Работа 3.6.1

Спектральный анализ электрических сигналов

Шарапов Денис, Б05-005

Содержание

1	Ан	нотация		
2	Te	рретические сведения		
	2.1	Спектральное разложение		
	2.2	Разложение сложных сигналов на периодические колебания		
	2.3	Периодическая последовательность прямоугольных импульсов		
	2.4	Периодическая последовательность цугов		
	2.5	Амплитудно-модулированные колебания		
3	Результаты измерений и обработка данных			
	3.1	Исследование спектра периодической последовательности прямоуголь-		
		ных импульсов		
	3.2	Исследование спектра периодической последовательности цугов гармо-		
3		нических колебаний		
	3.3	Исследование спектра гармонических сигналов, модулированных по ам-		
		плитуде		
4	Вь	вод		

1 Аннотация

Цель работы: Изучение спектрального состава периодических электрических сигналов

В работе используются: анализатор спектра, генератор прямоугольных импульсов, генератор сигналов специальной формы, осциллограф.

2 Теоретические сведения

В работе изучается спектральный состав периодических электрических сигналов различной формы: последовательности прямоугольных импульсов, последовательности пугов и амплитудно-модулированных гамонических колебаний. Спектры этих сигналов наблюдаюся с помощью промышленного анализатора спектра и справниваются с рассчитанными теоретически.

2.1 Спектральное разложение

Рассмотрим функцию вида

$$f(t) = \sum_{n=1}^{N} A_n \cos \omega_n t - \alpha_n,$$

где A_n , ω_n , α_n — постоянные величины. Множество пар $(\omega_1, A_1), \ldots, (\omega_n, A_n)$ называется спектром функции f(t). N может быть конечным или бесконечным.

2.2 Разложение сложных сигналов на периодические колебания

Пусть задана функция f(t), которая периодически повторяется с частотой $\Omega_1 = \frac{2\pi}{T}$, где T — период повторения импульсов. Её разложение в ряд Фурье имеет вид

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos(n\Omega_1 t) + b_n \sin(n\Omega_1 t) \right]$$
 (1)

или

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} A_n \cos(n\Omega_1 t - \psi_n).$$
 (2)

Если сигнал четен относительно t=0, так что f(t)=f(-t) в тригонометрической записи остаются только косинусные члены. Для нечетной наоборот. Коэффициенты определяются по формуле

$$a_{n} = \frac{2}{T} \int_{t_{1}}^{t_{1}+T} f(t) \cos(n\Omega_{1}t) dt,$$

$$b_{n} = \frac{2}{T} \int_{t_{1}}^{t_{1}+T} f(t) \sin(n\Omega_{1}t) dt.$$
(3)

Здесь t_1 — время, с которого начинается отсчет.

Сравнив формулы (1) и (2) можно получить выражения для A_n и ψ_n :

$$A_n = \sqrt{a_n^2 + b_n^2}; \quad \psi_n = \arctan \frac{b_n}{a_n}. \tag{4}$$

2.3 Периодическая последовательность прямоугольных импульсов

Введем некоторые величины:

$$\Omega_1 = \frac{2\pi}{T},$$

где T — период повторения импульсов.

Коэффициенты при косинусных составляющих будут равны

$$a_n = \frac{2}{T} \int_{-\tau/2}^{\tau/2} V_0 \cos(n\Omega_1 t) dt = 2V_0 \frac{\tau}{T} \frac{\sin(n\Omega_1 \tau/2)}{n\Omega_1 \tau/2} \sim \frac{\sin x}{x}.$$
 (5)

Здесь V_0 - амплитуда сигнала. Поскольку функция четная, то $b_n = 0$.

Пусть у нас au кратно T. Тогда введем ширину спектра, равную $\Delta\omega$ — расстояние от главного максимума до первого нуля огибающей, возникающего, как нетрудно убедится при $n=\dfrac{2\pi}{\tau\Omega_1}$. При этом

$$\Delta\omega\tau \simeq 2\pi \Rightarrow \Delta\nu\Delta t \simeq 1. \tag{6}$$

2.4 Периодическая последовательность цугов

Функция f(t) снова является четной относительно t=0. Коэффициент при n-ой гармонике согласно формуле (3) равен

$$a_n = \frac{2}{T} \int_{-\tau/2}^{\tau/2} V_0 \cos(\omega_0 t) \cdot \cos(n\Omega_1 t) dt = V_0 \frac{\tau}{T} \left(\frac{\sin\left[\left(\omega_0 - n\Omega_1\right)\frac{\tau}{2}\right]}{\left(\omega_0 - n\Omega_1\right)\frac{\tau}{2}} + \frac{\sin\left[\left(\omega_0 + n\Omega_1\right)\frac{\tau}{2}\right]}{\left(\omega_0 + n\Omega_1\right)\frac{\tau}{2}} \right).$$

