矩阵

Didnelpsun

目录

1	矩阵幂			
	1.1	对应成比例	1	
	1.2	试算归纳	1	
	1.3	行列结合	1	
	1.4	拆分矩阵	2	
	1.5	分块矩阵	2	
2	初等变换			
	2.1	可逆矩阵	3	
3	逆矩阵			
	3.1	定义法	3	
	3.2	分解乘积	4	
	3.3	初等变换	4	
	3.4	分块矩阵	4	
4	方阵行列式			
	4.1	两项积商	6	
	4.2	两项和差	6	
5	矩阵方程			
	5.1	直接化简	7	
	5.2	凑目标式	7	

1 矩阵幂

1.1 对应成比例

因为矩阵运算不满足交换率但是满足结合率,且一行矩阵乘一列矩阵的乘 积为一个数,所以可以推出矩阵的幂的运算方法。

这个方法要求 r(A) = 1, 即对应成比例。

令 A 为 n 阶方阵,将 A 拆为 $A = (a_1, a_2, \cdots, a_n)^T (b_1, b_2, \cdots, b_n) = \alpha^T \beta$, 所以 $A^n = \alpha^T \beta \alpha^T \beta \cdots \alpha^T \beta$,利用结合率: $\alpha^T (\beta \alpha^T) (\beta \cdots \alpha^T) \beta$,中间一共 n-1个 $\beta \alpha^T$, $\beta \alpha^T$ 是一个数,即 $A^n = (\beta \alpha^T)^{n-1} \alpha^T \beta = (\beta \alpha^T)^{n-1} A$ 。

例题:
$$A = \begin{pmatrix} 1 & 2 & 3 \\ -2 & -4 & -6 \\ 3 & 6 & 9 \end{pmatrix}$$
, 求 A^n 。

解: $A = (1, -2, 3)^T (1, 2, 3)$,所以 $A^n = ((1, 2, 3)(1, -2, 3)^T)^n (1, -2, 3)^T (1, 2, 3)$ $= 6^{n-1}A$ 。

若矩阵 A 的行与列都成比例,则 $A^n = [tr(A)]^{n-1}A$, $[tr(A)] = \sum a_{ii}$,即矩阵迹为对角线元素值之和。

1.2 试算归纳

对 A 进行试算,如 A^2 ,若 A^k 是一个数量阵,那么计算 A^n 就只用找规律就可以了。

解: 通过计算得知 $A^2 = 4E$, 这是一个数量阵。

$$\therefore A^n = \begin{cases} 4^k E, & n = 2k \\ 4^k A, & n = 2k+1 \end{cases}$$

1.3 行列结合

将一个矩阵拆成 $\alpha\beta^T$ 的形式,其中都是列向量,从而进行幂运算可以进行结合 $\beta^T\alpha$ 为一个常数。

例题: 设
$$\alpha = (1, 3, -2)^T$$
, $\beta = (2, 0, 0)^T$, $A = \alpha \beta^T$, 求 A^3 .

解: $:: \beta^T \alpha = [2,0,0][1,3,-2]^T = 2$, $:: A^3 = (\alpha \beta^T)(\alpha \beta^T)(\alpha \beta^T) = \alpha(\beta^T \alpha)$ $(\beta^T \alpha)\beta^T = 4\alpha\beta^T = 4A$ 。

1.4 拆分矩阵

将 A^n 拆分为两个矩阵 $A^n = (B+C)^n$,其中 BC 应该是可逆的,即 BC = CB, 所以一般有一个是 E。

例题:
$$A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$
, 求 A^n 。

$$\mathbf{\widetilde{R}:} \ \ A = E + B = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right) + \left(\begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{array}\right).$$

$$\therefore A^n = (E+B)^n = C_n^0 E^n + C_n^1 E^{n-1} B + C_n^2 E^{n-2} B^2 + \cdots$$

$$\mathbb{X} B^2 = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

$$B^{3} = B^{2}B = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = O_{\circ}$$

$$\therefore B^4 = B^5 = \dots = O_{\circ}$$

$$\therefore A^n = (E+B)^n = C_n^0 E^n + C_n^1 E^{n-1} B + C_n^2 E^{n-2} B^2 \circ$$

$$= \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} + n \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} + \frac{n(n-1)}{2} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

1.5 分块矩阵

$$\left[\begin{array}{cc} A & O \\ O & B \end{array}\right]^n = \left[\begin{array}{cc} A^n & O \\ O & B^n \end{array}\right].$$

