Álgebra Linear Professores: Ricardo Paleari/Cléber Barreto

Departamento de Matemática - UFPR

Curso: Turma Especial de Verão

Data: 24/02/2020

Primeira Prova - Soluções

- Não serão aceitas respostas sem justificativas. Você pode usar, sem provar, todos os resultados feitos em sala de aula;
- Você pode usar lápis em toda a resolução das questões;
- ullet A menos que seja especificado, todo espaço vetorial nessa prova será considerado sobre um corpo comutativo $\mathbb K$.
- (2,0) 1. Sejam V e W espaços vetoriais sobre \mathbb{K} , $n \in \mathbb{N}$ e $T: V \to W^n$ uma função. Escreva, para cada $v \in V$, $T(v) = (T_1(v), ..., T_n(v))$. Assim, ficam definidas as funções $T_j: V \to W$ para cada j = 1, ..., n. Mostre que T é linear se, e somente se, T_j é linear para todo j = 1, ..., n.

Solução: Para cada j=1,...,n seja $\pi_j:W^n\to W$ a projeção dada por $\pi_j(w_1,...,w_n)=w_j$. Claramente π_j é linear para todo j=1,...,n. Além disso, $T_j=\pi_j\circ T$ por definição de T_j . Logo, se T é linear, então cada T_j é uma composição de transformações lineares e portanto linear. Reciprocamente, suponha que T_j seja linear para cada j=1,...,n, então dados $v_1,v_2\in V$ e $k\in \mathbb{K}$ temos

$$\begin{array}{lll} T(v_1+kv_2) & = & (T_1(v_1+kv_2),...,T_n(v_1+kv_2)) \\ & = & (T_1(v_1)+kT_1(v_2),...,T_n(v_1)+kT_n(v_2)) \\ & = & (T_1(v_1),...,T_n(v_1))+k(T_1(v_2),...,T_n(v_2)) \\ & = & T(v_1)+kT(v_2), \end{array}$$

 $\log T$ é linear.

- (3,0) 2. Seja V um \mathbb{C} -espaço vetorial de dimensão n. Denotamos por $V_{\mathbb{R}}$ o mesmo espaço vetorial V mas considerado como um espaço vetorial apenas sobre \mathbb{R} . Seja $\beta = \langle v_1, ..., v_n \rangle$ uma base ordenada de V.
 - (1,5) a) Mostre que $\widetilde{\beta} = \langle v_1, ..., v_n, iv_1, ..., iv_n \rangle$ é uma base de $V_{\mathbb{R}}$.
 - (1,5) b) Seja $T:V\to V$ uma transformação linear. Definimos $T_{\mathbb{R}}:V_{\mathbb{R}}\to V_{\mathbb{R}}$ como a mesma função T mas pensada apenas como \mathbb{R} -linear. Encontre uma relação entre as matrizes $[T]_{\beta}$ e $[T_{\mathbb{R}}]_{\widetilde{\beta}}$.

Solução:

a) Suponha que existam $a_1, ..., a_n, b_1, ..., b_n \in \mathbb{R}$ de modo que

$$a_1v_1 + \dots + a_nv_n + b_1(iv_1) + \dots + b_n(iv_n) = 0$$

Como V é um \mathbb{C} -espaço vetorial, esta equação é equivalente a:

$$(a_1 + ib_1)v_1 + \dots + (a_n + ib_n)v_n = 0.$$

Como $\langle v_1,...,v_n\rangle$ é linearmente independente em V, segue que $a_j+ib_j=0$ para todo j=1,...,n, e portanto $a_j=b_j=0$ para todo j=1,...,n, o que conclui que $\widetilde{\beta}$ é linearmente independente.

