Chapitre 5 Diviser pour régner

HLIN401 : Algorithmique et complexité

Université de Montpellier 2018 – 2019

1. Premier exemple: tri fusion

2. Qu'est-ce que « diviser pour régner »?

3. Deuxième exemple : multiplication d'entiers

4. Exemple spécial : Calcul de rang

Algorithme du TRIFUSION

```
\begin{aligned} &\textbf{Algorithme}: \mathsf{TRIFUSION}(T) \\ &n \leftarrow \mathsf{taille}(T) \\ &\textbf{si} \ n = 1 \ \textbf{alors} \\ &\mid \mathsf{Retourner} \ T \\ &\textbf{sinon} \\ &\mid T_1 \leftarrow \mathsf{TRIFUSION}(T[0, \lfloor n/2 \rfloor - 1]) \\ &\quad T_2 \leftarrow \mathsf{TRIFUSION}(T[\lfloor n/2 \rfloor, n]) \\ &\quad \mathsf{Retourner} \ \mathsf{FUSION}(T_1, T_2) \end{aligned}
```

Algorithme du TRIFUSION

```
 \begin{aligned} &\textbf{Algorithme}: \mathsf{TRIFUSION}(T) \\ &n \leftarrow \mathsf{taille}(T) \\ &\textbf{si} \; n = 1 \; \textbf{alors} \\ &\mid \; \mathsf{Retourner} \; T \\ &\textbf{sinon} \\ &\mid \; T_1 \leftarrow \mathsf{TRIFUSION}(T[0, \lfloor n/2 \rfloor - 1]) \\ &\quad T_2 \leftarrow \mathsf{TRIFUSION}(T[\lfloor n/2 \rfloor, n]) \\ &\quad \mathsf{Retourner} \; \mathsf{FUSION}(T_1, T_2) \end{aligned}
```

Lemme

Soit T(n) la complexité de TriFusion et F(n) la complexité de Fusion. Alors

$$T(n) = egin{cases} O(1) & ext{si } n = 1 \ T(\lfloor n/2
floor) + T(\lceil n/2
ceil) + F(n) & ext{sinon} \end{cases}$$

Algorithme de FUSION

```
Algorithme: Fusion(T_1, T_2)
n_1 \leftarrow \mathsf{taille}(T_1); n_2 \leftarrow \mathsf{taille}(T_2)
S \leftarrow \text{tableau de taille } n_1 + n_2
i_1 \leftarrow 0: i_2 \leftarrow 0
pour i_5 = 0 à n_1 + n_2 - 1 faire
     si i_1 \ge n_1 alors S[i_S] \leftarrow T_2[i_2]; i_2 \leftarrow i_2 + 1
     sinon si i_2 \geq n_2 alors S[i_S] \leftarrow T_1[i_1]; i_1 \leftarrow i_1 + 1
     sinon si T_1[i_1] < T_2[i_2] alors S[i_S] \leftarrow T_1[i_1]; i_1 \leftarrow i_1 + 1
     sinon S[i_S] \leftarrow T_2[i_2]; i_2 \leftarrow i_2 + 1
retourner S
```

Algorithme de FUSION

```
Algorithme: Fusion(T_1, T_2)
n_1 \leftarrow \mathsf{taille}(T_1); n_2 \leftarrow \mathsf{taille}(T_2)
S \leftarrow \text{tableau de taille } n_1 + n_2
i_1 \leftarrow 0: i_2 \leftarrow 0
pour i_S = 0 à n_1 + n_2 - 1 faire
     si i_1 \ge n_1 alors S[i_S] \leftarrow T_2[i_2]; i_2 \leftarrow i_2 + 1
     sinon si i_2 \geq n_2 alors S[i_S] \leftarrow T_1[i_1]; i_1 \leftarrow i_1 + 1
     sinon si T_1[i_1] < T_2[i_2] alors S[i_S] \leftarrow T_1[i_1]; i_1 \leftarrow i_1 + 1
     sinon S[i_S] \leftarrow T_2[i_2]; i_2 \leftarrow i_2 + 1
retourner S
```

Lemme

La complexité F(n) de FUSION est O(n).

Preuve évidente!

Correction de la Fusion

Lemme

Si T_1 et T_2 sont deux tableaux triés (par ordre croissant), FUSION (T_1, T_2) renvoie un tableau trié.

Preuve au tableau

 \mathcal{P}_{i_S} : à l'entrée de l'itération i_S de la boucle **pour**,

- 1. $S[0, i_S 1]$ contient les i_S plus petits éléments de $T_1 \cup T_2$ en ordre croissant
- 2. i_1 est l'indice du plus petit élément de T_1 non présent dans S
- 3. i_2 est l'indice du plus petit élément de T_2 non présent dans S

Retour sur le TRIFUSION

Théorème

L'algorithme TRIFUSION trie tout tableau de taille n en temps $O(n \log n)$.

Retour sur le TRIFUSION

Théorème

L'algorithme TRIFUSION trie tout tableau de taille n en temps $O(n\log n)$.

```
\begin{aligned} & \textbf{Algorithme}: \mathsf{TRIFUSION}(T) \\ & n \leftarrow \mathsf{taille}(T) \\ & \textbf{si} \ n = 1 \ \textbf{alors} \\ & \mid \mathsf{Retourner} \ T \\ & \textbf{sinon} \\ & \mid T_1 \leftarrow \mathsf{TRIFUSION}(T[0, \lfloor n/2 \rfloor - 1]) \\ & T_2 \leftarrow \mathsf{TRIFUSION}(T[\lfloor n/2 \rfloor, n]) \\ & \mathsf{Retourner} \ \mathsf{FUSION}(T_1, T_2) \end{aligned}
```

Preuve de correction par récurrence (facile!)

- ▶ Si n = 1, OK
- ▶ Si n > 1, $\lfloor n/2 \rfloor \le \lceil n/2 \rceil < n$, donc T_1 et T_2 triés après appels récursifs. La correction de FUSION suffit à conclure.

Retour sur le TRIFUSION

Théorème

L'algorithme TRIFUSION trie tout tableau de taille n en temps $O(n \log n)$.

```
\begin{aligned} &\textbf{Algorithme}: \mathsf{TRIFUSION}(T) \\ &n \leftarrow \mathsf{taille}(T) \\ &\textbf{si} \ n = 1 \ \textbf{alors} \\ &\mid \mathsf{Retourner} \ T \\ &\textbf{sinon} \\ &\mid T_1 \leftarrow \mathsf{TRIFUSION}(T[0, \lfloor n/2 \rfloor - 1]) \\ &\mid T_2 \leftarrow \mathsf{TRIFUSION}(T[\lfloor n/2 \rfloor, n]) \\ &\mid \mathsf{Retourner} \ \mathsf{FUSION}(T_1, T_2) \end{aligned}
```

Preuve de correction par récurrence (facile!)

