- Propriedades Avançadas -

- Especialização
 - Existem conjuntos de entidades compostos de subgrupos de entidades
 - Cada subgrupo apresenta propriedades diferentes dos outros subgrupos
 - Considere o conjunto de entidades Empregado na modelagem dos dados de uma universidade:
 - Podemos identificar os seguintes subconjuntos dentro de Empregado:
 - - ▶ Titulação
 - Universidade de titulação
 - ▶ Regime de trabalho (DE, 40h, 20h)
 - ⇒ Escriturários
 - ▶ Grau de instrução
 - ♦ Área de atuação (contador, secretária, etc...)
 - ⇒ Engenheiros
 - ▶ Especialidade
 - Subconjuntos diferenciados por tipo de empregado

- Propriedades Avançadas -
- Especialização (cont.)
 - → Definição
 - Processo de identificação de subgrupos de entidades dentro de um conjunto de entidades
 - → Processo de especialização pode ser recursivo
 - Um único conjunto de entidades pode ser especializado por mais de uma característica de diferenciação (especialização)
 - No exemplo de Empregado em uma universidade
 - ⇒ Especialização por tipo de empregado
 - ➡ Especialização por tipo de contrato
 - ▶ Estatutário
 - **▶** CLT
 - Serviços prestados
 - Um entidade deve pertencer às várias especializações
 - →Os subgrupos identificados em um processo de especialização podem participar de relacionamentos que não se aplicam a todas entidades do conjunto de entidades de origem

- Propriedades Avançadas -

Especialização (cont.)

- Propriedades Avançadas -

- Especialização (cont.)
 - Herança de propriedades

Os subgrupos de entidades herdam todas as propriedades do conjunto de entidade de mais alto nível nome **Empregado** dt_nasc Matr ISA regime_tr **Escriturário Engenheiro Professor** especialidade titulação uni_tit) Grau_ins área atua

- Propriedades Avançadas -
- Especialização (cont.)
 - - Identificar subgrupos
 - ➡Ênfase nas diferenças entre entidades de um mesmo subconjunto de entidades
 - Através dos subgrupos mais especializados
- □ Generalização
 - Processo de identificação de conjuntos de entidades que possuem características em comum
 - Mesmos atributos e participam de mesmos relacionamentos
 - Formação de um único conjunto de entidades de mais alto nível
 - →É realizada sobre vários conjuntos de entidades
 - Identificar um conjunto de entidades de mais alto nível

- Propriedades Avançadas -
- Generalização (cont.)
 - ➡Ênfase nas similaridades entre diversos conjuntos de entidades
 - →Redução de redundância de representação
 - Atributos compartilhados só serão representados no conjunto de entidades de nível mais alto
 - ⇒ Não serão repetidos
 - →Na prática
 - Generalização é o processo inverso da especialização
 - → Duas estratégias que devem ser utilizadas
 - Especializar onde for necessário
 - Generalizar onde for possível

- Propriedades Avançadas -
- Especificação de restrições de generalização e especialização
 - Sejam E₁, E₂, …, En conjuntos de entidades de nível mais baixo que o conjunto de entidades E

→ Disjunção

$$\forall 0 < i,j \le n, i \ne j : E_i \cap E_j = \emptyset$$

Nenhuma entidade de E pode pertencer a mais de um subgrupo

- Propriedades Avançadas -
- Especificação de restrições de generalização e especialização
 - → Completeza
 - Especifica se uma entidade de E tem que pertencer obrigatoriamente a um dos conjuntos de entidades de mais baixo nível ou não
 - □ Total

$$\Rightarrow$$
 E= $\bigcup_{i=1}^{n}$ E

Parcial

$$\Rightarrow$$
 E $\supseteq \bigcup_{i=1}^{n}$ E ;

- Propriedades Avançadas -

Agregação

- →Abstração que representa relacionamentos como entidades
- → Mecanismo utilizado para representar relacionamentos de relacionamentos

⇒Exemplo

- Considere a modelagem de dados em um banco BX.
 Clientes do BX estão relacionados a agência e conta

- Propriedades Avançadas -
- Agregação (cont.)
 - →Problemas na Estratégia 1
 - Não representa a estrutura lógica que deve ser modelada
 - Relacionamento de cliente com o relacionamento agência-conta
 - Na prática, para acessar todas as contas de uma agência
 - □ Terão que ser acessadas todas triplas (agência,conta,cliente)
 - Uma conta pode pertencer a vários clientes
 - Vários acessos redundantes

- Propriedades Avançadas -
- Agregação (cont.)
 - Utilizar o mecanismo de agregação

- Variantes da abordagem ER -

- Atualmente observa-se uma variedade de representações gráficas que levam o título de ER.
- A notação mais utilizada é a do tipo "Chen" pois, com algumas extensões, segue a notação proposta por Peter Chen em seu primeiro artigo.
- Além desta notação, duas famílias de notações têm importância:
 - Engenharia da Informação (Diagramação "pé-de-galinha")
 - IDEF1X (Integration DEFinition for Information Modeling).

2. Modelo Entidade-Relacionamento Notação Alternativa – Cardinalidade de Relacionamentos (Chen)

2. Modelo Entidade-Relacionamento Representação gráfica

2. Modelo Entidade-Relacionamento Modelos equivalentes

Notação Engenharia da Informação Diagramação "pé-de-galinha"

Notação para cardinalidades de relacionamentos:

Notação Engenharia da Informação Diagramação "pé-de-galinha"

Notação IDEF1X (Integration DEFinition for Information Modeling)

- Ferramenta CASE: MySQL Workbench -

Trabalha, por padrão, com a notação "pé-de-galinha" (ou crow's foot) para os relacionamentos, mas suporta ainda outras notações, como a Notação Clássica e a IDEF1X, entre outras.

□ Ex:

Referências

- Modelo Entidade Relacionamento (MER) e Diagrama Entidade-Relacionamento (DER)
 - https://www.devmedia.com.br/modelo-entidaderelacionamento-mer-e-diagrama-entidaderelacionamento-der/14332

FIM