Projeto e Análise de Algoritmos

Análise de Algoritmos Comportamento Assintótico Notação Assintótica

Análise de algoritmos

- Eficiência do algoritmo
 - Análise da ordem de crescimento da função de complexidade: tempo ou espaço
 - Notação assintótica
- Corretude do algoritmo
 - Analisar se o algoritmo um resultado correto

Otimizando tour de robô

- Problema: otimizando tour de robô
- Entrada: Um conjunto S de n pontos em um plano
- Saída: Um ciclo que visita cada ponto de S e de menor comprimento possível.

Solução Nearest-neighbor

```
\begin{aligned} \text{NearestNeighbor}(P) \\ \text{Pick and visit an initial point } p_0 \text{ from } P \\ p &= p_0 \\ i &= 0 \\ \text{While there are still unvisited points} \\ i &= i+1 \\ \text{Select } p_i \text{ to be the closest unvisited point to } p_{i-1} \\ \text{Visit } p_i \\ \text{Return to } p_0 \text{ from } p_{n-1} \end{aligned}
```


Solução ótima da solução por Nearest-neighbor

Outra entrada

Solução correta

```
OptimalTSP(P) d = \infty

For each of the n! permutations P_i of point set P

If (cost(P_i) \leq d) then d = cost(P_i) and P_{min} = P_i

Return P_{min}
```

Considera todas as possíveis permutações, escolhendo aquela de menor custo. Portanto, o algoritmo é correto.

Porém, para n=20, 20! = 2.432.902.008.176.640.000

Desempenho de um programa

- Tempo de processamento
- Quantidade de memória requerida
- Fator importante a ser considerado em um projeto de algoritmo
 - Adequação dos algoritmos e estruturas de dados escolhidas para resolução de um dado problema

Tempo de execução

- Depende de quais fatores?
 - Hardware (CPU, memória, HD, SDD, etc)
 - Dados de entrada (quantidade, tamanho)
 - Implementação
 - Linguagem de programação
 - Algoritmos e estruturas de dados utilizados
 - Compilador/interpretador
 - Sistema Operacional
 - Tipo de operações realizadas
 - Tipo de memória utilizada

— ...

Análise de algoritmos

- Analisar um algoritmo é prever os recursos de que o algoritmo necessitará
 - Eficiência
 - Viabilidade
- Analisar de forma que diferentes algoritmos possam ser comparados e que os mais eficientes possam ser identificados e escolhidos

Medida do custo pela execução do programa

- Desvantagem
 - Resultados dependem de várias variáveis:
 - Compilador
 - Hardware
- Vantagem
 - Comparar algoritmos com custos de execução da mesma ordem de grandeza
 - Pode-se comparar custos reais das operações

Medida do custo por meio de um modelo matemático

- Considera um computador idealizado
 - Padronização independente de máquina
 - Um processador e memória RAM (acesso aleatório)
 - Realidade: pode variar conforme tipo de instruções, etc
 - Ex: Cálculo de x^y é realizado em tempo constante?
 - Em C e x=2, 1 << y (left-shift)</p>
 - Ex: E multiplicação de dois inteiros, x * y?
- Considera apenas o custo de operações mais significativas
 - Pode ignorar o custo de algumas operações

Funções de complexidade

- Função de complexidade f(n)
 - Complexidade de tempo: f(n) mede o tempo necessário para executar um algoritmo em um problema de tamanho n
 - Geralmente calcula-se a quantidade de vezes que algumas operações relevantes são executadas
 - Complexidade de espaço: f(n) mede a memória necessária para executar um algoritmo em problema de tamanho n

- Maior Elemento
 - Encontrar o maior elemento no vetor de inteiros A[0...n-1], n ≥ 1
 int Max(TipoVetor A)
 { int i , Temp;
 Temp = A[0] ;
 for (i = 1; i < n; i ++)
 if (Temp < A[i]) Temp = A[i];
 return Temp;</pre>
- Seja f uma função de complexidade tal que f(n) é o número de comparações entre os elementos de A, sendo A um vetor contendo n elementos
- Logo f(n) = n 1, para n > 0.

