10.1 点估计 201

### 10.1.2 最大似然估计法

设  $X_1, X_2, \dots, X_n$  是来自总体 X 的一个样本. 若总体 X 为离散型随机变量, 其分布列为  $\Pr(X = x) = \Pr(X = x; \theta)$ , 则样本  $X_1, X_2, \dots, X_n$  的分布列为

$$L(\theta) = L(x_1, x_2, \cdots, x_n; \theta) = \prod_{i=1}^n \Pr(x_i; \theta).$$

这里  $L(\theta)$  表示样本  $X_1 = x_1, X_2 = x_2, \dots, X_n = x_n$  发生的概率.

若总体 X 为连续型随机变量, 其概率密度为  $f(x;\theta)$ , 则  $X_1=x_1, X_2=x_2, \cdots, X_n=x_n$  的联合概率密度为

$$L(\theta) = L(x_1, x_2, \cdots, x_n; \theta) = \prod_{i=1}^n f(x_i; \theta).$$

根据概率密度定义可知  $L(\theta)$  越大, 样本  $(X_1, X_2, \dots, X_n)$  落入  $(x_1, x_2, \dots, x_n)$  的邻域内概率越大.

综合上述离散和连续两种随机变量, 统称  $L(\theta)$  为样本  $X_1, X_2, \cdots, X_n$  的似然函数, 可以发现  $L(\theta)$  是  $\theta$  的函数, 若

$$\hat{\theta} = \underset{\theta}{\operatorname{arg max}} L(x_1, x_2, \cdots, x_m; \theta),$$

则称  $\hat{\theta}$  为  $\theta$  的最大似然估计量. 直觉而言: 最大似然估计量  $\hat{\theta}$  是使观测值  $X_1=x_1,X_2=x_2,\cdots,X_n=x_n$  出现的概率最大.

求解最大似然估计量的步骤如下:

- i) 计算对数似然函数  $\log(L(x_1, x_2, \cdots, x_m; \theta))$ ;
- ii) 求对数似然函数中参数 $\theta$ 的一阶偏导,令其等于零;
- iii) 求解方程组得到最大似然估计量  $\hat{\theta}$ .

**例 10.3** 设  $X_1, X_2, \dots, X_n$  是取自总体  $X \sim B(1, p)$  的样本, 求参数 p 的最大似然估计.

解 首先计算似然函数

$$L(p) = \prod_{i=1}^{n} p^{X_i} (1-p)^{1-X_i} = p^{\sum_{i=1}^{n} X_i} (1-p)^{n-\sum_{i=1}^{n} X_i},$$

从而得到对数似然函数

$$\ln L(p) = \sum_{i=1}^{n} X_i \ln p + \left(n - \sum_{i=1}^{n} X_i\right) \ln(1-p),$$

求一阶偏导并令其为零可得

$$\frac{\partial \ln L(p)}{\partial p} = \frac{1}{p} \sum_{i=1}^{n} X_i - \frac{1}{1-p} \left( n - \sum_{i=1}^{n} X_i \right) = 0.$$

202 第 10 章 参数估计

由此求解  $p = \sum_{i=1}^{n} X_i/n = \bar{X}$ . [验证矩估计法]

# 下面讨论 最大似然估计不可变性

性质 **10.1** 设  $\mu(\theta)$  为  $\theta$  的函数, 且存在反函数  $\theta = \theta(\mu)$ . 若  $\hat{\theta}$  是  $\theta$  的最大似然估计, 则  $\hat{\mu} = \mu(\hat{\theta})$  是  $\mu$  的最大似然估计.

