- Q.2 Let T_1 and T_2 be two distinct common tangents to the ellipse $E: \frac{x^2}{6} + \frac{y^2}{3} = 1$ and the parabola $P: y^2 = 12x$. Suppose that the tangent T_1 touches P and E at the points A_1 and A_2 , respectively and the tangent T_2 touches P and E at the points A_4 and A_3 , respectively. Then which of the following statements is(are) true?
 - (A) The area of the quadrilateral $A_1A_2A_3A_4$ is 35 square units
 - (B) The area of the quadrilateral $A_1A_2A_3A_4$ is 36 square units
 - (C) The tangents T_1 and T_2 meet the x-axis at the point (-3,0)
 - (D) The tangents T_1 and T_2 meet the x-axis at the point (-6,0)
- Q.3 Let $f:[0,1] \to [0,1]$ be the function defined by $f(x) = \frac{x^3}{3} x^2 + \frac{5}{9}x + \frac{17}{36}$. Consider the square region $S = [0,1] \times [0,1]$. Let $G = \{(x,y) \in S : y > f(x)\}$ be called the green region and $R = \{(x,y) \in S : y < f(x)\}$ be called the red region. Let $L_h = \{(x,h) \in S : x \in [0,1]\}$ be the horizontal line drawn at a height $h \in [0,1]$. Then which of the following statements is(are) true?
 - (A) There exists an $h \in \left[\frac{1}{4}, \frac{2}{3}\right]$ such that the area of the green region above the line L_h equals the area of the green region below the line L_h
 - (B) There exists an $h \in \left[\frac{1}{4}, \frac{2}{3}\right]$ such that the area of the red region above the line L_h equals the area of the red region below the line L_h
 - (C) There exists an $h \in \left[\frac{1}{4}, \frac{2}{3}\right]$ such that the area of the green region above the line L_h equals the area of the red region below the line L_h
 - (D) There exists an $h \in \left[\frac{1}{4}, \frac{2}{3}\right]$ such that the area of the red region above the line L_h equals the area of the green region below the line L_h

JEE (Advanced) 2023 Paper 1

SECTION 2 (Maximum Marks: 12)

- This section contains **FOUR (04)** questions.
- Each question has FOUR options (A), (B), (C) and (D). ONLY ONE of these four options is the correct answer.
- For each question, choose the option corresponding to the correct answer.
- Answer to each question will be evaluated according to the following marking scheme:

: +3 If **ONLY** the correct option is chosen; **Full Marks**

: 0 If none of the options is chosen (i.e. the question is unanswered); Zero Marks

Negative Marks: -1 In all other cases.

- Q.4 Let $f:(0,1)\to\mathbb{R}$ be the function defined as $f(x)=\sqrt{n}$ if $x\in\left[\frac{1}{n+1},\frac{1}{n}\right]$ where $n\in\mathbb{N}$. Let $g:(0,1)\to\mathbb{R}$ be a function such that $\int_{2}^{x}\sqrt{\frac{1-t}{t}}dt < g(x) < 2\sqrt{x}$ for all $x\in(0,1)$. Then $\lim_{x\to 0} f(x)g(x)$
 - (A) does **NOT** exist
 - (B) is equal to 1
 - (C) is equal to 2
 - (D) is equal to 3
- Q.5 Let Q be the cube with the set of vertices $\{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_1, x_2, x_3 \in \{0, 1\} \}$. Let F be the set of all twelve lines containing the diagonals of the six faces of the cube Q. Let S be the set of all four lines containing the main diagonals of the cube O; for instance, the line passing through the vertices (0,0,0) and (1,1,1) is in S. For lines ℓ_1 and ℓ_2 , let $d(\ell_1,\ell_2)$ denote the shortest distance between them. Then the maximum value of $d(\ell_1, \ell_2)$, as ℓ_1 varies over F and ℓ_2 varies over S, is
 - (A) $\frac{1}{\sqrt{6}}$
- (B) $\frac{1}{\sqrt{9}}$
- (C) $\frac{1}{\sqrt{3}}$ (D) $\frac{1}{\sqrt{12}}$
- Let $X = \left\{ (x, y) \in \mathbb{Z} \times \mathbb{Z} : \frac{x^2}{8} + \frac{y^2}{20} < 1 \text{ and } y^2 < 5x \right\}$. Three distinct points P, Q and R are Q.6 randomly chosen from X. Then the probability that P, Q and R form a triangle whose area is a positive integer, is
 - (A) $\frac{71}{220}$

- (B) $\frac{73}{220}$ (C) $\frac{79}{220}$ (D) $\frac{83}{220}$

JEE (Advanced) 2023 Paper 1

Q.7 Let P be a point on the parabola $y^2 = 4ax$, where a > 0. The normal to the parabola at P meets the x-axis at a point Q. The area of the triangle PFQ, where F is the focus of the parabola, is 120. If the slope m of the normal and a are both positive integers, then the pair (a, m) is

(A) (2,3)

(B) (1,3)

(C) (2,4)

(D) (3,4)