Universidad de El Salvador Facultad de Ciencias Naturales y Matemática Escuela de Física

Asignatura: Investigación en Física Docente: PhD. Carlos Rudamas

"Simulaciones de chubascos atmosféricos producidos por UHECR con composición mixta"

Presentado por Cindy Mariella Castellón Salguero

Índice general

Re	Resumen			
In	trod_{1}	ucción	7	
1.	Mai	rco teórico	9	
	1.1.	Rayos Cósmicos	. 9	
		1.1.1. Descubrimiento y naturaleza de los RC		
		1.1.2. Producción de RC	. 10	
		1.1.3. Fuentes de RC	. 11	
		1.1.4. Propagación de RC	. 12	
	1.2.	Interacciones de los RC		
		1.2.1. Interacciones electromagnéticas	13	
		1.2.2. Interacciones hadrónicas	. 13	
	1.3.	Chubascos atmosféricos	. 14	
		1.3.1. Atmósfera terrestre	. 14	
		1.3.2. Desarrollo de un chubasco atmosférico	15	
		1.3.3. Métodos de observación	. 18	
	1.4.	Estado del conocimiento	. 19	
2.	Met	todología	22	
	2.1.			
		2.1.1. Características de los chubascos		
	2.2.	Software para simulaciones de altas energías	23	
		2.2.1. Sistema de coordenadas		
		2.2.2. Atmósfera		
		2.2.3. Campo geomagnético	. 25	
		2.2.4. Estructura de los programas de simulación	25	
		2.2.5. Muestreo de partículas		
	2.3.	Análisis de resultados de simulaciones	. 26	
3.	Res	sultados	28	
	3.1.	Profundidad del máximo X_{max}		
		3.1.1. Comparación de predicciones de los modelos hadrónicos		
		3.1.2. Comparación con datos observacionales		
	3.2.	Desviación estándar del máximo σX_{max}		
		3.2.1. Comparación de predicciones de los modelos hadrónicos		
		3.2.2. Comparación con datos observacionales		

4.	Conclusiones	\mathbf{v}	recomendaciones
т.	Conclusiones	. y	1 CCOIIICII GACIOIICS

Índice de figuras

1.1.	Intensidad del flujo de rayos cósmicos en función de su energía. Éste está bien	
	representado por una ley de potencias $E^{-2,7}$. (Tomada de [Poderosas])	10
1.2.	La gráfica de Hillas representa las potenciales fuentes de rayos cósmicos según	
	la intensidad de su campo magnético y su tamaño. (Tomada de [DeAngelis2015])	12
1.3.	De abajo hacia arriba; fragmentación de una cuerda creando un nuevo par de	
	quarks en el campo de color. (Tomado de [DeAngelis2015])	14
1.4.	Esquema de la formación y desarrollo de un chubasco atmosférico. Se observa	
	la componente hadrónica y la electromagnética. (Tomada de [Poderosas]) .	15
1.5.	Esquema de un chubasco puramente electromagnético; las líneas rectas repre-	
	sentan electrones y las curvas representan fotones	16
1.6.	Esquema de un chubasco producido por un protón; las líneas sólidas represen-	
	tan piones cargados mientras las líneas cortadas representan piones neutros.	17
1.7.	Sección eficaz inelástica para interacciones p-p (izquierda) e interacciones p-	
	aire y π -aire (derecha) calculadas con tres modelos hadrónicos [Pierog2018].	19
1.8.	X_{max} promedio (izquierda) y desviación estándar (derecha) asumiendo una	
	composición mixta (línea sólida) [PAOcomposition]	20
1.9.	Las líneas sólidas verde y roja corresponden a la estimación del número de	
	muones utilizando el sistema AIRES con diferentes modelos hadrónicos. Se	
	observa que al desplazarlas una constante éstas tienen buena concordarcia con	
	los datos experimentales (círculos negros) [Sciutto2019]	21
0.1		
2.1.	Composición en función de la energía, resultado de ajustes con los datos de	
	$X_{\rm max}$ del Observatorio Pierre Auger realizados con tres modelos de interaccio-	22
0.0	nes hadrónicas de altas energías	23
2.2.	Esquema del sistema de coordenadas utilizado en AIRES	24
3.1.	Composición en función de la energía, resultado de un ajuste con los datos del	
	Observatorio Pierre Auger	29
3.2.	X_{max} promedio resultante de las simulaciones con los modelos hadrónicos Sibyll	
	2.3c, EPOS-LHC v QGSJETII-04	30
3.3.	X_{max} promedio resultante de las simulaciones con los modelos hadrónicos Sibyll	
	2.3c, EPOS-LHC y QGSJETII-04 junto con los datos tomados por el Obser-	
	vatorio Pierre Auger. Las barras representan el error sisteático de las medidas.	31
3.4.	Fluctuaciones en el valor de profundidad del máximo σX_{max} resultante de las	
	simulaciones con los modelos hadrónicos Sibyll 2.3c, EPOS-LHC y QGSJETII-	
	04	32

Índice de cuadros

3.1.	Diferencias porcentuales entre los resultados de X_{max} de los distintos modelos	
	de interacción hadrónica	29
3.2.	Error porcentual de los resultados de X_{max} de las simulaciones relativo a los	
	datos observacionales	30
3.3.	Diferencias porcentuales entre los resultados de σX_{max} de los distintos modelos	
	de interacción hadrónica	31
3.4.	Error porcentual de los resultados de σX_{max} de las simulaciones relativo a los	
	datos observacionales	32

Resumen

Uno de los principales problemas estudiados en la física de rayos cósmicos es el de la composición primaria de los rayos cósmicos que entran a la atmósfera terrestre con ultraaltas energías (> 10¹⁷ eV). La colaboración Pierre Auger propone la hipótesis de una composición mixta que contiene fracciones de elementos con masas que se encuentran entre la del hidrógeno y la del hierro. Se ha verificado el impacto de la composición mixta propuesta sobre observables de los chubascos atmosféricos, como lo son la profundidad del máximo y su desviación estándar, realizando simulaciones de dichos eventos con el programa AIRES utilizando tres modelos distintos para describir las interacciones hadrónicas que producen el desarrollo de los chubascos. Se han comparado los resultados de las simulaciones con los datos obtenidos por el Observatorio Pierre Auger, concluyendo que se apoya la hipótesis de la composición mixta, pero que, basándose en los resultados de la profundidad del máximo, es pertinente proponer que dicha composición sea más ligera, particularmente en las energías más altas del espectro de ultraaltas energías.

Introducción

Los rayos cósmicos -descubiertos por el austríaco Victor Hess en 1914- son partículas cargadas provenientes del exterior de la Tierra que llegan a la misma con energías de hasta 10^{20} eV. Éstos son en su mayoría protones (90 %) y núcleos de helio (9 %), el resto son electrones, positrones y núcleos más pesados. Cuando los rayos cósmicos entran a la atmósfera terrestre interactúan con los átomos y moléculas de la misma, generando cascadas de partículas secundarias que se conocen como chubascos atmosféricos, éstos son producto de interacciones electromagnéticas y hadrónicas.

