שיעור 2 ערכים עצמיים ווקטוירם עצמיים

2.1 ערכיים עצמיים, ווקטורים עצמיים של מטריצות

הגדרה 2.1 ערך עצמי ווקטור עצמי של מטריצה

יקרא (v $eq ar{0}$) מטריצה לוקטור אפס על אדה $\mathbf{v} \in F^n$ וקטור האפס . \mathbb{F} מטריצה ריבועית מעל אם $A \in \mathbb{F}^{n \times n}$ יקרא -עצמי של A אם קיים סקלר אם $\lambda \in \mathbb{F}$ כך ש

$$A \cdot \mathbf{v} = \lambda \mathbf{v}$$
.

A נקרא ערך עצמי של A ששייך לוקטור עצמי י. המשוואה הזאת נקראת ששייך לוקטור עצמי של λ

דוגמה 2.1

נתונה מטריצה

$$A = \left(\begin{array}{cc} 2 & 4 \\ 3 & 6 \end{array}\right) ,$$

ים: את הערך עצמי את ומצאו את וקטור עצמי הוא וקטור הבאים, הוא המתאים: מהוקטורים הבאים, הוא וקטור עצמי אחד מהוקטורים הבאים, הוא וקטור עצמי של

$$u_1 = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$$
 (N)

$$u_2 = \begin{pmatrix} -2\\1 \end{pmatrix}$$
 (2)

$$u_3 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 (x)

פתרון:

(ス)

$$A \cdot \mathbf{v}_1 = \begin{pmatrix} 2 & 4 \\ 3 & 6 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 16 \\ 24 \end{pmatrix} = 8 \begin{pmatrix} 2 \\ 3 \end{pmatrix} = 8u_1.$$

ולכן u_1 הוא הוקטור עצמי של A השייך לערך עצמי

$$\lambda_1 = 8$$
.

$$A \cdot \mathbf{v}_2 = \begin{pmatrix} 2 & 4 \\ 3 & 6 \end{pmatrix} \cdot \begin{pmatrix} -2 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} = 0 \begin{pmatrix} -2 \\ 1 \end{pmatrix} = 0u_2.$$

ולכן u_2 הוא הוקטור עצמי של A השייך לערך עצמי

$$\lambda_2=0$$
.

(x)

$$A \cdot u_3 = \begin{pmatrix} 2 & 4 \\ 3 & 6 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 2 \\ 3 \end{pmatrix} \neq \lambda \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

A אינו וקטור עצמי של u_3

דוגמה 2.2

נתונה מטריצה

$$A = \left(\begin{array}{cc} 4 & 8 \\ 1 & 6 \end{array}\right) ,$$

ים: את הערך אחד המתאים: המתאים, הוא וקטור עצמי אחד מהוקטורים הבאים, הוא וקטור עצמי של אחד מהוקטורים הבאים, הוא ו

$$u_1=egin{pmatrix} 4 \ 1 \end{pmatrix}$$
 (א)

$$u_2 = \begin{pmatrix} -4 \\ 1 \end{pmatrix}$$
 (2)

$$u_3 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$
 (x)

פתרון:

(ス)

(ロ)

$$A \cdot u_1 = \begin{pmatrix} 4 & 8 \\ 1 & 6 \end{pmatrix} \cdot \begin{pmatrix} 4 \\ 1 \end{pmatrix} = \begin{pmatrix} 24 \\ 10 \end{pmatrix} \neq \lambda u_1.$$

A אינו וקטור עצמי של u_1

$$A \cdot u_2 = \begin{pmatrix} 4 & 8 \\ 1 & 6 \end{pmatrix} \cdot \begin{pmatrix} -4 \\ 1 \end{pmatrix} = \begin{pmatrix} -8 \\ 2 \end{pmatrix} = 2 \begin{pmatrix} -4 \\ 1 \end{pmatrix} = 2u_2.$$

ולכן u_2 הוא הוקטור עצמי של A השייך לערך עצמי

$$\lambda = 2$$
.

$$A \cdot u_3 = \begin{pmatrix} 4 & 8 \\ 1 & 6 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 16 \\ 8 \end{pmatrix} = 8 \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

 $\lambda=8$ ולכן לערך עצמי של A השייך עצמי הוקטור ולכן ולכן

דוגמה 2.3

הראו ש
$$u_2=egin{pmatrix} 0 \\ 1 \end{pmatrix}$$
 , $u_1=egin{pmatrix} 5 \\ 2 \end{pmatrix}$ הראו המטריצה

$$A = \left(\begin{array}{cc} 5 & 0 \\ 2 & 0 \end{array}\right)$$

פתרון:

$$A \cdot u_1 = \begin{pmatrix} 5 & 0 \\ 2 & 0 \end{pmatrix} \cdot \begin{pmatrix} 5 \\ 2 \end{pmatrix} = \begin{pmatrix} 10 \\ 4 \end{pmatrix} = 2 \begin{pmatrix} 5 \\ 2 \end{pmatrix}$$
$$A \cdot u_2 = \begin{pmatrix} 5 & 0 \\ 2 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} = 0 \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

 $\lambda_2=0$ ו אוא וקטור עצמי השייך לערך עצמי ו $\lambda_1=2$ ו אוא וקטור עצמי השייך לערך עצמי וכן $\lambda_1=0$

משפט 2.1

ערך עצמי של מטריצה יכול להיות 0. וקטור האפס לא יכול להיות וקטור עצמי של מטריצה.

משפט 2.2 המשוואה האופייני של מטריצה

,?? ויהי \mathbf{v} וקטור עצמי של A ששייך לערך עמצי, $A \in \mathbb{F}^{n \times n}$ תהי

$$A \cdot \mathbf{v} = \lambda \mathbf{v}$$
,

נעביר אגפים:

$$\bar{0} = \lambda \mathbf{v} - A \mathbf{v} \qquad \Rightarrow \qquad \bar{0} = (\lambda I - A) \mathbf{v}$$

כאשר I המטריצה היחידה של $\mathbb{F}^{n \times n}$. קיבלנו את המשוואה

$$(\lambda I - A) \mathbf{v} = \bar{0} .$$

.0 שווה לא יכול להיות וקטור האפס. לכן הדטרמיננטה של המטריצה ($\lambda I-A$) שווה ל- ע וקטור עצמי אז הוא לא יכול להיות וקטור האפס. לכן הדטרמיננטה של המטריצה לא יכול להיות וקטור האפס. לכן הדטרמיננטה אז הוא לא יכול להיות וקטור האפס. לכן הדטרמיננטה אז הוא לא יכול להיות וקטור האפס. לכן הדטרמיננטה של המטריצה לא יכול להיות וקטור האפס. לכן הדטרמיננטה של המטריצה לא יכול להיות וקטור האפס. לכן הדטרמיננטה של המטריצה לא יכול להיות וקטור האפס. לכן הדטרמיננטה של המטריצה לא יכול להיות וקטור האפס. לכן הדטרמיננטה של המטריצה לא יכול להיות וקטור האפס. לכן הדטרמיננטה של המטריצה לא יכול להיות וקטור האפס. לכן הדטרמיננטה של המטריצה לא יכול להיות וקטור האפס.

$$|\lambda I - A| = 0 .$$

A המשוואה הזאת נקראת משוואת האופייני של

הצד שמאל נקרא הפולינום האופייני של A ומסומן .cf. כלומר

$$p_A(\lambda) = |\lambda I - A| .$$

משפט 2.3 סדר של פולינום האו<u>פייני</u>

A מסדר מסדר A של $p_A(x)$ אם הפולינום האופייני אז הפולינום, $A \in \mathbb{F}^{n \times n}$

משפט 2.4 מרחב עצמי

תהי $A\in\mathbb{F}^{n\times n}$ ויהי λ ערך עצמי של A. נסמן ב- V_λ הקבוצה של כל הוקטורים עצמיים ששייכים לערך עצמי λ , בתוספת הוקטור האפס.

 $\mathbb{F}^{n imes n}$ עת-מרחב של V_{λ}

הוכחה: תרגיל בית.

$A-\lambda I$ משפט 2.5 מרחב עצמי של ערך עצמי λ שווה למרחב האפס של

A ערך עצמי של A וויהי וויהי א ערך עצמי של א יהי א $A\in\mathbb{F}^{n imes n}$

$$V_{\lambda} = \text{Nul}(A - \lambda I)$$
.

