234

On considère la suite de matrices colonnes (U_n) définie par $U_0 = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$ et pour tout entier naturel n, $U_{n+1} = AU_n$ avec $A = \begin{pmatrix} -1 & 2 \\ 1 & 0.5 \end{pmatrix}$.

- 1. Calculer à la main U_1 et U_2 .
- **2.** Exprimer U_n en fonction de n et déterminer la matrice U_{10} à l'aide de la calculatrice.

235

On considère la suite de matrices colonnes (U_n) définie par $U_0 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ et pour tout entier naturel n, $U_{n+1} = AU_n$ avec $A = \begin{pmatrix} 3 & 0 \\ 0 & 2 \end{pmatrix}$.

- 1. Montrer que la suite (U_n) diverge.
- **2.** La suite (U_n) a-t-elle un état stable?

236

On considère deux suites de nombres réels (x_n) et (y_n) vérifiant pour tout entier naturel :

$$x_{n+1} = 5x_n + 3y_n$$
 et $y_{n+1} = -2x_n + 6y_n$.

- 1. On donne $x_3 = 284$ et $y_3 = -56$. Déterminer x_0 et y_0 grâce au calcul matriciel.
- **2.** Déterminer x_6 et y_6 grâce au calcul matriciel.

237

On considère la suite de matrices colonnes (U_n) définie par $U_0 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ et pour tout entier naturel n, $U_{n+1} = AU_n$ avec $A = \begin{pmatrix} 2 & 3 & 1 \\ 5 & 2 & 4 \\ 8 & 2 & 1 \end{pmatrix}$.

Déterminer si cette suite possède un état stable.

238

On considère les matrices $A = \begin{pmatrix} 0, 2 & 0, 1 \\ 0 & 0, 1 \end{pmatrix}$,

 $B = \begin{pmatrix} 0, 4 & 0, 4 \end{pmatrix}$ et $U_0 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ et on considère la suite de matrices (U_n) telles que pour tout entier naturel n,

$$U_{n+1} = AU_n + B$$
.

- 1. Déterminer une matrice colonne U telle que U = AU + B.
- **2.** On pose $V = U_n U$.
 - **a.** Montrer que pour tout entier naturel n, $V_{n+1} = AV_n$ et en déduire l'expression de V_n en fonction de n.
 - **b.** En déduire l'expression de U_n en fonction de n.
- **3.** Étudier la convergence de la suite (U_n) .

239

On considère les matrices $A = \begin{pmatrix} \frac{1}{2} & 0 \\ -\frac{1}{2} & \frac{1}{2} \end{pmatrix}$,

$$C = \begin{pmatrix} 1 & 1 \end{pmatrix}$$
 et $U_0 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$.

On considère la suite (U_n) de matrices colonnes par :

$$U_{n+1} = AU_n + C.$$

Montrer que la suite (U_n) converge vers une matrice limite L à déterminer.

240

Dans chacun des cas suivants, justifier que la matrice P est une matrice de transition, puis représenter le graphe pondéré associé à P.

$$1. P = \begin{pmatrix} 0, 25 & 0, 75 \\ 0, 5 & 0, 5 \end{pmatrix}.$$

$$\mathbf{2.} \ P = \begin{pmatrix} 0.9 & 0.1 & 0 \\ 0.3 & 0.2 & 0.5 \\ 0.2 & 0 & 0.8 \end{pmatrix}.$$

3.
$$P = \begin{pmatrix} \frac{1}{4} & \frac{5}{8} & \frac{1}{8} \\ \frac{1}{6} & \frac{1}{3} & \frac{1}{2} \\ 0 & 0 & 1 \end{pmatrix}.$$

241

1. Compléter le graphe suivant puis donner la matrice de transition associée :

2. Mêmes questions qu'au 1. avec le graphe suivant :

242

Pour déterminer la distribution après n transitions d'une chaîne de Markov, Lorea a écrit le script de la fonction distribution d'argument n suivant :

- 1. Donner la matrice de transition et la distribution initiale de cette chaîne de Markov.
- 2. À l'aide de cette fonction, conjecturer le comportement asymptotique de cette chaîne.
- 3. Vérifier le résultat précédent par le calcul.

- 1. La matrice $P = \begin{pmatrix} 0, 3 & 0, 7 \\ 0, 8 & 0, 2 \end{pmatrix}$ est la matrice de transition associée à une chaîne de Markov.
 - a. Représenter le graphe associé.
 - **b.** Déterminer la distribution invariante de cette chaîne. En déduire le comportement asymptotique de cette chaîne.

