Механизм внимания и трансформер

Виктор Китов victorkitov.github.io

Содержание

- 1 Модель seq2seq с вниманием
- 2 Трансформер

Модель seq2seq с вниманием

Проблемы с кодировкой длинной последовательности вектором фиксированной длины.

Модель seq2seq с вниманием¹

seq2seq со вниманием (attention): в каждый момент состояние учитывает все слова по отдельности из входной последовательности.

¹https://arxiv.org/pdf/1409.0473.pdf

Внимание между словами

При переводе слова важен контекст словоупотребления:

- "она ела зеленое яблоко"
- "она ела зеленые яблоки"
- "она ела зеленую капусту"

Внимание в БД и нейросетях (soft attention)

Внимание в БД и нейросетях (soft attention)

Внимание в БД и нейросетях (soft attention)

seq2seq с вниманием²

Кодировщик - двунапр. RNN • состояния конкатенируются

• Степень соответствия: $e_{tj} = \text{score}(s_{t-1}, h_j), \ j = 1, 2, ... T$

• Веса учета состояний:

$$\alpha_{ti} = \exp(e_{ti}) / \sum_{j=1}^{T} \exp(e_{tj}),$$
$$i = 1, 2, ...T$$

• Контекстный вектор:

$$c_t = \sum_j \alpha_{tj} h_j$$

• Пересчёт состояний:

$$s_t = f(s_{t-1}, y_{t-1}, c_t)$$

Результаты работы

- RNNenc-X seq2seq
- RNNsearch-X seq2seq со вниманием
- Обучение: машинный перевод предложений длины до X слов.

Визуализация весов $lpha_{tj}$

Визуализация весов α_{tj} (перевод английский->французский):

- Матрица близка к диагональной => сеть выучилась.
 - можно явно добавить диагонолизирующий регуляризатор

Визуализация внимания в других задачах³

A woman is throwing a frisbee in a park.

A dog is standing on a hardwood floor.

A stop sign is on a road with a mountain in the background.

³Источник иллюстрации.

Варианты функции соответствия

Варианты соответствия $e_{tj} = \text{score}(s_{t-1}, h_j), s_{t-1}, h_j \in \mathbb{R}^d$

basic dot-product	$s^T h$
scaled dot-product	$s^T h / \sqrt{d}$
content-based attention	$s^T h / \left(\left\ s \right\ \left\ h \right\ \right)$
additive attention	$w^T \tanh(W_1 s + W_2 h)$
multiplicative attention	$s^T W h$
general (в ориг. статье)	MLP(s,h)

Локальное внимание⁴

- Обычное внимание усредняет по всем состояниям входа.
 - долго работает (например-перевод целого абзаца)

⁴https://arxiv.org/pdf/1508.04025.pdf

Локальное внимание⁴

- Обычное внимание усредняет по всем состояниям входа.
 - долго работает (например-перевод целого абзаца)
- Локальное внимание (local attention):
 - ullet контекст c_t зависит только от $[p_t-D,\; p_t+D]$, веса $lpha_t\in\mathbb{R}^{2D+1}$
 - $\alpha_{tj} = \operatorname{score}(s_{t-1}, h_s) \exp\left(-\frac{(j-p_t)^2}{2\sigma^2}\right), \ \sigma = \frac{D}{2}.$

Локальное внимание⁴

- Обычное внимание усредняет по всем состояниям входа.
 - долго работает (например-перевод целого абзаца)
- Локальное внимание (local attention):
 - ullet контекст c_t зависит только от $[p_t-D,\; p_t+D]$, веса $lpha_t\in\mathbb{R}^{2D+1}$

•
$$\alpha_{tj} = \operatorname{score}(s_{t-1}, h_s) \exp\left(-\frac{(j-p_t)^2}{2\sigma^2}\right), \ \sigma = \frac{D}{2}.$$

- ullet Варианты генерации p_t :
 - $p_t = t$ (предполагаем входная и выходная посл-ти выровнены)
 - $p_t = [\text{input length}] \times \sigma \left(v^T \tanh \left(W s_{t-1} \right) \right)$

⁴https://arxiv.org/pdf/1508.04025.pdf

Содержание

- Модель seq2seq с вниманием
- 2 Трансформер

Модель seq2seq с вниманием

- seq2seq+attention:
 - всю входную посл-ть не нужно запоминать вектором
 - но всё еще нужно запоминать информацию об уже сгенерированной последовательности (state)
- Хотим помнить всю входную и выходную последовательность (к текущему моменту).
- Используем трансформер⁵)

