## Logical Agent

## Knowledge-based Agent

- Reusing knowledge or reasoning of knowledge
  - Provide unobserved information
  - New facts can be concluded under logical reasoning
- Reasoning is very important
  - Especially in partially observable problems
    - Results of actions may be unknown

## Knowledge-based Agent

#### Central component

- Memory knowledge base, or KB
- Set of representation of facts
- Each is called a sentence



## Design of Knowledge-based Agent

## In partially observable problems

- Results of actions may be unknown
- To do rational action
  - Reasoning in knowledge base is necessary
- A formal language to express the knowledge
  - No ambiguity
  - Carry out reasoning

## **Logic** → Logical agent

## Input & Query KB

#### To work with KB

- Tell: add new sentences (percepts)
- Ask: query what sentences the KB contains

#### Main component of KB agent

- *Inference engine* (Reasoning)
- Answer query based on sentences in KB





## KB Agent

TELL KB what it perceives (Percepts)

ASK KB what action to perform (Actions)

Inference engine do reasoning logically

- Concluding action from sentences in KB
- Action found is proved to be better



# The WUMPUS World

## Partially Observable Environment Example



## To well -define the problem

• Performance, Environment, Actuators, Sensors

#### Performance measure

- +1000 for picking up the gold
- -1000 falling into a pit, or being eaten by the wumpus
- -1 for each action taken
- -10 for using up an arrow



#### **Environment**

- 4x4 grid of room
  - Player does not know, need to explore
- Agent start in square [1,1]
  - facing to right
- Locations of gold and wumpus
  - Chosen randomly and uniformly
  - Except [1,1]
- Pit
  - Every square, except [1,1], may be a pit
  - With probability 0.2



3

1

## **A**ctuators (Actions)

- Move forward, Turn left, Turn right
  - No effect in moving forward when there is wall
- Grab
  - Pick up an object in the same square
- Shoot
  - Fire an arrow in facing direction in straight line
  - Continues till hits wumpus or a wall
  - Can be used only once
- Dies if
  - Enter square with pit or living wumpus



3

2

#### **S**ensors –5 percepts

- Stench
  - In square with wumpus (alive or dead)
  - In squares directly adjacent to wumpus
- Breeze
  - In squares directly adjacent to a pit
- Glitter
  - In square containing gold
- Bump
  - Walks into a wall
- Scream
  - In all [x,y] when wumpus is killed



#### Percept is expressed

- As a state of five elements
- Like in square [2,3]
  - Percept looks like
  - [Stench, Breeze, Glitter, None, None]



## Restriction on Agent

Can only perceive its own location

Not location adjacent to itself

Partially observable environment

Actions are stochastic (nondeterministic)

Moving forward 
 Do not know the result

| SSTENCT S           |            | -Breeze - | PIT     |
|---------------------|------------|-----------|---------|
| (100 )              | S Stench S | PIT       | Breeze  |
| SSTSTS<br>SStench S | 7 4000 (3  | Breeze    |         |
| START               | -Breeze    | PIT       | -Breeze |

3

2

## Partially Observable Environment Example

#### Most case

Can retrieve gold safely

#### About 21% of the environments

- No way to succeed
- Squares around the gold are pits
- The gold is in a square of pit



SSSSSS Stench S Breeze PIT 4 SSTENCH S V ... Breeze PIT 3 كتح Breeze SSSSSS Stench S 2 START Breeze Breeze PIT 1

1 2 3 4

| 1,4      | 2,4 | 3,4 | 4,4 |
|----------|-----|-----|-----|
|          |     |     |     |
| 1,3      | 2,3 | 3,3 | 4,3 |
|          |     |     |     |
| 1,2      | 2,2 | 3,2 | 4,2 |
| ОК       |     |     |     |
| 1,1<br>A | 2,1 | 3,1 | 4,1 |
| OK       | OK  |     |     |

| A            | = . | Agent         |
|--------------|-----|---------------|
| В            | =   | Breeze        |
| G            | =   | Glitter, Gold |
| OK           | =   | Safe square   |
| P            | =   | Pit           |
| $\mathbf{S}$ | =   | Stench        |
| $\mathbf{V}$ | =   | Visited       |
| $\mathbf{w}$ | =   | Wumpus        |
|              |     |               |
|              |     |               |
|              |     |               |
|              |     |               |
|              |     |               |
|              |     |               |
|              |     |               |
|              |     |               |

| 1,4            | 2,4              | 3,4    | 4,4 |
|----------------|------------------|--------|-----|
| 1,3            | 2,3              | 3,3    | 4,3 |
| 1,2<br>OK      | 2,2<br>P?        | 3,2    | 4,2 |
| 1,1<br>V<br>OK | 2,1 A<br>B<br>OK | 3,1 P? | 4,1 |

