PROJET – ANALAYSE DES TURNOVER

QUESNEL Ninon - BERTON Léonie - REVERSAC PAUL - PERICHON Nicolas

SOMMAIRE

Def resumetable(df)

Variable cible : départ (0 : Non / 1 : Oui)

	Name	dtypes	Missing	Uniques	First value	Second value	Third value
0	Satisfaction	float64	0	92	0.41	0.87	0.45
1	derniere_evaluation	float64	0	65	0.54	0.88	0.48
2	Nombre_de_projets	int64	0	6	2	5	2
3	Nombre_heures_mensuelles_moyenne	int64	0	215	152	269	158
4	Temps_passe_dans_entreprise	int64	0	8	3	5	3
5	Accident_du travail	int64	0	2	0	0	0
6	depart	int64	0	2	1	1	1
7	promotion_5_dernieres_annees	int64	0	2	0	0	0
8	Service	object	0	10	technical	technical	technical
9	niveau_salaire	object	0	3	low	low	low

	Name	dtypes	Missing	Uniques	First value	Second value	Third value
0	Satisfaction	float64	0	92	0.41	0.87	0.45
1	derniere_evaluation	float64	0	65	0.54	0.88	0.48
2	Nombre_de_projets	int64	0	6	2.00	5.00	2.00
3	Nombre_heures_mensuelles_moyenne	int64	0	215	152.00	269.00	158.00
4	Temps_passe_dans_entreprise	int64	0	8	3.00	5.00	3.00
5	Accident_du travail	int64	0	2	0.00	0.00	0.00
6	depart	int64	0	2	1.00	1.00	1.00
7	promotion_5_dernieres_annees	int64	0	2	0.00	0.00	0.00
8	Service	float64	0	10	9.00	9.00	9.00
9	niveau_salaire	float64	0	3	1.00	1.00	1.00

Un peu de Data Viz

Répartition des départs en fonction des niveaux de salaire

Répartition des départs en fonction des services

Répartition des départs en fonction des heures mensuelles travaillées et du niveau de salaire associé

02 METHODOLOGIE

DataBaseTrain

DataBaseTest

Projet_turnover.ipynb

README.md

DataBaseTest

DataBaseTrain

Projet_turnover.ipynb

README.md

decistion_tree.png

test.dot

Architecture du projet sous GITHUB

02 METHODOLOGIE

- ETAPE 1 Data Viz
- ETAPE 2 Etude de corrélation
- ETAPE 3 4 modèles : Random Forest / Logistic Regression / KNN / SVM
- ETAPE 4 Constat
- ETAPE 5 Optimisation / Approfondissement

Satisfaction <= 0.465 gini = 0.357 gini = 0.357 samples = 10465 value = [8032, 2433] class = 0 Nombre_de_projets <= 2.5 gini = 0.481 samples = 2874 value = [1157, 1717] class = 1 Temps_passe_dans_entreprise <= 4.5 gini = 0.171 samples = 7591 value = [6875, 716] class = 0 derniere_evaluation <= 0.575 gini = 0.212 samples = 1186 value = [143, 1043] class = 1 Nombre_heures_mensuelles_moyenne <= 290.0 gini = 0.026 samples = 6207 value = [6126, 81] class = 0 derniere_evaluation <= 0.805 gini = 0.497 samples = 1384 value = [749, 635] class = 0 Satisfaction <= 0.115 gini = 0.48 samples = 1688 value = [1014, 674] class = 0

- Random Forest
 - Plusieurs arbres de décisions / Chacun produit une estimation
- Logistic Regression
 - Utilisé pour modéliser des variables dépendantes binaires
- KNN
 - Prédit à quelle classe appartient un nouveau point de données de test en identifiant la classe de ses k voisins les plus proches
- SVM
 - Apprentissage automatique / Résoudre des problèmes de classification / Il examine les cas les plus extrêmes

Random Forest

- + Puissant et précis, bonnes performances sur de nombreux problèmes, y compris non linéaires.
 - Un surajustement peut facilement se produire

KNN

- + Simple à comprendre, rapide et efficace
- Besoin de choisir manuellement le nombre de voisins «k».

Logistic Regression

- + Approche probabiliste, donne des informations sur la signification statistique des caractéristiques
 - Les hypothèses de régression logistique

SVM

- + Performances élevées sur des problèmes non linéaires, non biaisées par des valeurs aberrantes
- Pas le meilleur choix pour un grand nombre de fonctionnalités, plus complexes.

