Sistemi Elettronici, Tecnologie e Misure Appello del 6/2/2018

Nome:	
Cognome:	
Matricola:	

ATTENZIONE

- 1. Compilare subito questa pagina con nome, cognome e numero di matricola
- 2. Per i quesiti a risposta multipla, la risposta errata determina la sottrazione di un punteggio pari a metà del valore della risposta esatta
- 3. Riportare le **risposte esatte** dei quesiti a risposta multipla nella tabella posta all'inizio della relativa sezione
- 4. Le risposte ai vari quesiti vanno riportate **esclusivamente** nello spazio reso disponibile immediatamente dopo il quesito stesso
- 5. Si può fare uso di fogli di brutta bianchi resi disponibili a cura dello studente. La brutta non deve essere consegnata
- 6. Non si possono utilizzare libri, appunti o formulari

Domande a risposta multipla

	1	2	3	4	5	6
a						
b						
c						
d						

- 1. In un amplificatore invertente basato su operazionale ideale, il resistore che collega l'uscita con l'ingresso invertente è sostituito da un diodo, con anodo collegato all'ingresso invertente e catodo collegato all'uscita. Per $v_{\rm in}>0$ circuito che si ottiene
 - (a) si comporta come amplificatore esponenziale e presenta resistenza d'ingresso infinita
 - (b) si comporta come amplificatore esponenziale e presenta resistenza d'ingresso finita
 - (c) si comporta come amplificatore logaritmico e presenta resistenza d'ingresso infinita
 - (d) si comporta come amplificatore logaritmico e presenta resistenza d'ingresso finita
- 2. La transconduttanza di piccolo segnale g_m di un transistore MOS nel punto di lavoro Q è definita come:

(a)
$$g_{\mathrm{m}} = \left. \frac{\partial i_{\mathrm{D}}}{\partial v_{\mathrm{GS}}} \right|_{Q}$$
 (b) $g_{\mathrm{m}} = \left. \frac{\partial i_{\mathrm{D}}}{\partial v_{\mathrm{DS}}} \right|_{Q}$ (c) $g_{\mathrm{m}} = \left. \frac{\partial i_{\mathrm{G}}}{\partial v_{\mathrm{GS}}} \right|_{Q}$ (d) $g_{\mathrm{m}} = \left. \frac{\partial v_{\mathrm{GS}}}{\partial i_{\mathrm{D}}} \right|_{Q}$

- 3. Un amplificatore di tensione è descritto dai parametri $A_{\rm v}$, $R_{\rm in}$, $R_{\rm out}$. Collegando l'ingresso ad una data sorgente di segnale, la tensione d'uscita dell'amplificatore a vuoto è una sinusoide a frequenza 100Hz di ampiezza di picco pari a 2V. Con la stessa sorgente in ingresso, collegando una resistenza di carico $R_L=1{\rm k}\Omega$, la tensione d'uscita è una sinusoide a frequenza 100Hz con ampiezza di picco pari a 1V. Si può concludere che:
 - (a) $R_{\rm in} = 1 \mathrm{k}\Omega$
 - (b) La dinamica della tensione d'uscita dell'amplificatore è limitata a $\pm 1V$
 - (c) $R_{\rm out} = 1 \mathrm{k}\Omega$
 - (d) $R_{\rm in} \to \infty$ e non si ha effetto di carico in ingresso.
- 4. In uno stadio amplificatore drain comune, descritto dai parametri $A_{\rm v}$, $R_{\rm in}$ e $R_{\rm out}$:
 - (a) è sempre $A_{\rm v} < 0$ (stadio invertente)
 - (b) R_{out} è indipendente dalla transconduttanza g_m del transistore MOS.
 - (c) l'ingresso è applicato al terminale di source e l'uscita è prevelata al terminale di drain del transistore
 - (d) è sempre $|A_{\rm v}| < 1$
- 5. La banda di un amplificatore destinato ad amplificare un segnale a banda limitata:
 - (a) deve essere la più ampia possibile, per evitare perdita di informazione
 - (b) deve includere la banda del segnale con un certo margine, ma è opportuno che non sia molto più ampia, per evitare di amplificare rumore fuori banda
 - (c) deve essere più ampia della banda del rumore in ingresso, per evitare che il rumore sia distorto.
 - (d) deve essere inclusa nella banda del segnale ed è opportuno che sia decisamente più stretta della banda del segnale, così da non amplificare nè il rumore fuori banda, nè il rumore in banda
- 6. La tensione di offset in ingresso (*input offset voltage*) di un amplificatore operazionale (indicare quale delle seguenti affermazioni è errata)
 - (a) è un parametro particolarmente critico se l'operazionale è utilizzato in un amplificatore di precisione per grandezze continue o variabili lentamente
 - (b) è la tensione che si misura in uscita cortocircuitando gli ingressi non-invertente ed invertente
 - (c) coincide in modulo con la tensione che si misura all'uscita di un operazionale in configurazione *voltage* follower, per segnale d'ingresso nullo
 - (d) assume valori diversi da esemplare ad esemplare ed i dati di targa ne riportano il valore in modulo nel caso peggiore

Esercizio 1.

Con riferimento al circuito in figura, in cui sono date le tensioni continue ai nodi A, B e C:

- 1. verificare la regione di funzionamento di MN e determinarne i parametri del modello per il piccolo segnale;
- 2. valutare l'amplificazione di tensione $A_v = \frac{v_{\rm out}}{v_{\rm in}}$, la resistenza d'ingresso $R_{\rm in}$ e la resistenza d'uscita $R_{\rm out}$ in condizioni di piccolo segnale [sono richiesti: il circuito equivalente per il piccolo segnale, le espressioni simboliche (passaggi essenziali) ed i valori numerici].
- 3. supponendo che la porta d'ingresso dell'amplificatore analizzato sia accoppiata in AC ad un sensore, rappresentabile come un generatore di tensione v_s con resistenza interna $R_S=1\mathrm{k}\Omega$, e che la porta d'uscita sia accoppiata in AC ad un carico resistivo $R_L=10\Omega$, valutare in banda l'amplificazione di transconduttanza $G_m=\frac{i_l}{v_s}$ dove i_l è la corrente che scorre in R_L [sono richiesti: il circuito considerato, con indicazione della convenzione di segno adottata per i_l , l'espressione simbolica e il valore numerico di G_m].

Esercizio 2.

Con riferimento al circuito in figura si assumano: $v_0=10\mathrm{V},\,R_0=R_1=\cdots=R_8=R=1\mathrm{k}\Omega,\,C=1\mathrm{nF}$

- 1. Si supponga che gli amplificatori operazionali OP_1, OP_2, OP_3 siano ideali e che il condensatore C si comporti come un circuito aperto. Determinare le tensioni $v_{\text{out}1}, v_{\text{out}2}$ e $v_{\text{out}3}$ [sono richieste le espressioni simboliche (passaggi essenziali) ed i valori numerici].
- 2. Assumendo che gli operazionali OP_1, OP_2, OP_3 siano ideali, determinare l'espressione della funzione di trasferimento $H(s) = \frac{V_{\text{out}2}}{V_0}$.
- 3. (OPZIONALE) Considerando il condensatore C come un circuito aperto, si supponga ora che per l'amplificatore OP_2 la resistenza differenziale di ingresso sia finita e pari a $R_{\rm in,d} = 100 {\rm M}\Omega$ e il guadagno di tensione sia finito e pari a $A_{\rm d} = 10^4$. Determinare come si modificano le tensioni $v_{\rm out1}, v_{\rm out2}$ e $v_{\rm out3}$ rispetto al punto 1.