

STUDENT ID NO									
			1						

MULTIMEDIA UNIVERSITY

FINAL EXAMINATION

TRIMESTER 1, 2015/2016

ECP2036 – MICROPROCESSOR SYSTEMS AND INTERFACING (ME)

17 OCTOBER 2015 2:30 P.M. – 4:30 P.M. (2 Hours)

INSTRUCTIONS TO STUDENT

- 1. This Question paper consists of 7 pages with 4 questions only.
- 2. Attempt ALL questions. All questions carry equal marks and the distribution of the marks for each question is given.
- 3. Please write all your answers in the Answer Booklet provided.
- 4. Opcode map and Special Function Register formats are provided in Appendices.

Question 1

- a) An 8051 microcontroller has to access 32kBytes of external memory. Determine the number of address and data lines to be used.

 [3 marks]
- b) Describe the function of these 8051 control pins.

(i)	PSEN	[2 marks]
(ii)	ALE	[2 marks]
(iii)	\overline{EA}	[2 marks]
(iv)	RST	[2 marks]

- c) An 8051 microcontroller-based system is to be designed requiring 32kBytes of RAM. 16kBytes of RAM memory blocks are available.
 - (i) Evaluate the number of RAM memory block required. [1 mark]
 - (ii) Determine the address range of each memory block used. [4 marks]
 - (iii) Draw the configuration of the system showing the 8051 signal lines to be used for the address, data and control buses. [9 marks]

Question 2

a) The following is an 8051 microcontroller's instruction.

MOV 43H, #0A2H

- (i) State the addressing mode of this instruction. [1 mark]
 (ii) Explain the purpose of each byte of this instruction. [2 marks]
- (iii) If an 8051 is operating from 16MHz crystal, how long does this instruction takes to execute? [2 marks]
- b) Complete the following list file (.lst) by filling in the missing data.

No.	Address	Machine Code	Instruction
1	0A00		ORG 0A00H
2	0A00		ADD A,R5
3			ORL A,#2BH
4			MOVC A, @A+DPTR
5			SETB 30H
6			DEC R5

[10 marks]

c) Internal memory locations from 40H to 49H contain the numbers 0 to 9 respectively. By using PUSH and POP instructions, write the assembly language instructions to reverse the order in which the number are stored (0 is put in 49H, 1 in 48H, etc.)

[10 marks]

Question 3

a) A string of 7-bit ASCII code is stored in external memory of 8051 (starting address of the string is 4000H). The string is terminated by a byte contained 00H.

Write an assembly language instruction sequence to transfer the string to a personal computer via serial port. The serial port should be initialized in 8-bit UART with an added (even) parity bit as bit 7. The baud rate (9600) should be generated by the Timer 1. Assume 11.059MHz operating frequency is used. [15 marks]

b) Name the special function registers to control the 8051 interrupts and the interrupt priorities. What should be the setting values of the special function registers if Timer 0 and Counter 1 interrupts are both enabled with Counter 1 has higher priority?

[6 marks]

c) In an 8051 door logging system, Timer 0 is used to emulate the Real-Time-Clock operation and External Interrupt 1 is used to detect the door opening through an IR sensor. Which interrupt service should be given top priority in order avoid loss of accuracy? Justify your answer. [4 marks]

Question 4

The concrete mixing system shown in *Figure 1* is to be controlled by an 8051 microcontroller, which involves performing the following process:

- The tank is first filled with water through a solenoid Valve W.
- When the water reaches Level W, Valve W is closed and the tank is now filled with cement through Valve C.
- When the mixture in the tank reaches Level C, Valve C is closed and the tank is then filled with sand through Valve S.
- When the mixture in the tank reaches Level S, Valve S is closed
- The mixer motor starts for approximately 3 minutes.
- After that, the drainage Valve E opens to empty the tank.
- When the mixture reaches Level E, Valve E is closed and the whole process is repeated after 1 minute.

The tank has four level sensors that send signals to input lines P1.0 to P1.3. A logical low from the sensor indicates that the level has been reached. The output lines P0.0 to P0.3 provide signals to the solenoid valves. A logical low from the lines will open the corresponding valve. The output lines P0.4 provide signals to the mixer motor which is also activated by a logical low. Write an assembly language instruction sequence to carry out the process.

