PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2002-261575

(43)Date of publication of application: 13.09.2002

(51)Int.Cl.

H03H 9/19 H03B 5/32 H03H 9/10

HO3H 9/215

(21)Application number: 2001-392904

4 (71)Applicant :

SEIKO EPSON CORP

(22)Date of filing:

25.12.2001

(72)Inventor:

KITAMURA FUMITAKA

SAKATA JUNICHIRO TANAYA HIDEO

(30)Priority

Priority number: 2000392934

Priority date: 25.12.2000

Priority country: JP

(54) VIBRATING PIECE, VIBRATOR, OSCILLATOR AND ELECTRONIC EQUIPMENT

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a vibrating reed in which variation of the CI value can be stabilized among vibrating-reed elements, even if the base part is shortened and the entire vibrating reed can be reduced in size, a vibrator having it, and an oscillator and an electronic apparatus comprising that vibrator.

SOLUTION: The vibrating piece comprises a base part, and a vibrating arm part projecting therefrom, wherein a groove is provided in the surface part and/or the rear side part of the vibratory arm part and a cut is made in the base part. Even if the vibratory arm part generates vibration having a vertical component, it is prevented from leaking to the base part side by the notch. Consequently, variation in the CI value can be stabilized among vibrating reed elements, while reducing the size of the base part.

LEGAL STATUS

[Date of request for examination]

21.06.2004

[Date of sending the examiner's decision of rejection]

04.10.2005

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

2005-21255

[Date of requesting appeal against examiner's decision of

04.11.2005

rejection]

[Date of extinction of right]

(19)日本国特許庁 (JP)

(12)公開特許公報 (A)

(11)特許出願公開番号 特開2002—261575

(P2002-261575A) (43)公開日 平成14年9月13日(2002.9.13)

(51) Int. Cl. 7	識別記号	FΙ			テーマコート・	(参考)
H03H 9/19	•	H03H	9/19	J	5J079	
H03B 5/32		HO3B	5/32	H	5J108	
H03H 9/10		H03H	9/10			
9/215			9/215			•

審査請求 未請求 請求項の数20 OL (全16頁)

(21)出顯番号	特願2001-392904(P2001-392904)	(71)出願人	000002369
·			セイコーエプソン株式会社
(22)出願日	平成13年12月25日(2001.12.25)		東京都新宿区西新宿2丁目4番1号
		(72)発明者	北村 文孝
(31)優先権主張番号	特願2000-392934(P2000-392934)		長野県諏訪市大和3丁目3番5号 セイコ
(32)優先日	平成12年12月25日(2000.12.25)		ーエプソン株式会社内
(33)優先権主張国	日本(JP)	(72)発明者	坂田 淳一郎
			長野県諏訪市大和3丁目3番5号 セイコ
			ーエプソン株式会社内
		(74)代理人	100095728
	•		弁理士 上柳 雅誉 (外2名)

最終頁に続く

(54) 【発明の名称】振動片、振動子、発振器及び電子機器

(57)【要約】

【課題】本発明は、基部を短くしてもCI値の振動片素 子間のバラツキが安定すると共に振動片全体も小型化で きる振動片、これを有する振動子、この振動子を備える 発振器及び電子機器を提供することを目的とする。

【解決手段】本発明は、基部と、この基部から突出して形成されている振動腕部と、を有する振動片であって、前記振動腕部の表面部及び/又は裏面部に溝部が形成されていると共に、前記基部に切り込み部が形成されていることを特徴とする振動片により、達成される。その構成によれば、前記基部に切り込み部が形成されているので、振動腕部が振動する際に、垂直方向成分を有した振動が生じても、振動腕部の振動が基部側へ漏れるのを、この切り込み部で緩和することができる。したがって、基部を小型化しながら、CI値の振動片素子間のバラツキを安定化させることができる。

【特許請求の範囲】

【請求項1】 基部と、この基部から突出して形成されている振動腕部と、を有する振動片であって、前記振動腕部の表面部及び/又は裏面部に溝部が形成されていると共に、前記基部に切り込み部が形成されていることを特徴とする振動片。

1

【請求項2】 前記振動腕部が略直方体でなり、その表面部の短辺である腕部幅が 50μ m以上 150μ m以下であることを特徴とする請求項1に記載の振動片。

【請求項3】 前記振動腕部の表面部及び裏面部に構部 10 が形成されていると共に、前記表面部又は前記裏面部に設けられている構部のいずれかの深さが、前記振動腕部の深さ方向の全長である厚みに対して30%以上50%未満の深さに形成されていることを特徴とする請求項1 又は請求項2に記載の振動片。

【請求項4】 前記表面部又は前記裏面部に設けられている溝部のいずれかの深さが、前記振動腕部の深さ方向の全長である厚みに対して40%以上50%未満の深さに形成されていることを特徴とする請求項1又は請求項2に記載の振動片。

【請求項5】 前記構部の開口における短辺である溝幅が、前記振動腕部の前記腕部幅の40%以上と成っていることを特徴とする請求項3に記載の振動片。

【請求項6】 前記溝幅が前記腕部幅の70%以上100%未満に形成されていることを特徴とする請求項5に記載の振動片。

【請求項7】 前記基部には、この振動片を固定させる ための固定領域が設けられていると共に、前記切り込み 部は、この固定領域と前記振動腕部との間の基部に設け られていることを特徴とする請求項1乃至請求項6のい 30 ずれかに記載の振動片。

【請求項8】 前記振動片が略30KH2万至略40KH2で発振する水晶で形成されている音叉型振動片であることを特徴とする請求項1万至請求項7のいずれかに記載の振動片。

【請求項9】 基部と、この基部から突出して形成されている振動腕部と、を有する振動片が、パッケージ内に収容されている振動子であって、前記振動片の前記振動腕部の表面部及び/又は裏面部に溝部が形成されていると共に、前記基部に切り込み部が形成されていることを 40 特徴とする振動子。

【請求項10】 前記振動片の前記振動腕部が略直方体でなり、その表面部の短辺である腕部幅が 50μ m以上 150μ m以下であることを特徴とする請求項9に記載の振動子。

