Math 2135 - Assignment 4

Due September 27, 2024 Completed by Maxwell Rodgers, September 24, 2024

(1) Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be a linear map such that

$$T(\begin{bmatrix}1\\2\end{bmatrix}) = \begin{bmatrix}2\\0\\-3\end{bmatrix}, \ T(\begin{bmatrix}3\\2\end{bmatrix}) = \begin{bmatrix}-2\\2\\1\end{bmatrix}.$$

- (a) Use linearity to find $T(e_1)$ and $T(e_2)$ for the unit vectors e_1, e_2 in \mathbb{R}^2 .
- (b) Give the standard matrix for T and determine $T(\begin{vmatrix} x \\ y \end{vmatrix})$ for arbitrary $x, y \in \mathbb{R}$.

Ans:
(a)
$$\bullet \frac{1}{2} (\begin{bmatrix} 3 \\ 2 \end{bmatrix} - \begin{bmatrix} 1 \\ 2 \end{bmatrix}) = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$\frac{1}{2} (T(\begin{bmatrix} 3 \\ 2 \end{bmatrix}) - T(\begin{bmatrix} 1 \\ 2 \end{bmatrix})) = T(\begin{bmatrix} 1 \\ 0 \end{bmatrix})$$

$$\frac{1}{2} (\begin{bmatrix} -2 \\ 2 \\ 1 \end{bmatrix} + \begin{bmatrix} -2 \\ 0 \\ 3 \end{bmatrix}) = T(\begin{bmatrix} 1 \\ 0 \end{bmatrix}) = T(e_1) = \begin{bmatrix} -2 \\ 1 \\ 2 \end{bmatrix}$$

$$\bullet -\frac{1}{4} (\begin{bmatrix} 3 \\ 2 \end{bmatrix} - 3 \begin{bmatrix} 1 \\ 2 \end{bmatrix}) = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$-\frac{1}{4} (T(\begin{bmatrix} 3 \\ 2 \end{bmatrix}) - 3T(\begin{bmatrix} 1 \\ 2 \end{bmatrix})) = T(\begin{bmatrix} 0 \\ 1 \end{bmatrix})$$

$$-\frac{1}{4} (\begin{bmatrix} -2 \\ 2 \\ 1 \end{bmatrix} + \begin{bmatrix} -6 \\ 0 \\ 9 \end{bmatrix}) = T(\begin{bmatrix} 0 \\ 1 \end{bmatrix}) = T(e_2) = \begin{bmatrix} 2 \\ -\frac{1}{2} \\ -\frac{5}{2} \end{bmatrix}$$
(b) Standard Matrix:
$$\begin{bmatrix} -2 & 2 \\ 1 & -\frac{1}{2} \\ 2 & -\frac{5}{2} \end{bmatrix}$$

$$T(\begin{bmatrix} x \\ y \end{bmatrix}) = \begin{bmatrix} 2y - 2x \\ -\frac{y}{2} + x \\ -\frac{5y}{2} + 2x \end{bmatrix}$$

(2) Is the following injective, surjective, bijective? What is its range?

$$T: \mathbb{R}^3 \to \mathbb{R}^2, \ x \mapsto \begin{bmatrix} 0 & 2 & -1 \\ 0 & 0 & 3 \end{bmatrix} \cdot x$$

Ans:

The matrix is already in echelon form. If we put it in reduced echelon form we get this: $\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

The columns of the matrix are the zero vector and unit vectors of \mathbb{R}^2 , which of course span \mathbb{R}^2 . This means that the function is surjective. Because one of the columns is the zero vector, the vectors cannot be linearly independent.

Therefore the function T is only Surjective. Since the function is surjective, the range is the codomain which is \mathbb{R}^2 .

;

(3) Is the following injective, surjective, bijective?

$$T: \mathbb{R}^3 \to \mathbb{R}^3, \ x \mapsto \begin{bmatrix} 1 & -1 & 2 \\ -2 & 0 & 1 \\ 3 & -1 & 1 \end{bmatrix} \cdot x$$

Ans:

- Row reduce: $\begin{bmatrix} 1 & -1 & 2 \\ 0 & -2 & 5 \end{bmatrix}$
- Since an entire row is zeroes, the columns of this matrix cannot span \mathbb{R}^3 and thus it isn't surjective. Since there are 3 columns and each only has 2 or fewer of the same rows with non-zero elements, the columns cannot linearly independent and thus T cannot be injective.
- The fuction is not injective or surjective.
- (4) True or False? Explain why and correct the false statements to make them true.
 - (a) A linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is completely determined by the images of the unit vectors in \mathbb{R}^n .
 - (b) Not every linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ can be written as T(x) = Ax for some matrix A.
 - (c) The composition of any two linear transformations is linear as well.

Ans:

(a) True

Because the properties of linear transformations allow us to determine the output for any input that is a linear combination of inputs with known output, and the unit vectors of \mathbb{R}^n span \mathbb{R}^n , the unit vectors are enough to determine the output of any input.

