Multi-Modal Ensembles of Regressor Chains for Multi-Output Prediction

Symposium on Intelligent Data Analysis 2022 April 20-22, 2022, Rennes, France

<u>Ekaterina Antonenko</u> and Jesse Read

April 21, 2022

Laboratoire d'informatique, École Polytechnique, IP Paris DigitalentLab, MIA, Moteurs d'Intelligence Artificielle

Definition of a multi-output problem

Given: Dataset $\mathcal{D} = \{(\mathbf{x}^i, \mathbf{y}^i)\}_{i=1}^N$ of N samples:

- features $\mathbf{x}^i = [\mathbf{x}_1^i, ..., \mathbf{x}_M^i]$
- outputs $\mathbf{y}^i = [y_1^i, ..., y_L^i]$

Goal: Model f(X) = y which outputs predictions $\hat{y}^i = [\hat{y}_1^i, ..., \hat{y}_L^i]$ having \mathcal{D} observed.

Definition of a multi-output problem

Given: Dataset $\mathcal{D} = \{(\mathbf{x}^i, \mathbf{y}^i)\}_{i=1}^N$ of N samples:

- features $\mathbf{x}^i = [\mathbf{x}_1^i, ..., \mathbf{x}_M^i]$
- outputs $\mathbf{y}^i = [y_1^i, ..., y_L^i]$

Goal: Model f(X) = y which outputs predictions $\hat{y}^i = [\hat{y}^i_1, ..., \hat{y}^i_L]$ having \mathcal{D} observed.

Example:

	Х	<i>K</i> *	Height	BOHYLENGTH	weight
Α		12,44	127,4	151	294,5
В		9,44	137,6	156	328
C		10,44	128,6	157	377
D		6,13	125,6	150	305,5
E		6,15	139	156	325
F		?	?	?	?

Definition of a multi-output problem

Given: Dataset $\mathcal{D} = \{(\mathbf{x}^i, \mathbf{y}^i)\}_{i=1}^N$ of N samples:

- features $\mathbf{x}^i = [\mathbf{x}_1^i, ..., \mathbf{x}_M^i]$
- outputs $\mathbf{y}^i = [y_1^i, ..., y_L^i]$

Goal: Model f(X) = y which outputs predictions $\hat{y}^i = [\hat{y}_1^i, ..., \hat{y}_L^i]$ having \mathcal{D} observed.

Example:

	х	₩ [®]	Height	BODYLENGTH	weight
Α		12,44	127,4	151	294,5
В		9,44	137,6	156	328
C		10,44	128,6	157	377
D		6,13	125,6	150	305,5
Е		6,15	139	156	325
F		?	?	?	?

Idea: to model these labels together in order to get better prediction performance

· Independent models (= binary relevance for classification):

$$\hat{\mathbf{y}} = [\hat{y}_1, ..., \hat{y}_L] = [h_1(\mathbf{x}), ..., h_L(\mathbf{x})]$$

$$\hat{\mathbf{y}} = [\hat{y}_1, ..., \hat{y}_L] = [h_1(\mathbf{x}), h_2(\mathbf{x}, \hat{y}_1), ..., h_L(\mathbf{x}, \hat{y}_1, ..., \hat{y}_{L-1})]$$

 $h_1, h_2, ..., h_L = Base \ Estimators \ (i.e. \ any \ single-output models)$

¹Classifier chains for multi-label classification, Read et al., 2011, Multi-Label Classification Methods for Multi-Target Regression, Spyromitros-Xioufis et al., 2016.

· Independent models (= binary relevance for classification):

$$\hat{\mathbf{y}} = [\hat{y}_1, ..., \hat{y}_L] = [h_1(\mathbf{x}), ..., h_L(\mathbf{x})]$$

$$\hat{y} = [\hat{y}_1, ..., \hat{y}_L] = [h_1(x), h_2(x, \hat{y}_1), ..., h_L(x, \hat{y}_1, ..., \hat{y}_{L-1})]$$
 $h_1, h_2, ..., h_L = Base Estimators (i.e. any single-output models)$

	Х	Pog.	Height	BODY LENGTH	weight
Α		?	?	?	?
В		?	?	?	?
C		?	?	?	?
D		?	?	?	?
E		?	?	?	?

¹Classifier chains for multi-label classification, Read et al., 2011, Multi-Label Classification Methods for Multi-Target Regression, Spyromitros-Xioufis et al., 2016.

· Independent models (= binary relevance for classification):

$$\hat{\mathbf{y}} = [\hat{y}_1, ..., \hat{y}_L] = [h_1(\mathbf{x}), ..., h_L(\mathbf{x})]$$

$$\hat{y} = [\hat{y}_1, ..., \hat{y}_L] = [h_1(x), h_2(x, \hat{y}_1), ..., h_L(x, \hat{y}_1, ..., \hat{y}_{L-1})]$$
 $h_1, h_2, ..., h_L = Base Estimators (i.e. any single-output models)$

	Х	₩.	Height	BODY LENGTH	weight
Α		12,44	?	?	?
В		9,44	?	?	?
C		10,44	?	?	?
D		6,13	?	?	?
E		6,15	?	?	?

