Sammanfattning av EI1320 Teoretisk elektroteknik

Yashar Honarmandi yasharh@kth.se

9 september 2019

Sammanfattning

Detta är en sammanfattning av EI1320 Teoretisk elektroteknik.

Innehåll

1	Lite vektoranalys och annan matte	1
2	Elektrostatik	2

1 Lite vektoranalys och annan matte

Diracs delta i högre dimensioner Diracs deltafunktion generaliserar utan vidare till högre dimensioner. Med andra ord är $\delta(\mathbf{r})$ en funktion som är noll överalt förutom origo och som uppfyller

$$\int\limits_{V} \mathrm{d}V \, \delta(\mathbf{r}) = 1$$

om V innesluter origo.

Nablaoperatorn i olika koordinatsystem Betrakta två olika koordinatsystem S och S'. Med hjälp av de kartesiska basvektorerna (som är lika i bägge koordinatsystemen) kan vi skriva ortsvektorn i de två som

$$\mathbf{r} = r_i \mathbf{e_i}, \ \mathbf{r}' = r_i' \mathbf{e_i}.$$

Vidare kan vi skriva nablaoperatorn som

$$\vec{\nabla} = \mathbf{e_i} \partial_i, \ \vec{\nabla} = \mathbf{e_i} \partial_i'.$$

Betrakta nu en funktion av $\mathbf{R} = \mathbf{r} - \mathbf{r}'$. Då kan vi visa att

$$\partial_i f = -\partial'_i f$$
.

Gradienten av R Betrakta funktionen

$$f(\mathbf{R}) = \sqrt{R_j R_j} = R.$$

Vi har

$$\partial_i R = \frac{1}{2} (R_k R_k)^{-\frac{1}{2}} \cdot 2R_j \partial_i R_j = (R_k R_k)^{-\frac{1}{2}} R_j \partial_i (r_j - r_j') = \frac{R_j}{R} \delta ij = \frac{R_i}{R} \delta ij.$$

Detta ger

$$\vec{\nabla}R = -\vec{\nabla}'R = \mathbf{e_R}.$$

Divergensen av $\frac{1}{R^2}$ -fältet Med resultatet ovan har vi

$$\vec{\nabla} \cdot \frac{1}{R^2} \mathbf{e_R} = \vec{\nabla} \cdot \frac{1}{R^3} \mathbf{R}$$

$$= \mathbf{R} \cdot \vec{\nabla} \frac{1}{R^3} + \frac{1}{R^3} \vec{\nabla} \cdot \mathbf{R}$$

$$= -\frac{3}{R^4} \mathbf{R} \cdot \vec{\nabla} R + \frac{1}{R^3} \vec{\nabla} \cdot \mathbf{R}$$

$$= -\frac{3}{R^4} \mathbf{R} \cdot \mathbf{e_R} + \frac{3}{R^3}$$

$$= -\frac{3}{R^3} + \frac{3}{R^3}$$

$$= 0$$

så länge $\mathbf{R} \neq \mathbf{0}$.

Mer allmänt kan man visa att

$$\vec{\nabla} \cdot \frac{1}{R^2} \mathbf{e}_{\mathbf{R}} = 4\pi \delta(\mathbf{R}).$$

Jag kan inte bevisa det, men jag kan rationalisera det kort. Utanför origo är det klart att detta stämmer. För att förstå vad som händer i origo, kan vi tillämpa den koordinatoberoende definitionen av divergens. Med den definitionen är divergensen av ett vektorfält kvoten av fältets flöde genom en litan yta kring en punkt och volymen den lilla ytan inneslutar. Med flervariabelanalys kan man visa att för fältet vi betraktar är flödet exakt 4π . Om vi jämför detta med Diracs delta, ser vi att det verkar stämma.

 $\frac{1}{R}$ och Greenfunktioner Med resultaten vi har får vi även

$$\vec{\boldsymbol{\nabla}}\frac{1}{R} = -\frac{1}{R^2}\vec{\boldsymbol{\nabla}}R = -\frac{1}{R^2}\mathbf{e}_{\mathbf{R}}.$$

Detta betyder att

$$\nabla^2 \frac{1}{R} = \vec{\nabla} \cdot \vec{\nabla} \frac{1}{R} = -\vec{\nabla} \cdot \frac{1}{R^2} \mathbf{e_R} = -4\pi \delta(\mathbf{R}).$$

Detta betyder att $\frac{1}{R}$ är en Greenfunktion till Laplaceoperatorn (i tre dimensioner).

2 Elektrostatik

Coulombs lag Elektrostatiken utgår från Coulombs lag, som är en experimentellt framtagen lag. Den säjer att om två laddningar Q och q är separerade med en sträcka \mathbf{R} , är kraften mellan dem

$$\mathbf{F} = \frac{1}{4\pi\varepsilon_0} \frac{qQ}{R^3} \mathbf{R}.$$

Alternativt, i termer av enhetsvektorer,

$$\mathbf{F} = \frac{1}{4\pi\varepsilon_0} \frac{qQ}{R^2} \mathbf{e_R}.$$

Båda laddningarna antas ha försumbar utsträckning, och betecknas punktladdningar. ε_0 kallas vakuumpermittiviteten, och har enhet F m⁻¹.

Elektriskt fält Det elektriska fältet som genereras av en laddning Q definieras som att en liten testladdning q upplever en kraft

$$\mathbf{F} = q\mathbf{E}$$

från Q. I våran definition skulle vi kunna lägga på ett $\lim_{q \to 0}$.

