Aula 33

Professor:

Geraldo Xexéo UFRJ

Conteúdo:

COCOMO II

Quanto Custa?

Esforço ...

O principal fator de custo no desenvolvimento de software é o gasto com pessoal

Uma das principais preocupações da Engenharia de Software é determinar qual será a quantidade de pessoas e o tempo por elas dedicado a um projeto.

Para isso usamos o conceito de **Esforço** que representa a quantidade de trabalho realizado, medido em pessoa-mês,

o trabalho feito por uma pessoa em um mês.

... Esforço

Assim, podemos dizer que um sistema precisa de 4 pessoas-mês para ser realizado, ou seja, que uma pessoa trabalhando 4 meses ou 4 pessoas trabalhando um mês.

Acontece que sistemas de informação são um pouco como bebês: não podemos ter a gestação de um bebê com nove mães em um mês.

Na verdade, Boehm achou uma relação entre o esforço necessário e o tempo necessário para fazer um sistema, e conseqüentemente o tamanho médio da equipe.

COCOMO II

Constructive Cost Model II

- Segunda versão do método
- Busca calcular qual o esforço necessário e o tempo de desenvolvimento adequado de um produto de software em função do seu tamanho
 - Prevê uma gama de valores e não só um único valor

Desenvolvimento

Barry Boehm

Desenvolvido no Center for Software Engineering (CSE)

University of Southern California (USC)

Porém, é algo mais

 Ajudar as pessoas a pensar sobre o impacto que suas decisões sobre um projeto de software tem sobre o custo e o prazo de desenvolvimento

COCOMO II Apoia

Decisões de investimento

Calcular prazo e orçamento

Negociar trade-offs de prazo, custo e desempenho

Tomar decisões sobre o risco do projeto

Tomar decisões sobre a melhoria de um produto de software

Tamanho?

Linhas de Código...

Ou, em Pontos de Função

Convertidos em linhas de código

Estágios do COCOMO II

Composição da Aplicação

Início do Projeto

Pós-Arquitetura

Estágios COCOMO II

Fases e Marcos

Visão Rápida

Visão Rápida

Pontos de Função

Linhas de Código

Condições do Projeto

Esforço

Tempo de Desenvolvimento

COCOMO II

Fornece uma fórmula de previsão de Esforço e Tempo de Desenvolvimento a partir do Tamanho em Linhas de Código (previsto)

Tabelas de Conversão PF->LOC

Fórmula do Esforço

$$PM = Effort = A \times EAF \times (KSLOC)^{E}$$

EAF = multiplicadores de custo

E = derivado dos <u>scale drivers</u>

A = Constante = calibrada em 2,94

Entendendo a Curva

Tamanho

A Fórmula Real

$$PM = \prod_{i=1}^{17} (EM_i) \times A \times \left[\left(1 + \frac{\text{BRAK}}{100} \right) \times \text{Size} \right]^{\left(0.91 + 0.01 \sum_{j=1}^{5} SF_j\right)} + \left(\frac{\text{ASLOC} \times \left(\frac{\text{AT}}{100}\right)}{\text{ATPROD}} \right)$$

where

$$\text{Size} = KNSLOCK + \left[KASLOC \times (\frac{100 - AT}{100}) \times \frac{AA + SU + 0.4 \times DM + 0.3 \times IM}{100}\right]$$

$$B = 0.91 + 0.01 \sum_{i=1}^{5} SF$$

Symbol	Description					
A	Constant, currently calibrated as 2.45					
AA	Assessment and assimilation					
ADAPT	Percentage of components adapted (represents the effort required in understanding software)					
AT	Percentage of components that are automatically translated					
ATPROD	Automatic translation productivity					
BRAK	Breakage: Percentage of code thrown away due to requirements volatility					
CM	Percentage of code modified					
DM	Percentage of design modified					
EM	Effort Multipliers: RELY, DATA, CPLX, RUSE, DOCU, TIME, STOR, PVOL, ACAP, PCAP, PCON, AEXP, PEXP, LTEX, TOOL, SITE					
IM	Percentage of integration and test modified					
KASLOC	Size of the adapted component expressed in thousands of adapted source lines of code					
KNSLOC	Size of component expressed in thousands of new source lines of code					
PM	Person Months of estimated effort					
SF	Scale Factors: PREC, FLEX, RESL, TEAM, PMAT					
SIZE	In thousands of lines of code, of new or adapted source lines of code					
SU	Software understanding (zero if DM = 0 and CM = 0)					

