AD-A284 671

ulb. Army Christical and Brological Defense Command

ERDEC-TR-112

THEORETICAL PREDICTION OF VIBRATIONAL CIRCULAR DICHROISM SPECTRA OF R-GLYCERALDEHYDE, R-ERYTHROSE, AND R-THREOSE

I. COMPUTATIONAL RESULTS

94-30240

Daniel Zeroka **LEHIGH UNIVERSITY** Bethlehem, PA 18015-3172

James O. Jensen RESEARCH DIRECTORATE

Janet L. Jensen **U.S. ARMY INFORMATION SYSTEMS COMMAND**

November 1993

Approved for public release; distribution is unlimited.

DTIC QUALITY INSPECTED 3

Aberdeen Proving Ground, MD 21010-5423

Disclaimer The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorizing documents.

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments requiring this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden. To Washington Meadquarters Services, Directorate for Information Operations and Reporting 115 seffers on Collection of Information, including suggestions for reducing this burden. To Washington Meadquarters Services, Directorate for Information, Operations and Report 1264, Arthogon, VA 22024-3029, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

Davis Highway, Suite 1204, Arrington, VA 2220.			
1. AGENCY USE ONLY (Leave blan	k) 2. REPORT DATE 1993 November	3. REPORT TYPE AND DA Final, 92 May	res covered y - 92 Oct
of R-Glyceraldehyde, R-I. Computational Result 6. Author(s)	University); Jensen, James	O.;	PR-10162622A553C PR-10161102A71A C-DAAL03-91-C-0034 D.O181
7. PERFORMING ORGANIZATION N	AME(S) AND ADDRESS(ES)		PERFORMING ORGANIZATION REPORT NUMBER
Lehigh University, Depa Bethlehem, PA 18015-3 DIR, ERDEC,* ATTN:	rtment of Chemistry, 172 SCBRD-RTE, APG, MD	21010-5423	ERDEC-TR-112
9. SPONSORING/MONITORING AG	ENCY NAME(S) AND ADDRESS(ES)	10.	SPONSORING/MONITORING AGENCY REPORT NUMBER
DIR, ARO, P.O. Box 12	211, Research Triangle Pa	ark, NC 27709	TCN 92128
11. SUPPLEMENTARY NOTES Task was performed und Park Office, 200 Park D (Continued on page ii)	er a Scientific Services Agrive, P.O. Box 12297, Res	reement issued by Bar search Triangle Park,	ttelle, Research Triangle NC 27709
12a. DISTRIBUTION / AVAILABILITY	STATEMENT	121	DISTRIBUTION CODE
Approved for public rele	ase; distribution is unlimit	ed.	
Development and Engine One line of thinking, cur features of biological may vibrational circular dichr and R-threose. The proof HF levels and the subsequence of the provide a nonscaled force containing 4-12 atoms where determined based of MP2 levels of calculation calculated diagonal force each off-diagonal element $Q_{ij} = (Q_iQ_j)^{1/2}$ of the diagonal elements of the force con VCD spectrum for the 3	ve of the Detection Directoring Center* is the remotering Center* is the remoterently being followed, is the terials. Part I of this study oism (VCD) of the 3 and bedure involves optimization upon the determination of normal econstant result. To implement studied. Optimized geom calculations at the 3-210 n. A set of scaling constant constants to the 6-31G* Not of the force constant material gonal scaling constants Quantament to the stant matrix are reported.	the detection of biologic the recognition that sugary reports on the theory of carbon sugars - R-glan of geometries at the mal mode frequencies the mal mode frequencies of the first that the first that the mal mode frequencies of the first that t	cal materials in the field. gars are distinguishing etical prediction of the yceraldehyde, R-erythrose, 3-21G HF and the 6-31G* and rotational strengths to dure, 8 small molecules and force constant matrices 31G* HF, and 6-31G* y scaling 6-31G* HF The scaling constant for y using the geometric mean various off-diagonal yere used to predict the
14. SUBJECT TERMS	D and		15. NUMBER OF PAGES
Vibrational circular dichi Scaling of force constant R-glyceraldehyde			16. PRICE CODE
17. SECURITY CLASSIFICATION	18. SECURITY CLASSIFICATION OF THIS PAGE	19. SECURITY CLASSIFICAT OF ABSTRACT	ION 20. LIMITATION OF ABSTRACT
OF REPORT UNCLASSIFIED	UNCLASSIFIED	UNCLASSIFIED	
			At 1 5 300 (0 3 90)

11. SUPPL! NTARY NOTES (Continued)

*When this study was conducted, ERDEC was known as the U.S. Army Chemical Research, Development and Engineering Center, and the ERDEC authors were assigned to the Research Directorate and U.S. Army Information Systems Command, respectively.

PREFACE

The work described in this report was authorized under Project No. 10162622A553C, Reconnaissance, Detection, and Identification, Project No. 10161102A71A, Research in CW/CB Defense, Contract No. DAAL03-91-C-0034, and Delivery Order No. 181. This work was started in May 1992 and completed in October 1992.

The use of trade names or manufacturers' names in this report does not constitute an official endorsement of any commercial products. This report may not be cited for purposes of advertisement.

This report has been approved for release to the public. Registered users should request additional copies from the Defense Technical Information Center; unregistered users should direct such requests to the National Technical Information Service.

Acknowledgments

This work was supported by the U.S. Army Edgewood Research, Development and Engineering Center (ERDEC)* (Dr. James O. Jensen) under the auspices of the U.S. Army Research Office Scientific Services Program administered by Battelle.

			-1
Accesio	n For		_
NTIS	CRA&I	*	1
DTIC	TAB		- [
Unanno	unced		- (
Justific	ation		
By Distribu	ition /		
A.	vailabilit	y Codes	
Dist	Avail a Spe		
9-1			

PTIL TO LESS CAPITADS

^{*}When this study was conducted, ERDEC was known as the U.S. Army Chemical Research, Development and Engineering Center, and the ERDEC authors were assigned to the Research Directorate and U.S. Army Information Systems Command, respectively.

Blank

CONTENTS

		Page
I.1.	INTRODUCTION	1
1.2.	SCALING OF THE FORCE CONSTANT MATRIX	2
1.3.	NONSCALED AND SCALED VCD SPECTRA FOR 3 SUGARS	3
I.4.	SUMMARY	3
	REFERENCES	5

LIST OF FIGURES

1.	Optimized Geometry for R-Glyceraldehyde [CHO-HCOH-CH ₂ OH] Based on 6-31G* Level of Calculation	7
2.	Optimized Geometry for R-Erythrose [CHO-HCOH-HCOH-CH ₂ OH] Based on 6-31G* Level of Calculation	8
3.	Optimized Geometry for R-Threose [CHO-HOCH-HCOH-CH ₂ OH] Based on 6-31G* Level of Calculation	ç
4.	VCD Spectrum of R-Glyceraldehyde [CHO-HCOH-CH ₂ OH] Based on 3-21G Level of Calculation	10
5.	VCD Spectrum of R-Erythrose [CHO-HCOH-HCOH-CH ₂ OH] Based on 3-21G Level of Calculation	11
6.	VCD Spectrum of R-Threose [CHO-HOCH-HCOH-CH ₂ OH] Based on 3-21G Level of Calculation	12
7.	VCD Spectrum of R-Glyceraldehyde [CHO-HCOH-CH ₂ OH] Based on 6-31G* Level of Calculation: (a) unscaled (b) scaled	13
8.	VCD Spectrum of R-Erythrose [CHO-HCOH-HCOH-CH ₂ OH] Based on 6-31G* Level of Calculation: (a) unscaled (b) scaled	14
9.	VCD Spectrum of R-Threose [CHO-HOCH-HCOH-CH ₂ OH] Based on 6-31G* Level of Calculation: (a) unscaled (b) scaled	15
	LIST OF TABLES	
la.	Optimized Geometries, Total Energies and Calculated Wavenumbers \tilde{v} for Formaldehyde [CH ₂ O] Based on Several Levels of Calculation	16
1b.	Force Constant Matrix for Formaldehyde [CH ₂ O] at the 6-31G* HF Level of Calculation	17
1c.	Force Constant Matrix for Formaldehyde [CH ₂ O] at the 6-31G* MP2 Level of Calculation	18
1d.	Force Constant Scaling Constants, Q(I), and C Matrix for Formaldehyde [CH ₂ O] Based on Comparison of Force Constant Matrices at the 6-31G* HF and the 6-31G* MP2 Level of Calculation	19
2a.	Optimized Geometries, Total Energies and Calculated Wavenumbers \tilde{v} for Acetaldehyde [C_2H_4O] Based on Several Levels of Calculation	20
2b.	Force Constant Matrix for Acetaldehyde [C ₂ H ₄ O] at the 6-31G* HF Level of Calculation	22

2c.	Force Constant Matrix for Acetaldehyde [C ₂ H ₄ O] at the 6-31G* MP2 Level of Calculation	24
2d.	Force Constant Scaling Constants, Q(I), and C Matrix for Acetaldehyde [C,H ₄ O] Based on Comparison of Force Constant Matrices at the 6-31G* HF and the 6-31G* MP2 Level of Calculation	26
3a.	Optimized Geometries, Total Energies and Calculated Wavenumbers \tilde{v} for Methanol [CH ₃ OH] Based on Several Levels of Calculation	28
3b.	Force Constant Matrix for Methanol [CH ₃ OH] at the 6-31G* HF Level of Calculation	30
3c.	Force Constant Matrix for Methanol [CH ₃ OH] at the 6-31G* MP2 Level of Calculation	31
3d.	Force Constant Scaling Constants, Q(I), and C Matrix for Methanol [CH ₃ OH] Based on Comparison of Force Constant Matrices at the 6-31G* HF and the 6-31G* MP2 Level of Calculation	32
4a .	Optimized Geometries, Total Energies and Calculated Wavenumbers \tilde{v} for Ethanol [C ₂ H ₆ O] Based on Several Levels of Calculation	33
4b.	Force Constant Matrix for Ethanol [C ₂ H ₆ O] at the 6-31G* HF Level of Calculation	35
4c.	Force Constant Matrix for Ethanol [C ₂ H ₆ O] at the 6-31G* MP2 Level of Calculation	38
4d .	Force Constant Scaling Constants, Q(I), and C Matrix for Ethanol [C ₂ H ₆ O] Based on Comparison of Force Constant Matrices at the 6-31G* HF and the 6-31G* MP2 Level of Calculation	41
5a.	Optimized Geometries, Total Energies and Calculated Wavenumbers \tilde{v} for Isopropanol [C ₃ H ₆ O] Based on Several Levels of Calculation	43
5b.	Force Constant Matrix for Isopropanol [C ₃ H ₈ O] at the 6-31G* HF Level of Calculation	46
5c.	Force Constant Matrix for Isopropanol [C ₃ H ₆ O] at the 6-31G* MP2 Level of Calculation	50
5d.	Force Constant Scaling Constants, Q(I), and C Matrix for Isopropanol [C ₃ H ₆ O] Based on Comparison of Force Constant Matrices at the 6-31G* HF and the 6-31G* MP2 Level of Calculation	54
6a.	Optimized Geometries, Total Energies and Calculated Wavenumbers \tilde{v} for Dimethyl Ether [C ₂ H ₆ O] Based on Several Levels of Calculation	58
6 b.	Force Constant Matrix for Dimethyl Ether [C ₂ H ₆ O] at the 6-31G* HF Level of Calculation	60

6c.	Force Constant Matrix for Dimethyl Ether [C ₂ H ₆ O] at the 6-31G* MP2 Level of Calculation	63
6d.	Force Constant Scaling Constants, Q(I), and C Matrix for Dimethyl Ether [C ₂ H ₆ O] Based on Comparison of Force Constant Matrices at the 6-31G* HF and the 6-31G* MP2 Level of Calculation	66
7a.	Optimized Geometries, Total Energies and Calculated Wavenumbers \tilde{v} for Hydroxymethyl Methyl Ether $[C_2H_4O_2]$ Based on Several Levels of Calculation	68
7 b.	Force Constant Matrix for Hydroxymethyl Methyl Ether [C ₂ H ₆ O ₂] at the 6-31G* HF Level of Calculation	7 0
7c.	Force Constant Matrix for Hydroxymethyl Methyl Ether [C ₂ H ₆ O ₂] at the 6-31G* MP2 Level of Calculation	73
7d.	Force Constant Scaling Constants, Q(I), and C Matrix for Hydroxymethyl Methyl Ether [C ₂ H ₆ O ₂] Based on Comparison of Force Constant Matrices at the 6-31G* HF and the 6-31G* MP2 Level of Calculation	76
8a .	Optimized Geometries, Total Energies and Calculated Wavenumbers \tilde{v} for Ethylene Glycol [C ₂ H ₆ O ₂] Based on Several Levels of Calculation	7 9
8b .	Force Constant Matrix for Ethylene Glycol [C ₂ H ₆ O ₂] at the 6-31G* HI Level of Calculation	81
8c.	Force Constant Matrix for Ethylene Glycol [C ₂ H ₆ O ₂] at the 6-31G* MP2 Level of Calculation	84
8d.	Force Constant Scaling Constants, Q(I), and C Matrix for Ethylene Glycol [C ₂ H ₆ O ₂] Based on Comparison of Force Constant Matrices at the 6-31G* HF and the 6-31G* MP2 Level of Calculation	87
9.	Scaling Constants for the Force Constant Matrix Expressed in Terms of Specific Internal Coordinates	90
10a.	Optimized Geometry for R-Glyceraldehyde [CHO-HCOH-CH ₂ OH] Based on 3-21G Level of Calculation	91
10b.	Optimized Geometry for R-Glyceraldehyde [CHO-HCOH-CH ₂ OH] Based on 6-31G* Level of Calculation	92
11a.	Optimized Geometry for R-Erythrose [CHO-HCOH-HCOH-CH ₂ OH] Based on 3-21G Level of Calculation	93
11b.	Optimized Geometry for R-Erythrose [CHO-HCOH-HCOH-CH ₂ OH] Based on 6-31G* Level of Calculation	94
12a.	Optimized Geometry for R-Threose [CHO-HOCH-HCOH-CH ₂ OH] Based on 3-21G Level of Calculation	05

12b.	Optimized Geometry for R-Threose [CHO-HOCH-HCOH-CH ₂ OH] Based on 6-31G* Level of Calculation	96
13.	Calculated Wavenumbers \tilde{v} and Rotational Strengths R for R-Glyceraldehyde [HCOH-CH ₂ OH] Based on 3-21G Level Optimized Geometry	97
14.	Calculated Wavenumbers \tilde{v} and Rotational Strengths R for R-Erythrose [CHO-HCOH-HCOH-CH ₂ OH] Based on 3-21G Level Optimized Geometry	98
15.	Calculated Wavenumbers \tilde{v} and Rotational Strengths R for R-Threose [CHO-HOCH-HCOH-CH ₂ OH] Based on 3-21G Level Optimized Geometry	99
16.	Calculated Wavenumbers \tilde{v} and Rotational Strengths R for R-Glyceraldehyde [CHO-HCOH-CH ₂ OH] Based on 6-31G* Level Optimized Geometry	100
17.	Calculated Wavenumbers \tilde{v} and Rotational Strengths R for R-Erythrose [CHO-HCOH-HCOH-CH ₂ OH] Based on 6-31G* Level Optimized Geometry	101
18.	Calculated Wavenumbers \tilde{v} and Rotational Strengths R for R-Threose [CHO-HOCH-HCOH-CH ₂ OH] Based on 6-31G* Level Optimized Geometry	102

Blank

THEORETICAL PREDICTION OF VIBRATIONAL CIRCULAR DICHROISM SPECTRA OF R-GLYCERALDEHYDE, R-ERYTHROSE, AND R-THREOSE

I. COMPUTATIONAL RESULTS

I.1 INTRODUCTION

One of the most important technologies in the master plan of the Reconnaissance, Detection and Identification (RDI) program at the Edgewood Research, Development and Engineering Center (ERDEC) is the remote detection, based on processes occurring in the infrared (IR), of hazardous biological materials in the field. At present ERDEC is a leader in the development of remote IR detectors. An experimental technique currently being developed under the leadership of A. H. Carrieri [1] at ERDEC is Mueller Matrix Spectroscopy [2,3]. The Phase Sensitive Detection Apparatus recently developed at ERDEC is the only infrared Mueller matrix spectrometer in the world. One feature obtained by such spectroscopy is the vibrational circular dichroism (VCD) spectrum of a molecular species [4-16]. This spectrum can be used as a unique fingerprint of a substance. Chiral molecules present in biological systems exhibit vibrational circular dichroism. Simulation of VCD spectra can serve two purposes:

- 1. Simulated spectra can go hand-in-hand with experiments. This interplay between experiment and theory will reinforce both areas of approach and will lead to improved means of accurate detection.
- 2. Theoretically predicted spectra can be helpful when direct experimentation is difficult or hazardous.

The present study is directed toward the theoretical prediction of the VCD spectra of the three sugars, R-glyceraldehyde, R-erythrose, and R-threose [17]. The method of calculation depends on Stephens' formulation of the rotational strength [5]; the following ab initio quantum chemical techniques were used: Gaussian 90, Gaussian 92, CADPAC version 4.2, and CADPAC version 5.0 [18-22]. These programs were operational on the STARDENT 3000 computers in the Berger Building (E3549) and the CONVEX computer at ERDEC. We performed ab initio quantum chemical calculations of the equilibrium geometries of the three sugar molecules [Rglyceraldehyde R-erythrose, R-threose]. At the equilibrium geometries we calculated the normal mode frequencies and rotational strengths at the Self-Consistent Field (SCF) level of theory using 3-21 G and 6-31G* basis sets. Since vibrational frequencies calculated at the SCF level of theory tend to be 10-15% higher than experimental values. A correction procedure was developed since the normal mode frequencies and the VCD rotational strengths would be error. The correction procedure that we considered was to obtain scaling constants for the contribution of various internal coordinates in the force constant matrix. This procedure involved the determination of the scaling constants for a set of 8 reference molecules. On the assumption of transferrability of these scaling constants from molecule-to-molecule the scaled force constant matrix for each of the 3 sugars of interest was determined. At this point the normal modes of vibration and the rotational strengths can then be determined from the scaled force constant matrix.

L2 SCALING OF THE FORCE CONSTANT MATRIX

In order to implement a scaling procedure for the force constant matrix of a sugar a set of scaling factors for a set of 8 reference molecules, containing 4-12 atoms, were obtained. The reference set of molecules are

- 1. formaldehyde (CH₂O)
- 2. acetaldehyde (C,H,O)
- 3. methanol (CH₂O)
 4. ethanol (C₂H₆O)
- 5. isopropanol (C.H.O)
- 6. dimethyl ether (C₂H₆O)
- 7. hydroxymethyl methyl ether (C,H₆O₂)
- 8. ethylene glycol ($C_2H_6O_2$)

The scaling factors were determined in the following way. Optimized geometries, frequencies of vibration and force constant matrices were determined based on calculations at the 3-21G HF, 3-21G MP2, 6-31G* HF, and 6-31G* MP2 levels of calculation. In Tables 1a-8a the optimized geometries and frequencies are reported, in Tables 1b-8b the force constant matrices at the 6-31G* HF level of calculation are reported, and in Tables 1c-8c force constant matrices at the 6-31G* MP2 levlel of calculation are reported.

The diagonal scaling constants Q, were determined by scaling the 6-31G* HF calculated force constants to the 6-31G* MP2 calculated force constants as

$$Q_i = F_{ii}(MP2)/F_{ii}(HF). \tag{1}$$

The off diagonal scaling constants Qii were determined by using the geometric mean of the diagonal constants involved

$$Q_{ij} = (Q_i Q_j)^{1/2}. (2)$$

As a means of testing the goodness of the geometric mean fit we determined the matrix element C_{ii} as

$$C_{ij}=F_{ij}(MP2)/Q_{ij}F_{ij}(HF). (3)$$

For values of F_{ii} less than 10⁻⁴, C_{ii} is set to 1. As a result the goodness of the geometric mean fit is represented by the closeness of each C_{ii} to 1.

In Tables 1d-8d the set of Q_i 's and the set of C_{ij} 's are reported for each of the 8 molecules studied. Some of the C_{ij} 's that differ from 1 can be rationalized as due to possible coupling to another internal coordinate. However, in other cases the coupling is unexpected and may be an artifact of the method used. More time and study is required to investigate these couplings of different internal coordinates. Indeed, the original choice of the set of internal coordinates may be quite crucial in order to arrive at couplings which are quite small.

Using the results of Tables 1d-8d an average scaling factor for a given internal coordinate is determined. The results are reported in Table 9. Remarkably most internal coordinates give scaling factors in the neighborhood of 0.9 with the exception of a C=O stretch which gives a scaling of 0.772.

Next, we turn attention to the 3 sugars of interest in this project.

L3 NONSCALED AND SCALED VCD SPECTRA FOR 3 SUGARS

We next consider optimization of the geometry of the 3 sugars under study. The geometries are optimized at the 3-21G and the 6-31G * HF levels. The results are reported in Tables 10-12. The optimized geometries for the 6-31G* calculations are shown in Figures 1-3. The VCD spectrum consists of a plot of the rotational strength R as a function of the the frequencies of vibration. The rotational strength R is obtained by

$$R = Im \left(\mathbf{\mu} \cdot \mathbf{m} \right) \tag{4}$$

where μ is the electric dipole transition moment between the v=0 and the v=1 vibrational states, m is the magnetic dipole transition moment between the v=0 and the v=1 vibrational states and Im means to take the imaginary part of what follows. Calculated frequencies and rotational strengths based on the 3-21G HF level of calculation are reported in Tables 13-15. VCD spectra are shown in Figures 4-6 based on use of the harmonic oscillator approximation. The scaling parameters determined in Table 9 are used to scale the force constant matrix for each sugar based on the 6-31G* HF level of calculation. The resultant frequencies and rotational strengths for both unscaled and scaled 6-31G* HF calculations are shown in Tables 16-18. VCD spectra for the 6-31G* level of calculation are displayed in Fgures 7-9 based on use of the harmonic oscillator approximation. As is expected, frequencies of vibration are reduced by a factor of roughly 0.9. Rotational strengths of relatively large magnitude, after scaling, appear to retain their same sign and relatively large magnitude.

L4 SUMMARY

This study represents continuing work toward the goal of generating theoretically predicted VCD spectra of sugars. The approach involves the use of Stephens' theoretical formulation of the rotational strength and the use of Gaussian calculations at the 3-21G and the 6-31G* levels. The level of calculation affects the frequencies and the rotational strength.

Originally, measurements of the VCD of several sugars were to be made at ERDEC using a recently acquired NICOLET FTIR instrument with a special engineered VCD attachment. Difficulty was encountered in reproducing the literature VCD spectrum of carvone with this instrument. The instrument is being inspected by NICOLET to determine the reason for the discrepancy. Because of the VCD instrument problem no comparison with experimental VCD spectra can be made at this time. Comparison awaits the resolution of the instrument problem by NICOLET. Once this is accomplished the experimental spectrum can be determined and the results of this study can be compared with the experimentally determined results.

Blank

REFERENCES

- 1. A. H. Carrieri, D. J. Owens, C. E. Henry, K. E. Schmidt, J. L. Jensen, J. R. Bottiger, J. O. Jensen, C. M. Herzinger, and S. M. Haugland, "Mid Infrared Polarized Light Scattering Applications for the Remote Detection of Chemical and Biological Contaminations", CRDEC-TR-318 Report (1992).
- 2. H. Mueller, J. Opt. Soc. Am. 38, 661 (1948).
- 3. C. F. Bohren and D. F. Huffman, "Absorption and Scattering of Light by Small Particles", Wiley-Interscience, New York (1983).
- 4. P. J. Stephens and M. A. Lowe, Ann. Rev. Phys. Chem. 36, 213-41 (1996).
- 5. P. J. Stephens, J. Phys. Chem. 89, 748-52 (1985).
- 6. R. D. Amos, N. C. Handy, K. J. Jalkanen and P. J. Stephens, Chem. Phys. Letters, 133, 21-26 (1987).
- 7. K. J. Jalkanen, P. J. Stephens, R. D. Amos and N. C. Handy, Chem. Phys. Letters, 142, 153-58 (1987).
- 8. K. J. Jalkanen, P. J. Stephens, P. Lazzerti and R. Zanasi, J. Chem. Phys. 90, 3204-13 (1989).
- 9. P. L. Polavarapu, B. A. Hess, Jr., L. J. Schaad, D. O. Henderson, L. P. Fontana, H. E. Smith, L. A. Nafie, T. B. Freedman and W. M. Zuk, J. Chem. Phys. 86, 1140-46 (1987).
- 10. M. A. Lowe, J. S. Alper, R. Kawiecki, and P. J. Stephens, J. Phys. Chem. 90, 41-50 (1986).
- 11. H. Dothe, M. A. Lowe and J. S. Alper, J. Phys. Chem. 92, 6246-49 (1988).
- 12. J. S. Alper and M. A. Lowe, J. Chem. Phys. 121, 189-97 (1988).
- 13. R. A. Shaw, H. Wieser, R. Dutler, A. Rauk, J. Am. Chem. Soc. 112, 5401-5410 (1990).
- 14. D. Zeroka, G. R. Famini, J. O. Jensen, A. H. Carrieri, and C. F. Chabalowski, "Theoretical Prediction of Vibrational Circular Dichroism Spectra", CRDEC-CR-063 Report (1990).
- 15. D. Zeroka, J. O. Jensen, A. H. Carrieri, G. R. Famini, and C. F. Chabalowski, "Theoretical Prediction of Vibrational Circular Dichroism Spectra of Sugars", Summer 1990 U.S. Army Summer Faculty Contractor's Report to Battelle.
- 16. D. Zeroka, J. O. Jensen, and J. L. Jensen, "Theoretical Prediction of Vibrational Circular Dichroism of Hexoses in Linear Form", CRDEC-TR-375 Report (1992).
- 17. A. L. Lehninger, "Biochemistry", Worth Publishers, New York (1970).
- 18. M. J. Frisch, M. Head-Gordon, G. W. Trucks, J. B. Foresman, H. B. Schlegel, K. Raghavachari, M. Robb, J. S. Binkley, C. Gonzalez, D. J. Defrees, D. J. Fox, R. A. Whiteside, R. Seeger, C. F. Melius, J. Baker, R. L. Martin, L. R. Kahn, J. J. P. Stewart, S. Topiol, and J. A. Pople, Gaussian 90, Revision H, Gaussian, Inc., Pittsburgh PA, 1990.
- 19. M. J. Frisch, "Gaussian 90 User's Guide and Programmer's Reference", Department of Chemistry, Gaussian, Inc., Pittsburgh, PA (1990).

- 20. W. J. Hehre, L. Radom, P. von R. Schleyer and J. A. Pople, "Ab Initio Molecular Orbital Theory", John-Wiley, New York (1986).
- 21. T. Clark, "A Handbook of Computational Chemistry", Wiley-Interscience, New York (1985).
- 22. R. D. Amos, "The Cambridge Analytical Derivative Package Publication", CCP 1/84/4 SERC, Daresbury Laboratory, Daresbury, Warrington WA4 4AD (1984).

Figure 2. Optimized Geometry for R-Erythrose [CHO-HCOH-HCOH-CH2OH] Based on 6-31G* Level of Calculation.

R-THREOSE

Figure 3. Optimized Geometry for R-Threose [CHO-HOCH-HCOH-CH₂OH] Based on 6-31G* Level of Calculation.

Figure 4. VCD Spectrum of R-Glyceraldehyde [CHO-HCOH-CH₂OH] Based on 3-21G Level of Calculation.

Figure 5. VCD Spectrum of R-Erythrose [CHO-HCOH-HCOH-CH₂OH] Based on 3-21G Level of Calculation.

Figure 6. VCD Spectrum of R-Threose [CHO-HOCH-HCOH-CH₂OH] Based on 3-21G Level of Calculation.

Figure 7. VCD Spectrum of R-Glyceraldehyde [CHO-HCOH-CH₂OH] Based on 6-31G* Level of Calculation: (a) unscaled (b) scaled.

(b)

Figure 8. VCD Spectrum of R-Erythrose [CHO-HCOH-HCOH-CH₂OH] Based on 6-31G* Level of Calculation: (a) unscaled (b) scaled.

Figure 9. VCD Spectrum of R-Threose [CHO-HOCH-HCOH-CH₂OH] Based on 6-31G* Level of Calculation: (a) unscaled (b) scaled.

Table 1a. Optimized Geometries, Total Energies and Calculated Wavenumbers $\bar{\nu}$ for Formaldehyde [CH₂O] Based on Several Levels of Calculation.

ō

C2 H3 H4

parameter	3-21G	3-21G MP2	6-31G*	6-31G* MP2	Experiment
geometry (O'-C)/A (O'-C)/A (G'-C)/A (H'-C'-O'/)' 7(H'-C'-O'-H')/'	1.2069 1.0832 1.0832 122.5293 172.5293	1.2500 1.0994 1.0994 122.8893 172.8893	1.1843 1.0916 1.0916 122.1583 122.1583 179.9988	1.2200 1.1039 1.1039 122.1881 122.1881 179.9999	1.208 1.116 1.116 121.75 121.75 180
E/a.u.	-113.221820	-113.443254	-113.866331	-114.174958	ŧ
frequencies (cm ⁻¹) $ \dot{v}_1(\text{CH2 wag}) \dot{v}_2(\text{CH2 rock}) \dot{v}_3(\text{CH2 scissors}) \dot{v}_3(\text{CH2 scissors}) \dot{v}_3(\text{CH2 sym str}) \dot{v}_6(\text{CH2 sym str}) \dot{v}_6(\text{CH2 asym str}) $	1337. 1378. 1693. 1916. 3162.	1225. 1307. 1524. 1715. 2986.	1335. 1383. 1680. 2028. 3160.	1213. 1297. 1585. 1792. 3013.	1191. 1287. 1563. 1764. 2944.

Table 1b. Force Constant Matrix for Formaldehyde [CH₂O] at the 6-31G* HF Level of Calculation.

Table 1c. Force Constant Matrix for Formaldehyde [CH₂O] at the 6-31G* MP2 Level of Calculation.

```
FORCE CONSTANTS IN CARTESIAN COORDINATES (HARTREES/BOHR).
                                                              5
    0.743821D-01
 2 -0.2507760-07 0.186547D-01
6 0.9726850+00
 7 -0.881382D-01 0.2605980+00
11
11 0.2007280-01
12 0.1515930-06 0.1393830+00
FORCE CONSTANTS IN INTERNAL COORDINATES (ATOMIC UNITS).
                                                              5
   0.8366030+00
 2 0.3291030-01 0.3295220+00
 3 0.3291030-01 0.5197230-02
                              0.3295220+00
 4 0.5749010-01 -0.1061970-01 -0.2091510-01 0.3065970+00
 5 0.5749010-01 -0.2091510-01 -0.106197D-01 0.108957D+00 0.306597D+00 6 0.257913D-07 0.281068D-07 0.101300D-07 0.803072D-08 -0.224167D-06
 6 0.6255910-01
```

Table 1d. Force Constant Scaling Constants, Q(I), and C matrix for Formaldehyde [CH₂O] Based on Comparison of Force Constant Matrices at the 6-31G* HF and the 6-31G* MP2 Level of Calculation.

Q Values	
1	0(1)
1 2 3 4 5 6	0.767592E+00 0.909836E+00 0.909836E+00 0.922199E+00 0.922199E+00 0.845894E+00

C Matrix (6, 6)

		COLUMN 1	COLUMN 2	COLUMN 3
ROW	1	0.1000000000000+01		
ROW	2	0.9940161605610+00	0.1000000000000+01	
ROW	3	0.9940161660580+00	0.100043518827D+01	0.1000000000000+01
ROW	4	0.1080812857870+01	0.162688344235D+01	0.1022723080780+01
ROW	5	0.108081286251D+01	0.1022723081800+01	0.1626883222080+01
ROW	6	0.1000000000000+01	0.1000000000000+01	0.1000000000000+01
		COLUMN 4	COLUMN 5	COLUMN 6
ROW	4	0.1000000000000+01		
ROW	5	0.1033528367550+01	0.1000000000000+01	
ROW	6	0.1000000000000+01	0.1000000000000+01	0.1000000000000+01

Table 2a. Optimized Geometries, Total Energies and Calculated Wavenumbers v for Acetaldehyde [C₂H₄O] Based on Several Levels of Calculation.

O3 H4

C7 C2 C1 H5

H6

parameter	3-21G	3-21G MP2	6-31G*	6-31G* MP2	Experiment
geometry	1 6060	1 5000	1 6042	7103 1	
10-03/A	1.2085	1.2498	1.1877	1.2225))
r(C,-H,)/A	1.0856	1.0962	1.0866	1.0948	•
r(C,-H,)/A	1.0856	1.0962	1.0866	1.0948	•
r(C'-H')/A	1.0856	1.0920	1.0815	1.0901	•
r(穴-穴)/A	1.0866	1.1040	1.0952	1.1089	•
*(0'-C'-C')\	124.7907	124.8697	124.3941	124.3291	•
φ(H,-C,-C,)/•	109.8823	109.8638	109.8144	109.8692	•
φ(Hζ-C'-C')/•	109.8786	109.8632	109.8130	109.8712	•
φ(H,-C,-C,)/*	109.9623	109.1962	110.2725	109.8298	•
·('\'\'\'\'\'\'\'\	114.2974	113.7812	115.3303	115.3483	•
(H,-C,-C,-O,)/	239.1127	239.3247	238.8031	238.8477	
(H,-C,-C,-O,)/	120.8851	120.6651	121.1651	121.1716	•
(H,-C,-C,-O,)/	0.0021	-0.0047	-0.01414	0.0085	•
(C'-C'-C'-H')/.	59.1128	59.3262	58.8030	58.8444	•
E/a.u.	-152.055249	-152.367295	-152.915966	-153.358969	•

Table 2a. Optimized Geometries, Total Energies and Calculated Wavenumbers v for Acetaldehyde [C₂H₄O] Based on Several Levels of Calculation. (CONTINUED)

O3 H4

C7 C2 C1 H5

9H

parameter	3-21G	3-21G MP2	6-31G*	6-31G* MP2	Experiment
frequencies (cm ⁻¹)					
'د '	162	171	152	147	
'د:	531	494	547	22	
12	688	831	826	799	
آج (939	883	965	926	
.	1222	1147	1231	1168	
72 ت	1271	1185	1264	1170	
9 2	1555	1463	1535	1439	
`^	1565	1474	1566	1467	
929	1628	1560	1606	1527	
2,2	1645	1579	1616	1535	
2.2	1926	1658	2032	1801	
- 22	3158	2967	3151	2993	
2.7	3200	3087	3206	3107	
2.7	3248	3152	3260	3187	
. 2	3306	3195	3321	3237	

Table 2b. Force Constant Matrix for Acetaldehyde [C₂H₄O] at the 6-31G* HF Level of Calculation.

```
FORCE CONSTANTS IN CARTESIAN COORDINATES (HARTREES/BOHR).
       1 0.6840610+00
      2 0.1281730-05 0.5935850+00
3 -0.1464890-01 -0.1406870-04 0.5608790+00
      4 -0.1131580+00 -0.1137770-06 0.2710990-01 0.1071520+01 5 0.2139220-05 -0.1067150+00 0.1936450-05 0.1016230-05 0.2549400+00 6 0.3216610-01 0.7621120-05 -0.2421370+00 0.2525070+00 -0.1132820-05
 6 0.3216610-01 0.7621120-05 -0.2421370+00 0.2525070+00 -0.1132820-05
7 0.1303040-02 -0.2086820-05 -0.2251470-01 -0.7090470+00 -0.1187670-06
8 -0.2854970-05 0.2989700-01 -0.3124450-06 -0.3705560-06 -0.7685310-01
9 -0.5681620-01 -0.3387790-06 -0.3129800-01 -0.3852710+00 0.1320190-05
10 -0.1248050+00 0.1144890+00 -0.4300630-01 -0.1622940-02 -0.2127170-02
11 0.1137260+00 -0.2395120+00 0.7974520-01 -0.1629940-02 -0.2127170-02
12 -0.4308370-01 0.8416540-01 -0.9189340-01 -0.2387520-01 0.3638080-01
13 -0.1246740+00 -0.1144230+00 -0.4295860-01 -0.1624420-02 0.2123520-02
14 -0.1136620+00 -0.2396360+00 -0.7976100-01 0.1696620-02 0.2985630-02
15 -0.4303930-01 -0.8418730-01 -0.9188690-01 -0.2385550-01 -0.3639320-01
16 -0.3251970+00 -0.6647810-04 0.9882850-01 -0.3771240-03 0.1177340-05
17 -0.6632110-04 -0.5983490-01 0.2730030-04 0.1317120-05 -0.8992810-03
18 0.9254770-01 0.2643520-04 -0.9395340-01 0.4506490-01 0.1044390-04
19 0.2470080-02 0.1281050-05 -0.2809880-02 -0.2456910+00 -0.5564180-06
0 0.1326910-05 0.2221670-01 0.9512350-06 0.2669740-06 -0.7644230-01
0 0.2198690-05 -0.97100330-02 0.1083200+00 -0.151670-06
                0.7999250+00
      7 -0.3929200+00 0.7596720+00
            0.1325650-05 0.2549600-06 0.2556040-01
  8 0.1325650-05 0.2549600-06 0.2556040-01
9 -0.3916830+00 0.4516499+00 -0.1116160-05 0.4076730+00
10 -0.1375150-02 0.1309060-02 0.1248610-03 -0.1456940-02 0.1280970+00
11 -0.2863870-02 -0.4631440-03 -0.1217880-02 -0.2519890-03 -0.1254750+00
12 -0.5489440-02 0.1501300-03 -0.5217620-02 -0.7960090-02 0.5190390-01
13 -0.1378380-02 0.1308360-02 -0.1221810-03 -0.1456370-02 0.9995940-02
14 0.2860350-02 0.4641460-03 -0.1218270-02 0.2514180-03 -0.1528830-01
15 -0.5491350-02 0.1490930-03 0.5219490-02 -0.7955030-02 0.7975260-02
16 -0.2205850-02 0.3095160-02 0.3630110-06 0.6502400-04 -0.1287670-01
  11 0.2597780+00
   12 -0.8698250-01 0.9295270-01
    13 0.1530740-01 0.7980990-02 0.1279560+00
   14 -0.2448400-01 -0.1133360-01 0.1254010+00  
15 0.1133900-01 0.6334140-02 0.5185280-01  
16 -0.1019780-02 0.5053950-02 -0.1286340-01
                                                                                                                                                                0.2599170+00
                                                                                                                                                                0.8700480-01
                                                                                                                                                                                                               0.9294430-01
 17 0.2550940-02 -0.1265950-01 -0.2825010-01 0.2536310-02 0.1266210-01 18 -0.2062970-02 0.5248170-02 -0.1326690-01 0.2055410-02 0.5248180-02 19 -0.3772850-03 0.1869960-02 -0.9802040-04 0.3767040-03 0.1869940-02 0.0.9989040-04 -0.4352930-02 -0.3691880-04 -0.1000740-03 0.4355030-02 0.1077110-02 0.8078900-03 -0.7735910-03 -0.1077420-02 0.8066770-03 16 0.3472810+00
                                                                                                                                                                0.1011380-02
                                                                                                                                                                                                               0.5047700-02
    16 0.3472810+00
                0.7391100-04
                                                              0.5471470-01
  18 -0.1062990+00 -0.2675140-04 0.9693960-01
19 0.9381910-03 -0.7765370-07 -0.4664790-03 0.3001190+00
20 -0.5740330-06 0.2195020-02 -0.8524740-06 0.7420650-08 0.2713580-01
21 -0.4902070-03 -0.7765340-06 -0.7721090-02 -0.1069550+00 -0.9530090-06
   21 0.133957D+00
```

Table 2b. Force Constant Matrix for Acetaldehyde [C₂H₄O] at the 6-31G* HF Level of Calculation. (CONTINUED)

```
FORCE CONSTANTS IN INTERNAL COORDINATES (ATOMIC UNITS).

1 2 3 4
        0.3219090+00
       0.121954D-02 0.121909D-02 0.6278330-05
0.728245D-02 0.727750D-02 -0.981916D-02
      0.4123300-01 -0.1483760-02
      0.2433580-01 0.8852390-02 0.127007D-02 0.2433050-01 0.884882D-02 -0.927395D-02
                                                                              -0.9273530-02 -0.8191800-02
                                                                              0.1271650-02 -0.8192060-02
  10 0.2771220-01 -0.2363280-02 -0.8449450-02 -0.8449230-02 -0.1206580-02
 11 0.2917800-01 -0.6936370-01 0.1026650-02 0.1028150-02 0.5066840-02 12 -0.8003200-02 -0.9979980-04 0.3372780-02 0.1367160-01 -0.1259440-01 13 0.7998770-02 0.1001500-03 -0.1624850-01 -0.7964570-03 0.1259630-01 14 0.4727840-05 -0.9182820-06 0.1422340-01 -0.1422510-01 -0.7068560-06 15 0.4104060-05 -0.5063060-07 -0.2577260-02 0.2577120-02 -0.5135150-06
   6 0.352424D+00
  7 -0.179877D-01 0.498416D+00
8 0.203237D-02 0.272049D-01
9 0.203384D-02 0.271855D-01
                                                        0.2371210+00
 9 0.2033840-02 0.2718550-01 0.4202900-01 0.2371090+00 10 0.6273970-02 -0.3189590-01 0.3602020-01 0.3601950-01 0.2418400+00 11 0.7337060-02 0.2147290+00 -0.7672540-02 -0.7668550-02 0.2854560-01
 12 0.400707b-03 -0.708084b-02 0.180492b-01 -0.814280b-01 0.617760b-01 13 -0.400594b-03 0.707806b-02 0.655500b-01 -0.217716b-02 -0.617702b-01 14 -0.876313b-08 -0.197109b-05 -0.635048b-01 0.6355050b-01 0.296475b-06
 15 -0.1395910-06 -0.1134530-06 -0.1586700-01 0.1587570-01 -0.3087920-05
  11 0.3497770+00
  12 -0.8573790-03 0.2897720+00
 13 0.8541950-03 -0.1024530+00 0.1949570+00
14 0.2877280-05 -0.1022500+00 -0.9438500-01
                                                                              0.2011180+00
  15 0.4447900-05 -0.9488980-01 0.7299720-04 0.7872700-02 0.9496590-01
```

