This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

4

#8

22

SEQUENCE LISTING

- <110> Lyamichev, Victor
 Skrzypczynski, Zbigniew
 Allawi, Hatim T.
 Wayland, Sarah R.
 Takova, Tsetska
 Neir, Bruce P.
- <120> Charge Tags and the Separation of Nucleic Acid Molecules
- <130> FORS-04912
- <140> 09/777,430
- <141> 2001-02-06
- <160> 85
- <170> PatentIn version 3.1
- <210> 1
- <211> 21
- <212> DNA
- <213> Artificial Sequence
- <220>
- <223> Synthetic
- <220>
- <221> misc_feature
- <222> (1)..(1)
- <223> The residue at this position is linked to a spacer bearing a Cy3 group.
- <220>
- <221> misc_feature
- <222> (1)..(2)
- <223> The residues at these positions are amino-modified bases
- <400> 1

ttcttttcac cagcgagacg gg

- <210> 2
- <211> 23
- <212> DNA

<213>	Artificial Sequence	
<220>		
<223>	Synthetic	
<400> tattgg	2 gege cagggtggtt ttt	23
<210>	3	
<211>	30	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Synthetic	
<400> cagggt	3 gaag ggaagaagaa agcgaaaggt	30
<210>	4	
<211>	30	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Synthetic	
<400> cagggg	4 gaag ggaagaagaa agcgaaaggt	30
<210>	5	
<211>	28	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Synthetic	
<400> cacgaa	5 ttcc gaggcgatgc ttccgctc	28

<210>	6															
<211>	30															
<212>	DNA															
<213>	Artificial Sequence															
<220>																
<223>	Synt	hetio	2													
<400> tcgacgi	6 tcga (ctaa	ccctt	g go	cggaa	aagc	3								-	30
<210>	7															
<211>	23															
<212>	DNA															
<213>	Arti	ficia	al Se	equer	nce											
<220>																
<223>	Synt	hetio	2													
<400> gcatcgo	7 cctc 9	ggaat	tcat	g gt	c											23
<210>	8															
<211>	836															
<212>	PRT															
<213>	Ther	mus t	hern	nophi	ilus										•	
<400>	8															
Met Ası 1	n Ser	Glu	Ala 5	Met	Leu	Pro	Leu	Phe 10	Glu	Pro	Lys	Gly	Arg 15	Val		
Leu Le	u Val	Asp 20	Gly	His	His	Leu	Ala 25	Tyr	Arg	Thr	Phe	Phe 30	Ala	Leu		
Lys Gly	y Leu 35	Thr	Thr	Ser	Arg	Gly 40	Glu	Pro	Val	Gln	Ala 45	Val	Tyr	Gly		
Phe Ala	a Lys	Ser	Leu	Leu	Lys 55	Ala	Leu	Lys	Glu	Asp 60	Gly	Tyr	Lys	Ala		
Val Phe	e Val	Val	Phe	Asp 70	Ala	Lys	Ala	Pro	Ser 75	Phe	Arg	His	Glu	Ala 80		i
Tyr Glu	u Ala	Tyr	Lys 85	Ala	Gly	Arg	Ala	Pro 90	Thr	Pro	Glu	Asp	Phe 95	Pro		

Arg Gln Leu Ala Leu Ile Lys Glu Leu Val Asp Leu Leu Gly Phe Thr Arg Leu Glu Val Pro Gly Tyr Glu Ala Asp Asp Val Leu Ala Thr Leu Ala Lys Lys Ala Glu Lys Glu Gly Tyr Glu Val Arg Ile Leu Thr Ala 135 Asp Arg Asp Leu Tyr Gln Leu Val Ser Asp Arg Val Ala Val Leu His 155 Pro Glu Gly His Leu Ile Thr Pro Glu Trp Leu Trp Glu Lys Tyr Gly 170 175 Leu Arg Pro Glu Gln Trp Val Asp Phe Arg Ala Leu Val Gly Asp Pro Ser Asp Asn Leu Pro Gly Val Lys Gly Ile Gly Glu Lys Thr Ala Leu 200 Lys Leu Leu Lys Glu Trp Gly Ser Leu Glu Asn Leu Leu Lys Asn Leu 210 215 Asp Arg Val Lys Pro Glu Asn Val Arg Glu Lys Ile Lys Ala His Leu Glu Asp Leu Arg Leu Ser Leu Glu Leu Ser Arg Val Arg Thr Asp Leu Pro Leu Glu Val Asp Leu Ala Gln Gly Arg Glu Pro Asp Arg Glu Gly Leu Arq Ala Phe Leu Glu Arg Leu Glu Phe Gly Ser Leu Leu His Glu Phe Gly Leu Leu Glu Ala Pro Ala Pro Leu Glu Glu Ala Pro Trp Pro Pro Pro Glu Gly Ala Phe Val Gly Phe Val Leu Ser Arg Pro Glu Pro

Met Trp Ala Glu Leu Lys Ala Leu Ala Ala Cys Arg Asp Gly Arg Val

330

His Arg Ala Ala Asp Pro Leu Ala Gly Leu Lys Asp Leu Lys Glu Val 340 345 Arg Gly Leu Leu Ala Lys Asp Leu Ala Val Leu Ala Ser Arg Glu Gly 360 Leu Asp Leu Val Pro Gly Asp Asp Pro Met Leu Leu Ala Tyr Leu Leu 375 Asp Pro Ser Asn Thr Thr Pro Glu Gly Val Ala Arg Arg Tyr Gly Gly Glu Trp Thr Glu Asp Ala Ala His Arg Ala Leu Leu Ser Glu Arg Leu His Arg Asn Leu Leu Lys Arg Leu Glu Glu Glu Lys Leu Leu Trp 420 Leu Tyr His Glu Val Glu Lys Pro Leu Ser Arg Val Leu Ala His Met Glu Ala Thr Gly Val Arg Arg Asp Val Ala Tyr Leu Gln Ala Leu Ser Leu Glu Leu Ala Glu Glu Ile Arg Arg Leu Glu Glu Glu Val Phe Arg Leu Ala Gly His Pro Phe Asn Leu Asn Ser Arg Asp Gln Leu Glu Arg Val Leu Phe Asp Glu Leu Arq Leu Pro Ala Leu Gly Lys Thr Gln Lys 510 500 505 Thr Gly Lys Arg Ser Thr Ser Ala Ala Val Leu Glu Ala Leu Arg Glu 515 520 Ala His Pro Ile Val Glu Lys Ile Leu Gln His Arg Glu Leu Thr Lys 530 Leu Lys Asn Thr Tyr Val Asp Pro Leu Pro Ser Leu Val His Pro Arg 545 Thr Gly Arg Leu His Thr Arg Phe Asn Gln Thr Ala Thr Ala Thr Gly Arg Leu Ser Ser Asp Pro Asn Leu Gln Asn Ile Pro Val Arg Thr

585

Pro Leu Gly Gln Arg Ile Arg Arg Ala Phe Val Ala Glu Ala Gly Trp 595 600 605

Ala Leu Val Ala Leu Asp Tyr Ser Gln Ile Glu Leu Arg Val Leu Ala 610 615 620

His Leu Ser Gly Asp Glu Asn Leu Ile Arg Val Phe Gln Glu Gly Lys 625 630 635

Asp Ile His Thr Gln Thr Ala Ser Trp Met Phe Gly Val Pro Pro Glu 645 650 655

Ala Val Asp Pro Leu Met Arg Arg Ala Ala Lys Thr Val Asn Phe Gly 660 665 670

Val Leu Tyr Gly Met Ser Ala His Arg Leu Ser Gln Glu Leu Ala Ile 675 680 685

Pro Tyr Glu Glu Ala Val Ala Phe Ile Glu Arg Tyr Phe Gln Ser Phe 690 695 700

Pro Lys Val Arg Ala Trp Ile Glu Lys Thr Leu Glu Glu Gly Arg Lys 705 710 715 720

Arg Gly Tyr Val Glu Thr Leu Phe Gly Arg Arg Tyr Val Pro Asp
725 730 735

Leu Asn Ala Arg Val Lys Ser Val Arg Glu Ala Ala Glu Arg Met Ala
740 745 750

Phe Asn Met Pro Val Gln Gly Thr Ala Ala Asp Leu Met Lys Leu Ala 755 760 765

Met Val Lys Leu Phe Pro Arg Leu Arg Glu Met Gly Ala Arg Met Leu 770 775 780

Leu Gln Val His Asp Glu Leu Leu Glu Ala Pro Gln Ala Arg Ala 785 790 795 800

Glu Glu Val Ala Ala Leu Ala Lys Glu Ala Met Glu Lys Ala Tyr Pro 805 810 815

Leu Ala Val Pro Leu Glu Val Glu Val Gly Met Gly Glu Asp Trp Leu 820 825 830

Ser Ala Lys Gly 835

<210> 9

<211> 2511

<212> DNA

<213> Thermus thermophilus

<400> 9 60 atqaatteeq aggeqatget teegetettt gaaceeaaag geegggteet eetggtggae 120 ggccaccacc tggcctaccg caccttcttc gccctgaagg gcctcaccac gagccggggc 180 gaaccggtgc aggcggtcta cggcttcgcc aagagcctcc tcaaggccct gaaggaggac gggtacaagg ccgtcttcgt ggtctttgac gccaaggccc cctccttccg ccacgaggcc 240 tacgaggeet acaaggeggg gagggeeeeg acceeegagg actteeeeeg geagetegee 300 ctcatcaagg agctggtgga cctcctgggg tttacccgcc tcgaggtccc cggctacgag 360 qcqqacqacq ttctcqccac cctggccaag aaggcggaaa aggaggggta cgaggtgcgc 420 atceteaceg eegacegega eetetaceaa etegteteeg acegegtege egteeteeae 480 540 cccgagggcc acctcatcac cccggagtgg ctttgggaga agtacggcct caggccggag 600 caqtqqqtqq acttccqcqc cctcqtqqqq qacccctccq acaacctccc cggggtcaag 660 ggcatcgggg agaagaccgc cctcaagctc ctcaaggagt ggggaagcct ggaaaacctc ctcaagaacc tggaccgggt aaagccagaa aacgtccggg agaagatcaa ggcccacctg 720 qaaqacctca qqctctcctt qqagctctcc cgggtgcgca ccgacctccc cctggaggtg 780 gacctcgccc aggggcggga gcccgaccgg gaggggctta gggccttcct ggagaggctg 840 900 gagtteggea geeteeteea egagttegge eteetggagg eeeeegeeee eetggaggag geoceetgge eeeegeegga aggggeette gtgggetteg teeteteeeg eeeegageee 960 1020 atgtgggcgg agcttaaagc cctggccgcc tgcagggacg gccgggtgca ccgggcagca 1080 qaccccttgg cggggctaaa ggacctcaag gaggtccggg gcctcctcgc caaggacctc geogtettgg cetegaggga ggggetagae etegtgeeeg gggaegaeee catgeteete 1140 gcctacctcc tggacccctc caacaccacc cccgaggggg tggcgcggcg ctacgggggg 1200 gagtggacgg aggacgccgc ccaccgggcc ctcctctcgg agaggctcca tcggaacctc 1260 cttaagcgcc tcgagggga ggagaagctc ctttggctct accacgaggt ggaaaagccc 1320 ctctcccggg tcctggccca catggaggcc accggggtac ggcgggacgt ggcctacctt 1380

