https://intro2r.com/ Chapter 4

CSCI 297b, Spring 2023

April 24, 2023

Base, lattice, and ggplot2 graphics

- Base graphics: easy, but good style takes work
- Lattice graphics: best with complex multi-dimensional data using panel plots
- Grammar of graphics: logical development, very good defaults

Plot panel in RStudio

Plot panel in RStudio, Zoom button

Plot panel in RStudio, save button

Scatterplots

Scatterplots

```
plot(x = flowers$weight, y = flowers$shootarea)
## or
## plot(flowers$shootarea ~ flowers$weight)
```


Scatterplots

```
my_x <- 1:10
my_y <- seq(from = 1, to = 20, by = 2)
par(mfrow = c(2, 2))
plot(my_x, my_y, type = "1")
plot(my_x, my_y, type = "b")
plot(my_x, my_y, type = "o")
plot(my_x, my_y, type = "c")</pre>
```


Plot

- plot has many options
- Can add more points, lines, text, etc.
- plot is a generic function: it can change its behavior based on what kind of object it is plotting

hist(flowers\$height)

Histogram of flowers\$height

brk <- seq(from = 0, to = 18, by = 1)
hist(flowers\$height, breaks = brk, main = "petunia height")</pre>

petunia height

petunia height

Do exercise 4 part 1

Boxplots

boxplot(flowers\$weight, ylab = "weight (g)")

Boxplots

Change order of factor

Dynamite plots must die

- https://simplystatistics.org/posts/ 2019-02-21-dynamite-plots-must-die/
- Use boxplots in combination with dotplots

Two factors

• Some labels missing

Reduce size of label

```
boxplot(weight ~ nitrogen * treat, data = flowers,
     ylab = "weight (g)", xlab = "nitrogen level",
     cex.axis = 0.7)
```


Violin plots

• Kernel density estimate on its side

Dot charts

dotchart(flowers\$height)

- x axis is height
- y axis is order in data frame (bottom to top)

Outliers

Grouping data

dotchart(flowers\$height, groups = flowers\$nitrogen)

Pairs plots

Pairs plots, add a LOWESS fit

Customized panel function for pairs plots

Panel function in use

A panel function for the diagonal

```
panel.hist <- function(x, ...)
{
    usr <- par("usr")
    par(usr = c(usr[1:2], 0, 1.5) )
    h <- hist(x, plot = FALSE)
    breaks <- h$breaks; nB <- length(breaks)
    y <- h$counts; y <- y/max(y)
    rect(breaks[-nB], 0, breaks[-1], y, col = "cyan", ...)
}</pre>
```

Using 3 panel functions

Conditional scatterplot

coplot(flowers ~ weight | leafarea, data = flowers)

Conditional scatterplot, overlap=0

coplot(flowers ~ weight | leafarea, data = flowers, overlap = 0)

Conditional scatterplot with factors

coplot(flowers ~ weight | nitrogen, data = flowers)

Conditional scatterplot with two factors

coplot(flowers ~ weight | nitrogen * treat, data = flowers)

Given: nitrogen

Given : treat

Lattice graphics

- Improved versions of basic graphics
- Use formula notation
- Must load library, library(lattice)

Lattice histogram

```
library(lattice)
histogram(~ height, type = "count", data = flowers)
```


Lattice boxplot (box and whisker plot)

bwplot(weight ~ nitrogen, data = flowers)

Some lattice functions and their base R equivalents

Graph	Lattice	Base R
scatterplot	xyplot()	plot()
frequency histogram	histogram(type = "count")	hist()
boxplot	bwplot()	boxplot()
Cleveland dotplot	dotplot()	dotchart()
scatterplot matrix	splom()	pairs()
conditioning plot	$xyplot(y \sim x \mid z)$	coplot()

Lattice graphics with multiple panels

histogram(~ height | nitrogen, type = "count", data = flowers)

Lattice graphics with multiple panels

Conditional boxplots

bwplot(weight ~ nitrogen | block, data = flowers)

Conditional boxplots, block must be factor

bwplot(weight ~ nitrogen | factor(block), data = flowers)

Conditional boxplots

xyplot(height ~ weight | nitrogen * treat, data = flowers)

Conditional boxplots

Customizing Base R Graphics

- There are many customizable features.
- Not all customizations are available for all plots.
- Refer to text: https://intro2r.com/custom_plot.html

Multiple plots with par(mfrow == ...)

Multiple plots with par(mfrow == ...)

Multiple plots with layout()

- This gives us two rows and two columns
- The first plot will be lower left
- The second plot will be upper left
- The third plot will be lower right
- Nothing will be upper right

We can specify row and column sizes layout()

Adjusting margins generally necessary

Saving plots

- Can use RStudio buttons
- Can also save in code with pdf, png, jpeg, tiff, bmp

```
pdf("output/myplot.pdf")
plot(...)
dev.off()

png("output/myplot.png")
plot(...)
dev.off()
```

Do exercise 4 part 2