Теорія Мат Аналіз Екзамен

- 1. <u>Поняття числового ряду. Збіжність і сума ряду. Необхідна умова збіжності.</u> Критерій Коші
- 2. Ряди з невід'ємними членами. Ознаки збіжності (Даламбера, Коші, Раабе, порівняння із степенем)
- 3. Ряди з довільними членами. Ознака Лейбніца
- 4. Абсолютна й умовна збіжності
- 5. Ознаки збіжності Абеля та Діріхле
- 6. Функціональні ряди. Рівномірна збіжність
- 7. <u>Мажорантна ознака Вейєрштрасса рівномірної збіжності функціональнного ряду</u>
- 8. Ознаки рівномірної збіжності Абеля та Діріхле
- 9. Степеневі ряди. Теорема Абеля. Радіус збіжності
- 10. Розвинення функцій в степеневі ряди. Критерій розвинення функцій в степеневі ряди
- 11. Ортогональні й ортонормовані системи. Процес ортогоналізації
- 12. Ряд Фур'є по ортогональних системах
- 13. Ряди Фур'є для парних та непарних функцій
- 14. Гладкі та кусково-гладкі функції
- 15. Невласні інтеграли першого роду
- 16. Невласні інтеграли другого роду

Поняття числового ряду. Збіжність і сума ряду. Необхідна умова збіжності. Критерій Коші.

Поняття числового ряду

Розглянемо нескінченну числову послідовність $x_1, x_2, ..., x_n, ...$. Складений з її елементів вираз

$$x_1 + x + \dots + x_n + \dots$$
 $\sum_{n=1}^{\infty} x_n$ (1)

називається числовим рядом, де x_n - загальний член ряду, виражений як

функція номера n ($x_n = \frac{1}{n}, x_n = aq^{n-1}$). Складемо з елементів ряду такі суми, які називаються частковими: $S_1 = x_1, S_2 = x_1 + x_2, ..., S_n = x_1 + ... + x_n$.

Означення. Числовий ряд називається збіжним, якщо \exists скінченна границя послідовності його часткових сум – ця границя називається сумою ряду ($\exists \lim_{n \to \infty} S_n$), в протилежному випадку ряд називається розбіжним ($\exists \lim_{n \to \infty} S_n = \infty$).

Необхідна ознака збіжності ряду.

Якщо ряд (1) збіжний, то його n-тий член X_n при необмеженому зростанні n прямує до нуля $^{\lim\limits_{n \to \infty} x_n \, = \, 0}$.

Розглянемо часткові суми $S_n = x_1 + x_2 + ... + x_n, S_{n-1} = x_1 + x_2 + ... + x_{n-1}.$

Звідси маємо $x_n = S_n - S_{n-1}$.

Оскільки ряд збіжний, то $\lim_{n\to\infty}S_n=S$ і $\lim_{n\to\infty}S_{n-1}=S$, отже, $\lim_{n\to\infty}x_n=0$.

<u>Наслідо</u>к. Якщо n-тий член ряду при $^{n o \infty,}$ не прямує до 0, то ряд розбіжний.

Критерій Коші збіжності числового ряду

Для того, щоб ряд ($\sum_{n=1}^{\infty} x_n$) збігався $\Leftrightarrow \forall \varepsilon > 0 \exists N : \forall n > Ni \forall p \in \mathbb{N}$ $\left|S_{n+p} - S_n\right| < \varepsilon$, або $|\mathbf{x}_{n+1} + \mathbf{x}_{n+2} + \ldots + \mathbf{x}_{n+p}| < \varepsilon$

Доведення аналогічне доведенню критерія Коші для послідовностей. Для гармонічного ряду $\sum_{n=1}^{\infty} \frac{1}{n}$ маємо: $\left|S_{n+p} - S_n\right| = \left|\frac{1}{n+1} + \frac{1}{n+2} + ... + \frac{1}{n+p}\right| > \frac{p}{n+p} \Big|_{n=p} = \frac{1}{2} > \varepsilon$, для $\varepsilon \in (0; \frac{1}{2})$ і, отже, ряд розбіжний.