- ▶ Si n = 1, OK
- ▶ Si n > 1, $\lfloor n/2 \rfloor \le \lceil n/2 \rceil < n$, donc T_1 et T_2 triés après appels récursifs. La correction de FUSION suffit à conclure.

Preuve de complexité au tableau

- **Equation de récurrence** : $T(n) \le 2T(\lceil n/2 \rceil) + O(n)$
- ► Arbre de récursion ~ estimation du temps de calcul
- Preuve par récurrence de l'estimation

1. Premier exemple : tri fusion

2. Qu'est-ce que « diviser pour régner »?

3. Deuxième exemple : multiplication d'entiers

4. Exemple spécial : Calcul de rang

- 1. **Diviser** le problème en sous-problèmes
- 2. Résoudre récursivement ces sous-problèmes
- Combiner les solutions pour reconstruire la solution du problème original.

- 1. **Diviser** le problème en sous-problèmes
- 2. Résoudre récursivement ces sous-problèmes
- Combiner les solutions pour reconstruire la solution du problème original.
- Stratégie principalement utilisée pour obtenir de meilleures complexités que celles données par un algorithme moins évolué.

- 1. **Diviser** le problème en sous-problèmes
- 2. Résoudre récursivement ces sous-problèmes
- Combiner les solutions pour reconstruire la solution du problème original.
- Stratégie principalement utilisée pour obtenir de meilleures complexités que celles données par un algorithme moins évolué.
- Exemple (un peu naïf...) : la recherche dichotomique

- 1. **Diviser** le problème en sous-problèmes
- 2. Résoudre récursivement ces sous-problèmes
- Combiner les solutions pour reconstruire la solution du problème original.
- Stratégie principalement utilisée pour obtenir de meilleures complexités que celles données par un algorithme moins évolué.
- Exemple (un peu naïf...) : la recherche dichotomique

Exemple du tri fusion

- 1. Diviser le tableau en 2 sous-tableaux de tailles environ égales
- 2. Trier récursivement chaque sous-tableau
- 3. Fusionner les sous-tableaux triés

Récurrence(s) sur la taille du problème

Récurrence(s) sur la taille du problème

Preuve de correction

Récurrence(s) sur la taille du problème

- Preuve de correction
- ▶ Complexité :
 - 1. Établir l'équation de récurrence
 - 2. Estimer le résultat (arbre de récursion, déroulement de la récurrence, habitude, ...)
 - 3. Preuve par récurrence

Récurrence(s) sur la taille du problème

- Preuve de correction
- ▶ Complexité :
 - 1. Établir l'équation de récurrence
 - 2. Estimer le résultat (arbre de récursion, déroulement de la récurrence, habitude, ...)
 - 3. Preuve par récurrence

ou

2-3. Utiliser le « master theorem »!

Une version du « master theorem »

Théorème

S'il existe trois entiers $a \ge 0$, b > 1, $d \ge 0$ et $n_0 > 0$ tels que pour tout $n \ge n_0$,

$$T(n) \leq aT(\lceil n/b \rceil) + O(n^d)$$

Alors

$$T(n) = \begin{cases} O(n^d) & \text{si } b^d > a \\ O(n^d \log n) & \text{si } b^d = a \\ O(n^{\frac{\log a}{\log b}}) & \text{si } b^d < a \end{cases}$$

Une version du « master theorem »

Théorème

S'il existe trois entiers $a \ge 0$, b > 1, $d \ge 0$ et $n_0 > 0$ tels que pour tout $n \ge n_0$,

$$T(n) \leq aT(\lceil n/b \rceil) + O(n^d)$$

Alors

$$T(n) = egin{cases} O(n^d) & ext{si } b^d > a \ O(n^d \log n) & ext{si } b^d = a \ O(n^{rac{\log a}{\log b}}) & ext{si } b^d < a \end{cases}$$

Exemple du tri fusion

►
$$T(n) \le 2T(\lceil n/2 \rceil]) + O(n)$$
: $a = 2$, $b = 2$, $d = 1$

$$b^d = a \rightsquigarrow T(n) = O(n^d \log n) = O(n \log n)$$

$$=\sum_{i=0}^\ell a^i \left(\frac{n}{b^i}\right)^d = n^d \sum_{i=0}^\ell \left(\frac{a}{b^d}\right)^i = \begin{cases} O(n^d) & \text{si } b^d > a \\ O(n\log n) & \text{si } b^d = a \\ O(n^{\log b/\log a}) & \text{si } b^d < a \end{cases}$$

En pratique

- Versions plus générales du « master theorem »
 - Récurrences plus générales
 - Constantes des « grands O »
 - Termes de plus bas degré
- Dans ce cours : étude de plusieurs exemples
 - Utilisation autorisée du « master theorem »
 - ... donc à apprendre!

Objectifs:

- Savoir tenter un « diviser pour régner »
- Savoir analyser sa complexité
- Reconnaître un algo. « diviser pour régner »

1. Premier exemple: tri fusion

2. Qu'est-ce que « diviser pour régner »?

3. Deuxième exemple : multiplication d'entiers

4. Exemple spécial : Calcul de rang

Multiplication d'entiers

Entrée Deux entiers A et B écrits en base 10

Sortie L'entier $C = A \times B$, en base 10

Multiplication d'entiers

Entrée Deux entiers A et B écrits en base 10 Sortie L'entier $C = A \times B$, en base 10

					1	3	8	2	
×					7	6	3	4	
					5	5	2	8	
+				4	1	4	6		
+			8	2	9	2			
+		9	6	7	4				
	1	0	5	5	0	1	8	8	

Multiplication d'entiers

Entrée Deux entiers A et B écrits en base 10 Sortie L'entier $C = A \times B$, en base 10

×	7634
	5528
+	4146
+	8292
+	9674
1	0550188

1382

Question

- Combien de multiplications chiffre à chiffre sont effectuées?
- Combien d'additions chiffre à chiffre sont effectuées ?

Multiplication d'entiers

Entrée Deux entiers A et B écrits en base 10 Sortie L'entier $C = A \times B$, en base 10

1382
\times 7634
5528
+ 4146
+ 8292
+ 9674
10550188

Question

- Combien de multiplications chiffre à chiffre sont effectuées?
- Combien d'additions chiffre à chiffre sont effectuées?

 $\rightsquigarrow O(n^2)$ multiplications et additions

Multiplication d'entiers

Entrée Deux entiers A et B écrits en base 10 Sortie L'entier $C = A \times B$, en base 10

1382
\times 7634
5528
+ 4146
+ 8292
+ 9674
10550188

Question

- Combien de multiplications chiffre à chiffre sont effectuées?
- Combien d'additions chiffre à chiffre sont effectuées?

