Санкт-Петербургский политехнический университет Петра Великого

Институт прикладной математики и механики Кафедра «Прикладная математика»

> Отчёт по лабораторной работе №1 по дисциплине «Математическая статистика»

> > Выполнил студент: Самутичев Евгений Романович группа: 3630102/70201

Проверил: к.ф.-м.н., доцент Баженов Александр Николаевич

Санкт-Петербург 2020 г.

Содержание

1	Постановка задачи	2
2	Теория 2.1 Вариационный ряд	3 3
3	Реализация	4
4	Результаты	5
5	Обсуждение	6
6	Приложения	7
Сг	писок литературы	7

Список иллюстраций

1 Постановка задачи

Для каждого из 5 распределений:

- 1. Нормального N(x, 0, 1)
- 2. Коши C(x, 0, 1)
- 3. Лапласа $L(x,0,\frac{1}{\sqrt{2}})$
- 4. Пуассона P(k, 10)
- 5. Равномерного $U(x, -\sqrt{3}, \sqrt{3})$

выборку размера: 10, 100, 1000 - сгенерировать 1000 раз, для каждой генерации произвести вычисления выборочных характеристик \bar{x} , med x, z_R, z_Q, z_{tr} для всех генераций в рамках одного размера выборки получить значения среднего характеристик положения:

$$E(z) = \bar{z} \tag{1}$$

и оценку дисперсии:

$$D(z) = \bar{z^2} - \bar{z}^2 \tag{2}$$

Представить полученные данные в виде таблиц.

2 Теория

2.1 Вариационный ряд

Если элементы выборки $x_1, ..., x_n$ упорядочить по возрастанию на каждом элементарном исходе (рассматриваем их как случайные величины), получится новый набор случайный величин, называемый вариационным рядом:

$$x_{(1)} \le \dots \le x_{(n)}$$

Элемент $x_{(k)}$ называется k-ой порядковой статистикой.

2.2 Выборочные характеристики

При работе с выборкой нам неизвестно распределение по которому она получена, а значит и соответствующие характеристики распределения. Однако, существуют оценки - т.н. выборочные характеристики:

• Выборочное среднее

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \tag{3}$$

• Выборочная медиана

• Полусумма экстремальных выборочных элементов

$$z_R = \frac{x_{(1)} + x_{(n)}}{2} \tag{5}$$

Выборочный квантиль уровня α

$$z_{\alpha} = \frac{x_{(\lfloor q \rfloor + 1)} + x_{(\lceil q \rceil + 1)}}{2}, \text{где } q = (n - 1)\alpha$$
 (6)

формула, используемая в **NumPy**, в этом случае $z_0 = \min_{i=1,\dots,n} x_{(i)}, z_1 = \max_{i=1,\dots,n} x_{(i)},$ $z_{0.5} = \operatorname{med} x$

• Полусумма квантилей

$$z_Q = \frac{z_{0.25} + z_{0.75}}{2} \tag{7}$$

• Усеченное среднее

$$z_{tr} = \frac{1}{n - 2r} \sum_{i=r+1}^{n-r} x_{(i)} \tag{8}$$

Выборочные характеристики являются случайными величинами, поэтому в работе и производится усреднение их значений для 1000 генераций и вычисление среднеквадратичного отклонения.

3 Реализация

Работа выполнена с использованием языка **Python** в интегрированной среде разработки **PyCharm**, были задействованы библиотеки:

- NumPy построение вариационного ряда и вычисления
- SciPy модуль stats для генерации данных по распределениям

Исходный код работы приведен в приложении.

4 Результаты

5 Обсуждение

6 Приложения

1. Исходный код лабораторной https://github.com/zhenyatos/statlabs/tree/master/Lab2

Список литературы

- [1] А. Н. Ширяев, Вероятность-1. Изд. МЦНМО, Москва, 2017. 551 стр.
- [2] Н. И. Чернова, Математическая статистика: Учеб. пособие. Новосиб. гос. ун-т. Новосибирск, 2007. 148 стр.