(a)

(b)

SSSSSS Stends PIT Breeze PIT Breeze SSSSSS Stends Stends PIT Breeze PIT Breeze

3

4

3

2

4

1

2,4 1,4 3,4 4,4 1,3 W! 2,3 3,3 4,3 1,2 A 2,2 3,2 4,2 OK OK 1,1 2,1 3,1 4,1 В **P**! OK OK

1 2
A = Agent

B = Breeze

G = Glitter, Gold

OK = Safe square

P = Pit

S = Stench

V = Visited

W = Wumpus

| 1,4          | 2,4<br>P?         | 3,4               | 4,4 |
|--------------|-------------------|-------------------|-----|
|              | 2,3 A<br>S G<br>B | 3,3 <sub>P?</sub> | 4,3 |
| 1,2 s        | 2,2               | 3,2               | 4,2 |
| $\mathbf{v}$ | v                 |                   |     |
| OK           | OK                |                   |     |
| 1,1          | 2,1<br>B          | 3,1<br>P!         | 4,1 |
| V            | V                 |                   |     |
| OK           | OK                |                   |     |

(a)

(b)

# Propositional Logic

## Propositional Logic

## Method of Reasoning

Provides rules and techniques to determine whether an argument is valid

#### Example

If x is an even integer, then x + 1 is an odd integer

#### A statement or a proposition

Declarative sentence that is either true or false, not both

## Proposition

#### Letters denote propositions

## Proposition example

- p:2 is an even number (true)
- q: 3 is an odd number (true)
- r: A is a consonant (false)

## NOT proposition example

- p: My cat is beautiful
- q: Are you in charge?

Proposition = a Boolean variable

## Proposition and Negation

## Truth value is assigned to a statement

- True is abbreviated to T or 1
- False is abbreviated to F or 0

#### Negation

- Negation of p, ¬ p
- Statement obtained by negating the statement p
- Example
  - p: A is a consonant
  - ¬ p: A is not a consonant

| р | ¬ p |
|---|-----|
| T | F   |
| F | Т   |

## Conjunction

## Let p and q be statements

- Conjunction of p and q, p ∧ q
- Statement formed by joining the two statements with 'and'
- $\circ$  p  $\wedge$  q is true only if both p and q are true

| р | q | p∧q |
|---|---|-----|
| Т | Т | Т   |
| Т | F | F   |
| F | Т | F   |
| F | F | F   |

## Disjunction

#### Let p and q be statements

- Disjunction of p and q, p \( \times q \)
- Statement formed by joining the two statements with 'or'
- ∘ p ∨ q is true if at least one of p and q is true

| р | q | p∨q |
|---|---|-----|
| Т | Т | Т   |
| Т | F | Т   |
| F | Т | Т   |
| F | F | F   |

## Implication

Let p and q be statements

Implication or condition

$$\circ p \Longrightarrow q$$

#### Read as

- If p then q
- op is sufficient for q
- o q if p
- q whenever p

| р | q | $p \Rightarrow q$ |
|---|---|-------------------|
| Т | Т | Т                 |
| Т | F | F                 |
| F | Т | Т                 |
| F | F | Т                 |

p is called hypothesis, q is called conclusion

## Implication

Let p: Today is Sunday and q: I will wash the car

Implication,  $p \Rightarrow q$ 

If today is Sunday, then I will wash the car

Converse of implication,  $q \Rightarrow p$ 

If I wash the car, then today is Sunday

Inverse of implication,  $\neg p \Rightarrow \neg q$ 

If today is not Sunday, then I will not wash the car

Contrapositive of implication,  $\neg q \Rightarrow \neg p$ 

If I do not wash the car, then today is not Sunday

## Biconditional

#### Let p and q be statements

#### Biimplication or biconditional

#### Read as

- p if and only if q
- p is necessary and sufficient for q
- o q if and only if p
- q when and only when p

| р | q | p⇔q |
|---|---|-----|
| Т | Т | Т   |
| Т | F | F   |
| F | Т | F   |
| F | F | Т   |

## Syntax for Propositional Logic

#### **Syntax**

- Logical constants: True and False
- Propositional symbols, such as p and q
- Logical connectives:  $\land$ ,  $\lor$ ,  $\Rightarrow$ ,  $\Leftrightarrow$ ,  $\neg$  and ()

