

Refaktorisierung einer Architekturanalyse für Vertraulichkeit

Praktikum Ingeneursgemäße Softwareentwicklung

Alina Valta | 10. März 2022

Betreuer: Frederik Reiche

Motivation

Komponenten basierte Softwareentwicklung:

- Wiederverwendbare Komponenten
- Komposition von Komponenten

Vertraulichkeitsanalyse (Kramer, Hecker, Greiner u. a. 2017)

- Vertrauliche Daten überschreiten Komponenten-Grenzen
- Probleme auf Architekturebene erkennen
- ⇒ kompositorische Analyse notwendig

Vertraulichkeitsan	alys
●000	

Vertraulichkeitsanalyse

Architekturebene

dataSet(2).
parametersAndDataPair(8).
parameterSources(8,[return]).
dataTargets(8,[5,6,7,4]).

Palladio Component Model

Confidentiality Model

Prolog Prädikate

Analyse Ergebnis

Confidentiality4CBSE1

PCM2Prolog²

Haskalladio

Vertraulichkeitsanalyse Entfernen Profil-Mechanismus

Information Modellierung

PCM2Prolog

Evaluierung

Fazit

Literatur

(KASTEL)

https://github.com/KASTEL-SCBS/Confidentiality4CBSE

²https://github.com/KASTEL-SCBS/PCM2Prolog

Vertraulichkeitsmodellierung

DataSet

Datenfluss

- Menge an Ein- und Ausgabedaten von Komponenten
- Trennung nach Benutzergruppen, Zweck der Informationen, ...

InformationFlow

- Ordnet Daten DataSets zu
- Art der Daten:
 - Parameter
 - Rückgabewert
 - Aufruf der Funktion
 - Größe von Parametern

Vertraulichkeitsanalyse	
0000	

Vertraulichkeitsmodellierung

Maßnahmen, Angreifer und Ressourcen

Location

Geographische Orte oder Sicherheitslevel

TamperProtection

Maßnahmen gegen Manipulation

Angreifer und Benutzer des Systems

- Welche DataSets dürfen bekannt sein?
- Welche TamperProtections kann/will der Angreifer umgehen?
- Zu welchen Locations hat der Angreifer Zugriff?

Ressourcen

- Weitere Verbindungen, gleichzeitig laufende Programme
- Verschlüsselung

Vertraulichkeitsanalyse ○○○●	Entfernen Profil-Mechanismus	Information Modellierung	PCM2Prolog	Evaluierung oo	Fazit ○	Literatur
					-	

Bisheriges Modell

Profil-Mechanismus

Confidentiality Modell:

 Definiert Klassen zum Modellieren von DataSet. Maßnahmen, Angreifer, ...

Confidentiality Profil:

- Verbindet PCM Elemente und Confidentiality Modell
- Zusammenfassung von mehreren Stereotypen
 - Stereotyp erweitert eine oder mehrere PCM Klassen
 - Stereotyp hat Referenzen zu Elementen aus dem Confidentiality Modell
- ⇒ Probleme mit Eclipse und unübersichtlich

Abb: Beispiel Stereotyp

Vertraulichkeitsanalys	е
0000	

Literatur

Bisheriges Modell

Profil-Mechanismus

Confidentiality Modell:

 Definiert Klassen zum Modellieren von DataSet. Maßnahmen, Angreifer, ...

Confidentiality Profil:

- Verbindet PCM Elemente und Confidentiality Modell
- Zusammenfassung von mehreren Stereotypen
 - Stereotyp erweitert eine oder mehrere PCM Klassen
 - Stereotyp hat Referenzen zu Elementen aus dem Confidentiality Modell
- ⇒ Probleme mit Eclipse und unübersichtlich

Lösung: Stereotypen ersetzen

- Neue Modell Klassen
- Existierende Klassen erweitern
- Referenz zu PCM Elementen

Vertraulichkeitsanalyse

10.03.2022

Entfernen Profil-Mechanismus •0

Information Modellierung

PCM2Prolog 00

Evaluierung

Fazit

Literatur

Entfernen Profil-Mechanismus

Beispiel InformationFlow

InterfaceInformationFlow ■ SignatureInformationFlow → appliedTo : OperationInterface ⇒ appliedTo : OperationSignature

AbstractInformationFlow

📑 information : Information

Abb: InformationFlow Stereotyp kann auf Signaturen und Interfaces angewandt werden Abb: Modell nach Entfernen des Stereotyps Information Klasse ersetzt ParameterAndDataPair

Vertraulichkeitsanalyse

Entfernen Profil-Mechanismus 0

Information Modellierung

PCM2Prolog 00

Evaluierung

Fazit Literatur

Bisheriges Modell

Information Modellierung

Modellieren der Ein- und Ausgabedaten von Komponenten

- Zuordnung von DataSets und Daten einer Operation erfolgt über Strings
 - "requestData"
 - "\return"
 - "\call"
 - "*"
 - "sizeof(*)"
- Probleme:
 - implizite Referenzen
 - Syntax muss bekannt sein
 - Verwechslungsgefahr bei gleichnamigen Parametern
- ⇒ soll explizit modelliert werden

Abb: Zuordnung von Daten und DataSets über Strings im ursprünglichen Modell

Vertraulichkeitsanalyse

Entfernen Profil-Mechanismus

Information Modellierung

PCM2Prolog

Evaluierung

Fazit

Informations-Modellierung

String durch Referenz ersetzten

Abb: Zuordnung von Daten und DataSets über Strings im ursprünglichen Modell

Abb: Modellierung der Information als eigene Klassen im neuen Modell

Vertraulichkeitsanalyse

Entfernen Profil-Mechanismus

Information Modellierung ○● PCM2Prolog

Evaluierung

Fazit

PCM2Prolog

Modellinstanz zu Prolog Code

- Geschrieben in Xtend
- Reflective-API wird verwendet um Entitäten auf Prolog Prädikate abzubilden
- Filter bestimmt relevante Entitäten und Referenzen.

