TITLE OF THE INVENTION

CROSS-REFERENCE TO RELATED APPLICATIONS

This application is based upon and claims the

Application No. 2000-297670, filed September 28, 2000,

the entire contents of which are incorporated herein by

BACKGROUND

The present invention relates to a semiconductor

benefit of priority from the prior Japanese Patent

SEMICONDUCTOR DEVICE

reference.

5

in a library and freely picked up as required.

A semiconductor device according to the aspect of the present invention comprises a lowermost layer nearest to a semiconductor substrate, an uppermost layer farthest from the semiconductor substrate and intermediate layers arranged between the lowermost layer and the uppermost layer. If assuming that one of the intermediate layers is the first intermediate layer and the other one is the second intermediate layer, the first intermediate layer is on the lowermost layer side compared with the second intermediate layer and thicker than the second intermediate layer.

2

The first intermediate layer comprises a first area having signal lines and a second area having power source lines, and a pitch of the power source lines is wider than that of the signal lines. And the first intermediate layer comprises a first area having signal lines and a second area having power source lines, and a width of each of the power source lines is wider than that of the signal lines.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows an IP core;

FIG. 2 is a cross-sectional view showing the device structure of the IP core shown in FIG. 1;

FIG. 3 shows a chip on which the IP core shown in FIG. 1 is mounted;

5

10

15

20

FIG. 9 and the IP core shown in FIG. 13 are mounted;

FIG. 18 is a cross-sectional view showing the

structure of a semiconductor device shown in FIG. 17;

5

10

15

20

drawings.

- 5 -

1. Reference Example

First, description will be given to a reference example which forms a basis for the present invention.

FIG. 1 shows an IP core. FIG. 2 shows one example of the device structure of the IP core shown in FIG. 1.

In this example, the IP core is realized by three metal layers M1, M2 and M3. These metal layers M1, M2 and M3 have the same thickness and formed into thin wiring layers. If this IP core is used during a design phase, the metal layers M1, M2 and M3 are used as they are. In addition, as shown in FIGS. 3 and 4, metal layers M4 and M5 are added, thereby forming a predetermined functional block (circuit) in a chip.

Here, the metal layer M4 is a thin wiring layer as in the case of the metal layers M1, M2 and M3. The metal layer M5 is thicker than the metal layers M1, M2, M3 and M4 and formed into a thick wiring layer. It is noted that the metal layer M5 which is the uppermost layer is used as, for example, a chip power source line.

Recently, there are a demand for, for example, providing a power source line on the intermediate layer of a semiconductor device and a demand for transferring signals at high speed. Due to this, it is desired that the thickness of the intermediate layer (e.g., the metal layer M3) of the semiconductor device is made almost equal to the thickness of the uppermost layer

10

5

15

20

10

15

20

25

(metal layer M5).

To do so, IP core is necessary to change the structure shown in FIGS. 1 and 2 to that show in FIGS. 5 and 6.

In the reference example, however, if the metal layer M3 of the IP core is made thicker as shown in FIGS. 5 and 6 and a semiconductor device is formed using this IP core, then all the metal layers on the metal layer M3, i.e., the metal layers M4 and M5 are also made to be formed into thick wiring layers as shown in FIGS. 7 and 8.

In that case, the wiring pitches of the metal layers M3, M4 and M5 naturally widen, with the result that the number of wirings (the number of signal lines, in particular) cannot be disadvantageously increased on the layers on the metal layer M3.

Further, in case of an ordinary semiconductor device, only the uppermost layer (metal layer M5) is a thick wiring layer and the remaining metal layers (metal layers M1, M2, M3 and M4) are thin wiring layers. As shown in FIGS. 5 and 6, therefore, if the metal layer M3 of the IP core is made thick, this IP core cannot be used for designing such an ordinary semiconductor device and the semiconductor device must be designed from the beginning.

2. First Embodiment

FIG. 9 shows an IP core. FIG. 10 shows one

7 example of the device structure of the IP core shown in FIG. 9. In this embodiment, the IP core (IP1) is realized by three metal layers M1, M2 and M3. The metal layers 5 M1 and M2 of the IP core are mainly used as signal lines and formed into thin wiring layers. uppermost layer (metal layer) M3 of the IP core is mainly used as a core power source line, thicker than the metal layers M1 and M2 and formed into a thick 10 wiring layer. In this embodiment, it is assumed that the metal layers M1 and M2 have the same wiring width.

