# STAT 206B Review: Probability Distributions

Winter 2022

# † Probability

- Probability: A number between 0 and 1 assigned to an event A in the sample space, S.
- A way to numerically express our belief and information about unknown quantities
- Axioms of Probability (Kolmogorov Axiom System): Given a sample space  $\mathcal S$  and an associated sigma algebra  $\mathcal B$ , a probability function is a function Pr with domain  $\mathcal B$  that satisfies;
  - \*\*  $Pr(A_i) \ge 0$  for all  $A_i \in \mathcal{B}$ .
  - $\star\star$  Pr(S) = 1.
  - \*\* If  $A_1, A_2, \ldots \in \mathcal{B}$  are pairwise disjoint, then  $\Pr(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} \Pr(A_i)$ .

## † Interpretations of Probabilities

- (Frequency) An event's probability is the proportion of times that we expect the event to occur, if the experiment were repeated a large number of times – that is, relative frequencies.
  - e.g. Roll a die repeatedly. Count how many times each face came up.
- (Classical) An event's probability is the ratio of the number of favorable outcomes and possible outcomes in a (symmetric) experiment.
  - \*\* symmetric experiment: all single points in  ${\mathcal S}$  are "equiprobable".
- (Subjectivist) A subject probability is an individual's degree of belief in the occurrence of an event.

#### † Interpretations of Probabilities – contd

- Any function Pr that satisfies the Axioms of Probability is called a probability function.
- For any sample space, many different probability functions can be defined.
- The axiomatic definition makes no attempt to tell what particular function Pr to choose.
- No single scientific interpretation of the term probability is accepted by all statisticians, philosophers, and other authorities.

- † How to update our degree of belief? Bayes' Theorem
  - If H denotes an hypothesis and D denotes data, the Bayes' theorem states

$$Pr(H \mid D) = \frac{Pr(D \mid H) Pr(H)}{Pr(D)}.$$

- Pr(H): a probabilistic statement of belief about H before obtaining data D.
- $Pr(H \mid D)$ : a probabilistic statement of belief about H after obtaining data D.
- Having specified Pr(D) and  $Pr(D \mid H)$ , the mechanism of the theorem provides a solution to the problem of how to learn from data. i.e. modify the degrees of belief attached to the events when a real-world event occurs.

# † Random Variables & Probability Distributions

- Definition (not rigorous): A random variable, X is a real-valued function from a sample space S into real numbers (range: X, a new sample space).
  - e.g.1 Toss a coin. Define a random variable  $X(\{H\})=1$  and  $X(\{T\})=0$
- We can define a probability function on  $\mathcal{X}$ . For example, suppose  $\mathcal{S} = \{s_1, \ldots, s_n\}$  with a probability function Pr. We define a random variable X with range  $\mathcal{X} = \{x_1, \ldots, x_m\}$ . We can define a probability function  $\Pr_X$  on  $\mathcal{X}$  in the following way.

$$\Pr_X(X=x_i)=\Pr(\{s_j\in\mathcal{S}:X(s_j)=x_i\}).$$

The function  $Pr_X$  is an induced probability function on  $\mathcal{X}$ , defined in terms of the original function Pr.

#### † Probability Distribution

- discrete distributions, continuous distributions, mixed distributions.
- The distribution of a random variable (X) is formally defined

$$F(t) \equiv F_X(t) \equiv \Pr(X \le t) \equiv \Pr(\{s \in S; X(s) \le t\}).$$

\*\* 
$$F(\infty) = 1$$
,  $F(-\infty) = 0$  and  $F(a) \le F(b)$  if  $a < b$ .

- Descriptions of a distribution: moments, mode, median, quantiles, variance, standard deviations, correlations...
- For more than one random variables: joint distributions, marginal distributions, conditional distributions....
- independent random variables, conditionally independent random variables, exchangeability...

