Assignment 6 MAT 457

Q2: Since F(x) is right continuous, and defined on [a, b] we have that $F(x) \in L^1$. Furthermore we have that each $F_i \in L^1$. By Folland 2.23 b, it is sufficient to show that

$$\int_{(a,x]} F'(t)dt = \int_{(a,x]} \sum_{j} F'(t)dt.$$

Note that by Lebesgue Radon Nikodyn Theorem, we can write

$$\mu_F = \nu_F +
ho_F = \nu_F + \int f dm,$$

and for each F_j we have

$$\mu_{F_j} =
u_{F_j} + \int f_j dm.$$

Summing over all j we get that

$$\nu_F + \int f dm = \mu_F = \sum_j \mu_{F_j} = \sum_j \nu_{F_j} + \sum_j \int f_j dm.$$

We claim that this is a Lebesgue-Radon-Nikodyn decomposition of μ_F . Note that if $\mu_F(E)=0$, then for each j, $\mu_{F_j}(E)=0$. Therefore for each f_j , $\int_E f_j dm=0$. Hence their countable sum is 0 as well. We now claim that $\sum_j \nu_{F_j} \perp m$. For each ν_{F_j} let E_j be the set which it is 0 on. We have that for E_j^c , $m|_{E_j^c}=0$. Take the set $E=\bigcap E_j$. If this intersection is empty then the result holds trivially. If not, then we have that $\sum_j \nu_{F_j}|_{E}=0$. Similarly, $m|_{E^c}=0$. Hence this is a L-R-N decomposition. Mutual singularity of ν_{F_i} implies that on an a.e. set

$$\int f dm = \sum_{j} \int f_{j} dm.$$

Furthermore, by DCT we have that

$$\int f dm = \int \sum_{j} f_{j} dm.$$

Hence we have that $f = \sum_{i} f_{i}$. Thus we compute that

$$\int_{(a,x]} F'(t)dt = \int_{(a,x]} d\mu_F = \int_{(a,x]} d\nu_F + f dm = \int_{(a,x]} d\sum_j d\nu_{F_j} + d\sum_j \mu_{F_j} = \int_{(a,x]} \sum_j F'(t)dt$$