 $.V_{\lambda}\subseteq \mathrm{Nul}\,(A-\lambda I)$ נוכיח כי נוכיח הוכחה:

יהי u וקטור עצמי של A ששייך לערך עצמי A. ז"א מקיים את משוואת הערך עצמי:

$$A \cdot u = \lambda u \qquad \Rightarrow \qquad (A - \lambda I) \cdot u = \bar{0}$$

לכן $u\in V_\lambda$ לכן לכל וקטור אפס. אפס. לכן לכן $0\in \mathbb{F}^n$ לכן לכן $V_\lambda\subset \mathrm{Nul}\,(A-\lambda I)$.

 $\mathrm{Nul}\left(A-\lambda I\right)\subseteq V_{\lambda}$ נוכיח כי

יהי $u \in \operatorname{Nul}(A - \lambda I)$ יהי

$$(A - \lambda I) u = \bar{0} \qquad \Rightarrow \qquad A \cdot u = \lambda u .$$

לכן $u\in {\rm Nul}\,(A-\lambda I)$ לכל לכך אייא לערך עצמי u ששייך לערך עצמי לערך עצמי u לכל אייא וקטור עצמי של שייר אווו $(A-\lambda I)\subset V_\lambda$.

הגדרה 2.2 ריבוי אלגברי וריבוי גיאומטרי של ערך עצמי של מטריצה

 λ_i ערך עצמי ערך, ויהי א $A \in \mathbb{F}^{n imes n}$

הריבוי אלגברי של .A הוא הריבוי של בפולינום האופייני של הוא הריבוי אלגברי הריבוי אלגברי הריבוי הריבוי הריבוי הריבוי הריבוי הריבוי של

$$|\lambda I - A| = (\lambda - \lambda_1)^{m_1} \cdot (\lambda - \lambda_2)^{m_2} \quad \cdots \quad (\lambda - \lambda_i)^{m_i} \quad \cdots \quad (\lambda - \lambda_l)^{m_l} ,$$

 m_i אז הריבוי אלגברי של

הריבוי גיאומטרי של הוא המימד המימד אם הוא λ_i שלו. כלומר אם הריבוי גיאומטרי

$$V_{\lambda_i} = \{u_1, \dots, u_k\}$$

.k הוא λ_i יש וקטורים גיאומטרי כי הואומרים עצמיים אז ל- א וקטורים ואומרים אז ל- אז ל- א וקטורים אוא

דוגמה 2.4

מצאו את כל הערכים עצמיים והוקטורים עצמיים של המטריצה

$$A = \begin{pmatrix} 1 & 2 \\ 3 & 2 \end{pmatrix} .$$

פתרון:

נרשום את הפולינום האופייני של המטריצה:

$$|\lambda I - A| = 0 \quad \Rightarrow \quad \begin{vmatrix} \lambda - 1 & -2 \\ -3 & \lambda - 2 \end{vmatrix} = 0 \quad \Rightarrow \quad (\lambda - 1)(\lambda - 2) - 6 = 0 \quad \Rightarrow \quad \lambda^2 - 3\lambda - 4 = 0$$

או שקול

$$(\lambda - 4)(\lambda + 1) = 0$$

ולכן לפולינום אופייני יש שני פתרונות:

$$\lambda = 4$$

$$.\lambda = -1$$

. $\mathrm{Nul}\left(A-\lambda I\right)$ את הוקטורים עצמיים של כל אחד של הערכים של מצא את הוקטורים עצמיים אחד אחד אחד אחד אחד אונמצא את

 $\lambda = 4$

$$(A-\lambda I\mid ar{0})\stackrel{\lambda=4}{=} (A-4I\mid ar{0}) = \left(egin{array}{cc|c} -3 & 2 & 0 \ 3 & -2 & 0 \end{array}
ight)
ightarrow \left(egin{array}{cc|c} -3 & 2 & 0 \ 0 & 0 & 0 \end{array}
ight)$$
 פתרון: $\begin{pmatrix} x \ y \end{pmatrix} = y \begin{pmatrix} 2 \ 3 \end{pmatrix}$.

נסמן . $\lambda=4$ נסמן אייך לערך עצמי מרחב עצמי ו

$$u_1 = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$$
.

 $\lambda=4$ הוא הוקטור עצמי ששייך לערך עצמי u_1 .1 הוא לכן הריכוי גיאומטרי של $\dim(V_4)=1$

 $\lambda = -1$

$$(A-\lambda I\mid ar{0}) \stackrel{\lambda=-1}{=} (A+I\mid ar{0}) = \left(egin{array}{cc|c} 2 & 2 & 0 \\ 3 & 3 & 0 \end{array}
ight)
ightarrow \left(egin{array}{cc|c} 1 & 1 & 0 \\ 0 & 0 & 0 \end{array}
ight)$$
 הפתרון הוא: $\begin{pmatrix} x \\ y \end{pmatrix} = y \begin{pmatrix} -1 \\ 1 \end{pmatrix}$:הפתרון הוא:

$$V_{-1} = \operatorname{span}\left\{ \begin{pmatrix} -1 \\ 1 \end{pmatrix} \right\} \ .$$

נסמן . $\lambda=-1$ הוא המרחב עצמי השייך להערך עצמי V_{-1}

$$u_2 = \begin{pmatrix} -1\\1 \end{pmatrix}$$

 $.\lambda=-1$ הוא הוקטור עצמי ששייך לערך עצמי הוקטור עצמי הוא u_2 .1 לכן הריכוי גיאומטרי של $\dim(V_{-1})=1$

דוגמה 2.5

מצאו את כל הערכים עצמיים והוקטורים עצמיים של המטריצה

$$A = \begin{pmatrix} 2 & 0 & 0 & 1 \\ 0 & 2 & -1 & -1 \\ -1 & -1 & 2 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} .$$

פתרון:

נרשום את הפולינום האופייני של המטריצה:

$$|\lambda I - A| = 0 \quad \Rightarrow \quad \begin{vmatrix} \lambda - 2 & 0 & 0 & -1 \\ 0 & \lambda - 2 & 1 & 1 \\ 1 & 1 & \lambda - 2 & 0 \\ 0 & 0 & \lambda - 1 \end{vmatrix} = 0 \quad \Rightarrow \quad (\lambda - 1)(\lambda - 2)\left((\lambda - 2)^2 - 1\right) = 0 .$$

$$(\lambda - 1)(\lambda - 2)\left(\lambda^2 - 4\lambda + 4 - 1\right) = 0$$

$$(\lambda - 1)(\lambda - 2)\left(\lambda^2 - 4\lambda + 3\right) = 0$$

$$(\lambda - 1)(\lambda - 2)(\lambda - 3)(\lambda - 1) = 0$$

$$(\lambda - 1)^2(\lambda - 2)(\lambda - 3) = 0$$

:קיימים 3 ערכים עצמיים

 $\lambda=1$ מריבוי אלגברי

 $\lambda = 2$ מריבוי אלגברי λ

 $\lambda=3$ מריבוי אלגברי

 $\lambda = 1$

נסמן נסמן ישנם שני V_1 ישנם של בבסיס של

$$u_1 = \begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \end{pmatrix}, \qquad u_2 = \begin{pmatrix} -1 \\ 1 \\ 0 \\ 1 \end{pmatrix}.$$

 $\lambda=1$ ו- u_2 הם הוקטורים עצמיים ששייכים לערך עצמי ו- u_1 ו- u_2 הוא ל $\dim(V_1)=2$ אומרים כי הריבוי גאומטרי של הערך עצמי

 $\lambda = 2$

$$(A - 2I \mid \bar{0}) = \begin{pmatrix} 0 & 0 & 0 & 1 \mid 0 \\ 0 & 0 & -1 & -1 \mid 0 \\ -1 & -1 & 0 & 0 \mid 0 \\ 0 & 0 & 0 & -1 \mid 0 \end{pmatrix} \rightarrow \begin{pmatrix} -1 & -1 & 0 & 0 \mid 0 \\ 0 & 0 & -1 & -1 \mid 0 \\ 0 & 0 & 0 & -1 \mid 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 0 & 0 \mid 0 \\ 0 & 0 & -1 & -1 \mid 0 \\ 0 & 0 & 0 & -1 \mid 0 \end{pmatrix}$$

$$\rightarrow \quad \left(\begin{array}{ccc|c} 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{array}\right) \quad \rightarrow \quad \left(\begin{array}{ccc|c} 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{array}\right)$$

פתרון:
$$\lambda=2$$
 עצמי ששייך לערך עצמי המרחב $\begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix}=y \begin{pmatrix} 1 \\ -1 \\ 0 \\ 0 \end{pmatrix}, \ y\in\mathbb{R}.$ פתרון:

$$V_2 = \operatorname{span} \left\{ \begin{pmatrix} 1 \\ -1 \\ 0 \\ 0 \end{pmatrix} \right\}$$

