

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5:

A1

(11) International Publication Number:

(43) International Publication Date:

WO 90/07942

A61M 1/00, 5/168

26 July 1990 (26.07.90)

(21) International Application Number:

PCT/DK90/00019

(22) International Filing Date:

19 January 1990 (19.01.90)

(30) Priority data:

P-277308

20 January 1989 (20.01.89) PI

- (71) Applicants: INSTITUTE OF BIOCYBERNETICS AND BIOMEDICAL ENGINEERING P.A.S. [PL/PL]; ul. Krajowej Rady Narodowej 55, 00-818 Warsaw (PL). NO-VO-NORDISK A/S [DK/DK]; Novo Allé, DK-2880 Bagsvaerd (DK).
- (72) Inventors: WÓJCICKI, Jan; Lipska 40 apt. 4, 03-908 Warsaw (PL). LILPOP, Boguslaw; Szopena 6 apt. 25, 05-800 Pruszków (PL). ZIEMBICKI, Marek; Mandarynki 2 apt. 5, Warsaw (PL). BIELAWSKI, Stanislaw; Polna 54 apt. 9, Warsaw (PL).

- (74) Agent: LARSEN & BIRKEHOLM A/S SKANDINA-VISK PATENTBUREAU; Skagensgade 64, P.O. Box 200, DK-2630 Taastrup (DK).
- (81) Designated States: AT, AT (European patent), AU, BB, BE (European patent), BF (OAPI patent), BG, BJ (OAPI patent), BR, CA, CF (OAPI patent), CG (OAPI patent), CH, CH (European patent), CM (OAPI patent), DE, DE (European patent), DK, DK (European patent), ES, ES (European patent), FI, FR (European patent), GA (OAPI patent), GB, GB (European patent), HU, IT (European patent), JP, KP, KR, LK, LU, LU (European patent), MC, MG, ML (OAPI patent), MR (OAPI patent), MW, NL, NL (European patent), NO, RO, SD, SE, SE (European patent), SN (OAPI patent), TG (OAPI patent).

Published

With international search report.

(54) Title: A METHOD OF CONTINUOUS MONITORING OF THE OPERATION OF A DELIVERY SYSTEM, A DEVICE FOR CARRYING OUT THIS METHOD, AND THE USE OF THIS DEVICE

(57) Abstract

A method of continuous monitoring of a delivery system consisting of a volumetric pump (1), an infusion control unit, an electronic measurement unit and an outlet catheter provided with a measuring element, and a device therefor. The method is distinguished by the fact that after every single cycle of the pump the actual pressure and/or the volume of delivery is measured, preferably continuously, in the catheter by measuring the amplitude of the electric signal coming from the measuring element (1) and depending on the pressure and/or the volume of the delivery of the pump and then this measured signal is compared to preset reference values, e.g. in an analyzing system (5). The delivery systems are preferably for insulin administration when treating type-I diabetes and also for analytical laboratories, the chemical and pharmaceutical industries and the like.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

	•				
AT	Austria	ES	Spain	MG	Madagascar
AU	- Australia	FI	Finland	ML	Mali
BB	Barbados	FR	France	MR	Mauritania
BE	Belgium	GA	Gabon	MW	Malawi
BF	Burkina Fasso	GB	United Kingdom	NL	Netherlands
BG	Bulgaria	HU	Hungary	, NO	Norway
BJ	Benin	IT	italy	RO	Romania
BR	Brazil	JP	Japan	SD	Suđan
CA	Canada	KP	Democratic People's Republic	SE	Sweden
CF	Central African Republic		of Korea	SN	Senegal
CG	Congo	KR	Republic of Korea	SU	Soviet Union
CH	Switzerland	Ц	Liechtenstein	TD	Chad
CM	Cameroon	LK	Sri Lanka	TG	Togo
DE	Germany, Federal Republic of	m	Luxembourg	US	United States of America
DK	Denmark	MC	Monaco		-

PCT/DK90/00019

A METHOD OF CONTINUOUS MONITORING OF THE OPERATION OF A DELIVERY SYSTEM, A DEVICE FOR CARRYING OUT THIS METHOD, AND THE USE OF THIS DEVICE.

