ALGEBRA SEMINAR 3

Criterii ireductibilitate

$$\int \in \mathbb{K}[x]$$
 grad $f=1$
 $\int_{-\infty}^{\infty} s \cdot m$ ireductibil dacă $f=1$
 $\int_{-\infty}^{\infty} s \cdot m$ ireductibil dacă $f=1$
 $\int_{-\infty}^{\infty} s \cdot m$ ireductibil dacă $f=1$
 $\int_{-\infty}^{\infty} s \cdot m$ grad $f=1$
 $\int_$

1.

$$\begin{array}{l}
P = 2 \xrightarrow{-1} x^4 + \overline{1} &= (x + \overline{1})^4 \\
P & \text{prim } & p = 4 & k + 1
\end{array}$$

$$\begin{array}{l}
P = 1 & | P & | P \\
\hline
P & | P & | P & | P \\
\hline
P & | P & | P & | P \\
\hline
P & | P & | P & | P \\
\hline
P & | P & | P & | P \\
\hline
P & | P & | P & | P \\
\hline
P & | P & | P & | P \\
\hline
P & | P & | P & | P \\
\hline
P & | P & | P & | P \\
\hline
P & | P & | P & | P \\
\hline
P & | P & | P & | P \\
\hline
P & | P & | P & | P \\
\hline
P & | P & | P & | P \\
\hline
P & | P & | P & | P \\
\hline
P & | P & | P & | P \\
\hline
P & | P & | P & | P \\
\hline
P & | P & | P & | P \\
\hline
P & | P & | P & | P \\
\hline
P & | P & | P & | P \\
\hline
P & | P & | P & | P \\
\hline
P & | P & | P & | P \\
\hline
P & | P & | P & | P \\
\hline
P & | P & | P & | P \\
\hline
P & | P & | P & | P \\
\hline
P & | P & | P & | P \\
\hline
P & | P & | P & | P \\
\hline
P & | P & | P & | P \\
\hline
P & | P & | P & | P & | P \\
\hline
P & | P & | P & | P & | P \\
\hline
P & | P & | P & | P & | P \\
\hline
P & | P & | P & | P & | P \\
\hline
P & | P & | P & | P & | P \\
\hline
P & | P & | P & | P & | P \\
\hline
P & | P & | P & | P & | P \\
\hline
P & | P & | P & | P & | P & | P \\
\hline
P & | P & | P & | P & | P & | P \\
\hline
P & | P & | P & | P & | P & | P \\
\hline
P & | P & | P & | P & | P & | P \\
\hline
P & | P & | P & | P & | P & | P & | P \\
\hline
P & | P & | P & | P & | P & | P & | P \\
\hline
P & | P & | P & | P & | P & | P & | P \\
\hline
P & | P & | P & | P & | P & | P & | P \\
\hline
P & | P & | P & | P & | P & | P & | P \\
\hline
P & | P & | P & | P & | P & | P & | P & | P & | P \\
\hline
P & | P & | P & | P & | P & | P & | P & | P & | P \\
\hline
P & | P & | P & | P & | P & | P & | P & | P & | P & | P \\
\hline
P & | P &$$

Carprost
$$\frac{2}{2} \neq a^{2} \forall a \in \mathbb{Z}p.$$

$$-2 \neq a^{2} \forall b \in \mathbb{Z}p$$

$$-2 \neq a^{2} \forall b \in \mathbb{Z}p$$

$$-2 \neq a^{2} \forall b \in \mathbb{Z}p.$$

$$\frac{2}{2} \neq a^{2} \neq a^{2} \forall b \in \mathbb{Z}p.$$

$$\frac{2}{2} \neq a^{2} \neq a^{2}$$

$$\begin{array}{ll}
\mathcal{D}^{*} & \mathcal{D}^{*} & \mathcal{D}^{*} & \mathcal{D}^{*} \\
\mathcal{D}^{*} & \mathcal{D}^{*} & \mathcal{D}^{*} & \mathcal{D$$

$$-\frac{1}{2} = \frac{2u}{2} = 1 = 1 = 1$$

$$(-1)^{\frac{p-1}{2}} \cdot \frac{-p-1}{2} = (-1)^{\frac{p-1}{2}} = -1$$
 $(-1)^{\frac{p-1}{2}} \cdot \frac{-p-1}{2} = -1$ $(-1)^{\frac{p-1}{2}} \cdot \frac{-p-1}{2} = -1$ $(-1)^{\frac{p-1}{2}} \cdot \frac{-p-1}{2} = 2h+1$.