(b) False

Every linear transformation can be writen as T(x) = Ax for some matrix A

If we have some vector x we can write it as each element multiplied by the unit vector for the coresponding row. If we then apply a linear transformation to this sum of scaled vectors, and use the properties of linear transformations to seperate the vectors and pull out the scalars, we get the elements of x multiplied by the transformations of the unit vectors. This is equivilant to Ax if A's columns are just the transformed unit vectors.

(c) True

If we take any two linear transformations, given their domain and ranges are compatible we can compose them. Since every linear transformation has an associated matrix A we can show that the composition of the two linear maps has such a matrix. Take maps T and S, arbitrary vector x,

and composition $T \cap S(x)$. The composition is equivilant to $A_T(A_S x)$. Because we already stipulated that the functions have compatible dimensions, matrix multiplication in this case is associative and the new matrix for the composed linear transformation is $A_{T \cap S(x)} = A_T A_S$.

- (5) True or False? Explain why and correct the false statements to make them true.
 - (a) $T: \mathbb{R}^n \to \mathbb{R}^m$ is onto \mathbb{R}^m if every vector $x \in \mathbb{R}^n$ is mapped onto some vector in \mathbb{R}^m .
 - (b) $T: \mathbb{R}^n \to \mathbb{R}^m$ is one-to-one if every vector $x \in \mathbb{R}^n$ is mapped onto a unique vector in \mathbb{R}^m .
 - (c) A linear map $T: \mathbb{R}^3 \to \mathbb{R}^2$ cannot be one-to-one.
 - (d) There is a surjective linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^4$.

Ans:

(a) False

This is just a description of a function, and says nothing of the range. $T:\mathbb{R}^n\to\mathbb{R}^m$ is onto \mathbb{R}^m if every vector $x\in\mathbb{R}^n$ is mapped onto some vector in \mathbb{R}^m and every vector in \mathbb{R}^m is mapped to by a vector in \mathbb{R}^n .

This is what one-to-one means. Every possible input has a unique output.

(c) True

The associated matrix to the map T would have to be a 2×3 matrix. This ensures that there would be at least one free variable meaning that the function could not be one-to-one.

(d) **False**

T is surjective iff its columns span \mathbb{R}^4 . There are only 3 columns since the matrix must map from \mathbb{R}^3 and 3 vectors cannot span \mathbb{R}^4 .

(6) If defined, compute the following for the matrices

$$A = \begin{bmatrix} 2 & 1 & -4 \\ 3 & -1 & 1 \end{bmatrix}, B = \begin{bmatrix} 1 & -1 \\ -3 & 4 \\ 2 & 0 \end{bmatrix}, C = \begin{bmatrix} -2 & 1 \\ 2 & -3 \end{bmatrix}$$

Else explain why the computation is not defined.

(b)
$$BA$$

(c)
$$AC$$

(d)
$$A + C$$

(e)
$$AB + 2C$$

Ans:

(a)
$$\begin{bmatrix} 2-3-8 & -2+4+0 \\ 3+3+2 & -3-4+0 \end{bmatrix} = \begin{bmatrix} -9 & 2 \\ 8 & -7 \end{bmatrix}$$
(b)
$$\begin{bmatrix} 2-3 & 1+1 & -4-1 \\ -6+12 & -3-4 & 12+4 \\ 4+0 & 2+0 & -8+0 \end{bmatrix} = \begin{bmatrix} -1 & 2 & -5 \\ 6 & -7 & 16 \\ 4 & 2 & -8 \end{bmatrix}$$
(c) Not possible. The height of C is not the same as the

- (c) Not possible. The height of C is not the same as the width of A.

(d) Not possible. A and C are not the same size. (e)
$$\begin{bmatrix} -9-4 & 2+2 \\ 8+4 & -7-6 \end{bmatrix} = \begin{bmatrix} -13 & 4 \\ 12 & -13 \end{bmatrix}$$

(7) Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ first rotate points around the origin by 60° counter clockwise and then reflect points at the line with equation y = x. Give the standard matrix for T.

- (a) Recall the standard matrix A for the rotation R by 60° from class.
- (b) Determine the standard matrix B for the reflection S at the line with equation y = x (a sketch will help).
- (c) Since T is the composition of S and R, compute the standard matrix C of Tas the product of B and A. Careful about the order!

Ans:

(a)
$$A = \begin{bmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{bmatrix}$$

(b)
$$B = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

(a)
$$A = \begin{bmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{bmatrix}$$

(b) $B = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$
(c) $BA = \begin{bmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{\sqrt{3}}{2} \end{bmatrix}$

(8) Continuation of (7): What is the standard matrix for $U: \mathbb{R}^2 \to \mathbb{R}^2$ which first reflects points at the line with equation y = x and then rotates points around the origin by 60° counter clockwise? Compare T and U.

Ans:

The matrices are the same exept for the signs of the top left and bottom right elements being switched.