Package 'MultiHazard'

September 11, 2020

Title Tools for modeling compound events
Version 0.0.0.9000
Description What the package does (one paragraph).
License What license it uses
Encoding UTF-8
LazyData true
Imports texmex, fitdistrplus, tweedie, MASS, VGAM, copula, GeneralizedHyperbolic, statmod, RColorBrewer, VineCopula, ks, truncnorm, dplyr, lubridate
Suggests knitr, rmarkdown
VignetteBuilder knitr
RoxygenNote 6.1.1
R topics documented:
Annual_Max Con_Sampling_2D Con_Sampling_2D_Lag Copula_Threshold_2D Copula_Threshold_2D_Lag Dataframe_Combine Decluster Design_Event_2D Detrend Diag_Non_Con 1
- -

2 Annual_Max

iag_Non_Coi iag_Non_Coi PD_Fit PD_Paramete T04	_Trunc_	_Sel · ·																								
iag_Non_Coi PD_Fit PD_Paramete	_Trunc_	_Sel · ·																								
PD_Paramete									•		•		•													13
PD_Paramete				•																						16
T04		ity_F	lot																							
																										17
nputation																										19
endall_Lag .																										20
Iean_Excess_	Plot																									2
ligpd_Fit																										2
OAA_SLR .																										22
LR_Scenarios																										23
tandard_Copu	la_Fit .																									23
tandard_Copu	la_Sel .																									24
tandard_Copu	la_Sim																									25
ine_Copula_I	it																									26
ine_Copula_S	Sim																									27
																										29
	endall_Lag . fean_Excess_ figpd_Fit OAA_SLR . LR_Scenarios andard_Copu andard_Copu andard_Copu ine_Copula_F	endall_Lag	endall_Lag	endall_Lag	endall_Lag	endall_Lag	rendall_Lag	endall_Lag	rendall_Lag	rendall_Lag	rendall_Lag	rendall_Lag	rendall_Lag	rendall_Lag . fean_Excess_Plot . figpd_Fit . OAA_SLR . LR_Scenarios . andard_Copula_Fit . andard_Copula_Sel . andard_Copula_Sim . ine_Copula_Fit .	rendall_Lag . fean_Excess_Plot . figpd_Fit . OAA_SLR . LR_Scenarios . andard_Copula_Fit . andard_Copula_Sel . andard_Copula_Sim . ine_Copula_Fit .	rendall_Lag . fean_Excess_Plot . figpd_Fit . OAA_SLR . LR_Scenarios . andard_Copula_Fit . andard_Copula_Sel . andard_Copula_Sim . ine_Copula_Fit .	endall_Lag . fean_Excess_Plot figpd_Fit . OAA_SLR . LR_Scenarios . andard_Copula_Fit . andard_Copula_Sel . andard_Copula_Sim . ine_Copula_Fit .	rendall_Lag . fean_Excess_Plot figpd_Fit . OAA_SLR . LR_Scenarios . andard_Copula_Fit . andard_Copula_Sel . andard_Copula_Sim . ine_Copula_Fit .	rendall_Lag . fean_Excess_Plot figpd_Fit . OAA_SLR . LR_Scenarios . andard_Copula_Fit . andard_Copula_Sim . ine_Copula_Fit .	rendall_Lag . fean_Excess_Plot figpd_Fit . OAA_SLR . LR_Scenarios . andard_Copula_Fit . andard_Copula_Sel . andard_Copula_Sim . ine_Copula_Fit .	rendall_Lag . fean_Excess_Plot figpd_Fit . OAA_SLR . LR_Scenarios . andard_Copula_Fit . andard_Copula_Sel . andard_Copula_Sim . ine_Copula_Fit .	endall_Lag . fean_Excess_Plot figpd_Fit OAA_SLR LR_Scenarios andard_Copula_Fit andard_Copula_Sel andard_Copula_Sim ine_Copula_Fit	rendall_Lag . fean_Excess_Plot figpd_Fit . OAA_SLR . LR_Scenarios . andard_Copula_Fit . andard_Copula_Sel . andard_Copula_Sim . ine_Copula_Fit .	rendall_Lag . fean_Excess_Plot figpd_Fit . OAA_SLR . LR_Scenarios . andard_Copula_Fit . andard_Copula_Sel . andard_Copula_Sim . ine_Copula_Fit .	endall_Lag . fean_Excess_Plot figpd_Fit OAA_SLR LR_Scenarios andard_Copula_Fit andard_Copula_Sel andard_Copula_Sim ine_Copula_Fit	nputation endall_Lag fean_Excess_Plot figpd_Fit OAA_SLR LR_Scenarios andard_Copula_Fit randard_Copula_Sel andard_Copula_Sim ine_Copula_Fit ine_Copula_Sim

Description

Annual_Max

Extract annual maximum in years with over a user-defined proportion of non-missing values.

Generate annual maximum series

Usage

```
Annual_Max(Data_Detrend, Complete_Prop = 0.8)
```

Arguments

Complete_Prop Minimum proportion of non-missing values in an annual record for the annual maximum to be extracted. Default is 0.8.

Data Dataframe containing two columns. In column:

- 1 A "Date" object of equally spaced discrete time steps.
- 2 Numeric vector containing corresponding time series values.

Value

List comprising the index of the annual maximum Event and the annual maximum values AM.

Examples

Con_Sampling_2D 3

Con_Sampling_2D Conditionally sampling a two dimensional dataset	
--	--

Description

Creates a dataframe where the declustered excesses of a (conditioning) variable are paired with co-occurances of another variable.

Usage

```
Con_Sampling_2D(Data_Detrend, Data_Declust, Con_Variable, Thres = 0.97)
```

Arguments

Data_Detrend	Dataframe containing two at least partially concurrent time series, detrended if necessary. Time steps must be equally spaced, with missing values assigned NA. First object may be a "Date" object. Can be Dataframe_Combine output.
Data_Declust	Dataframe containing two (independently) declustered at least partially concurrent time series. Time steps must be equally spaced, with missing values assigned NA. Columns must be in the same order as in Data_Detrend. First object may be a "Date" object. Can be Dataframe_Combine output.
Con_Variable	Column number (1 or 2) or the column name of the conditioning variable. Default is 1.
Thres	Threshold, as a quantile of the observations of the conditioning variable. Default is 0.97 .

Value

List comprising the specified Threshold as the quantile of the conditioning variable above which declustered excesses are paired with co-occurances of the other variable, the resulting two dimensional sample data and name of the conditioning variable.