 $X^4+T \in \mathbb{Z}_p[x]$ rue e ired $\forall p$ pruhm

Criterii ireductibile (Eisenstell)

ex:
$$X^{n}+3$$
 ired. (Eixenstelli $p=1$)

 $P=3$
 $1,0,0,\dots,0,3$

ex: P prilim.

 $=p_{1}\times P^{-1}+xP^{-2}+\dots+x+1$ ired in $Q[x]$.

 $xP^{-1}+xP^{-2}+\dots+x+1=\frac{x^{p-1}}{x-1} \times \neq 1$.

 $g(x)=f(x+1)$
 $(x+1)^{p-1}$
 $=x^{p-1}+C_{p}^{1}x^{p-1}+C_{p}^{2}x^{p-2}+\dots+C_{p}^{2-1}x$
 $\Rightarrow =x^{p-1}+C_{p}^{1}x^{p-2}+\dots+C_{p}^{2}x^{p-3}+\dots+C_{p}^{2-2}x+C_{p}^{2-1}$
 $\Rightarrow p(0) \quad \forall j=1,p-1$
 $C_{p}^{j}=(p-j)!$
 $P^{-1}=P^{-1}=p^{-1}=1$
 $P^{-1}=P^{-1}=p^{-1}=1$
 $P^{-1}=P^{-1}=p^{-1}=1$
 $P^{-1}=P^{-1}=1$
 $P^{$

1)
$$g^{4d} = e$$
.
2) $m \in \mathbb{Z}$, $g^{4} = e \Rightarrow \text{ ord } g \mid m$
3) $\text{ ord } g \mid 1Gl$
 $\text{ord } \overline{z} = 96$ (\mathbb{Z}/g_{7}^{*} are $96 \text{ elem } f^{4} = \overline{0}$)
 $d = \text{ ord } \overline{z} \mid 1\mathbb{Z}/g_{7}^{*} \mid = 96$ $d = \{1, 2, 4, 8, 16, 32, 3, 6, 12, 24, 48, 96\}$
 $\overline{z}^{4g} = \overline{1}$
 $\overline{z}^{10} = 10^{24} + \frac{97}{11}$
 $\overline{z}^{10} = \overline{54}$ $\overline{z}^{4l} = \overline{6}$ $\overline{z}^{$

56 = 784

15

$$\frac{-48}{5} \stackrel{97}{=} (2^3)^8 = 2^{24}.$$

$$\frac{-48}{5} = -1$$

$$d \in \{1, 2, 4, 8, 16, 32, 8, 8, 12, 24, 48, 66\}$$

$$\langle 57 = (Z_{97}^{*}, \cdot) \qquad g_{6} = \text{ord } 5$$

$$Cdi T \in Z_{4}^{*} \quad \text{su orange} \quad Ci \in \{1, -1, -1, 24, 48, 66\}$$

Cot,
$$Z \in \mathbb{Z}_{97}^+$$
 ru propri câ $Z = (\mathbb{Z}_{97}^+, \cdot)$
generatori $\int \overline{5} \mathbf{j}$
 $(\mathbf{j}, 96) = 1$
 $1 \le \mathbf{j} \le 96$

and
$$g^k = \frac{\text{ord } g}{(k, \text{ord } g)}$$

ord
$$5\vec{j} = \frac{\text{ord }5}{(\text{ord }5,i)} = \frac{96}{(96,i)} = 96.$$

$$\frac{9(96)}{96} = \frac{86(1-\frac{1}{2})(1-\frac{1}{3})}{96} = \frac{1}{2} \cdot \frac{2}{3} = \frac{1}{2}$$

Logaritm discret.

$$m = \overline{\mathcal{L}}$$
 $a = \log_{\mathcal{L}} m$
 $a = \log_{\mathcal{L}} m$
 $(\overline{\mathcal{L}})^a$
 $(\overline{\mathcal{L}})^a$
 $(\overline{\mathcal{L}})^a = \overline{\mathcal{L}}^a$
 $(\overline{\mathcal{L}})^a = \overline{\mathcal{L}}^a$
 $(\overline{\mathcal{L}})^a = \overline{\mathcal{L}}^a$
 $(\overline{\mathcal{L}})^a = \overline{\mathcal{L}}^a$

Baby Step / Gigarit Step

 $(\overline{\mathcal{L}})^a = \overline{\mathcal{L}}^a$