

2012 年全国硕士研究生入学统一考试 数学三试题解析

一、选择题: 1~8 小题,每小题 4 分,共 32 分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸指定位置上.

(1) 曲线
$$y = \frac{x^2 + x}{x^2 - 1}$$
 渐近线的条数为 ()

- (A) 0
- (B) 1
- (C) 2
- (D) 3

【答案】: C

【解析】:
$$\lim_{x\to 1} \frac{x^2+x}{x^2-1} = \infty$$
,所以 $x=1$ 为垂直的

$$\lim_{x\to\infty} \frac{x^2+x}{x^2-1} = 1$$
,所以 $y=1$ 为水平的,没有斜渐近线 故两条选 C

(2) 设函数
$$f(x) = (e^x - 1)(e^{2x} - 2)\cdots(e^{nx} - n)$$
, 其中 n 为正整数,则 $f'(0) =$

- (A) $(-1)^{n-1}(n-1)!$
- (B) $(-1)^n (n-1)!$
- (C) $(-1)^{n-1}n!$
- (D) $(-1)^n n!$

【答案】: A

【解析】:
$$f'(x) = e^x(e^{2x} - 2)\cdots(e^{nx} - n) + (e^x - 1)(2e^{2x} - 2)\cdots(e^{nx} - n) + \cdots(e^x - 1)(e^{2x} - 2)\cdots(ne^{nx} - n)$$
所以 $f'(0) = (-1)^{n-1}(n-1)!$

(3) 设函数
$$f(t)$$
连续,则二次积分 $\int_0^{\frac{\pi}{2}} d\theta \int_{2\cos\theta}^2 f(r^2) r dr = ($

(A)
$$\int_0^2 dx \int_{\sqrt{2x-x^2}}^{\sqrt{4-x^2}} \sqrt{x^2+y^2} f(x^2+y^2) dy$$

(B)
$$\int_0^2 dx \int_{\sqrt{2x-x^2}}^{\sqrt{4-x^2}} f(x^2+y^2)dy$$

(C)
$$\int_0^2 dy \int_{1+\sqrt{1-y^2}}^{\sqrt{4-y^2}} \sqrt{x^2+y^2} f(x^2+y^2) dx$$

(D)
$$\int_0^2 dy \int_{1+\sqrt{1-y^2}}^{\sqrt{4-y^2}} f(x^2+y^2) dx$$

【答案】: (B)

【解析】: 由 $x \le \sqrt{x^2 + y^2}$ 解得 y 的下界为 $\sqrt{2x - x^2}$,由 $\sqrt{x^2 + y^2} \le 2$ 解得 y 的上界为 $\sqrt{4 - x^2}$.故排除答案(C)(D).将极坐标系下的二重积分化为 X —型区域的二重积分得到被积函数为 $f(x^2 + y^2)$,故选(B).

(4) 已知级数
$$\sum_{n=1}^{\infty} (-1)^n \sqrt{n} \sin \frac{1}{n^{\alpha}}$$
 绝对收敛, $\sum_{i=1}^{\infty} \frac{(-1)^n}{n^{2-\alpha}}$ 条件收敛,则 α 范围为()

(A)
$$0 < \alpha \le \frac{1}{2}$$

$$(B) \frac{1}{2} < \alpha \le 1$$

(C)
$$1 < \alpha \le \frac{3}{2}$$

(D)
$$\frac{3}{2} < \alpha < 2$$

【答案】: (D)

【解析】: 考察的知识点是绝对收敛和条件收敛的定义及常见的 p 级数的收敛性结论. $\sum_{i=1}^{\infty} (-1)^n \sqrt{n} \sin \frac{1}{n^{\alpha}}$

绝对收敛可知 $\alpha > \frac{3}{2}$; $\sum_{i=1}^{\infty} \frac{(-1)^n}{n^{2-\alpha}}$ 条件收敛可知 $\alpha \le 2$,故答案为(**D**)

(5) 设
$$\alpha_1 = \begin{pmatrix} 0 \\ 0 \\ c_1 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 0 \\ 1 \\ c_2 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 1 \\ -1 \\ c_3 \end{pmatrix}$, $\alpha_4 = \begin{pmatrix} -1 \\ 1 \\ c_4 \end{pmatrix}$ 其中 c_1, c_2, c_3, c_4 为任意常数,则下列向量组线性相关

的是()