Baserad på detta får vi att en punktladdning Q genererar ett elektriskt fält

$$\mathbf{E} = \frac{1}{4\pi\varepsilon_0} \frac{Q}{R^2} \mathbf{e_R}.$$

Eftersom krafter superponeras, gör även elektriska fält det. I diskreta fall motsvarar detta att summera över punktladdningar. I kontinuerliga fall integrerar vi i stället, där varje element i integrationen behandlas som en punktladdning, och vi får

$$\mathbf{E} = \frac{1}{4\pi\varepsilon_0} \int \mathrm{d}q \, \frac{1}{R^2} \mathbf{e_R}.$$

Laddningen kan vara spridd ut på en linje, en yta eller en volym, i vilka fall vi får $dq = \rho dl$, $dq = \sigma dS$ respektiva $dq = \lambda dV$. Förutom de olika elementerna finns en linjeladdningstäthet, ytladdningstäthet eller volymladdningstäthet. Notera att med hjälp av Diracs delta kan alla dessa fallen skrivas som volymladdningstätheter.

Gauss' lag För att härleda Gauss' lag börjag vi med att titta på flödet av fältet $\frac{1}{R^2}\mathbf{e_R}$ genom en godtycklig yta, där \mathbf{R} pekar från en utgångspunkt \mathbf{r}' till ett givet ytelement. Integrationselementet

$$d\Omega = \frac{\mathbf{e_R} \cdot d\mathbf{S}}{R^2}$$

är rymdvinkeln som areaelementet upptar när det ses från origo. Vi kan se på något sätt att detta motsvarar att projicera areaelementet ned på enhetssfären kring origo. Alternativt, om kurvor är involverade, skulle man projicera ned på enhetscirkeln. Flödet vi betraktar ges då av fönsterfunktionen

$$f(\mathbf{r}') = \int_{S} dS \, \frac{\mathbf{e_R} \cdot \mathbf{e_n}}{R^2} = \int_{\Omega} d\Omega = \begin{cases} 4\pi, & \mathbf{r}' \text{ innanför } S, \\ 0, & \mathbf{r}' \text{ utanför } S. \end{cases}$$

Vi kommer nu ihåg hur elektriska fältet ser ut på integralform, specifikt som en volymintegral, och får då för flödet genom en godtycklig yta

$$\int_{S} d\mathbf{S} \cdot \mathbf{E} = \int_{S} d\mathbf{S} \cdot \frac{1}{4\pi\varepsilon_{0}} \int dV \frac{\rho}{R^{2}} \mathbf{e}_{\mathbf{R}}$$

$$= \frac{1}{4\pi\varepsilon_{0}} \int dV \int_{S} dS \rho \frac{\mathbf{e}_{\mathbf{R}} \cdot \mathbf{e}_{\mathbf{n}}}{R^{2}}$$

$$= \frac{1}{4\pi\varepsilon_{0}} \int dV \rho f(\mathbf{r})$$

$$= \frac{Q_{\text{innesluten}}}{\varepsilon_{0}}.$$

Vektorn \mathbf{R} är nu specifierad för varje punkt på ytan och i hela rummet. Den sista integralen är lika med laddningen som är innesluten i S eftersom fönsterfunktionen ger ett bidrag 4π om och endast om det finns laddning i den aktuella punkten.

Gauss' lag är ett bra verktyg för att beräkna elektriska fält för geometrier med mycket symmetri.

Gauss' lag på differentialform Betrakta nu en godtycklig yta S som exakt inneslutar volymen V. Gauss' lag ger då

$$\int_{S} d\mathbf{S} \cdot \mathbf{E} = \frac{1}{\varepsilon_0} \int_{V} dV \, \rho.$$

Vi kan använda divergenssatsen för att skriva om vänstersidan som en integral över V. Därmed kan vi dra slutsatsen

$$\vec{\nabla} \cdot \mathbf{E} = \frac{\rho}{\varepsilon_0}.$$

Randvillkor för elektrist fält Ytladdningar ger diskontinuiteter i elektriskt fält. För att studera det, betrakta en punkt på ytan. Gör en liten låda kring punkten så att fältet är ungefär konstant på sidorna som inte rör ytan. Gauss' lag ger oss, om bara tar med de nämnda sidorna, att elektriksa fältets normalkomponent relativt ytan uppfyller

$$E_{\text{ovan}}^{\perp} A - E_{\text{under}}^{\perp} A = \frac{\sigma A}{\varepsilon_0},$$

där A är sidornas yta. Positiv riktning för fältets normalkomponent är ut från ytan. Vid att låta lådan bli oändligt tunn kommer även de andra sidorna inte att ge något bidrag, varför det här måste stämma. Vi får därmed att

$$E_{\text{ovan}}^{\perp} - E_{\text{under}}^{\perp} = \frac{\sigma}{\varepsilon_0}$$

Vi kan även betrakta en liten fyrkantig slinga på samma sätt, med två sidor parallella med ytan och två normala på ytan. Eftersom integralen av elektriska fältet kring en sluten kurva alltid är 0, får vi

$$E_{\text{ovan}}^{\parallel} - E_{\text{under}}^{\parallel} = 0.$$

Eftersom denna slingan kan ha vilken som helst orientering så länge man har två paralllella och två normala sidor, gäller det även på vektorform att

$$\mathbf{E}_{\text{ovan}}^{\parallel} - \mathbf{E}_{\text{under}}^{\parallel} = \mathbf{0}.$$

