

Project Report: Distributed Computing (CDCSC15)

Submitted By:-

- 1. Vansh Aggarwal 2021UCD2109
- 2. Vaibhav Yadav 2021UCD2139
- 3. Pulkit Aggarwal 2021UCD2152
- 4. Varun Sanjeevan 2021UCD2169

Submitted To:- Dr. MPS Bhatia

INDEX

S.no	Sub- Headings	Remarks
1	Abstract/Introduction	
2	Data Information	
3	Methodology	
4	Source Code	
5	Result/Conclusion	
6	Future Vision	
7	References	

Startup Success Prediction

Can we predict if a start-up will succeed or fail?

Abstract

A startup or start-up is a company or project begun by an entrepreneur to seek, develop, and validate a scalable economic model. While entrepreneurship refers to all new businesses, including self-employment and businesses that never intend to become registered, startups refer to new businesses that intend to grow large beyond the solo founder. Startups face high uncertainty and have high rates of failure, but a minority of them do go on to be successful and influential. Some startups become unicorns: privately held startup companies valued at over US\$1 billion.

Startups play a major role in economic growth. They bring new ideas, spur innovation, create employment thereby moving the economy. There has been an exponential growth in startups over the past few years. Predicting the success of a startup allows investors to find companies that have the potential for rapid growth, thereby allowing them to be one step ahead of the competition.

Objective

The objective is to predict whether a startup which is currently operating turns into a success or a failure. The success of a company is defined as the event that gives the company's founders a large sum of money through the process of M&A (Merger and Acquisition) or an IPO (Initial Public Offering). A company would be considered as failed if it had to be shut down.

About the Data

The data contains industry trends, investment insights and individual company information. There are 48 columns/features. Some of the features are:

- age_first_funding_year quantitative
- age_last_funding_year quantitative
- relationships quantitative
- funding_rounds quantitative
- funding_total_usd quantitative
- milestones quantitative

- age_first_milestone_year quantitative
- age_last_milestone_year quantitative
- state categorical
- industry_type categorical
- has_VC categorical
- has_angel categorical
- has_roundA categorical
- has_roundB categorical
- has_roundC categorical
- has_roundD categorical
- avg_participants quantitative
- is_top500 categorical
- status(acquired/closed) categorical (the target variable, if a startup is 'acquired' by some other organisation, means the startup succeed)

Methodology:

1. Data Preprocessing:

- Data Collection: Initially, a dataset of different startups across the USA was collected. This dataset likely includes various attributes about each startup, such as funding history, location, industry, and other relevant information.
- Data Cleaning: The collected data might contain noise, missing values, or outliers. Data cleaning involves handling missing values by either imputing them or removing rows with missing data. Outliers might be treated or retained based on the specific characteristics of the data.
- Feature Engineering: This step involves creating new features or transforming existing ones to better represent the information in the dataset. For example, you might create new features like the age of the startup, total funding raised, or location-based features.
- Data Encoding: Categorical variables, such as industry type or location, need to be encoded into a numerical format for machine learning algorithms to work. Common techniques include one-hot encoding or label encoding.
- Data Splitting: The dataset is typically divided into training and testing sets. The training set is used to train the machine learning models, while the testing set is used to evaluate their performance.

2. Machine Learning Models:

In this project, two popular machine learning algorithms were employed:

• Decision Tree: A Decision Tree is a tree-like model that makes decisions based on a series of rules learned from the data. It is a straightforward and interpretable model that can handle both categorical and numerical data.

Decision Trees are prone to overfitting, which means they can perform very well on the training data but poorly on unseen data.

Random Forest: Random Forest is an ensemble learning method that builds
multiple Decision Trees and combines their predictions. It reduces overfitting
compared to a single Decision Tree and generally provides more robust
predictions. Random Forest can handle a large number of features and is less
sensitive to hyperparameter tuning.

3. Frontend Development:

- To provide a user-friendly interface for making predictions, we created a simple frontend using the Gradio library in Python.
- The frontend allowed users to input startup information and receive predictions based on the trained machine learning models.

Algorithms Used:

In this project, two popular machine learning algorithms were employed:

- **Decision Tree:** A Decision Tree is a tree-like model that makes decisions based on a series of rules learned from the data. It is a straightforward and interpretable model that can handle both categorical and numerical data. Decision Trees are prone to overfitting, which means they can perform verywell on the training data but poorly on unseen data.
- **Random Forest:** Random Forest is an ensemble learning method that builds multiple Decision Trees and combines their predictions. It reduces overfittingcompared to a single Decision Tree and generally provides more robust predictions. Random Forest can handle a large number of features and is less sensitive to hyperparameter tuning.

Source Code:

```
!pip install -q gradio
import gradio as gr
import pandas as pd
import seaborn as sns
import numpy as np
import matplotlib.pyplot as plt
from sklearn.preprocessing import LabelEncoder
from sklearn.model selection import train test split
{\tt import\ graphviz}
from IPython.display import display, Image
from sklearn import tree
from sklearn.tree import DecisionTreeClassifier, export_graphviz
from sklearn import metrics
from sklearn.metrics import accuracy_score, classification_report
import warnings
warnings.filterwarnings('ignore')
pd.set_option('display.max_columns',None)
df=pd.read_csv("/content/startup data.csv")
```

	Unnamed:	state_code	latitude	longitude	zip_code	id	city	Unnamed:	name	labels	founded_at	closed_at
0	1005	CA	42.358880	-71.056820	92101	c:6669	San Diego	NaN	Bandsintown	1	1/1/2007	NaN
1	204	CA	37.238916	-121.973718	95032	c:16283	Los Gatos	NaN	TriCipher	1	1/1/2000	NaN
2	1001	CA	32.901049	-117.192656	92121	c:65620	San Diego	San Diego CA 92121	Plixi	1	3/18/2009	NaN
3	738	CA	37.320309	-122.050040	95014	c:42668	Cupertino	Cupertino CA 95014	Solidcore Systems	1	1/1/2002	NaN
4	1002	CA	37.779281	-122.419236	94105	c:65806	San Francisco	San Francisco CA 94105	Inhale Digital	0	8/1/2010	10/1/2012
918	352	CA	37.740594	-122.376471	94107	c:21343	San Francisco	NaN	CoTweet	1	1/1/2009	NaN
919	721	MA	42.504817	-71.195611	1803	c:41747	Burlington	Burlington MA 1803	Reef Point Systems	0	1/1/1998	6/25/2008
920	557	CA	37.408261	-122.015920	94089	c:31549	Sunnyvale	NaN	Paracor Medical	0	1/1/1999	6/17/2012
921	589	CA	37.556732	-122.288378	94404	c:33198	San Francisco	NaN	Causata	1	1/1/2009	NaN
922	462	CA	37.386778	-121.966277	95054	c:26702	Santa Clara	Santa Clara CA 95054	Asempra Technologies	1	1/1/2003	NaN

