Решения

Задача 1.1

Если мы имеем п внешне одинаковых объектов, после одного взвешивания останется в худшем случае $\lceil n \rceil$ объектов, среди которых есть отличающийся по весу. Таким образом, если n=12, то, в худшем случае, понадобятся 3 взвешивания $12 \Rightarrow 4 \Rightarrow 2 \Rightarrow 1$. Ответ: 3.

Задача 1.2

Пусть номер квартиры равен $\overline{abc}=100\cdot a+10\cdot b+c$, где a,b и c- цифры числа. Число с перевернутыми двумя последними цифрами при этом будет равно $\overline{acb}=100\cdot a+10\cdot c+b$. Затем решим уравнение в целых числах

$$100 \cdot a + 10 \cdot b + c + 100 \cdot a + 10 \cdot c + b = 1187,$$
$$200 \cdot a + 11 \cdot b + 11 \cdot c = 1187$$

с учетом ограничений на то, что a, b и c – цифры в десятичной системе счисления.

$$200 \cdot a + 11 \cdot (b+c) = 200 \cdot 5 + 11 \cdot 17.$$

Таким образом, возможные номера квартир 589 и 598. Выбираем наименьший – 589. Ответ: 589.

Задача 1.3

Пусть N – количество учащихся в классе, A – количество юношей в классе. Вероятность того, что оба дежурных окажутся мальчиками составляет

$$P = \frac{A}{N} \cdot \frac{A-1}{N-1}.$$

Подставим из условия $N=25,\,P=3/25$ и получим следующее уравнение:

$$\frac{A}{25} \cdot \frac{A-1}{24} = \frac{3}{25},$$
$$A^2 - A - 3 \cdot 24 = 0.$$

Уравнение имеет только один положительный корень A=9. Значит, девочек в классе 25-9=16. Ответ: 16.

Задача 1.4

Так как $\triangle ABC$ — равносторонний, то $\angle BAC = \angle ABC = \angle ACB = 60^\circ$ и AB = AC. $\angle ABC = \angle APC$, так как опираются на $\smile AC$. $\angle ACB = \angle APB$, так как опираются на $\smile AB$. Таким образом, $\angle APB = \angle APC = 60^\circ$. По теореме косинусов

$$\begin{cases} AB^2 = AP^2 + BP^2 - 2 \cdot AP \cdot BP \cdot \cos(\angle APB), \\ AC^2 = AP^2 + CP^2 - 2 \cdot AP \cdot CP \cdot \cos(\angle APC). \end{cases}$$

Так как AB=AC и $\angle APC=\angle APB=60^\circ$, получим:

$$AP^{2} + BP^{2} - AP \cdot BP \cdot = AP^{2} + CP^{2} - AP \cdot CP,$$

$$BP^{2} - CP^{2} = AP \cdot (BP - CP),$$

$$AP = BP - CP.$$

Подставим значения BP=3 и CP=4 и получим AP=7. Ответ: 7.

Задача 1.5

Пусть на доске записаны 4 числа a, b, c и d. Пусть HOД(a,b) = 2, тогда HOД(c,d) = 4 быть не может, так как HOД всех пар будет кратным 2.

Значит, пусть HOД(a,c) = 4 и тогда d будет нечётным числом. Исходя из записанных равенств, можно выписать следующие:

$$a = 4 \cdot a_4 = 2 \cdot a_2$$
$$b = 2 \cdot b_2$$
$$c = 4 \cdot c_4$$

При этом $\text{HOД}(a_2,b_2)=1$ и $\text{HOД}(a_4,c_4)=1$. Очевидно также, что $\text{HOД}(b,c)=2\cdot x$ — то есть это последняя искомая пара. Попробуем подобрать значения a,b,c и d так, чтобы они удовлетворяли всем равенствам и из HOД оставшихся пар равнялись указанным значениям. Например, $a=4,\ b=10,\ c=12$ и d=15. Таким образом, наименьшее возможное значение равно 2. Ответ: 2.

