第一章 概述

张喆 南京邮电大学

PART 02 NGN及未来网络概述

传统电信网络的问题

- ▼容量、速度不足
 - 视频、直播、云计算对大带宽的需求
- ▼多样化业务的需求
 - 视频、游戏、语音等不同业务的QoS需求不同
- ▼灵活性不足
 - 难以升级、扩展
- ▼可靠性不足
 - 需要大量的人工运维管理

NGN体验一运营商转型

基本概念(1) 代网络的基本概念和特点

- ▼ NGN是 "下一代网络(Next Generation Network)"或 "新一代网络(New Generation Network)"的缩写。含义从多个层面来理解(业务层面,网络层面);
- ▼ 下一代网络内涵非常丰富,针对不同的专业领域可以赋予不同的含义。
 - ❖对于数据网,下一代网络指下一代Internet (IPv6, NGI);
 - ❖对于移动网,下一代网络指5G/6G;
 - ❖对于传送网,下一代网络指下一代传送网SDOTN;
 - ❖对于交换网,下一代网络指软交换/IMIS系统;
 - ❖泛指的下一代网络包括了所有新一代网络技术;
- ▼不是现有网络的简单延伸及叠加;
- ▼ 颠覆性的革命很难, 渐进式的演进更容易被接受
- ▼NGN是一种概念,不是一种技术 NJUPT

NGN标准进展情况

NGN标准进展情况

- 1. ITU-T: NGN的基础体系结构和通用功能、接口、协议等方面的标准。
- 2. 3GPP: 移动网络NGN标准,包括移动核心网、IMS(IP multimedia subsystem)等方面的标准。
- 3. ETSI: NGN体系结构、接口和协议的标准,包括TISPAN(Telecoms & Internet converged Services & Protocols for Advanced Networks)。
- 4. ATIS: 北美电信工业协会,推进了一些NGN相关的标准。
- 5. CCSA: 中国通信标准化协会,推进了一些NGN相关的标准。

下一代网络(电信网)的基本概念和特点

- → NGN(Next-Generation Network,下一代网络)是一种基于IP(Internet Protocol)的综合性、全IP化的网络架构,它将语音、数据、视频等各种通信业务整合到一个IP网中,实现了各种通信服务的统一。
- ➤NGN具有高速、高效、多样化的特点,能够为用户提供更加便捷、实用、可靠、可扩展的通信服务,是一种集成了各种通信技术的全新网络架构。

NGN的体系架构

- ▼ Multiple Access Network: 为用户提供接入服务。
 - 采用多元化的宽带接入技术,如 5G、Wi-Fi、光纤等
- ▼ Transport Layer: 提供各种基础服务。
 - 如呼叫控制、用户认证、媒体处理等
- ▼ Control Layer: 实现网络的管理和控制。
- → Service Layer: 为用户提供语音、视频、数据等多种服务。

NJUPT

NGN的技术特征

- ▼网络层采用IP协议;
- ▼链路层采用电信级分组节点;
- →传送层使用光传输技术;
- ▼接入层采用多元化的宽带接入技术;
- ▼呼叫控制和业务层独立于承载层;
- ▽管理平面提供运营网各种所需的管理
 功能;
- ▼开放式体系结构和标准接口;

Mobility Aspects of NGN

NJUPT

QoS Aspects of NGN

General reference configuration for NGN QoS, NP and QoE

Quality of Experience	Quality of Service	Network Performance
User oriented		Provider oriented
User behaviour attribute	Service attribute	Connection/Flow element attribute
Focus on user- expected effects	Focus on user- observable effects	Focus on planning, development (design), operations and maintenance
User subject	Between (at) service access points	End-to-end or network elements capabilities

QoS Aspects of NGN

- Bandwidth (帯宽): High
 - allocate and dynamically adjust bandwidth based on traffic characteristics.
- Delay(时延): Low
 - traffic engineering
- Jitter (抖动): Low
 - jitter control
- Packet loss (丢包率): Low
 - packet loss prevention
- Security (安全): High
 - encryption, access control, intrusion detection

