Office Hours Walk Tue 2-3 Thu 9-10 If sungularity is inside range of integration split integral into 2 (or more) improper integrals For example $\int |X|^{-\frac{1}{2}} dX$ Split into 2 $\int_{-1}^{0} (x)^{-\frac{1}{2}} dx + \int_{0}^{1} |x|^{-\frac{1}{2}} dx$

Bom improper integrals finite. Another example $\int_{-\infty}^{\infty} \frac{dx}{x}$ $= \int_{-1}^{0} \frac{dx}{x} + \int_{0}^{1} \frac{dx}{x}$ both undefined Similarly for integrals over R (with both + 00 and - 00 limits) Split integral into 2 or more improper integrals

$$\int_{-\infty}^{\infty} e^{-x^{2}} dx = \int_{-\infty}^{7} e^{-x^{2}} dx$$

$$+ \int_{7}^{\infty} e^{-x^{2}} dx$$

How to decide if an improper integral is well defined?

- (a) Compute integral!
- (b) Examine integrand f(x) hear singularities or as $x \rightarrow \pm \infty$ decide if singularity is integrable

Following power integrals very useful $\int_{0}^{1} x^{p} dx \qquad \text{finite if } p>-1$ $\int_{0}^{\infty} x^{p} dx \qquad \text{funte if } p<-1$

Examples

$$\int_{0}^{\frac{\pi}{2}} \frac{x}{\cos x} dx \qquad \int_{0}^{\frac{\pi}{2}} \sqrt{\frac{x}{\cos x}} dx$$

Approximate integrand near X = \frac{1}{2}

Near
$$X = \frac{\pi}{2}$$
 $X \approx \frac{\pi}{2}$

Cos $X = \cos \frac{\pi}{2} - \sin \frac{\pi}{2}(X - \frac{\pi}{2}) + \cdots$

(Taylor expansion about $X = \frac{\pi}{2}$)

 $X \approx \frac{\pi}{2}$
 $X \approx \frac{\pi}{2}$
 $X \approx \frac{\pi}{2}$
 $X \approx \frac{\pi}{2}$
 $X \approx \frac{\pi}{2}$

$$\frac{X}{Cos \times}$$
 $\frac{\Xi}{Z} - X$

$$\int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \frac{\pi}{2-x} dx \quad \text{un defined}$$

The cannot be integrated up to
$$x = \frac{\pi}{2}$$

integrable - better behaved

negative Than power Sungalar at x=1 $= \log 1 + \frac{1}{1}(x-1) + \cdots$ log x 2 X-1 neur X=) $\frac{1}{\log x}$ $\frac{1}{x-1}$ not untegrable at x=1

$$-\int_{-T}^{T} log \left(\frac{s in x}{x}\right) dx$$
 finite

$$\begin{array}{c} \log \left(\frac{\sin x}{x}\right) \approx \log \left(\frac{\pi-x}{x}\right) \\ -\log \pi \end{array}$$

$$Sin x \approx \pi-x$$

$$for x \approx \pi$$

$$\int_{1}^{\infty} \frac{1}{\tan^{-1}\left(\frac{1}{x}\right) dx}$$
un defined

for x large and positive tan' (x) x \frac{1}{x} and \frac{1}{x} and \frac{1}{x} \frac{1}{x} \frac{1}{x}

Another Example

$$\int_{0}^{\infty} \frac{\sin x}{x} dx$$

is defined. Use alternating series test!?

define
$$a_m = \int_{mT}^{(m+1)T} \frac{\sin x}{x} dx$$

$$\int_{0}^{\infty} \frac{\sin x}{x} dx = \sum_{m=0}^{\infty} \alpha_{m}$$

Can show am satisfied all conditions for alternating series test

 $\int_{0}^{\infty} \sin x \, dx$

First untegral not defined

 $\int_{0}^{\infty} \sin(x^{2}) dx$

 $\int_{\partial}^{b} \sin x \, dx = -\cos b + 1$

the limit b > od does not exist

2nd in tegral Well defined Why?

9 amma Fun chon

So
$$x^n e^{-x} dx = n!$$
 $n=1,2,3,4,5,...$

Proof uses unduction

and integration by parts

Consider

$$P! = \int_{0}^{\infty} X^{p} e^{-X} dX$$

where p is not necessarily integer (p can also be complex)

$$eg \left(-\frac{1}{2}\right)! = \sqrt{11}$$

Gamma function defined

out as
$$\Gamma(p) = (p-1)!$$

$$= \int_{0}^{\infty} x^{p-1} e^{-x} dx$$

has property P(p) = P(p+1)generalises

(n+1) n! = (n+1)!

