Programming Languages Ari Feiglin (ari.feiglin@gmail.com)

,		n					
		10	۲П		n	1	C
ı.				е:			

1	Some Model Theory
	Craig's Interpolation Theorem
	Robinson's Theorem

1 Some Model Theory

Let $\Sigma \subseteq \mathcal{L}$ be a set of formulas in free variables x_1, \ldots, x_n . Then if \mathcal{A} is an \mathcal{L} -structure and $a_1, \ldots, a_n \in A$, we write $\mathcal{A} \models \Sigma[a_1, \ldots, a_n]$ to mean that $\mathcal{A} \models \varphi[a_1, \ldots, a_n]$ for every $\varphi \in \Sigma$. We then say that a_1, \ldots, a_n realizes or satisfies Σ .

1.1 Definition

An *n*-type $\Gamma(x_1,\ldots,x_n)$ is a maximally consistent set of \mathcal{L} -formulas in free variables x_1,\ldots,x_n . Let \mathcal{A} be an \mathcal{L} -structure and $a_1, \ldots, a_n \in A$ then the **type** of a_1, \ldots, a_n is all the formulas $\varphi(x_1, \ldots, x_n) \in \mathcal{L}$ satisfied in \mathcal{A} by the sequence a_1, \ldots, a_n .

This is indeed a type, as it is consistent (A, a_1, \ldots, a_n) models it, and it is maximal since for every $\varphi(\vec{x}) \in \mathcal{L}$ either φ or $\neg \varphi$ are in the type.

1.2 Example

 $(\mathbb{R}, +, \cdot, 0, 1 <)$ is the ordered field of real numbers. Then for every a < b, a and b have distinct 1-types, as there exists a rational number $a < \frac{n}{m} < b$ and so $x < \frac{n}{m}$ is in a's type but not b's $(\frac{n}{m}$ is definable in the signature).

1.3 Definition

Let $\Sigma(\vec{x})$ be a set of \mathcal{L} -formulas in \vec{x} and \mathcal{A} a \mathcal{L} -structure. \mathcal{A} realizes Σ if Σ is satisfied by some sequence $\vec{a} \in A^n$. Otherwise \mathcal{A} omits Σ .

1.4 Definition

Let $\Sigma(\vec{x})$ be a set of \mathcal{L} -formulas and T a \mathcal{L} -theory. Then Σ is **compatible** with T if T has a model realizing

1.5 Definition

Let \varkappa be a cardinal, then a model \mathcal{A} is called \varkappa -saturated if for every $X \subset A$ of cardinality strictly less than \varkappa , \mathcal{A}_X realizes every 1-type $\Sigma(v)$ in the language $\mathcal{L}X$ compatible with $Th\mathcal{A}_X$. And \mathcal{A} is saturated if it is |A|-saturated.

The reason we consider \mathcal{A} \varkappa -saturated using sets of cardinality strictly less than \varkappa is because otherwise no model would be saturated: since the type $\{x \neq a \mid a \in \mathcal{A}\}$ is finitely satisfiable by \mathcal{A} and thus is compatible with ThA_X , but it is not realized by A.

1.6 Theorem (Craig's Interpolation Theorem)

Let φ, ψ be \mathcal{L} -formulas such that $\varphi \vDash \psi$. Then there exists a \mathcal{L} -formula θ such that $\varphi \vDash \theta$ and $\theta \vDash \psi$ such that all extralogical symbols occurring in θ occur in both φ and ψ . θ is called a *Craig interpolate* of φ and

Proof: suppose φ and ψ have no Craig interpolate, then we will show that $\{\varphi, \neg \psi\}$ is satisfiable by constructing a model for it. Without loss of generality, we can assume that \mathcal{L} 's signature contains only the extralogical symbols occurring in φ or ψ , and in particular it is then countable. Define \mathcal{L}_1 to be the language whose signature consists of only symbols in φ and \mathcal{L}_2 for ψ . Define $\mathcal{L}_0 = \mathcal{L}_1 \cap \mathcal{L}_2$.

Let C be a countably infinite set of new constant symbols and define $\mathcal{L}'_i = \mathcal{L}_i C$.

Let T be a \mathcal{L}'_1 -theory and S a \mathcal{L}'_2 -theory. Say that $\theta \in \mathcal{L}'_0$ separates them if $T \models \theta$ and $S \models \neg \theta$. Call T and S inseparable if no \mathcal{L}'_0 -formula separates them.

First notice that $\{\varphi\}$ and $\{\neg\psi\}$ are inseparable: as if $\theta(c_1,\ldots,c_n)$ separated them $(c_i\in C)$ then $\exists \vec{x}\theta(\vec{x})$ would be a Craig interpolate of φ and ψ .

