Lecture 10 – Equivalence and Minimization of Finite Automata

COSE215: Theory of Computation

Jihyeok Park

2024 Spring

Recall

- Closure Properties of Regular Languages
- Pumping Lemma for Regular Languages

Recall

- Closure Properties of Regular Languages
- Pumping Lemma for Regular Languages

• How to test whether two finite automata are equivalent?

Recall

- Closure Properties of Regular Languages
- Pumping Lemma for Regular Languages

- How to test whether two finite automata are equivalent?
- How to minimize a finite automaton?

Contents

1. Equivalence of Finite Automata

Equivalence of States (\equiv) Distinguishable States ($\not\equiv$) Table-Filling Algorithm Equivalence of Finite Automata Examples

2. Minimization of Finite Automata

Minimization Algorithm Examples Proof of Minimum-State DFA

Contents

1. Equivalence of Finite Automata

Equivalence of States (\equiv) Distinguishable States ($\not\equiv$) Table-Filling Algorithm Equivalence of Finite Automata Examples

2. Minimization of Finite Automata

Minimization Algorithm

Proof of Minimum-State DFA

• Are the following two DFA **equivalent** (i.e., $L(D_0) = L(D_1)$)?

• Are the following two DFA **equivalent** (i.e., $L(D_0) = L(D_1)$)?

• Yes, because $L(D_0) = L(D_1) = \{ wb \mid w \in \{a, b\}^* \}.$

• Are the following two DFA **equivalent** (i.e., $L(D_0) = L(D_1)$)?

- Yes, because $L(D_0) = L(D_1) = \{ wb \mid w \in \{a, b\}^* \}.$
- We first define the equivalence of states and utilize it to test the equivalence of DFA.

Definition (Equivalence of States (\equiv))

For a given DFA D, q_i is **equivalent** to q_j (i.e., $q_i \equiv q_j$) if and only if

$$\forall w \in \Sigma^*$$
. $\delta^*(q_i, w) \in F \iff \delta^*(q_i, w) \in F$

Definition (Equivalence of States (\equiv))

For a given DFA D, q_i is **equivalent** to q_j (i.e., $q_i \equiv q_j$) if and only if

$$\forall w \in \Sigma^*. \ \delta^*(q_i, w) \in F \iff \delta^*(q_i, w) \in F$$

$$q_i \equiv q_j \iff \forall w \in \Sigma^*.$$

Definition (Equivalence of States (\equiv))

For a given DFA D, q_i is **equivalent** to q_j (i.e., $q_i \equiv q_j$) if and only if

$$\forall w \in \Sigma^*$$
. $\delta^*(q_i, w) \in F \iff \delta^*(q_i, w) \in F$

$$q_i \equiv q_j \iff \forall w \in \Sigma^*. \qquad \underbrace{\begin{pmatrix} q_i \end{pmatrix}^w}_{w} \bigvee \underbrace{\begin{pmatrix} q$$

However, it is difficult to make it as an algorithm.

Definition (Equivalence of States (\equiv))

For a given DFA D, q_i is **equivalent** to q_j (i.e., $q_i \equiv q_j$) if and only if

$$\forall w \in \Sigma^*$$
. $\delta^*(q_i, w) \in F \iff \delta^*(q_i, w) \in F$

$$q_i \equiv q_j \iff \forall w \in \Sigma^*. \qquad \underbrace{\begin{pmatrix} q_i \end{pmatrix}^w}_{w} \bigvee \underbrace{\begin{pmatrix} q_i \end{pmatrix}^w}_{q_j} \bigvee \underbrace{\begin{pmatrix} q_i \end{pmatrix}^w}_{w} \bigvee \underbrace{q$$

However, it is difficult to make it as an algorithm. Let's consider $q_i \neq q_j$:

Definition (Equivalence of States (\equiv))

For a given DFA D, q_i is **equivalent** to q_j (i.e., $q_i \equiv q_j$) if and only if

$$\forall w \in \Sigma^*$$
. $\delta^*(q_i, w) \in F \iff \delta^*(q_i, w) \in F$

$$q_i \equiv q_j \iff \forall w \in \Sigma^*.$$

$$q_j \xrightarrow{w} \bigvee q_j \bigvee q_$$

However, it is difficult to make it as an algorithm. Let's consider $q_i \not\equiv q_j$:

$$q_i \not\equiv q_j \iff \exists w \in \Sigma^*. (\delta^*(q_i, w) \in F \iff \delta^*(q_j, w) \not\in F)$$

Definition (Equivalence of States (\equiv))