(A)
$$\alpha_1, \alpha_2, \alpha_3$$

(B)
$$\alpha_1, \alpha_2, \alpha_4$$

(C)
$$\alpha_1, \alpha_3, \alpha_4$$

(D)
$$\alpha_2, \alpha_3, \alpha_4$$

【答案】: (C)

【解析】: 由于
$$|(\alpha_1, \alpha_3, \alpha_4)| = \begin{vmatrix} 0 & 1 & -1 \\ 0 & -1 & 1 \\ c_1 & c_3 & c_4 \end{vmatrix} = c_1 \begin{vmatrix} 1 & -1 \\ -1 & 1 \end{vmatrix} = 0$$
,可知 $\alpha_1, \alpha_3, \alpha_4$ 线性相关。故选(C)

(6) 设
$$A$$
 为 3 阶矩阵, P 为 3 阶可逆矩阵,且 $P^{-1}AP=\begin{pmatrix} 1 & & \\ & 1 & \\ & & 2 \end{pmatrix}$, $P=(\alpha_1,\alpha_2,\alpha_3)$,

\$P 沪江网校·考研

 $Q = (\alpha_1 + \alpha_2, \alpha_2, \alpha_3) \bowtie Q^{-1}AQ = ($

$$(A)\begin{pmatrix}1&&\\&2&\\&&1\end{pmatrix}$$

$$(B)\begin{pmatrix}1\\&1\\&&2\end{pmatrix}$$

$$(C)\begin{pmatrix} 2 & & \\ & 1 & \\ & & 2 \end{pmatrix}$$

$$(D)\begin{pmatrix}2\\&2\\&&1\end{pmatrix}$$

【答案】: (B)

【解析】:
$$Q = P \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
, 则 $Q^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} P^{-1}$,

故选 (B)。

- (7) 设随机变量 X 与 Y 相互独立,且都服从区间 $\left(0,1\right)$ 上的均匀分布,则 $P\left\{X^2+Y^2\leq 1\right\}$ (

(A)
$$\frac{1}{4}$$
 (B) $\frac{1}{2}$ (C) $\frac{\pi}{8}$ (D) $\frac{\pi}{4}$ 【答案】: (D) 【解析】: 由题意得, $f(x,y) = f_X(x) f_Y(y) = \begin{cases} 1, & 0 < x < 1, 0 < y < 1, \\ 0, & 其它. \end{cases}$

 $P\{X^2+Y^2\leq 1\}=\iint f(x,y)dxdy$,其中D表示单位圆在第一象限的部分,被积函数是1,故根据二重积 分的几何意义,知 $P\{X^2+Y^2 \le 1\} = \frac{\pi}{4}$,故选(D).

(8) 设 X_1, X_2, X_3, X_4 为来自总体 $N(1, \sigma^2)(\sigma > 0)$ 的简单随机样本,则统计量 $\frac{X_1 - X_2}{|X_2 + X_4 - 2|}$ 的分布

()

- (A) N(0,1)
- (B) t(1)
- (C) $\chi^2(1)$
- (D) F(1,1)

【答案】: (B)

【解析】: 从形式上,该统计量只能服从t分布。故选B。

具体证明如下:
$$\frac{X_1-X_2}{\left|X_3+X_4-2\right|} = \frac{\frac{X_1-X_2}{\sqrt{2}\sigma}}{\sqrt{\left(\frac{X_3+X_4-2}{\sqrt{2}\sigma}\right)^2}}\,, \ \text{由正态分布的性质可知,} \ \frac{X_1-X_2}{\sqrt{2}\sigma} 与 \frac{X_3+X_4-2}{\sqrt{2}\sigma}$$
均

服从标准正态分布且相互独立,可知
$$\frac{\frac{X_1-X_2}{\sqrt{2}\sigma}}{\sqrt{\left(\frac{X_3+X_4-2}{\sqrt{2}\sigma}\right)^2}} \sim t(1).$$

二、填空题: 9-14 小题,每小题 4 分,共 24 分,请将答案写在答题纸指定位置上.

