파이썬으로 신뢰구간 구하기

#01. 작업 준비

패키지 참조

데이터 가져오기

#02. 신뢰구간 구하기

신뢰수준

샘플 사이즈

자유도 (degree of freedom)

표본 평균

표본 표준 편차

표본 표준오차

신뢰구간

#03. 시각화

# 신뢰구간

표본에서 얻은 정보를 기반으로 모집단의 특성을 추정하는 방법 중 하나

모수(모집단의 특성)에 대한 추정값의 범위를 제공하여 추정의 불확실성을 나타냄

신뢰구간은 주어진 신뢰수준(일반적으로 95% 또는 99% 등)에 따라 모수가 존재할 것으로 예상되는 범위를 나타낸다. 예를 들어, 95% 신뢰구간은 모수가 95% 확률로 해당 구간에 속할 것으로 추정함

신뢰구간은 일반적으로 표본 크기, 추정 방법, 데이터의 변동성 등과 같은 요소에 따라 달라질 수 있으며 정확한 신뢰구간을 구하기 위해서는 통계학적인 가정과 계산 방법을 사용해야 한다.

결국은 그나마 내가 확실히 말할 수 있는 정도 라는 의미

### 파이썬으로 신뢰구간 구하기

scipy.stats 패키지의 t 객체가 포함하는 interval(신뢰도, 자유도, loc=샘플평균, scale=샘플표준오차) 메서드를 사용한다.

| 파라미터 | 설명                                                             |
|------|----------------------------------------------------------------|
| 신뢰도  | 95%, 90% 등을 0~1 범위 안에서 설정                                      |
| 자유도  | 통계 모델의 매개변수나 관측치들이 얼마나 자유롭게 변할 수 있는지를 나타내는 값 일반적으로 전체데이터수 $-1$ |
| 샘플평균 | 데이터들의 평균값                                                      |

파이썬으로 신뢰구간 구하기

#01. 작업 준비

패키지 참조

데이터 가져오기

#02. 신뢰구간 구하기

신뢰수준

샘플 사이즈

자유도 (degree of freedom)

표본 평균

표본 표준 편차

표본 표준오차

신뢰구간

#03. 시각화

| 파라미터  | 설명                            |
|-------|-------------------------------|
| 샘플표준오 | 데이터들의 표준오차 -> <sup>표준편차</sup> |
| 차     |                               |

### #01. 작업 준비

#### 패키지 참조

```
from pandas import read_excel
from scipy.stats import t
from matplotlib import pyplot as plt
import seaborn as sb
import sys
```

### 데이터 가져오기

```
df = read_excel("https://data.hossam.kr/E02/insur.xlsx")
df
```

|   | 직업 | 교육수준 | 성별 | 나이 | 가입금액 | 월수입 |
|---|----|------|----|----|------|-----|
| 0 | 1  | 2    | 1  | 35 | 15.0 | 100 |
| 1 | 2  | 3    | 1  | 40 | 10.0 | 150 |
| 2 | 2  | 3    | 2  | 36 | 8.0  | 120 |
| 3 | 3  | 4    | 2  | 38 | 12.0 | 140 |

파이썬으로 신뢰구간 구하기

#01. 작업 준비

패키지 참조

데이터 가져오기

#02. 신뢰구간 구하기

신뢰수준

샘플 사이즈

자유도 (degree of freedom)

표본 평균

표본 표준 편차

표본 표준오차

신뢰구간

#03. 시각화

|    | 직업 | 교육수준 | 성별 | 나이 | 가입금액 | 월수입 |
|----|----|------|----|----|------|-----|
| 4  | 1  | 1    | 1  | 45 | 10.0 | 150 |
| 5  | 2  | 2    | 1  | 48 | 2.5  | 200 |
| 6  | 3  | 3    | 2  | 50 | 9.0  | 90  |
| 7  | 3  | 3    | 1  | 53 | 7.5  | 180 |
| 8  | 2  | 2    | 1  | 49 | 5.5  | 250 |
| 9  | 3  | 4    | 1  | 55 | 25.0 | 300 |
| 10 | 2  | 3    | 2  | 52 | 10.5 | 220 |
| 11 | 1  | 1    | 1  | 35 | 3.5  | 80  |
| 12 | 1  | 2    | 1  | 46 | 9.7  | 175 |
| 13 | 2  | 4    | 2  | 41 | 12.5 | 280 |
| 14 | 3  | 4    | 1  | 59 | 30.0 | 550 |
| 15 | 2  | 3    | 1  | 55 | 11.0 | 235 |
| 16 | 1  | 2    | 2  | 43 | 8.8  | 110 |
| 17 | 3  | 1    | 2  | 39 | 4.5  | 125 |
| 18 | 2  | 2    | 1  | 40 | 7.8  | 160 |
| 19 | 1  | 2    | 1  | 29 | 6.7  | 99  |
| 20 | 2  | 3    | 1  | 33 | 7.0  | 148 |
| 21 | 2  | 4    | 1  | 45 | 33.0 | 400 |