For a given DFA D, q_i is **equivalent** to q_j (i.e., $q_i \equiv q_j$) if and only if

$$\forall w \in \Sigma^*$$
. $\delta^*(q_i, w) \in F \iff \delta^*(q_i, w) \in F$

$$q_i \equiv q_j \iff \forall w \in \Sigma^*. \qquad \underbrace{q_i \longrightarrow Q_j}_{w} \longrightarrow \bigvee \underbrace{q_i \longrightarrow Q_j}_{w} \longrightarrow \bigoplus$$

However, it is difficult to make it as an algorithm. Let's consider $q_i \neq q_j$:

$$q_i \not\equiv q_j \iff \exists w \in \Sigma^*. (\delta^*(q_i, w) \in F \iff \delta^*(q_j, w) \not\in F)$$

$$q_i \not\equiv q_j \iff \exists w \in \Sigma^*.$$
 $q_i \xrightarrow{w} \bigvee q_i \xrightarrow{w} \bigvee q_j \bigvee$

We can *inductively* test q_i is **distinguishable** with q_j (i.e., $q_i \not\equiv q_j$):

• (Basis Case) $w = \epsilon$

We can *inductively* test q_i is **distinguishable** with q_i (i.e., $q_i \not\equiv q_i$):

• (Basis Case) $w = \epsilon$

$$egin{aligned} egin{pmatrix} q_i & \wedge & iggl(q_j) & iggr\pi & iggl(q_i) & \wedge & iggl(q_j) \\ (\delta^*(q_i,\epsilon) \in F & \Longleftrightarrow \delta^*(q_j,\epsilon)
otin F \end{pmatrix}$$

Distinguishable States ($\not\equiv$)

We can *inductively* test q_i is **distinguishable** with q_i (i.e., $q_i \not\equiv q_i$):

• (Basis Case) $w = \epsilon$

$$egin{aligned} egin{pmatrix} q_i & \wedge & iggl(q_j) & \bigvee & iggl(q_i) & \wedge & iggl(q_j) \\ & (\delta^*(q_i, \epsilon) \in F & \iff \delta^*(q_j, \epsilon) \not \in F \end{array}) \end{aligned}$$

We can *inductively* test q_i is **distinguishable** with q_i (i.e., $q_i \not\equiv q_i$):

• (Basis Case) $w = \epsilon$

We can *inductively* test q_i is **distinguishable** with q_i (i.e., $q_i \not\equiv q_i$):

• (Basis Case) $w = \epsilon$

$$(\delta^*(q_i, \epsilon) \in F \iff \delta^*(q_j, \epsilon) \notin F)$$

$$\iff (q_i \in F \iff q_j \notin F)$$

We can *inductively* test q_i is **distinguishable** with q_i (i.e., $q_i \not\equiv q_i$):

• (Basis Case) $w = \epsilon$

$$(\delta^*(q_i, \epsilon) \in F \iff \delta^*(q_j, \epsilon) \notin F)$$

$$\iff (q_i \in F \iff q_j \notin F)$$

We can *inductively* test q_i is **distinguishable** with q_i (i.e., $q_i \not\equiv q_i$):

• (Basis Case) $w = \epsilon$

$$egin{aligned} egin{pmatrix} q_i & \wedge & iggl(q_j) & \bigvee & iggl(q_i) & \wedge & iggl(q_j) \\ & (\delta^*(q_i, \epsilon) \in F & \iff \delta^*(q_j, \epsilon) \not \in F \end{array} \end{pmatrix}$$
 \iff $(q_i \in F) & \iff q_j \not \in F$

Definition (Distinguishable States $(\not\equiv)$)

- (Basis Case) $q_i \in F \iff q_j \notin F$.
- (Induction Case) $\exists a \in \Sigma$. $\delta(q_i, a) \not\equiv \delta(q_j, a)$.

Definition (Distinguishable States (\neq))

- (Basis Case) $q_i \in F \iff q_i \notin F$.
- (Induction Case) $\exists a \in \Sigma$. $\delta(q_i, a) \not\equiv \delta(q_j, a)$.

