Fonctionnalités des SGBD

Architecture d'un SGBD

1. Description des données

SQL LDD

- L'analyseur vérifie la correction des commandes
- Il stocke le schéma dans la méta-base (catalogue système)
- Celle-ci est souvent une BD relationnelle

Organisation de la méta-base

- C'est un ensemble de tables décrivant les autres (et elle même)
- Bases, Tables, Attributs, Domaines, Clés, ...
- Vues, Contraintes, Index, ...

Commandes traitées

Create Table, Alter Table, etc.

Noyau de métabase

- SCHEMAS (CATALOG, NOMB, Créateur, Caractère_Set, ...)
- TABLES (CATALOG, NOMB, NOMR, Type, ...)
- DOMAINS (CATALOG, NOMB, NOMD, Type, Défaut, Contrainte,...)
- COLUMNS (CATALOG, NOMB, NOMR, NOMA, Pos, Type, ...)
- TYPES (CATALOG, NOMB, NOM, MaxL, Precision, ...)
- CONSTRAINTS (CATALOG, NOMB, NOMC, TypeC, NomR, ...)
- USERS (NOM, ...)

2. Manipulation des Données

- L'analyseur analyse la requête
 - Analyse syntaxique selon la grammaire SQL
 - Analyse sémantique selon la métabase
 - Traduction en arbre d'algèbre relationnel
- Syntaxe SQL (rappel)
 - Select <Liste de champs ou de calculs à afficher>
 - From <Liste de relations mises en jeu>
 - Where <Liste de prédicats à satisfaire>
 - Group By < Groupement éventuel sur un ou plusieurs champs>
 - Order By <Tri éventuel sur un ou plusieurs champs>
- Représenter les arbres algébriques des requêtes suivantes

Exemple de question SQL (1)

Nom et description des médicaments de type aspirine

Select Nom, Description
From Médicaments
Where Type = 'Aspirine'

Exemple de question SQL (2)

Patients de Tiko ayant effectués une visite le 15 juin

Select Patients.Nom, Patients.Prénom

From Patients, Visites

Where Patients.Id-P = Visites.Id-P

and Patients.Ville = 'Tiko'

and Visites.Date = '15 juin'

Exemple de question SQL (3)

 Dépenses effectuées par patient trié par ordre décroissant

Select Patients.Id-P, Patients.Nom, sum(Prix)

From Patients, Visites

Where Patients.Id-P = Visites.Id-P

GroupBy Patients.Id-P, Patients.Nom

OrderBy sum(Prix) desc

3. Gestion des vues

- Les vues permettent d'implémenter l'indépendance logique en permettant de créer des objets virtuels
- Vue = Question SQL stockée
- Le SGBD stocke la définition et non le résultat
- Exemple: la vue des patients de Yaoundé Create View Ongola as (Select Nom, Prénom From Patients
 Where Patients.Ville = 'Yaoundé')

Gestion des vues

Le SGBD transforme la question sur les vues en question sur les relations de base

Syntaxe et Exemple

- CREATE VIEW < nom de table> [(<nom de colonne>+)]
- AS <spécification de question> [WITH CHECK OPTION]
- La clause "WITH CHECK OPTION" demande la vérification du critère lors des insertions et mises à jour via la vue
- CREATE VIEW **GROS-BUVEURS** (NB, NOM, PRENOM) AS SELECT NB, NOM, PRENOM FROM BUVEURS B, **ABUS A** WHERE B.NB = A.NBAND A.QTE > 100

Modification de questions

4. Exécution et Optimisation

- Traduction automatique des questions déclaratives en programmes procéduraux :
 - → Utilisation de l'algèbre relationnelle
- Optimisation automatique des questions
 - → Utilisation de l'aspect déclaratif de SQL
 - → Gestion centralisée des chemins d'accès (index, hachages, ...)
 - → Techniques d'optimisation poussées
- Economie de l'astuce des programmeurs
 - milliers d'heures d'écriture et de maintenance de logiciels.

Sélection

	Patients				
Id-P	Nom	Prénom	Ville		
1	Kamg a	Jacque s	Buea		
2	Boub a	Zoe	Obala		
3	Enow	John	Buea		
4	Nlend	Paule	Loum		

Patients				
Id-P	Nom	Préno m	Ville	
1	Kamg a	Jacque s	Buea	
2	Boub a	Zoe	Obala	
3	Enow	John	Buea	
4	Nlend	Paule	Loum	

Patients de la ville de Buea

Projection

Patients				
Id-P	Nom	Prénom	Ville	
1	Kamg a	Jacque s	Buea	
2	Boub a	Zoe	Obala	
3	Enow	John	Buea	
4	Nlend	Paule	Loum	

Patients				
ld-P	Nom	Préno m	Ville	
1	Kamg a	Jacque s	Buea	
2	Boub a	Zoe	Obala	
3	Enow	John	Buea	
4	Nlend	Paule	Loum	

Nom et prénom des patients

Jointure

	Patients				
Id-P	Nom	Prénom	Ville		
1	Kamg a	Jacque s	Buea		
2	Boub a	Zoe	Obala		
3	Enow	John	Buea		
4	Nlend	Paule	Loum		

	Visi	tes		
ld- D	ld- P	Id-V	Date	Prix
1	2	1	15 juin	250
1	1	2	12 août	180
2	2	3	13 juillet	350
2	3	_ 4	1 mars	250

ld-P	Nom	Prénom	Ville	ld-D	ld-P	2 _{Id-V} 3	Date 1	mars Prix
1	Kamga	Jacques	Bue a	1	1	2	12 août	180
2	Bouba	Zoe	Obal a	1	2	1	15 juin	250
2	Bouba	Zoe	Obal a	2	2	3	13 juillet	350
3	Enow	atient	s ^B Æt a	leui	rs³vi	site	5 1 mars	250

