Задача ранжирования объектов в случае множественной экспертной оценки

О. С. Гребенькова

Московский физико-технический институт Факультет управления и прикладной математики Кафедра интеллектуальных систем

Математические методы прогнозирования 2021 г.

Постановка задачи

Цель

Получить рейтинг продуктов, основанный на экспертной оценке и других возможных показателях.

Исследуемая проблема

Как одного эксперта предпочесть другому? Можно ли использовать все оценки сразу?

Метод решения

Предлагаемый метод заключается в использовании попарного сравнения и вывода рейтинга продуктов на его основе.

Что имеем?

Пусть m экспертов провели оценку n объектов по L показателям. Результаты оценивания представлены величинами x_{ijh} , где i — номер объекта, j — номер эксперта, h — номер показателя. Величины x_{ijh} , которые были получены методам непосредственного оценивания, представляют собой числа из некоторого отрезка числовой оси, или баллы. Для упрощения дальнейшего изложения, ограничимся рассмотрением случая h=1.

Зачем нам попарные сравнения?

При установлении причинно-следственных зависимостей между объектами предметной области, экспертам в ряде случаев сложно выразить их численно. То есть трудно установить количественно степень влияния той или иной причины (объекта) на конкретное следствие. Особенно психологически это сложно, если таких объектов много.

Как решаем?

Пусть каждый из m экспертов производит оценку влияния на результат всех пар объектов, давая числовую оценку

$$r_{ijh} = \begin{cases} 1, \text{если объект } O_i \text{ значимее объекта } O_j \\ 0.5, \text{если объекты равны} \\ 0, \text{если объект } O_j \text{ значимее объекта } O_i \end{cases} \tag{1}$$

где $h=1,2,\ldots,m$ — номер эксперта, а значения $i,j=1,2,\ldots,n$ - это номера объектов, исследуемых при экспертизе. Т. е. по результатам экспертизы имеем m-таблиц (матриц) вида :

Алгоритм

На основании таблиц парных сравнений m-экспертов строится матрица математических ожиданий оценок всех пар объектов. Затем по этой матрице вычисляется вектор коэффициентов относительной важности объектов.

		R _m	01		Ο,		0,]								
	R ₂	0,		Ο,		0,				01		Oj		On		ı
Rį	0,		Oj		O _n				O ₁							ŀ
0,																
								⇒	O,		$x_{ij} = M/r_{ij}$				⇒	ŀ
O,			r , ¹					1								
								7	0,							K
0,								m							•	

Одним из способов определения значений элементов вектора является итерационный алгоритм вида:

- начальное условие $t = 0 \Rightarrow k$ единичный вектор;
- рекуррентные соотношения

$$\begin{split} k^t &= \frac{1}{\lambda^t} *X * k^{t-1} \\ \lambda^t &= [1 \ 1 \ 1 \ \dots \ 1] *X * k^{t-1} \ , \ t = (1,2, \ \dots \ n) \end{split}$$

• признак окончания

$$||k^{t} - k^{t-1}|| \le E$$

Что получаем?

Если матрица неотрицательна и неразложима (то есть путем перестановки строк и столбцов ее нельзя привести к треугольному виду), то при увеличении порядка $t\to\infty$ величина k^t сходится к максимальному собственному числу матрицы X, то есть

$$k = \lim_{t \to \infty} k^t , \sum_{i=1}^n k_i = 1$$

Это утверждение следует из теоремы Перрона-Фробениуса и доказывает сходимость приведенного выше алгоритма.