Predict & Test – Time and Space Complexity Copy

Key Points to Emphasize

- **O(1)** → constant, fast, memory minimal
- **O(n)** → grows linearly with input
- O(log n) → halves each step, very efficient for large datasets
- O(n²) → nested tasks, slow, resource-intensive

Learner Kit: Predict & Test – Time and Space Complexity (No Code)

Step 1: Scenarios

Instructions: Read each scenario, discuss in groups, and write your predictions.

Scenario	Predicted Time Complexity	Predicted Space Complexity	
1. Checking one locker in a school of 500 students	0(1)	0(1)	Only one of stude
2. Calling each student in a roll call of 500 students	0(n)	0(1)	Each stu the num
3. Guessing a number between 1–100 by halving each time	0(log n)	0(1)	Each gue
4. Pairing every student with every other student for a group project	O(n²)	O(n²)	Each stu (n-1)/2 c storing a

Step 2: Group Activity

Instructions:

- 1. Simulate the tasks physically or conceptually. Examples:
 - Check one locker vs check all lockers.
 - Call students one by one.
 - Guess a number by halving options.
 - Pair students/cards with everyone else.
- 2. Record **observed time taken** and **resources used** (e.g., number of cards, notes).
- 3. Compare observations with predictions.