WHAT IS CLAIMED IS:

1. A compound of Formula I or Formula II

5

15

10 or pharmaceutically acceptable salt thereof, wherein

R1 is selected from the group consisting of

- (a) phenyl, optionally substituted at positions 3 and 4 halogens,
- (b) -O-isopropyl,
- (c) -O-cyclopropyl, and
- (d) -O-CH2-cyclopropyl;

R² is selected from the group consisting of:

- (a) $-S(O)_2CH_3$, and
- 20 (b) $-S(O)_2NH_2$;

 R^3 is selected from the group consisting of

- (a) hydrogen,
- (b) methyl,
- (c) ethyl,
- 25 (d) hydroxyl,
 - (e) F, Cl, and

(f) CF3;

R4 is selected from the group consisting of

- (a) methyl, and
- (b) ethyl;
- 5 X1 is selected from the group consisting of:
 - (a) -OCH₂-,
 - (b) $-OC(R^3)(R^4)$ -,
 - (c) -CH2-linker -O-, and
 - (d) $-C(R^3)(R^4)$ -linker-O-,

10

15

20

wherein the oxygen end of X1 is attached to the carbonyl carbon of Formula I;

X² is selected from the group consisting of:

- (a) -OCH₂--,
- (b) $-OC(R^3)(R^4)$ -,
- (c) -CH2-linker -O-, and
- (d) $-C(R^3)(R^4)$ -linker-O-;

wherein the carbon end of X^2 is attached to the carbon adjacent to the R^2 -phenyl explicitly shown;

- -linker is selected from the group consisting of
 - (a) $-C(O)-(CH2)_m-O-$,
 - (b) $-C(O)-(CH2)_m(-O-(CH2)_n)_p-O-$
 - (c) -C(O)-aryl-O-,
- 25

(d) --C(O)-heteroaryl-O-, wherein m, n and p are each independently integers ranging from 0 to 6;

Y is selected from the group consisting of

- (a) hydrogen, and
- 30 (b) acyl,

wherein the acyl group is selected from the group consisting of

- (a) -C(O) -C₁₋₆alkyl, optionally substituted with 1, 2 or 3 substituents independently selected from the group consisting of halo, hydroxyl, amino, C₁₋₃alkoxy, aminoC₁₋₃alkyl,
- 35 (b) -C(O) -aryl,

- (c) -C(0) -heteroaryl,
- (d) an amino acid;

Z is selected from the group consisting of:

- (a) $-OR^5$,
 - (b) $-NR^5R^6$,

wherein R5 and R6 are each independently selected from

- (a) hydrogen,
- (b) C₁₋₆alkyl,
- 10 (c) phenyl, and
 - (d) C₁₋₂-phenyl,

wherein R⁵ and R⁶ choices (b), (c) and (d) are optionally substituted with 1, 2, or 3 substituents selected from halo, hydroxyl, amino, C₁₋₃alkyl, and C₁₋₃alkoxy.

- 15 X is selected from the group consisting of:
 - (a) -OCH₂-, and
 - (b) $-C(R^3)(R^4)O-$,

wherein carbon a the end of X is attached to the carbon adjacent to the phenyl;

20

25

5

Y1 is -linker1-, which is selected from the group consisting of

- (a) $-C(O)-(CH_2)_r-C(O)-$,
- (b) -C(O)-aryl-C(O)-,
- (c) -C(O)-heteroaryl-C(O)-,
- (d) $-C(O)-(CH_2)_{r}-(O-(CH_2)_{s})_{t}-C(O)-$
- (e) $-C(O)-(CH_2)_r-CH-(CH_2)_s-C(O)-$,

wherein r, s and t are each independently integers ranging from 0 to 6.

 Z^1 is selected from the group consisting of:

- 30 (a) $-OR^5$,
 - (b) $-NR^5R^6$.

