Lecture 7 Variations in Fast Adders

Simplifying Assumptions

- One skip delay $(c_{in} \text{ to } c_{out})$ is equal to one ripple delay $(c_{in} \text{ to } c_{out})$
- Total k-bit ripple delay is $k \times \text{single delay}$

These assumptions may not be true in real life (CMOS implementation for example).

b =fixed block width (ex:4)

k = number of bits (ex : 16)

$$T_{\textit{delay}} = \underbrace{(b-1)}_{\textit{block 0}} + \underbrace{(0.5)}_{\textit{OR-gate}} + \underbrace{(k/b-2)}_{\textit{skips}} + \underbrace{(b-1)}_{\textit{block (k-1)}}$$

 $\approx 2b + k/b - 3.5$ stages (ex:12.5)

What is the optimal block size?

1. set
$$\frac{dT}{db} = 0$$

2. solve for $b = b_{opt}$

$$b_{opt} = \sqrt{\frac{k}{2}}$$

t = number of blocks = k/b

$$t_{opt} = \sqrt{2k}$$

$$T_{opt} = 2\sqrt{2k} - 3.5$$

Can we do better?

Path (1) is one delay longer that Path (2) \rightarrow block *t-2* can be one bit wider than block *t-1*.

Path (1) is one delay longer that Path (3) \rightarrow block *I* can be one bit wider than block θ .

Variable Block-Width Carry-Skip Adders

Optimal Block Widths:

b

...

$$b+\frac{t}{2}-1$$

 $b+\frac{t}{2}-1$

b+1

b

$$b + (b+1) + \dots + (b+\frac{t}{2}-1) + (b+\frac{t}{2}-1) + \dots + (b+1) + b = k$$

$$\to b = (k/t) - (t/4) + 1/2$$

Optimal number of blocks

$$T_{delay} = \underbrace{2(b-1)}_{\text{first + last stage}} + \underbrace{(0.5)}_{\text{OR gate}} + \underbrace{(t-2)}_{\text{Skip stages}} = \frac{2k}{t} + \frac{t}{2} - 2.5$$

1. set
$$\frac{dT}{dt} = 0$$

2. solve for
$$t = t_{opt}$$

$$t_{opt} = 2\sqrt{k}$$

$$b_{opt} = \lceil 1/2 \rceil = 1$$
 (stage 0, t-1; goes up to $t_{opt}/2 = \sqrt{k}$)

$$T_{opt} = 2\sqrt{k} - 2.5$$

Comparison

	Fixed-width Carry-Skip	Variable-width Carry-Skip
t_{opt}	$\sqrt{2k}/2$	$2\sqrt{k}$
b_{opt}	$\sqrt{k/2}$	$1\cdots\sqrt{k} \ \sqrt{k}\cdots 1$
T_{opt}	$2\sqrt{2k} - 3.5$	$2\sqrt{k}-2.5$

Conclusion: Variable-width is about 40% faster.

Multilevel Carry-Skip Adders

- Allow carry to skip over several level-1 skip blocks at once.
- Level-2 propagate is AND of level-1 propagates.
- Assumptions:
 - OR gate is no delay (insignificant delay)
 - Basic delay = Skip delay = Ripple delay
 - = Propagate Computation = Sum Computation

Build the Widest Single-Level Carry-Skip Adder with 8 delays max

$$Width = 1 + 3 + 4 + 4 + 3 + 2 + 1 = 18$$
 bits

Build the Widest Two-Level Carry-Skip Adder with 8 delays max

First, we need a new notation:

8-delay, 2-level, continued 1. Find $\{\beta,\alpha\}$ for level two

8-delay, 2-level, continued

2. Given $\{\beta,\alpha\}$ for level two, derive level one

Block	T _{produce}	$T_{ m assimilate}$	Number of subblocks	Subblock widths (bits)	Block Width (bits)			
A	3	8	2	1, 3	4			
В	4	5	3	2, 3, 3	8			
C	5	4	4	2, 3, 2, 1	8			
D	6	3	3	3, 2, 1	6			
Е	7	2	2	2, 1	3			
F	8	1	1	1	1			