几个重要的概念

- ✓ MSTP: (Multi-Service Transport Platform) 城域传输网技术:将传统的SDH、以太网、ATM、RPR等多种技术有机融合,通过将多业务汇聚、并高效适配的方式实现多种业务的综合传送。
- ▼ BRAS (Broadband Remote Access Server):面向宽带网络应用的新型接入网关,是宽带接入网的骨干网之间的桥梁,提供基本的接入手段和宽带接入网的管理功能。位于网络的边缘:提供宽带接入服务、实现多种业务的汇聚与转发,能满足不同用户对传输容量和带宽利用率的要求。

移动核心网IP化

- 对移动TDM交换机退出历史舞台
- ▼在长途和省级移动交换机加速退网
- ✓ 实现固网、移动网融合,退网后以移动软交换为主进行网络演进。
- ▼运营商根据业务需求驱动,引入IMS系统, 提供多媒体业务,形成软交换与IMS并存 的网络结构。
- ✓IMS已经成为国内外主流运营商核心网主流架构。

电信级以太网

- ▼电信级以太网(Carrier Ethernet, CE)技术在 2008年成为承载网领域的新热点。
- ▼电信级以太网:在保留传统以太网帧结构的基础上,通过引入传送网功能、扩展帧头或引入二层协议和信令等方式,在以太网上实现和电信网类似的可管理性和可靠性
- ▼ 电信级以太网领域主要包括PBB (provider backbone bridge), PBB-TE, VPLS及增强型以太网技术流派;
- ▼用于移动回传 (backhaul) 承载

物联网是对5G需求的驱动力

智慧生活需要实现端到端的全方位连接,5G网络下的 使用体验是质的飞跃,对于出行,居住,就医,教育 等场景都是颠覆性的改变,这也是中国对5G需求的根 本驱动力。

消费场景

出行场景

- 智慧物流
- 衣联网

家庭场景

沉浸式游戏体验

- 自动驾驶
- 编队行驶

制造场景

L小互联

医疗场景

异地远程手术

工作场景

社交场景

- 360°全景直播
- 4K/8K视频转播

5G:网络切片技术,虚拟功能网络,软件定义无线电,软件定义网络

4G networks
do not enable
the range of
services that
the future
requires.
5G will be
faster and
more flexible.

4G

5G network slicing

5G network slicing enables service providers to build virtual end-to-end networks tailored to application requirements.

SDN

- ▼SDN技术:路由设备的控制和转发相分离,把原来改变网络拓扑需要对网络中大量路由器进行路由配置的工作,转化成只需要通过控制面集中配置并下发到转发面执行的方式,使网络路由维护的工作得到最大的简化。
- ▼核心技术OpenFlow通过将网络设备 控制面与数据面分离开来,从而实现 了网络流量的灵活控制,使网络作为 管道变得更加智能。

网络虚拟化

- **✓NFV**: Network Function Virtualization
- ▼可使其摆脱对于专用设备的依赖,促进电信网络硬件资源的IT化、通用化,减低硬件采购成本,同时通过虚拟化可以促进电信网络物理资源的共享,充分提升硬件资源的利用率。

网络虚拟化

网络虚拟化

Figure 3: Example of an end-to-end network service with VNFs and nested forwarding graphs

三大主流SDN标准化组织

Open Networking Foundation

- 一种将网络控制层与转发层分离,实现控制可编程的网络架构,控制层从网络设备转移到了计算设备,使得底层的基础设施对于应用和网络服务而言是透明抽象的,网络可被视为一个逻辑或虚拟实体
- 代表技术:
- ·基于OpenFlow的SDN

Internet Engineering
Task Force

- 一类技术的集合,这些技术以确定、动态、可扩展的方式,使得网络服务的设计、交付和运行更加便利。
- 代表技术:
- · Overlay (网络虚拟化叠加)
- · I2RS(路由系统接口)

European Telecommunication Standards Institute

- 以不断发展的标准IT虚拟化技术,将许多网络设备类型整合到工业标准的高容量服务器、交换机和存储中,以转换网络运营商的网络架构方式,软件实现网络功能。
- 代表技术:
- NFV (网络功能虚拟化)

