Matemáticas Discretas

Oscar Bedoya

oscar.bedoya@correounivalle.edu.co

- * Definición de conjunto
- * Subconjunto y subconjunto propio
- * Conjunto potencia
- * Producto cartesiano
- * Operaciones con conjuntos

George Cantor

- Defendió su tesis doctoral en 1867 sobre teoría de números
- Es considerado el fundador de la teoría de conjuntos

(1845-1918)

Noción de conjunto

· Conjunto de vocales del alfabeto

· Conjunto de enteros positivos menores que 100

Conjunto de números naturales

· Conjunto de operadores aritméticos conmutativos

¿Los conjuntos A y B son iguales?

$$A = \{a,e,i,o,u\}$$

$$B=\{u,o,i,e,a\}$$

¿Los conjuntos A y B son iguales?

$$A = \{a,e,i,o,u\}$$

$$B=\{u,o,i,e,a\}$$

Un conjunto es una colección desordenada de objetos

```
¿Los conjuntos A y B son iguales?

A={a,a,a,a,e,e,e,e,e,i,o,u}

B={a,e,i,o,u}
```

¿Los conjuntos A y B son iguales?

A={a,a,a,a,e,e,e,e,e,i,o,u}

B={a,e,i,o,u}

Dos conjuntos son iguales si tienen los mismos elementos sin importar la cantidad

Conjunto vacio

Representa el conjunto que no tiene elementos, se puede expresar de las dos siguientes maneras:

- { }
- Ø

Determine si los siguientes conjuntos son iguales:

• {1,3,3,3,3,3,5,5,5,5} y {5,3,1}
$$\checkmark$$

• $\{x \mid x \text{ es un entero positivo menor que 5}\}$ y $\{1,2,3,4\}$

Determine si los siguientes conjuntos son iguales:

- {1,3,3,3,3,3,5,5,5,5} y {5,3,1}, si
- {{1}} y {1}, no
- {{1,1,1,1,1},1,1,1,1} y {1,{1}}, si
- { } y {Ø, { }}, no
- {∅} y {{ }, ∅}, si
- $\{x \mid x \text{ es un entero positivo menor que 5}\}$ y $\{1,2,3,4\}$, si

Pertenencia sobre conjuntos

- $x \in A$ para indicar que el elemento x pertenece al conjunto A
- x∉A para el caso contrario

•
$$\{3,4\} \in A \bigvee$$

•
$$\{3,4,5\} \in A$$

- $1 \in A$, verdadero
- $\{3,4\} \in A$, verdadero
- $\varnothing \in A$, falso
- $5 \in A$, verdadero
- $\{5\} \in A$, falso
- $\{3,4,5\} \in A$, falso

•
$$\{1,2\} \in A$$

•
$$\{5,6\} \in A \lor$$

- $\{1,2\} \in A$, falso
- $\{5,6\} \in A$, verdadero
- $4 \in A$, falso
- $\{\} \in A$, falso

Subconjunto ⊆

El conjunto A es subconjunto de B, A⊆B, si y solo si todo elemento de A es también un elemento de B

- $\{1,2\} \subseteq \{1,2,3,4,5\}$
- $\{1,2,6\} \subseteq \{1,2,3,4,5\}$

Subconjunto ⊆

El conjunto A es subconjunto de B, A⊆B, si y solo si todo elemento de A es también un elemento de B

- $\{1,2\} \subseteq \{1,2,3,4,5\}$
- $\{1,2,6\} \subseteq \{1,2,3,4,5\}$

Para cualquier conjunto S, se cumple que $\varnothing\subseteq S$

Para cualquier conjunto S, se cumple que $S\subseteq S$

Subconjunto propio ⊂

El conjunto A es subconjunto propio de B, $A \subset B$, si y solo si, $A \subseteq B$ y $A \neq B$

Subconjunto propio

El conjunto A es subconjunto propio de B, $A \subset B$, si y solo si, $A \subseteq B$ y $A \neq B$

Sean $P=\{1,2\}$, $Q=\{1,2,3\}$, $R=\{1,2,3\}$, se cumple:

- P⊆R y P⊂R
- Q⊆R pero Q⊄R

•
$$x \in \{x\}$$

•
$$\{x,y\}\subseteq \{x\}$$

•
$$\{x\} \subset \{x\}$$

•
$$\{x\} \in \{x\}$$

•
$$\{x\} \in \{\{x\}, y, z\}$$

•
$$\varnothing \subseteq \{x\} \bigvee$$

•
$$\emptyset \in \{x\}$$

•
$$\varnothing \subset \{x\} \bigvee$$

- $x \in \{x\}$, verdadero
- $\{x,y\} \subseteq \{x\}$, falso
- $\{x\} \subset \{x\}$, falso
- $\{x\} \in \{x\}$, falso
- $\{x\} \in \{\{x\}, y, z\}$, verdadero
- $\emptyset \subseteq \{x\}$, verdadero
- $\emptyset \in \{x\}$, falso
- $\emptyset \subset \{x\}$, verdadero

