Álgebra 1

Lista 08 (Grupos)

8.1. (**Permutações I**). Mostre que o conjunto S_3 de todas as permutações (i.e., bijeções) $f:\{1,2,3\} \to \{1,2,3\}$ é um grupo com respeito à operação de composição de funções (i.e., para quaisquer f e g em S_3 e j em $\{1,2,3\}$, tem-se (gf)(j) = g(f(j))). Escrevendo uma tal permutação na forma

$$\begin{pmatrix} 1 & 2 & 3 \\ f(1) & f(2) & f(3) \end{pmatrix},$$

note que

$$S_3 = \left\{ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} \right\}.$$

Verifique que o elemento inverso da permutação $\begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$ é $\begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$ e calcule os produtos

$$\begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \quad e \quad \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}.$$

- 8.2. $(SL_2(\mathbb{Z}))$. Prove que as matrizes $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$, com entradas em \mathbb{Z} , tais que ad bc = 1, formam um grupo não comutativo com respeito ao produto usual de matrizes.
- 8.3. (**Produto de grupos I**). Se G e H são grupos, verifique que o conjunto $G \times H$ consistindo em todos os pares (g,h) em que g é um elemento de G e h é um elemento de H torna-se um grupo com a operação

$$(g_1, h_1)(g_2, h_2) = (g_1g_2, h_1h_2),$$

onde o produto g_1g_2 é tomado em G e o produto h_1h_2 é tomado em H.

- 8.4. (**Um grupo de transformações**). Se $x = (x_1, x_2) \in \mathbb{R} \times \mathbb{R}$, em que \mathbb{R} é o grupo aditivo dos números reais, considere $|x| = \sqrt{x_1^2 + x_2^2}$. Demonstre que as funções $f : \mathbb{R}^2 \to \mathbb{R}^2$ tais que f(0) = 0 e |f(x) f(y)| = |x y|, para quaisquer x e y, formam um grupo sob a operação de composição de funções.
- 8.5. (Um grupo poliedral). Verifique que um cubo possui as seguintes simetrias (bijeções do cubo em si mesmo que preservam a distância): a identidade; uma rotação χ de 120° em torno do eixo através de um dos quatro pares de vértices opostos; uma rotação ι de 90° em torno do eixo através do meio de um dos seis pares de arestas opostas; a rotação v de 180° em torno do eixo através do meio de um dos três pares de faces opostas; e, a reflexão pelo plano paralelo a, e no meio de, duas faces opostas.

Verifique que todas as simetrias de rotação do cubo realizam todas as permutações das 4 diagonais maiores dele, e que as 24 restantes simetrias do cubo combinam uma reflexão e uma rotação.

8.6. (**Grafos II**). Dizemos que dois caminhos p e p' em um grafo Γ são homotópicos se existe uma sequência finita $p = p_1, \ldots, p_t = p'$ na qual cada termo é obtido do anterior por um único processo de inserção ou eliminação de pares adjacentes do tipo ee^{-1} com $e \in E(\Gamma)$. Verifique que isso define uma relação de equivalência.

Fixado $v \in V(\Gamma)$, se p e p' são caminhos de v em v, defina o produto pp' por concatenação. Imitando a definição do grupo aditivo $\mathbb{Z}/m\mathbb{Z}$ a partir de \mathbb{Z} , mostre que o conjunto das classes de equivalência de caminhos de v em v é um grupo no qual a classe representada pelo caminho vazio é o elemento identidade.