



$$\frac{\text{SXAMPLE OF RECURRENCE TREE}}{\text{METHOD :-}}$$

$$T(n) = \begin{cases} 1 & , n = 1 \\ 2T(\frac{1}{2}) + n & , n > 1 \end{cases}$$





$$\frac{1}{T(n-1)} = \frac{1}{T(n-1)}, n=0$$

$$\frac{1}{T(n-1)} + n, n>0$$

$$\frac{1}{T(n-1)} + n, n>0$$

$$\frac{1}{T(n-1)} + n, n>0$$

$$\frac{1}{T(n-2)} + n + n + n=0$$

$$\frac{1}{T(n-1)} + n, n>0$$

$$\frac{1}{T(n-1)} + n + n + n=0$$

$$\frac{1}{T(n-1)} +$$



. Every Time it multiply by n NOTE THIS! n) ( (ie. 1xn) T(n)= T(n-1)+1) T(n) = T(n-1)+(n)O(n logn) (nx logn) T(n) =T (n-1) + logn - $O(n^3)$  $T(n) = T(n-1) + (n^2)$ Now if we write it as T(n) = T(n-2) + 1 $T(n) = T(n-100) + \underline{n}$ when No Co-efficient is given with T — Than whater value is give just multiply it by (n)

Example: 
$$T(n) = \sqrt{1}$$
,  $n = 1$ 

$$T(n)$$

$$T($$



Right Subtree haight-Left Subtoes Height  $\frac{\gamma}{3K} = 1$ n=3K n= (3) K K=logn (K= log n) NOTEN (log3/2 is greater than log3 mathematically) = n + log n = n + log n = n log n. Jud.
Max, Time. min Time of = nx log n = nlog n

| & RECURRENCE TREE METHOD !-                                                                                                                                                  |            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
|                                                                                                                                                                              | 1)=4       |
| Sol. M >1<br>No. of<br>TREE                                                                                                                                                  | Row Sum    |
| Recursive Nodes                                                                                                                                                              |            |
| T(n) $1$ $4n$                                                                                                                                                                | 47         |
| $T(\frac{n}{2})$ g $\frac{\sqrt{n}}{2}$ $\frac{\sqrt{n}}{2}$ $\frac{\sqrt{n}}{2}$                                                                                            | 4n         |
| $T(\frac{n}{a^2})$ $\frac{4^n}{2^2}$ $\frac{4^n}{2^2}$ $\frac{4^n}{2^2}$ $\frac{4^n}{2^2}$ $\frac{4^n}{2^2}$                                                                 | 47         |
|                                                                                                                                                                              | 47         |
| $T(\frac{n}{2^3})$ $\frac{9^3}{2^3}$ $\frac{4n}{2^3}$ $\frac{4n}{2^3}$ $\frac{4n}{2^3}$ $\frac{4n}{2^3}$ $\frac{4n}{2^3}$ $\frac{4n}{2^3}$ $\frac{4n}{2^3}$ $\frac{4n}{2^3}$ |            |
|                                                                                                                                                                              |            |
| T(m) 2 4m                                                                                                                                                                    | (4n)       |
| gk gk is equal to Base (as                                                                                                                                                   | lag n 4n   |
| Now Port this is equal to Base (as i.e. T(1)=                                                                                                                                | =4n = 1    |
| $1 = \frac{\gamma}{2^{K}}$ $\log \gamma = K$                                                                                                                                 | /. L K=0   |
| Oa-                                                                                                                                                                          | 4n(1+1+11) |
|                                                                                                                                                                              | Agn+1      |
| = Yndogn + Yn                                                                                                                                                                | 4n(logn+1) |
|                                                                                                                                                                              | _          |

Scanned with CamScanner