Dessa två resultat kan sammanfattas som

$$\mathbf{E}_{\mathrm{ovan}}^{\parallel} - \mathbf{E}_{\mathrm{under}}^{\parallel} = \frac{\sigma}{\varepsilon_0} \mathbf{n}.$$

Elektrostatisk potential Med vår kunnskap från vektoranalysen kan vi skriva

$$\mathbf{E} = -\frac{1}{4\pi\varepsilon_0} \int dV \, \rho \vec{\nabla} \frac{1}{R} = -\vec{\nabla} \left(\frac{1}{4\pi\varepsilon_0} \int dV \, \rho \frac{1}{R} \right).$$

Vi definierar därmed den elektrostatiska potentialen enligt

$$\mathbf{E} = -\vec{\nabla}V.$$

Från våran definition ser vi att nollnivån för potentialen kan sättas arbiträrt, då det elektriska fältet (som är det som är fysikaliskt) inte ändras om potentialen ändras med en konstant. Vi brukar lägga nollnivån i oändligheten.

Vi kan även från detta visa att

$$\vec{\nabla} \times \mathbf{E} = 0$$
.

Potential och elektrisk spänning Betrakta storheten $\mathbf{E} \cdot d\mathbf{r}$. Vi har

$$\mathbf{E} \cdot d\mathbf{r} = E_i dx_i = -\partial_i V dx_i = -dV.$$

Om vi nu jämför detta med den elektriska spänningen

$$U_{12} = \int_{\mathbf{r}_1}^{\mathbf{r}_2} \mathbf{dr} \cdot \mathbf{E}$$

mellan två punkter (som är den välkända spänningen vi känner från kretsvärlden), kan vi se att detta blir

$$U_{12} = \int_{\mathbf{r}_1}^{\mathbf{r}_2} d\mathbf{r} \cdot \mathbf{E} = -\int_{\mathbf{r}_1}^{\mathbf{r}_2} dV = V(\mathbf{r}_1) - V(\mathbf{r}_2),$$

oberoende av vägen mellan punkterna. Om vi lägger potentialens referens i oändligheten, ser vi då att

$$V(\mathbf{r}) = -\int_{-\infty}^{\mathbf{r}} d\mathbf{r} \cdot \mathbf{E},$$

ett typ inverst påstående av $\mathbf{E} = -\vec{\nabla}V$. Vi ser även från detta att

$$V(\mathbf{r}_2) - V(\mathbf{r}_1) = -\int_{\mathbf{r}_1}^{\mathbf{r}_2} d\mathbf{r} \cdot \mathbf{E}.$$

Potential och arbete Antag att du vill förflytta en laddning q i ett elektriskt fält. Den minsta kraften du måste verka med på laddningen för att göra detta är $\mathbf{F} = -q\mathbf{E}$, eftersom du arbetar mot det elektriska fältet. Arbetet du gör då är

$$W = \int_{\mathbf{r}_1}^{\mathbf{r}_2} d\mathbf{r} \cdot \mathbf{F} = -q \int_{\mathbf{r}_1}^{\mathbf{r}_2} d\mathbf{r} \cdot \mathbf{E} = q(V(\mathbf{r}_2) - V(\mathbf{r}_1)).$$

Med andra ord är potentialskillnaden mellan två punkter lika med arbetet som måste göras för att förflytta en laddning från ena punkten till den andra per laddning.

Randvillkor för potentialen För att betrakta randvillkor för potentialen vid en ytladdning, kan man integrera elektriska fältet längs med en rak linje normalt på ytaddningen över ytan och låta linjen bli godtyckligt kort. Då försvinner integralen, och vi får att potentialen är kontinuerlig. Randvillkoret för elektriska fältet kan skrivas i termer av potentialen som

$$\vec{\nabla}_{\mathbf{n}} V_{\text{över}} - \vec{\nabla}_{\mathbf{n}} V_{\text{under}} = -\frac{\sigma}{\varepsilon_0},$$

där $\vec{\nabla}_{\mathbf{n}}$ är riktningsderivatan i normalriktningen.

Elektrostatisk energi Vi är nu intresserade av energin som krävs för att skapa en viss laddningsfördelning. Vi kommer därför beräkna energin som krävs för att transportera all laddningen från oändligheten och placera den på rätt sätt.

Vi börjar med att betrakta en samling laddningar som ska ligga på avstånd r_{ij} från varandra. Att placera första laddningen på rätt plats kräver inget arbete. Att sen placera ut andra laddningen kommer kräva att man arbetar mot elektriska fältet från första. Man måste alltså göra ett arbete

$$W_2 = \frac{1}{4\pi\varepsilon_0} q_2 \frac{q_1}{r_{12}}.$$

På samma sätt måste laddning 3 motarbeta elektriska fältet från både 1 och 2. Det totala arbetet är därmed

$$W = \frac{1}{4\pi\varepsilon_0} \sum_{i=1}^n \sum_{j < i} \frac{q_i q_j}{r_{ij}}.$$

Eftersom $r_{ij} = r_{ji}$ kan vi nu skriva om den inre summan genom att i stället summera över alla andra partiklar än i, och lägga till en faktor $\frac{1}{2}$. Vi får då

$$W = \frac{1}{8\pi\varepsilon_0} \sum_{i=1}^n \sum_{j \neq i} \frac{q_i q_j}{r_{ij}}.$$

Vid att ordna om faktorerna får vi

$$W = \frac{1}{2} \sum_{i=1}^{n} q_i \sum_{j \neq i} \frac{q_j}{4\pi \varepsilon_0 r_{ij}} = \frac{1}{2} \sum_{i=1}^{n} q_i V_i(\mathbf{r}_i),$$

där V_i är potentialen som laddning i känner av på grund av alla de andra laddingarna. Ett uttryck man hade kunnat gissa sig fram till från början.

