PI The invertible matrix theorem Let A be nxn. The following are equivalent: (a) A is invertible (b) A ~ In (c) A has n pivots pivot in every column (d) $A\vec{x} = \vec{O}$ has only trivial solution (e) Columns of A are linearly independent (f) x → Ax is one-to-one (9) A has left inverse (h) For each to = Rm, A [5] solvable pirot in every row (i) The columns of A span Rm (j) $\overrightarrow{X} \mapsto \overrightarrow{A} \overrightarrow{X}$ is onto (k) A has a right inverse (L) AT is invertible This is merely a rehashing of our two theorems from before, though they are now field together since A 15 Square. One addition is invertibility of A. A has a 1.411 means pirot in every row iff $A\overrightarrow{x} = \overrightarrow{b}$ is always solvable. If so, $A\overrightarrow{v}_i = \overrightarrow{e}_i$ can be solved for each i, giving an inverse $A^{-1} = [\overrightarrow{v}_1 \ \overrightarrow{v}_2 \ \overrightarrow{v}_n]$. Conversely, an inverse "if and only if" yields solutions $\vec{x} = A^T \vec{b}$.

 $(A^{T})^{-1}$ is just $(A^{-1})^{T}$. To check: $(A^{-1})^{T}A^{T} = (AA^{-1})^{1} = I_{n} = I_{n}$.

(so this is inverse pair) ex $\begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$ has 1 pivot => no inverse

If A,B nxn and AB invertible, $AB\vec{x} = \vec{b}$ is always solvable $(\vec{x} = (AB)^{-1}\vec{b})$ So $A\vec{y} = \vec{b}$ is always solvable $(\vec{y} = B(AB)^{-1}\vec{b})$ so A is invertible.

 $(AB)^T$ is invertible. This is B^TA^T , so by a similar argument, B^T is invertible, thus B is too. Conversely, for A, B invertible $n \times n$, AB is invertible. This is simple: $B^{-1}A^{-1}AB = In$, so

 $(AB)_{-1} = B_{-1}A_{-1}$

Let $\vec{V}_1, \dots, \vec{V}_k \in \mathbb{R}^n$. If they span \mathbb{R}^n , $\left[\vec{V}_1^2, \dots, \vec{V}_k^2\right]$ has a pivot in every column, so $k \leq n$.

If span \mathbb{R}^n and indep., k = n, and $\left[\vec{V}_1^2, \dots, \vec{V}_k^2\right]$ is invertible.

The converse is also true,

Recall:

the converse of

if P then a"

ic "if Q then P"

Determinants

We now concern ourselves with a square matrix A (nxn). The determinant, denoted |A| or det A, is a real number which serves as a criterion for invertibility:

|A| +0 >> A is invertible (with all consequences theorem)

History: by 1700s, mathematicians could compute determinants of systems. 1812 (auch) finally defines them a more modern way.
1850 Sylvester defines matrices and shows how to compute determinants with them.

For 2x2 matriles, we saw anaz-aziaz controls whether $A = [aij]_{ij}$ is invertible. Can we generalize?

For a given n, we could try to compute closed-form expressions for A^n , seeing if a determinant expression drops out. n=3 is given in the textbook by this method. For n=1, it is easy: det[a]=a.

Here is the product of hundreds of years of toil:

<u>Laplace expansion</u> The determinant of A can be computed by "expanding along the first row":

 $\det A = a_{11} \det A_{11} - a_{12} \det A_{12} + a_{13} \det A_{13} - \cdots$ $= \sum_{j=1}^{n} (-1)^{1+j} a_{1j} \det A_{1j}$

where Aij is a minor (not entry (i,j) in this context) given by deleting row i and column j.

Well, that is how to compute a determinant. It is recursive, so at each step, n-1 more determinants must be computed!

The number of multiplications to compute this is given by T(n) = (n-1)T(n-1) + n-1, with T(1) = 0. This gives T(n) = (n-1)!, which is absurd. It is fine for small matrices, but we will have better methods for larger ones.

ex For 2×2 (ab),

Do not forget the expansion is an alternating sum.

$$\frac{ex}{24-1} = \frac{150}{24-1} = \frac{150}{24-1} = \frac{150}{0-20} = \frac{150$$

$$= \begin{vmatrix} 4 & -1 \\ -2 & 0 \end{vmatrix} - 5 \begin{vmatrix} 2 & -1 \\ 0 & 0 \end{vmatrix}$$

$$= (4.0 - (-1)(-2)) - 5(2.0 + (-1).0)$$

The cofactor matrix of A is given by

[(1) it's det (Aij)].

Entry (i,j) of this is the (iij)-cofactor of A. We will write this as (ij = (-1)i+j det (Aij) just for now. The (-1)i+j is there to make a checkerboard pattern of + and -:

 + - + - ···

 - + - + ···

 + - + - ···

 - + - + ···

 : ; ; ; ; ; ;

We give without proof another way to compute determinants.

Cofactor expansion across row i is given by

det A = ai, Ci, + ai, Ci, + ... = \(\subsete \alpha_{ik} \cup \cik \cik \)

and down column; by

 $\det A = \operatorname{auj}(j + \operatorname{auj}(2j + \cdots = \sum_{k=1}^{n} \operatorname{akj}(kj))$

The implicit theorem is that all three methods give the same result. At least across row 1 is Lapluce expansion.

$$= \begin{vmatrix} 1 & 5 \\ 0 & -2 \end{vmatrix} = -2$$

$$= -5 \begin{vmatrix} 2 & 1 \\ 0 & 0 \end{vmatrix} + 4 \begin{vmatrix} 1 & 0 \\ 0 & 0 \end{vmatrix} + 2 \begin{vmatrix} 1 & 0 \\ 2 & -1 \end{vmatrix}$$

$$= -5(0) + 4(0) + 2(-1) = -2.$$

Determinants and row operations

The following four properties give a much better method to compute determinants, Let A be nxn.

- 1. It B is A after scaling a now by k, det B = k det A
- 2. It B is A ofter swapping two rows, det B = -det A
- If B is A after a replacement operation, det B = det A
- 4. If A is upper triangular (i.e., A has only zeros below the diagonal), det A is the product of the diagonal entries.

The det. of this last matrix is |-3.66|-|=-18 of third, -18 of second, -18 of first, $\frac{1}{1/2}(-18) = [-36]$

Since det B = ½ det A,
30 det A = 2 det B.

This method takes, worst case, n(n+1)(2n+1) + 2(n-1) 2 2n³ multiplications. Much better than factorial!

The break-even point appears to be n=6 though:

h	(n-1)!	n(n+1)(2n+1) +2(n-1)	
2		7	
3	2	[8	Note: these are worst
Ц	6	36	Case Your partiular
5	24	63	matrix may take much
6	[20	101	fewer operations.
7	720	152	
8	5040	218	
		1	