## Sentences in propositional logic

- True, and False
- Propositional symbol
- Wrapping "()" around a sentence yields a sentence

# Sentence for Propositional

#### Sentence

Formed by combining sentences with logical connectives

```
∘ ¬: negation
                                             Antecedent /
                                                Premise
   • ∧ : conjunction
   ∘ ∨ : disjunction
   • \Rightarrow : implication, p \Rightarrow q : if p then q

◦ ⇔ : bidirectional

                                                         Conclusion /
                                                         Consequent
Atomic sentence
```

- Sentence contains only one symbol or one constant
- p, True

## Literal and Complex Sentence

#### Literal

- Atomic sentence or its negation
- ° p, ¬q

## Complex sentence

• Sentence constructed from simpler sentences using logical connectors  $Sentence \rightarrow AtomicSentence \mid C$ 

```
Sentence 
ightarrow AtomicSentence | ComplexSentence | AtomicSentence | True | False | Symbol | Symbol | 
ightarrow P | Q | R | ... | ComplexSentence | Sentence | (Sentence \wedge Sentence) | (Sentence \wedge Sentence) | (Sentence \wedge Sentence) | (Sentence \wedge Sentence) | (Sentence \wedge Sentence)
```

## Semantics / Interpretation

Sentence → {True, False}

## Semantics of propositional logic

- Interpret truth values of symbols
  - Assign True or False to the logical symbols
  - Combination of truth values for the logical symbols
    - Models, e.g.  $m_1 = \{P = false, Q = false\}$
  - Summarize the models
    - Truth table

| P     | Q     | $\neg P$ | $P \wedge Q$ | $P \lor Q$ | $P \Rightarrow Q$ | $P \Leftrightarrow Q$ |
|-------|-------|----------|--------------|------------|-------------------|-----------------------|
| false | false | true     | false        | false      | true              | true                  |
| false | true  | true     | false        | true       | true              | false                 |
| true  | false | false    | false        | true       | false             | false                 |
| true  | true  | false    | true         | true       | true              | true                  |

# Precedence of Logical Connectives

Negation ¬
Conjunction ∧
Disjunction ∨
Implication ⇒
Bidirectional ⇔

## Example

Let A be the sentence  $(\neg(p \lor q)) \Rightarrow (q \land p)$ Truth table for A

| р | q | (p ∨ q) | (¬(p∨q)) | (q∧p) | A |
|---|---|---------|----------|-------|---|
| Т | Т | Т       | F        | Т     | Т |
| Т | F | Т       | F        | F     | Т |
| F | Т | Т       | F        | F     | Т |
| F | F | F       | Т        | F     | F |

## Tautology and Contradiction

## **Tautology**

- Sentence is always True
  - Any assignment to the logical symbols in the sentence

$$\circ$$
 (p  $\Rightarrow$  q)  $\Leftrightarrow$  ( $\neg$ q  $\Rightarrow$   $\neg$ p)

#### Contradiction

- Sentence is always False
  - Any assignment to the logical symbols in the sentence

# Logically Imply and Logically Equivalent

## Logically imply

- Implication is a tautology
- A logically implies B
  - $A \Rightarrow B$  is a tautology, i.e.  $A \Rightarrow B$  is always true

## Logically equivalent

- Bidirectional is a tautology
- A logically equivalent to B
  - $A \Leftrightarrow B$  is a tautology, i.e.  $A \Leftrightarrow B$  is always true
  - A ≡ B

# Inference Rules for Propositional Logic

#### Inference rule

- A rule capturing a certain pattern of inference
- $\circ$  To say  $\beta$  is derived / concluded from  $\alpha$
- Written as  $\alpha \vdash \beta$  or  $\frac{\alpha}{\beta}$

Modus Ponens or Implication-Elimination: (From an implication and the premise of the implication, you can infer the conclusion.)

$$\frac{\alpha \Rightarrow \beta, \quad \alpha}{\beta}$$

And-Elimination: (From a conjunction, you can infer any of the conjuncts.)

