The Jordan structure of periodic loop models

Alexi Morin-Duchesne

Centre de Recherches Mathématiques, Université de Montréal

ANZAMP Meeting, Lorne, December 3, 2012

Joint work with Yvan Saint-Aubin

The periodic Temperley-Lieb algebra $TLP_N(\alpha, \beta)$

A connectivity is a set of non-intersecting curves connecting 2N nodes, N on the top and N on the bottom of a periodic strip.

The product between connectivities is given by

 $TLP_N(\alpha, \beta)$ is the vector space generated by connectivities and endowed with this product.

The Temperley-Lieb algebra can be generated by

Any connectivity is obtained by a multiplication of some generators.

The Temperley-Lieb algebra can be generated by

Curves can wind around the cylinder indefinitely, so $TLP_N(\alpha, \beta)$ is infinite dimensional!

$$e_0e_1e_2e_3e_0 =$$

$$\begin{array}{ll} e_i^2 = \beta e_i & \Omega e_i \Omega^{-1} = e_{i-1}, \\ e_i e_{i\pm 1} e_i = e_i & e_{N-1} e_{N-2} ... e_2 e_1 = \Omega^2 e_1 \\ e_i e_j = e_j e_i & (|i-j| > 1) & e_1 e_2 ... e_{N-2} e_{N-1} = \Omega^{-2} e_{N-1} \\ e_N = e_0 & E \Omega^{\pm 1} E = \alpha E \\ \Omega \Omega^{-1} = \Omega^{-1} \Omega = id & (\text{where } E = e_0 e_2 e_4 ... e_{N-2}) \end{array}$$

$$e_{i}^{2} = \beta e_{i} \qquad \Omega e_{i} \Omega^{-1} = e_{i-1},$$

$$e_{i}e_{i\pm 1}e_{i} = e_{i} \qquad e_{N-1}e_{N-2}...e_{2}e_{1} = \Omega^{2}e_{1}$$

$$e_{i}e_{j} = e_{j}e_{i} \quad (|i-j| > 1) \qquad e_{1}e_{2}...e_{N-2}e_{N-1} = \Omega^{-2}e_{N-1}$$

$$e_{N} = e_{0} \qquad E\Omega^{\pm 1}E = \alpha E$$

$$\Omega \Omega^{-1} = \Omega^{-1}\Omega = id \qquad (\text{where } E = e_{0}e_{2}e_{4}...e_{N-2})$$

$$(e_{2})^{2} = \beta e_{2}$$

$$\begin{array}{ll} e_i^2 = \beta e_i & \Omega e_i \Omega^{-1} = e_{i-1}, \\ e_i e_{i\pm 1} e_i = e_i & e_{N-1} e_{N-2} ... e_2 e_1 = \Omega^2 e_1 \\ e_i e_j = e_j e_i & (|i-j| > 1) & e_1 e_2 ... e_{N-2} e_{N-1} = \Omega^{-2} e_{N-1} \\ e_N = e_0 & E \Omega^{\pm 1} E = \alpha E \\ \Omega \Omega^{-1} = \Omega^{-1} \Omega = id & (\text{where } E = e_0 e_2 e_4 ... e_{N-2}) \end{array}$$

$$\begin{array}{ll} e_i^2 = \beta e_i & \Omega e_i \Omega^{-1} = e_{i-1}, \\ e_i e_{i\pm 1} e_i = e_i & e_{N-1} e_{N-2} ... e_2 e_1 = \Omega^2 e_1 \\ e_i e_j = e_j e_i & (|i-j| > 1) & e_1 e_2 ... e_{N-2} e_{N-1} = \Omega^{-2} e_{N-1} \\ e_N = e_0 & E \Omega^{\pm 1} E = \alpha E \\ \Omega \Omega^{-1} = \Omega^{-1} \Omega = id & (\text{where } E = e_0 e_2 e_4 ... e_{N-2}) \end{array}$$

$$e_3e_1 =$$
 $= e_1e_3$

$$\begin{aligned} e_i^2 &= \beta e_i & \Omega e_i \Omega^{-1} &= e_{i-1}, \\ e_i e_{i\pm 1} e_i &= e_i & e_{N-1} e_{N-2} ... e_2 e_1 &= \Omega^2 e_1 \\ e_i e_j &= e_j e_i & (|i-j| > 1) & e_1 e_2 ... e_{N-2} e_{N-1} &= \Omega^{-2} e_{N-1} \\ e_N &= e_0 & E \Omega^{\pm 1} E &= \alpha E \\ \Omega \Omega^{-1} &= \Omega^{-1} \Omega &= id & (\text{where } E = e_0 e_2 e_4 ... e_{N-2}) \end{aligned}$$

