CLEAN COPY OF THE CLAIMS AS FILED

1. A method for controlling harmful fungi, which comprises treating the fungi or materials, plants, soil or seeds to be protected against fungal attack with an effective amount of a compound of formula I

where:

B is phenyl, naphthyl,

5-membered hetaryl, containing one to four nitrogen atoms or one to three nitrogen atoms and one sulfur or oxygen atom or 6-membered hetaryl containing one to four nitrogen atoms; where the cyclic groups may carry one to four radicals R^a

Ra is halogen, cyano, nitro, hydroxyl, amino, carboxyl, aminocarbonyl, alkyl, haloalkyl, alkenyl, haloalkenyl, alkenyloxy, haloalkenyloxy, alkynyl, haloalkynyl, alkynyloxy, haloalkynyloxy, alkoxy, haloalkoxy, alkylthio, haloalkylthio, alkylamino, dialkylamino, alkylcarbonyl, alkoxycarbonyl, alkylcarbonyloxy, alkylaminocarbonyl, dialkylaminocarbonyl, alkylcarbonylamino, alkylcarbonyl-N-alkylamino or alkoxycarbonyl-N-alkylamino, where the alkyl groups in these radicals contain 1 to 6 carbon atoms and the alkenyl or alkynyl groups mentioned in these radicals contain 2 to 8 carbon atoms;

1

cycloalkyl, cycloalkoxy, cycloalkylthio, cycloalkylamino, cycloalkyl-N-alkylamino, heterocyclyl, heterocyclycxy, heterocyclylthio, heterocyclylamino or heterocyclyl-N-alkylamino, where the cyclic systems contain 3 to 6 ring members and the alkyl groups in these radicals contain 1 to 6 carbon atoms; unsubstituted or R^b-substituted phenyl, phenyloxy, phenylthio, phenylamino, phenyl-N-alkylamino, phenylalkoxy, phenylalkylthio, phenylalkylamino, phenylalkyl-N-alkylamino, hetaryl, hetaryloxy, hetarylthio, hetarylamino, hetaryl-N-alkylamino, hetarylalkoxy, hetarylalkylthio, hetarylalkylamino and hetarylalkyl-N-alkylamino, where the hetaryl radicals contain 5 or 6 ring members and the alkyl groups in these radicals contain 1 to 6 carbon atoms, where

- R^b is halogen, cyano, nitro, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -alkoxy, C_1 - C_4 -alkylamino or C_1 - C_4 -alkylamino or C_1 - C_4 -alkylamino or two of the following radicals
 - formyl,
 - CRⁱⁱⁱ=NOR^{iv} where Rⁱⁱⁱ is hydrogen, alkyl, cycloalkyl or phenyl and R^{iv} is alkyl, alkenyl, haloalkenyl, alkynyl or phenylalkyl (where the alkyl groups mentioned contain 1 to 6 carbon atom and the cycloalkyl groups, alkenyl groups and alkynyl groups mentioned contain 3 to 8 carbon atoms),
 - NR v -CO-D-R v where R v is hydrogen, hydroxyl, C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl, C₁-C₆-alkoxy, C₂-C₆-alkynyloxy, C₁-C₆-alkynyloxy, C₁-C₆-alkynyloxy, C₂-C₆-alkynyloxy, C₂-C₆-alkynyloxy, C₁-C₆-alkynyloxy, C₂-C₆-alkynyloxy, C₂-C₆-alkynylox

alkoxy- C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy- C_1 - C_6 -alkoxy or C_1 - C_6 -alkoxycarbonyl, R^{vi} is hydrogen, C_1 - C_6 -alkyl, C_2 - C_6 -alkenyl, C_2 - C_6 -alkynyl, C_3 - C_6 -cycloalkyl, C_3 - C_6 -cycloalkenyl, phenyl- C_1 - C_6 -alkyl, hetaryl or hetaryl- C_1 - C_6 -alkyl and D is a direct bond, oxygen or nitrogen, where the nitrogen may carry one of the groups mentioned under R^{vi} ,

and/or where two adjacent carbon atoms of the cyclic systems may carry a C_3 - C_5 -alkylene, C_3 - C_5 -alkenylene, oxy- C_2 - C_4 -alkylene, oxy- C_1 - C_3 -alkyleneoxy, oxy- C_2 - C_4 -alkenylene, oxy- C_2 - C_4 -alkenyleneoxy or butadienediyl group, where these bridges for their part may be partially or fully halogenated and/or may carry one to three of the following radicals:

- C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -alkoxy, C_1 - C_4 -haloalkoxy and C_1 - C_4 -alkylthio;
- A is C=O, C=S or SO₂;
- R¹ is C_2 - C_{10} -alkyl, C_1 - C_{10} -haloalkyl, C_3 - C_{10} -alkenyl, C_3 - C_{10} -haloalkenyl, C_3 - C_{10} -alkynyl or C_3 - C_{10} -haloalkynyl, C_3 - C_{10} -cycloalkyl, C_3 - C_{10} -cycloalkynyl, or phenyl or naphthyl,

5- or 6-membered heterocyclyl, containing, in addition to carbon ring members, one to three nitrogen atoms and/or one oxygen or sulfur atom or one or two oxygen and/or sulfur atoms or

5-membered hetaryl, containing one to four nitrogen atoms or one to three nitrogen atoms and one sulfur or oxygen atom or

6-membered hetaryl, containing one to four nitrogen atoms; where the cyclic groups may carry one to four radicals Ra;

- R² is hydrogen;
- R³ is hydrogen, nitro, cyano, N(R')₂, C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxy, C₁-C₄-haloalkoxy, C₂-C₄-alkenyl, C₂-C₄-haloalkenyl, C₂-C₄-alkynyl or C₂-C₄-haloalkynyl, where
- R' independently of one another are hydrogen or C₁-C₄-alkyl;
- or R2 and R3 together are a group

=0, =S or = $N-O-R^5$, where

- R⁵ is hydrogen, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_3 - C_6 -alkenyl, C_3 - C_6 -haloalkynyl;
- R⁴ is hydrogen, halogen, nitro, cyano, N(R')₂, C₁-C₄-alkyl, C₁-C₄-haloalkyl, COOR', hetaryl or heterocyclyl;

for controlling harmful fungi].

2. A 5-hydroxypyrazoline of the formula IA

$$\begin{array}{c|c}
O & N & R^4 \\
\hline
HOW & N & R^3 \\
R^1 & R^2
\end{array}$$

İΑ

in which in case a:

is nitro, cyano, N(R')₂, C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxy, C₁-C₄-haloalkoxy, C₂-C₄-alkenyl, C₂-C₄-haloalkenyl, C₂-C₄-alkynyl or C₂-C₄-haloalkynyl;

or R² and R³ together are a group

=0, =S or $=N-O-R^5$,

R⁴ is hydrogen, halogen, nitro, cyano, N(R')₂, C₁-C₄-alkyl, C₁-C₄-haloalkyl or heterocyclyl;

and B, R¹ and R² are each as defined in claim 1, or in case b:

B is naphthyl, heterocyclyl, hetaryl or substituted phenyl, where the cyclic groups can be substituted by Ra, and

R³ is hydrogen,

R⁴ is hydrogen, halogen, nitro, cyano, N(R')₂, C₁-C₄-alkyl, C₁-C₄-haloalkyl or heterocyclyl;

and R1 and R2 are each as defined in claim 1;

where R⁴ is not methyl if R¹ is tert-butyl or phenyl and the group B is phenyl which is substituted by 3-bromo, 4-halo, 4-methyl, 4-methoxy, 4-nitro, 4-dimethylamino or 4-fluoro-3-methyl, and

where R⁴ is not methyl or CF₃ if R¹ is CF₃, C₃F₇, C₆F₁₃, C₈F₁₇, or tert-butyl R² and R³ are hydrogen and the group B is phenyl which is substituted by 4-bromo, 4-methyl, 4-methoxy or 4-nitro, and

where R⁴ is not thienyl if R¹ is phenyl which is unsubstituted or substituted by 4-chloro, 4-methyl or 4-methoxy, R² and R³ are hydrogen and B is chlorophenyl, and where R⁴ is not ethyl if both the group B and R¹ are 4-fluorophenyl, or in case c:

- B is unsubstituted phenyl,
- R¹ is phenyl or naphthyl, heterocyclyl or hetaryl, where the cyclic groups can be substituted by R^a,

