

NAME

NO AIDS ALLOWED

Total: 250 points, not including a bonus problem

Problem 1 [30 points]

(a) Give an example of a function $f:[0,1] \longrightarrow \mathbb{R}$ that is continuous at the irrational numbers of [0,1], but is discontinuous at the rational numbers (/0)

March 12, 2014

(b) Show that $f(x, y) = \max\{x, y\}$ is continuous on \mathbb{R}^2 . (20)

Solution: (a).

Fixe $\frac{1}{1}$ $\frac{1$

(Then (Somehowise can choose r=12 s.t. f is continuous) for this case as well).

Problem 2 [45 points] (15×3)

(a) Is it true that any uniformly continuous function is Lipschitz?

13 (b) Show that $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$, f(x,y) = (2x+3y, -3x+4y) is uniformly contin-

12(c) Show that $\sin x$ is Lipschitz on **R**.

Solution:

(a). No. Counter-example:

this; (b). Since the coordinates of fix, y) is linear, poorly so the coordinates of f are uniformly continuous on R2.

h(x,y) = -3x + 4y are uniformly continuous on \mathbb{R}^2 .

Hence f(xy)=(g(x,y), h(x,y)) is uniformly continuous on R2.

(C). Let forsing, fix = cosx, losx [6[0,1] they]c

 $\frac{|f(x)-f(y)|}{|x-y|} \le \#f(x) = 1$ where $c \in [x,y]$.

Hence If(x)-fy) = 1. [x-y] \times_x,y \in R.

Therefore sinx is Lipschitz on IR.

Problem 3 [30 points] Let $f:(X,\rho) \longrightarrow (Y,\sigma)$ be a continuous map from a metric space (X, ρ) to a metric space (Y, σ) . Let C be a compact subset of X. Show that f(C) is compact.

Proof: place FCC compact near sequence in R(C)

f is continuous from X to Y. CSX C is compact, show fCO is compact. Since compact is equivalent to "sequentially compact" (Borel-lebesge) Then C has a sequence (Xn) such that it has a subsquance (X_{n}) converges to x and $x \in C$. By theorem, since f is continuous, if $\lim_{k\to\infty} \chi_{nk} = a$ then $\lim_{k\to\infty} f(x_n) = f(a)$ Hence for the image of (XND). we have a sequence f(xn) as comenges to f(x). and f(xn) ∈ f(c) ⊆ Y (So far, we have seq. f(xn) whose And we en need to show fear of fee subsequence By the definition of sequentially compactness, fCC) is sequentially compact,

therefore fcc) is compact.

4

Problem 4 [40 points] If f is a continuous one-to-one function of a compact metric space X onto Y, show that f^{-1} is continuous.

Tis a metric space.

Proof: X is compact $finite fix f: X \rightarrow Y$. continuous.

Then X is complete and totally bounded.

So $\forall E > 0$, \exists finitely many points X_1, \dots, X_n such that $\left(B_E(x_i) : E_i \leq n\right)$ is an excopen cover of X.

Since f is one-to-one, so there are exactly n many

Points $f(x_i) \cdot \dots \cdot f(x_n)$ in Y.

In tely many

So f maps an open cover Y_0 exactly an open cover in Y.

Problem 5 [45 points] Let $S^1 = \{(x,y) \in \mathbb{R}^2, x^2 + y^2 = 1\}$. Let $f: S^1 \longrightarrow \mathbb{R}$ be a continuous function. Show that f cannot be one-to-one.

Solution: W.t.S. 4220, 3r>0. s.t. If cxy>-fabl< € whenever =(&y)-cabl< r. Person of march - 2 192 02 12 Let f = 2+4 so $|f(x,y)-f(a,b)|=|(x+y)-(a+b)|<\varepsilon$ $|(x-a)^2+(y-b)^2|< r$ 0=> 16(-a)+(y-b)/< 2 $|(x-a)^2+(y-b)^2-2(x-a)(y-b)|<\epsilon^2$ $\xi^{2} + \alpha y + \beta = |(x - \omega^{2} + (y - b)^{2}| < \xi^{2} + 2(x - \omega (y - b))$ so we know &2+2(x-axy-b) reaches maximum when 2 a=2, y-b=2 minimum when So 5212x22= 62+8 18 0 maximum so we when we know @ we want to infer & SO FEE?.
just take r= 62. Hen f is continuous. Show f is not one-to-one, since no matter what function First we know to function good = x21/21. This is we project the kernel s' onto R, multiple points are mapped to a single point. Take fa(x,y)=x+y as an example, (-1,0) and (0,-1)

are both in S', but they are mapped to same value -1

on IR by f. Hence f is not one-to-one.

77

Problem 6 [30 points] Let f be continuous on the closed inverval I = [a, b]. Suppose that for each $x \in I$, there exists a point $y \in I$ such that $|f(y)| \leq \frac{1}{2}|f(x)|$. Prove the existence of $q \in I$ for which f(q) = 0.

Proof: Since J=[a,b] is absed and bounded, By theorem $\exists c,d \in [a,b]$ s.t. $\forall x \in [a,b]$ $f(c) \leq f(x) \leq f(d)$.

i.e. there must exists extremum. absolute value of

et for for, i.e. c-x. Take each result, suppose we have If Carl which

= |fcy = 1 fcx | sthe smallest one.

for such an y, If (y) | Afar

So |f(y)| = |f(a)|
Hence |f(a)| = 0

and f(a) is such a f(q)=0

we are looking for

Problem 7 [30 points]

Let $f:[0,1] \longrightarrow (X,\rho)$ be a continuous map, where (X,ρ) is a metric space. Let $U=\{U_{\lambda}, \lambda \in \Lambda\}$ be an open cover of (X,ρ) . Prove that there exists a subdivision of $[0,1], s_0, ..., s_n$, where $0=s_0 < s_1 < ... < s_{n-1} < s_n = 1$, such that for each $i \in \{1,...,n\}$ the set $f([s_{i-1},s_i]) \subset U_{\lambda}$ for some $\lambda \in \Lambda$.

Substion:

Bonus Problem [50 points] Let I be a closed interval and let $0 < \alpha < 1$. Let $f: I \longrightarrow I$ satisfy the inequality $|f(x) - f(y)| \le \alpha |x - y|$ for each $x \in I$ and $y \in I$. Let $x_1 \in I$ and define $x_{n+1} = f(x_n)$ for $n = 1, 2, 3, \ldots$ Prove that the sequence $(x_n)_{n=1}^{\infty}$ converges and that its limit satisfies l = f(l).

· seems that we are going to use the relation between uniformly continuous and Lipschitz function here.

Since $f(x) - f(y) = d(x-y) \forall x \in I \in y \in I$.