 $\rightsquigarrow O(n^2)$ multiplications et additions

Peut-on faire mieux?

Entrée
$$A = \sum_{i=0}^{n-1} a_i 10^i$$
 et $B = \sum_{i=0}^{n-1} b_i 10^i$

$$A = 1382, B = 7634$$

Entrée
$$A = \sum_{i=0}^{n-1} a_i 10^i$$
 et $B = \sum_{i=0}^{n-1} b_i 10^i$
Diviser $A = A_0 + 10^{\lfloor n/2 \rfloor} A_1$
 $B = B_0 + 10^{\lfloor n/2 \rfloor} B_1$

$$A = 1382, B = 7634$$

 $A_1 = 13, A_0 = 82$
 $B_1 = 76, B_0 = 34$

Entrée
$$A = \sum_{i=0}^{n-1} a_i 10^i$$
 et $B = \sum_{i=0}^{n-1} b_i 10^i$
Diviser $A = A_0 + 10^{\lfloor n/2 \rfloor} A_1$
 $B = B_0 + 10^{\lfloor n/2 \rfloor} B_1$
Récursion $C_{00} = A_0 \times B_0$, $C_{01} = A_0 \times B_1$
 $C_{10} = A_1 \times B_0$, $C_{11} = A_1 \times B_1$

$$A = 1382, B = 7634$$
 $A_1 = 13, A_0 = 82$
 $B_1 = 76, B_0 = 34$
 $C_{00} = 2788, C_{01} = 6232$
 $C_{10} = 442, C_{11} = 988$

Entrée
$$A = \sum_{i=0}^{n-1} a_i 10^i$$
 et $B = \sum_{i=0}^{n-1} b_i 10^i$
Diviser $A = A_0 + 10^{\lfloor n/2 \rfloor} A_1$
 $B = B_0 + 10^{\lfloor n/2 \rfloor} B_1$
Récursion $C_{00} = A_0 \times B_0$, $C_{01} = A_0 \times B_1$

$$A = 1382, B = 7634$$
 $A_1 = 13, A_0 = 82$
 $B_1 = 76, B_0 = 34$
 $C_{00} = 2788, C_{01} = 6232$
 $C_{10} = 442, C_{11} = 988$
 $C = 2788 + 100 \cdot (6232 + 442) + 10000 \cdot 988$
 $= 10550188$

 $C_{10} = A_1 \times B_0, C_{11} = A_1 \times B_1$

Entrée
$$A = \sum_{i=0}^{n-1} a_i 10^i$$
 et $B = \sum_{i=0}^{n-1} b_i 10^i$
Diviser $A = A_0 + 10^{\lfloor n/2 \rfloor} A_1$
 $B = B_0 + 10^{\lfloor n/2 \rfloor} B_1$
Récursion $C_{00} = A_0 \times B_0$, $C_{01} = A_0 \times B_1$

$$A = 1382, B = 7634$$
 $A_1 = 13, A_0 = 82$
 $B_1 = 76, B_0 = 34$
 $C_{00} = 2788, C_{01} = 6232$
 $C_{10} = 442, C_{11} = 988$
 $C = 2788 + 100 \cdot (6232 + 442) + 10000 \cdot 988$
 $= 10550188$

Combiner
$$C = C_{00} + 10^{\lfloor n/2 \rfloor} (C_{01} + C_{10}) + 10^{2 \lfloor n/2 \rfloor} C_{11}$$

 $C_{10} = A_1 \times B_0$, $C_{11} = A_1 \times B_1$

Preuve de correction :

$$AB = A_0B_0 + 10^{\lfloor n/2 \rfloor} (A_0B_1 + A_1B_0) + 10^{2\lfloor n/2 \rfloor} A_1B_1$$

Première tentative

Entrée
$$A = \sum_{i=0}^{n-1} a_i 10^i$$
 et $B = \sum_{i=0}^{n-1} b_i 10^i$
Diviser $A = A_0 + 10^{\lfloor n/2 \rfloor} A_1$
 $B = B_0 + 10^{\lfloor n/2 \rfloor} B_1$

$$A = 1382, B = 7634$$

$$A_1 = 13, A_0 = 82$$

$$B_1 = 76, B_0 = 34$$

$$C_{00} = 2788, C_{01} = 6232$$

$$C_{10} = 442, C_{11} = 988$$

$$C = 2788 + 100 \cdot (6232 + 442) + 10000 \cdot 988$$

$$= 10550188$$

$$C_{10} = A_1 \times B_0, \ C_{11} = A_1 \times B_1$$
Combiner $C = C_{00} + 10^{\lfloor n/2 \rfloor} (C_{01} + C_{10}) + 10^{2 \lfloor n/2 \rfloor} C_{11}$

Preuve de correction :

Récursion $C_{00} = A_0 \times B_0$, $C_{01} = A_0 \times B_1$

$$AB = A_0 B_0 + 10^{\lfloor n/2 \rfloor} (A_0 B_1 + A_1 B_0) + 10^{2 \lfloor n/2 \rfloor} A_1 B_1$$

Preuve de complexité : $T(n) \le 4T(\lceil n/2 \rceil) + O(n)$

►
$$a = 4$$
, $b = 2$, $d = 1$: $b^d < a$

$$T(n) = O(n^{\log a/\log b}) = O(n^{\log 4/\log 2}) = O(n^2)...$$

Idée de Karatsuba (version Knuth)

$$A_0B_1 + A_1B_0 = A_0B_0 + A_1B_1 - (A_0 - A_1)(B_0 - B_1)$$

Idée de Karatsuba (version Knuth)

$$A_0B_1 + A_1B_0 = A_0B_0 + A_1B_1 - (A_0 - A_1)(B_0 - B_1)$$

- $ightharpoonup A_0B_0$ et A_1B_1 sont calculés de toute façon
- un seul produit en plus!