Desde el descubrimiento de los rayos cósmicos, se han estudiado ampliamente aspectos como su espectro, su composición, su propagación y su origen. Se conoce que el espectro de rayos cósmicos se extiende desde 10⁹ hasta 10²⁰ siguiendo una ley de potencias, y que a estas ultraaltas energías se observa una supresión del mismo. También se ha concluido que los rayos cósmicos están compuestos mayormente por protones, y que sus fuentes son principalmente de origen galáctico. Sin embargo las interrogantes fundamentales de la física de rayos cósmicos, relacionadas con su origen y el mecanismo de aceleración con el que alcanzan las energías observadas, siguen vigentes.

En particular el rango de las ultraaltas energías presenta grandes desafíos para la investigación en esta área. Esto debido principalmente a limitaciones experimentales relacionadas con el bajo flujo de partículas a estas energías, así como limitaciones teóricas en la descripción de las interacciones hadrónicas, ya que los modelos utilizados son fenomenológicos y dependen de los avances en aceleradores de partículas. Actualmente uno de los problemas esenciales es la determinación de la composición de los rayos cósmicos de ultraaltas energías. El problema de la composición consiste en dar una correcta interpretación a los datos observacionales basada en simulaciones de chubascos.

Se han medido con bastante precisión diversas propiedades de los chubascos producidos por rayos cósmicos de ultraalta energía que son especialmente sensibles a la composición primaria, no obstante no se ha logrado una interpretación coherente de dichas mediciones en términos de una única composición. Existen importantes discrepancias entre las simula-

ciones con distintos modelos de interacción hadrónica, de manera que dirigen a conclusiones no compatibles entre sí, y además no compatibles con las observaciones realizadas de las magnitudes dependientes de la composición.

El objetivo de este trabajo de investigación es verificar el efecto de una composición mixta de los rayos cósmicos de ultraalta energía en las observables X_{max} y σX_{max} -que son sensibles a la masa de la partícula inicial-, así como estudiar su efecto en la distribución lateral de electrones y muones. Esto pretende lograrse realizando simulaciones de chubascos atmosféricos tomando en cuenta una composición que no sea completamente ligera ni únicamente pesada y comparando los resultados con datos medidos y publicados por la colaboración Pierre Auger. Además se pretende comparar los resultados obtenidos de simulaciones realizadas con diferentes modelos de interacciones hadrónicas, en este caso: Sibyll 2.3c, EPOS-LHC y QGSJETII-04.

Se realizaron simulaciones de 2400 eventos de chubascos atmosféricos iniciados por protones, núcleos de helio, núcleos de nitrógeno y núcleos de hierro con energías iniciales entre 180,30 PeV a 42,267 EeV. El software utilizado para simular los chubascos fue AIRES, que cuenta con los modelos hadrónicos como paquetes externos, además de una librería de módulos escritos en Fortran y C++ para realizar los cálculos de las características de los eventos simulados. Adicionalmente, los datos observacionales fueron tomados del repositorio que se encuentra en sitio web del Observatorio Pierre Auger.

En el capítulo 1 se resume el fundamento teórico necesario para la comprensión física de los chubascos atmosféricos producidos por rayos cósmicos y sus propiedades principales, así como el estado del conocimiento del tema. El capítulo 2 describe el programa AIRES utilizado para las simulaciones, así como las condiciones que se asumen para las mismas. En el capítulo 3 se presentan los resultados obtenidos de las simulaciones y se realiza una comparación entre los modelos hadrónicos, así como con los datos experimentales correspondientes.

Capítulo 1

Marco teórico

1.1. Rayos Cósmicos

Los rayos cósmicos (RC) son partículas cargadas aceleradas a altas energías que se propagan por el espacio y llegan a la atmósfera terrestre. Un 90 % de estas partículas son protones, un 9 % núcleos de helio y el resto son electrones, núcleos más pesados y antipartículas. La mayoría de RC son relativistas; su espectro de energías está entre $\sim 10^9$ y $\sim 10^{20}$ eV, y sigue una ley de potencias. Actualmente se tiene conocimiento de fuentes de RC de origen galáctico y extragaláctico [Gaisser1990]. A continuación se describen algunos aspectos del desarrollo histórico de la investigación sobre los RC.

1.1.1. Descubrimiento y naturaleza de los RC

En el año 1900 se realizaban experimentos para estudiar la ionización causada por elementos radiactivos, en estos se observó que el aire contenía algún tipo de radiación que también era capaz de ionizar. A partir de esto se inició la búsqueda del origen de dicha radiación. Se repitieron los experimentos a alturas de 300 a 1300 m, esperando que si la fuente de la radiación fuese la corteza terrestre, ésta disminuiría con la altura. En 1911-1912, el austriaco Victor Hess realizó experimentos en globo a alturas de hasta 5200 m, con los que concluyó que la radiación debía originarse fuera de la Tierra y que, comparando mediciones de día y de noche, no provenía del sol. Victor Hess es considerado el descubridor de los rayos cósmicos [Extremas].

Posteriormente se inició la búsqueda de la naturaleza de estas partículas, siendo el candidato más popular los rayos gamma. En 1927 Jacob Clay observó una disminución de la radiación en bajas latitudes. Esto fue explicado en 1932 por Arthur Compton como la acción del campo magnético de la Tierra sobre los RC, llevando a la conclusión de que la mayor parte de las partículas en cuestión debían tener carga eléctrica, y estudiando los efectos

geomagnéticos este-oeste se dedujo que casi todas las cargas eran positivas. Finalizando la década de 1940, experimentos de detección directa realizados por Schein establecieron que aproximadamente el 99 % de los RC son protones, núcleos de Helio y núcleos más pesados y que sólo el 1 % son electrones, positrones y rayos gamma [**Dorman2004**].

1.1.2. Producción de RC

En la figura 1.1 se muestra el espectro observado de RC, el cual está bien representado por una ley de potencias:

$$\frac{\mathrm{d}N}{\mathrm{d}E} = E^{-(\gamma+1)}.\tag{1.1}$$

El índice γ tiene un valor aproximadamente constante de 2,7 con dos ligeros cambios: uno a $\sim 10^{16}$ eV, conocido como la rodilla, y el otro a $\sim 10^{19}$ eV conocido como el tobillo [Extremas]. El espectro se extiende desde $\sim 10^9$ hasta $\sim 10^{20}$ eV.

Figura 1.1: Intensidad del flujo de rayos cósmicos en función de su energía. Éste está bien representado por una ley de potencias $E^{-2,7}$. (Tomada de [**Poderosas**])

Por tanto, debe haber un mecanismo capaz de acelerar partículas a tales energías y que reproduzca la forma del espectro observado. En 1949, Fermi propuso un mecanismo en el que las partículas podían ganar energía en colisiones estocásticas en regiones del espacio donde existiesen campos magnéticos turbulentos, como las ondas de choque resultado de un colapso gravitacional, por ejemplo. Se considera que una partícula de prueba tiene un incremento de

energía proporcional a la misma $\Delta E = \xi E$ en cada colisión, luego de n colisiones la energía de la partícula será [Gaisser1990]

$$E_n = E_0 (1 + \xi)^n, \tag{1.2}$$

donde E_0 es la energía con la que entra al proceso de aceleración. Tomando en cuenta la probabilidad P_{esc} de que la partícula escape de la región de aceleración, la proporción de partículas que se aceleran a energías mayores a un valor E es

$$N(\geq E) \propto \frac{1}{P_{esc}} \left(\frac{E}{E_0}\right)^{-\gamma},$$
 (1.3)

con $\gamma = -\ln(1 - P_{esc})/\ln(1 + \xi) \approx P_{esc}/\xi$, de manera que este mecanismo efectivamente reproduce la ley de potencias que caracteriza al espectro de RC.