Abb: Beispiel Modellinstanz

Filter Entitäten: ParameterAndDataPair. DataSet

Filter Referenzen: id, dataTargets

parametersAndDataPair(10). parameterSources(10,[return]). dataTargets(10,[5]).

Abb: Prolog Prädikate für diese

Modell-Instanz

dataSet(5).

Vertraulichkeitsanalyse

Entfernen Profil-Mechanismus

Information Modellierung

PCM2Prolog

Evaluierung

Fazit

PCM2Prolog

Anpassungen

Änderungen des Modells sollen sich nicht auf den Prolog Code auswirken

Dispatch-Methoden für Entitäten, die nicht automatisch generiert werden können

```
\label{lem:def_dispatch} \mbox{ def dispatch String generateDeeplyCorrectly(EObject e) } \\ \mbox{ def dispatch String generateDeeplyCorrectly(AbstractResourceProtection rp) } \\ \mbox{ } \{...\} \\
```

- Richtung der ursprüngliche Stereotypen Referenzen
 - vorher: PCM → Modell (über Stereotyp) ietzt: Modell → PCM
 - Map für jeden früheren Stereotyp
 - Key: PCM Element, Value: Set an Ids
 - Beim Verarbeiten der Confidentiality Klassen wird die Map gefüllt
 - Am Ende: erzeuge Prädikate aus den Map Elementen

Vertraulichkeitsanalyse	E
0000	0

Evaluierung

Automatisch Überprüfung der Ergebnisse

Modellierung der Beispiel Projekte mit dem neuen Modell:

Gleiche Ids verwenden

Automatischer Vergleich des Prolog Codes:

- Prolog Datei vorverarbeiten:
 - Listen innerhalb von Prädikaten sortieren:

```
prädikatName(5, ["b","c","a"]). ⇒
prädikatName(5, ["a","b","c"]).
```

- Zeilen der Datei sortieren
- Leerzeilen entfernen
- Ausgabe mit diff vergleichen

Vertraulichke	eitsanalyse

Evaluierung

Ergebnisse

Projekte cloudscenario-minimized und iflowexample ::

Gleicher Prolog Code konnte generiert werden

Grenzen der Refaktorisierung

- Kommentare
- Wiederverwendung von Hilfsklassen (z.B. ParameterAndDataPairs) nicht mehr möglich
 - → Prolog Code ändert sich
- ⇒ Bis auf die Wiederverwendung von Hilfsklassen können alle Modellinstanzen in das neue Modell übertragen werden, ohne dass der Prolog Code sich ändert.

²https://github.com/KASTEL-SCBS/Examples4SCBS/tree/master/bundles/edu.kit.kastel.scbs.iflowexample

Vertraulichkeitsanalyse Entfernen Profil-Mechanismus Information Modellierung

PCM2Prolog

Evaluierung

Fazit

¹ https://github.com/KASTEL-SCBS/Examples4SCBS/tree/master/bundles/edu.kit.kastel.scbs.cloudscenario-minimized

Fazit

Problem:

- Profil-Mechanismus + Eclipse
- String Referenzen

Vorgehen:

- Neue Modell Klassen statt Stereotypen
- Explizite Referenzen statt Strings
- PCM2Prolog angepasst um Prolog Code nicht zu verändern

Idee:

- Refaktorisierung des Modells
- Ersetzen des Profil-Mechanismus

Ergebnis:

- Erfolgreiche Refaktorisierung zweier Beispiel Proiekte
- Gleicher Prolog Code bis auf die Wiederverwendung von Hilfsklassen

Referenzen

Max E. Kramer, Martin Hecker, Simon Greiner u. a. *Model-Driven Specification and Analysis of Confidentiality in Component-Based Systems*. Techn. Ber. Karlsruhe: Karlsruhe Institute of Technology, Department of Informatics, 2017. DOI: 10.5445/IR/1000076957. URL: http://dx.doi.org/10.5445/IR/1000076957%20[Titel%20anhand%20dieser%20D0I%20in%20Citavi-

Max E. Kramer, Martin Hecker und Frederik Reiche. *PCM2Prolog*. https://github.com/KASTEL-SCBS/PCM2Prolog.git.

Max E. Kramer, Martin Hecker und Kateryna Yurchenko. *Examples4SCBS*. https://github.com/KASTEL-SCBS/Examples4SCBS.git.

Max E. Kramer, Heiko Klare u. a. *Confidentiality4CBSE*. https://github.com/KASTEL-SCBS/Confidentiality4CBSE.git.

Vertraulichkeitsanalyse

Entfernen Profil-Mechanismus

Projekt%20%C3%BCbernehmen1.

Information Modellierung

PCM2Prolog

Evaluierung

Fazit