CS 225

Data Structures

April 29 — Floyd-Warshall's Algorithm Wade Fagen-Ulmschneider, Craig Zilles

Q: How does Dijkstra handle negative weight cycles?

Q: How does Dijkstra handle negative weight cycles?

Q: How does Dijkstra handle negative weight cycles?

Shortest Path (A \rightarrow E): A \rightarrow F \rightarrow E \rightarrow (C \rightarrow H \rightarrow G \rightarrow E)*

Length: 12 Length: -5 (repeatable)

Q: How does Dijkstra handle negative weight edges, without a negative weight cycle?

Q: How does Dijkstra handle a single heavy-weight path vs. many light-weight paths?

What is Dijkstra's running time?

```
DijkstraSSSP(G, s):
     foreach (Vertex v : G):
       d[v] = +inf
       p[v] = NULL
     d[s] = 0
10
     PriorityQueue Q // min distance, defined by d[v]
11
     Q.buildHeap(G.vertices())
12
                      // "labeled set"
13
     Graph T
14
15
     repeat n times:
16
       Vertex u = Q.removeMin()
       T.add(u)
17
       foreach (Vertex v : neighbors of u not in T):
18
         if cost(u, v) + d[u] < d[v]:
19
20
           d[v] = cost(u, v) + d[u]
21
           p[v] = m
22
23
     return T
```

Floyd-Warshall's Algorithm is an alterative to Dijkstra in the presence of negative-weight edges (not negative weight cycles).

```
FloydWarshall(G):
     Let d be a adj. matrix initialized to +inf
     foreach (Vertex v : G):
       d[v][v] = 0
     foreach (Edge (u, v) : G):
       d[u][v] = cost(u, v)
10
11
12
     foreach (Vertex u : G):
13
       foreach (Vertex v : G):
14
          foreach (Vertex w : G):
            if d[u, v] > d[u, w] + d[w, v]:
15
16
              d[u, v] = d[u, w] + d[w, v]
```

```
FloydWarshall(G):
     Let d be a adj. matrix initialized to +inf
 7
     foreach (Vertex v : G):
 8
       d[v][v] = 0
     foreach (Edge (u, v) : G):
10
       d[u][v] = cost(u, v)
11
12
     foreach (Vertex u : G):
13
       foreach (Vertex v : G):
14
         foreach (Vertex w : G):
            if d[u, v] > d[u, w] + d[w, v]:
15
              d[u, v] = d[u, w] + d[w, v]
16
```

	Α	В	С	D
A				
В				
С				
D				


```
foreach (Vertex u : G):
    foreach (Vertex v : G):
        foreach (Vertex k : G):
        if d[u, v] > d[u, k] + d[k, v]:
        d[u, v] = d[u, k] + d[k, v]
```

	Α	В	С	D	
Α	0	-1	∞	∞	
В	∞	0	4	3	
С	∞	∞	0	-2	
D	2	∞	∞ •	0	
A 3 C					

Let us consider k=A:

	Α	В	С	D
Α	0	-1	∞	∞
В	∞	0	4	3
С	∞	∞	0	-2
D	2	∞	∞ (B)	0
		-1	B	4 C

```
foreach (Vertex u : G):
    foreach (Vertex v : G):
        foreach (Vertex k : G):
        if d[u, v] > d[u, k] + d[k, v]:
        d[u, v] = d[u, k] + d[k, v]
```

	Α	В	С	D	
Α	0	-1	∞	∞	
В	∞	0	4	3	
С	∞	∞	0	-2	
D	2	1	∞ •	0	
-1 B 4 C					

Let us consider k=B:

vs. $A \rightarrow B \rightarrow C$

vs. $A \rightarrow B \rightarrow D$

vs. $(C) \rightarrow (B) \rightarrow (A)$

vs. $(C) \rightarrow (B) \rightarrow (D)$

vs. $D \rightarrow B \rightarrow A$

vs. $D \rightarrow B \rightarrow C$

	А	В	С	D
A	0	-1	∞	∞
В	∞	0	4	3
С	∞	∞	0	-2
D	2	1	∞ (►)	0
		-1	B	4

Consider a graph G with vertices V numbered 1 through N.

Consider the function shortestPath(i, j, k) that returns the shortest possible path from i to j using only vertices from the set {1,2, ...,k} as intermediate vertices.

Clearly, shortestPath(i, j, N) returns ______

For each pair of vertices, the shortestPath(i, j, k) could be either

(1) a path that **doesn't** go through k (only uses vertices in the set {1, ..., k-1}.)

(2) a path that **does** go through k (from i to k and then from k to j, both only using intermediate vertices in $\{1, ..., k-1\}$

If w(i,j) is the weight of the edge between vertices i and j, we can recursively define shortestPath (i,j,k) as:

```
shortestPath(i, j, 0) = // base case
shortestPath(i, j, k) = min( // recursive
)
```

If w(i,j) is the weight of the edge between vertices i and j, we can recursively define shortestPath (i,j,k) as:

```
shortestPath(i, j, 0) = w(i, j) // base case

shortestPath(i, j, k) = min( shortestPath(i, j, k-1), // recursive

shortestPath(i, k, k-1) + shortestPath(k, j, k-1))
```

Running Time?

```
FloydWarshall(G):
     Let d be a adj. matrix initialized to +inf
     foreach (Vertex v : G):
       d[v][v] = 0
     foreach (Edge (u, v) : G):
10
       d[u][v] = cost(u, v)
11
12
     foreach (Vertex u : G):
13
       foreach (Vertex v : G):
14
         foreach (Vertex w : G):
15
            if d[u, v] > d[u, w] + d[w, v]:
16
              d[u, v] = d[u, w] + d[w, v]
```

Final Exam Review Session

- Implementations
 - Edge List
 - Adjacency Matrix
 - Adjacency List
- Traversals
 - Breadth First
 - Depth First
- Minimum Spanning Tree
 - Kruskal's Algorithm
 - Prim's Algorithm
- Shortest Path
 - Dijkstra's Algorithm
 - Floyd-Warshall's Algorithm

...and this is just the beginning. The journey continues to CS 374!