caggcco	cttt	ccctggagct	tgcggaggag	atccgccgcc	tcgaggagga	ggtcttccgc	1440
ttggcgggcc		accccttcaa	cctcaactcc	cgggaccagc	tggaaagggt	gctctttgac	1500
gagcttaggc		ttcccgcctt	ggggaagacg	caaaagacag	gcaagcgctc	caccagcgcc	1560
gcggtgctgg		aggccctacg	ggaggcccac	cccatcgtgg	agaagatcct	ccagcaccgg	1620
gagctca	acca	agctcaagaa	cacctacgtg	gaccccctcc	caagcctcgt	ccacccgagg	1680
acgggc	egce	tccacacccg	cttcaaccag	acggccacgg	ccacggggag	gcttagtagc	1740
tccgaco	cca	acctgcagaa	cateceegte	cgcaccccct	tgggccagag	gatccgccgg	1800
gccttcg	gtgg	ccgaggcggg	ttgggcgttg	gtggccctgg	actatagcca	gatagagete	1860
cgcgtcc	ctcg	cccacctctc	cggggacgaa	aacctgatca	gggtcttcca	ggagggaag	1920
gacatco	caca	cccagaccgc	aagctggatg	ttcggcgtcc	ccccggaggc	cgtggacccc	1980
ctgatgo	gcc	gggcggccaa	gacggtgaac	ttcggcgtcc	tctacggcat	gtccgcccat	2040
aggctct	ccc	aggagcttgc	catcccctac	gaggaggcgg	tggcctttat	agagcgctac	2100
ttccaaa	agct	tccccaaggt	gcgggcctgg	atagaaaaga	ccctggagga	ggggaggaag	2160
cggggct	acg	tggaaaccct	cttcggaaga	aggcgctacg	tgcccgacct	caacgcccgg	2220
gtgaaga	agcg	tcagggaggc	cgcggagcgc	atggccttca	acatgcccgt	ccagggcacc	2280
gccgccg	gacc	tcatgaagct	cgccatggtg	aagctcttcc	cccgcctccg	ggagatgggg	2340
gcccgca	atgc	tcctccaggt	ccacgacgag	ctcctcctgg	aggcccccca	agcgcgggcc	2400
gaggagg	gtgg	cggctttggc	caaggaggcc	atggagaagg	cctatcccct	cgccgtgccc	2460
ctggagg	gtgg	aggtggggat	gggggaggac	tggctttccg	ccaagggtta	g	2511
<210>	10						
<211>	26						
<212>	DNA						
<213>	Arti	ificial Sequ	ience				
<220>							
<223>	Synt	hetic					
<400> caggagg	10 gagc	tcgttgtgga	cctgga				26
<210>	11						
<211>	836						
<212>	PRT						
.212.	The	cmus thermor	ohilus				

<400> 11

Met Asn Ser Glu Ala Met Leu Pro Leu Phe Glu Pro Lys Gly Arg Val 1 5 10 15

Leu Leu Val Asp Gly His His Leu Ala Tyr Arg Thr Phe Phe Ala Leu 20 25 30

Lys Gly Leu Thr Thr Ser Arg Gly Glu Pro Val Gln Ala Val Tyr Gly 35 40 45

Phe Ala Lys Ser Leu Leu Lys Ala Leu Lys Glu Asp Gly Tyr Lys Ala 50 55 60

Val Phe Val Val Phe Asp Ala Lys Ala Pro Ser Phe Arg His Glu Ala 65 70 75 80

Tyr Glu Ala Tyr Lys Ala Gly Arg Ala Pro Thr Pro Glu Asp Phe Pro 85 90 95

Arg Gln Leu Ala Leu Ile Lys Glu Leu Val Asp Leu Leu Gly Phe Thr

Arg Leu Glu Val Pro Gly Tyr Glu Ala Asp Asp Val Leu Ala Thr Leu 115 120 125

Ala Lys Lys Ala Glu Lys Glu Gly Tyr Glu Val Arg Ile Leu Thr Ala 130 140

Asp Arg Asp Leu Tyr Gln Leu Val Ser Asp Arg Val Ala Val Leu His 145 150 155 160

Pro Glu Gly His Leu Ile Thr Pro Glu Trp Leu Trp Glu Lys Tyr Gly
165 170 175

Leu Arg Pro Glu Gln Trp Val Asp Phe Arg Ala Leu Val Gly Asp Pro 180 185 190

Ser Asp Asn Leu Pro Gly Val Lys Gly Ile Gly Glu Lys Thr Ala Leu 195 200 205

Lys Leu Leu Lys Glu Trp Gly Ser Leu Glu Asn Leu Leu Lys Asn Leu 210 215 220

Asp Arg Val Lys Pro Glu Asn Val Arg Glu Lys Ile Lys Ala His Leu 225 230 235 240

Val Leu Phe Asp Glu Leu Arg Leu Pro Ala Leu Gly Lys Thr Gln Lys 500 505 510

Thr Gly Lys Arg Ser Thr Ser Ala Ala Val Leu Glu Ala Leu Arg Glu

Ala His Pro Ile Val Glu Lys Ile Leu Gln His Arg Glu Leu Thr Lys 530 540

Leu Lys Asn Thr Tyr Val Asp Pro Leu Pro Ser Leu Val His Pro Arg 545 550 555 560

Thr Gly Arg Leu His Thr Arg Phe Asn Gln Thr Ala Thr Ala Thr Gly 565 570 575

Arg Leu Ser Ser Ser Asp Pro Asn Leu Gln Asn Ile Pro Val Arg Thr 580 585 590

Pro Leu Gly Gln Arg Ile Arg Arg Ala Phe Val Ala Glu Ala Gly Trp 595 600 605

Ala Leu Val Ala Leu Asp Tyr Ser Gln Ile Glu Leu Arg Val Leu Ala 610 615 620

His Leu Ser Gly Asp Glu Asn Leu Ile Arg Val Phe Gln Glu Gly Lys 625 630 635

Asp Ile His Thr Gln Thr Ala Ser Trp Met Phe Gly Val Pro Pro Glu 645 650 655

Ala Val Asp Pro Leu Met Arg Arg Ala Ala Lys Thr Val Asn Phe Gly 660 665 670

Val Leu Tyr Gly Met Ser Ala His Arg Leu Ser Gln Glu Leu Ala Ile 675 680 685

Pro Tyr Glu Glu Ala Val Ala Phe Ile Glu Arg Tyr Phe Gln Ser Phe 690 695 700

Pro Lys Val Arg Ala Trp Ile Glu Lys Thr Leu Glu Glu Gly Arg Lys 705 710 715 720

Leu Asn Ala Arg Val Lys Ser Val Arg Glu Ala Ala Glu Arg Met Ala

Phe Asn Met Pro Val Gln Gly Thr Ala Ala Asp Leu Met Lys Leu Ala

Met Val Lys Leu Phe Pro Arg Leu Arg Glu Met Gly Ala Arg Met Leu

Leu Gln Val His Asn Glu Leu Leu Leu Glu Ala Pro Gln Ala Arg Ala

Glu Glu Val Ala Ala Leu Ala Lys Glu Ala Met Glu Lys Ala Tyr Pro

Leu Ala Val Pro Leu Glu Val Glu Val Gly Met Gly Glu Asp Trp Leu 825

Ser Ala Lys Gly 835

<210> 12

<211> 2511

<212> DNA

Thermus thermophilus <213>

<400> 12

atgaattccg aggcgatgct tccgctcttt gaacccaaag gccgggtcct cctggtggac 60 ggccaccacc tggcctaccg caccttcttc gccctgaagg gcctcaccac gagccggggc 120 180 qaaccqqtqc aqqcqqtcta cqqcttcqcc aagagcctcc tcaaggccct gaaggaggac gggtacaagg ccgtcttcgt ggtctttgac gccaaggccc cctccttccg ccacgaggcc 240 tacgaggcct acaaggcggg gagggccccg acccccgagg acttcccccg gcagctcgcc 300 360 ctcatcaagg agctggtgga cctcctgggg tttacccgcc tcgaggtccc cggctacgag gcggacgacg ttctcgccac cctggccaag aaggcggaaa aggaggggta cgaggtgcgc 420 atoctcaccg ccgaccgcga cctctaccaa ctcgtctccg accgcgtcgc cgtcctccac 480 cccgagggcc acctcatcac cccggagtgg ctttgggaga agtacggcct caggccggag 540 cagtgggtgg acttccgcgc cctcgtgggg gacccctccg acaacctccc cggggtcaag 600 660 qqcatcqqqq agaagaccgc cctcaagctc ctcaaggagt ggggaagcct ggaaaacctc ctcaagaacc tggaccgggt aaagccagaa aacgtccggg agaagatcaa ggcccacctg 720 780 gaagacetca ggeteteett ggagetetee egggtgegea eegaeeteee eetggaggtg

gacctegece aggggegga geeegaeegg gaggggetta gggeetteet ggagaggetg 840 900 gagtteggea geeteeteea egagttegge eteetggagg eeeeegeeee eetggaggag 960 geoceetgge ceeegeegga aggggeette gtgggetteg teeteteeeg ceeegageee 1020 atgtggggg agettaaage cetggeegee tgeagggaeg geegggtgea eegggeagea gaccccttgg cggggctaaa ggacctcaag gaggtccggg gcctcctcgc caaggacctc 1080 1140 geogtettgg cetegaggga ggggetagae etegtgeeeg gggaegaeee catgeteete 1200 gectacetee tggacecete caacaceace ceegaggggg tggcgcggcg ctacgggggg 1260 gagtggacgg aggacgccgc ccaccgggcc ctcctctcgg agaggctcca tcggaacctc 1320 cttaagcgcc tcgagggga ggagaagctc ctttggctct accacgaggt ggaaaagccc 1380 ctctcccggg tcctggccca catggaggcc accggggtac ggcgggacgt ggcctacctt 1440 caggcccttt ccctggagct tgcggaggag atccgccgcc tcgaggagga ggtcttccgc 1500 ttggcgggcc acccettcaa ceteaactee egggaceage tggaaagggt getetttgae gagettagge ttcccgcctt ggggaagacg caaaagacag gcaagcgctc caccagcgcc 1560 1620 geggtgetgg aggecetaeg ggaggeeeae eecategtgg agaagateet eeageaeegg 1680 gageteacea ageteaagaa cacetaegtg gacecectee caageetegt ecaceegagg acgggccgcc tccacacccg cttcaaccag acggccacgg ccacggggag gcttagtagc 1740 1800 tecgaececa acetgeagaa cateceegte egeaceceet tgggeeagag gateegeegg 1860 gccttcgtgg ccgaggcggg ttgggcgttg gtggccctgg actatagcca gatagagctc cgcgtcctcg cccacctctc cggggacgaa aacctgatca gggtcttcca ggaggggaag 1920 1980 gacatccaca cccagaccgc aagctggatg ttcggcgtcc ccccggaggc cgtggacccc ctqatqcqcc gggcggccaa gacggtgaac ttcggcgtcc tctacggcat gtccgcccat 2040 aggetetece aggagettge catecectae gaggaggegg tggcetttat agagegetae 2100 2160 ttccaaagct tccccaaggt gcgggcctgg atagaaaaga ccctggagga ggggaggaag 2220 eggggetaeg tggaaaccet etteggaaga aggegetaeg tgeeegaeet caaegeeegg gtgaagagcg tcagggaggc cgcggagcgc atggccttca acatgcccgt ccagggcacc 2280 2340 gccgccgacc tcatgaaget cgccatggtg aagetettee cccgcctccg ggagatgggg geoegeatge teetecaggt ceacaacgag eteeteetgg aggeeecea agegegggee 2400 gaggaggtgg cggctttggc caaggaggcc atggagaagg cctatcccct cgccgtgccc 2460 2511 ctggaggtgg aggtggggat gggggaggac tggctttccg ccaagggtta g

