	MCQ 19MA201- UNIT V
1)	One dimensional heat equation is
,,	(a) $\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2}$ (b) $\frac{\partial u}{\partial t} = c^2 \frac{\partial u}{\partial x}$ (c) $\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$ (d) $\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial u}{\partial x}$
2)	One dimensional wave equation is
	(a) $\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2}$ (b) $\frac{\partial u}{\partial t} = c^2 \frac{\partial u}{\partial x}$
	(c) $\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$
	$(d) \frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial u}{\partial x}$
3)	$3 xy \frac{\partial z}{\partial y} + 2 x^3 y \frac{\partial^2 z}{\partial x^2} = 9$ is a partial differential equation of order
	(a) 1 (b) 2 (c) 3 (d) 4
4)	$x \frac{\partial z}{\partial y} + \frac{\partial^2 z}{\partial x^2} = 5 \frac{\partial^3 z}{\partial y^3}$ is a partial differential equation of order
	(a) 2 (b) 1 (c) 3
	(d) 4
5)	$\cos(5x + 6y) \frac{\partial^3 z}{\partial y^3} + \frac{\partial^2 z}{\partial x^2} - xy = 0 \text{ is a partial differential equation of degree}$
	(a) 1 (b) 2 (c) 3 (d) 4

6)	$5 \frac{\partial^2 z}{\partial y^2} = \frac{\partial^2 z}{\partial x^2}$ is a partial differential equation of order
	(a) 1 (b) 2 (c) 3 (d) 4
7)	The partial differential equation formed by eliminating arbitrary constants from the equation
	z = ax + by is
	(a) $z = px + qy$
	(b) $z = px - qy$
	(c) 2z = px + qy
	(d) $2z = px - qy$
8)	The partial differential equation formed by eliminating arbitrary constants from the equation
	$z = ax^3 - by \text{ is } \underline{\hspace{1cm}}.$
	(a) $3z = px + 3qy$
	(b) z = 3 px - qy
	(c) $2 z = px + 3 qy$
	(d) $z = px - 2qy$
9)	The partial differential equation formed by eliminating arbitrary constants from the equation
	$z = 3 ax^2 + 2 by^2$ is
	(a) $2z = px + qy$
	(b) $z = 2 px - 2 qy$
	(c) $2z = px - qy$
	(d) $z = px - 2qy$
10)	~ 3
	The partial differential equation $3 xy \frac{\partial^3 z}{\partial y^3} + x^3 y \frac{\partial^2 z}{\partial x^2} = 2$ is
	(a) linear (b) non linear (c) of order 1 (d) of order 2

11)	The partial differential equation $z \left(\frac{\partial z}{\partial y} \right) + \frac{\partial^2 z}{\partial x^2} = 2$ is
	(a) linear(b) non linear(c) of order 1(d) of order 3
12)	The partial differential equation $z^2 \frac{\partial z}{\partial y} + x^3 y \frac{\partial^3 z}{\partial x^2 \partial y} = 0$ is
	(a) linear (b) non linear (c) of order 1 (d) of order 2
13)	The partial differential equation $\frac{\partial z}{\partial y} + x^3 y \frac{\partial^3 z}{\partial x^2 \partial y} = 25$ is
	(a) linear (b) non linear (c) of order 1 (d) of order 2
14)	The partial differential equation $z + \frac{\partial^3 z}{\partial x^2 \partial y} + 7 y = 0$ is
	(a) linear (b) non linear (c) of order 1 (d) of order 2
15)	The partial differential equation $\frac{\partial^3 z}{\partial y^3} + 4z^3 \frac{\partial z}{\partial y} = 25$ is
	(a) of order 1 (b) non linear (c) of order 2 (d) of order 3
16)	Solution of the partial differential equation $\frac{\partial z}{\partial x} + \cos(3x - 2y) = 0$ by direct integration is
	(a) $z + \frac{\sin(3x - 2y)}{3} = xf_1(y)$.

(b)
$$z - \frac{\sin(3x - 2y)}{3} = f_1(y)$$

(c)
$$z + \frac{\sin(3x - 2y)}{3} = f_1(y)$$

(d)
$$z - \frac{\sin(3x - 2y)}{3} = f_1(x)$$
.

Solution of the partial differential equation
$$\frac{\partial^2 z}{\partial y^2} + 7 x^2 y^3 = 5$$
 by direct integration is

(a)
$$z + \frac{7 x^2 y^5}{20} = (2.5) y^2 + y f_1(x) + f_2(x)$$

(b)
$$z + \frac{7x^2y^5}{20} = (3.5)y^2 + y f_1(x) + f_2(x)$$

(c)
$$z + \frac{7 x^2 y^5}{20} = (2.5) y^2 + y f_1(y) + f_2(y)$$

(d)
$$z + \frac{7 x^2 y^5}{20} = (2.5) y^2 + y f_1(x) + f_2(y)$$

Solution of the partial differential equation
$$8 \frac{\partial z}{\partial y} + 3 x^2 y^3 = 9 xy$$
 by direct integration is

(a)
$$8z + \frac{x^2y^4}{4} = x\frac{y^2}{2} + f_1(x)$$
.

