Supervised Learning of Behaviors

CS 294-112: Deep Reinforcement Learning
Sergey Levine

Class Notes

- 1. Make sure you sign up for Piazza!
- 2. Homework 1 is now out
- 3. Remember to start forming final project groups

Today's Lecture

- 1. Definition of sequential decision problems
- 2. Imitation learning: supervised learning for decision making
 - a. Does direct imitation work?
 - b. How can we make it work more often?
- 3. Case studies of recent work in (deep) imitation learning
- 4. What is missing from imitation learning?
- Goals:
 - Understand definitions & notation
 - Understand basic imitation learning algorithms
 - Understand their strengths & weaknesses

Terminology & notation

 \mathbf{o}_t – observation

Terminology & notation

Aside: notation

 \mathbf{s}_t – state

 \mathbf{a}_t – action

Richard Bellman

 \mathbf{x}_t – state

 $\mathbf{u}_t - \mathrm{action}$ управление

Lev Pontryagin

Imitation Learning

behavior cloning

Images: Bojarski et al. '16, NVIDIA

Does it work?

No!

Does it work?

Yes!

Video: Bojarski et al. '16, NVIDIA

Why did that work?

Can we make it work more often?

stability

Learning from a stabilizing controller

p(s), a Gaussian distribution obtained using variant of iterative LQR test terrain 1 learned policy (more on this later)

Can we make it work more often?

Can we make it work more often?

```
can we make p_{\text{data}}(\mathbf{o}_t) = p_{\pi_{\theta}}(\mathbf{o}_t)?
idea: instead of being clever about p_{\pi_{\theta}}(\mathbf{o}_t), be clever about p_{\text{data}}(\mathbf{o}_t)!
```

DAgger: **D**ataset **A**ggregation

goal: collect training data from $p_{\pi_{\theta}}(\mathbf{o}_t)$ instead of $p_{\text{data}}(\mathbf{o}_t)$

how? just run $\pi_{\theta}(\mathbf{a}_t|\mathbf{o}_t)$

but need labels \mathbf{a}_t !

第一步就是behavi or cl one

- 1. train $\pi_{\theta}(\mathbf{a}_t|\mathbf{o}_t)$ from human data $\mathcal{D} = \{\mathbf{o}_1, \mathbf{a}_1, \dots, \mathbf{o}_N, \mathbf{a}_N\}$
- 2. run $\pi_{\theta}(\mathbf{a}_t|\mathbf{o}_t)$ to get dataset $\mathcal{D}_{\pi} = \{\mathbf{o}_1, \dots, \mathbf{o}_M\}$
- 3. Ask human to label \mathcal{D}_{π} with actions \mathbf{a}_t
- 4. Aggregate: $\mathcal{D} \leftarrow \mathcal{D} \cup \mathcal{D}_{\pi}$

DAgger Example

What's the problem?

- 1. train $\pi_{\theta}(\mathbf{a}_t|\mathbf{o}_t)$ from human data $\mathcal{D} = \{\mathbf{o}_1, \mathbf{a}_1, \dots, \mathbf{o}_N, \mathbf{a}_N\}$
- 2. run $\pi_{\theta}(\mathbf{a}_t|\mathbf{o}_t)$ to get dataset $\mathcal{D}_{\pi} = \{\mathbf{o}_1, \dots, \mathbf{o}_M\}$ 3. Ask human to label \mathcal{D}_{π} with actions \mathbf{a}_t

 - 4. Aggregate: $\mathcal{D} \leftarrow \mathcal{D} \cup \mathcal{D}_{\pi}$

Can we make it work without more data?

- DAgger addresses the problem of distributional "drift"
- What if our model is so good that it doesn't drift?
- Need to mimic expert behavior very accurately
- But don't overfit!

- 1. Non-Markovian behavior
- Multimodal behavior

$$\pi_{ heta}(\mathbf{a}_t|\mathbf{o}_t)$$
 $\pi_{ heta}(\mathbf{a}_t|\mathbf{o}_1,...,\mathbf{o}_t)$ behavior depends only on current observation all past observations

If we see the same thing twice, we do the same thing twice, regardless of what happened before

Often very unnatural for human demonstrators

How can we use the whole history?

variable number of frames, too many weights

How can we use the whole history? shared weights RNN state RNN state **RNN** state

Typically, LSTM cells work better here

1. Non-Markovian behavior

2. Multimodal behavior

softmax来得 到分布 log Gaussian就是 mean square error. 此处三点是用来避免 搞unimodal的

- 1. Output mixture of Gaussians ^{最简单但最不清楚}
 - -般用法,算术elegant,复杂to set up
- 2. Latent variable models
- 3. Autoregressive 复杂to set up,,但比discretization

- 1. Output mixture of Gaussians
- 2. Latent variable models
- 3. Autoregressive discretization