בביס של V_2 יש וקטור אחד. נסמן

$$u_3 = \begin{pmatrix} 1 \\ -1 \\ 0 \\ 0 \end{pmatrix} .$$

עד הערך גאומטרי כי הריבוי אומרים ל
וון ש הערך. כיוון א $\lambda=2$ עצמי לערך עצמי ששייך אומרים הוא הוק
ט. $\lambda=2$ עצמי לערך עצמי ששייך לערך עצמי לערך. כיוון א $\lambda=2$ עצמי לערך עצמי הוא הוא $\lambda=2$

 $\lambda = 3$

$$(A - 3I \mid \bar{0}) = \begin{pmatrix} -1 & 0 & 0 & 1 \mid 0 \\ 0 & -1 & -1 & -1 \mid 0 \\ -1 & -1 & -1 & 0 \mid 0 \\ 0 & 0 & 0 & -2 \mid 0 \end{pmatrix} \xrightarrow{R_1 \to -R_1 \atop R_2 \to -R_2} \begin{pmatrix} 1 & 0 & 0 & -1 \mid 0 \\ 0 & 1 & 1 & 1 \mid 0 \\ -1 & -1 & -1 & 0 \mid 0 \\ 0 & 0 & 0 & -2 \mid 0 \end{pmatrix}$$

$$\xrightarrow{R_3 \to R_3 + R_2} \left(\begin{array}{cccc|c} 1 & 0 & 0 & -1 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{array} \right)$$

המרחב עצמי ששייך לערך עצמי
$$\lambda=3$$
 המרחב המרחב ואמי ששייך ב $\begin{pmatrix} x\\y\\z\\w \end{pmatrix}=z\begin{pmatrix}0\\-1\\1\\0\end{pmatrix},\;z\in\mathbb{R}.$ פתרון:

$$V_3 = \operatorname{span} \left\{ \begin{pmatrix} 0 \\ -1 \\ 1 \\ 0 \end{pmatrix} \right\}$$

:דר אחד אחד יש וקטור אחד בבסיס של

$$u_4 = \begin{pmatrix} 0 \\ -1 \\ 1 \\ 0 \end{pmatrix} .$$

אז אומרים כי הריבוי גאומטרי של הערך עצמי הוא $\dim(V_3)=1$ - כיוון ש- $\lambda=3$ כיוון עצמי ששייך לערך עצמי ששייך לערך אז הוא $\lambda=3$. הוא $\lambda=3$

2.2 לכסון של מטריצה

הגדרה 2.3 לכסינות של מרטיצות

תהי מטריצה אם קיימת מטריצה אלכסונית. כלומר אם היא דומה לכסינה אם תקרא לכסינה אם תקרא לכסינה אם חיימת אלכסונית. כלומר אם חיימת מטריצה אלכסונית בד $D\in\mathbb{F}^{n\times n}$ מכריצה אלכסונית ומטריצה אלכסונית בדי אלכסונית היא מטריצה אלכסונית בדי מטריצה בדי מטריצה

$$D = P^{-1}AP .$$

משפט 2.6 לכסינות של מרטיצות

. לכסינה A אז \mathbb{F}^n אז א בסיס של A מהווה בסיס של $A\in\mathbb{F}^{n\times n}$ תהי

נסמן הוקטורים עצמיים ב- $\{u_1,\dots,u_n\}$ ששייכים לערכים עצמיים $\lambda_1,\dots,\lambda_n$ בהתאמה הערכים עצמיים לא בהכרח שונים זה מזה). מכאן נובע ש-

$$D = P^{-1}AP$$
 \Leftrightarrow $A = PDP^{-1}$

. מטריצה הפיכה
$$P=\begin{pmatrix} \mid&\mid&&&\mid\\u_1&u_2&\dots&u_n\\\mid&\mid&&\mid\end{pmatrix}$$
 מטריצה אלכסונית ו
$$D=\begin{pmatrix} \lambda_1&0&\dots&0\\0&\lambda_2&\dots&0\\\vdots&\vdots&\ddots&0\\0&0&\dots&\lambda_n \end{pmatrix}$$
 כאשר

הוכחה: $1 \leq i \leq n$ לכל $A \cdot u_i = \lambda_i u_i$. לכן

$$A \cdot P = \begin{pmatrix} | & | & | & | \\ A \cdot u_1 & A \cdot u_2 & \dots & A \cdot u_n \\ | & | & | & | \end{pmatrix}$$

$$= \begin{pmatrix} | & | & | & | \\ \lambda_1 u_1 & \lambda_2 u_2 & \dots & \lambda_n u_n \\ | & | & | & | \end{pmatrix}$$

$$= \begin{pmatrix} | & | & | \\ \lambda_1 u_1 & \lambda_2 u_2 & \dots & \lambda_n u_n \\ | & | & | & | \end{pmatrix} \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & \dots & \lambda_n \end{pmatrix}$$

$$= PD.$$

 P^{-1} לכן הפיכה. לכן אז $\{u_1,\dots,u_n\}$ אז מהווים בסיס, אז בי הוקטורים לכן. לכן הפיכה. לכן הפיכה. לכן $.P^{-1}$ ולכן אז בי $.P^{-1}$ ביימת ומותר להכפיל מצד שמאל בי $.P^{-1}$. נקבל

$$A = P^{-1}PD .$$

משפט 2.7 קריטירון 1 ללכסינות של מטריצה

. אם ל- A יש n ערכים עצמיים שונים ב- \mathbb{F} , אז $A\in\mathbb{F}^{n\times n}$ תהי

הוכחה: תרגיל בית.

משפט 2.8 קריטירון 2 ללכסינות של מטריצה: סכום המימדים של מרחבים העצמיים

A . $A \in \mathbb{F}^{n imes n}$ תהי לכסינה אם"ם סכום המימדים של המרחבים העצמיים השונים שווה ל

הוכחה: תרגיל בית.

משפט 2.9 קריטירון 3 ללכסינות של מטריצה

תהי $A\in\mathbb{F}^{n imes n}$ אם

- $_{-1}$ הפולינום האופייני שלה מתפרק למכפלה של גורמים לינאריים מעל $_{\mathbb{T}}$, לא בהכרח שונים, ו
 - 2. הריבוי האלגברי של כל ערך עצמי שווה לריבוי הגיאומטרי שלו,
 - $.\mathbb{F}$ אז A לכסינה מעל

הוכחה: תרגיל בית.

2.3 ערכים עצמיים של טרנספורמציות לינאריות

הגדרה 2.4 אופרטור לינארי

יהי אופרטור אופרטור נקראת אורי. $T:V \to V$ יהי טרנספורציה אופרטור מרחב על מרחב יהי

הגדרה 2.5 אופרטור לכסין

אלכסונית. פיים של עד ער קיים לכסין נקראת נקראת נקראת לכסין אלכסונית. אופרטור $T:V\to V$ ינארי אופרטור אופרטור

-טל V פך של $B=\{b_1,\ldots,b_n\}$ של א"א קיים בסיס

$$T(b_1) = \lambda_1 b_1$$
, $T(b_2) = \lambda_2 b_2$, ... $T(b_n) = \lambda_n b_n$.

X

$$[T]_B = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & \dots & \lambda_n \end{pmatrix}$$

(לא כל ה- λ בהכרח שונים זה מזה)

הגדרה 2.6 ערך עצמי ווקטור עצמי של אופרטור לינארי

"כך שt = 0 כך וקטור $T: V \to V$ בקר ערך עצמי של אופרטור לינארי ו- λ סקלר. λ סקלר. λ כך ש

$$T(u) = \lambda u$$
.

נקרא u

 λ וקטור עצמי ששייך לערך עצמי

משפט 2.10

עצמיים. אופרטור לינארי אבורכב מוקטורים אם"ם קיים היים לכסינה לכסינה $T:V \to V$ אופרטור אופרטור אופרטור אופרטור

הוכחה: ⇒

-ע כך $U=\{u_1,\ldots,u_n\}$ כך פרים כסינה. ז"א קיים בסיס T לכסינה.

$$T(u_1) = \lambda_1 u_1$$
, $T(u_2) = \lambda_2 u_2$, ..., $T(u_n) = \lambda_n u_n$.

77

$$[T]_U = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & \dots & \lambda_n \end{pmatrix}$$

(לא כל ה- λ בהכרח שונים זה מזה).

 $\stackrel{\longleftarrow}{}$

-ע כך א $\lambda_1,\dots,\lambda_n$ פקלרים סקלרים עצמיים. א"א קיימים שמורכב שמורכב $U=\{u_1,\dots,u_n\}$ כל ש

$$T(u_1) = \lambda_1 u_1$$
, ... $T(u_n) = \lambda_n u_n$.

