

Class 11: Applications of Differential Equations- Simple Harmonic Motion

1. In a simple harmonic motion of period $2\pi/\mu$, if the initial displacement be x_0 and the initial velocity be u₀ prove that

(i) amplitude =
$$\sqrt{x_0^2 + \frac{{u_0}^2}{\mu^2}}$$

(ii) position at time t =
$$\sqrt{x_0^2 + \frac{{u_0}^2}{\mu^2}} \cos \left\{ \mu t - \tan^{-1} \left(\frac{u_0}{\mu x_0} \right) \right\}$$

(iii) time to the position of rest =
$$\frac{1}{\mu} - \tan^{-1} \left(\frac{u_0}{\mu x_0} \right)$$

- 2. A particle is moving in simple harmonic motion. Find a formula for the displacement x (t) of the particle (with x in meters and t in seconds) given that
 - (1) the period of the motion is 16 seconds
 - (2) the particle passes through the centre of oscillation when t = 2
 - (3) the particle has a velocity of 2π m/s when t = 4

Also find the amplitude of the motion.

(Hint: The general solution $x = c_1 \cos \mu t + c_2 \sin \mu t$ can be written as x(t) = C sin ($\mu t + \alpha$) where C and α are constants. The constant α is called the phase shift of the motion and can be taken as zero when the particle starts at the origin)

Answer:
$$x(t) = 16\sqrt{2} \sin\left(\frac{\pi t}{8} - \frac{\pi}{4}\right)$$
 and amplitude is $16\sqrt{2}$.

3. A particle moves in a straight line towards the centre of force with an acceleration $\frac{\mu}{a^3}$, starting from rest at a distance "a" from the centre of force. Show that the time of reaching

Unit IV: Higher Order Differential Equations

a point at a distance "b" from the centre of force is $a\sqrt{\frac{a^2-b^2}{u}}$ and that its velocity is then

$$\sqrt{rac{\mu(a^2-b^2)}{ab}}$$
 . Also show that the time taken to reach the centre is $a^2/\sqrt{\mu}$.

4. In a certain bay, there is a low tide of 6 meters at 1 a.m and a high tide of 10 meters at 8 a.m. Assuming that the tide motion is simple harmonic, find an expression for the height at time t after 1 a.m and find the first time after 1 a.m when the tide is 9 meters.

Hint : Assume $x(t) = C \sin(\mu t + \alpha)$

Answer:
$$x(t) = 8 + 2\sin(\frac{\pi t}{7} - \frac{\pi}{2})$$
, t = 5. 40 a.m

5. Show that if the displacement of a moving particle at any time t is given by an equation of the form $x = c_1 \cos \mu t + c_2 \sin \mu t$, the motion is simple harmonic. If $c_1 = 3$, $c_2 =$ 4 and $\mu = 2$ determine the period, amplitude, maximum velocity and maximum acceleration of the motion.

Answer: π , 5 cm, 10 cm/sec, 20 cm/sec².