15

20

25

Also, the metal layer M3 has a large width on a portion used as, for example, a core power source line and a small wiring width on portions used as signal lines as shown in FIG. 10 as in the case of the metal layers M1 and M2. It is noted that the portion of the metal layer used as the core power source line may have a small width.

If this IP core is used in a design phase, the metal layers M1, M2 and M3 are used as they are. In addition, as shown in FIGS. 11 and 12, metal layers M4 and M5 are added, thereby providing a predetermined function block (circuit) in the chip.

Here, the metal layer M4 is mainly used as signal lines and formed into a thin wiring layer as in the case of the metal layers M1 and M2. The uppermost

8 layer (metal layer) M5 of the semiconductor device is mainly used as a chip power source line and pad metal and formed into a thick wiring layer as in the case of the metal layer M3. 5 As can be seen, the semiconductor device according the present invention is characterized in that at least one of the intermediate layers (wiring layers excluding the uppermost and lowermost layers) among a plurality of wiring layers is constituted out of a thick film and 10 that at least one wiring layer on the at least one intermediate layer is constituted out of a thin film. In other words, in the reference example, the thick wiring layer is formed on the thin wiring layer and no thin wiring layer is formed on the thick wiring 15 layer. According the present invention, by contrast, a thin wiring layer can be formed on the thick wiring layer as required. As a result, if the uppermost layer of the IP core is constituted out of a thick film to use the uppermost 20 layer of the IP core as, for example, a core power source line, a wiring layer used as signal lines further above the uppermost layer of the IP core can be constituted out of a thin film in the semiconductor device using this IP core. 25 Furthermore, the core power source line can enhance the performance of the IP core (functional block) and enables the wiring layer on the uppermost

- 9
layer of the IP core to be constituted out of a thin film. Due to this, wiring efficiency can be enhanced and optimum IP designing and product development can be carried out.

5 3. Second Embodiment

FIG. 13 shows an IP core. FIG. 14 shows one example of the device structure of the IP core shown in FIG. 13.

The IP core (IP2) in this embodiment has a function different from that of, for example, the IP core (IP1) shown in FIGS. 9 and 10. However, the number of metal layers and the thicknesses of the respective metal layers are common to the both IP cores.

The IP core (IP1) is realized by three metal layers M1, M2 and M3. The metal layers M1 and M2 of the IP core are mainly used as signal lines and formed into thin wiring layers. The uppermost layer (metal layer) M3 of the IP core is mainly used as a core power source line, thicker than the metal layers M1 and M2 and formed into a thick wiring layer.

In this embodiment, it is assumed that the metal layers M1 and M2 have the same wiring width.

In addition, the metal layer M3 has a large width on a portion used as the core power source line and a small wiring width on parts used as signal lines as in the case of the metal layers M1 and M2 as shown in

10

15

20

10 FIG. 14. It is noted that the portion of the metal layer used as the core power source line may have a small width. If this IP core is used in a design phase, the 5 metal layers M1, M2 and M3 are used as they are and, as shown in FIGS. 15 and 16, metal layers M4 and M5 are added, thereby forming a predetermined functional block (circuit) in the chip. Here, the metal layer M4 is mainly used as signal 10 lines and formed into a thin wiring layer as in the case of the metal layers M1 and M2. On the other hand, the uppermost layer (metal layer) M5 of the semiconductor device is mainly used as a chip power source line and pad metal and formed into a thick wiring layer 15 as in the case of the metal layer M3. As can be seen, the semiconductor device according to the present invention is characterized in that at least one of the intermediate layers (wiring layers excluding the uppermost and lowermost layers) among 20 a plurality of wiring layers is constituted out of a thick film and that at least one wiring layer on the at least one intermediate layer is constituted out of a thin film. That is, in the reference example, the thick wiring layer is formed on the thin wiring layer and no 25 thin wiring layer is formed on the thick wiring layer. According to the present invention, by contrast, a thin