2 初等变换

2.1 可逆矩阵

若 A 和 B 等价,求一个可逆矩阵 P,使得 PA = B。只用右乘 $P = BA^{-1}$ 。需要根据逻辑上的计算还原出左乘的初等矩阵。

例题:
$$A = \begin{pmatrix} 1 & 0 & 1 \\ -1 & -1 & 1 \\ 0 & 2 & -4 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & 0 & 1 \\ 0 & -1 & 2 \\ 0 & 0 & 0 \end{pmatrix}$, 当 $A \sim B$ 时,求 P

使得 PA = B。

解:目标是将 A 变为 B,所以第一步将第一列的第二行的-1 变为 0。即将第一行加到第二行。

左乘
$$E_{21}(1)A = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 1 \\ -1 & -1 & 1 \\ 0 & 2 & -4 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 1 \\ 0 & -1 & 2 \\ 0 & 2 & -4 \end{pmatrix} = C_{\circ}$$

然后对第二列进行消,首先将第三行加上第二行的两倍。

$$E_{32}(2)C = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 1 \\ 0 & -1 & 2 \\ 0 & 2 & -4 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 1 \\ 1 & -1 & 2 \\ 0 & 0 & 0 \end{pmatrix} = B \circ$$

 $E_{32}(2)E_{21}(1)A = B_{\odot}$

$$P = E_{32}(2)E_{21}(1) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 2 & 2 & 1 \end{pmatrix}.$$

3 逆矩阵

3.1 定义法

找出一个矩阵 B,使得 AB = E,则 A 可逆, $A^{-1} = B$ 。

例题: A, B 均是 n 阶方阵,且 AB = A + B, 证明 A - E 可逆,并求 $(A - E)^{-1}$ 。

解:要证明 A-E,就要从 AB=A+B 中尽量凑出。

AB = A + B 变为 AB - B = A,从而提取 (A - E)B = A, $(A - E)BA^{-1} = E$ 。 但是 A^{-1} 是未知的,所以 A - E 的逆矩阵不能用 BA^{-1} 来表示。 AB - A = B,所以提出 A(B - E) = B,即 A(B - E) = B - E + E, (A - E)(B - E) = E,所以 A - E 的逆矩阵就是 B - E。

3.2 分解乘积

将 A 分解为若干个可逆矩阵的乘积。若 A = BC,B,C 可逆,则 A 可逆,且 $A^{-1} = C^{-1}B^{-1}$ 。同理 $(ABC)^{-1} = C^{-1}B^{-1}A^{-1}$ 。

例题: 设 A, B 为同阶可逆方阵,且 $A^{-1} + B^{-1}$ 可逆,求 $(A + B)^{-1}$ 。

解: 已知 $A^{-1}+B^{-1}$ 可以用来表示其他式子,需要求 A+B 的逆,则需要将 A+B 转为其逆。

:
$$A + B = A(E + A^{-1}B) = A(B^{-1} + A^{-1})B$$
.

$$\therefore (A+B)^{-1} = B^{-1}(B^{-1} + A^{-1})^{-1}A^{-1}.$$

3.3 初等变换

$$\begin{bmatrix} A:B \end{bmatrix} \stackrel{r}{\sim} \begin{bmatrix} E:A^{-1} \end{bmatrix}, \begin{bmatrix} A \\ B \end{bmatrix} \stackrel{c}{\sim} \begin{bmatrix} E \\ A^{-1} \end{bmatrix}.$$

3.4 分块矩阵

基于拉普拉斯展开式。

对于一些分块矩阵的逆,若 A, B 都可逆,则: $\begin{bmatrix} A & O \\ O & B \end{bmatrix}^{-1} = \begin{bmatrix} A^{-1} & O \\ O & B^{-1} \end{bmatrix},$

$$\left[\begin{array}{cc}O&A\\B&O\end{array}\right]^{-1}=\left[\begin{array}{cc}O&B^{-1}\\A^{-1}&O\end{array}\right]\circ$$

