Listing of Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

- 1-14. Cancelled.
- 15. (currently amended) A radiation-sensitive element comprising
 - (a) an aluminum substrate pretreated by electrochemical roughening and thereafter optionally anodizing or applying a hydrophilizing layer or both, wherein the electrochemical roughening is carried out with a hydrochloric acid electrolyte or an electrolyte consisting essentially of hydrochloric acid, and
 - (b) a radiation-sensitive, free-radical producing coating comprising
 - (1) at least one free-radical polymerizable monomer with at least one ethylenically unsaturated polymerizable group and at least one P-OH group,
 - (2) at least one sensitizer represented by formula (1)

$$R^{17}$$
 R^{18}
 R^{2}
 R^{3}
 R^{1}
 R^{1}

and that, when exposed to imaging radiation and only in the presence of a co-initiator, forms free radicals,

wherein

(i) R¹, R¹⁶, R¹⁷ and R¹⁸ are independently a hydrogen atom, a halogen atom, C₁-C₂₀ alkyl, -OH, -O-R⁴or -NR⁵R⁶, wherein R⁴ is C₁-C₂₀ alkyl, C₅-C₁₀ aryl or C₆-C₃₀ aralkyl and R⁵ and R⁶ are independently a hydrogen atom or C₁-C₂₀ alkyl; or

.:

(ii) R¹ and R¹⁶, R¹⁶ and R¹⁷, or R¹⁷ and R¹⁸ together form a 5- or 6-membered heterocyclic ring with a N or O heteroatom in one or both positions adjacent to the phenyl ring, or

(iii) or R¹, R¹⁶ and R¹⁷ form two adjacent 5- or 6-membered heterocyclic rings with an N or O heteroatom in a position adjacent to the phenyl ring;

wherein each formed 5- or 6-membered heterocyclic ring can independently be substituted with one or more C_1 - C_6 alkyl,

with the proviso that at least one of R^1 , R^{16} , R^{17} and R^{18} is not a hydrogen atom or C_1 - C_{20} alkyl,

 R^2 is a hydrogen atom, $C_1\hbox{-} C_{20}$ alkyl, $C_5\hbox{-} C_{10}$ aryl or $C_6\hbox{-} C_{30}$ aralkyl and

 R^3 is a hydrogen atom,-COOH, -COOR⁷, -COR⁸, -CONR⁹R¹⁰, -CN, C_5 - C_{10} aryl, C_6 - C_{30} aralkyl, a 5- or 6-membered heterocyclic ring, -CH=CH-R¹² or

wherein R^7 is C_1 - C_{20} alkyl, R^8 is C_1 - C_{20} alkyl or a 5- or 6-membered heterocyclic ring, R^9 and R^{10} are independently a hydrogen atom or C_1 - C_{20} alkyl, R^{11} is C_1 - C_{12} alkyl or alkenyl, a heterocyclic non-aromatic ring or C_5 - C_{20} aryl optionally including an O, S or N heteroatom, and R^{12} is C_5 - C_{10} aryl or a 5- or 6-membered heterocyclic, optionally aromatic, ring;

or R² and R³, together with the carbon atoms to which they are bonded, form a 5- or 6-membered, optionally aromatic, ring;

- (3) at least one onium compound, hexaarylbiimidazole compound, or trihalogenomethyl compound as a co-initiator that is unable to absorb imaging radiation, but in the presence of said sensitizer that is exposed to imaging radiation, forms free radicals;
- (4) at least one biuret oligomer represented by formula (V)

$$\begin{array}{c} O & O & O \\ \parallel & \parallel & \parallel \\ B^1-O-C-NH-Z^1-N-C-NH-Z^3-NH-C-O-B^3 \\ \mid & C=O \\ \mid & NH \\ \mid & Z^2 \\ \mid & NH \\ \mid & C=O \\ \mid & NH \\ \mid & C=O \\ \mid & O \\ \mid & B^2 \end{array}$$

wherein Z^1 , Z^2 and Z^3 are independently C_2 - C_{18} alkanediyl or C_6 - C_{20} arylene,

