Final Exam S2 Computer Architecture

Duration: 1 hr 30 min

Answer on the answer sheet <u>only</u>.

Do not show any calculation unless you are explicitly asked.

Do not use red ink.

Exercise 1 (5 points)

- 1. Convert the numbers given on the <u>answer sheet</u> into their **single-precision** IEEE-754 representations. Write down the final result in its **binary form** and specify the three fields.
- 2. Convert the **double-precision** IEEE-754 words given on the <u>answer sheet</u> into their associated representations. If a representation is a number, use the base-10 following form: $k \times 2^n$ where k and n are integers (either positive or negative).

Exercise 2 (5 points)

Complete the timing diagrams shown on the <u>answer sheet</u> (up to the last vertical dotted line) for the circuit below.

Final Exam S2 1/5

Exercise 3 (6 points)

The table shown on the <u>answer sheet</u> gives the sequence of a counter we want to design. This counter should be made up of JK flip-flops.

- 1. Complete the table shown on the answer sheet.
- 2. Write down the most simplified expressions of J and K for each flip-flop on the <u>answer sheet</u>. <u>Complete the Karnaugh maps for the solutions that are not obvious</u>. An obvious solution does not have any logical operations apart from the complement (for instance: J0 = 1, $K1 = \overline{Q2}$).

Exercise 4 (4 points)

We want to build a 2-MiB ROM device (labelled *M*) from several 16-KiB ROM devices (labelled *m*). The *M* device has a 16-bit data bus. The *m* devices have an 8-bit data bus. Answer the questions on the <u>answer sheet</u>.

Final Exam S2 2/5

Last name: Group: Group:

ANSWER SHEET

Exercise 1

1.

Number	S	E	М
-146.3125			
0.34375			

2.

IEEE-754 Representation	Associated Representation		
246800000000000_{16}			
$7 {\rm FFF} 0000000000_{16}$			
000680000000000_{16}			

Exercise 3

Q2	Q1	Q0	J2	K2	J1	K1	J0	K0
1	1	1						
1	0	0						
1	0	1						
1	1	0						
0	1	1						
0	0	1						
0	0	0						

Do not use Karnaugh maps for obvious solutions.

J0 =

J1 =

J2 =

K0 =

		Q1 Q0				
	K1	00	01	11	10	
Q2	0					
	1					

K1 =

_		Q1 Q0				
	K2	00	01	11	10	
03	0					
Q2	1					

K2 =

Exercise 4

Question	Answer
What is the depth of the m memory?	
What is the depth of the M memory?	
What is the number of address lines of the m memory?	
What is the number of address lines of the M memory?	
How many memory devices should be put in parallel?	
How many memory devices should be put in series?	
How many address lines are required to control the <i>CS</i> input of the memory devices?	
When the M memory is active, how many m memory devices are active simultaneously?	