Ряди з невід'ємними членами. Ознаки збіжності (Даламбера,Коші, Раабе, порівняння із степенем).

Ряди $\sum_{n=1}^{\infty} a_n$, всі члени яких невід'ємні $a_n \geq 0$, $S_n = a_1 + a_2 + \ldots + a_n, S_{n+1} \geq S_n$.

Критерій збіжності додатного числового ряду.

Для того, щоб ряд з додатними членами був збіжним необхідно і достатньо, щоб S_n була обмежена зверху

Ознаки збіжності додатних рядів

Ознака порівняння рядів

Якщо члени ряду $\sum_{n=1}^{\infty} a_n$ (1) додатні (невід'ємні) і не перевищують відповідних членів збіжного ряду $\sum_{n=1}^{\infty} b_n(2)$, тобто $a_n \leq b_n, \forall n > N$, то ряд (1) збіжний, розбіжність (1) викликає розбіжність (2).

Доведення. Нехай $S_n^{(1)} = \sum_{k=1}^n a_k, S_n^{(2)} = \sum_{k=1}^n b_k$ Оскільки ряд (2) збіжний, то $\lim_{n \to \infty} S_n^{(2)} = S^2, 0 \le a_1 \le b_1, 0 \le a_2 \le b_2, ..., 0 \le a_n \le b_n \Rightarrow S_n^{(1)} \le S_n^{(2)} \le S^2$, оскільки $a_n \ge 0$, то S_n зростає при збільшенні n, але не більше S^2 , а \forall зростаюча обмежена послідовність має границю. Необмеженість $S_n^{(1)}$ викликає необмеженість $S_n^{(2)}$ і ряд (2) — розбіжний

Ознака збіжності Даламбера (1717-1783).

Нехай всі члени ряду $a_1+a_2+...+a_n+...$ додатні і $\lim_{n\to\infty} \frac{a_{n+1}}{a_n}=l,$ тоді при умові

- 1) l < 1 ряд збіжний
- 2) l > 1 розбіжний
- 3) l = 1 ознака відповіді не дає.

Доведення: $\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=l\Rightarrow \left|\frac{a_{n+1}}{a_n}-l\right|<\varepsilon$ при достатньо великому $n\geq N$, $l-\varepsilon<\frac{a_{n+1}}{a_n}< l+\varepsilon$ при $n\geq N$.

Розглянемо 3 випадки: 1) l < 1 і візьмемо ε , що $l + \varepsilon < 1$.

Покладемо $l+\varepsilon=q$, тоді 0 < q < 1 , $a_n < q, a_{n+1} < q, a_n, \forall n \geq N.$ При n=N,N+1,N+2,... будемо мати низку нерівностей $a_{N+1} < a_N q, a_{N+2} < a_N q^2, a_{N+3} < a_N q^3...$ і члени ряду будуть менше членів геометричної прогресії $a_{N+1} + a_{N+2} + ... < a_N q + a_N q^2...$

При |q|<1 ряд збігається, а за ознакою порівняння збігається ряд $a_{N+1}+a_{N+2}+...$, отже, і вихідний ряд.

2)
$$l>1, \varepsilon>0$$
 таке, що $l-\varepsilon>1$ і $a_n = N, N+1, N+2, ...; a_N < a_{N+1} < a_{N+2} < ...$ члени зростають і не прямують до 0, а прямують до ∞ .

3) при l=1 на прикладах показується, що ряд як збігається, так і розбігається.

Ознака Коші

Якщо ряд строго додатній: $a_n > 0$ і $\lim_{n \to \infty} \sqrt[n]{a_n} = q$, то при q < 1 ряд збіжний, q > 1 ряд розбіжний, при q = 1 - невідомо.

<u>(Узагальнена радикальна ознака Коші)</u>

Для ряду $\sum a_n$ позначимо $q=\overline{\lim_{n\to\infty}}\sqrt[n]{a_n}$, тоді: якщо q<1 , то ряд $\sum a_n$ - збіжний; якщо q>1 , то ряд $\sum a_n$ - розбіжний.

