Math 582 Intro to Set Theory Lecture 33

Kenneth Harris

kaharri@umich.edu

Department of Mathematics University of Michigan

April 12, 2009

Kenneth Harris (Math 582)

Math 582 Intro to Set Theory Lecture 33

April 12, 2009 1 / 1

Cardinal Exponentiation

Cardinal exponentiation

There are few results that say something significant about the behavior of the value κ^{λ} . These are the most important:

- (A) $\kappa^{\lambda} = 2^{\lambda}$ when $2 \le \kappa \le 2^{\lambda}$,
- (B) $\kappa^{\mathrm{cf}(\kappa)} > \kappa$ (for $\kappa > \omega$),
- (C) When $\kappa \ge \omega$ and $0 < \lambda < cf(\kappa)$ we have

$$\kappa^{\lambda} = \left(\sum_{\tau < \kappa} \tau^{\lambda}\right) \cdot \kappa$$

where τ runs over cardinals.

We will see that these three results are sufficient for determining the value of κ^{λ} under GCH.

Note. For (A) see König's Lemma on Lecture 32, slide 4, and Lemma 9.3.9.

König's Theorem revisited (B)

The crux of cardinal exponentiation is determining $\kappa^{cf(\kappa)}$. The following is about all we can say about this value:

Theorem

For each infinite cardinal κ ,

$$\kappa^{\operatorname{cf}(\kappa)} > \kappa.$$

Kenneth Harris (Math 582)

Math 582 Intro to Set Theory Lecture 33

April 12, 2009 4 / 1

Cardinal Exponentiation

König's Theorem revisited (B)

Proof.

 \square If κ is regular, then by (A):

$$\kappa^{\mathsf{cf}(\kappa)} = \kappa^{\kappa} = 2^{\kappa}$$

 $\langle \kappa_{\xi} | \xi < cf(\kappa) \rangle$ with $0 < \kappa_{\xi} < \kappa$ for all ξ and $\kappa = \sum_{\xi < cf(\kappa)} \kappa_{\xi}$.

Since $\kappa_{\xi} < \kappa_{\xi+1}$ we use König's Theorem:

$$\kappa = \sum_{\xi < \mathsf{cf}(\kappa)} \kappa_{\xi} < \prod_{\xi < \mathsf{cf}(\kappa)} \kappa_{\xi+1} \le \prod_{\xi < \mathsf{cf}(\kappa)} \kappa = \kappa^{\mathsf{cf}(\kappa)}$$

König's Theorem revisited (B)

The following generalizes our cf(2^{κ}) > κ .

See Lecture 32, slide 6 and H+J, Lemma 3.3. See H+J, Lemma 9.3.7 for a statement and slightly different proof.

Corollary

For each cardinal $\kappa > 1$ and infinite cardinal λ , $cf(\kappa^{\lambda}) > \lambda$.

Proof.

By the previous theorem,

$$(\kappa^{\lambda})^{\operatorname{cf}(\kappa^{\lambda})} > \kappa^{\lambda}.$$

If $\tau \leq \lambda$, then

$$\left(\kappa^{\lambda}\right)^{\tau} = \kappa^{\lambda \cdot \tau} = \kappa^{\lambda}.$$

Therefore, we must have $cf(\kappa^{\lambda}) > \lambda$.

Kenneth Harris (Math 582)

Math 582 Intro to Set Theory Lecture 33

April 12, 2009

6 / 1

Cardinal Exponentiation

Bernstein-Hausdorff-Tarski Theorem

The next theorem says that κ^{λ} can be calculated from τ^{λ} for cardinals $\tau < \kappa$, when λ is "small" relative to κ – that is, $\lambda < \operatorname{cf}(\kappa)$.

Theorem

Let $\kappa \ge \omega$ and $0 < \lambda < cf(\kappa)$ be cardinals. Then, with τ running over cardinals.

$$\kappa^{\lambda} = \left(\sum_{\tau < \kappa} \tau^{\lambda}\right) \cdot \kappa$$

Note. H+J's Hausdorff's Formula (9.3.11) is really a special case of this result for κ a successor cardinal. In the case, where $\kappa = \aleph_{\alpha+1}$, if $\lambda < \text{cf}(\aleph_{\alpha+1})$ we get exactly the special case here: $\aleph_{\alpha+1}^{\lambda} = \aleph_{\alpha}^{\lambda} \cdot \aleph_{\alpha+1}$; if $\lambda \geq \text{cf}(\aleph_{\alpha+1}) = \aleph_{\alpha+1}$ we get this result by appealing to condition (A): $\aleph_{\alpha+1}^{\lambda} = 2^{\lambda} = \aleph_{\alpha}^{\lambda}$. The theorem stated in this slide also covers the case for limit cardinals κ as well.

