EESM 6000C System on chip laboratory

Lab-3 FIR Report

21106974 SHEN Zijun

Function specification

•
$$y[t] = \Sigma (h[i] * x[t - i])$$

In signal processing, a finite-impulse-response, or finite impulse response models are generally linear dynamic models characterized by finite-order moving average representations, implying that their responses to impulse inputs go to zero after a finite number of time steps, equal to the model's memory length.

FIR filters can be discrete-time or continuous-time, and digital or analog.

$$egin{split} y[n] &= b_0 x[n] + b_1 x[n-1] + \dots + b_N x[n-N] \ &= \sum_{i=0}^N b_i \cdot x[n-i], \end{split}$$

Where:

- . x[n] is the input signal,
- . y[n] is the output signal,
- . N is the filter order; an Nth-order filter has N + 1 terms on the right-hand side
- . b_i is the value of the impulse response at the ith instant for $0 \le I \le N$ of an Nth-order FIR filter. If the filter is a direct form FIR filter, then b_i is also a coefficient of the filter.

Block Diagram

Tap_RAM / Data_RAM

Tape RAM:

Tope address: 0x80 - 0xFF

EN = (AW[3]: \$] == 0) | (AR[3]: \$] == 0)& (AW[7] | AR[7])

Check if read/write address belongs to TapeRAM

WE = (AWvalid & & Wvalid == 1)? 4 b 1111: 4 b 0000; Check if address/data write is valid

A = AW[5=0] AW will >72, 4-bit left, still can represent the address of 11 tapes

Di = Wdata Data-in equals to wdata of AXI-Lite (hII) flow through TageRAM by avoilite)

Awready = 1 (PAM 尚有空間)

wready = 1 (Pata Buffer 前有 space)

Data RAM:

EN = 55-tvalid (55-tlast = 0)

WE = (55-tready & 55_idle)? 4'b 1111: 4'b 0000; (Ready to write New value & not finish)

A = (ap_ctrl[2] && init_addr < 6d44)? init_addr: data_A_tmp;

If ap_idle == 1, initialize the value in dataRAM.

Di = 55-tdata

FSM for ap_ctrl: (ap.start, ap.done, ap_idle)

- 1. The FSM in the top left is given to ap_start, ap _ stone, ap _ dle, starting at INIT state, ap_ctrl = {ap_dle, ap_stone, ap_start} = 3'b100, when we Host end (testbench) program ap_start, representing FIR, ap_idle, down to IDLE state, ap_ctrl = {ap_idle, ap_done, ap_start} = 3'b000. When we finish the calculation of the last Y, send it to testbench alignment, and raise sm_tlast, FIR completes the calculation and goes to DONE state, ap_ctrl = {ap_idle, ap_done, ap_start} = 3'b010. Since testbench needs to read the ap_done signal, wait until read address == 0x00 reads to ap_done before returning to the initial state.
- The FSM in the lower left corner specially produces the signal of ss_iddle to take data _ RAM as write enable, before the ss_tlast, it will be 1, until the ss_tlast, will enter the SS_DONE state, ss_idle = 0, means can not write again.
- 3. The FSM on the right is producing sm_tlast. When the last Y is calculated, counter reaches data length, it goes to SM_DONE state, and sm_tlast raises a cycle.

Operation explaining

The upper part of the picture is the y-wave graph that will appear before the operation pipeline. Each time ss_tready is pulled high, representing stream-in new x [t] coming in the RAM. The next cycle can be found The sm_tvalid, pulled high, represents that the calculated Y is taken to the testbench for comparison.

Resource usage

Site Type	Used	Fixed	Prohibited	Available	Util%
Slice LUTs*	190	0	0	53200	0.36
LUT as Logic	190	0	0	53200	0.36
LUT as Memory	0	0	0	17400	0.00
Slice Registers	224	0	0	106400	0.21
Register as Flip Flop	224	0	0	106400	0.21
Register as Latch	0	0	0	106400	0.00
F7 Muxes	0	0	0	26600	0.00
F8 Muxes	0	0	0	13300	0.00

Site Type	Used	Fixed	Prohibited	Available	Util%
Block RAM Tile	0	0	0	140	0.00
RAMB36/FIFO*	0	0	0	140	0.00
RAMB18	0	0	0	280	0.00

Timing report

Simulation waveforms

Coefficient

X-in / Y-out

RAM access control