5. The present invention relates to a method of continuous monitoring of the operation of a delivery system, in particular for use in insulin administration in the treatment of type-I diabetes, a device for carrying out this method, and the use of this device.

10

20

Delivery systems including the device of the present invention are suitable for use not only for medical treatment purposes but it may as well be used as a batch feeder in analytical laboratories, in the chemical and pharmaceutical industries and so on

15 tical industries and so on.

There exists a number of different constructional solutions of problems of portable and implantable insulin delivery systems. For instance, a system may consist of: A power supply unit, a drug reservoir, a control system, a volumetric pump with a measuring element and measurement system.

sion in two forms: (1) the basic infusions aimed to cover the daily requirement of insulin of the body and (2) additional or supplementary infusions meant to compensate the meals - i. e. the bolus infusions - or adjusting the volume of infusion according to increased physical activity or to an increased demand as caused by the so-called dawn phenomenon (The dawn phenomenon is the blood glucose rise taking place between 3 a. m. and 8 a. m. in some individuals.).

5 ·

10

15

20

25

30

Safe operation of an insulin delivery system is a fundamental requirement as a malfunction of a device causing either an overdose of the hormone or a lack of infusion of the hormone constitutes a serious hazard to the life of the patient.

In order to minimize the risk caused by the malfunction in two examples of the best solutions until now, viz. the American delivery systems Betatron I and II (manufactured by Cardiac Pacemakers Inc.), the following alarm states are signalled: Supply voltage drop, empty drug reservoir, blockage of the outlet catheter, microcomputer break-down, failure of the internal memory of the system, a too high frequency of the pump operation, motor break-down, dose of insulin in excess of the established daily dose of insulin and erroneous initial data input (improper programming of the infusion). The Betatron I and II delivery systems are described in some detail in Health Devices, November 1987, "Ambulatory Insulin Infusion Pumps", pp. 351-376 (in which nine ambulatory insulin infusion pumps are evaluated).

In another construction, viz. MRS-1 (manufactured by Disetronic AG/Ltd.) the following features are controlled: Electronic systems, supply battery, drug level in the reservoir, outlet catheter patency and excess doses of insulin administered in the form of boluses.

In the solutions mentioned above alarm states such as empty drug reservoir, a too high frequency of the operation of the pump or a dose of insulin in excess of the daily allowable insulin dose are determined by counting control impulses fed to the pump. Hence, such a monitoring method provides merely an indirect monitoring of the correctness of insulin infusion. This is also true of other alarm

states. For instance, monitoring of the operation of the pump or of the supply battery is carried out by measuring the mechanical movement and by measuring the supply voltage level respectively.

5 .

10

15

20

25

30

Another issue or problem is connected with the monitoring of the threshold pressure in the outlet catheter of insulin delivery systems (monitoring with a · "catheter plugging"). A solution to this issue or problem as developed by Siemens is described in: K. Prestele and M. Frentzki, "State of Development of Program-Controlled Implantable Insulin Delivery Systems" in "Artifcial Systems for Insulin Delivery" edited by P. Brunetti et al., 1983, Raven Press, New York, pp. 141-153, in particular pp. 149-150. According to this method the pressure measurement is performed as an indirect non-quantitative check of the insulin flow through the pump outlet. In the discussed solution the system for the measurement of the pressure consists of a non-conducting cylinder having a diameter equal to the inner diameter of the catheter, two electrodes and a unit for measuring the conductivity in the circuit: Electrode - catheter section containing the cylinder - electrode. Under conditions of normal operation of the pump the overpressure generated causes an increase of both the diameter of the catheter and of the flow of the insulin (which is a conductor) around the cylinder. A blockage of the catheter produces a much stronger signal than the signal received during proper operation. If the pressure threshold value is exceeded by 1 bar the alarm is switched on.

The above examples of the best solutions until now of the problems of checking the proper operation of insulin delivery systems control or monitor the operation of particu-

5 .

lar units or elements of the systems in ways that allow only indirect monitoring of the correctness of the insulin infusion. The control or monitoring of the number of revolutions of the motor per unit of time or the check of sequences of impulses fed to the pump can by no means lead to a determination of whether the insulin infusion into the body of a patient is proper since there can always be a broken catheter or the pump can be feeding air instead of the drug and so on.