Vi generaliserar vidare vår definition till kontinuerliga laddningfördelningar som

$$W = \frac{1}{2} \int dV \, \rho V.$$

Vi kan med hjälp av resultaten från tidigare skriva detta som

$$W = \frac{1}{2} \int dV \, V \varepsilon_0 \vec{\nabla} \cdot \mathbf{E} = \frac{1}{2} \varepsilon_0 \int dV \, \vec{\nabla} \cdot V \mathbf{E} - \mathbf{E} \cdot \vec{\nabla} V = \frac{1}{2} \varepsilon_0 \left(\int d\mathbf{S} \cdot V \mathbf{E} + \int dV \, E^2 \right).$$

Nu kan vi fundera lite över integrationsdomänder. Om man tittar på den ursprungliga integralen, ger den inget bidrag där det inte finns laddning. Därför kan vi börja med att integrera exakt över området där det finns laddning. Om vi gör området större, kommer den ursprungliga integralen att vara oändrad. Däremot kommer integralen av elektriska fältets belopp öka, så ytintegralen måste minska motsvarande. Vi kan nu repetera processen tills vi integrerar över hela rummet. Då försvinner ytintegralen, vilket man kan argumentera lite bättre för, och kvar står

$$W = \frac{1}{2}\varepsilon_0 \int \mathrm{d}V \, E^2.$$

Det visar sig att om man använder resultatet för en laddningsfördelning på en diskret fördelning, får man inte samma svar. Detta är för att uttrycket för en diskret fördelning inte tar hänsyn till energin som krävs för att skapa punktladdningar till att börja med, vilket uttrycket för kontinuerliga fördelningar inkluderar. Denna finessen kom in i beräkningarna i övergången till kontinuerliga fördelningar, eftersom vi för diskreta fördelningar endast använde potentialen varje laddning känner på grund av alla andra. För kontinuerliga fördelningar är detta inte ett problem eftersom varje element har försvinnande liten laddning och därmed bidrar med försvinnande lite potential. För diskreta fördelningar gäller detta ej, dock.

Perfekta ledare En perfekt ledare har obegränsat med fria laddningar som kan röra sig i materialet. Från detta följer att

- $\mathbf{E} = \mathbf{0}$ överallt inuti ledaren. Annars skulle någon av de fria laddningarna påverkas av fältet och röra sig sån att de kansellerade det.
- $\rho = \varepsilon_0 \vec{\nabla} \cdot \mathbf{E} = 0$ inuti ledaren. Därmed är alla fria laddningar på ytan.
- \bullet V är konstant inuti ledaren.
- $\mathbf{E} = \frac{\sigma}{\varepsilon_0} \mathbf{e_n}$ precis utanför ledaren på grund av elektriska fältets randvillkor, alternativt eftersom tangentiella komponenter skulle transportera laddningar på ytan som skulle kansellera fältet.

Kraften på en ytladdning Kring en ytladdning är elektriska fältet diskontinuerligt, så hur beräknar man kraften på en sådan? Med hjälp av superposition kan elektriska fältet skrivas som en summa av bidrag från själva laddningen och allt annat. Denna termen är kontinuerlig i ytan eftersom man skulle kunna ta bort ytladdningen utan att ändra den. Vidare ger randvillkoren att fältet på varje sida skiljer sig med en term $\pm \frac{\sigma}{2\varepsilon_0} \mathbf{e_n}$, som försvinner om man tar medelvärdet. Alltså ges kraften av laddningen gånger medelärdet av fältet på varje sida.

Kraften på en ledare Betrakta en ledare som specialfall. Här får vi en krafttäthet

$$\mathbf{f} = \frac{\sigma^2}{2\varepsilon_0} \mathbf{e_n},$$

som motsvarar ett tryck utåt på laddaren - oberoende av vilken sorts ytladdning man har! I termer av elektriska fältet kan trycket skrivas som

$$p = \frac{1}{2}\varepsilon_0 E^2.$$

Kapacitans Betrakta först två ledare med olika laddningar $\pm q$. Man kan se av integraluttrycket för elektriska fältet att det är proportionellt mot q. Eftersom potentialskillnaden mellan ledarna är en integral av elektriska fältet, är även denna proportionell mot q. Vi definierar därmed systemets kapacitans som proportionalitetskonstanten mellan de två, alltså

$$Q = CV$$
.

Betrakta nu ett system av olika ledare, med var sin potential och laddning. Vi har även någon potentialreferens. Vi kan börja med att sätta alla potentialer förutom en till 0, och räkna ut alla Q_i . Vid att superponera alla dina resultat får du en mängd slutgiltiga samband på formen $Q_i = C_{ij}V_j$. Detta definierar kapacitansmatrisen. Man kan visa/argumentera för att matrisen är symmetrisk och positivt definit.

