Draft Figures: 12.23.18

Juliette Verstaen 12/18/2018

Contents

KOBE Plots with only most recent year of fisheries
RAM only
KOBE Plots with only most recent year of fisheries
All Data Sources
Total Catch: Most recent year for each fishery
Total Catch: A more generous estimation of Turf catch
Logit regressions
Probablity of itq = $f(ISSCAPP \text{ and } GDP) \dots \dots$
Rerun Logits with higher up species categories
Run Turf versus ITQ probably: $prob(ITQ)$. Turf = 1 and $ITQ = 0$ with the data set that was
the turf/itq only one
Rerun Logits with higher up species categories
MPA New Costello Data
Estimates of lost global economic value from lack of management

KOBE Plots with only most recent year of fisheries

 $coord_cartesian(xlim = c(0,4), ylim = c(0,4))$

RAM only

```
No data: ITQ = FALSE
#read in data: this is updated projection data (updated using RAMs) and Corbett's ITQ/Turf data applied
fisheries_recent <- read_csv("data/fisheries_recent.csv")</pre>
## Warning: Missing column names filled in: 'X1' [1]
## Warning in rbind(names(probs), probs_f): number of columns of result is not
## a multiple of vector length (arg 1)
## Warning: 11 parsing failures.
## row # A tibble: 5 x 5 col row
                                     col
                                                      expected actual
                                                                                            file ex
## ... ......
## See problems(...) for more details.
#assuming that when no data is avaliable on the fishery inregardes to ITQ or Turfs that means there are
fisheries_recent$itq[is.na(fisheries_recent$itq)] <- "FALSE"</pre>
fisheries_recent$ivq[is.na(fisheries_recent$ivq)] <- "FALSE"</pre>
fisheries_recent$iq[is.na(fisheries_recent$iq)] <- "FALSE"</pre>
fisheries_recent$turf[is.na(fisheries_recent$turf)] <- "FALSE"</pre>
a = fisheries_recent %>%
 filter(Dbase == "RAM") %>%
 ggplot(aes(BvBmsy, FvFmsy, color =Dbase )) +
 geom_point() +
```

```
b = fisheries_recent %>%
    ggplot(aes(BvBmsy, FvFmsy, color =Dbase )) +
    geom_point() +
    coord_cartesian(xlim = c(0,4), ylim = c(0,4))

#timeseries_values_views%>%
# filter(year == 2016) %>%
# select(BdivBmsypref, UdivUmsypref) %>%
# na.omit() %>%
# nrow()
# ggplot(aes(BdivBmsypref, UdivUmsypref)) +
# geom_point()
```

Warning: Removed 62 rows containing missing values (geom_point).

Warning: Removed 62 rows containing missing values (geom_point).


```
dbase_median <- fisheries_recent %>%
  select(BvBmsy,FvFmsy, Dbase) %>%
    group_by(Dbase) %>%
    na.omit() %>%
    summarise_each(funs(median)) %>%
    ggplot()+
    geom_point(aes(x=BvBmsy, y=FvFmsy, colour=Dbase))
fisheries_median <-fisheries_recent %>%
  select(BvBmsy,FvFmsy) %>%
    na.omit() %>%
    summarise_each(funs(median)) %>%
    ggplot()+
    geom_point(aes(x=BvBmsy, y=FvFmsy))
#only looking at fisheries data that come from RAMS database
# creating new column called "rightsbased" where 1 = ITQ and 0 = No ITQ
fisheries_KOBE_ram <- fisheries_recent %>%
  filter(Dbase == "RAM") %>%
  mutate(rightsbased = case_when(
    itq == TRUE | iq == TRUE | ivq == TRUE ~ "1",
    itq == FALSE & iq == FALSE & ivq == FALSE ~ "0"))
```

fisheries_KOBE_ram\$rightsbased[fisheries_KOBE_ram\$rightsbased == "0"]<- "No ITQ"

#graphing

```
fisheries_KOBE_ram$rightsbased[fisheries_KOBE_ram$rightsbased == "1"] <- "ITQ"

F_B_graph_ram <- ggplot(data = fisheries_KOBE_ram, aes( x=BvBmsy, y=FvFmsy, colour= rightsbased, size = geom_point()+
    labs(x = "B/Bmsy", y= "F/Fsmy") +
    theme_minimal()+
    theme(legend.title=element_blank())+
    ylim(0, 2.5)+
    xlim(0, 2.5)+
    geom_hline(aes(yintercept=1))+
    geom_vline(aes(xintercept=1))+
    ggtitle("KOBE_Plot: RAM_Fisheries")</pre>
F_B_graph_ram
```

Warning: Removed 108 rows containing missing values (geom_point).

KOBE Plot: RAM Fisheries

KOBE Plots with only most recent year of fisheries

All Data Sources

```
No data: ITQ = FALSE
fisheries_KOBE <- fisheries_recent %>%
  mutate(rightsbased = case_when(
   itq == TRUE | ivq == TRUE ~ "1",
```

```
itq == FALSE & iq == FALSE & ivq == FALSE ~ "0"))

fisheries_KOBE$rightsbased[fisheries_KOBE$rightsbased == "0"]<- "No ITQ"
fisheries_KOBE$rightsbased[fisheries_KOBE$rightsbased == "1"]<- "ITQ"

#graphing
F_B_graph <- ggplot(data = fisheries_KOBE, aes( x=BvBmsy, y=FvFmsy, colour= rightsbased, size = Catch )
    geom_point()+
    labs(x = "B/Bmsy", y= "F/Fsmy") +
    theme_minimal()+
    theme(legend.title=element_blank())+
    ylim(0, 2.5)+
    xlim(0, 2.5)+
    geom_hline(aes(yintercept=1))+
    geom_vline(aes(xintercept=1))+
    geom_vline(aes(xintercept=1))+
    ggtitle("KOBE Plot: All Fisheries")</pre>
F_B_graph
```

Warning: Removed 1603 rows containing missing values (geom_point).