923 rows x 49 columns

```
print("Dataset Shape (Rows, Column) : ",df.shape)
 print("Size of Dataset = ",df.size)
    Dataset Shape (Rows, Column): (923, 49)
    Size of Dataset = 45227
  print("Columns : \n",df.columns)
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 923 entries, 0 to 922
Data columns (total 49 columns):

Data	columns (total 49 columns)):	
#	Column	Non-Null Count	Dtype
0	Unnamed: 0	923 non-null	int64
1	state code	923 non-null	object
2	latitude	923 non-null	float64
3	longitude	923 non-null	float64
4		923 non-null	object
5	zip_code id	923 non-null	
			object
6	city	923 non-null	object
7	Unnamed: 6	430 non-null	object
8	name	923 non-null	object
9	labels	923 non-null	int64
10	founded_at	923 non-null	object
11	closed_at	335 non-null	object
12	first_funding_at	923 non-null	object
13	last_funding_at	923 non-null	object
14	age_first_funding_year	923 non-null	float64
15	age_last_funding_year	923 non-null	float64
16	age_first_milestone_year	771 non-null	float64
17	age_last_milestone_year	771 non-null	float64
18	relationships	923 non-null	int64
19	funding_rounds	923 non-null	int64
20	funding_total_usd	923 non-null	int64
21	milestones	923 non-null	int64
22	state code.1	922 non-null	object
23	is CA	923 non-null	int64
24	is NY	923 non-null	int64
25	is MA	923 non-null	int64
	_		
26	is_TX	923 non-null	int64
27	is_otherstate	923 non-null	int64
28	category_code	923 non-null	object
29	is_software	923 non-null	int64
30	is_web	923 non-null	int64
31	is_mobile	923 non-null	int64
32	is_enterprise	923 non-null	int64
33	is_advertising	923 non-null	int64
34	is_gamesvideo	923 non-null	int64
35	is_ecommerce	923 non-null	int64
36	is_biotech	923 non-null	int64
37	is_consulting	923 non-null	int64
38	is_othercategory	923 non-null	int64
39	object id	923 non-null	object
40	has_VC	923 non-null	int64
41	has angel	923 non-null	int64
42	has roundA	923 non-null	int64
43	has roundB	923 non-null	int64
44	has roundC	923 non-null	int64
45	has roundD	923 non-null	int64
46	avg_participants	923 non-null	float64
47	is top500	923 non-null	int64
48	status	923 non-null	object
	scatus es: float64(7), int64(28),	object(14)	object
ucype	:s. 110at04(/), 111t04(28),	00 Jec (14)	

dtypes: float64(7), int64(28), object(14)
memory usage: 353.5+ KB

df.describe()

	Unnamed: 0	latitude	longitude	labels	age_first_funding_year	age_la
coun	t 923.000000	923.000000	923.000000	923.000000	923.000000	
mear	572.297941	38.517442	-103.539212	0.646804	2.235630	
std	333.585431	3.741497	22.394167	0.478222	2.510449	
min	1.000000	25.752358	-122.756956	0.000000	-9.046600	
25%	283.500000	37.388869	-122.198732	0.000000	0.576700	
50%	577.000000	37.779281	-118.374037	1.000000	1.446600	
75%	866.500000	40.730646	-77.214731	1.000000	3.575350	
max	1153.000000	59.335232	18.057121	1.000000	21.895900	

df_cat=df.select_dtypes(include='object') df_cat

	state_code	zip_code	id	city	Unnamed:	name	founded_at	clos
0	CA	92101	c:6669	San Diego	NaN	Bandsintown	1/1/2007	
1	CA	95032	c:16283	Los Gatos	NaN	TriCipher	1/1/2000	
2	CA	92121	c:65620	San Diego	San Diego CA 92121	Plixi	3/18/2009	
3	CA	95014	c:42668	Cupertino	Cupertino CA 95014	Solidcore Systems	1/1/2002	
4	CA	94105	c:65806	San Francisco	San Francisco CA 94105	Inhale Digital	8/1/2010	10/1
918	CA	94107	c:21343	San Francisco	NaN	CoTweet	1/1/2009	
919	MA	1803	c:41747	Burlington	Burlington MA 1803	Reef Point Systems	1/1/1998	6/25
-	CA int8', 'int1 select dtype	6', 'int32	2', 'int6	Sunnyvale 4', 'float:	NaN 16', 'float	Paracor	1/1/1999	6/17
IT_HUIII=UT.:	serect_atype	s(Include=	-numeric)					

numerio df_num df_num

		Unnamed:	latitude	longitude	labels	age_first_funding_year	age_last_fundin
	0	1005	42.358880	-71.056820	1	2.2493	
	1	204	37.238916	-121.973718	1	5.1260	
	2	1001	32.901049	-117.192656	1	1.0329	
	3	738	37.320309	-122.050040	1	3.1315	
	4	1002	37.779281	-122.419236	0	0.0000	
9	918	352	37.740594	-122.376471	1	0.5178	
9	919	721	42.504817	-71.195611	0	7.2521	
9	920	557	37.408261	-122.015920	0	8.4959	
9	921	589	37.556732	-122.288378	1	0.7589	
9	922	462	37.386778	-121.966277	1	3.1205	

923 rows x 35 columns

print(df.isnull().sum())

Unnamed: 0	0
state_code	0
latitude	0
longitude	0
zip_code	0
id	0
city	0
Unnamed: 6	493
name	0
labels	0
founded_at	0
closed_at	588
first_funding_at	0
last_funding_at	0
age_first_funding_year	0
age_last_funding_year	0
age_first_milestone_year	152
age_last_milestone_year	152
relationships	0
funding_rounds	0
funding_total_usd	0
milestones	0
state_code.1	1
is_CA	0
is_NY	0
is_MA	0
is_TX	0
is_otherstate	0
category_code	0