(9)
$$\lim_{x \to \frac{\pi}{4}} (\tan x)^{\frac{1}{\cos x - \sin x}} \underline{\hspace{1cm}}_{\circ}$$

【答案】: e^{-√2}

【解析】:
$$\lim_{x \to \frac{\pi}{4}} (\tan x)^{\frac{1}{\cos x - \sin x}} = e^{\lim_{x \to \frac{\pi}{4}} \left[(\tan x - 1) \frac{1}{\cos x - \sin x} \right]}$$

$$\lim_{x \to \frac{\pi}{4}} \left[(\tan x - 1) \frac{1}{\cos x - \sin x} \right] = \lim_{x \to \frac{\pi}{4}} \frac{\tan x - \tan \frac{\pi}{4}}{\cos x - \sin x}$$

$$= \lim_{x \to \frac{\pi}{4}} \frac{\tan\left(x - \frac{\pi}{4}\right)\left(1 + \tan x \cdot \tan\frac{\pi}{4}\right)}{-\sqrt{2}\sin\left(x - \frac{\pi}{4}\right)}$$

$$= \lim_{x \to \frac{\pi}{4}} \frac{\left(x - \frac{\pi}{4}\right) \left(1 + \tan x \cdot \tan \frac{\pi}{4}\right)}{-\sqrt{2}\left(x - \frac{\pi}{4}\right)}$$

$$=\frac{2}{-\sqrt{2}}$$

所以
$$\lim_{x \to \frac{\pi}{4}} (\tan x)^{\frac{1}{\cos x - \sin x}} = e^{\lim_{x \to \frac{\pi}{4}} [(\tan x - 1) \frac{1}{\cos x - \sin x}]} = e^{-\sqrt{2}}$$

罗沪江网校·考研

【答案】: $\frac{1}{e}$

【解析】:
$$\frac{dy}{dx}\Big|_{x=0} = f'(f(x))f'(x)\Big|_{x=0} = f'(f(0))f'(0) = f'(-1)f'(0)$$

由 f(x) 的表达式可知 f'(0) = f'(-1) = 2, 可知 $\frac{dy}{dx}\Big|_{x=0} = \frac{1}{e}$

(11) 函数
$$z = f(x, y)$$
 满足 $\lim_{\substack{x \to 0 \ y \to 1}} \frac{f(x, y) - 2x + y - 2}{\sqrt{x^2 + (y - 1)^2}} = 0$,则 $dz|_{(0,1)} =$

【答案】: 2dx-dy

【解析】: 由题意可知分子应为分母的高阶无穷小,即 $f(x,y) = 2x - y + 2 + o(\sqrt{x^2 + (y-1)^2})$,

所以
$$\frac{\partial z}{\partial x}\Big|_{(0,1)}=2$$
, $\frac{\partial z}{\partial y}\Big|_{(0,1)}=-1$,故 $dz\Big|_{(0,1)}=2dx-dy$

(12) 由曲线 $y = \frac{4}{x}$ 和直线 y = x 及 y = 4x 在第一象限中所围图形的面积为____

【答案】: 4ln 2

【解析】:被积函数为1的二重积分来求,所以

$$S = \int_0^2 dy \int_{\frac{y}{4}}^y dx + \int_2^4 dy \int_{\frac{y}{4}}^{\frac{4}{y}} dx = \frac{3}{2} + 4\ln 2 - \frac{3}{2} = 4\ln 2$$

(13) 设A为3阶矩阵,|A|=3, A^* 为A的伴随矩阵,若交换A的第一行与第二行得到矩阵B,则

$$|BA^*| =$$

【答案】: -27

【解析】: 由于
$$B = E_{12}A$$
,故 $BA^* = E_{12}A \cdot A^* = |A|E_{12} = 3E_{12}$,

所以, $|BA^*| = |3E_{12}| = 3^3 |E_{12}| = 27*(-1) = -27.$

(14) 设 A, B, C 是随机事件, A, C 互不相容, $P(AB) = \frac{1}{2}, P(C) = \frac{1}{3}, \text{则 } P(ABC) = \underline{\hspace{1cm}}$ 。

【答案】: $\frac{3}{4}$

【解析】: 由条件概率的定义, $P(AB|\overline{C}) = \frac{P(AB\overline{C})}{P(\overline{C})}$,

其中
$$P(\bar{C})=1-P(C)=1-\frac{1}{3}=\frac{2}{3}$$
,

 $P(AB\overline{C}) = P(AB) - P(ABC) = \frac{1}{2} - P(ABC)$,由于 A, C 互不相容,即 $AC = \phi$, P(AC) = 0, 又

$$ABC \subset AC$$
,得 $P(ABC) = 0$,代入得 $P(AB\overline{C}) = \frac{1}{2}$,故 $P(AB|\overline{C}) = \frac{3}{4}$.

