Problem E. Li Hua and Maze

Time limit 1000 ms **Mem limit** 262144 kB

There is a rectangular maze of size $n \times m$. Denote (r, c) as the cell on the r-th row from the top and the c-th column from the left. Two cells are *adjacent* if they share an edge. A *path* is a sequence of *adjacent* empty cells.

Each cell is initially empty. Li Hua can choose some cells (except (x_1, y_1) and (x_2, y_2)) and place an obstacle in each of them. He wants to know the minimum number of obstacles needed to be placed so that there isn't a *path* from (x_1, y_1) to (x_2, y_2) .

Suppose you were Li Hua, please solve this problem.

Input

The first line contains the single integer t ($1 \le t \le 500$) — the number of test cases.

The first line of each test case contains two integers n, m ($4 \le n, m \le 10^9$) — the size of the maze.

The second line of each test case contains four integers x_1, y_1, x_2, y_2 ($1 \le x_1, x_2 \le n, 1 \le y_1, y_2 \le m$) — the coordinates of the start and the end.

It is guaranteed that $|x_1-x_2|+|y_1-y_2|\geq 2.$

Output

For each test case print the minimum number of obstacles you need to put on the field so that there is no *path* from (x_1, y_1) to (x_2, y_2) .

Sample 1

Input	Output
3	4
4 4	2
2 2 3 3	3
6 7	
1 1 2 3	
9 9	
5 1 3 6	

Note

Graphs Contest May 16, 2023

In test case 1, you can put obstacles on (1,3),(2,3),(3,2),(4,2). Then the path from (2,2) to (3,3) will not exist.

(1,1)	(1,2)	(1,3)	(1,4)
(2,1)	(2,2)	(2,3)	(2,4)
(3,1)	(3,2)	(3,3)	(3,4)
(4,1)	(4,2)	(4,3)	(4,4)