```
11/8/23, 1:18 PM
```

```
is_software
     is_web
     is_mobile
                                    0
     is_enterprise
     is_advertising
                                    0
     is_gamesvideo
     is_ecommerce
                                    0
     is_biotech
     is_consulting
     is_othercategory
     object_id
     has_VC
                                    0
     {\tt has\_angel}
     has_roundA
     {\tt has\_roundB}
                                    0
     has_roundC
     has\_roundD
                                    0
     avg_participants
                                    0
     is_top500
     status
     dtype: int64
print(df.isna().sum())
     Unnamed: 0
     state_code
                                    0
     latitude
                                    0
     longitude
                                    0
     zip_code
     id
                                    0
     city
     Unnamed: 6
     name
                                    0
     labels
     founded_at
                                    0
     closed_at
                                  588
     first_funding_at
                                    0
     last_funding_at
     age_first_funding_year
                                    0
     age_last_funding_year
                                    0
     age_first_milestone_year
     age_last_milestone_year
     relationships
     funding_rounds
                                    0
     funding_total_usd
                                    0
     milestones
     state_code.1
     is_CA
     is_NY
     is_MA
     is_TX
     is_otherstate
     category_code
     is software
     is_web
     \verb"is_mobile"
     is_enterprise
     is_advertising
     is_gamesvideo
                                    0
     is_ecommerce
     is_biotech
                                    0
     is_consulting
     is_othercategory
     object_id
     has_VC
     has_angel
     {\tt has\_roundA}
     has roundB
     has\_roundC
     {\tt has\_roundD}
                                    0
     avg_participants
     is_top500
                                    0
     status
     dtype: int64
columns=df.columns
d_c1=[]
for i in columns:
 df1=df[i].isnull().sum()
  r,c=df.shape
  val=(df1/r)*100
  if val >= 50:
    d_c1.append(i)
print(d_c1)
```

['Unnamed: 6', 'closed_at']

```
df.drop(['Unnamed: 6','closed_at'],axis=1,inplace=True)
columns=df.columns
d c2=[]
for i in columns:
 df2=df[i].isna().sum()
 r,c=df.shape
 val=(df1/r)*100
 if val >= 50:
   d_c2.append(i)
print(d_c2)
     []
mean_value1=df['age_first_milestone_year'].mean()
mean_value2=df['age_last_milestone_year'].mean()
df["age_first_milestone_year"].fillna(value=mean_value1,inplace=True)
df["age_last_milestone_year"].fillna(value=mean_value2,inplace=True)
n=df[df['state_code.1'].isna()==True].index.item()
df.drop(n,axis=0,inplace=True)
print(df.isnull().sum())
     Unnamed: 0
     state_code
     latitude
     longitude
                                 0
     zip_code
     id
     city
                                 0
     name
                                 0
     labels
     founded_at
                                 0
     first_funding_at
     last_funding_at
     age_first_funding_year
     age_last_funding_year
age_first_milestone_year
     age_last_milestone_year
     relationships
     funding_rounds
     funding_total_usd
     milestones
     state_code.1
                                 0
     is_CA
     is_NY
     is_MA
     is TX
     is_otherstate
                                 0
     category_code
     is_software
                                 0
     is_web
                                 a
     is_mobile
                                 0
     is_enterprise
     is_advertising
                                 0
     is_gamesvideo
     is_ecommerce
     is_biotech
     is_consulting
                                 0
     is_othercategory
                                 0
     object_id
                                 a
     has_VC
                                 0
     has_angel
     has_roundA
                                 0
     has_roundB
     has\_roundC
                                 0
     has_roundD
     avg_participants
     is_top500
                                 0
     status
     dtype: int64
print(df.isna().sum())
     Unnamed: 0
     state_code
                                 0
     latitude
     longitude
                                 0
     zip_code
                                 0
     id
     city
```

```
name
     labels
     founded at
                                   0
     first_funding_at
     last_funding_at
     age_first_funding_year
     age_last_funding_year
                                   0
     age_first_milestone_year
     age_last_milestone_year
     relationships
     funding rounds
     funding_total_usd
     milestones
                                   0
     state_code.1
                                   0
     is CA
                                   a
     is NY
                                   0
     is MA
     is_TX
                                   0
     is_otherstate
     category_code
     is_software
     is_web
                                   0
     is mobile
                                   0
     is enterprise
                                   0
     is_advertising
                                   a
     is_gamesvideo
     is ecommerce
                                   0
     is_biotech
     is_consulting
                                   0
     is_othercategory
     object_id
     has_VC
     has_angel
                                   0
     has roundA
                                   0
     has_roundB
                                   0
     has_roundC
                                   0
     has_roundD
                                   a
     avg_participants
                                   0
     is_top500
                                   0
     status
                                   0
     dtype: int64
df[df.duplicated()]
        Unnamed:
                  state_code latitude longitude zip_code id city name labels founded
num_columns=df_num.columns
print(num_columns)
     dtype='object')
for a in range(len(num_columns)):
  if num_columns[a]=="latitude" or num_columns[a]=="longitude":
    pass
  else:
    print("Is there any negative value in '\{\}' column : \{\} ".
          format(num_columns[a],(df[num_columns[a]]<0).any()))</pre>
     Is there any negative value in 'Unnamed: 0' column : False
     Is there any negative value in 'labels' column : False
Is there any negative value in 'age_first_funding_year' column : True
     Is there any negative value in 'age_last_funding_year' column : True
     Is there any negative value in 'age_first_milestone_year' column : True
     Is there any negative value in 'age_last_milestone_year' column : True Is there any negative value in 'relationships' column : False
     Is there any negative value in 'funding_rounds' column : False
     Is there any negative value in 'funding_total_usd' column : False
     Is there any negative value in 'milestones' column : False
     Is there any negative value in 'is_CA' column : False Is there any negative value in 'is_NY' column : False Is there any negative value in 'is_MA' column : False
     Is there any negative value in 'is_TX' column : False
     Is there any negative value in 'is_otherstate' column : False
     Is there any negative value in 'is_software' column : False
```

