

PROSIDING

SEMINAR NASIONAL TEKNIK 2017

"Mewujudkan Kemandirian Energi Nasional Melalui Pengembangan Teknologi: *New and Renewable Energy*"

Editor:

Merina Pratiwi, M. Si Erna Alimudin, ST., M. Eng Hanifatul Rahmi, M.Pd Nur Budi Nugraha, MT

KATA PENGANTAR

Puji syukur kita ucapkan atas kehadirat Allah SWT sehingga Prosiding Seminar Nasional Teknik 2017 ini dapat diselesaikan. Prosiding ini bertujuan mendokumentasikan dan mengkomunikasikan hasil presentasi makalah pada Seminar Nasional Teknik 2017 yang terselenggara pada Sekolah Tinggi Teknologi Dumai. Jumlah makalah yang masuk 34 makalah dari 6 Perguruan Tinggi dan Institusi yang terkait. Makalah-makalah tersebut telah dipresentasikan di Seminar Teknik 2017 pada tanggal 14 September 2017. Makalah terdiri dari 44,1 % makalah untuk Teknik Industri, 44,1 % untuk Teknik Informatika, dan 11,8 % untuk Teknik Sipil.

Terima kasih disampaikan kepada pemakalah yang telah berpartisipasi pada desiminasi hasil kajian/penelitian yang dimuat pada Prosiding ini. Terima kasih juga disampaikan kepada Tim Prosiding dan segenap panitia yang terlibat. Semoga Prosiding ini bermanfaat.

Ketua Panitia,

Merina Pratiwi, M.Si.

DAFTAR ISI

Halaman Judul	i
Kata Pengantar	iii
Daftar Isi	i۷

Makalah Teknik Industri

No	Pemakalah	Judul	Halaman
1	Melliana	Efisiensi Penggunaan Bahan Bakar Terhadap Biaya Produksi Energi Listrik di PT Wilmar Group Dumai	1-6
2	Trisna Mesra	Kursi Kerja Ergonomis Operator <i>Bagging</i> Pupuk	7-13
3	Fitra	Kinerja Pengelola Pasar Rakyat Desa Sintong Pusaka Kecamatan Tanah Putih Rokan Hilir	14-23
4	Wetri Febrina, Dian Suci Lestari, Fitra	Peranan Marketing <i>Mix</i> di Pabrik Kecap AAA Dumai	24-31
5	Surya Indrawan	Strategi Program Peningkatan Akreditasi Program Studi Teknik Industri Sekolah Tinggi Teknologi Dumai	32-39
6	Hanifatul Rahmi	Peramalan Produksi Pertalite dan Premium di PT. XYZ Dumai tahun 2017 Dengan Metode Eksponensial Smoothing	40-47
7	Darman P. Rajagukguk	Analisis Faktor-faktor yang Mempengaruhi Loyalitas Pegawai Jurusan Keperawatan Gigi Poltekes Kemenkes Medan	48-57
8	Yusrizal, Azmi, Ade Wahyudi	Rancangan Alat Penutup Kepala Mata Pisau Mesin Rumput Gendong Secara Ergonomis	58-65
9	Juni S, Riski Afrianto	Peningkatan Kualitas Layanan Sistem Informasi Akademik (SIA) STT Dumai	66-74
10	Sirlyana	Pengaruh Waktu Dan Temperatur Penyimpanan Terhadap Kualitas <i>Refined Bleached Deodorized</i> <i>Olein</i> (RBDOL) Di Pt Nagamas Palmoil Lestari	75-86
11	Soni Fajar Mahmud	Analisis Persepsi Nasabah Terhadap ATM (Studi Kasus ATM PT Bank Mandiri (Persero) Tbk. Cabang Dumai Sudirman)	87-95
12	Mahrani Arfah	Membangun Produk Anti Nyamuk Cair Elektrik "E-Serai" Yang Aman Dan Ramah Lingkungan	96-105
13	Muhammad Arif, Sulastri	Perancangan Ulang Lay Out Pabrik Tahu Makmur Jaya di Dumai	106-116