(b)
$$8z + \frac{3x^2y^4}{4} = 9x\frac{y^2}{2} + f_1(y)$$

(c)
$$8z + \frac{3x^2y^4}{4} = 9x\frac{y^2}{2} + f_1(x)$$

(d)
$$8z + \frac{3x^2y^3}{4} = 9x\frac{y^2}{2} + f_1(y)$$

-	_	,
1	a	ı
	J	
		•

Solution of the partial differential equation $\frac{\partial u}{\partial x} + 8 xy^{-5} = y$ by direct integration is

(a)
$$u + 4 x^2 y^5 = xy + f_1(y)$$
.
(b) $u + 4 x^2 y^5 = xy + f_1(x)$

(c)
$$u + 2 x^2 y^5 = xy + f_1(y)$$

(d)
$$u + 2 x^2 y^5 = xy + f_1(x)$$

20)

Solution of the partial differential equation $e^{x} \frac{\partial u}{\partial v} + y^{3} + x^{2} y = 10$ by direct integration is

(a)
$$e^x u + \frac{y^4}{4} + \frac{y^2 x^2}{2} + f(x) = 10 y$$
.

(b)
$$e^x u + \frac{y^4}{4} + \frac{y^2 x^2}{2} + f(x) = 10 x$$

(c)
$$e^x u + \frac{y^4}{4} + \frac{y^2 x^2}{2} + f(y) = 10 y$$

(d)
$$e^x u + \frac{y^4}{4} + \frac{y^2 x^2}{2} + f(y) = 10 x$$

21)

The order of the partial differential equation obtained by eliminating f from

$$z = f(x^2 + y^2) \text{ is}$$

- (a) 4
- (b) 2
- (c) 3
- (d) 1

22)

The degree of the partial differential equation obtained by eliminating f from

$$z = f(x^3 - y^3) \text{ is} \underline{\hspace{1cm}}$$

- (a) 1
- (b) 2
- (c) 3
- (d)4

23)

The order of the partial differential equation obtained by eliminating f from

 $f(x^2 + y^2, z - xy) = 0$ is_____ (b)2(c) 3(d)4Solution of the partial differential equation $\frac{\partial^2 z}{\partial x \partial y} = 2 y^5$ by direct integration is 24) (a) $z = (\frac{1}{3})xy^6 + f_1(y) + f_2(x)$. (b) $z = (\frac{1}{3}) xy^6 + f_1(y)$ (c) $z = (\frac{1}{3})xy^6 + f_2(x)$ (d) $z = (\frac{1}{3})xy^5 + f_1(y) + f_2(x)$ 25) A non linear partial differential equation of form two is _____ (a) f(z, x, q) = 0(b) f(x, p, q) = 0(c) f(z, p, q) = 0(d) z = f(x, y, q)26) A non linear partial differential equation of form three is ____ (a) g(y,q) = f(p)(b) g(y,q) = f(x)(c) g(y,q) = f(x,p)(d) z = f(x, y, q)The partial differential equation 5 pqz = 2 p + 2 q is _____ 27) (a) nonlinear of form 3 (b) linear (c) of order 2 (d) nonlinear of form 2

The partial differential equation $p^2 z^2 + q^2 = p^2 q$ is

- (a) nonlinear
- of form 2
- (b) linear
- (c) of order
- (d) nonlinear of form 3

29)

On solving the non-linear partial differential equation $p^3 + q^3 = 27 z$ of form second

taking q = ap ,we obtain p =

(a)
$$p = \frac{z(-a \pm \sqrt{a^2 + 4})}{2}$$

(b)
$$p = \frac{z(-a \pm \sqrt{a^2 + 3})}{2}$$

(c)
$$p = \frac{z(-a \pm \sqrt{a^2 + 2})}{2}$$

(d)
$$p = \frac{z(-a \pm \sqrt{a^2 + 1})}{2}$$

30)

On solving the non-linear partial differential equation $p^2z^2+q^2=p^2q$ of form second taking q = ap , we obtain p =

(a)
$$p = \frac{z^2 + a^2}{a}$$

(b)
$$p = \frac{z(a^2 + 2)}{2}$$

(c)
$$p = \frac{z^2 (a^2 + 2)}{2}$$

(d)
$$p = \frac{(a^2 + 2)}{2}$$

31)