**例 10.4** 设  $X_1, X_2, \dots, X_n$  为总体  $X \sim \mathcal{N}(\mu, \sigma^2)$  的样本, 求  $\mu$  和  $\sigma > 0$  的最大似然估计.

解 根据高斯分布知 X 的概率密度为  $f(x)=\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$ . 样本  $X_1,X_2,\cdots,X_n$  的似然函数为

$$L(\mu, \sigma) = \frac{1}{(\sqrt{2\pi}\sigma)^n} \exp\left(-\sum_{i=1}^n \frac{(X_i - \mu)^2}{2\sigma^2}\right).$$

其对数似然函数为  $\ln L(\mu, \sigma) = -n \ln(2\pi)^{1/2} - n \ln \sigma - \sum_{i=1}^{n} (X_i - \mu)^2 / 2\sigma^2$ . 对参数  $\mu$  求导计算可得

$$\frac{\partial \ln L(\mu, \sigma)}{\partial \mu} = \sum_{i=1}^{n} (X_i - \mu) = 0 \quad \Longrightarrow \quad \mu = \frac{1}{n} \sum_{i=1}^{n} X_i = \bar{X},$$

对 σ 求导计算可得

$$\frac{\partial \ln L(\mu, \sigma)}{\partial \sigma} = -\frac{n}{\sigma} + \frac{1}{\sigma^3} \sum_{i=1}^n (X_i - \mu)^2 = 0 \quad \Longrightarrow \quad \sigma = \sqrt{\frac{1}{n} \sum_{i=1}^n (X_i - \mu)^2} = \sqrt{\frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^2}.$$

根据最大似然估计的不变性可知方差  $\sigma^2$  的最大似然估计为  $\sigma^2 = \sum_{i=1}^n (X_i - \bar{X})^2/n$ . 下面进行验证最大似然估计的不变性: 设  $X_1, X_2, \cdots, X_n$  为总体  $X \sim \mathcal{N}(\mu, \nu)$  的样本, 求  $\mu$  和  $\nu$  的最大似然估计. 根据题意可知样本  $X_1, X_2, \cdots, X_n$  的对数似然函数为

$$\ln L(\mu, \nu) = -\frac{n}{2} \ln(2\pi) - \frac{n}{2} \ln \nu - \sum_{i=1}^{n} \frac{(X_i - \mu)^2}{2\nu}.$$

对参数  $\mu$  求偏导计算其最大似然估计  $\mu = \sum_{i=1}^{n} X_i/n = \bar{X}$ , 对  $\nu$  求偏导计算可得

$$\frac{\partial \ln L(\mu, \nu)}{\partial \nu} = -\frac{n}{2\nu} + \frac{1}{2\nu^2} \sum_{i=1}^{n} (X_i - \mu)^2 = 0 \quad \Longrightarrow \quad \nu = \frac{1}{n} \sum_{i=1}^{n} (X_i - \mu)^2 = \frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})^2,$$

从而完成验证.

M 10.5 设总体 X 的密度函数为

$$f(x) = \begin{cases} (\alpha + 1)x^{\alpha} & x \in (0, 1) \\ 0 & \not\exists \dot{\Xi} \end{cases}$$

设  $X_1, X_2, \dots, X_n$  是总体 X 的样本, 求  $\alpha$  的最大似然估计.

10.1 点估计 203

解 首先得到似然函数为

$$L(\alpha) = (\alpha + 1)^n \prod_{i=1}^n X_i^{\alpha} = (\alpha + 1)^n (X_1 X_2 \cdots X_n)^{\alpha},$$

以及其对数似然函数  $\ln L(\alpha) = n \ln(\alpha + 1) + \alpha \ln(X_1 X_2 \cdots X_n)$ . 求导并令偏导为零有

$$\frac{\partial \ln L(\alpha)}{\partial \alpha} = \frac{n}{\alpha + 1} + \ln(X_1 X_2 \cdots X_n) = 0,$$

求解得

$$\alpha = \frac{-n}{\sum_{i=1}^{n} \ln(X_i)} - 1 = \frac{-1}{\frac{1}{n} \sum_{i=1}^{n} \ln(X_i)} - 1.$$

对上例, 矩估计值为  $\alpha = (2\bar{X} - 1)/(1 - \bar{X})$ , 因此矩估计值与最大似然估计值可能不同.

