July 12, 2023

Contents

1 Setup 1

1

2 Algebra lineare con numpy

1 Setup

Importiamo le librerie qui usate

```
import numpy as np
from scipy import stats
```

2 Algebra lineare con numpy

Per trasporre si usa il metodo transpose degli array o l'attributo T

```
X = np.arange(12).reshape((3, 4))
X.transpose()
X.T  # usa il metodo swapaxes che è più generale
```

Per il prodotto tra matrici si usa ${\tt np.dot}$ o con la chiocciola:

```
np.dot(X.T, X)
X.T @ X
# anche X.T.dot(X)
```

Altre funzioni utili sono riportate in tabella 1

Funzione	Descrizione
np.diag	Return the diagonal (or off-diagonal) elements of a square matrix as a 1D array, or con-
np.trace	Compute the sum of the diagonal elements
np.linalg.det	Compute the matrix determinant
np.linalg.eig	Compute the eigenvalues and eigenvectors of a square matrix
np.linalg.inv	Compute the inverse of a square matrix
np.linalg.pinv	Compute the Moore-Penrose pseudo-inverse inverse of a square matrix
np.linalg.qr	Compute the QR decomposition
np.linalg.svd	Compute the singular value decomposition (SVD)
np.linalg.solve	Solve the linear system $\mathbf{A}\mathbf{x} = \mathbf{b}$ for \mathbf{x} , where \mathbf{A} is a square matrix
np.linalg.lstsq	Compute the least-squares solution to $y = Xb$

Table 1: Funzioni per algebra lineare