$$\frac{\alpha_1 \wedge \alpha_2 \wedge \ldots \wedge \alpha_n}{\alpha_i}$$

## Inference Rules

Modus Ponens (Method of Affirming)

$$\frac{\alpha \Rightarrow \beta, \, \alpha}{\beta}$$

Modus Tollens (Method of Denying)

$$\frac{\alpha \Rightarrow \beta, \neg \beta}{\neg \alpha}$$

Disjunctive Syllogisms

$$\frac{\alpha\vee\beta,\,\neg\alpha}{\beta}$$

Disjunctive Syllogisms

$$\frac{\alpha \vee \beta, \neg \beta}{\alpha}$$

Disjunctive Addition

$$\frac{\alpha}{\alpha \vee \beta}$$

Disjunctive Addition

$$\frac{\beta}{\alpha \vee \beta}$$

Conjunctive Simplification

$$\frac{\alpha \wedge \beta}{\alpha}$$

**Conjunctive Simplification** 

$$\frac{\alpha \wedge \beta}{\beta}$$

**Conjunctive Addition** 

$$\frac{\alpha, \beta}{\alpha \wedge \beta}$$

Hypothetical Syllogism

$$\frac{\alpha \Rightarrow \beta, \beta \Rightarrow \gamma}{\alpha \Rightarrow \gamma}$$

Dilemma

$$\frac{\alpha \vee \beta, \alpha \Rightarrow \gamma, \beta \Rightarrow \gamma}{\gamma}$$

$$(\alpha \land \beta) \equiv (\beta \land \alpha)$$

$$(\alpha \lor \beta) \equiv (\beta \lor \alpha)$$

$$((\alpha \land \beta) \land \gamma) \equiv (\alpha \land (\beta \land \gamma))$$

$$((\alpha \lor \beta) \lor \gamma) \equiv (\alpha \lor (\beta \lor \gamma))$$

$$\neg(\neg \alpha) \equiv \alpha$$

$$(\alpha \Rightarrow \beta) \equiv (\neg \beta \Rightarrow \neg \alpha)$$

$$(\alpha \Rightarrow \beta) \equiv (\neg \alpha \lor \beta)$$

$$(\alpha \Leftrightarrow \beta) \equiv ((\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha))$$

$$\neg(\alpha \land \beta) \equiv (\neg \alpha \lor \neg \beta)$$

$$\neg(\alpha \lor \beta) \equiv (\neg \alpha \land \neg \beta)$$

$$(\alpha \land (\beta \lor \gamma)) \equiv ((\alpha \land \beta) \lor (\alpha \land \gamma))$$

 $(\alpha \vee (\beta \wedge \nu)) \equiv ((\alpha \vee \beta) \wedge (\alpha \vee \nu))$ 

commutativity of  $\Lambda$ commutativity of V associativity of  $\Lambda$ associativity of V double-negation elimination contraposition implication elimination biconditional elimination De Morgan De Morgan distributivity of ∧ over ∨

#### Absorption law

- $\circ \alpha \wedge (\alpha \vee \beta) \equiv \alpha$
- $\circ \alpha \vee (\alpha \wedge \beta) \equiv \alpha$

#### Idempotent law

- $\circ \alpha \wedge \alpha \equiv \alpha$
- $\circ \alpha \vee \alpha \equiv \alpha$

## Exercise

Verify the equivalences using truth tables

$$(\alpha \Leftrightarrow \beta) \equiv ((\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha))$$

$$\neg(\alpha \land \beta) \equiv (\neg \alpha \lor \neg \beta)$$

$$\neg(\alpha \lor \beta) \equiv (\neg \alpha \land \neg \beta)$$

$$(\alpha \Rightarrow \beta) \equiv (\neg \beta \Rightarrow \neg \alpha)$$

$$(\alpha \Rightarrow \beta) \equiv (\neg \alpha \lor \beta)$$

# Proof of $(\neg p \land q) \Rightarrow (\neg (q \Rightarrow p))$

$$(\neg p \wedge q) \Rightarrow (\neg (q \Rightarrow p))$$

$$\equiv \neg (\neg p \wedge q) \vee (\neg (q \Rightarrow p)) \text{ by implication elimination}$$

$$\equiv (\neg \neg p \vee \neg q) \vee (\neg (q \Rightarrow p)) \text{ by DeMorgan's law}$$

$$\equiv (p \vee \neg q) \vee (\neg (q \Rightarrow p)) \text{ by double negation's law}$$

$$\equiv (p \vee \neg q) \vee (\neg (\neg q \vee p)) \text{ by implication elimination}$$

$$\equiv (p \vee \neg q) \vee (\neg \neg q \wedge \neg p) \text{ by DeMorgan's law}$$

$$\equiv (p \vee \neg q) \vee (q \wedge \neg p) \text{ by double negation's law}$$

$$\equiv (p \vee \neg q) \vee (q \wedge \neg p) \text{ by double negation's law}$$

$$\equiv p \vee (\neg q \vee (q \wedge \neg p)) \text{ by associativity of } \vee$$

