MEMAHAMI MODEL SEIR

Dari Masalah Nyata, Pemodelan dan Implementasi PSBB

E. Soewono, M. Fakhruddin, K. Khairuddin FMIPA ITB Pusat Pemodelan & Simulasi ITB

MISQUOTATION DI MEDIA

Jokowi: Mei, Kurva Pasien Covid-19 Harus Sudah Menurun, Apa Pun Caranya

Liputan6.com, Jakarta - Gubernur DKI Jakarta Anies Baswedan mengatakan adanya penurunan jumlah kasus virus Corona atau Covid-19. Namun dia menilai hal tersebut bukan berarti Jakarta sudah aman dari penyebaran virus Corona.

Rima Arya: Puncak Kasus Corona di Bogor Bulan Juli

Berita Website Resmi Pemerintah Provinsi Jawa Barat

PSSB Jabar, Ridwan Kamil Target Ro di Bawah 1 Persen Mengacu Bodebek dan Bandung Raya

© 2020-05-05 19:30:00 | BERITA | 308 VIEWS | ● 0 KOMENTAR | SUMBER : REP-RILIS HUMAS JABAR

Keberhasilan PSBB lainnya yaitu perlambatan laju persebaran COVID-19. Kang Emil menuturkan, dalam teori PSBB salah satu yang harus diukur adalah indikator laju persebaran yang dihitung dengan angka reproduksi dasar (Ro).

"Jadi kalau diibaratkan mobil mah sebelum PSBB kecepatannya 100 km/ jam setelah PSBB menurun jadi 60 km/ jam," tuturnya.

Penurunan Ro ini terbukti di PSBB Bodebek dan Bandung Raya yang asalnya ada di angka 1,27 turun menjadi 1,07.

"Angka satu itu dianggap angka yang wajar satu pasien menulari satu orang tapi kalau lebih dari satu berarti potensi penularannya bisa banyak. Semoga setelah 14 hari PSBB Provinsi kecepatan penularan turun dari angka satu," harapnya.

Epidemolog UI: Kurva Covid-19 Bisa Turun asal PSBB Diperketat. Gugus Tugas: Kurva Corona Bisa Landai Kalau Kita Hidup

Sehat-Tak Menularkan, Istana: Mal dan Sekolah Dibuka iika Tak Ada Kasus Baru Covid-19

BAGAIMANA MATEMATIKAWAN HARUS MENJAWAB

- Kapan puncak pandemic dilewati
- Kapan pandemik berakhir
- Bagaimana mengukur dampak PSBB
- Berapa target jumlah test PCR
- Penggunaan Terminologi matematika yang benar dan mudah dipahami masyarakat awam
- Matematikawan di tiap wilayah ikut berkontribusi

DATA COVID-19

Data Jumlah kasus/penderita per hari?

KASUS JAKARTA

Total Populasi 10 juta

 $R_0 = \sqrt{a/\gamma}$ a= laju infeksi baru per individu γ =1/perioda infeksi Jika a lebih kecil puncak infeksi menurun dan bergeser kekanan (selama $R_0>1$)

KETERSEDIAAN DATA & PEMAHAMAN TERMINOLOGI

Data yg ada di media

- Data kumulatif
- Data kasus harian
 Simulasi model matematika dapat menampilkan
- Jumlah kasus positif tiap waktu (Lebih penting, tidak ada di media)
- Waktu akhir transmisi

Akhir transmisi adalah saat tidak ada lagi transmisi dari penderita (positif) ke sehat. Setelah akhir transmisi, yang terjadi hanya transisi dari PDP ke Positif

MODEL SEIR UNTUK TRANSMISI COVID-19

$$\frac{dS}{dt} = \pi - a \frac{SI}{N} - \mu S$$

$$\frac{dE}{dt} = a \frac{SI}{N} - (\alpha + \mu) E$$

$$\frac{dI}{dt} = \alpha E - (\gamma + \mu) I$$

$$\frac{dR}{dt} = \gamma I - \mu R$$

PENYEDERHANAAN

Asumsi:

- Waktu kajian relative pendek
- Populasi konstant
- Kelahiran dan kematian relatif kecil (thd populasi) dalam perioda pendek, dapat diabaikan

$$\frac{dS}{dt} = -a\frac{SI}{N}$$

$$\frac{dE}{dt} = a\frac{SI}{N} - \alpha E$$

$$\frac{dI}{dt} = \alpha E - \gamma I$$

$$\frac{dR}{dt} = \gamma I$$

$$R_0 = \sqrt{a/\gamma}$$

$$R_0 = \sqrt{\frac{a\alpha}{(\alpha + \mu)(\gamma + \mu)}}$$

KAPAN TRANSMISI BERAKHIR?

