Metadata Standardization and Collection Based on the Ontology for Biomedical Investigations (OBI)

Jie Zheng and Chris Stoeckert

University of Pennsylvania
November 3, 2014

Outline

- Introduction of OBI
 - OBI scope and purpose
 - High level overview
 - Semantic representation of assay and investigation
- Application of OBI
 - NIAID Metadata standardization
 - ICEMR project: protein array data
 - ICEMR project: PRISM studies

How can an ontology help with data integration and retrieval?

- Heterogeneous data integration
 - requires consistent annotation
- Retrieval of data of the same kind across multiple databases
 - requires shared semantics
 - requires consistent and unambiguous annotation
- Enhance data retrieval using logical inferences
 - Automatic inference that a person who is *Plasmodium* parasite positive based on a laboratory test and a body temperature > 38°C degree has malaria
 - Automatic inference that a man who is 6 feet tall and 210 pounds is overweight based on BMI
 - These inferences are simple to humans. But the logical rules need to be specified in order to make the inferences using a computer.

The logical rules are in ontologies and NOT in data dictionaries (terminology)

Ontology for Biomedical Investigations (OBI)

Ontology for Biomedical Investigations

- OBI is about capturing all aspects of a biological and clinical investigation (investigation, assay, specimen, protocol, device, data, data analysis, etc.)
- Things to know about OBI
 - a member of the OBO Foundry
 - interoperability with other ontologies following OBO Foundry principles, such as the Gene Ontology (GO)
 - uses the Basic Formal Ontology (BFO) as its top level ontology
 - uses the Information Artifact Ontology (IAO) for general information entities
- Details on OBI can be found at:
 - http://obi-ontology.org
 - J Biomed Semantics. 2010. Modeling biomedical experimental processes with OBI, Ryan R Brinkman, Mélanie Courtot, Dirk Derom, Jennifer M Fostel, Yongqun He, Phillip Lord, James Malone, Helen Parkinson, Bjoern Peters, Philippe Rocca-Serra, Alan Ruttenberg, Susanna-Assunta Sansone, Larisa N Soldatova, Christian J Stoeckert, Jr., Jessica A Turner, Jie Zheng, and the OBI consortium

OBO Foundry

Perspective										
rerspective		OBO Foundry ontologies								
Nature Biotechnology 25, 12	<u>Title</u>	<u>Domain</u>	<u>Prefix</u>	<u>File</u>						
Published online: 7 Novembe		biological process	GO	go.obo 💸						
Published online: / November	Cellular component	anatomy	GO	go.obo 💣						
The OBO Foundry:	Chemical entities of biological interest	biochemistry	CHEBI	chebi.obo 💣						
_	Molecular function	biological function	Tora ODO	Farmalur autologica						
support biomedical	Ontology for biomedical investigations	experiments	ien OBO	Foundry ontologies						
Barry Smith ¹ , Michael Ash	Phenotypic quality	phenotype	PATO	guality.obo						
William Bug ⁵ , Werner Ceu		anatomy and development	PO	plant_ontology.obo?view=co						
Ireland ⁹ , Christopher J Mu	PRotein Ontology (PRO)	proteins	PR	pro.obo 💣						
Philippe Pocca-Serra	Xenopus anatomy and development	anatomy	XAO	xenopus anatomy.obo						
Richard H Scheuermann 14	Zebrafish anatomy and development	anatomy	ZFA	<u>zfa.obo</u> 🎳						
Lewis ¹⁰	OBO Foundry candidate ontologies and other ontologies of interest									
Lewis	<u>Title</u>	<u>Domain</u>	<u>Prefix</u>	<u>File</u>						
The value of any kind of	Adverse Event Reporting Ontology	health	AERO	aero.owl						
form that allows it to be	Anatomical Entity Ontology	anatomy	AEO	aeo.obo						
integration is through th	Ascomycete phenotype ontology	phenotype	APO	ascomycete phenotype.obo						
common controlled voca	<u>Dable Formal Officiory</u>	upper	BFO	1.1						
success of this approach	Beta Cell Genomics Ontology		BCG0	bcqo.owl						
itself creates obstacles	Biological Collections Ontology		BCO	bco.owl						
(OBO) consortium is pur	Biological Imaging methods Biological Spatial Ontology	experiments	FBbi BSPO	image.obo bspo.obo						
Existing OBO ontologies		anatomy	въро	<u>BSP0.0B0</u>						
coordinated reform, and	C. elegans development	anatomy	Over hundred of ontologies in							
of an evolving set of sha										
The result is an expandi				OBO Library						
interoperable and logica			accurate							
	gical reality. We describ									

initiative and provide guidelines for those who might wish to become

involved.

