工程数值方法

大连理工大学运载学部 力学系

何宜谦

Email: heyiqian@dlut.edu.cn

Mobile: 13998576316

学习要求

- § 1 24学时讲授+12学时上机
- §1 听课
- § 2 练习
- § 3 上机 3次 每周一次
- § 4 闭卷考试 + 上机考试

⇒ 平时成绩

第1章 引论

- § 1.1 数值分析的对象、作用和特点
- § 1.2 数值分析的误差
- § 1. 3 误差定性分析与避免误差危害
- § 1.4 数学软件

§ 1.1 数值分析的对象、作用和特点

数值分析又称计算方法,它是研究各种数学问题的数值解法及其理论的一门学科。

Babylonian clay tablet <u>YBC</u> 7289 (c. 1800–1600 BC) with annotations.

The approximation of the <u>square root of 2</u> is four <u>sexagesimal</u> figures, which is about six <u>decimal</u> figures. $1 + 24/60 + 51/60^2 + 10/60^3 = 1.41421296$

▶计算机求解科学问题的步骤

根据实际问题建立数学模型

→ 应用数学

建立数值计算方法

编制程序上机计算

→ 数值分析

数值方法的研究内容举例

1. 求方程近似解

解方程 $x^2 = 2$

$$(x + \Delta x)^2 \approx x^2 + 2x \cdot \Delta x = 2$$

$$\Delta x = \frac{1}{x} - \frac{x}{2}$$

$$x_{k+1} = x_k + \Delta x = x_k + \frac{1}{x_k} - \frac{x_k}{2} = \frac{x_k}{2} + \frac{1}{x_k}$$

$$x_0 = 1.5 \implies x_1 = 1.4167 \implies x_2 = 1.4142$$

数值方法的研究内容举例

2. 离散化: 把求连续变量的问题转化为离散变量的问题

例 计算定积分
$$I = \int_a^b f(x) dx$$

// 为如图所示的曲边梯形的面积。

数值方法的研究内容

解法:

1. n等分[*a*,*b*],

$$a=x_0 < x_1 < ... < x_n = b,$$

 $y_i = f(x_i), i = 0, 1, ... n;$

2. 用n个小梯形的面积之 和近似代替曲边梯形的 面积。

$$\int_{a}^{b} f(x)dx = \frac{b-a}{n} \left[\frac{1}{2} (y_0 + y_n) + y_1 + \dots + y_{n-1} \right]$$

数值方法的四个基本算法

- 1. 计算连乘积;
- 2. 计算累加和;
- 3. 递推算法;
- 4. 迭代算法。

数值方法解题的一般过程

- 1. 建立数学模型
- 2. 选择算法,建立数值公式
- 3. 编写软件进行计算,得到计算结果

§ 1.2 数值分析的误差

一.误差来源:

- 1. 模型误差
- 2. 观测误差
- 3. 截断误差
- 4. 舍入误差

1. 模型误差

用数学方法解决一个具体的实际问题,首先要建立数学模型,这就要对实际问题进行抽象、简化,我们把数学模型与实际问题之间出现的这种误差叫做模型误差。

2. 观测误差

数学模型中的参数和原始数据,是由观测和 试验得到的。由于测量工具的精度、观测方 法或客观条件的限制,使数据含有测量误差, 这类误差叫做观测误差。

3. 截断误差

• 精确公式用近似公式代替时, 所产生的误差叫**截断误 差**。例如, 函数f(x)用泰勒(Taylor)多项式

$$p_n(x) = f(0) + \frac{f'(0)}{1!}x + \frac{f''(0)}{2!}x^2 + \dots + \frac{f^{(n)}(0)}{n!}x^n$$

截断误差是

$$R_n(x) = f(x) - p_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} x^{n+1}$$
 (\xi \hfrac{\frac{1}{2}}{1} \frac{1}{2} \f

4. 舍入误差

 在数值计算中只能对有限位字长的数值进行 运算。用有限位数字代替精确数,这种误差 叫做舍入误差,是数值计算中必须考虑的一 类误差

(精确表达
$$1 \div 3 = 0.3...$$
)

定义1.1 设精确值x的近似值为 x^* , 称差

$$e^* = \chi^* - \chi$$

为近似值x*的绝对误差,简称误差。

由于精确值一般是未知的,因而e*不能求出来,但可以根据测量误差或计算情况设法估计出它的取值范围,即误差绝对值的一个上界或称误差限。

定义1.2 设存在一个正数 ε^* , 使

$$\left| e^* \right| = \left| x^* - x \right| \le \varepsilon^*$$

则 $_{\varepsilon}^*$ 称为近似值的绝对误差限,简称误差限或精度。

如果近似数 x^* 的误差限为 e^* ,则 $x^* - e^* \le x \le x^* + e^*$ 表明准确值 x 必落在[$x^* - e, x^* + e$] 上,常采用下面的写法

$$x = x^* \pm \varepsilon^*$$

来表示近似值的精度或准确值x所在的范围。

相对误差

定义1.3 绝对误差与精确值x的比值

$$e_r^* = \frac{e^*}{x} = \frac{x - x^*}{x}$$

称为相对误差。

相对误差越小,精度就越高,实际计算时, x通常是不知道的,因此可用下列公式计算相对误差

$$e_r^* = \frac{e^*}{x} = \frac{x - x^*}{x}$$

相对误差限

定义1.4 设存在一个正数 ε_r^* ,使

$$\varepsilon_r^* = \frac{\varepsilon^*}{|x^*|}$$

则称 ε_r^* 为近似值 x^* 的相对误差限。

例题

例1.1 甲打字每100个错一个, 乙打字每1000个错一个, 求其相对误差。

解:

根椐定义:

甲打字时的相对误差为

$$\left| e_r^* \right| = \frac{1}{100} = 1 \%$$

乙打字时的相对误差

$$\left| e_r^* \right| = \frac{1}{1000} = 0.1 \%$$

有效数字

定义1.5 设x的近似值

$$x^* = \pm 0 . x_1 x_2 \cdots x_n \times 10^m$$

其中 x_i 是0到9之间的任一个数, 但 $x_1 \neq 0, i = 1, 2, 3, \dots, n$

n是正整数,m是整数,若

$$\left|x - x^*\right| \le \frac{1}{2} \times 10^{-m-n}$$

则称 x^* 为 x 的具有 n 位有效数字的近似值, x^* 准确到第 n 位, $x_1x_2 \cdots x_n$ 是 x^* 的有效数字。

例题

例1.2 3.142作为π的近似值时有几位有效数字

$$3.142 = 0.3142 \times 10^{-1}$$

$$m = 1$$

$$| \pi - 3.142 | = | 0.3141592 \times 10^{-1} - 0.3142 \times 10^{-1} |$$

 $< 0.000041 \times 10^{-1} < 0.0005 = \frac{1}{2} \times 10^{-3}$

$$m - n = 1 - n = -3$$

所以 n = 4,具有4位有效数字

例1.3 当取3.141作为π的近似值时

$$|\pi-3.141|=|0.3141592\cdots\times10^{1}-0.3141\times10^{1}|$$

 $\leq 0.0000592\times10^{1}$

 $<0.005=1/2 \times 10^{-2}$

m-n=1-n=-2 所以n=3具有3位有效数字

推论 如果近似数x*误差限是某一位的半个单位, 由该位到x*的第一位非零数字一共有n位 x*就有n位有效数字,也就是说准确到该位。

- ① 用四舍五入取准确值的前n位x*作为近似值,则x*必有n位有效数字。如3.142作为 π 的近似值有4位有效数字,而3.141为3位有效数字
- ② 有效数字相同的两个近似数,绝对误差不一定相同。例如,设 $x_1^*=12345$,设 $x_2^*=12.345$,两者均有5位有效数字但绝对误差不一样 $|x-x_1^*|=|x-12345|\leqslant 0.5=1/2\times10^0$ $|x-x_2^*|=|x-12.345|\leqslant 0.0005=1/2\times10^{-3}$
- ③ 准确值具有无穷多位有效数字, 如三角形面积S=1/2ah=0.5ah因为0.5是真值, 没有误差 $\epsilon^*=0$, 因此 $n\to\infty$, 准确值具有无穷位有效数字

定理1.2 若近似数 $x^*=\pm 0.x_1x_2...x_n\times 10^m$ 相对误差

$$\left| e_r^* \right| \le \frac{1}{2(x_1 + 1)} \times 10^{-(n-1)}$$

则该近似数具有n位有效数字。

反之,若近似数x*具有n位有效数字,则

$$\left| e_r^* \right| \le \frac{1}{2x_1} \times 10^{-(n-1)}$$

有效数字与误差的关系

$$iE: x^*=\pm 0. x_1x_2...x_n \times 10^m$$

$$\therefore |x^*| \leqslant (x_1 + 1) \times 10^{m-1}$$

$$\left|x-x^*\right| = \frac{\left|x-x^*\right|}{\left|x^*\right|} \left|x^*\right| \le \frac{1}{2(x_1+1)} \times 10^{-(n-1)} \times (x_1+1) \times 10^{m-1} = \frac{1}{2} \times 10^{m-n}$$

由有效数字定义可知, x*具有n位有效数字。

反之,由

$$x_1 \times 10^{m-1} \le |x^*| \le (x_1 + 1) \times 10^{m-1}$$

当x*具有n位有效数字时

$$\left| e_r^* \right| = \frac{\left| X - X^* \right|}{\left| X^* \right|} \le \frac{0.5 \times 10^{m-n}}{X_1 \times 10^{m-1}} = \frac{1}{2X_1} \times 10^{-n+1}$$

§ 1.3 误差定性分析与避免误差危害

误差是用来衡量数值方法好与坏的重要标志,为此对每一个算法都要进行误差分析。

一、防止相近的两数相减

两个相近的数相减, 会严重损失有效数字

例1.4
$$x^2 - 16x + 1 = 0$$

解:
$$x_1 = 8 + \sqrt{63} \approx 8 + 7.94 = 15.94$$

$$x_2 = 8 - \sqrt{63} \approx 8 - 7.94 = 0.06$$

$$x_2 = 8 - \sqrt{63} = \frac{1}{8 + \sqrt{63}} \approx \frac{1}{15.94} \approx 0.0627$$

二、防止大数吃小数

当两个绝对值相差很大的数进行加法或减法运算时,绝对值小的数有可能被绝对值大的数"吃掉"从而引起计算结果很不可靠.

