ÁLGEBRA (Ciencias) – año 2020

PRÁCTICA 3

Conjuntos. Parte II.

- 1. a) Sea $A = \{1, \{2\}, \{\emptyset\}, \{1, 2\}\}, \text{ hallar } P(A).$
 - b) Hallar: $P(\emptyset)$ y $P(P(\emptyset))$.
- 2. Demostrar:

a)
$$A \cap B = \emptyset \iff P(A) \cap P(B) = \{\emptyset\}$$

b)
$$P(A \cap B) = P(A) \cap P(B)$$

- 3. Sean: $A = \{1, 3, \sqrt{4}\}; B = \{3, 4, 1^3, b\}; C = \{0, b, 2, 3\}.$ Hallar: A B, A C, A (C B), (A B) (A C), (A B) A.
- 4. a) Sean $A = \{1, 2, 3\}, B = \{7\}, C = \{3, 6\}, D = \{5, 9, 10\} \text{ y } U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}.$ Hallar: $(B^c \cup D) \cap C$, $(D \cap A) \cup B^c$, $(C - D)^c \cup A$, $A^c - C$. Los complementos se toman con respecto a U.
 - b) Hallar el complemento de A= $\{x \in \mathbb{N} / 1 \le x\}$ y de B= $\{x \in \mathbb{R} / 1 \le x\}$ siendo $U_A = \mathbb{N}$ y $U_B = \mathbb{R}$.
- 5. Sean $A \subset U$ y $B \subset U$, siendo U un universo dado. Probar:

$$a) A - B = A \cap B^c$$

b)
$$(A \cap B)^c = A^c \cup B^c$$

- 6. Determinar si la siguiente afirmación es verdadera o falsa. Justificar. $A \cap B = \emptyset$ entonces $A \subset B^c$
- 7. ¿Cuál o cuáles de las siguientes expresiones son equivalentes a $A \subseteq B$?

(a)
$$A \cap B^c = \emptyset$$
 (b) $A \cap B^c = A$ (c) $A \cup B^c = U$ (d) $A^c \cup B = U$

8. Hallar $A\Delta B$ en los siguientes casos:

a)
$$A = \{x : x \in \mathbb{R} \land x \ge 1\}, B = \{x : x \in \mathbb{R} \land x \le 3\}$$

- b) A es el conjunto de los números impares; B es el intervalo natural [12, 30].
- 9. Probar:(A, B, C conjuntos; U el universo donde están definidos esos conjuntos). Representar utilizando diagramas de Venn

(a)
$$A - (B - C) = (A - B) \cup (A \cap C)$$
 (b) $A - B \subset A$ (c) $A - B = (A \cup B) - B$

(d)
$$A - B = A - (A \cap B)$$
 (e) $(A \cap B) - C = (A - C) \cap (B - C)$ (f) $A \Delta B = B \Delta A$

(g)
$$A\Delta U = A^c$$

10. Hallar valores de x e y (si existen) para que los siguientes pares ordenados sean iguales:

1

- a) (5x-2,1); (3,x-3y)
- b) (x+3,4); (2, x+y)
- 11. Sean A y B conjuntos, se define el conjunto $A \times B = \{(x,y) : x \in A \land y \in B\}$. Para los siguientes conjuntos, $A = \{1,3\}$, $B = \{w,u,1\}$, $C = \{\emptyset,1\}$, $D = \emptyset$ y $U = A \cup B \cup C \cup D$, determinar:
 - (a) $A \times B$
 - (b) $C \times A$
 - (c) $A \times D$
 - (d) $(A B) \times C$
 - (e) $(A-C)\times D$
 - (f) $(B^c \cup C) \times A$
 - (g) $A \times (B \cup C)$
 - (h) $(A \times B) \cup (A \times C)$
 - (i) $(A \times B) \cap (A \times C)$
 - (j) $(A \times B) (A \times C)$
 - (k) $(A \cap C) \times (D \cup B)$.
- 12. Para los siguientes conjuntos, hallar y representar en el plano $A \times B$:
 - a) $A = \{1, 2, 3\}, B = \{-1, 5\}.$
 - b) A = [0, 1], B = [-1, 1].
 - c) A = [0, 4), B = (-5, 2]

-----Ejercicios de Repaso-----

- 13. Sean $E = \{2, 3, \{3\}\}$, $A = \{x : x \text{ natural} \land 0 < x < 5\}$ y siendo $U = \{0, 1, 2, 3, 4, 5, \{3\}\}$ el universo respecto del cual se toma el complemento. Hallar:
 - $a) E \cap A^c$
 - b) $A \cap E^c$.
 - c) Un conjunto H tal que $H \subseteq A$
 - d) Un conjunto W tal que $E \subseteq W$.
- 14. Sea $A = \{2, \{\emptyset\}, \{x\}\}.$
 - a) Hallar P(A).
 - b) Decir si son V o F las siguientes afirmaciones
 - 1) $\{x\} \subset A$,
 - $2) \emptyset \in P(A),$

- 3) $\{\emptyset\} \subset A$.
- 15. Determinar si la siguiente afirmación es V o F. Sea A un conjunto y $B \subset P(A)$. Si $X \in B$ entonces $X \cap A = X$.
- 16. Sean A y B conjuntos. Demostrar que: Si $A \subseteq B$ entonces $(A \cup B) (A \cap B) = B A$.
- 17. Sean A y B subconjuntos de un universo U. Probar: $A^c \subset B$ si y sólo si $A \cup B = U$.
- 18. Sean A, B, C conjuntos y U el universo sobre el que se toma el complemento.
 - a) Probar que $A (B \cup C) = (A B) \cap (A C)$.
 - b) Probar $A \cup (B \cap (C D)) = (A \cup B) \cap (A \cup C) \cap (A \cup D^c)$