INDUSTRIAL ORGANIC CHEMISTRY – EXERCISE 2

Methanol synthesis: design of the multi-stage adiabatic reactor

Methanol synthesis is carried out in multi-stage adiabatic reactors with intermediate cooling in order to maintain a high reaction rate.

The main reaction involved in the methanol synthesis is:

$$CO + 2 H_2 \leftrightarrow CH_3OH$$
 (1)

Since CO₂ is fed to the reactor, the following reaction takes also place:

$$CO_2 + H_2 \leftrightarrow CO + H_2O$$
 (2)

By assuming that the intermediate cooling is carried out by means of external heat exchangers, the temperature of the reacting mixture leaving the exchanger is equal to 240 °C. The maximum temperature in the catalytic bed has to be lower than 270 °C to avoid catalyst deactivation. The pressure drops along the reactors are negligible.

Based on the reported data:

- a) write the mass and heat balance equations for the generic adiabatic bed adopting a pseudo-homogeneous model;
- b) evaluate the volume of the reactor and the number of beds required to obtain a molar fraction of methanol in the outlet stream equal to 0.061

Input data:

1. Physycal-chemical properties

$$\begin{split} \rho_{catalyst} &= 1.98 g/(cm^3) \\ \epsilon &= 0.4 \text{ (void fraction of the catalyst bed)} \\ \langle Cp_{mix} \rangle &= 4.081 kJ/kg \\ \Delta H_{R1} &\approx -23460 cal/mol \\ \Delta H_{R2} &\approx 9510 \text{ cal/mol} \end{split}$$

2. Operating conditions

Absolute pressure: 51 bar Feeding temperature: 513 K

	Q (kmol/h)	y i
СО	2008.6	13.39%
CO ₂	1495.0	9.97%
H ₂	9500.2	63.33%
CH ₄	1996.2	13.31%
СН₃ОН	0.0	0.00%
H ₂ O	0.0	0.00%
tot	15000	100.00%

3. Kinetic equations

KINETIC EQUATION [mol/g _{cat} /min]	Reaction constants	
$R_{1} = \frac{f_{CO}f_{H_{2}}^{2} - \frac{f_{CH_{3}OH}}{K_{eq,1}}}{\left(C_{1} + C_{2}f_{CO} + C_{3}f_{CO_{2}} + C_{4}f_{H_{2}}\right)^{2}}$	$C_1 = \exp\left[3.49 + 4883\left(\frac{1}{T} - \frac{1}{506}\right)\right]$	
$K_{1} = \frac{1}{\left(C_{1} + C_{2}f_{CO} + C_{3}f_{CO_{2}} + C_{4}f_{H_{2}}\right)^{2}}$	$C_2 = \exp\left[2.53 - 39060\left(\frac{1}{T} - \frac{1}{506}\right)\right]$	
	$C_3 = \exp\left[3.70 + 15948\left(\frac{1}{T} - \frac{1}{506}\right)\right]$	
	$C_4 = \exp\left[1.54 + 8229\left(\frac{1}{T} - \frac{1}{506}\right)\right]$	
$R_{2} = \frac{f_{CO2}f_{H2} - \frac{f_{CO}f_{H2O}}{K_{eq,2}}}{C_{5}}$	$C_5 = \exp\left[5.18 + 938\left(\frac{1}{T} - \frac{1}{506}\right)\right]$	
f = fugacity, atm		
(P.L. Villa, P. Forzatti, G. Buzzi-Ferraris, G. Garone, I. Pasquon, I&EC Process Design & Development 24 (1985) 12)		

To evaluate the equilibrium constants, the ΔG° of reaction are reported:

$$\Delta G_1^0 = -22.858 + 0.05602 \cdot T \quad \mbox{(K) kcal/mol} \\ \Delta G_2^0 = 9.418 - 0.00907 \cdot T \quad \mbox{(K) kcal/mol}$$

The fugacity are evaluate accordingly to what reported in $\underline{\text{Exercise 1}}$