2015-2016 学年第二学期数学分析 II 期中考试 (伍胜健)

April 25, 2016

- 一、 $(10 \, \text{分})$ 设 $f(x) = [\sin[\frac{1}{x}]], x \in (0,1], f(0) = 0$,试问 f(x) 在 [0,1] 是否可积(说明理由).
- 二、(10 分) 设 f(x) 在 $(0, +\infty)$ 连续, f(1) = 1 且对于 $\forall u > 0, g(x) = \int_x^{ux} f(t) dt$ 是一个常数函数, 求 f(x).
 - 三、(10 分) 求心脏线 $r = a(1 \cos \theta), \theta \in [0, 2\pi]$ 的弧长.
 - 四、(10 分) 讨论无穷积分 $\int_1^{+\infty} \frac{\frac{\pi}{2} \arctan x}{x^{\alpha}} dx$, $(\alpha > 0)$ 的敛散性.
 - 五、 $(15~ \mathcal{G})$ 讨论无穷积分 $\int_0^{+\infty} \frac{\sin x}{x} \frac{a}{1+a^x} \mathrm{d}x, (a>0)$ 的敛散性,如果收敛,讨论是否绝对收敛.
 - 六、 $(10 \ \mathcal{G})$ 讨论数项级数 $\sum_{n=1}^{\infty} (\sqrt[p]{n}-1)^p, (p>0)$ 的敛散性.
- 七、(15 分)讨论数项级数 $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}(1+\frac{1}{2}+\cdots+\frac{1}{n})}{n^{\alpha}}$, $(\alpha>0)$ 的敛散性,如果收敛,讨论是否绝对收敛.
- 八、 $(10\ \mathcal{H})$ 设 f(x) 与 g(x) 在 $[0,+\infty)$ 上连续,处处大于 0,且无穷积分 $\int_0^{+\infty} f(x)\mathrm{d}x$ 与无穷积分 $\int_0^{+\infty} g(x)\mathrm{d}x$ 都收敛. 证明: 如果 f(x) 在 $[0,+\infty)$ 上一致连续,则无穷积分 $\int_0^{+\infty} f(x)g(x)\mathrm{d}x$ 收敛,且存在 $\xi\in(0,+\infty)$,使得 $\int_0^{+\infty} f(x)g(x)\mathrm{d}x = f(\xi)\int_0^{+\infty} g(x)\mathrm{d}x$ 成立.
- 九、(10~ f) 试构造一个发散的数项级数 $\sum_{n=1}^{\infty} a_n$,使得它满足 $\lim_{n\to\infty} a_n=0$,并且对该级数加上一些括号后得到的级数是收敛的.