例题: 已知 $A = \begin{pmatrix} B & O \\ D & C \end{pmatrix}$,其中 B 为 $r \times r$ 可逆矩阵,C 为 $s \times s$ 可逆矩阵,求 A^{-1} 。

$$egin{aligned} & egin{aligned} & egin{aligned} & egin{aligned} & egin{aligned} & egin{aligned} & egin{aligned} & eta & eta & O \\ & D & C \end{aligned} & = |B||C|
eq 0, 所以 A 可逆,设 $A^{-1} = \begin{pmatrix} X & Y \\ Z & W \end{pmatrix}$ 。 $AA^{-1} = \begin{pmatrix} E_r & O \\ O & E_s \end{pmatrix} = E_{r+s}$ 。即 $\begin{pmatrix} BX & BY \\ DX + CZ & DY + CW \end{pmatrix} = E_{r+s}$ 。$$

当分块矩阵为三角矩阵时,对角线为原方块矩阵的逆矩阵,非 0 的一角为原矩阵,再左乘同行的逆矩阵,右乘同列的逆矩阵。

$$\therefore A = \begin{pmatrix} B & D \\ O & C \end{pmatrix}, \quad A^{-1} = \begin{pmatrix} B^{-1} & -B^{-1}DC^{-1} \\ O & C^{-1} \end{pmatrix} \circ$$

当分块矩阵为副对角矩阵时,对角线为对角方块矩阵的逆矩阵,非 0 的一角为原矩阵,再左乘同行的逆矩阵,右乘同列的逆矩阵。

$$A = \begin{pmatrix} O & B \\ C & D \end{pmatrix}, A^{-1} = \begin{pmatrix} -C^{-1}DB^{-1} & C^{-1} \\ B^{-1} & O \end{pmatrix}$$

$$A = \begin{pmatrix} D & B \\ C & O \end{pmatrix}, A^{-1} = \begin{pmatrix} O & C^{-1} \\ B^{-1} & -C^{-1}DB^{-1} \end{pmatrix}$$

$$A = \begin{pmatrix} A_1 \\ & \ddots \\ & A_n \end{pmatrix}, A^{-1} = \begin{pmatrix} A_1^{-1} \\ & \ddots \\ & A_n^{-1} \end{pmatrix}$$

$$A = \begin{pmatrix} A_1 \\ & \ddots \\ & A_n \end{pmatrix}, A^{-1} = \begin{pmatrix} A_1^{-1} \\ & \ddots \\ & A_1^{-1} \end{pmatrix}$$

