Lecture 9

<2016-05-02 Mon>

Contents

1	Floa	ating Point	2
		1.0.1 Tiny Floating Point Example	2
	1.1	Distribution of Values	2
	1.2	Special Properties of the IEEE Encoding	3
	1.3	Floating Point Operation	3
		1.3.1 Round to Even	4
		1.3.2 Floating Point Multiplication	4
		1.3.3 Floating Point Addition	5
		1.3.4 Floating Point in C	6
	1.4	Summary	7
2	Opt	imization	7
	2.1	Optimizing Compilers	7
	2.2	Generally Useful Optimizations	8
		2.2.1 Example of Memory Aliasing	8
	2.3	Instruction-Level Parallelism	8
	2.4	Superscalar Processor	9
		2.4.1 Pipelined Functional Units	9

1 Floating Point

1.0.1 Tiny Floating Point Example

S	ехр	frac
1	4-bits	3-bits

- 8-bit floating point representation
 - the sign bit is in the most significant bit
 - the next four bits are the exponent, with a bias of 7
 - the last 3 bits are the frac

state	\mathbf{s}	\exp	frac	\mathbf{E}	value	explanation
	0	0000	000	-6	0	
denormalized	0	0000	001	-6	1/512	closest to 0
numbers	0	0000	010	-6	2/512	
	0	0000	110	-6	6/512	
	0	0000	111	-6	7/512	largest denorm
	0	0001	000	-6	8/512	smallest norm
	0	0001	001	-6	9/512	
normalized						
numbers	0	0110	110	-1	14/16	
	0	0110	111	-1	15/16	closest to 1 below
	0	0111	000	0	1	
	0	0111	001	0	9/8	closest to 1 above
	0	1110	110	7	224	
	0	1110	111	7	240	largest norm
	0	1111	000	n/a	\inf	

1.1 Distribution of Values

- ullet 6-bits IEEE-like format
 - e = 3 exponent bits

- f = 2 fraction bits
- bias is $2^{3-1} 1 = 3$
- ditribution gets denser toward 0

1.2 Special Properties of the IEEE Encoding

- floating point 0 is the same as integer 0
 - all bits 0
- can almost use unsigned integer comparison
 - must first compare sign bits
 - must consider -0 = 0
 - NaN (s) problematic
 - * will be greater than any other values
 - * what should comparison yield
 - otherwise OK
 - * denormalized vs normalized
 - * normalized vs infinity

1.3 Floating Point Operation

- basic idea
 - first compute exact result
 - make it fit into desired precision
 - \ast possibily overflow if exponent too large
 - * possibily round to fit into fraction part of float

1.3.1 Round to Even

1. Rounding Modes

mode	1.40	1.60	1.50	2.50	-1.50
towards 0	1	1	1	2	-1
round down $-\infty$	1	1	1	2	-2
round up $+\infty$	2	2	2	3	-1
nearest even	1	2	2	2	-2

- round-to-even: default rounding mode
 - hard to get any other kind wothout dropping into assembly
 - all other are statistically biased
 - * sum of set of positive numbers will consistently be over or under estimated
- applying to other decimal places / bit positions
 - when exactly halfway between 2 possible values
 - * round so that least significant digit is even

2. rounding binary numbers

- binary fractional numbers
 - "even" when least significant bit is 0
 - "half" way when bits to right of rounding position = $100..._2$

Table 1: round to nearest 1/4 (2 bits right of binary point)

value	binary	rounded	action	bounded
3/32	0.00011	0.00	down	0
3/16	0.00110	0.01	up	1/4
7/8	0.11100	1.00	up	1
5/8	0.10100	0.10	down	1/2

1.3.2 Floating Point Multiplication

- $\bullet \ (-1)^{s1}M2^{E1} \times (-1)^{s2}M2^{E2}$
- \bullet exact result (-1)s M $2^{\rm E}$
 - sign s: s1 ^ s2

- significand M: M1 * M2
- exponent E: E1 + E2
- fixing
 - if M >= 2, shift M right, increment E
 - if E out of range, overflow
 - round M to fit frac precision
- \bullet implementation
 - biggest chore is multiplying significand