לכן

$$[T]_U = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & \dots & \lambda_n \end{pmatrix}$$

אלכסונית.

הגדרה 2.7 פולינום האופייני של אופרטור לינארי

תהי T:V o V או הפולינום B או הפיסים אופרטור לינארי. נניח ש

$$p_T(\lambda) = |\lambda I - A|$$

T נקרא הפולינום האופייני של

הגדרה 2.8 ריבוי אלגברי וריבוי גיאומטרי של ערך עצמי של אופרטור לינארי

ערך עצמי. λ - ערך עצמי. אופרטור $T:V \to V$ נניח

- הוא האופייני. λ בפולינום האופייני. λ הוא הריבוי של
- λ הריבוי הגאומרטי של λ הוא λ הוא (λ לומר, מספר הוקטורים העצמיים הבת"ל השייכים ל λ

דוגמה 2.6

$$T\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x + 2y \\ 3x + 2y \end{pmatrix}$$

 $T(u) = \lambda u$ -פשו את הוקטורים עצמיים של T כך ש- חפשו את חפשו האח T לכסיוה?

פתרון:

$$T\begin{pmatrix} x \\ y \end{pmatrix} = A\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x + 2y \\ 3x + 2y \end{pmatrix}$$

. כאשר $A = \begin{pmatrix} 1 & 2 \\ 3 & 2 \end{pmatrix}$ כאשר אופרטור.

פולינום האופייני:

$$|\lambda I - A| = \begin{vmatrix} \lambda - 1 & -2 \\ -3 & \lambda - 2 \end{vmatrix} = (\lambda - 1)(\lambda - 2) - 6 = \lambda^2 - 3\lambda - 4 = (\lambda - 4)(\lambda + 1) = 0.$$

:ערכים עצמיים

$$\lambda = -1$$

 $\lambda = 4$

$$(A-4I) = \begin{pmatrix} -3 & 2\\ 3 & -2 \end{pmatrix} \to \begin{pmatrix} -3 & 2\\ 0 & 0 \end{pmatrix}$$

פתרון: $V_4=\mathrm{span}\left\{inom{2}{3}\right\}$ הוא $\lambda=4$ המרחב עצמי שלו . $inom{x}{y}=inom{rac{2}{3}}{1}$ נסמן הוקטור עצמי שלו . $u_1=inom{2}{3}$ -ם . $u_1=inom{2}{3}$ -ם . $\lambda=-1$

$$(A+I)=egin{pmatrix}2&2\\3&3\end{pmatrix} o egin{pmatrix}1&1\\0&0\end{pmatrix}$$
 נסמן הוקטור $.V_{-1}=\mathrm{span}\left\{egin{pmatrix}1\\-1\end{pmatrix}\right\}$ הוא $\lambda=-1$ הוא לכן המרחב עצמי של $.U_{-1}=\mathrm{span}\left\{egin{pmatrix}1\\y\end{pmatrix}=egin{pmatrix}-1\\1\end{pmatrix}y,y\in\mathbb{R}\\y\end{pmatrix}$ עצמי שלו ב- $u_{1}=u_{1}$ עצמי שלו ב- $u_{2}=u_{1}$ עצמי שלו ב- $u_{1}=u_{2}$

$$\begin{pmatrix} u_1 & u_2 \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 3 & -1 \end{pmatrix} \to \begin{pmatrix} 2 & 1 \\ 0 & -5 \end{pmatrix}$$

לכן הם מהווים בסיס של \mathbb{R}^2 לכן בסיט מהווים לכן לכ

$$T(u_1) = 4 \cdot u_1$$
, $T(u_2) = -1 \cdot u_2$.

משפט 2.11

יהי לינארי לינארי אופרטור $T:V \to V$ ויהי וקטורי מעל Vיהי לינארי מעל מרחב וקטורי מעל $T:V \to V$

B נניח ש- T לפי בסיס $[T]_B$ נניח ש-

יהיו $\lambda_1,\dots,\lambda_n$ הוקטורים עצמיים של T לפי בסיס B, ששייכים לערכים עצמיים u_1,\dots,u_n והם לא בהכרח שונים זה מזה).

אז

$$[T]_B = PDP^{-1}$$

או באופן שקול

$$P^{-1}[T]_B P = D$$

$$D=egin{pmatrix} \lambda_1&0&\dots&0\\0&\lambda_2&\dots&0\\ dots&dots&\ddots&0\\0&0&\dots&\lambda_n \end{pmatrix}$$
 -ו $P=egin{pmatrix} |&&&&|\\u_1&u_2&\dots&u_n\\|&&&&|\end{pmatrix}$ באשר

הוכחה:

$$[T]_{B}P = [T]_{B} \begin{pmatrix} | & | & | \\ u_{1} & u_{2} & \dots & u_{n} \\ | & | & | & | \\ | & | & | & | \\ \end{bmatrix}$$

$$= \begin{pmatrix} | & | & | & | \\ [T]_{B}u_{1} & [T]_{B}u_{2} & \dots & [T]_{B}u_{n} \\ | & | & | & | \\ \end{pmatrix}$$

$$= \begin{pmatrix} | & | & | & | \\ \lambda_{1}u_{1} & \lambda_{2}u_{2} & \dots & \lambda_{n}u_{n} \\ | & | & | & | \end{pmatrix}$$

$$= \begin{pmatrix} | & | & | & | \\ \lambda_{1}u_{1} & \lambda_{2}u_{2} & \dots & \lambda_{n}u_{n} \\ | & | & | & | \end{pmatrix}$$

$$= \begin{pmatrix} | & | & | & | \\ u_{1} & u_{2} & \dots & u_{n} \\ | & | & | & | \end{pmatrix} \begin{pmatrix} \lambda_{1} & 0 & \dots & 0 \\ 0 & \lambda_{2} & \dots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & \dots & \lambda_{n} \end{pmatrix}$$

$$= PD,$$

כלומר, P^{-1} קיימת. לכן מותר להכפיל בת"ל, אז u_1,\dots,u_n בת"ל, אז לכן מותר להכפיל הוקטורים עצמיים עצמיים u_1,\dots,u_n בת"ל, אז P^{-1} קיימת. לכן מותר להכפיל מצד ימין ב- P^{-1} . נקבל: ולכן

$$[T]_B = PDP^{-1}$$

ומכאן נובע כי

$$P^{-1}[T]_B P = D$$

משפט 2.12

תהי אומטרי ו- kהריבוי האלגברי אם ערך עצמי. אם או λ_0 לינארית לינארית $T:V\to V$ אס הריבוי אומטרי אל $T:V\to V$ אז

$$k \leq m$$
.

במילים: הריבוי הגיאומטרי קטן או שווה לריבוי האלגברי.

k גיאומטרי m וריבוי אלגברי m וריבוי גיאומטרי λ_0 ערך עצמי מריבוי אלגברי u_1,\dots,u_k א"א קיימים u_1,\dots,u_k וקטורים בת"ל v וקטורים של v:

$$B = \{u_1, \dots, u_k, u_{k+1}, \dots, u_n\}$$
.

 $:\!B$ נחשב את המטריצה המייצגת של נחשב את המטריצה המייצגת נחשב את

$$T(u_1) = \lambda_0 u_1$$
, ..., $T(u_k) = \lambda_0 u_k$

לכן

$$[T]_{B} = \begin{pmatrix} \lambda_{0} & 0 & \cdots & 0 \\ 0 & \lambda_{0} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & * \\ 0 & 0 & \cdots & \lambda_{0} \\ \hline 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & A' \\ 0 & 0 & \cdots & 0 \end{pmatrix}$$

הוא A הופייני של

$$p_A(\lambda) = |\lambda I - A| = \begin{pmatrix} \lambda - \lambda_0 & 0 & \cdots & 0 \\ 0 & \lambda - \lambda_0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & * \\ 0 & 0 & \cdots & \lambda - \lambda_0 \\ \hline 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \lambda I - A' \\ 0 & 0 & \cdots & 0 \end{pmatrix}$$

נחשב את הדטרמיננטה דרך העמודה הראשונה:

$$p_A(\lambda) = (\lambda - \lambda_0) \cdot \left| \begin{pmatrix} \lambda - \lambda_0 & \cdots & 0 \\ \vdots & \ddots & \vdots & * \\ 0 & \cdots & \lambda - \lambda_0 & \\ \hline 0 & \cdots & 0 \\ \vdots & \ddots & \vdots & \lambda I - A' \\ 0 & \cdots & 0 & \end{pmatrix} \right|$$