14	Decky Antony Kifta Analisis Pengaruh Implementasi Total Quality Management (TQM) terhadap Budaya Mutu Organisasi (Studi Kasus di PT. Profab Indonesia)		
15	Elisa Hafrida, Josslin Sepmander	Pengaruh Perilaku Dan Kondisi Kerja Terhadap Kecelakaan Kerja Pada Supir <i>Truck</i> CPKO Di CV. Gloria Trans Dumai	126-134

Makalah Teknik Informatika

No	Pemakalah	Judul	Halaman
16	Susandri, Zulfikar	Teknologi <i>Location Based Service</i> Berbasis <i>Global Positioning System</i> pada Aplikasi Pencari Layanan Publik Kota Pekanbaru	135-140
17	Karpen, Wahyu Riski	Pengelompokkan Potensi Siswa Untuk Memilih Jurusan pada Perguruan Tinggi Menggunakan Metode <i>K-Means</i>	141-149
18	Teuku Radilah, Pulla Pandika Widodo, Arie Linarta	Aplikasi Optimalisasi Layanan Kunjungan Rutan Kelas IIB Dumai Berbasis SMS Auto Response (SAR)	150-164
19	Adi Arianto, Sukri Adrianto	Implementasi Metode Rough Set Dalam Penentuan Tema Buku yang Diminati (Studi Kasus di Perpustakaan Daerah Kota Dumai)	165-183
20	Gellysa Urva	Optimasi Fuzzy System Membership dengan <i>Two Point Crossover</i>	184-192
21	Febrina Sari	Analisis Hasil Implementasi Algoritma C4.5 Dan <i>Naïve Bayes Clasifier</i> Dalam Menentukan Lokasi Prioritas Penyuluhan Program Keluarga Berencana	193-200
22	Desyanti Implementasi Data Mining Algoritma Apriori dalam Menentukan Persediaan Susu Formula		201-210
23	Tri Handayani Deteksi Tepi Motif Ukiran Melayu Riau Menggunakan Metode Prewitt dan Sobel		211-217
24	Tri Yuliati	Evaluasi <i>Usability Aumented Reality</i> pada Brosur Sebagai Alat Promosi	218-224
25	Nur Budi Nugraha	Pengembangan Aplikasi <i>Mobile</i> Untuk Konsumsi Kafein: Studi Kasus Kopi Tradisional Indonesia "Kopi Joss"	225-231
26	Mustazzihim Suhaidi	Implementasi JSON Web Token dalam Merancang RESTFull API pada E-Government (Studi Kasus Badan Pendapatan Daerah Kota Dumai)	232-242
27	Erna Alimudin	Pengenalan Wajah untuk Verifikasi dan Identifikasi	243-249
28	Putri Yunita, Fitri Pratiwi	Implementasi Data Mining dalam Pengurusan Perizinan Tempat Usaha (Studi Kasus : Badan Pelayanan Terpadu Dan Penanaman Modal Dumai)	250-258

29	Elisawati, Masrizal	Penerapan Fuzzy Time Series Model Chen Untuk Memprediksi Jumlah Penduduk	259-267
30	Ari Sellyana	Implementasi Data Mining Untuk Klasifikasi Pemilihan Konsentrasi Menggunakan Metode <i>Decision Tree</i>	268-278

Makalah Teknik Sipil

No	Pemakalah	Judul	Halaman
31	Nuryasin Abdillah	Perbandingan Efektifitas Beton dari Sistem Perawatannya Terhadap Kuat Tekan Beton	
32	Aidil Abrar, Ari Wibowo	Kajian Kekuatan Sambungan Balok dan Kolom ditinjau dari Rasio Tulangan	289-300
33	Soni Adiya Putra	Analisis Keretakan Gedung Bagian Belakang <i>Main Office</i> PT. Pertamina RU II Dumai	301-310
34	Susi Srihandayani	Korelasi CBR <i>Insitu</i> Terhadap Daya Dukung Tanah Expansif Dengan Perkuatan Anyaman Bambu	311-318

Penerapan Fuzzy Time Series Model Chen Untuk Memprediksi Jumlah Penduduk

Elisawati¹, Masrizal²

1,2) Program Studi Sistem Informasi, STMIK Dumai Jl. Utama Karya Bukit Batrem II Email: elisa.wati@yahoo.com