• Bayes Theorem for Random Variables (D & S Th 3.6.4): If  $f_2(y)$  is the marginal p.f. or p.d.f. of a random variable Y and  $g_1(x \mid y)$  is the conditional p.f. or p.d.f. of X given Y = y, then the conditional p.f. or p.d.f. of Y given X = x is

$$g_2(y \mid x) = \frac{g_1(x \mid y)f_2(y)}{f_1(x)},$$

where  $f_1(x)$  is the marginal p.f. or p.d.f. of X;

- \*\*  $f_1(x) = \sum_y g_1(x \mid y) f_2(y)$  if Y is discrete.
- \*\* If Y is continuous,  $f_1(x) = \int_{-\infty}^{\infty} g_1(x \mid y) f_2(y) dy$ .

## † Some Important Distributions

See Appendix A of CR or Chapter 3 of Casella and Berger for more

• Normal distribution,  $N_p(\theta, \Sigma)$ .

 $\theta \in \mathbb{R}^p$  and  $\Sigma$  is a  $(p \times p)$  symmetric positive-definite matrix,

$$f(\mathbf{x} \mid \boldsymbol{\theta}, \boldsymbol{\Sigma}) = |\boldsymbol{\Sigma}|^{-1/2} (2\pi)^{-p/2} \exp\left\{-(\mathbf{x} - \boldsymbol{\theta})' \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\theta})/2\right\}.$$

- $\star\!\!\star\!\!\star$   $\mathsf{E}(\boldsymbol{X}) = \boldsymbol{\theta}$  and  $\mathsf{E}((\boldsymbol{x} \boldsymbol{\theta})(\boldsymbol{x} \boldsymbol{\theta})') = \boldsymbol{\Sigma}$ .
- $\star\star$  If  $\Sigma$  is not definite, the distribution has no density with respect to Lebesgue measure.
- \*\* Here  $\theta$  and  $\Sigma$  can be set to different values, producing different probability distributions  $\Rightarrow \theta$  and  $\Sigma$  are called *parameters!*

- Normal distribution,  $N_p(\theta, \Sigma)$  contd.
  - $\star\star$  univariate (p=1)

$$f(x \mid \theta, \sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{(x-\theta)^2}{2\sigma^2}\right\},$$

where  $\theta \in \mathbb{R}$  and  $\sigma \in \mathbb{R}^+$ .

- \*  $E(X) = \theta$  and  $Var(X) = \sigma^2$ .
- \*  $M_X(t) = \exp\left(\theta t + \frac{1}{2}\sigma^2 t^2\right)$
- \*  $\theta = 0$  and  $\sigma = 1 \Rightarrow N(0,1)$ , standard normal distribution
- \* If  $X \sim N(\theta, \sigma^2)$ , then  $Y = \exp(X) \sim \log -N(\theta, \sigma^2)$ .

#### • Uniform Distribution Unif(a, b)

$$a, b \in \mathbb{R}$$
,

$$f(x \mid a, b) = \frac{1}{b - a}, \quad a < x < b.$$

\*\* 
$$E(X) = (b-1)/2$$
 and  $Var(X) = (b-a)^2/12$ 

\*\* If 
$$X \sim \text{Unif}(a, b)$$
,  $X = (Y - a)/(b - a) \sim \text{Unif}(0, 1)$ .

\*\* If  $X \sim F$ , where F is a continuous cdf, then  $Y = F(X) \sim \text{Unif}(0,1)$ .

## • Gamma Distribution Gamma $(\alpha, \beta)$

$$\alpha, \beta > 0$$
,

$$f(x \mid \alpha, \beta) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} \exp(-\beta x), \quad x > 0$$

- $\star\star$  E(X) =  $\alpha/\beta$  and Var(X) =  $\alpha/\beta^2$  ( $\alpha$ : shape,  $\beta$ : rate)
- \*\* Special cases:
- \* Erlang distribution: Gamma $(k, \beta)$ ,  $k = 1, 2, \ldots$  and  $\beta \in \mathbb{R}$
- \* Exponential distribution:  $\mathsf{Gamma}(1,\beta)$
- \*  $\chi^2$  distribution: Gamma $(\nu/2,1/2)$   $(\chi^2_{\nu})$
- \*\* Sometimes it is parameterized as  $Gamma(\alpha, 1/\beta)$  (1/ $\beta$ : scale).