【請求項11】 前記振動片の前記振動腕部の表面部及び裏面部に溝部が形成されていると共に、前記表面部又は前記裏面部に設けられている溝部のいずれかの深さが、前記振動腕部の深さ方向の全長である厚みに対して30%以上50%未満の深さに形成されていることを特 50

徴とする請求項9又は請求項10に記載の振動子。

【請求項12】 前記振動片の前記表面部又は前記裏面部に設けられている溝部のいずれかの深さが、前記振動腕部の深さ方向の全長である厚みに対して40%以上50%未満の深さに形成されていることを特徴とする請求項9又は請求項10に記載の振動子。

【請求項13】 前記振動片の前記溝部の開口における 短辺である溝幅が、前記振動腕部の前記腕部幅の40% 以上と成っていることを特徴とする請求項11に記載の 振動子。

【請求項14】 前記振動片の前記構幅が前記腕部幅の70%以上100%未満に形成されていることを特徴とする請求項13に記載の振動子。

【請求項15】 前記振動片の前記基部には、この振動 片を固定させるための固定領域が設けられていると共 に、前記切り込み部は、この固定領域と前記振動腕部と の間の基部に設けられていることを特徴とする請求項9 乃至請求項14のいずれかに記載の振動子。

【請求項16】 前記振動片が略30KHz乃至略40 20 KHzで発振する水晶で形成されている音叉振動片であることを特徴とする請求項9乃至請求項15のいずれかに記載の振動子。

【請求項17】 前記パッケージが箱状に形成されていることを特徴とする請求項9乃至請求項16のいずれかに記載に振動子。

【請求項18】 前記パッケージが所謂シリンダータイプに形成されていることを特徴とする請求項9乃至請求項16のいずれかに記載の振動子。

【請求項19】 基部と、この基部から突出して形成されている振動腕部と、を有する振動片と集積回路がパッケージ内に収容されている発振器であって、前記振動片の前記振動腕部の表面部及び/又は裏面部に構部が形成されていると共に、前記基部に切り込み部が形成されていることを特徴とする発振器。

【請求項20】 基部と、この基部から突出して形成されている振動腕部と、を有する振動片であり、この振動片がパッケージ内に収容されている振動子であり、この振動子を制御部に接続して用いている電子機器であって、前記振動片の前記振動腕部の表面部及び/又は裏面部に構部が形成されていると共に、前記基部に切り込み部が形成されていることを特徴とする電子機器。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

【0002】本発明は、例えば水晶等からなる振動片、 この振動片を有する振動子、この振動子を備える発振器 や電子機器に関する。

[0003]

【従来の技術】従来、振動片である音叉型水晶振動片 は、例えば図12に示すように構成されている。すなわ ち、音叉型水晶振動片10は、基部11と、この基部1 1から突出して形成されている2本の腕部12,13を 有している。そして、この2本脳で部12,13には、 構12a,13aが表面に形成されている。また、この 構は図12の腕部12,13の裏面側にも同様に形成さ れている。このため、図12のA-A,断面図である図 13に示すように腕部12,13は、その断面形状が略 H型の形成されている。

【0004】このような略H型の音叉型水晶振動片10は、振動片の大きさを小型化しても、腕部12,13の10振動損失が低くCI値(クリスタルインピーダンス又は等価直列抵抗)も低く抑えることができるという特性を有する。このため、略H型の音叉型水晶振動片10は、例えば特に小型でも高精度な性能が求められる振動子に適用されている。略H型の音叉型水晶振動片10の大きさとしては、例えば図12に示すように腕部12,13の長さが1.644mm、幅が0.1mmとなっており、この腕部12,13に幅0.07mmの幅で溝12a,13aが形成されている。さらに、基部11は図において縦方向の長さが0.7mmとなっている。20

[0005]

【発明が解決しようとする課題】このように極めて小型の音叉型水晶振動片10であっても、近年の電気機器等の装置の小型化の要請に対応するには、更なる小型化が求められている。この小型化の要請に対応するには、基部11の図12における縦方向の長さを0.7mmより短く形成すれば、全体として振動片10の長さが短くなり、振動片10が小型化され、最も良いのであるが、以下のような問題があった。すなわち、一般に基部11の長さを腕部12,13の長さの40%以上としないと、振動片の固定バラツキによる影響が出やすく振動片素子間のCI値バラツキの発生が生じ易いという問題があった。具体的には、図13に示すように腕部12,13の厚みをD、腕部12,13の幅をW、腕部12,13の長さをLとした場合、音叉型水晶振動片10の周波数 f は

f ∝W/L'·····式1

の関係式を満たさなければならない。すなわち、振動片 10の腕部12,13の長さLを短くすればするほど、 腕部12,13の幅Wも細くなるという関係になってい 40

【0006】図12に示す音叉型水晶振動片10は、上 り、その表面部の知識のように小型化されているため腕部12,13の長さ 0μ m以下であることが1.644mmと短いため、その幅も0.1mmと 極めて細くなっている。さらに腕部12,13の厚みD 部の短辺である腕部も0.1mmと成っている。ところで、音叉型水晶振動 おる。このような抵制 ある。このような抵制 がし、上述にように値関が短くなると、図14(b)に 50 せることができる。

示すように、垂直方向の成分(図において矢印Cの方向)を含むようになり、図14(b)において矢印Eで示す方向に腕部12,13が振動するようになる。これは、図15に示す図でも明らかなように垂直振動成分変位量(nm)は、腕部12,13の幅W/厚みDが1.2より小さくなると急激に変位量も大きくなるのが分かる。

【0007】このように腕部12,13の振動の垂直成分が増加し、腕部12,13が動くと、この振動が振動10 片10の基部11へと伝わり、振動片10をパッケージ等に固定する基部11の固定領域の接着剤等からエネルギーが逃げてしまうことになる。このように振動が基部11へ漏れ、基部11の固定領域からエネルギーが逃げると、振動片の固定バラツキの影響によって、腕部12,13の振動が振動片によっては不安定となるものが生じ、CI値の素子間のバラツキが大きくなっていた。そして、このような腕部12,13の振動の漏れや基部11の固定領域からのエネルギーの逃げを防ぐには、上述のように腕部12,13の長さしの40%以上の長さを基部11において確保しなければならなかった。したがって、これが振動片10自体の小型化の障害となっていた。