Examples

```
S20.Rainfall<-Con_Sampling_2D(Data_Detrend=S20.Detrend.df[,-c(1,4)], Data_Declust=S20.Detrend.Declustered.df[,-c(1,4)], Con_Variable="Rainfall", Thres=0.97)
```

Con_Sampling_2D_Lag Conditionally sampling a two dimensional dataset

Description

Creates a dataframe where the declustered excesses of a (conditioning) variable are paired with the maximum value of a second variable over a specified lag.

```
Con_Sampling_2D_Lag(Data_Detrend, Data_Declust, Con_Variable,
  Thres = 0.97, Lag_Backward = 0, Lag_Forward = 0)
```

Arguments

Data_Detrend	Dataframe containing two at least partially concurrent time series, detrended if necessary. Time steps must be equally spaced, with missing values assigned NA. First object may be a "Date" object. Can be Dataframe_Combine output.
Data_Declust	Dataframe containing two (independently) declustered at least partially concurrent time series. Time steps must be equally spaced, with missing values assigned NA. Columns must be in the same order as in Data_Detrend. First object may be a "Date" object. Can be Dataframe_Combine output.
Con_Variable	Column number (1 or 2) or the column name of the conditioning variable. Default is 1.
Thres	Threshold, as a quantile of the observations of the conditioning variable. Default is \emptyset . 97.
Lag_Backward	Positieve lag applied to variable not assigned as the Con_Variable. Default is \emptyset
Lag_Forward	Negative lag to variable not assigned as the Con_Variable. Default is 0

Value

List comprising the specified Threshold as the quantile of the conditioning variable above which declustered excesses are paired with co-occurances of the other variable, the resulting two dimensional sample data and name of the conditioning variable.

Examples

```
S20.Rainfall <-Con\_Sampling\_2D(Data\_Detrend=S20.Detrend.df[,-c(1,4)],\\ Data\_Declust=S20.Detrend.Declustered.df[,-c(1,4)],\\ Con\_Variable="Rainfall",Thres=0.97)
```

Description

Declustered excesses of a (conditioning) variable are paired with co-occurances of the other variable before the best fitting bivariate copula is selected, using BiCopSelect function in the VineCopula package, for a single or range of thresholds. The procedure is automatically repeated with the variables switched.

```
Copula_Threshold_2D(Data_Detrend, Data_Declust, Thres = seq(0.9, 0.99, 0.01), x_lim_min = min(Thres), x_lim_max = max(Thres), y_lim_min = -1, y_lim_max = 1, Upper = 0, Lower = 0, GAP = 0.05, Legend = TRUE)
```

Arguments

Data_Detrend	Dataframe containing two at least partially concurrent time series, detrended if necessary. Time steps must be equally spaced, with missing values assigned NA.
Data_Declust	Dataframe containing two (independently) declustered at least partially concurrent time series. Time steps must be equally spaced, with missing values assigned NA.
Thres	A single or sequence of thresholds, given as a quantile of the observations of the conditioning variable. Default, sequence from 0.9 to 0.99 at intervals of 0.01 .
x_lim_min	Numeric vector of length one specifying x-axis minimum. Default is the maximum argument in Thres.
x_lim_max	Numeric vector of length one specifying x-axis maximum. Default is the minimum argument in Thres.
y_lim_min	Numeric vector of length one specifying y-axis minimum. Default -1.0.
y_lim_max	Numeric vector of length one specifying y-axis maximum. Default 1.0.
Upper	Numeric vector specifying the element number of the Thres argument for which the copula family name label to appear above the correponding point on the Kendall's tau coefficient vs threshold plot, when condition on the variable in column 1. Default is 0.
Lower	Numeric vector specifying the element number of the Thres argument for which the copula family name label to appear below the corresponding point on the Kendall's tau coefficient vs threshold plot, when condition on the variable in column 2. Default is \emptyset .
GAP	Numeric vector of length one specifying the distance above or below the copula family name label appears the correponding point on the Kendall's tau coefficent vs threshold plot. Default is $\emptyset.05$.
Legend	Logic vector of length one specifying whether a legend should be plotted. Default is TRUE.

Value

List comprising:

- Kendalls_Tau_Var1 Kendalls tau of a sample
- p_value_Var1 p-value when testing the null hypiothesis H_0 i.e. that there is no correlation between the variables
- N_Var1 size of the dataset
- Copula_Family_Var1 best fitting copula for the specified thresholds

when the dataset is conditioned on the variable in column 1. Anologous vector Kendalls_Tau_Var2,p_value_Var2, N_Var2 and Copula_Family_Var2 for the specified thresholds when the dataset is conditioned on the variable in column 2.

See Also

Dataframe_Combine

Examples

```
\label{eq:copula_Threshold_2D} \begin{split} & \text{Copula\_Threshold\_2D(Data\_Detrend=S20.Detrend.df[,-c(1,4)],} \\ & \text{Data\_Declust=S20.Detrend.Declustered.df[,-c(1,4)],} \\ & \text{y\_lim\_min=-0.075, y\_lim\_max =0.25,} \\ & \text{Upper=c(6,8), Lower=c(6,8),GAP=0.1)} \end{split}
```

Copula_Threshold_2D_Lag

Copula Selection With Threshold 2D - Fit

Description

Declustered excesses of a (conditioning) variable are paired with co-occurances of the other variable before the best fitting bivariate copula is selected, using BiCopSelect function in the VineCopula package, for a single or range of thresholds. The procedure is automatically repeated with the variables switched.

Usage

```
Copula_Threshold_2D_Lag(Data_Detrend, Data_Declust, Thres1 = seq(0.9, 0.99, 0.01), Thres2 = seq(0.9, 0.99, 0.01), Lag_Backward_Var1, Lag_Forward_Var1, Lag_Backward_Var2, Lag_Forward_Var2, x_lim_min = min(c(Thres1, Thres2)), x_lim_max = max(c(Thres1, Thres2)), y_lim_min = -1, y_lim_max = 1, Upper = 0, Lower = 0, GAP = 0.05, Legend = TRUE)
```

Arguments

Data_Detrend	Dataframe containing two at least partially concurrent time series, detrended if necessary. Time steps must be equally spaced, with missing values assigned NA.
Data_Declust	Dataframe containing two (independently) declustered at least partially concurrent time series. Time steps must be equally spaced, with missing values assigned NA.

Lag_Backward_Var1

Numeric vector of length one specifying the negative lag applied to variable in the first column of Data_Detrend. Default 0.

