BlueROV2

BlueROV2

- Robot sous-marin téléguidé (ROV)
- Open-source et modulaire
- Contrôle par un PC en surface avec une manette Xbox
- Transmission de données par cordon ombilical (ethernet)
- Batterie
- Caméra

Hardware

Capteur de pression

I²C

Lampes

Moteurs

ESC (contrôleur de vitesse)

Contrôleur de vol PixHawk

Contrôle la vitesse des moteurs en fonction des commandes utilisateur et des capteurs

Capteurs intégrés :

- Gyroscope
- Accéléromètre
- Magnétomètre
- Baromètre

Documentation

Le PixHawk envoie un signal de commande PWM vers l'ESC qui fournit la tension triphasée au propulseur.

Propulseur et ESC

Basic ESC

Contrôleur de vitesse pour moteur brushless

Fonctionnement PWM (cf graph.):

Arrêt à 1500 \pm 25 μ s

Vitesse avant max : 1900 μs Vitesse arrière max : 1100 μs

Ne fournit pas de télémétrie

Propulseur T200

Moteur brushless triphasé

Plage de fonctionnement : 7-20V (Nomimal 16V)

Documentation

Documentation

Hardware

Contrôle la vitesse des moteurs en fonction des commandes utilisateur et des capteurs

Capteurs intégrés :

- Gyroscope
- Accéléromètre
- Magnétomètre
- Baromètre

Documentation

Caméra

Télémétrie

USE

Commandes
USB utilisateur

Raspberry Pi

Ordinateur « Compagnon »

Firmware ArduSub:

- Contrôle de stabilité
- Maintient en position
- Navigation autonome

Communication MAVLink

OpenCV

BlueRov

PixHawk

Commandes utilisateur

Raspberry Pi

Ordinateur « Compagnon »

Firmware ArduSub:

- Contrôle de stabilité
- Maintient en position
- Navigation autonome

Communication MAVLink

OpenCV

Contrôle en surface

Cordon ombilical et connexion

Fathom Tether

Câble flottant de 25 à 300m Composé de 4 paires torsadées non blindées (UTC) Arrangé comme un câble Cat5

Connectique :

Documentation

Fathom-X Topside Board

2 Cartes: une dans le ROV et une sur terre

Le Fathom Tether s'y connecte via le connecteur vert

Agit en ampli de puissance + modulation

Offre de l'ethernet en sortie : connexion à la RPi et à l'ordinateur de contrôle (QGC)

Technologie Homeplug (CPL)

Documentation

Documentation et synthèse hardware

- Datasheet
- Composants hardware
- Assemblage du BlueRov

Software

Raspberry Pi:

- Equipée du firmware ArduSub : cerveau du ROV
- Relaie les communications entre autopilot et QGC
- Streame la vidéo vers QGC

QGroundControl (QGC) permet :

- Contrôle et mise en place autopilot
- Vidéo live et enregistrement
- Gérer les paramètres du ROV

MAVLink

- Protocole de communication pour drones
- Messages définis dans fichiers XML
- En autopilot : envoi d'un signal heartbeat pour assurer la bonne connexion

MAVLink v2 Frame (11 - 279)

Software In The Loop (SITL)

- Simule le ROV : permet de faire des tests de commande, autopilot...
- Installation sur Linux (VM)
- Tutoriel : https://gitlab.polytech.umontpellier.fr/prj-semestriels/2019-2020-s6/02-robot-bluerov/-/wikis/Tutoriel-SITL

Documentation Software

- Pymavlink (implantation Python)
- Documentation générale
- OpenCV
- ArduSub
- QGroundControl

- 1. Importer Pymavlink depuis le compagnon (Rpi)
- 2. Créer une connexion (udpout) et attendre le heartbeat

```
# Import mavutil
from pymavlink import mavutil
# Create the connection
master = mavutil.mavlink_connection('udpout:0.0.0.0:9000')
# Send a ping to start connection and wait for any reply.
wait conn()
# Get some information !
while True:
    try:
        print(master.recv match().to dict())
    except:
        pass
    time.sleep(0.1)
```

Exemple de possibilités :