 $q_2 \not\equiv q_4$

Definition (Distinguishable States $(\not\equiv)$)

- (Basis Case) $q_i \in F \iff q_j \notin F$.
- (Induction Case) $\exists a \in \Sigma$. $\delta(q_i, a) \not\equiv \delta(q_j, a)$.

$$q_2 \not\equiv q_4$$
 $(\because q_2 \in F \land q_4 \not\in F)$

Definition (Distinguishable States (\neq))

- (Basis Case) $q_i \in F \iff q_j \notin F$.
- (Induction Case) $\exists a \in \Sigma$. $\delta(q_i, a) \not\equiv \delta(q_j, a)$.

$$q_2 \not\equiv q_4$$

$$(\because q_2 \in F \land q_4 \not\in F)$$

$$q_1 \not\equiv q_3$$

Definition (Distinguishable States $(\not\equiv)$)

- (Basis Case) $q_i \in F \iff q_j \notin F$.
- (Induction Case) $\exists a \in \Sigma$. $\delta(q_i, a) \not\equiv \delta(q_i, a)$.

$$q_2 \not\equiv q_4$$
 $(\because q_2 \in F \land q_4 \not\in F)$
 $q_1 \not\equiv q_3$
 $(\because \delta(q_1, \mathbf{a}) = q_2 \not\equiv q_4 = \delta(q_3, \mathbf{a})))$

Definition (Distinguishable States (\neq))

- (Basis Case) $q_i \in F \iff q_j \notin F$.
- (Induction Case) $\exists a \in \Sigma$. $\delta(q_i, a) \not\equiv \delta(q_i, a)$.

$$q_2 \not\equiv q_4$$
 $(\because q_2 \in F \land q_4 \not\in F)$
 $q_1 \not\equiv q_3$
 $(\because \delta(q_1, \mathbf{a}) = q_2 \not\equiv q_4 = \delta(q_3, \mathbf{a})))$
 $q_0 \not\equiv q_4$

Definition (Distinguishable States $(\not\equiv)$)

For a given DFA D, q_i is **distinguishable** with q_i (i.e., $q_i \not\equiv q_i$) iff

- (Basis Case) $q_i \in F \iff q_j \notin F$.
- (Induction Case) $\exists a \in \Sigma$. $\delta(q_i, a) \not\equiv \delta(q_j, a)$.

$$egin{aligned} q_1
ot\equiv q_3 \ (\because \delta(q_1,\mathtt{a}) = q_2
ot\equiv q_4 = \delta(q_3,\mathtt{a}))) \end{aligned}$$
 $q_0
ot\equiv q_4 \ (\because \delta(q_0,\mathtt{b}) = q_3
ot\equiv q_1 = \delta(q_4,\mathtt{b})))$

 $q_2 \not\equiv q_4$

 $(:: q_2 \in F \land q_4 \notin F)$

q	a	b
$ ightarrow q_0$	q_1	q_3
q_1	q_2	q_1
* q 2	q_2	q_2
q 3	q_4	q 3
q_4	q_2	q_1
q_5	q_4	q_2

q	a	b
$ ightarrow q_0$	q_1	q_3
q_1	q_2	q_1
* q 2	q_2	q ₂
q 3	q 4	q 3
q_4	q_2	q_1
q_5	q_4	q_2

(Basis case)
$$w = \epsilon$$
. $q_i \in F \iff q_j \notin F$

(Induction case)
$$w = ax$$
.
 $\exists a \in \Sigma. \ \delta(q_i, a) \not\equiv \delta(q_i, a)$

q	a	b
$ ightarrow q_0$	q_1	q ₃
q_1	q_2	q_1
* q 2	q_2	q_2
q 3	q_4	q 3
q_4	q_2	q_1
q_5	q_4	q_2

(Basis case)
$$w = \epsilon$$
. $q_i \in F \iff q_j \notin F$

(Induction case)
$$w = ax$$
.
 $\exists a \in \Sigma. \ \delta(q_i, a) \not\equiv \delta(q_i, a)$

q	a	b
$ ightarrow q_0$	q_1	q_3
q_1	q_2	q_1
* q 2	q_2	q_2
q 3	q_4	q 3
q_4	q_2	q_1
q_5	q_4	q_2

(Basis case)
$$w = \epsilon$$
. $q_i \in F \iff q_j \notin F$

(Induction case)
$$w = ax$$
.
 $\exists a \in \Sigma. \ \delta(q_i, a) \not\equiv \delta(q_j, a)$

q	a	Ъ
$ ightarrow q_0$	q_1	q_3
q_1	q_2	q_1
* q 2	q_2	q_2
q 3	q_4	q 3
q_4	q_2	q_1
q_5	q_4	q_2

(Basis case)
$$w = \epsilon$$
. $q_i \in F \iff q_j \notin F$

(Induction case)
$$w = ax$$
.
 $\exists a \in \Sigma. \ \delta(q_i, a) \not\equiv \delta(q_i, a)$

q_1	X				
q 1 q 2	X	X			
q 3		X	X		
q ₄ q ₅	X		X	X	
q_5	X	X	X	X	X
	q_0	q_1	q_2	q_3	q_4

q	a	b
$ ightarrow q_0$	q_1	q_3
q_1	q_2	q_1
* q 2	q_2	q_2
q 3	q_4	q 3
q_4	q_2	q_1
q_5	q_4	q_2

