## Hierarchical Continuous Time Dynamic Models with ctsem

July, 2018

## Charles Driver

Max Planck Institute for Human Development









 Common approaches to dynamic modelling (latent change, autoregressive) assume that the relation between observations at different occasions are equal.





- Common approaches to dynamic modelling (latent change, autoregressive) assume that the relation between observations at different occasions are equal.
- This is fine in some cases, however problems can arise when time intervals between measurements are not equal.







- Common approaches to dynamic modelling (latent change, autoregressive) assume that the relation between observations at different occasions are equal.
- This is fine in some cases, however problems can arise when time intervals between measurements are not equal.
- Continuous time models determine the relations between each measurement occasion via a deterministic function of the continuous time parameters and the time interval between measurements.

$$\frac{\partial \mathbf{n}}{\partial t} = A^* \eta_{t-1} + b^* + \zeta^*(t)$$

$$\frac{\partial \mathbf{n}}{\partial t} = A^* \eta_{t-1} + b^* + \zeta^*(t)$$

$$\frac{\partial \mathbf{n}}{\partial t} = A^* \eta_{t-1} + b^* + \zeta^*(t)$$

$$\frac{\partial \mathbf{n}}{\partial t} = A^* \eta_{t-1} + b^* + \zeta^*(t)$$

$$\frac{\partial \mathbf{n}}{\partial t} = A^* \eta_{t-1} + b^* + \zeta^*(t)$$

$$\frac{\partial \mathbf{n}}{\partial t} = A^* \eta_{t-1} + b^* + \zeta^*(t)$$

$$\frac{\partial \mathbf{n}}{\partial t} = A^* \eta_{t-1} + b^* + \zeta^*(t)$$

$$\frac{\partial \mathbf{n}}{\partial t} = A^* \eta_{t-1} + b^* + \zeta^*(t)$$

$$\frac{\partial \mathbf{n}}{\partial t} = A^* \eta_{t-1} + b^* + \zeta^*(t)$$

$$\frac{\partial \mathbf{n}}{\partial t} = A^* \eta_{t-1} + b^* + \zeta^*(t)$$

$$\frac{\partial \mathbf{n}}{\partial t} = A^* \eta_{t-1} + b^* + \zeta^*(t)$$

$$\frac{\partial \mathbf{n}}{\partial t} = A^* \eta_{t-1} + b^* + \zeta^*(t)$$

$$\frac{\partial \mathbf{n}}{\partial t} = A^* \eta_{t-1} + b^* + \zeta^*(t)$$

$$\frac{\partial \mathbf{n}}{\partial t} = A^* \eta_{t-1} + b^* + \zeta^*(t)$$

$$\frac{\partial \mathbf{n}}{\partial t} = A^* \eta_{t-1} + b^* + \zeta^*(t)$$

$$\frac{\partial \mathbf{n}}{\partial t} = A^* \eta_{t-1} + b^* + \zeta^*(t)$$

$$\frac{\partial \mathbf{n}}{\partial t} = A^* \eta_{t-1} + b^* + \zeta^*(t)$$

$$\frac{\partial \mathbf{n}}{\partial t} = A^* \eta_{t-1} + b^* + \zeta^*(t)$$

$$\frac{\partial \mathbf{n}}{\partial t} = A^* \eta_{t-1} + b^* + \zeta^*(t)$$

$$\frac{\partial \mathbf{n}}{\partial t} = A^* \eta_{t-1} + b^* + \zeta^*(t)$$

$$\frac{\partial \mathbf{n}}{\partial t} = A^* \eta_{t-1} + b^* + \zeta^*(t)$$

$$\frac{\partial \mathbf{n}}{\partial t} = A^* \eta_{t-1} + b^* + \zeta^*(t)$$

$$\frac{\partial \mathbf{n}}{\partial t} = A^* \eta_{t-1} + b^* + \zeta^*(t)$$

$$\frac{\partial \mathbf{n}}{\partial t} = A^* \eta_{t-1} + b^* + \zeta^*(t)$$

$$\frac{\partial \mathbf{n}}{\partial t} = A^* \eta_{t-1} + b^* + \zeta^*(t)$$

$$\frac{\partial \mathbf{n}}{\partial t} = A^* \eta_{t-1} + b^* + \zeta^*(t)$$

Time













More accuracy by incorporating time explicitly.