 Changement du mode de navigation (manuel, auto, etc.)

```
# Choose a mode
mode = 'STABILIZE'
# Check if mode is available
if mode not in master.mode mapping():
    print('Unknown mode : {}'.format(mode))
    print('Try:', list(master.mode mapping().keys()))
    sys.exit(1)
# Get mode ID
mode id = master.mode mapping()[mode]
# Set new mode
master.mav.set mode send(
    master.target system,
    mavutil.mavlink.MAV MODE FLAG CUSTOM MODE ENABLED,
    mode id)
while True:
    # Wait for ACK command
    ack msg = master.recv match(type='COMMAND ACK', blocking=True)
    ack msg = ack msg.to dict()
    # Check if command in the same in `set mode`
    if ack_msg['command'] !=
mavutil.mavlink.MAVLINK_MSG_ID_SET_MODE:
        continue
    # Print the ACK result!
    print(mavutil.mavlink.enums['MAV RESULT'][ack msg['re-
sult']].description)
    break
```

Exemple de possibilités :

Armer / Désarmer le ROV

```
# Arm
# master.arducopter arm() or:
master.mav.command_long_send(
    master.target_system,
    master.target component,
    mavutil.mavlink.MAV_CMD_COMPONENT_ARM_DISARM,
    0,
    1, 0, 0, 0, 0, 0, 0)
# Disarm
# master.arducopter disarm() or:
master.mav.command_long_send(
    master.target_system,
    master.target_component,
    mavutil.mavlink.MAV_CMD_COMPONENT_ARM_DISARM,
    0,
    0, 0, 0, 0, 0, 0, 0)
```

Exemple de possibilités :

• Envoyer des commandes manuelles

```
# Create a function to send RC values
# More information about Joystick channels
# here: https://www.ardusub.com/operators-manual/rc-input-
and-output.html#rc-inputs
def set rc channel pwm(channel id, pwm=1500):
    """ Set RC channel pwm value
    Args:
        channel id (TYPE): Channel ID
        pwm (int, optional): Channel pwm value 1100-1900
    0.00
    if channel id < 1 or channel id > 18:
        print("Channel does not exist.")
        return
    # Mavlink 2 supports up to 18 channels:
    # https://mavlink.io/en/messages/common.html#RC CHAN-
NELS OVERRIDE
    rc_channel_values = [65535 for _ in range(18)]
    rc channel values[channel id - 1] = pwm
    master.mav.rc_channels_override_send(
                                             # target system
        master.target system,
        master.target component,
                                             # target compo-
nent
        *rc channel values)
                                             # RC channel
list, in microseconds.
```

Exemple de possibilités :

Envoyer des commandes manuelles

```
# Set some roll
set_rc_channel_pwm(2, 1600)

# Set some yaw
set_rc_channel_pwm(4, 1600)

# Set channel 12 to 1500us
# This can be used to control a device connected
to a servo output by setting the
# SERVO[N]_Function to RCIN12 (Where N is one of
the PWM outputs)
set_rc_channel_pwm(12, 1500)
```

```
# Create a function to send RC values
# More information about Joystick channels
# here: https://www.ardusub.com/operators-manual/rc-input-
and-output.html#rc-inputs
def set rc channel pwm(channel id, pwm=1500):
    """ Set RC channel pwm value
    Args:
        channel id (TYPE): Channel ID
        pwm (int, optional): Channel pwm value 1100-1900
    0.00
    if channel id < 1 or channel id > 18:
        print("Channel does not exist.")
        return
    # Mavlink 2 supports up to 18 channels:
    # https://mavlink.io/en/messages/common.html#RC CHAN-
NELS OVERRIDE
    rc_channel_values = [65535 for _ in range(18)]
    rc channel values[channel id - 1] = pwm
    master.mav.rc_channels_override_send(
        master.target system,
                                             # target system
        master.target component,
                                             # target compo-
nent
        *rc channel values)
                                             # RC channel
list, in microseconds.
```

Exemple de possibilités :

• Récupération de tous les paramètres

+ d'exemples

Gestion des axes de déplacements (RC inputs)