Równoważność cykliczna ciągów

Definicja problemu i przedstawienie rozwiązań

Mikołaj Juda

2023

W referacie przedstawiono problem równoważności cyklicznej ciągów oraz różne algorytmy do jego rozwiązywania razem z implementacją w języku Python. Pokrótce omówiono algorytm naiwny oraz algorytm korzystający z wyszukiwania wzorca. Przedstawiono również szybki algorytm sprawdzania równoważności list cyklicznych Shiloacha(1979)[1] z pewnymi uproszczeniami[2] i modyfikacją do obsługi ciągów numerowanych od 0[3] oraz pokazano dowód jego poprawności i analizę złożoności obliczeniowej.

Spis treści

1	Def	inicja problemu	2
2	Alg	algorytm naiwny	
	2.1	Algorytm	3
	2.2	Implementacja	3
3	Algorytm wykorzystujący wyszukiwanie wzorca		4
	3.1	Algorytm	4
	3.2	Implementacja	4
4	Algorytm szybki		5
	4.1	Algorytm	6
	4.2	Poprawność	8
	4.3	Złożoność	9
	4.4	Implementacja	10
Bi	ibliog	grafia	11

1 Definicja problemu

Dane są dwa ciągi $A = (a_0, \ldots, a_{n-1})$ oraz $B = (b_0, \ldots, b_{n-1})$ długości n. A i B są $r\'ownoważne cyklicznie <math>(A \equiv B)$, gdy są r\'owne w sensie list cyklicznych tzn.

Definicja 1.1 (Równoważność cykliczna).

$$A \equiv B \iff \exists_{k_0 \in \mathbb{Z}} \forall_{k \in \{0,\dots,n-1\}} \ a_{(k_0+k) \pmod{n}} = b_k$$

Dla wygody dalszego zapisu oznaczmy:

$$a_k \coloneqq a_k \pmod{n}, \ b_k \coloneqq b_k \pmod{n}$$

Zdefiniujmy A_k jako listę powstałą z przesunięcia cyklicznego ciągu A takiego, że a_k jest pierwszym elementem A_k . Analogicznie dla B_k .

$$A_k := [a_k, \dots, a_n, a_0, \dots, a_{k-1}]$$

 $B_k := [b_k, \dots, b_n, b_0, \dots, b_{k-1}]$

Definicję 1.1 można przedstawić równoważnie jako:

Definicja 1.2 (Równoważność cykliczna).

$$A \equiv B \iff \exists_{k_0 \in \mathbb{Z}} \ A_{k_0} = B$$

Uwaga 1.1. Oczywiście $A \equiv B$ także wtedy, gdy

$$\exists_{k_0,l_0\in\mathbb{Z}} \forall_{k\in\{0,\dots,n-1\}} \ a_{k_0+k} = b_{l_0+k}$$

lub

$$\exists_{k_0, l_0 \in \mathbb{Z}} \ A_{k_0} = B_{l_0}$$

 $A_0 = [a_0, \dots, a_{n-1}] \text{ oraz } B_0 = [b_0, \dots, b_{n-1}]$

2 Algorytm naiwny

Można łatwo zauważyć, że

Lemat 2.1. Jeżeli nie istnieje $k_0 \in \{0, ..., n-1\}$ spełniające warunek:

$$\forall_{k \in \{0,\dots,n-1\}} \ a_{k_0+k} = b_k$$

to nie istnieje $k_0 \in \mathbb{Z}$ spełniające ten warunek.

Dowód. Oczywiste.

Wniosek 2.1. Żeby ustalić istnienie k_0 z Definicji 1.1, wystarczy sprawdzić, czy

$$\exists_{k_0 \in \{0,\dots,n-1\}} \forall_{k \in \{0,\dots,n-1\}} \ a_{k_0+k} = b_k$$

2.1 Algorytm

Algorytm naiwny sprawdza dla każdego $l \in \{\,0, \dots, n-1\,\}$ czy

$$\forall_{k \in \{0,\dots,n-1\}} \ a_{l+k} = b_k$$

Jeżeli trafi na l spełniające warunek to mamy $k_0 = l$ i algorytm zwraca $A \equiv B$, w przeciwnym wypadku zwraca $A \not\equiv B$. Algorytm ma złożoność kwadratową[3].