Energin för ett system av ledare För ett system av ledare har vi

$$W = \frac{1}{2} \int dV \rho V$$

$$= \frac{1}{2} \int_{\text{ledare } i} dS \sigma_i V_i$$

$$= \frac{1}{2} V_i \int_{\text{ledare } i} dS \sigma_i$$

$$= \frac{1}{2} V_i Q_i.$$

Om vi använder kapacitansmatrisen får vi

$$W = \frac{1}{2} V_i C_{ij} V_j.$$

För en enda kondensator blir detta

$$W = \frac{1}{2}CV^2 = \frac{1}{2C}Q^2.$$

Poissons ekvation Om vi tittar på våra resultat, får vi nu Poissons ekvation

$$\nabla^2 V = -\frac{\rho}{\varepsilon_0}.$$

Entydighetssats för potentialen Betrakta en region H med känd laddningstäthet som innehåller tre regioner avgränsade av ytorna S_D , S_N och S_Q (med normalvektorerna pekande in mot de avgränsade regionerna). På S_D är $V = V_S$ känd. På S_N är $\vec{\nabla}_{\mathbf{n}}V = -E_{\mathbf{n}}$ känd. S_Q är en perfekt ledare med känd total ytladdning Q. Vi vill försöka visa att elektriska fältet är entydigt i H.

För att visa detta, antag att vi har två lösningar V_1 och V_2 och bilda $V_0 = V_1 - V_2$. Då vet vi att $\nabla^2 V_0 = 0$ i $H, V_0 = 0$ på S_D och S_Q , att $\vec{\nabla}_{\mathbf{n}} V_0 = 0$ på S_N och $\int\limits_{S_Q} \mathrm{d}S \, \vec{\nabla}_{\mathbf{n}} V_0 = 0$. Detta stämmer eftersom

$$\int\limits_{S_Q} \mathrm{d}S\,\sigma = \int\limits_{S_Q} \mathrm{d}S\,\sigma$$

Vi får därmed

$$\int_{S_D + S_O + S_N} dS \, V_0 \vec{\nabla}_{\mathbf{n}} V_0 = \int_H dV \, V_0 \nabla^2 V_0 + \left| \vec{\nabla} V_0 \right|^2 = \int_H dV \, \left| \vec{\nabla} V_0 \right|^2.$$

På S_D och S_N är en av faktorerna i integranden lika med 0, så vi behöver endast betrakta S_Q . Här har vi att V_0 måste vara konstant på ytan, vilket ger

$$\int_{S_O} dS V_0 \vec{\nabla}_{\mathbf{n}} V_0 = V_0 \int_{S_O} dS \vec{\nabla}_{\mathbf{n}} V_0 = 0,$$

vilket implicerar

$$\vec{\nabla}V = \mathbf{E}_2 - \mathbf{E}_1 = \mathbf{0},$$

och beviset är klart.

Speglingsmetoder Vissa problem kan lösas med speglingsmetoder. Då kan man ersätta vissa komponenter av ett problem med andra på ett sådant sätt att randvillkor som ges i problemet fortfarande är uppfylda.

Spegling och potentialen från två linjeladdningar Vi kommer behöva lite standardlösningar för att använda när vi speglar problem. Vi betraktar därför först två oändligt långa parallella linjeladdningar med laddning $\pm \lambda$ per längd separerade med ett avstånd 2h. Problemet är tvådimensionellt, och vi inför \mathbf{s} som vektorn från punkten mitt emellan laddningarna till en godtycklig punkt i planet. Elektriska fältet från laddningen till höger, som vi döper nummer 1, ges av $\mathbf{E} = \frac{\lambda}{2\pi\varepsilon_0|\mathbf{s}-\mathbf{s}_1|}\mathbf{e}'_{\mathbf{s}}$, där $\mathbf{s}_1 = h\mathbf{e}_{\mathbf{x}}$ och $\mathbf{e}'_{\mathbf{s}}$ pekar i samma riktning som $\mathbf{s} - \mathbf{s}_1$. Vi definierar V = 0 där $\mathbf{s} = 0$ och får

$$V(\mathbf{s}) = -\int_{0}^{\mathbf{s}} d\mathbf{s}' \cdot \frac{\lambda}{2\pi\varepsilon_{0}|\mathbf{s}' - \mathbf{s}_{1}|} \mathbf{e}'_{\mathbf{s}} = -\int_{-\mathbf{s}_{1}}^{\mathbf{s} - \mathbf{s}_{1}} d\mathbf{u}' \cdot \frac{\lambda}{2\pi\varepsilon_{0}u'} \mathbf{e}'_{\mathbf{u}}.$$

Vi har rotationssymmetri i planet, och kan därmed välja en radiell riktning för integrationen, vilket ger

$$V(\mathbf{s}) = -\frac{\lambda}{2\pi\varepsilon_0} \ln \frac{|\mathbf{s} - \mathbf{s}_1|}{|-\mathbf{s}_1|} = -\frac{\lambda}{2\pi\varepsilon_0} \ln \frac{|\mathbf{s} - \mathbf{s}_1|}{h}.$$

Den totala potentialen är därmed

$$V(\mathbf{s}) = \frac{\lambda}{2\pi\varepsilon_0} \ln \frac{|\mathbf{s} - \mathbf{s}_2|}{|\mathbf{s} - \mathbf{s}_1|}.$$