Lag_Forward_Var1

Numeric vector of length one specifying poisitve lag applied to variable in the first column of Data_Detrend. Default 0.

Lag_Backward_Var2

Numeric vector of length one specifying negative lag applied to variable in the second column of Data_Detrend. Default \emptyset .

Lag_Forward_Var2

Numeric vector of length one specifying positive lag applied to variable in the second column of Data_Detrend. Default \emptyset .

x_lim_min Numeric vector of length one specifying x-axis minimum. Default is the maximum argument in Thres.

x_lim_max Numeric vector of length one specifying x-axis maximum. Default is the minimum argument in Thres.

y_lim_min	Numeric vector of length one specifying y-axis minimum. Default -1.0.
y_lim_max	Numeric vector of length one specifying y-axis maximum. Default 1.0.
Upper	Numeric vector specifying the element number of the Thres argument for which the copula family name label to appear above the correponding point on the Kendall's tau coefficent vs threshold plot, when condition on the variable in column 1. Default is \emptyset .
Lower	Numeric vector specifying the element number of the Thres argument for which the copula family name label to appear below the correponding point on the Kendall's tau coefficent vs threshold plot, when condition on the variable in column 2. Default is \emptyset .
GAP	Numeric vector of length one specifying the distance above or below the copula family name label appears the corresponding point on the Kendall's tau coefficent vs threshold plot. Default is 0.05 .
Legend	Logic vector of length one specifying whether a legend should be plotted. Default is TRUE.
Thres	A single or sequence of thresholds, given as a quantile of the observations of the conditioning variable. Default, sequence from 0.9 to 0.99 at intervals of 0.01.

Value

List comprising:

- Kendalls_Tau_Var1 Kendalls tau of a sample
- p_value_Var1 p-value when testing the null hypiothesis H_0 i.e. that there is no correlation between the variables
- N_Var1 size of the dataset
- Copula_Family_Var1 best fitting copula for the specified thresholds

when the dataset is conditioned on the variable in column 1. Anologous vector Kendalls_Tau_Var2,p_value_Var2, N_Var2 and Copula_Family_Var2 for the specified thresholds when the dataset is conditioned on the variable in column 2.

See Also

Dataframe_Combine

8 Dataframe_Combine

Dataframe_Combine

Creates a dataframe containing up to five time series

Description

Combines up to five time series, detrended where necessary, into a single dataframe.

Usage

```
Dataframe_Combine(data.1, data.2, data.3, data.4 = 0, data.5 = 0,
    n = 3, names)
```

Arguments

n Integer 1-5 specifying the number of time series. Default is 3.

data.1:5 Dataframes with two columns containing in column

- 1 Continuous sequence of times spaning from the first to the final recorded observations.
- 2 Corresponding values detrended where necessary.

Value

A dataframe containing all times from the first to the most up to date reading of any of the variables.

See Also

Detrend

```
#Formatting data
S20.Rainfall.df<-Perrine_df
S20.Rainfall.df$Date<-as.Date(S20.Rainfall.df$Date)
S20.OsWL.df<-S20_T_MAX_Daily_Completed_Detrend_Declustered[,c(2,4)]
S20.OsWL.df$Date<-as.Date(S20.OsWL.df$Date)
#Detrending O-sWL series at Site S20
S20.OsWL.Detrend<-Detrend(Data=S20.OsWL.df,Method = "window",PLOT=FALSE,
                         x_lab="Date",y_lab="0-sWL (ft NGVD 29)")
#Creating a dataframe with the date alongside the detrended OsWL series
S20.OsWL.Detrend.df<-data.frame(as.Date(S20.OsWL.df$Date),S20.OsWL.Detrend)
colnames(S20.OsWL.Detrend.df)<-c("Date","OsWL")</pre>
#Combining the two datasets by Date argument
S20.Detrend.df<-Dataframe_Combine(data.1<-S20.Rainfall.df,
                                 data.2<-S20.0sWL.Detrend.df,
                                 data.3=0,
                                 names=c("Rainfall","OsWL"))
```

Decluster 9

Description

Identify cluster maxima above a threshold, using the runs method of Smith and Weissman (1994).

Usage

```
Decluster(Data, u = 0.95, SepCrit = 3, mu = 365.25)
```

Arguments

Numeric vector of the time series.

U Numeric vector of length one specifying the declustering threshold; as a quantile [0,1] of Data vector. Default is 0.95.

SepCrit Integer; specifying the separation criterian under which events are declustered. Default is 3 corresponding to a storm window of three days in the case of daily data.

mu (average) Number of events per year. Numeric vector of length one. Default is

365.25, daily data.

Value

List comprising the Threshold above which cluster maxima are identified, average number of declustered excesses per year EventsPerYear, a vector containing the original time series Detrended and the Declustered series.

See Also

Detrend

Examples

 ${\tt Decluster(data=S20_T_MAX_Daily_Completed_Detrend\$Detrend)}$

Description

Calculates the single design event under the assumption of full dependence, or once accounting for dependence between variables the single "most-likely" or an ensemble of possible design events.

```
Design_Event_2D(Data, Data_Con1, Data_Con2, Thres1, Thres2, Copula_Family1,
   Copula_Family2, Marginal_Dist1, Marginal_Dist2, Con1 = "Rainfall",
   Con2 = "OsWL", mu = 365.25, RP, x_lab = "Rainfall (mm)",
   y_lab = "O-sWL (mNGVD 29)", x_lim_min = NA, x_lim_max = NA,
   y_lim_min = NA, y_lim_max = NA, delta = 1e-04, N, N_Ensemble)
```

10 Design_Event_2D

Arguments

Con2

column of Data.

