

Deep Learning from Scratch

Session #9: Reinforcement Learning

by: Ali Tourani – Summer 2021

Agenda

- Reinforcement Learning
- Applications of RL
- Deep RL Algorithms
- Deep Q-Learning

Different learning paradigms

- Using DNNs to interact with real dynamic environments
 - Data: state(observations)-action(behaviors) pairs
 - ► Goal: Maximizing future rewards
- Trying to maximize the total (cumulative) reward
 - ► An agent learns to achieve a goal in an uncertain environment
 - Based on Reward and Penalty
- The model itself should find the solution with a maximized reward
 - Finding a solution with the lowest possible costs in future
 - Maybe even with trial and error

- Training models to make a sequence of decisions
- Very common in game-like situations
- Advantage: empowering machines' creativity!
 - ► How? By gathering experience from thousands of parallel routes
- Challenges:
 - ▶ Building a realistic simulation of environment
 - **Examples:** how to test a self-driving airplane in all possible challenging conditions?
 - Communication with the network through controlling the agent
 - Finding the local optimum for the agent (finishing the assigned tasks)

State

a situation in which the agent finds itself

Reward

a feedback showing the success or failure of the action

Immediate or delayed

Important notes on RL

► Total Reward (TR) is a key concept, which is equal to the sum of all rewards

$$R_{total} = \sum_{i=t}^{\infty} reward_i = \sum_{i=t}^{\infty} \gamma^i.reward_i \qquad (0 < \gamma < 1)$$

- \triangleright Where γ is the discounting factor to make future rewards less effective
- ► Goal: enforcing short-term learning for the algorithm
- Q-function is another key concept that takes the current state and action, and returns the expected total reward

$$Q(state_t, action_t) = E[R_{total} \mid state_t, action_t]$$

Important notes on RL

- ► The main role of the Q-function is to define the <u>best possible action</u>
 - ► How? Just choose a policy to maximize the future reward when different actions are fed in a known state
- Agents in RL take random decisions in the environment to learn selecting the right choice
- ► A **policy** is a mapping $s \rightarrow a$
 - Reinforcing the agent to learn to perform the best actions by experience

Self-driving (autonomous) Cars

Natural Language Processing (NLP): Question Answering

DeepMind: Autonomous Data Center Cooling Systems

Healthcare

Computer Games

Deep RL Algorithms

Trying to calculate the Q-function instead of storing policies, and picking the action with max value

Trying to directly learn the policy (state to action mapping) showing what actions to take/avoid

Deep RL Algorithms

Value Learning (Q-Learning) Networks

- Calculating a cumulative score for each state (cheat sheet) and choosing the states with most possible reward
- Learning which actions should be performed at the current state to get maximum reward
 - **Example#1:** accelerate + →
 - ► Example#2: accelerate + ←
 - **Example#3:** brake + →
 - **► Example#4:** brake + ←

Deep RL Algorithms

Policy Learning Networks

- Building a representation of a policy and keep it in memory during learning
- Learning to give a definite output by giving a particular input
 - **Example#1:** *action*₁ will always result in *state*₁
 - **Example#2:** staying on the road will always increase the **score**
 - ► Goal: learn how to use action to stay on the road

Deep Q-Learning

- ▶ Goal: to provide a cheat sheet for the agent to find the best action
 - We need more powerful infrastructure to control thousands of (states, actions)
- A Deep Q-Network (DQN) is designed for challenging scenarios!
 - Using DNNs to approximate the Q-value function
 - Input: current (candidate) state, Output: the Q-value of all possible actions

Deep Q-Learning

Important Notes on DQNs

- All the past experiences should be stored in memory
- ► The next action is actually the maximum output of the Q-network
- ► The loss function in a DQN is MSE of the predicted and target Q-value

Deep Q-Learning

References

- http://introtodeeplearning.com/
- https://towardsdatascience.com/policy-networks-vs-value-networks-in-reinforcement-learning-da2776056ad2
- https://deepsense.ai/what-is-reinforcement-learning-the-complete-guide/
- https://www.analyticsvidhya.com/blog/2019/04/introduction-deep-q-learning-python/

Questions?

