Linear Algebra

Table of Contents

CSE	2
2025	2
2024	3
2023	5
2022	6
2021, S-1	8
2021, S-2	9
2020	9
2019	9
2018	10
ECE	11
2025	11
EEE	12
2025	12
Civil	14
2025	14
Mechanical	16
2025	16
Instrumentation Engineering	17
2025	17
Data Science and Artificial Intelligence	18
2025	18

CSE

2025

S1

Q. Consider the given system of linear equations for variables x and y, where k is a real-valued constant. Which of the following option(s) is/are CORRECT?

$$x + ky = 1$$

$$kx + y = -1$$

- a. There is exactly one value of k for which the above system of equations has no solution.
- b. There exist an infinite number of values of k for which the system of equations has no solution.
- c. There exists exactly one value of k for which the system of equations has exactly one solution.
- d. There exists exactly one value of k for which the system of equations has an infinite number of solutions.

ANS: - a, d

Q. Let A be a 2 \times 2 matrix as given.

$$A = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$

What are the eigenvalues of the matrix A^{13} ?

- a. 1, −1
- b. $2\sqrt{2}$, $-2\sqrt{2}$
- c. 4 $\sqrt{2}$, $-4\sqrt{2}$
- d. 64v2, -64v2

ANS: - d

S2

Q. If $A = \begin{pmatrix} 1 & 2 \\ 2 & -1 \end{pmatrix}$ then which ONE of the following is A^8 ?

$$\mathsf{a.} \begin{pmatrix} 25 & 0 \\ 0 & 25 \end{pmatrix}$$

c.
$$\begin{pmatrix} 625 & 0 \\ 0 & 625 \end{pmatrix}$$

$$\mathsf{b.}\begin{pmatrix} 125 & 0 \\ 0 & 125 \end{pmatrix}$$

$$d. \begin{pmatrix} 3125 & 0 \\ 0 & 3125 \end{pmatrix}$$

ANS: - c

Q. Let L, M, and N be non-singular matrices of order 3 satisfying the equations

$$L^2 = L^{-1}, M = L^8,$$
 and $N = L^2$

Which ONE of the following is the value of the determinant of (M - N)?

- a. 0
- b. 1
- c. 2
- d. 3

ANS: - a

Q. Consider a system of linear equations PX = Q where $P \in \mathbb{R}^{3 \times 3}$ and $Q \in \mathbb{R}^{3 \times 1}$. Suppose P has an LU decomposition, P = LU, where

$$L = \begin{bmatrix} 1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{31} & l_{32} & 1 \end{bmatrix} \text{ and } U = \begin{bmatrix} u_{11} & u_{12} & u_{13} \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix}$$

Which of the following statement(s) is/are TRUE?

- a. The system PX = Q can be solved by first solving LY = Q and then UX = Y.
- b. If P is invertible, then both L and U are invertible
- c. If P is singular, then at least one of the diagonal elements of U is zero.
- d. If P is symmetric, then both L and U are symmetric.

ANS: - a, b, c

2024

Q.12 The product of all eigenvalues of the matrix $\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$ is

- (A) -1
- (B) 0
- (C) 1
- (D) 2

Let A be any $n \times m$ matrix, where m > n. Which of the following statements is/are Q.49 TRUE about the system of linear equations $Ax = \mathbf{0}$? (A) There exist at least m-n linearly independent solutions to this system There exist m - n linearly independent vectors such that every solution is a linear (B) combination of these vectors (C) There exists a non-zero solution in which at least m - n variables are 0 There exists a solution in which at least n variables are non-zero (D) **S2** Let A be an $n \times n$ matrix over the set of all real numbers \mathbb{R} . Let B be a matrix Q.47 obtained from A by swapping two rows. Which of the following statements is/are TRUE? The determinant of B is the negative of the determinant of A(A) (B) If A is invertible, then B is also invertible (C) If A is symmetric, then B is also symmetric (D) If the trace of A is zero, then the trace of B is also zero

2023

Q.18 Let

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 2 & 3 \\ 3 & 4 & 1 & 2 \\ 2 & 3 & 4 & 1 \end{bmatrix}$$

and

$$B = \begin{bmatrix} 3 & 4 & 1 & 2 \\ 4 & 1 & 2 & 3 \\ 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{bmatrix}.$$

Let det(A) and det(B) denote the determinants of the matrices A and B, respectively.

Which one of the options given below is TRUE?

- (A) $\det(A) = \det(B)$
- (B) $\det(B) = -\det(A)$
- (C) $\det(A) = 0$
- (D) $\det(AB) = \det(A) + \det(B)$

Q.30 Let A be the adjacency matrix of the graph with vertices $\{1, 2, 3, 4, 5\}$.