```
Is there any negative value in 'is web' column : False
     Is there any negative value in 'is_mobile' column : False
     Is there any negative value in 'is_enterprise' column : False
     Is there any negative value in 'is_advertising' column : False
     Is there any negative value in 'is_gamesvideo' column : False
     Is there any negative value in 'is_ecommerce' column : False
     Is there any negative value in 'is_biotech' column : False
     Is there any negative value in 'is_consulting' column : False
     Is there any negative value in 'is_othercategory' column : False
     Is there any negative value in 'has_VC' column : False
     Is there any negative value in 'has angel' column : False
     Is there any negative value in 'has_roundA' column : False
     Is there any negative value in 'has_roundB' column : False
     Is there any negative value in 'has_roundC' column : False
     Is there any negative value in 'has_roundD' column : False
     Is there any negative value in 'avg_participants' column : False
     Is there any negative value in 'is_top500' column : False
df=df.drop(df[df.age_first_funding_year<0].index)</pre>
df=df.drop(df[df.age_last_funding_year<0].index)</pre>
df=df.drop(df[df.age_first_milestone_year<0].index)</pre>
df=df.drop(df[df.age_last_milestone_year<0].index)</pre>
for a in range(len(num_columns)):
  if num_columns[a]=="latitude" or num_columns[a]=="longitude":
    pass
  else:
    print("Is there any negative value in '{}' column : {} ".
           format(num_columns[a],(df[num_columns[a]]<0).any()))</pre>
     Is there any negative value in 'Unnamed: 0' column : False
     Is there any negative value in 'labels' column : False
     Is there any negative value in 'age_first_funding_year' column : False Is there any negative value in 'age_last_funding_year' column : False
     Is there any negative value in 'age_first_milestone_year' column : False Is there any negative value in 'age_last_milestone_year' column : False
     Is there any negative value in 'relationships' column : False
     Is there any negative value in 'funding_rounds' column : False
     Is there any negative value in 'funding_total_usd' column : False
     Is there any negative value in 'milestones' column : False
     Is there any negative value in 'is CA' column : False
     Is there any negative value in 'is_NY' column : False
     Is there any negative value in 'is_MA' column : False
     Is there any negative value in 'is_TX' column : False
     Is there any negative value in 'is_otherstate' column : False
     Is there any negative value in 'is_software' column : False
     Is there any negative value in 'is_web' column : False
     Is there any negative value in 'is_mobile' column : False
     Is there any negative value in 'is_enterprise' column : False
     Is there any negative value in 'is_advertising' column : False
     Is there any negative value in 'is_gamesvideo' column : False
     Is there any negative value in 'is_ecommerce' column : False
     Is there any negative value in 'is_biotech' column : False
     Is there any negative value in 'is_consulting' column : False
     Is there any negative value in 'is_othercategory' column : False Is there any negative value in 'has_VC' column : False
     Is there any negative value in 'has_angel' column : False
Is there any negative value in 'has_roundA' column : False
     Is there any negative value in 'has_roundB' column : False
     Is there any negative value in 'has_roundC' column : False Is there any negative value in 'has_roundD' column : False
     Is there any negative value in 'avg_participants' column : False
     Is there any negative value in 'is_top500' column : False
df['status'] = df['status'].astype('category')
df['status'].replace(['acquired','closed'],[1, 0], inplace=True)
df['status']
     0
             1
     1
             1
     2
             1
     3
             1
     4
             a
     918
     919
     920
             0
     Name: status, Length: 839, dtype: category
     Categories (2, int64): [1, 0]
df['status'] = df['status'].astype(int)
df.info()
```

<class 'pandas.core.frame.DataFrame'>
Int64Index: 839 entries, 0 to 922
Data columns (total 47 columns):

Data	columns (total 47 columns):	
#	Column	Non-Null Count	Dtype
0	Unnamed: 0	839 non-null	int64
1	state_code	839 non-null	object
2	latitude	839 non-null	float64
3	longitude	839 non-null	float64
4	zip code	839 non-null	object
5	id	839 non-null	object
6	city	839 non-null	object
7	name	839 non-null	object
8	labels	839 non-null	int64
9	founded_at	839 non-null	object
10	first_funding_at	839 non-null	object
11	last_funding_at	839 non-null	object
12	age_first_funding_year	839 non-null	float64
13	age_last_funding_year	839 non-null	float64
14	age_first_milestone_year	839 non-null	float64
15	age_last_milestone_year	839 non-null	float64
16	relationships	839 non-null	int64
17	funding_rounds	839 non-null	int64
18	funding_total_usd	839 non-null	int64
19	milestones	839 non-null	int64
20	state_code.1	839 non-null	object
21	is_CA	839 non-null	int64
22	is_NY	839 non-null	int64
23	is_MA	839 non-null	int64
24	is_TX	839 non-null	int64
25	is_otherstate	839 non-null	int64
26	category_code	839 non-null	object
27	is_software	839 non-null	int64
28	is_web	839 non-null	int64
29	is_mobile	839 non-null	int64
30	is_enterprise	839 non-null	int64
31	is_advertising	839 non-null	int64
32	is_gamesvideo	839 non-null	int64
33	is_ecommerce	839 non-null	int64
34	is_biotech	839 non-null	int64
35	is_consulting	839 non-null	int64
36	is_othercategory	839 non-null	int64
37	object_id	839 non-null	object
38	has_VC	839 non-null	int64
39	has_angel	839 non-null	int64
40	has_roundA	839 non-null	int64
41	has_roundB	839 non-null	int64
42	has_roundC	839 non-null	int64
43	has_roundD	839 non-null	int64
44	avg_participants	839 non-null	float64
45	is_top500	839 non-null	int64
46	status	839 non-null	int64
atvne	$ac \cdot f(0) + 64(7) = in + 64(20)$	object(11)	

dtypes: float64(7), int64(29), object(11) memory usage: 314.6+ KB

df.drop(['labels','state_code.1',],axis=1, inplace=True)

df_cat1=df.select_dtypes(include='object') df_cat1

	state_code	zip_code	id	city	name	founded_at	first_funding_
0	CA	92101	c:6669	San Diego	Bandsintown	1/1/2007	4/1/20
1	CA	95032	c:16283	Los Gatos	TriCipher	1/1/2000	2/14/20
2	CA	92121	c:65620	San Diego	Plixi	3/18/2009	3/30/20
3	CA	95014	c:42668	Cupertino	Solidcore Systems	1/1/2002	2/17/20
4	CA	94105	c:65806	San Francisco	Inhale Digital	8/1/2010	8/1/20
918	CA	94107	c:21343	San Francisco	CoTweet	1/1/2009	7/9/20
919	MA	1803	c:41747	Burlington	Reef Point Systems	1/1/1998	4/1/20
920	CA	94089	c:31549	Sunnyvale	Paracor Medical	1/1/1999	6/29/20
4							•

df_cat1.nunique()

