Big-Number Arithmetic: HW1

Ji, Yonghyeon

July 8, 2025

Contents

1 Preliminaries										
	Addition 2.1 Algorithmic Formulation	4								
3	Subtraction3.1 Algorithmic Formulation3.2 Examples									
4	Exercises	2								

1 Preliminaries

Definition 1.1 (Hexadecimal Expansion). A **hexadecimal integer** of length n is any element

$$A = \sum_{i=0}^{n-1} a_i \, 16^i, \quad a_i \in \{0, 1, 2, \dots, 9, A, \dots, F\}.$$

We denote A in radix-16 by $(a_{n-1} \dots a_1 a_0)_{16}$.

2 Addition

2.1 Algorithmic Formulation

Definition 2.1 (Hexadecimal Addition). Let

$$A = \sum_{i=0}^{n-1} a_i \, 16^i, \quad B = \sum_{i=0}^{n-1} b_i \, 16^i,$$

with $a_i, b_i \in \{0, \dots, F\}$. Define the recurrence:

$$r_i = a_i + b_i + c_{i-1}, \quad c_{-1} = 0,$$

and set

$$s_i = r_i \mod 16, \qquad c_i = \left\lfloor \frac{r_i}{16} \right\rfloor,$$

for i = 0, 1, ..., n - 1. Then

$$A + B = \sum_{i=0}^{n-1} s_i \, 16^i + c_n \, 16^n,$$

expressed as the (n+1)-digit hexadecimal $(c_n s_{n-1} \dots s_1 s_0)_{16}$.

2.2 Examples

Example 2.1 (Addition of $F4C3_{16}$ and $2B7D_{16}$). Let

$$A = \text{F4C3}_{16}, \quad B = 2\text{B7D}_{16}, \quad n = 3.$$

Compute:

Since $c_3 = 1$, one obtains

$$\mathtt{F4C3}_{16} + \mathtt{2B7D}_{16} = \mathtt{12040}_{16}.$$

Example 2.2 (Addition of COFFEE₁₆ and 1BADFOOD₁₆). Pad to n = 7 by writing

$$A = {\tt 00\,C0\,FF\,EE}_{16}, \quad B = {\tt 1B\,AD\,F0\,OD}_{16}.$$

Compute for $i = 0, \ldots, 7$:

	0	1	1	1	0	0	1	0
			С	0	F	F	Е	E D
+	1	В	Α	D	F	0	0	D
	1	С	6	E	E	F	F	В

i	0	1	2	3	4	5	6	7
a_i	E	\mathbf{E}	F	F	0	С	0	0
b_i	D	0	0	\mathbf{F}	D	A	В	1
b_i c_{i-1} r_i $s_i = r_i \mod 16$	0	1	0	0	1	0	1	0
r_i	27	15	15	30	14	22	12	1
$s_i = r_i \bmod 16$	В	\mathbf{F}	\mathbf{F}	\mathbf{E}	\mathbf{E}	6	\mathbf{C}	1
$c_i = \lfloor r_i/16 \rfloor$	1	0	0	1	0	1	0	0

Thus

 $\mathtt{COFFEE}_{16} + \mathtt{1BADFOOD}_{16} = \mathtt{1C6EEFFB}_{16}.$

3 Subtraction

3.1 Algorithmic Formulation

Definition 3.1 (Hexadecimal Subtraction). Let

$$A = \sum_{i=0}^{n-1} a_i \, 16^i, \quad B = \sum_{i=0}^{n-1} b_i \, 16^i,$$

with $a_i, b_i \in \{0, \dots, F\}$. Define the recurrence:

$$r_i = a_i - b_i - d_{i-1}, \quad d_{-1} = 0,$$

and set

$$t_i = r_i \mod 16, \qquad d_i = \begin{cases} 1, & r_i < 0, \\ 0, & r_i \ge 0. \end{cases}$$

Then

$$A - B = \sum_{i=0}^{n-1} t_i \, 16^i - d_n \, 16^{n+1}.$$

3.2 Examples

Example 3.1 (Subtraction of $A5B2_{16}$ and $3C7F_{16}$). Let

$$A = A5B2_{16}, \quad B = 3C7F_{16}, \quad n = 3.$$

Compute:

						i	0	1	2	3
	1	0	1	0	_	a_i	2	B	5	\overline{A}
	Α	5	В	2		b_i	F	7	C	3
_	3	С	7	F		d_{i-1}	0	1	0	1
+	6	9	3	3		$r_i = a_i - b_i - d_{i-1}$	-13	3	-7	6
					J	$t_i = r_i \bmod 16$	3	3	9	6
						$d_i = 1_{r_i < 0}$	1	0	1	0

Hence

$$A5B2_{16} - 3C7F_{16} = 6933_{16}$$
.

Example 3.2 (Subtraction of $DEAD_{16}$ and $BEEF_{16}$). Let

$$A = DEAD_{16}, \quad B = BEEF_{16}, \quad n = 3.$$

Compute:

						i	0	1	2	2
	1	1	1	Ω	-		0			
				U		a_i	$\mid D \mid$	A	E	D
	D	E	Α	D		b_i	F	E	E	B
_	В	Е	E	F		d_{i-1}	0	1	1	1
+	1	F	В	Е		$r_i = a_i - b_i - d_{i-1}$				
					J	$t_i = r_i \bmod 16$	E	B	F	1
						$d_i = 1_{r_i < 0}$	1	1	1	0

Hence

$$\mathtt{DEAD}_{16} - \mathtt{BEEF}_{16} = \mathtt{1FBE}_{16}.$$

4 Exercises

- 1. $A5B2_{16} + C3F9_{16}$
- $2. \ \, {\tt 7D3E}_{16} + {\tt 1A4C}_{16}$
- $3. \ \mathtt{F4C3}_{16} + \mathtt{2B7D}_{16}$
- $4. \ \ \mathtt{9AFE}_{16} + \mathtt{65B1}_{16}$
- 5. $BEEF_{16} + DEAD_{16}$
- $6. \ \, \mathsf{COFFEE}_{16} + \mathtt{1BADFOOD}_{16}$
- $7. \ \, \text{F4C3}_{16} 2 \text{A9D}_{16}$
- $8.~~{\tt A5B2}_{16}-{\tt 3C7F}_{16}$
- $9. \ \mathrm{DEAD}_{16} \mathrm{BEEF}_{16}$
- $10. \ \mathtt{1BADFOOD}_{16} \mathtt{COFFEE}_{16}$
- $11. \ 7 \text{D3E}_{16} \text{1A4C}_{16}$
- 12. $9AFE_{16} 65B1_{16}$