Rozkłady ciągłe

1. **Beta** (Gini, 1911): $\mathbb{E} = \alpha : (\alpha + \beta)$, $\mathbb{V} = \alpha\beta(\alpha + \beta)^{-2}(\alpha + \beta + 1)^{-1}$. $\alpha, \beta > 0$, nośnik: (0, 1).

$$f(x) = x^{\alpha-1} (1-x)^{\beta-1} : B(\alpha, \beta)$$

$$M(t) = 1 + \sum_{k=1}^{\infty} \prod_{r=0}^{k-1} \frac{\alpha + r}{\alpha + \beta + r} \frac{t^k}{k!}$$

2. Cauchy'ego dla $x_0 \in \mathbb{R}$ i $\gamma > 0$. \mathbb{E} , \mathbb{V} , M(t) nie istnieją!

$$f(x) = \gamma [\pi((x-x_0)^2 + \gamma^2)]^{-1}$$

$$F(x) = [\arctan(x - x_0) : \gamma] : \pi + 1 : 2$$

$$\varphi(t) = \exp(x_0 it - \gamma |t|)$$

3. **chi-kwadrat** z k stopniami swobody. \mathbb{V} = $2\mathbb{E}$ = 2k.

$$f(x) = x^{k:2-1} [2^{k:2} e^{x:2} \cdot \Gamma(k:2)]^{-1}$$

$$M(t) = (1 - 2t)^{-k:2}$$
, jeśli tylko $t < 1:2$

4. F Snedecora: rozkład Uw:Wu, gdzie $U\sim\chi^2_u$, $W\sim\chi^2_w$ są nz. Choć M nie istnieje, to φ tak (zależy od Γ , hipergeometrii konfluentnej U).

$$f(x) = \{[(ux)^u w^w] : [ux + w]^{u+w}\}^{1/2} : [xB(u/2, w/2)]$$

$$\mathbb{E} = w[w-2]^{-1}$$
, jeśli tylko $w > 2$

$$\mathbb{V} = \frac{2\mathbb{E}^2(u+w-2)}{u(w-4)}$$
, jeśli tylko $w > 4$

5. **Gamma** dla $\alpha, \beta > 0$. $\mathbb{E} = \alpha \beta^{-1}$, $\mathbb{V} = \alpha \beta^{-2}$. $f(x) = \beta^{\alpha} x^{\alpha - 1} \exp(-\beta x) : \Gamma(\alpha)$

$$f(x) = \beta^{\alpha} x^{\alpha - 1} \exp(-\beta x) : \Gamma(\alpha)$$

$$M(t) = (1 - t : \beta)^{-\alpha}$$
, jeśli tylko $t < \beta$

6. **jednostajny** na [a, b] lub innym mierzalnym. Uwaga: $\varphi(t) = M(it)$. $f(x) = 1 : (b-a), \mathbb{E} = (a+b) : 2, \mathbb{V} = (a-b)^2 : 12.$

$$M(t) = [\exp bt - \exp at] : (tb - ta)$$

7. **Laplace'a** dla $\mu \in \mathbb{R}$, b > 0. Skrót: $X = (x - \mu) : b$. $\mathbb{E} = \mu$, $\mathbb{V} = 2b^2$. Jeśli $x < \mu$, to $F(x) = (\exp X) : 2$, w przeciwnym razie $1 - (\exp X) : 2$. To rozkład różnicy dwóch wykładniczych ($b=1/\lambda,\,\mu=0$).

$$f(x) = \exp(-|x - \mu| : b) : (2b)$$

$$M(t) = \exp(\mu t) : [1 - b^2 t^2]$$
, jeśli tylko $|t| < 1/b$

8. **normalny** jest królem rozkładów, tak jak lew jest królem dżungli. Jest on w pełni scharakteryzowany przez μ (nadzieję) i $\sigma^2 > 0$ (szaleństwo).