¹Classifier chains for multi-label classification, Read et al., 2011, Multi-Label Classification Methods for Multi-Target Regression, Spyromitros-Xioufis et al., 2016.

· Independent models (= binary relevance for classification):

$$\hat{\mathbf{y}} = [\hat{y}_1, ..., \hat{y}_L] = [h_1(\mathbf{x}), ..., h_L(\mathbf{x})]$$

$$\hat{y} = [\hat{y}_1, ..., \hat{y}_L] = [h_1(x), h_2(x, \hat{y}_1), ..., h_L(x, \hat{y}_1, ..., \hat{y}_{L-1})]$$
 $h_1, h_2, ..., h_L = Base Estimators (i.e. any single-output models)$

	Х	Pog	Height	Bodylength	weight
Α		12,44	127,4	?	?
В		9,44	137,6	?	?
C		10,44	128,6	?	?
D		6,13	125,6	?	?
E		6,15	139	?	?

¹Classifier chains for multi-label classification, Read et al., 2011, Multi-Label Classification Methods for Multi-Target Regression, Spyromitros-Xioufis et al., 2016.

· Independent models (= binary relevance for classification):

$$\hat{\mathbf{y}} = [\hat{y}_1, ..., \hat{y}_L] = [h_1(\mathbf{x}), ..., h_L(\mathbf{x})]$$

$$\hat{y} = [\hat{y}_1, ..., \hat{y}_L] = [h_1(x), h_2(x, \hat{y}_1), ..., h_L(x, \hat{y}_1, ..., \hat{y}_{L-1})]$$
 $h_1, h_2, ..., h_L = Base Estimators (i.e. any single-output models)$

	Х	₩	Height	BOHN Jength	weight
Α		12,44	127,4	151	?
В		9,44	137,6	156	?
C		10,44	128,6	157	?
D		6,13	125,6	150	?
E		6,15	139	156	?

¹Classifier chains for multi-label classification, Read et al., 2011, Multi-Label Classification Methods for Multi-Target Regression, Spyromitros-Xioufis et al., 2016.

· Independent models (= binary relevance for classification):

$$\hat{\mathbf{y}} = [\hat{y}_1, ..., \hat{y}_L] = [h_1(\mathbf{x}), ..., h_L(\mathbf{x})]$$

$$\hat{y} = [\hat{y}_1, ..., \hat{y}_L] = [h_1(x), h_2(x, \hat{y}_1), ..., h_L(x, \hat{y}_1, ..., \hat{y}_{L-1})]$$
 $h_1, h_2, ..., h_L = Base Estimators (i.e. any single-output models)$

	х	₽&°	Height	BOOYLENGTH	Weight
Α		12,44	127,4	151	294,5
В		9,44	137,6	156	328
C		10,44	128,6	157	377
D		6,13	125,6	150	305,5
Е		6,15	139	156	325

¹Classifier chains for multi-label classification, Read et al., 2011, Multi-Label Classification Methods for Multi-Target Regression, Spyromitros-Xioufis et al., 2016.

Ensembles of chains²

²Multi-Label Classification Methods for Multi-Target Regression, Spyromitros-Xioufis et al., 2016.

Does the chaining approach work?

Classification

Classifier Chains have proved to be **flexible and effective** and have achieved **state-of-the-art** empirical performance

 Classifier Chains: A Review and Perspectives, Read et al., 2021

Regression

Regressor Chains show **relatively few advantages** compared to individual regression models. State-of-the-art methods:

- Multi-output Decision Trees (DT)
- · Multi-output Random Forests (RF)
- · Independent Regressors (IR)

Regressor chains: why don't they work?

One possible reason: inadequate choice of the loss function

Most models optimize $MSE = \frac{1}{N} \sum_{j=1}^{N} (\mathbf{y}_j - \hat{\mathbf{y}}_j)^2$.

Example: Multi-modal distribution \implies standard models may be inappropriate.

Optimizing MSE does not help to exploit the dependencies between the targets.

Uniform Cost Function (UCF)³ is an analogue of 0/1 loss for regression.

$$UCF(\delta) = \frac{1}{N} \sum_{i=1}^{N} \begin{cases} 0 \text{ if } ||\mathbf{y}^{i} - \hat{\mathbf{y}}^{i}||_{2} < \frac{\delta}{2}, \\ 1 \text{ otherwise.} \end{cases}$$

Goal = challenge: optimize UCF.

³Maximum a posteriori estimates in linear inverse problems with log-concave priors are proper bayes estimators, Burger and Lucka, 2014.

Uniform Cost Function (UCF)³ is an analogue of 0/1 loss for regression.

$$UCF(\delta) = \frac{1}{N} \sum_{i=1}^{N} \begin{cases} 0 \text{ if } ||\mathbf{y}^{i} - \hat{\mathbf{y}}^{i}||_{2} < \frac{\delta}{2}, \\ 1 \text{ otherwise.} \end{cases}$$

Goal = challenge: optimize UCF.