KOBE Plot: All Fisheries


```
itq_median <- fisheries_KOBE %>%
  select(BvBmsy,FvFmsy, rightsbased) %>%
  group_by(rightsbased) %>%
   na.omit() %>%
  summarise_each(funs(median)) %>%
  ggplot()+
```

```
geom_point(aes(x=BvBmsy, y=FvFmsy, colour = rightsbased))+
ggtitle("Medians for ITQ and non ITQ fisheries")

## `summarise_each()` is deprecated.
## Use `summarise_all()`, `summarise_at()` or `summarise_if()` instead.
## To map `funs` over all variables, use `summarise_all()`
itq_median
```

Medians for ITQ and non ITQ fisheries

Total Catch: Most recent year for each fishery

MSY = col_double(),

##

```
fisheries_recent <- read_csv("data/fisheries_recent.csv")</pre>
## Warning: Missing column names filled in: 'X1' [1]
## Parsed with column specification:
## cols(
##
     .default = col_character(),
##
     X1 = col_integer(),
##
     Year = col_integer(),
##
     Biomass = col_double(),
##
     Catch = col_integer(),
##
     BvBmsy = col_double(),
     FvFmsy = col_double(),
##
##
     SpeciesCat.x = col_integer(),
##
     Profits = col double(),
```

```
##
    Price = col_double(),
     g = col_double(),
##
##
    k = col_double(),
    c = col_double(),
##
##
    phi = col_double()
## )
## See spec(...) for full column specifications.
## Warning in rbind(names(probs), probs_f): number of columns of result is not
## a multiple of vector length (arg 1)
## Warning: 11 parsing failures.
## row # A tibble: 5 x 5 col
                               row col
                                                           expected actual
## ... ....... ... ... ... ... ... ...
## See problems(...) for more details.
#assuming that when no data is present for itqs/turf that means there are none
fisheries_recent$turf[is.na(fisheries_recent$turf)] <- "FALSE"</pre>
fisheries_recent$itq[is.na(fisheries_recent$itq)] <- "FALSE"</pre>
fisheries_recent$ivq[is.na(fisheries_recent$ivq)] <- "FALSE"</pre>
fisheries_recent$iq[is.na(fisheries_recent$iq)] <- "FALSE"</pre>
fisheries_turf_itqs <- fisheries_recent %>%
 mutate(rightsbased = case_when())
    turf == TRUE ~ "2",
    itq == TRUE | iq == TRUE | ivq == TRUE ~ "1",
    itq == FALSE & iq == FALSE & ivq == FALSE ~ "0"
    ))
turfs_catch <- filter(fisheries_turf_itqs, rightsbased == "2")</pre>
itq_catch <- filter(fisheries_turf_itqs, rightsbased == "1")</pre>
no itq catch <- filter(fisheries turf itqs, rightsbased == "0")
sum(turfs_catch$Catch, na.rm = TRUE)
## [1] 234000
sum(itq_catch$Catch, na.rm = TRUE)
## [1] 4093520
sum(no_itq_catch$Catch, na.rm = TRUE)
## [1] 47569594
turf = 234000 = 0.29\% of total catch itq = 4093520 = 5.1\% of total catch
Global Catch Estimate = 80 million
```

file ex

Total Catch: A more generous estimation of Turf catch

```
#load data with info only on most recent year for each fishery (includes upside, updated with RAMs, cor
fisheries_recent <- read_csv("data/fisheries_recent.csv")
## Warning: Missing column names filled in: 'X1' [1]
## Warning in rbind(names(probs), probs_f): number of columns of result is not
```

```
## a multiple of vector length (arg 1)
## Warning: 11 parsing failures.
## row # A tibble: 5 x 5 col
                                row
                                                         expected actual
                                                                                                file ex
                                       col
## ... .......
## See problems(...) for more details.
#turf data from edf and discover turfs
turfs_edf_dt <- read_csv("data/turfs_edf_dt.csv")</pre>
## Warning: Missing column names filled in: 'X1' [1]
fisheries_recent_generousturf_1 <- select(fisheries_recent, Country, assess_id_short, Year,SciName, Cat
#merge the most recent data on each fishery with turf data
fisheries_recent_generousturf <- merge(fisheries_recent_generousturf_1, turfs_edf_dt, by = c("Country",
#assuming that when no data is present for itqs/turf that means there are none
fisheries_recent_generousturf$turf[is.na(fisheries_recent_generousturf$turf)] <- "FALSE"
fisheries_recent_generousturf$itq[is.na(fisheries_recent_generousturf$itq)] <- "FALSE"
fisheries_recent_generousturf$ivq[is.na(fisheries_recent_generousturf$ivq)] <- "FALSE"
fisheries_recent_generousturf$iq[is.na(fisheries_recent_generousturf$iq)] <- "FALSE"
fisheries_recent_generousturf_rightsbased <- fisheries_recent_generousturf %>%
  mutate(rightsbased = case_when(
   turf == TRUE ~ "2",
   itq == FALSE & iq == FALSE & ivq == FALSE ~ "0",
   itq == TRUE | iq == TRUE | ivq == TRUE ~ "1"
#create dfs for turf, itq, and no itq fisheries to calculate the sum of each
#NOTE to remember: the data from these fisheries are the most recent numbers we have. they are not all
turfs_generous <- filter(fisheries_recent_generousturf_rightsbased, rightsbased == "2")
itq_generous <- filter(fisheries_recent_generousturf_rightsbased, rightsbased == "1")
no_itq_generous <- filter(fisheries_recent_generousturf_rightsbased, rightsbased == "0")
sum(turfs_generous$Catch, na.rm = TRUE)
## [1] 1246549
sum(itq_generous$Catch, na.rm = TRUE)
## [1] 4093520
sum(no_itq_generous$Catch, na.rm = TRUE)
## [1] 46557045
Generous Turf Catch Estimates:
turf = 1246549 -> 1.5\% global catch itq= 4093520 -> 5.1\% global catch
Global Estimate = 80,000,000
```