Table 2c. Force Constant Matrix for Acetaldehyde [C₂H₄O] at the 6-31G* MP2 Level of Calculation.

```
FORCE CONSTANTS IN CARTESIAN COORDINATES (HARTREES/BOHR).
                                                                                                                                                        5
     1 0.6392170+00
    2 -0.1322520-05 0.5591830+00
    3 -0.1244260-01 0.1164900-04 0.5106920+00
   5 -0.1863620-06 -0.9148430-01 -0.2512280-05 -0.1516120-04 0.2134860+00 6 0.282975D-01 -0.231795D-05 -0.224042D+00 0.166307D+00 0.622192D-05 7 0.176091D-02 0.130506D-07 -0.2345740-01 -0.549245D+00 0.370950D-05 0.24042D+00 0.549245D+00 0.370950D-05 0.24042D-00 0.549245D+00 0.370950D-05 0.24042D-00 0.549245D+00 0.370950D-05 0.37095
    8 0.8943160-06 0.2501180-01 0.3541070-06 0.2333640-05 -0.6238420-01 9 -0.4930810-01 -0.8166640-06 -0.3028800-01 -0.2877310+00 -0.2839850-06
  10 -0.1158390+00 0.1107470+00 -0.4091200-01 -0.1158450-02 -0.1614910-02
  11 0.1101320+00 -0.2286020+00 0.7675350-01 -0.1477070-02 0.2756400-02 12 -0.4228890-01 0.8153200-01 -0.8116050-01 -0.2224510-01 0.3159950-01
 21 0.2998870-01 -0.2831810-05 -0.1108470-01 0.9871520-01 -0.4896350-05
    6 0.6842840+00
    7 -0.2940650+00 0.5931030+00
    8 -0.1502660-05 -0.3431010-05 0.2035300-01
    9 -0.3060080+00 0.3472270+00 0.6063680-06 0.3214270+00
  10 -0.1601750-02 0.9634690-03 -0.7878350-04 -0.1449290-02 0.1194880+00
  11 -0.2615390-02 -0.8506660-03 -0.1083730-02 -0.7061780-03 -0.1200290+00
  12 -0.7909880-02 0.1249090-02 -0.4171890-02 -0.5850720-02 0.4993990-01 13 -0.1600300-02 0.9639860-03 0.7740530-04 -0.1449570-02 0.8140320-02
  14 0.261727D-02 0.850240D-03 -0.108332D-02 0.706858D-03 -0.147906D-01 15 -0.790721D-02 0.124901D-02 0.417097D-02 -0.585383D-02 0.673004D-02
 11 0.2464830+00
  12 -0.8326620-01 0.8453350-01
  13 0.1478060-01 0.6727140-02 0.1195690+00 14 -0.2155260-01 -0.1064200-01 0.1200700+00 0.2464010+00
  15 0.1063880-01 0.5208100-02 0.4997220-01 16 -0.2444500-02 0.4985810-02 -0.1118490-01
                                                                                                        0.8325730-01
                                                                                                                                        0.8454130-01
                                                                                                        0.244864D-02
                                                                                                                                        0.4989270-02
  17 0.202944D-02 -0.112507D-01 -0.257437D-01 0.203660D-02 18 -0.148463D-02 0.420690D-02 -0.122769D-01 0.148871D-02
                                                                                                                                       0.1124910-01
                                                                                                                                        0.4207270-02
  20 -0.2986500-04 -0.3800200-02 -0.1730070-04 -0.3018850-04 0.3799100-02 21 0.6802630-03 0.9735500-03 -0.4307940-03 -0.6801540-03 0.9738330-03
                        16
  16 0.3292820+00
  17 -0.4154310-04
                                        0.4988290-01
  18 -0.1001110+00
                                          0.1476460-04
                                                                       0.8759800-01
                                         0.9465560-07 -0.9057660-03 0.2687110+00 0.2318940-02 0.1194900-06 -0.1225560-04 0.2299930-01 0.2968460-06 -0.6892890-02 -0.9803020-01 0.6651360-05
  19 0.8161990-03
          0.1618520-06
  21 -0.2597600-03
  21 0.1217060+00
```

Table 2c. Force Constant Matrix for Acetaldehyde [C₂H₄O] at the 6-31G* MP2 Level of Calculation. (CONTINUED)

```
FORCE CONSTANTS IN INTERNAL COORDINATES (ATOMIC UNITS).
     0.3040510+00
     0.3949470-01 0.8301170+00
  3 0.3914060-02 -0.1045520-03 0.353787D+00
4 0.3913250-02 -0.103821D-03 0.131165D-02 0.353792D+00
5 0.222062D-02 0.367501D-03 0.536268D-03 0.536148D-03 0.365363D+00
6 0.737696D-02 0.344278D-01 0.582132D-03 0.582290D-03 -0.751155D-04
7 0.368870D-01 -0.361651D-03 0.611013D-02 0.611273D-02 -0.898860-02
 8 0.252019D-01 0.5067130-02 -0.437458D-03 -0.872032D-02 -0.758231D-02 9 0.252028D-01 0.507064D-02 -0.871999D-02 -0.438082D-03 -0.758233D-02 10 0.269544D-01 -0.354849D-02 -0.773000D-02 -0.773038D-02 -0.111160D-03
 11 0.298492D-01 -0.645617D-01 0.410264D-03 0.409747D-03 0.492996D-02 12 -0.845426D-02 -0.114775D-02 0.340626D-02 0.136007D-01 -0.123886D-01
13 0.8456920-02 0.1144170-02 -0.1598430-01 -0.1021820-02 0.1238740-01  
14 -0.2578780-05 0.5265710-06 0.1370040-01 -0.1369960-01 0.3878130-06  
15 -0.1512200-05 0.3754660-05 -0.2384140-02 0.2383650-02 0.2841140-06
  6 0.3176230+00
     -0.1400750-01
                         0.4504850+00
  8 0.1893410-02
                         0.2356410-01 0.2119470+00
     0.1892900-02
                         0.2357480-01
                                             0.3750800-01
                                                                0.2119510+00
 10 0.4725530-02
                         0.218617D+00
11 0.3196690+00
 12 -0.7785270-03
                         0.2611480+00
 13 0.7835180-03 -0.9397910-01 0.1786620+00
 14 -0.1093860-05 -0.9554600-01 -0.8702920-01
                                                                0.1873260+00
 15 -0.5399590-05 -0.8248650-01 0.2945170-05 0.8510390-02 0.8248770-01
```

Table 2d. Force Constant Scaling Constants, Q(I), and C matrix for Acetaldehyde [C₂H₄O] Based on Comparison of Force Constant Matrices at the 6-31G* HF and the 6-31G* MP2 Level of Calculation.

Q Values	9(1)
•	
1	0.944523E+00
2	0.776971E+00
3	0.950131E+00
4	0.950162E+00
5	0.945737E+00
6	0.901252E+00
7	0.903834E+00
8	0.893833E+00
9	0.893899E+00
10	0.903976E+00
11	0.913922E+00
12	0.901219E+00
13	0.916417E+00
14	0.931421E+00
15	0.868603E+00

C Matrix (15,15)

	_	COLUMN 1	COLUMN	2	COLUMN	3
ROW	1	0.1000000000000+01	0. 100000000			
ROW	Š	0.1030795274650+01	0.1000000000		0.100000000	
ROW	3	0.9386423687850+00 0.9381055447140+00	a. 100000000		0.404266486	
ROW		0.4381055447140+00	0.183624166		0.230042054	
ROW	5 6	0.1112673929090+01	0.100454684		0.5158366943	
ROU	7	0.9682286236270+00	0.290857463		0.9053925154	
ROM	á	0.112707827932D+01	0.686864995		-0.373757515	
ROW	9	0.1127323764210+01	0.687591888		0.102026997	
ROW	10	0.105262308006D+01	0.007397668		0.9871450514	
ROU	11	0.1101071248530+01	0.1104550754		0.428839228	
ROW	12	0.1144959691830+01	0.100000000		0.109139738	
ROM	13	0.1136412414050+01	0.100000000		0.105424812	
ROW	14	0.10000000000000+01	0.100000000		0.102391786	
ROW	15	0.1000000000000+01	0.100000000		0.101829012	
KOW	13	0.1000000000000	0.10000000	0000+01	0.101027012.	JOHO * 0 1
		COLUMN 4	COLUMN	5	COLUMN	6
ROW	4	0.10000000000000+01				
ROH	5	0.2299562794560+00	0.100000000			
ROW	6	0.5161567817750+00	0.1000000000	000D+01	0.100000000	
ROW	7	0.9063787530310+00	0.990149841	3170+00	0.862813514	
ROW	8	0.1020376508100+01	0.100672028		0.1037982750	
ROW	9	-0.3738041726360+00	0.100665397		0.103691541	
ROW	10	0.9872029159690+00	0.996395298		0.834461492	
ROW	11	0.4276675023240+00	0.104656321		0.1642306167	
ROW	12	0.1075047943660+01	0.106547847		0.100000000	
ROW	13	0.1000000000000+01	0.105634881		0.1000000000	
ROW	14	0.1023720717970+01	0.100000000		0.100000000	
ROW	15	0.1018117537850+01	0.100000000	00 00+ 01	0.100000000	000D+01
		COLUMN 7	COLUMN	8	COLUMN	9
ROW	7	0.100000000000+01	COLUMN 1	9	COLORM	•
ROU	ė	0.9636760992090+00	0.100000000	10400401		
ROW	Š	0.9647669694670+00	0.9983959193		0.100000000	0000+01
ROW	10	0.9776280830850+00	0.969147124		0.9692193656	
ROW	11	0.9829551547200+00	0.109369383		0.109433799	
ROW	12	0.1084325631700+01	0.908962364		0.101527518	
ROU	13	0.1076837617090+01	0.101404507		0.3441635713	
ROW	14	0.1000000000000+01	0.100440816		0.100437766	
ROU	15	0.10000000000000+01	0.100483290		0.100399564	
~~~						,

Table 2d. Force Constant Scaling Constants, Q(I), and C matrix for Acetaldehyde [C₂H₄O] Based on Comparison of Force Constant Matrices at the 6-31G* HF and the 6-31G* MP2 Level of Calculation. (CONTINUED)

		COLUMN 10	COLUMN 11	COLUMN 12
ROW	10	0.100000000000D+01		
ROW	11	0.102918595991D+01	0.1000000000000+01	
ROW	12	0.1026530331500+01	0.1000000000000+01	0.1000000000000+01
ROW	13	0.1018119419980+01	0.1000000000000+01	0.100935262282D+01
ROW	14	0.1000000000000+01	0.1000000000000+01	0.1019912688580+01
ROW	15	0.1000000000000+01	0.100000000000+01	0.9825120012670+00
		COLUMN 13	COLUMN 14	COLUMN 15
ROW	13	0.1000000000000+01		
ROW	14	0.9980269837240+00	0.1000000000000+01	
ROW	15	0.1000000000000+01	0.1201826438550+01	0.1000000000000+01

Table 3a. Optimized Geometries, Total Energies and Calculated Wavenumbers  $\dot{\nu}$  for Methanol [CH₃OH] Based on Several Levels of Calculation.

H2

H3 C1 O5 H6

H4

parameter	3-21G	3-21G MP2	6-31G*	6-31G* MP2	Experiment
	1.0851 1.0851 1.0786 1.4409 0.9658 108.6009 112.2366 110.3343 241.9887 124.7839 -61.4165	1.0980 1.0980 1.0980 1.4709 0.9915 108.4380 108.4942 112.8587 107.0565 242.3481 125.7980 -61.6912	1.0874 1.0874 1.0874 1.3996 0.9463 108.3925 112.0363 109.4474 242.3911 124.3429 -61.2228	1.0968 1.0968 1.0896 1.4229 0.9700 108.7703 108.4878 112.3174 107.4264 242.176 124.9632 -61.5056	
E/a.u.	-114.398019	-114.612722	-115.035418	-115.353295	1

Table 3a. Optimized Geometries, Total Energies and Calculated Wavenumbers  $\dot{\nu}$  for Methanol [CH₃OH] Based on Several Levels of Calculation. (CONTINUED)

H2

H3 C1 O5 H6

H4

parameter	3-21G	3-21G MP2	6-31G*	6-31G* MP2	Experiment
frequencies (cm ⁻¹ )					
v,(torsion)	360	380	348	352	295
v'(CO str)	1090	990	1164	1085	1033
v,(ČH3 rock)	1153	1098	1189	1114	1060
v'(CH3 rock)	1254	1181	1290	1205	1165
v.(OH bend)	1480	1417	1508	1418	1345
v.(CH3 s-deform)	1638	1555	1638	1540	1455
v,(CH3 d-deform)	1686	1606	1652	1566	1477
v'(CH3 d-deform)	1698	1623	1663	1580	1477
v.(CH3 s-str)	3179	3050	3185	3077	2844
v., (CH3-d-str)	3218	3094	3231	3144	2960
v''(CH3-d-str)	3294	3183	3305	3223	3000
'''' (OH str)	3868	3521	4118	3798	3681

Table 3b. Force Constant Matrix for Methanol [CH₃OH] at the 6-31G* HF Level of Calculation.

```
FORCE CONSTANTS IN CARTESIAN COORDINATES (HARTREES/BOHR).
1 0.6417790+00
2 -0.4999490-01 0.6420460+00
3 -0.2528970-02 -0.3587470-01 0.6434920+00
4 -0.6613600-01 0.1396060-02 0.1208730-01 0.6284870-01
5 0.3491540-02 -0.6625150-01 0.1706320-01 0.6722390-02 0.6709050-01
6 0.8906390-02 0.1278470-01 -0.3339400+00 -0.2847980-02 -0.3936580-02
7 -0.3000940+00 0.1255940-01 0.8801180-01 0.1645460-02 0.1536140-02
8 0.1728250-01 -0.6625160-01 -0.2157850-02 -0.2013840-02 0.2904600-02
9 0.9119190-01 -0.2772470-02 -0.9998120-01 0.3693010-01 -0.2645450-02
10 -0.1286720+00 0.1214980+00 -0.4572560-01 0.2501970-02 -0.2491730-02
11 0.1085780+00 -0.254290+00 0.7790380-01 0.7874960-03 0.2085710-02
12 -0.4572520-01 0.8717370-01 -0.9775110-01 -0.1867560-01 0.3172340-01
13 -0.1572490+00 -0.5487150-01 -0.5929500-01 -0.9858180-03 -0.9897640-02
14 -0.9894150-01 -0.2231600+00 -0.7098950-01 -0.8169150-02 -0.8043750-02
15 -0.5929190-01 -0.3936410-01 -0.1171570+00 -0.2841860-01 -0.4113800-01
16 0.1037260-01 -0.3058670-01 0.7750560-02 0.1257610-03 0.6393040-03
         0.6417790+00
  16 0.1037260-01 -0.305867D-01 0.7450560-02 0.125761D-03 0.639304D-03 17 0.195844D-01 -0.321734D-01 0.140550D-01 0.127705D-02 0.221440D-02 18 0.744776D-02 -0.219471D-01 0.533777D-02 0.924797D-03 -0.106662D-02
    6 0.3659300+00
    7 0.1875120-02 0.3331060+00
8 0.2302490-02 -0.1576860-02 0.6709040-01
 8 0.2502490-02 -0.1576805-02 0.765960-01 0.7628900-02 0.9567110-01  
10 0.1171080-02 -0.1445260-01 0.2925380-01 -0.1294290-01 0.1292250+00  
11 0.1848350-02 0.2003450-02 0.2085520-02 0.1542250-03 -0.1164070+00  
12 -0.1047230-01 0.6903900-02 -0.1252160-01 0.6482380-02 0.5165580-01  
13 -0.8865620-02 -0.2055800-01 -0.4214000-01 -0.2179990-01 0.1317270-01
  14 -0.130121D-01 -0.1494360-01 -0.804272D-02 -0.3570360-02 -0.2651140-01  
15 -0.1018990-01 -0.2247860-02 0.3800830-02 0.9383410-02 0.748377D-02
 11
                                                                12
                                                                                                   13
  11 0.2908600+00
  12 -0.835222D-01 0.9429200-01
  13 0.9580870-02 0.7482980-02 0.3055060+00
 14 -0.375962D-01 -0.1902100-01 -0.765617D-01 0.722348D+00
15 0.687590D-02 0.811271D-02 0.180301D+00 -0.549828D-01 0.183634D+00
16 -0.454245D-02 -0.164195D-02 -0.139886D+00 0.225127D+00 -0.978262D-01
17 -0.322601D-02 -0.383221D-02 0.173890D+00 -0.445505D+00 0.124808D+00
18 -0.326005D-02 -0.6637760-03 -0.978231D-01 0.1615760+00 -0.737837D-01
                           16
  16 0.1308080+00
17 -0.1898320+00 0.4764760+00
18 0.9140890-01 -0.1362490+00 0.6904190-01
FORCE CONSTANTS IN INTERNAL COORDINATES (ATOMIC UNITS).
            0.3659300+00
    2 0.5451910-02 0.3659290+00
3 0.4343490-02 0.4343650-02 0.3847760+00
4 0.1847750-01 0.1847800-01 0.1210660-01 0.4285660+00
     5 -0.6606890-04 -0.6632690-04 -0.2303180-02 -0.2859270-02 0.6087050+00 6 0.2110490-01 0.5853040-02 -0.1120930-01 -0.3296180-01 0.1592450-02 7 0.1959510-01 -0.1256070-01 0.2780730-02 -0.3328700-01 -0.3664830-02
  8 0.8809580-02 -0.4139180-02 -0.5666590-02 -0.2025120-02 -0.5675780-02 9 0.1541180-03 0.1544750-03 0.4015280-02 0.4771380-01 0.1629150-01 0.3672230-02 -0.1473690-01 -0.4373440-02 0.5235650-01 0.5763910-02 11 0.8100510-03 0.7072640-02 -0.9565260-02 -0.3421360-02 -0.9578580-02
   12 0.4379440-03 -0.4372510-03 -0.4976950-06 -0.1296720-05 0.7873210-06
    6 0.2654040+00
7 0.4456550-01 0.2557080+00
     8 0.8353960-01 0.7055310-01 0.3547520+00
            0.4410220-02 -0.1592300-01 -0.1697340-01 0.2052400+00
   10 0.5816890-01 -0.2652270-01 -0.8162220-01 0.2564510-01 0.2567850+00 11 -0.850590-01 0.8846970-01 -0.1301840-03 -0.2864850-01 -0.1553110+00
   12 0.2350090-02 -0.1516270-02 -0.2487400-02 -0.1074020-05 -0.8703750-03
   11 0.3080860+00
   12 0.4938830-02 0.9781450-02
```

Table 3c. Force Constant Matrix for Methanol [CH₃OH] at the 6-31G* MP2 Level of Calculation.

```
FORCE CONSTANTS IN CARTESIAN COORDINATES (HARTREES/BOHR).
                                                                                                                                                           5
         0.5879090+00
    2 -0.5868590-01 0.5790280+00
   3 -0.9716470-02 -0.4203120-01 0.5945050+00

4 -0.5864470-01 0.1548710-02 0.1114900-01 0.5659700-01

5 0.3217960-02 -0.5792390-01 0.1518260-01 0.5518350-02 0.5908280-01

6 0.9157310-02 0.1322270-01 -0.3171350+00 -0.3366880-02 -0.4865280-02
    7 -0.284188D+00 0.130157D-01 0.858068D-01 0.109030D-02 0.176755D-02 8 0.154102D-01 -0.579242D-01 -0.183940D-02 -0.170556D-02 0.260839D-02 9 0.877996D-01 -0.278954D-02 -0.915951D-01 0.334341D-01 -0.240212D-02
 9 0.877990-01 -0.2789940-02 -0.9159510-01 0.3343410-01 -0.2402120-02 10 -0.1191100+00 0.1173010+00 -0.4403970-01 0.2009250-02 -0.2147300-02 11 0.1069300+00 -0.2404450+00 0.7659770-01 0.9194630-03 0.1810360-02 12 -0.44040300-01 0.8402700-01 -0.8917610-01 -0.1691150-01 0.2873240-01 13 -0.1314890+00 -0.4325200-01 -0.4758770-01 -0.7957980-03 -0.8465240-02 14 -0.8516240-01 -0.1914210+00 -0.6100350-01 -0.7859230-02 -0.7787250-02 15 -0.479420-01 -0.3099500-01 -0.9913150-01 -0.2499100-01 -0.3526810-01 14 0.5530540-03 -0.2002700-01 0.9913150-01 -0.249910-01 -0.3526810-01
  16 0.5520560-02 -0.2992790-01 0.4388070-02 -0.2551490-03 0.1083590-03 17 0.1828930-01 -0.3131650-01 0.1309350-01 0.1578040-02 0.2210240-02
  18 0.4394200-02 -0.2143390-01 0.2531500-02 0.6859010-03 -0.1379560-02
    6 0.344251D+00
   7 0.2847780-04 0.3124190+00
8 0.2446500-02 -0.2830620-02 0.5908230-01
9 -0.1028160-01 -0.9030790-01 0.6790690-02
  9 -0.1028160-01 -0.9030790-01 0.6790690-02 0.8843190-01 10 0.2093980-02 -0.1244790-01 0.2651340-01 -0.1199830-01 0.1206000+00
  11 0.1843440-03 0.4698780-03 0.1810710-02 0.818800-03 -0.1123500+00
12 -0.9082350-02 0.7007000-02 -0.1127860-01 0.5374940-02 0.4939170-01
13 -0.7284800-02 -0.1711250-01 -0.3611620-01 -0.1944590-01 0.1021900-01
                                                                                                         -0.3730220-02 -0.2397060-01
  14 -0.115314D-01 -0.134447D-01 -0.778804D-02
  15 -0.8027690-02 -0.1738320-02 0.3333830-02 0.8287820-02 0.5915570-02 16 -0.6277010-03 0.2391770-03 -0.1271370-02 0.5181490-03 -0.1270920-02 17 0.5431440-03 0.1022110-02 0.2211480-02 0.1320140-02 -0.5346690-02 18 0.2753670-03 -0.7954580-03 0.5466280-03 -0.2171170-03 -0.1363500-02
  11 0.2728970+00
  12 -0.8047880-01 0.8703080-01
  13 0.765461D-02 0.591720D-02 0.261740D+00
  14 -0.3247350-01 -0.1717200-01 -0.6828410-01 0.6073930+00
15 0.5479850-02 0.6196740-02 0.1535410+00 -0.4881230-01 0.1572620+00
16 -0.3623490-02 -0.1364170-02 -0.1225620+00 0.1987200+00 -0.8513350-01
17 -0.3599890-02 -0.3830040-02 0.1484640+00 -0.3679240+00 0.1062630+00
18 -0.2593430-02 -0.3437580-03 -0.8514030-01 0.1422490+00 -0.6458640-01
                         16
  16 0.1183290+00
17 -0.1640060+00 0.3984190+00
18 0.8221940-01 -0.1173890+00 0.6234010-01
FORCE CONSTANTS IN INTERNAL COORDINATES (ATOMIC UNITS).
     1 0.344251D+00
    2 0.3335330-02 0.3442540+00
    3 0.210766D-02 0.210719D-02 0.364468D+00
4 0.154691D-01 0.154669D-01 0.967392D-02 0.372242D+00
    5 -0.646131D-03 -0.6454540-03 -0.180439D-02 -0.586762D-02 0.517617D+00 6 0.201574D-01 0.697820D-02 -0.108686D-01 -0.301503D-01 0.256780D-02 7 0.182676D-01 -0.120995D-01 0.302104D-02 -0.311631D-01 -0.431624D-02
  8 0.5183940-02 -0.2256750-02 -0.4856370-02 -0.2870460-02 -0.6606970-02
9 0.1906070-04 0.1820260-04 0.3368550-02 0.5428420-01 0.1831170-01
10 0.3784380-02 -0.1351910-01 -0.4769300-02 0.4918860-01 0.6817130-02
11 0.1016300-02 0.3971080-02 -0.8271950-02 -0.4892520-02 -0.1125950-01
12 0.1030570-02 -0.1032490-02 0.1437540-05 0.3700530-05 -0.1757830-05
           0.2431260+00
           0.4052820-01 0.2333330+00
     8 0.7550450-01 0.6191470-01 0.3158960+00
         0.3788880-02 -0.1479220-01 -0.1490130-01 0.1948440+00
  10 0.532641D-01 -0.226522D-01 -0.733465D-01 0.233477D-01 0.232714D+00 11 -0.757024D-01 0.796898D-01 0.216012D-03 -0.253891D-01 -0.139631D+00
  12 0.2558560-02 -0.1957230-02 -0.228941D-02 0.306848D-05 -0.110895D-02
  11 0.2740490+00
  12 0.5184130-02 0.1064290-01
```

Table 3d. Force Constant Scaling Constants, Q(I), and C matrix for Methanol [CH₂OH] Based on Comparison of Force Constant Matrices at the 6-31G* HF and the 6-31G* MP2 Level of Calculation.

Q Values	
1	(1)0
1	0.940758E+00
2	0.940768E+00
3	0.947221E+00
4	0.868576E+00
5	0.850357E+00
6	0.916061E+00
7	0.912498E+00
8	0.890468E+00
9	0.949345E+00
10	0.906260E+00
11	0.889519E+00
12	0.108807E+01

## C Matrix (12,12)

		COLUMN 1	COLUMN 2	COLUMN	3
ROW	1	0.1000000000000+01			
ROW	2	0.6502954116590+00	0.1000000000000		
ROW	3	0.5140403461000+00	0.5139045937630		
ROW	4	0.9261413631490+00	0.9259810514700		
ROW	5	0.10000000000000+01	0.10000000000000		
ROU	6	0.1028846760920+01	0.1284276659180		
ROW	7	0.1006190377090+01	0.1039670405330		
ROW	8	0.6429198924580+00	0.5956862918470		
ROW	9	0.10000000000000+01	0.1000000000000		
ROW	10	0.1116090528640+01	0.9935180158590		
ROW	11	0.10000000000000+01	0.6137725388290		
ROW	12	0.1000000000000+01	0.10000000000000	+01 0.1000000000	000+01
		COLUMN 4	COLUMN 5	COLUMN	6
ROW	4	0.1000000000000+01			
ROW	5	0.2387824585050+01	0.10000000000000	+01	
ROW	6	0.1025450557200+01	0.1826977911720	+01 0.1000000000	000+01
ROW	7	0.1051591939140+01	0.1337633179980	+01 0.9946721727	300+00
ROW	8	0.1611711606830+01	0.1337724677030	+01 0.1000712571	710+01
ROW	9	0.1252889702710+01	0.1250995808390	+01 0.9212478106	24D+00
ROW	10	0.1058919393620+01	0.1347279287550	+01 0.1004973683	51D+01
ROU	11	0.1626867446280+01	0.1351579544440		
ROW	12	0.1000000000000+01	0.1000000000000	+01 0.1090489911	990+01
		COLUMN 7	COLUMN 8	COLUMN	9
ROW	7	0.1000000000000+01		<del>+</del>	
ROW	8	0.9735383332600+00	0.10000000000000	+01	
ROW	9	0.9981091744100+00	0.9548449126220	+00 0.1000000000	000+01
ROW	10	0.9391810170590+00	0.1000317132650	+01 0.1005038582	880+01
ROW	11	0.9998041162340+00	0.1000000000000	+01 0.9643989838	570+00
ROW	12	0.1295452731180+01	0.9350635795930	+00 0.1000000000	000+01
		COLUMN 10	COLUMN 11	COLUMN	12
BOLL	10	COLUMN 10 0.1000000000000+01	CULUMN II	COLUMN	16
ROW		0.100132438001D+01	0.1000000000000		
ROW	11				000.04
ROW	12	0.1000000000000+01	0.1066957376500	+01 0.1000000000	UUU+U1

Table 4a. Optimized Geometries, Total Energies and Calculated Wavenumbers  $\dot{\nu}$  for Ethanol [C₂H₆O] Based on Several Levels of Calculation.

H4 H8

H5 C1 C2 O3 H9

H6 H7

Experiment	
6-31G* MP2	1.5183 1.4270 1.0940 1.0947 1.0918 1.0920 0.9717 111.2820 111.0791 110.7650 109.9832 110.4819 110.5177 107.0600 183.1188 63.3273 -56.3440 58.7372 -59.9815
6-31G*	1.5214 1.4037 1.0860 1.0874 1.0844 1.0844 1.0821 0.9472 112.4790 110.8558 111.0359 110.2089 110.2089 110.2089 110.2089 110.2089 110.2089 109.3783 62.6959 -57.1645 -58.4414 59.8060 -64.0085
3-21G MP2	1.5413 1.4737 1.0946 1.0962 1.0930 1.0930 1.0914 0.9930 111.7738 110.5287 110.5287 110.2315 110.2315 116.5869 1185.1689 65.1689 65.1689 65.1689 65.1689 65.1689
3-21G	1.5315 1.4435 1.0837 1.0856 1.0852 1.0788 0.9666 111.6631 110.7423 110.2823 110.2823 110.2823 110.2823 110.2823 110.1141 184.6308 64.5741 -55.0392 60.5775 -58.7615
parameter	

Table 4a. Optimized Geometries, Total Energies and Calculated Wavenumbers  $\dot{\nu}$  for Ethanol [C₂H₆O] Based on Several Levels of Calculation. (CONTINUED)

H4 H8

H5 C1 C2 O3 H9

H6 H7

Experiment	
6-31G* MP2	285 329 430 829 11099 1174 1174 1174 1175 1175 3105 3105 3105 3105 3105
6-31G*	278 328 453 868 966 11150 11195 11246 1509 1578 1673 3185 3185 3277 3287
3-21G MP2	275 352 393 842 880 1035 1098 1167 1351 1424 1490 1595 1602 1618 3056 3087 3182 3182
3-21G	270 336 423 891 933 1110 1156 1234 1411 1663 1671 1671 1663 3189 3189 3248 3277 3290
parameter	frequencies (cm ⁻¹ )

Table 4b. Force Constant Matrix for Ethanol [C₂H₆O] at the 6-31G* HF Level of Calculation.

```
FORCE CONSTANTS IN CARTESIAN COORDINATES (HARTREES/BOHR).
               0.6584420+00
1 0.6584420+00
2 0.6164760-02 0.6483350+00
3 -0.1512410-02 -0.2335270-02 0.5593530+00
4 -0.9546460-01 -0.1850720-03 0.9953220-02 0.6126190+00
5 0.2080230-02 -0.1042140+00 0.1037250-02 -0.1750130-01 0.7240540+00
6 0.2354640-01 -0.5493770-03 -0.2363850+00 -0.4226830-01 0.1795770-01
7 -0.1733400-01 0.2083890-02 -0.9370670-02 -0.2621700+00 -0.2216230-01
8 -0.3518040-03 0.5057270-02 -0.1103490-02 0.2330390-01 -0.1128150+00
9 -0.5493180-01 0.5340670-03 -0.1560020-01 -0.5821750-01 -0.2570460-01
10 -0.3077780+00 0.1042150-01 -0.9428580-01 0.1373080-02 -0.2811370-03
11 0.1063110-01 -0.5912760-01 0.4562320-02 0.4730760-04 -0.1836210-02
12 -0.9115600-01 0.4484800-02 -0.9679290-01 -0.382550-01 0.1929330-02
13 -0.1106160+00 0.9873160-01 0.4232150-01 -0.1640990-02 0.4805430-03
14 0.9950780-01 -0.2540580+00 -0.8094100-01 0.2601550-03 0.1442130-02
15 0.4085250-01 -0.7992470-01 -0.9364700-01 0.1998310-01 -0.3732930-01
16 -0.1345610+00 -0.1159740+00 0.5133590-01 -0.1366200-02 -0.4127920-03
17 -0.1160140+00 -0.2415310+00 0.7845590-01 0.1998310-01 -0.3732930-01
19 0.3041460-02 -0.1128030-02 0.9142160-03 -0.1241290+00 -0.9570490-01
20 0.8318370-03 0.1965540-02 -0.1913960-02 -0.1013160+00 -0.2379060+00
21 0.196660-01 0.3352310-01 -0.1302820-01 0.4719760-01 -0.8764440-01
22 0.2060490-02 0.2232550-03 0.5920920-03 -0.1055900+00 0.8848830-01
23 -0.1515630-02 0.2899460-02 0.1426100-02 0.1014480+00 -0.2715730+00
24 0.1635870-01 -0.3460100-01 -0.1316270-01 0.4719760-01 -0.8764440-01
25 0.2208860-02 -0.3380390-03 0.595130-04 -0.2363120-01 0.4501330-01
24 -0.1334580-02 -0.3380390-03 0.595130-04 -0.2363120-01 0.45131310-00
                0.616476D-02 0.648335D+00
   25 0.2208860-02 -0.3380390-03 0.5195130-04 -0.2363120-01 0.4501330-01 26 -0.1334350-02 0.6737630-03 0.8121720-03 -0.6126890-02 0.1312110-02 27 -0.1222640-02 0.2767950-02 0.1173990-02 -0.1171400-01 0.1817990-01
                0.575244D+00
        7 -0.872272D-01 0.498540D+00
        8 -0.6798650-02 -0.2163960+00 0.5336820+00
 9 -0.1136970+00 0.6776670-01 0.1600710+00 0.1751830+00
                                              11
     11 0.5550040-01
   0.9894230-01
                                                                                                                                                                                                                                                            -0.731186D-02

      17
      0.3544380-02
      -0.2520960-02
      -0.1619550-01
      -0.2546150-01
      0.1056900-01

      18
      -0.1258850-01
      0.5267980-02
      -0.8261350-02
      -0.1028020-01
      0.4914620-02

      19
      0.4412570-05
      0.1193040-02
      -0.3285230-03
      -0.1836200-03
      -0.2841570-03

      20
      -0.8951910-04
      0.9341270-03
      -0.3443190-04
      0.1160220-02
      0.8525020-03

      21
      -0.1552090-03
      0.1282730-02
      0.3325510-03
      -0.9697850-03
      0.2062820-02
```

Table 4b. Force Constant Matrix for Ethanol [C₂H₆O] at the 6-31G* HF Level of Calculation. (CONTINUED 1)

```
16 17 18 19 20

16 0.1387850+00

17 0.1289640+00 0.2572140+00

18 -0.5642160-01 -0.8507990-01 0.9705520-01

19 0.1119950-02 -0.1719670-03 -0.4053630-03 0.1475280+00

20 0.4480290-03 0.1789260-02 -0.3580490-03 0.1180410+00 0.2467700+00

21 -0.8231690-04 -0.5491400-03 -0.8606840-02 -0.4760370-01 -0.8320520-01

22 -0.2736520-03 0.3242650-03 -0.7639030-04 0.1101330-01 -0.1522580-01

23 0.3932520-04 0.1060390-02 -0.6016850-03 0.1119320-01 -0.2464590-01

24 0.3040020-03 0.6355410-03 0.2033350-02 -0.6134680-02 0.1232430-01

25 -0.2530060-04 -0.3418220-03 0.5784860-04 0.1688270-02 -0.4796360-03

26 0.1896080-03 -0.3841300-03 0.2010480-03 -0.1452520-02 0.1315550-02

27 0.1037050-04 0.1181340-03 -0.3238200-03 0.5960130-03 -0.7085850-03

21 22 23 24
                                 16
                                21
   21 0.1042090+00
   22 -0.6943470-02 0.1292650+00
   23 -0.1051880-01 -0.1123060+00 0.2837270+00
  24 0.6834260-02 -0.4079330-01 0.9177880-01 0.1043730+00 25 0.1557170-02 -0.7597900-02 -0.1318270-02 -0.3751900-02 0.1801750+00 26 0.1117340-04 -0.7121470-03 0.2730780-02 0.4807150-03 -0.2270560+00 27 -0.2828100-04 -0.2879420-02 0.5445450-03 -0.4705770-03 -0.4662900-01
  26 0.4373110+00
27 0.1339470+00
              0.133947D+00 0.545652D-01
FORCE CONSTANTS IN INTERNAL COORDINATES (ATOMIC UNITS).
              0.3201410+00
              0.1995550-01
                                                         0.4171950+00
     3 0.3380240-02
                                                         0.1052870-02 0.3731760+00
          0.3380240-02 0.1052870-02 0.3731760+00
0.5127540-02 0.3270740-02 0.3591050-02 0.3682230+00
0.3930860-02 0.1677870-02 0.3197800-02 0.3584720-02 0.3771010+00
0.6707190-02 0.1834040-01 0.1063800-02 0.1009680-02 -0.7964790-03
0.6036540-02 0.1255950-01 0.8846030-03 -0.9770390-03 0.8033280-03
0.9478220-03 -0.1253320-02 -0.4693540-03 -0.1792580-03 0.3990770-04
0.3130890-01 -0.2961450-02 0.1082410-01 -0.1640330-02 -0.5616040-02
0.2411080-01 0.1468070-01 -0.1404670-02 -0.9553740-02 -0.8578120-02
           0.3035780-01 -0.3093840-02 -0.9477260-02 -0.4152090-02 -0.9208040-02
  11 0.303578D-01 -0.309384D-02 -0.947726D-02 -0.415209D-02 -0.920804D-02  
12 0.305142D-01 -0.346270D-02 -0.932598D-02 -0.978023D-02 -0.408909D-02  
13 0.350096D-01 -0.360788D-01 0.110957D-03 -0.315439D-03 0.614067D-02  
14 0.348238D-01 -0.362893D-01 -0.132693D-03 -0.627411D-02 -0.720778D-03  
15 0.289701D-03 0.452897D-01 -0.111137D-02 0.226900D-02 -0.401835D-03  
16 -0.621348D-04 -0.377604D-02 0.585409D-03 0.129145D-01 -0.118654D-01  
17 0.677169D-03 -0.112469D-02 -0.150695D-01 0.270491D-03 0.149105D-01  
18 0.571809D-03 0.153164D-02 0.149658D-01 -0.165652D-01 -0.634227D-03  
19 -0.279153D-02 -0.511536D-01 -0.807574D-03 0.112263D-02 -0.980464D-02  
20 0.180568D-02 0.533982D-01 0.533982D-03 0.112263D-02 -0.119440D-02  
11 -0.547007D-03 0.184823D-02 0.98458B-03 -0.113382D-02 -0.47882D-03
   21 -0.5470070-03 0.1868230-02 0.9586580-03 -0.1113820-02 -0.6758240-03
           0.3608010+00
  6 0.3608010+00
7 0.5033590-02 0.3793190+00
8 0.1728070-03 -0.2290390-02 0.6048110+00
9 -0.4997400-02 -0.5852000-02 -0.5903360-02 0.4248790+00
10 0.1160920-02 0.5413880-03 -0.1216900-02 0.4814240-01
11 -0.1240960-02 0.5372800-02 0.1559480-02 -0.1624730-01
12 0.6056890-02 -0.1128050-02 0.1029160-03 -0.2065940-01
                                                                                                                                                                                       0.3894520-01
                                                                                                    0.1029160-03 -0.2065940-01 0.3721270-01
           0.1551980-02 -0.1115030-01
                                                                                                   14 -0.1250060-01 -0.2031500-02 -0.2701380-02 0.7084780-01 -0.7800610-02
   15 0.1054500-03 0.419601D-02 0.162055D-01 -0.166257D-01 -0.7891530-03 16 0.690934D-02 -0.927014D-02 -0.109865D-01 -0.330989D-02 0.288021D-03 17 0.469173D-03 0.169387D-03 -0.714784D-04 0.242071D-02 0.638034D-01
```

Table 4b. Force Constant Matrix for Ethanol [C₂H₆O] at the 6-31G* HF Level of Calculation. (CONTINUED 2)

```
      18
      -0.2622980-05
      -0.5829540-03
      -0.4251630-03
      0.7042310-03
      -0.6341210-01

      19
      0.7889450-02
      0.1408420-01
      0.4230600-02
      0.8253740-01
      -0.1347030-02

      20
      -0.1483750-01
      -0.4566180-02
      0.6463610-02
      -0.8305170-01
      0.1071590-03

      21
      -0.4952680-03
      0.39977920-03
      -0.1344010-02
      -0.5791620-02
      -0.1470720-02

                                                                12
                                                                                                      13
 11 0.2561750+00
                                              0.2513750+00
 12 0.3623870-01
13 -0.9373480-02 0.3244350-01
14 0.3185230-01 -0.8748900-02
                                                                                     0.2902290+00
                                                                                     0.4767610-01
                                                                                                                         0.2837170+00
14 0.5185230-01 -0.8748900-02 0.467610-01 0.2837170+00
15 0.3709250-02 0.5139440-03 0.4865990-02 -0.1544960-01 0.2037950+00
16 -0.6654930-01 0.6370740-01 -0.8237870-01 0.8599920-01 -0.3014890-01
17 -0.1981280-02 -0.6190800-01 0.2714520-03 -0.9975520-03 0.2742400-03
18 0.6330800-01 0.5834510-02 0.9649590-03 0.6554530-04 0.7431320-03
19 0.1787980-02 0.1319990-02 0.2382860-01 -0.6095470-01 0.4224720-02
20 -0.9719240-03 -0.5497070-03 0.5775860-01 -0.2437260-01 0.2381080-01
21 -0.4350850-03 -0.8767010-03
                                                                                     0.2463290-02 -0.2831940-02 0.9964760-03
                                                                                                     18
                                                                                                                                          19
                           16
 16 0.5215210+00
17 -0.1034490+00 0.2035270+00
18 -0.1029560+00 -0.9859590-01
19 -0.1594680+00 0.2191820-02
20 -0.1605130+00 0.4218000-02
                                                                                     0.2069710+00
                                                                                     0.2585100+00
21 0.3496840-02 -0.2025040-02 0.8544680-03 -0.3310950-02 0.1084880-02
21 0.1033450-01
```

Table 4c. Force Constant Matrix for Ethanol [C₂H₆O] at the 6-31G* MP2 Level of Calculation.