Para isso, precisamos de um software adequado

Source Line of Code (SLOC)

Apenas linhas de código entregues como parte do produto

- Testes e outros softwares de suporte não contam
- Apenas linhas criadas pela equipe
 - Linhas geradas automaticamente não contam
- Um SLOC é uma linha de código lógica
- Declarações contam como SLOC
- Comentários não contam como SLOC

O valor do expoente

$$E = 0.91 + 0.01 \times \sum_{i=1}^{5} w_i$$

w_i são os fatores de escala

Economia de Escala

- Se E<1.0, o software produz economia de escala
- Se E=0, o software está balanceado quanto a economia
- Se E>1.0, o software produz uma deseconomia de escalam

Deseconomia????

Principais fatores

- Excesso de linhas de comunicação
- Integração de grandes sistemas

Scale Drivers

- No modelo COCOMO II, os fatores mais importantes que contribuem para a duração e custo de projetos são os Fatores de Escala (Scale Drivers)
- Cinco Fatores de Escala determinam o expoente (E) da equação de Esforço
 - Precedência (PREC)
 - Flexibilidade do Desenvolvimento (FLEX)
 - Arquitetura e Resolução de Risco (RESL)
 - Coesão da Equipe (TEAM)
 - Maturidade do Processo (PMAT)

Fatores de Escala

Variam entre

5: Very Low

→ 4: Low

3: Nominal

2: High

- 1: Very High

0: Extra High

$$E = 0.91 + 0.01 \times \sum_{i=1}^{3} w_i$$

Quanto menor o número, menor o expoente

Quanto menor o
expoente, maior a
economia de escala

 Ou menor a deseconomia

Tabela para os Scale Drivers

Fatores de Escala	VL	E .	N	н	VH	ЕН
PREC	Totalmente novo	Muito novo	Alguma novidade	Em geral familiar	Muito familiar	Totalmente familiar
FLEX	Rigoroso	Relaxamento ocasional	Algum relaxamento	Conformidade geral	Alguma conformidade	Objetivos gerais
RESL	Pouca (20%)	Alguma (40%)	Normalmente (60%)	Geralmente (75)	Majoritariamen te (90%)	Totalmente (100%)
ГЕАМ	Interações difíceis	Algumas dificuldades de interação	Basicamente cooperativo	Muito cooperativo	Altamente Cooperativos	Interação Perfeita
PMAT	Uma média ponderada das respostas SIM a uma avaliação CMM					

Multiplicadores de Custo

Quatro Tipo de Fatores

- Projeto
- Equipe
- Produto
- Ambiente de Execução

Fatores de Custo - Produto

Confiabilidade Exigida do Software

Tamanho do Banco de Dados

Complexidade do Produto

Exigência de Reusabilidade

Casamento entre a documentação e as necessidades do Ciclo de Vida

Fatores de Custo - Equipe

Capacidade dos Analistas

Capacidade dos Programadores

Experiência na Aplicação

Experiência na Plataforma

Experiência com Linguagem e Ferramenta

Continuidade do Pessoal

Fatores de Custo - Projeto

Uso de Ferramentas de Software

Desenvolvimento Multi-site

Fatores de Custo - Ambiente de Execução

Restrições de tempo de execução

Restrições de tamanho de memória

Volatilidade da Plataforma

Fator de Custo - Extra

Prazos de desenvolvimento exigidos

Como calcular os valores

- Cada Fator de Escala ou Multiplicador de Esforço possui uma tabela que indica como calcular o seu valor
- Além disso, existem outras tabelas explicativas que ajudam posicionar o fator em uma das casas da tabela principal

E o Tempo?

