

มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าชนบุรี การสอบกลางภาคเรียนที่ 1 ปีการศึกษา 2556

วิชา ENE 325 Electromagnetic fields and waves ภาควิชา วศ.อิเล็กทรอนิกส์ฯ ปีที่ 3 ภาคปกติ สอบ วันจันทร์ที่ 23 กันยายน พ.ศ. 2556

เวลา 9.00-12.00 น.

คำเตือน

- 1. ข้อสอบวิชานี้มี 5 ข้อ 10 หน้า (รวมใบปะหน้า)
- 2. ให้ทำทุกข้อลงในข้อสอบ
- 3. ไม่อนุญาตให้นำเอกสารประกอบการเรียนเข้าห้องสอบ
- 4. อนุญาตให้ใช้เครื่องคำนวณได้
- 5. ให้เขียนชื่อ-นามสกุล และเลขประจำตัวลงในข้อสอบทุกหน้า

เมื่อนักศึกษาทำข้อสอบเสร็จ ต้องยกมือบอกกรรมการคุมสอบ เพื่อขออนุญาตออกนอกห้องสอบ ห้ามนักศึกษานำข้อสอบและกระตาษคำตอบออกนอกห้องสอบ

นักศึกษาซึ่งทุจริตในการสอบ อาจถูกพิจารณาโทษสูงสุดให้พ้นสภาพการเป็นนักศึกษา ————————————————————————————————————	
ชื่อ-สกุล	รหัสประจำตัว

อาจารย์ราชวดี ศิลาพันธ์ ผู้ออกข้อสอบ โทร 0-2470-9062

ข้อสอบนี้ได้ผ่านการประเมินจากคุณะกรรมกุฎสุประจำภาควิชาแล้ว

รศ.คร.วุฒิชัย อัศวินชัยโชติ หัวหน้าภาควิชาวิศวกรรมอิเล็กทรอนิกส์และโทรคมนาคม

สูตรคำนวณ

- 1. พิกัดคาร์ทีเซียนมีองค์ประกอบ (x, y, z)
- 2. พิกัดทรงกระบอกมืองค์ประกอบ ($oldsymbol{
 ho}, oldsymbol{\phi}, Z$)
- 3. พิกัดทรงกลมมีองค์ประกอบ (r, θ , ϕ)
- 4. เวกเตอร์ 1 หน่วย (unit vector) $\hat{a}_R = \frac{R}{R}$
- 5. สมการของสนามไฟฟ้า $\overrightarrow{E} = \frac{\overline{F}}{O}$ V/m

โดยที่ \vec{F} = แรงที่กระทำบนประจุ Q (Newton)

- 6. สนามไฟฟ้าจากจุดประจุ $\overrightarrow{E} = \frac{Q}{4\pi\varepsilon_0 R^2} \, \hat{a}_r \, \text{V/m}$
- 7. ความหนาแน่นเส้นแรงไฟฟ้าจากจุดประจุ $\overrightarrow{D} = \frac{\Psi}{4\pi\varepsilon_0 R^2} \hat{a}_r \text{C/m}^2$
- 8. ความสัมพันธ์ระหว่างสนามไฟฟ้าและความหนาแน่นเส้นแรงไฟฟ้า: $\overrightarrow{D} = \boldsymbol{\varepsilon}_0 \overrightarrow{E}$ C/m²

โดยที่ **Ψ**= เส้นแรงไฟฟ้า (electric flux) (C)

9. สนามไฟฟ้าจากเส้นลวดยาวอนันต์ $\overline{E}=rac{
ho_L}{2\pi\epsilon_0
ho}\hat{a}_
ho$ V/m (พิกัดทรงกระบอก)

โดยที่ ρ_{ι} = ความหนาแน่นของประจุต่อความยาว (C/m)

ho = ระยะทางจากเส้นลวดในแนวรัศมี (m)

 $\hat{a}_{
ho}$ = เวกเตอร์ 1หน่วยในแนวรัศมี

10. ขนาดประจุรวมบนพื้นที่ผิว: $Q = \iint
ho_s dS$ Coulomb

โดยที่ $ho_{s}=$ ความหนาแน่นของประจุต่อพื้นที่ (C/m²)

dS = Surface differential element (m²)

- 11. กฎของเก๊าส์ (Gauss's law): $Q_{en} = \oint \overrightarrow{D} \cdot d\overrightarrow{S}$ Coulomb
- 12. Surface differential element ของพิกัดทรงกระบอกด้านข้าง: $d\vec{S}=\rho d\phi dz \hat{a}_{\rho}$
- 13. ความสัมพันธ์ระหว่างสนามไฟฟ้าและความหนาแน่นเส้นแรงไฟฟ้า: $\overrightarrow{D} = \varepsilon_0 \overrightarrow{E}$ C/m²
- 14. ความต่างศักย์ทางไฟฟ้าระหว่างจุด A กับจุด B

$$V_{AB} = -\int_{B}^{A} \vec{E} \cdot d\vec{L}$$
 Volt

โดยที่ $d\vec{L}$ = line differential element

15. ค่าคงที่ $\boldsymbol{\mathcal{E}}_0 = 8.854 \times 10^{-12} \, \text{F/m}$

ชื่อ	รหัสนักศึกษา	ลขที่นั่งสอบ
1. Electrostatics Co (a) จงอธิบายความหม	oncept: (20 คะแนน) กยของความเข้มสนามไฟฟ้า (Electric field	d intensity หรือ E) (5 คะแนน)
(b) จงอธิบายความหม	มายของความหนาแน่นเส้นแรงไฟฟ้า (Elect	tric flux density หรื อ D) (5 คะแนน)
(c) จงยกตัวอย่างการเ อย่างไร (5 คะแนน)	ปรากฏการณ์การถ่ายเทชองประจุไฟฟ้ามา :	2 ปรากฏการณ์ อธิบายด้วยว่าเกิดขึ้นได้

