# Asset Management HW3

Ze Yang Zhengyang Qi

November 13, 2018

### 1 Problem 1

### 1.1 (a)

The Lagrangian of agent i's problem is

$$\mathcal{L}_i(\boldsymbol{x}, \lambda) = (\mathbb{E}\left[\boldsymbol{P}^1\right] - \boldsymbol{P}^0)^{\top} \boldsymbol{x} - \frac{\gamma_i}{2} \boldsymbol{x}^{\top} \boldsymbol{\Omega} \boldsymbol{x} - \lambda (m_i(\boldsymbol{P}^0)^{\top} \boldsymbol{x} - W_i)$$
(1)

 $\boldsymbol{x}^i, \lambda_i$  solves the KKT condition:

$$\begin{cases}
\nabla_{\boldsymbol{x}} \mathcal{L} = (\mathbb{E}\left[\boldsymbol{P}^{1}\right] - \boldsymbol{P}^{0}) - \gamma_{i} \boldsymbol{\Omega} \boldsymbol{x} - \lambda_{i} m_{i} \boldsymbol{P}^{0} = \boldsymbol{0} \\
m_{i} (\boldsymbol{P}^{0})^{\top} \boldsymbol{x} - W_{i} \leq 0 \\
\lambda_{i} \geq 0 \\
\lambda_{i} (m_{i} (\boldsymbol{P}^{0})^{\top} \boldsymbol{x} - W_{i}) = 0
\end{cases} \tag{2}$$

The first equality yields  $x^i = \frac{1}{\gamma_i} \mathbf{\Omega}^{-1} \left( \mathbb{E} \left[ \mathbf{P}^1 \right] - (1 + \lambda_i m_i) \mathbf{P}^0 \right)$ . Assume the constraint is binding, then

$$0 = m_{i}(\mathbf{P}^{0})^{\top} \mathbf{x}^{i} - W_{i} = \frac{1}{\gamma_{i}} m_{i}(\mathbf{P}^{0})^{\top} \mathbf{\Omega}^{-1} \left( \mathbb{E} \left[ \mathbf{P}^{1} \right] - (1 + \lambda_{i} m_{i}) \mathbf{P}^{0} \right) - W_{i}$$

$$\Rightarrow \frac{\lambda_{i}}{\gamma_{i}} m_{i}^{2} (\mathbf{P}^{0})^{\top} \mathbf{\Omega}^{-1} \mathbf{P}^{0} = \frac{1}{\gamma_{i}} m_{i} (\mathbf{P}^{0})^{\top} \mathbf{\Omega}^{-1} \left( \mathbb{E} \left[ \mathbf{P}^{1} \right] - \mathbf{P}^{0} \right) - W_{i}$$

$$\Rightarrow \lambda_{i} = \frac{m_{i} (\mathbf{P}^{0})^{\top} \mathbf{\Omega}^{-1} \left( \mathbb{E} \left[ \mathbf{P}^{1} \right] - \mathbf{P}^{0} \right) - \gamma_{i} W_{i}}{m_{i}^{2} (\mathbf{P}^{0})^{\top} \mathbf{\Omega}^{-1} \mathbf{P}^{0}}$$
(3)

Dual feasibility requires  $\lambda_i \geq 0 \Rightarrow m_i(\boldsymbol{P}^0)^\top \boldsymbol{\Omega}^{-1} \left( \mathbb{E} \left[ \boldsymbol{P}^1 \right] - \boldsymbol{P}^0 \right) - \gamma_i W_i \geq 0 \ (\dagger)$ . If instead we have  $(\dagger) < 0$ , we have  $\lambda_i = 0$ . Then  $\boldsymbol{x}^i = \frac{1}{\gamma_i} \boldsymbol{\Omega}^{-1} \left( \mathbb{E} \left[ \boldsymbol{P}^1 \right] - \boldsymbol{P}^0 \right)$ , hence  $m_i(\boldsymbol{P}^0)^\top \boldsymbol{x}^i - W_i = \frac{1}{\gamma_i} m_i(\boldsymbol{P}^0)^\top \boldsymbol{\Omega}^{-1} \left( \mathbb{E} \left[ \boldsymbol{P}^1 \right] - \boldsymbol{P}^0 \right) - W_i < 0$  as the risk aversion coefficient  $\gamma_i > 0$ . The primal feasibility is satisfied. To conclude:

$$\boldsymbol{x}^{i} = \frac{1}{\gamma_{i}} \boldsymbol{\Omega}^{-1} \left( \mathbb{E} \left[ \boldsymbol{P}^{1} \right] - (1 + \psi_{i}) \boldsymbol{P}^{0} \right)$$
where  $\psi_{i} = \begin{cases} \frac{m_{i} (\boldsymbol{P}^{0})^{\top} \boldsymbol{\Omega}^{-1} \left( \mathbb{E} \left[ \boldsymbol{P}^{1} \right] - \boldsymbol{P}^{0} \right) - \gamma_{i} W_{i}}{m_{i} (\boldsymbol{P}^{0})^{\top} \boldsymbol{\Omega}^{-1} \boldsymbol{P}^{0}} & \text{if } m_{i} (\boldsymbol{P}^{0})^{\top} \boldsymbol{\Omega}^{-1} \left( \mathbb{E} \left[ \boldsymbol{P}^{1} \right] - \boldsymbol{P}^{0} \right) - \gamma_{i} W_{i} \geq 0 \\ 0 & \text{otherwise} \end{cases}$ 

$$(4)$$

Consequently

$$\boldsymbol{x}^* = \sum_{i=1}^{I} \boldsymbol{x}_i = \sum_{i=1}^{I} \frac{1}{\gamma_i} \boldsymbol{\Omega}^{-1} \left( \mathbb{E} \left[ \boldsymbol{P}^1 \right] - (1 + \psi_i) \boldsymbol{P}^0 \right)$$

$$= \frac{1}{\gamma} \boldsymbol{\Omega}^{-1} \left( \mathbb{E} \left[ \boldsymbol{P}^1 \right] - (1 + \psi) \boldsymbol{P}^0 \right)$$

$$\text{where } \gamma = \frac{1}{\sum_{i=1}^{I} 1/\gamma_i}; \quad \psi = \frac{\sum_{i=1}^{I} \psi_i/\gamma_i}{\sum_{i=1}^{I} 1/\gamma_i}$$
(5)

### 1.2 (b)

Premultiply both sides of (5) by  $\gamma\Omega$ :

$$\gamma \mathbf{\Omega} \mathbf{x}^* = \mathbb{E} \left[ \mathbf{P}^1 \right] - (1 + \psi) \mathbf{P}^0 
\Rightarrow \mathbb{E} \left[ \mathbf{P}^1 \right] = (1 + \psi) \mathbf{P}^0 + \gamma \mathbf{\Omega} \mathbf{x}^* 
\Rightarrow \frac{\mathbb{E} \left[ P_s^1 \right] - P_s^0}{P_s^0} = \psi + \frac{\gamma}{P_s^0} (\mathbf{\Omega} \mathbf{x}^*)_s$$
(6)

Since  $P_s^0$  is non-random, we conclude that  $\mathbb{E}\left[r_s\right] = \frac{\mathbb{E}\left[P_s^1\right] - P_s^0}{P_s^0} = \psi + \frac{\gamma}{P_s^0}(\mathbf{\Omega} \mathbf{x}^*)_s$ .