- More accuracy by incorporating time explicitly.
- More theoretically justifiable things happen between measurement occasions.





- More accuracy by incorporating time explicitly.
- More theoretically justifiable things happen between measurement occasions.
- More accurate than embedding approaches to differential equations, and no need to set embedding dimension.





- More accuracy by incorporating time explicitly.
- More theoretically justifiable things happen between measurement occasions.
- More accurate than embedding approaches to differential equations, and no need to set embedding dimension.
- Tangible benefits:





- More accuracy by incorporating time explicitly.
- More theoretically justifiable things happen between measurement occasions.
- More accurate than embedding approaches to differential equations, and no need to set embedding dimension.
- Tangible benefits:
  - More flexible data collection no longer a need for consistent measurement intervals within or between individuals.





- More accuracy by incorporating time explicitly.
- More theoretically justifiable things happen between measurement occasions.
- More accurate than embedding approaches to differential equations, and no need to set embedding dimension.
- Tangible benefits:
  - More flexible data collection no longer a need for consistent measurement intervals within or between individuals.
  - Consistent parameter comparisons between different data collection schedules - between waves, studies, or both.





- More accuracy by incorporating time explicitly.
- More theoretically justifiable things happen between measurement occasions.
- More accurate than embedding approaches to differential equations, and no need to set embedding dimension.
- Tangible benefits:
  - More flexible data collection no longer a need for consistent measurement intervals within or between individuals.
  - Consistent parameter comparisons between different data collection schedules - between waves, studies, or both.
  - Differential equations:





- More accuracy by incorporating time explicitly.
- More theoretically justifiable things happen between measurement occasions.
- More accurate than embedding approaches to differential equations, and no need to set embedding dimension.
- Tangible benefits:
  - More flexible data collection no longer a need for consistent measurement intervals within or between individuals.
  - Consistent parameter comparisons between different data collection schedules - between waves, studies, or both.
  - Differential equations:
    - Parsimonious specification of higher order dynamics such as oscillations and slow changing trends.





- More accuracy by incorporating time explicitly.
- More theoretically justifiable things happen between measurement occasions.
- More accurate than embedding approaches to differential equations, and no need to set embedding dimension.
- Tangible benefits:
  - More flexible data collection no longer a need for consistent measurement intervals within or between individuals.
  - Consistent parameter comparisons between different data collection schedules - between waves, studies, or both.
  - Differential equations:
    - Parsimonious specification of higher order dynamics such as oscillations and slow changing trends.
    - Direct interpretation re causality given true model!





- More accuracy by incorporating time explicitly.
- More theoretically justifiable things happen between measurement occasions.
- More accurate than embedding approaches to differential equations, and no need to set embedding dimension.
- Tangible benefits:
  - More flexible data collection no longer a need for consistent measurement intervals within or between individuals.
  - Consistent parameter comparisons between different data collection schedules - between waves, studies, or both.
  - Differential equations:
    - Parsimonious specification of higher order dynamics such as oscillations and slow changing trends.
    - Direct interpretation re causality given true model!
  - Helps (forces?) us to think more coherently in terms of time.





- More accuracy by incorporating time explicitly.
- More theoretically justifiable things happen between measurement occasions.
- More accurate than embedding approaches to differential equations, and no need to set embedding dimension.
- Tangible benefits:
  - More flexible data collection no longer a need for consistent measurement intervals within or between individuals.
  - Consistent parameter comparisons between different data collection schedules - between waves, studies, or both.
  - Differential equations:
    - Parsimonious specification of higher order dynamics such as oscillations and slow changing trends.
    - Direct interpretation re causality given true model!
  - Helps (forces?) us to think more coherently in terms of time.
- Downsides:





- More accuracy by incorporating time explicitly.
- More theoretically justifiable things happen between measurement occasions.
- More accurate than embedding approaches to differential equations, and no need to set embedding dimension.
- Tangible benefits:
  - More flexible data collection no longer a need for consistent measurement intervals within or between individuals.
  - Consistent parameter comparisons between different data collection schedules - between waves, studies, or both.
  - Differential equations:
    - Parsimonious specification of higher order dynamics such as oscillations and slow changing trends.
    - Direct interpretation re causality given true model!
  - Helps (forces?) us to think more coherently in terms of time.
- Downsides:
  - More mathematically and computationally demanding than autoregressive / latent change approaches.