The partial differential equation yp + xq + p + q = 0 is ____

- (a) nonlinear
- of form 2
- (b) linear

	(c) of order 2
	(d) nonlinear of form 3
32)	On solving the non-linear partial differential equation $yp + xq + pq = 0$
	taking $f(x, p) = g(y, q) = a$,we obtain $p = $ and $q = $
	(a) $p = \frac{x}{a-1}$, $q = \frac{-y}{a}$
	(b) $p = \frac{x}{a-1}, q = \frac{y}{a}$
	(c) $p = \frac{x^2}{a-1}$, $q = \frac{-y}{a}$
	(d) $p = \frac{x}{a-1}$, $q = \frac{-y^2}{a}$
33)	On solving the non-linear partial differential equation $ p ^2 + q ^2 = x + y $
	taking $f(x, p) = g(y, q) = a$,we obtain $p = $ and $q = $
	(a) $p = \sqrt{x + a}$, $q = \sqrt{y - a}$ (b) $p = \sqrt{x - a}$, $q = \sqrt{3y - a}$
	(b) $p = \sqrt{x - a}$, $q = \sqrt{3}y - a$ (c) $p = \sqrt{x - a}$, $q = \sqrt{y + a}$
	(d) $p = \sqrt{x - a}$, $q = \sqrt{3y - a}$
34)	Solution of the partial differential equation $\frac{\partial^3 z}{\partial x^3} = 0$ by direct integration is
	(a) $z = f_1(y) + xf_2(y) + x^2 f_3(y)$.
	(b) $z = f_1(y) + xf_2(y)$
	(c) $z = xf_2(y) + x^2 f_3(y)$
	(d) $z = f_1(y) + f_2(x)$
35)	The partial differential equation formed by eliminating arbitrary constant from the equation
	$z = (a + x)^2 + y$ is
	(a) $4z = p^2 + 4y$
	(b) $z = px - 4y$

(c)
$$2 z = p + 4 y^2$$

(d) $2 z = p - y$

On solving $u_x - u_y = 0$ by method of separation of variables by substituting u = XY, we obtain

(a)
$$u = e^{a(x+y)}C_1C_2$$

(b)
$$u = e^{a(x-y)}C_1C_2$$

(c)
$$u = ye^{a(x)}C_1C_2$$

(d)
$$u = xe^{a(y)}C_1C_2$$

On solving $u_x - 2u_t = u$ by method of separation of variables by substituting u = XY, we obtain

(a)
$$u = e^{-ax} e^{(\frac{a-1}{2})t} C_1 C_2$$

(b)
$$u = e^{ax} e^{(\frac{a-1}{2})t} C_1 C_2$$

(c)
$$u = e^{\frac{ax}{3}} e^{(\frac{a-1}{2})} C_1 C_2$$

(d)
$$u = e^{a} e^{(\frac{a-1}{2})t} C_{1} C_{2}$$

On solving $2 z_x = 3 z_y$ by method of separation of variables by substituting z = XY, we obtain

(a)
$$z = e^{a(2x+y)}C_1C_2$$

(b)
$$z = e^{a(2x-3y)}C_1C_2$$

(c)
$$z = 2 xye^{-a(x+3)}C_1C_2$$

(d)
$$z = e^{a(\frac{3x+2y}{6})}C_1C_2$$

On solving $u_x - u_y = 0$ by method of separation of variables by substituting u = XY ,we obtain

(a)
$$u = e^{a(x+y)}C_1C_2$$

(b)
$$u = e^{a(x-y)}C_1C_2$$

(c)
$$u = ye^{a(x)}C_1C_2$$

(d)
$$u = xe^{a(y)}C_1C_2$$

On solving $3 u_x - 2 u_t = 5 u$ by method of separation of variables by substituting u = XY, we obtain

(a)
$$u = e^{-ax} e^{(\frac{a-1}{2})t} C_1 C_2$$

(b)
$$u = e^{ax} e^{(\frac{a-1}{2})t} C_1 C_2$$

(c)
$$u = e^{\frac{ax}{3}} e^{(\frac{a-5}{2})t} C_1 C_2$$

(d) $u = e^{a} e^{(\frac{a-1}{2})t} C_1 C_2$

The solution of $\frac{\partial^3 z}{\partial x^2 \partial y} + \cos(x + y) = 0$ is _____