Logit regressions

• new UN GDP data, 2016 only

• Scaled GDPs

Probablity of itq = f(ISSCAPP and GDP)

```
fisheries_recent$itq[is.na(fisheries_recent$itq)] <- "FALSE"
fisheries_recent$ivq[is.na(fisheries_recent$ivq)] <- "FALSE"
fisheries_recent$iq[is.na(fisheries_recent$iq)] <- "FALSE"</pre>
fisheries_recent$turf[is.na(fisheries_recent$turf)] <- "FALSE"</pre>
fisheries_recent_generousturf_1 <- fisheries_recent %>%
  select (Country, assess id short, Year, CommName, Biomass, Catch, BvBmsy, FvFmsy, Dbase, SciName, IdLe
colnames(fisheries_recent_generousturf_1) <- c("Country", "assess_id_short", "Year", "CommName", "Bioma</pre>
fisheries_recent_generousturf <- merge(fisheries_recent_generousturf_1, turfs_edf_dt, by = c("Country",
fisheries_recent_generousturf$turf[is.na(fisheries_recent_generousturf$turf)] <- "FALSE"
fisheries_recent_generousturf$itq[is.na(fisheries_recent_generousturf$itq)] <- "FALSE"
fisheries_recent_generousturf$ivq[is.na(fisheries_recent_generousturf$ivq)] <- "FALSE"
fisheries_recent_generousturf$iq[is.na(fisheries_recent_generousturf$iq)] <- "FALSE"
fisheries_recent_generousturf_rightsbased <- fisheries_recent_generousturf %>%
  mutate(rightsbased = case_when(
    itq == TRUE | iq == TRUE | ivq == TRUE ~ "1",
    itq == FALSE | iq == FALSE | ivq == FALSE ~ "0"
   ))
gdp_all <- read_excel("data/un_gdp_2016.xls")</pre>
gdp <- gdp_all %>%
  select(Country, gdp_center) %>%
  filter( gdp_center != "NA")
merge_gdp_rightsbased <- merge(gdp, fisheries_recent_generousturf_rightsbased, by = c("Country"))</pre>
gdp_rightsbased <- filter(merge_gdp_rightsbased, SpeciesCat != "NA" )</pre>
gdp_rightsbased$SpeciesCat <- factor(gdp_rightsbased$SpeciesCat)</pre>
gdp_rightsbased$rightsbased <- as.numeric(gdp_rightsbased$rightsbased)</pre>
itq_glm <- glm(formula = rightsbased ~ gdp_center + SpeciesCat, family = "binomial", data = gdp_rightsb</pre>
itq_glm
##
## Call: glm(formula = rightsbased ~ gdp_center + SpeciesCat, family = "binomial",
##
       data = gdp_rightsbased)
##
## Coefficients:
## (Intercept)
                   gdp_center SpeciesCat24 SpeciesCat25 SpeciesCat31
      -23.25301
                      0.65372
                                    0.72199
                                                   0.57817
                                                                  0.23871
##
## SpeciesCat32 SpeciesCat33 SpeciesCat34 SpeciesCat35 SpeciesCat36
##
       21.62558
                     16.66962
                                    18.37206
                                                  18.52555
                                                                  0.05396
## SpeciesCat37 SpeciesCat38 SpeciesCat42 SpeciesCat43 SpeciesCat44
```

```
21.11106
                     0.41897
                                   0.44894
                                                19.86649
                                                               0.27557
##
## SpeciesCat45 SpeciesCat47 SpeciesCat52 SpeciesCat53 SpeciesCat54
       0.56464
                     0.58032
                                   0.20064
                                                 0.46886
                                                               0.48184
## SpeciesCat55 SpeciesCat56
                              SpeciesCat57
                                            SpeciesCat76
                                                         SpeciesCat77
##
       0.09233
                     0.30466
                                   0.52054
                                                 0.59030
                                                               0.73787
##
## Degrees of Freedom: 3287 Total (i.e. Null); 3263 Residual
## Null Deviance:
                       233.7
## Residual Deviance: 160
                           AIC: 210
summary(itq_glm)
##
## Call:
## glm(formula = rightsbased ~ gdp_center + SpeciesCat, family = "binomial",
      data = gdp_rightsbased)
##
##
## Deviance Residuals:
      Min
                1Q
                     Median
                                  3Q
                                          Max
## -0.8267
           -0.0629 -0.0442
                              0.0000
                                       3.3261
##
## Coefficients:
##
                 Estimate Std. Error z value Pr(>|z|)
## (Intercept) -2.325e+01 7.285e+03 -0.003
                                               0.9975
                6.537e-01 2.701e-01
                                       2.420
                                               0.0155 *
## gdp_center
## SpeciesCat24 7.220e-01 1.037e+04
                                       0.000
                                               0.9999
                                       0.000
## SpeciesCat25 5.782e-01 1.311e+04
                                               1.0000
## SpeciesCat31 2.387e-01 8.022e+03
                                       0.000
                                               1.0000
## SpeciesCat32 2.163e+01 7.285e+03
                                       0.003
                                               0.9976
## SpeciesCat33 1.667e+01 7.285e+03
                                       0.002
                                               0.9982
## SpeciesCat34 1.837e+01 7.285e+03
                                       0.003
                                               0.9980
## SpeciesCat35 1.853e+01 7.285e+03
                                       0.003
                                               0.9980
## SpeciesCat36 5.396e-02 4.874e+04
                                       0.000
                                               1.0000
## SpeciesCat37 2.111e+01 7.285e+03
                                       0.003
                                               0.9977
## SpeciesCat38 4.190e-01 7.799e+03
                                       0.000
                                               1.0000
                                       0.000
## SpeciesCat42 4.489e-01 8.342e+03
                                               1.0000
                1.987e+01
                                       0.003
## SpeciesCat43
                          7.285e+03
                                               0.9978
## SpeciesCat44
                2.756e-01 1.663e+04
                                       0.000
                                               1.0000
                                       0.000
## SpeciesCat45 5.646e-01 7.975e+03
                                               0.9999
## SpeciesCat47
                5.803e-01 1.619e+04
                                       0.000
                                               1.0000
## SpeciesCat52 2.006e-01 1.041e+04
                                       0.000
                                               1.0000
## SpeciesCat53 4.689e-01 1.290e+04
                                       0.000
                                               1.0000
## SpeciesCat54 4.818e-01 1.250e+04
                                       0.000
                                               1.0000
## SpeciesCat55
                9.233e-02 1.144e+04
                                       0.000
                                               1.0000
## SpeciesCat56
                3.047e-01 8.929e+03
                                       0.000
                                               1.0000
                                       0.000
## SpeciesCat57 5.205e-01 8.188e+03
                                               0.9999
## SpeciesCat76 5.903e-01
                                       0.000
                                               1.0000
                          1.134e+04
## SpeciesCat77 7.379e-01 4.874e+04
                                       0.000
                                               1.0000
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 233.73 on 3287
                                      degrees of freedom
## Residual deviance: 160.02 on 3263
                                      degrees of freedom
```

```
## AIC: 210.02
##
## Number of Fisher Scoring iterations: 21
```

