

DENEY RAPORU

	Transistor Amplifier Circuits
Deney Adı	
	Malik Dilasas
	Melih Bilmez
Deneyi Yaptıran Ar. Gör.	
Zeneyi rapimani ani	
	Ömer Malik Kalembaşı / 150180112 / Computer Engineering
Raporu Hazırlayan	
4	
(İsim / Numara / Bölüm)	
	C3/ March 24, 2021
	C5/ Waltil 24, 2021
Grup Numarası ve	
·	
Deney Tarihi	

Rapor Notu	Teslim Edildiği Tarih	Teslim Alındığı Tarih
	March 24, 2021	

Experiment 3.1.

Simulate the circuit shown in Fig.1. BC847A should be used for BJT.

Figure 1. BJT Amplifier

 Table 1. Values of components in circuit.

R ₁	220 kΩ	R _g	10 kΩ
R ₂	33 kΩ	R _Y	12 kΩ
R _C	8.2 kΩ	C _{1,2}	4.7 μF
R _E	1.2 kΩ	C ₃	220 μF

Table 2. Input Signal Parameter (Vg) for experiment 3.1.

Exp: 3.1 – V _g			
Туре	Sine		
Frequency	5 kHz		
DC Offset	0V		

Outputs:

- **1.** Note the DC operating points.
 - * D:\itu cmpe\spring 20-21\ehb311\deney3\3_1lab.asc

```
--- Operating Point ---
              7.13985
1.80684
1.15653
V(c):
                             voltage
V(b):
                             voltage
V(e):
                             voltage
V(n001):
              15
                             voltage
            8.49214e-014 voltage
V(n004):
             0
V(n003):
                             voltage
            4.02688e-013 voltage
0.000958555 device_current
V(n002):
Ic(Q1):
Ib(Q1):
             5.21625e-006 device current
Ie(Q1):
             -0.000963771 device current
             8.49214e-018 device current
I(C1):
              -3.35573e-017 device current
I(C2):
             2.54436e-016 device_current
3.35573e-017 device_current
I(C3):
I(Ry):
I (Rg):
             8.49214e-018 device current
             0.000963771 device current
I(Re):
             5.47527e-005 device current
I(R2):
             0.000958555 device current
I(Rc):
             5.99689e-005 device_current
I(R1):
             8.49214e-018 device current
I(V2):
I(V1):
               -0.00101852
                             device_current
```

2. What is the Vg value at which clipping starts? Also, is there symmetrical clipping? There is clipping, starts at Vg=110mV.

3. Plot the output voltage (V_0 -t), input voltage (V_g -t) and (V_e -t). What is the voltage gain (V_o/V_g)?

$$3.7V/0.1V = 3$$

4. Remove the C_3 capacitor from circuit and repeat simulation. Plot the output voltage (V_0 -t), input voltage (V_g -t) and (V_e -t). What is the voltage gain (V_0/V_g)?

282mV/100mV = 2.82

5. Explain the circuit and simulation results.

In AC operation, C3 capacitor will be bypass; in DC biasing resister Re will works. When C3 connected, performance gained.

Experiment 3.2.

Simulate the circuit shown in Fig.2. BSP89 should be used for MOSFET.

Figure 2. MOSFET Amplifier.

Table 4. Values of components in circuit.

R ₃	820 kΩ	Rs	220 Ω
R ₄	330 kΩ	R _Y	10 kΩ
R_d	1 kΩ	C _{4,5,6}	1 μF

Table 5. Input Signal Parameter (Vg) for experiment 3.2.

Exp: 3.2 – V _g			
Туре	Sine		
Frequency	50 kHz		
DC Offset	0V		

Outputs:

1. Note the DC operating points.

* D:\itu cmpe\spring 20-21\ehb311\deney3\3_2lab.asc --- Operating Point --voltage
3.44348 voltage
V(d): 4.15258 voltage
V(s): 1.72643 voltage
V(n002): 4.15258e-014 voltage
V(n003): 0 voltage
Id(M1): 0.00784742 0 voltage 0.00784742 device_current -1.14489e-010 device_current -0.00784742 device_current 3.44348e-018 device_current Is(M1): I(C4): -4.15258e-018 device_current
1.72643e-018 device_current
4.15258e-018 device_current
0.00784742 device_current
1.04348e-005 device_current I(C6): I(C3): I(Ry): I(Rs): I(R4): 0.00784742 device_current 1.04348e-005 device_current 3.44348e-018 device_current I (Rd): I(R3): I (Vg): I(V1): -0.00785785 device_current

2. What is the Vg value at which clipping starts? Also, is there symmetrical clipping?

There is clipping, starts at Vg=33mV

3. Plot the output voltage (V_0 -t) and input voltage (V_g -t). What is the voltage gain (V_0/V_g)? $V_0/V_g = 2.25/0.03 = 75$

4. Remove the C_5 capacitor from circuit and repeat simulation. Plot the output voltage (V_0 -t) and input voltage (V_g -t). What is the voltage gain (V_0/V_g)?

117mV/30mV = 3.9

5. Explain the circuit and simulation results.

In AC operation, C3 capacitor will be bypass; in DC biasing resister Rs will works. When c5 connected, performance gained.

Last Update: 30.10.2020