$$A_1 = \begin{pmatrix} A_1 \\ & \ddots \\ & A_1^{-1} \end{pmatrix}$$

$$A_1 = \begin{pmatrix} A_1 \\ & \ddots \\ & A_1^{-1} \end{pmatrix}$$

$$A_1 = \begin{pmatrix} A_1^{-1} \\ & \ddots \\ & A_1^{-1} \end{pmatrix}$$

$$A_2 = \begin{pmatrix} A_1 \\ & \ddots \\ & A_1 \end{pmatrix}$$

$$A_1 = \begin{pmatrix} A_1 \\ & \ddots \\ & A_1^{-1} \end{pmatrix}$$

$$A_2 = \begin{pmatrix} A_1 \\ & \ddots \\ & A_1 \end{pmatrix}$$

$$A_1 = \begin{pmatrix} A_1 \\ & \ddots \\ & A_1 \end{pmatrix}$$

$$A_2 = \begin{pmatrix} A_1 \\ & \ddots \\ & A_1 \end{pmatrix}$$

$$A_1 = \begin{pmatrix} A_1 \\ & \ddots \\ & A_1 \end{pmatrix}$$

$$A_1 = \begin{pmatrix} A_1 \\ & \ddots \\ & A_1 \end{pmatrix}$$

$$A_2 = \begin{pmatrix} A_1 \\ & \ddots \\ & A_1 \end{pmatrix}$$

$$A_1 = \begin{pmatrix} A_1 \\ & \ddots \\ & A_1 \end{pmatrix}$$

$$A_2 = \begin{pmatrix} A_1 \\ & \ddots \\ & A_1 \end{pmatrix}$$

$$A_1 = \begin{pmatrix} A_1 \\ & \ddots \\ & A_1 \end{pmatrix}$$

$$A_2 = \begin{pmatrix} A_1 \\ & \ddots \\ & A_1 \end{pmatrix}$$

$$A_1 = \begin{pmatrix} A_1 \\ & \ddots \\ & A_1 \end{pmatrix}$$

$$A_2 = \begin{pmatrix} A_1 \\ & \ddots \\ & A_1 \end{pmatrix}$$

$$A_1 = \begin{pmatrix} A_1 \\ & \ddots \\ & A_1 \end{pmatrix}$$

$$A_2 = \begin{pmatrix} A_1 \\ & \ddots \\ & A_1 \end{pmatrix}$$

$$A_1 = \begin{pmatrix} A_1 \\ & \ddots \\ & A_1 \end{pmatrix}$$

$$A_1 = \begin{pmatrix} A_1 \\ & \ddots \\ & A_1 \end{pmatrix}$$

$$A_1 = \begin{pmatrix} A_1 \\ & \ddots \\ & A_1 \end{pmatrix}$$

$$A_1 = \begin{pmatrix} A_1 \\ & \ddots \\ & A_1 \end{pmatrix}$$

$$A_2 = \begin{pmatrix} A_1 \\ & \ddots \\ & A_1 \end{pmatrix}$$

$$A_1 = \begin{pmatrix} A_1 \\ & \ddots \\ & A_1 \end{pmatrix}$$

$$A_2 = \begin{pmatrix} A_1 \\ & \ddots \\ & A_1 \end{pmatrix}$$

$$A_1 = \begin{pmatrix} A_1 \\ & \ddots \\ & A_1 \end{pmatrix}$$

$$A_2 = \begin{pmatrix} A_1 \\ & \ddots \\ & A_1 \end{pmatrix}$$

$$A_1 = \begin{pmatrix} A_1 \\ & \ddots \\ & A_1 \end{pmatrix}$$

$$A_2 = \begin{pmatrix} A_1 \\ & \ddots \\ & A_1 \end{pmatrix}$$

$$A_1 = \begin{pmatrix} A_1 \\ & \ddots \\ & A_1 \end{pmatrix}$$

$$A_2 = \begin{pmatrix} A_1 \\ & \ddots \\ & A_1 \end{pmatrix}$$

$$A_1 = \begin{pmatrix} A_1 \\ & \ddots \\ & A_1 \end{pmatrix}$$

$$A_2 = \begin{pmatrix} A_1 \\ & \ddots \\ & A_1 \end{pmatrix}$$

$$A_1 = \begin{pmatrix} A_1 \\ & \ddots \\ & A_1 \end{pmatrix}$$

$$A_2 = \begin{pmatrix} A_1 \\ & \ddots \\ & A_1 \end{pmatrix}$$

$$A_1 = \begin{pmatrix} A_1 \\ & \ddots \\ & A_1 \end{pmatrix}$$

$$A_2 = \begin{pmatrix} A_1 \\ & \ddots \\ & A_1 \end{pmatrix}$$

$$A_1 = \begin{pmatrix} A_1 \\ & \ddots \\ & A_1 \end{pmatrix}$$

$$A_2 = \begin{pmatrix} A_1 \\ & \ddots \\ & A_1 \end{pmatrix}$$

$$A_1 = \begin{pmatrix} A_1 \\ & \ddots \\ & A_1 \end{pmatrix}$$

$$A_2 = \begin{pmatrix} A_1 \\ & \ddots \\ & A_1 \end{pmatrix}$$

$$A_1 = \begin{pmatrix} A_1 \\ & \ddots \\ & A_1 \end{pmatrix}$$

$$A_2 = \begin{pmatrix} A_1 \\ & \ddots \\ & A_1 \end{pmatrix}$$

$$A_1 = \begin{pmatrix} A_1 \\ & \ddots \\ & A_1 \end{pmatrix}$$

$$A_2 = \begin{pmatrix} A_1 \\ & \ddots \\ & A_1 \end{pmatrix}$$

$$A_1 = \begin{pmatrix} A_1 \\ & \ddots \\ & A_1 \end{pmatrix}$$

$$A_2 = \begin{pmatrix} A_1 \\ & \ddots \\ & A_1 \end{pmatrix}$$

$$A_3 = \begin{pmatrix} A_1 \\ & \ddots \\ & A_1 \end{pmatrix}$$

$$A_4 = \begin{pmatrix} A_1 \\ & \ddots \\ & A_1 \end{pmatrix}$$

$$A_1 = \begin{pmatrix} A_1 \\ & \ddots \\ & A_1 \end{pmatrix}$$

$$A_2 = \begin{pmatrix} A_1 \\ & \ddots \\ & A_1 \end{pmatrix}$$

$$A_3 = \begin{pmatrix} A_1 \\ & \ddots \\ & A_1 \end{pmatrix}$$

$$A_4 = \begin{pmatrix} A_1 \\ & \ddots \\ & A$$

解:由于 $A^{-1}=\frac{A^*}{|A|}$,所以 $A=|A|(A^*)^{-1}$ 。已知 A^* 可知 $(A^*)^{-1}$,所以重点就是求 |A|。

