Vici 報告

胡祖望

數據統計:

資料量:

training data: 1174461筆 eval data: 1175302筆

由於數據量非常大,因此沒有把所有數據都畫上去

training data的feature描述:

feature $0 \sim 69$: 平均值為0、標準差為1 feature $56 \sim 60$: 數值為0 or 1的binary data feature $61 \sim 67$: 大部份數據集中在0,

觀察發現與想法:

1. 感覺資料的建立是從特定的分配抽樣抽出,像是feature 0 是由兩個鐘型分配組成的,可以看出有些feature之間具有高度相關,發現feature 1 跟 feature 12 完全相同,feature 41 42 43,feature 61, 62, 64, 65之間有趨近於1的相關性之後在model 的訓練上會對高度相關的feature進行處理

模型:

我有做兩個模型來做預測,第一個是用傳統的 NN model 去做預測,第二個是用 Lightgbm 去做預測,會選擇 Lightgbm 是因爲之前專題使用過,他的優點有更快的訓練速度和更高的效率、低記憶體使用率、更好的準確度跟能夠處理大規模 數據。

在數據上我會先隨機打散,因為有些數據是二元的,在切割成 training 跟 validation 時怕都切到同一種資料。

Model 1: NN

	testing
Accuracy score	28.42%
Precision score	25.42%
F1 score	21.97%
Recall score	28.50%

可以看到傳統的 NN model 在訓練上表現並沒有表現的很好,因此打算改用 Lightgbm 去做預測。

```
Model 2: Lightgbm
```

```
params = {
    'learning_rate': 0.1,
    'lambda_l1': 0.1,
    'lambda_l2': 0.2,
    'max_depth': 50,
    'objective': 'multiclass',
    'num_class': 3,
    'num_leaves':50,
    "boosting":'dart' or 'gbdt'
}
```

Boosting 我有使用 dart(Dropouts meet Multiple Additive Regression Trees)跟 gbdt(Gradient Boosting Decision Tree)兩種,gbdt 的表現比較好。

1 Full data:

1.1 100 萬筆資料當 training 剩下的資料當 validation

	validation	testing
Accuracy score	61.84%	59.94%
Precision score	60.94%	59.18%
F1 score	58.82%	55.89%
Recall score	57.44%	54.13%

1.2 10 萬筆資料當 training data 剩下的資料當 validation

	validation	testing
Accuracy score	61.92%	59.91%
Precision score	61.13%	59.13%
F1 score	58.86%	55.88%
Recall score	57.41%	54.14%

在前面的數據分析當中我們能看到有很多資料中的 feature 是高度相關甚至是一模一樣的,因此我將這些高度相關的 feature 移除掉再去做 training,結果如下。

2 Cleaned data:

將資料相同的 feature 移除,也將高度相關的 feature 移除。

2.1 100 萬筆資料當 training 剩下的資料當 validation

	validation	testing
Accuracy score	62.08%	59.87%
Precision score	61.16%	59.02%
F1 score	58.98%	56.05%
Recall score	57.57%	54.38%

2.2 10 萬筆資料當 training data 剩下的資料當 validation

	validation	testing
Accuracy score	60.61%	59.37%
Precision score	59.78%	58.41%
F1 score	56.64%	55.51%
Recall score	54.92%	53.89%

我們可以看到其實 10 萬筆資料 train 出來的結果其實與 100 萬筆的差不多,我還有做 5000 筆與 1 萬筆資料當 training 的模型,他們的 accuracy 也有 50 幾%將近 6 成。

最終可以看到 Lightgbm 訓練的結果比傳統的 NN 還好很多,在訓練時間上也快很多,