(1) Publication number:

0 217 286

EUROPEAN PATENT APPLICATION ®

- (21) Application number: 86113166.2
- 2 Date of filing: 24.09.86

⑤ Int. Cl.⁴: C07C 103/737 , C07C 103/84 , C07C 123/00, C07C 143/76, C07C 143/80, C07C 149/42, C07D 207/16, C07D 211/16, C07D 211/32, C07D 211/58, C07D 211/62

- Priority: 27.09.85 JP 212240/85 04.03.86 JP 45348/86
- O Date of publication of application: 08.04.87 Bulletin 87/15
- Designated Contracting States: BE CH DE FR GB IT LI NL SE

- Applicant: Okamoto, Shosuke 15-18, Asahigaoka 3-chome Tarumi-ku Kobe-shi Hyogo(JP) Applicant: Showa Denko Kabushiki Kaisha 10-12, Shiba Daimon 2-chome Minato-ku Tokyo 105(JP)
- Inventor: Okamoto, Shosuke -15-18, Asahigaoka 3-chome Tarumi-ku Kobe-shi Hyogo(JP) Inventor: Okada, Yoshio 542-1, Aza Shimizu

Okuradani Akashi-shi Hyogo(JP) inventor: Okunomiya, Akiko 13-2, Nakayamatedori 7-chome Chuo-ku Kobe-shi Hyogo(JP)

Inventor: Naito, Taketoshi SHOWA DENKO

K.K.

Selkagakukenkyusho 24-25, Tamagawa 2-chome

Ota-ku Tokyo(JP)

Inventor: Kimura, Yoshio SHOWA DENKO K.K. Seikagakukenkyusho 24-25, Tamagawa

2-chome

Ota-ku Tokyo(JP)

Inventor: Yamada, Morihiko SHOWA DENKO

Seikagakukenkyusho 24-25, Tamagawa

2-chome

Ota-ku Tokyo(JP)

inventor: Ohno, Norio SHOWA DENKO K.K. Selkagakukenkyusho 24-25, Tamagawa

2-chome

Ota-ku Tokyo(JP)

inventor: Katsuura, Yasuhiro SHOWA DENKO

Seikagakukenkyush 24-25, Tamagawa

2-ch me

Ota-ku T kyo(JP)

Inventor: Seki, Yumi SHOWA DENKO K.K.

Selkagakukenkyusho 24-25, Tamagawa 2-ch me Ota-ku Tokyo(JP) Widenmayerstrasse 17 Postfach 22 03 45 D-8000 München 22(DE)

- Representative: Strehl, Schübel-Hopf, Groening, Schulz
- Phenylalanine derivative and proteinase Inhibitor.
- (I):

where R¹ and R² are independently hydrogen provided that both R¹ and R² are not hydrogen at the same time;

C₁-C₄ alkyl which may be substituted with hydroxy, hydroxycarbonyl, C₁-C₄ alkoxycarbonyl, C₁-C₄ alkoxycarbonyl, c₁-C₄ alkoxy, carbamoyl, sulfamoyl, pyridyl, or phenyl which may further be substituted with nitro, C₁-C₄ alkoxy, or halogen:

C₄-C₂ cycloalkyl which may be substituted with hydroxy, C₁-C₄ alkoxy, hydroxylcarbonyl, C₁-C₄ alkoxycarbonyl, or C₁-C₄ alkyl;

phenyl which may be substituted with halogen, nitro, trifluoromethyl, C_1 - C_4 alkoxy, C_1 - C_4 alkylmercapto, C_1 - C_4 alkylcarbonyl, phenylcarbonyl, hydroxycarbonyl, C_1 - C_4 alkoxycarbonyl, carbamoyl, sulfamoyl, amidino, pyridylcarbonyl, or C_1 - C_4 alkylwhich may further be substituted with C_1 - C_4 alkylcarbonyl, hydroxycarbonyl, or C_1 - C_4 alkoxycarbonyl;

pyridyl which may be substituted with halogen or C₁-C₄ alkoxy;

pyrimidyl;

N-benzylazacyclohexyl; and

R1 and R2 may form with the nitrogen atom at-

tached thereto a ring structure as morpholino; thiomorpholino; or piperidyl which may be substituted with phenylcarbonyl, benzyl, or C₁-C₄ alkyl;

pyrrolidyl which may be substituted with hydroxycarbonyl or $C_1\text{-}C_4$ alkoxycarbonyl; and

piperidine substituted with C₁-C₄ alkyl, phenyl C₁-C₄ alkyl, phenylcarbonyl, or C₁-C₄ alkoxycarbonyl;

X is hydrogen; nitro; amino; or -OZ wherein Z is hydrogen; C₁-C₄ alkyl; C₂-C₄ alkenyl; benzyl which may be substituted with halogen, C₁-C₄ alkyl, nitro, trifluoromethyl, hydroxycarbonyl, C₁-C₄ alkoxycarbonyl, or cyano; phenylcarbonylmethyl, pyridylmethyl; phenyl which may be substituted with nitro or halogen; pyridyl or pyrimidyl which may b substituted with nitro; phenylsulfonyl which may be substituted with C₁-C₄ alkyl; or benzyloxycarbonyl which may be substituted with halogen;

n is 4 to i0; and

the mark * indicates that the configuration of the carbon may be either one of D-configuration, L-configuration and DL-configuration or a pharmaceutical acceptable salt thereof.

This ph nylalanine derivative is effective as a proteinase inhibitor.

PHENYLALANINE DERIVATIVE AND PROTEINASE INHIBITOR

15

20

25

BACKGROUND OF THE INVENTION

I. Field of the Invention

The present invention relates to a novel phenylalanine derivative, more particularly to a phenylalanine derivative having a proteinase inhibition activity or a pharmaceutically acceptable salt thereof. The present invention also relates to a proteinase inhibitor containing the phenylalanine derivative as the effective ingredient.

2. Description of the Related Art

It is well known in the art that various proteinases are present in human organisms. Examples of such proteinases are plasmin, trypsin, kallikrein, urokinase, and the like. As is also known, when these proteinases are abnormally activated for some reason, various diseases are caused. For example, hemorrhagic diseases are caused when abnormally activated plasmin is present in a relatively large amount in the blood. Also, plasmin participates in inflammation and it is considered to cause inflammatory diseases. For this reason, a substance capable of exhibiting a proteinase inhibition activity is useful as a clinical remedy or medicine, and various investigations in the prior art have been made for the development of such substances. For example, antiplasmins are useful as hematostatic agents, antiinflammatory agents or antiallergic agents, antitrypsins are useful for the therapy of pancreatitis, antikallikreins are useful as therapeutical agents for inflammation, and antiurokinases are useful for the inhibition of hemorrhagic symptoms in the thrombolytic therapeutical method with urokinase. Accordingly, developments of proteinase inhibitors having such activities have progressed in the prior art, but their proteinase inhibition activities are low and not satisfactory for practical application as medicines. Further, compounds having satisfactory inhibition activities against various proteinases have not been developed.

SUMMARY OF THE INVENTION

Accordingly, the objects of the present invention are to eliminate the above-mentioned disadvantages of the prior art and to provide a compound having a satisfactory inhibition activity in practical application but still having satisfactory inhibition activities against various proteinases, and a proteinase inhibitor containing the compound as the effective ingredient.

Other objects and advantages of the present invention will be apparent from the following description.

In accordance with the present invention, there is provided a phenylalanine derivative having the formula (I):

$$\begin{array}{c}
\text{H}_2\text{NCH}_2 \\
\text{CH}_2
\end{array}$$

where R¹ and R² are independently hydrogen provided that both R¹ and R² are not hydrogen at the same time;

 C_1 - C_2 alkyl which may be substituted with hydroxy, hydroxycarbonyl, C_1 - C_4 alkoxycarbonyl, C_1 - C_4 alkylmercapto, C_1 - C_4 alkoxy, carbamoyl, sulfamoyl,

pyridyl, or phenyl which may further be substituted with nitro, C₁-C₄ alkoxy, or halogen;

 C_4 - C_4 cycloalkyl which may be substituted with hydroxy, C_1 - C_4 alkoxy, hydroxylcarbonyl, C_1 - C_4 alkoxycarbonyl, or C_1 - C_4 alkyl;

4

phenyl which may be substituted with halogen, nitro, trifluoromethyl, C₁-C₄ alkoxy, C₁-C₄ alkylmercapto, C₁-C₄ alkylcarbonyl, phenylcarbonyl, hydroxycarbonyl, C₁-C₄ alkoxycarbonyl, carbamoyl, sulfamoyl, amidino, pyridylcarbonyl, or C₁-C₄ alkylwhlch may further be substituted with C₁-C₄ alkylcarbonyl, hydroxycarbonyl, or C₁-C₄ alkoxycarbonyl,

pyridyl which may be substituted with halogen or C_1 - C_4 alkoxy;

pyrimidyl;

N-benzylazacyclohexyl; and

R¹ and R² may form with the nitrogen atom attached thereto a ring structure as morpholino; thiomorpholino; or piperadyl which may be substituted with phenylcarbonyl, benzyl, or C₁-C₄ alkyl;

pyrrolidyl which may be substituted with hydroxycarbonyl or C₁-C₄ alkoxycarbonyl; and

pyperidine substituted with C₁-C₄ alkyl, phenyl C₁-C₄ alkyl, phenylcarbonyl, or C₁-C₄ alkoxycarbonyl;

X is hydrogen; nitro; amino; or -OZ wherein Z is hydrogen; C₁-C₄ alkyl; C₂-C₄ alkenyl; benzyl which may be substituted with halogen, C₁-C₄ alkyl, nitro, trifluoromethyl, hydroxycarbonyl, C₁-C₄ alkoxycarbonyl, or cyano; phenylcarbonylmethyl, pyridylmethyl; phenyl which may be substituted with nitro or halogen; pyridyl or pyrimidyl which may be substituted with nitro; phenylsulfonyl which may be substituted with C₁-C₄ alkyl; or benzyloxycarbonyl which may be substituted with halogen;

n is 4 to 10; and

the mark * indicates that the configuration of the carbon may be either one of a D-configuration, L-configuration and DL-configuration, or a pharmaceutical acceptable salt thereof. Examples of such a salt may include inorganic acid salts such as hydrochloride, hydrobromide, hydroiodide, sulfate, nitrate, phosphate, etc.; organic salts such as oxalate, succinate, glycolate, malate, citrate, maleate, lactate, benzenesulfonate, toluenesulfonate, methanesulfonate, etc.

In accordance with the present invention, there is also provided a proteinase inhibitor comprising the phenylalanine derivative of the above formula - (I) or a pharmaceutically acceptable salt thereof as the active ingredient.

DESCRIPTION OF THE PREFERRED EMBODI-MENTS

Typical examples of the compound represented by the above formula are listed in Table I.

The compounds listed in the Table are mumbered, respectively, and in the following description, the individual compounds are designated in terms of said compound Nos. for the purpose of convenience.

For the compounds indicated as (DL) in the chemical structure, this means that their carbons are mixtures of D-and L-forms; in the compounds indicated as (L), this means that their carbons are-L-form; and, in the compounds Indicated as (D), this means that its carbon is D-form. The asymmetric carbon atoms in the phenylalanine skeleton having no indications are all L-forms. In the physical properties shown in Table I, NMR represents a nuclear magnetic resonance spectrum indicated by δ (i.e., delta) (ppm) representing the chemical shifts. The determination was carried out by using as a solvent CDCl₃ (i.e., heavy chloroform), (CD₃)-2SO (i.e., de-dimethylsulfoxide), D2O (i.e., heavy water), or CD2OD (i.e., heavy methanol) alone or in any mixture thereof, and by using as an internal standard TMS (i.e., tetramethylsilane). In the parenthesis after the & number, the number of the hydrogen atom and the symbols s, d, t, q, m, and broad, thereafter, denote singlet, doublet, triplet, quartet, multiplet, and broad absorbance, respectively. The absorbance based on the solvent is omitted from the Table.

IR represents an infrared absorption spectrum in which a potassium bromide tablet is used in the determination unless otherwise noted. When a solution is used in the determination, the kind of solvent is listed in parenthesis. The number listed in the Table represents a wave number in units of cm⁻¹, and only the main absorption peaks are listed in the Table.

MS represents a mass spectrum, and the results are shown as M/e (i.e., the mass of the cation fragment divided by the charge) of the main peaks.

50

~	١
ø	ĺ
3	ł
g	I

г	· · i					•		
	roperties	65. 4 4	7.107.90(141.m)	20XCD ₃ 0D-CDCl ₃ , THS 6 0.802.20(1011, m) 2.52 (211, d)	2.60 (311,s) 2.903.24(21,n) 4.76 (111,n) 7.127.96(911,n)	SXCDC13-CD30D, THS 6 0.762.28(1011,11) 2.49 (211,4) 2.56 (311,5) 2.843.20(211,4)	4.68 (11, 5.02 (21, 07.93(1311)	6 0.76-2.28(1011,m) 2.45 (211,d) 2.55 (311,s) 4.65 (111,m) 6.85 (411,dd) 7.76 (411,dd)
	Physical Properties	MS: N/e 483,327,287,253		IR: 3300, 2925, 2850, 1675, 1640, 1595, 1520, 1310, 1265, 1255, 1175, 815,	695	1R: 3300,2930,2860,1680, 1642,1598,1530,1510, 1270,1245,1178,1015, 840	<u>R:</u>	3300, 2925, 2860, 1640, 1590, 1510, 1260, 1175, 835
Tager	Compound		11,2 NC11,2 - CONIICIICONII- C - C-C		II, NCII, - CONIICIICONII - C-CII,	Och	II, иси,	II, NCII, - СОМІСІІСОМІІ - С-СІІ, П
	<u>چ</u>	Y .		8			•	

1R: 3290,2925,2860,1675, 1645,1505,1530,1510, 1265,1240,1175,1010, 2.902.26(1011,m) 2.502.68(511,broad) 2.903.20(211,m) 6.807.96(1211,n)	1K: 3300, 2930, 2860, 1680, 50xCD, 0D-CDC1, THS 16/10, 1590, 1510, 1265, 5 0.802.30(1011, m) 2.55 (211, d) 2.50 (311.5) 3.76 (311.5) 4.70 (111, m) 6.96 (411, dd) 7.78 (411, dd)	1R: 802, 2930, 2960, 1640, 50XCD ₉ 0D-CDCI ₃ , TMS 1600, 1510, 1490, 1450, 6 0.802.25 (10II, m) 2.55 (10II, m) 3.04 (2II, m) 4.70 (1II, m) 5.04 (2II, m) 5.04 (2II, m) 5.04 (2II, s)
0СII, -СI СII, -СI		II. NCII. CONIICIICONII - F

Жe ₹. 6 2

= '.	