Ekvipotentialytorna uppfyller $V = V_0$, vilket ger

$$\frac{|\mathbf{s} - \mathbf{s}_2|}{|\mathbf{s} - \mathbf{s}_1|} = e^{\frac{2\pi\varepsilon_0 V_0}{\lambda}}.$$

Vi definierar $u=\frac{2\pi\varepsilon_0 V_0}{\lambda}$ och skriver om avstånden på vänstersidan för att få

$$\frac{(x+h)^2 + y^2}{(x-h)^2 + y^2} = e^{2u}.$$

Detta ger

$$x^{2} + 2xh + h^{2} + y^{2} = e^{2u}(x^{2} - 2xh + h^{2} + y^{2})$$

$$x^{2}(1 - e^{2u}) + 2xh(1 + e^{2u}) + y^{2}(1 - e^{2u}) = h^{2}(e^{2u} - 1),$$

$$x^{2}(e^{-u} - e^{u}) + 2xh(e^{-u} + e^{u}) + y^{2}(e^{-u} - e^{u}) = h^{2}(e^{u} - e^{-u}),$$

$$-x^{2} \sinh u + 2xh \cosh u - y^{2} \sinh u = h^{2} \sinh u,$$

$$x^{2} - 2xh \coth u + h^{2} + y^{2} = 0,$$

$$x^{2} - 2xh \coth u + h^{2} \left(\coth^{2} u - \frac{1}{\sinh^{2} u}\right) + y^{2} = 0,$$

$$(x - h \coth u)^{2} + y^{2} = \frac{h^{2}}{\sinh^{2} u}$$

Det är alltså en cirkel med centrum i $h \coth u \mathbf{e_x}$ och radie $a = \frac{h}{|\sinh u|}$. Avstånden från cirkelns centrum till de två laddningarna är

$$d_1 = h|\coth u - 1|, \ d_2 = h|\coth u + 1|.$$

Eftersom $|\coth u| > 1$, får vi

$$d_1d_2 = h^2(\coth^2 u - 1) = \frac{h^2}{\sinh^2 u} = a^2.$$

Speglingsstrategin är nu att om du har en linjeladdning λ parallell med en ledande cirkulärcylindrisk yta med radien a och laddning $-\lambda$ per längd, och avståndet från cylinderaxeln till linjeladdningen är d, kan cylinderytan ersättas med en linjeladdning $\lambda_{\rm s}=-\lambda$ ett avstånd $d_{\rm s}=\frac{a^2}{d}$ från cylinderaxeln.

Spegling och potentialen från två punktladdningar Betrakta två punktladdningar liggande på z-axeln, där den översta, döpt nummer 1, ligger i punkten $h\mathbf{e}_{\mathbf{z}}$ och den andra i origo. Problemet är cylindersymmetriskt, så vi inför cylinderkoordinater. Potentialen är då

$$V = \frac{1}{4\pi\varepsilon_0} \left(\frac{q_1}{\sqrt{\rho^2 + (z - h)^2}} + \frac{q_2}{\sqrt{\rho^2 + z^2}} \right).$$

Ekvipotentialytorna för en nollskild potential är komplicerade, men ekvipotentialytan för V=0 ges av

$$\frac{q_1}{\sqrt{\rho^2 + (z - h)^2}} + \frac{q_2}{\sqrt{\rho^2 + z^2}} = 0,$$

$$k = \frac{q_1}{q_2} = -\frac{\sqrt{\rho^2 + (z - h)^2}}{\sqrt{\rho^2 + z^2}},$$

$$\rho^2(k^2 - 1) + k^2 z^2 = (z - h)^2,$$

$$z^2(1 - k^2) - 2zh + h^2 = \rho^2(k^2 - 1),$$

$$\rho^2 + z^2 - \frac{2zh}{1 - k^2} + \frac{h^2}{1 - k^2} = 0,$$

$$\rho^2 + \left(z - \frac{h}{1 - k^2}\right) - \frac{h^2}{(1 - k^2)^2} + \frac{h^2}{1 - k^2} = 0,$$

$$\rho^2 + \left(z - \frac{h}{1 - k^2}\right) = \frac{h^2 k^2}{(1 - k^2)^2}.$$

Detta är en sfär med centrum i $\frac{1}{1-k^2}h\mathbf{e_z}$ och radius $a=h\left|\frac{k}{1-k^2}\right|$. Notera att det är en förutsättning att k<0, alltså att laddningarna har olika tecken.

Om vi nu antar $k^2 > 1$ ligger sfärens centrum under laddning 2. Avstånden från sfärens centrum till de två punktladdningarna är då

$$d_2 = \frac{1}{k^2 - 1}h, \ d_1 = h + d_2 = \frac{k^2}{k^2 - 1}h.$$

Detta ger

$$d_1d_2 = a^2$$
, $k = -\sqrt{\frac{d_1}{d_2}} = -\frac{d_1}{a} = -\frac{a}{d_2}$.

Speglingsstrategin är nu att om du har en punktladdning q ett avstånd d från centrum av en jordad ledande sfärisk yta med radien a, kan ledaren ersättas med en punktladdning $q_s = -q\frac{a}{d}$ ett avstånd $d_s = \frac{a^2}{d}$ från sfärens centrum (bort från punktladdningen).

