Wydział WFIIS	Imię i nazwisko 1. Mateusz Kulig 2. Przemysław F		Rok 2022	Grupa 3	Zespół 1		
PRACOWNIA FIZYCZNA WFiIS AGH	Temat: Spektr	ometr optyc		Nr ćwiczenia 83			
Data wykonania 13.03.2022	Data oddania	Zwrot do popr.	Data oddania	Data zaliczenia	OCENA		

W sprawozdaniu wyznaczyliśmy za pomocą spektrometru optycznego długości fali par rtęci powstałych po przejściu światła z lampy rtęciowej przez siatkę dyfrakcyjną. Eksperyment wykonaliśmy dla prążków rzędów 0, 1, 2 oraz 3. Dla ostatniego z nich uzyskaliśmy tylko jeden prążek koloru fioletowego. Za pomocą tablic udało nam się jednoznacznie określić dwa spośród 6 różnych przejść odpowiadających kolorom prążków rzędów 1 i 2. Pozostałe przejścia występują w dwóch różnych przedziałach odpowiadających różnym kolorom co uniemożliwia ich jednoznaczną identyfikację.

1. Wstęp teoretyczny

Spektrometria jest nauką zajmującą się badaniem widm promieniowania emitowanego lub absorbowanego przez badaną substancję. Jej początki sięgają rozczepienia światła białego na pryzmacie przez Newtona, a już kilkaset lat później przyczyniła się do powstania mechaniki kwantowej.

Jeden z postulatów Bohra głosi, ze emisja kwantu o energii hv jest wynikiem przejścia z poziomu o energii wyższej E_i na niższy poziom E_i

$$E_j - E_i = h\nu. (1)$$

Oznacza to, że badając parametry wyemitowanego fotonu możemy zyskać informacje na temat poziomów energetycznych emitującego go pierwiastka. W spektroskopii optycznej narzędziem rozszczepiającym światło jest pryzmat lub siatka dyfrakcyjna. Spektrometr z siatką dyfrakcyjną daje pomiar bezwzględny, gdyż pomiar kąta ugięcia wystarcza do wyznaczenia długości fali. Siatka dyfrakcyjna jest szklaną płytką z naciętymi równoległymi rysami. Odległość miedzy poszczególnymi rysami jest parametrem danej siatki i określa się ją przez literę d. Światło które przechodzi przez siatkę ulega zjawisku interferencji, czyli nakładania się fal. Zależność miedzy długością ugiętej fali λ , a kątem α pod którym została ugięta ma postać

$$\sin \alpha = \frac{n\lambda}{d},\tag{2}$$

gdzie n jest liczbą naturalną, określa rząd widma i przybiera wartość 0 dla wiązki nieodchylonej. Tym sposobem mierząc kąt odchylenia wiązki możemy obliczyć długość fali światła.

2. Aparatura

W celu wykonania doświadczenia użyliśmy następujących przedmiotów:

- Spektrometr optyczny, który składał się z trzech zasadniczych części: kolimatora lunety i stolika.
- Noniusz Za jego pomocą możliwy był pomiar kąta odchylenia wiązki.
- Lupa umożliwiała dokładniejszy odczyt kąta odchylenia.
- Lampa rtęciowa kwarcowa bańka z układem elektrod ,w której zachodzi wyładowanie.

3. Metodyka doświadczenia

Przeprowadzenie doświadczenia polegało na wyznaczeniu długości fali widma liniowego par rtęci za pomocą spektrometru z siatką dyfrakcyjną. Na samym początku zapalamy lampę rtęciową włączając ją do sieci 220 V oraz ustawiamy ją tak, by najlepiej oświetlała szczelinę spektrometru (ok. 2 [cm]). Siatkę dyfrakcyjną ustawiamy na środku stolika, prostopadle do osi kolimatora, tak by na siatce widoczna była plama światła z kolimatora. Następnie regulujemy oś lunety, by można było nią swobodnie obracać. W razie potrzeby zmieniamy ostrość widoczności widm za pomocą tubusa zawierającego wskaźnik. Ustawiamy widoczność prążka zerowego na zero skali kątowej. Odczytujemy odchylenie odpowiednich wiązek odpowiednio z lewej i prawej strony, w przypadku gdzie wartość kąta odchylenia różni się o ponad 10' poprawiamy ułożenie siatki dyfrakcyjnej. Następnie prowadzimy szereg pomiarów odpowiadających odpowiednim prążkom.