Tamanho da entrada de dados

- Geralmente f(n) é calculada em função do tamanho da entrada n (número de itens)
 - Na função Max(), o custo independe da entrada
 - Para muitos algoritmos, o custo de execução pode depender do tipo de dados de entrada
 - Custos diferentes para entradas de tamanhos iguais
 - Ex: Ordenação de números já ordenados e não-ordenados
 - Multiplicação de dois números inteiros
 - Depende da quantidade de bits necessária para representação
 - Grafos
 - Descrição em termos de números de vértices e arestas (2 variáveis)

```
Selecao(A){
  for i=1 to n-1 do
    min = i
    for j=i+1 to n do
      if(A[j] < A[min])
      min = j
    troca(A[min], A[i]);
}</pre>
```

```
Linha # execuções for i=1 to n-1 do  for j=i+1 to n do \\ if(A[j] < A[min])
```

Linha # execuções for i=1 to n-1 do
$$n$$
 for j=i+1 to n do $\sum_{i=1}^{n-1} (n-i+1)$ if(A[j] < A[min]) $\sum_{i=1}^{n-1} (n-i)$

Seja T(n) uma função de complexidade que fornece o número de comparações (if) realizadas pelo Selection sort

$$T(n) = \sum_{i=1}^{n-1} (n-i)$$

$$\sum_{i=1}^n i = n(n+1)/2$$

Linha # execuções for i=1 to n-1 do
$$n$$
 for j=i+1 to n do $\sum_{i=1}^{n-1} (n-i+1)$ if(A[j] < A[min]) $\sum_{i=1}^{n-1} (n-i)$

Seja T(n) uma função de complexidade que fornece o número de comparações (if) realizadas pelo Selection sort

$$egin{aligned} T(n) &= \sum_{i=1}^{n-1} (n-i) \ &= \sum_{i=1}^{n-1} n - \sum_{i=1}^{n-1} i \ &= n(n-1) - n(n-1)/2 \ &= (n^2-n)/2 \end{aligned}$$

$$\sum_{i=1}^n i = n(n+1)/2$$

Pior caso x caso médio

- Geralmente estamos interessado em calcular a ordem do tempo de execução do pior caso
 - Limite superior para qualquer entrada
 - Pior caso pode ocorrer frequentemente
 - Muitas vezes o caso médio não é melhor que o pior caso
 - Ex: Insertion Sort para números em uma ordenação aleatória

$$-t_i = j/2$$

Ordem de crescimento

- O que nos interessa é a taxa de crescimento, ou ordem de crescimento do tempo de execução
 - Para n suficientemente grande os termos de menor ordem são relativamente insignificantes
 - Como o pior caso do algoritmo Insertion Sort é uma função quadrática $T(n)=an^2+bn+c$, logo podemos definir como uma função $\Theta(n^2)$

• Comparação de várias funções de complexidade

Função	Tamanho n						
de custo	10	20	30	40	50	60	
n	0,00001	0,00002	0,00003	0,00004	0,00005	0,00006	
	s	s	s	s	s	s	
n^2	0,0001	0,0004	0,0009	0,0016	0,0.35	0,0036	
	s	s	s	s	s	s	
n^3	0,001	0,008	0,027	0,64	0,125	0.316	
	s	s	s	s	s	s	
n^5	0,1	3,2	24,3	1,7	5,2	13	
	s	s	s	min	min	min	
2^n	0,001	1	17,9	12,7	35,7	366	
	s	s	min	dias	anos	séc.	
3^n	0,059 s	58 min	6,5 anos	3855 séc.	10 ⁸ séc.	10 ¹³ séc.	