-	5		
NNR: (CD ₃)>SO, THS 6 0.70-2.68(101, m) 3.52 (111, m) 5.04 (211, s) 6.767.72(1311, m)		CDC13-CD30D, THS 6 3.00-3.40(211, 11) 3.80 (211, 15) 4.80-5.00(11, 11) 6.60-7.80(1311, 11)	
NS: N/c 510,303,363,309, 281,237,226,197,127	ik: 3300, 2930, 2860, 1680, 1645, 1535, 1530, 1510, 1200, 1140	HS: N/e 389,297,239	
ОСП ₂ - СОМІСІІСОМІІ- СП СП ₂ - СОМІСІІСОМІІ- СТ	$\begin{array}{c c} & \text{OCII}_{\rho} - \bigcap \\ & & & \\ & & \\ & &$	II.2 NCII.2 — CONIICIICONII — CONIICII —	
=	2	<u>e</u> .	

	. 5	
NINR: (CD ₃) ₂ SO, TNS δ 0.702.20(101, m) 2.38 (211, broad) 2.703.05(211, m) 4.60 (111, broad) 5.02 (211, b) 6.857.92(1211, m)	CD ₃ OD, TNS © 0.902.00(911,m) 2.142.36(111,m) 2.56 (311,s) 2.78 (211,d) 2.843.16(211,m) 4.64 (111,m) 5.00 (211,s) 5.00 (211,s) 6.858.10(1311,m)	CD ₃ OD, TMS & 0.50-1.96(91, m) 2.16-2.37(111, m) 2.80-3.20(211, m) 5.00 (211, m) 6.81-7.86(1811, m)
18: 3300, 2930, 2860, 1680, 1645, 1595, 1530, 1510, 1265, 1240, 1175, 820, 805	1R: 37002200,1680,1610, 1610,1590,1510,1265, 1230	IR: 3025, 2930, 1660, 1640, 1595, 1530, 1510, 1310, 1280, 1245, 1175, 740, 700
II, NCII, - CONIICIICONII - C-CII,		1 - CONIICIICONII - C С С С С С С С С С
	81	10

		5		
350	2.883.20(211.m) 4.70 (11.m) 5.20 (211.s) 6.867.95(1111.m)	(CD ₃) ₂ SO, THS 6 0.762.68(1111, m) 3.50 (111, s) 4.08 (211.s) 5.04 (211.s) 6.887.92(1311, m)	CD ₃ OD, THS © 0.801.90(1911,m) 2.062.26(111,m) 2.77 (211,d) 4.45 (111,m) 5.02 (211,m) 5.02 (211,s) 6.847.40(911,m)	
1R: 2940, 2860, 1680, 1640, 1595, 1530, 1510, 1300	Ŷ	Ne 485,467,432,359, 335,288,244,197, 155,134,91	IR: 3300,2930,2860,1640, 1545,1570,1240,1220	
15 (C)		II. NCII CONIICIICON - CII. IICI	$ _{2} \text{HCII}_{2} - \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc _{2} - \bigcirc $	
20			73	
-		55		

CD₂OD, TNS 8 0.9--1. 2.1--2. CD₃ 00, TMS. \$ 0.9--2. 2.1--3. CD, OD, TM & 0.82-2.72-≅ . 23 24 25

CD, 00, T & 0.80 3.72 ₹.

	5	
(CD ₃) ₂ SO, TMS & 0.701.84(81, m) 2.002.20(11, m) 2.703.00(211, m) 4.66 (11, m) 5.04 (211, m) 5.04 (211, m) 6.847.56(1311, m)		CDC13-CD3 OD, TMS & 0.902.20(1011, m) 3.603.70(211, m) 4.85 (111, t) 7.307.90(1111, m) 8.15 (211, d)
IR: 3300, 2925, 2860, 1665, 1640, 1580, 1530, 1505, 1495, 1235	NYR: CO ₃ OD, THS 6 0.801.86 (911, 11) 2.52 (211, 11) 2.56 (311, 12) 3.04 (211, 11) 4.07 (111, 11) 5.40 (211, 12) 5.40 (211, 12) 5.40 (211, 13)	IR: 3400,2940,1640,1600, 1520,1345,1280,1180
II.2 NCII.2 - CONIICIICONII - COLIS	II. HCII. CONHICHCONIII-	$ _{L^2} _{L^2} - \langle _{L^2$
30		7

		·	5			
			•	•		
			·			
	·					
				-		
	1R: 3300, 2940, 1650, 1610, 1505, 1240, 1180		IR: 3350, 2940, 1650, 1600, 1520, 1280, 1180	** R:	CD ₃ OD, THS & 0.841.92(21H, broad) 2.082.28(1H, broad) 2.682.82(2H, m) 3.083.26(2H, m)	3.507-3.568(11), broad) 4.32-4.62(21), broad) 4.62-4.80(31), m) 4.92 (11), s) 5.04 (24), s) 6.807.44(91), m)
	OCIII	II. NCII.2 - CONIICIICONII - CII.2 C-CII.3	≅ ——5	II₂ NCII₂ - (ОL.) (ОL.)	OCIIs OCIIs	II ₂ NCII ₂ - CONIICIICONII - CII ₃ • IICI
33		£		34		,
			55			······································

DCII		× 5	
CD ₂ 0D, THS			
CD ₂ 0D, THS	· .		
CD ₂ 0D, THS	-		
	2.36(10 3.32(3) 3.22(3) 3.22(3) 5.22(4) 5.22(4)	THS 881.64(1 662.32(2 602.82(2) 5-03 (2)	TMS 01.64(10) 82.30(2) , 112.82(2) , 5.02 (2) , 117.80(12)
II ₂ NCII ₂ -	OCII ₂ - CI CII ₂ - CI CII ₂ - CI CII ₂ - CI	CIIP CONIICHCONII	OCII2-CI
32 39	35	36	• .

6 0.80--1 3.18--3 3.36--3 3.52--3 CD, OD, THS S 0.90--2.76--3.82-ž

		· .	•
	14H, m) 9H, m) 1H, m) 1H, m) 14H, m)	E	·
CD ₂ 0D, TNS 6 0.862.36(10 2.703.20(41) 4.644.78(11) 5.01 5.01 6.848.36(13)	MMR: CD ₃ 0D, TMS S 0.862.28 S 0.863.50 4.30 4.50 5.01 6.847.60	Ch ₃ 00, THS 6 0.902.34(10 2.723.24(41) 4.564.70(11) 5.04 (21)	
- Silici	-CII ₂ -CII ₂ -ZIICI	·IICI	 5
OCII ₂ - CONIICIICONII - C	OCII2 - CONIICIICONII-C	OCII ₂ CONIICIICONII-	
41 II ₂ NGII ₂ -<	42 II. NCII <	43 11 ₂ NGII ₂ - <	-

CB, 00, TI & 0.60 CO, OD, T ¥ ₩ 爰: XX. 46 44 45

	CDC13, TMS CDC13, TMS 6 0.802.20 (1411, m) 2.683.48 (711, m) 3.78 (111, t) 4.50 (111, t) 4.885.26(211, m) 6.288.02(1411, m)	
NHR: CD-00, TMS 6 0.682.04(1711, broad) 2.062.40(111, broad) 2.442.86(211, broad) 3.66 6.111, s 5.02 211, s 6.628.24(1311, m)	HS: HVe 581,553,425,393, 365,337,334,309, 282,187,91	1R: 3430,3050,2930,1640, 1510,1450,1250,700
112 NC112 - CONIICIICONII - CO202 NII2 11C1	II ₂ NCII ₂ - CONIICIICON CON CIII ₂ OCII ₂ - CONIICIICON CIII ₂ OCII ₂	II2 NGH2 - CONHCHICONGH2 - N . 2HG1
		40

		•
	CD ₃ OD, TMS 6 0.922.36(10II, m) 2.55 (3II, s) 2.723.24(4II, m) 4.564.78(1II, m) 5.05 (2II, s) 6.858.18(12II, m)	
. 28		. 24

	5	510, 1245
·		JR: 3320, 1635, 1510, 1245
WHR: (3) 0D, THS (0.922.39(1011, m) 2.803.28(411, m) 4.64-4.75(111, m) 5.05 (211, m) 6.908.50(1211, m)	NMR: CD ₃ OD, TMS & 0.822.32(1011, m) 2.683.22(711, m) 5.04 & (211, s) 6.747.46(1311, m)	HS: M/e 523,373,282,236, 197,137
II.e NCII.e - CONIICIICONII - CI	OCII2 - CONIICIICONIICII2 - COCII3 • IICI	II ₂ NCII ₂ - CONIICIICONIICII ₂ - COII ₃ · IICI
89	09	5

	5			
	NHR: CD ₃ 0D, THS S 2.29 S 3.03.20(21) #(5)	3.904.10(3II.#) 6.807.90(17II.#		•
HS: H/e 497,432,387,359, 247,282,256,237, 226,210,197,134, 110,91	MS: M/e 493,343,238,197, 134	IR: 1640,1510,1240,815	HS: H/e 503,438,393,365, 210,197,140,112, 110,91	
II.2 NCII.2 - CONIICIICONII.	Octive - Color	II2 NCII2 - CONIICIICONII- CII3 • IICI	OCII ₂ - OCII ₂	II.2 NCII.2 - CONIICIICONII.
20			5	

		5	······································
CD ₃ OD-CDC1 ₃ , TMS 6 2.2 6 2.2 6 3.03.20(211, a) 3.83 (211, a) 4.805.10(311, a)	6.807.80(16II, II)		
HS: HVe 507,357,310,237, 187,134	3300, 1635, 1510, 1240 NYR: CD ₃ 00, TMS	6 0.952.36(10ll,m) 2.703.25(41l,m) 4.654.75(11l,m) 5.00 (21l,s) 6.887.72(12ll,m)	CD ₃ OD, THS 6 0.94 2.28(1011, m) 2.76 3.24(411, m) 4.70 4.80(111, m) 5.00 (211, s) 6.84 7.80(1711, s)
OCI12- CI13		II,2 NCII,2 - CONIICIICONII - CI	$ _{L^2 NCII_2} - \langle \bigcirc \rangle - _{L^2 NCII_2} - \langle \bigcirc \rangle - _{L^2 NCII_2} - \langle \bigcirc \rangle - _{L^2 NCII_2} - _{$
	99.	19	

CD, 00, THS 8 0.92--CD, OD, TH. S 0.90-89 69 2

	5	•	•
		IR: 1640, 1515, 1250, 710	
NYR: CD ₃ OD, TMS S 0.802.50(12 ,m) 2.803.16(3 ,m) 4.054.22(4 ,m) 4.684.76(1 ,m) 5.03 (2 ,s) 6.887.92(13 ,m)	WR: CD ₃ OD, TMS 6 0.92 2.50 (1211, m) 2.91 3.15 (311, m) 4.02 4.75 (111, m) 5.04 (211, m) 6.85 7.88 (1211, m)	MS: N/e 426,254,197,134	
	11 ₂ NCH ₂ - CONIICHCONII - CO ₂ C ₂ H ₆ CH ₂ CH ₂ CH ₂ CH ₃ CH ₄ CH ₅ CH ₆ HIC1	$ _{2} HCI _{2} - \left\langle \begin{array}{c} OCI _{2} - \left\langle OCI _{2} $	
12	23	E	

CD300,THS 8 0.84-2.77 K∕e :S

	5	
	• • •	
	•	
, 485, 1,286, 1,286,	87,357, 37,197,	, 0800 180,
513,495,479,485, 411,393,374,385, 357,316,298,286, 252,237,226,210, 177,91	507,489,387, 286,252,237, 160,134,91	1650, 11 1270, 11
513,4 252,3 177,9		1R: 3400,2940,1650,1600, 1500,1365,1270,1180, 870
M. MS:	HS:	1R: 3400 1500 870
		; ·
. EC.	. 52	DI •
		<u> </u>
\210	الة - حوالة -	ن ق
OCII2-CII2-CII2-CII2-CII2-CII2-CII2-CII2	OCII ₂ - CONIICII CII ₂ - CONIICII CIII ₂ - CONIICII CII ₂ - CONIICII CIIICII CII ₂ - CONIICII CIIICII CI	
OCII, CII, CII, CII, CII, CII, CII, CII,	OCII- CII-	CONIICIICON
		05
	II ₂ NCII ₂ -	
JI ₂ NCII ₂ - <	H ₂ NC	II ₂ NCII ₂ -
		•
12	82	62

	5	
	•	·
•	, മീതീതി	m er
IR: 2830,1640,1510,1240, 895	93,376,72,25	424,387,359,343, 297,226,197,134, 93
0,1510	519,501,393, 363,282,272, 237,226,210, 91	,387,3 ,226,1
30,164		297 93 93
1R: 2833 (855)	We is:	M/e
	• .	
1311	_	_
	, j	
OCII ₂ - CONIICIICONI	OCH, CONICIOONII-	CONIICIICONI
-con	WOO	-CON
		. 🔾
II ₂ NCII ₂ - (II.z HCII.z - <	II ₂ NCII ₂ - <
= .	=	. =
08	8	83

CD, OD, TMS & 0.92--2.76--

86				
	II ₂ NCII ₂ - () ··· CONIICIICONII - () - C-CII ₃ • IICI	CD, 00, TMS 6 0.902.35(13H, m) 2.703.30(4H, m) 4.32-4.44(2H, m) 4.70 (1H, m) 5.15 (2H, s)		
81		71)80		•
	$CII_{\mathbf{z}}$ CII	CD ₃ 00, THS 6 0.96-2.32(1011, m) 2.56 (311, s) 2.99-2.70(211, m) 2.70-3.20(211, m) 4.60-4.72(111, m) 5.12 (211, s) 6.80-8.02(1211, m)		5
88	OCIII-	HS: H/e 387,351,134	IR: 3360,2950,1640,1515, 1240	
	II.≥ ИСІІ.₂ - СОЧІІСІІСОМІІ - СОПІ - ІІСІ			

RE:
- NO ₂ - IIC1 IR:
II ₂ NCII ₂ -
68 06 16

	5		-
		ik: 2950, 1735, 1645, 1515, 1240	
CD ₃ OD, TMS 6 1.02.34 (1011, m) 2.50 (311, s) 2.80 - (211, m) 3.04-3.30(211, m) 4.72 (111, m) 6.90-8.08(1211, m)	KS: K/e 434,344,298,277, 254,226,197,185, 164,134,93	HS: H/e 557,512,252,172, 134	•
$ _{L_{\mathbf{z}}} _{L_{\mathbf{z}}} - _{L_{\mathbf{z}}} - _{$	II ₂ NCII ₂ - CONIICIICONIICII ₂ - N · 2IIC1	0CII₂ - CONIICIICONII - CO₂ C₂ II₅ • IIC1	
95	96		
	55		