El mecanismo de Fermi se describe en dos situaciones físicas: nubes de plasma magnetizadas (aceleración de Fermi de segundo orden) y frentes de onda de choque (aceleración de Fermi de primer orden). En la aceleración de segundo orden se considera una partícula que entra a la nube con cierta velocidad, donde cambia su dirección de modo aleatorio por interacciones con el campo magnético turbulento en el interior, mediante este proceso se tiene $\xi = (4/3)\beta^2$, donde $\beta = V/c$ es la velocidad de la nube; en la aceleración de primer orden se considera que la partícula atraviesa la onda de choque e interactúa con el campo magnético del gas que éste va dejando detrás (downstream), en este caso $\xi = (4/3)\beta$, donde $\beta = V/c$ se refiere la velocidad del gas detrás del choque respecto al gas delante del choque (upstream).

1.1.3. Fuentes de RC

Luego de establecer cómo pueden acelerarse las partículas, se buscaron objetos astronómicos que cumplan las condiciones necesarias para que el proceso se lleve a cabo. Para que el proceso sea eficaz, la partícula debe estar contenida en una región de radio R, tal que se cumpla la siguiente relación [**DeAngelis2015**]:

$$E[PeV] \simeq B[\mu G] \times R[pc].$$
 (1.4)

Ésta es llamada relación de Hillas, ilustrada en la figura 1.2, en la que también pueden observarse los potenciales aceleradores. Como fuentes de RC de origen galáctico pueden mencionarse las estrellas de neutrones de rápida rotación (púlsares) y los remanentes de supernova, mientras que en el caso extragaláctico se consideran los núcleos galácticos activos y los destellos de rayos gamma.

Figura 1.2: La gráfica de Hillas representa las potenciales fuentes de rayos cósmicos según la intensidad de su campo magnético y su tamaño. (Tomada de [**DeAngelis2015**])

1.1.4. Propagación de RC

La presencia de campos magnéticos en el espacio limita la posibilidad de estudiar las fuentes de RC a través de ellos. Los RC llegan a la Tierra isotrópicamente; llegan de todas direcciones con la misma frecuencia, lo que sugiere una trayectoria casi aleatoria desde la fuente hacia la Tierra. Dentro de la galaxia las partículas pueden sufrir varios procesos: difusión en campos magnéticos, convección por vientos galácticos, pérdidas o ganancias de energía, colisiones nucleares con gas interestelar y decaimientos. Para describir la propagación de RC debe resolverse la ecuación de transporte [Gaisser1990]:

$$\frac{\partial \mathcal{N}}{\partial t} = \nabla \cdot (D_i \nabla \mathcal{N}_i) - \frac{\partial}{\partial E} [b_i(E) \mathcal{N}_i(E)] - \nabla \cdot u \mathcal{N}_i(E)
+ Q_i(E, t) - p_i \mathcal{N}_i + \frac{v\rho}{m} \sum_{k \ge i} \int \frac{d\sigma_{i,k}(E, E')}{dE} \mathcal{N}_k(E') dE',$$
(1.5)

que contempla los procesos mencionados para calcular la densidad de partículas con energías entre E y E + dE. Los seis términos de la ecuación representan, respectivamente: la difusión, ganancias de energía, convección, la inyección de partículas, pérdida de partículas por colisiones o decaimientos, cascadas de decaimientos o fragmentación nuclear.

1.2. Interacciones de los RC

1.2.1. Interacciones electromagnéticas

Las partículas cargadas en general interactúan con átomos; estas pueden ionizarlos, excitarlos o producir fotones. Para electrones y positrones a altas energías es relevante la radiación de frenado o *bremsstrahlung*, en la cual partículas cargadas emiten radiación al ser deflectadas por el campo eléctrico de los átomos en un medio. En este proceso, la fracción de energía que la partícula pierde puede describirse por [**DeAngelis2015**]:

$$\frac{1}{E}\frac{\mathrm{d}E}{\mathrm{d}x} \simeq -\frac{1}{X_0},\tag{1.6}$$

donde X_0 es la longitud de radiación que es dependiente del medio.

Por otro lado, los fotones interactúan con un medio principalmente mediante efecto fotoeléctrico (emisión de un electrón de un material que ha absorbido un fotón), dispersión de Compton (transferencia de energía de un fotón hacia un electrón mediante una colisión) y producción de pares electrón-positrón. Este último proceso siendo el más relevante a altas energías; al interactuar con el campo eléctrico de un núcleo, el fotón tiene cierta probabilidad de formar un par $e^- - e^+$, con una longitud de interacción:

$$\lambda \simeq \frac{9}{7} X_0. \tag{1.7}$$

Los fotones también puede sufrir otros procesos como dispersión de Rayleigh, que puede tener importancia para el transporte de la luz a través de la atmósfera, o interacciones fotonucleares (excitación de núcleos) que se dan a energías alrededor de 10 MeV.

1.2.2. Interacciones hadrónicas

Los RC primarios están mayoritariamente conformados por hadrones, como lo son los protones y núcleos. Los hadrones se describen mediante el modelo de quarks [**DeAngelis2015**], partículas que interactúan mediante la interacción nuclear fuerte y que, según observaciones, no existen de manera aislada sino en estados ligados de dos o tres quarks. Este tipo de modelos se estudian desde la *cromodinámica cuántica* (QCD por sus siglas en inglés), donde se propone el concepto de *color* como la carga que origina las interacciones fuertes, y el de *gluón* como la partículas mediadora.

Para describir las interacciones hadrónicas se necesitan modelos fenomenológicos apoyados en QCD. Un modelo usado comúnmente es el modelo de cuerdas de Lund (o string model) [FragModels]; cuando los hadrones interactúan se forma un campo de color (cuerda) entre pares quark-antiquark, la energía potencial en dicha cuerda aumenta hasta fragmentarse y formar otros quarks que a su vez pueden formar hadrones, como se ilustra en la figura 1.3. También suele utilizarse el modelo de minijet, para tomar en cuenta la multiplicidad de partículas producidas.

Figura 1.3: De abajo hacia arriba; fragmentación de una cuerda creando un nuevo par de quarks en el campo de color. (Tomado de [DeAngelis2015])

Actualmente existen varios generadores Monte Carlo de eventos hadrónicos; describen este tipo de interacciones basándose en diferentes modelos para ciertos aspectos de la interacción y en datos de colisionadores de partículas. Ejemplos de estos son SIBYLL [Sibyll], QGSJET [qgsjet] y EPOS [EPOS], que están especializados en interacciones de altas energías.

