Package 'SurrogateParadoxTest'

January 20, 2025

Type Package

Version 2.0

Date 2025-01-20

Title Empirical Testing of Surrogate Paradox Assumptions

rogate paradox through hypothesis tests of stochastic dominance, monotonicity of regression functions, and non-negative residual treatment effects. More details are available in Hsiao et al 2025 (under review). A tutorial for this package can be found at https://laylaparast.com/home/SurrogateParadoxTest.html .
icense GPL
nports stats, MonotonicityTest
eedsCompilation no
uthor Emily Hsiao [aut, cre]
aintainer Emily Hsiao <ehsiao@utexas.edu></ehsiao@utexas.edu>
a_b_hat 2 barrett_donald_cutoff 2 barrett_donald_p 3 calculate_bandwidth 3 gaussian_kernel 4 modified_S_stat 4 monotonicity_test 5 nnr_test 6 Q 6 S 7 sd_test 8 smoother_fitter 8 test_assumptions 9
T_m
ndex 12

2 barrett_donald_cutoff

a_b_hat

Helper function

Description

Helper function for monotonicity test

Usage

```
a_b_n(r, s, X, Y)
```

Arguments

r Index to start summation.
 s Index to end summation.
 X Vector of X values.
 Y Vector of Y values.

Value

a_hat Numeric value of a_hat b_hat Numeric value of b_hat

Author(s)

Emily Hsiao

 $\verb|barrett_donald_cutoff| | \textit{Helper function for stochastic dominance test}|$

Description

Rejection cutoff value for stochastic dominance value based on alpha level.

Usage

```
barrett_donald_cutoff(alpha)
```

Arguments

alpha

Desired alpha level for stochastic dominance test.

Value

Cutoff value for stochastic dominance test

Author(s)

barrett_donald_p 3

barrett_donald_p

Helper function for stochastic dominance test

Description

Calculates p-value of the stochastic dominance test

Usage

```
barrett_donald_p(statistic)
```

Arguments

statistic

Test statistic calculated in stochastic dominance test

Value

p-value of the test statistic

Author(s)

Emily Hsiao

calculate_bandwidth

Helper function for kernel smoother

Description

Calculates the appropriate bandwidth for Nadaraya-Watson kernel smoother.

Usage

```
calculate_bandwidth(s)
```

Arguments

S

Vector of surrogate values.

Value

Desired bandwidth for kernel smoother.

Author(s)

4 modified_S_stat

gaussian kornol Halner fu	unction for kernel smoother
gaussian_kernel <i>Helper fu</i>	munon joi kernei smoomer

Description

Gaussian kernel used for kernel smoother.

Usage

```
gaussian_kernel(x)
```

Arguments

 \mathbf{X} \mathbf{X}

Value

Gaussian kernel applied to x

Author(s)

Emily Hsiao

modified_S_stat

Helper function for non-negative residual treatment effect test.

Description

Calculates the value of the test statistic in the NNR test.

Usage

```
modified_S_stat(mu0_hat, mu1_hat, s0, y0, s1, y1, grid_x, boot = FALSE)
```

Arguments

mu0_hat	Kernel-smoothed estimate of μ_0 function.
mu1_hat	Kernel-smoothed estimate of μ_1 function.
s0	Vector of surrogate values in control group.
y0	Vector of endpoint values in control group.
s1	Vector of surrogate values in treatment group.
y1	Vector of endpoing values in the treatment group.
grid_x	Values of s over which supremum is calculated.
boot	Whether this is a bootstrapped statistic or the test statistic.

Value

s_hat	Value of the test statistic

sup Value of the supremum over grid_x

monotonicity_test 5

Author(s)

Emily Hsiao

monotonicity_test

Monotonicity test

Description

Runs the test of monotonicity for a regression function.

Usage

```
monotonicity_test(X, Y, h = NA, m = 5, bootstrap_n = 100, alpha = 0.05)
```

Arguments

X Vector of X values.Y Vector of Y values.

h Bandwidth for the kernel smoother.

m Window size to calculate linear regression.

bootstrap_n Desired number of bootstrap samples.

alpha Desired alpha level of the test.