עד שנקבל

$$p_A(\lambda) = (\lambda - \lambda_0)^k |\lambda I - A'| = (\lambda - \lambda_0)^k p_{A'}(\lambda)$$

 $\cdot k$ -לכן הריבוי האלגברי גדול או שווה ל

דוגמה 2.7

$$A = \begin{pmatrix} -1 & 0 & 1\\ 0 & -1 & 3\\ -1 & 3 & 1 \end{pmatrix}$$

A מצאו את הערכים העצמיים ומרחבים עצמיים של

ב האם P ומטריצה הפיכה חבריצה אלכסונית מטריצה אם כן, רשמו ב האם A

$$D = P^{-1}AP.$$

פתרון:

N

$$|\lambda I - A| = \begin{vmatrix} \lambda + 1 & 0 & -1 \\ 0 & \lambda + 1 & -3 \\ 1 & -3 & \lambda - 1 \end{vmatrix} = (\lambda + 1) \begin{vmatrix} \lambda + 1 & -3 \\ -3 & \lambda - 1 \end{vmatrix} - \begin{vmatrix} 0 & 1 + \lambda \\ 1 & -3 \end{vmatrix}$$
$$= (\lambda + 1) ((\lambda + 1)(\lambda - 1) - 9) - (0 - (1 + \lambda))$$
$$= (\lambda + 1)(\lambda^2 - 1 - 9 + 1)$$
$$= (\lambda + 1)(\lambda^2 - 9)$$
$$= (\lambda + 1)(\lambda + 3)(\lambda - 3)$$

:ערכים עצמיים

 $\lambda=-1$ מריבוי אלגברי $\lambda=-1$

.1 מריבוי אלגברי $\lambda=3$

.1 מריבוי אלגברי $\lambda=-3$

 $\lambda = -1$

$$(A+I) = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 3 \\ 1 & 3 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} -1 & 3 & 2 \\ 0 & 0 & 1 \\ 0 & 0 & 3 \end{pmatrix} \rightarrow \begin{pmatrix} -1 & 3 & 2 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} -1 & 3 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

פתרון: $\lambda=-1$ עצמי אפייך להערך עצמי המרחב ו $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 3 \\ 1 \\ 0 \end{pmatrix} y, \quad y \in \mathbb{R}$ פתרון:

$$V_{-1} = \operatorname{span} \left\{ \begin{pmatrix} 3 \\ 1 \\ 0 \end{pmatrix} \right\}$$

 $.u_1=egin{pmatrix} 3 \ 1 \ 0 \end{pmatrix}$ הווקטור עצמי של $\lambda=-1$ הווקטור ע

.1 הוא לכן הערך אים הגיאומטרי הגיאומטרי לכן $\dim(V_{-1})=1$

 $\lambda = 3$

$$(A-3I) = \begin{pmatrix} -4 & 0 & 1 \\ 0 & -4 & 3 \\ -1 & 3 & -2 \end{pmatrix} \rightarrow \begin{pmatrix} -4 & 0 & 1 \\ 0 & -4 & 3 \\ 0 & -12 & 9 \end{pmatrix} \rightarrow \begin{pmatrix} -4 & 0 & 1 \\ 0 & -4 & 3 \\ 0 & 0 & 0 \end{pmatrix}$$

פתרון:
$$\lambda=3$$
 עצמי $\lambda=3$ המרחב עצמי השייך להערך עצמי z הוא .
$$\begin{pmatrix} x\\y\\z \end{pmatrix} = \begin{pmatrix} \frac{z}{4}\\\frac{3}{4}z\\z \end{pmatrix} = z \begin{pmatrix} 1\\3\\4 \end{pmatrix} :$$

$$V_3 = \operatorname{span}\left\{ \begin{pmatrix} 1\\3\\4 \end{pmatrix} \right\}$$

הוא $\lambda=3$ הוא הערך עצמי של הוא

$$u_2 = \begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix} .$$

 $\lambda=3$ הוא הערך עצמי לכן הריבוי גיאומטרי של הערך לכן הריבוי היבוי למות לכן ל

 $\lambda = -3$

$$(A+3I) = \begin{pmatrix} 2 & 0 & 1 \\ 0 & 2 & 3 \\ -1 & 3 & 4 \end{pmatrix} \rightarrow \begin{pmatrix} 2 & 0 & 1 \\ 0 & 2 & 3 \\ 0 & 6 & 9 \end{pmatrix} \rightarrow \begin{pmatrix} 2 & 0 & 1 \\ 0 & 2 & 3 \\ 0 & 0 & 0 \end{pmatrix}$$

אוא
$$\lambda=-3$$
 אוא השייך להערך עצמי השייך המרחב .
$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -\frac{1}{2}z \\ -\frac{3}{2}z \\ z \end{pmatrix} = z \begin{pmatrix} -\frac{1}{2} \\ -\frac{3}{2} \\ 1 \end{pmatrix} :$$
פתרון:

$$V_{-3} = \operatorname{span} \left\{ \begin{pmatrix} -1 \\ -3 \\ 2 \end{pmatrix} \right\}$$

הוא $\lambda = -3$ הוא של הערך עצמי

$$u_3 = \begin{pmatrix} -1 \\ -3 \\ 2 \end{pmatrix} .$$

 $\lambda=-3$ לכן הריבוי גיאומטרי של הערך עצמי dim $V_{-3}=1$

 \mathbb{R}^3 לכן קיים בסיס של dim V_1+ dim V_3+ dim $V_{-3}=3$

$$u_1 = \begin{pmatrix} 3 \\ 1 \\ 0 \end{pmatrix}$$
 , $u_2 = \begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix}$, $u_3 = \begin{pmatrix} -1 \\ -3 \\ 2 \end{pmatrix}$.

ומטריצה A לכסינה:

$$D = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & -3 \end{pmatrix} , \qquad P = \begin{pmatrix} 3 & 1 & -1 \\ 1 & 3 & -3 \\ 0 & 4 & 2 \end{pmatrix} .$$

דוגמה 2.8

$$A = \begin{pmatrix} 5 & 2 & -2 \\ 2 & 5 & -2 \\ -2 & -2 & 5 \end{pmatrix}$$

A מצאו את הערכים העצמיים ומרחבים עצמיים של

ב האם D ומטריצה הפיכה P כך שם לכסינה? אם לכסינה? ב האם A

$$D = P^{-1}AP.$$

פתרון:

N

$$|\lambda I - A| = \begin{vmatrix} \lambda - 5 & -2 & 2 \\ -2 & \lambda - 5 & 2 \\ 2 & 2 & \lambda - 5 \end{vmatrix}$$

$$= (\lambda - 5) \begin{vmatrix} \lambda - 5 & 2 \\ 2 & \lambda - 5 \end{vmatrix} + 2 \begin{vmatrix} -2 & 2 \\ 2 & \lambda - 5 \end{vmatrix} + 2 \begin{vmatrix} -2 & \lambda - 5 \\ 2 & 2 \end{vmatrix}$$

$$= (\lambda - 5) ((\lambda - 5)^2 - 4) + 2 (-2(\lambda - 5) - 4) + 2 (-4 - 2(\lambda - 5))$$

$$= (\lambda - 5) (\lambda^2 - 10\lambda + 21) + 2 (-2\lambda + 6) + 2 (-2\lambda + 6)$$

$$= (\lambda - 5) (\lambda - 7) (\lambda - 3) - 4 (\lambda - 3) - 4 (\lambda - 3)$$

$$= (\lambda - 3) ((\lambda - 5) (\lambda - 7) - 8)$$

$$= (\lambda - 3) (\lambda^2 - 12\lambda + 35 - 8)$$

$$= (\lambda - 3) (\lambda^2 - 12\lambda + 27)$$

$$= (\lambda - 3) (\lambda - 9)(\lambda - 3)$$

 $\lambda=3$ ערך עצמי מריבוי אלגברי $\lambda=3$

 $\lambda=9$ ערך עצמי מריבוי אלגברי $\lambda=9$

 $\lambda = 3$

$$(A-3I) = \begin{pmatrix} 2 & 2 & -2 \\ 2 & 2 & -2 \\ -2 & -2 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

פתרון:
$$\lambda=3$$
 עצמי אפייך להערך עצמי השייך להערך עצמי x בתרון: x בתרון: y בתרון y ב y ב y בוא אוא $V_3=\mathrm{span}\left\{\begin{pmatrix} -1\\1\\0\end{pmatrix}, \begin{pmatrix} 1\\0\\1\end{pmatrix}\right\}$

