WHAT IS CLAIMED IS:

1	1. An apparatus for the treatment of body conduits, the apparatus	
2	comprising:	
3	an elongated body configured to be inserted into a body conduit	t, the
4	elongated body having a proximal end and a distal end; and	
5	a source of energy for emitting energy from the elongated body	in
6	an intensity which, when applied to walls of the body conduit causes a change	in
7	smooth muscle tissue which prevents the smooth muscle tissue from replicating	g.
1	2. The apparatus of Claim 1, wherein the source of energy is a so	urce
2	of light energy and the apparatus further comprises:	
3	a light transmitting fiber extending from the proximal end to the	e
4	distal end of the elongated body for transmitting light into the body conduit;	
5	a connector on the distal end of the elongated body for connecti	ing
6	the elongated body to the source of light energy; and	
7	a light directing member positioned at a distal end of the elonga	ited
8	device for diffusing or redirecting the light from the light transmitting fiber in	a
9	substantially radial pattern from the distal end of the elongated device.	
1	3. The apparatus of Claim 2, wherein the source of light delivers	light
2	having a wavelength of about 240 nm to about 280 nm.	
1	4. The apparatus of Claim 2, wherein the source of light delivers	light
2	in the red visible range.	
1	5. The apparatus of Claim 1, wherein the source of energy deliver	:s
2	energy having a wavelength and intensity which, when applied to the walls of	the
3	body conduit crosslinks DNA in smooth muscle cells surrounding the conduit	t and

prevents the smooth muscle cells from replicating.

1	6.	The apparatus of Claim 2, wherein the light directing member
2	includes a su	ibstantially conical reflective surface which redirects light from the
3	light transmi	tting fiber in a direction away from a longitudinal axis of the fiber.
1	7.	The apparatus of Claim 6, wherein the reflective surface is concave
2	in cross sect	ion.
1	8.	The apparatus of Claim 6, wherein the reflective surface is
2	substantially	planar in cross section.
1	9.	The apparatus of Claim 6, wherein the reflective surface is
2	substantially	parabolic in cross section.
1	10.	The apparatus of Claim 2, wherein the light directing member
2	includes a di	ffusing lens which directs light from the transmitting fiber in a
3	direction aw	ay from a longitudinal axis of the fiber.
1	11.	The apparatus of Claim 2, wherein the light transmitting fiber is
2	surrounded l	by a sheath for delivery to the airway.
1	12.	The apparatus of Claim 11, wherein the sheath includes a distal end
2	section whic	h is transparent to the energy emitted by the light source.
1	13.	The apparatus of Claim 11, wherein the sheath includes a distal
2	section havin	ng a plurality of windows which are transparent to the energy emitted
3	by the light	source to allow the light which has been redirected by the light
4	directing me	mber to exit the sheath.

1	14. The apparatus of Claim 1, wherein the source of energy is a
2	radioactive pellet positioned at the distal end of the elongated body.
1	15. The apparatus of Claim 1, wherein the source of energy is a
2	radioactive pellet which is movable longitudinally within the elongated body to
3	treat the body conduit.
1	16. An apparatus for the treatment of walls of airways in a patient's
2	lungs, the apparatus comprising:
3	an elongated body configured to be inserted into the airways of a
4	patient's lungs, the device having a proximal end and a distal end;
5	a source of energy for emitting energy from the distal end of the
6	elongated body in an intensity which, when applied to the walls of the airway
7	causes a change in smooth muscle tissue which prevents the smooth muscle tissue
8	from replicating.
1	17. The apparatus of Claim 16, wherein the source of energy is a light
2	source and the apparatus further comprises:
3	a light transmitting fiber extending from the proximal end to the
4	distal end of the elongated body for transmitting light from the light source into the
5	patient's lungs;
6	a connector on the distal end of the elongated body for connecting
7	the elongated body to the source of light; and
8	a light directing member positioned at a distal end of the elongated
9	device for diffusing or redirecting the light from the light transmitting fiber in a
10	substantially radial pattern from the distal end of the elongated device.

I	18. The apparatus of Claim 16, wherein the source of energy delivers
2	energy having a wavelength and intensity which, when applied to the walls of the
3	airway crosslinks DNA in smooth muscle cells surrounding the airway and
4	prevents the smooth muscle cells from replicating.
1	19. The apparatus of Claim 16, wherein the source of energy delivers
2	energy having a wavelength and intensity which, when applied to the walls of the
3	airway crosslinks DNA in mucus gland cells surrounding the airway and prevents
4	the mucus gland cells from replicating.
1	20. An apparatus for the treatment of walls of an esophagus, the
2	apparatus comprising:
3	an elongated body configured to be inserted into the esophagus, the
4	elongate body having a proximal end and a distal end; and
5	a source of energy for emitting energy from the elongated body in
6	an intensity which, when applied to the walls of the esophagus causes a change in
7	smooth muscle tissue which prevents the smooth muscle tissue from replicating.
1	21. The apparatus according to Claim 20, wherein the source of energy
2	is a light source and further comprising:
3	a light transmitting fiber extending from the proximal end to the
4	distal end of the elongated body for transmitting light into the esophagus;
5	a connector on the distal end of the elongated body for connecting
6	the elongated body to the source of light; and
7	a light directing member positioned at a distal end of the elongated
8	device for diffusing or redirecting the light from the light transmitting fiber in a
9	substantially radial pattern from the distal end of the elongated device.