1.3. Chubascos atmosféricos

Un chubasco atmosférico (español para Air Shower) es una cascada de partículas generada por la interacción de un rayo cósmico en la alta atmósfera. Antes de profundizar en cómo se desarrollan estas cascadas, conviene describir brevemente las principales características de la atmósfera.

1.3.1. Atmósfera terrestre

La capa de aire que rodea la Tierra se extiende hasta una altura mayor a 100 km. Según el modelo US Standard Atmosphere, la atmósfera está compuesta principalmente por N_2 (78 %), O_2 (21 %) y Ar (0,9 %). Acorde al mismo modelo, la densidad del aire es función de la altura:

$$\rho(h) = \rho_0 e^- \frac{h}{h_a},\tag{1.8}$$

donde $\rho_0 = 1,22 \times 10^{-3}$ g/cm³ y $h_a = 8,2$ km. Sin embargo, en el estudio de los chubascos atmosféricos es más frecuente utilizar el concepto de *profundidad* en lugar de la altura. La profundidad X indica la cantidad de materia que atraviesa una partícula al moverse de un

punto a otro. Esta se relaciona con la densidad mediante:

$$X = \int_{h}^{\infty} \rho(h) \mathrm{d}h. \tag{1.9}$$

1.3.2. Desarrollo de un chubasco atmosférico

Los chubascos atmosféricos se desarrollan de forma compleja como una combinación de cascadas electromagnéticas y producción de partículas por interacciones hadrónicas [Matthews2005]. A grandes rasgos, una interacción hadrónica entre el rayo cósmico primario y un núcleo de la atmósfera produce múltiples partículas secundarias: una partícula principal (con la mayor parte de la energía inicial) que puede iniciar otro chubasco, y un gran número de mesones, principalmente piones cargados (π^{\pm}) y neutros (π^{0}) .

La parte electromagnética del chubasco es generada por los piones neutros al decaer en fotones $(\pi^0 \to \gamma \gamma)$, esta cascada consiste en producción de pares $(\gamma \to e^+e^-)$ y bremsstrahlung $(e^{\pm} \to e^{\pm}\gamma)$. Por su parte, los piones cargados pueden volver a interactuar hadrónicamente mientras tengan suficiente energía, luego de eso decaerán en neutrinos y muones $(\pi^- \to \mu^- \bar{\nu}_{\mu},$ $\pi^+ \to \mu^+ \nu_{\mu})$. El desarrollo de un chubasco se ilustra en la figura 1.4.

Figura 1.4: Esquema de la formación y desarrollo de un chubasco atmosférico. Se observa la componente hadrónica y la electromagnética. (Tomada de [**Poderosas**])

La propagación de partículas (nucleones en particular) a través de la atmósfera, puede

describirse con la ecuación de cascada:

$$\frac{\mathrm{d}N(E,X)}{\mathrm{d}X} = -\frac{N(E,X)}{\lambda_N(E)} + \int_E^\infty \frac{N(E',X)}{\lambda_N(E)} F_{NN}(E,E') \frac{\mathrm{d}E'}{E},\tag{1.10}$$

donde N(E, X)dE es el flujo de nucleones a una profundidad X en la atmósfera con energías entre E y E + dE, λ_N es la longitud de interacción del nucleón en el aire y F_{NN} es la sección eficaz para la colisión de un nucleón incidente de energía E' con un núcleo del aire, produciendo otro nucleón con energía E. Para generalizar al caso de la propagación de los múltiples hadrones producidos, se considera un grupo de ecuaciones acopladas [Gaisser1990]:

$$\frac{\mathrm{d}N_i(E,X)}{\mathrm{d}X} = -\left(\frac{1}{\lambda_i} + \frac{1}{d_i}\right)N_i(E,X) + \sum_i \int \frac{F_{ij}(E_i, E_j)}{E_i} \frac{N_j(E_j)}{\lambda_j} \,\mathrm{d}E_j. \tag{1.11}$$

Modelo Heitler-Matthews

En 1954, W. Heitler presentó un modelo simplificado del desarrollo de la componente electromagnética, posteriormente modificado por J. Matthews. Aunque no reemplaza simulaciones detalladas de chubascos, el modelo Heitler-Matthews permite describir correctamente características importantes de los mismos. En el modelo de Heitler se describe la componente electromagnética como ilustra la figura 1.5;

luego de viajar una distancia $d = \lambda_r \ln 2$ (donde λ_r es la longitud de radiación en el aire) un electrón produce un fotón que al viajar la misma distancia produce un par e^-e^+ . Luego de n divisiones, en la cascada hay un total de $N = 2^n$ partículas; la división se detiene cuando las partículas alcanzan una energía crítica ξ_c^e .

Figura 1.5: Esquema de un chubasco puramente electromagnético; las líneas rectas representan electrones y las curvas representan fotones.

A partir de lo anterior pueden deducirse características de un chubasco iniciado por un fotón:

$$E_0 = \xi_c^e N_{\text{max}},\tag{1.12}$$

$$X_{\text{max}}^{\gamma} = n_c \lambda \ln 2 = \lambda \ln[E_0/\xi_c^e], \qquad (1.13)$$

donde n_c es el número de longitudes d necesarias para que la energía por partícula se reduzca a ξ_c^e , donde $N=N_{\rm max}=$

 2^{n_c} . Se observa que el número de partículas en el máximo aumenta linealmente con la energía inicial y que la profundidad aumenta con la energía de manera logarítmica. Los chubascos iniciados por hadrones se describen similarmente, como se ilustra en la figura

1.6. Se consideran capas de atmósfera de altura $\lambda_I \ln 2$ donde λ_I es la longitud de interacción. Luego de atravesar una capa, un hadrón interactúa produciendo partes iguales de piones cargados y neutros; N_{π^\pm} cargados y $N_{\pi^0} = \frac{1}{2} N_{\pi^\pm}$ neutros. Los piones cargados pueden repetir el proceso hasta alcanzar una energía crítica ξ_c^{π} , entonces se asume su decaimiento.