【0008】本発明は上記問題に鑑み、基部を短くしてもCI値の振動片素子間のバラツキが安定すると共に振動片全体も小型化できる振動片、これを有する振動子、この振動子を備える発振器及び電子機器を提供することを目的とする。

[0009]

【課題を解決するための手段】前記目的は、基部と、この基部から突出して形成されている振動腕部と、を有する振動片であって、前記振動腕部の表面部及び/又は裏面部に溝部が形成されていると共に、前記基部に切り込み部が形成されていることを特徴とする振動片により、達成される。

【0010】その構成によれば、前記基部に切り込み部が形成されているので、振動腕部が振動する際に、垂直方向成分を有した振動が生じても、振動腕部の振動が基部側へ漏れるのを、この切り込み部で緩和することができる。したがって、基部を小型化しながら、CI値の振動片素子間のバラツキを安定化させることができる。

【0011】好ましくは、前記振動腕部が略直方体でなり、その表面部の短辺である腕部幅が 50μ m以上 150μ m以下であることを特徴とする振動片である。

【0012】前記振動腕部が略直方体でなり、その表面部の短辺である腕部幅が 50μ m以上 150μ m以下である。このような振動片においても、前記切り込み部を設けることで、基部を小型化でき、振動片全体を超小型化できると共に、実用的なCI値の上限である100K Ω 以下で、CI値の振動片素子間のバラツキを安定化させることができる

【0013】好ましくは、前記振動腕部の表面部及び裏面部に構部が形成されていると共に、前記表面部又は前記裏面部に設けられている溝部のいずれかの深さが、前記振動腕部の深さ方向の全長である厚みに対して30%以上50%未満の深さに形成されていることを特徴とする振動片である。

【0014】前記表面部又は前記裏面部に設けられている構部のいずれかの深さが、前記振動腕部の深さ方向の全長である厚みに対して30%以上50%未満の深さに形成されているので、超小型振動片でもCI値を実用上 10の上限である100KΩ以下に抑えることができる。また、前記切り込み部を設けることで、CI値の振動片素子間のバラツキを安定化させることができる。

【0015】好ましくは、前記表面部又は前記裏面部に設けられている溝部のいずれかの深さが、前記振動腕部の深さ方向の全長である厚みに対して40%以上50%未満の深さに形成されていることを特徴とする振動片である。前記表面部又は前記裏面部に設けられている溝部のいずれかの深さが、前記振動腕部の深さ方向の全長である厚みに対して40%以上50%未満の深さに形成さ 20れているので、超小型振動片でもCI値を実用上の上限である100KQ以下により精度良く抑えることができる。

【0016】好ましくは、前記溝部の開口における短辺である溝幅が、前記振動腕部の前記腕部幅の40%以上と成っていることを特徴とする振動片である。前記溝部の開口における短辺である溝幅が、前記振動腕部の前記腕部幅の40%以上と成っているので、CI値を実用上の上限である100KΩ以下に抑えることができる。また、前記切り込み部を設けることで、CI値の振動片素 30子間のバラツキを安定化させることができる。

【0017】好ましくは、前記溝幅が前記腕部幅の70%以上100%未満に形成されていることを特徴とする振動片である。前記溝幅が前記腕部幅の70%以上100%未満に形成されているので、前記切り込み部を設けることで、CI値の振動片素子間のバラツキをより安定化させることができる。

【0018】好ましくは、前記基部には、この振動片を固定させるための固定領域が設けられていると共に、前記切り込み部は、この固定領域と前記振動腕部との間の 40 基部に設けられていることを特徴とする振動片である。

【0019】前記切り込み部は、この固定領域と前記振動腕部との間の基部に設けられている。したがって、この切り込み部は、前記振動腕部の振動の妨げにならない位置に配置されていると共に、振動漏れが前記固定領域へ伝わり、エネルギーの逃げが生じるのを有効に防止している。このため、CI値の振動片素子間のバラツキが安定化する。

【0020】好ましくは、前記振動片が略30KHz乃 至略40KHzで発振する水晶で形成されている音叉振 50

動片であることを特徴とする振動片である。

【0021】前記振動片が略30KHz乃至略40KHzで発振する水晶で形成されている音叉型振動片に前記切り込み部を設けることで、基部を小型化でき、音叉型振動片全体も小型化でき、CI値の振動片素子間のバラツキも安定化させることができる。

【0022】前記目的は、基部と、この基部から突出して形成されている振動腕部と、を有する振動片が、パッケージ内に収容されている振動子であって、前記振動片の前記振動腕部の表面部及び/又は裏面部に溝部が形成されていると共に、前記基部に切り込み部が形成されていることを特徴とする振動子により、達成される。

【0023】前記振動片の前記基部に切り込み部が形成されているので、振動腕部が振動する際に、垂直方向成分を有した振動が生じても、振動腕部の振動が基部側へ漏れるのを、この切り込み部で緩和することができる。したがって、基部を小型化しながら、CI値の振動片素子間のバラツキを安定化させることができる振動片を有する振動子となる。

【0024】好ましくは、前記振動片の前記振動腕部が 略直方体でなり、その表面部の短辺である腕部幅が50 μ m以上150 μ m以下であることを特徴とする振動子 である。

【0025】前記振動片の前記振動腕部が略直方体でなり、その表面部の短辺である腕部幅が 50μ m以上 150μ m以下である。このような振動片においても、前記切り込み部を設けることで、基部を小型化でき、振動片全体を超小型化できると共に、実用的なCI値の上限である100K Ω 以下で、CI値の振動片素子間のバラツキを安定化させることができる。

【0026】好ましくは、前記振動片の前記振動腕部の表面部及び裏面部に構部が形成されていると共に、前記表面部又は前記裏面部に設けられている構部のいずれかの深さが、前記振動腕部の深さ方向の全長である厚みに対して30%以上50%未満の深さに形成されていることを特徴とする振動子である。