4. Analiza danych

Dane pomiarowe odchyleń odpowiednich prążków oraz odpowiadających im długościom fali zebraliśmy w poniższych tabelach.

Dla n = 0 kąt odchylenia wynosi $\alpha=0$ (Tak ustawiliśmy noniusz) zatem wiązka nie jest w żaden sposób rozszczepiona, czyli prążki każdej barwy są w tym samym miejscu.

Tab. 1. Tabela katów odch	vleń oraz długości fali dla	rzedu prażków n=1	oraz ich kolorów.
I do: I abcia katow oacii	IVICII OIUZ UIUGOJCI IUII UIU	I LCGG DIGLICOV II-1	OIGE ICH KOIOIOW.

		Table 1. Tabela katow odenyien oraz arabosertan ala rząda prązkow ir 1 oraz ien kolorow.											
			towy	Nieb	ieski	Zielo	ny 1	Zielo	ony 2	Żół	ty 1	Żół	ty 2
Orientacja		Lewy	Prawy	Lewy	Prawy	Lewy	Prawy	Lewy	Prawy	Lewy	Prawy	Lewy	Prawy
Kąt [°]		13	14	14	15	16	17	17,5	18,5	18,5	20	19	20
Dodatkow	е	4	20	6	16	0	24	20	0	26	25	0	20
minuty [']													
Kąt [']		784	860	846	916	960	1044	1070	1110	1136	1225	1140	1220
Kąt [rad]		0,228056	0,250164	0,246091	0,266454	0,279253	0,303687	0,31125	0,322886	0,330449	0,356338	0,331613	0,354884
Średni kąt													
[rad]		0,23	9110	0,25	6273	0,29	1470	0,31	7068	0,34	3394	0,343248	
Sinus		0,226085	0,247563	0,243615	0,263312	0,275637	0,299041	0,306249	0,317305	0,324468	0,348845	0,325568	0,347481
Średni sinu	JS	0,23	6838	0,25	3477	0,28	7361	0,31	1782	0,33	6684	0,336547	
Długość	fali	396,64	434,32	427,39	461,95	483,57	524,63	537,28	556,67	569,24	612,01	571,17	609,62
[nm]													
Średnia													
długość	fali	415,51		44/	1,70	EO	1,14	E 16	5,99	E00),67	FOC),43
[nm]		413	0,31	444	+,70	504	1,14	540	בב,נ	590	יט,ט	590	0,43

Tab. 2. Tabela kątów odchyleń oraz długości fali dla rzędu prążków n=2 oraz ich kolorów.

	Fiolet	owy	Nieb	ieski	Zielo	ny 1	Zielo	ny 2	Żół	ty 1	Żół	ty 2
Orientacja	Lewy	Prawy										
Kąt [°]	27	28,5	29	30,5	33,5	35	38	39,5	40,5	42,5	40,5	42,5
Dodatkowe												
minuty [']	9	29	22	5	10	9	0	7	0	25	11	12
Kąt [']	1629	1739	1762	1835	2020	2109	2280	2377	2430	2575	2441	2562
Kąt [rad]	0,473857	0,505855	0,512545	0,53378	0,587594	0,613483	0,663225	0,691441	0,706858	0,749037	0,710058	0,745256
Średni kąt												
[rad]	0,489	856	0,52	3162	0,600539		0,67	7333	0,727948		0,727657	
Sinus	0,456322	0,484555	0,490397	0,508791	0,55436	0,575719	0,615661	0,637648	0,649448	0,680934	0,651878	0,67816
Średni sinus	0,470	1499	0,49	9622	0,565087		0,626717		0,665339		0,665122	
Długość fali												
[nm]	400,28	425,05	430,17	446,31	486,28	505,02	540,05	559,34	569,69	597,31	571,82	594,88
Średnia												
długość fali [nm]	412,72		438	3,26	495	5,69	549),75	583	3,63	583	3,44

Tab. 3. Tabela kątów odchyleń oraz długości fali dla rzędu prążków n=3, dla tego rzędu otrzymaliśmy tylko kolor fioletowy.