	<210>	13								
	<211>	58								
	<212>	DNA								
<213> Artificial Sequence										
	<220>									
	<223>	Synt	chetic							
	<400> tgcctgd	13 cagg	tegaegetag	ctagtggtgg	tggtggtggt	gacccttggc	ggaaagcc	58		
	<210>	14								
	<211>	2526	5							
	<212>	DNA								
	<213>	Thei	rmus thermor	philus						
	<400> atgaatt	14 ccg	aggcgatgct	tccgctcttt	gaacccaaag	gccgggtcct	cctggtggac	60		
	ggccaco	cacc	tggcctaccg	caccttcttc	gccctgaagg	gcctcaccac	gagccggggc	120		
	gaaccgg	gtgc	aggcggtcta	cggcttcgcc	aagagcctcc	tcaaggccct	gaaggaggac	180		
	gggtaca	aagg	ccgtcttcgt	ggtctttgac	gccaaggccc	cctccttccg	ccacgaggcc	240		
	tacgagg	gcct	acaaggcggg	gagggccccg	acccccgagg	acttcccccg	gcagctcgcc	300		
	ctcatca	aagg	agctggtgga	cctcctgggg	tttacccgcc	tcgaggtccc	cggctacgag	360		
	gcggacg	gacg	ttctcgccac	cctggccaag	aaggcggaaa	aggaggggta	cgaggtgcgc	420		
	atcctca	accg	ccgaccgcga	cctctaccaa	ctcgtctccg	accgcgtcgc	cgtcctccac	480		
	cccgagg	ggcc	acctcatcac	cccggagtgg	ctttgggaga	agtacggcct	caggccggag	540		
	cagtggg	gtgg	acttccgcgc	cctcgtgggg	gacccctccg	acaacctccc	cggggtcaag	600		
	ggcatc	3999	agaagaccgc	cctcaagctc	ctcaaggagt	ggggaagcct	ggaaaacctc	660		
	ctcaaga	aacc	tggaccgggt	aaagccagaa	aacgtccggg	agaagatcaa	ggcccacctg	720		
	gaagac	ctca	ggctctcctt	ggagctctcc	cgggtgcgca	ccgacctccc	cctggaggtg	780		
	gacctc	gccc	aggggcggga	gcccgaccgg	gaggggctta	gggccttcct	ggagaggctg	840		
	gagttc	ggca	gcctcctcca	cgagttcggc	ctcctggagg	ccccgcccc	cctggaggag	900		
	gccccct	ggc	ccccgccgga	aggggccttc	gtgggcttcg	tcctctcccg	ccccgagccc	960		
	atgtggg	gcgg	agcttaaagc	cctggccgcc	tgcagggacg	gccgggtgca	ccgggcagca	1020		
	gacccct	tgg	cggggctaaa	ggacctcaag	gaggtccggg	gcctcctcgc	caaggacctc	1080		
	gccgtct	tgg	cctcgaggga	ggggctagac	ctcgtgcccg	gggacgaccc	catgctcctc	1140		

<210> 15

<211> 842

<212> PRT

<213> Thermus thermophilus

<400> 15

Met Asn Ser Glu Ala Met Leu Pro Leu Phe Glu Pro Lys Gly Arg Val 1 5 10 15

Leu Leu Val Asp Gly His His Leu Ala Tyr Arg Thr Phe Phe Ala Leu 20 25 30

Lys Gly Leu Thr Thr Ser Arg Gly Glu Pro Val Gln Ala Val Tyr Gly
35 40 45

Phe Ala Lys Ser Leu Leu Lys Ala Leu Lys Glu Asp Gly Tyr Lys Ala 50 55 60

Val Phe Val Val Phe Asp Ala Lys Ala Pro Ser Phe Arg His Glu Ala 65 70 75 80

Tyr Glu Ala Tyr Lys Ala Gly Arg Ala Pro Thr Pro Glu Asp Phe Pro 85 90 95

Arg Gln Leu Ala Leu Ile Lys Glu Leu Val Asp Leu Leu Gly Phe Thr 100 105 110

Arg Leu Glu Val Pro Gly Tyr Glu Ala Asp Asp Val Leu Ala Thr Leu 115 120 125

Ala Lys Lys Ala Glu Lys Glu Gly Tyr Glu Val Arg Ile Leu Thr Ala 130 135 140

Asp Arg Asp Leu Tyr Gln Leu Val Ser Asp Arg Val Ala Val Leu His 145 150 155 160

Pro Glu Gly His Leu Ile Thr Pro Glu Trp Leu Trp Glu Lys Tyr Gly 165 170 175

Leu Arg Pro Glu Gln Trp Val Asp Phe Arg Ala Leu Val Gly Asp Pro 180 185 190

Ser Asp Asn Leu Pro Gly Val Lys Gly Ile Gly Glu Lys Thr Ala Leu 195 200 205

Lys Leu Leu Lys Glu Trp Gly Ser Leu Glu Asn Leu Leu Lys Asn Leu 210 215 220

Asp Arg Val Lys Pro Glu Asn Val Arg Glu Lys Ile Lys Ala His Leu 225 230 235 240

Glu Asp Leu Arg Leu Ser Leu Glu Leu Ser Arg Val Arg Thr Asp Leu 245 250 Pro Leu Glu Val Asp Leu Ala Gln Gly Arg Glu Pro Asp Arg Glu Gly Leu Arg Ala Phe Leu Glu Arg Leu Glu Phe Gly Ser Leu Leu His Glu 280 275 Phe Gly Leu Leu Glu Ala Pro Ala Pro Leu Glu Glu Ala Pro Trp Pro 295 Pro Pro Glu Gly Ala Phe Val Gly Phe Val Leu Ser Arg Pro Glu Pro 315 Met Trp Ala Glu Leu Lys Ala Leu Ala Ala Cys Arg Asp Gly Arg Val 325 His Arg Ala Ala Asp Pro Leu Ala Gly Leu Lys Asp Leu Lys Glu Val Arg Gly Leu Leu Ala Lys Asp Leu Ala Val Leu Ala Ser Arg Glu Gly Leu Asp Leu Val Pro Gly Asp Asp Pro Met Leu Leu Ala Tyr Leu Leu Asp Pro Ser Asn Thr Thr Pro Glu Gly Val Ala Arg Arg Tyr Gly Gly 385 395 Glu Trp Thr Glu Asp Ala Ala His Arg Ala Leu Leu Ser Glu Arg Leu 405 410 415 His Arg Asn Leu Leu Lys Arg Leu Glu Glu Glu Lys Leu Leu Trp 420 Leu Tyr His Glu Val Glu Lys Pro Leu Ser Arg Val Leu Ala His Met 435 440 Glu Ala Thr Gly Val Arg Arg Asp Val Ala Tyr Leu Gln Ala Leu Ser Leu Glu Leu Ala Glu Glu Ile Arg Arg Leu Glu Glu Val Phe Arg 465 Leu Ala Gly His Pro Phe Asn Leu Asn Ser Arg Asp Gln Leu Glu Arg 485 490

Val Leu Phe Asp Glu Leu Arg Leu Pro Ala Leu Gly Lys Thr Gln Lys 500 505 510

Thr Gly Lys Arg Ser Thr Ser Ala Ala Val Leu Glu Ala Leu Arg Glu 515 520 525

Ala His Pro Ile Val Glu Lys Ile Leu Gln His Arg Glu Leu Thr Lys 530 540

Leu Lys Asn Thr Tyr Val Asp Pro Leu Pro Ser Leu Val His Pro Arg 545 550 555 560

Thr Gly Arg Leu His Thr Arg Phe Asn Gln Thr Ala Thr Ala Thr Gly 565 570 575

Arg Leu Ser Ser Ser Asp Pro Asn Leu Gln Asn Ile Pro Val Arg Thr 580 585 590

Pro Leu Gly Gln Arg Ile Arg Arg Ala Phe Val Ala Glu Ala Gly Trp 595 600 605

Ala Leu Val Ala Leu Asp Tyr Ser Gln Ile Glu Leu Arg Val Leu Ala 610 615 620

His Leu Ser Gly Asp Glu Asn Leu Ile Arg Val Phe Gln Glu Gly Lys 625 630 635 640

Asp Ile His Thr Gln Thr Ala Ser Trp Met Phe Gly Val Pro Pro Glu 645 650

Ala Val Asp Pro Leu Met Arg Arg Ala Ala Lys Thr Val Asn Phe Gly 660 665 670

Val Leu Tyr Gly Met Ser Ala His Arg Leu Ser Gln Glu Leu Ala Ile 675 680 685

Pro Tyr Glu Glu Ala Val Ala Phe Ile Glu Arg Tyr Phe Gln Ser Phe 690 700

Pro Lys Val Arg Ala Trp Ile Glu Lys Thr Leu Glu Glu Gly Arg Lys 705 710 715 720

Arg Gly Tyr Val Glu Thr Leu Phe Gly Arg Arg Tyr Val Pro Asp
725 730 735

Leu Asn Ala Arg Val Lys Ser Val Arg Glu Ala Ala Glu Arg Met Ala 740 745 750	
Phe Asn Met Pro Val Gln Gly Thr Ala Ala Asp Leu Met Lys Leu Ala 755 760 765	
Met Val Lys Leu Phe Pro Arg Leu Arg Glu Met Gly Ala Arg Met Leu 770 775 780	
Leu Gln Val His Asn Glu Leu Leu Glu Ala Pro Gln Ala Arg Ala 785 790 795 800	
Glu Glu Val Ala Ala Leu Ala Lys Glu Ala Met Glu Lys Ala Tyr Pro 805 810 815	
Leu Ala Val Pro Leu Glu Val Glu Val Gly Met Gly Glu Asp Trp Leu 820 825 830	
Ser Ala Lys Gly His His His His His 835 840	
<210> 16	
<211> 31	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic	
<400> 16 gcctgcaggg gcggccgcgt gcaccggggc a	31
<210> 17	
<211> 25	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic	

