Exercice 1

$$= \left[\left(\neg P \vee \alpha \right) \vee \left(\neg Q \wedge P \right) \right] \wedge \left[\left(\alpha \vee \neg P \right) \vee \left(P \wedge \neg Q \right) \right]$$

Evercice 2

$$\begin{array}{c} \bullet) & \left(\begin{array}{c} P_{A} \wedge Q_{A} \right) \vee \left(\begin{array}{c} P_{E} \wedge Q_{E} \end{array} \right) \\ \equiv \left(\left(\begin{array}{c} P_{A} \wedge Q_{A} \right) \vee P_{E} \end{array} \right) \wedge \left(\left(\begin{array}{c} P_{A} \wedge Q_{A} \right) \vee Q_{E} \end{array} \right) \end{array}$$

$$\exists \left(\left(P_2 \vee P_A \right) \wedge \left(P_2 \vee Q_A \right) \wedge \left(Q_2 \vee P_A \right) \wedge \left(Q_2 \vee Q_A \right) \right)$$

On a plusium manière.

Exercia 3

(>	Q	R	QAR	PV(QAR)	7(PV(QAR))
)	0	0			1
)	0	-			J
	0	1	0			1
(,			1	
	1	0	0		1	
	ı	0	1		1	
	1	1	0		1	

Done
$$Y = (PA - Q) \times (PA - R)$$

C pen importe la valeur de Q.

On retrouve bien la même formule.

(transformation de Tseitin)

On obtient une formele équisatiofalle:

x 1 (x 4 0 P x x3) N(x3 0 x Nx2) N(x2 0 Q xx) N(x4 0 1P)

= x, 1 (PV x, V-x,) 1 (x, V-P) 1 (x, V-x,) 1 (-x, Vx,) 1 (-x, Vx, V-x,) 1 (QV x, V-x,) 1 (x, V-Q) 1 (x, V-x,) 1 (x, V-x,) 1 (x, V-Q) 1 (x, V-x,)

c) 4= pv(npn(avnp))

Par conte, pour la loi équisatiofiable qu'en a trouvie. $I_2 = [x_4/0, le reste on s'en fishe)$ no satisfait pas la formule (qui n'est donc pas valide). $I_1 = (x_4/1, e/n, x_3/n, x_4/0, e/n, x_2/1)$ satisfait la formule.