```
35
state_code
zip_code
                   359
                   838
id
city
                   210
name
                   838
founded_at
                   189
first_funding_at
last_funding_at
                   640
category_code
                   35
object_id
                   838
dtype: int64
```

df.drop(['id','name','object_id'],axis=1, inplace=True)

numeric1=['int8', 'int16', 'int32', 'int64', 'float16', 'float32', 'float64']
df_num1=df.select_dtypes(include=numeric1)
df_num1

	Unnamed:	latitude	longitude	age_first_funding_year	age_last_funding_year
0	1005	42.358880	-71.056820	2.2493	3.0027
1	204	37.238916	-121.973718	5.1260	9.9973
2	1001	32.901049	-117.192656	1.0329	1.0329
3	738	37.320309	-122.050040	3.1315	5.3151
4	1002	37.779281	-122.419236	0.0000	1.6685
918	352	37.740594	-122.376471	0.5178	0.5178
919	721	42.504817	-71.195611	7.2521	9.2274
920	557	37.408261	-122.015920	8.4959	8.4959
921	589	37.556732	-122.288378	0.7589	2.8329
922	462	37.386778	-121.966277	3.1205	3.1205

839 rows x 35 columns

df_num1.nunique()

```
Unnamed: 0
                            839
latitude
                            599
longitude
                            598
age_first_funding_year
                            572
age_last_funding_year
                            697
age_first_milestone_year
                            410
age_last_milestone_year
                            522
relationships
                             38
funding_rounds
                              9
funding_total_usd
                            467
milestones
is_CA
is_NY
is_MA
is_TX
is_otherstate
is_software
is_web
\verb"is_mobile"
is_enterprise
is_advertising
is_gamesvideo
is_ecommerce
is biotech
is consulting
is_othercategory
has_VC
has_angel
has_roundA
has_roundB
has_roundC
                              2
has_roundD
                              2
avg_participants
                             57
                              2
is top500
status
dtype: int64
```

df.drop(['Unnamed: 0'],axis=1, inplace=True)

for i in columns_outliers:
 plt.figure(figsize=(18,12))
 sns.boxplot(df[i],orient='h')
 plt.show()


```
def remove_outliers(df, featuresNumfinal):
  for i in range(0, len(featuresNumfinal)):
   q1
   df[featuresNumfina
   1[i] quantile (0.2
   5)
             q3
   df[featuresNumfina
   1[i]].quantile(0.7
   5) iqr = q3 - q1
   lower bound
   = q1 - 1.5 *
   iqr
   upper_bound
   = q3 + 1.5 *
   igr
   cleaned data
             df[(df[featuresNum
            final[i]]
                                >=
             lower bound)
             (df[featuresNumfin
             al[i]]
                                <=
   upper_bound)]
return cleaned_data
  featuresNumfinal=['latitude',
     'longitude',
     'age_first_funding_year',
     'age_last_funding_year',
     'age_first_milestone_year'
      age_last_milestone_year',
https://colab.research.google.com/drive/1NIa0u1KMe9-uHyhf2zv0sevFIEA2CiLE#scrollTo=On_hlt7Q9QCM&printMode=true
```

```
'relationships',
   'funding_rounds',
   'funding_total_usd',
   'milestones',
   'avg_participants']
new_df=remove_out1
iers(df,featuresNu
mfinal)
print(new_df.shape
  (770, 41)
for i in
 columns ou
tliers:
print(new
df[i].skew
 ())
  -0.008486924516590088
  0.5220350425662782
  2.291553508040805
  1.2139597965231217
  1.8384458396165007
  1.0882330363610442
  2.33436886369956
  1.3915021246926884
  6.516656101840025
  0.6059237389094657
  1.7426382291702065
```

new_df

	state_code	latitude	longitude	zip_code	city	founded_at	first_funding
0	CA	42.358880	-71.056820	92101	San Diego	1/1/2007	4/1/2
1	CA	37.238916	-121.973718	95032	Los Gatos	1/1/2000	2/14/2
2	CA	32.901049	-117.192656	92121	San Diego	3/18/2009	3/30/2
3	CA	37.320309	-122.050040	95014	Cupertino	1/1/2002	2/17/2
4	CA	37.779281	-122.419236	94105	San Francisco	8/1/2010	8/1/2
918	CA	37.740594	-122.376471	94107	San Francisco	1/1/2009	7/9/2
919	MA	42.504817	-71.195611	1803	Burlington	1/1/1998	4/1/2
920	CA	37.408261	-122.015920	94089	Sunnyvale	1/1/1999	6/29/2
921	CA	37.556732	-122.288378	94404	San Francisco	1/1/2009	10/5/2
922	CA	37.386778	-121.966277	95054	Santa Clara	1/1/2003	2/13/2

770 rows x 41 columns

new_df.drop(['founded_at','first_funding_at','last_funding_at'],axis=1, inplace=True)

new_df.shape

(770, 38)

 $\label{eq:sns.countplot} sns.countplot(x = new_df['status'], palette = 'viridis') \\ plt.show()$

plt.figure(figsize = (30, 25))
sns.heatmap(new_df.corr(),annot = True, cmap = 'viridis', linewidth = 0.5, fmt = '.1f')
plt.show()

new_df.plot(kind='scatter',x='status',y='relationships',color='blue')

new_df.plot(kind='scatter',x='status',y='milestones',color='blue')

<Axes: xlabel='status', ylabel='milestones'>

new_df.plot(kind='hist',x='status',y='is_top500',color='blue')

<Axes: ylabel='Frequency'>

new_df.plot(kind='hist',x='status',y='is_otherstate',color='blue')

'is_othercategory'],axis=1, inplace=True)