Let λ_1 , λ_2 , λ_3 , λ_4 , and λ_5 be the five eigenvalues of A. Note that these eigenvalues need not be distinct.

The value of $\lambda_1 + \lambda_2 + \lambda_3 + \lambda_4 + \lambda_5 =$

2022

Q.20 Consider the following two statements with respect to the matrices $A_{m \times n}$, $B_{n \times m}$, $C_{n \times n}$ and $D_{n \times n}$.

Statement 1: tr(AB) = tr(BA)

Statement 2: tr(CD) = tr(DC)

where tr() represents the trace of a matrix. Which one of the following holds?

- (A) Statement 1 is correct and Statement 2 is wrong.
- (B) Statement 1 is wrong and Statement 2 is correct.
- (C) Both Statement 1 and Statement 2 are correct.
- (D) Both Statement 1 and Statement 2 are wrong.

Q.37	Consider a simple undirected unweighted graph with at least three vertices. If A is the adjacency matrix of the graph, then the number of 3-cycles in the graph is given by the trace of
(A)	A^3
(B)	A^3 divided by 2
(C)	A^3 divided by 3
(D)	A ³ divided by 6

Q.45 Consider solving the following system of simultaneous equations using LU decomposition.

$$x_1 + x_2 - 2x_3 = 4$$

 $x_1 + 3x_2 - x_3 = 7$
 $2x_1 + x_2 - 5x_3 = 7$

where L and U are denoted as

$$L = \begin{pmatrix} L_{11} & 0 & 0 \\ L_{21} & L_{22} & 0 \\ L_{31} & L_{32} & L_{33} \end{pmatrix}, \quad U = \begin{pmatrix} U_{11} & U_{12} & U_{13} \\ 0 & U_{22} & U_{23} \\ 0 & 0 & U_{33} \end{pmatrix}$$

Which one of the following is the correct combination of values for L_{32} , U_{33} , and x_1 ?

(A)
$$L_{32} = 2$$
, $U_{33} = -\frac{1}{2}$, $x_1 = -1$

(B)
$$L_{32} = 2$$
, $U_{33} = 2$, $x_1 = -1$

(C)
$$L_{32} = -\frac{1}{2}, U_{33} = 2, x_1 = 0$$

(D)
$$L_{32} = -\frac{1}{2}, \ U_{33} = -\frac{1}{2}, \ x_1 = 0$$

Q.53 Which of the following is/are the eigenvector(s) for the matrix given below?

$$\begin{pmatrix}
-9 & -6 & -2 & -4 \\
-8 & -6 & -3 & -1 \\
20 & 15 & 8 & 5 \\
32 & 21 & 7 & 12
\end{pmatrix}$$

 $\begin{pmatrix}
-1 \\
1 \\
0 \\
1
\end{pmatrix}$

 $\begin{pmatrix}
1 \\
0 \\
-1 \\
0
\end{pmatrix}$

 $\begin{pmatrix}
-1 \\
0 \\
2 \\
2
\end{pmatrix}$

 $\begin{pmatrix}
0 \\
1 \\
-3 \\
0
\end{pmatrix}$

2021, S-1

Q.52 Consider the following matrix.

$$\left(\begin{array}{ccccc}
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0
\end{array}\right)$$

The largest eigenvalue of the above matrix is _____

ANS: - 3

2021, S-2

Q.24 Suppose that P is a 4×5 matrix such that every solution of the equation $P_{\mathbf{X}} = \mathbf{0}$ is a scalar multiple of $[2 \ 5 \ 4 \ 3 \ 1]^T$. The rank of P is ______.

ANS: - 4

2020

Q.No. 27 Let A and B be two $n \times n$ matrices over real numbers. Let rank(M) and det(M) denote the rank and determinant of a matrix M, respectively. Consider the following statements.

- I. rank(AB) = rank(A) rank(B)
- II. det(AB) = det(A) det(B)
- III. $\operatorname{rank}(A + B) \leq \operatorname{rank}(A) + \operatorname{rank}(B)$
- IV. $det(A + B) \le det(A) + det(B)$

Which of the above statements are TRUE?

- (A) I and II only
- (B) I and IV only
- (c) II and III only
- (D) III and IV only

ANS: - C

2019

- Q.9 Let X be a square matrix. Consider the following two statements on X.
 - I. X is invertible.
 - II. Determinant of X is non-zero.

Which one of the following is TRUE?

- (A) I implies II; II does not imply I.
- (B) II implies I; I does not imply II.
- (C) I does not imply II; II does not imply I.
- (D) I and II are equivalent statements.

ANS: - D

Q.44 Consider the following matrix:

$$R = \begin{bmatrix} 1 & 2 & 4 & 8 \\ 1 & 3 & 9 & 27 \\ 1 & 4 & 16 & 64 \\ 1 & 5 & 25 & 125 \end{bmatrix}$$

The absolute value of the product of Eigen values of R is _____.

