Circle of Fifths

Yanru Chen Suan Chew Junliu Zhang Chris Volar

Programgenerated MIDI file

Introduction

12 notes(pitch) vs. 7 letter name

"Perfect fifth"

Concerns

- Why Perfect fifth?
- How are they related to harmony?

Harmony ~ simple ratio

Pitch ratio: 2:1

Pitch ratio: 3:2

	С	C#	D	Eb	E	F	F#	G	G#	Α	Bb	В
0	16.35	17.32	18.35	19.45	20.60	21.83	23.12	24.50	25.96	27.50	29.14	30.87
1	32.70	34.65	36.71	38.89	41.20	43.65	46.25	49.00	51.91	55.00	58.27	61.74
2	65.41	69.30	73.42	77.78	82.41	87.31	92.50	98.00	103.8	110.0	116.5	123.5
3	130.8	138.6	146.8	155.6	164.8	174.6	185.0	196.0	207.7	220.0	233.1	246.9
4	261.6	277.2	293.7	311.1	329.6	349.2	370.0	392.0	415.3	440.0	466.2	493.9
5	523.3	554.4	587.3	622.3	659.3	698.5	740.0	784.0	830.6	880.0	932.3	987.8
6	1047	1109	1175	1245	1319	1397	1480	1568	1661	1760	1865	1976
7	2093	2217	2349	2489	2637	2794	2960	3136	3322	3520	3729	3951
8	4186	4435	4699	4978	5274	5588	5920	6272	6645	7040	7459	7902

https://www.seventhstring.com/resources/notefrequencies.html

Pitch ratio: 2:1

"Octave"

Pitch ratio: 3:2

"Perfect Fifth"

Present.. Prototype

Prototype interacts with the user to generate MIDI files.

- Input
 - music notes
 - time signatures
 - scale
- Generate MIDI file containing

```
→ pycharm ls
fhproject-music music untitled
→ pycharm fhproject-music
→ fhproject-music git:(master) × examples
→ examples git:(master) × python foothilltestmidi1.py foo.mid
→ examples git:(master) × □
```

Sample Output

```
seq1 = NoteSeq('C D E')
seq2 = NoteSeq('F G A')
midi = Midi()
midi.seq_notes(seq1)
midi.seq_notes(seq2)
midi.write('foo.mid')
```


Sample Output

```
seq1 = NoteSeq('C D E')
seq2 = NoteSeq('D E Gb')
midi = Midi()
midi.seq_notes(seq1)
midi.seq_notes(seq2)
midi.write('foo.mid')
```


Reference

Dr. Bill Pezzaglia: Wave Superposition & Timber

Mike Sult http://www.guitarland.com/

Eva Palmer "Making MIDI music with python: An Intro to music Theorey"

https://github.com/palmerev/pydx15-music

Acknowledgement

Project advisor: William Pezzaglia

Music advisor: Mike Sult

Special thanks to: Konstantin Kalaitzidis