**例 10.6** 设  $X_1, X_2, \dots, X_n$  是总体  $X \sim \mathcal{U}(a, b)$  的样本, 求 a 和 b 的最大似然估计.

**解** 当  $x \in [a,b]$  时, 总体 X 的概率密度为 f(x) = 1/(b-a), 其它情况为零, 因此似然函数为

$$L(a,b) = \begin{cases} \frac{1}{(b-a)^n} & a \leqslant X_1, X_2, \dots, X_n \leqslant b \\ 0 & \not\exists \Xi \end{cases}$$

直接求偏导无法解出 a 和 b, 此时可以从最大似然的定义出发, 应使得 b 尽可能小且 a 尽可能大, 但 需满足  $a \leq X_1, X_2, \cdots, X_n \leq b$ , 因此最大似然估计量为:

$$b = \max\{X_1, X_2, \dots, X_n\}$$
  $\pi$   $a = \min\{X_1, X_2, \dots, X_n\}$ .

**例 10.7** 设  $X_1, X_2, \dots, X_n$  是总体 X 的样本, 以及总体 X 的概率密度为

$$f(x) = \begin{cases} \theta e^{-(x-\mu)\theta} & x \geqslant \mu \\ 0 & \text{其它,} \end{cases}$$

解 首先计算似然函数为

$$L(\theta, \mu) = \begin{cases} \theta^n e^{-\theta \sum_{i=1}^n (X_i - \mu)} & X_i \geqslant \mu \\ 0 & \text{ 其它} \end{cases}$$

进一步得到对数似然函数为

$$\ln L(\theta, \mu) = n \ln \theta - \theta \sum_{i=1}^{n} (X_i - \mu).$$

204 第 10 章 参数估计

求偏导、并令偏导等于零有

$$\frac{\partial \ln L(\theta, \mu)}{\partial \theta} = \frac{n}{\theta} - \sum_{i=1}^{n} (X_i - \mu) = 0 \quad \Rightarrow \quad \theta = \frac{1}{\frac{1}{n} \sum_{i=1}^{n} (X_i - \mu)},$$

另一方面有

$$\frac{\partial \ln L(\theta, \mu)}{\partial \mu} = n\theta = 0 \quad \Rightarrow \quad \theta = 0,$$

此时无法求解  $\theta$  和  $\mu$  的最大似然估计. 回到似然函数的定义

$$L(\theta, \mu) = \begin{cases} \theta^n e^{-\theta \sum_{i=1}^n (X_i - \mu)} & X_1, X_2, \dots, X_n \geqslant \mu \\ 0 & \not\exists \dot{\Xi} \end{cases}$$

可以发现  $\mu$  越大似然函数  $L(\theta,\mu)$  越大, 但须满足  $X_i \ge \mu$   $(i \in [n])$ . 由此可得最大似然估计

$$\hat{\mu} = \min\{X_1, X_2, \cdots, X_n\},\$$

进一步求解可得

$$\hat{\theta} = \frac{1}{\frac{1}{n} \sum_{i=1}^{n} (X_i - \hat{\mu})}.$$

## 10.2 估计量的评价标准

前一节已经讲过不同的点估计方法,不同的估计方法可能得到不同的估计值,自然涉及到一个问题:采用哪一种估计量更好,或更好的标准是什么呢?估计量的常用标准:无偏性,有效性,一致性.

#### 10.2.1 无偏性

定义 **10.1** 设  $X_1, X_2, \dots, X_n$  是来自总体 X 的样本, 令  $\hat{\theta} = \hat{\theta}(X_1, X_2, \dots, X_n)$  是  $\theta$  的一个估计量, 若

$$E_{X_1,X_2,\dots,X_n}\left[\hat{\theta}\right] = E_{X_1,X_2,\dots,X_n}\left[\hat{\theta}(X_1,X_2,\dots,X_n)\right] = \theta$$

则称  $\hat{\theta}$  为  $\theta$  的无偏估计.