26

<400> 17

ctcctggacc cttcgaacac cacccc

<210>	18											
<211>	23											
<212>	DNA											
<213>	13> Artificial Sequence											
<220>	20>											
<223>	Synt	thetic										
<400> 18 gtcctggccc atatggaggc cac 23												
<210>	19											
<211>	2526	5										
<212>	DNA											
<213>	Thei	rmus thermop	philus									
• .	19 ccg	aggcgatgct	teegetettt	gaacccaaag	gccgggtcct	cctggtggac	60					
ggccacc	acc	tggcctaccg	caccttcttc	gccctgaagg	gcctcaccac	gagccggggc	120					
gaaccgg	tgc	aggcggtcta	cggcttcgcc	aagagcctcc	tcaaggccct	gaaggaggac	180					
gggtaca	agg	ccgtcttcgt	ggtctttgac	gccaaggccc	cctccttccg	ccacgaggcc	240					
tacgagg	cct	acaaggcggg	gagggccccg	acccccgagg	acttcccccg	gcagctcgcc	300					
ctcatca	.agg	agctggtgga	cctcctgggg	tttacccgcc	tcgaggtccc	cggctacgag	360					
gcggacg	acg	ttctcgccac	cctggccaag	aaggcggaaa	aggaggggta	cgaggtgcgc	420					
atcctca	.ccg	ccgaccgcga	cctctaccaa	ctcgtctccg	accgcgtcgc	cgtcctccac	480					
cccgagg	gcc	acctcatcac	cccggagtgg	ctttgggaga	agtacggcct	caggccggag	540					
cagtggg	tgg	acttccgcgc	cctcgtgggg	gacccctccg	acaacctccc	cggggtcaag	600					
ggcatcg	999	agaagaccgc	cctcaagctc	ctcaaggagt	ggggaagcct	ggaaaacctc	660					
ctcaaga	acc	tggaccgggt	aaagccagaa	aacgtccggg	agaagatcaa	ggcccacctg	720					
gaagacc	tca	ggctctcctt	ggagctctcc	cgggtgcgca	ccgacctccc	cctggaggtg	780					
gacctcg	ccc	aggggcggga	gcccgaccgg	gaggggctta	gggccttcct	ggagaggctg	840					
gagttcg	gca	gcctcctcca	cgagttcggc	ctcctggagg	ccccgcccc	cctggaggag	900					
gccccct	ggc	ccccgccgga	aggggccttc	gtgggcttcg	tcctctcccg	ccccgagccc	960					
atgtggg	cgg	agcttaaagc	cctggccgcc	tgcaggggcg	gccgcgtgca	ccgggcagca	1020					
gaccccti	tgg	cggggctaaa	ggacctcaag	gaggtccggg	gcctcctcgc	caaggacctc	1080					
gccgtct	tgg	cctcgaggga	ggggctagac	ctcgtgcccg	gggacgaccc	catgctcctc	1140					

<210> 20

<211> 842

<212> PRT

<213> Thermus thermophilus

<400> 20

Met Asn Ser Glu Ala Met Leu Pro Leu Phe Glu Pro Lys Gly Arg Val 1 5 10 15

Leu Leu Val Asp Gly His His Leu Ala Tyr Arg Thr Phe Phe Ala Leu 20 25 30

Lys Gly Leu Thr Thr Ser Arg Gly Glu Pro Val Gln Ala Val Tyr Gly 35 40 45

Phe Ala Lys Ser Leu Lys Ala Leu Lys Glu Asp Gly Tyr Lys Ala 50 60

Val Phe Val Val Phe Asp Ala Lys Ala Pro Ser Phe Arg His Glu Ala 65 70 75 80

Tyr Glu Ala Tyr Lys Ala Gly Arg Ala Pro Thr Pro Glu Asp Phe Pro 85 90 95

Arg Gln Leu Ala Leu Ile Lys Glu Leu Val Asp Leu Leu Gly Phe Thr
100 105 110

Arg Leu Glu Val Pro Gly Tyr Glu Ala Asp Asp Val Leu Ala Thr Leu 115 120 125

Ala Lys Lys Ala Glu Lys Glu Gly Tyr Glu Val Arg Ile Leu Thr Ala 130 135 140

Asp Arg Asp Leu Tyr Gln Leu Val Ser Asp Arg Val Ala Val Leu His 145 150 155 160

Pro Glu Gly His Leu Ile Thr Pro Glu Trp Leu Trp Glu Lys Tyr Gly 165 170 175

Leu Arg Pro Glu Gln Trp Val Asp Phe Arg Ala Leu Val Gly Asp Pro 180 185 190

Ser Asp Asn Leu Pro Gly Val Lys Gly Ile Gly Glu Lys Thr Ala Leu 195 200 205

Lys Leu Leu Lys Glu Trp Gly Ser Leu Glu Asn Leu Leu Lys Asn Leu 210 215 220

Asp Arg Val Lys Pro Glu Asn Val Arg Glu Lys Ile Lys Ala His Leu 225 230 235 240

Glu Asp Leu Arg Leu Ser Leu Glu Leu Ser Arg Val Arg Thr Asp Leu Pro Leu Glu Val Asp Leu Ala Gln Gly Arg Glu Pro Asp Arg Glu Gly Leu Arg Ala Phe Leu Glu Arg Leu Glu Phe Gly Ser Leu Leu His Glu 280 Phe Gly Leu Leu Glu Ala Pro Ala Pro Leu Glu Glu Ala Pro Trp Pro Pro Pro Glu Gly Ala Phe Val Gly Phe Val Leu Ser Arg Pro Glu Pro 315 Met Trp Ala Glu Leu Lys Ala Leu Ala Ala Cys Arg Gly Gly Arg Val 325 His Arg Ala Ala Asp Pro Leu Ala Gly Leu Lys Asp Leu Lys Glu Val Arg Gly Leu Leu Ala Lys Asp Leu Ala Val Leu Ala Ser Arg Glu Gly Leu Asp Leu Val Pro Gly Asp Asp Pro Met Leu Leu Ala Tyr Leu Leu Asp Pro Ser Asn Thr Thr Pro Glu Gly Val Ala Arg Arg Tyr Gly Gly 400 Glu Trp Thr Glu Asp Ala Ala His Arg Ala Leu Leu Ser Glu Arg Leu 415 405 410 His Arg Asn Leu Leu Lys Arg Leu Glu Gly Glu Glu Lys Leu Leu Trp 420 Leu Tyr His Glu Val Glu Lys Pro Leu Ser Arg Val Leu Ala His Met 435 445 Glu Ala Thr Gly Val Arg Arg Asp Val Ala Tyr Leu Gln Ala Leu Ser 450 Leu Glu Leu Ala Glu Glu Ile Arg Arg Leu Glu Glu Glu Val Phe Arg 465 Leu Ala Gly His Pro Phe Asn Leu Asn Ser Arg Asp Gln Leu Glu Arg

490

Thr Gly Lys Arg Ser Thr Ser Ala Ala Val Leu Glu Ala Leu Arg Glu
515 520 525

Ala His Pro Ile Val Glu Lys Ile Leu Gln His Arg Glu Leu Thr Lys 530 540

Leu Lys Asn Thr Tyr Val Asp Pro Leu Pro Ser Leu Val His Pro Arg 545 550 555 560

Thr Gly Arg Leu His Thr Arg Phe Asn Gln Thr Ala Thr Ala Thr Gly 565 570 575

Arg Leu Ser Ser Ser Asp Pro Asn Leu Gln Asn Ile Pro Val Arg Thr 580 585 590

Pro Leu Gly Gln Arg Ile Arg Arg Ala Phe Val Ala Glu Ala Gly Trp 595 600 605

Ala Leu Val Ala Leu Asp Tyr Ser Gln Ile Glu Leu Arg Val Leu Ala 610 615 620

His Leu Ser Gly Asp Glu Asn Leu Ile Arg Val Phe Gln Glu Gly Lys 625 630 635

Asp Ile His Thr Gln Thr Ala Ser Trp Met Phe Gly Val Pro Pro Glu 645 650 655

Ala Val Asp Pro Leu Met Arg Arg Ala Ala Lys Thr Val Asn Phe Gly 660 665 670

Val Leu Tyr Gly Met Ser Ala His Arg Leu Ser Gln Glu Leu Ala Ile 675 680 685

Pro Tyr Glu Glu Ala Val Ala Phe Ile Glu Arg Tyr Phe Gln Ser Phe 690 695 700

Pro Lys Val Arg Ala Trp Ile Glu Lys Thr Leu Glu Glu Gly Arg Lys 705 710 715 720

Arg Gly Tyr Val Glu Thr Leu Phe Gly Arg Arg Tyr Val Pro Asp 725 730 735

Leu Asn Ala Arg Val Lys Ser Val Arg Glu Ala Ala Glu Arg Met Ala 740 745 750	
Phe Asn Met Pro Val Gln Gly Thr Ala Ala Asp Leu Met Lys Leu Ala 755 760 765	
Met Val Lys Leu Phe Pro Arg Leu Arg Glu Met Gly Ala Arg Met Leu 770 775 780	
Leu Gln Val His Asn Glu Leu Leu Glu Ala Pro Gln Ala Arg Ala 785 790 795 800	
Glu Glu Val Ala Ala Leu Ala Lys Glu Ala Met Glu Lys Ala Tyr Pro 805 810 815	
Leu Ala Val Pro Leu Glu Val Glu Val Gly Met Gly Glu Asp Trp Leu 820 825 830	
Ser Ala Lys Gly His His His His His 835 840	
<210> 21	
<211> 30	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic	
<400> 21	
caggaggagc tcgttggcga cctggaggag	30
<210> 22	
<211> 2526	
<212> DNA	
<213> Thermus thermophilus	
<400> 22 atgaattccg aggcgatgct tccgctcttt gaacccaaag gccgggtcct cctggtggac	60
ggccaccacc tggcctaccg caccttcttc gccctgaagg gcctcaccac gagccggggc	120
gaaccggtgc aggcggtcta cggcttcgcc aagagcctcc tcaaggccct gaaggaggac	180

gggtacaagg ccgtcttcgt ggtctttgac gccaaggccc cctccttccg ccacgaggcc

tacgaggeet acaaggeggg gagggeeeeg acceeegagg actteeeeeg geagetegee

ctcatcaagg agctggtgga cctcctgggg tttacccgcc tcgaggtccc cggctacgag

240

300

gtgaagageg teagggagge egeggagege atggeettea acatgeeegt eeagggeace	2280
geogeogace teatgaaget egecatggtg aagetettee eeegeeteeg ggagatgggg	2340
gecegeatge tectocaggt egecaacgag etecteetgg aggeceecca agegegggee	2400
gaggaggtgg cggctttggc caaggaggcc atggagaagg cctatcccct cgccgtgccc	2460
ctggaggtgg aggtggggat gggggaggac tggctttccg ccaagggtca ccaccaccac	2520
caccac	2526
<210> 23	
<211> 842	
<212> PRT	
<213> Thermus thermophilus	
<400> 23	
Met Asn Ser Glu Ala Met Leu Pro Leu Phe Glu Pro Lys Gly Arg Val 1 5 10 15	
Leu Leu Val Asp Gly His His Leu Ala Tyr Arg Thr Phe Phe Ala Leu 20 25 30	
Lys Gly Leu Thr Thr Ser Arg Gly Glu Pro Val Gln Ala Val Tyr Gly 35 40 45	
Phe Ala Lys Ser Leu Leu Lys Ala Leu Lys Glu Asp Gly Tyr Lys Ala 50 55 60	
Val Phe Val Val Phe Asp Ala Lys Ala Pro Ser Phe Arg His Glu Ala 65 70 75 80	
Tyr Glu Ala Tyr Lys Ala Gly Arg Ala Pro Thr Pro Glu Asp Phe Pro 85 90 95	
Arg Gln Leu Ala Leu Ile Lys Glu Leu Val Asp Leu Leu Gly Phe Thr 100 105 110	
Arg Leu Glu Val Pro Gly Tyr Glu Ala Asp Asp Val Leu Ala Thr Leu 115 120 125	
Ala Lys Lys Ala Glu Lys Glu Gly Tyr Glu Val Arg Ile Leu Thr Ala 130 135 140	
Asp Arg Asp Leu Tyr Gln Leu Val Ser Asp Arg Val Ala Val Leu His 145 150 155 160	

