

WHAT IS CLAIMED IS:

1. An optical router, characterized in that the router comprises two optical couplers (21, 22) which are serially interconnected via delay device and wherein the optical router further comprises an optical amplifier (9) optically connected to one of the optical couplers (21, 22).

2. An optical router according to Claim 1,
characterized in that the delay device (23) comprises a difference in distance ΔL between the two optical guides which connect the two couplers (21, 22).

3. An optical router according to Claim 1 or
characterized in that the couplers (21, 22) are 3 dB couplers.

4. An optical router according to Claims 1-3,
characterized in that the delay device is formed by one
or more pairs of electrodes arranged along the optical path.

5. An optical router according to Claim 3,
characterized in that the delay element is additionally provided with one or more pairs of electrodes arranged along the optical path in the delay element to achieve a supplementary time delay.

6. An optical router according to Claim 2,
characterized in that

$$\Delta L = \lambda^2 / (2\Delta\lambda n),$$

where λ indicates the optical wavelength used, n is the
5 refractive index, and $\Delta\lambda$ indicates the half-period of the
power transfer function in each direction, i.e. $\frac{1}{4}$ FSR
(FSR = free spectral range).

7. An optical router according to Claims 1-6,
10 characterized in that the router is made in an integrated
design.

8. A method of monodirectional amplification of
bidirectional optical signals with given wavelengths λ_i
15 and λ_j in an optical guide (3) by means of an optical
router according to claims 1 to 7 having a first
bidirectional port (A) and a second bidirectional port
(D) and a first unidirectional port (B) and a second
unidirectional port (C), characterized in that the
20 optical signals in each direction toward the router are
fed to the first bidirectional port (A) and the second
bidirectional port (D), respectively, of the router, and
from there to the first unidirectional port (B) of the
router, further through an optical amplifier (9)
25 connected to the unidirectional ports and from there
through the second unidirectional port (C) of the router
and back through the router to the second bidirectional
port (D) and the first bidirectional port (A),
respectively.

9. A method according to Claim 8, characterized in that λ_{r1} and λ_{r2} are allocated on the power transfer function of the router in one transmission direction on each side of a maximum of λ_R , and that λ_{l1} and λ_{l2} are 5 allocated on the power transfer function of the router in the other transmission direction on each side of a maximum of λ_L , said bidirectional optical signals having the wavelengths λ_{l1} and λ_{l2} in one direction and having the wavelengths λ_{R1} and λ_{R2} in the other direction, and said 10 λ_L and λ_R indicating a maximum in a specific frequency band for the power transfer function of the router in one direction and the power transfer function of the router in the other direction, respectively.