The intercepts for the species categories are not coming up as significant at all. Recategorized fish according to the next level up for the ISSCAAP codes. Reclassifications are below:

Larger Categories for ISSCAAP Codes $22-24 = \text{diadromous fishes} = 2\ 31-35,\ 37 = \text{marine fishes} = 3\ 42-45,47$ = crustaceans = $4\ 52-58 = \text{molluscs} = 5\ 74,76,77 = \text{miscellaneous aquatic animals} = 7$

Rerun Logits with higher up species categories

##

##

Country = col_character(),

programstart = col_integer(),

```
fisheries_recent <- read_csv("data/fisheries_recent.csv")</pre>
## Warning: Missing column names filled in: 'X1' [1]
## Parsed with column specification:
## cols(
##
     .default = col character(),
##
    X1 = col_integer(),
##
    Year = col_integer(),
##
    Biomass = col_double(),
    Catch = col_integer(),
##
    BvBmsy = col_double(),
##
##
    FvFmsy = col_double(),
##
    SpeciesCat.x = col_integer(),
    Profits = col_double(),
##
    MSY = col_double(),
##
    Price = col_double(),
##
##
    g = col_double(),
##
    k = col_double(),
##
    c = col_double(),
##
    phi = col_double()
## )
## See spec(...) for full column specifications.
## Warning in rbind(names(probs), probs_f): number of columns of result is not
## a multiple of vector length (arg 1)
## Warning: 11 parsing failures.
## row # A tibble: 5 x 5 col
                                                                                                file ex
                                row col
                                                         expected actual
## ... .....
## See problems(...) for more details.
fisheries_recent$itq[is.na(fisheries_recent$itq)] <- "FALSE"</pre>
fisheries_recent$ivq[is.na(fisheries_recent$ivq)] <- "FALSE"
fisheries_recent$iq[is.na(fisheries_recent$iq)] <- "FALSE"</pre>
fisheries_recent$turf[is.na(fisheries_recent$turf)] <- "FALSE"</pre>
turf_itq_isscaap <- read_csv("data/turf_itq_isscaap.csv")</pre>
## Parsed with column specification:
## cols(
##
     SciName = col_character(),
```

```
##
     itq_now = col_integer(),
##
     iq = col_logical(),
##
     itq = col_logical(),
     ivq = col_logical(),
##
##
    turf = col_logical(),
     SpeciesCat = col_integer()
##
## )
fisheries recent generousturf 1 <- fisheries recent %>%
  select(Country, assess_id_short, Year, CommName, Biomass, Catch, BvBmsy, FvFmsy, Dbase, SciName, IdLe
colnames(fisheries_recent_generousturf_1) <- c("Country", "assess_id_short", "Year", "CommName", "Bioma</pre>
fisheries_recent_generousturf <- merge(fisheries_recent_generousturf_1, turfs_edf_dt, by = c("Country",
fisheries_recent_generousturf$turf[is.na(fisheries_recent_generousturf$turf)] <- "FALSE"
fisheries_recent_generousturf$itq[is.na(fisheries_recent_generousturf$itq)] <- "FALSE"
fisheries_recent_generousturf$ivq[is.na(fisheries_recent_generousturf$ivq)] <- "FALSE"
fisheries_recent_generousturf$iq[is.na(fisheries_recent_generousturf$iq)] <- "FALSE"
fisheries_recent_regression_1 <- fisheries_recent_generousturf %>%
  mutate(rightsbased = case_when())
    itq == TRUE | iq == TRUE | ivq == TRUE ~ "1",
    itq == FALSE | iq == FALSE | ivq == FALSE ~ "0"
   )) %>%
  mutate(MainCat = case_when(
   SpeciesCat == 22 | SpeciesCat == 23 | SpeciesCat == 24 ~ "2",
    SpeciesCat == 31 | SpeciesCat == 32 | SpeciesCat == 33 | SpeciesCat == 34 | SpeciesCat
                                                                                                 == 35 |
   SpeciesCat == 42 | SpeciesCat == 43 | SpeciesCat == 44 | SpeciesCat == 45 | SpeciesCat
                                                                                                  == 47 ~
   SpeciesCat == 52 | SpeciesCat == 53 | SpeciesCat == 54 | SpeciesCat == 55 | SpeciesCat
                                                                                                 == 56 |
   SpeciesCat == 74 | SpeciesCat == 76 | SpeciesCat == 77 ~ "7"
  select(Country, SciName, MainCat, rightsbased) %>%
  filter(MainCat != "NA")
gdp_all <- read_excel("data/un_gdp_2016.xls")</pre>
gdp <- gdp_all %>%
  select(Country, gdp_center) %>%
  filter( gdp_center != "NA")
merge_gdp_mc_rb <- merge(gdp, fisheries_recent_regression_1, by = c("Country"))</pre>
gdp_mc_rb <- filter(merge_gdp_mc_rb, MainCat != "NA" )</pre>
gdp_mc_rb$MainCat <- factor(gdp_mc_rb$MainCat)</pre>
gdp_mc_rb$rightsbased <- as.numeric(gdp_mc_rb$rightsbased)</pre>
itq_glm_mc <- glm(formula = rightsbased ~ gdp_center + MainCat, family = "binomial", data = gdp_mc_rb)</pre>
itq_glm_mc
```

```
##
## Call: glm(formula = rightsbased ~ gdp_center + MainCat, family = "binomial",
      data = gdp_mc_rb)
##
## Coefficients:
                                                         MainCat5
## (Intercept)
                               MainCat3
                                            MainCat4
                gdp_center
      -21.0840
                    0.8308
                                15.6562
                                              16.3928
##
                                                            0.1010
##
     MainCat7
##
       0.3709
##
## Degrees of Freedom: 2976 Total (i.e. Null); 2971 Residual
                        229.9