ABSTRAK

Meningkatnya Jumlah penduduk dari tahun ke tahun sangat mempengaruhi peningkatan taraf hidup pada daerah itu sendiri. Seperti yang kita ketahui bahwa hampir semua rencana pembangunan, pendidikan, ekonomi, kesehatan, lapangan kerja dan sebagainya perlu ditunjang dengan data jumlah penduduk. Dengan adanya prediksi jumlah penduduk, diharapkan dapat membantu pemerintah dan pihak terkait untuk mengambil kebijakan yang tepat untuk meningkatkan taraf hidup di daerah itu sendiri. Pada penelitian ini dilakukan prediksi jumlah penduduk menggunakan metode Fuzzy Time Series model Chen. Dalam proses ini panjang interval sangat berpengaruh untuk hasil prediksi. Metode untuk penentuan panjang interval yang efektif adalah dengan metode berbasis rata-rata atau average-based fuzzy time series, sehingga pembentukan FLR dan FLRG akan tepat dan menghasilkan hasil prediksi yang efektif. Dari hasil pengujian yang dilakukan dengan menggunakan data dari tahun 2000 hingga tahun 2013, diketahui bahwa prediksi data menggunakan fuzzy time series dengan penetuan interval berbasis rata-rata memiliki tingkat kesalahan lebih kecil dengan model Chen AFER sebesar 0.05%

Kata kunci: Fuzzy Time Series, Model Chen, Jumlah Penduduk, AFER, Prediksi.

ABSTRACT

Increasing the number of people from year to year greatly affects the improvement of living standards in the area itself. As we know that almost all development plans, education, economy, health, employment and so on need to be supported by population data. With the prediction of the population, it is expected to help the government and related parties to take appropriate policies to improve living standards in the area itself. In this study, population population prediction using the Chen Fuzzy Time Series method. In this process the length of the interval is very influential for predicted results. The method for determining the effective interval length is by the average-based fuzzy time series method, so that the formation of FLR and FLRG will be precise and produce an effective prediction result. From the results of tests conducted using data from 2000 to 2013, it is known that the prediction of data using fuzzy time series with the determination of interval-based average has a smaller error rate with Chen AFER model of 0.05%.

Keywords: Fuzzy Time Series, Chen, Population, AFER, Prediction.

Pendahuluan

Bertambahnya jumlah penduduk dari tahun ke tahun sangat mempengaruhi peningkatan taraf hidup pada daerah itu sendiri. Seperti yang kita ketahui bahwa hampir semua rencana pembangunan, pendidikan, ekonomi, kesehatan, lapangan kerja dan sebagainya perlu ditunjang dengan data jumlah penduduk. Dengan adanya prediksi jumlah penduduk, diharapkan dapat membantu pemerintah dan pihak terkait untuk mengambil kebijakan yang tepat untuk meningkatkan taraf hidup di daerah itu sendiri. Proses prediksi sangat penting untuk mengetahui informasi bertambahnya jumlah penduduk secara terus menerus setiap tahunnya. Dalam penelitian ini, penulis mencoba menerapkan metode Fuzzy Time Series Model Chen untuk memprediksi jumlah penduduk di Kota Dumai dengan hanya melihat tingkat kesalahan terkecil pada Average Forecasting Error Rate (AFER).

Data runtun waktu (time series) merupakan jenis data yang dikumpulkan menurut urutan waktu dalam suatu rentang waktu tertentu. Analisis data runtun waktu merupakan salah satu prosedur statistika yang diterapkan untuk meramalkan struktur probabilitas keadaan yang akan datang dalam rangka pengambilan keputusan. Fuzzy time series (FTS) adalah metode peramalan data yang menggunakan prinsip-prinsip fuzzy sebagai dasarnya. Sistem peramalan dengan fuzzy times series menangkap pola dari data yang telah lalu kemudian digunakan untuk memproyeksikan data yang akan datang. Himpunan fuzzy dapat diartikan sebagai suatu kelas bilangan dengan batasan samar. Nilai-nilai yang digunakan dalam peramalan fuzzy time series adalah himpunan fuzzy dari bilangan-bilangan real atas himpunan semesta yang sudah ditentukan. Himpunan fuzzy digunakan untuk menggantikan data historis yang akan diprediksi.