Data Dataframe of dimension nx2 containing two co-occurring time series of length Data_Con1 Dataframe containing the conditional sample (declustered excesses paired with concurrent values of other variable), conditioned on the variable in the first col-Dataframe containing the conditional sample (declustered excesses paired with Data_Con2 concurrent values of other variable), conditioned on the variable in the second column. Can be obtained using the Con_Sampling_2D function. Thres1 Numeric vector of length one specifying the threshold above which the variable in the first column was sampled in Data_Con1. Thres2 Numeric vector of length one specifying the threshold above which the variable in the second column was sampled in Data_Con2. Numeric vector of length one specifying the copula family used to model the Copula_Family1 Data_Con1 dataset. Numeric vector of length one specifying the copula family used to model the Copula_Family2 Data_Con2 dataset. Best fitting of 40 copulas can be found using the Copula_Threshold_2D function. Marginal_Dist1 Character vector of length one specifying (non-extreme) distribution used to model the marginal distribution of the non-conditioned variable. Marginal_Dist2 Character vector of length one specifying (non-extreme) distribution used to model the marginal distribution of the non-conditioned variable. Best fitting among two truncted distributions or eight truncated distributions can be found using the functions. Con2 Character vector of length one specifying the name of variable in the first column of Data. Numeric vector of length one specifying the (average) number of events per mu year. Default is 365.25, daily data. RP Numeric vector of length one specifying the return period of interest. x_lab Charactor vector specifying the x-axis label. y_lab Charactor vector specifying the y-axis label. x_lim_min Numeric vector of length one specifying x-axis minimum. Default is NA. x_lim_max Numeric vector of length one specifying x-axis maximum. Default is NA. Numeric vector of length one specifying y-axis minimum. Default is NA. y_lim_min y_lim_max Numeric vector of length one specifying y-axis maximum. Default is NA. delta Numeric vector of length one specifying of the resolution at which the copula CDF is evaluated on the [0,1]2 square. Default is 0.0001. Numeric vector of length one specifying the size of the sample from the fitted N joint distributions used to estimate the density along an isoline. Samples are collected from the two joint distribution with proportions consistent with the total number of exteme events conditioned on each variable. N Ensemble Numeric vector of length one specifying the number of possible design events sampled along the isoline of interest.

Character vector of length one specifying the name of variable in the second

Detrend 11

Value

Plot of all the observations (grey circles) as well as the declustered excesses above Thres1 (blue circles) or Thres2 (blue circles), observations may belong to both conditional samples. Also shown is the isoline associated with RP contoured according to their relative probability of occurrence on the basis of the sample from the two joint distributions, the "most likely" design event (black diamond), and design event under the assumption of full dependence (black triangle) are also shown in the plot. The function also returns a list comprising the design events assuming full dependence "FullDependence", as well as once the dependence between the variables is accounted for the "Most likley" "MostLikelyEvent" as well as an "Ensemble" of possible design events.

See Also

Dataframe_Combine Copula_Threshold_2D Diag_Non_Con Diag_Non_Con_Trunc

Examples

```
S22.Rainfall<-Con_Sampling_2D(Data_Detrend=S22.Detrend.df[,-c(1,4)],
                               Data_Declust=S22.Detrend.Declustered.df[,-c(1,4)],
                               Con_Variable="Rainfall", Thres=0.97)
S22.OsWL<-Con_Sampling_2D(Data_Detrend=S22.Detrend.df[,-c(1,4)],
                          Data_Declust=S22.Detrend.Declustered.df[,-c(1,4)],
                          Con_Variable="OsWL", Thres=0.97)
S22. Copula. Rainfall <-Copula\_Threshold\_2D(Data\_Detrend=S22. Detrend. df[,-c(1,4)],\\
                            Data_Declust=S22.Detrend.Declustered.df[,-c(1,4)],Thres =0.97,
                                          y_{\lim_{\to}} = -0.075, y_{\lim_{\to}} = 0.25,
                                  Upper=c(2,9),Lower=c(2,10),GAP=0.15)$Copula_Family_Var1
S22.Copula.OsWL<-Copula_Threshold_2D(Data_Detrend=S22.Detrend.df[,-c(1,4)],
                           Data_Declust=S22.Detrend.Declustered.df[,-c(1,4)],Thres =0.97,
                                      y_{\lim_{\to}} = -0.075, y_{\lim_{\to}} = 0.25,
                                  Upper=c(2,9), Lower=c(2,10), GAP=0.15) \\ Copula\_Family\_Var2
Design_Event_2D(Data=S22.Detrend.df[,-c(1,4)], Data_Con1=S22.Rainfall$Data,
               Data_Con2=S22.OsWL$Data, Thres1=0.97, Thres2=0.97,
               Copula_Family1=S22.Copula.Rainfall, Copula_Family2=S22.Copula.OsWL,
               Marginal_Dist1="Logis", Marginal_Dist2="Twe",RP=100,N=10,N_Ensemble=10)
```

Detrend

Detrends a time series.

Description

Detrends a time series using either a linear fit covering the entire dataset or moving average trend correction with a user-sepcified window width.

```
Detrend(Data, Method = "window", Window_Width = 89,
   End_Length = 1826, PLOT = FALSE, x_lab = "Data", y_lab = "Data")
```

12 Diag_Non_Con

Arguments

Data	Dataframe containing two columns. In column:
	• 1 A "Date" object of equally spaced discrete time steps.
	 2 Numeric vector containing corresponding time series values. No NAs allowed.
Method	Character vector of length one specifying approach used to detrend the data. Options are moving average "window" (default) and "linear".
Window_Width	Numeric vector of length one specifying length of the moving average window. Default is 89, window comprises the observation plus 44 days either side, which for daily data corresponds to an approximate 3 month window.
End_Length	Numeric vector of length one specifying number of observations at the end of the time series used to calculate the present day average. Default is 1826, which for daily data corresponds to the final five years of observations.
PLOT	Logical; whether to plot origional and detrended series. Default is "FALSE".
x_lab	Character vector of length one specifying x-axis label. Default is "Date".
y_lab	Character vector of length one specifying y-axis label. Default is "Data".

Value

Numeric vector of the detrended time series.

Examples

Diag_Non_Con Goodness of fit of non-extreme marginal distributions	
--	--

Description

Fits two (unbounded) non-extreme marginal distributions to a dataset and returns three plots demonstrating their relative goodness of fit.

Usage

```
Diag_Non_Con(Data, x_lab, y_lim_min = 0, y_lim_max = 1)
```

Arguments

Data	Numeric vector containing realizations of the variable of interest.
x_lab	Character vector of length one specifying the label on the x-axis of histogram and cummulative distribution plot.
y_lim_min	Numeric vector of length one specifying the lower y-axis limit of the histogram. Default is \emptyset .
y_lim_max	Numericr vector of length one specifying the upper y-axis limit of the histogram. Default is 1.

Diag_Non_Con_Sel 13

Value

Panel consisting of three plots. Upper plot: Plot depicting the AIC of the two fitted distributions. Middle plot: Probabilty Density Functions (PDFs) of the fitted distributions superimposed on a hist-gram of the data. Lower plot: Cummulaibre Distribution Functions (CDFs) of the fitted distributions overlaid on a plot of the empirical CDF.

