ARCJET THRUSTER RESEARCH AND TECHNOLOGY

PHASE II FINAL REPORT NAS 3-24631 91-R-1475

Prepared for:

NASA Lewis Reserach Center 21000 Brook Park Road Cleveland, OH 44135

Prepared by:

Rocket Research Company 1141 Willows Road N.E. P.O. Box 97009 Redmond, WA 98073-9709

Document No.	91-R-1475
Date:	March 14, 1991
Prepared by:	S. E. Yano Senior Development Engineer
Approved by:	S. C. Knowles

Program Manager

•	•		

DOCUMENT REVISION RECORD DOCUMENT NO. 91-R-1475

DOCUMENT NO.				
REVISION AND DATE	DESCRIPTION OF CHANGE/ REVISION AND PAGES AFFECTED	EFFECTIVITY		
Orig. 3/14/91		Orig. 10/8/91		
	·			

TABLE OF CONTENTS

Section		Page
	Forward	i
1.0	SUMMARY	
2.0	INTRODUCTION	
3.0	RESULTS AND DISCUSSION	3-1
	3.1 Arcjet Flight Requirements Study	
	3.2 Research and Technology Development	
	3.3 Engineering Model Arcjet System Development	
	3.4 Arcjet System Testing	
4.0	CONCLUSIONS	
5.0	REFERENCES	

LIST OF FIGURES

Figure	Page .
2-1	Phase II Flow Plan
3-1	Arcjet System Interrelationships
3-2	Mission Code Flow Chart
3-3	Isp Versus Arcjet On Time3-4
3-4	Thrust Vs Arcjet On Time
3-5	Effect of Satellite Mass on Fuel Required
3-6	Effect of Power Supplied on Arcjet On Time
3-7	Development Arcjet Design
3-8	Low Power Hydrazine Development Arcjet3-11
3-9	Electric Propulsion Vacuum Chamber and Pumping Train Layout
3-10	Thrust Stand
3-11	RRC Null Balance Thrust Stand
3-12	Test Control Bay
3-13	Propellant System Schematic
3-14	Rocket Research Company Hydrazine Analytical Form for Hydrazine
	Meeting MIL-P-26536, Amendment 23-19
3-15	Cathode Testing Thruster Geometry3-21
3-16	NASA LeRC LPAJ Cathode Erosion Summary
3-17	Test 23 Cathode
3-18	Test 23 Dimensional Inspection3-26
3-19	Cathode Mass Loss Versus Cathode Diameter3-27
3-20	Post-Test Cathode Geometries3-29
3-21	Cathode Mass Loss Versus Average Pc3-30
3-22	Cathode Regions
3-23	Surface Energy Exchange
3-24	Cathode Energy Flux
3-25	Cathode Surface Temperature
3-26	Cathode Electron Current Density3-29
3-27	Cathode Electron Current
3-28	Cathode Surface Mass Flux
3-29	Cathode Model Mass Loss Comparison3-43
3-30	DC/Dynamic Arcjet Characteristics
3-31	Arcjet EMI Test Setup3-46
3-32	CE01 Ambient Test
3-33	CE03 Ambient Test
3-34	CE01 Operating Test
3-35	CE03 Operating Test — Broadband Scan
3-36	CE03 Operating Test — Narrowband Scan
3-37	Impedance Mapping Test Equipment Configuration3-54
3-38	Impedance Mapping Test Setup3-55
3-39	Background Noise Measurements3-57
3-40	Signal Measurements

LIST OF FIGURES (Continued)

Figure	<u>-</u>	Page
3-41	Normalized Impedance	3-59
3-42	Normalized Impedance	
3-43	Arcjet Steady-State Complex Impedance	
3-44	Normalized Impedance, S/N 34	
3-45	Normalized Impedance, S/N 35	
3-46	Impedance Magnitude at 1 kHz, Ohms, Arcjet S/N 34	3-64
3-47	Impedance Magnitude at 1 kHz, Ohms, Arcjet S/N 35	3-64
3-48	Frequency of Negative Real Impedance kHz, Arcjet S/N 34	3-65
3-49	Frequency of Negative Real Impedance kHz, Arcjet S/N 35	3-65
3-50	Hydrazine Arcjet System Schematic	3-66
3-51	Mission Thrust and Specific Impulse Variation	3-68
3-52	Typical Arcjet System Grounding Schematic	3-70
3-53	Benchmark Arcjet V/I SCR Traces	3-72
3-54	Benchmark Arcjet Nozzle Inlet Angle	3-72
3-55	Benchmark Performance Map Results	3-74
3-56	Benchmark Performance Map	3-75
3-57	SS Life Test Data, 200 Hours, Cathode Length Reduction Vs. Test	
	Time	3-76
3-58	SS Life Test Data, 200 Hours, Voltage Change Vs. Test Time	3-77
3-59	Preshaped Cathode Geometry	3-78
3-60	Preshaped Cathode Test Voltage History	3-79
3-61	Emissivity Sleeve Test-Measured Temperature	3-80
3-62	Arcjet Design Envelope Comparison	3-83
3-63	Arcjet Conceptual Design Considerations	3-84
3-64	Hydrazine Arcjet Temperature Distribution	3-87
3-65	EB Weld Joint: Mo/41 Re to W/25 Re	
3-66	EB Weld Joint: Mo/41 Re to W100	
3-67	Typical Reflectance Plot	
3-68	CVD Sample Surface Characteristics	
3-69	TiC Plasma Spray Sample Surface Characteristics	
3-70	Arcjet Random Vibration Spectrum	
3-71	Exploded View of Arcjet Finite Element Model	3-97
3-72	Y-Axis Random Excitation, All Stress Contours Represented	3-98
3-73	Arcjet Thruster Design Description	. 3-101
3-74	Arcjet Cross Section	
3-75	Engineering Model, Low Power Hydrazine Arcjet	. 3-104
3-76	Cable Assembly	. 3-105
3-77	PCU Receptacle	. 3-106
3-78	RRC P/N 30877, RRC Component Spec. CS-0227	. 3-107
3-79	Triaxial Power Cable	
3-80	Arcjet PCU Block Diagram	
3-81	System Development	

LIST OF FIGURES (Concluded)

Figure	<u>Page</u>
	0.115
3-82	Development PCU3-115
3-83	Development PCU Startup Waveforms3-117
3-84	PCU Startup Failure – Low Initial I
3-85	Development PCU Efficiency3-121
3-86	PCU Switching Losses
3-87	Power Supply vs Battery Input Source Comparison
3-88	PCU EMI/Efficiency Test Setup3-129
3-89	PCU Baseline EMI Performance CE03 Narrowband 3-130
3-90	Input Filter Designs3-131
3-91	Inductor L ₁ Design
3-92	Inductor L ₂ Design
3-93	PCU EMI Performance After Modifications3-135
3-94	Qualification Life Testing of Arcjet system 3-139
3-95	Arcjet Firing Instrumentation3-142
3-96	Life Test Blowdown Curve
3-97	I _{sp} Versus Feed Pressure3-143
3-98	NASA Lewis S/N 1 Performance Map – Flow Rate Vs. Feed Pressure 3-145
3-99	NASA Lewis S/N 1 Performance Map – Thrust vs Flow Rate3-146
3-100	Arcjet Voltage Versus Current3-147
3-101	Arc Breakdown3-148
3-102	Arcjet Startup Stabilization3-148
3-103	Startup Voltage Variation3-149
3-104	Arcjet Vibration Test Setup3-150
3-105	S/N 001 Cathode Tip After Firing & S/N 001 Cathode Insulators After
	Firing
3-106	Arcjet System Test Setup3-155
3-107	S/N 2 Arcjet Assembly
3-108	NASA Arcjet S/N 2 Baseline Performance Map, Isp Vs. Feed Pressure 3-158
3-109	NASA Arcjet S/N 2 Baseline Performance Map, Flow Rate Vs. Feed
	Pressure
3-110	NASA Arcjet S/N 2 Baseline Performance Map, Thrust Vs. Flow Rate 3-159
3-111	NASA Arcjet S/N 2 Baseline Performance Map, PCU Efficiency Vs.
	Voltage
3-112	Dual Injector Gas Generator Test Setup3-161
3-113	Gas Generator Test Data3-162
3-114	Dual Injector GG Valve
3-115	Arcjet System Life Test, Thrust Vs. Life
3-116	Arcjet System Life Test, Isp Vs. Life
3-117	NASA Arcjet S/N 2, Isp Vs. Time
3-118	Arcjet System Life Test, Arc Voltage and Current Vs. Life3-170

•			

LIST OF TABLES

Table	<u>Page</u>
2-1	Arcjet System Flight Requirements2-1
3-1	Mission Input/Output Parameters3-5
3-2	Data Acquisition Configuration
3-3	Data Uncertainty
3-4	Cathode Erosion Testing3-22
3-5	Test Results: Arc Current Variation
3-6	Test Rests: Chamber Pressure Variation3-28
3-7	Model Assumptions3-36
3-8	Cathode Model Input, Baseline Geometry3-42
3-9	Arcjet System Mission Parameters3-67
3-10	Arcjet System Performance Requirements3-68
3-11	Arcjet System Environmental Requirements3-68
3-12	Interface Requirements3-69
3-13	Arcjet Heat Loss Summary3-81
3-14	AJT Thermal Design Features3-86
3-15	High Emissivity Coating Measurements3-91
3-16	Three-Sigma Stresses and Margins of Safety Based on Qualification
	Level Random Excitation3-99
3-17	Frequencies and Modes of the Arcjet Assembly3-99
3-18	Arcjet Weight Summary3-103
3-19	Cable Acceptance Test Requirements3-110
3-20	PCU Functional/Performance Requirements3-111
3-21	Development PCU Test Summary3-116
3-22	Development PCU Start Up Test Data3-119
3-23	Arcjet Development PCU Efficiency Measurements 3-120
3-24	Arcjet PCU Efficiency Improvement Activities3-123
3-25	Acceptance Test Matrix: Engineering Model PCU3-125
3-26	PCU S/N 001 Acceptance Test Data Summary3-127
3-27	Circuit Modification Evaluation Matrix3-131
3-28	EMI Results Summary3-138
3-29	Calculated Data Uncertainty3-141
3-30	Specific Impulse at Varying Arcjet Power3-147
3-31	Thermal Mapping Results3-147
3-32	Qualification Vibration Levels3-151
3-33	Random Vibration Peak Stresses
3-34	Measured and Predicted Natural Frequencies3-152
3-35	S/N 001 Thruster Test History3-153
3-36	Dual Injector Gas Generator Temperature Data3-163
3-37	Dual Injector Gas Generator – Demonstrated Lifetime3-163
3-38	Arcjet System Life Test Measured System Characteristics3-168
3-39	Arcjet System Life Test Summary3-171
4-1	Design Summary4-1

FORWARD

The work described in this report was performed by Rocket Research Company (RRC) under Phase II of contract NAS3-24631 for the Lewis Research Center (LeRC) of the National Aeronautics and Space Administration. The reporting period covers the time between March 1987 and February 1990. Dr. F. M. Curran of NASA was the program technical Manager.

The work was accomplished under the direction of S. C. Knowles. The persons having principle program responsibilities were:

Development Engineering: S. E. Yano

Arcjet Design: J. Keck

N. R. Arnot

Materials: A. W. Voigt

Structural Analysis: J. K. Baker

Thermal Modeling: S. P. Dutt

Component Development: M. A. Borden

Cathode Modeling: Dr. G. W. Butler

Testing: R. S. Aadland

S. E. Yano

GG Development: S. S. Richards

S. E. Yano

Manufacturing Engineering: C. J. Henninger

Rocket Research Company would like to acknowledge the research work done at the NASA LeRC which contributed greatly to the success of this program. The open exchange of information and ideas which occurred throughout the program maximized the rate at which the arcjet technology was developed.

	•	

1.0 SUMMARY

This report documents the results of work performed by Rocket Research Company (RRC) during Phase II of contract NAS 3-24631, under the technical direction of the NASA Lewis Research Center. Phase II concludes the efforts under this contract. Phase I of this effort was described in NASA CR-182107. The principle objective of Phase II was to produce an engineering model N₂H₄ arcjet system which met typical performance, lifetime, environmental, and interface specifications required to support a 10-year N-S stationkeeping mission for a communications spacecraft. The system includes an N₂H₄ arcjet thruster, power conditioning unit (PCU), and the interconnecting power cable assembly. This objective was met with the successful conclusion of an extensive system test series. Figure 1-1 summarizes the key program accomplishments.

Following Phase I, the main technology issue remaining was the thruster lifetime. Experimental and analytical investigations of the critical cathode erosion mechanisms conducted at RRC and NASA produced an optimized configuration with acceptably low erosion rates. Additional technology development efforts were focused on characterizing the arc dynamic impedance and the arc EMI noise spectrum to support PCU design activities.

The engineering model system design work began with a survey of potential mission requirements and environments. This led to a system specification which covered performance, lifetime, environmental, and interface requirements for a system drawing 1400 W from a 2,000-kg spacecraft with a 10-year lifetime. The mission analyses assumed two such systems would be operated simultaneously.

The design activities for the arcjet and PCU were conducted in parallel. The arcjet design had to maintain the critical electrode geometries determined from prior technology work while meeting the imposed flight structural, thermal, and material constraints. Detailed structural and thermal finite element models were created to ensure design compliance. Process development was required for refractory metal weld and braze joints, and for a high emissivity coating applied to the arcjet barrel. Power cable and connectors were developed to transmit the power from the PCU to the arcjet. Two complete assemblies were produced. Performance data taken before and after successful qualification vibration tests showed no change.

A development PCU was built and tested. The design was based on previous work done at NASA and on Phase I results. This unit was used to verify stability margins, refine the start circuit, and support initial engineering model thruster tests. Over 1000 starts were accumulated on a single thruster with this PCU. The engineering model design was then created which addressed packaging, construction, and environmental issues typical of flight electronics. Two units were assembled and subjected to extensive standalone functional, thermal, and vibration testing. All design requirements were met with the exception of EMI. As a result, additional work was conducted to more fully diagnose the cause of the problem.

OU DEVEL

301

Substantial reductions in the noise levels were achieved through a redesign of several filtering circuits.

The arcjet, PCU, and power cable assemblies were integrated for system design verification testing. The entire system was mounted on a thrust stand inside a vacuum chamber. Performance and startup tests were completed. The data agreed with previous development results. Thermal data were acquired which were in agreement with analysis predictions. Conservative temperature margins were present throughout. System operation was verified over the full ranges of input feed pressures and battery voltages assumed. The final system test conducted was an 800-hour automated duty cycle life test. The feed pressure was incrementally decreased to simulate the spacecraft blowdown. Periodic performance mapping data were used to calculate a mission average specific impulse of 456 seconds.

The only difficulty encountered was at approximately 685 hours into the test when the gas generator began to degrade. The problem had been anticipated, and a parallel development effort started to build and test an alternate gas generator configuration. This second unit successfully completed over 900 hours of duty cycle operation in a separate test. Unfortunately, at the time the gas generator was selected for the system life test, it was not known which design was better. The degraded gas generator was replaced and the system life test completed without incidence.

The successful completion of this technology development effort demonstrated that the low power N₂H₄ arcjet system is mature enough to be used for flight applications.

2.0 INTRODUCTION

The low power hydrazine arcjet can provide significant propellant savings for space missions requiring large delta velocity changes. These benefits are achieved because of the high specific impulse levels produced. Electrical energy from the spacecraft is coupled into the gas by establishing an arc through the thruster throat. The arc heats the hydrazine decomposition products to very high temperatures, resulting in specific impulse levels 200 to 500 seconds higher than existing thruster control systems.

Near-term application of this technology will be for N-S stationkeeping on geosynchronous communications spacecraft. Propellant savings can be greater than 100 kg over existing bipropellant systems. (1) To support such missions, arcjet lifetimes need to be from several hundred to over 1000 hours, depending on the power available and the spacecraft mass. Individual firing durations will typically be determined by the depth of discharge limit of the battery subsystem. The shorter the firing duration, the larger number of cycles necessary to provide the same total mission. Many spacecraft propellant tanks operate in a blowdown mode, so the mass flow of N₂H₄ to the arcjet would decrease with time. Typical batteries also have a range of output voltages that will be provided to the PCU. Table 2-1 summarizes the flight requirements placed on the arcjet system by these spacecraft considerations.

Table 2-1
ARCJET SYSTEM FLIGHT REQUIREMENTS

Spacecraft Input	Design Implications
Flow rate decrease due to tank blowdown	System must start and run stably over range of flow rates.
	Must operate over range of specific impulse levels to achieve mission average.
	Arc voltage will change as the flow rate decreases.
Battery voltage letdown over single firing/voltage change with life.	PCU must provide consistent start performance and stable constant output power for all input and output voltage combinations.
Power level	For a given blowdown, determines maximum mission average specific impulse. Thrust level follows.
	Affects thruster temperatures
Battery depth-of-discharge limit	Determines individual firing duration for given power.
Total required impulse	Given power level and specific impulse level desired, determines total lifetime. Total number of cycles determined by individual firing duration limit.

Phase I of this program focused on the fundamentals of arcjet operation. High specific impulse levels were demonstrated, N₂H₄ compatibility was shown, and the importance of the PCU to effective system operation was recognized. Phase II began by investigating

fundamental issues effecting cathode lifetime. Promising results led to the initiation of engineering model system development. The added complexities of meeting real-mission requirements, as outlined above, were addressed during this work. Figure 2-1 provides an overview of the Phase II tasks.

The Phase II results are described in detail in Section 3.0.

PHASE II FLOW PLAN

			,

3.0 RESULTS AND DISCUSSION

3.1 ARCJET FLIGHT REQUIREMENTS STUDY

The purpose of this subtask was to investigate the relationships which exist between the spacecraft and arcjet system characteristics. These relationships are shown schematically in Figure 3-1. Several key data were required to provide definition to the development activities. These included predictions of mission lifetime and start up requirements, operating duty cycles, and expected voltage/current characteristics for PCU input power. Additionally, it was desired to assess the dependence of the overall mission benefits on different levels of arcjet and PCU performance.

Mission analyses were performed to compute comprehensive arcjet firing profiles based on accurate mission and spacecraft assumptions. A FORTRAN code entitled MISSION was used for this purpose. A flow chart for the code is shown in Figure 3-2. The program utilizes an iterative routine to determine the propellant mass consumption to achieve the required velocity change. Arcjet performance relationships between thrust, mass flow rate, and specific impulse were computed based on test data curve fits. The flow rate profile over lifetime was based on a typical spacecraft blowdown. The program also calculates the firing duration, duty cycle, and individual firing parameters, such as incremental impulse. A summary of the inputs required and the model outputs is given in Table 3-1.

Sensitivity analyses were performed to examine the range of performance and lifetime requirements which could be reasonably anticipated. Varying ranges of arcjet power (1000 to 2000 W), satellite mass (1000 to 2000 kg), battery depth-of-discharge (DOD), and pointing accuracy requirements were analyzed for ten year satellite lifetimes. It was assumed that two arcjets were fired simultaneously at the same power.

Lifetime requirements ranged between 300 to 700 hours depending on variations in mission requirements. Figure 3-3 shows the variation of I_{sp} for different power levels given initial assumptions of a 10-year mission, 1,500 kg spacecraft, 0.05 degree pointing accuracy, and 40% battery DOD. All cases were run assuming the same beginning-of-life (BOL) and end-of-life (EOL) flow rates. This caused the specific impulse levels to increase at the higher power levels.

The number of starts, firing duration, and frequency of burns can depend on the pointing accuracy required and the DOD limit of the batteries. In all cases run, only the latter limitation was a factor. A higher effective pointing accuracy results because of more frequent, short duration burns. For all cases analyzed, startup requirements numbered less than 1,000. Burn times are on the order of 1/2 to 1 hour.

ARCJET SYSTEM INTERRELATIONSHIPS

3-2

ISP VERSUS ARCJET ON TIME

Table 3-1
MISSION INPUT/OUTPUT PARAMETERS

Input	Description
Satellite pointing accuracy	Variable
Arcjet power	Variable (PCU efficiency not included)
Satellite mass	Variable
Battery type/depth of discharge	Variable DOD (Four Ni-H ₂ cells assumed with constant 50 amp-hr rating)
Mission duration	Variable
Velocity increment	Fixed at 46 m/sec-yr
	Burn durations are short enough in length to accurately assume instantaneous correction occurs at the orbit nodes.
Arcjet flow rate vs firing life	Varies with life
	Initial/final flow rate achievable for a typical blowdown range.
	Linear decay a good approximation.
Number of arcjet systems	Fixed — two assumed

Output	Description	
Arcjet specific impulse, thrust, efficiency	Derived from empirical curve fits for each burn.	
Burn time	Per each burn and cumulative total	
Velocity increment	Per each burn and cumulative total	
Propellant consumed	Per each burn and cumulative total	
Number of arcjet starts	Cumulative	

The variation in the thrust produced as a function of the on time is shown in Figure 3-4 for the same mission assumptions described above. Figure 3-5 gives the fuel required as a function of satellite mass. Figures 3-6 shows the dependence of the arcjet firing time on the power provided.

These results helped establish the arcjet system requirements discussed in section 3.3 for the engineering model system.

3.2 RESEARCH AND TECHNOLOGY DEVELOPMENT

3.2.1 Development Hardware Design and Fabrication

The basic components of the N₂H₄ arcjet developed during the Phase I program were again utilized in Phase II. This thruster configuration was used for all testing discussed in Sections 3.2.4 Cathode Lifetime Evaluation, 3.2.6 PCU Requirements Definition, and 3.3.2 Benchmark Thruster Evaluation.

EFFECT OF SATELLITE MASS ON FUEL REQUIRED

The internal components of the arcjet and a list of materials used are shown in Figure 3-7. The overall length of the thruster is 24.4 cm and the diameter of the body is 3.1 cm. The seal design at the aft end of the arcjet was completely modified during Phase II to eliminate leakage problems which were previously experienced. A packing gland seal manufactured by Conax was incorporated. The seal is comprised of two alumina compression tubes and a crushable seal.

The complete test assembly, including arcjet, catalyst bed, propellant valve, fluid resistor, and mounting structure is shown in Figure 3-8. The catalyst bed, valve, and fluid resistor are flight qualified components used with the Electrothermal Hydrazine Thruster (EHT).

The fluid resistor is a device utilized in flight application to reduce the propellant inlet pressure from the levels typical of a spacecraft propulsion system to a range required for desired thruster performance. The fluid passes through a stack of discs which contain small spin chambers. This creates a tortuous flow path which results in dissipation of fluid energy and a reduction in pressure.

After passing through the valve, the propellant is fed into the catalyst bed. The N_2H_4 decomposes into an 800°C (1,470°F) gas mixture composed of NH₃, H₂, and N₂. The gases are vented through the gas delivery tube into the arcjet about 7.5 cm from the nozzle exit, as shown in Figure 3-7.

The anode is mated to the TZM body by a positive taper press-fit. This approach allows the same body to be used with more than one anode. The cathode is held by a TZM rod. This allows variation of the cathode material or geometry without requiring as much electrode material.

The injector support, feed block, and retaining plug are made from boron nitride, and provide electrical insulation of the cathode and its electrical connections to the aft end of the thruster. The retaining plug and cathode holder have mating threads which allow precise adjustment of the electrode gap to be made. There is an interference fit between the electrical contact and the end of the cathode holder. A graphite foil gasket is compressed between the fitting body and arcjet body to form a seal. The propellant inlet seal to the arcjet body is also made with a graphite gasket.

The modular design of the thruster proved valuable because many combinations of different critical components could be evaluated relatively quickly and inexpensively. The specific geometries of cathodes, anodes, and injectors which were tested will be discussed in subsequent sections.

A fabrication and assembly document controlled the assembly and disassembly of each thruster. The document lists part serial numbers, verifies that all assembly steps have been completed, and documents measurements for gap settings, leakage tests, and alignment runout of the cathode. All parts were thoroughly cleaned and assembled by personnel trained in clean room practices.

LOW POWER HYDRAZINE DEVELOPMENT ARCJET

3.2.2 Test Facility

All test firings were conducted in RRC's Electric Propulsion Test Facility. Each of the three vacuum cells shown in Figure 3-9 were utilized during the course of the program. Cells 10 and 11 are 2.4 m in diameter by 2.4 m long, constructed of mild steel, and are fully water jacketed to enable long duration testing of high power devices. Both cells feature integral thrust stands which are of the same design. Cell 7 is a 1.5 m diameter by 1.8 m long steel tank fitted with interior water cooled panels.

The chambers have 30.5 cm diameter vacuum flanges to provide instrumentation, power, propellant, water conditioning, and visual access to the interior. The vacuum plumbing is arranged to allow each individual chamber to be either serviced by one or two parallel Stokes 1729 mechanical vacuum pumps, rated at 6.6 m³/sec (13,950 ft³/min) each. Over the N₂H₄ flow rate range tested of 2.3 x 10E-5 kg/sec to 6.0 x 10E-5 kg/sec, the background pressure was maintained in a range of 10 to 50 mTorr. This results in a maximum vacuum pressure to thruster chamber pressure ratio of about 1 x 10E-5. Studies of vacuum effects on thrust for low Reynold's number nozzles indicate that no degradation of the measured thrust occurs in this range.⁽²⁾

Figure 3-10 shows the Cell 10 thrust stand. An identical stand is located in Cell 11. These were built at RRC and are specifically designed for testing electric propulsion thrusters. A horizontal swing arm which supports the test hardware is fixed to a stationary pylon by torsional flexures at the axis of rotation of the arm. The flexures are used to carry power, propellant, cooling water, and instrumentation signals between the pylon and swing arm. The instrumentation capabilities on the thrust stand include 50 independent channels for measurement of temperature, pressure, voltages, and currents. Additionally, these channels are used for direct control of peripheral equipment attached to the test article.

Figure 3-11 shows how the thrust stand operates. A closed-loop feedback system is used in which an LVDT position sensor provides the feedback signal to a linear actuator which imposes an equal opposing force to the arm. The thrust arm is maintained in a null position, thereby minimizing error induced by hysteresis effects. The thrust level is calculated from the measured current driving the linear actuator, which has been calibrated independently in a separate fixture. Prior to start up of a test sequence, an in-situ calibration check on the entire thrust measurement system is made using hanging weights.

Each of the vacuum cells is permanently hard wired with an independent instrumentation system. The system is based on six-wire technology which incorporates remote excitation sensing, thereby eliminating line loss errors. Testing was monitored from a remote control bay adjacent to the test cells. All data acquisition equipment, including video monitoring of the arcjet, is located within the control bay, as shown in Figure 3-12.

All testing was controlled using an RRC personal computer based system which was programmed to remotely control external functions and record data on 16 available analog input channels. Automatic safety shutdowns were incorporated in the event a measured parameter exceeded a predetermined range. Table 3-2 summarizes the data acquisition specifications.

ELECTRIC PROPULSION VACUUM CHAMBER AND PUMPING TRAIN LAYOUT

RRC NULL BALANCE THRUST STAND

Table 3-2 DATA ACQUISITION CONFIGURATION

Input/Output:	16 analog input, 16 digital output channels.
Data Display:	Real time monitoring through CRT display and strip chart recorders.
Sampling:	230 Hz/channel rate.
	Hard/floppy disk and printed output in engineering units.

The propellant delivery system is shown in Figure 3-13. Pressurization of the N₂H₄ tank is remotely established and maintained. The propellant tank and feed lines up to the thrust stand flexure are temperature conditioned with water jackets. A short length of propellant line from the thrust stand flexure to the thruster inlet is wrapped with radiation shielding. These precautions were taken to prevent thermal flow transients which could cause flow measurement errors. A thermocouple measurement made at the inlet to the thruster assembly verified that ambient temperatures were maintained throughout the entire length of the propellant line.

Two methods of flow measurement were used. A mass flowmeter made by Micro Motion was used in all cases. This meter measures the mass flow by monitoring the Coreolis deflection of an oscillating U-tube through which the propellant flows. The meter is calibrated on a flow bench with water. The uncertainty of the measurement is $\pm 0.9\%$. A remotely operated sightglass was also fitted to the propellant tank and used only for redundant checks of the flowmeter.

Fuel analyses were made of the fuel as received and when sampled through the propellant line. The latter analysis was made prior to testing any time the system had been broken for any reason and exposed to the environment. Conformance to MIL-P-26536C, Amendment 2, High Purity grade N₂H₄ was required. An example of a completed analysis report is shown in Figure 3-14.

An analysis of the measurement uncertainty was performed. The results are shown in Table 3-3.

3.2.3 Lifetime Evaluation Testing

The purpose of this task was to better understand cathode erosion mechanisms which occur in the hydrazine arcjet and to develop a configuration which would meet the lifetime requirements. A test plan was defined to parametrically examine the influence on erosion of the following variables:

- 1. Arc current
- 2. Cathode tip shape and size
- 3. Arc chamber pressure
- 4. Arc chamber flow field

Propellant System Schematic

3-18

Figure 3-13

ROCKET RESEARCH COMPANY HYDRAZINE ANALYTICAL FORM FOR HYDRAZINE MEETING MIL — P — 26536, AMENDMENT 2

Date Sampled: /-	-25-	90 Orignator:	W-	Grout		_ Approval:	and	adlund
				tem Analysis			•	
				1581-4840		Control No.: <i>C</i>		9
Disposition of Sam	nple: _	Destroy	<u>.</u>				· · · · · · · · · · · · · · · · · · ·	
Check Upper Box For All					X	Check Up Box For A		
ANALYSES REQUESTED	снк.	ACCEPTABLE VA MONOPROPELL GRADE % BY WEIGHT		RESULTS		ACCEPTABLE V HIGH PURIT GRADE % BY WEIGHT		RESULTS
N ₂ H ₄	†	98,50 min.	N/A	%		99.00 min.	N/A	99.29 %
H ₂ O		1.00 max.	N/A	%		1.00 max.	N/A	as7 %
ин3		0.40 max.	N/A	- %		0.40 max.	N/A	0.14%
Trace Organics Excluding Aniline		0.020 max.	200	ppm		0.005 max.	50	// ppm
Aniline		0,50 max.	N/A	%		0.005 max.	50	∋ ppm
Total Nonvolatiles (NVR)		0.0020 max.	20	ppm		0,0010 max.	10	B ppm
Particulate		1 mg/L max.	N/A	mg/L		1 mg/L max.	N/A	c mg/L
Corrosivity		0.00125 % Fe max	. 12.5	ppm		0.00125 % Fe max	c. 12,5	2,5 ppm
Chloride		0,0005 max.	5	ppm		0,0005 max.	5	2.2 ppm
Iron		0.0002 max.	2	ppm		0,0002 max.	2	/.3 ppm
co ₂		0.0030 max.	30	ppm		0,0030 max.	30	. 13 ppm
Silicon (OPTIONAL)		0.000005 max.	0.05	ppm	yes	0,000005 max.	0.05	0.0Z ppm
		1		1	1	a .		1

Table 3-3 DATA UNCERTAINTY

Parameter	Symbol	Measurement Technique	Accuracy in Measured Range (±%)
Flow Rate	m	Micromotion Mass Flowmeter	0.9
Flow Rate	ṁ	Propellant Tank Sightglass	0.6
Propellant Feed Pressure GG Outlet Pressure	P _r P _c	Transducer	0.8
Temperatures	T	Chromel-Alumel Thermocouples	1.0
Thrust	F	Null Balance Thrust Stand	1.5
Arc Voltage	V _{DC}	Voltage Divider	0.5
Arc Current	I	Current Probe	1.0
Reduced Data			
Power (Arcjet)	$P_{\mathbf{N}}$		1.1
Specific Impulse	I _{sp}		1.7
Efficiency (Arcjet)	ŪΑJ		3.3

Tests were run for durations of 20 hours. For concepts which proved attractive, additional 20-to 50-hour runs were made. Voltage, current, chamber pressure, and thruster temperatures were measured. Cathode inspections were made before and after the tests to assess tip geometry changes and mass loss. The mass loss measurements served as the primary basis of erosion comparison.

Figure 3-15 shows the thruster dimensions which were varied to produce the desired operational changes and the component materials used. Table 3-4 describes the actual geometric and operational variations which were tested. The test number designations in Table 3-4 are referred to throughout this section. Fifteen different configurations were evaluated with a total of 290 testing hours accumulated. A graphical summary of how each of the thruster configurations performed is shown in Figure 3-16 where cathode mass loss is graphed against the number of coulombs that passed through the electrodes.

A baseline configuration (Test 20) was selected which consisted of a 0.178 cm (0.070 in) diameter cathode with 100 degree tip angle, 0.076 cm (0.030 in) diameter by 0.076 cm (0.030 in) long anode throat, and vortex injection consisting of 5 hemispherical shaped ports with radius size of 0.051 cm (0.020 in). The baseline operating conditions were at constant 16 amps current and 5.0 x 10E-5 kg/sec flow rate. The baseline test results were compared to each of the subsequent parametric variations. In all the configurations, the gap setting established the same axial position of the extreme tip of the cathode with respect to the anode.

CATHODE TESTING THRUSTER GEOMETERY

- D_C = CATHODE DIAMETER
- θ_{C} = CATHODE TIP ANGLE
- Dt = ANODE THROAT DIAMETER
- Lt = ANODE THROAT LENGTH
- Li = AXIAL INJECTION LOCATION
- D_i = INJECTION PORT DIAMETER (SPHERICAL CROSS SECTION)
- $R_i = INJECTION PORT RADIUS (HEMISPHERICAL CROSS SECTION)$

Table 3-4
CATHODE EROSION TESTING

Effect	Test No.	I (amps)	m (kg/s)	Cathode	Anode	Injector	Comments
Current	20 22 23	16 12 20	5.0 x 10 ⁻⁵	0.178" ¢, 100° tip angle	0.178" φ, 100° tip angle 0.076 cm φ x 0.076 cm L 5 x 0.051 cm R ports		Baseline geometry Low current high current
Cathode diameter, cone angle	24 25 32 38	16		0.305 cm φ , 100° tip 0.127 cm φ , 100° tip 0.305 cm φ , 60° tip 0.635 cm φ , 50° tip			Large diameter Small diameter Large diameter, sharp tip Ultra-large dia., sharp tip
Arc chamber pressure/flow field	26 27 28			0.178 cm φ, 100° tip	0.084 cm φ x 0.084 cm L 0.064 cm φ x 0.064 cm L 0.076 cmφ x 0.076 cm L	5 x 0.043 cm ϕ inlet ports	Low pressure High pressure Alternate design Upstream injector
Additional tests	36 33 40	—		0.305 cm φ, 100°tip Test 24 cathode Test 38 cathode	0.064 cm φ x 0.064 cm L Test 24 anode Test 38 anode	5 x 0.051 cm R ports Large diam./high pressure Test 24 injector 20 additional hrs Test 38 injector	Large diam./high pressure 20 additional hrs ss 50 additional hrs ss

NASA Lerc LPAJ CATHODE EROSION SUMMARY

Arc Current Variation

Tests 20, 22, and 23 showed a strong dependence of the erosion rate on the current level. Quantitative comparisons could be made through mass loss and dimensional measurements. Table 3-5 provides a summary.

Table 3-5
TEST RESULTS: ARC CURRENT VARIATION

Test	(kg/s)	Current (A)	Voltage (V, Avg.)	Power (W, Avg.)	Cathode Length Change (cm)	Cathode Mass Loss (gm)
22	5.0 x 10 ⁻⁵	12	104	1248	0.018	0.0017
20	5.0 x 10 ⁻⁵	16	105	1680	0.023	0.0030
23	5.0 x 10 ⁻⁵	20	102	2040	0.041	0.0046

The mass loss rate per unit time at 20 amps was more than double the rate at 12 amps. Measured dimensional changes supported this conclusion. Figure 3-17 shows the cathode before and after the 20 amp test. A general observation regarding all the cathodes was that the erosion was concentrated almost entirely within the crater-like region at the tip which becomes molten during operation. No evidence of chemical attack or sputtering of molten material could be identified. The dominant process affecting the erosion rate appeared to be evaporation from the molten region.

Figure 3-18 shows the dimensional change data measured for Test 23 using various inspection techniques. The primary difference between this and the other cathodes is the size of the crater at the tip. The overall reduction in length ranged from 0.018 cm to 0.041 cm for the 12 amp and 20 amp cathodes, respectively. No loss of arc stability was observed as a result of this cathode length change.

The results of this sequence strongly indicated that for cathode longevity, an advantage is gained by minimizing the current for a given power level. There are several ways to accomplish this. First, the gap setting and anode throat length have been shown to directly effect the arc voltage, with greater lengths in either dimension causing an increase in voltage. These can be adjusted within limits established by stability criteria to maximize voltage and minimize current. Second, the pressure in the arc chamber can be controlled by sizing the nozzle throat. Higher pressure increases the resistance of the arc, resulting in a voltage increase.

Cathode Geometry

Tests with cathodes of 0.127 cm (0.050 in) diameter and 0.318 cm (0.125 in) diameter were conducted during Tests 24 and 25 for comparison with the baseline case of 0.178 cm (0.070 in.). A clear correlation between lower erosion rates and increasing cathode diameter was established. Figure 3-19 shows mass loss versus diameter for each of the three tests. A total mass loss three times greater than the large diameter cathode was measured for the

TEST 23 CATHODE

BEFORE TEST 23 MAGNIFICATION = 11.2X

AFTER TEST 23 MAGNIFICATION = 11.2X

11192-89

- 20 amps
 5.0 x 10⁻⁵ kg/sec
- 0.178 cm φ
 100° INCLUDED ANGLE TIP

TEST 23 DIMENSIONAL INSPECTION (DIMENSIONS IN INCHES)

CATHODE MASS LOSS VERSUS CATHODE DIAMETER

3-27

small diameter cathode. The length changes of the small and large cathodes were $0.064~\mathrm{cm}$ and $0.015~\mathrm{cm}$, respectively.

Post-test photos of the small and large diameter cathodes are shown in Figure 3-20 for comparison. Each of the configurations was run at the same flow rate and current, and the resulting average chamber pressures varied by only ± 4 psi. Since lower evaporation rates were experienced with larger diameters at nearly the same pressure, lower tip temperatures were likely experienced. With this evidence, it was clear that the 0.318 cm (0.125 in.) diameter should be established as a minimum dimension for any future point designs.

Tests 32 and 38 evaluated larger diameter cathodes with sharper tips, as defined in Table 3-4. These cathodes produced higher initial mass loss rates than the baseline case, as shown in Figure 3-16. However, later results of a retest of the 50 degree tip cathode showed that this rate of erosion is reduced considerably when the cathode was tested beyond the initial 20 hour period. This indicated that there was an important burn-in period that must be considered when evaluating cathode loss mechanisms.

Chamber Pressure/Flow Field

The effect of pressure on the cathode erosion rate was evaluated during Tests 26 and 27. Table 3-6 shows the resulting data. The power level varies because the voltage changes with the arc chamber pressure.

Table 3-6
TEST RESULTS: CHAMBER PRESSURE VARIATION

Test No.	Low Pressure 26	Nominal 20	High Pressure 27
m (kg/s)	5.0 x 10 ⁻⁵	5.0 x 10 ⁻⁵	5.0 x 10 ⁻⁵
I (A)	16.0	16.0	16.0
Vavg (V)	96.9	105.0	128.7
Pavg (W)	1550	1480	2059
P _{c avg} (psia)	36.3	50.0	86.6
Mass loss (mg)	5.0	3.0	1.9

Cathode mass loss measurements are shown in Figure 3-21 as a function of chamber pressure. Lower rates of erosion were seen at higher chamber pressures. It was also noted, however, that are stability, as determined by the steadiness of the voltage and current strip chart traces and the exhaust plume, was poorer at higher pressures.