Ознака порівняння із степенем.

Якщо при $n \to \infty$ $a_n = O(\frac{1}{n^p})$, то при p > 1 ряд (1) збігається, при $p \le 1$ - розбігається.

Приклад. $a_n = \ln \cos \frac{e}{n} = \ln (1 - \frac{1e^2}{2n^2} + o(\frac{1}{n^2})) = -\frac{e^2}{2n^2} + o(\frac{1}{n^2}) = O(\frac{1}{n^2}) -$ ряд збігається, p = 2 > 1.

Ознака Раабе.

Якщо ряд (1) додатній строго і $\lim_{n\to\infty} n(\frac{a_n}{a_{n+1}}-1)=p,$ то при p>1 ряд - збіжний, $n(\frac{a_n}{a_{n+1}}-1)$ при p<1 - розбіжний, p=1 - ? $n(\frac{a_n}{a_{n+1}}-1)$ - послідовність Раабе.

Ряди з довільними членами. Ознака Лейбніца.

Ряди з довільними членами-ряди, частина членів яких додатна, частина – від'ємна, частина дорівнює нулю

Ряд Лейбніца – це ряд вигляду: $a_1-a_2+a_3-a_4+a_5-a_6+...+(-1)^{n-1}a_n+...$, або $a_1+(-a_2)+a_3+(-a_4)+a_5+(-a_6)+...,a_n\geq 0, npu$ n=1,2,...

<u>Теорема Лейбніца.</u> Якщо модулі членів ряду (1) монотонно спадають: $a_1 \ge a_2 \ge a_3 \ge a_4 \ge \dots$ при зростанні n, і n-тий член ряду прямує до 0, $\lim_{n \to \infty} a_n = 0$, то ряд збігається і $0 < S \le a_1$.

Доведення: Візьмемо суму S_{2m} членів.

$$S_{2m} = (a_1 - a_2) + (a_3 - a_4) + \dots + (a_{2m-1} - a_{2m})$$
 TO $S_{2m} \ge 0$

Якщо 2m зростає, то S_{2m} не спадає (додаються невід'ємні доданки)

Представимо S_{2m} в іншому вигляді:

$$S_{2m} = a_1 - (a_2 - a_3) - (a_4 - a_5) + \dots - (a_{2m-2} - a_{2m-1}) - a_{2m}$$

Звідси $S_{2m} \le a_1$ і є монотонно зростаючою і обмеженою послідовністю і $\exists \lim_{m \to \infty} S_{2m} = S, S_{2m+1} = S_{2m} + a_{2m+1}, \ a \lim_{m \to \infty} a_{2m+1} = 0 \ i \lim_{m \to \infty} S_{2m+1} = S$, тобто при парному n=2m та непарному n=2m+1 існує одна границя і ряд збіжний.

Абсолютна й умовна збіжності

Ряд $\sum\limits_{n=1}^{\infty}a_{n}$ називається **абсолютно** збіжним, якщо збігається ряд $\sum\limits_{n=1}^{\infty}|a_{n}|$. При дослідженні рядів на абсолютну збіжність використовуємо ознаки збіжності для рядів з невід'ємними членами.

Ряд $\sum_{k=1}^{\infty} a_k$ називається **умовно збіжним**, якщо цей ряд збіжний, а ряд із модулів $\sum_{k=1}^{\infty} |a_k|$ - розбіжний.

Ознаки збіжності Абеля та Діріхле

$$\sum_{n=1}^{\infty}a_{n}b_{n}=a_{1}b_{1}+a_{2}b_{2}+...+a_{n}b_{n}+...$$
, a_{n},b_{n} дві послідовності дійсних чисел

Ознака Абеля.

Якщо ряд $\sum_{n=1}^{\infty}b_n=b_1+b_2+...+b_n+...$ збігається, а числа a_n утворюють монотонну і обмежену послідовність $|a_n| \leq k, n=1,2...$, то ряд збіжний.

