ECE 341

Lecture # 2

Instructor: Zeshan Chishti zeshan@pdx.edu

October 1, 2014

Portland State University

Announcements

 Course website reminder: http://www.ece.pdx.edu/~zeshan/ece341.htm

- Homework 1:
 - Will be posted on course website tonight
 - Due date: Wednesday 10/8 in class

Lecture Topics

- Sequential Logic
 - Latches
 - SR Latch
 - Gated SR Latch
 - Gated D Latch
 - Flip flops
 - D flip-flop
 - T flip-flop
 - JK flip-flop
- Reference: Appendix A (pages 492-502), including section A.6

Sequential Logic

- Combinational logic:
 - outputs are uniquely defined for each input combination
- Sequential Logic:
 - output depends not only on current inputs but also on previous state

Clock Signal

- Sequential circuits often use a clock signal as a reference for when output state changes take place
- <u>Level triggering</u>: State changes can take place at any time as long as clock signal is at a particular level (e.g., during the "1" clock phase)
- Edge triggering: State changes take place only on clock transitions
 - 0 => 1 transition (positive edge-triggered)
 - 1 => 0 transition (negative edge-triggered)

Latches and Flip Flops

 Latches and flip flops are the most basic memory elements used in sequential circuits

Flip flop

 Samples its inputs and changes its output <u>only</u> at the *edge* of a controlling clock signal (edge-triggered)

Latch

- Watches its inputs continuously and changes its output at any time irrespective of clock edge transitions
- May or may not be level-triggered

An SR latch has a set input (S), a reset input (R) and two outputs (Q and QN) that are normally complements of each other

S	R	Q	QN
0	0	last Q	last QN
0	1	0	1
1	0	1	0
1	1	0	0

(b)

s	R	Q	QN
0	0	last Q	last QN
0	1	0	1
1	0	1	0
1	1	0	0

(b)

x NOR 1 = 0 for x = 0, 1

	S	R	Q	QN
	0	0	last Q	last QN
	0	1	0	1
(1	0	1	0
	1	1	0	0

(b)

0 NOR 0 = 1

S	R	Q	QN
0	0	last Q	last QN
0	1	0	1
1	0	1	0
1	1	0	0

(b)

- Asserting S sets the latch (Q = 1, QN = 0)
- Asserting R resets the latch (Q = 0, QN = 1)
- If both S and R are 0, the latch acts as a memory element (retains its previous state)
- Input combination R = S = 1 is normally not used
 - •QN is often represented as \overline{Q} (NOT of Q)

Gated SR Latch

Clk	S	R	Q(t+1)
0	x	x	Q(t)
1	0	0	Q(t)
1	0	1	0
1	1	0	1
1	1	1	x

Graphical Symbol

Truth Table

Gated SR Latch

Clock input controls the time at which the latch is set or reset

- When clk = 1
 - R' = R and S' = S, behaves like a regular SR latch set/reset by S/R inputs)
- When clk = 0
 - R' = S' = 0, latch cannot be set or reset by R and S inputs

Timing Diagram for Gated SR Latch

Clk	D	Q(t+1)
0	X	Q(t)
1	0	0
1	1	1

Graphical Symbol

Clk	D	Q(t+1)
0	Х	Q(t)
1	0	0
1	1	1

Graphical Symbol

Clk	D	Q(t+1)
0	X	Q(t)
1	0	0
1	1	1

Graphical Symbol

Clk	D	Q(t+1)
0	X	Q(t)
1	0	0
1	1	1

Graphical Symbol

D latch is a special case of SR latch where S and R are derived from single input D

- When clk = 1
 - the Q output is set to the value of D input
- When clk = 0
 - the Q output retains its previous value irrespective of the D input

D latch samples input data when clk is high and stores data until next clock pulse

Practice Exercise

The clock and D inputs for a gated D latch are shown below. Plot the Q output as a function of time.

Practice Exercise: Solution

Limitations of Latches

- Latches are sensitive only to clock levels (level-sensitive)
- When clock is high, latch output responds immediately to any changes in inputs
- Undesirable in circuits involving counters and shift registers
 - Immediate propagation of inputs to outputs may lead to incorrect operation

Solution: Master-slave flip flop

- Sensitive to clock signal transitions (edge-sensitive)
- Outputs isolated from inputs at all times except at clock transitions
- Positive edge triggering: data transfer occurs at 0->1 clock transition
- Negative edge triggering: data transfer occurs at 1->0 clock transition

Master-slave D flip-flop

Example Timing Diagram

Master-slave D flip-flop

- Two gated D-latches (master and slave) together form a master-slave flip-flop
- When clk = 1:
 - D input is transferred to master's output, slave's output is unchanged
- When clock transitions from 1 to 0:
 - Master's contents (Qm) transferred to slave's output (Q), master's output isolated from D-input
- D flip-flop is commonly used for temporary storage of data

T flip-flop

Т	Q(t+1)
0	Q(t)
1	$\overline{Q}(t)$

Truth Table

Graphical Symbol

T flip-flop

- T flip-flop toggles its state every cycle if its input T is equal to 1
- Useful in building counters

JK flip-flop

J	K	Q(t+1)
0	0	Q(t)
0	1	0
1	0	1
1	1	$\overline{Q}(t)$

Truth Table

Graphical Symbol

JK flip-flop

- JK flip-flop combines the behavior of SR and T flip-flops
- When J = K = 1, it functions as a toggle (T flip-flop)
- For other input combinations, it acts as a SR flip-flop with J = S and K = R
- JF flip-flop is versatile; can be used both for data storage and building counters