35

2. A compound according to claim 1 of Formula I

$$\begin{array}{c|c}
R^2 & R^1 \\
Y & X^2 & X^1 \\
Z & R^1
\end{array}$$

- 5 3. A compound according to claim 2 wherein: R1 is phenyl, optionally substituted at positions 3 and 4 with fluorine.
 - 4. A compound according to claim 2 wherein: R^2 is $-S(0)_2CH_3$.

10

- 5. A compound according to claim 2 wherein:
- R3 is selected from the group consisting of
 - (a) hydrogen,
 - (b) methyl, and

15

- (c) ethyl.
- 6. A compound according to claim 2 wherein:

X1 and X2 are each is selected from the group consisting of:

(a) -OCH₂-, and

20

- (b) $-OC(R^3)(\mathbb{R}^4)$ -.
- 7. A compound according to claim 2 wherein: Y is hydrogen or -OCH3.
- 8. A compound according to claim 2 wherein: Z is hydroxyl or -OCH3.

9. A compound according to claim 2 wherein:

R1 is phenyl, optionally substituted at positions 3 and 4 with fluorine; R2 is $-S(O)_2CH_3$;

R3 is selected from the group consisting of

(a) hydrogen,

5

- (b) methyl, and
- (c) ethyl;

R4 is selected from the group consisting of

- (a) methyl, and
- 10 (b) ethyl;

X1 and X2 are each is selected from the group consisting of:

- (a) -OCH₂-, and
- (b) $-OC(R^3)(R^4)$ -;

Y is hydrogen or -OCH3; and

- 15 Z is hydroxyl or -OCH3.
 - 10. A compound according to claim 1 of Formula II

20

П

- 11. A compound according to claim 10 wherein: R¹ is phenyl, optionally substituted at positions 3 and 4 halogens.
- 25 12. A compound according to claim 11 wherein: R^2 is $-S(O)_2CH_3$.

13. A compound according to claim 12 wherein:

R³ is selected from the group consisting of

- (a) hydrogen,
- (b) methyl, and
- (c) ethyl.

5

25

- 14. A compound according to claim 13 wherein: Y1 is selected from -(O)C(H)=C(H)C(O)- and -(O)C(CH₂)₂C(O)-.
- 10 15. A compound according to claim 14 wherein: Z¹ is hydroxyl or -OCH₃.
 - 16. A compound according to claim 15 wherein:

R1 is phenyl, optionally substituted at positions 3 and 4 halogens;

15 R^2 is $-S(O)_2CH_3$;

R³ is selected from the group consisting of

- (a) hydrogen,
- (b) methyl, and
- (c) ethyl;
- 20 Y1 is selected from -(O)C(H)=C(H)C(O)- and $-(O)C(CH_2)_2C(O)-$; and Z^1 is hydroxyl or $-OCH_3$.
 - 17. A method of treating an inflammatory disease susceptible to treatment with a non-steroidal anti-inflammatory agent comprising administering to a patient in need of such treatment of a non-toxic therapeutically effective amount of a compound according to Claim 1.
 - 18. The method according to Claim 17 wherein the disease is selected from the group consisting of rheumatoid arthritis, osteoarthritis, pain, fever, mysmenorrhea, stroke and spesis.
- 30 19. A pharmaceutical composition comprising a compound according to Claim 1 and a pharmaceutically acceptable carrier.
 - 20. A compound according to claim 1 selected from

$$CH_{3}-S(O)_{2} - CH_{2} - CH_{2} - CH_{3} - CH_{3} - CH_{3}-S(O)_{2}-CH_{3} - CH_{2} - CH_{2} - CH_{2} - CH_{3} - CH_{3}-CH_{3} - CH_{3}-CH_{3}-CH_{3} - CH_{3}-CH_{3}-CH_{3} - CH_{3}-CH_{3$$

$$CH_{3}-S(O)_{2} \\ O-(CH_{3})_{2}C \\ O-(CH_{3})$$

$$CH_{3}$$
- $S(O)_{2}$
 CH_{3} - O - $(CH_{3})_{2}$
 CH_{3}
 CH_{3}

5