An alternate vortex configuration was used during Test 28 which featured injection of the gases in an alternate, upstream location compared to the baseline configuration shown in Figure 3-15. The resulting chamber pressure did not change from the baseline case. The measured cathode mass loss for this configuration was equivalent to the baseline case and therefore no notable erosion effects were directly attributed to this change. A useful result,

POST-TEST CATHODE GEOMETRIES

TEST 24

- 20 HOURS
- 16A
- 5.0 X 10⁻⁵ kg/sec
- 0.305 cm ф
- 100° INCLUDED ANGLE TIP

TEST 25

11193-73

- 20 HOURS
- 16A
- 5.0 X 10⁻⁵ kg/sec
- 0.127 cm ∮100° INCLUDED ANGLE TIP

CATHODE MASS LOSS VERSUS AVERAGE Pc

however, was that better stability characteristics of the arc were observed during this test. One hypothesis is that initiation of the vortex further upstream of the cathode may allow the flow to become more fully developed before it reaches the arc region. By doing so, recirculation or transient gas dynamic effects which may contribute to arc instability were minimized.

Additional Tests

Two additional investigations were conducted. First, a configuration combining the high pressure anode and larger diameter cathode was tested. These two effects, when tested separately, had produced the lowest erosion rates. Second, two of the large diameter cathode configurations were tested for extended periods to evaluate erosion rates past the original twenty hour time period.

Test 36 combined a 0.064 cm (0.025 in.) diameter anode with a new 0.318 cm (0.125 in.) diameter cathode with a 100-degree tip. This configuration yielded a very low cathode mass loss rate which was slightly less than the previous tests which evaluated these two effects separately. The results can be seen on Figure 3-16.

Two tests were conducted which extended the lifetime on the large diameter cathode configurations of Tests 24 and 38 to 40 and 70 hours respectively. As Figure 3-16 indicates, a much lower level of erosion was experienced on both tests after the initial twenty hours. The cathodes established a more stable geometry once this burn-in period was passed.

Cathode Investigation Conclusions

The important conclusions drawn from this testing are summarized below:

- 1. Cathode Material: Acceptable compatibility of the 2% Th/W cathode material and the hydrazine decomposition products was established. No evidence of chemical attack was detected and the overall resiliency of this material to erosion was judged to be acceptable. Therefore, no alternate materials were tested.
- 2. Cathode Geometry: Cathodes with larger diameters and larger tip angles have lower erosion rates. These geometries allow greater heat dissipation from the tip, resulting in reduced temperatures and evaporation rates. However, a sharper tip is more stable, and exhibits lower erosion rates after an initial burn-in period.
- 3. Chamber Pressure: Higher pressure in the arc chamber produces lower erosion rates. A higher pressure will reduce the net flux of evaporating particles leaving the cathode surface.
- 4. Current: Mass loss rates were found to vary linearly with current between 12 and 20 amps.
- 5. Cathode "Burn-In": The mass loss rate diminishes with firing time. When burned in, a slightly flattened tip with a small depression is produced which varies little as firing continues. The burn-in period is also characterized by a 10 to 20 V increase. Preshaping the cathode should eliminate this high rate of initial change.

3.2.4 Cathode Processes Modelling

A modelling effort was conducted in parallel with the cathode life testing. The goal was to develop an analytical tool that would generate data for direct correlation to experimental

results and aid in predicting erosion trends. A survey of existing literature on cathode erosion phenomena was made. Different erosion mechanisms, the environments to which they apply, and previous modelling approaches taken were examined. The modelling development was then carried out in a three steps:

- 1. A model describing the important processes which affect cathode erosion was constructed. The cathode and surrounding flow were examined in three discrete regions in which different energy transfer mechanisms and material phases are present.
- 2. A first-order modelling strategy was implemented which used simple but physically representative relationships and iterative numerical methods to compute quantitative results for a two-dimensional cathode. These included profiles of heat flux, surface temperature, current densities, and mass flux from the cathode surface.
- 3. Output from the model was generated and iterative refinements were made. The trends in erosion rates were compared to those observed in the parametric cathode testing. Areas of additional model refinement which could not be completed within the scope of this program were identified.

A description of the work completed under these three subtasks follows.

Physical Description of Arcjet Cathode Processes

Figure 3-22 illustrates the essential parameters of the erosion problem for a cathode operating in the diffuse or single spot mode with only one region of active attachment. There are three principal regions of interest, each separated by a boundary across which a phase change and/or chemical species change occurs:

- I. The cathode interior solid
- II. The discharge region (a single spot or a cluster of spots) solid, liquid, and vapor
- III. The external flow region (neutrals, ions, and electrons) gas.

Region I

Physical processes of importance in this region are primarily heat transfer to the surroundings via conduction in the interior (Region I to II) and conduction, convection, and radiation from the cathode surfaces (Region I to III). The nonsteady heat conduction equation governing the energy transfer process is given by:

$$\rho \ C_c \ \frac{\partial T}{\partial t} = K \nabla^2 T + q \qquad (K \text{ assumed constant})$$

where K is the cathode thermal conductivity, ρ is the density, C_c is the heat capacity, q is the rate of energy addition due to surface fluxes and internal changes, and T is the instantaneous temperature. The boundary conditions for this equation reflect the nature of the heat transfer taking place at the cathode surface or phase boundary (convection, conduction, and/or radiation). It should be noted that phase changes represent a significant investment of energy.

CATHODE REGIONS

11194-43 (1) Figure 3-22

Region II

The discharge region is central to the cathode erosion problem and is coupled directly with processes in the solid cathode body (Region I) and the neutral gas (Region III). This region will encompass the solid-liquid, liquid, and liquid-vapor phases. Each phase may have a significantly different response to the flow of current and heat input. The transition between solid and liquid occurs in the vicinity of the $T = T_m$ contour, where T_m is the melting point of the cathode alloy. The shape and location of the liquid-vapor interface depends to first order on the saturated liquid temperature, pressure, surface tension, and current flux. The pressure of the vapor above the liquid is assumed to be due to pure cathode material. A space charge layer exists above both the solid and liquid surfaces. For a negative discharge $(V_c < O)$, energetic electrons escape from the surface and essentially pass through the incoming positive ions with little interaction because the electron-ion collision cross-section is small. The slower moving ions drift under the influence of the local field to the cathode surface. Since the ion number density is much greater than the electron number density $(n_i >> n_e)$ within this thin layer (δ_s) , a net positive charge and an accompanying high intensity electric field are established. The thickness of this layer is determined by the positive ion concentration and is on the order of several mean free paths:

$$\delta_s \sim 1/(n_i d_i^2) = kT/(Pd_i^2),$$

where k is the Boltzman's constant, T is the gas/vapor temperature, P is the gas/vapor pressure, and d_i is the effective diameter of the gas/vapor ions. The field strength scales roughly as $E_c \sim V_c/d_c$ where V_c is the cathode fall potential and d_c is the length scale associated with the potential drop. This implies that the local field strength varies as $E_c \sim V_i/(kT) \times Pd_i^2$ where V_i is the ionization potential of the cathode material ($\sim V_c$). Beyond the space charge layer, a somewhat larger ion production region (δ_i) and the fully developed plasma may be found.

Figure 3-23 illustrates the basic energy transfer mechanisms occurring at the cathode surface. The most important of these are ion-surface collisions and electron-surface emission. Considering only these two processes, the energy transfer to the surface is approximately:

$$H = j_i (\alpha V_c + \Phi_o) - j_e \Phi_{eff}$$

where j_i and j_e are the ion and electron current densities, respectively, α is the ion accommodation coefficient (~1), V_c is the cathode fall potential, Φ_o is the surface work potential, and Φ_{eff} is the effective surface work potential taking into account the distribution of electron energies actually leaving the surface. The energy exchange is sufficiently intense to allow electrons to escape from the emitting surface and accelerate under the influence of the high electric field.

SURFACE ENERGY EXCHANGE

11194-43 (2) Figure 3-23

Higher current densities are achieved as a result of the space charge enhanced field. The space charge layer thickness decreases above the liquid surface due to the high vapor pressure of the cathode material. The local field is therefore intensified, increasing the local current density and the heat flux to the surface. At sufficiently high current densities and surface temperatures, a significant number of cathode ions may be ejected from the liquid surface with enough energy to escape the space charge layer. This is a modified evaporation

process and represents a principal material loss mechanism. It should be noted that the mechanism for field intensification and increased local temperature is appropriate for a single spot as well as a cluster of spots. Expressions which govern cathode mass loss are generally of the form

$$\dot{m}_{v} = C (M/T_{s})^{1/2} I_{s},$$

where m_V is the mass loss rate of cathode vapor, C is a constant, M is the molecular weight of the cathode materials, T_s is the spot temperature, and I_s is the current associated with the spot. For a given cathode material, the mass loss then varies inversely with the square root of temperature and directly with the spot current.

Region III

The solid-gas and vapor-gas interfaces shown in Figure 3-22 form the boundary between Regions I and II. Discharges along the I—III boundary most likely take the form of rapidly moving spots. At any given instant, these individual discharges present a microscale picture similar to the larger spot cluster sketched in Figure 3-22. For the operating conditions of present interest, the contributions of these microspots to the total mass loss rate will not be addressed.

The geometrical relationship between the cathode and anode not only affects the distribution of the electric field, but also the velocity field and resulting flow pressure. The gas flow provides convective cooling for the cathode surface and a source of neutral species for the ion production region of the arc just beyond the space charge layer. The flow field parameters and the cathode condition are coupled through the magnetic field which in turn results from locally high currents associated with the spot. The interaction between current density and magnetic field produces a pressure gradient given by $\Delta P = \bar{j} \times \bar{B}$, therefore, the flow field is coupled directly through the pressure to the local current density. For the same current density, a higher reservoir pressure should result in a higher vapor pressure, a smaller δ_s , and an increase in the local electric field intensity. If the total cathode current is held constant, the most probable outcome of the increase in pressure would be a reduction in spot area and an increase in spot temperature. Since the mass loss rate goes as $T^{-1/2}$, the mass loss from the cathode also decreases.

Modelling Approach

The approach taken was to model the cathode erosion using simple, physically consistent descriptions of processes coupling the three regions described in Figure 3-22. Much of the work completed focused on accurately coupling the discharge with the cathode interior (Regions I and II).

A two-dimensional, finite element heat transfer algorithm called TOPAZ 2D⁽³⁾ was used with modifications made for the boundary conditions specific to the cathode problem. This program contains algorithms to model energy exchanges across phase boundaries. Table 3-7 lists the assumptions which were made to solve for the energy balance.

Table 3-7 MODEL ASSUMPTIONS

- 1. Energy Transfer Processes
 - a. Ion collisions/neutralization at the cathode surface.
 - b. Electron cooling by emission processes.
 - c. Radiative and conductive heat transfer to or from the cathode surface.
 - d. Energy loss due to sublimation/evaporation of the cathode surface.
- 2. Simplifying Assumptions
 - a. The cathode surface discharge is thermionic.
 - b. Cathode fall voltage is constant over the discharge surface.
 - c. Total emitted current is constant.
 - d. Ambient pressure is constant.
 - e. The cathode mounting interface is assumed to remain at constant temperature.
 - f. Reasonable magnitudes for the neutral gas and plasma parameters are assumed to establish radiative and convective boundary conditions for the cathode surfaces.

The heat flux to the surface elements due to ion-surface collisions was modelled as a function of surface temperature. Mass loss was also modelled as a function of local surface temperature. The resolution in the number of discrete elements used enabled cathode geometries identical to those tested to be modelled.

The numerical method is iterative and proceeds as follows:

- 1. A temperature distribution T (r, z) is assumed for the cathode.
- 2. The cathode fall and the ion current density are calculated as a function of the surface temperature subject to the constraint that the current remain constant.
- 3. The heat flux due to the discharge is determined and the heat conduction equation is solved with the appropriate boundary and initial conditions.
- 4. The solution to the problem posed in steps 1 through 3 is obtained, and the process is repeated if convergence is not satisfactory, i.e., the temperature distribution found in 3 replaces that in 1 and the procedure repeats.

Model Results/Conclusions

The model input for the same cathode geometry as the baseline design evaluated during life testing is shown in Table 3-8. Two dimensional solutions for this case are shown graphically in Figures 3-24 through 3-28.

CATHODE SURFACE TEMPERATURE

CATHODE ELECTRON CURRENT DENSITY

CATHODE ELECTRON CURRENT

CATHODE SURFACE MASS FLUX

Table 3-8 CATHODE MODEL INPUT, BASELINE GEOMETRY

	Parameter_	Input
1.	Cathode Material	2% Thoriated Tungsten
2.	Cathode Tip Angle	100 degrees
3.	Cathode Diameter	0.178 cm (0.070 in.)
4.	Current	16 amps
5.	Cathode Side/End Wall Temperature	2000 K
6.	Radiation Field Temperature	10,000 K

Figure 3-24 shows the surface energy flux due to ion neutralization, electron emission, and cathode mass loss. The flattening of the profile near the cathode center is a direct result of the cathode mass loss. The predicted cathode temperature and electron current density for thermionic emission only are shown in Figures 3-25 and 3-26. Peak temperatures of 3700°K and current densities on the order of 10⁸ amp/m² are predicted.

Figures 3-27 and 3-28 show the current and mass loss rate as a function of normalized cathode radius. Although peak magnitudes and the integrated total current and erosion rate agree reasonably well with RRC experiments discussed previously, the trends shown near the cathode centerline still lack refinement. This is a numerical shortcoming which results from treating each surface element as a separate and independent source of current. Future efforts should focus on a better estimate of the integrated surface behavior.

Figure 3-29 shows a comparison between the model predictions and the cathode life test results for the cathode diameter variation. Good agreement in trend was achieved. The differences in absolute magnitudes shown by the model output are sensitive to assumptions made in establishing the boundary conditions, particularly the cathode interface temperature. Accurate measurement of this boundary condition would improve the model's accuracy.

Two additional areas of model development are recommended to improve the predictive capabilities of this model. First, a more accurate description of the cathode near field is required. For example, estimates of the cathode fall parameters (e.g., the electric field, space charge, and ion and electron current densities) and the physics governing the ion production zone are needed to correctly predict the heat flux to the cathode surface. The latter would require modelling the interaction of the local flow field with the discharge.

Second, a nonsteady solution could be obtained which incorporates the time dependence of the cathode boundary conditions and realistic operating constraints. In principle, this calculation could predict the location of the solid-liquid phase boundary and for sufficiently long times, would give a more accurate estimate of cathode mass loss.

CATHODE MODEL MASS LOSS COMPARISON

3.2.5 PCU Requirements Definition

Development of the power control unit (PCU) was continued during Phase II of this program. This work used as a basis the efforts conducted at NASA. (4) The PCU must start the arcjet, which requires 2000 to 4000 vdc, then transition to the steady state operating conditions of nominally 100 vdc and 15 A. A critical investigation conducted under this program in support of PCU design development was to characterize the arc as an electrical load. These data are important to ensuring that the control loop stability is adequate for the negative impedance arc. The following sections describe these characterization efforts.

3.2.5.1 Arc Stability Requirements

Figure 3-30 shows the DC voltage/current load characteristic of the arc which must be accommodated by the supply. The negative slope of the curve results from a lower arc resistance at higher DC currents due to increased levels of ionization. Superimposed on this load line, however, are two dynamic effects of interest whose characteristics are frequency dependent.

The first is the stochastic variation of arc voltage due to movement of the arc caused by gas dynamic and surface effects. This effect is of interest because of the potential EMI which can be generated on the arcjet power leads and conducted back into the PCU. Conducted EMI tests were performed per the requirements of tests CE01 and CE03 of MIL-STD 461B and 462. Measurements were made for two different thruster configurations operated over ranges of current and flow rate anticipated for flight.

The second dynamic feature of the arc is its response to a varying input current signal. To characterize this effect, complex impedance measurements were made over a frequency range of 50 Hz to 1 MHz. Again, two thruster geometries were evaluated and current and flow rate were varied.

The results from these tests are discussed in the following sections.

3.2.5.2 Arcjet Conducted EMI Test

The objective of this testing was to measure the conducted EMI generated by a low power arcjet operating on N₂H₄ propellant. The arcjet was mounted in a vacuum chamber and the test set up as shown in Figure 3-31. The current probes were clamped around the power line to the cathode of the arcjet since this line carries all the current, while the anode line, which in this system is the return line, is also grounded through the fuel line giving it more than one return path.

The arcjet was allowed to warm up and stabilize before scans were performed. After the operating parameters of the arcjet were changed, it was allowed to stabilize for about five minutes before the next data were taken.

DC/DYNAMIC ARCJET CHARACTERISTICS

CURRENT

ARCJET EMI TEST SETUP

An Eaton Ailtech Series VII EMI Data Collection System was used to measure the emissions. The system is controlled by an HP 9836 computer. This system includes a CCI-7 controller Counter Interface Unit, and three receivers covering the range of frequencies from 20 Hz to 1 GHz.

The computer software controls all receiver functions, such as bandwidth, attenuation, frequency band, sweep speed, antenna port selection, and calibration. It also collects the data and corrects it for antenna factors or probe correction factors, broadband correction, and attenuation. The corrected data are displayed as a plot on the monitor, and are also directed to a graphics printer.

The CE01 test measures conducted emissions from 20 Hz to 15 kHz. The test is performed only with narrowband measurements since broadband measurements are eliminated by MIL-STD-461B. The Empire CP-315 current probe is clamped onto the cathode line, and a scan is taken with the smallest bandwidth that can reasonably be used.

The limit levels set are 130 dBuA from 30 Hz to 2 kHz and logarithmically decrease to 86 dBuA at 15 kHz.

The CE03 test measures emissions from 15 kHz to 50 MHz. Both broadband and narrowband emissions are measured with their own respective limit levels. The test setup specifications require the use of 10-microfarad feedthrough capacitors on the input power lines. These could not be used in this setup due to difficulties induced in starting and running the arcjet. A Singer 94106-1 current probe is clamped around the cathode line.

The limits for broadband emissions start at 15 kHz at 130 dBuA/MHz and logarithmically decrease to 50 dBuA/MHz at 2 MHz and remain at 50 dBuA/MHz up to 50 MHz. The narrowband limits start at 15 kHz at 86 dBuA and logarithmically decrease to a level of 20 dBuA at 2 MHz and remain at 20 dBuA up to 50 MHz.

Ambient conducted EMI scans were made with the power supply turned on and the arcjet not operating. Figures 3-32 and 3-33 show the results. A comparison of these figures with subsequent scans shows that the background noise is well below the conducted EMI measured with the arcjet operating.

Two thrusters were tested at three fuel flow rates of 3.6×10^{-5} , 4.5×10^{-5} , and 5.5×10^{-5} kg/s, and at three DC current levels of 12.0, 16.0, and 20.0 amperes, for a total of nine operating points each.

S/N 30 had a 0.076 cm (0.030 in.) diameter, 0.076 cm (0.030 in.) long constrictor, and S/N 31 had a 0.076 cm (0.030 in.) diameter, "zero" length constrictor. The gap for each was set at 0.038 cm. All other features were identical.

CE01 AMBIENT TEST

CE03 AMBIENT TEST

Figures 3-34 to 3-36 show a typical data set. These figures are for thruster S/N 30 operating at 16.0 A and 4.5 x 10⁻⁵ kg/s fuel flow. Figure 3-34 is the narrowband graph to 15 kHz. Figure 3-35 is the broadband graph from 15 kHz to 400 MHz, and Figure 3-36 is the narrowband graph from 15 kHz to 400 MHz.

The dominating emission observed on all scans was in the 500 kHz to 10 MHz area. The noise is broadband in nature.

The emissions did not vary significantly from thruster to thruster or with the operating point. The levels start to drop off rapidly above 20 MHz. These measurements provided design guidelines in two areas. First, the data were used to help perform design trades on the arcjet power cable configuration to control radiated EMI. Second, the conducted emissions levels were considered as part of the PCU EMI design approach

3.2.5.3 Arcjet Impedance Mapping Tests

The objective of this testing was to characterize the small signal load impedance of a low power arcjet operating on N₂H₄ fuel. Chamber 10 was set up as shown in Figures 3-37 and 3-38. The HP 3577A network analyzer's output was amplified by the Krohn-Hite 7500 power amplifier, and used to modulate the arcjet's DC operating current. Voltage and current measurements were made at the test chamber passthroughs, and fed into the network analyzer's "A" and "R" inputs, respectively.

Prior to testing, a 1.0 ohm film resistor was installed in place of the arcjet. Measurements of current, voltage, and impedance were taken and the data stored in the network analyzer's memory. Subsequent impedance and admittance data were normalized with respect to this resistor to eliminate the effects of cable inductance, and voltage and current measurement errors. The reference resistor was installed again prior to testing the second arcjet, and also at the completion of this test series to verify measurement integrity.

The current probe was checked to verify that the DC current level did not effect the AC signal measurements. This was done with the power cables disconnected at the test chamber bulkhead, and terminated with the 1.0 ohm reference resistor. In addition to the power cable, 20 turns of wire were placed through the current probe window. A 4.0-ohm resistor and a 0 to 5 vdc power supply were placed in a series with the twenty turns. Voltage, current, and impedance measurements were made with 0, +20, and -20-amp turns. It was shown that there was no dependence of the AC signal on the DC current.

Two arcjets were tested. The configurations were identical except for the constrictor. Serial number 34 had a 0.076 cm (0.030-in.) diameter by 0.076 cm (0.030-in.) long throat, while serial number 35 had the same diameter throat but was a "zero" length design. The cathode, injector, and gap spacing were the same for each. The general procedure was to make the measurements listed below at each operating point for frequencies from 50 Hz to 1 MHz:

1. Voltage and current without a signal supplied. This provides a reference for the noise level in subsequent signal measurements. Both the voltage and current signal magnitudes are plotted directly, and are not normalized.

CE03 OPERATING TEST

IMPEDANCE MAPPING TEST EQUIPMENT CONFIGURATION

IMPEDANCE MAPPING TEST SETUP

SIGNAL INJECTOR SCHEMATIC

VOLTAGE PROBE SCHEMATIC

- 2. Same as 1, but the signal applied. This shows the raw data used to generate impedance and admittance plots.
- 3. Normalized impedance magnitude and phase.
- 4. Normalized impedance real and imaginary parts.
- 5. Normalized admittance real and imaginary parts.

Each thruster was tested at three fuel flow rates of 3.6 x 10⁻⁵, 4.5 x 10⁻⁵, and 5.5 x 10⁻⁵ kg/s and at three DC current levels of 12.0, 16.0, and 20.0 amperes for a total of nine operating points each.

Figures 3-39 to 3-42 show a typical data set. The data are for thruster S/N 34 operating at 16.0 amperes and 4.5×10^{-5} kg/s.

Figure 3-39 is a plot of the magnitudes of the AC voltage and current signal without the small-signal input. This represents the background noise level.

Figure 3-40 is also a plot of the magnitudes of the voltage and current signals, but with a 100 mA rms AC signal injected on top of the DC arcjet current. A comparison of Figures 3-39 and 3-40 shows the small AC signal is significantly above the ambient noise level.

Figure 3-41 is a normalized magnitude and phase plot of the arcjet impedance. The HP 3577A network analyzer generates this plot by dividing the voltage signal input by the current signal input. Figure 3-42 is a real and imaginary plot of the normalized arcjet impedance.

Both of the impedance plots give the same information. The two different representations are included to aid in the interpretation of the data. Each of the plots of Figures 3-39 to 3-42 at the same operating point were generated with a fresh data scan which accounts for any minor discrepancies between the plots.

Figures 3-43 and 3-44 show impedance data for thruster S/N 34 at two different operating points. Figure 3-45 can be compared with Figure 3-42 to see the differences between the two configurations at the same operating point. In general, the main features of the impedances measured are relatively constant.

The variations in the apparent noise seen on some of the plots is due to differences in the way the network analyzer's controls were set. The voltage and current signal receiver bandwidths and the sinusoidal frequency scan rate were changed from 10 to 1 Hz, and from 30 to 60 seconds/plot, respectively, as the test progressed.

The matrices of Figures 3-46 to 3-49 summarize the key features and trends of the measured arcjet impedances.

Figures 3-46 and 3-47 show the impedance magnitudes for thrusters S/N 34 and 35, respectively. There are three features to note. First, the average normalized impedance for both thrusters is approximately 1.0 ohm, and it varies $\pm 50\%$. Second, the impedance

BACKGROUND NOISE MEASUREMENTS

SIGNAL MEASUREMENTS

NORMALIZED IMPEDANCE

NORMALIZED IMPEDANCE

ARCJET STEADY-STATE COMPLEX IMPEDANCE

ullet TRANSITIONS FROM NEGATIVE TO POSITIVE IMPEDANCE AT $\sim 60~\text{kHz}$.

NORMALIZED IMPEDANCE

NORMALIZED IMPEDANCE

IMPEDANCE MAGNITUDE AT 1 kHz, ohms ARCJET S/N 34

11194-91A Figure 3-46

IMPEDANCE MAGNITUDE AT 1 kHz, ohms ARCJET S/N 35

11194-92A Figure 3-47

FREQUENCY OF NEGATIVE REAL IMPEDANCE, kHz ARCJET S/N 34

11194-89A

Figure 3-48

FREQUENCY OF NEGATIVE REAL IMPEDANCE, kHz ARCJET S/N 35

11194-90A

Figure 3-49

magnitude decreases as the DC current level increases. This is consistent with the known DC load line slope characteristic. Third, there does not appear to be a direct correlation between fuel flow rate and impedance magnitude.

Figures 3-48 and 3-49 show the frequency at which the real part of the impedance becomes positive for S/N's 34 and 35. Three statements can be made about this data. First, the average frequency at which the real impedance becomes positive is approximately 62 kHz, and the variation is ±5 kHz. Second, the frequency tends to increase as the DC current level decreases. Third, there does not appear to be a direct correlation with the fuel flow rate.

In addition to the variations with operating points, there were small thruster-to-thruster variations in the measured impedances. S/N 34 had an average negative normalized impedance magnitude of 0.85 ohms, and the real part turned positive at 57 kHz. S/N 35 averaged 0.84 ohms and 65 kHz, respectively.

These data were provided as inputs to the PCU design process to ensure that the control loop stability margins were adequate.

3.3 ENGINEERING MODEL ARCJET SYSTEM DEVELOPMENT

The overall objective of this task was to design and fabricate an engineering model (EM) arcjet system to demonstrate that flight requirements could be satisfied. The system, shown schematically in Figure 3-50, is comprised of the arcjet thruster assembly, power conditioning unit, and interconnecting power cable. Each of these components was designed to conform to typical flight performance, interface, and environmental requirements. A summary of the system specification requirements, design evolution, and manufacturing processes involved in the development of the arcjet system is presented in this section.

HYDRAZINE ARCJET SYSTEM SCHEMATIC

C11207-67C

Figure 3-50

3.3.1 System Performance and Interface Requirements

To determine the specification requirements, it was necessary to assess many spacecraft integration and operational issues. GE-ASD provided consulting support under a subcontract

agreement with RRC during development of the specification. The requirements were derived assuming the use of two arcjet systems to perform North-South stationkeeping.

A 90% PCU efficiency was targeted after analyzing the trade between spacecraft thermal management considerations and design predictions for efficiency optimization in a flight weight unit. With 1400 W available to each system, the arcjet power consumption is reduced by 10% to 1260 W. The thruster performance predictions were based on this power level.

The EOL flow rate was determined from known stability limits of the arcjet. For a specific thruster operating at fixed power, this limitation establishes the maximum specific impulse which can be achieved. A flow rate 20% greater than an experimentally verified minimum value was used to guarantee that acceptable arc stability would be maintained. With the EOL minimum flow rate defined and the feed pressure blowdown, the flow rate at each point in the mission profile can be calculated.

Specifications for the arcjet system were established in three categories: performance, environmental, and interface. The mission assumptions shown in Table 3-9 were input into the MISSION model described in a previous section. The model output provides a complete mission profile showing performance, operational, and cumulative parameters for each sequential firing. These data are summarized in Table 3-10.

Table 3-9
ARCJET SYSTEM MISSION PARAMETERS

Mission Lifetime	10 years
Power Available	2 systems, 1400 W each
N2H4 Blowdown	2.07 to 1.17 MPa (300 to 170 psia)
Spacecraft Mass	2000 kg BOL at GEO, with propellant
Velocity Change	46 m/sec per year
PCU Input Voltage	32-25 vdc letdown
Battery Charge	4 at 1500 W-hour full charge
Depth of Discharge Limit	60% of full charge each
Pointing Accuracy, N-S	0.05 degrees
PCU Efficiency	90 %
End of Life Flow Rate	3.86E-4 kg/sec

The total predicted operating life for each thruster system was 607 hours with 472 starts. As shown in Table 3-10, a 25% margin was added as a qualification goal. The model predictions for thrust and specific impulse over the mission duration are shown in Figure 3-51. The corresponding mission average specific impulse, computed by dividing the total impulse by the propellant consumed over the mission duration, was 450 seconds.

Table 3-10
ARCJET SYSTEM PERFORMANCE REQUIREMENTS

Specific Impulse	450 seconds mission average (434 to 484 over blowdown)
Lifetime	607 hrs. mission; 800 qualification
Start ups	472 mission, 622 qual.
Firing Duration	77 minutes (battery limit)
Total Propellant	192 kg through 2 thrusters
Total Impulse	4.34E 05 N-sec
Thrust — BOL — EOL	0.223 N 0.183 N

MISSION THRUST AND SPECIFIC IMPULSE VARIATION

11210-68 Figure 3-51

The environmental requirements were determined following a review of typical spacecraft specifications. A summary is shown in Table 3-11.

Table 3-11
ARCJET SYSTEM ENVIRONMENTAL REQUIREMENTS

Thermal	–15C to 65C
Structural	20 g rms for 2 minutes, 0.2 g ² /Hz over 20 to 2000 Hz in X, Y, and Z axes
Pressure	Atmospheric to 10-6 Torr
Outgassing	TWL: 1.0% max.; VCM: 0.1% max.
ЕМІ	MIL-STD 461/462 requirements

The structural requirements shown correspond to qualification vibration test levels. The EMI requirements (MIL-STD 461/462) include conducted emissions and susceptibility tests, measured at the PCU input, as well as radiated emissions/susceptibility.

The interface requirements are summarized in Table 3-12.

Table 3-12
INTERFACE REQUIREMENTS

Thermal — PCU — ARCJET	0.16 W/cm. ² °C nominal Minimize conductive heat transfer (<10 W)
Mechanical	PCU Envelope: 24 x 20 x 10 cm Arcjet envelope: Similar to EHT resistojet
Electrical	PCU: 25 to 32 vdc/44 to 55 A input 100 vdc/12.6 A output steady state 4000 vdc pulse start up Command on/off: 10V for 40 msec Telemetry: output V and I

For components mounted to the spacecraft requiring conductive energy dissipation, mounting provisions to improve the thermal conductivity are allowed. This is the case with the PCU. A conductance range between 1.0 and 3.0 W/in.² °C is typical and the former value was selected as a worst-case approach for PCU design temperatures. The amount of energy conducted to the spacecraft is then limited by the conversion efficiency requirement. For the arcjet thruster, conducted heat was to be kept below 10 W.

The envelope dimensions of the PCU resulted from a trade analysis between acceptable limits for integration to a spacecraft and the development risk involved with the PCU. For the arcjet, a goal of maintaining a similar envelope to the flight qualified EHT resistojet was targeted to simplify its integration.

The electrical interface is shown in Figure 3-52. Main power to the PCU's would be supplied from the spacecraft battery system through a power relay. The input voltage to the PCU was chosen to be 25 to 32 vdc. Although trends in the development of power systems have suggested that future spacecraft may run at higher bus voltages, it was felt that designing to the lower input voltage would be a worst-case approach. This is because at lower voltages, higher current handling capability of the PCU is required.

Three separate grounds were defined for the arcjet system and are shown in Figure 3-52 These are the power, command/telemetry, and chassis grounds. Isolation of these grounds is assumed to be maintained by the spacecraft.

The command and telemetry interface definition included "on/off" digital commands to the PCU and analog arcjet voltage and current telemetry.

TYPICAL ARCJET SYSTEM GROUNDING SCHEMATIC

C11222-98

Figure 3-52

3.3.2 Benchmark Arcjet Evaluation

A test program was established to evaluate several critical arcjet features and establish final definition of these components in the engineering model arcjet design. The benchmark arcjet was fabricated for this purpose, using the development hardware design described in paragraph 3.2.1.

The accomplishments were:

- 1. Final definition of cathode, anode, and injector geometries was made to deliver optimized stability characteristics
- 2. The effectiveness of cathode preshaping to enhance thruster lifetime and operational stability was demonstrated.
- 3. The use of high emissivity surfaces to reduce arcjet operating temperatures was developed and demonstrated.
- 4. High starting reliability and expected performance levels were verified.

This work is described below.

3.3.2.1 Stability and Performance Mapping

Tests were performed to establish the most stable configuration. Stability is measured by observing the variations in steady-state arc voltage and by noting the minimum operating flow rate at a given power. Several parameters were investigated.

Electrode Gap

A range of gaps between 0.051 cm (0.020 in.) and 0.076 cm (0.030 in.) were tested. Steady-state stability was reduced at the smaller gap settings and stable operation could not be maintained at as low a flow rate. During unstable periods, the traces showed voltage transients corresponding to fluctuations of the plume.

Figure 3-53 shows an example. At a 0.051 cm (0.020 in.) gap setting, perturbations in voltage occur at the low flow rate of 3.6 x 10^{-5} kg/s. The stability improves at higher flow rates. The low flow rate stability was improved at 0.063 cm (0.025 in.) and 0.076 cm (0.030 in.).

The 0.063 cm (0.025 in.) gap was selected for the engineering model thruster over the 0.076 cm (0.030 in.) gap because the start up voltages were less, and the latter configuration did not offer significantly better stability characteristics nor high enough voltages to impact the cathode erosion rates through lower current levels.

Nozzie Iniet Angle

Variations in operational stability for different anode inlet angles were investigated. Past RRC work had used a 100 degree included angle inlet. Intermediate angles of 90 and 60 degrees were tested with the benchmark thruster. Figure 3-54 shows these two configurations. Significantly greater steady state stability of the 60 degree anode was measured than with either the 90 degree anode or the 100 degree anode tested previously. Very smooth voltage traces with few or no arc perturbations were produced.

BENCHMARK ARCJET V/I SCR TRACES

Figure 3-53

BENCHMARK ARCJET NOZZLE INLET ANGLE

C11202-54

Performance Verification

Testing was conducted to verify acceptable performance levels of the benchmark arcjet and to generate characteristic flow rate and pressure drop data used for sizing the fluid resistor in the EM system. The fluid resistor is a flight component with no moving parts which acts like an orifice upstream of the propellant valve. Its sizing determines the system flow rate for given inlet and back pressure conditions.

Two fluid resistors with different ratings were installed and tested in the benchmark arcjet test setup. Performance was mapped at power levels of 1200, 1300, and 1400 W. Graphs of flow rate, chamber pressure, thrust, and specific impulse for one of these tests are shown in Figure 3-55. For this case, the flow rate was slightly higher than the targeted values for the EM system. As a result, the average specific impulse was lower than the specification requirement of 450 seconds over the blowdown of 300 to 170 psia. The proper fluid resistor rating was calculated from these data to provide the required average specific impulse.

Specific impulse versus power/flow rate is shown in Figure 3-56. These data agree with previous empirical characterizations.

3.3.2.2 Cathode Preshaping

Previous life test results at RRC and NASA LeRC have shown that a high rate of erosion occurs on a sharp cathode tip during its initial stages of firing. After this burn-in period, the tip shape becomes more stable and the corresponding erosion is reduced for the remainder of the test.

Figure 3-57 shows cathode dimensional inspection data from a 200 hour RRC test. The length change occurring between 20 and 100 hours is less than for the first 20 hours of firing. The measured arc voltage, shown in Figure 3-58, shows further evidence of a more rapid cathode geometry change during the initial 20 to 30 hour period.

A reduction in this high rate of change during the burn-in period was desired to allow operation of the EM system over a narrower range of voltage and current from beginning to end-of-life. This would simplify the design of the PCU and make it easier to maintain thruster stability. Dimensional inspection data from lifetime testing were used to assess the burned-in cathode tip geometry and incorporate its major features into initial fabrication. Figure 3-59 shows the resulting preshaped cathode as compared to the original configuration. This cathode was tested in a benchmark thruster to evaluate any arc stability effects.

A 25 hour test was completed in a duty cycle mode of 1 hour on/0.5 hour off. The test was run at a constant flow rate of 4.1 x 10⁻⁵ kg/s and a current level of 12 amps. The nominal power level was 1250 W and the measured specific impulse ranged between 450 and 460 seconds. No changes in arc stability occurred. The voltage change over the 25 hour firing duration was minimal and is shown in Figure 3-60. A change of less than 3 volts from beginning-of-life was measured. Negative slopes in the curve occurred due to small variations in flow rate and current during the test. Post-test inspection showed minimal change in cathode geometry with a measured length change of only 0.0025 cm (0.001 in.). These results, when compared to the data shown in Figures 3-57 and 3-58, show the effectiveness of the premachined tip. A 10 volt change was reduced to less than 3 volts and the cathode length change went from 0.041 cm to 0.0025 cm for the same firing period.

BENCHMARK PERFORMANCE MAP RESULTS

Benchmark Performance Map

SS LIFE TEST DATA, 200 HOURS CATHODE LENGTH REDUCTION VS. TEST TIME

SS LIFE TEST DATA, 200 HOURS VOLTAGE CHANGE VS. TEST TIME

PRESHAPED CATHODE GEOMETRY

STANDARD BENCHMARK CATHODE MAGNIFICATION = 11.5X

11202-55

PRE-SHAPED CATHODE MAGNIFICATION = 11.5X

11202-56

PRESHAPED CATHODE TEST VOLTAGE HISTORY

C11222-64 Figure 3-60

3.3.2.3 Benchmark Emissivity Testing

Development work was conducted to refine a method to improve the emissivity of the anode body. Maximum allowable temperatures were established at the weld and braze joints, and at the power cable interface. Analysis showed that a high emissivity surface, in the range of 0.6 to 0.8, would be required at the anode end of the thruster for sufficient radiative heat dissipation to maintain allowable structure temperatures. Emissivities of the refractory metals used in this high temperature environment are only on the order of 0.1 to 0.2. Two options were identified. The first involved coating the anode body with a high emissivity material. This work is discussed in paragraph 3.3.3.1. The second option was to mechanically attach a high emissivity sleeve to the anode. The sleeve was made from silicon carbide and had an emissivity of 0.9. The benchmark arcjet was used to evaluate the ability of the sleeve to lower the thruster temperatures.

The thruster body was first modified to reduce its cross-section to more closely simulate the projected configuration of the engineering model unit. The smaller cross section reduces the heat conducted back towards the temperature sensitive areas. The sleeve was made to provide an interference fit and was pressed onto the thruster.

A thermal mapping test was conducted. Figure 3-61 shows temperature data measured while firing the thruster both with and without the shield. Significant reductions of structure temperatures were achieved using the shield. Table 3-13 summarizes heat loss computations made for both cases based on the measured temperature data.

EMISSIVITY SLEEVE TEST-MEASURED TEMPERATURE

C11222-64 Figure 3-61

Although a significant enhancement was demonstrated in the thermal profile of the arcjet through use of the emissivity sleeve, several other factors were considered and a decision was made to suspend further development of this option. First, the silicon carbide is extremely stiff with a modulus of elasticity = 410 GPa, making it susceptible to fracture during handling or launch vibration. Second, the long-term effects of thermal cycling on reducing the thermal contact between the sleeve and arcjet surfaces were unknown. Third, results from environmental testing on the coated samples were highly successful and offered a more attractive solution.