Latent dynamic process with measurement model, 1+ subjects, each with 1+ obs, varying time intervals. Dynamics are a linear stochastic differential equation:

$$d\eta(t) = \left(\mathbf{A}\eta(t) + \mathbf{b} + \mathbf{M}\chi(t)\right)dt + \mathbf{G}d\mathbf{W}(t) \tag{1}$$

Observations for each subject are described by:

$$\mathbf{y}(t) = \mathbf{\Lambda} \boldsymbol{\eta}(t) + \boldsymbol{\tau} + \boldsymbol{\epsilon}(t) \quad \text{where } \boldsymbol{\epsilon}(t) \sim \mathrm{N}(\mathbf{0}_c, \boldsymbol{\Theta})$$
 (2)





■ Latent dynamic process with measurement model, 1+ subjects, each with 1+ obs, varying time intervals. Dynamics are a linear stochastic differential equation:

$$d\eta(t) = \left(\mathbf{A}\eta(t) + \mathbf{b} + \mathbf{M}\chi(t)\right)dt + \mathbf{G}d\mathbf{W}(t) \tag{1}$$

Observations for each subject are described by:

$$\mathbf{y}(t) = \mathbf{\Lambda} \boldsymbol{\eta}(t) + \boldsymbol{\tau} + \boldsymbol{\epsilon}(t) \quad \text{where } \boldsymbol{\epsilon}(t) \sim \mathrm{N}(\mathbf{0}_c, \boldsymbol{\Theta})$$
 (2)

■ The SDE may be solved, for any observation  $u \in \mathbf{U}$ :

$$\boldsymbol{\eta}_{u} = \mathbf{A}_{u}^{*} \boldsymbol{\eta}_{u-1} + \mathbf{b}_{u}^{*} + \mathbf{M} \mathbf{x}_{u} + \boldsymbol{\zeta}_{u}^{*} \qquad \boldsymbol{\zeta}_{u}^{*} \sim \mathrm{N}(\mathbf{0}_{v}, \mathbf{Q}_{u}^{*})$$
(3)

$$\mathbf{A}_{u}^{*} = e^{\mathbf{A}(t_{u} - t_{u-1})} \tag{4}$$

$$\mathbf{b}_{u}^{*} = \mathbf{A}^{-1}(\mathbf{A}_{u}^{*} - \mathbf{I})\mathbf{b} \tag{5}$$

$$\mathbf{Q}_{u}^{*} = \mathbf{Q}_{\infty} - \mathbf{A}_{u}^{*} \mathbf{Q}_{\infty} \mathbf{A}_{u}^{*\top}$$
 (6)

$$\mathbf{Q}_{\infty} = \mathsf{irow}(-\mathbf{A}_{\#}^{-1}\,\mathsf{row}(\mathbf{Q})) \tag{7}$$



















 Complete pooling - estimate single fixed effect parameter for entire sample.







- Complete pooling estimate single fixed effect parameter for entire sample.
  - Contaminates within subject model with between subjects differences, and not a great way to understand individual differences...







- Complete pooling estimate single fixed effect parameter for entire sample.
  - Contaminates within subject model with between subjects differences, and not a great way to understand individual differences...
- No pooling assume individuals have no similarities, estimate seperate model for each.







- Complete pooling estimate single fixed effect parameter for entire sample.
  - Contaminates within subject model with between subjects differences, and not a great way to understand individual differences...
- No pooling assume individuals have no similarities, estimate seperate model for each.
  - Simple and perfect if sufficient data exists 'sufficient' may be extremely large – otherwise prone to finite sample biases and high variance.







