6. Fluorescence from a Single Molecule

G.A. Blab, Universiteit Utrecht **10 punten**

Figure 6.1: Simplified Jabłoński diagram of a fluorescent molecule. A photon $h\nu_1$ can excite the molecule from its ground state $|S_0\rangle$ to a excited state $|S_1\rangle$. From there, the molecule can emit a photon with lower energy $h\nu_2$ and go back to the ground state, or transition through a triplet (dark) state $|T\rangle$ back to the ground state, or bleach to become a photo product $|B\rangle$. When asked for a numerical answer, use the following rate constants: radiative $k_{\rm F}=3\times10^8\,{\rm s}^{-1}$; non-radiative $k_{\rm V}=1\times10^{12}\,{\rm s}^{-1}$, $k_{\rm ISC}=1\times10^7\,{\rm s}^{-1}$, $k_{\rm T}=2\times10^5\,{\rm s}^{-1}$, $k_{\rm bl}=1\times10^4\,{\rm s}^{-1}$.

- 1 Find an analytical expression for the measured fluorescence life time $\tau_{\rm F}$, that is the life time of the excited state $|S_1\rangle$ after absorption of a photon $h\nu_1$. From the general expression, make the assumption $k_{\rm V}\gg k_{\rm F},k_{\rm ISC}$. How does this effective fluorescence life time $\tau_{\rm F}$ differ from $(k_{\rm F})^{-1}$?
- 2 Ignoring for the moment the irreversible bleaching, what is the expected time constant for one excitation emission cycle $\tau_{\rm cycle}$? What does this mean for the number of photons a molecule can emit per unit time? You may use the approximation $k_{\rm ISC} \gg k_{\rm T}$ in your calculations.
- **3** Find the excitation intensity (expressed in Wcm^{-2}) needed for a photon emission(!) rate of $5 \times 10^4 \, \mathrm{s}^{-1}$ from a single molecule. To find the absorption cross section σ , you may assume that the condition are such that the Beer-Lambert law is valid and that the molar extinction coefficient of the fluorophore is $\epsilon = 80\,000\,\mathrm{M}^{-1}\,\mathrm{cm}^{-1}$ at the excitation wavelength $\lambda_{\mathrm{exc}} = 488\,\mathrm{nm}$.