High level structure of OBI

Main components of OBI and their relations

Measurement of Glucose concentration in blood

OBI represents an investigation focusing on processes

OBI can represent all aspects of an investigation

OBI-related Resources

- The release version of OBI is available on:
 - NCBO Bioportal website:

```
http://bioportal.bioontology.org/
```

– Ontobee website:

```
http://www.ontobee.org/
```

- The link of latest release version of OBI is:
 - http://purl.obolibrary.org/obo/obi.owl

Many projects are using OBI

Projects Using This Ontology

Create new p	roject	t
--------------	--------	---

PROJECT	DESCRIPTION	PEOPLE	INSTITUTION
Electrophysiology Ontology	The Electrophysiology (EP) Ontology is part of Project 2 of the	Dr. Raimond L. Winslow, Stephen J. Granite	The Johns Hopkins University
Influenza Ontology	The Influenza Ontology is an application ontology covering the	Burke Squires, Lynn Schriml, Joanne Luciano	UT Southwestern, Univ of Maryland, MITRE
Neuroscience Information Framework	The Neuroscience Information Framework (NIF; http://nif.nih.gov	Maryann Marto <u></u>	
An Ontology for Drug Discovery Investigations	The goal of DDI project is to develop an ontology for the descr	Da Qi, Larisa <u></u>	Aberystwyth University
Adverse Event Reporting Ontology (AERO)	The Adverse Event Reporting Ontology (AERO) is an ontology aime	Melanie Courtot	
ISA software suite	An open source ISA software suite and an extensible hierarchica	International collaborative effort	Multiple institutions; leads at University of Oxford, UK
Immune Epitope Database	The IEDB contains data related to antibody and T cell epitopes	http://www.immuneepitope.org/acknowledgements.php	La Jolla Institute for Allergy & Immunology
Integrative Tools for Protozoan Parasite Research (ITPPR)	The Integrative Tools for Protozoan Parasite Research project i	Christian Stoeckert	University of Pennsylvania
NCBO Annotator	A Web service that tags free text with ontology concepts. NCBO	NCBO	Stanford University
FGED-MGED Ontology	The Functional Genomics Data (FGED) Society has incorporated th		

Over 20 projects are using OBI

- Annotations: Database (e.g. IEDB, EupathDB, ArrayExpress) and tools (e.g. ISA tool)
- Build application ontologies (e.g. Influenza Ontology, BCO, BCGO)
- Semantic framework: metadata standardization (e.g. NIAID Core Metadata)

OBI is listed as an Ontology/Metadata resource at NIEHS

http://www.niehs.nih.gov/about/od/deputy/osim/

Applying OBI to Metadata Standardization

Metadata for human pathogen/vector genomic sequences

- Genome Sequencing Centers for Infectious Diseases (GSCIDs), the Bioinformatics Resource Centers (BRCs), and the U.S.
 National Institute of Allergy and Infectious Diseases (NIAID)
 - Project
 - Specimen
 - Sequencing
- http://www.niaid.nih.gov/labsandresources/resources/dmid/ metadata/pages/default.aspx
- Dugan, Vivien G., et al. "Standardized Metadata for Human Pathogen/Vector Genomic Sequences." *PloS one* 9.6 (2014): e99979.

