ASTR3010 - 08/17 Calculating FOV: Review

→ we can use the following formula to compute the true field of view:

field of view = $\frac{\text{apparent field of view}}{\text{magnification}}$

ation] usually provided by manufacturer

eyepieces have apparent FOVs: number of charges of sky your eyepiece would show if held chirectly up to sky.

→ not always specified!

→ a decent assumption for cheap scopes is 50°.

· true field of view:

→ number of degrees visible when eyepted is used with telescope.

→ given by dividing A row by the magnification the eyepted provides when used with the telescope

· magnification:

recall: we can compute the combined eyeptece—telescope magnification as follows—

focal length of telescope

m net focal length of telescope

→ we can alternatively use a different formula:

field of view = 2 arctan
$$\frac{r}{f_{telescope}}$$
 $f_t = telescope focal ranges$

→ equipment information:

· Celestron Firstecope · Eyepiece 1 · Eyepiece 2 · Wide Angle Eyepiece

⇒ highest mag = $180 \times$ → mag = $15 \times$ → mag = $75 \times$ → A FOV = 62° ⇒ lowest mag = $11 \times$ → AFOV = 52° → AFOV = 50°

⇒ FOV of telescope & everyers 1:

$$m_{net} = \frac{f_e}{f_{gt}} = \frac{360 \text{ mm}}{200 \text{ mm}} = 15 \text{ X}$$

FOV $f_{ge} = \frac{460 \text{ et}}{m_{net}} = \frac{52}{15} = 3.46 \text{ o}$

FOV of telescope & everyers 2:

 $m_{net} = \frac{f_e}{f_{gg}} = \frac{300 \text{ mm}}{m_{net}} = \frac{75 \text{ x}}{400 \text{ mm}} = \frac{75 \text{ x}}{400 \text{ mm}}$

FOV of telescope & everyers 3:

 $m_{net} = \frac{f_e}{f_{gg}} = \frac{300 \text{ mm}}{m_{net}} = \frac{75 \text{ x}}{45} = \frac{2}{3} = 0.5 \text{ o}$

FOV of telescope & everyers 3:

 $m_{net} = \frac{f_e}{f_{gg}} = \frac{300 \text{ mm}}{230 \text{ mm}} = \frac{200}{23} \approx 13 \text{ x}$

FOV $f_{e, gg} = \frac{470 \text{ y}}{m_{net}} = \frac{62}{300 \text{ mm}} = \frac{230}{300 \text{ y/s}} \approx 13 \text{ x}$

FOV $f_{e, gg} = \frac{470 \text{ y}}{m_{net}} = \frac{62}{300 \text{ mm}} = \frac{200}{300 \text{ y/s}} \approx 13 \text{ x}$

FOV $f_{e, gg} = \frac{470 \text{ y}}{m_{net}} = \frac{62}{300 \text{ mm}} = \frac{2713}{300 \text{ y/s}} = 4.753 \text{ o}$

⇒ we must also consider how my smartprove cometa may effect this process:

∴ iPhotosa its Pro

∴ $f_{e, gg} = \frac{24 \text{ mm}}{m_{eff}} = \frac{24$

		mus								_			Bates	10.4	2)								
bia	xel a	ale =	200	60		OV					,	CO	mpu	ea	9100	æ							
							CCE																
			وا	4	8,0	Ω,	000	ρίν	els	tot	al ir	a	4:3	de	facul	t 80	pec	t ne	Office	mea	SUE.	9	
				• 1	non	2. F	o ixel	S =	4	8 m(. (4		_ :	≈ 8	064	र्यव	sels			
									N		3			42	+ 3	2			Ľ				
٠٠,	Dixe	scal	e_	= 1	2,49	2"	≈ I.	35	arc	sec.	Obse	21											
	Pixel	SCS	e	= 3	2,41	2"	≈ 0	.30	anc	sec/	Obse	ed .											
			2		806	1 Px																	
	pixel	الحموا	2 :	= 1	7,10)" .	≈ 2.	12	ancs	sec/	Dive	1											
			3	١	306r	Рх																	