	以根廷等的局
	$d(b,y) = x-y = \left(\sum_{i=1}^{k} (x_i - y_i)^2\right)^{\frac{1}{2}}$
	$\hat{\mathcal{A}}\vec{\mathcal{A}}: X_n F_n(x) X \rightarrow F(x) \qquad \text{with } \hat{\mathcal{A}} \xrightarrow{\text{local}} \hat{\mathcal{A}}$
	$\lim_{x \to \infty} F_n(t) = F(x) \qquad \qquad \chi \qquad \qquad \chi$
	$F_{n}(x) = P(X_{n} \leq \pi)$
从林民在李白春的	1. lim P(Xn E x) = P(X E x)
· 	$\times \sim N(0,1)$, $\times_{N} \longrightarrow N(0,1)$
	ス. Xn 以水野 42を気を X, 如2果みす所有 ٤>0
	$P(d(X_n, X) > 2) \longrightarrow 0$
	3. Xn 几年博子 X.
	d_{X} $d(X_{n}, X) \rightarrow 0$ with d_{X} d_{X} $d_{X_{n}}$ $d_{X_{n}}$ $d_{X_{n}}$ $d_{X_{n}}$ $d_{X_{n}}$
	4. Xn 42/52 & 4
	$= \mathbb{E}\left[\left \left X_{n}-X\right \right ^{p}\right] \longrightarrow 0.$
7243°	
	$Z \sim N(0,1)$ $Z = Jn X_n$
	$F_n(x) = P(x_n \leq x) = P(\sqrt{n}x_n \leq \sqrt{n}x)$
	$= P(Z \leq \sqrt{n} \propto).$
	下面等啊 吃了
	(i) $P(X_n \leq \pi) \rightarrow P(X \leq \pi)$ 又才所有X.
	_ (îi) E[g(tn)] → E[g(t)] ZIFA有有界的连续函数。
	(iii) E[g(ton)] →E[g(to)] 对所有 Lipschitz 到初g.

度级 映到

全 g: $IR^k \rightarrow IR^m$ nate 实在每个点 $P(X \in C) = 1$.

(i) 花 Xn ~~~ X, 图1 g(xn) ~~~~ g(x).

(ii) $\not = X_n \xrightarrow{P} X$, $g(X_n) \xrightarrow{} g(X)$

 $(iii) \underset{Z}{\not=} \chi_n \xrightarrow{\text{olsmst}} \chi, \qquad g(\chi_n) \xrightarrow{\text{olmost}} g(\chi)$

花Xh, X, Yn为 V. f

 $(1) \quad \chi_{\eta} \longrightarrow \chi \quad \text{an} \quad \chi_{\eta} \quad \xrightarrow{P} \chi.$

(2) Xn - X, R1 Xn - X.

(3) $\chi_n \xrightarrow{P} \chi$, $Q \mid \chi_n \longrightarrow \chi$

 $(4). \ \ \chi_n \xrightarrow{P} C, \qquad \chi \xrightarrow{P} C$

15) Xn 上x and Yn 上x 电射路层s $P(X_n, Y_n) \xrightarrow{P} (X, Y)$ BE to Ed.

全 $\chi=0$ 对组象已证自然和,存在自然和 $n_m=2^m-2+k$. OSk< 2 mtl,

 $\langle n(w) = S \mid \frac{k}{2^m} \leq w \leq \frac{k+1}{2^m}$ $0 \quad \text{otherwise.} \qquad w \in [0,1]$

 $P(|X_n-X|>\varepsilon) \leq P(\{w: \frac{k}{2^m} \leq w \leq \frac{k+1}{2^m}\}) = \frac{1}{2^m} \Re (3^m) \Re (3^m)$ みも役養 $W \in C0, 1]$, 気を地、存在水、 $| \leq k \leq 2^m$. 有 $\frac{k}{2^m} \leq W \leq \frac{k}{2^m}$.

 $|\mathcal{R}| \times_{n_{\infty}}^{3/3}(w) = | \Rightarrow \times_{n}(w) \neq 0$

 $\chi_{n}(\omega) = \begin{cases} 0 & \frac{1}{n} < \omega \leq 1 \\ p^{n} & 0 \leq \omega \leq \frac{1}{n} \end{cases}$

 $P(|X_{n}-X|>\varepsilon) = P(|X_{n}| \neq 0) = \frac{1}{n}$ $E[|X_{n}-X|^{p}] = E[|X_{n}|^{p}] = e^{nP} \cdot P = \frac{e^{nP}}{n} \rightarrow \infty$

 $\times_n \xrightarrow{\mathbb{P}} \chi$

见小 小频

dutsky 3/2 ×n, x 和产品是产度机变量, 如果Xn→X, 新生产的一个.

(1). $\chi_n + Y_n \longrightarrow X + C$

(2). $\chi_n \chi_n \rightarrow c \chi$.

 $(3) \quad \chi_n^{-1} \chi_n \longrightarrow c^{-1} \chi$

• 75 PM t, 870, $4 \text{ king } e^{-\lambda t} = \frac{(\lambda t)^k}{k!} = 1_{[0,1]}(t)$ (*)

iznana.

若 X見:新花分布. 参数为入七. $E[X]=\lambda t$ $Var[X]=\lambda t$.

X2 tex

 $P(X \leq \lambda \chi) = 1 - P(X - \lambda t > \lambda (\pi - t))$ $7 - P(|x-\lambda t| > \lambda(b-t)) \rightarrow 0$