Luego de n capas, la energía por pion cargado es

$$E_{\pi} = \frac{E_0}{\left(\frac{3}{2}N_{\pi^{\pm}}\right)^n},\tag{1.14}$$

de manera que el número de interacciones n_c necesarias para que la energía por pion alcance el valor crítico es

$$n_c = \frac{\ln\left[E_0/\xi_c^{\pi}\right]}{\ln\left[\frac{3}{2}N_{\pi^{\pm}}\right]}.$$
 (1.15)

Considerando un chubasco iniciado por un protón, con componentes electromagnética y hadrónica, y tomando en cuenta el decaimiento de todos los piones en muones $((N_{\pi^{\pm}}^{n_c} = N_{\mu}))$ la energía total es

$$\pi^{\pm}$$
 $n=1$
 $n=2$
 $n=3$

Figura 1.6: Esquema de un chubasco producido por un protón; las líneas sólidas representan piones cargados mientras las líneas cortadas representan piones neutros.

$$E_0 = \xi_c^e N_{\text{max}} + \xi_c^{\pi} N_{\mu}. \tag{1.16}$$

El modelo de Heitler sobreestima la razón de electrones a fotones, de manera que se introduce un factor de corrección g = 10 tal que $N_e = N/g$. Con esta corrección la ecuación (1.16) se reescribe como

$$E_0 = g\xi_c^e \left(N_e + \frac{\xi_c^{\pi}}{g\xi_c^e} N_{\mu} \right), \tag{1.17}$$

lo que indica que la energía inicial puede calcularse si se miden el número de electrones y de muones. Cabe mencionar que esta expresión es independiente de el tipo de partícula primaria. Asimismo se puede estimar la profundidad del máximo X^p_{\max} tomando en cuenta que el protón primario interactúa a una profundidad $X_0 = \lambda_I \ln 2$ como

$$X_{\text{max}}^p = X_0 + \lambda_r \ln \left[\frac{E_0}{3N_{\pi^{\pm}} \xi_c^e} \right]. \tag{1.18}$$

El segundo término corresponde a la profundidad del máximo de la componente electromagnética de la ecuación (1.13), cuya energía inicial es $E_0/3N_{\pi^{\pm}}$. En las ecuaciones (1.17) y (1.18) se observa que la dependencia del número de partículas y la profundidad del máximo con la energía inicial es líneal y logarítmica, respectivamente, tal como en (1.12) y (1.13). En general los valores calculados con la ecuación (1.18) son bastante bajos comparados con resultados de simulaciones; esto debido a que sólo se toma en cuenta la primera generación de partículas de la componente electromagnética. Por otro lado, el número de muones en el chubasco puede expresarse en función de la energía como

$$N_{\mu} = \left(\frac{E_0}{\xi_c^{\pi}}\right)^{\beta}$$
, donde $\beta = \frac{\ln[N_{\pi^{\pm}}]}{\ln[\frac{3}{2}N_{\pi^{\pm}}]}$ (1.19)

Para describir chubascos producidos por un nucleo A, en el modelo Heitler-Matthews se utiliza el modelo de superposición; se trata el núcleo como A protones iniciando chubascos individualmente, cada uno con una porción igual de la energía inicial del núcleo E_0 , es decir E_0/A . Las características de éstos chubascos pueden obtenerse sustituyendo la energía inicial en las ecuaciones para protones, a la vez que se expresan en términos de las cantidades correspondientes a un chubasco producido por un protón de energía E_0 , por ejemplo el número de muones y la profundidad del máximo puede expresarse como

$$N_{\mu}^{A} = N_{\mu}^{p} A^{\beta - 1}, \tag{1.20}$$

$$X_{\text{max}}^A = X_{\text{max}}^p - \lambda_r \ln A. \tag{1.21}$$

Adicionalmente, Matthews presenta el modelo tomando en cuenta la inelasticidad de las interacciones; como resultado de una interacción se produce una partícula principal que se lleva la mayor parte de la energía, de manera que hay menos energía disponible para la producción de las múltiples partículas restantes. La inelasticidad se introduce con un parámetro κ representando la porción de la energía inicial que se invierte en la producción de piones. Todas las expresiones anteriores corresponden a un valor $\kappa=1$.

1.3.3. Métodos de observación

Existen distintos tipos de experimentos para observar chubascos atmosféricos, la técnica utilizada depende principalmente de la energía del rayo cósmico incidente; a energías > 50 TeV pueden detectarse partículas secundarias directamente a nivel del suelo, mientras que a energías \sim TeV pueden observarse recolectando la radiación producida en las interacciones de las partículas.

Los experimentos pueden ser de radiación de Cherenkov, que detectan radiación producida por una partícula cargada que se mueve a través de un medio más rápido que la velocidad de la luz en ese medio; y de fluorescencia, que colectan la luz emitida por las moléculas de nitrógeno excitadas en el chubasco, este método permite reconstruir el desarrollo longitudinal del mismo. Existen también observatorios híbridos, como el Telescope Array (TA) y el Pierre

Auger Observatory (PAO); estos utilizan la técnica de fluorescencia para observar el desarrollo del chubasco y además detectan partículas de alta energía que alcanzan el nivel del suelo.

1.4. Estado del conocimiento

En la actualidad, los RC de ultraalta energía (UHECR, $E > 10^{18}$ eV) siguen considerándose un enigma en términos de su composición y origen. Debido a su bajo flujo, éstos se estudian indirectamente a partir de mediciones de los chubascos atmosféricos que producen. Experimentos como TA y PAO miden observables de los chubascos como X_{max} , X_{max}^{μ} y N_{μ} , magnitudes que son sensibles a la energía y la masa de la partícula primaria, y por tanto pueden aportar al espectro de RC y dar información sobre la composicion del flujo de los UHECR. Con ayuda de programas de simulación de chubascos atmosféricos, como CORSI-KA, CONEX y AIRES, se ha progresado en esta dirección.

Figura 1.7: Sección eficaz inelástica para interacciones p-p (izquierda) e interacciones p-aire y π -aire (derecha) calculadas con tres modelos hadrónicos [**Pierog2018**].

Dichos programas utilizan modelos de interacciones hadrónicas, que son mayoritariamente fenomenológicos, consecuentemente el estudio de los UHECR está estrechamente vinculado con la investigación experimental de colisiones hadrónicas de alta energía en aceleradores de partículas. Los parámetros de las interacciones que afectan el desarrollo de los chubascos atmosféricos son la sección eficaz, la multiplicidad y la elasticidad; se han comparado diferentes modelos (Sibyll 2.3, EPOS LHC y QGSJETII-04) observando que coinciden muy bien para interacciones p - p, pero difieren para interacciones p - A y $\pi - A$ [Pierog2018].

La interpretación de las mediciones observacionales para dilucidar la composición de los UHECR es todavía un problema, esto es debido particularmente a que los modelos de interacciones hadrónicas aún difieren entre sí y ninguno de ellos puede describir a cabalidad los datos. La interpretación de los datos del TA se inclina por una composición de núcleos

ligeros [**TAcomposition**], mientras que datos del PAO indican que la composición se vuelve más pesada a mayores energías. Sobre esto último, se realizó un ajuste simulando chubascos iniciados por una mezcla de partículas primarias (p, He, N y Fe) que resultó en buena concordancia con los datos de X_{max} [**PAOcomposition**]. Sin embargo, la interpretación está sujeta al modelo utilizado para las simulaciones.

Figura 1.8: X_{max} promedio (izquierda) y desviación estándar (derecha) asumiendo una composición mixta (línea sólida) [**PAOcomposition**].

Se han considerado cambios en el tratamiento de ciertos aspectos físicos en los modelos [Ostapchenko2019] con los cuales se mejora la simulación de X_{max} y X^{μ}_{max} comparándolo con los datos de PAO. También se ha presentado una discusión sobre N_{μ} , ya que el número de muones predicho por simulaciones es significativamente menor que el observado; se puso a prueba la hipótesis de una composición mixta de los UHECR estudiando su impacto sobre N_{μ} , reduciendo la diferencia entre las simulaciones y las observaciones a una constante [Sciutto2019].

