Procesy stochastyczne Zestaw zadań nr 1

Zadanie 1. Udowodnij, że $X,Y:\Omega\to\mathbb{R}$ są zmiennymi losowymi wtedy i tylko wtedy, gdy $(X,Y):\Omega\to\mathbb{R}$ jest wektorem losowym.

Zadanie 2. Niech X, Y będą zmiennymi losowymi z łączną gęstością $f_{X,Y}$. Udowodnij, że zmienna losowa X+Y jest ciągłą zmienną losową z gęstością

$$f_{X+Y}(z) = \int_{\mathbb{R}} f_{X,Y}(x, z - x) d\lambda(x).$$

Zadanie 3. Co to znaczy, że σ -ciała \mathcal{F}, \mathcal{G} są niezależne? Co można powiedzieć o σ -ciele, które jest niezależne od siebie samego?

Zadanie 4. Niech $(\Omega, \mathcal{F}, \mathbb{P})$ będzie przestrzenią probabilistyczną i niech $B \in \mathcal{F}$ będzie taki, że $\mathbb{P}(B) > 0$. Udowodnij, że $\mathbb{P}_B(A) = \mathbb{P}(A|B)$ jest rozkładem prawdopodobieństwa na B z σ -ciałem \mathcal{F}_B składającym się ze wszystkich $A \in \mathcal{F}$ takich, że $A \subset B$.

Zadanie 5. Niech X będzie zmienną losową o rozkładzie Poissona z parametrem λ . Znajdź warunkową wartość oczekiwaną tej zmiennej losowej pod warunkiem, że przyjmuje ona wartość parzystą.

Zadanie 6. Niech $(\Omega, \mathcal{F}, \mathbb{P})$ będzie przestrzenią probabilistyczną i niech X, Y będą całkowalnymi zmiennymi losowymi określonymi na tej przestrzeni. Niech \mathcal{G} będzie pod- σ -ciałem σ -ciała \mathcal{F} . Udowodnij, że \mathbb{P} -prawie wszędzie zachodzi:

- $\forall_{a,b \in \mathbb{R}} \ \mathbb{E}(aX + bY|\mathcal{G}) = a\mathbb{E}(X|\mathcal{G}) + b\mathbb{E}(Y|\mathcal{G}),$
- $je\acute{s}li\ X \geqslant 0$, to $\mathbb{E}(X|\mathcal{G}) \geqslant 0$.

Zadanie 7. Niech X, Y będą zmiennymi losowymi o standardowym rozkładzie normalnym i kowariancji równej ρ . Znajdź $\mathbb{E}(X|Y)$.

Zadanie 8. Niech zmienne losowe X, Y będą określone na pewnej przestrzeni probabilistycznej w następujący sposób

$$X(x) = 2x^2$$
, $Y(x) = 1 - |2x - 1|$.

 $Znajd\acute{z} \mathbb{E}(X|Y)$.

Zadanie 9. Niech $(\Omega = [0,1], \mathcal{F} = \mathcal{B}_{[0,1]}, \lambda)$ będzie przestrzenią probabilistyczną. Niech $Y(\omega) = \omega(1-\omega)$. Udowodnij, że dla dowolnej zmiennej losowej X określonej na tej przestrzeni zachodzi

$$\mathbb{E}(X|Y)(\omega) = \frac{X(\omega) + X(1-\omega)}{2}.$$

Zadanie 10. Niech zmienne losowe X, Y mają ten sam rozkład. Przy jakim dodatkowym założeniu zachodzi

$$\mathbb{E}\left(\frac{X}{X+Y}\right) = \mathbb{E}\left(\frac{Y}{X+Y}\right)?$$

Przy tym założeniu oblicz tą wartość.

Zadanie 11. Udowodnij, że dla nieujemnej i całkowalnej zmiennej losowej X zachodzi

$$\mathbb{E}X = \int_0^\infty \mathbb{P}(X > t)dt \quad \mathbb{E}(X|\mathcal{F}) = \int_0^\infty \mathbb{P}(X > t|\mathcal{F})dt.$$

Zadanie 12. Niech zmienna losowa X będzie całkowalna z kwadratem. Określmy $Var(X|\mathcal{F}) = \mathbb{E}\left((X - \mathbb{E}(X|\mathcal{F}))|\mathcal{F}\right)$. Udowodnij, że

$$VarX = \mathbb{E}\left(Var(X|\mathcal{F})\right) + Var\left(\mathbb{E}(X|\mathcal{F})\right)$$
$$(\mathbb{E}(X|\mathcal{F}))^{2} \leqslant \mathbb{E}(X^{2}|\mathcal{F})$$
$$VarX \geqslant Var\left(\mathbb{E}(X|\mathcal{F})\right).$$

Zadanie 13. Niech X, Y będą całkowalnymi z kwadratem, symetrycznymi i niezależnymi zmiennymi losowymi. Udowodnij, że zachodzi

$$\mathbb{E}\left((X+Y)^2|X^2+Y^2\right) = X^2 + Y^2.$$

Zadanie 14. Niech X,Y będą całkowalnymi z kwadratem zmiennymi losowymi. Udowodnij, że zachodzi

$$\mathbb{E}\left(X\mathbb{E}(Y|\mathcal{F})\right) = \mathbb{E}\left(Y\mathbb{E}(X|\mathcal{F})\right).$$

Zadanie 15. Niech X_1, X_2, \ldots, X_n będą niezależnymi całkowalnymi zmiennymi losowymi o tym samym rozkładzie. Oblicz $\mathbb{E}(X_1|X_1+\cdots+X_n)$.

Zadanie 16. Niech $\mathcal{F}_1 \subset \mathcal{F}_2$ i niech $\mathbb{E}|X|^2 < \infty$. Udowodnij, że zachodzi wtedy

$$\mathbb{E} |X - \mathbb{E}(X|\mathcal{F}_2)|^2 \leqslant \mathbb{E} |X - \mathbb{E}(X|\mathcal{F}_1)|^2.$$

Zadanie 17. Niech X_1, X_2, \ldots będzie ciągiem niezależnych i całkowalnych zmiennych losowych o tym samym rozkładzie gamma (α, β) i niech τ będzie zmienną losową o rozkładzie Poissona z parametrem λ niezależną od tego ciągu. Znajdź wartość oczekiwaną zmiennej losowej

$$\xi \stackrel{d}{=} \sum_{n=1}^{\tau} X_n.$$