1

B¹, B² and B³ are independently

 $-(CHR^{13}-CHR^{13}-O)_p-CH_2-CH=CH_2$ or a fragment represented by formula (Va)

$$\begin{array}{c} \mathsf{R}^{14} \\ | \\ (\mathsf{CH}_2)_q \\ | \\ -(\mathsf{CHR}^{13}_\mathsf{CHR}^{13}_\mathsf{O})_p - \mathsf{CH}_2 - \underset{\mathsf{C}}{\mathsf{C}} - (\mathsf{CH}_2)_r - \mathsf{R}^{14} \\ | \\ (\mathsf{CH}_2)_s \\ | \\ \mathsf{R}^{14} \end{array} \tag{Va}$$

wherein R¹³ is independently a hydrogen atom or -CH₃ and p is 0 or an integer from 1-10, each R¹⁴ is independently a hydrogen atom,

R¹⁵ is a hydrogen atom or C₁-C₁₂ alkyl and

q, r and s independently of each other are 0 or 1,

with the proviso that for B^1 , B^2 and B^3 at least one R^{14} is not a hydrogen atom if B^1 , B^2 and B^3 are all a fragment represented by formula (Va), and

- (5) optionally at least one metallocene.
- 16. (previously presented) The radiation-sensitive element according to claim 15, wherein the radiation-sensitive coating additionally comprises at least one further component comprising free-radical polymerizable monomers, oligomers, or prepolymers that are different from monomers (b)(1) of the radiation-sensitive coating, alkali-soluble binders, thermopolymerization inhibitors, dyes, plasticizers, chain transfer agents, leuco dyes, inorganic fillers or surfactants.
- 17. (previously presented) The radiation-sensitive element according to claim 15, wherein the sensitizer is represented by formulas la—lh, lj-lk and lm-lq, or mixtures thereof:

1

i.

ž:

(lj)

$$H_3C$$
 CH_3
 CH_3
 CH_3

s'i

4,7

4.1

į.

Š

- 18. (previously presented) The radiation-sensitive element according to claim 15, wherein the coinitiator is an iodonium compound or a hexaarylbiimidazole compound.
- 19. (previously presented) The radiation-sensitive element according to claim 15, wherein the radiation-sensitive coating comprises a metallocene with a metal of the fourth subgroup as a central atom.
- 20. (previously presented) The radiation-sensitive element according to claim 15, wherein the free-radical polymerizable monomer with at least one ethylenically unsaturated group and at least one P-OH group is represented by formulas (II) and (III):

$$\left(H_2C = CH - CH_2 - O\right)_n P - \left(OH\right)_k$$
 (III)

wherein n is 1 or 2, m is 0 or 1, k is 1 or 2, n + k = 3, R is a hydrogen atom or C_1 - C_{12} alkyl, X is C_2 - C_{12} alkanediyl and Y is C_2 - C_{12} alkanediyl.

- 21. (previously presented) The radiation-sensitive element according to claim 15, wherein in the biuret of formula (V) each of Z^1 , Z^2 , and Z^3 are the same.
- 22, (previously presented) The radiation-sensitive element according to claim 15, wherein an oxygen-impermeable overcoat is provided on the radiation-sensitive coating.
- 23. (currently amended) A process for the production of an imaged element comprising the steps of:
 - (a) providing a radiation-sensitive element comprising
 - (1) an aluminum substrate pretreated by electrochemical roughening and thereafter optionally anodizing or applying a hydrophilizing layer or both, wherein the electrochemical roughening is carried out with a hydrochloric acid electrolyte or an electrolyte consisting essentially of hydrochloric acid, and
 - (2) a radiation-sensitive coating, free radical-producing comprising
 - (i) at least one free-radical polymerizable monomer with at least one ethylenically unsaturated polymerizable group and at least one P-OH group,

} :

(ii) at least one sensitizer represented by formula (I)

and that, when exposed to imaging radiation and only in the presence of a co-initiator, forms free radicals,

wherein

- (a) R¹, R¹⁶, R¹⁷ and R¹⁸ are independently a hydrogen atom, a halogen atom, C₁-C₂₀ alkyl, -OH, -O-R⁴or -NR⁵R⁶, wherein R⁴ is C₁-C₂₀ alkyl, C₅-C₁₀ aryl or C₆-C₃₀ aralkyl and R⁵ and R⁶ are independently a hydrogen atom or C₁-C₂₀ alkyl; or
- (b) R¹ and R¹⁶, R¹⁶ and R¹⁷, or R¹⁷ and R¹⁸ together form a 5or 6-membered heterocyclic ring with a N or O heteroatom in one or both positions adjacent to the phenyl ring, or

÷.