1	The apparatus of Claim 21, wherein the light source delivers light
2	having a wavelength of about 240 nm to about 280 nm, or delivers light in the red
3	visible range.
1	23. The apparatus of Claim 20, wherein the source of energy is a
2	radioactive pellet positioned within the elongated body.
1	24. An apparatus for treatment of walls of a ureter or urethra, the
2	apparatus comprising:
3	an elongated body configured to be inserted into the ureter or
4	urethra, the device having a proximal end and a distal end; and
7	a source of energy for emitting energy from the elongated body in
8	an intensity which, when applied to the walls of the ureter or urethra causes a
9	change in smooth muscle tissue which prevents the smooth muscle tissue from
10	replicating.
1	25. The apparatus of Claim 24, wherein the source of energy is a light
2	source and further comprising:
3	a light transmitting fiber extending from the proximal end to the
4	distal end of the elongated body for transmitting light into the ureter or urethra;
5	a connector on the distal end of the elongated body for connecting
6	the elongated body to the source of light; and
7	a light directing member positioned at a distal end of the elongated
8	device for diffusing or redirecting the light from the light transmitting fiber in a
9	substantially radial pattern from the distal end of the elongated device.
1	26. The apparatus of Claim 25, wherein the light source delivers light
2	having a wavelength of about 240 nm to about 280 nm, or delivers light in the red
3	visible range.

1	27. The apparatus of Claim 24, wherein the source of energy is a
2	radioactive pellet positioned within the elongated body.
1	A method of treating asthma to control bronchospasms, the metho
2	comprising:
3	irradiating the walls of an airway in a lung in a wavelength and
4	intensity which causes a change in smooth muscle tissue cells and prevents the
5	smooth muscle tissue cells from replicating; and
6	controlling bronchospasms by reduction or elimination of smooth
7	muscle tisque.
1	29. The method of Claim 28, wherein the irradiation of the walls is
2	performed by emitting a light energy having a wavelength of about 240 nm to
3	about 280 nm.
1	The method of Claim 28, wherein the irradiation of the walls is
2	performed by emitting light energy having a wavelength in the red visible range.
1	31. The method of Claim 28, wherein the irradiation of the walls is
2	performed by exposing the walls to radiation emitted by a radioactive pellet.
1 .	The method of Claim 28, wherein the irradiation of the walls is
2	performed by moving an energy delivery device along the airway.
1	A method of treating respiratory conditions to control mucus
2	plugging, the method comprising:
	•

3	\ irradiating the walls of an airway in a lung in a wavelength and
4	intensity which causes a change in mucus gland cells and prevents the mucus gland
5	cells from replicating; and
6	preventing mucus plugging by reduction or elimination of mucus
7	glands.
	45 ·
1	The method of Claim 33, wherein the irradiation of the walls is
2	performed by emitting a light energy having a wavelength of about 240 nm to
3	about 280 nm.
1	35. The method of Claim 33, wherein the irradiation of the walls is
2	performed by emitting light energy having a wavelength in the red visible range.
1	The method of Claim 33, wherein the irradiation of the walls is
2	performed by exposing the walls to radiation emitted by a radioactive pellet.
1	37. The method of Claim 33, wherein the irradiation of the walls is
2	performed by moving an energy delivery device along the airway.
1	A method of treating an esophagus to reduce achalasia or
2	esophageal spasm, the method comprising:
3	irradiating the walls of an esophagus in a wavelength and intensity
4	which causes a change in smooth muscle cells and prevents the smooth muscle
5	cells from replicating; and
6	preventing spasms of the smooth muscle tissue by elimination or
7	reduction of the smooth muscle tissue.
	1

	. 31\
1	The method of Claim 38, wherein the irradiation of the walls is
2	performed by emitting a light energy having a wavelength of about 240 nm to
3	about 280 nm.
1	The method of Claim 38, wherein the irradiation of the walls is
2	performed by emitting light energy having a wavelength in the red visible range.
1	41. The method of Claim 38, wherein the irradiation of the walls is
2	performed by exposing the walls to radiation emitted by a radioactive pellet.
1	42. The method of Claim 38, wherein the irradiation of the walls is
2	performed by moving an energy delivery device along the esophagus.
1	A method of treating an ureter or an urethra to control spasms, the
2	method comprising:
3	irradiating the walls of an ureter or an urethra in a wavelength and
4	intensity which causes a change in smooth muscle cells and prevents the smooth
5	muscle cells from replicating; and
6	preventing spasms of smooth muscle tissue by elimination or
7	reduction of the smooth muscle tissue.
1	44. The method of Claim 43, wherein the irradiation of the walls is
2	performed by emitting a light energy having a wavelength of about 240 nm to
3	about 280 nm.
1	45. The method of Claim 43, wherein the irradiation of the walls is
2	performed by emitting light energy having a wavelength in the red visible range.

1	The method of Claim 43, wherein the irradiation of the walls is
2	performed by exposing the walls to radiation emitted by a radioactive pellet.
1	47. The method of Claim 43, wherein the irradiation of the walls is
2	performed by moving an energy delivery device along the ureter or urethra.
1	48. A method of training a person to treat a body conduit by irradiation
2	comprising demonstrating or instructing the steps of:
3	irradiating walls of a body conduit with energy in wavelength and
4	intensity which causes a change in smooth muscle tissue cells and prevents the
5	smooth muscle tissue cells from replicating; and
6	controlling spasms of smooth muscle tissue by elimination or
7	reduction in the smooth muscle tissue surrounding the body conduit.
1	49. The method of Claim 48, wherein the body conduit is selected from
2	a group consisting of an airway in a lung, an esophagus, a ureter, and a urethra.
۱۱.	AT AT