Podstawy systemów operacyjnych

dr inż. Beata Marciniak

Literatura

- A. Silberschatz, J.L. Peterson, P.B. Galvin Podstawy systemów operacyjnych.
- A.M. Lister, R.D. Eager
 Wprowadzenie do systemów operacyjnych.
- W. Stallings
 Systemy operacyjne. Struktura i zasady budowy

Zaliczenie

- Wykład 30 godzin
- Laboratorium 30 godzin
- Zaliczenie wykładu w postaci testu elektronicznego (forms) – część pytań zamkniętych, część pytań otwartych.

Zaliczenie:

- 16 grudnia 2020 I część
- 20 stycznia II część
- 27 stycznia cały materiał
- sesja poprawkowa ostatni termin

Definicja systemu operacyjnego

- Systemem operacyjnym nazywamy specjalny program komputerowy, który steruje i zarządza wszystkimi zasobami systemu komputerowego (sprzęt i oprogramowanie) oraz zapewnia użytkownikowi łatwy interfejs dla dostępu do wirtualnej maszyny (wirtualnego komputera).
- System operacyjny jest programem, który działa jako pośrednik pomiędzy użytkownikiem a sprzętem komputerowym.

System komputerowy

Perspektywa systemu

- Z perspektywy systemu komputerowego, system operacyjny jest programem najbliżej powiązanym ze sprzętem (dystrybutor zasobów).
- Istnienie systemów operacyjnych jest uzasadnione tym, że umożliwiają one rozsądne rozwiązywanie problemów np. z dostępem do urządzeń wejścia –wyjścia, wspólnym sterowaniem zasobami czy gromadzeniem danych.

Sprzęt systemu komputerowego

- 1. Procesor (jednostka centralna CPU);
- 2. Pamięć operacyjna (program i dane);
- 3. Urządzenia WE/WY.

Zadania systemu operacyjnego

Komputer PC

• Udostępnienie użytkownikom wszystkich możliwości systemu komputerowego w sposób łatwy i wygodny.

Serwer, komputer główny

 Koordynacja pracy elementów systemu komputerowego w celu efektywnego oraz wydajnego wykorzystywania systemu (np. dla realizacji systemów wielodostępowych).

Zadania systemu operacyjnego

- Ukrywa szczegóły sprzętowe systemu komputerowego poprzez tworzenie abstrakcji (maszyn wirtualnych).
- Przykłady:
 - jednolity sposób dostępu do urządzeń zewnętrznych
 - zbiory bloków dyskowych widziane jako pliki o symbolicznych nazwach
 - duża, szybka, dedykowana pamięć operacyjna współbieżne wykonanie programów (jako abstrakcja równoległości)

Zadania systemu operacyjnego c.d.

- Zarządza zasobami:
 - zasoby to obiekty niezbędne do wykonania programu, np. pamięć, czas CPU, wejście-wyjście, porty komunikacyjne
 - strategie przydziału i odzyskiwania zasobów (zarządzanie pamięci, zarządzanie procesorem, zarządzanie plikami, zarzadzanie urządzeniami)
 - efektywność zarządzania zasobami decyduje o wydajnej eksploatacji sprzętu komputerowego
- Dostarcza przyjazny interfejs wygoda użycia (ustawianie przełączników, karty perforowane, taśmy perforowane, terminale graficzne z myszką i klawiaturą).

Historia rozwoju systemów komputerowych

Wczesne systemy operacyjne

- 1. System komputerowy, to przede wszystkim sprzęt.
- 2. Do pracy z komputerem wymagane były wysokie kwalifikacje.
- 3. Wczesne oprogramowanie niezbyt przyjazny interfejs (asemblery, programy ładujące, programy łączące, biblioteki typowych funkcji, kompilatory, programy sterujące urządzeń).
- 4. Programista **tworzył**, **uruchamiał**, **testował** oprogramowanie oraz nadzorował osobiście **interakcyjny** proces obliczeniowy.
- 5. Bezpośredni, sposób pracy. Dostęp do komputera zgodnie z ustalonym wcześniej harmonogramem.
- 6. Pierwsze języki wysokiego poziomu Fortran, Cobol, Algol (kompilatory oraz konieczność ich instalowania).

