# Estimating Exoplanet Occurrence Rates Using Approximate Bayesian Computation

Danley Hsu

Collaborators: Eric Ford, Darin Ragozzine, Keir Ashby, Robert Morehead

Likelihood-Free Inference Workshop – March 19, 2019



## Exoplanets are a hot topic in astronomy right now

- Helps us get closer to answering whether there exists other life in the universe
- Occurrence rate studies help inform design studies for future survey missions
- Robust, uniformly observed sample of exoplanets: Kepler spacecraft



Borucki (2016)



#### Geometric transit probability truncates observed planet population

- Single planet, circular orbit:  $P \sim \sin^{-1}(R_*/a)$
- Multiple planets, eccentric orbits: complicated



#### Observed planet population truncated due to transit SNR

- More sensitive to shorter orbital periods
- SNR depends on planet & stellar radius, intrinsic photometric variability of host star





#### Various models for occurrence rate estimates

- Parametric:
  - Power law
  - Broken power law
  - Exponential Cut-Off

- Non-parametric:
  - Grid of bins (2-D orbital period vs. planet radius)
  - Gaussian Process



#### Approximate Bayesian Computation (ABC) can be applied to Kepler data



$$\left(\frac{n_{r,p}}{N_{\star}}\right)_i - \frac{N_{r,p}}{N_{\mathrm{targ}}} > \epsilon_{\mathrm{goal}}$$

$$\left| \left( \frac{n_{r,p}}{N_{\star}} \right)_{i} - \frac{N_{r,p}}{N_{\text{targ}}} \right| \le \epsilon_{\text{goal}}$$

$$\theta \in [0,1) \qquad \left(\frac{n_{r,p}}{N_{\star}}\right)_{1}$$

$$\left(\frac{n_{r,p}}{N_{\star}}\right)_{N_{\mathrm{pa}}}$$



#### Population Monte Carlo – Importance sampling to improve efficiency



Improving proposal efficiency with Beta distributions

Gaussian Distribution

#### • Gaussian:

- Negative (unphysical) rates proposed
- Lots of rejections for initial ABC generations

#### Beta:

- Bound between [0, 1]
- Transformed Beta allows adjustment of upper limit







#### Stellar uncertainties and long-term stability motivate multi-bin fit



#### Stellar uncertainties and long-term stability motivate multi-bin fit



#### Stellar uncertainties and long-term stability motivate multi-bin fit





#### Multi-bin parameterization informs distance function

Customized distance:

$$\rho = \sum_{n=1}^{N_r} \frac{|x_{n,obs} - x_{n,sim}|}{\sqrt{|x_{n,obs}| + |x_{n,sim}|}}$$

- Different bins have different amounts of data
  - Using L1 or L2 norm distances result in highly disparate contributions to the total distance between different bins
  - Custom distance scales contribution to total distance by magnitude of data in each bin

## Multi-bin parameterization informs prior choice

- Uniform Full grid
  - Each bin = [0, <upper limit>]
  - Upper limit scaled by bin width (log-space) and constant factor
- Dirichlet Small radius/long period bins (with little data where prior informs upper limits)
  - Total rate per set of bins = [0, 3]
  - Fraction of total rate per bin = [0, 1] with requirement that they sum to 1



# Multi-bin parameterization informs prior choice

- Two prior choices:
  - Uniform Full grid
  - Dirichlet Small radius/long period bins (with little data where prior informs upper limits)



# Multi-bin parameterization informs prior choice

- Two prior choices:
  - Uniform Full grid
  - Dirichlet Small radius/long period bins (with little data where prior informs upper limits)







 $P = 237 - 500 \,\mathrm{d}, R_p = 1.75 - 2 \,R_{\oplus}$ 

## Estimated Occurrence Rates for final Kepler catalog (DR25)





#### Lots of Further Work using ABC in Exoplanet Studies

- Model improvements:
  - Reliability of planet candidate identification
  - Stellar multiplicity
- Applications:
  - Fraction of stars with at least one planet (dependent on size/period)
  - Characterize planetary system architecture



#### Summary

- Observed exoplanet populations truncated by geometric & detection probabilities, which cannot be adequately described by a simple likelihood function
- ABC provides a statistically rigorous method for occurrence rate estimates
- ABC model informed by parameterization and prior knowledge
- ABC: <a href="https://github.com/eford/ABC.jl">https://github.com/eford/ABC.jl</a> (Julia v0.6) / <a href="https://github.com/eford/ApproximateBayesianComputing.jl">https://github.com/eford/ApproximateBayesianComputing.jl</a> (Julia v1.0)
- SysSim: <a href="https://github.com/eford/ExoplanetsSysSim.jl">https://github.com/eford/ExoplanetsSysSim.jl</a>



#### SysSim – Catalog Generation





#### Previously used calculation method (IDEM) didn't account for uncertainties





Christiansen et al. (2015)



#### Previously used calculation method (IDEM) didn't account for uncertainties



 $p_{{
m det},i} \sim 0$ 

No Detection

$$f_{r,p}$$

Christiansen et al. (2015)



#### Approximate Bayesian Computation (ABC) enables rigorous statistical modeling



