Binary Decision Diagrams

Combinatorial Circuits

2

Combinatorial Problems

	6		1	4		5	
		8	3	5	6		
2							1
8			4	7			6
		6			3		
7			9	1			4
5							2
		7	2	6	9		
	4		5	8		7	

Typic Queens Adultion 7

Sudoku

Eight Queen

Control ProgramsA Train Simulator, visualSTATE (VVS)

Reduced Ordered Binary Decision Diagrams [Bryant'86]

 Compact representation of boolean functions allowing effective manipulation (satifiability, validity,....)

or

 Compact representation of sets over finite universe allowing effective manipulations.

Boolean Logic

5

Boolean Functions

Boolean functions: $\mathbb{B} = \{0, 1\},\$

 $f: \mathbb{B} \times \cdots \times \mathbb{B} \to \mathbb{B}$

Boolean expressions:

 $t ::= x \mid 0 \mid 1 \mid \neg t \mid t \land t \mid t \lor t \mid t \Rightarrow t \mid t \Leftrightarrow t$

Truth assignments: ρ ,

 $[v_1/x_1,v_2/x_2,\ldots,v_n/x_n]$

Satisfiable: Exists ρ such that $t[\rho]=1$

Tautology: Forall ρ , $t[\rho] = 1$

Truth Tables

	_	Λ	0	1	V	0	1	\Rightarrow	0	1	\Leftrightarrow	0	1
0	1	0	0	0	0	0	1	0	1	1	0	1	0
1	0	1	0	1	1	1	1	1	0	1	1	0	1

xyz	$x \to y, z$
000	0
001	1
010	0
011	1
100	0
101	0
110	1
111	1

$x_1 \cdots x_n$	$f(x_1,\ldots,x_n)$
0 · · · 0	1
0 · · · 1	0
:	:
$1 \cdots 1$	0

 2^n entries

Combinatorial Circuits

Are they two circuits equivalent?

"Good" Representations of Boolean Functions

Always perfect representations are hopeless

Normalforms

- Disjunctive NF
- Conjunctive NF
- If-then-else NF
-

THEOREM (Cook's theorem)

Satisfiability of Boolean expressions is NP-complete

Compact representations are

- compact and
- efficient

on **real-life** examples

9

11

If-Then-Else Operator

Let t, t_1 and t_2 be boolean expressions.

Syntax

$$t \rightarrow t_1, t_2$$

Semantics

If-Then-Else operator $t \to t_1, t_2$ is equivalent to $(t \land t_1) \lor (\neg t \land t_2)$.

t	t_1	t_2	$t \rightarrow t_1, t_2$
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

If-Then-Else Normal Form

Definition

A boolean expression is in If-Then-Else normal form (INF) iff it is given by the following abstract syntax

$$t, t_1, t_2 ::= 0 \mid 1 \mid x \rightarrow t_1, t_2$$

where x ranges over boolean variables.

Example: $x_1 \rightarrow (x_2 \rightarrow 1, 0), 0$ (equivalent to $x_1 \wedge x_2$)

Boolean expressions in INF can be drawn as decision trees.

Binary Decision Structures

Shannon Expansion

Let t be a boolean expression and x a variable. We define boolean expressions

- t[0/x] where every occurrence of x in t is replaced with 0, and
- t[1/x] where every occurrence of x in t is replaced with 1.

Shannon's Expansion Law

Let x be an arbitrary boolean variable. Any boolean expressions tis equivalent to

$$x \to t[1/x], t[0/x].$$

Corollary

For any boolean expression there is an equivalent one in INF.

Binary Decision *Trees*

Binary Decision *Diagrams* allows NODES to be shared

Equivalence ~ on nodes:

 $n \sim m$ iff

either both n and m are terminals and have the same value

or both are non-terminals with var(n) = var(m) and

1. $n' \sim m'$ when n - 0 > n', m - 0 > m', and

2. $n' \sim m'$ when n - 1 -> n', m - 1 -> m'

Have you seen this somewhere before?

