Exercice 1:

BCPST-1

- 1. Déterminer deux réels a et b tels que $\forall x \in \mathbb{R} \setminus \{-1,1\}, \frac{1}{1-x^2} = \frac{a}{1-x} + \frac{b}{1+x}$.
- 2. Soit λ un paramètre réel à déterminer. On considère l'équation différentielle

$$(E): (1 - x^2)y' + y = \lambda(1 - x^2)\sqrt{1 - x}$$

Nous avons représenté ci-dessous la courbe représentative d'une solution f de cette équation différentielle sur]-1,1[ainsi que la droite d'équation y=x+1.

- (a) En observant les caractéristiques de f en 0, déterminer la valeur du paramètre λ .
- (b) Résoudre alors complètement (E) sur]-1,1[.
- (c) Résoudre de même (E) sur $]-\infty, -1[$.
- (d) Écrire un programme Python qui permettrait de reproduire le graphique présenté ci-dessus.

Exercice 2:

On veut trouver toutes les fonctions continues $f: \mathbb{R} \to \mathbb{R}$ telles que

$$\forall x \in \mathbb{R}, \ f(x) = x \int_0^x f(t) dt - \cos(x) - \int_0^x t f(t) dt.$$

- 1. On suppose dans cette question que f est solution du problème.
 - (a) Montrer que f est dérivable sur \mathbb{R} et donner une expression de f'(x) pour tout réel x. Montrer de même que f' est dérivable sur \mathbb{R} et donner une expression de f''(x) pour tout réel x
 - (b) En déduire les calculs de f(0), f'(0) et une équation différentielle linéaire d'ordre 2 dont f est solution.

On notera (E) cette dernière équation différentielle.

(c) Trouver l'ensemble des fonctions définies sur \mathbb{R} et solutions de (E).

Indication : On pourra chercher une solution particulière sous la forme $\varphi: x \mapsto a\cos(x)$ où a est un réel à déterminer.

- (d) En déduire la fonction f.
- 2. Déterminer la ou les fonctions continues $f: \mathbb{R} \to \mathbb{R}$ solutions du problème, c'est-à-dire telles que :

$$\forall x \in \mathbb{R}, \ f(x) = x \int_0^x f(t) dt - \cos(x) - \int_0^x t f(t) dt.$$

Exercice 3:

On se propose de résoudre, sur l'intervalle $]0,+\infty[$, l'équation différentielle suivante :

$$(E): x^2y'' - xy' + y = 2x$$

Si y est une fonction deux fois dérivable sur $]0,+\infty[$, on définit la fonction z sur $\mathbb R$ par :

$$\forall t \in \mathbb{R}, \ z(t) = y(e^t).$$

1. Montrer que si y est solution de (E) sur $]0,+\infty[$ alors z est solution sur $\mathbb R$ de l'équation différentielle (G) suivante :

$$(G): z''(t) - 2z'(t) + z(t) = 2e^{t}.$$

Réciproquement, montrer que si z est solution de (G) sur \mathbb{R} , alors y est solution de (E) sur $]0, +\infty[$.

- 2. Résoudre l'équation différentielle (G) sur \mathbb{R} (on pourra chercher une solution particulière de la forme $t \mapsto \lambda t^2 e^t$ où $\lambda \in \mathbb{R}$).
- 3. Conclure alors quant à l'ensemble des solutions de (E) sur $]0, +\infty[$.