Capítulo 7

La Capa Física Fundamentos de la teoría de señales

Application

Transport

Network

Link

Physical

La Capa Física

- Propósito de la capa física (CF):
 - Transportar un stream de datos de una máquina otra usando medios físicos.
- Medios físicos: p.ej. cable trenzado de cobre, fibra óptica, ondas de radio, ondas microondas, etc.
- En los medios físicos viajan señales.
- Para comprender y evaluar los distintos medios físicos es necesario entender los conceptos fundamentales de la teoría de señales.

La Capa Física

- La CF no consiste solo de medios físicos:
 - Los medios físicos se conectan entre sí usando dispositivos como codecs, modems, multiplexores, demultiplexores, conmutadores, puentes, enrutadores, puertas de enlace, etc.
 - formándose así redes complejas de distintos tipos.
- Para comprender varios de estos dispositivos hay que entender un poco de teoría de señales.
- Una vez que comprendamos las propiedades de los distintos medios físicos se pueden estudiar distintos tipos de redes:
 - Redes de telefonía pública conmutada, redes de telefonía celular, redes que usan cables de la TV por cable, redes de fibra a la casa.

Capa física

Aprenderemos:

- Clasificación de señales
- Ondas sinusoidales
- Señales compuestas
- Representación gráfica de señales
- Señales digitales
- Baudios y bits por segundo

Señales digitales y analógicas

Figure 6.1 Illustration of (a) an analog signal, and (b) a digital signal.

- Las señales se pueden representar usando funciones del tiempo.
- Tipos de información de la comunicación de datos en la CF:
 - señales analógicas
 - Caracterizadas por función matemática continua. (p.ej. voz humana, radio, microondas)
 - señales digitales
 - Caracterizadas por cambios de niveles (niveles de voltaje).

Señales

- Otra clasificación de las señales:
 - periódicas
 - s(t+T) = s(t) para todo $-\infty < t < \infty$.
 - aperiódicas (también no periódicas)
- Por ejemplo:
 - Fig. 6.1a de la parte 1 (aperiódica) y Fig. 6.2 filmina siguiente (periódica)

Figure 6.2 A periodic signal repeats.

Capa física

Aprenderemos:

- Clasificación de señales
- Ondas sinusoidales
- Señales compuestas
- Representación gráfica de señales
- Señales digitales
- Baudios y bits por segundo

- Ahora estudiamos las ondas sinusoidales y sus propiedades.
- Importancia de las ondas sinusoidales
 - Son producidas por fenómenos naturales.
 - P. ej: los tonos audibles suelen ser ondas sinusoidales.
- Funciones trigonométricas sinusoidales
 - Especialmente el seno
 - Onda sinusoidal es $s(t) = A \sin(2\pi f t + \varphi)$, t número real.

- Propiedades de las ondas sinusoidales:
 - Frecuencia = número de oscilaciones por segundo
 - Amplitud = diferencia entre las alturas máxima y mínima
 - Fase = cuánto es desplazado el comienzo de la onda sinusoidal a partir de un tiempo de referencia

Figure 6.3 Illustration of frequency, amplitude, and phase characteristics.

- El **período** (*T*): tiempo requerido por un ciclo.
- Frecuencia f = 1/T.
 - O sea, cantidad de ciclos por segundo.
- Bajas frecuencias
 - Fig. 6.3a: T = 1 segs y una frecuencia de 1/T o 1 Hertz.
 - Fig. 6.3b: T = 0.5 segs y una frecuencia es de 2 Hertz.
- Los sistemas de communicación usan altas frecuencias (expresadas en millones de ciclos por segundo - megahertz (MHz))

Capa física

Aprenderemos:

- Clasificación de señales
- Ondas sinusoidales
- Señales compuestas
- Representación gráfica de señales
- Señales digitales
- Baudios y bits por segundo

Figure 6.5 Illustration of a composite signal formed from two simple signals.

- Señales simples (P.ej. Fig. 6.3): una onda sinusoidal.
- Señales compuestas (P.ej. Fig. 6.5):
 - puede descomponerse en un conjunto de ondas sinusoidales simples.
 - Una señal electromagnética va a ser compuesta; además va a ser hecha de varias frecuencias.

Descubrimiento de Fourier

 Toda señal es hecha a partir de un conjunto de funciones sinusoidales (cada una con frecuencia, amplitud y fase).