```
print(new_df.shape)
print(new_df.nunique())
```

```
print(new_df.info())
```

(770, 23) state_code 33 latitude 542 longitude 541 zip code 320 city 195 age_first_funding_year age_last_funding_year 539 653 ${\tt age_first_milestone_year}$ 385 age_last_milestone_year 485 relationships 38 funding_rounds 9 funding_total_usd milestones 8 category_code 35 has_VC 2 has_angel has_roundA has_roundB 2 2 has_roundC has_roundD 2 avg_participants 53 is_top500 status dtype: int64

<class 'pandas.core.frame.DataFrame'> Int64Index: 770 entries, 0 to 922 Data columns (total 23 columns):

#	Column	Non-Null Count	Dtype
0	state code	770 non-null	object
1	_ latitude	770 non-null	float64
2	longitude	770 non-null	float64
3	zip_code	770 non-null	object
4	city	770 non-null	object
5	age_first_funding_year	770 non-null	float64
6	age_last_funding_year	770 non-null	float64
7	age_first_milestone_year	770 non-null	float64
8	age_last_milestone_year	770 non-null	float64
9	relationships	770 non-null	int64
10	funding_rounds	770 non-null	int64
11	<pre>funding_total_usd</pre>	770 non-null	int64
12	milestones	770 non-null	int64
13	category_code	770 non-null	object
14	has_VC	770 non-null	int64
15	has_angel	770 non-null	int64
16	has_roundA	770 non-null	int64
17	has_roundB	770 non-null	int64
18	has_roundC	770 non-null	int64
19	has_roundD	770 non-null	int64
20	avg_participants	770 non-null	float64
21	is_top500	770 non-null	int64
22	status	770 non-null	int64
	es: float64(7), int64(12),	object(4)	
	ry usage: 144.4+ KB		
None			

Le=LabelEncoder()

```
new_df['category_code']=Le.fit_transform(new_df['category_code'])
new_df['city']=Le.fit_transform(new_df['city'])
new_df['zip_code']=Le.fit_transform(new_df['zip_code'])
new_df['state_code']=Le.fit_transform(new_df['state_code'])
new_df[['state_code','zip_code','city','category_code']]
```

state_code zip_code city category_code 🚃

new_df.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 770 entries, 0 to 922
Data columns (total 23 columns):

Ducu	COTUMNS (COCUT 25 COTUMNS).						
#	Column	Non-Null Count	Dtype				
0	state_code	770 non-null	int64				
1	latitude	770 non-null	float64				
2	longitude	770 non-null	float64				
3	zip_code	770 non-null	int64				
4	city	770 non-null	int64				
5	age_first_funding_year	770 non-null	float64				
6	age_last_funding_year	770 non-null	float64				
7	age_first_milestone_year	770 non-null	float64				
8	age_last_milestone_year	770 non-null	float64				
9	relationships	770 non-null	int64				
10	funding_rounds	770 non-null	int64				
11	funding_total_usd	770 non-null	int64				
12	milestones	770 non-null	int64				
13	category_code	770 non-null	int64				
14	has_VC	770 non-null	int64				
15	has_angel	770 non-null	int64				
16	has_roundA	770 non-null	int64				
17	has_roundB	770 non-null	int64				
18	has_roundC	770 non-null	int64				
19	has_roundD	770 non-null	int64				
20	avg_participants	770 non-null	float64				
21	is_top500	770 non-null	int64				
22	status	770 non-null	int64				
d+vn4	$as \cdot float64(7) int64(16)$						

dtypes: float64(7), int64(16)
memory usage: 144.4 KB

X=new_df.drop(['status'],axis=1)
y=new_df['status']

x_train, x_test, y_train, y_test = train_test_split(X,y,test_size=0.20,random_state=1)

x_train

653 2 32.715400 -117.156500 215 154 0.3288 681 22 40.757929 -73.985506 5 118 0.2466 191 2 37.809338 -122.416606 262 155 0.7479 505 2 37.563905 -122.324688 271 158 16.9863 442 2 37.763652 -122.421778 261 155 0.1671 767 2 37.662431 -121.874679 281 141 3.1671 862 19 40.707045 -74.956003 173 71 3.9726 91 5 37.090240 -95.712891 62 184 1.1671 282 2 37.779281 -122.419236 255 155 0.0000 46 22 40.730646 -73.986614 4 125 0.9260		state_code	latitude	longitude	zip_code	city	<pre>age_first_funding_year</pre>	age_l
191 2 37.809338 -122.416606 262 155 0.7479 505 2 37.563905 -122.324688 271 158 16.9863 442 2 37.763652 -122.421778 261 155 0.1671 767 2 37.662431 -121.874679 281 141 3.1671 862 19 40.707045 -74.956003 173 71 3.9726 91 5 37.090240 -95.712891 62 184 1.1671 282 2 37.779281 -122.419236 255 155 0.0000 46 22 40.730646 -73.986614 4 125 0.9260	653	2	32.715400	-117.156500	215	154	0.3288	
505 2 37.563905 -122.324688 271 158 16.9863 442 2 37.763652 -122.421778 261 155 0.1671 767 2 37.662431 -121.874679 281 141 3.1671 862 19 40.707045 -74.956003 173 71 3.9726 91 5 37.090240 -95.712891 62 184 1.1671 282 2 37.779281 -122.419236 255 155 0.0000 46 22 40.730646 -73.986614 4 125 0.9260	681	22	40.757929	-73.985506	5	118	0.2466	
442 2 37.763652 -122.421778 261 155 0.1671 767 2 37.662431 -121.874679 281 141 3.1671 862 19 40.707045 -74.956003 173 71 3.9726 91 5 37.090240 -95.712891 62 184 1.1671 282 2 37.779281 -122.419236 255 155 0.0000 46 22 40.730646 -73.986614 4 125 0.9260	191	2	37.809338	-122.416606	262	155	0.7479	
767 2 37.662431 -121.874679 281 141 3.1671 862 19 40.707045 -74.956003 173 71 3.9726 91 5 37.090240 -95.712891 62 184 1.1671 282 2 37.779281 -122.419236 255 155 0.0000 46 22 40.730646 -73.986614 4 125 0.9260	505	2	37.563905	-122.324688	271	158	16.9863	
767 2 37.662431 -121.874679 281 141 3.1671 862 19 40.707045 -74.956003 173 71 3.9726 91 5 37.090240 -95.712891 62 184 1.1671 282 2 37.779281 -122.419236 255 155 0.0000 46 22 40.730646 -73.986614 4 125 0.9260	442	2	37.763652	-122.421778	261	155	0.1671	
862 19 40.707045 -74.956003 173 71 3.9726 91 5 37.090240 -95.712891 62 184 1.1671 282 2 37.779281 -122.419236 255 155 0.0000 46 22 40.730646 -73.986614 4 125 0.9260								
91 5 37.090240 -95.712891 62 184 1.1671 282 2 37.779281 -122.419236 255 155 0.0000 46 22 40.730646 -73.986614 4 125 0.9260	767	2	37.662431	-121.874679	281	141	3.1671	
282 2 37.779281 -122.419236 255 155 0.0000 46 22 40.730646 -73.986614 4 125 0.9260	862	19	40.707045	-74.956003	173	71	3.9726	
46 22 40.730646 -73.986614 4 125 0.9260	91	5	37.090240	-95.712891	62	184	1.1671	
	282	2	37.779281	-122.419236	255	155	0.0000	
616 rows × 22 columns	46	22	40.730646	-73.986614	4	125	0.9260	

 x_test