N. Ziviani, Projeto de Algoritmos com Implementações em Pascal e C, Pioneira Thomson Learning, 2ª. Edição, (2004).

 Influência do aumento da velocidade dos computadores no tamanho t do problema

Função de	Computador	Computador	Computador
custo	atual	100 vezes	1.000 vezes
de tempo		mais rápido	mais rápido
n	t_1	$100 \ t_1$	$1000 \ t_1$
n^2	t_2	$10 \ t_2$	$31,6 t_2$
n^3	t_3	$4,6 t_3$	$10 \ t_3$
2^n	t_4	$t_4 + 6, 6$	$t_4 + 10$

Comportamento Assintótico

- Crescimento de funções
 - Para entradas grandes o bastante
 - Constantes multiplicativas e termos de mais baixa ordem são dominados pelo termo de maior ordem
 - Análise dos termos mais relevantes para um n grande o suficiente: análise da eficiência assintótica

Comportamento assintótico de funções

O que acontece quando na aumenta?

$$- T_1(n) = 10n^{10} + 100n^2 + 10000n + 1/n$$

 $- T_2(n) = 10n^{10}$

• Para n suficientemente grande, somente o termo de mais alta ordem (n^{10}) se torna relevante

• Diferentes formas de se calcular:

$$\operatorname{sum} = \sum_{i=1}^{n} i$$

• Diferentes formas de se calcular:

$$\operatorname{sum} = \sum_{i=1}^{n} i$$

Algorithm A	Algorithm B	Algorithm C		
sum = 0 for i = 1 to n sum = sum + i	<pre>sum = 0 for i = 1 to n { for j = 1 to i sum = sum + 1 }</pre>	sum = n * (n + 1) / 2		

Algoritmo A

for
$$i = 1$$
 to n

$$sum = sum + i$$

$$1$$

$$2$$

$$3$$

$$n$$

Algoritmo B

```
for i = 1 to n
       for j = 1 to i
            sum = sum + 1
i = 1
             X X ... X
                                       O(1 + 2 + ... + n) = O(n^2)
```

• Número de operações

	Algorithm A	Algorithm B	Algorithm C
Assignments	n + 1	1 + n(n+1)/2	1
Additions	n	n(n+1)/2	1
Multiplications			1
Divisions			1
Total operations	2n + 1	$n^2 + n + 1$	4

Gráfico do número de operações

Notação assintótica

 Métodos padrões para descrever o tempo de execução assintótica de um agoritmo de forma simplificada

 $\Theta(f(n))$: Theta

O(f(n)): Ó, Ó maiúsculo, Ózão

o(f(n)): Ó minúsculo, Ózinho

 $\Omega(f(n))$: Ômega

 $\omega(f(n))$: Ômega minúsculo, Ômegazinho

Notação *O*

• Dada uma função g(n), denota-se por O(g(n)) o conjunto de funções:

$$O(g(n)) = \{f(n): \text{ existem constantes positivas } c \in n_0 \text{ tais que } 0 \le f(n) \le cg(n) \text{ para todos } n \ge n_0 \}$$

- Ou seja, uma função f(n) pertence ao conjunto O(g(n)) se existir uma constante positiva c tal que faça ela ficar com custo abaixo ou igual a cg(n) , para n suficientemente grande

Notação *O*

- Dominação assintótica
 - Definição: Uma função g(n) domina assintoticamente outra função f(n) se

$$f(n) = O(g(n))$$

- Quando dizemos que o tempo de execução T(n) de um algoritmo é $O(n^2)$, significa que existem constantes c e n_0 tais que, para valores de $n \ge n_0$, $T(n) \le cn^2$
- Exemplo:

$$f(n) = (n+1)^2$$

Logo, f(n) é $O(n^2)$, quando $n_0=1$ e c=4 . Porque $(n+1)^2 \le 4n^2$ para $n\ge 1$.

