

TITLE OF THE INVENTION

CIGARETTE FILTER

CROSS-REFERENCE TO RELATED APPLICATIONS

This is a Continuation Application of PCT
5 Application No. PCT/JP02/07808, filed July 31, 2002,
which was not published under PCT Article 21(2) in
English.

This application is based upon and claims the
benefit of priority from the prior Japanese Patent
10 Application No. 2001-235202, filed August 2, 2001, the
entire contents of which are incorporated herein by
reference.

BACKGROUND OF THE INVENTION

1. Field of the Invention

15 The present invention relates to an improved
cigarette filter capable of singularly adsorbing
specified components contained in mainstream smoke.

2. Description of the Related Art

Japanese Patent Disclosure (Kokai) No. 63-160659,
20 for example, discloses a deodorizing agent (adsorbing
agent) consisting of an inorganic mineral-based porous
material carrying ferrous sulfate/L-ascorbic acid.
The document also discloses an example of a filter for
a cigarette in which the deodorizing agent is
25 contained.

However, the adsorbent disclosed in the document
is intended to adsorb mainly ammonia, and it is not

described at all in the document what components of
the mainstream smoke are removed in the case where
the adsorbent is contained in the cigarette filter.
In general, in the case of using a filter containing
5 an adsorbent capable of unselectively adsorbing various
components contained in the mainstream smoke, it is
known to the art that the taste and flavor of the
cigarette are adversely affected.

BRIEF SUMMARY OF THE INVENTION

10 An object of the present invention is to provide a
cigarette filter, which permits prominently suppressing
adverse effect on the taste and flavor of a cigarette
and which permits selectively removing specified
components contained in mainstream smoke.

15 A cigarette filter according to the present
invention comprises: filter sections including filter
materials individually wrapped with plug wrap paper;
forming paper for wrapping the filter sections
integrally; and tipping paper covering the forming
paper so as to connect the filter sections to a
20 cigarette section to form a cigarette, wherein
activated charcoal and silica/alumina are contained as
adsorbents in at least one of the filter materials and
a space between the filter materials.

25 In the cigarette filter of the present invention,
the plug wrap paper or the forming paper may contain
the activated charcoal and the silica/alumina as the

adsorbents.

The cigarette filter according to the present invention has actual structures including, for example, (1) a structure that two filter materials are provided and a mixture of the activated charcoal and the silica/alumina is loaded in the space between the two filter materials, (2) a structure that two filter materials are provided and a mixture of the activated charcoal and the silica/alumina is dispersed in one of the filter materials, (3) a structure that three filter materials are provided and the activated charcoal and the silica/alumina are individually loaded in the two spaces between the three filter materials, and (4) a structure that three filter materials are provided and the activated charcoal is dispersed in one filter material and the silica/alumina is dispersed in another filter material.

Another cigarette filter according to the present invention comprises a cigarette holder body including filter materials arranged therein, wherein activated charcoal and silica/alumina are contained as adsorbents in at least one of the filter materials and a space between the filter materials.

Incidentally, the structure of the cigarette filter according to the present invention is not limited to those exemplified above, and various modifications are conceivable.

BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWING

FIG. 1 schematically shows an example of a structure of a cigarette filter according to the present invention;

5 FIG. 2 schematically shows another example of a structure of a cigarette filter according to the present invention;

10 FIG. 3 schematically shows another example of a structure of a cigarette filter according to the present invention;

FIG. 4 schematically shows a further example of a structure of a cigarette filter according to the present invention; and

15 FIG. 5 is a cross-sectional view of a cigarette holder to which the cigarette filter according to the present invention is applied.

DETAILED DESCRIPTION OF THE INVENTION

In the present invention, attention is paid to pyrazines and phenols as specified components contained
20 in mainstream smoke of a cigarette.

The present inventor has found that, where activated charcoal and silica/alumina are used in combination as adsorbents for the cigarette filter, these adsorbents produce a synergistic effect so as to singularly remove the specified components contained in the mainstream smoke, thereby accomplishing the present invention.
25

The filter materials used in the present invention include, for example, acetate, paper, and an unwoven fabric. As the activated charcoal of the adsorbents, coconut shell activated charcoal may be used. As the 5 silica/alumina of the adsorbents, a product marketed under the trade name of "Kyoward 700SN" by Kyowa Chemical Industry Co., Ltd, for example, may be used. The product contains 63.0% by weight of SiO_2 and 10.3% by weight of Al_2O_3 and has weight loss on drying of 10 14.5% by weight.