ANS: - 12

2018

Consider a matrix $A = uv^T$ where $u = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$, $v = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$. Note that v^T denotes the transpose of v. The largest eigenvalue of A is _____.

ANS: - 3

Q.26 Consider a matrix P whose only eigenvectors are the multiples of $\begin{bmatrix} 1 \\ 4 \end{bmatrix}$. Consider the following statements.

- (I) **P** does not have an inverse
- (II) **P** has a repeated eigenvalue
- (III) P cannot be diagonalized

Which one of the following options is correct?

- (A) Only I and III are necessarily true
- (B) Only II is necessarily true
- (C) Only I and II are necessarily true
- (D) Only II and III are necessarily true

ANS: - D

ECE

2025

Q.11 Consider the matrix A below:

$$A = \left[\begin{array}{rrrr} 2 & 3 & 4 & 5 \\ 0 & 6 & 7 & 8 \\ 0 & 0 & \alpha & \beta \\ 0 & 0 & 0 & \gamma \end{array} \right]$$

For which of the following combinations of α , β , and γ , is the rank of A at least three?

- (i) $\alpha = 0$ and $\beta = \gamma \neq 0$. (ii) $\alpha = \beta = \gamma = 0$.
- (iii) $\beta = \gamma = 0$ and $\alpha \neq 0$.
- (iv) $\alpha = \beta = \gamma \neq 0$.
- (A) Only (i), (iii), and (iv)
- (B) Only (iv)
- (C) Only (ii)
- (D) Only (i) and (iii)

ANS: - A

<u>EEE</u>

2025

Q.12	Let v_1 and v_2 be the two eigenvectors corresponding to distinct eigenvalues of a
	3 × 3 real symmetric matrix. Which one of the following statements is true?

$$(A) v_1^T v_2 \neq 0$$

(B)
$$v_1^T v_2 = 0$$

(C)
$$v_1 + v_2 = 0$$

(D)
$$v_1 - v_2 = 0$$

ANS: - B

Q.13 Let
$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 1 \\ -1 & -1 & -1 \\ 0 & 1 & -1 \end{bmatrix}$$
, and $\mathbf{b} = \begin{bmatrix} 1/3 \\ -1/3 \\ 0 \end{bmatrix}$. Then, the system of linear equations $\mathbf{A}\mathbf{x} = \mathbf{b}$ has

- (A) a unique solution.
- (B) infinitely many solutions.
- (C) a finite number of solutions.
- (D) no solution.

ANS: - B

Q.14	Let $P = \begin{bmatrix} 2 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ and let I be the identity matrix. Then P^2 is equal to
(A)	2P-I
(B)	PATE 202
(C)	IGAL 4U45
(D)	P+I

ANS: - A

<u>Civil</u>

2025

CE 1

- Q.11 Suppose λ is an eigenvalue of matrix A and x is the corresponding eigenvector. Let x also be an eigenvector of the matrix B = A 2I, where I is the identity matrix. Then, the eigenvalue of B corresponding to the eigenvector x is equal to
- (A) λ
- (B) $\lambda + 2$
- (C) 2λ
- (D) $\lambda 2$

ANS: - D

- Q.12 Let $A = \begin{bmatrix} 1 & 1 \\ 1 & 3 \\ -2 & -3 \end{bmatrix}$ and $b = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$. For Ax = b to be solvable, which one of the following options is the *correct* condition on b_1 , b_2 , and b_3 :
- (A) $b_1 + b_2 + b_3 = 1$
- (B) $3b_1 + b_2 + 2b_3 = 0$
- (C) $b_1 + 3b_2 + b_3 = 2$
- (D) $b_1 + b_2 + b_3 = 2$

ANS: - B

CE – 2

Q.11 For the matrix [A] given below, the transpose is _____.

[A] =	[2	3	4]
[A] =	1	4	4] 5 2]
	4	3	2

(A)
$$\begin{bmatrix} 2 & 1 & 4 \\ 3 & 4 & 3 \\ 4 & 5 & 2 \end{bmatrix}$$

(B)
$$\begin{bmatrix} 4 & 3 & 2 \\ 5 & 4 & 1 \\ 2 & 3 & 4 \end{bmatrix}$$

(C)
$$\begin{bmatrix} 4 & 2 & 3 \\ 5 & 1 & 4 \\ 2 & 4 & 3 \end{bmatrix}$$

	[2 1 4	3	4]
(D)	1	4	5
	4	3	2

ANS: - A

Q.45 Pick the **CORREC**T eigen value(s) of the matrix [A] from the following choices.