ſ ·		. 5	•	
				٠
	•			
		•		
	27-75 8-8-8-8-8-8-8-8-8-8-8-8-8-8-8-8-8-8-8-	24.11. 11. 11. 11. 11. 11. 11. 11. 11. 11.	148, 331, 331, 331, 331, 331, 331, 331, 33	
	715 02.34 63.50 5.02 87.42	HS 3.04(4.56(0.06(5. -1.84(-3.10(-4.80(-7.87(•
;;	CD ₂ OD, THS & 0.902 2.763 4.544 5.02 6.887	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	MHR: CD, 0D, TMS S 0.70-1, 2.803, 4.18 4.384, 5.02 6.867	
₩ ₩	පිත	20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 4 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	·
	·	<u>5</u>	<u> </u>	
		-		
	5	CII3	. clis	
		OCII ₂ - C	OCII, COLICONIII	
	OCONIICIICOO-	OCII2-COMICIICONI	CONHICTICON	
	$\dot{\frown}$			•
	~ **		II ₂ NCII ₂ - {	
•	II ₂ NCII ₂ - <	II ₂ NCII ₂ -	II ₂ NC	·
		• (3)	•	
. 101		102		· · · · · · · · · · · · · · · · · · ·
		-	•	

CD300, TH & 0.8 --2.72-6,00°, 8,0°8 轰: 104 . 105 106

	5	
18: 3230, 2930, 1738, 1645, 1535, 1508, 1242	HS: H/e 549,504,383,302, 282,187	CD ₃ OD, THS & 0.801.80(1411, m) & 3.03.30(311, m) & 4.18 (211, s) & 4.70 (111, m) & 6.868.20(1211, m)
	OCII ₂ - OCII	
201.	801	108

0 217 286

ــــــا	9				
		Octivo-	NS: N/e 543,498;393,387, 302,282,197,134		
		II.2 HCII.2 - CONINCIICON - CO.2 CII.2 CII.3 • II.CI	,		
	=======================================	(- z _{II})	¥	WR:	
55		I - ○ -	3400,3300,3030,2830, 1640,1510,1240,1220	CDC13-CD30D, THS 6 0.802.30(1011, 12) 2.7 (211, 4)	
5		II. NCII CONIICIICONIICII P. F IICI		2.803.10(2 ,#) 4.26 (2 ,4) 4.6 (1 ,1) 5.02 (2 ,3) 6.707.84(13 ,3)	
	112	OCIIIs	: 5		
		- 15 - 15 - 15 - 15 - 15 - 15 - 15 - 15	N/e 494,478,459,433, 387,344,281,197, 150,106		·····
		ווְגַּ אְרָוֹזְגַ - ער - רְטְאַוּוְרְווֹרְטְאַוּיְרְוֹזְּגַ - ער יי			

IR: 3420,3280,2860,2830, 5 3.03.16 (211,m) 1630,1510,1240,1220 6 3.03.16 (211,m) 6.80-7.80(1711,m)	1R: 3430, 2940, 2860, 1640, CDC13-CD30D, THS 5 0.801.90(1011, m) 2 553.10(211, m) 3 503.70(111, m) 4 .12 (211, s) 5 .04 (211, s) 5 .04 (211, s) 5 .04 (211, s)	1R: 3430,3030,2940,1695, 1640,1610,1510,1455, 1240,1230,1140,990, 910,810,740
$\frac{0 \text{CH}_{\text{e}}}{\left \int_{\mathbb{R}^{2}}^{\mathbb{R}^{2}} \text{Conflictionnich}_{\text{e}} - \left(\bigcap_{\text{e}}^{\mathbb{R}^{2}} \right) - F \text{iici}$	II ₂ NCII ₂ - CONIICIICONII - OCII ₂ - SICI	OCH2 - CONIICIICONII - CH3
	4	

	5	
	IR: 36002400,1690,1610	CDs OD, TMS & 2.56 (311, s) 3.103.30(21, m) 3.98 (211, m) 4.604.80(11, m) 5.00 (211, s) 6.808.00(1711, m)
IR: 3410,1745,1640,1515, 1245,1225	KS: N/e 387,197,151,91	1R: 3420,3030,1670,1840, 1600,1530,1510,1270
	2 NC 2 - \(\rightarrow \) - CONIICIICON \(\rightarrow \) - CII2 CO2 - C	$ C _{2} - \langle C _{3} - C _{2} - \langle C _{3} - C _{2} - C $
911	11	8 -

	5	• •
CD ₃ OD, THS 6 0.802.30(1011, 11) 2.803.20(211, 11) 4.504.80(111, 11) 5.02 (211, 12) 6.807.70(1311, 11)		
IR: 3420,3300,3030,2930, 1740,1845,1610,1515, 1320,1240	IR: 3430, 3030, 2950, 1730, 1640, 1610, 1510, 1310, 1240	CD ₃ OD, TMS C 0.500-2.40(1011, m) 2.58 (311, s) 2.80 (211, d) 3.10 (211, m) 7.08.90(1111, m)
II ₂ NCH ₂ - CONIICHCONII - CF ₃ · IICI	OCII ₂ - CONIICIICONIICII ₂ - CF ₃ - IICI	NO2
118	120	<u> </u>

CD300,

.

	•			
NMR: CD ₃ OD, TMS & 0.902.36(10H ₃ H) 2.79 (2H,4) 3.09 (2H,4)	4.70 (111,m) 5.04 (211,m) 6.847.96(1111,m) NMR:	CD ₃ OD, TMS & 0.802.36(1011, m) 2.453.20(411, m) 4.68 (111, m) 5.00 (211, s) 6.829.10(1311, m)	CD ₃ OD, TMS & 0.902.36(10 , m) 2.56 (3 , s) 2.79 (2 , d) 3.10 (2 , m) 4.70 (1 , m) 5.04 (2 , m) 5.04 (2 , m)	
	112 NC112 - ()CONIICIICONII - (- CI13 - 11C1	$\lim_{\mathbb{R}^2} \mathbb{N} \mathbb{C} \mathbb{I}_2 - \left\langle \bigcap_{\mathbf{N} \in \mathbb{N}} \mathbb{C} \mathbb{C} \mathbb{N} \mathbb{I} \right\rangle = \left\langle \bigcap_{\mathbf{N} \in \mathbb{N}} \mathbb{C} \mathbb{C} \mathbb{I}_3 \mathbb{S} \mathbb{O}_3 \mathbb{I} \right\rangle$	$ _{2} \text{ NCII}_{2} - \langle $	
	126			

			5		
NHR: CD ₉ OD, THS	6 3.03.40(2 ,m) 4.18 (2 ,s) 4.60-4.90(1 ,m) 7.108.0 (13 ,m)	NHR:	CD ₂ OD, TMS & 1.702.30 (411, m) 3.03.6 (411, m) 3.72 (411, m) 4.18 (211, s) 4.405.10(11, m) 7.107.90(911 m)		•
1R: 3400,3350,3 <u>160,1670,</u>	1850, 1800, 1510, 1380, 1330, 1155, 1125		3430, 2860, 2880, 1745, 1630, 1450, 1310, 1285, 1200, 1175	IR: 3430,3000,2960,2900, 1745,1730,1645,1285, 1120	
	II.2 HCII.2 - CONIICIIICONII - CF.2		CIP. (L) 1 CIP. (L) 2 CIP. (L) 2 CIP. (L) 2 CIP. (L) 2		
131		132	· · · · · · · · · · · · · · · · · · ·	133	

137 138 138 $0 C \Pi_2$ $C $		
	WIR:	
2 NC 2 - CONIICIICONII - CONIICII - CONIII - CONIICII - CONIICII - CONIICII - CONIICII - CONIICII - CONIII - CONIICII - CONIICII - CONIICII - CONIICII - CONIICII - CONIII - CONIICII - CONIICII - CONIICII - CONIICII - CONIICII - CONIII - CONIICII - CONIICII - CONIICII - CONIICII - CONIICII - CONIII - CONIICII - CONIICII - CONIICII - CONIICII - CONIICII - CONIII - CONIICII - CONIICII - CONIICII - CONIICII - CONIICII - CONIII - CONIICII - CONIICII - CONIICII - CONIICII - CONIICII - CONIII - CONIICII - CONIICII - CONIICII - CONIICII - CONIICII - CONIII - CONIICII - CONIICII - CONIICII - CONIICII - CONIICII - CONIII - CONIICII - CONIICII - CONIICII - CONIICII - CONIICII - CONIII - CONIICII - CONIICII - CONIICII - CONIICII - CONIICII - CONIII - CONIICII - CONIICII - CONIICII - CONIICII - CONIICII - CONIII - CONIICII - CONIICII - CONIICII - CONIICII - CONIICII - CONIII - CONIICII - CONIICII - CONIICII - CONIICII - CONIICII - CONIII - CONIICII - CONIICII - CONIICII - CONIICII - CONIICII - CONIII - CONIICII - CONIICII - CONIICII - CONIICII - CONIICII - CONIII - CONIICII - CONIICII - CONIICII - CONIICII - CONIICII - CONII	CD ₃ 0D, THS S 0.902.36(1011, m) 2.80 (211, d) 3.10 (211, m) 6.908.64(1111, m)	
II₂ NCII₂ - СОМІІСІІСОМІ - СМІ СІІІ² СІІ² СІІ² СІІ² СІІ² СІІ² СІІ²	HZ: HZ 480,432,359,282, 255,205,197,178,	
II ₂ NCII ₂ - CONIICIICONII - C	· · ·	5
CONIICIICONII-	IR: 3420,1700,1640,1540, 1300	
		· · · · · · · · · · · · · · · · · · ·

NMR: CD,0D, TMS 6 3.103.30(211,m) 4.14 (311,s) 4.704.90(111,m) 5.0 (211,s) 6.808.80(1611,m)	CD.00, THS 8 0.90-2.40(1011, m) 2.80-3.20(211, m) 4.18 (311, s) 5.02 (211, s) 5.02 (211, s) 5.02 (211, s) 6.808.80(1211, m)	
IR: 3430,3030,2950,2620, 1645,1615,1550,1510, 1440,1300,1235	IR: 3430,3030,2930,1650, 1620,1550,1510,1460, 1440,1300,1220 NMR: CD ₃ OD, TMS C O.90232 {1011, m} 6 O.90232 {2.78 {211, d} 3.08 {211, m} 4.68 {111, m} 6.647.80(1311, m)	
OCII2 - CONIICIICONII - C OCH 2 · 2 IIC1	$ _{2} \text{NCII}_{2} - \bigcirc \cdots \text{CONIICIICONII} - \bigcirc \text{N} - \text{OCII}_{3} \cdot 2 \text{IICI}$ $ _{2} \text{NCII}_{2} - \bigcirc \cdots \text{CONIICIICONII} - \bigcirc \text{N} - \text{OCII}_{3} \cdot 2 \text{IICI}$ $ _{2} \text{NCII}_{2} - \bigcirc \cdots \text{CONIICIICONII} - \bigcirc \text{N} - \text{IICI}$	
140	141	

143			•
·	0-K - N02 CII_2 - K - N02 CII_2 - K - N02 CII_2 - K - CONIICIICONII(CII_2), CII_3 - 21IC1	WHR: CD ₉ OD, THS S 0.802.32(1711, m) 2.783.20(611, m) 4.60 (111, m) 7.048.94(711, m)	
144	0-00 ₂ Cll ₂ - 0	IR: 1760, 1690, 1680, 1580, 1510, 1440	
145	$ _{2} \text{MCH}_{2} - \left\langle \right\rangle \cdots \text{COMIICHCOMII} - \left\langle \right\rangle - \left\langle \right\rangle - \left\langle \right\rangle - 1 \text{CI} $ $ _{2} \text{MCII}_{2} - \left\langle \right\rangle \cdots \text{COMIICHCOMII} - \left\langle \right\rangle - \left\langle \right\rangle - \left\langle \right\rangle - 1 \text{CI} $	IR: 1760, 1690, 1680, 1590, 1510, 1440	

		IR: 1760, 1690, 1680, 1590, 1510, 1440	CD ₃ OD, TMS S 0.81 2.32(17H, m) 2.70-3.28(6H, m) 4.40-4.66(1H, m) 6.648.80(7H, m)	IR: 3430,3300,3030,2930, 1700,1650,1560,1460
	*	0-C0 ₂ CII ₂ - C	O(N) CIII- CIIII	1R: 3430,3300,

149	- ZIDO	NHR:	
~	$\bigcap_{ I _2 \text{ NCII}_g} \bigcap_{e} \bigcap_{CONIICIICONII(CII_g)_2} \bigcap_{e} \bigcap_{A} \dots \bigcap_{A} \bigcap_$	CD ₂ OD, TMS & 2.883.12(211, broad) 3.68 (211,5) 4.12-4.28(511,4) 5.02 (211,5) 6.848.76(1711,4)	
150	ğ	NYR: CD ₂ 00, TMS S 0.90-2.00(1011, m)	÷
	II ₂ NCII ₂ - CONIIICIICONII - NCII ₂ - 2IICI	2.102.30(2 ,n) 2.80 (4 ,n) 4.90 (1 , t) 7.407.70(4 ,n) 7.958.70(4 ,n)	
151	OCII2-5-	HS: M/e 540,390,237,197, 154,134	IR: 3430,3030,2950,1640, 1620,1510,1480,1420, 1390,1300,1245,175,
	$ _{2}$ NCII $_{2}$ - CONIICIICONII - \bigcirc - OCII $_{3}$ - 2IICI OCII $_{3}$		10,700

5	
18: 3430,3020,1720,1840, 1570,1540,1500,1280, 1115,1070,760,700	
ИS: Ие 402,311,253,134	IR: 3300,2940,1650,1520, 1350,1210,1110,1020, 860
II ₂ NCII ₂ - CONHCHCONCII ₂ - N · 2IICI	II ₂ NCII ₂ - CONIICIICON (CII ₂) ₃ CII ₃ • IICI
	HS: HS: HC

158			
	112 ИСП2 - СОИПСПСОИЛСП2 - СПС1	18: 3420, 3280, 2940, 1680, 1650, 1520, 1350, 1220, 1105, 1040, 860, 760	
159	NOz	<u> </u>	
		3450, 3200, 3000, 2850, 2670, 2000, 1745, 1605, 1505, 1495, 1350, 1230, 1105, 1005, 840, 750, 700	5
160	OCII(CII ₂) ₂	MS: M/e 473,430,415,345, 317,205,128,113,	25.
	112 NCII2 - CONIICIICON N-CII(CII3)2 • 11CI		

CD₃00-D₂0,7 & 0.78--1 2.92--3

₩. . 165

	OCII ₂ CO-CO	KS: N/e 177,107,94,67	1R: 3430,3020,2940,1730, 1700,1640,1610,1510, 1320,1220,820	
II _e NCII _e -	CONIICICONII-			
II ₂ NCII ₂ -	0-{ - N0 ₂	MMR: CD=0D, TMS S 0.902.38(10H, m) 2.403.16(11H, m) 6.928.96(7H, m)		. 5
	-NO ₂	ИS: И/е 251,139,107,93	·	
II.2 NGII 2	CONFICURCIONICIE - N			-

NYR: CDC1a, THS CDC1a, THS 2.56 2.56 (211, d) 2.923.28(311, m) 4.805.20(311, m) 6.768.84(1111, m)	1R: 3270, 2940, 1640, 1530, 1510, 1380, 1090	CDs 00, TMS 6 0.802.28(12H, m) 2.703.36(8H, m) 4.424.52(1H, m) 5.02 (2H, s) 6.91 (2H, d) 7.15 (2H, d) 7.317.50(5H, m)
II ₂ NCII ₂ - CONIICHCONII- N	II ₂ NCII ₂ - CONIICIICONII - CII ₃ · 2IIC1	II ₂ NCII ₂ - CONIICIICONII(CII ₂) ₃ OCII ₃ • IICI
173	1.55 55	175

<u>:</u> Me 546,390,197,154 ₩. 177 178 176

•	•	,			•	,
•						
٠	·				•.	
			<u>. </u>		· · · · · · · · · · · · · · · · · · ·	
	1180,	·	, 1640,			
•	2940,1730,1 1370,1200,1 870	•	50,2840,		•	,
:	3400,2940 1500,1370 1150,870	,e	IR: 3400,3050,2840, 1510,1350,860,7			
		·			-	
				• 211C1		
		• 211C1				
5	··.					• • •
y- 030		CIICONII-	\$	-CONIICIICONIICI	. · ·	
		CONICIICONI		-CONIII		
		().	•			
)- NCIIs		II2 NCII2	- 10	
182		Š	3			

The compounds of the present invention can be synthesized by various combinations of the so-called peptide synthesis methods.