Proste systemy wsadowe

- Zatrudnienie operatora (użytkownik <> operator)
- Skrócenie czasu instalowania zadania przez przygotowywanie wsadu zadań o podobnych wymaganiach sprzętowych
- Automatyczne porządkowanie zadań automatyczne przekazywanie sterowania od jednego zadania do drugiego
- Rezydentny program monitor
 - inicjalnie sterowanie jest w monitorze
 - przekazanie sterowania do zadania
 - po zakończeniu zadania sterowanie wraca do monitora
- Wprowadzenie kart sterujących (Job Control Language)
- Istotna zmiana trybu pracy z punktu widzenia użytkownika
- Zwiększona przepustowość systemu kosztem Eredniego czasu przetworzenia zadania

Problem: niska wydajność (CPU i urządzenia wejścia-wyjścia nie mogą pracować równocześnie, czytnik kart bardzo wolny) **Rozwiązanie**: praca w trybie pośrednim (off-line)

Program Monitor

- 1. Efektywne wykorzystanie drogiego sprzętu wymusiło zatrudnienie wyedukowanych operatorów sprzętu.
- Operator realizował zadania zgodnie z porządkiem niezależnie od programistów.
- 3. Powstał <u>wsadowy tryb pracy</u> systemu (ten sam typ zadań realizowany razem, bez rekonfiguracji systemu).
- 4. Pojawia się koncepcja <u>automatycznego porządkowania zadań</u> (Automatic Job Sequences) oraz prosty program zarządzający, rezydujący w pamięci komputera Monitor.

Pamięć z systemem Monitor

Program ladujący

AJS

Interpreter poleceń (karty sterujące)

Obszar pamięci dla programu użytkownika **AJS** – Automatic Job Sequences

JCL – Job Control Language

Program Monitor przekazuje sterowanie do poszczególnych zadań, które po zakończeniu zwracają do niego sterowanie. (Automatyczny Operator)

Praca pośrednia

- 1. Wolne urządzenia wejściowe (np. czytniki kart) pracowały nieefektywnie z coraz szybszymi procesorami.
- 2. Szybkie urządzenia wejściowe (taśmy magnetyczne) mogły pracować w trybie WE oraz WY oraz współpracować z czytnikami kart oraz drukarkami.
- 3. Pojawiły się proste systemy komputerowe o ograniczonych możliwościach (przetwarzanie satelitarne).
- 4. Praca w trybie pośrednim pozwala tworzyć programy z logicznymi urządzeniami WE-WY (niezależne od urządzeń fizycznych).

Tryby pracy

Praca bezpośrednia Czytnik kart Jednostka centralna Drukarka wierszowa

Praca pośrednia

Czytnik kart

Jednostka centralna

Drukarka wierszowa

Buforowanie

- 1. Pomiędzy urządzeniami WE, WY i procesorem znajduje się specjalny moduł do przechowywania danych bufor. Urządzenie WE pisze dane do bufora (WY czyta), zaś procesor czyta dane (pisze dane). Bufor może przechowywać kilka danych.
- 2. Z reguły jedno z urządzeń (WE, WY lub procesor) pracuje szybciej od drugiego i wtedy:
 - procesor czeka na urządzenie WE (WY) zadanie uzależnione od WE-WY;
 - urządzenia WE-WY czekają na procesor zadanie uzależnione od jednostki centralnej.

Spooling

- 1. Pojawienie się pamięci dyskowych pozwoliło usprawnić pracę pośrednią i buforowanie (łatwiejszy dostęp do danych w stosunku do taśm dysk stał się buforem).
- 2. Możliwe stało się gromadzenie danych w różnych miejscach na dysku (w taśmach dane musiały być zapisywane sekwencyjnie).
- 3. Jednostka centralna uzyskała łatwy dostęp do danych (zarówno dla WE jak i WY).
- 4. Spooling (Simultaneous Peripherial Operation On-Line) daje możliwość buforowania zadań dla urządzeń nie tolerujących przeplatania danych (np. dla drukarki) kolejka zadań do wykonania.

Spooling

Wieloprogramowość

System operacyjny

Zadanie 1

Zadanie 2

Zadanie 3

Komputer wykonuje *i-te* zadanie (aktywny proces obliczeniowy) umieszczone w pamięci. Gdy *i-ty* proces musi oczekiwać na jakiś zasób, wówczas procesor zawiesza ten proces i przechodzi do wykonania kolejnego nieaktywnego procesu.

