Application of Information Theory, Lecture 12

Accessible Entropy and Statistically Hiding Commitments

Handout Mode

Iftach Haitner

Tel Aviv University.

January 14, 2018

Commitment Schemes

Motivation

- Digital analogue of a safe
- Numerous applications (e.g., zero-knowledge, coin-flipping, secure computations)

Definition

 μ is negligible, denoted $\mu(n) = \text{neg}(n)$, if $\forall p \in \text{poly } \exists n' \in \mathbb{N} \text{ s.t. } \mu(n) < \frac{1}{p(n)} \text{ for all } n > n'$.

Definition 1 (Commitment scheme)

An efficient two-stage protocol (S, R).

- ▶ Commit stage: The sender S has private input bit $b \in \{0, 1\}$ and a common input is 1^n . Let trans be the transcript of this stage.
- ▶ Reveal stage: S sends the pair (r, b) to R, and R accepts if trans is consistent with $S(\sigma, r)$.

Hiding: Let $V_n^{R^*}(b)$ be R^* 's *view* in (the commit stage of) $(S(b), R^*)(1^n)$.

Then for any R*: $\Delta^{R^*}(V_n^{R^*}(0), V_n^{R^*}(1)) = \text{neg}(n)$.

Binding: The following happens with negligible probability for any S*:

 $S^*(1^n)$ interacts with $R(1^n)$ in the commit stage resulting in transcript trans. Then S^* outputs two strings r_0 and r_1 such that $R(trans, r_0, 0) = R(trans, r_1, 1) = Accept.$

Alternative Binding definition: Assume that following the interaction S^* outputs a pair (r, b) with R(trans, r, b) = Accept. Let V^{S^*} be S^* 's view in (the commit stage of) $(S^*, R^*)(1^n)$. Then $H(b|V^{S^*}) = neg(n)$.

Definition cont.

- Naturally extends to strings
- Hiding: Perfect, statistical, computational.
- Binding: Perfect, statistical, computational.
- Impossible to have simultaneously both properties to be statistical.
- OWF is necessary assumption
- OWFs imply both statistically binding and computationally hiding commitments, and (more difficult) computationally binding and statistically hiding commitments.
- We focus on computationally binding, and statistically hiding commitments (SHC)

Inaccessible Entropy

Motivation

Definition 2 (collision resistant hash family (CRH))

Function family $\mathcal{H}=\{\mathcal{H}_n\colon\{0,1\}^n\mapsto\{0,1\}^{n/2}\}$ is collision resistant, if \forall PPT A

$$\Pr_{\stackrel{h\leftarrow\mathcal{H}_n}{(x,x')\leftarrow A(1^n,h)}}[x\neq x'\in\{0,1\}^*\wedge h(x)=h(x')]=\mathsf{neg}(n)$$

- ▶ Implies SHC. (?) Believed not to be implied by OWFs.
- ▶ Assume for simplicity that $h \in \mathcal{H}_n$ is $2^{n/2}$ to 1 and that a PPT cannot find a collision in any $h \in \mathcal{H}_n$
- ▶ Given $h(U_n)$, the (min) entropy of U_n is n/2.
- Consider PPT A that on input h first outputs h, y, and then outputs $x \in h^{-1}(y)$ (possibly using additional random coins)
- What is the entropy of x given (h, y) and the coins A's used to sample y? (essentially) 0!
- ► The generator G(h, x) = (h, h(x), x) has inaccessible entropy n/2
- Does inaccessible entropy generator implies SHC?
- ▶ Does OWF implies inaccessible entropy generator?

Real entropy of block generator

- ▶ Let $G: \{0,1\}^n \mapsto (\{0,1\}^{\ell(n)})^{m(n)}$ be an m-block generator
- ► Let $(G_1, \ldots, G_m) = G(U_n)$
- ► For $\mathbf{g} = (g_1, \dots, g_m) \in \text{Supp}(G_1, \dots, G_m)$, let

$$\mathsf{RealH}_{G}(\mathbf{g}) := \sum_{i \in [m]} H_{G_i \mid G_{\leq i-1}}(g_i \mid g_{\leq i-1})$$

▶ The real Shannon entropy of *G*, wrt security parameter *n*, is

$$\mathop{\mathsf{E}}_{\mathbf{g}\leftarrow G(U_n)}\left[\mathsf{RealH}_{G,n}(\mathbf{g})\right]$$

lacksquare $\mathsf{E}_{\mathbf{g} \leftarrow G(U_n)}\left[\mathsf{RealH}_{G,n}(\mathbf{g})\right] = \sum_{i \in [m]} H(G_i|G_{\leq i-1}) = H(G(U_n))$