Since \mathcal{L} and C are countable, so is $\mathcal{L}C$ and therefore every \mathcal{L}'_i . So enumerate the sentences of \mathcal{L}'_1 by $\{\varphi_i\}_{i=0}^{\infty}$ and \mathcal{L}'_2 by $\{\psi_i\}_{i=0}^{\infty}$. Let us define two sequences of theories

$$\{\varphi\} = T_0 \subseteq T_1 \subseteq \cdots, \qquad \{\neg \psi\} = S_0 \subseteq S_1 \subseteq \cdots$$

inductively as follows:

- (1) if $T_m \cup \{\varphi_m\}$ and S_m are inseparable, then put $\varphi_m \in T_{m+1}$;
- (2) if $S_m \cup \{\psi_m\}$ and T_{m+1} are inseparable, then put $\psi_m \in S_{m+1}$;
- (3) if $\varphi_m = \exists x \sigma(x)$ and $\varphi_m \in T_{m+1}$ then put $\sigma(c) \in T_{m+1}$ for some unused $c \in C$. Similar for ψ_m .

After steps 1 and 2, if T_m and S_m were inseparable, so is T_{m+1} and S_{m+1} . Notice that 3 still preserves inseparability (why?) Then let us define

$$T_{\omega} = \bigcup_{n=0}^{\infty} T_n, \qquad S_{\omega} = \bigcup_{n=0}^{\infty} S_n$$

these are inseparable theories, if $T_{\omega} \vDash \theta$ then $T_n \vDash \theta$ for some n by compactness, and so then we cannot have that $S_n \vDash \neg \theta$ and therefore $S_{\omega} \nvDash \neg \theta$. Both of these theories are then consistent, as otherwise \bot would separate them.

Now we claim that T_{ω} is maximally consistent in \mathcal{L}'_1 and S_{ω} is maximally consistent in \mathcal{L}'_2 . Suppose not: that $\varphi_m, \neg \varphi_m \notin T_{\omega}$. That means then that $T_m \cup \{\varphi_m\}$ is separable from S_m , so there exists an \mathcal{L}'_0 -sentence θ such that

$$T_{\omega} \vDash \varphi_m \to \theta, \qquad S_{\omega} \vDash \neg \theta$$

Similarly there exists θ' such that

$$T_{\omega} \vDash \neg \varphi_m \to \theta', \qquad S_{\omega} \vDash \neg \theta'$$

But then we'd have that

$$T_{\omega} \vDash \theta \lor \theta', \qquad S_{\omega} \vDash \neg(\theta \lor \theta')$$

and so T_{ω} and S_{ω} are separable, in contradiction.

We now claim that $T_{\omega} \cap S_{\omega}$ is a maximally consistent \mathcal{L}'_0 -theory. Let σ be a \mathcal{L}'_0 -sentence, so either $\sigma \in T_{\omega}$ or $\neg \sigma \in T_{\omega}$ and $\sigma \in S_{\omega}$ or $\neg \sigma \in S_{\omega}$. But T_{ω} and S_{ω} are inseparable, so we have that $\sigma \in T_{\omega} \cap S_{\omega}$ or $\neg \sigma \in T_{\omega} \cap S_{\omega}$ as required.

Finally let us construct a model for $T_{\omega} \cup S_{\omega}$, which contains both φ and $\neg \psi$. Let $\mathcal{B}'_1 = (\mathcal{B}_1, b_i)_{i \in C}$ be a model for T_{ω} . By (3) in the construction of T_{ω} , this means that if we take the substructure $\mathcal{A}'_1 = (\mathcal{A}_1, b_i)_{i \in C}$ whose domain is $\{b_i\}_{i \in C}$, \mathcal{A}'_1 also satisfies T_{ω} . Similarly we can take $\mathcal{A}'_2 = (\mathcal{A}_2, d_i)_{i \in C}$ a structure whose domain is $\{d_i\}_{i \in C}$ which satisfies S_{ω} . Then the map $b_i \mapsto d_i$ is an isomorphism since both structures model the complete theory $T_{\omega} \cap S_{\omega}$ (so it contains all formulas of the form $fc_1 \cdots c_n = c$ and $rc_1 \cdots c_n$ and their negations). So without loss of generality, $b_i = d_i$, meaning \mathcal{A}'_1 and \mathcal{A}'_2 have the same \mathcal{L}_0 -reduct. Thus we can take an \mathcal{L} -structure \mathcal{A} whose \mathcal{L}_1 -reduct is \mathcal{A}_1 and \mathcal{L}_2 -reduct is \mathcal{A}_2 , and so it models both T_{ω} and S_{ω} , meaning it models $\varphi \wedge \neg \psi$ in contradiction.