Модуль самовнимания (self-attention)

- Transformer SOTA для машинного перевода и др. задач на последовательностях.
 - вход: эмбеддинги слов, выход: распределения слов.
- Проблема: слова в контексте приобретают другой смысл.
- ullet Решение: модуль self-attention-преобразует s входов в s выходов
 - ullet размерность входов и выходов: D
 - зависимость: каждый от каждого

Модуль самовнимания (self-attention)⁶

- $X_{T \times D}$ T входов размерности, размерность эмбеддинга D=512.
- Генерируем для каждого входа соответствующие
 - запросы (queries): $Q_{T \times d} = X_{T \times D} W_{D \times d}^Q$
 - ключи (keys): $K_{T \times d} = X_{T \times D} W_{D \times d}^K$
 - ullet значения (values): $V_{T imesar{d}}=X_{T imes D}W^V_{D imesar{d}}$
- $d, \bar{d}=64$, т.к. потом конкатенируем 8 раз для разных W^K, W^V, W^Q (много аспектные контексты)

Модуль самовнимания (self-attention)

Выход для одного входа:

$$y_{1 \times \bar{d}} = \operatorname{softmax} \left(\frac{1}{\sqrt{d}} q_{1 \times d} \left(K^T \right)_{d \times s} \right)_{1 \times s} V_{s \times \bar{d}}$$

В матричной форме:

$$Y_{T \times \bar{d}} = \operatorname{softmax} \left(\frac{1}{\sqrt{d}} Q_{T \times d} \left(K^T \right)_{d \times T} \right)_{T \times T} V_{T \times \bar{d}}$$

$$\operatorname{softmax} \left(\begin{array}{c} \mathsf{Q} & \mathsf{K}^\mathsf{T} \\ \hline & \mathsf{\times} & \\ \hline & \sqrt{d_k} \end{array} \right) \begin{array}{c} \mathsf{V} \\ \hline & = \end{array} \begin{array}{c} \mathsf{Z} \\ \hline \end{array}$$

 $\frac{1}{\sqrt{d}}q^Tk$ из логики, что сумма d случайных величин имеет σ в \sqrt{d} раз больше.

Модуль самовнимания (self-attention)

Одна головка самовнимания:

$$\begin{split} &\operatorname{head}\left(X|W^K,W^V,W^Q\right)_{T\times\bar{d}} \\ &=\operatorname{softmax}\left(\frac{1}{\sqrt{d}}Q_{T\times d}\left(K^T\right)_{d\times T}\right)_{T\times T}V_{T\times\bar{d}} \\ &=\operatorname{softmax}\left(\frac{1}{\sqrt{d}}\left(\underbrace{XW^Q}_Q\right)\left(\underbrace{XW^K}_K\right)^T\right)\underbrace{XW^V}_V \end{split}$$

Self-attention vs. RNN

Сложность сканирования последовательности:

- в RNN: $O(T \cdot D^2)$, в self-attention: $O(T^2 \cdot D)$. (D=512 > T)
 - можно еще уменьшить, если для i-го токена учитывать только контекст [-i-r,...,i+r]. Средняя длина пути между элементами
 - В RNN: O(T), в self-attention: O(1)
 - лучше учитывается контекст

Self-attention параллелизуется, а RNN - нет.

Multi-head attention

Используется 8 головок (каждая - со своими W^Q, W^K, W^V).

Модуль самовнимания (self-attention)

Итоговый выход $\in \mathbb{R}^{D \times T}$ - конкатенация выходов+линейное преобразование:

$$Z = \mathsf{concat}_{T \times 8\bar{d}} \left[\mathsf{head} \left(X|W_n^K, W_n^V, W_n^Q\right)\right]_{n=1}^8 W_{8\bar{d} \times D}^O$$

1) Concatenate all the attention heads

 Multiply with a weight matrix W⁰ that was trained jointly with the model

Х

3) The result would be the $\mathbb Z$ matrix that captures information from all the attention heads. We can send this forward to the FFNN

Модуль самовнимания (self-attention)

Пример: на что смотрят блоки самовнимания

Figure 4: Two attention heads, also in layer 5 of 6, apparently involved in anaphora resolution. Top: Full attentions for head 5. Bottom: Isolated attentions from just the word 'its' for attention heads 5 and 6. Note that the attentions are very sharp for this word.

Пример: на что смотрят блоки самовнимания

Figure 3: An example of the attention mechanism following long-distance dependencies in the encoder self-attention in layer 5 of 6. Many of the attention heads attend to a distant dependency of the verb 'making', completing the phrase 'making...more difficult'. Attentions here shown only for the word 'making'. Different colors represent different heads. Best viewed in color.