三、解答题: 15—23 小题, 共 94 分.请将解答写在答题纸指定位置上.解答应写出文字说明、证明过程或演算步骤.

(15)(本题满分10分)

计算
$$\lim_{x\to 0} \frac{e^{x^2} - e^{2-2\cos x}}{x^4}$$

【解析】:
$$\lim_{x \to 0} \frac{e^{x^2} - e^{2-2\cos x}}{x^4} = \lim_{x \to 0} e^{2-2\cos x} \lim_{x \to 0} \frac{e^{x^2 - 2 + 2\cos x} - 1}{x^4}$$

$$= \lim_{x \to 0} \frac{x^2 - 2 + 2\cos x}{x^4}$$

$$= \lim_{x \to 0} \frac{x^2 - 2 + 2\left(1 - \frac{x^2}{2} + \frac{x^4}{4!} + o\left(x^2\right)\right)}{x^4} (泰勒公式)$$

$$= \lim_{x \to 0} \frac{\frac{x^4}{12} + o\left(x^2\right)}{x^4}$$

$$= \frac{1}{12}$$

(16)(本题满分10分)

计算二重积分 $\iint_D e^x xy dx dy$, 其中 D 是以曲线 $y = \sqrt{x}$ 与 $y = \frac{1}{\sqrt{x}}$ 及 y 轴为边界的无界区域。

【解析】: 由题意知, 区域

$$D = \left\{ (x, y) \mid 0 < x \le 1, \sqrt{x} < y < \frac{1}{\sqrt{x}} \right\}, \text{ 如图所示所以}$$

$$\iint_{D} e^{x} xy dx dy = \lim_{x \to 0} \int_{0}^{1} dx \int_{\sqrt{x}}^{\frac{1}{\sqrt{x}}} e^{x} xy dy$$

$$= \lim_{x \to 0} \int_{0}^{1} e^{x} x \left(\frac{1}{2} y^{2}\right) \Big|_{\sqrt{x}}^{\frac{1}{\sqrt{x}}} dx$$

$$= \lim_{x \to 0} \int_{0}^{1} e^{x} x \left(\frac{1}{2x} - \frac{x}{2}\right) dx$$

$$= \frac{1}{2} \lim_{x \to 0} \left(\int_{0}^{1} e^{x} dx - \int_{0}^{1} e^{x} x^{2} dx\right)$$

$$= \frac{1}{2} \lim_{x \to 0} \left(e - 1 - e^{x} x^{2}\Big|_{0}^{1} + 2 \int_{0}^{1} e^{x} x dx\right)$$

$$= \frac{1}{2} \lim_{x \to 0} \left(-1 + 2 \int_{0}^{1} x de^{x}\right)$$

$$= \frac{1}{2} \lim_{x \to 0} \left(-1 + 2 \left(e^{x} x\Big|_{0}^{1} - \int_{0}^{1} e^{x} dx\right)\right)$$

$$= \frac{1}{2} \lim_{x \to 0} \left(-1 + 2 \left(e - (e - 1)\right)\right) = \frac{1}{2}$$

- (17)(本题满分 10 分)某企业为生产甲、乙两种型号的产品,投入的固定成本为 10000(万元),设该企业生产甲、乙两种产品的产量分别为 \mathbf{x} (件)和(\mathbf{y} 件),且这两种产品的边际成本分别为 $\mathbf{20} + \frac{\mathbf{x}}{2}$ (万元/件)。
- 1) 求生产甲乙两种产品的总成本函数C(x,y)(万元)
- 2) 当总产量为50件时,甲乙两种的产量各为多少时可以使总成本最小?求最小的成本。
- 3) 求总产量为 50 件且总成本最小时甲产品的边际成本,并解释其经济意义。

【解析】: 1) 设成本函数为C(x,y), 由题意有: $C_x'(x,y) = 20 + \frac{x}{2}$,

对 x 积分得,
$$C(x, y) = 20x + \frac{x^2}{4} + D(y)$$
,

再对 y 求导有, $C_{y}'(x,y) = D'(y) = 6 + y$,

再对 y 积分有,
$$D(y) = 6y + \frac{1}{2}y^2 + c$$

所以,
$$C(x, y) = 20x + \frac{x^2}{4} + 6y + \frac{1}{2}y^2 + c$$

又
$$C(0,0) = 10000$$
,故 $c = 10000$,所以 $C(x,y) = 20x + \frac{x^2}{4} + 6y + \frac{1}{2}y^2 + 10000$