(Basis case)
$$w = \epsilon$$
. $q_i \in F \iff q_j \notin F$

(Induction case)
$$w = ax$$
.
 $\exists a \in \Sigma. \ \delta(q_i, a) \not\equiv \delta(q_i, a)$

q_1	X				
	X	X			
q₂q₃q₄q₅		Х	х		
q_4	Х		X	Х	
q_5	Х	Х	X	Х	X
	q_0	q_1	q_2	q_3	q_4

$$q_0 \equiv q_3 \wedge q_1 \equiv q_4$$

Theorem (Equivalence of Finite Automata)

Consider two DFA $D=(Q, \Sigma, \delta, q_0, F)$ and $D'=(Q', \Sigma, \delta', q'_0, F')$. Then,

$$L(D) = L(D') \iff q_0 \equiv q'_0$$

in a DFA $D'' = \left(\textit{Q} \uplus \textit{Q}', \Sigma, \delta'', \textit{q}_0, \textit{F} \uplus \textit{F}' \right)$ where

$$orall q'' \in Q \uplus Q'. \ \delta''(q,a) = \left\{egin{array}{ll} \delta(q'',a) & q'' \in Q \ \delta'(q'',a) & q'' \in Q' \end{array}
ight.$$

Equivalence of Finite Automata

Theorem (Equivalence of Finite Automata)

Consider two DFA $D = (Q, \Sigma, \delta, q_0, F)$ and $D' = (Q', \Sigma, \delta', q'_0, F')$. Then,

$$L(D) = L(D') \iff q_0 \equiv q_0'$$

in a DFA $D'' = (\textit{Q} \uplus \textit{Q}', \Sigma, \delta'', \textit{q}_0, \textit{F} \uplus \textit{F}')$ where

$$orall q'' \in \mathit{Q} \uplus \mathit{Q'}. \; \delta''(q,a) = \left\{ egin{array}{ll} \delta(q'',a) & q'' \in \mathit{Q} \ \delta'(q'',a) & q'' \in \mathit{Q'} \end{array}
ight.$$

Proof) By the definition of equivalence of states, we have

$$L(D) = L(D')$$
 $\iff \forall w \in \Sigma^*. (D \text{ accepts } w \iff D' \text{ accepts } w)$
 $\iff \forall w \in \Sigma^*. (\delta^*(q_0, w) \in F \iff \delta'^*(q'_0, w) \in F')$
 $\iff \forall w \in \Sigma^*. (\delta''^*(q_0, w) \in F \cup F' \iff \delta''^*(q'_0, w) \in F \cup F')$
 $\iff q_0 \equiv q'_0 \text{ in } D''$

Let's test the equivalence of D_0 and D_1 :

Let's test the equivalence of D_0 and D_1 :

Let's test the equivalence of D_0 and D_1 :

q_1	X			
q_2		X		
q_3		X		
q_4	X		X	X
	q_0	q_1	q_2	q ₃

Let's test the equivalence of D_0 and D_1 :

•
$$q_0 \equiv q_2 \equiv q_3$$

•
$$q_1 \equiv q_4$$

Let's test the equivalence of D_0 and D_1 :

•
$$q_0 \equiv q_2 \equiv q_3$$

•
$$q_1 \equiv q_4$$

$$q_0 \equiv q_2 \implies L(D_0) = L(D_1) = \{ wb \mid w \in \{a, b\}^* \}$$

Let's test the equivalence of D_2 and D_3 :

Let's test the equivalence of D_2 and D_3 :

Let's test the equivalence of D_2 and D_3 :

q_1	X							
q_2	X	X						
q 3		X	X		_			
q_4	X		X	X				
q_5	X	X	X	X	X			
q_6	X	X	X	X	X	X		
q_7	X		X	X		X	X	
q 8	X	X		X	X	X	X	X
	q 0	q_1	q ₂	q 3	q_4	q ₅	q 6	q 7

Let's test the equivalence of D_2 and D_3 :

q_1	X		_					
q_2	X	X		_				
q 3		X	X		_			
q_4	X		X	X				
q_5	X	X	X	X	X			
q 6	X	X	X	X	X	X		_
q_7	X		X	X		X	X	
q 8	X	X		X	X	X	X	X
	q_0	q_1	q_2	q 3	q_4	q_5	q 6	q 7

- $q_0 \equiv q_3$
- $q_1 \equiv q_4 \equiv q_7$
- $q_2 \equiv q_8$
- q₅
- q₆

Let's test the equivalence of D_2 and D_3 :

- $q_0 \equiv q_3$
- $q_1 \equiv q_4 \equiv q_7$
- $q_2 \equiv q_8$
- q₅
- q₆

$$q_0 \not\equiv q_6 \implies L(D_2) \not= L(D_3) \ (\because \text{ba} \not\in L(D_2) \text{ but ba} \in L(D_3))$$

Contents

1. Equivalence of Finite Automata

Equivalence of States (\equiv) Distinguishable States ($\not\equiv$) Table-Filling Algorithm Equivalence of Finite Automata Examples

2. Minimization of Finite Automata

Minimization Algorithm Examples Proof of Minimum-State DFA

Minimization of Finite Automata

Is it possible to minimize a DFA?