Roorkee

$$[A] = \begin{bmatrix} 6 & 8 \\ 4 & 2 \end{bmatrix}$$

(A) 10

(B) 4

(C) -2

(D) -10

ANS: - A, C

Mechanical

2025

Q.11	Let A and B be real symmetric matrices of same size. Which one of the following options is correct?
(A)	$\mathbf{A}^{\mathrm{T}} = \mathbf{A}^{-1}$
(B)	AR = RA

$$(\mathbf{C}) \qquad (\mathbf{A}\mathbf{B})^{\mathrm{T}} = \mathbf{B}^{\mathrm{T}}\mathbf{A}^{\mathrm{T}}$$

$$\mathbf{(D)} \qquad \mathbf{A} = \mathbf{A}^{-1}$$

ANS: - C

Instrumentation Engineering

2025

Q.11 A $2n \times 2n$ matrix $A = [a_{ij}]$ has its elements as

$$a_{ij} = \begin{cases} \beta & \text{if } (i+j) \text{ is odd,} \\ -\beta & \text{if } (i+j) \text{ is even,} \end{cases}$$

where n is any integer greater than 2 and β is any non-zero real number. The rank of A is

- (A) 1
- (B) 2
- (C) n
- (D) 2n

ANS: - A

Q.32 If one of the eigenvectors of the matrix $A = \begin{bmatrix} -1 & -1 \\ x & -4 \end{bmatrix}$ is along the direction of $\begin{bmatrix} \alpha \\ 2\alpha \end{bmatrix}$, where α is any non-zero real number, then the value of x is _____ (in integer).

ANS: - 2

Data Science and Artificial Intelligence

2025

- Q. 13 The sum of the elements in each row of $A \in \mathbb{R}^{n \times n}$ is 1. If $B = A^3 2A^2 + A$, which one of the following statements is correct (for $x \in \mathbb{R}^n$)?
 - (A) The equation Bx = 0 has no solution
 - (B) The equation Bx = 0 has exactly two solutions
 - (C) The equation Bx = 0 has infinitely many solutions
 - (D) The equation Bx = 0 has a unique solution

ANS: - C

- Q. 25 Which of the following statements is/are correct?
 - (A) \mathbb{R}^n has a unique set of orthonormal basis vectors
 - (B) \mathbb{R}^n does not have a unique set of orthonormal basis vectors
 - (C) Linearly independent vectors in \mathbb{R}^n are orthonormal
 - (D) Orthonormal vectors \mathbb{R}^n are linearly independent

ANS: - B, D

- Q. 28 Let $A = I_n + xx^{\top}$, where I_n is the $n \times n$ identity matrix and $x \in \mathbb{R}^n$, $x^{\top}x = 1$. Which of the following options is/are correct?
 - (A) Rank of A is n
 - (B) A is invertible
 - (C) 0 is an eigenvalue of A
 - (D) A^{-1} has a negative eigenvalue

- Q. 37 Let $A \in \mathbb{R}^{n \times n}$ be such that $A^3 = A$. Which one of the following statements is ALWAYS correct?
 - (A) A is invertible
 - (B) Determinant of A is 0
 - (C) The sum of the diagonal elements of A is 1
 - (D) A and A^2 have the same rank

ANS: - D

- Q. 38 Let $\{x_1, x_2, \dots, x_n\}$ be a set of linearly independent vectors in \mathbb{R}^n . Let the (i, j)-th element of matrix $A \in \mathbb{R}^{n \times n}$ be given by $A_{ij} = x_i^{\mathsf{T}} x_j$, $1 \le i, j \le n$. Which one of the following statements is correct?
 - (A) A is invertible
 - (B) 0 is a singular value of A
 - (C) Determinant of A is 0
 - (D) $z^{\mathsf{T}}Az = 0$ for some non-zero $z \in \mathbb{R}^n$

ANS: - A

- Q. 50 Let x_1, x_2, x_3, x_4, x_5 be a system of orthonormal vectors in \mathbb{R}^{10} . Consider the matrix $A = x_1 x_1^\top + \ldots + x_5 x_5^\top$. Which of the following statements is/are correct?
 - (A) Singular values of A are also its eigenvalues
 - (B) Singular values of A are either 0 or 1
 - (C) Determinant of A is 1
 - (D) A is invertible

ANS: - A, B

- Q. 52 An $n \times n$ matrix A with real entries satisfies the property: $||Ax||^2 = ||x||^2$, for all $x \in \mathbb{R}^n$, where $||\cdot||$ denotes the Euclidean norm. Which of the following statements is/are ALWAYS correct?
 - (A) A must be orthogonal
 - (B) A = I, where I denotes the identity matrix, is the only solution
 - (C) The eigenvalues of A are either +1 or -1
 - (D) A has full rank

ANS: - A, D