03\_신뢰구간.ipynb

신뢰구간

파이썬으로 신뢰구간 구하기

#01. 작업 준비

패키지 참조

데이터 가져오기

#02. 신뢰구간 구하기

신뢰수준

샘플 사이즈

자유도 (degree of freedom)

표본 평균

표본 표준 편차

표본 표준오차

신뢰구간

#03. 시각화

|    | 직업 | 교육수준 | 성별 | 나이 | 가입금액 | 월수입 |
|----|----|------|----|----|------|-----|
| 22 | 3  | 2    | 2  | 32 | 15.0 | 115 |
| 23 | 2  | 2    | 2  | 44 | 20.0 | 165 |
| 24 | 1  | 2    | 1  | 28 | 4.0  | 80  |
| 25 | 2  | 1    | 1  | 38 | 5.0  | 210 |
| 26 | 3  | 3    | 1  | 51 | 15.0 | 340 |
| 27 | 2  | 3    | 2  | 43 | 30.0 | 510 |
| 28 | 1  | 2    | 1  | 42 | 5.0  | 130 |
| 29 | 3  | 3    | 1  | 56 | 10.0 | 650 |

## #02. 신뢰구간 구하기

### 신뢰수준

clevel = 0.95

### 샘플 사이즈

n = len(df['가입금액'])

n

파이썬으로 신뢰구간 구하기

#01. 작업 준비

패키지 참조

데이터 가져오기

#02. 신뢰구간 구하기

신뢰수준

샘플 사이즈

자유도 (degree of freedom)

표본 평균

표본 표준 편차

표본 표준오차

신뢰구간

#03. 시각화

```
자유도 (degree of freedom)
```

총관측치 - 1

30

```
dof = n - 1
dof
```

29

#### 표본 평균

```
sample_mean = df['가입금액'].mean()
sample_mean
```

11.783333333333333

#### 표본 표준 편차

파이썬에서는 표준편차를 계산할 때, 옵션으로 ddof 라는 것을 사용한다. 위의 코드에서 ddof = 1 은 표준편차를 계산할 때, n-1 로 나누라는 의미다

```
23. 7. 18. 오전 11:07
```

파이썬으로 신뢰구간 구하기

#01. 작업 준비

패키지 참조

데이터 가져오기

#02. 신뢰구간 구하기

신뢰수준

샘플 사이즈

자유도 (degree of freedom)

표본 평균

표본 표준 편차

표본 표준오차

신뢰구간

#03. 시각화

```
sample_std = df['가입금액'].std(ddof=1)
sample_std
```

8.131678510756489

#### 표본 표준오차

```
표준편차

√샘플크기
```

```
# sample_std_error = sample_std / n**0.5

from math import sqrt
sample_std_error = sample_std / sqrt(n)
sample_std_error
```

1.4846345835737815

#### 신뢰구간

```
cmin, cmax = t.interval(clevel, dof, loc=sample_mean, scale=sample_std_€
cmin, cmax
```

```
신뢰구간
```

파이썬으로 신뢰구간 구하기

#01. 작업 준비

패키지 참조

데이터 가져오기

#02. 신뢰구간 구하기

신뢰수준

샘플 사이즈

자유도 (degree of freedom)

표본 평균

표본 표준 편차

표본 표준오차

신뢰구간

#03. 시각화

```
(8.746914675272894, 14.819751991393773)
```

### #03. 시각화

```
plt.rcParams["font.family"] = 'AppleGothic' if sys.platform == 'darwin'
plt.rcParams["font.size"] = 10
plt.rcParams["figure.figsize"] = (7, 4)
plt.rcParams["axes.unicode_minus"] = False
```

```
sb.kdeplot(data=df, x='가입금액')
sb.lineplot(x=[cmin, cmin], y=[0, 0.1], color='red')
sb.lineplot(x=[cmax, cmax], y=[0, 0.1], color='blue')
plt.show()
plt.close()
```

파이썬으로 신뢰구간 구하기

#01. 작업 준비

패키지 참조

데이터 가져오기

#02. 신뢰구간 구하기

신뢰수준

샘플 사이즈

자유도 (degree of freedom)

표본 평균

표본 표준 편차

표본 표준오차

신뢰구간

#03. 시각화



가입금액