 $\lambda=3$ אז הריבוי הגיאומטרי של הערך עצמי $\lambda=3$ הוא $\dim(V_3)=2$

 $\lambda = 9$

$$(A-9I) = \begin{pmatrix} -4 & 2 & -2 \\ 2 & 4 & -2 \\ -2 & -2 & -4 \end{pmatrix} \rightarrow \begin{pmatrix} -2 & 1 & -1 \\ 0 & -3 & -3 \\ 0 & 3 & 3 \end{pmatrix} \rightarrow \begin{pmatrix} -2 & 1 & -1 \\ 0 & -3 & -3 \\ 0 & 0 & 0 \end{pmatrix}$$

פתרון:
$$\lambda=9$$
 עצמי אפייך להערך עצמי השייך המרחב .
$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -z \\ -z \\ z \end{pmatrix} = z \begin{pmatrix} -1 \\ -1 \\ 1 \end{pmatrix} :$$

$$V_9 = \operatorname{span}\left\{ \begin{pmatrix} -1\\-1\\1 \end{pmatrix} \right\}$$

1 אז הריבוי הגיאומטרי של הערך עצמי הוא, $\dim(V_9)=1$

.dim $V_9 = 1$,dim $V_3 = 2$

 $\mathrm{dim}V_3+\mathrm{dim}V_9=3\ .$

:לכן קיים בסיס של \mathbb{R}^3 המורכב מוקטורים עצמיים

$$u_1 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$$
 , $u_2 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$, $u_3 = \begin{pmatrix} -1 \\ -1 \\ 1 \end{pmatrix}$.

ומטריצה A לכסינה:

$$D = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 9 \end{pmatrix} , \qquad P = \begin{pmatrix} -1 & 1 & -1 \\ 1 & 0 & -1 \\ 0 & 1 & 1 \end{pmatrix} .$$

$$D = P^{-1}AP$$

דוגמה 2.9

$$A = \begin{pmatrix} 1 & 0 & 12 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

?האם A לכסינה

פתרון:

$$|\lambda I - A| = \begin{vmatrix} \lambda - 1 & 0 & -12 \\ -1 & \lambda & 0 \\ 0 & 0 & \lambda - 1 \end{vmatrix}$$
$$= (\lambda - 1)\lambda(\lambda - 1) = 0$$

 $\lambda=0$ ערך עצמי מריבוי אלגברי $\lambda=0$

.2 ערך עצמי מריבוי אלגברי $\lambda=1$

 $\lambda = 1$

$$(A-I) = \begin{pmatrix} 0 & 0 & 12 \\ 1 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

פתרון: $\lambda=1$ עצמי $\lambda=1$ המרחב עצמי השייך להערך עצמי . $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} y \\ y \\ 0 \end{pmatrix} = y \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} :$

$$V_1 = \operatorname{span}\left\{ \begin{pmatrix} 1\\1\\0 \end{pmatrix} \right\}$$

 $\lambda=1$ הוא הערך עצמי הגיאומטרי הגיאומטרי אז הריבוי הגיאומטרי אז הריבוי הגיאומטרי אז הריבוי הגיאומטרי

 $\lambda = 0$

$$(A - 0 \cdot I) = \begin{pmatrix} 1 & 0 & 12 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

פתרון: $\lambda=0$ עצמי (המרחב עצמי השייך המרחב ו $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ y \\ 0 \end{pmatrix} = y \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ פתרון:

$$V_0 = \operatorname{span}\left\{ \begin{pmatrix} 0\\1\\0 \end{pmatrix} \right\}$$

.1 הוא $\lambda=0$ עצמי של הערך הגיאומטרי הריבוי הריבוי $\dim(V_0)=1$

.dim
$$V_0=1$$
 ,dim $V_1=1$

$$\dim V_1 + \dim V_0 = 2 < \dim(\mathbb{R}^3) .$$

לכסינה. אל A לכן עצמיים עצמיים מוקטורים המורכב \mathbb{R}^3 אל לכסים לכן לכן לכ

משפט 2.13 קריטירון 1 ללכסינות של אופרטור

n יש T - אם ל- .dim(V)=n שר נניח ש- .dim(V)=n אופרטור לינארי. אופרטור T:V o V אם ל- T יש תרכים עצמיים שונים ב- $\mathbb T$, אז T לכסינה.

הוכחה: תרגיל בית.

משפט 2.14 קריטירון 2 ללכסינות של אופרטור: סכום המימדים של מרחבים העצמיים

יהי T . $\dim(V)=n$ -ש נניח ש- T:V o V אופרטור לכסין אם מעל T:V o V יהי לכסין אם מרחב עצמי מעל המרחבים העצמיים שווה ל- ח

הוכחה: תרגיל בית.

משפט 2.15 קריטירון 3 ללכסינות של אופרטור

יהי V מרחב עצמי מעל \mathbb{F} , ויהי V o V ויהי אופרטור לינארי. אם

- -ו. הפולינום האופייני של T מתפרק למכפלה של גורמים לינאריים מעל $\mathbb F$, לא בהכרח שונים, ו
 - 2. הריבוי האלגברי של כל ערך עצמי שווה לריבוי הגיאומטרי שלו,
 - $.\mathbb{F}$ אז T לכסין מעל

הוכחה: תרגיל בית.

דוגמה 2.10

$$A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

- \mathbb{R} לכסינה מעל A
- ${\mathbb C}$ לכסינה מעל A .2

פתרון:

$$p_A(\lambda) = \begin{vmatrix} \lambda & -1 \\ 1 & \lambda \end{vmatrix} = \lambda^2 + 1$$

 $\mathbb R$ לא לכסינה אל Aלכן מעל לינאריים לינאריים לינארמים לא מתפרק לא $p_A(\lambda)$.1

.2

$$\lambda^2 + 1 = (\lambda - i)(\lambda + i) = 0$$

 $\lambda=1$ ערך עצמי מריבוי אלגברי $\lambda=i$

 $\lambda=-i$ ערך עצמי מריבוי אלגברי $\lambda=-i$

 $\lambda = i$

$$(A-iI)=\left(egin{array}{ccc} -i&1\\-1&-i\end{array}
ight) \;\; o\;\; \left(egin{array}{ccc} -i&1\\0&0\end{array}
ight)$$
 פתרון: $\lambda=i$ עצמי $\lambda=i$ עצמי השייך להערך עצמי $\left(egin{array}{ccc} x\\y \end{array}
ight)=\left(egin{array}{ccc} -iy\\y \end{array}
ight)=y\left(egin{array}{ccc} -i\\1 \end{array}
ight)$ פתרון: $V_i=\mathrm{span}\left\{\left(egin{array}{ccc} -i\\1 \end{array}
ight)
ight\}$

1 אז הריבוי הגיאומטרי של הערך עצמי או $\dim(V_i)=1$

 $\lambda = -i$

$$(A+iI)=\left(egin{array}{cc} i&1\\-1&i\end{array}
ight) \;
ightarrow\; \left(egin{array}{cc} i&1\\0&0\end{array}
ight)$$
 פתרון: $\lambda=-i$ עצמי השייך להערך עצמי $\left(egin{array}{cc} x\\y\end{array}
ight)=\left(egin{array}{cc} iy\\y\end{array}
ight)=y\left(egin{array}{cc} i\\1\end{array}
ight)$ פתרון: $V_{-i}=\mathrm{span}\left\{\left(egin{array}{cc} i\\1\end{array}
ight)
ight\}$

1 אז הריבוי הגיאומטרי של $\dim(V_{-i})=1$

$$P = \begin{pmatrix} 1 & 1 \\ i & -i \end{pmatrix}$$
 , $D = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}$, $D = P^{-1}AP$.