无偏估计不要求估计值  $\hat{\theta}$  在任意情况下都等于  $\theta$ , 但在期望的情形下有  $E(\hat{\theta}) = \theta$  成立. 其意义在于无系统性偏差, 无偏性是一种对估计量常见而且重要的标准.

首先看看如下例子:

例 10.8 (**样本** k **阶原点矩为总体** k **阶原点矩的无偏估计**) 设  $X_1, X_2, \dots, X_n$  是总体 X 的样本,若  $E[X^k]$  存在,则  $A_k = \frac{1}{n} \sum_{i=1}^n X_i^k$  是总体  $a_k = E[X^k]$  的无偏估计.

例 10.9 设  $X_1, X_2, \dots, X_n$  是来自总体 X 的样本, 其期望为  $\mu$ , 方差为  $\sigma^2$ , 则: 1)  $S_0^2 = \sum_{i=1}^n (X_i - \bar{X})^2 / n$  是  $\sigma^2$  的有偏估计; 2)  $S^2 = \sum_{i=1}^n (X_i - \bar{X})^2 / (n-1)$  是  $\sigma^2$  的无偏估计.

10.2 估计量的评价标准 205

注意  $\hat{\theta} = \hat{\theta}(X_1, X_2, \dots, X_n)$  是  $\theta$  的无偏估计, 但并不一定有  $g(\hat{\theta})$  是  $g(\theta)$  的无偏估计, 这是因为  $E[\hat{\theta}] = \theta$  并不能推导出  $E[g(\hat{\theta})] = g(\theta)$ . 例如

$$E[\bar{X}] = E[X] = \mu$$
  $(\exists E[(\bar{X})^2] \neq \mu^2.$ 

**例 10.10** 设  $X_1, X_2, \dots, X_n$  是总体 X 的样本, 以及总体 X 的概率密度为

$$f(x;\theta) = \begin{cases} \frac{1}{\theta}e^{-\frac{x}{\theta}} & x \geqslant 0\\ 0 & x < 0, \end{cases}$$

证明:  $\bar{X} = \sum_{i=1}^{n} X_i / n$  和  $n \min\{X_1, X_2, \dots, X_n\}$  均是  $\theta$  的无偏估计.

证明 根据期望和指数分布的性质有

$$E[\bar{X}] = E[X] = \theta,$$

由此可知  $\bar{X}$  是 E[X] 的无偏估计. 设随机变量  $Z = \min\{X_1, X_2, \cdots, X_n\}$ , 则有

$$F_{Z}(z) = \Pr[Z \leq z] = 1 - \Pr[Z > z]$$

$$= 1 - \Pr[X_{1} > z] \Pr[X_{2} > z] \cdots \Pr[X_{n} > z]$$

$$= 1 - \prod_{i=1}^{n} (1 - \Pr[X_{i} \leq z]) = \begin{cases} 0 & z < 0 \\ 1 - e^{-nz/\theta} & z \geq 0. \end{cases}$$

于是当 $z \ge 0$ 时有

$$\Pr[Z > z] = 1 - F_Z(z) = e^{-nz/\theta}.$$

根据期望的性质有

$$E[Z] = \int_0^{+\infty} \Pr[Z > z] dz = \int_0^{+\infty} e^{-nz/\theta} dz = \frac{\theta}{n}.$$

于是有  $\theta = E[nZ]$  成立.

## 10.2.1.1 有效性

参数可能存在多个无偏估计, 若  $\hat{\theta}_1$  和  $\hat{\theta}_2$  都是  $\theta$  的无偏估计, 则可以比较方差

$$Var(\hat{\theta}_1) = E[(\hat{\theta}_1 - \theta)^2] \qquad \text{II} \qquad Var(\hat{\theta}_2) = E[(\hat{\theta}_2 - \theta)^2].$$

一般而言: 方差越小, 无偏估计越好.

