Dig-In:

Continuity

The idea of continuity.

Idea 1. A function f is **continuous at** x = a if you can trace through the point (a, f(a)) without lifting your pen.

YouTube link: https://www.youtube.com/watch?v=hXFLvVFQa5k

Question 1 Consider the graph of the function f

Which of the following are true?

Multiple Choice:

- (a) f is continuous at x = 0.5
- (b) f is continuous at x = 1
- (c) f is continuous at x = 1.5

Learning outcomes: Identify continuous functions from their graphs. Identify x-values where a function is discontinuous from a graph. Author(s):

Example 1. Give x-values where the function below is discontinuous (i.e. not continuous).

Explanation. To start, f is not even defined at $x = \boxed{2}$, therefore f cannot

be continuous at $x = \boxed{2}$ as you must lift your pen over the hole.

Next, from the plot above we see that $\lim_{x\to 4} f(x)$ does not exist because

$$\lim_{x \to 4^-} f(x) = \boxed{1} \qquad \text{and} \qquad \lim_{x \to 4^+} f(x) \approx 3.3$$

This causes a "jump" in the function at x=4 where you must lift your pen. This means f cannot be continuous at x=4.

We also see that $\lim_{x\to 6} f(x)$ exists and $\lim_{x\to 6} f(x) \approx 2.9$. However, as $f(6) = \boxed{2}$, given

we must pick up our pen to color in the point (6, f(6)) as we trace along the graph. This means f is not continuous at x = 6.

Remark 1. The following common functions are continuous at every x-value in their domains. Try visualizing some of their graphs to convince yourself of the continuity.

Constant function f(x) = k for k a real number

Power functions $f(x) = x, f(x) = x^2, f(x) = x^3, \dots$ or more generally $f(x) = x^r$ for r > 0

Exponential function $f(x) = a^x$ with base a > 0

Logarithmic function $f(x) = \log_a(x)$ with base a > 0