محمد سعید حیدری (۴۰۰۴۲۲۰۷۵)

ibm spss modeler در boston house price تحلیل دیتاست

درس داده کاوی : دکتر پرند

دانشگاه شهید بهشتی

پیاده سازی بر اساس گام های CRISP

Cross-Industry Standard Process for Data Mining (CRISP-DM)

- 1. Business Understanding
- 2. Data Understanding
- 3. Data Preparation
- 4. Modelling
- 5. Evaluation
- 6. Deployment

1. Loading Data

Data description:

The Boston data frame has 506 rows and 14 columns. The 'Medv' variable is the target variable.

This data frame contains the following columns (variables):

- 1- CRIM: per capita crime rate by town
- 2- ZN: proportion of residential land zoned for lots over 25,000 sq.ft
- 3- INDUS: proportion of nonretail business acres per town
- 4- CHAS: Charles River dummy variable (= 1 if tract bounds river; 0 otherwise)
- 5- NOX: nitric oxides concentration (parts per 10 million)
- 6- RM: average number of rooms per dwelling
- 7- AGE: proportion of owner-occupied units built prior to 1940
- 8- DIS: weighted distances to five Boston employment centers
- 9- RAD: index of accessibility to radial highways
- 10- TAX: full-value property-tax rate per \$10,000
- 11- PTRATIO: pupil-teacher ratio by town

2. Data Understanding

به منظور کشف نقاط پرت و توزیع داده ها، می توانیم از ابزارهای رسم نمودار مانند Boxplots و هیستوگرام استفاده کنیم.

3. Data Preparation

به دلیل اینکه RAD و RAD دارای correlation= 0.91 یکی از آنها را انتخاب و دیگری را خط میزنیم

When we visualize the data, we see that the data seems to be capped at 50. The data points with a 'Medv' value of 50 are likely contain censored or missing values. We nullify these points by using Interactions option in Plot View and Select Node or by using Filler Node.

مشاهده distribution داده و بررسی outliers ها

استفاده از گزینه Interactions در

missing data برای nullify استفاده از گزینه

سپس از روشهای مختلف داده miss را پر میکنیم

سپس از روش MimMax داده ها را نرمالایز میکنیم

سپس بررسی نویز و آنومالی

که در اینجا نویز درون داده به وضوح مشخص است. آنرا رفع میکنیم

4. Modelling

تک تک روشها و الگوریتم ها رو امتحان میکنیم

Linear Regression:

Model Summary

The information criterion is used to compare to models. Models with smaller information criterion values fit better.

Regression:

Predictor Importance

Target: Medv

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	.833ª	.694	.684	4.286901

a. Predictors: (Constant), Lstat_transformed, Chas, Ptratio_transformed, Black_transformed, Zn_transformed, Rm_transformed, Crim_transformed, Age_transformed, Indus_transformed, Dis_transformed, Tax_transformed, Nox_transformed

CHAID:

5. Evaluation

The most accurate and robust method in "One" time running is NN with 82.5% accuracy and relative Error 0.284. Other methods are less accurate or not robust (which shown with cross symbol 'X') rather than NN method. Linear Regression shows a robustness and accuracy of about 70%.

Four- and Five-Feature Extraction based on four important features seen in Model Results in Descending Order, respectively: (Dis, LSTAT, RM, Crim) and (Dis, LSTAT, RM, Crim, Ptratio)

IMPORTANCE 1:Highest 4: Least	Crim	ZN	INDUS	CHAS	NOX	RM	Age	Dis	Rad	Tax	PTRATIO	Black	LSTAT
Neural Network	3					1		4					2
CART						1	3	4					2
Linear Regression						1		4			2		3
Regression	2			4				1		3			

		Medv			
Age		-0.447			
Black					
Chas		0.309			
Crim		-0.410			
Dis		0.317			
ndus		-0.549			
stat		-0.714			
Medv		1.000			
lox.		-0.483			
ratio		-0.528			
Rad	-				
Rm .	>	0.628			
ax		-0.521			
n		0.357			

Four- and Five-Feature Extraction based on Correlation Matrix in Descending Order, respectively:

(LSTAT, RM, Indus, Ptratio) and (LSTAT, RM, Indus, Ptratio, Tax)

Building Models with 5 selected Features:

Regression:

Model Summary

M	odel	R	R Square	Adjusted R Square	Std. Error of the Estimate
1		.782ª	.611	.606	4.858375

a. Predictors: (Constant), Lstat_transformed, Ptratio_transformed, Dis_transformed, Crim_transformed, Rm_transformed

CHAID:

CART:

Linear Regression:

Model Summary

Target	Medv
Automatic Data Preparation	On
Model Selection Method	Forward Stepwise
Information Criterion	1,121.537

The information criterion is used to compare to models. Models with smaller information criterion values fit better.

Neural Network:

Predictor Importance Target: Medv

Generlized Linear Model:

Predictor Importance

Building Models on Uncleaned Dataset:

Comparison:

Four Top Important Features

Uncleaned Data: RM, LSTAT, Chas, ZN

Cleaned Data:

All Features: RM, LSTAT, Indus, PtratioLess Features: RM, LSTAT, Crim, Ptratio

· Model Analysis on Uncleaned Data

Model Analysis on Less Features Datasets

Model Analysis on Cleaned Data with all Features

