LAB # 10

Fall 2021 Data Analytics Lab

Submitted by: Shah Raza

Registration No.: 18PWCSE1658

Section: **B**

"On my honor, as student of University of Engineering and Technology, I have neither given nor received unauthorized assistance on this academic work."

Student Signature:

Submitted to:

Engr. Mian Ibad Ali Shah

February 24, 2022

Department of Computer Systems Engineering
University of Engineering and Technology, Peshawar

TASK:

Data Preprocessing & Linear Regression Case Study

Importing the relevant libraries

```
import numpy as np
import pandas as pd
import statsmodels.api as sm
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression
import seaborn as sns
sns.set()
```

Loading the raw data

Preprocessing

Exploring the descriptive statistics of the variables

^	aw_dat	a.describe	e(include=' <mark>al</mark>	1')						
		Brand	Price	Body	Mileage	EngineV	Engine Type	Registration	Year	Model
	count	4345	4173.000000	4345	4345.000000	4195.000000	4345	4345	4345.000000	4345
ı	unique	7	NaN	6	NaN	NaN	4	2	NaN	312
	top	Volkswagen	NaN	sedan	NaN	NaN	Diesel	yes	NaN	E-Class
	freq	936	NaN	1649	NaN	NaN	2019	3947	NaN	199
	mean	NaN	19418.746935	NaN	161.237284	2.790734	NaN	NaN	2006.550058	NaN
	std	NaN	25584.242620	NaN	105.705797	5.066437	NaN	NaN	6.719097	NaN
	min	NaN	600.000000	NaN	0.000000	0.600000	NaN	NaN	1969.000000	NaN
	25%	NaN	6999.000000	NaN	86.000000	1.800000	NaN	NaN	2003.000000	NaN
	50%	NaN	11500.000000	NaN	155.000000	2.200000	NaN	NaN	2008.000000	NaN
	75%	NaN	21700.000000	NaN	230.000000	3.000000	NaN	NaN	2012.000000	NaN
	max	NaN	300000.000000	NaN	980.000000	99.990000	NaN	NaN	2016.000000	NaN

Determining the variables of interest

```
#data = raw_data.drop(['Model'],axis=1)
data = raw_data
data.describe(include='all')
```

]:

	Brand	Price	Body	Mileage	EngineV	Engine Type	Registration	Year	Model
count	4345	4173.000000	4345	4345.000000	4195.000000	4345	4345	4345.000000	4345
unique	7	NaN	6	NaN	NaN	4	2	NaN	312
top	Volkswagen	wagen NaN seda	sedan	NaN	NaN Diesel		yes	NaN	E-Class
freq	936	NaN	1649	NaN	NaN	2019	3947	NaN	199
mean	NaN	19418.746935	NaN	161.237284	2.790734	NaN	NaN	2006.550058	NaN
std	NaN	25584.242620	NaN	105.705797	5.066437	NaN	NaN	6.719097	NaN
min	NaN	600.000000	NaN	0.000000	0.600000	NaN	NaN	1969.000000	NaN
25%	NaN	6999.000000	NaN	86.000000	1.800000	NaN	NaN	2003.000000	NaN
50%	NaN	11500.000000	NaN	155.000000	2.200000	NaN	NaN	2008.000000	NaN
75%	NaN	21700.000000	NaN	230.000000	3.000000	NaN	NaN	2012.000000	NaN
max	NaN	300000.000000	NaN	980.000000	99.990000	NaN	NaN	2016.000000	NaN

Dealing with missing values

```
data.isnull().sum()
3]: Brand
                 0
   Price
                 172
   Body
                 0
   Mileage
                  0
   EngineV
                150
   Engine Type
   Registration
                 0
   Year
                  0
   Model
   dtype: int64
```

data_no_mv = data.dropna(axis=0)

data_no_mv.describe(include='all')

5]:

	Brand	Price	Body	Mileage	EngineV	Engine Type	Registration	Year	Model
count	4025	4025.000000	4025	4025.000000	4025.000000	4025	4025	4025.000000	4025
unique	7	NaN	6	NaN	NaN	4	2	NaN	306
top	Volkswagen	NaN	sedan	NaN	NaN	Diesel	yes	NaN	E-Class
freq	880	NaN	1534	NaN	NaN	1861	3654	NaN	188

Exploring the PDFs

```
■ sns.distplot(data_no_mv['Price'])
```

C:\Users\ok\anaconda3\lib\site-packages\seaborn\distributions.py:2619: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

i]: <AxesSubplot:xlabel='Price', ylabel='Density'>

Dealing with outliers

```
q = data_no_mv['Price'].quantile(0.99)
data_1 = data_no_mv[data_no_mv['Price']<q]
data_1.describe(include='all')</pre>
```

7]:

	Brand	Price	Body	Mileage	EngineV	Engine Type	Registration	Year	Model
count	3984	3984.000000	3984	3984.000000	3984.000000	3984	3984	3984.000000	3984
unique	7	NaN	6	NaN	NaN	4	2	NaN	302
top	Volkswagen	NaN	sedan	NaN	NaN	Diesel	yes	NaN	E-Class
freq	880	NaN	1528	NaN	NaN	1853	3613	NaN	188
mean	NaN	17837.117460	NaN	165.116466	2.743770	NaN	NaN	2006.292922	NaN
std	NaN	NaN 18976.268315	NaN	102.766126	4.956057	NaN	NaN	6.672745	NaN
min	NaN	600.000000	NaN	0.000000	0.600000	NaN	NaN	1969.000000	NaN
25%	NaN	6980.000000	NaN	93.000000	1.800000	NaN	NaN	2002.750000	NaN
50%	NaN	11400.000000	NaN	160.000000	2.200000	NaN	NaN	2007.000000	NaN
75%	NaN	21000.000000	NaN	230.000000	3.000000	NaN	NaN	2011.000000	NaN
max	NaN	129222.000000	NaN	980.000000	99.990000	NaN	NaN	2016.000000	NaN

sns.distplot(data_1['Price'])

C:\Users\ok\anaconda3\lib\site-packages\seaborn\distributions.py:2619: FutureWarning: `distplot` is a deprecated funct
d will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with si
flexibility) or `histplot` (an axes-level function for histograms).
warnings.warn(msg, FutureWarning)

|: <AxesSubplot:xlabel='Price', ylabel='Density'>

▶ sns.distplot(data_no_mv['Mileage'])

C:\Users\ok\anaconda3\lib\site-packages\seaborn\distributions.py:2619: FutureWarning: `distplot` is a deprecated funct
d will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with si
flexibility) or `histplot` (an axes-level function for histograms).
 warnings.warn(msg, FutureWarning)

]: <AxesSubplot:xlabel='Mileage', ylabel='Density'>


```
q = data_1['Mileage'].quantile(0.99)
data_2 = data_1[data_1['Mileage']<q]
data_2.describe(include='all')</pre>
```

]:

	Brand	Price	Body	Mileage	EngineV	Engine Type	Registration	Year	Model
count	3944	3944.000000	3944	3944.000000	3944.000000	3944	3944	3944.000000	3944
unique	7	NaN	6	NaN	NaN	4	2	NaN	299
top	Volkswagen	NaN	sedan	NaN	NaN	Diesel	yes	NaN	E-Class
freq	867	NaN	1511	NaN	NaN	1825	3576	NaN	185
mean	NaN	17933.880822	NaN	161.484026	2.747612	NaN	NaN	2006.389959	NaN
std	NaN	19008.212025	NaN	96.027108	4.980406	NaN	NaN	6.595986	NaN
min	NaN	600.000000	NaN	0.000000	0.600000	NaN	NaN	1969.000000	NaN
25%	NaN	7000.000000	NaN	92.000000	1.800000	NaN	NaN	2003.000000	NaN
50%	NaN	11500.000000	NaN	158.000000	2.200000	NaN	NaN	2007.000000	NaN
75%	NaN	21376.250000	NaN	230.000000	3.000000	NaN	NaN	2011.000000	NaN
max	NaN	129222.000000	NaN	435.000000	99.990000	NaN	NaN	2016.000000	NaN

▶ sns.distplot(data_2['Mileage'])

C:\Users\ok\anaconda3\lib\site-packages\seaborn\distributions.py:2619: FutureWarning: `distplot` is a deprecated function d will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with simil flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

: <AxesSubplot:xlabel='Mileage', ylabel='Density'>


```
data_cleaned = data_4.reset_index(drop=True)
```

data_cleaned.describe(include='all')

]:

	Brand	Price	Body	Mileage	EngineV	Engine Type	Registration	Year	Model
count	3867	3867.000000	3867	3867.000000	3867.000000	3867	3867	3867.000000	3867
unique	7	NaN	6	NaN	NaN	4	2	NaN	291
top	Volkswagen	NaN	sedan	NaN	NaN	Diesel	yes	NaN	E-Class
freq	848	NaN	1467	NaN	NaN	1807	3505	NaN	181
mean	NaN	18194.455679	NaN	160.542539	2.450440	NaN	NaN	2006.709853	NaN
std	NaN	19085.855165	NaN	95.633291	0.949366	NaN	NaN	6.103870	NaN
min	NaN	800.000000	NaN	0.000000	0.600000	NaN	NaN	1988.000000	NaN
25%	NaN	7200.000000	NaN	91.000000	1.800000	NaN	NaN	2003.000000	NaN
50%	NaN	11700.000000	NaN	157.000000	2.200000	NaN	NaN	2008.000000	NaN
75%	NaN	21700.000000	NaN	225.000000	3.000000	NaN	NaN	2012.000000	NaN
max	NaN	129222.000000	NaN	435.000000	6.300000	NaN	NaN	2016.000000	NaN