## Null Deviance:
## Residual Deviance: 209.4
                                AIC: 221.4
summary(itq_glm_mc)
##
## Call:
## glm(formula = rightsbased ~ gdp_center + MainCat, family = "binomial",
##
       data = gdp_mc_rb)
##
## Deviance Residuals:
      Min
                10
                     Median
                                   30
                                          Max
## -0.5603 -0.1178 -0.0887 -0.0734
                                        3.4024
## Coefficients:
               Estimate Std. Error z value Pr(>|z|)
##
## (Intercept) -21.0840 1872.2786 -0.011 0.99102
                 0.8308
## gdp_center
                            0.2287
                                    3.633 0.00028 ***
## MainCat3
                15.6562 1872.2786
                                    0.008 0.99333
## MainCat4
                16.3928 1872.2786
                                    0.009 0.99301
## MainCat5
                 0.1010 2082.9637
                                     0.000 0.99996
                 0.3709 3632.8237
                                     0.000 0.99992
## MainCat7
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
##
       Null deviance: 229.94 on 2976 degrees of freedom
## Residual deviance: 209.35 on 2971
                                      degrees of freedom
## AIC: 221.35
## Number of Fisher Scoring iterations: 19
Larger categories do not seem to make a difference
Run Turf versus ITQ probably: prob(ITQ). Turf = 1 and ITQ = 0 with the data set that was
the turf/itq only one
```

```
fisheries_recent <- read_csv("data/fisheries_recent.csv")

## Warning: Missing column names filled in: 'X1' [1]

## Parsed with column specification:
## cols(</pre>
```

```
##
    .default = col_character(),
##
    X1 = col_integer(),
##
    Year = col_integer(),
    Biomass = col_double(),
##
##
    Catch = col_integer(),
    BvBmsy = col double(),
##
    FvFmsy = col double(),
##
    SpeciesCat.x = col_integer(),
##
##
    Profits = col_double(),
##
    MSY = col_double(),
    Price = col_double(),
##
    g = col_double(),
##
    k = col_double(),
   c = col_double(),
##
##
    phi = col_double()
## )
## See spec(...) for full column specifications.
## Warning in rbind(names(probs), probs_f): number of columns of result is not
## a multiple of vector length (arg 1)
## Warning: 11 parsing failures.
## row # A tibble: 5 x 5 col row col
                                                       expected actual
                                                                                             file ex
## ... ......
## See problems(...) for more details.
fisheries_recent$itq[is.na(fisheries_recent$itq)] <- "FALSE"</pre>
fisheries recent$ivq[is.na(fisheries recent$ivq)] <- "FALSE"
fisheries_recent$iq[is.na(fisheries_recent$iq)] <- "FALSE"</pre>
fisheries_recent$turf[is.na(fisheries_recent$turf)] <- "FALSE"</pre>
fisheries recent generousturf 1 <- fisheries recent %>%
 select(Country, assess_id_short, Year, CommName, Biomass, Catch, BvBmsy, FvFmsy, Dbase, SciName, IdLe
colnames(fisheries_recent_generousturf_1) <- c("Country", "assess_id_short", "Year", "CommName", "Bioma</pre>
fisheries_recent_generousturf <- merge(fisheries_recent_generousturf_1, turfs_edf_dt, by = c("Country",
fisheries_recent_generousturf$turf[is.na(fisheries_recent_generousturf$turf)] <- "FALSE"
fisheries_recent_generousturf$itq[is.na(fisheries_recent_generousturf$itq)] <- "FALSE"
fisheries_recent_generousturf$ivq[is.na(fisheries_recent_generousturf$ivq)] <- "FALSE"
fisheries_recent_generousturf$iq[is.na(fisheries_recent_generousturf$iq)] <- "FALSE"
fisheries_recent_generousturf_rightsbased <- fisheries_recent_generousturf %>%
 mutate(rightsbased = case when()
   turf == TRUE ~ "1",
   itq == TRUE | iq == TRUE | ivq == TRUE ~ "0"
   ))
gdp_all <- read_excel("data/un_gdp_2016.xls")</pre>
gdp <- gdp_all %>%
 select(Country, gdp_center) %>%
 filter( gdp_center != "NA")
```

```
join_gdp_rightsbased <- merge(gdp, fisheries_recent_generousturf_rightsbased, by = c("Country"))
gdp_rightsbased <- filter(join_gdp_rightsbased, SpeciesCat != "NA" )</pre>
gdp_rightsbased$SpeciesCat <- factor(gdp_rightsbased$SpeciesCat)</pre>
gdp_rightsbased$rightsbased <- as.numeric(gdp_rightsbased$rightsbased)</pre>
itq_turf_glm <- glm(formula = rightsbased ~ gdp_center + SpeciesCat, family = "binomial", data = gdp_ri
itq_glm
##
## Call: glm(formula = rightsbased ~ gdp_center + SpeciesCat, family = "binomial",
##
       data = gdp_rightsbased)
##
## Coefficients:
##
    (Intercept)
                   gdp_center SpeciesCat24 SpeciesCat25
                                                            SpeciesCat31
##
      -23.25301
                      0.65372
                                    0.72199
                                                  0.57817
                                                                 0.23871
## SpeciesCat32 SpeciesCat33
                               SpeciesCat34
                                             SpeciesCat35
                                                            SpeciesCat36
       21.62558
                     16.66962
                                   18.37206
