ECE 2372 | Modern Digital System Design | Texas Tech University

Latches

Lecture Overview

- 1. Combinational vs Sequential Logic
- 2. Dominant Inputs
- 3. Set-Reset Latch
- 4. Set'-Reset' Latch
- 5. Gated Set-Reset Latch

Latches | Modern Digital System Design

So far, we've been working with combinational logic.

Sequential Logic builds on this model by adding State.

To make this work, we need a logic circuit that maintain the state. Even if the input signal changes.

Latches | Modern Digital System Design

The logic gates AND, NAND, OR, and NOR have truth tables with a similar pattern.

А	В	AND
0	0	0
0	1	0
1	0	0
1	1	1

Α	В	OR
0	0	0
0	1	1
1	0	1
1	1	1

The dominant input signal, either 1 or 0, is the signal which drives the logic gate to a specific state if it appears anywhere in the input.

Α	В	AND
0	0	0
0	1	0
1	0	0
1	1	1

For the AND-gate, notice that a 0 anywhere drives the gate to 0.

The dominant input signal, either 1 or 0, is the signal which drives the logic gate to a specific state if it appears anywhere in the input.

A	В	AND
0	0	0
0	1	0
1	0	0
1	1	1

For the AND-gate, notice that a 0 anywhere drives the gate to 0.

0 is the dominant signal for an AND-gate.

A	В	OR
0	0	0
0	1	1
1	0	1
1	1	1

For the OR-gate, notice that a 1 anywhere drives the gate to 1.

А	В	OR
0	0	0
0	1	1
1	0	1
1	1	1

For the OR-gate, notice that a 1 anywhere drives the gate to 1. 1 is the dominant input signal for the OR-gate.

What questions do you have?

EXAM PROBLEM | Dominant Input Signals

What is the dominant input signal for the NOR-gate?

- A. 1
- B. 0
- C. The NOR-gate does not have a dominant input signal.

EXAM PROBLEM | Dominant Input Signals

What is the dominant input signal for the NOR-gate?

A. 1

B. 0

C. The NOR-gate does not have a dominant input signal.

А	В	NOR
0	0	1
0	1	0
1	0	0
1	1	0

Latches | Modern Digital System Design

By convention, we use Q to represent the state of the latch.

By convention, we use Q to represent the state of the latch.

$$Q = 1$$
 (SET), $Q = 0$ (RESET)

1 | 0

Since NOR is dominated by 1, we must have a 0 on the output of the bottom NOR-gate.

The 1 from Q will continue to dominate the bottom NOR-gate. Our SET state is maintained, even with all 0's on the input.

Since NOR is dominated by 1, we must have a 0 on the output of the top NOR-gate.

The 1 from Q' will continue to dominate the top NOR-gate. Our RESET state is maintained, even with all 0's on the input.

By applying the dominant input to both inputs, both NOR-gates are forced to 0. Since, Q and Q' cannot both be 0, this is an INVALID state.

Recap

- When both inputs are non-dominant, the state will not change.
- Apply a dominant input to one input to SET/RESET the state.
- Applying the dominant input on both inputs yields an INVALID STATE

25

What questions do you have?

EXAM PROBLEM | Set-Reset Latch

What will be the state of a Set-Reset Latch at the end of the following sequence of inputs?

- A. SET
- B. RESET
- C. INVALID

S	R
1	0
0	0
0	1
1	1
0	0
1	0
0	0

EXAM PROBLEM | Set-Reset Latch

What will be the state of a Set-Reset Latch at the end of the following sequence of inputs?

A. SET

B. RESET

C. INVALID

S	R	
1	0	SET
0	0	SET
0	1	RESET
1	1	INVALID
0	0	INVALID
1	0	SET
0	0	SET

Latches | Modern Digital System Design

The Set'-Reset' Latch provides an alternate implementation which we'll use for more complex designs.

What is the dominant input for the Set'-Reset' Latch?

What is the dominant input for the Set'-Reset' Latch?

0 is the dominant input for the NAND-gate

1 | 0

Set'-Reset' Latch SET'(S') RESET'(R')

Since 0 is the dominant input, the top NAND-gate will be forced to 1.

Set'-Reset' Latch SET'(S') RESET'(R')

The 0 from Q' will continue to dominate the top NAND-gate. Our SET state is maintained, even with all 1's on the input.

Set'-Reset' Latch SET'(S') RESET' (R')

Since 0 is the dominant input, the bottom NAND-gate will be forced to 1.

Set'-Reset' Latch SET'(S') RESET'(R')

The 0 from Q will continue to dominate the BOTTOM NAND-gate. Our RESET state is maintained, even with all 1's on the input.

Set'-Reset' Latch RESET'(R')

By applying the dominant input to both inputs, both NAND-gates are forced to 1. Since, Q and Q' cannot both be 1, this is an INVALID state.

Set'-Reset' Latch

Same behavior as the Set-Reset Latch except 0 is the dominant input

What questions do you have?

EXAM QUESTION | Set'-Reset' Latch

What will be the state of a Set'-Reset' Latch at the end of the following sequence of inputs?

- A. SET
- B. RESET
- C. INVALID

S	R
1	0
1	1
0	1
1	1
1	1
1	0
1	1

EXAM QUESTION | Set'-Reset' Latch

What will be the state of a Set'-Reset' Latch at the end of the following sequence of inputs?

A. SET

B. RESET

C. INVALID

S	R	
1	0	RESET
1	1	RESET
0	1	SET
1	1	SET
1	1	SET
1	0	RESET
1	1	RESET

Latches | Modern Digital System Design

We can expand out Set-Reset Latch to include a control input to handle when the state can be set or changed.

1 | 0

Since 0 is the dominant input, the enable NAND-gates will be forced to 1.

1 | 0

Since 0 is the dominant input, the enable NAND-gates will be forced to 1. This forces the Set'-Reset' Latch to be in the NO-CHANGE state.

Gated Set-Reset Latch SET (S) ENABLE (G RESET (R)

When the enable signal is 1 (non-dominant), the NAND-gate inverts the SET and RESET signals. Now the latch will behave like a SET-RESET Latch.

What questions do you have?

EXAM QUESTION | Gated Set-Reset Latch

What will the state of a Gated Set-Reset Latch be at the end of the following sequence of inputs?

- A. SET
- B. RESET
- C. INVALID
- D. UNDEFINED

G	S	R
0	0	1
1	0	0
1	1	0
1	0	0
0	0	1
1	1	1
0	1	0

EXAM QUESTION | Gated Set-Reset Latch

What will the state of a Gated Set-Reset Latch be at the end of the following sequence of inputs?

- A. SET
- B. RESET
- C. INVALID
- D. UNDEFINED

G	S	R	
0	0	1	UNDEFINED
1	0	0	UNDEFINED
1	1	0	SET
1	0	0	SET
0	0	1	SET
1	1	1	INVALID
0	1	0	INVALID

Lecture Recap

- 1. Combinational vs Sequential Logic
- 2. Dominant Inputs
- 3. Set-Reset Latch
- 4. Set'-Reset' Latch
- 5. Gated Set-Reset Latch

What questions do you have?

ECE 2372 | Modern Digital System Design | Texas Tech University

Latches