【0027】前記振動片の前記表面部又は前記裏面部に設けられている溝部のいずれかの深さが、前記振動腕部の深さ方向の全長である厚みに対して30%以上50%未満の深さに形成されているので、超小型振動片でもCI値を実用上の上限である100KΩ以下に抑えることができる。また、前記切り込み部を設けることで、CI値の振動片素子間のバラツキを安定化させることができる振動子となる。

【0028】好ましくは、前記振動片の前記表面部又は前記裏面部に設けられている溝部のいずれかの深さが、前記振動腕部の深さ方向の全長である厚みに対して40%以上50%未満の深さに形成されていることを特徴とする振動子である。前記表面部又は前記裏面部に設けられている溝部のいずれかの深さが、前記振動腕部の深さ

方向の全長である厚みに対して40%以上50%未満の深さに形成されているので、超小型振動片でもCI値を実用上の上限である100KΩ以下により精度良く抑えることができる。

【0029】好ましくは、前記振動片の前記溝部の開口における短辺である溝幅が、前記振動腕部の前記腕部幅の40%以上と成っていることを特徴とする振動子である。前記振動片の前記溝部の開口における短辺である溝幅が、前記振動腕部の前記腕部幅の40%以上と成っているので、CI値を実用上の上限である100KΩ以下 10に抑えることができる振動子となる。また、前記切り込み部を設けることで、CI値の振動片素子間のバラツキを安定化させることができる振動子となる。

【0030】好ましくは、前記振動片の前記構幅が前記 腕部幅の70%以上100%未満に形成されていること を特徴とする振動子である。

【0031】前記振動片の前記溝幅が前記腕部幅の70%以上100%未満に形成されているので、前記切り込み部を設けることで、CI値の振動片素子間のバラツキを安定化させることができる振動子である。

【0032】好ましくは、前記振動片の前記基部には、この振動片を固定させるための固定領域が設けられていると共に、前記切り込み部は、この固定領域と前記振動 腕部との間の基部に設けられていることを特徴とする振動子である。

【0033】前記振動片の前記切り込み部は、この固定 領域と前記振動腕部との間の基部に設けられている。し たがって、この切り込み部は、前記振動腕部の振動の妨 げにならない位置に配置されていると共に、振動漏れが 前記固定領域へ伝わり、エネルギーの逃げが生じるのを 30 有効に防止している。このため、CI値の振動片素子間 のバラツキが安定する振動子となる。

【0034】好ましくは、前記振動片が略30KHz乃 至略40KHzで発振する水晶で形成されている音叉振 動片であることを特徴とする振動子である。

【0035】略30KHz乃至略40KHzで発振する水晶で形成されている音叉型振動片に前記切り込み部を設けることで、基部を小型化でき、音叉型振動片と振動子全体も小型化でき、CI値の振動片素子間のバラツキも安定化させることができる。

【0036】好ましくは、前記パッケージが箱状に形成されていることを特徴とする振動子である。

【0037】前記パッケージが箱状に形成されている振動子を小型化でき、前記振動片のCI値の振動片素子間のバラツキを安定化させることができる。

【0038】好ましくは、前記パッケージが所謂シリンダータイプに形成されていることを特徴とする振動子である。

【0039】前記パッケージが所謂シリンダータイプに 形成されている振動子や振動片を小型化でき、前記振動 50

片のCI値の振動片素子間のバラツキを安定化させることができる。

【0040】前記目的は、基部と、この基部から突出して形成されている振動腕部と、を有する振動片と集積回路がパッケージ内に収容されている発振器であって、前記振動片の前記振動腕部の表面部及び/又は裏面部に溝部が形成されていると共に、前記基部に切り込み部が形成されていることを特徴とする発振器により、達成される。

【0041】前記振動片の前記基部に切り込み部が形成されているので、振動腕部が振動する際に、垂直方向成分を有した振動が生じても、振動腕部の振動が基部側へ漏れるのを、この切り込み部で緩和することができる。したがって、基部と発振器を小型化しながら、CI値の振動片素子間のバラツキを安定化させることができる発振器となる。

【0042】前記目的は、基部と、この基部から突出して形成されている振動腕部と、を有する振動片であり、この振動片がパッケージ内に収容されている振動子であり、この振動子を制御部に接続して用いている電子機器であって、前記振動片の前記振動腕部の表面部及び/又は裏面部に溝部が形成されていると共に、前記基部に切り込み部が形成されていることを特徴とする電子機器により、達成される。

【0043】前記振動片の前記基部に切り込み部が形成されているので、振動腕部が振動する際に、垂直方向成分を有した振動が生じても、振動腕部の振動が基部側へ漏れるのを、この切り込み部で緩和することができる。したがって、基部を小型化しながら、電子機器も小型化でき、CI値の振動片素子間のバラツキを安定化させることができるとなる。

[0044]

40

【発明の実施の形態】以下、本発明の好適な実施の形態を添付図面に基づいて詳細に説明する。なお、以下に述べる実施の形態は、本発明の好適な具体例であるから、技術的に好ましい種々の限定が付されているが、本発明の範囲は、以下の説明において特に本発明を限定する旨の記載がない限り、これらの形態に限られるものではない

【0045】(第1の実施の形態)図1は、本発明の第1の実施の形態に係る振動片である音叉型水晶振動片100は、例えば所謂水晶 Z 板となるように水晶の単結晶を切り出して形成されている。また、図1に示す音叉型水晶振動片100は例えば32.768KHzで信号を発信する振動片であるため、極めて小型の振動片となっている。このような音叉型水晶振動片100は、図1に示すように、基部110を有している。そして、この基部110から図において上方向に突出するように振動腕部である音叉腕121,122が2本配置されている。また、この音

叉腕121,122の表面と裏面には、溝部123,124が図1に示すように形成されている。この溝部123,124は、図1に示されていない音叉腕121,122の裏面側にも同様に形成されているため、図2に示すように図1のF-F'断面図では、略H型に形成されている。

