HUST

ĐẠI HỌC BÁCH KHOA HÀ NỘI HANOI UNIVERSITY OF SCIENCE AND TECHNOLOGY

ONE LOVE. ONE FUTURE.

Applied Algorithm Lab

Warehouse

ONE LOVE. ONE FUTURE.

Warehouse

- N stations located on a straight line
 - Station i has amount of goods a_i , located at i, pick-up time t_i
- Objective: Find a route for a truck to pick-up goods at stations
 - two consecutive stations: has distance $\leq D$
 - total time to pick up $\leq T$
 - maximize the total amount of goods
- Output: the total amount of goods
- Example:

```
Input: Output: 6 6 2 24 6 8 5 10 11 6 ex pick: 6-8-10
```


Warehouse

- Idea to solve: dynamic programming
 - Let f[i][k] be the maximal amounts of good if we choose some stations in 1
 -> i − 1, and choose station i and the total time is ≤ k.
 - Formula:

```
If k < t[i] : f[i][k] = 0;
If k >= t[i] : f[i][k] = max(f[j][k - t[i]] + a[i]), j = i - D -> i - 1;
```

• return:

$$\max(f[i][k]), i = 1 -> n, k = 1 -> T;$$

Complexity:

$$O(n * T * D).$$

THANK YOU!