Generalization

- Chan et al. [1992] relax assumptions to include general worst-case delays:
 - I(b) Internal carry-propagate delay for the block
 - G(b) Carry-generate delay for the block
 - A(b) Carry-assimilate delay for the block

• Used dynamic programming to obtain optimal configuration

Conditional Sum Adder

- The process that led to the two-level carryselect adder can be continued . . .
- A logarithmic time *conditional-sum adder* results if we proceed to the extreme:
 - single bit adders at the top
- A conditional-sum adder is actually a $(\log_2 k)$ -level carry-select adder

Cost and Delay of a Conditional-Sum Adder

$$C(k) \approx 2C(k/2) + k + 2 \approx k(\log_2 k + 2) + kC(1)$$

$$T(k) = T(k/2) + 1 = \log_2 k + T(1)$$

More exact analysis gives actual cost = $(k-1)(\log_2 k + 1) + kC(1)$

	Conditional-Sum Example																					
			x y	0	0	1	0 0	0 1	1		0	1	1 1	1	0 1	1	0	10	0 1			
	Block width	Block carry-in				sun 13						out 7		5	4	3	2	1	0	c _{in}		
	1	0	s c	0 0	1 0	1	0	1	1 0	0	1	1	0	1 0	1	0	1 0	1 0	1	0		
		1	s c	1	0 1	0	1	0	0 1	1	0	0	1	0 1	0 1	1	0	0				
	2	0	s c	0	1	1 0	0	1	1	0 1	1	0 1	0	1 0	1	0	1	1 0	1			
		1	s C	1 0	0	1 0	1	0	0	1 1	0	0 1	1	0 1	0	1	0					
,	4	0	s C	00	1	1	0	0	0	0	1	0	0	1	1	0 1	1	1	1			
		1	s C	0	1	1	1	0	0	1	0	0	1	0	0							
	8	0	s C	0	1	1	1	0	0	0	1	0	1	0	0	0	1	1	1			
		1	s C	0	1	1	1	0	0	1	0											
	16	0	s C	0	1	1	1	0	0	1	0	0	1	0	0	0	1	1	1			
		1	s c																			
				$c_{ m out}^{!}$																	 	_

Hybrid Adder Designed

- Hybrids are obtained by combining elements of:
 - Ripple-carry adders
 - Carry-lookahead (generate-propagate) adders
 - Carry-skip adders
 - Carry-select adders
 - Conditional-sum adders
- You can obtain adders with
 - higher performance
 - greater cost-effectiveness
 - lower power consumption

Example 1 Carry-Select / Carry-Lookahead

- One- and Two-level carry select adders are essentially hybrids, since the top level k/2- or k/4-bit adders can be of any type.
- Often combined with carry-lookahead adders.

Example 5 Carry Lookahead/Conditional-Sum

- Reduces fan-out required to control the muxes at the lower level (a draw-back of wide conditional sum adders).
- Use carry conditional-sum addition in smaller blocks, but form inter-block carries using carry-lookahead.

Open Questions

- Application requirements may shift the balance in favor of a particular hybrid design.
- What combinations are useful for:
 - low power addition
 - addition on an FPGA

Optimizations in Fast Adders

- It is often possible to reduce the delay of adders (including hybrids) by optimizing block widths.
- The exact optimal configuration is highly technology dependent.
- Designs that minimize or regularize the interconnect may actually be more costeffective that a design with low gate count.

Other Optimizations

- Assumption: all inputs are available at time zero.
- But, sometimes that is not true:
 - I/O arrive/depart serially, or
 - Different arrival times are associated with input digits, or
 - Different production times are associated with output digits.
- Example: Addition of partial products in a multiplier.