- $0 \in \emptyset$, falso
- $\emptyset \in \{0\}$, falso
- $\{0\}\subset\emptyset$, falso
- $\varnothing \subset \{0\}$, verdadero
- $\{0\} \in \{0,\{0,0\}\}\$, verdadero
- $\{0\}\subset\{0\}$, falso
- $\{0\}\subseteq\{0\}$, verdadero

$$5 \in \{1, 2, 3, 4, 5, 5\} \$$
 $\{s\} \in \{1, 2, 3, 4, 5, 5, 6\} \} \neq \emptyset = \{\}$
 $\emptyset \in \{1, 2, \{5, 5, 5, 6\} \} \neq \emptyset$
 $\emptyset \in \{1, 2, \{5, 5, 5, 6\} \} \neq \emptyset$
 $\emptyset \in \{1, 2, 3, 4, 5, 5, 6\} \} \neq \emptyset$
 $\emptyset \in \{1, 2, 3, 4, 5, 5, 6\} \} \neq \emptyset$
 $\emptyset \in \{1, 2, 3, 4, 5, 5, 6\} \} \neq \emptyset$
 $\emptyset \in \{1, 2, 3, 4, 5, 5, 6\} \} \neq \emptyset$
 $\emptyset \in \{1, 2, 3, 4, 5, 5, 6\} \} \neq \emptyset$
 $\emptyset \in \{1, 2, 3, 4, 5, 5, 6\} \} \neq \emptyset$
 $\emptyset \in \{1, 2, 3, 4, 5, 5, 6\} \} \neq \emptyset$
 $\emptyset \in \{1, 2, 3, 4, 5, 5, 6\} \} \neq \emptyset$
 $\emptyset \in \{1, 2, 3, 4, 5, 5, 6\} \} \neq \emptyset$
 $\emptyset \in \{1, 2, 3, 4, 5, 5, 6\} \} \neq \emptyset$
 $\emptyset \in \{1, 2, 3, 4, 5, 5, 6\} \} \neq \emptyset$
 $\emptyset \in \{1, 2, 3, 4, 5, 5, 6\} \} \neq \emptyset$
 $\emptyset \in \{1, 2, 3, 4, 5, 5, 6\} \} \neq \emptyset$
 $\emptyset \in \{1, 2, 3, 4, 5, 5, 6\} \} \neq \emptyset$
 $\emptyset \in \{1, 2, 3, 4, 5, 5, 6\} \} \neq \emptyset$
 $\emptyset \in \{1, 2, 3, 4, 5, 5, 6\} \} \neq \emptyset$
 $\emptyset \in \{1, 2, 3, 4, 5, 5, 6\} \} \neq \emptyset$
 $\emptyset \in \{1, 2, 3, 4, 5, 5, 6\} \} \neq \emptyset$

Cardinalidad de un conjunto |5|

La cardinalidad de un conjunto 5, denotado por |5|, indica la cantidad de elementos diferentes

Cardinalidad de un conjunto |5|

La cardinalidad de un conjunto S, denotado por |S|, indica la cantidad de elementos diferentes

- Para $A=\{3,3,3,3,1,1,1,2,2,2\}, |A|=?$
- Para A={1,2,3,{4,5}}, |A|=?
- Para A=∅, |A|=?

Cardinalidad de un conjunto |5|

La cardinalidad de un conjunto S, denotado por |S|, indica la cantidad de elementos diferentes

- Para $A=\{3,3,3,3,1,1,1,2,2,2\}, |A|=3$
- Para A={1,2,3,{4,5}}, |A|=4
- Para *A*=∅, |*A*|=0

- $\{x | x \text{ es un entero positivo impar menor que 10} \}$
- {a} 🔼
- {{a,b}} 1
- $\{a, \{a\}\}$ 2
- {a, a, {a,a}, {a,a,a}}

- $\{x \mid x \text{ es un entero positivo impar menor que 10}\}$, 5
- {a}, 1
- {{a,b}}, 1
- {a, {a}}, 2
- {a, a, {a,a}, {a,a,a}}, **2**

•
$$\{a,\{a\},\{a,\{a\}\}\}\}$$

$$\bullet \{\varnothing, \varnothing, \varnothing, \{\}\} \longrightarrow 1$$

- {a, {a}, {a,{a}}}, **3**
- {3,∅}, **2**
- {∅}, **1**
- $\{\emptyset, \emptyset, \emptyset, \{\}\}, 1$

Producto cartesiano AxB

$$AxB = \{(a,b) \mid a \in A \land b \in B\}$$

$$(a, b) \neq (b, a)$$

Producto cartesiano AxB

$$A \times B = \{(a,b) \mid a \in A \land b \in B\}$$

$$A = \{1,2,3\}$$

$$B = \{a,b\}$$

$$A \times B = \{(a,b) \mid a \in A \land b \in B\}$$

$$\{(1,q)(1,l)(2,q)(2,l)(3,q)(3,l)\}$$

$$A \times B = \{(a,b) \mid a \in A \land b \in B\}$$

$$\{(1,q)(1,l)(2,q)(2,l)(3,q)(3,l)\}$$

$$A \times B = \{(a,b) \mid a \in A \land b \in B\}$$

Producto cartesiano AxB

$$A \times B = \{(a,b) \mid a \in A \land b \in B\}$$

 $A = \{1,2,3\}$
 $B = \{a,b\}$
 $A \times B = \{(1,a),(1,b),(2,a),(2,b),(3,a),(3,b)\}$

