Mating Scheme For Production Of HbA Replacement Mice

FIG. 1

Mouse $\beta KO/human \beta$ replacement

Human Replacement Of The Mouse β -Globin Locus

Human Replacement Of The Mouse α -Globin Locus

T. Q. +

Production Of Transgenic HbF — HbA Mice (Doubly Homozygous For Mouse α-Globin And β-Globin Deletions)

HbF—HbA:
$$\alpha^{\alpha/9}$$
: $\beta^{\alpha/9}$

HbF—HbA: $\alpha^{\alpha/9}$: $\beta^{\alpha/9}$

FIG. 5

Isoelectric Focusing Gel Of Transgenic Mouse Hemolysates

1 2 3 4

1. Mouse Control

2. HbF \rightarrow HbA: $\alpha^{+/+}$: $\beta^{+/+}$ Mouse

3. HbF→HbA: α⁰/o: βα/o Mouse
4. Human AA Control

YAC select for URA3+ Select for URAZ BAC

ş;

÷

FIG. 10

C57BL/6 Control Mouse FIG. 11A mα hβs mβ $h\alpha \\$ h^y $\begin{array}{cc} \text{HbS3} \\ \text{m}\alpha^{\text{o}\prime +} & \text{m}\beta^{\text{o}\prime +} \end{array}$ FIG. 11B O O FIG. 11C F F hα h^Δγ $\begin{array}{cc} \text{HbS3} \\ \text{m}\alpha^{\text{o/o}} & \text{m}\beta^{\text{o/o}} \end{array}$ FIG. 11D $h\alpha h^G\gamma h^A\gamma$ hβs Human HbSS Control

 $m\alpha$ mβ

FIG. 13

FIG. 14A

FIG. 14B

Hemoglobin Switching In HbA Mice

FIG. 15

Increasing HbF Levels In HbS Mice: Crossing The HbS 3 and HbF Lines

FIG. 16