                                                  18.52555
                                                                 0.05396
## SpeciesCat37
                 SpeciesCat38
                               SpeciesCat42
                                             SpeciesCat43
                                                            SpeciesCat44
##
       21.11106
                      0.41897
                                    0.44894
                                                  19.86649
                                                                 0.27557
## SpeciesCat45
                 SpeciesCat47
                               SpeciesCat52
                                             SpeciesCat53
                                                            SpeciesCat54
                                    0.20064
        0.56464
                      0.58032
                                                  0.46886
                                                                 0.48184
## SpeciesCat55
                SpeciesCat56
                               SpeciesCat57
                                             SpeciesCat76
                                                           SpeciesCat77
##
        0.09233
                      0.30466
                                    0.52054
                                                  0.59030
                                                                 0.73787
##
## Degrees of Freedom: 3287 Total (i.e. Null); 3263 Residual
## Null Deviance:
                        233.7
## Residual Deviance: 160
                            AIC: 210
summary(itq_turf_glm)
##
## Call:
  glm(formula = rightsbased ~ gdp_center + SpeciesCat, family = "binomial",
##
       data = gdp_rightsbased)
##
## Deviance Residuals:
##
        Min
                         Median
                                       3Q
                   1Q
                                                 Max
## -2.65671 -0.00003
                        0.00005
                                  0.45544
                                            1.49233
##
## Coefficients:
##
                  Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                  19.5241 17730.3686
                                        0.001
                                                0.9991
                               0.9631 -2.050
                                                0.0403 *
## gdp_center
                   -1.9748
## SpeciesCat31
                    2.8040 25074.5288
                                        0.000
                                                0.9999
## SpeciesCat32
                 -40.3459 19823.1550 -0.002
                                                0.9984
## SpeciesCat33
                  -15.5482 17730.3686 -0.001
                                                0.9993
## SpeciesCat34
                  -18.3570 17730.3687
                                       -0.001
                                                0.9992
## SpeciesCat35
                  -18.3274 17730.3686 -0.001
                                                0.9992
## SpeciesCat37
                  -16.8745 17730.3687 -0.001
                                                0.9992
## SpeciesCat42
                    2.9090 19308.5707
                                        0.000
                                                0.9999
## SpeciesCat43
                  -19.6626 17730.3686 -0.001
                                                0.9991
```

```
## SpeciesCat44
                    0.8975 25074.5286
                                        0.000
                                                1.0000
## SpeciesCat45
                    2.4163 19000.6267
                                        0.000
                                                0.9999
## SpeciesCat47
                    0.8975 25074.5286
                                        0.000
                                                1.0000
                                        0.000
## SpeciesCat52
                    0.8975 25074.5288
                                                1.0000
## SpeciesCat53
                   3.0872 21715.1786
                                       0.000
                                                0.9999
## SpeciesCat54
                   1.8394 19543.1278
                                       0.000
                                               0.9999
## SpeciesCat56
                   1.4260 19695.2349
                                        0.000
                                                0.9999
## SpeciesCat57
                    2.6784 19786.6083
                                        0.000
                                                0.9999
## SpeciesCat76
                   0.8975 25074.5286
                                        0.000
                                                1.0000
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
##
       Null deviance: 84.306 on 73 degrees of freedom
## Residual deviance: 30.618 on 55 degrees of freedom
     (3214 observations deleted due to missingness)
##
## AIC: 68.618
##
## Number of Fisher Scoring iterations: 19
```