$$X |A^*| = |A|^{n-1}, |A^*| = -8, |A| = -2.$$

所以根据分块矩阵的逆运算,可以得到
$$(A^*)^{-1}=$$

$$\begin{vmatrix} -\frac{1}{2} & -1 & 0 & 0 \\ -\frac{3}{2} & -2 & 0 & 0 \\ 0 & 0 & -\frac{1}{4} & 0 \\ 0 & 0 & 0 & -1 \end{vmatrix}$$
。

所以
$$A = \begin{bmatrix} 1 & 2 & 0 & 0 \\ 3 & 4 & 0 & 0 \\ 0 & 0 & \frac{1}{2} & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix}$$
。

4 方阵行列式

4.1 两项积商

- $|A^T| = |A|_{\circ}$
- $\bullet |A^{-1}| = \frac{1}{|A|} \circ$
- $|\lambda A| = \lambda^n |A|$
- $|AB| = |A| \cdot |B| = |BA|$.
- $|A^*| = |A|^{n-1}$.

因为两项积商比较简单,所以基本上会变换 A 和 B,让其变为转置或逆矩阵。

4.2 两项和差

两项和差需要将方阵拆分为向量组的形式,然后根据矩阵与行列式的运算 法则进行运算。(注意其中的差别)

例题: 设四阶方阵 $A=[\alpha,\gamma_2,\gamma_3,\gamma_4]$, $B=[\beta,\gamma_2,\gamma_3,\gamma_4]$, 其中 α 、 β 、 γ_i 均为四维向量,且 |A|=5, $|B|=-\frac{1}{2}$,求 |A+2B|。

解: = $|[\alpha, \gamma_2, \gamma_3, \gamma_4] + 2[\beta, \gamma_2, \gamma_3, \gamma_4]|$ = $|[\alpha + 2\beta, 3\gamma_2, 3\gamma_3, 3\gamma_4]|$ = $27|[\alpha + 2\beta, \gamma_2, \gamma_3, \gamma_4]|$ = $27|[\alpha, \gamma_2, \gamma_3, \gamma_4]| + 54|[\beta, \gamma_2, \gamma_3, \gamma_4]| = 27(|A| + 2|B|) = 108$ 。

5 矩阵方程

含有未知矩阵的方程就是矩阵方程,需要将方程进行恒等变形,化为 AX = B、XA = B 或 AXB = C 的形式。

若 A、B 可逆,且可以分别得到 $X = A^{-1}B$, $X = BA^{-1}$, $X = A^{-1}CB^{-1}$ 。

5.1 直接化简

例题:设 3 阶方阵
$$A$$
, B 满足 $A^{-1}BA = 6A + BA$,且 $A = \begin{pmatrix} \frac{1}{3} & 0 & 0 \\ 0 & \frac{1}{4} & 0 \\ 0 & 0 & \frac{1}{5} \end{pmatrix}$,

求 B。

5.2 凑目标式

有时候直接化简非常麻烦,因为所求的式子很复杂,甚至出现结果不能得到的情况。

例题: 已知
$$AB = A + B$$
,其中 $B = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}$,求 $(A - E)^{-1}$ 。

解:已知 AB = A + B,求 A - E,则向目标计算。

AB-B=A,即 (A-E)B=A, $(A-E)^{-1}=BA^{-1}$ 。因为 A 未知,所以要消去 A。

根据
$$AB = A + B$$
, 得到 $AB - A = B$, 即 $A(B - E) = B$, $A^{-1} = (B - E)B^{-1}$ 。 $(A - E)^{-1} = BA^{-1} = B(B - E)B^{-1}$,然后就不知道接下来怎么办了。

我们很希望 BB^{-1} 在一起消掉,但是无论如何操作都无法完成。但是也可以通过此得到解题的启示,按 (A-E)(B-E) 去凑。

回到 (A-E)B = A, 去凑 B-E, 先尝试两边减去 E, 得到 (A-E)B-E = A-E, 正好左移右项 (A-E)(B-E) = E, 解得 $(A-E)^{-1} = B-E$ 。

$$\mathbb{RP} = \left[\begin{array}{ccc} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{array} \right] \circ$$