- Output mixture of Gaussians
- 2. Latent variable models
- 3. Autoregressive discretization

都是教提高使用随机噪声效 率的

Look up some of these:

- Conditional variational autoencoder
- Normalizing flow/realNVP
- Stein variational gradient descent

个网络

1. Output mixture of Gaussians

2. Latent variable models (discretized) distribution over dimension 1 only

Autoregressive discretization

一次分解一个dimension,所以对于高维的distribution,也可以这样离散化(discretization),误差也会小一些问题:构建网络模型比较难搞

Imitation learning: recap

- Often (but not always) insufficient by itself
 - Distribution mismatch problem
- Sometimes works well
 - Hacks (e.g. left/right images)
 - Samples from a stable trajectory distribution
 - Add more **on-policy** data, e.g. using Dagger
 - Better models that fit more accurately

Break

Case study 1: trail following as classification

A Machine Learning Approach to Visual Perception of Forest Trails for Mobile Robots

Alessandro Giusti¹, Jérôme Guzzi¹, Dan C. Cireşan¹, Fang-Lin He¹, Juan P. Rodríguez¹ Flavio Fontana², Matthias Faessler², Christian Forster² Jürgen Schmidhuber¹, Gianni Di Caro¹, Davide Scaramuzza², Luca M. Gambardella¹

Case study 2: Imitation with LSTMs

Learning real manipulation tasks from virtual demonstrations using LSTM

Rouhollah Rahmatizadeh¹, Pooya Abolghasemi¹, Aman Behal² and Ladislau Bölöni¹

Learning Manipulation Trajectories Using Recurrent Neural Networks

Controller	Pick and place	Push to pose	
Feedfoward-MSE	0%	0%	
LSTM-MSE	85%	0%	
Feedforward-MDN	95%	15%	
LSTM-MDN	100%	95%	

Environment	Pick and place	Push to pose
Virtual world	100%	95%
Physical world	80%	60%

Follow-up: adding vision

Vision-Based Multi-Task Manipulation for Inexpensive Robots Using End-To-End Learning from Demonstration

Other topics in imitation learning

Structured prediction

x: where are you

y: I'm at work

ľm

sychooolol

- Inverse reinforcement learning
 - Instead of copying the demonstration, figure out the goal
 - Will be covered later in this course

Imitation learning: what's the problem?

- Humans need to provide data, which is typically finite
 - Deep learning works best when data is plentiful
- Humans are not good at providing some kinds of actions

- Humans can learn autonomously; can our machines do the same?
 - Unlimited data from own experience
 - Continuous self-improvement

Terminology & notation

$$\min_{\mathbf{a}_1,...,\mathbf{a}_T} \sum_{t=1}^T p(\mathbf{s}_t, \mathbf{a}_t) \text{ byttiser} \mathbf{a}_t f(\mathbf{s}_t, \mathbf{a}_t, \mathbf{a}_t)$$

Aside: notation

 \mathbf{s}_t - state \mathbf{a}_t - action $r(\mathbf{s}, \mathbf{a})$ - reward function

Richard Bellman

$$r(\mathbf{s}, \mathbf{a}) = -c(\mathbf{x}, \mathbf{u})$$

 $\mathbf{x}_t - ext{state}$ $\mathbf{u}_t - ext{action}$ управление $c(\mathbf{x}, \mathbf{u}) - ext{cost}$ function

Lev Pontryagin

A cost function for imitation?

- 1. train $\pi_{\theta}(\mathbf{a}_t|\mathbf{o}_t)$ from human data $\mathcal{D} = \{\mathbf{o}_1, \mathbf{a}_1, \dots, \mathbf{o}_N, \mathbf{a}_N\}$
- 2. run $\pi_{\theta}(\mathbf{a}_t|\mathbf{o}_t)$ to get dataset $\mathcal{D}_{\pi} = \{\mathbf{o}_1, \dots, \mathbf{o}_M\}$
- 3. Ask human to label \mathcal{D}_{π} with actions \mathbf{a}_t
- 4. Aggregate: $\mathcal{D} \leftarrow \mathcal{D} \cup \mathcal{D}_{\pi}$

Some analysis

How bad is it?