Producto cartesiano AxB

$$A \times B = \{(a,b) \mid a \in A \land b \in B\}$$

$$A = \{1,2,3\}$$

$$B = \{a,b\}$$

$$A \times B = \{(1,a),(1,b),(2,a),(2,b),(3,a),(3,b)\}$$

$$A \times A = \{(a,b) \mid a \in A \land b \in B\}$$

$$\{(a,b) \mid a \in A \land b \in B\}$$

$$\{(a,b) \mid a \in A \land b \in B\}$$

$$\{(a,b) \mid a \in A \land b \in B\}$$

$$\{(a,b) \mid a \in A \land b \in B\}$$

$$\{(a,b) \mid a \in A \land b \in B\}$$

$$\{(a,b) \mid a \in A \land b \in B\}$$

$$\{(a,b) \mid a \in A \land b \in B\}$$

$$\{(a,b) \mid a \in A \land b \in B\}$$

$$\{(a,b) \mid a \in A \land b \in B\}$$

$$\{(a,b) \mid a \in A \land b \in B\}$$

$$\{(a,b) \mid a \in A \land b \in B\}$$

$$\{(a,b) \mid a \in A \land b \in B\}$$

$$\{(a,b) \mid a \in A \land b \in B\}$$

$$\{(a,b) \mid a \in A \land b \in B\}$$

$$\{(a,b) \mid a \in A \land b \in B\}$$

$$\{(a,b) \mid a \in A \land b \in B\}$$

$$\{(a,b) \mid a \in A \land b \in B\}$$

$$\{(a,b) \mid a \in A \land b \in B\}$$

$$\{(a,b) \mid a \in A \land b \in B\}$$

$$\{(a,b) \mid a \in A \land b \in B\}$$

$$\{(a,b) \mid a \in A \land b \in B\}$$

$$\{(a,b) \mid a \in A \land b \in B\}$$

$$\{(a,b) \mid a \in A \land b \in B\}$$

$$\{(a,b) \mid a \in A \land b \in B\}$$

$$\{(a,b) \mid a \in A \land b \in B\}$$

$$\{(a,b) \mid a \in A \land b \in B\}$$

$$\{(a,b) \mid a \in A \land b \in B\}$$

$$\{(a,b) \mid a \in A \land b \in B\}$$

$$\{(a,b) \mid a \in A \land b \in B\}$$

$$\{(a,b) \mid a \in A \land b \in B\}$$

$$\{(a,b) \mid a \in A \land b \in B\}$$

$$\{(a,b) \mid a \in A \land b \in B\}$$

$$\{(a,b) \mid a \in A \land b \in B\}$$

$$\{(a,b) \mid a \in A \land b \in B\}$$

$$\{(a,b) \mid a \in A \land b \in B\}$$

$$\{(a,b) \mid a \in A \land b \in B\}$$

$$\{(a,b) \mid a \in A \land b \in B\}$$

$$\{(a,b) \mid a \in A \land b \in B\}$$

$$\{(a,b) \mid a \in A \land b \in B\}$$

$$\{(a,b) \mid a \in A \land b \in B\}$$

$$\{(a,b) \mid a \in A \land b \in B\}$$

$$\{(a,b) \mid a \in A \land b \in B\}$$

$$\{(a,b) \mid a \in A \land b \in B\}$$

$$\{(a,b) \mid a \in A \land b \in B\}$$

$$\{(a,b) \mid a \in A \land b \in B\}$$

$$\{(a,b) \mid a \in A \land b \in B\}$$

$$\{(a,b) \mid a \in A \land b \in B\}$$

$$\{(a,b) \mid a \in A \land b \in B\}$$

$$\{(a,b) \mid a \in A \land b \in B\}$$

$$\{(a,b) \mid a \in A \land b \in B\}$$

$$\{(a,b) \mid a \in A \land b \in B\}$$

$$\{(a,b) \mid a \in A \land b \in B\}$$

$$\{(a,b) \mid a \in A \land b \in B\}$$

$$\{(a,b) \mid a \in A \land b \in B\}$$

$$\{(a,b) \mid a \in A \land b \in B\}$$

$$\{(a,b) \mid a \in A \land b \in B\}$$

$$\{(a,b) \mid a \in A \land b \in B\}$$

$$\{(a,b) \mid a \in A \land b \in B\}$$

$$\{(a,b) \mid a \in A \land b \in B\}$$

$$\{(a,b) \mid a \in A \land b \in B\}$$

$$\{(a,b) \mid a \in A \land b \in B\}$$

$$\{(a,b) \mid a \in A \land b \in B\}$$

$$\{(a,b) \mid a \in A \land b \in B\}$$

$$\{(a,b) \mid a \in A \land b \in B\}$$

$$\{(a,b) \mid a \in A \land b \in B\}$$

$$\{(a,b) \mid a \in A \land b \in B\}$$

$$\{(a,b) \mid a \in A \land b \in B\}$$

$$\{(a,b) \mid a \in A \land b \in B\}$$

$$\{(a,b) \mid a \in A \land b \in B\}$$

$$\{(a,b) \mid a \in A \land b \in B\}$$

$$\{(a,b) \mid a \in A \land b \in B\}$$

$$\{(a,b) \mid a \in A \land b \in B\}$$

$$\{(a,b) \mid a \in B \land b \in B\}$$

$$\{(a,$$

Producto cartesiano AxB

Dados dos conjuntos A y B, el producto cartesiano de A y B, denotado por $A \times B$ es el conjunto de todos los pares ordenados (a,b) donde $a \in A$ y $b \in B$

$$A \times B = \{(a,b) \mid a \in A \land b \in B\}$$

 $A = \{1,2,3\}$
 $B = \{a,b\}$
 $A \times B = \{(1,a),(1,b),(2,a),(2,b),(3,a),(3,b)\}$
 $B \times A = \{(a,1),(a,2),(a,3),(b,1),(b,2),(b,3)\}$