- i) Mixed acid anhydride method [Ann, Chem., 572,] 190 (1951)
- 2) Acid chloride method [Biochemistry., 4, 2219 (1960)]
- 3) Phosphazo method [Chem. Ber., <u>93</u>, 2387 (1960)]
- 4) Dicyclohexylcarbodiimide method [J. Am. Chem. Soc., 77, 1067 (1955)]
- 5) Active ester method using, for exampl . N-hydroxysuccinimide [J. Am. Chem. Soc., <u>85</u>, 3039 (1963)].

It should be noted, however, that not all of the compounds can be synthesized according to the methods as mentioned here, but that it is necessary to combine the above-mentioned methods appropriately for the respective compounds. Among these methods, typical examples of the reaction routes are shown below.

Route A

For carrying out synthesis from ① to ③ .① is dissolved in an appropriate solvent such as THF, dimethylsulfoxide diethyl ether, dioxane, and the like, and an appropriate base such as triethylamine, pyridine, and the like, is added in an amount of I equivalent to 5 equivalents, preferably 2 to 3 equivalents relative to ① . To this reaction mixture is added ethyl chlorocarbonate as such or as a solu-

- tion dissolved in the solvent used as the reaction solvent, at one time or in several divided portions. The temperature of the reaction mixture is maintained at -10°C to 30°C, preferably 5 to 10°C. The reaction time is from 1 hour to 50 hours, preferably from 5 to 20 hours. After a conventional post-treatment, 0.5 to 2 equivalents of
- a eaument, 0.5 to 2 equivalents of

are added and the reaction is carried out at -10°C to 30°C, preferably 5 to 20°C, for I to 50 hours, preferably 5 to 20 hours. Then, after a conventional

129

post-treatment, 3 is obtained.

The reaction from 3 to 4 may be carried out by allowing 5 to react with I to I0 equivalents, preferably 3 to 7 equivalents relative to 5 of 4N-HCI dioxane solution at room temperature. Then,

after a conventional post-treatment, (4) is obtained. The reactions from (4) to (6) can be carried out in the same way as from (1) to (4), whereby (6) can be obtained.

10

0 217 286

Route B

$$\begin{array}{c|c} x \\ & \xrightarrow{\text{H}_2\text{NCHCON}} \xrightarrow{R_1 & \text{BocNH-Y-CONHCHOON}} \xrightarrow{R_1} \\ \hline 4 & & & & & \\ \hline \end{array}$$

$$\xrightarrow{4\text{N-HC1 / }} \text{H}_{2}\text{N-Y-CONFICHCON} \xrightarrow{R_{1}} \text{G}$$

For syntheses from 1 to 3 and from 4 to 5, there may be employed, for example, the methods as described in J. Am. Chem. Soc., 77 1067 (1955). For the reactions from 3 to 4 and from 5 to 6, the methods as described in route A may be used.

50

40

45

Route C

30

ഹ

45

For syntheses from 3 to 1, there may be employed, for example, the methods as described in synthesis 685 (1976), J. Chem. Soc. Perkin Trans 1 490 (1977).

For synthesis from 7 to 8, 7 is dissolved in an appropriate solvent such as DMF, DMSO, toluene, and the like, and NaH is added in an amount of I equivalent to 5 equivalents, preferably I equivalent to 2 equivalents relative to 7. To this reaction mixture is added a solution of R₂-A dissolved in the solvent used as the reaction solvent, and the reaction is carried out at room temperature from 2 hours to 50 hours, preferably from 4 to 6 hours. Then, after a conventional post-treatment, 8 is obtained. For synthesis 8 to 9, the methods from 3 to 6 in route A may be used.

EXAMPLES

The present invention will now be further illustrated by, but is by no means limited to, the following Examples. In the following, preparation of typical compounds is described by referring to specific examples.

Example I

Synthesis of N-(trans-4-aminomethylcyclohexylcar-bonyl)-L-phenylalanine 4-acetylanilide (Compound No. 2)

N-(t-butyloxycarbonyl)-L-phenylalanine (I) (5.30 g) was dissolved in dry tetrahydrofuran (80 ml), triethylamine (3 ml) was added to the resultant solution and ethyl chlorocarbonate (2.40 g) was added to the mixture under ice-cooling, followed by stirring for 30 minutes. To this solution was added 4-acetylaniline (2.70 g) and the mixture was stirred at room temperature for I0 hours. To the reaction mixture was added ice-water (300 ml) and the precipitated crystalline substance was collected by filtration, thoroughly washed and dried to give 7.07 g of N-(t-butyloxycarbonyl)-L-phenylalanine 4-acetylanilide (II).

To the above compound (II) (2.29 g) was added under ice-cooling 4N-hydrogen chloride/dioxane solution (30 ml) and ice-cooling was removed, followed by stirring at room temperature for 30 minutes. To this solution was added ether (300 ml) and the precipitated crystalline substance was collected by filtration, washed with ether and dried under a reduced pressure to quantitatively obtain L-phenylalanine 4-acetylanilide hydrochloride (III).

35

40

On the other hand, trans-4-(t-butyloxycarbonyl) aminomethylcyclohexylcarboxylic acid (I.62 g) was dissolved in dry tetrahydrofuran (50 ml), triethylamine (0.96 ml) was added to the resultant solution and ethyl chlorocarbonate (0.76 g) was added under ice-cooling to the mixture, followed by stirring for 30 minutes. To this solution was added the hydrochloride salt (III) previously obtained and triethylamine (2 ml) was added to the mixture, followed by stirring at room temperature for 3 hours. Ice-water (200 ml) was added to the reaction mixture and the precipitated crystalline substance was collected by filtration, thoroughly washed with water and dried to give 2.62 g of N-[trans-4-(tbutyloxycarbonyl)aminomethylcyclohexylcarbonyl}-L-phenylalanine 4-acetylanilide (IV).

To the above compound (IV) (2.60 g) was added under ice-cooling 4N-hydrogen chloride/dioxane solution (25 ml) and the mixture was stirred at room temperature for 30 minutes. The mixture was concentrated under a reduced pressure, and the residue was dissolved in water (I00 ml) and sodium carbonate (I.05 g) was added to the resultant solution. The precipitated crystalline substance was collected by filtration, thoroughly washed with water and dried to obtain N-(trans-4-aminomethylcyclohexylcarbonyl)-L-phenylalanine 4-acetylanilide (V) (I.90 g).

Example 2

Synthesis of N-(trans-4-aminomethylcvclohexylcar-bonyl)-4-benzyloxy-L-phenylalanine 4-acetylanilide (Compound No. 3)

Trans-4-(t-butyloxycarbonyl)aminomethylcyclohexylcarboxylic acid (I.4I g) was made into a mixed acid anhydride following a conventional method. and 4-benzyloxy-Lphenylalanine-4-acetylanilide hydrochloride previously synthesized following a conventional method was added thereto and the mixture was stirred with addition of triethylamine (I.7 ml) at room temperature for 3 hours. Then, post-treatment was carried out following the procedure as described in Example I to give N-[trans-4-(t-butyloxycarbonyl)aminomethylcyclohexylcarbonyl]-4-benzyloxy-Lphenylalanine 4-acetylanilide (I) (2.46 g).

The above compound (I) (2.40 g) was treated with 4N-hydrogen chloride/dioxane and, following the procedure of Example I, N-(trans-4-aminomethylcyclohexylcarbonyl)-4-benzyloxy-L-phenylalanine 4-acetylanilide (II) (I.50 g) was obtained.

Example 3

Synthesis of N-(trans-4-aminomethylcyclohexylcar-bonyl)-4-hydroxy-L-phenylalanine 4-acetylanilide - (Compound No. 4)

Ethanol was added to the N-(trans-4-aminomethylcyclohexyl-carbonyl)-4-benzyloxy-L-phenylalanine 4-acetylanilide prepared in Example 2 (100 mg), palladium black (20 mg) and cyclohexene (2.5 ml) and the mixture was stirred under reflux of ethanol for 30 minutes. The solid was collected by filtration, and concentrated to obtain N-(trans-4-aminomethylcyclohexylcarbonyl)-4-hydroxy-L-phenylalanine 4-acetylanilide (79 mg).

Example 4

Synthesis of N-(trans-4-aminomethylcyclohexylcar-bonyl)-4-(4-chlorobenzyloxy)-L-phenylalanine 4-acetylanilide (Compound No. 5)

N-(t-butyloxycarbonyl)-4mixture of benzyloxy-L-phenylalanine 4-acetylanilide (I) (4.88 g), palladium black (0.60 g), cyclohexene (15 ml) and ethanol (100 ml) was subjected to the reaction under reflux of ethanol for I hour. After cooling, the solid was filtered off and the filtrate was concentrated to obtain : N-(t-butyloxycarbonyl)-4hydroxy-L-phenylalanine 4-acetylanilide (II) (3.90 g). The compound (II) without purification was dissolved in N,N-dimethylformamide (100 ml) and the solution was stirred with addition of sodium hydride (60% content) (0.44 g) at room temperature for 30 minutes. To this solution was added 4-chlorobenzyl chloride (I.6I g) and the reaction was carried out at room temperature for 10 hours. ice-water (500 ml) was added to the reaction mixture, and the precipitated crystalline substance was collected by filtration, thoroughly washed with water and dried to N-(t-butyloxycarbonyl)-4-(4-chlorobenzyloxy)-L-phenylalanine 4-acetylanilide (III) (3.65 g). The compound (III) was treated in a conventional manner to synthesize N-(trans-4-aminomethylcyclohexylcarbonyi)-4-(4-chlorobenzyloxy)-Lphenylalanine 4-acetylanilide (IV).

Example 5

Synthesis of N-(trans-4-aminomethylcyclohexylcar-bonyl)-4-methoxy-L-phenylalanine 4-acetylanilide : (Compound No. 8)

N-(t-butoxyoxycarbonyl)-4-benzyloxy-Lph nylalanine 4-acetylanilide (0.49 g), palladium black (0.10 g) and cyclohexene (4 ml) were reacted with ethanol (20 ml) under reflux for I hour. After cooling, the solid was filtered off and the filtrate

30

40

50

55

was concentrated under reduced pressure to obtain N-(t-butyloxycarbonyl)-4-hydroxy-L-phenylalanine 4-acetylanilide (I) (0.39 g). The compound (I) was dissolved in dimethylformamide (6 ml) and oily sodium hydride (0.04 g) was added to the r_sultant solution. The mixture was stirred at room temperature for 30 minutes. To this mixture was added a dimethylformamide (2 ml) solution of methyl iodide (0.15 g) and the reaction was carried out at room temperature for 6 hours. Ice-water was added to the reaction mixture, and the resultant oily substance was extracted with ethyl acetate. After a conventional treatment, N-(t-butyloxycarbonyl)-4methoxy-L-phenylalanine 4-acetylanilide (II) (0.21 g) was obtained. N-(trans-4-aminomethyl cyclohexylcarbonyl)-4-methoxy-L-phenylalanine etylanilide (0.08 g) was obtained from the compound (II) (0.19 g), following the procedure of Exam-

Example 6

Synthesis of N-(4-aminomethylbenzoyl)-4-hydroxy-L-phenylalanine 4-benzoylanilide (Compound No. 10)

N-(4-benzyloxycarbonylaminomethylbenzoyl)-4-benzyloxy-L-phenylalanine 4-benzoylanilide (I) - (0.20 g) was dissolved in 30% hydrobromic acid/acetic acid solution (I0 mI) and the solution was stirred at room temperature for 30 minutes. Excessive reagent was removed with ether by decantation, water was added to the residue and the mixture was made alkaline with sodium carbonate, followed by extraction with methylene chloride. According to a conventional method, N-(4-aminomethylbenzoyl)-4-hydroxy-L-phenylalanine 4-benzoylanilide (II) (0.II g) was obtained.

Example 7

Synthesis of N-(trans-4-aminomethylcyclohexylcar-bonyl)-4-benzyloxy-L-phenylalanine 3-pyridylamide dihydrochloride (Compound No. 16)

N-(t-butyloxycarbonyl)-4-benzyloxy-L-phenylalanine (I) (3.71 g) was dissolved in dry tetrahydrofuran (I00 ml) and, under Ice cooling, triethylamine (I.5 ml) was added thereto. After stirring for I5 minutes, ethyl chlorocarbonate (I.10 g) was added, followed by stirring for 30 minutes. To this solution was added 3-aminopyridine (0.94 g) and the reaction was carried out at room temperature for 7 hours. The solid was filtered off and the filtrate was concentrated under reduced pressure.

The residue was extracted with ethyl acetate. After a conventional post-treatment, N-(t-butyloxycarbonyl)-4-benzyloxy-L-phenylalanine 3-pyridylamide (II) (I.01 g) was obtained.