See Also

```
Copula_Threshold_2D
```

Examples

```
\label{eq:s20.petrend.df} S20.Rainfall <-Con_Sampling_2D(Data_Detrend=S20.Detrend.df[,-c(1,4)],\\ Data_Declust=S20.Detrend.Declustered.df[,-c(1,4)],\\ Con_Variable="Rainfall",Thres=0.97)\\ Diag_Non_Con(Data=S20.Rainfall$Data$0sWL,x_lab="0-sWL (ft NGVD 29)",\\ y_lim_min=0,y_lim_max=1.5)\\ \end{tabular}
```

Diag_Non_Con_Sel	Demonstrate the goodness of fit of the slected non-extreme marginal
	distribution

Description

Plots demonstrating the goodness of fit of a selected non-extreme marginal distribution to a dataset.

Usage

```
Diag_Non_Con_Sel(Data, x_lab = "Data", y_lim_min = 0, y_lim_max = 1,
    Selected)
```

Arguments

Data	Numeric vector containing realizations of the variable of interest.
x_lab	Numeric vector of length one specifyingLabel on the x-axis of histogram and cummulative distribution plot.
y_lim_min	Numeric vector of length one specifying the lower y-axis limit of the histogram.
y_lim_max	Numeric vector of length one specifying the upper y-axis limit of the histogram.
Selected	Character vector of length one specifying the chosen distribution, options are the Gaussian "Gaus" and logistic "Logis".

Value

Panel consisting of three plots. Upper plot: Plots depicting the AIC of the two fitted distributions. Middle plot: Probabilty Density Functions (PDFs) of the selected distributions superimposed on a histgram of the data. Lower plot: Cummulative distribution function (CDFs) of the selected distribution overlaid on a plot of the empirical CDF.

See Also

```
Diag_Non_Con
```

Examples

Diag_Non_Con_Trunc

Goodness of fit of non-extreme marginal distributions

Description

Fits seven (tuncated) non-extreme marginal distributions to a dataset and returns three plots demonstrating their relative goodness of fit.

Usage

```
Diag_Non_Con_Trunc(Data, x_lab, y_lim_min = 0, y_lim_max = 1)
```

Arguments

Data	Numeric vector containing realizations of the variable of interest.
x_lab	Character vector of length one specifying the label on the x-axis of histogram and cummulative distribution plot.
y_lim_min	Numeric vector of length one specifying the lower y-axis limit of the histogram. Default is \emptyset .
y_lim_max	Numericr vector of length one specifying the upper y-axis limit of the histogram. Default is 1.

Value

Panel consisting of three plots. Upper plot: Plot depicting the AIC of the eight fitted distributions. Middle plot: Probabilty Density Functions (PDFs) of the fitted distributions superimposed on a histgram of the data. Lower plot: Cummulaibre Distribution Functions (CDFs) of the fitted distributions overlaid on a plot of the empirical CDF.

See Also

```
Copula_Threshold_2D
```

```
\label{eq:con_Sampling_2D} S20.0sWL <-Con\_Sampling\_2D(Data\_Detrend=S20.Detrend.df[,-c(1,4)], \\ Data\_Declust=S20.Detrend.Declustered.df[,-c(1,4)], \\ Con\_Variable="OsWL", Thres=0.97) \\ Diag\_Non\_Con\_Trunc(Data=S20.0sWL$Data$Rainfall,x_lab="Rainfall (Inches)", \\ y_lim\_min=0,y_lim\_max=2) \\
```

```
Diag_Non_Con_Trunc_Sel
```

Goodness of fit of non-extreme marginal distributions

Description

Fits eight non-extreme marginal distributions to a dataset and returns three plots demonstrating their relative goodness of fit.

Usage

```
Diag_Non_Con_Trunc_Sel(Data, x_lab, y_lim_min = 0, y_lim_max = 1,
    Selected)
```

Arguments

Data	Numeric vector containing realizations of the variable of interest.
x_lab	Character vector of length one specifying the label on the x-axis of histogram and cummulative distribution plot.
y_lim_min	Numeric vector of length one specifying the lower y-axis limit of the histogram. Default is \emptyset .
y_lim_max	Numericr vector of length one specifying the upper y-axis limit of the histogram. Default is 1.
Selected	Charactor vector of length one specifying the chosen distribution, options are the Birnbaum-Saunders "BS", exponential "Exp", gamma "Gam", lognormal "LogN", Tweedie "Twe" and Weibull "Weib".

Value

Panel consisting of three plots. Upper plot: Plot depicting the AIC of the eight fitted distributions. Middle plot: Probabilty Density Functions (PDFs) of the fitted distributions superimposed on a histgram of the data. Lower plot: Cummulaibre Distribution Functions (CDFs) of the fitted distributions overlaid on a plot of the empirical CDF.

See Also

```
Diag_Non_Con_Trunc
```

Fit
ŀ

Description

Fit a Generalized Pareto Distribution (GPD) to a declustered dataset.

Usage

```
GPD_Fit(Data, Data_Full, u = 0.95, mu = 365.25, PLOT = FALSE,
    xlab_hist = "Data", y_lab = "Data")
```

Arguments

Data	Numeric vector containing the declusted data.
Data_Full	Numeric vector containing the non-declustered data.
u	GPD threshold; as a quantile [0,1] of Data vector. Default is 0.95.
mu	(average) Number of events per year in Data_Full input. Numeric vector of length one. Default is 365.25, daily data.
xlab_hist	Character vector of length one. Histogram x-axis label. Default is "Data".
y_lab	Character vector of length one. Histogram x-axis label. Default is "Data".
Plot	Logical; indicating whether to plot diagnostics. Default is FALSE.

Value

List comprising the GPD Threshold, shape parameter xi and scale parameters sigma along with their standard errors sigma. SE and xi.SE.

Details

The fitted GPD model, is following parameterised as follows: P(X > x | X > u)

Examples

```
Decluster(Data=S20_T_MAX_Daily_Completed_Detrend$Detrend)
```

```
{\it GPD\_Parameter\_Stability\_Plot} \\ {\it GPD\ parameter\ stability\ plots}
```

Description

Plots showing the stability of the GPD scale and shape parameter estimates across a specified range of thresholds.

```
GPD_Parameter_Stability_Plot(Data, Data_Full, u = 0.95, PLOT = FALSE,
    xlab_hist = "Data", y_lab = "Data")
```

HT04

Arguments

Data	Numeric vector containing the declusted data.
Data_Full	Numeric vector containing the non-declustered data.
u	Numeric vector of GPD thresholds; given as a quantiles [0,1] of Data vector. Default is 0.9 to 0.999 in intervals of 0.001.
Plot	Logical; indicating whether to plot diagnostics. Default is FALSE.