Producto cartesiano AxB

Dados dos conjuntos A y B, el producto cartesiano de A y B, denotado por $A \times B$ es el conjunto de todos los pares ordenados (a,b) donde $a \in A$ y $b \in B$

$$A \times B = \{(a,b) \mid a \in A \land b \in B\}$$

 $A = \{1,2,3\}$
 $B = \{a,b\}$
 $A \times B = \{(1,a),(1,b),(2,a),(2,b),(3,a),(3,b)\}$
 $A \times B = \{(a,1),(a,2),(a,3),(b,1),(b,2),(b,3)\}$

Dados $A=\{a,b\}$, $B=\{x,y,z\}$, $C=\{0,1\}$ calcule:

- AxB
- AxA
- BxC

Dados
$$A=\{a,b\}$$
, $B=\{x,y,z\}$, $C=\{0,1\}$ calcule: $A\times B=\{(a,x),(a,y),(a,z),(b,x),(b,y),(b,z)\}$
 $A\times A=\{(a,a),(a,b),(b,a),(b,b)\}$
 $B\times C=\{(x,0),(x,1),(y,0),(y,1),(z,0),(z,1)\}$

René Descartes

- Estudió matemáticas y leyes
- A los 18 años se desencantó de estudiar y se dedicó a recorrer el mundo
- El servicio militar y cómo decidió su futuro
- Escribió el Discurso del Método (hipótesis del espíritu maligno*)
- Motivación de la duda metódica (niñez y los sueños)

(1596-1650)

Tabla **CAMISAS**:

ID_CAMISA	CAMISA	PESO_GR	
1	lino blanca	210	
2	algodon naranja	290	
3	seda negra	260	

Tabla PANTALONES:

ID_PANTALON	PANTALON	PESO_GR
1	tela azul marino	470
2	pana marron claro	730

Tabla CAMISASxPANTALONES:

ID_CAMISA	CAMISA	PESO_GR	ID_PANTALON	PANTALON	PESO_GR
1	lino blanca	210	1	tela azul marino	470
1	lino blanca	210	2	pana marron claro	730
2	algodon naranja	290	1	tela azul marino	470
2	algodon naranja	290	2	pana marron claro	730
3	seda negra	260	1	tela azul marino	470
3	seda negra	260	2	pana marron claro	730

Conjunto potencia P(S)

Dado un conjunto S, el conjunto potencia es aquel que tiene todos los subconjuntos de S

Conjunto potencia P(S)

Dado un conjunto S, el conjunto potencia es aquel que tiene todos los subconjuntos de S

• Dado A={1,2,3}

$$P(A)=?$$
 $\{\emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{2,3\}, \{2,3\}, \{2,3\}\}\}$

Conjunto potencia P(S)

Dado un conjunto S, el conjunto potencia es aquel que tiene todos los subconjuntos de S

Dado A={1,2,3}

$$P(A)=\{\emptyset,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\}\}$$

Conjunto potencia P(S)

Dado un conjunto S, el conjunto potencia es aquel que tiene todos los subconjuntos de S

 En general, dado un conjunto A con n elementos, el conjunto P(A) tiene 2ⁿ elementos

Sea $S=\{1,\{2,3\},4\}$, muestre P(S)

$$P(S) = \{ \emptyset, \{ 1\}, \{ \{ 2, 3 \} \}, \{ 4 \}, \{ 1, 4 \}, \{ 1, 4 \}, \{ 2, 3 \} \}, \{ 4, \{ 2, 3 \} \}, \{ 4, \{ 2, 3 \} \}, \{ 4, \{ 2, 3 \}, 4 \} \}$$

Sea $S=\{1,\{2,3\},4\}$, muestre P(S)

- $P(S)=\{\emptyset, \{1\}, \{\{2,3\}\}, \{4\}, \{1,\{2,3\}\}, \{1,4\}, \{\{2,3\},4\}, \{1,\{2,3\},4\}\}\}$

Sea $S=\emptyset$, muestre P(S)

Sea $S=\emptyset$, muestre P(S)

$$T = \{ \emptyset \}$$

 $\dot{P}(T) = \{ \emptyset, \{ \emptyset \} \}$

Encuentre el siguientes conjunto:

• P(P(∅))

Encuentre el siguientes conjunto:

```
    P(P(∅))
    P(∅)={∅}
    P(P(∅))=?
```

Encuentre el siguientes conjunto:

```
    P(P(∅))
    P(∅)={∅}
    P(P(∅))=P({∅})={∅, {∅}}
```

Encuentre los siguientes conjuntos potencia:

- P({{a,c},{a,b}})
- P({1,2,3,4})

Encuentre los siguientes conjuntos potencia:

- P({{a,c},{a,b}})={Ø,{a,c},{a,b},{{a,c},{a,b}}}
- P({1,2,3,4})={Ø,{1},{2},{3},{4},{1,2},{1,3},{1,4},{2,3},{2,4}, {3,4},{1,2,3},{1,2,4},{2,3,4},{1,3,4},{1,2,3,4}}

Determine si cada una de las siguientes sentencias es falsa o verdadera

•
$$\{\emptyset\} \subseteq P(\{\emptyset\}) \bigvee \{\emptyset, \{\emptyset\}\}\}$$

• $\{\emptyset, \{\emptyset\}\} \subseteq P(\underline{P(\{\emptyset\})})\bigvee$

• $|\{a,b,c\}x\{1,2\}| < |P(\{a,b\})|$

Determine si cada una de las siguientes sentencias es falsa o verdadera

```
• \{\emptyset\} \subset P(\{\emptyset\})
      \{\emptyset\} \subset \{\emptyset, \{\emptyset\}\}, \text{ verdadero}
• \{\emptyset, \{\emptyset\}\}\ \subset P(P(\{\emptyset\}))
      \{\emptyset, \{\emptyset\}\} \subset \{\emptyset, \{\emptyset\}, \{\{\emptyset\}\}\}, \{\emptyset, \{\emptyset\}\}\}\}, verdadero
• |\{a,b,c\}x\{1,2\}| < |P(\{a,b\})|
                                                    P(\xi_{1}, 1, 2, 2, 2\xi)
      6<4, falso
```

Operaciones entre conjuntos

- Unión
- · Intersección
- Diferencia
- Complemento

Operaciones entre conjuntos

- Unión. $A \cup B = \{x \mid x \in A \lor x \in B\}$
- Intersección. $A \cap B = \{x \mid x \in A \land x \in B\}$
- Diferencia. A-B= $\{x \mid x \in A \land x \notin B\}$ $A B \neq B A$
- Complemento. $A = \{x \mid x \notin A\}$

Operaciones entre conjuntos

- Unión. $A \cup B = \{x \mid x \in A \lor x \in B\}$
- Intersección. $A \cap B = \{x \mid x \in A \land x \in B\}$
- Diferencia. A-B= $\{x \mid x \in A \land x \notin B\}$
- Complemento. $A = \{x \mid x \notin A\}$

Dados $A=\{1,2,3,5,9\}$, $B=\{3,7,9\}$ y $U=\{1,2,3,4,5,6,7,8,9\}$ indique los resultados de las siguientes operaciones:

•
$$\overline{A \cup B} \cap \overline{B - A}$$

•
$$A \cap \overline{B} \cup B \cap \overline{A}$$

$$A \cup B = \{2, 2, 3, 5, 7, 9\}$$
 $A \cup B = \{4, 6, 8\}$
 $B - A = \{7, 2, 3, 4, 5, 6, 8, 9\}$
 $\{4, 6, 8\}$

Dados $A=\{1,2,3,5,9\}$, $B=\{3,7,9\}$ y $U=\{1,2,3,4,5,6,7,8,9\}$ indique los resultados de las siguientes operaciones:

•
$$\overline{A \cup B} \cap \overline{B - A} = \{4,6,8\} \cap \{1,2,3,4,5,6,8,9\} = \{4,6,8\}$$

•
$$A \cap \overline{B} \cup B \cap \overline{A} = \{1,2,5\} \cup \{7\} = \{1,2,5,7\}$$

Dados $A=\{a,b,c,d,e\}$, $B=\{a,b,c,d,e,f,g,h\}$ y $U=\{a,b,c,d,e,f,g,h,i,j,k\}$ encuentre:

•
$$\overline{A \cap B}$$
 $\{a,b,c,d,e\} \rightarrow \{F,g,h,ij),k\}$
• $\overline{B-A} \cup (A-B)$ $\{a,b,c,d,e,i,j,k\} \cup \emptyset$
• $\overline{(A-B)} - (A \cup B)$ $U-B \rightarrow \{i,j,k\}$
• $\overline{(B \cap A)} \cup (B-A)$ $\{a,b,c,d,e\} \cup \{F,h\} = \{i,j,k\}$

Dados $A=\{a,b,c,d,e\}$, $B=\{a,b,c,d,e,f,g,h\}$ y $U=\{a,b,c,d,e,f,g,h,i,j,k\}$ encuentre:

- *A*∩B={f,g,h,i,j,k}
- B-A \cup (A-B)={a,b,c,d,e,i,j,k} $\cup \emptyset$ ={a,b,c,d,e,i,j,k}
- $(A-B) (A \cup B) = \{a,b,c,d,e,f,g,h,i,j,k\} \{a,b,c,d,e,f,g,h\} = \{i,j,k\}$
- $(B \cap A) \cup (B-A)=\{i,j,k\}$

Dados A={1,3,5,7,8,9}, B={2,4,5,6} y U={1,2,3,4,5,6,7,8,9,10} encuentre:

$$\bullet \overline{\mathbf{A}} - \overline{\mathbf{B}} \cap \overline{\mathbf{A}} = \{7, 4, 6, 10\}$$

Anb=
$$\{x\in A \mid x\in B\}$$

$$\overline{A} = \{x\notin A \mid x\in U\}$$

Dados A={1,3,5,7,8,9}, B={2,4,5,6} y U={1,2,3,4,5,6,7,8,9,10} encuentre:

•
$$A-B \cap A = \{2,4,5,6,10\} \cap \{2,4,6,10\} = \{2,4,6,10\}$$

•
$$(B \cap A) \cup (A \cup B) = \{5\} \cup \{10\} = \{5,10\}$$

•
$$(A \cap B) \cap (B-A) = \{1,2,3,4,6,7,8,9,10\} \cap \{2,4,6\} = \{2,4,6\}$$

Dados $A=\{a,b,c\}$, $B=\{b,d\}$, $U=\{a,b,c,d,e,f\}$ encuentre y compare:

- $A \cup B$, $A \cap B$
- $\overline{A \cap B}$, $\overline{A} \cup \overline{B}$

Dados $A=\{a,b,c\}$, $B=\{b,d\}$, $U=\{a,b,c,d,e,f\}$ encuentre y compare:

- $A \cup B$, $A \cap B$. Ambos son $\{e,f\}$
- $\overline{A \cap B}$, $\overline{A \cup B}$. Ambos son {a,c,d,e,f}

Identidades entre conjuntos

$$\overline{(A | B)} = \overline{A} \vee \overline{B}$$

Identidad	Nombre	
$(A \cup B) = \overline{A} \cap \overline{B}$	Leyes de De Morgan	
$(A \cap B) = A \cup B$		V = \
$A \cup (A \cap B) = A$	Leyes de absorción	
$A \cap (A \cup B) = A$		9 = /
$A \cup \overline{A} = ? \cup$	Leyes de complemento	
$A \cap \overline{A} = ?$		

Identidades entre conjuntos

Identidad	Nombre
$(\overline{A \cup B}) = \overline{A} \cap \overline{B}$	Leyes de De Morgan
$(\overline{A \cap B}) = \overline{A} \cup \overline{B}$	
$A \cup (A \cap B) = A$	Leyes de absorción
$A \cap (A \cup B) = A$	
$A \cup \overline{A} = U$	Leyes de complemento
$A \cap \overline{A} = \emptyset$	

Identidades entre conjuntos

Identidad	Nombre
$A \cup \emptyset = ? A$	Leyes de
A ∩ U = ? 👌	identidad
A ∪ U = U	Leyes de
$A \cap \emptyset = \emptyset$	dominación
$A \cup A = A$	Leyes de
$A \cap A = A$	idempotencia
$\overline{A} = A$	Ley de complementación

Identidades entre conjuntos

Identidad	Nombre
$A \cup \varnothing = A$	Leyes de
$A \cap U = A$	identidad
<i>A</i> ∪ U = U	Leyes de
$A \cap \emptyset = \emptyset$	dominación
$A \cup A = A$	Leyes de
$A \cap A = A$	idempotencia
	Ley de
$\overline{A} = A$	complementación

Identidades entre conjuntos

Identidad	Nombre
$A \cup B = B \cup A$	Leyes
$A \cap B = B \cap A$	conmutativas
$A \cup (B \cup C) = (A \cup B) \cup C$	Leyes
$A \cap (B \cap C) = (A \cap B) \cap C$	asociativas
$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$	Leyes
$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$	distributivas

Cómo probar identidades

Se tienen dos métodos:

- · Construir una tabla de pertenencia
- *Utilizar la notación de conjuntos y las equivalencias lógicas

Tabla de pertenencia

Se considera cada combinación de conjuntos en los que un elemento puede pertenecer y se verifica que los elementos en la misma combinación de conjuntos pertenecen a ambos conjuntos en la identidad

Α	В	Ā	В	$A \cap B$	$\overline{A \cap B}$	$\overline{A} \cup \overline{B}$
1	1			1		0
1	0					
0	1					
0	0					

Probar $A \cap B = A \cup B$

A	В	Ā	B	A∩B	A∩B	$\overline{A} \cup \overline{B}$
1	1					
1	0					
0	1					
0	0					

1 representa x∈Conjunto
0 representa x∉Conjunto

A	В	Ā	B	$A \cap B$	$\overline{A \cap B}$	$\overline{A} \cup \overline{B}$
1	1	0				
1	0	0				
0	1	1				
0	0	1				

Α	В	Ā	B	A∩B	$\overline{A \cap B}$	$\overline{A} \cup \overline{B}$
1	1	0	0			
1	0	0	1			
0	1	1	0			
0	0	1	1			

A	В	Ā	B	A∩B	$\overline{A \cap B}$	$\overline{A} \cup \overline{B}$
1	1	0	0	1		
1	0	0	1	0		
0	1	1	0	0		
0	0	1	1	0		

Α	В	Ā	B	A∩B	$\overline{A \cap B}$	$\overline{A} \cup \overline{B}$
1	1	0	0	1	0	
1	0	0	1	0	1	
0	1	1	0	0	1	
0	0	1	1	0	1	

	\
$\setminus b$	λ_{i}
•	V

A	В	Ā	В	$A \cap B$	$\overline{A \cap B}$	$\overline{A} \cup \overline{B}$
1	1	0	0	1	0	0
1	0	0	1	0	1	1
0	1	1	0	0	1	1
0	0	1	1	0	1	1

A	В	A	B	A∩B	$\overline{A \cap B}$	$\overline{A} \cup \overline{B}$
1	1	0	0	1	0	0
1	0	0	1	0	1	1
0	1	1	0	0	1	1
0	0	1	1	0	1	1

