Econ 241 Probability, Statistics and Econometrics

Jaime Ramirez-Cuellar

2018

- 1. Let $Y \sim exp(\lambda)$ (i.e. $f_Y = \lambda exp(-\lambda y), y > 0$).
 - (a) What are E[Y] and Var(Y)
 - (b) Now assume that $\lambda^{-1} \sim Poisson(\mu)$. What are E[Y] and Var(Y)?
- 2. Let $X \sim Pareto(\alpha, \beta)$ (i.e. $f_X(x) = \frac{\beta \alpha^{\beta}}{x^{\beta+1}}, y > 0$).
 - (a) Verify that $f_X(x)$ is pdf.
 - (b) What are E[Y] and Var(Y).
 - (c) Prove that the variance does not exist if $\beta \leq 2$.
 - (d) Prove that $E[X^r]$ does not exist if $\beta \leq r$ for r > 0.
- 3. Let X_1, X_2, \ldots, X_n be a random sample from a Gamma distribution with parameters α and β with pdf given by

$$f(x|\alpha,\beta) = \frac{1}{\Gamma(\alpha)\beta^{\alpha}}x^{\alpha-1}e^{-x/\beta}, \quad 0 \le x < \infty, \quad \alpha,\beta > 0$$

- (a) Find the method of moments estimator for α and β .
- (b) Find the asymptotic distribution of $(\alpha_{MME}, \beta_{MME})$
- 4. (Hayashi, p. 74) Consider the restricted least squares regression

$$egin{array}{ll} \min_{oldsymbol{eta}} & (oldsymbol{y} - oldsymbol{X}oldsymbol{eta})'(oldsymbol{y} - oldsymbol{X}oldsymbol{eta}) \ \mathrm{s.\ t.} & oldsymbol{R}oldsymbol{eta} = oldsymbol{r} \end{array}$$

- (a) Find the restricted OLS estimator $\tilde{\beta}$ and a vector of Lagrange multipliers λ .
- (b) Show that $SSR_R SSR_U = \tilde{\boldsymbol{\varepsilon}} \boldsymbol{P} \tilde{\boldsymbol{\varepsilon}}$, where SSR_R and SSR_U are the sum of squared residuals of the restricted and unrestricted models, $\tilde{\boldsymbol{\varepsilon}}$ are the residuals from the restricted model and \boldsymbol{P} is the projection matrix.
- (c) Show that the F statistic can be computed using the following

$$F = \frac{(SSR_R - SSR_U)/r}{SSR_U/(n - K)}$$

where r is the number of linear restrictions in the restricted least squares, n is the length of y, and K is the number of coefficients including the intercept.

5. (Hayashi, p. 71) Prove that β_{OLS} minimizes SSR.