Exemple de plan d'exécution

Select Patients.Nom,

Patients.Prénom

From Patients, Visites

Where Patients.Id-P = Visites.Id-P

and Patients. Ville = 'Buea'

and Visites.Date = '15 juin'

Plan d'exécution optimisé

5. Intégrité Logique

- Objectif : Détecter les mises à jour erronées
- Contrôle sur les données élémentaires
 - Contrôle de types: ex: Nom alphabétique
 - Contrôle de valeurs: ex: Salaire mensuel entre 5 et 50kf
- Contrôle sur les relations entre les données
 - Relations entre données élémentaires:
 - Prix de vente > Prix d'achat
 - Relations entre objets:
 - Un électeur doit être inscrit sur une seule liste électorale

Contraintes d'intégrité

Avantages :

- -simplification du code des applications
- -sécurité renforcée par l'automatisation
- -mise en commun des contraintes

· Nécessite:

- un langage de définition de contraintes d'intégrité
- la vérification automatique de ces contraintes

Exemples de contrainte

Contraintes d'intégrité référentielles

Docteurs

Id- D	Nom	Préno m
1	Talla	Pierre
2	Eyou m	Paul
3	Ngon	Jean
• • • •	• • • • • • •	

Visit s

Id- D	Id- P	Id- V	Date	Prix
1	2	1	15 juin	250
1	1	2	12 août	180
2	2	3	13 juillet	350
2	3	4	1 mars	250

Prescriptions

Id- V	Lig ne	Id- M	Posolo gie
1	1	12	1 par jour
1	2	5	10 gouttes
2	1	8	2 par jour
2	2	12	1 par jour
2	3	3	2 gouttes

Techniques de contrôle

domaine de valeurs

- vérification à la volée
- · unicité de clé
 - test de non existence dans l'index
- références inter-tables
 - insertion référençante : test d'existence dans l'index
 - suppression référencée: test de non existence (index ?)
- assertion logique (quantificateurs, agrégats)
 - très complexe
 - intérêt de gérer des agrégats pré-calculés

6. Intégrité Physique

Motivations : Tolérance aux fautes

- Transaction Failure : Contraintes d'intégrité, Annulation
- System Failure : Panne de courant, Crash serveur ...
- Media Failure : Perte du disque
- Communication Failure : Défaillance du réseau

Objectifs:

- Assurer l'atomicité des transactions
- Garantir la durabilité des effets des transactions commises

Moyens:

- Journalisation : Mémorisation des états successifs des données
- Mécanismes de reprise

Transaction


```
Begin

CEpargne = CEpargne - 3000

CCourant = CCourant + 3000

Commit T1
```

Atomicité et Durabilité

ATOMICITE

```
Begin
CEpargne = CEpargne -

3000
CCourant = CCourant +

3000
Commit T1
```

→ Annuler le débit !!

DURABILITE

```
Begin
CEpargne = CEpargne -
3000
CCourant = CCourant +
3000
Crash disque
Commit T1
```

→ S'assurer que le virement a été fait ! 25

7. Partage des données

- Accès concurrent aux mêmes données
- → Conflits d'accès !!

Partage des données

Technique de base

- Le SGBD verrouille les données accédées pour l'utilisateur
- Il relâche les verrous en fin de transaction
- Distinction verrou en lecture et en écriture
- Compatibilité lecture-lecture

8. Confidentialité

- Objectif : Protéger les données de la BD contre des accès non autorisés
- Deux niveaux :
 - Connexion restreinte aux usagers répertoriés (mot de passe)
 - Privilèges d'accès aux objets de la base
- Usagers: Usager ou groupe d'usagers
- Objets: Relation, Vue, autres objets (procédures, etc.)

Puissance des droits SGBD

Service des ressources humaines

Employés (intranet)

Id-E	Nom	Préno	Post
		m	e
1	Ricks	Jim	5485
2	Trock	Jack	1254
3	Lerich	Zoe	5489
4	Enow	Ige	4049

Public (internet)

Nombre	
d'emplo	Salaria
yés	le
. 4	890

Id-E	Nom	Préno	Post	Adress	Ville	Salair
		m	e	e		e
1	Ricks	Jim	5485		Buea	230
2	Trock	Jack	1254		Versailles	120
3	Lerich	Zoe	5489		Chartres	380
4	Enorg	Ioo	4040		D1100	160

Commandes de SQL

Attribuer autorisation

- GRANT < DROITS > ON < RELATION >
- TO (<SUJET>)
- [WITH GRANT OPTION]
- <DROITS > ::= ALL | [<OPERATION>]...
- <OPERATION> ::= SELECT| INSERT| DELETE | UPDATE | ALTER

Retirer autorisations

- REVOKE <DROITS> ON <RELATION>
- FROM (<SUJET>)

Remarque

REVOKE DOIT RETIRER AUSSI LES DROITS TRANSMIS

9. Principaux SGBD

- Les SGBD mettrent en œuvre des techniques similaires
- Aujourd'hui 3 leaders :
 - Oracle, IBM, Microsoft
- Développements vers le e-business
 - Site Web dynamiques
 - Commerce électronique BtoC
 - Commerce électronique BtoB
 - Support des documents (XML) ...

Principaux SGBD

Les grands SGBD

- Oracle
- IBM DB2
- Microsoft SQL Server
- Sybase SQL Server
- Ingres
- Informix

Les open sources

- MySQL
- PostgreSQL

Les SGBD personnels

- Borland Paradox
- Filemaker
- Interbase
- Microsoft Access
- Microsoft FoxPro

Les SGBD objets

- Objectivity
- Object Store
- Versant
- 02

Le marché des SGBD

· Parts de marché

Source: Dataquest