(c) or R¹, R¹⁶ and R¹⁷ form two adjacent 5- or 6-membered heterocyclic rings with a N or O heteroatom in a position adjacent to the phenyl ring;

wherein each formed 5- or 6-membered heterocyclic ring can independently be substituted with one or more C_1 - C_6 alkyl,

with the proviso that at least one of R^1 , R^{16} , R^{17} and R^{18} is not a hydrogen atom or C_1 - C_{20} alkyl,

 R^2 is a hydrogen atom, $C_1\hbox{-} C_{20}$ alkyl, $C_5\hbox{-} C_{10}$ aryl or $C_6\hbox{-} C_{30}$ aralkyl and

R³ is a hydrogen atom, -COOH, -COOR⁷, -COR⁸, -CONR⁹R¹⁰, -CN, C₅-C₁₀ aryl, C₆-C₃₀ aralkyl, a 5- or 6-membered heterocyclic ring, -CH=CH-R¹² or

wherein R^7 is C_1 - C_{20} alkyl, R^8 is C_1 - C_{20} alkyl or a 5- or 6-membered heterocyclic ring, R^9 and R^{10} are independently a hydrogen atom or C_1 - C_{20} alkyl, R^{11} is C_1 - C_{12} alkyl or alkenyl, a heterocyclic non-aromatic ring or C_5 - C_{20} aryl optionally including an O, S or N heteroatom, and R^{12} is C_5 - C_{10} aryl or a 5- or 6-membered heterocyclic, optionally aromatic, ring;

or R² and R³, together with the carbon atoms to which they are bonded, form a 5- or 6-membered, optionally aromatic, ring;

- (3) at least one onium compound, hexaarylbiimidazole compound, or trihalogenomethyl compound as a co-initiator that is unable to absorb imaging radiation, but in the presence of said sensitizer that is exposed to imaging radiation, forms free radicals;
- (4) at least one biuret oligomer represented by formula (V)

wherein Z^1 , Z^2 and Z^3 are independently C_2 - C_{18} alkanediyl or C_6 - C_{20} arylene,

 B^1 , B^2 and B^3 are independently – $(CHR^{13} - CHR^{13} - O)_p$ – CH_2 – CH = CH_2 or a fragment represented by formula (Va)

or a fragment represented by formula (Va)
$$\begin{array}{c} R^{14} \\ | \\ (CH_2)_q \\ | \\ -(CHR^{13}_CHR^{13}_O)_p - CH_2 - C - (CH_2)_r - R^{14} \\ | \\ (CH_2)_s \\ | \\ R^{14} \end{array} \tag{Va}$$

wherein R¹³ is independently a hydrogen atom or -CH₃ and p is 0 or an integer from 1-10, each R¹⁴ is independently a hydrogen atom,

R¹⁵ is a hydrogen atom or C₁-C₁₂ alkyl and

q, r and s independently of each other are 0 or 1,

with the proviso that for B^1 , B^2 and B^3 at least one R^{14} is not a hydrogen atom if B^1 , B^2 and B^3 are all a fragment represented by formula (Va), and

- (5) optionally at least one metallocene;
- (b) image-wise exposure of the element with radiation of a wavelength adjusted to the sensitizer present in the radiation-sensitive layer of the element;

::

- (c) optionally heating;
- (d) removing the unexposed areas with an aqueous alkaline developer; and
- (e) optionally heating the imaged element obtained in step (d) or subjecting it to overall exposure or both.