10

15

20

25

The above mentioned examples have one thing in common: They are all examples of "open-loop" methods of continuous monitoring of the operation of portable insulin delivery systems, pumps for short, and/or "open-loop" type control or monitoring devices for use in carrying out such methods.

Having regard to the above mentioned prior art, and the problems mentioned above, it is the object of the present invention to provide a method of continuous monitoring of a delivery system comprising a volumetric pump, an infusion control unit, an electronic measuring unit and an outlet catheter provided with a pressure sensor in the following referred to as a sensor, and by means of which method at least some of the problems mentioned above will be solved and a device for carrying out this method and by means of which device at least some of the problems mentioned above will be solved.

30 The stated object of the present invention is achieved by a method, characterized in that during every single cycle of the pump the actual pressure of delivery is measured, preferably continuously, in the catheter.

It has been found - as mentioned below in the description of how the method of the present invention works, this description being given in relation to the drawing - that between the amplitude of the measurement signal - calculated as the difference between the peak value and zero level - on one hand and the pressure and/or the volume of a single pump delivery on the other hand there exists a dependence of some sort which dependence of some sort may be a linear dependence.

10

25

Through the control or monitoring of the proper value of the electric signal amplitude from the measuring element or sensor every single delivery of the pump is monitored.

The signal from the measuring element is used simultaneously for monitoring the resistance to the flow of the liquid from the drug reservoir to the pump and from the pump to the patient as well as for checking the supply voltage. This is possible thanks to changes in the signal amplitude occuring whenever any of the above parameters change their value.

Compared to the prior art this is worthy of note since it means that the method of the present invention can be a method of the "closed-loop" type in contrast to the methods of the prior art mentioned above that are of the "open-loop" type.

It is further worthy of note that in turn this means that in the method of the present invention there is provided a feedback that can be used to control the insulin infusions.

The method of monitoring of the present invention is not

related to the performance of any particular element of one or another insulin delivery system but solely to the actual efficiency of the insulin delivery system as measured in the catheter.

5 .

10

25

30

It is an advantage in connection with the method of the present invention that the actual delivery of the pump is measured at the outlet of the catheter by measuring the amplitude of the electric signal coming from the measuring element or sensor which signal depends on the pressure and/or the volume of the delivery of the pump and which signal is then compared to preset reference values.

It is another advantage in connection with the method of the present invention that the signal from the measuring element or sensor is transmitted via a matching system to a measurement system and also that the measurement results obtained in the measurement system are transmitted to an analog-to-digital converter and from this analog-to-digital converter to an analysing system before being analysed in this analysing system.

The stated object of the present invention is further achieved by a device that comprises a measuring element or sensor placed in the catheter.

It has been found that between the amplitude of the measurement signal - calculated as the difference between the peak value and zero level - on one hand and the pressure and/or the volume of a single pump delivery on the other hand there exists a dependence of some sort which dependence of some sort may be a linear dependence.

Through the control or monitoring of the proper value of

PCT/DK90/00019

the electric signal amplitude from the measurement element or sensor every single delivery of the pump is monitored.

The signal from the measuring element is used simultaneously for monitoring the resistance to the liquid flow at drug reservoir to pump and pump to patient as well as for checking the supply voltage. This is possible thanks to changes in the signal amplitude occurring whenever any of the above parameters change their value.

10

5.

It is further worthy of note that in turn this means that by means of the device of the present invention there is provided a means for feedback that can be used to control the insulin infusions.

15

20

The device of the present invention for continuous monitoring of a delivery system consisting of a volumetric pump, an infusion control unit, an electronic measurement unit and an outlet catheter provided with a measuring element and for use in carrying out the method of the present invention is not related to any particular element of one or another insulin delivery system but solely to the actual insulin delivery system comprising a measuring element in the catheter.

25

30

It is an advantage in connection with the device of the present invention that the device comprises a measuring element or sensor placed in the catheter and a system for comparing the signal coming from the measurement element or sensor to preset reference values.

