Semana 4

Cifra de Ficheiro

Pretende-se cifrar o conte \tilde{A}^{0} do de um ficheiro, assegurando a *confidencialidade* dos dados l \tilde{A}_{i} armazenados. Para tal iremos experimentar diferentes cifras, por forma a melhor percebermos as suas propriedades.

PROG: cfich_chacha20.py

Defina o programa cfich_chacha20.py que cifra um ficheiro usando a cifra sequencial Chacha20. O programa receba como argumentos: * o tipo de operação a realizar: setup, enc ou dec - setup <fkey> cria ficheiro contendo uma chave apropriada para a cifra Chacha20 (com nome <fkey>) - enc <fich> <fkey> cifra ficheiro passado como argumento <fich>, usando a chave lida do ficheiro <fkey>. O criptograma resultante deverá ser gravado <fich>.enc (i.e. adiciona a extensão .enc ao nome do ficheiro de texto-limpo). - dec <fich> <fkey> decifra criptograma contido em <fich>, usando a chave lida do ficheiro <fkey>. Armazena o texto-limpo recuperado num ficheiro com nome <fich>.dec.

[!TIP] Note que o NONCE utilizado \tilde{A} © requerido para decifrar o ficheiro. Deve por isso ser gravado juntamente com o criptograma.

QUESTÃfO: Q2

Qual o impacto de se considerar um NONCE fixo (e.g. tudo 0)? Que implica \tilde{A} § \tilde{A} µes ter \tilde{A} ¡ essa pr \tilde{A} ¡tica na seguran \tilde{A} §a da cifra?

PROG: chacha20_int_attck.py

A cifra ChaCha20, por si s \tilde{A}^3 , n \tilde{A} £o garante integridade dos dados. Por outro lado, por se tratar de uma **cifra sequencial** s \tilde{A} ncrona, n \tilde{A} £o promove difus \tilde{A} £o da influ \tilde{A} ancia de troca de bits do criptograma.

O prop \tilde{A}^3 sito do programa chacha $20_int_attck.py$ \tilde{A} © ilustrar como pode ser manipulada a informa \tilde{A} § \tilde{A} £o cifrada pelo programa anterior -- se soubermos um fragmento do conte \tilde{A}^0 do de uma dada posi \tilde{A} § \tilde{A} £o do texto-limpo, podemos alterar essa informa \tilde{A} § \tilde{A} £o. O programa chacha $20_int_attck.py$ deve ent \tilde{A} £o receber os seguintes argumentos: <fctxt> <pos> <ptxtAtPos> <newPtxtAtPos>, sendo que <fctxt> \tilde{A} © o nome do ficheiro contendo o criptograma; <pos> \tilde{A} © a posi \tilde{A} § \tilde{A} £o onde sabemos ter sido cifrado <ptxtAtPos>, e <newPtxtAtPos> \tilde{A} © o que se pretende vir a obter quando se decifrar o ficheiro. O criptograma manipulado deve ser gravado no ficheiro com nome <fctxt>.attck.

PROG: cfich aes cbc.py e cfich aes ctr.py

Defina novas versões do programa que cifra ficheiros para utilizar a cifra por blocos AES, nos modos CBC e CTR.

[!NOTE] O modo CBC necessita que o texto limpo tenha um tamanho $m\tilde{A}^{0}$ ltiplo do tamanho do bloco (16 byte, no caso do AES). Deve por isso usar <u>Padding</u>.

QUESTÃfO: Q3

Qual o impacto de utilizar o programa chacha20_int_attck.py nos criptogramas produzidos pelos programas cfich aes cbc.py e cfich aes ctr.py? Comente/justifique a resposta.

PROG: pbenc_chacha20.py

Armazenar segredos cryptogr $\tilde{\mathbf{A}}$; ficas em ficheiros sem estarem devidamente protegidas $\tilde{\mathbf{A}}$ uma $\tilde{\mathbf{m}}$; $\tilde{\mathbf{pr}}$ itica. Em vez disso, deve-se:

- 1. Derivar os segredos a partir de uma *pass-phrase* com recurso a uma <u>Key Derivation Functions (KDF)</u> -- o que se designa por **Password-Based Encryption**, ;
- 2. Armazenar em ficheiros devidamente protegidos (aka *keystore*), esta por sua vez recorrendo a *Password-Based Encryption* para a sua própria protecção.

Pretende-se assim alterar o programa cfich_chacha20.py para suportar *Password-Based Encryption*. Deixa portanto de existir o comando para gerar uma nova chave, e as opções enc e dec deixam de receber o nome do ficheiro da chave como argumento. Em vez disso, leem de stdin a *pass-phrase* que permitirÃ; derivar a chave usada na cifra. Sugere-se a utilização da KDF PBKDF2.