24. (currently amended) A radiation-sensitive, free radical-producing composition comprising

- (a) at least one free-radical polymerizable monomer with at least one ethylenically unsaturated polymerizable group and at least one P-OH group,
- (b) at least one sensitizer represented by formula (l)

$$R^{17}$$
 R^{18} R^2 R^3 R^{16} R^{16}

and that, when exposed to imaging radiation and only in the presence of a co-initiator, forms free radicals, wherein

- (1) R^1 , R^{16} , R^{17} and R^{18} are independently a hydrogen atom, a halogen atom, C_1 - C_{20} alkyl, -OH, -O- R^4 or -N R^5R^6 , wherein R^4 is C_1 - C_{20} alkyl, C_5 - C_{10} aryl or C_6 - C_{30} aralkyl and R^5 and R^6 are independently a hydrogen atom or C_1 - C_{20} alkyl, or
- (2) R¹ and R¹⁶, R¹⁶ and R¹⁷, or R¹⁷ and R¹⁸ together form a 5- or 6-membered heterocyclic ring with a N or O heteroatom, in one or both positions adjacent to the phenyl ring, or
- (3) R¹, R¹⁶ and R¹⁷ form two adjacent 5- or 6-membered heterocyclic rings with a N or O heteroatom, in a position adjacent to the phenyl ring,

wherein each formed 5- or 6-membered heterocyclic ring can independently be substituted with one or more C₁-C₆ alkyl,

with the proviso that at least one of R^1 , R^{16} , R^{17} and R^{18} is not a hydrogen atom or C_1 - C_{20} alkyl;

 R^2 is a hydrogen atom, $C_1\text{-}C_{20}$ alkyl, $C_5\text{-}C_{10}$ aryl or $C_6\text{-}C_{30}$ aralkyl and

R³ is hydrogen atom, or-COOH, -COOR⁷, -COR⁸, -CONR⁹R¹⁰, -CN, C₅-C₁₀ aralkyl, a 5- or 6-membered heterocyclic ring, -CH=CH-R¹² or

wherein R^7 is C_1 - C_{20} alkyl, R^8 is C_1 - C_{20} alkyl or a 5- or 6-membered heterocyclic ring, R^9 and R^{10} are independently a hydrogen atom or C_1 - C_{20} alkyl, R^{11} is C_1 - C_{12} alkyl, or C_1 - C_{12} alkenyl, a heterocyclic non-aromatic ring or C_5 - C_{20} aryl optionally including an O, S or N heteroatom, and R^{12} is C_5 - C_{10} aryl or a 5- or 6-membered heterocyclic, optionally aromatic, ring;

or R² and R³, together with the carbon atoms to which they are bonded, form a 5- or 6-membered, optionally aromatic, ring;

- (c) at least one onium compound, hexaarylbiimidazole compound, or trihalogenomethyl compound as a coinitiator that is unable to absorb imaging radiation, but in the presence of said sensitizer that is exposed to imaging radiation, forms free radicals;
 - (d) at least one biuret oligomer represented by formula (V)

wherein Z^1 , Z^2 and Z^3 are independently C_2 - C_{18} alkanediyl or C_6 - C_{20} arylene,

B¹, B² and B³ are independently

 $-(CHR^{13}-CHR^{13}-O)_p-CH_2-CH=CH_2$ or a fragment represented by formula (Va)

$$\begin{array}{c} R^{14} \\ | \\ (CH_2)_q \\ -(CHR^{13}_CHR^{13}_O)_p - CH_2 - C - (CH_2)_r - R^{14} \\ | \\ (CH_2)_s \\ | \\ (CH_2)_s \\ | \\ R^{14} \end{array} \tag{Va}$$

wherein R¹³ is independently a hydrogen atom or -CH₃ and p is 0 or an integer from 1-10, each R¹⁴ is independently a hydrogen atom,

O
$$R^{15}$$

|| |
-O-C-C=CH₂ or -O-CH₂-CH=CH₂,

R¹⁵ is a hydrogen atom or C₁-C₁₂ alkyl and

q, r and s independently of each other are 0 or 1,

with the proviso that for B^1 , B^2 and B^3 at least one R^{14} is not a hydrogen atom if B^1 , B^2 and B^3 are all a fragment represented by formula (Va), and

