0.1 Лабораторная работа 3

Тема:Построение диаграмм состояния трехкомпонентной системы с ограниченной взаимной растворимостью.

Цель работы: Построить диаграмму состояния тройной системы $CH_3COOH - CH_3Cl - H_2O$.

Оборудование и реактивы: бюретка, 8 колб, с притёртыми пробками на 200 мл, пипетка на 5 мл, мерный цилиндр на 50 мл, раствор CH_3COOH , раствор CH_3Cl .

Теория

Физико-химический анализ устанавливает количественную зависимость между составом и каким-нибудь измеренным физическим свойством системы (температурой кипения, плавления, давления пара, электропроводностью и др.) Графическое изображение зависимости какого либо свойства от состава системы или другого фактора равновесии ее (например, давления) называется диаграммой состояния. Диаграммы состояния позволяют сделать выводы о взаимодействиях отдельных веществ в системе, образования новых химических соединений, твердых растворов, их составе и границе существования.

Для разбора диаграмм состояния широко применяется теория равновесия неоднородных (гетерогенных) систем, прежде всего – правило фаз Гиббса.

Ознакомившись с сущностью физико-химического анализа, его значением, с понятием фаза, компонент и степени свободы, обратите внимание на следующее: фаза не адекватна понятию агрегатного состояния и в однокомпонентных системах в равновесии могут находиться две фазы одного агрегатного состояния.

Число степеней свободы (C) определяется числом компонентов (K) и фаз (F), находящихся в равновесной системе (C = K + 2 - F).

Студентам необходимо приобрести навыки чтения диаграмм состав-свойство различных бинарных жидких смесей, диаграмм плавкости и простейших диаграмм трехкомпонентных систем. При выполнении лабораторной работы необходимо научиться определять в любой точке на диаграмме число компонентов и фаз, состав системы и весовые соотношения компонентов, уметь находить температуру начала и конца кристаллизации и плавления, кипения и конденсации. Надо знать, на основании каких экспериментальных данных строятся различные диаграммы.

В тех случаях, когда система состоит из трех компонентов, пользуются треугольником Гиббса. Принимают, что каждая вершина равностороннего треугольника отвечает 100% составу одного из компонентов, а каждая сторона — двойной системе из компонентов, указанных в вершинах, которые она соединяет.

Рис. 1: Треугольник Гиббса

В треугольнике проводят три высоты, делят каждую высоту на десять равных отрезков и через полученные деления проводят прямые, с помощью которых можно представить любой состав тройной системы.

Чтобы нанести точку, отвечающую составу трехкомпонентной системы, на двух высотах откладывают процентное содержание соот-ветствующих компонентов. Через полученные точки на высотах проводят прямые, параллельные сторонам, лежащим против угла, вершина которого отвечает содержанию чистого компонента. Точка пересечения прямых будет отвечать искомому составу.

Порядок выполнения

1. В 8 Колб с притертыми пробками наливают по 10 мл бинарных смесей взаимно растворимых друг в друге веществ $(CH_3COOH-CH_3Cl)$ в соотношении, указанном в таблице 4.

Таблица 1: Объемы компонентов бинарных смесей

№колбы	1	2	3	4	5	6	7	8
Объем CH_3COOH , мл	2	4	6	7	7,5	8	8,5	9
Объем CH_3Cl , мл	8	6	4	3	2,5	2	1,5	1
Объем H_2O , мл								

2. Растворы титруют водой до появления мути. В некоторых опытах для этого достаточно одной-двух капель воды. Результаты занося в таблицу 4.

Обработка экспериментальных данных

1. Для расчёта количеств веществ компонентов пользуются формулой:

$$n = \frac{V \cdot \rho}{M}$$

где n - количество вещества, моль;

V - объем вещества, мл;

 ρ - плотность (приведена в таблице 2);

M - Молярная масса, г/моль.

Рассчитайте молярные массы компонентов и занесите результат в таблицу 2.

Таблица 2: Данные для рассчета

Вещество	Плотность, г/мл	Молярная масса, г/моль
CH_3COOH	1,06	
CH_3Cl	1,5	
H_2O	1,0	

- 2. Рассчитать количество вещества компонентов системы, результат занести в таблицу 3.
- 3. Рассчитывают состав системы в мольных долях, отвечающий началу расслоения (появления мути). Мольной долей компонента (x) считают отношение числа молей данного компонента к сумме молей всех компонентов раствора. Например, мольную долю компонента A вычисляют по уравнению:

$$x = \frac{n_A}{n_A + n_B + n_C}$$

Мольные доли других компонентов вычисляют по подобным уравнениям. Результаты рассчетов занести в таблицу 3. Сумма мольных долей всех компонентов должна быть равна 1.

Таблица 3: Состав бинарных смесей, моль

№колбы	1	2	3	4	5	6	7	8
Количество вещества CH_3COOH , моль								
Количество вещества CH_3Cl , моль								
Количество вещества H_2O , моль								
Всего, моль								

4. Полученные данные наносят на треугольную диаграмму. Соединив точки, получают плавную кривую, по одну сторону которой находится гетерогенная область, по другую – гомогенная.

Таблица 4: Состав бинарных смесей, мольные %

№колбы	1	2	3	4	5	6	7	8
Мольная доля CH_3COOH , %								
Мольная доля CH_3Cl , %								
Мольная доля H_2O , %								
Beero								

Контрольные вопросы

- 1. Что называется фазой, компонентом и степенью свободы?
- 2. В чем заключается физико-химический метод анализа?
- 3. На чем основан термический анализ?
- 4. Как изображается состав трехкомпонентной системы по методу Гиббса?
- 5. В чем заключается процесс экстрагирования, какова его теоретическая основа?
- 6. Что такое мольная доля?
- 7. Что такое химический потенциал?
- 8. Закон распределения.
- 9. Правило фаз Гиббса.