```
state_code latitude
                                   longitude zip_code city age_first_funding_year age_l
      338
                   22 40.756054
                                  -73.986951
                                                         125
                                                                               0.0000
                                                     3
      124
                    2 37.548270
                                -121.988572
                                                   278
                                                                               0.7562
      914
                   22 40.750519
                                  -73.993494
                                                     3
                                                         125
                                                                               3.2137
      419
                   11 42.528635
                                  -71.278022
                                                    47
                                                          20
                                                                               4.3315
y_tr₃in
     653
     681
            1
     191
            1
     505
     442
            1
           ..
     767
     862
            1
     91
            a
     282
            1
     46
            1
     Name: status, Length: 616, dtype: int64
y_test
     338
            1
```

```
124
       1
914
       1
419
       1
482
       1
676
       0
621
       1
184
       0
415
       1
649
       1
Name: status, Length: 154, dtype: int64
```

```
decision_tree = DecisionTreeClassifier(criterion='entropy',random_state=1,max_depth=3)
decision_tree = decision_tree.fit(x_train,y_train)
dot_data = export_graphviz(decision_tree, out_file=None)
graph = graphviz.Source(dot_data)
image = graph.render(format='png')
display(Image(image))
```



```
y_pred = decision_tree.predict(x_test)
y_test==y_pred

338     True
124     True
914     True
419     True
482     True
...
676     True
621     True
```

```
184 True415 True649 True
```

Name: status, Length: 154, dtype: bool

```
confusion_matrix = metrics.confusion_matrix(y_test,y_pred)
cm_display = metrics.ConfusionMatrixDisplay(confusion_matrix = confusion_matrix, display_labels = [False, True])
cm_display.plot()
plt.show()
```



```
accuracy = accuracy_score(y_test, y_pred)
print('Decision Tree Accuracy:', accuracy*100)
report = classification_report(y_test, y_pred)
print(' Decision Tree Classification report:\n', report)
```

Decision Tree Accuracy: 82.46753246753246 Decision Tree Classification report:

	precision	recall	f1-score	support
0	0.81	0.65	0.72	54
1	0.83	0.92	0.87	100
accuracy			0.82	154
macro avg	0.82	0.78	0.80	154
weighted avg	0.82	0.82	0.82	154

```
data = pd.DataFrame({
    'state_code':22,'latitude':40.756054, 'longitude':-73.986951,
    'zip_code':3, 'city':125, 'age_first_funding_year':0.0000,
    'age_last_funding_year':3.9562, 'age_first_milestone_year':4.7616,
    'age_last_milestone_year':5.1507, 'relationships':24, 'funding_rounds':5,
    'funding_total_usd':90000000, 'milestones':3, 'category_code':8,
    'has_VC':1, 'has_angel':0, 'has_roundA':1, 'has_roundB':1, 'has_roundC':1,
    'has_roundD':1, 'avg_participants':3.8000, 'is_top500':1
},index=[0])
data
```

	state_code	latitude	longitude	zip_code	city	age_+irst_+unding_year	age_last
0	22	40.756054	-73.986951	3	125	0.0	

```
prediction=decision_tree.predict(data)
if prediction[0]==1:
    print("The prediction indicates the startup will be successful")
else:
    print("The prediction indicates the startup will not be successful")

    The prediction indicates the startup will be successful

from sklearn.ensemble import RandomForestClassifier
from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import accuracy_score, mean_squared_error
```

```
random_forest = RandomForestClassifier(n_estimators=100, criterion='entropy', random_state=1, max_depth=3)
random_forest.fit(x_train, y_train)
```

```
RandomForestClassifier
RandomForestClassifier(criterion='entropy', max_depth=3, random_state=1)
```

