Distributed Representations of Words & Phrases and their Compositionality

Tomas Mikolov Ilya Sutskever Kai Chen Greg Corrado Jeffrey Dean (Google) NIPS '13

Noah Lee (noahlee357@korea.ac.kr) 2021.09.18

How can we improve both quality of word representation & training speed from Word2Vec?

Word2Vec*

Sparse Representation	Continuous Representation
E.g. [1,0,0,0]	E.g. [0.6, 0.7]

As to capture semantic & syntactic relations…

*Efficient Estimation of Word Representations in Vector Space , Mikolov et al., '13

Word2Vec

Word2Vec: Skip-gram Overview

I eat an orange every day

Target Word ⇒⇒ Context Words

Word2Vec: Hierarchical Softmax

- 1) Proposes an extension for Word2Vec in order to boost training efficiency
- 2) Proposes (1) subsampling & (2) negative sampling, the latter being a simpler alternative for Hierarchical Softmax*
- 3) Suggests a simple method for finding phrases in text

Extensions

Extension 1: Negative Sampling

Extension 1 : Negative Sampling

$$P(w_i) = \frac{f(w_i)^{3/4}}{\sum_{j=0}^n f(w_j)^{3/4}}$$

 $f(w_i) = freq \ of \ word \ i$

Dataset ↑: 3~5 negative samples

Dataset ↓: 5~20 negative samples

Methodology

Naïve vs HS vs NS

Additionally incorporate the data size (840 B)…

Output Dimension: 2.2M Feature Dimension 300

Extension 2: Subsampling

The orange is the fruit of the citrus species Citrus × sinensis in the family Rutaceae. It is also called sweet orange, to distinguish it from the related Citrus × aurantium, referred to as bitter orange. The sweet orange reproduces asexually varieties of sweet orange arise through mutations.

$$P(w_i) = 1 - \sqrt{\frac{t}{f(w_i)}}$$

t = threshold (heuristically 10^-5)

- 1) Most frequent words ironically provide less info
- OR 2) Vector representations do not change significantly after training on millions of examples

Dynamic input leads to robustness?

Extension 3: Learning Phrases

Phrases cannot always be interpreted by the meaning of their separate words

Process:

- 1. Find words that appear frequently together (& not in other contexts) and replace e.g. "New York Times" -> single token, "this is " -> replace x
- 2. Train Skip-gram model using unigram & bigram counts

Phrase Analogy Task

New York : New York Times → San Jose : San Jose Mercury News

06 Experiment

Accuracy of Skip-Gram(300d) for analogy reasoning task

Method	Ti	me [m	in]	Syntactic [%]	Semantic [%]	Total accuracy [%]	
NEG-5		38		63	54	59	
NEG-15		97		63	58	61	
HS-Huffman	_	41		53	40	47	
NCE-5		38		60	45	53	
The following results use 10 ⁻⁵ subsampling							
NEG-5	_	14		61	58	60	
NEG-15		36		61	61	61	
HS-Huffman		21		52	59	55	

- Noticeable time reduction by Negative Sampling(NS), subsampling
- NS with larger samples lead to a significant performance increasement

Accuracies of Skip-Gram Models on phrase analogy task

Method	Dimensionality	No subsampling [%]	10^{-5} subsampling [%]
NEG-5	300	24	27
NEG-15	300	27	42
HS-Huffman	300	19	47

- HS model with an increase of 28% by subsampling can better performance (not causal)
- NEG model with larger k performs better (due to size of dataset…?)
- By adding 33 B words, the HS model with dimension of 1000 achieves 72%
 - Data size matters…again?

- Proposes an extension for Word2Vec in order to boost training efficiency
- 2) Proposes subsampling & negative sampling, yielding a fraction of the original computational complexity
- 3) Suggests a simple method for finding phrases in text… FastText?

Q&A