Final Term Exam	Math Stats and Linear Algebra	December 15, 2022
FRP No.	Name	

Note: Please solve all FIVE problems. Each problem has a maximum credit of 8 marks. To get the full credit you should provide the reasoning and show all the work.

Question 1

a) Consider the following homogeneous system of three linear equations in three unknowns

$$x_1 - x_2 + 3x_3 = 0$$

$$x_1 + x_2 - hx_3 = 0$$

$$x_1 - x_2 + hx_3 = 0$$

- For what value(s) of h the system has only trivial solution?
- For what value(s) of h the system has nontrivial solutions? Also find all such solutions.
- b) Consider the following non-homogeneous system of three linear equations in three unknowns

$$x_1 - x_2 + 3x_3 = 0$$

$$x_1 + x_2 - hx_3 = 2$$

$$x_1 - x_2 + hx_3 = 0$$

- Show that the system is consistent for all values of h.
- For what value(s) of h the system has a unique solution? Also find the unique solution.
- For what value(s) of h the system has infinitely many solutions? Also find all such solutions.

Question 2

- a) Find the standard matrix of a linear transformation T: $R^2 -> R^2$ which rotates a point about the origin through an angle of $3 \pi/4$ radians (in clockwise direction).
- b) For what value(s) of k will the vector $\begin{bmatrix} 1 \\ 2 \\ k \end{bmatrix}$ in \mathbb{R}^3 be a linear combination of

the vectors
$$\begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix}$$
 and $\begin{bmatrix} 3 \\ 1 \\ 2 \end{bmatrix}$? Also find the corresponding weights.

c) The columns of
$$I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 are $\mathbf{e}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$, $\mathbf{e}_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$ and $\mathbf{e}_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$. Suppose T is

a linear transformation from
$$R^3$$
 to R^4 where $T(\mathbf{e}_1) = \begin{bmatrix} 1 \\ 2 \\ 4 \\ 6 \end{bmatrix}$, $T(\mathbf{e}_2) = \begin{bmatrix} 6 \\ 4 \\ 2 \\ 1 \end{bmatrix}$ and

$$T(\mathbf{e}_3) = \begin{bmatrix} 7 \\ 6 \\ 6 \\ 7 \end{bmatrix}. \text{ Compute } T(\mathbf{x}) \text{ for any } \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}.$$

Question 3

a) What is meant by an **elementary** matrix? Identify the **elementary** matrices among the following. Also find the inverses of those matrices which are **elementary**. (In each case your answer must be supported by valid reasons.)

$$i.\begin{bmatrix}1&0&0&0\\0&1&0&-3\\0&0&1&0\\0&0&0&1\end{bmatrix}ii.\begin{bmatrix}1&0&0&0\\0&0&1&0\\0&1&0&0\\0&0&0&1\end{bmatrix}iii.\begin{bmatrix}1&0&0&0\\0&2&0&0\\0&0&1&0\\0&0&0&0\end{bmatrix}iv.\begin{bmatrix}-10&0&0&0\\0&1&0&0\\0&0&1&0\\0&0&0&1\end{bmatrix}$$

b) By using elementary row operations find the inverse of

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 2 & 1 \\ 2 & 1 & 3 \end{bmatrix}$$
 and use this inverse to solve the system
$$A\underline{x} = \begin{bmatrix} 14 \\ 8 \\ 13 \end{bmatrix}.$$

c) By examining the elementary row operations which you have performed in part **b)** above, find the determinant of A.

Question 4

a) If the probability density of X is given by $f(x) = \begin{cases} \frac{x}{4.5} & for \ 0 \le x \le 3 \\ 0 & otherswise \end{cases}$ find the probability density of Y = X³.

b) If the joint density of X and Y is given by

$$f(x,y) = \begin{cases} e^{-(x+y)} & \text{for } x > 0 \text{ and } y > 0 \\ 0 & \text{otherwise} \end{cases}$$

find the probability density of $Z = \frac{X + Y}{2}$.

Question 5

a) Let X and Y be two jointly continuous random variables with joint PDF

$$f(x,y) = \begin{cases} x + cy^2 & \text{for } 0 \le x \le 1 \text{ and } 0 \le y \le 1\\ 0 & \text{otherwise} \end{cases}$$

- i) Find the constant c.
- ii) Find $P(0 \le X \le \frac{1}{2}, 0 \le Y \le \frac{1}{2})$.
- b) Let X and Y be two jointly continuous random variables with joint PDF

$$f(x,y) = \begin{cases} cx^2y & for \ 0 \le y \le x \le 1\\ 0 & otherwise \end{cases}$$

- i) Find the constant c.
- ii) Find the marginal densities of X and Y.
- iii) Find $P(X \ge 2Y)$.
- iv) Find $P(X \ge 4Y \mid X \ge 2Y)$.
- c) Let X and Y be two jointly continuous random variables with joint PDF

$$f(x,y) = \begin{cases} \frac{x^2}{4} + \frac{y^2}{4} + \frac{xy}{6} & for \ 0 \le x \le 1, 0 \le y \le 2\\ 0 & otherwise \end{cases}$$

- i) Find the marginal densities of \boldsymbol{X} and \boldsymbol{Y} .
- ii) For $0 \le y \le 2$, find the conditional density of X given Y = y.
- iii) $P(X < \frac{1}{2} | Y = y)$.