Agora dado $v \in V_{\mathbb{R}} = V$, como β é gerador e V, existem $z_1,...,z_n \in \mathbb{C}$ tais que $v = z_1v_1 + ... + z_nv_n$. Escreva, para cada $j = 1,...,n, z_j = a_j + ib_j$ com $a_j,b_j \in \mathbb{R}$. Então

$$v = (a_1 + ib_1)v_1 + \dots + (a_n + ib_n)v_n = a_1v_1 + \dots + a_nv_n + b_1(iv_1) + \dots + b_n(iv_n) \in \mathbf{span} \ \widetilde{\beta}.$$

Assim $\widetilde{\beta}$ é gerador de $V_{\mathbb{R}}$, e portanto $\widetilde{\beta}$ é base de $V_{\mathbb{R}}$.

b) Escreva $[T]_{\beta} = (z_{kl})$, com $z_{kl} = a_{kl} + ib_{kl}$, $a_{kl}, b_{kl} \in \mathbb{R}$ para todo $k, l \in \{1, ..., n\}$. Considere agora as matrizes com entradas reais $A = (a_{kl}) \in M_n(\mathbb{R})$ e $B := (b_{kl}) \in M_n(\mathbb{R})$, isto é, $[T]_{\beta} = A + iB$. Daí, para cada k = 1, ..., n temos

$$\begin{array}{rcl} T_{\mathbb{R}}(v_k) & = & T(v_k) \\ & = & z_{1k}v_1 + \ldots + z_{nk}v_n \\ & = & (a_{1k} + ib_{1k})v_1 + \ldots + (a_{nk} + ib_{nk})v_n \\ & = & a_{1k}v_1 + \ldots + a_{nk}v_n + b_{1k}(iv_1) + \ldots + b_{nk}(iv_n). \end{array}$$

 \mathbf{e}

$$\begin{array}{lll} T_{\mathbb{R}}(iv_k) & = & T(iv_k) \\ & = & iT(v_k) \\ & = & i(z_{1k}v_1 + \ldots + z_{nk}v_n) \\ & = & (-b_{1k})v_1 + \ldots + (-b_{nk})v_n + a_{1k}(iv_1) + \ldots + a_{nk}(iv_n). \end{array}$$

Logo

$$[T_{\mathbb{R}}]_{\widetilde{\beta}} = \left[\begin{array}{c|c} A & -B \\ \hline B & A \end{array} \right].$$

(2,5) 3. Seja $T:V\to W$ uma transformação linear sobrejetiva entre \mathbb{K} -espaços vetoriais. Mostre que existe uma transformação linear injetiva $\widetilde{T}:W\to V$ tal que $T\circ\widetilde{T}=\mathrm{Id}_W$. Enuncie e demonstre um resultado análogo para uma transformação linear injetiva $T:V\to W$.

Solução: Seja $(w_{\lambda})_{\lambda \in \Lambda}$ uma base de W. Como T é sobrejetiva, para cada $\lambda \in \Lambda$ existe $v_{\lambda} \in V$ tal que $T(v_{\lambda}) = w_{\lambda}$. Defina $\widetilde{T}: W \to V$ como a única transformação linear tal que $\widetilde{T}(w_{\lambda}) = v_{\lambda}$ para todo $\lambda \in \Lambda$. Assim, \widetilde{T} está completamente determinada e por definição satisfaz $(T \circ \widetilde{T})(w_{\lambda}) = T(\widetilde{T}(w_{\lambda})) = T(v_{\lambda}) = w_{\lambda}$ para todo $\lambda \in \Lambda$. Portanto $T \circ \widetilde{T}$ e Id_W coincidem em uma base de W e assim $T \circ \widetilde{T} = \mathrm{Id}_W$. Para ver que \widetilde{T} é injetiva, note que se $\widetilde{T}(w) = 0$, então $w = \mathrm{Id}_W(w) = T(\widetilde{T}(w)) = T(0) = 0$, logo w = 0.

Suponha agora que $T:V\to W$ seja uma transformação linear injetiva. Afirmamos que existe uma transformação linear sobrejetiva $\widetilde{T}:W\to V$ tal que $\widetilde{T}\circ T=\mathrm{Id}_V$. Seja $(v_\lambda)_{\lambda\in\Lambda}$ uma base de V. Como T é injetiva, o conjunto $(T(v_\lambda))_{\lambda\in\Lambda}\subset W$ é linearmente independente. Completamos esse conjunto para uma base de W consistindo de vetores $\{T(v_\lambda)\}_{\lambda\in\Lambda}\cup\{w_\mu\}_{\mu\in M}$. Definimos $\widetilde{T}:W\to V$ como a única transformação linear tal que $\widetilde{T}(T(v_\lambda))=v_\lambda$ e $\widetilde{T}(w_\mu)=0$ para todos $\lambda\in\Lambda$ e $\mu\in M$. Assim \widetilde{T} está completamente definida e por definição satisfaz $(\widetilde{T}\circ T)(v_\lambda)=v_\lambda$ para todo $\lambda\in\Lambda$. Como $(v_\lambda)_{\lambda\in\Lambda}$ é base de V, segue que $\widetilde{T}\circ T=\mathrm{Id}_V$. Para ver que \widetilde{T} é sobrejetiva, seja $v\in V$ e note que por construção de \widetilde{T} , temos que $v=\widetilde{T}(T(v))$, logo $v\in\mathrm{Im}(\widetilde{T})$.

