Kommuner_Linear_Reg

September 13, 2024

Eric De Leon BERN02 Exercise: Workflows and environments

First step is to set up the operating system with import os, then import the pandas library. Once imported we need to load the kommuner.csv to the environment, if necessary change the directory so the file can be found. Once loaded we see the first five observations in the data and see the different variables.

```
[1]: import os
import pandas as pd
os.chdir("C:/Users/deleo/Documents/R/BERNO2 R")
kommuner_df = pd.read_csv('kommuner.csv', encoding='ISO-8859-1')
kommuner_df.loc[0:4]
```

[1]:			Kommu	n	Coı	ınty	Part	Coastal	Vehicles	Builton	\
	0	0114 Uppl	ands Väsb	y 01 S	Stockholms	län	2	0	535.6	34	
	1	0115	Vallentun	a 01 S	Stockholms	län	2	0	780.8	90	
	2	0117	Österåke	r 01 S	Stockholms	län	2	1	707.7	108	
	3	0	120 Värmd	ö 01 S	Stockholms	län	2	1	684.7	182	
	4	0123 Järfälla		a 01 S	1 Stockholms län		2 0		485.1	23	
		Children	Seniors	Highed	ds Income	GRP	PM10				
	0	19.0	16.7	16.	6 299.1	339	1.6				
	1	20.4	16.1	19.	2 341.5	249	2.4				
	2	19.2	18.5	18.	6 342.5	227	2.3				
	3	19.3	17.8	18.	2 340.5	265	2.9				
	4	19.0	16.4	19.	3 301.4	343	1.6				

In our dataframe, Kommun is the municipality number and name; County is county number and name; Part refers to part of Sweden: 1 = Götaland; 2 = Svealand; 3 = Norrland, Coastal = any sea area within its borders: 0 = Inland; 1 = Coastal; Vehicles is number of passenger cars, buses and trucks / 1000 inhabitants; Builton is area covered in buldings, roads, etc (= not nature), (hectares / 1000 inhabitants); Children is the percentage of people 0–14 year olds; Seniors is the percentage of people 65+ year olds; Higheds is percentage of people with at least 3 years of post-secondary; Income is median yearly income (1000 SEK); BRP is Gross Regional Product per capita (1000 SEK); PM10 is the yearly emission of PM10-particles (metric tonnes / 1000 inhabitants).

We import matplotlib.pyplot so we can do the plots. We then plot PM10 vs Vehicles since it is possible Vehicles affect the PM10 emmissions.

```
[2]: import matplotlib.pyplot as plt
plt.plot(kommuner_df["Vehicles"], kommuner_df["PM10"],'o')
plt.title("PM10 vs Vehicles")
plt.xlabel("Vehicles")
plt.ylabel("PM10")
plt.show()
```


After seeing the plot we fit a linear model using Vehicles as our only explanatory variable. To do the model we need to import the function ols from the statsmodels.formula.api package.

```
[3]: from statsmodels.formula.api import ols fit = ols('PM10~Vehicles', kommuner_df).fit() print(fit.summary())
```

OLS Regression Results

============			=========
Dep. Variable:	PM10	R-squared:	0.312
Model:	OLS	Adj. R-squared:	0.309
Method:	Least Squares	F-statistic:	130.4
Date:	Fri, 13 Sep 2024	Prob (F-statistic):	3.69e-25
Time:	18:29:50	Log-Likelihood:	-685.88
No. Observations:	290	AIC:	1376.
Df Residuals:	288	BIC:	1383.
Df Model:	1		

Covariance	Гуре: 	nonrob	ust 			
	coef	std err	t	P> t	[0.025	0.975]
Intercept Vehicles	-0.6268 0.0055	0.513 0.000	-1.222 11.419	0.223 0.000	-1.636 0.005	0.383 0.006
Omnibus: Prob(Omnibus Skew: Kurtosis:	s):		000 Jarque			1.881 25421.452 0.00 3.62e+03

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 3.62e+03. This might indicate that there are strong multicollinearity or other numerical problems.