```
FORCE CONSTANTS IN CARTESIAN COORDINATES (MARTREES/BOHR).
          0.6192720+00
        0.5906200-02 0.6134840+00
    3 -0.1446780-02 -0.1400530-02 0.5160850+00
 3 -0.1446780-02 -0.1400530-02 0.5160850+00
4 -0.8580470-01 -0.3953460-03 0.1171120-01 0.5415260+00
5 0.1483610-02 -0.9526760-01 0.1011750-02 -0.1589610-01 0.6707030+00
6 0.2260870-01 -0.7060080-03 -0.2233250+00 -0.5347810-01 0.1674070-01
7 -0.1686760-01 0.2406870-02 -0.1099740-01 -0.2547810-01 0.1674070-01
8 0.6107410-03 0.5037300-02 -0.1115630-02 0.2544610-01 -0.9598130-01
9 -0.4835730-01 0.5106930-03 -0.1611240-01 -0.4264040-01 -0.2066770-01
10 -0.2935310+00 0.1322940-01 -0.9088790-01 0.1230350-02 -0.3350440-03
11 0.1341920-01 -0.5303670-01 0.5571310-02 -0.3065760-04 -0.1716320-02
12 -0.8984030-01 0.5571090-02 -0.8723100-01 -0.3441230-01 0.2057460-02
 13 -0.1012470+00 0.9532650-01 0.3979170-01 -0.1632880-02 0.7635920-03 14 0.9619970-01 -0.2466760+00 -0.7770750-01 0.1350920-03 0.1444630-02 15 0.3875480-01 -0.7784730-01 -0.8305260-01 0.1737250-01 -0.3383960-01
 22 0.2277650-02 -0.8674010-04 0.5772290-03 -0.9229990-01 0.8383930-01 23 -0.1391560-02 0.2709880-02 0.1757840-02 0.9412740-01 -0.2575440+00 24 0.1427680-01 -0.3109910-01 -0.1339660-01 0.4443760-01 -0.8437830-01
 25 0.2321840-02 -0.4377680-03 0.4350120-03 -0.2580560-01 0.4134710-01 26 -0.1928080-02 0.7160280-03 0.6429700-03 -0.7345130-02 -0.2198810-02 27 -0.1433720-02 0.2841590-02 0.1649410-02 -0.1290460-01 0.1498910-01
        0.5256300+00
   7 -0.7067540-01
                                        0.413221D+00
9 -0.9371720-01 0.4944700-01 0.1469630+00 0.1579620+00
10 0.2631430-02 0.1492130-02 0.3728390-03 -0.1080810-02 0.3157670+00
11 0.7019070-04 -0.2763190-03 0.1726120-02 -0.2121950-03 -0.1480350-01
12 -0.4479480-02 -0.312710-02 0.1477400-03 -0.1002440-01 0.1008060+00
13 -0.1282270-02 0.1555850-02 -0.1544230-02 0.1738090-03 -0.1167970-01
14 0.1851620-02 -0.2071970-02 0.1022540-02 0.1619130-03 -0.1103210-02
15 -0.1371120-01 0.1160740-02 0.1506830-02 0.3876110-02 -0.4905500-02
 14
  11 0.5066620-01
  12 -0.5258960-02
13 0.2761650-01
                                        0.9077870-01
                                          0.123311D-01 0.103648D+00
                                          0.2613210-04 -0.1063520+00
  14 -0.6281760-03
                                                                                                       0.2629150+00
  15 0.1187940-01 0.4441650-02 -0.4382620-01 0.8662280-01 0.9062620-01 16 -0.2532690-01 0.1190190-01 0.8592620-02 0.1332160-01 -0.6140160-02 17 0.3128010-02 -0.1911920-02 -0.1588400-01 -0.2034590-01 0.1004170-01
```

Table 4c. Force Constant Matrix for Ethanol [C₂H₆O] at the 6-31G* MP2 Level of Calculation. (CONTINUED 1)

```
27 -0.6357520-03 -0.3241750-03 -0.4123800-05 -0.1228580-02 -0.6402290-03
                                            17
                                                                    18
  16 0.1344750+00
17 0.1262070+00 0.2421440+00
  18 ~0.5476200-01 -0.7996230-01 0.8833970-01
 21
                                            22
  21 0.9557750-01
  24 0.5560890-02 -0.3890920-01 0.8840730-01 0.9581760-01
  27 -0.2997090-03 -0.2271920-02 0.5294580-03 -0.2361990-03 -0.4369580-01
26 0.370118D+00 27 0.128164D+00 0.565867D-01 FORCE CONSTANTS IN INTERNAL COORDINATES (ATOMIC UNITS).
        0.3084590+00
        0.1866350-01 0.3614270+00
      0.324775D-02 0.7533560-03 0.355132D+00  
0.460985D-02 0.242073D-02 0.120234D-02 0.352160D+00  
0.353826D-02 0.789868D-03 0.941861D-03 0.126955D-02 0.360064D+00
      0.5689060-02 0.1506080-01 0.4961520-03 0.4471670-03 -0.7264100-03 0.4973290-02 0.9794840-02 0.3892400-03 -0.9239420-03 0.3293670-03
  8 0.8706050-03 -0.3512530-02 -0.6766290-03 -0.3100810-03 0.7449850-04 9 0.2932230-01 -0.2396070-02 0.1043450-01 -0.18819700-02 -0.5857110-02 10 0.2452580-01 0.1285080-01 -0.1966150-02 -0.8888450-02 -0.7954190-02 11 0.3152450-01 -0.4158670-02 -0.8854920-02 -0.4317190-02 -0.8374900-02
 11 0.3152450-01 -0.4158670-02 -0.8854920-02 -0.4317190-02 -0.8374900-02
12 0.3136640-01 -0.4203180-02 -0.8780360-02 -0.8940590-02 -0.3922680-02
13 0.3558660-01 -0.3290020-01 -0.2608390-03 -0.7562180-03 0.5529430-02
14 0.3483380-01 -0.3313120-01 -0.4810990-03 0.5568320-02 -0.1036190-02
15 -0.4474030-03 0.5221120-01 -0.1026310-02 0.2364330-02 -0.2097400-03
16 0.3974310-04 -0.4914480-02 0.6557320-03 0.1242190-01 -0.1143560-01
17 0.1128870-02 -0.8079030-03 -0.1442370-01 0.5247360-03 0.1436840-01
18 0.3396150-03 0.1191200-02 0.1424900-01 -0.1590880-01 -0.9602630-03
19 -0.2991610-02 -0.4676370-01 -0.5838820-03 0.1400370-02 -0.9602630-03
19 -0.2991610-02 0.4994980-01 0.3291660-03 0.1168630-02 -0.1002500-02
20 0.1749270-02 0.4994980-01 0.3291660-03 0.1168630-02 -0.1002500-02
21 0.1125000-03 0.2030210-02 0.8911260-03 -0.1139150-02 -0.6649490-03
       0.3368240+00
         0.2653110-02 0.3562030+00
    8 -0.4322900-03 -0.1841230-02 0.5111930+00
  15 -0.3070360-04 0.3485900-02 0.1859190-01 -0.1654610-01 -0.6232860-03 16 0.4370700-02 -0.8587610-02 -0.1241020-01 -0.3494260-02 0.2207530-03 17 0.2699260-03 0.1713000-03 0.2714830-04 0.3469170-02 0.5876910-01
```

Table 4c. Force Constant Matrix for Ethanol [C₂H₆O] at the 6-31G* MP2 Level of Calculation. (CONTINUED 2)

Table 4d. Force Constant Scaling Constants, Q(I), and C matrix for Ethanol [C₂H₆O] Based on Comparison of Force Constant Matrices at the 6-31G* HF and the 6-31G* MP2 Level of Calculation.

## C Matrix (21,21)

		COLUMN 1	COLUMN 2	COLUMN 3
ROW	1	0.1000000000000+01		
ROW	2	0.1023674925180+01	0.10000000000000+01	
ROW	3	0.1003387630360+01	0.788036516635D+00	
ROW	4	0.9365584494910+00	0.8130991859790+00	
ROW	5	0.9384564208120+00	0.5176001549340+00	
ROW	6	0.8943436180970+00	0.9131244815800+00	
ROW	7	0.8661272700890+00	0.8646463120430+00	
ROW	8	0.1000000000000+01	0.3275180811820+01	
ROW	9	0.1003650147890+01	0.9143996207290+00	0.1039499679300+01
ROW	10	0.1092439534540+01	0.9914204588600+00	0.1512582069210+01
ROW	11	0.1107603468660+01	0.1511996282090+01	0.1002762087230+01
ROW	12	0.1097175789250+01	0.1366355026040+01	0.1011161645850+01
ROW	13	0.1087806136660+01	0.1029168098780+01	0.1000000000000+01
ROW	14	0.1072979108030+01	0.1032790400050+01	0.1000000000000+01
ROW	15	0.1000000000000+01	0.1271438455460+01	0.9717422035040+00
ROW	16	0.1000000000000+01	0.1469682091980+01	0.10000000000000+01
ROW	17	0.1000000000000+01	0.8016056414050+00	0.1019091743920+01
ROW	18	0.10000000000000+01	0.8672115232710+00	0.1012935375800+01
ROW	19	0.115182957664D+01	0.1036204943960+01	3,1000000000000+01
ROW	20	0.1036657644880+01	0.1055634444230+01	0.10000000000000+01
ROW	21	0.1000000000000+01	0.1110832481590+01	0.1000000000000+01
		COLUMN 4	COLUMN 5	COLUMN 6
ROW	4	0.10000000000000+01		ootom o
ROW	Š	0.3706103968440+00	0.10000000000000+01	l .
ROW	6	0.4687090088720+00	0.1000000000000+01	
ROL	7	0.1000000000000+01	0.10000000000000+01	
ROL	8	0.1000000000000+01	0.1000000000000p+01	***************************************
ROW	Š	0.1193257364780+01	0.1122724031210+01	
ROW	10	0.1002886691480+01	0.1000363621250+01	
ROW	ii	0.111314921597D+01	0.9745086317910+00	
ROW	12	0.979361236666D+00	0.102857738877D+01	
ROW	13	0.10000000000000+01	0.9680211621530+00	
ROW	14	0.9555479264620+00	0.10000000000000+01	
	••	0.7333417E040ED*00	U. 10000000000	V. 1000 13 1020020 101

Table 4d. Force Constant Scaling Constants, Q(I), and C matrix for Ethanol [C₂H₆O] Based on Comparison of Force Constant Matrices at the 6-31G* HF and the 6-31G* MP2 Level of Calculation. (CONTINUED)

ROU	15	0.1093782060100+01	0.1000000000000+01	0.1000000000000+01
ROW	16	0.103375307944D+01	0.1036664972570+01	0.6881265746600+00
ROW	17	0.10000000000000+01	0.1024307998900+01	0.1000000000000+01
ROW	18	0.1019204105280+01	0.1000000000000b+01	0.1000000000000+01
ROW	19	0.9648589340160+00	0.1000000000000+01	0.1362248585210+01
ROW	20	0.1118071977000+01	0.9022328859600+00	0.1019959623270+01
ROM	21	0.9950177483770+00	0.10000000000000+01	0.1000000000000+01
	•			
		COLUMN 7	COLUMN 8	COLUMN 9
ROW	7	0.10000000000000+01		
ROW	8	0.9023419338490+00	0.1000000000000+01	
ROW	9	0.1019443985600+01	0.1276628964550+01	<b>0.10000000000</b> 00+01
ROW	10	0.1000000000000+01	0.1522165914240+01	0.9963370809920+00
ROW	11	0.9547692742250+00	0.1542709326850+01	0.959185719652D+00
ROW	12	0.1481756466220+01	0.1000000000000+01	<b>0.101213730681</b> 0+01
ROW	13	0.1061071666820+01	0.1874791126200+01	0.964627445905D+00
	14	0.1104516327250+01	0.1345805101890+01	0.9440610570330+00
ROW				
ROW	15	0.8800403911150+00	0.1281001125600+01	<b>0.107464801443</b> D+01
ROW	16	0.1004759563450+01	0.1291392354840+01	0.1157197556700+01
ROW	17	0.1000000000000+01	0.1000000000000+01	0.1565805869740+01
ROW	18	0.10000000000000+01	0.10000000000000+01	0.1000000000000+01
ROW	19	0.104671286117D+01	0.1242743580060+01	0.9958256058520+00
ROW	20	0.1169185383310+01	0.1338724344510+01	<b>0.996803069918</b> 0+00
ROW	21	0.1000000000000+01	0.1099709081600+01	0.8259245748960+00
		COLUMN 10	COLUMN 11	COLUMN 13
		COLUMN 10	COLUMN 11	COLUMN 12
ROU	10	0.1000000000000+01		
ROW	11	0.9932926928560+00	0.1000000000000+01	
				0.4000000000000
ROW	12	0.9815373010510+00	0.9486021410610+00	0.1000000000000+01
ROW	13	0.984705439008D+00	0.9558837696250+00	<b>0.992160946692</b> 0+00
ROW	14	0.9597984408440+00	0.9907911562480+00	0.9259937009000+00
ROW	15	0.1000000000000+01	0.1031818353590+01	0.1000000000000+01
ROW	16	0.1000000000000+01	0.1017778168860+01	<b>0.1016979334640+</b> 01
ROW	17	A 1000E/113/076.01	0.878746733142D+00	0.9990231126770+00
		U. IURUSTA I IZAH MIPUI		
		0.1008541124030+01		
ROW	18	0.100881234437D+01	0.1000295964100+01	0.1139784597380+01
ROW	18 19	0.1008812344370+01 0.1451206300490+01	0.100029596410D+01 0.1158670240290+01	0.1139784597380+01 0.1751125320900+01
ROW ROW ROW	18 19 20	0.1008812344370+01 0.1451206300490+01 0.10000000000000+01	0.1000295964100+01 0.1158670240290+01 0.10000000000000+01	0.1139784597380+01 0.1751125320900+01 0.100000000000000+01
ROW	18 19	0.1008812344370+01 0.1451206300490+01	0.100029596410D+01 0.1158670240290+01	0.1139784597380+01 0.1751125320900+01
ROW ROW ROW	18 19 20	0.1008812344370+01 0.1451206300490+01 0.10000000000000+01	0.1000295964100+01 0.1158670240290+01 0.10000000000000+01 0.1000000000000	0.1139784597380+01 0.1751125320900+01 0.1000000000000+01 0.1000000000000
ROW ROW ROW	18 19 20	0.1008812344370+01 0.1451206300490+01 0.10000000000000+01	0.1000295964100+01 0.1158670240290+01 0.10000000000000+01	0.1139784597380+01 0.1751125320900+01 0.100000000000000+01
ROW ROW ROW ROW	18 19 20 21	0.1008812344370+01 0.1451206300490+01 0.1000000000000+01 0.1163922454320+01 COLUMN 13	0.1000295964100+01 0.1158670240290+01 0.10000000000000+01 0.1000000000000	0.1139784597380+01 0.1751125320900+01 0.1000000000000+01 0.1000000000000
ROW ROW ROW ROW	18 19 20 21	0.1008812344370+01 0.1451206300490+01 0.1000000000000+01 0.1163922454320+01 COLUMN 13 0.1000000000000+01	0.1000295964100+01 0.1158670240290+01 0.10000000000000+01 0.1000000000000	0.1139784597380+01 0.1751125320900+01 0.1000000000000+01 0.1000000000000
ROW ROW ROW ROW	18 19 20 21 13 14	0.1008812344370+01 0.1451206300490+01 0.1000000000000+01 0.1163922454320+01 COLUMN 13 0.1000000000000+01 0.1007772511980+01	0.1000295964100+01 0.1158670240290+01 0.10000000000000+01 0.1000000000000	0.1139784597380+01 0.1751125320900+01 0.10000000000000+01 0.100000000000
ROW ROW ROW ROW	18 19 20 21 13 14	0.1008812344370+01 0.1451206300490+01 0.1000000000000+01 0.1163922454320+01 COLUMN 13 0.1000000000000+01 0.1007772511980+01	0.1000295964100+01 0.1158670240290+01 0.10000000000000+01 0.1000000000000	0.1139784597380+01 0.1751125320900+01 0.1000000000000+01 0.1000000000000
ROW ROW ROW ROW ROW ROW ROW	18 19 20 21 13 14 15	0.1008812344370+01 0.1451206300490+01 0.1000000000000+01 0.1163922454320+01 COLUMN 13 0.1000000000000+01 0.1007772511980+01 0.8263384182900+00	0.1000295964100+01 0.1158670240290+01 0.10000000000000+01 0.1000000000000	0.1139784597380+01 0.1751125320900+01 0.10000000000000+01 0.100000000000
ROW ROW ROW ROW ROW ROW ROW	18 19 20 21 13 14 15 16	0.1008812344370+01 0.1451206300490+01 0.1000000000000+01 0.116392245432D+01 COLUMN 13 0.1000000000000+01 0.100777251198D+01 0.8263384182900+00 0.9597347548290+00	0.1000295964100+01 0.1158670240290+01 0.1000000000000+01 0.10000000000000	0.1139784597380+01 0.1751125320900+01 0.10000000000000+01 0.100000000000
ROW ROW ROW ROW ROW ROW ROW ROW	18 19 20 21 13 14 15 16 17	0.1008812344370+01 0.1451206300490+01 0.1000000000000+01 0.116392245432D+01 COLUMN 13 0.1000000000000+01 0.1007772511980+01 0.8263384182900+00 0.9597347548290+00 0.1000000000000+01	0.1000295964100+01 0.1158670240290+01 0.10000000000000+01 0.1000000000000	0.1139784597380+01 0.1751125320900+01 0.10000000000000+01 0.100000000000
ROW ROW ROW ROW ROW ROW ROW	18 19 20 21 13 14 15 16	0.1008812344370+01 0.1451206300490+01 0.1000000000000+01 0.116392245432D+01 COLUMN 13 0.1000000000000+01 0.100777251198D+01 0.8263384182900+00 0.9597347548290+00	0.1000295964100+01 0.1158670240290+01 0.10000000000000+01 0.1000000000000	0.1139784597380+01 0.1751125320900+01 0.10000000000000+01 0.100000000000
ROW ROW ROW ROW ROW ROW ROW ROW ROW	18 19 20 21 13 14 15 16 17 18	0.1008812344370+01 0.1451206300490+01 0.1000000000000+01 0.116392245432D+01 COLUMN 13 0.10000000000000+01 0.1007772511980+01 0.8263384182900+00 0.9597347548290+00 0.1000000000000+01 0.1000000000000+01	0.1000295964100+01 0.1158670240290+01 0.10000000000000+01 0.1000000000000	0.1139784597380+01 0.1751125320900+01 0.10000000000000+01 0.100000000000
ROW ROW ROW ROW ROW ROW ROW ROW ROW ROW	18 19 20 21 13 14 15 16 17 18 19	0.1008812344370+01 0.1451206300490+01 0.1000000000000+01 0.116392245432D+01  COLUMN 13 0.10000000000000+01 0.1007772511980+01 0.8263384182900+00 0.9597347548290+00 0.1000000000000+01 0.1000000000000+01 0.8237440359630+00	0.1000295964100+01 0.1158670240290+01 0.10000000000000+01 0.1000000000000	0.1139784597380+01 0.1751125320900+01 0.10000000000000+01 0.10000000000000+01 COLUMN 15 0.10000000000000+01 0.9605651629280+00 0.1000000000000+01 0.1000000000000+01 0.1000000000000+01 0.6625592421950+00
ROW ROW ROW ROW ROW ROW ROW ROW ROW ROW	18 19 20 21 13 14 15 16 17 18 19 20	0.1008812344370+01 0.1451206300490+01 0.1000000000000+01 0.1163922454320+01  COLUMN 13 0.10000000000000+01 0.1007772511980+01 0.8263384182900+00 0.9597347548290+00 0.100000000000+01 0.100000000000+01 0.8237440359630+00 0.1014446014610+01	0.1000295964100+01 0.1158670240290+01 0.10000000000000+01 0.1000000000000	0.1139784597380+01 0.1751125320900+01 0.10000000000000+01 0.100000000000
ROW ROW ROW ROW ROW ROW ROW ROW ROW ROW	18 19 20 21 13 14 15 16 17 18 19	0.1008812344370+01 0.1451206300490+01 0.1000000000000+01 0.116392245432D+01  COLUMN 13 0.10000000000000+01 0.1007772511980+01 0.8263384182900+00 0.9597347548290+00 0.1000000000000+01 0.1000000000000+01 0.8237440359630+00	0.1000295964100+01 0.1158670240290+01 0.10000000000000+01 0.1000000000000	0.1139784597380+01 0.1751125320900+01 0.10000000000000+01 0.10000000000000+01 COLUMN 15 0.10000000000000+01 0.9605651629280+00 0.1000000000000+01 0.1000000000000+01 0.1000000000000+01 0.6625592421950+00
ROW ROW ROW ROW ROW ROW ROW ROW ROW ROW	18 19 20 21 13 14 15 16 17 18 19 20	0.1008812344370+01 0.1451206300490+01 0.1000000000000+01 0.1163922454320+01  COLUMN 13 0.10000000000000+01 0.1007772511980+01 0.8263384182900+00 0.9597347548290+00 0.100000000000+01 0.100000000000+01 0.8237440359630+00 0.1014446014610+01	0.1000295964100+01 0.1158670240290+01 0.10000000000000+01 0.1000000000000	0.1139784597380+01 0.1751125320900+01 0.10000000000000+01 0.100000000000
ROW ROW ROW ROW ROW ROW ROW ROW ROW ROW	18 19 20 21 13 14 15 16 17 18 19 20	0.1008812344370+01 0.1451206300490+01 0.1000000000000+01 0.116392245432D+01  COLUMN 13 0.1000000000000+01 0.1007772511980+01 0.8263384182900+00 0.1990000000000+01 0.1000000000000+01 0.8237440359630+00 0.101444601461D+01 0.1227745166560+01	0.1000295964100+01 0.1158670240290+01 0.10000000000000+01 0.1000000000000	0.1139784597380+01 0.1751125320900+01 0.10000000000000+01 0.100000000000
ROW ROW ROW ROW ROW ROW ROW ROW ROW ROW	18 19 20 21 13 14 15 16 17 18 19 20 21	0.1008812344370+01 0.1451206300490+01 0.1000000000000+01 0.116392245432D+01  COLUMN 13 0.10000000000000+01 0.1007772511980+01 0.8263384182900+00 0.9597347548290+00 0.100000000000+01 0.1000000000000+01 0.8237440359630+00 0.1014446014610+01 0.1227745166560+01	0.1000295964100+01 0.1158670240290+01 0.10000000000000+01 0.1000000000000	0.1139784597380+01 0.1751125320900+01 0.10000000000000+01 0.100000000000
ROW ROW ROW ROW ROW ROW ROW ROW ROW ROW	18 19 20 21 13 14 15 16 17 18 19 20 21	0.1008812344370+01 0.1451206300490+01 0.1000000000000+01 0.116392245432D+01  COLUMN 13 0.10000000000000+01 0.1007772511980+01 0.8263384182900+00 0.9597347548290+00 0.1000000000000+01 0.1000000000000+01 0.8237440359630+00 0.1014446014610+01 0.1227745166560+01  COLUMN 16 0.1000000000000+01	0.1000295964100+01 0.1158670240290+01 0.10000000000000+01 0.1000000000000	0.1139784597380+01 0.1751125320900+01 0.10000000000000+01 0.100000000000
ROW ROW ROW ROW ROW ROW ROW ROW ROW ROW	18 19 20 21 13 14 15 16 17 18 19 20 21	0.1008812344370+01 0.1451206300490+01 0.1000000000000+01 0.116392245432D+01  COLUMN 13 0.10000000000000+01 0.1007772511980+01 0.8263384182900+00 0.9597347548290+00 0.100000000000+01 0.1000000000000+01 0.8237440359630+00 0.1014446014610+01 0.1227745166560+01	0.1000295964100+01 0.1158670240290+01 0.10000000000000+01 0.1000000000000	0.1139784597380+01 0.1751125320900+01 0.10000000000000+01 0.100000000000
ROW ROW ROW ROW ROW ROW ROW ROW ROW ROW	18 19 20 21 13 14 15 16 17 18 19 20 21	0.1008812344370+01 0.1451206300490+01 0.10000000000000001 0.116392245432D+01  COLUMN 13 0.10000000000000+01 0.1007772511980+01 0.8263384182900+00 0.9597347548290+00 0.1000000000000+01 0.1000000000000+01 0.8237440359430+00 0.1014444601461D+01 0.122774516656D+01  COLUMN 16 0.1000000000000+01 0.100500079761D+01	0.1000295964100+01 0.1158670240290+01 0.10000000000000+01 0.1000000000000	0.1139784597380+01 0.1751125320900+01 0.10000000000000+01 0.100000000000
ROW ROW ROW ROW ROW ROW ROW ROW ROW ROW	18 19 20 21 13 14 15 16 17 18 19 20 21	0.1008812344370+01 0.1451206300490+01 0.1000000000000+01 0.116392245432D+01  COLUMN 13 0.1000000000000+01 0.1007772511980+01 0.8263384182900+00 0.9597347548290+00 0.1000000000000+01 0.100000000000+01 0.1227745166560+01  COLUMN 16 0.100500079761D+01 0.1003816285290+01	0.1000295964100+01 0.1158670240290+01 0.1000000000000+01 0.10000000000000	0.1139784597380+01 0.1751125320900+01 0.10000000000000+01 0.100000000000
ROW ROW ROW ROW ROW ROW ROW ROW ROW ROW	18 19 20 21 13 14 15 16 17 18 19 20 21	0.1008812344370+01 0.1451206300490+01 0.100000000000000+01 0.116392245432D+01  COLUMN 13 0.1000000000000+01 0.1007772511980+01 0.8263384182900+00 0.1909000000000+01 0.1000000000000+01 0.8237440359630+00 0.101444601461D+01 0.1227745166560+01  COLUMN 16 0.1000000000000+01 0.1003816285290+01 0.9888184653010+00	0.1000295964100+01 0.1158670240290+01 0.10000000000000+01 0.1000000000000	0.1139784597380+01 0.1751125320900+01 0.10000000000000+01 0.100000000000
ROW ROW ROW ROW ROW ROW ROW ROW ROW ROW	18 19 20 21 13 14 15 16 17 18 19 20 21	0.1008812344370+01 0.1451206300490+01 0.1000000000000+01 0.116392245432D+01  COLUMN 13 0.1000000000000+01 0.1007772511980+01 0.8263384182900+00 0.9597347548290+00 0.1000000000000+01 0.100000000000+01 0.1227745166560+01  COLUMN 16 0.100500079761D+01 0.1003816285290+01	0.1000295964100+01 0.1158670240290+01 0.1000000000000+01 0.10000000000000	0.1139784597380+01 0.1751125320900+01 0.10000000000000+01 0.100000000000
ROW ROW ROW ROW ROW ROW ROW ROW ROW ROW	18 19 20 21 13 14 15 16 17 18 19 20 21 16 17 18 19 20 21	0.1008812344370+01 0.1451206300490+01 0.100000000000000+01 0.116392245432D+01  COLUMN 13 0.10000000000000+01 0.1007772511980+01 0.8263384182900+00 0.9597347548290+00 0.10000000000000+01 0.1000000000000	0.1000295964100+01 0.1158670240290+01 0.10000000000000+01 0.1000000000000	0.1139784597380+01 0.1751125320900+01 0.10000000000000+01 0.100000000000
ROW ROW ROW ROW ROW ROW ROW ROW ROW ROW	18 19 20 21 13 14 15 16 17 18 19 20 21	0.1008812344370+01 0.1451206300490+01 0.100000000000000+01 0.116392245432D+01  COLUMN 13 0.1000000000000+01 0.1007772511980+01 0.8263384182900+00 0.1909000000000+01 0.1000000000000+01 0.8237440359630+00 0.101444601461D+01 0.1227745166560+01  COLUMN 16 0.1000000000000+01 0.1003816285290+01 0.9888184653010+00	0.1000295964100+01 0.1158670240290+01 0.10000000000000+01 0.1000000000000	0.1139784597380+01 0.1751125320900+01 0.10000000000000+01 0.100000000000
ROW ROW ROW ROW ROW ROW ROW ROW ROW ROW	18 19 20 21 13 14 15 16 17 18 19 20 21 16 17 18 19 20 21	0.1008812344370+01 0.1451206300490+01 0.100000000000000001 0.116392245432D+01  COLUMN 13 0.10000000000000+01 0.1007772511980+01 0.8263384182900+00 0.9597347548290+00 0.1000000000000+01 0.1000000000000+01 0.1227745166560+01  COLUMN 16 0.1005000797610+01 0.1003816285290+01 0.98881846533010+00 0.998525953812D+00 0.126958521432D+01	0.1000295964100+01 0.1158670240290+01 0.1000000000000+01 0.10000000000000	0.1139784597380+01 0.1751125320900+01 0.10000000000000+01 0.100000000000
ROW ROW ROW ROW ROW ROW ROW ROW ROW ROW	18 19 20 21 13 14 15 16 17 18 19 20 21 16 17 18 19 20 21	0.1008812344370+01 0.1451206300490+01 0.100000000000000+01 0.116392245432D+01  COLUMN 13 0.10000000000000+01 0.1007772511980+01 0.8263384182900+00 0.9597347548290+00 0.10000000000000+01 0.1000000000000	0.1000295964100+01 0.1158670240290+01 0.10000000000000+01 0.1000000000000	0.1139784597380+01 0.1751125320900+01 0.10000000000000+01 0.100000000000
ROW ROW ROW ROW ROW ROW ROW ROW ROW ROW	18 19 20 21 13 14 15 16 17 18 19 20 21	0.1008812344370+01 0.1451206300490+01 0.1000000000000000+01 0.116392245432D+01  COLUMN 13 0.1000000000000+01 0.1007772511980+01 0.8263384182900+00 0.9597347548290+00 0.1000000000000+01 0.1000000000000+01 0.10000000000	0.1000295964100+01 0.1158670240290+01 0.1000000000000+01 0.10000000000000	0.1139784597380+01 0.1751125320900+01 0.10000000000000+01 0.100000000000
ROW	18 19 20 21 13 14 15 16 17 18 19 20 21 16 17 18 19 20 21	0.1008812344370+01 0.1451206300490+01 0.10000000000000+01 0.116392245432D+01  COLUMN 13 0.1000000000000+01 0.1007772511980+01 0.8263384182900+00 0.9597347548290+00 0.1000000000000+01 0.1000000000000+01 0.8237440359630+00 0.101444601461D+01 0.1227745166560+01  COLUMN 16 0.1000000000000+01 0.1003816285290+01 0.9888184653010+00 0.998525953812D+00 0.126958521432D+01  COLUMN 19 0.100000000000+01	0.1000295964100+01 0.1158670240290+01 0.100000000000000+01 0.100000000000	0.1139784597380+01 0.1751125320900+01 0.10000000000000+01 0.100000000000
ROW	18 19 20 21 13 14 15 16 17 18 19 20 21 16 17 18 19 20 21	0.1008812344370+01 0.1451206300490+01 0.100000000000000+01 0.116392245432D+01  COLUMN 13 0.10000000000000+01 0.1007772511980+01 0.8263384182900+00 0.9597347548290+00 0.10000000000000+01 0.1000000000000	0.1000295964100+01 0.1158670240290+01 0.100000000000000+01 0.100000000000	0.1139784597380+01 0.1751125320900+01 0.100000000000000+01 0.10000000000
ROW	18 19 20 21 13 14 15 16 17 18 19 20 21 16 17 18 19 20 21	0.1008812344370+01 0.1451206300490+01 0.10000000000000+01 0.116392245432D+01  COLUMN 13 0.1000000000000+01 0.1007772511980+01 0.8263384182900+00 0.9597347548290+00 0.1000000000000+01 0.1000000000000+01 0.8237440359630+00 0.101444601461D+01 0.1227745166560+01  COLUMN 16 0.1000000000000+01 0.1003816285290+01 0.9888184653010+00 0.998525953812D+00 0.126958521432D+01  COLUMN 19 0.100000000000+01	0.1000295964100+01 0.1158670240290+01 0.100000000000000+01 0.100000000000	0.1139784597380+01 0.1751125320900+01 0.10000000000000+01 0.100000000000

Table 5a. Optimized Geometries, Total Energies and Calculated Wavenumbers  $\nu$  for Isopropanol [C₃H₈O] Based on Several Levels of Calculation.

H8

H4 O7 H10

HS C1 C2 C3 H11

H6 H9 H12

parameter	3-21G	3-21G MP2	6-31G*	6-31G* MP2	Experiment
mjemoes					
	1,5315	1 5406	1 5248		1
-C-C-V	1.5250	1.5339	1,5191		•
r(C-H,)/A	1.0831	1.0941	1.0852		•
r(C-H;)/A	1.0860	1.0969	1.0874		•
r(C'-H,)/A	1.0834	1.0945	1.0856		•
r(C'-0,)/A	1.4477	1.4776	1.4094		٠
r(0,-H,)/A	9996.0	0.9935	0.9472	0.9725	•
r(C,-H,)/A	1.0855	1.1000	1.0896		•
r(C,-H,,)/A	1.0835	1.0943	1.0854		•
r(C,-H,'')/A	1.0821	1.0932	1.0839		ı
r(C,-H,,)/A	1.0828	1.0939	1.0851		•
*(`;'\-;'\)*	111.9616	112.0946	112.4207		ı
(いつつ)	109.2445	108.6746	110.2846		ı
φ(H,-C,-C)/•	111.0025	110.7839	110.9593	110.9746	ı
•(ビーC)・	110.8077	110.7710	111.1378	111.2094	•
*(0,'C'-C')\	110.4079	110.4407	110.9442	110.3316	ı
φ(H, O, C,)/	110.5621	107.0323	109.5731	107.3316	•
+(H,-C,-C,)/・	109.5652	109.4560	108.8290	109.1527	ı
+(H, C, C, C, ),	110.8800	110.6701	110.8761	110.8277	ı
φ(H''-C'-C').	109.7385	109.5732	110.2293	110.1473	1
φ(H ₁₂ -C ₃ -C ₂ )/*	109.2014	108.7706	110.2006	109.5848	ı

Table 5a. Optimized Geometries, Total Energies and Calculated Wavenumbers  $\bar{\nu}$  for Isopropanol [C₃H₈O] Based on Several Levels of Calculation. (CONTINUED 1)

parameter	3-21G	3-21G MP2	6-31G*	6-31G* MP2	Experiment
	60.0026 179.5356	59.8880	59.5285 179.2300	59.3134 178.8883	
<u>`</u>	-60.2605	-60.3374	-61.0162 -59.6497	-61.1097 -58.7119	
;>; '``	-60.0627	-59.4913	-60.1592	-58.4592	ı
, , , , , ,	61.4332	61.5601	60.4121	61.0232	• •
	-182.2363 -59.1097	182.4715 -58.8520	180.7291 -59.8985	181.6038 -59.1881	
E/a.u.	-192.048260	-192.046084	-193.115416	-193.706552	ţ
frequencies (cm ⁻¹ )					
	235 279 325 388 420	234 275 334 366 395	241 287 328 387 446	240 289 331 372 425	
	497 858	469	520 884	496 856	
	1020	958	1013	098	
	1051	1003	1074	1008	
	1168	1117	1178	1131	
	1305	1239	1308	1236	
7 2	1387 1511	1325	1401 1518	1319 1426	

Table 5a. Optimized Geometries, Total Energies and Calculated Wavenumbers  $\dot{\nu}$  for Isopropanol [C₃H₈O] Based on Several Levels of Calculation. (CONTINUED 2)

parameter	3-21G	3-21G MP2	6-31G*	6-31G* MP2	Experiment
•	1548	1474	1540	1444	
5.7	1563	1479	1568	1470	
2.2	1580	1496	1585	1490	
, 2	1652	1585	1628	1547	
. 2	1660	1592	1633	1551	
8 . S	1666	1598	1643	1562	
7 2	1682	1612	1654	1573	
7,7	3184	3044	3166	3051	
2.5	3194	3079	3196	3099	
4 %	3210	3096	3212	3114	
C 74	3250	3150	3254	3184	
7.50	3271	3172	3271	3203	
7 %	3279	3178	3280	3209	
5 F	3284	3181	3288	3215	
R ₂ ,F	3860	3498	4106	3762	

Table 5b. Force Constant Matrix for Isopropanol [C₃H₈O] at the 6-31G* HF Level of Calculation.