Standardized metadata for human pathogen/vector genomic sequences

- Generate checklist/data dictionary
- Semantic representation of metadata using OBI
- Map fields to other data standards, including the Genomic Standards Consortium's minimal information (MIxS) and NCBI's BioSample/BioProjects checklists via OBI/OBO ontology terms

Core Sample Attributes And Mappings

Project	Field Name	Data Categories	OBO Foundry Purl	BioProject	MIxS Synonym
Field ID				Synonyms	
CP1	Project Title	Investigation	http://purl.obolibrary.org/obo/OBI _0001622	Title*	project name
CP2	Project ID	Investigation	http://purl.obolibrary.org/obo/OBI _0001628		
CP3	Project Description	Investigation	http://purl.obolibrary.org/obo/OBI_0001615	Description*	
CP4	Project Relevance	Investigation	http://purl.obolibrary.org/obo/OBI _0500000	Relevance*	
CP5	Sample Scope	Investigation	http://purl.obolibrary.org/obo/OBI_0001884	Sample Scope*	
CP6	Target Material	Investigation	http://purl.obolibrary.org/obo/OBI_0001882	Material*	
CP7	Target Capture	Investigation	http://purl.obolibrary.org/obo/OBI _0001899	Capture*	
CP8	Project Method	Investigation	http://purl.obolibrary.org/obo/OBI_0001896	Methodology*	
CP9	Project Objectives	Investigation	http://purl.obolibrary.org/obo/OBI _0001892	Objective*	
CP10	Grant Agency	Investigation			
CP11	Supporting Grants/Contract ID	Investigation	http://purl.obolibrary.org/obo/OBI _0001629	Grant ID	
CP12	Publication Citation	Investigation	http://purl.obolibrary.org/obo/OBI_0001617	PubMed ID; DOI	ref_ biomaterial
CP13	Sample Provider Principal	Investigation	http://purl.obolibrary.org/obo/OBI		

OBI reveals relations between sample attributes

Applying OBI to ICEMR Protein Array Data Data Collection and Integration

ICEMR Projects

- Global collaborative projects aim to understand the epidemiology and transmission patterns of malaria in different geographic regions in malaria research
 - 10 regional ICEMR groups (e.g. Amazonia, Malawi, South Asia, West Africa, East Africa, India, etc.)
- Data produced as a result of the research activities undertaken by the International Centers of Excellence in Malaria Research (ICEMRs)
 - heterogeneous with respect to origin, type of data, and format of data
- Well-structured data and consistent representation of metadata are needed for accurate data integration and crossstudy analysis

Challenges

- Minimum information should be captured for malaria studies
 - what host, parasite or vector samples were collected
 - where and when the samples were collected
 - what clinical phenotypes of host had
 - what kinds of assay were performed ...
- Values and format of data should be used for consistent representation

ICEMR data dictionary was provided by representatives of ICEMR groups

Ontology mapping and representation allows comparison between the ICEMR data dictionary and the NIAID standard and to identify missing attributes

OBI was used to build the ICEMR data submission form by helping to group data dictionary entries in a structured and logical manner

OBI enables a more user-friendly interface for queries based on sample attributes

Consistent representation of ICEMR data using ontology

- Initial loading data: antibody array data
- For example, ICEMR 'health status'
 - Asymptomatic, Symptomatic, Uninfected with malaria, unknown
 - Data from Amazonia group
 - sint7d: 1 -> 'health status': symptomatic
 - sint7d: 0 -> 'health status': asymptomatic
 - Data from Southwest Pacific group
 - parasite detection positive + fever or other symptom (e.g. anemia) -> 'health status': symptomatic
 - parasite detection positive + no other symptom -> 'health status': asymptomatic malaria

Data can be better explored after ontology-based harmonization and integration: Identify study subjects between ages 18-35 with symptomatic malaria and their geographic location

Identify Genes based on ICEMR Serum Antibody Levels

[Description] | [Data Sets]

Applying OBI to PRISM Studies Metadata Representation and Organization

PRISM Studies

- Longitudinal cohort study following participants from 300 households in three regions of Uganda with diverse demographics and transmission intensity:
 - Jinja (low incidence of malaria)
 - Kanunga (mild incidence of malaria)
 - Tororo (high incidence of malaria)
- Quarterly routine visits, plus additional sick visits
- Monthly mosquito collection in each dwelling

Extensive metadata: hard to understand what they represent and how they are related to each other

Household data (over 80 fields)

