Adversarially Learned One-Class Classifier for Novelty Detection

Арсений Белков Б01-901

Novelty Detection

- Novelty Detection процесс обнаружения данных, которые отличаются от тех, что используются для обучения (target class).
- Эту задачу можно решать как one class классификацию

Target class

Outlier

Предложенный метод

R Network

Encoder:

Сверточная сеть с BatchNorm2d и LeakyReLU в качестве функции активации.

Decoder:

Сверточная сеть с transposed convolution, BatchNorm2d, LeakyRelu.

D Network

CNN:

Сверточная сеть с LeakyReLU и BatchNorm2d.

Классификатор:

Полносвязная сеть с Sigmoid

Обучение

- Из данных сэмплируется $X \sim p_t$
- Создается копия и зашумляется $ilde{X} = (X \sim p_t) + \left(n \sim \mathcal{N}(0, \sigma^2 \mathbf{I})\right)$

- Восстанавливаем $X: X' = R(\tilde{X})$
- Обучаются **D** и **R**: $\min_{\mathcal{R}} \max_{\mathcal{D}} \left(\mathbb{E}_{X \sim p_t}[\log(\mathcal{D}(X))] + \mathbb{E}_{\tilde{X} \sim p_t + \mathcal{N}_\sigma}[\log(1 \mathcal{D}(\mathcal{R}(\tilde{X}))) + \|X \mathcal{R}(\tilde{X})\|^2] \right)$
- 1)Обучаем $m{D}$ на X и $ilde{X}$, помеченных как $m{1}$ и $m{0}$ соответственно: $\min_{\mathcal{D}} \left[-\mathbb{E}_{X \sim p_t} \log \mathcal{D}(X) \mathbb{E}_{ ilde{X} \sim p_t + \mathcal{N}_\sigma} \log (1 \mathcal{D}(\mathcal{R}(ilde{X}))) \right]$
- 2)Обучаем R на \tilde{X} : $\min_{\mathcal{R}} \mathbb{E}_{\tilde{X} \sim p_t + \mathcal{N}_\sigma} \Big[\log(1 \mathcal{D}(\mathcal{R}(\tilde{X})) \Big] \implies \min_{\mathcal{R}} \Big[\mathbb{E}_{\tilde{X} \sim p_t + \mathcal{N}_\sigma} \log \mathcal{D}(\mathcal{R}(\tilde{X})) \Big]$ Reconstruction loss: $\mathcal{L}_{\mathcal{R}} = \|X X'\|^2$

$$\min_{\mathcal{R}} \mathbb{E}_{ ilde{X} \sim p_t + \mathcal{N}_\sigma} \Big(-\log \mathcal{D}(\mathcal{R}(ilde{X}) + \|X - \mathcal{R}(ilde{X})\|^2 \Big)$$

• Тренировка останавливается, когда $\|X - X'\|^2 < \rho$, $\,
ho$ - малое

позитивное числс

Как это работает?

- После совместной тренировки сетей *R* и *D*:
 - R была натренирована как denoising autoencoder, следовательно она восстанавливает $\tilde{X} = (X \sim p_t) + \left(n \sim \mathcal{N}(0, \sigma^2 \mathbf{I}) \right)$ в X' $\sim p_t$
 - Так как novelty class \hat{X} присутствует в данных в очень малом количестве или не присутствует вовсе, то R не сможет реконструировать (испортит) данные из этого класса, т.к. не была на них обучена.
 - Так как D натренирован принимать данные из p_t как true label, то можно ожидать, что испорченные \hat{X} он будет детектировать как выбросы.

$$\mathcal{D}(\mathcal{R}(X \sim p_t)) - \mathcal{D}(\mathcal{R}(\hat{X} \sim p_?)) > \mathcal{D}(X \sim p_t) - \mathcal{D}(\hat{X} \sim p_?)$$

$$\mathcal{D}(\mathcal{R}(X))$$
Outlier Class
$$\mathcal{D}(X)$$

- Преимущества
 - Устойчива к изменению количества выбросов
 - Можно обучить в отсутсвии novelty класса
 - Отсутствует проблема mode collapse
- Недостатки
 - Тяжело обучаема

Результаты

Подробнее: https://github.com/Ars235/Novelty_Detection

$$OCC_2(X) = \begin{cases} Target Class & \text{if } \mathcal{D}(\mathcal{R}(X)) > \tau \\ Novelty (Outlier) & \text{otherwise.} \end{cases}$$

Результаты

GAN loss, lr = 0.0001

GAN loss, lr = 0.001

Wasserstein loss, Ir = 0.0001

Литература

- M. Sabokrou, M. Khalooei, M. Fathy, E. Adeli: Adversarially Learned One-Class Classifier for Novelty Detection
- Martin Arjovsky, Soumith Chintala, and L´eon Bottou: Wasserstein GAN
- Ian Goodfellow et al.: Generative Adversarial Networks