11 wiring layer can be formed on the thick wiring layer as required. As a result, even if the uppermost layer of the IP core is constituted out of a thick film so as to use 5 the uppermost layer of the IP core as a core power source line, a wiring layer used as signal lines further above the uppermost layer of the IP core can be constituted out of a thin film in the semiconductor device using this IP core. 10 Furthermore, the core power source line can enhance the performance of the IP core (functional core to be constituted out of a thin film. this, wiring efficiency can be enhanced and optimum IP 15 designing and product development can be carried out.

block) and enables the uppermost wiring layer of the IP

Meanwhile, according to the present invention, the IP core (IP1) shown in FIGS. 9 and 10 and the IP core (IP2) shown in FIGS. 13 and 14 have the common number of wiring layers and the common thicknesses of the respective wiring layers. Accordingly, as shown in FIGS. 17 and 18, even if the IP core (IP1) and the IP core (IP2) are mounted on one semiconductor chip to constitute one semiconductor system, the layouts of the respective IP cores can be utilized as they are. Therefore, design efficiency is enhanced and semiconductor device development period can be thereby shortened.

20

4. Third Embodiment

FIG. 19 shows an IP core. FIG. 20 shows one example of the device structure of the IP core shown in FIG. 19.

In this embodiment, the IP core (IP3) is realized by three metal layers M1, M2 and m3. The metal layers M1 and M2 of the IP core are mainly used as signal lines and formed into thin wiring layers. Also, the uppermost layer (metal layer) M3 of the IP core is mainly used as a core power source line, thicker than the metal layers M1 and M2 and formed into a thick wiring layer.

In this embodiment, it is assumed that the metal layers M1 and M2 have the same wiring width. In addition, the metal layer M3 has a large width on, for example, a portion used as the core power source line and a small wiring width on portions used as signal lines as in the case of the metal layers M1 and M2 as shown in FIG. 20. It is noted, however, that the portion of the metal layer used as the core power source line may have a small width.

If this IP core is used in a design phase, the metal layers M1, M2 and M3 are used as they are and, as shown in FIGS. 21 and 22, metal layers M4, M5 and M6 are added, thereby forming a predetermined functional block (circuit) in the chip.

Here, the metal layers M4 and M5 are mainly used

15

10

5

20

as signal lines and formed into thin wiring layers as in the case of the metal layers M1 and M2. The uppermost layer (metal layer) M6 of the semiconductor device is, on the other hand, mainly used as a chip power source line and pad metal and formed into a thick wiring layer as in the case of the metal layer M3.

13

As can be seen, the semiconductor device according to the present invention is characterized in that at least one of the intermediate layers (wiring layers excluding the uppermost and lowermost layers) among a plurality of wiring layers is constituted out of a thick film and that at least one wiring layer on the at least one intermediate layer is constituted out of a thin film.

Namely, in the reference example, the thick wiring layer is formed on the thin wiring layer and no thin wiring layer is formed on the thick wiring layer.

According to the present invention, by contrast, a thin wiring layer can be formed on the thick wiring layer as required.

As a result, even if the uppermost layer of the IP core is constituted out of a thick film so as to use the uppermost layer of the IP core as, for example, a core power source line, a wiring layer used as signal line further above the uppermost layer of the IP core can be constituted out of a thin film in the semiconductor device using this IP core.

5

10

15

20

10

15

20

25

Furthermore, the core power source line can enhance the performance of the IP core (functional block) and enables the wiring layer on the uppermost layer of the IP core to be constituted out of a thin film. Due to this, wiring efficiency can be enhanced and optimum IP designing and product development can be carried out.

14

5. Fourth Embodiment

FIG. 23 shows an IP core. FIG. 24 shows one example of the device structure of the IP core shown in FIG. 23.

The IP core (IP4) in this embodiment has a different function from that of, for example, the IP core shown in FIGS. 19 and 20. However, the number of metal layers and the thicknesses of the respective metal layers are common to the both IP cores.