### 1.3 (c)

By definition of  $\boldsymbol{h}$ , we know  $\boldsymbol{h}^{\top} \mathbf{1} = 1$ . Let  $\mu_s := (\Omega \boldsymbol{x}^*)_s / P_s^0 = \sum_{j=1}^S \Omega_{sj} x_j^* / P_s^0$  for s = 1, ..., S.

$$\frac{\mathbb{E}\left[r_{M}\right] - \psi}{\mathbb{V}\text{ar}\left[r_{M}\right]} = \frac{\mathbb{E}\left[\mathbf{r}^{\top}\mathbf{h}\right] - \psi}{\mathbb{V}\text{ar}\left[\mathbf{r}^{\top}\mathbf{h}\right]} = \frac{\mathbf{h}^{\top}\mathbb{E}\left[\mathbf{r}\right] - \psi}{\mathbf{h}^{\top}\mathbb{C}\text{ov}\left[\mathbf{r}\right]\mathbf{h}}$$

$$= \frac{\mathbf{h}^{\top}(\psi\mathbf{1} + \gamma\boldsymbol{\mu}) - \psi}{\mathbf{h}^{\top}\mathbb{C}\text{ov}\left[\mathbf{r}\right]\mathbf{h}} = \frac{\gamma\mathbf{h}^{\top}\boldsymbol{\mu} + \psi\left(\mathbf{h}^{\top}\mathbf{1} - 1\right)}{\mathbf{h}^{\top}V\mathbf{h}}$$

$$= \frac{\gamma\sum_{i=1}^{S}h_{i}\mu_{i}}{\sum_{i=1}^{S}\sum_{j=1}^{S}h_{i}V_{ij}h_{j}} = \gamma\frac{\sum_{i=1}^{S}\left(\frac{P_{i}^{0}x_{i}^{*}}{(P^{0})^{\top}x^{*}}\right)\left(\sum_{j=1}^{S}\Omega_{ij}x_{j}^{*}\frac{1}{P_{i}^{0}}\right)}{\sum_{i=1}^{S}\sum_{j=1}^{S}\sum_{j=1}^{P_{i}^{0}x_{i}^{*}}\frac{P_{i}^{0}x_{i}^{*}}{(P^{0})^{\top}x^{*}}V_{ij}\frac{P_{i}^{0}x_{i}^{*}}{(P^{0})^{\top}x^{*}}}$$

$$= \gamma(\mathbf{P}^{0})^{\top}x^{*}\frac{\sum_{i=1}^{S}\sum_{j=1}^{S}\sum_{j=1}^{S}x_{i}^{*}P_{i}^{0}V_{ij}P_{j}^{0}x_{j}^{*}\frac{1}{P_{i}^{0}}}{\sum_{i=1}^{S}\sum_{j=1}^{S}x_{i}^{*}P_{i}^{0}V_{ij}P_{j}^{0}x_{j}^{*}}$$

$$= \gamma(\mathbf{P}^{0})^{\top}x^{*}$$

$$= \gamma(\mathbf{P}^{0})^{\top}x^{*}$$
(7)

### 1.4 (d)

Use the results of (c):

$$RHS = \psi + \beta + s(\mathbb{E}[r_M] - \psi) = \psi + \mathbb{C}\text{ov}[r_s, r_M] \frac{\mathbb{E}[r_M] - \psi}{\mathbb{V}\text{ar}[r_M]}$$

$$= \psi + \mathbb{C}\text{ov}[r_s, \Sigma_{j=1}^S h_j r_j] \gamma (\boldsymbol{P}^0)^\top \boldsymbol{x}^* = \psi + \gamma (\boldsymbol{P}^0)^\top \boldsymbol{x}^* \sum_{j=1}^S V_{sj} h_j$$

$$= \psi + \gamma (\boldsymbol{P}^0)^\top \boldsymbol{x}^* \sum_{j=1}^S \frac{\Omega_{sj}}{P_s^0 P_j^0} \frac{P_j^0 x_j^*}{(\boldsymbol{P}^0)^\top \boldsymbol{x}^*}$$

$$= \psi + \gamma \sum_{j=1}^S \frac{\Omega_{sj} x_j^*}{P_s^0} = \psi + \gamma \frac{1}{P_s^0} (\boldsymbol{\Omega} \boldsymbol{x}^*)_s = \mathbb{E}[r_s] \quad \text{(By the result of (b))}$$

Which completes the proof.