Mapa pamięci komputera

Wielozadaniowość

Wielozadaniowość. Przełączanie między aktywnymi zadaniami – podział czasu.

Wymaga systemu plików dostępnych bezpośrednio.

Wielozadaniowość

System wielozadaniowy ze stałym podziałem czasu (R-R)

System wielozadaniowy reagujący na zdarzenia (RT)

Systemy rozproszone

<u>Systemy wieloprocesorowe: ściśle powiązane – ciasno sprzężone.</u>

Systemy rozproszone

<u>Systemy wielokomputerowe: luźno sprzężone – sieci komputerowe.</u>

Struktury systemów operacyjnych

- struktura jednolita (prosta);
- 2. struktura warstwowa;
- 3. struktura typu klient-serwer.

Sprzęt

Rodzaje systemów operacyjnych

- systemy dla indywidualnego użytkowania (np. DOS, Windows, Linux), również z możliwością wielodostępu (np. Windows Serwer, Unix);
- 2. systemy operacyjne dla sterowania procesami (systemy czasu rzeczywistego, np. RTOS, QNX);
- 3. systemy dostępu do dużych baz danych systemy przeszukiwania plików (np. system klasy SQL);
- 4. systemy dla przetwarzania transakcji (np. systemy rezerwacji miejsc, systemy obsługi giełdy).

Systemy operacyjne pracujące w chmurze

Pierwsze systemy komputerowe

Mechanizmy komunikacji

Istnieją trzy mechanizmy realizacji operacji we/wy:

- Programowe we/wy;
- Układ we/wy sterowany przerwaniami;
- Bezpośredni dostęp do pamięci (DMA).

Architektura systemu

Programowe we/wy

- 1. Kiedy procesor wykonuje program lub napotyka rozkaz odnoszący się do operacji we/wy, realizuje taki rozkaz przez wysłanie polecenia do odpowiedniego modułu we/wy.
- 2. W przypadku programowego we/wy, moduł we/wy wykonuje żądaną czynność i ustawia odpowiednie bity w rejestrze stanu modułu we/wy.
- 3. Zestawy rozkazów obejmują rozkazy we/wy podzielone na kategorie:
 - a) Sterowanie: aktywowanie zewnętrznego urządzenia i sterowania nim (np. taśma ustawia się na właściwym rekordzie).
 - **b) Status**: służy do testowania różnorodnych statusów skojarzonych z modułem we/wy oraz jego urządzeniami peryferyjnymi.
 - c) Transfer: wykorzystywany do odczytu i/lub zapisu pomiędzy procesorem a rejestrami oraz urządzeniami zewnętrznymi.

Przerwanie w systemie

Układ we/wy sterowany przerwaniami

Procesor wystosowuje polecenie np. zapisu danych. Następnie zapisuje kontekst bieżącego i rozpoczyna inne zadanie. Na koniec każdego cyklu rozkazów procesor sprawdza czy nie pojawiły się przerwania.

W.Stallings, Systemy operacyjne. Architektura, funkcjonowanie i projektowanie

Przekazanie sterowania

Cykl rozkazowy z przerwaniami

Zmiany w pamięci i rejestrach

(a) Przerwanie występuje po rozkazie z komórki *N* (b) Powrót z przerwania

Przekazywanie sterowania w sytuacji wielu przerwań

(a) Sekwencyjne przetwarzanie przerwań

(b) Zagnieżdżone przetwarzanie przerwań

Przerwanie w systemie

Bezpośredni dostęp do pamięci (DMA)

ang. Direct Memory Access

Charakterystyka DMA

W każdym przypadku, kiedy procesor chce odczytać lub zapisać blok danych, wysyła polecenie do modułu DMA z następującymi informacjami:

- rodzajem żądanego polecenia: odczyt/zapis,
- adresem urządzania we/wy,
- początkową lokalizacją w pamięci, gdzie zostanie przeprowadzona operacja zapisu/odczytu,
- liczba słów, które mają zostać zapisane/odczytane W międzyczasie procesor będzie realizował inne zadania, operacje we/wy zostały przekazane do modułu DMA i ten moduł obsłuży tę operację.

