Introduction to Electrical & Electronics Circuits

Course Code: EE

101

Department: Electrical Engineering

Instructor Name: B.G. Fernandes

E-mail id: bgf @ee.iitb.ac.in

Sub-Topics:

Maximum power transfer theorem

Review

- Instantaneous power in 1- ϕ circuit pulsates at Single phase motors require special resilient mountings power, $S = VI^* = P + jQ$
 - $P \rightarrow active power = VI cos\theta W =$

$$\partial P = Z_V^I$$

- $Q \rightarrow VI \sin \theta VAr = I^2X$ $S = VI^* VA$
- In DC, if P & V are known, I can be determined a cos or V & S should be known

For a given P

- I drawn by load as cos ⊕ (P.F.)
- ⇒ Drop in the liĥe
- \Rightarrow I²R , I²X in the fine and therefore 'S' for source . . .
- - $V_L < V_s$ for lagging & unity P.F.
 - $V_1 \le V_s$ or $V_L > V_s$ for leading P.F.

$$|V_s| > |V_L|$$
 Source P.F.= $\cos \angle_{V_s}^{I_s = I_L}$

If the P.F. is

$$|V_s| > |V_L|$$

If P.F. is leading

$$|V_s| \ge |V_L|$$
 or $|V_s| \le |V_L|$

Maximum Power Transfer Theorem:

'P' transferred to the load is maximum when 'r = 0'

Generally load is

Wariabis the value of load which results in maximum power transfor?

$$= R_{L} V_{S}$$

$$I = \frac{V_{S}}{\sqrt{(R_{S} + R_{L})^{2} + X_{S}^{2}}}$$

$$P = I^{2}R_{L} = \frac{V_{S}^{2}R_{L}}{(R_{S} + R_{L})^{2} + X_{S}^{2}}$$

Electronics Circuits Prof.

Lecture

$$P = P_{max}$$
 when $\frac{dP}{dR_r} = 0$

$$R_L^2 = R_S^2 + X_S^2$$
 or $R_L = |Z_S|$

$$X_S = 0$$
, $P = P_{max}$ when $R_L = R_S$

Case
$$Z_L = R_L + jX_L$$

<u>l</u>:

$$I = \frac{V_S}{(R_S + R_L) + j(X_S + X_L)}$$

$$\therefore P = I^{2}R_{L} = \frac{V_{S}^{2}R_{L}}{(R_{S} + R_{L})^{2} + (X_{S} + X_{L})^{2}}$$

Electronics Circuits Prof.

Lecture 9 If R_L is held constant $P = P_{max}$ when $X_S = \overline{If}^{X_L}R_L$ is variable $P = P_{max}$ when $R_L = R_S$ \therefore If $R_L = R_S$ & $X_L = -X_S$ $Z_L = Z_S^*$

Frequency response of R-C and R-L circuits:

$$i = \frac{V_i}{R + \frac{1}{j\omega c}}$$

$$v_o = \frac{1}{j\omega c} \left(\frac{v_i \div \frac{1}{i}}{R + \frac{1}{j\omega c}} \right) = \frac{v_i}{1 + j\omega RC}$$

$$\frac{1}{v_i} = \frac{1}{1 + j\omega RC} = A \Rightarrow Gain \Rightarrow Transfer$$
function

$$|A| = \frac{1}{\sqrt{1 + (\omega RC)^2}} \& \theta = -tan^{-1}\omega RC$$

$$\omega = 0; \qquad \frac{V_0}{L} = 1 \& \theta = 0$$

Electronics Circuits Prof.

Lecture 9

For low values
$$\theta$$
; 1 θ ; 0&

As
$$\omega \uparrow \frac{v_0}{\dot{v}_i} \downarrow$$

Aso
$$v_i$$

$$V_i$$

$$RC = \frac{1}{RC}, \quad \frac{v_0}{v_i} = 0.707, \quad \theta = -45^0$$

As
$$\omega\uparrow$$
 above $\frac{{f v}_0}{{f v}_i}$, rapidly & $\frac{-\pi}{2}$ towards

(Q for
$$\omega > \omega_C$$
, $\frac{v_0}{v_i} = \frac{1}{j\omega RC}$ if $\omega \uparrow$ by 10 times

$$\frac{v_0}{v_i} \downarrow \text{ by 10}$$
 times)

- ____p always lags the i/p
- ⇒ Lag Network

$$\frac{V_0}{V_i}$$
 = Voltage gain = A

Gain in dB=20log A

At
$$\omega = \omega_c$$
 Gain in dB = $-20\log(\sqrt{2}) = -3db$

At
$$\omega = 0$$
, $v_0 = v_i$

 \Rightarrow Power transfer to the output terminal α

V²At
$$\omega = \omega_c |V_0| \downarrow \text{ to } \frac{1}{\sqrt{2}}$$

$$\therefore$$
 Power reduces to $\frac{1}{2}$

$$\Rightarrow \omega_c \rightarrow Half power$$
 frequency

Observations:

- \Rightarrow The signal does not get attenuated if f<<f_c
- ⇒ The signal gets attenuated if it's f>>fc

$$v_i = A\sin\omega_1 t + B\sin(7\omega t + \theta_1) + C\sin(9\omega t + \theta_2)$$

$$\omega_c = 3\omega_1 t$$

 v_0 ; $A\sin\omega_1 t$

- ⇒ Only low f components are available at Albows low frequency components
- ⇒ High frequency components are

FILTER

⇒ FILTER: frequency selector circuit used to pass a certain band of frequencies & to stop or attenuate remaining band of frequencies

Active(Gain

could be>1)

⇒ There are two types

Passive(Max gain<1, only

passive elements)

⇒ FILTER: frequency selector circuit used to pass certain band of frequencies & to stop or attenuate

Active(Gain could be>1 remaining

There are two types

band of frequencies →Passive(Max gain 1 , only passive elements)

