MATH 307: Group Homework 6

Group 8
Shaochen (Henry) ZHONG, Zhitao (Robert) CHEN, John MAYS, Huaijin XIN {sxz517, zxc325, jkm100, hxx200}@case.edu

Due and submitted on 03/19/2021 Spring 2021, Dr. Guo

Problem 1

See HW instruction.

Assume the original vector $\begin{bmatrix} x_0 \\ y_0 \end{bmatrix}$ with a length of r has a degree of θ , we first reflect it about y-axis by swapping the x value with -x and make $A \begin{bmatrix} x_0 \\ y_0 \end{bmatrix} = \begin{bmatrix} -x_0 \\ y_0 \end{bmatrix}$, this means $A = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$.

Say the $\begin{bmatrix} -x_0 \\ y_0 \end{bmatrix}$, we call it $\begin{bmatrix} x_1 \\ y_1 \end{bmatrix}$, got a degree of θ , we then rotate it ϕ (in this case $\phi = \frac{\pi}{4}$) degrees more conterclock wisely to have $\begin{bmatrix} x_2 \\ y_2 \end{bmatrix}$:

$$x_2 = r\cos(\theta + \phi) = r(\cos\theta\cos\phi - \sin\theta\sin\phi)$$

$$= r\cos\theta\cos\phi - r\sin\theta\sin\phi$$

$$= x_1\cos\phi - y_1\sin\phi$$

$$y_2 = r\sin(\theta + \phi) = r(\sin\theta\cos\phi + \cos\theta\sin\phi)$$

$$= r\sin\theta\cos\phi + r\cos\theta\sin\phi$$

$$= y_1\cos\phi + x_1\sin\phi$$

As we need $B\begin{bmatrix} x_1 \\ y_1 \end{bmatrix} = \begin{bmatrix} x_2 \\ y_2 \end{bmatrix}$, we must have:

$$x_2 = x_1 \cos \phi - y_1 \sin \phi$$

$$y_2 = y_1 \cos \phi + x_1 \sin \phi$$

$$\begin{bmatrix} x_2 \\ y_2 \end{bmatrix} = \begin{bmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ y_1 \end{bmatrix}$$
Since $\phi = \frac{\pi}{4}$

$$\begin{bmatrix} x_2 \\ y_2 \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ y_1 \end{bmatrix}$$

$$= \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix} \cdot (\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_0 \\ y_0 \end{bmatrix})$$

$$= (\begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix} \cdot \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}) \begin{bmatrix} x_0 \\ y_0 \end{bmatrix}$$

$$= \begin{bmatrix} -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix} \cdot \begin{bmatrix} x_0 \\ y_0 \end{bmatrix}$$

Thus,
$$C = \begin{bmatrix} -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}$$
, for $C \cdot \begin{bmatrix} x \\ y \end{bmatrix}$ will conduct the proposed operations on $\begin{bmatrix} x \\ y \end{bmatrix}$.

Problem 2

See HW instruction.

LHS: The *ij*-th entry of (A + B) is $a_{ij} + b_{ij}$ The *ij*-th entry of $(A + B)^2 = (A + B)(A + B)$ is $\sum_{k=1}^{n} (a_{ik} + b_{ik})(a_{kj} + b_{kj}) = \sum_{k=1}^{n} a_{ik}a_{kj} + a_{ik}b_{kj} + b_{ik}a_{kj} + b_{ik}b_{kj}$

RHS: The ij-th entry of A^2 is $\sum_{k=1}^n a_{ik} a_{kj}$ It follows that the ij-th entry of B^2 is $\sum_{k=1}^n b_{ik} b_{kj}$ The ij-th entry of AB is $\sum_{k=1}^n a_{ik} b_{kj}$ Therefore the ij-th entry of $A^2 + 2AB + B^2$ is $\sum_{k=1}^n a_{ik} a_{kj} + 2a_{ik} b_{kj} + b_{ik} b_{kj}$

Conclusion: The respective ij-th entry of the LHS and the RHS of the equation are not equivalent unless AB = BA, which is not guaranteed; therefore $(A + B)^2 = A^2 + 2AB + B^2$ is not true for two square matrices, A and B, of the same size.

Problem 3

See HW instruction.

Known that $M_{ij}^* = \overline{M_{ji}}$, we have:

$$LHS = (AB)_{ij}^* = \overline{(AB)_{ji}} = \sum_{k}^{n} \overline{A_{jk}B_{ki}}$$

$$RHS = (B^*A^*)_{ij} = \sum_{k}^{n} B_{ik}^* A_{kj}^* = \sum_{k}^{n} \overline{B_{ki}A_{jk}}$$

$$\Longrightarrow (AB)_{ij}^* = (B^*A^*)_{ij}$$

Problem 4

See HW instruction.

Known that $(AB)_{ij} = \sum_{k=1}^{n} A_{ik} B_{kj}$. In the case that i > j, we have either $A_{ik} = 0$ (when i > k) or $B_{jk} = 0$ (when k < j). So the sum will always be zero for $(AB)_{ij}$ where i > j, and thus an upper-triangular matrix.

Problem 5

See HW instruction.

 $A\vec{x}=0$ implies $\sum_{i=1}^{n}\sum_{k=1}^{n}A_{ik}x_{k}=0$, which can be rearranged to $\sum_{k=1}^{n}x_{k}v_{k}=0$ for v_{i} being the *i*-th column of A. If all the v_{i} of A are linearly independent, we must have $A\vec{x}=0$ only when $\vec{x}=0$

W.T.S. A^{-1} exists $\Longrightarrow A\vec{x} = 0$ only when $\vec{x} = 0$.

$$A\vec{x} = 0$$

$$A^{-1}A\vec{x} = A^{-1}0$$

$$I\vec{x} = 0$$

$$\vec{x} = 0$$

Thus, the first direction is therefore proven.

W.T.S. $A\vec{x} = 0$ only when $\vec{x} = 0 \implies A^{-1}$ exists.

Since all columns x_i of A are linearly independent, by definition any \vec{b} within the defined vector space (\mathbb{R}^n or \mathbb{C}^n) can be achived by a linear combination of columns of A, which implies there must be a solution for $A\vec{x} = \vec{b}$ for all legal \vec{b} .

Now we want to show that AM = I, since $I \in \mathbb{R}^n$ (or $I \in \mathbb{C}^n$, W.L.O.G.), there must be a solution M for this equality. Thus, A is invertable given all of its columns are linearly independent.

As both directions are proven, the iff-relationship-in-question is therefore proven.