In the present invention, the amount of the activated charcoal and the silica/alumina is set as follows: where the adsorbents are contained in the filter material, the total amount of the adsorbents 15 should be set to 1 mg to 150 mg, preferably 20 mg to 60 mg, per 10 mm of the filter material, and where the adsorbents are contained in the space between the filter materials, the total amount of the adsorbents should be set to 5 mg to 300 mg, preferably 30 mg to 20 120 mg per 5 mm of the space.

Examples of the present invention will now be described.

A cigarette filter as a control without containing any adsorbent was prepared as follows. Two filter 25 materials (plain filters) were prepared by forming acetate having a filament fineness of 2.2 denier and a tow fineness of 40,000 denier to have a length of

10 mm, and the filter materials were wrapped with plug wrap paper, respectively, so as to obtain two filter sections. Two filter materials were arranged to have a 5-mm space formed therebetween, and the two filter
5 sections were wrapped with forming paper without loading any adsorbent in the space. The ventilation resistance of the filter was found to be 80 mmH₂O (1050 mL/min).

FIG. 1 shows an example of a cigarette filter
10 prepared in this Example. The cigarette filter 1 was prepared as follows. Two filter materials (plain filters) 2 were prepared by forming acetate having a filament fineness of 2.2 denier and a tow fineness of 40,000 denier to have a length of 10 mm, and the filter
15 materials were wrapped with plug wrap paper, respectively, so as to obtain two filter sections. Two filter materials 2 were arranged to have a space formed therebetween, and the two filter sections were wrapped with forming paper under the state that a mixture of 30 mg of activated charcoal 41 and 30 mg of silica/alumina (trade name: Kyoward 700SN) 42 as adsorbents 4 was loaded in the space. In this case, the space was controlled to permit the adsorbents to have an apparent density of 100%.

20 For references, cigarette filters were also prepared with loading 30 mg of activated charcoal alone or 30 mg of silica/alumina alone as an adsorbent in the

space.

Also, cigarette filters were prepared with loading 60 mg of activated charcoal alone or 60 mg of silica/alumina alone, i.e., an adsorbent two times as 5 much as that in the cigarette filters noted above, in the space.

Each of the above cigarette filters was connected with a tape to a cigarette section prepared by wrapping cut tobacco with wrapper paper so as to prepare various 10 cigarettes for experiments differing from each other in the type of the adsorbent as shown in Table 1.

A commercial cigarette rod was used for the cigarette section. A test for collecting the mainstream smoke was applied to these cigarettes as follows.

15 The cigarette was connected to an automatic smoking machine with a tube (made of Tygon). A Cambridge filter was not provided. The automatic smoking machine was allowed to smoke the cigarette under the standard smoking conditions, with the 20 combustion length set at 40 mm. The mainstream smoke from the exhaust port was collected in a gas bag (made of Tedlar) having He put therein in advance, and then the inner volume of the gas bag was adjusted with He to be 8 L in total. Fifty mL of the gas taken from the 25 gas bag was analyzed by gas chromatography.

Attention was paid to pyrazines, phenols, hydrocarbons and ketones as specified components of

the mainstream smoke, and data analysis of each of the specified components was performed based on the peak area on the gas chromatograph. Table 1 shows the penetration of each of the pyrazines and phenols. The 5 penetration Ta of each of these specified components is represented by:

$$Ta = Aa/Ac_{nt},$$

where Ac_{nt} denotes the peak area of the specified component on the gas chromatograph in the case where 10 the adsorbent was not used (the control), and Aa denotes the peak area of the specified component on the gas chromatograph in the case of using the adsorbent "a". Each measured value shown in Table 1 was obtained on the basis of the peak area of the 15 specified component on the gas chromatograph.

Also, the predicted value of the penetration for the filter using 60 mg of activated charcoal denotes the square of the measured value of the penetration for the filter using 30 mg of activated charcoal. 20 Similarly, the predicted value of the penetration for the filter using 60 mg of silica/alumina denotes the square of the measured value of the penetration for the filter using 30 mg of silica/alumina.

On the other hand, the predicted value of the 25 penetration in the case of using the two types of the adsorbents shown in Table 1 denotes the calculated value of the penetration estimated from the penetration

for the adsorbent in the case of using singly each of
the two types of the adsorbents. To be more specific,
the predicted value is represented by $(Ta \times Tb)$, where
Ta denotes the penetration (measured value) of the
5 specified component in the case of using the adsorbent
"a", and Tb denotes the penetration (measured value) of
the specified component in the case of using the
adsorbent "b".

If the measured value of the penetration in the
10 case of using a plurality of different types of
adsorbents in combination is prominently smaller than
the predicted value, it can be judged that the
specified components are singularly adsorbed, which
supports the synergetic effect produced by the
15 combination of the plurality of types of the
adsorbents. Table 1 shows the results of the above
experiments.