Ознака Діріхле-Абеля

Якщо часткові суми ряда $\sum_{n=1}^{\infty}b_n$ обмежені $|S_n|=|\sum_{k=1}^nb_k|\leq M$, $|S_n|\leq M, S_n=\sum_{k=1}^nb_k$, а числа a_n утворюють монотонну послідовність, що прямує до 0: $\lim_{n\to\infty}a_n=0$, то ряд збіжний.

Ознака Лейбніца є частковий випадок цієї ознаки при $b_n = (-1)^{n+1}$, ряд $\sum_{n=1}^{\infty} b_n = 1 - 1 + 1 - 1....$ має обмежену послідовність часткових сум.

Функціональні ряди. Рівномірна збіжність

Відображення $N \stackrel{\Phi}{\to} F$, де F - множина всіх функцій називається функціональною послідовністю (ФП). Значення відображення $\Phi(n) = f_n$ називається n-m членом, та будемо її позначати $\Phi(n)$.

Функціональна послідовність (S_n) називається **функціональним рядом** (**ФР**), якщо існує така функціональна послідовність (f_n) , для якої виконується умова:

 $orall n \in N \quad orall x \in X \qquad S_n(x) = \sum_{k=1}^n f_k(x)$. Такий функціональний ряд будемо позначати $\sum f_n$. Значення S_n називається **частковою сумою** ФР $\sum f_n$, а функція f_n її **загальним членом** (n- м членом) функціонального ряду.

Функціональна послідовність f_n називається <u>поточково збіжною</u> до функції f , якщо $\forall x \in X$ $f(x) = \lim_{n \to \infty} f_n(x)$.

Функціональний ряд (2) — збіжний в т. $x_0 \in X$, якщо збіжний в цій точці відповідний числовий ряд $\sum_{n=1}^{\infty} f_n(x_0)$,або $\lim_{n \to \infty} S_n(x_0)$ і абсолютно збіжний в т. x_0 , якщо при $x = x_0$ збігається ряд $\sum_{n=1}^{\infty} |f_n(x)|$.

<u>Поточковою сумою</u> ФР $\sum f_n$ на множині X називається поточкова границя його часткових сум, якщо вона існує. ФР називається <u>поточково збіжним</u> на X, якщо його поточкова сума існує та скінченна в кожній точці множини X.

Мажорантна ознака Вейєрштрасса рівномірної збіжності функціональнного ряду.

ФР (2) $\sum f_n$ називається <u>рівномірно збіжним</u>, якщо послідовність його часткових сум (S_n) рівномірно збігається, тобто $S_n(x) \xrightarrow{\gamma} S(x)$, $x \in X$, а саме: $\forall \varepsilon > 0 \exists N(\varepsilon) \in N: \forall n > N \big| S_n(x) - S(x) \big| < \varepsilon \forall x \in X$ одночасно, або $\sup_{x \in X} \left| S_n(x) - S(x) \right| < \varepsilon$, або $r_n(x) = S(x) - S_n(x) \xrightarrow{\gamma} 0 \ \forall x \in X$

Ознака Вейєрштрасса. Якщо для функціонального ряду (2) $\sum_{n=1}^{\infty} f_n(x)$ можна вказати такий числовий збіжний ряд $\sum_{n=1}^{\infty} a_n$, що $\forall n \geq n_0, \ \forall x \in X : \left| f_n(x) \right| \leq a_n$, то ряд (2) збігається абсолютно і рівномірно на X.

Ряд $\sum_{n=1}^{\infty} a_n$ називають <u>мажоруючим</u> для $\sum_{n=1}^{\infty} f_n(x)$.

Доведення:

За критерієм Коші маємо:

Ознаки рівномірної збіжності Абеля та Діріхле

(Ознака Абеля рівномірної збіжності ФР)

Нехай $\forall x \in X$ послідовність $(f_n(x))$ монотонна. Якщо ФР $\sum \varphi_n \Rightarrow$ і $\|f_n\| = O(1)$, то ряд $\sum f_n \varphi_n \Rightarrow$ на X .

