Árvores

Prof. Andrei Braga

Conteúdo

- Número de componentes conexas e de arestas
- Árvores
- Árvores enraizadas
- Representação computacional de árvores
- Referências

- Para um grafo G com 5 vértices, vamos estudar a relação entre o número de componentes conexas de G e o número de arestas de G
- Se G tem 5 componentes conexas, quantas arestas G tem?

- Para um grafo G com 5 vértices, vamos estudar a relação entre o número de componentes conexas de G e o número de arestas de G
- Se G tem 5 componentes conexas, quantas arestas G tem? 0 arestas

- Para um grafo G com 5 vértices, vamos estudar a relação entre o número de componentes conexas de G e o número de arestas de G
- Se *G* tem 4 componentes conexas, quantas arestas *G* tem?

- Para um grafo G com 5 vértices, vamos estudar a relação entre o número de componentes conexas de G e o número de arestas de G
- Se G tem 4 componentes conexas, quantas arestas G tem?

- Para um grafo G com 5 vértices, vamos estudar a relação entre o número de componentes conexas de G e o número de arestas de G
- Se G tem 4 componentes conexas, quantas arestas G tem? 1 aresta

- Para um grafo G com 5 vértices, vamos estudar a relação entre o número de componentes conexas de G e o número de arestas de G
- Se G tem 3 componentes conexas, quantas arestas G tem?

- Para um grafo G com 5 vértices, vamos estudar a relação entre o número de componentes conexas de G e o número de arestas de G
- Se G tem 3 componentes conexas, quantas arestas G tem?

- Para um grafo G com 5 vértices, vamos estudar a relação entre o número de componentes conexas de G e o número de arestas de G
- Se G tem 3 componentes conexas, quantas arestas G tem? 2 ou 3 arestas

- Para um grafo G com 5 vértices, vamos estudar a relação entre o número de componentes conexas de G e o número de arestas de G
- Se G tem 2 componentes conexas, quantas arestas G tem?

- Para um grafo G com 5 vértices, vamos estudar a relação entre o número de componentes conexas de G e o número de arestas de G
- Se G tem 2 componentes conexas, quantas arestas G tem?

- Para um grafo G com 5 vértices, vamos estudar a relação entre o número de componentes conexas de G e o número de arestas de G
- Se G tem 2 componentes conexas, quantas arestas G tem? 3, 4, 5 ou
 6 arestas

- Para um grafo G com 5 vértices, vamos estudar a relação entre o número de componentes conexas de G e o número de arestas de G
- Se G tem 1 componente conexa, quantas arestas G tem?

- Para um grafo G com 5 vértices, vamos estudar a relação entre o número de componentes conexas de G e o número de arestas de G
- Se *G* tem 1 componente conexa, quantas arestas *G* tem?

- Para um grafo G com 5 vértices, vamos estudar a relação entre o número de componentes conexas de G e o número de arestas de G
- Se *G* tem 1 componente conexa, quantas arestas *G* tem? 4, 5, 6, 7, 8, 9 ou 10 arestas

- De acordo com as observações anteriores, podemos perceber uma relação entre o número de componentes conexas e o número mínimo de arestas de um grafo
- Vamos escrever o que percebemos de uma forma mais geral

- Vamos escrever o que percebemos de uma forma mais geral
- Dado um grafo G com 5 vértices,
 - Se G tem 5, ou seja, 5 0 componentes conexas, então G tem pelo menos 0 arestas
 - Se G tem 4, ou seja, 5 1 componentes conexas, então G tem pelo menos 1 aresta
 - Se G tem 3, ou seja, 5 2 componentes conexas, então G tem pelo menos 2 arestas
 - Se G tem 2, ou seja, 5 3 componentes conexas, então G tem pelo menos 3 arestas
 - Se G tem 1, ou seja, 5 4 componentes conexas, então G tem pelo menos 4 arestas

- Teorema: Dado um grafo G com n vértices, se G tem n k componentes conexas, então G tem pelo menos k arestas
- Um grafo G com n vértices é conexo se G tem 1, ou seja, n (n 1) componente conexa
- Teorema: Dado um grafo G com n vértices, se G é conexo, então G tem pelo menos n - 1 arestas

Árvores

- Vimos que, para ser conexo, um grafo precisa ter um determinado número mínimo de arestas
- Árvores são grafos conexos onde este mínimo é atingido
- Árvores são um tipo de grafo que possui muitas aplicações importantes
- Estas aplicações ocorrem em áreas como armazenamento e busca eficiente de dados e telecomunicações

Árvore

Árvore - grafo conexo

Árvore - grafo conexo

Árvore - grafo acíclico

Árvore - grafo acíclico

Árvore - grafo acíclico

Grafo acíclico

- Um grafo é **acíclico** se não possui ciclos
- Exemplo:

Grafo acíclico

- Um grafo é acíclico se não possui ciclos
- Exemplo:

Árvore

- Uma **árvore** é um grafo conexo acíclico
- Exemplo:

Árvore

- Uma árvore é um grafo conexo acíclico
- Uma folha de uma árvore é um vértice de grau 1 da árvore
- Exemplo:
 - As folhas da árvore ao lado são

Árvore

- Uma árvore é um grafo conexo acíclico
- Uma folha de uma árvore é um vértice de grau 1 da árvore
- Exemplo:
 - As folhas da árvore ao lado são u_0 , u_1 , u_4 , u_5 , e u_6

Propriedades de uma árvore

- Teorema: Dado um grafo G com n vértices, as seguintes afirmações são equivalentes:
 - 1. *G* é uma árvore;
 - 2. *G* é conexo e possui *n* 1 arestas;
 - G é acíclico e possui n 1 arestas;
 - 4. Existe exatamente um caminho entre quaisquer dois vértices de *G*;
 - G é conexo, mas a remoção de qualquer aresta de G torna G desconexo;
 - 6. *G* é acíclico, mas a inserção de qualquer aresta em *G* faz com que *G* tenha um ciclo.

Exercícios

- 1. Considere o teorema do slide anterior e prove o seguinte:
 - a. A Afirmação 1 implica a Afirmação 6;
 - b. A Afirmação 6 implica a Afirmação 1.

Floresta

- Uma floresta é um grafo conexo acíclico
- Exemplo:

Floresta

- Uma floresta é um grafo conexo acíclico
- Exemplo:

Floresta

Uma floresta é um grafo conexo acíclico

As componentes conexas de uma floresta são árvores

\$ \$ \$ \$

Exemplo:

Árvore enraizada

Uma árvore enraizada é uma árvore em que um dos vértices é especificado

como a raiz

Exemplo:

Árvore enraizada

Árvore não enraizada

 Dada uma árvore com raiz r, se a última aresta do caminho entre o vértice r e um vértice v na árvore é a aresta uv, então dizemos que u é o pai de v e v é um filho de u

Exemplo:

- o v2 é de v0
- v5 é de v10
- o v13 é de v5
- o v6 é de v7

 Dada uma árvore com raiz r, se a última aresta do caminho entre o vértice r e um vértice v na árvore é a aresta uv, então dizemos que u é o pai de v e v é um filho de u

Exemplo:

- o v2 é filho de v0
- v5 é pai de v10
- o v13 é filho de v5
- v6 não é pai nem filho de v7
 (v6 é irmão de v7)

 Dada uma árvore com raiz r, se a última aresta do caminho entre o vértice r e um vértice v na árvore é a aresta uv, então dizemos que u é o pai de v e v é um filho de u. Vértices que têm o mesmo pai são chamados de irmãos

 Dada uma árvore com raiz r, se a última aresta do caminho entre o vértice r e um vértice v na árvore é a aresta uv, então dizemos que u é o pai de v e v é um filho de u. Vértices que têm o mesmo pai são chamados de irmãos

 Dada uma árvore com raiz r, se u é um vértice do caminho entre o vértice r e um vértice v na árvore, então dizemos que u é um ancestral de v

 Dada uma árvore com raiz r, se u é um vértice do caminho entre o vértice r e um vértice v na árvore, então dizemos que u é um ancestral de v. Se um vértice u é ancestral de um vértice v, chamamos v de um descendente de u

 Dada uma árvore enraizada T, chamamos de subárvore de T com raiz v, a árvore induzida por v e seus descendentes em T

Representação computacional de uma árvore

- Uma árvore é um grafo e, portanto, pode ser representada como uma matriz de adjacências ou listas de adjacência ou de outra forma usual de representar um grafo
- Além disso, uma árvore pode ser representada como uma estrutura mais simples

Representação computacional de uma árvore

- Podemos representar uma árvore G com raiz r como um **vetor** pai de |V(G)| elementos, com índices 0, 1, ..., |V(G)| 1, tal que
 - pai[i] é igual ao pai do vértice i em G caso i ≠ r e
 - o pai[r] = -1
- Exemplo:

Representação computacional de uma árvore

- Podemos representar uma árvore G com raiz r como um **vetor** pai de |V(G)| elementos, com índices 0, 1, ..., |V(G)| 1, tal que
 - pai[i] é igual ao pai do vértice i em G caso i ≠ r e
 - o pai[r] = -1
- Exemplo:

pai

-1	0	0	0	1	2	3	3	3	5	5	5	5	5
0													

Referências

- Esta apresentação é baseada nos seguintes materiais:
 - Apêndice B.5 do livro
 Cormen, T. H., Leiserson, C. E., Rivest, R. L., Stein, C. Introduction to Algorithms.
 3rd. ed. MIT Press, 2009.
 - Capítulo 17 do livro
 Sedgewick, R. Algorithms in C++ Part 5. Graph Algorithms. 3rd. ed. Addison-Wesley, 2002.