FYS3220 Oppgaver om Fourieranalyse

Rev: 06.09.2012

Innhold

Enkle fo	ourieranalyse oppgaver	1
1)	Tegn frekvensspekter for et sammensatt sinus signal	1
2)	Fra a_n og b_n til c_n og θ	2
Fourier	serieanalyse	2
3)	Analyse av firkant serie (trigonometrisk løsning)	2
4)	Analyse av firkant serie (kompleks løsning)	3
5)	FS av sinussymmetrisk firkantserie (Trigonometrisk løsning)	3
6)	FS av sinussymmetrisk firkantserie (Kompleks løsning)	4
7)	FS Firkant, tidsforskjøvet, Kompleks løsning	4
8)	FS Tidsforskyvning av firkant puls Kompleks løsning	5
9)	FS-Firkant Sinus symmetrisk	5
10)	FS Sagtann Trigonometrisk løsning	6
11)	FS Sagtann Kompleks løsning.	7
12)	FS sagtann med lik opp og ned form	7
13)	FS Halvsinusserie.	8
FI-Fourieranalyse av pulser		9
14)	FI Fourier integral analyse av enkel firkantpuls	9
15)	FI Fourier integraler, fra 1 til to pulser	9
16)	FI Fouriertransformasjon av rampe puls.	11
17)	FI Analyse av et signal som består av en del av en cosinus svingning	11
18)	Analyse av en kort sinus sekvens	12
19)	FI Fourier av $e^{-t/\tau}$ *u(t) (H96-4a)	12

Enkle fourieranalyse oppgaver

1) Tegn frekvensspekter for et sammensatt sinus signal

Trigonometrisk form Gitt en tidsfunksjon

$$v(t)=4 \sin(\omega_0 t) + 2 \sin(3\omega_0 t)$$

Ved å studere utrykket kan man tegne opp frekvensspektert direkte i en graf uten å utføre noen beregninger. Gjør det!

2) Fra a_n og b_n til c_n og θ

Vi kan bruke Fourierserieanalyse til å finne frekvensspekteret til et periodisk signal representert med integralene

$$a_n = \frac{2}{T} \int_0^T v(t) \cdot \cos(n \cdot \omega_0 \cdot t) dt, \quad b_n = \frac{2}{T} \int_0^T v(t) \cdot \sin(n \cdot \omega_0 \cdot t) dt$$

a) Når og hvorfor trenger vi å omskrive svaret med en cosinusserie?

Gitt at signalet v(t) har frekvenskomponentene an=[4,3,2] og bn= [2,0,2] for de tre første n i en fourier serie hvor ω_0 = 2 rad/sec.

- b) Beregn alle amplituder Cn og faser θ n for de tre første n for en cosinus representasjon og skriv ut cosinus summen.
- c) Plot amplitude og vinket spekteret.

Fourier serieanalyse

3) Analyse av firkant serie (trigonometrisk løsning)

Signalet v(t) er et firkant signal med amplitude = 1v, periodetid T og varighet for høy puls lik τ .

- a) Finn dc spenningen og fourier koeffisientene an og bn utrykt ved τ
- b) Bestem Cn og θ , og tegn et amplitude og fase diagram for de 12 første komponentene for følgende tre verdier av τ . Bruk gjerne et regneark.
 - 1) $\tau = \frac{1}{4}$ T
 - 2) $\tau = \frac{1}{2}$ T
 - 3) $\tau = \frac{3}{4}$ T

c) Diskuter og vis hva som skjer med spekteret når τ blir mindre eller større enn ½ T.

4) Analyse av firkant serie (kompleks løsning)

Brukt som eksempel på forelesning.

- a) Diskuter signalet over med hensyn på dc nivå, symmetri og kurveform. Vurder hvordan dette påvirker beregningene og resulterende amplitude og fase spekter.
- b) Finn de komplekse frekvenskomponentene Vn
- c) Finn amplitude og fase og plot frekvensspekteret.
- d) Sammenlikne resultate med det vi fikk ved trigonometrisk løsning

5) FS av sinussymmetrisk firkantserie (Trigonometrisk løsning) Gitt signal

La høy og lav periodedel varer like lenge.

a) Diskuter signalet og forventet resultat av en fourieranalyse.