 $\label{eq:c3-C10-cycloalkyl} C_3-C_{10}-cycloalkenyl C_3-C_{10}-cycloalkyny $$n$-propyl, C_4-C_{10}-alkyl, $CHC1_2$, CH_2C1, $CC1_3$, CHF_2, CF_2H, CF_2C1, $CFC1_2$, $$C_2$-$C_{10}$-haloalkyl, C_3-C_{10}-haloalkenyl, C_3-C_{10}-haloalkynyl;$

- R² is hydrogen;
- R³ is hydrogen, nitro, cyano, amino, rnethylamino, dimethylamino, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -alkoxy, C_1 - C_4 -haloalkoxy, C_2 - C_4 -alkynyl or C_2 - C_4 -haloalkynyl,

or R² and R³ together are a group =0, =S or =N-O-R⁵, and

R⁴ is hydrogen, halogen, nitro, cyano, N(R')₂, C₁-C₄-alkyl, C₁-C₄-haloalkyl or heterocyclyl;

where R¹ is not tert-butyl if R⁴ is CF₂H and R⁴ is not methyl if R¹ is phenyl.

3. A 5-hydroxypyrazoline of formula IB

$$B-A'-N$$
 R^4
 R^3
 R^1
 R^2

ΙB

in which

A' is C=S or SO₂

- B is unsubstituted phenyl,
- R¹ is phenyl or naphthyl, heterocyclyl or hetaryl, where the cyclic groups can be substituted by R^a,

 $\label{eq:c3-C10-cycloalkyl} C_3-C_{10}\text{-cycloalkenyl} \ C_3-C_{10}\text{-cycloalkyny}$ $n\text{-propyl}, \ C_4-C_{10}\text{-alkyl}, \ CHC1_2, \ CH_2C1, \ CC1_3, \ CHF_2, \ CF_2H, \ CF_2C1, \ CFC1_2,$ $\ C_2-C_{10}\text{-haloalkyl}, \ C_3-C_{10}\text{-alkenyl}, \ C_3-C_{10}\text{-haloalkynyl};$ $\ C_{10}\text{-haloalkynyl};$

R² is hydrogen;

R³ is hydrogen, nitro, cyano, amino, rnethylamino, dimethylamino, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -alkoxy, C_1 - C_4 -haloalkoxy, C_2 - C_4 -alkynyl or C_2 - C_4 -haloalkynyl,

or R² and R³ together are a group =0, =S or =N-O-R⁵, and

R⁴ is hydrogen, halogen, nitro, cyano, N(R')₂, C₁-C₄-alkyl, C₁-C₄-haloalkyl or heterocyclyl;

where R¹ is not tert-butyl if R⁴ is CF₂H and R⁴ is not methyl if R¹ is phenyl.

3. A 5-hydroxypyrazoline of formula IB

IB

in which

A' is C=S or SO₂

excluding compounds in which A' is C=S, R¹ is unsubstituted or p-CH₃-, p-Br- or -p-NO₂-substituted phenyl, R⁴ is methyl, R² is hydrogen and R³ is hydrogen, isopropyl or isobutyl and B is phenyl or 4-methoxyphenyl.

4. A process for preparing compounds of the formula IA as claimed in claim 2, which comprises reacting a hydrazine of formula II,

in which B is as defined in claim 2, with a diketone of formula III,

$$R^{1} \xrightarrow{R^{2} I^{1} L_{R^{3}} R^{4}} R^{4}$$

in which the substituents are each as defined in claim 2.

5. A process for preparing compounds of formula IB

in which A' is C=S,

where B, R¹, R², R³ and R⁴ are as defined in claim 1,

excluding compounds in which R¹ is unsubstituted or p-CH₃-, p-Br- or -p-NO₂- substituted phenyl, R⁴ is methyl, R² is hydrogen and R³ is hydrogen, isopropyl or

isobutyl and B is phenyl or 4-methoxyphenyl,

which comprises reacting compounds of the formula I as set forth in claim 1, in which A is C=O, with Lawesson's reagent.

6. A process for preparing compounds of formula IB

in which A' is SO₂,

where B, R1, R2, R3 and R4 are as defined in claim 1,

which comprises reacting sulfohydrazines of the formula IV,

in which B is as defined in claim 1 with diketones of the formula III,

$$R^{1} \xrightarrow{R^{2} I^{1} I_{1}} R^{4}$$

in which the substituents are each as defined in claim 1.

8. A composition which is suitable for controlling harmful fungi, comprising a solid or liquid carrier and a compound of the formula I as set forth in claim 1.