Fioletowy	Orientacja	Kąt [°]	Dodatkowe minuty [']	Kąt [']	Kąt [rad]	Średni kąt [rad]	Sinus	Średni sinus	Długość fali [nm]	Średnia długość fali [nm]
	Lewy	47	17	2837	0,82525	0,853175	0,734713	0,753372	429,66	440,57
	Prawy	50	29	3029	0,8811	0,033173	0,77144	0,733372	451,13	440,37

Tab. 4. Tabela różnic długości fali rzędów 1 i 2.

	Fioletowy	Niebieski	Zielony 1	Zielony 2	Żółty 1	Żółty 2
Δλ [nm]	2,79	6,43	8,45	2,77	7,04	6,99

Średnia różnic między długościami fali dla 1 i 2 rzędu wynosi $\Delta \lambda = 5,75 \, [\text{nm}]$. Zatem tę wartość przyjmujemy za niepewność wartości długości fali.

Korzystając z niepewności rozszerzonej o czynniku skalującym k = 2, otrzymuję $U(\lambda) = 11,5$ [nm].

Długości fali odpowiadające następującym przejściom według wartości tablicowych [1] są podane poniżej.

- 1. $7^3S_1 \rightarrow 6^3P_0 : \lambda = 404,7 \text{ [nm]}$
- 2. $7^3 S_1 \rightarrow 6^3 P_1 : \lambda = 435.8 \text{ [nm]}$
- 3. $7^3S_0 \rightarrow 6^3P_1 : \lambda = 407.8 \text{ [nm]}$
- 4. $7^3S_1 \rightarrow 6^3P_2 : \lambda = 546,0 \text{ [nm]}$
- 5. $6^1D_2 \rightarrow 6^1P_1 : \lambda = 579,1 \text{ [nm]}$
- 6. $6^3D_2 \rightarrow 6^1P_1 : \lambda = 577,0 \text{ [nm]}$

Jako środek przedziału λ_0 przyjmuję średnią między wartością długości fali odpowiedniego koloru dla prążków pierwszego oraz drugiego rzędu, a następnie badam czy tablicowa wartość długości fali odpowiadająca odpowiedniemu przejściu mieści się w przedziale zadanym postacią $(\lambda_0 - U(\lambda); \lambda_0 + U(\lambda))$.

I. Fioletowy: $\lambda \in (402,62;419,87)$ II. Niebieski: $\lambda \in (429,98;452,98)$ III. Zielony 1: $\lambda \in (488,42;511,42)$ IV. Zielony 2: $\lambda \in (536,87;559,87)$ V. Żółty 1: $\lambda \in (575,65;598,65)$ VI. Żółty 2: $\lambda \in (575,44;598,44)$

- Przeskokowi 1 odpowiada jedynie widmo koloru fioletowego.
- Przeskokowi 2 odpowiada jedynie widmo koloru niebieskiego.
- Przeskokowi 3 odpowiada jedynie widmo koloru fioletowego.
- Przeskokowi 4 odpowiada jedynie widmo koloru zielonego 2.
- Przeskokowi 5 odpowiadają widma koloru żółtego i żółtego 1.
- Przeskokowi 6 odpowiadają widma koloru żółtego i żółtego 1.

5. Podsumowanie

W wyniku przeprowadzonego eksperymentu udało się jednoznacznie zidentyfikować przeskoki odpowiadające kolorom: niebieskiemu, gdzie otrzymana przez nas wartość wynosi $\lambda=(441,48\pm11,5)$ [nm], a wartość tablicowa wynosi $\lambda_{02}=435,8$ [nm] oraz zielonemu 2, gdzie otrzymana przez nas wartość wynosi $\lambda=(548,37\pm11,5)$ [nm], a wartość tablicowa wynosi $\lambda_{04}=546$ [nm]. Niepewność co do jednoznaczności odpowiednich linii dotyczy kolorów: fioletowego, żółtego oraz żółtego 1, ponieważ prążki tych kolorów należą do dwóch różnych przedziałów, nie możemy zatem stwierdzić jakiemu przeskokowi odpowiadają podane wyżej kolory prążków.

6. Literatura

1. http://website.fis.agh.edu.pl/~pracownia_fizyczna/cwiczenia/83.pdf - str. 6/7 - 13.03.2022 r.