Márcio Antônio de Andrade Bortoloti

Departamento de Ciências Exatas e Tecnológicas - DCET Universidade Estadual do Sudoeste da Bahia - UESB

> Cálculo Numérico Curso de Matemática

Considere uma função $f:[a,b]\to\mathbb{R}$ contínua. Vamos calcular

$$\int_{a}^{b} f(x) \ dx.$$

- A Quadratura de Gauss escolhe os pontos para cálculo de uma forma ótima, em vez de igualmente espaçada.
- Os pontos x_1, x_2, \dots, x_n no intervalo [a, b] e os coeficientes c_1, c_2, \dots, c_n são escolhidos para minimizar o erro esperado na aproximação

$$\int_{a}^{b} f(x) dx \approx \sum_{i=1}^{n} c_{i} f(x_{i}).$$

- Os coeficientes c_1, c_2, \dots, c_n são arbitrários e os pontos x_1, x_2, \dots, x_n estão no intervalos [a, b], fornecendo 2n parâmetros a determinar.
- Note que a classe de polinômios de grau menor que ou igual a 2n-1 contém 2n parâmetros.
- Essa é a maior classe de polinômios para o qual é razoável esperar que a fórmula será exata.

3 / 12

Iniciando ...:

Suponha que desejamos determinar c_1, c_2, x_1 e x_2 de modo que a fórmula de integração

$$\int_{-1}^{1} f(x) dx \approx c_1 f(x_1) + c_2 f(x_2)$$

forneça o resultado exato sempre que f(x) for um polinômio de grau menor que ou igual a 3 = 2(2) - 1, ou seja, quando

$$f(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3.$$

$$\int_{-1}^{1} (a_0 + a_1 x + a_2 x^2 + a_3 x^3) dx = a_0 \int_{-1}^{1} dx + a_1 \int_{-1}^{1} x dx + a_2 \int_{-1}^{1} x^2 dx + a_3 \int_{-1}^{1} x^3 dx$$

Vamos então determinar $c_1, c_2, x_1 \in x_2 \dots$

Para determinar c_1 , c_2 , x_1 e x_2 , façamos

$$(f(x) = 1) \quad c_1 \cdot 1 + c_2 \cdot 1 = \int_{-1}^{1} dx = 2$$

$$(f(x) = x) \quad c_1 \cdot x_1 + c_2 \cdot x_2 = \int_{-1}^{1} x \, dx = 0$$

$$(f(x) = x^2) \quad c_1 \cdot x_1^2 + c_2 \cdot x_2^2 = \int_{-1}^{1} x^2 \, dx = \frac{2}{3}$$

$$(f(x) = x^3) \quad c_1 \cdot x_1^3 + c_2 \cdot x_2^3 = \int_{-1}^{1} x^3 \, dx = 0$$

Resolvendo o sistema acima temos

$$c_1 = 1$$
. $c_2 = 1$, $x_1 = -\frac{\sqrt{3}}{3}$, $x_2 = \frac{\sqrt{3}}{3}$

Assim,

$$\int_{-1}^{1} f(x) \ dx \approx f\left(-\frac{\sqrt{3}}{3}\right) + f\left(\frac{\sqrt{3}}{3}\right)$$

Note que

$$\int_{-1}^{1} x^2 dx = \frac{x^3}{3} \Big]_{-1}^{1} = \frac{2}{3}$$

$$\int_{-1}^{1} x^2 dx = \left(-\frac{\sqrt{3}}{3}\right)^2 + \left(\frac{\sqrt{3}}{3}\right)^2 = \frac{2}{3}$$

Polinômios de Legendre

O conjunto dos Polinômios de Legendre é formado por $\{P_0(x), P_1(x), \cdots, P_n(x), \cdots\}$ com as propriedades:

- Para cada n, $P_n(x)$ é um polinômio mônico de grau n.
- $\int_{-1}^{1} P(x)P_n(x) dx = 0$ sempre que P(x) for um polinômio de grau menor que n.

Os primeiros Polinômios de Legendre são

$$P_0(x) = 1$$
, $P_1(x) = x$, $P_2(x) = x^2 - \frac{1}{3}$, $P_3(x) = x^3 - \frac{3}{5}x$, $P_4(x) = x^4 - \frac{6}{7}x^2 + \frac{3}{35}$

Teorema

Suponha que x_1, x_2, \dots, x_n sejam raízes do n-ésimo polinômio de Legendre $P_n(x)$ e que para todo $i = 1, 2, \dots, n$, os números c_i sejam definidos por

$$c_{i} = \int_{-1}^{1} \prod_{\substack{j=1 \ j \neq i}}^{n} \frac{x - x_{j}}{x_{i} - x_{j}} dx.$$

Se P(x) é qualquer polinômio de grau menor que ou igual a 2n então

$$\int_{-1}^{1} P(x) \ dx = \sum_{i=1}^{n} c_i P(x_i).$$

n	Raízes $r_{n,i}$	Coeficientes $c_{n,i}$
2	0.5773502692	1.0000000000
	-0.5773502692	1.0000000000
3	0.7745966692	0.555555556
	0.0000000000	0.888888889
	-0.7745966692	0.555555556
4	0.8611363116	0.3478548451
	0.3399810436	0.6521451549
	-0.3399810436	0.6521451549
	-0.8611363116	0.3478548451
5	0.9061798459	0.2369268850
	0.5384693101	0.4786286705
	0.0000000000	0.5688888889
	-0.5384693101	0.4786286705
	-0.9061798459	0.2369268850

Exemplo

Obtenha uma aproximação de $\int_{-1}^{1} e^x \cos x \, dx$, com n = 3.

A tabela anterior fornece

$$\int_{-1}^{1} e^{x} \cos x \, dx \approx 0.\overline{5}e^{0.7745966692} \cos 0.7745966692$$

$$+ 0.\overline{8} \cos 0e^{0} + 0.\overline{5}e^{-0.7745966692} \cos(-0.7745966692)$$

$$= 1.9333904$$

O valor encontrado usando integração por partes é 1.9334214.

Observação

Uma integral $\int_a^b f(x) dx$ pode ser transformada para uma integral sobre [-1,1] utilizando a mudança de variáveis:

$$t = \frac{2x - a - b}{b - a} \Leftrightarrow x = \frac{1}{2} \left[(b - a)t + a + b \right]$$

Isso nos permite escrever

$$\int_{a}^{b} f(x) dx = \int_{-1}^{1} f\left(\frac{(b-a)t + (b+a)}{2}\right) \frac{(b-a)}{2} dt$$

Exemplo: Calcule

Se
$$n=2$$

$$\int_{1}^{1.5} e^{-x^2} dx = \frac{1}{4} \int_{-1}^{1} e^{(-(t+5)^2/16)} dt.$$

$$\int_{1}^{1.5} e^{-x^2} dx \approx \frac{1}{4} \left[e^{-(5+0.5773502692)^2/16} + e^{-(5-0.5773502692)^2/16} \right] = 0.1094003.$$

Se
$$n=3$$

$$\int_{1}^{1.5} e^{-x^{2}} dx \approx \frac{1}{4} \Big[(0.555555556) e^{-(5+0.7745966692)^{2}/16}$$

$$+ (0.888888889) e^{-5^{2}/16}$$

$$+ 0.5555555556 e^{-(5-0.7745966692)^{2}/16} \Big]$$

O valor exato com sete casas decimais 09064093643

