

b) Quand dit-on que deux distances d_1 et d_2 sur un ensemble E sont topologiquement équivalentes?

Exercices

1) On note \widetilde{D} le « disque fermé unité » de $\mathbb{R}^2,$ d'équation $x^2+y^2\leq 1.$

Expliquer <u>en détail</u> (sans utiliser le résultat général du cours relatif aux bijections continues entre espaces métriques compacts) pourquoi une bijection continue $h:\widetilde{D}\to\widetilde{D}$ est un homéomorphisme. (*)

^(*) On peut aussi démontrer, mais c'est un résultat difficile, que tout bijection continue du disque unité ouvert D de \mathbb{R}^2 sur lui-même est un homéomorphisme (cela découle d'une version du « théorème d'invariance du domaine »).

2) On note S^2 la sphère euclidienne de \mathbb{R}^3 , d'équation $x^2+y^2+z^2=1$. Démontrer qu'il existe un tétraèdre ABCD avec $A,B,C,D\in S^2$ qui est de volume maximal. Indication: le volume V d'un tétraèdre ABCD dans \mathbb{R}^3 s'écrit $V=\frac{1}{6} |\det(\overrightarrow{AB},\overrightarrow{AC},\overrightarrow{AD})|$. $[V=bh/3 \text{ où } b \text{ est la demi-aire du parallélogramme construit sur } (\overrightarrow{AB},\overrightarrow{AC}) \text{ et } h=d(D,(ABC))]$

3) Question subsidiaire (hors barème).

Démontrer que l'application périodique $g\colon \mathbb{R} \ \longrightarrow \ \mathbb{R}$ est uniformément continue.

$$x \longmapsto \frac{\sin x}{2 + \cos x}$$