- <pad> на входе для выравнивания посл-тей минибатча.
- Внимание маскировалось, чтобы не смотреть на <pad>.

Трансформер: вся модель

 Feed Forward: сеть с одинаковыми весами, применяемая к каждому элементу

$$out = ReLU (xW_1 + b_1) W_2 + b_2$$

- Эмбеддинги позиций прибавляются к эмбеддингам слов.
- Блоки повторяются N=6 раз.
- Add&Norm:

$$LayerNorm\left(x+SubLayer\left(x\right)\right)$$

- Кодировщик работает сразу.
- Декодировщик-в авторегрессионном режиме много раз до <EOS>.

Визуализация первого блока кодировщика

Детали

• Нормализация слоя (LayerNorm) [$x_1, ... x_D$]:

$$x := \alpha \frac{x - \mu}{\sigma} + \beta, \quad \mu = \frac{1}{D} \sum_{i=1}^{D} x_i, \quad \sigma = \sqrt{\frac{1}{D} \sum_{i=1}^{D} (x_i - \mu)^2}$$

- ullet α, eta выучиваемые параметры
- работает независимо для каждого объекта (здесь-токена)
- обучение и применение не различаются

Детали

• Нормализация слоя (LayerNorm) [$x_1, ... x_D$]:

$$x := \alpha \frac{x - \mu}{\sigma} + \beta, \quad \mu = \frac{1}{D} \sum_{i=1}^{D} x_i, \quad \sigma = \sqrt{\frac{1}{D} \sum_{i=1}^{D} (x_i - \mu)^2}$$

- ullet α, eta выучиваемые параметры
- работает независимо для каждого объекта (здесь-токена)
- обучение и применение не различаются
- Positional embedding: кодирует расположение слов.
 - ullet pos позиция слова, i индекс D-мерного эмбеддинга

$$PE_{(pos,2i)} = \sin\left(pos/10000^{2i/D}\right)$$

 $PE_{(pos,2i+1)} = \cos\left(pos/10000^{2i/D}\right)$

• Периоды $[2\pi - 10000 \cdot 2\pi]$.

Позиционное кодирование

Позиционный эмбеддинг $\in \mathbb{R}^{32}$:

Полосы - sin/cos.

Аналогия:

$$0 \to (0,0,0)$$

$$1 \to (1,0,0)$$

$$2 \to (0,1,0)$$

$$3 \to (1,1,0)$$

$$4 \to (0,0,1)$$

$$5 \to (1,0,1)$$

$$6 \to (0,1,1)$$

$$7 \to (1,1,1)$$

Схема двухуровневого трансформера

Виды внимания

Encoder Self-Attention:		
Masked Decoder Self-Attention:		
Encoder-Decoder Attention:		

Виды внимания

- в кодировщике Q,K,V считаются:
 - в первом блоке: по эмбеддингам слов+позиций
 - в последующих блоках: по выходам кодировщика пред. блока
- в декодировщике:
 - masked multi-head attention:
 - в первом блоке: по эмбеддингам предсказанных слов+позиций (маскированным)
 - в последующих блоках: по выходам декодировщика (маскированным)
 - encoder-decoder attention: Q-по выходам декодировщика, K,V по финальным выходам кодировщика

Маскирование⁷

- Masked multi-head attention декодировщика: элемент i не должен смотреть на i+1, i+2, ... (их еще нет).
- Прибавляем $-\infty$ к соотв. аргументам SoftMax:

⁷Источник иллюстрации.

Особенности настройки

- Использовался dropout:
 - в residual-блоках:

$$LayerNorm\left(x+DropOut\odot SubLayer\left(x\right)\right)$$

- в суммам эмбеддингов в кодировщике и декодировщике.
- $p_{drop} = 0.1$
- Сглаживались метки классов (слов).
- Пример кода на PyTorch с комментариями.

Заключение

- seq2seq должна помнить всю входную и выходную посл-ть.
- seq2seq+attention: только выходную посл-ть (к текущему моменту).
- Трансформер не должен помнить: используется внимание и ко входу, и к выходу.
- Трансформер SOTA на многих задачах
 - обработка последовательностей: машинный перевод, ответы на вопросы, выделение именованных сущностей, ...
 - построение эмбеддингов слов
 - обработка изображений
- У трансформера повышенные требования на производительность и память.
 - считаем связи каждый с каждым