$$TDEV = [C \times (PM_{NS})^{(D+0.2 \times (E-B))}] \times \frac{SCED}{100}$$

A	2.94
В	0.91
C	3.67
D	0.28

Mais Informações

http://sunset.usc.edu/research/COCOMOII/

ftp://ftp.usc.edu/pub/soft_engineering/COCOMOII/cocomo98.0/modelman.pdf

ftp://ftp.usc.edu/pub/soft_engineering/COCOMOII/cocomo99.0/userman.pdf

O Software

Definindo um Módulo

Definindo Fatores

Parâmetros Usados Platform Parameters **Early Design Parameters Product Paramters** Man. 100 MIR 109.3 8-1 \$500 C 01.73 0.01 0.29 4.774 1.00 1.30 2.00 Personnel Parameters 2058 X X X200 E 000 Listin. 1.108 0.198 **Project Paramters** COLF 50000 36666 1.00 1.81 9820 2.13 1.28 0.63 VLO 60 MOH HI VHI XHI PERM 1.35 300 4.00 0.30 0171 1. 12 TOOL 1.17 1.09 1.00 0.90 0.78 boood PERM 1.43 1:00 0.123. 80 11.10 0.37 9000 1000 1.38 1380 0.50 1:00 3.3 SCED 200000 1.43 1.14 1.00 1.00 1.00 00000 iogiae ...00 1.00 1.00 1.50 1.00SITE 1.22 1.09 1.00 0.93 0.86 0.80 99992 15.000 15000 0.00 20(30) 1.00 600 Hally. Cancell: Cancel Help USER DEFINED PARAMETERS Scalefactor Paramters VLO LO NOM HI VHI XHI USR1 VLO LO HOR HI VHI 1.00 1.00 1.00 1.00 1.00 1.00 PREC 6.20 4.96 3.72 2,48 1.24 USR2 1.00 1.00 1.00 1.00 1.00 1.00 FLEX 5.07 4.05 3.04 2,03 1.01 OK Cancel Help RESL 7:07 2.83 5.65 4.24 1.41 TEAM 5.48 4.38 3.29 2, 19 1.10 0.00 PELAT 7.80 4.68 3.12 6.24 1.56 0.00 OK Cancal Help

Consorcio Cederi

Equação

Resultados

Resultados

Life Cycle Phase Life Cycle Effort Life Cycle Schedule	P	lans And	kequi:	rements 4.983 Per 3.467 Mon	
	PCMT	EFFORT	(PM)	SCHEDULE	Staff
Requirements Analysis	46.917	2.338		3,467	0.674
Product Design	16.542	0.824		3.467	0.238
Programming	3.583	0.179		3.467	0.052
Test Planning	3.042	0.182		3.467	0.044
Verification and Validation	6.542	0.326		3.467	0.094
Project Office	14.417	0.716		3.467	0.207
CM/QA	3.000	0.149		3.467	0.043
Manuals	5.958	0.297		3.467	0.086

Simplificando

Bem, podemos usar fórmulas simplificadas para ter uma idéia dos valores

$$PM = 2.94 \times MLDC^{1.1}$$

$$TDEV = [3.67 \times (PM_{NS})^{0.32}]$$

Unindo COCOMO e APF

Tabela Conversão PF/SLOC

	SLOC/FP					
Linguagem	Média	Mediana	Mais Baixo	Mais Alto		
Access	35	38	15	47		
ASP	69	62	32	127		
Assembler	172	157	86	320		
C	148	104	9	704		
C++	60	53	29	178		
C#	59	59	51	- 66		
Clipper	38	39	27	70		
COBOL	73	77	8	400		
Excel	47	46	31	63		
J2FF	61	50	40	60		
Java	60	59	14	97		
Lotus Notes	21	22	15	25		
Oracle	38	29	4	122		
Oracle Dev 2K/FORMS	41/42	30	21/23	100		
Powerbuilder	30	24	7	105		
SQL	39	35	15	143		
Visual Basic	50.	42	14	276		

Ajustando o COCOMO

O método é aberto

Ele permite que você ajuste as equações a partir dos seus dados

O Software também permite isso

<u>Aula 33</u>

Professor:

Geraldo Xexéo UFRJ

Conteúdo:

FIM: COCOMO II