【0046】ところで、上記音叉型水晶振動片100の 基部110は、その全体が略板状に形成されている。そ して、図において縦方向の長さが、例えば0.56mm に形成されている。一方、この基部110から突出して 10 配置されている前記音叉腕121、122の図において 縦方向の長さは例えば1. 644mmに形成されてい る。したがって、この音叉腕121、122に対する基 部110の長さは、約34%となっている。これに対し て従来の音叉型水晶振動片10は、図12に示すように 基部11の長さが0.7mmで腕部12,13の長さが 1. 644mmに形成され、基部11の長さは腕部1 2, 13の長さに対して約42.6%となり、40%を 超えている。このように基部11の長さを腕部12,1 3の長さに対して40%以上の長さになるようにするこ とで、上述のように腕部12,13の振動による振動漏 れで生じるCI値の振動片素子間のバラツキの増大を防 いでいるものである。

【0047】これに対して、本実施の形態の音叉型水晶振動片100の基部110の長さは、音叉腕121、122の長さに対して上述のように34%になるように形成されているので、従来の音叉型水晶振動片10と同様の構成では、音叉腕121、122の振動による振動漏れが生じ、CI値の振動片素子間のバラツキが増大することになる。しかし、本実施の形態では、図1に示すよ30うに基部110の両側に切り込み部125が2箇所設けられている。この状態を示すのが図3である。図3は図1の基部110の切り込み部125の配置状態を示す概略斜視図である。図3に示すように切り込み部125が矩形状に形成されされている。このような切り込み部125は、図1に示すように基部110の上端部から0.113mm下側から下方に向かって形成されている。

【0048】この切り込み部125の基部110における配置条件を示したのが図4である。図4において基部110の底面から基部110の上端、具体的には2本の40音叉腕121、122の間の股部までの長さをA1とする。そして、基部110の底面から切り込み部125の上端部までの長さをA2とする。また、基部110の底面から音叉腕121、122に形成されている溝部123、124の下端部までの長さをA3としたとき、A3の長さは、A2の長さより長くなるように切り込み部125が形成される。そして、A3の長さはA1の長さと同じか、若しくはA3の長さがA1の長さより長くなるように形成される。したがって、音叉腕121、122の根元より基部110の底面側に前記溝部123、1250

4が形成されないようになっている。

【0049】以上の関係から、基部110に形成される 切込み部125の位置は、必ず音叉腕121,122の 溝部123、124の下端部より下方に配置されること になる。したがって、この切り込み部125の存在が、 音叉腕部121、122の振動を阻害等することがな い。また、図4で斜線で示す部分は、音叉型水晶振動片 100をパッケージにおいて固定する際に実際に固定さ れる固定領域111である。この固定領域111の上端 部と、基部110の底面との長さを示したのがA4であ る。そして、この固定領域111と切り込み部125と の位置関係は、A2の長さが、必ずA4の長さより長く なる。したがって、切り込み部125の上端部は、必ず 固定領域111より図4の上方に配置されるので、切り 込み部125が固定領域111に影響を及ぼすことがな く、音叉型水晶振動片100のパッケージに対する固定 状態に悪影響を与えることがない。

【0050】このように、基部110に設けられた切り 込み部125は、音叉型水晶振動片100の音叉腕12 1,122の振動に悪影響を与えることがない位置に設 けられている。そして、更に、切り込み部125は、音 叉型水晶振動片100のパッケージに対する固定状態に 悪影響を与えることがない位置にも設けられている。こ のような位置に設けられている切り込み部125は、音 叉腕121、122の溝部123、124の位置より下 方の基部110側に設けられている。このため、音叉腕 121, 122の振動により、溝部123, 124から 漏れてきた漏れ振動は、切り込み部125により、基部 110の固定領域111に伝わり難くなる。したがっ て、漏れ振動が固定領域1111に伝わり、エネルギー逃 げが生じ難くなり、従来のCI値の振動片素子間のばら つきは、標準偏差で10ΚΩ以上発生していたが、これ によって、標準偏差は1ΚΩに激減した。

【0051】以上のようにCI値の振動片素子間のバラ ツキの安定化を図ることができるので、従来の音叉型水 晶振動片10のように基部11の長さを腕部12,13 の長さの40%以上にする必要がない。本実施の形態で は、図1に示すように、音叉型水晶振動片100の基部 110の長さは、音叉腕121, 122の長さに対して 上述のように34%になるように形成されていても、音 叉腕121, 122の振動による振動漏れが生じ難くC I 値の振動片素子間のバラツキが安定化することにな る。これにより、基部110の長さを短くすることがで き、音叉型水晶振動片100の大きさを小型化すること ができる。本実施の形態では、基部110の長さが図1 に示すように 0.56 mmとすることができ、従来の音 叉型水晶振動片10の図12に示す基部11の長さであ るO.7mmより著しく小さくすることが可能となる。 【0052】このように構成される基部110に突出し

【0052】このように構成される基部110に突出して形成されるのが、図1に示す音叉腕121,122で

11

【0053】図5は溝幅が腕幅の70%である場合の音 叉腕121、122の幅とCI値との関係を示す図である。図5に示すように2点鎖線で示す溝部を設けていない音叉腕は、腕幅が0.15mmより狭くなると実用的なCI値である100KΩを超え、実用に耐えない音叉型水晶振動子となる。しかし、本実施の形態の音叉型水 20晶振動片100は、図1に示すように音叉腕の121、122の表面及び裏面に溝部123、122を設けているので、図5に示すように音叉腕123、124の腕幅が0.1mmでも実用的なCI値である100KΩ以内に収まり、実用的な振動片となる。また、図5では、溝部の深さを音叉腕121、122の厚み方向に対して45%以内に収めれば、腕幅が0.05mmであっても、振動片のCI値は実用的なCI値である100KΩ以内に収まることになる。

【0054】このように、音叉腕121,122の表面 30 及び裏面に溝部123,124を設けることで、CI値 の上昇を抑えることができるが、この溝部123,12 4の深さは、音叉腕121、122の厚みの30%以上 50%未満である必要がある。図6は、溝幅が腕幅の7 0%である場合の溝深さ(片側面)とCI値との関係を 示す図である。図6に示すように溝部123、124の 深さが音叉腕121,122の厚みの30%以上50% 未満であればCI値が実用的な100KΩ以内に収まる ことになる。一方、溝部123,124の深さを50% 以上にすると、溝部123,124が音叉腕121,1 22の表面及び裏面に設けられるため、貫通孔となり、 周波数が所望の周波数と異なるところで発振することに なってしまう。ところで、図6に示すように溝部12 3, 124の深さを40%以上50%未満とすれば、C I値は実用的な100KΩ内に収まるだけでなく、CI 値は安定することになる。本実施の形態の溝部123, 124は、音叉腕121, 122の厚み方向の45%で ある0.045mmとしている。

