Org: ARM

Alex Chi

Update: April 23, 2020

Contents

1	Regi	isters	2
	1.1	R14	2
	1.2	R15 (Program Counter)	2
	1.3	PSR (Program Statue Registers)	2
	1.4	PRIMASK, FAULTMASK, BASEPRI	2
	1.5	Control	3
	1.6	Operation Mode in Cortex M3/M4	3
	1.7	Exception	3
	1.8	Interrupt Vector Table	3
	1.9	Reset Sequence	3
2	Men	nory System	4
	2.1	Connection	4
	2.2	Bit-Band operations	4
	2.3	Data Alignment and Unaligned Transfer	4
	2.4	Endian	4

1 Registers

- thumb R0-R7
- thumb-2 R8-R12
- R13 banked two stack pointers
- control register: privileged mode, stack pointer
- full descending stack management

1.1 R14

- bl (branch and link): save next instruction address to R14
- RISC-V: jal (jump and link)

1.2 R15 (Program Counter)

- b0 always 0 (2/4 byte instruction)
- can move to PC (lsb = 1, thumb; lsb = 0, arm, fault in Cortex-M3)
- points to next instruction to this one

1.3 PSR (Program Statue Registers)

- subdivided into 3: Application, Interrupt, Execution
- APSR, IPSR, EPSR
- APSR: NZCVQ (Negative, Zero, Carry, Overflow, Sticky saturation)
- EPSR: if then
- IPSR: exception number
- xPSR: access together

1.4 PRIMASK, FAULTMASK, BASEPRI

- pri, fault = 1-bit
- base 9-bit, specify priority

1.5 Control

- control[0], privileged (0) in thread mode
- control[1], default stack (0) / alternate

1.6 Operation Mode in Cortex M3/M4

- two modes and two privilege levels
- privileged thread / user thread / privileged handler
- push to PSP when interrupt
- tell CPU which stack to pop when interrupt exit

1.7 Exception

- 1 reset (priority -3)
- 2 NMI (-2)
- 3 hard fault (-1)
- 4 mem manage
- 5 bus fault
- 6 usage fault
- etc.

1.8 Interrupt Vector Table

- INT 01 = 0000004 (no INT 00)
- LSB of all vectors in table must set to 1 (thumb mode)
- 0x00: starting value of MSP

1.9 Reset Sequence

- read R13 from 0x0
- jump to reset interrupt handler

2 Memory System

- MMIO
- 0.5GB
- 0.5GB SRAM
- 0.5GB Peripherals
- 1GB RAM, 1GB Devices
- System / Vendor specific

2.1 Connection

- I-code/D-code Bus Mux
- System bus SRAM, peripheral bus bridge
- queue in processor

2.2 Bit-Band operations

- bit-band region and bit-band alias
- mutual exclusion read/write, no interrupt during bit read/write

2.3 Data Alignment and Unaligned Transfer

- support unaligned transfer
- converted into multiple aligned transfers

2.4 Endian

• big and little endian (recommended)