The compound (II) (0.90 g) was dissolved in dry 1,4-dioxane (10 ml) and, to this solution, 4N hydrogen chloride/dioxane solution (25 ml) was added and, at room temperature, the mixture was stirred for I hour. The precipitated substance was collected by filtration and dried. This product was added to a mixed acid anhydride, which was previously synthesized from 4-(t-butyloxycarbonyl)aminomethyl cyclohexyl carboxylic acid (0.54 g), triethylamine (0.31 ml), and ethyl chlorocarbonate -(0.23 g). Furthermore, to this mixture were added triethylamine (0.62 ml) and N,N-dimethylformamide (5 ml) followed by stirring at room temperature for 3 hours. To the reaction mixture was added icewater (100 ml) and the precipitated substance was collected by filtration. After thoroughly washing with water and drying, N-(trans-4-(t-butyloxycarbonyl)aminomethylcyclohexylcarbonyl-4-benzyloxy-Lphenylalanine 3-pyridylamide (III) (0.98 g) was obtained.

The compound (III) (0.95 g) was dissolved in dry I,4-dioxane (I0 mI) and, to this solution, 4N-hydrogen chloride/dioxane solution (20 mI) was added, followed by stirring at room temperature for 2 hours. The precipitated substance was collected by filtration and dried to obtain N-(trans-4-aminomethylcyclohexylcarbonyl)-4-benzyloxy-L-phenylalanine 3-pyridylamide dihydrochloride (0.90 g).

Example 8

Synthesis of N-(trans-4-aminomethylcyclohexylcarbonyl)-4-phenacyloxy-L-phenylalanine cyclohexylamide hydrochloride (Compound 23)

N-(t-butyloxycarbonyl)-4mixture of benzyloxy-L-phenylalanine cyclohexylamide (0.68 g) obtained in Example 4, palladium black (0.10 g). cyclohexene (4 ml), and ethanol (20 ml) was allowed to react under reflux of ethanol for one hour, while stirring. After cooling, the solid was filtered off and the filtrate was concentrated under reduced pressure to obtain N-(t-butyloxycarbonyl-4-hydroxy-L-phenylalanine cyclohexylamide (I) (0.54 g). The compound (i) (0.54 g) was dissolved, without purification, in N,N-dimethylformamide (I0 ml), followed by adding sodium hydride (0.06 g) thereto. The mixture was stirred at room temperature for 30 minutes. To this solution was added a solution of phenacyl bromide (0.30 g) in N,N-dimethylformamide (5 ml). The reaction was carried out at room temperature for 4 hours, followed by adding

ice-water ther to. The r sultant oily product was extracted with ethyl acetate. After a conventional post-treatment, N-(t-butyloxycarbonyl)-4-phenacyloxy-L-phenylalanine cyclohexylamide (II) - (0.6I g) was obtained. From the compound (II), N-(trans-4-aminomethylcyclohexylcarbonyl)-4-phenacyloxy-L-phenylalanine cyclohexylamide hydrochloride (0.38 g) was obtained, following the procedure of Example 7.

Example 9

Synthesis of N-(trans-4-aminomethylcyclohexylcarbonyl)-4-nitro-D.L-phenylalanine 4-benzoylanilide hydrochloride (Compound No. 31)

y 4 8 6 64 N-(t-butyloxycarbonyl)-4-nitro-D,Lphenylalanine (0.95 g) and triethylamine (0.4 ml) were dissolved in dry tetrahydrofuran (15 ml), and ethylchlorocarbonate (0.33 g) was added under icecooling to the resultant solution, followed by stirring for 20 minutes. 4-benzoylaniline (0.6 g) was added to the solution and the mixture was further stirred at room temperature for 12 hours. According to a conventional post-treatment, 0.98 g of N-(t-butyloxycarbonyl)-4-nitro-D,L-phenylalanine 4-benzovlanitide (I) was obtained. To the above compound (I) (0.37 g) was added 4N-hydrogen chloride/dioxane solution (I.5 ml) and the mixture was stirred at room temperature for I hour. The solid precipitated by addition of ethyl ether (10 ml) into this solution was collected by filtration to give 0.33 g of 4-nitro-D,L-phenylalanine 4-benzoylanilide hydrochloride (II). Trans-4-(t-butyloxycarbonyl)aminomethylcyclohexylcarboxylic acid (0.2 g) and triethylamine (0.2 ml) were dissolved in dry tetrahydrofuran (15 ml) and ethyl chlorocarbonate -(0.09 g) was added to the solution under icecooling, followed by stirring for 20 minutes. To this solution was added the above compound (II) (0.33 g) and the mixture was stirred at room temperature for 12 hours. According to a conventional posttreatment, 0.29 g of N-[trans-4-(t-butyloxy carbonyl)aminomethylcyclohexylcarbonyl]-4-nitro-D,Lphenylalanine 4-benzoylanilide (III) was obtained. The above compound (III) (0.29 g) was dissolved in 4N-hydrogen chloride/dioxane solution (I ml), the solution was stirred at room temperature for I hour and then ether (8 ml) was added. The crystalline substance precipitated was collected by filtration and subjected to a conventional post-treatment, whereby 0.24 g of N-(trans-4-aminomethylcycloh xylcarbonyl)-4-nitro-D,L-phenylalanin 4-benzoylanilide hydrochloride was obtained.

Synthesis of N-(trans-4-aminomethylcyclohexylcarbonyl)-4-benzyloxy-L-phenylalanine 4-cis/transmethylcyclohexylam:ide hydrochloride (Compound No. 34)

Triethylamine (I.5 ml) was added to a solution of N-(t-butyloxycarbonyl)-4-benzyloxy-L-phenylalanine (I) (2.0 g) dissolved in dry tetrahydrofuran (30 ml) and ethyl chlorocarbonate - (0.65 g) was added under ice-cooling, followed by stirring for 30 minutes.

To this solution was added 4-cis/trans-methyl-cyclohexylamine (0.43 g) and the mixture was stirred at room temperature for I0 hours. After evaporation of the solvent, the residue was extracted with ethyl acetate washed with water and dried to give 2.3 g of N-(t-butyloxycarbonyl)-4-benzyloxy-L-phenylalanine 4-cis/trans-methyl-cyclohexylamide (II).

To the above compound (II) (I.0 g) was added under ice-cooling 4N-hydrogen chloride/dioxanesolution (4.5 ml) and the mixture was stirred at room temperature for 30 minutes. Hexane (30 ml) was added to this solution and the precipitated crystalline substance was collected by filtration, washed with ether and then dried under reduced pressure to give quantitatively 4-benzyloxy-Lphenylalanine: 4-cis/trans-methylcyclohexylamide hydrochloride (III). On the other hand, triethylamine (0.6 ml) was added to a solution of trans-4-(tbutyloxycarbonyl)aminomethylcyclohexylcarboxylic acid (0.62 g) dissolved in dry tetrahydrofuran (30 ml) and ethyl chlorocarbonate (0.25 g) was added under ice-cooling, followed by stirring for 30 minutes. To this solution were added the above compound (III) (0.73 g) and triethylamine (I mi), and the mixture was stirred at room temperature for 3 hours. After evaporation of the solvent, the residue was extracted with ethyl acetate, washed with water and dried to give 0.2 g of N-[trans-4-(t-butyloxycarbonyl)aminomethylcyclohexylcarbonyl]-4benzyloxy-L-phenylalanine 4-cis/trans-methylcyclohexylamide (IV). To the above compound (IV) (0.2 g) was added under ice-cooling 4N-hydrogen chloride/dioxane solution (0.5 ml) and the mixture was stirred at room temperature for 30 minutes. Hexane (20 ml) was added to this solution and the precipitated crystalline substance was collected by filtration, washed with ether and then dried under a reduced pressure to give 0.1 g of N-(trans-4aminomethylcyclohexylcarbonyl)-4-benzyloxy-Lphenylalanine 4-cis/trans-methylcyclohexylamide hydrochloride.

Example II

Example 10

45

50

N-(trans-4-aminomethylcvclohexylcarbonyl)-4-(3chlorobenzyloxy)-L-phenylalanine 4-acetylanilide methane sulfonate (Compound No. 35)

N-(t-butyloxycarbonyl)-4-(benzyloxy)-Lphenylalanine 4-acetylanilide (1.2 g), palladium black (0.15 g) and cyclohexane (8 ml) were added into ethanol (40 ml) and the reaction was carried out under reflux of ethanol for I hour. After cooling. the mixture was filtered and a filtrate was concentrated under a reduced pressure to obtain N-(tbutyloxycarbonyl)-4-hydroxy-L-phenylalanine 4-acetylanilide (I) (0.99 g). The above compound (I) -(0.99 g) was dissolved in dimethylformamide (30 ml), added with oily sodium hydride (0.1 g) and the mixture was stirred at room temperature for 30 minutes. A solution of 3-chlorobenzylchloride (0.4 g) in dimethylformamide (5 ml) was allowed to react at room temperature for 6 hours, and the reaction mixture was poured into ice-water (I00 ml) and extracted with ethyl acetate. A conventional post-treatment was carried out to obtain N-(tbutyloxycarbonyl)-4-(3-chlorobenzyloxy)-Lphenylalanine 4-acetylanilide (II) (I.25 g). The above compound (II) (I.25 g) was allowed to react with 4Nhydrogen chloride/dioxane (I2 ml) to obtain 4-(3chlorobenzyloxy)-L-phenylalanine 4-acetylanilide -(III). The above compound (III) was suspended in dimethylformamide (I0 ml) -tetrahydrofuran (I0 ml) dry solution, and triethylamine (0.4 ml) and trans-4-(t-butyloxycarbonyl)aminomethylcyclohexylcarboxylic acid mixed acid anhydride were added under ice-cooling, followed by stirring for 30 minutes. Further, the reaction was 'carried out at room temperature for 3 hours. After a conventional post-treatment, N-[trans-4-(t-butyloxycarbonyl)aminomethylcyclohexylcarbonyl]-4-(3chlorobenzyloxy)-L-phenylalanine 4-acetylanilide -(IV) (I.3I g) was obtained. The above compound -(IV) (I.3I g) was allowed to react with 4N-hydrogen chloride/dioxane solution (IO ml) for I hour, and the crystalline substance precipitated by addition of hexane was collected by filtration. This was dissolved in water (100 ml) and the substance precipitated by addition of sodium carbonate was suspended in methanol (30 ml) - methylenechloride (30 ml) solution and methanesulfonic acid (0.13 g) was added to the suspension, followed by stirring at room temperature for I hour, to obtain a transparent solution. After evaporation of the solvent under reduced pressure, recrystallization from ethanolsolution gave N-(trans-4-aminomethylcyclohexylcarborryl)-4-(3-chlorobenzyloxy)-Lphenylalanine 4-acetylanilidemethanesulfonate (I.I g).

Example 12

Synthesis of N-(trans-4-aminomethylcyclohexyl carbonyl)-4-benzyloxy-L-phenylalanine 4-sulfamoylanilide hydrochloride (Compound No. 47)

Triethylamin (I.5 ml) was added to a solution of N-(t-butyloxycarbonyl)-4-benzyloxy-Lphenylalanine (I) (2 g) dissolved in dry tetrahydrofuran (30 ml) and ethyl chlorocarbonate (0.65 g) was added under ice-cooling, followed by stirring for 30 minutes. To this solution was added 4-sulfamoylahiline (0.65 g) and the mixture was stirred at room temperature for 10 hours. Posttreatment was carried out in the same manner as in Example I to give I.3 g of N-(t-butyloxycarbonyl)-4benzyloxy-L-phenylalanine 4-sulfamoylanilide (II). To the above compound (II) (0.5 g) was added under ice-cooling 4N-hydrogen chloride/dioxane solution (3 ml) and the mixture was stirred at room temperature for 30 minutes. Post-treatment conducted in the same manner as in Example I gave quantitatively 4-benzyloxy-L-phenylalanine 4-sul-famoylanilide hydrochloride (III). On the other hand, trans-4-(t-butyloxycarbonyl)aminomethylcyclohexylcarboxylic acid (0.25 g) and triethylamine (0.2 ml) were added, and ethyl chlorocarbonate (0.1 g) was added under ice-cooling, followed by stirring for 30 minutes. To this solution were added the above compound (III) (0.42 g) and triethylamine (I ml), and the mixture was stirred at room temperature for 3 hours. After ex-

aminomethylcyclohexylcarbonyl]-4-benzyloxy-L-phenylalanine 4-sulfamoylanilide (IV) was obtained. To the above compound (IV) (0.28 g) was added 4N-hydrogen chloride/dioxane solution (2 ml) and, after stirring at room temperature for 30 minutes, following the same procedure as in Example I, 0.15 g of N-(trans-4-aminomethylcyclohexylcarbonyl)-4-benzyloxy-L-phenylalanine 4-sulfamoylanilide hydrochloride was obtained.

traction with chloroform, according to the same

post-treatment as in Example I, 0.28 g of N-[trans-

Example 13

4-(t-butyloxycarbonyl)-

Synthesis of N-(trans-4-aminomethylcyclohexylcar-bonyl)-4-benzyloxy-L-phenylalanine 4-(2-chloro)-pyridylamide hydrochloride (Compound No. 59)

N-(t-butyloxycarbonyl)-4-benzyloxy-L-phenylalanine (I) (4.46 g) was dissolved in dry tetrahydrofuran (II0 mI) and triethylamine (I.80 mI) was added under ice-cooling, followed by stirring for I5 mlnutes. To this solution was added ethyl chlorocarbonate (I.44 g) and the mixture was stirred for 30 minutes. After adding 4-amino-2-chloropyridine (I.54 g), the reaction was carried out

35

45

15

20

25

35

40

at room temperature for 10 hours. The solid was filtered off and the filtrate was concentrated under a reduced pressure. The residue was extracted with ethyl acetate. The extract was purified with a column chromatography to obtain N-(t-butyloxycarbonyl)-4-benzyloxy-L-phenylalanine 4-(2-chloro)-pyridylamide (II) (0.60 g). Following the procedure of Example 7, the final compound N-(trans-4-aminomethylcyclohexylcarbonyl)-4-benzyloxy-L-phenylalanine 4-(2-chloro)pyridylamide hydrochloride (III) (0.67 g) was obtained from the compound (III).

Example 14

Synthesis of N-(trans-4-aminomethylcyclohexylcar-bonyl)-4-(4-toluenesulfonyloxy)-L-phenylalanine 4-acetylanilide hydrochloride (Compound No. 79)

. . .