Value

Plot of the shape and modified scale parameter estimates along with their errors bars over the range of specified thresholds.

See Also

Decluster

Examples

```
\label{eq:continuous} $$ \ensuremath{\mathsf{GPD\_Parameter\_Stability\_Plot(Data = S20.Detrend.Declustered.df\$Rainfall),} $$ \ensuremath{\mathsf{Data\_Full= na.omit(S20.Detrend.df\$Rainfall),} $$ \ensuremath{\mathsf{u=seq(0.9,0.999,0.001))}} $$
```

HT04

Fits and simulates from the conditional multivariate approach of Heffernan and Tawn (2004)

Description

Fitting and simulating the conditional multivariate approach of Heffernan and Tawn (2004) to a dataset comprising 3 variables. Function utilizes the mexDependence and functions from the texmex package.

Usage

```
HT04(data_Detrend_Dependence_df, data_Detrend_Declustered_df, u_Dependence,
  Migpd, mu = 365.25, N = 100, Margins = "gumbel", V = 10,
  Maxit = 10000)
```

Arguments

data_Detrend_Dependence_df

A dataframe with (n+1) columns, containing in column

- 1 Continuous sequence of dates spanning the first to the final time of any of the variables are recorded.
- 2:(n+1) Values, detrended where necessary, of the variables to be modelled.

data_Detrend_Declustered_df

A dataframe with (n+1) columns, containing in column

• 1 - Continuous sequence of dates spanning the first to the final time of any of the variables are recorded.

18 HT04

• 2:(n+1) - Declustered and if necessary detrended values of the variables to be modelled.

u_Dependence

Dependence quantile. Specifies the (sub-sample of) data to which the dependence model is fitted, that for which the conditioning variable exceeds the threshold associated with the presecribed quantile. Default is 0.7, thus the dependence parameters are estimated using the data with the highest 30% of values of the conditioning variables.

Migpd

An Migpd object, containing the generalised Pareto models fitted (independently) to each of the variables.

Margins

Character vector specifying the form of margins to which the data are transformed for carrying out dependence estimation. Default is "gumbel", alternative is "laplace". Under Gumbel margins, the estimated parameters a and b describe only positive dependence, while c and d describe negative dependence in this case. For Laplace margins, only parameters a and b are estimated as these capture both positive and negative dependence.

V

See documentation for mexDependence.

Maxit

See documentation for mexDependence.

Value

List comprising the fitted HT04 models Models, proportion of the time each variable is most extreme, given at least one variable is extreme Prop, as well as the simulated values on the transformed u.sim and original x.sim scales.

See Also

```
Dataframe_Combine Migpd_Fit
```

```
#Fitting and simulating from the Heffernan and Tawn (2004) model
S20.HT04<-HT04(data_Detrend_Dependence_df=S20.Detrend.df,
               data_Detrend_Declustered_df=S20.Detrend.Declustered.df,
               u_Dependence=0.995, Migpd=S20.Migpd, mu=365.25, N=1000)
#View model conditioning on rainfall
S20.HT04$Model$Rainfall
#Assigning simulations (transfomed back to the origional scale) a name
S20.HT04.Sim<-S20.HT04$x.sim
#Plotting observed (black) and simulated (red) values
S20.Pairs.Plot.Data<-data.frame(rbind(na.omit(S20.Detrend.df[,-1]),S20.HT04.Sim),
                                c(rep("Observation",nrow(na.omit(S20.Detrend.df))),
                                  rep("Simulation",nrow(S20.HT04.Sim))))
colnames(S20.Pairs.Plot.Data)<-c(names(S20.Detrend.df)[-1],"Type")</pre>
pairs(S20.Pairs.Plot.Data[,1:3],
      col=ifelse(S20.Pairs.Plot.Data$Type=="Observation", "Black", "Red"),
      upper.panel=NULL,pch=16)
```

Imputation 19

Imputation	Imputing missing values through linear regression	

Description

Fits a simple linear regression model, impute missing values of the dependent variable.

Usage

```
Imputation(Data, Variable, x_lab, y_lab)
```

Arguments

Data	Dataframe containing two at least partially concurrent time series. First column may be a "Date" object. Can be Dataframe_Combine output.
Variable	Character vector of length one specifying the (column) name of the varible to be imputed i.e. dependent variable in the fitted regression.
x_lab	Character vector of length one specifying the name of the independent variable to appear as the x-axis label on a plot showing the data, imputed values and the linear regression model.
y_lab	Character vector of length one specifying the name of the dependent variable to appear as the y-axis label on plot showing the data, imputed values and the linear regression model.

Value

List comprising

- Data dataframe containing the origional data plus an additional column named Value where the NA values of the Variable of interest have been imputed where possible.
- Model linear regression model paramters including its coefficient of determination

and a scatter plot of the data (black points), linear regression model (red line) and fitted (imputed) values (blue points).

```
####Objective: Fill in missing values at groundwater well G_3356 using record at G_3355
##Viewing first few rows of G_3356
head(G_3356)
#Converting date column to a "Date" object
G_3356$Date<-seq(as.Date("1985-10-23"), as.Date("2019-05-29"), by="day")
#Converting readings to numeric object
G_3356$Value<-as.numeric(as.character(G_3356$Value))

##Viewing first few rows of G_3355
head(G_3355)
#Converting date column to a "Date" object
G_3355$Date<-seq(as.Date("1985-08-20"), as.Date("2019-06-02"), by="day")
#Converting readings to numeric object
G_3355$Value<-as.numeric(as.character(G_3355$Value))</pre>
```

20 Kendall_Lag

Kendall_Lag

Kendall's tau correlation coefficient between pairs of variables over a range of lags

Description

Kendall's tau correlation coefficient between pairs of up to three variables over a range of lags

Usage

```
Kendall_Lag(Data, Lags = seq(-6, 6, 1), PLOT = TRUE, GAP = 0.1)
```

Arguments

Data	A data frame with 3 columns, containing concurrent observations of three time series.
Lags	Integer vector giving the lags over which to calculate coefficient. Default is a vector from -6 to 6.
GAP	Numeric vector of length one. Length of y-axis above and below max and min Kendall's tau values.
Plot	Logical; whether to show plot of Kendall's coefficient vs lag. Default is TRUE.

Value

List comprising Kendall's tau coefficients between the variables pairs composing columns of Data with the specified lags applied to the second named variable Values and the p-values Test when testing the null hypothesis H_0: tau=0 i.e. there is no correlation between a pair of variables. Plot of the coefficient with a filled point of hypothesis test (p-value<0.05). Lag applied to variable named second in the legend.