Idée de Karatsuba (version Knuth)

$$A_0B_1 + A_1B_0 = A_0B_0 + A_1B_1 - (A_0 - A_1)(B_0 - B_1)$$

- $ightharpoonup A_0B_0$ et A_1B_1 sont calculés de toute façon
- un seul produit en plus!
- $ightharpoonup A_0 A_1$ possède (env.) n/2 chiffres... mais peut être négatif
- on utilise la règle des signes

Entrée
$$A = \sum_{i=0}^{n-1} a_i 10^i$$
 et $B = \sum_{i=0}^{n-1} b_i 10^i$

A = 1382, B = 7634

Entrée
$$A = \sum_{i=0}^{n-1} a_i 10^i$$
 et $B = \sum_{i=0}^{n-1} b_i 10^i$
Diviser $A = A_0 + 10^{\lfloor n/2 \rfloor} A_1$
 $B = B_0 + 10^{\lfloor n/2 \rfloor} B_1$

$$A = 1382, B = 7634$$

 $A_1 = 13, A_0 = 82$
 $B_1 = 76, B_0 = 34$

Entrée
$$A = \sum_{i=0}^{n-1} a_i 10^i$$
 et $B = \sum_{i=0}^{n-1} b_i 10^i$
Diviser $A = A_0 + 10^{\lfloor n/2 \rfloor} A_1$
 $B = B_0 + 10^{\lfloor n/2 \rfloor} B_1$

Récursion
$$C_{00} = A_0 \times B_0$$
, $C_{11} = A_1 \times B_1$
 $D = (A_0 - A_1) \times (B_0 - B_1)$

$$A = 1382, B = 7634$$

 $A_1 = 13, A_0 = 82$
 $B_1 = 76, B_0 = 34$
 $C_{00} = 2788, C_{11} = 988$
 $D = 69 \times (-42) = -2898$

Entrée
$$A = \sum_{i=0}^{n-1} a_i 10^i$$
 et $B = \sum_{i=0}^{n-1} b_i 10^i$
Diviser $A = A_0 + 10^{\lfloor n/2 \rfloor} A_1$
 $B = B_0 + 10^{\lfloor n/2 \rfloor} B_1$

Entrée
$$A = \sum_{i=0}^{n-1} a_i 10^i$$
 et $B = \sum_{i=0}^{n-1} b_i 10^i$
Diviser $A = A_0 + 10^{\lfloor n/2 \rfloor} A_1$
 $B = B_0 + 10^{\lfloor n/2 \rfloor} B_1$
Récursion $C_{00} = A_0 \times B_0$, $C_{11} = A_1 \times B_1$
 $D = (A_0 - A_1) \times (B_0 - B_1)$
Combiner $C = C_{00} + 10^{\lfloor n/2 \rfloor} (C_{00} + C_{11} - D) + 10^{2\lfloor n/2 \rfloor} C_{11}$

A = 1382. B = 7634

Entrée
$$A = \sum_{i=0}^{n-1} a_i 10^i$$
 et $B = \sum_{i=0}^{n-1} b_i 10^i$
Diviser $A = A_0 + 10^{\lfloor n/2 \rfloor} A_1$
 $B = B_0 + 10^{\lfloor n/2 \rfloor} B_1$
Récursion $C_{00} = A_0 \times B_0$, $C_{11} = A_1 \times B_1$

```
A = 1382, B = 7634
A_1 = 13, A_0 = 82
B_1 = 76, B_0 = 34
C_{00} = 2788, C_{11} = 988
D = 69 \times (-42) = -2898
C = 2788 + 100 \cdot (2788 + 988 + 2898) + 10000 \cdot 988
= 10550188
```

Combiner
$$C = C_{00} + 10^{\lfloor n/2 \rfloor} (C_{00} + C_{11} - D) + 10^{2 \lfloor n/2 \rfloor} C_{11}$$

 $D = (A_0 - A_1) \times (B_0 - B_1)$

```
Algorithme: Karatsuba(A, B)

si A et B n' ont qu' un chiffre alors retourner a_0b_0

Écrire A sous la forme A_0 + 10^{\lfloor n/2 \rfloor}A_1

Écrire B sous la forme B_0 + 10^{\lfloor n/2 \rfloor}B_1

C_{00} \leftarrow \text{Karatsuba}(A_0, B_0)

C_{11} \leftarrow \text{Karatsuba}(A_1, B_1)

D \leftarrow \text{Karatsuba}(|A_0 - A_1|, |B_0 - B_1|)

s \leftarrow \text{signe}(A_0 - A_1) \times \text{signe}(B_0 - B_1)

retourner C_{00} + 10^{\lfloor n/2 \rfloor}(C_{00} + C_{11} - sD) + 10^{2\lfloor n/2 \rfloor}C_{11}
```

Terminaison de l'algorithme de Karatsuba

```
Algorithme: Karatsuba(A, B) si A et B n'ont qu'un chiffre alors retourner a_0b_0 Écrire A sous la forme A_0 + 10^{\lfloor n/2 \rfloor}A_1 Écrire B sous la forme B_0 + 10^{\lfloor n/2 \rfloor}B_1 C_{00} \leftarrow \text{Karatsuba}(A_0, B_0) C_{11} \leftarrow \text{Karatsuba}(A_1, B_1) D \leftarrow \text{Karatsuba}(|A_0 - A_1|, |B_0 - B_1|) s \leftarrow \text{signe}(A_0 - A_1) \times \text{signe}(B_0 - B_1) retourner C_{00} + 10^{\lfloor n/2 \rfloor}(C_{00} + C_{11} - sD) + 10^{2\lfloor n/2 \rfloor}C_{11}
```

Lemme (terminaison)

Pour n > 1, $|A_0 - A_1|$ et $|B_0 - B_1|$ ont < n chiffres.

Preuve : $-10^{\lceil n/2 \rceil} \le A_0 - A_1 \le 10^{\lfloor n/2 \rfloor}$ et $\lceil n/2 \rceil < n$ pour n > 1.

Terminaison de l'algorithme de Karatsuba

```
Algorithme: Karatsuba(A, B) si A et B n'ont qu'un chiffre alors retourner a_0b_0 Écrire A sous la forme A_0 + 10^{\lfloor n/2 \rfloor} A_1 Écrire B sous la forme B_0 + 10^{\lfloor n/2 \rfloor} B_1 C_{00} \leftarrow \text{Karatsuba}(A_0, B_0) C_{11} \leftarrow \text{Karatsuba}(A_1, B_1) D \leftarrow \text{Karatsuba}(|A_0 - A_1|, |B_0 - B_1|) s \leftarrow \text{signe}(A_0 - A_1) \times \text{signe}(B_0 - B_1) retourner C_{00} + 10^{\lfloor n/2 \rfloor} (C_{00} + C_{11} - sD) + 10^{2\lfloor n/2 \rfloor} C_{11}
```

Lemme (terminaison)

Pour n > 1, $|A_0 - A_1|$ et $|B_0 - B_1|$ ont < n chiffres.

Preuve : $-10^{\lceil n/2 \rceil} \le A_0 - A_1 \le 10^{\lfloor n/2 \rfloor}$ et $\lceil n/2 \rceil < n$ pour n > 1.

Corollaire

L'algorithme KARATSUBA termine.