CC: estado del conocimiento de las distribuciones laterales de electrones y muones

Figura 1.9: Las líneas sólidas verde y roja corresponden a la estimación del número de muones utilizando el sistema AIRES con diferentes modelos hadrónicos. Se observa que al desplazarlas una constante éstas tienen buena concordarcia con los datos experimentales (círculos negros) [Sciutto2019].

Capítulo 2

Metodología

2.1. Simulaciones de chubascos producidos por UHECR

Se estudiará el efecto de la composición primaria de los rayos cósmicos en la distribución lateral de electrones y muones. Para ello se realizarán tres grupos de simulaciones por cada modelo de interacciones hadrónicas: el primer grupo serán chubascos producidos por protones, el segundo chubascos producidos por hierro y el tercero chubascos producidos por una mezcla de protones, helio, nitrógeno y hierro. Cada grupo consistirá en aproximadamente 2400 chubascos con ultraaltas energías, debido a que actualmente el problema de la composición se encuentra en esta región del espectro.

2.1.1. Características de los chubascos

Se simularán chubascos producidos por rayos cósmicos de energías entre $10^{17,256}$ y $10^{19,626}$ eV, en la ubicación de Malargue en Mendoza, Argentina -donde se encuentra una de las estaciones del PAO-. Se considerarán direcciones de incidencia con ángulo zenital entre 0^o y 70^o y ángulo azimutal distribuido isotrópicamente entre 0^o y 360^o . Se utilizarán tres modelos de interacciones hadrónicas de altas energías; Sibyll 2.3c, EPOS-LHC y QGSJETII-04. Los tres se han destinado a este tipo de simulaciones anteriormente, y son precisamente dichos modelos los que muestran discrepancias en la composición de los UHECR basada en la profundidad $X_{\rm max}$.

En el rango de energías mencionado, se harán simulaciones de chubascos producidos únicamente por protones, producidos únicamente por núcleos de hierro y finalmente producidos por la composición primaria mixta, como propone la colaboración Pierre Auger [PAOcomposition], mostrada en la Fig. 3.1.

Figura 2.1: Composición en función de la energía, resultado de ajustes con los datos de $X_{\rm max}$ del Observatorio Pierre Auger realizados con tres modelos de interacciones hadrónicas de altas energías.

2.2. Software para simulaciones de altas energías

El sistema AIRES (AIR shower Extended Simulations) es un conjunto de programas para simular chubascos atmosféricos extendidos desarrollado por el Departamento de Física de la Universidad Nacional de La Plata y el Instituto de Física La Plata. AIRES está diseñado de manera modular para facilitar el intercambio entre los modelos de distintos aspectos de las simulaciones. El código completo de AIRES incluye los paquetes de interacciones hadrónicas EPOS 1.99, EPOS LHC, QGSJET-II-03, QGSJET-II-04, SIBYLL 2.1, SIBYLL 2.3, y SIBYLL 2.3c, así como las rutinas para evaluar el campo geomagnético. En síntesis, el sistema AIRES consiste en:

- Los programas de simulación principales (AiresEPLHC, AiresEP199, AiresQIIr03, AiresQIIr04, AiresS21, AiresS23, AiresS23c), cada uno conteniendo la interfaz para un paquete de interacciones hadrónicas.
- El programa resumen (AiresSry), diseñado para procesar parte de los datos generados por los programas de simulación.
- El programa de conversión de formato IDF (*internal dump file*) a ADF (*portable dump file*) (AiresIDF2ADF).
- Una librería de auxiliares para procesar los archivos de salida de los programas de simulación (libAires.a)
- El AIRES runner system, para facilitar el trabajo con AIRES en ambientes UNIX.

2.2.1. Sistema de coordenadas

El sistema de coordenadas de AIRES es un sistema cartesiano con el origen al nivel del mar en la ubicación proporcionada por el usuario, el plano xy se posiciona horizontalmente; el eje x apunta hacia el norte magnético, el eje y hacia el Este y el eje z hacia arriba. En la figura 2.2 se muestra una representación esquemática del sistema coordenado, incluyendo el nivel del suelo y el nivel de inyección, éstos se refieren a superficies esféricas concéntricas con la superficie del nivel del mar. El eje del chubasco se define como una línea recta que pasa por la intersección del nivel del suelo con el eje z, con un ángulo cenital Θ y un ángulo azimutal Φ .

Figura 2.2: Esquema del sistema de coordenadas utilizado en AIRES.

2.2.2. Atmósfera

AIRES utiliza el modelo basado en datos experimentales US standard atmosphere como modelo predeterminado. En este modelo, la composición de la atmosféra es 78,47 % N, 21,05 % O, 0,47 % Ar y 0,03 % otros elemento. El perfil de densidad isotérmico de la forma

$$\rho(h) = \rho_0 e^{-gMh/RT},$$

se adapta a los valores de la US standard atmosphere. En AIRES el modelo se extiende hasta una altura $h_{max} \sim 420$ km, después de la cual se considera que la densidad es cero. Se utiliza una parametrización de la profundidad atmosférica vertical X_v ; dividiendo la atmósfera en L capas, $X_v(h)$ se define por

$$X_{v}(h) = \begin{cases} a_{l} + b_{l}e^{-h/c_{l}} & h_{l} \leq h < h_{l+1} \\ a_{L} - b_{L}(h/c_{L}) & h_{L} \leq h < h_{L+1} \\ 0 & h \geq h_{L+1}. \end{cases}$$

$$(2.1)$$

Los coeficientes usados en AIRES, que corresponden a un modelo con L=5, se muestran en la tabla. La profundidad atmosférica inclinada (slant) X_s depende del ángulo cenital y cuando no se toma en cuenta la curvatura de la Tierra, se relaciona con X_v de la siguiente manera:

$$X_s(h) = \frac{X_v(h)}{\cos(\Theta)}. (2.2)$$

2.2.3. Campo geomagnético

El campo magnético de la Tierra \mathbf{B} se define por su intensidad F; su inclinación I, que se define como el ángulo entre el plano horizontal y el vector \mathbf{B} ; y su declinación D, que se define como el ángulo entre la componente horizontal (H) de \mathbf{B} y el norte geográfico. Las componentes cartesianas de \mathbf{B} con respecto al sistema coordenado de AIRES son

$$B_x = F \cos I, \tag{2.3}$$

$$B_{\nu} = 0, (2.4)$$

$$B_z = -F\sin I. (2.5)$$

Hay dos maneras de especificar el campo geomagnético en AIRES; la primera es ingresando manualmente los valores de F, I y D, y la segunda es ingresando las coordenadas geográficas del lugar y la fecha para evaluar el campo magnético utilizando el modelo $International\ Geomagnetic\ Reference\ Field\ (IGRF).$

2.2.4. Estructura de los programas de simulación

Un chubasco se origina cuando un rayo cósmico interactúa con la atmósfera terrestre, donde se producen partículas secundarias que se propagan y pueden interactuar de manera similar produciendo más partículas. Eventualmente la multiplicidad de partículas llega a un máximo, después del cuál el chubasco empieza a atenuarse. En AIRES todo este proceso se simula de la siguiente manera [Sciutto2002]:

- Se definen arreglos vacíos destinados a almacenar los datos de las características de las partículas.
- Las partículas pueden moverse por la atmósfera en un volumen delimitado por la superficie de inyección, el suelo y planos verticales que delimitan la región de interés.
- La primera acción es añadir a un arreglo la entrada correspondiente a la partícula inicial, ésta se localiza inicialmente en la superficie de inyección y su dirección de movimiento define el eje del chubasco.
- Las entradas respectivas a cada partícula se actualizan primero evaluando las probabilidades de todas las interacciones posibles.
- Se selecciona entre las posibles interacciones utilizando un método estocástico.
- Se procesa la interacción; la partícula se mueve una cierta distancia dependiente de la interacción seleccionada y luego se generan los productos de dicha interacción. Se agregan a los arreglos las entradas de las nuevas partículas creadas.