15

Orderedness & Redundant TESTS

Orderedness & Reducedness

 $x < y \quad x < z$

17

Reduced Ordered Binary Decision Diagrams

Iben Edges to 0 implicit

ROBDDs formally

A *Binary Decision Diagram* is a rooted, directed, acyclic graph (V, E). V contains (up to) two *terminal* vertices, $0, 1 \in V$. $v \in V \setminus \{0, 1\}$ are *non-terminal* and has attributes var(v), and low(v), $high(v) \in V$.

A BDD is *ordered* if on all paths from the root the variables respect a given total order.

A BDD is *reduced* if for all non-terminal vertices u, v,

- 1) $low(u) \neq high(u)$
- 2) low(u) = low(v), high(u) = high(v), var(u) = var(v)implies u = v

Ordering DOES matter

$$(x_1 \Leftrightarrow x_2) \land (x_3 \Leftrightarrow x_4) \land (x_5 \Leftrightarrow x_6) \land (x_7 \Leftrightarrow x_8)$$

Canonicity of ROBDDs

$$t_0 = 0$$

 $t_1 = 1$
 $t_u = x \rightarrow t_h, t_l$, if u is a node (x, l, h)

Lemma 1 (Canonicity lemma) For any function $f: \mathbb{B}^n \to \mathbb{B}$ there is exactly one ROBDD b with variables $x_1 < x_2 < \ldots < x_n$ such that

$$t_b[v_1/x_1,\ldots,v_n/x_n]=f(v_1,\ldots,v_n)$$

for all $(v_1, \ldots, v_n) \in \mathbb{B}^n$.

Consequences: b is a tautology, if and only if, b = 1b is satisfiable, if and only if, $b \neq 0$

22

Algorithms on ROBDDs

Array Implementation

Assume $x_1 < x_2 < x_3$.

Table T: $u \mapsto (var(u), low(u), high(u))$

		,	
u	var	low	high
0	4	-	-
1	4	-	-
2 3	3	0	1
	3	1	0
4 5	2	0	2
5	2	2	2 3
6	1	4	5

Inverse table H: $(var, low, high) \mapsto u$.

Example: T(4) = (2,0,2), H(1,4,5) = 6, and H(3,0,2) = undef.

MakeNode

```
T: u \mapsto (var(u), low(u), high(u)) H: (var, low, high) \mapsto u

Makenode (var, low, high): Node =

if low = high then

return low

else

u := H(var, low, high)

if u \neq undef then

return u

else

add a new node (row) to T with attributes (var, low, high)

return H(var, low, high)

end if

end if
```

Build

Let t be a boolean expression and $x_1 < x_2 < \cdots < x_n$. Build(t, 1) builds a corresponding ROBDD and returns its root.

```
Build(t, i): Node =

if i > n then

if t is true then return 0 else return 1

else

low := Build(t[0/x_i], i + 1)
high := Build(t[1/x_i], i + 1)
var := i
return Makenode(var, low, high)
end if
```

Complexity ??

26

Boolean Operations on BDDs

Let us assume that ROBDDs for boolean expressions t_1 and t_2 are already constructed.

How to construct ROBDD for

```
\bullet \neg t_1
```

•
$$t_1 \wedge t_2$$

•
$$t_1 \vee t_2$$

•
$$t_1 \Rightarrow t_2$$

•
$$t_1 \Leftrightarrow t_2$$

with an emphasis on efficiency?

Idea $(x_1 < x_2 < x_3 < \cdots x_n)$

$$\begin{array}{c} \bullet \ \ x_i = x_i \\ \\ (x_i \rightarrow t_1, t_2) \land (x_i \rightarrow t_1', t_2') \\ \\ \equiv \\ \\ x_i \rightarrow (t_1 \land t_1'), (t_2 \land t_2') \end{array}$$

$$(x_i \to t_1, t_2) \land (x_j \to t'_1, t'_2)$$

$$\equiv$$

$$x_i \to (t_1 \land (x_j \to t'_1, t'_2)), (t_2 \land (x_j \to t'_1, t'_2))$$

The same equivalences hold also for \lor , \Rightarrow and \Leftrightarrow .

