Regression Line

Gaston Sanchez

Creative Commons Attribution Share-Alike 4.0 International CC BY-SA

Regression Line

Fitting a line between X and Y

Fitting a line

which is the best line?

How to find the "best" fitting line?

$$y = mx + b$$

Gaston Sanchez

how much the y-value changes when the x-value increases by 1 unit

$$y = mx + b$$
intercept

y-value of the point of interception of the line and the y-axis

Types of slopes

Regression Line formula

predicted
$$y = mx + b$$

12

Reminder: Associated with each increase of one SD in x there is an increase of only r SDs in y, on the average

Regression Method

Regression Line formula

$$m = r \left(\frac{SDy}{SDx} \right)$$

$$b = mean(y) - r \left(\frac{SDy}{SDx} \right) mean(x)$$

Group of men with:

X: avg height = 70 inches, SD = 3 inches

Y: avg weight = **180** pounds, SD = **45** pounds

-r = 0.40

$$m = 0.40 \left[\frac{45}{3} \right] = 6$$

Group of men with:

X: avg height = 70 inches, SD = 3 inches

Y: avg weight = **180** pounds, SD = **45** pounds

-r = 0.40

$$b = 180 - 0.4 \frac{45}{3} 70 = -240$$

Group of men with:

X: avg height = **70** inches, SD = **3** inches

Y: avg weight = **180** pounds, SD = **45** pounds

-r = 0.40

predicted
$$y = 6x - 240$$

Predict weight for a man with height 60 inches

predicted
$$y = 6x - 240$$

pred
$$y = 6 (60) - 240 = 120 pounds$$

Predict weight for a man with height 78 inches

predicted
$$y = 6x - 240$$

pred
$$y = 6 (78) - 240 = 228 pounds$$

Predict weight for a man with height 0 inches

predicted
$$y = 6x - 240$$

pred
$$y = 6(0) - 240 = -240$$
 pounds

Least Squares Criterion

We need a mathematical criterion to find the "best" line

what do we mean by "best" line?

What minimization criterion?

What minimization criterion?

minimize Σe_i ?

sum of vertical distances?

minimize $\Sigma |e_i|$?

sum of absolute values of vertical distances?

What minimization criterion?

minimize
$$\Sigma e_i$$
 ?

sum of vertical distances?

minimize
$$\Sigma |e_i|$$
 ?

sum of absolute values of vertical distances?

minimize
$$\Sigma e_i^2$$

sum of squares of vertical distances?

least squares criterion

Line A: y = 0.50 + 1.25x

Line B: y = -0.25 + 1.50x

What line fits the data points the best?

Line A: $y = 0.50 + 1.25x$					Line $B: y = -0.25 + 1.50x$				
<i>x</i>	у	ŷ	e	e^2	x	у	ŷ	e	e ²
1	1	1.75	-0.75	0.5625	1	1	1.25	-0.25	0.0625
1	2	1.75	0.25	0.0625	1	2	1.25	0.75	0.5625
2	2	3.00	-1.00	1.0000	2	2	2.75	-0.75	0.5625
4	6	5.50	0.50	0.2500	4	6	5.75	0.25	0.0625
				1.8750					1.2500

minimum sum of squared distances

Least Squares Criterion

The sum of the squares of the vertical distances from the points to the line is made as small as possible.

35

Alternative Formula

Alternative formula to find b and m

$$y = mx + b$$
slope intercept

Intercept and slope formulas

$$m = \frac{n\Sigma x_{i}y_{i} - (\Sigma x_{i})(\Sigma y_{i})}{n\Sigma x_{i}^{2} - (\Sigma x_{i})^{2}}$$

$$b = \overline{y} - b\overline{x}$$

Example

X = size of caribou population (100s)

Y = size of wolf population

Example

caribou	wolves			
Х	У	x ²	y ²	ху
30	66	900	4356	1980
34	79	1156	6241	2686
27	70	729	4900	1890
25	60	625	3600	1500
17	48	289	2304	816
23	55	529	3025	1265
20	60	400	3600	1200
Σx = 176	Σy = 438	$\Sigma x^2 = 4628$	$\Sigma y^2 = 28,026$	$\Sigma xy = 11,337$

$$\overline{x} = 25.14$$
 $\overline{y} = 62.57$

Slope

$$m = \frac{n\Sigma xy - (\Sigma x) (\Sigma y)}{n\Sigma x^2 - (\Sigma x)^2}$$

$$m = \frac{7(11,337) - (176) (438)}{7(4628) - (176)^2} = 1.60$$

Intercept

$$b = \overline{y} - m\overline{x}$$

$$b = 62.57 - 1.60 (25.14) = 22.35$$

$$\hat{y} = mx + b = 1.60 x + 22.35$$

Regression line

Regression for prediction

We can use a regression model to make predictions

Prediction: Obtaining a value of y for a "new" value of x

Predicting y values

caribou	wolves
X	У
30	66
34	79
27	70
25	60
17	48
23	55
20	60
21	?

Caribou & Wolves example

For x = 21, what is the predicted \hat{y} ?

$$\hat{y} = 22.35 + 1.60 x$$

$$\hat{y} = 22.35 + 1.60 (21) = 55.95$$

Predicted values

caribou	wolves
X	У
30	66
34	79
27	70
25	60
17	48
23	55
20	60
21	56