定义 10.2 设  $\hat{\theta}_1 = \hat{\theta}_1(X_1, X_2, \cdots, X_n)$  和  $\hat{\theta}_2 = \hat{\theta}_2(X_1, X_2, \cdots, X_n)$  是  $\theta$  的两个无偏估计, 若

$$\operatorname{Var}(\hat{\theta}_1) \leqslant \operatorname{Var}(\hat{\theta}_2),$$

206 第 10 章 参数估计

则称  $\theta_1$  比  $\theta_2$  有效.

**例 10.11** 设  $X_1, X_2, \dots, X_n$  是来自总体 X 的样本, 且 X 的概率密度为

$$f(x;\theta) = \begin{cases} \frac{1}{\theta}e^{-\frac{x}{\theta}} & x \geqslant 0\\ 0 & x < 0 \end{cases},$$

令  $Z = \min\{X_1, X_2, \dots, X_n\}$ , 证明: 当 n > 1 时  $\bar{X} = \sum_{i=1}^n X_i / n$  比 nZ 有效.

证明 根据独立性有

$$\operatorname{Var}(\bar{X}) = \frac{1}{n^2} \sum_{i=1}^n \operatorname{Var}(X_i) = \frac{\theta^2}{n}.$$

根据例 10.10 可知随机变量 Z 的概率密度为

$$f(z) = \begin{cases} 0 & z < 0\\ \frac{n}{\theta} e^{-\frac{nz}{\theta}} & z \geqslant 0 \end{cases}$$

从而得到

$$Var(nZ) = n^{2}Var(Z) = n^{2}\frac{\theta^{2}}{n^{2}} = \theta^{2},$$

因此当  $n \ge 1$  时有  $Var(\bar{X}) \le Var(nZ)$  成立, 故  $\bar{X}$  比 nZ 有效.

例 10.12 设  $X_1, X_2, \dots, X_n$  是总体 X 的样本,且  $E(X) = \mu$  和  $Var(X) = \sigma^2$ . 设常数  $c_1, c_2, \dots, c_n \ge 0$  满足  $\sum_{i=1}^n c_i = 1, c_i \ne 1/n$ ,求证:  $\bar{X}$  比  $\sum_{i=1}^n c_i X_i$  有效.

证明 根据样本的独立同分布条件有

$$E[\bar{X}] = \mu$$
  $\Re$   $Var(\bar{X}) = \sigma^2/n$ .

根据期望的性质有  $E[\sum_{i=1}^{n} c_i X_i] = \mu$ , 进一步有

$$\operatorname{Var}\left(\sum_{i=1}^{n} c_i X_i\right) = \sum_{i=1}^{n} c_i^2 \operatorname{Var}(X_i) = \sigma^2 \sum_{i=1}^{n} c_i^2 \geqslant \frac{\sigma^2}{n}$$

这里利用不等式  $\sum_{i=1}^n c_i^2/n \geqslant (\sum_{i=1}^n c_i/n)^2 = 1/n^2$ ,所以有  $\operatorname{Var}(\sum_{i=1}^n c_i X_i) \geqslant \operatorname{Var}(\bar{X})$ .

下面定义有效统计量:

定理 10.1 (Rao-Crammer **不等式**) 设随机变量 X 的概率密度为  $f(x;\theta)$  或分布函数为  $F(x;\theta)$ , 令

$$\operatorname{Var}_{0}(\theta) = \frac{1}{nE\left[\left(\frac{\partial \ln f(X;\theta)}{\partial \theta}\right)^{2}\right]} \quad \text{ } \vec{\boxtimes} \quad \operatorname{Var}_{0}(\theta) = \frac{1}{nE\left[\left(\frac{\partial \ln F(X;\theta)}{\partial \theta}\right)^{2}\right]} ,$$