Hausaufgabe 7					
7.1 1)	Spalten sortieren	2) Zeiler mitteln	3) Ränge richsubstituima		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	A _s B _s C _s 17,5° 0,5° 0° 18° 0,5° 0° 10° 1° 1° 10° 1° 1° 20° 1,5° 3° 22° 2° 5° 23° 2,5° 7°	M 1 6 G4 2 5 G2 3 7 G3 4 7 G4 5 6 G5	A 23 7 623756 7 623756 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		
G ₇ 17.5 0.5 0	221 27 54 236 2,55 76	4 7 64 5 6 6 6 6 23 64 7 6 6	6 <u>35</u> 37		
7.2 Student t-test A 42 39 38 60 41 B 38 42 56 64 68 69	62		$\mu_{\rm B}$ wit $\alpha = 0.05$ Unter dev Ahnahme $s_{\rm A}$:	- SB und A und B Normalverball	Ł.
Zuerst: XA = 1/5(42+39+38+60+	41) = 44	TIM MR			
$\overline{X}_{8} = \frac{1}{7} \left(\frac{38 + 42 \cdot 56 + 64 + 56 \cdot 64}{100} \right)^{2} = \frac{1}{10} \left(\frac{5}{100} \left[\frac{x_{A,i}}{x_{A,i}} - \overline{x}_{A} \right]^{2} + \sum_{j=1}^{7} \frac{3}{100} \right)^{2} = \frac{1}{100} \left(\frac{5}{100} \left[\frac{x_{A,i}}{x_{A,i}} - \overline{x}_{A} \right]^{2} + \sum_{j=1}^{7} \frac{3}{100} \right)^{2} = \frac{1}{100} \left(\frac{5}{100} \left[\frac{x_{A,i}}{x_{A,i}} - \overline{x}_{A} \right]^{2} + \frac{5}{100} \right)^{2} = \frac{1}{100} \left(\frac{5}{100} \left[\frac{x_{A,i}}{x_{A,i}} - \overline{x}_{A} \right]^{2} + \frac{5}{100} \right)^{2} = \frac{1}{100} \left(\frac{5}{100} \left[\frac{x_{A,i}}{x_{A,i}} - \overline{x}_{A} \right]^{2} + \frac{5}{100} \left[\frac{x_{A,i}}{x_{A,i}} - \overline{x}_{A} \right]^{2} + \frac{5}{100} \left[\frac{x_{A,i}}{x_{A,i}} - \frac{x_{A}}{x_{A}} \right]^{2} + \frac{5}{100} \left[\frac{x_{A,i}}{x_{A}} - \frac{x_{A}}{x_{A}} \right]^{2} + \frac{x_{A}}{x_{A}} + \frac{x_{A}}{x_{A}} + \frac{x_{A}}{x_{A}} + \frac{x_{A}}{x_{A}} + \frac{x_{A}}{x_{A}} + \frac{x_{A}}{x_{A}} \right]^{2} + \frac{x_{A}}{x_{A}} + $		+ 326) = 125,6			
Danit $S = \sqrt{S^2} \approx 11,207$	2 _ (16				
Alle Work engextet: $E = \frac{57 - 44}{m_{1207}\sqrt{\frac{2}{5} + \frac{4}{1}}} \approx 1,381$					
Es worden mit den beiden Mittelwerten 2 Schätzungen vorgenommen → (M+1/2)-2 = 10 Frihritsgrude					
Fir F= 10 ist fir den zweiseitigen t-Test wit ec= 0,05 t _{10,0,05} = 2,228					
Somit ist t < t 10,0,0,0 U	nd die Nullhypothese i	sird angenommen, die	Daten unterscheiden sie	d in gevählter. Signilikumenivean v	aicht
ousveichand voneinander, womit die Geneupression zwischen den beiden Patientengruppen ber dieser Stichprobe im Rahman des Kanlidonzintervalls als					
gleich auzunelmen ist.					
7.3 Multiple testino	Korrehtur				
Gene: HER2 RAS BRCA1 BRCA2 p-Value: 10 ⁻⁸ 10 ⁻⁶ 10 ⁻⁵ 10 ⁻⁴	p53 TFAM COX1 N= 10 ^{-3.8} 10 ⁻³ 0.04	100			
Nach der Bonferron: - Korrehtur	ist die Sign.Filanneschwelle	. FolgendamaBan anzu	passen · x' = x		
Mit a = 0,05 ist a' = 0,0	5 = 5.10-4				
Eine Multiple testing Korreltur ist	notwendig, da bei vielen S	Stichproben die Wahrschein	uchheit für Ausreißer in	isgesamt steigt. Diesem Unstand muss	dwell eine
Korrektur Sorge gebragen worden.					
Damit die Genexpressionsdaten weit	erhin signifikant sind, mi	iss p < &! So sind	noch die Gene		
HERZ, RAS, BRCA1, BRCA2, p53 signilibrate					
			ha ist, dass hicr gesun	les Gewebe mit Krebszellen verglichen	. worden.

