ECOLES PRIVEES ELMAARIF- ERRAJA

مدارس الرجاء والمعارف الحرة

	Classes :7D	Devoir de Mathématiques	10 27	Durée : 4H	13/11/2016
--	-------------	-------------------------	-------	------------	------------

La qualité de la rédaction, la clarté et la précision des raisonnements entreront pour une part importante dans l'appréciation de la copie du candidat.

Exercice 1 (3 points)

Dans le tableau suivant, une seule des réponses proposées à chaque question est correcte. Ecrire le numéro de chaque question et donner (sans justification), la réponse qui lui correspond.

N°	Questions	Réponses					
		a	b	c	d		
1	La forme algébrique de $\frac{23-2i}{4+5i}$ est	2-3i	2+3i	$\frac{23}{4} - \frac{2}{5}\mathbf{i}$	$\frac{23}{41} - \frac{2}{41}i$		
2	Le module de $\frac{\left(1+i\sqrt{3}\right)^2}{3-3i}$ est	$\frac{2}{3}$	$\frac{4}{3\sqrt{2}}$	$\sqrt{2}$	$\frac{1}{2}$		
3	Si $\frac{\pi}{4}$ est un argument de z, alors un argument de $(1+i)z^3$ est	$\frac{\pi}{4}$	$\frac{\pi}{2}$	$\frac{3\pi}{4}$	π		
4	Si $z = -1 + 2e^{i\frac{\pi}{3}}$, alors la forme exponentielle de z est	$\sqrt{3}e^{i\frac{\pi}{2}}$	$-2\sqrt{3}e^{i\frac{\pi}{6}}$	4ie ^{iπ/3}	$1+e^{i\frac{\pi}{3}}$		
5	Si $z - \overline{z} = 14i$, alors	Im(z) = 14	Im(z) = -7i	Im(z) = 7i	Im(z) = 7		
6	Si $A = \frac{e^{i3x} + e^{-i3x}}{2}$, alors	$A = 3\cos x$	$A = \cos 3x$	$\mathbf{A} = (\cos \mathbf{x})^3$	$A = \sin 3x$		

Exercice 2 (5 points)

- 1) On pose $a = 2\sqrt{2}$ et $b = 2\sqrt{3}$.
- a) Calculer a² et b².
- b) Résoudre dans l'ensemble des nombres complexes $\mathbb C$ l'équation (E) : $z^2 (2\sqrt{2})z + 4 = 0$.
- c) Résoudre dans l'ensemble des nombres complexes $\mathbb C$ l'équation (E') : $z^2 (2\sqrt{3})z + 4 = 0$.
- 2.a) Ecrire sous forme trigonométrique chacun des nombres $u = \sqrt{2} + i\sqrt{2}$, $v = \sqrt{3} + i$ et $w = \frac{\sqrt{2} + i\sqrt{2}}{\sqrt{3} + i}$.
- b) Ecrire w sous forme algébrique.
- c) En déduire les valeurs exactes de $\cos \frac{\pi}{12}$ ets in $\frac{\pi}{12}$.

Exercice 3 (5 points)

Le plan complexe est rapporté à un repère orthonormé direct (O; u, v).

- 1) Résoudre dans \mathbb{C} l'équation : $z^2 2z + 10 = 0$. On note z_1 et z_2 les solutions de (E).
- 2) Soient les points A, B et C d'affixes respectives : $z_A = 1 3i$, $z_B = z_1 + z_2 + 2$ et $z_C = z_A + 6i$.
- a) Placer les points A, B et C dans le repère.
- b) Démontrer que le triangle ABC est rectangle isocèle.
- c) Déterminer l'affixe du point D tel que le quadrilatère ABCD soit un parallélogramme. Placer D.
- 3) Pour tout nombre complexe z on pose : $P(z) = z^3 6z^2 + 18z 40$.
- a) Calculer P(4).
- b) Déterminer les réels a et b tels que pour tout z on a:

$$P(z) = (z-4)(z^2 + az + b)$$
.

c) En déduire les solutions de l'équation P(z) = 0.

Exercice 4 (6 points)

Le plan complexe est muni d'un repère orthonormé direct $(O; \vec{u}, \vec{v})$.

- 1) On considère les nombres : $z_1 = \frac{9-i}{4-5i}$, $z_2 = (1+i)^2$ et $z_3 = \frac{8+2i}{3+5i}$.
- a) Donner la forme algébrique de chacun des nombres z_1 , z_2 et z_3 .
- b) Donner la forme trigonométrique de chacun des nombres z_1 , z_2 et z_3 .
- 2) Pour tout nombre $z \neq 2i$ on pose : $f(z) = \frac{z-1-i}{z-2i}$.
- a) Placer dans le repère ($O; \vec{u}, \vec{v}$) les points A, B et C d'affixes respectives $z_A = 1+i$, $z_B = 2i$ et $z_C = -2-2i$
- b) Calculer que $f(z_c)$.
- 3.a) Déterminer et construire Γ_1 l'ensemble des points M du plan d'affixe z tel que |f(z)| = 1.
- b) Déterminer et construire Γ_2 l'ensemble des points M d'affixe z tel que f(z) soit imaginaire pur.
- c) Déterminer et construire Γ_3 l'ensemble des points M d'affixe z tel que $|f(z)-1|=\sqrt{2}$.
- d) Déterminer et construire Γ_4 l'ensemble des points M d'affixe z tel que $|f(\bar{z})| = 1$.
- 4) Justifier les affirmations suivantes :
- a) Le nombre $(z_A)^{2016}$ est un réel positif.
- b) Le nombre $(z_B)^{2017}$ est imaginaire pur.

Présentation: 1 point

Fin.