例1.4 求一元二次方程 $x^2-(10^8+1)x+10^8=0$ 的实数根。

采用因式分解法,很容易得到两个根为 x_1 =108, x_2 =1.

按二次方程求根公式

$$x_1 = (10^8 + (10^{16} - 4)^{1/2})/2$$

 $x_2 = (10^8 - (10^{16} - 4)^{1/2})/2$

如采用字长为16位的单精度计算机来计算, 求得根为 $x_1 \approx 10^8$, $x_2 \approx 0$. (怎样计算可得较好的结果?)

产生错误的原因

- ① 出现大数1016吃掉小数4的情况
- ② 分子部分出现两个相近数相减而丧失有效数位常称为灾难性的抵消

三、防止接近零的数做除数

分母接近零的数会产生溢出错误,因而产生大的误差,此时可以用数学公式化简后再做.

例1.5 计算

$$D = \frac{0.0005 \times 0.0143 \times 0.0012}{0.0003 \times 0.0125 \times 0.0135}$$

解: 分子分母分别计算后相除(取9位小数) A=0.0005*0.0143*0.0012=0.00000715*0.0012 =0.00000009(有舍入)

B=0.0003*0.0125*0.0135=0.00000375*0.0135 =0.000000051(有舍入)

D=A/B=0.17647

真值为0.16948148···,所以D只准确到小数后一位。

算法2: 分成三组因子。每组只取六位小数计算

a=0.0005/0.0003=1.666667(有舍入)

b=0.0143/0.0125=1.144000

c=0.0012/0.0135=0.088889(有舍入)

D=a×b×c=1.666667×1.144000×0.088889=0.169482 准确到小数后5位。

四、注意计算步骤的简化,减小运算次数

简化计算步骤,减少运算次数是提高程序执行速度的关键,它不仅可以节省时间,还能减少舍入误差。

如计算多项式

$$p(x)=a_nx^n+a_{n-1}x^{n-1}+...+a_1x+a_0$$
 的值
若直接计算 a_kx^k , 再逐项相加,一共要做 $n+(n-1)+\cdots+2+1=n(n+1)/2$ 次乘法和 n 次加法

如果将前n项提出x,则有

$$p(x) = (a_{n}x^{n-1} + a_{n-1}x^{n-2} + \dots + a_{1}) x + a_{0}$$

$$= ((a_{n}x^{n-2} + a_{n-1}x^{n-3} + \dots + a_{2})x + a_{1}) x + a_{0}$$

$$= (\dots (a_{n}x + a_{n-1})x + \dots + a_{2})x + a_{1})x + a_{0}$$

写成递推公式

$$\begin{cases} b_k = b_{k-1}x + a_{n-k} & (k = 1, 2, \dots, n) \\ b_0 = a_n & \end{cases}$$

于是 $P(x) = b_n$, 这种多项式求值的算法称为**秦九韶算法**, 只做n次乘法和n次加法, 程序实现简单。

五、控制递推公式中误差的传播

对于一个数学问题的求解往往有多种数值方法在选择 数值方法时,要注意所用的数值方法不应将计算过程 中难以避免的误差放大的较快,造成计算结果完全失 真。

例1. 6 计算积分
$$I_n = e^{-1} \int_0^1 x^n e^x dx$$
 (n = 0,1,...)
并估计误差

递推公式 解:

$$\begin{cases} I_n = 1 - nI_{n-1}, & n = 1, 2, \dots \\ I_0 = e^{-1} \int_0^1 e^x dx = 1 - e^{-1} \end{cases}$$

$$\int I_n = 1 - nI_{n-1}
I_0 = 0.6321$$

送代A
$$\begin{cases} I_n = 1 - nI_{n-1} \\ I_0 = 0.6321 \end{cases}$$
 送代B
$$\begin{cases} I_{n-1} = \frac{1}{n}(1 - I_n) \\ I_9 = 0.6834 \end{cases}$$

n	迭代A	迭代B
0	0.6321	0.6321
1	0.3679	0.3679
2	0.2642	0.2643
3	0.2074	0.2073
4	0.1704	0.1708
5	0.1480	0.1455
6	0.1120	0.1268
7	0.2160	0.1121
8	-0.7280	0.1035
9	7.552	0.0684

即每计算一步的误差的绝对值是上一步的十分 之一,误差的传播逐步缩小,得到很好的控制,这 个算法是数值稳定的。

§ 1.4 数学软件

MATLAB

本章小结

- 1. 熟悉计算方法在解决实际问题中所处的地位,熟悉计算方法是以计算机为工具求近似解的数值方法;
- 2. 熟悉绝对误差(限),相对误差(限)及有效数字概念;

本章习题

