Devoir maison 6 : Réduction d'endomorphismes et de matrices

Problème : Diagonalisabilité d'un endomorphisme f et de f^2

Partie I: un exemple

On considère les matrices carrées :

$$A = \begin{pmatrix} 1 & 1 & -1 \\ 2 & 0 & -1 \\ -1 & 1 & 1 \end{pmatrix} \quad \text{et} \quad B = \begin{pmatrix} 4 & 0 & -3 \\ 3 & 1 & -3 \\ 0 & 0 & 1 \end{pmatrix}.$$

- 1. La matrice B est-elle diagonalisable dans \mathbb{R} ?
- 2. La matrice A est-elle diagonalisable dans \mathbb{R} ?
- 3. Déterminer une matrice inversible $P \in GL_3(\mathbb{R})$ et une matrice diagonale $D \in \mathcal{M}_3(\mathbb{R})$ telles que $A = PDP^{-1}$. On ne demande pas de calculer P^{-1} .
- 4. Calculer A^2 .
- 5. Retrouver sans calcul que B est diagonalisable dans \mathbb{R} .

Partie II: un autre exemple

On se place dans l'espace euclidien orienté \mathbb{R}^3 muni de la base orthonormée directe canonique $\mathscr{B} = (e_1, e_2, e_3)$.

Pour un endomorphisme f de \mathbb{R}^3 , on note $f^2 = f \circ f$.

On note f la rotation autour de l'axe dirigé par e_3 et d'angle $\frac{\pi}{2}$.

- 1. Décrire l'endomorphisme f^2 .
- 2. Écrire la matrice C de f dans la base \mathscr{B} .
- 3. La matrice C est-elle diagonalisable dans \mathbb{R} ? et dans \mathbb{C} ?
- 4. La matrice C^2 est-elle diagonalisable dans \mathbb{R} ?

Partie III : étude de quelques cas

On considère un espace vectoriel E sur $\mathbb R$ de dimension finie.

- 1. Soient f, g deux endomorphismes de E tels que $f \circ g = 0$. Montrer que $Im(g) \subset \ker(f)$.
- 2. On suppose dans cette question que f est un endomorphisme **diagonalisable** de E

On désigne par $\lambda_1, \ldots, \lambda_p$ avec $p \in \mathbb{N}^*$ ses valeurs propres.

(a) Vérifier que pour tout $\alpha, \beta \in \mathbb{R}$:

$$(f - \alpha \operatorname{id}_E) \circ (f - \beta \operatorname{id}_E) = (f - \beta \operatorname{id}_E) \circ (f - \alpha \operatorname{id}_E).$$

(b) Montrer que pour tout vecteur propre v de f, on a :

$$(f - \lambda_1 \operatorname{id}_E) \circ \cdots \circ (f - \lambda_p \operatorname{id}_E)(v) = 0.$$

(c) Soit $x \in E$ un vecteur quelconque. En décomposant x dans une base bien choisie, montrer que :

$$(f - \lambda_1 \operatorname{id}_E) \circ \cdots \circ (f - \lambda_p \operatorname{id}_E)(x) = 0.$$

3. On abandonne les hypothèses de la question 2. On suppose dans cette question que f est un endomorphisme de E tel qu'il existe des réels distincts $\alpha, \beta \in \mathbb{R}$ tels que :

$$(f - \alpha \operatorname{id}_E) \circ (f - \beta \operatorname{id}_E) = 0 \quad (*).$$

- (a) Déterminer deux réels $a, b \in \mathbb{R}$ tels que $a(f \alpha \operatorname{id}_E) + b(f \beta \operatorname{id}_E) = \operatorname{id}_E$.
- (b) En déduire que $E = \text{Im}(f \alpha \operatorname{id}_E) + \text{Im}(f \beta \operatorname{id}_E)$.
- (c) Déduire de (*) que $\operatorname{Im}(f \beta \operatorname{id}_E) \subset \ker(f \alpha \operatorname{id}_E)$ et que $\operatorname{Im}(f \alpha \operatorname{id}_E) \subset \ker(f \beta \operatorname{id}_E)$.
- (d) Montrer que $E = \ker(f \alpha \operatorname{id}_E) + \ker(f \beta \operatorname{id}_E)$.
- (e) Montrer que $E = \ker(f \alpha \operatorname{id}_E) \oplus \ker(f \beta \operatorname{id}_E)$.
- (f) En déduire que f est diagonalisable. A quoi ressemble la matrice de f dans une base de diagonalisation?
- 4. On suppose dans cette question que f est un endomorphisme de E tel que f^2 est diagonalisable et dont toutes les valeurs propres sont strictement positives.

On note $\lambda_1, \ldots, \lambda_p$ les valeurs propres de f^2 .

- (a) Pour $k \in [1, p]$, on note $F_k = \ker(f^2 \lambda_k \operatorname{id}_E)$. Montrer que F_k est stable par f pour tout $k \in [1, p]$.
- (b) Pour tout $k \in [1, p]$, on note f_k la restriction de f à F_k et on pose $\mu_k = \sqrt{\lambda_k}$. Montrer que $(f_k + \mu_k \operatorname{id}_{F_k}) \circ (f_k - \mu_k \operatorname{id}_{F_k}) = 0$.
- (c) En déduire que f_k est diagonalisable.
- (d) On note pour $k \in [1, p]$, $F_k^+ = \ker(f_k + \mu_k \operatorname{id}_{F_k})$ et $F_k^- = \ker(f_k \mu_k \operatorname{id}_{F_k})$. Montrer que

$$E = F_1^+ \oplus F_1^- \oplus \cdots \oplus F_p^+ \oplus F_p^-.$$

En déduire que f est diagonalisable.