EE 357- Communication Systems

Laboratory Session 2 - Frequency Modulation

OBJECTIVE : Investigate Frequency Modulation

THEORY:

Modulation

FM signal can be mathematically represented as,

$$X_{FM}(t) = A_c \cos(\omega_c t + 2\pi k_f) x_m(t) dt$$
(1)

For single tone modulation,

$$X_{FM}(t) = A_c \cos(\omega_c t + 2\pi k_f) A_m \cos(\omega_m t) dt$$

$$= A_c \cos(\omega_c t + 2\pi \Delta f) \cos(\omega_m t) dt$$

$$= A_c \cos(\omega_c t + \beta \sin(\omega_m t))$$
.....(2)

Where;

K_f - Sensitivity of the function generator

x_m(t) - Modulating signal

Δf - Peak frequency deviation

β – Modulation Index

Using the Bessel function it can be shown that,

$$X_{FM}(t) = A_c \sum_{n=-\infty}^{\infty} J_n(\beta) \cos(\omega_c + n\omega_m) t \qquad \dots (3)$$

And

$$X_{FM} (f) = \frac{A_c}{2} \sum_{n=-\infty}^{\infty} J_n (\beta) \{ \delta [f + (f_c + nf_m)] + \delta [f - (f_c + nf_m)] \}$$
(4)

Total average power

Total average power of FM signal is given by

$$P_{\text{av}} = S_T = \sum_{n=-\infty}^{\infty} \frac{1}{2} A_c^2 J_n^2(\beta)$$
(5)

Band width (BW)

Instantaneous frequency of FM signal is given by

$$f_i = f_c + k_f m(t)$$
 (6)

According to Carson's rule, bandwidth of a FM signal is given by $BW = 2 \text{ fm } (\beta + 1) \dots (7)$

Frequency spectrum of the FM signal which correspond to a specific message signal can be changed by changing β value. As

$$\beta = \frac{k_f A_m}{f_m} \dots (8)$$

by changing A_m, frequency spectrum of the FM signal is changed.

MATLAB Exercise

<u>Part 1 : Generate different frequency modulated signal which has different frequency spectrums</u> <u>for the same message signal</u>

- 1. Generate a sinusoidal carrier signal with frequency 200 Hz and a sinusoidal message signal with frequency 10 Hz. (Select a suitable sampling time)
- 2. Using the Bessel function (Table 1), Identify the desired A_m values (using equation 8) that has to be set in order to get the following FM signal frequency spectrum cases.(Use $K_f=1$)
 - a) Carrier only.
 - b) Only the carrier and the 1st sideband pair are there.
 - c) Only the carrier, 1st sideband pair and the 2nd sideband pair are there.
 - d) Only the carrier, 1^{st} sideband pair the 2^{nd} sideband pair and 3^{rd} sideband pair are there.
 - e) Suppressed carrier.
 - f) Suppressed 1st sideband pair.
- 3. Then generate the frequency spectrum of the FM signals (a) (f) using the MATLAB function **fft.**
- 4. Plot the time series signals and the corresponding frequency spectrum of signals (a) (f).

Part 2: Observe the effect of fm on the frequency spectrum

For the case of β =4, change f_m (4 values) and observe the frequency spectrum of the FM signals and plot as in 4.

DISCUSSIONS:

- 1. Explain why FM is better than AM in terms of resistance to noise.
- 2. Describe two methods to estimate the occupied bandwidth of an FM signal.
- 3. Describe the key features of spectrum allocation used for typical FM radio broadcasting.
- 4. Compare the performance of FM and AM on the frequency spectrum.