See Also

```
Dataframe_Combine
```

```
Kendall\_Lag(Data=S20.Detrend.df, GAP=0.1)
```

Mean_Excess_Plot 21

Mean_Excess_Plot

Mean excess plot - GPD threshold selection

Description

The empirical mean excess function is linear in the case of a GPD.

Usage

```
Mean_Excess_Plot(Data)
```

Arguments

data

A vector comprising a declustered and if necessary detrended time series to be modelled.

Value

Plot of the empirical mean excess function (black line), average of all observations exceeding a threshold decreased by the threshold, for thresholds spanning the range of the observations. Also provided are 95% confidence intervals (blue dotted lines) and the observations (black dots).

See Also

Decluster Detrend

Examples

Mean_Excess_Plot(Data=S20_Detrend_Declustered_df\$Rainfall)

Migpd_Fit

Fits Multiple independent generalized Pareto models - Fit

Description

Fit multiple independent generalized Pareto models to each column of a dataframe. Edited version of the migpd function in texmex, to alllow for NAs in a time series.

```
Migpd_Fit(Data, mth, mqu, penalty = "gaussian", maxit = 10000,
    trace = 0, verbose = FALSE, priorParameters = NULL)
```

22 NOAA_SLR

Arguments

Data	A dataframe with n columns, each comprising a declustered and if necessary detrended time series to be modelled.
mth	Marginal thresholds, above which generalized Pareto models are fitted. Numeric vector of length n.
mqu	Marginal quantiles, above which generalized Pareto models are fitted. Only one of mth and mqu should be supplied. Numeric vector of length n.
penalty	See ggplot.migpd.
maxit	See ggplot.migpd.
trace	See ggplot.migpd.
verbose	See ggplot.migpd.
priorParameter	S
	See ggplot.migpd.

Value

An object of class "migpd". There are coef, print, plot, ggplot and summary functions available.

See Also

Decluster Detrend Dataframe_Combine

Examples

NOAA_SLR NOAA sea-level rise scenarios

Description

Time (in years) for a specified amount of sea-level rise (SLR) to occur at Maimi Beach according to the five SLR scenarios in NOAA 2017 report titled "Global and Regional Sea Level Rise Scenarios for the United States".

Usage

```
NOAA_SLR(OsWL_req, SLR_scen = c("High", "Intermediate", "Low"),
   Input_unit = "m", Year.Inital = 2020)
```

Arguments

OsWL_req	Numeric vector of SLR required.
SLR_scen	Character vector specifying which of the NOAA (2017) scenarios to consider.
	Options include High, Intermediate high Int.High, Intermediate, Intermediate low (Int.Low) and Low.
Input_unit	Character vector of length one; specifying units of SLR. Default is meters "m", other option is feet "ft".
Year	Character vector of length one; specifying

SLR_Scenarios 23

Value

List comprising the specified Threshold as the quantile of the conditioning variable above which declustered excesses are paired with co-occurances of the other variable, the resulting two dimensional sample data and name of the conditioning variable.

Examples

```
NOAA_SLR<-function(0sWL_req=seq(0,1,0.01), SLR_scen = c("High", "Intermediate", "Low"), Input_unit="m")
```

SLR_Scenarios

Sea level rise scenarios in the Southeast Florida Regional Climate Change Compact:

Description

Calculates and plots time required for sea level rise to reach a specified level according to the three scenarios in the Compact.

Usage

```
SLR_Scenarios(SeaLevelRise, Unit = "m")
```

Arguments

SeaLevelRise Numeric vector of length one, sea level rise required.

data A dataframe with n columns, each comprising a declustered and if necessary

detrended time series to be modelled.

Value

An object of class "migpd". There are coef, print, plot, ggplot and summary functions available.

Examples

```
SLRScenarios(0.45)
```

Standard_Copula_Fit

Fit an Archimedean/elliptic copula model - Fit

Description

Fit a n-dimensional Archimedean or elliptic copula model. Function is simply a repackaging of the fitCopula function in the copula package.

```
Standard_Copula_Fit(Data, Copula_Type = "Gaussian")
```

Arguments

Data Dataframe containing n at least partially concurrent time series. First column

may be a "Date" object. Can be Dataframe_Combine output.

Copula_Type Type of elliptical copula to be fitted, options are "Gaussian" (Default), "tcopula",

"Gumbel", "Clayton" and "Frank".

Value

List comprising the Copula_Type and the fitted copula Model object.

See Also

Dataframe_Combine Standard_Copula_Sel CDVineCopSelect BiCopSelect

Examples

```
cop<-Standard_Copula_Fit(Data=S20.Detrend.df,Copula_Type="Gaussian")
cop<-Standard_Copula_Fit(Data=S20.Detrend.df,Copula_Type="tcopula")
cop<-Standard_Copula_Fit(Data=S20.Detrend.df,Copula_Type="Gumbel")
cop<-Standard_Copula_Fit(Data=S20.Detrend.df,Copula_Type="Clayton")
cop<-Standard_Copula_Fit(Data=S20.Detrend.df,Copula_Type="Frank")</pre>
```

Standard_Copula_Sel

Selecting best fitting standard (elliptical and Archimeadean) copula

Description

Fits five n-dimensional standard copula to a dataset and returns their corresponding AIC values.

Usage

```
Standard_Copula_Sel(Data)
```

Arguments

Data

Data frame containing n at least partially concurrent time series, detrended if necessary. Time steps must be equally spaced, with missing values assigned NA. First object may be a "Date" object. Can be Dataframe_Combine output.

Value

Data frame containing copula name in column 1 and associated AIC in column 2. Parameters are estimated using the fitCopula() function in copula package using maximum pseudo-likelihood estimator "mp1". See fitCopula for a more thorough explanation.

See Also

```
Dataframe_Combine Standard_Copula_Fit
```

```
Standard_Copula_Sel(Data_Detrend=S20.Detrend.df)
```

Standard_Copula_Sim 25

Standard_Copula_Sim Archimedean/elliptic copula model - Simulation

Description

Simulating from a fitted Archimedean or elliptic copula Model.

Usage

```
Standard_Copula_Sim(Data, Marginals, Copula, mu = 365.25, N = 10000)
```

Arguments

Data	Dataframe containing n at least partially concurrent time series. First column may be a "Date" object. Can be Dataframe_Combine output.
Marginals	An migpd object containing the n-independent generalized Pareto models.
Copula	An Archimedean or elliptic copula model. Can be specified as an $Standard_Copula_Fit$ object.
mu	(average) Number of events per year. Numeric vector of length one. Default is 365.25, daily data.
N	Number of years worth of extremes to be simulated. Numeric vector of length one. Default 10,000 (years).