3.3.2.4 Benchmark Start Up Testing

Start up testing of the benchmark arcjet was conducted during development of the EM PCU. A first-generation breadboard unit was used to achieve over 1000 start cycles on a single thruster, establishing a high degree of confidence in the starting capability of the thruster/PCU system design. Development of the PCU start circuit was completed prior to this test to help achieve an extremely high starting reliability. Post-test inspection of the benchmark electrodes showed no significant degradation.

Table 3-13 ARCJET HEAT LOSS SUMMARY

				Nithout	Without Sleeve	6						With	With Sleeve			
m x 10 ⁻⁵ kg/s	PElec (W)	PEIec PChem Pin.Total (W)	P _{in.Total} (W)	QRad QCond (W)	Q _{Cond} (W)	O _{Total} Loss (W)	OExit (W)	ηth	P _{Elec} (W)	P _{Che} m (W)	Pin.Total QRad QCond (W)	ORad (W)	Q _{Cond} (W)	Orotal Loss (W)	Qest (W)	դքի
4.16	1310	1310 166.1 1476.1 114.1	1476.1	114.1	250.5	364.6	1111.5 0.75 1310 166.1	0.75	1310	166.1	1476.1	205.3	1476.1 205.3 177.1 380.4	380.4	1094.7	0.74
5.05	1305	1305 201.4 1506.4 101.2	1506.4	101.2	243.2	344.4	1162.0	0.77	1340	1162.0 0.77 1340 201.4 1541.4 180.2 180.2 360.4	1541.4	180.2	180.2	360.4	1100.0	0.77
5.68	1333		226.6 1559.6	78.3	214.0	292.3	1267.3	0.81	1325	226.6	1551.6	164.5	137.1	301.6	1267.3 0.81 1325 226.6 1551.6 164.5 137.1 301.6 1251.5 0.81	0.81

3.3.3 Engineering Model Arcjet System Design/Analyses/Fabrication

This section describes the design, analysis, and fabrication activities that produced the engineering model arcjet system. This system embodied the optimized features arrived at through development and benchmark testing while meeting the performance, interface, and environmental constraints established for typical spacecraft.

The design effort can be separated into three areas: the hydrazine arcjet thruster (AJT) assembly; the power conditioning unit (PCU); and the power cable and connectors. The AJT assembly consists of a fluid resistor, solenoid valve, catalytic gas generator, and the arcjet. The PCU and cable/connector assembly were developed and manufactured under subcontract by Watkins-Johnson Company and Reynolds Industries, respectively.

3.3.3.1 Arcjet Thruster Design/Analysis/Fabrication

3.3.3.1.1 Conceptual Design — Several key issues were addressed early in the design process. These were: overall layout of the hydrazine arcjet thruster (AJT) assembly (i.e., relative position of the arcjet and valve/GG); sealing requirements and design options; materials choices; cathode/anode relative positioning; high emissivity coatings; and materials joining techniques. Baseline design choices were made as a starting point for further analysis and evaluation.

Arcjet Thruster Layout — Two main approaches were considered for the thruster layout. One positioned the arcjet barrel next to the valve/gas generator assembly as was done for the EHT resistojet. The second approach positioned the valve, gas generator, and arcjet barrel on the same centerline.

Several factors were evaluated that led to the selection of the side-by-side configuration. First, accommodating the thermal design requirements of the arcjet barrel were more easily met with this approach. The valve and gas generator are temperature limited, and separating the two assemblies substantially decoupled the two assemblies. Second, the side-by-side arrangement had been analyzed in great detail for the EHT resistojet, and was well understood thermally and dynamically. These models could be modified for the arcjet. Third, the power cable interface with the arcjet would be simplified by allowing open access to the end of the arcjet barrel. Finally, maintaining the same envelope and interface as the EHT ensured that adaptations to existing spacecraft structures to mount the arcjet would be minimal. A comparison of the EHT and arcjet layout approaches is given in Figure 3-62.

Seals and Material Selection — Figure 3-63 summarizes areas where gas tight interfaces were required and where key materials choices had to be made. Sealing areas included an anode-to-thruster body joint, gas delivery tube attachment point, power passthrough, and a mid-body braze joint. A key issue was to provide an interface between the tungsten or tungsten alloy anode and the rest of the arcjet barrel which serves as a thermal standoff and a structural support. Due to thermal, manufacturing, and cost constraints, it was not feasible to extend the anode material back to the power cable interface.

ARCJET DESIGN ENVELOPE COMPARISON

OVERALL LAYOUT

● DESIGN TRADE BETWEEN "SIDE-BY-SIDE" AND "IN-LINE" FAVORED FORMER BECAUSE OF DESIGN/ANALYSIS HERITAGE AND SPACE REQUIREMENTS FOR POWER CONNECTION **ARCJET LAYOUT EHT LAYOUT**

20.3 cm

Figure 3-62 3-83 11195-98A

ARCJET CONCEPTUAL DESIGN CONSIDERATIONS

The approach taken was to make a two-step transition. First, the anode would be joined to a Moly/41 Re section which served to closely match thermal coefficients of expansion, provide a low thermal conducting material to prevent heat transfer back up the barrel, maintain high temperature capabilities, and provide good resistance to fracture formation and propagation under dynamic loading. The second transition was between the Moly/41 Re and an Inconel 625 section which allowed the gas delivery tube to be welded directly to the body.

Weld and braze development tasks to support this conceptual approach are described in later sections.

Materials choices were dependent upon many factors, including the results of thermal/structural modelling, test experience, compatibility with hydrazine, weldability, creep life, insulator dielectric strength, and thermal shock resistance. Baseline materials choices were tungsten or tungsten/25 Re for the anode, Moly/41 Re for the body, 2% thoriated tungsten for the cathode, and a combination of boron nitride and aluminum oxide for insulators.

Cathode Gap Retention — Maintaining a constant gap during operation is important to stable, repeatable operation. An approach was identified that minimized differential thermal expansion between the cathode and anode by appropriate materials choices and dimensions. Calculations showed that the total relative movement could be maintained below 0.0051 cm (0.002 ").

- 3.3.3.1.2 Thermal Analyses Between 200 to 300 watts are input to the arcjet body at the electrodes. About 20 percent of this goes into the cathode, and the remainder into the anode. This heat must be dissipated primarily through radiation because of the limits placed on conductive losses through the mounting structure to the spacecraft. A finite difference model was constructed to guide thermal design choices. The important design constraints which were examined using the model are summarized below:
 - a. The mounting interface was assumed to have a conductance of only 0.05 W/°C. Consequently, almost all waste heat must be radiated from the thruster.
 - b. The arcjet was assumed to protrude partway through the spacecraft outer surface. Therefore, the valve and part of the arcjet barrel had view factors internal to the spacecraft. Internal temperatures ranged from -10° to 55°C, and deep space was assumed to be at -140°C.
 - c. The valve temperature must be kept below 150°C at worst case environmental temperatures to prevent damage to valve seat seals.
 - d. The arcjet barrel interface with the power connector must be maintained below 200°C due to temperature limits of the cable dielectric material.
 - e. The middle body braze joint must be kept below 590°C.

Of these requirements, the 200°C connector limit was the most difficult to meet. Initial predictions of temperatures at the cable connection were on the order of 480°C. This configuration assumed a continuous Moly/41 Re body welded to a tungsten anode. Several

design features were evaluated in the thermal model to address this problem. Those eventually incorporated into the design are summarized in Table 3-14. Temperature predictions at the thruster connector were subsequently reduced to below the 200 C limit at all operating conditions.

Table 3-14
AJT THERMAL DESIGN FEATURES

Feature	Purpose
a. Two piece body structure (Moly/41 Re and Inco 625)	Inco 625 provides lower conductivity than Moly/41 Re
b. Al ₂ 0 ₃ insulators	Low material thermal conductivity
c. Thin-walled sections (i.e., body and insulators)	Decrease conductance
d. Enlarged anode	Increase radiative surface area
e. Emissivity coating on anode/body	Increase radiation from high temperature surfaces

Predicted temperatures for the worse-case hot-bias thermal environment are shown in Figure 3-64. Several additional proven thermal features from RRC EHT designs were incorporated and are also shown. These include a controlled conductive resistance path between the valve and gas generator through the use of thermal standoffs, a titanium mounting structure for low conductivity, and a thermal spacer between the valve and GG mounting flanges.

The thermal design was shown to be fully compliant with the assumed interface requirements and the material temperature limits. As a result of these thermal analyses, several process development activities were initiated for the anode-to-body bi-metallic weld joint, body braze joint, and the high temperature emissivity coating.

3.3.3.1.3 Process Development

Arcjet Anode/Body Weldment — The weld joint between the tungsten anode and Moly/41 Re body was the subject of a development effort since it had not been demonstrated before. Tungsten/25 Re was also evaluated as a backup. Tungsten/25 Re was a less attractive option as an anode because of its lower melting temperature. It was pursued because it offers a coefficient of thermal expansion closer to Moly/41 Re than does tungsten, which in turn would make the weld joint less susceptible to fracturing under thermal loads.

Electron beam welding techniques were employed to produce several samples of each weld joint. The samples were then subjected to 400 thermal cycles between 157°C (250°F) and 1240°C (2200°F) in a hydrogen atmosphere. Heating was accomplished using an induction system and cooling was provided via a water cooled copper block used to support the samples. To simulate the operational axial thermal gradients, induction heating was confined to the anode until the weld joint reached the desired temperature.

Post-thermal cycle testing visual and dye penetrant examinations showed no evidence of surface fractures on the weld joint face or heat-affected-zones for both material combinations. Additionally, the samples were metallographically prepared to expose a transverse weld cross-section. These were found to be free of fractures with a minimal amount of weld porosity detected. Photomicrographs of both metal combinations are shown in Figures 3-65 and 3-66.

It was concluded that both weld metal combinations possessed acceptable resistance to thermal fatigue cracking under the proposed application environment. Tungsten was retained for the anode because of its higher melting point. The weld schedule established was utilized during subsequent production of engineering model hardware.

Arcjet Body Bi-Metallic Braze Joint — The material transition at mid-body of the arcjet between Inconel 625 and Moly/41 Re required development of a braze procedure. The predicted steady state temperature was 457°C. A design requirement of 590°C for 800 hours in 1-hour cycles was established.

Vacuum furnace brazing and induction brazing techniques were evaluated with Au-100, Nicoro, and Nicoro-80 braze alloys using the following test series:

- 1. Thermal cycling: 38°C to 590°C, 800 cycles, GN₂ environment
- 2. Macroscopic visual inspection
- 3. Helium leak testing
- 4. Mechanical tensile strength test
- 5. Metallographic examination-joint sectioning/SEM examination.

Furnace brazing was evaluated first. The samples showed excessive base metal penetration and accompanying erosion defects. Induction heating was subsequently tried. This method offered the advantage of achieving the required heating using a shorter braze cycle. This prevented base metal penetration from occurring.

The Nicoro alloy was eliminated when the sample failed to pass the helium leakage test. Post thermal cycling examination later indicated that excessive cracking in the joint was the cause. Nicoro 80 showed cracking to a lesser degree. The induction brazed Au sample passed all evaluation criteria and showed excellent metallographic characteristics. The Au-100 filler maintained excellent ductility throughout thermal cycling which ensured a long lasting leak tight joint. The induction braze schedule developed using Au-100 was therefore selected.

Emittance Coating Development — Identification of an emittance coating for the arcjet anode/body was one of the most critical development issues to be resolved for successful design of the EM arcjet. Thermal analyses indicated that this feature had a major influence on maintaining temperatures within design limits. The criteria established were as follows:

- 1. Adherence to Moly/41 Re and tungsten 100
- 2. Maximum temperature = 980°C
- 3. Minimum thermal cycle life of 800 hours
- 4. Minimum total emittance = 0.6

EB WELD JOINT: Mo/41 Re TO W/25 Re

Photomicrograph of a Mo/41 Re to W/25 Re EB weld following 400 thermal cycles to ~2200°F. Weld cross section reveals some solidification patterns similar to Figure 1, but to a lesser degree. Weld cross sections were found free of fractures.

EB WELD JOINT: Mo/41 Re TO W100

11225-66 3-90 Figure 3-66

- 5. Ease and repeatability of application
- 6. Low rate of evaporation

Many materials and application options were identified. Material choices included titanium carbide, silicon carbide, tantalum carbide, cupric oxide, zirconium di-boride, and several silicone based paints. The methods of application included chemical vapor deposition (CVD), physical vapor deposition (PVD), plasma spraying, and painting. After an initial screening process the following were selected for detailed evaluation: 1) CVD TiC; 2) PVD TiC; 3) plasma spray TiC; and 4) two high temperature paints.

Samples of each option were prepared using both Moly/41 Re and tungsten coupons. The sample surface characteristics were evaluated using SEM and the parts were then sent to an outside facility for emittance measurements. Emissivity measurements were made at ambient temperature per ASTM E-408 using a Gier-Dunkle DB 100 Infrared Reflectometer. Extrapolated estimates of the emissivity at 955 C were also made. This was achieved through measurement of the wavelength specific reflectances. These were then evaluated assuming discrete temperature levels using Planck's equation. A typical reflectance plot is shown in Figure 3-67.

Both paint options were eliminated due to poor adherence and the TiC PVD sample produced an unacceptable emissivity. The remaining options, TiC CVD and TiC plasma spray, were subjected to 100 thermal cycles from ambient to 980 C. SEM analysis and emittance measurements were repeated. The emissivity data measured before and after thermal cycling are summarized in Table 3-15. For TiC CVD and TiC plasma spray the measured emissivities were acceptable and remained stable through thermal cycling.

Table 3-15
HIGH EMISSIVITY COATING MEASUREMENTS

		ε @ 955°F (Extrapolated)			
Coating	Substrate	Prethermal Cycling	Post-Thermal Cycling	Notes	
TiC CVD	W Mo/41 Re	0.705 0.730	0.657 0.682		
TiC Plasma	W Mo/41 Re	0.766 0.724	0.810 0.810		
TiC PVD	W Mo/41 Re	0.355 0.352	_	(1) (1)	
Paint #1	W Mo/41 Re	0.906 0.902		(1) (1)	
Paint #2	W Mo/41 Re	0.950 —	_	(1) (2)	

- (1) These options eliminated due to poor ϵ or poor adherence before thermal cycling
- (2) No Mo/41 Re sample prepared.

TYPICAL REFLECTANCE PLOT

• TIC PLASMA SPRAYING ON TUNGSTEN

Figures 3-68 and 3-69 show the surface characteristics of the CVD TiC and plasma spray TiC before and after thermal cycling at 500X. No signs of surface degradation or extensive evaporation were detected for either sample.

Although both options met the design criteria, plasma spray TiC was selected over CVD TiC because a significantly greater coating thickness could be achieved (100 microns vs. 10 microns), and because it would be easier to mask off surfaces that were not to be coated.

3.3.3.1.4 Arcjet Structural Analyses — Structural analyses were performed to show that the arcjet could satisfy typical launch vibration and thermal loading requirements. Finite element modelling techniques were used to predict natural frequencies and the response to random excitation. Adequate strength was demonstrated with positive safety margins calculated throughout the arcjet assembly. Additional analyses of the cathode positioning system, cathode insulator, and brazed barrel joint were also conducted assuming operational temperatures. Strength and displacement requirements were fulfilled in each of these cases.

The primary loads on the arcjet are in the form of random excitation transmitted through the support structure attachment points during launch. A random vibration specification representative of typical flight qualification levels was used for the analysis. The input spectrum is shown in Figure 3-70. The power spectral density (PSD) level of 0.2 G²/Hz from 20 — 2000 Hz represents an integrated average acceleration of 19.9 g rms.

A NISA II finite element model was constructed and is shown in Figure 3-71. The model consisted of a total of 1460 elements. The five major substructures were the barrel, support structure, propellant valve, gas generator, and gas delivery tube. Most of the structure was modelled as thin shells. Tubing and thin bars were modelled using beam elements. The additional mass of the internal components was accounted for by the use of concentrated mass elements.

Structural responses to random excitation were determined. Resultant stresses in each of three orthogonal directions were computed. A typical stress contour is shown in Figure 3-72. Table 3-16 summarizes the predicted stresses and corresponding safety margins. The stresses presented are 3-sigma stresses, which represent a conservative measure of the expected stresses. The 3-sigma stresses were compared to the material yield strengths. With a factor of safety of 1.0 applied to the material strengths, positive margins of safety were still predicted at all locations. The lowest safety margin occurs at the base of the cantilevered barrel, where a value of 1.6 is predicted.

Natural frequencies and displacement mode shapes were also predicted in the frequency range of interest (0 - 2000 Hz). Fifteen modes, none of which induced excessive loading, were identified and are summarized in Table 3-17.

Three additional areas which resulted in stresses imposed during operation of the thruster were evaluated. The first was the proposed system of positioning the cathode. Calculations were performed to determine whether differential thermal growth of metallic and ceramic parts would permit excess travel of the cathode relative to the anode. The maximum predicted

CVD SAMPLE SURFACE CHARACTERISTICS

(a) TUNGSTEN SUBSTRATE, PRIOR TO THERMA: CYCLING

(b) TUNGSTEN SUBSTRATE, AFTER THERMAL CYCLING

TIC PLASMA SPRAY SAMPLE SURFACE CHARACTERISTICS

(a) TUNGSTEN SUBSTRATE, BEFORE THERMAL CYCLING

(b) TUNGSTEN SUBSTRATE, AFTER THERMAL CYCLING

Exploded View of Arcjet Finite Element Model

11204-98 3-97 Figure 3-71

ARCJET STRESSES DUE TO Y-AXIS RANDOM EXCITATION 3-SIGMA STRESS COMPONENT (BARREL BENDING STRESS)

		,	

Table 3-16
THREE-SIGMA STRESSES AND MARGINS OF SAFETY BASED ON QUALIFICATION LEVEL RANDOM EXCITATION

Component Location of Maximum Stress		Material	Material Yield Strength (ksl)	3-Sigma Stress (ksl)	Margin
Arcjet Barrel	Base of cantilevered section	Inconel 625	60	23.1	1.6
Support Structure	Mounting feet	Ti-6Al-4V	120	4.5	25.7
Propellant Valve	Inlet housing	CRES 430	45	1.9	22.7
Gas Generator Assembly	Chamber housing	Hastelloy B	48	4.0	11.0
Gas Delivery Tube	Curled section	Inconel 600	35	3.4	9.3
Thermal Standoffs	Base area	Inconel 625	60	9.3	5.5

FACTOR OF SAFETY = 1.0 ON YIELD

Table 3-17
FREQUENCIES AND MODES OF THE ARCJET ASSEMBLY

Frequency	Mode Description		
261	Barrel Flexure (Y), Inlet Tube Flexure		
269	Inlet Tube Flexure		
270	Inlet Tube Flexure		
293	Barrel Flexure (X), Inlet Tube Flexure		
804	Gas Delivery Tube (Y)		
933	Gas Generator (Y)		
1001	Gas Generator (X), Gas Delivery Tube		
1073	Gas Generator, Valve		
1350	Gas Generator, Valve, Arcjet Barrel-Connector End Flexure (Y)		
1476	Arcjet Barrel-Connector End Flexure (Y)		
1608	Gas Delivery Tube (X)		
1625	Gas Delivery Tube, Arcjet Barrel-Connector End Flexure (X)		
1710	Gas Delivery Tube, Gas Generator		
1883	Gas Delivery Tube, Gas Generator		
1906	Gas Delivery Tube, Gas Generator		

change was 0.0043 cm (0.0017 in.) which represents only a 7% change in the initial arc gap. Additionally, no high stresses resulting from restrained thermal growth were predicted.

The second area examined was bending of the alumina insulator sleeve which shields the cathode along a length of approximately 10 cm. It was found that the sleeve possessed sufficient flexibility and strength to withstand bending due to vibration. A margin of safety of 1.7 was predicted.

The third area of concern was the mid-section of the arcjet barrel, where the Inco 625 and Mo/41 Re are brazed together. Stresses due to unequal thermal growth of the two materials during thermal cycling were evaluated. At a maximum predicted temperature of 410°C a margin of safety on yield of 4.4 was calculated for the weaker Inco 625. The strength and cycle life of the actual braze joint was demonstrated in thermal cycle testing of the braze samples.

3.3.3.1.5 Arcjet Design Description — The engineering model arcjet thruster is shown in Figure 3-73. The fluid resistor acts as an orifice to reduce the spacecraft propulsion system supply pressure to levels required for desired thruster flow rates. The feed pressure blowdown and the arcjet performance versus flow rate relation are used to size the fluid resistor to obtain the required mission average specific impulse. The propellant valve is a dual seat, solenoid type. The dual seats are independently actuated which provides redundant capability to close the valve. Extensive RRC heritage has been established with this valve on numerous hydrazine thrusters. The gas generator used is a standard low flow unit used on a large number of RRC low thrust N₂H₄ engines.

The hermetic passthrough design resulted from a joint development effort conducted with the manufacturer, Reynolds Industries. The passthrough connector and mating cable assembly are discussed in detail in Section 3.3.3.1.6.

The mounting structure is constructed of Titanium 6Al-4V for a superior strength to weight ratio and good thermal isolation. A girth clamp retains the valve/GG assembly to the mounting structure. The clamp has elastomeric isolators located at the interface to the valve to provide additional thermal isolation and to dampen vibration loads.

As discussed previously, the electrode and vortex injector configurations were defined as a result of RRC and NASA development work.

A section view of the arcjet is shown in Figure 3-74. The assembly features a relatively simple overall geometry with a minimum number of parts. The thin walled sections have been optimized for thermal and structural design requirements. The overall length is 22.0 cm and the anode diameter is 2.54 cm.

The arcjet body assembly is comprised of three parts. The barrier tube and anode are joined by an EB weld. This subassembly is coated with the TiC emissivity coating. The barrier tube features an integral vortex injector. Prior to welding, a lapped face seal is made between the injector and anode surfaces to insure gas flow through the injector is maintained. Following the coating process, the manifold is joined to the barrier tube via an induction braze.

Alignment of the cathode is achieved through very close runout tolerances on the cathode, anode, vortex injector and cathode insulator. The cathode/anode gap is maintained through retention of the cathode within an insulator stack which is further held in place by a retention nut. By retaining the cathode over as short a length as possible, thermal growth relative to the anode is minimized. Cathode support at the opposite end of the thruster is provided by the support block.

11204-87A

ARCJET CROSS SECTION

11207-51E

Figure 3-74

The electrical passthrough features a spring clip connection which slides over the cathode end. The passthrough is welded to a closure flange. The flange uses a bolted connection and O-ring seal which simplifies disassembly of the thruster. For a flight configuration, the flange would be welded to insure sealability.

A weight summary of the AJT is shown in Table 3-18. Two arcjet assemblies (S/N's 1 and 2) were completely assembled for testing. One is shown in Figure 3-75.

Table 3-18 ARCJET WEIGHT SUMMARY

Component/Subassembly	Weight (kg)
 Propellant valve, including heater, fluid resistor, and inlet adapter 	0.26
 Gas generator — includes heater, thermocouple, and shielding 	0.07
 Arcjet body — manifold, barrier tube/injector, anode, cathode, internal components and connector 	0.37
Mounting structure	0.10
Assembly hardware	0.03
Total (kg)	0.83

3.3.3.2 Power Cable Assembly/Hermetic Passthrough

The cable and connectors necessary for power transmission from the PCU to the arcjet must withstand the high voltage generated during the PCU start up pulse, conduct the steady state current level without overheating due to excessive resistance, operate at 200 C for extended periods, and meet typical spacecraft environment requirements. The primary functional requirements of the assembly are listed below:

Current:

Steady state current carrying capacity to 18 amps

Voltage:

Voltage withstand rating to 4000 V

Corona:

Breakdown resistance at both test and space vacuum conditions

Temperature: Steady-state rating of 200°C maximum at the thruster connection

EMI:

Meet 461 requirements.

Development of a custom cable assembly was required. The design approach consisted of three separate components: a 2 m long triaxial cable with connector plugs attached at each end; a PCU receptacle which is attached to the PCU chassis and mates with the cable connector; and a hermetic connector/passthrough which is mounted to the arcjet and mates to one end of the cable connector assembly. These are shown in Figures 3-76, 3-77, and 3-78, respectively.

CABLE ASSEMBLY
RRC P/N 30898
RRC COMPONENT SPEC. CS-0224

11207-19 3-106 Figure 3-77

.508 CM CONTACT CLIPS MATE TO ARCJET CATHODE ASSEMBLY CATHODE SHALL BE Ø .312 - .317 CM -CENTER CONTACT -CERAMIC INSULATOR BRAZE JOINTS FOR HERMETICITY .4.432 CM - OUTER BODY -WELD FLANGE -O-RING SEAL 0.5625-24 UNEF-2A MOUNTING THREADS — MATES TO CABLE ASSEMBLY 1.93 CM ~ Ì Ø 1.740 CM Ø 1.745

RRC P/N 30877 RRC COMPONENT SPEC. CS-0227

The cable materials of construction are shown in the section view of Figure 3-79. The center conductor is the negative output from the PCU and is connected to the cathode via the mating hermetic passthrough. The inner cable shield is used to conduct the current back from the anode to the PCU. A second outer braid was also included as an electrostatic EMI shield. This shield is connected to the anode return shield at the arcjet connector, and to the PCU chassis at the opposite end.

The hermetic passthrough is attached to the body of the arcjet thruster. A mounting flange, which is EB welded to the outer body of the passthrough, is bolted to the arcjet body and sealed with an O-ring. The threaded passthrough body mates with the cable plug and the cathode connection is made through the contact clips. The contact clips are gold plated to reduce contact resistance.

The brazed construction of the passthrough provides a hermetic seal. The ceramic insulator has sections which are metallized, and these areas are furnace brazed to the center contact and the outer body. The O-ring shown provides additional corona breakdown resistance.

Development activities focused on the corona design and on reducing the connector contact resistance. Corona can occur in high voltage connectors due to ionization of localized gasses under high electric fields. This can lead to an arc breakdown between conductors. In geosynchronous orbit, the pressures are so low that corona events are very unlikely. However, outgassing from the cable materials or spacecraft surface ionization can create an environment in which corona can occur. In addition, the ground test environment is more severe due to the limitations on pumping capability.

As a result, the assembly was designed for all pressures between atmospheric and space vacuum. Silicone O-rings are installed in the passthrough and PCU receptacle to prevent breakdown from occurring. The separation distances required between conductors would have been 5 to 10 cm at the 50 mTorr vacuum level of the test cells if the O-rings were not used.

Extensive electrical contact resistance cycle testing was conducted at RRC on the spring contact design between the hermetic passthrough and the arcjet cathode. A development connector was fabricated and tested in a thermally controlled nitrogen environment. A steady state current of 15 A was delivered through the assembly and thermal cycle testing was conducted at temperatures ranging from ambient to 260°C. The connector design temperature, established through thermal modelling predictions of the arcjet thruster, was 204°C. Current and voltage were measured and the contact resistances calculated as a function of cycle life and temperature. Connector temperatures were also measured.

The initial configuration consisted of the 0.3175 cm diameter, 2% thoriated tungsten cathode rod inserted into the spring clip. Testing of this configuration showed that contact resistances increased substantially at the higher end of the tested temperature range. To improve contact resistance at the connection, the cathode end was gold plated. The resistance was reduced from 4 milliohms to less than 1 milliohm at the maximum temperature. The increase in connector temperature due to self heating at these levels of contact resistance were well

within acceptable levels. The cathode plating process was refined and incorporated into fabrication of the EM arcjet cathodes.

After fabrication and assembly, the cable/connector assembly was subjected to acceptance testing conducted by the manufacturer per RRC specification requirements. The test requirements are listed below in Table 3-19. Four complete assemblies were fabricated and tested. No test failures were recorded.

Table 3-19
CABLE ACCEPTANCE TEST REQUIREMENTS

Item	Acceptance Criteria
1. Insulation Resistance	> 50 Megohms @ 500 vdc
2. Conductor Loop Resistance	< 50 milliohms
3. Dielectric Withstand	<10 microamps @ 6000 vdc, 1 minute, 50 mTorr (per MIL-STD-101F Method 301)
4. Mating Cycles	< 10% change in contact resistance following 10 cycles
5. Life Cycles	400 temperature cycles, 20° to 200°C (one assembly only)
6. Corona	< 15 picocoulombs average at 6000 vdc for 3 minutes (Biddle Test)
7. Hermetic Passthrough Leakage	< 1 x 10 ⁻⁷ scc/sec GHe @ 300 psid

3.3.4 Power Conditioning Unit Development

The PCU design which was fabricated and tested under this program is a lightweight, switching DC-DC converter supply which provides conditioned power for both start up and steady state operation of the arcjet. The functional and performance design requirements which were established for this unit are summarized in Table 3-20.

Of the main PCU elements, one of the most critical is the startup circuit. The start characteristics are important to electrode erosion. Up to 4000 volts are required to initially establish the arc at full mass flow rate. The PCU must then provide an initial sustaining current that is high enough to maintain an ionizing path, but not high enough to cause anode erosion. This initial current level is below the steady state level, so the PCU then ramps up the current. Current overshoot above the steady state level must be avoided, as this can also create excessive localized heating which causes erosion.

The steady state output must maintain control of the arc load which has a negative slope impedance. This is achieved through a cycle-by-cycle current regulating control loop.

Table 3-20 PCU Functional/Performance Requirements

Functional Requirements

- a. Start the arcjet.
- b. Provide a stepped up voltage from the spacecraft power source to the nominal 100 vdc required by the arcjet.
- c. Maintain stability of the negative impedance arc.
- d. Maintain constant power output over both the output voltage range of the arcjet (due to propellant blowdown) and supply voltage range (due to battery letdown).
- e. Provide command/telemetry link to the spacecraft

Performance Requirements

a. Startup voltage	4000 V minimum
b. Start current overshoot	< 20% of steady state level
c. Input power	1400 W
d. Input voltage	25 to 32 vdc
e. Power regulation	3%
f. Output voltage	85 to 120 V
g. Output current	10.5 to 14.8 A, 18 A max.
h. Output current ripple	20% peak-to-peak

Power conversion efficiency is important for two primary reasons. The first is that power availability on a communications spacecraft is at a premium. Thrust output from the arcjet is maximized by optimizing the amount of power available. The second is that spacecraft thermal design constraints dictate that minimal heat be rejected by the PCU. For this design, an allowable conductance at the PCU interface of 0.16 W/cm2-C was assumed. The minimum efficiency goal was 90%.

These are several of the important design issues which were addressed during development of the PCU. Design and manufacturing were carried out by Watkins-Johnson Company in San Jose, CA. The basic design approach was based largely on the NASA Lewis Research Center 1 kW PCU design. The effort consisted of fabrication and test of a development unit followed by fabrication of two engineering model (EM) flight weight PCU's.

3.3.4.1 PCU Design

A block diagram of the PCU is shown in Figure 3-80. A functional description of these major elements follows.

Figure 3-80

The main functional components of the power processing circuitry are the input filter, steady state converter, and pulse width modulated regulator. A damped, two-stage LC input filter is used for two purposes. The first is to attenuate current ripple that is generated by the main converter and the second is to reduce ripple that may be conducted to the PCU via the power source connection.

The steady state converter is a buck-derived push-pull regulator with the inductor on the output. The critical elements of the converter are the center-tapped transformer, which provides input/output isolation, and the main switching devices. These elements see the highest peak currents in the unit and are the source of the largest proportion of power losses.

The PWM regulator controls the switching frequency (32 kHz) and duty cycle to maintain constant output power, and it controls the current level transition to steady-state following arc breakdown. The main buck inductor current is fed back to the controller, which eliminates the effects of the output inductor from the small signal response and regulates the current limit. There is a slower secondary loop which compares the output current with a signal that is inversely porportional to the output voltage and establishes the cycle-by-cycle current limit needed to maintain constant power.

The start circuit consists of an additional winding coupled with the output inductor. To start the arcjet, a switch in series with the input power supply is closed which allows current to charge the winding to a pre-set energy level. The switch is then opened which causes the inductor magnetic field to collapse and produces a voltage pulse. A voltage is generated across the mutually coupled output inductor and the arcjet high enough to cause breakdown. Once breakdown occurs, the initial arc is sustained by the energy that was built up in the start winding. The main converter then increases the current level to the steady state value as determined by the constant power loop.

The command/telemetry interface consists of on/off commands, an input undervoltage shut-off, and analog telemetry signals for arcjet voltage and current. When the bus voltage is applied, the low-voltage converter becomes active and the command logic is reset. Once an "on" command is received, the main converter is activated which provides an open circuit voltage across the arcjet of about 200 vdc. After a 100 millisecond delay the start circuit is energized and the arcjet is started.

The "off" command shuts down the main converter output power. If the input voltage falls below 24 vdc, the undervoltage shut-off switches out the input power to the unit. Once the voltage is increased, the PCU will automatically reset and be ready for another "on" command.

One of the two engineering model PCU's fabricated is shown in Figure 3-81. The unit is 23.5 x 18.4 x 8.3 cm and weighs 4.52 kg. The chassis was made of magnesium to save weight. Input power is delivered through a pair of studs. Output power is passed through the specially designed triaxial connector described in an earlier section. The command and telemetry interface is through a multi-pin connector. The unit is vented to prevent outgassing induced corona and the high voltage circuits are potted to provide sufficient dielectric withstand capability. The heat generating components are conductively sunk to the base plate to dissipate waste heat.

3.3.4.2 Development Unit

Fabrication and assembly of a development unit was conducted to establish preliminary performance characteristics of the PCU design. The development unit was different from the EM design in several ways. It had a less compact layout of circuit components to enable easy access to make modifications, it utilized a standard connector for the output power instead of the custom triaxial connector, and the thermal design was not optimized which prevented testing the unit under vacuum. The development PCU is shown in Figure 3-82. The unit dimensions are 12.7 cm x 20.3 cm at the base and 17.8 cm high.

Extensive testing of the development PCU was conducted at RRC while running an arcjet. A summary of initial testing is shown in Table 3-21

Startup and stable steady state operation of the PCU were achieved with little difficulty. Performance characteristics observed are discussed below.

• DC-DC STEP UP CONVERTER, 30 VDC —— 120 VDC

9.25" x 7.25" x 3.25"

MASS - 9.95 lbm

▶ POWER DENSITY - 8 W/in³

Table 3-21
DEVELOPMENT PCU TEST SUMMARY

	Specification	RRC Requirement	Measured
Sta	artup	4000	3000
1.	Start Voltage Peak (Volts)		
2.	Start Voltage Rise Time (sec)	10 – 30	2
3.	Start Current Ramp Time (msec)	0.1 – 1.0	0.2
4.	Current Overshoot (% of steady state)	20%	94% 32 amps peak, 16.5 amps SS, 20 msec.
5.	Current Undershoot (amps)	1 A SS value	small, <1 A
Steady State		0.08 A	0.125 A
6.	Conducted Current Ripple (amps) Input Ripple (amps) Output Ripple (% of SS)	±10%	8% total, 1.2 pk. to pk.
7.	Efficiency	90%	85.8 to 92.8 (90 to 104 output V)
8.	Constant Power Regulation	3% variation	2.6% 1,258 W to 1,292 W, measured over flow range 4.0 – 5.4 x 10 ⁻⁵ kg/s and input voltage 25 to 32 V.

Start Circuit

Initial measurements showed that the current overshoot on startup was excessive. The approach to controlling the ramp-up was modified significantly to utilize a "bi-stable" method of current regulation. Additionally, the initial steady state set point for current was fixed for approximately one second at 12 amps instead of being established by the constant power requirement. This prevented high initial current levels at low flow rate operating conditions of the arcjet. A comparison of the output current waveform during startup before and after these changes is shown in Figure 3-83.

The voltage and current levels achieved during the starting pulse are critical to achieving reliable start up. Initially, the drive circuitry for the FET switches controlling the start pulse was inefficient. The result was that too low an energy level was developed in the start winding and an unacceptable number of failed start ups occurred. These were due either to insufficient voltage generated for arc breakdown or low current levels after breakdown which failed to sustain the discharge. An example of the latter case is shown in Figure 3-84. Further changes were incorporated to eliminate these problems.

DEVELOPMENT PCU STARTUP WAVEFORMS

Figure 3-84

Throughout the process of modifying the start circuit a total of 1500 starts were accumulated on a single arcjet. No performance or stability changes to the thruster occurred as a result of the multiple starts. Additionally, no sparks or other forms of erosion were observed while testing.

Once an optimized start circuit configuration was obtained, a start up test was conducted on the benchmark arcjet. This thruster had an identical electrode and vortex injector configuration to that selected for the EM arcjet.

During this test, the arcjet was started, allowed to run until the arc stabilized (a duration of 1 to 10 seconds), and stopped for a 4 minute cooling period prior to repeating the process. The operating flow rates and starting rate of reliability are shown in Table 3-22. Start up occurred on the first pulse attempt in 94% of the 300 total starts. The remaining 6% required 1 or 2 additional pulses.

Table 3-22
DEVELOPMENT PCU START UP TEST DATA

Flow Rate (kg/s)	1st Pulse Starts	Repeated Attempt Starts
3.2 x 10 ⁻⁵	73	2
3.6 x 10 ⁻⁵	74	1
4.5 x 10 ⁻⁵	71	4
5.4 x 10 ⁻⁵	64	11
Total	282	18

Efficiency

Efficiency data from the final development unit design over the full arcjet operating range are shown in Table 3-23. Measurements were slightly below 90% at most operating points. The efficiency scaled with output voltage, as is shown in Figure 3-85. Hence, greater losses were experienced at higher output current. This is caused by higher $I^2 \times R$ losses when the power converter FET switches are on and higher losses in the magnetics during FET turn-on and turn-off.

The initial efficiency measurements, however, were not this high. Efforts to improve the efficiency started with characterizing the losses. Switching losses in the Gentron power FET's caused more than half of the total losses. Figure 3-86 shows that during each cycle, the largest proportion of losses (81%) occurred during the turn-off of the power FET's.

Several improvements were made to the PCU design to improve the efficiency, as summarized in Table 3-24. Final efficiency measurements of the EM units are shown in the ATP test data. The changes incorporated are discussed below.