The intercepts for the species categories are not coming up as significant at all. Recategorized fish according to the next level up for the ISSCAAP codes. Reclassifications are below:

Larger Categories for ISSCAAP Codes $22-24 = \text{diadromous fishes} = 2\ 31-35,\ 37 = \text{marine fishes} = 3\ 42-45,47 = \text{crustaceans} = 4\ 52-58 = \text{molluscs} = 5\ 74,76,77 = \text{miscellaneous aquatic animals} = 7$

Rerun Logits with higher up species categories

```
fisheries recent <- read csv("data/fisheries recent.csv")
## Warning: Missing column names filled in: 'X1' [1]
## Parsed with column specification:
## cols(
##
     .default = col_character(),
##
     X1 = col integer(),
     Year = col_integer(),
##
##
     Biomass = col_double(),
##
     Catch = col_integer(),
##
     BvBmsy = col_double(),
##
     FvFmsy = col_double(),
##
     SpeciesCat.x = col_integer(),
##
     Profits = col_double(),
##
    MSY = col_double(),
##
     Price = col_double(),
##
     g = col_double(),
##
     k = col_double(),
##
     c = col_double(),
     phi = col_double()
##
## )
## See spec(...) for full column specifications.
## Warning in rbind(names(probs), probs_f): number of columns of result is not
## a multiple of vector length (arg 1)
```

```
## Warning: 11 parsing failures.
## row # A tibble: 5 x 5 col row col
                                                       expected actual
                                                                                            file ex
## ... .....
## See problems(...) for more details.
fisheries_recent$itq[is.na(fisheries_recent$itq)] <- "FALSE"</pre>
fisheries_recent$ivq[is.na(fisheries_recent$ivq)] <- "FALSE"</pre>
fisheries_recent$iq[is.na(fisheries_recent$iq)] <- "FALSE"</pre>
fisheries recent$turf[is.na(fisheries recent$turf)] <- "FALSE"
turf_itq_isscaap <- read_csv("data/turf_itq_isscaap.csv")</pre>
## Parsed with column specification:
## cols(
##
    SciName = col_character(),
##
    Country = col_character(),
## programstart = col_integer(),
##
    itq_now = col_integer(),
   iq = col_logical(),
##
##
   itq = col_logical(),
    ivq = col_logical(),
##
    turf = col_logical(),
    SpeciesCat = col_integer()
##
## )
fisheries_recent_generousturf_1 <- fisheries_recent %>%
 select(Country, assess_id_short, Year, CommName, Biomass, Catch, BvBmsy, FvFmsy, Dbase, SciName, IdLe
colnames(fisheries_recent_generousturf_1) <- c("Country", "assess_id_short", "Year", "CommName", "Bioma</pre>
fisheries_recent_generousturf <- merge(fisheries_recent_generousturf_1, turfs_edf_dt, by = c("Country",
fisheries_recent_generousturf$turf[is.na(fisheries_recent_generousturf$turf)] <- "FALSE"
fisheries_recent_generousturf$itq[is.na(fisheries_recent_generousturf$itq)] <- "FALSE"
fisheries_recent_generousturf$ivq[is.na(fisheries_recent_generousturf$ivq)] <- "FALSE"
fisheries_recent_generousturf$iq[is.na(fisheries_recent_generousturf$iq)] <- "FALSE"
fisheries_recent_turf_i_mc <- fisheries_recent_generousturf %>%
 mutate(rightsbased = case_when())
   turf == TRUE ~ "1",
   itq == TRUE | iq == TRUE | ivq == TRUE ~ "0"
   ))%>%
 mutate(MainCat = case_when(
   SpeciesCat == 22 | SpeciesCat == 23 | SpeciesCat == 24 ~ "2",
   SpeciesCat == 31 | SpeciesCat == 32 | SpeciesCat == 34 | SpeciesCat
                                                                                           == 35 |
   SpeciesCat == 42 | SpeciesCat == 43 | SpeciesCat == 44 | SpeciesCat == 45 | SpeciesCat
                                                                                            == 47 ~
   SpeciesCat == 52 | SpeciesCat == 53 | SpeciesCat == 55 | SpeciesCat
                                                                                            == 56 |
   SpeciesCat == 74 | SpeciesCat == 76 | SpeciesCat == 77 ~ "7"
 )) %>%
 select(Country, SciName, MainCat, rightsbased) %>%
 filter(MainCat != "NA")
gdp_all <- read_excel("data/un_gdp_2016.xls")</pre>
```

```
gdp <- gdp_all %>%
  select(Country, gdp_center) %>%
  filter( gdp_center != "NA")
join_gdp_turf_i_mc <- merge(gdp, fisheries_recent_turf_i_mc, by = c("Country"))</pre>
gdp_turf_i_mc <- filter(join_gdp_turf_i_mc, MainCat != "NA" )</pre>
gdp_turf_i_mc$MainCat <- factor(gdp_turf_i_mc$MainCat)</pre>
gdp_turf_i_mc$rightsbased <- as.numeric(gdp_turf_i_mc$rightsbased)</pre>
turf_itq_mc_glm <- glm(formula = rightsbased ~ gdp_center + MainCat, family = "binomial", data = gdp_tu
turf_itq_mc_glm
##
## Call: glm(formula = rightsbased ~ gdp_center + MainCat, family = "binomial",
       data = gdp_turf_i_mc)
##
## Coefficients:
## (Intercept)
                 gdp_center
                                MainCat3
                                             MainCat4
                                                           MainCat5
##
       18.2663
                    -0.5681
                                -17.1565
                                             -17.2261
                                                             0.5635
##
      MainCat7
##
        0.2582
##
## Degrees of Freedom: 73 Total (i.e. Null); 68 Residual
## (2903 observations deleted due to missingness)
## Null Deviance:
                        84.31
## Residual Deviance: 71.08
                                AIC: 83.08
summary(turf_itq_mc_glm)
##
## Call:
## glm(formula = rightsbased ~ gdp_center + MainCat, family = "binomial",
##
       data = gdp_turf_i_mc)
##
## Deviance Residuals:
##
       Min
                 1Q
                      Median
                                   ЗQ
                                           Max
## -1.7798 -0.9451
                               0.9343
                      0.6731
                                         1.1082
##
## Coefficients:
##
               Estimate Std. Error z value Pr(>|z|)
## (Intercept) 18.2663 6522.6388 0.003
                                               0.998
## gdp_center
                -0.5681
                             0.4789 -1.186
                                               0.236
## MainCat3
                -17.1565 6522.6389 -0.003
                                               0.998
## MainCat4
                -17.2261 6522.6389 -0.003
                                               0.998
## MainCat5
                  0.5635 6732.3040
                                    0.000
                                               1.000
## MainCat7
                  0.2582 9224.4041
                                     0.000
                                               1.000
##
## (Dispersion parameter for binomial family taken to be 1)
##
       Null deviance: 84.306 on 73 degrees of freedom
## Residual deviance: 71.085 on 68 degrees of freedom
```

```
## (2903 observations deleted due to missingness)
## AIC: 83.085
##
## Number of Fisher Scoring iterations: 17
```