### 2 Problem 2

Unit for returns: percent, the same as what was used in Frenchs Data Library

### 2.1 (a)

| Out[72]: |     |        | BM1      | BM2      | BM3      | BM4      | BM5      |
|----------|-----|--------|----------|----------|----------|----------|----------|
|          | ME1 | mean   | 0.138941 | 0.721294 | 0.725931 | 0.938094 | 1.013257 |
|          |     | se     | 0.322117 | 0.280844 | 0.242438 | 0.229816 | 0.243004 |
|          |     | t-stat | 0.431337 | 2.568314 | 2.994295 | 4.081942 | 4.169705 |
|          | ME2 | mean   | 0.451483 | 0.732897 | 0.801649 | 0.875069 | 0.916870 |
|          |     | se     | 0.293281 | 0.244021 | 0.220284 | 0.211684 | 0.244061 |
|          |     | t-stat | 1.539423 | 3.003419 | 3.639155 | 4.133851 | 3.756730 |
|          | ME3 | mean   | 0.481265 | 0.765048 | 0.701462 | 0.823439 | 0.993619 |
|          |     | se     | 0.269862 | 0.221977 | 0.203838 | 0.198656 | 0.229668 |
|          |     | t-stat | 1.783373 | 3.446511 | 3.441274 | 4.145044 | 4.326334 |
|          | ME4 | mean   | 0.614499 | 0.622239 | 0.681545 | 0.794719 | 0.791070 |
|          |     | se     | 0.242311 | 0.210575 | 0.202576 | 0.193848 | 0.230790 |
|          |     | t-stat | 2.535990 | 2.954949 | 3.364389 | 4.099694 | 3.427656 |
|          | ME5 | mean   | 0.501318 | 0.573863 | 0.571117 | 0.473859 | 0.679433 |
|          |     | se     | 0.189887 | 0.181751 | 0.175723 | 0.189212 | 0.219410 |
|          |     | t-stat | 2.640088 | 3.157413 | 3.250092 | 2.504379 | 3.096636 |

### 2.2 (b)



- For the same BM quantile group (above BM2), we can observe a size effect across different size groups, in the sense that the excess return increases as size group goes from BIG to SMALL. (Figure 1)
- The size effect described above is not evident for LoBM(BM1) group: the excess returns do not increase monotonically.
- For the same size quantile group, we can observe a value effect across different BM groups, in the sense that the excess return increases as BM group goes from LowBM to HighBM. (Figure 2)
- The value effect is stronger in the SMALL(ME1) size group, as the blue line in figure 2 has the steepest slope.

### 2.3 (c)

| Out[69]: |     |        | BM1       | BM2       | BM3      | BM4      | BM5      |
|----------|-----|--------|-----------|-----------|----------|----------|----------|
|          | ME1 | alpha  | -0.604325 | 0.0792367 | 0.151235 | 0.410014 | 0.462256 |
|          |     | t-stat | -3.08398  | 0.456519  | 1.079    | 2.91167  | 3.03706  |
|          |     | p<0.05 | (*)       |           |          | (*)      | (*)      |
|          | ME2 | alpha  | -0.28214  | 0.117712  | 0.252293 | 0.352649 | 0.336371 |

