AEP4380 HW2 - Numerical Integration

Dan Girshovich

Feb 7, 2013

1 Purpose

This document details the results of the attached C++ program, which performs numerical integration of the elliptic integral of the first kind:

$$K(x) = \int_0^{\frac{\pi}{2}} \frac{1}{\sqrt{1 - x \sin^2 \theta}} d\theta$$
 $(0 \le x \le 1)$

This integral was done using the Trapezoidal Rule and Simpson's Rule (equations 4.1.3 and 4.1.4 of Press[1] et al, respectively). A discussion of the results follows.

2 Convergence Tests

As the value of x increases over the given interval, the integrand grows more and more quickly. This additional curvature should differentiate the two integration rules at large values of x, since the error bounds of each are proportional to different derivatives of the integrand. Namely, the Trapezoidal Rule is proportional to the second derivative, while Simpson's Rule is proportional to the fourth derivative (page 158 of Press[1]). Therefore, Simpson's Rule should converge more rapidly than the Trapezoidal Rule, and this should be most obvious for high values of x. This expected result is reflected in the tables below.

2.1 Trapezoidal Rule

X = 0.5		X = 0.9999	
N	K(x)	N	K(x)
4	1.85407523	4	21.83756024
8	1.85407468	8	12.71368364
16	1.85407468	16	8.49387261
32	1.85407468	32	6.71466565
64	1.85407468	64	6.11464253
128	1.85407468	128	5.99808944
256	1.85407468	256	5.99161698
512	1.85407468	512	5.99158934
1024	1.85407468	1024	5.99158934
2048	1.85407468	2048	5.99158934
4096	1.85407468	4096	5.99158934

2.2 Simpson's Rule

X = 0.5			X = 0.9999	
N	K(x)		N	K(x)
4	1.85378059	-	4	15.52565617
8	1.85407449		8	9.67239144
16	1.85407468		16	7.08726894
32	1.85407468		32	6.12159667
64	1.85407468		64	5.91463482
128	1.85407468		128	5.95923841
256	1.85407468		256	5.98945950
512	1.85407468		512	5.99158013
1024	1.85407468		1024	5.99158934
2048	1.85407468		2048	5.99158934
4096	1.85407468		4096	5.99158934

3 Numerical Solution

3.1 Determine N

To choose a value of N that reliably produces 5 significant figures of accuracy, a "true" value of the integral at a worst case x value is required. Based on the convergence results and the domain of the integral, x=0.9999 seems to be a valid worst case. An accurate estimate of K(x=0.9999) was retrieved from Wolfram Alpha [2], and the value was 5.99159. Using this and the tables above, it is evident that the desired accuracy is achieved when N=512.

3.2 Results

Using N=512, both integration techniques were run to find the value of the integral for 100 values of x between 0 and 0.9999. As expected, the results from both methods were identical to 5 significant figures. The curve produced from each data set is shown below.

Figure 1: A numerical solution for K(x) using 100 data points (using either the Trapezoidal Rule or Simpson's Rule).

The curve grows from $\frac{\pi}{2}$ at 0 to inf at 1, which are easily verified to be true for K(x).

References

- [1] W.H. Press, S.A Teukolsky, W. T. Vetterling, and B. P. Flannery. *Numerical Recipies, The Art of Scientific Computing, 3rd edit.* Camb. Univ. Press, 2007.
- [2] Wolfram—Alpha. Wolfram Alpha LLC, 2013.