

Relacion-2-Apuntes.pdf

ParmigianoReg

Modelos Avanzados de Computación (Especialidad Computación y Sistemas Inteligentes)

3º Grado en Ingeniería Informática

Escuela Técnica Superior de Ingenierías Informática y de Telecomunicación Universidad de Granada

CRUSH DE APUNTES

WUOLAH

Relacion 2 - Apuntes

- Equivalencias:
 - o Recursivo = Decidible
 - Aquellos problemas que se puede diseñar una MT que siempre acepta o rechaza, es decir, para cualquier entrada w se detiene eventualmente.
 - o No Recursivo = No Decidible
 - o Recursivo Enumerable = Semidecidible
 - Aquellos problemas que se puede diseñar una MT para cierto lenguaje que con ese lenguaje que acepta, y para el resto de entradas puede rechazar o quedarse en un bucle.
 - o No Recursivo Enumerable = No Semidecidible
- Teorema de Rice:
 - o Toda propiedad no trivial de los lenguajes r.e. es no decidible.
 - Una propiedad que solo depende del lenguaje en sí y no de la MT; es decir que si una maquina M acepta un lenguaje, otra máquina M' que también lo acepta debe cumplir con esa propiedad también.
 - Ejemplo: Determinar si M acepta una palabra que empiece por 0 es una propiedad del lenguaje porque cualquier M que acepte ese lenguaje debe cumplir eso, y también, hay lenguajes que comienzan por 0 y otros que no, por lo tanto no es trivial.
 - o Sirve para demostrar de una vez que no es decibile un problema.
- Heurística para problemas semidecidibles:
 - \circ Si es una pregunta del tipo \forall el conjunto, se cumple una propiedad es no semidecidible.
 - ∘ Si es una pregunta del tipo ∃ en un cojunto un elemento que cumple una propiedad es semidecidible.

Lenguaje	Problema	Descripción problema	Tipo
L_u es el conjunto de las palabras v cadenas del alfabeto $A=\{0,1\}$ que codifican parejas $\langle M,w \rangle$ donde My w están codificados en A y tales que M acepta w .	UNIVERSAL(M,w)	Determinar si una máquina M acepta la entrada w. • Cuando M acepta w: Aceptar • Cuando M no acepta w: Rechazar	Semidecidible
L_{nu} es el conjunto de las palabras v cadenas del alfabeto $A=\{0,1\}$ que codifican parejas $\langle M,w\rangle$ donde My w están codificados en A y tales que M no acepta w .	C-UNIVERSAL(M,w)	Determinar si una máquina <i>M</i> rechaza la entrada <i>w</i> . • Cuando <i>M</i> no acepta <i>w</i> : Aceptar • Cuando <i>M</i> acepta <i>w</i> : Rechazar	No semidecidible
L_p es el conjunto de las palabras v cadenas del alfabeto $A=\{0,1\}$ que codifican parejas $\langle M,w \rangle$ tales que M para con una entrada w .	PARADA(M,w)	Determinar si una máquina <i>M</i> para con una entrada <i>w</i> . • Cuando <i>M</i> para con <i>w</i> : Aceptar • Cuando <i>M</i> no para con <i>w</i> : Rechazar	Semidecidible
L_p es el conjunto de las palabras v cadenas del alfabeto $A=\{0,1\}$ que codifican parejas $\langle M,w \rangle$ tales que M no se detiene con una entrada w .	C-PARADA(M,w)	Determinar si una máquina M no para con una entrada w . • Cuando M no para con w : Aceptar • Cuando M para con w : Rechazar	No semidecidible
L_d es el conjunto de palabras $w \in$	DIAGONAL(M)	Determinar si una máquina M	No

codificación es w no acepta w como entrada.		rechaza al tener como entrada <i>M</i> . • Cuando <i>M</i> no acepta <i>M</i> como su entrada: Aceptar • Cuando <i>M</i> si acepta <i>M</i> como su entrada: Rechazar	semidecidible
L_{nd} es el conjunto de palabras $w \in \{0,1\}^*$ tal que una MT M cuya codificación es w acepta w como entrada.	C-DIAGONAL(M)	Determinar si una máquina M acepta al tener como entrada M. • Cuando M si acepta M como su entrada: Aceptar • Cuando M no acepta M como su entrada: Rechazar	Semidecidible
L_e es el conjunto de palabras w tal que una MT M cuya codificación en $\{0,1\}$ es w no acepta ninguna palabra, $L(M)=\emptyset$.	VACIO(M)	Determinar si una máquina <i>M</i> acepta el lenguaje vacío • Cuando <i>M</i> no acepta ningún <i>w</i> : Aceptar • Cuando <i>M</i> acepta algún <i>w</i> : Rechazar	No semidecidible
L_{ne} es el conjunto de palabras w tal que una MT M cuya codificación en $\{0,1\}$ es w si acepta ninguna palabra, $L(M) \neq \emptyset$.	C-VACIO(M)	Determinar si una máquina M no acepta el lenguaje vacío • Cuando M acepta algún w : Aceptar • Cuando M no acepta algún w : Rechazar	Semidecidible

NO QUEMES TUS APUNTES

por cada PDF tuyo subido de calidad

* válido hasta el 3 de junio de 2022 o hasta llegar al tope de documentos para esta promoción

WUOLAH