```
FORCE CONSTANTS IN CARTESIAN COORDINATES (HARTREES/BOHR). \frac{1}{4}
                                                                                                                                                         5
     1 0.6504310+00
    2 0.172972D-02 0.661637D+00
3 -0.995722D-03 -0.357056D-03
                                                                        0.5557280+00
   4 -0.1003700+00 0.2888899-02 0.6934840-04 0.6364950+00 5 0.5549820-02 -0.9580950-01 -0.8494440-02 -0.5016260-01 0.6417630+00 6 -0.6871520-02 -0.2048430-01 -0.2283620+00 0.3098980-02 0.3057060-01
 6 0.588411D+00
7 -0.485485D-01 0.579156D+00
 8 0.3857920-02 0.4529570-02 0.6612600+00
9 -0.1197090+00 -0.3434950-01 -0.3033740-02 0.6508840+00
10 -0.2268180-03 0.4935430-03 -0.1142140-02 -0.2956210-03 0.1292800+00
 19 0.2928330-01 -0.2894220-01 -0.4828220-01 0.1755750-01 -0.2050150-03 20 0.7391020-01 -0.8621920-02 -0.6570980-02 0.3843000-02 -0.8269700-03 21 -0.1135500+00 -0.6766070-02 -0.1173400-01 0.7235960-02 -0.4336000-03 22 -0.1016420-01 -0.2998540-03 -0.5037300-02 0.2505930-02 -0.2744040-03 23 -0.1461070-01 -0.2668540-02 -0.6756260-02 0.3084940-02 0.5573740-03 24 0.5064250-02 0.1282390-02 0.1971530-02 -0.9924270-03 0.1212530-03 25 0.4376430-01 -0.1800580-01 0.3024410-01 0.1273670-01 0.1135130-02 26 -0.7302900-01 0.2747940-03 0.2072660-02 -0.4898710-03 -0.3103460-03 27 -0.9782210-01 -0.8953380-02 0.1230680-01 0.5963350-02 -0.1914010-03 28 0.1476920-01 -0.8953380-00 -0.1135440+00 0.3918770-01 -0.6358140-05 29 0.1965900-04 -0.1171070+00 -0.2483170+00 0.6727190-01 -0.7322550-04
  29 0.1965900-04 -0.1171070+00 -0.2483170+00 0.6727190-01 -0.7322550-04 30 0.3703350-02 0.4176940-01 0.6920920-01 -0.8464230-01 -0.4371970-04
```

Table 5b. Force Constant Matrix for Isopropanol [C₃H₈O] at the 6-31G* HF Level of Calculation. (CONTINUED 1)

```
      31
      -0.3997510-01
      -0.6029500-01
      -0.1652550-04
      0.1704460-01
      0.5174400-04

      32
      0.1108280-02
      0.6301120-03
      -0.5970880-01
      0.3090650-02
      -0.3449290-04

      33
      -0.1503280-01
      0.1214320-01
      0.2425860-02
      -0.3492120+00
      0.1239000-03

      34
      0.1257230-01
      -0.1277980+00
      0.1125970+00
      0.4285420-01
      0.3955300-03

      35
      -0.2762280-03
      0.1160280+00
      -0.2494750+00
      -0.7170300-01
      0.4069990-04

   36 0.4722490-02 0.4421110-01 -0.7327630-01 -0.8764220-01 -0.2428090-03
   11 0.265412D+00
   16 0.1213080+00
17 0.1184700+00 0.2681460+00
18 -0.5036330-01 -0.9175240-01 0.9931420-01

        18
        -0.5036330-01
        -0.9175240-01
        0.9931420-01

        19
        0.1684610-02
        -0.4060130-03
        0.2088130-02
        0.6921300+00

        20
        0.1168870-03
        0.1921230-02
        0.3766650-02
        0.1128350+00
        0.3200830+00

        21
        0.5184200-03
        0.1958750-02
        -0.1170550-01
        0.1507780+00
        -0.1251690+00

        22
        0.5184200-03
        0.1930050-03
        -0.8117390-03
        -0.5319110+00
        -0.2960280-01

        23
        0.3459980-03
        -0.1626180-03
        -0.4685530-03
        0.1991210-01
        -0.4226230-01

        24
        -0.7516550-03
        -0.3838070-03
        -0.1727670-04
        -0.1957630+00
        0.1500510-01

        25
        -0.1064620-03
        0.7651900-04
        0.2170700-03
        0.1170750-01
        -0.2656890-01

        26
        0.2910330-03
        0.5632310-03
        -0.147840-02
        0.2227010-02
        -0.4450760-01

        28
        0.1618000-03
        0.4007530-03
        -0.1294710-02
        -0.6022650-02
        0.2007740-01

        28
        0.1618000-03
        0.7200550-03
        -0.3415700-03
        -0.3665360-03
        0.1278000-02

        30

           0.3831130-04 -0.8467670-04 -0.8583820-04 0.3603890-02 -0.9607790-03 0.9349870-04 0.1348800-04 -0.3114510-04 0.1864190-03 0.1947290-02 -0.2895540-04 0.4816970-04 -0.7022220-04 0.1607120-02 -0.1053120-03
   35 0.934987D-04
   36 -0.2895540-04
 21 0.1971620+00
22 -0.1651980+00
23 0.3179020-01
                                                               0.5480820+00
                                                                 24 -0.809051D-01
   25 -0.354641D-02
                                                                                                                                                                                                                0.1395670+00
   26 0.5733170-03
27 0.7842590-02
                                                                0.109114D-02 0.480807D-03 -0.550618D-04 -0.110125D+00
                                                              -0.5453290-03 -0.127644D-02 -0.1086350-03 -0.483632D-01
   28 -0.3773100-02 -0.8000360-03 -0.2054800-02 0.5554030-03 0.9627380-03 29 -0.2672240-03 0.1426890-03 0.4839270-03 0.2541280-03 -0.7876430-03 30 -0.3029340-03 -0.6235990-03 -0.6257820-03 0.8261340-03 0.7045610-03
```

Table 5b. Force Constant Matrix for Isopropanol [C₃H₈O] at the 6-31G* HF Level of Calculation. (CONTINUED 2)

```
31 0.1531440-02 0.2569760-03 0.4034380-03 0.2755640-05 0.1816400-02
       32 -0.6563250-03
  33 0.2242450-02
                       26
        0.2592570+00
  27 0.7411800-01
                                     0.1024940+00
  28 0.110882D-02 0.779246D-03 0.139037D+00
  29 0.6808250-03 -0.4024260-03 0.1293780+00 0.2667680+00
 31 0.6099560-01
 0.8798900-01
FORCE CONSTANTS IN INTERNAL COORDINATES (ATOMIC UNITS).
        0.3158530+00
1 0.3158530+00
2 0.1127040-01 0.3291700+00
3 0.3883460-02 0.5366260-03 0.3753070+00
4 0.4387790-02 -0.3907740-03 0.3552760-02 0.3681490+00
5 0.2603090-02 -0.5224000-05 0.3131010-02 0.3625600-02 0.3739770+00
6 0.2084080-01 0.1792910-01 0.1580790-02 0.2960580-02 0.1134290-02
7 0.4763200-03 -0.8810660-03 0.5628180-05 0.1743720-04 -0.4471380-03
8 0.7373000-02 0.6646840-02 -0.7137540-03 0.1067780-02 0.1087440-02
9 0.1006310-03 0.2657630-02 -0.6776810-04 -0.3267010-04 0.1083300-02
10 -0.3221670-03 0.3419870-02 -0.1194940-03 0.4671530-03 -0.1930560-04
11 0.6513890-03 0.4271950-02 0.8832900-03 -0.1162000-03 -0.7838330-04
12 0.4344770-01 0.5615650-03 -0.3239730-02 0.8347580-02 -0.2734510-02
13 0.3038690-01 -0.2670580-02 -0.4502210-02 -0.9663850-02 -0.2734510-02
14 0.2979430-01 0.6464020-02 -0.9166430-02 -0.4903550-02 -0.9510990-02
15 0.2495110-01 0.8479270-04 -0.8691710-02 -0.9624200-02 -0.3131630-02
16 0.3613430-01 -0.2427230-01 -0.3384870-02 -0.17773990-02 -0.1132280-01
17 0.5026450-03 0.5724480-02 -0.4799240-03 0.2298480-02 -0.1045050-02
18 0.3663930-01 -0.2039200-01 0.6615650-02 -0.1330320-03 0.1774000-03
19 0.1949670-03 0.2646000-01 0.4890090-03 0.1960680-02 0.4660390-03
21 -0.2541000-02 0.3135930-01 0.1539680-02 -0.76009990-03 0.4603390-04
22 0.1479480-02 0.5791300-02 -0.3169320-02 -0.14431370-01 0.1592640-01
23 0.1103490-02 -0.8455230-04 0.1489500-01 -0.1982550-03 -0.14498670-01
24 -0.1640300-02 -0.3585320-03 -0.1409420-01 0.1559810-01 0.7844680-03
25 0.2827790-02 -0.3354280-01 0.2851460-02 -0.35535550-02 -0.6718740-04
26 -0.4680340-03 0.5653040-03 -0.7773220-03 -0.14498670-01 0.103750-02
   2 0.1127040-01 0.3291700+00
 0.4037540+00
    7 -0.1694750-02
                                       0.6054230+00
    8 0.1860430-01
                                       0.1666550-03 0.3556020+00
         0.1101050-02 0.3273290-04 0.1027610-02
                                                                                                 0.3743900+00
  10 0.8654080-03 -0.5671850-04 0.9238580-03 0.3328330-02 0.3784920+00
  11 0.1255060-02 -0.1607450-03 -0.7250390-03 0.3284610-02 0.3305970-02
```

Table 5b. Force Constant Matrix for Isopropanol  $[C_3H_8O]$  at the 6-31G* HF Level of Calculation. (CONTINUED 3)

```
12 -0.4176190-01 -0.4110260-02 -0.1057350-01 -0.8922090-02 0.1238090-01
 16 -0.3405000-02 -0.9062250-02 -0.4636120-02 -0.5751010-02 0.6131270-02
      0.424424D-01 0.151561D-01 0.613603D-03 0.957542D-03 -0.338945D-01 0.114107D-02 0.431948D-02 -0.749157D-03
 18 -0.3389450-01
                                                                      0.4319480-02 -0.7491570-03 0.1356480-02
24 -0.1436400-02 -0.3812000-03 -0.3491130-04 -0.2037680-04 -0.2535600-05 -0.3421020-02 -0.1318980-01 0.8430290-02 -0.9449140-02 0.2146910-02 26 0.1285570-02 -0.5880080-03 -0.1718880-03 0.1233160-04 -0.2700330-03 -0.5696170-01 0.3877370-02 0.4831240-02 -0.4396740-03 0.2286870-03 28 -0.1824760-03 -0.8529060-04 0.1921150-03 -0.3906050-03 -0.1397160-01 29 0.5426260-03 0.2170770-03 -0.5336790-03 0.1520160-01 0.1145690-03 30 -0.1028330-02 -0.1987940-03 0.2027080-05 -0.1514380-01 0.1538140-01
        0.3754160+00
 12 -0.5320130-02 0.4004290+00
 13 0.1598730-02 -0.7276810-02 0.2518050+00
        0.5541670-03 0.3406420-01 0.3596090-01 0.2560110+00
15 0.5385110-04 -0.2776830-02 0.3729150-01 0.3914240-01 0.2501690+00 16 -0.9721920-03 0.1133540+00 -0.1976890-01 -0.1264990-01 0.4684750-01 17 0.3071890-03 -0.1682920-01 0.5197280-03 0.4355400-02 -0.1187590-02 18 -0.3629990-02 0.6418690-01 0.3169230-01 -0.9063200-02 -0.7714280-02
19 -0.859465D-02 -0.215515D-01 0.468509D-03 -0.126235D-02 0.352957D-02 20 -0.908325D-02 0.496081D-01 -0.487223D-03 0.977587D-02 -0.133064D-02 21 -0.370220D-02 -0.161458D-01 0.250301D-02 -0.365677D-03 0.468704D-03
22 -0.1107820-01 -0.3886620-01 -0.2235270-02 0.6456230-01 -0.6259240-01
23 -0.7810310-03 -0.9290370-03 -0.6163430-01 -0.1244030-03 0.6343920-01
24 -0.1751980-04 -0.2966810-02 0.6444050-01 -0.6549430-01 -0.2323110-02 25 0.5973140-02 0.1083630+00 0.7821590-02 -0.3072780-02 0.1072070-02 26 0.2371940-03 -0.4536390-02 -0.8755280-03 -0.1011150-02 -0.9189230-03 27 0.5205890-02 -0.6617420-01 0.3423390-03 0.1582890-02 -0.1614860-02 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1074000 0.1
      0.1423690-01 0.7395390-02 -0.2459560-03 0.1578490-03 0.9641360-03 -0.1569210-01 0.1070350-02 0.1343740-02 0.2440710-03 -0.1052970-02 0.7413490-05 -0.3331590-02 -0.2684980-03 -0.3821420-03 -0.2767860-04
 16 0.4731020+00
                                        0.2009420+00
 17 -0.1809860-01
 18 0.7397990-01
                                        0.3935730-02
                                                                     0.3037130+00
 0.4705300-02 0.3724170-01
                                                                                                                                    0.2532690+00
      0.1322400-01 -0.1385180-02
                                                                                                     0.3706320-01 0.3519870-01
        0.3511760-02 -0.1316830-02 -0.1621570-01
      -0.1107360+00 0.2714610-01 0.6838070-01 0.3949790-01 -0.2257720-02 0.3406990-02 0.6562760-03 0.4219320-03 0.1089440-02 -0.2980590-03
0.897007D-02 -0.122740D-03 -0.112348D-02 0.138792D-02 0.642431D-01 0.225176D-02 -0.292516D-03 -0.163172D-02 -0.632585D-01 0.419144D-02
       0.1684130-02 0.3227520-03 -0.2446970-02 0.6331990-01 -0.6140210-01
       0.254621D+00
 22 -0.436567D-01 0.536441D+00
23 -0.139475D-02 -0.101880D+00
                                                                      0.2040540+00
        0.2237060-03 -0.1049300+00 -0.9663420-01
                                                                                                     0.2026790+00
        0.1818730-01 -0.2213580+00
0.4633570-03 -0.1380440-03
                                                                                                                                    0.3876190+00
                                                                      0.1361150-02 0.8262920-02
                                                                                                     0.9299220-03
                                                                     -0.2332080-02
                                                                                                                                   0.3636300-02
                                                                     0.1772760-02 0.4532180-03 -0.1610030+00
         0.2569420-01 -0.1170110+00
       30 -0.5640730-02 0.1329320-02 0.4329840-03 0.3728780-03 -0.7833200-03
                                                                                    28
                                                                                                                   29
                                                                                                                                                 30
       0.1088450-01
 27 -0.2416790-02
                                        0.281381D+00
 28 -0.242907D-02
                                        0.2043510-03 0.2036470+00
       0.6918800-04 -0.1477900-02 -0.9617470-01
                                                                                                     0.2058790+00
        0.1332920-03 -0.2063690-02 -0.9682150-01 -0.1001580+00 0.2051080+00
```

Table 5c. Force Constant Matrix for Isopropanol [C₃H₈O] at the 6-31G* MP2 Level of Calculation.

```
FORCE CONSTANTS IN CARTESIAN COORDINATES (HARTREES/BOHR).
                                                                                                              5
      0.6125240+00
   2 0.3191450-03 0.6216830+00
3 0.142761D-02 -0.1684850-02 0.5092880+00
   4 -0.8917270-01 0.3183980-02 -0.6386990-03 0.5815780+00 5 0.5543550-02 -0.8636170-01 -0.9927970-02 -0.5706760-01
                                                                                                  0.5738230+00
 5 0.5543550-02 -0.8636170-01 -0.9927970-02 -0.5706760-01 0.5738230+00 6 -0.4943270-02 -0.1966730-01 -0.2143110+00 0.6863890-02 0.3953760-01 7 -0.1492740-03 0.1783600-02 -0.4634390-02 -0.2036770+00 0.6600020-02 8 0.1809290-03 0.1854910-02 -0.1635380-02 0.1928000-01 -0.8524260-01 9 -0.3676740-01 0.4089340-04 -0.1742090-01 -0.5324690-01 -0.2274290-02 10 -0.1185420+00 0.1095020+00 0.4320670-01 -0.3237750-03 0.1045910-03 11 0.1095620+00 -0.2368800+00 -0.7414540-01 0.3265360-03 -0.2312250-02 12 0.4334040-01 -0.7208290-01 -0.7882170-01 0.1813280-03 -0.1838000-01 13 -0.2921510+00 -0.4114020-02 -0.8773309-01 0.1185890-03 -0.1183080-02
 13 -0.292151D+00 -0.411492D-02 -0.677339D-01 0.116859D-03 -0.118308D-02 14 -0.363844D-02 -0.531598D-01 -0.220707D-02 -0.149573D-02 -0.151373D-02
 15 -0.8732040-01 -0.1373360-02 -0.8320340-01 -0.3659910-01 -0.2972510-03
 0.1800370-02 0.2391570-02 -0.1012430-05 -0.1978550-01 0.5737310-02 0.1387820-03 0.9789110-03 -0.5819790-03 -0.4049210-01 -0.5767910-02
       0.2957350-02 0.1026900-03 0.1651320-02 0.1767200-01 0.4449560-02
      -0.679601D-02 -0.531000D-03 -0.124293D-02 0.164699D-02 0.388966D-03
 34 0.1344250-02 -0.6224360-04 0.1972490-02 -0.1906410-01 0.3013060-01 35 -0.5728860-03 0.2468010-03 0.2137690-03 -0.4151550-03 -0.1887560-02
 36 -0.3473990-03 0.1473570-02 0.1288170-02 -0.7817080-02 0.1255850-01
  6 0.5394440+00
7 -0.4879020-01 0.5356200+00
   8 0.2992970-02 0.6604470-02 0.6224220+00
     -0.1082910+00 -0.3544040-01 -0.1923550-02
                                                                           0.6105800+00
 10 0.1480650-03 0.7735240-03 -0.1391030-02 -0.5695960-03 0.1226430+00
 10 0.1480650-03 0.7753240-03 -0.1391030-02 -0.5697960-03 0.1226430+00
11 0.8331620-03 -0.3400810-03 0.2291500-03 0.4396620-03 -0.1204880+00
12 -0.1457840-01 0.1795190-02 -0.4599490-03 0.1955420-02 -0.4705660-01
13 0.3163930-02 0.1119440-02 -0.4467790-03 -0.8141830-03 -0.1377570-01
14 0.2843950-03 0.1458550-03 0.4709920-03 -0.1464500-05 0.2653740-01
15 -0.1208010-01 0.2039530-02 0.2404880-03 -0.7597430-02 0.1154810-01
16 -0.8979360-03 -0.2910700-04 0.2353320-03 -0.3540330-03 0.8638090-02
26 -0.6978130-01 -0.1775650-03
                                                     0.2293370-02
                                                                          -0.6910590-03 -0.2955920-03
                                                                          0.4922970-02 -0.8159150-04
0.3835000-01 -0.3228070-04
 27 -0.8655090-01 -0.9129540-02
                                                     0.106674D-01
      0.1238500-01 -0.1203950+00 -0.1111850+00
        0.1147860-03 -0.1131840+00 -0.239334D+00 0.6480750-01 -0.972735D-04
       0.2492990-02 0.3990210-01 0.6613950-01 -0.7557710-01 -0.3297590-04
```

Table 5c. Force Constant Matrix for Isopropanol [C₃H₈O] at the 6-31G* MP2 Level of Calculation. (CONTINUED 1)

```
31 -0.363694p-01 -0.5171560-01 -0.961932p-04 0.173120p-01 -0.538839p-04 32 0.116861p-02 0.5881160-03 -0.532893p-01 0.686935p-02 0.414929p-05 33 -0.134041p-01 0.142178p-01 0.638181p-02 -0.333102p+00 0.705756p-04
34 0.1110110-01 -0.1155430+00 0.1082940+00 0.4429820-01 0.3160090-03 35 -0.5219870-03 0.1102580+00 -0.2358650+00 -0.7310830-01 0.2555320-03 36 0.3805350-02 0.4478050-01 -0.7429480-01 -0.8263020-01 -0.1221990-03
 11 0.2524160+00
 12 0.8182480-01 0.8643750-01
                                              0.3143600+00
0.5134010-02
0.9737390-01
 13 -0.2557580-02 -0.5601130-02
14 0.2143250-02 0.1083180-01 0.5134010-02 0.5049770-01 15 0.1146170-02 0.3839590-02 0.9737390-01 0.1728110-02 16 0.1457100-01 -0.7651390-02 -0.1309300-01 -0.2681810-01 17 -0.1923800-01 0.1055180-01 0.1689970-02 0.6514040-03
                                                                  0.172811D-02
                                                                                      0.9045740-01
                                                                                      0.1274900-01
                                                                 0.651404D-03 -0.630857D-03
 18 -0.9732350-02 0.4104030-02 -0.5422430-02 -0.1109800-01 0.4471820-02
27 -0.1106760-03 -0.7437410-02 -0.6519700-03
                                                                 0.1108420-03
                                                                                      0.183014D-02
 28 0.6922000-04 -0.1001670-03 0.1421670-03
                                                                  0.4175150-03
                                                                                      0.2674590-03
16 0.1128680+00
      0.1131300+00 0.2539710+00
 18 -0.4828380-01 -0.8855200-01
                                              0.9109210-01
28 0.9177440-04 0.2719860-03 -0.8424640-03 -0.8317570-02 -0.3806610-03 
29 0.4233580-04 0.4772940-03 -0.2831350-03 -0.5008590-03 0.1150470-02 
30 -0.4549210-03 0.5911100-04 -0.4576160-03 -0.3269890-02 -0.3989370-03 
31 -0.2412600-04 0.1918970-03 0.2530020-03 0.2406840-02 0.1278830-02 
32 0.7270110-04 0.1624290-03 -0.3964840-03 -0.1404840-03 0.2063020-04 
33 0.1300150-03 -0.4223070-04 0.2968170-03 0.1035670-02 -0.2940670-04
34 0.2521790-04 -0.8769060-04 -0.7789540-04
35 0.1116120-03 -0.3340850-04 -0.1575630-04
36 0.1419540-05 0.7867560-04 -0.7622390-04
                                                                 0.3215580-02 -0.2709840-03
-0.1775950-03 0.1448110-02
                                                                 0.1678220-02 -0.1441150-04
21 0.1805310+00
22 -0.1521850+00 0.4472930+00
23 0.2641550-01 0.2453460-01
24 -0.8119750-01 0.1615900+00
25 -0.2942790-02 0.1656460-02
                          0.7836300-01
                           0.1656460-02
                                              0.3121960-04
                                                                  -0.4516800-03 0.1294290+00
 26 -0.2463320-03 0.1546450-02 0.3379650-03
                                                                 0.5383950-03 -0.1050160+00
     0.6522790-02 -0.6547020-03 -0.9532990-03
                                                                 -0.316274D-03 -0.465514D-01
 28 -0.3355360-02 -0.9689720-03 -0.1924670-02 0.4223860-03 0.1013470-02
     -0.3247590-03 -0.2801710-05 0.5239600-03
                                                                  0.3036750-03 -0.4372890-03
 30 -0.3717480-03 -0.6716610-03 -0.5029400-03 0.8428230-03 0.6141590-03
```

Table 5c. Force Constant Matrix for Isopropanol [C₃H₈O] at the 6-31G* MP2 Level of Calculation. (CONTINUED 2)

```
31 0.1260820-02 0.3323480-03 0.3641270-03 0.1009200-03 0.1603040-02 32 -0.7664590-03 0.1223970-03 -0.1138670-03 0.1377020-03 -0.3283460-03
  33 0.1545960-02 0.1865670-03 0.8604440-04 0.3125820-03 -0.3347370-04 34 -0.1638010-03 0.6990350-03 -0.5753460-05 -0.4861210-04 -0.6145540-02 35 -0.1120000-03 -0.7950820-04 0.1470930-03 -0.1317350-04 -0.4074070-04 36 -0.1745590-03 0.6854180-04 0.2719800-03 -0.1334600-03 -0.3009280-02
                                    26
            0.2346460+00
  27 0.7060220-01 0.9379000-01
28 0.8468120-03 0.6057350-03 0.1283920+00
 31 0.5434070-01
  32 -0.6860220-03 0.5074250-01
  33 -0.1396500-01 -0.803247D-02 0.3589640+00
  36 0.8403990-01
FORCE CONSTANTS IN INTERNAL COORDINATES (ATOMIC UNITS).
                                                                                                                                                                                                                                5
               0.3038950+00
      2 0.1001910-01 0.3190450+00
      3 0.4002520-02 0.5194280-03 0.3572570+00
4 0.4266940-02 -0.1836150-03 0.1170230-02 0.3508600+00
     7 0.4307030-03 0.584912D-04 0.3403760-04 -0.117422D-03 -0.662646D-03 0.531847D-03 9 -0.308056D-04 0.241640D-02 -0.628313D-03 0.516816D-03 0.531847D-03 10 -0.932047D-04 0.331440D-02 -0.632362D-04 -0.935974D-04 0.700246D-03 11 0.630061D-03 0.426868D-02 0.497522D-03 -0.226115D-03 -0.684608D-04 12 0.434301D-01 0.316437D-03 -0.323241D-02 0.788346D-02 -0.256230D-02 13 0.311714D-01 -0.351850D-02 -0.373213D-02 -0.87819D-02 -0.868519D-02 14 0.311153D-01 0.655540D-02 -0.33314QD-02 -0.504548D-02 -0.885519D-02 15 0.256271D-01 -0.512301D-03 -0.794882D-02 -0.910888D-02 -0.341024D-02 16 0.346257D-01 -0.246981D-01 -0.571649D-02 -0.167985D-02 0.109582D-01 17 -0.246131D-03 0.563094D-02 -0.263134D-03 0.239876D-02 -0.957837D-03 18 0.373486D-01 -0.210051D-01 0.286597D-04 -0.624006D-03 0.617946D-03 0.659221D-02 0.315089D-01 0.284197D-03 0.168685D-02 0.111095D-03 1-0.339225D-02 0.318247D-01 0.169256D-02 -0.780931D-03 0.627121D-04 0.189256D-02 -0.140026D-01 0.151150D-01 24 -0.1811660-02 -0.434619D-03 -0.135199D-01 0.150143D-01 0.775811D-03 0.3284735D-02 -0.342277D-01 0.243175D-02 -0.300372D-02 -0.100915D-03 0.289870D-02 -0.342277D-01 0.243175D-02 -0.300372D-02 -0.100915D-03 0.289870D-02 -0.342277D-01 0.243175D-02 -0.300372D-02 -0.100915D-03 0.289870D-02 -0.359801D-02 0.277967D-01 -0.18339D-04 0.127670D-02 -0.785349D-03 0.127670D-03 -0.753614D-03 -0.215448D-03 0.350968D-03 -0.134630D-03 -0.75
             0.3497210+00
      7 -0.3191530-02 0.5085260+00
      8 0.150943D-01 -0.410441D-03
9 0.773709D-03 0.205974D-03
                                                                                                            0.3297070+00
                                                                                                            0.5169780-03 0.3569650+00
  10 0.1629330-03 -0.2698860-03 0.4319800-03 0.1025610-02 0.3597990+00 11 0.5824410-03 -0.3679100-03 -0.6384300-03 0.9359110-03 0.1117150-02
```

Table 5c. Force Constant Matrix for Isopropanol [C₃H₈O] at the 6-31G* MP2 Level of Calculation. (CONTINUED 3)

```
12 -0.3893510-01 -0.5484470-02 -0.1063830-01 -0.7725420-02 0.1164600-01
13 -0.4461390-02 0.2918400-03 0.4981490-02 0.6287100-04 14 -0.4295170-02 0.1730770-02 -0.1226560-02 0.2532420-03
                                                                                                                                     0.1327290-02
15 0.1360560-01 -0.1766950-02 0.8938920-03 0.6012870-03 -0.5832940-03
16 -0.3310490-02 -0.1052000-01 -0.3733750-02 -0.4981070-02 0.5257920-02 17 0.4931170-01 0.1741360-01 0.5074710-03 0.9121620-03 0.1011960-03 18 -0.3115450-01 0.1935470-02 0.5334060-02 -0.3723400-03 0.1269790-02 19 0.1171030-01 0.1732270-02 0.2907220-03 -0.2310650-02 -0.7989070-02
20 -0.4273700-02 -0.7561330-03 -0.1131130-02 -0.8963020-02 -0.3730340-02 21 -0.4513660-02 -0.1032500-02 0.4703660-02 -0.8734550-02 -0.8260570-02
 22 0.5917670-01 0.1116970-01 -0.1335280-01 0.9431480-02 -0.2601730-02
23 -0.3813490-03 -0.4271550-04
                                                                       0.2156450-03 0.6761180-03 -0.7490540-04
24 -0.1584180-02 -0.3570980-03
                                                                     0.2898310-03 -0.1215900-03 0.2678750-03
25 -0.5674190-02 -0.1579050-03 0.6294310-03 -0.1215900-03 0.2570730-02 25 -0.5674190-02 -0.1579050-01 0.6742020-02 -0.8720670-02 0.2370730-02 26 0.1245140-02 -0.6234940-03 -0.5948420-03 -0.12451450-03 -0.3975230-03 27 -0.5226840-01 0.3995300-02 0.6691660-02 -0.5958580-03 -0.4353670-04 28 -0.1490690-03 -0.1002990-03 -0.1015130-03 -0.2984560-03 -0.1351640-01 29 0.2216000-03 0.3199060-03 -0.2747290-03 0.1458490-01 -0.2746650-03 -0.2746650-03 -0.2746650-03 -0.2746650-03 -0.2746650-03 -0.2746650-03 -0.2746650-03 -0.2746650-03 -0.2746650-03 -0.2746650-03 -0.2746650-03 -0.2746650-03 -0.2746650-03 -0.2746650-03 -0.2746650-03 -0.2746650-03 -0.2746650-03 -0.2746650-03 -0.2746650-03 -0.2746650-03 -0.2746650-03 -0.2746650-03 -0.2746650-03 -0.2746650-03 -0.2746650-03 -0.2746650-03 -0.2746650-03 -0.2746650-03 -0.2746650-03 -0.2746650-03 -0.2746650-03 -0.2746650-03 -0.2746650-03 -0.2746650-03 -0.2746650-03 -0.2746650-03 -0.2746650-03 -0.2746650-03 -0.2746650-03 -0.2746650-03 -0.2746650-03 -0.2746650-03 -0.2746650-03 -0.2746650-03 -0.2746650-03 -0.2746650-03 -0.2746650-03 -0.2746650-03 -0.2746650-03 -0.2746650-03 -0.2746650-03 -0.2746650-03 -0.2746650-03 -0.2746650-03 -0.2746650-03 -0.2746650-03 -0.2746650-03 -0.2746650-03 -0.2746650-03 -0.2746650-03 -0.2746650-03 -0.2746650-03 -0.2746650-03 -0.2746650-03 -0.2746650-03 -0.2746650-03 -0.2746650-03 -0.2746650-03 -0.2746650-03 -0.2746650-03 -0.2746650-03 -0.2746650-03 -0.2746650-03 -0.2746650-03 -0.2746650-03 -0.2746650-03 -0.2746650-03 -0.2746650-03 -0.2746650-03 -0.2746650-03 -0.2746650-03 -0.2746650-03 -0.2746650-03 -0.2746650-03 -0.2746650-03 -0.2746650-03 -0.2746650-03 -0.2746650-03 -0.2746650-03 -0.2746650-03 -0.2746650-03 -0.2746650-03 -0.2746650-03 -0.2746650-03 -0.2746650-03 -0.2746650-03 -0.2746650-03 -0.2746650-03 -0.2746650-03 -0.2746650-03 -0.2746650-03 -0.2746650-03 -0.2746650-03 -0.2746650-03 -0.2746650-03 -0.2746650-03 -0.2746650-03 -0.2746650-03 -0.2746650-03 -0.2746650-03 -0.2746650-03 -0.2746650-03 -0.2746650-03 -0.2746650-03 -0.2746650-03 -0.2746650-03 -0.2746
30 -0.560102D-03 -0.295918D-03 -0.448403D-04 -0.144746D-01 0.147381D-01
      0.3571860+00
12 -0.5002790-02 0.3694360+00
13 0.1765500-02 -0.6558120-02
14 0.2855620-03 0.3072490-01
                                                                       0.2285330+00
                                                                       0.3113270-01 0.2315730+00
15  0.5819550-04 -0.2547410-02  0.3225640-01  0.3562650-01  16 -0.3006330-03  0.9995820-01 -0.1838280-01 -0.1058260-01
                                                                                                                                     0.2247640+00
                                                                                                                                     0.419637D-01
                                                                     0.2340510-03 -0.1592490-01
18 -0.3261310-02 0.5822130-01
19 -0.786968D-02 -0.184687D-01
                                                                     0.4323750-03 -0.1213530-02 0.3262970-02
20 -0.8368010-02  0.4500490-01 -0.3465680-03  0.8968950-02 -0.1282580-02
21 -0.3000470-02 -0.1502480-01 0.2197080-02 -0.2550610-03 0.4587440-03 22 -0.1027160-01 -0.3392450-01 -0.2940580-02 0.5891990-01 -0.5664250-01 23 -0.6625520-03 -0.5768310-03 -0.5690480-01 0.6196000-03 0.5870030-01
24 -0.9366480-04 -0.2825300-02 0.5975930-01 -0.6090050-01 -0.2792500-02 25 0.5707660-02 0.9878180-01 0.8086800-02 -0.2748770-02 0.1138100-02
26 0.3642910-03 -0.4421850-02 -0.6949620-03 -0.7855670-03 -0.1001310-02 
27 0.4801800-02 -0.6105820-01 0.7844740-03 0.1683950-02 -0.2292970-02 
28 0.1377130-01 0.7419910-02 -0.2831450-03 0.3684620-03 0.8667630-03 
29 -0.1509280-01 0.7806670-03 0.1470800-02 0.2273060-03 -0.1205720-02 
30 0.2217860-03 -0.3994140-02 -0.1981560-03 -0.6205180-03 -0.8148780-05
16 0.4298490+00
17 -0.1809160-01
                                        0.1895940+00
                                                                       0.2752770+00
 18 0.6422370-01
                                        0.2772430-02
 19 -0.2030200-01 0.8347070-02
                                                                       0.2740930-02 0.2283870+00
20 0.1247230-01 -0.1199090-02
                                                                      0.4266990-02
                                                                                                     0.3335760-01
                                                                                                                                     0.228611D+00
        0.1671210-02 -0.1157800-02 -0.1410270-01 0.3197280-01 0.3058880-01
0.7124890-01 0.2169140-02 0.9832340-02 -0.5798820-02 -0.5502070-02 0.8392330-02 -0.1747080-03 -0.1046920-02 0.1466630-02 0.5972970-01 0.2818250-02 -0.5281040-03 -0.1854000-02 -0.5868970-01 0.4327540-02
      0.1417740-02 0.5006240-03 -0.2009290-02 0.5812080-01 -0.5618670-01
21 22 23 24 25
21 0.2310380+00
 22 -0.3970670-01
                                      0.4997690+00
 23 -0.1536480-02 -0.9500180-01 0.1882330+00
        0.2612690-03 -0.9712670-01 -0.8772410-01 0.1860670+00
        0.1688120-01 -0.2104120+00
                                                                     0.2099200-02
                                                                                                      0.8155740-02
                                                                                                                                     0.3569540+00
        0.6577130-03 -0.1731080-02 -0.2387870-02 0.9192960-03 0.5453710-02 0.2301890-01 -0.1064810+00 0.1992340-02 0.4155180-03 -0.1403080+00
28 -0.6004640-01 0.5303150-02 0.7046990-04 -0.1570030-02 -0.5019520-02 9 0.5674920-01 0.2621280-02 -0.2125020-02 0.3781060-04 -0.5759190-03
 30 -0.592621D-02 0.1997380-02 0.450581D-03 0.407442D-03 -0.1746540-02
 26 0.1189950-01
 27 -0.2385000-02 0.2497200+00
30 0.1691910-03 -0.1908390-02 -0.8914630-01 -0.9245460-01 0.1898400+00
```

Table 5d. Force Constant Scaling Constants, Q(I), and C matrix for Isopropanol [C₃H₈O] Based on Comparison of Force Constant Matrices at the 6-31G* HF and the 6-31G* MP2 Level of Calculation.

Q Values	
1	9(1)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	0.962142E+00 0.969243E+00 0.969243E+00 0.951906E+00 0.953038E+00 0.943910E+00 0.866173E+00 0.839952E+00 0.957179E+00 0.953456E+00 0.951441E+00 0.952640E+00 0.907579E+00 0.904544E+00 0.904575E+00 0.904546E+00 0.904575E+00 0.904575E+00 0.904575E+00 0.904575E+00 0.904575E+00 0.904575E+00 0.904575E+00 0.904575E+00 0.904575E+00 0.916036E+00 0.916036E+00 0.916036E+00 0.916036E+00 0.916036E+00 0.917830E+00 0.91506E+00 0.921506E+00 0.925561E+00

## C Matrix (30,30)

		COLUMN 1	COLUMN 2	COLUMN 3
ROW	1	0.1000000000000+01	COCOTING E	50E5FIII 5
ROW	ż	0.9205613488220+00	0.1000000000000+01	
ROW	3	0.1076957624630+01	0.1000000000000+01	0.1000000000000+01
ROW	4	0.1015537120410+01	0.1000000000000+01	0.348766554757D+00
ROW	3	0.1144668480500+01	0.100000000000+01	0.2811639741050+00
ROW	6	0.9743056235030+00	0.1029939260850+01	0.5270864515930+00
ROW	7	0.1000000000000+01	0.1000000000000+01	0.1000000000000+01
ROW	8	0.8731009598100+00	0.8500556344130+00	0.1000000000000+01
ROW	ğ	0.1000000000000+01	0.945817948634D+00	0.1000000000000+01
ROW	10	0.1000000000000+01	0.1009663461280+01	0.10000000000000+01
ROW	11	0.1000000000000+01	0.104054455237D+01	0.1000000000000+01
ROW	12	0.1060958403080+01	0.1000000000000+01	0.106466921427D+01
ROW	13	0.109776047561D+01	0.1404727855460+01	0.891850372867D+00
ROW	14	0.111945364801D+01	0.1083092566270+01	0.9795038943740+00
ROW	15	0.1104699411580+01	0.10000000000000+01	0.988904857854D+00
ROW	16	0.1024892794850+01	0.1084314818100+01	0.1141503159620+01
ROW	17	0.10000000000000+01	0.1028611477460+01	0.10000000000000+01
ROW	18	0.1091577999680+01	0.1098995805620+01	0.9844617262610+00
ROW	19	0.10000000000000+01	0.110939879807D+01	0.1000000000000+01
ROW	20	0.1039009902470+01	0.1089989881890+01	0.1000000000000+01
ROW	21	0.1428792655710+01	0.108215027031D+01	0.1182824298580+01
ROW	22	0.3486033644930+00	0.111220037677D+01	0.1000598301550+01
ROW	23	0.1335081185420+01	0.1000000000000+01	0.1031610197970+01
ROW	24	0.1175173656200+01	0.1000000000000+01	0.1026143233570+01
ROW	25	0.1445410803420+01	0.1080088203950+01	0.9108588336120+00

Table 5d. Force Constant Scaling Constants, Q(I), and C matrix for Isopropanol [C₃H₈O] Based on Comparison of Force Constant Matrices at the 6-31G* HF and the 6-31G* MP2 Level of Calculation. (CONTINUED 1)

ROW	26	0.10000000000000+01	0.1000000000000+01	0.1000000000000+01
ROW	27	0.1163810183440+01	0.1098057912010+01	0.1000000000000+01
ROW	28	0.10000000000000+01	0.1000000000000+01	0.1000000000000+01
ROW	29	0.1000000000000+01	0.1000000000000+01	0.100000000000b+01
ROW	30	0.1000000000000+01	0.1000000000000+01	0.1000000000000+01
		COLUMN 4	COLUMN 5	COLUMN 6
ROW	4	0.1000000000000+01		
ROW	5	0.3567457303830+00	0.1000000000000+01	
ROW	6	0.8008309104990+00	0.8013147202380+00	0.1000000000000+01
ROW	7	0.1000000000000+01	0.1000000000000+01	0.2207828320680+01
ROW	8	0.5148932458810+00	0.5211454652520+00	0.9053478210110+00
ROW	9	0.1000000000000+01	0.6792205393200+00	0.7732472553700+00
ROW	10	0.1000000000000+01	0.10000000000000+01	0.1000000000000+01
ROW	11	0.1000000000000+01	0.1000000000000+01	0.5112062470730+00
ROW	12	0.1007152798680+01	0.100092703041D+01	0.1042922677930+01
ROW	13	0.9857777254160+00	0.9984239894560+00	0.144900693607D+01
ROW	14	0.1108209210400+01	0.101828059318D+01	0.1411017534560+01
ROW	15	0.1022819989540+01	0.1178765010540+01	2.9943344706030+00
ROW	16	0.1014526857520+01	0.1041746688690+01	0.1095952953300+01
ROW	17	0.110056067351D+01	0.9681354697230+00	0.1285200298600+01
ROW	18	0.1000000000000+01	0.1000000000000+01	0.1037377869110+01
ROW	19	0.1000000000000+01	0.1000000000000+01	0.9566319631840+00
ROW	20	0.9275905872970+00	0.1000000000000+01	0.115287623885D+01
ROW	21	0.10000000000000+01	0.1000000000000000000000000000000000000	0.1284591815500+01
ROW	22	0.1038195081480+01	0.100885130477D+01	0.106256938204D+01
	23	0.1036193061460+07		0.1002309302040+01
ROW			0.1030629593280+01 0.10000000000000+01	
ROW	24	0.1029078567830+01		0.1236792282130+01
ROW	25	0.9022736615290+00	0.1000000000000+01	0.1857128445220+01
ROW	26	0.9982606542150+00	0.9333945427120+00	0.9953149979180+00
ROW	27	0.9582975854360+00	0.8525722916390+00	0.1046585284200+01
ROW	28	0.1000000000000+01	0.1000000000000+01	0.1000000000000+01
ROW	29	0.10000000000000+01	0.1000000000000+01	0.1000000000000+01
ROW	30	0.1000000000000+01	0.1000000000000+01	0.6083201014240+00
		504 LTML 7		
	-	COLUMN 7	COLUMN 8	COLUMN 9
ROW	7	0.1000000000000+01	0.400000000000000	
ROW	8	0.10000000000000+01	0.10000000000000+01	
ROW	9	0.10000000000000+01	0.5350693176600+00	0.10000000000000+01
ROW	10	0.1000000000000+01	0.1000000000000+01	0.3236710802200+00
ROW	11	0.1000000000000+01	0.1000000000000+01	0.2991646044740+00
ROW	12	0.1515763672640+01	0.1087834449890+01	0.9232051747840+00
ROW	13	0.1000000000000+01	0.9293108075710+00	0.1000000000000+01
ROW	14	0.1682436963100+01	0.1000000000000+01	0.1000000000000+01
ROW	15	0.148313969841D+01	0.8900996834260+00	0.1000000000000+01
ROW	16	0.1328836795460+01	0.8774631463420+00	0.9305668751510+00
ROW	17	0.1290615886170+01	0.1000000000000+01	0.1000000000000+01
ROW	18	0.194399046307D+01	0.1347075060790+01	0.1000000000000+01
ROW	19	0.1304536445870+01	0.1000000000000+01	0.1098920389370+01
ROW	20	0.10000000000000+01	0.1000000000000+01	0.1021710387800+01
ROW	21	0.10000000000000+01	0.9194012548610+00	0.9919684810630+00
ROW	22	0.1428407148790+01	0.1086868269730+01	0.100903220264D+01
ROW	23	0.1000000000000+01	0.1000000000000+01	0.1000000000000+01
ROW	24	0.1000000000000+01	0.10000000000000+01	0.1000000000000+01
ROW	25	0.1361211897020+01	0.8654903388210+00	0.9849262536900+00
ROW	26	0.1000000000000+01	0.1000000000000+01	0.1000000000000+01
ROW	27	0.119345405815D+01	0.1526911734060+01	0.1000000000000+01
ROW	28	0.1000000000000+01	0.1000000000000+01	0.1000000000000+01
ROW	29	0.1000000000000+01	0.1000000000000+01	0.1023559740490+01
ROW	30	0.1000000000000+01	0.10000000000000+01	0.1017467546600+01
		COLUMN 10	COLUMN 11	COLUMN 12
ROW	10	0.1000000000000+01	0.400000000000	
800				
ROW	11	0.3553207053580+00	0.1000000000000+01	A 4000000000000000000000000000000000000
ROW	12	0.1004414299860+01	0.1003673541340+01	0.1000000000000+01
				0.10000000000000+01 0.9848942810860+00

Table 5d. Force Constant Scaling Constants, Q(I), and C matrix for Isopropanol [C₃H₈O] Based on Comparison of Force Constant Matrices at the 6-31G* HF and the 6-31G* MP2 Level of Calculation. (CONTINUED 2)

ROW	14	0.8730288969640+00	0.1000000000000+01	0.9873470546630+00
ROW	15	0.10000000000000+01	0.1000000000000+01	0.100762259824D+01
ROW	16	0.9227447021380+00	0.1000000000000+01	0.9631517811890+00
	17	0.1000000000000+01	0.10000000000000+01	0.1014213155980+01
ROW			***************************************	
ROW	18	0.1008473262230+01	0.967480397867D+00	0.9919183619270+00
ROW	19	0.1023213768610+01	0.9901581233470+00	0.9410663431400+00
ROW	20	0.1011443577490+01	0.9941075809950+00	0.9941315573530+00
ROW	21	0.9924033453960+00	0.8722574549030+00	0.1017063891000+01
ROW	22	0.1044695517710+01	0.9848222090160+00	0.9414786779030+00
ROW	23	0.1000000000000+01	0.1000000000000+01	0.1000000000000+01
ROW	24	0.1000000000000+01	0.1000000000000+01	0.1034754072410+01
ROW	25	0.1180221744160+01	0.1020848164440+01	0.9889712801980+00
ROW	26	0.1000000000000+01	0.1000000000000+01	0.9705706159350+00
ROW	27	0.10000000000000+01	0.1003780293280+01	0.1019692792550+01
	_	0.1035698941260+01	0.1035112275380+01	0.1090309086460+01
ROW	28			
ROW	29	0.1000000000000+01	0.1027181739720+01	0.7910153615860+00
ROW	30	0.1021506568010+01	0.1000000000000+01	0.1297366926300+01
		COLUMN 13	COLUMN 14	COLUMN 15
ROW	13	0.1000000000000+01		
ROW	14	0.9554962523790+00	0.10000000000000+01	
				0. 100000000000.01
ROW	15	0.9578953087660+00	0.1009636534420+01	0.1000000000000+01
ROW	16	0.1024017929960+01	0.9228041457930+00	0.9914278940150+00
ROW	17	0.1000000000000+01	0.1046986287870+01	0.9000539630260+00
ROW	18	0.9815518687430+00	0.9707613423710+00	0.9860429870650+00
ROW	19	0.1000000000000+01	0.1066164245780+01	0.1028752345360+01
_				
ROW	20	0.1000000000000+01	0.1015347097150+01	0.1070334963130+01
ROW	21	0.9672685641570+00	0.10000000000000+01	0.1000000000000+01
ROW	22	0.1430665319890+01	0.9941328129390+00	0.9891251807420+00
ROW	23	0.100903962077D+01	0.10000000000000+01	0.1016389346880+01
ROW	24	0.1015955218360+01	0.1020403551840+01	0.1323572527160+01
	25	0.1130930080330+01	0.980143083043D+00	0.1167097373370+01
ROW				
ROW	26	0.1000000000000+01	0.7812551585430+00	0.10000000000000+01
ROW	27	0.10000000000000+01	0.1187367865510+01	0.1590146249460+01
ROW	28	9.1000000000000+01	0.10000000000000+01	0.1000000000000+01
ROW	29	0.1196865956240+01	0.1000000000000+01	0.1258444448900+01
ROW	30	0.1000000000000+01	0.1000000000000+01	0.1000000000000+01
		COLUMN 16	COLUMN 17	COLUMN 18
ROW	16	0.1000000000000+01		
ROW		0.1079630801510+01	0.1000000000000+01	
	17			0.400000000000.00
ROW	18	0.9566397947360+00	0.7617368188360+00	0.10000000000000+01
ROW	19	0.960059883692D+00	0.1051061540070+01	0.8472779329940+00
ROW	20	0.1041467324480+01	0.93801720°1050+00	0.1002592788150+01
ROW	21	0.5241211444350+00	0.9502386 17+00	0.9590020367070+00
ROW	22	0.1003228297320+01	0.10284054' " +01	0.9972991669580+00
			0.1000000@E=#00+01	0.10000000000000+01
ROW	23	0.1347715724520+01		
ROW	24	0.1430668603910+01	0.108576793	0.10000000000000+01
ROW	25	0.1047822951400+01	0.9748990199100+00	0.9626235039900+00
ROW	26	0.8605667214210+00	0.10000000000000+01	0.1095154942680+01
ROW	27	0.100293044847D+01	0.5921251650850+00	0.780515814437D+00
ROW	28	0.1024531515520+01	0.10000000000000+01	0.1021682869440+01
ROW	29	0.1367817735240+01	0.1000000000000000000000000000000000000	0.1243262365880+01
ROW	30	0.91 <b>7988</b> 4532020+00	0.10000000000000+01	0.8965162362440+00
	40	COLUMN 19	COLUMN 20	COLUMN 21
ROW	19	0.1000000000000+01		
ROW	20	0.9944315689480+00	0.1000000000000+01	
ROW	21	0.9552325339450+00	0.9602498035090+00	0.1000000000000+01
ROW	22	0.9649649604370+00	0.7085428585480+00	0.9892245447790+00
ROW	23	0.123817505745D+01	0.10000000000000+01	0.1204090348580+01
ROW	24	0.10000000000000+01	0.1000000000000+01	0.10000000000000+01
ROW		0.9625623017690+00	0.8938743412070+00	0.1015398912750+01
	25			
ROW	26	0.1000000000000+01	0.1000000000000+01	0.10000000000000+01
		0.1027047609490+01	0.1000000000000+01 0.9262881406090+00	0.10000000000000+01 0.9983333307980+00
ROW	26			

Table 5d. Force Constant Scaling Constants, Q(I), and C matrix for Isopropanol  $[C_3H_8O]$  Based on Comparison of Force Constant Matrices at the 6-31G* HF and the 6-31G* MP2 Level of Calculation. (CONTINUED 3)

ROW	29	9.1019437042750+01	0.1132065741310+01	0.1008494859940+01
ROW	30	0.1006365958580+01	0.1001132053560+01	0.114642151801D+01
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			•••••••••••••••••••••••••••••••••••••••	
		COLUMN 22	COLUMN 23	COLUMN 24
ROW	22	0.1000000000000+01		3024.11
			0. 10000000000000000	
ROW	23	0.1005876891060+01	0.10000000000000+01	
ROW	24	0.1000885791850+01	0.9864656175010+00	0.1000000000000+01
ROW	25	0.1026240539000+01	0.1673270881100+01	0.107348522767D+01
ROW	26	0.1000000000000+01	0.1019607225750+01	0.1000000000000+01
ROW	27	0.100078717601D+01	0.124210142184D+01	0.1000000000000+01
ROW	28	0.1175672311400+01	0.1000000000000+01	0.1040253798810+01
ROW	29	0.1030826442740+01	0.1053137337910+01	0.1000000000000+01
ROW	30	0.1618093179760+01	0.100000000000D+01	0.1000000000000+01
		COLUMN 25	COLUMN 26	COLUMN 27
ROW	25	COLUMN 25 0.1000000000000+01	COLUMN 26	COLUMN 27
		0.1000000000000+01		COLUMN 27
ROW	26	0.10000000000000+01 0.149475368191D+01	0.10000000000000+01	
ROW ROW	26 27	0.10000000000000+01 0.149475368191D+01 0.963971130230D+00	0.10000000000000+01 0.1001866633990+01	0.1000000000000+01
ROW ROW ROW	26 27 28	0.10000000000000+01 0.1494753681910+01 0.9639711302300+00 0.1162279613370+01	0.10000000000000+01 0.1001866633990+01 0.1210765889830+01	0.10000000000000+01 0.10000000000000+01
ROW ROW ROW	26 27 28 29	0.1000000000000+01 0.1494753681910+01 0.9639711302300+00 0.1162279613370+01 0.1000000000000+01	0.1000000000000+01 0.1001866633990+01 0.1210765889830+01 0.1000000000000+01	0.1000000000000+01 0.1000000000000+01 0.1181256377260+01
ROW ROW ROW	26 27 28	0.10000000000000+01 0.1494753681910+01 0.9639711302300+00 0.1162279613370+01	0.10000000000000+01 0.1001866633990+01 0.1210765889830+01	0.10000000000000+01 0.10000000000000+01
ROW ROW ROW	26 27 28 29	0.1000000000000+01 0.1494753681910+01 0.9639711302300+00 0.1162279613370+01 0.1000000000000+01	0.1000000000000+01 0.1001866633990+01 0.1210765889830+01 0.1000000000000+01	0.1000000000000+01 0.1000000000000+01 0.1181256377260+01
ROW ROW ROW	26 27 28 29	0.1000000000000+01 0.1494753681910+01 0.9639711302300+00 0.1162279613370+01 0.1000000000000+01	0.1000000000000+01 0.1001866633990+01 0.1210765889830+01 0.1000000000000+01	0.1000000000000+01 0.1000000000000+01 0.1181256377260+01
ROW ROW ROW	26 27 28 29	0.100000000000+01 0.149475368191D+01 0.963971130230D+00 0.116227961337D+01 0.100000000000+01 0.100000000000+01	0.1000000000000+01 0.1001866633990+01 0.1210765889830+01 0.1000000000000+01 0.1000000000000+01	0.1000000000000+01 0.100000000000+01 0.1181256377260+01 0.1020328839970+01
ROW ROW ROW ROW ROW	26 27 28 29 30	0.1000000000000+01 0.149475368191D+01 0.963971130230D+00 0.116227961337D+01 0.1000000000000+01 0.1000000000000+01 COLUMN 28 0.1000000000000+01	0.1000000000000+01 0.1001866633990+01 0.1210765889830+01 0.1000000000000+01 0.1000000000000+01 COLUMN 29	0.1000000000000+01 0.100000000000+01 0.1181256377260+01 0.1020328839970+01
ROW ROW ROW ROW ROW	26 27 28 29 30	0.1000000000000+01 0.149475368191D+01 0.963971130230D+00 0.116227961337D+01 0.1000000000000+01 0.1000000000000+01	0.1000000000000+01 0.1001866633990+01 0.1210765889830+01 0.1000000000000+01 0.1000000000000+01	0.1000000000000+01 0.100000000000+01 0.1181256377260+01 0.1020328839970+01

Table 6a. Optimized Geometries, Total Energies and Calculated Wavenumbers  $\dot{\nu}$  for Dimethyl ether [C₂H₆O] Based on Several Levels of Calculation.

H5 H4

H6 C1 O2 C3 H8

H7 H9

Table 6a. Optimized Geometries, Total Energies and Calculated Wavenumbers  $\bar{\nu}$  for Dimethyl ether [C₂H₆O] Based on Several Levels of Calculation. (CONTINUED)

HS H4

H6 C1 O2 C3 H8

H7 H9

parameter	3-21G	3-21G MP2	6-31G*	6-31G* MP2	Experiment
frequencies (cm ⁻¹ )					
'د ،	230	245	215	221	
- z	251	253	265	268	
7 -5	421	409	444	427	
7 3	963	877	1045	972	
* 2	1190	1090	1234	1152	
<u>ر</u> م	1253	1172	1281	1193	
o 'A	1281	1176	1316	1228	
` <b>^</b>	1283	1204	1350	1236	
د ه	1361	1270	1402	1299	
۲. ح	1607	1516	1612	1510	
2.7	1652	1559	1639	1545	
. ~	1672	1589	1650	1547	
. 'A	1681	1597	1651	1558	
24	1685	1608	1652	1565	
12	1700	1621	1671	1582	
. J	3173	3043	3164	3050	
	3186	3052	3180	3059	
- A	3230	3106	3216	3117	
, 2 2.5	3233	3110	3218	3122	
ر ج	3253	3135	3303	3216	
2	3264	3146	3305	3217	
721	570	21.7	COCC	1170	

Table 6b. Force Constant Matrix for Dimethyl ether [C₂H₆O] at the 6-31G* HF Level of Calculation.