Minimization of Finite Automata

Is it possible to minimize a DFA?

Yes, let's utilize **equivalence classes** Q_{\equiv} of states defined with \equiv .

Minimization of Finite Automata

Is it possible to **minimize** a DFA?

Yes, let's utilize **equivalence classes** Q_{\equiv} of states defined with \equiv .

Note that \equiv is an **equivalence relation**:

- reflexive: $\forall q \in Q$. $q \equiv q$
- symmetric: $\forall q, q' \in Q$. $q \equiv q' \Leftrightarrow q' \equiv q$
- transitive: $\forall q, q', q'' \in Q$. $q \equiv q' \land q' \equiv q'' \Leftrightarrow q \equiv q''$

For a given DFA $D = (Q, \sigma, \delta, q_0, F)$, the **minimization** algorithm is:

For a given DFA $D = (Q, \sigma, \delta, q_0, F)$, the **minimization** algorithm is:

1 Remove all **unreachable states** from the initial state q_0 .

For a given DFA $D = (Q, \sigma, \delta, q_0, F)$, the **minimization** algorithm is:

- **1** Remove all **unreachable states** from the initial state q_0 .
- Partition the remaining states into equivalence classes:

$$Q/_{\equiv} = \{ [q]_{\equiv} \mid q \in Q \}$$

where the **equivalence class** of a state q is defined as:

$$[q]_{\equiv} = \{ q' \in Q \mid q \equiv q' \}$$

For a given DFA $D = (Q, \sigma, \delta, q_0, F)$, the **minimization** algorithm is:

- **1** Remove all **unreachable states** from the initial state q_0 .
- 2 Partition the remaining states into equivalence classes:

$$Q/_{\equiv} = \{[q]_{\equiv} \mid q \in Q\}$$

where the **equivalence class** of a state q is defined as:

$$[q]_{\equiv} = \{ q' \in Q \mid q \equiv q' \}$$

- **3** Construct a new DFA $D/_{\equiv}=(Q/_{\equiv},\Sigma,\delta/_{\equiv},[q_0]_{\equiv},F/_{\equiv})$ where
 - $\delta\!/_{\!\equiv}: Q\!/_{\!\equiv} \times \Sigma \to Q\!/_{\!\equiv}$ is defined by:

$$\forall q \in Q. \ \forall a \in \Sigma. \ \delta/_{\equiv}([q]_{\equiv}, a) = [\delta(q, a)]_{\equiv}$$

(We can prove $\forall q', q'' \in [q]_{\equiv}$. $\forall a \in \Sigma$. $[\delta_{\equiv}(q', a)]_{\equiv} = [\delta_{\equiv}(q'', a)]_{\equiv}$.)

•
$$F/_{\equiv} = \{ [q]_{\equiv} \mid q \in F \}$$

1) Remove unreachable states

(1) Remove unreachable states

② Partition the states into Q_{\equiv}

$$Q_{\equiv} = \{ \{q_0, q_1\}, \quad (\because q_0 \equiv q_1) \\ \{q_2\}, \}$$

(1) Remove unreachable states

② Partition the states into Q_{\equiv}

$$Q_{\equiv} = \{ \{q_0, q_1\}, \quad (\because q_0 \equiv q_1) \ \{q_2\}, \}$$

3 Construct a new DFA D/=

1) Remove unreachable states

1) Remove unreachable states

2 Partition the states into Q_{\equiv}

$$Q/_{\equiv} = \{ \{q_0, q_3\}, \quad (\because q_0 \equiv q_3) \\ \{q_1, q_4\}, \quad (\because q_1 \equiv q_4) \\ \{q_2\}, \}$$

1) Remove unreachable states

② Partition the states into Q_{\equiv}

$$Q/_{\equiv} = \{ \{q_0, q_3\}, \quad (\because q_0 \equiv q_3) \\ \{q_1, q_4\}, \quad (\because q_1 \equiv q_4) \\ \{q_2\}, \}$$

3 Construct a new DFA D/=

Theorem (Minimum-State DFA)

For a given DFA $D=(Q,\Sigma,\delta,q_0,F)$, its minimized DFA $D/_{\equiv}=(Q/_{\equiv},\Sigma,\delta/_{\equiv},[q_0]_{\equiv},F/_{\equiv})$ is a **minimum-state DFA** of D. (i.e., \nexists DFA $D'=(Q',\Sigma,\delta',q'_0,F')$. s.t. $L(D')=L(D)\wedge |Q'|<|Q/_{\equiv}|$).