משפט 2.16 וקטורים עצמיים ששייכים לערכים עצמיים שונים בת"ל

. נתון לינארים עצמיים שונים של ששייכים לערכים שונים הם בת"ל. וקטורים עצמיים של $T:V\to V$

הוכחה: נתון:

אופרטוא לינארי, T:V o V

T של u_1, \ldots, u_n ערכים עצמיים שונים ששייכים ששייכים עצמיים אונים עצמיים אונים אונים

צריך להוכיח:

ל. בת"ל. u_1, \ldots, u_n

הוכחה:

n נוכיח את הטענה ע"י אינדוקציה על

שלב הבסיס:

עבור n=1 לכן הוא בת"ל. $u_1
eq \bar{0}: n=1$

שלב האינדוקציה:

נניח שעבור n , וקטורים עצמיים ששייכים לn ערכים עצמיים שונים בת"ל. נניח וקטורים עצמיים ששייכים לn וקטורים עצמיים השייכים לערכים עצמיים אונים בחריט עצמיים השייכים לערכים עצמיים השייכים לערכים עצמיים ו

$$\alpha_1 u_1 + \alpha_2 u_2 + \ldots + \alpha_n u_n + \alpha_{n+1} u_{n+1} = \bar{0}$$
 (*)

X

$$\alpha_1 T(u_1) + \alpha_2 T(u_2) + \ldots + \alpha_n T(u_n) + \alpha_{n+1} T(u_{n+1}) = \bar{0}$$

$$\alpha_1\lambda_1u_1 + \alpha_2\lambda_2u_2 + \ldots + \alpha_n\lambda_nu_n + \alpha_{n+1}\lambda_{n+1}u_{n+1} = \bar{0}$$
 (*1)

 $:\lambda_{n+1}$ ב (*) נכפיל

$$\alpha_1 \lambda_{n+1} u_1 + \alpha_2 \lambda_{n+1} u_2 + \ldots + \alpha_n \lambda_{n+1} u_n + \alpha_{n+1} \lambda_{n+1} u_{n+1} = \bar{0}$$
 (*2)

(*1) מ (1*):

$$\alpha_1(\lambda_1 - \lambda_{n+1})u_1 + \alpha_2(\lambda_2 - \lambda_{n+1})u_2 + \ldots + \alpha_n(\lambda_n - \lambda_{n+1})u_n + \alpha_{n+1}(\lambda_{n+1} - \lambda_{n+1})u_n = \bar{0}$$

$$\alpha_1(\lambda_1-\lambda_{n+1})u_1+\alpha_2(\lambda_2-\lambda_{n+1})u_2+\ldots+\alpha_n(\lambda_n-\lambda_{n+1})u_n=\bar{0}$$
 (*3) לפי ההנחת האינדוקציה הוקטורים u_1,\ldots,u_n בת"ל.

$$lpha_1(\lambda_1-\lambda_{n+1})=0\;,\;\;\ldots\;\;, lpha_n(\lambda_n-\lambda_{n+1})=0\;.$$
 (*4) כל הערכים העצמיים שונים זה מזה, כלומר $\lambda_i-\lambda_{n+1}
eq 0$

$$\alpha_1 = 0 , \ldots , \alpha_n = 0 . \tag{*5}$$

נציב (*5) ב- (*) ונקבל

$$\alpha_1 u_1 = \bar{0}$$

לכן $\alpha_1, \ldots, \alpha_{n+1}=0$ כי הוא וקטור עצמי לכן (*) לכן (מצקיים לכן $\alpha_1=0$ לכן עצמיים עצמיים לכן $u_1\neq 0$ בת"ל. u_1, \ldots, u_{n+1}

2.4 שימושים של לכסון מטריצה

משפט 2.17 חזקה של מטריצה הדומה למטריצה אלכסונית

אם A לכסינה, אז קיימת מטריצה אלכסונית D ומטריצה הפיכה P כך ש $D=P^{-1}A$ לכ

$$A^n = PD^nP^{-1} .$$

הוכחה:

נוכיח את הטענה ע"י אינדוקציה.

שלב הבסיס:

$$A = PDP^{-1} \Leftarrow D = P^{-1}AP$$
 , $n = 1$ עבור

שלב האינדוקציה:

נגיש שעבור $A^n = PD^nP^{-1}$ מתקיים n מתקיים

$$A^{n+1} = (PD^nP^{-1}) \cdot PDP^{-1} = PD^{n+1}P^{-1}$$

דוגמה 2.11

נתונה המטריצה

$$A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & -1 \\ 0 & 0 & 1 \end{pmatrix}$$

- A מצאו את הערכים עצמיים והמרחבים עצמיים של $oldsymbol{1}$
- $A = P^{-1}A$ ע כך שP כך ומטריצה הפיכה ומטריצה אלכסונית מטריצה אם כן לכסינה? האם לכסינה?
 - A^{1001} חשבו את 3

פתרון:

$$|\lambda I - A| = \begin{vmatrix} \lambda & -1 & -1 \\ -1 & \lambda & 1 \\ 0 & 0 & \lambda - 1 \end{vmatrix} = (\lambda - 1) \begin{vmatrix} \lambda & -1 \\ -1 & \lambda \end{vmatrix} = (\lambda - 1)(\lambda^2 - 1) = (\lambda - 1)^2(\lambda + 1) = 0$$

 $\lambda=1$ מריבוי אלגברי

 $\lambda=-1$ מריבוי אלגברי $\lambda=-1$

 $\lambda = 1$

$$(A-I) = \begin{pmatrix} -1 & 1 & 1 \\ 1 & -1 & -1 \\ 0 & 0 & 0 \end{pmatrix} \to \begin{pmatrix} -1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

פתרון:

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} y+z \\ y \\ z \end{pmatrix} = y \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + z \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$

מרחב עצמי:

$$V_1 = \operatorname{span} \left\{ \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \right\}$$

 $\lambda = -1$

$$(A+I) = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & -1 \\ 0 & 0 & 2 \end{pmatrix} \to \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & -2 \\ 0 & 0 & 2 \end{pmatrix} \to \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

פתרון:

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -y \\ y \\ 0 \end{pmatrix} = y \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$$

מרחב עצמי:

$$V_{-1} = \operatorname{span}\left\{ \begin{pmatrix} -1\\1\\0 \end{pmatrix} \right\}$$

 $\dim V_1 + \dim V_{-1} = 2 + 1 = 3 = \dim \mathbb{R}^3$

לכן A לכסינה.

$$D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} , \qquad P = \begin{pmatrix} 1 & 1 & -1 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

 $A^{1001} = PD^{1001}P^{-1}$

 $:P^{-1}$ נמצא את

$$\left(\begin{array}{cc|cc|c} 1 & 1 & -1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 \end{array}\right) \rightarrow \left(\begin{array}{cc|cc|c} 1 & 0 & 0 & \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \\ 1 & 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{array}\right)$$

$$P^{-1} = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \\ 0 & 0 & 1 \\ -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{pmatrix}$$
 לכן
$$.D^{1001} = \begin{pmatrix} 1^{1001} & 0 & 0 \\ 0 & 1^{1001} & 0 \\ 0 & 0 & (-1)^{1001} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

$$A^{1001} = \begin{pmatrix} 1 & 1 & -1 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \\ 0 & 0 & 1 \\ -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{pmatrix} = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & -1 \\ 0 & 0 & 1 \end{pmatrix}$$

2.18 משפט

אם $A \cdot u = \lambda u$ וקטור עצמי של A השייך לערך עצמי λ , כלומר אז $A \cdot u = \lambda u$ אז

$$A^n u = \lambda^n u$$
.

שלב הבסיס:

 $A \cdot u = \lambda u$ וקטור עצמי של $A \cdot u = \lambda u$, וקטור עבור $A \cdot u = \lambda u$, וקטור עבור

שלב האינדוקציה:

נניח שעבור $A^nu=\lambda^nu$,n>1 אז

$$A^{n+1}u = A\left(A^nu\right) = A\lambda^nu = \lambda^nAu = \lambda^n \cdot \lambda u = \lambda^{n+1}u \ .$$

דוגמה 2.12

$$A = \begin{pmatrix} 0 & -4 & 0 \\ 1 & -4 & 0 \\ 1 & -2 & 1 \end{pmatrix}.$$

- A מצאו את הערך עצמי ווקטור עצמי של
- $A = P^{-1}A$ ע כך שP כך אם רכסינה? אם לכסינה? מטריצה אלכסונית אלכסונית מטריצה מטריצה אם לכסינה?

$$A^{2023} \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}$$
 את חשבו את

פתרון:

$$|\lambda I - A| = \begin{vmatrix} \lambda & 4 & 0 \\ -1 & \lambda + 4 & 0 \\ -1 & 2 & \lambda - 1 \end{vmatrix} = (\lambda - 1) \begin{vmatrix} \lambda & 4 \\ -1 & \lambda + 4 \end{vmatrix} = (\lambda - 1)(\lambda^2 + 4\lambda + 4) = (\lambda - 1)(\lambda + 2)^2 = 0$$

.1מריבוי אלגברי $\lambda=1$

 $\lambda = -2$ מריבוי אלגברי $\lambda = -2$

$$\lambda = -2$$

$$(A+2I) = \begin{pmatrix} 2 & -4 & 0 \\ 1 & -2 & 0 \\ 1 & -2 & 3 \end{pmatrix} \to \begin{pmatrix} 1 & -2 & 0 \\ 1 & -2 & 3 \\ 0 & 0 & 0 \end{pmatrix} \to \begin{pmatrix} 1 & -2 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

פתרון:

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 2y \\ y \\ 0 \end{pmatrix} = y \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}$$

מרחב עצמי:

$$V_{-2} = \operatorname{span} \left\{ \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix} \right\}$$

 $\lambda = 1$

$$(A-I) = \begin{pmatrix} -1 & -4 & 0 \\ 1 & -5 & 0 \\ 1 & -2 & 0 \end{pmatrix} \to \begin{pmatrix} -1 & -4 & 0 \\ 0 & -9 & 0 \\ 0 & -6 & 0 \end{pmatrix} \to \begin{pmatrix} 1 & 4 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \to \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

פתרון:

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ z \end{pmatrix} = z \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

מרחב עצמי:

$$V_1 = \operatorname{span}\left\{ \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right\}$$

 $\dim V_1 + \dim V_{-2} = 1 + 1 = 2 < \dim \mathbb{R}^3$

לכן A לא לכסינה.