Value

Each n-dimensional realisation is given on the transformed $[0,1]^n$ scale (first n columns) in the first dataframe u. Sim and on the original scale in the second dataframe x. Sim.

See Also

```
Standard_Copula_Sel Standard_Copula_Fit
```

26 Vine_Copula_Fit

Vine	Copula	F1t

C and D-vine Copula - Fitting

Description

Fit either a C- or D-vine copula model. Function is a repackaging of the CDVineCopSelect function in the CDVine package.

Usage

```
Vine_Copula_Fit(Data, FamilySet = NA, Type = "DVine",
   SelCrit = "AIC", Indeptest = FALSE, Level = 0.05)
```

Arguments

Data Dataframe containing n at least partially concurrent time series. First column

may be a "Date" object. Can be Dataframe_Combine output.

FamilySet Integer vector whuch must include at least one pair-copula family that allows

for positive and one that allows for negative dependence. If familyset = NA (default), selection among all possible families is performed. The coding of pair-copula families is shown below. See help file of the CDVineSim function to

find out copula represented by integers 0-40.

Type of the vine model:

• 1 or "CVine" = C-vine

• 2 or "DVine" = D-vine

SelCrit Character vector specifying the criterion for choosing among the competing

pair-copula. Possible choices: "AIC" (default) or "BIC".

Indeptest Logical; whether a hypothesis test for the independence of u1 and u2 is per-

formed before bivariate copula selection (default: Indeptest = FALSE; cp. BiCopIndTest). The independence copula is chosen for a (conditional) pair if

the null hypothesis of independence cannot be rejected.

level Numeric; significance level of the independence test (default: level = 0.05).

Value

List comprising the pair-copula families composing the C- or D-vine copula Family, its parameters Par and Par2 as well as whether it is a C or D-vine Type.

See Also

Dataframe_Combine Vine_Copula_Sim CDVineCopSelect BiCopSelect

Vine_Copula_Sim 27

Vine_Copula_Sim	C and D-vine Copula - Simulation

Description

Simulating from specified C- and D-vine copula models. Builds on the CDVineSim in CDVine.

Usage

```
Vine_Copula_Sim(Data, Marginals, Vine_family, Vine_par, Vine_par2,
   Vine_Type = "DVine", mu = 365.25, N = 10000)
```

Arguments

Data	Dataframe containing n at least partially concurrent time series. First column may be a "Date" object. Can be Dataframe_Combine output.
Marginals	An migpd object containing the d-independent generalized Pareto models.
Vine_family	A n*(n-1)/2 integer vector specifying the pair-copula families defining the fitting C- or a D-vine copula models. Can be specified as the Family agument of a Vine_Copula_Fit object. See help file of the CDVineSim function to find out copula represented by integers 0-40.
Vine_par	A n*(n-1)/2 vector of pair-copula parameters.
Vine_par2	A $n*(n-1)/2$ vector of second parameters for pair-copula families with two parameters.
Vine_Type	Type of the vine model:
	• 1 or "CVine" = C-vine
	• 2 or "DVine" = D-vine
	Can be specified as the Type argument of a Vine_Copula_Fit object.
mu	(average) Number of events per year. Numeric vector of length one. Default is 365.25, daily data.
N	Number of years worth of extremes to be simulated. Numeric vector of length one. Default 10,000 (years).

Value

List comprising an integer vector specifing the pair-copula families composing the C- or D-vine copula Vine_family, its paraeters Vine_par and Vine_par2 and type of regular vine Vine_Type. In addition, dataframes of the simulated observations: u.Sim on the transformed $[0,1]^n$ and x.Sim the original scales.

See Also

```
Vine_Copula_Fit
```

28 Vine_Copula_Sim

```
#Fitting vine copula
S20.Vine<-Vine_Copula_Fit(Data=S20.Detrend.df, FamilySet=NA,
                           Type="DVine", SelCrit="AIC",Indeptest=FALSE,
                           Level=0.05)
#Simulating from fitted copula
S20.Vine.Sim<-Vine_Copula_Sim(Data=S20.Detrend.df,Marginals=S20.Migpd,
                               Vine_family=S20.Vine$Family, Vine_par=S20.Vine$Par,
                               Vine_par2=S20.Vine$Par2, Vine_Type="DVine",N=10)
#Plotting observed (black) and simulated (red) values
S20. Pairs. Plot. Data <- data. frame (rbind (na.omit (S20. Detrend. df[,-1]), S22. Vine. Sim \$x. Sim), \\
                                 c(rep("Observation",nrow(na.omit(S20.Detrend.df))),
                                 rep("Simulation",nrow(S20.Vine.Sim$x.Sim))))
colnames(S20.Pairs.Plot.Data)<-c(names(S20.Detrend.df)[-1], "Type")</pre>
pairs(S20.Pairs.Plot.Data[,1:3],
      col=ifelse(S20.Pairs.Plot.Data$Type=="Observation","Black","Red"),
      upper.panel=NULL)
```

Index

```
Annual_Max, 2
BiCopSelect, 24, 26
CDVineCopSelect, 24, 26
Con_Sampling_2D, 3
{\tt Con\_Sampling\_2D\_Lag, 3}
Copula_Threshold_2D, 4, 11, 13, 14
Copula_Threshold_2D_Lag, 6
Dataframe_Combine, 5, 7, 8, 11, 18, 20, 22,
        24, 26
Decluster, 9, 17, 21, 22
Design_Event_2D, 9
Detrend, 8, 9, 11, 21, 22
Diag_Non_Con, 11, 12, 13
Diag_Non_Con_Sel, 13
Diag_Non_Con_Trunc, 11, 14, 15
Diag_Non_Con_Trunc_Sel, 15
fitCopula, 24
ggplot.migpd, 22
GPD_Fit, 16
GPD_Parameter_Stability_Plot, 16
HT04, 17
Imputation, 19
Kendall_Lag, 20
Mean_Excess_Plot, 21
Migpd_Fit, 18, 21
NOAA_SLR, 22
SLR_Scenarios, 23
Standard_Copula_Fit, 23, 24, 25
Standard_Copula_Sel, 24, 24, 25
Standard_Copula_Sim, 25
Vine_Copula_Fit, 26, 27
Vine_Copula_Sim, 26, 27
```