- En el caso de las partículas cargadas, se modifica la energía para tomar en cuenta pérdidas por ionización.
- Las entradas de partículas pueden removerse (1) si su energía es menor que cierto límite,
 (2) si alcanza el nivel del suelo, (3) si alcanza la superficie de inyección hacia arriba y
 (4) si horizontalmente sale de la región de interés.
- Se verifica que todas las entradas de partículas de los arreglos se hayan procesado; cuando se hayan procesado se completa la simulación del chubasco.

2.2.5. Muestreo de partículas

Para chubascos iniciados por partículas de ultraalta energía, el número de partículas secundarias producidas es tan grande que la tarea computacional de propagarlas todas es imposible; para poder realizar las simulaciones se emplea un mecanismo de muestreo que permite propagar únicamente un fracción representativa del total de partículas secundarias. AIRES utiliza una extensión del *Hillas thinning algorithm* [Kobal2001].

Considerando un proceso donde una partícula primaria A genera un conjunto de n secundarios, éstos son propagados con cierta probabilidad P_i . El algoritmo de Hillas consiste en establecer una constante E_{th} llamada thinning energy; para incorporar a los secundarios B_i en la propagación se compara la energía de la partícula primaria E_A con E_{th} : si $E_A \geq E_{th}$, entonces los secundarios de aceptan con una probabilidad

$$P_i = \begin{cases} 1 & \text{si } E_{B_i} \ge E_{th} \\ \frac{E_{B_i}}{E_{th}} & \text{si } E_{B_i} < E_{th}. \end{cases}$$
 (2.6)

Por el contrario, si $E_A < E_{th}$ sólo una partícula secundaria se conserva, lo que asegura que una vez se alcance E_{th} el número de partículas no se incrementa. El algoritmo utilizado por AIRES es una extensión de lo descrito anteriormente, pero éste incluye características adicionales para disminuir las fluctuaciones estadísticas.

2.3. Análisis de resultados de simulaciones

En primer lugar se analizarán los resultados de las simulaciones con composición mixta tomando en consideración las observables X_{max} y σX_{max} . Estos resultados se compararán estadísticamente con los publicados por el PAO, tanto de simulaciones con el programa CORSIKA como los datos experimentales para validar las ejecuciones realizadas con AIRES.

Una vez validadas las simulaciones con observables ya estudiadas, se van a graficar y comparar los resultados de las distribuciones laterales de electrones y muones de cada grupo de simulaciones. En la misma gráfica se estudiarán las distribuciones que resulten de las diferentes composiciones primarias consideradas, esto con el fin de observar claramente los efectos de la composición sobre las distribuciones laterales.

Posteriormente se realizarán comparaciones entre los resultados de distribuciones laterales de los tres modelos de interacción hadrónica, ésto para visualizar si el efecto de la composición observado es dependiente de características partículares de dichas interacciones. Asimismo se evaluará

Capítulo 3

Resultados

En este capítulo se presentan los resultados de las simulaciones de chubascos iniciados por rayos cósmicos de energías entre $10^{17,256}$ y $10^{19,626}$ eV, considerando la composición mixta de rayos cósmicos primarios basada en datos del Observatorio Pierre Auger. Se muestran los resultados de dos observables: la profundidad del máximo y su desviación estándar. Se comparan tres modelos de interacción hadrónica con los que se realizaron las simulaciones, además de comparar los resultados obtenidos con los respectivos datos observacionales.

Se simularon 2400 chubascos en el rango de energías mencionado, en la ubicación de Malargue donde se encuentra una de las estaciones del Pierre Auger-, con ángulo zenital entre 0° y 70° y ángulo azimutal distribuido isotrópicamente entre 0° y 360°. La simulaciones se realizaron con tres modelos de interacción hadrónica: Sibyll 2.3c, EPOS-LHC y QGSJETII-04, tomando en cuenta la composición primaria mixta (una combinación de protones, núcleos de helio, nitrógeno y hierro) propuesta por la colaboración Pierre Auger en [PAOcomposition], mostrada en la Fig. 3.1.

3.1. Profundidad del máximo X_{max}

3.1.1. Comparación de predicciones de los modelos hadrónicos

Se calculó el promedio de la profundidad del máximo de 100 eventos para cada energía realizando el correspondiente ajuste mediante el algoritmo de mínimos cuadrados no lineal Levenberg-Marquardt. En la gráfica de la Fig. 3.2 se muestran los resultados de X_{max} para los tres modelos hadrónicos.

Se observa que en general los tres modelos muestran la misma tendencia de crecimiento de X_{max} con la energía, sin embargo el modelo QGSJET es el que más difiere de los otros dos

Figura 3.1: Composición en función de la energía, resultado de un ajuste con los datos del Observatorio Pierre Auger.

modelos, prediciendo el máximo a una menor profundidad, con una diferencia promedio de aproximadamente 3 %, mientras que Sibyll y EPOS difieren entre ellos un 1.5 % en promedio.

Cuadro 3.1: Diferencias porcentuales entre los resultados de X_{max} de los distintos modelos de interacción hadrónico

de interacción hadrónica.

11001011100.				
	Dif. media (%)	Mín. (%)	Máx. (%)	
Sibyll/QGSJET	2.914	0.123	9.207	
EPOS/QGSJET	3.085	0.379	8.484	
Sibyll/EPOS	1.473	0.003	4.544	

3.1.2. Comparación con datos observacionales

En la figura Fig. 3.3 se muestran tanto los resultados de las simulaciones como los datos obtenidos por el Observatorio Pierre Auger. Los modelos Sibyll y EPOS muestran excelente concordancia con las observaciones en las energías más bajas del rango considerado, luego de $E\approx 10^{18,248}$ eV los datos simulados son en general menores que los experimentales. Por otro lado, QGSJET tiende a subestimar la profundidad del máximo de los chubascos en todo el rango de energías.

Para toda la ventana de energías, el modelo EPOS es el que mejor reproduce los datos del Pierre Auger, con un error relativo de $2.8\,\%$ en promedio, le sigue Sibyll con $3.1\,\%$ y por último está QGSJET con $5.1\,\%$ de error relativo.