The IP core (IP3) is realized by three metal layers M1, M2 and M3. The metal layers M1 and M2 of the IP core are mainly used as signal lines and formed into thin wiring layers. Also, the uppermost layer (metal layer) M3 of the IP core is mainly used as a core power source line, thicker than the metal layers M1 and M2 and formed into a thick wiring layer.

In this embodiment, it is assumed that the metal layers M1 and M2 have the same wiring width. Also, the metal layer M3 has a large width on a portion used as, for example, the core power source line and, as shown

15 in FIG. 24, a small wiring width on portions used as 5 have a small width.

signal lines as in the case of the metal layers M1 and It is noted, however, that the portion of the metal layer M3 used as the core power source line may

If this IP core is used in a design phase, the metal layers M1, M2 and M3 are used as they are and, as shown in FIGS. 25 and 26, a metal layer M4 is added, thereby forming a predetermined functional block (circuit) in the chip. Here, the metal layer M4 is mainly used as signal lines and formed into a thin wiring layer as in the case of the metal layers M1 and M2.

As can be seen, the semiconductor device according to the present invention is characterized in that at least one of the intermediate layers (wiring layers excluding the uppermost and lowermost layers) among a plurality of wiring layers is constituted out of a thick film and that at least one wiring layer on the at least one intermediate layer is constituted out of a thin film.

Namely, in the reference example, the thick wiring layer is formed on the thin wiring layer and no thin wiring layer is formed on the thick wiring layer. According to the present invention, by contrast, a thin wiring layer can be formed on the thick wiring layer as required.

10

15

20

As a result, even if the uppermost layer of the IP core is constituted out of a thick film so as to use the uppermost layer of the IP core as, for example, a core power source line, a wiring layer used as signal lines further above the uppermost layer of the IP core can be constituted out of a thin film in the semiconductor device using this IP core.

Furthermore, the core power source line can enhance the performance of the IP core (functional block) and enables the wiring layer on the uppermost layer of the IP core to be constituted out of a thin film. Due to this, wiring efficiency can be enhanced and optimum IP designing and product development can be ensured.

In the meantime, according to the present invention, the number of wiring layers and the thicknesses of the respective wiring layers are common to the IP core (IP3) shown in FIGS. 19 and 20 and the IP core (IP4) shown in FIGS. 23 and 24. Accordingly, as shown in, for example, FIGS. 27 and 28, even if the IP core (IP3) and the IP core (IP4) are mounted on one semiconductor chip to constitute one system, the layouts of the respective IP cores can be utilized as they are. Due to this, design efficiency can be enhanced and semiconductor device development period can be thereby shortened.

10

15

20

25

6. Others

FIG. 29 shows the relationship between the thicknesses of the respective wiring layers of the semiconductor device according to the present invention and those of the respective wiring layers of the semiconductor device in the reference example.

It is assumed, for example, that the IP core is constituted out of m (where m is a natural number) wiring layers and a semiconductor device using this IP core is constituted out of n (where n is a natural number satisfying n > m) wiring layers. In this case, the thick wiring layer is always formed on the lowermost thick wiring layer in the reference example. According to the present invention, by contrast, a thin wiring layer can be formed on the lowermost thick wiring layer as required.

FIG. 30 shows an example in which four IP cores are mounted on one semiconductor chip.

With such a system LSI, the uppermost layers Mm of the IP cores (IP1, IP2, IP4), for example, can be used as core power source lines, respectively, and the uppermost layer Mm of the IP core (IP3) can be used as signal lines. It is noted that the electrical connection of the respective IP cores can be established using wiring layers (e.g., M1 to Mm) arranged in the spaces between the respective IP cores. Alternatively, the electrical connection can be

18 established using wiring layers (e.g., Mm+1 to Mn) on the wiring layers of the IP cores. The present invention can be applied to any semiconductor devices or particularly applied to 5 semiconductor device using an IP core, e.g., a logic LSI on which mixed memories are mounted and a system LSI. Additional advantages and modifications will readily occur to those skilled in the art. Therefore, 10 the invention in its broader aspects is not limited to the specific details and representative embodiments shown and described herein. Accordingly, various modifications may be made without departing from the spirit or scope of the general inventive concept as defined by the appended claims and their equivalents. 15