• Sejam $f(n) = 3 + 2/n e g(n) = n^0$

$$g(n) = n^0 = 1$$
$$3 + \frac{2}{n} \le 1 + 3 = 4$$

Desde que $n \ge 2$. Logo, $f(n) \le 4g(n)$, para $n \ge 2$. Então, para $n_0 = 2$ e c = 4, f(n) = O(g(n)).

Notação Ω

- Especifica um limite inferior para g(n)
 - Dada uma função g(n), denota-se por $\Omega(g(n))$ o conjunto de funções:
 - $\Omega(g(n)) = \{f(n): \text{ existem constantes positivas } c \in n_0 \text{ tais que } 0 \le cg(n) \le f(n) \text{ para todos } n \ge n_0 \}$
 - Ou seja, uma função f(n) pertence ao conjunto $\Omega(g(n))$ se existir uma constante positiva c tal que faça ela ficar com custo superior ou igual a cg(n) , para n suficientemente grande

• Dada uma função g(n), denota-se por $\Theta \big(g(n) \big)$ o conjunto de funções:

```
\Theta(g(n)) = \{f(n): \text{ existem constantes positivas } c_1, c_2 e n_0 \text{ tais que } 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \text{ para todos } n \ge n_0 \}
```

— Ou seja, uma função f(n) pertence ao conjunto $\Theta(g(n))$ se existirem constantes positivas c_1 e c_2 tais que ela possa ser imprensada entre $c_1g(n)$ e $c_2g(n)$, para n suficientemente grande

- Apesar de representar um conjunto, comumente escreve-se $f(n) = \Theta(g(n))$ ao invés de $f(n) \in \Theta(g(n))$
- g(n) é um **limite** assintoticamente restrito para f(n)

 $\Theta(g(n)) = \{f(n): \text{ existem constantes positivas } c_1, c_2 e n_0 \text{ tais que } 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \text{ para todos } n \ge n_0 \}$

- Exemplo: $f(n) = \frac{1}{2}n^2 3n$
- $f(n) = \Theta(n^2)$?
 - $-c_1 n^2 \le (\frac{1}{2}n^2 3n) \le c_2 n^2 \text{(para todo } n \ge n_0\text{)}$
 - $-c_1 \le (\frac{1}{2} \frac{3}{n}) \le c_2$
 - Inequação da direita: Para $n \ge 1$, $c_2 \ge \frac{1}{2}$
 - Inequação da esquerda: Para $n \ge 7$, $c_1 \le \frac{1}{14}$
 - Assim, escolhendo $c_1 = \frac{1}{14}$, $c_2 = \frac{1}{2}e$ $n_0 = 7$, verificamos que:

$$\frac{1}{2}n^2 - 3n = \Theta(n^2)$$

- Exemplo: $f(n) = 6n^3$
- $f(n) \neq \Theta(n^2)$?
 - Supondo que existam c_2 e n_0 tais que $6n^3 \le c_2n^2$ para todo $n \ge n_0$
 - Implica: $n \leq \frac{c_2}{6}$
 - Não é válido para n grande e arbitrário, pois c_2 é constante.

- Notação o Define um limite superior que não é assintoticamente firme (limite estritamente superior)
 - Dada uma função g(n), denota-se por o(g(n)) o conjunto de funções:

```
o(g(n)) = \{f(n): \text{ para qualquer constante positiva}\}
     c > 0 existe uma constante n_0 > 0 tal que
       0 \le f(n) < cg(n) para todo n \ge n_0
```

- Ou seja, uma função f(n) pertence ao conjunto o(g(n)) se cg(n) se mantém como um limite estritamente superior para **todas** constantes c>0 e para algum $n_0>0$.
- A função f(n) se torna insignificante em relação a g(n)quando *n* tende ao infinito.