$$c(\mathbf{s}, \mathbf{a}) = \begin{cases} 0 \text{ if } \mathbf{a} = \pi^*(\mathbf{s}) \\ 1 \text{ otherwise} \end{cases}$$

assume: $\pi_{\theta}(\mathbf{a} \neq \pi^{\star}(\mathbf{s})|\mathbf{s}) \leq \epsilon$ for all $\mathbf{s} \in \mathcal{D}_{\text{train}}$

$$E\left[\sum_{t} c(\mathbf{s}_{t}, \mathbf{a}_{t})\right] \leq \epsilon T +$$

$$O(\epsilon T^{2}) \qquad T \text{ terms, each } O(\epsilon T)$$

More general analysis

$$c(\mathbf{s}, \mathbf{a}) = \begin{cases} 0 \text{ if } \mathbf{a} = \pi^*(\mathbf{s}) \\ 1 \text{ otherwise} \end{cases}$$

assume:
$$\pi_{\theta}(\mathbf{a} \neq \pi^{\star}(\mathbf{s})|\mathbf{s}) \leq \epsilon$$

for all $\mathbf{s} \in \mathcal{D}_{\text{train}}$ for $\mathbf{s} \sim p_{\text{train}}(\mathbf{s})$

with DAgger,
$$p_{\text{train}}(\mathbf{s}) \to p_{\theta}(\mathbf{s})$$

$$E\left[\sum_{t} c(\mathbf{s}_{t}, \mathbf{a}_{t})\right] \leq \epsilon T$$

if $p_{\text{train}}(\mathbf{s}) \neq p_{\theta}(\mathbf{s})$:

$$p_{\theta}(\mathbf{s}_t) = (1 - \epsilon)^t p_{\text{train}}(\mathbf{s}_t) + (1 - (1 - \epsilon)^t) p_{\text{mistake}}(\mathbf{s}_t)$$

probability we made no mistakes

some other distribution

$$|p_{\theta}(\mathbf{s}_t) - p_{\text{train}}(\mathbf{s}_t)| = (1 - (1 - \epsilon)^t)|p_{\text{mistake}}(\mathbf{s}_t) - p_{\text{train}}(\mathbf{s}_t)| \le 2(1 - (1 - \epsilon)^t)$$
useful identity: $(1 - \epsilon)^t \ge 1 - \epsilon t$ for $\epsilon \in [0, 1]$ $\le 2\epsilon t$

$$\sum_{t} E_{p_{\theta}(\mathbf{s}_{t})}[c_{t}] = \sum_{t} \sum_{\mathbf{s}_{t}} p_{\theta}(\mathbf{s}_{t}) c_{t}(\mathbf{s}_{t}) \leq \sum_{t} \sum_{\mathbf{s}_{t}} p_{\text{train}}(\mathbf{s}_{t}) c_{t}(\mathbf{s}_{t}) + |p_{\theta}(\mathbf{s}_{t}) - p_{\text{train}}(\mathbf{s}_{t})| c_{\text{max}}$$

$$\leq \sum_{t} \epsilon + 2\epsilon t \qquad O(\epsilon T^{2})$$

For more analysis, see Ross et al. "A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning"

Cost/reward functions in theory and practice

$$r(\mathbf{s}, \mathbf{a}) = \begin{cases} 1 \text{ if object at target} \\ 0 \text{ otherwise} \end{cases}$$

$$r(\mathbf{s}, \mathbf{a}) = -w_1 \| p_{\text{gripper}}(\mathbf{s}) - p_{\text{object}}(\mathbf{s}) \|^2 +$$
$$-w_2 \| p_{\text{object}}(\mathbf{s}) - p_{\text{target}}(\mathbf{s}) \|^2 +$$
$$-w_3 \| \mathbf{a} \|^2$$

$$r(\mathbf{s}, \mathbf{a}) = \begin{cases} 1 \text{ if walker is running} \\ 0 \text{ otherwise} \end{cases}$$

$$r(\mathbf{s}, \mathbf{a}) = w_1 v(\mathbf{s}) +$$

$$w_2 \delta(|\theta_{\text{torso}}(\mathbf{s})| < \epsilon) +$$

$$w_3 \delta(h_{\text{torso}}(\mathbf{s}) \ge h)$$

The trouble with cost & reward functions

reward

Mnih et al. '15 reinforcement learning agent

what is the reward?

Sim-to-Real Robot Learning from Pixels with Progressive Nets

Andrei A. Rusu, Matej Vecerik, Thomas Rothörl, Nicolas Heess, Razvan Pascanu, Raia Hadsell

> Google DeepMind London, UK

{andreirusu, matejvecerik, tcr, heess, razp, raia}@google.com

More on this later...

Rewards are given automatically by tracking the colored target

A note about terminology... the "R" word

a bit of history...

reinforcement learning (the **problem** statement)

$$\max \sum_{t=1}^{T} E[r(\mathbf{s}_t, \mathbf{a}_t)] \quad \mathbf{s}_{t+1} \sim p(\mathbf{s}_{t+1}|\mathbf{s}_t, \mathbf{a}_t)$$

$$\mathbf{s}_{t+1} \sim p(\mathbf{s}_{t+1}|\mathbf{s}_t, \mathbf{a}_t)$$

reinforcement learning (the **method**)

without using the **model**

$$\mathbf{s}_{t+1} \sim p(\mathbf{s}_{t+1}|\mathbf{s}_t, \mathbf{a}_t)$$

Lev Pontryagin

Richard Bellman

Andrew Barto

Richard Sutton