Курс "Теория случайных процессов". Домашнее задание номер 8.

Броуновское движение Крайний срок сдачи - 3 декабря 2019 г., 12:10

Во всех задачах через W_t обозначено Броуновское движение.

1. Пусть T>0 - некоторый фиксированный момент времени. Пользуясь только определением Броуновского движения, докажите, что процесс

$$\widetilde{W}_t = \begin{cases} W_t, & t \le T \\ 2W_T - W_t, & t > T, \end{cases}$$

также является Броуновским движением.

- 2. Рассмотрим случайный процесс $X_t = e^{2W_t}$.
 - (i) Докажите, что процесс X_t не является гауссовским.
 - (ii) Найдите математическое ожидание и ковариационную функцию процесса X_t .
- 3. Найдите плотность распределения случайной величины

$$\tau_a = \inf\{t \ge 0: \ W_t = a\},\$$

где a>0- фиксированный параметр.

4. Докажите, что для плотности двумерного распределения (W_{t_1}, W_{t_2}) справедлива формула

$$p(x_1, x_2) = \phi_{(0, t_2 - t_1)}(x_2 - x_1)\phi_{(0, t_1)}(x_1),$$

где $\phi_{(\mu,\sigma^2)}(x)$ - плотность нормального распределения со средним μ и дисперсией σ^2 .

5*. Пусть W_t - Броуновское движение, и $t_1 < t^* < t_2$. Найти условную плотность величины W_{t^*} при условии, что

$$W_{t_1} = A, \qquad W_{t_2} = B,$$

где A, B - 2 константы.

 6^* . 2 частицы блуждают по прямой, причём их местоположения в момент времени t определяются значениями процессов $X_t^1 = \sigma W_t^1$ и $X_t^2 = 2\sigma W_t^2$, где W_t^1 и W_t^2 - два независимых Броуновских движения, $\sigma>0$. Найти вероятность того, что первая частица достигнет точки с координатой a>0 раньше, чем вторая.