³Maximum a posteriori estimates in linear inverse problems with log-concave priors are proper bayes estimators, Burger and Lucka, 2014.

Base Estimator level

ERC

· Single round of training

mmFRC

- · Train on all dataset
- Choose portion of data giving best predictions
- · Retrain on this part

```
Algorithm 1 mmERC: Training h_i for target y_i (done for i = 1, ..., L)
                                                        \triangleright Train b.e. h_i for target y_i on \{x, y_i\}
 1: procedure Fit(h_i, \{x, y_i\})
          \widetilde{h_i} \leftarrow \text{clone of } h_i
          fit \widetilde{h_i} on \{(x, y_i)\}
                                                       > First training phase (full training set)
                                                                               \triangleright Prediction of \widetilde{h_i} on x
          y_{nred} \leftarrow \widetilde{h}_i(\boldsymbol{x})
          corr \leftarrow 1 - e^{-(y_j - y_{pred})^2}
                                                                                            ▷ Correntropy
          \{x', y_i'\} \subset \{x, y_i\}
                                              \triangleright Top s-instances wrt (lowest) corr, 0 < s < 1
          fit h_i on \{(\boldsymbol{x}', y_i')\}
                                                                              > Second training phase
          return h.
                                                                         Return the trained model
```

Base Estimator level

ERC

· Single round of training

mmERC

- · Train on all dataset
- Choose portion of data giving best predictions
- · Retrain on this part

Ensemble level

ERC

Mean for all predictions

mmERC

- Choose the largest cluster of predictions
- Take mean for this cluster only

mmERC: results on 40 synthetic datasets

Datasets (x, y_1, y_2) :

For each y distribution, there are five x distributions

- A: $\sim U(0, 1)$ where U stands for uniform distribution
- B: $\sim \{0, 1\}$ (according to the cluster)
- C: $\{\sim U(0,1), \sim U(1,2)\}$ (according to the cluster)
- D: $\{\sim \mathcal{N}(0,1), \sim \mathcal{N}(1,1)\}$ (according to the cluster)
- E: $\sim \mathcal{N}(0,1)$

mmERC: results on 40 synthetic datasets

Datasets (x, y_1, y_2) :

Results (UCF):

Regressor	Α	В	C	D	Е	Average	AvgRank
DT	0.71	0.50	0.50	0.70	0.73	0.63 ± 0.01	7.9
RF	0.84	0.47	0.45	0.78	0.84	0.67 ± 0.04	10.2
IR (dt)	0.79	0.50	0.52	0.74	0.78	0.66 ± 0.02	11.1
IR (rf)	0.86	0.47	0.47	0.79	0.87	0.69 ± 0.04	11.0
IR (svr)	0.72	0.40	0.52	0.70	0.72	0.61 ± 0.02	6.0
RC (dt)	0.74	0.50	0.51	0.70	0.72	0.63 ± 0.01	8.6
RC (rf)	0.81	0.45	0.45	0.75	0.82	0.66 ± 0.03	8.8
RC (svr)	0.70	0.40	0.51	0.67	0.71	0.60 ± 0.02	4.2
ERC (dt)	0.78	0.50	0.49	0.72	0.76	0.65 ± 0.02	8.6
ERC (rf)	0.83	0.44	0.44	0.76	0.83	0.66 ± 0.04	8.6
ERC (svr)	0.71	0.40	0.50	0.67	0.72	0.60 ± 0.02	5.0
mmERC (dt)	0.72	0.50	0.51	0.69	0.71	0.63 ± 0.01	8.2
mmERC (rf)	0.69	0.43	0.44	0.63	0.67	$\boldsymbol{0.57 \pm 0.02}$	2.2
mmERC (svr)	0.69	0.40	0.52	0.67	0.68	0.59 ± 0.02	4.6

(grouped by x distribution)

For each v distribution, there are five x distributions

- A: $\sim U(0, 1)$ where U stands for uniform distribution
- B: $\sim \{0, 1\}$ (according to the cluster)
- C: $\{\sim U(0, 1), \sim U(1, 2)\}\$ (according to the cluster)
- D: $\{\sim \mathcal{N}(0,1), \sim \mathcal{N}(1,1)\}\ (according to the cluster)$
- E: $\sim \mathcal{N}(0, 1)$

mmERC (RF)

mmERC: results on yacon dataset

Yacon dataset:

mmERC: results on yacon dataset

Yacon dataset:

mmERC: results on yacon dataset

Yacon dataset:

Results:

10

Discussion

- mmERC on average outperforms the independent regressors and standard Regressor Chains
- mmERC improves ERC for all base estimators in most of the scenarios
- Decision Trees: recognize cluster shape, but may assign clusters randomly, not smooth
 - Random Forests: "smooth", but put the predictions between the real clusters
 - mmERC: improves the performance of Random Forests and outputs a smooth function at the same time

Thank you!