Laplace' ekvation i sfäriska koordinater Vid att ställa upp Poissons ekvation i sfäriska koordinater på ett laddningsfritt domän som avgränsas av två sfäriska skal får man Laplace' ekvation. Den har allmän lösning på formen

$$V = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \left(A_{lm} r^{l} + \frac{B_{lm}}{r^{l+1}} \right) Y_{lm}(\theta, \phi),$$

där Y_{lm} är klotytefunktionerna. A_{lm} bestäms av laddningarna utanför det yttre skalet och B_{lm} av laddningarna innanför det inre skalet.

Vi har allmänt att

$$Y_{lm}(\theta,\phi) \propto P_l^m(\cos\theta)e^{im\phi},$$

där P_l^m är Legendrepolynomen. I fall som är rotationssymmetriska med avseende på xy-planet kan lösningen därför förenklas till

$$V = \sum_{l=0}^{\infty} \left(A_l r^l + \frac{B_l}{r^{l+1}} \right) P_l^0(\cos \theta).$$

Anpassningsmetod Betrakta ett fall likt fallet ovan där vi även känner V på z-axeln. Eftersom $P_l(1) = 1$ och $P_l(-1) = (-1)^l$ får vi längs z-axeln

$$V = \sum_{l=0}^{\infty} \left(A_l |z|^l + \frac{B_l}{|z|^{l+1}} \right) \begin{cases} 1, & z > 0, \\ (-1)^l, & z < 0. \end{cases}$$

Elektriska dipolen Betrakta två punktladdningar på en linje. Linjen går genom origo, och laddningarna ligger lika långa avstånd $\frac{1}{2}d$ från origo. Potentialen i punkten \mathbf{r} , som ligger ett avstånd R_+ respektiva R_- från de två laddningarna, ges av

$$V = \frac{q}{4\pi\varepsilon_0 R_+} - \frac{q}{4\pi\varepsilon_0 R_-} = \frac{q}{4\pi\varepsilon_0} \frac{R_- - R_+}{R_+ R_-}.$$

Om r >> d fås

$$V \approx \frac{q}{4\pi\varepsilon_0} \frac{d\cos\theta}{r^2}$$

där θ är vinkeln mellan ${\bf r}$ och linjen. Vi kan då skriva detta som

$$V = \frac{q}{4\pi\varepsilon_0} \frac{\mathbf{d} \cdot \mathbf{e_r}}{r^2}.$$

Vi definierar nu dipolmomentet $\mathbf{p} = q\mathbf{d}$, och får då

$$V = \frac{\mathbf{p} \cdot \mathbf{e_r}}{4\pi\varepsilon_0 r^2}.$$

Notera att vi kan skriva dipolmomentet som $\mathbf{p} = \sum q_i \mathbf{r}_i$.

Ideala dipoler En ideal dipol fås i gränsen för en dipol när d blir oändligt liten på ett sådant sätt att \mathbf{p} hålls konstant.

Fältet från en dipol Fältet från en dipol ges av

$$\mathbf{E} = -\vec{\nabla} \frac{\mathbf{p} \cdot \mathbf{e_r}}{4\pi\varepsilon_0 r^2} = -\vec{\nabla} \frac{\mathbf{p} \cdot \mathbf{r}}{4\pi\varepsilon_0 r^3}$$

I nämnaren har vi

$$\mathbf{p} \cdot \mathbf{r} = p_i r_i \implies \partial_i \mathbf{p} \cdot \mathbf{r} = p_i \implies \vec{\nabla} \mathbf{p} \cdot \mathbf{r} = \mathbf{p}.$$

Vi får då

$$\mathbf{E} = -\frac{1}{4\pi\varepsilon_0} \left(\frac{\mathbf{p}}{r^3} - \frac{3\mathbf{p} \cdot \mathbf{r}}{r^4} \vec{\nabla} r \right) = \frac{1}{4\pi\varepsilon_0 r^3} \left(3(\mathbf{p} \cdot \mathbf{e_r}) \mathbf{e_r} - \mathbf{p} \right).$$

Dipolmoment för en laddningsfördelning För en laddningsfördelning ges dipolmomentet av

$$\mathbf{p} = \int \mathrm{d}V \, \mathbf{r} \rho.$$

Förflyttning av koordinatsystem och dipolmoment Vid förflyttning av origo en sträcka a fås

$$\mathbf{p}' = \int dV \, \mathbf{r}' \rho = \int dV \, (\mathbf{r} - \mathbf{a}) \rho = \mathbf{p} - q\mathbf{a}.$$

Alltså beror dipolmomentet av origos position om det finns en netto mängd laddning i systemet.

Multipolutveckling Betrakta en punkt \mathbf{r} och en annan punkt \mathbf{r}' . Vid att definiera $\mathbf{R} = \mathbf{r} - \mathbf{r}'$ får vi att om de två punkterna inte är samma, är $\nabla^2 \frac{1}{R} = 0$ överallt förutom där $\mathbf{R} = \mathbf{0}$. Vid att lägga vårat koordinatsystem så att \mathbf{r}' är parallell med z-axeln och definiera vinkeln mellan \mathbf{r} och \mathbf{r}' som γ fås

$$\frac{1}{R} = \begin{cases} \sum_{l=0}^{\infty} A_l r^l P_l(\cos \gamma), & r < r', \\ \sum_{l=0}^{\infty} \frac{B_l}{r^l} P_l(\cos \gamma), & r > r'. \end{cases}$$