•
$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$$

Notação ω

- Por analogia, a notação ω está relacionada a Ω da mesma forma que a notação o está relacionada com o (limite estritamente inferior)
 - Dada uma função g(n), denota-se por $\omega(g(n))$ o conjunto de funções:

```
\omega(g(n)) = \{f(n): \text{ para qualquer constante positiva} 
 c > 0, existe uma constante n_0 > 0 tal que 0 \le cg(n) < f(n) para todo n \ge n_0\}
```

- Ou seja, uma função f(n) pertence ao conjunto $\omega(g(n))$ se cg(n) se mantém como um limite estritamente inferior para **todas** constantes c>0 e para algum $n_0>0$.
- A função f(n) se torna arbitrariamente grande em relação a g(n) quando n tende ao infinito.

•
$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty$$

Analogia

•
$$f(n) = \Theta(g(n)) \approx a = b$$

 $f(n) = O(g(n)) \approx a \le b$
 $f(n) = \Omega(g(n)) \approx a \ge b$
 $f(n) = o(g(n)) \approx a < b$
 $f(n) = \omega(g(n)) \approx a > b$

Classes de Comportamento Assintótico

- Se f é uma função de complexidade para um algoritmo F, então O(f) é considerada a complexidade assintótica do algoritmo F
 - A relação de dominação assintótica permite comparar funções de complexidade
 - Se as funções f e g dominam assintoticamente uma a outra, os algoritmos associados são equivalentes

Comparações entre algoritmos

- Podemos avaliar algoritmos comparando as suas funções de complexidade, negligenciando as constantes de proporcionalidade.
- Ex 1: Um algoritmo com tempo O(n) é mais rápido que outro com tempo $O(n^2)$
- Ex 2: Um programa leva 100n unidades de tempo para ser executado e o outro leva $2n^2$. Qual é melhor?
 - Para n < 50, $2n^2$ é melhor.
 - Para n > 50, 100n é melhor.
- Ex 3: Qual algoritmo é preferível? Um de $O(n \log n)$ ou um $\Omega(n \log n)$?

Logaritmo

- Função exponencial inversa
- $y = b^x$, equivalente a $x = \log_b y$.

Base 2:

- Reflete a quantidade de vezes que podemos dobrar algo até obtermos n
 - Altura de árvore binária completa
- Quantas vezes podemos dividir n ao meio até obtermos 1
 - Busca binária

Busca binária

- Em busca binária, a cada comparação retiramos metade dos itens do espaço de busca.
 - 20 comparações são necessárias para se encontrar um elemento entre 1.000.000 de itens
- Quantas vezes podemos dividir n ao meio até obtermos 1?
 - $[\log n]$

Logaritmo e árvores binárias

- Qual altura de árvore binária necessária para se ter n folhas?
 - Número máximo de folhas dobra a cada nível

Logaritmo e bits

- Quantos bits você precisa para representar números de 0 a 2ⁱ – 1?
- Cada bit adicional permite o dobro de quantidade de padrões
 - $-\log 2^i$

A base do logaritmo não é assintoticamente importante

- Por definição, $c^{\log_c x} = x$
- $\log_b a = \frac{\log_c a}{\log_c b}$

Ex: Base 2 x Base 100:

$$-\log_2 n = \frac{\log_{100} n}{\log_{100} 2} = 6.643 \log_{100} n$$

- f(n) = O(1)
 - Algoritmos de complexidade O(1) são ditos de complexidade constante.
 - O seu tempo de execução independe de n.
- $f(n) = O(\log n)$
 - Complexidade logarítmica.
 - Pode-se considerar o tempo de execução como menor do que uma constante grande.
 - Ex: n = 1000, $\log_2 n \approx 10$. n = 1.000.000, $\log_2 n \approx 20$, $\log_{10} n = 6$