Accessible entropy of block generator

- ► Let *G* be an *m*-block generator.
- Let \widetilde{G} be an m-block generator, that uses coins r_i before outputting its i'th block g_i .
- $ightharpoonup \widetilde{G}$ is consistent with respect to G, if its output is always in the support of G. Hereafter, we only consider consistent generators
- $\qquad \qquad \widetilde{T} = (\widetilde{R}_1, \widetilde{G}_1, \ldots, \widetilde{R}_m, \widetilde{G}_m) \text{— the rv's induced by random execution of } \widetilde{G}(1^n)$

$$\mathsf{AccH}_{\widetilde{G},n}(\mathbf{t}) := \sum_{i \in [m]} H_{\widetilde{G}_i | \widetilde{R}_1, \widetilde{G}_1, \dots, \widetilde{R}_{i-1}, \widetilde{G}_{r-1}}(g_i | r_1, g_1, \dots, r_{i-1}, g_{i-1})$$

$$= \sum_{i \in [m]} H_{\widetilde{G}_i | \widetilde{R}_{i-1}}(g_i | r_{\leq i-1})$$

► The accessible entropy of \widetilde{G} (wrt G), and n, is at most k, if $\Pr_{\mathbf{t} \leftarrow \widetilde{T}} \left[\mathsf{AccH}_{\widetilde{G},n}(\mathbf{t}) > k \right] \leq \mathsf{neg}(n)$. Why not $\mathsf{E}_{\mathbf{t} \leftarrow \widetilde{T}} \left[\mathsf{AccH}_{\widetilde{G},n}(\mathbf{t}) \right]$?

- inaccessible entropy
- We will omit n when clear from the contex

Example

- ▶ Let $\mathcal{H} = \{\mathcal{H}_n : \{0,1\}^n \mapsto \{0,1\}^{n/2}\}$ be $2^{n/2}$ -to-1 collision resistant, and assume for simplicity that a PPT cannot find a collision for any $h \in \mathcal{H}_n$.
- ▶ Let *G* be the 3-block generator G(h, x) = (h, h(x), x)
- ▶ Real entropy of G is $\log |\mathcal{H}_n| + n$
- Accessible entropy of G is $\log |\mathcal{H}_n| + \frac{n}{2}$

Manipulating Inaccessible Entropy

Entropy equalization

Let *G* be *m*-bit generator.

For $\ell \in \text{poly let } G^{\bigotimes \ell}$ be the following $(\ell - 1) \cdot m$ -bit generator

$$G^{\bigotimes \ell}(x_1,\ldots,x_\ell,i)=G(x_1)_i,\ldots,G(x_1)_m,\ldots,G(x_\ell)_1,\ldots,G(x_\ell)_{i-1}$$

- ▶ Assume the accessible entropy of G is (at most) k_A , then $k_A^{\bigotimes \ell}$, the accessible entropy of $G^{\bigotimes \ell}$, is at most $k_A(\ell-2)+m$.
- ▶ Assume the real entropy of G is k_R , then
 - **1.** For any $i \in [(\ell-1) \cdot m]$ and $(g_{\leq i-1}) \in \operatorname{Supp}(G_{\leq i-1}^{\bigotimes \ell})$:

$$H(G_i^{\bigotimes \ell}|G_{\leq i-1}^{\bigotimes \ell}) \geq k_R/m$$

- **2.** $k_R^{\otimes \ell}$, the real entropy of $G^{\otimes \ell}$, is at least $(\ell-1)K_R$
- ▶ Assume $k_R \ge k_A + 1$, then for $\ell = m + 2$, it holds that $k_R^{\bigotimes \ell} \ge k_A^{\bigotimes \ell} + 1$

Parallel repetition

Let G be an m-block generator and for $\ell \in \text{poly}$, let G^{ℓ} be the ℓ -fold parallel repetition of G.

- Assume accessible entropy of G is (at most) k_A , then the accessible entropy of G is at most $k_A^{\ell} = \ell k_A$.
- ▶ Assume $H(G_i|G_{\leq i-1}) = k_R$ for any $i \in [m]$, then for any $i \in [m]$ and $(g_{\leq i-1}^{\ell}) \in \text{Supp}(\bar{G}_{\leq i-1}^{\ell})$ it holds that

$$k_{min}^{\ell} = \mathsf{H}_{\infty}(G_i^{\ell}|G_{\leq i-1}^{\ell}) \approx \ell k_R$$

▶ If $k_A \le k_R - 1$, then $\forall n \in \text{poly } \exists \ell \in \text{poly such that } \ell k_{min}^{\ell} > k_A^{\ell} + n$

Inaccessible Entropy from OWF

The generator

Definition 3

Given a function $f: \{0,1\}^n \mapsto \{0,1\}^n$, let G be the (n+1)-block generator

$$G(x) = f(x)_1, \ldots, f(x)_n, x$$

Lemma 4

Assume that f is a OWF then G has accessible entropy at most $n - \log n$.