#### • Gamma Distribution Gamma $(\alpha, \beta)$ -contd

\*\* Inverse gamma distribution  $IG(\alpha, \beta)$ : when  $X \sim Gamma(\alpha, \beta)$ , the distribution of  $Y = X^{-1}$  is  $IG(\alpha, \beta)$ ,

$$f(y \mid \alpha, \beta) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} y^{-(\alpha+1)} \exp(-\beta/y), \quad y > 0.$$

\*\* 
$$E(Y) = \beta/(\alpha - 1)$$
 for  $\alpha > 1$  and  $Var(Y) = \beta^2/\{(\alpha - 1)^2(\alpha - 2)\}$  for  $\alpha > 2$ 

• Student's  $t_n$  Distribution  $t_n$  (n degrees of freedom)

$$n > 0$$
,

$$f(x \mid n) = \frac{\Gamma(\frac{n+1}{2})}{\sqrt{n\pi}\Gamma(\frac{n}{2})} \left(1 + \frac{x^2}{n}\right)^{-\frac{n+1}{2}}, \quad x \in \mathbb{R}$$

- $\star\star$  E(X) = 0 and Var(X) = n/(n-2) if n > 2.
- \*\* Let  $X \mid W \sim N(0, W)$  and  $W \sim IG(n/2, n/2)$ . The marginal distribution  $X \sim t_n$ .
- \*\* Special cases:
- \* If n = 1,  $t_1$  is the Cauchy distribution.

#### • Beta Distribution $Be(\alpha, \beta)$

 $\alpha, \beta > 0$ ,

$$f(x \mid \alpha, \beta) = \frac{x^{\alpha - 1}(1 - x)^{\beta - 1}}{B(\alpha, \beta)}, \quad 0 < x < 1,$$

where

$$B(\alpha,\beta) = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)}.$$

- \*\*  $E(X) = \alpha/(\alpha+\beta)$  and  $Var(X) = \alpha\beta/\{(\alpha+\beta)^2(\alpha+\beta+1)\}$
- $\star\star$  Be $(1,1) \Rightarrow Unif(0,1)$
- \*\* Relationship:  $Y_1 \sim \mathsf{Gamma}(\alpha, \theta)$  and  $Y_2 \sim \mathsf{Gamma}(\beta, \theta)$ , independently. Then the distribution of  $X = Y_1/(Y_1 + Y_2)$  follows  $\mathsf{Be}(\alpha, \beta)$ .

• Dirichlet Distribution  $Dir_k(\alpha_1, \dots, \alpha_k)$ 

$$\alpha_1, \ldots, \alpha_k > 0$$
 and  $\alpha_0 = \alpha_1 + \ldots + \alpha_k$ ,

$$f(\mathbf{x} \mid \alpha_1, \dots, \alpha_k) = \frac{\Gamma(k_0)}{\Gamma(\alpha_1) \dots \Gamma(\alpha_k)} x_1^{\alpha_1 - 1} \dots x_k^{\alpha_k - 1},$$

for  $0 < x_1, \dots, x_k < 1$  &  $\sum_{i=1}^k x_i = 1$ .

- \*\*  $\mathsf{E}(X_i) = \alpha_i/\alpha_0$  and  $\mathsf{Var}(X_i) = (\alpha_0 \alpha_i)\alpha_i/\{\alpha_0^2(\alpha_0 + 1)\}$  and  $\mathsf{Cov}(X_i, X_j) = -\alpha_i\alpha_j/\{\alpha_0^2(\alpha_0 + 1)\}, i \neq j$ .
- Special case: k = 2,  $(X, 1-X) \sim \text{Dir}_2(\alpha_1, \alpha_2)$  is equivalent to  $X \sim \text{Be}(\alpha_1, \alpha_2)$ .