2.2 Implementacja

```
def rownowazne_cyklicznie(A: list, B: list) -> bool:
    if len(A) != len(B):
        return False
    n = len(A)

    for l in range(n):
        for k in range(n):
            if A[(l + k) % n] != B[k]:
                 break
        else:
        return True
    return False
```

3 Algorytm wykorzystujący wyszukiwanie wzorca

Utwórzmy listę

$$AA := [a_0, \dots, a_{n-1}, a_0, \dots, a_{n-1}]$$

i zauważmy, że dowolny spójny podciąg AA o długości n rozpoczynający się od indeksu k ma postać A_k , czyli jest przesunięciem cyklicznym ciągu A.

Uwaga 3.1. Łatwo zauważyć, że

$$\{A_0,\ldots,A_{n-1}\}=\{A_{\mathbb{Z}}\}$$

Zatem jeżeli sprawdzimy, czy B jest spójnym podciągiem AA to otrzymamy rozwiązanie problemu równoważności cyklicznej.

3.1 Algorytm

Problem sprowadza się więc do problemu wyszukiwania wzorca, który można rozwiązać wykorzystując np. algorytm Knutha-Morrisa-Pratta. Wykonuje on dla sprawdzania równoważności cyklicznej około 5n porównań[1]. Wymaga on jednak dodatkowej pamięci (liniowa złożoność pamięciowa).

3.2 Implementacja

```
def rownowazne_cyklicznie(A: list, B: list) -> bool:
    if len(A) != len(B):
        return False
    n = len(A)
    pmt = [0] * n
    for i in range(1, n):
        k = pmt[i - 1]
        while k > 0 and B[i] != B[k]:
            k = pmt[k - 1]
        if B[i] == B[k]:
            k += 1
        pmt[i] = k
    j=0
    for i in range(2*n):
        while j>0 and A[i\%n] != B[j]:
            j = pmt[j-1]
        if A[i%n] == B[j]:
            if j == n-1:
                return True
    return False
```

4 Algorytm szybki²

Algorytm wymaga istnienia porządku liniowego na zbiorze

$$\{a_0,\ldots,a_{n-1},b_0,\ldots,b_{n-1}\}$$

Niech $a \leq b$ oznacza, że a poprzedza lub jest równe b w tym porządku, a a < b oznacza $x \leq b \land a \neq b$.

Wtedy porządek leksykograficzny na zbiorze

$$\{A_0,\ldots,A_{n-1},B_0,\ldots,B_{n-1}\}$$

jest dobrym porządkiem.

Niech $A_i \leq B_j$ oznacza, że A_i poprzedza lub jest równe B_j w porządku leksykograficznym, a $A_i \prec B_j$ oznacza $A_i \leq B_j \land A_i \neq B_j$. Niech

$$A_{i_0} := \min(\{A_0, \dots, A_{n-1}\}) \text{ tzn. } \forall_{i \in \{0, \dots, n-1\}} A_{i_0} \leq A_i$$

analogicznie

$$B_{i_0} := \min(\{B_0, \dots, B_{n-1}\})$$

Uwaga 4.1. Łatwo można zauważyć, że

$$A \equiv B \iff \{A_0, \dots, A_{n-1}\} = \{B_0, \dots, B_{n-1}\}$$

Lemat 4.1.

$$A \equiv B \iff A_{i_0} = B_{j_0}$$

Dowód. Oczywiste.

Lemat 4.2.

$$\forall_{0 \le l < k} \ a_{i+l} = b_{j+l} \land a_{i+k} < b_{j+k} \implies \forall_{0 \le l \le k} \ A_{i+l} \prec B_{j+l}$$

Dowód. Trywialne.

Zdefiniujmy

$$D_A := \{ i : \exists_i B_i \prec A_i \}$$

analogicznie

$$D_B := \{ j : \exists_i A_i \prec B_i \}$$

tzn. D_A to zbiór indeksów wyznaczających takie przesunięcia cykliczne A, dla których istnieje dowolne przesunięcie cykliczne B poprzedzające je w porządku leksykograficznym. Analogicznie dla B.