# Proof of $(\neg p \land q) \Rightarrow (\neg (q \Rightarrow p))$

# Proof of $(p \land \neg q) \lor q \Leftrightarrow p \lor q$

$$(p \land \neg q) \lor q \qquad \text{Left-Hand Statement} \\ \equiv q \lor (p \land \neg q) \qquad \text{by commutativity of } \lor \\ \equiv (q \lor p) \land (q \lor \neg q) \qquad \text{by distributivity} \\ \equiv (q \lor p) \land T \qquad \text{by } \neg \alpha \lor \alpha \equiv T \\ \equiv q \lor p \qquad \text{by } \alpha \land T \equiv \alpha \\ \equiv p \lor q \qquad \text{by commutativity of } \lor$$

## Exercise

#### Verify the following as a tautology using

- Truth table
- Logic rules

```
p \Rightarrow p \lor q

Big \lor Dumb \lor (Big \Rightarrow Dumb)

(Smoke \Rightarrow Fire) \Rightarrow ((Smoke \land Heat ) \Rightarrow Fire)
```

## Exercise

#### Verify by

- Truth table
- Logic rules

$$(p \Rightarrow q) \Leftrightarrow (\neg q \Rightarrow \neg p)$$
  
((Smoke  $\land$  Heat )  $\Rightarrow$  Fire)  $\Leftrightarrow$  ((Smoke  $\Rightarrow$  Fire)  $\lor$  (Heat  $\Rightarrow$  Fire))

# Knowledge base under Propositional Logic

# Simple Knowledge Base

#### Wumpus world

- Pits and breezes
- Each square needs one proposition

#### For each i, j:

- P<sub>i,j</sub> = true if there is pit in [i, j]
- B<sub>i,j</sub> = true if there is breeze in [i, j]

#### Proposition are stored in knowledge base

As sentences (rules)

No pits in [1,1]

∘ R1: ¬P<sub>1,1</sub>



3

2

# Simple Knowledge Base

#### Square is breezy if and only if

- Neighboring square has pit
- $\circ$  R2:  $B_{1.1} \Leftrightarrow (P_{1.2} \vee P_{2.1})$
- R3:  $B_{2,1} \Leftrightarrow (P_{1,1} \vee P_{2,2} \vee P_{3,1})$
- All squares must be stated



4

3

2

#### Breeze percepts from agent during runtime

- ∘ R4 : ¬B<sub>1,1</sub>
- ° R5: B<sub>2,1</sub>





# Inference

ASK KB (R1 to R5) a query, [1, 2] is pit?

• i.e.  $P_{1,2} = true$ ?

#### Inference engine performs, truth table is constructed

| $B_{1,1}$               | $B_{2,1}$            | $P_{1,1}$               | $P_{1,2}$               | $P_{2,1}$               | $P_{2,2}$             | $P_{3,1}$             | $R_1$                | $R_2$                | $R_3$                | $R_4$                | $R_5$                | KB                                     |
|-------------------------|----------------------|-------------------------|-------------------------|-------------------------|-----------------------|-----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------------------------|
| false<br>false          | false<br>false       | false<br>false          | false<br>false          | false<br>false          | false<br>false        | false<br>true         | true<br>true         | true<br>true         | true<br>false        | true<br>true         | false<br>false       | false<br>false                         |
| :<br>false              | true                 | false                   | false                   | :<br>false              | false                 | false                 | :<br>true            | $\vdots \\ true$     | false                | $\vdots \\ true$     | :<br>true            | :<br>false                             |
| false<br>false<br>false | true<br>true<br>true | false<br>false<br>false | false<br>false<br>false | false<br>false<br>false | false<br>true<br>true | true<br>false<br>true | true<br>true<br>true | true<br>true<br>true | true<br>true<br>true | true<br>true<br>true | true<br>true<br>true | $\frac{true}{true}$ $\underline{true}$ |
| false : true            | true<br>:<br>true    | false : true            | false : true            | true<br>:<br>true       | false : true          | false : true          | true<br>:<br>false   | false : true         | false : true         | true<br>:<br>false   | true<br>:<br>true    | false : false                          |

# Inference by Truth Table

#### Large KB contains many variables

- Need huge amount of memory
  - If there are *n* variables
  - Totally  $2^n$  rows (models) in truth table
- Time required is also not short
  - Construct the truth table
- Simple rules for inference are preferred