Задача 1.6

Пусть загаданное число $X=A\cdot B$, где A – наименьший делитель, B – наибольший. Тогда A+77=B. $X=A\cdot (A+77)\to min$. Так как $A\neg 1$, то минимум достигается при A=2. Таким образом, $X=2\cdot 79=158$. Ответ: 158.

Задача 1.7

Каждая комбинация цифр на циферблате отображается ровно 1 минуту, следовательно в задаче требуется найти количество соответствующих комбинаций. В группе цифр, отображающей часы может встретиться только 0 или 1 тройка. В остальных – 0, 1 или 2. Четыре тройки можно получить из следующих комбинаций: $X_1 = Q([0]:[2]:[2]),$ $X_2 = Q([1]:[1]:[2]),$ $X_3 = Q([1]:[2]:[1]).$ Q – количество комбинаций в соответствии с количеством троек в группах цифр циферблата, соответствующих часам, минутам, секундам. $X_1 = 21 \cdot 1 \cdot 1.$ $X_2 = 3 \cdot 14 \cdot 1.$ $X_3 = 3 \cdot 1 \cdot 14.$ $X = X_1 + X_2 + X_3 = 21 + 42 + 42 = 105.$ Ответ: 105.

Задача 1.8

$$x^{3} + y^{3} = 4(x^{2}y + xy^{2} + 1),$$

$$(x+y)(x^{2} - xy + y^{2}) - 4xy(x+y) = 4,$$

$$(x+y)(x^2 - 5xy + y^2) = 4.$$

В левой части множители могут принимать только следующие пары значений: (-4, 1), (-2, -2), (-1, -4), (1, 4), (2, 2), (4, 1). Все 6 систем уравнений не дают целых корней. Ответ: 0.

Задача 1.9

Обозначим $\alpha=\angle BAA_2=60^\circ,\ \beta=\angle A_1BA_2,\ x=BH.$ По теореме косинусов выразим A_1B и A_2B и подставим значения $A_1=2B$ и $A_1A_2=8$ из условия:

$$A_1 B^2 = x^2 + A_1 H^2 - 2x A_1 H \cdot \cos \alpha = x^2 + 4 - 2x,$$

$$A_2 B^2 = x^2 + A_2 H^2 - 2x A_2 H \cdot \cos \alpha = x^2 + 100 - 10x.$$

Рассмотрим $\triangle A_1BA_2$, по теореме косинусов:

$$A_1 A_2^2 = A_1 B^2 + A_2 B^2 - 2A_1 B \cdot A_2 B \cos \beta.$$

Выразим $\cos \beta$:

$$\cos \beta = \frac{A_1 B^2 + A_2 B^2 - A_1 A_2^2}{2A_1 B \cdot A_2 B} = \frac{x^2 + 4 - 2x + x^2 + 100 - 10x - 64}{2\sqrt{x^2 + 4 - 2x} \cdot \sqrt{x^2 + 100 - 10x}} = \frac{x^2 - 6x + 20}{\sqrt{x^2 + 4 - 2x} \cdot \sqrt{x^2 + 100 - 10x}}.$$

Для максимизации острого угла A_1BA_2 требуется, найти x, при котором достигается $min(\cos\beta)$. Решим уравнение $(\cos\beta)'_x=0$ и найдем точку минимума. $x=2\sqrt{5}\approx 4.472135955$. Ответ: 4.472135955.

Задача 1.10

Расстояние между точкой с координатами (x_0, y_0, z_0) и плоскостью, задаваемой уравнением Ax + By + Cx + D = 0 вычисляется по формуле:

$$S = \frac{|Ax_0 + By_0 + Cz_0 + D|}{\sqrt{A^2 + B^2 + C^2}}$$

Для заданных точки и плоскости

$$S = \frac{|2 \cdot 0 + 4 \cdot 3 - 4 \cdot 6 - 6|}{\sqrt{2^2 + 4^2 + 4^2}} = 3.$$

Ответ: 3.