Relaxing the assumptions

3867 rows × 10 columns

```
▶ log_price = np.log(data_cleaned['Price'])
  data_cleaned['log_price'] = log_price
  data_cleaned
                                                                             yes 1991
                 BMW 4200.0
                                            277
                                                     2.0
                                                               Petrol
                                                                                                320 8.342840
                                sedan
      1 Mercedes-Benz
                                            427
                                                                             yes 1999
                                                                                          Sprinter 212 8.974618
                        7900.0
                                                     2.9
                                    van
                                                               Diesel
      2 Mercedes-Benz 13300.0
                                            358
                                                     5.0
                                                                                               S 500 9.495519
                                  sedan
                                                                Gas
                                                                             yes 2003
                 Audi 23000.0 crossover
                                            240
                                                     4.2
                                                               Petrol
                                                                             yes 2007
                                                                                                 Q7 10.043249
                Toyota 18300.0 crossover
                                                                             yes 2011
                                            120
                                                     2.0
                                                                                               Rav 4 9.814656
                                                               Petrol
            Volkswagen 11500.0
                                                     2.5
                                                                             yes 2008 T5 (Transporter) 9.350102
    3862
                                    van
                                            163
                                                               Diesel
    3863
                Toyota 17900.0
                                   sedan
                                             35
                                                      1.6
                                                               Petrol
                                                                             yes 2014
                                                                                              Corolla 9.792556
   3864 Mercedes-Benz 125000.0
                                              9
                                                     3.0
                                                               Diesel
                                                                             yes 2014
                                                                                               S 350 11.736069
                                   sedan
    3865
                 BMW
                        6500.0
                                                     3.5
                                                                             yes 1999
                                                                                                535 8.779557
                                   sedan
                                              1
                                                               Petrol
    3866
            Volkswagen 13500.0
                                            124
                                                     2.0
                                                               Diesel
                                                                             yes 2013 T5 (Transporter) 9.510445
```

```
f, (ax1, ax2, ax3) = plt.subplots(1, 3, sharey=True, figsize =(15,3))
ax1.scatter(data_cleaned['Year'],data_cleaned['log_price'])
ax1.set_title('Log Price and Year')
ax2.scatter(data_cleaned['EngineV'],data_cleaned['log_price'])
ax2.set_title('Log Price and EngineV')
ax3.scatter(data_cleaned['Mileage'],data_cleaned['log_price'])
ax3.set_title('Log Price and Mileage')
```



```
data_cleaned = data_cleaned.drop(['Price'],axis=1)
```

Multicollinearity

```
M data_cleaned.shape

4]: (3867, 9)

// from statsmodels.stats.outliers_influence import variance_inflation_factor
    variables = data_cleaned[['Mileage', 'Year', 'EngineV']]
    vif = pd.DataFrame()
    vif["VIF"] = [variance_inflation_factor(variables.values, i)
    for i in range(variables.shape[1])]
    vif["features"] = variables.columns
```

6]:

	VIF	features
0	3.791584	Mileage
1	10.354854	Year
2	7.662068	EngineV

Create dummy variables

```
data_with_dummies = pd.get_dummies(data_no_multicollinearity, drop_first=True)
data_with_dummies.head()
```

9]:

	Mileage	EngineV	log_price	Brand_BMW	Brand_Mercedes- Benz	Brand_Mitsubishi	Brand_Renault	Brand_Toyota	Brand_Volkswagen	Body_hatch	 Mode
0	277	2.0	8.342840	1	0	0	0	0	0	0	
1	427	2.9	8.974618	0	1	0	0	0	0	0	
2	358	5.0	9.495519	0	1	0	0	0	0	0	
3	240	4.2	10.043249	0	0	0	0	0	0	0	
4	120	2.0	9.814656	0	0	0	0	1	0	0	

5 rows × 308 columns

Rearrange a bit

ol = data_with_dummies.columns.values

Linear regression model

Declare the inputs and the targets

```
targets = data_preprocessed['log_price']
inputs = data_preprocessed.drop(['log_price'],axis=1)
```

Scale the data

```
from sklearn.preprocessing import StandardScaler,MinMaxScaler

#scaler = StandardScaler()
#scaler.fit(inputs)
mm = MinMaxScaler()
inputs_scaled = mm.fit_transform(inputs)
#inputs_scaled = scaler.transform(inputs)
```

Train Test Split

```
from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(inputs_scaled, targets, test_size=0.2, random_state=365)
```

