Multiplexer as Function Generator in FPGA

Rathod Jagadish (COE17B046)

Department of Computer Engineering, IIITDM Kancheepuram

Guide by Dr. Noor Mahammad

Problem Statement

Designs used in the Space and Military applications uses Micro-sim based FPGA, Where programming is done using the Antifuse Technology. The basic logic cell used in the implementation is C-Cell. All the combinational and sequential circuits are implemented using C-cell and R-cell.

The main Objectives of the Project

- The objective of this work is do error analysis on the C-cell based combinational and sequential circuits.
- Device a mechanism for fault tolerant design.
- Fault analysis on C-Cell and Fault Modeling of C-Cell.

Fault analysis of C-Cell

- An FPGA contains a large number of logic cells. Each logic cell can be configured to implement a certain set of functions.
- A multiplexer-based logic module is typically composed of a tree of 2X1 MUXes using different primitive gates like NOT, AND, OR, NOR, NAND, XOR, XNOR gates.
- A multiplexer-based logic module is typically composed of a tree of 4-to-1 MUXes using different Primitive gates.
- Fault Analysis is done with Multi-bit Adders using full-Adder C-Cell and multi-bit Array multiplier using single C-Cell.
- There are few required steps in order to measure the for SEU(Single Event Upset) tolerance analysis.

These steps are generally used for fault injection experiment, which cover three processes

- Fault Target Location
- Fault Injection.
- Observation of Fault Consequences

Work Done

- The Basic 4 x 1 MUX
 - o Out = D0S1'S0' + D1S1'S0 + D2S1S0' + D3S1S0.
- C-Cell consist of S0 = (A0 * B0) as AND gate and S1 = (A1 + B1) as OR gate
 - \circ Out = D0(A0*B0)'(A1+B1)' + D1(A0*B0)'(A1+B1) + D2(A0*B0)(A1+B1)' + D3(A0*B0)(A1+B1)
- The Implementation of C-cell using Equivalence gate
- We cannot implement using universal gates.
- Implemented Half Adder and Full Adder C-cells.
- Implemented multi-bit Adders and multi-bit array multipliers using C-cell.

Multibit C-cell Adders

Multibit Array C-cell Multiplier

Results & conclusion

- In C-Cell ,the single event upset can occur at the select line of multiplexer.
- Error injection in different bit positions of adder with respective 4-bit ,8-bit and so on upto 128 bit.
- Generating the Error Difference between original Result and Error Result.
- Generating the Error Percentage.
- This analysis can be helpful to add the fault tolerance techniques at the highest error percentage bit.

4-bit C-Cell adder with Error injection at S0&S1 select line

Original value	Error value	Difference Original and Error	Error Percentage
25	26	-1	-4
25	27	-2	-8
25	21	4	16
25	17	8	32

4X4 C-cell array multiplier with Error Analysis

Original value	Error value	Difference Original and Error	Error Percentage
156	158	-2	-1.282051
156	162	-6	-3.846154
156	162	-6	-3.846154
156	170	-14	-8.974359
156	186	30	-19.230769
156	162	-6	-3.846154
156	186	30	-19.230769
156	186	30	-19.230769
156	138	18	11.538462
156	42	50	32.051282

Future work

- The C-Cell connection with Registers or Flip-Flops will be analyzed.
- Sequential Circuit behavior will be estimated
- Errors in sequential circuits will be estimated

Thank you