NJUPT

SDN标准化现状 - NFV与SDN的关系

- ▼ NFV与SDN的基础都是通用网络设备、云计算以及虚拟化技术
- ✓ NFV与SDN存在互补性,二者相互独立,没有依赖关系,SDN不是NFV的前提
- ▼ NFV侧重于网络功能软件化,SDN侧重于控制与转发的分离;NFV增加了功能部署的灵活性,SDN可进一步推动NFV功能部署的灵活性和方便性 NJUPT

6G可能的关键技术及方向

- ✓超高频谱利用
- YAI驱动的智能网络
- ▼全球化和卫星通信
- ▼大规模多天线技术
- ▼新型物理层技术

6G-Nokia Solution

未来网络(计算机网角度)

- **▼ICN** (Information-centric Networking)
- ▼元宇宙(Metaverse)
- ▼网络人工智能

Evolution

▼ From Point-to-Point Communication to Content Distribution

Today's Internet

Focuses on Conversations between Hosts

Host-centric abstraction Who to communicate with

In today's Internet, accessing information is the dominating use case!

Information-centric network

Focuses on
Dissemination of Information
objects

Information-centric abstraction
What to communicate

What is information-centric networking (ICN)

- ✓ Information centric networking (ICN) is a approach to evolve the Internet infrastructure away from a host-centric paradigm to a content-centric architecture.
- **∀** Features:
 - ICN uses content name
 - Data becomes independent from location
 - Router has caching capability
- **∀** Benefits:
 - High efficiency
 - Better scalability
 - Better robustness

NDN

- ▼ NDN是ICN的一种架构,也可以认为是 ICN的一种实现方式。
- ▼ 由UCLA的Lixia Zhang教授团队提出。
- ▼目前NDN已成为ICN的主流架构

NAMED DATA NETWORKING

NDN

browser chat ... email WWW phone ... SMTP HTTP RTP... File Stream ... Individual apps TCP UDP ... Security IΡ Content **Every node** packets chunks Strategy ethernet PPP ... **Individual links** CSMA async sonet ... IP UDP P2P BCast ... copper fiber radio ... copper fiber radio ...

IP Data VS NDN Data

元宇宙(Metaverse)

- ▼元宇宙是一个涵盖虚拟世界、增强现实和混合现实等概念的新兴概念,它代表了一个虚拟的、可交互的数字环境,融合了物理世界和数字世界。
- ▼源自Neal Stephenso的小说《雪崩》
- ▼关键技术:
 - VR, AR, XR
 - 数字孪生
 - 人工智能
 - 网络通信技术

网络人工智能

- ✓人工智能技术的井喷对各行各业都产生了极大的影响
- ▼ 网络的配置、调控、管理由人工智能来自主管理。
 - 如,深度强化学习(Deep Reinforcement Learning, DRL)

未来网络各国状况

- ▼美国的NSF 在2005 年启动了网络创新的全球环境(GENI) 计划,旨在建一个全球性试验网络,不同的研究人员可同时在其上做新方案试验而互不影响,并采用网络虚拟化技术来实现各试验网络的隔离。
- ✓ 欧盟: 2008年设立了未来互联网的研究与试验(FIRE),类似于美国的GENI
- ▼加拿大, 日本
- ▼ 中国
 - 2010年,在国家发展和改革委员会启动重大科学专项研究项目之际,李国杰、刘韵洁院士联合向国家发改委提议立项未来网络试验设施CENI项目。
 - 2013年,首个未来网络小规模试验设施落户南京未来网络谷,以该试验设施为基础,

中国的未来网络发展

- ▼未来网络在业务形态和业务需求上都将发生变化,"尽力而为"的传统网络架构难以满足工业互联网等对差异性服务保障、确定性带宽和时延的需求。
- ▼现在的互联网没有针对特定业务的专用通道。但是工业、实体经济、车联网等对网络的需求却千差万别,所以就需要定制化的、确定性的网络指标,将"马路"逐步升级改造。