```
FORCE CONSTANTS IN CARTESIAN COORDINATES (MARTREES/BOHR).
      0.7095120+00
    0.199707D-05 0.641971D+00
  3 0.1915280-01
                       0.0000000+00 0.5809250+00
  4 -0.1135690+00 0.0000000+00 -0.1430670-01 0.4643690+00 5 0.0000000+00 -0.7756140-01 0.1484210-05 0.0000000+00
  5 0.0000000+00 -0.7756140-01 0.148421D-05 0.0000000+00 0.115487D+00 6 0.342363D-01 0.0000000+00 -0.306053D+00 0.103825D+00 -0.123891D-05 7 -0.446085D-02 0.0000000+00 -0.169505D-01 -0.282047D+00 0.0000000+00
  8 0.0000000+00 -0.2220500-02 0.0000000+00 0.0000000+00 -0.7756130-01 9 -0.5093980-01 0.0000000+00 -0.3441660-01 -0.4010250-01 0.0000000+00
 16 -0.1243860+00 0.1017510+00 0.3847200-01 0.3848350-02 -0.8378680-03 17 0.1016160+00 -0.2492810+00 -0.7025940-01 -0.1909960-02 0.9268460-02 8 0.3430710-01 -0.6575690-01 -0.8680220-01 0.1771240-01 -0.3548910-01
    -0.1243590+00 -0.1017350+00
                                        0.384618D-01 0.384851D-02
                                                                            0.8379270-03
 20 -0.1016010+00 -0.2493080+00 0.7026390-01 0.1909540-02
                                                                            0.9269440-02
     0.3429830-01
                       0.657613D-01 -0.868008D-01 0.177081D-91
                                                                            0.3549170-01
                       0.6313970-03
                                                                            0.3213140-01
 23 -0.6888770-03
                                                                            0.9268950-02
 24 -0.147901D-02
                                                                            0.1509340-01
 25 -0.6488590-02
26 0.0000000+00
                                                                            0.0000000+00
                       0.2884130-03
0.0000000+00
                                                                            0.1280030-02
 27 -0.381571D-02
                                         0.2947800-02 -0.5610860-02 0.0000000+00
    0.5559890+00
    -0.8864570-01
                       0.5877350+00
 8 0.0000000+00 0.0000000+00 0.6419700+00 9 -0.1375770+00 -0.3457890-01 0.0000000+00 10 -0.1598580-02 -0.1197980+00 -0.1012340+00
                                                          0.702704D+00
                                                          0.3631860-01
                                                                            0.1458720+00
 11 -0.4495660-02 -0.1052990+00 -0.2492970+00 0.6459640-01 0.1229970+00 12 0.483722D-02 0.4048280-01 0.665371D-01 -0.913725D-01 -0.3678060-01
                                                                            0.1229970+00
                       0.2728550-02
 13 -0.263465D-02
                                         0.0000000+00 0.2512120-03 0.1525670-03
 14 0.0000000+00
                       0.0000000+00
                                         0.2884190-03 0.0000000+00
                                                                           0.4822680-03
 15 -0.25466.0-01
                       0.431256D-02
                                         0.0000000+00 -0.6269400-02 -0.3978840-03
 16 0.383914D-02
                       0.1182960-02 -0.2635570-02 -0.1235700-02  0.8733090-04
0.4495750-02
                       0.1053010+00
                                        -0.2492910+00 -0.6459880-01
                                                                           0.1434870-01
      0.4836990-02 0.4048580-01 -0.6653940-01 -0.9137480-01 -0.5204290-02
 25 -0.5126190-01 -0.6672050-01 0.0000000+00 0.5520070-01 -0.4237180-03 26 0.0000000+00 0.0000000+00 -0.6469640-01 0.3379800-05 -0.4346190-02 27 -0.1872140-01 0.3968960-01 0.3191390-05 -0.3483610+00 0.2816090-02 11 12 13 14 15
 11 0.2627260+00
12 -0.7075880-01
                        0.8453830-01
 13 0.1131450-03
                        0.1629170-03
                                         0.3572590+00
                        0.1734250-03
 14 0.3413120-03
                                         0.1959720-04
                                                          0.570565D-01
 15 -0.4892420-03
                        0.4823200-04
                                        0.8830200-01
                                                          0.5500030-05
                                                                            0.9859610-01
 16 0.9924020-04
                        0.5504570-04 -0.1387990-01
                                                          0.3113710-01
                                                                            0.1148270-01
                                                                            0.1541780-02
 17 -0.4147930-03 0.1024580-03 -0.2499190-03
                                                         0.2433260-02
 18 0.2902580-04 -0.3603420-03 -0.3120980-02 0.8988760-02 0.5885400-02
```

Table 6b. Force Constant Matrix for Dimethyl ether  $[C_2H_6O]$  at the 6-31G* HF Level of Calculation. (CONTINUED 1)

```
0.243084D-02 0.321173D-01 0.000000D+00 0.526306D-03 0.000000D+00 0.394561D-03 -0.756857D-02 -0.210853D-03 0.000000D+00 -0.115643D-02
 16 0.1217200+00
17 -0.1144000+00 0.2627070+00
 18 -0.4745230-01 0.8396180-01 0.1087090+00
25 0.1520710-03 -0.4933260-03 -0.3980370-03 0.15197D-03 0.493272D-03 26 -0.361198D-04 0.341329D-03 0.511217D-03 0.359779D-04 0.341346D-03 27 0.162662D-03 -0.939196D-04 0.488775D-04 0.162670D-03 0.939947D-04 21 22 23 24 25
 21 0.1087080+00
 24 -0.3603820-03 -0.3678420-01 0.7076180-01
                                                             0.8454130-01
 25 -0.398121D-03 -0.423752D-03 -0.151049D-02 0.174194D-01 0.755230D-01 26 -0.511226D-03 0.434609D-02 0.243153D-02 -0.321167D-01 0.000000D+00 27 0.487654D-04 0.281619D-02 -0.394309D-03 -0.756924D-02 -0.360098D-01
              26
 26 0.5705660-01
27 -0.354277D-05 0.380331D+00
FORCE CONSTANTS IN INTERNAL COORDINATES (ATOMIC UNITS).
                                                                                         5
     0.4329500+00
  2 0.1564460-02 0.4329530+00
  3 -0.9827800-03
                        0.1970440-01
                                           0.3630950+00
     0.1210330-01 -0.2175180-02 0.6567760-04 0.3845060+00
     0.1970360-01 -0.9829310-03 0.5109030-03 0.4193760-02
                                                                               0.3630950+00
  6 0.1970450-01 -0.9828860-03 0.1143090-02 0.4193880-02 0.5346220-02 7 -0.9830390-03 0.1970390-01 0.5346250-02 0.6565770-04 0.1143210-02 8 -0.2175200-02 0.1210330-01 0.4193860-02 0.4674350-03 0.6562750-04
                                                                               0.5346220-02
 9 0.4669100-01 0.4669120-01 -0.3181400-02 0.5863190-02 -0.3182530-02 10 -0.1201900-01 0.6188290-01 -0.7674450-02 -0.2550750-03 0.5478770-03 11 0.6245790-01 0.5208170-02 0.1279100-02 -0.5406420-02 -0.6649130-02
 15 0.5208110-02 0.6245740-01 -0.6649100-02 0.1651210-02 0.1279100-02 16 -0.3321720-02 -0.1104670-03 0.1259740-02 -0.2047250-03 0.1628850-03 17 0.0000000+00 0.0000000+00 0.9357850-03 0.0000000+00 0.1739440-01
 18 -0.1094760-03 -0.3321550-02 0.1628830-03 -0.1604680-01 0.1259430-02 19 0.1110400-03 0.3321880-02 -0.3587000-03 0.1604720-01 -0.1905640-01 0.2047050-03 -0.3586330-03 21 0.00000000+00 0.1739470-01 0.0000000+00 0.9358900-03
     0.3630960+00
      0.5108540-03 0.3630950+00
  8 0.6571420-04 0.4193850-02 0.3845050+00 9 -0.3181130-02 -0.3182260-02 0.5863160-02 0.2896340+00
 0.3057140+00
                                                                                0.7287110-03
 12 -0.8095910-02
                         0.3606560-02 -0.2551340-03 -0.5693440-02  0.4274700-02
```

Table 6b. Force Constant Matrix for Dimethyl ether [C₂H₆O] at the 6-31G* HF Level of Calculation. (CONTINUED 2)

```
15 0.1279060-02 -0.6649200-02 -0.5406550-02 0.2747160-01 0.3500740-01
16 0.3585680-03 0.1905650-01 -0.1604710-01
                                                       0.1997160-02 -0.1918250-02
17 -0.1739480-01 -0.9359400-03 0.0000000+00 0.1281530-05 0.1443290-02 18 0.1905630-01 0.3585110-03 -0.2047250-03 0.1999240-02 -0.5690840-03
21 -0.9358220-03 -0.1739460-01 0.0000000+00 0.0000000+00 -0.5280500-01
                                              13
11 0.2979250+00
12 0.3500740-01
                      0.3057130+00
13 0.3500740-01 0.4584400-01 0.3057130+00 14 0.7281020-03 -0.1522780-02 0.4274840-02 0.3057130+00 15 0.9128840-02 0.7281960-03 0.7286800-03 0.3500790-01
                                                                        0.2979240+00
0.5462540-01
                                                                        0.0000000+00
18 0.5462560-01 -0.1917740-02 -0.5655420-01 -0.1956910-02 0.3846580-03 19 -0.5462510-01 0.5655420-01 0.1918580-02 0.5692770-03 -0.3845550-03 20 -0.3845870-03 0.1956910-02 0.5690880-03 0.1917800-02 -0.5462550-01 21 0.0000000+00 0.1443190-02 -0.1443260-02 0.5280510-01 0.0000000+00
                             17
                                              18
                                                               19
                                                                               20
            16
16 0.212033D+00
17 0.506492D-03
                     0.2163530+00
18 0.1237900-04 -0.1056390+00 0.2120330+00
21 0.2163530+00
```

Table 6c. Force Constant Matrix for Dimethyl ether [C₂H₆O] at the 6-31G* MP2 Level of Calculation.

```
FORCE CONSTANTS IN CARTESIAN COORDINATES (HARTREES/BOHR).
      0.6584110+00
  2 0.364051D-05 0.594951D+00
3 0.170768D-01 -0.144234D-05 0.500924D+00
  4 -0.930678D-01 0.0000000+00 -0.193805D-01
                                                             0.3978520+00

      5
      0.0000000+00
      -0.6872670-01
      0.0000000+00
      0.0000000+00
      0.1023810+00

      6
      0.3086200-01
      0.0000000+00
      -0.2547630+00
      0.8434030-01
      0.0000000+00

      7
      -0.1126920-01
      0.0000000+00
      -0.1083820-01
      -0.2377600+00
      0.0000000+00

      8
      0.0000000+00
      -0.3208750-02
      0.0000000+00
      -0.0000000+00
      -0.6872600-01

      9
      -0.4746420-01
      0.0000000+00
      -0.3370930-01
      -0.2482890-01
      0.0000000+00

0.4723430-03
                                                                               0.8524860-02
                                                                                0.3081860-01
0.2859170-01
                                                                                0.852461D-02
                                                                                0.1151060-01
                                                                                0.0000000+00
 26 0.0000000+00 0.3534080-03 0.0000000+00 0.0000000+00 0.4870960-03 27 -0.3501990-02 0.0000000+00 0.1571160-02 -0.4293830-02 0.0000000+00
  6 0.462761D+00
7 -0.750717D-01 0.509805D+00
8 0.0000000+00 -0.191685D-05 0.594945D+00
  9 -0.1100840+00 -0.4011810-01 0.2692090-05
                                                             0.6495410+00
 10 -0.8083810-03 -0.1057770+00 -0.9477020-01
11 -0.3330560-02 -0.9702260-01 -0.2343090+00
                                                             0.3724350-01
                                                                                0.1291160+00
0.6698290-01
                                                                                0.1122560+00
 11 0.2457150+00
 12 -0.7206700-01
                         0.7960390-01
                         0.1705530-03 0.3392500+00
 13 0.186081D-03
 14 0.2981300-03
                         0.1277560-03 0.1495970-04
                                                             0.511597D-01
```

Table 6c. Force Constant Matrix for Dimethyl ether [C₂H₆O] at the 6-31G* MP2 Level of Calculation. (CONTINUED 1)

```
17 -0.5679230-03 0.1302600-03 -0.1892670-02 0.1965330-02 0.1038650-02 18 0.1056110-03 -0.2683820-03 -0.3238560-02 0.7821400-02 0.5093350-02
  18 0.1056110-03 -0.2683820-03 -0.3238500-02 0.7821400-02 0.5093530-02 19 -0.7429680-03 0.1178120-02 -0.1181970-01 -0.2798600-01 0.1056270-01 20 -0.3788000-03 0.1186090-02 0.1891290-02 0.1962650-02 -0.1037550-02 21 -0.1371770-02 0.7200560-03 -0.3237780-02 -0.7821720-02 0.5093590-02 22 -0.1312060-01 -0.4278740-02 0.2095530-03 -0.4572340-03 -0.1886560-03 23 -0.2242550-01 -0.1053040-01 -0.1861110-03 0.2981690-03 0.3602980-03 24 0.1053080-01 0.4681220-02 0.1705320-03 -0.1277370-03 0.4258230-04 0.1631220-02 0.1705320-03 -0.1277370-03 0.4258230-04
            0.1648490-02 0.1528800-01 -0.1180250-05 0.0000000+00 -0.2168880-02 0.1964170-02 0.2892700-01 0.0000000+00 0.5766860-03 0.0000000+00
    27 -0.1392820-02 -0.7183740-02 -0.6082950-04 0.0000000+00 -0.8593830-03
                                  16
    16 0.1117210+00
  16 0.1117219+00
17 -0.1075860+00 0.2457070+00
18 -0.4506330-01 0.7887600-01 0.9700810-01
19 0.8276920-02 0.1454230-01 -0.5063750-02 0.1116990+00
20 -0.1453910-01 -0.2242520-01 0.8462040-02 0.1075740+00 0.2457310+00
21 -0.5062880-02 -0.8462610-02 0.6719390-02 -0.4505610-01 -0.7888170-01
22 0.8476340-03 -0.1013310-02 -0.1509680-02 0.4153170-04 -0.6302710-04
23 0.7429100-03 -0.3787580-03 0.1371790-02 -0.9896530-04 -0.5678430-03
24 0.1178200-02 -0.1186100-02 0.7199680-03 0.1243310-03 -0.1303440-03
            0.7020710-04 -0.4031160-03 -0.2423300-03 0.7016500-04 0.4030720-03
   21 0.9700820-01
   22 -0.9295150-03 0.1291160+00
   23 -0.1056210-03 -0.1122570+00 0.2457180+00
   24 -0.2684120-03 -0.3835930-01 0.7206530-01 0.7960170-01
   27 0.1818830-03 0.1486900-02 0.1392790-02 -0.7182860-02 -0.2451230-01
26 0.5115970-01
27 0.371561D-05 0.361068D+00
FORCE CONSTANTS IN INTERNAL COORDINATES (ATOMIC UNITS).
            0.3710430+00
       2 -0.2579030-02 0.3710560+00
      3 -0.4721510-03 0.1688440-01 0.3394050+00
            0.9585330-02 -0.1355140-02 -0.8161990-04 0.3630570+00 0.1688340-01 -0.4721540-03 0.5203890-03 0.1937250-02 0.1688390-01 -0.4722820-03 0.4101960-03 0.1937320-02
                                                                                                                                                                                         0.3394060+00
                                                                                                                                                                                         0.3297860-02
      7 -0.4723050-03 0.1688410-01 0.3298020-02 -0.8161870-04 0.4102080-03 8 -0.1355230-02 0.9585510-02 0.1937430-02 0.2612580-03 -0.8164230-04 9 0.5087610-01 0.5087670-01 -0.2459820-02 0.5809450-02 -0.2460300-02
   9 0.5087610-01 0.5087670-01 -0.2459820-02 0.5809450-02 -0.2460300-02 10 -0.1305860-01 0.5647880-01 -0.9335510-02 -0.3776380-03 0.2558160-03 11 0.5692250-01 0.7839760-02 0.9130680-03 -0.5758080-02 -0.5744520-02 12 0.5647760-01 -0.1305920-01 0.2558130-03 -0.5196440-02 -0.9335560-02 13 0.5647800-01 -0.1305870-01 0.4324470-02 -0.5196530-02 -0.7386810-02 14 -0.1305890-01 0.5647870-01 -0.7386730-02 -0.3775840-03 0.4324450-02 15 0.7839690-02 0.5692170-01 -0.5744640-02 0.1343530-02 0.9130780-03 0.5746400-02 0.5767670-03 0.730570-03 0.730570-03 0.730570-03 0.730570-03 0.730570-03 0.730570-03 0.730570-03 0.730570-03 0.730570-03 0.730570-03 0.730570-03 0.730570-03 0.730570-03 0.730570-03 0.730570-03 0.730570-03 0.730570-03 0.730570-03 0.730570-03 0.730570-03 0.730570-03 0.730570-03 0.730570-03 0.730570-03 0.730570-03 0.730570-03 0.730570-03 0.730570-03 0.730570-03 0.730570-03 0.730570-03 0.730570-03 0.730570-03 0.730570-03 0.730570-03 0.730570-03 0.730570-03 0.730570-03 0.730570-03 0.730570-03 0.730570-03 0.730570-03 0.730570-03 0.730570-03 0.730570-03 0.730570-03 0.730570-03 0.730570-03 0.730570-03 0.730570-03 0.730570-03 0.730570-03 0.730570-03 0.730570-03 0.730570-03 0.730570-03 0.730570-03 0.730570-03 0.730570-03 0.730570-03 0.730570-03 0.730570-03 0.730570-03 0.730570-03 0.730570-03 0.730570-03 0.730570-03 0.730570-03 0.730570-03 0.730570-03 0.730570-03 0.730570-03 0.730570-03 0.730570-03 0.730570-03 0.730570-03 0.730570-03 0.730570-03 0.730570-03 0.730570-03 0.730570-03 0.730570-03 0.730570-03 0.730570-03 0.730570-03 0.730570-03 0.730570-03 0.730570-03 0.730570-03 0.730570-03 0.730570-03 0.730570-03 0.730570-03 0.730570-03 0.730570-03 0.730570-03 0.730570-03 0.730570-03 0.730570-03 0.730570-03 0.730570-03 0.730570-03 0.730570-03 0.730570-03 0.730570-03 0.730570-03 0.730570-03 0.730570-03 0.730570-03 0.730570-03 0.730570-03 0.730570-03 0.730570-03 0.730570-03 0.730570-03 0.730570-03 0.730570-03 0.730570-03 0.730570-03 0.730570-03 0.730570-03 0.730570-03 0.730570-03 0.730570-03 0.730570-03 0.730570-03 0.730570-03 0.73
    16 -0.3554120-02 -0.2319350-03 0.1593290-02 -0.2574450-03 0.3329750-03 17 0.0000000+00 0.0000000+00 0.8586440-03 0.0000000+00 0.1634750-01 18 -0.2314220-03 -0.3554020-02 0.3329540-03 -0.1532350-01 0.1593200-02
                                                                                                                                                                                         0.1593200-02
   19 0.2326130-03 0.3554310-02 -0.7419090-03 0.1532380-01 -0.1843700-01 20 0.3554170-02 0.2320280-03 -0.1843710-01 0.2574190-03 -0.7418680-03 21 0.0000000+00 0.0000000+00 0.1634780-01 0.0000000+00 0.8586810-03
            0.3394100+00
               0.5203610-03
                                                         0.3394060+00
            -0.8157480-04
                                                         0.1937250-02 0.3630550+00
            -0.2459560-02
                                                        -0.2460060-02
                                                                                                     0.5809390-02 0.2849270+00
     10 0.4324320-02 -0.7386750-02 -0.5196620-02 -0.4774700-02 0.2721100+00
```

Table 6c. Force Constant Matrix for Dimethyl ether [C₂H₆O] at the 6-31G* MP2 Level of Calculation. (CONTINUED 2)

```
      13
      -0.9335840-02
      0.2558340-03
      -0.3775550-03
      -0.4774750-02
      -0.1608110-02

      14
      0.2558130-03
      -0.9335650-02
      -0.5196560-02
      -0.4773690-02
      0.4335430-01

      15
      0.9130190-03
      -0.5744540-02
      -0.5758170-02
      0.2643220-01
      0.3144400-01

      16
      0.7416720-03
      0.1843710-01
      -0.1532380-01
      0.1878020-02
      -0.4270950-02

17 -0.1634770-01 -0.8587410-03 0.0000000+00 18 0.1843680-01 0.7416840-03 -0.2574430-03
                                                                        0.000000+00 0.1378990-02
                                                                        0.1879150-02 -0.8088890-03
19 -0.1593630-02 -0.3328490-03
20 -0.3328440-03 -0.1593700-02
                                                 0.2574270-03 -0.1877630-02 0.2278390-02
                                                  0.1532360-01 -0.1878990-02 0.5199530-01
21 -0.8586580-03 -0.1634750-01 0.0000000+00 0.0000000+00 -0.4778910-01
11 0.2658330+00
12 0.3144350-01
13 0.3144370-01
                            0.2721080+00
                            0.4335460-01
                                                  0.2721070+00
14 0.3049800-03 -0.1608060-02
                                                  0.403804D-02
0.305378D-03
                                                                        0.2721090+00
15 0.9037700-02 0.3051610-03
                                                                        0.3144390-01
                                                                                              0.2658330+00
    0.5050480-03 -0.8090560-03
                                                 -0.2278360-02 -0.5199500-01
                                                                                              0.5005830-01
      0.1131530-05 -0.4778870-01 0.4778870-01 -0.1378890-02
                                                                                              0.0000000+00
18 0.5005830-01 -0.4270950-02 -0.5199510-01 -0.2278140-02 0.5050740-03
19 -0.5005800-01 0.5199520-01 0.4271240-02 0.8090520-03 -0.5049770-03 20 -0.5049750-03 0.2278250-02 0.8088990-03 0.4270350-02 -0.5005830-01 21 0.0000000+00 0.1378970-02 -0.1379020-02 0.4778910-01 0.0000000+00
                16
                                                            18
                                                                                  19
16 0.194284D+00
17 0.406594D-03 0.198948D+00
18 -0.9442100-04 -0.9670490-01
                                                 0.194283D+00
19  0.228682D-03  -0.967048D-01  -0.899965D-01  0.194282D+00
20 -0.8999760-01 0.4066900-03 0.2286040-03 -0.9484710-04
                                                                                              0.194282D+00
21 -0.9670520-01 -0.2242570-02 0.4065230-03 0.4068330-03 -0.9670320-01
      0.1989460+00
```

Table 6d. Force Constant Scaling Constants, Q(I), and C matrix for Dimethyl ether [C₂H₆O] Based on Comparison of Force Constant Matrices at the 6-31G* HF and the 6-31G* MP2 Level of Calculation.

Q Values	
1	Q(1)P
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	0.857010E+00 0.857037E+00 0.934753E+00 0.934758E+00 0.934758E+00 0.934760E+00 0.934760E+00 0.944213E+00 0.89081E+00 0.890075E+00 0.890081E+00 0.892283E+00 0.89283E+00 0.916289E+00 0.916289E+00 0.916282E+00 0.916282E+00 0.916282E+00 0.916282E+00

## C Matrix (21,21)

		COLUMN 1	COLUMN 2	COLUMN 3
ROW	1	0.1000000000000+01		
ROW	2	-0.1923535860450+01	0.1000000000000+01	
ROU	3	0.1000000000000+01	0.9573534563660+00	0.10000000000000+01
ROW	4	0.8803896673690+00	0.6925565915220+00	0.1000000000000+01
ROW	5	0.9573552881250+00	0.10000000000000+01	0.10000000000000+01
ROW	6	0.9573310629810+00	0.10000000000000+01	0.3838927685350+00
ROH	7	0.1000000000000+01	0.9573654139670+00	0.6599410240710+00
ROW	8	0.6926056927590+00	0.8803944128120+00	0.4917329533170+00
ROW	9	0.1186709915600+01	0.1186701142730+01	0.8062958899800+00
ROW	10	0.1244000972520+01	0.1044960922660+01	0.1333606428490+01
ROW	11	0.1042203035170+01	0.1721338286430+01	0.781627692222D+00
ROW	12	0.1044975786460+01	0.1243956177600+01	0.1000000000000+01
ROW	13	0.1044969645740+01	0.1243990187210+01	0.131453398342D+01
ROW	14	0.1243953763740+01	0.1044973463750+01	0.1000281077300+01
ROW	15	0.1721369213080+01	0.1042180805750+01	0.9460175896100+00
ROW	16	0.1207424925780+01	0.1000000000000+01	0.1366616450890+01
ROW	17	0.1000000000000+01	0.1000000000000+01	0.10000000000000+01
ROW	18	0.10000000000000+01	0.1207434684730+01	0.1000000000000+01
ROW	19	0.10000000000000+01	0.1207415747190+01	0.1000000000000+01
ROW	20	0.1207453926760+01	0.1000000000000+01	0.1045418682310+01
ROW	21	0.1000000000000+Q1	0.1000000000000+01	0.1013695234540+01
		COLUMN 4	COLUMN 5	COLUMN 6
ROU	4	0.100000000000+01	COCO-III J	COLONIA O
ROU	5	0.4916972806030+00	0.1000000000000+01	
ROW	6	0.4916970590130+00	0.6599079584250+00	0.1000000000000+01
ROW	7	0.1000000000000+01	0.3838659553780+00	0.1000000000000+01
ROW	á	0.1000000000000+01	0.1000000000000+01	0.1000000000000+01
K-CW	J	J. 1000000000000	J. 1500000000000	J. 130000000000

Table 6d. Force Constant Scaling Constants, Q(I), and C matrix for Dimethyl ether [C,H,O] Based on Comparison of Force Constant Matrices at the 6-31G* HF and the 6-31G* MP2 Level of Calculation. (CONTINUED)

```
0.1028070327160+01
                                0.8061652301140+00
                                                     0.8062709927560+00
           0.1000000000000+01
                                 0.1000000000000+01
                                                     0.1314505020570+01
ROW
           0.1160327492100+01
ROW
                                 0.9459931812820+00
                                                     0.9459911685790+00
           0.9402109750720+00
                                0.1333570909000+01
                                                     0.1000271547750+01
ROW
ROW
           0.9402222570980+00
                                0.1000280296300+01
                                                     0.1333607086590+01
     13
ROW
           0.10000000000000+01
                                0.1314518909200+01
                                                     0.1000000000000+01
     14
ROW
     15
           0.8864583526320+00
                                0.7816325290290+00
                                                     0.7816025747340+00
ROW
           0.10000000000000+01
                                0.1000000000000+01
                                                     0.10000000000000+01
     16
                                0.1013686852930+01
           0.1000000000000+01
ROW
     17
                                                     0.101367117532D+01
                                 0.1366882874620+01
ROW
     18
           0.1026642812120+01
                                                     0.1045393543230+01
                                0.1045403989080+01
ROW
     19
           0.1026640355410+01
                                                     0.1366689075190+01
                                                     0.1000000000000+01
ROW
           0.1000000000000+01
                                0.1000000000000+01
           0.1000000000000+01
                                0.1000000000000+01
                                                     0.1000000000000+01
                COLUMN
                                     COLUMN
                                                          COLUMN
           0.1000000000000+01
201
                                0.1000000000000+01
ROW
           0.4916864897910+00
                                 0.1028065983490+01
ROW
                                                     0.1000000000000+01
           0.8061533278300+00
ROW
     10
           0.1000273782060+01
                                0.9402363010730+00
                                                     0.8960763858720+00
ROW
           0.7816073657870+00
                                0.8864825761010+00
                                                     0.102697201464D+01
RON
     12
           0.1314541652220+01
                                0.1000000000000+01
                                                     0.8961405546250+00
     13
           0.1000000000000+01
                                0.1000000000000+01
                                                     0.8960939852950+00
ROW
ROW
     14
15
           0.133353959747D+01
                                0.9402159994250+00
                                                     0.8960462133980+00
                                                     0.1026962440950+01
ROW
           0.945985169704D+00
                                0.1160317847820+01
ROW
                                0.1026642793150+01
           0.1045402467480+01
                                                     0.9904373653000+00
     16
ROW
                                0.10000000000000+01
                                                     0.1000000000000+01
     17
           0.1000000000000+01
                                0.1000000000000+01
                                                     0.9900078819830+00
ROW
     18
           0.1000000000000+01
                                                     D.990444380252D+00
                                0.1000000000000+01
ROW
     19
           0.1000000000000+01
ROW
           0.1367081607670+01
                                0.1026637016360+01
                                                     0.9901059628450+00
     20
                                0.1000000000000+01
                                                     0.1000000000000+01
           0.1013675466800+01
                COLUMN 10
                                     COLUMN 11
                                                          COLUMN 12
           0.1000000000000+01
ROW
           0.1000000000000+01
                                0.1000000000000+01
ROW
     11
ROW
                                0.1007873893340+01
                                                     0.1000000000000+01
     12
           0.1061248511590+01
ROW
     13
           0.1186401560190+01
                                0.1007880249800+01
                                                     0.106249411707D+01
ROW
     14
           0.1062481959360+01
                                 0.1000000000000+01
                                                     0.118641255832D+01
ROW
     15
           0.1007886751290+01
                                0.1109531190660+01
                                                     0.1000000000000+01
ROW
           0.2465398338030+01
                                0.1000000000000+01
                                                     0.1000000000000+01
     16
ROW
     17
           0.1056103459220+01
                                 0.1000000000000+01
                                                     0.1000343667900+01
           0.1000000000000+01
ROW
                                0.1013475285510+01
                                                     0.246607681431D+01
     18
                                0.1013481178930+01
POL
     19
           0.128904501232D+01
                                                     0.1018053507610+01
                                0.1000000000000+01
           0.1018052233060+01
ROU
                                                     0.1289151693800+01
     20
ROU
     21
           0.1000351081020+01
                                 0.1000000000000+01
                                                     0.1056163660930+01
                                     COLUMN 14
                                                          COLUMN 15
                COLUMN
ROW
           0.1000000000000+01
ROW
           0.1061263681780+01
                                0.1000000000000+01
ROW
           0.10000000000000+01
     15
                                 0.1007869864150+01
                                                     0.1000000000000+01
ROW
                                 0.1018039891550+01
                                                     0.1013476849110+01
     16
17
           0.1289018482880+01
                                                     0.10000000000000+01
           0.1000347762550+01
ROU
                                0.1056124551240+01
                                                     0.1000000000000+01
BOL
           0.1018049070580+01
                                0.1289077230220+01
     18
           0.2465164277990+01 0.100000000000000000
ROW
     19
                                 0.1000000000000+01
                                                     0.1000000000000+01
ROW
     20
                                 0
                                  .2465644350880+01
                                                     0.101347840492D+01
ROW
           0.1056148555670+01
                                 0.1000348887370+01
                                                     0.1000000000000+01
                COLUMN
                                     COLUMN 17
                                                          COLUMN 18
ROW
     16
           0.1000000000000+01
0.1000000000000+01
                                0.1000000000000+01
     17
ROW
                                                     0.1000000000000+01
     18
           0.10000000000000+01
                                 0.9972881268800+00
                                                     0.9883744591830+00
ROW
                                 0.9972828572230+00
     19
           0.10000000000000+01
ROW
     20
           0.9883812506980+00
                                 0.1000000000000+01
                                                     0.1000000000000+01
           0.9972860997670+00
                                 0.1222016225820+01
                                                     0.1000000000000+01
                COLUMN 19
                                     COLUMN 20
                                                          COLUMN 21
           0.1000000000000+01
ROW
     19
                                0.10000000000000+01
ROW
     20
            0.1000000000000+01
ROW
     21
            0.1000000000000+01
                                0.9972778039640+00 0.100000000000+01
```

Table 7a. Optimized Geometries, Total Energies and Calculated Wavenumbers  $\bar{\nu}$  for Hydroxymethyl Methyl Ether [C₂H₆O₂] Based on Several Levels of Calculation.

H5 H8

H6 C1 O2 C3 O4 H10

parameter	3-21G	3-21G MP2	6-31G*	6-31G* MP2	Experiment
naje woed					
r(C0,)/A	1.4419	1.4776	1.4009	1.4268	•
r(O,-C,)/A	1.4140	1.4486	1.3803	1.4042	•
r(C;-0;)/A	1.4214	1.4519	1.3868	1.4112	•
r(C'-H,)/A	1.0814	1.0937	1.0808	1.0899	•
r(C'-H²)/A	1.0814	1.0937	1.0876	1.0978	•
r(C,-H,)/A	1.0814	1.0937	1.0834	1.0932	ı
r(C,-H,)/A	1.0793	1.0941	1.0840	1.0966	ŧ
r(C,-H,)/A	1.0793	1.0941	1.0830	1.0951	•
r(O,-H,0)/A	0.9671	0.9932	0.9485	0.9733	•
φ(c'-o'-c')/.	114.6894	110.7483	115.0558	112.1624	1
φ(0,-c,-0,)/·	112.4544	113.1792	113.0114	113.2533	,
φ(H,-C,-O,)/*	106.5666	105.9106	107.1056	106.3415	,
φ(Hζ-C'-O;)/.	110.8033	111.0440	110.9215	110.7154	ı
φ(H,-C,-O;)/*	110.8056	110.4249	111.5826	111.4225	•
φ(H ₈ -C ₂ -O ₂ )/*	111.5406	111.9870	111.2064	111.4320	ı
ф(H ₀ -C,-0,)/	105.5199	104.3135	105.8620	105.0216	•
φ(H', O, -C,)/*	110.4560	106.9396	108.8327	106.4759	1
1(0,-0,-0,)	62.8174	61.8618	67.0973	65.2281	٠
τ(Hζ-C'-0ζ-C')/*	-177.5409	-173.7236	-182.5361	-182.6930	•
1(H,-C,-O,-C,)/	63.3481	67.0267	58.6578	58.5265	•
τ(H,-C,-O,-C,)/*	-57.6887	-53.8959	-62.8481	-62.9162	1
1(H,-C,-O,-C,)/*	-54.9518	-55.4856	-51.7340	-52.8809	ı
1(H°-C'-O'-C')/	-174.7469	-175.2089	-170.7632	-172.3266	ı
τ(H ₁₀ -O ₄ -C ₃ -O ₂ )/*	61.0154	60.7055	61.1461	61.1098	1
E/a.u.	-227.661103	-228.085065	-228.927586	-229.557740	ı

Table 7a. Optimized Geometries, Total Energies and Calculated Wavenumbers v for Hydroxymethyl Methyl Ether [C₂H₆O₂] Based on Several Levels of Calculation. (CONTINUED)

H5 H8

H6 C1 O2 C3 O4 H10

parameter	3-21G	3-21G MP2	6-31G*	6-31G* MP2	Experiment
frequencies (cm ⁻¹ )					
'د ،	151	161	136	132	
· 2	201	200	214	215	
121	369	356	397	383	
25	421	418	423	416	
* <b>ച</b> ്	622	586	645	909	
الح آ	973	887	1040	965	
کے 9	1094	993	1142	1062	
`2	1144	1047	1208	1104	
۶ ح	1228	1114	1280	1184	
, <u>, , , , , , , , , , , , , , , , , , </u>	1267	1182	1299	1208	
	1299	1201	1350	1236	
2	1404	1314	1438	1333	
	1498	1419	1521	1419	
	1564	1465	1589	1471	
7	1626	1526	1639	1527	
2	1671	1587	1645	1551	
2	1696	1605	1663	1575	
	1701	1624	1688	1583	
	3208	3079	3196	3083	
2.2	3236	3083	3234	3096	
7	3270	3139	3270	3164	
23	3283	3152	3283	3175	
3-₽	3287	3171	3316	3230	
72.5	3866	3516	4093	3761	

Table 7b. Force Constant Matrix for Hydroxymethyl Methyl Ether [C₂H₆O₂] at the 6-31G* HF Level of Calculation.