2) 若 x + y = 50,则 $y = 50 - x(0 \le x \le 50)$,代入到成本函数中,有

$$C(x) = 20x + \frac{x^2}{4} + 6(50 - x) + \frac{1}{2}(50 - x)^2 + 10000$$
$$= \frac{3}{4}x^2 - 36x + 11550$$

所以,令
$$C'(x) = \frac{3}{2}x - 36 = 0$$
,得 $x = 24$, $y = 26$,这时总成本最小 $C(24, 26) = 11118$

3) 总产量为 50 件且总成本最小时甲产品的边际成本为 $C_x'(24,26)=32$,表示在要求总产量为 50 件时,在甲产品为 24 件,这时要改变一个单位的产量,成本会发生 32 万元的改变。

(18)(本题满分10分)

证明:
$$x \ln \frac{1+x}{1-x} + \cos x \ge 1 + \frac{x^2}{2} (-1 < x < 1)$$

【解析】: 令
$$f(x) = x \ln \frac{1+x}{1-x} + \cos x - 1 - \frac{x^2}{2}$$
,可得

$$f'(x) = \ln \frac{1+x}{1-x} + x \frac{1+x}{1-x} \cdot \frac{2}{(1-x)^2} - \sin x - x$$

$$= \ln \frac{1+x}{1-x} + \frac{2x}{1-x^2} - \sin x - x$$

$$= \ln \frac{1+x}{1-x} + \frac{1+x^2}{1-x^2} \cdot x - \sin x$$

当
$$0 < x < 1$$
时,有 $\ln \frac{1+x}{1-x} \ge 0$, $\frac{1+x^2}{1-x^2} > 1$,所以 $\frac{1+x^2}{1-x^2} • x - \sin x \ge 0$,

故
$$f'(x) \ge 0$$
,而 $f(0) = 0$,即得 $x \ln \frac{1+x}{1-x} + \cos x - 1 - \frac{x^2}{2} \ge 0$

所以
$$x \ln \frac{1+x}{1-x} + \cos x \ge \frac{x^2}{2} + 1$$
。

当
$$-1 < x < 0$$
,有 $\ln \frac{1+x}{1-x} \le 0$, $\frac{1+x^2}{1-x^2} > 1$,所以 $\frac{1+x^2}{1-x^2} • x - \sin x \le 0$,

故
$$f'(x) \ge 0$$
,即得 $x \ln \frac{1+x}{1-x} + \cos x - 1 - \frac{x^2}{2} \ge 0$

可知,
$$x \ln \frac{1+x}{1-x} + \cos x \ge 1 + \frac{x^2}{2} (-1 < x < 1)$$

- (19) (本题满分 10 分) 已知函数 f(x) 满足方程 $f^{"}(x)+f^{'}(x)-2f(x)=0$ 及 $f''(x)+f(x)=2e^{x}$
- 1) 求 f(x) 的表达式

》沪江网校·考研

2) 求曲线 $y = f(x^2) \int_0^x f(-t^2) dt$ 的拐点

【解析】:

1)特征方程为 $r^2+r-2=0$,特征根为 $r_1=1, r_2=-2$,齐次微分方程 f''(x)+f'(x)-2f(x)=0 的通解为 $f(x)=C_1e^x+C_2e^{-2x}$.再由 $f^{'}(x)+f(x)=2e^x$ 得 $2C_1e^x-C_2e^{-2x}=2e^x$,可知 $C_1=1, C_2=0$ 。故 $f(x)=e^x$

2) 曲线方程为 $y = e^{x^2} \int_0^x e^{-t^2} dt$,则 $y' = 1 + 2xe^{x^2} \int_0^x e^{-t^2} dt$, $y'' = 2x + 2(1 + 2x^2)e^{x^2} \int_0^x e^{-t^2} dt$ 令 y'' = 0 得 x = 0 。 为了说明 x = 0 是 y'' = 0 唯一的解,我们来讨论 y'' 在 x > 0 和 x < 0 时的符号。