 Incluso una señal digital puede aproximarse por una suma de funciones sinusoidales.

Figure 6.9 Approximation of a digital signal with sine waves.

- Si una señal compuesta es periódica, entonces las partes constitutivas son también periódicas
 - La mayoría de los sistemas usan señales compuestas para transportar información.
 - Una señal compuesta es creada en uno de los extremos y el receptor descompone la señal en sus componentes simples.

Capa física

Aprenderemos:

- Clasificación de señales
- Ondas sinusoidales
- Señales compuestas
- Representación gráfica de señales
- Señales digitales
- Baudios y bits por segundo

Representaciones gráficas de las señales

- Hay distintas maneras de representar gráficamente las señales.
- Representación de dominio de tiempo (ya visto)
 - Grafo de una señal como función del tiempo.
- Representación de dominio de frecuencia.
 - Grafo de domino de frecuencia
 - Muestra conjunto de ondas sinusoidales simples que constituyen la función compuesta.
 - o $A \sin(2\pi ft)$ es representada por una línea simple de altura A que se posiciona en x = f.

Representación de dominio de frecuencias

Figure 6.6 Representation of $sin(2\pi t)$ and $0.5 sin(2\pi 2t)$ in the frequency domain

Ejemplo: El grafo de dominio de frecuencia de la Fig. 6.6 representa una composición de Fig. 6.5c

Representación de dominio de frecuencias

- Ventajas de la representación de dominio de frecuencia: es muy compacta.
- El espectro de una señal = rango de frecuencias que contiene
 - Es el intervalo desde la frecuencia más chica a la frecuencia más grande.
- El ancho de banda analógica = ancho del espectro
 - Diferencia entre las frecuencias más alta y la más baja.

Representación de dominio de frecuencias

Figure 6.7 A frequency domain plot of an analog signal with a bandwidth of 4 KHz.

- Ejemplo: Fig. 6.7
 - Frecuencias en el rango audible por el oído humano.
 - El ancho de banda es 5 KHz 1 KHz = 4 KHz.

Capa física

Aprenderemos:

- Clasificación de señales
- Ondas sinusoidales
- Señales compuestas
- Representación gráfica de señales
- Señales digitales
- Baudios y bits por segundo

Señales digitales

- Las señales digitales usan voltajes para representar valores digitales
 - Mecanismos de transmisión físicos usan dos o más niveles de voltaje para enviar señales digitales.
 - Cada nivel representa un número binario.
 - Usar 2ⁿ niveles para representar número de *n* bits.

Señales digitales

Figure 6.8 (a) A digital signal using two levels, and (b) a digital signal using four levels.

Ejemplo: (a) un voltaje positivo corresponde al **uno lógico** y un voltaje cero corresponde al **cero lógico**. (b) 4 niveles de voltaje: 5 V, -2 V, +2 V, +5 V.

25

Ruido

Figure 3.16 Effect of Noise on a Digital Signal

Codificación de Bits en Ethernet

- Propósito: Comprender cómo se trabaja con señales digitales en Ethernet y en Fast Ethernet.
- Solución 1: Codificación Manchester
 - ☐ Cada período de bit se divide en dos intervalos iguales.
 - ☐ Un bit 1 se envía teniendo un voltaje alto en el primer intervalo y bajo durante el segundo.
 - ☐ Un 0 binario es justo lo inverso: primero bajo y después alto.
- Solución 2: Codificación Manchester Diferencial
 - un bit 1 se indica mediante la ausencia de una transición al inicio del intervalo.
 - ☐ Un bit 0 se indica mediante la presencia de una transición al inicio del intervalo.
 - ☐ En ambos casos, también hay una transición a la mitad.
- Evaluación: El esquema diferencial requiere equipo más complejo, pero ofrece mejor inmunidad al ruido.

Codificación Manchester

(a) Binary encoding, (b) Manchester encoding,(c) Differential Manchester encoding.