```
FORCE CONSTANTS IN CARTESIAN COORDINATES (HARTREES/BOHR).
              0.7118820+00
             0.4391690-02 0.6573370+00
              0.1283600-01 -0.7561000-02
                                                                                                   0.5658970+00
          -0.1144340+00 0.1526810-04 -0.5558280-02 0.4611470+00 0.1002640-02 -0.7772320-01 0.1333800-02 -0.7711130-03
                                                                                                                                                                                      0.1288650+00
     6 0.3385840-01 -0.1267470-02 -0.2860870+00 0.1017800+00 -0.4046610-02 7 -0.6470440-03 0.7612350-03 -0.2876420-01 -0.2640870+00 0.2081430-01 8 0.1957510-02 0.6188480-03 -0.6563180-02 0.2584250-01 -0.8647430-01
   9 -0.503454D-01 -0.632717D-03 -0.351744D-01 -0.417982D-01 0.3307000-02 0.717758D-03 0.459574D-03 0.981550D-02 -0.502798D-01 -0.544414D-01
  11 -0.5276800-03 -0.1440360-02 0.8526810-02 -0.3281910-01 -0.1246420-02 12 0.9558850-03 0.1479220-02 -0.1162200-02 -0.1309500-01 -0.1520720-01 13 -0.3398360+00 -0.1254880-01 -0.7797760-01 0.5254780-02 0.4602530-03
   14 -0.1253860-01 -0.6563110-01 -0.3087240-02 0.8057260-03 0.1674040-02
  18 0.3619860-01 -0.6385990-01 -0.8559220-01 0.1806920-01 -0.3440660-01
   19 -0.1202530+00 -0.1028860+00 0.4148110-01
                                                                                                                                              0.550935D-02 0.167001D-02
  20 -0.1013300+00 -0.2680400+00 0.7938340-01 0.3582150-02 0.9928190-02
 20 -0.1013300+00 -0.2680400+00 0.7938340-01 0.5582150-02 0.9926190-02 1 0.3556110-01 0.7237450-01 -0.8898260-01 0.1537270-01 0.2642910-01 22 0.8495420-03 0.7458230-03 0.7551390-02 -0.4251790-01 0.2642910-01 23 -0.8939950-03 0.2389590-03 -0.6074280-03 0.4212000-02 0.6682990-02 24 -0.1790370-02 0.3258320-02 0.3691220-02 -0.1898610-01 0.1379170-01 25 -0.5588110-02 0.1339800-02 0.7413770-03 -0.4864450-02 0.3238010-02 26 0.1763660-03 0.1372820-02 -0.8782970-03 0.5423680-03 0.4494780-02 0.7557000-03 0.7557000-03 0.7557000-03 0.18782970-03 0.7557000-03 0.14547800-03 0.14547800-03 0.14547800-03 0.14547800-03 0.14547800-03 0.14547800-03 0.14547800-03 0.14547800-03 0.14547800-03 0.14547800-03 0.14547800-03 0.14547800-03 0.14547800-03 0.14547800-03 0.14547800-03 0.14547800-03 0.14547800-03 0.14547800-03 0.14547800-03 0.14547800-03 0.14547800-03 0.14547800-03 0.14547800-03 0.14547800-03 0.14547800-03 0.14547800-03 0.14547800-03 0.14547800-03 0.14547800-03 0.14547800-03 0.14547800-03 0.14547800-03 0.14547800-03 0.14547800-03 0.14547800-03 0.14547800-03 0.14547800-03 0.14547800-03 0.14547800-03 0.14547800-03 0.14547800-03 0.14547800-03 0.14547800-03 0.14547800-03 0.14547800-03 0.14547800-03 0.14547800-03 0.14547800-03 0.14547800-03 0.14547800-03 0.14547800-03 0.14547800-03 0.14547800-03 0.14547800-03 0.14547800-03 0.14547800-03 0.14547800-03 0.14547800-03 0.14547800-03 0.14547800-03 0.14547800-03 0.14547800-03 0.14547800-03 0.14547800-03 0.14547800-03 0.14547800-03 0.14547800-03 0.14547800-03 0.14547800-03 0.14547800-03 0.14547800-03 0.14547800-03 0.14547800-03 0.14547800-03 0.14547800-03 0.14547800-03 0.14547800-03 0.14547800-03 0.14547800-03 0.14547800-03 0.14547800-03 0.14547800-03 0.14547800-03 0.14547800-03 0.14547800-03 0.14547800-03 0.14547800-03 0.14547800-03 0.14547800-03 0.14547800-03 0.14547800-03 0.14547800-03 0.14547800-03 0.14547800-03 0.14547800-03 0.14547800-03 0.14547800-03 0.14547800-03 0.14547800-03 0.14547800-03 0.14547800-03 0.14547800-03 0.14547800-03 0.14547800-03 0.14547800-03 0.14547800-03 0.14547800
  27 -0.3976320-02 0.7557080-03 0.3329630-02 -0.7459570-02 0.1456380-03 28 -0.3332600-03 -0.3391170-03 -0.1675990-02 0.5243520-03 0.2693930-02 29 -0.1996330-03 -0.3714030-03 -0.1929460-02 0.1148530-02 0.5403680-02
   30 -0.5565550-03 -0.1333560-02 -0.5165660-03 0.6032480-03 0.1206560-02
          0.5477300+00
     7 -0.7907840-01 0.6070390+00
     8 0.1417700-01 -0.7895720-01 0.6623560+00 9 -0.1582270+00 -0.6251250-01 0.1724120-01 0.7585720+00
 9 -0.1582270+00 -0.6251250-01 0.1724120-01 0.7585720+00
10 -0.8584030-02 -0.1419800+00 -0.4048570-01 0.4384440-01 0.3784990+00
11 -0.1294310-01 -0.8310750-01 -0.2567480+00 0.4884350-01 -0.7871670-01
12 0.1611190-01 0.3662750-01 0.1896400-01 -0.1125500+00 -0.1769540+00
13 -0.2248580-02 0.2336290-02 -0.8135820-04 0.1168020-02 -0.1111540-03
14 -0.2420660-03 -0.9067730-04 -0.7352480-03 0.7525610-03 -0.1151470-03
15 -0.2703210-01 0.5944960-02 0.7122630-03 -0.6375900-02 -0.9790450-03
16 0.3325350-02 0.1256110-02 -0.2764310-02 -0.1819930-02 -0.1159600-03
17 -0.6323240-02 0.2085840-02 -0.1499480-04 0.1301290-02 -0.8901590-03
18 -0.3909280-01 0.9181400-02 -0.2336440-02 0.3313030-02 -0.1763520-02
   19 0.190667b-02 -0.4004150-03 0.124998b-02 -0.437601b-03 -0.1564330-03 20 0.528472b-02 -0.311387b-02 -0.144913b-02 0.273960b-03 0.339875b-03 21 -0.371708b-01 0.782819b-02 0.424220b-02 0.227152b-02 -0.129192b-02
   22 0.494462D-03 -0.148592D+00 0.119181D+00 0.627070D-01 0.1344830-01 23 0.142274D-03 0.110536D+00 -0.203243D+00 -0.734031D-01 0.146154D-01
   26 0.3350790-02 0.4029370-02 -0.7552060-01 0.2352230-01 -0.2050020-01 27 -0.2373500-01 0.4709240-01 0.3163270-01 -0.3338030+00 0.5685220-02
   0.6668020+00
  12 0.1267799+00 0.1966510+00
13 -0.3144870-04 -0.5847770-03 0.3594450+00
14 0.7074550-03 -0.8704760-03 0.1354090-01 0.5769540-01
```

Table 7b. Force Constant Matrix for Hydroxymethyl Methyl Ether  $[C_2H_6O_2]$  at the 6-31G* HF Level of Calculation. (CONTINUED 1)

```
15 -0.1285550-02 0.1171820-02 0.8597450-01 0.3499430-02 0.9710640-01
16 0.5705830-03 0.2312180-03 -0.148331D-01 0.3059580-01 17 0.2178160-03 -0.571961D-03 -0.110114D-02 0.386577D-02
                                                         0.112545D-01
0.212911D-02
0.5690930-02
                                                         0.1176530-01
0.7568360-02 0.8007910-02 0.7583100-04 -0.8785950-04
                                                        0.1325080-03
                 0.2062720-01 -0.1081710-03 -0.4037230-04 -0.1959720-02
25 -0.1666680-01
19
   0.1306320+00
17 -0.1217300+00 0.2579140+00
                 0.8136900-01 0.1071950+00
0.1768580-01 -0.6864100-02
18 -0.4961690-01
19 0.1066760-01
                                            0.1169100+00
20 -0.1383610-01 -0.2450050-01 0.8723190-02 0.1141260+00
                                                         0.2815400+00
0.6691140-03 -0.5381020-03
   0.2132850-03 -0.5061950-03 -0.4204280-03 0.0000000+00 0.2365730-03
26 -0.1158520-03 0.3464770-03 0.6707660-03 -0.1268030-03
                                                         0.6928120-04
27 0.109574D-03 -0.9525390-04 0.192721D-03 0.151160D-03 0.966094D-04 28 -0.838991D-04 0.278947D-03 0.334545D-03 0.804147D-04 -0.119139D-)3
                 0.1966170-04 0.4051980-03 -0.1450610-03 -0.1128790-03
29 -0.3011680-04
                 0.4537550-03 -0.1876020-04 0.5815910-04 -0.4346150-04
30 0.3259550-04
21 0.1100400+00
27 -0.9215560-03
                 0.1754020+00
23 -0.2265600-04 -0.1218490+00
                               0.2366690+00
24 -0.317204D-03 -0.641535D-01 0.853965D-01
                                            0.1122820+00
25 -0.8182430-03 0.4939860-03 -0.2276740-02
                                            0.2010540-01
                                                         0.8457380-01
26 -0.3887910-03
                 0.3989770-02 0.7346300-02 -0.2580650-01
                                                         0.1211720-01
                 0.306895D-02 0.718171D-03 -0.109803D-01 -0.444383D-01
27 -0.1867150-03
28 -0.1390635-03 -0.3944080-03 -0.4618020-02 0.5113940-03 -0.1738210-03 29 0.6163160-04 -0.4876680-02 -0.5254420-02 0.2767430-02 0.6848220-03 30 -0.7159690-03 0.1016290-02 0.2133490-02 0.1790540-02 -0.9353390-03
                                                               30
   0.7742100-01
27 -0.4215600-01
                  0.3635380+00
   0.8881230-04
                  0.3415830-04 0.1807430+00
                  0.5731790-03 -0.2035090+00 0.3842960+00
    0.2755430-02
   0.1263790-02 0.4228210-03 -0.1307130+00 0.1698080+00 0.1067450+00
FORCE CONSTANTS IN INTERNAL COORDINATES (ATOMIC UNITS).
                                                                5
    0.4185240+00
                 0.4365560+00
0.5032550-01
   0.1177190-01
 3 -0.390137D-02
                               0.4277800+00
   0.1150360-01 -0.2222700-02
                               0.2999090-03
                                           0.3856810+00
   0.1822190-01 -0.1706630-02
                               0.5480560-03
                                            0.4004140-02
                                                         0.3665910+67
   0.1538640-01 -0.5042530-02
                               0.2367830-02 0.3967270-02
                                                         0.460575D-C 2
                               0.1386070-01 -0.7855020-04
   -0.4028660-03 0.177811D-01
                                                         0.1206820-02
                               0.1721430-01 0.4953070-03
 8 -0.2412150-02
                 0.1430160-01
                                                         0.4571230-04
                               0.100847D-02 -0.179690D-03 -0.729537D-04
0.625590D-03 0.538122D-02 -0.288545D-02
   0.7244980-03 -0.5034980-03
10 0.5208490-01 0.5176820-01
11 -0.5390520-02
                 0.7068730-01
                              -0.9908430-02 0.570807D-03 0.145273D-02
                               0.3181780-02 -0.5643640-02 -0.6229370-02
   0.6425790-01
                  0.2029960-02
                               0.1565090-02 -0.5803660-02 -0.7934420-02
   0.6195480-01 -0.1400320-01
    0.6346880-01 -0.7709150-02
                               0.5991320-02 -0.6131890-02 -0.7796360-02
```

Table 7b. Force Constant Matrix for Hydroxymethyl Methyl Ether  $[C_2H_6O_2]$  at the 6-31G* HF Level of Calculation. (CONTINUED 2)

```
16 0.4332500-02 0.7193770-01 -0.3795500-01 0.1601320-02 0.1295260-02
17 0.2579340-02 -0.1631030-02 0.4270480-01 -0.2363000-03 -0.5009020-03 18 0.4785040-03 0.6010490-03 0.4354100-02 0.2038840-03 -0.3759790-03 19 -0.7312590-04 -0.1348050-02 0.1450120-02 -0.1010960-03 0.1718540-01
20 0.1587560-02 -0.2641020-02 -0.4279400-03 -0.1593400-01 0.1189860-02 21 -0.1494330-02 0.1402380-02 -0.1038980-02 0.1630520-01 -0.1940420-01
                                0.6209090-03 -0.5611380-01 0.8431120-04 0.2654150-03 0.1578470-02 0.5360280-01 -0.3846060-03 0.1182600-02
22 0.1950970-02
23 -0.642664D-04
24 0.2782680-02
                                 0.1780630-02 -0.6010670-03 -0.1636610-03 -0.7754760-03
      0.3780830+00
  7 0.361784D-03 0.375056D+00
8 0.108291D-03 0.501544D-02 0.376740D+00
      0.3617840-03
  9 -0.2763200-04 -0.2148530-02 0.1421960-03 0.6017670+00
10 -0.8278410-02 -0.4271350-02 0.5745650-02 0.6713440-03

      10 -0.8278410-02 -0.4271350-02
      0.5745650-02
      0.6713440-03
      0.2984020+00

      11 -0.4427660-02 -0.5779060-02 -0.2531080-02
      -0.7481680-02 -0.8169240-02
      0.8169240-02

      12 -0.5938990-02 -0.1203970-02 -0.3592800-02 -0.3647580-03
      -0.1665110-03 -0.2394590-01
      0.2394590-01

      13 -0.7126010-02 -0.3592800-02 -0.3647580-03 -0.2279390-03 -0.6578370-02
      0.37292400-03 -0.6578370-02
      0.3376070-03

      15 -0.7257670-03 -0.4529950-02 -0.8556480-02 -0.2086120-02 -0.4541970-02
      0.2536520-03 -0.9020470-03 -0.2637770-01
      0.2637770-01

      17 -0.3569420-03 -0.4700120-02 -0.1062620-03 -0.1889460-01 -0.6921950-03
      0.1473910-01 -0.9119880-02 -0.1307160-01 -0.9560460-02
      0.1307160-01 -0.9560460-02

      19 -0.1638140-01 -0.9016980-03 -0.8247520-04 -0.1076010-03 -0.8710280-03
      0.2729200-01 -0.5900650-03 -0.8247520-04 -0.1076010-03 -0.8710280-03

                                                                                                                0.2984020+00
20 0.1729200-01 0.5900650-03 -0.8247520-04 -0.107601D-03 0.4752600-02
23 -0.2791800-03 -0.1478260-01 -0.6382100-02 -0.5102540-02 -0.2376020-02 24 0.3973350-03 0.2646950-04 0.5632840-03 0.2963200-02 0.2413430-02
11 0.4927030+00
12 -0.2143470-02
                                 0.2981540+00
13 0.3346590-02
                                  0.333231D-01 0.305139D+00
14 0.9476060-03 0.3515190-01 0.4467000-01 0.3013760+00
                                 0.599740b-03 -0.505565b-03 0.341234b-02 0.837122b-02 0.574423b-03 0.296884b-02
15 0.8200070-01
                                                                                                                0.3247730+00
16 0.7158490-01
                                                                                                                0.4384240-01
17 -0.319981D-01 -0.466861D-03 -0.158123D-02 -0.336108D-03 -0.142742D-01
18 -0.8212090-03 -0.4272260-02 -0.1435280-02 0.4932110-02 -0.7014390-01 19 -0.3458050-02 0.1349520-02 -0.5254370-01 0.5242230-01 -0.1405250-02 0.2321120-02 0.5399110-01 -0.1157210-02 -0.5473670-01 -0.1399970-02
21 0.1066560-02 -0.5542360-01 0.5750810-01 0.3682680-02 0.5915700-03 22 0.7613030-01 -0.1471050-03 0.1720710-02 0.2356570-03 0.2094000-01 23 -0.6180360-01 0.3978260-03 0.2183870-02 -0.1313850-02 0.4679040-01 24 -0.4121340-02 0.1963650-93 0.2564210-03 0.2272630-02 0.6680200-02
                   16
     0.3272770+00
0.2544980-02 0.203531D+00
18 0.6585970-01
19 0.3599990-04
                                 0.299911D-01 0.3430050+00
0.108187D-03 -0.9785300-03 0.2175360+00
20 0.2719920-03
                                 0.1309630-03 -0.3145450-02 -0.1075520+00 0.2097510+00
21 -0.3834490-03
                                 22 -0.4982410-01 -0.2345050-01 -0.1562940+00 0.2719930-03 -0.1799100-03 23 -0.2065570-01 -0.4977830-02 -0.1673430+00 -0.1243680-02 0.3482190-03
24 -0.3061630-02 -0.7084160-02 0.854451D-02 0.443304D-03 -0.8657600-03
       0.2120850+00
       0.4294160-03 -0.1368410-02 -0.2958910-02 0.1919280-01
```

Table 7c. Force Constant Matrix for Hydroxymethyl Methyl Ether [C₂H₆O₂] at the 6-31G* MP2 Level of Calculation.

```
FORCE CONSTANTS IN CARTESIAN COORDINATES (HARTREES/BOHR).
                                                                                           5
      0.6608390+00
      0.4129960-02
                       0.6099390+00
      0.1133800-01 -0.8007730-02 0.4855470+00
  4 -0.935152D-01 0.4031560-03 -0.9831280-02 5 0.100915D-02 -0.687673D-01 0.178330D-02
                                                             0.3891020+00
                                                             -0.315774D-02
                                                                                0.1119300+00
     0.3048790-01 -0.1300970-02 -0.2350720+00 0.7914590-01 -0.4151140-02
6 0.3048/90-01 -0.13009/0-02 -0.2350/20+00 0.79145/90-01 -0.4151140-02
7 -0.7490210-02 0.1156500-02 -0.2296560-01 -0.2164760+00 0.1893260-01
8 0.2227320-02 -0.7019220-03 -0.7072220-02 0.2664530-01 -0.7394930-01
9 -0.4729510-01 -0.4845680-03 -0.3480380-01 -0.2727550-01 0.1127030-02
10 0.9005560-03 0.6572560-03 0.9217890-02 -0.4565450-01 -0.4573850-01
11 -0.1492910-03 0.1899410-03 0.7688560-02 -0.3179750-01 -0.1329660-02
12 0.6279990-04 0.8408600-03 -0.7891990-03 -0.7729450-02 -0.9259500-02
                                                             0.402272D-02 0.499047D-03
 13 -0.3242040+00 -0.1279460-01 -0.7214360-01
 14 -0.1274710-01 -0.5797830-01 -0.3105650-02
                                                              0.906044D-03
                                                                                0.9795290-03
 15 -0.5999660-01 -0.3274840-02 -0.6522530-01 -0.4114450-01 -0.8830400-03
0.7872780-03 0.1531820-03 0.7346620-02 -0.3704090-01
                                                                                 0.2385190-01
 23 -0.1231970-02 0.7735190-03 0.2628130-03
                                                             0.2899220-02
                                                                                 0.5825600-02
 24 -0.2507200-02 0.3683940-02 0.3725230-02 -0.1425010-01
                                                                                 0.1032450-01
 25 -0.551981D-02 0.106079D-02 -0.9225500-03 26 -0.856542D-04 0.156581D-02 -0.651087D-03
                                                             -0.7416250-02
                                                                                 0.201922D-02
                                                             0.1373820-02
                                                                                0.3363660-02
10
     0.4514980+00
  7 -0.6565490-01
                        0.5026980+00
  8 0.1212060-01 -0.8655660-01 0.5816330+00
  9 -0.1273860+00 -0.5851200-01 0.2679280-01 0.6890980+00
 10 -0.5007330-02 -0.1098870+00 -0.2743800-01
                                                              0.3823390-01 0.3053600+00
 11 -0.9783790-02 -0.6244690-01 -0.2123640+00 0.4769090-01 -0.6898450-01 12 0.1453960-01 0.3123830-01 0.1656650-01 -0.1002920+00 -0.1554700+00 13 -0.5713860-03 0.1620310-02 -0.2463010-03 0.6569590-03 0.3857570-04
 14 0.580606D-04 -0.340602D-03 -0.824433D-03 0.679754D-03 -0.185228D-03 15 -0.230768D-01 0.372270D-02 0.596461D-03 -0.704264D-02 -0.654036D-03 16 0.260119D-02 0.204942D-02 -0.330609D-02 -0.229971D-02 -0.198750D-03
 0.1304500-02 -0.7319810-03
                                                             0.2608350-02 -0.1475960-02
 19 0.1396810-02 -0.1809730-04 0.1472610-02 -0.7945890-03 -0.4312270-03 20 0.3839470-02 -0.2735180-02 -0.8779830-03 0.3211530-03 0.2956300-03 21 -0.3315760-01 0.8230150-02 0.4094510-02 0.1757480-02 -0.1399620-02 22 0.1089980-02 -0.1261010+00 0.1094720+00 0.5822970-01 0.9703980-02 -0.1261010+00 0.1094720+00 0.5822970-01 0.9703980-02
 25 -0.442451D-01 -0.558846D-01 0.461693D-02
                                                             0.4600050-01 -0.2769320-02
 26 0.3041670-02 0.4927210-02 -0.6433230-01
                                                              0.1665420-01 -0.1571420-01
 27 -0.181434D-01
                         0.3599660-01 0.2258200-01 -0.3151540+00 0.4553630-02
    30 -0.1226750-02 -0.2975600-02 0.1065110-01 0.4903860-02 0.1153280+00
      0.5522830+00
      0.1031420+00 0.1795350+00
```

Table 7c. Force Constant Matrix for Hydroxymethyl Methyl Ether  $[C_2H_6O_2]$  at the 6-31G* MP2 Level of Calculation. (CONTINUED 1)

```
13 0.1492430-03 -0.5620610-03 0.3414490+00
       0.6633930-03 -0.9388550-03 0.1382300-01
                                                                                                    0.5182810-01
  15 -0.9402840-03 0.1319130-02 0.7906990-01 16 0.7470820-03 0.4804110-03 -0.1258430-01
                                                                                                    0.3360510-02
                                                                                                                                  0.848364D-01
                                                                                                    0.2751390-01
                                                                                                                                0.1028850-01
  17 -0.215391D-04 -0.426585D-03 -0.274377D-02 0.326889D-02 0.164417D-02 18 -0.420797D-03 0.329182D-03 -0.347932D-02 0.780029D-02 0.491697D-02 19 -0.337296D-03 -0.822460D-03 -0.107012D-01 -0.285701D-01 0.107871D-01
 20 0.4827180-03 -0.2203000-02 0.1632820-02 0.1394540-02 -0.9478640-03 21 -0.3518910-02 0.1683010-02 -0.3018070-02 -0.8135370-02 0.5203470-02 22 -0.1969400-01 -0.5874940-02 0.3576010-03 -0.4330880-03 -0.1967470-03 23 -0.3722370-01 -0.1269020-01 -0.2153430-03 0.2385900-03 0.2674760-03
 0.1129130-03
                                                                                                   0.1113100-04 -0.1902110-02
 26 0.1486180-01 0.3472910-01 -0.2303030-03
27 0.7229320-02 0.4728260-03 -0.6955880-04
                                                                                                   0.2196130-04 0.2571830-04
  28 0.1967720+00 0.1203210+00 0.1891230-04
       -0.2878180+00 -0.1297600+00
                                                                     0.126202D-03
                                                                                                    0.9823650-04
                                                                                                                                  0.1744260-03
  30 -0.1603980+00 -0.1033240+00 0.7494090-04
                                                                                                    0.1073740-03 -0.7319990-05
 16 0.1207830+00
17 -0.1154330+00
18 -0.4711730-01
                                       0.2412620+00
0.7605660-01 0.9497700-01
 19 0.8736350-02 0.1676400-01 -0.5868840-02 0.1074740+00 20 -0.1311850-01 -0.2136340-01 0.8241970-02 0.1078410+00 0.2648910+00 21 -0.4618080-02 -0.8599280-02 0.6574930-02 -0.4495930-01 -0.8433450-01 22 0.6683330-03 -0.1074080-02 -0.1769610-02 0.1107280-03 0.6409820-04 23 0.7879310-03 -0.3016080-03 0.1066230-02 0.1538180-03 -0.2148820-03 24 0.1046950-02 -0.8744710-03 0.840300-03 0.0647378 04 0.677378 04 0.677378 04 0.677378 04 0.677378 04 0.677378 04 0.677378 04 0.677378 04 0.677378 04 0.677378 04 0.677378 04 0.677378 04 0.677378 04 0.677378 04 0.677378 04 0.677378 04 0.677378 04 0.677378 04 0.677378 04 0.677378 04 0.677378 04 0.677378 04 0.677378 04 0.677378 04 0.677378 04 0.677378 04 0.677378 04 0.677378 04 0.677378 04 0.677378 04 0.677378 04 0.677378 04 0.677378 04 0.677378 04 0.677378 04 0.677378 04 0.677378 04 0.677378 04 0.677378 04 0.677378 04 0.677378 04 0.677378 04 0.677378 04 0.677378 04 0.677378 04 0.677378 04 0.677378 04 0.677378 04 0.677378 04 0.677378 04 0.677378 04 0.677378 04 0.677378 04 0.677378 04 0.677378 04 0.677378 04 0.677378 04 0.677378 04 0.677378 04 0.677378 04 0.677378 04 0.677378 04 0.677378 04 0.677378 04 0.677378 04 0.677378 04 0.677378 04 0.677378 04 0.677378 04 0.677378 04 0.677378 04 0.677378 04 0.677378 04 0.677378 04 0.677378 04 0.677378 04 0.677378 04 0.677378 04 0.677378 04 0.677378 04 0.677378 04 0.677378 04 0.677378 04 0.677378 04 0.677378 04 0.677378 04 0.677378 04 0.677378 04 0.677378 04 0.677378 04 0.677378 04 0.677378 04 0.677378 04 0.677378 04 0.677378 04 0.677378 04 0.677378 04 0.677378 04 0.677378 04 0.677378 04 0.677378 04 0.677378 04 0.677378 04 0.677378 04 0.677378 04 0.677378 04 0.677378 04 0.677378 04 0.677378 04 0.677378 04 0.677378 04 0.677378 04 0.677378 04 0.677378 04 0.677378 04 0.677378 04 0.677378 04 0.677378 04 0.677378 04 0.677378 04 0.677378 04 0.677378 04 0.677378 04 0.677378 04 0.677378 04 0.677378 04 0.677378 04 0.677378 04 0.677378 04 0.677378 04 0.677378 04 0.677378 04 0.677378 04 0.677378 04 0.677378 04 0.677378 04 0.677378 04 0.677378 04 0.677378 
         0.1046950-02 -0.8744710-03 0.8192990-03
                                                                                                    0.9672270-04 -0.1838240-03
 25  0.1061710-03  -0.3661710-03  -0.2629230-03  -0.1025870-03  0.1378450-03  26  -0.1152800-03  0.2972970-03  0.6788340-03  -0.1838610-03  0.2529260-04  27  0.3220560-04  0.2676950-04  0.3405500-03  0.1229480-03  -0.2242650-04
                                     28 -0.5561130-04
29 -0.8231580-05
30 0.3196000-04
                                                                                   23
  21 0.9766060-01
  22 -0.7311640-03 0.1503710+00
  23 -0.1109190-03 -0.1105010+00 0.2208490+00
  24 -0.2594710-03 -0.6042960-01 0.8272210-01
                                                                                                    0.1035120+00
 30
       0.6529580-01
  27 -0.3200620-01
                                        0.3405460+00
                                        0.3219930-03 0.1485410+00
  28 -0.4296290-03
  FORCE CONSTANTS IN INTERNAL COORDINATES (ATOMIC UNITS).
                                                                                                                                                 5
          0.3570530+00
          0.8506380-02
                                       0.3680290+00
    3 -0.3370240-02
                                       0.4636500-01 0.3615410+00
          0.8772900-02 -0.1357790-02 -0.3131310-04
                                                                                                    0.3644760+00
                                                                                                   0.1693860-02
          0.1523980-01 -0.1211980-02 0.6266010-03
                                                                                                                                 0.3433680+00
                                                                      0.1963860-02
                                                                      0.1246940-01 -0.5063150-02
0.2260290-03 0.1470240-01
                                                                                                                                 0.2586720-02
                                                                                                                                0.459897D-03
                                                                                                   0.2494610-03 -0.1081810-03
    8 -0.1681040-02
                                      0.1145260-01 0.1352660-01
          10 0.571812D-01
  11 -0.6742790-02
  12  0.5851520-01  0.4229150-02  0.2663600-02 -0.5873730-02 -0.5258700-02  13  0.5615150-01 -0.1508370-01  0.9537420-03 -0.4877580-02 -0.9269570-02
```

Table 7c. Force Constant Matrix for Hydroxymethyl Methyl Ether [C₂H₆O₂] at the 6-31G* MP2 Level of Calculation. (CONTINUED 2)

```
14 0.5812390-01 -0.8702140-02 0.7235710-02 -0.5462330-02 -0.7153980-02 15 -0.1346270-01 0.5918940-01 -0.3295270-01 -0.4399430-03 0.4127830-02 16 0.7481520-02 0.6561010-01 -0.3362510-01 0.1236770-02 0.8252460-03 17 0.2140090-02 -0.1444040-02 0.4900940-01 -0.1941000-03 -0.4128850-03 18 0.7912210-04 0.8651930-03 0.5596830-02 0.1883390-03 0.5633940-04 19 0.1982170-03 -0.1854780-02 0.1397020-02 -0.1220230-03 0.1618420-01 20 0.1252910-02 -0.3098060-02 -0.3616710-03 -0.1516600-01 0.1756870-02 11 -0.1320270-02 0.1273630-02 -0.1480260-02 0.1576370-01 -0.187980-02
                                                      0.1273630-02 -0.1480260-02 0.1576370-01 -0.1879840-01 0.1260360-03 -0.5275210-01 0.8402520-04 0.2950400-04 0.2659360-02 0.4764510-01 -0.4365540-03 0.1132090-02
  21 -0.1320270-02
  22 0.1837960-02
 23 -0.1215490-03
          0.3466640-02 0.9123590-03 -0.1435080-02 -0.1011670-03 -0.7526280-03
            0.3550510+00
   7 0.2621040-03 0.345012D+00
8 -0.103295D-04 0.271382D-02 0.348172D+00
9 -0.807324D-04 -0.163943D-02 -0.372653D-03
                                                                                                                                              0.5083550+00
 10 -0.815874p-02 -0.329705p-02 0.520137p-02 0.819295p-03 0.296596p+00  
11 -0.400295p-02 -0.604140p-02 -0.193030p-02 -0.885415p-02 0.109516p-01  
12 -0.514846p-02 0.878070p-03 0.154614p-02 -0.157747p-03 0.221739p-01
19 -0.1556480-01 -0.8111360-03 0.3588260-03 0.2015520-03 -0.1478960-02 0.1663370-01 0.1055040-02 -0.8855000-04 -0.1259130-03 0.3959380-02 21 -0.7063580-04 -0.3865590-03 0.3058430-03 -0.2011660-03 -0.1173210-02
22 0.1523770-03 0.1799660-02 0.1375790-01 -0.7434710-02 -0.5183880-02 23 -0.1781890-03 -0.1383180-01 -0.8152330-02 -0.5558490-02 -0.3906850-02 24 0.6849790-04 -0.1104200-03 0.1255770-02 0.3275790-02 0.2957420-02
 11 0.4313330+00
12 -0.2978160-02
                                                        0.2649880+00
  13 0.2422570-02
                                                        0.2967600-01
                                                                                                  0.2704260+00
            0.6156500-03
                                                        0.7334630-01
                                                                                                                                                                                         0.2844530+00
 16  0.6162220-01  0.8210590-02  0.2434350-03  0.2700300-02  0.3876160-01  17  -0.3069200-01  -0.4073250-03  -0.1762350-02  -0.1654290-03  -0.1385590-01  18  -0.2609980-02  -0.4912960-02  -0.2088610-02  0.6306450-02  -0.6055570-01  19  -0.4081750-02  0.1593550-02  -0.4757000-01  0.4763460-01  -0.1263980-02  0.1829270-02  0.4928000-01  -0.3426780-02  -0.4977540-01  -0.1606260-02  0.8578330-03  -0.5094230-01  0.5304190-01  0.7022760-02  0.8638710-03  0.7777000  0.47777000  0.47777000  0.47777000  0.47777000  0.47777000  0.47777000  0.47777000  0.47777000  0.47777000  0.47777000  0.47777000  0.47777000  0.47777000  0.47777000  0.477777000  0.47777000  0.47777000  0.47777000  0.47777000  0.47777000  0.47777000  0.47777000  0.47777000  0.47777000  0.47777000  0.47777000  0.47777000  0.47777000  0.47777000  0.47777000  0.477777000  0.47777000  0.47777000  0.47777000  0.47777000  0.47777000  0.47777000  0.47777000  0.47777000  0.47777000  0.47777000  0.47777000  0.47777000  0.47777000  0.47777000  0.47777000  0.47777000  0.47777000  0.47777000  0.47777000  0.47777000  0.47777000  0.47777000  0.47777000  0.47777000  0.47777000  0.47777000  0.47777000  0.47777000  0.47777000  0.47777000  0.47777000  0.47777000  0.47777000  0.47777000  0.47777000  0.47777000  0.47777000  0.47777000  0.47777000  0.47777000  0.47777000  0.47777000  0.47777000  0.47777000  0.47777000  0.47777000  0.47777000  0.47777000  0.47777000  0.47777000  0.47777000  0.47777000  0.47777000  0.47777000  0.47777000  0.47777000  0.47777000  0.47777000  0.47777000  0.47777000  0.47777000  0.47777000  0.47777000  0.47777000  0.47777000  0.47777000  0.47777000  0.47777000  0.47777000  0.47777000  0.47777000  0.47777000  0.47777000  0.47777000  0.47777000  0.47777000  0.4777000  0.4777000  0.4777000  0.4777000  0.4777000  0.4777000  0.4777000  0.4777000  0.4777000  0.4777000  0.4777000  0.4777000  0.4777000  0.4777000  0.4777000  0.4777000  0.4777000  0.4777000  0.47770000  0.47770000  0.4777000  0.47770000  0.4777000  0.47770000  0.47770000  0.477700000  0.47
 22 0.6777890-01 -0.1287880-03 0.2089930-02 0.2842690-03 23 -0.5206730-01 0.137372D-03 0.233962D-02 -0.161671D-02
                                                                                                                                                                                         0.182867D-01
 16
          0.2892160+00
          0.146403D-02
0.563048D-01
                                                        0.1914350+00
                                                        0.2638400-01 0.3079140+00
 19 0.2161020-03
20 0.3716490-03
                                                        0.141058b-03 -0.144805b-02 0.199878b+00 0.124812b-03 -0.430732b-02 -0.986270b-01
                                                                                                                                                                                         0.1913650+00
 24 -0.3796720-02 -0.8647970-02 0.9130150-02 0.3078560-03 -0.8465520-03
             0.194802D+00
             0.1378600-03 0.2362250+00
             0.5807210-03 -0.8918480-01 0.2449900+00
            0.6435420-03 -0.1997550-02 -0.2966790-02 0.2102000-01
```

Table 7d. Force Constant Scaling Constants, Q(I), and C matrix for Hydroxymethyl Methyl Ether [C,H₆O₂] Based on Comparison of Force Constant Matrices at the 6-31G* HF and the 6-31G* MP2 Level of Calculation.

## C Matrix (24,24)

		COLUMN 1	COLUMN 2	COLUMN 3
ROW	1	0.1000000000000+01		
ROW	2	0.8520623202060+00	0.1000000000000+01	
ROW	3	0.1017347741410+01	0.1091470465010+01	0.10000000000000+01
ROW	4	0.8493426689850+00	0.6844018900360+00	0.1000000000000+01
ROW	5	0.9355987631600+00	0.7991790625160+00	0.1000000000000+01
ROW	6	0.9054160255850+00	0.112849576591D+01	0.9309782497880+00
ROW	7	0.10000000000000+01	0.9389421564870+00	0.9151147994460+00
ROW	8	0.7848598310330+00	0.907241624691D+00	0.8891076525890+00
ROW	ğ	0.10000000000000+01	0.1000000000000+01	-0.1239764848510+01
ROW	10	0.1192208919710+01	0.1220982675160+01	0.10000000000000+01
ROW	11	0.1447399166110+01	0.1010914297940+01	0.1527351030240+01
ROW	12	0.1045784750900+01	0.2406868062400+01	0.9659129975000+00
ROW	13	0.1042328304870+01	0.1246196497500+01	0.7041214667450+00
ROW	14	0.1055629557249+01	0.1308947922010+01	0.1398665454630+01
ROW	15	0.1220757474000+01	0.1044460985940+01	0.105254580441D+01
ROW	16	0.1988804079460+01	0.105667035454D+01	0.1025115255960+01
ROW	17	0.9262336464030+00	0.9942611643390+00	0.128717666781D+01
ROW	18	0.1000000000000+01	0.1000000000000+01	0.1475742504260+01
ROW	19	0.1000000000000+01	0.1563327013750+01	0.1093234751300+01
ROW	20	0.8945449716360+00	0.1337573722300+01	0.1000000000000+01
ROW	21	0.9980847011800+00	0.1032081690850+01	0.1617035580700+01
ROU	22	0.1074583083980+01	0.1000000000000+01	0.1077361389910+01
ROW	23	0.1000000000000+01	0.1939928253990+01	0.1022183495030+01
ROW	24	0.128882178047D+01	0.5332402720940+00	0.1000000000000+01
		J. 125552 11 5541 5.01	0.5552-02/20/40.00	
		COLUMN 4	COLUMN 5	COLUMN 6

Table 7d. Force Constant Scaling Constants, Q(I), and C matrix for Hydroxymethyl Methyl Ether [C,H₆O₂] Based on Comparison of Force Constant Matrices at the 6-31G* HF and the 6-31G* MP2 Level of Calculation. (CONTINUED 1)