Theorem (Minimum-State DFA)

For a given DFA $D=(Q,\Sigma,\delta,q_0,F)$, its minimized DFA $D/_{\equiv}=(Q/_{\equiv},\Sigma,\delta/_{\equiv},[q_0]_{\equiv},F/_{\equiv})$ is a **minimum-state DFA** of D. (i.e., \nexists DFA $D'=(Q',\Sigma,\delta',q'_0,F')$. s.t. $L(D')=L(D)\wedge |Q'|<|Q/_{\equiv}|$).

• Assume that \exists DFA D'. Then, m < n when m = |Q'| and $n = |Q|_{\equiv}|$.

Theorem (Minimum-State DFA)

For a given DFA $D=(Q,\Sigma,\delta,q_0,F)$, its minimized DFA $D/_{\equiv}=(Q/_{\equiv},\Sigma,\delta/_{\equiv},[q_0]_{\equiv},F/_{\equiv})$ is a **minimum-state DFA** of D. (i.e., \nexists DFA $D'=(Q',\Sigma,\delta',q'_0,F')$. s.t. $L(D')=L(D)\wedge |Q'|<|Q/_{\equiv}|$).

- Assume that \exists DFA D'. Then, m < n when m = |Q'| and $n = |Q/_{\equiv}|$.
- ullet For any state $q\in Q_{\equiv}$, we can find a state $q'\in Q'$ such that $q\equiv q'$.

(We will prove it as a lemma in the next slide.)

Theorem (Minimum-State DFA)

For a given DFA $D=(Q,\Sigma,\delta,q_0,F)$, its minimized DFA $D/_{\equiv}=(Q/_{\equiv},\Sigma,\delta/_{\equiv},[q_0]_{\equiv},F/_{\equiv})$ is a **minimum-state DFA** of D. (i.e., \nexists DFA $D'=(Q',\Sigma,\delta',q'_0,F')$. s.t. $L(D')=L(D)\wedge |Q'|<|Q/_{\equiv}|$).

- Assume that \exists DFA D'. Then, m < n when m = |Q'| and $n = |Q/_{\equiv}|$.
- For any state $q \in Q/_{\equiv}$, we can find a state $q' \in Q'$ such that $q \equiv q'$. (We will prove it as a lemma in the next slide.)
- By Pigeonhole Principle, $\exists q_i \neq q_j \in Q/_{\equiv}$. $\exists q' \in Q'$. $q_i \equiv q' \land q_j \equiv q'$.

Theorem (Minimum-State DFA)

For a given DFA $D=(Q,\Sigma,\delta,q_0,F)$, its minimized DFA $D/_{\equiv}=(Q/_{\equiv},\Sigma,\delta/_{\equiv},[q_0]_{\equiv},F/_{\equiv})$ is a minimum-state **DFA** of D. (i.e., \nexists DFA $D'=(Q',\Sigma,\delta',q'_0,F')$. s.t. $L(D')=L(D)\wedge |Q'|<|Q/_{\equiv}|$).

- Assume that \exists DFA D'. Then, m < n when m = |Q'| and $n = |Q/_{\equiv}|$.
- ullet For any state $q\in Q/_{\equiv}$, we can find a state $q'\in Q'$ such that $q\equiv q'$.

(We will prove it as a lemma in the next slide.)

- By Pigeonhole Principle, $\exists q_i \neq q_j \in Q/_{\equiv}$. $\exists q' \in Q'$. $q_i \equiv q' \land q_j \equiv q'$.
- It means that $q_i \equiv q_j$. However, it contradicts that Q_{\equiv} is partitioned into equivalence classes of states.

Lemma

Consider a given DFA $D = (Q, \Sigma, \delta, q_0, F)$. Then, let

- $D/_{\equiv}=(Q/_{\equiv},\Sigma,\delta/_{\equiv},[q_0]_{\equiv},F/_{\equiv})$ be its minimized DFA
- $D' = (Q', \Sigma, \delta', q'_0, F')$ be another DFA such that L(D) = L(D')

Then, for any state $q \in Q/_{\equiv}$, we can find a state $q' \in Q'$ such that $q \equiv q'$.