 $^{^2}$ Będę używał nieco innych oznaczeń niż w [1]

Zdefiniujmy

$$i_D := \begin{cases} -1 & \text{jeżeli } D_A = \emptyset \\ \max(D_A) & \text{w przeciwnym przypadku} \end{cases}$$

$$j_D := \begin{cases} -1 & \text{jeżeli } D_B = \emptyset \\ \max(D_B) & \text{w przeciwnym przypadku} \end{cases}$$

Lemat 4.3.

$$D_A \supseteq \{0,\ldots,n-1\} \lor D_B \supseteq \{0,\ldots,n-1\} \implies A \not\equiv B$$

Dowód. Dowód wynika z Lematu 4.1

$$A \equiv B \implies i_0 \notin D_A \land j_0 \notin D_B$$

4.1 Algorytm

Zasadą działania algorytmu jest szybkie zbieranie indeksów przesunięć cyklicznych, które powinny być w zbiorach D_A i D_B , dopóki nie zajdzie jeden z poniższych warunków stopu:

(1)
$$D_A \supseteq \{0, \ldots, n-1\} \lor D_B \supseteq \{0, \ldots, n-1\}$$

(2) Znajdziemy takie i oraz j, że
$$\forall_{k \in \{0,\dots,n-1\}} a_{i+k} = b_{j+k}$$
 (tzn. $A \equiv B$)

Głównym elementem algorytmu będzie procedura COMPARE, która znajduje pierwszy indeks k, dla którego $a_{i+k} \neq b_{j+k}$ i w zależności od tego, czy $a_{i+k} < b_{j+k}$ dodaje do D_B zbiór $\{j, \ldots, j+k\}$ albo do D_A zbiór $\{i, \ldots, i+k\}$ (Patrz Lemat 4.2). Jeżeli nie znajdzie nierówności to zwraca $A \equiv B$.

Procedura ROWNCYKL wykonuje procedurę COMPARE, dopóki nie zajdzie jeden z powyższych warunków.

³W implementacji te zbiory są niejawne.

```
global D_a, D_B, i_D, j_D
procedure COMPARE(i, j)
    for k = 0, \dots, n-1 do
        if a_{i+k} \neq b_{j+k}^4 then
             if a_{i+k} < b_{j+k} then
                 D_b \leftarrow D_b \cup \{j, \ldots, j+k\}
                 j_D \leftarrow j + k
             else
                 D_a \leftarrow D_a \cup \{i, \dots, i+k\}
                 i_D \leftarrow i + k
             end if
             return
        end if
    end for
    return A \equiv B
end procedure
procedure ROWNCYKL(A, B)
    D_a \leftarrow \emptyset
    D_b \leftarrow \emptyset
    i_D \leftarrow -1
    j_D \leftarrow -1
    while D_A \not\supseteq \{0, ..., n-1\} \land D_B \not\supseteq \{0, ..., n-1\} do
        if COMPARE(i_D+1,j_D+1) returns A \equiv B then
             return A \equiv B
        end if
    end while
    return A \not\equiv B
end procedure
```

⁴W analizie złożoności będziemy liczyć te porównania

4.2 Poprawność

Lemat 4.4 (Niezmiennik). Po każdym wykonaniu procedury COMPARE D_A oraz D_B mają postać

$$D_A = \{0, \dots, i_D\}$$

$$D_B = \{0, \dots, j_D\}$$

tzn. w D_A nie brakuje $\dot{z}adnego$ elementu między 0 a i_D , analogicznie w D_B nie brakuje $\dot{z}adnego$ elementu między 0 a j_D .

Dowód. Dowód wynika trywialnie z faktu, że jedyny sposób, w jaki modyfikowane jest D_A to

$$D_a \leftarrow D_a \cup \{i_D + 1, \dots, i_D + k\}$$

analogicznie dla D_B

$$D_b \leftarrow D_b \cup \{j_D + 1, \dots, j_D + k\}$$

Wniosek 4.1. Z Lematu 4.4 wynika, że nie musimy przechowywać zbiorów D_A i D_B , wystarczy nam jedynie i_D oraz j_D .

Twierdzenie 4.1 (Własność stopu). Procedura ROWNCYKL zatrzymuje się w skończonym czasie dla wszystkich poprawnych danych wejściowych.

Dowód. Jeżeli dla jakiegoś i oraz j procedura COMPARE zwróci $A \equiv B$ to ROWNCYKL się zatrzymuje.

Jeżeli procedura COMPARE nie zwróci $A \equiv B$ dla żadnego i oraz j to z każdym wywołaniem COMPARE $i_D + j_D$ rośnie co najmniej o 1, więc w końcu (z Lematu 4.4) warunek stopu 1 zostanie spełniony i procedura ROWNCYKL się zatrzyma.