```
0.1000000000000+01
ROW
            0.4496340258690+00
                                 0.1000000000000+01
ROH
            0.4877698341610+00
                                 0.598836255472D+00
                                                      0.1000000000000+01
ROW
            0.1000000000000+01
                                 0.4105461101910+00
                                                      0.1000000000000+01
ROW
                                 0.1000000000000+01
ROU
            0.1000000000000+01
                                                      0.1000000000000+01
            0.1000000000000+01
                                 0.1000000000000+01
                                                      0.1000000000000+01
ROW
     10
            0.1012848249630+01
                                 0.7567757938310+00
                                                      0.1020099900390+01
ROU
                                                      0.997104670481D+00
            0.1000000000000+01
                                 0.6423857537660+00
ROW
     11
                                                      0.9488995028530+00
            0.1135643634930+01
                                 0.9252342850410+00
ROW
     12
                                 0.1282271290280+01
ROW
     13
            0.9183488749540+00
                                                      0.974863913021D+00
ROW
            0.9756355459430+00
                                 0.1009463198100+01
                                                      0.1253643630650+01
                                                      0.1000000000000+01
ROW
     15
            0.1000000000000+01
                                 0.1308986845740+01
ROW
     16
            0.8451568620030+00
                                 0.7003030443940+00
                                                      0.6933829219780+00
                                 0.1000000000000+01
     17
                                                      0.1000000000000+01
ROW
            0.1000000000000+01
     18
            0.1000000000000+01
                                 0.1000000000000+01
                                                      0.1124947914390+01
ROL
     19
ROW
            0.10000000000000+01
                                 0.1015137589330+01
                                                      0.1022877848830+01
                                                      0.1039231822560+01
            0.1025053069910+01
                                 0.1597248756920+01
ROU
     20
                                 0.104446021837D+01
ROW
     21
            0.1037693143960+01
                                                      0.1000000000000+01
                                 0.1000000000000+01
                                                      0.1000000000000+01
     22
ROW
            0.1000000000000+01
     23
24
ROW
            0.1000000000000+01
                                 0.1045734527240+01
                                                      0.1000000000000+01
                                 0.1000000000000+01
            0.10000000000000+01
                                                      0.1000000000000+01
                COLUMN
                                     COLUMN 8
                                                          COLUMN
            0.100000000000+01
ROU
            0.5868516287380+00
                                 0.1000000000000+01
ROW
            0.8655928390290+00
                                 0.1000000000000+01
                                                      0.1000000000000+01
POL
                                 0.9445408333760+00
                                                      0.1000000000000+01
ROW
     10
            0.8072514528920+00
                                 0.8478675026200+00
                                                      0.1376146581250+01
ROW
     11
            0.1164924327800+01
     12
13
                                 0.9217164384200+00
0.10000000000000+01
ROW
            0.8065850274130+00
                                                      0.1000000000000+01
ROW
            0.1309921521530+01
                                                      0.10000000000000+01
ROW
     14
            0.1000000000000+01
                                 0.1000000000000+01
                                                      0.1000000000000+01
ROW
     15
            0.1482732685240+01
                                 0.1017898456950+01
                                                      0.1498389628320+01
ROW
     16
17
            0.1028751378180+01
                                 0.1000000000000+01
                                                      0.1000000000000+01
            0.9111123742710+00
                                 0.100000000000D+01
ROW
                                                      0.125907964146D+01
                                 0.7849499988980+00
            0.1068303321600+01
                                                      0.133448243004D+01
BUN
     18
                                 0.1000000000000+01
                                                      0.10000000000000+01
            0.1000000000000+01
ROW
     19
                                                      0.100000000000D+01
     20
21
                                 0.1000000000000+01
ROW
            0.100000000000D+01
                                 0.10000000000000+01
ROW
            0.1000000000000+01
                                                      0.100000000000b+01
     22
23
24
                                                      0.133746764732D+01
            0.1038127647680+01
                                 0.1023850431080+01
ROW
            0.1031401245080+01
                                 0.1404781429120+01
                                                      0.1253048176160+01
            0.10000000000000+01
                                 0.1000000000000+01
                                                      0.1149312216880+01
                COLUMN
                                     COLUMN 11
                                                          COLUMN 12
            0.1000000000000+01
ROH
     10
                                 0.1000000000000+01
ROW
            0.1437145525660+01
     11
                                 0.1575154174950+01
            0.9852270856560+00
                                                      0.10000000000000+01
ROU
     12
ROW
     13
            0.9565180114740+00
                                 0.8218336049700+00
                                                      0.1003442467910+01
ROW
            0.1000000000000+01
                                 0.1000000000000+01
                                                      0.100762432861D+01
ROW
     15
            0.8171009046270+00
                                 0.1021486239670+01
                                                      0.10000000000000+01
     16
17
ROW
            0.1079078334170+01
                                 0.9786982580960+00
                                                      0.1106724680500+01
                                 0.1057041711190+01
ROW
            0.100000000000D+01
                                                      0.1000000000000+01
                                 0.1000000000000+01
ROW
     18
            0.1267653859110+01
                                                      0.1287445694390+01
     19
20
21
                                                      0.1306705646560+01
ROW
            0.10000000000000+01
                                 0.1316085911230+01
                                                      0.1013622521210+01
ROW
                                 0.8818351418890+00
            0.8748526951370+00
                                 0.8969385526100+00
ROL
            0.100852199079D+01
                                                      0.1017299514010+01
            0.1276434025130+01
                                                      0.1000000000000+01
ROW
     22
                                 0.1002496772110+01
     23
24
ROW
            0.174365982512D+01
                                 0.9519278724260+00
                                                      0.10000000000+01
ROU
            0.1174493066760+01
                                 0.1183696740490+01
                                                      0.100000000000D+01
                                     COLUMN 14
                                                          COLUMN 15
                COLUMN 13
            0.1000000000000+01
ROW
     13
            0.104984218904D+01
ROW
                                 0.10000000000000+01
     14
     15
ROW
                                                      0.1000000000000+01
            0.1000000000000+01
                                 0.1000468263550+01
ROU
            0.1000000000000+01
                                                      0.1004939578690+01
     16
                                 0.1030141901470+01
ROW
     17
            0.1220747273190+01
                                 0.10000000000000+01
                                                      0.1069474975010+01
            0.1631476105640+01
                                 0.1436850890680+01
                                                      0.9736115182850+00
```

Table 7d. Force Constant Scaling Constants, Q(I), and C matrix for Hydroxymethyl Methyl Ether [C,H₆O₂] Based on Comparison of Force Constant Matrices at the 6-31G* HF and the 6-31G* MP2 Level of Calculation. (CONTINUED 2)

ROW	19	0.100327423647D+01	0.1009283242430+01	0.1002656382290+01
ROW	20	0.3293199014630+01	0.1013631831410+01	0.1283519218460+01
ROW	21	0.1022287175460+01	0.2118484033220+01	0.1000000000000+01
ROW	22	0.1359284246550+01	0.1000000000000+01	0.9831148421750+00
ROW	23	0.1203121730290+01	0.1385080271590+01	0.1003363253460+01
ROW	24	0.1000000000000+01	0.1204945341740+01	0.117241466454D+01
		COLUMN 16	COLUMN 17	COLUMN 18
ROW	16	0.1000000000000+01		
ROW	17	0.6309831506720+00	0.10000000000000+01	
ROW	18	0.9598611471860+00	0.9573876727190+00	0.1000000000000+01
ROW	19	0.10000000000000+01	0.10000000000000+01	0.1000000000000+01
ROW	20	0.1000000000000+01	0.10000000000000+01	0.1513143018830+01
ROW	21	0.1000000000000+01	0.10000000000000+01	0.1000000000000+01
ROW	22	0.1025175407890+01	0.1003393660920+01	0.987212989836D+00
ROW	23	0.785818856851D+00	0.7368597096140+00	0.9826486054320+00
		A 4444666666444		A 4077/F//F00/A 04
ROW	24	0.1260535352440+01	0.1202770840500+01	0.107765445994D+01
ROW	24	0.1260535352440+01	0.1202770840500+01	U.1U/765445994D+U1
		COLUMN 19	0.1202770840500+01 COLUMN 20	COLUMN 21
ROW	19			
		COLUMN 19		
ROW	19	COLUMN 19 0.10000000000000+01	COLUMN 20	
ROW	19	COLUMN 19 0.10000000000000+01 0.1001564320670+01	COLUMN 20 0.100000000000000+01	COLUMN 21
ROW ROW ROW	19 20 21	COLUMN 19 0.10000000000000+01 0.1001564320670+01 0.9986418627020+00	COLUMN 20 0.100000000000000+01 0.9976380262260+00	COLUMN 21 0.10000000000000+01
ROW ROW ROW	19 20 21 22	COLUMN 19 0.10000000000000+01 0.1001564320670+01 0.9986418627020+00 0.1000000000000+01	COLUMN 20 0.10000000000000+01 0.9976380262260+00 0.10000000000000+01	COLUMN 21 0.10000000000000+01 0.100000000000+01
ROW ROW ROW ROW	19 20 21 22 23	COLUMN 19 0.1000000000000+01 0.1001564320670+01 0.9986418627020+00 0.1000000000000+01 0.1284650014400+01 0.1000000000000+01	COLUMN 20 0.10000000000000+01 0.9976380262260+00 0.1000000000000+01 0.1000000000000+01	COLUMN 21 0.10000000000000+01 0.1000000000000+01 0.1000000000000+01
ROW ROW ROW ROW ROW ROW	19 20 21 22 23 24	COLUMN 19 0.1000000000000+01 0.100156432067D+01 0.998641862702D+00 0.100000000000D+01 0.128465001440D+01 0.1000000000000+01	COLUMN 20 0.1000000000000+01 0.9976380262260+00 0.1000000000000+01 0.10000000000000	COLUMN 21 0.10000000000000+01 0.1000000000000+01 0.10000000000
ROW ROW ROW ROW ROW	19 20 21 22 23 24	COLUMN 19 0.1000000000000000+01 0.1001564320670+01 0.9986418627020+00 0.10000000000000+01 0.1284650014400+01 0.10000000000000+01 COLUMN 22 0.10000000000000+01	COLUMN 20 0.10000000000000+01 0.9976380262260+00 0.10000000000000+01 0.1000000000000	COLUMN 21 0.10000000000000+01 0.1000000000000+01 0.1000000000000+01
ROW ROW ROW ROW ROW ROW ROW	19 20 21 22 23 24	COLUMN 19 0.1000000000000000001 0.1001564320670+01 0.9986418627020+00 0.10000000000000+01 0.1284650014400+01 0.1000000000000+01 COLUMN 22 0.1000000000000+01 0.1003811568800+01	COLUMN 20  0.10000000000000+01 0.9976380262260+00 0.1000000000000+01 0.1000000000000+01 COLUMN 23 0.1000000000000+01	COLUMN 21 0.10000000000000+01 0.1000000000000+01 0.1000000000000+01
ROW ROW ROW ROW ROW	19 20 21 22 23 24	COLUMN 19 0.1000000000000000+01 0.1001564320670+01 0.9986418627020+00 0.10000000000000+01 0.1284650014400+01 0.10000000000000+01 COLUMN 22 0.10000000000000+01	COLUMN 20 0.10000000000000+01 0.9976380262260+00 0.10000000000000+01 0.1000000000000	COLUMN 21 0.10000000000000+01 0.1000000000000+01 0.1000000000000+01

Table 8a. Optimized Geometries, Total Energies and Calculated Wavenumbers  $\nu$  for Ethylene Glycol [C₂H₆O₂] Based on Several Levels of Calculation.

H6 H8 H5 O1 C2 C3 O4 H10

Experiment	
6-31G* MP2	1.4253 1.5162 1.4245 0.9713 1.0972 1.0974 1.1010 0.9707 111.2456 106.6895 107.3550 109.5086 109.5718 109.5718 109.5718 107.349 -55.6484 62.5023 58.4230 -55.6484
6-31G*	1.4024 1.5180 1.4016 0.9467 1.0865 1.0868 1.0868 1.0901 109.4278 109.4336 109.262 109.2262 109.2262 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 109.2263 10
3-21G MP2	1.4702 1.5325 1.4702 0.9918 1.0958 1.0958 1.0958 1.0958 1.0958 1.0958 1.0958 1.0958 1.0933 104.977 107.4080 109.0933 109.0933 109.0933 109.0933 107.4080 178.3442 72.0405 -56.3601 62.0076 56.9676 -61.1579 -176.2787
3-21G	1.4404 1.5209 1.4404 0.9656 1.0821 1.0821 1.0821 1.0821 1.0821 1.0821 1.0821 1.0821 1.0821 1.0821 1.0821 1.09309 109.3948 109.3948 109.3948 109.3948 109.3948 109.3948 110.9909 177.7369 -56.2601 62.3263 58.3996 -60.3484 -175.5435
parameter	######################################

Table 8a. Optimized Geometries, Total Energies and Calculated Wavenumbers is for Ethylene Glycol [C₂H₆O₂] Based on Several Levels of Calculation. (CONTINUED)

H6 H8

H5 O1 C2 C3 O4 H10

frequencies (cm ⁻¹ ) $\frac{\dot{v}_1}{\dot{v}_2}$ 150 280		3-21G MP2	6-31G*	6-31G* MP2	Experiment
<del></del>					
	20	141	155	149	
	08	260	275	263	
		286	306	291	
-	76	320	327	326	
	76	460	516	487	
	50	865	879	839	
	054	984	1093	1043	
	122	1024	1179	1106	
	129	1042	1198	1111	
	165	1116	1204	1130	
	862	1222	1326	1240	
	333	1271	1353	1273	
	448	1375	1432	1347	
	481	1409	1503	1404	
	512	1428	1530	1429	
	585	1498	1624	1511	
	889	1613	1666	1579	
	707	1634	1684	1595	
_	212	3073	3167	3052	
	226	3087	3212	3101	
	243	3111	3226	3119	
	622	3145	3301	3201	
_	871	3516	4111	3778	
-	628	3522	4122	3790	

Table 8b. Force Constant Matrix for Ethylene Glycol [C₂H₆O₂] at the 6-31G* HF Level of Calculation.

```
FORCE CONSTANTS IN CARTESIAN COORDINATES (HARTREES/BOHR).
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 5
                 1 0.9379210-01
                 2 -0.1415410+00 0.6107790+00
                3 -0.3420400-01
                                                                                                                                                                 0.1540480+00 0.5066960+00
                 4 -0.7815870-01 0.9445050-02 -0.1091590-01 0.6167320+00
              5 0.8202190-02 -0.1184990+00 0.3295190-01 -0.1605160-01 0.7390580+00 6 0.7313920-02 -0.2157620-01 -0.2975550+00 -0.4020400-01 0.9220910-02 7 0.1175200-01 0.1367500-02 0.7639300-02 -0.2460740+00 -0.9117570-05 8 0.9711350-03 0.1743990-02 -0.1233650-02 0.4387650-04 -0.1046830+00 9 -0.3619680-01 -0.2283750-07 -0.3816760-01 -0.3920110-01 -0.1568310-02
  9 -0.3619680-01 -0.2283750-07 -0.3816760-01 -0.392011D-01 -0.156831D-02 10 -0.992304D-02 -0.229672D-03 -0.119972D-01  0.114927D-01 -0.603280D-03 11 -0.582454D-03  0.257596D-02 -0.359419D-03  0.299822D-05  0.161943D-02 12 -0.842235D-02 -0.350704D-03 -0.504978D-02  0.591939D-02 -0.303689D-03 13 -0.355698D-01  0.129912D+00  0.462567D-01 -0.299958D-02  0.159596D-02 14  0.132178D+00 -0.513107D+00 -0.184038D-0 -0.959024D-04  0.264282D-02 15  0.325659D-01 -0.123748D+00 -0.184038D-00 -0.959024D-04  0.264282D-02 15  0.325659D-01 -0.123748D+00 -0.106950D+00  0.138947D-01 -0.515232D-01 16  0.600450D-02  0.368941D-02  0.194583D-02 -0.137212D+00 -0.107655D+00 17  0.278473D-02  0.936990D-02  0.159373D-02 -0.109642D+00 -0.244334D+00 18  0.206075D-01  0.335363D-01 -0.361338D-01  0.458373D-01  0.649923D-01  0.449580D-02  -0.248747D-02  0.362759D-03  -0.12969D+00  0.113482D+00  0.1766494D-02  0.460265D-02  -0.365872D-02  0.116304D+00  -0.276680D+00  21  0.185571D-01  -0.424334D-01  -0.254375D-01  0.331244D-01  -0.537362D-01  0.246236D-02  -0.354168D-03  -0.181944D-01  -0.341480D-01
    21  0.1855710-01 -0.4243440-01 -0.2543750-01  0.3312440-01 -0.5373620-01  22  0.3388220-02  0.2462360-02 -0.3541680-03 -0.1819440-01 -0.3414800-01  23  0.516700-03  0.6979310-03 -0.1863780-02  0.1899470-02  0.7903140-03  24  0.1081280-02 -0.6287150-05  0.1836800-02 -0.6630580-02 -0.1139220-01  25  0.3630700-02 -0.2564510-02  0.2224660-03 -0.1742180-01  0.3516960-01  26  -0.8170870-03  0.1170040-02  0.2437320-02 -0.1799350-02  0.4754910-03  27  0.1108790-02  0.4403670-03  0.2602680-02 -0.6844890-02  0.1149550-01  28  0.5882650-03 -0.5318270-04  0.1044260-02  0.6308090-03  0.1661110-04  29  0.5381970-04  0.6666320-03  0.1220470-03  -0.1068050-03  -0.3900360-03  0.02411300-02  0.9027840-04  -0.1842510-02  0.5020760-02 -0.1371650-03  10
                                       0.5986390+00
                 7 -0.3127130-01
                                                                                                                                                                 0.6464960+00
       8 0.7799990-03 0.810665b-02 0.682480D+00
9 -0.869162D-01 -0.234532D-01 -0.384179D-02 0.595409D+00
10 -0.444735D-01 -0.122597D+00 -0.378996D-02 -0.326555D-02
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    0.6272830+00
     10 -0.444750-01 -0.1225970+00 -0.378990-02 -0.3265550-02 0.6272850+00  
11 -0.9985980-03 -0.3975530-02 -0.7880440-01 -0.1719050-02 0.4133420-01  
12 -0.3095190-01 0.4331570-01 0.4203980-02 -0.2958520+00 0.1722220+00  
13 -0.2082590-03 0.2005850-02 -0.3252460-02 -0.3032080-02 -0.9896390-03  
14 0.7674910-02 -0.1336340-02 0.1728630-03 0.1763350-03 0.5525380-03  
15 -0.1823590-01 0.2793130-03 -0.1615120-02 -0.9518370-03 0.1213900-03  
16 0.4502070-01 -0.1940790-01 -0.3433950-01 0.1294450-01 0.3093120-02  
17 0.3093120-01 0.0093730-03 0.3727300-04 0.3727300-04  
18 0.4502070-01 0.0093730-03 0.32731800-03 0.124450-01 0.3093120-02  
18 0.4502070-01 0.0093730-03 0.32731800-03 0.32737300-04 0.37273700-04  
18 0.4502070-01 0.0093730-03 0.32731800-03 0.32737300-04  
18 0.4502070-01 0.0093730-03 0.32731800-03 0.32737300-04 0.37273700-04  
18 0.4502070-01 0.0093730-03 0.32731800-03 0.32737300-04 0.32737300-04  
18 0.4502070-01 0.0093730-03 0.32731800-03 0.32737300-04 0.32737300-04  
18 0.4502070-01 0.0093730-03 0.32737300-04  
18 0.4502070-01 0.0093730-03 0.32737300-04  
18 0.4502070-01 0.0093730-03 0.32737300-04  
18 0.4502070-01 0.0093730-03 0.32737300-04  
18 0.4502070-01 0.32737300-04  
18 0.4502070-01 0.32737300-04  
18 0.4502070-01 0.32737300-04  
18 0.4502070-01 0.32737300-04  
18 0.4502070-01 0.32737300-04  
18 0.4502070-01 0.32737300-04  
18 0.4502070-01 0.32737300-04  
18 0.4502070-01 0.32737300-04  
18 0.4502070-01 0.32737300-04  
18 0.4502070-01 0.32737300-04  
18 0.4502070-01 0.32737300-04  
18 0.4502070-01 0.32737300-04  
18 0.4502070-01 0.32737300-04  
18 0.4502070-01 0.32737300-04  
18 0.4502070-01 0.32737300-04  
18 0.4502070-01 0.32737300-04  
18 0.4502070-01 0.00937300-04  
18 0.4502070-01 0.32737300-04  
18 0.4502070-01 0.00937300-04  
18 0.4502070-01 0.327373000-04  
18 0.4502070-01 0.00937300-04  
18 0.4502070-01 0.327373000-04  
18 0.4502070-01 0.00937300-04  
18 0.4502070-01 0.00937300-04  
18 0.4502070-01 0.327373000-04  
18 0.4502070-01 0.00937300-04  
18 0.4502070-01 0.00937300-04  
18 0.4502070-
       17 0.7107190-01 0.1981330-02 0.7331890-03 0.1813440-02 0.7373700-04 18 -0.9024640-01 -0.6692570-02 -0.1018040-01 0.5941630-02 0.1059310-02 19 0.3753740-01 -0.1910470-01 0.3511930-01 0.106020-01 0.2921450-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.448150-02 0.4
     20 -0.6599780-01 -0.2059010-02 0.1448150-02 -0.1007880-02 0.4163650-04 21 -0.7632130-01 -0.6340290-02 0.1126460-01 0.5242910-02 0.1052100-02 22 0.1294710-01 -0.1296810+00 -0.1052160+00 0.3701660-01 0.4445000-02 23 0.1455340-02 -0.1091450+00 -0.2554870+00 0.6467880-01 0.3140050-02 24 0.5236680-02 0.3535840-01 0.6131140-01 -0.8407370-01 0.2255360-01 25 0.1305880-01 -0.1304030+00 0.1019050+00 0.3649340-01 0.4983100-02 24 0.55340-03 0.4073000 0.1019050+00 0.567750-01 0.4983100-02 0.255750-01 0.2557750-01 0.2507750-01 0.2507750-01 0.2507750-01 0.2507750-01 0.2507750-01 0.2507750-01 0.2507750-01 0.2507750-01 0.2507750-01 0.2507750-01 0.2507750-01 0.2507750-01 0.2507750-01 0.2507750-01 0.2507750-01 0.2507750-01 0.2507750-01 0.2507750-01 0.2507750-01 0.2507750-01 0.2507750-01 0.2507750-01 0.2507750-01 0.2507750-01 0.2507750-01 0.2507750-01 0.2507750-01 0.2507750-01 0.2507750-01 0.2507750-01 0.2507750-01 0.2507750-01 0.2507750-01 0.2507750-01 0.2507750-01 0.2507750-01 0.2507750-01 0.2507750-01 0.2507750-01 0.2507750-01 0.2507750-01 0.2507750-01 0.2507750-01 0.2507750-01 0.2507750-01 0.2507750-01 0.2507750-01 0.2507750-01 0.2507750-01 0.2507750-01 0.2507750-01 0.2507750-01 0.2507750-01 0.2507750-01 0.2507750-01 0.2507750-01 0.2507750-01 0.2507750-01 0.2507750-01 0.2507750-01 0.2507750-01 0.2507750-01 0.2507750-01 0.2507750-01 0.2507750-01 0.2507750-01 0.2507750-01 0.2507750-01 0.2507750-01 0.2507750-01 0.2507750-01 0.2507750-01 0.2507750-01 0.2507750-01 0.2507750-01 0.2507750-01 0.2507750-01 0.2507750-01 0.2507750-01 0.2507750-01 0.2507750-01 0.2507750-01 0.2507750-01 0.2507750-01 0.2507750-01 0.2507750-01 0.2507750-01 0.2507750-01 0.2507750-01 0.2507750-01 0.2507750-01 0.2507750-01 0.2507750-01 0.2507750-01 0.2507750-01 0.2507750-01 0.2507750-01 0.2507750-01 0.2507750-01 0.2507750-01 0.2507750-01 0.2507750-01 0.2507750-01 0.2507750-01 0.2507750-01 0.2507750-01 0.2507750-01 0.2507750-01 0.2507750-01 0.2507750-01 0.2507750-01 0.2507750-01 0.2507750-01 0.2507750-01 0.2507750-01 0.2507750-01 0.2507750-01 0.2507750-01 0.2507
        28 0.279072b-03 0.701351b-02 0.452300b-03 0.978809b-02 -0.520708b+00 29 0.321657b-03 0.103841b-02 -0.512998b-03 0.100608b-02 -0.379296b-01 30 -0.821969b-02 -0.514241b-01 -0.359554b-02 -0.202822b-01 -0.160307b+00
                                         0.5750730-01
                                                                                                                                                                 0.5298790+00
                                       0.1393910-01
          13 0.6372910-03
                                                                                                                                                                  0.9490840-03 0.3728940-01
```

Table 8b. Force Constant Matrix for Ethylene Glycol [C₂H₆O₂] at the 6-31G* HF Level of Calculation. (CONTINUED 1)

```
16 0.1781670-02 0.1101000-03 -0.1560940-04 -0.3293650-03 0.9933160-03
 17 0.5030200-03 -0.1347690-02 0.5809400-03 0.1919360-02 0.8529100-03 18 0.5661390-04 0.1818210-02 -0.2159510-03 0.1741080-02 0.2716550-02 19 -0.1879140-02 0.3316020-03 0.3816260-03 -0.6973900-03 -0.8382680-03
16
16 0.1408580+UU
17 0.1215190+00 0.2522390+00
      0.1408580+00
 18 -0.5229550-01 -0.8340040-01 0.1101380+00
 19 0.1153550-01 -0.1682620-01 -0.5850700-02
                                                                  0.1343090+00
 20 0.138677D-01 -0.235851D-01 -0.713657D-02 -0.125855D+00 0.287626D+00 21 -0.665708D-02 0.101147D-01 0.639705D-02 -0.399293D-01 0.747462D-01
 22 -0.7049870-02 0.1710970-03 -0.3050970-02 0.2012390-02 0.4830880-03 23 0.3522580-03 0.1810830-02 0.1502110-04 -0.4765370-03 0.1406590-02 24 -0.3172540-02 0.3396730-04 -0.1258930-02 0.8799800-03 0.4115060-03 25 0.1934730-02 -0.7987450-03 0.5168580-03 -0.7004320-02 -0.6017710-03
 28 0.2593050-03 0.1562030-03 0.8473430-04 0.1494040-03 -0.9904540-04 29 0.2844870-03 0.4649080-04 -0.4296900-04 -0.2225600-03 0.7047650-04 0.2420360-03 -0.2883120-03 0.3816980-03 0.1975800-03 0.2748150-03
               21
 21 0.9772340-01
 22 0.7519540-03 0.1333990+00
 23 -0.3793900-03 0.1188490+00 0.2666260+00
      0.3199530-03 -0.4603490-01 -0.7674100-01 0.1027600+00
 25 -0.299262D-02 0.112314D-01 -0.152119D-01 -0.533765D-02
                                                                                     0.1333280+00
 26 -0.1687960-03 0.1608660-01 -0.2613980-01 -0.8125340-02 -0.1168190+00
 27 -0.1165390-02 -0.4996450-02 0.7326670-02 0.7171840-02 -0.4372990-01
28 0.1042490-03 0.6909780-03 0.6387730-04 0.1346350-02 0.4132420-03
 0.4575250-03 -0.1017480-02
0.2119120-02 0.3024160-03
      0.258423D+00
0.730939D-01 0.101395D+00
 28 0.1838920-03 0.1272130-02
                                              0.5110310+00
29 -0.391167D-03 -0.435865D-03 0.368201D-01 0.541246D-02
30 -0.785073D-03 0.165551D-02 0.208315D+00 0.149580D-01 0.158291D+00
FORCE CONSTANTS IN INTERNAL COORDINATES (ATOMIC UNITS).

1 2 3 4 5
     0.4233790+00
  2 0.1875390-01 0.3282800+00
      0.4820780-02 0.1244290-01
                                              0.4221530+00
  4 -0.2271520-02 0.4974920-03 -0.1063670-02
                                                                  0.6067610+00
  5 0.1574400-01 0.5013030-02 0.2013120-02
                                                                  0.5557530-03
                                                                                     0.3677620+00
  6 0.1174980-01 0.4898970-02
                                              0.1661580-02 -0.2176370-02 0.4243450-02
 7 0.1959160-02 0.3904810-02 0.1677170-01 -0.1439230-04 -0.5427710-03
8 0.3793750-02 0.5195600-02 0.1923110-01 -0.3859140-04 0.9495480-03
9 -0.8812320-04 -0.1465760-02 -0.2883340-02 0.5079400-05 -0.1158040-03
10 0.7749240-02 0.2321040-01 0.2382760-01 -0.3025870-02 -0.4627320-02
11 0.2634470-01 0.3046590-01 0.7775250-02 -0.1917860-02 -0.4607560-02
12 0.4635550-01 0.1124470-03 -0.1801300-02 -0.1672560-04 -0.4725560-04
                                                                  0.1547620-01 -0.4720560-04
      0.4635550-01
                          0.1124670-02 -0.1801200-02
 12
                          0.3215300-01 -0.3378660-02
 13 -0.3202880-01
                                                                  0.1695850-02 0.2625110-02
 14 -0.3617530-01
                          0.3327490-01 -0.3152660-02 -0.2514300-02 -0.1174880-01
 15 -0.2550690-02
                          0.3140760-01 -0.3229790-01 -0.3213370-03 0.5908470-02
 16 -0.2443850-02 0.3056570-01 -0.3392070-01 0.1001130-02 -0.1029100-02
```

Table 8b. Force Constant Matrix for Ethylene Glycol [C₂H₆O₂] at the 6-31G* HF Level of Calculation. (CONTINUED 2)

```
17 0.3679700-02 0.2726820-02 0.4641790-01 -0.1970020-03 0.5688880-03
18 0.4250420-02 0.7987430-03 -0.2568510-02 0.1241270-01 -0.3064110-02
19 -0.3768420-02 0.1680530-02 -0.1665830-02 0.3119810-02 0.1151290-02
20 0.4894650-01 0.3310770-02 0.1305000-02 -0.5840920-02 -0.7798630-02
21 -0.5116790-01 -0.4330440-02 -0.9457280-03 -0.6164780-02 0.1459220-01
22 -0.1724610-02 -0.3195600-02 -0.4946030-01 0.1427970-03 -0.1258740-02
23 0.1490110-02 0.9628910-03 0.5132250-01 -0.665320-04 -0.1374450-02
24 -0.2525660-03 -0.5085460-04 -0.8021650-03 -0.16651410-03 -0.3016420-03
24 -0.2525660-03 -0.5085460-04 -0.8021650-03 -0.1651410-03 -0.3016620-03
    0.3834260+00
     0.8737690-03
                          0.3665360+00
  8 -0.6539780-03
                          0.5714710-02
                                             0.3567180+00
9 -0.535760-03 0.57760-03 0.536760-03 0.536760-03 10 -0.5145690-02 -0.4341430-02 -0.1341790-02 11 -0.3202160-02 -0.5234960-02 -0.6244990-02 12 0.3496960-02 -0.6234740-03 0.2076520-02
                                                                  0.6100740+00
                                                                  0.1723080-02
                                                                                     0.4104490+00
                                                                  0.1169330-01 0.6680480-01
                                                                  0.2368760-03 -0.983907D-02
14
     0.4158290+00
    0.1065990-02 0.2033670+00
22 0.8413790-01 -0.1103360-02 0.1584290-02 -0.1549660-03 0.1394320-01 23 -0.8392230-01 0.1116230-03 -0.6082480-03 -0.1651870-02 0.5533520-01
24 -0.1822130-02 -0.2187810-03 -0.6185950-03 0.6697100-03 0.3572220-02
16 0.280652D+00
 17 0.146561D-02 0.1979790+00 18 0.812827D-01 -0.191372D-02
                                             0.6467440+00
19 0.134332D-02 0.489376D-03 -0.5548260-03 0.1006690-01 20 -0.177253D-02 0.946668D-04 -0.156059D+00 -0.260378D-02 0.257167D+00
24 -0.4265610-02 -0.5396230-03 -0.2337030-02 -0.6104660-04 -0.3187690-03
21 0.2552370+00
      0.1918400-02 0.2663970+00
0.2112010-02 -0.9997670-01 0.2643250+00
0.1948710-04 -0.1930660-03 -0.3697560-03 0.7757190-02
```

Table 8c. Force Constant Matrix for Ethylene Glycol [C₂H₆O₂] at the 6-31G* MP2 Level of Calculation.

```
FORCE CONSTANTS IN CARTESIAN COORDINATES (HARTREES/BOHR).
                  0.9481700-01
       2 -0.1423430+00
                                                                            0.5093700+00
       3 -0.3236430-01 0.1207680+00 0.4179340+00 4 -0.6730660-01 0.8618040-02 -0.8409110-02 0.5647660+00 5 0.8079860-02 -0.9987210-01 0.2599320-01 -0.1630240-01
                                                                                                                                                                                                                                                       0.6824960+00
                 0.988765D-02 -0.2526460-01 -0.248474D+00 -0.4167870-01 0.843947D-02 0.923737D-02 0.187609D-02 0.377124D-02 -0.229512D+00 -0.167182D-03 0.102415D-02 0.168847D-02 -0.146986D-02 -0.483918D-04 -0.945516D-01
  8 0.1024150-02 0.1688470-02 -0.1469860-02 -0.4839180-04 -0.9455160-01 9 -0.3157720-01 -0.5973160-03 -0.3653730-01 -0.3572340-01 -0.1106580-02 10 -0.8454250-02 -0.4723230-03 -0.1024330-01 0.9687270-02 -0.7345030-03 11 -0.4885310-03 0.2001970-02 -0.2743850-03 -0.2965460-05 0.2121450-02 12 -0.7269320-02 -0.6365210-03 -0.3835910-02 0.2410620-02 -0.5516870-03 13 -0.4354120-01 0.1310840+00 0.4394670-01 -0.2449270-02 0.2146650-02 14 0.1331400+00 -0.4276560+00 -0.1441280+00 0.9069420-03 -0.1417910-02 15 0.2761250-01 -0.8641610-01 -0.7717550-01 0.1511230-01 -0.4642570-01 0.5214050-02 0.3420880-02 0.1187110-02 -0.1240920+00 -0.121620+00 17 0.2314850-02 0.8631750-02 0.3569760-03 -0.1032240+00 -0.2267100+00 19 0.3398590-02 -0.2297400-02 -0.1697090-03 -0.1158590+00 0.1079630+00
  19 0.3398590-02 -0.2297400-02 -0.1697090-03 -0.1158590+00 0.1079630+00 20 -0.7473690-04 0.3109070-02 -0.9700430-03 0.1072460+00 -0.2613850+00
                 0.1606450-01 -0.3619420-01 -0.2264330-01 0.3147370-01 -0.5106350-01 0.3152710-02 0.2272010-02 0.6923160-03 -0.1832110-01 -0.3030880-01 0.1442450-02 0.3759730-03 0.1542900-02 0.1434680-02 0.6328020-03
  24 0.7394050-03 0.4609190-04 0.1550250-02 -0.6550540-02 -0.1010400-01 25 0.3110480-02 -0.2075570-02 0.1132690-02 -0.1737740-01 0.3153960-01 26 -0.9304400-03 0.1160810-02 0.1942850-02 -0.1898600-02 0.3087230-03
  27 0.7603420-03 0.6931000-03 0.2574660-02 -0.6735450-02 0.1033610-01 28 0.4877500-03 -0.1469140-03 0.6396540-03 0.1644230-03 0.6472210-04 29 0.3477460-04 0.7875630-03 0.9872640-04 -0.4729260-04 -0.5763730-03 0-0.2247060-02 0.5647730-04 -0.1873530-02 0.4796580-02 -0.2402860-03
               0.5206910+00
                                                                           0.5854350+00
0.7565360-02 0.6320650+00
        7 -0.288853D-01
  8 0.116982D-02 0.7565360-02 0.632065D+00
9 -0.746495D-01 -0.246536D-01 -0.481671D-02 0.517253D+00
10 -0.382384D-01 -0.101759D+00 -0.330502D-02 -0.774239D-02 0.532876D+00
11 -0.939734D-03 -0.291351D-02 -0.687261D-01 -0.363146D-02 0.366642D-01
12 -0.300193D-01 0.395550D-01 0.220303D-02 -0.247101D+00 0.142351D+00
13 -0.123075D-02 0.245614D-02 -0.326864D-02 -0.279670D-02 -0.103217D-02
14 0.967670D-02 -0.163205D-02 0.794969D-04 0.756224D-03 0.754114D-03
15 -0.213279D-01 0.591708D-03 -0.168375D-02 -0.541541D-03 0.169641D-03
16 0.445141D-01 -0.192664D-01 -0.307148D-01 0.110063D-01 0.255552D-02
17 0.685308D-01 0.226791D-02 0.562429D-03 0.169844D-02 -0.112336D-03
18 -0.811916D-01 -0.654245D-02 -0.891466D-02 0.550193D-02 0.867700D-03
19 0.352237D-01 -0.184432D-01 0.315769D-01 0.833914D-02 0.24522B-02
20 -0.618767D-01 -0.86752BD-03 0.322633D-03 -0.290895D-02 -0.128814D-03
21 -0.657342D-01 -0.605642D-02 0.102252D-01 0.493927D-02 0.679886D-03
22 0.109512D-01 -0.115578D+00 -0.998754D-01 0.3371977D-01 0.353019D-02
               0.116982D-02
  21 -0.657342D-01 -0.605642D-02 0.102252D-01 0.493927D-02 0.679886D-03 22 0.109512D-01 -0.115578D+00 -0.998754D-01 0.371977D-01 0.353019D-02 23 -0.191478D-02 -0.102014D+00 -0.238120D+00 0.620732D-01 0.295387D-02 24 0.50410DD-02 0.366370D-01 0.615393D-01 -0.759038D-01 0.185381D-01 25 0.102936D-01 -0.115288D+00 0.967033D-01 0.333593D-01 0.416261D-02 26 -0.175501D-02 0.975524D-01 -0.233061D+00 -0.555856D-01 -0.233002D-02 27 0.384026D-02 0.317511D-01 -0.547321D-01 -0.702979D-01 0.189814D-01 28 -0.863830D-03 0.297765D-02 0.274731D-03 0.121645D-01 -0.444076D+00 29 0.152741D-03 0.312540D-03 -0.131139D-02 0.105081D-02 -0.388133D-01 30 -0.799362D-02 -0.463374D-01 -0.344966D-02 -0.223156D-01 -0.125333D+00 11 2 13
                   0.4953910-01
                0.1513470-01
                                                                              0.4393660+00
     13 0.5863470-03
                                                                              0.6970320-03
                                                                                                                                   0.4512780-01
```

Table 8c. Force Constant Matrix for Ethylene Glycol [C₂H₆O₂] at the 6-31G* MP2 Level of Calculation. (CONTINUED 1)

```
18  0.2086800-03  0.1650650-02 -0.6308210-03  0.2265990-02  0.2163620-02  19 -0.1631210-02  0.9530250-03  0.4162350-03  -0.5037090-03  -0.8151240-03  20  0.5103200-03  0.2395140-02  -0.1929740-03  0.2400490-02  0.1293300-02  21 -0.3750850-03  0.1163230-02  0.2298550-02 -0.3175260-03  -0.7884320-02  22  0.6171000-04  0.2504890-02  -0.2054520-03  0.5660880-04  0.2137790-04  23  0.9705830-02  0.3566130-02  -0.5245440-04  -0.9088510-04  0.220380-03  24  0.2891690-01  -0.3315420-01  -0.3155300-05  -0.9967090-04  0.8365910-04  25  0.2575640-03  0.3531630-02  -0.5392340-03  -0.2957260-03  -0.1371330-02  26  0.9204360-02  -0.4498460-02  0.1156820-02  -0.2194540-03  0.6129110-03  27  -0.2968640-01  -0.3149390-01  -0.4403810-04  -0.5080080-03  -0.1962480-03  28  -0.3402940-01  -0.1850850+00  -0.1510930-03  0.1459020-04  -0.1560410-03  29  -0.4384140-02  -0.1482500-01  -0.1673480-04  0.7969240-04  0.1150390-03  0.146068840-04  16  17  18  19  20
                0.1299180+00
                 0.1139400+00 0.2332920+00
    18 -0.5050190-01 -0.7931870-01
                                                                                                                                                    0.9928460-01
                0.9379840-02 -0.1599790-01 -0.4755030-02 0.1224820+00
  19  0.9379840-02 -0.1599790-01 -0.4755030-02  0.1224820+00  20  0.1320970-01 -0.2034110-01 -0.6816680-02 -0.1185240+00  0.2723270+00  21 -0.5806670-02  0.9874700-02  0.5448650-02 -0.3685030-01  0.6851460-01  22 -0.6096120-02  0.6683960-04 -0.2725730-02  0.1957570-02  0.1333400-03  23  0.8725550-04  0.1425220-02  0.1509370-03 -0.2944350-03  0.1454920-02  24 -0.2827580-02  0.7809720-04 -0.1474320-02  0.7582790-03  0.3194180-03  25  0.2043430-02 -0.4203050-03  0.3842840-03 -0.6051010-02 -0.6899850-03  26  0.4019200-03  0.1016890-02  0.3718620-03 -0.8983970-04  0.1776210-02  27  0.7196540-03 -0.4503270-03  0.1737360-04 -0.2917140-02 -0.2164550-03
                    0.7196540-03 -0.4503270-03 0.1737360-04 -0.2917160-02 -0.2164520-03 0.3981590-03 0.2487440-03 0.1202850-03 0.2465650-03 -0.8133070-04 0.3688960-03 0.7593790-04 -0.4698220-04 -0.2974610-03 0.1323670-03
                0.2871210-03 -0.2311340-03 0.3400230-03 0.2531920-03 0.2454480-03
                0.858111D-01
0.618690D-03 0.122155D+00
    23 -0.2699660-03 0.111131D+00
                                                                                                                                                    0.247101D+00
   26
0.2429270+00
                      0.6738260-01
                                                                                       0.8927090-01
    28 0.2960750-03 0.1986610-02 0.4393750+00
29 -0.1040410-03 -0.2503740-03 0.3344340-01 0.5072300-02
30 -0.5324160-03 0.1426780-02 0.1689520+00 0.1338260-01 0.1294360+00
FORCE CONSTANTS IN INTERNAL COORDINATES (ATOMIC UNITS).
                                                                                                                                                                                                                                                                                                                         5
                     0.3676260+00
                     0.1790900-01
                                                                                          0.3119080+00
         3 0.3342230-02
                                                                                         0.1314250-01 0.3647510+00