ชื่อ	รหัสนักศึกษา	เลขที่นั่งสอบ
00	a vite par in the Co	001 D 11 M 101 D D

(d) จงวาดเส้นแรงไฟฟ้าระหว่างประจุบวก 2 ประจุ ที่อยู่ใกล้กันดังรูป (5 คะแนน)

ชื่อ	รหัสนักศึกษา	เลขที่นั่งสอบ

2. Coulomb's law: จงคำนวณความเข้มสนามไฟฟ้าแบบเวคเตอร์ที่จุด P (0, 2, 1) ที่เกิดจากประจุ Q_1 = 10 nC ที่อยู่ ณ ตำแหน่ง (2, 1, 0), ประจุ Q_2 = 10 nC ที่อยู่ณ ตำแหน่ง (3, 0, π /4), และ เส้นลวดตัวนำความยาวอนันต์ที่วางตัวอยู่ที่ตามแกน z ณ ตำแหน่ง x = 1, y = 0 ซึ่งมีความหนาแน่น ประจุ ρ_L = 10 nC/m (20 คะแนน)

3. Gauss's law: จากการทดลองของฟาราเดย์ รูปทรงกลมเล็กรัศมี 2 cm มีความหนาแน่นประจุ $oldsymbol{
ho}_{\! exttt{51}}$ = 20 nC/m² หลังจากนั้นฟาราเดย์นำรูปทรงกลมใหญ่กลวงที่ต่อสายกราวนด์ครอบทรงกลมเล็กไว้ และใน ขั้นตอนสุดท้ายฟาราเดย์นำสายกราวนด์ออก (20 ค^ะแนน)

(a) ในขั้นตอนที่ 2 ทรงกลมใหญ่กลวงมีประจุสุทธิเป็นเท่าไร (5 คะแนน)

(b) หลังจากขั้นตอนที่ 3 ทรงกลมใหญ่กลวงมีประจุและความหนาแน่นประจุ $ho_{\!\scriptscriptstyle 2}$ ที่ผนังด้านในเป็นเท่าไร (5 คะแนน)

ชื่อ	รหัสนักศึกษา	เลขที่นั่งสอบ

(d) จงเขียนนิยามของกฎของเก๊าส์ (Gauss's law) (5 คะแนน)

ชื่อ	รหัสนักศึกษา	เลขที่นั่งสอบ
------	--------------	---------------

4. Gauss's law: จากรูปของสายโคนอีกเซียล กำหนดให้ตัวนำต้านใน (inner conductor) มีรัศมี a=1 mm และมีความหนาแน่นประจุ $\rho_{\rm S,\,in}=0.1~{\rm nc/m}^2$ และตัวนำด้านนอก (outer conductor) มีรัศมี $b=3~{\rm mm}$ และค่าของประจุ (charge) เท่ากับตัวนำด้านใน โดยกำหนดให้อากาศคั่นอยู่ระหว่างตัวนำด้าน ในกับตัวนำด้านนอก จงใช้กฎของเก๊าส์ (Gauss's law) คำนวณสนามไฟฟ้าในรูปแบบเวกเตอร์ที่ระยะรัศมี ρ ต่างๆ ดังนี้ (20 คะแนน)

(a) ρ = 0.5 mm (5 คะแนน)

(b) ρ = 1.5 mm (5 คะแนน)

-	ı
٩	ie

รหัส	به	. 3	~
วหล	านเ	IN.	יטוו

ษา เลขที่นั่งสอบ_____

(c) ρ = 5 mm (5 คะแนน)

(d) คำนวณอัตราส่วนของความหนาแน่นของประจุต่อพื้นที่ที่ตัวนำด้านนอก ($ho_{
m 5,\,out}$) ต่อความหนาแน่น ของประจุต่อพื้นที่ที่ตัวนำด้านใน ($ho_{
m 5,\,in}$) (5 คะแนน)

ชื่อ รหัสนักศึกษา เลขที่นั่งสอบ	
---------------------------------	--

- 5. Work and electric potential: กำหนดให้ $\vec{E}=4x\hat{a}_x-2y\hat{a}_y$ V/m จงคำนวณความต่างศักย์ V_{AB} ระหว่างจุด A (2, 0) และจุด B (0, 2) โดยอินทิเกรตตามเส้นทางดังต่อไปนี้ (20 คะแนน) แนะนำ: $d\vec{I}=dx\hat{a}_x+dy\hat{a}_y+dz\hat{a}_z$
- (a) เส้นตรงระหว่างจุด A กับจุด B (10 คะแนน)

(b) จากจุด A ไปยังจุด (0,0) และจากจุด (0,0) ไปยังจุด B (10 คะแนน)