# $\mathbf{QNC}_1 \subset \mathbf{noisy}\mathbf{-BQP}$

#### Michael Benor David Ponarovsky

September 15, 2024

#### 1 Notations.

 $C_g$  - good qLDPC,  $C_{ft}$  - concatenation code (ft stands for fault tolerance). For a code  $C_y$  we use  $\Phi_y, E_y, D_y$  to denote the channel maps circuits into the circuits compute in the code space, the encoder, and the decoder. We use  $\Phi_U$  to denote the 'Bell'-state storing the gate U.

#### 2 The Noise Model

## 3 Fault Tolerance (With Resets gates) at Linear Depth.

**Claim 3.1.** There is  $p_{th} \in (0,1)$  such that if  $p < p_{th}$  then any quantum circuit C with depth D and width W can be computed by p-noisy, resets allowed, circuit C', with a depth at most  $\max \{D, \log(WD)\}$ .

### 3.1 Initializing Magic for Teleportation gates and encodes ancillaries.

The Protocol:

- 1. Initializing zeros. Divide the qubits into |B|-size blocks. Encodes each block in  $C_g$  via  $D_{ft}\Phi_{ft}[E_g]|0^{|B|}\rangle$ .
- 2. Initializing Magic for Teleportation gates encoded in  $C_g$  via  $D_{ft}\Phi_{ft}[E_g]|\Phi_U\rangle$  for each gate U in the original circit .
- 3. Each gate is replaced by gate teleportation.
- 4. At any time tick, any block runs a single round of error reduction.

**Claim 3.2.** Assume that an error  $|e| = \gamma n$ , i.e e is supported on less than  $\gamma n$  bits, then a single correction round reduce e into an error e' such  $|e'| < \nu |e|$ .

**Claim 3.3.** The gate  $D_{ft}\Phi_{ft}[E_g]$  initializes states encoded in  $C_g$  subject to p-noise channel.

Proof. Clearly  $\Phi_{ft}[E_g]$  success, with high probability, let's say  $1-\frac{1}{poly(n)}$ , to encode in to  $C_{ft}\circ C_g$ . Denote by  $E_i,D_i$  the encoder and the decoder at the ith level of the concatination construction. Recall that by definition  $D_iE_i=I$ , or in other words  $D_i=E_i^{\dagger}$ , Hence for any paulis  $P_1,P_2,...P_l$ , and any two quantum states we have the following:

$$\langle \psi' | P_i E_i P_{i-1} E_{i-1}, ..., P_1 E_1 \psi \rangle = \langle \psi' P_i D_i P_{i-1} D_{i-1}, ..., P_1 D_1 | \psi \rangle$$

Thus for any pauli-channel  $\mathcal{N}: L(H) \to L(H)$  we have that:  $\langle \psi' | \mathcal{N}(E) \psi \rangle = \langle \psi' \mathcal{N}(D_1) | \psi \rangle$ .

**Claim 3.4.** With probability  $1 - \frac{WD}{|B|} \cdot D2e^{-2|B|(\beta-p)}$ , the total amount of noise been absorb in a block, in any time t, is less than  $\gamma n$ .

П

*Proof.* Consider the ith block, denoted by  $B_i$ . Using the Hoeffding's inequality we have that the probability that more than  $\beta|B|$  bits are flipped at time t is less than  $\leq 2e^{-2|B|(\beta-p)}$ . Using the union bounds over all the blocks at all the different time location we get that with probability  $1 - \frac{WD}{|B|} \cdot D2e^{-2|B|(\beta-p)}$ . Denote by  $X_t$  the support's size of the error over  $B_i$  at time t. Now using Claim 3.2, given that  $X_{t-1} \leq \gamma n$  it follows that total amount of error absorbed by a block until time t can be bounded by:

$$X_t \le \nu \cdot (X_{t-1} + \beta |B|) \le \nu(\gamma + \beta)|B| \le \gamma |B|$$