## • Pareto Distribution $Pa(\alpha, x_0)$

$$\alpha > 0$$
 and  $x_0 > 0$ 

$$f(x \mid \alpha, x_0) = \alpha \frac{x_0^{\alpha}}{\mathbf{y}^{\alpha+1}}, \quad x \ge x_0.$$

\*\* 
$$\mathsf{E}(X_i) = \alpha x_0/(\alpha - 1) \ (\alpha > 1) \ \mathsf{and} \ \mathsf{Var}(X) = \alpha x_0^2/\{(\alpha - 1)^2(\alpha - 2)\} \ (\alpha > 2).$$

## • Wishart Distribution $W_m(\alpha, \Sigma)$

$$\alpha > 0$$
 and  $\Sigma > 0$ 

$$f(X \mid \alpha, \Sigma) = \frac{|X|^{\frac{\alpha - (m+1)}{2}} \exp\left(-tr(\Sigma^{-1}X)/2\right)}{\Gamma_m(\alpha)|\Sigma|^{\alpha/2}}, \quad X > 0.$$

 $\star\!\star\!\star$   $\Gamma_m(\alpha)$  is a multivariate Gamma function.

$$\star\star$$
 E(X) =  $\alpha\Sigma$ 

\*\*  $W = X^{-1}$  follows the inverse-Wishart distribution with parameters  $\alpha$  and  $\Sigma^{-1}$  (careful with the parameterizations).

$$f(W \mid \alpha, \Sigma) = \frac{|W|^{-\frac{\alpha+m+1}{2}} \exp\left(-tr(\Sigma^{-1}W^{-1})/2\right)}{\Gamma_m(\alpha)|\Sigma|^{\alpha/2}}, \quad W > 0.$$

#### • Point Mass Distribution $\delta_a$

$$a\in\mathbb{R}$$

$$f(x \mid a) = \delta_a = \begin{cases} 1 & \text{if } x = a, \\ 0 & \text{if } x \neq a. \end{cases}$$

$$\star\star$$
 E(X) = a and Var(X) = 0.

• **Bernoulli Distribution** Ber(p)

$$0 \le p \le 1$$

$$f(x \mid \lambda) = p^{x}(1-p)^{1-x}, \quad x \in \{0, 1\}.$$

$$\star\star$$
 E(X) = p and Var(X) = p(1 - p).

• Binomial Distribution Bin(n, p)

$$0 \le p \le 1$$

$$f(x \mid p) = \binom{n}{x} p^{x} (1-p)^{n-x}, \quad x \in \{0, 1, \dots, n\}.$$

$$\star\star$$
 E(X) = np and Var(X) = np(1 - p).

• Poisson Distribution  $Poi(\lambda)$ 

$$\lambda > 0$$
 
$$f(x \mid \lambda) = e^{-\lambda} \frac{\lambda^{x}}{x!}, \quad x \in \{0, 1, \ldots\}.$$

$$\star\star$$
 E(X) =  $\lambda$  and Var(X) =  $\lambda$ .

• Multinomial Distribution Multinomial<sub>k</sub> $(n, p_1, \dots, p_k)$ 

$$0 \le p_i \le 1, i = 1, ..., k \text{ and } \sum p_i = 1$$

$$f(x_1,\ldots,x_k\mid p_1,\ldots,p_k)=\binom{n}{x_1\ldots x_k}\prod_{i=1}^k p_i^{x_i},$$

$$x_i \in \{0, 1, ..., n\}$$
 with  $\sum_{i=1}^k x_i = n$ .

- \*\*  $\mathsf{E}(X_i) = np_i$ ,  $\mathsf{Var}(X_i) = np_i(1-p_i)$  and  $\mathsf{Cov}(X_i, X_j) = -np_ip_j \ (i \neq j)$ .
- \*\* Special case:  $(X, n-X) \sim \text{Multinomial}_2(n, p, 1-p) \equiv X \sim \text{Bin}(n, p)$

• Negative Binomial Distribution Neg-Bin(n, p)

$$0 \le p \le 1$$

$$f(x \mid p) = {n+x+1 \choose x} p^n (1-p)^x, \quad x \in \{0,1,\ldots\}.$$

\*\* random variable X= number of failures before the n-th success where n is fixed (the total # of trials: X+n)

$$\star\star$$
 E(X) =  $n(1-p)/p$  and Var(X) =  $n(1-p)/p^2$ .