Pro Glu Gly His Leu Ile Thr Pro Glu Trp Leu Trp Glu Lys Tyr Gly 165 Leu Arg Pro Glu Gln Trp Val Asp Phe Arg Ala Leu Val Gly Asp Pro 185 Ser Asp Asn Leu Pro Gly Val Lys Gly Ile Gly Glu Lys Thr Ala Leu Lys Leu Leu Lys Glu Trp Gly Ser Leu Glu Asn Leu Leu Lys Asn Leu Asp Arg Val Lys Pro Glu Asn Val Arg Glu Lys Ile Lys Ala His Leu Glu Asp Leu Arg Leu Ser Leu Glu Leu Ser Arg Val Arg Thr Asp Leu 245 Pro Leu Glu Val Asp Leu Ala Gln Gly Arg Glu Pro Asp Arg Glu Gly Leu Arg Ala Phe Leu Glu Arg Leu Glu Phe Gly Ser Leu Leu His Glu Phe Gly Leu Leu Glu Ala Pro Ala Pro Leu Glu Glu Ala Pro Trp Pro Pro Pro Glu Gly Ala Phe Val Gly Phe Val Leu Ser Arg Pro Glu Pro Met Trp Ala Glu Leu Lys Ala Leu Ala Ala Cys Arg Gly Gly Arg Val 330 335 325 His Arg Ala Ala Asp Pro Leu Ala Gly Leu Lys Asp Leu Lys Glu Val Arg Gly Leu Leu Ala Lys Asp Leu Ala Val Leu Ala Ser Arg Glu Gly 355 360 Leu Asp Leu Val Pro Gly Asp Asp Pro Met Leu Leu Ala Tyr Leu Leu 370 Asp Pro Ser Asn Thr Thr Pro Glu Gly Val Ala Arg Arg Tyr Gly Gly 385 Glu Trp Thr Glu Asp Ala Ala His Arg Ala Leu Leu Ser Glu Arg Leu 405 410

His Arg Asn Leu Leu Lys Arg Leu Glu Glu Glu Lys Leu Trp
420
425
430

Leu Tyr His Glu Val Glu Lys Pro Leu Ser Arg Val Leu Ala His Met

Glu Ala Thr Gly Val Arg Arg Asp Val Ala Tyr Leu Gln Ala Leu Ser 450 455 460

Leu Glu Leu Ala Glu Glu Ile Arg Arg Leu Glu Glu Glu Val Phe Arg 465 470 475 480

Leu Ala Gly His Pro Phe Asn Leu Asn Ser Arg Asp Gln Leu Glu Arg
485 490 495

Val Leu Phe Asp Glu Leu Arg Leu Pro Ala Leu Gly Lys Thr Gln Lys 500 505 510

Thr Gly Lys Arg Ser Thr Ser Ala Ala Val Leu Glu Ala Leu Arg Glu 515 520 525

Ala His Pro Ile Val Glu Lys Ile Leu Gln His Arg Glu Leu Thr Lys 530 535 540

Leu Lys Asn Thr Tyr Val Asp Pro Leu Pro Ser Leu Val His Pro Arg 545 550 555 560

Thr Gly Arg Leu His Thr Arg Phe Asn Gln Thr Ala Thr Ala Thr Gly 565 570 575

Arg Leu Ser Ser Ser Asp Pro Asn Leu Gln Asn Ile Pro Val Arg Thr 580 590

Pro Leu Gly Gln Arg Ile Arg Arg Ala Phe Val Ala Glu Ala Gly Trp 595 600 605

Ala Leu Val Ala Leu Asp Tyr Ser Gln Ile Glu Leu Arg Val Leu Ala 610 620

His Leu Ser Gly Asp Glu Asn Leu Ile Arg Val Phe Gln Glu Gly Lys 625 630 635 640

Asp Ile His Thr Gln Thr Ala Ser Trp Met Phe Gly Val Pro Pro Glu 645 650

Ala Val Asp Pro Leu Met Arg Arg Ala Ala Lys Thr Val Asn Phe Gly 660 665 670

Val Leu Tyr Gly Met Ser Ala His Arg Leu Ser Gln Glu Leu Ala Ile 675 680 685

Pro Tyr Glu Glu Ala Val Ala Phe Ile Glu Arg Tyr Phe Gln Ser Phe 690 700

Pro Lys Val Arg Ala Trp Ile Glu Lys Thr Leu Glu Glu Gly Arg Lys 705 710 715 720

Arg Gly Tyr Val Glu Thr Leu Phe Gly Arg Arg Tyr Val Pro Asp 725 730 735

Leu Asn Ala Arg Val Lys Ser Val Arg Glu Ala Ala Glu Arg Met Ala 740 745 750

Phe Asn Met Pro Val Gln Gly Thr Ala Ala Asp Leu Met Lys Leu Ala 755 760 765

Met Val Lys Leu Phe Pro Arg Leu Arg Glu Met Gly Ala Arg Met Leu 770 780

Leu Gln Val Ala Asn Glu Leu Leu Glu Ala Pro Gln Ala Arg Ala 785 790 795 800

Glu Glu Val Ala Ala Leu Ala Lys Glu Ala Met Glu Lys Ala Tyr Pro 805 810 815

Leu Ala Val Pro Leu Glu Val Glu Val Gly Met Gly Glu Asp Trp Leu 820 825 830

Ser Ala Lys Gly His His His His His His 835

<210> 24

<211> 45

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic

<400> 24 ggagcgcttg cctgtcttct tcgtcttctt caaggcggga ggcct	45
<210> 25	
<211> 2526	
<212> DNA	
<213> Thermus thermophilus	
<400> 25 atgaatteeg aggegatget teegetettt gaacecaaag geegggteet eetggtggae	60
ggccaccacc tggcctaccg caccttette geeetgaagg geetcaccae gageegggge	120
gaaccggtgc aggcggtcta cggcttcgcc aagagcctcc tcaaggccct gaaggaggac	180
gggtacaagg ccgtcttcgt ggtctttgac gccaaggccc cctccttccg ccacgaggcc	240
tacgaggeet acaaggeggg gagggeeeeg acceeegagg actteeeeeg geagetegee	300
ctcatcaagg agctggtgga cctcctgggg tttacccgcc tcgaggtccc cggctacgag	360
gcggacgacg ttctcgccac cctggccaag aaggcggaaa aggaggggta cgaggtgcgc	420
atcctcaccg ccgaccgcga cctctaccaa ctcgtctccg accgcgtcgc cgtcctccac	480
cccgagggcc acctcatcac cccggagtgg ctttgggaga agtacggcct caggccggag	540
cagtgggtgg acttccgcgc cctcgtgggg gacccctccg acaacctccc cggggtcaag	600
ggcatcgggg agaagaccgc cctcaagctc ctcaaggagt ggggaagcct ggaaaacctc	660
ctcaagaacc tggaccgggt aaagccagaa aacgtccggg agaagatcaa ggcccacctg	720
gaagaeetea ggeteteett ggagetetee egggtgegea eegaeeteee eetggaggtg	780
gacctcgccc aggggcggga gcccgaccgg gaggggctta gggccttcct ggagaggctg	840
gagtteggea geeteeteea egagttegge eteetggagg eeeeegeeee eetggaggag	900
gccccctggc ccccgccgga aggggccttc gtgggcttcg tcctctcccg ccccgagccc	960
atgtgggcgg agcttaaagc cctggccgcc tgcaggggcg gccgcgtgca ccgggcagca	1020
gaccccttgg cggggctaaa ggacctcaag gaggtccggg gcctcctcgc caaggacctc	1080
gccgtcttgg cctcgaggga ggggctagac ctcgtgcccg gggacgaccc catgctcctc	1140
gestacetes tggaesette gaasaceass seegaggggg tggegeggeg stacgggggg	1200
gagtggacgg aggacgccgc ccaccgggcc ctcctctcgg agaggctcca tcggaacctc	1260
cttaagcgcc tcgaggggga ggagaagctc ctttggctct accacgaggt ggaaaagccc	1320
ctctcccggg tcctggccca tatggaggcc accggggtac ggcgggacgt ggcctacctt	1380
caggcccttt ccctggagct tgcggaggag atccgccgcc tcgaggagga ggtcttccgc	1440
ttggcgggcc accccttcaa cctcaactcc cgggaccagc tggaaagggt gctctttgac	1500

1560 gagettagge ttecegeett gaagaagaeg aagaagaeag geaagegete caccagegee geggtgetgg aggeectaeg ggaggeecae eccategtgg agaagateet ecageaeegg 1620 1680 gageteacca ageteaagaa caeetaegtg gaeeeeetee caageetegt eeaceegagg acgggccgcc tccacacccg cttcaaccag acggccacgg ccacggggag gcttagtagc 1740 1800 tecgaececa acetgeagaa cateceegte egeaececet tgggeeagag gateegeegg 1860 qccttcgtgg ccgaggcggg ttgggcgttg gtggccctgg actatagcca gatagagctc 1920 cqcqtcctcq cccacctctc cqqqqacqaa aacctqatca qqqtcttcca qqaqqqqaaq 1980 gacatccaca cccagaccgc aagctggatg tteggegtee eeeeggagge egtggaccee ctgatgcgcc gggcggccaa gacggtgaac ttcggcgtcc tctacggcat gtccgcccat 2040 2100 aggetetece aggagettge catecectae gaggaggegg tggeetttat agagegetae 2160 ttccaaaqct tccccaaggt gcgggcctgg atagaaaaga ccctggagga ggggaggaag eggggetaeg tggaaaccet etteggaaga aggegetaeg tgeeegaeet caaegeeegg 2220 gtgaagageg teagggagge egeggagege atggeettea acatgeeegt eeagggeace 2280 2340 gccgccgacc tcatgaagct cgccatggtg aagctettee eccgceteeg ggagatgggg geoegeatge teeteeaggt egecaacgag eteeteetgg aggeeeeca agegegggee 2400 gaggaggtgg cggctttggc caaggaggcc atggagaagg cctatcccct cgccgtgccc 2460 ctggaggtgg aggtggggat gggggaggac tggctttccg ccaagggtca ccaccaccac 2520 2526 caccac