- ► Recall f is OWF if $\Pr_{X \leftarrow \{0,1\}^n} \left[\mathsf{Inv}(f(X)) \in f^{-1}(f(X)) \right] = \mathsf{neg}(n)$ for any PPT Inv.
- ▶ The real entropy of G is n
- ► Hence, inaccessible entropy gap is log *n*
- Proof idea

Proving Lemma 4

Let \widetilde{G} be a PPT, and assume $\Pr\left[\operatorname{AccH}_{G,\widetilde{G}}(\widetilde{T}) \geq n - \log n\right] \geq \varepsilon = \frac{1}{\operatorname{poly}(n)}$. (recall $\widetilde{T} = (\widetilde{R}_1, \widetilde{G}_1, \dots, \widetilde{R}_m, \widetilde{G}_m)$ is the coins and output blocks of \widetilde{G})

Algorithm 5 (Inv(z))

- **1.** For i = 1 to n, do the following for n^2/ε times:
 - **1.1** Sample r_i uniformly at random and let g_i be the i'th output block of $\widetilde{G}(r_1, \ldots, r_i)$.
 - **1.2** If $g_i = z_i$, move to next value of *i*.
- **2.** Finish the execution of $\widetilde{G}(r_1, \ldots, r_{n+1})$, and output its (n+1) output block.
 - ▶ We start by assuming that Inv is unbounded (replace n^2/ε with ∞)
- ▶ $\widehat{T} = (\widehat{R}_1, \widehat{G}_1, \dots, \widehat{R}_{n+1}, \widehat{G}_{n+1})$ is the (final) values of $(r_1, g_1, \dots, r_{n+1}, g_{n+1})$ in a random execution of $Inv(f(U_n))$.

\widetilde{T} vs. \widehat{T}

- Fix $\mathbf{t} = (r_1, g_1, \dots, r_{n+1}, g_{n+1}) \in \mathsf{Supp}(\widetilde{T})$
- ▶ Let $P(\mathbf{t}) = \prod_{i=1}^{n+1} \Pr\left[\widetilde{R}_i = r_i \mid (\widetilde{R}_{\leq i-1}, \widetilde{G}_i) = (r_{\leq i-1}, g_i)\right]$

$$\begin{split} \Pr_{\widetilde{f}}[t] &= \Pr[\widetilde{G}_1 = g_1] \cdot \Pr[\widetilde{R}_1 = r_1 | \widetilde{G}_1 = g_1] \cdot \Pr[\widetilde{G}_2 = g_2 | \widetilde{R}_1 = r_1] \\ &\cdot \quad \Pr[\widetilde{R}_2 = r_2 | \widetilde{G}_2 = g_2] \cdot \cdot \cdot \\ &= P(\mathbf{t}) \cdot \Pr[\widetilde{G}_1 = g_1] \cdot \Pr[\widetilde{G}_2 = g_2 | \widetilde{R}_1 = r_1] \cdot \cdot \cdot \\ &= P(\mathbf{t}) \cdot 2^{-\sum_{i=1}^m H_{\widetilde{G}_i | \widetilde{R}_{\leq i-1}}(g_i | r_{\leq i-1})} \\ &= P(\mathbf{t}) \cdot 2^{-\operatorname{AccH}_{\widetilde{G}}(\mathbf{t})} \end{split}$$

- $\blacktriangleright \ \operatorname{Pr}_{\widehat{T}}\left[\mathbf{t}\right] = \operatorname{Pr}\left[f(U_n) = g_{\leq n}\right] \cdot \operatorname{Pr}\left[\widetilde{G}_{n+1} = g_{n+1} | \widetilde{R}_{\leq n} = r_{\leq n}\right] \cdot P(\mathbf{t})$
- $\qquad \qquad \mathsf{Pr}_{\widehat{\mathcal{T}}}\left[\boldsymbol{t}\right] = \frac{\mathsf{Pr}\left[f(U_n) = g_{\leq n}\right] \cdot \mathsf{Pr}\left[\widetilde{G}_{n+1} = g_{n+1} | \widetilde{R}_{\leq n} = r_{\leq n}\right]}{2^{-\mathsf{AccH}} g_{,\widetilde{G}}(t)} \cdot \mathsf{Pr}_{\widetilde{\mathcal{T}}}\left[\boldsymbol{t}\right]$

\widetilde{T} vs. \widehat{T} cont.