וקטור עצמי השייך ל
$$\lambda=-2$$
, לכן $\begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}$

$$A^{2023} \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix} = (-2)^{2023} \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} (-2)^{2024} \\ -2^{2023} \\ 0 \end{pmatrix}$$

2.5 משפטים נוספים הקשורים ללכסון של מטריצה

משפט 2.19 דטרמיננטה של מטריצה משולשית שווה למכפלה של איברי האלכסון הראשי

תהי $A\in \mathbb{F}^{n\times n}$ מטריצה משולשית עליונה או משולשית תחתונה. הדטרמיננטה של $A\in \mathbb{F}^{n\times n}$ האיברים על האלכסון הראשי. כלומר

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ 0 & a_{22} & a_{23} & \dots & a_{2n} \\ 0 & 0 & a_{33} & \dots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & a_{nn} \end{pmatrix} , \qquad |A| = a_{11} \cdot a_{22} \cdot a_{33} \dots a_{nn} .$$

n אידוקציה על

שלב הבסיס:

עבור n=1 הטענה נכונה באופן טריוויאלי.

Aבמטריצה במטריצה aכאשר (aנסמן נסמן . $A\in\mathbb{F}^{1\times 1}$ נסמן כלומר כלומר לומר מ

$$|A|=a$$
.

מטריצה משולשית, והאיבר היחיד על האלכסון הראשי הוא a. לכן המכפלה של האיברים על האלכסון ראשי A פשוט שווה ל- a. לכן |A| שווה למכפלה של האיברים על האלכסון הראשי של

שלב האינקודציה:

n=N+1 נניח שהטענה נכונה עבור n=N (הנחת האינדוקציה). נוכיח אותה עבור

יתהי עליונה: מטריצה מטריצה $A \in \mathbb{F}^{N \times N}$ תהי

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1,N} & a_{1,N+1} \\ 0 & a_{22} & a_{23} & \dots & a_{2,N} & a_{2,N+1} \\ 0 & 0 & a_{33} & \dots & a_{3,N} & a_{3,N+1} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & a_{N,N} & a_{N,N+1} \\ 0 & 0 & 0 & \dots & 0 & a_{N+1,N+1} \end{pmatrix}$$

נחשב הדטרמיננטה על השורה האחרונה:

$$|A| = a_{N+1,N+1} \cdot \begin{vmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1,N} \\ 0 & a_{22} & a_{23} & \dots & a_{2,N} \\ 0 & 0 & a_{33} & \dots & a_{3,N} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & a_{N,N} \end{vmatrix}$$

לפי ההנחת האינדוקציה הדטרמיננטה של מטריצה N imes N משולשית עליחונה שווה למכפלה של האיברים על האלכסון הראשי, לכן

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1,N} \\ 0 & a_{22} & a_{23} & \dots & a_{2,N} \\ 0 & 0 & a_{33} & \dots & a_{3,N} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & a_{N,N} \end{vmatrix} = a_{11} \cdot a_{22} \dots a_{N,N} .$$

לכן

$$|A| = a_{11} \cdot a_{22} \dots a_{N,N} \cdot a_{N+1,N+1}$$

משפט 2.20 ערכים העצמיים של מטריצה משולשית

הערכים העצמיים של מטריצה משולשית עליונה (או משולשית תחתונה) הם האיברים הנמצאים על האלכסון הראשי.

האיב. אז אלכסון הראשי. אז $\{lpha_1,lpha_2,\ldots,lpha_n\}$ האיברים על האלכסון הראשי. אז הוכחה:

$$\lambda I - A$$

גם מטריצה והאיברים על האלכסון הראשי הם $\{\lambda-\alpha_1,\lambda-\alpha_2,\dots,\lambda-\alpha_n\}$ הדטרמיננטה על האלכסון הראשי, לכן לכן מטריצה משולשית היא המכפלה של האיברים על האלכסון הראשי, לכן לכן

$$|\lambda I - A| = (\lambda - \alpha_1) \cdot (\lambda - \alpha_2) \dots (\lambda - \alpha_n)$$

לכן הפולינום האופייני הוא

$$p_A(\lambda) = (\lambda - \alpha_1) \cdot (\lambda - \alpha_2) \dots (\lambda - \alpha_n) = 0$$
.

השורשים הם

$$\lambda = \alpha_1, \quad \lambda = \alpha_2, \quad \dots \quad \lambda = \alpha_n$$
.

ז"א הערכים עצמיים שווים לאיברים על האלכסון הראשי.

הגדרה 2.9 הגדרת דמיון בין מטריצות

-ע כך $P\in\mathbb{F}^{n imes n}$ כך ש- פיימת מטריצה הפיכה $A,B\in\mathbb{F}^{n imes n}$ כך ש

$$B = P^{-1}AP .$$

משפט 2.21 פולינום האופייני של מטריצות דומות

אם א יש ערכים ערכים אופייני, ולכן אותם ערכים עצמיים. B -ו אם א יש להן אותו אז יש להן אותו

הוכחה:

$$f_B(x) = |xI - B|$$

$$= |xI - P^{-1}AP|$$

$$= |P^{-1}xIP - P^{-1}AP|$$

$$= |P^{-1}(xI - A)P|$$

$$= |P^{-1}||xI - A||P|$$

$$= |P|^{-1}|xI - A||P|$$

$$= |xI - A||P|^{-1}|P|$$

$$= |xI - A|$$

$$= f_A(x)$$

משפט 2.22 קיום ווקטור עצמי של אופרטור לינארית

יהי תעקה וקטורי נוצר חופית מעל שדה $\mathbb F$ ותהי ותהי לינארית. היים לפחות וקטור עצמי אחד של $T:V \to V$ יהיים לפחות וקטור עצמי אחד של

הקבוצה . $u_1
eq ar{0} \in V$ יהי . $\dim(V) = n$ הקבוצה .

$$\{u_1, T(u_1), T^2(u_1), \dots, T^n(u_1)\}$$

 a_0, \dots, a_n וקטורים. לכן הצירוף לינארי הבא מתקיים רק אם אחד המקדמים n+1 וקטורים. לכן הצירוף לינארי הבא מתקיים רק אם אחד המקדמים שונה מאפס:

$$a_0u_1 + a_1T(u_1) + a_2T^2(u_1) + \ldots + a_nT^n(u_1) = \bar{0}$$
 (*1)

נרשום את זה בצורה

$$(a_0 + a_1T + a_2T^2 + \ldots + a_nT^n) u_1 = \bar{0} .$$

בצד שמאל יש הצבת העתקה בפולינום מסדר n. לפי המשפט היסודי של האלגברה יש לפולינום הזה פירוק לגורמים לינאריים:

$$a_0 + a_1 z + a_2 z^2 + \ldots + a_n z^n = c(z - \lambda_1) \ldots (z - \lambda_n)$$

כ: (*1) את לפרק לפרק לכן לכן $i \leq n$, $\lambda_i \in \mathbb{C}$, $c \neq 0 \in \mathbb{C}$

$$a_0u_1 + a_1T(u_1) + a_2T^2(u_1) + \ldots + a_nT^n(u_1) = c(T - \lambda_1I)\ldots(T - \lambda_nI)u_1 = \bar{0}$$
 (*2)

אז בהכרח הדטרמיננטה של המטריצה שמכפילה (*2) אז בהכרח הדטרמיננטה של המטריצה שמכפילה $u_1 \neq 0$ למשוואה הומוגונית ב- $c \neq 0 \in \mathbb{C}$ שווה לאפס. לפיכד

$$|c(T - \lambda_1 I) \dots (T - \lambda_n I)| = c|T - \lambda_1 I| \dots |T - \lambda_n I| = 0.$$
 (*3)

. עבורו ערך עצמי ערך יש לפחות לכן ל- $|T-\lambda_i I|=0$ עבורו ($1\leq i\leq n$) לכן קיים לכן ליכן ליים