1.7 Theorem (Robinson's Theorem)

Let \mathcal{L}_1 , \mathcal{L}_2 be two first-order languages and define $\mathcal{L} = \mathcal{L}_1 \cap \mathcal{L}_2$. If T is a complete \mathcal{L} -theory, $T_1 \supseteq T$ and $T_2 \supseteq T$ are consistent \mathcal{L}_1 - and \mathcal{L}_2 -theories respectively, then $T_1 \cup T_2$ is a consistent $\mathcal{L}_1 \cup \mathcal{L}_2$ -theory.

Proof: suppose that $T_1 \cup T_2$ is inconsistent, then take $\Sigma_1 \subseteq T_1$ and $\Sigma_2 \subseteq T_2$ finite such that $\Sigma_1 \cap \Sigma_2$ is inconsistent. Define $\sigma_1 = \bigwedge \Sigma_1$ and $\sigma_2 = \bigwedge \Sigma_2$, and so we have that $\sigma_1 \models \neg \sigma_2$. By Craig's Interpolation Theorem, there is a Craig interpolate θ where $\sigma_1 \models \theta$ and $\theta \models \neg \sigma_2$ and θ contains only extralogical symbols contained in both σ_1 and σ_2 . So θ is a $\mathcal{L}_1 \cap \mathcal{L}_2$ -sentence. Since T_1 is consistent, $T_1 \nvDash \neg \theta$ meaning $T \nvDash \neg \theta$, but $T_2 \models \sigma_2 \models \neg \theta$ so by consistency $T_2 \nvDash \theta$ meaning $T \nvDash \neg \theta$. But this contradicts T's completeness.

1.8 Lemma

Let \mathcal{L} be a first-order language of cardinality $\leq \alpha$ and \mathcal{A} be an \mathcal{L} -structure whose cardinality is $\omega \leq |\mathcal{A}| \leq \alpha$

 2^{α} . Then there exists an elementary extension $\mathcal{A} \leq \mathcal{B}$ of cardinality 2^{α} such that for every $X \subseteq A$ of cardinality α , $(\mathcal{B}, a)_{a \in X}$ realizes all types consistent with $(\mathcal{A}, a)_{a \in X}$.

Proof: since $|A| \leq 2^{\alpha}$, we have that $|\{X \subseteq A \mid |X| = \alpha\}| \leq 2^{\alpha}$, meaning there are at most 2^{α} subsets X of cardinality α . Furthermore $\mathcal{L}X$ is of cardinality $\leq \alpha$ and so there are at most 2^{α} 1-types over $\mathcal{L}X$. So for every $X \subseteq A$ of cardinality α and every 1-type $\Sigma(v)$ define a new constant symbol $c_{X\Sigma}$. Let us define

$$T = D_{el} \mathcal{A} \cup \bigcup_{X,\Sigma} \Sigma[c_{X\Sigma}]$$

Notice that $D_{el}\mathcal{A}$ is a complete theory consistent with $\Sigma(v)$ by definition, and so consistent with $\Sigma(c_{X\Sigma})$ and thus $D_{el}\mathcal{A} \cup \Sigma[c_{X\Sigma}]$ is a consistent extension of $D_{el}\mathcal{A}$. So by Robinson's Theorem, every finite subset of T is consistent and therefore T is consistent.

Since the language of T contains at most 2^{α} symbols, it has a model of cardinality 2^{α} . Since this model models $D_{el}\mathcal{A}$, it is an elementary extension of \mathcal{A} .

1.9 Theorem

Let \mathcal{A} be an \mathcal{L} -structure where $|\mathcal{L}| \leq \alpha$ and $\omega \leq |\mathcal{A}| \leq 2^{\alpha}$. Then there exists an α^+ -saturated elementary extension $\mathcal{B} \succeq \mathcal{A}$ of cardinality 2^{α} .

Proof: we will construct an elementary chain $\{\mathcal{B}_{\xi}\}_{\xi<2^{\alpha}}$ such that every \mathcal{B}_{ξ} is an elementary extension of \mathcal{A} of cardinality 2^{α} , for every subset $X \subseteq \mathcal{B}_{\varepsilon}$ of cardinality α , $(\mathcal{B}_{\xi+1}, a)_{a \in X}$ realizes every type over $(\mathcal{B}_{\xi}, a)_{a \in X}$. For \mathcal{B}_0 we take the structure created in the previous lemma. If η is a limit ordinal, define $\mathcal{B}_{\eta} = \bigcup_{\xi < \eta} \mathcal{B}_{\xi}$. Otherwise if $\eta = \xi + 1$, then take \mathcal{B}_{η} to be the structure created in the previous lemma, with \mathcal{B}_{ξ} instead of \mathcal{A} . Then define

$$\mathcal{B} = igcup_{\xi < 2^lpha} \mathcal{B}_{\xi}$$

Clearly $\{\mathcal{B}_{\xi}\}$ is an elementary chain and so \mathcal{B} is an elementary extension of \mathcal{A} . Now let $X \subseteq \mathcal{B}$ of cardinality α and $\Sigma(v)$ a type over $(\mathcal{B}, a)_{a \in X}$. Since 2^{α} has larger cofinality than α there must exist $\xi < 2^{\alpha}$ such that $X \subseteq \mathcal{B}_{\xi}$. But since \mathcal{B}_{ξ} is an elementary substructure of \mathcal{B} , $\Sigma(v)$ is also a type over $(\mathcal{B}_{\xi}, a)_{a \in X}$ and so is realized by $\mathcal{B}_{\xi+1}$ and thus by \mathcal{B} as an elementary extension.