(Ознака Діріхле рівномірної збіжності ФР)

Нехай $\forall x \in X$ послідовність $\binom{f_n(x)}{}$ монотонна. Якщо ФР $\lVert f_n \rVert = o(1)$ і $\lVert \sum_{k=1}^n \varphi_k \rVert = O(1)$, то ряд $\sum f_n \varphi_n \Rightarrow$ на X .

Степеневі ряди. Теорема Абеля. Радіус збіжності

ФР вигляду $\sum a_n(x-x_0)^n$, де $n\in Z^+$ називається <u>степеневим рядом</u> (<u>СР</u>). $\sum a_n x^n$

Степеневий ряд – це функціональний ряд, а саме нескінченний многочлен $a_0 + a_1 x + a_2 x^2 + ... + a_n x^n + ... = \sum_{n=0}^{\infty} a_n x^n$. Множина значень x, при яких ряд збігається називається **областю збіжності степеневого ряду**.

Теорема 1(Абеля).

Якщо степеневий ряд збіжний в точці $x = x_0 \neq 0$, то він абсолютно збіжний для всіх x, для яких $|x| < |x_0|$; якщо ряд розбіжний при $x = x_1$, то він розбіжний при $\forall x : |x| > |x_1|$.

Доведення:

Оскільки ряд збіжний, то загальний член ряду прямує до нуля : $\lim_{n\to\infty} a_n x_0^n = 0 \ , \text{ а отже, обмежений : } \left|a_n x_0^n\right| \leq M \ , n = 0,1,2.... \text{ Візьмемо } \forall x:|x| < |x_0| \ \text{ і }$ складемо ряд : $\sum_{n=0}^\infty a_n x^n = \sum_{n=0}^\infty a_n x_0^n (\frac{x}{x_0})^n . \text{ Складемо ряд із абсолютних величин: } \left|a_n x^n\right| = \left|a_n x_0^n\right| (\frac{x}{x_0})^n \left| \leq M \left|\frac{x}{x_0}\right|^n = Mq^n \ , \ q < 1, \sum_{n=0}^\infty \left|a_n x^n\right| \leq \sum_{n=0}^\infty M \left|\frac{x}{x_0}\right|^n - \text{ це ряд, елементи якого }$

складають геометричну прогресію, q<1, а отже, ряд $\sum_{n=0}^{\infty} a_n x^n$ - абсолютно збіжний за ознакою порівняння. Якщо ряд розбіжний в точці x_0 , то він розбіжний при $x_0 = 1$. При x=0 збігаються всі степеневі ряди. Є ряди, які не збігаються при жодному значенні х.

Радіус збіжності??? Інтервал (-R, R) називається проміжком збіжності, а число R $(0 < R \le +\infty)$ - радіусом збіжності ряду. При R=0 ряд всюди розбіжний , область його збіжності складається з однієї точки x=0.

(Формула д'Аламбера для радіуса збіжності)

Якщо для степеневого ряду $\sum a_n x^n = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = l \in \overline{R}$, то радіус збіжності степеневого ряду можна знайти за формулою: $R = \frac{1}{l}$.

Розвинення функцій в степеневі ряди. Критерій розвинення функцій в степеневі ряди.

Будемо казати, що функція $(-R,R) \xrightarrow{f} R$ $\left(X \xrightarrow{f} R\right)$ може бути розкладеною в степеневий ряд на множині (-R,R) (на множині X), якщо існує СР, що збігається до функції f на множині (-R,R) (на множині X), тобто $f(x) = \sum_{n=0}^{\infty} a_n x^n$, $x \in (-R,R)$ $(x \in X)$. Будемо казати, що функція $(-R,R) \xrightarrow{f} R$ $\left(X \xrightarrow{f} R\right)$ може бути розкладеною в степеневий ряд на множині (-R,R) (на множині X), якщо існує СР, що збігається до функції f на множині (-R,R) (на множині X), тобто $f(x) = \sum_{n=0}^{\infty} a_n x^n$, $x \in (-R,R)$ $(x \in X)$