MPA New Costello Data

These MPAs are at least partially no-take but some of the percentages are very low

```
mpa_costello_data <- read_excel("data/mpa_costello_data.xlsx")</pre>
##Choose only MPAs that have some no take
mpa_no_take <- mpa_costello_data %>%
 filter(no_take == "1")
mpa_no_take_10 <- top_n(mpa_no_take, 10, mpa_area)</pre>
mpa_no_take_10
## # A tibble: 10 x 9
##
          Country land_area coastline
                                                mpa_area no_take_area
            <chr>
                      <dbl>
                                                                <dbl>
##
                                <chr>>
                                         <dbl>
                                                   <dbl>
                                                               565.20
                    8515770
                                 7491 3677599 42674.20
## 1
           Brazil
   2
         Colombia 1138910
                                 3208
                                       728664 37333.77
##
                                                             11513.18
## 3
          Denmark
                     43094
                                 7314 2640568 100824.34
                                                              5370.62
## 4
          Ecuador 283561
                                 2237 1096362 138423.77
                                                             47172.28
                                 3427 10070572 770512.70
## 5
           France
                   643801
                                                            120545.11
## 6
         Kiribati
                        811
                                 1143 3439933 395389.00
                                                            395389.00
## 7
           Mexico 1964375
                                 9330 3186922 190365.68
                                                            147972.76
## 8
        Nicaragua
                    130370
                                  910
                                       228255 36011.33
                                                              5329.94
## 9
          Norway4
                     323802
                                25148 2464161 85275.88
                                                             59326.67
                   1219090
                                 2798 1547609 174832.89
                                                              4846.42
## 10 South Africa
## # ... with 3 more variables: percent_mpa <dbl>, percent_no_take <dbl>,
## #
      no_take <dbl>
##all countries
mpa_no_take_10$Country <- factor(mpa_no_take_10$Country, levels = mpa_no_take_10$Country[order(mpa_no_t
ggplot(mpa_no_take_10, aes(x = Country, y = mpa_area)) +
 geom_bar(stat = "identity")+
 ggtitle("Top 10 Countries with No Take MPAs")+
 coord_flip()+
 theme_bw()+
 ylab("Area km2")
```


Top 10 Countries with No Take MPAs

These are the countries with the highest area of no-take

```
mpa_costello_data <- read_excel("data/mpa_costello_data.xlsx")

##Choose only MPAs that have some no take
mpa_no_take <- mpa_costello_data %>%
   filter(no_take == "1")

mpa_no_take_area_10 <- top_n(mpa_no_take, 10, no_take_area)
mpa_no_take_area_10</pre>
```

```
## # A tibble: 10 x 9
##
               Country land_area coastline
                                                       mpa_area no_take_area
                                                  eez
##
                 <chr>
                            <dbl>
                                      <chr>>
                                                <dbl>
                                                          <dbl>
                                                                        <dbl>
                                              728664
                                                                    11513.18
##
              Colombia
                          1138910
                                       3208
                                                       37333.77
   1
##
   2
               Denmark
                            43094
                                       7314
                                             2640568 100824.34
                                                                     5370.62
##
    3
               Ecuador
                           283561
                                       2237
                                             1096362 138423.77
                                                                    47172.28
##
    4
                France
                           643801
                                       3427 10070572 770512.70
                                                                    120545.11
##
   5
              Kiribati
                                       1143 3439933 395389.00
                                                                    395389.00
                              811
##
    6 Marshall Islands
                              181
                                        370
                                             2001410
                                                        3338.81
                                                                     3338.81
                                                                    147972.76
##
   7
                Mexico
                          1964375
                                       9330 3186922 190365.68
##
    8
             Nicaragua
                          130370
                                        910
                                              228255
                                                      36011.33
                                                                     5329.94
   9
               Norway4
                           323802
                                      25148
                                            2464161 85275.88
                                                                    59326.67
##
          South Africa
                          1219090
                                       2798 1547609 174832.89
                                                                     4846.42
## # ... with 3 more variables: percent_mpa <dbl>, percent_no_take <dbl>,
       no_take <dbl>
```

```
##all countries
mpa_no_take_area_10$Country <- factor(mpa_no_take_area_10$Country, levels = mpa_no_take_area_10$Country

ggplot(mpa_no_take_area_10, aes(x = Country, y = no_take_area)) +
    geom_bar(stat = "identity")+
    ggtitle("Top 10 Countries with Largest No Take Areas")+
    coord_flip()+
    theme_bw()+
    ylab("Area km2")</pre>
```

Top 10 Countries with Largest No Take Areas

Estimates of lost global economic value from lack of management

1. Costello et al 2016 2050

- RBFM policy applied to just stocks of conservation concern = \$31 billion in fisheries profit
- RBFM policy applied to all stocks = \$53 billion in fisheries profit

2. Original Sunken Billions (2009)

• "current annual net benefits from marine capture fisheries are tens of billions of U.S. dollars less than the potential benefits"

include_graphics("sunkenbillionstable.png")

Table 4.2 Estimates of the Economic Losses from Global Marine Fisheries		
Source	Estimate of losses	Drivers/focus of proposed solutions
FAO 1993	\$54 aggregate loss, or approximately 75 percent of the gross revenue	Open access, subsidies
Garcia and Newton 1997	\$46 billion deficit	Overcapacity, loss of high-value species
Sanchirico and Wilen 2002	\$90 billion (future projection)	Rents in ITQ fisheries approach 60–70 percent of gross revenues.
Wilen 2005	\$80 billion	Secure tenure
World Bank (this study)	\$51 billion	Comprehensive governance reform

3. Updated Sunken Billions (2012)

• economic losses of about \$83 billion