Codificación de Bits en Ethernet

- Todos los sistemas Ethernet usan codificaciones Manchester.
 - ☐ La señal alta es de 0,85 voltios y la baja de 0,85 voltios.
- 100BASE-FX (fast ethernet)
 - 2 líneas de fibra óptica : una para recepción (RX) y la otra para transmitir (TX).
 - La distancia entre una estación y el conmutador es de hasta 2 km.
 - ☐ Los cables 100BaseFX deben conectarse a conmutadores.
 - Los concentradores no están permitidos con 100Base-FX

Codificación de Bits en 100BASE-FX

• 100BASE-FX	(cont)):
--------------	--------	-----------

La codificación es mediante el esquema 4B/5B NRZI.
Cada 4 bits de datos son codificados en un símbolo con 5 bits de código, tal
que cada bit de código contiene un simple elemento de señal. El bloque de código de 5 bits se llama grupo de código.
Para asegurar sincronización cada bit de código del stream de 4B/5B es tratado como un valor binario y codificado así: un bit 1 se representa con

☐ Cada grupo de 5 períodos de reloj da 32 combinaciones, Las 16 primeros se usan para transmitir números entre 0 y 15. Algunos de los 16 valores restantes se usan para control, como el marcado de límites de tramas.

ninguna transición al comienzo del intervalo de bit.

una transición al comienzo del intervalo de bit y un 0 se representa con

☐ Una transición está presente al menos 2 veces para cada 5-code. No más de 3 ceros son permitidos en un 5-code.

TABLE 13.8 4B/5B code groups.

Data input (4 bits)	Code group (5 bits)	NRZI pattern	Interpretation
0000	11110		Data 0
0001	01001		Data 1
0010	10100		Data 2
0011	10101		Data 3
0100	01010		Data 4
0101	01011		Data 5
0110	01110		Data 6
0111	01111		Data 7
1000	10010		Data 8
1001	10011		Data 9
1010	10110		Data A
1011	10111		Data B
1100	11010		Data C
1101	11011		Data D
1110	11100		Data E
1111 11101 11111 11000 10001 01101 00111	11101		Data F
	11111		Idle
	11000	П	Start of stream delimiter, part 1
	10001		Start of stream delimiter, part 2
		End of stream delimiter, part 1	
	00111		End of stream delimiter, part 2
	00100	g	Transmit error
	other		Invalid codes

Señales digitales vs señales analógicas

- Las señales digitales generalmente son más baratas que las señales analógicas y son menos susceptibles a interferencias de ruidos.
- Las señales digitales sufren más de atenuación (reducción de fuerza de la señal) que las señales analógicas.
 - A frecuencias mayores los pulsos se tornan más redondeados y pequeños.
 - Esta atenuación puede llevar rápidamente a la pérdida de información contenida en la señal.

Atenuación de señales digitales

Capa física

Aprenderemos:

- Clasificación de señales
- Ondas sinusoidales
- Señales compuestas
- Representación gráfica de señales
- Señales digitales
- Baudios y bits por segundo

Baudios y Bits por Segundo

- Ahora estudiamos cómo se determina la cantidad de bits por segundo de una señal digital.
- La respuesta depende de los siguientes factores:
 - Del número de niveles de señal
 - De la cantidad de tiempo que el sistema permanece en un nivel dado antes de moverse al siguiente.
- **Ejemplo**: (Fig. 6.8a) Se envía un bit durante cada uno de los 8 segmentos.

Baudios y Bits por Segundo

- El hardware coloca límites en cuán corto el tiempo en un nivel debe ser.
 - Si la señal no permanece en un nivel por suficiente tiempo, el hardware receptor (p.ej. tarjeta controladora) va a fallar en detectarlo.
 - La cantidad de veces que una señal puede cambiar por segundo se mide en baudios.
 - Ejemplo: Si se requiere que la señal permanezca en un nivel por 0,001 seg, decimos que el sistema opera a 1000 baud.
- baud y número de niveles de señal controlan la tasa de bits.

Baudios y Bits por Segundo

- Si se tiene 2 niveles de señal y opera a 1000 baud
 - El sistema puede transferir exactamente 1000 bps.
- Si se tiene 1000 baud y 4 niveles de señal
 - El sistema puede transferir 2000 bps.
- Relación entre baudios, niveles de señal y tasa de bits.

bits por segundo = N° baudios x $\lfloor \log_{2}(niveles) \rfloor$

Bibliografía Adicional

- Las filminas de la 5 a la 22, 24 fueron sacadas del libro:
 - Comer. Computer Networks and Internets. Quinta edición (del 2008).