Handout 3. Probability and distributions

1. Random sampling

The basic notion of a random sample is to deal from a well-shuffled pack of cards or picking numbered balls from a well-stirred urn.

In R, you can simulate these situations with the sample function. If you want to pick five numbers at random from the set 1:40, then you can write

```
> sample(1:40,5)
> sample(c("H","T"), 10, replace=T)
> sample(c("succ", "fail"), 10, replace=T, prob=c(0.9, 0.1))
```

2. Probability calculations and combinatorics

In R, the choose function can be used to calculate the number of ways to choose 5 numbers out of 40.

```
> choose(40,5)

1/prod(40:36)
prod(40:36)/prod(1:5)
??product
?factorial
factorial(4)
```

3. Discrete and continuous distributions

Discrete: Binomial distribution, geometric distribution, Poisson distribution

Continuous: Normal, Beta, Gamma, log-normal,

Distribution	R name	additionalarguments
beta	beta	shape1, shape2, ncp
binomial	binom	size, prob
Cauchy	cauchy	location, scale
chi-squared	chisq	df, ncp
exponential	exp	rate
F	f	df1, df2, ncp
gamma	gamma	shape, scale
geometric	geom	prob
log-normal	lnorm	meanlog, sdlog
logistic	logis	location, scale
negative binomial	nbinom	size, prob
normal	norm	mean, sd
Poisson	pois	lambda
Student"s t	t	df, ncp
uniform	unif	min, max
Weibull	weibull	shape, scale

Prefix the name given here by "d" for the density, "p" for the CDF, "q" for the quantile function and "r" for simulation (random deviates). The first argument is x for dxxx, q for pxxx, p for qxxx and n for rxxx. We next discuss and give some examples on these functions.

(1) Densities

For discrete distributions, where variables can take on only distinct values, it is preferable to draw a pin diagram, here for the binomial distribution with n = 50 and p = 0.33:

```
> x <- 0:50
> plot(x,dbinom(x,size=50,prob=.33),type="h")
#curve(dbinom(x,size=50,prob=.33), from=0, to=50)

x <- 0:50
plot(x,dpois(x,10),type="h")</pre>
```

(2) Cumulative distribution functions

> pnorm(160, mean=132, sd=13)

```
> pbinom(16, size=20, prob=.5)

pbeta(0.8,4,5)
pchisq(100,40)
pchisq(10,40)
pgamma(100,30)
pgamma(10,30)

ppois(2,10)
```

```
x <- seq(-4,4,0.1)
plot(x,pnorm(x),type="1")
curve(pnorm(x), from=-4, to=4)</pre>
```

```
x <- 0:50

plot(x,pbinom(x,size=50,prob=.33))

\#curve(pbinom(x,size=50,prob=.33), from=0, to=50)
```

(3) Quantiles

If we have n normally distributed observations with the same mean μ and standard deviation sigma, then it is known that the average "xbar" is normally distributed around μ with standard deviation sigma/sqrt(n). A 95% confidence interval for μ can be obtained as

 $xbar + sigma/sqrt(n) \times N0.025 <= \mu <= xbar + s/pn \times N0.975$ where N0.025 is the 2.5% quantile in the normal distribution.

```
qnorm(0.5)
qnorm(0.5,1,2)
qnorm(0.025)
xbar=83
sigma=12
n<-5
sem<-sigma/sqrt(n)</pre>
sem
xbar+sem*qnorm(0.025)
xbar+sem*qnorm(0.975)
xbar-sem*qnorm(0.025)
qbinom(0.5, size=20, prob=.5)
qbeta(0.5, 4, 5)
qbeta(1,4,5)
qchisq(0.5,40)
qchisq(1,40)
qgamma(0.5,30)
ggamma (1,30)
apois(0.5,10)
apois (1, 10)
```

(4) Random numbers

Computer generates sequences of "pseudo-random" numbers, which for practical purposes behave as if they were drawn randomly

```
> rnorm(10, mean=7, sd=5)
> rbinom(10, size=20, prob=.5)
rbeta(10,4,5)
rchisq(30,40)
rgamma(50,30)
rpois(20,10)
```