[25 marks]

Figure 1

Appendix A: Opcode Map

					_		_	_			_	_	_	_		_	_		т			_			_		_	_			_		_			1			_		_	_	
F	IB. 2C	MOVX &DPTRA	2B, 2C	ACALL	(6.1	18.30	MOVX	18 2C	MOVX	(#RI, A	18, IC	5	V	2B, IC	MOV	K III	15. IC	MOV	F KIL A	101	NO.	GR), A	16, 15	ğ	KU,A	MOV	¥ 2	1B. 1C	MOV	R2.A	IB. IC	NOW.	K K	IB. IC	244	1B. JC	MOV	R5A	1B, 1C	MOV	R6.4	15.15	87.A
Э	B.2C	MOVX A.@DPTR	3B. 2C	AJMP	(P7)	B. 3C	MOVX	A, C. R.	XVOX	A. @RI	18. fC	CLR	٧	28. IC	MOV :	A. CIII	18. IC	AOM	A. SEKU	18, 17	MON	A. GR	IB. IC	NO.	A R0	IB. JC	2 2	1B. IC	MOV	A. R.2	18,10	MOV	A. R3	15, IC	P Di	(B)	MOV	A R5	1B, 1C	MOV	A. R6	18, 1c	A. R.7
D	38, 2C	POP	3B, 2C	ACALL	(P6)	28, IC	SETB	15 J.	SETTR	0.00	18, IC	DA	~	38.20	DINZ	dir. rel	IB, IC	XCHD	A, ePRO	28, IC	XCHD	A, GR	2B, 2C	ZNIG	R0, rel		2010	J. 12	DIN.	R2, rel	2B, 3C	DINZ	R3, rel	71.17	2000	JE BC	DINZ	R5. 78	3B, 2C	DJNZ	Rf. rel	28, 20	DJN2 R7, rel
C	2B. 3C	PUSH	38, 2C	AJMP	æ	28. IC	CT'S	E C	28, I.C.	ا ا	18,10	SWAP	~	3B. IC	XCH	A. dir	1B, 1C	XCH	A, eFRO		XCH	l			- 1			Т		A. R.	ł		1		F .	- X- K-	ACH	A. R5	JB. IC	XCH	A, R6	iB. IC	XCH A.R?
В	28, 3C	ANL	28, 30	ACALL	Ę	28.1C	£ :			ני			A. adatu. rel	3B, 2C	CINE	A. dir, rel	38.2C	CINE	@RO, Adata.ref	3B. 2C	CINE	QR1.#dnta.rel	3B. 2C		RO.#data.rel			K J. FOILD, TC:	TIME C	R2.8datu.rei	3B. 2C	CINE	R3,#data,re?	38, 2C		K-, #dala,rc;	J. d.	R.5. #dnitn.rel	1		R6,#data.rel		CJNE R7,#dels,rei
A	2B, 2C	ORL	28,30	AJMIP	(PS)	2B, IC		ž U	1B. ZC	NA C	ַ≝	!	AB				2B. 2C	MOV	(ARI), dir	3B. 2C	MOV	@R1. dir	7B, 2C	MOV	RO. dir	28, 27	MOV	XI. 04	NO.	# 52 # 52	19. X	MOV	R3, dir	28, 2C	MOV	74. dir	AB. A.	RS. dir	2B, 2C	MOV	R6, dir) 위	MOV R7. dr
6	ı	MOV	- 1		(P4)	2B, 2C	MOV	ÞÍ. Ć	1B. 2C	MOVC	A SEATON IN	STIBB	A. #data	ZB, JC	SUBB	A, dir	1B. IC	SUBB	A. G-RO	1B. IC	SUBB	A. @R1	IB. IC	SUBB	A, Rti	IB, IC	SUBB	A, KI	20,00	A R	IB. 1C	SUBB	A, R3	IB. IC	SUBB	A, R4	I.B. P.	A. RS	1B. IC	SUBB	A.Rh	1B. IC	SUBB A.R7
