MA0505 - Análisis I

Lección XI: La Integral de Lebesgue IV

Pedro Méndez¹

¹Departmento de Matemática Pura y Ciencias Actuariales Universidad de Costa Rica

Semestre I, 2021

Agenda

- La Integral de Lebesgue para Funciones Medibles
 - Parte Positiva y Parte Negativa
 - Propiedades de la Integral

Sea $f: E \to \overline{\mathbb{R}}$ una función medible. Entonces $f = f^+ - f^-$ con $f^+ = \max\{0, f\}$ y $f^- = \max\{0, -f\}$. Sabemos que f^+ y f^- son medibles y no negativas. Entonces

$$\int_{E} f^{+} dx, \quad \int_{E} f^{-} dx$$

están bien definidas. Y por tanto podemos definir

$$\int_{E} f \mathrm{d}x = \int_{E} f^{+} \mathrm{d}x - \int_{E} f^{-} \mathrm{d}x.$$

Las Funciones Integrables

Decimos que f es integrable o bien que $f \in L(E)$ si

$$\int_{E} f^{+} \mathrm{d}x, \int_{E} f^{-} \mathrm{d}x < \infty.$$

Note que

$$\left| \int_{E} f dx \right| \leqslant \int_{E} f^{+} dx + \int_{E} f^{-} dx = \int_{E} |f| dx.$$

Si $\int_{E} |f| \mathrm{d}x < \infty$ entonces $f \in \mathbb{R}$ c.p.d.

Teorema

Sea $f: E \to \overline{\mathbb{R}}$ $y g: E \to \overline{\mathbb{R}}$ medibles tales que $\int\limits_E f \mathrm{d}x \ y \int\limits_E g \mathrm{d}x$ existen.

- (I) Sea $f \leqslant g$ c.p.d. en E. Entonces $\int\limits_E f \mathrm{d}x \leqslant \int\limits_E g \mathrm{d}x$. En particular si f = g c.p.d. en E entonces $\int\limits_E f \mathrm{d}x = \int\limits_E g \mathrm{d}x$.
- (II) Si $E_1 \subseteq E$, entonces $\int\limits_{E_1} f \mathrm{d}x$ existe.
- (III) Si $E = \bigcup_{k=1}^{\infty} E_k$, entonces $\int_E f dx = \sum_{k=1}^{\infty} \int_{E_k} f dx$.
- (IV) Si $E_1 \subseteq E$ con $m(E_1) = 0$ entonces $\int_{E_1} f dx = 0$.

Prueba del Teorema

Note que si $f \leqslant g$ c.p.d. entonces

$$f^+=\max\{\,0,f\,\}\leqslant \max\{\,0,g\,\}=g^+, \ g^-=\max\{\,0,-g\,\}\leqslant \max\{\,0,-f\,\}=f^-.$$

Luego

$$\int_{E} f^{+} \mathrm{d}x \leqslant \int_{E} g^{+} \mathrm{d}x, \ \int_{E} g^{-} \mathrm{d}x \leqslant \int_{E} f^{-} \mathrm{d}x,$$

y entonces

$$\int\limits_E f^+\mathrm{d} x - \int\limits_E f^-\mathrm{d} x < \int\limits_E g^+\mathrm{d} x - \int\limits_E g^-\mathrm{d} x.$$

Continuamos la Prueba

Note que

$$0\leqslant \int\limits_{E_1}f^+\mathrm{d}x\leqslant \int\limits_{E}f^+\mathrm{d}x,\ 0\leqslant \int\limits_{E_1}f^-\mathrm{d}x\leqslant \int\limits_{E}f^-\mathrm{d}x.$$

Finalmente si

$$\int_{E} f^{+} dx = \sum_{k=1}^{\infty} \int_{E_{k}} f^{+} dx < \infty, \ ó$$

$$\int_{E} f^{-} dx = \sum_{k=1}^{\infty} \int_{E_{k}} f^{-} dx < \infty.$$

Entonces

$$\int\limits_{E} f \mathrm{d}x = \sum_{k=1}^{\infty} \int\limits_{E_{k}} f \mathrm{d}x.$$

Resumen

El teorema 1 que resumen las propiedades de las integrales en general.

Ejercicios a trabajar

Ejercicios

Lista 21

•

Lecturas adicionales I

- S.Cambronero. Notas MA0505. 20XX.
- I.Rojas Notas MA0505. 2018.