【0055】更に、本実施の形態では、音叉腕121, 122の表面及が裏面に設けられた機部123 124 の構幅を0.07mmとしている。この溝幅0.07m mは、音叉腕121, 122の腕幅0.1mmの70% となっている。この腕幅に対する溝幅の割合と、CI 値 との関係を示したのが図7である。図7に示すように、溝幅が腕幅の40%以上であれば、実用的なCI 値である100 K Ω 内に収まることになる。そして、溝幅が腕幅の70%以上に形成されれば、図7に示すように、CI 値の振動片素子間のバラツキは安定化することになる。

【0056】以上のように構成される本実施の形態の音 叉型水晶振動片100には、図示しない電極等が所定の 位置に配置され、パッケージ等内に配置され、電圧が印 加されると、音叉腕121、122が振動するが、この とき、音叉腕121,122の腕幅と厚みは、上述のよ うに共に0.1mmに形成されている。したがって、図 13 (b) に示すように垂直成分の振動が加わり、音叉 腕121、122が振動するが、この振動が基部110 の切り込み部125で緩和され、エネルギーが基部11 0の固定領域111から逃げ、振動漏れが生じ、С I 値 の振動片素子間のバラツキが増大するのを未然に防止す ることができる。また、この切れ込み部125は音叉腕 121,122の振動を阻害せず、且つ基部110の固 定領域111の固定に影響を与えない基部110の部分 に配置されているため、音叉腕121、122の振動や 音叉型水晶振動片100のパッケージに対する固定に悪 影響を与えることがない。

【0057】さらに、基部110の長さを従来の振動片より短くすることができるので、音叉型水晶振動片100の小型化を図ることができ、このような振動片を搭載する振動子等の小型化を可能にするものである。そして、小型化された音叉型水晶振動片100は、実用的なCI値である100K Ω 以内に収まっているだけでなく、CI値の振動片素子間のバラツキが安定化するように溝部123, 124の深さや溝幅を調整しているので、より精度の高い超小型振動片となる。

【0058】(第2の実施の形態)図8は、本発明の第2の実施の形態に係る振動子であるセラミックパッケージ音叉型振動子200を示す図である。このセラミックパッケージ音叉型振動子200は、上述の第1の実施の形態の音叉型水晶振動片100を用いている。したがって、音叉型水晶振動片100の構成、作用等については、同一符号を用いて、その説明を省略する。図8は、セラミックパッケージ音叉型振動子200成を示す概略断面図である。図8に示すようにセラミックパッケージ音叉型振動子200は、その内側に空間を有する箱状のパッケージ210を有している。このパッケージ210には、その底部にベース部211を備えている。このベース部211は、例えばアルミナ等のセラミックス等で形成されている。

122の表面及び裏面に設けられた溝部123,124 50 【0059】ベース部211上には、封止部212が設

30

けられており、この封止部212は、ベース部211と 同様の材料から形成されている。また、この封止部21 2の上端部には、蓋体213が載置され、これらベース 部211、封止部212及び蓋体213で、中空の箱体 を形成することになる。このように形成されているパッ ケージ210のベース部211上にはパッケージ側電極 214が設けられている。このパッケージ側電極214 の上には導電性接着剤等を介して音叉型水晶振動片10 0の基部110の固定領域111が固定されている。こ の音叉型水晶振動片100は、図1に示すように構成さ 10 れているため、小型でCI値の振動片素子間のバラツキ が安定しているので、この振動片を搭載したセラミック パッケージ音叉型振動子200も小型でCI値の振動片 素子間のバラツキが安定した高性能な振動子となる。

13

【0060】 (第3の実施の形態) 図9は、本発明の第 3の実施の形態に係る電子機器である携帯電話装置であ るデジタル携帯電話300を示す概略図である。このデ ジタル携帯電話300は、上述の第2の実施の形態のセ ラミックパッケージ音叉型振動子200と音叉型水晶振 動片100とを使用している。したがって、セラミック パッケージ音叉型振動子200と音叉型水晶振動片10 0の構成、作用当については、同一符号を用いる等し て、その説明を省略する。図9はデジタル携帯電話30 0の回路プロックを示しているが、図9に示すように、 デジタル携帯電話300で送信する場合は、使用者が、 自己の声をマイクロフォンに入力すると、信号はパルス 幅変調・符号化のプロックと変調器/復調器のプロック を経てトランスミッター、アンテナスイッチを開始アン テナから送信されることになる。

【0061】一方、他人の電話から送信された信号は、 アンテナで受信され、アンテナスイッチ、受信フィルタ ーを経て、レシーバーから変調器/復調器プロックに入 力される。そして、変調又は復調された信号がパルス幅 変調・符号化のブロックを経てスピーカーに声として出 力されるようになっている。このうち、アンテナスイッ チや変調器/復調器ブロック等を制御するためのコント ローラが設けられている。このコントローラは、上述の 他に表示部であるLCDや数字等の入力部であるキー、 更にはRAMやROM等も制御するため、高精度である ことが求められる。また、デジタル携帯電話300の小 40 型化の要請もある。このような要請に合致するものとし て上述のセラミックパッケージ音叉振動子200が用い られている。

【0062】このセラミックパッケージ音叉型振動子2 00は、図1に示す音叉型水晶振動片100を有するた め、СІ値の振動片素子間のバラツキが安定し高精度と なると共に、小型となる。したがって、このセラミック パッケージ音叉型振動子200を搭載したデジタル携帯 電話300も小型でCI値の振動片素子間のパラツキが 安定した高性能なデジタル携帯電話となる。

