Problem-4 FTCS Consistency Given any PDE $Pu = f : \frac{\partial u}{\partial t} + a \frac{\partial u}{\partial x} = 0 + 0$ (advection) we express the finite - difference discretization as $P_{h_2k} U = f: U_m^{n+1} - U_m^n + a (U_{m+1}^n - U_{m-1}^n)$ (forward time centered space scheme) let $\phi(t)x$) be a sufficiently smooth function in $\mathbb{R}^+ \times \mathbb{R}$, we write taylor series expansion for the following $\phi_{m}^{n+1} = \phi(t_{n}+k, x_{m}) = \phi(t_{n}, x_{m}) + k \partial_{t}\phi_{m}^{n} + k^{2} \partial_{t}\phi_{m}^{n} + O(k^{3})$ => $\phi_{m}^{n+1} = \phi_{m}^{n} + k \delta_{t} \phi_{m}^{n} + k^{2} \delta_{tt} \phi_{m}^{n} + O(k^{3}) - 0$ $\phi_{md}^{n} = \phi(t_n, \chi_{m+h}) = \phi(t_n, \chi_m) + h \partial_{\chi} \phi_m^{n} + h^2 \partial_{\chi} \chi_m \phi_m^{n} + O(h^3)$ => $\phi_{m+1}^{n} = \phi_{m}^{n} + h \partial_{x} \phi_{m}^{n} + \frac{h^{2}}{2} \partial_{xx} \phi_{m}^{n} + O(h^{3}) - 2$ Similarly $\phi_{m+1}^n = \phi_m^n - h \partial_2 \phi_m^n + \frac{h^2}{222} \phi_m^n - O(h^3) - 3$ $\frac{1}{2h} \cdot \frac{P_{h,k} \phi = \frac{\phi_m^{n+1} - \phi_m^n}{k} + \frac{a(\phi_{m+1}^n - \phi_{m-1}^n)}{2h}$ Plugging values from O, D, B, We get $\Rightarrow P_{h_1k} \phi = \delta_{\xi} \phi_m^n + k \delta_{\xi\xi} \phi_m^n + O(k^2) + a \left(\delta_{\chi} \phi_m^n + O(h^2)\right)$

ÅI.	111111111	777	
Now we write		190 p + & 9th	\$ +O(A2+k2))
$P \phi - P_{b_{1}R} \phi = (\partial_{t} \phi + \alpha \partial_{2} \phi)$			19 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
$= \frac{1}{2} \frac{ P_{\phi} - P_{h,k}\phi }{2} = \frac{k}{2} \frac{\partial_{tt}\phi}{\partial t}$			2007 B 1007
we use triangle			= 17 Q
=> Pp - Ppk p < k/2 d+	x4 + 10	$(h^2 + k^2)$	/ 1
∠ k 3 7 2 3	ot ²	$\frac{C(h^2+k^2) }{\text{tends b } 0}$	c>0
		$h,k \rightarrow 0$	
			140
(t,x) c	due to	(mo de mi) !	P**
smooth $\phi(t,x)$	ness of	16.62 - 14	5 = 100 fo /
18113 - The and wo	→ .O	race - allt	= ^ 1.
as	$k \rightarrow 0$		' n'
31 - (313)	h 374 =	to the	: id: /-
2. P 0 - Ph, k 0 -	→ O as	hok → 0	
3 - (44 - 76 - 4		^ h - * f	Dierra -
Thus, FTCS is c	consistent.		
	<i>f</i>		
194 194		in A Date	100