Probar $\overline{A \cup (\overline{A} \cap B)} = \overline{A} \cap (A \cup \overline{B})$

A	В	A	В	$\overline{A} \cap B$	$A \cup (\overline{A} \cap B)$	$A \cup (A \cap B)$	A∪B	$\overline{A} \cap (A \cup \overline{B})$
1	1							
1	0							
0	1							
0	0							

Probar $\overline{A \cup (\overline{A} \cap B)} = \overline{A} \cap (A \cup \overline{B})$

A	В	A	В	$\overline{A} \cap B$	$A \cup (\overline{A} \cap B)$	$A \cup (A \cap B)$	A∪B	$\overline{A} \cap (A \cup \overline{B})$
1	1	0	0	0	1	0	1	0
1	0	0	1	0	1	0	1	0
0	1	1	0	1	1	0	0	0
0	0	1	1	0	0	1	1	1

Complete la tabla para (A - B)

A	В	A-B
1	1	30
1	0	? 1
Ŏ	1	? 0
0	0	? 0

Complete la tabla para (A - B)

Α	В	A-B
1	1	0
1	0	
0	1	
0	0	

El mismo elemento está en A y en B. Por lo tanto, no estará en A-B

Complete la tabla para (A - B)

Α	В	A-B
1	1	0
1	0	1
0	1	0
0	0	0

Probar
$$A \cap (B - A) = \emptyset$$

$$B-A$$
 $A n(B-A)$

Probar $A \cap (B - A) = \emptyset$

Α	В	B-A	A∩(B-A)
1	1		
1	0		
0	1		
0	0		

Probar $A \cap (B - A) = \emptyset$

Α	В	B-A	<i>A</i> ∩(B- <i>A</i>)
1	1	0	
1	0	0	
0	1	1	
0	0	0	

Probar $A \cap (B - A) = \emptyset$

Α	В	B-A	<i>A</i> ∩(B- <i>A</i>)
1	1	0	0
1	0	0	0
0	1	1	0
0	0	0	0

Probar $A \cup (B - A) = A \cup B$

Probar $A \cup (B - A) = A \cup B$

A	В	B-A	<i>A</i> ∪(B- <i>A</i>)	$A \cup B$
1	1	0	1	1
1	0	0	1	1
0	1	1	1	1
0	0	0	0	0

Probar $\overline{A} \cap (\overline{B} - A) = \overline{A} \cap \overline{B}$

Cómo probar identidades

Se tienen dos métodos:

- · Construir una tabla de pertenencia
- *Utilizar la notación de conjuntos y las equivalencias lógicas

$$A \cup B = \{x \mid x \in A \lor x \in B\}$$

$$A \cap B = \{x \mid x \in A \land x \in B\}$$

$$A - B = \{x \mid x \in A \land x \notin B\}$$

$$\overline{A} = \{x \mid x \notin A\}$$

$$A - B = \{X \mid X \in A \land X \notin B\}$$

$$= \{X \mid X \notin A \lor X \in B\}$$

$$A - B = A \cup B$$

$$B - A \rightarrow A - B$$

 $\begin{cases} x \mid x \in A \land x \notin B \end{cases} = \begin{cases} x \mid x \in B \land x \notin A \end{cases}$ $\begin{cases} x \mid x \notin A \lor x \in B \end{cases} = \begin{cases} x \mid x \in B \land x \notin A \end{cases}$ $\begin{cases} x \mid x \notin A \lor x \in B \end{cases} = \begin{cases} x \mid x \in B \land x \notin A \end{cases}$ $\begin{cases} x \mid x \notin A \lor x \in B \end{cases} = \begin{cases} x \mid x \in B \land x \notin A \end{cases}$ $\begin{cases} x \mid x \notin A \lor x \in B \end{cases} = \begin{cases} x \mid x \in B \land x \notin A \end{cases}$ $\begin{cases} x \mid x \notin A \lor x \in B \end{cases} = \begin{cases} x \mid x \in B \land x \notin A \end{cases}$

Probar
$$\overline{A \cap B} = \overline{A} \cup \overline{B}$$

 $\overline{A \cap B} = ?$

Probar
$$A \cap B = A \cup B$$

 $\overline{A \cap B} = \{ x \mid x \notin A \cap B \}$

Probar
$$\overline{A \cap B} = \overline{A \cup B}$$

 $\overline{A \cap B} = \{x \mid x \notin A \cap B\}$
 $\overline{A \cap B} = \{x \mid \neg(x \in A \cap B)\}$
 $\overline{A \cap B} = \{x \mid \neg(x \in A \land x \in B)\}$
 $\overline{A \cap B} = \{x \mid \neg(x \in A) \lor \neg(x \in B)\}$
 $\overline{A \cap B} = \{x \mid (x \notin A) \lor (x \notin B)\}$
 $\overline{A \cap B} = \{x \mid (x \in \overline{A}) \lor (x \in \overline{B})\}$
 $\overline{A \cap B} = \overline{A \cup B}$

Probar
$$\overline{A \cup (B \cap C)} = \overline{A} \cap (\overline{B \cap C})$$

 $\overline{A \cup (B \cap C)} = ?$

Probar
$$\overline{A \cup (B \cap C)} = \overline{A} \cap (\overline{B \cap C})$$

