

Arquitecturas: Cliente-Servidor y de N capas

Facultad de Ciencias de la Computación

Juan Carlos Conde Ramírez
Web Technologies

Contenido

2 / 25

Características Básicas, I

La arquitectura de red Cliente-Servidor es aquella en la que cada computadora (proceso) en la red "pide" o "sirve" recursos. Las aplicaciones Web son un tipo especial de aplicaciones tipo "Cliente-Servidor"

Otras arquitecturas...

- ▶ Otro tipo de arquitectura es la P2P (*Peer-to-Peer*) ó de igual a igual, en la que cada computadora de la red posee responsabilidades equivalentes.
- Aquí una misma computadora puede ser cliente y servidor simultáneamente, por lo que se establece sólo una separación lógica según las funciones que realiza.

Características Básicas, II

Normalmente, los servidores son computadoras potentes dedicados a gestionar:

- unidades de disco (servidor de archivos),
- impresoras (servidor de impresoras),
- tráfico de red (servidor de red),
- datos (servidor de bases de datos) o incluso
- aplicaciones (servidor de aplicaciones).

Mientras que los clientes son máquinas menos potentes y usan los recursos que ofrecen los servidores.

Características Básicas, III

Dentro de los clientes se suelen distinguir dos clases:

- 1. Clientes inteligentes o enriquecidos (rich client). Son computadoras completas, con todo el hardware y software necesarios para poder funcionar de forma independiente.
- Clientes tontos o ligeros (thin client). Son terminales que no pueden funcionar de forma independiente, ya que necesitan de un servidor para ser operativos.

Características Básicas, IV

Esta arquitectura implica la existencia de una relación entre procesos que solicitan servicios (request) y procesos que responden a estos servicios (response).

Estos dos tipos de procesos pueden ejecutarse en el mismo procesador o en distintos.

La principal ventaja de esta arquitectura es que facilita la separación de las funciones según su servicio, permitiendo la creación de **aplicaciones distribuidas**, es decir, situar cada función en la plataforma más adecuada para su ejecución.

Contenido

Características Avanzadas, I

Dado que las redes de computadoras permiten que múltiples procesadores puedan ejecutar partes de una misma aplicación, logrando concurrencia¹ de procesos, existen otro tipo de ventajas del uso de una arquitectura como la Cliente-Servidor:

- Posibilita la migración aplicaciones de un procesador a otro con modificaciones mínimas en los programas.
- Posibilita el acceso a los datos independientemente de donde se encuentre el usuario.
- La aplicación se vuelve escalable (ampliación horizontal o vertical).

¹Procesos que comparten datos, y por tanto sincronizan su acceso a los datos de modo que las actualizaciones de los mismos no se pierdan o corrompan como resultado de los accesos. €

Características Avanzadas, II

Escalabilidad horizontal: capacidad de añadir o suprimir estaciones de trabajo (clientes) que hagan uso de la aplicación, sin que afecte sustancialmente al rendimiento general.

Escalabilidad vertical: capacidad de migrar hacia servidores de mayor capacidad o velocidad, o de un tipo distinto de arquitectura sin que afecte a los clientes.

Separación de Funciones, I

La arquitectura cliente/servidor nos permite la separación de funciones en tres niveles, tal como se muestra a continuación:

Separación de Funciones, II

Definición

Se encarga de la entrada y salida de la aplicación con el usuario.

Tareas:

- Obtener información del usuario, enviar la información del usuario a la lógica de negocio para su procesamiento,
- recibir los resultados del procesamiento de la lógica de negocio y
- presentar estos resultados al usuario.

Separación de Funciones, III

Definición

Se encarga de gestionar los datos a nivel de procesamiento. Actúa de puente entre el usuario y los datos

Tareas:

- ► Recibir la entrada del nivel de presentación,
- interactuar con la lógica de datos para ejecutar las reglas de negocio (business rules) que tiene que cumplir la aplicación (facturación, cálculo de nóminas, control de inventario, etc.) y
- enviar el resultado del procesamiento al nivel de presentación.

Separación de Funciones, IV

Definición

Se encarga de gestionar los datos a nivel de almacenamiento.

