













# Progetto preliminare di un compressore assiale

Prova Finale (Macchine) Proff. Persico - Spinelli





Portata massica = 65 kg/s

Rapporto di compressione complessivo = 10 + i/2

i : numero assegnato al gruppo

Pin = 0.85 bar

Tin = 268 K

Limiti:

Beta\_max-stadio = 1.4 (stadi di compressore assiale)

Umax = 500 m/s

0.03 < b/D < 0.4



# Uso di diagrammi statistici

Si parte identificando lo stadio intermedio, prima di tutto a livello di funzionamento generale. Per scelta dei parametri di funzionamento dello stadio, si fa riferimento al diagramma di Balje per i compressori Si dovrà verificare che lo stadio intermedio, una volta ripetuto a monte e a valle per costruire l'intero compressore, dia origine ad una macchina di rispettare i vincoli. In alternativa si passa al multialbero





# Sezioni, triangoli di velocità e termodinamica

0: ambiente

2 : uscita girante ≡ ingresso statore

4 : uscita

1 : ingresso girante

3 : uscita statore





### Deflessione angolare massima limitata dal valore dell'angolo di scarico

Si assuma:

 $\Phi = 1$  (effetto solidità)

 $\Psi = 1$  (effetto Reynolds)





Si procede con il calcolo a midspan

Poi si estende alla radice e all'apice usando la soluzione a vortice libero:

$$r \cdot V_t = cost \rightarrow I(r) = cost$$
  
 $Vm = cost$ 

Si ricalcolano i triangoli alla base e all'apice.

| Sezione | Delta _ Alfa |
|---------|--------------|
| Hub     |              |
| Mid     |              |
| Tip     |              |

| Sezione | Delta _ Beta |
|---------|--------------|
| Hub     |              |
| Mid     |              |
| Tip     |              |

# Scelta del profilo delle pale

Classe di profili: NACA serie 65 (a 4 cifre)





# Per determinare le pale serve prima decidere la loro solidità

$$\sigma = \text{corda / passo}$$

Se  $\sigma \uparrow \uparrow$  ho flusso ben guidato ma ho molte superfici  $\rightarrow \downarrow$  efficienza Se  $\sigma \downarrow \downarrow$  posso avere distacchi di vena o flussi poco guidati  $\rightarrow \downarrow$  efficienza  $\rightarrow$  di solito esiste un valore (o un range) ottimale per  $\sigma$ : attorno a 1. Si può controllare il Diffusion Factor (DF) proposto da Lieblein (NACA)

#### Calcolo parametro DF:

$$DF = \left(1 - \frac{\mathbf{W}_2}{\mathbf{W}_1}\right) + \frac{\mathbf{V}_{2t} - \mathbf{V}_{1t}}{2\mathbf{W}_1 \sigma}$$





 Poiché gli angoli del flusso (cinematici) non sono rigorosamente uguali a quelli della palettatura, è necessario definire la differenza tra di essi in ingresso (incidenza) e in uscita (deviazione)

Angolo di camber  $\Theta$  oppure  $\Delta \beta_{GFO}$ -Axial direction Tangent to camber line at leading edge-Incidence angle, i (+) Angolo di incidenza i Flow inlet angle ( $a_0$  or  $\beta_1$ ) Stagger angle, E(-) ·Blade inlet angle -Camber line Angolo di deviazione δ Chord, C Axial chord, Cx Camber, angle, Angolo di stagger  $\varepsilon$  oppure  $\Delta\beta$ Deviation angle,  $\delta(-)$ -Blade exit angle.

> Tangent to camber line at trailing edge

Flow exit angle ( $\alpha_1$  or  $\beta_2$ )

Axial direction



# Definizione della condizione di riferimento → incidenza a cui far funzionare la pala

#### Correlazione di Lieblein

- Derivata da prove sperimentali su profili NACA 65 a basse velocità (Re=3x10<sup>5</sup>); profili 2D in schiera
- <u>Inarcamento del profilo</u>:  $\theta_e \approx 25 \text{ C}_L$  (angolo al centro dell'arco di cerchio che passa per gli estremi del profilo e per il punto di max inarcamento; 25 volte inarcamento profilo con C<sub>L</sub>=1).
- Condizione di riferimento: intermedia tra stallo Dx e Sx.
- Stallo: condizione in cui le perdite raddoppiano rispetto al minimo.
- Perdite definite come:  $\omega_1 = \frac{\Delta p_T}{p_{T1} p_1}$





# Calcolo degli angoli ottimali

### → si determina la deviazione alla incidenza di rif.

Secondo Lieblein grandezze di riferimento sono:

$$i=i_0+n\theta$$

$$\delta = \delta_0 + m \theta / \sigma^b$$







 $i_0$ ,  $\delta_0$ : incidenza e deviazione di riferimento per profili simmetrici

 $(C_L=0, calettamento \neq 0)$  espressi:

$$i_0 = K_{i,sh} K_{i,t} i_{0,10}$$
  $\delta_0 = K_{\delta,sh} K_{\delta,t} \delta_{0,10}$ 

- dove  $i_{0,10}$  e  $\delta_{0,10}$  sono relativi allo spessore max pari al 10% della corda
- $K_{i,t}$  e  $K_{\delta,t}$ : costanti per tenere conto di diversi spessori (thickness).
- ➣  $K_{i,sh}$  e  $K_{\delta,sh}$ : costanti per tenere conto di altri profili (**sh**ape)







$$\delta = \delta_0 + m \theta / \sigma^b$$

$$\delta_0 = K_{\delta,sh} K_{\delta,t} \delta_{0,10}$$

In definitiva risulta:

$$\Delta \beta_{GEO} = \frac{\Delta \beta - i_0 - \delta_0}{1 - \frac{m}{\sigma^b} + n}$$