$$\Omega e_2 \Omega^{-1} =$$

$$\begin{array}{ll} e_i^2 = \beta e_i & \Omega e_i \Omega^{-1} = e_{i-1}, \\ e_i e_{i\pm 1} e_i = e_i & e_{N-1} e_{N-2} ... e_2 e_1 = \Omega^2 e_1 \\ e_i e_j = e_j e_i & (|i-j| > 1) & e_1 e_2 ... e_{N-2} e_{N-1} = \Omega^{-2} e_{N-1} \\ e_N = e_0 & E \Omega^{\pm 1} E = \alpha E \\ \Omega \Omega^{-1} = \Omega^{-1} \Omega = id & (\text{where } E = e_0 e_2 e_4 ... e_{N-2}) \end{array}$$

$$e_3e_2e_1=$$
 $=$ Ω^2e_1

$$\begin{array}{ll} e_i^2 = \beta e_i & \Omega e_i \Omega^{-1} = e_{i-1}, \\ e_i e_{i\pm 1} e_i = e_i & e_{N-1} e_{N-2} ... e_2 e_1 = \Omega^2 e_1 \\ e_i e_j = e_j e_i & (|i-j| > 1) & e_1 e_2 ... e_{N-2} e_{N-1} = \Omega^{-2} e_{N-1} \\ e_N = e_0 & E \Omega^{\pm 1} E = \alpha E \\ \Omega \Omega^{-1} = \Omega^{-1} \Omega = id & (\text{where } E = e_0 e_2 e_4 ... e_{N-2}) \end{array}$$

$$E\Omega E = \alpha = \alpha E$$

The transfer matrix and Hamiltonian

The transfer matrix and Hamiltonian are elements of $TLP_N(\alpha, \beta)$.

Transfer matrix:

$$T_N(\lambda, \nu) = \begin{array}{c|c} \hline v & v & \hline v \\ \hline \end{array}$$
 where $\begin{array}{c|c} \hline v & v & \hline \end{array}$ + $\sin v$

Hamiltonian:

$$\mathcal{H} = \sum_{i=0}^{N-1} e_i = \frac{1}{2} + \frac{1}{2}$$

Link states and the representation ρ

A representation of $TLP_N(\alpha, \beta)$ is obtained by defining the link states and the action of connectivities on link states:

The action of $TLP_N(\alpha, \beta)$ elements on link states:

Link states and the representation ρ

A representation of $TLP_N(\alpha, \beta)$ is obtained by defining the link states and the action of connectivities on link states:

$$B_4^0 = \{ \bigcap_{i \in \mathcal{A}} , \bigcap_{i \in \mathcal{$$

The action of $TLP_N(\alpha, \beta)$ elements on link states:

Link states and the representation ρ

A representation of $TLP_N(\alpha, \beta)$ is obtained by defining the link states and the action of connectivities on link states:

$$B_4^0 = \{ \bigcap_{i \in \mathcal{A}} , \bigcap_{i \in \mathcal{$$

The action of $TLP_N(\alpha, \beta)$ elements on link states:

$$= v^8$$

$$=$$

v is the twist parameter.

The Hamiltonian

For specific values of α , β and τ \mathcal{H} is non diagonalizable!

Jordan cells for finite $N \rightarrow \text{Logarithmic CFT}$ in the scaling limit

The XXZ Hamiltonian

The generalized Hamiltonian is given by

$$\begin{split} H_{XXZ} &= \frac{1}{2} \sum_{j=0}^{N-1} \left(\frac{v^2 + v^{-2}}{2} (\sigma_j^x \sigma_{j+1}^x + \sigma_j^y \sigma_{j+1}^y) \right. \\ &\left. - \frac{v^2 - v^{-2}}{2i} (\sigma_j^x \sigma_{j+1}^y - \sigma_j^y \sigma_{j+1}^x) + \frac{u^2 + u^{-2}}{2} (\sigma_j^z \sigma_{j+1}^z - id) \right) \end{split}$$

•
$$\sigma_j^a = \underbrace{id_2 \otimes id_2 \otimes \cdots \otimes id_2}_{j-1} \otimes \sigma^a \otimes \underbrace{id_2 \otimes id_2 \otimes \cdots \otimes id_2}_{N-j}.$$

- $\sigma_N^a \equiv \sigma_0^a$.
- It acts on $(\mathbb{C}^2)^{\otimes N}$. For N=4: $|\downarrow\downarrow\downarrow\downarrow\downarrow\rangle$, $|\downarrow\downarrow\downarrow\uparrow\rangle$, $|\downarrow\downarrow\uparrow\downarrow\rangle$, ..., $|\uparrow\uparrow\uparrow\uparrow\uparrow\rangle$.
- The usual case is just $v^2 = 1$ and $\Delta = \frac{u^2 + u^{-2}}{2}$.
- H_{XXZ} is diagonalizable for $u = e^{i\phi}$, $v = e^{i\gamma}$ and $\gamma, \phi \in \mathbb{R}$.