N-(t-butyloxycarbonyl)-4-hydroxy-Lphenylalanine 4-acetylanilide (0.57 and triethylamine (0.5 ml) were dissolved in dichloromethane (IO ml) -tetrahydrofuran (IO ml) solution and 4-toluenesulfonyl chloride (0.38 g) was added at room temperature, followed by stirring for 3 hours. According to a conventional post-treatment, N-(t-butyloxycarbonyl)-4-(4-toluenesulfonyloxy)-Lphenylalanine 4-acetylanilide (I) (0.8 g) was obtained. The above compound (i) (0.8 g) was treated with 4N hydrogen chloride/dioxane solution (2.2 ml) to obtain 4-(4-toluenesulfonyloxy)-Lphenylalanine 4-acetylanilide hydrochloride (II) (0.7 g). On the other hand, trans-4-(t-butyloxycarbonyl)aminomethylcyclohexylcarboxylic acid (0.37 g) and triethylamine (0.4 ml) were dissolved in dry tetrahydrofuran (20 ml) and ethyl chlorocarbonate -(0.16 g) was added under ice-cooling, followed by stirring for 20 minutes. To this solution was added the above compound (II) (0.7 g) and the mixture was stirred at room temperature for I2 hours. According to a conventional post-treatment N-[trans-4-(t-butyloxycarbonyl)aminomethylcyclohexylcarbonyl]-4-(4toluenesulfonyloxy)-L-phenylalanine 4-acetylanilide (III) (0.32 g) was obtained. The above compound -(III) (0.32 g) was treated with 4N-hydrogen chloride/dioxane solution (I ml) to obtain N-(trans-4aminomethylcyclohexylcarbonyl)-4-(4toluenesulfonyloxy)-L-phenylalanine 4-acetylanilide hydrochloride (0.2 g).

Example 15

N-(4-aminomethylbenzovicarbonyl)-4-benzyloxy-Lphenylalanine 3.4-dimethylcyclohexylamide hydrochloride (Compound No. 80)

N-(t-butyloxycarbonyl)-4-benzyloxy-L-. phenylalanine (0.3 g) and 3,4-dimethylcyclohexylamine (0.1 g) were dissolved in dry methylene chloride (30 mI) and I-ethyl-3-(3dimethylaminopropyl)carbodiimide hydrochloride -(0.2 g) was added to the solution, followed by stirring at room temperature for I2 hours. According to a conventional post-treatment, N-(t-butyloxycarbonyl)-4-benzyloxy-L-phenylalanine 3.4-dimethylcyclohexylamide (I) (0.32 g) was obtained. The above compound (I) (0.3 g) was allowed to react with 4N-hydrogen chloride/dioxane solution to obtain 4-benzyloxy-L-phenylalanine 3,4-dimethylcyclohexylamide hydrochloride (II) (0.26 g). The above compound (II) (0.28 g) and 4-(t-butyloxycarbonyl)aminomethylbenzoic acid (0.16 g) were dissolved in dry methylene chloride (20 ml) -pyridinesolution, and I-ethyl-3-(3-dimethylaminopropyl)carbodilmide hydrochloride (0.15 g) was added to the solution. The reaction was carried out at room temperature for 12 hours. After a conventional posttreatment. N-[4-(t-butyloxycarbonyi)aminomethylbenzoyl]-4-benzyloxy-L-phenylalanine 3,4-dimethylcyclohexylamide (III) (0.23 g) was obtained. The above compound (III) was allowed to react with 4N-hydrogen chloride/dioxane solution to (2 ml) obtain N-(4-aminomethylbenzoyl)-4benzyloxy-L-phenylalanine 3,4-dimethylcyclohexylamide hydrochloride (0.18 g).

Example 16

Synthesis of N-(trans-4-aminomethylcvclohexylcar-bonyl)-4-(4-nitrophenyloxy)-L-phenylalanine 4-ac-etylanilide hydrochloride (Compound No. 95)

To a solution of N-(t-butyloxycarbonyl)-4hydroxy-L-phenylalanine 4-acetylanilide (I.59 g) in dimethyl sulfoxide (IO ml) were added potassium hydroxide (0.25 g) and 4-nitrobromobenzene (0.8) g), and the mixture was heated at 80 -90°C and stirred for 10 hours. After conventional post-treatment N-(t-butyloxycarbonyl)-4-(4-nitrophenyloxy)-Lphenylalanine 4-acetylanilide (I) (0.62 g) was obtained. The above compound (I) (0.6 g) was allowed to react with 4N-hydrogen chloride/dioxane solution obtain : 4-(4-nitrophenyloxy-Lto phenylalanine 4-acetylanilide hydrochloride, which was further allowed to react with trans-4-(t-butyloxycarbonyl)aminomethylcyclohexylcarboxylic mixed acid anhydride obtained in Example 5 to obtain . N-[trans-4-(t-butyloxycarbonyl)aminomethylcyclohexylcarbonyi]-4-(4-

35

nitrophenyloxy)-L-phenylalanine 4-acetylanilide (II) - (0.54 g). The above compound (II) (0.54 g) was allowed to react with 4N-hydrogen chloride/dioxane solution to obtain N-(trans-4-aminomethylcyclohexylcarbonyl)-4-(4-nitrophenoxy)-L-phenylalanine 4-acetylanilide hydrochloride (0.39 g).

Example 17

Synthesis of N-(4-aminomethylbenzoyl)-4-benzyloxy-L-phenylalanine 4-picolylamide dihydrochloride (Compound No. 96)

N-(t-butyloxycarbonyl)-4-benzyloxy-Lphenylalanine (I) (2.00 g) was dissolved in dry tetrahydrofuran (50 ml) and, under ice-cooling, triethylamine (0.81 ml) was added thereto. After stirring for 15 minutes, ethyl chlorocarbonate (0.64 g) was added thereto, followed by stirring for 30 minutes. To this solution was added 4-picolylamine (0.58 g) and the mixture was stirred at room temperature for 5 hours. The solid was filtered off and the filtrate was concentrated under reduced pressure. The residue was extracted with ethyl acetate. After a conventional post-treatment N-(t-butyloxycarbonyl)-4-benzyloxy-L-phenylalanine picolylamide (II) (I.60 g) was obtained. To the compound (II) (I.60 g) 4N-hydrogen chloride/dioxane solution (15 ml) was added, followed by stirring at room temperature for 30 minutes. The precipitated substance was collected by filtration and dried to quantitatively obtain 4-benzyloxy-L-phenylalanine 4-picolylamide dihydrochloride (III).

On the other hand, N-4-(t-butyloxycarbonyl)aminomethyl benzoic acid (0.60 g) was dissolved in dry tetrahydrofuran (10 ml) and N,N-dimethylformamide (5 ml) and, under ice-cooling, triethylamine (I.20 ml) was added thereto. After stirring for 15 minutes, ethyl chlorocarbonate (0.29 g) was added thereto, followed by stirring for 30 minutes. To this solution was added the above-prepared compound (III), followed by stirring for 3 hours at room temperature. The solid was filtered off and the filtrate was concentrated under reduced pressure. The residue was extracted with ethyl acetate and, after a conventional post-treatment, N-4-(t-butyloxycarbonyl)aminomethylbenzoyl-4-benzyloxy-Lphenylalanine 4-picolylamide (IV) (0.45 g) was obtained. To this compound (IV) (0.45 g) was added 4N hydrogen chloride/dioxane solution (4.5 ml) and the precipitated substance was collected by filtration. After drying, N-(4-aminomethylbenzoyl)-4benzyloxy-L-phenylalanine 4-picolylamide dihydrochloride (0.39 g) was obtained.

Synthesis of N-(4-aminomethylbenzoyl)-4-benzyloxy-L-phenylalanine cyclohexylamide hydrochloride (Compound No. II4)

N-(t-butyloxycarbonyl)-4-benzyloxy-L-phenylalanine (I) (2.0 g) dissolved in dry tetrahydrofuran (30 ml) and ethyl chlorocarbonate - (0.65 g) was added under ice-cooling, followed by stirring for 30 minutes.

To this solution was added cychlohexylamine - (0.43 g) and the mixture was stirred at room temperature for IO hours. After evaporation of the solvent, the residue was extracted with ethyl acetate, washed with water, and dried to obtain 2.3 g of N-(t-butyloxycarbonyl)-4-benzyloxy-L-phenylalanine cyclohexylamide (II).

To the above compound (II) (I.0 g) was added under ice-cooling 4N-hydrogen chloride/dioxane solution (4.5 ml) and the mixture was stirred at room temperature for 30 minutes. Hexane (30 ml) was added to this solution and the precipitatedcrystalline substance was collected by filtration, washed with ether and then dried under reduced pressure to quantitatively obtain 4-benzyloxy-Lphenylalanine cyclohexylamide hydrochloride (III). On the other hand, triethylamine (0.6 ml) was added to 4-(t-butyloxycarbonyl)aminomethylbenzoic acid (0.62 g) dissolved in dry tetrahydrofuran (30 mi) and ethyl chlorocarbonate (0.25 g) was added under ice-cooling, followed by stirring for 30 minutes. To this solution were added the above compound (III) (0.73 g) and triethylamine (I ml), and the mixture was stirred at room temperature for 3 hours. After evaporation of the solvent, the residue was extracted with ethyl acetate, washed with water and dried to obtain 0.2 g of N-[4-(t-butyloxycarbonyl)aminomethylbenzoyl]-4-benzyloxy-Lphenylalanine cyclohexylamide (IV). To the above compound (IV) (0.2 g) was added under ice-cooling 4N-hydrogenchloride/dioxane solution (0.5 ml) and the mixture was stirred at room temperature for 30 minutes. Hexane (20 ml) was added to this solution and the precipitated crystalline substance was collected by filtration, washed with ether and then dried under reduced pressure to obtain 0.1 g of N-(4-aminomethylbenzoyl)-4-benzyloxy-Lphenylalanine cyclohexylamide hydrochloride.

Example 19

Synthesis of N-(trans-4-aminomethylcyclohexylcar-bonyl)-4-benzyloxy-L-phenylalanine 4-trifluoromethylanilide hydrochloride (Compound No. II9)

Example 18

Triethylamine (I.5 ml) was added to a solution N-(t-butyloxycarbonyl)-4-benzyloxy-Lof phenylalanine (I) (2 g) dissolved in dry tetrahydrofuran (30 ml) and ethyl chlorocarbonate -(0.65 g) was added under ice-cooling, followed by stirring for 30 minutes. To this solution was added 4-trifluoromethylaniline (0.65 g) and the mixture was stirred at room temperature for 10 hours. Posttreatment was carried out in the same manner as in Example I to obtain I.3 g of N-(t-butyloxycarbonyl)-4-benzyloxy-L-phenylalanine trifluoromethylanilide (II). To the above compound -(II) (0.5 g) was added under ice-cooling 4N-hydrogen chloride/dioxane solution (3 ml) and the mixture was stirred at room temperature for 30 minutes. Post-treatment conducted in the same manner as in Example I gave quantitatively 4benzyloxy-L-phenylalanine 4-trifluoromethylanilide -(III). On the other hand, trans-4-(t-butyloxycarbonyl)aminomethylcyclohexylcarboxylic acld (0.25 g) and triethylamine (0.2 ml) were added, and ethylchlorocarbonate (0.1 g) was added under icecooling, followed by stirring for 30 minutes. To this solution were added the above compound (III) (0.42 g) and triethylamine (I ml), and the mixture was stirred at room temperature for 3 hours. After extraction with chloroform, according to the same post-treatment as in Example I, 0.28 g of N-{trans-4-(t-butyloxycarbonyi)aminomethylcyclohexylcarbonyl]-4-benzyloxy-Lphenylalanine 4-trifluoromethylanilide (IV) was obtained. To the above compound (IV) (0.28 g) was added 4N-hydrogen chloride/dioxane solution (2 ml) and, after stirring at room temperature for 30

Example 20

Synthesis of N-(trans-4-aminomethylcyclohexylcar-bonyl)-4-(5-nitro-2-pyridyloxy)-L-phenylalanine 4-acetylanilide hydrochloride (Compound No. 121)

minutes, following the same procedure as in Exam-

ple I, 0.15 g of N-(trans-4-aminomethylcyclohexyl-

trifluoromethylanilide hydrochloride was obtained.

carbonyl)-4-benzyloxy-L-phenylalanine

To a solution of N-(t-butyloxycarbonyl)-4-hydroxy-L-phenylalanine 4-acetylanilide (0.57 g) in dry dimethylsulfoxide (I0 ml) was added oily sodium hydride (0.07 g), followed by stirring at room temperature for 30 minutes. Then, 2-chloro-5-nitropyridine (0.28 g) was added and stirred at room temperature for I0 hours. After a conventional post-treatment, N-(t-butyloxycarbonyl)-4-(5-nitro-2-pyridyloxy-L-phenylalanine 4-acetylanilide (I) (0.70 g) was obtained. The abov compound (I) (0.70 g)

was tr ated with 4N hydrogen chloride/dioxane solution (I5 ml) to obtain 4-(5-nitro-2-pyridyloxy)-L-phenylalanine 4-acetylanilide hydrochloride (II) (0.65 g).

On the other hand, trans-4-(t-butyloxycarbonyl) aminomethylcyclohexylcarboxylic acid (0.37 g) and triethylamine (0.4 ml) were dissolved in dry tetrahydrofuran (20 ml) and ethyl chlorocarbonate -(0.16 g) was added under ice-cooling, followed by stirring for 20 minutes. To this solution was added the above compound (II) (0.65 g) and, after neutralizing with triethylamine, the mixture was stirred at room temperature for 12 hours. According to a conventional post-treatment N-[trans-4-(t-butyloxycarbonyl)aminomethylcyclohexylcarbonyl]-4-(5nitro-2-pyridyloxy)-L-phenylalanine 4-acetylanilide (III) (0.32 g) was obtained. The above compound (III) (0.32 g) was treated with 4N-hydrogen chloride/dioxane solution (I ml) to obtain N-(trans-4aminomethylcyclohexylcarbonyl)-4-(5-nitro-2pyridyloxy)-L-phenylalanine 4-acetylanilide hydrochloride (0.2 g).

25 Example 21

30

40

50

55

N-(trans-4-aminomethylcyclohexylcarbonyl)-4-(3cyanobenzyloxy)-L-ohenvialanine 4-acetylanilide hydrochloride (Compound No. 122)

N-(t-butyloxycarbonyi)-4-benzyloxy-Lphenylalanine 4-acetylanilide (l.2 g), palladium black (0.15 g) and cyclohexene (8 ml) were added into ethanol (40 ml) and the reaction was carried out under reflux of ethanol for I hour. After cooling, the mixture was filtered and a filtrate was concentrated under a reduced pressure to obtain N-(tbutyloxycarbonyl)-4-hydroxy-L-phenylalanine 4-acetylanilide (I) (0.99 g). The above compound (I) -(0.99 g) was dissolved in dimethylformamide (30 ml), added with oily sodium hydride (0.1 g) and the mixture was stirred at room temperature for 30 minutes. A solution of 3-cyanobenzylbromide (0.4 g) in dimethylformamide (5 ml) was added and allowed to react at room temperature for 6 hours, and the reaction mixture was poured into ice-water-(100 ml) and extracted with ethyl acetate. A conventional post-treatment was carried out to obtain N-(tbutyloxycarbonyi)-4-(3-cyanobenzyloxy)-Lphenylalanine 4-acetylanilide (II) (I.25 g). The above compound (II) (I.25 g) was allowed to react with 4Nhydrogen chloride/dioxane (I2 ml) to obtain 4-(3cyanobenzyloxy)-L-phenylalanine 4-acetylanilide -

Th abov compound (III) was suspended in dimethylformamide (I0 ml) -tetrahydrofuran (I0 ml) solution, and triethylamine (0.4 ml) and trans-4-(t-butyloxycarbonyl)aminomethylcyclohexylcarboxylic

40

acid mixed acid anhydride were added under leaccooling, followed by stirring for 30 minutes. Further, the reaction was carried out at room temperature for 3 hours. After a conventional post-treatment, N-[trans-4-(t-butyloxycarbonyl)-

aminomethylcyclohexylcarbonyl]-4-(3-

cyanobenzyloxy)-L-phenylalanine 4-acetylanilide - (IV) (I.3I g) was obtained. The above compound - (IV) (I.3I g) was allowed to react with 4N-hydrogen chloride/dioxane solution (I0 mI) for I hour, and the crystalline substance precipitated by addition of hexane was collected by filtration. The product was recrystallized from an ethanol-ether solution to obtain N-(trans-4-aminomethylcyclohexylcarbonyl)-4-(3-cyanobenzyloxy)-L-phenylalanine 4-acetylanilide hydrochloride (I.I g).