Критерій розвинення функції в степеневий ряд

Необхідність: $f(x) = \sum_{n=0}^{\infty} a_n x^n$ - збіжний ряд на (-R, R),

 $R_n(x) = \sum_{k=n+1}^{\infty} a_k x^k$ - залишок збіжного ряду в кожній точці $x \in (-R, R)$ є збіжним,

$$\lim_{n\to\infty} R_n(x) = f(x) - \lim_{n\to\infty} S_n(x) = 0.$$

Достатність: нехай $R_n(x) \to 0$ в точці $x \in (-R, R)$ при $n \to \infty$.

$$|R_n(x)| = f(x) - S_n(x).$$

$$\lim_{n\to\infty} S_n(x) = \lim_{n\to\infty} [f(x) - R_n(x)] = \lim_{n\to\infty} f(x) - 0 = f(x).$$

Зауважимо, що відрізками степеневих рядів є многочлени і тому степеневі ряди – зручний спосіб для наближених обчислень.

Теорема 5. (достатні умови розвинення в степеневий ряд)

Якщо функція $f(x) \in C^{\infty}(-R;R)$ і всі похідні обмежені одним і тим самим числом $\left|f^{(k)}(x)\right| \leq M, k=1,2,...n...$, то має місце розвинення $f(x) = \sum_{n=1}^{\infty} a_n x^n$.

Ортогональні й ортонормовані системи. Процес ортогоналізації

Функції $f \in R[a,b]$ і $g \in R[a,b]$ називають ортогональними, якщо $\int\limits_a^b f(x)g(x)dx=0$

Розглянемо систему функцій $\{\varphi_0, \varphi_1, \varphi_2, ..., \varphi_n...\} \subset R[a,b]$ (1)

Систему (1) називають *ортогональною* на $\begin{bmatrix} a,b \end{bmatrix}$, якщо $\int\limits_a^b \varphi_i(x)\varphi_j(x)dx = \begin{cases} 0, & i \neq j \\ \left\|\varphi_i\right\|^2 > 0, & i = j \end{cases}$.

Якщо $\|\varphi_i\|=1$,то $\{\varphi_n\}_{n=0}^\infty$ називають *ортонормованою*. Будь-яку ортогональну систему можна нормувати: підібрати $\mu_0,\mu_1,...,\mu_n$ так щоб $\mu_0\varphi_0,\mu_1\varphi_1,...,\mu_n\varphi_n$, яка ортогональна, була

ортонормована
$$\int_{a}^{b} \mu_{n}^{2} \varphi_{n}^{2}(x) dx = \mu_{n}^{2} \int_{a}^{b} \varphi_{n}^{2}(x) dx = 1$$
, $n = 0,1,2,...$, звідси $\lim_{a \to \infty} \frac{1}{\sqrt{\int_{a}^{b} \varphi_{n}^{2}(x) dx}} = \frac{1}{\|\varphi_{n}\|}$

ПРОЦЕС ОРТОГОНАЛІЗАЦІЇ???

Ряд Фур'є по ортогональних системах

Нехай f(x) задана на [a,b] і може бути представлена у вигляді ряду по ортогональній системі $\{\varphi_n(x)\}_{n=0}^\infty$; $f(x)=a_0\varphi_0+a_1\varphi_1+\mathbb{Z}+a_n\varphi_n+\mathbb{Z}$, $a_i-const$

Поставимо задачу обчислити постійні a_i .

Припускаємо, що ряди

$$f(x)\varphi_n(x) = a_0\varphi_0(x)\varphi_n(x) + a_1\varphi_1(x)\varphi_n(x) + \mathbb{Z} + a_n\varphi_n(x)\varphi_n(x) + \mathbb{Z}$$
 можна інтегрувати,

$$n = 0,1,2,... \int_{a}^{b} f(x)\varphi_{n}(x)dx = a_{n} \|\varphi_{n}\|^{2} \int_{a}^{b} f(x)\varphi_{n}(x)dx$$

$$n = 0,1,2,... \int_{a}^{b} f(x)\varphi_{n}(x)dx = a_{n} \|\varphi_{n}\|^{2} \int_{a}^{b} f(x)\varphi_{n}(x)dx$$

$$n = 0,1,2,...$$

Має місце твердження: якщо функції системи $\left\{ \! \varphi_{\scriptscriptstyle n}(x) \! \right\}$ неперервні і для f(x)

 $f(x) = \sum_{n=0}^{\infty} a_n \phi_n(x)$ справедливе представлення , причому ряд збігається рівномірно, то це є ряд Фур'є для f(x) , а a_n називається коефіцієнтами Фур'є .