Speciellt, på z-axeln är $\gamma = 0$ och

$$\frac{1}{R} = \frac{1}{r_{>} - r_{<}} = \frac{1}{r_{>}} \left(1 - \frac{r_{<}}{r_{>}} \right)^{-1} = \frac{1}{r_{>}} \sum_{l=0}^{\infty} \left(\frac{r_{<}}{r_{>}} \right)^{l} = \sum_{l=0}^{\infty} \frac{r_{<}^{l}}{r_{>}^{l+1}},$$

där $r_{<} = \min(r', r)$ och $r_{>} = \max(r', r)$. Vi utvidgar därmed lösningen till

$$\frac{1}{R} = \sum_{l=0}^{\infty} \frac{r_{\leq}^l}{r_{>}^{l+1}} P_l(\cos \gamma).$$

Vi söker nu potentialen utanför en sfär som omsluter en rumladdning. Vid att låta \mathbf{r} peka utanför sfären och \mathbf{r}' inuti fås $r_{<} = r', \ r_{>} = r$ och

$$V = \frac{1}{4\pi\varepsilon_0} \int dV' \frac{\rho}{R} = \frac{1}{4\pi\varepsilon_0} \sum_{l=0}^{\infty} \frac{1}{r^{l+1}} \int dV' (r')^l \rho P_l(\cos\gamma) = \sum_{l=0}^{\infty} V_l.$$

De olika V_l kommer ge oss termer som ser ut som olika multipoler, och vi vill nu studera dem. Vi noterar först att om e_i respektiva e'_i är komponenterna av $\mathbf{e_r}$ respektiva $\mathbf{e'_r}$, kan vi skriva

$$\cos(\gamma) = e_i e'_i, \cos^2(\gamma) = e_i e'_i e_i e'_i, 1 = e_i e_i = e_i e_j \delta_{ij}.$$

För l=0 får vi

$$V_0 = \frac{1}{4\pi\varepsilon_0} \frac{1}{r} \int dV' \, \rho,$$

alltså ett bidrag motsvarande en punktladdning med samma totala laddning i origo. För l=1 fås

$$V_{1} = \frac{1}{4\pi\varepsilon_{0}} \frac{1}{r^{2}} \int dV' \, r' \rho P_{1}(\cos \gamma)$$

$$= \frac{1}{4\pi\varepsilon_{0} r^{2}} \int dV' \, r' \cos \gamma \rho$$

$$= \frac{1}{4\pi\varepsilon_{0} r^{2}} \int dV' \, r' e_{i} e'_{i} \rho$$

$$= \frac{e_{i}}{4\pi\varepsilon_{0} r^{2}} \int dV' \, r'_{i} \rho$$

$$= \frac{1}{4\pi\varepsilon_{0} r^{2}} \cdot \int dV' \, r'_{i} \rho$$

alltså ett bidrag motsvarande en dipol med samma totala dipol
moment i origo. För l=2 fås

$$V_2 = \frac{1}{4\pi\varepsilon_0} \frac{1}{r^3} \int dV' \, r'^2 \rho P_2(\cos\gamma)$$

$$= \frac{1}{8\pi\varepsilon_0 r^3} \int dV' \, r'_i r'_i \rho (3\cos^2(\gamma) - 1)$$

$$V_2 = \frac{1}{8\pi\varepsilon_0 r^3} \int dV' \, r'_k r'_k \rho (3\cos^2(\gamma) - 1)$$

$$= \frac{1}{8\pi\varepsilon_0 r^3} \int dV' \, r'_k r'_k \rho (3e_i e'_i e_i e'_j - e_i e_j \delta_{ij})$$

$$= \frac{1}{8\pi\varepsilon_0 r^3} e_i e_j \int dV' \, r'_k r'_k \rho (3e'_i e'_j - \delta_{ij})$$

$$= \frac{1}{8\pi\varepsilon_0 r^3} e_i e_j \int dV' \, \rho (3r'_i r'_j - (r')^2 \delta_{ij}).$$

Vi definierar nu kvadrupolmomentstensorn

$$Q_{ij} = \frac{1}{2} \int dV' \, \rho(3r_i'r_j' - (r')^2 \delta_{ij}),$$

vilket ger

$$V = \frac{e_i Q_{ij} e_j}{4\pi\varepsilon_0 r^3}.$$

Detta är kvadrupolbidraget.

Allmänt blir det l:te bidraget på formen

$$V_l = \frac{Q_{i_1 \dots i_l} e_{i_1} \dots e_{i_l}}{4\pi \varepsilon_0 r^{l+1}}.$$

Additionssatsen Hellre än att hantera komponenterna av kvadrupolmomentstensorn, använder vi en sats som säjer

$$P_l(\cos \gamma) = \frac{4\pi}{2l+1} \sum_{m=-l}^{l} Y_{lm}(\theta, \phi) Y_{lm}^*(\theta', \phi').$$

Då kan vi skriva

$$\sum_{l=0}^{\infty} V_l, \ V_l = \frac{1}{(2l+1)\varepsilon_0 r^{l+1}} \sum_{m=-l}^{l} q_{lm} Y_{lm}(\theta, \phi),$$

där q_{lm} är det sfäriska multipolmomentet

$$q_{lm} = \int dV * \rho(r')^l) Y_{lm}^*(\theta', \phi').$$

Varje V_l har alltså 2l+1 oberoende komponenter, vilket på grund av multipolmomenttensorernas symmetri och spårlöshet är lika med antalet oberoende komponenter i multipolmomenttensorn.