Value

T_m_value Value of the test statistic.

p_val p-value of test

reject whether the test rejects the null

T_m_samples Vector of bootstrapped values of test statistic

Author(s)

Emily Hsiao

References

Hall, Peter, and Nancy E. Heckman. "Testing for monotonicity of a regression mean by calibrating for linear functions." Annals of Statistics (2000): 20-39.

6 Q

nnr_test	Non-negative residual treatment effect function	

Description

Runs the test of non-negative residual treatment effect given two sets of surrogate and primary endpoint values.

Usage

```
nnr_test(s0, y0, s1, y1, n_bootstrap = 200, alpha = 0.05)
```

Arguments

s0	Vector of surrogate values in control group.
y0	Vector of endpoint values in control group.
s1	Vector of surrogate values in treatment group.
y1	Vector of endpoint values in treatment group.
n_bootstrap	Desired number of bootstrap samples.
alpha	Desired alpha level of test.

Value

p_value	p-value of test.
reject	Whether the test rejects the null hypothesis.
s_hat	Calculated value of test statistic.
s_vec	Vector of bootstrapped values of test statistic.

Author(s)

Emily Hsiao

References

Hsiao et all 2024 (Under review)

Q Helper function for monotonicity test

Description

Helper function for monotonicity test; should not be called directly by user.

Usage

```
Q(r, s, X)
```

S 7

Arguments

r Index to start summation.

s Index to end summation.

X Vector of X values over which to sum.

Value

Q

Author(s)

Emily Hsiao

References

Hall, Peter, and Nancy E. Heckman. "Testing for monotonicity of a regression mean by calibrating for linear functions." Annals of Statistics (2000): 20-39.

S Helper function

Description

Helper function for monotonicity test.

Usage

Arguments

а	Value of a (regression coefficient)
b	Value of b (regression coefficient)
r	Index to start summation
S	Index to end summation
Χ	Vector of X values

Vector of Y values

Value

Υ

Mean-squared error

Author(s)

smoother_fitter

sd	44	
50	test	

Stochastic dominance test function

Description

Runs the test of stochastic dominance given two vectors of surrogate values.

Usage

```
sd_test(s0, s1, alpha = 0.05)
```

Arguments

s0	Vector of surrogate values in control group.
s1	Vector of surrogate values in treatment group.
alpha	Desired alpha level of hypothesis test.

Value

s_hat	Value of test statistic
p.value	p-value of test
reject	Rejection decision of test

Author(s)

Emily Hsiao

References

Barrett, Garry F., and Stephen G. Donald. "Consistent tests for stochastic dominance." Econometrica 71.1 (2003): 71-104.

smoother_fitter

Helper function

Description

Nadaraya-Watson kernel smoother

Usage

```
smoother_fitter(X, Y, kernel = gaussian_kernel, h)
```

Arguments

Χ	Vector of X values
Υ	Vector of Y values

kernel Kernel to use in the kernel smoother; defaults to Gaussian kernel

h Bandwidth

9 test_assumptions

Value

Returns a function which is the smoothed function; input takes in an x value.

Author(s)

Emily Hsiao

test_assumptions

Test assumptions to prevent surrogate paradox

Description

Tests the assumptions necessary to prevent the surrogate paradox: stochastic dominance of surrogate values in the treatment group over control group, monotonicity of the relationship between surrogate and primary endpoint in both treatment and control group, and non-negative residual treatment effect of the treatment group over the control group. For computational efficiency, Version 2.0 of this package uses the monotonicity_test function from the MonotonicityTest package.