▶
$$\mathbf{t} = (r_1, g_1, \dots, r_{n+1}, g_{n+1}) \in \mathsf{Supp}(\widetilde{T})$$

$$\qquad \qquad \mathsf{Pr}_{\widehat{\mathcal{T}}}\left[\boldsymbol{t}\right] = \frac{\mathsf{Pr}\left[f(U_n) = g_{\leq n}\right] \cdot \mathsf{Pr}\left[\widetilde{G}_{n+1} = g_{n+1} | \widetilde{R}_{\leq n} = r_{\leq n}\right]}{2^{-\mathsf{AccH}}_{G,\widetilde{G}}(t)} \cdot \mathsf{Pr}_{\widetilde{\mathcal{T}}}\left[\boldsymbol{t}\right]$$

- ► Note that $\Pr[f(U_n) = g_{\leq n}] \cdot \frac{1}{|f^{-1}(g_{\leq n})|} = 2^{-n}$
- ► Hence, for t with
 - 1. $AccH_{G\widetilde{G}}(\mathbf{t}) \geq n \log n$, and

2.
$$\Pr\left[\widetilde{G}_{n+1} = g_{n+1} | \widetilde{R}_{\leq n} = r_{\leq n}\right] \geq \frac{\alpha}{|f^{-1}(g_{\leq n})|}$$
.

It holds that

$$\Pr_{\widetilde{T}}[\mathbf{t}] \ge \frac{\alpha}{n} \cdot \Pr_{\widehat{T}}[\mathbf{t}] \tag{1}$$

Inv's success probability

Let $S \subseteq \mathsf{Supp}(\widetilde{T})$ denote the set of transcripts $\mathbf{t} = (r_1, g_1, \dots, r_{n+1}, g_{n+1})$ with

- **1.** $\operatorname{AccH}_{\widetilde{G}}(\mathbf{t}) \geq n \log n$,
- **2.** $H_{\widetilde{G}_i \mid \widetilde{R}_{\leq i-1}}(g_i \mid r_{\leq i-1}) \leq \log(\frac{4n}{\varepsilon})$ for all $i \in [n]$,
- 3. $H_{\widetilde{G}_{n+1}|\widetilde{R}_{\leq n}}(g_{n+1}\mid r_{\leq n})\leq \log(\frac{4}{\varepsilon}\cdot \big|f^{-1}(g_{\leq n})\big|.$
- $\qquad \qquad \mathsf{Pr}_{\widetilde{T}}\left[\exists i \in [n] \colon H_{\widetilde{G}_i|\widetilde{R}_{< i-1}}(g_i \mid r_{\leq i-1}) > \log(\tfrac{4n}{\varepsilon})\right] \leq n \cdot \tfrac{\varepsilon}{4n} = \varepsilon/4$
- $\blacktriangleright \ \mathsf{Pr}_{\widetilde{T}} \left[H_{\widetilde{G}_{n+1} | \widetilde{R}_{\leq n}}(g_{n+1} \mid r_{\leq n}) > \log(\tfrac{4}{\varepsilon} \cdot \left| f^{-1}(g_{\leq n}) \right| \right] \leq \varepsilon/4$
- $\blacktriangleright \ \operatorname{Pr}_{\widetilde{\mathcal{T}}}\left[\mathcal{S}\right] \geq \operatorname{Pr}\left[\operatorname{AccH}_{G,\widetilde{G}}(\mathcal{T}) \geq n \log n\right] 2 \cdot \tfrac{\varepsilon}{4} \geq \tfrac{\varepsilon}{2}$
- ▶ By Eq. (1): $\Pr_{\widehat{T}}[S] \ge \frac{\varepsilon/4}{n} \cdot \Pr_{\widehat{T}}[S] \ge \frac{\varepsilon^2}{8n} \dots$

Back the bounded version of Inv.

- ► For $z \in \{0, 1\}^n$ for which $\exists (r_1, z_1, \dots, r_n, z_n, \dots) \in \mathcal{S}$: Pr $[Inv(z) \text{ aborts }] \leq n \cdot (1 - \frac{\varepsilon}{4n})^{n^2/\varepsilon} = O(n \cdot 2^{-n}) \leq \frac{1}{2}$
- ▶ Hence, $\Pr_{\widehat{T}}[\mathcal{S}] \ge \frac{\varepsilon^2}{16n} \implies \Pr_{x \leftarrow \{0,1\}^n} \left[\operatorname{Inv}(f(x)) \in f^{-1}(f(x)) \right] \ge \frac{\varepsilon^2}{16n}$

Statistically Hiding Commitment from Inaccessible Entropy Generator

High-level description

- Entropy equalization + gap amplification to get generator that has the same min-entropy in each block and whose accessible entropy is n-bit smaller than the sum of the min entropies.
- Use "hashing protocol" to get a "generator" with zero accessible entropy block
- Use a a random block to mask the committed bit, to get a weakly binding SHC
- Amplify the above into full-fledged SHC