Tareas:

- Almacenar los datos,
- recuperar los datos,
- mantener los datos y
- asegurar la integridad de los datos.

Contenido

Modelos de Distibución, I

Si un sistema distribuido se diseña correctamente, los tres niveles anteriores pueden distribuirse y redistribuirse independientemente sin afectar el funcionamiento de la aplicación. Según como se distribuyan podemos considerar 3 modelos:

- 1. Presentación distribuida,
- 2. Aplicación distribuida y
- 3. Datos distribuidos.

Modelos de Distibución, II

Presentación distribuida:

- ► El cliente sólo mantiene la presentación, el resto de la aplicación se ejecuta remotamente.
- En su forma más simple, es una interfaz gráfica de usuario a la que se le pueden acoplar validación de datos para evitar la validación en el servidor.

CLIENTE		
Presentación	Lógica de presentación	

SERVIDOR		
Lógica de	Lógica de	Gestión de
negocio	datos	datos

Modelos de Distibución, III

Aplicación distribuida:

- Proporciona máxima flexibilidad; permite tanto al servidor como al cliente mantener la lógica de negocio.
- ► Tanto Cliente como Servidor realizan las funciones que le sean más propias; ya sea por mejora de la organización o mejora en el rendimiento del sistema.

Modelos de Distibución, IV

Datos distribuidos:

- ► Los datos son los que se distribuyen, por lo que la lógica de datos es lo que queda separada del resto de la aplicación.
- Se puede dar de dos formas: archivos distribuidos o bases de datos distribuidas.

CLIENTE		
Presentación	Lógica de presentación	Lógica de negocio

SERVIDOR		
Lógica de	Gestión de	
datos	datos	

Arquitectura de 2 y 3 Niveles, I

La diferencia entre una arquitecturas de 2 y una de 3 niveles (tiers) estriba en la forma de distribución de la aplicación entre el Cliente y el Servidor.

Cuando se habla de aplicaciones de 2 niveles se trata de una aplicación donde el Cliente mantiene la *lógica de presentación* y de *negocio*, y el Servidor únicamente gestiona los *datos*.

Suelen ser aplicaciones cerradas que supeditan las solicitudes de los procesos del Cliente al **gestor de bases de datos** que se está usando.

Arquitectura de 2 y 3 Niveles, II

En una arquitectura de 3 niveles la lógica de presentación, la lógica de negocio y la lógica de datos están separadas.

Mientras la lógica de presentación se ejecutará normalmente en la estación cliente, la lógica de negocio y la de datos pueden estar repartidas entre distintas estaciones servidor.

Suelen existir dos servidores: uno que contiene la lógica de negocio y otro que contiene lógica de datos.

Arquitectura de 2 y 3 Niveles, III

El objetivo de aumentar el No. de niveles, **en una aplicación distribuida**, es lograr una mayor independencia entre un nivel y otro, lo que facilita la portabilidad en entornos heterogéneos y la escalabilidad en caso de incorporación de nuevos clientes.

Sistemas Cliente-Servidor, I

Un sistema Cliente-Servidor suele presentar las siguientes características:

- 1. Una parte cliente también llamada **front-end** que interactúa con el usuario (interfaz) y la parte servidor o **back-end** que interactúa con los recursos compartidos (bases de datos, impresoras, módems).
- Las partes cliente y servidor tienen diferentes necesidades de recursos a la hora de ejecutarse: velocidad de procesador, memoria y capacidad disco(s) duro(s), dispositivos de entrada/salida, etc.

Sistemas Cliente-Servidor, II

- 3. El entorno suele ser heterogéneo y multi-vendedor (vendor) (hardware y software de distintos fabricantes). El Hardware y sistema operativo del cliente y el servidor suelen diferir.
- 4. El cliente y el servidor se suelen comunicar a través de una Application Program Interface (API) y Remote Procedure Call (RPC) conocidas.
- Normalmente la parte cliente se implementa permitiendo la introducción de datos a través de teclado, ratón, lápiz óptico, etc.

Juan Carlos Conde R. juanc.conde@cs.buap.mx