œ	2B, 2C	SJMP	78. 2C	AIMIP	(Pd)	2B. 3C	ANL	전	18,30	MOVC			¥ B			dir. dir	2B, 2C	MOV	dir, G-RO	28, 30	MOV	dir, GRI	2B, 2C	MOV	dir, RO	2B. 2C	MOV	dic, R1	25, 37	i i	2B, 3C	MOV	dic. R3	2B. 2C	MOV	dir, Rd	28. 2C	,	2B. 3C	MOV	dir. R6	28, 3C	MOV dir. R7
7	38, 2C	ZNÍ			(8)	38.3C	ORL	C. bit	ا ا	JMP	CA+DPIK	MOV	A. Adria	3B. 2C	MOV	dir. #clata						(BR), #dain	2B, 1C	MOV	RO, #dnta	2B. 1C	MOV	RI, #data	28. It.	NIOV P. #clars	28.1C	MOV	RS, #data	2B, IC	MOV	R4, #ditta	2 i	PS arions	2B. IC	MOV	Rft, #data	2B. 1C	MOV R7, #data
9	2B, 2C	JZ	5 2 E	A TATP	(P3)						- 1	7.07	A 45	2B. IC	XRL	A. dir	18, IC	XRL	A, @RO	IB, IC	XRL	A. 6.R.	18,10	XRL	A.R0	1B. IC	XRL	A.RI	18. IC	XKI.	(B. IC	XRL	A,R3	1B, IC	XRL	A.R.	18. IC	ARL	IB. IC.	XRL	A,R6	1B, 1C	XRL A.R.
ıcı	28.20	JNC			(P2)			dir. A	3B. 2C	ANL	Jir. #datu	48. IC	A #dan	2B IC	ANE	A dir	18, 10	ANL	A. (PR)	IB. IC	ANE	A. GRI	1B. IC	ANL	A.R0	IB, IC	ANL	A.R.i	B. fc	ANL	IR JC	ANL	A,R3	18, 1C	ANL	A,R4	18, IC	ANL	A.R.	Z	A.Re	18. IC	ANL AR7
4	7R 2C	ည	157 TC	28. A.	(E)	28. IC	ORL	dir, A	3B. 2C	ORL	dir. Ørlata		2 4	1		A dir	18. IC	ORL	A GRO	1B. IC	ORL	A GR	/B, IC	ORL	A.Ri	1B, IC	ORL	A,RI	18, IC	ORL	18 10	ORL	A,R3	1B, 1C	ORL	A,R4	IB, IC	OKL	CI OF BE	OPI	A.R6	11B. IC	ORL
65	76 Br	2	bit.rel	28,3C	ALEAN CO.	1B. 3C	RETI		1B. IC	RLC	۲ .	2		III F	1 .		38. IC	ADDC	A GPRU	IB IC	ADDC	A & R	1B. IC	ADDC	A.Ro	1B, 1C	ADDC	A,RI	18, 1C	ADDC	A. A. K.	ADDC	A.R3	1B. 1C	ADDC	A,R4	1B, 1C	ADDC	A.K.	ADDC	A.R6	1B, IC	ADDC
2	-	, E	bited	28. 2C	A JIME	ı	Ħ		1B, IC	RL	۲.	38. 1C	ADD.	78 3C	ADD	.!.		<u> </u>	A GP RT	5		4.68	IB. IC	ADD	A Ro	IB. IC	ADD	A,RJ	IB. IC	ADD	A,KZ	CUY	A.R.	1B. IC	ADD	A.R4	1B. IC	QQV.	Q V	ie, ic	, F.	1B, 1C	ADD
-	1 17 85	JBC	bitrel	38.26	ACALL	TR 2C	LCALL								DEC		JI 0	DEC.	986	18 10	DEC) I			2 2		DEC	R	18. IC	DEC	R2	DEC	2	1B. IC	DEC		IB.	DEC		18.10 DEC	2 2	IB, IC	DEC
C	اد	NOP		28 3C	Almir	18 3C	LIMP	addriló	1B. 1C	RR	*	18, IC	INC INC	П	INC		Į.		Case	١	ن	1 4	J. E.	ZZ	2	18,10	INC	R	18.1C	INC	2	Į.	i a	18, 10	IŞC IŞC	R 4	JB, IC	INC	2	IB. IC	≋ د	IB. IC	INC
HByte	LByte	0	,	,	_		ç	1		m	,		4		u	ာ		ď	٥		t	-			0		6	,		¥		٥	٩		ن			_		t	피		ഥ

