Data visualization

▼ step-1 import labirary

```
1 import seaborn as sns
2 import matplotlib.pyplot as plt
```

▼ Step-2 load data set

```
1 titanic=sns.load_dataset("titanic")
2 titanic.head()
3
```

	survived	pclass	sex	age	sibsp	parch	fare	embarked	class	who	adult_male	deck	embaı
0	0	3	male	22.0	1	0	7.2500	S	Third	man	True	NaN	South
1	1	1	female	38.0	1	0	71.2833	С	First	woman	False	С	Ch
2	1	3	female	26.0	0	0	7.9250	S	Third	woman	False	NaN	South
3	1	1	female	35.0	1	0	53.1000	S	First	woman	False	С	South
4	0	3	male	35.0	0	0	8.0500	S	Third	man	True	NaN	South

▼ Step 3 plot a graph

```
1 sns.lineplot(x="fare",y="age",data=titanic)
2 plt.xlim(3)
3 plt.ylim(4)
4 plt.title("Check")
5 plt.show()
```

▼ Bar Plot

```
1 df = sns.load_dataset("titanic")
2 sns.barplot(data=df, x="age", y="fare")
```

<Axes: xlabel='age', ylabel='fare'>

▼ Boxplot

1 df = sns.load_dataset("titanic")
2 sns.boxplot(x=df["fare"])

<Axes: xlabel='fare'>

▼ Scattor plot

1 sns.scatterplot(data=titanic, x="age", y="fare")

<Axes: xlabel='age', ylabel='fare'>

▼ Cat plot

```
1 df = sns.load_dataset("titanic")
2 sns.catplot(data=df, x="fare", y="class")
```

<seaborn.axisgrid.FacetGrid at 0x7fc5bf9a1330>

1 sns.displot(data = titanic , x = "fare" , hue = "sex", hue_order = ['female', 'male'])

<seaborn.axisgrid.FacetGrid at 0x7fc5bf8ffb50>

1 sns.heatmap(data = titanic.corr())

```
<ipython-input-68-f4da9c94fae6>:1: FutureWarning: The default value of numeric_only in DataFrame.corr i
       sns.heatmap(data = titanic.corr())
1 import seaborn as sns
2 sns.set_theme()
4 mpg = sns.load_dataset("mpg")
5 sns.catplot(
      data=mpg, x="cylinders", y="acceleration", hue="weight",
      native_scale=True, zorder=1
7
8)
9 sns.regplot(
      data=mpg, x="cylinders", y="acceleration",
10
11
       scatter=False, truncate=False, order=2, color=".2",
12)
13
```



```
1 import numpy as np
2 import pandas as pd
3 import seaborn as sns
4 sns.set_theme(style="whitegrid")
5
6 rs = np.random.RandomState(365)
7 values = rs.randn(365, 4).cumsum(axis=0)
8 dates = pd.date_range("1 1 2016", periods=365, freq="D")
9 data = pd.DataFrame(values, dates, columns=["A", "B", "C", "D"])
10 data = data.rolling(7).mean()
11
12 sns.lineplot(data=data, palette="tab10", linewidth=2.5)
```

<seaborn.axisgrid.JointGrid at 0x7fc5bf4d7f40>


```
import numpy as np
1
2
    import seaborn as sns
3
    import matplotlib.pyplot as plt
4
    sns.set_theme(style="dark")
5
6
    # Simulate data from a bivariate Gaussian
7
    n = 10000
8
    mean = [0, 0]
    cov = [(2, .4), (.4, .2)]
9
10
    rng = np.random.RandomState(0)
    x, y = rng.multivariate_normal(mean, cov, n).T
11
12
13
    # Draw a combo histogram and scatterplot with density contours
    f, ax = plt.subplots(figsize=(6, 6))
14
    \verb|sns.scatterplot(x=x, y=y, s=5, color=".15")|\\
15
    sns.histplot(x=x, y=y, bins=50, pthresh=.1, cmap="mako")
16
17
    sns.kdeplot(x=x, y=y, levels=5, color="w", linewidths=1)
18
19
₽
```


Colab paid products - Cancel contracts here