APPLY operation

```
Apply(op, b_1, b_2)
      function app(u_1, u_2) =
6:
                    if u_1 \in \{0,1\} and u_2 \in \{0,1\} then res \leftarrow op(u_1,u_2)
                    else if u_1 \in \{0, 1\} and u_2 > 2 then
7:
8:
                           res \leftarrow \mathsf{makenode}(var(u_2), \mathsf{app}(u_1, low(u_2)), \mathsf{app}(u_1, high(u_2)))
9:
                    else if u_1 > 2 and u_2 \in \{0, 1\} then
10:
                          res \leftarrow \mathsf{makenode}(var(u_1), \underset{\mathsf{app}}{\mathsf{app}}(low(u_1), u_2), \underset{\mathsf{app}}{\mathsf{app}}(high(u_1), u_2))
                    else if var(u_1) = var(u_2) then
11:
                           res \leftarrow makenode(var(u_1), app(low(u_1), low(u_2)),
12:
                                                              app(high(u_1), high(u_2)))
13:
                    else if var(u_1) < var(u_2) then
14:
                           res \leftarrow \mathsf{makenode}(var(u_1), \mathsf{app}(low(u_1), u_2), \mathsf{app}(high(u_1), u_2))
15:
                    else (* var(u_1) > var(u_2) *)
16:
                           res \leftarrow \mathsf{makenode}(var(u_2), \mathsf{app}(u_1, low(u_2)), \mathsf{app}(u_1, high(u_2)))
18:
                    return res
20:
21: b.root \leftarrow app(b_1.root, b_2.root)
                                                                             Complexity ??
22: return b
```

APPLY example

29

APPLY operation

with dynamic programming

```
Apply(op, b_1, b_2)
    function app(u_1, u_2) =
5:
           if G(u_1, u_2) \neq empty then return G(u_1, u_2)
6:
           else if u_1 \in \{0, 1\} and u_2 \in \{0, 1\} then res \leftarrow op(u_1, u_2)
7:
                 else if u_1 \in \{0, 1\} and u_2 \geq 2 then
                       res \leftarrow makenode(var(u_2), app(u_1, low(u_2)), app(u_1, high(u_2)))
9:
                 else if u_1 \geq 2 and u_2 \in \{0, 1\} then
                       res \leftarrow makenode(var(u_1), app(low(u_1), u_2), app(high(u_1), u_2))
10:
                 else if var(u_1) = var(u_2) then
11:
12:
                       res \leftarrow makenode(var(u_1), app(low(u_1), low(u_2)),
                                                      app(high(u_1), high(u_2)))
13:
                 else if var(u_1) < var(u_2) then
                       res \leftarrow makenode(var(u_1), app(low(u_1), u_2), app(high(u_1), u_2))
14:
                 else (* var(u_1) > var(u_2) *)
15:
16:
                       res \leftarrow makenode(var(u_2), app(u_1, low(u_2)), app(u_1, high(u_2)))
17:
                 G(u_1, u_2) \leftarrow res
18:
                 return res
20:
2: forall i \leq max(b_1), j \leq max(b_2) : G(i, j) \leftarrow empty
21: b.root \leftarrow app(b_1.root, b_2.root)
                                                                Complexity O(|b<sub>4</sub>||b<sub>2</sub>|)
22: return b
```

Other operations

Let t be a boolean expression with its ROBDD representation.