04 RESULTATS

Accuracy RMSE

04 RESULTATS

Satisfaction	derniere_eva	Nombre_de_	Nombre_heu	Temps_passo	Accident_du	promotion_	Service	niveau_salaii	random fore	logistic regre	knn	svm	expected
0.45	0.54	2	135	3	0	C	1	1	Left	Stay	Left	Stay	Left
0.11	0.81	6	305	4	0	C	1	1	Left	Left	Left	Left	Left
0.84	0.92	4	234	5	0	C	1	1	Stay	Stay	Left	Stay	Left
0.41	0.55	2	148	3	0	C	1	1	Left	Stay	Left	Stay	Left
0.36	0.56	2	137	3	0	C	1	1	Left	Stay	Left	Stay	Left
0.38	0.54	2	143	3	0	C	1	1	Left	Stay	Left	Stay	Left
0.45	0.47	2	160	3	0	C	1	1	Left	Stay	Left	Stay	Left
0.78	0.99	4	255	6	0	C	1	1	Stay	Stay	Stay	Stay	Left
0.45	0.51	2	160	3	1	1	. 1	1	Left	Stay	Left	Stay	Left
0.76	0.89	5	262	5	0	C	1	1	Left	Stay	Left	Stay	Left
0.44	0.51	2	156	3	0	C	9	3	Left	Stay	Left	Stay	Left
0.09	0.8	7	283	5	0	C	9	1	Left	Left	Left	Left	Left
0.92	0.87	4	226	6	1	C	9	2	Stay	Stay	Left	Stay	Left
0.74	0.91	4	232	5	0	C	9	2	Stay	Stay	Left	Stay	Left
0.09	0.82	6	249	4	0	C	9	2	Left	Left	Left	Left	Left
0.89	0.95	4	275	5	0	C	9	2	Stay	Stay	Left	Stay	Left
0.1	0.86	6	278	4	0	C	9	3	Left	Left	Left	Left	Left
0.81	1	4	253	5	0	C	9	1	Stay	Stay	Left	Stay	Left
0.11	0.8	6	282	4	0	C	9	2	Left	Left	Left	Left	Left
0.11	0.84	7	264	4	0	C	9	2	Left	Left	Left	Left	Left

04 RESULTATS

Faux depart Faux non départ

Création de 3 nouveaux éléments :

- 'heures_totales' = 'Nombre_heures_mensuelles_moyenne' x 12 x 'Temps_passe_dans_entreprise'
- 'projets_par_annees' = 'Nombre de projets' / 'Temps_passe_dans_entreprise'
- 'satisf_eval' = 'Satisfaction' / 'derniere_evaluation'

Accuracy RMSE

Satisfaction	Accident_du	heures_total	projets_par_	satisf_eval	random fore	logistic regre	knn	expected
0.45	0	4860	0.66	0.83	Left	Stay	Left	Left
0.11	0	14640	1.5	0.13	Left	Left	Left	Left
0.84	0	14040	0.8	0.91	Left	Stay	Left	Left
0.41	0	5328	0.66	0.74	Left	Stay	Left	Left
0.36	0	4932	0.66	0.64	Left	Left	Left	Left
0.38	0	5148	0.66	0.7	Left	Left	Left	Left
0.45	0	5760	0.66	0.95	Left	Stay	Left	Left
0.78	0	18360	0.66	0.78	Left	Stay	Stay	Left
0.45	1	5760	0.66	0.88	Left	Stay	Left	Left
0.76	0	15720	1	0.85	Left	Stay	Left	Left
0.44	0	5616	0.66	0.86	Left	Stay	Left	Left
0.09	0	16980	1.4	0.11	Left	Left	Left	Left
0.92	1	16272	0.66	1.05	Stay	Stay	Left	Left
0.74	0	13920	0.8	0.81	Left	Stay	Left	Left
0.09	0	11952	1.5	0.11	Left	Left	Left	Left
0.89	0	16500	0.8	0.93	Left	Stay	Left	Left
0.1	0	13344	1.5	0.11	Left	Left	Left	Left
0.81	0	15180	0.8	0.81	Left	Stay	Left	Left
0.11	0	13536	1.5	0.13	Left	Left	Left	Left
0.11	0	12672	1.75	0.13	Left	Stay	Left	Left

06 CONCLUSION

• Le meilleur est KNN. §

 Le feature engineering n'est pas vraiment nécessaire dans notre cas d'après notre étude.

Utiliser d'autres modèles pour essayer.

MERCI DE VOTRE **ATTENTION**

QUESNEL Ninon - BERTON Léonie - REVERSAC Paul - PERICHON Nicolas