- \*\* Can be defined in terms of the random variable Y the trials at which the n-th success occurs (i.e., Y = n + X).
- $\star\star$   $n=1 \Rightarrow$  Geometric distribution.

• Hypergeometric Distribution Hyp(N, n, p)

$$0 \le p \le 1$$
,  $n < N$  and  $pN \in \mathbb{N}$ ,

$$f(x \mid p) = \frac{\binom{pN}{x} \binom{(1-p)N}{n-x}}{\binom{N}{n}},$$

where  $x \in \{n - (1 - p)N, \dots, pN\} \& x \in \{0, 1, \dots, n\}.$ 

- $\star\star$  E(X) = np and Var(X) = (N-n)np(1-p)/(N-1).
- \*\* N balls in total with pN in red and (1-p)N in green. Select n balls at random (sampling without replacement) and random variable X denotes the number of red balls drawn.

#### • Relationship between Distributions



\* From wiki (or page 627 of CB)

- A lot more not mentioned: t-distribution, Laplace (double-exponential) distribution, F-distribution
- Distributions can be parameterized in different ways. Please be careful when working on problems from JB since JB uses a parameterization different from that in CB.

- Simulating Random Samples from R
  - \*\* Use built-in functions. e.g.; rnorm, dnorm, pnorm, qnorm...
  - \*\* Use relationships between distributions.
  - \*\* Use relationship  $p(x,y) = p(x)p(y \mid x)$  to simulation from a joint distribution when possible

- Example 1: Dirichlet distribution
  - \*\* Obtain a random sample from a Dirichlet distribution  $\mathbf{x} = (x_1, \dots, x_k) \sim \text{Dir}(a_1, \dots, a_k)$ .
  - \*\* (Step 1:) Simulate  $\tilde{x}_p \sim \text{Gamma}(a_p,c)$ ,  $p=1,\ldots,k$ , where  $\tilde{x}_p$ 's are independent and c>0 is an arbitrary constant. Then let  $x_p=\tilde{x}_p/\sum_{p'=1}^k \tilde{x}_{p'}$ ,  $p=1,\ldots,k$ .
  - \*\* (Step 2:) Repeat until the target sample size is met.

- Example 1: Dirichlet distribution (contd)
  - **\*\*** Simulate  $\boldsymbol{x} \sim \text{Dirichlet}(3, 1, 2)$







- Example 2: IG distribution
  - \*\* Obtain a random sample from an inverse Gamma distribution,  $x \sim IG(a, b)$ .
  - \*\* (Step 1:) Simulate  $\tilde{x} \sim \text{Gamma}(a, b)$ , where b is a rate parameter (so  $E(\tilde{x}) = a/b$ ). Then let  $x = 1/\tilde{x}$ .
  - \*\* (Step 2:) Repeat until the target sample size is met.

• Example 2: IG (contd)

**\*\*** Simulate  $x \sim IG(4,2)$ 



- Example 3: Normal × IG distribution
  - \*\* Suppose we have

$$p(x,y) = p(x)p(y \mid x)$$

$$= \underbrace{\frac{\beta^{\alpha}}{\Gamma(\alpha)}x^{-\alpha-1}\exp\left(-\frac{\beta}{x}\right)}_{\mathsf{IG}(x \mid \alpha,\beta)} \underbrace{\frac{1}{\sqrt{2\pi x}}\exp\left(-\frac{(y-m)^2}{2x}\right)}_{\mathsf{N}(y \mid m,x)}.$$

- \*\* Obtain a random sample of (x, y) from their joint p(x, y).
- \*\* (Step 1:) Simulate  $x \sim \mathsf{IG}(x \mid \alpha, \beta)$  and  $y \mid x \sim \mathsf{N}(y \mid m, x)$ .
- \*\* (Step 2:) Repeat until the target sample size is met.

- Example 3: Normal × IG distribution (contd)
  - **\*\*** Simulate  $(x, y) \sim IG(x \mid 3, 3)N(y \mid 0, x)$