$$f(x) = \exp[-(x - \mu)^2 : 2\sigma^2][\sigma\sqrt{2\pi}]^{-1}$$

$$M(t) = \exp(\mu t + \sigma^2 t^2 : 2)$$

9. Pareto dla $\alpha, x_m > 0$.

$$f(x) = \alpha x_m^{\alpha} x^{-1-\alpha}, \text{ gdy } x \ge x_m$$

$$F(x) = 1 - (x_m : x)^{\alpha}, \text{ gdy } x \ge x_m$$

$$\mathbb{E} = \alpha x_m : (\alpha - 1), \text{ gdy } \alpha > 1$$

$$\mathbb{V} = x_m^2 \alpha : [(\alpha - 1)^2 (\alpha - 2)]$$

10. t-Studenta dla r > 0: rozkład $U\sqrt{n:Z}$, dla niezależnych $U \sim \mathcal{N}(0,1)$ oraz $Z \sim \chi_r^2$. M nie istnieje, φ prawie Bessela (Gosset, 1908).

$$f(x) = \Gamma\left[\frac{r+1}{2}\right] \left[\Gamma\left[\frac{r}{2}\right] \sqrt{r\pi} (1+x^2:r)^{r/2+1/2}\right]^{-1}$$

$$\mathbb{E}[T^k] = \prod_{i=1}^{k:2} n \cdot \frac{2i-1}{n-2i},$$
jeśli tylko parzyste $0 < k < n$

$$\mathbb{V} = r[r-2]^{-1}$$
, jeśli tylko $r > 2$

11. Weibulla (1951) dla $\lambda, k > 0$. $\mathbb{E} = \lambda \Gamma(1+1:k)$, $\mathbb{V} = \lambda^2 \cdot \Gamma(1+2:k) - \mathbb{E}^2$.

$$f(x) = (k:\lambda)(x:\lambda)^{k-1} \exp(-x^k:\lambda^k)$$

$$F(x) = 1 - \exp(-x^{\kappa} : \lambda^{\kappa})$$

$$F(x) = 1 - \exp(-x^k : \lambda^k)$$

$$M(t) = \sum_{n>0} (t^n \lambda^n : n!) \cdot \Gamma(1+n:k), \text{ jeśli tylko } k \ge 1$$

12. wykładniczy dla $\lambda > 0$. Bez pamięci. $\mathbb{V} = \lambda^{-2}$, $\mathbb{E}[X^n] = n!\lambda^{-n}$.

$$f(x) = \lambda \exp(-\lambda x)$$

$$F(x) = 1 - \exp(-\lambda x)$$

$$M(t) = \lambda [\lambda - t]^{-1}$$
, jeśli tylko $t < \lambda$

Rozkłady dyskretne

1. Borela: liczność potomstwa w "jednoosobwej" kolonii wątrobowców, gdzie dzieci mają rozkład λ -Poissona (1942). $\mathbb{V} = \lambda \mathbb{E}^3$, $\mathbb{E} = [1 - \lambda]^{-1}$.

$$\mathbb{P}(X = k) = (\lambda n)^{n-1} : (n! \exp \lambda n)$$

2. **dwumianowy**: k sukcesów (z p-stwem p) w n próbach. $\mathbb{V}=q\mathbb{E}=npq$.

$$\mathbb{P}(X=k) = C_k^n p^k q^{n-k}$$

$$M(t) = (q + pe^t)^n$$

3. **geometryczny** dla 0 i <math>q = 1 - p. $\mathbb{E} = 1 : p$, $\mathbb{V} = 1 : p^2 - 1 : p$. Pierwszy sukces Bernoulliego w k-tej próbie.

$$\mathbb{P}(X=k) = q^{k-1}p$$

$$\mathbb{P}(X \le k) = 1 - q^k$$

$$M(t) = pe^{t} : [1 - qe^{t}], \text{ gdy } t < -\ln q$$

4. hipergeometryczny dla $0 \le K, n \le N$. Wyciągamy n spośród N kul, gdzie K jest dobrych, a reszta jest zła. Jakie są szanse wyciągnięcia k dobrych?

