PD-94098

International Rectifier

SMPS MOSFET

IRFP460N

HEXFET® Power MOSFET

Applications

- Switch Mode Power Supply (SMPS)
- Uninterruptable Power Supply
- High speed power switching

V _{DSS}	Rds(on) max	I _D
500V	0.24Ω	20A

Benefits

- Low Gate Charge Qg results in Simple Drive Requirement
- Improved Gate, Avalanche and dynamic dv/dt Ruggedness
- Fully Characterized Capacitance and Avalanche Voltage and Current
- Effective Coss specified (See AN1001)

Absolute Maximum Ratings

	Parameter	Max.	Units
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V	20	
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V	13	A
I _{DM}	Pulsed Drain Current ①	80	
P _D @T _C = 25°C	Power Dissipation	280	W
	Linear Derating Factor	2.2	W/°C
V_{GS}	Gate-to-Source Voltage	± 30	V
dv/dt	Peak Diode Recovery dv/dt ③	5.0	V/ns
T _J	Operating Junction and	-55 to + 150	
T _{STG}	Storage Temperature Range		°C
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)	
	Mounting torqe, 6-32 or M3 screw	10 lbf•in (1.1N•m)	

Typical SMPS Topologies:

- Full Bridge
- PFC Boost

International TOR Rectifier

Static @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	500			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		0.58			V/°C Reference to 25°C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance			0.24	Ω	V _{GS} = 10V, I _D = 12A ④
V _{GS(th)}	Gate Threshold Voltage	3.0		5.0	V	$V_{DS} = V_{GS}$, $I_D = 250\mu A$
I _{DSS}	Drain-to-Source Leakage Current			25	uA	$V_{DS} = 500V, V_{GS} = 0V$
				250	μΛ	$V_{DS} = 400V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage			100	nA	V _{GS} = 30V
	Gate-to-Source Reverse Leakage			-100	1 ''A	V _{GS} = -30V

Dynamic @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
g fs	Forward Transconductance	10			S	$V_{DS} = 50V, I_{D} = 12A$
Qg	Total Gate Charge			124		I _D = 20A
Q _{gs}	Gate-to-Source Charge			40	nC	$V_{DS} = 400V$
Q _{gd}	Gate-to-Drain ("Miller") Charge			57		V_{GS} = 10V, See Fig. 6 and 13 \oplus
t _{d(on)}	Turn-On Delay Time		23			V _{DD} = 250V
t _r	Rise Time		87		ns	$I_D = 20A$
t _{d(off)}	Turn-Off Delay Time		34		110	$R_G = 4.3\Omega$
tf	Fall Time		33			$R_D = 13\Omega$, See Fig. 10 ④
C _{iss}	Input Capacitance		3540			$V_{GS} = 0V$
Coss	Output Capacitance		350			$V_{DS} = 25V$
C _{rss}	Reverse Transfer Capacitance		30		pF	f = 1.0MHz, See Fig. 5
Coss	Output Capacitance		3930			$V_{GS} = 0V$, $V_{DS} = 1.0V$, $f = 1.0MHz$
Coss	Output Capacitance		95			$V_{GS} = 0V$, $V_{DS} = 400V$, $f = 1.0MHz$
Coss eff.	Effective Output Capacitance		200			$V_{GS} = 0V, V_{DS} = 0V \text{ to } 400V $

Avalanche Characteristics

	Parameter	Тур.	Max.	Units
E _{AS}	Single Pulse Avalanche Energy@		340	mJ
I _{AR}	Avalanche Current®		20	Α
E _{AR}	Repetitive Avalanche Energy①		28	mJ

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JC}$	Junction-to-Case		0.45	
$R_{\theta CS}$	Case-to-Sink, Flat, Greased Surface	0.24		°C/W
$R_{\theta JA}$	Junction-to-Ambient		40	

Diode Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions			
Is	Continuous Source Current			20		MOSFET symbol			
	(Body Diode)		20		Α	showing the			
I _{SM}	Pulsed Source Current				00	00			integral reverse
	(Body Diode) ①	80		p-n junction diode.					
V_{SD}	Diode Forward Voltage			1.8	V	$T_J = 25$ °C, $I_S = 20$ A, $V_{GS} = 0$ V ④			
t _{rr}	Reverse Recovery Time		550	825	ns	$T_J = 25^{\circ}C, I_F = 20A$			
Q _{rr}	Reverse RecoveryCharge		7.2	10.8	μC	di/dt = 100A/µs ④			
t _{on}	Forward Turn-On Time	Intrinsic turn-on time is negligible (turn-on is dominated by L _S +L _D)							

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature

IRFP460N International Rectifier

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 8. Maximum Safe Operating Area

Fig 9. Maximum Drain Current Vs. Case Temperature

Fig 10a. Switching Time Test Circuit

Fig 10b. Switching Time Waveforms

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

International TOR Rectifier

Fig 12a. Unclamped Inductive Test Circuit

Fig 12b. Unclamped Inductive Waveforms

Fig 13a. Basic Gate Charge Waveform

Fig 12c. Maximum Avalanche Energy Vs. Drain Current

Fig 13b. Gate Charge Test Circuit

Peak Diode Recovery dv/dt Test Circuit

Fig 14. For N-Channel HEXFETS

International TOR Rectifier

Package Outline **TO-247AC**

Dimensions are shown in millimeters (inches)

Part Marking Information

TO-247AC

EXAMPLE: THIS IS AN IRFPE30 WITH ASSEMBLY

LOT CODE 3A1Q

Notes:

- Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11)
- ② Starting $T_J = 25$ °C, L = 1.8mH $R_G = 25\Omega$, $I_{AS} = 20$ A. (See Figure 12)
- $\label{eq:loss_def} \begin{tabular}{ll} \Im & I_{SD} \leq 20A, \ di/dt \leq 140A/\mu s, \ V_{DD} \leq V_{(BR)DSS}, \\ & T_{J} \leq 150^{\circ}C \end{tabular}$
- ④ Pulse width ≤ 300 μ s; duty cycle ≤ 2%.

This product has been designed and qualified for the industrial market.

Qualification Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105

TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. Data and specifications subject to change without notice. 05/01