Urządzenia we/wy

- Podział typów urządzeń zewnętrznych:
 - urządzenia blokowe, możliwy odczyt/zapis każdego bloku niezależnie (dyski, nośniki danych),
 - urządzenia znakowe, łańcuch znaków bez podziału na bloki, nie ma adresowalności ani ustawianego wskaźnika bieżącej pozycji (drukarka, klawiatura),
 - czasem, ze względu na specyfikę, wyróżnia się jako osobną klasę urządzenia sieciowe/komunikacyjne,
 - niektóre urządzenia nie pasują do powyższej klasyfikacji, na przykład czasomierze (ang. timers),

Architektura systemów operacyjnych

Moduły systemu operacyjnego służą do realizacji następujących funkcji:

- 1. funkcji zarządzania procesami;
- 2. funkcji zarządzania pamięcią operacyjną;
- 3. funkcji zarządzania pamięcią pomocniczą;
- 4. funkcji zarządzania systemem wejścia-wyjścia;
- 5. funkcji zarządzania plikami;
- 6. funkcji ochrony procesów w pamięci operacyjnej;
- 7. funkcji nadzoru pracą systemu rozproszonego (sieci);
- 8. funkcji interpretera poleceń.

Moduł zarządzania procesami

- tworzenie i usuwanie procesów (użytkowych oraz systemowych);
- wstrzymywanie i wznawianie procesów;
- udostępnianie mechanizmów synchronizacji procesów;
- udostępnianie mechanizmów komunikacji między procesorowej;
- udostępnianie mechanizmów obsługi blokad.

Moduł zarządzania pamięcią operacyjną

- prowadzi ewidencję aktualnie wykorzystywanych części pamięci operacyjnej wraz z informacją o tym w czyim są władaniu;
- rozstrzyga o tym w jaki sposób wykorzystać zwolnione obszary pamięci – jakiemu procesowi przydzielić zwolniony obszar pamięci;
- przydziela i zwalnia obszary pamięci stosowanie do potrzeb.

Moduł zarządzania pamięcią pomocniczą (np. dyskami):

- zarządza wolnymi obszarami pamięci;
- dokonuje przydziału pamięci;
- planuje przydział obszarów pamięci dyskowej.

Moduł zarządzania systemem wejściawyjścia Udostępnia procesowi użytkownika dostęp do urządzeń zewnętrznych za pośrednictwem systemu operacyjnego realizując bezkonfliktową komunikację z urządzeniami wejścia-wyjścia (wykorzystując do tego celu przerwania oraz system DMA).

Plik jest logiczną jednostką służącą do przechowywania danych w pamięci zewnętrznej (np. na dysku).

Moduł zarządzania plikami:

- tworzy oraz usuwa pliki oraz katalogi, w których przechowywane są pliki;
- udostępnia mechanizmy do manipulowania plikami i katalogami (np. usuwanie, czy kopiowanie);
- dokonuje odwzorowania plików na obszary pamięci pomocniczej;
- składuje pliki na trwałych nośnikach.

Usługi systemu operacyjnego

- 1. Realizacja procesu obliczeniowego (programu).
- 2. Obsługa operacji wejścia-wyjścia.
- 3. Manipulowanie systemem plików.
- 4. Komunikacja pomiędzy procesami realizowanymi współbieżnie.
- 5. Wykrywanie oraz obsługa błędów.
- 6. Gospodarka zasobami systemu.
- 7. Ochrona zasobów systemu komputerowego.
- 8. Ewidencja wykorzystania zasobów systemu komputerowego i rozliczanie użytkowników.

Funkcje systemowe

- Funkcje (wywołania) systemowe stanowią interfejs pomiędzy realizowanym procesem (wykonywanym programem) a systemem operacyjnym.
- Funkcje systemowe są wywoływane w celu wykonania przez system operacyjny określonych zadań wynikających z realizacji procesu obliczeniowego.
- Funkcje systemowe są dołączane do kompilowanego programu w procesie kompilacji.

Dzielą się na funkcje:

- nadzorowania procesów,
- operacji na plikach,
- operacji na urządzeniach WE-WY,
- utrzymywania informacji oraz
- komunikacji.

Rodzaje funkcji systemowych

- 1. <u>Nadzorowanie procesów:</u> zakończenie (*End*), zaniechanie (*Abort*), załadowanie (*Load*), wykonanie (*Execute*), oczekiwanie na zdarzenie (*Wait for Event*), itp.
- 2. Operacje na plikach: utworzenie pliku (*Create File*), usunięcie pliku (*Delete File*), otwarcie pliku (*Open*), zamknięcie (*Close*), czytanie (*Read*), pobranie atrybutów pliku (*Get File Attributes*), itp.
- 3. Operacje na urządzeniach: zamówienie urządzenia (Request Device), zwolnienie urządzenia (Release Device), czytanie (Read), pisanie (Write), pobranie atrybutów urządzenia (Get Device Attributes), itp.