- f(n) = O(n)
 - Complexidade linear.
 - Em geral, algum trabalho é realizado sobre cada elemento da entrada
 - Melhor solução possível para um algoritmo que precisa processar/produzir n elementos de entrada/saída.
- $f(n) = O(n\log n)$
 - Típico em algoritmos que quebram um problema em outros menores, resolvendo cada um deles independentemente e unindo suas soluções.
 - Ex:

```
n = 1.000.000, n\log_2 n \approx 20.000.000
```

 $n = 2.000.000, n\log_2 n \approx 42.000.000$

- $f(n) = O(n^2)$
 - Complexidade quadrática.
 - Em geral, ocorre quando itens s\u00e3o processados aos pares, muitas vezes dentro de dois loops.
 - Ex:

$$n = 1000, n^2 = 1.000.000$$

- $f(n) = O(n^3)$
 - Complexidade cúbica
 - Úteis apenas para resolver pequenos problemas
 - Ex:

$$n = 100, n^3 = 1.000.000$$

- $f(n) = O(2^n)$
 - Complexidade exponencial.
 - Geralmente não são úteis sob o ponto de vista prático.
 - Ocorrem na solução de problemas complexos por força bruta.
 - Ex:
 - $n = 20, 2^n = 1.000.000$
- f(n) = O(n!)
 - Complexidade exponencial
 - Geralmente ocorrem na solução de problemas complexos por força bruta.
 - Ex:

```
n=20, n!=2.432.902.008.176.640.000 (19 dígitos) n=40, n!= (número de 48 dígitos)
```

• $O(1) < O(\log n) < O(n) < O(n \log n) < O(n^2) < O(n^3) < O(2^n) < O(n!)$

Algoritmos Polinomiais x Algoritmos Exponenciais

Algoritmo Polinomial

Tempo de execução tem função de complexidade O(p(n)), onde p(n) é um polinômio.

Algoritmo Exponencial

- Tempo de execução tem função de complexidade $\Omega(c^n)$, para c>1.
- A diferença entre essas duas classes se torna significativa quando o tamanho do problema n cresce.
- Algoritmos exponenciais: variações de pesquisa exaustiva.
 - Em alguns casos podemos obter uma solução polinomial mediante melhor entendimento da estrutura do problema.
- Um problema é considerado:
 - Intratável: se não existe um algoritmo polinomial para resolvê-lo
 - Tratável: quando existe um algoritmo polinomial para resolvê-lo.

1) Verdadeiro ou falso? Justifique.

a)
$$2^{n+1} = O(2^n)$$
?

b)
$$2^{2n} = O(2^n)$$
?

$$c)\sqrt{n} = O(\log n)?$$

d)
$$\sum_{i=1}^{n} 3^{i} = \Theta(3^{n})$$
?

2) Para cada dos itens seguintes, escolha uma das seguintes relações:

$$f(n) = O(g(n)),$$

 $f(n) = \Omega(g(n))$ ou
 $f(n) = \Theta(g(n)):$
a) $f(n) = \log n^2; g(n) = \log n + 5$
b) $f(n) = n; g(n) = \log^2 n$
c) $f(n) = 2^n; g(n) = 3^n$

3) Mostre que:

a)
$$f(n) = 5n^2 + 10n = \Theta(n^2)$$

b)
$$f(n) = 100n^2 = O(n^2)$$

c)
$$f(n) = 100n^2 = \Omega(n^2)$$

4) Qual valor a seguinte função retorna? Expresse sua resposta em função de n. Forneça a complexidade do tempo de execução do pior caso usando a notação *O*.

```
int loops(n) {
    r=0;
    for(i=1; i<=n-1; i++)
        for(j=i+1; j<=n; j++)
        for(k=1; k<=j; k++)
        r+=1;
    return r;
}</pre>
```

Referências

- CLRS, Introduction to Algorithms, 3rd ed.
 - Cap. 1, 2.2, 3.1, 3.2
- Ziviani, Projeto de Algoritmos, 3ª ed
 - -1.1-1.3
- Skiena, The Algorithm Design Manual, 2nd ed.
 - -1.3