【0063】 (第4の実施の形態) 図10は、本発明の 第4の実施の形態に係る発振器である音叉水晶発振器4 00を示す図である。このデジタル音叉水晶発振器40 0は、上述の第2の実施の形態のセラミックパケージ音 叉型振動子200と多くの部分で構成が共通している。 したがって、セラミックパケージ音叉型振動子200と 音叉型水晶振動片100の構成 作用等については、同 一符号を用いて、その説明を省略する。

【0064】図10に示す音叉型水晶発振器400は、 図8に示すセラミックパッケージ音叉振動子200の音 叉型水晶振動片100の下方で、ベース部211の上 に、図10に示すように集積回路410を配置したもの である。すなわち、音叉水晶発振器400では、その内 部に配置された音叉型水晶振動片100が振動すると、 その振動は、集積回路410に入力され、その後、所定 の周波数信号を取り出すことで、発振器として機能する ことになる。すなわち、音叉水晶発振器400に収容さ れている音叉型水晶振動片100は、図1に示すように 構成されているため、小型でCI値の振動片素子間のバ ラツキが安定しているので、この振動片を搭載したデジ タル音叉水晶発振器 400 も小型でCI値の振動片素子 間のバラツキが安定した高性能な発振器となる。

【0065】 (第5の実施の形態) 図11は、本発明に 第5の実施の形態に係る振動子であるシリンダータイプ 音叉振動子500を示す図である。このシリンダータイ プ音叉振動子500は、上述の第1の実施の形態の音叉 型水晶振動片100を使用している。したがって、音叉 型水晶振動片100の構成、作用等については、同一符 号を用いる等して、その説明を省略する。図11は、シ リンダータイプ音叉振動子500の構成を示す概略図で ある。図11に示すようにシリンダータイプ音叉振動子 500は、その内部に音叉型水晶振動片100を収容す るための金属製のキャップ530を有している。このキ ャップ530は、ステム520に対して圧入され、その 内部が真空状態に保持されるようになっている。

【0066】また、キャップ530に収容された略H型 の音叉型水晶振動片100を保持すうためのリード51 0が2本配置されている。このようなシリンダータイプ 音叉振動子500に外部より電流等を印加すると音叉型 水晶振動片100の音叉腕121、122が振動し、振 動子として機能することになる。このとき、音叉型水晶 振動片100は、図1に示すように構成されているた め、小型でCI値の振動片素子間のバラツキが安定して いるので、この振動片を搭載したシリンダータイプ音叉 振動子500も小型でCI値の振動片素子間のパラツキ が安定した高性能な振動子となる。

【0067】また、上述の各実施の形態では、32.7 38KHの音叉型水晶振動子を例に説明したが、15K H乃至155KHの音叉型水晶振動子に適用できること 50 は明らかである。なお、上述の実施の形態に係る音叉型 15

水晶振動片100は、上述の例のみならず、他の電子機器、携帯情報端末、さらに、テレビジョン、ビデオ機器、所謂ラジカセ、パーソナルコンピュータ等の時計内蔵機器及び時計にも用いられることは明らかである。

【0068】本実施の形態に係る音叉型水晶振動片100は、以上のように構成されるが、以下、その製造方法等について説明する。先ず、水晶基板をエッチング等することで、図14の電極が形成されていない状態の音叉型水晶振動片が形成される。その後、この音叉型水晶振動片に電極を形成する。以下、電極の形成工程を音叉腕10120、130を中心に説明する。また、音叉腕130は音叉腕120と同様のため、以下の説明は、音叉腕120の説明のみとする。図16は電極形成工程を示す概略フローチャートである。図17は、音叉腕120に電極が形成される工程を示す概略図である。

【0069】先ず、図17(a)は、上記エッチングにより外形が形成された状態の音叉型水晶振動片の音叉腕120の図13のB-B、線概略断面図である。図17(a)に示すように、音叉腕120の表面120e及び裏面20fには、溝部120a、130aが形成される(溝部形成工程)。このような音叉腕120等を含む振動片全体にスパッタ等により金属膜である電極膜150を形成する(金属膜形成工程、図15のST1)。この状態を示したのが図17(b)である。図17に示す電極膜150は、下層がCrで厚みが例えば100Å乃至1000Åで形成されている。

【0070】このように表面全体に電極膜150を形成した後、図16のST2に示すようにフォトレジストを霧状に噴霧して電極膜150の上の全面に塗布する。す 30なわち、図17(c)に示すようにフォトレジスト膜151を形成する(フォトレジスト層形成工程)。このフォトレジストは紫外光に感光感度を持つ樹脂をベースとした化合物であり、流動性を有するため、例えばスプレーにより霧状に噴霧して塗布される。また、フォトレジスト膜151の厚みは、例えば1μm乃至6μmとなっている。

【0071】次に、図16のST3に示すようにフォトレジストパターン形成を行う。すなわち、図14の電極形成部分(斜線部分)を除く部分を覆うような図示しな 40いマスクを介して紫外線をフォトレジスト膜151に照射して(露光)、現像液で取り除き、加熱工程等を経てフォトレジスト膜151を固化させる。これにより、図14の電極形成部分(斜線部分)に対応する形状のフォトレジストパターン152が形成される。

【0072】このとき、フォトレジストパターン152は、図14及び図15の短絡防止用間隔W1、具体的は例えば 15μ mの幅でフォトレスト膜151が形成されていない部分ができる。ところで、フォトレジストは、上述のように電極膜150上に塗布されるが、図17

(a)の音叉腕120の角部であるエッジ部分(図における矢印E)をカバーするように塗布する必要がある。このとき、塗布するフォトレジストが粒子状になっていた方がエッジ部分Eのカバーが良い。しかしながらフォトレジストをこのように粒子状のものを含んだ状態で塗布すると、フォトレジスト現像後のフォトレジストパターン152の外形は正確な略直線ではなく、粒子の外形に沿った略波線に形成されてしまう。このようにフォトレジストパターン152の外形線が、不均一であると前記短絡防止用間隔W1が15 μ mという微細な間隔を形成する場合、部分的に間隔が保持されないおそれがある。間隔が保持されていない部分は、エッチングされない部分となってしまうため、電極同士の短絡等のおそれがある。