Modification A — The FET switching speed was increased substantially. The turn-off time was reduced from 2 microseconds to 300 nanoseconds. This dropped losses in the FET's by

Table 3-23
ARCJET DEVELOPMENT PCU EFFICIENCY MEASUREMENTS

Data Point #	t #	1	2	3	4	5	9	7	80	6
Mass Flow Rate (kg/s)	Rate	4.0 x 10 ⁻⁵	4.0 x 10 ⁻⁵	4.0 x 10 ⁻⁵	5.5 x 10 ⁻⁵	5.5 x 10 ⁻⁵ 5.5 x 10 ⁻⁵	5.5 x 10 ⁻⁵ 4.7 x 10 ⁻⁵	4.7 x 10 ⁻⁵	4.7 x 10 ⁻⁵ 4.7 x 10 ⁻⁵	4.7 x 10 ⁻⁵
Input V	(v)	32.3	28.1	25.3	32.1	28.1	25.3	32.3	28.1	25.3
Input I	(A)	45.0	51.5	57.8	43.8	49.8	55.0	43.8	50.5	56.0
Input P	(W)	1454	1447	1462	1406	1399	1392	1415	1419	1417
Output V	(V)	6.68	1.68	89.5	104.0	104.2	104.2	98.0	0.86	97.9
Output I	(V)	14.0	14.1	14.1	12.4	12.4	12.4	13.0	13.0	13.0
Output P	(W)	1259	1265	1262	1290	1292	1292	1274	1274	1273
PCU Efficiency (%)	' (%)	9.98	87.4	86.3	7.16	92.3	92.8	90.0	868	8.68

SCO EFFICIENCY (%)

PCU SWITCHING LOSSES

LOSSES/CYCLE

TURN-ON

 $1.0 \times 10^{-4} J$

STEADY STATE

 1.3×10^{-3}

TURN-OFF

TOTAL

ASSUMING A 0.416 DUTY RATIO (30 VOLT INPUT-70 VOLT OUTPUT AND 20kHz)

TOTAL SWITCH LOSS = 148 WATTS

81% IS LOST DURING TURN-OFF

Table 3-24
ARCJET PCU EFFICIENCY IMPROVEMENT ACTIVITIES

	Dissipation		Modifications and Results	s and Resu	lts
Power Sink	(Watts)	Mod	Resulting Dissipation	Mod	Resulting Dissipation
Gentron MOSFETs Snubber	160	A1	40 140	B1	40 15
Power Transformer Windings Core Stray	50 20 15 15		No Change	B2	80 10 55 15
Output Components Diodes & Inductor Snubber	25 15 10	A2	21 15 6		No Change
Input Filter Capacitors (ESR) Inductors Large: 1 ea x 3 W Small: 2 ea x 4 W	17 6 11		No Change		No Change
Miscellaneous	9		No Change		No Change
PCU TOTAL	308		274		179
Efficiency (%) (worst-case)	78.0%		80.4%		87.2%
HARDWARE STATUS	DEVELOPMENT PCU (ACCEPTANCE TEST)		BREADBOARD (EXPERIMENTAL)	EXPERIME	VTAL)

about 120 watts. Unfortunately, another result was that higher losses occurred in the snubbers placed across the FET drain and source to control voltage spikes. The net decrease in losses was only about 30 W.

Modification B — Methods to allow energy recovery in the snubbers were then incorporated. A cut C-core was also used in place of a torroidal core in the power transformer to reduce the leakage inductance. The net improvement achieved with these changes is also shown in Table 3-24. These changes reduced the losses by almost 130 W from the original configuration.

EMI

EMI testing was not planned until the EM units were completed. Conducted and radiated emissions were to be measured per MIL-STD 461 and 462. Laboratory testing with the development unit did, however, provide preliminary information on the EMI performance of the PCU.

Current ripple on the input power leads was about 50% in excess of the specification limits. This indicated a possible problem with the input filter design. An additional limitation of the input filter which was noted was a tendency to draw excessive power during startup. This caused a problem at the low end of the required input voltage range, where the high current demand caused a voltage drop from the Sorensen DC power supply to occur. This caused a shutdown of the PCU from triggering the undervoltage trip.

Test experience indicated that the command and telemetry lines were not sufficiently isolated. The command lines were found to be susceptible to low levels of external noise. Unintentional startup of the unit would occur when control signals to energize valves in the propellant system were activated. Filtering was installed external to the unit to alleviate this problem.

The telemetry lines were found to be conducting significant levels of noise energy with a fundamental frequency at the PCU switching frequency. These emissions caused amplifier error in the test instrumentation and made accurate data acquisition difficult.

Concern over the overall EMI performance of the PCU design was raised as a result of this preliminary testing. Modifications to both the input filter and command/telemetry grounding were made during fabrication of the EM PCU's. Additionally, it was expected that with these units, the layout of components and packaging into the flight chassis would improve the EMI characteristics.

3.3.4.3 Engineering Model PCU PCU Acceptance Testing

Table 3-25 shows the acceptance test matrix used by Watkins-Johnson to verify EM PCU performance prior to RRC receival. Qualification level vibration levels were equivalent to those specified for the arcjet. Thermal vacuum testing was conducted at both extremes of the required operating range (-15 to 65 C). Where operational testing of the units was conducted, a resistive load was used in place of an arcjet.

Table 3-25
ACCEPTANCE TEST MATRIX: ENGINEERING MODEL PCU

Mode	Test Function	Baseline Functional	Vibration Sine/Random	Post-Vibe Functional	Thermal Vacuum	EMI/EMC	Final Functional
	Voltage Current Peak	х		X [∞]	х		х
Transient	Voltage Rise Time	x		Χ ^α	х		х
Operation	Current Ramp	x	,	X ^{co}	х		х
_	Current Overshoot	x			х		x
	Current Undershoot	x			x		х
	Transition to Constant Power	х		X ^{co}	х		х
	Constant Current	x		Χα	x		x
Interface	Command Verification	х		X ^a)	х	-	х
Operation	Telemetry Verification	х		X ^α	X		х
	Power Regulation	Х			х		х
	Efficiency	x		X ^{co}	x		х
Steady- State	Output Current Ripple	х			x		x
Output	Input Current Ripple	x			x		x
	EMI/EMC					X ⁽²⁾	
	Nonoperating		X ⁽²⁾				

⁽²⁾ Conducted on PCU S/N 002 only.

Notable deviations made to the initial test plan for the S/N 001 unit were to waive qualification vibration and EMI tests. Fabrication schedule delays made these exceptions necessary so that RRC system integration and testing could be conducted.

A summary of the S/N 001 results is shown in Table 3-26. Data were taken at temperatures of -15 C, 25 C, and 65 C. Performance during thermal vacuum testing showed no deviations from ambient test results. Efficiency was improved slightly from the development unit but was still slightly below the design goal. Final measurements on S/N 001 ranged from 87.7 to 91%.

PCU System Integration Testing

Following acceptance testing, the S/N 001 PCU was tested at RRC on both a load resistor and a benchmark arcjet. During resistive load testing, comparitive measurements were made using a Sorensen DC power supply and lead-acid batteries as the power source. Figure 3-87 shows that the batteries are a far stiffer voltage source. Acceptable arcjet startup was achieved, however, with the power supply, so the batteries were not used during any subsequent testing.

POWER SUPPLY vs BATTERY INPUT SOURCE COMPARISON

11211-81

Table 3-26
PCU S/N 001 ACCEPTANCE TEST DATA SUMMARY

	•		ncy (%) 10%, M in.	Peak ⁽¹⁾ Start Voltage (kV) Goal: 4 kV, Min.	Current Overshoot (A) Goal: 2.5 A, Max.	Peak-to-Peak Output Current Ripple (A/% of DC) Goal: 20% of DC
	Input V	120 V Output	100 V Output	Goal. 4 kV, mill.		Current, Max.
	25	90.50	88.50	4.24	0.08	0.6 / 6%
Baseline 25°C	28	90.66	88.91	4.46	0.08	0.75 / 7%
	32	90.80	88.95	4.72	0.12	1.02 / 10%
	25	90.80	88.53	4.26	0.24	0.68 / 6%
Thermal –15°C	28	90.99	89.06	4.48	0.24	0.83 / 8%
	32	91.03	89.22	4.74	0.16	1.10 / 10%
	25	89.53	87.71	4.04	0.12	0.65 / 6%
Thermal 65°C	28	89.97	89.65	4.28	0.12	0.76 / 7%
	32	90.10	88.52	4.74	0.12	1.08 / 10%

NOTES: (1) 1,700 pF Load

The PCU started and operated the benchmark arcjet satisfactorily. Operation of the PCU in RRC's vacuum chamber (50 mTorr backpressure) was demonstrated without incidence. The only problem encountered was that the PCU generated EMI which affected the facility instrumentation, as was experienced with the development unit. Extensive filtering and ground isolation improvements were implemented to allow accurate data acquisition to be made. These facility changes allowed the complete EM system testing to continue with the S/N 001 PCU, but additional work was deemed necessary on S/N 002 to lower the EMI levels.

3.3.4.4 PCU Efficiency/EMI Improvement

A follow-on development effort was conducted to evaluate and improve the EM PCU S/N 002 efficiency and EMI performance. The following subtasks were established:

- 1. PCU Characterization Characterize EMI performance and efficiency.
- 2. Circuit Modification Identification Identify potential PCU circuit modifications which could improve EMI and/or efficiency performance.

- 3. Circuit Modification Implementation Incorporate circuit modifications identified under Task 2 most likely to improve PCU performance with the least risk to the PCU.
- 4. Final Assembly/Characterization Incorporate optimum selection of circuit changes into PCU using construction, assembly and fabrication techniques which are consistent with the existing PCU.
- 5. Documentation Document circuit design changes to the PCU in the form of an addendum to the existing schematic diagram.

Pacific Electro Dynamics (PED), located in Redmond, Washington was selected to conduct the improvement program.

PCU Characterization

The PCU was configured in a standard test setup for all EMI and efficiency measurements as shown in Figure 3-88 This test configuration was maintained throughout the moficiation and retest process. Initial conducted emission data were taken during open bench testing performed in the PED Engineering Laboratory. Four conducted emissions plots were generated for the following PCU cables:

- 1. 28 vdc input (POS)
- 2. 28 vdc return (NEG)
- 3. Command/Telemetry Cable Set (COMMAND)
- 4. Output Triaxial Cable (OUT)

Each of the emission current measurements were made with the RF current probe placed around the entire cable set, including the shield braid. The currents measured are therefore the net unbalanced current in the cable set. The data are shown in Figure 3-89.

Efficiency measurements made in this initial configuration are as follows:

V _{in} (V)	l _{in} (A)	P _{in} (W)	V _{out} (V)	l _{out} (A)	P _{out} (W)	Efficiency (%)
27.0	54.32	1466.4	103.58	12.49	1293.7	88.22%
28.0	52.25	1463.0	103.68	12.50	1296.0	88.58%
32.0	45.70	1462.5	103.50	12.49	1292.7	88.40%

Additional data were taken on the input filter. The PCU cover was removed and the internal components evaluated with a Hewlett-Packard 4194A Impedance Analyzer. The original input filter is shown in Figure 3-90. Most of the components were as expected, but the two input inductors were off value by a ratio of 35 to 1. Impedance plots of the original configuration of L1 were made. The measured inductance was approximately 0.15 microhenries compared to the WJ schematic value of 5.5 microhenries. These inductors were fabricated with dual termination wires connecting to a single foil winding. They were miswired so that the inductor was effectively shorted out.

PCU BASELINE EMI PERFORMANCE CE03 NARROWBAND

INPUT FILTER DESIGNS

ORIGINAL WJ DESIGN

Design/Actual Values Shown (Latter in Parenthesis)

AS MODIFIED 1/30/90

The remaining components were closer to the expected values. The relatively low ratio of damping inductor L3 to L4 used in the original configuration dramatically reduced the input filter's performance. The power handling filter components showed a substantial attenuation performance improvement when damping inductor L3 was removed. Greater than 60 dB attenuation was achieved at the ripple current fundamental of 32 kHz. These measurements indicated that a significant redesign of the input filter was required.

Circuit Modifications — Identification

Several methods to improve the EMI characteristics and efficiency of the PCU were identified. These are in Table 3-27. The risk of damaging the PCU was also assessed.

Table 3-27
CIRCUIT MODIFICATION EVALUATION MATRIX

	Circuit Modification	Improve EMI	Improve Efficiency	Risk of Damage to PCU
1.	Redesign Power MOSFET Snubbers	Х	Х	High
2.	Modify Power MOSFET Gate Drive Circuit	X	х	High
3.	Filter Pin Connector for Command/Telemetry Lines	X		Low
4.	Add Filter Components (Ferrite Beads, Capacitors, etc.)	X		Low
5.	Add EMI Gasket to Cover	X		Low
6.	Eliminate Parasitic Oscillations	X		Low
7.	Redesign Output Rectifier Snubbers	Х		Medium
8.	Add External Filtering to PCU Power and Signal Lines	X		Low
9.	Redesign Power Converter Input Filter	х		Low

After an evaluation of the identified circuit modifications, it was determined that Items 3, 4, 5 and 9 represented the best tradeoff between performance improvement and risk of damage to the unit. Evaluation of the PCU revealed no parasitic oscillation (Item 6). Although Item 9 could be accomplished with low risk, it was judged that a filter external to the PCU would require an unacceptably large increase to the dimensions of the PCU.

Modifications to directly improve efficiency (Items 1 and 2) were judged to be too high of a risk to implement in the existing S/N 002 PCU.

Circuit Modifications — Implementation

The conducted emissions from the power input lines were primarily common mode. The source of the common-mode emissions is the switching voltage applied through parasitic capacitance to the case (i.e., FET drains to case). The emission appears as a high impedance current source that can be effectively filtered by a combination of low impedance bypass paths to case together with series impedance to the external leads. The modified input filter shown in Figure 3-90 was incorporated into the PCU. Adding high frequency common-mode inductors together with bypass capacitors to case allows a larger percentage of common-mode current to be returned to the case via bypass capacitors (C160-C163) rather than through the power leads external to the case. The filter is a fourth order Gaussian type scaled to achieve adequate attenuation of the dominant 100 kHz component. The parts list for the modified filter is as follows:

C160, C161	0.1 5uF, Ceramic CKR06, 100V
C162, C163	0.47uF, Metallized Polycarbonate, 50V, CRH02 Style
L1	See Figure 3-91
L2	See Figure 3-92

The high frequency common-mode inductor (L1) design is shown in Figure 3-91. The lower frequency common mode inductor L2, is shown in Figure 3-92.

Additional filtering was provided with a filtered pin connector for the command and telemetry signals. Additionally, ferrite filter beads were added to each of the five command/telemetry wires adjacent to the connector. The beads provided additional series impedance to further reduce emitted currents from these lines.

Conducted EMI bench testing was performed to evaluate the effectiveness of the modifications. A review of Figures 3-89 and 3-93 shows a comparison of data from MIL-STD-461 CEO3 measurements made on the positive and negative input power leads, output power lead, and command/telemetry leads before and after the circuit changes. The limits for MIL-STD-461 and TRW FLTSATCOM SR1-12C specifications are also shown. Significant improvement is evident in all cases. For conducted emissions, the MIL-STD-461 limits were still exceeded at some frequencies.

INDUCTOR L₁ DESIGN

SCHEMATIC & PERFORMANCE REQUIREMENTS

P1 10T P2 S2 10T

 $L_{M} > 12.5$ uH (EACH WINDING) $R_{S} < 3$ m Ω (EACH WINDING) $L_{max} < 60$ Adc (EACH WINDING)

SUGGESTED BUILD:

EVENLY WIND 24 IN HAND. 10 TURNS OVER LENGTH OF TOROID. SECURE WITH TAPE. DIVIDE NTO EQUAL 12 IN HAND WINDINGS

MATERIALS:

CORE: ARNOLD ENGINEERING

FERRITE TOROID A-324117-2 1.45 O.D. 0.85 I.D. 0.45 HIGH

WIRE: 20 IN HAND 20 AWG HML

WIRE. 10 TURNS

TEST REQUIREMENTS:

WINDING RESISTANCE EACH WINDING 3 mOHM (10A)

INDUCTANCE:

12uH MINIMUM (3 Ω @ 40kHz)

L1 12.5uH 60A. BALANCED NASA/LEWIS PCU INPUT FILTER MODIFICATION

INDUCTOR L2 DESIGN

SCHEMATIC & PERFORMANCE REQUIREMENTS

SUGGESTED BUILD:

L_M > 45uH (EACH 4 TURN WINDING)

 $R_s < 3 \text{ m}\Omega$ (EACH WINDING) Imax < 60 Adc (EACH WINDING) **EVENLY WIND 28 IN HAND.** 4 TURNS UNIFORMLY OVER TOROID. SECURE WITH TAPE.

MATERIALS:

CORE: FERRITE TOROID FERROXCUBE P/N

846T250-3E2A 0.85 O.D. 0.55 I.D. 0.25 HIGH

WIRE: 28 IN HAND 20AWG HML **WIRE 4 TURNS**

TEST REQUIREMENTS:

WINDING RESISTANCE **EACH WINDING** 3 mOHM (10A)

INDUCTANCE:

45uH MINIMUM (11 Ω 40kHz)

L2 45uH 60A. BALANCED NASA LEWIS PCU INPUT FILTER MODIFICATION

PCU EMI PERFORMANCE AFTER MODIFICATIONS

Final Assembly and Emission Characterization

As a final check on EMI performance, emission test data were taken in a certified EMI test facility at the ELDEC Corporation. The test was performed in January 1990 using the test configuration shown previously in Figure 3-88. Only the arcjet PCU and an 80-inch length of cable were inside the shield room. The Sorensen power source, load bank and the command/telemetry interface box along with instrumentation were located outside the screen room.

During this testing all shields were bonded to the screen room ground plane at both ends. This configuration is representative of a flight configuration on a low impedance vehicle frame. Some concern was raised regarding bonding of shields at both ends, so additional testing was undertaken to evaluate the effect of bonding shields at only one end. The radiated emission portion of the EMI testing was repeated on March 16, 1990, with shield grounds in several configurations.

Alternate Shield Ground Emission Testing

A repeat set of EMI tests were performed in March 1990 at ELDEC Corporation test facilities. The testing consisted of radiated emission testing (MIL-STD-461C, RE02) in several different shield ground conditions and audio frequency conducted susceptibility (CS01). The only significant change in the PCU since similar tests were conducted on January 27, 1990 was the addition of an EMI gasket between the cover and case. RE02 sweeps were made in the following four shield ground configurations:

- Configuration 1 Power input, thruster output, and command/telemetry shields grounded at both ends, thruster anode grounded.
- Configuration 2 All shield grounds removed at far end from the PCU with anode still grounded.
- Configuration 3 Power input and command/telemetry shields grounded only at the outboard end. Output triax shield still grounded at PCU connector. Anode grounded.
- Configuration 4 Same configuration as 2 but with anode floating.

A summary of the test results for the four configurations is as follows:

- Configuration 1 Configuration 1 results were similar to the January 27 tests. Over specification emissions were slightly improved in the 200 to 500 MHz range but were still above specification.
- Configuration 2 Emissions were somewhat higher in several frequency bands by up to 15 dB.
- Configuration 3 Emissions appeared to be slightly higher still at some frequencies.
- Configuration 4 Slightly higher emissions than Configuration 2.

Bonding the shields to the ground plane at both ends produced the best results.

Conducted Susceptibility (CS01 Test)

During the EMI testing at the ELDEC facilities, conducted susceptibility testing was also performed on the input power lines of the PCU. The test was conducted according to requirements that were nearly identical to MIL-STD-461C, CS01. The specification requires an injected voltage of 0.56 Volts peak from 20 Hz to 15 kHz (2% of line voltage at 28 vdc), decreasing to 0.28 V peak at 150 KHz (1% of line voltage or 1 Volt, whichever is greater). An injection signal of 1.2 Volt peak-to-peak minimum from 20 Hz to 150 kHz was considered more than adequate per the specification. The PCU output voltage was monitored continuously as the indication of a PCU malfunction.

Problems occurred running the test because the Sorensen input power source tended to oscillate before any injection was applied. The problem observed was basic instability of the Sorensen internal control loops when connected to the negative input impedance of the PCU. The Sorensen tended to oscillate at approximately 12 to 13 Hz (the control loop unity gain of the 6-phase 60 Hz SCR controller). The oscillation amplitudes varied up to 3 V peak-to-peak. The problem had been observed at low PCU input voltages previously (where negative input resistance is minimum) but was made worse when the injection transformer (Sola 6220-1A) was installed. A large capacitor bank was used at the Sorensen output to minimize the problem and an additional 2600 microfarad capacitor was placed across the power bus between the 10 microfarad feedthrough capacitors and the isolation transformer. The tendency to oscillate was reduced but could still be excited by the injected susceptibility signal.

The instability of the Sorensen power source made measurements difficult over some frequency ranges. Measurements from 20 Hz to approximately 100 Hz were difficult because the injected ripple tended to make the Sorensen oscillate. The large magnitude of input voltage variation (Sorensen oscillation plus injected signal) caused the PCU output to evidence ripple (up to 10 Volts peak-to-peak). Injection from 100 Hz to approximately 15 kHz caused no change in the PCU output. From approximately 15.5 kHz to 16.5 kHz, the Sorensen again experienced high amplitude oscillations, making susceptibility measurements difficult. From 17 kHz to 150 kHz no effect was observed on the PCU output.

In the frequency ranges where the Sorensen was affected, the true susceptibility performance of the PCU was difficult to determine, but it is believed that the PCU is not susceptible. The 16 kHz susceptibility is believed to be caused by the difference frequency between the 16 kHz ripple current from the PCU mixing with the injected signal to cause an apparent ripple current in the 100 Hz range where the Sorensen is unstable.

The following summarizes the results of the conducted susceptibility testing:

Frequency	Susceptibility
200 – 100 Hz	Sorensen oscillates
100 Hz to 15 kHz	No effect
15 kHz to 17 kHz (approximately)	Sorensen oscillates
17 kHz to 150 kHz	No effect

Summary

Conducted emissions were reduced significantly in the frequency range above 1 MHz. Radiated emissions were also reduced by the filter changes. Radiated emissions were probably most affected by good shielding of the external cabling. Low frequency conducted emission performance was still above MIL-STD-461C levels but did meet for the most part TRW FLTSATCOM requirements. Exceptions are approximately 10 dB above specifications in the 200 MHz to 300 MHz communication band where the specification has a 15 dB higher requirement. Significant magnetic emissions were measured (RE01) at frequencies less than 50 kHz.

Table 3-28 summarizes the EMI performance of the modified PCU relative to the limits of MIL-STD-461C and the TRW FLTSATCOM EMI specification. The conducted emissions results are peak values which generally occurred somewhere in the 1 MHz to 10 MHz range.

Table 3-28
EMI RESULTS SUMMARY

	Re	sults
Test	MIL-STD-461C Test Limits	TRW FLTSATCOM Test Limits (DOC No. SR1-12C)
Conducted Emissions (Broadband)		
Return	+47 dB	+10 dB
+28 V	+47 dB	+10 dB
Command	+12 dB	Meet
Output	+22 dB	+ 5 dB
Conducted Emissions (Narrowband)		
Return	+40 dB	Meet
+28 V	+40 dB	Meet
Command	+10 dB	Meet
Output	+22 dB	Meet
Radiated Emissions (Broadband)		
0.015 – 30 MHz	M€et	+ 6 dB
30 – 200 MHz (Horiz)	Meet	+ 2 dB
30 – 200 MHz (Vert)	Meet	+ 2 dB
200 – 100 MHz	Meet	+15 dB
1 – 10 GHz	Meet	+ 2 dB
Radiated Emissions (Narrowband)		
0.015 – 30 MHz	+5 dB	Meet
30 – 200 MHz (Horiz)	Meet	Meet
30 – 200 MHz (Vert)	Meet	Meet
200 – 100 MHz	Meet	Meet
1 – 10 GHz	Meet	Meet

3.4 ARCJET SYSTEM TESTING

Final evaluation of the EM arcjet system was completed by conducting a comprehensive test program. To verify that the system could meet standard flight requirements, testing was structured to follow a format similar to typical RRC flight qualification programs. Procedures documenting setups and operator instructions were created to ensure test fidelity.

The important successes of this test program included qualification vibration testing of all system components, demonstration of performance, stability, and thermal design capability, and completion of an 800 hour system duty cycle life test.

The test flow plan is shown in Figure 3-94 Testing was conducted on two EM PCU's and arcjets as noted in the figure.

The S/N 001 arcjet was used during initial testing which evaulated performance, stability, and thermal/mechanical design integrity. Included were performance, thermal map, start up, and qualification vibration tests. Test firings of S/N 001 were conducted with both the development PCU described in an earlier section and PCU S/N 001. This thruster was then made available to a separate NASA LeRC

QUALIFICATION LIFE TESTING OF ARCJET SYSTEM

program (Arcjet Spacecraft Integration Program). AJT S/N 002 was integrated with PCU S/N 001 for performance mapping and the system life test.

Both PCU's underwent component level acceptance testing which included full functional characterization and thermal vacuum tests. These are discussed in Section 3.3. PCU S/N 001 was then used for the system level testing. PCU S/N 002 received qualification level vibration, post-vibration operational testing to verify full functional capability, and was then used for a follow-on EMI improvement program. The results from this effort are also located in Section 3.3.

3.4.1 Test Facility

Test firings of the arcjet system were conducted in Chambers 10 and 11 of the RRC Electric Propulsion Test Facility. Each chamber is 2.44 m in diameter by 2.44 m long, constructed of steel, and is water cooled through passages located between its interior and exterior walls. It is serviced by a Stokes 1726 mechanical pump with a capacity of 13,400 cfm. Over the propellant flow rates tested (30 to 55 mg/sec), the vacuum chamber pressure ranged between 25 to 50 mTorr. Thrust was measured on a swinging arm, null balance, thrust stand. The thrust stand is operated in a null displacement mode using a combination LVDT/linear actuator measurement system. Error due to hysteresis effects is minimized by maintaining nearly zero displacement of the thrust arm.

The system components were mounted on a heat exchanger plate which was fixed to the thrust arm. This allows the interface temperature of the PCU and arcjet to be controlled. Lines for electrical power, hydrazine, conditioning fluid, and instrumentation were integrated into torsional flexures which are aligned with the thrust arm axis of rotation. Arcjet voltage and current measurements were made from instrumentation designed to interface with a power cable which was modified for testing. These modifications allowed the cable to be assembled with a cabinet housing two current transformers, each with different frequency response characteristics, and a broadband voltage divider circuit to allow steady-state and transien measurements to be made. Steady-state voltage and current were also recorded from the PCU telemetry output.

The propellant delivery system was the same as for prior tests. To simulate spacecraft requirements, the propellant tank was pressurized with igh purity helium, the propellant feed line size was duplicated, and conditioning was installed to maintain uniform propellant temperatures. Flow rate was measured with a Micromotion mass flowmeter and a remotely controlled sightglass system was used less frequently for redundant measurements during performance mapping. A Sorensen DC power supply rated at 150 V and 70 amps was used to supply the PCU input power. The unit was operated in a voltage regulated mode at input levels to the PCU between 25 and 32 V.

Additional instrumentation included strain gauge pressure transducers, chromel-alumel thermocouples, and a digital storage oscilloscope for recording high frequency voltage and current measurements. Test control and data acquisition were performed by a micro-computer based system integrated with a 16-channel digitizing data logger. Software was developed to allow complete control of the arcjet system functions via the computer. Measurement uncertainty estimates were calculated from a standard equation which considers uncertainties specified for each parameter in a particular measurement or coputation. The uncertainty calculations are summarized in Table 3-29.

Flight level dynamic tsting was performed in the RRC vibration laboratory. The facility is comprised of a vibration control system and shaker table which can be oriented for displacement along three axes. The input frequency spectrum and amplitude levels are programmed into the control system and a response accelerometer on the shaker provides feedback to insure actual test vibration levels are maintained within tolerance limits. Twelve data acquisition channels were available for response accelerometer and strain gauge instrumentation of the arcjet hardware.

Table 3-29
CALCULATED DATA UNCERTAINTY

Parameter	Symbol	How Measured	Accuracy in Measured Range (±%)
Flow Rate	ṁ	Micromotion Mass Flowmeter	0.9%
Flow Rate	m	Propellant Tank Sightglass	0.6%
Propellant Feed Pressure	P_t	Transducer	0.8%
GG Outlet Pressure	P₅		
Temperatures	T	Chromel-Alumel Thermocouples	1.0%
Thrust	F	Null Balance Thrust Stand	1.5%
Arc Voltage (DC)	V_{DC}	Voltage Divider	0.5%
		PCU Telemetry	1.5%
Arc Current (DC)	I_{DC}	Hall Effect DC Current Sensor	1.0%
•		PCU Telemetry	1.5%
Arc Voltage (AC)	V _{AC}	Compensated Broadband Voltage Divider	1.0%
Arc Current (AC)	I _{AC}	Current Transformer	1.0%
PCU Voltage	V _{IN}	Voltage Divider	0.5%
PCU Current	I _{IN}	Current Shunt	0.3%
Reduced Data			·
Power (Arcjet)	Pat		1.1%
Power (PCU)	P _{IN}		0.6%
Specific Impulse	I.		1.7%
Efficiency (Arcjet)	η_{AJ}		3.3%
Efficiency (PCU)	η _{νου}		1.3%

3.4.2 AJT S/N 001 Performance, Stability, Environmental Testing Performance/Stability

These test firings characterized the arcjet thermal design, startup parameters, and performance levels. The instrumentation used for these tests is shown in Figure 3-95. A full listing of the measured data can be found in Appendix A.

The mission analysis conducted during the system design phase yielded the propellant feed pressure blowdown curve representative of meeting the qualification lifetime requirement. During later life testing, this blowdown was simulated in a step-wise fashion with firings conducted at discrete feed pressure blocks, as is shown in Figure 3-96. The performance mapping measurements of S/N 001 were made at these same feed pressures so that mission average performance parameters could be estimated. The performance data were taken at the end of 30 minute duration firings for each feed pressure. Less than four minutes are required for thrust to reach equilibrium but the longer firing times were used to ensure thermal equilibrium had been achieved.

Any drift in thrust stand and flowmeter measurements between beginning and end of runs were measured at the test shutdown. The amount of measured drift was less than 4% of nominal thrust and 1% of nominal flow rate. The post-shutdown zero reference was then used to subtract out the measurement drift.

ARCJET FIRING INSTRUMENTATION

36	MEN PART NO JOOCUMENT NO				LOTINO	PAGE NEV PARTIND/DOCUMENT NO.	T NO ZOCCUMENT NO				3
	*		TP0699, Appendix B	6 1		Š			TP0699, Appendix B		
				ATP Reference Instrumentation List					ATP Instrumentation List	174	
	Parameter Syr	Deputies Company	Bance	Mensymement Device	Becording Device		Parameter	Symbol	Sende	Massurament Dentes	Pecording D
					Micro-Deca SCR						Micro-Discs
	Gas Generator Chamber Body Temperature	⊢ 8	0 - 50 mV	Type K Thermocouple	æ	Flourable	#		0-2.0 x 10-16m/s	Micromotion	×
		Ę	0-30 mV	Type K Thermocouple	æ	Howara	8) * 0	0 - 2.0 x 10 Tbm/s	Sightshae	(manually re
	Propellant Inter	Ļ.	0-5mV	Type K Thermocouple	×	A Pr Voltage		. >	0 - 150 V	1000:1 Voltage	(mereel, HP
	Thermol Plate Temperature	بار الاس	0-5mV	Type K Thermocouple	, M			•		Divider John Voltan	
			Ş	Tone & Thermoornest		The same	2 and	a v	0-01. To with	Divider	O-scope)
	Arcycl I compensations	ئو تـ	A = 00 - 0	Type K Thermycouple	: # : #	Arc Voltage	Mage	>	0-150 V	Fluke 80 K6	*
		, F _. , F _.	0 - 50 mV 0 - 50 mV	Tyre K Thermocouple Tyre K Thermocouple	K K	Arc Current	ment		0 - 150 A	. Hall Effect DC Current Sensor	(merced, HP
		, L ,L,	0-30mV 0-50mV	Type K Thermocouple Type K Thermocouple	84 M	Arc Current	ment	٧_	0 – 50 A, 20 MHz	Pearson Current Transformer	(Nicolet Dig O-ecope)
	Mount Structure	F.	0 - 50 mV	Type K Thermocouple	*	Arc Current	ment	-	0 - 100 A	Current Shant	•
	Temperature	. ,	:	1		TO L	PCU Input Voltage	, e	0 - 40 V	HP DVM	(marreally n
	Valve Body Temp. OG End	- *	∧ ₩ 0 × − 0	Type A Thermocoupie	-	Peed	Food Pressure		0 - 500 pais	Transdecer	
	Valve Body Temp. Inlet End	۲,	0 - 50 mV	Type K Thermocouple	ĸ	Oss O	Ges Generator Chamber Pressure	•-	0 – 100 psia	Transducer	#
	Ambient	<u>, </u>	0 - 10 mV	Type K Thermocouple	H	Vacuu	Vacuum Chamber	٠,	0 - 1 Torr	MKS Baracton, Type 390 HA	. (mereelly n
3-142	Temperature	•				Valve	Valve/OG Mount Flange Temperature	F. '	0-50 mV	Type K Thermocouple	*

(meres), HP DVM)

(Nicolet Digital O-scope)

Recording Device

(merced, HP DVM

(Nicolet Digital O-scope)

ATP Thermocouple Configuration

Figure 3-95

LIFE TEST BLOWDOWN CURVE

11210-87 Figure 3-96

Three performance tests were conducted with the PCU output power at the system design level of 1260 W. The first was conducted prior to qualification level vibration and the second and third following vibration to verify integrity of the hardware. Measured specific impulse vs. feed pressure and a regression curve fit of the data are shown in Figure 3-97. Excellent repeatability in performance was demonstrated with all data falling within $\pm 1.0\%$ of the nominal curve. No performance reduction resulted following vibration as indicated by the data.

ISD VERSUS FEED PRESSURE

Flow rate vs. feed pressure and thrust vs. flow rate curves are shown in Figures 3-98 and 3-99, respectively, for the three tests.

The range in specific impulse over the blowdown was 436 to 498 seconds. Based on the curve shown in Figure 3-96 of the feed pressure blowdown, the measured data were used to generate thrust and flow rate plots as a funtion of firing time. The best fit equations for these profiles were then integrated to compute a predicted mission average specific impulse of 465 seconds.

Performance of the S/N 001 thruster was also measured with firings conducted at higher power levels up to 1700 W. This was achieved by modifying the development PCU to deliver variable output power up to the 1700 W limit. A summary of the increase in specific impulse which was achieved is shown in Table 3-30. Figure 3-100 shows the steady state arc voltages and currents over the same flow rate range for each of the power levels tested. Stable thruster operation was achieved over the entire operating envelope shown of flow rate and power. Startups were observed to stabilize within several seconds and were very repeatable.

The thermal design of the arcjet assembly was also verified during thruster firings. The primary thermal design constraints were to control the conducted heat to the spacecraft mounting interface and maintain temperatures at critical thruster locations below allowable limits. The arcjet design incorporated the use of thin cross-section metals in the arcjet barrel and a high emissivity anode surface coating for enhanced radiation. These characteristics allow a steep temperature gradient to be achieved from the anode end of the barrel to the aft end. Table 3-31 shows a comparison of the design maximum, predicted and measured temperatures at critical locations of the arcjet assembly while operating at 1,260 watts power. Adequate safety margins exist at all locations. The predicted temperatures shown are from thermal analysis results at a nominal feed pressure value (1.67 MPa). The design temperatures of the weld joint, braze joint, and electrical connector were established through thermal cycling evaluations conducted during the design phase.

A startup characterization test was conducted on arcjet S/N 001 over the system flow rate range with cooldown periods used between starts to simulate cold conditions. In a total of 80 starts the demonstrated rate of reliability was 95% success on first pulse attempts with 5 requiring one additional pulse. Several characteristics that are important to reliable and low erosion startup were measured. Figure 3-101 shows the arc breakdown occurring at 3,179 volts and the initial current of approximately 6 amps which results from the discharge of start circuit inductively stored energy. Current flowing from the start circuit will sustain the ionized arc path at 30 to 40 V for approximately 40 usec. During this sustaining period, the power converter, which is already on prior to arc breakdown, begins to supply current to ramp up to a steady-state level. The initial start pulse current must be sufficient to prevent the arc from extinguishing. Subsequent to this transition, the arc moves from its initial location of low voltage attachment in the converging section of the nozzle to a nonerosive attachment mode in the lower pressure diverging section. This transition period is shown in Figure 3-102 where the arc voltage increases to a stable level in about 0.6 seconds. During start testing, the period for this transition varied between starts, but was less than 2 seconds in all cases.

3-144

NASA LEWIS S/N 1 PERFORMANCE MAP FLOWRATE vs FEED PRESSURE

FEED PRESSURE (KPa)

NASA LEWIS S/N 1 PERFORMANCE MAP THRUST vs FLOWRATE

11225-53 3-146 Figure **3-99**

Table 3-30
SPECIFIC IMPULSE AT VARYING ARCJET POWER

	Arcjet Power			
	1260 (W)	1400 (W)	1620 (W)	1700 (W)
BOL Isp (Sec) Flow Rate (48.5 mg/s)	433	458	487	503
EOL Isp (Sec) Flow Rate (34.9 mg/s)	489	516	545	567
Mean Isp (Sec)	461	487	516	535
Mean Isp Increase Over Isp at 1,260 W		5.6%	11.9%	16.1%

11211-25

Figure 3-100

Table 3-31
THERMAL MAPPING RESULTS

	Predicted	Design	Measured Range
Anode Weld Joint	877	1,204	787 – 880
Arcjet Body Braze Joint	457	5 93	383 – 414
Electrical Connector	138	200	99 – 126
Propellant Valve Flange	139	149	87 – 122

ARC BREAKDOWN

Figure 3-101

ARCJET STARTUP STABILIZATION

No spark discharge or other forms of erosion were observed. Finally, the magnitude of the voltage required to induce breakdown of the arc was measured. This characteristic of the engineering model arcjet is shown in Figure 3-103. The breakdown voltage did not vary significantly over the range of flow rates. The mean voltage range was 3,500 to 3,750 V.

STARTUP VOLTAGE VARIATION

11210-94 Figure 3-103

Vibration Testing

A test critical to the successful demonstration of the EM arcjet design was qualification vibration. The arcjet was tested with the power cable attached as shown in Figure 3-104. Strain gauge and accelerometers were attached to the test hardware.

Sine and random vibration tests were conducted in three axes. The vibration levels, frequency spectrums, and test durations shown in Table 3-32 are representative of current launch vehicle qualification requirements.

Strain gauge measurements indicated the highest stresses in the assembly were produced by the random excitation. In all cases, these were found to be well below the yield strength of the materials. Maximum stresses were in the gas generator thermal standoff and the arcjet barrel at its attachment location to the mount structure. These measurements are summarized in Table 3-33. A peak stress in the structure of 29.8 ksi (deduced from the elastic strain measurement) is shown for the arcjet barrel. Here, a positive margin of safety of 1.0 on yield is maintained. Safety margins at all other locations are significantly higher. Acceleration responses for the random vibration input were very near predicted levels at all locations.

Table 3-32
QUALIFICATION VIBRATION LEVELS

Sine Vibration Levels				
Frequency Range (Hz)	Level	Sweep Rate (octaves/min)		
10 – 24	1.27 cm displacement	2		
24 – 36	15 G's	2		
36 – 55	20 G's	2		
55 – 200	7 G's	2		
200 – 2,000	5 G's	2		

Random Vibration Levels				
Frequency Range (Hz)	Level (G rms)	Duration (min)		
200 – 2,000	20	2		

Table 3-33
RANDOM VIBRATION PEAK STRESSES

	Peak Stress at Base of Arcjet Barrel (ksi)			Peak Stress at Base of Lower Gas Generator Thermal Standoff (ksi)	
Excitation	Outboard	Тор	Inboard	Outboard	Bottom
Transverse Axis Random	14.0	_	14.0	15.9	14.9
Vertical Axis Random	_	29.8*	6.9	10.7	12.4
Longitudinal Axis Random	 	3.3	2.8	7.5	11.2
Transverse Axis Sine	11.9		6.6	10.5	7.7
Vertical Axis Sine	 	24.5	5.4	10.4	8.6
Longitudinal Axis Sine		3.6	3.0	5.7	11.9

^{*} Peak stress, margin of safety = $\frac{60.0}{29.8} - 1 = 1.0$

The natural frequencies of the arcjet assembly were identified through analysis of the sine vibration data. A summary of measured and predicted frequencies for important modes is shown in Table 3-34. The lowest and most critical of these are the transverse (230 Hz) and vertical (260 Hz) flexural motions of the arject barrel, which is cantilevered from its attachment location at the mount structure. A peak acceleration of 182 g's was recorded when the vertical flexural mode was directly excited. This represents a worst-case condition for deflection of the arcjet barrel and its internal components. A differential displacement calculation between the end of the anode and the arcjet barrel at its attachment point to the support structure resulted in a maximum displacement of 0.066 cm corresponding to the peak acceleration. For this condition, flexural stresses in the internal ceramic components were calculated. Margins of safety of 4.5 or greater resulted. Additionally, no loss of cathode positioning was experienced to suggest possible failure of the ceramic components. This was verified through measurements made of the cathode/ anode gap throughout the test.