Twierdzenie 4.2 (Poprawność). *Procedura* ROWNCYKL zwraca $A \equiv B$ wtedy i tylko wtedy gdy $A \equiv B$.

Dowód. Jeżeli procedura ROWNCYKL zwróciła $A \equiv B$ to znaczy, że procedura COMPARE wykazała równość dwóch przesunięć cyklicznych A i B, a więc $A \equiv B$. Jeżeli procedura ROWNCYKL nie zwróci $A \equiv B$ to zwróci $A \not\equiv B$, gdyż z Twierdzenia 4.1 wiemy, że zawsze się zatrzymuje. Zwrócenie $A \not\equiv B$ oznacza, że wystąpił warunek stopu 1, więc z Lematu 4.3 $A \not\equiv B$.

4.3 Złożoność

Definicja 4.1. Wykonanie procedury COMPARE nazwiemy udanym, jeżeli zwróci $A \equiv B$. (Wykonanie, które nie jest udane jest nieudane)

Definicja 4.2. Oznaczmy D_A oraz D_B bezpośrednio przed ostatnim wykonaniem procedury COMPARE jako odpowiednio D_A^* oraz D_B^* .

Lemat 4.5. Łączna liczba porównań wykonanych przez wywołania procedury COMPARE, z wyjątkiem ostatniego wynosi $|D_A^*| + |D_B^*|$

Dowód. Każde wywołanie procedury COMPARE z wyjątkiem ostatniego jest nieudane i zwiększa $|D_A| + |D_B|$ o dokładnie tyle ile wykonało porównań. Wynika to trywialnie z definicji procedury COMPARE.

Lemat 4.6.
$$|D_A^*| + |D_B^*| \le 2n - 2$$

 $Dow \acute{o}d$. Jeżeli $\left|D_A^*\right| + \left|D_B^*\right| \ge 2n - 1$ to oznacza, że

$$\{0,\ldots,n-1\}\subset D_A^*\vee\{0,\ldots,n-1\}\subset D_B^*$$

co nie jest możliwe (patrz Definicja 4.2).

Twierdzenie 4.3. Algorytm wykonuje co najwyżej 3n-2 porównań.

Dowód. Dowód wynika z Lematu 4.5 oraz Lematu 4.6, gdyż ostatnie wywołanie procedury COMPARE może wykonać co najwyżej n porównań. ■

Wniosek 4.2. Algorytm ma pesymistyczną złożoność czasową $\mathcal{O}(n)$ i dodatkową złożoność pamięciową $\mathcal{O}(1)$ (z Wniosku 4.1)

4.4 Implementacja

```
def rownowazne_cyklicznie(A: list, B: list) -> bool:
    if len(A) != len(B):
        return False
    n = len(A)
    i = -1
    j = -1
    while i < n - 1 and j < n - 1:
        for k in range(1, n + 1):
            if A[(i + k) \% n] != B[(j + k) \% n]:
                 if A[(i + k) % n] < B[(j + k) % n]:</pre>
                     j += k
                 else:
                     i += k
                 break
        else:
            return True
    return False
```

Bibliografia

- [1] Yossi Shiloach. "A fast equivalence-checking algorithm for circular lists". W: Information Processing Letters 8.5 (1979), s. 236-238. ISSN: 0020-0190. DOI: https://doi.org/10.1016/0020-0190(79)90114-5. URL: https://www.sciencedirect.com/science/article/pii/0020019079901145.
- [2] Lech Banachowski, Krzysztof Diks i Wojciech Rytter. *Algorytmy i struktury danych.* pol. Wyd. 5. Warszawa: Wydawnictwa Naukowo-Techniczne, 2006. ISBN: 8320432243.
- [3] Algorytmy i struktury danych/Wstęp: poprawność i złożoność algorytmu. 2020. URL: https://wazniak.mimuw.edu.pl/index.php?title=Algorytmy_i_struktury_danych/Wst%C4%99p:_poprawno%C5%9B%C4%87_i_z%C5%82o%C5%BCono%C5%9B%C4%87_algorytmu#Algorytm_8._R.C3.B3wnowa.C5.BCno.C5.9B.C4.87_cykliczna_ci.C4.85g.C3.B3w.