1.3.3 Floating Point Addition

- $\bullet (-1)^{s1}M2^{E1} + (-1)^{s2}M2^{E2}$
- exact result: $(-1)^s$ M 2^2
 - sign s, significand M:
 - * result of signed align & add
 - exponent E: E1
- fixing
 - if M>=2, shift M right, increment E
 - if M < 1, shift M left k positions, decrement E by k
 - overflow if E out of range
 - round M to fit frac range

Get binary points lined up

1.3.4 Floating Point in C

- C guarantees two levels
 - float single precision
 - double double precision
- conversion/casting
 - casting between int, float, and double changes bit representation
 - double/float => =int
 - * truncates fractional part
 - * like rounding towards 0
 - * not defined when out of range or NaN: generally sets to TMIN
 - int => =double
 - * exact conversion, as long as int has <= 53 word size
 - int => =float
 - * will round according to rounding mode
- 1. Floating Point Puzzle

```
int x;
float f;
double d;
```

condition expression

	-	<u>-</u>
f	-(-f)	true
d < 0.	0 (d * 2 < 0.0)	true
d > f	-f < -d	true
	d*d >= 0.0	true
	(d+f) - d == f	false add a large number d to a small number f, precision over

result explanation

1.4 Summary

- IEEE Floating Point has clear mathematical properties
- represents numbers of form $M \times 2^E$
- can reason about operations independent of implementation
 - as if computed with perfect precision then rounded
- not the same as real arithmetic

2 Optimization

2.1 Optimizing Compilers

- provide efficient mapping of program to machine
 - register allocation
 - code selection and ordering (scheduling)
 - dead code elimination
 - eliminating minor inefficiencies
- don't improve asymptotic efficiency
 - up to programmers to select best overall algorithms
 - big-O savings are (often) more important than constant factors
- have difficulty overcoming "optimization blockers"
 - potiential memory aliasing
 - potiential procedure side-effect

2.2 Generally Useful Optimizations

optimizations that you or the compiler should do regardless of processor/compiler

2.2.1 Example of Memory Aliasing

```
void sum_row2(double *a, doubke *b, long n) {
  long i, j;
  for (int i = 0; i < n; ++i) {
    b[i] = 0;
    for (int j = 0; j < n; ++j)
      b[i] += a[i*n + j];
  }
}
void sum_row2(double *a, doubke *b, long n) {
  long i, j;
  for (int i = 0; i < n; ++i) {
    double val = 0;
                                 /* remove memory aliasing */
    for (int j = 0; j < n; ++j)
      val += a[i*n + j];
    b[i] = val;
  }
}
```

- code updates b[i] on every iteration
- must consider possiblities that these updates will affect program behavior

2.3 Instruction-Level Parallelism

- need general understanding of modern processor design
 - hardware can execute multiple instructions in parallel
- performance limited by data dependencies
- simple transformations can yield dramatic performance improvement
 - compilers often cannot make these transformations
 - lack of associativity and distributivity in floating point arithmetic

2.4 Superscalar Processor

- Def: a superscalar processor can issue and execute multiple instructions in one cycle. Instructions are retrieved from a sequential instruction stream and are usually scheduled dynamically
- Benefit: without programming effort, superscalar processor can take advantage of the instruction level parallelism that most programs have
- most modern CPUs are superscalar

2.4.1 Pipelined Functional Units

```
long mult_eg(long a, long b, long c) {
  long p1 = a*b;
  long p2 = a*c;
  long p3 = p1*p2;
  return p3;
}
```

- divide computations into stages
- pass partial computations from stage to stage

- ullet stage i can start on new computation once values passed to i+1
- \bullet e.g. complete 3 multiplications in 7 cycles, even though each requires 3 cycles

Time							
	1	2	3	4	5	6	7
Stage 1	a*b	a*c			p1*p2		
Stage 2		a*b	a*c			p1*p2	
Stage 3			a*b	a*c			p1*p2