Algorithm Design for Big Data Systems

Divide and conquer

Graph algorithms
Streaming algorithms

Embarrassingly Parallel Problems

- Problems that can be easily decomposed into many independent problems.
- Examples.
 - Word count
 - k-means
 - PageRank

Divide and Conquer

code at:

https://www.cse.ust.hk/msbd5003/nb/DC.ipynb

Markey Wall March Markey Wall Wall Wall Wall Wall

Classical Divide-and-Conquer

- Classical D&C
 - Divide problem into 2 parts
 - Recursively solve each part
 - Combine the results together
- D&C under big data systems
 - Divide problem into p partitions, where (ideally) p is the number of executors in the system
 - Solve the problem on each partition
 - Combine the results together
- Example: sum(), reduce()

Prefix Sums

- Input: Sequence x of n elements, binary associative operator +
- Output: Sequence y of n elements, with $y_k = x_1 + ... + x_k$
- Example:

$$x = [1, 4, 3, 5, 6, 7, 0, 1]$$

 $y = [1, 5, 8, 13, 19, 26, 26, 27]$

- Algorithm:
 - Compute sum for each partition
 - Compute the prefix sums of the p sums
 - Compute prefix sums in each partition

Variants of Prefix Sums

- Assign consecutive id's for each element
 - zipWithIndex()
- Given a list of words, find the first appearance of "spark"
- Given two long strings, compare them lexicographically
- Given a sequence of integers, check whether these numbers are monotonically decreasing.

Sorting (Sample Sort)

- Step 1: Sampling
 - Master node collects a sample of sp elements (will determine s later)
- Step 2: Choose splitters
 - Pick every $(i \cdot s)$ -th element in the sample as splitters, $i=1,\ldots,p-1$
 - Broadcast them to all machines
- Step 3: Shuffling
 - Each machine partitions its data using the splitters
 - Send data to the target machine
- Step 4: Sort each partition
 - Each machine sorts all data received

Probability Tools

• Chernoff inequality Theorem: Let $X_1, X_2, ..., X_n$ be independent 0-1 random variables (not necessarily identical), and let $X = \sum_i X_i$ with $\mu = E[X]$. Then for any $0 \le \delta \le 1$,

$$\Pr[X \le (1 - \delta)\mu] \le \exp\left(-\frac{\mu\delta^2}{2}\right)$$

$$\Pr[X \ge (1+\delta)\mu] \le \exp\left(-\frac{\mu\delta^2}{3}\right)$$

• Union bound. Given events $E_1, ..., E_n$, independent or not,

$$\Pr\left[\bigcup_{i=1}^{n} E_{i}\right] \leq \sum_{i=1}^{n} \Pr[E_{i}]$$

Determining Sample Size

- Goal: No machine receives more than $(1+\epsilon)\frac{N}{p}$ elements w.h.p.
 - How large should s be?
- Let the elements be a_1, \dots, a_N in sorted order
- A sub-sequence $a_i,\dots,a_{i+(1+\epsilon)\frac{N}{p}-1}$ is bad if it contains < s sampled elements
 - Goal achieved if no sub-sequence is bad
- Consider a particular sub-sequence
 - -X = # sampled elements in it; $E[X] = \frac{sp}{N} \cdot (1+\epsilon) \frac{N}{p} = (1+\epsilon)s$
 - By Chernoff inequality: $\Pr[X < s] \le \Pr\left[X < \left(1 \frac{\epsilon}{2}\right)E[X]\right] \le e^{-\epsilon^2 s/8}$
- By union bound, $\Pr[\exists \text{ a bad subsequence}] \leq N \cdot e^{-\epsilon^2 s/8}$
 - If want failure probability 1%, suffices to set $s = \frac{8 \ln(100N)}{\epsilon^2}$
 - A tighter analysis improves the $\log N$ term to $\log \frac{p}{\epsilon}$.

Distributed Sampling

- Q: How to sample one element uniformly from n elements stored on p servers?
- A:
 - First randomly sample a server
 - Then ask that server to return an element randomly chosen from its n/p elements.
 - The probability of each element being sampled is $\frac{1}{p} \cdot \frac{p}{n} = \frac{1}{n}$
- Q: How to sample many elements at once?
- A: Do each of the two steps above in batch mode
 - First sample sp servers with replacement (this can be done at the master node).
 - If a server is sampled k times, we ask that server to return k samples (with replacement) from its local data.

The Maximum Subarray Problem

Input: Profit history of a company of the years.

Year	1	2	3	4	5	6	7	8	9
Profit (M\$)	-3	2	1	-4	5	2	-1	3	-1

Problem: Find the span of years in which the company earned the most

Answer: Year 5-8, 9 M\$

Formal definition:

Input: An array of numbers A[1...n], both positive and negative

Output: Find the maximum V(i,j), where $V(i,j) = \sum_{k=i}^{j} A[k]$

A divide-and-conquer algorithm

Year	1	2	3	4	5	6	7	8	9
Profit (M\$)	-3	2	1	-4	5	2	-1	3	-1
	-		-	-			-	-	

Idea:

Cut the array into two halves

All subarrays can be classified into three cases:

- Case 1: entirely in the first half
- Case 2: entirely in the second half
- Case 3: crosses the cut

Largest of three cases is final solution

The optimal solutions for case 1 and 2 can be found recursively.