V	/ISDATE	STARTIME	HHNUM	DISTRICT	INTNUM	AGREE	NUMPEOF SWATER	OTHERSCS TFACLTY	OTHERFCYF	ELECTIRC	RADIO	CASSETTE	. T\
-	10-Sep-11	12:18:46	201033121	ALMIL	7	1 YES	6 PUBLIC T	[Skipped] UNCOVER	[Skipped] !	NO	NO	NO	Ne
	5-Sep-11	11:30:01	206002105	ALMIL	7	1 YES	10 PUBLIC T	[Skipped] UNCOVER	[Skipped] !	NO	YES	NO	N
	8-Sep-11	9:46:11	205016305	ALMIL	7	2 YES	5 PUBLIC T	[Skipped] UNCOVER	[Skipped]	YES	NO	NO	No
	7-Sep-11	10:31:50	216001607	IINIA	7	1 YES	8 PUBLIC T	[Skipped] COVERED	[Skipped] \	YES	YES	YES	YF

Household member data (about 20 fields)

hhid	uniqueid	cohort	LINE	id	G6PD	alphathal	hbs	RLTSHP	SEX	LIVHER	STYHR	AGE	ANSW	RLTSHPcat
HH205011301	1205011301	0	1					Head of household	MALE	YES	YES	36		Head of househo
HH201030403	10201030403	0	10					GRANDCHILD	FEMALE	YES	YES	10		Grandchild
HH205005903	8205005903	1	8	1091		0	0	SON OR DAUGHTER	MALE	YES	YES	0		Son or daughter
HH201033121	4201033121	0	4					SON OR DAUGHTER	FEMALE	YES	YES	15		Son or daughter

Clinical visits data (about 170 fields)

id	DATE	startdate	siteid	gender
1001	5-Aug-11	5-Aug-11	Jinja	Female
1001	1-Nov-11	5-Aug-11	Jinja	Female
1001	30-Nov-11	5-Aug-11	Jinia	Female

Challenges:

How to load data?

How to query data and retrieve useful information?

	itnlastnight
1 0:00	
10:00	1
10:00	1

Mosquito trapping data (about 10 fields)

		•							
barcode1	fedgamb1	unfedgamb1	gravidgambie1	fedfunes1	unfedfunes1	totalgravid1	unableassess1	femotherano1	gambiaeunableassess1
T4-M8XL	0	14	1	0	3	0	0	1	0
T4-CAU9	0	37	4	0	0	0	0	0	0
T4-6FVH	2	. 7	0	0	0	0	0	3	0
	T4-M8XL T4-CAU9	T4-M8XL 0	T4-M8XL 0 14 T4-CAU9 0 37	T4-M8XL 0 14 1 T4-CAU9 0 37 4	T4-M8XL 0 14 1 0 T4-CAU9 0 37 4 0	T4-M8XL 0 14 1 0 3 T4-CAU9 0 37 4 0 0	T4-M8XL 0 14 1 0 3 0 T4-CAU9 0 37 4 0 0 0	T4-M8XL 0 14 1 0 3 0 0 T4-CAU9 0 37 4 0 0 0 0	T4-CAU9 0 37 4 0 0 0 0 0

Total over 280 different kinds of metadata

OBI helped to understand metadata and relations between them

Ontologies support consistent representation of data

- Other OBO ontologies are need for PRISM data annotation, such as
 - Gene ontology (GO)
 - Human Disease Ontology (DOID)
 - Human Phenotype Ontology (HPO)
 - Ontology for General Medical Science (OGMS)
 - Protein Ontology (PRO)
- OBI is a starting point to pull in other important ontologies in a semantically consistent manner

Query PRISM Data

- Data annotated using OBI and OBO ontologies
- Data loaded into database
- Samples can be retrieved based on clinical metadata

Relations between data revealed based on ontology enable complexity queries

- Asymptomatic infection? Identify children with high exposure but no clinical malaria symptoms.
 - what is the impact of age?
 - what is the impact of prior exposure?
 - geographic correlates?
- Hyper-susceptibles? Children with low exposure but multiple bouts of malaria.
 - human genotypes?
 - parasite genotypes?
- Families with both? What clinical / behavioral correlates?

Summary

- Ontologies like OBI help in metadata standardization and category organization by:
 - supporting consistent data representation
 - providing a semantic framework to understand massive data and reveal inter-connections between them
 - helping in information retrieval and enables complex queries

Acknowledgements

OBI Consortium

Bioinformatics Resource

Centers (BRCs)

Richard Scheuermann

ICEMR

PRISM

- Grant Dorsey
- San James

EuPathDB (PlasmoDB)

- Omar Harb
- David Roos
- Brian Brunk
- Shon Cade
- John Brestelli