14a111C	Index No//
233/2	Candidate's Signature
CHEMISTRY	
Paper 2	Date
(THEORY)	
Oct./Nov. 2015	
2 hours	

Namo

THE KENYA NATIONAL EXAMINATIONS COUNCIL **Kenya Certificate of Secondary Education**

CHEMISTRY

Paper 2 (THEORY)

2 hours

Instructions to candidates

- Write your name and index number in the spaces provided above. (a)
- Sign and write the date of examination in the spaces provided above. (b)
- Answer all the questions in the spaces provided. (c)
- KNEC Mathematical tables and silent electronic calculators may be used. (d)
- All working must be clearly shown where necessary. (e)
- This paper consists of 13 printed pages. *(f)*
- Candidates should check the question paper to ascertain that all the pages are printed (g) as indicated and that no questions are missing.
- Candidates should answer the questions in English. (h)

For Examiner's Use Only

Questions	Maximum Score	Candidate's Score
1	11	
2	12	
3	13	
4	11	
5	10	
6	12	
7	11	
Total Score	80	

e e j ^e	(a)	(i) ·	Carbon (IV) oxide is present in soft drinks. State two roles of carbon (IV) oxide in soft drinks.	(1 mark)
* 6.				
		(ii)	Explain the observation made when a bottle containing a soft drink is	
				•••••••
				••••••
		(iii)	Carbon (IV) oxide dissolves slightly in water to give an acidic solution Give the formula of the acid.	1. (1 mark)
		••••••		***************
	(b)	Zinc nitrat	oxide can be obtained by heating zinc nitrate. A student heated 5.76 g of the can be obtained by heating zinc nitrate.	f zinc
		(i)	Write an equation for the reaction that occurred.	(1 mark)
		(ii)	Calculate the total volume of gases produced. (Molar gas volume is 24 dm ³ ; $Zn = 65.4$; $O = 16.0$; $N = 14.0$).	(4 marks)
		· .		
		•••••		
		•••••		

	(iii) Identify the element that is reduced when zinc nitrate is heated. (reason.					
		icason.	(2 mar			
	******	•••••••••••••••••••••••••••••••••••••••	••••••			
(a)	Draw	the structure of the following compounds.	••••••			
(=)			(2 mar			
	(i)	Butanoic acid;				
	*******		•••••			

	••••••		••••••			
	(ii)	Pent-2-ene.				
			••••••			
-	••••••		•			
	••••••					
(b)	Explai	n why propan-1-ol is soluble in water while prop-1-ene is a	not.			
	(Relati	ive molecular mass of propan-1-ol is 60 while that of prop-	1-ene is 42).			
			(2 mark			
	••••••	······································	•••••••••••••••••••••••••••••••••••••••			
********	••••••		•••••			
••••••	•••••••		•••••			
	••••••		***************************************			
(c)	What v	would be observed if a few drops of acidified potassium ma	(AHI)			
***	added t	to oil obtained from nut seeds? Explain.	nganate (VII) were (2 mark			
			(=			
			••••••••			
			••••••			
**********	*********	•••••••••••••••••••••••••••••••••••••••				

915033

(d)	State one method that can be used to convert liquid oil from nut seeds into solid.				
` '			(1 mark)		
(e)	Describe how soap is manufact	tured from liquid oil from nut			
•••••					
:	•••••		••••••		
(f)	0.44 g of an ester A reacts with alcohol B and substance C. G of the alkali, calculate the relationship.	iven that one mole of the este tive molecular mass of the est	r reacts with one mole ter. (2 marks)		
		8			
•••••			•••••		
(a)	Name the method that can be		chloride from a mixture		
	of iron (III) chloride and sodiu	ım chloride.	(1 mark)		
T.,	4	· 0 0 0 0	14 and a mad		
(b)	A student was provided with a dye. The characteristics of the table below.	a mixture of sunflower flour, or three substances in the mixt	common salt and a red ure are given in the		
		C-1hilitar in suntar	Solubility in ethanol		
	Substance	Solubility in water	Soludily in culanor		

Substance	Solubility in water	Solubility in ethanol
Sunflower flour	Insoluble	Insoluble
Common salt	Soluble	Insoluble
Solid red dye	Soluble	Soluble

Describe now	the student can s	cparace	die illiziui	into its thre	e components.	(3 ma
•••••	•••••	••••••	•••••	•••••	•••••	••••
•••••	•••••	•••••	••••••	•••••	*************************	
••••••	•••••	••••••	•••••	•••••	••••	
***************************************	•••••					
					••••••••••••••••••••••••	
	•		••••••••	•••••		•••••
***************************************	•••••••	• • • • • • • • • • • • • • • • • • • •	•••••••••	****************	••••••	••••••
The diagram b	elow shows part	of a peri	iodic table.	The letters	do not represen	nt
the actual sym	bols of elements.	Use the	e diagram t	o answer the	e questions that	follow
R				T		Q
R		N		T	W	Q
R Y		N	3,9	T V	W	Q
Y			0	V	X	Q
Y	n why the oxidising		er of W is n	V	X	
Y	n why the oxidising		r of W is n	v nore than tha	X	(2 ma
Y	n why the oxidisin		•••••••	v nore than tha	X at of X.	(2 ma
Y	n why the oxidisin			v nore than tha	X at of X.	(2 ma
Y Explain		ng powe		v nore than tha	X at of X.	(2 ma
Y Explain	why the oxidising the melting point	ng powe		v nore than tha	x at of X.	(2 ma
Y Explain		ng powe		v nore than tha	x at of X.	(2 ma