Metode Penelitian

Pada penelitian ini, data yang digunakan merupakan data *time series* dari tahun 2000 s/d 2015 yang berasal dari Badan Pusat Statistik dan Disnakertrans Dumai. Metode penelitian yang digunakan adalah metode *Fuzzy Time Series Model Chen*. Adapun Tahapan-tahapan dalam memprediksi dengan menggunakan metode *Fuzzy Time Series* (FTS) Model *Chen* adalah sebagai berikut:

1. Pembentukan himpuna semesta pembicaraan *Universes of Discourse* (U)

$$U = [D_{min} - D1, D_{max} + D2]$$
 (1)

dengan D1 dan D2 adalah nilai konstanta.

2. Menentukan interval

Membagi himpunan semesta menjadi beberapa interval dengan jarak yang sama. Untuk mengetahui banyak interval dapat mempergunakan rumus *Sturges* berikut:

$$1 + 3{,}322 \log 10 (n),$$
 (2)

dengan,

n: adalah jumlah data observasi

sehingga membentuk sejumlah nilai linguistic untuk mempresentasikan suatu himpunan fuzzy pada interval-interval yang terbentuk dari himpunan semesta (U).

$$U = \{U_1, U_2, U_3, \dots, U_n\}$$

dengan,

U: himpunan semesta

Ui: Besarnya jarak pada U, untuk I = 1, 2,, n

3. Menentukan Fuzzy Logic Relationship (FLR) dan Fuzzy Logic Relationship Group (FLRG).

Menentukan FLR dan membuat grup sesuai dengan waktu. Contoh jika FLR berbentuk $A_1 \rightarrow A_2$, $A_1 \rightarrow A_1$, $A_1 \rightarrow A_3$, $A_1 \rightarrow A_1$, maka FLRG yang terbentuk adalah $A_1 \rightarrow A_1$, A_2 , A_3 .

- 4. Melakukan proses *Defuzzifikasi* dan melakukan perhitungan nilai prediksi.
- 5. Hitung Tingkat error prediksi dengan menggunakan *AFER* (Average Forecasting Error Rate)

Selain menggunakan MSE, dalam penelitian ini juga menggunakan perhitungan AFER untuk menghitung tingkat kesalahan. AFER merupakan salah satu perhitungan tingkat *error* yang dilakukan dengan cara menyatakan persentase selisih antara data aktual dengan data hasil prediksi. Semakin kecil nilai AFER, maka tingkat akurasi yang diberikan untuk prediksi semakin baik.

$$AFER = \frac{\sum \left| \frac{Ai - Fi}{Ai} \right|}{n} * 100\%, \tag{3}$$

Hasil dan Pembahasan

Metode Fuzzy Time Series

1. Menentukan Universe of discourse (semesta pembicaraan)

Langkah awal adalah mendefenisikan semesta pembicaraan (*Universe of discourse*) kemudian membaginya menjadi beberapa interval dengan jarak yang sama. Bila ada jumlah data dalam suatu interval lebih besar dari nilai rata-rata dari banyaknya data pada tiap interval, maka pada tiap interval tersebut dapat dibagi lagi menjadi interval yang lebih kecil dengan membagi 2. Data *time series* yang digunakan adalah data pada tahun 2000 – 2015 terdapat pada Tabel 1.

Tabel 1 Data time series jumlah penduduk

No	Tahun	Jumlah
110	Tanun	Penduduk
1	2000	174706
2	2001	178125
3	2002	191990
4	2003	201263
5	2004	210984
6	2005	219351
7	2006	225249
8	2007	231121
9	2008	240553
10	2009	250367
11	2010	253178
12	2011	259913
13	2012	268022
14	2013	274089
15	2014	280109
16	2015	285967

Untuk menghitung himpunan semesta pembicaraan (*universe of distance*) dengan menggunakan rumus:

$$U=[174706-3, 285967+3]$$

Sehingga dapat didefinisikan U=[174703, 285970].

2. Menentukan jumlah dan lebar interval

Pada perhitungan untuk menentukan panjang interval beserta lebar interval menggunakan aturan *struges*.

Jumlah Interval =
$$1 + (3.322 * log10(16)) = 5$$

Setelah jumlah interval di dapat, maka akan dicari lebar interval untuk membagi data menjadi jumlah interval yang sama.