Example 22

Synthesis of N-(trans-4-aminomethylcyclohexylcarbonyl)-4-nitro-L-phenylalanine 4-acetylanilide hydrochloride (Compound No. 130)

N-(t-butyloxycarbonyl)-4-nitro-L-phenylalanine - (0.95 g) and triethylamine (0.4 ml) were dissolved in dry tetrahydrofuran (15 ml), and ethylchlorocarbonate (0.33 g) was added under ice-cooling to the resultant solution, followed by stirring for 20 minutes. 4-acetylaniline (0.6 g) was added to the solution and the mixture was further stirred at room temperature for 12 hours. According to a conventional post-treatment, 0.98 g of N-(t-butyloxycarbonyl)-4-nitro-L-phenylalanine 4-acetylanilide (I) was obtained.

To the above compound (I) (0.37 g) was added 4N-hydrogen chloride-dioxane solution (I.5 ml) and the mixture was stirred at room temperature for I hour. The solid precipitated by addition of ethyl ether (10 ml) into this solution was collected by filtration to give 0.33 g of 4-nitro-L-phenylalanine 4acetylanilide hydrochloride (II). Trans-4-(t-butyloxycarbonyl)aminomethylcyclohexylcarboxylic acid -(0.2 g) and triethylamine (0.2 ml) were dissolved in dry tetrahydrofuran (15 ml) and ethylchlorocarbonate (0.09 g) was added to the solution under ice-cooling, followed by stirring for 20 minutes. To this solution was added the above compound (II) -(0.33 g) and the mixture was stirred at room temperature for I2 hours. According to a conventional post-treatment, 0.29 g of N-[trans-4-(t-butyloxycarbonyl)aminomethylcyclohexylcarbonyl]-4-nitro-Lphenylalanine 4-acetylanilide (III) was obtained. The above compound (III) (0.29 g) was dissolved in 4Nhydrogen chloride/dioxane solution (I ml), the solution was stirred at room temperature for I hour and then ether (8 ml) was added. The crystalline substance precipitated was collected by filtration and subjected to a conventional post-treatment, whereby 0.24 g of N-(trans-4-aminomethylcyclohexylcarbonyl)-4-nitro-L-phenylalanine 4-acetylanilide hydrochloride was obtained.

Example 23

Synthesis of N-(trans-4-aminomethylcyclohexylcar-bonyl)-4-(3-chloro-6-nitrophenoxy)-L-phenylalanine 4-pyridylamide dihydrochloride (Compound No. 137)

To a solution of N-(t-butyloxycarbonyl)-4hydroxy-L-phenylalanine 4-pyridylamide (5.35 g) in dimethyl sulfoxide (I00 ml) was added oily sodium hydride (0.62 g), followed by stirring at room temperature for 30 minutes. Thereafter, 2,4-dichloronitrobenzene (2.88 g) was added and stirred at room temperature for 10 hours. After a conventional post-treatment, N-(t-butyloxycarbonyl)-4-(3-chloro--6-nitrophenoxy)-L-phenylalanine 4-pyridylamide dihydrochloride (6.66 g) was obtained. The above compound (I) (6.50 g) was allowed to react with 4N-hydrogen chloride/dioxane solution (50 ml) to obtain 4-(3-chloro-6-nitrophenoxy-L-phenylalanine 4-pyridylamide dihydrochloride, which was further allowed to react with trans-4-(t-butyloxycarbonyl)aminomethylcyclohexylcarboxylic acid mixed acid. anhydride obtained in Example 5 to obtain N-[trans-4-(t-butyloxycarbonyl)aminomethylcyclohexylcarbonyl]-4-(3-chloro-6nitrophenoxy)-L-phenylalanine 4-pyridylamide (II) -(7.16 g). The above compound (II) (7.00 g) was allowed to react with 4N-hydrogen chloride/dioxane solution (I50 ml) to obtain N-(trans-4-aminomethylcyclohexylcarbonyi)-4-(3-chloro-6-nitrophenoxy)-Lphenylalanine 4-pyridylamide (6.06 g).

Example 24

Synthesis of N-(trans-4-aminomethylcyclohexylcar-bonyl)4-(4-plcolyloxy)-L-phenylalanine 4-pic-pecolylamide (Compound No.165)

N-(t-butyloxycarbonyl)-4-benzyloxy-L-phenylalanine (I) (I.86 g) was dissolved in dry tetrahydrofuran (30 ml) and, under ice-cooling, triethylamine (0.75 ml) was added thereto. After stirring for I0 minutes, ethyl chlorocarbonate (0.56 g) was added and stirred for 30 minutes. To this solution was added a solution of 4-pipecoline (0.55 g) in dry tetrahydrofuran (5 ml). The ice bath was removed and the reaction was carried out at room temperature for 2 hours. The precipitate was filtered off and the filtrate was concentrated under reduced pressure. To the residue was added water

20

40

(50 ml), followed by extracting with ethyl acetate. After a conventional post-treatment N-(t-butylox-ycarbonyl)-4-benzyloxy-L-phenylalanine 4-pipecolylamide (II) (I.83 g) was obtained.

A mixtur of the above compound (II) (I.70 g), palladium black (0.20 g), cyclohexene (6 ml), and ethanol (50 ml) was reacted under reflux of ethanol. After cooling, the solid was filtered off and the filtrate was concentrated to obtain N-(t-butyloxycarbonyl)-4-hydroxy-L-phenylalanine 4-pipecolylamide (III) (I.38 a). The compound (III) was dissolved, without purification, in N,N-dimethylformamide (20 ml). To this solution was added oily sodium hydride (60% content) (0.16 g), followed by stirring at room temperature for 30 minutes. To this solution was added a solution of 4-picolyl chloride (0.50 g) in N,N-dimethylformamide (5 ml) and the reaction was carried out at room temperature for 7 hours, Ice water was added to the reaction mixture and the resultant oily product was extracted with ethyl acetate. After a conventional post-treatment, N-(t-butyloxycarbonyl)-4-(4-picolyloxy)-L-

phenylalanine 4-pipecolylamide (IV) (I.20 g) was obtained. From the compound (IV), N-(trans-4-aminomethylcyclohexylcarbonyl)-4-(4-picolyloxy)-L-phenylalanine-4-pipecolylamide (0.85 g) following the procedure of Example 6.

The phenylalanine derivatives or the salts thereof according to the present invention, which are an effective component of the proteinase inhibitor of the present invention, have very potent inhibition activities against proteinases such as plasmin, kallikrein, trypsin, and urokinase as shown in the below-mentioned test results. The plasmin inhibition activity is different from the effect exhibited by the antiplasmins of the prior art, when contrasted with known drugs of the prior art such as tranexamic acid or e-aminocaploic acid which selectively inhibits only plasmin among proteinases. For example, some effective ingredients of the proteinase inhibitor according to the present invention exhibit an inhibition activity against urokinase, which is a plasminogen activating enzyme as is well known. This means that the inhibition of this enzyme can provide preferable hemostatics. On the other hand, some of the proteinase inhibitors according to the present invention inhibit antikallikrein activity and antitrypsin activity. This means that these inhibition activities can provide, together with the antiplasmin activity, a strong antiinflammatory agent. For example, the Compound No. 3 in Table 3 is known as the phenylalamine derivative having the structure similar to that of the present invention (see Pharmazie 39, H, I, 68,1984). Furth rmore, the Compound Nos. 4, 5, 6, and 7 are known as phenylalamine derivativ s (see Chem. Abst. 77. 102225j; 86, 39312d; and 80, 92633m).

In the following, antiplasmin activity, antikallikrein activity, antitrypsin activity, antiurokinase activity and antithrombin activity of the present compounds are described in detail by referring to typical test examples.

The measurement methods employed in the following test examples are as described below. The test results are shown in Table 2 by referring to the compound Nos. in the above Table I for the compounds of the present invention, and the test results are shown in Table 4 by showing the structures of the compounds in Table 3 for the commercially available antiplasmins as Comparative Examples.

(I) Evaluation of Antiplasmin Activity

(i) <u>Determination</u> of inhibition activity for fibrin decomposition

An inhibitor sample is dissolved in a 0.18 M borate-physiological salt buffer solution (pH = 7.4) to make the total volume to 600 μ l. To this buffer solution, 200 μ l of a 0.2% bovine fibrinogen, 100 μ l of a 0.3 casein unit/ml human plasmin solution, and 100 μ l of a 50 unit/ml bovine thrombin solution, all dissolved in the above-mentioned buffer, are added at a temperature of 37°C in a constant temperature bath. Then, the dissolution time of the fibrin mass formed above is determined. Thus, the concentration I_{50} of the inhibitor sample (i.e., 50% inhibition concentration, μ mol), at which the dissolution time obtained in the absence of the inhibitor (i.e., about 5 minutes) is extended twice, is determined.

(ii) <u>Determination of inhibition activity for S-2251</u> <u>decomposition</u>

An Inhibitor sample is dissolved in a 0.05 M Tris-hydrochloric acid buffer solution (pH = 7.4) to make the total volume to 400 μ l. To this solution, 50 μ l of a 3 mM S-225l solution is added and the mixture is incubated at a temperature of 37°C for 5 minutes in a constant temperature bath. Then, 50 μ l of a 0.2 casein unit/ml human plasmin is added and the mixture is Incubated at a temperature of 37°C for 4 minutes. Thereafter, the reaction is stopped by adding 50 μ l of 50% acetic acid.

The absorbance of p-nitroaniline formed in the reaction mixture is determined at 405 nm. Thus, the concentration I_{50} (µmol) of the inhibitor sample, at which the absorbance is one half (i.e., V2) of that obtained in the absence of the inhibitor, is determined.

25

30

45

50

(iii) Determination of inhibition activity for fibrinogen

An inhibitor sample is dissolved in a 0.18 M borate-physiological salt buffer solution (pH = 7.4) to make the total volume to 400 µl. To this solution, 500 µl of a 0.4% bovine fibrinogen solution and 100 ul of a l casein unit/ml human plasmin solution, all dissolved in the above-mentioned buffer are added at a temperature of 37°C in a constant temperature bath. After the mixture is allowed to stand at a temperature of 37°C for IO minutes, 3800 µI of the above-mentioned buffer containing I3.2 mM of tranexamic acid and 200 µl of a 50 unit/ml bovine thrombin solution are added to terminate the reaction. The mixture is incubated at a temperature of 37°C for 15 minutes to form the fibrin. The fibrin clot thus formed is adhered to or wound around a glass rod and is then washed with water. The amount of the remaining fibrinogen is determined according to a tyrosine coloring method using a phenol reagent (see J. Biol. Chem., 73, 627 (1927)). From the amount of the remaining fibringen thus determined, the amount of decomposed fibringen is calculated. Thus, the concentration Iso (µmol) of the inhibitor sample, at which the amount of decomposed fibrinogen is one half (i.e., 1/2) of that obtained in the absence of the inhibitor sample, is determined.

(2) Evaluation of Antithrombin Activity

(i) Determination of inhibition activity against fibrin formation

An inhibitor sample is dissolved in a 0.18 M borate-physiological salt buffer solution (pH = 7.4) to make the total volume to 500 μ l. To this solution, 400 μ l of a 0.2% bovine fibrinogen solution and 100 μ l of a 4 unit/ml bovine thrombin solution are added at a temperature of 37°C, in a constant temperature bath. Thus, a coagulation time is determined. The inhibitor concentration I_{50} (μ mol), at which the coagulation time obtained in the absence of the inhibitor is extended twice, is determined.

(ii) <u>Determination of inhibition activity for S-2238</u> decomposition

An inhibitor sample is dissolved in a 0.05 M Tris-hydrochloric acid buffer solution (pH = 8.3) to make a total volume of 400 μ l. To this solution, 50 μ l of a 0.2 mM S-2238 solution is added and the mixture is incubated at a temperature of 37°C for 5 minutes in a constant temperature bath. Then, 50 μ l of a 0.2 unit/ml bovine thrombin solution is added thereto and the absorbance, at 405 nm, of

the p-nitroaniline formed per minute is determined at a temperature of 37°C by using the so-called initial velocity method. Thus, the concentration l_{∞} - (μmol) of the inhibitor sample at which the absorbance is one half (i.e., l/2) of that obtained in the absence of the inhibitor sample, is determined.

(3) Evaluation of Antitrypsin Activity Determination of inhibition activity against S-2238 decomposition

An inhibitor sample is dissolved in a 0.05 M Tris-imidazole buffer solution (pH = 8.l) and l25 μ l of a I mM S-2238 solution is added to make the total volume to l.20 ml. The mixture is incubated at a temperature of 37°C for 5 minutes in a constant temperature bath. To this mixture, 0.05 ml of bovine trypsin is added and the absorbance, at 405 nm, of the p-nitroaniline formed per minute is determined at a temperature of 37°C by the so-called initial velocity method. Thus, the concentration $l_{\rm so}$ -(μ mol) of the inhibitor sample, at which the absorbance is one half (i.e., l/2) of that obtained in the absence of the inhibitor sample, is determined.

(4) Evaluation of Anti-Plasma Kallikrein Activity Determination of inhibition activity for S-2302 decomposition

An inhibitor sample is dissolved in a 0.05 M Tris-hydrochloric acid buffer solution (pH = 7.8) to make the total volume to 400 µl. To this solution, 50 µl of a 2 mM S-2302 solution is added and the mixture is incubated at a temperature of 37°C for 5 minutes in a constant temperature bath. Then, 50 μl of a 0.12 unit/ml human plasma kallikrein is added and the mixture is incubated at a temperature of 37°C for 5 minutes. Thereafter, 50 µl of 50% acetic acid is added to terminate the reaction. The absorbance of the p-nitroaniline formed in the reaction mixture is measured at 405 nm. Thus, the concentration Is (umol) of the inhibitor sample, at which the absorbance is one half (i.e., 1/2) of that obtained in the absence of the inhibitor sample, is determined.