- (e) a solvent or solvent mixture; and
- (f) optionally at least one metallocene.
- 25. (previously presented) The radiation-sensitive composition according to claim 24, additionally comprising at least one further component comprising a free-radical polymerizable monomers, oligomers, or prepolymers that are different from monomer (a) of the radiation-sensitive composition, alkali-soluble binders, thermopolymerization inhibitors, dyes, plasticizers, chain transfer agents, leuco dyes, inorganic fillers or surfactants.
- 26. (currently amended) A process for the production of a radiation-sensitive element as defined in claim 15 comprising:
 - (a) providing an aluminum substrate pretreated by electrochemical roughening and thereafter optionally anodizing or applying a hydrophilizing layer or both, wherein the electrochemical roughening is carried out with a hydrochloric acid electrolyte or an electrolyte consisting essentially of hydrochloric acid;
 - (b) applying a radiation-sensitive, free radical-producing composition comprising
 - at least one free-radical polymerizable monomer with at least one ethylenically unsaturated polymerizable group and at least one P-OH group,
 - (2) at least one sensitizer represented by formula (I) and that, when exposed to imaging radiation and only in the presence of a co-initiator, forms free radicals,

$$R^{18}$$
 R^2 R^3 R^{16} R^{16} R^{18} R^{18}

wherein

- (i) R^1 , R^{16} , R^{17} and R^{18} are independently a hydrogen atom, a halogen atom, C_1 - C_{20} alkyl, -OH, -O- R^4 or -N R^5 R^6 , wherein R^4 is C_1 - C_{20} alkyl, C_5 - C_{10} aryl or C_6 - C_{30} aralkyl and R^5 and R^6 are independently a hydrogen atom or C_1 - C_{20} alkyl, or
- (ii) R¹ and R¹⁶, R¹⁶ and R¹⁷, or R¹⁷ and R¹⁸ together form a 5or 6-membered heterocyclic ring with a N or O heteroatom, in one or both positions adjacent to the phenyl ring, or
- (iii) R¹, R¹⁶ and R¹⁷ form two adjacent 5- or 6-membered heterocyclic rings with a N or O heteroatom, in a position adjacent to the phenyl ring,

wherein each formed 5- or 6-membered heterocyclic ring can independently be substituted with one or more C₁-C₆ alkyl groups,

with the proviso that at least one of R^1 , R^{16} , R^{17} and R^{18} is not a hydrogen atom or C_1 - C_{20} alkyl;

 R^2 is a hydrogen atom, C_1 - C_{20} alkyl, C_5 - C_{10} aryl or C_6 - C_{30} aralkyl and R^3 is hydrogen atom, -COOH, -COOR⁷, -COR⁸, -CONR⁹R¹⁰, -CN, C_5 - C_{10} aralkyl, a 5- or 6-membered heterocyclic ring, -CH=CH-R¹² or

wherein R^7 is C_1 - C_{20} alkyl, R^8 is C_1 - C_{20} alkyl or a 5- or 6-membered heterocyclic ring, R^9 and R^{10} are independently a hydrogen atom or C_1 - C_{20} alkyl, R^{11} is C_1 - C_{12} alkyl, or C_1 - C_{12} alkenyl, a heterocyclic non-aromatic ring or C_5 - C_{20} aryl optionally including an O, S or N heteroatom, and R^{12} is C_5 - C_{10} aryl or a 5- or 6-membered heterocyclic, optionally aromatic, ring;

or R² and R³, together with the carbon atoms to which they are bonded, form a 5- or 6-membered, optionally aromatic, ring;

- (3) at least one onium compound, hexaarylbiimidazole compound, or trihalogenomethyl compound as a coinitiator <u>that is unable to absorb imaging radiation</u>, but in the presence of said sensitizer <u>that is exposed to imaging radiation</u>, forms free radicals;
- (4) at least one biuret oligomer represented by formula (V)

wherein Z^1 , Z^2 and Z^3 are independently C_2 - C_{18} alkanediyl or C_6 - C_{20} arylene,

B¹, B² and B³ are independently

 $-(CHR^{13}-CHR^{13}-O)_p-CH_2-CH=CH_2$ or a fragment represented by formula (Va)

wherein R¹³ is independently a hydrogen atom or -CH₃ and p is 0 or an integer from 1-10, each R¹⁴ is independently a hydrogen atom,

 R^{15} is a hydrogen atom or C_1 – C_{12} alkyl and

q, r and s independently of each other are 0 or 1,

with the proviso that for each B^1 , B^2 and B^3 at least one R^{14} is not a hydrogen atom if B^1 , B^2 and B^3 are all a fragment represented by formula (Va), and

i.c

- (5) a solvent or solvent mixture; and
- (6) optionally at least one metallocene.
- (c) drying; and
- (d) optionally applying an oxygen-impermeable overcoat and drying.

27. (previously presented) The printing form produced by the process according to claim 23.