Lemma

Consider a given DFA $D = (Q, \Sigma, \delta, q_0, F)$. Then, let

- $D/_{\equiv}=(Q/_{\equiv},\Sigma,\delta/_{\equiv},[q_0]_{\equiv},F/_{\equiv})$ be its minimized DFA
- $D' = (Q', \Sigma, \delta', q'_0, F')$ be another DFA such that L(D) = L(D')

Then, for any state $q \in Q/_{\equiv}$, we can find a state $q' \in Q'$ such that $q \equiv q'$.

For all $q \in Q/_{\equiv}$. $\exists w = a_1 \cdots a_k$. s.t. $\delta/_{\equiv}(q_0, w) = q$. $(\because q \text{ is reachable.})$

Lemma

Consider a given DFA $D = (Q, \Sigma, \delta, q_0, F)$. Then, let

- $D/_{\equiv}=(Q/_{\equiv},\Sigma,\delta/_{\equiv},[q_0]_{\equiv},F/_{\equiv})$ be its minimized DFA
- $D' = (Q', \Sigma, \delta', q'_0, F')$ be another DFA such that L(D) = L(D')

Then, for any state $q \in Q/_{\equiv}$, we can find a state $q' \in Q'$ such that $q \equiv q'$.

For all $q \in Q/_{\equiv}$. $\exists w = a_1 \cdots a_k$. s.t. $\delta/_{\equiv}(q_0, w) = q$. $(\because q \text{ is reachable.})$ Let $q' = \delta'(q'_0, w)$.

Lemma

Consider a given DFA $D = (Q, \Sigma, \delta, q_0, F)$. Then, let

- $D/_{\equiv}=(Q/_{\equiv},\Sigma,\delta/_{\equiv},[q_0]_{\equiv},F/_{\equiv})$ be its minimized DFA
- $D' = (Q', \Sigma, \delta', q'_0, F')$ be another DFA such that L(D) = L(D')

Then, for any state $q \in Q/_{\equiv}$, we can find a state $q' \in Q'$ such that $q \equiv q'$.

For all $q \in Q/_{\equiv}$. $\exists w = a_1 \cdots a_k$. s.t. $\delta/_{\equiv}(q_0, w) = q$. $(\because q \text{ is reachable.})$

Let $q' = \delta'(q'_0, w)$.

Then, $\delta'^*(q_0', a_1 \cdots a_i) \equiv \delta/_{\equiv}^*(q_0, a_1 \cdots a_i)$ for all $0 \leq i \leq k$.

Lemma

Consider a given DFA $D = (Q, \Sigma, \delta, q_0, F)$. Then, let

- $D/_{\equiv}=(Q/_{\equiv},\Sigma,\delta/_{\equiv},[q_0]_{\equiv},F/_{\equiv})$ be its minimized DFA
- $D' = (Q', \Sigma, \delta', q'_0, F')$ be another DFA such that L(D) = L(D')

Then, for any state $q \in \mathcal{Q}/_{\equiv}$, we can find a state $q' \in \mathcal{Q}'$ such that $q \equiv q'$.

For all $q \in Q_{\equiv}$. $\exists w = a_1 \cdots a_k$. s.t. $\delta_{\equiv}(q_0, w) = q$. $(\because q \text{ is reachable.})$ Let $q' = \delta'(q'_0, w)$.

Then, $\delta'^*(q_0', a_1 \cdots a_i) \equiv \delta/_{\equiv}^*(q_0, a_1 \cdots a_i)$ for all $0 \le i \le k$.

• (Basis Case) $\delta'^*(q_0', \epsilon) = q_0' \equiv q_0 = \delta/_{\equiv}^*(q_0, \epsilon) \quad (\because L(D') = L(D/_{\equiv}))$

Lemma

Consider a given DFA $D = (Q, \Sigma, \delta, q_0, F)$. Then, let

- $D/_{\equiv}=(Q/_{\equiv},\Sigma,\delta/_{\equiv},[q_0]_{\equiv},F/_{\equiv})$ be its minimized DFA
- $D' = (Q', \Sigma, \delta', q'_0, F')$ be another DFA such that L(D) = L(D')

Then, for any state $q\in Q/_{\equiv}$, we can find a state $q'\in Q'$ such that $q\equiv q'$.

For all $q \in Q/_{\equiv}$. $\exists w = a_1 \cdots a_k$. s.t. $\delta/_{\equiv}(q_0, w) = q$. $(\because q \text{ is reachable.})$ Let $q' = \delta'(q'_0, w)$.

Then, $\delta'^*(q_0', a_1 \cdots a_i) \equiv \delta/_{\equiv}^*(q_0, a_1 \cdots a_i)$ for all $0 \le i \le k$.