Preuve : appels récursifs sur des entiers strictement plus petits

Correction de l'algorithme de Karatsuba

```
Algorithme: Karatsuba(A, B) si A et B n' ont qu' un chiffre alors retourner a_0b_0 Écrire A sous la forme A_0+10^{\lfloor n/2\rfloor}A_1 Écrire B sous la forme B_0+10^{\lfloor n/2\rfloor}B_1 C_{00} \leftarrow \text{Karatsuba}(A_0, B_0) C_{11} \leftarrow \text{Karatsuba}(A_1, B_1) D \leftarrow \text{Karatsuba}(|A_0 - A_1|, |B_0 - B_1|) s \leftarrow \text{signe}(A_0 - A_1) \times \text{signe}(B_0 - B_1) retourner C_{00}+10^{\lfloor n/2\rfloor}(C_{00}+C_{11}-sD)+10^{2\lfloor n/2\rfloor}C_{11}
```

Lemme (complexité)

Soit K(n) le temps de calcul de KARATSUBA pour des entrées de taille n. Alors $K(n) \leq 3K(\lceil n/2 \rceil) + O(n)$

Correction de l'algorithme de Karatsuba

```
Algorithme: Karatsuba(A, B) si A et B n' ont qu' un chiffre alors retourner a_0b_0 Écrire A sous la forme A_0 + 10^{\lfloor n/2 \rfloor} A_1 Écrire B sous la forme B_0 + 10^{\lfloor n/2 \rfloor} B_1 C_{00} \leftarrow \text{Karatsuba}(A_0, B_0) C_{11} \leftarrow \text{Karatsuba}(A_1, B_1) D \leftarrow \text{Karatsuba}(|A_0 - A_1|, |B_0 - B_1|) s \leftarrow \text{signe}(A_0 - A_1) \times \text{signe}(B_0 - B_1) retourner C_{00} + 10^{\lfloor n/2 \rfloor} (C_{00} + C_{11} - sD) + 10^{2\lfloor n/2 \rfloor} C_{11}
```

Lemme (complexité)

Soit K(n) le temps de calcul de KARATSUBA pour des entrées de taille n. Alors $K(n) \leq 3K(\lceil n/2 \rceil) + O(n)$

Corollaire (master theorem)

$$K(n) = O(n^{\log 3/\log 2}) = O(n^{\log 3}) \simeq O(n^{1.58})$$

- ▶ Base $10 \rightsquigarrow \text{bases } 2^{32}, 2^{64}, \dots$
 - ▶ Grands entiers représentés comme liste d'entiers de taille k bits \iff entiers écrits en base 2^k !
 - ▶ Exemple : gmp (C/C++), BigInteger (Java), int (Python)

- ▶ Base $10 \rightsquigarrow \text{bases } 2^{32}, 2^{64}, \dots$
 - ▶ Grands entiers représentés comme liste d'entiers de taille k bits ⇔ entiers écrits en base 2^k!
 - ▶ Exemple : gmp (C/C++), BigInteger (Java), int (Python)
- Remarque par rapport au modèle
 - Modèle du cours : multiplication en temps O(1)
 - Irréaliste pour de grands entiers
 - Modèle souvent utilisé : taille d'un registre = $O(\log n)$

- ▶ Base $10 \rightsquigarrow \text{bases } 2^{32}, 2^{64}, \dots$
 - ▶ Grands entiers représentés comme liste d'entiers de taille k bits ⇔ entiers écrits en base 2^k!
 - Exemple : gmp (C/C++), BigInteger (Java), int (Python)
- Remarque par rapport au modèle
 - Modèle du cours : multiplication en temps O(1)
 - Irréaliste pour de grands entiers
 - Modèle souvent utilisé : taille d'un registre = $O(\log n)$
- Autre utilisation : polynômes

- ▶ Base $10 \rightsquigarrow \text{bases } 2^{32}, 2^{64}, \dots$
 - ▶ Grands entiers représentés comme liste d'entiers de taille k bits ⇔ entiers écrits en base 2^k!
 - Exemple : gmp (C/C++), BigInteger (Java), int (Python)
- Remarque par rapport au modèle
 - Modèle du cours : multiplication en temps O(1)
 - Irréaliste pour de grands entiers
 - ► Modèle souvent utilisé : taille d'un registre = $O(\log n)$
- Autre utilisation : polynômes
- ► Algorithmes plus rapides (1960's)
 - ► Toom-3 : découpe en 3 morceaux
 - ► Toom-Cook : découpe en *r* morceaux

- $O(n^{1,465}) \ O(n^{1+\epsilon})$
- Algorithmes basés sur la FFT $O(n \log n \log \log n)$

- ▶ Base $10 \rightsquigarrow \text{bases } 2^{32}, 2^{64}, \dots$
 - ▶ Grands entiers représentés comme liste d'entiers de taille k bits ⇔ entiers écrits en base 2^k!
 - Exemple : gmp (C/C++), BigInteger (Java), int (Python)
- Remarque par rapport au modèle
 - Modèle du cours : multiplication en temps O(1)
 - Irréaliste pour de grands entiers
 - Modèle souvent utilisé : taille d'un registre = $O(\log n)$
- Autre utilisation : polynômes
- Algorithmes plus rapides (1960's)
 - ► Toom-3 : découpe en 3 morceaux
 - ► Toom-Cook : découpe en *r* morceaux
 - Algorithmes basés sur la FFT
 - ▶ Record actuel (2018), utilise la FFT

- $O(n^{1,465})$ $O(n^{1+\epsilon})$
- $O(n \log n \log \log n)$
- $O(n\log n2^{2\log^*(n)})$

1. Premier exemple: tri fusion

2. Qu'est-ce que « diviser pour régner »?

3. Deuxième exemple : multiplication d'entiers

4. Exemple spécial : Calcul de rang

Entrée Un tableau T de n nombres, et un entier $k \in \{1, ..., n\}$ Sortie le $k^{\text{ème}}$ plus petit élément de T, noté $\operatorname{rang}(k, T)$

Entrée Un tableau T de n nombres, et un entier $k \in \{1, ..., n\}$ Sortie le $k^{\text{ème}}$ plus petit élément de T, noté $\operatorname{rang}(k, T)$

Algorithme en $O(n^2)$:

Entrée Un tableau T de n nombres, et un entier $k \in \{1, ..., n\}$ Sortie le $k^{\text{ème}}$ plus petit élément de T, noté $\operatorname{rang}(k, T)$

Algorithme en $O(n^2)$:

Algorithme en $O(n \log n)$:

```
Trier T retourner T[k-1]
```

Entrée Un tableau T de n nombres, et un entier $k \in \{1, ..., n\}$ Sortie le $k^{\text{ème}}$ plus petit élément de T, noté $\operatorname{rang}(k, T)$

Algorithme en $O(n^2)$:

Algorithme en $O(n \log n)$:

```
Trier T retourner T[k-1]
```

Algorithme en O(n)?