中国的未来网络发展(1)-CENI

- ▼未来网络试验设施(CENI)项目进展
- ▼总体建设目标:建设一个先进的、开放的、灵活的、国际化的、可持续发展的大规模通用试验设施。满足"十三五"和"十四五"期间国家关于下一代互联网、网络空间安全、天地一体化网络等重大科技项目的试验验证需求
- ▼南京、北京、合肥、深圳建设了一主三辅的骨干节点,汇聚及边缘节点覆盖全国40个城市的133个试验节点,

中国的未来网络发展(2)-CENI

- 1. 新型网络架构: CENI提出了多个新型网络架构,如基于信息中心的网络(ICN)、基于软件定义网络(SDN)的网络等,旨在提高网络的效率、安全性和可扩展性。
- 2. 5G技术: CENI将5G技术作为下一代互联网的基础设施之一, 积极推动5G技术的研究和应用。目前, 中国已经建成了全球规模最大的5G网络, 并在5G领域取得了一些重要的技术突破。
- 3. 物联网技术: CENI也重视物联网技术的发展, 致力于打造一个智能化的互联网世界。目前, 中国已经建成了全球规模最大的物联网网络, 物联网技术在智慧城市、智慧医疗等领域得到了广泛应用

中国的未来网络发展(3)-CENI

- ▼1.设备层面创新:网络开源与白盒化
- ▼2.基础设施层创新: 光网络与IP网络协同调度
- ▼3. 平台层面创新: 大规模多云交换互联 平台
 - 实现异构多云协同与交换,一点接入,全 云服务;分钟级按需云互联、云切片。
- ▼4. 应用服务层面创新: 服务工业企业联网

基于软件定义的网络与工厂的深度融合,控制端到端路径与时延,从尽力而为到准时协同。

CENI

开放平面 科研院所

面向全国高校、科研院所,构建端到端 开放、深度可编程的试验环境,打造细粒度 可见、可验证、闭环控制的综合试验床,以 支撑丰富的科学研究与验证,以定制化形式 满足运营商、电力、军用等国家体制产业的 专用场景,对网络、云资源等的特殊需求。

开放平面 工业企业

面向全国工业企业,提供智能、柔性、可定制的应用示范环境。各工业企业可采用自定义、自服务的形式,一键秒级端到端的开通应用环境切片,可满足企业各类生产对具备内生安全高可靠、低时延、确定性、大带宽等不同能力的应用环境的需要。

0 网络2030 设备提供商 $((\uparrow))$ 天地一体化试验 新型试验 内生安全 试验验证 专用场景试验 (4) 运营商试验验证 创新试验 5G/B5G/6G 信创场景试验 IXP测试验证 综合试验 电力场景 试验 网络资源池 云资源池

资源层

构建新型网络试验设施,包括建设国内 首个:确定性服务定制网络、6G智能试验 平台、网络内生安全试验场等;构建新型云 试验设施,具备无损数据、AI算力、5G/6G 数据仓库、内生安全云等能力。

新型云网试验设施,结合自主创新的网络操作系统、云网融合系统、新型运营系统, 打造灵活、可服务定制的满足未来科学研究与应用示范的一体化试验设施。

中国网络2030发展与展望(1)

▼未来10年网络最大的挑战是什么? 刘院士认为是万亿级的连接,它要求全时空,安全智能的连接和服务,要实现网络2030主要有以下四个方面的研究探索。

▼1、B5G/6G核心网

垂直行业千亿级、人机物、高带宽、低延迟、安全可靠联网。突破现有核心网专用设备成本高、不能定制化服务、带宽低、延时大等局限,通过虚拟化、软件化等技术手段提供定制化服务,并将核心网下沉到接近用户区域。

中国网络2030发展与展望(2)

- ▼2、网络人工智能
 - 网络引"智",化"繁"为"简"。攻克大规模复杂网络训练、多级人工智能协同设计关键技术,实现网络高效自治、网络攻击智能监测等。
- ▼3、软件定义的空天地一体化网络
- 支撑全时空、陆海空天、万物互联、泛在接入。探索面向高动态星地链路的集中式控制架 构
- ▼ 4、面向海洋场景的立体通信网络 海洋通信网络立体覆盖,海上数据无缝实时 高速回传。

小结

- ✓回顾了交换技术的发展
- ✓ NGN, future network的特点, 关键技术
- √通信网络的发展趋势