# Inference Rules (Revision)

Modus Ponens (Method of Affirming)

$$\frac{\alpha \Rightarrow \beta, \, \alpha}{\beta}$$

Modus Tollens (Method of Denying)

$$\frac{\alpha \Rightarrow \beta, \neg \beta}{\neg \alpha}$$

# Inference Rules (Revision)

**Conjunctive Simplification** 

$$\frac{\alpha \wedge \beta}{\alpha}$$

Conjunctive Simplification

$$\frac{\alpha \wedge \beta}{\beta}$$

Conjunctive Addition

$$\frac{\alpha, \beta}{\alpha \wedge \beta}$$

# Inference Rules (Revision)

$$(\alpha \land \beta) \equiv (\beta \land \alpha)$$
$$(\alpha \lor \beta) \equiv (\beta \lor \alpha)$$

$$((\alpha \land \beta) \land \gamma) \equiv (\alpha \land (\beta \land \gamma))$$

$$((\alpha \vee \beta) \vee \gamma) \equiv (\alpha \vee (\beta \vee \gamma))$$

$$\neg(\neg\alpha)\equiv\alpha$$

$$(\alpha \Rightarrow \beta) \equiv (\neg \beta \Rightarrow \neg \alpha)$$

$$(\alpha \Rightarrow \beta) \equiv (\neg \alpha \lor \beta)$$

$$(\alpha \Leftrightarrow \beta) \equiv ((\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha))$$

$$\neg(\alpha \land \beta) \equiv (\neg\alpha \lor \neg\beta)$$

$$\neg(\alpha \lor \beta) \equiv (\neg\alpha \land \neg\beta)$$

$$(\alpha \wedge (\beta \vee \gamma)) \equiv ((\alpha \wedge \beta) \vee (\alpha \wedge \gamma))$$

associativity of 
$$\Lambda$$

$$(\alpha \vee (\beta \wedge \gamma)) \equiv ((\alpha \vee \beta) \wedge (\alpha \vee \gamma))$$

# Rules for Inference

Start with R1 to R5, prove  $\neg P_{1,2}$ 

Apply biconditional elimination to R2

$$R_6: (B_{1,1} \Rightarrow (P_{1,2} \vee P_{2,1})) \wedge ((P_{1,2} \vee P_{2,1}) \Rightarrow B_{1,1}).$$

Then we apply And-Elimination to  $R_6$  to obtain

$$R_7: ((P_{1,2} \vee P_{2,1}) \Rightarrow B_{1,1}).$$

Logical equivalence for contrapositives gives

$$R_8: (\neg B_{1,1} \Rightarrow \neg (P_{1,2} \vee P_{2,1})).$$

R1: 
$$\neg P_{1,1}$$
  
R2:  $B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1})$   
R3:  $B_{2,1} \Leftrightarrow (P_{1,1} \vee P_{2,2} \vee P_{3,1})$   
R4:  $\neg B_{1,1}$   
R5:  $B_{2,1}$ 

Now we can apply Modus Ponens with  $R_8$  and the percept  $R_4$  (i.e.,  $\neg B_{1,1}$ ), to obtain

$$R_9: \neg (P_{1,2} \vee P_{2,1})$$
.

Finally, we apply De Morgan's rule, giving the conclusion

$$R_{10}: \neg P_{1,2} \wedge \neg P_{2,1}$$
.

That is, neither [1,2] nor [2,1] contains a pit.

# Rules for Inference

#### Preceding deviation – called a *proof*

- Sequence of applications of inference rules
- To find the goal sentence

Add new rules to KB

A complete inference algorithm

Derive all true conclusions from a set of premises

#### Agent

- Returns from [2,1] to [1,1]
- Goes to [1,2]
  - Stench (S<sub>1,2</sub>)
  - ∘ No breeze (¬B<sub>1,2</sub>)
  - TELLed to KB

| 1,4            | 2,4            | 3,4    | 4,4 |
|----------------|----------------|--------|-----|
| 1,3            | 2,3            | 3,3    | 4,3 |
| 1,2<br>OK      | 2,2<br>P?      | 3,2    | 4,2 |
| 1,1<br>V<br>OK | 2,1<br>B<br>OK | 3,1 P? | 4,1 |

$$R_{11}: \neg B_{1,2}$$
.