<210> 26

<211> 842

<212> PRT

<213> Thermus thermophilus

<400> 26

Met Asn Ser Glu Ala Met Leu Pro Leu Phe Glu Pro Lys Gly Arg Val 1 5 10 15

Leu Leu Val Asp Gly His His Leu Ala Tyr Arg Thr Phe Phe Ala Leu 20 25 30

Lys Gly Leu Thr Thr Ser Arg Gly Glu Pro Val Gln Ala Val Tyr Gly 35 40 45

Phe Ala Lys Ser Leu Leu Lys Ala Leu Lys Glu Asp Gly Tyr Lys Ala 50 55 60

65	Pne	vai	vai	Pne	70	Ala	пуѕ	AIA	PIO	75	Pne	Arg	піз	GIU	80 80
Tyr	Glu	Ala	Tyr	Lys 85	Ala	Gly	Arg	Ala	Pro 90	Thr	Pro	Glu	Asp	Phe 95	Pro
Arg	Gln	Leu	Ala 100	Leu	Ile	Lys	Glu	Leu 105	Val	Asp	Leu	Leu	Gly 110	Phe	Thr
Arg	Leu	Glu 115	Val	Pro	Gly	Tyr	Glu 120	Ala	qaA	Asp	Val	Leu 125	Ala	Thr	Leu
Ala	Lys 130	Lys	Ala	Glu	Lys	Glu 135	Gly	Tyr	Glu	Val	Arg 140	Ile	Leu	Thr	Ala
Asp 145	Arg	Asp	Leu	Tyr	Gln 150	Leu	Val	Ser	Asp	Arg 155	Val	Ala	Val	Leu	His 160
Pro	Glu	Gly	His	Leu 165	Ile	Thr	Pro	Glu	Trp 170	Leu	Trp	Glu	Lys	Tyr 175	Gly
Leu	Arg	Pro	Glu 180	Gln	Trp	Val	Asp	Phe 185	Arg	Ala	Leu	Val	Gly 190	Asp	Pro
Ser	Asp	Asn 195	Leu	Pro	Gly	Val	Lys 200	Gly	Ile	Gly	Glu	Lys 205	Thr	Ala	Leu
Lys	Leu 210	Leu	Lys	Glu	Trp	Gly 215	Ser	Leu	Glu	Asn	Leu 220	Leu	Lys	Asn	Leu
Asp 225	Arg	Val	Lys	Pro	Glu 230	Asn	Val	Arg	Glu	Lys 235	Ile	Lys	Ala	His	Leu 240
Glu	Asp	Leu	Arg	Leu 245	Ser	Leu	Glu	Leu	Ser 250	Arg	Val	Arg	Thr	Asp 255	Leu
Pro	Leu	Glu	Val 260	Asp	Leu	Ala	Gln	Gly 265	Arg	Glu	Pro	Asp	Arg 270	Glu	Gly
Leu	Arg	Ala 275	Phe	Leu	Glu	Arg	Leu 280	Glu	Phe	Gly	Ser	Leu 285	Leu	His	Glu
Phe	Gly 290	Leu	Leu	Glu	Ala	Pro 295	Ala	Pro	Leu	Glu	Glu 300	Ala	Pro	Trp	Pro
Pro 305	Pro	Glu	Gly	Ala	Phe 310	Val	Gly	Phe	Val	Leu 315	Ser	Arg	Pro	Glu	Pro 320

Met Trp Ala Glu Leu Lys Ala Leu Ala Ala Cys Arg Gly Gly Arg Val His Arg Ala Ala Asp Pro Leu Ala Gly Leu Lys Asp Leu Lys Glu Val Arg Gly Leu Leu Ala Lys Asp Leu Ala Val Leu Ala Ser Arg Glu Gly Leu Asp Leu Val Pro Gly Asp Asp Pro Met Leu Leu Ala Tyr Leu Leu 375 Asp Pro Ser Asn Thr Thr Pro Glu Gly Val Ala Arg Arg Tyr Gly Gly 400 385 390 395 Glu Trp Thr Glu Asp Ala Ala His Arg Ala Leu Leu Ser Glu Arg Leu 405 410 His Arg Asn Leu Leu Lys Arg Leu Glu Glu Glu Lys Leu Leu Trp Leu Tyr His Glu Val Glu Lys Pro Leu Ser Arg Val Leu Ala His Met 435 Glu Ala Thr Gly Val Arg Arg Asp Val Ala Tyr Leu Gln Ala Leu Ser Leu Glu Leu Ala Glu Glu Ile Arg Arg Leu Glu Glu Val Phe Arg 475 465 470 Leu Ala Gly His Pro Phe Asn Leu Asn Ser Arg Asp Gln Leu Glu Arg Val Leu Phe Asp Glu Leu Arg Leu Pro Ala Leu Lys Lys Thr Lys Lys Thr Gly Lys Arg Ser Thr Ser Ala Ala Val Leu Glu Ala Leu Arg Glu

Ala His Pro Ile Val Glu Lys Ile Leu Gln His Arg Glu Leu Thr Lys

Leu Lys Asn Thr Tyr Val Asp Pro Leu Pro Ser Leu Val His Pro Arg 550 545 Thr Gly Arg Leu His Thr Arg Phe Asn Gln Thr Ala Thr Ala Thr Gly 570 Arq Leu Ser Ser Ser Asp Pro Asn Leu Gln Asn Ile Pro Val Arg Thr 585 Pro Leu Gly Gln Arg Ile Arg Arg Ala Phe Val Ala Glu Ala Gly Trp Ala Leu Val Ala Leu Asp Tyr Ser Gln Ile Glu Leu Arg Val Leu Ala His Leu Ser Gly Asp Glu Asn Leu Ile Arg Val Phe Gln Glu Gly Lys 630 625 Asp Ile His Thr Gln Thr Ala Ser Trp Met Phe Gly Val Pro Pro Glu Ala Val Asp Pro Leu Met Arg Arg Ala Ala Lys Thr Val Asn Phe Gly 665 Val Leu Tyr Gly Met Ser Ala His Arg Leu Ser Gln Glu Leu Ala Ile Pro Tyr Glu Glu Ala Val Ala Phe Ile Glu Arg Tyr Phe Gln Ser Phe 700 Pro Lys Val Arg Ala Trp Ile Glu Lys Thr Leu Glu Glu Gly Arg Lys 710 705 Arg Gly Tyr Val Glu Thr Leu Phe Gly Arg Arg Arg Tyr Val Pro Asp Leu Asn Ala Arg Val Lys Ser Val Arg Glu Ala Ala Glu Arg Met Ala 740 Phe Asn Met Pro Val Gln Gly Thr Ala Ala Asp Leu Met Lys Leu Ala Met Val Lys Leu Phe Pro Arg Leu Arg Glu Met Gly Ala Arg Met Leu Leu Gln Val Ala Asn Glu Leu Leu Leu Glu Ala Pro Gln Ala Arg Ala 790 795

Glu Glu Val Ala Ala Leu Ala Lys Glu Ala Met Glu Lys Ala Tyr Pro 805 810 815

Leu Ala Val Pro Leu Glu Val Glu Val Gly Met Gly Glu Asp Trp Leu 820 825 830

Ser Ala Lys Gly His His His His His His 835 840

<210> 27

<211> 340

<212> PRT

<213> Pyrococcus furiosus

<400> 27

Met Gly Val Pro Ile Gly Glu Ile Ile Pro Arg Lys Glu Ile Glu Leu 1 5 10 15

Glu Asn Leu Tyr Gly Lys Lys Ile Ala Ile Asp Ala Leu Asn Ala Ile 20 25 30

Tyr Gln Phe Leu Ser Thr Ile Arg Gln Lys Asp Gly Thr Pro Leu Met 35 40 45

Asp Ser Lys Gly Arg Ile Thr Ser His Leu Ser Gly Leu Phe Tyr Arg 50 55 60

Thr Ile Asn Leu Met Glu Ala Gly Ile Lys Pro Val Tyr Val Phe Asp 65 70 75 80

Gly Glu Pro Pro Glu Phe Lys Lys Lys Glu Leu Glu Lys Arg Arg Glu 85 90 95

Ala Arg Glu Glu Ala Glu Glu Lys Trp Arg Glu Ala Leu Glu Lys Gly
100 105 110

Glu Ile Glu Glu Ala Arg Lys Tyr Ala Gln Arg Ala Thr Arg Val Asn 115 120 125

Glu Met Leu Ile Glu Asp Ala Lys Lys Leu Leu Glu Leu Met Gly Ile 130 135 140

Pro Ile Val Gln Ala Pro Ser Glu Gly Glu Ala Gln Ala Ala Tyr Met 145 150 155 160 Ala Ala Lys Gly Ser Val Tyr Ala Ser Ala Ser Gln Asp Tyr Asp Ser 165 170 175