It is another advantage in connection with the device of the present invention that the device comprises a measuring element or sensor placed in the catheter, a

matching system, a measurement system, an analog-todigital converter and an analysing system.

Below the invention will be explained in some detail while having reference to an example of an embodiment of the method of the present invention in which the example of an embodiment of the device of the the present invention shown in the drawing is being utilized. It should be noted that this embodiment of the method of the present invention and that this embodiment of the device of the present invention are given solely as examples and should in no way be considered as limiting the invention in one or more respects.

15 The drawing shows a block diagram of a delivery system having a volumetric pump and controlled by the delivery of the pump.

In the drawing a measuring element or sensor is provided in the catheter. The signal from this measuring element 1 or sensor 1 is transmitted via a matching system 2 to a measurement system 3. The measurement results obtained in 3 are transmitted to an analog-to-digital converter 4 before being analysed in a system 5.

25

30

20

When the embodiment of the method of the present invention illustrated in the drawing is being used while utilizing the embodiment of the device of the present invention illustrated in the drawing displacement of the fluid by the pump causes the occurence of an overpressure in the pump section which causes the measuring element 1 or sensor 1 to give the signal, the amplitude of which depends on the pressure of the pump delivery. The overpressure decays when the single cycle of the pump work is

5 .

10

15

20

25

completed. The courses of pressure measured by the measuring element 1 in the intervals between the consecutive cycles of the operation of the pump as well as during each cycle of the operation of the pump are converted to electric analog signals. These signals are transmitted via the matching system 2 to the measurement system 3 where the zero level of the signal coming from the sensor 1 (pump on idle) as well as its peak value (pump operates) are measured. The measured parameters are transmitted to the analog-to-digital converter 4 and are next analysed in the system 5.

It has been found that between the amplitude of the measurement signal - calculated as the difference between the peak value and zero level - on one hand and the volume of a single pump delivery on the other hand there exists a dependence of some sort which dependence of some sort may be a linear dependence. Therefore in the discussed solution of the problems of delivery systems the continuous quantitative control or monitoring of the actual delivery of the pump is carried out. Monitoring of the delivery operation of the system consists in continuous comparison of the measured values to the reference values recorded (1) in the memory of the system for comparing the signal coming from the measuring element or sensor to preset reference values or more specifically (2) in the memory of the analysing system 5 and in - if there occurs a discrepency - setting on the alarm.

30 The measurement signal generated by the measuring element also works as a very sensitive indicator of several malfunctions that may occur during the operation of the delivery system. This concerns: Supply voltage drop, positive or negative external pressure influence, outlet ca-

WO 90/07942 PCT/DK90/00019

10

theter blockage, breakage of the catheter or disconnection of the catheter from the patient, blockage of the connector between the drug reservoir and the pump as well as appearance of an air bubble in the pump.

5.

10

The occurence of any of the disturbances metioned above causes a decrease or increase in the magnitude of the signal - a drop or rise of the signal - coming from the sensor 1. Consequently, passing the upper or lower values of the settled or preset limits for amplitude, peak value or zero level switches the device to the alarm states.

An example of the schematic description of the decisive signal changes is given in the table to follow.

TABLE, PART ONE

	Disturbances	Symptoms caused	Possible
5 .		by the disturbances	alarm states
	Battery voltage	↓ (Peak value	I
10	drop	gradual drop)	
	Air bubble inside	√, (Peak value	II
	pump mechanism	rapid drop)	
15	Blockage of the	↓ (Peak value	11
	connector between	rapidly	11
	reservoir and pump	accelerating	
	•	drop)	
20	Increase in the	↑ (Peak value	III
	stroke volume	rapid rise)	
	Decrease in the	/ (Peak value	ı
	stroke volume	rapid drop)	_
25			
	Influence of an	√ (Zero level	IV
	external negative	rapid drop)	
	hydrostatic pressure		
30	Influence of an	↑ (Zero level	v
	external positive	rapid rise)	
	hydrostatic pressure		

TABLE, PART TWO

	Disturbances	Symptoms caused	Possible
5		by the disturbances	alarm states
10	Blockage of the catheter	<pre> (zero level rapidly increasing rise)</pre>	VI
15	Catheter cracks	个 (Zero level rapid rise)	v
	Disconnection of the catheter from the body	个 (Zero level rapid rise)	V

20

↑ ↓ - direction of changes

25

The alarm states indicated by roman numerals are not exclusive.