Rodzaje funkcji systemowych

- 4. <u>Utrzymywanie informacji:</u> pobranie daty lub czasu (*Get Time or Date*), ustawianie daty lub czasu (*Set Time or Date*), pobranie danych systemowych (*Get System Data*), pobranie atrybutów procesu (*Get Process Attributes*), itp.
- 5. <u>Komunikacja:</u> utworzenie, usunięcie połączenia komunikacyjnego (*Create, Delete Communication Connection*), nadawanie i odbieranie komunikatów (*Send, Receive Messages*), przekazanie informacji o stanie (*Transfer Status Information*), itp.

Zarządzanie procesami

Procesy

Procesem nazywa się każde działanie systemu komputerowego.

Procesy realizowane w komputerze wykonują programy, stąd potrzebują one niezbędnych zasobów, np. czas procesora, pamięć operacyjna, pliki, urządzenia WE-WY.

System komputerowy składa się ze zbioru procesów np. procesy S.O., procesy użytkownika.

Proces sekwencyjny

- Proces sekwencyjny jest programem wykonywanym sekwencyjnie.
- W określonej chwili czasowej wykonywany jest jedynie jeden rozkaz kodu programu.
- Z procesem związane są również takie pojęcia jak:
 - stan procesu, czy
 - sekcja danych.
- Sam program nie jest procesem, gdyż jest obiektem pasywnym (podobnie jak plik w pamięci), zaś proces jest obiektem aktywnym.

Stany procesu

Blok kontrolny procesu

Każdy proces jest odwzorowany w S.O. poprzez przypisany jemu *blok kontrolny procesu* zawierający niezbędne dane dotyczące procesu:

- stan procesu;
- licznik rozkazów;
- rejestry procesora;
- informacje o planowaniu przydziału procesora;
- informacje o zarządzaniu pamięcią;
- informacje do rozliczeń;
- informacje o stanie urządzeń WE-WY.

Blok kontrolny procesu

Stan procesu Wskaźnik Numer procesu Licznik rozkazów Rejestry Ograniczenia pamięci Wykaz otwartych plików

Przełączanie procesora

Procesy współbieżne

Procesy współbieżne są to takie procesy, które współdzielą zasoby (moc obliczeniową) pomiędzy wiele procesów jednocześnie.

Korzyści ze współbieżności procesów:

- podział zasobów fizycznych (procesor, WE-WY);
- podział zasobów logicznych (pliki);
- multiplikacja (przyspieszenie) obliczeń (w przypadku systemów wieloprocesorowych);
- modularność (łatwa dekompozycja procesów);
- wygoda w użytkowaniu.

Tworzenie procesu

- 1. Proces macierzysty jest wykonywany współbieżnie z potomkami.
- 2. Proces macierzysty jest wstrzymany dopóki procesy potomne nie zakończą pracy.

Zakończenie procesu

Przyczyny zakończenia procesów:

- Proces zakończył działanie i poinformował S.O. o stanie zakończenia działań.
- Proces potomny przekroczył zakres przydzielonych mu zasobów.
- Dalsza realizacja procesu obliczeniowego potomka stała się zbędna.
- Kończący się proces macierzysty wymusza zakończenie procesów potomnych (zakończenie kaskadowe).

Zależności pomiędzy procesami

Proces NIEZALEŻNY

- 1. Na stan procesu nie wpływa żaden inny proces.
- 2. Działanie procesu jest deterministyczne, czyli wynik zależy jedynie od stanu wejścia.
- 3. Wynik jest powtarzalny, czyli działanie da się powielać.
- 4. Działanie może być wstrzymywane i wznawiane dowolną ilość razy bez żadnych skutków

Proces WSPÓŁPRACUJĄCY

- 1. Oddziałuje na inne procesy.
- 2. Stan procesu jest dzielony z innymi procesami.
- 3. Wynik działania procesu jest zależny od stanu innych procesów.
- 4. Wynik działania jest niedeterministyczny i może być różny dla tych samych stanów wejściowych.