Lebar Interval =
$$(285967 - 174706) / 5 = 22253$$

Setelah jumlah beserta lebar interval didapat, langkah selanjutnya adalah membagi data berdasarkan jumlah dan lebar interval. Diketahui jumlah interval adalah 5 dan lebar interval adalah 22252 maka hasil yang di dapat terdapat pada Tabel 2.

Tabel 2 Data interval

No		Interval		Nilai Tengah
1	U1 =	174703,	196956	185830
2	U2 =	196956,	219210	208083
3	U3 =	219210,	241463	230337
4	U4 =	241463,	263717	252590
5	U5 =	263717,	285970	274843

Langkah selanjutnya adalah mendefenisikan himpunan *fuzzy* pada semesta pembicaraan sebagai berikut :

$$A1 = \frac{1}{u1} + \frac{0.5}{u2} + \frac{0}{u3} + \frac{0}{u4} + \frac{0}{u5}$$

$$A2 = \frac{0.5}{u1} + \frac{1}{u2} + \frac{0.5}{u3} + \frac{0}{u4} + \frac{0}{u5}$$

$$A3 = \frac{0.5}{u1} + \frac{0.5}{u2} + \frac{1}{u3} + \frac{0.5}{u4} + \frac{0}{u5}$$

$$A4 = \frac{0.5}{u1} + \frac{0.5}{u2} + \frac{0.5}{u3} + \frac{1}{u4} + \frac{0.5}{u5}$$

$$A5 = \frac{0.5}{u1} + \frac{0.5}{u2} + \frac{0.5}{u3} + \frac{0.5}{u4} + \frac{1}{u5}$$

3. Menentukan *Fuzzy Logic Relationship* (FLR) dan *Fuzzy Logic Relationship Group* (FLRG)

Fuzzy logic relationship Ai → Aj ditentukan berdasarkan nilai Ai yang telah di tentukan pada langkah sebelumnya, dimana Ai adalah tahun n dan Aj tahun n+1 pada data times series.

Tabel 3 Fuzzy Logic Relationship (FLR)

Tahun	Jumlah Penduduk	Fuzzifikasi	Relasi
2000	174706	A1	A1 > A1
2001	178125	A1	A1 > A1
2002	191990	A1	A1 > A1
2003	201263	A2	A1 > A2
2004	210984	A2	A2 > A2
2005	219351	A3	A2 > A3
2006	225249	A3	A3 > A3
2007	231121	A3	A3 > A3
2008	240553	A3	A3 > A3
2009	250367	A4	A3 > A4
2010	253178	A4	A4 > A4
2011	259913	A4	A4 > A4
2012	268022	A5	A4 > A5
2013	274089	A5	A5 > A5
2014	280109	A5	A5 > A5
2015	285967	A5	A5 > A5

Dari hasil Fuzzy Logic Relationship (FLR) Selanjutnya akan dibentuk Fuzzy Logic Relationship Group (FLRG) menggunakan model chen. Hasil Fuzzy Logic Relationship Gorup (FLRG) dapat dilihat di Tabel 4.

Tabel 4 Fuzzy Logic Relationship Group (FLRG)

Number Of Group	Fuzzy Logic Relations Group
1	A1 , A2
2	A2 , A3
3	A3 , A4
4	A4 , A5
5	A5

4. Melakukan proses *Defuzzifikasi* dan melakukan perhitungan nilai prediksi

Dari hasil *Fuzzy Logic Relationship Group* (FLRG), selanjutnya proses defuzzifikasi. Cara perhitungannya misalkan A1, A2 sehingga A1 nilai tengah dari U1 dan A2 adalah hasil nilai tengah pada U2, kemudian keduanya di jumlahkan dan di bagi dengan banyaknya jumlah relasi. Tabel 5 merupakan hasil perhitungannya.

Tabel 5 Hasil defuzzifikasi

Number Of Group	Fuzzy Relationship Group	Hasil Peramalan
1	A1, A2	196956
2	A2, A3	219210
3	A3, A4	241463
4	A4 , A5	263717
5	A5	274843

Setelah melakukan defuzzifikasi untuk selanjutkan melakukan perhitungan untuk mencari nilai prediksi. Hasil nilai prediksi terdapat pada Tabel 6.