Only need to consider case 3.

Solving case 3

Year	1	2	3	4	5	6	7	8	9
Profit (M\$)	-3	2	1	-4	5	2	-1	3	-1
		•					-	-	

Idea:

Let
$$q = \lfloor (p+r)/2 \rfloor$$

Any case 3 subarray must have starting position $\leq q$, and ending position $\geq q+1$

Such a subarray can be divided into two parts A[i..q] and

A[q+1..j], for some i and j

Just need to maximize each of them separately

Maximize A[i..q] and A[q+1,j]:

Let i', j', be the indices that maximize the values.

i', j' can be found using linear scans to left and right of q

A[i',j'] has largest value of all subarrays that cross q

The (binary) divide-and-conquer algorithm

```
MaxSubarray (A, p, r):
if p = r then return A[p]
q \leftarrow |(p+r)/2|
M_1 \leftarrow \text{MaxSubarray}(A, p, q)
M_2 \leftarrow \text{MaxSubarray}(A, q + 1, r)
L_m \leftarrow -\infty, R_m \leftarrow -\infty
V \leftarrow 0
for i \leftarrow q downto p
       V \leftarrow V + A[i]
      if V > L_m then L_m \leftarrow V
V \leftarrow 0
for i \leftarrow a + 1 to r
      V \leftarrow V + A[i]
       if V > R_m then R_m \leftarrow V
return \max\{M_1, M_2, L_m + R_m\}
First call: MaxSubarray(A, 1, n)
```

Analysis:

- Recurrence: T(n) = 2T(n/2) + n- So, $T(n) = \Theta(n \log n)$

If we use the same algorithm on Spark:

Level 1:

- Naively: 2 executors are working, all others idle
- time = O(n/2)
- Smarter: L_m and R_m can be found by the prefix-sum algorithm
- Can use all executors, time = O(n/p)

• Level 2:

- We have 4 subarrays, and solve two prefix-sums for each subarray
- Each subarray has size n/4, and we make sure that each has the same number of partitions
- Time = O(n/p)
- Level 3: Time = O(n/p)
- Stop recursion when each subarray is one partition.
- Total time: $O\left(\frac{n}{p} \cdot \log p\right)$

A linear-time algorithm?

Year	1	2	3	4	5	6	7	8	9
Profit (M\$)	-3	2	1	-4	5	2	-1	3	-1
X[i]		-3	-1	0	-4	1	3	2	5

Observations:

$$V(i, j - 1) = \sum_{k=i}^{j-1} A[k] = X[j] - X[i]$$

For fixed j, finding largest V(i,j-1) is same as finding the index i,i < j for which X[i] is smallest

Idea: doing this for each j, then find overall largest V(i,j)

A linear-time algorithm?

• Define: $X[i] = A[1] + \cdots + A[i-1]$

• Goal: Find $\max_{i < j} (X[j] - X[i])$

Year	1	2	3	4	5	6	7	8	9
Profit (M\$)	-3	2	1	-4	5	2	-1	3	-1
X[i]		-3	-1	0	-4	1	3	2	5

Algorithm:

For each j, needs to know i < j that minimizes X[i] (i.e., maximizes X[j] - X[i])

(Then maximize over all j)

Algorithm increases j by +1 each step

Keeps track of smallest X[i] so far

Could be old smallest one or it could be current X[j]

The linear-time algorithm

$$V_{max} \leftarrow -\infty, X_{min} = 0$$
 $X \leftarrow 0, V \leftarrow 0$
for $i \leftarrow 1$ to n do
 $V \leftarrow V + A[i]$
if $V > V_{max}$ then $V_{max} \leftarrow V$
 $X \leftarrow X + A[i]$
if $X < X_{min}$ then
 $X_{min} \leftarrow X$
 $V \leftarrow 0$
return V_{max}

 X_{min} keeps track of smallest X[i] so far.

V contains difference between current X[i] and smallest X[i] so far

Even "simpler":

$$V_{max} \leftarrow -\infty, V \leftarrow 0$$
 for $i \leftarrow 1$ to n do $V \leftarrow V + A[i]$ if $V > V_{max}$ then $V_{max} \leftarrow V$ if $V < 0$ then $V \leftarrow 0$ return V_{max}

Observation:

- $-X < X_{min}$ iff V < 0
 - Because $V = X X_{min}$
- No need to actually store *X*!

A more efficient algorithm

- For each partition, solve the problem directly using one executor and the linear-time algorithm
- Now it remains to solve the "cross the boundary" case
- Find the ${\cal L}_m$ and ${\cal R}_m$ for each partition, as well as its sum
- For each contiguous subsets of partitions (i,j), i < j, the optimal solution with left boundary in partition i and right boundary in partition j is

 $L_m[i] + Sum[i + 1, ..., j - 1] + R_m[j]$

• Total time: O(n/p)