- (2,5) 4. Seja V um \mathbb{K} -espaço vetorial de dimensão $n, \beta = \langle v_1, ..., v_n \rangle$ uma base ordenada de V e $b: V \times V \to \mathbb{K}$ uma forma \mathbb{K} -bilinear.
 - (1,0) a) Mostre que para todos $u, v \in V$ vale

$$b(u, v) = [u]_{\beta}^{t} \mathbf{B}[v]_{\beta},$$

onde $\mathbf{B} := (b_{ij})$ com $b_{ij} := b(v_i, v_j)$ para $i, j \in \{1, ..., n\}$.

(1,5) b) Seja $b^{\#}:V\to V^*$ a aplicação (linear) definida por

$$[b^{\#}(u)](v) := b(u, v).$$

Definimos o núcleo da forma bilinear b como Ker $b := \text{Ker } b^{\#}$. Dizemos que b é n**ão-degenerada** se Ker $b = \{0\}$. Mostre que b é n**ão-degenerada** se, e somente se, det $\mathbf{B} \neq 0$.

Solução:

a) Escreva $u=c_1v_1+\ldots+c_nv_n$ e $v=d_1v_1+\ldots+d_nv_n$. Daí,

$$[u]_{\beta}^{t}\mathbf{B}[v]_{\beta} = \begin{bmatrix} c_{1} & \dots & c_{n} \end{bmatrix} \begin{bmatrix} b_{11} & \dots & b_{1n} \\ \vdots & & \vdots \\ b_{n1} & \dots & b_{nn} \end{bmatrix} \begin{bmatrix} d_{1} \\ \vdots \\ d_{n} \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^{n} c_{i}b_{i1} & \dots & \sum_{i=1}^{n} c_{i}b_{in} \end{bmatrix} \begin{bmatrix} d_{1} \\ \vdots \\ d_{n} \end{bmatrix}$$

e portanto

$$[u]_{\beta}^{t}\mathbf{B}[v]_{\beta} = \sum_{i,j=1}^{n} c_{i}d_{j}b_{ij} = \sum_{i,j=1}^{n} c_{i}d_{j}b(v_{i}, v_{j}).$$

Por outro lado,

$$b(u,v) = b\left(\sum_{i=1}^{n} c_i v_i, \sum_{j=1}^{n} d_j v_j\right)$$

$$= \sum_{i=1}^{n} c_i b\left(v_i, \sum_{j=1}^{n} d_j v_j\right)$$

$$= \sum_{i=1}^{n} c_i \left(\sum_{j=1}^{n} d_j b(v_i, v_j)\right)$$

$$= \sum_{i,j=1}^{n} c_i d_j b(v_i, v_j).$$

b) Seja $\beta^* = \langle v^1, ..., v^n \rangle$ a base dual de β . Para cada i = 1, ..., n escreva

$$b^{\#}(v_i) = \alpha_{1i}v^1 + \dots + \alpha_{ni}v^n.$$

Por definição de $b^{\#}$ e de base dual, temos que para cada j=1,...,n vale

$$[b^{\#}(v_i)](v_i) = (\alpha_{1i}v^1 + \dots + \alpha_{in}v^n)(v_i) = \alpha_{ii}.$$

Logo,

$$b(v_i, v_j) = [b^{\#}(v_i)](v_j) = \alpha_{ji},$$

e portanto $[b^{\#}]_{\beta}^{\beta^*} = \mathbf{B}^t$. Como dim $V = \dim V^*$, segue que $b^{\#}$ é isomorfismo se, e somente se, \mathbf{B}^t é invertível, ou seja, se, e somente, det $\mathbf{B}^t = \det \mathbf{B} \neq 0$.