Table 1

Adsorbent	Penetration		
	Pyrazines		Phenols
	Measured value	Predicted value	Measured value
None	1.00		1.00
Activated charcoal (30 mg)	0.60		0.68
Silica/alumina (30 mg)	0.73		0.61
Activated charcoal (60 mg)	0.38	0.36	0.48
Silica/alumina (60 mg)	0.54	0.53	0.38
Mixture of activated charcoal (30 mg) and silica/alumina (30 mg) (total 60 mg)	0.22	0.44	0.30
			0.41

Where the activated charcoal alone was used twice as much or where silica/alumina alone was used twice as much, a significant difference was not recognized between the measured value and the predicted value.

5 A difference between the measured value and the predicted value was small in respect of hydrocarbons and ketones (not shown in Table 1), and thus, a synergetic effect produced by combination of plural types of adsorbents was not recognized.

10 To the contrary, where the combination of the activated charcoal and the silica/alumina was used as the adsorbents, the measured values were markedly smaller than the predicted values in respect of pyrazines and phenols as shown in Table 1, which
15 clearly supports that a synergetic effect on the singular adsorption of these specified components was produced.

20 From the results given above, if the specified components of pyrazines and phenols are to be effectively adsorbed by using the activated charcoal alone or the silica/alumina alone, it is necessary to further increase the amount of the adsorbent. In this case, it is expected that the flavor and taste of the cigarettes are markedly affected. On the other hand,
25 in the case of using in combination the activated charcoal and silica/alumina as the adsorbents, it is expected that the specified components of pyrazines and

phenols may be adsorbed effectively even if the amount of the adsorbents is small, and thus, the flavor and taste of the cigarette are less affected.

FIG. 2 shows another example of a cigarette filter according to the present invention. The cigarette filter 1 was prepared as follows: preparing three filter materials (plain filters) 2; forming three filter sections by wrapping plug wrap paper 3 around each of the filter materials 2; loading individually activated charcoal 41 and silica/alumina (trade name: Kyoward 700SN) 42 as adsorbents 4 in the space on the cut tobacco side and in the space on the mouth side between the three filter sections; and wrapping forming paper 5 around the three filter sections. In FIG. 2, the activated charcoal 41 was loaded in the space on the mouth side and the silica/alumina was loaded in the space on the cut tobacco side. To the contrary, however, the silica/alumina 42 may be loaded in the space on the mouth side and the activated charcoal may be loaded in the space on the cut tobacco side.

FIG. 3 shows still another example of a cigarette filter according to the present invention. The cigarette filter 1 was prepared as follows: preparing a filter material (plain filter) 2 obtained by forming acetate and another filter material 21 obtained by forming acetate having adsorbents of activated charcoal 41 and silica/alumina 42 dispersed therein; forming two

filter sections by wrapping plug wrap paper 3 around each of the filter materials 2 and 21; and wrapping forming paper 5 around the two filter sections.

FIG. 4 shows still another example of a cigarette filter according to the present invention. The cigarette filter 1 was prepared as follows: preparing a filter material (plain filter) 2 obtained by forming acetate, a filter material (charcoal filter) 21 obtained by forming acetate having activated charcoal as an adsorbent dispersed therein, and a filter material 22 obtained by forming acetate having silica/alumina as an adsorbent dispersed therein; forming three filter sections by wrapping plug wrap paper 3 around each of the filter materials 2, 21 and 22; and wrapping forming paper 5 around the three filter sections. The arrangement of the filter materials 21 and 22 is not particularly limited. It is possible to arrange any of these filter materials on the cut tobacco side.

Further, in the cigarette filter according to the present invention, it is possible to add activated charcoal and silica/alumina as adsorbents to the forming paper.

The cigarette filter according to the present invention can be applied in the form of a cigarette holder as shown in FIG. 5. The cigarette holder comprises a cylindrical cigarette holder body 51 having

a mouth-end section 52 formed at one end, two filter materials 2 arranged inside the cigarette holder body 51, and a mixture of activated charcoal 41 and silica/alumina 42 as adsorbents 4 loaded in the space 5 between the two filter materials 2.

The cigarette filter shown in FIG. 5 is obtained by applying the structure shown in FIG. 1 to a cigarette holder. Likewise, it is possible to apply the structure shown in each of FIGS. 2 to 4 to a 10 cigarette holder.

In the cigarette filter of any of the types described above, a synergetic effect is produced by the activated charcoal and the silica/alumina so as to singularly adsorb pyrazines and phenols.

According to the present invention, it is possible 15 to provide a cigarette filter, which permits selectively removing specified components contained in mainstream smoke while suppressing the effect on the flavor and taste of the cigarette to a minimum.