Leu Leu Phe Gly Ala Pro Arg Leu Val Arg Asn Leu Thr Ile Thr Gly
180 185 190

Lys Arg Lys Leu Pro Gly Lys Asn Val Tyr Val Glu Ile Lys Pro Glu
195 200 205

Leu Ile Ile Leu Glu Glu Val Leu Lys Glu Leu Lys Leu Thr Arg Glu 210 215 220

Lys Leu Ile Glu Leu Ala Ile Leu Val Gly Thr Asp Tyr Asn Pro Gly 225 230 235 240

Gly Ile Lys Gly Ile Gly Leu Lys Lys Ala Leu Glu Ile Val Arg His
245 250 255

Ser Lys Asp Pro Leu Ala Lys Phe Gln Lys Gln Ser Asp Val Asp Leu 260 265 270

Tyr Ala Ile Lys Glu Phe Phe Leu Asn Pro Pro Val Thr Asp Asn Tyr 275 280 285

Asn Leu Val Trp Arg Asp Pro Asp Glu Glu Gly Ile Leu Lys Phe Leu 290 295 300

Cys Asp Glu His Asp Phe Ser Glu Glu Arg Val Lys Asn Gly Leu Glu 305 310 315 320

Arg Leu Lys Lys Ala Ile Lys Ser Gly Lys Gln Ser Thr Leu Glu Ser 325 330 335

Trp Phe Lys Arg 340

<210> 28

<211> 326

<212> PRT

<213> Methanococcus jannaschii

<400> 28

Met Gly Val Gln Phe Gly Asp Phe Ile Pro Lys Asn Ile Ile Ser Phe 1 5 10 15

Glu Asp Leu Lys Gly Lys Lys Val Ala Ile Asp Gly Met Asn Ala Leu 20 25 30

Tyr Gln Phe Leu Thr Ser Ile Arg Leu Arg Asp Gly Ser Pro Leu Arg
35 40 45

Asn Arg Lys Gly Glu Ile Thr Ser Ala Tyr Asn Gly Val Phe Tyr Lys
50 60

Thr Ile His Leu Leu Glu Asn Asp Ile Thr Pro Ile Trp Val Phe Asp 65 70 75 80

Gly Glu Pro Pro Lys Leu Lys Glu Lys Thr Arg Lys Val Arg Arg Glu 85 90 95

Met Lys Glu Lys Ala Glu Leu Lys Met Lys Glu Ala Ile Lys Lys Glu 100 105 110

Asp Phe Glu Glu Ala Ala Lys Tyr Ala Lys Arg Val Ser Tyr Leu Thr 115 120 125

Pro Lys Met Val Glu Asn Cys Lys Tyr Leu Leu Ser Leu Met Gly Ile 130 135 140

Pro Tyr Val Glu Ala Pro Ser Glu Gly Glu Ala Gln Ala Ser Tyr Met 145 150 155 160

Ala Lys Lys Gly Asp Val Trp Ala Val Val Ser Gln Asp Tyr Asp Ala 165 170 175

Leu Leu Tyr Gly Ala Pro Arg Val Val Arg Asn Leu Thr Thr Lys
180 185 190

Glu Met Pro Glu Leu Ile Glu Leu Asn Glu Val Leu Glu Asp Leu Arg 195 200 205

Ile Ser Leu Asp Asp Leu Ile Asp Ile Ala Ile Phe Met Gly Thr Asp 210 215 220

Tyr Asn Pro Gly Gly Val Lys Gly Ile Gly Phe Lys Arg Ala Tyr Glu 225 230 235 240

Leu Val Arg Ser Gly Val Ala Lys Asp Val Leu Lys Lys Glu Val Glu 245 250 255

Tyr Tyr Asp Glu Ile Lys Arg Ile Phe Lys Glu Pro Lys Val Thr Asp 260 265 270

Asn Tyr Ser Leu Ser Leu Lys Leu Pro Asp Lys Glu Gly Ile Ile Lys 275 280 285

Phe Leu Val Asp Glu Asn Asp Phe Asn Tyr Asp Arg Val Lys Lys His 290 295 300

Val Asp Lys Leu Tyr Asn Leu Ile Ala Asn Lys Thr Lys Gln Lys Thr 305 310 315 320

Leu Asp Ala Trp Phe Lys 325

<210> 29

<211> 328

<212> PRT

<213> Methanobacterium thermoautotrophicum

<400> 29

Met Gly Val Lys Leu Arg Asp Val Val Ser Pro Arg Arg Ile Arg Leu
1 5 10 15

Glu Asp Leu Arg Gly Arg Thr Val Ala Val Asp Ala Ala Asn Thr Leu 20 25 30

Tyr Gln Phe Leu Ser Ser Ile Arg Gln Arg Asp Gly Thr Pro Leu Met 35 40 45

Asp Ser Arg Gly Arg Val Thr Ser His Leu Ser Gly Ile Leu Tyr Arg 50 55 60

Thr Ala Ala Val Met Glu Arg Glu Ile Arg Val Ile Tyr Val Phe Asp 65 70 75 80

Gly Arg Ser His His Leu Lys Gly Glu Thr Val Ser Arg Arg Ala Asp 85 90 95

Ile Arg Lys Lys Ser Glu Val Glu Trp Lys Arg Ala Leu Glu Glu Gly
100 105 110

Asp Ile Asp Arg Ala Arg Lys Tyr Ala Val Arg Ser Ser Arg Met Ser 115 120 125

Ser Glu Ile Leu Glu Ser Ser Lys Arg Leu Leu Glu Leu Leu Gly Ile 130 135 140

Pro Tyr Val Gln Ala Pro Gly Glu Gly Glu Ala Gln Ala Ser Tyr Met 145 150 155 160

Val Lys Met Gly Asp Ala Trp Ala Val Ala Ser Gln Asp Tyr Asp Cys 165 170 175

Leu Leu Phe Gly Ala Pro Arg Val Val Arg Lys Val Thr Leu Ser Gly 180 185 190

Lys Leu Glu Asp Pro His Ile Ile Glu Leu Glu Ser Thr Leu Arg Ala 195 200 205

Leu Ser Ile Ser His Thr Gln Leu Val Asp Met Ala Leu Leu Val Gly 210 215 220

Thr Asp Phe Asn Glu Gly Val Lys Gly Tyr Gly Ala Arg Arg Gly Leu 225 230 235 240

Lys Leu Ile Arg Glu Lys Gly Asp Ile Phe Lys Val Ile Arg Asp Leu 245 250 255

Glu Ala Asp Ile Gly Gly Asp Pro Gln Val Leu Arg Arg Ile Phe Leu 260 265 270

Glu Pro Glu Val Ser Glu Asp Tyr Glu Ile Arg Trp Arg Lys Pro Asp 275 280 285

Val Glu Gly Val Ile Glu Phe Leu Cys Thr Glu His Gly Phe Ser Glu 290 295 300

Asp Arg Val Arg Asp Ala Leu Lys Lys Phe Glu Gly Ala Ser Ser Thr 305 310 315 320

Gln Lys Ser Leu Glu Asp Trp Phe 325

<210> 30

<211> 336

<212> PRT

<213> Archaeoglobus fulgidus

<400> 30

Met Gly Ala Asp Ile Gly Asp Leu Phe Glu Arg Glu Glu Val Glu Leu 5 10 15

Glu Tyr Phe Ser Gly Lys Lys Ile Ala Val Asp Ala Phe Asn Thr Leu 20 25 30

Tyr Gln Phe Ile Ser Ile Ile Arg Gln Pro Asp Gly Thr Pro Leu Lys 35 40 45

Asp Ser Gln Gly Arg Ile Thr Ser His Leu Ser Gly Ile Leu Tyr Arg
50 60

Val Ser Asn Met Val Glu Val Gly Ile Arg Pro Val Phe Val Phe Asp 65 70 75 80

Gly Glu Pro Pro Glu Phe Lys Lys Ala Glu Ile Glu Glu Arg Lys Lys 85 90 95

Arg Arg Ala Glu Ala Glu Glu Met Trp Ile Ala Ala Leu Gln Ala Gly 100 105 110

Asp Lys Asp Ala Lys Lys Tyr Ala Gln Ala Ala Gly Arg Val Asp Glu 115 120 125

Tyr Ile Val Asp Ser Ala Lys Thr Leu Leu Ser Tyr Met Gly Ile Pro 130 135 140

Phe Val Asp Ala Pro Ser Glu Gly Glu Ala Gln Ala Ala Tyr Met Ala 145 150 155 160

Ala Lys Gly Asp Val Glu Tyr Thr Gly Ser Gln Asp Tyr Asp Ser Leu 165 170 175

Leu Phe Gly Ser Pro Arg Leu Ala Arg Asn Leu Ala Ile Thr Gly Lys 180 185 190

Arg Lys Leu Pro Gly Lys Asn Val Tyr Val Asp Val Lys Pro Glu Ile 195 200 205

Ile Ile Leu Glu Ser Asn Leu Lys Arg Leu Gly Leu Thr Arg Glu Gln 210 215 220

Leu Ile Asp Ile Ala Ile Leu Val Gly Thr Asp Tyr Asn Glu Gly Val 225 230 235 240

- Asp Ile Phe Arg Ala Leu Lys Ala Leu Lys Val Asn Ile Asp His Val 260 265 270
- Glu Glu Ile Arg Asn Phe Phe Leu Asn Pro Pro Val Thr Asp Asp Tyr 275 280 285
- Arg Ile Glu Phe Arg Glu Pro Asp Phe Glu Lys Ala Ile Glu Phe Leu 290 295 300
- Cys Glu Glu His Asp Phe Ser Arg Glu Arg Val Glu Lys Ala Leu Glu 305 310 315 320
- Lys Leu Lys Ala Leu Lys Ser Thr Gln Ala Thr Leu Glu Arg Trp Phe 325 330 335
- <210> 31
- <211> 27
- <212> DNA
- <213> Artificial Sequence
- <220>
- <223> Synthetic
- <220>
- <221> misc feature
- <222> (18)..(18)
- <223> The n at this position can be a, c, t, or g.
- <220>
- <221> misc_feature
- <222> (27)..(27)
- <223> The n at this position can be a, c, t, or g.
- <400> 31
- atctctagca ctgctgtntt ygayggn

```
<210> 32
<211> 31
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic
<220>
<221> misc_feature
<222> (22)..(22)
<223> The n at this position can be a, c, t, or g.
<220>
<221> misc_feature
<222> (28)..(28)
<223> The n at this position can be a, c, t, or g.
<400> 32
gatctctagc actgctgarg gngargcnca r
                                                                     31
<210> 33
<211> 28
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic
<400> 33
                                                                     28
gatetetage actgetearg aytaygay
<210> 34
<211> 31
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic
<220>
```

<221> misc_feature

```
<222> (20)..(20)
<223> The n at this position can be a, c, t, or g.
<220>
<221> misc_feature
<222> (26)..(26)
<223> The n at this position can be a, c, t, or g.
<400> 34
                                                                     31
cttaaggtag gactacytgn gcytcnccyt c
<210> 35
<211> 30
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic
<400> 35
                                                                     30
ttaaggtagg actacytcrt aytcytgrct
<210> 36
<211> 30
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic
<220>
<221> misc_feature
<222> (28)..(28)
<223> The n at this position can be a, c, t, or g.
<400> 36
ttaaggtagg actacytcrt aytcytgnga
                                                                     30
```

```
<210> 37
<211> 30
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic
<220>
<221> misc_feature
<222> (25)..(25)
<223> The n at this position can be a, c, t, or g.
<220>
<221> misc_feature
<222> (28)..(28)
<223> The n at this position can be a, c, t, or g.
<400> 37
ttaaggtagg actacrttrw artcngtncc
                                                                     30
<210> 38
<211> 16
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic
<400> 38
                                                                     16
gatctctagc actgct
<210> 39
<211> 17
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic
<400> 39
ccttaaggta ggactac
                                                                     17
```

<210>	40	
<211>	27	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Synthetic	
<400> tatcgc	40 agcg atccacttct cctctgc	27
<210>	41	
<211>	27	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Synthetic	
	41 cggc aacctgagaa ggcttgg	27
<210>	42	
<211>	28	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Synthetic	
<400> ctatct	42 cctt ctgcttgaaa acaggagg	28
<210>	43	
<211>	27	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Synthetic	
<400>	43. gaac agctcgtcga tatcgcg	27

<210>	44	
<211>	32	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Synthetic	
<400> taacga	44 attc ggtgcagaca taggcgaact ac	32
<210>	45	
<211>	33	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Synthetic	
<400> cggtgt	45 cgac tcaggaaaac cacctctcaa gcg	33
<210>	46	
<211>	37	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Synthetic	
<400> cacagga	46 aaac agaccatggg tgcagacata ggcgaac	37
<210>	47	
<211>	1017	
<212>	DNA	
<213>	Archaeoglobus veneficus	
<400> atgggt	47 gcag acataggcga actactcgag agagaagaag ttgaacttga gtacttctcc	60
gggaga	aaaa tagctattga tgcttttaac actctttacc agttcatatc tatcataagg	120
caacct	gacg gcactccttt gaaggattct cagggtagaa tgacctcaca cctctccggc	180
atcctd	tacc gcgtgtcaaa catgatcgag gttggaatga gacccatttt cgttttcgat	240

300 gcagaggaga agtggatcgc tgcgatagag agaggagaga agtacgcaaa gaagtacgct 360 caqqcaqcgg cgagggttga tgaatacatc gtcgagtcgt caaagaagct gcttgagtat 420 atgggagttc catgggttca ggcgccgagt gagggagagg cacaggctgc atacatggca 480 gcgaagggcg atgtagattt tactggctcg caggattacg actcgcttct cttcggcagc 540 ccaaaqcttg caagaaatct cgcgattact ggaaagagga agctgcccgg aaagaatgtt 600 660 tacqttqagg tcaaaccaga gataatagac ttaaacggca acctgagaag gcttggaata acaagggaac agctcgtcga tatcgcgttg ctcgtgggaa cggactacaa cgaaggagtg 720 780 aaqqqcqttq qqqtcaaqaa qqcctacaaq tacataaaaa cctacgqaqa tqttttcaaa 840 gctctcaagg ccttaaaggt agagcaggag aacatagagg agataagaaa cttcttcctg 900 aacccgcctg ttacgaacaa ctacagcctc cacttcggaa agccagacga tgagaagatt 960 ategagttee tgtgtgaaga geacgaettt ageaaggata gggtagagaa ggeegttgag aagctgaaag caggaatgca agcctcgcaa tcaacgcttg agaggtggtt ttcctga 1017

