Tarea 06 Seguimiento de rutas*

Robots Móviles (TSM I, TSM II, TSCR), FI, UNAM, 2025-1

Nombre:		
Nombro:		
INOHIDIE.		

1. Actividades

1. Abra el archivo catkin_ws/src/navigation/simple_move/scripts/path_follower.py y pegue el siguiente código en la línea 63 para implementar la máquina de estados para el seguimiento de rutas:

```
63 idx = 0
Pg = path[idx]
65 Pr, robot_a = get_robot_pose()
  while numpy. linalg.norm(path[-1] - Pr) > 0.1 and not rospy.is\_shutdown():
       v,w = calculate_control(Pr[0], Pr[1], robot_a, Pg[0], Pg[1], alpha, beta, v_max,
67
       publish_twist(v,w)
68
       Pr, robot_a = get_robot_pose()
69
       if numpy. linalg.norm(Pg - Pr) < 0.3:
70
           idx = \min(idx+1, len(path)-1)
71
           Pg = path[idx]
72
73
```

2. En el mismo archivo, en la función calculate_control, implemente las siguientes leyes de control:

$$v = v_{max}e^{-e_a^2/\alpha}$$

$$\omega = \omega_{max}\left(\frac{2}{1 + e^{-e_a/\beta}} - 1\right)$$

donde

$$e_a = \operatorname{atan2}(y_q - y_r, x_q - x_r) - \theta_r$$

La pose del robot está dada por (x_r, y_r, θ_r) y el punto meta por (x_g, y_g) . Las constantes α y β son constantes de sintonización y v_{max} , ω_{max} representan las velocidades máximas que alcanzará el robot. La posición del robot, la posición deseada y las constantes de sintonización se pasan como argumento en la función.

3. Abra una terminal y corra la simulación con el comando:

```
roslaunch surge_et_ambula movement_planning.launch
```

4. Ejecute el inflado de mapas, el mapa de costo y la planeación de rutas con A*, con los siguientes comandos, uno en cada terminal:

```
\begin{array}{lll} & \text{rosrun map\_augmenter map\_inflater.py } \_\text{inflation\_radius} := 0.2 \\ & \end{array}
```

 $^{^*}$ Material elaborado con apoyo del proyecto PAPIME PE105524

```
rosrun path_planner cost_map.py _cost_radius:=0.5

rosrun path_planner a_star.py
2
```

5. Ejecute el seguimiento de rutas (archivo modificado en los puntos 1 y 2) con el comando:

```
rosrun simple_move path_follower.py _v_max:=0.5 _w_max:=1.0 _alpha:=1.0 _beta:=1.0 _2
```

6. Mueva al robot a una posición dentro espacio libre haciendo click en el botón 2D Nav Goal y luego click en algún punto del mapa.

- 7. Detenga el seguimiento de rutas y ejecútelo con otras constantes α y β . Sintonice las constantes hasta obtener un seguimiento satisfactorio.
- 8. Realice varios experimentos con distintas constantes de sintonización α y β y registre la ruta deseada (la que es calculada por A*), la ruta real que siguió el robot y las velocidades lineal y angular durante el movimiento.
- 9. Grafique la ruta deseada contra la ruta seguida por el robot y las velocidades lineal y angular para cada par de constantes de sintonización.
- 10. Analice los resultados.
- 11. Coloque las constantes con mejores resultados como valores por default en el archivo path_follower.py

2. Entregables

- Código modificado en la rama correspondiente
- Documento impreso con los siguientes puntos:
 - Capturas de pantalla donde se muestre al robot recorriendo la ruta calculada.
 - Gráficas de la ruta deseada contra la ruta real.
 - Gráficas de las velocidades lineal y angular.
 - Discusión de los resultados.

No es necesario pegar el código modificado en el documento escrito. Para eso está el repositorio en línea.

3. Evaluación

Para la evaluación se utilizará la siguiente lista de cotejo:

- [0 puntos] Los cambios al código se subieron a la rama correspondiente con las credenciales de cada alumno. Este punto es requisito para evaluar los demás.
- [2 puntos] El programa para el seguimiento de rutas funciona correctamente (el robot llega al punto meta).
- [2 puntos] El documento impreso incluye capturas de pantalla que muestran el correcto funcionamiento del seguimiento de rutas.
- [2 puntos] Se incluyen al menos dos gráficas de ruta deseada contra ruta seguida con diferentes constantes de sintonización.
- [2 puntos] Se incluyen al menos dos gráficas de las velocidades lineales y angulares, con respecto al tiempo, con diferentes constantes de sintonización.
- [2 puntos] Se incluye una discusión sobre la sintonización de las constantes α y β