Diviser Choisir un **pivot** $p \in T$ pour séparer T en trois :

- **T**inf qui contient les éléments x de T vérifiant x < p
- **T**_{eq} qui contient les éléments x de T vérifiant x = p
- **T**_{sup} qui contient les éléments x de T vérifiant x > p

Diviser Choisir un **pivot** $p \in T$ pour séparer T en trois :

- ▶ T_{inf} qui contient les éléments x de T vérifiant x < p
- **T**_{eq} qui contient les éléments x de T vérifiant x = p
- **T**_{sup} qui contient les éléments x de T vérifiant x > p

Récursion Trouver rang(k, T) dans T_{inf} , T_{eq} ou T_{sup}

$$\operatorname{rang}(k,T) = \begin{cases} \operatorname{rang}(k,T_{\operatorname{inf}}) & \text{si } k \leq n_{\operatorname{inf}} \\ p & \text{si } n_{\operatorname{inf}} < k \leq n_{\operatorname{inf}} + n_{\operatorname{eq}} \\ \operatorname{rang}(k-n_{\operatorname{inf}}-n_{\operatorname{eq}},T_{\operatorname{sup}}) & \text{si } n_{\operatorname{inf}} + n_{\operatorname{eq}} < k \end{cases}$$

où
$$n_{inf} = |T_{inf}|$$
, $n_{eq} = |T_{eq}|$, $n_{sup} = |T_{sup}|$

Diviser Choisir un **pivot** $p \in T$ pour séparer T en trois :

- **T**inf qui contient les éléments x de T vérifiant x < p
- **T**_{eq} qui contient les éléments x de T vérifiant x = p
- ▶ T_{sup} qui contient les éléments x de T vérifiant x > p

Récursion Trouver rang(k, T) dans T_{inf} , T_{eq} ou T_{sup}

$$\operatorname{rang}(k,T) = \begin{cases} \operatorname{rang}(k,T_{\operatorname{inf}}) & \text{si } k \leq n_{\operatorname{inf}} \\ p & \text{si } n_{\operatorname{inf}} < k \leq n_{\operatorname{inf}} + n_{\operatorname{eq}} \\ \operatorname{rang}(k-n_{\operatorname{inf}}-n_{\operatorname{eq}},T_{\operatorname{sup}}) & \text{si } n_{\operatorname{inf}}+n_{\operatorname{eq}} < k \end{cases}$$

où
$$n_{inf} = |T_{inf}|$$
, $n_{eq} = |T_{eq}|$, $n_{sup} = |T_{sup}|$

Combiner Rien à faire...

Diviser Choisir un **pivot** $p \in T$ pour séparer T en trois :

- **T**inf qui contient les éléments x de T vérifiant x < p
- **T**_{eq} qui contient les éléments x de T vérifiant x = p
- **T**_{sup} qui contient les éléments x de T vérifiant x > p

Récursion Trouver rang(k, T) dans T_{inf} , T_{eq} ou T_{sup}

$$\operatorname{rang}(k,T) = \begin{cases} \operatorname{rang}(k,T_{\operatorname{inf}}) & \text{si } k \leq n_{\operatorname{inf}} \\ p & \text{si } n_{\operatorname{inf}} < k \leq n_{\operatorname{inf}} + n_{\operatorname{eq}} \\ \operatorname{rang}(k-n_{\operatorname{inf}}-n_{\operatorname{eq}},T_{\operatorname{sup}}) & \text{si } n_{\operatorname{inf}} + n_{\operatorname{eq}} < k \end{cases}$$

où $n_{inf} = |T_{inf}|$, $n_{eq} = |T_{eq}|$, $n_{sup} = |T_{sup}|$

Combiner Rien à faire...

Question importante: quel choix pour le pivot?

L'algorithme

```
Algorithme: RANG(T, k)
si k=1 alors retourner T[0]
p \leftarrow \mathsf{ChoixPivot}(T)
n_{\rm inf} \leftarrow 0, \; n_{\rm eq} \leftarrow 0
pour i = 0 à n - 1 faire
    si T[i] < p alors n_{\inf} \leftarrow n_{\inf} + 1
    sinon si T[i] = p alors n_{eq} \leftarrow n_{eq} + 1
si k < n_{inf} alors
     Calculer T_{inf} et retourner RANG(T_{inf}, k)
sinon si n_{inf} < k \le n_{inf} + n_{eq} alors
     retourner p
sinon
    Calculer T_{\text{sup}} et retourner RANG(T_{\text{sup}}, k - n_{\text{inf}} - n_{\text{eq}})
```

Lemme

$$\operatorname{rang}(k, T) = \begin{cases} \operatorname{rang}(k, T_{inf}) & \text{si } k \leq n_{inf} \\ p & \text{si } n_{inf} < k \leq n_{inf} + n_{eq} \\ \operatorname{rang}(k - n_{inf} - n_{eq}, T_{sup}) & \text{si } n_{inf} + n_{eq} < k \end{cases}$$

Lemme

$$\operatorname{rang}(k, T) = \begin{cases} \operatorname{rang}(k, T_{inf}) & \text{si } k \leq n_{inf} \\ p & \text{si } n_{inf} < k \leq n_{inf} + n_{eq} \\ \operatorname{rang}(k - n_{inf} - n_{eq}, T_{sup}) & \text{si } n_{inf} + n_{eq} < k \end{cases}$$

Preuve

Cas 1
$$(k \le n_{\inf})$$
: soit $r = \operatorname{rang}(k, T_{\inf})$
Si $x \in T_{\operatorname{eq}} \cup T_{\sup}$, $x > r$; et il y a k éléments $\le r$ dans T_{\inf} ; donc il y a k éléments $\le r$ dans T

Lemme

$$\operatorname{rang}(k, T) = \begin{cases} \operatorname{rang}(k, T_{inf}) & \text{si } k \leq n_{inf} \\ p & \text{si } n_{inf} < k \leq n_{inf} + n_{eq} \\ \operatorname{rang}(k - n_{inf} - n_{eq}, T_{sup}) & \text{si } n_{inf} + n_{eq} < k \end{cases}$$

Preuve

- Cas 1 $(k \le n_{\inf})$: soit $r = \operatorname{rang}(k, T_{\inf})$ Si $x \in T_{\operatorname{eq}} \cup T_{\sup}$, x > r; et il y a k éléments $\le r$ dans T_{\inf} ; donc il y a k éléments $\le r$ dans T
- Cas 2 $(n_{\inf} < k \le n_{\inf} + n_{eq})$: soit r = pSi $x \in T_{\sup}$, x > r; et il y a $n_{\inf} < k$ éléments < r dans T_{\inf} , et n_{eq} éléments égaux à r dans T_{eq} ; donc $\operatorname{rang}(k, T) \in T_{eq}$