<210> 48

<211> 338

<212> PRT

<213> Archaeoglobus veneficus

<400> 48

Met Gly Ala Asp Ile Gly Glu Leu Leu Glu Arg Glu Glu Val Glu Leu 1 5 10 15

Glu Tyr Phe Ser Gly Arg Lys Ile Ala Ile Asp Ala Phe Asn Thr Leu 20 25 30

Tyr Gln Phe Ile Ser Ile Ile Arg Gln Pro Asp Gly Thr Pro Leu Lys 35 40 45

Asp Ser Gln Gly Arg Met Thr Ser His Leu Ser Gly Ile Leu Tyr Arg
50 60

Val Ser Asn Met Ile Glu Val Gly Met Arg Pro Ile Phe Val Phe Asp 65 70 75 80

Gly Glu Pro Pro Val Phe Lys Gln Lys Glu Ile Glu Glu Arg Lys Glu 85 90 95

Arg Arg Ala Glu Ala Glu Glu Lys Trp Ile Ala Ala Ile Glu Arg Gly
100 105 110

Glu Lys Tyr Ala Lys Lys Tyr Ala Gln Ala Ala Ala Arg Val Asp Glu Tyr Ile Val Glu Ser Ser Lys Lys Leu Leu Glu Tyr Met Gly Val Pro Trp Val Gln Ala Pro Ser Glu Gly Glu Ala Gln Ala Ala Tyr Met Ala Ala Lys Gly Asp Val Asp Phe Thr Gly Ser Gln Asp Tyr Asp Ser Leu Leu Phe Gly Ser Pro Lys Leu Ala Arg Asn Leu Ala Ile Thr Gly Lys 180 185 Arg Lys Leu Pro Gly Lys Asn Val Tyr Val Glu Val Lys Pro Glu Ile 195 Ile Asp Leu Asn Gly Asn Leu Arg Arg Leu Gly Ile Thr Arg Glu Gln 210 Leu Val Asp Ile Ala Leu Leu Val Gly Thr Asp Tyr Asn Glu Gly Val 230 225 Lys Gly Val Gly Val Lys Lys Ala Tyr Lys Tyr Ile Lys Thr Tyr Gly Asp Val Phe Lys Ala Leu Lys Ala Leu Lys Val Glu Glu Asn Ile 260 265 Glu Glu Ile Arg Asn Phe Phe Leu Asn Pro Pro Val Thr Asn Asn Tyr Ser Leu His Phe Gly Lys Pro Asp Asp Glu Lys Ile Ile Glu Phe Leu 295 Cys Glu Glu His Asp Phe Ser Lys Asp Arg Val Glu Lys Ala Val Glu 315 310 Lys Leu Lys Ala Gly Met Gln Ala Ser Gln Ser Thr Leu Glu Arg Trp 330

Phe Ser

```
<210> 49
<211> 53
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic
<400> 49
cccgtctcgc tggtgaaaag aaaaaccacc ctggcgccca atacgcaaac cgc
                                                                     53
<210> 50
<211>
      22
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic
<220>
<221> misc feature
<222> (1)..(1)
      The residue at this position is linked to a spacer containing eit
      her a Cy3 or fluorescein group.
<220>
<221> misc_feature
<222> (1)..(2)
<223> The T residues at these positions have amino-modifiers.
<220>
<221> misc_feature
<222> (22)..(22)
      The residue at this position is linked to a spacer containing eit
<223>
      her a Cy3 or fluorescein group.
```

22

<400> 50

ttccagagcc taatttgcca gt

```
<210> 51
<211>
      22
<212> DNA
<213> Artificial Sequence
<220>
<223>
      Synthetic
<220>
<221> misc_feature
<222>
      (1)..(1)
       The residue at this position is linked to a spacer containing eit
       her a Cy3 or fluorescein group.
<220>
<221>
      misc_feature
      (1)..(2)
<222>
      The T residues at these positions have amino-modifiers.
<223>
<220>
<221> misc_feature
<222>
      (22)..(22)
<223>
      The residue at this position is linked to a spacer containing eit
      her a Cy3 or fluorescein group.
<400> 51
                                                                       22
ttccagagcc taatttgcca gt
<210> 52
<211>
      23
<212> DNA
<213> Artificial Sequence
<220>
<223>
      Synthetic
<220>
      misc_feature
<221>
<222>
      (1)..(1)
```

her a TET or fluorescein group.

The residue at this position is linked to a spacer containing eit

<223>

<400> ttccag	agcc taatttgcca gta	23
<210>	53	
<211>	23	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Synthetic	
<220>		
<221>	misc_feature	
<222>	(1)(1)	
<223>	The residue at this position is linked to a spacer containing ther a TET or fluorescein group.	≘it
<400> ttccag	53 agcc taatttgcca gta	23
<210>	54	
<211>	25	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Synthetic	
<400> cttacca	54 aacg ctaacgagcg tcttg	25
<210>	55	
<211>	14	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Synthetic	
<400>	55 grag acac	14

```
<210> 56
<211> 14
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic
<220>
<221> misc_feature
<222> (1)..(1)
<223> The residue at this position is linked to a spacer containing a C
      y3 group.
<220>
<221> misc_feature
<222> (1)..(2)
<223> The residues at these positions have amino modifications.
<400> 56
ttacgccacc agct
                                                                     14
<210> 57
<211> 12
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic
<400> 57
                                                                     12
cgctgtctcg ct
<210> 58
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic
<400> 58
                                                                     19
gctcaaggca ctcttgccc
```

<210>	59	
<211>	63	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Synthetic	
<400> atgacto	59 gaat ataaacttgt ggtagttgga gctggtggcg taggcaagag tgccttgacg	60
ata		63
<210>	60	
<211>	45	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Synthetic	
<400> tttttt	60 ttta attaggetet ggaaagaege tegtgaaaeg agegt	45
<210>	61	
<211>	14	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Synthetic	
<400> cttcgga	61 agtt tggg	14
<210>	62	
<211>	14	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Synthetic	
<400> cttcgga	62 agtt tggg	14

<210 >	63	
<211>	14	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Synthetic	
<400> cttcgg	63 agtt tggg	14
<210>	64	
<211>	14	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Synthetic	
<400> cttcgg	64 agtt tggg	14
<210>	65	
<211>	14	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Synthetic	
<400> cttcgg	65 agtt tggg	14
<210>	66	
<211>	25	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Synthetic	
<400>	66 tgga gtgagtgttc aagta	25

<210>	67					
<211>	27					
<212>	DNA					
<213>	Artificial Sequ	uence				
<220>						
<223>	Synthetic					
<400> ccatcci	67 Laat acgactcact	atagggc				27
<210>	68					
<211>	21					
<212>	DNA					
<213>	Artificial Sequ	ience				
<220>						
<223>	Synthetic					
<400> ctcata	68 cagt tacttgtctt	С				21
<210>	69					
<211>	489				•	
<212>	RNA					
<213>	Homo sapiens					
<400> gaacuca	69 acua uagggcucga	geggeegeee	gggcaggucc	gccaccaaaa	ugcagauuuu	60
cgugaaa	aacc cuuacgggga	agaccaucac	ccucgagguu	gaacccucgg	auacgauaga	120
aaaugua	aaag gccaagaucc	aggauaagga	aggaauuccu	ccugaucagc	agagacugau	180
cuuugcı	ıggc aagcagcugg	aagauggacg	uacuuugucu	gacuacaaua	uucaaaagga	240
gucuacı	ıcuu caucuugugu	ugagacuucg	ugguggugcu	aagaaaagga	agaagaaguc	300
uuacac	cacu cccaagaaga	auaagcacaa	gagaaagaag	guuaagcugg	cuguccugaa	360
auauuaı	ıaag guggaugaga	auggcaaaau	uagucgccuu	cgucgagagu	gcccuucuga	420
ugaaugı	ıggu gcuggggugu	uuauggcaag	ucacuuugac	agacauuauu	guggcaaaug	480
uuqucu	ac					489

<210>	70					
<211>	52					
<212>	DNA					
<213>	Artificial Sequ	uence				
<220>						
<223>	Synthetic					
<400> ggaata	70 cgac tcactatagg	gaaagtctct	gccgcccttc	tgtgcctgct	gc	52
<210>	71					
<211>	31					
<212>	DNA					
<213>	Artificial Sequ	lence				
<220>						
<223>	Synthetic			v		
<400> aatagti	71 caca aaatattcat	ttccacaata	a		·	31
<210>	72					
<211>	647					
<212>	RNA					
<213>	Artificial Sequ	ience				
<220>						
<223>	Synthetic					
<400> gggaaag	72 gucu cugeegeeeu	ucugugccug	cugcucauag	cagccaccuu	cauuccccaa	60
gggcuc	gcuc agccagaugc	aaucaaugcc	ccagucaccu	gcuguuauaa	cuucaccaau	120
aggaaga	aucu cagugcagag	gcucgcgagc	uauagaagaa	ucaccagcag	caaguguccc	180
aaagaa	gcug ugaucuucaa	gaccauugug	gccaaggaga	ucugugcuga	ccccaagcag	240
aaguggg	guuc aggauuccau	ggaccaccug	gacaagcaaa	cccaaacucc	gaagacuuga	300
acacuca	acuc cacaacccaa	gaaucugcag	cuaacuuauu	uuccccuagc	uuuccccaga	360
cacccug	guuu uauuuuauua	uaaugaauuu	uguuuguuga	ugugaaacau	uaugccuuaa	420
guaaug	uuaa uucuuauuua	aguuauugau	guuuuaaguu	uaucuuucau	gguacuagug	480

	uuuuuu	agau	acagagacuu	ggggaaauug	cuuuuccucu	ugaaccacag	uucuaccccu	540
	gggaugi	uuuu	gagggucuuu	gcaagaauca	uuaauacaaa	gaauuuuuuu	uaacauucca	600
	augcauı	ugcu	aaaauauuau	uguggaaaug	aauauuuugu	aacuauu		647
	<210>	73						
	<211>	16						
	<212>	DNA						
	<213>	Arti	ficial Sequ	ience				
	<220>							
	<223>	Synt	hetic					
	<400> ttcttc		tttggg					16
	<210>	74						
	<211>	26						
	<212>	DNA						
	<213>	Arti	ficial Sequ	ience				
	<220>							
	<223>	Synt	hetic					
	<400> ccgtcac		tccttcggag	tttggg				26
	<210>	75						
	<211>	24						
	<212>	DNA						
	<213>	Arti	ficial Sequ	ience				
,	<220>							
	<223>	Synt	hetic					
	<400> aacccaa		ccgaaggagg	cgtg				24
	<210>	76						
	<211>	29						
	<212>	DNA						
	<213>	Arti	ficial Sequ	ience				
	<220>							
	<223>	Synt	hetic					

<400> gcgcag	76 tgag aatgaggagg cgtgacggt	29
<210>	77	
<211>	15	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Synthetic	
<220>		
<221>	misc_feature	
<222>	(1)(1)	
<223>	The residue at this position is linked to a spacer containing a y3 group.	a C
<400> ctcatt	77 ctca gtgcg	15
<210>	78	
<211>	30	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Synthetic	
<400> aacgag	78 gege acetttacat tttetategt	30
<210>	79	
<211>	24	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Synthetic	
<400>	79 ttat cctggatctt ggca	24

<210>	80	
<211>	24	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Synthetic	
<400> acgata	80 gaaa atgtaaaggt gcgc	24
<210>	81	
<211>	29	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Synthetic	
<400> cggaag	81 aagc aagtggtgcg cctcgttaa	29
<210>	82	
<211>	14	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Synthetic	
<220>		
<221>	misc_feature	
<222>	(1):.(1)	
<223>	The residue at this position is linked to a spacer containing a y3 group.	a C
<400> cacttg	82 cttc ctcc	14

<210>	0.3	
<211>	14	
<212>	DNA	
<213>	Artificial Sequence	
<220>	t i	
<223>	Synthetic	
<400> gctccc	83 gcag acac	14
<210>	84	
<211>	30	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Synthetic	
<400> caaagaa	84 aaag ctgcgtgatg atgaaatcgc	30
<210>	85	
<211>	50	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Synthetic	
<400> gaaggt	85 gtot gogggagoog atttoatoat caogoagott ttotttgagg	50

-61- 154