Usage

```
test_assumptions(s0 = NULL, y0 = NULL, s1 = NULL, y1 = NULL, trim = 0.95,
alpha = 0.05, type = "all", all_results = TRUE, direction = "positive",
monotonicity_bootstrap_n = 100, nnr_bootstrap_n = 200)
```

Arguments

s0	Vector of surrogate values in control group.
y0	Vector of primary endpoint values in control group.
s1	Vector of surrogate values in treatment group.
y1	Vector of primary endpoint values in treatment group.
trim	Proportion of data to keep after trimming the outliers. Defaults to 95%. Trims data by sorting by surrogate value and removing (1 - trim)/2 % of the lowest and highest surrogate values with their corresponding primary endpoint values.
alpha	Desired alpha level of tests.
type	Type of test to run. Defaults to "all"; possible inputs are "sd" (stochastic dominance), "monotonicity" (monotonicity), and "nnr" (non-negative residual treatment effect).
all_results	TRUE or FALSE; return all outputs from hypothesis tests. Defaults to TRUE.
direction	Direction of the test. Defaults to "positive", which tests that the treatment group stochastically dominates the control group, that μ_0 and μ_1 are monotonically increasing, and that $\mu_0 \leq \mu_1 \forall s$. Parameter "negative" tests that the control group stochastically dominates the treatment group, that μ_0 and μ_1 are monotonically decreasing, and that $\mu_1 \leq \mu_0 \forall s$.
monotonicity_bootstrap_n	

Number of bootstrap samples for monotonicity test.

nnr_bootstrap_n

Number of bootstrap samples for nnr test.

10 T_m

Value

result Table or string of results of the tests

sd_result Detailed results of stochastic dominance test; only returned if all_results is TRUE

monotonicity0_result Detailed results of monotonicity test in control group; only returned if all_results is TRUE

monotonicity1_result Detailed results of monotonicity test in treatment group; only returned if all_results is TRUE

nnr_result Detailed results of nnr test; only returned if all_results is TRUE

Author(s)

Emily Hsiao

References

Barrett, Garry F., and Stephen G. Donald. "Consistent tests for stochastic dominance." Econometrica 71.1 (2003): 71-104.

Hall, Peter, and Nancy E. Heckman. "Testing for monotonicity of a regression mean by calibrating for linear functions." Annals of Statistics (2000): 20-39.

Hsiao, Tian, Parast. "Avoiding the Surrogate Paradox: An Empirical Framework for Assessing Assumptions." 2025 (Under Review)

Examples

```
m_c <- function(s) 1 + 2 * s
m_t <- function(s) 1 + 2 * s

s_c <- rnorm(100, 3, 1)
y_c <- sapply(s_c, function(s) rnorm(1, m_c(s), 1))
s_t <- rnorm(100, 3, 1)
y_t <- sapply(s_t, function(s) rnorm(1, m_t(s), 1))

test_assumptions(
s0 = s_c, y0 = y_t, s1 = s_t, y1 = y_t, type = "sd"
)

test_assumptions(
s0 = s_c, y0 = y_t, s1 = s_t, y1 = y_t, type = "all")</pre>
```

 T_m

Helper function for monotonicity test

Description

Calculates the test statistic

T_m 11

Usage

 $T_m(m, X, Y)$

Arguments

m m window sizeX Vector of X valuesY Vector of Y values

Value

stat Value of the test statistic

stat_vals Vector of statistics before taking maximum

 $\begin{array}{ll} b_vals & Values \ of \ b \\ Q_vals & Values \ of \ Q \end{array}$

Author(s)

Index

```
* arith
     a_b_{hat}
* internal
    a_b_hat, 2
     barrett_donald_cutoff, 2
    barrett_donald_p, 3
     calculate_bandwidth, 3
     gaussian_kernel, 4
    {\tt modified\_S\_stat, 4}
    {\tt monotonicity\_test}, {\tt 5}
    nnr\_test, 6
    Q, 6
    s, 7
    sd_test, 8
     smoother_fitter, 8
    T_m, 10
a_b_{hat}
barrett_donald_cutoff, 2
barrett_donald_p, 3
calculate_bandwidth, 3
{\tt gaussian\_kernel, 4}
modified\_S\_stat, 4
{\tt monotonicity\_test}, {\tt 5}
nnr\_test, 6
Q, 6
s, 7
sd_test, 8
smoother_fitter, 8
T_m, 10
\texttt{test\_assumptions}, \textcolor{red}{9}
```