After getting the results we then add Income as another explanatory variable and use OLS again to do the new model.

```
[4]: fit = ols('PM10~Vehicles+Income', kommuner_df).fit()
print(fit.summary())
```

		OLS Re	egress	ion Res	sults		
Dep. Variab	 Le:		PM10	R-squa	 ared:		0.312
Model:			OLS	Adj. R-squared:			0.307
Method:		Least Squa	ares	F-stat	tistic:		64.98
Date:	F	ri, 13 Sep 2	2024	<pre>Prob (F-statistic):</pre>			5.30e-24
Time:		18:29	9:50	Log-L	ikelihood:		-685.88
No. Observat	tions:		290	AIC:			1378.
Df Residuals	S:		287	BIC:			1389.
Df Model:			2				
Covariance Type:		nonrol	oust				
========	coef	std err	=====	====== t	P> t	[0.025	 0.975]
Intercept	 -0.8587	 2.261	 -0	 .380	0.704	 -5.309	 3.591
Vehicles					0.000		
Income		0.007	0		0.916		*
Omnibus:		======== 362	. 460		 n-Watson:		1.880
Prob(Omnibus	s):	0	.000	Jarque-Bera (JB):			25122.729
Skew:		5	. 646	Prob(JB):		0.00
Kurtosis:		47	. 177	Cond.	No.		1.65e+04

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.65e+04. This might indicate that there are strong multicollinearity or other numerical problems.

We then add GRP as another explanatory variable.

```
[5]: fit = ols('PM10~Vehicles+Income+GRP', kommuner_df).fit()
print(fit.summary())
```

OLS Regression Results

=======================================		=======================================	=========
Dep. Variable:	PM10	R-squared:	0.391
Model:	OLS	Adj. R-squared:	0.384
Method:	Least Squares	F-statistic:	61.15
Date:	Fri, 13 Sep 2024	Prob (F-statistic):	1.42e-30
Time:	18:29:50	Log-Likelihood:	-668.18
No. Observations:	290	AIC:	1344.
Df Residuals:	286	BIC:	1359.
Df Model:	3		
Covariance Type:	nonrobust		

=========		========		========		========
	coef	std err	t	P> t	[0.025	0.975]
Intercept	-0.9596	2.131	-0.450	0.653	-5.154	3.235
Vehicles	0.0053	0.000	10.672	0.000	0.004	0.006
Income	-0.0043	0.006	-0.665	0.507	-0.017	0.008
GRP	0.0044	0.001	6.094	0.000	0.003	0.006
Omnibus:	=======	 284 .	.743 Durb	======= in-Watson:		1.896
Prob(Omnibus	s):	0.	.000 Jarq	ue-Bera (JB)):	10387.970
Skew:		3.	.952 Prob	(JB):		0.00
Kurtosis:		31.	.235 Cond	. No.		1.74e+04

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.74e+04. This might indicate that there are strong multicollinearity or other numerical problems.

After analyzing the results of the three models, we conclude by the P-Value (P > |t|) that Income is not necessary for our model and then we check the model using Vehicles and GRP as explanatory variables.

```
[6]: fit = ols('PM10~Vehicles+GRP', kommuner_df).fit()
print(fit.summary())
```

OLS Regression Results

=========			======	======			
Dep. Variabl	_e:		PM10	R-sq	uared:		0.390
Model:		OLS	Adj.	R-squared:		0.386	
Method:		Least	Squares	F-st	atistic:		91.68
Date:		Fri, 13	Sep 2024	Prob	(F-statistic):	1.63e-31
Time:			18:29:50	Log-	Likelihood:		-668.40
No. Observat	cions:		290	AIC:			1343.
Df Residuals	3:		287	BIC:			1354.
Df Model:			2				
Covariance T	Type:	n	onrobust				
========			======	======			
	coet	f std	err	t	P> t	[0.025	0.975]
Intercept	-2.3260	0.	 559	-4.160	0.000	-3.426	-1.226
Vehicles	0.0054	1 0.	000	12.076	0.000	0.005	0.006
GRP	0.0043	0.	001	6.064	0.000	0.003	0.006
Omnibus:			====== 280.717	===== Durb	========= oin-Watson:		1.882
Prob(Omnibus		0.000	Jarq	ue-Bera (JB):		9835.960	
Skew:		3.878	-	(JB):		0.00	
Kurtosis:			30.456	Cond	l. No.		4.45e+03
=========							=======

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 4.45e+03. This might indicate that there are strong multicollinearity or other numerical problems.

The workflow relates to the FAIR data principles in that it is findable because the workflow is on github, it is accessible because anyone can see it, it is interoperable in that anyone who has Python can run the codes if they have the libraries, it is reusable in that anyone can run the code and continue the linear regression model.

Link to github reporsitory: https://github.com/deleonerick1808/Linear-Regression-of-PM10-Emissions-in-Sweden-Municipalities