Instructions for Authors of SBC Conferences Papers and Abstracts

César Eduardo de Souza¹, Guilherme Diel¹

¹Departamento de Ciência da Computação Universidade do Estado de Santa Catarina (UDESC) – Joinville, SC – Brazil

{cesar.souza, guilherme.diel}@edu.udesc.br

Abstract. Abstract

Resumo. Resumo

1. Introdução

Foi no século XX que se iniciou a busca pela resolução de problemas NP, NP-Hard e NP-Completo usando ferramentas computacionais. Estas portanto, foram, em sua maioria, desenvolvidos com base em algoritmos heurísticos – alicerçados em técnicas de busca de solução não necessariamente ótima, mas sim satisfatória –. Sendo assim, alguns destes tornaram-se mais disseminados na literatura científica, como a **Busca Gulosa**, **Algoritmo A***, **Subida de Encosta** e **Simulated Annealing**.

O método de **Simulated Annealing** teve sua lógica concebida a partir do método de anelização de materiais, Metropolis, desenvolvido por Gibbs em 1953 [?]. Basado na fabricação de aneis, este método usa como base o fato de que, quanto mais quente está o material, maior se torna a facilidade de modelá-lo. Sob o mesmo ponto de vista, este método consiste em uma sequencia de temperaturas decrescentes em que, quanto maior a temperatura atual, mais aleatorizada são as otimizações geradas pelo algoritmo, sendo que, quando a temperatura chegar a um certo ponto idealizando a otimização do resultado conforme decresce a temperatura, até que esta se torne mínima.

Um problema muito conhecido e discutido na literatura, que é capaz de ser resolvido por algoritmos heuristicos, é o problema da satisfabilidade (SAT), que consiste em, dado um conjunto de cláusulas disjuntivas na forma normal conjuntiva, determinar se existe uma atribuição de valores lógicos (*verdadeiro* ou *falso*) às variáveis envolvidas que satisfaça toda a expressão. Cada cláusula é composta por uma disjunção (operador lógico ∨) de literais (variáveis ou suas negações), e a fórmula booleana global é uma conjunção (operador lógico ∧) dessas cláusulas. Formalmente:

$$\bigwedge_{i=1}^{m} \left(\bigvee_{j=1}^{k} l_{ij} \right) \tag{1}$$

Ao longo deste relatório, será abordado uma proposta de implementação de do **Simulated Annealing** para resolução de uma variante do SAT, conhecido como SAT-3, que consiste em três variáveis por cláusula no problema SAT.

Este relatório está organizado da seguinte maneira: a seção 2 apresenta estratégias utilizadas, descrições, justificativas de escolhas, fórmulas utilizadas e descrições. Em seguida, na seção 3 são abordadas descrições dos experimentos, configurações utilizadas e descrições dos resultados obtidos. Outrossim, na seção 4 expõem-se considerações sobre os resultados obtidos e análises críticas sobre os mesmos. Por fim, na seção 5 mostra-se considerações sobre o trabalho desenvolvido e identificação de direcionamentos futuros na pesquisa.

2. Metodologia de Desenvolvimento

O método de Simulated Annealing consiste em:

- 1. Para uma temperatura T_i , realizar N vezes:
 - Realizar uma perturbação aleatória no estado atual estado₀, gerando um novo estado_i
 - Calcular a variação de energia $\Delta E = E(estado_i) E(estado_0)$
 - Se $\Delta E < 0$ (melhora na energia), aceitar a transição ($estado_i \rightarrow estado_0$)
 - Caso contrário, aceitar a transição com probabilidade P_{accept}(T_i)
- 2. Critério de parada:
 - Se $T_i \leq T_f$ (temperatura final) ou o sistema atingir convergência (e.g., $\Delta E \approx 0$ por k iterações consecutivas)
 - Retornar o estado₀ como solução
 - Caso contrário, reduzir a temperatura ($T_i \leftarrow \alpha T_i$, com $0 < \alpha < 1$) e retornar ao Passo 1

A aplicação do método de **Simulated Annealing** para a otimização do problema do SAT-3 foi realizada por meio da linguagem de programação *Python*, junto com a biblioteca *Numpy*. A Figura 1 retrata o passo a passo de como foi implementado este algoritmo. O passo 1 (inicialização) consiste em realizar a inicialização do sistema:

- Temperatura inicial $T_0 = 1000$
- Taxa de resfriamento $\alpha = 0.99$
- Temperatura final $T_f = 0.1$
- Número de iterações por temperatura N = 1000

No segundo passo (iteração por temperatura) da Figura 1 a fórmula de probabilidade de aceitação de estados com pior energia que foi adotada, foi:

$$P_{accept} = \exp\left(-\frac{\Delta E}{T_i}\right) \tag{2}$$

O terceiro passo (resfriamento) corresponde ao passo 1 do codigo de 2.

3. Descrição de Experimentos/Simulações e Resultados Obtidos

Descrição dos experimentos e configurações utilizadas. Descrição dos resultados obtidos (Figuras, Tabelas, Gráficos).

4. Análise dos resultados obtidos.

Considerações sobre os resultados obtidos e análises críticas sobre os mesmos.

Figura 1. A typical figure

Figura 2. This figure is an example of a figure caption taking more than one line and justified considering margins mentioned in Section 5.

5. Conclusões e Trabalhos Futuros

Considerações sobre o trabalho desenvolvidos e identificação de direcionamentos futuros na pesquisa.

6. Images

All images and illustrations should be in black-and-white, or gray tones, excepting for the papers that will be electronically available (on CD-ROMs, internet, etc.). The image resolution on paper should be about 600 dpi for black-and-white images, and 150-300 dpi for grayscale images. Do not include images with excessive resolution, as they may take hours to print, without any visible difference in the result.

7. References

Bibliographic references must be unambiguous and uniform. We recommend giving the author names references in brackets, e.g. [Knuth 1984], [Boulic and Renault 1991], and [Smith and Jones 1999].

Tabela 1. Variables to be considered on the evaluation of interaction techniques

	Chessboard top view	Chessboard perspective view
Selection with side movements	6.02 ± 5.22	7.01 <u>+</u> 6.84
Selection with in- depth movements	6.29 <u>+</u> 4.99	12.22 <u>+</u> 11.33
Manipulation with side movements	4.66 <u>+</u> 4.94	3.47 <u>+</u> 2.20
Manipulation with in- depth movements	5.71 <u>+</u> 4.55	5.37 <u>+</u> 3.28

The references must be listed using 12 point font size, with 6 points of space before each reference. The first line of each reference should not be indented, while the subsequent should be indented by 0.5 cm.

Referências

Boulic, R. and Renault, O. (1991). 3d hierarchies for animation. In Magnenat-Thalmann, N. and Thalmann, D., editors, *New Trends in Animation and Visualization*. John Wiley & Sons ltd.

Knuth, D. E. (1984). The TFX Book. Addison-Wesley, 15th edition.

Smith, A. and Jones, B. (1999). On the complexity of computing. In Smith-Jones, A. B., editor, *Advances in Computer Science*, pages 555–566. Publishing Press.