      3
      0.3342230-02
      0.1314250-01
      0.3647510+00

      4
      -0.4460870-02
      0.5288250-03
      -0.1232830-02
      0.5126590+00

      5
      0.1273850-01
      0.4306810-02
      0.1276990-02
      -0.3669370-04
      0.3428950+00

      6
      0.7849820-02
      0.4688810-02
      0.2129440-02
      -0.1650820-02
      0.1978150-02

      7
      -0.1196200-02
      0.3341180-02
      0.1460960-01
      -0.7792790-04
      -0.1942130-03

      8
      0.2980680-02
      0.4452390-02
      0.1577020-01
      -0.1969930-03
      0.4208050-03

      9
      0.2070100-03
      -0.6881950-03
      -0.5089060-02
      -0.1000230-03
      -0.2776040-03

      10
      0.8373580-02
      0.2056270-01
      0.2033120-01
      -0.4024070-02
      -0.3844130-02

      11
      0.2330410-01
      0.3070230-01
      0.9455780-02
      -0.273810-02
      -0.3547320-02

      10
      0.8373580-02
      0.2056270-01
      0.203120-01
      -0.4024070-02
      -0.344130-02
      -0.3547320-02

      11
      0.2330410-01
      0.3070230-01
      0.9645780-02
      -0.2733810-02
      -0.3547320-02

      12
      0.5326550-01
      0.5528900-03
      -0.1856890-02
      0.1812080-01
      -0.1705460-03

      13
      -0.2891150-01
      0.3257010-01
      -0.3898970-02
      0.2389950-02
      0.3760620-02

      14
      -0.3195650-01
      0.3267740-01
      -0.4584050-02
      -0.3091060-02
      -0.1132130-01

      15
      -0.1892740-02
      0.3203290-01
      -0.2984970-01
      -0.1327380-03
      0.4868060-02

      16
      -0.3583040-02
      0.3164310-01
      -0.3062860-01
      0.1626160-02
      -0.1471040-02

      17
      0.3376680-02
      0.1895900-02
      0.5311960-01
      -0.35220200-03
      0.5292850-03

      18
      0.6347520-02
      -0.8003380-05
      -0.4079360-02
      0.1352810-01
      -0.9530100-03
```

Table 8c. Force Constant Matrix for Ethylene Glycol [C₂H₆O₂] at the 6-31G* MP2 Level of Calculation. (CONTINUED 2)

```
    19
    -0.3570840-02
    0.9336570-03
    -0.1455050-02
    0.3181900-02
    0.1649050-02

    20
    0.4467650-01
    0.3415720-02
    0.1146620-02
    -0.5800000-02
    -0.9943160-02

    21
    -0.4881020-01
    -0.3452660-02
    0.8822740-03
    -0.7147530-02
    0.1382980-01

22 · 0.3904510 - 02 · 0.2827840 - 02 · 0.4348510 - 01 · 0.1731570 - 03 · 0.1069490 - 02 
23 · 0.1322150 - 02 · 0.6795740 - 03 · 0.4701380 - 01 · 0.1284060 - 03 · 0.1181820 - 02 
24 · 0.3460690 - 03 · 0.1234840 - 03 · 0.8711670 - 03 · 0.1894790 - 03 · 0.4164820 - 03
     0.359681D+00
  7 0.7550010-03 0.3418230+00
8 -0.696841D-03 0.326818D-02 0.332364D+00
9 -0.528199D-04 -0.360380D-03 -0.793980D-03
10 -0.756358D-02 -0.385904D-02 -0.982687D-03
11 -0.312998D-02 -0.454038D-02 -0.540984D-02
                                                                                           0.5160010+00
                                                                                           0.1492340-02
                                                                                                                       0.3709140+00
                                                                                           0.1456780-01
                                                                                                                       0.5878000-01
12 0.2407000-02 -0.2638430-03 0.2227760-02 0.2809790-03 -0.1040850-01  
13 -0.1024110-01 0.4593050-02 -0.1100640-02 -0.1015520-02 0.7047430-01  
14 -0.3339550-03 -0.1520920-02 0.4880250-02 -0.7627370-03 0.6261230-01
21 0.632153D-02 0.116763D-02 -0.178015D-02 -0.1578780-03 0.6989290-01  
22 0.157135D-02 0.104616D-01 0.164037D-01 0.416214D-02 0.6683790-04  
23 0.111364D-02 -0.148487D-01 -0.109630D-01 -0.361573D-02 -0.2355560-02  
24 0.427063D-03 0.114976D-02 -0.576702D-03 0.552821D-03 -0.989572D-04
11 0.3699590+00
12 0.1302480-02 0.1933630+00
13 -0.156773D-01 0.518134D-02
14 -0.143452D-01 -0.1450160-01
                                                                0.2535610+00
                                                                0.4020360-01 0.2528890+00
15  0.647488D-01  0.846529D-04  0.287776D-01 -0.833312D-02  16  0.689655D-01  0.323254D-02 -0.877859D-02  0.288513D-01
                                                                                                                       0.2465720+00
                                                                                                                       0.4617910-01
0.3671160-03 -0.2154510-01 -0.5129110-01 0.1287030-01 0.7501610-01 -0.7633010-03 0.2453090-02 -0.3624560-04
                                                                                                                       0.4479030-03
                                                                                                                       0.7986390-02
 23 -0.7467190-01 -0.8399790-04 -0.6569710-03 -0.2634300-02 0.5033240-01
 24 -0.2028330-02 -0.3121750-03 -0.8168260-03 0.8984940-03 0.3476540-02
        0.2513580+00
 16
16 0.2513580+00
17 0.154863D-03 0.1863050+00
18 0.708934D-01 -0.182602D-02 0.582165D+00
19 0.106520D-02 0.458336D-03 0.847322D-03 0.112430D-01
20 -0.189606D-02 -0.341223D-05 -0.138870D+00 -0.298088D-02 0.231560D+00
21 0.943974D-03 0.194779D-03 -0.140907D+00 0.478862D-02 -0.913024D-01
22 -0.526591D-01 0.397953D-02 -0.145978D+00 0.407699D-04 0.133949D-02
23 -0.122611D-01 -0.282653D-02 -0.146915D+00 -0.170504D-02 0.219125D-02
24 -0.427943D-02 -0.377277D-03 -0.380488D-02 -0.647800D-04 -0.380171D-03
 24 -0.4279430-02 -0.3772770-03 -0.3004880-02 -0.6178000-04 -0.3801710-03
        0.2321170+00
        0.2495000-02 0.2420780+00
        0.1610180-02 -0.9221030-01 0.2405040+00
        0.339877D-04 -0.244891D-03 -0.325042D-03 0.763310D-02
```

Table 8d. Force Constant Scaling Constants, Q(I), and C matrix for Ethylene Glycol [C₂H₆O₂] Based on Comparison of Force Constant Matrices at the 6-31G* HF and the 6-31G* MP2 Level of Calculation.

Q Values	
1	9(1)
1 23 45 67 89 101 112 134 145 161 17 189 221 223 24	0.868314E+00 0.950126E+00 0.864026E+00 0.844910E+00 0.932382E+00 0.932577E+00 0.932577E+00 0.931728E+00 0.93679E+00 0.93679E+00 0.903679E+00 0.90956E+00 0.898236E+00 0.898236E+00 0.895623E+00 0.90148E+00 0.9111683E+01 0.900425E+00 0.908709E+00 0.908709E+00 0.908709E+00 0.90881E+00 0.984003E+00

## C Matrix (24,24)

	_	COLUMN 1	COLUMN 2	COLUMN 3
ROW	1	0.1000000000000+01		
ROW	2	0.1051361534870+01	0.10000000000000+01	
ROW	3	0.800418178193D+00	0.1165733887360+01	0.1000000000000+01
ROW	4	0.2292765415400+01	0.10000000000000+01	0.1356519373820+01
ROW	5	0.8992229556460+00	0.9127822602640+00	0.706734910521D+00
ROW	6	0.7402413430390+00	0.1013793128460+01	0.142351603832D+01
ROW	7	-0.678508805617D+00	0.9090064717790+00	0.970411530934D+00
ROW	8	0.8735019744740+00	0.9107987149630+00	0.913953884500D+00
ROW	9	0.1000000000000+01	0.5237513722480+00	0.206463817657D+01
ROW	10	0.1219850633190+01	0.956094056661D+00	0.9656335335390+00
ROW	11	0.1006426536760+01	0.109609314887D+01	0.1414944880700+01
ROW	12	0.1264622753530+01	0.517224088862D+00	0.113740943045D+01
ROW	13	0.1020562859390+01	0.1094851829980+01	0.130794884951D+01
ROW	14	0.1000261257870+01	0.1063029500250+01	0.165049124464D+01
ROW	15	0.8423056871350+00	0.1106738658180+01	0.105166533491D+01
ROW	16	0.1662555889300+01	0.1122253984250+01	0.1026445463360+01
ROW	17	0.1015165024000+01	0.7353052440240+00	0.126912183431D+01
ROW	18	0.1689182665440+01	0.1000000000000+01	0.1800898849500+01
ROW	19	0.9622311092830+00	0.5393321868820+00	0.8891863587610+00
ROW	50	0.1032274110360+01	0.1115421560730+01	0.996143287252D+00
ROW	21	0.1073479402210+01	0.8577280142380+00	0.1000000000000+01
ROW	22	0.2548741274020+01	0.9523538074180+00	0.9922197342500+00
ROW	23	0.9982290517780+00	0.1000000000000+01	0.1033145308480+01
ROW	24	0.10000000000000+01	0.1000000000000+01	0.10000000000000+01
		COLUMN 4	COLUMN 5	COLUMN 6
ROW	4	0.100000000000b+01		-
ROW	5	0.1000000000000+01	0.1000000000000+01	
ROW	6	0.8520060185690+00	0.4984537540290+00	0.1000000000000+01
ROW	7	0.1000000000000+01	0.1000000000000+01	0.1000000000000+01
ROW	8	0.1000000000000+01	0.1000000000000+01	0.1000000000000+01
		·		

Table 8d. Force Constant Scaling Constants, Q(I), and C matrix for Ethylene Glycol [C,H,O,] Based on Comparison of Force Constant Matrices at the 6-31G* HF and the 6-31G* MP2 Level of Calculation. (CONTINUED 1)

```
ROW
           0.1000000000000+01
                                 D.1000000000000+01
                                                      0.10000000000000+01
            0.1521959830600+01
                                 0.9050315636100+00
                                                      0.1596462846320+01
ROW
ROU
            0.1644091643850+01
                                 0.9639207403800+00
                                                      0.1059946944540+01
                                                      0.7288224539330+00
            0.130635842627D+01
                                 0.1000000000000+01
ROW
                                                      0.1060948791050+01
           0.1615270908390+01
                                 0.1563016136670+01
ROW
     13
                                 0.1052954719790+01
                                                      0.1000000000000+01
ROW
     14
           0.1411206674620+01
     15
ROW
           0.1000000000000+01
                                 0.9025240521620+00
                                                      0.1621943646340+01
           0.1867258417440+01
ROU
                                     54252293020+01
                                                      0.8938553214280+00
     16
17
                                     ~200000000+01
                                                      0.1000000000000+01
ROM
                                                      0.8646397968540+90
ROU
     18
           0.1249704553180+(
                                        73332490+00
                                 .. 141 -4666407D+01
                                                      0.9898636687540+00
ROW
     19
           0.1049931176000+0
ROW
     20
           0.1138458315080+01
                                      - .07240360+01
                                                      0.1050352091390+01
                                     29242109390+01
ROW
     21
           0.1322670116060+01
                                                      0.1208886261070+01
                                 ٥.,
ROW
     22
            0.1000000000000+01
                                 0.923067.313460+00
0.9335432800050+00
                                                      0.1123227427040+01
     23
           0.1000000000000+01
                                                      0.1065116380230+01
ROW
            0.10000000000000+01
                                 0.10000000000000+01
                                                      0.1000000000000+01
                COLUMN
                                     COLUMN.
                                                          COLUMN
           0.10000000000000+01
ROW
            0.6135150763280+00
                                 0.10000000000000+01
ROU
ROW
            0.1000000000000+01
                                 0.10000000000000+01
                                                      0.1000000000000+61
RON
     10
            0.9682712534760+00
                                 0.798138279621D+00
                                                      0.9906539155970-30
ROW
     11
            0.9521750397800+00
                                 0.9514551132310+00
                                                      0.1436166322200+01
ROW
     12
            0.10000000000000+01
                                 0.1139833663600+01
                                                      0.1000000000000+04
            0.9241843300250+00
                                 0.1000000000000+01
                                                      0.1000000000000+01
ROW
     13
     14
ROL
           0.1401952917080+01
                                 0.9179043463980+00
                                                      0.10000000000000+01
           0.10000000000000+01
                                 0.1067330642700+01
                                                      0.114009469681D+01
ROU
                                                      0.1187449756200+01
204
     16
           0.1079074061450+01
                                 0.1000000000000+01
                                                      0.1251173191610+01
     17
           0.10000000000000+01
                                 0.1000000000000+01
ROW
ROW
     18
           0.4533895465000+00
                                 0.4609395871860+00
                                                      0.1000000000000+01
           0.1000000000000+01
                                                      0.1000000000000+01
ROW
     19
                                 0.1024413268720+01
                                                      0.1000000000000+01
ROW
     20
            0.1127307727060+01
                                 0.937494820421D+00
ROW
     21
           0.9192027014450+00
                                 0.1305678624690+01
                                                      0.1000000000000+01
     22 23 24
ROW
           0.1286709863350+01
                                 0.1042179660320+01
                                                      0.1448539674900+01
ROW
            0.1042685515690+01
                                 0.1340377019440+01
                                                      0.152576902601D+01
            0.1000000000000+01
                                 0.1000000000000+01
                                                      0.1000000000000+01
                                                          COLUMN 12
                COLUMN 10
                                     COLUMN 11
           0.10000000000000+01
ROU
     10
            0.9812861728310+00
                                 0.1000000000000b+01
ROW
     11
ROW
     12
            0.1141254133980+01
                                 0.1328476058690+01
                                                      0.1000000000000+01
ROW
     13
            0.9749060320210+00
                                 0.1028448316150+01
                                                      0.8463577703850+00
ROW
            0.9731900664700+00
                                 0.9920028141700+00
                                                      0.9910879039320+00
     14
     15
            0.1036138006130+01
                                 0.9535263602340+00
                                                      0.1000000000000+01
ROW
            0.9633293977100+00
                                 0.9694688445590+00
                                                      0.105286523387D+01
ROW
     16
17
ROW
            0.1094446268330+01
                                 0.9809255798950+00
                                                      0.1000000000000+01
     18
19
                                                      0.983824228415D+00
0.9809329879800+00
            0.1630118423780+01
                                 0.1000000000000+01
ROL
            0.863290386888D+00
ROL
                                 0.1092057201470+01
                                 0.10000000000000+01
                                                      0.6811949229190+00
     20
21
ROU
            0.9940917231640+00
ROW
            0.9529006897690+00
                                 0.1000000000000+01
                                                      0.102467335342D+01
ROW
     22
            0.1000000000000+01
                                 0.9915875133610+00
                                                      0.7442545112680+00
     23
ROW
            0.1365994370580+01
                                 0.988935261536D+00
                                                      0.1000000000000+01
            0.1000000000000+01
                                 0.1189715102040+01
                                                      0.1000000000000+01
                COLUMN 13
                                     COLUMN 14
                                                          COLUMN 15
ROU
            0.1000000000000+01
     13
            0.9902404487580+00
                                 0.100000000000p+01
ROL
            0.1006407784880+01
                                                      0.1000000000000+01
                                 0.957011592704D+00
RON
     15
                                                      0.9961857069600+00
ROW
            0.1002123344880+01
                                 0.1014816550570+01
ROW
     17
            0.102090383647D+01
                                 0.1010261666060+01
                                                      0.1110394178320-01
ROW
     18
            0.9678965808280+00
                                 0.9688061268700+00
                                                      0.9617687218020+00
ROW
     19
            0.1000000000000+01
                                 0.9709835647230+00
                                                      0.1000000000000+01
ROW
     20
21
            0.7550276303710+00
                                 0.1017622873740+01
                                                      0.1754071288400+01
                                                      0.1000000000000+01
ROW
            0.1011949486870+01
                                 0.7576607337660+00
ROW
     22
23
            0.1711252623550+01
                                 0.1000000000000+01
                                                      0.6355520086460+00
            0.1000000000000+01
                                 0.1764013926900+01
                                                      0.1008622550130+01
```

Table 8d. Force Constant Scaling Constants, Q(I), and C matrix for Ethylene Glycol [C₂H₆O₂] Based on Comparison of Force Constant Matrices at the 6-31G* HF and the 6-31G* MP2 Level of Calculation. (CONTINUED 2)

ROW	24	0.1000000000000+01	0.1000000000000+01	0.1037734794640+01
		COLUMN 16	COLUMN 17	COLUMN 18
ROW	16	0.1000000000000+01		
ROW	17	0.115097770941D+00	0.10000000000000+01	
ROW	18	0.9713780276080+00	0.1036734852450+01	0.1000000000000+01
ROW	19	0.7928567972200+00	0.1000000000000+01	0.1000000000000+01
ROW	20	0.119116948894D+01	0.1000000000000+01	0.9884097435710+00
ROW	21	0.1000000000000+01	0.1000000000000+01	0.100519388419D+01
ROW	22	0.1019578598580+01	0.7664433413490+00	0.992405904197D+00
ROW	23	0.779877952381D+00	0.7544403857930+00	0.9942428920390+00
ROW	24	0.1068669658120+01	0.1000000000000+01	0.1366180571000+01
				01.505.005005
		COLUMN 19	COLUMN 20	COLUMN 21
ROW	19	COLUMN 19 0.10000000000000+01	COLUMN 20	COLUMN 21
ROW ROW	19 20		COLUMN 20 0.100000000000000+01	COLUMN 21
		0.1000000000000+01		COLUMN 21
ROW	20	0.1000000000000+01 0.114162344444D+01	0.100000000000b+01	
ROW ROW ROW	20 21 22	0.1000000000000+01 0.1141623444440+01 0.8154389529160+00 0.1000000000000+01	0.10000000000000+01 0.1012911482880+01 0.7604080511470+00	0.1000000000000+01 0.143066359277D+01
ROW ROW ROW ROW	20 21 22 23	0.1000000000000+01 0.1141623444440+01 0.8154389529160+00 0.100000000000+01 0.1097237320110+01	0.10000000000000+01 0.1012911482880+01 0.7604080511470+00 0.1367018770390+01	0.1000000000000+01 0.1430663592770+01 0.8381148615580+00
ROW ROW ROW	20 21 22	0.1000000000000+01 0.1141623444440+01 0.8154389529160+00 0.1000000000000+01	0.10000000000000+01 0.1012911482880+01 0.7604080511470+00	0.1000000000000+01 0.143066359277D+01
ROW ROW ROW ROW	20 21 22 23	0.1000000000000+01 0.1141623444440+01 0.8154389529160+00 0.100000000000+01 0.1097237320110+01	0.10000000000000+01 0.1012911482880+01 0.7604080511470+00 0.1367018770390+01	0.1000000000000+01 0.1430663592770+01 0.8381148615580+00
ROW ROW ROW ROW	20 21 22 23	0.1000000000000+01 0.114162344440+01 0.8154389529160+00 0.1000000000000+01 0.1097237320110+01 0.1000000000000+01	0.1000000000000+01 0.1012911482880+01 0.7604080511470+00 0.1367018770390+01 0.1000000000000+01	0.1000000000000+01 0.1430663592770+01 0.8381148615580+00 0.10000000000000+01
ROW ROW ROW ROW ROW	20 21 22 23 24	0.1000000000000+01 0.114162344440+01 0.8154389529160+00 0.1000000000000+01 0.1097237320110+01 0.1000000000000+01	0.1000000000000+01 0.1012911482880+01 0.7604080511470+00 0.1367018770390+01 0.1000000000000+01	0.1000000000000+01 0.1430663592770+01 0.8381148615580+00 0.10000000000000+01

Table 9. Scaling Constants for the Force Constant Matrix Expressed in Terms of Specific Internal Coordinates. The Scaling Constants are Averages Determined from Calculations which are Summarized in Tables 1-8.

^a Scaling constants for torsions not present in reference set of molecules are taken to be 0.900.

Table 10a. Optimized Geometry for R-Glyceraldehyde [CHO-HCOH-CH₂OH] Based on 3-21G Level of Calculation. [The total energy = -339.746998 a.u.]

geometrical coordinate	value of geometrical coordinate
r(C ₁ -C ₂ ) r(C ₂ -C ₃ ) r(C ₁ -H ₄ ) r(C ₁ -O ₃ ) r(C ₂ -H ₄ ) r(C ₃ -H ₄ ) r(C ₃ -H ₁₀ ) r(C ₃ -O ₁₁ ) r(O ₁₁ -H ₁₂ )	1.5111 A 1.5211 A 1.0819 A 1.2092 A 1.0849 A 1.4343 A 0.9708 A 1.0820 A 1.0793 A 1.4339 A 0.9687 A
φ(C ₃ -C ₂ -C ₁ ) φ(H ₄ -C ₁ -C ₂ ) φ(O ₅ -C ₁ -C ₂ ) φ(H ₆ -C ₂ -C ₁ ) φ(O ₇ -C ₂ -C ₁ ) φ(H ₃ -O ₇ -C ₂ ) φ(H ₁₀ -C ₃ -C ₂ ) φ(H ₁₂ -O ₁₁ -C ₃ )	109.147 ° 116.003 ° 121.431 ° 109.584 ° 108.368 ° 108.703 ° 109.340 ° 111.253 ° 107.727 ° 107.349 °
τ(H ₄ -C ₁ -C ₂ -C ₃ ) τ(O ₅ -C ₁ -C ₂ -C ₃ ) τ(H ₆ -C ₂ -C ₁ -H ₄ ) τ(O ₇ -C ₂ -C ₁ -H ₄ ) τ(H ₈ -O ₇ -C ₂ -C ₁ ) τ(H ₉ -C ₃ -C ₂ -C ₁ ) τ(H ₁₀ -C ₃ -C ₂ -C ₁ ) τ(O ₁₁ -C ₃ -C ₂ -C ₁ ) τ(H ₁₂ -O ₁₁ -C ₃ -C ₂ )	54.734 ° -125.994 ° -67.483 ° -189.894 ° 19.263 ° -180.920 ° -60.159 ° 56.971 ° 55.001 °

Table 10b. Optimized Geometry for R-Glyceraldehyde [CHO-HCOH-CH₂OH] Based on 6-31G* Level of Calculation. [The total energy = -341.654076 a.u.]

geometrical coordinate	value of geometrical coordinate
r(C ₁ -C ₂ ) r(C ₂ -C ₃ ) r(C ₁ -H ₄ ) r(C ₁ -O ₃ ) r(C ₂ -H ₄ ) r(C ₃ -H ₁₀ ) r(C ₃ -H ₁₀ ) r(C ₃ -O ₁₁ ) r(O ₁₁ -H ₁₂ )	1.5144 A 1.5213 A 1.0916 A 1.1886 A 1.0920 A 1.3925 A 0.9517 A 1.0860 A 1.0833 A 1.3951 A 0.9492 A
φ(C ₃ -C ₂ -C ₁ ) φ(H ₄ -C ₁ -C ₂ ) φ(O ₅ -C ₁ -C ₂ ) φ(H ₆ -C ₂ -C ₁ ) φ(O ₇ -C ₂ -C ₁ ) φ(H ₈ -O ₇ -C ₂ ) φ(H ₉ -C ₃ -C ₂ ) φ(O ₁₁ -C ₃ -C ₂ ) φ(H ₁₂ -O ₁₁ -C ₃ )	111.051 ° 116.543 ° 121.948 ° 107.083 ° 110.194 ° 108.468 ° 108.792 ° 110.505 ° 110.685 ° 108.014 °
τ(H ₄ -C ₁ -C ₂ -C ₃ ) τ(O ₅ -C ₁ -C ₂ -C ₃ ) τ(H ₆ -C ₂ -C ₁ -H ₄ ) τ(O ₇ -C ₂ -C ₁ -H ₄ ) τ(H ₈ -O ₇ -C ₂ -C ₁ ) τ(H ₉ -C ₂ -C ₂ -C ₁ ) τ(H ₁₀ -C ₃ -C ₂ -C ₁ ) τ(O ₁₁ -C ₃ -C ₂ -C ₁ ) τ(H ₁₂ -O ₁₁ -C ₃ -C ₂ )	51.688 ° -129.929 ° -67.386 ° 171.924 ° 16.822 ° -178.153 ° -59.690 ° 58.870 ° 57.669 °

Table 11a. Optimized Geometry for R-Erythrose [CHO-HCOH-HCOH-CH₂OH] Based on 3-21G Level of Calculation. [The total energy = -453.009395 a.u ]

geometrical coordinate	value of geometrical coordinate
r(C ₁ -C ₂ ) r(C ₂ -C ₃ ) r(C ₃ -C ₄ ) r(C ₁ -H ₃ ) r(C ₁ -O ₂ ) r(C ₂ -H ₁ ) r(C ₂ -H ₁ ) r(C ₃ -O ₁ ) r(C ₃ -O ₁ ) r(C ₄ -H ₁₂ ) r(C ₄ -H ₁₃ ) r(C ₄ -H ₁₄ ) r(C ₄ -O ₁₅ ) r(O ₁₅ -H ₁₆ )	1.5087 A 1.5182 A 1.5167 A 1.0780 A 1.2121 A 1.4259 A 1.0841 A 0.9710 A 1.0827 A 1.4343 A 0.9685 A 1.0787 A 1.0836 A 1.4482 A 0.9646 A
φ(C ₃ -C ₂ -C ₁ ) φ(C ₄ -C ₃ -C ₅ ) φ(H ₅ -C ₁ -C ₅ ) φ(O ₆ -C ₁ -C ₅ ) φ(O ₇ -C ₂ -C ₅ ) φ(H ₆ -C ₃ -C ₅ ) φ(H ₁₀ -C ₃ -C ₅ ) φ(H ₁₂ -C ₁₁ -C ₅ ) φ(H ₁₂ -C ₁₁ -C ₅ ) φ(H ₁₃ -C ₄ -C ₃ ) φ(H ₁₄ -C ₄ -C ₃ ) φ(H ₁₆ -O ₁₅ -C ₄ )	109.591 ° 111.826 ° 115.433 ° 121.024 ° 108.936 ° 108.077 ° 108.603 ° 110.024 ° 105.387 ° 107.891 ° 110.240 ° 109.703 ° 103.456 ° 111.999 °
で(C ₄ -C ₃ -C ₂ -C ₃ ) で(H ₅ -C ₁ -C ₂ -C ₃ ) で(O ₅ -C ₁ -C ₂ -C ₃ ) で(O ₇ -C ₂ -C ₃ -C ₃ ) で(H ₁ -C ₃ -C ₃ -C ₃ ) で(H ₁ -C ₃ -C ₃ -C ₃ -C ₃ ) で(H ₁₂ -C ₁ -C ₃ -C ₃ -C ₃ ) で(H ₁₃ -C ₄ -C ₃	179.251 ° 55.291 ° -124.160 ° 58.695 ° -62.548 ° 4.278 ° 58.278 ° -61.878 ° -164.086 ° -69.035 ° 52.019 ° 170.192 ° -179.926 °

Table 11b. Optimized Geometry for R-Erythrose [CHO-HCOH-HCOH-CH₂OH] Based on 6-31G* Level of Calculation. [The total energy = -455.542427 a.u.]

geometrical coordinate	value of geometrical coordinate
r(C ₁ -C ₂ ) r(C ₂ -C ₃ ) r(C ₃ -C ₄ ) r(C ₁ -O ₂ ) r(C ₂ -O ₁ ) r(C ₂ -H ₁₀ ) r(C ₃ -H ₁₀ ) r(C ₄ -H ₁₂ ) r(C ₄ -H ₁₃ ) r(C ₄ -H ₁₄ ) r(C ₄ -O ₁₃ ) r(O ₁₅ -H ₁₆ )	1.5152 A 1.5281 A 1.5183 A 1.0872 A 1.1911 A 1.3889 A 1.0897 A 0.9520 A 1.0881 A 1.4006 A 0.9495 A 1.0828 A 1.0874 A 1.4084 A 0.9465 A
φ(C ₃ -C ₂ -C ₁ ) φ(C ₄ -C ₃ -C ₁ ) φ(H ₅ -C ₁ -C ₂ ) φ(O ₆ -C ₁ -C ₂ ) φ(O ₇ -C ₂ -C ₃ ) φ(H ₉ -C ₂ -C ₃ ) φ(H ₁₀ -C ₃ -C ₃ ) φ(H ₁₂ -C ₁₁ -C ₃ ) φ(H ₁₂ -C ₁₁ -C ₃ ) φ(H ₁₃ -C ₄ -C ₃ ) φ(H ₁₆ -C ₁₅ -C ₄ )	110.692 ° 111.970 ° 116.881 ° 121.178 ° 110.127 ° 107.858 ° 108.253 ° 108.989 ° 106.660 ° 108.065 ° 110.283 ° 109.561 ° 105.832 ° 110.200 °
で(C ₄ -C ₂ -C ₂ -C ₂ ) で(H ₃ -C ₂ -C ₃ -C ₃ ) で(O ₃ -C ₂ -C ₃	179.372 ° 55.848 ° -124.658 ° 56.791 ° -63.001 ° 3.821 ° 59.701 ° -59.658 ° 169.429 ° -64.274 ° 55.703 ° 175.005 ° -176.058 °

Table 12a. Optimized Geometry for R-Threose [CHO-HOCH-HCOH-CH₂OH] Based on 3-21G Level of Calculation. [ The total energy = -453.009160 a.u. ]

geometrical coordinate	value of geometrical coordinate
r(C ₁ -C ₂ ) r(C ₂ -C ₃ ) r(C ₃ -C ₄ ) r(C ₁ -O ₂ ) r(C ₂ -O ₁ ) r(C ₃ -H ₁₀ ) r(C ₃ -H ₁₂ ) r(C ₄ -H ₁₃ ) r(C ₄ -H ₁₄ ) r(C ₄ -O ₁₅ ) r(O ₁₅ -H ₁₆ )	1.5153 A 1.5212 A 1.5194 A 1.0842 A 1.2072 A 1.4291 A 1.0827 A 0.9715 A 1.0787 A 1.4428 A 0.9688 A 1.0822 A 1.0816 A 1.4472 A 0.9648 A
φ(C ₃ -C ₂ -C ₁ ) φ(C ₄ -C ₃ -C ₃ ) φ(H ₅ -C ₁ -C ₃ ) φ(O ₆ -C ₁ -C ₃ ) φ(O ₇ -C ₂ -C ₃ ) φ(H ₈ -C ₂ -C ₃ ) φ(H ₁₀ -C ₃ -C ₃ ) φ(H ₁₂ -C ₁₁ -C ₃ ) φ(H ₁₂ -C ₁₁ -C ₃ ) φ(H ₁₄ -C ₄ -C ₃ ) φ(H ₁₆ -C ₁₅ -C ₄ )	110.286 ° 112.138 ° 113.444 ° 123.315 ° 109.645 ° 110.858 ° 106.070 ° 110.561 ° 103.681 ° 107.809 ° 110.950 ° 108.823 ° 104.015 ° 112.062 °
で(C ₄ -C ₂ -C ₂ -C ₁ ) で(H ₅ -C ₁ -C ₂ -C ₃ ) で(O ₅ -C ₁ -C ₂ -C ₃ ) で(O ₅ -C ₂ -C ₃ -C ₃ ) で(H ₈ -C ₂ -C ₃ -C ₃ ) で(H ₁ -C ₃ -C ₃ -C ₃ ) で(H ₁₂ -C ₃ -C ₃ -C ₃ ) で(H ₁₂ -C ₃ -C ₃ -C ₃ ) で(H ₁₃ -C ₄ -C ₃ -C ₃ ) で(H ₁₄ -C ₄ -C ₃ -C ₃ ) で(H ₁₆ -C ₁₅ -C ₄ -C ₃ )	171.258 ° 137.397 ° -43.507 ° -68.110 ° 50.905 ° 82.207 ° 46.587 ° -72.793 ° -163.569 ° -74.709 ° 46.237 ° 164.926 ° -174.914 °

Table 12b. Optimized Geometry for R-Threose [CHO-HOCH-HCOH-CH₂OH] Based on 6-31G* Level of Calculation. [The total energy = -455.540754 a.u.]

geometrical coordinate	value of geometrical coordinate
r(C ₁ -C ₂ ) r(C ₂ -C ₃ ) r(C ₃ -C ₄ ) r(C ₁ -H ₂ ) r(C ₂ -H ₁ ) r(C ₂ -H ₁ ) r(C ₃ -H ₁ ) r(C ₃ -H ₁ ) r(C ₄ -H ₁ ) r(C ₄ -H ₁ ) r(C ₄ -H ₁ ) r(C ₄ -O ₁ ) r(C ₄ -O ₁ )	1.5240 A 1.5256 A 1.5186 A 1.0934 A 1.1867 A 1.3950 A 1.0848 A 0.9507 A 1.0843 A 1.4056 A 0.9496 A 1.0869 A 1.0868 A 0.9466 A
φ(C ₃ -C ₂ -C ₁ ) φ(C ₄ -C ₅ -C ₂ ) φ(H ₅ -C ₁ -C ₂ ) φ(O ₆ -C ₁ -C ₂ ) φ(O ₇ -C ₂ -C ₃ ) φ(H ₈ -C ₂ -C ₃ ) φ(H ₉ -O ₃ -C ₃ ) φ(H ₁₀ -C ₃ -C ₃ ) φ(H ₁₂ -C ₁₁ -C ₃ ) φ(H ₁₂ -C ₄ -C ₃ ) φ(H ₁₄ -C ₄ -C ₃ ) φ(H ₁₆ -O ₁₅ -C ₄ )	110.622 ° 112.635 ° 115.096 ° 122.864 ° 111.589 ° 109.701 ° 107.914 ° 109.024 ° 105.462 ° 108.375 ° 110.017 ° 109.914 ° 106.111 ° 110.310 °
で(,-C,-C,-C,-C,-C,-C,-C,-C,-C,-C,-C,-C,-C,	168.860 ° 125.021 ° -56.401 ° -67.312 ° 51.421 ° 81.735 ° 47.550 ° -71.050 ° -170.704 ° -66.346 ° 53.386 ° 173.470 ° -171.864 °

Table 13. Calculated Wavenumbers  $\tilde{v}$  and Rotational Strengths R for R-Glyceraldehyde [HCOH-CH₂OH] Based on 3-21G Level Optimized Geometry.

Table 14. Calculated Wavenumbers  $\tilde{\mathbf{v}}$  and Rotational Strengths R for R-Erythrose [CHO-HCOH-HCOH-CH₂OH] Based on 3-21G Level Optimized Geometry.

Table 15. Calculated Wavenumbers v and Rotational Strengths R for R-Threose [CHO-HOCH-HCOH-CH₂OH] Based on 3-21G Level Optimized Geometry.

<b>ṽ</b> (cm ⁻¹ )	R (x 10 ⁻⁴⁴ esu ² cm ² )
unscaled	unscaled
94.73 105.80 145.40 193.94 260.75 303.45 327.59 346.94 483.34 539.87 583.82 658.42 664.90 713.37 900.82 994.48 1060.02 1089.67 1141.16 1157.60 1193.30 1206.28	unscaled  -16.770 -22.110 -4.687 17.910 6.842 11.340 22.490 -0.305 -53.020 35.440 -55.420 13.690 -23.410 68.260 175.700 7.373 -112.500 -6.216 88.070 -230.000 20.480 -61.470
1303.19 1325.13 1376.51 1430.34 1445.48 1498.83 1505.19 1535.06 1544.69 1581.47 1696.21 1919.01 3205.47 3222.05 3244.95 3266.75 3297.14 3822.53 3869.25 3899.12	17.940 94.810 -2.095 24.550 18.480 -15.700 4.708 -125.600 38.710 16.060 1.489 -23.310 -5.746 7.986 -6.428 -0.348 8.591 15.600 4.436 1.769

Table 16. Calculated Wavenumbers  $\tilde{v}$  and Rotational Strengths R for R-Glyceraldehyde [CHO-HCOH-CH₂OH] Based on 6-31G* Level Optimized Geometry.

116.26 155.08 269.34 317.95 370.74 445.18 509.94 694.97 771.76 902.65 996.59 1042.73	scaled 110.97 149.05 256.72 303.40 360.81 446.18 516.16 662.24 734.50 864.86 958.36 993.22	5.791 -11.490 -10.680 -9.847 -78.600 -92.260 98.530 157.500 -29.300 -5.899 -6.015 -68.520	6.280 -10.200 -10.390 -8.799 -65.440 -108.300 91.510 180.000 -41.520 -23.030 -5.792 -56.910
155.08 269.34 317.95 370.74 445.18 509.94 694.97 771.76 902.65 996.59 1042.73	149.05 256.72 303.40 360.81 446.18 516.16 662.24 734.50 864.86 958.36 993.22	-11.490 -10.680 -9.847 -78.600 -92.260 98.530 157.500 -29.300 -5.899 -6.015	-10.200 -10.390 -8.799 -65.440 -108.300 91.510 180.000 -41.520 -23.030 -5.792
		_68 520	-56 Q1N
1175.64 1211.23 1269.46 1337.65 1381.42 1486.06 1507.35 1534.78 1569.95 1583.80 1659.70 2021.00 3161.39 3206.96 3225.60 3279.23 4046.82	1130.04 1140.17 1201.74 1275.05 1325.21 1426.70 1450.84 1463.13 1501.47 1522.48 1590.14 1794.54 3045.54 3045.54 3059.64 3112.07 3163.95 3719.99	167.000 -39.580 -26.080 -53.330 -15.780 12.110 49.190 15.820 -53.970 -25.910 -0.744 0.384 -29.710 -12.280 0.578 -4.011 12.850	183.100 -37.770 -43.100 -44.470 -21.450 15.670 34.030 23.310 -9.378 -68.250 -0.860 -0.123 -27.400 -2.449 -12.280 -3.777 13.500

Table 17. Calculated Wavenumbers  $\tilde{v}$  and Rotational Strengths R for R-Erythrose [CHO-HCOH-HCOH-CH₂OH] Based on 6-31G* Level Optimized Geometry.

Table 18. Calculated Wavenumbers  $\vec{v}$  and Rotational Strengths R for R-Threose [CHO-HOCH-HCOH-CH₂OH] Based on 6-31G* Level Optimized Geometry.

<b>v</b> (cm ⁻¹ )		R (x 10 ⁻⁴⁴ esu ² cm ² )	
unscaled	scaled	unscaled	scaled
83.69	80.21	-25.710	-23.980
93.83	89.25	-14.360l	-14.450
130.27	124.68	-9.191	-14.940
189.76	181.81	8.502	7.249
259.82	248.73	14.510	13.760
290.56	286.85	6.450	28.830
306.30	291.86	23.920	2.276
345.56	330.32	-4.623	-11.420
464.34	471.76	-94.340	-103.500
491.67	485.46	92.360	97.310
523.54	525.84	-3.019	43.530
559.58	549.78	-76.640	-103.700
628.49	600.28	37.160	36.940
741.40	706.28	69.570	58.240
920.52	881.49	145.000	154.500
1016.38	971.22	32.760	44.970
1073.02	1028.75	-114.000	-113.900
1129.09	1072.07	-6.807 -129.200	-41.280
1188.19 1211.74	1135.01	19.280	-78.760 23.040
1231.09	1145.83 1173.59	-37.240	-23.940 -35.870
1268.26	1201.26	-37.240 -155.400	-33.870
1311.98	1263.21	52.830	47.700
1346.33	1205.21	110.500	72.780
1388.35	1325.18	10.320	9.094
1430.30	1371.14	66.980	84.700
1439.19	1373.31	50.850	51.190
1516.86	1448.77	-43.060	-0.990
1536.98	1467.97	-44.130	-75.130
1555.66	1491.01	-81.050	-120.000
1568.31	1507.38	57.070	65.510
1624.07	1557.17	1.234	37.720
1673.20	1603.84	1.234	1.420
2030.24	1800.85	-35.710	-38.730
3186.84	3007.74	-3.132	-2.435
3206.55	3035.07	16.180	3.245
3246.47	3070.40	11.790	11.420
3249.91	3103.10	-38.760	-5.625
3267.69	3136.48	34.870	14.500
4067.21	3738.73	7.142	6.969
4091.08	3760.64	1.777	1.837
4123.45	3790.40	2.796	2.809