The following operations can be done efficiently:

- Restriction $t[0/x_i]$ ($t[1/x_i]$): restricts the variable x_i to 0 (1)
- SatCount(t): returns the number of satisfying assignments
- AnySat(t): returns some satisfying assignment
- AllSat(t): returns all satisfying assignments
- Existential quantification $\exists x_i.t$: equivalent to $t[0/x_i] \lor t[1/x_i]$
- Composition $t[t'/x_i]$: equivalent to $t' \to t[1/x_i], t[0/x_i]$

Application of ROBDDs

Constraint Solving & Analysis & IBEN

Mia's Schedule 4th Grade

	Mon	Tue	Wed	Thu	Fri	Sat	Sun
8-9	mat	eng	dan	tys	eng		
9-10	mat	tys	dan	geo	tys		
10-11	eng	dan	tys	dan	tys		
11-12	dan	dan	bio	mat	gym		
12-13	gym	fys	fys	fys	gym	gym	
13-14			bio	geo			
14-15			bio				

33

Boolean variables

vars d1 d2 d3;
vars t1 t2 t3;
vars f1 f2 f3;
vars e1 e2 e3;

```
--Encodning of days -
```

```
man := d1 & d2 & d3;

tir := d1 & d2 & !d3;

ons := d1 & !d2 & d3;

tor := d1 & !d2 & !d3;

fre := !d1 & d2 & !d3;

for := !d1 & d2 & d3;

lor := !d1 & d2 & !d3;

xxx := !d1 & !d2 & d3;

son := !d1 & !d2 & d3;

uge := man + tir + ons + tor + fre;

weekend := lor + xxx + son;
```

--Encodning of hours-

h1 := t1 & t2 & t3; h2 := t1 & t2 & !t3; h3 := t1 & !t2 & t3; h4 := t1 & !t2 & !t3; h5 := !t1 & t2 & t3; h6 := !t1 & t2 & !t3; h7 := !t1 & !t2 & !t3; h8 := !t1 & !t2 & !t3;

formiddag := h1 + h2 + h3 + h4;
eftermiddag := ! formiddag;

--Encodning of topic

dan := f1 & f2 & f3;
eng := f1 & f2 & !f3;
mat := f1 & !f2 & !f3;
tys := f1 & !f2 & !f3;
geo := !f1 & f2 & f3;
bio := !f1 & f2 & !f3;
fys := !f1 & !f2 & f3;

gym := !f1 & !f2 & !f3;

37

--Mia's Schedule -

ons & h5 & fys +

ons & h6 & bio + ons & h7 & bio + man & h2 & mat + man & h3 & eng + tor & h1 & tys + tor & h2 & geo + man & h4 & dan + tor & h3 & dan + man & h5 & gym + tor & h4 & mat + tir & h1 & eng + tir & h2 & tys + tor & h5 & fys + tor & h6 & geo + tir & h3 & dan + fre & h1 & eng + tir & h4 & dan + fre & h2 & tys + tir & h5 & fys + fre & h3 & tys + ons & h1 & dan + fre & h4 & gym + ons & h2 & dan + lor & h5 & gym; ons & h3 & tys + ons & h4 & bio +

Constraint Solving & Analysis & IBEN

4 x 4 Sudoku

 $x_{2,2,2} = 1$

 $x_{4,4,4} = 1$ $x_{2,2,1} = 0$

Idea:

 $x_{i,j,k} = 1$; if the number k is in position (i,j) in the solution

0 ; otherwise

46

Constraints

Precisely one value in each position i, j:

$$X_{1,i,1} + X_{i,i,2} + X_{i,i,3} + X_{i,i,4} = 1$$

for each i, j

Each value k appears in each row i exactly ones:

$$X_{i 1 k} + X_{i 2 k} + X_{i 3 k} + X_{i 4 k} = 1$$

for each i, k

Each value k appears in **each colomn** j exactly ones:

$$X_{1.i.k} + X_{2.i.k} + X_{3.i.k} + X_{4.i.k} = 1$$

for each j, k

Each value k appears in each 2x2 box exactly ones:

$$X_{1,1,k} + X_{1,2,k} + X_{2,1,k} + X_{2,2,k} = 1$$
 (e.g.)

Solving Sudoku