Figura 3.2: X_{max} promedio resultante de las simulaciones con los modelos hadrónicos Sibyll 2.3c, EPOS-LHC y QGSJETII-04

Cuadro 3.2: Error porcentual de los resultados de X_{max} de las simulaciones relativo a los datos observacionales.

Modelo	Err. relativo (%)	Mín. (%)	Máx. (%)
Sibyll	3.080	0.023	12.364
EPOS	2.778	0.050	11.820
QGSJET	5.092	0.589	12.840

La subestimación de X_{max} en las simulaciones puede sugerir que en las mayores energías, los chubascos se producen por rayos cósmicos de composición más ligera que la que se ha considerado. Sin embargo, como evidencian las discrepancias entre los modelos, la reproducción de los datos observacionales es altamente dependiente del modelo hadrónico utilizado y de sus características particulares.

3.2. Desviación estándar del máximo σX_{max}

3.2.1. Comparación de predicciones de los modelos hadrónicos

Las fluctuaciones de la profundidad del máximo de un chubasco a otro con la misma energía es una magnitud que también es sensible a la composición primaria. En la Fig. 3.4 se muestran los resultados de las simulaciones para esta observable.

En el caso de σX_{max} se observa que los tres modelos hadrónicos difieren de manera

Figura 3.3: X_{max} promedio resultante de las simulaciones con los modelos hadrónicos Sibyll 2.3c, EPOS-LHC y QGSJETII-04 junto con los datos tomados por el Observatorio Pierre Auger. Las barras representan el error sisteático de las medidas.

notable entre sí. Las diferencias se encuentran alrededor de $15\,\%$ en casi todo el rango de interés, a pesar de coincidir en puntos aislados. No se observa una tendencia clara de los datos simulados.

Cuadro 3.3: Diferencias porcentuales entre los resultados de σX_{max} de los distintos modelos

de interacción hadrónica.

	Dif. media (%)	Mín. (%)	Máx. (%)
Sibyll/QGSJET	15.168	1.256	37.782
EPOS/QGSJET	14.089	2.721	34.101
Sibyll/EPOS	12.651	0.000	45.881

3.2.2. Comparación con datos observacionales

En la Fig. 3.5 se muestran los datos experimentales σX_{max} junto con los resultados de las simulaciones. Es evidente que el modelo que mejor reproduce la tendencia de los datos es QGSJET, principalmente en la parte central del rango desde $\sim 10^{17,551}$ hasta $\sim 10^{18,845}$. En las menores energías QGSJET subestima las fluctuaciones, mientras que en las mayores las sobreestima. Las predicciones de EPOS y Sibyll están en general más bajas que los datos, con excepción de las mayores energías donde los tres modelos están por encima de los datos de l Pierre Auger.

Figura 3.4: Fluctuaciones en el valor de profundidad del máximo σX_{max} resultante de las simulaciones con los modelos hadrónicos Sibyll 2.3c, EPOS-LHC y QGSJETII-04.

Ninguno de los tres modelos hadrónicos utilizados reproduce fielmente la desviación estándar de la profundidad del máximo, con errores del 18% en promedio pero que llegan a ser de más del 30% en varios puntos. Esto puede deberse principalmente a la cantidad de chubascos simulados con una misma energía, que está bastante por debajo de la cantidad de eventos observados a bajas energías, y por el contrario está por encima de los eventos observados a más altas energías. De manera que la cantidad de simulaciones realizadas puede estar afectando las fluctuaciones de chubasco a chubasco, no obstante estas diferencias con los datos observacionales no parecen indicar un cambio claro en la composición primaria.

Cuadro 3.4: Error porcentual de los resultados de σX_{max} de las simulaciones relativo a los datos observacionales.

Modelo	Err. relativo (%)	Mín. $(\%)$	Máx. (%)
Sibyll	19.192	1.072	97.143
EPOS	17.722	0.016	96.522
QGSJET	15.509	0.053	111.677

Figura 3.5: Fluctuaciones en el valor de profundidad del máximo σX_{max} resultantes de las simulaciones con los modelos hadrónicos Sibyll 2.3c, EPOS-LHC y QGSJETII-04 junto con los datos tomados por el Observatorio Pierre Auger. Las barras representan el error sisteático de las medidas.

Capítulo 4

Conclusiones y recomendaciones

A partir de la hipótesis de la colaboración Pierre Auger, que sugiere que los rayos cósmicos primarios que entran a la atmósfera terrestre con ultraaltas energías tienen una composición mixta conformada por núcleos de hidrógeno, helio, nitrógeno y hierro, se han realizado simulaciones de chubascos iniciados por rayos cósmicos de dicha naturaleza, calculando magnitudes de los mismos que son sensibles a la masa de la partícula inicial: X_{max} y σX_{max} . La hipótesis de la composición mixta es apoyada por los resultados de las simulaciones, ya que para ambas observables éstos se encuentran entre los datos que se obtendrían considerando una composición únicamente ligera o una composición únicamente pesada.

El modelo EPOS-LHC el que más acertadamente reproduce los datos observacionales de X_{max} para todo el rango de las ultraaltas energías, no obstante incluso este modelo tiende a subestimar la profundidad de máximo para las energías más altas. Los otros dos modelos subestiman esta cantidad en intervalo aun más amplio. Dicha discrepancia con los datos sugieren una composición de los UHECR primarios más ligera que la propuesta, en particular para últimas energías del espectro.

Pese a que los resultados de las fluctuaciones σX_{max} también apoyan la hipótesis de la composición mixta, los actuales resultados para esta magnitud no se acoplan de buena manera a los datos obtenidos por el Pierre Auger. En este caso, el modelo que ha reproducido mejor la tendencia que siguen los datos es QGSJETII-04, sin embargo los tres modelos tienen un error considerablemente alto debido al que el número de eventos simulados a comparación con el número de eventos reales medidos es distinto, lo que puede estar incidiendo en el cálculo de las fluctuaciones del máximo chubasco a chubasco. Por tanto, aunque de igual manera los resultados se encuentran entre una composición ligera y una totalmente pesada, no puede dilucidarse a través de ellos algún cambio evidente en la composición mixta primaria con la que se llevaron a cabo las simulaciones.

Cabe resaltar, finalmente, que la reproducción de los datos experimentales por medio de simulaciones computacionales en función de una única composición primaria mixta es altamente dependiente del modelo de interacción hadrónica utilizado. Lo anterior se evidencia en las diferentes proporciones de partículas en la composición propuestas para cada uno de los modelos utilizados, así como en las claras discrepancias entre los resultados de las simulaciones con los tres modelos para las dos observables consideradas.

Se propone como trabajo a futuro verificar el efecto de la composición primaria mixta en otras propiedades de los chubascos, como la producción de partículas secundarias (fotones, electrones o muones) y su distribución lateral e igualmente su desarrollo longitudinal, particularmente su profundidad de máxima producción. Se recomienda que se simule un mayor número de eventos que sea proporcional al espectro de UHECR medido, invirtiendo más recursos computacionales de los que se disponen actualmente.