Short Answer (10 Points)

1. Briefly explain what each of the two terms in the following expression represent in English.

$$\min L(w, b) = e^{y\hat{y}} + \lambda ||w||^2$$

2. True/False: True positives are only important for calculating Recall. Briefly explain.

Short Answer (10 Points)

3. Give an example of a set of data for which K-NN and K-Means would produce the same decision boundary. Clearly indicate the values of K you chose for K-NN and for K-Means.

4. True/False: Gradient descent will always converge to the global minimum. Briefly explain.

Decision Trees (20 Points)

5. Assume you have the following training data. Using the Information Gain algorithm from class, build the best depth-1 decision tree for this data. Show your work for full credit.

Sample	Junk Food	Exercise	Label
s_1	0	0	0
s_2	0	1	1
s_3	1	0	0
s_4	1	1	0
s_5	0	0	1
s_6	0	1	1
s ₇	1	0	1
s_8	1	1	0

K-Means (10 Points)

6. How might K-means cluster the following data? Indicate the cluster centers and the rough clusters on the graph. Explain your choices briefly.

Linear Classifiers (20 Points)

7. Give the gradient descent update rules for the following regularized loss function. Show your work for partial credit! Note that |w| is the L_1 norm. $|w| = \sum_i w_i$.

$$L(w,b) = \sum_{n} (y_n - (wx_n + b))^2 + \lambda |w|$$

Perceptron (10 Points)

8. Run the perceptron algorithm on the following data in the order provided for two epochs. Give the final w and b produced by the algorithm at the end of the first epoch.

Sample	x_1	x_2	y
s_1	0	1	1
s_2	1	0	1
s_3	1	1	1
84	2	2	-1
s_5	2	1	-1
s_6	1	2	-1

Gradient Descent (10 Points)

9. Indicate on the following function all the possible locations where we may end up after running gradient descent. Briefly explain your choice(s).

KNN (10 Points)

10. Using K=1, 3 and 5, classify the following test data using the plotted training data (x = negative, filled circle = positive). Use the table below to record your final answers. Indicate ties with the answer +/-.

Sample	K = 1	K = 3	K=5
(1.1,1)			
(0.5, 0.5)			
(0,1.5)			
(2,0)			

Equations

Entropy and Information Gain

$$H = \sum_{c \in C} -p(c)log_2(p(c))$$

$$IG = H - \sum_{t \in T} p(t)H(t)$$

p	plog(p)
$\frac{1}{8}$	-0.375
$\frac{1}{4}$	-0.5
$\frac{3}{8}$	-0.53
$\frac{1}{2}$	-0.5
$\frac{5}{8}$	-0.423
$\frac{3}{4}$	-0.311
$\frac{7}{8}$	-0.168
1	0

Perceptron

$$a = w \cdot x + b$$

$$w = w + xy$$

$$b = b + y$$