|     | t-stat | -1.8987    | 0.975059  | 2.24046  | 3.1656    | 2.40059  |
|-----|--------|------------|-----------|----------|-----------|----------|
|     | p<0.05 |            |           | (*)      | (*)       | (*)      |
| ME3 | alpha  | -0.214433  | 0.180408  | 0.17511  | 0.326279  | 0.443554 |
|     | t-stat | -1.73615   | 1.94766   | 1.88901  | 3.24615   | 3.41398  |
|     | p<0.05 |            |           |          | (*)       | (*)      |
| ME4 | alpha  | -0.033038  | 0.0555156 | 0.153521 | 0.299895  | 0.225168 |
|     | t-stat | -0.352906  | 0.71254   | 1.73193  | 3.25954   | 1.82287  |
|     | p<0.05 |            |           |          | (*)       |          |
| ME5 | alpha  | -0.0130529 | 0.0802354 | 0.124674 | 0.0141237 | 0.179359 |
|     | t-stat | -0.194115  | 1.27065   | 1.47073  | 0.136355  | 1.31604  |
|     | p<0.05 |            |           |          |           |          |



# 2.4 (d)

| `        | ,   |        |            |             |            |           |            |
|----------|-----|--------|------------|-------------|------------|-----------|------------|
| Out[68]: |     |        | BM1        | BM2         | BM3        | BM4       | BM5        |
|          | ME1 | alpha  | -0.547419  | -0.00188453 | -0.0285962 | 0.169426  | 0.121075   |
|          |     | t-stat | -5.62311   | -0.0260974  | -0.523543  | 3.10497   | 2.11213    |
|          |     | p<0.05 | (*)        |             |            | (*)       | (*)        |
|          | ME2 | alpha  | -0.167721  | 0.0232988   | 0.0469446  | 0.0768339 | -0.0407018 |
|          |     | t-stat | -2.46079   | 0.395727    | 0.793127   | 1.48421   | -0.733885  |
|          |     | p<0.05 | (*)        |             |            |           |            |
|          | ME3 | alpha  | -0.0678117 | 0.0795249   | -0.0269168 | 0.0524966 | 0.079584   |
|          |     | t-stat | -1.09019   | 1.19467     | -0.405653  | 0.817183  | 1.015      |
|          |     | p<0.05 |            |             |            |           |            |
|          | ME4 | alpha  | 0.11902    | -0.0376912  | -0.0348759 | 0.0584575 | -0.119813  |
|          |     | t-stat | 1.91318    | -0.521096   | -0.468031  | 0.859294  | -1.39163   |
|          |     | p<0.05 |            |             |            |           |            |
|          | ME5 | alpha  | 0.162147   | 0.0504822   | 0.00859773 | -0.248215 | -0.157442  |
|          |     | t-stat | 3.50773    | 0.881661    | 0.123204   | -3.80089  | -1.57558   |
|          |     | p<0.05 | (*)        |             |            | (*)       |            |

### Comments:

- The alphas that are statistically significant in part (c), i.e. the CAPM single factor model becomes either
  - Much smaller in scale, in terms of the absolute values. When we inspect the plots of alphas across different groups, we can see a much messy pattern as opposed to the CAPM alphas. OR

- Becomes not statistically significant. The (\*) in table marks those alphas with p-value < 0.05. We can observe that many alphas in the top-right corrner (small size, high B/M) that are previously significant now becomes not significant to the confidence level of 0.95.
- These observations bespeaks the fact that a considerable amount of the CAPM alphas on the size×value quantile portfolios can be explained by the SMB and HML risk factors.