(a)
$$z - \sin(x + y) = [f_3(y)]x + g(y) + h(x)$$

(b)
$$z + \sin(x + y) = [f_3(y)]x + g(y)x + h(x)$$

(c)
$$z + \sin(x + y) = [f_3(y)]x + g(y) + h(x)$$

(d)
$$z - \sin(x + y) = [f_3(y)]x + g(y) + yh(x)$$

The solution of $\frac{\partial^2 u}{\partial x \partial y} - y^2 = 0$ is ______

(a)
$$u = [f_3(y)]x + g(y) + h(x)$$

(b)
$$z - \frac{xy^3}{3} + g(y) + h(x) = 0$$

(c)
$$z - \frac{xy^3}{3} + g(y) + yh(x) = 0$$

$$(d) z = x + g(y) + yh(x)$$

The solution of $\frac{\partial^2 z}{\partial x^2} + 3x^5 + 9xy = 0$ is _____

(a)
$$z + \frac{x^7}{14} + \frac{3}{2} yx^3 = xg(y) + h(y)$$

(b)
$$z - \frac{xy^{-7}}{14} + g(y) + h(x) = 0$$

(c)
$$z - \frac{x^7}{14} + g(y) + h(x) = 0$$

(d)
$$z - \frac{xy^{-7}}{14} + g(y) + yh(x) = 0$$

44)

The solution of $\frac{\partial^3 z}{\partial x^3} + \sin(2x + y) = 0$ is _____

(a)
$$z + \frac{\sin(x+3y)}{27} + \frac{y^2 f_1(x)}{2} + \frac{xy^3}{6} = yf_2(x) + f_3(x)$$

(b)
$$z + \frac{\sin(x+3y)}{27} + \frac{y^2 f_1(x)}{2} - \frac{xy^3}{6} = yf_2(x) + f_3(y)$$

(c)
$$z - \frac{\sin(x+3y)}{27} + \frac{y^2 f_1(x)}{2} - \frac{xy^3}{6} = yf_2(x) + f_3(x)$$

(d)
$$z + \frac{\sin(x + 3y)}{27} + \frac{y^2 f_1(x)}{2} - \frac{xy^3}{6} = yf_2(x) + f_3(x)$$

45)

The solution of $\frac{\partial^3 z}{\partial v^3} = \cos(x + 3y)$ is _____

(a)
$$z - \frac{\cos(2x + y)}{8} + \frac{x^2 f_1(y)}{2} = xg(y) + h(y)$$

(b)
$$z + \frac{\cos(2x + y)}{8} + \frac{x^3 f_1(y)}{2} = xg(y) + h(y)$$

(c)
$$z + \frac{\cos(2x + y)}{8} + \frac{x^2 f_1(y)}{2} = xg(y) + h(y)$$

(d)
$$z + \frac{\cos(2x + 2y)}{8} + \frac{x^2 f_1(y)}{2} = xg(y) + h(y)$$

46) The partial differential equation obtained by eliminating arbitrary constants from the equation

$$z = (x - a)^2 + (y - b)^2 + 5$$
 is

(a)
$$2 z = p^2 x + qy$$

(b)
$$2z = p^2 - q^2$$

(c)
$$4z = p^2 + q^2$$

(d)
$$z = px - 2qy$$

47) The partial differential equation obtained by eliminating arbitrary constants from the equation

```
2z = \frac{x^2}{a^2} + \frac{y^2}{b^2} is _____
    (a) 2z = px + qy
    (b) z = 2 px - 2 qy
     (c) 2z = px - qy
     (d) z = px - 2qy
    The partial differential equation obtained by eliminating arbitrary constants from the equation
48)
     z = a \log\left[\frac{b(y-1)}{(1-x)}\right] \text{ is } \underline{\hspace{1cm}}
    (a) 2z = px + qy
    (b) z = 2 px - 2 qy
     (c) p = px - qy
     (d) p + q = qy + px
    The partial differential equation obtained by eliminating arbitrary function from the equation
49)
     z + x + y = f(x^2 + y^2 + z^2) is ______.
    (a) (1 + p)(y + zq) = (1 + q)(x + zp)
    (b) z = 2 px - 2 qy
     (c) p = px - 2qy
     (d) (1 + 2xp)(3y + zq) = (1 + 5q)(x + zp)
    The partial differential equation obtained by eliminating arbitrary functions from the equation
50)
     z = f(x) + e^{y}g(x) is ______.
    (a) Z_x = Z_y
    (b) z_x = 2 z_y
    (c) z_{yy} = z_y
    (d) Z_{xx} = Z_{y}
    ANSWERS
    1.a
    2.c
    3.b
    4.c
    5.a
     6.b
```

7.a
8.a
0.0
9.a
10.a
11.b
12 b
12.b
13.a
14.a
11.04
15.d
16.c
17.a
18.c
10.0
19.a
20.a
04.4
21.d
22.a
22.6
23.a
24.a
25.0
25.c
26.c
27.d
27.0
28.a
29.a
20.0
30.a
31.d
32.a
22.0
33.a
34.a 35.a
35.a
36.a
30.4
37.b
38.d
39.a
00.0
40.c
41.a
42.b
TZ.N
43.a
44.c
45.d
TO.U
46.c
47.a
48.d
TO.U
49.a
50.c