Resumo *

linuaj@dcc.unicamp.br

12 abril 1997

1 Introdução

Considere o conjunto $I=\{1,\ldots,m\}$ e a família $S=\{S_1,\ldots,S_N\}$ de subconjuntos de I, onde $P_j\subset I,\ j\in J=\{1,\ldots,n\}$. Um subconjunto $J^*\subset J$ define um recobrimento sobre o conjunto I se $\bigcup_{j\in J}P_j=I$.

Se custos c_j não-negativos são associados a cada $j \in J$, o custo total do recobrimento J^* é determinado como $\sum_{j \in J^*} c_j$. O problema de recobrimento de um conjunto (SCP) consiste em se encontrar o recobrimento de melhor compromisso (mínimo custo).

Dependendo das caracteristicas de uma dada instância, pode-se eliminar do problema elementos e subconjuntos, sem que se incorra na quebra das restrições estabelecidas.

2 Reduções

2.1 Redução 1 - Factibilidade

Se existe um elemento $i \in I$ tal que $\forall j \in J, i \ni P_j$. Trata-se de um problema infactível, visto que o elemento i não pode estar presente em nenhum recobrimento.

2.2 Redução 2 - Variáveis pré-fixadas

Se existe um elemento $i \in I$ tal que $i \in P_j$ para um único $j \in J$. Para todo recobrimento factível J^* de I, $j \in J^*$, sendo assim o elemento i como todo $k \in P_j$ podem ser retirados do problema.

2.3 Redução 3 - Dominância de linha

Se existe $\mu, \omega \in I$ tal que $\omega \in P_j$ se $\mu \in P_j$, $j \in J$. Neste caso o elemento μ pode ser eliminado do problema visto que se $\omega \in P_j, j \in J^*$, então $\mu \in P_j$.

^{*}Lidio Nunes de Abreu Junior

2.4 Redução 4 - Dominância de coluna

Se para algum $S \subset J$ e subconjunto P_j temos que $P_j \subseteq \bigcup_{k \in S} P_k$ e $\sum_{k \in S} c_k < c_j$. O subconjunto P_j neste caso pode ser eliminado do problema visto que se $j \in J^*$, então o recobrimento formado por $(J^* - \{j\}) \cup S$ possui um custo menor.

2.5 Redução 5 - Coluna de custo dominado

Seja $d_i = \{minc_j | i \in P_j\}, j \in J \text{ onde } i \in I.$ Se para algum $k \in J$ tem-se que $c_k > \sum_{i \in P_k} d_i$, então o subconjunto P_k pode ser eliminado do problema pelo fato de que se $k \in J^*$, então o recobrimento $(j^* - \{k\}) \bigcup_{i \in P_k \wedge d_i = c_j} P_j$ possui um custo menor.

A redução dominância de coluna pode ser interpretada de outra maneira. Qualquer subconjunto P_j pode ser excluído do recobrimento, caso haja uma composição de subconjuntos pertencentes a J, tal que todo elemento de P_j pertence a pelo menos um subconjunto da composição e o custo da mesma é inferior ao custo de P_j .

Para a análise a ser realizada, a definição da quarta redução será extendida, permitindo-se composições com o mesmo custo do subconjunto P_j . Um limite inferior para o desempenho dos algoritmos para a quarta redução pode ser obtido, determinando o número mínimo necessário de avaliações a serem efetuadas, para se verificar a existência de tais composições.

Para a exclusão do subconjunto P_j , $j \in J$, qualquer composição dos subconjuntos com custos não-superiores a este $\{P_1,\ldots,P_n\}$, onde $k=\{j,\ldots,n\}$, com exceção do próprio P_j , é uma possível alternativa onde pode-se verificar as características mencionadas. Os subconjuntos eventualmente com o custo igual ao de P_j (distintos de P_j), não podem participar de composições com os demais subconjuntos. Com relação aos subconjuntos P_λ , $\lambda=\{1,\ldots,k-1\}$, a presença destes não pode ser restringida a composições individuais sem antes conhecer exatamente quais são estes subconjuntos. Em relação aos subconjuntos P_λ , $\lambda=\{k+1,\ldots,n\}$ e $c_\lambda=c_j$, pode-se restringir as possíveis composições com as mesmas e o número de alternativas presentes neste caso. Os subconjuntos com custos superiores ao custo de P_j , caso existam, não estarão presentes em nenhuma composição que possibilite excluir o subconjunto P_j .

O número total de composições factíveis F para a exclusão do subconjunto P_j , é a soma de todas as combinações de tamanho k, onde $k=1,\ldots,j-1$, mais os elementos posteriores individualmente $\{P_{j+1},\ldots,P_n\}$. A expressão seguinte $F=C_1^{j-1}+\ldots+C_{j-1}^{j-1}+n-j=\sum_{k=1}^{j-1}C_k^{j-1}+n-j=O(2^n)$, corresponde ao número total de composições possíveis para um determinado j. Concluímos que algoritmos de ordem exponencial podem ser obtidos para esta redução.

Considerando que existem 2 restrições a serem satisfeitas pelas composições (custos e a pertinência dos elementos de P_j). O número de alternativas que satisfazem a ambas é provavelemente inferior ao número de possibilidades rejeitadas (o que compreende as alternativas que não satisfazem a um ou ambas restrições). Pode-se explorar estas características aplicando métodos analíticos sobre os dados, possibilitando de alguma forma dividi-los sobre um dos aspectos (custo/pertinência). Realizando a partir das informações obtidas a exclusão de parte das alternativas. A metodologia empregada deve ser fácil e eficiente, de forma a não influir negativamente na ordem de complexidade da redução. Um

procedimento eficiente que pode ser feito é agrupar os subconjuntos precedentes a P_j de tal forma a obter 2 regiões, sendo que a primeira delas terá um custo total não superior ao custo de P_j .