【0073】そのため、本実施の形態では、図16のS T4に示すようにレーザ照射を行う(パターン形状調整工程)。具体的には、前記フォトレジストパターン152の一部の形状である図14の音叉腕120の腕表面120eの短絡防止用間隔W1について行われる。すなわち、図18(a)に示すように、フォトレジストパターン152の外形線が不均一となり、このフォトレジストパターンをマスクとしてエッチングした場合、形成される溝電極120bと側面電極120dとが短絡等を生じないように、短絡防止用間隔W1が例えば15 μ m確保できるようにフォトレジストパターン152の外形がレーザによって調整される。

【0074】このレーザは、例えば、YAGレーザ等が用いられ、特にYAGレーザの3倍高調波を用いるとフォトレジストパターン152の外形をより正確に調整することができる。このようにフォトレジストパターン152を形成してからレーザを照射するので、特にフォトレジストの感光を防止するイエロールーム内でレーザを照射する必要がないので製造コストを低減することができる。また、レーザの照射は、図18(a)(b)に示すように音叉腕120の腕表面120eの短絡防止用間隔W1と腕裏面120fの短絡防止用間隔W1とを格別に行う。

【0075】しかし、これに限らず図18(c)に示すように腕表面120e及び腕裏面の120fの双方を同時にレーザによって加工することもできる。この場合、生産工程を減らすことができるので生産コストも下げることができる

【0076】このようにフォトレジストパターン152がレーザによって正確に形成された後、図16のST5のエッチング工程となる(電極膜形成工程)。具体的には、上述のフォトレジストパターン152をマスクとして電極膜150をエッチングにより除去する。図19(a)は、エッチングにより電極膜150が除去された状態を示す図である。図19(a)に示すように本実施50の形態の製造方法によれば、短絡防止用間隔W1を正確

に確保することができる。

【0077】次に、図16のST6のレジスト剥離工程 でフォトレジストパターン152を除去すれば、図19 (b) に示すように溝電極120b、側面電極120d が正確に形成されることになる(フォトレジストパター ン剥離工程)。このとき、上述のレーザ照射工程(ST 3) の図17に示すレーザ照射で電極膜150の一部が 溶解し、この溶解した電極膜150の一部がレジストパ ターン152と共に除去されるので、より正確に短絡防 止用間隔W1を形成することができる。そして、このと 10 き、音叉型水晶振動片100全体については、図14に 示すように基部電極140a等が所定の形状で形成さ れ、音叉型水晶振動片100の電極配置が終了する。こ のようにして製造された音叉型水晶振動片100は、音 叉腕120、130の腕表面120e、130e及び腕 裏面120f、130fの短絡防止用間隔W1が例えば 15μmに正確保持され、溝電極120b、130bと 側面電極120d、130dとが短絡等することを有効 に防止することができ、不良が生じにくい音叉型水晶振 動片となる。

17

【0078】以上説明したように、本発明によれば、基部を短くしてもCI値の振動片素子間のバラツキが安定すると共に振動片全体も小型化できる振動片、これを有する振動子、この振動子を備える発振器及び電子機器を提供することができる。

[0079]

【発明の効果】以上説明したように、本発明によれば、基部を短くしてもCI値の振動片素子間のパラツキが安定すると共に振動片全体も小型化できる振動片、これを有する振動子、この振動子を備える発振器及び電子機器 30を提供することができる。

【図面の簡単な説明】

- 【図1】本発明に第1の実施の形態に係る音叉型水晶振動片の概略図である。
- 【図2】図1のF-F'線断面図である。
- 【図3】図1の基部の切り込み部の構成を示す概略斜視図である。
- 【図4】図1の音叉型水晶振動子の説明図である。
 - 【図5】音叉腕幅とCI値との関係を示す図である。
 - 【図6】溝深さとCI値との関係を示す図である。
- 【図7】音叉腕幅に対する溝幅の割合とCI値との関係を示す図である。
- 【図8】本発明の第2の実施の形態に係るセラミックパ

ッケージ音叉型振動子の構成を示す概略断面図である。

【図9】本発明の第3の実施の形態に係るデジタル携帯 電話の回路プロックを示す概略図である。

【図10】本発明の第4の実施の形態に係る音叉水晶発振器の構成を示す概略断面図である。

【図11】本発明の第5の実施の形態に係るシリンダータイプ音叉振動子の構成を示す概略断面図である。

【図12】従来の音叉型水晶振動片を示す概略図である。

0 【図13】(a) 腕部の振動の説明図である。(b) 腕 部の振動の他の説明図である。

【図14】本発明の第1の実施の形態に係る振動片の製造方法で製造された音叉型水晶振動片100を示す概略図である。

【図15】図12のB-B'線概略断面図である。

【図16】電極形成工程を示す概略フローチャートである。

【図17】音叉腕に電極が形成される工程を示す概略図 である。

20 【図18】音叉腕に電極が形成される他の工程を示す概略図である。

【図19】音叉腕に電極が形成される他の工程を示す概略図である。

【符号の説明】

- 100・・・音叉型水晶振動片
- 110・・・基部
- 111・・・固定領域
- 121、122・・・音叉腕
- 123, 124・・・溝部
- 30 125・・・切り込み部
 - 200・・・セラミックパッケージ音叉振動子
 - 210・・・パッケージ
 - 211・・・ベース部
 - 2 1 2 ・・・側面部
 - 213・・・蓋体
 - 214・・・パッケージ側電極
 - 300・・・デジタル携帯電話
 - 400・・・音叉水晶発振器
 - 410・・・集積回路
- 0 500・・・シリンダータイプ音叉振動子
 - 510・・・リード
 - 520・・・ステム
 - 530・・・キャップ

[図9]

(a)

【図17】

[図18]

【図19】

(a)

(b)

フロントページの続き

(72)発明者 棚谷 英雄

長野県諏訪市大和3丁目3番5号 セイコ ーエプソン株式会社内 Fターム(参考) 5J079 AA04 BA43 BA44 HA03 HA07

HA09 HA16 HA28 HA29

5J108 AA01 BB02 CC06 CC09 CC12

FF11 GG03 JJ01