## 2.5 (e)



#### # Repeat Part (a)

|     | _      | BM1      | BM2      | BM3      | BM4      | BM5      |
|-----|--------|----------|----------|----------|----------|----------|
| ME1 | mean   | 0.279520 | 0.911910 | 0.851436 | 1.074964 | 1.078133 |
|     | se     | 0.397315 | 0.346695 | 0.281501 | 0.270598 | 0.282844 |
|     | t-stat | 0.703521 | 2.630298 | 3.024629 | 3.972553 | 3.811763 |
| ME2 | mean   | 0.673830 | 0.906238 | 0.946844 | 0.917159 | 0.928510 |
|     | se     | 0.350828 | 0.284240 | 0.255377 | 0.254190 | 0.302355 |
|     | t-stat | 1.920685 | 3.188284 | 3.707637 | 3.608169 | 3.070930 |
| ME3 | mean   | 0.687848 | 0.906062 | 0.834394 | 0.920435 | 1.059032 |
|     | se     | 0.323769 | 0.259975 | 0.240980 | 0.243974 | 0.278055 |
|     | t-stat | 2.124506 | 3.485189 | 3.462497 | 3.772677 | 3.808714 |

```
ME4 mean
             0.880749
                       0.878720
                                  0.767234
                                             0.923185
                                                       0.851772
             0.291348
                       0.238622
                                  0.247059
                                             0.232234
                                                       0.283599
    se
            3.023010
                       3.682481
                                  3.105468
                                                       3.003433
    t-stat
                                             3.975237
\texttt{ME5} mean
             0.772807
                       0.751408
                                  0.772299
                                                       0.801949
                                             0.505007
    se
             0.221474
                       0.210062
                                  0.208792
                                             0.244736
                                                       0.295633
    t-stat 3.489385
                       3.577085
                                  3.698892
                                             2.063480
                                                       2.712648
```

# Repeat Part (b): see the plots above.

| # R  | # Repeat Part (c) |                       |           |                     |                 |                     |  |  |  |
|------|-------------------|-----------------------|-----------|---------------------|-----------------|---------------------|--|--|--|
|      |                   | BM1                   | BM2       | BM3                 | BM4             | BM5                 |  |  |  |
| ME1  | alpha             | -0.693204             | 0.0743478 | 0.127975            | 0.41341         | 0.376434            |  |  |  |
|      | t-stat            | -2.5771               | 0.311648  | 0.719195            | 2.25265         | 1.99988             |  |  |  |
|      | p<0.05            | (*)                   |           |                     | (*)             | (*)                 |  |  |  |
| ME2  | alpha             | -0.27519              | 0.12434   | 0.254925            | 0.235765        | 0.140363            |  |  |  |
|      | t-stat            | -1.36331              | 0.789451  | 1.74087             | 1.58208         | 0.751792            |  |  |  |
|      | p<0.05            |                       |           |                     |                 |                     |  |  |  |
| ME3  | alpha             | -0.214548             | 0.147307  | 0.146577            | 0.256493        | 0.327003            |  |  |  |
|      | t-stat            | -1.23544              | 1.22032   | 1.21334             | 1.8511          | 1.93806             |  |  |  |
|      | p<0.05            |                       |           |                     |                 |                     |  |  |  |
| ME4  | alpha             | 0.0251955             | 0.170176  |                     | 0.267753        | 0.0885353           |  |  |  |
|      | t-stat            | 0.190777              | 1.64981   | 0.514063            | 2.22401         | 0.53679             |  |  |  |
|      | p<0.05            |                       |           |                     | (*)             |                     |  |  |  |
| ME5  | alpha             | 0.0923624             | 0.11796   |                     | -0.144086       | 0.0422177           |  |  |  |
|      | t-stat            | 1.17026               | 1.40275   | 1.70035             | -0.98358        | 0.225891            |  |  |  |
|      | p<0.05            |                       |           |                     |                 |                     |  |  |  |
|      |                   |                       |           |                     |                 |                     |  |  |  |
| ,, D | . 5               | . (1)                 |           |                     |                 |                     |  |  |  |
| # K  | epeat Pa          |                       | DMO       | DMO                 | DM4             | DME                 |  |  |  |
| МП4  | - 7 1             | BM1                   | BM2       | BM3                 | BM4             | BM5                 |  |  |  |
| MEI  | alpha             | -0.634844             | 0.047471  | 0.0315884           | 0.270725        | 0.175225<br>2.33627 |  |  |  |
|      | t-stat            | -4.60346              | 0.448571  | 0.424996            | 3.60445         |                     |  |  |  |
| MEO  | p<0.05            | (*)                   | 0.0650407 | 0 110476            | (*)             | (*)<br>-0.0984468   |  |  |  |
| MEZ  | alpha<br>t-stat   | -0.203053<br>-2.24812 | 0.0659427 | 0.119476<br>1.53178 | 0.0594593       |                     |  |  |  |
|      |                   | -2.24612<br>(*)       | 0.837165  | 1.55178             | 0.879905        | -1.3781             |  |  |  |
| MEG  | p<0.05<br>alpha   | ` ,                   | 0.0794007 | 0.0143403           | 0.078121        | 0.101301            |  |  |  |
| MES  | t-stat            | -1.3034               | 0.0794007 | 0.162489            | 0.078121        | 0.101301            |  |  |  |
|      |                   | -1.3034               | 0.073901  | 0.102409            | 0.000074        | 0.945164            |  |  |  |
| MΕΛ  | p<0.05            | 0.11877               | 0.0891055 | -0.0694418          | 0.124072        | -0.125605           |  |  |  |
| ME4  | alpha<br>t-stat   | 1.43847               | 0.965733  | -0.680546           | 1.353           | -1.07457            |  |  |  |
|      | p<0.05            | 1.43047               | 0.305133  | -0.000040           | 1.333           | -1.07437            |  |  |  |
| MEE  | alpha             | 0.189886              | 0.079747  | 0.0923893           | -0.3241         | -0.172125           |  |  |  |
| СДГ  | t-stat            | 3.71963               | 1.11945   | 1.1159              | -3.70759        | -1.28333            |  |  |  |
|      | p<0.05            | 3.71963               | 1.11545   | 1.1139              | -3.70759<br>(*) | -1.20333            |  |  |  |
|      | p~0.05            | (*)                   |           |                     | (*)             |                     |  |  |  |