Ряди Фур'є для парних та непарних функцій

Нагадаємо, що функція називається парною, якщо f(-x) = f(x) і непарною, якщо f(-x) = -f(x)

Для парної функції
$$\int\limits_{-e}^{e}f(x)dx=2\int\limits_{0}^{e}f(x)dx.$$

$$\int_{-e}^{e} f(x)dx = \int_{-e}^{0} f(x)dx + \int_{0}^{e} f(x)dx = \int_{0}^{e} f(-x)dx + \int_{0}^{e} f(x)dx = 2\int_{0}^{e} f(x)dx$$

$$\int_{-e}^{e} f(x)dx = 0$$
 для непарної функції.

Нагадаємо, що

а) добуток двох парних і двох непарних функцій є парна функція;

б) добуток парної і непарної – є непарна функція.

Гладкі та кусково-гладкі функції

Функція f(x) називається гладкою на [a,b], якщо вона має неперервну похідну. Геометрично це означає, що при переміщенні вздовж кривої y=f(x) напрямок дотичної змінюється неперервно, без стрибків. Функція, похідна якої допускає лише скінченне число точок розриву І-го роду називається кусково-гладкою на [a,b].

- а) розривна кусково-гладка функція;
- б) гладка функція,плавна крива без кутових точок;
- в) неперервна кусково-гладка функція

Графік кусково-гладкої функції є неперервна або розривна крива, що має скінченну кількість кутових точок (в них скачок похідної).

Будь-яка кусково-гладка функція f(x) (неперервна чи розривна) обмежена і має обмежену похідну скрізь, за виключенням кутових і точок розриву (в цих точках не існує f'(x)).

Теорема. Ряд Фур'є кусково-гладкої функції f(x) (неперервної чи розривної), визначеної на ($^{-\infty,+\infty}$) періоду T=2e збігається для \forall $x\in (-\infty,+\infty)$, причому його сума S(x)=f(x) в кожній точці неперервності і дорівнює півстрибку $S(x_0)=\frac{f(x_0+0)+f(x_0-0)}{2}$ в кожній точці розриву x_0 .

Якщо f(x) всюди неперервна, то ряд збігається абсолютно і рівномірно.

Невласні інтеграли першого роду.

При визначенні $\int\limits_a^b f(x)dx$ (такий інтеграл називається власним, але це слово зазвичай опускається) передбачалось, що

- а) проміжок [a,b] скінченний;
- б) <u>підінтегральна</u> функція визначена , неперервна на [a,b], обмежена і множина точок розриву мають <u>Лебегову</u> міру нуль.

Якщо порушуються пункти а) або б), то інтеграл називається невласним.

Означення 1.

Нехай f(x) визначена на $a \le x < +\infty$ і інтегровна на [a,R], R>0, так що $\int_{R}^{R} f(x) dx$

Невласні інтеграли з двома нескінченними границями можна обчислити як суму двох невласних інтегралів:

$$\int_{-\infty}^{\infty} f(x)dx = \int_{-\infty}^{c} f(x)dx + \int_{c}^{+\infty} f(x)dx$$

Нехай F(x) - первісна функція для f(x) тоді

$$\int_{a}^{+\infty} f(x)dx = \lim_{R \to \infty} \int_{a}^{R} f(x)dx = \lim_{R \to +\infty} (F(R) - F(a))$$

Якщо існує первісна F(x), неперервна на [a,b] і така, що F'(x) = f(x), узагальнена первісна, та ввести умовне позначення $F(+\infty) = \lim_{R \to \infty} F(R)$, то для

збіжного невласного інтеграла з нескінченною верхньою межею інтегрування узагальнена формула Ньютона –Лейбніца має вигляд:

$$\int_{a}^{+\infty} f(x)dx = F(+\infty) - F(a)$$
, $f(x) = f(x)$

Означення 3. Невласний інтеграл І-го роду збігається, якщо

$$\forall \varepsilon > 0 \exists \Delta(\varepsilon) > 0 : \forall A \in [a, \infty) \text{ 3 toro, injo } A > \Delta \Rightarrow S(A) - \int_{a}^{\infty} f(x) dx < \varepsilon$$
.