Table 1: Bessel table

Beta	(Q)r	(L)	J(Z)	J(3)	J(4)	(c)r	(a)r		J(8)	(g)	J(10)	J(1.1)	7(7)	J(13)	J(14)
0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0.25	0.9844	0.124	0	0	0	0	0	0	0	0	0	0	0	0	0
0.5	0.9385	0.2423	0.0306	0	0	0	0	0	0	0	0	0	0	0	0
0.75	0.8642	0.3492	0.0671	0	0	0	0	0	0	0	0	0	0	0	0
-	0.7652	0.4401	0.1149	0.0196	0	0	0	0	0	0	0	0	0	0	0
1.25	0.6459	0.5106	0.1711	0.0369	0	0	0	0	0	0	0	0	0	0	0
1.5	0.5118	0.5579	0.2321	0.061	0.0118	0	0	0	0	0	0	0	0	0	0
1.75	0.369	0.5802	0.294	0.0919	0.0209	0	0	0	0	0	0	0	0	0	0
2	0.2239	29250	0.3528	0.1289	0.034	0	0	0	0	0	0	0	0	0	0
2.25	0.0827	0.5484	0.4047	0.1711	0.0515	0.0121	0	0	0	0	0		0	0	0
2.4	0.0025	0.5202	0.431	0.1981	0.0643	0.0162	0	0	0	0	0	0	0	0	0
2.5	-0.0484	0.4971	0.4461	0.2166	0.0738	0.0195	0	0	0		0	0	-	0	
2.75	-0.1641	0.426	0.4739	0.2634	0.1007	0.0297	0	0	0	0	0	0	0	0	
3	-0.2601	0.3391	0.4861	0.3091	0.132	0.043	0.0114	0	0	0	0	0	-	0	0
3.5	-0.3801	0.1374	0.4586	0.3868	0.2044	0.0804	0.0254	0	0	0	0	0	-	0	0
4	-0.3971	990.0-	0.3641	0.4302	0.2811	0.1321	0.0491	0.0152	0	0	0	0	0	0	0
4.5	-0.3205	-0.2311	0.2178	0.4247	0.3484	0.1947	0.0843	0.03	0.0091	0	0	0	0	0	0
4.75	-0.2551	-0.2892	0.1334	0.4015	0.3738	0.228	0.1063	0.0405	0.0131	0	0	0	0	0	0
5	-0.1776	-0.3276	0.0466	0.3648	0.3912	0.2611	0.131	0.0534	0.0184	0	0	0	0	0	0
5.5	-0.0068	-0.3414	-0.1173	0.2561	0.3967	0.3209	0.1868	0.0866	0.0337	0.0113	0	0	0	0	0
9	0.1506	-0.2767	-0.2429	0.1148	0.3576	0.3621	0.2458	0.1296	0.0565	0.0212	0	0	0	0	0
6.5	0.2601	-0.1538	-0.3074	-0.0353	0.2748	0.3736	0.2999	0.1801	0.088	0.0366	0.0133	0	0	0	0
7	0.3001	-0.0047	-0.3014	-0.1676	0.1578	0.3479	0.3392	0.2336	0.128	0.0589	0.0235	0	0	0	0
7.5	0.2663	0.1352	-0.2303	-0.2581	0.0238	0.2835	0.3541	0.2832	0.1744	0.0889	0.039	0.0151	0	0	0
8	0.1717	0.2346	-0.113	-0.2911	-0.1054	0.1858	0.3376	0.3206	0.2235	0.1263	0.0608	0.0256	0.0096	0	0
8.5	0.0419	0.2731	0.0223	-0.2626	-0.2077	0.0671	0.2867	0.3376	0.2694	0.1694	0.0894	0.041	0.0167	0	0
6	-0.0903	0.2453	0.1448	-0.1809	-0.2655	-0.055	0.2043	0.3275	0.3051	0.2149	0.1247	0.0622	0.0274	0.0108	0
9.5	-0.1939	0.1613	0.2279	-0.0653	-0.2691	-0.1613	0.0993	0.2868	0.3233	0.2577	0.165	0.0897	0.0427	0.0182	0
10	-0.2459	0.0435	0.2546	0.0584	-0.2196	-0.2341	-0.0145	0.2167	0.3179	0.2919	0.2075	0.1231	0.0634	0.029	0.012
10.5	-0.2366	-0.0789	0.2216	0.1633	-0.1283	-0.2611	-0.1203	0.1236	0.2851	0.3108	0.2477	0.1611	0.0898	0.0441	0.0195
1	-0.1712	-0.1768	0.139	0.2273	-0.015	-0.2383	-0.2016	0.0184	0.225	0.3089	0.2804	0.201	0.1216	0.0643	0.0304
11.5	-0.0677	-0.2284	0.0279	0.2381	0.0963	-0.1711	-0.2451	-0.0846	0.1421	0.2823	0.2998	0.239	0.1575	0.0897	0.0454
12	0.0477	-0.2234	-0.0849	0.1951	0.1825	-0.0735	-0.2437	-0.1703	0.0451	0.2304	0.3005	0.2704	0.1953	0.1201	0.065
12.5	n 1469	.0 1655	.0 173A	0.44	0.0000	71,000	20070	00000	00000	0.4700	0 0300	00000	7 7000	WY WY W	00000