['(p) Defined as integral of $f(x) = x^{p-1}e^{-x}$ from X=0 to 00 untegrable at $X=\infty$ due la exponential e^{-X} Near x=0 $f(x) \propto x^{p-1}$ requires p>0 (so that p-1 > -1)

8 Integration (Extensions and Applications)

Lengths, Areas and Volumes

 $\int_{a}^{b} f(x) dx \quad \text{represents}$ area under graph $Y = f(x). \quad \text{The length}$ of y = f(x) between $X = a \quad \text{and} \quad X = b \quad \text{can}$ be written as an integral

$$L = \int_{a}^{b} \sqrt{1 + (f'(x))^{2}} dx$$

OV

$$L = \int_{a}^{b} \sqrt{1 + (y'\alpha)^{2}} dx$$

Pythagoras $Se x \sqrt{(Sx)^2 + (Sy)^2}$ By ut $Sy \approx y'(x) Sx$ $Se \propto \sqrt{1 + 4'(x)^2} Sx$

Due to square root length calculations can be tricky

Example log curve length between x = 11 and x = a y = log x $y'(x) = \frac{1}{x}$

 $L = \int_{1}^{q} \sqrt{1 + \frac{1}{x^2}} dx$

$$L = \int_{1}^{\alpha} \frac{\sqrt{x^2 + 1}}{x} dx$$

Substitute X = tan 4or X = sinh 4

X= sinhu dx = cosh u dy

 $\int \frac{\sqrt{x^2+1}}{x} dx \qquad \cosh^2 x - s \sinh^2 x = 1$

= Sinhu = Cosh u du sinhu

 $= \int \frac{\cosh^2 u}{\sinh u} du$

$$= \int \frac{\sinh^2 u + 1}{\sinh u} du$$

$$\left[\int \frac{dx}{\sin x} = \log \left(\tan \frac{x}{2}\right) + c\right]$$

$$X = sinh u$$
, $Coshu = \sqrt{1+x^2}$

$$\int \sin x = \frac{2t}{1+t^2} \quad t = \tan x$$

$$X = 5 inh 1 = \frac{2t}{1-t^2}$$
 $t = tanh \frac{u}{2}$

$$(1-t^{2}) \times = 2t$$

$$+xt^{2} + 2t = x = 0$$

$$t = -2 \pm \sqrt{4 + 4x^{2}}$$

$$= -1 \pm \sqrt{1+x^{2}}$$

$$= -1 \pm \sqrt{1+x^2}$$

$$\int \frac{\int 1+x^2}{x} dx = \int 1+x^2$$

$$+ \log \left(-1+\sqrt{1+x^2}\right) + c$$

$$\int_1^a \frac{\int 1+x^2}{x} dx = \int 1+a^2 - \sqrt{2}$$

$$+ \left(\frac{1}{\alpha} \right) \left(\frac{-1 + \sqrt{1 + a^2}}{a} \right)$$

Other Formulas

Rotate graph y = f(x)

about X-axis

to give a surface of revolution

Area of surface is

 $A = 2\pi \int_{a}^{b} y(x) \sqrt{1 + (y'(x))^{2}} dx$

Volume enclosed between X=q $V = TT \int_{a}^{b} (y(x))^{2} dx$

Example y = cosh x a catenary

to bute whom X-axis

- Catenoid y'=suhx

 $A = 2\pi \int_{-1}^{1} y \sqrt{1 + y^{12}} dx$

 $= 2\pi \int_{-1}^{1} \cosh x \, dx$

see 2016 exam (May)

Other Length Formulas

 $L = \int_{\alpha}^{b} \sqrt{1 + (g'(x))^2} dx$

Can also define curves par ame hically

write X = X(t), y = y(t)

ta < t < tb t = purameter

eg - X(t) = t - sint y(t) = 1 - cost y(t) = 1 - cost

length

for mula

 $L = \int_{L}^{t_b} \sqrt{(\dot{x}(t))^2 + (\dot{y}(t))^2} dt$

 $X(H=\frac{dX(t)}{dt})$

 $\dot{y}(t) = \frac{dy(t)}{dt}$

Compute

longth of

cycloid

ard 0 \le t \le 2#

problems