Proof of Bernstein-Hausdorff-Tarski

Let $\kappa \ge \omega$ and $0 < \lambda < cf(\kappa)$ be cardinals.

 $\kappa \leq \kappa^{\lambda}$ (since $\lambda > 0$) and $\tau^{\lambda} \leq \kappa^{\lambda}$ (since cardinal exponentiation is monotonic.) Thus,

$$\kappa^{\lambda} \ge \left(\sum_{\tau < \kappa} \tau^{\lambda}\right) \cdot \kappa$$

By H+J Theorem 9.1.3 or Lecture 30, Slide 16.

Since $\kappa^{\lambda} = |\lambda_{\kappa}|$, we show the converse by establishing

$${}^{\lambda}\kappa = \bigcup_{\xi < \kappa} {}^{\lambda}\xi,$$

where ξ ranges over ordinals.

Kenneth Harris (Math 582)

Math 582 Intro to Set Theory Lecture 33

April 12, 2009 8 / 1

Cardinal Exponentiation

Proof of Bernstein-Hausdorff-Tarski

Suppose $f \in {}^{\lambda}\kappa$. Since $\lambda < \operatorname{cf}(\kappa)$ we must have $\operatorname{ran}(f)$ is bounded in κ , say ran(f) $\subseteq \xi$. Thus, we have established \subseteq of

$${}^{\lambda}\kappa = \bigcup_{\xi < \kappa} {}^{\lambda}\xi$$

(the converse is clear.)

 $^{\square}$ Now, (where $\tau < \kappa$ ranges over cardinals and $\xi < \kappa$ ranges over ordinals)

$$\kappa^{\lambda} = \sum_{\xi < \kappa} |\xi^{\lambda}| = \sum_{\xi < \kappa} |\xi|^{\lambda} \le \sum_{\tau < \kappa} (\tau^{\lambda} \cdot \kappa) = (\sum_{\tau < \kappa} \tau^{\lambda}) \cdot \kappa$$

The third inequality is because $\kappa > |\{\xi < \kappa \mid |\xi| = \tau|\}$ for any $\tau < \kappa$.

Proof of Bernstein-Hausdorff-Tarski

Bernstein's Theorem. Bernstein originally proved the following

$$\aleph_n^{\aleph_0} = 2^{\aleph_0} \cdot \aleph_n$$
 for all $n < \omega$

Since $\aleph_0 < \mathrm{cf}(\aleph_n)$ we can apply the Bernstein-Hausdorff-Tarski Theorem. The proof is by induction on n.

$$\mathfrak{R}^{\aleph_0} (n=0). \ \aleph_0^{\aleph_0} = 2^{\aleph_0} = 2^{\aleph_0} \cdot \aleph_0 \text{ by (A)}.$$

Assume the assertion is true for *n*. Then, by the previous theorem

$$\mathfrak{R}_{n+1}^{\aleph_0} = \left(\sum_{i \leq n} \aleph_i^{\aleph_0} + \sum_{k < \omega} k^{\aleph_0}\right) \cdot \aleph_{n+1} \\
= \left(\sum_{i \leq n} \aleph_i^{\aleph_0} + 2^{\aleph_0} \cdot \aleph_0\right) \cdot \aleph_{n+1} \\
= \aleph_n^{\aleph_0} \cdot \aleph_{n+1} \\
= \left(2^{\aleph_0} \cdot \aleph_n\right) \cdot \aleph_{n+1} \quad \text{i.h.} \\
= 2^{\aleph_0} \cdot \aleph_{n+1}$$

Kenneth Harris (Math 582)

Math 582 Intro to Set Theory Lecture 33

April 12, 2009

10 / 1

Cardinal exponentiation under GCH

Cardinal exponentiation with GCH

 $^{\text{CP}}$ GCH is the statement that $2^{\kappa} = \kappa^+$ for all κ .