Table 3-34
MEASURED AND PREDICTED NATURAL FREQUENCIES

Mode Description	Predicted Frequency (Hz)	Measured Frequency (Hz)	
Barrel flexure, Vertical	263	260	
Barrel flexure, Transverse	294	230	
Connector end flexure, Vertical	800	610	
Connector end flexure, Transverse	879	620	
Valve and gas generator motion	523 to 1,458	350 to 1,510	
Support structure motion	1,887	1,210	

Post-vibration leak and functional tests were performed. The assembly was successfully tested for the following: proof pressure; valve seat internal leakage; gas flow rate; electrical insulation resistance (valve, heaters, thermocouples, and cathode-to-anode); component circuit resistance (heaters, valve); and nitrogen leak detection. Leakage of less than 10^{-6} standard cubic centimeters of helium at 350 psig, a typical requirement for production hardware, was the only functional requirement not met due to leakage traced to a silicon rubber O-ring seal used at the thruster bolt-on connector flange. The measured leakage rate of 10^{-5} scc GHe has a negligible effect on thruster performance as it represents a rate of flow several orders of magnitude smaller than the propellant flow rate. A flight configuration assembly is projected to use welded construction of the flange, which will eliminate the potential for this leakage to occur.

Disassembly/Inspection

The cumulative test history of the S/N 001 arcjet is shown in Table 3-35. A total of 19.1 hours and 135 starts were completed in addition to the qualification level vibration test.

Table 3-35 S/N 001 THRUSTER TESTING HISTORY

Date	Run No.	Run Time (min.)	Starts	Description
12/13/88	80-5	112	3	Initial stability mapping.
12/14/89	80-6	30	8	Performance mapping
12/16/89	80-8	117	7	Performance mapping
1/4/89	_			Qual. vibration
1/17/89	81-2,3	198	7	Post-vibration performance mapping
1/18/89	81-4,5	10	90	Post-vibration startup
1/19/89	81-5,6	163	7	Repeat performance mapping
2/10/89	82-2	375	14	Higher power performance mapping at 1400, 1620, 1720 W arcjet power
5/16/89	84-3	141	6	S/N 001 system testing
	Totals	1,146	136	
		(19.1 hrs)		

Subsequent to these tests, the arcjet was disassembled and inspected. All parts were removed easily from the thruster body. The cathode and insulators are shown in Figure 3-105. All insulator parts were intact with no evidence of cracking. The measured mass lost from the cathode tip was 2.6 mg.

Since the thruster was to be used for additional testing no destructive examination was performed. Following photographic documentation, the thruster was reassembled without difficulty.

3.4.3 Arcjet System Demonstration

3.4.3.1 Baseline Performance Mapping

The final portion of the arcjet system demonstration included integrated performance and life test using EM arcjet S/N 002 and PCU S/N 001. The setup of system components in the Cell 11 facility is shown in Figure 3-106. A closeup view of arcjet S/N 002 is shown in Figure 3-107.

A long life gas generator concept being developed by RRC specifically for arcjet applications was integrated with the arcjet in place of the standard GG used for S/N 001 tests. This GG has improved thermal design features which maintain critical operating temperatures at lower levels.

S/N 001 CATHODE TIP AFTER FIRING

S/N 001 CATHODE INSULATORS AFTER FIRING

Arcjet System Test Setup

All testing was conducted with Olin purified hydrazine. Both prior to and after completion of testing, the fuel was sampled at the propellant line interface of the arcjet and verified to meet high purity grade requirements per MIL-P-26536, Amendment 2.

Performance map testing was conducted in a duplicate manner to the S/N 001 testing. Thirty minute runs were made at seven different feed pressures. A summary of the test data is given in Appendix B.

Measured performance levels compared very closely to arcjet S/N 001. Specific impulse vs. feed pressure for both units is shown in Figure 3-108. Based on the same assumed blowdown curve, the predicted mission average specific impulse for S/N 002 was 457 seconds. Compared to the 465 seconds for S/N 001, this is a difference of only 1.7%. A slightly higher flow rate for the S/N 002 assembly was expected due to variation in the fluid resistor characteristics. Component level testing had earlier indicated that the S/N 002 fluid resistor flowed about 0.5% higher. This difference accounted for most of the variation in specific impulse. Measured flow rate vs. feed pressure and thrust vs. flow rate for S/N 001 and S/N 002 are shown in Figures 3-109 and 3-110.

The stability of the arcjet was excellent. Stable startup was achieved on every initial attempt. Steady state arc voltage levels agreed within 3 volts for equivalent feed pressures compared to arcjet S/N 001. Temperatures of both the PCU and arcjet were well within design limits.

The PCU efficiency ranged between 87.7% and 90.0% as shown in Figure 3-111. These measurements do not include the small power losses in the input and output power cables. The triax output power cable resistance is approximately 60 milliohms which results in a loss of about 10 watts at the arcjet interface.

3.4.3.2 Gas Generator Development

As described previously, firing times on the order of 800 hours in a flow rate range of 30 to 50 mg/sec are required for near term qualification of the arcjet. Standard gas generator designs are generally not capable of meeting this requirement. One long-life design approach, a dual injector GG, was evaluated under the Arcjet Technology program. This effort was conducted in parallel to the system level testing. Design, fabrication, and stand-alone testing of one unit were completed. The effort was concluded with a successful life test in which 915 hours operation were demonstrated.

Design Description

The lifetime of the standard GG has been found to be limited by flow restriction in the fuel inlet tube at or near its injection to the catalytic chamber. Hydrazine liquid to gas phase transition occurs in this region, imposing a severe operating environment due to boiling and thermal decomposition.

NASA ARCJET S/N 2 BASELINE PERFORMANCE MAP Isp VS. FEED PRESSURE

NASA ARCJET S/N 2 BASELINE PERFORMANCE MAP FLOWRATE VS. FEED PRESSURE

11216-33

3-158

Figure 3-109

NASA ARCJET S/N 2 BASELINE PERFORMANCE MAP

□ S/N 2 + S/N 1 PM1 ◊ S/N 1 PM2 △ S/N 1 PM3

Figure 3-110

NASA ARCJET S/N 2 BASELINE PERFORMANCE MAP

3-159

Figure 3-111

As a means to extend the useable lifetime, the dual injector design incorporated two standard injection subassemblies with a single catalyst bed. In application, the propellant is directed through one injector for one half of the required firing time or until its useful life is exhausted, and the second injector is utilized for the balance of the system lifetime. An identical dimensional envelope to the existing unit was maintained which greatly simplifies its integration. A propellant valve with two selectable outlets is required for on-orbit diversion of the flow. For these tests, a simple diverter was used.

Thermal analyses were performed to examine two areas. First, the effects of having the active injector off-center were evaluated. Results indicated the asymmetric heat source would not create any significant thermal imbalances in the GG structure. For example, predicted temperatures of the three thermal standoffs near the injector varied by only 6°C.

A second analysis examined the effects of having two capillary tube thermal shunts. There is a delicate balance between the temperature at the valve flange and the catalyst bed injector. The former temperature affects the temperature of the incoming hydrazine. If this temperature is too high, an increase in the rate of degradation to the injector can occur. At the same time, the injector temperature itself is a critical parameter for long lifetimes. The additional conducted heat back to the valve through the nonoperating tube shunt was estimated. A 30% increase was predicted with no other changes made to the hardware. A new thermal spacer design was incorporated between the valve and GG mounting flange. This helped to bring the predicted temperatures at the valve down to levels seen with single injector configurations.

No structural analyses were performed since the main structural members of the GG were not changed.

Test Results/Conclusions

Testing of the GG was conducted in a simulated arcjet firing environment. The setup is shown in Figure 3-112. The GG, valve, and a resistance heater were attached to a flight design mounting structure. The heater replaced the arcjet. By adjusting the heater power and its mounting surface conductance, the same mounting point temperatures and a similar radiation environment to that documented for the arcjet were achieved. An orifice was used on the GG outlet to achieve back pressures identical to those measured when exhausting into an arcjet. The control of flow through either injector was achieved by loosening the GG mounting fasteners and rotating the plate 180 degrees.

Initial performance tests were conducted which showed that stable and consistent flow and thermal characteristics could be achieved with either injector. Figure 3-113 shows flow rate and chamber pressure for each injector while operating with equivalent propellant feed pressures. These values agree between injectors to within 2%. Stable chamber pressure was demonstrated that was free of oscillations and dropouts. These characteristics are consistent with those of the standard, single injector GG.

The temperature profile of the unit was mapped in detail. Representative data are shown in Table 3-36 with thermocouple locations shown in Figure 3-112. Design goals for maintaining sufficiently low temperatures at the valve (83°C) were met through the use of the new thermal standoff design between the GG and valve mounting flanges.

Figure 3-112

GAS GENERATOR TEST DATA

Table 3-36 DUAL INJECTOR GAS GENERATOR TEMPERATURE DATA

- Propellant flow through Injector No. 2
- $\dot{m} = 4.23 \times 10^{-5} \text{ kg/sec}$

Designation (See Fig. 3.4.3.2 B)	Location	Temperature (°C)
TF	Fuel Inlet	17
TVF	Valve Flange	83
T Chamb	Catalyst Chamber	561
T Inj1	Injector No. 1 Inlet	517
T Inj2	Injector No. 2 Inlet	565
T Shnt1	Thermal Shunt No. 1	249
T Shnt2	Thermal Shunt No. 2	137
Tmf 1	Mounting Flange No. 1 (Thermal Sink for Shunt No. 1)	139
Tmf 2	Mounting Flange No. 2 (Thermal Sink for Shunt No. 2)	116
Thtr	Cartridge Heater	316

The life test was conducted in a duty cycle of 1 hour on/0.5 hour off. A lifetime goal of 800 total hours was established. Each injector was operated over an equivalent flow rate range. Propellant feed pressure values were changed at 100 hour intervals to simulate a

blowdown. Injector 2 was fired first for a total duration of 406 hours. Flow was then switched to injector 1 for an additional 509 hours. A summary of firing time, number of starts, and hydrazine throughput is shown in Table 3-37. At the conclusion of testing, both injectors were fully operational. No test shutdowns due to abnormal GG behavior were experienced.

Table 3-37
DUAL INJECTOR GAS GENERATOR —
DEMONSTRATED LIFETIME

	Injector 1	Injector 2	Total
Hours fired	509	406	915
Number of Starts	514	410	929
Flow Rate Range (gm/s)	34.0 – 54.4	Same as 1	
N2H4 throughput (kg)	76.1	64.6	140.7

The encouraging results of these tests indicate that this GG concept is a viable means to achieving hydrazine arcjet lifetimes of over 1000 hours. Several suppliers were contacted regarding fabrication of a valve which could be integrated with the dual injector GG. A preliminary RRC specification drawing for this requirement is shown in Figure 3-114. The specified dimensional envelope is very similar to the existing valve used with the arcjet.

3-164

Figure 3-114

Several approaches were identified, of which two were the most attractive. The first is similar to the existing valve used except that an additional pair of solenoid actuated elements are located in parallel to the first which provides for both a dual path and series-redundant closing capability. The second incorporates a series-redundant element for turning the valve on and off with a latching section just downstream to control the dual path flow.

It was apparent from discussions that both of these concepts could be manufactured to meet RRC performance, weight, and dimensional requirements. The development of such a valve was not pursued on this program.

3.4.3.3 Life Test

The life test was initiated following the baseline performance map. The test was conducted on a 24 hour per day basis with a firing duty cycle of 1 hour on and 1/2 hour off. The 1/2 hour off time was sufficient for the refractory metal thruster parts (e.g., cathode, anode, body, and weld/braze joints) to transition through ductile-brittle phases, thus achieving a realistic thermal cycle environment. The command/telemetry interface of the PCU, flow control interface, and all steady state instrumentation were linked to a computer for automated monitoring and test control. The spacecraft propellant tank blowdown was simulated in a step-wise fashion. Eight feed pressure sequences were conducted in approximately equivalent 100 hour blocks.

The test was initiated on December 1, 1989 and completed February 3, 1990. A data summary package is given in Appendix B. The goal of 800 hours firing time was achieved with 811 hours completed during the life firing and 20 additional hours completed during intermittent health check firings. Both the arcjet thruster and PCU ran free of complications throughout the entire period. At the conclusion of testing, performance measurements and excellent demonstrated stability of the thruster indicated that additional life capability existed.

Some degradation in performance of the gas generator was observed, however, at 635 hours into the life test. A decline of 4% in flow rate occured over the 50 hour period between 635 and 685 hours. This was later found to be caused by propellant flow blockage in the GG injector. The blockage resulted from accumulation of non-volatile fuel deposits. The rate of flow reduction continually increased during this period and the GG degradation warranted interruption of the life test. The unit was removed from the test setup at 685 hours and replaced with a standard GG of the same configuration as used for S/N 001 testing. Following the changeout of GG's, the life test was resumed.

Performance of the system was extremely stable. The variation in system characteristics from the beginning to the end of life is shown in Table 3-38. Since the test was conducted entirely on the Cell 11 thrust stand, a comprehensive set of measurements was made for each of the 800 steady state runs. Figures 3-115 and 3-116 shows thrust and specific impulse data for these runs. Variation from run to run is due to small differences in feed pressure levels with the exception of the reduction observed at 685 hours. This corresponds to the change made in GG's where the restricted flow through the degrading GG resulted in higher specific impulse levels. The overall range as noted in Table 3-38 was 427 to 490 seconds. The corresponding mission average computed from the total impulse and propellant consumed was 454.7 seconds. This value exceeds the qualification goal of 450 seconds.

Table 3-38
ARCJET SYSTEM LIFE TEST
MEASURED SYSTEM CHARACTERISTICS

Parameter	Beginning-of-Life Measurement (0 Hours)	End-of-Life Measurement (811 HOURS)
Feed pressure (psia)	285	170
Flow rate (mg/sec)	46.7	34.7
Arcjet thrust (N)	0.198	0.165
Specific impulse (sec)	427	490
Arc voltage (V)	102.5	92.6
Arc current (A)	12.27	13.43
Arc power (W)	1254.6	1243.6
PCU efficiency (%)	89.8	87.7
PCU base temp. (°C)	26.7	26.7

Further verification of the consistency in demonstrated performance was made through health check firings conducted at 0, 100, 500, and 800 hours cumulative lifetime. Figure 3-117 shows these measurements made at the upper and lower feed pressures in the blowdown range. For equivalent operating points, the maximum deviation between the four sets of specific impulse measurements is only 2.2% (9 seconds).

At constant power, the arc voltage tends to decrease with lower flow rate and increase as the cathode recesses due to erosion. These are therefore competing effects over the life of the system. The earlier development of cathode geometry was necessary to reduce these erosion rates to both maintain stable long term operation of the arcjet and minimize the voltage range required for PCU output. The demonstrated level of change shown in Figure 3-118, approximately 10 volts over 811 hours, easily met both of these criteria.

The PCU exhibited no changes in performance throughout the test. Constant input and output power regulation were maintained within 3% maximum deviation. Power conversion efficiency measurements were highly repeatable and ranged between 87.7% and 89.8%. The lower efficiency at end-of-life shown in Table 3-38 is due to operation at a lower output voltage. The PCU losses scale proportionately with the output current. The unit temperature measured at the hottest portion of its mounting interface, just beneath the power handling FET's, showed no variation over life.

The prior development of a reliable PCU start up circuit also proved successful during the life test. A total of 845 starts were conducted throughout the entire set of qualification firings with start up occurring successfully on each first attempt. Additionally, the high number of start cycles induced no performance inhibiting erosion to the anode nozzle, cathode, or any support hardware.

In summary, the arcjet system demonstrated its capability to meet each of the reprentative qualification lifetime goals which are summarized in Table 3-39. The performance of the hydrazine gas generator which was used was not acceptable since it was replaced prior to completion of the life test. Other design options for this component are available however, which have demonstrated lifetimes exceeding the requirement of this test.

Table 3-39
ARCJET SYSTEM LIFE TEST SUMMARY

	Minimum Goal	Demor	nstrated
Arcjet Firing Time (Hr)	800	811 20	Life Perf. map
		831	Total
Arcjet Starts	632	811 34 845	Life Perf. map Total
N ₂ H ₄ Throughput (kg)	96.1	115.6 3.0 118.6	Life Perf. map Total
Total Impulse (N-sec)	443,960	515,323 13,313 528,636	Life Perf. map Total
Avg. Specific Impulse (sec)	450	454.7	Life

		1
		!
		;

4.0 CONCLUSIONS

The low power hydrazine arcjet system designed and developed under the NASA LeRC Arcjet Research and Technology Program has successfully met almost all of the performance, environmental, and lifetime requirements established as representative of typical geosynchronous missions. A long duration, duty cycle life test was completed over a worst-case pressure blowdown. Performance, stability, and start-up characteristics were repeatable and consistent. Parallel gas generator development work has demonstrated lifetime capabilities in excess of those needed for near-term missions. The demonstrated system characteristics are summarized in Table 4-1. The knowledge developed under this program and at NASA LeRC has established the technology base needed to move into flight qualification of low power arcjet systems.

Table 4-1
DESIGN SUMMARY

Design Goal	Status
Specific Impulse: 450 sec missions average	Demonstrated 455 sec
• Life: 800 HR, 622 Starts	830 demonstrated on arcjet/PCU 680 on integrated GG 900 on stand-alone dual injector GG
• PCU Efficiency: 90%	Demonstrated 87.7 to 91.0
● PCU EMI per MIL-STD-461/462	Partial compliance
• PCU Start: 4 kV	Demonstrated 4.72 kV
• Structural: Launch qualification level	Demonstrated, arcjet assembly & PCU S/N 002
● Thermal: -15°C to 65°C Interface Temperature	Demonstrated
● Weight/Volume: Arcjet/Cable – 1.5 kg	• Achieved, 1.32 kg
Arcjet Volume – Similar to ACT Resistojet	Achieved, same mounting interface dimensions
PCU Mass – 4.54 kg	• Achieved, 4.52 kg
PCU Volume - 24 x 20 x 10 cm	• Achieved, 23.4 x 18.4 x 8.3 cm
W	

5.0 REFERENCES

- 1. Knowles, S. C., Smith, W. W., Chun, S. I., and Feconda, R. T., "Low Power Hydrazine Arcjets: A System Description for Near-Term Applications," 1986 JANNAF Propulsion Meeting, August 1986.
- 2. Sovey, J. S., Penko, P. F., Grisnik, S. P., and Whalen, M. V., "Vacuum Chamber Pressure Effects on Thrust Measurements of Low Reynold's Number Nozzles,: NASA TM-86955, 1985.
- 3. Shapiro, A. B., TOPAZZD A Two-Dimensional Finite Element Code for Heat Transfer Analysis, Electrostatic, and Magnetostatic Problems, UCID-20824, Lawrence Livermore National Laboratory, July 1986.
- 4. Gruber, R. P., "Power Electronics for a 1-Kilowatt Arcjet Thruster," AIAA Paper 86-1507, (NASA TM-87340) June 1986.

Appendix A EM ARCJET S/N 001 PERFORMANCE MAPPING DATA

	Samp #	NOM PF	NOM POW	Amps	Vñ]ts	POWPY	Volts	Power	1//	Thrust	Thrust
		(psia)	(watts)			(watts)		(watts)		(1bf)	Ž
-	CORRECT	300	1260	12.03	101,80	1224.65	101.36	1219.36	8.4256	0.046584	0.207217
\Box	CORRECT	285	1260	12.12	100.14	1243.70	69.66	1208.24		0.045470	0.20258
2	CORRECT	260	12/0	12.55	97.53	1224.00	70.76	1218.23	7.7347	0.044342	0.197243
5	CORRECT	240	1260	13.21	93.08	1229.59	92.59	1223.11	7.0091	0.042673	0.189819
<u> </u>	CORRECT	205	1260	13.42	91.70	1230,61	91.21	1224.04	6.7966	0.041071	0.182691
8	CORRECT	185	1260	14.30	86.11	1231.37	85.58	1223.79	5.9846	0.038736	0.172304
8	CORRECT	170	1260	14.67	83.82	1229.64	83.28	1221.72	5.6769	0.037534	0.166961
18	Z	PERFORMANCE	- B - U.S								
			1260	12.22	102.26	1249.62	102.03	1246.81	8.3494	0.046449	0.206614
	34	285	1260	12.38	100.93	1249.51	100.70	1246.67	8.1341	0.045590	0,202,793
	51	260	1260	12.69	15.86	1250,09	78.27	1247.05	7.7439		0,196553
	65	240	1260	13.08	75.57	1250.08	95.33	1246.92	7.2882		0.189805
	79	205	1260	13.74	21,03	1250.75	70.77	1247.18	6,6083		0.179774
	93	185	1260	14.07	98 .87)	1250.63	88.63	1247.02	6.2992		0.173128
	15	170	1260	14.53	86.20	1252.49	85.93	1248.56		0.037996	0.169014
Ξ	-UTBRATION I	PERFORMANIX	:: <u>}</u>								
	45	300	1260	11.73	104.85	1250.86	104.63	1248.24	8.7703	8.7703 0.045944	0.204370
	13	285	1260	12.10	103.42	1251.38	103.19	1248.60	8.5281	0.044947	0.199933
	28	240	1260	12.58	47.66	1254.48	99.49	1251.58	7.9084	0.043390	0.193007
	42	240	1260	12.91	97.24	1255.37	97.00	1252.27	7.5136	0.042162	0.187543
	55	205	1260	13.66	91.94	1255.90	91.69	1252.49	6.7123	0.039675	0.176483
	69	185	1260	14.43	87.02	1255.70	86.76	1251.95	6.0125	6.0125 0.037832	0.168285
	84	170	1260	14.41	87.08	1254,82	86.82	1251.08	6.0250	0.037076	0.164923
ALTERNATE	E POWER	PERFORMANCE	NCE ::=								
	33		1400	12.88	108.94	1403.15	108.70	1400.06	8.4394	0.051623	0.229628
	37		1400	13.75	102.08	1403.60	101.83	1400.16	7.4058	0.048720	0.216716
	64		1400	14.49	86.98	1405.24	96.71	1401.33	6.6/43	0.046292	0.205918
	91		1400	15.66	17.68	1404.86	89.42	1400.32	5.7101	0.041549	0.184819
	118		1400	16.36	85.84	1404.34	85.54	1399.43	5.2286	0.040197	0.178804
	152		1620	15.23	106.70	1625.04	106.42	1620.78	6.9875	0.054944	0.244401
	33		1620	16.16	100.49	1623.92	100.19	1619.07	6.1999	0.052295	0.232618
	09		0.891	17.19	94.42	1623,08	94.10	1617.58	5.4741		0.218098
	105		1620	18.39	88.13	1620.71	87.79	1614.46	4.7738	0.045237	0.201223
	129		0.271	18.97	85.21	1618.14	94,35	1611.49	4.4687	0.042809 0.190421	0.190421
	£		1700	16.13	106.43	1716.72	104.13	1711.88	76/5.9	0.056862-0.252932	0.252932
	64		1700	65.71	99.28	1716.55	98.9%	1711.02	5.7235		0.053566 0.238272
	011		1 200	17.01	0.0	7 / / / /	01 10	000 000	1.00	C 0 0 1 1 0 0	0.002000
	_			/ - /	/2.C/	7	7.0 - 0.7		/	/?/ CD-H	0.777.0

e de la companya de l		

1-8 CORR 1-8	N PERFO	1260 0.00010654 0.048225 1260 0.00010375 0.047060 1260 0.0000783 0.044828 1260 0.0000386 0.042577 1260 0.0000860 0.037416 1260 0.00008674 0.03623 1260 0.00008074 0.034823	0.048325	:	:	: 1 1	!	:	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 80-8 CORR 2 80-8 CORR 3 80-8 CORR 4 80-8 CORR 5 80-8 CORR 6 80 8 CORR 7 80-8 CORR 7 81-2 7 81-2 7 81-2 7 81-2 7 81-5 81-6 5 81-6 5 81-6 7 81-6 7 81-6 7 81-6 7 81-6 7 81-6 7 81-6 7 81-6 7 81-6 7 81-6 7 81-6 7 81-6 7 81-6 7 82-3 82-3 82-3 82-3 82-3 82-3 82-3 82-3	204-00	0.00010654 0.00010375 0.00007883 0.00009384 0.00008490 0.00008674	0.048325 0.042060			: : : : : : : : : : : : : : : : : : : :			1
2 80-8 COR8 3 80-8 COR8 4 80-8 COR8 5 80-8 COR8 6 80 8 COR8 7 80-8 COR8 1 81-2 2 81-2 5 81-2 6 81-2 7 81-3 81-6 5 81-6 5 81-6 5 81-6 7 81-6 7 81-6 5 81-6 5 81-6 7 81-6 7 81-6 7 81-6 7 81-6 7 81-6 7 81-6 7 81-6 7 81-6 7 81-6 7 81-6 7 81-6 7 81-6 7 81-6 7 81-6 7 81-6 7 81-6 7 82-3 82-3 82-3 82-3 82-3 82-4 82-4	204=00		0.4707.0	437.3	304.4	2098.8	9.89	438.5	25307400
3 80-8 CORR 4 80-8 CORR 5 80-8 CORR 6 80 8 CORR 7 80-8 CORR 1 81-2 2 81-2 5 81-2 6 81-2 7 81-3 81-2 6 81-2 7 81-6 7 81-6 7 81-6 7 81-6 7 81-6 7 81-6 7 81-6 7 81-6 7 81-6 8 82-3 8 82-3 8 82-3 8 82-3 8 82-3 9 82-4 10 82-4	X 0 4 - 5 6	0.00003883 0.00009386 0.00008620 0.00008074 0.0000/678		438.3	286.2	1973.3	6.1.9	426.8	25974400
4 80-8 CORR 5 80-8 CORR 6 80 8 CORR 7 80-8 CORR 7 81-2 2 81-2 3 81-2 4 81-2 5 81-2 6 81-2 7 81-6 7 81-6 6 81-6 7 81-6 7 81-6 7 81-6 7 81-6 8 82-3 8 82-3 8 82-3 8 82-3 8 82-3 8 82-3 9 82-4 10 82-4	X O 4 = 5 6	0.0000386 0.00003690 0.00008074 0.00007678	0.044828	448.7	264.7	1825.0	60.1	414.4	27538800
5 80-8 CORR 6 80 8 CORR 7 80-8 CORR 7 80-8 CORR 1 81-2 2 81-2 3 81-2 4 81-2 5 81-5 2 81-6 4 81-6 5 81-6 5 81-6 7 82-3 82-3 82-3 82-3 82-4 82-4 82-4	X O 4 = 5 6	0.00008690 0.00008074 0.0000/878).(042577	454.6	242.6	1672.7	58.4	402.7	28767100
6 80 8 COR 7 80-8 COR 1 81-2 2 81-2 3 81-2 4 81-2 5 81-2 7 81-3 1 81-5 2 81-6 4 81-6 5 81-6 7 81-6 7 81-6 7 81-6 8 81-6 8 81-6 7 81-6 8 81-6 8 81-6 8 81-6 7 81-6 8 81-6 8 81-6 8 81-6 7 81-6 8 81-7 8 82-3 8 82-3 6 82-3 7 82-3 8 82-3 8 82-3 9 82-4 10 82-4	X O 4 = 5 6	0.00008074 0.0000/k78	0.039416	477.6	212.1	1462.4	55.2	380.6	31459100
7 80-8 C0RI 1 81-2 2 81-2 3 81-2 4 81-2 5 81-2 6 81-2 7 81-3 1 81-5 5 81-6 7 81-6 7 81-6 7 81-6 7 81-6 7 81-6 8 81-6 7 81-6 8 81-6 7 81-6 8 81-6 7 81-6 8 82-3 82-3 82-3 82-3 82-3 9 82-4 10 82-4	X O 4 = 5 0	0.00007478	0.036623	479.8	185.8	1281.0	6.78	364.7	34044600
FST 2 POST-VIBIR 1 81-2 3 81-2 4 81-2 5 81-2 7 81-3 7 81-3 1 81-5 2 81-6 4 81-6 5 81-6 5 81-6 7 81-6 7 82-3 82-3 82-3 82-3 82-3 82-3 82-3 82-3	X 0 4 = 5 6		0.034826	488.9	174.3	1201.8	51.9	357.8	35167100
1 81-2 2 81-2 4 81-2 5 81-2 6 81-2 7 81-3 1 81-5 2 81-6 4 81-6 5 81-6 5 81-6 7 81-6 7 81-6 7 82-3 8 82-3 8 82-3 8 82-3 8 82-3 9 82-4 10 82-4		II: Ii							
2 81-2 3 81-2 4 81-2 6 81-2 7 81-3 7 81-3 1 81-5 2 81-6 4 81-6 5 81-6 6 81-6 7 81-6 7 81-6 8 82-3 8 82-3 8 82-3 8 82-3 8 82-3 9 82-4 10 82-4		1260 0.00010639 (0.048256	436.6	302.8	2087.7	64.5	444.7	25846100
3 81-2 4 81:2 6 81:2 7 81-3 7 81-5 1 81-5 3 81-6 5 81-6 6 81-6 7 81-6 7 81-6 7 81-6 7 81-6 7 82-3 3 82-3 3 82-3 4 82-3 5 82-3 6 82-3 7 82-3 7 82-3 7 82-3 82-3 9 82-4 10 82-4		1240 0.00010363 (0.047007	439.9	298.3	1987.8	63.2	435.7	26526400
4 81-2 5 81-2 6 81-2 7 81-3 1 81-5 2 81-6 3 81-6 5 81-6 6 81-6 7 81-6 7 81-6 8 81-6 7 81-6 8 81-6 7 81-6 8 81-6 8 82-3 9 82-3 6 82-3 7 82-3 6 82-3 7 82-3 8 82-3 9 82-4 10 82-4		1260 0.00009832 (0.044598	449.4	263.5	1816.8	61.1	421.3	27965900
5 81-2 6 81-2 7 81-3 1 81-5 2 81-6 3 81-6 4 81-6 5 81-6 7 81-6 7 81-6 8 81-6 7 81-6 8 81-6 7 81-6 8 81-6 7 81-6 8 82-3 4 82-3 6 82-3 6 82-3 7 82-3 8 82-3 9 82-4 10 82-4			0.042113	459.6	239.9	1654.1	59.0	406.8	29602700
6 81-2 7 81-3 1 81-5 2 81-6 3 81-6 4 81-6 5 81-6 7 81-6 7 81-7 82-3 4 82-3 4 82-3 5 82-3 6 82-3 7 82-3 7 82-3 7 82-3 7 82-3 7 82-4 8 82-3 7 82-4		0.00008587	0.038948	470.7	208.2	1435.5	55.7	384.0	32017700
7 81–3 1 81-5 2 81-6 4 81-6 5 81-6 5 81-6 7 81-6 7 82-3 3 82-3 3 82-3 4 82-3 5 82-3 6 82-3 7 82-3 6 82-3 7 82-3 8 82-3 8 82-3 8 82-3 1 82-3 1 82-3 8 82-3 1 82-4 1 82-4	93 185		0.036801	479.7	189.1	1303.8	53.7	370.2	33892500
FEST 3 POST-V1BRR 1 81-5 81-6 4 81-6 5 81-6 5 81-6 7 81-6 7 81-6 7 81-6 7 81-6 7 82-3 82-3 82-3 82-3 82-3 82-3 82-3 82-4 82-3 82-4 82-3 82-4 10 82-4 10 82-4	15 170		0.034898	493.9	174.3	1201.8	6.75	364.7	35777800
1 81-5 2 81-6 3 81-6 4 81-6 5 81-6 7 81-6 7 81-6 1 82-3 3 82-3 4 82-3 5 82-3 6 82-3 6 82-3 7 82-3 6 82-3 7 82-4 10 82-4	ION PERFORMANIX						•		
2 81-6 3 81-6 4 81-6 5 81-6 6 81-6 7 81-6 1 82-2 2 82-3 3 82-3 4 82-3 4 82-3 5 82-3 6 82-3 7 82-4 8 82-4 10 82-4	45 300	1260 0.00010444 0	0.047374	439.9	300.2	2069.8	65.7	453.0	26355900
3 81-6 4 81-6 5 81-6 7 81-6 7 81-6 1 82-3 3 82-3 4 82-3 4 82-3 5 82-3 6 82-3 7 82-4 8 92-4 10 82-4	13 285		0.046332	440.0	285.5	1968.5	64.5	444.7	26753400
4 81-6 5 81-6 6 81-6 7 81-6 1 82-3 3 82-3 3 82-3 4 82-3 5 82-3 5 82-3 7 82-3 6 82-3 6 82-3 7 82-3 7 82-4 10 82-4	28 240	1260 0.00009680 0	0.043909	448.2	6.656	1791.9	62.6		28510900
5 81-6 6 81-6 7 81-6 7 81-6 1 82-3 3 82-3 4 82-3 4 82-3 5 82-3 6 82-3 6 82-3 6 82-3 7 82-4 9 82-4	42. 240	1260 0.00009190 (0.041687	458.8	240.7	1659.6	6.04		30042500
6 81-6 7 81-6 1 82-2 2 82-3 3 82-3 4 82-3 4 82-3 5 82-3 7 82-3 6 82-3 6 82-3 7 82-4 8 82-4 10 82-4	55 205		0.037982	473.8	205.3	1415.5	57.2		32983300
7 81-6 1 82-2 2 82-3 3 82-3 4 82-3 5 82-3 5 82-3 6 82-3 7 82-4 10 82-4	69 185	1260 0.00007/41 (0.035112	488.7	181.9	1254.2	54.8	3/7.8	35464200
FEST 4 ALTERNATE 1 82-2 2 82-3 4 82-3 4 82-3 5 82-3 6 82-3 7 82-4 8 82-4 10 82-4	84 170	1260 0.00007441 f	0.033742	498.3	1/0.5	1175.6	53.1	366.1	37067500
1 82-5 3 82-3 4 82-3 5 82-3 6 82-3 7 82-4 10 82-4 10 82-4	POWER PERFORMANCE	11							
2 82-3 3 82-3 4 82-3 5 82-3 7 82-4 8 82-4 10 82-4	33	1400 0.00011783 (0.053447	438.1	365.3	2548.7	74.2	511.6	26195000
3 89-3 4 87-3 5 82-3 7 82-4 8 87-4 10 82-4	37	1400 0.00010559 0	0.047895	461.4	307.7	2121.5	69.7	480.6	29244300
8 82-3 1 8 82-3 1 7 82-4 1 8 82-4 1 9 82-4 1	64	0.00009764	0.044290	4/4.1	269.4	1857.4	6.99	458.5	31640500
5 82 3 7 82 3 8 82 4 4 87 4 10 87 4	91	1400 0.00008147 0	0.038954	510.0	198.9	1371.4	58.7	404.7	37900200
6 82-3 8 82-4 9 82-4 10 82-4	118	1400 0.00007858 (0.035546	511.5	187.4	1292.1	57.9		39258700
7 82-4 8 82-4 9 82-4 10 82-4	152	1620 0.00011700 0	0.053070	469.6	387.9	2674.5	78.5	541.2	30545200
8 82-4 9 82-4 10 82-4	33	1620 0.00m10764 C	0.048827	485.8	326.3	2249.8	73.7		33165000
9 82-4 10 82-4	09	1620 0.00009755 0	0.044250	5.02.6	275.3	1898.1	69.3		36562800
10 82:4	105	1620 0.00008541 0	0.038742	9.633	219.1	1510.6	64.D		41686100
	661	1629-0.00002828-0	0.035825	0.542	194.3	1339.7	61.1		44995900
11 82-5	32	1700 0.00011912 0	0.054034	477.3	9.088	2624.1	8.6/		31678400
12 82-5	64	1700 0.00010423 0	0.048187	504.2	313.9	2164.3	14.4		35521100
.5	119	1700-0.00609887-0	0.044849	€::8F	279.1	1924.3	71.3		38135800
82-5	144		0.1097.30	5.45.2	228.4	15/4.8	66.3		42892200

SEQ # RUN # Samp # NOM PF NI (psia) (1	1 80-8 CORRECT 300	CORRECT	CORRECT	CHRRECT	CORRECT	CORRECT	7 80-8 CORRECT 170	RATION PERFO	81-2 20	812 34	81-2 51	81-2 65	81-2 79	81.2 93	7 81-3 15 170	3 POST-VIBRATION PR	81-5 45	81-6 13	81-6 28		81-6 55	81-6 69	81-6 84	== TEST 4 - ALTERNATE POWER PERFURMANC		82.3			82-3	7		4.58	9 82-4	10 82-4	Ξ	12 80.5	(;)() 71
NOM POW (watts)	1260	1260	1260	1260	1260	1260	1260	11 11	1260	1260	1260	1260	1260	1260	1260	E == 3	1260	1240	1260	1260	1260	1260	1260	OF as	1400	1400	1400	1400	1400	1620	1620	1620	1620	1620	1/00	1700	
Tvf DEG F	189	181	201	233	241	692	ਲ		201	210	218	222	228	234	234		206	209	219	226	237	239	252		200	210	219	234	246	230	22%	235	255	727	203	218	
1vf 066 0	87	33	94	112	116	131			46	66	103	901	109	112	11.2		96	99	104	108	114	115	122		83	66	104	<u>11</u>	113	Ξ	107	113	124	123	9.5	103	
799 1976 1	855	852	854	855	855	853	SE 33		1072	10/1	1070	1063	1052	1049	1047		1068	1064	1066	1064	10%0	1047	1049		1073	1070	1067	1054	10,14	1095	1074	10/6	1068	105.3	1081	1074	
1 <u>09</u>	457	456	456	457	457	456	456		178	577	9/9	573	295	572	564		575	573	574	573	5/1	5.64	565		578	211	5/5	B9/5	895	590	6/5	5.74	11/4	795	283	579	
Tcon DFG I	210	211	211	215	225	220	215		236	246	251	242	254	251	23.2		235	230	747	252	253	256	646		236	241	252	25 22 22	5. 5.	156	245	95.ć	275	(97	734	260	
Tcon OEG	66	66	66	102	107	104	102		113	119	122	122	123	122	123		113	110	119	155	123	124	126		113	116	122	154	126	1.25	118	124	135	132	117	157	
1p1 0EG	9/	₩	8	79	88	සි	91																							-							
101 070 0	24	28	23	26	30	62	33																														
Tinj DEG F									1161	1155	1164	1152	1116	1138	1129		1155	1148	1166	115/	1258	1143	1250		1160	1162	1169	1259	1263	1299	1188	1170	1285	1163	1176	1171	
Tinj OFG C									627	<i>C9</i>	Ŝ	42	3	61	9		62	621	₹9	62	89	617	79		Ċ	62	63	289	89	2	6.4	(2)	69	<i>(</i> 3	[3	<u>E</u> 9	