915033

	(iii)	Select an element that could be used:	
		(I) in weather balloons;	(1 mark)
		(II) for making a cooking pot.	(1 mark)
(d)	(i)		diamond and candle wax into elements (2 marks)
		Elements	Compounds
	(ii)	Give one use of diamond.	(1 mark)

	(i)	Whic	ch of the letters re	epresent:		
		(I)	carbon electro	de?		(1 mark)
		(II) 	the electrolyte	?		(1 mark)
	(ii)	One o	or manganese (1)	used in a dry c V) oxide in the	ell is manganese (IV) oxide dry cell.	. State two (2 marks)
e .	•••••	•••••		••••••		
(b)	Belov	w is a singer the qu	mplified electroly nestions that follo	vtic cell used for	Impure copper Copper (II)	udy it and
			A	L	——Copper (II) sulphate solution	
				L		
	(i)	Identif	y the cathode.			(1 mark)
	(ii)	Write t	he equation for t	he reaction at t	1	(1 mark)

(iii)	What name is given to L?	
(iv)	A current of 0.6 A was passed through the electrolyte for 2 amount of copper deposited.	hours. Determi
	(Cu = 63.5 ; 1 Faraday = $96,500$ coulombs).	(3
•••••		

(v)	State two uses of copper metal.	(
•••••		

The set-up below can be used to generate a gas without heating. This occurs when substance M reacts with solid N.

Kenya Certificate of Secondary Education, 2015 233/2 02325210

(a)	(i)	Complete the table below giving the names of substance M and solid N gasses generated are chlorine and sulphur (IV) oxide.					
			Chlorine	Sulphur (IV) oxide			
		Substance M					
		Solid N					
	(ii)	Complete the diag	ram above to show how a	dry sample of sulphur (IV)) oxide (3 marks)		
(b)	Descroxide	.		test the presence of sulphu	(3 marks)		
			•				
(c)	Other (IV)		re of sulphuric (VI) acid,		(2 marks)		
•••••	•••••						

915033

Turn over

(a)	Other than concentrat	ion, state	two fac	tors that	determi	ne the ra	te of a r		
								(2	2 marl
		•••••		• • • • • • • • • • • • • • • • • • • •			•••••	•••••	•••••••
		•••••		••••••			••••••		•••••
			••••••	•••••			•••••	•••••	•••••
(b)	In an experiment to de	etermine	the rate	of reacti	ion, exce	ss lambs	of calc	ium carb	onate
(0)	were added to 2 M hy	drochlor	ic acid.	The mas	ss of calc	cium car	bonate le	eft was	
	recorded after every 3	30 secono	is. The	results a	re showr	in the ta	able belo	ow.	
	Time	0	30	60	90	120	150	180	210
	(seconds)		30	_ w	1	120	130	100	-
	Mass of calcium carbonate left (g)	2.00	1.60	1.30	1.00	0.85	0.8	0.8	0.8
	(i) Write the equa	ation for	the reac	tion that	took pla	ice.			(1 ma
		•••••	•••••						
	(ii) On the grid p	rovided	nlot a gr	aph of m	ass of c	alcium c	arbonate	e vertical	l axis
	(II) Oil tile gift pi	o rided,	brot a St	apir or ir					(3 mar

Kenya Certificate of Secondary Education, 2015 233/2 02325210

915033

Turn over

	(iii) Determine the rate of reaction at the 105th second.	(3 marks)
(c)	Why does the curve level off after some time?	(1 mark)
(d)	On the same grid, sketch a curve for the same reaction using 4 M hydrand label the curve R.	rochloric acid (2 marks)
(a)	Naturally occurring magnesium consists of three isotopes. 78.6% ²⁴ M and ²⁶ Mg. Calculate to one decimal place, the relative atomic mass of	Ig; 10% ²⁵ Mg f magnesium. (2 marks)
••••••		
(b)		n solid. When a
(b)	When magnesium burns in air, it forms a white solid and a grey-green few drops of water are added to the mixture, a gas that turns red litmu	n solid. When a
(b)	When magnesium burns in air, it forms a white solid and a grey-green few drops of water are added to the mixture, a gas that turns red litmuevolved.	n solid. When a us paper blue is
(b)	When magnesium burns in air, it forms a white solid and a grey-green few drops of water are added to the mixture, a gas that turns red litmu evolved. Identify the:	n solid. When a
(b)	When magnesium burns in air, it forms a white solid and a grey-green few drops of water are added to the mixture, a gas that turns red litmut evolved. Identify the: (i) white solid.	n solid. When a us paper blue is

(c) Two different samples of water (I and II) were tested with soap solution. Sample II was further subjected to two other processes before adding soap. 20 cm³ of each sample of water was shaken with soap solution in a boiling tube until a permanent lather was obtained. The results are shown in the table below.

Water sample	Volume of soap solution needed (cm ³)		
	before boiling	after boiling	
I	10	5	
II	6	6	
II after filtering	6	6	
II after distilling	2	. 2	

(i)	Identify the water sample that had temporary hardness. Explain your answer. (2 marks)
•••••	9
(ii)	Explain why the results for sample II are different after distilling but remain unchanged after filtering. (2 marks)
••••••	
(iii)	State two disadvantages of using both water samples for domestic purposes. (2 marks)
•••••	

THIS IS THE LAST PRINTED PAGE.