Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського" Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи № 2 з дисципліни «Алгоритми та структури даних-1. Основи алгоритмізації»

«Дослідження алгоритмів розгалуження»

Варіант 6

Виконав	студент	111-13 Вдовиченко Станіслав Юріиович
		(шифр, прізвище, ім'я, по батькові)
Перевіри	В	
		(прізвище, ім'я, по батькові)

Лабораторна робота 2 Дослідження алгоритмів розгалуження

• **Мета** — дослідити подання керувальної дії чергування у вигляді умовної та альтернативної форм та набути практичних навичок їх використання під час складання програмних специфікацій.

Варіант 6:

Визначити, чи дорівнює одному із заданих чисел \mathbf{r} або \mathbf{s} залишок, отриманий при діленні невід'ємного цілого числа \mathbf{a} на додатне ціле число \mathbf{b} .

• Постановка задачі

Задаємо змінні \mathbf{r} , \mathbf{s} , \mathbf{a} , \mathbf{b} . Перевіряємо, чи є змінна \mathbf{a} невід'ємним цілим числом, чи є змінна \mathbf{b} додатним цілим числом.

Ділимо \mathbf{a} на \mathbf{b} , остачу порівнюємо з \mathbf{r} та \mathbf{s} .

Розв'язання.

Програмні специфікації запишемо у псевдокоді та графічній формі у вигляді блок-схеми.

- Крок 1. Визначимо основні дії.
- Крок 2. Деталізуємо перевірку значень заданих змінних.
- Крок 3. Деталізуємо дію ділення і знаходження остачі.
- Крок 4. Деталізуємо перевірку рівності остачі і заданих змінних.

• Математична модель

Вводимо змінну ost, в яку буде вкладатися значення остачі.

Остачу (ost) знайдемо за формулою : $\mathbf{a} \mod \mathbf{b}$ (функція mod повертає остачу від цілочисельного ділення);

При заданні змінних \mathbf{a} та \mathbf{b} при одразу визначаємо їх тип як цілий(integer), тому проводити перевірку на їх тип (\mathbf{a} та \mathbf{b} — цілі числа) не потрібно.

Вводимо змінну result (логічного типу), значення якої будуть визначати:

- true всі значення підходять, рівність доведена.
- false значення не підходять або рівність не доведена.

Змінна	Тип	Ім'я	Призначення
Значення	Дійсний	r	Вхідні дані
Значення	Дійсний	S	Вхідні дані
Значення	Цілий	a	Вхідні дані
Значення	Цілий	b	Вхідні дані
Остача від	Дійсний	ost	Проміжне
ділення			значення
Значення	Логічний	result	Вихідні дані

• Псевдокод

```
Крок 1.
Початок
Введення змінних
Перевірка змінних
Ділення, відокремлення остачі
Порівняння остачі з заданими змінними
Виведення результату
Кінець
Крок 2.
Початок
Введення r,s,a,b
       якшо a \ge 0 \&\& b > 0
             TO
                Ділення, відокремлення остачі
                Порівняння остачі з заданими змінними
              інакше
       все якщо
Виведення результату
Кінець
Крок 3.
Початок
Введення r,s,a,b
       якщо a \ge 0 \&\& b > 0
              TO
                ost := a \mod b
                 Порівняння остачі з заданими змінними
              інакше
                 result = false
       все якщо
Виведення результату
Кінець
```

```
Крок 4. 
Початок Введення r,s,a,b 
якщо a>=0 && b>0 
то 
ost:= a mod b 
якщо ost == r \parallel ost == s 
то 
result = true 
інакше 
result = false 
все якщо 
інакше 
result = false
```

Виведення result

Кінець

• Блок-схема

• Випробування алгоритму

Перевіримо правильність алгоритму на довільних конкретних значеннях початкових даних.

Блок	Дія
	Початок
1	Введення $a=5$, $b=2$, $r=3$, $s=5$
2	Перевірка: $5 \ge 0$, $2 > 0$
3	$ost = 5 \mod 2 = 1$
4	Перевірка: 1 != 3, 1 != 5
5	result = false
6	Виведення false
	Кінець

Блок	Дія
	Початок
1	Введення $a = -1$, $b = 5$, $r = 10$, $s = 21$
2	Перевірка: -1 < 0
3	result = false
4	Виведення false
	Кінець

Блок	Дія
	Початок
1	Введення $a = 20, b = 3, r = 6, s = 2$
2	Перевірка: $20 >= 0$, $3 > 0$
3	$ost = 20 \mod 3 = 2$
4	Перевірка: 2 !=6, 2 == 2
5	result = true
6	Виведення true
	Кінець

• Висновок

Я дослідив дії чергування у вигляді умовної та альтернативної форм та набув практичних навичок їх використання під час складання програмних специфікацій. В результаті виконання лабораторної роботи я отримав алгоритм для перевірки рівності остачі від ділення та заданих змінних: спочатку перевірив задані змінні, потім перевірив рівність остачі та інших змінних з використанням альтернативної форми вибору.