We used 1988 - 2018, i.e. recent 30 years for this section. Differences:

- In the recent period, the excess return profile across size× value double sorts becomes much more messy. As in the plots we can't find the downward/upward sloping average returns.
- Less portfolios from the double sorts have statistically significant CAPM alphas and FF3 alphas: the market becomes more efficient.

#### Similarities:

• The (Small size × high BM) portfolios in the top-right corner still has significant CAPM alphas, and that alpha reduces in a similar fashion as we account for FF3 factors.

# 3 Problem 3

Note: all the sharpe ratios are annualized, i.e. scaled by multiplying  $\sqrt{12}$ 

### 3.1 (a)

```
Sharpe ratio (1991/01 - 2018/10): 0.6705
Sharpe ratio (1991/01 - 2005/12): 0.7862
Sharpe ratio (2006/01 - 2018/10): 0.5523
```



## 3.2 (b)

```
Sharpe ratio (1991/01 - 2018/10): 0.6916
Sharpe ratio (1991/01 - 2005/12): 0.9773
Sharpe ratio (2006/01 - 2018/10): 0.4414
```



## 3.3 (c)

Sharpe ratio (1991/01 - 2018/10): 0.7013 Sharpe ratio (1991/01 - 2005/12): 1.0266 Sharpe ratio (2006/01 - 2018/10): 0.4248



## 3.4 (d)

```
Sharpe ratio (1991/01 - 2018/10): 0.7074
Sharpe ratio (1991/01 - 2005/12): 1.0659
Sharpe ratio (2006/01 - 2018/10): 0.4083
```



### 3.5 (e)

#### Comments:

- In terms of aggressiveness, we have (d) > (c) > (b) > (a).
- More aggressive strategy has higher return and sharpe ratio in 1991-2018 ("overall"), and 1991-2005 ("good periods"); and outperforms the benchmark in those periods.
- More aggressive strategy has lower return and sharpe ratio in 2006-2018 ("bad/high volatility periods"); and underperforms the benchmark in those periods.

#### Limitations:

- The margin requirements ask for large amount of capital to implement more aggressive strategies.
- Short selling may not be easy for some countries/exchanges.
- The aggressive strategies have higher drawdowns in the "bad" periods, which may cause the fund to blow up.