- b) Finn an, bn
- c) Finn amplitude og fase (cn, θ) og plot frekvensspekteret

6) FS av sinussymmetrisk firkantserie (Kompleks løsning)

Gitt signal

La høy og lav periodedel varer like lenge.

- a) Diskuter signalet og forventet resultat av en fourieranalyse.
- b) Finn de komplekse Vn komponenten
- c) Sammenlikne resultatet med det vi fikkved analytseav firkantserie med trigonometrisk løsning

7) FS Firkant, tidsforskjøvet, Kompleks løsning

Gitt signal

La høy og lav periodedel varer like lenge, men la signalet være forskjøvet med en tidskonstant d mot høyre.

- a) Diskuter signalet og forventet resultat av en fourieranalyse.
- b) Finn de komplekse Vn komponenten og plott amplitude og fase
- c) Hva skjer med frekvensspekteret når en serie blir forsinket på dette viset?
- d) Lag en generell regel for tidsforskyvning.

8) FS Tidsforskyvning av firkant puls Kompleks løsning

(Vist på forelesning)

Figur 1. Kontinuerlig firkantsignal med periodetid T. Signalet er like lenge høyt som det er lavt. Amplituden er A

- a) Finn frekvens og fase spekter
- b) Hva skjer med frekvens og fasespekter når signalet forskyves med henholdsvis d=T/4 og d=T/2

9) FS-Firkant Sinus symmetrisk

Gitt tidsfunksjonen i figuren under, finn amplitude og fasespektret.

Firkantsignal med en periodetid på T, signalet har en minimumsverdi på -A, og en maksverdi på +A.

10) FS Sagtann Trigonometrisk løsning

Gitt et sagtannssignal med en periodetid på T. signalet har en minimumsverdi på 0, og en maksimum verdi på A

En sagtann funksjon er en diskontinuerlig funksjon som kan modelleres av en serie med rette linjer av typen

v(t)=at+b for $t \in [0..T]$

Vi lar for enkelthets skyld A=1 og b=0 slik at funksjonen

v(t)=at+b=t for intervallet 0..T

- a) Finn dc verdi og frekvenskomponentene an og b_n. (Hint: repeter delvis integrasjon)
- b) Finn Amplitudespekteret c_n og θ_n .
- c) Snu trekantsignalet slik at det stiger vertikalt og falller med v(t)=-at+b. Vis hva som skjer med fase og amplitudespekteret.

11) FS Sagtann Kompleks løsning

Gitt et sagtannssignal med en periodetid på T. signalet har en minimumsverdi på 0, og en maksimum verdi på A

En sagtann funksjon er en diskontinuerlig funksjon som kan modelleres av en serie med rette linjer av typen

$$v(t)=at+b$$
 for $t \in [0..T]$

Vi lar for enkelthets skyld A=1 og b=0 slik at funksjonen

$$v(t)=at+b=t$$
.

- a) Finn de verdi og frekvenskomponentene Vn (Hint: repeter delvis integrasjon)
- b) Finn Amplitude og fasespekteret og plot dette

12) FS sagtann med lik opp og ned form

Gitt tidsfunksjonen i figuren under

a) Trekantsignal med en periodetid på T, signalet har en minimumsverdi på -A, og en maksverdi på +A. Finn amplitude og fasespektret

b) Sentrer nå trekantsignalet om origo, hva blir da Amplituden og fasespektret?

13) FS Halvsinusserie.

Gitt et kontinuerlig sinussignal som bare har positive halvperioder med frekvens= ω_0

v(t)=A $sin(\omega_0 t)$ for positiv periode og 0 ellers

Signalet er kontinuerlig og vi må derfor benytte Fourier serie analyse for å finne frekvensspekteret.