Appendix B: Special Function Register Format

TMOD : [Bit	t 0 (LSB) to Bit 3 is for Timer 0 and Bit 4 to Bit 7 (MSB) is for Timer 1]											
GATE	C//T M1 MO GATE C//T MO MI											
GATE:	Timer only runs while /INT1 is set.											
Cl IT:	'1' for event counter, '0' for interval timer											
M1, MO:	Mode bit select											
	"00" Mode 0 – 13-bit timer mode											
	"01" Mode 1 – 16-bit timer mode											
	"10" Mode 2 – 8-bit auto-reload mode											
	"11" Mode 3 – Split timer mode											
TCON:	TFO TRO IE1 IT1 IE0 IT0											
TF1 TR1	TFO TRO IE1 IT1 IE0 IT0											
TCON.7	TF1 Timer 1 overflow flag. Set by hardware on overflow.											
TCON.7	Clear by hardware when processor vectors to interrupt routine.											
TCON.6	TRI Timer 1 run control bit. Set/cleared by software to start/stop timer.											
TCON.5	TFO Timer 0 overflow flag. Set by hardware on overflow.											
10011.5	Clear by hardware when processor vectors to interrupt routine.											
TCON.4	TRO Timer 0 run control bit. Set/cleared by software to start/stop timer.											
TCON.3	IE1 Interrupt 1 Edge flag. Set by hardware when interrupt 1 falling											
10014.5	edge is detected. Cleared when interrupt is processed.											
TCON.2	IT1 Interrupt 1 Type control bit. Set / cleared by software to specify											
1001112	falling edge / low level triggered external interrupts.											
TCON, 1	IEO Interrupt 0 Edge flag. Set by hardware when interrupt 1 falling											
10011. 1	edge is detected. Cleared when interrupt is processed.											
TCON.0	ITO Interrupt 0 Type control bit. Set / cleared by software to specify											
1001110	falling edge / low level triggered external interrupts.											
	1											
SCON:												
SMO	SM1 SM2 REN TB8 RB8 TI RI											
SMO SMI												
0 0	= Shift register mode											
0 1	= 8-bit UART mode											
1 0	= 9-bit UART mode (Fixed Baud Rate)											
1 l	= 9-bit UART mode (Variable Baud Rate)											
	72 11 16'											
SM2='1'	= Enable multiprocessor communication											
REN	= Receiver Enable											
TB8	= Transmit Bit											
ΤΪ	= Transmit Interrupt = Receive Interrupt											
RI	- Receive uncumpt											

IE:													
EA		ET2	ES ET1 EX1 ET0 EXO										
•	•												
Bit Posit	ion Symbol	Bit Addr	ress Description										
IE.7	EA	AFH	Global enable/disable.										
			EA =' 1', each individual source is enable/disable										
			By seetting/clearing its enable bit.										
			EA = 'O', disable all interrupts.										
IE.6	-	AEH Undefined											
IE.5	-	ADH	Not implemented in 805 l. ET2 for 8052.										
IE.4	ES	ACH	Serial port interrupt enable bit.										
IE.3	ET1	ABH	Timer 1 interrupt enable bit.										
IE.2	EX1	AAH	External interrupt enable bit.										
IE. I	ET0	A9H	TimerO interrupt enable bit.										
IE.O	EXO	A8H	External interrupt enable bit.										
			•										
IP:													
	1	PT2	PS PT1 PX1 PTO PX0										
IP.7	_	-	Undefined.										
IP.6	-	÷	Undefined.										
IP.5	-	BDH	Not implemented in 8051. PT2 for 8052.										
IP.4	PS	BCH	Serial port interrupt priority bit.										
IP.3	PT1	BBH	Timer1 interrupt priority bit.										
IP.2	PX1	BAH	External interrupt priority bit.										
IP.1	PTO	B9H	Timer-0 interrupt priority bit.										
IP.0	PX0	B8H	External interrupt priority bit.										
			· · ·										
Selected	Interrupt V	ectors											
Interrupt	source	Flag	Vector Address										
System 1		RST	0000Н										
External		IEO	0003H										
Timer 2	(8052)	TF2 &	EXF2 002BH										
	•												
PSW:													
CY	AC	FO	RS1 RSO OV - P										

AC: Auxiliary Carry Flag

CY: Carry Flag RS1, RSO: Register Bank Select

OV: Overflow Flag

P: Parity

End of Paper

7/7