

<u>Home</u>

Average Bond Enthalpy

Average Bond Enthalpy

The average bond enthalpy of the C-F bond in tetrafluoromethane is given by the standard enthalpy change for one of the following reactions. Which one is it?

- $\bigcirc \quad \operatorname{CF}_{4}(\mathsf{g}) \longrightarrow \operatorname{CF}_{3}\left(\mathsf{g}\right) + \operatorname{F}\left(\mathsf{g}\right)$
- $\frac{1}{4}\operatorname{CF}_4(g) \longrightarrow \frac{1}{4}\operatorname{C}(g) + \operatorname{F}(g)$
- $\bigcirc \quad 2 \operatorname{F}_{2} \left(g \right) + \operatorname{C} \left(s \right) \longrightarrow \operatorname{CF}_{4} \left(g \right)$
- $CF_4(g) \longrightarrow CF_3^+(g) + F^-(g)$
- \bigcirc CF₄(s) \longrightarrow CF₄(g)

Adapted with permission from UCLES, OCSEB A Level Chemistry, June 1995, Paper 1, Question 10

All materials on this site are licensed under the **Creative Commons license**, unless stated otherwise.

Home Chemistry

Essential Pre-Uni Chemistry F2.4

Essential Pre-Uni Chemistry F2.4

Given that the bond energy of H-H is $4.53\,\mathrm{eV}$, D-D is $4.59\,\mathrm{eV}$, and the energy change on reaction $H_2+D_2\longrightarrow 2\,\mathrm{HD}$ is $+0.02\,\mathrm{eV}$, find the bond energy of H-D. Give your answer to 3 significant figures.

All materials on this site are licensed under the **Creative Commons license**, unless stated otherwise.

Home Chemistry

Essential Pre-Uni Chemistry F2.1

Essential Pre-Uni Chemistry F2.1

MEAN BOND ENTHALPIES (in $kJ \text{ mol}^{-1}$)

$_{ m H-H}$	436	C-Cl	327
C-H (average)	413	I–I	151.2
$\mathrm{C-H}$ (in $\mathrm{CH_4}$ and $\mathrm{CH_3X}$)	435	H–I	298.3
C-C	347	C-I	228
C=C	612	$\mathrm{Br}\mathrm{-Br}$	193
$\mathrm{C}\equiv\mathrm{C}$	838	H-Br	366.3
H-Cl	432	$N \equiv N$	945.4
Cl-Cl	243.4	O=O	498.3

Use the mean bond enthalpies given above to calculate the reaction enthalpies for the following reactions in the gas phase:

Part A (a)

 $H_2 + Cl_2 \longrightarrow 2\,HCl.$ Give your answer to 3 significant figures.

Part B (b)

 $H_2 + I_2 \longrightarrow 2\,HI.$ Give your answer to one significant figure.

Part C (c)

 $CH_4+Cl_2 \longrightarrow CH_3Cl+HCl.$ Give your answer to 2 significant figures.

Part D (d)

 $C_2H_4+H_2 \longrightarrow C_2H_6.$ Give your answer to 3 significant figures.

Part E (e)

 $C_2H_2+2\,H_2\longrightarrow C_2H_6.$ Give your answer to 3 significant figures.

Part F (f)

 $C_4H_{10} \longrightarrow C_2H_6 + C_2H_4.$ Give your answer to 2 significant figures.

Part G (g)

 $C_2H_4 + HCl \longrightarrow CH_3CH_2Cl.$ Give your answer to 2 significant figures.

Part H (h)

 $\frac{1}{2}Cl_2 \longrightarrow Cl.$ Give your answer to 4 significant figures.

Part I (i)

 $C_2H_4+I_2 \longrightarrow C_2H_4I_2.$ Give your answer to 2 significant figures.

Part J (j)

 $CH_2CHCHCH_2 + 2\,H_2 \longrightarrow C_4H_{10}\,.$ Give your answer to 3 significant figures.

<u>Home</u>

Chemistry

Essential Pre-Uni Chemistry F2.3

Essential Pre-Uni Chemistry F2.3

Use some of the following bond enthalpies in $kcal \, mol^{-1}$ to calculate the enthalpy changes for the reactions (in the gas phase):

C=C	146	$C \equiv O$	258
0=0	119	Н-О	111
С-Н	99	$_{ m H-H}$	104
C=O	178		

Part A (a)

 $C_2H_4+O_2 \longrightarrow 2\,CH_2O.$ Give your answer to 2 significant figures.

Part B (b)

 $CO + H_2O \longrightarrow CO_2 + H_2.$ Give your answer to 2 significant figures.

Part C (c)

 ${
m CH_2O} \longrightarrow {
m CO} + {
m H_2}.$ Give your answer to 2 significant figures.

All materials on this site are licensed under the **Creative Commons license**, unless stated otherwise.

Home Chemistry

Essential Pre-Uni Chemistry F2.2

Essential Pre-Uni Chemistry F2.2

MEAN BOND ENTHALPIES (in $kJ \, \mathrm{mol}^{-1}$)

$_{ m H-H}$	436	C-Cl	327
C-H (average)	413	I-I	151.2
$\mathrm{C-H}$ (in $\mathrm{CH_4}$ and $\mathrm{CH_3X}$)	435	$_{\mathrm{H-I}}$	298.3
C-C	347	C-I	228
C=C	612	$\mathrm{Br}\mathrm{-Br}$	193
$C \equiv C$	838	$_{ m H-Br}$	366.3
H-Cl	432	$N\equiv N$	945.4
Cl-Cl	243.4	O=O	498.3

Use the reaction enthalpies given (for the gas phase reaction), and the bond enthalpies above, to find the bond enthalpy requested:

Part A E(I-Cl)

$$I_2 + Cl_2 \longrightarrow 2 \, ICl$$

 $\Delta_{
m r} H^{\,\circ} = -70.2\,{
m kJ\,mol^{-1}}$, find $E({
m I-Cl})$. Give your answer to 4 significant figures.

Part B E(C-Br)

$$CH_4 + Br_2 \longrightarrow CH_3Br + HBr$$

$$\Delta_{\rm r} H^{\circ} = -28.3 \, {
m kJ \, mol^{-1}}$$
, find $E({
m C-Br})$.

Part C
$$E(N-H)$$

$$N_2 + 3\,H_2 \longrightarrow 2\,NH_3$$

$$\Delta_{
m r} H^{\scriptscriptstyle \, \diamond} = -92.2 \, {
m kJ \, mol^{-1}}$$
 , find $E({
m N-H})$.

Part D $E(\mathrm{O-H})$

$${
m O_2} + 2\,{
m H_2} \longrightarrow 2\,{
m H_2O}$$

$$\Delta_{
m r} H^{\,\circ} = -483.6\,{
m kJ\,mol^{-1}}$$
, find $E({
m O-H})$.

Part E E(O-O)

$$3\,O_2 \longrightarrow 2\,O_3$$

$$\Delta_{
m r} H^{\circ} = 285.4 \, {
m kJ \, mol^{-1}}$$
 , find $E({
m O-O})$.

All materials on this site are licensed under the $\underline{\textbf{Creative Commons license}}$, unless stated otherwise.