Tabel 6 Hasil Prediksi

Tahun	Jumlah Penduduk	Fuzzifikasi	Prediksi
2000	174706	A1	196956
2001	178125	A1	196956
2002	191990	A1	196956
2003	201263	A2	219210
2004	210984	A2	219210
2005	219351	A3	241463
2006	225249	A3	241463
2007	231121	A3	241463
2008	240553	A3	241463
2009	250367	A4	263717
2010	253178	A4	263717
2011	259913	A4	263717
2012	268022	A5	274843
2013	274089	A5	274843

2014	280109	A5	274843
2015	285967	A5	274843

5. Hitung Tingkat Error

Untuk menghitung tingkat kesalahan prediksi menggunakan rumus *Average Forecasting Error Rate (AFER)*. Hasil AFER terdapat pada Tabel 7.

Tabel 7 Data Pengujian Tingkat Kesalahan pada AFER

No	Tahun	Jumlah Penduduk	Prediksi	Tingkat Error dalam AFER (%)
1	2000	174706	196956	0.127359
2	2001	178125	196956	0.105720
3	2002	191990	196956	0.025868
4	2003	201263	219210	0.089171
5	2004	210984	219210	0.038988
6	2005	219351	241463	0.100807
7	2006	225249	241463	0.071983
8	2007	231121	241463	0.044748
9	2008	240553	241463	0.003784
10	2009	250367	263717	0.053320
11	2010	253178	263717	0.041625
12	2011	259913	263717	0.014634
13	2012	268022	274843	0.025451
14	2013	274089	274843	0.002752
15	2014	280109	274843	0.018799
16	2015	285967	274843	0.038899
			Rata-Rata AFER	0.05%

Dari hasil pengujian yang terdapat Pada Tabel 7 menunjukkan rekap hasil perhitungan error proses peramalan dengan $Fuzzy\ Time\ series\ model\ chen\ dengan$ tingkat kesalahan pada AFER sebesar 0.05%.

Berikut ini grafik data jumlah penduduk dengan data prediksi yang sudah di lakukan perhitungan menggunakan perhitungan metode $Fuzzy\ Time\ Series\ Model\ Chen\ pada\ Gambar\ 1.$

Gambar 1 Grafik data jumlah penduduk dan data prediksi dengan Metode *fuzzy time series* model *Chen*

Simpulan

Setelah melalui tahap analisis dan pengujian pada metode *Fuzzy Time Series* Model *Chen* maka dapat di ambil kesimpulan sebagai berikut:

- 1. Algoritma *Fuzzy Time Series* model Chen dapat di gunakan umtuk menyelesaikan masalah prediksi jumlah penduduk di kota Dumai.
- 2. Prediksi menggunakan metode *Fuzzy Time Series* Model *Chen* menghasilkan nilai tingkat error yang rendah dengan nilai ke*error*an *Chen* AFER sebesar 0.05%.

Daftar Pustaka

Wiguna Sartika Anggri, Wijono, Muslim Aziz, M, (Desember 2014). Analisis dan Peramalan Kepadatan Jalan Raya Kodya Malang dengan FTS Average Based. Jurnal EECCIS Vol. 8, No. 2.

Arimbawa K Puja Kade Bagus Ida., Jayanegara Ketut, Kencana Nila Eka I Putu, (Mei 2013), Komparasi Metode Anfis Dan *Fuzzy Time Series* Kasus Peramalan Jumlah Wisatawan Australia Ke Bali, E-Jurnal Matematika Vol2. No. 2, Hal. 18 – 26.

Handayani Lestari, Anggriani Darni, (Februari 2015), Perbandingan Model Chen dan Model Lee pada Metode Fuzzy Time Series Untuk Prediksi Harga Emas, Jurnal Pseudocode, Vol. 2 No. 2. ISSN. 2355 – 5920.

Nugroho Kristiawan, (Maret 2016), Model Analisis Prediksi Menggunakan Metode *Fuzzy Time Series*, INFOKAM No. 1 Th. XII/Maret/2016.

- Brata Setia Adika, (2016), Penerapan Fuzzy Time Series Dalam Peramalan Data Seasonal, Skripsi Fakultas Sains dan Teknologi Universitas Islan Negeri Maulana Malik Ibrahim, Malang. Hal. 25-45.
- Badan Pusat Statistik Propinsi Riau, Provinsi Riau Dalam Angka 2016, (2016), Pekanbaru.