Algorithm Design and Analysis (Fall 2022) Final Exam (B)

- 1. (25 points) Given a set of n points x_1, \ldots, x_n in \mathbb{R}^1 , the objective is to use a minimum number of unit intervals (closed intervals with length 1, [t, t+1]) to cover all the n points. A point x is covered by the interval [t, t+1] if $x \in [t, t+1]$. Design a polynomial time algorithm for deciding the minimum number of unit intervals needed to cover all the n points. Prove the correctness of your algorithm, and analyze its time complexity.
- 2. (25 points) Given an undirected edge-weighted graph G = (V, E), two vertices $s, t \in V$, and $\theta \in \mathbb{Z}^+$, design a polynomial time algorithm to decide if G contains a minimum spanning tree such that s and t are connected by the tree edges with weights at most θ . Prove the correctness of your algorithm, and analyze its time complexity. You can assume the edge weights are positive integers.
- 3. (25 points) Given a directed edge-weighted graph G = (V, E) (where the weights are integers and can be negative), two vertices s and t, and an integer k, the problem is to decide if there is a simple s-t path (an s-t path that does not visit a vertex more than once) with length exactly k.
 - (a) (10 points) Prove that this problem is NP-complete.
 - (b) (15 points) Suppose G is known to be a directed acyclic graph. Is this problem in P or still NP-complete? Prove your answer.
- 4. (25 points) Given a ground set $U = \{1, ..., n\}$ and a collection of k subsets $\mathcal{A} = \{A_1, ..., A_k\}$, a system of distinct representatives of \mathcal{A} is a "representative" collection T of distinct elements from the sets in \mathcal{A} . Specifically, we have |T| = k, and the k distinct elements in T can be ordered as $u_1, ..., u_k$ such that $u_i \in A_i$ for each i = 1, ..., k. For example, $\{A_1 = \{2, 8\}, A_2 = \{8\}, A_3 = \{4, 5\}, A_4 = \{2, 4, 8\}\}$ has a system of distinct representatives $\{2, 4, 5, 8\}$ where $2 \in A_1, 4 \in A_4, 5 \in A_3, 8 \in A_2$, while $\{A_1 = \{2, 8\}, A_2 = \{8\}, A_3 = \{4, 8\}, A_4 = \{2, 4, 8\}\}$ does not have a system of distinct representatives.
 - (a) (10 points) Design a polynomial time algorithm to decide if \mathcal{A} has a system of distinct representatives.
 - (b) (15 points) Given a ground set $U = \{1, ..., n\}$ and two collections of k subsets $\mathcal{A} = \{A_1, ..., A_k\}$ and $\mathcal{B} = \{B_1, ..., B_k\}$, a common system of distinct representatives is a collection T of k elements that is a system of distinct representatives of both \mathcal{A} and \mathcal{B} . Design a polynomial time algorithm to decide if \mathcal{A} and \mathcal{B} have a common system of distinct representatives.

For each part, prove the correctness of your algorithm, and analyze its time complexity.