Theorem

Assume GCH. Let κ be an infinite cardinal and $\lambda > 0$, then

$$\kappa^{\lambda} = \begin{cases} \kappa & \text{if } \lambda < \text{cf}(\kappa) \\ \kappa^{+} & \text{if } \text{cf}(\kappa) \leq \lambda \leq \kappa \\ \lambda^{+} & \text{if } \lambda \geq \kappa \end{cases}$$

Note. Hrbacek and Jech break this into two cases: Theorem 3.8 (regular) and Theorem 3.10 (singular).

Cardinal exponentiation with GCH

Suppose $\lambda < cf(\kappa)$. By the Bernstein-Hausdorff-Tarksi Theorem

$$\begin{split} \kappa & \leq & \kappa^{\lambda} \\ & = & \left(\sum_{\tau < \kappa} \tau^{\lambda}\right) \cdot \kappa \\ & \leq & \kappa \left(\sum_{\tau < \kappa} 2^{\tau \cdot \lambda}\right) \\ & \leq & \kappa \left(\sum_{\tau < \kappa} \max\{\tau^{+}, \lambda^{+}\}\right) \\ & \leq & \kappa \cdot \kappa = \kappa. \end{split}$$

So, $\kappa = \kappa^{\lambda}$.

Kenneth Harris (Math 582)

Math 582 Intro to Set Theory Lecture 33

April 12, 2009 13 / 1

Cardinal exponentiation under GCH

Cardinal exponentiation with GCH

Suppose $cf(\kappa) \le \lambda \le \kappa$. Then,

$$\kappa < \kappa^{\mathsf{cf}(\kappa)} < \kappa^{\lambda} < \kappa^{\kappa} < 2^{\kappa} = \kappa^{+}.$$

(The first '<' is by (B), the second '≤' is by (A).)

Therefore, $\kappa < \kappa^{\lambda} \le \kappa^{+}$, so $\kappa^{\lambda} = \kappa^{+}$.

Suppose $\lambda > \kappa$. Then $\kappa^{\lambda} = 2^{\lambda} = \lambda^{+}$ by (A).

Exponentiation and the power function

GCH completely determines the power function, 2^{κ} for all κ , and this is sufficient to compute κ^{λ} for all cardinals κ and λ .

Unfortunately, it is possible to fix the value of the power function 2^{κ} for all κ , and still not be able to compute in ZFC κ^{λ} for all cardinals κ and λ .

[™] ZFC is consistent with the statement:

(*)
$$2^{\aleph_0} = \aleph_1, 2^{\aleph_n} = \aleph_{\omega+2}$$
 (for all $1 < n \le \omega$), $2^{\kappa} = \kappa^+ (\kappa > \aleph_{\omega})$,

together with either of the possibilities that (i) $\aleph_{\omega}^{\aleph_0} = \aleph_{\omega+1}$ or (ii) $\aleph_{\omega}^{\aleph_0} = \aleph_{\omega+2}$.

Thus, ZFC + (**) completely determines the power function, but leaves open $\aleph_{\omega}^{\aleph_0}$. It turns-out that this is the only kind of gap that needs to be filled.

Kenneth Harris (Math 582)

Math 582 Intro to Set Theory Lecture 33

April 12, 2009

16 / 1

Cardinal Exponentiation without GCH

Gimel Function

Definition

The gimel function, I, is the function on the infinite cardinals defined by

$$\Im(\kappa) = \kappa^{\mathsf{cf}(\kappa)}$$

- \bowtie If κ is regular then $\mathfrak{I}(\kappa) = \kappa^{\mathsf{cf}(\kappa)} = \kappa^{\kappa} = 2^{\kappa}$. (by (A).)

Theorem

The gimel function completely determines the power function $\kappa \mapsto 2^{\kappa}$ and cardinal exponentiation $(\kappa, \lambda) \mapsto \kappa^{\lambda}$.

Proof: Power function

If κ is regular, then $2^{\kappa} = \kappa^{\kappa} = \kappa^{\text{cf}(\kappa)} = \mathbb{I}(\kappa)$ (by (A).)

Suppose κ is singular, and suppose that $\tau \mapsto 2^{\tau}$ has been determined for all $\tau < \kappa$.

Fix an increasing sequence of cardinals with $\kappa = \sum_{\xi < \mathrm{cf}(\kappa)} \kappa_{\xi}$ where $\kappa_{\xi} < \kappa$ for all $\xi < \mathrm{cf}(\kappa)$. Two cases.