LPAJ NASA LEWIS (V.1.09) 01-17-1989 NASA LPAJ ATP PERFORMANCE MAP S/N 001 STEADY STATE END-OF-RUN REDUCED DATA

• ·		

LPAJ NASA LEWIS (V 1.09) 01-17-1989 NASA LPAJ AFP PERFORMANCE MAP S/N 001 STEADY-STATE END-OF-RUN REDUCED DATA

Appendix B EM ARCJET SYSTEM LIFE TEST DATA

		•

TEST DATA SUMMARY

NASA LEWIS ARCJET SYSTEM DEMONSTRATION TESTING ARCJET S/N 2, PCU S/N 1

810 HOUR DUTY CYCLE LIFE TEST AND PERFORMANCE MAP FIRINGS

CONDUCTED 11/15/89 THROUGH 2/3/90

MARCH 6, 1990

LIFE TEST DATA

LPAJ NASA LEWIS (121581-4840) LIFE IEST NASA S/N 002 IN CH. 11

PC/Flow (Pf-Pc)/Flow ² (PSIA-SEC/ (PSI-SEC ² / LBM) LBM ²					606386 2.095E+10	606445 2.092E+10	604705 2.071E+10		608398 2.085E+10	606886 2.067E+10	610471 2.086E+10	609093 2.076E+10	609720 2.082E+10	610397 2.083E+10	611192 2.080E+10					•					613281 2.091E+10		617696 2.114E+10							
REL. I ROUGH (F	2.01	2.11	2.23	2.01	2.06	2.24	2.13	2.19	2.02	2.02	5.09	2.12	2.19	2.10	2.12	2.34	2.19	2.20	2.32	2.21	2.23	2.19	2.29	2.23	2.14	71 6	01.7	2.18	2.18	2.18 2.27 2.21	2.18 2.27 2.21 2.24	2.18 2.27 2.21 2.26 2.08	2.18 2.27 2.27 2.21 2.26 2.08	2.18 2.27 2.21 2.28 2.08 2.33
1SP (SEC)	429.2	431.8	128.6	430.0	432.1	432.6	429.9	429.3	431.3	428.8	431.2	429.3	429.7	429.6	429.3	429.8	430.0	429.1	427.7	427.9	430.1	428.3	433.1	431.2	431.1	433.2		430.9	4 30.9	430.9 430.2 430.3	430.9 430.2 430.3 429.5	430.9 430.2 430.3 429.5 432.4	430.9 430.2 430.3 429.5 432.4 430.1	430.9 430.2 430.3 429.5 432.4 430.1 431.2
	160	321	4 81	149	800	096	1119	1278	1437	1596	1755	1914	2073	2231	2390	2549	2708	5866	3025	3183	3342	3200	3659	3818	3977	4136	3067	2/1	4453	4453	4453 4412 4770	4453 4412 4770 4929	4453 4612 4770 4929 5087	4453 4612 4770 4929 5087 5245
IMPULSE IMPULSE CUM CUM	160.3	9.091	1.091	160.0	159.3	159.5	159.2	159.0	159.0	158.7	158.9	159.1	158.8	158.9	158.8	158.8	158.8	158.4	158.4	158.5	158.5	158.6	158.8	158.9	158.9	158.8	158.9		158.7	158.7 158.5	158.7 158.5 158.4	158.7 158.5 158.4 158.6	158.7 158.4 158.4 158.6 158.6	158.7 158.5 158.4 158.6 158.3 158.3
THRUST (1.BF)	0.04454	0.04460	0.04448	0.04444	0.04425	0.04430	0.04422	0.04415	0.04416	0.04409	0.04414	0.04419	0.04412	0.04413	0.04411	0.04412	0.04409	0.04401	0.04399	0.04404	0.04403	0.04408	0.04411	0.04413	0.04415	0.04411	0.04412		0.04408	0.04408	0.04408 0.04403 0.04399	0.04408 0.04403 0.04399 0.04403	0.04403 0.04403 0.04403 0.04403	0.04403 0.04403 0.04403 0.04398 0.04398
Pc (PSIA)	61.9	61.9	62.0	61.9	62.1	62.1	62.2	62.3	62.3	62.4	62.5	62.7	62.6	62.7	62.8	62.8	62.8	62.7	62.8	62.8	62.7	62.8	62.7	62.8	62.8	62.9	63.0	0 67	06.1	63.0	63.0 63.0	63.0 63.0 63.0	63.0 63.0 63.0 63.0	63.0 63.0 63.0 63.1 63.1
CUM (LBM)	0.38	0.75	1.13	1.50	1.88	2.25	2.62	3.00	3.37	3.74	4.11	4.48	4.86	5.23	2.60	5.98	6.35	6.72	7.09	7.47	7.84	8.21	8.58	8.95	9.32	69.6	10.08	10.43		10.81	10.81	10.81 11.18 11.55	10.81 11.18 11.55 11.92	10.81 11.18 11.55 11.92
FUEL USED (1.811)	0.38	0.37	0.37	0.38	0.38	0.37	0.37	0.37	0.37	0.37	0.37	0.37	0.37	0.37	0.37	0.37	0.37	0.37	0.37	0.37	0.37	0.37	0.37	0.37	0,37	0.37	0.37	0.37		0.37	0.37	0.37 0.37 0.37	0.37 0.37 0.37 0.37	0.37 0.37 0.37 0.37
FLOW (LBM/SEC)	0.0001038	0,0001033		0.0001033	0.0001024		0.0001029		0.0001024	0.0001028	0.0001024	0.0001029	0,0001027	0.0001027	0.0001028	0.0001027	0.0001025	0.0001026	0.0001029	0.0001029	0.0001024	0.0001029	0.0001019	0.0001023	0.0001024	0.0001018	0.0001024	0.0001025		0.0001023	0.0001023	0.0001023 0.0001024 0.0001018	0.0001023 0.0001024 0.0001018 0.0001023	0.0001024 0.0001024 0.0001018 0.0001023
Pf (PSIA)	283.2	282.9	282.6	282.2	281.8	281.5	281.3	281.1	280.9	280.9	281.1	282.7	282.1	282.5	282.4	282.5	282.3	281.9	281.7	281.7	281.8	281.8	281.8	281.9	282.1	282.1	282.3	282.4		282.3	282.3 282.3	282.3 282.3 282.3	282.3 282.3 282.3	282.3 282.3 282.3 282.2
CUM ON TIME (HR)	1.0	2.0	3.0	0.4	5.0	9.0	7.0	8.0	9.0	10.0	11.0	12.0	13.0	14.0	15.0	16.0	17.0	18.0	19.0	20.0	21.0	22.0	23.0	24.0	25.0	26.0	27.0	28.0		29.0	29.0	29.0 30.0 31.0	29.0 30.0 31.0 32.0	29.0 30.0 31.0 32.0
CUM ON TIME (MIN)	0.09	120.0	180.0	240.0	300.0	360.0	420.0	480.0	540.0	0.009	0.099	720.0	780.0	840.1	900.1	960.1	1020.1	1080.1	1140.1	1200.1	1260.1	1320.1	1380.1	1440.1	1500.1	1560.1	1620.1	1680.1		1740.1	1740.1 1800.1	1740.1 1800.1 1860.1	1740.1 1800.1 1860.1 1920.1	1740.1 1800.1 1860.1 1920.1 1980.1
ON TIME (MIN)	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	90.09	9.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09		0.09	0.09	60.09 60.09 60.09	60.09 0.09 0.09 0.09	60.09 60.09 60.09 60.09
DATE	12/01/89		_		_															-			_				•	140 12/03/89		145 12/03/89				
SAMP #		≘ :		\sim	(1	ന	(+)	-																	-					-				

START NUMBER	-	• 64	က	4	5	9	7	&	6	2	=	12	13	7	15	91	17	18	19	20	21	22	23	24	25	58	22	28	53	9	31	32	33	34	35
NUMBER																																			
Ipcu N		8 &	80	80	80	8	8	8	8	8	80	8	80	81	8	8	8	81	81	8	80	80	80	8	80	8	8	8	81	8	8	8	81	8	80
Tinj (F)		696	972	1008	876	1011	1006	1013	1008	8/6	1009	971	996	1012	626	315	1013	973	315	1019	372	996	1017	975	1003	972	1006	696	296	1017	1015	1004	494	1004	1006
T3 ('F)	73,4	735	737	737	739	739	740	741	740	741	742	740	741	743	741	739	741	740	740	740	738	739	738	739	738	738	741	739	741	742	741	742	741	741	742
11 (F)	6751	1545	1551	1546	1562	1561	1563	1569	1564	1568	1570	1565	1565	1569	1565	1558	1562	1562	1559	1557	1548	1548	1548	1551	1544	1550	1557	1551	1558	1560	1557	1559	1560	1556	1561
Icon (F)		251	251	251	251	251	251	251	221	251	252	251	252	252	251	251	252	252	252	252	251	251	251	251	251	251	252	252	253	252	757	252	252	222	252
799 ('F)	955	954	953	696	954	957	955	926	928	952	957	954	959	696	325	954	926	953	954	0%	952	396	952	951	957	950	957	951	396	955	950	926	325	954	956
(e.)		192	193	195	194	195	195	195	195	194	195	194	194	961	194	194	961	194	194	961	194	194	961	194	195	194	196	195	195	161	197	167	961	167	197
P/FLOW (J/Kg)	24644300	26787100	26700200	26736300	26998900	27051300	26942400	26889000	27072600	26908000	26974200	26821200	26897700	26943200	26945900	26982100	26951200	26974900	26912700	26931600	27007200	26849800	27160600	27064300	26993000	27209700	26983700	2/008000	26967700	27020800	27151700	27024000	27195300	27020100	27282200
APC EFF	33 25	33.51	33.12	33.29	33.28	33.30	33.02	35.99	33.07	35.89	33.17	33.07	33.04	32.97	32.92	32.96	33.03	32.85	32.72	32.72	32.97	32.88	33.24	33.07	33,15	33.20	33,13	32.99	33.04	32.86	33.15	32.95	32.91	33.04	33.10
PCU	89 79	89.75	26.68	89.70	19.48	89.75	89.85	89.56	89.83	89.63	89.47	89.55	89.51	09.68	89.74	89.87	89.59	89.70	89.75	89.88	89.79	89.74	89.83	90.08	89.87	90.06	89.64	89.89	89.56	89.72	89.74	89.70	89.89	66.68	38, 82
PCU POWER (WATTS)	1260 24	1260.09	1261.90	1258.31	1259.36	1261,68	1262.37	1259.88	1262.78	1260.17	1257.85	1257.58	1257.92	1260.68	1261.09	1261.48	1258.55	1260.31	1260,82	1262.65	1259.27	1258.14	1,55,89	1261.46	1258.87	1261.99	1258.29	1250.38	1257.02	1260,40	1259.11	1258,58	1761.58	1258,66	1250.18
ARC POWER (WATTS)	1254 84	1254.71	1256,53	1252.95	1253.91	1256.23	1256.89	1254.35	1257.30	1254,68	1757.38	1252.17	1252.48	1255.16	1255.64	1256.08	1753.12	1254.87	1255.40	1257.20	1253.92	1252.83	1254.53	1256.11	1253.51	1256.63	1252.88	1255,03	1251.62	1254,94	1253.71	1253,18	1756.15	1753.29	1254.76
ARC CURPENT (AMPS)	10.01	12.22	12.22	12.20	12.30	15.31	12.35	12.39	12.34	12.35	12.33	12.28	12.29	12.38	12.31	12.27	12.28	12.30	12.28	12.30	17.20	12.15	12.20	12.19	12.15	12.20	12.78	12.20	12.25	12.31	12.25	12.25	17.78	12.21	17.27
ARC VOLTAGE (VOLTS)	102 48	102.65	107.85	102.73	101.95	102.09	101.79	101.21	101.91	101.63	101.58	102.11	101.91	101.38	102.02	102.35	102.07	102.02	102.25	102.25	102.82	103.10	102.83	103.07	103.19	103.07	102.18	107.91	102.21	101.93	102.36	107.33	102,28	102,63	102.25
INPUT POWER (WATTS)	1403 55	1404.00	1403.34	1402.83	1405.43	1405.71	1404.94	1406.80	1405.73	1406.05	1405.86	1404.29	1405.34	1407.07	1405.31	1403.66	1404.83	1405.03	1404.87	1404.88	1402.45	1401.96	1402.51	1400.87	1400.75	1401.23	1403.67	1402.17	1403,48	1404.87	1403.11	1403.16	1403,54	1401.84	1407.98
INPUT CURRENT (AMPS)	110	44.05	43.96	43.99	44.08	44.05	44.04	44.15	44.07	44.11	44.08	44.01	44.01	44.04	43.97	43.90	43.94	43.94	43.92	43.95	43.85	43.81	43.85	43.78	43.77	43.79	43.85	43.80	43.86	43.90	43.86	43,83	43.85	43.80	43.81
INPUT VOLTAGE (VOLTS)	72 16	31.87	31.93	31.89	31.88	31.91	31.90	31.87	31.90	31.88	31.90	31.91	31.93	31.95	31.96	31.97	31.97	31.98	31.99	31.97	31.98	32.00	31.98	32.00	32.01	32.00	32.01	32.01	32.00	32.01	31.99	32.01	32.01	32.00	37.03
DATE		12/01/89	12/01/89	12/01/89	12/01/89	12/07/89	12/02/89	12/05/89	12/02/89	12/02/89	12/02/89	12/02/89	12/02/89	12/05/89	12/02/89	12/02/89	12/05/89	12/02/89	12/05/89	12/02/89	12/02/89	12/03/89	12/03/89	12/03/89	12/03/89	12/03/89	12/03/89	12/03/89	12/03/89	12/03/89	12/03/89	12/03/89	12/03/89	12/03/89	12/03/89
SAMP	<i>ي</i> !		15	20	25	30	35	40	45	S	55	09	65	70	75	80	85	8	95	100	105	110	115	120	125	130	135	140	145	150	155	160	165	170	175
RUN *	220-17	329-17	329-17	329-17	329-17	329-17	329-17	329-17	329-17	329-17	329-17	329-17	329-17	329-17	329-17	329-17	329-17	329-17	329-17	329-17	329-17	329-17	329-17	329-17	329-17	329-17	329-17	329-17	329-17	329-17	329-17	329-17	329-17	329-17	329-17

LPAJ NASA LEWIS (121581-4840) LIFE TEST NASA S/N 002 IN CH. 11

(Pf-PC)/Flow ² (PSI-SEC ² / LBM ²)	2.121E+10	2.114E+10	2,108E+10	2.119E+10	2.097E+10	2.103E+10	2.102E+10	2.136E+10	2.085E+10	2.106E+10	2.127E+10	2.111E+10	2.125E+10	2.117E+10	2.091E+10	2.096E+10	2.098E+10	2.127E+10	2.087E+10	2.123E+10	2.121E+10	2.110E+10	2.156E+10	2.111E+10	2.126E+10	2.162E+10	2.144E+10	2.132E+10	2.139E+10	2,133E+10	2.147E+10	2.105E+10	2.155E+10	2.141E+10	2.107E+10
PC/Flow (PSIA-SEC/ LBM)	622537	622419	620459	623031	620102	620338	620338	625433	617972	622235	624449	620858	625183	623108	616146	615833	616312	617417	612462	617489	617248	614770	619957	614770	616077	622841	616775	616063	614087	614706	616944	610873	617114	615173	611588
REL. ROUGH (PSIA)	2.31	2.19	2.33	2.17	2.32	2.32	2.11	2.16	2.30	2.47	2.36	2.53	2.38	2.40	2.23	2.39	2.39	2.29	2.48	2.44	2.34	2.28	2.41	2.46	2.39	2.44	2.36	2.31	2.33	2.31	2.26	2.29	2.47	2.38	2.45
1SP (SEC)	432.4	432.1	431.9	432.2	430.2	431.4	431.2	434.4	429.1	431.2	432.4	430.2	431.5	430.7	427.7	427.7	427.7	430.6	426.9	431.4	430.6	429.7	432.9	428.9	430.2	434.1	432.0	430.5	430.8	430.5	432.1	427.6	433.2	431.4	427.9
CUM Inpulse (LBF-SEC)	5720	5878	6037	6195	6323	6511	6999	6827	9889	7143	7302	7461	7620	7779	7837	9608	8254	8413	8571	8730	8889	8706	9206	3982	9523	1896	9840	8666	10156	10314	10472	10630	10789	10947	11104
THPULSE THPULSE ISP CUM CUM CUM THPULSE ISP CUM THPULSE THPULS	158.0	158.2	158.4	158.1	158.1	158.2	158.2	158.0	158.0	157.9	159.0	158.9	158.8	158.8	158.7	158.5	158.4	158.4	158.6	159.0	158.8	158.8	158.4	158.5	158.4	158.3	158.4	158.3	158.1	158.1	158.1	158.0	158.3	158.0	157.9
THRUST (LBF)	0.04389	0.04395	0.04399	0.04391	0.04391	0.04395	0.04393	0.04389	0.04389	0.04386	0.04418	0.04414	0.04411	0.04410	0.04408	0.04403	0.04399	0.04401	0.04405	0.04416	0.04410	0.04410	0.04399	0.04402	0.04399	0.04398	0.04399	0.04396	0.04392	0.04391	0.04392	0.04389	0.04395	0.04390	0.04386
Pc (PSIA)	63.2	63.3	63.2	63.3	63.3	63.5	63.2	63.2	63.2	63.3	63.8	63.7	63.9	63.8	63.5	63.4	63.4	63.1	63.2	63.2	63.2	63.1	63.0	63.1	63.0	63.1	62.8	65.9	9.79	62.7	62.7	62.7	62.6	9.79	62.7
CUM FUEL USED (LBM)	13.40	13.77	14.14	14.51	14.88	15.25	15.62	15.99	16.36	16.73	17.10	17.47	17.84	18.21	18.58	18.96	19.33	19.70	20.07	20.44	20.81	21.18	21.55	21.92	22.29	22.66	23.03	23.40	73.77	24.14	24.51	24.87	25.25	75.61	25.98
FUEL USED (18M)	0.37	0.37	0.37	0.37	0.37	0.37	0.37	0.37	0.37	0.37	0.38	0.37	0.37	0.37	0.37	0.37	0.37	0.37	0.37	0.37	0.37	0.37	0.37	0.37	0.37	0.37	0.37	0.37	0.37	0.37	0.37	0.37	0.37	0.37	0.37
FLOW (LBM/SEC)	0.0001015	0.0001017	0.0001019	0.0001016	0.0001021	0.0001019	0.0001019	0.0001011	0.0001023	0.0001017	0.0001022	0.0001026	0.0001022	0.0001024	0.0001031	0.0001030	0.0001029	0.0001022	0,0001032	0.0001024	0.0001024	0.0001026	0.0001016	9201000.0	0.0001023	0.0001013	0.0001018	0.0001021	0.0001019	0.0001020	0.0001016	0.0001026	0.0001014	0.0001018	0.0001025
Pf (PSIA)	281.8	281.9	281.9	282.0	281.8	281.5	281.4	281.3	281.3	281.2	285.8	285.9	285.9	285.7	285.6	285.5	285.4	285.3	285.4	285.6	285.6	285.4	285.6	285.5	285.3	285.0	285.1	285.2	284.9	284.6	284.5	284.5	284.4	284.3	284.2
CUM ON TIME (HR)	36.0	37.0	38.0	39.0	40.0	41.0	42.0	43.0	44.0	45.0	46.0	47.0	48.0	49.0	50.0	51.0	52.0	53.0	54.0	55.0	26.0	57.0	58.0	59.0	0.09	61.0	62.0	63.0	64.0	65.0	0.99	67.0	0.89	0.69	70.0
CUM ON TIME (MIN)	2160.2	2220.2	2280.2	2340.2	2400.2	2460.2	2520.2	2580.2	2640.2	2700.2	2760.2	2820.2	2880.2	2940.2	3000.2	3060.2	3120.2	3180.2	3240.2	3300.2	3360.2	3420.2	3480.2	3540.2	3600.2	3660.2	3720.2	3780.3	3840.3	3900.3	3960.3	4020.3	4080,3	4140.3	4200.3
ON TIME (MIN)	0.09	9.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	9.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09
DATE	12/03/89	12/03/89	12/04/89	12/04/89	12/04/89	12/04/89	12/04/89	12/04/89	12/04/89	12/04/89	12/04/89	12/04/89	12/04/89	12/04/89	12/04/89	12/04/89	12/02/89	12/02/89	12/02/89	12/02/89	12/02/89	12/05/89	12/02/89	12/02/89	12/05/89	12/02/89	12/02/89	12/02/89	12/05/89	12/02/89	12/02/89	12/02/89	12/06/89	12/06/89	12/06/89
SAMP #	180	185	190	195				215		225																	-								135
RUM	329-17	329-17	329-17	329-17	329-17	329-17	329-17	329-17	329-17	329-17	329-19	329-19	329-19	329-19	329-19	329-19	329-19	329-19	329-19	329-19	329-19	329-19	329-19	329-19	329-19	329-19	329-19	329-19	329-19	329-19	329-19	329-19	329-19	329-19	329-19

START Number	36	37	38	39	40	41	42	43	44	45	46	47	48	64	20	51	52	23	54	55	26	57	28	59	09	19	62	63	49	65	99	67	89	69	7.0
JMBER S														_	-	_	_			-		-	_	_	-	_	_	_	_		-			_	-
Tpcu NUMBER	180	8	80	8	80	80	8	80	8	80	79	80	80	80	80	80	80	80	80	80	8	80	8	88	80	8	80	8	80	80	80	90	8	80	90
Tinj ('F)	1004	974	266	959	1004	959	1011	995	976	1000	1012	1008	1010	975	993	1000	166	974	1005	1012	666	1003	866	996	1005	1009	1014	1017	1014	996	1007	1015	1018	975	1017
(J.)	742	740	741	742	741	740	740	741	740	740	740	740	739	738	739	739	739	738	739	738	740	740	739	739	739	740	739	739	738	739	740	739	740	/39	741
E (E)	1563	1555	1556	1559	1555	1547	1553	1555	1552	1549	1547	1547	1544	1542	1542	1543	1542	1540	1544	1536	1546	1545	1542	1542	1538	1542	1542	1539	1535	1537	1543	1543	1543	1543	1549
1con (F)	252	251	252	222	252	251	251	252	251	222	520	251	251	251	251	251	251	251	251	251	252	252	252	251	252	252	252	251	252	252	252	251	251	751	751
199 ('F)	955	950	953	096	952	957	928	951	951	951	955	953	952	952	955	955	953	920	926	952	955	955	952	950	926	954	646	954	954	928	951	952	951	949	955
1vf (F)	197	195	196	196	197	195	197	197	196	197	197	197	198	197	198	198	198	167	198	199	199	200	199	198	199	198	551	198	198	661	198	198	198	199	198
P/F1.0W (J/Kg)	27280200	27197600	27102900	27216400	27067700	27054100	27078600	27344500	26945800	27136800	27022000	26908600	26981100	26874700	26800100	26830700	26711600	26947000	26737000	27020800	26995900	28869500	27175800	26855400	26997200	27212800	27091200	27002900	27062300	26988500	27180500	26884200	27152900	27081000	26931100
ARC EFF	32.98	33.05	33.13	33.04	37.91	33.09	33.04	33.21	32.90	32.98	33.30	33.11	33.22	33.22	37.86	32.81	32.96	33.12	32.80	33.16	33.07	33.07	33.20	32.97	33.00	33.33	33.16	33.04	33.02	33.05	33.07	32.74	33.27	33.08	32.72
PCU	89.76	89,89	89.70	99.80	89.73	89.80	89.72	89.80	89.68	89.79	90.05	90.06	89.90	89.82	90.12	90.03	89.57	89.82				89.92							90.03	26.68		10.04	89.87	89.94	30.0%
PCU POWER (WATTS)						1255.78		1258.50																				1255.59	1256.40	1353.61	1258.06	1256.63		1254.99 8	1257.43
ARC POWER (WATTS)	1255.96	1254.43	1251.96	1254.00	1253,03	1250.51	1251.20	1253,13	1249.82	1252,01	1252.10	1252.01	1250,66	1247.95	1252.66	1252.76	1246.14	1248.92	1251.21	1254.27	1253.62	1250,75	1252.41	1250,03	1257.05	1250.27	1251.01	1250.38	1251.18	1248.45	1252.81	1251.39	1249.15	1249.78	1252.14
ARC CURRENT (AMPS)	12.36	12.20	12.21	12.24	12.21	12.10	12.18	12.21	12.14	12.19	12.15	12.13	12.08	12.02	12.05	12.14	12.05	12.03	12.10	12.04	12.07	12.07	12.06	12.03	12.04	15.06	12.08	12.03	12.04	11.97	12.08	12.06	12.04	12.04	17.13
ARC VOL TAGE (VOL TS)	101.65	102.80	102.56	102.41	102.59	103.34	102.70	102,66	102.96	102.72	103.05	103.23	103.57	103.81	103.98	103.20	103.42	103.78	103.44	104.21	103.88	103.60	103,83	103.99	103.96	103.64	103.60	103.98	103.96	104.28	103.74	103,76	103.78	103,84	103.31
INPUT POWER (WATTS)	1405.33	1401.43	1401.73	1402.41	1402,43	1398.41	1400.45	1401.51	1399.53	1400.34	1396.42	1396.99	1397.07	1395.20	1395.73	1397.43	1397.14	1396.36	1397.17	1395.51	1396.54	1396.75	13%.06	1395.62	1395.68	1396.48	1396.46	1395.25	1395.24	1394.21	13%.33	13%.13	1395.78	1395.41	1306.77
INPUT CURRENT (AMPS)	43.90	43.78	43.79	43.77	43.78	43.70	43.75	43.79	43.72	43.74	43.88	43.84	43.79	43.76	43.74	43.79	43.77	43.75	43.78	43.72	43.75	43.77	43.75	43.73	43.72	43.75	43.72	43.68	43.68	43.65	43.70	43.69	43.69	43.86	43.70
INPUT VOLTAGE (VOLTS)	32.01	32.01	32.01	32.04	32.03	32.00	32.01	32.00	32.01	32.01	31.83	31.87	31.90	31.89	31.91	31.91	31.92	31.92	31.91	31.92	31.92	31.91	31.91	31.91	31.92	31.92	31.94	31.94	31.94	31.94	31.95	31.96	31.95	31.96	31.97
DATE																																12/05/89		15/09/89	12/06/89
SAMP #	180	185	180	195	200	705	210	215	220	225	3	2	15	20	52	30	32	40	45	S	55	09	65	0/	??	80	82	06	9.5	100	105	110	115	120	125
S. I	329-17	329-17	329-17	329-17	329-17	329-17	329-17	329-17	329-17	329-17	329-19	329-19	329-19	329-19	329-19	329-19	329-19	329-19	329-19	329-19	329-19	329-19	329-19	329-19	81-628	329-19	329-19	356-19	329-19	329-19	356-19	329-19	379-19	359-19	329-19

LPAJ NASA LEWIS (121581-4840) LIFE TEST NASA S/N 002 IN CH. 11

(Pt-Pc)/Flow2 (PSI-SEC2/ LBM2)	2.101E+10 2.124E+10	2.148E+10	2.153E+10	2.152E+10 2.114E+10	2.139E+10	2.124E+10	2.148E+10	2.153E+10	2.120E+10	2.093E+10	7.166E+1U 7.165E+10	2 142F+10	2,146E+10	2.133E+10	2.151E+10	2.134E+10	2.130E+10	2.137E+10	2.168E+10	2.173E+10	2.157E+10	2.158E+10	2.167E+10	2.144E+10	2.146E+10	2.138E+10	2.154E+10	2,189E+10	2.180E+10	2.156F+10	2.160E+10	2.094F+10
PC/Flow (PSIA-SEC/ LBM)	610694	614855	616357	6/5/19	612066	609448	613143	614224	286609	602/04	616142	613064	612805	610030	89/219	611785	952809	609410	612265	613750	610379	611100	613352	611324	610522	929609	611964	618240	610347	609312	608927	612207
REL. ROUGH (PSIA)	2.33	2.40	2.49	25.33 2.53	2.60	2.46	2.25	2.51	2.39	2.33	72.7	2.25	2.23	2.36	2.43	2.44	2.30	2.59	2.48	2.37	2.32	2.34	2.44	2.38	2.24	2.43	2.17	2.29	2.29	2.27	2.28	2.48
1SP (SEC)	427.5	431.8	433.4	431.6	430.0	427.8	430.2	431.0	7.824	4,03	436.3	430.2	430.5	428.9	431.4	429.9	429.4	429.9	432.3	432.8	431.2	431.4	432.3	430.0	430.9	429.7	431.1	434.1	432.9	431.4	431.3	437.0
CUN IMPULSE LBF-SEC)	11262	11579	11737	12053	12212	12370	12528	12687	12845	13004	13320	13478	13636	13794	13952	14111	14269	14427	14585	14743	14901	15059	15217	15375	15533	15691	15848	16006	16163	12891	16479	16632
CUM IMPULSE IMPULSE ISP (18F-SEC)(LBF-SEC)	158.0 158.2	158.0	158.0	158.2	158.6	158.4	158.4	158.4	138.4	1.38.4	1.00.1	158.1	158.1	157.9	158.1	158.1	158.2	158.2	158.1	158.4	157.9	157.8	157.8	157.8	158.0	157.8	157.8	157.5	157.5	157.8	157.6	153.4
THRUST (LBF)	0.04389	0.04389	0.04388	0.04395	0.04405	0.04401	0.04399	0.04400	0.04401	0.04401	0.04373	0.04393	0.04391	0.04387	0.04393	0.04392	0.04394	0.04395	0.04392	0.04400	0.04387	0.04384	0.04384	0.04382	0.04389	0.04384	0.04382	0.04374	0.04375	0.04382	0.04377	0.04261
рс (РSIA)	62.7	62.5	62.4	6.79 6.76	62.7	62.7	62.7	62.7	/.79	0.70	0.70	62.6	62.5	62.4	62.5	62.5	62.3	62.3	62.2	62.4	62.1	62.1	62.2	62.3	62.2	62.2	62.2	62.3	61.7	61.9	61.8	59.7
CUM (LBM)	26.35	27.09	27.46	28.20	28.57	28.94	29.32	29.69	30.06	64.00	31.17	31.54	31.91	32.28	32.65	33.02	33.39	33.76	34.12	34.49	34.87	35.23	35.60	35.97	36.34	36.71	37.08	37.44	37.81	38.18	38.54	38.90
FUEL USED (1.8M)	0.37	0.37	0.37	0.37	0.37	0.37	0.37	0.37	0.3/	76.0	0.37	0.37	0.37	0.37	0.37	0.37	0.37	0.37	0.37	0.37	0.38	0.36	0.37	0.37	0.37	0.37	0.37	0.37	0.37	0.37	0.37	98.0
FLOW (18M/SEC)	0.0001027	0.0001017	0.0001012	0.0001030	0.0001024	0.0001029	0,0001023	0.0001021	0.0001024	0.0001034	0.0001016	0.0001021	0.0001020	0.0001023	0.0001018	0.0001022	0.0001023	0.0001022	0.0001016	0.0001017	0.0001017	0.0001016	0.0001014	0.0001019	0.0001019	0.0001020	0.0001016	0.0001008	0.0001011	0.0001016	0.0001015	0.0000075
Pf (PSIA)	284.2 284.3	284.4							7.007		7.007				285.5	285.2			285.9	287.0	285.4				284.9	284.8						258.8
CUM ON TIME (HR)	71.0	73.0	74.0	76.0	77.0	78.0	79.0	0.08	0.10	0.20	84.0	85.0	0.98	87.0	88.0	89.0	90.0	91.0	92.0	93.0	94.0	95.0	96.0	97.0	98.0	0.66	100.0	101.0	102.0	103.0	104.0	105.0
CUM ON TIME (MIN)	4260.3	4380.3	4440.3	4560.3	4620.3	4680.3	4740.3	4800.3	4000.3	6.027	5040.3	5100.3	5160.3	5220.3	5280.3	5340.3	5400.3	5460.3	5520.3	5580.3	5640.3	5700.3	5760.3	5820.3	5880.3	5940.3	6000.3	6.0909	6120.3	6180.3	6240.3	6300.3
ON TIME (MIN)	60.09 60.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.00	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09
DATE	12/06/89	12/06/89	12/06/89	12/06/89	12/06/89	12/06/89	12/06/89	68/90/21	12/00/89	12/00/0/	12/07/89	12/07/89	12/0//89	12/07/89	12/0//89	12/07/89	12/07/89	12/07/89	12/07/89	12/07/89	12/07/89	12/07/89	12/0//89	12/02/89	12/07/89	12/07/89	12/08/89	12/08/89	15/08/89	12/08/89	12/08/89	12/08/89
SAMP #	130 1 135 1		145 1	1 01				 8 %					1 09																	145 1	120 12	2
RUN	329-19 329-19	329-19	329-19	329-20	329-20	329-20	329-20	329-20	326-30	326-20	329-20	329-20	329-20	329-20	329-20	329-20	329-20	32920	329-20	329-20	329-20	329-20	329-20	329-20	329-20	329-20	329-20	329-20	329-20	329-20	329-20	329-22

START NUMBER	! !	71	72	/3	74	7.5	7,6	11	78	79	8	81	83	83	84	82	98	28	88	88	90	91	35	93	94	35	96	26	38	66	100	101	102	103	104	105
NUMBER S Starts M	!			-			_	-	_		_			-		_		-	_		-		-			_		-		-			-	-	_	
Tpcu W	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	80	80	80	8	80	80	80	80	80	8	80	80	80	81	81	80	81	81	80	81	81	80	80	80	80	80	80	80	80	8	80	80	80	8	80
Tinj ('F)	 	1014	980	971	101	1019	1009	1004	1015	1006	1000	1010	286	1004	1002	1009	1000	1007	1001	1009	1008	1008	1001	666	1005	1008	1006	1001	966	1002	866	866	1009	1007	866	666
T3 (°F)	i ! !	740	739	739	740	739	739	739	739	740	740	740	739	740	740	740	739	740	740	740	740	740	740	739	739	740	740	740	740	740	740	740	740	740	740	745
11 (F)		1544	1537	1544	1542	1537	1539	1537	1539	1541	1539	1539	1540	1542	1540	1541	1538	1542	1542	1541	1541	1540	1540	1538	1537	1540	1543	1540	1539	1540	1540	1541	1540	1540	1541	1564
Tcon ('F)	!	251	251	251	251	252	252	252	252	252	252	252	252	252	252	252	251	251	251	251	251	251	252	251	251	251	251	251	251	251	121	751	251	251	751	248
7gg (°F)	!	952	964	950	952	949	951	953	953	948	952	950	948	950	646	948	952	951	947	952	948	951	946	948	948	646	945	950	948	946	646	646	944	946	944	942
Tvť (°F)	!	199	198	198	200	198	200	200	200	200	198	198	166	200	198	198	199	199	200	199	166	199	661	166	199	200	661	200	166	200	198	200	198	200	199	198
P/FLOW (3/Kg)	1 ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !	26815700	26982300	27114000	27193700	27048400	26/92100	26882400	26752900	26984700	26953300	26772400	26588800	27091300	27162000	27023500	26983500	26926100	27094400	26944100	26905500	26940200	27124900	27081700	27044800	27019600	27141500	27036200	27009200	26981400	27112400	27350300	27275300	27096200	27128000	28327100
ARC EFF	[]]	32.81	33.00	33.10	33,25	33.14	32.72	33.11	32.93	33.01	33.17	35.96	32.70	33.21	33.17	32.97	33.07	32.88	33.07	33.02	32.98	33.02	33.17	33.29	33.10	33.15	33.15	32.92	33.09	37.94	33,00	33.16	33.14	33.08	33.01	32.44
PCU EFF	1	89.82	90.09	96.68	89.84	90.02	90.14	00.06	89.92	90.17	26.98	89.92	90.11	89.83	90.13	90.10	89.90	89.90	90.06	89.91	89.91	86.95	90.09	90.04	89.97	89.75	89.90	30.0%	90.01	26.68	70.0%	90.0%	89.93	80.96	89.97	88.88
PCU POWER (Watts)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1253,80	1255.86	1255.17	1253.83	1254.53	1256.60	1254.08	1253.39	1256.61	1253.01	1253.26	1256.13	1253.55	1256.57	1256.64	1253.26	1254.33	1256.41	1753.59	1253.91	1254.17	1254.98	1253.86	1252.99	1750.35	1253.51	1254.73	1253.06	1253,65	1254.96	1255,10	1753,30	1253.59	1253.82	1758.27
ARC POWER (WATTS)	1	1248.56	1250.68	1249.95	1248.63	1249.38	1251.41	1248.94	1248,23	1251.41	1247.84	1248.08	1250.95	1248.33	1251.35	1251.43	1248.09	1249.11	1251.20	1248.39	1248.71	1248.97	1249.77	1248.70	1247.83	1245.18	1248.30	1249,53	1247,88	1248.46	1249.78	1249.90	1248.11	1248.40	1248.64	1252.77
ARC CURRENT (AMPS)	1	12.06	11.99	12.04	12.02	11.96	12.01	11.95	11.97	12.02	11.98	12.00	12.00	12.04	12.04	12.03	11.99	12.04	12.04	12.01	12.02	12.02	12.03	11.97	11.98	11.98	12.03	12.02	12.00	17.00	17.00	12.03	17.01	17.01	12.01	12.36
ARC VOLTAGE (VOLTS)	1	103.55	104.32	103.79	103.87	104.44	104.18	104.52	104.29	104.15	104.15	104.02	104.23	103.68	103.94	104.00	104.09	103.77	103.94	103.94	103.87	103.90	103.91	104.28	104.20	103.98	103.75	103.96	104.03	104.03	104.16	103.97	103.88	103.97	104.01	101.36
INPUT POWER (WATTS)	! ! !	1395.97	1393.96	1395.27	1395.58	1393.62	1394.09	1393.39	1393.87	1393.54	1392.72	1393.75	1393.96	1395.44	1394.23	1394.78	1394.10	1395.30	1395.11	1394.26	1394.56	1394.27	1393.08	1392.50	1392.68	1393.12	1394.38	1393,87	1392.21	1393.37	1393.32	1393.61	1393.70	1393.53	1363.81	1400,25
INPUT CURRENT (AMPS)		43.68	43.59	43.66	43.64	43.60	43.63	43.59	43.58	43.57	43.52	43.58	43.56	43.61	43.60	43.59	43.61	43.63	43.61	43.57	43.61	43.58	43.55	43.52	43.53	43.52	43.52	43.52	43.46	43.48	43.48	43.50	43.49	43.49	13.50	43,73
INPUT VOLTAGE (VOLTS)	!	31.96	31.98	31.96	31.98	31.96	31.95	31.96	31.98	31.98	32.00	31.98	32.00	32.00	31.97	32.00	31.97	31.98	31.99	32.00	31.98	31.99	31.99	32.00	31.99	32.01	32.04	32.03	32.04	32.05	32.05	32.04	32,05	37.04	32.04	35.02
DATE	<u> </u>	12/06/89	12/06/89	12/06/89	12/06/89	13/06/89	12/06/89	12/06/89	12/06/89	12/06/89	12/06/89	12/06/89	12/06/89	12/06/89	12/07/89	12/07/89	12/07/89	12/07/89	12/07/89	12/07/89	12/07/89	12/07/89	12/07/89	12/07/89	12/07/89	12/07/89	12/0//89	12/07/89	12/07/89	12/07/89	12/08/89	12/08/89	12/08/89			12/08/89
SAMP .	! ! !	130	135	140	145	5	01	15	20	25	39	35	40	45	22	55	09	65	70	75	8	85	90	95	100	105	110	115	120	125	130	135	140	145	120	2
RUN	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	329-19	329-19	329-19	329-19	329-20	329-20	329-20	329-20	379-20	329-20	329-20	329-20	329-20	329-20	329-20	329-20	329-20	329-20	329-20	329-20	329-20	329-20	329-20	329-20	329-20	329-20	379-20	329-20	329-20	329-20	329-20	329-70	329-20	329-20	329-52

LPAJ NASA LEWIS (121581-4840) LIFE IFST NASA S/N 002 IN CH. 11

<u>a</u> !
59.8 59.9
39.96 60.0
.36 59.7
41.72 59
42.77 55
43.12 59.6
44.86 59.6
5.56
16.9
46.26
19.91
9.36
47.31
48.01
48.36
48.71
49.06
49.40
49.75
50.10 59.7
50.80 59.7
1.15