$$\mathbb{P}(X = k) = C_k^K C_{n-k}^{N-k} : C_n^N$$

$$\mathbb{E} = nKN^{-1}$$

$$V = [nK(N-K)(N-n)] : [N^3 - N^2]$$

5. **jednostajny** na $[a,b] \cap \mathbb{Z}$, n=b+1-a. $\mathbb{E}=\frac{a+b}{2}$, $\mathbb{V}=\frac{n^2-1}{12}$.

$$M(t) = [\exp at - \exp(b+1)t] : [n(1-e^t)]$$

6. logarytmiczny dla 0 . "Bezużyteczny".

$$\mathbb{P}(X=k) = -p^k : [k \ln q]$$

$$\mathbb{E} = -p : [q \ln q]$$

$$V = [-p^2 + p \ln q] : [q^2 \ln^2 q]$$

$$M(t) = \ln_q(1 - pe^t), \text{ gdy } t < -\ln p$$

7. **Poissona** dla $\lambda = \mathbb{E} = \mathbb{V} > 0$. W ustalonym przedziałe zajdzie k wypadków (*średnio zachodzi ich* λ , *są nz*). Dobrze przybliża dwumianowy dla $n \geq 20$, $p \le 1: 20$, znakomicie dla $n \ge 100$ i $np \le 10$.

$$\mathbb{P}(X = k) = \lambda^k \exp(-\lambda) : k!$$

$$M(t) = \exp[\lambda(\exp t - 1)]$$

8. **Skellama**: różnica nz zmiennych z rozkładu Poissona (ze średnią λ_1 i λ_2). $\mathbb{E} = \lambda_1 - \lambda_2$, $\mathbb{V} = \lambda_1 + \lambda_2$.

$$\mathbb{P}(X = k) = \frac{\mu_1^k}{\exp(\lambda_1 + \lambda_2)} \sum_{m=0}^{\infty} \frac{\mu_1^m \mu_2^m}{m!(m+k)!}$$

$$M(t) = \exp(\mu_1 e^{it} + \mu_2 e^{-it} - \mu_1 - \mu_2)$$

9. **ujemny dwumianowy**: liczba sukcesów przed r-tą porażką podczas procesu Bernoulliego. $\mathbb{E} = pr : q$, $\mathbb{V} = pr : q^2$.

$$\mathbb{P}(X=k) = C_k^{k+r-1} p^k q^r$$

$$M(t) = q^r : [1 - pe^t]^r, \text{ gdy } t < -\log p$$

Zależności.

1. Dla X z rozkładu t-Studenta (n), $X^2 \sim F(v_1 = 1, v_2 = n)$.

2. Laplace'a ($\mu = 0, b = 1$) jest tym samym, co $\log(x/y)$ (obie z U(0,1)) albo $\lambda \operatorname{Exp}(\lambda) - \eta \operatorname{Exp}(\eta)$ (kopie niezależne od siebie). Ogólniej (μ, b) : $\mu + b[2 \operatorname{Exp}(1)]^{1/2} \operatorname{N}(0,1).$

3. Iloraz nz $X, Y \sim N(0, 1)$ ma rozkład Cauchy'ego, $x_0 = 0, \gamma = 1$.

4. Gdy $X \sim \text{Beta}(a, b)$, to $bX : (a - aX) \sim F(2a, 2b)$

5. $2\lambda \operatorname{Exp}(\lambda) = \chi_2^2$

6. $\min(\text{Exp}(\lambda), \text{Exp}(\nu)) = \text{Exp}(\lambda + \nu)$

7. $n \operatorname{Beta}(1, n)$ zbiegają do $\operatorname{Exp}(1)$

 $\sum_{i=1}^{n} \operatorname{Exp}(\lambda) = \operatorname{Gamma}(n, \lambda^{-1})$

9. Gdy $X \sim \text{Exp}(\lambda) = \text{Weibull}(\lambda^{-1}, 1)$, to $k \exp X \sim \text{Pareto}(k, \lambda)$.

10. Jeśli $X \sim \text{Exp}(\lambda - 1)$, $Y \mid X \sim \text{Poisson}(X)$, to $Y \sim \text{Geo}(1:(1 + \lambda))$.