2.5 Амплитудно-модулированные колебания

Рассмотрим гармонические колебания высокой частоты ω_0 , амплитуда которых медленно меняется по гармоническому закону с частотой $\Omega \ll \omega_0$.

$$f(t) = A_0 \left[1 + m \cos \Omega t \right] \cos \omega_0 t. \tag{7}$$

Коэффициентом m называется глубина модуляции. При m < 1 амплитуда меняется от минимальной $A_{min} = A_0(1-m)$ до максимальной $A_{max} = A_0(1+m)$. Глубина модуляции может быть представлена в виде

$$m = \frac{A_{max} - A_{min}}{A_{max} + A_{min}}. (8)$$

С помощью тригонометрического преобразования уравнения (8) можно найти спектр колебаний

$$f(t) = A_0 \cos \omega_0 t + \frac{A_0 m}{2} \cos (\omega_0 + \Omega) t + \frac{A_0 m}{2} \cos (\omega_0 - \Omega) t.$$
 (9)

3 Результаты измерений и обработка данных

3.1 Исследование спектра периодической последовательности прямоугольных импульсов

Установим прямоугольные колебания с $f_{\text{повт}}=1$ к Γ ц и длительностью импульса $\tau=100$ мкс. Получим на экране спктр сигнала и изучим его поведение при изменении τ и $f_{\text{повт}}$.

Опытным путём получаем, что при увеличении au уменьшается $\Delta
u$, а при увеличении

опытным путем получаем, что при увеличении τ уменьшается $\Delta \nu$, а при увеличении $f_{\text{повт}}$ увеличивается расстояние между пиками.

Проведём измерения зависимости ширины спектра от длительности импульса при увеличении τ от 40 до 200 мкс при $f_{\rm nobt}=1$ к Γ ц. Результаты измерений внесены в таблипу 1.

τ , MKC	$\Delta \nu$, к Γ ц	$1/\tau, { m mkc}^{-1} \cdot 10^2$
40	24	2,50
60	16	1,67
80	12	1,25
100	9	1,00
120	8	0,83
140	6	0,71
160	5	0,63
180	4,2	0,56
200	3,8	0,50

Таблица 1: Результаты измерений зависимости $\Delta \nu$ от τ

Рис. 1: График зависимости ширины спектра от длительности импульса

3.2 Исследование спектра периодической последовательности цугов гармонических колебаний

Проанализируем, как изменится вид спектра при увеличении длительности импульса вдвое от 100 до 200 мкс.

Из данных видно, что при изменении au значение $\Delta\omega$ изменяется обратно пропорционально.

Установим длительность импулься $\tau=100$ мкс. Проанализируем, как меняется картина спектра при изменении несущей частоты ν_0 .

Из данных видно, что при изменении ν_0 картина смещается без изменения расстояния между спектральными компонентами.

Определим расстояние $\delta\nu$ между соседними спектральными компонентами для разных частот повторения импульсов $f_{\text{повт}}$. Проведём измерения для $f_{\text{повт}}=0,5,1,2,4,5$ к Γ ц. Результаты измерений занесём в таблицу 2.

$f_{\text{повт}}$, к Γ ц	$\delta \nu$, к Γ ц
0,5	0,5
1,0	1,0
2,0	2,0
4,0	4,0
5,0	5,0

Таблица 2: Результаты измерений $\delta \nu$

Рис. 2: График зависимости расстояния $\delta \nu$ от частоты повторения $f_{\text{повт}}$

3.3 Исследование спектра гармонических сигналов, модулированных по амплитуде.

Меняя двойную амплитуду сигнала от 0.2 до 2 В, измерим для каждого значения максимальную A_{max} и минимальную A_{min} амплитуды сигналов модулированного колебания. После чего рассчитаем m и k:

$$m = \frac{A_{max} - A_{min}}{A_{max} + A_{min}},$$

$$k = \frac{A_{\rm 60K}}{A_{\rm och}}.$$

Результаты представлены в таблице 3.

$(A_{max} - A_{min}), B$	$A_{\text{бок}}, B$	m	k
0,2	0,016	0,1	0,05
0,6	0,050	0,3	0,15
1,0	0,080	0,5	0,24
1,4	0,100	0,7	0,33
1,8	0,140	0,9	0,45
2,0	0,155	1,0	0,48

Таблица 3: Результаты измерения коэффициентов m и k

Рис. 3: График зависимости коээфициента k от m

Из МНК получим коэффициент наклона прямой μ :

$$\mu = \frac{k}{m} = 0,48 \pm 0,02.$$

4 Вывод