Denotando por λ , $\lambda \in \{1,\ldots,j-1\}$, o subconjunto de maior custo da primeira região temos que as regiões ficam assim divididas:

- * $\{P_1,\ldots,P_{\lambda}\}$ região com custo total não-superior a c_i ;
- * $\{P_{\lambda}, \dots, P_{j}\}$ subconjuntos restantes.

Para qualquer elemento λ uma possível composição que pode possibilitar a exclusão do subconjunto P_j é a própria região $\{P_1,\ldots,P_\lambda\}$. Quando esta região não satisfaz os critérios impostos nenhuma de suas partições satisfará, logo $2^{\lambda}-2$ alternativas são descartadas. As outras alternativas possíveis são as composições resultantes da substituição de alguns subconjuntos pertencentes a $\{P_{\lambda+1},\ldots,P_{j-1}\}$ de maneira que o custo resultante permaneça não superior a c_j . Considerando que o custo de cada um destes subconjuntos é no mínimo igual a c_{λ} . A quantidade de subconjuntos inseridos para formar uma nova composição, não pode ser superior a quantidade de subconjuntos retirados. As partições de $\{P_{\lambda+1},\ldots,P_{j-1}\}$ com cardinalidade não-superior a λ podem eventualmente possuir um custo resultante inferior ao custo de P_j , portanto também constituem possíveis composições. Independentemente do resultado da aplicação deste procedimento análitico, os subconjuntos $\{P_{\lambda+1},\ldots,P_n\}$ individualmente constituem composições factíveis.

Para uma dada instância o número de alternativas é a união de todas as possibilidades presentes nestes casos. Quando o valor de λ é j-1 as possibilidades a serem verificadas são o próprio conjunto $\{P_1,\ldots,P_\lambda\}$ e os subconjuntos posteriores a P_j , assim o número de composições factíveis é 1+n-j. Para os outros valores do domínio de λ o número de possibilidades pode ser definido pela seguinte expressão, $1+\sum_{k=0}^{\lambda-1}C_k^{\lambda}\times(\sum_{i=1}^{\omega}C_i^{n-\lambda-1})+n-j$ onde $\lambda=\{1,\ldots,j-2\}$ e $\omega=\min(n-\lambda-1,\lambda-k)$.

A similaridade existente entre as reduções dominância de coluna e coluna de custo dominado podem ser verificadas em diversos casos, entretanto um número não despresível de exclusões são particulares da quarta redução.

Isto ocorre porque a quinta redução trabalha com uma quantidade reduzida de subconjuntos, avaliando a existência de possíveis composições destes que permita excluir um subconjunto P_j qualquer. Os subconjuntos citados referem-se ao de menor custo que contém o elemento $i \in I$. Como consequência, esta redução não prevê os casos onde um subconjunto de custo mais elevado pode integrar uma composição que permita eliminar um subconjunto P_j . A unicidade dos subconjuntos nestas composições também não é imposta. Mesmo restringindo-se a análise a poucos subconjuntos, apenas uma parcela das possíveis combinações dos mesmos é avaliada. Este é o fator limitante da abrangência desta redução quando comparada com a quarta redução, o que explica a complexidade de ordem polinomial associada a esta redução.

7 redução modificada

Se para algum $\lambda \in J$ tem-se que $c_j > c_{M(T_j)}$, onde $T_j = \bigcup_{i \in P_j} d_i$ e $M(T_j)$ corresponde a composição ótima dos elementos de T_j , ou seja, a composição de mínimo custo que satisfaz todas as restrições de P_j , então o subconjunto P_{λ}

pode ser eliminado pois os elementos por ele recobertos podem sê-los com menor custo por T_i .

Esta reformulação na definição desta redução busca abranger uma quantidade maior de exclusões, mantendo-se a ordem de complexidade polinomial. Infelizmente, determinar esta composição trata-se de um subproblema de recobrimento, onde o conjunto I corresponde aos elementos de P_j e a família P os subconjuntos de T_j . Considerando a complexidade de problemas como o SCP, determinar a composição de custo mínimo envolverá uma ordem de complexidade exponencial, e mesmo neste caso esta redução ainda não possuirá a abrangência da quarta redução .

A complexidade desta redução esta no fato de se determinar $M(T_j)$ e não um dos possíveis T_j . Decorre que se relaxarmos um pouco a definição, pode-se voltar a ter uma redução com complexidade polinomial que apesar de ser mais fraca que a definição proposta ainda assim consegue ser mais abrangente que a definição original.

7 redução proposta

Para $\forall i \in I$, seja $d_i = \{j \in J | i \in P_j \land c_j \text{ \'e mínimo } .$ Definindo-se $T_j = \bigcup_{i \in P_j} d_i$ então se para algum $\lambda \in J$ tem-se que $c_{\lambda} > \sum_{j \in T_j} c_j$, então o subconjunto P_{λ} pode ser eliminado pois os elementos por ele recobertos podem sê-los com menor custo por T_j .

Esta nova definição tem a vantagem de ser mais rigorosa quanto a formação das composições avaliadas, e não desconsidera as situações avaliadas pela definição original.

A principal dificuldade para abranger a redução coluna de custo dominado há todas as exclusões obtidas pela redução dominância de coluna, é o fato de que o objetivo não é garantir que cada elemento $i \in I$ esteja associado no recobrimento com o subconjunto de menor custo que o contém, mas garantir que todo elemento i está associado a algum subconjunto P_j do recobrimento J^* e o custo deste c_{j^*} é mínimo.