当 x>0 时, $2x>0,2\left(1+2x^2\right)e^{x^2}\int_0^x e^{-t^2}dt>0$, 可 知 y'>' ; 当 x<0 时 , $2x<0,2\left(1+2x^2\right)e^{x^2}\int_0^x e^{-t^2}dt<0$,可知 y"<0。可知 x=0 是 y"=0 唯一的解。

同时,由上述讨论可知曲线 $y = f(x^2) \int_0^x f(-t^2) dt$ 在 x = 0 左右两边的凹凸性相反,可知(0,0) 点是曲线 $y = f(x^2) \int_0^x f(-t^2) dt$ 唯一的拐点。

(20)(本题满分10分)

设
$$A = \begin{pmatrix} 1 & a & 0 & 0 \\ 0 & 1 & a & 0 \\ 0 & 0 & 1 & a \\ a & 0 & 0 & 1 \end{pmatrix}, \quad b = \begin{pmatrix} 1 \\ -1 \\ 0 \\ 0 \end{pmatrix}$$

- (I) 计算行列式 |A|;
- (II) 当实数a为何值时,方程组 $Ax = \beta$ 有无穷多解,并求其通解.

【解析】: (I)
$$\begin{vmatrix} 1 & a & 0 & 0 \\ 0 & 1 & a & 0 \\ 0 & 0 & 1 & a \\ a & 0 & 0 & 1 \end{vmatrix} = 1 \times \begin{vmatrix} 1 & a & 0 \\ 0 & 1 & a \\ 0 & 0 & 1 \end{vmatrix} + a \times (-1)^{4+1} \begin{vmatrix} a & 0 & 0 \\ 1 & a & 0 \\ 0 & 1 & a \end{vmatrix} = 1 - a^4$$

$$\begin{pmatrix}
1 & a & 0 & 0 & 1 \\
0 & 1 & a & 0 & -1 \\
0 & 0 & 1 & a & 0 \\
a & 0 & 0 & 1 & 0
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & a & 0 & 0 & 1 \\
0 & 1 & a & 0 & -1 \\
0 & 0 & 1 & a & 0 \\
0 & -a^{2} & 0 & 1 & -a
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & a & 0 & 0 & 1 \\
0 & 1 & a & 0 & -1 \\
0 & 0 & 1 & a & 0 \\
0 & 0 & 1 & a & 0 \\
0 & 0 & 1 - a^{4} & -a - a^{2}
\end{pmatrix}$$

可知当要使得原线性方程组有无穷多解,则有 $1-a^4=0$ 及 $-a-a^2=0$,可知a=-1。

此时,原线性方程组增广矩阵为
$$\begin{pmatrix} 1 & -1 & 0 & 0 & 1 \\ 0 & 1 & -1 & 0 & -1 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}, \quad 进一步化为行最简形得 \begin{pmatrix} 1 & 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 & -1 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

可知导出组的基础解系为
$$\begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}$$
,非齐次方程的特解为 $\begin{pmatrix} 0\\-1\\0\\0 \end{pmatrix}$,故其通解为 $k\begin{pmatrix} 1\\1\\1\\1 \end{pmatrix} + \begin{pmatrix} 0\\-1\\0\\0 \end{pmatrix}$

(21)(本题满分 10 分)已知
$$A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ -1 & 0 & a \\ 0 & a & -1 \end{bmatrix}$$
,二次型 $f(x_1, x_2, x_3) = x^T (A^T A) x$ 的秩为 2

- (I) 求实数a的值;
- (II) 求正交变换x = Qy将f化为标准形.

【解析】: 1) 由 $r(A^TA) = r(A) = 2$ 可得,

$$\begin{vmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ -1 & 0 & a \end{vmatrix} = a + 1 = 0 \Rightarrow a = -1$$

$$f = x^{T} A^{T} A x = (x_{1}, x_{2}, x_{3}) \begin{pmatrix} 2 & 0 & 2 \\ 0 & 2 & 2 \\ 2 & 2 & 4 \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \end{pmatrix}$$

$$= 2x_{1}^{2} + 2x_{2}^{2} + 4x_{3}^{2} + 4x_{1}x_{2} + 4x_{2}x_{3}$$
则矩阵
$$B = \begin{pmatrix} 2 & 0 & 2 \\ 0 & 2 & 2 \\ 2 & 2 & 4 \end{pmatrix}$$

