

Sintesi della cella elementare HA

La somma fra a_0 e b_0 (qui per semplicità chiamati solo a e b) non è influenzata da alcun riporto precedente (è la prima somma della sequenza) e può generare un riporto c:

b a	S C
0 0	0 0
0 1	1 0
1 0	1 0
1 1	0 1

$$s = a \oplus b$$
$$c = ab$$

Sommatore Parallelo a *n* bit

Specifica: un sommatore binario realizza la somma aritmetica fra due stringhe di n bit $A = a_{n-1}...a_0$ e $B = b_{n-1}...b_0$, viste come numeri naturali.

Idea: effettuare la somma come siamo abituati

- somma i bit meno significativi a₀ e b₀;
- questo genera il bit meno significativo del risultato s_0 ed un eventuale riporto c_1 ;
- procedi a sommare a_1 , b_1 e c_1 ; questo genera s_1 e c_2 ;
- · ...e così via fino ai bit più significativi;
- se l'ultima somma genera un riporto c, allora c'è overflow.

Sintesi della cella elementare FA

Indicando con c il riporto (carry) della somma fra a_{i-1} e b_{i-1} e con c 'quello della somma fra a_i e b_i , avremo la seguente tabella di verità per il modulo che esegue la somma fra a_i e b_i (qui per semplicità chiamati solo a e b):

С	b	а	s c'
0	0	0	0 0
0	0	1	1 0
0	1	0	1 0
0	1	1	0 1
1	0	0	1 0
1	0	1	0 1
1	1	0	0 1
1	1	1	1 1

$$s = (a \oplus b)\overline{c} + \overline{(a \oplus b)}c = (a \oplus b) \oplus c$$
$$c' = ac + bc + ab$$

Sommatore uniforme

Avere due circuiti (HA e FA) rende il progetto più complesso.

Per semplificare, si può avere una versione "uniforme" del sommatore in cui si usa solo FA: basta impostare il riporto entrante nella prima cella addizionatrice (quella per i bit meno significativi) a 0.

N.B.: ho qualche porta in più, ma devo produrre un solo tipo di circuito!!

Opposto e Sottrazione

Opposto

Ricordando che l'opposto di ${\bf B}=b_{n-1}...b_0$ è $\overline{b}_{n-1}...\overline{b}_0+1$, abbiamo che il circuito per calcolare l'opposto è:

$$\begin{array}{c|c} \mathbf{B} & \longrightarrow & \longrightarrow & -\mathbf{b} \\ \hline 0...01 & \longrightarrow & -\mathbf{b} \end{array}$$

Sottrazione

Per fare A - B, basta fare A + (-B) e quindi il circuito per la sottrazione è:

Addizionatore per numeri interi

Come abbiamo visto, per interi rappresentati in Ca2 la somma si effettua esattamente nello stesso modo; quindi, il circuito è lo stesso!

L'unica cosa che cambia è la condizione di overflow:

- Per numeri naturali, basta vedere l'ultimo bit di riporto $(1 \rightarrow \text{overflow})$
- · Per numeri interi, sia ha overflow se
 - gli operandi hanno lo stesso segno e il risultato ha segno diverso
 - si ottiene la sequenza "non ammessa" 10...0

Quindi, l'EB associata all'overflow per interi è

$$a_{n-1}b_{n-1}\overline{s}_{n-1} + \overline{a}_{n-1}\overline{b}_{n-1}s_{n-1} + s_{n-1}\overline{s}_{n-2}...\overline{s}_0$$

Comparatore aritmetico

Problema: date due stringhe binarie di n bit $A \in B$ rappresentanti due numeri naturali, dire se A > B, A = B o A < B. Vogliamo un circuito del tipo

tale che:

 $-c_{>} = 1$ s - $c_{<} = 1$ s

A D

 $\mathbf{A} > \mathbf{B}$ $\mathbf{A} < \mathbf{B}$

A = B

OSS.: $c_{<}$ = NOR($c_{>}$, $c_{=}$); pertanto basterà trovare i circuiti per calcolare $c_{>}$ e $c_{=}$, da cui