(5) Evaluation of Antiurokinase Activity Determination of inhibiton activity for S-2444 decomposition

An inhibitor sample is dissolved in a 0.05 M Tris-hydrochloric acid buffer solution (pH = 8.8) to make the total volume to 400 μ l. To this solution, 50 μ l of a l mM S-2444 solution is added and the mixture is incubated at a temperature of 37°C for 5 minutes in a constant temperatur bath. Then, 50 μ l of a 500 unit/ml human urokinase is added and

the mixture is incubated at a temperature of 37°C for 5 minutes. Thereafter, 50 μ l of 50% acetic acid is added to terminate the reaction. The absorbance of the p-nitroaniline formed in the reaction mixture is measured at 405 nm. Thus, the concentration l_{50} (μ mol) of the inhibitor sample, at which the absorbance is one half (i.e., 1/2) of that obtained in the absence of the inhibitor sample, is determined.

When the compounds of the present invention are used as a medicine, there are no critical limitations to the administration methods. The present proteinase inhibitor can be formulated by any con-

ventional method in pharmaceutics. For example, the present proteinase inhibitor may be applied in any conventional manner including intravenous injection, intramuscular injection, instillation, and oral administration. Although there are no critical limitations to the administration dosage, the suitable dosage is 100 to 1000 mg/day/person, which can be conveniently decreased or increased as desired, as a matter of course.

Urokinase	8-2444	11	28	31	25	42	11	80	45	23	19	120	560	330	. 08	3.3	11	40	001	>400	32	09	70	130	>200 ·
Plasma Kallikrein	S-2302	1.9	0.85	0.63	0.46	2.0	0.84	2.1	1.7	0.56	1.2	0.16	2.1	1.1	0.37	0.9	8.5	0.38	1.2	09	1.2	1.2	0.46	4.5	. 100
Trypsin	5-2238	0.30	1.3	0.77	0.84	1.1				•				3.1	1.0		0.52	. 1.0	0.82	2.5	1.8	1.1	0.84	7.5	22
nbdn	Fibrinogen	> 50	>1000	>100		>500	•	>200	>500			. >25	×100	>25	>50	×100	>200	>50	>20	>50	>200	×100		>200	>100
upqueauff {	5-2238	>100	>1000	>200	٠	230		>400	>400			>50	>100	>50	280	×100	>200	>100	>125	>50	×1000	>500		>400	>200
	Fibrin	40	21	0.40	0.39	4.6	0.41	4.4	2.9	0.28	0.28	0.31	1.1	0.35	0.95	3.3	. 12	0.095	0.41	0.41	99.0	0.95	0.091	1.0	3.4
Plasmin	S-2251	27	36	8.1	0.00	1.3		891	6.1	1.5	1.3	1.4	6.9	3.1	1.4	14	13	08.0	1.7	2.3	3.4	3.8	0.58	8.9	5.3
Campound	ģ		7	ო	lo	6	12	14	16	17	19	20	26	29	30	31	33	35	36	38	40	44	45	. 24	48

able 2 (Continued)

		 																						1
Urokinase	8-2444	. 35	57 .	46	45 .	. > 150	40	>500	×100	65	×200 ·	350	40	25	82	>200	>200	65	>250	>200	~400	>400	58	23
Plasma Kallikrein	S-2302	0.45	0.42	0.76	. 1.4	2.8	0.42	8.3	24	. 2.3	22	0.54	1.2	1.2	6.2	25	>200	. 2.4	. > 200	100	17	40	0.51	0.42
Trypsin	8-2238	1.0	2.8	1.2	0.73	1.3	0.67	2.4	07	1.1	5.0	3.9	0.44	1.0	1.3	0.95	450	1.1	38	9.2	0.45	7.0	1.5	. 0.97
Thrombin	Fibrinoœn	>100	>50	×100	>200	×20	>250	· >100	¥20	>250	>20	· >50	^ 20	>200	^ 20	> 25	>400	×100	>25	> 50	> 50	> 25	×20	>50
4	8-2238	>200	>125	200	730	>125	>125	>200		>400		>50	-	>400	170	×20	>400	>125	>50	> 20	>100	>50	>200	>100
	Fibrin	0.19	0.29	.0.29	3.3	0.72	0.18	0.58	1.4	0.49	1.0	0.092	0.14	0.65	0.63	0.62	210	.0.88	2.4	0.75	0.33	2.8	0.21	0.35
Plasma	S-2251	1.0	1.2	1.9	4.6	3.4	4.	1.8	5.6	2.5	2.9	0.80	1.1	1.2	1.7	2.1	220	5.6	5.8	3.8	1.1	8.5	0.89	0.95
Compound	Ŋ.	. 24	22	. 56	57	28	29	62	63	64	65	99	67	89	20	72	73	75	92	. 82	80	83	83 .	. 86

		•																							
Urokinase	S-2444	>200	82	8.0	>200	320	· 001 <	>200	>150	>200	>300	>20	×100	>150	18	34	26	47	6.3	20	82	34	>250	37	>1000
Plasma Kallikrein	S-2302	120	1.2	0.14	350	3.5	18	40	19	, 02	>50	> 25	40	3.7	0.18	0.43	0.078	0.38	3.5	0.41	0.44	8.3	17	99.0	>1000
Trypsin	S-2238	23	2.5	1.5	22	1.3	1.2	2.5	3.0	0.43	5.8	18	9.5	3.0	0.24	1:0	0.71	08.0	0.45	1.8	1.3	0.50	4.4	1.2	
Thrombin	Fibrinogen	. >20	>100	×100	> 250	×50	•	×20	×20	×40		>50		×20	>200	>50	×20		>200	> 50	>100	>400	>200	>200	≻1000 ·
Th	S-2238	>200	>200	>400	. 001*	>400		>50		>50	>50			>50	280	>200	95	٠		>200	0001 <	>400	>200	>400	>1000
	Fibrin ·	>20	0.32	0.27	81	0.16	0.12	2.6	0.54	0.27	1.1	1.7	1.4	0.77	0.43	0.31	0.28	0.13	0.83	0.29	0.30	7.1	26	0.58	190
Plasmin	5-2251	33	1.6	0.63	29	0.69	0.78	4.2	1.4	0.58	5.2	8.3	3.2	3.4	0.95	1.1	0.39	0.49	1.5	1.5	1.4	. 15	170	0.90	>1000
Octropound	.Ņ	88	83	92	96	102	103	105	106	109	111	113	114	118	121	122	123	125	126	127	128	130	131	137	139

ble 2 (Continued)

, Compound	Plasnin		AT.	Thrombin	ujsandi	Plasma Kallikrein	Urokinase
Ŋ.	8-2251	Fibrin	5-2238	Fibrinogen	5-2238	S-2302	S-2444
140	8.8	2.5	- 200 -	>200		18	×100
144	0.23	0.051		×20	0.95	0.37	43
145	0.56	0.075	. 86	>20		0.75	31
146	19.0	0.29	×100	×100		0.58	45

Table 3

Table 4

Compound	Plasmi	n	Throm	bin	Trypsin	Plasma	Urokinase
No.	S-2251	fibrin	S-2238	Fibrinogen	S-2238	Kallikrein S-2302	S-2144
1 .	75,000	60	>1,000	>1,000	>1,000	>1,000	>1,000
2	180,000	200					
3	>1,000	>1,000	>1,000	>1,000	>300	>1,000	>1,000
4	>200	>200	· >200	>200		>200	>200
5	>100	>100	>100	>100	>150	>100	>100
. 6	>200	>200	>200	>200		>200	>200
7	>1,000	>1,000	>1,000	>1,000	>300	>1,000	>1,000 .
			,				

Claims

40

I. A phenylalanine derivative having the formula (I):

$$\begin{array}{c}
 & * \\
 & R^{1} \\
 & R^{2}
\end{array}$$

$$\begin{array}{c}
 & * \\
 & R^{2} \\
 & R^{2}
\end{array}$$

$$\begin{array}{c}
 & * \\
 & R^{2}
\end{array}$$

$$\begin{array}{c}
 & * \\
 & R^{2}
\end{array}$$

$$\begin{array}{c}
 & * \\
 & R^{2}
\end{array}$$

20

25

35

40

where R' and R' are, independently, hydrogen provided that both R' and R' are not hydrogen at the same time:

C₁-C₂ alkyl which may be substituted with hydroxy, hydroxycarbonyl, C₁-C₄ alkoxycarbonyl, C₁-C₄ alkylmercapto, C₁-C₄ alkoxy, carbamoyl, sulfamoyl, pyridyl, or phenyl which may further be substituted with nitro, C₁-C₄ alkoxy, or halogen;

C₄-C₂ cycloalkyl which may be substituted with hydroxy, C₁-C₄ alkoxy, hydroxylcarbonyl, C₁-C₄ alkoxycarbonyl, or C₁-C₅ alkyl;

phenyl which may be substituted with halogen, nitro, trifluoromethyl, C₁-C₄ alkoxy, C₁-C₄ alkylmercapto, C₁-C₄ alkylcarbonyl, phenylcarbonyl, hydroxycarbonyl, C₁-C₄ alkoxycarbonyl, carbamoyl, sulfamoyl, amidino, pyridylcarbonyl, or C₁-C₅ alkylwhich may further be substituted with C₁-C₄ alkylcarbonyl, hydroxycarbonyl, or C₁-C₅ alkoxycarbonyl;

pyridyl which may be substituted with halogen or C₁-C₄ alkoxy;

pyrimidyl;

N-benzylazacyclohexyl; and

R¹ and R² may form with the nitrogen atom attached thereto a ring structure as morpholino; thiomorpholino; or piperadyl which may be substituted with phenylcarbonyl, benzyl, or C₁-C₄ alkyl;

pyrrolidyl which may be substituted with hydroxycarbonyl or C,-C4 alkoxycarbonyl; and

pyperidine substituted with C,-C, alkyl, phenyl C,-

C4 alkyl, phenylcarbonyl, or C1-C4 alkoxycarbonyl;

X is hydrogen; nitro; amino; or -OZ wherein Z is hydrogen; C₁-C₄ alkyl; C₂-C₄ alkenyl; benzyl which may be substituted with halogen, C₁-C₄ alkoxycarbonyl, or cyano; phenylcarbonylmethyl, pyridylmethyl; phenyl which may be substituted with nitro or halogen; pyridyl or pyrimidyl which may be substituted with nitro; phenylsulfonyl which may be substituted with C₁-C₄ alkyl; or benzyloxycarbonyl which may be substituted with halogen;

n is 4 to 10; and

the mark * indicates that the configuration of the carbon may be either one of D-configuration, L-configuration and DL-configuration or a pharmaceutical acceptable sait thereof.

- 2. A phenylalanine derivative as claimed in claim I, wherein the pharmaceutically acceptable salt is at least one salt selected from the group consisting of hydrochloride, hydrobromide, hydroiodide, sulfate, nitrate, phosphate, oxalate, succinate, glycolate, malate, citrate, lactate, benzene sulfonate, toluene sulfonate, and methane sulfonate.
- 3. A proteinase inhibitor comprising as an essential component the phenylalanine derivative of claim I or the pharmaceutically acceptable salt thereof.
- 4. A proteinase inhibitor as claimed in claim 3, wherein the pharmaceutically acceptable salt is at least one salt selected from the group consisting of hydrochloride, hydrobromide, hydroiodide, sulfate, nitrate, phosphate, oxalate, succinate, glycolate, malate, citrate, lactate, benzene sulfonate, toluene sulfonate, and methane sulfonate.

50

EPO Form 1503 03 82

EUROPEAN SEARCH REPORT

	DOCUMENTS CONS	SIDERED TO BE	RELEVANT		EP 86113166.2
Category		th indication, where approvent passages	priate,	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int. CI.4)
D,X	CHEMICAL ABSTRA 1, July 2, 1984 USA			1,2	C 07 C 103/737 C 07 C 103/84 C 07 C 123/00
	B. VOIGT et al. different Na-ar benzoylated ami with aromatic a page 657, colum 7612p & Pharmaz	yl-sulfonyla no acid amid minomethyl g ns 1,2, abst	ted or es roups" ract-no		C 07 C 143/76 C 07 C 143/80 C 07 C 149/42 C 07 D 207/16 C 07 D 211/16 C 07 D 211/32 C 07 D 211/58 C 07 D 211/62
A	* Column 1, 2, line 28	et al.) line 20 - co		1	C 07 D 213/30 C 07 D 213/40 C 07 D 213/50 C 07 D 213/75 C 07 D 213/75 C 07 D 239/34
P,A	EP - A2 - 0 183	271 (SHOWA K.K.)	DENKO	1,3	C 07 D 239/42 C 07 D 295/18 C 07 D 307/14
	* Compounds stract *	No. 102-140;	ab-		TECHNICAL FIELDS SEARCHED (Int. Cl.4)
					C 07 C 103/00 C 07 D
			·		
	The present search report has b	ten drawn yn far all glaine			
	Place of search		<u> </u>		
	VIENNA ·	Date of completion of	-1986		Examiner HOFBAUER
Y : parti doci A : tech	CATEGORY OF CITED DOCU icularly relevant if taken alone icularly relevant if combined wi ument of the same category inological background written disclosure	MENTS T E th another D	: theory or prir : earlier patent after the filin : document cit : document cit	document, to date add in the appear of the a	ying the invention out published on, or

EUROPEAN SEARCH REPORT

		DERED TO BE RELEVAN Indication, where appropriate,	Relevant	CLASSIFICATION OF THE
ategory	of releva	nt passaged	to claim	APPLICATION (Int. CI.4)
				C 07 K 5/06 A 61 K 31/16
	•			A 61 K 31/16 A 61 K 31/34
				A 61 K 31/40
				A 61 K 31/435 A 61 K 31/505
		•		A 61 K 31/535
			·	A 61 K 31/54
	•			A 61 K 37/02
		•		
	· .	,		·
	*			,
				TECHNICAL FIELDS SEARCHED (Int. CI 4)
		•		
		•		
			,	
		*		
	*	•		γ, -
	The present search report has b	een drawn up for all claims	7	
	Place of search	Date of completion of the search	1	Examiner
	WIENNA	16-12-1986		HOFBAUER
	CATEGORY OF CITED DOCL	IMENTS <u>T</u> : theory or	principle und	erlying the invention
X : p	particularly relevant if taken alone	after the	filing date	nt, but published on, or
•	particularly relevant if combined w locument of the same category	L: document	it cited in the interest cited for the	er ressons
A: 1	echnological background non-written disclosure	å : member	of the same pr	stant family, corresponding