1. let r[0..n] be a new array $2 \pm 1 1$
- **2.** for i = 0 to n
- 因為是for in a part of the constant of the constant of <math>a and a and
- 4. return Memoized-Cut-Rod-Aux(p, n, r)

Cut-Rod(p, 4)

DP: Top-down approach

```
1. if r[n] \ge 0
2. return r[n]
3. if n == 0
4. q = 0
5. else q = -\infty
6. for i = 1 to n
      q = \max(q, p[i] +
            MEMORIZED-CUT-ROD-AUX (p, n-i, r))
9. return q
```

DP: Bottom-up approach

Length i	1	2	3	4
Price p_i	1	5	8	9

$$r_n = \max_{1 \le i \le n} (p_i + r_{n-i})$$

$$r_0 = 0$$

- $r_0 = 0$
- $r_1 = p_1 + r_0 = 1$
- $r_2 = \max(p_1 + r_1, p_2) = 5$ 有一個切點,可以選擇要切或不切
- $r_3 = \max(p_1 + r_2, p_2 + r_1, p_3) = 8$ 有兩個切點,可以選擇要切或不切
- $r_4 = \max(p_1+r_3, p_2+r_2, p_3+r_1, p_4) = 10$
- •

BOTTOM-UP-CUT-ROD
$$(p, n)$$

- 1. let r[0..n] be a new array 先開一個r
- 2. r[0] = 0
- **3.** for j = 1 to n

4.
$$q = -\infty$$
 q是存最大值

5.
$$\int$$
 for $i = 1$ to j

6. if
$$q < p[i] + r[j-i]$$

7. $q = p[i] + r[j-i]$

$$q = p[i] + r[j-i]$$

- **9.** return *r*[*n*]

給定長度是i,找出每個長度 賺的錢的最大值,然後代換 進q

stored

$$\Theta(n^2)$$

兩層for loop,n跑兩次

What does this algorithm return? What if we need to return the decomposition as well?

```
EXTENDED-BOTTOM-UP-CUT-ROD(p, n)
1. let r[0..n], s[0..n] be a new array
2. r[0] = 0
3. for j = 1 to n
4. q = -\infty
5. for i = 1 to j
       if q < p[i] + r[j-i]
6.
           q = p[i] + r[j-i]
7.
           S[j] = i 切在第:個地方,要把:(切點)存下來
8.
9. r[j] = q
10. return r[n]
```

Call Extended-Bottom-Up-Cut-Rod(p, 10)
We get r[0..10], s[0..10]. Fill these two arrays.

Lengt	h <i>i</i>	1	2	3	4	5	6	7	8	9	10
Price /	o _i	1	5	8	9	10	17	17	20	24	30
i	0	1	2	3	4	5	6	7	8	9	10
r[i]											
s[i]											

Call Extended-Bottom-Up-Cut-Rod(p, 10)
We get r[0..10], s[0..10]. Fill these two arrays.

Length i	1	2	3	4	5	6	7	8	9	10
Price p_i	1	5	8	9	10	17	17	20	24	30

i											
r[i]	0	1	5	8	10	13	17	18	22	25	30
s[i]	0	1	2	3	2	2	6	1	2	3	10

s 表示:為了要得到最多的錢,應該要切在哪

長度是9,最多賺25塊。 切在3跟(9-3)

Elements of Dynamic Programming

- Overlapping subproblems
 - Rod cutting problem
 - Fibonacci numbers
 - **—** ...
- Optimal substructure

Un-weighted shortest simple path

find a simple path from u to v consisting of the fewest edges

• Un-weighted longest simple path 大問題不會用到小問題的解 所以不能用DP

find a simple path from u to v consisting of the most edges

Longest Common Subsequence (LCS)

Chapter 15.4

The LCS Problem

"a" **not** "the"

• Given two sequences x[1..m] and y[1..n], find a longest subsequence common to them both.

But Propried to the sequence of the seque

這個例子中最長的共同子序列長度為4

LCS(x, y) = BCBA or BCAB

functional notation, but not a function

EX在Y裡都有出現的序列

Brute Force Approach

- Check every subsequence of x[1..m] to see if it is also a subsequence of y[1..n].
 - -2^m subsequences of x 要窮舉所有組合的話,有2的m次方多種可能

 - Worst-case running time: $O(n2^m)$

概念上就是要先拿一個序列(無論長短)來窮舉所有可能的組合,再掃過另一個序列

Toward a better algorithm (1)

大小問題的切分方式用prefix來做

- Prefix 從頭開始算的都算
 - ABCB is a prefix of ABCBDAB
 - BCB is not a prefix of ABCBDAB

 ──定要從頭開始,不能從第二個B開始
- x = ABCBDAB
 - -x[1..4]: the first four symbols in x, a prefix of x
 - -x[1..4] = ABCB

Toward a better algorithm (2)

- Strategy
 - Consider the *length* of LCS first
 - Define |x| the length of a sequence x
 - |ABCBDAB|= 7
 - Define c[i, j] = |LCS(x[1..i], y[1..j])|
 - Then, c[m, n] = |LCS(x, y)|

$$c[i, j]$$
 vs. $c[i-1, j-1]$
 $c[i-1, j]$
 $c[i, j-1]$

Example c[i, j] vs. c[i-1, j-1] c[i-1, j]BDCABA) = ? c[i, j-1]

• LCS (ABCBDAB, BDCABA) = ?

