Homework 1

Part I – Basic Number Theory 1

- 1. Compute $\varphi(n)$ for n = 2, 5, 6, 8, 12.
- 2. Compute:
 - 2⁴ mod 5
 3⁶ mod 7

 - $4^8 \mod 15$
 - $\bullet \ 4^{24} \mod 15$
 - $15^{66} \mod 23$
 - $43^{48} \mod 105$
- 3. You should have noticed a pattern in the above computations. Try to generalize what is going on. Does the result of $33^{48} \mod 105$ contradict your conjecture? If no, congratulations. Otherwise, fix your generalization.
- 4. How many solutions does the equation $7x = 14 \mod 35$ have in \mathbb{Z}_{35} ?
- 5. How many solutions does the equation $6x = 14 \mod 35$ have in \mathbb{Z}_{35} ?
- 6. How many solutions does the equation $10x = 14 \mod 35$ have in \mathbb{Z}_{35} ?
- 7. Try more examples and see if you can you generalize what is going on.
- 8. Find the multiplicative inverse of 22 in \mathbb{Z}_{35} .
- 9. Prove that if p is prime, $\varphi(p^{\alpha}) = p^{\alpha-1}(p-1)$.
- 10. Using the exercise above and the fact that $(a,b) = 1 \implies \varphi(ab) = \varphi(a)\varphi(b)$, prove the following formula for $\varphi(n)$ in terms of the factorization $n = \prod_{i=1}^k p_i^{\alpha_i}$:

$$\varphi(n) = n \prod_{i=1}^{k} \left(1 - \frac{1}{p_i} \right).$$

11. Find an integer $n \in \mathbb{Z}^+$ such that

$$\frac{n}{\varphi(n)} > 10.$$

12. Write a program (say using the GMP library) that takes an integer ℓ as input and outputs a random prime number of ℓ bits. Use the output to plot the running time of GMP's factor program against the bit length of the inputs (where each input is the product of two equal length primes).

Bonus Number Theory Questions

NOTE: you might find the following a little more challenging. Don't kill yourself over these.

- 1. For any odd prime integer p, prove that $(p-1)! = -1 \mod p$.
- 2. Suppose that p is a prime, and that $p \equiv 3 \mod 4$. Show that there is no integer $x \in \mathbb{Z}/p\mathbb{Z}$ such that $x^2 = -1$. (Hint: think about Lagrange's theorem.)
- 3. Show that for any $c \in \mathbb{Z}^+$ there exists $n \in \mathbb{Z}^+$ such that $n/\varphi(n) > c$, i.e., that $\lim \sup_{n \to \infty} n/\varphi(n) = \infty$.

2 Part II – Security Definitions

- 1. Let a M be a finite set of messages, and let S(M) denote the set of all permutations of M (all bijective functions $f: M \to M$). We'll assume that if given a description of $\sigma \in S(M)$, both σ and σ^{-1} are efficiently computable. Suppose $P \subset S(M)$ is such that $\forall x, y \in M, \exists \sigma \in P$ such that $\sigma(x) = y$.
 - (a) Show that $|P| \ge |M|$. (This is easy, but makes sure you've parsed the definition.)
 - (b) Show that if |P| = |M|, then the following encryption scheme is *perfectly secure*, provided you only use it once:
 - Key generation: select a random $\sigma \in P$;
 - Encryption: $m \mapsto \sigma(m)$
 - Decryption: $c \mapsto \sigma^{-1}(c)$
 - (c) Show that the above is false if |M| < |P| < 2|M|.
 - (d) Observe that for any finite group G and any $g \in G$, the map $x \mapsto gx$ is a permutation of G. By viewing G itself as a set of permutations of G in this way, show that the above property is satisfied (with M = P = G).
 - (e) The traditional **xor** one time pad is a special case of the above. What is the finite group in this case?
- 2. Suppose you want to encrypt a single bit, say via a OTP, but you only have access to a biased coin for key generation (that is, one outcome of the coin might be slightly more probable than the other). Show that if you use a single coin toss for key generation, your scheme will **not** be perfectly secure. How might you generate a uniformly random key (50/50 chance for 0/1) with this coin by flipping it multiple times? (This is a bit tricky!)

- 3. Suppose an encryption scheme acts on ascii-formatted plaintext messages by permuting the ascii characters. That is, a message $m = a_1 \dots a_n$ would be encrypted as $a_{\pi(1)} \dots a_{\pi(n)}$ for some (possibly randomized) permutation π (the a_i are the characters of the message). Prove such an encryption scheme can never be IND-CPA secure.
- 4. If an encryption scheme is IND-CPA secure, and if D is the decryption function, how must $|D^{-1}(x)|$ relate to the security parameter (asymptotically) for any (efficiently computable) x in the message space? Conclude in particular that a public-key, deterministic encryption scheme (like vanilla RSA) can never be IND-CPA secure.
- 5. Suppose a public-key cryptosystem encrypts integers (say, modulo another integer n). Let E, D denote the encryption and decryption algorithms, respectively. Show that if this scheme has the property that D(E(x)E(y)) = x + y for any messages x, y, then the scheme is necessarily vulnerable to a CCA2 attack.
- 6. For IND-CPA security, recall that we had two definitions: a "game-style" definition, and the "semantic" definition, stating that for all distributions D on the message space M, and for all predicates $P: M \longrightarrow \{0,1\}$, any efficient algorithm that predicts the predicate on input of a ciphertext will succeed with probability at most $l + \epsilon$, where

$$l = \max_{b \in \{0,1\}} \Pr_{m \stackrel{\$}{\leftarrow} D} [P(m) = b]$$

and where ϵ is negligible in the security parameter. Show that if an encryption scheme is secure according to the game-style definition, then it is secure under the semantic definition. Note: the converse is also true. Try to prove that as well. It is a little harder though.

- 7. Consider an encryption scheme (G, E, D) with the following property: in addition to the usual key generation algorithm G, there exists an algorithm \widetilde{G} such that
 - $G(1^{\lambda}) \approx \widetilde{G}(1^{\lambda})$, and yet,
 - for $\widetilde{\mathsf{pk}} \leftarrow \widetilde{G}$, it holds that for all equal-length messages m_0, m_1 , the distributions $E(\widetilde{\mathsf{pk}}, m_0), E(\widetilde{\mathsf{pk}}, m_1)$ are identically distributed.
 - (a) Prove that any such cryptosystem must be IND-CPA secure.
 - (b) Show how to construct such a cryptosystem based on the quadratic residuosity assumption (a simple modification of the Goldwasser-Micali cryptosystem suffices).