$$\frac{dS}{dt} = -a(t)\frac{SI}{N}$$

$$\frac{dE}{dt} = a(t)\frac{SI}{N} - \alpha E$$

$$\frac{dI}{dt} = \alpha E - \gamma I$$

$$\frac{dR}{dt} = \gamma I$$

$$R_0 = \sqrt{a/\gamma}$$

Asumsi: Tdk ada import cases

Kasus Kumulatif = Jlh total sembuh + Jlh terinfeksi+ Jlh meninggal $K(t) \approx I(t) + R(t)$

$$\frac{dK}{dt} = \alpha E$$

$$\frac{d^2K}{dt^2} = \alpha (a(t)\frac{SI}{N} - \alpha E) = \alpha a(t)\frac{SI}{N} - \alpha \frac{dK}{dt}$$

$$^{1}/\alpha \frac{d^{2}K}{dt^{2}} + \frac{dK}{dt} = \alpha(t) \frac{SI}{N}$$

Kasus PDP Baru/hari

KASUS WUHAN

AKHIR TRANSMISI COVID-19

aly	Coral	210,337	75
elgium	Violet	50,423	73
enmark	Orange	10,325	65
rance	Green	166,214	64
ermany	Tan	160,108	62
Korea	Blue	10,252	59
hina	Red	83	52
ustralia	Brown	6,619	50

SIMULASI KASUS COVID-19 INDONESIA

Indonesia

SIMULASI KASUS JAKARTA

DKI Jakarta

KASUS SINGAPORE

Adanya new cluster dlm jumlah besar di bln April berdampak pada penundaan akhir transmisi

ESTIMASI LAJU INFEKSI

- ullet Basic Reproductive Number R_0 adalah indicator keendemikan di awal transmisi
- Pada awal kejadian, transmisi diasumsikan masih eksponensial

$$E(t) \approx E(0)e^{(\theta t)}$$

$$I(t) \approx I(0)e^{(\theta t)}$$

$$K(t) \propto e^{(\theta t)}$$

$$(\frac{\theta}{\alpha + \mu} + 1)E(0) = \frac{a}{\alpha + \mu}I(0)$$

$$(\frac{\theta}{\alpha + \mu} + 1)(\frac{\theta}{\gamma + \mu} + 1)$$

$$(\frac{\theta}{\gamma + \mu} + 1)I(0) = \frac{\alpha}{\gamma + \mu}E(0)$$

$$a = \frac{(\theta + \alpha + \mu)(\theta + \gamma + \mu)}{\alpha}$$

• Θ kita estimasi melalui *fitting* pada data awal kumulatif

ESTIMASI PARAMETER INFEKSI KASUS WUHAN, DIAMOND PRINCES & JAKARTA CLUSTER

(b) Exponential fit to Diamond Princess Data

(c) Exponential fit to Jakarta-cluster Data

Case	θ	R_0	a
Wuhan	0.2729	3.4444	1.1873
Diamond Princess	0.5483	5.9076	3.4924
Jakarta-cluster	0.1690	2.5148	0.6329

EFEK PSBB & PCR THD TRANSMISI

- Implementasi PSBB sifatnya local/kewilayahan
- PSBB dgn physical distancing dapat dimaknai (dalam kaitan dengan model) sebagai pemisahan/proteksi sebagian penduduk dari kontak/transmisi. Dalam prakteknya, porsi penduduk yg patuh PSBB meningkat secara bertahap.
- PCR *Testing* berkorespondensi dengan identifikasi *new positive cases* yang diikuti dengan isolasi.
- Persentasi jumlah test terhadap jumlah penduduk sering di pakai sebagai indicator target capaian untuk penurunan kasus baru
- ? Dimana faktor2 tsb kita tempatkan di model?

PSBB & SEIR Model

$$\frac{dS}{dt} = -a(t)\frac{SI}{N}$$

$$\frac{dE}{dt} = a(t)\frac{SI}{N} - \alpha E$$

$$\frac{dI}{dt} = \alpha E - \gamma I$$

$$\frac{dR}{dt} = \gamma I$$

Asumsi: Tdk ada kasus import

- Porsi p(t) dari S patuh PSBB, (1-p(t))S(t) terekspose oleh kontak infeksi
- Porsi q(t) dari I(t) teridentifikasi dari testing PCR dan diisolasi, (1-q(t))I(t)
- $a(t) = a_0(1 p(t))(1 q(t))$

SIMULASI PSBB DENGAN PENINGKATAN KEPATUHAN 10 %, DENGAN PENINGKATAN ISOLASI 5% & 10% (per hari)

Peningkatan kepatuhan PSBB 10% + Peningkatan isolasi 5% per hari

Peningkatan kepatuhan PSBB 10% + Peningkatan isolasi 10% per hari

Joint Publications

- Communication in Biomathematical: Call for publications, Vol 3 No1 didedikasikan untuk topik Covid-19
- Tersedia data Covid-19 banyak sekali
- Kami mengundang rekan2 untuk joint publications
 - Dengan data lengkap world-wide
 - Dengan data lengkap Indonesia

TERIMA KASIH ATAS PERHATIANNYA

- Nuning Nuraini, Kamal Khairudin, Mochamad Apri: Modeling Simulation of COVID-19 in Indonesia based on Early Endemic Data, COMMUN. BIOMATH. SCI., VOL. 3, NO. 1, 2020, PP. 1-8
- Edy Soewono: On the analysis of Covid-19 transmission in Wuhan, Diamond Princess and Jakarta-cluster, COMMUN. BIOMATH. SCI., VOL. 3, NO. 1, 2020, PP. 9-18
- Meksianis Z. Ndii, Panji Hadisoemarto, Dwi Agustian, Asep K. Supriatna: An analysis of Covid-19 transmission in Indonesia and Saudi Arabia