WO 90/07942

5 .

10

15

30

13

PCT/DK90/00019

The occurence of any of the disturbances mentioned above changing the signal from the measuring element, thus in the case of supply battery voltage drop, change of a positive external pressure, blockage of the outlet catheter or of the connector between the drug reservoir and the pump or an air bubble in the liquid - causes a rapid drop of the amplitude of the signal coming from the sensor 1 or - in the case of change in the negative external pressure, breakage of the catheter or the disconnection of the catheter from the patient - its rise. Consequently passing the upper or lower values of the settled or preset limit switches the device into one or more of the alarm states.

Thus, the measured signal coming from the sensor 1 can be utilized for simultaneous monitoring of the operation of the pump and of the patency of the junctions from drug reservoir to the pump and from the pump to the patient as well as for checking the supply voltage of the system.

Although the method and the device and the use according to the invention were developed primarily with a view to the administration of insulin to diabetic patients, the method and the device will also be useful in connection with the administration of other dissolved drugs which advantageously can be administered over a prolonged period of time. Examples of such drugs are heparin, oxytocin, human growth hormone and cancer chemotherapeutics.

What has been indicated in the specification in a concrete or specific way relating to the present invention is given as examples only and should in no way be considered as limiting - in one or more respects - to the scope of the present invention which scope is layed down solely by the appended claims as many a modification, change or replace-

ment may be made without passing the limits of the scope of the present invention wholly or in part or without departing from the spirit or the idea of the present invention wholly or in part.

15

20

CLAIMS

- 1. A method of continuous monitoring of a delivery system, particular for use in insulin administration, comprising a volumetric pump, an infusion control unit, an 5. electronic measuring unit and an outlet catheter provided with a measuring element, characterized in that during every single cycle of the pump the actual pressure of delivery is measured, preferably continuously, catheter.
 - 2. A method according to claim 1, characterized in that in connection with every single cycle of the pump the signal from the measuring element is used to calculate the volume of the liquid delivered by the pump during the operation.
 - 3. A method according to any of the preceding claims, characterized in that the signal from the measuring element is used to check whether the state of the device is normal with respect to the following sources of error: 1) Supply voltage and 2) Decrease in stroke volume (Alarm State I).
- 4. A method according to any of the preceding claims, characterized in that the signal from the measuring element is used to check whether the state of the device is normal 25 with respect to the following sources of error: 1) Air bubble inside pump and 2) Blockage of the connector between reservoir and pump (Alarm State II).
- 5. A method according to any of the preceding claims, 30 characterized in that the signal from the measuring element is used to check whether the state of the device is normal with respect to the following source of error: Increase in the stroke volume (Alarm State III).

- 6. A method according to any of the preceding claims, characterized in that the signal from the measuring element is used to check whether the state of the device is normal with respect to the following source of error: Influence of an external negative hydrostatic pressure (Alarm State IV).
- 7. A method according to any of the preceding claims, characterized in that the signal from the measuring element is used to check whether the state of the device is normal with respect to the following sources of error: 1) Influence of an external positive hydrostatic pressure, 2) Catheter broken and 3) Catheter disconnected from the body of the patient (Alarm State V).
 - 8. A method according to any of the preceding claims, characterized in that the signal from the measuring element is used to check whether the state of the device is normal with respect to the following source of error: Blockage of the catheter between the measuring element and the outlet (Alarm State VI).
- 9. A device for continuous monitoring of a delivery system consisting of a volumetric pump, an infusion control unit, an electronic measurement unit and an outlet catheter and for use in carrying out the method according to claims 1 and 8, characterized in that the device comprises a measuring element (1) or sensor (1) placed in the 30 catheter.
 - 10. A device according to claim 9 for continuous monitoring of a delivery system consisting of a volumetric pump, an infusion control unit, an electronic measurement

5 .

unit and an outlet catheter, characterized in that the device comprises a measuring element (1) or sensor (1) placed at the outlet of the catheter and a system for comparing the signal coming from the measuring element (1) or sensor (1) to preset reference values.