- Complete pooling estimate single fixed effect parameter for entire sample.
  - Contaminates within subject model with between subjects differences, and not a great way to understand individual differences...
- No pooling assume individuals have no similarities, estimate seperate model for each.
  - Simple and perfect if sufficient data exists 'sufficient' may be extremely large – otherwise prone to finite sample biases and high variance.
- Partial pooling estimate population distribution for individual models.







- Complete pooling estimate single fixed effect parameter for entire sample.
  - Contaminates within subject model with between subjects differences, and not a great way to understand individual differences...
- No pooling assume individuals have no similarities, estimate seperate model for each.
  - Simple and perfect if sufficient data exists 'sufficient' may be extremely large – otherwise prone to finite sample biases and high variance.
- Partial pooling estimate population distribution for individual models.
  - More complex models but most flexible parameters are not either 'freely varying' or 'not varying at all' but the extent of allowed variation is estimated.





$$\rho(\mathbf{\Phi}, \boldsymbol{\mu}, \mathbf{R}, \boldsymbol{\beta} | \mathbf{Y}, \mathbf{Z}) = \frac{\rho(\mathbf{Y} | \mathbf{\Phi}) \rho(\mathbf{\Phi} | \boldsymbol{\mu}, \mathbf{R}, \boldsymbol{\beta}, \mathbf{Z}) \rho(\boldsymbol{\mu}, \mathbf{R}, \boldsymbol{\beta})}{\rho(\mathbf{Y})}$$
(9)

Where subject specific parameters  $\Phi_i$  are determined in the following manner:

$$\mathbf{\Phi}_{i} = \mathsf{tform} \bigg( \boldsymbol{\mu} + \mathbf{R} \mathbf{h}_{i} + \boldsymbol{\beta} \mathbf{z}_{i} \bigg) \tag{10}$$

$$\mathbf{h}_i \sim \mathrm{N}(\mathbf{0}, \mathbf{1}) \tag{11}$$

$$\mu \sim N(\mathbf{0}, \mathbf{1})$$
 (12)

$$\beta \sim N(\mathbf{0}, \mathbf{1})$$
 (13)











ctsem - open source R software









- ctsem open source R software
  - Originally only mixed effects models, using OpenMx as backend.









- ctsem open source R software
  - Originally only mixed effects models, using OpenMx as backend.
  - Using Stan as backend, added support for fully random effects with Bayesian estimation.









- ctsem open source R software
  - Originally only mixed effects models, using OpenMx as backend.
  - Using Stan as backend, added support for fully random effects with Bayesian estimation.
- ctModel function constructs a ctsem model based on specified matrices of free and fixed parameters.









- ctsem open source R software
  - Originally only mixed effects models, using OpenMx as backend.
  - Using Stan as backend, added support for fully random effects with Bayesian estimation.
- ctModel function constructs a ctsem model based on specified matrices of free and fixed parameters.
- Modify between subject effects, covariates, priors etc as needed.









- ctsem open source R software
  - Originally only mixed effects models, using OpenMx as backend.
  - Using Stan as backend, added support for fully random effects with Bayesian estimation.
- ctModel function constructs a ctsem model based on specified matrices of free and fixed parameters.
- Modify between subject effects, covariates, priors etc as needed.
- ctStanFit function constructs a Stan model and calls rstan for estimation, using either Kalman filter for continuous variables or direct sampling of states for other measurement models.











Non-linear dynamics and measurement via unscented Kalman filter.





- Non-linear dynamics and measurement via unscented Kalman filter.
- Binary and ordinal measurement models.





- Non-linear dynamics and measurement via unscented Kalman filter.
- Binary and ordinal measurement models.
- Optimization followed by importance sampling for faster results.



- ctsem and vignettes
  https://cran.r-project.org/web/packages/ctsem/index.html
- Other articles: https://www.researchgate.net/profile/Charles\_Driver
- Overview of provided R script:
  - Generate some data.
  - Fit a univariate linear growth curve with random effects and a covariate.
  - Add in dynamics.
  - Add in an intervention.
  - And a second latent process.
  - Drop the second latent process and try a state-dependent (non-linear) intervention.