Notice that this does not guarantee the existence of a saturated elementary extension, as this requires the generalized continuum hypothesis (GCH): that $\alpha^+ = 2^{\alpha}$ which is independent of ZFC. If it were true, then \mathcal{B} would be $\alpha^+ = 2^{\alpha}$ -saturated and of cardinality 2^{α} , as required.

1.10 Lemma (Shuttle Lemma)

Let α be an infinite cardinal, \mathcal{A}, \mathcal{B} be α -saturated and elementary equivalent. Let $a: \alpha \longrightarrow A, b: \alpha \longrightarrow B$ be injective, then there exists $a': \alpha \longrightarrow A, b': \alpha \longrightarrow B$ such that

$$\operatorname{Im} a \subseteq \operatorname{Im} a', \qquad \operatorname{Im} b \subseteq \operatorname{Im} b', \qquad (\mathcal{A}, a'_{\varepsilon})_{{\varepsilon} < \alpha} \equiv (\mathcal{B}, b'_{\varepsilon})_{{\varepsilon} < \alpha}$$

Proof: every ordinal ξ has a unique representation as $\xi = \lambda + \eta$ where λ is a limit ordinal and $\eta \in \omega$. Call ξ even if η is even, otherwise odd. We will define two injective functions $a': \alpha \longrightarrow A$ and $b': \alpha \longrightarrow B$ such that for all ordinals $\xi < \alpha$:

- (1) if $\xi = \lambda + 2n$ is even, then $a'_{\xi} = a_{\lambda+n}$,
- (2) if $\xi = \lambda + 2n + 1$ is odd, then $b'_{\xi} = b_{\lambda+n}$,
- (3) $(\mathcal{A}, a'_{\eta})_{\eta \leq \xi} \equiv (\mathcal{B}, b'_{\eta})_{\eta \leq \xi}$

Notice that (3) can indeed be satisfied: first suppose $(\mathcal{A}, a'_{\eta})_{\eta < \xi} \vDash \varphi$, we must have that $(\mathcal{A}, a'_{\eta})_{\eta < \xi'} \vDash \varphi$ for some $\xi' < \xi$ by compactness (look at the theory of the model). And so $(\mathcal{B}, b'_{\eta})_{\eta < \xi} \vDash \varphi$, meaning $(\mathcal{A}, a'_{\eta})_{\eta < \xi} \equiv (\mathcal{B}, b'_{\eta})_{\eta < \xi}$.

4 Some Model Theory

So let us assume that ξ is even, then let us define the 1-type

$$\Sigma(x) = \left\{ \varphi(b'_n, x)_{n < \xi} \in \mathcal{L}(b'_n)_{n < \xi} \mid \mathcal{A} \vDash \varphi(a'_n)_{n \le \xi} \right\}$$

 $\Sigma(x)$ is consistent with the theory of $\mathcal{B}(b'_{\eta})_{\eta<\xi}$ since (since \mathcal{A} is a deductively closed theory we can consider single formulas) for $\varphi(\bar{b}'_{\eta},x)\in\Sigma(x)$, we have that $\mathcal{A}\vDash\exists x\varphi(\bar{a}'_{\eta},x)$ and so $\mathcal{B}\vDash\exists x\varphi(\bar{b}'_{\eta},x)$. Since \mathcal{B} is α -saturated, we have that there must exist a b'_{ξ} which realizes $\Sigma(x)$, and thus satisfies (3).

If we have a sequence which satisfies (1), (2), (3), then we must have the required results.

1.11 Theorem (Uniqueness of Saturated Models)

If \mathcal{A} and \mathcal{B} are elementarily equivalent saturated models of the same cardinality, then they are isomorphic.

Proof: suppose $|A| = |B| = \alpha$, then there exist enumerations $a: \alpha \longrightarrow A, b: \alpha \longrightarrow B$. By the Shuttle Lemma, there exists a', b' whose images contain A and B repspectively such that $(A, a'_{\xi})_{\xi < \alpha} \equiv (B, b'_{\xi})_{\xi < \alpha}$. But then $a'_{\xi} \mapsto b'_{\xi}$ is an isomorphism.