$\overline{\mathrm{DM2}}$

Exercice 1. Soit $(F_n)_{n\in\mathbb{N}}$ la suite définie par $F_0=0,\,F_1=1\,$ et pour tout $n\geq 0$

$$F_{n+2} = F_{n+1} + F_n.$$

- 1. Montrer que pour tout $n \in \mathbb{N}$ on a : $\sum_{k=0}^{n} F_{2k+1} = F_{2n+2}$ et $\sum_{k=0}^{n} F_{2k} = F_{2n+1} 1$.
- 2. Montrer que pout tout $n \in \mathbb{N}$ on a $\sum_{k=0}^{n} F_k^2 = F_n F_{n+1}$.
- 3. (a) On note $\varphi = \frac{1+\sqrt{5}}{2}$ et $\psi = \frac{1-\sqrt{5}}{2}$. Montrer que $\varphi^2 = \varphi + 1$ et $\psi^2 = \psi + 1$.
 - (b) Montrer que l'expression explicite de F_n st donnée par $F_n = \frac{1}{\sqrt{5}}(\varphi^n \psi^n)$.
 - (c) En déduire que $\lim_{n\to\infty} \frac{F_{n+1}}{F_n} = \varphi$

Exercice 2. 1. Rappeler la valeur de $R_3 = \sum_{k=0}^{n} k^3$ en fonction de $n \in \mathbb{N}$

- 2. Soit $k \in \mathbb{N}$, développer $(k+1)^5 k^5$.
- 3. A l'aide de la somme téléscopique $\sum_{k=0}^{n} (k+1)^5 k^5$ donner la valeur de $R_4 = \sum_{k=0}^{n} k^4$ en fonction de $n \in \mathbb{N}$. (On pourra garder une formule développée)

Exercice 3. On va prouver la formule du binome de Newton par récurrence Pour tout $(a,b) \in \mathbb{R}^2$, et pour tout $n \in \mathbb{N}$,

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}.$$

- 1. Vérifier que la formule du binôme est vraie pour $n=0,\,n=1,\,n=2$ (et sur votre brouillon faite n=3).
- 2. Montrer que pour tout $(a,b) \in \mathbb{R}^2$, et pour tout $n \in \mathbb{N}$,

$$\sum_{k=0}^{n} \binom{n}{k} a^{k+1} b^{n-k} = a^{n+1} + \sum_{k=1}^{n} \binom{n}{k-1} a^k b^{n-k+1}.$$

3. Montrer que pour tout $(a,b) \in \mathbb{R}^2$, et pour tout $n \in \mathbb{N}$,

$$(a+b)\left(\sum_{k=0}^{n} \binom{n}{k} a^k b^{n-k}\right) = a^{n+1} + b^{n+1} + \sum_{k=1}^{n} \left(\binom{n}{k-1} + \binom{n}{k}\right) a^k b^{n-k+1}$$

4. En déduire que

$$(a+b)\left(\sum_{k=0}^{n} \binom{n}{k} a^k b^{n-k}\right) = \sum_{k=0}^{n+1} \binom{n+1}{k} a^k b^{n+1-k}$$

5. Conclure.