- (Basis Case) $\delta'^*(q_0', \epsilon) = q_0' \equiv q_0 = \delta/_{\equiv}^*(q_0, \epsilon) \quad (\because L(D') = L(D/_{\equiv}))$
- (Induction Case) Assume $\delta'^*(q_0', a_1 \cdots a_i) \not\equiv \delta/_{\equiv}^*(q_0, a_1 \cdots a_i)$.

Lemma

Consider a given DFA $D = (Q, \Sigma, \delta, q_0, F)$. Then, let

- $D/_{\equiv}=(Q/_{\equiv},\Sigma,\delta/_{\equiv},[q_0]_{\equiv},F/_{\equiv})$ be its minimized DFA
- $D' = (Q', \Sigma, \delta', q'_0, F')$ be another DFA such that L(D) = L(D')

Then, for any state $q\in Q/_{\equiv}$, we can find a state $q'\in Q'$ such that $q\equiv q'$.

For all $q \in Q/_{\equiv}$. $\exists w = a_1 \cdots a_k$. s.t. $\delta/_{\equiv}(q_0, w) = q$. $(\because q \text{ is reachable.})$ Let $q' = \delta'(q'_0, w)$.

Then, $\delta'^*(q_0', a_1 \cdots a_i) \equiv \delta/_{\equiv}^*(q_0, a_1 \cdots a_i)$ for all $0 \le i \le k$.

- (Basis Case) $\delta'^*(q_0', \epsilon) = q_0' \equiv q_0 = \delta/_{\equiv}^*(q_0, \epsilon) \quad (\because L(D') = L(D/_{\equiv}))$
- (Induction Case) Assume $\delta'^*(q'_0, a_1 \cdots a_i) \not\equiv \delta/_{\equiv}^*(q_0, a_1 \cdots a_i)$. Then, by the definition of distinguishable states, $\delta'^*(q'_0, a_1 \cdots a_{i-1}) \not\equiv \delta/_{\equiv}^*(q_0, a_1 \cdots a_{i-1})$.

Lemma

Consider a given DFA $D = (Q, \Sigma, \delta, q_0, F)$. Then, let

- $D/_{\equiv}=(Q/_{\equiv},\Sigma,\delta/_{\equiv},[q_0]_{\equiv},F/_{\equiv})$ be its minimized DFA
- $D' = (Q', \Sigma, \delta', q'_0, F')$ be another DFA such that L(D) = L(D')

Then, for any state $q\in Q/_{\equiv}$, we can find a state $q'\in Q'$ such that $q\equiv q'$.

For all
$$q \in Q_{\equiv}$$
. $\exists w = a_1 \cdots a_k$. s.t. $\delta/_{\equiv}(q_0, w) = q$. $(\because q \text{ is reachable.})$

Let $q' = \delta'(q'_0, w)$.

Then, $\delta'^*(q_0', a_1 \cdots a_i) \equiv \delta/_{\equiv}^*(q_0, a_1 \cdots a_i)$ for all $0 \le i \le k$.

But, it contradicts the induction hypothesis.

- (Basis Case) ${\delta'}^*(q_0',\epsilon) = q_0' \equiv q_0 = {\delta/_{\equiv}}^*(q_0,\epsilon) \quad (\because L(D') = L(D_{\equiv}))$
- (Induction Case) Assume $\delta'^*(q'_0, a_1 \cdots a_i) \not\equiv \delta/_{\equiv}^*(q_0, a_1 \cdots a_i)$. Then, by the definition of distinguishable states, $\delta'^*(q'_0, a_1 \cdots a_{i-1}) \not\equiv \delta/_{\equiv}^*(q_0, a_1 \cdots a_{i-1})$.

Summary

1. Equivalence of Finite Automata

Equivalence of States (\equiv) Distinguishable States ($\not\equiv$) Table-Filling Algorithm Equivalence of Finite Automata Examples

2. Minimization of Finite Automata

Minimization Algorithm Examples Proof of Minimum-State DFA

Exercise #3

• Please see this document for the exercise.

https://github.com/ku-plrg-classroom/docs/tree/main/cose215/dfa-eq-min

- Please implement the following functions in Implementation.scala.
 - nonEqPairs for the table-filling algorithm.
 - isEqual for the **equivalence** of DFAs.
 - minimize for the **minimization** of DFAs.
- It is just an exercise, and you don't need to submit anything.

Next Lecture

• Context-Free Grammars (CFGs) and Languages (CFLs)

Jihyeok Park
 jihyeok_park@korea.ac.kr
https://plrg.korea.ac.kr