Les scientifiques estiment qu'un seul individu est à l'origine de la maladie sur les 100 personnes que compte la population et que, d'une semaine à la suivante, un individu change d'état suivant le processus suivant :

- parmi les individus sains, la proportion de ceux qui deviennent porteurs sains est égale à $\frac{1}{3}$ et la proportion de ceux qui deviennent malades est égale à $\frac{1}{3}$,
- parmi les individus porteurs sains, la proportion de ceux qui deviennent malades est égale à $\frac{1}{2}$.

La situation peut être représentée par un graphe probabiliste comme ci-dessous.

On note $\pi_n = (s_n \ i_n \ m_n)$ la matrice ligne donnant la distribution au bout de n semaines où s_n, i_n et m_n désignent respectivement la probabilité que l'individu soit sain, porteur sain ou malade la n-ième semaine.

On a alors $\pi_0 = (0, 99 \quad 0 \quad 0, 01)$ et pour tout entier naturel n,

$$\begin{cases} s_{n+1} &= \frac{1}{3}s_n \\ i_{n+1} &= \frac{1}{3}s_n + \frac{1}{2}i_n \\ m_{n+1} &= \frac{1}{3}s_n + \frac{1}{2}i_n + m_n \end{cases}$$

1. Écrire la matrice A appelée matrice de transition, telle que pour tout entier naturel n,

$$\pi_{n+1} = \pi_n \times A.$$

- 2. Démontrer par récurrence que pour tout entier naturel n non nul, $\pi_n = \pi_0 \times A^n$.
- **3.** Quelle est la probabilité, arrondie à 10^{-2} près, qu'un individu soit sain au bout de quatre semaines?

Un atome d'hydrogène peut se trouver dans deux états différents, l'état stable et l'état excité. À chaque nanoseconde, l'atome peut changer d'état.

Partie A - Étude d'un premier milieu

Dans cette partie, on se place dans un premier milieu (milieu 1) où, à chaque nanoseconde, la probabilité qu'un atome passe de l'état stable à l'état excité est 0,005, et la probabilité qu'il passe de l'état excité à l'état stable est 0,6.

On observe un atome d'hydrogène initialement à l'état stable

On note a_n la probabilité que l'atome soit dans un état stable et b_n la probabilité qu'il se trouve dans un état excité, n nanosecondes après le début de l'observation.

On a donc $a_0 = 1$ et $b_0 = 0$.

 $X_n = X_0 A^n$.

On appelle X_n la matrice ligne $X_n = (a_n \ b_n)$.

L'objectif est de savoir dans quel état se trouvera l'atome d'hydrogène à long terme.

- 1. Calculer a_1 puis b_1 et montrer que $a_2 = 0.993 025$ et $b_2 = 0.006 975$.
- 2. Déterminer la matrice A telle que, pour tout entier naturel n, $X_{n+1} = X_n A$. A est appelée matrice de transition dans le milieu 1.

 On admet alors que, pour tout entier naturel n,
- **3.** On définit la matrice P par $P = \begin{pmatrix} 1 & -1 \\ 1 & 120 \end{pmatrix}$.

On admet que P est inversible et que

$$P^{-1} = \frac{1}{121} \begin{pmatrix} 120 & 1 \\ -1 & 1 \end{pmatrix}.$$

Déterminer la matrice D définie par $D = P^{-1}AP$.

- 4. Démontrer que, pour tout entier naturel n, $A^n = PD^nP^{-1}$.
- **5.** On admet par la suite que, pour tout entier naturel n,

$$A^n = \frac{1}{121} \begin{pmatrix} 120 + 0,395^n & 1 - 0,395^n \\ 120 \left(1 - 0,395^n\right) & 1 + 120 \times 0,395^n \end{pmatrix}.$$

En déduire une expression de a_n en fonction de n.

6. Déterminer la limite de la suite (a_n) . Conclure.

Partie B - Étude d'un second milieu

Dans cette partie, on se place dans un second milieu (milieu 2), dans lequel on ne connaît pas la probabilité que l'atome passe de l'état excité à l'état stable. On note a cette probabilité supposée constante. On sait, en revanche, qu'à chaque nanoseconde, la probabilité qu'un atome passe de l'état stable à l'état excité est 0,01.

- 1. Donner, en fonction de a, la matrice de transition M dans le milieu 2.
- 2. Après un temps très long, dans le milieu 2, la proportion d'atomes excités se stabilise autour de 2%.

On admet qu'il existe un unique vecteur X, appelé état stationnaire, tel que XM = X, et

que $X = (0, 98 \quad 0, 02)$.

Déterminer la valeur de a.