INTERNATIONAL SEARCH REPORT

International Application No PCT/DK 90/00019

		101	7010 307 00013	
	SIFICATION OF SUBJECT MATTER (if several class			
1	ng to International Patent Classification (IPC) or to both No	stional Classification and IPC		
IPC5:	IPC5: A 61 M 1/00, 5/168			
II. FIELI	DS SEARCHED			
		entation Searched 7		
Classifica	tion System, I	Classification Symbols		
IPC5	A 61 M 1/00 E/00			
1765	A 61 M 1/00, 5/00			
	Documentation Searched other	than Minimum Documentation ts are included in the Fields Searched *		
	to the Extent that such coccasion	to are included in the right contains		
SE,DK	,FI,NO classes as above			
	Citation of Document, 11 with indication, where ap	propriete of the relevant passages 12	Relevant to Claim No. 13	
Category *				
Y	EP, A2, 0296124 (FRANTZ MEDICA		1-10	
	21 December 1988, see col	umn 6,		
	line 16 - line 28			
v	ED 42 0201707 (ADDOTT LADODA	rontes)		
Υ	EP, A2, 0291727 (ABBOTT LABORAT		1	
	23 November 1988, see colu			
	line 39 - column 7, line 48	3		
Υ	WO, A1, 84/01719 (THE JOHNS HOP	OKING INTVEDSITY)	1-10	
•	10 May 1984, see claims 1-2		1-10	
Α	US, A, 4762518 (STEPHEN J. KREI	(NICK)	1-10	
	9 August 1988,	•		
	see the whole document			
	i			
	İ			
* Speci	ial categories of cited documents: 10	"T" later document published after ti	e international filing date	
"A" do	cument defining the general state of the art which is not	or priority date and not in confli- cited to understand the principle	ct with the application but or theory underlying the	
	nsidered to be of particular relevance riier document but published on or after the international	invention "X" document of particular relevant	er the eleimed invention	
fili	ng date	cannot be considered novel or		
wh	cument which may throw doubts on priority claim(s) or each is cited to establish the publication date of another	involve an inventive step "Y" document of particular relevant	e: the claimed invention	
	ation or other special reason (as specified)	cannot be considered to involve a document is combined with one	an inventive step when the	
oti	other means ments, such combination being obvious to a person skills			
	cument published prior to the international filing date but er than the priority date claimed	"&" document member of the same p	atent family	
IV CERT	TIFICATION			
	ne Actual Completion of the International Search	Date of Mailing of this International Se	arch Report	
	pril 1990	4000 01- 3 6		
		1990 -04- 24		
Internatio	nal Searching Authority	Signature of Authorized Officer	۳ نام	
	SWEDISH PATENT OFFICE	Inger Löfgren	(C	

ategory *	Citation of Document, with indication	NT (CONTINUED FROM THE SECOND SH in, where appropriate, of the relevant passages	Relevant to Claim N
A	EP, A2, 0040592 (RODLER see the whole docume	, HANS) 25 November 1981, ent	1-10
			·
		. *	-
		121	
			-
k			-*-
	·		

ANNEX TO THE INTERNATIONAL SEARCH REPORT ON INTERNATIONAL PATENT APPLICATION NO. PCT/DK 90/00019

This annex lists the patent family members relating to the patent documents cited in the above-mentioned international search report.

Patent document cited in search report	Publication date	Patent family member(s)		Publication date	
EP-A2- 0296124	88-12-21	AU-D- JP-A- US-A- US-A-	1775688 1145072 4850807 4845487	88-12-22 89-06-07 89-07-25 89-07-04	
EP-A2- 0291727	88-11-23	AU-D- JP-A-	1531788 1028526	88-11-03 89-01-31	
WO-A1- 84/01719	84-05-10	NONE			
US-A- 4762518	88-08-09	NONE			
EP-A2- 0040592	81-11-25	DE-A-C- US-A-	3018641 4457751	81-06-19 84-07-03	