h_da	University of Applied Sciences	Simulation of Robotic Systems
Dr. Th. Horsch		Each summer term
Department CS		

Syllabus Introduction to Robotics – 5 CP (ECTS)

Counts as an elective for Computer Science students

Instructor: Prof. Dr. Thomas Horsch
Department: Computer Science

Office location: D14 / 208

Office hours: TBD

Phone: +49 6151 16 38457 Email: thomas.horsch@h-da.de

Homepage: https://fbi.h-da.de/personen/horsch-thomas

Teaching assistant: TBD

Recommended Textbook:

Kevin M. Lynch, Frank C. Park: Modern Robotics – Mechanics, Planning and Control (http://modernrobotics.org) available as PDF document.

Course description:

An introduction to the fundamentals of robotics. Students will learn the fundamentals of robotics, including kinematics, inverse kinematics, Jacobian, configuration space, motion planning and path planning algorithms.

The course consist of a lecture (90 minutes per week) and a lab (90 minutes per week). For the lab the simulation system CoppeliaSim from Coppelia Robotics https://www.coppeliarobotics.com/ is used, which is free for educational use. The programming is implemented in Python or C++.

Objectives:

At the completion of the course, students will know how to:

- Model the kinematics of robotic systems
- Compute end-effector position and orientation from joint angles of a robotic system
- Compute the joint angles of a robotic system to reach the desired end-effector position and orientation
- Compute the linear and angular velocities of the end-effector of a robotic system from the joint angle velocities
- Convert a robot's workspace to its configuration space and represent obstacles in the configuration space
- Compute valid path in a configuration space with motion planning algorithms
- Apply the generated motion path to the robotic system to generate a proper motion trajectory
- Apply the learned knowledge to several robotic systems including robotic manipulators, mobile systems

Achievement of the above objectives will be measured by a student's ability to:

- Solve questions in assignments and exams on the kinematics of robotic systems
- Write programs and provide solutions to answer questions in assignments and exams to compute end-effector position and orientation from joint angles of a robotic system

h_da	University of Applied Sciences	Simulation of Robotic Systems
Dr. Th. Horsch		Each summer term
Department CS		

- Write programs and provide solutions to answer questions in assignments and exams to compute the joint angles of a robotic system to reach the desired end-effector position and orientation
- Write programs and provide solutions to answer questions in assignments and exams to compute the linear and angular velocities of the end-effector of a robotic system from the joint angle velocities
- Solve questions in assignments and exams on converting a robot's workspace to its configuration space and represent obstacles in the configuration space
- Write programs and provide solutions to answer questions in assignments and exams to compute valid path in a configuration space
- Write programs and provide solutions to answer questions in assignments and exams to generate motion path to the robotic system to generate a proper motion trajectory
- Apply the knowledge to robotic simulation systems in labs

Pre-requisites: Programming, Data Structures and Linear Systems (Algebra).

Course Topics: (at BBU in block format from 28th Sept. to 8th October 2021, 9 days)

Unit	Lecture (90 min)	Lab (90 min)	Block format at
	in the morning	in the afternoon	BBU
1	Basics of Robotics and Linear	CoppeliaSim tutorial part 1	Day 1 / Day 1
	Algebra		
2	Representing positions and	CoppeliaSim tutorial part 2	Day 1 / Day 1
	rotations		
3	Rotational transformations and	Interpolating rotational motion	Day 2 / Day 2
	parameterizations of rotations		
4	Homogeneous transformations,	Implementing homogeneous	Day 2 / Day 3
	kinematic chains	transformations, kinematic	
		chains	
5	Forward kinematics	Implementing forward	Day 3 / Day 3
		kinematics	
6	Inverse kinematics	Implementing inverse	Day 4 / Day 4
		kinematics	
7	Jacobian	Implementing inverse	Day 4 / Day 5
		kinematics via jacobian part 1	
8	Mid-term self-assessment	Implementing inverse	Day 5 / Day 5
		kinematics via jacobian part 2	
9	Trajectory design, Splines	Measuring coordinate systems	Day 6 / Day 6
10	Configuration space with	Calibration of a robot tool	Day 6 / Day 7
	examples and motion planning		
	introduction		
11	Motion planning: bug	Calculating configuration space	Day 7 / Day 7
	algorithms	for a simple robot part 1	
12	Motion planning: potential field	Motion planning with calculated	Day 8 / Day 8
	and visibility graph	configuration space	

h_da	University of Applied Sciences	Simulation of Robotic Systems
Dr. Th. Horsch		Each summer term
Department CS		

13	Motion planning: RRT, PRM	Motion planning with potential	Day 8 / Day 9
		field	
14	Mobile robot, sensors and	Motion planning with RRT or	Day 9 / Day 9
	actuators	PRM	
15	Exam (?)		(?)