 $\overline{A \cup (B \cap C)} = \{x \mid x \notin (A \cup (B \cap C))\}$
 $\overline{A \cup (B \cap C)} = \{x \mid \neg(x \in (A \cup (B \cap C)))\}$
 $\overline{A \cup (B \cap C)} = \{x \mid \neg(x \in A) \lor (x \in (B \cap C))\}\}$
 $\overline{A \cup (B \cap C)} = \{x \mid \neg(x \in A) \land \neg(x \in (B \cap C))\}\}$
 $\overline{A \cup (B \cap C)} = \{x \mid (x \notin A) \land (x \notin (B \cap C))\}$
 $\overline{A \cup (B \cap C)} = \{x \mid (x \in \overline{A}) \land (x \in (\overline{B \cap C}))\}$
 $\overline{A \cup (B \cap C)} = \{x \mid (x \in \overline{A}) \land (x \in (\overline{B \cap C}))\}$

Probar
$$A \cap (B - A) = \emptyset$$

 $A \cap (B - A) = ?$

Probar
$$A \cap (B - A) = \emptyset$$

 $A \cap (B - A) = \{x \mid x \in (A \cap (B - A))\}$
 $A \cap (B - A) = \{x \mid (x \in A) \land [x \in (B - A)]\}$
 $A \cap (B - A) = \{x \mid (x \in A) \land (x \in B \land x \notin A)\}$
 $A \cap (B - A) = \{x \mid (x \in A) \land (x \in B) \land (x \notin A)\}$
 $A \cap (B - A) = \{x \mid (x \in A) \land (x \notin A)) \land (x \in B)\}$
 $A \cap (B - A) = \{x \mid (x \in \emptyset) \land (x \in B)\}$
 $A \cap (B - A) = \{x \mid (x \in \emptyset)\}$
 $A \cap (B - A) = \emptyset$

Probar
$$\overline{A} \cap (\overline{B} - A) = \overline{A} \cap \overline{B}$$

 $\overline{A} \cap (\overline{B} - A) = ?$

Probar
$$\overline{A} \cap \overline{(B-A)} = \overline{A} \cap \overline{B}$$

$$\overline{A} \cap \overline{(B-A)} = \{x \mid x \in \overline{A} \cap \overline{(B-A)}\}$$

$$\overline{A} \cap \overline{(B-A)} = \{x \mid x \in \overline{A} \land x \in \overline{(B-A)}\}$$

$$\overline{A} \cap \overline{(B-A)} = \{x \mid x \in \overline{A} \land \neg x \in \overline{(B-A)}\}$$

$$\overline{A} \cap \overline{(B-A)} = \{x \mid x \in \overline{A} \land \neg (x \in B \land x \notin A)\}$$

$$\overline{A} \cap \overline{(B-A)} = \{x \mid x \in \overline{A} \land \neg (x \in B) \lor \neg x \notin A\}$$

$$\overline{A} \cap \overline{(B-A)} = \{x \mid x \in \overline{A} \land [\neg (x \in B) \lor \neg (\neg x \in A)]\}$$

$$\overline{A} \cap \overline{(B-A)} = \{x \mid x \in \overline{A} \land \neg (x \in B) \lor \neg (x \in A)\}$$

$$\overline{A} \cap \overline{(B-A)} = \{x \mid x \in \overline{A} \land \neg (x \in B)\} \lor \overline{A} \cap \overline{(B-A)} = \{x \mid x \in \overline{A} \land \neg (x \in B)\}$$

$$\overline{A} \cap \overline{(B-A)} = \{x \mid x \in \overline{A} \land \neg (x \in B)\}$$

$$\overline{A} \cap \overline{(B-A)} = \{x \mid x \in \overline{A} \land \neg (x \in B)\}$$

$$\overline{A} \cap \overline{(B-A)} = \{x \mid x \in \overline{A} \land \neg (x \in B)\}$$

Probar
$$A \cup (B - A) = A \cup B$$

 $A \cup (B - A) = ?$

Probar
$$A \cup (B - A) = A \cup B$$

 $A \cup (B - A) = \{x \mid x \in (A \cup (B - A))\}$
 $A \cup (B - A) = \{x \mid (x \in A) \lor (x \in (B - A))\}$
 $A \cup (B - A) = \{x \mid (x \in A) \lor [(x \in B) \land (x \notin A)]\}$
 $A \cup (B - A) = \{x \mid [(x \in A) \lor (x \in B)] \land [(x \in A) \lor (x \notin A)]\}$
 $A \cup (B - A) = \{x \mid [(x \in A) \lor (x \in B)] \land (x \in U)\}$
 $A \cup (B - A) = \{x \mid (x \in A) \lor (x \in B)\}$
 $A \cup (B - A) = A \cup B$

Conjuntos

COlección de elementos que NO están repetidos

Subconjunto A C B
Subconjuntos propio A C B
Cardinalidad Número de elem

Cardinalidad. Número de elementos

Producto cartesiano $A \times B = \{(\alpha_i, b_i), (\alpha_i, b_i)\}$

Conjunto potencia: Todos los posibles subconjuntos

Operaciones entre conjuntos: Union, Intersección, Complemento y Diferencia.

Definición del conjunto Universal.

Operaciones: Notación y tabla