The XXZ representation of TLP_N

It can be rewritten as

$$H_{XXZ} = \sum_{j=0}^{N-1} \bar{e}_j, \quad \text{with}$$

$$\bar{e}_j = \underbrace{id_2 \otimes id_2 \otimes \cdots \otimes id_2}_{j-1} \otimes \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & u^2 & v^2 & 0 \\ 0 & v^{-2} & u^{-2} & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \otimes \underbrace{id_2 \otimes id_2 \otimes \cdots \otimes id_2}_{N-j-1}$$

- H_{XXZ} commutes with $S^z = \frac{1}{2} \sum_{j=0}^{N-1} \sigma_j^z$.
- Let t be the operator that translates all spins one position to the left. The matrices \bar{e}_j , along with $\bar{\Omega} = v^{2S^2}t$ satisfy all the relations of $TLP_N(\alpha, \beta)$, for $\beta = u^2 + u^{-2}$, and $\alpha = v^N + v^{-N}$ for N even.

The XXZ Hamiltonian: an example for N=4

The XXZ Hamiltonian: an example for N=4

Setting $u = e^{i\pi/4}(\beta = 0)$ and $v = 1(\alpha = 2)$, it can be diagonalized:

This is the same as $S\rho(H)S^{-1}$ except for the Jordan block!

The map i_N^d

 i_N^d : link states with n bubbles \rightarrow spin states with n down arrows.

The transformation i_N^d

Proposition 1

 i_N^d is a homomorphism if $\beta = u^2 + u^{-2}$ and $\alpha = v^N + v^{-N}$: $i_N^d(e_iv) = \bar{e}_i i_N^d(v)$ and $i_N^d(\Omega v) = \bar{\Omega} i_N^d(v)$ for any link state v.

Proposition 2

 i_N^d is an isomorphism except if u and v are such that

$$\prod_{k=1}^{(N-d)/2} \left((iu)^{4k+2d} v^{2N} - 1 \right) = 0$$

- $\rho(\mathcal{H})$ and H_{XXZ} have the same spectrum if $\beta = u^2 + u^{-2}$ and $\alpha = v^N + v^{-N}$.
- When i_N^d is an isomorphism, $\rho(\mathcal{H})$ is diagonalizable.

Jordan cells

$$(3,1)$$
 $(3,3)$

$$(4,0)$$
 $(4,2)$ $(4,4)$

$$(5,1)$$
 $(5,3)$ $(5,5)$

$$(7,1)$$
 $(7,3)$ $(7,5)$ $(7,7)$

$$(10,0) \quad (10,2) \quad (10,4) \quad (10,6) \quad (10,8) \quad (10,10)$$

The values of (N, d) where Jordan blocks appear for $\beta = 0$.

Two conditions for Jordan blocks:

- i_N^d is not an isomorphism;
- Raising and lowering operators of $U_q(sl_2)$ commute with H_{XXZ} (if $u^{4P} = 1$ only).

Jordan cells

$$(3,1)$$
 $(3,3)$

$$(4,0)$$
 $(4,2)$ $(4,4)$

$$(5,1)$$
 $(5,3)$ $(5,5)$

$$(6,0)$$
 $(6,2)$ $(6,4)$ $(6,6)$

$$(7,1)$$
 $(7,3)$ $(7,5)$ $(7,7)$

Two conditions for Jordan blocks:

- i_N^d is not an isomorphism;
- Raising and lowering operators of $U_q(sl_2)$ commute with H_{XXZ} (if $u^{4P} = 1$ only).

Thank you for your attention!

$$(9,1)$$
 $(9,3)$ $(9,5)$ $(9,7)$ $(9,9)$

$$(11,1) \quad (11,3) \quad (11,5) \quad (11,7) \quad (11,9) \quad (11,11)$$

The values of (N, d) where Jordan blocks appear for $\beta = 0$.