START Number	: ! !	106	107	108	109	110	==	112	113	114	115	116	117	118	119	120	121	122	133	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140
NUMBER S	1 ! ! ;	_		-		-	_		_	-			-	-		-			-		_	-	_		_	-			_		-	-			-	-
Ipcu N	; ! !	81	8	81	81	8	8	8	18	81	81	81	18	81	8	81	81	8	8	81	8	8	8	81	8	=	8	81	81	8	8	81	81	8	81	81
Tinj (°F)	! ! !	990	186	984	787	886	985	984	985	886	985	266	886	265	166	964	866	986	886	296	385	993	964	984	066	983	986	286	166	885	166	686	984	953	993	959
T3 ('F)	, [[745	745	745	744	745	745	746	745	746	745	745	745	745	745	745	746	746	746	745	744	745	744	745	746	746	745	746	745	745	745	745	746	7.45	746	745
11 (F)	1	1565	1565	1566	1562	1565	1565	1567	1565	1569	1564	1565	1563	1564	1564	1562	1565	1564	1565	1562	1563	1560	1559	1562	1565	1564	1563	1564	1563	1562	1563	1563	1564	1567	1565	1562
Tcon ('F.)	[]]	250	249	249	249	249	250	250	250	250	250	250	250	250	250	250	251	251	220	250	249	249	249	249	249	249	249	249	249	249	250	249	720	543	549	249
199 (°F)	F 	942	942	938	941	940	940	939	941	937	940	937	940	940	939	939	636	938	939	937	934	437	945	938	938	936	937	936	935	937	934	935	938	934	638	943
10f (T)	1	199	198	198	198	198	199	199	700	200	200	200	200	198	199	198	200	199	199	198	200	199	199	198	198	200	200	200	198	200	198	198	198	188	200	661
P/FLOW (J/Kg)	1	28452700	28487100	28636000	28508400	28434100	28507300	28569800	28340000	28784000	28682100	28664600	28676600	28506200	28562200	28522100	28844200	28629800	28583600	28851000	28710800	28699400	28815100	28577500	28849000	28869600	28/52100	78910100	28670300	00228982	28927500	28641300	28651200	28954900	28892100	28840200
ARC	! :	32.55	32.50	32.52	32.70	32.39	32.43	32.45	32.23	32.56	32.46	32.46	32.42	32.52	32.38	32.59	32.54	32.31	32.33	32.55	32.40	32.44	32,53	32.17	32,44	32.60	32.41	37.17	37,79	32.40	37.54	32.78	32.17	32.42	37,35	37.47
PCU EFF	1	89.63	87.78	89.74	89.70	89.75	89.76	89.84	99.68	86.78	89.87	89.89	89.85	99.68	89.72	89.64	89.82	89.82	89.59	89.79	89.62	86.68	90.04	70.07	89.98	99.88	89.77	90.09	89.95	90.01	90.06	89.92	89.68	89.91	90.03	98.86
PCU POWER (WATTS)	() 	1256.83	1257,98	1258.55	1255.63	1258.25	1258.04	1258.87	1256.36	1258.89	1257.69	1258.80	1258.10	1256.12	1257.75	1253.76	1259.51	1258.13	1255.58	1256.92			1257.80	1258.24	1258.97	1255.20	1256.80	1283.21	1258.15	1257.27	1259.04	1758.43	1257.11	1258.49	1259.28	1255.38
ARC POWER (WATTS)	·	1251.31	1252.48	1253.03	1250.23	1252.77	1252.55	1253,39	1250.90	1253,38	1252.26	1253,34	1252.65	1250.67	1252,28	1248.35	1253.98	1252.65	1250,10	1251.47	1251.39	1252.11	1252.47	1252.85	1253.52	1249.78	1251.37	1257.64	1252.76	1251.91	1253.61	1252.98	1251,62	1253,06	1253,83	1250.02
ARC CURRENT (AMPS)	<u> </u>	12.39	12.35	12.39	12.25	12.35	12.35	12.34	12.31	12.37	12.28	12.31	12.30	12.30	12.33	12.25	12.39	12.33	12.34	12.30	12.36	12.21	12.17	17.23	12.31	12.28	12.27	12,43	12.24	12.20	12.28	12.30	12,35	12.29	12,30	17.20
ARC VOLTAGE (VOLTS)	1 1 1	101.01	101.38	101.12	102.08	101.47	101,38	101.57	101.58	101.35	102.01	101.83	101.83	101.64	101.53	101.87	101.21	101.57	101.31	101.74	101.27	102.54	102.95	102.46	101.87	101.81	101.95	101.19	102.37	102.58	102.11	101.86	101.31	101.96	101.94	107.42
INPUT POWER (WATTS)	! ! !	1402.20	1401.24	1402.40	1399.83	1401.98	1401.65	1401.30	1401.19	1402.24	1399.47	1400.41	1400.20	1401.06	1401,88	1398.75	1402.29	1400.69	1401.48	1399.86	1402.50	1397.60	1396.93	1397.03	1399.56	1369.92	1400.07	1403.52	1398.77	1396.82	1398.93	1399.57	1401.74	1309.75	1398.75	1397.08
INPUT CURRENT (AMPS)	1	43.77	43.76	43.77	43.67	43.75	43.74	43.73	43.74	43.78	43.71	43.72	43.71	43.71	43.73	43.64	43.72	43.71	43.72	43.68	43.74	43.62	43.59	43.60	43.69	43.65	43.65	43.79	43.62	43.58	43.59	43.63	43.74	43.67	43.66	43.59
INPUT VOLTAGE (VOLTS)	1 1	32.04	32.02	32.04	32.06	32.05	32.05	32.04	32.03	32.03	32.02	32.03	32.03	32.06	32.06	32.06	32.07	32.05	32.06	32.05	32.06	32.04	32.05	32.04	32.04	32.07	32.07	32.05	32.07	32.05	32.09	32.08	32,05	32.06	32.04	32.05
DATE	1	12/08/89	12/08/89	12/08/89	12/08/89	12/08/89	12/09/89	12/09/89	12/09/89	12/09/89	12/09/89	12/09/89	12/09/89	12/09/89	12/09/89	12/09/89	12/09/89	12/09/89	12/09/89	12/09/89	12/09/89	12/10/89	12/10/89	12/10/89	12/10/89	12/10/89	12/10/89	12/10/89	12/10/89	12/10/89	12/10/89	12/10/89	12/10/89	12/10/89	12/10/89	12/10/89
SAMP		10	15	20	25	30	35	40	45	50	55	09	65	70	75	80	85	90	95	100	105	110	115	120	125	130	135	140	145	150	155	160	165	170	175	180
RUN *	: : :	329-22	329-22	329-22	329-22	329-72	329-22	329-22	329-22	329-22	329-22	329-22	329-22	329-22	329-22	329-22	329-22	329-22	329-22	329-22	329-22	329-22	329-22	329-22	329-22	329-22	329-22	329-22	329-22	379-22	329-22	329-22	329-52	329.22	329-22	379-27

LPAJ NASA LEWIS (121581-4840) LIFE TEST NASA S/N 002 IN CH. 11

(Pf-Pc)/Flow ² (PSI-SEC ² / LBM ²)	2.114E+10 2.121E+10 2.136E+10	2.143E+10 2.120E+10 2.139E+10 2.156E+10	2.126E+10 2.115E+10 2.154E+10 2.149E+10	2.129E+10 2.143E+10 2.156E+10	2.114E+10 2.110E+10 2.152E+10 2.144E+10	2.141E+10 2.162E+10 2.162E+10 2.152E+10 2.152E+10	2.165E10 2.149E10 2.144E10 2.123E10 2.139E10	2.149E+10 2.133E+10 2.116E+10 2.143E+10 2.118E+10 2.142E+10 2.106E+10
PC/Flow (PSIA-SEC/ LBM)	615046 613861 616388	605399 601908 606023 610539	605288 603911 607472 607390	606398 608173 608839	602744 603651 609258 60921	608396 607903 608446 608725 611971	612647 613127 611395 608817 607651	608032 607216 605825 605200 602539 606479 601086
REL. ROUGH (PSIA)	2.37 2.26 2.39	2.37 2.42 2.46 2.51	2.51 2.54 2.54 2.59	2.52 2.60 2.60	2.45 2.47 2.59 2.59	2.53 2.53 2.43 2.70	2.45	2.52 2.23 2.29 2.20 2.20
1SP (SEC)	437.5	554.7 436.7 440.3 441.6	436.2 436.1 440.4 438.7	436.1 438.7 438.8	436.1 434.8 438.2	437.7 437.7 439.7 438.8	441.0 438.0 438.9 436.4	440.1 437.9 436.5 438.9 435.3 439.0
CUM IMPULSE LBF-SEC)	22116 22268 22420	22717 22870 23024 23177	23330 23483 23636 23789	23941 24094 24246	24399 24552 24705 24857	25009 25162 25162 25314 25467	25771 25923 26075 26227 2627	26532 26684 26837 26991 27144 27297 27297
IMPULSE IMPULSE (1.8F-SEC)(1.8F-SEC)	151.6 151.7 151.6	297.2 153.1 153.8 153.8	152.8 153.1 153.2 153.2	152.3 152.7 152.3	152.9 152.7 152.5 152.5	152.5 152.5 152.5 152.5 152.3	152.4 151.7 152.2 152.0 152.0	152.5 152.1 153.3 153.5 153.5 153.5 153.5
THRUST (1BF)	0.04211 0.04212 0.04212	0.05387 0.04252 0.04272 0.04268	0.04245 0.04253 0.04256 0.04240	0.04229	0.04247 0.04243 0.04237 0.04237	0.04237 0.04237 0.04235 0.04231 0.04231	0.04232 0.04214 0.04228 0.04222	0.04234 0.04226 0.04258 0.04264 0.04264 0.04264
Pc (PSIA)	59.2 59.0 59.0	58.8 58.6 58.8 59.0	58.9 58.9 58.7 58.7	58.8 58.8 58.7	58.7 58.9 58.9	58.9 58.6 58.6 58.7 88.7	58.8 59.0 58.9 58.9 8.8	58.5 58.6 59.1 58.8 58.9 58.9 58.9
CUM (LBM)	51.50 51.85 52.20	53.74 53.09 53.44 53.79	54.14 54.49 54.85 55.20	55.55 55.90 56.25	56.60 56.95 57.30 57.45	58.00 58.35 58.70 59.05	59.75 60.09 60.44 60.79	61.48 61.48 62.19 62.54 62.89 63.24 63.59
FUEL USED (LBM)	0.35 0.35 0.35	0.54 0.36 0.35 0.35	0.35 0.35 0.35	0.35 0.35 0.35	0.35 0.35 0.35	0.35 0.35 0.35 0.35	0.35 0.35 0.35 0.35	0.35 0.35 0.35 0.35 0.35
F1.0W (18M/SEC)	0.0000963 0.0000961 0.0000957	0.0000971 0.0000974 0.0000970 0.0000986	0.0000973 0.0000975 0.0000966 0.0009960	0.0000970	0.0000974 0.0000976 0.0000967	0.0000968 0.0000964 0.0000963 0.0000964	0.0000960 0.0000962 0.0000963 0.0000967 0.0000964	0.0000962 0.0000978 0.0000972 0.0000978 0.0000971
Pf (PSIA)	255.1 254.9 254.7							
CUM ON TIME (HR)	141.0 142.0 143.0	144.5 145.5 146.5 147.5	148.5 149.5 150.5	152.5 153.5 154.5	155.5	159.5 160.5 161.5 162.5 163.5	164.5 165.5 166.5 167.5 168.5	169.5 170.5 171.5 172.5 173.5 174.5 175.5
CUM ON TIME (MIN)	8460.3 8520.4 8580.4	8672.3 8732.3 8792.3 8852.3	8912.3 8972.3 9032.3 9092.3	9152.3 9212.3 9272.3	9332.3 9392.3 9452.3	9572.3 9632.3 9692.3 9752.3	9872.3 9932.3 9992.3 10052.3	10172.3 10232.3 10292.3 10352.3 10412.3 10472.3
ON TIME (MIN)	60.0 60.0 60.0	91.9 60.0 60.0 60.0	60.0 60.0 60.0 60.0	60.0 60.0 60.0	6.0 6.0 6.0 6.0	0.09 0.09 0.09 0.09	0.09 0.09 0.09 0.09	0.09 0.09 0.09 0.09 0.09
OATE	12/10/89 12/11/89 12/11/89	12/12/89 12/12/89 12/12/89 12/12/89	12/12/89 12/13/89 12/13/89 12/13/89	12/13/89 12/13/89 12/13/89	12/13/89 12/13/89 12/13/89	12/13/89 12/13/89 12/13/89 12/13/89 12/13/89	12/13/89 12/14/89 12/14/89 12/14/89	25 12/14/89 30 12/14/89 5 12/14/89 10 12/14/89 15 12/14/89 20 12/14/89 25 12/14/89
SAMP #	185 1 190 1 195 1	32 1 5 1 10 1 15 1	20 1 25 1 30 1 35 1		55 6 6 6 7			
RUN	329-22 329-22 329-22	329-23 329-24 329-24 329-24	329-24 329-24 329-24 329-24	329-24 329-24 329-24	329-24 329-24 329-24 329-24	329-24 329-24 329-24 329-24 329-24	329-24 329-24 329-24 329-24 329-24	329-24 329-24 329-25 329-25 329-25 329-25 329-25

STARI Number	:	141	142	143	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160	161	162	163	164	165	991	167	168	169	170	171	172	173	1/4	175
NUMBER S STARTS N		-	-		_		_	-		-	_		_		_			_	_					_			_			-	-	-	-	_	_	
Tpcu NI	:	8	8	8	6/	79	80	8	8	80	80	80	80	8	79	79	80	8	80	8	80	8	79	6/	16	80	8	79	79	79	78	8/	79	62	۶,	4
Tinj (°F)		995	949	981	8/6	981	474	984	916	940	975	975	942	974	186	942	096	985	976	983	8/6	8/6	116	116	974	937	974	973	934	973	971	975	974	474	973	226
T3 (`F)		746	745	746	743	742	744	745	745	744	745	746	744	745	744	743	744	744	746	745	744	744	745	745	745	745	746	744	744	745	745	745	745	745	745	745
(H.)		1565	1563	1564	1563	1558	1562	1566	1569	1565	1567	1569	1565	1568	1564	1560	1566	1565	1568	1566	1562	1561	1266	1567	1568	1568	1567	1562	1862	1564	1568	1565	1563	1565	1565	1566
Tcon (۲.)		249	248	248	249	249	252	222	252	251	251	252	251	251	220	520	520	251	251	721	251	251	220	250	250	251	250	249	249	249	249	248	249	250	250	250
199 ('F)		934	936	935	936	934	934	934	938	937	936	934	935	935	935	336	935	935	934	933	933	933	933	934	934	936	934	933	937	933	933	934	935	935	935	934
Tvf (°F)		200	198	199	195	186	198	188	166	167	199	199	197	198	198	195	196	199	199	199	661	199	661	199	198	197	198	197	196	187	197	196	197	198	198	661
P/FLOW (J/Kg)		28708500	28752300	28834700	28061100	28062800	28184300	28301300	28115300	27986200	28321900	28241200	28227900	28230800	28296200	28051300	27962100	28268400	28231000	28196200	28308400	28300900	28261700	28347600	28460400	28382200	28304600	28228700	28238700	28248100	78302300	27970400	28091300	27928500	28102800	27866700
ARC EFF	1 1	32.09	32.15	32.32	52.77	32.71	33.10	33.18	32.58	32.71	32.97	32.81	32.44	32.82	32.75	32.64	37.55	37.70	32.63	32.70	32.85	32,88	32.79	37.83	32.89	32.53	32.76	32.48	32.78	33.01	32.61	32.79	33.01	32.66	33.02	37.27
PCU EFF		86.88	89.90	89.91	89.14	89.36	89.28	89.32	89.25	89.12	89.37	89.07	89.37	89.05	89.17	89.37	89.21	89.41	89.17	89.33	89,35	89.28	89.27	89.22	89.43	89.22	89.12	89.41	89.19	89.03	89.43	89.42	89.42	89.44	89.41	86.28
PCU POWER (WATTS)	1	1758.65	1258.75	1257.12	1241.38	1244.39	1245.58	1245.70	1246.20	1243.27	1246.57	1243.22	1246.76	1243.30	1242.61	1244.25	1242.76	1244.77	1244.13	1243.32	1242.89	1241.45	1241.27	1240.55	1244.14	1244.07	1242.03	1243.89	1240.35	1237.88	1244.08	1242,80	1243.09	1243.45	1743.09	1241.62
ARC POWER (WATTS)	1 1 5 3	1253.18	1253.27	1251.72	1236.03	1239.06	1240.19	1240.33	1240.76	1237.88	1241,15	1237.78	1241,33	1237.84	1237.25	1238.94	1237.35	1239.39	1238.65	1237.98	1237,58	1236.14	1235.97	1235.26	1238,80	1238.67	1236.64	1238.54	1235.04	1237.57	1238.71	1737.46	1237,78	1238.14	1337.77	1736.28
ARC CURRENT (AMPS)	! ! !	12.32	17.33	12.24	17.19	12.17	12.24	12.22	12.29	12.23	12.28	12.29	12.28	12.32	12.21	12.14	12.26	12.72	12.34	12.19	12.15	12.15	12.14	12.13	12.18	12.30	12.23	12.18	12.15	12.14	12.22	12.18	12.15	12.15	12.15	12.18
ARC VOL TAGE (VOL TS)	1 : : : :	101.70	101.65	102.24	101.43	101.84	101,33	101.49	100.97	101.20	101.20	100.75	101.07	100.49	101.34	102.04	100.96	101.41	100.38	101.59	101.84	101.73	101.80	101.82	101.68	100.67	101.10	101.68	101.66	101.49	101.39	101.59	101.90	101.92	101.87	101.52
INPUT POWER (WATTS)	1 1 1	1400.45	1400.13	1398.20	1392.65	1392.57	1395.07	1394.64	1396.32	1395.11	1394.77	1395.80	1395.02	1396.24	1393.58	1392.20	1393.04	1392.22	1395.29	1391.83	1391.04	1390.88	1390.41	1390.41	1391.16	1394.32	1393.61	1391.28	1390.66	1390.49	1391.08	1389.84	1390.12	1390,28	1390.38	1390,74
INPUT CURRENT (AMPS)	; ! !	43.69	43.66	43.63	43.90	43.89	43.94	43.91	43.98	43.94	43.93	44.02	43.97	44.03	43.92	43.88	43.88	43.88	43.99	43.85	43.85	43.84	43.80	43.80	43.81	43.93	43.89	43.80	43.79	43.81	43.82	43.76	43.78	43.80	43.76	43.77
INPUT VOLTAGE (VOLTS)	! ! !	32.05	32.07	32.05	31.73	31.73	31.75	31.76	31.75	31.75	31.75	31.71	31.72	31.71	31.73	31.73	31.75	31.73	31.72	31.74	31.72	31.73	31.75	31.75	31.76	31.74	31.75	31.76	31.76	31.74	31.75	31.76	31.75	31.74	31.77	31.77
DATE	1 1 1	12/10/89	15/11/89	12/11/89	12/15/89	12/12/89	12/15/89	12/12/89	12/15/89	12/13/89	12/13/89	12/13/89	12/13/89	12/13/89	12/13/89	12/13/89	12/13/89	12/13/89	12/13/89	12/13/89	12/13/89				12/13/89	12/14/89	12/11/89	12/14/89	12/14/89	12/14/89	12/14/89	12/14/89	12/14/89	12/14/89	12/14/89	12/14/89
SAMP #	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	185	190	195	32	5	01	15	20	25	30	35	40	45	20	55	09	65	70	75	80	85	90	95	100	105	110	115	120	125	130	5	10	15	29	52
RUN	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	329-22	329-22	329-22	329-23	329-24	329-24	329-24	329-24	329-24	. 329-54	329-24	329-24	329-24	329-24	329-24	329-24	329-24	329-24	329-24	329-24	329-24	329-24	329-24	329-24	329-24	329-24	329-24	329-24	329-24	329-24	329-75	329-25	329-75	329-25	379-25

LPAJ NASA LEWIS (121581-4840) LIFE IEST NASA S/N 002 IN CH. 11

(Pf-Pc)/Flow ² (PSI-SEC ² / LBM ²)	2.136E+10 2.135E+10 2.129E+10	2.130E+10 2.155E+10	2.158E+10 2.126E+10 2.111E+10	2.150E+10 2.134E+10	2.164E+10 2.158E+10	2.137E+10	2.125F+10	2.129E+10	2.136E+10	2.141E+10	2.121E+10 2.140E+10	2.165E+10	2.129E+10	2.148E+10	2.149E+10	2.154E+10	2.151E+10	2.169E+10	2.164E+10	2.122E+10	2.142E+10	2.168E+10	2,138E+10	2.167E+10
PC/Flow (PSIA-SEC/ LBM)	603812 603937 604258	604419	610/30 606217 604028	608047	60809 60809	605268	615527	617764	620351	651098	618376	622432	618653	617793	619141	618532	620386	621728	623379	618958	619575	625150	621051	652499
REL. ROUGH (PSIA)	2.20 2.20	2.29	2.33 2.31 2.25	2.32	2.38	2.16	2.32	2.30	2.27	2.34	2.50	2.28	2.47	2.31	2.32	2.28	2.44	2.34	2.36	2.43	2.30	2.43	2.32	2.29
1SP (SEC)	438.2	436.7	440.5 437.8 435.3	440.5	441.2	436.8	444.2	443.9	444.7	446.1	443.8	448.6	444.5	445.9	445.6	445.9	446.1	447.7	447.5	443.5	445.1	448.9	445.3	448.9
CUM Impulse LBF-SEC)	27603 27756 27908	28061	28368 28521 28674	28827 28980	29133 29286	29438	29735	29883	30179	30327	30623	30771	30919	31215	31362	31510	31658	31806	31954	32101	32249	32397	32545	35,692
CUM	153.3	152.7	153.0 153.1 152.8	153.4	153.1	152.7	148.4	148.0	147.9	148.1	148.0	148.1	148.0	147.9	147.7	147.6	147.8	147.8	147.8	147.8	147.7	147.9	147.7	147.8
THRUST (LBF)	0.04259 0.04252 0.04237	0.04241	0.04253 0.04253 0.04245	0.04260	0.04252	0.04243	0.04121	0.04110	0.04107	0.04115	0.04111	0.04115	0.04110	0.04107	0.04103	0.04101	0.04106	0.04105	0.04106	0.04106	0.04102	0.04107	0.04102	0.04105
Pc (PSIA)	58.6 58.6 58.7	58.7	58.9 58.9 58.9	58.8 58.7	58.6 58.8	58.8	57.1	57.2	57.3	57.3	57.1	57.1	57.2	56.9	57.0	56.9	57.1	57.0	57.2	57.3	57.1	57.2	57.2	57.2
CUM FUEL USED (LBM)	63.95 64.30 64.65	65.00	65.70 66.05 66.40	66.75	67.45	68.14	18.89	69.14 69.48	18.69	70.14	70.81	71.15	71.48	72.15	72.48	72.81	73.15	73.48	73.81	74.14	74.48	74.81	75.14	75,48
FUEL USED (LBM)	0.35 0.35 0.35	0.35	0.35 0.35 0.35	0.35	0.35	0.35	0.33	0.34	0.33	0.33	0.34	0.33	0.33	0.33	0.33	0.33	0.33	0.33	0.33	0.33	0.33	0.33	0.33	0.33
FLOW (18M/SEC)	0.0000971 0.0000970 0.0000971	0.0000971	0.0000972 0.0000972 0.0000975	0.0000971	0.0000964	0.0000971	0.0000928	0.0000926	0.0000924	0.0000923	0.0000922	0.0000917	0.0000925	0.0000921	0.000021	0.0000000	0.00000.0	0.0000917	0.0000918	0.0000926	0.0000022	0.0000915	0.0000921	0.0000914
pf (PSIA)	259.8 259.6 259.6	259.6	259.6 259.6 259.9	259.9	259.6	260.5 240.0	240.0	239.7	239.5	239.5	239.2		239.2				239.3						338.6	738.4
CUM ON TIME (HR)	176.5	179.5	182.5 183.5	184.5	186.5	188.5	190.5	191.5	193.5	194.5	196.5	197.5	198.5	200.5	201.5	202.5	203.5	204.5	205.5	206.5	207.5	208.5	209.5	210.5
CUM ON TIME (MIN)	10592.3 10652.3 10712.3	10832.3	10952.3 11012.3	11072.3	11252.3	11312.3	11432.4	11492.4	11612.4	11672.4	11792.4	11852.4	11912.4	12032.4	12092.4	12152.4	12212.4	12272.4	12332.4	12392.4	12452.4	12512.4	12572.4	12632.4
ON TIME (MIN)	60.09 60.09 60.09	60.09	0.09 60.09	60.09 60.09	60.09 60.09	0.09 60.0	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09
DATE	12/14/89 12/14/89 12/14/89	12/15/89	12/15/89 12/15/89 12/15/89	12/15/89 12/15/89	12/15/89	12/15/89 12/15/89	12/15/89	12/15/89 12/15/89	12/15/89	12/15/89	12/16/89	12/16/89	12/16/89	12/16/89	12/16/89	12/16/89	12/16/89	12/16/89	12/16/89	12/16/89	12/16/89	12/16/89	12/16/89	12/16/89
SAMP #	35 40		65 65		88 88	8 2 2		2 2		8 %			S %			0/			£ 5	2 8	95			011
PUN .	329-25 329-25 329-25	329-25	329-25 329-25 329-25	329-25 329-25	324-25 329-25	329-25 329-26	329-26	329-26 329-26	329-28	329-26	32-628	329-26	329-26	329-26	329-28	32-52	329-26	329-26	324-26	37.9-26	329-58	329-58	329-26	32-626

START Number	176	177	179	180	181	182	183	184	185	186	187	188	189	190	191	192	193	194	195	196	197	198	199	200	201	202	203	704	202	306	207	208	509	210
NUMBER S	 ,			-				-					_	-		-			_	_	_	_	_		_		-			-			-	
Tpcu Mi	79	6/ 0/	, 62	79	19	78	78	78	78	78	78	78	79	42	6/	79	5/	79	79	79	19	79	4/	79	79	79	4/	80	80	8	80	79	6/	62
Tinj (F)	971	9/4	945	938	625	727	744	743	747	751	753	753	754	755	756	756	756	757	757	739	744	750	753	755	754	756	756	759	759	759	760	761	759	292
(F)	744	745	745	745	746	745	744	744	745	744	744	745	749	749	749	750	749	750	749	749	749	749	750	750	750	750	750	750	750	750	750	750	750	750
11 (F)	1951	1563	1564	1564	1568	1567	1562	1561	1563	1559	1562	1564	1881	1580	1582	1583	1582	1583	1582	1581	1582	1582	1583	1584	1584	1585	1585	1585	1583	1584	1584	1584	1583	1584
Tcon ('F.)	249	249	249	249	249	249	249	249	249	249	249	249	249	249	249	249	249	249	249	249	249	249	249	249	249	249	520	249	250	250	516	549	546	248
199 ('F.)	933	43 4	934	934	933	933	932	933	933	933	932	933	457	926	126	926	925	925	925	925	924	925	926	956	924	925	924	925	924	\$26	672	926	673	\$26
Tvf (°F)	661	661	198	199	198	198	198	198	198	199	166	189	189	199	199	199	166	199	199	166	199	199	661	199	200	199	200	200	200	500	201	200	200	200
P/FLOW (3/Kg)	28087300	28033300	28090500	28265200	28247600	28084600	27985600	28183700	28060400	28766900	28225100	28076600	29503800	29525000	29513200	29940300	29586600	29660600	29464800	29556300	29863100	29513500	29612600	29610700	29700100	29733900	29667500	29814100	29762000	29527900	29655900	29838600	29656200	00652862
APC	33.01	32.47	32.68	33.18	33.07	32.84	32.59	33.14	32.89	33.15	32.79	32.71	32.39	32.17	32.13	32.53	32.17	32.29	32.18	32.35	32,43	32.22	32.20	32.32	32.19	32.18	32.29	32.36	32,39	32.07	32.14	32.50	32.19	32.47
PCU	89.35	71.78	89.47	89.45	89.26	89.41	89.51	89.40	89.45	89.41	89.47	89.54	89.01	89.43	89.12	89.13	89.05	89.25	80.68	89.03	86.48						88.82	89.12	88.87		90.68		89,05	89.13
PCU POWER (WATTS)	1241.50											1242.21	1242.57	1247.64	1244.86												1244.06	1245.18	1244.16		1245.51		1244,29 8	1244.75 8
ARC POWER (WATTS)	1236.27	1235.04	1737.23	1237.68	1235.49	1237,50	1237.61	1236.03	1235.75	1235.40	1738.71	1236.99	1237,05	1242.14	1239.31	1241.75	1239.38	1240.98	1238.21	1236,49	1242.43	1237.55	1237.31	1236.82	1240.04	1740.49	1238.38	1339.61	1238.51	1239,70	1739.91	1238.17	1238.73	1239,19
ARC CURRENT (AMPS)	12.12	12.15	12.09	12.14	12.13	12.15	12.09	12.08	12.03	12.03	12.06	12.04	12.38	12.36	12.41	12.56	12.46	12.43	12.42	12.37	12.37	12.38	12.36	12.40	12.48	12.47	12.58	12.43	12.54	12.58	12.47	12.49	12.43	12.43
ARC VOLTAGE (VOLTS)	102.03	101.48	102.38	101.97	101.82	101.86	102.34	102.34	102.71	102.74	102.51	102.74	96.96	100.50	99.82	98.90	99.44	99.85	99.70	99.95	100.44	66.66	100.14	96.78	99.33	99.48	98.40	12.66	98.78	98.51	66.41	66.17	89.56	66.72
INPUT POWER (WATTS)	1389.42	1390.38	1388.66	1389.62	1390.03	1389.99	1388.55	1388.39	1387.39	1387.50	1388.10	1387.37	1395.99	1395.14	1396.90	1399.63	1398.03	1396.74	1396.21	1395.05	1394.61	1395.18	1395.18	1395.91	1397.74	1397.75	1400.64	1397.16	1399.92	1401.57	1398.46	1398.69	1397,38	1396.51
INPUT CURRENT (AMPS)	43.74	43.79	43.74	43.77	43.74	43.74	43.69	43.72	43.72	43.70	43.70	43.68	43.93	43.92	43.98	44.06	43.99	43.95	43.95	43.88	43.89	43.91	43.90	43.93	43.98	43.96	44.09	43.95	44.04	44.08	43.98	43.98	43.96	43.93
INPUT VOLTAGE (VOLTS)	31.77	31.75	31.75	31.75	31.78	31.78	31.78	31.75	31.74	31.75	31.76	31.77	31.78	31.77	31.76	31.76	31.78	31.78	31.77	31.79	31.77	31.78	31.78	31.//	31.78	31.79	31.77	31.79	31.79	31.79	31.80	31.81	31.79	31,79
DATE	12/14/89	12/14/89	12/15/89	12/15/89	12/12/89	12/15/89	12/12/89	12/15/89	12/12/89	12/15/89	12/15/89	12/12/89	12/15/89	12/15/89	12/15/89	12/15/89	12/15/89	12/15/89	12/16/89	12/16/89	12/16/89	12/16/89	68/91/21	15/16/89	12/16/89	12/16/89	68/91/21	15/16/89	12/16/89	12/16/89	12/16/89	12/16/89	68/91/21	12/16/89
SAMP *	30	£ 0 4					92		75																				-	_			-	10 1
RUN	329-75	329-25	329-25	329-25	329-25	329-25	329-25	32925	329-25	329-25	329-25	329-25	329-58	329-28	329-58	329-28	329-26	329-56	329-58	328-26	329-26	329-26	329-58	97-678	329-58	329-58	329-58	37.6-58	329-26	329-26	329~26	329-58	329-58	329-26

LPAJ NASA LEWIS (121581-4840) LIFE TEST NASA S/N 002 IN CH. 11

(Pf-Pc)/F]ow ² (PSI-SEC ² / LBM ²)	2.163E+10 2.157E+10 2.133E+10	2.159E+10 2.153E+10 2.163E+10	2.145E+10 2.145E+10 2.136E+10 2.128E+10	2.143E+10 2.143E+10 2.133E+10 2.116E+10	2.175E+10 2.122E+10 2.112E+10	2.160E+10 2.181E+10 2.163E+10 2.164E+10 2.159E+10	2.179E+10 2.179E+10 2.184E+10 2.156E+10 2.123E+10	2.148E+10 2.178E+10 2.194E+10 2.154E+10 2.187E+10 2.180E+10 2.162E+10 2.137E+10
PC/Flow (PSIA-SEC/ LBM)	625055 625730 62381	620026 622880 620676	618176 612996 610703 609691	616337 614770 615986 611033	618434 612210 614402	624695 620500 618916 619554	61/35/ 618278 620806 615825 609973	613743 615522 617824 612360 618214 615777 610543
REL. ROUGH (PSIA)	2.26 1.93 1.95	2.03	1.92	2.03 2.03 1.89	2.00	2.26 2.12 2.12 2.40 2.44	2.37 2.37 2.28 2.38 2.37	2.12 1.92 1.92 1.98 2.33 2.28 2.61 2.61
ISP (SEC)	448.3 448.2 444.9	448.1	447.0 442.6 445.6	445.8 443.7 441.1	446.0	448.2 447.0 446.8 446.0	443.9 447.1 448.2 445.4 441.0	444.0 446.1 448.1 447.8 447.0 444.5
CUM IMPULSE LBF-SEC)	32840 32988 33135	33283 33431 33651	33951 34099 34249	34547 34547 34696 34845	34993 35141 35290	35587 35736 35884 35884	36179 36327 36475 36623 36771	3666 37213 37213 37361 37508 37656 37894 37952
CUM	147.7	147.7	149.9 148.7 150.0	149.3 148.9 148.6	148.2 148.4 148.4	148.8 148.9 147.9 168.0	147.9 147.9 147.9 147.9	147.7 147.4 147.5 147.5 147.6 147.6
THRUST (1BF)	0.04102 0.04104 0.04095	0.04102 0.04108 0.04169	0.04162 0.04163 0.04131 0.04166	0.04137 0.04135 0.04129	0.04118 0.04121 0.04123	0.04137 0.04135 0.04107 0.04110	0.04108 0.04108 0.04108 0.04108	0.04102 0.04095 0.04097 0.04097 0.04102 0.04109
Pc (PSIA)	57.2 57.3 57.4	56.8 57.1 57.5	57.1 57.0 57.0 57.0	57.2 57.4 57.4	57.1 57.2 57.5 57.5	57.6 57.6 57.6 56.9	56.9 56.9 56.9 56.8	56.7 56.5 56.5 56.5 56.5 56.5 56.3 56.3
CUM (18M)	75.81 76.14 76.47	76.81 77.14 77.65	78.32	77.32 79.66 80.00 80.33	80.67 81.01 81.34	82.02 82.03 82.35 82.68 83.02	83.68 83.68 84.02 84.35	85.02 85.35 86.01 86.01 86.35 86.35 86.35
FUEL USED (18#)	0.33 0.33 0.33	0.33 0.33 0.34	0.34	0.34 0.33 0.34	0.34 0.34 0.34	6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0	0.33 0.33 0.33	0.34 0.33 0.33 0.33 0.33 0.33
(LBM/SFC)	0.0000915 0.0000916 0.0000920	0.0000916 0.0000917 0.0000926	0.0000931 0.0000933 0.0000935	0.0000930 0.0000930 0.0000936	0.0000923 0.0000934 0.0000936	0.0000922 0.0000925 0.0000919 0.0000932	0.0000919 0.0000917 0.0000922 0.0000930	0.0000924 0.0000915 0.0000915 0.0000916 0.0000918 0.0000922
Pf (PSIA)	238.3 238.2 238.1		243.1 243.1 243.0				240.7 240.7 240.4 240.2 240.1	240.0 240.0 240.0 239.9 239.9 240.0 240.1
CUM ON TIME (HR)	211.5 212.5 213.5	214.5 215.5 217.0	219.0 220.0 221.0	223.0 224.0 225.0	226.0 227.0 228.0	230.0 231.0 232.0 233.0	235.0 236.0 237.0 238.0	239.0 240.0 241.0 242.0 243.0 244.0 246.0
CUM ON TIME (MIN)	12692.4 12752.4 12812.4	12872.4 12932.4 13022.4	13142.4 131202.4 13262.4	13382.4 13442.4 13502.4	13562.4 13622.4 13682.4	13862.4 13862.4 13922.4 13982.4	14102.4 14102.4 14162.5 14222.5 14282.5	14342.5 14462.5 14522.5 14582.5 14642.5 14762.5
ON TIME (MIN)	60.0 60.0 60.0	60.0 60.0 60.0	0.09 0.09 0.09	60.09 60.09 60.09	60.09 60.09 60.09	60.09 0.09 0.09	0.09 0.09 0.09 0.09	60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0
OATE	12/17/89 12/17/89 12/17/89	12/17/89	12/17/89 12/17/89 12/17/89	12/17/89 12/18/89 12/18/89	12/18/89 12/18/89 12/18/89	12/18/89 12/18/89 12/18/89 12/18/89	12/18/89 12/18/89 12/18/89 12/18/89	12/19/89 12/19/89 12/19/89 12/19/89 12/19/89 12/19/89
SAMP #	115 1 120 1 125 1	130 1			52 1 57 1 62 1 62 1		25 2 2 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	40 1 45 1 50 1 55 1 60 1 70 1 51 3
RUN	329-26 329-26 329-26	329-26 329-26 329-27	329-27 329-27 329-27 329-27	329-27 329-27 329-27	329-27 329-27 329-27	329-27 329-27 329-27 329-28	329-28 329-28 329-28 329-28	329-28 329-28 329-28 329-28 329-28 329-28