则矩阵
$$B = \begin{pmatrix} 2 & 0 & 2 \\ 0 & 2 & 2 \\ 2 & 2 & 4 \end{pmatrix}$$

$$|\lambda E - B| = \begin{vmatrix} \lambda - 2 & 0 & -2 \\ 0 & \lambda - 2 & -2 \\ -2 & -2 & \lambda - 4 \end{vmatrix} = \lambda (\lambda - 2)(\lambda - 6) = 0$$

解得 B 矩阵的特征值为: $\lambda_1 = 0; \lambda_2 = 2; \lambda_3 = 6$

对于
$$\lambda_1=0$$
,解 $\left(\lambda_1E-B\right)X=0$ 得对应的特征向量为: $\eta_1=\begin{pmatrix}1\\1\\-1\end{pmatrix}$

罗沪江网校·考研

对于 $\lambda_2 = 2$,解 $(\lambda_2 E - B)X = 0$ 得对应的特征向量为: $\eta_2 =$

对于 $\lambda_3 = 6$,解 $(\lambda_3 E - B)X = 0$ 得对应的特征向量为: $\eta_3 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$

将 η_1,η_2,η_3 单位化可得:

$$\alpha_1 = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}, \quad \alpha_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}, \quad \alpha_3 = \frac{1}{\sqrt{6}} \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$$

$$Q = (\alpha_1, \alpha_2, \alpha_3)$$

(22)(本题满分10分)

设二维离散型随机变量(X,Y)的概率分布为

Y X	0	1	2
0	$\frac{1}{4}$		$\frac{1}{4}$
1	0	3	0
2	12	0	1 12

(I) 求 $P\{X=2Y\}$; (II) 求Cov(X-Y,Y).

【解析】:

X	0	1	2
P	1/2	1/3	1/6

Y	0	1	2
P	1/3	1/3	1/3

XY	0	1	2	4
P	7/12	1/3	0	1/12

(1)
$$P(X = 2Y) = P(X = 0, Y = 0) + P(X = 2, Y = 1) = \frac{1}{4} + 0 = \frac{1}{4}$$

(2)
$$\operatorname{cov}(X-Y,Y) = \operatorname{cov}(X,Y) - \operatorname{cov}(Y,Y)$$

$$cov(X,Y) = EXY - EXEY, \quad \text{$\not=$} \pm EX = \frac{2}{3}, EX^2 = 1, EY = 1, EY^2 = \frac{5}{3}, DX = EX^2 - (EX)^2 = 1 - \frac{4}{9} = \frac{5}{9}$$

$$DY = EY^2 - (EY)^2 = \frac{5}{3} - 1 = \frac{2}{3}, EXY = \frac{2}{3}$$

所以,
$$cov(X,Y) = 0$$
, $cov(Y,Y) = DY = \frac{2}{3}$, $cov(X-Y,Y) = -\frac{2}{3}$, $\rho_{XY} = 0$.

(23)(本题满分10分)

设随机变量 X 和 Y 相互独立,且均服从参数为1的指数分布, $V = \min(X,Y), U = \max(X,Y)$.

求(1)随机变量V的概率密度;

(2)
$$E(U+V)$$
.

【解析】:

(1)
$$X$$
 概率密度为 $f(x) = \begin{cases} e^{-x}, & x > 0, \\ 0, & 其它. \end{cases}$ 分布函数为 $F(x) = \begin{cases} 1 - e^{-x}, & x > 0, \\ 0, & 其它. \end{cases}$ 双 和 Y 同分布.

而
$$X, Y$$
 独立, 故上式等于 $1-P\{X>v\}P\{Y>v\}=1-\begin{bmatrix}1-F(v)\end{bmatrix}^2=\begin{cases}1-e^{-2v}, & v>0,\\0, & 其它.\end{cases}$

故
$$f_{V}(v) = F_{V}'(v) = \begin{cases} 2e^{-2v}, & v > 0, \\ 0, & 其它. \end{cases}$$

(2) 同理,
$$U$$
的概率密度为: $f_U(u) = \begin{cases} 2(1-e^{-u})e^{-u}, & u > 0, \\ 0, & 其它. \end{cases}$

$$EU = \int_0^{+\infty} u2(1-e^{-u})e^{-u}du = \frac{3}{2}, \quad EV = \int_0^{+\infty} v2e^{-2v}dv = \frac{1}{2},$$

所以
$$E(U+V)=E(U)+E(V)=\frac{3}{2}+\frac{1}{2}=2$$
.