Situation Calculus

Dr. Neil T. Dantam

CSCI-498/598 RPM, Colorado School of Mines

Spring 2018

Outline

Logic and Planning

Blocksworld Domain

Planning Domain Definition Language (PDDL)

Operators

Facts

Planning Approaches

Heuristic Search

Constraint-Based Planning

Logical Calculi

Propositional Calculus:

- Boolean variables (propositions)
- ▶ Logical Operators $(\land, \lor, \neg, \implies, \iff, \oplus)$

Predicate Calculus: Extends the propositional calculus with:

- Objects
- Predicates
- Functions
- Quantifiers

Situation Calculus: Extends the predicate calculus to model actions that change state:

- ► Fluents
- Actions

Situation Calculus

Predicate Calculus + changing state:

Fluents

- Synonym for state variables of the system
- Example:
 - ► closed(suitcase)
 - contains(suitcase, laptop)
- ▶ From Latin *fluere* meaning "to flow."

Actions

▶ Elements:

Label: Name / arguments

Precondition: States where the action is

valid

Effect: Result of the action

► Example:

Label: open(suitcase)

Precondition: closed(suitcase) Effect: ¬closed(suitcase)

4 / 24

Dantam (Mines CSCI, RPM) Situation Calculus

Illustration

State/Action Sequence

Illustration

Automaton

Exercise: State Space Size

Objects: $ightharpoonup C = \{ suitcase, backpack \}$

 $\blacktriangleright \ B = \{\texttt{laptop}, \texttt{banana}, \texttt{book}\}$

Predicate: contains : $C \times B \mapsto \mathbb{B}$

Fluents:

Transition System

State Space: $Q = f_0 \times f_1 \times ... \times f_m$, for each fluent f_i

Actions: $\mathcal{U} = \{a_0, \dots, a_n\}$

Transitions: $\delta: \mathcal{Q} \times \mathcal{U} \mapsto \mathcal{Q}$,

where for $\delta(q_0, a) = q_1$,

- $ightharpoonup q_0$ satisfies the precondition of a
- q_1 is the effect of a applied to q_0

Start: $q_0 \in \mathcal{Q}$ is the initial state

Goal: $G \subseteq \mathcal{Q}$ is the set of goal states

Outline

Logic and Planning

Blocksworld Domain

Planning Domain Definition Language (PDDL)

Operators

Planning Approaches

Heuristic Search

Constraint-Based Planning

A Planning Problem

First-Order Logic Description

Constants: A, B, C

Predicates: \blacktriangleright on (?x,?y)

- ightharpoonup clear (?x)
- ▶ ontable(?x)
- ► handempty()

Fluents:

- ▶ clear(B)
- ▶ clear(C)
- ▶ ontable(B)
- ▶ ontable(A)
- ► handempty()

Task Language

Example: pick-up(?x)

Precondition: ontable $(?x) \land clear(?x) \land handempty()$

Effect: \neg ontable $(?x) \land \neg$ clear $(?x) \land \neg$ handempty $() \land$ holding (?x)

 $ontable(B) \land ontable(A)$

$$\wedge$$
 on (C, A)

$$\land$$
 clear(B) \land clear(C)

$$\wedge$$
 handempty()

$$\wedge$$
 on (C, A)

$$\wedge$$
 clear(B) \wedge clear(C)

$$\wedge$$
 handempty()

$$\wedge$$
 holding (B)

Exercise: unstack (?x,?y)

Precondition: on $(?x,?y) \land clear(?x) \land handempty()$

Effect: $\neg on(?x,?y) \land \neg clear(?x) \land \neg handempty() \land holding(?x) \land clear(?y)$

 $ontable(B) \land ontable(A)$

 \wedge on (C, A)

 \land clear(B) \land clear(C)

∧ handempty()

Outline

Logic and Planning

Blocksworld Domain

Planning Domain Definition Language (PDDL)

Operators

Facts

Planning Approaches
Heuristic Search
Constraint-Based Plann

15 / 24

Example: pick-up(?x)

pick-up(?x)

Precondition: ontable (?x)

 \wedge clear (?x)

 \wedge handempty()

Effect: $\neg ontable(?x)$

 $\land \neg \texttt{clear}(?x)$

 $\land \neg handempty()$

 \wedge holding (?x)

PDDL

Exercise: unstack (?x,?y)

unstack(?x,?y)

```
Precondition: on (?x,?y)

\land clear (?x)

\land handempty ()

Effect: \negon (?x,?y)

\land \negclear (?x)

\land \neghandempty ()

\land holding (?x)

\land clear (?y)
```

PDDL

Full Operators File

Dantam (Mines CSCI, RPM) Situation Calculus Spring 2018 18 / 24

Example: PDDL Facts

Start В Goal Α В

PDDL

Exercise: PDDL Facts

PDDL

Outline

Logic and Planning

Blocksworld Domaii

Planning Domain Definition Language (PDDL

Facts

Planning Approaches Heuristic Search Constraint-Based Planning

Heuristic Search

Constraint-Based Planning

aka SATPlan

precondition at step i $pick-up(B, s_0) \implies ontable(?x, s_0) \land clear(?x, s_0) \land handempty(s_0)$ $\land \neg \text{ontable}(?x, s_1) \land \neg \text{clear}(?x, s_1) \land \neg \text{handempty}(s_1) \land \text{holding}(?x, s_1)$ effect at step i+1

Summary

Logic and Planning

Blocksworld Domain

Planning Domain Definition Language (PDDL)

Operators

Facts

Planning Approaches

Heuristic Search

Constraint-Based Planning

24 / 24

Dantam (Mines CSCI, RPM) Situation Calculus