Lemme

rang
$$(k, T) = \begin{cases} \operatorname{rang}(k, T_{inf}) & \text{si } k \leq n_{inf} \\ p & \text{si } n_{inf} < k \leq n_{inf} + n_{eq} \\ \operatorname{rang}(k - n_{inf} - n_{eq}, T_{sup}) & \text{si } n_{inf} + n_{eq} < k \end{cases}$$

Preuve

- Cas 1 $(k \le n_{inf})$: soit $r = rang(k, T_{inf})$ Si $x \in T_{ea} \cup T_{sup}$, x > r; et il y a k éléments $\leq r$ dans T_{inf} ; donc il y a k éléments $\leq r$ dans T
- Cas 2 $(n_{inf} < k \le n_{inf} + n_{eq})$: soit r = pSi $x \in T_{\text{sup}}$, x > r; et il y a $n_{\text{inf}} < k$ éléments < r dans T_{inf} , et n_{eq} éléments égaux à r dans T_{eq} ; donc $rang(k, T) \in T_{eq}$
- Cas 3 $(n_{inf} + n_{eq} < k)$ soit $r = rang(k n_{inf} n_{eq}, T_{sup})$ il y a $n_{\inf} + n_{eq} < k$ éléments < r dans $T_{\inf} \cup T_{eq}$; il y a $k - n_{\inf} - n_{eq}$ éléments $\leq r$ dans T_{\sup} ; donc $k - n_{\inf} - n_{ea} + (n_{\inf} + n_{eq}) = k$ éléments $\leq r$ au total

► Calculer n_{inf} , n_{eq} , T_{inf} , T_{sup} : O(n)

Algorithme: $\mathsf{RANG}(T,k)$ si k=1 alors retourner T[0] $p \leftarrow \mathsf{CHOIXPIVOT}(T)$ Calculer n_{inf} et n_{eq} si $k \leq n_{\mathsf{inf}}$ alors retourner $\mathsf{RANG}(T_{\mathsf{inf}},k)$ si $n_{\mathsf{inf}} < k \leq n_{\mathsf{inf}} + n_{\mathsf{eq}}$ alors retourner p sinon retourner $\mathsf{RANG}(T_{\mathsf{sup}}, k - n_{\mathsf{inf}} - n_{\mathsf{eq}})$

- ► Calculer n_{inf} , n_{eq} , T_{inf} , T_{sup} : O(n)
- ▶ Un appel récursif (au pire) sur T_{inf} ou T_{sup} , de taille n':

$$t(n)=t(n')+O(n)$$

```
Algorithme: RANG(T, k)

si k = 1 alors retourner T[0]
p \leftarrow \text{CHOIXPIVOT}(T)

Calculer n_{\text{inf}} et n_{\text{eq}}

si k \leq n_{\text{inf}} alors retourner RANG(T_{\text{inf}}, k)

si n_{\text{inf}} < k \leq n_{\text{inf}} + n_{\text{eq}} alors retourner p

sinon retourner RANG(T_{\text{sup}}, k - n_{\text{inf}} - n_{\text{eq}})
```

- ► Calculer n_{inf} , n_{eq} , T_{inf} , T_{sup} : O(n)
- ▶ Un appel récursif (au pire) sur T_{inf} ou T_{sup} , de taille n':

$$t(n) = t(n') + O(n)$$

- Cas idéal : $n' = n/2 \rightsquigarrow t(n) = O(n)$ (master theorem)
- Pire cas : $n' = n 1 \rightsquigarrow t(n) = O(n^2)$ (à la main)

```
Algorithme: RANG(T, k)

si k = 1 alors retourner T[0]

p \leftarrow \text{CHOIXPIVOT}(T)

Calculer n_{\text{inf}} et n_{\text{eq}}

si k \leq n_{\text{inf}} alors retourner RANG(T_{\text{inf}}, k)

si n_{\text{inf}} < k \leq n_{\text{inf}} + n_{\text{eq}} alors retourner p

sinon retourner RANG(T_{\text{sup}}, k - n_{\text{inf}} - n_{\text{eq}})
```

- ► Calculer n_{inf} , n_{eq} , T_{inf} , T_{sup} : O(n)
- ▶ Un appel récursif (au pire) sur T_{inf} ou T_{sup} , de taille n':

$$t(n) = t(n') + O(n)$$

- ► Cas idéal : $n' = n/2 \rightsquigarrow t(n) = O(n)$ (master theorem) ► Pire cas : $n' = n - 1 \rightsquigarrow t(n) = O(n^2)$ (à la main)
- But : choix de pivot pour minimiser n'!

 $\textbf{Algorithme}: \mathsf{CHOIXPIVOT}(T)$

retourner T[0]

 $\begin{aligned} \textbf{Algorithme} &: \mathsf{CHOIXPIVOT}(T) \\ \textbf{retourner} & T[0] \end{aligned}$

Complexité

► Cas le pire : tableau initialement trié

$$\rightarrow$$
 $n' = n - 1$, donc $t(n) = O(n^2)$

Complexité

Cas le pire : tableau initialement trié

$$\rightarrow$$
 $n' = n - 1$, donc $t(n) = O(n^2)$

▶ Si tableau aléatoire : on peut montrer que $\mathbb{E}[n'] = n/2$

$$\rightsquigarrow t(n) = O(n) \ll \text{en moyenne} \gg$$

Algorithme : CHOIXPIVOT(T) retourner T[0]

Complexité

Cas le pire : tableau initialement trié

$$\rightarrow$$
 $n' = n - 1$, donc $t(n) = O(n^2)$

▶ Si tableau aléatoire : on peut montrer que $\mathbb{E}[n'] = n/2$

$$\rightarrow$$
 $t(n) = O(n) \ll \text{en moyenne} \gg$

Choix correct si les tableaux sont aléatoires, mais en pratique ce n'est rarement le cas!

```
Algorithme: CHOIXPIVOT(T)
j \leftarrow entier aléatoire entre 0 et n-1
retourner T[j]
```

```
Algorithme: CHOIXPIVOT(T)

j \leftarrow entier aléatoire entre 0 et n-1

retourner T[j]
```

Complexité

► Cas le pire : si on manque de chance

$$\rightarrow$$
 $n' = n - 1$, donc $t(n) = O(n^2)$

 $\begin{aligned} &\textbf{Algorithme}: \mathsf{CHOIXPIVOT}(T) \\ &j \leftarrow \mathsf{entier} \ \mathsf{al\'eatoire} \ \mathsf{entre} \ 0 \ \mathsf{et} \ n-1 \\ &\textbf{retourner} \ T[j] \end{aligned}$

Complexité

Cas le pire : si on manque de chance

$$\rightarrow$$
 $n' = n - 1$, donc $t(n) = O(n^2)$

- ▶ Mais avec probabilité $1/2 : n' \ge n/4$
- \rightarrow t(n) = O(n) avec « bonne probabilité »