$$R_{12}: B_{1,2} \Leftrightarrow (P_{1,1} \vee P_{2,2} \vee P_{1,3})$$

Similarly to getting R10, we know

$$R_{13}: \neg P_{2,2}$$
  
 $R_{14}: \neg P_{1,3}$ 

R1:  $\neg P_{1,1}$ R2:  $B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1})$ R3:  $B_{2,1} \Leftrightarrow (P_{1,1} \vee P_{2,2} \vee P_{3,1})$ R4:  $\neg B_{1,1}$ R5:  $B_{2,1}$ R6:  $(B_{1,1} \Rightarrow (P_{1,2} \vee P_{2,1})) \wedge$   $((P_{1,2} \vee P_{2,1}) \Rightarrow B_{1,1})$ R7:  $((P_{1,2} \vee P_{2,1}) \Rightarrow B_{1,1})$ R8:  $(\neg B_{1,1} \Rightarrow \neg (P_{1,2} \vee P_{2,1}))$ R9:  $\neg (P_{1,2} \vee P_{2,1})$ R10:  $\neg P_{1,2} \wedge \neg P_{2,1}$ 

Apply biconditional elimination to R3, then M.P. with R5, then

$$R_{15}: P_{1,1} \vee P_{2,2} \vee P_{3,1}$$

Apply resolution rule:  $\neg P_{2,2}$  in R13 resolves with  $P_{2,2}$  in R15

$$R_{16}: P_{1,1} \vee P_{3,1}$$

We know  $\neg P_{1,1}$ , [1,1] is not pit:

$$R_{17}: P_{3,1}$$

#### Unit resolution

$$\frac{\ell_1 \vee \dots \vee \ell_k, \quad m}{\ell_1 \vee \dots \vee \ell_{i-1} \vee \ell_{i+1} \vee \dots \vee \ell_k}$$

- where  $\ell_i$  and m are complementary literals
  - $m = \neg \ell_i$
- Left hand side: clause
  - A disjunction of literals
- Right hand side: unit clause

#### For full resolution rule

$$\frac{\ell_1 \vee \dots \vee \ell_k, \quad m_1 \vee \dots \vee m_n}{\ell_1 \vee \dots \vee \ell_{i-1} \vee \ell_{i+1} \vee \dots \vee \ell_k \vee m_1 \vee \dots \vee m_{j-1} \vee m_{j+1} \vee \dots \vee m_n}$$

#### Two more examples

$$\frac{\ell_1 \vee \ell_2, \quad \neg \ell_2 \vee \ell_3}{\ell_1 \vee \ell_3}$$

$$\frac{P_{1,1} \vee P_{3,1}, \quad \neg P_{1,1} \vee \neg P_{2,2}}{P_{3,1} \vee \neg P_{2,2}} \ .$$

#### Factoring – removal of multiple copies

- $^{\circ}$  e.g. resolve (A  $\vee$  B) with (A  $\vee \neg$ B)
- Generate  $(A \lor A) = A$

# Conjunctive Normal Form

#### Resolution rule has a weak point

- $\circ$  Can only be applied to disjunctions of literals  $\ell_1 ee \cdots ee \ell_k$
- Most sentences are conjunctive
- Sentences are transformed in CNF
  - Expressed as a conjunction of disjunctions of literals

$$(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg P_{1,2} \lor B_{1,1}) \land (\neg P_{2,1} \lor B_{1,1})$$

# Conversion Procedure

We illustrate the procedure by converting  $R_2$ , the sentence  $B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1})$ , into CNF. The steps are as follows:

1. Eliminate  $\Leftrightarrow$ , replacing  $\alpha \Leftrightarrow \beta$  with  $(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)$ .

$$(B_{1,1} \Rightarrow (P_{1,2} \vee P_{2,1})) \wedge ((P_{1,2} \vee P_{2,1}) \Rightarrow B_{1,1})$$
.

2. Eliminate  $\Rightarrow$ , replacing  $\alpha \Rightarrow \beta$  with  $\neg \alpha \lor \beta$ :

$$(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg (P_{1,2} \lor P_{2,1}) \lor B_{1,1})$$
.

3. CNF requires ¬ to appear only in literals, so we "move ¬ inwards" by repeated application of the following equivalences from Figure 7.11:

$$\neg(\neg \alpha) \equiv \alpha$$
 (double-negation elimination)

$$\neg(\alpha \land \beta) \equiv (\neg \alpha \lor \neg \beta)$$
 (de Morgan)

$$\neg(\alpha \vee \beta) \equiv (\neg \alpha \wedge \neg \beta) \quad (de Morgan)$$

In the example, we require just one application of the last rule:

$$(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land ((\neg P_{1,2} \land \neg P_{2,1}) \lor B_{1,1})$$
.

