

Last Week: Time Integration

More Reminders

Assignment #1 is due Friday

https://github.com/dilevin/CSC2549-a1-mass-spring-1d

Assignment #2 is live and is due on October 4th https://github.com/dilevin/CSC2549-a2-mass-spring-3d

Graphics Reading Group

Seminar Room in BA5166 (Dynamic Graphics Project) Wednesdays 11am

Final Project Information

Projects can be done in teams of up to two (2)

Basic Project Types:

- 1. Implement a physics simulation
- 2. Implement something that uses physics simulation

Check with me that your project and the goals are appropriate (i.e not too difficult, will get you a good grade)

Final Project Information

Basic Project Types:

- 1. Implement a physics simulation
 - 1. Implement a SIGGRAPH (or equivalent) paper
 - 2. Research Project
- 2. Implement something that uses physics simulation
 - 1. Implement (for instance) a NeurIPS paper that uses physics
 - 2. Research Project

Some Project Ideas

- 1. Fluid simulation inside of a kidney
- 2. Simulation of rods (e.g. hair) using splines or subdivided curves
- 3. Recover the material properties of an object from video
- 4. Neural Rendering for Simulations
- 5. Non-Smooth Newton's Method for Contact and Friction
- 6. Fast Physics Simulation using new Optimization Algorithms
- 7. Measuring Material Properties using Hand Tracking
- 8. Fast Simulation of Rigid Body Mechanisms

Today

- 1. Questions about the last lecture
- 2. Potential Energy of a 3D spring
- 3. Assembly
- 4. The Linearly-Implicit Time Integrator

Any Questions about the Last Lecture?

Non-Smooth Newton Methods for Deformable Multi-Body Dynamics I Macklin et al.

Discrete Variational Principles

Discrete Euler-Lagrange Equations

$$S = \frac{1}{5}L(q,q) dt$$

$$\frac{1}{4}, \qquad q_{5}, \qquad q_{5}, \qquad q_{7}, \qquad q_{$$

Discrete "IVP*

 $DS_{5} = D_{1}L_{5}q^{\circ} + \sum_{t=1}^{N-1} [D_{2}L(q^{t},q^{t}) + D_{1}L(q^{t},q^{t+1})]q^{t}$ D2 L(qt-1, qt) + D, L(qt, qt+1) = 0

Fun Math Question

Show that Symplectic Euler results from extremizing the Discrete Principle of Least Action with the assumptions that:

$$\dot{\mathbf{q}} = rac{\mathbf{q}^{t+1} - \mathbf{q}^t}{\Delta t}$$

$$V\left(\mathbf{q}\right) = V\left(\mathbf{q}^{t}\right)$$

A Single Spring in 3D

Particle 0 Particle 1

Generalized Coordinates

$$q = \begin{bmatrix} \bar{x}_0 \\ \bar{x}_1 \end{bmatrix} \in \mathbb{R}^6$$

3D Spring Potential Energy

$$\frac{\partial \mathcal{L}}{\partial x} = x_0 - x_1 \left[\begin{array}{c} x_0 \\ x_1 \end{array} \right]$$

$$= 3 \left[\begin{array}{c} 1 \\ x_1 \end{array} \right] \left[\begin{array}{c} x_0 \\ x_1 \end{array} \right]$$

$$V(q) = \left(\int_{q}^{q} \int_{R}^{q} \int_{Q}^{q} - l_{0} \right)^{2} K$$

$$\int_{dx}^{q} dx = L$$

3D Kinetic Energy

10:
$$T(\dot{q}) = \frac{1}{2}m\dot{q}^2 \rightarrow 1\dot{q}^2$$
30: $T(\dot{q}) = \frac{1}{2}m\dot{q}^2 \uparrow$

Large Mass-Spring Systems in 3D

Generalized Coordinates

Potential Energy

Kinetic Energy

$$T(q) = \sum_{i=0}^{n-1} m_i q_i q_i$$

ME diagonal, 12 hxn

Equations of Motion

Generalized Forces

$$\frac{\partial V}{\partial q} = \frac{\partial}{\partial q} \sum_{i=0}^{m-1} U_i(S_i q)$$

$$= \sum_{i=0}^{m-1} \frac{\partial}{\partial q} U_i(S_i q)$$

Assembly

Linearly-Implicit Time Integration

Sparse Matrices

Eigen::Triplet (row, col, val)

Sparse Matrix d A

A. set From Triplets (list)

$$|C = -\frac{\partial^2 V}{\partial \phi^2} = -\frac{2}{\partial \phi} \leq S_i^T \frac{\partial V(S_i \phi)}{\partial \phi_i, \phi_i}$$

$$K = -\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n}$$

Sparse Matrices in Eigen

Solving Linear Systems in Eigen

Fixed Boundary Conditions

$$\ddot{c}$$
 - index of a fixed particle

 $q(i) = \ddot{c}$ onstart

 $q(j \neq i) = ?$
 $\ddot{b} = [\ddot{c}] = 3(n-1i)$
 $\ddot{b} = [\ddot{c}] = i$, $\ddot{c} \in \mathbb{R}$

9= Pq

Selection -> moving (non-fixed) vertices

Assignment 2 Demo

Next Week:

Finite Element Methods for 3D elastica