Case (i). 2^{τ} is eventually constant. Then $2^{\kappa}=2^{\tau}$ where 2^{τ} is this constant value (Lecture 32, slide 9.) Since $\tau<\kappa$, the value of 2^{κ} is determined.

Kenneth Harris (Math 582)

Math 582 Intro to Set Theory Lecture 33

April 12, 2009

19/1

Cardinal Exponentiation without GCH

Proof: Power function

Case (ii). 2^{τ} is not eventually constant. Let $\lambda = \sup_{\xi < \mathsf{cf}(\kappa)} 2^{\kappa_{\xi}}$. Then $\mathsf{cf}(\lambda) = \mathsf{cf}(\kappa)$ (① of Lecture 23, slide 7) and $\lambda \leq 2^{\kappa}$ (since $2^{\kappa} \geq 2^{\kappa_{\xi}}$ for each ξ .)

Compute:

$$\begin{array}{lll} 2^{\kappa} & = & 2^{\sum_{\xi < \mathrm{cf}(\kappa)} \kappa_{\xi}} \\ & = & \prod_{\xi < \mathrm{cf}(\kappa)} 2^{\kappa_{\xi}} & \text{Homework 12, Problem 1} \\ & \leq & \lambda^{\mathrm{cf}(\kappa)} = \lambda^{\mathrm{cf}(\lambda)} \\ & \leq & \left(2^{\kappa}\right)^{\mathrm{cf}(\lambda)} \\ & \leq & 2^{\kappa}. \end{array}$$

So,
$$2^{\kappa} = \lambda^{\mathsf{cf}(\lambda)} = \gimel(\lambda)$$
.

Proof: Cardinal exponentiation

The \mathbb{I} determines $(\kappa, \lambda) \mapsto \kappa^{\lambda}$. We assume the power function $\kappa \mapsto 2^{\kappa}$ is determined. The proof is by transfinite induction on κ .

If $0 < \lambda < \omega$, then $\kappa^{\lambda} = \kappa$.

If $\lambda < \text{cf}(\kappa)$, then $\kappa^{\lambda} = \left(\sum_{\tau < \kappa} \tau^{\lambda}\right) \cdot \kappa$ by Bernstein-Hausdorff-Tarski. Each τ^{λ} for $\tau < \lambda$ is determined by the inductive hypothesis.

If $\lambda = \operatorname{cf}(\kappa)$, then $\kappa^{\lambda} = \mathfrak{I}(\kappa)$.

If $\lambda \geq \kappa$, then $\kappa^{\lambda} = 2^{\lambda}$ (by (A)), which is determined since the power function is determined.

Kenneth Harris (Math 582)

Math 582 Intro to Set Theory Lecture 33

Cardinal Exponentiation without GCH

Proof: Cardinal exponentiation

Suppose $cf(\kappa) < \lambda < \kappa$. This case implies κ is singular.

Case (i). There is a $\tau < \kappa$ with $\tau^{\lambda} > \kappa$. Then

$$\tau^{\lambda} \le \kappa^{\lambda} \le (\tau^{\lambda})^{\lambda} = \tau^{\lambda}.$$

So, $\kappa^{\lambda} = \tau^{\lambda}$, which determined by the inductive hypothesis.

Case (ii). $\tau^{\lambda} < \kappa$ for each $\tau < \kappa$.

Let $\langle \kappa_{\xi} | \xi < \text{cf}(\kappa) \rangle$ be increasing with $\kappa = \sum_{\xi < \text{cf}(\kappa)} \kappa_{\xi}$.

$$\begin{array}{lcl} \kappa^{\lambda} & = & \big(\sum_{\xi < \mathsf{cf}(\kappa)} \kappa_{\xi}\big)^{\lambda} \\ \\ & \leq & \big(\prod_{\xi < \mathsf{cf}(\kappa)} \kappa_{\xi}\big)^{\lambda} & \mathsf{Homework 12, Problem 2} \\ \\ & = & \prod_{\xi < \mathsf{cf}(\kappa)} \kappa_{\xi}^{\lambda} & \mathsf{Homework 12, Problem 1} \\ \\ & \leq & \kappa^{\mathsf{cf}(\kappa)} \leq \kappa^{\lambda} \end{array}$$

So, $\kappa^{\lambda} = \kappa^{\mathsf{cf}(\kappa)} = \mathbb{I}(\kappa)$.