Aufgabe 7.4

1. Wieviele Gene sind in ihrer Expression erhöht?

Die Differentielle Genexpressionanalyse mittels DESeq2 liefert für eine Signifikanzschwelle von 0,01 folgendes Ergebnis:

```
out of 15952 with nonzero total read count
```

adjusted p-value < 0.01

LFC > 0 (up) : 141, 0.88% LFC < 0 (down) : 62, 0.39% outliers [1] : 7, 0.044% low counts [2] : 2165, 14%

(mean count < 9)

Darin ist zu erkennen, dass 141 Gene stärker exprimiert sind, als durch die angenommene Verteilung erwartet und 62 Gene weniger exprimiert sind als zu erwarten.

Beschreiben Sie wie sich der Volcono Plot verändert wenn Sie die Signifikanzschwelle verändern.

Im Volcanoplot wird der Logarithmus zur Basis 2 der Verhältnisse der Genexpressionen von "infected" zu "control" gegen den negativen dekadischen Logarithmus des p-Values aufgetragen. Alle Punkte, deren p-Wert kleiner (in positiven oder negativen) ist als die Signifikanzschwelle, werden dabei eingefärbt - je nach Art der Abweichung rot (für Überexprimierung) oder blau.

Dabei stellt die Grenze, ab welcher die Punkte eingefärbt werden, den negativen dekadischen Logarithmus der Signifikanzstelle dar. Verändert man diese, so verschiebt sich diese Grenze: Wird die Schwelle vergrößert werden mehr Punkte eingefärbt, wird sie verkleinert sind dies weniger.

(siehe volcano_005.pdf und volcano_001.pdf, für Signifikanzschwellen von 0,05 und 0,01)

3. Welches sind die 3 Gene die in ihrer Expression am stärksten erhöht bzw. unterdrückt sind?

Betrachtet man die Ergebnisse in "res" und vergleicht die Fold Changes "Log2FoldChange", so sind die 3 am stärksten erhöhten Gene:

- 1. Sobic.008G162600 mit Log2FoldChange = 5.49543
- 2. Sobic.006G070564 mit Log2FoldChange = 5.26315
- 3. Sobic.010G082600 mit log2FoldChange = 4.73206

Und die 3 am stärksten unterdrückten Gene:

- Sobic.004G101400 mit Log2FoldChange = -4.14179
- Sobic.009G182400 mit Log2FoldChange = -3.75887
- 3. Sobic.001G012200 mit Log2FoldChange = -3.68125

Sortiert wurde mit dem Befehl: res[order(res\$log2FoldChange, decreasing=T{oder F})[1:3],]

4. Ab welcher Signifikanschwelle gibt es keine signifikanten Gene mehr?

Sortiert man in ähnlicher Weise die Ergebnisse nach "padj", so ergibt sich ein minimaler p-value von 4.75254e-16 beim Gen Sobic.003G079200. Setzt man das Signifikanzlevel somit auf 4,7e-16, so ergibt sich keine signifikanten Gene.

Tatsächlich tritt dies im Programm bereits bei 1e-16 auf.
out of 15952 with nonzero total read count
adjusted p-value < 4.7e-16
LFC > 0 (up) : 0, 0%
LFC < 0 (down) : 0, 0%
outliers [1] : 7, 0.044%
low counts [2] : 0, 0%
(mean count < 1)