	В	D	С	А	В	Α
А						
В	cli-1150	cli-hi)				
С	c(i,j=1)	? LC	S(ABC,	BD)		
В						
D				? LC	S(ABCE	D, BDCA
А						•
В						

Examples

```
BCD (3)
                                      BC (2)

    LCS(ABCBD, BDCD) vs. LCS(ABCB, BDC)

         c[i, j]
                               c[i-1, j-1]

    LCS(ABCBD, BDCA) vs. LCS(ABCB, BDC)

         c[i, j]
                               c[i-1, j-1]

    LCS(ABCBD, BDCA) vs. LCS(ABCB, BDCA)

         c[i, j]
                               c[i-1, j]

    LCS(ABCBD, BDCA) vs. LCS(ABCBD, BDC)

                                c[i, i-1]
          c[i, j]
        BC or BD (2)
                                BC or BD (2)
```


$$c[i, j]$$
 vs. $c[i-1, j-1]$
 $c[i-1, j]$
 $c[i, j-1]$

Theorem

$$c[i,j] = \begin{cases} c[i-1,j-1] + 1^{\frac{E \perp \beta \text{ obs A} + \beta m_1}{2}} & \text{if } x[i] = y[j], \\ \max\{c[i-1,j], c[i,j-1]\} & \text{otherwise.} \end{cases}$$

行是B,列是C,不一樣的時候要

В

←3

m+1

Example:

A B C B D

 0
 0
 0
 0
 0
 0
 0
 0

 一開始建表格的時候,

因為最左上角是空字串,B 0 $\uparrow 0$ $\downarrow 1$ \downarrow

0

D 0 \uparrow 0 \uparrow 1 \uparrow 1 \uparrow 2 \leftarrow 2 \leftarrow 2

C $0 \uparrow 0 \uparrow 1 \downarrow 2 \leftarrow 2 \uparrow 2 \uparrow 2 \uparrow 2$

看三個位置,左、上、左上。 行、列字母一樣的時候一律從左上來, 拿左上+1。

行、列字母不一樣的時候, 取上、左之中較大的數字。

length of LCS(B, ABCB)

length of LCS(BDCA, ABCBDA)

length of LCS(X, Y)

n+1

B

Α

max {C[AB,B], C[A,BD)} C[ABC, Ø], C[AB, B] B B A B KI 41 B ? [T2 D ? 2 A 71 B R 3 2 ?

=) BDAB

```
LCS-LENGTH(X, Y) 記錄箭號
    let b[1..m, 1..n], c[0..m, 0..n] be new arrays
2. for i = 1 to m
3. c[i, 0] = 0
                               // initialize c
4. for i = 0 to n
5. c[0, j] = 0
6. for i = 1 to m
      for j = 1 to n
          if x_i == y_i
8.
               c[i, j] = c[i-1, j-1] + 1
9.
               b[i, j] = 
10.
          elseif c[i-1, j] \ge c[i, j-1]
11.
12.
               c[i, j] = c[i-1, j]
               b[i, j] = \uparrow
13.
          else c[i, j] = c[i, j-1]
14.
               b[i, j] = \leftarrow
15.
16. return c and b
```

把表格填完需要的時間複雜度

記錄數值

Time? O(mn)

Space? O(mn)

see "\", print!

用數字編號紀錄箭號, 看到左上角的箭號,就印出來

		Α	В	С	В	D	Α	В
	0	0	0	0	0	0	0	0
В	0	↑ 0	<u>\</u> 1	← 1	<u>\</u> 1	← 1	←1	_1
D	0	↑ 0	1	↑ 1	†1	\^2	←2	←2
С	0	† 0	1	_2	←2	↑ 2	↑ 2	↑ 2
Α	0	\1	1	↑ 2	↑ 2	↑ 2	X 3	←3
В	0	1	^2	↑ 2	3	← 3	† 3	~ 4
Α	0	1	↑ 2	↑ 2	↑ 3	↑ 3	~4	↑ 4

Output: B D A B

從右下角跟著箭頭往回走,把走過的路記下來,挑出左上角箭頭的格子(他們代表的意義是,同時加了同樣的字母進兩個序列),所以照順序寫出來,就會是最長共同序列。

LCS的解可能不是唯一的

```
PRINT-LCS(b, X, i, j)
```

1. if
$$i == 0$$
 or $j == 0$

- 2. return
- 3. if b[i, j] ==
- 4. PRINT-LCS(b, X, i-1, j-1)
- 5. print x_i
- 6. elseif $b[i, j] == \uparrow$
- 7. PRINT-LCS(b, X, i-1, j)
- 8. else
- 9. PRINT-LCS(b, X, i, j-1)

印出最長共同序列需要的時間 複雜度(照著箭頭往回走的時間複雜度)

Time? O(m+n)

Practice

 What's the time and space complexity if we need to compute only the length?

- Time: O(mn)

- Space: $O(\min(m, n))$