Лабораторная работа №2

Погрешность косвенных измерений

К.С. Пилипенко 🖸

2023

Пусть некоторая величина f зависит от n величин, получаемых в результате прямого измерения x_1, x_2, \ldots, x_n (это могут быть температура, напряжение, длина и др.), причём вид этой зависимости $f = f(x_1, x_2, \ldots, x_n)$ известен и называется **рабочей формулой**, тогда, используя выражение для полного дифференциала функции нескольких аргументов, абсолютная погрешность косвенных измерений будет определятся по формуле:

$$\Delta f = \left| \frac{\partial f(x_1, x_2, \dots, x_n)}{\partial x_1} \right|_{x_2, \dots, x_n} \Delta x_1 + \dots + \left| \frac{\partial f(x_1, x_2, \dots, x_n)}{\partial x_n} \right|_{x_1, \dots, x_{n-1}} \Delta x_n,$$
(1)

где $\left|\frac{\partial f(x_1,x_2,...,x_n)}{\partial x}\right|_{x_2,...,x_n}$ — частная производная по x_1 при постоянных x_2,\ldots,x_n ; $\Delta x_1\ldots\Delta x_n$ — абсолютные погрешности прямых измерений.

Пример. Студент хочет измерить мощность силы, которая заставляет кирпич равномерно двигаться вверх по наклонной плоскости. Проведя теоретические расчёты студент получил рабочую формулу $N=Fv\cos\alpha$, где F,v,α — величины, получаемые в результате прямых измерений. Применив формулу 1 найдём частные производные:

$$\begin{split} \left| \frac{\partial N(F, \upsilon, \alpha)}{\partial F} \right|_{\upsilon, \alpha} &= \upsilon \cos \alpha; \\ \left| \frac{\partial N(F, \upsilon, \alpha)}{\partial \upsilon} \right|_{F, \alpha} &= F \cos \alpha; \\ \left| \frac{\partial N(F, \upsilon, \alpha)}{\partial \alpha} \right|_{F, \upsilon} &= F \upsilon \sin \alpha. \end{split}$$

И тогда абсолютная погрешность мощности будет определяться по формуле:

$$\Delta N = v\Delta F\cos\alpha + F\Delta v\cos\alpha + Fv\Delta\alpha\sin\alpha,$$

где $\Delta \alpha$ измеряется в радианах (1° $\sim \pi/180$). Пусть в результате эксперимента и из паспортных данных были получены следующие значения:

F, H	ΔF , H	v, cm/c	Δv , cm/c	α , рад	$\Delta lpha$, рад
7	0,1	5	0,2	$\frac{\pi}{6}$	$0,\!002\pi$

И тогда можно посчитать значение абсолютной погрешности косвенных измерений:

$$\Delta N = 5 \cdot 0.1 \cos \pi / 6 + 7 \cdot 0.2 \cos \pi / 6 + 7 \cdot 5 \cdot 0.002 \pi \sin \pi / 6 \approx 1.68 \text{ Bt.} \quad (2)$$

Ход работы

Задание №1.

Используя формулу 1 получить формулу абсолютной погрешности для следующих физических зависимостей: $H(I,R,\alpha)=\frac{NI}{2R\cdot tq\alpha},\,Z(R,\omega,C)=$

$$\sqrt{R^2 + \left(\frac{1}{\omega C}\right)^2}.$$

Задание №2.

- 1. Создать таблицу. Верхнюю строчку отвести под название выбранной лабораторной работы (Например: «Определение плотности образца», «Определение коэффициента вязкости жидкости методом Стокса», «Определение радиуса кривизны вогнутой поверхности методом катающегося шара»);
- 2. Заполнить первые колонки (не менее трёх колонок) результатами **прямых** измерений.
- 3. Составьте столбец из косвенно измеренных значений $f(x_1, x_2, \dots, x_n)$;
- 4. Найти формулу погрешности косвенных измерений $\Delta f(x_1, x_2, \dots, x_n)$ используя уравнение 1 и $f(x_1, x_2, \dots, x_n)$.

5. В отдельных колонках по формулам рассчитать абсолютную и относительную погрешность косвенного измерения ($\delta = \frac{\Delta f(x_1, x_2, ..., x_n)}{f(x_1, x_2, ..., x_n)}$);

Контрольные вопросы

- 1. Что такое аддитивная и мультипликативная погрешность измерения?
- 2. Что такое погрешность косвенных измерений? Как находят эту погрешность?
- 3. Что такое совместные и совокупные измерения? Приведите примеры.

Методические рекомендации к заданию для обучающихся:

Результаты выполнения задания оформляются в тетради, или на листочке, а также в файле с расширением ".xlsx"