<u>Деякі властивості невласних</u> інтегралів І-го роду:

Якщо невласний інтеграл збіжний, то збіжний його залишок та навпаки, причому:

$$\int_{a}^{\infty} f(x)dx = \int_{a}^{A} f(x)dx + \int_{A}^{+\infty} f(x)dx$$

Якщо збігається
$$\int\limits_{a}^{\infty}f(x)dx$$
 , то $\lim\limits_{A \to \infty}\int\limits_{A}^{\infty}f(x)dx=0$

Якщо збігається
$$\int\limits_a^\infty f(x)dx$$
 , то $\lim\limits_{A\to\infty}\int\limits_A^\infty f(x)dx$ = 0
Якщо збігається $\int\limits_a^\infty f(x)dx$, то збігається $\int\limits_a^\infty cf(x)dx$, с – const, причому

$$\int_{a}^{\infty} cf(x)dx = c \int_{a}^{\infty} f(x)dx$$

Якщо збігаються інтеграли

$$\int\limits_{a}^{\infty}f(x)dx\int\limits_{a}^{\infty}g(x)dx$$
, то збігається інтеграл

$$\int_{a}^{\infty} [f(x) \pm g(x)] dx$$
 та інтеграл від суми дорівнює сумі інтегралів.

Критерій Коші збіжності невласного інтеграла І-го роду

Невласні інтеграли другого роду.

Інтеграл від необмежених функцій

f:[a,b) o R $\exists \int_a^{b-\eta} f(x) dx, \lim_{x \to b-0} f(x) = \infty$, точка b —особлива, якщо функція необмежена на [a,b), але обмежена на $[a,b-\eta) \subset [a,b)$. Означення 2.

Означення 2.

$$\lim_{\eta \to 0} \int_{a}^{b \to \eta} f(x) dx = \int_{a}^{b} f(x) dx \tag{1}$$

називається невласним інтегралом ІІ-го роду. Якщо границя скінченна, то невласний інтеграл називається збіжним ,якщо границя нескінченна або не існує, то інтеграл називається розбіжним.

$$\int_{a}^{b} f(x)dx = \lim_{\eta \to 0} \int_{a+\eta}^{b} f(x)dx$$

Якщо точка а – особлива, то (2)

Якщо
$$f(x)$$
 необмежена у внутрішній точці $c \in [a,b]$ то
$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx$$
, (3)

де невласні інтеграли другого роду визначаються (1) та (2).
Якщо а і
$$b$$
 особливі точки ,то $\int_a^b f(x)dx$ визначається (3), де $c \forall \in [a,b]$

Означення 4. Невласний інтеграл ІІ-го роду збігається, якщо $\forall \varepsilon > 0 \exists \delta(\varepsilon) > 0 : \forall \lambda \in [a,b)$

$$0 < b_{-} \lambda < \delta \implies S(\lambda) - \int_{a}^{b} f(x) dx < \varepsilon, \text{ ge } S(\lambda) = \int_{a}^{\lambda} f(x) dx.$$

Критерій Коші збіжності невласного інтеграла ІІ-го роду

Для того, щоб
$$\int_{a}^{b} f(x)dx$$
 - збігався $\Leftrightarrow \forall \varepsilon > 0 \exists \delta(\varepsilon) : \lambda', \lambda'' \in [a,b)$ $0 < b - \lambda'' < \delta$, $0 < b - \lambda'' < \delta \Rightarrow \int_{\lambda'}^{\lambda''} f(x)dx$ $< \varepsilon$.

Наведені критерії мало придатні на практиці, існують достатні умови збіжності невласних інтегралів.