Algorithme : CHOIXPIVOT(
$$T$$
) $j \leftarrow$ entier aléatoire entre 0 et $n-1$ retourner $T[j]$

Complexité

Cas le pire : si on manque de chance

$$\rightarrow$$
 $n' = n - 1$, donc $t(n) = O(n^2)$

- ▶ Mais avec probabilité $1/2: n' \ge n/4$
- \rightarrow t(n) = O(n) avec « bonne probabilité »

Bon choix, quelque soit le tableau, mais difficile à analyser

```
Algorithme: CHOIXPIVOT(T)
j \leftarrow \text{entier al\'eatoire entre 0 et } n-1
Calculer n_{\text{inf}} et n_{\text{sup}} avec pivot T[j]
si n_{inf} \leq 3n/4 et n_{\text{sup}} \leq 3n/4 alors retourner T[j]
sinon retourner CHOIXPIVOT(T)
```

```
Algorithme : CHOIXPIVOT(T)

j \leftarrow entier aléatoire entre 0 et n-1

Calculer n_{\text{inf}} et n_{\text{sup}} avec pivot T[j]

si n_{inf} \leq 3n/4 et n_{\text{sup}} \leq 3n/4 alors retourner T[j]

sinon retourner CHOIXPIVOT(T)
```

- ightharpoonup Cas le pire : n' = 3n/4
- ightharpoonup Coût de ChoixPivot : O(n) fois le nombre d'essais
- ightharpoonup En moyenne 2 tentatives pour j car réussite avec proba. 1/2

```
Algorithme: ChoixPivot(T) j \leftarrow entier aléatoire entre 0 et n-1 Calculer n_{\inf} et n_{\sup} avec pivot T[j] si n_{\inf} \leq 3n/4 et n_{\sup} \leq 3n/4 alors retourner T[j] sinon retourner ChoixPivot(T)
```

- ightharpoonup Cas le pire : n' = 3n/4
- Coût de CHOIXPIVOT : O(n) fois le nombre d'essais
- En moyenne 2 tentatives pour j car réussite avec proba. 1/2
- $ightharpoonup \mathbb{E}[t(n)] \leq \mathbb{E}[t(3n/4)] + O(n) \leadsto \mathbb{E}[t(n)] = O(n) \text{ (master thm)}$

```
Algorithme : CHOIXPIVOT(T)

j \leftarrow entier aléatoire entre 0 et n-1

Calculer n_{\text{inf}} et n_{\text{sup}} avec pivot T[j]

si n_{inf} \leq 3n/4 et n_{\text{sup}} \leq 3n/4 alors retourner T[j]

sinon retourner CHOIXPIVOT(T)
```

Complexité

- ightharpoonup Cas le pire : n' = 3n/4
- Coût de CHOIXPIVOT : O(n) fois le nombre d'essais
- ▶ En moyenne 2 tentatives pour j car réussite avec proba. 1/2
- $ightharpoonup \mathbb{E}[t(n)] \leq \mathbb{E}[t(3n/4)] + O(n) \leadsto \mathbb{E}[t(n)] = O(n) \text{ (master thm)}$

Bon choix, facile à analyser. En pratique, préférer le précédent!


```
Algorithme: CHOIXPIVOT(T)
pour i = 0 à \lceil n/5 \rceil - 1 faire
    m_i \leftarrow \text{MEDIANE}(T[5i, 5i + 4])
retourner MEDIANE([m_0, \ldots, m_{\lceil n/5 \rceil - 1}])
```

```
Algorithme : CHOIXPIVOT(T)

pour i = 0 à \lceil n/5 \rceil - 1 faire

\lfloor m_i \leftarrow \mathsf{MEDIANE}(T[5i, 5i + 4])

retourner MEDIANE([m_0, \dots, m_{\lceil n/5 \rceil - 1}])
```

$$(Mediane(T) = Rang(T, \lfloor n/2 \rfloor))$$

- ▶ Cas le pire : on peut montrer que $n' \le 7n/10 + 6$ (pas si facile)
- ► Coût de CHOIXPIVOT : $O(n) + t(\lceil n/5 \rceil)$

```
Algorithme : CHOIXPIVOT(T)

pour i = 0 à \lceil n/5 \rceil - 1 faire

\lfloor m_i \leftarrow \mathsf{MEDIANE}(T[5i,5i+4])

retourner \mathsf{MEDIANE}([m_0,\ldots,m_{\lceil n/5 \rceil-1}])
```

$$(Mediane(T) = Rang(T, \lfloor n/2 \rfloor))$$

- ▶ Cas le pire : on peut montrer que $n' \le 7n/10 + 6$ (pas si facile)
- Coût de CHOIXPIVOT : $O(n) + t(\lceil n/5 \rceil)$

►
$$t(n) \le t(7n/10+6) + t(\lceil n/5 \rceil) + O(n)$$

 $\Rightarrow t(n) = O(n)$ (par récurrence pas si facile)

Algorithme : CHOIXPIVOT(T)pour i = 0 à $\lceil n/5 \rceil - 1$ faire $\lfloor m_i \leftarrow \mathsf{MEDIANE}(T[5i,5i+4])$ retourner $\mathsf{MEDIANE}([m_0,\ldots,m_{\lceil n/5 \rceil-1}])$

$$(Mediane(T) = Rang(T, \lfloor n/2 \rfloor))$$

Complexité

- ► Cas le pire : on peut montrer que $n' \le 7n/10 + 6$ (pas si facile)
- Coût de CHOIXPIVOT : $O(n) + t(\lceil n/5 \rceil)$
- ► $t(n) \le t(7n/10+6) + t(\lceil n/5 \rceil) + O(n)$ t(n) = O(n) (par récurrence pas si facile)

Algorithme déterministe : bien en théorie, moins en pratique!

Récapitulatif

Théorème

RANG(T,k) retourne le $k^{\grave{e}me}$ élément de T. En fonction de CHOIXPIVOT, sa complexité peut être

- ▶ $O(n^2)$ dans le pire des cas mais O(n) « en moyenne »
- ▶ O(n) avec bonne probabilité, pour tout tableau
- O(n) de manière déterministe, pour tout tableau

Récapitulatif

Théorème

RANG(T,k) retourne le $k^{\text{ème}}$ élément de T. En fonction de CHOIXPIVOT, sa complexité peut être

- ▶ $O(n^2)$ dans le pire des cas mais O(n) « en moyenne »
- O(n) avec bonne probabilité, pour tout tableau
- O(n) de manière déterministe, pour tout tableau

Remarques

- ▶ Le choix de pivot T[0] fonctionne avec bonne probabilité si on mélange aléatoirement T au début
- ► Version plus complexe de cet algorithme : tri QUICKSORT