IIIT-Bangalore Probability and Statistics Problem Set 9

(Expectation II)

- 1. If X, Y are independent standard normal variates, find the mean value of the greater of |X| and |Y|. (Ans. $\frac{2}{\sqrt{\pi}}$)
- 2. If for any pair of correlated random variables X and Y, we make a linear transformation $(X,Y) \to (U,V)$ given by the rotation of axes through a constant angle α , i.e.,

$$U = X \cos \alpha + Y \sin \alpha$$

$$V = -X \sin \alpha + Y \cos \alpha$$

then U and V will be uncorrelated if α is given by

$$\tan 2\alpha = \frac{2\rho\sigma_x\sigma_y}{\sigma_x^2 - \sigma_u^2}$$

where $\rho = \rho(X, Y)$.

- 3. If (X, Y) has bivariate normal distribution with parameters $m_x, m_y, \sigma_x, \sigma_y, \rho$, then compute $\rho(X, Y)$. (Ans. ρ)
- 4. If

$$f(x,y) = \left\{ \begin{array}{ll} x+y, & 0 < x < 1, \ 0 < y < 1 \\ 0, & \text{elsewhere.} \end{array} \right.$$

find (i) m_x , (ii) m_y , (iii) σ_x , (iv) σ_y , (v) $\rho(X,Y)$, (vi) the regression curves, (vii) the least square regression lines.

(Ans.
$$m_x = \frac{7}{12}$$
, $m_y = \frac{7}{12}$, $\sigma_x = \frac{\sqrt{11}}{12}$, $\sigma_y = \frac{\sqrt{11}}{12}$, $\rho = -\frac{1}{11}$)

5. Show that the acute angle θ between the least square regression lines is

$$\tan\theta = \left(\frac{1-\rho^2}{\rho}\right) \cdot \left(\frac{\sigma_x \sigma_y}{\sigma_x^2 + \sigma_y^2}\right)$$

and discuss the cases when $\rho = 0$ and $\rho = \pm 1$.

6. If the regression lines of the distribution of (X,Y) are x+6y=6 and 3x+2y=10, find (i) the means m_x,m_y and (ii) $\rho(X,Y)$. (Ans. $m_x=3,m_y=\frac{1}{2},\rho=-\frac{1}{3}$)

1

- 7. The random variables X, Y are connected by the linear relationship aX + bY + c = 0. Prove that the correlation coefficient between X and Y is -1 if a, b have the same sign and 1 if a, b have the opposite sign.
- 8. If for any pair of linearly dependent random variables X,Y we set $U = X \cos \alpha + Y \sin \alpha$ and $V = -X \sin \alpha + Y \cos \alpha$ then prove that V will be constant (i.e. has a one point distribution) if $\tan \alpha = \rho \frac{\sigma_y}{\sigma_x}$
- 9. The joint p.d.f. of two discrete r.v. X, Y is given by $P(X = i, Y = j) = p_{ij}$, (i = 0, 1; j = 0, 1). Find (i) the joint characteristic function of X and Y, (ii) their individual characteristic functions and (iii) prove that X, Y are independent if $p_{00}p_{11} = p_{01}p_{10}$.
- 10. Prove the "reproductive property" for the sum of n mutually independent variates $X_1, X_2, \ldots X_n$ in the following cases: each X_i has: (i) Binomial (n_i, p) , (ii) Poisson (μ_i) , (iii) Gamma (l_i) and (iv) Normal (m_i, σ_i) distribution.