Practice Problem #4: Transportation Problem

Each hour, an average of 900 cars enter a network at node 1 and seek to travel to node 6. The time it takes a car to traverse each arc is shown in Table 2. Table 1 indicates the maximum number of cars that can pass by any point on the arc during a one-hour period. If no number is listed in the table, then you can assume that the road does not exist. Formulate this problem as a mathematical programming model that minimizes the total time required for all cars to travel from node 1 to node 6.

Node	1	2	3	4	5	6
1	-	800	600	-	-	_
2	-	-	-	600	100	12
3	-	-	-	300	400	-
4	-	-	-	-	600	400
5	-	-	-	-	-	600
6	-	-	-	-	-	-

Table 1: Road Capacities

Node	1	2	3	4	5	6
1	-	10	50	-	-	-
2	-	_	-	30	70	-
3	-	-	-	10	60	-
4	-	-	-	-	30	60
5	-	-	-	-	-	30
6	-	-	-	-	_	_

Table 2: Travel Times between Locations

1 Network Representation:

Draw a network representation below. Clearly label each arc as you see appropriate.

OMPLETED

Concrete Model:

Formulate the problem above as a concrete mathematical programming model to minimize the total cost. Clearly define and describe all decision variables, constraints, and the objective.

Decision Variables

X12, X13, ... the # of cars travelling from node I to nock Z, from node I to node 3, and so on.

Constraints

-900 cars must leave node I -900 cars must arrive at node 6.

- Flow-Balance at node 2,3,4,+5

- Cannot exceed the maximum capacity on each arc stetween nodes.

Objective

CONCRETE MODEL

Minimize Total Travel Minimize 10x12 + 50x13 + 30x24 + 70x25 + 10x34 + 60x35 + 30x45 + 60x46

Sit.

$$\chi_{24} + \chi_{25} - \chi_{12} = 0$$
 (2)

$$x_{34} + x_{35} - x_{13} = 0$$
 (3)

$$X_{46} + X_{45} - X_{34} - X_{24} = 0$$
 (4)

800= X12 20

6602 X13 20

600= X24=0

1003 X2520

300 = X3420

40° 2 x3520

6002 X4520

400 2 X4620

600 > X5630

3

Abstract Model:

Formulate the problem above as a abstract mathematical programming model to minimize the total cost. Clearly define and describe all sets, parameters, and decision variables.

V:= Set of All Nodes {1,2,3,4,5,6} A:= Set of Arcs & (1,2), (1,3), (2,4), ... }

PARAMETERS

- Mij Y (i,j) EA := the maximum capacity on arc (i,j) EA.

Cij V (i,j) E A := the time it takes one car to travel

on arc (i,j) ∈ A.

- bi ∀i ∈ V := the balance = supply-demand at node i∈ V.

DECISION VARIABLES

xij≥0 ∀ (i,j) ∈ A = the number of cars travelling on arc (i,i) E.A.

ABSTRACT MODEL

Minimize Zicj xij S.t. $\sum_{i:(i,i)\in A} \chi_{ij} - \sum_{k:(k,i)\in A} \chi_{ki} = b_i$ O < Xii < Mij & (ij) Ed