

Esercizi lezione 6

Abbiamo una lista di liste:

```
mat = [[0, 1, 2, 3, 4],
[5, 6, 7, 8, 9]
[10, 11, 12, 13, 14]]
```

Che tipo di struttura dati o matematica potrebbe rappresentare? Notare che tutte le liste "interne" sono della stessa dimensione

Come facciamo per accedere ad un elemento in particolare?

Trasformiamo la lista dell'esercizio precedente

```
mat = [[0, 1, 2, 3, 4],

[5, 6, 7, 8, 9]

[10, 11, 12, 13, 14]]
```

in un array NumPy:

```
mat = np.array(mat)
```

Come facciamo per accedere ai singoli elementi?

Abbiamo il seguente array NumPy:

```
linear data = np.array([x for x in range(27)])
```

Lo ridimensioniamo mediante il metodo .reshape():

```
reshaped_data = linear_data.reshape((3, 3, 3))
```

Quante dimensioni ha il nuovo array?

Come facciamo per accedere ai singoli elementi?

Esercizio 1/3

Abbiamo un territorio cittadino diviso in quattro quadranti; in ognuno di essi c'è uno store:

UL	UR
LL	LR

Vogliamo contare quanti clienti vengono serviti dai diversi store: creiamo una struttura dati adeguata con un array NumPy, dove il conteggio di ogni store parta da zero.

Esercizio 2/3

Creiamo un ciclo di 100 iterazioni che riempia, a caso, uno dei quattro quadranti, simulando quindi diversi clienti serviti dai vari store.

Alla fine, che valore ha lo store UR? E lo store LL?

Quali store hanno avuto più di 25 clienti?

Quanti clienti hanno avuto di preciso questi store?

Qual è la loro somma?

Esercizio 3/3

Ripetiamo la traccia precedente, ma stavolta abbiamo nove quadranti e 200 iterazioni:

UL	UC	UR
ML	MC	MR
LL	LC	LR

L'anno prossimo ci aspettiamo 4 volte tanto i valori appena ottenuti; simuliamo velocemente il tutto e stampiamo il risultato.

Chiediamo all'utente di inserire un numero, dividiamolo per 5 e poi stampiamo il risultato a video.

Gestiamo correttamente le eccezioni nel caso l'utente immetta un input errato.

In una catena di montaggio abbiamo una struttura metallica di 28.75 cm di lunghezza; per assicurarne la stabilità, è necessario inserire 15 rivetti, dei quali uno all'inizio e uno alla fine, e tutti quanti separati dalla stessa distanza; come possiamo calcolare i punti esatti in cui inserire i rivetti tramite NumPy?

Esercizio 1/2

Scarichiamo l'Iris dataset da qui: https://archive.ics.uci.edu/dataset/53/iris
Troveremo un file .data, che è un CSV, e un file .names con i metadati; questa versione del dataset non ha i nomi di colonna.

- Leggiamo il file e carichiamolo in un DataFrame mediante pd.read_csv()
 senza utilizzare altri parametri
- Stampiamo le prime cinque righe
- Stampiamo i nomi di colonna: sono corretti?

Esercizio 2/2

Dal dataset di prima:

- Leggiamo il file e carichiamolo in un DataFrame, aggiungendo i nomi di colonna — che si trovano nel file .names — come parametro di pd.read_csv()
- · Stampiamo le prime cinque righe e le ultime dieci
- Stampiamo un riepilogo dei descrittori statistici del dataset

Andiamo a questo link e scarichiamo una serie di dataset: https://www.kaggle.com/datasets/ahmettezcantekin/beginner-datasets

Tra i vari dataset presenti, ce n'è uno che contiene diverse qualità di vini e le misure di diverse proprietà organolettiche, wine.csv;

Leggiamo quindi il dataset wine.csv, e visualizziamone le prime e le ultime righe;

Leggiamo nuovamente il dataset, ma stavolta considerando soltanto le ultime 6 colonne, ricordandoci che in totale il dataset ha 13 colonne;

Visualizziamo un resoconto dei descrittori statistici di questa versione.

Consideriamo il seguente dizionario:

Consideriamo ora la seguente Series:

Possiamo accedere alle stesse informazioni nello stesso modo:

```
fatturati_dict[1997]
fatturati_series[1997]
```

Dunque qual è la differenza tra i due tipi di dato?

Cosa potremmo fare con la Series che non possiamo fare con il dizionario?

Abbiamo la seguente matrice:

1	1	1	1
5	1	1	1
20	-4	0	42

Creiamo un ndarray con gli stessi valori.

Ci sono due modalità: inizializzare un array e poi inserire i valori nelle posizioni adatte, oppure creare una lista di liste e poi effettuare un casting.

Creiamo il seguente ndarray 5×5:

10	22	21	8	9
9	42	3	18	11
5	4	30	12	29
37	31	7	2	26
8	6	4	33	15

Per ogni valore, sottraiamo il minimo (2) e poi dividiamo il risultato per il massimo (42) meno il minimo.

GRAZIE

Epicode