4. Now we have a sentence containing nested  $\land$  and  $\lor$  operators applied to literals. We apply the distributivity law from Figure 7.11, distributing  $\lor$  over  $\land$  wherever possible.

$$(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg P_{1,2} \lor B_{1,1}) \land (\neg P_{2,1} \lor B_{1,1})$$
.

The original sentence is now in CNF, as a conjunction of three clauses. It is much harder to read, but it can be used as input to a resolution procedure.

# Resolution Algorithm

#### Inference of resolution

- "proof by contradiction", or refutation
  - Show (KB  $\wedge \neg \alpha$ ) is unsatisfiable
- Prove  $\alpha$ , assume  $\neg \alpha$ 
  - (KB  $\wedge \neg \alpha$ ) = True  $\rightarrow \neg \alpha$  = True
  - (KB  $\wedge \neg \alpha$ ) = False  $\rightarrow \alpha$  = True

#### Steps

- (KB  $\wedge \neg \alpha$ ) are converted into CNF
- Apply resolution rules to this CNF

 $\neg\alpha=P_{1,2}$ 



# Forward and Backward Chaining

Many practical situations, resolution is not needed

Real-world KB only has Horn clauses

#### Horn clauses

- Disjunction of literals of which at most one is positive
- $\circ$  e.g.  $\neg L_{1,1} \lor \neg Breeze \lor B_{1,1}$  is,  $\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}$  is not

# Horn clause

#### **Implication**

- Premise (left hand side) = conjunction of positive literals
- Conclusion (right hand side) = a single positive literal
- e.g.  $(L_{1,1} \land Breeze) \Rightarrow B_{1,1} \qquad \neg L_{1,1} \lor \neg Breeze \lor B_{1,1}$
- $\circ$  (A  $\wedge$  B) =>  $\neg$ C
  - No positive literals

#### Inference

Forward and backward chaining

#### Reasoning

- Work in time linear to size of KB
- Cheap for many propositional KB in practice

# Forward Chaining

- Produce new information
  - Based on set of known facts and clauses
- New information is added to KB
  - Continue produce another set of information

• e.g. 
$$(L_{2,1} \land Breeze) \Rightarrow B_{2,1}$$

$$L_{2,1}$$
Breeze

B<sub>2.1</sub> is added



# Forward Chaining

#### Prove a proposition q

- Continue producing new facts until
  - Proposition q is added (i.e. result is found)
  - No new facts can be generated
  - Runs in linear time

#### Data-driven inference

- When new data comes
  - Inference procedure (forward-chaining) is activated

# Backward Chaining

#### Opposite of forward chaining

q.

#### Query q is asked

q **←** ...

- If known (exist in KB), then finished
- Otherwise, finds all implications that conclude q
  - Try to prove all premises in matched implications
  - Every premise is then another query q

#### Prolog matching and unification

#### Runs in linear time or *fewer* than linear time

- Only relevant clauses about q are matched and used
- Forward-checking randomly selects any clause in KB

# Agents based on Propositional Logic

#### For every [x,y], handle pits and wumpuses,

Rule for breeze

$$B_{x,y} \Leftrightarrow (P_{x,y+1} \vee P_{x,y-1} \vee P_{x+1,y} \vee P_{x-1,y})$$

Rule for stench

$$S_{x,y} \Leftrightarrow (W_{x,y+1} \lor W_{x,y-1} \lor W_{x+1,y} \lor W_{x-1,y})$$

- Rules for wumpus
  - At least one wumpus: W<sub>1,1</sub> v W<sub>1,2</sub> v ... v W<sub>4,4</sub>
  - At most one wumpus
    - For any two squares, one of them must be wumpus-free
    - e.g.  $\neg W_{1,1} \lor \neg W_{1,2}$
    - With n squares, (n-1)n/2 sentences
    - 4 x 4 world, n = 16, 120 sentences
      - Each square has many percepts S, B, W, P, ...
      - At least 64 distinct symbols

# Location & Orientation

#### Every square

- 4 different orientation for moving forward
  - Up, Down, Left, Right
- For every action, rules are increased to 4 times
  - Too many rules
  - Greatly affect efficiency

$$L_{x,y} \wedge FacingRight \wedge Forward \Rightarrow L_{x+1,y}$$

# Agents based on Propositional Logic

Still works in small domain (4 x 4)

#### Main problem

Too many distinct propositions to handle

#### Weakness of Propositional Logic

- Lack of expressiveness
  - Similar variable must be listed out

#### Another powerful device

First-order logic