HOMEWORK 2: SUPERVISED LEARNING - CLASSIFICATION

(Duration: .. sessions)

Exercise 1: The Sigmoid Function

Let the sigmoid function be defined as:

$$\sigma(z) = rac{1}{1+e^{-z}}$$

- 1. Plot the function $\sigma(z)$ for $z \in [-10, 10]$. What are the asymptotes?
- 2. Compute $\sigma(0), \sigma(2), \sigma(-2)$. Interpret the results.
- 3. Show that $\frac{d\sigma(z)}{dz} = \sigma(z)(1-\sigma(z))$

Exercise 2: Manual Classification

Given the dataset:

$$X = egin{bmatrix} 1 & 1 & 2 \ 1 & 2 & 1 \ 1 & 3 & 3 \ 1 & 4 & 5 \end{bmatrix}, \quad y = egin{bmatrix} 0 \ 0 \ 1 \ 1 \end{bmatrix}$$

- The first column is the bias term $(x_0 = 1)$.
- The second and third columns are feature values.

Let the initial parameter vector be:

$$heta = egin{bmatrix} -4 \ 1 \ 1 \end{bmatrix}$$

Questions

- 1. For each training example, calculate the value : $z = heta^ op \mathbf{x}^{(i)}$
- 2. Calculate the predictions $h_{ heta}(\mathbf{x}^{(i)})$ using the sigmoid function $\sigma(z)$
- 3. What is the decision boundary equation for the given dataset?
- 4. Calculate the cross-entropy cost for the current θ
- 5. We want to perform Gradient Descent Algorithm. So:
 - a) Calculate $h_{ heta}(X)$ for all examples
 - b) Compute the gradient of the cost function
 - c) Compute the new value of θ after one step of gradient descent, where alpha = 0.1

© 2024 H.-E. GUERGOUR Page 1/2

Exercise 3: Performance Metrics of Logistic Regression

Questions:

- 1. Define accuracy, precision, recall, and F1-score.
- 2. Given the following confusion matrix, compute these metrics:

	Predicted 1	Predicted 0
Actual 1	45	5
Actual 0	10	40

- 3. Explain when accuracy serves no purpose.
- 4. Explain when precision is more important than recall.
- 5. Suppose we want to detect a rare disease. Which metric is most crucial?

© 2024 H.-E. GUERGOUR Page 2/2