Ausgabe: 1. Juli 2022 ______ Bearbeitung

Bearbeitung: 4. – 8. Juli 2022

Einführung in die angewandte Stochastik

12. Präsenzübung

Aufgabe P 44

Die an einem bestimmten Messpunkt der Stadt A. (in mm) gemessene monatliche Niederschlagsmenge im Juni kann durch eine $N(\mu, \sigma^2)$ -verteilte Zufallsvariable mit $\mu \in \mathbb{R}$ und $\sigma > 0$ beschrieben werden.

Aus 14 unabhängig voneinander für den Monat Juni gemessenen Niederschlagsmengen x_1, \ldots, x_{14} wurden als arithmetisches Mittel und Stichproben-Varianz die folgende Werte berechnet:

$$\overline{x} = \frac{1}{14} \sum_{i=1}^{14} x_i = 49.3 \text{ (mm)} \text{ und } \hat{\sigma}^2 = \frac{1}{13} \sum_{i=1}^{14} (x_i - \overline{x})^2 = 85.7 \text{ (mm}^2).$$

- (a) Bestimmen Sie mittels dieser Kenngrößen ein zweiseitiges 95%-Konfidenzintervall für den (unbekannten) Erwartungswert μ .
- (b) Bestimmen Sie mittels dieser Kenngrößen ein einseitiges oberes 95%-Konfidenzintervall für den (unbekannten) Erwartungswert μ .
- (c) Bestimmen Sie mittels dieser Kenngrößen ein zweiseitiges 90%-Konfidenzintervall für die (unbekannte) Varianz σ^2 .
- (d) Nehmen Sie nun an, dass die Varianz σ^2 aufgrund langjähriger Erfahrungen bekannt ist und den Wert 81 (mm²) hat.

Wie hoch müsste die Anzahl gemessener Niederschlagsmengen mindestens sein, um hiermit ein 95%-Konfidenzintervall für den (unbekannten) Erwartungswert μ angeben zu können, dessen Länge höchstens 5 (mm) beträgt.

Aufgabe P 45

Die iid Zufallsvariablen X_1, \ldots, X_n seien definiert auf dem Wahrscheinlichkeitsraum $(\Omega, \mathfrak{A}, P)$. Für $i \in \{1, \ldots, n\}$ sei die Zähldichte von X_i gegeben durch

$$P(X_i = x) = \frac{\lambda^{x-5}}{(x-5)!} e^{-\lambda}, \quad x \in \mathbb{N}_{\geq 5} := \{5, 6, 7, \ldots\},\$$

mit unbekanntem Parameter $\lambda \in (0, \infty)$. Bestimmen Sie zu den gegebenen Realisationen $x_1, \ldots, x_n \in \mathbb{N}_{\geq 5}$, mit $\overline{x} = \frac{1}{n} \sum_{i=1}^n x_i > 5$, von X_1, \ldots, X_n eine Maximum-Likelihood-Schätzung $\widehat{\lambda}$ für den Parameter λ .

Aufgabe P 46

In den sechs aufeinander folgenden Jahren 2009,...,2014 erzielte ein Unternehmen der Elektroindustrie die folgenden Jahresumsätze (in Mio. \in):

Jahr	2009	2010	2011	2012	2013	2014
Umsatz (in Mio. €)	4.7	8.1	10.9	13.8	17.2	20.3

Es soll die Abhängigkeit des Umsatzes von der Zeit mittels linearer Regression untersucht werden. Dabei gehe man vom Modell

$$Y_i = a + bx_i + \varepsilon_i$$
, $i \in \{1, \dots, 6\}$,

mit stochastisch unabhängigen, jeweils $N(0, \sigma^2)$ -verteilten Fehlern $\varepsilon_1, \ldots, \varepsilon_6$ aus, wobei $\sigma > 0$ unbekannt ist. Hierbei bezeichnen x_1, \ldots, x_6 die sechs Jahreszahlen, und die zugehörigen Umsätze werden als Realisationen der Zufallsvariablen Y_1, \ldots, Y_6 aufgefasst.

- (a) Geben Sie Schätzungen an für die Parameter a und b sowie für die Regressionsgerade y(x) = a + bx.
 - Für die Berechnung bietet sich an, statt der Jahreszahlen 2009,...,2014 einfach eine fortlaufende Nummerierung der Jahre mit 1,...,6 zu betrachten. Überlegen Sie hierzu vorweg, welche Auswirkungen diese Transformation auf die Kleinste-Quadrate-Schätzungen \hat{a} und \hat{b} hat.
- (b) Erstellen Sie ein Streudiagramm der Punkte $(x_1, y_1), \dots, (x_6, y_6)$, und zeichnen Sie in dieses Diagramm die geschätzte Regressionsgerade $\hat{y}(x) = \hat{a} + \hat{b}x$ ein.
- (c) Geben Sie ein zweiseitiges Konfidenzintervall für den Parameter b zum Konfidenzniveau $1-\alpha=0.9$ an.
- (d) Berechnen Sie ein einseitiges unteres Konfidenzintervall für die (unbekannte) Varianz σ^2 zum Konfidenzniveau $1-\alpha=0.9$.