```
from sklearn.tree import export_graphviz
import graphviz
from IPython.display import Image, display

tree = random_forest.estimators_[0]

dot_data = export_graphviz(tree, out_file=None, filled=True, rounded=True)
graph = graphviz.Source(dot_data)
image = graph.render(format='png')

display(Image(image))
```



```
80
         False
accuracyR = accuracy_score(y_test, y_predr)
accuracyR
     0.7987012987012987
      ï
print('Random Forest Accuracy:', accuracyR*100)
report = classification_report(y_test, y_predr)
print(' Random Forest Classification report:\n', report)
     Random Forest Accuracy: 79.87012987012987
      Random Forest Classification report:
                     precision
                                 recall f1-score
                                                      support
                0
                         0.87
                                   0.50
                                              0.64
                                                           54
                         0.78
                                   0.96
                                             0.86
                                                         100
                                              0.80
         accuracy
                                                         154
                         0.83
                                   0.73
                                              0.75
        macro avg
                                                         154
                                              0.78
                                                         154
     weighted avg
                         0.81
                                   0.80
data = pd.DataFrame({
    'state_code':22,'latitude':40.756054, 'longitude':-73.986951,
    'zip_code':3, 'city':125, 'age_first_funding_year':0.0000, 'age_last_funding_year':3.9562, 'age_first_milestone_year':4.7616,
    'age_last_milestone_year':5.1507, 'relationships':24, 'funding_rounds':5,
    'funding_total_usd':90000000, 'milestones':3, 'category_code':8,
    'has_VC':1, 'has_angel':0, 'has_roundA':1, 'has_roundB':1, 'has_roundC':1,
    'has_roundD':1, 'avg_participants':3.8000, 'is_top500':1
},index=[0])
data
         state_code latitude longitude zip_code city age_first_funding_year age_last
                 22 40.756054 -73.986951
                                                   3
                                                      125
                                                                                0.0
prediction=random_forest.predict(data)
if prediction[0]==1:
 print("The prediction indicates the startup will be successful")
else:
  print("The prediction indicates the startup will not be successful")
     The prediction indicates the startup will be successful
accuracy_scores = [accuracy, accuracyR]
algorithms = ["Decicion Tree Classifier", "Random Forest Classifiers"]
plt.bar(algorithms, accuracy_scores)
plt.xlabel("Algorithms")
plt.ylabel("Accuracy")
plt.title("Accuracy Comparison")
plt.show()
```

```
import seaborn as sns
import matplotlib.pyplot as plt

fig, axes = plt.subplots(1, 2, figsize=(12, 5))

sns.heatmap(confusion_matrix, annot=True, fmt="d", cmap="Blues", ax=axes[0])
axes[0].set_title("Decision Tree Classifier")
axes[0].set_xlabel("Predicted")
axes[0].set_ylabel("True")

sns.heatmap(confusion_matrixr, annot=True, fmt="d", cmap="Blues", ax=axes[1])
axes[1].set_title("Random Forest Classifier")
axes[1].set_title("Random Forest Classifier")
axes[1].set_ylabel("True")

plt.tight_layout()
plt.show()
```



```
return "Your startup is likely to be successful..."
return "Your startup is not likely to be successful"
```

#Create the input component for Gradio since we are expecting 4 inputs state_code=gr.Number(label="Enter state code") latitude=gr.Number(label="Enter latitude") longitude=gr.Number(label="Enter longitude") zip_code=gr.Number(label="Enter zip_code") city=gr.Number(label="Enter city") age_first_funding_year=gr.Number(label="Enter age_first_funding_year") age_last_funding_year=gr.Number(label="Enter age_last_funding_year") age_first_milestone_year=gr.Number(label="Enter age_first_milestone_year") age_last_milestone_year=gr.Number(label="Enter age_last_milestone_year") relationships=gr.Number(label="Enter relationships") funding_rounds=gr.Number(label="Enter funding_rounds") funding_total_usd=gr.Number(label="Enter funding_total_usd") milestones=gr.Number(label="Enter milestones") category_code=gr.Number(label="Enter category_code") has_VC=gr.Number(label="Enter has_VC") has angel=gr.Number(label="Enter has angel") has_roundA=gr.Number(label="Enter has_roundA") has_roundB=gr.Number(label="Enter has_roundB") has_roundC=gr.Number(label="Enter has_roundC") has_roundD=gr.Number(label="Enter has_roundD") avg_participants=gr.Number(label="Enter avg_participants") is_top500=gr.Number(label="Enter is_top500") # We create the output output = gr.Textbox() app = gr.Interface(fn = make_prediction, inputs=[state_code,latitude,longitude,zip_code,city,age_first_funding_year,age_last_funding_year $, funding_rounds, funding_total_usd, \verb|milestones|, category_code|, has_VC|$, has_angel, has_roundA, has_roundB, has_roundC, has_roundD, avg_participants, is_top500], outputs=output) app.launch() Setting queue=True in a Colab notebook requires sharing enabled. Setting `share=True` Colab notebook detected. To show errors in colab notebook, set debug=True in launch() Running on public URL: https://cd31e4cf6067c56b5a.gradio.live This share link expires in 72 hours. For free permanent hosting and GPU upgrades, run Enter has_roundC 0 Enter has_roundD 0 Enter avg_participants 0 Enter is_top500 0 Clear **Submit**

Results:

- The Decision Tree algorithm achieved an accuracy of 82% in predicting startup success.
- The Random Forest algorithm achieved an accuracy of 79% in predicting startup success.
- The frontend provided an intuitive way for users to input data and obtain predictions from the models.

Conclusion:

In this distributed computing project, we successfully preprocessed a dataset of startups across the USA, compared the performance of Decision Tree and Random Forest algorithms, and developed a user-friendly frontend for making predictions based on the machine learning models.

The project highlights the significance of distributed computing in data analysis and machinelearning and demonstrates the potential for applying these techniques to real-world business scenarios, such as predicting the success of startups.

Future Vision:

This project can be extended in various domains and achieve more accurate and wider range of predictions

- 1. **Geographical Location:** The model can be further linked with GPS Navigation to pin point better performing geographical location for a business outlet.
- 2. **Customer Behavior Analysis:** This model can help analyze customer behavior among other factors to improve marketing techniques.
- 3. **Risk Management:** Business expansion can be done with lesser risk accounting for many real time factors.
- 4. **Real-Time Monitoring:** Business Chains can better operate by monitoring all the data in real time from various branches after applying mining algorithms.

References:

- 1. Success prediction Dataset, Manish KC Momo- https://www.kaggle.com/datasets/manishkc06/startup-success-prediction
- 2. Deploying our model https://www.freecodecamp.org/news/how-to-deploy-your-machine-learning-model-as-a-web-app-using-gradio/
- 3. Project Documentation format https://www.cs.utexas.edu/ (University of Texas)