- a) Hvilke regnealternativer har vi når vi skal finne spekteret?
- b) Hva slaks symmetri har vi og hvordan vil symmetrien kunne hjelpe til å forenkle beregningene av frekvensspekteret.
- c) Finn DC komponenten
- d) Beregn de komplekse frekvens komponentene Vn for n= 2, 3, 4, 5.
- e) Hvorfor er det her problematisk å finne de komplekse frekvenskomponentene for n=1?
- f) Beregn frekvensspekteret for n=1 ved hjelp av trigonometrisk metode.
- g) Vis at symmetrien i signalet hjelper oss til å forenkle beregningene?

FI-Fourieranalyse av pulser

14) FI Fourier integral analyse av enkel firkantpuls

(Løsning vist på forelesning)

Finn frekvensspekteret til en enkelt puls symmetrisk om t=0

15) <u>FI Fourier integraler, fra 1 til to pulser</u>

ref. THJ

Fourier transformasjonen for en enkelt symmetrisk firkantpuls, $v_0(t)$ med varighet τ og høyde A har frekvens spekter

$$V_0(\omega) = A \tau \frac{\sin(\omega \tau / 2)}{\omega \tau / 2}$$
 (vist på forelesningen)

- a) Bruk dette for å finne et uttrykk for fouriertransformasjonen for to makne firkantpulser sentrert om $t=-t_0$ og $t=+t_0$
- b) Skisser amplitudespekteret for det tilfelle at $t_0=\tau/2$
- c) Generaliser alt dette til et signal som består av mange pulser sentrert om $t = \pm 1\tau$, $\pm 2\tau$, $\pm 3\tau$, $\pm 4\tau \pm 5\tau$

16) FI Fouriertransformasjon av rampe puls.

- a) Bestem Fourier transformasjonen og
- b) Tegn amplitude og fase spekteret

17) FI Analyse av et signal som består av en del av en cosinus svingning.

Signalet i Figur 2 består av en bit av et cosinussignal.

Figur 2. Puls bestående av en del av en cosinus

Oppgaven:

Gitt et signal $v(t) = A \cdot \cos(\omega_0 t)$ med varighet $[-\pi/4...\pi/4]$

La A og ω_0 være lik 1 slik at v(t) kan skrives som v(t)=cos(t) i utledningen av spørsmål (a).

- a) Diskuter signalet og si hva vi kan forvente bare ved å se på signalet.
- b) Finn ett utrykk for frekvensspekteret $V(\omega)$
- c) Bruk et regneark og plot amplitude og fase for $V(\omega)$.
- d) Sett ω_0 =6, behold grensene i figuren over, og tegn det nye tidssignalet v(t)=cos(6t). Forklar hva som skjer med frekvensspekteret når vi øker eller minker ω_0
- e) Forklar hvordan fasen vil se ut.

18) Analyse av en kort sinus sekvens

Signalet i Figur 2 består av en kort sekvens av sinussvingninger.

Figur 3. Puls bestående av fem sinus svingninger

Gitt et signal $v(t) = A \cdot \sin(\omega_0 t)$ med varighet $\tau = nT_0 = \frac{n2\pi}{\omega_0} \text{ hvor } T_0 \text{ er periodetiden til en enkelt av sinussvingningene og n = antall perioder.}$

Oppgaven:

Finn frekvensspekterets amplitude analytisk og plot dette i et regneark med n=3 og ω_0 =3 Velg andre veier for n og ω_0 og beskriv hvordan spekteret påvirkes når disse verdiene endres.

19) FI Fourier av e^{-t/τ}*u(t) (H96-4a)

Gitt et signal på formen $f(t) = e^{-t/\tau} * u(t)$, der u(t) er enhets trinn-funksjonen. Denne er 0fram til t=0 og 1 etter. Finn den Fourier-transformerte av signalet.

- a) Finn den Fourier-transformerte av signalet.
- b) Lag en skisse over amplitude-spektret, og angi båndbredden.