START NUMBER	1 1 1 1	211	212	213	214	215	218	219	220	221	222	223	224	225	22.6	127	228	558	230	231	232	233	234	235	536	237	338	539	240	241	242	243	244	245	246	247
NUMBER S STARTS N	!	-	_			_	_	_		-		-	_		_	-	_	_	_			_	_			-		_		-	_	-	_	-		
Tpcu NU (F) S1	1	79	79	79	4	79	79	79	79	79	7.9	79	79	79	79	79	79	79	79	79	79	79	13	79	8/	79	79	79	79	79	79	79	79	78	79	78
Tinj (F)		759	760	2,60	759	760	761	760	763	762	763	762	297	293	763	263	765	764	764	765	191	764	764	764	99/	765	787	191	766	765	768	69/	99′	747	787	696
13 (F)		750	91	9	17	æ	23	20	18	22	27	17	19	15	11	12	750	750	750	749	749	750	750	750	750	750	750	750	-15	9-	က	2	751	750	751	752
11 (.F.)		1583	1583	1584	1583	1584	1576	1580	1581	1580	1579	1581	1881	1581	1582	1583	1583	1583	1583	1581	1582	1584	1584	1583	1582	1583	1585	1584	1584	1586	1586	1587	1586	1585	1586	1588
Tcon ('F')		248	248	248	248	548	248	249	249	248	248	248	248	248	248	249	249	249	248	248	248	248	248	248	248	249	249	248	248	249	249	549	248	248	3.48	247
199 (F.)		426	925	426	924	623	925	956	924	926	924	926	427	926	925	924	925	928	924	925	427	924	924	926	923	956	923	37.6	926	921	925	\$25	922	623	975	921
1vf (F)	1	200	199	199	199	199	200	199	198	199	199	200	500	200	200	200	200	200	200	200	199	200	200	500	, 10°,	707	202	20.	701	202	202	701	202	70%	201	202
P/FL.0W (J/Kg)	1	29862700	29828200	29697000	29812700	29810900	29434100	29402100	29304700	29280300	29202500	29518000	29304400	29337300	29222900	29589200	29242500	29131700	29461100	29572300	29595100	29679500	29668200	29436800	29855200	29816700	29597200	29373000	29606500	29788100	29874500	29590600	29900100	29705200	29542400	29422700
ARC EFF	i i i	32.39	32.42	32.08	32.37	32.42	33.11	33.00	32.82	32.21	32.74	35.59	32.64	32.31	32.05	32.36	37.03	32.07	32.28	32.69	32.50	32.37	32.27	32.23	32.45	32.43	32.28	31.87	32.05	37.16	32,35	32.08	32,38	37.38	32.20	37,09
PCU	1	89.22	89.08	89.04	89.12	88.93	88.99	89.05	89.16	86.78	89.34	89.18	89.07	89.18	89.25	89.16	89.23	88.94	89.15	88.87	89,33	88.97	89.32	89.11	89.27	60.68	89.27	89.13	89.03	89.05	89.01	88.95	89.14	89.25	89.04	88.98
PCU POWER (WATTS)	i ; !	1244.88	1244.32	1245,34	1244.14	1245.03	1242.16	1241.45	1243.46	1244.89	1243.59	1243.47	1242.03	1245,36	1246.21	1244.49	1244.59	1242.08	1242.99	1242.20	1247.15	1243.00	1245.54	1240.17	1240.91	1245.00	1243.48	1243.82	1246.14	1245.69	1244.63	1243.78	1242.81	1241.48	1240.94	1243.50
ARC POWER (WATTS)	1	1239.37	1238.75	1239.72	1738.60	1239.36	1236.64	1235.98	1237.96	1239.40	1238,16	1237.97	1236.54	1239.80	1240.65	1238.98	1239.09	1736.45	1237.50	1236.60	1241.60	1237.45	1240.05	1234.76	1235.54	1239.38	1238,03	1738.26	1240.44	1240.05	10.38.01	1238.18	1237,33	1236.09	1235,46	1237.95
ARC CUPRENT (AMPS)	: : : : : : : : : : : : : : : : : : : :	12.37	12.44	12.50	12.40	12.55	12.38	12.33	12.36	12.34	12.28	12.36	12,35	12.42	12.43	12.37	12.38	12.51	12.35	12.48	12.42	12.41	12,34	12.27	12.21	12.49	12,30	12.43	12.58	12.52	12.50	12.47	12.34	17.24	12.33	12.42
ARC VOLTAGE (VOLTS)	1 1 1	100.19	99.56	99.20	99, 98	98.76	06.66	100.28	100.15	100.42	100.85	100.17	100.15	66.79	64.79	100.15	100.23	98.85	100.18	99.11	100.00	89.66	100.48	100.67	101.19	99.77	99.001	29.65	09.86	99.04	99,15	49.27	100.24	100.98	100.18	89.66
INPUT POWER (WATTS)	1	1395.22	1396.85	1398.66	1396,03	1400.07	1395.86	1394.08	1394.60	1394.32	1391.99	1394.41	1394.50	1396.49	1396.28	1395.80	1394.85	1396.47	1394.20	1397.75	1396.18	1397.08	1394.51	1391.72	1390.01	1397.55	1392.90	1395.49	1399.62	1398.80	1398.25	1398.24	1394.30	1391.10	1393.72	1397.48
INPUT CURRENT (AMPS)		43.88	43.93	44.02	43.90	44.07	43.94	43.88	43.85	43.80	43.81	43.88	43.87	43.94	43.89	43.91	43.87	43.97	43.84	43.98	43.91	43.94	43.86	43.78	43.71	43.96	43.79	43.88	44.00	43.98	43.96	43.95	43.82	43.73	43.84	43.97
INPUT VOLTAGE (VOLTS)		31.80	31.80	31.77	31.80	31.77	31.76	31.77	31.80	31.83	31.78	31.77	31.79	31.78	31.81	31.79	31.80	31.76	31.80	31.78	31.80	31.80	31.80	31.79	31.80	31.79	31.81	31.81	31.81	31.81	31.81	31.81	31.82	31.81	31.79	31.78
DATE		12/11/89	12/11/89	12/17/89	12/11/89	12/17/89	12/11/89	12/11/89	12/11/89	12/17/89	12/11/89	12/11/89	12/11/89	12/18/89	12/18/89	12/18/89	12/18/89	12/18/89	12/18/89	12/18/89	12/18/89	12/18/89	12/18/89	12/18/89	12/18/89	12/18/89	13/18/89	12/18/89	12/18/89	12/19/89	12/19/89	12/19/89	12/19/89	_	12/19/89	12/16/89
SAMP *		115	120	125	130	135	7	12	17	22	27	35	37	42	47	52	57	62	19	72	77	5	10	15	20	25	30	35	40	45	20	55	09	65	70	5
RUM	i i i	329-26	329-58	329-28	329-28	32-628	329-27	329-27	329-27	329-57	329-27	329-27	329-27	329-27	329-27	329-27	329-27	329-27	329-27	329-27	329-27	329-28	329-28	329-28	329-58	329-28	329-28	329-28	329-28	329-28	329-28	32.9-28	329-28	329-28	329 - 28	62-628

LPAJ NASA LEWIS (121581-4840) LIFE TEST NASA S/N 002 IN CH. 11

START	248	250	252	253	255	526	257	259	360	197	292	263	564	265	566	267	568	589	270	271	272	2/3	274	275	376	2/8	528	280	781	383	783
NUMBER S STARTS N			-		-						-	-	-		-	_			_		-	-	-		-		-	-			-
Tpcu Ni	79	97	6/	6 7 8	79	6/	۶ د	79	79	79	4/	19	79	13	42	8	80	80	80	74	79	76	44	79	62	13	79	80	80	8	80
Tinj (F)	796 787	796	696	967	696	696	796	975	196	971	296	896	696	116	696	176	372	696	972	970	696	970	970	1/6	116	981	971	973	ò74	973	973
T3	752 752	752	752	498	<u> </u>	-	3,	752	122	246	752	869	349	753	753	-26	-55	-7	-15	6-	-10	-12	752	58	23	35	-16	-37	753	753	629
(E.)	1588 1589	1590	1591	1591	1591	1591	1590	1590	1589	1590	1590	1589	1590	1590	1592	1592	1591	1591	1591	1590	1590	1589	1588	1589	1589	1589	1592	1591	1591	1590	1590
TCON (F)	249	250	250	220	250	250	249	249	250	249	250	250	250	251	251	251	251	251	221	250	250	250	520	250	249	249	250	250	137	251	251
799 (F)	926	923	921	922	924	919	921	922	921	920	921	920	920	923	919	919	918	918	921	918	918	918	026	918	921	921	916	616	417	616	920
Tvf (°F)	203	204	202	205 205	202	202	206	204	206	205	506	207	202	207	503	210	210	211	209	210	210	210	308	710	207	308	210	503	211	709	506
P/FLOW (J/Kg)	29319800 29407800	29510000	29598200	29836700 29635900	29622300	29863600	29591600	29893200	29752300	29626900	29766500	29647200	29816600	29729100	29894600	29969400	29960600	29893100	30031100	29846400	29848800	29610400	28942300	30078800	29911300	29856600	30330700	30105000	79892000	29849600	30161300
ARC	31.88 31.99	32.05 32.41	32.09	32.20 32.15	32.15	32.34	32.10	32.26	32.16	32.01	32.21	32.07	32.27	32.17	32.21	32.27	32.17	32.19	32.27	32,05	32.01	31.91	32.13	32.29	37.31	32,23	32.27	37.11	32.11	32.11	32.50
PCU EFF	89.18 88.88	88.89	88.77	88.89 88.90	88.94	89.07	89.03	89.16	89.14	89.13	89.15	89.17	89.05	88.39	88.83	88.95	89.03	88.85	89.03	89.19	89.19	89.00	89.41	89.21	89.06	88.89	88.98	88.76	88.82	88.98	89.02
PCU POWER (WATTS)	1244.48 1244.22	1244.55	1243.26	1246.05 1243.95	1243.64	1244.40	1244.13	1247.32	1245.66	1245.17	1244.93	1245.60	1245.18	1245.20	1245.38	1246.12	1247.32	1244.13	1245.68	1246.16	1245.96	1243.91	1247,38	1245.48	1243.75	1242.49	1246.87	1246.73	1244.08	1246.12	1245.13
ARC POWER (WATTS)	1239.01 1238.62	1238.93	1237.64	1240.38	1238.07	1238.86	1238.59	1241.69	1240.09	1239.62	1239.41	1240.06	1239.59	1239.58	1239.67	1240.46	1241.67	1238.50	1240.07	1240.60	1240.41	1238.38	1241.85	1239,95	1738,22	1,36,93	1241.20	1240.95	1238.44	1240.47	1239.54
APC CURRENT (AMPS)	12.32	12.49	12.50	12.55 12.46	12.44	12.40	12.40	12.50	12.44	12.42	12.38	12.41	12.46	12.49	12.59	12.53	12.53	12.50	17.49	12.42	12.42	12.41	12.39	12.40	12.39	12.42	12.55	12.67	12.51	17.53	12.47
ARC Vol. Tage (Vol. TS)	100.55 99.34	99.19	69.05	98.87	99.49	66.87	98.99	99.34	19.66	99.83	100.11	99.95	99.50	99.22	98.49	96.86	99.10	60.66	99.32	99.86	16.66	56.75	100.73	66.66	\$6.66	96.56	78.87	26.76	66.00	66.86	69.44
INPUT POWER (WATTS)	1395.51 1399.82	1400.05	1400.53	1401.81	1398.27	1397.04	1397.44	1399.03	1397.42	1397.01	1396.45	1396.85	1398.28	1399.29	1402.18	1400.90	1401.09	1400.23	1399.24	1397.28	1397.03	1397.66	1395.17	1396.21	1396.47	1397.78	1401.36	1404.57	1400.19	1400.51	1398.68
INPUT CURRENT (AMPS)	43.87	44.03	44.06	44.09	43.98	43.93	43.93	43.99	43.95	43.93	43.90	43.94	43.98	44.04	44.12	44.06	44.04	44.03	43.99	43.92	43.93	43.92	43.88	43.87	43.94	43.98	44.09	44.17	14.01	44.04	43.98
INPUT VOLTAGE (VOLTS)	31.81 31.80	31.80	31.79	31.80	31.79	31.80	31.81	31.81	31.80	31.80	31.81	31.79	31.79	31.78	31.78	31.79	31.81	31.80	31.81	31.81	31.80	31.82	31.80	31.82	31.78	31.79	31.78	31.80	31.81	31.80	31.80
DATE	12/19/89 12/19/89	12/19/89	12/19/89	12/19/89	12/20/89	12/20/89	12/20/89	12/20/89		12/20/89	12/20/89	12/20/89	12/20/89	12/20/89	12/20/89	12/20/89	12/20/89	12/20/89	12/20/89	12/21/89	12/21/89	12/21/89	12/21/89	12/21/89	12/21/89	12/21/89	12/21/89	12/21/89	12/21/89	12/21/89	12/21/89
SAMP #		S X		35		20	55			75	80	85	90	95 1	100	105					130	135	140	145	150	158	163	168		178	183
RUM	329-29 329-29	329-29	379-29	329-29	329-29	379-29	329-29	329-29	329-29	329-29	329-29	329-29	329-29	329-29	329-29	329-29	329-29	329-29	356-56	329-29	329-29	329-29	358-38	329-29	329-29	329-29	379-29	329-29	328-28	329-29	329-29

LPAJ NASA LEWIS (121581-4840) LIFE TEST NASA S/N 002 IN CH. 11

f-Pc)/Flow2 (PSI-SEC2/ LBM2)	2.185E+10 2.186E+10	2.212E+10	2.189E+10 2.174F+10	2.210E+10	2.179E+10	2.237E+10	2.1/85+10 2.155F+10	2.195E+10	2.221E+10	2.194E+10	2.233E+10	2.181E+10	2.186E+10	2.205E+10	2.191E+10	2.242E+10	2.207E+10	2.222E+10	2.202E+10	2.237E+10	2.217E+10	2.151E+10	2.209E+10	2.168E+10	2.164E+10	2.172E+10	2.229E+10	2.194E+10	2.225E+10	2.201E+10	2.229E+10	2.171E+10
(Pf-Pc)/Flow ² (PSI-SEC ² / LBM ²)	2,2	2	2 2	5	2	2	<i>,</i>	2	2	2	۲3	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	67	2	27	2	2	2
PC/Flow (PSIA-SEC/ LBM)	616161	621393	621214	624640	620387	631041	621478	626280	630303	628551	634537	626527	627723	628383	627555	632173	626144	628228	625509	627780	623903	624561	632395	627763	609829	628339	636509	631707	635001	630440	431924	625185
REL. ROUGH (PSIA)	1.90	1.94	 	1.89	1.86	1.97	16 1	1.94	1.95	2.26	2.23	2.28	1.87	2.02	1.87	2.01	1.84	1.84	1.86	2.01	1.86	1.93	1.97	1.97	1.94	1.83	2.01	1.88	1.92	2.05	1.81	1.80
1SP (SEC)	447.8	450.5	449.0	451.1	447.8	453.9	440.4	448.2	450.5	448.2	453.0	447.6	447.9	450.1	448.6	452.6	450.2	451.4	449.6	452.8	450.1	452.4	459.0	454.1	453.6	454.3	459.8	456.5	459.6	457.1	459.4	453.7
CUM IMPULSE (LBF-SEC)	43328	43622	43768	44062	44208	44355	44502	44797	44958	45106	45255	45403	45551	45700	45848	45996	46144	46293	46441	46589	46737	46882	47027	47172	47317	47461	47606	47751	47895	48040	48184	48329
THPULSE THPULSE TSP CUM CUM	147.0	146.7	146.8	146.6	146.6	146.6	146.0	148.7	160.9	148.4	148.6	148.5	148.3	148.3	148.2	148.0	148.4	148.3	148.3	148.3	1.88.1	145.0	145.0	144.8	144.7	144.7	144.6	144.7	144.6	144.6	144.4	144.5
THRUST (LBF)	0.04084	0.04074	0.04077	0.04073	0.04071	0.04072	0.040//	0.04094	0.04088	0.04086	0.04090	0.04087	0.04081	0.04083	0.04081	0.04074	0.04084	0.04082	0.04082	0.04082	0.04076	0.03992	0.03992	98680.0	0.03983	0.03983	0.03980	0.03982	0.03981	0.03980	0.03976	0.03977
pc (PSIA)	56.7	56.2	× × ×	56.4	56.4	56.6	6. %	57.2	57.2	57.3	57.3	57.2	57.2	57.0	57.1	56.9	56.8	56.8	56.8	56.6	56.5	55.1	55.0	55.1	55.2	55.1	55.1	55.1	55.0	54.9	54.7	54.8
CUM FUEL USED (LBM)	99.46	100.12	100.45	101.11	101.43	101.76	105.07	102.75	103.11	103.45	103.78	104.11	104.44	104.77	105.10	105.43	105.76	106.09	106.42	106.75	107.08	107.40	107.72	108.03	108.35	108.67	108.99	109,30	109.62	109.94	110.25	110.57
FUEL USED (1BM)	0.33	0.33	0.33	0.33	0.33	0,33	0.33	0,33	0.36	0.33	0.33	0.33	0.33	0.33	0.33	0.33	0.33	0.33	0.33	0.33	0.33	0.32	0.32	0.37	0.32	0.32	0.32	0.37	0.32	0.32	0.32	0.32
FLOW FLOW	0.0000912	0.0000904	0.0000908	0.0000000	0.000000.0	7,680000.0	0.0000707	0,0000913	0.0000908	0,0000912	0.00000003	0.0000913	0.0000911	0.0000000	0.00000.0	0.00000.0	0.0000000	0.0000904	0.0000000	0,000000	90600000.0	0.0000882	0.000000.0	0.0000878	0.0000878	0.0000877	9980000.0	0.0000872	0.0000866	0,0000871	99800000.0	0.0000877
Pf (PSIA)	238.0		236.8	236.6				240.3				239.0	238.7	238.4	238.5	238.5	238.4	238.4	238.4	238.4	238.3	222.5	222.1	222.1	222.1	222.1	222.1	222.0	221.9	221.8	221.7	221.6
CUM ON TIME (HR)	282.5	284.5	285.5	287.5	288.5	289.5	291.5	292.6	293.6	294.7	295.7	296.7	297.7	298.7	299.7	300.7	301.7	302.7	303.7	304.7	305.8	306.8	307.8	308.8	309.8	310.8	311.8	312.8	313.8	314.8	315.8	316.9
CUM ON TIME (MIN)	16952.5	17072.5	17132.5	17252.5	17312.5	17372.5	17492 5	17553.0	17618.6	17679.1	17739.7	17800.2	17860.8	17921.3	17981.9	18042.4	18103.0	18163.5	18224.1	18284.6	18345.2	18405.7	18466.2	18526.8	18587,3	18647.9	18708.4	18769.0	18829.5	18890.1	9.05681	19011.2
ON TIME (MIN)	0.09	0.09	0.09	0.09	0.09	60.09	0.09	60.5	65.6	60.5	60.5	60.5	60.5	60.5	60.5	60.5	60.5	60.5	60.5	60.5	60.5	60.5	60.5	60.5	60.5	60.5	60.5	60.5	60.5	60.5	60.5	6.09
DATE	12/21/89	2/21/89	12/21/89	12/22/89	2/22/89	12/22/89	68/37/71	12/22/89	12/22/89	12/22/89	12/22/89	12/22/89	12/22/89	12/22/89	12/22/89	12/23/89	12/23/89	12/23/89	12/23/89	12/23/89	12/23/89	12/23/89	12/23/89	12/23/89	12/23/89	2/23/89	12/23/89	12/23/89	12/23/89	12/23/89	12/23/89	12/74/89
SAMP *	188 1		203 1.		-		7 223		13 E	13 13	26 1	39 1	55	65 1	78 1		104	117 1	130	143 1	156 1		_	39 1	52 1	65 1	78 1	91 1	104	117.1	130	143 1
RUN	329-29	329-29	329-29	329-29	329-29	329-29	32.4-54 329-29	329-30	329-30	329-31	329-31	329-31	329-31	329-31	329-31	329-31	329-31	329-31	329-31	329-31	329-31	329-32	329-32	329-32	329-32	329-32	329-32	329-32	329-32	329-32	329-32	329-32

START	! !	784	282	786	287	288	583	290	291	292	293	294	295	962	287	388	567	300	301	305	303	304	305	306	307	308	303	310	311	312	313	314	315	316	317	318
NUMBER S STARTS N	1			-		-		-	-				-	_				-		-		-	_		_	-		-	_		_		_	_	-	-
Tpcii Ni	i !	80	80	8	80	79	62	79	79	80	80	79	79	79	80	80	80	8	80	80	19	8	13	79	13	80	80	81	81	8		81	8	8	81	
Tinj (°F)		177	6/3	983	385	983	985	981	976	981	981	974	984	983	385	981	976	984	984	981	787	385	984	981	616	975	8/6	975	116	9/6	974	975	186	981	4/6	277
r3 (F.)		-30	-38	-58	-23	-53	-24	753	753	-40	74	753	753	753	753	753	-44	-40	-25	-53	-36	-57	-23	-44	-34	-105	-72	-140	-141	-114	-124	-109	-95	-111	-122	-151
11 (F)	1 1 1	1591	1590	1591	1590	1591	1591	1592	1591	1591	1591	1589	1590	1591	1590	1591	1590	1590	1590	1589	1589	15%	1589	1588	1588	1601	1599	1603	1602	1603	1603	1602	1603	1605	1604	1605
Tcon ('F)		251	250	220	220	250	250	250	250	520	220	248	220	249	251	250	250	250	250	249	249	250	249	250	220	751	250	251	251	251	252	252	251	252	252	252
799 (F)	1 1	916	918	916	916	916	916	916	617	916	916	921	417	917	917	919	919	915	918	916	916	916	915	914	915	912	806	606	606	912	606	806	315	606	906	206
[₹.)	; ; ;	212	210	210	210	210	211	211			210	210	211	211	212	210	210	211	211	212	211	212	1112	212	212	212	214	215	215	214	216	216	214	216	217	217
P/FLOW (3/Kg)	; ; ; ;	29934100	30093800	30214700	30159500	30037500	30228800	30113200	30450900	30168700	29981300	29852700	30095900	30067100	30317800	29904400	30012200	30130800	30034200	30360700	30148400	30213300	30032600	30357800	30184700	31035000	31472300	31221500	31247600	31273400	31678700	31419600	31633000	31441900	31628700	31289000
ARC EFF	1	32.25	32.10	32,33	32.18	32.08	32.40	32.05	37.58	37.08	31.82	32.40	32,46	32.16	32.57	32.28	32.18	32.37	32.25	32.48	32.38	32.47	32.39	32.50	32.31	31.75	32.22	31.80	31.70	31.76	32.12	31.92	37.14	31.99	32.11	31.67
PCU EFF	! ! !	88.83	89.16	88.99	89.14	80.68	88.91	89.10	88.78	88.85	89.16	89.00	88.95	89.02	88.70	88.81	88.88	88.93	88.88	89.07	89.15	88.89	89.17	89.26	89.17	79.88	88.89	88.43	88.49	29.88	88.58	88.59	88.66	88.48	88.40	88,33
PCU POWER (WATTS)	1	1243.88	1248.38	1244.92	1247,43	1245.30	1243.42	1247.21	1244.35	1249.83	1248.38	1242.07	1244.29	1248.89	1247.54	1243.87	1246.00	1245.20	1245.06	1244.88	1245.95	1244.58	1242.28	1246.95	1245,30	1247.72	1247.20	1248.99	1250.63	1249.71	1249.74	1248.90	1248.55	1747.78	1247.71	1250.11
ARC POWER (WATTS)	; ; ;	1238.23	1242.71	1239.31	1241.81	1239.72	1237,83	1241.54	1738,65	1243.88	1242.70	1236.53	1238.64	1243.07	1241.61	1238.17	1240.27	1239.51	1239.35	1239.31	1240.31	1239.85	1236.79	1241.28	1239.68	1241.71	1241.35	1247.80	1244.42	1243.64	1743.67	1242.88	1247.57	1741.74	1241.63	1243.81
ARC CURRENT (AMPS)	1	12.53	12.56	12.48	12.50	12.45	12.46	12.55	12.58	12.85	12.57	12.41	12.52	12.72	12.83	12.58	12.51	12.57	12.60	12.43	12.51	12.61	12.35	17.56	12.49	12.92	12.75	13.12	13.14	12.98	12.99	12.93	12.89	12.96	12.99	13.23
ARC VOL 1AGE (VOL 1S)	;	98.83	78.97	99.31	99.38	99.59	99.38	98.93	98.45	96.80	98.89	99.64	98.90	97.76	94.76	98.41	98.34	38.65	98.35	89.86	99.13	98.71	100.12	98.85	99.22	60.96	97.36	94.75	94.74	95.80	95.72	96.13	96.39	95.81	95,55	94.05
INPUT POWER (WATTS)] } }	1400.33	1400.12	1399.03	1399.34	1397.93	1398.47	1399.85	1401.70	1407.18	1400.23	1395.64	1398.90	1402.90	1406.52	1400.58	1401.83	1400.16	1400.91	1397.61	1397.58	1400.09	1393.22	1397.02	1396.51	1407.15	1403.09	1412.38	1413.27	1410.13	1410.83	1409.79	1408.33	1410.20	1411.40	1415.25
INPUT CURRENT (AMPS)	1 1	44.03	44.02	43.98	43.98	43.94	43.94	43.98	44.05	44.22	44.03	43.87	43.98	44.12	44.26	44.06	44.08	44.05	44.06	43.93	43.95	44.03	43.79	43.91	43.90	44.23	44.12	44.41	44.45	44.35	44.36	44.32	44.28	44.33	44.36	44.50
INPUT VOLTAGE (VOLTS)		31.80	31.81	31.81	31.82	31.81	31.82	31.83	31.82	31.82	31,80	31.81	31.81	31.80	31.78	31.79	31.80	31.78	31.79	31.81	31.80	31.80	31.81	31.81	31.81	31.82	31.80	31.80	31.80	31.79	31.80	31.81	31.80	31.81	31.82	31.80
DATE	! !	12/21/89	12/21/89	12/21/89	12/21/89	12/22/89	12/22/89	12/22/89	12/22/89	12/22/89	12/22/89	12/22/89	12/22/89	12/22/89	12/22/89	12/22/89	12/22/89	12/22/89	12/22/89	12/23/89	12/23/89	12/23/89	12/23/89	12/23/89	12/23/89	12/23/89	12/23/89	12/23/89	12/23/89	12/23/89	12/23/89	12/23/89	12/23/89	12/23/89	15/53/89	12/24/89
SAMP #] 	188	193	198	203	208	213	218	223		233	9	13	13	58	36	25	65	78	91	104	117	130	143	156	13	28	36	52	65	78	16	104	117	130	143
RUN *	!	329-29	329-29	329-29	329-29	329-29	329-29	329-29	329-29	379-29	329-29	329-30	329-30	329-31	329-31	329-31	329-31	329-31	329-31	329-31	329-31	329-31	329-31	329-31	329-31	329-32	329-32	329-32	329-32	329-33	329-32	329-32	329-32	329-37	329-32	329-32

LPAJ NASA LEWIS (121581-4840) LIFE TEST NASA S/N 002 IN CH. 11

(Pf-Pc)/Flow ² (PSI-SEC ² / LBM ²)	2.228E+10			2.177E+10					2.1815*1U																		2.182E+10			2.206E+10	3 2.167E+10	2.195E+10	3 2.218f +10
PC/Flow (PSIA-SEC/ LBM)	630842	621452	621303	624264	930234	956939	628267	62/841	658829 658829	630537	628931	636135	828258	628721	628027	629408	634895	631232	637054	938051	630421	634528	820889	636795	634847	634171	699679	932416	637157	635149	629748	632536	680889
REL. ROUGH (PSIA)	19.1	1.45	1.83	1.89	1.93	1.93	1.88		7.59	2.11	1.90	2.17	2.11	1.92	1.86	1.91	1.90	2.00	2.00	2.65	2.59	2.62	2.66	2.69	2.69	2.51	2.85	2.88	2.60	2.45	2.47	3.36	2.71
(33S) (SEC)	459.0	454.5	455.2	454.4	455.3	456.6	455.7	458.5	455.1	456.9	455.2	457.5	458.2	457.8	457.0	457.3	460.0	456.7	459.9	459.9	456.6	458.0	456.6	459.1	458.7	459.0	456.4	456.8	461.3	459.4	455.8	459.2	461.2
CUM IMPULSE LBF-SEC)	48473	48762	48907	49051	49195	49339	49484	49629	477/3	50062	50208	50350	50495	20639	50784	20928	51072	51216	51360	51504	51648	51792	51936	22080	52224	52368	52512	52656	52800	52944	53088	53232	53376
THPULSE INPULSE ISP	144.3	144.5	144.6	144.4	144.0	144.0	144.4	145.1	144.4			144.2	144.5	144.4		_	-	144.0	144.0	144.0	144.2	_		144.0	143.9	144.1		144.1	144.2	144.0	144.0	144.2	143.9
THRUST (LBF)	0.03973	0.03978	0.03979	0.03974	0.03964	0.03965	0.03975	0.03994	0.037/4	0.03971	0.03973	0.03970	0.03979	0.03975	0.03973	0.03974	0.03963	0.03945	0,03963	0.03964	0.03969	0.03963	0.03960	0.03965	0,03960	0.03967	0.03965	0.03966	0.03968	0.03964	0.03966	0,03958	0.03962
Pc (PSIA)	54.6	. 4.	54.3	54.6	54.9	54.4	54.8	54.7	5.4.2 7.4.3	54.8	54.9	55.2	54.6	54.6	54.6	54.7	54.7	54.8	54.9	55.0	54.8	54.9	54.9	55.0	54.8	54.8	54.7	54.9	54.8	54.8	54.8	54.9	54.9
CUM FUEL USED (LIBM)	110.88	111.52	111.83	112.15	112.47	112.78	113.10	113.42	114.05	114.37	114.68	115.00	115.32	115.63	115.95	116.26	116.58	116.89	117.21	117.52	117.84	118.15	118.47	118.78	119.10	119.41	119.72	120.04	120.36	120.67	120.98	121.30	121.61
FUEL USED (LBM)	0,32	0.37	0.32	0.32	0.32	0.32	0.32	0.31	0.35 0.37	0.32	0.32	0.31	0.32	0.31	0.32	0.32	0.32	0.31	0.31	0.35	0.31	0.32	0.31	0.31	0.31	0.31	0.31	0.32	0.37	0.31	0.32	0.31	0.31
FLOW (18M/SEC)	0.0000866	0.0000875	0.0000874	0.0000875	0.0000871	8980000.0	0,0000872	0,0000871	0.00008/3	0.0000869	0.0000873	0.0000858	0.0000868	0.0000868	0.0000869	0,0000869	0.0000862	0.0000868	0.0000862	0.0000862	0.0000869	0,0000865	0.0000867	0.0000864	0.0000863	0.0000864	0.0000869	0,0000868	0,0000860	0.0000863	0.0000870	0.0000964	0.0000859
Pf (PSIA)	221.5	221.3	221.2	221.1	220.8	220.2	220.5	220.7	8.022	221.0	220.9	220.7	220.6	220.4	220.3	220.2	220.0	219.9	219.7	219.6	219.5	219.4	219.3	219.4	219.5	219.5	219.4	219.3	219.1	219.0	218.9	218.8	218.6
CUM ON TIME (HR)	317.9	319.9	320.9	321.9	322.9	323.9	324.9	325.9	7.6.7 3.28.0	329.0	330.0	331.0	332.0	333.0	334.0	335.0	336.0	337.0	338.0	339.1	340.1	341.1	342.1	343.1	344.1	345.1	346.1	347.1	348.1	349.1	350.2	351.2	352.2
CUM ON TIME (MIN)	19071.7	19192.8	19253.4	19313.9	19374.4	19435.0	19495.5	19556.1	19616.6	19737.7	19798.3	19858.8	19919.4	19979.9	20040.5	20101.0	20161.6	20222.1	20282.7	20343.2	20403.8	20464.3	20524.9	20585.4	20646.0	20706.5	20767.0	20827.6	20888.1	20948.7	21009.2	21069.8	21130.3
ON TIME (MIN)	60.5	60.5	60.5	60.5	60.5	60.5	60.5	60.5	60.5	5.09	60.5	60.5	60.5	60.5	60.5	60.5	60.5	60.5	60.5	60.5	60.5	60.5	60.5	60.5	60.5	60.5	60.5	60.5	60.5	60.5	60.5	60.5	60.5
DATE	12/24/89		12/24/89	12/24/89	12/24/89				68/57/71				12/25/89	12/25/89	12/25/89	12/26/89				12/26/89	12/26/89	12/26/89	12/26/89	12/26/89	12/26/89	12/26/89	12/26/89	12/26/89	12/26/89	12/26/89	12/26/89	12/27/89	12/27/89
SAMP #	156	187	195	208	221	234	13	56	£ 12	55	78	16	104	117	130	143	156	169	182	195	208	221	234	247	260	273	386	599	312	325	338	351	364
RUN	329-32	329-32	329-32	329-32	329-32	329-32	329-33	329-33	379-33	329-33	329-33	329-33	329-33	329-33	329-33	329-33	329-33	329-33	329-33	329-33	329-33	329-33	329-33	329-33	329-33	329-33	370, 13	37.	379 33	329-33	329-33	329-33	329-33

STARI NUMBER		319	320	321	322	323	324	325	326	327	328	329	330	331	332	333	334	332	336	337	338	339	340	341	345	343	344	345	346	347	348	349	350	321	325	353
NUMBER S STARTS N		_	-			_	-	-	-	-	_		_		_	-		-		-	_	-	_	-		_			_		_	-		_	_	
Tpcu Nt		85	85	28	85	28	85	81	19	80	80	8	80	80	8	80	81	81	18	8	81	81	81	80	8	80	8	80	80	80	8	8	8	8	8	80
Tinj ('F)		8/6	971	980	8/6	983	980	6/6	616	974	981	980	186	696	974	477	976	983	616	086	976	975	616	596	176	971	975	981	975	974	973	975	974	973	971	971
T3 (F)		-144	-132	-116	-124	-134	-174	-110	-101	-74	80	757	6-	S	757	11-	-107	-104	-121	-86	-103	-102	757	747	757	757	757	757	757	757	757	757	-7	-44	56	-73
11 (F.)		1607	1606	1605	1605	1606	1610	1606	1606	1604	1603	1601	1602	1602	1603	1603	1603	1603	1604	1601	1601	1602	1603	1599	1599	1599	1600	1599	1598	1598	1598	1597	1596	1597	1597	1597
Tcon ('F)		252	252	252	222	252	252	251	247	249	249	248	249	249	249	249	249	249	249	249	249	249	249	248	248	248	248	248	248	248	248	248	248	248	248	248
7gg (°F)	i 	806	910	707	606	606	407	806	707	606	806	806	707	606	707	806	707	406	806	806	707	806	906	606	905	906	904	806	806	606	908	906	906	906	908	806
Tvf ('F)	! ! ! !	216	216	216	215	215	215	215	503	211	211	212	212	212	212	213	213	213	212	213	212	212	212	211	211	711	211	212	211	71	7.1	212	212	211	311	211
P/FLOW (J/Kg)	!	31645800	31549900	31313800	31363300	31287500	31469900	31575300	31354300	31351200	31334800	31430600	31559300	31341500	31560900	31628000	31600900	31572900	31518000	31791900	31566700	31746400	31792100	31437400	31671400	31527800	31731900	31721200	31699700	31434800	31482600	31857/00	31694200	31457800	31678100	31864700
ARC	 	32.04	31.97	31.75	31.81	31.77	31.70	31.78	31.88	32.27	31.87	37.00	31.84	31.82	31.92	31.96	31.92	31.84	31.94	32.04	31.80	32.07	32.03	31.92	31.88	31.84	31.97	31.93	32.00		31.91	32.16	37.08	31.79	37.04	32.13
PCU	:	88.25	88.41	88.46	88.47	88.31	88.18	88.62	88.55	88.42	88.47	88.73	88.83	88.64	88.49	88.84	88.65	88.73	88.50	89.88	88.62	88.46	88.49	88.56	88.78	88.65	88.84	38.83	96.88	88.64	88.78	88.98	79.88	88.81	88.65	88.67
PCU Power (Wates)		1248.39	1249.65	1249.24	1249.25	1247.21	1249.02	1249.76	1246.31	1244.69	1245.87	1245.72	1249.85	1246.65	1248.13	1251.73	1250.73	1250.95	1248.36	1248.19	1248.88	1246.81	1249.02	1245.28	1248.70	1245.98	1748.89	1247.70	1248.13	1244.29	1245.29	1248.47	1246.06	1247.35	1247.47	1247.49
ARC POWER (WATTS)	1	1242.16	1243.47	1243.14	1243.11	1241.05	1242.66	1243.62	1240.30	1238.75	1239.91	1239.88	1243.91	1240.73	1242.03	1245,64	1244.59	1244.86	1242.24	1242.21	1242.82	1240.75	1242.85	1239,33	1242.74	1240.04	1242,95	1241.80	1242.28	1738.45	1239,46	1242.62	1240.15	1241.47	1241.49	1241.51
ARC CURRENT (AMPS)	i [] ;	13.16	13.10	13.02	13.08	13.08	13.29	13.06	12.92	12.85	12.86	12.74	12.84	12.82	13.01	13.01	13.06	13.00	13.04	12.89	15.97	12.98	13.09	12.85	12.86	12.84	12.84	12.81	12.75	12.74	12.73	12.75	12.81	12.79	12.88	17.89
ARC VOLTAGE (VOLTS)	; ; ;	94.41	94.91	95.51	95.17	94.86	93.51	95.20	96.01	96.44	96.40	97.32	78.97	96.76	95.47	95.78	95.28	95,75	95.24	96.34	95.82	95.58	94.96	96.45	96.60	96.54	76.77	64.97	97.41	97.21	97.38	97.49	94.78	97.10	96.35	96.31
INPUT POWER (WATTS)	† ! ! !	1414.55	1413.43	1412.28	1412.00	1412.37	1416.51	1410.31	1407.42	1407.76	1408.20	1403.88	1406.98	1406.42	1410.52	1408.90	1410.81	1409.87	1410.56	1407.54	1409.26	1409.47	1411.53	1406.09	1406.50	1405.57	1405.71	1404.81	1403.04	1403.77	1402.66	1403.12	1405.28	1404.46	1407.12	1406.84
INPUT CURRENT (AMPS)	i 1 !	44.46	44.44	44.39	44.40	44.38	44.55	44.34	44.27	44.25	44.25	44.12	44.24	44.21	44.35	44.30	44.34	44.32	44.31	44.23	44.26	44.33	44.38	44.21	44.21	44.16	44.18	44.15	44.10	44.10	44.08	44.10	44.16	44.14	44.24	44.18
INPUT VOLTAGE (VOLTS)	! ! !	31.81	31.81	31.82	31.80	31.82	31.80	31.81	31.79	31.81	31.82	31.82	31.80	31.81	31.80	31.80	31.82	31.81	31.83	31.83	31.84	31.79	31.81	31.80	31.81	31.83	31.81	31.82	31.82	31.83	31.82	31.82	31.83	31.82	31.81	31.85
DATE	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	12/24/89	12/24/89	12/24/89	12/24/89	12/24/89	12/24/89	12/24/89	12/25/89	12/25/89	12/25/89	12/25/89	12/25/89	12/25/89	12/25/89	12/25/89	12/25/89	12/22/89	12/26/89	12/26/89	12/56/89	12/26/89	12/26/89	12/26/89	12/29/89	12/26/89	12/26/89	12/26/89	12/29/89	12/56/89	12/26/89	12/26/89	12/26/89	12/26/89	12/27/89	12/27/89
SAMP #	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	156	169	183	195	208	221	234	13	3.6		25	65	78	91	104	117	130	143	156	169	182	195	208	221	234	247	260	2/3	286	566	312	37.5	338	351	364
RUN	1 1 1	329-35	329-35	329-32	329-32	329-32	329-32	329-32	329-33	329-33	329-33	329-33	329-33	329-33	329-33	329-33	329-33	329-33	329-33	329-33	329-33	329-33	329-33	329-33	379-33	329-33	329-33	329-33	329-33	329-33	329-33	329-33	329-33	329-33	329-33	329-33

LPAJ NASA LEWIS (121581-4840) LIFE TEST NASA S/N 002 IN CH. 11

(Pf-Pc)/Flow ² (PSI-SEC ² / LBM ²)	2.215E+10 2.166E+10 2.227E+10 2.190E+10 2.167E+10 2.207E+10	2.155E+10 2.199E+10 2.207E+10 2.183E+10 2.214E+10 2.214E+10	2.184E+10 2.198E+10 2.187E+10 2.202E+10 2.183E+10	2.219E+10 2.231E+10 2.184E+10 2.223E+10 2.222E+10 2.185E+10 2.204E+10 2.181E+10	2.198E+10 2.164E+10 2.204E+10 2.192E+10 2.190E+10 2.190E+10 2.183E+10
PC/Flow (PSIA-SEC/ LBM)	638981 637/14 646980 642945 633911 640988	635318 635318 637786 633182 637758 627483	622612 624618 622213 626063 622880	630206 635095 627242 632963 631253 635900 627860 627264	625281 625281 623780 629303 634928 631430 631430
REL. ROUGH (PSIA)	2.62 2.55 2.69 3.12 3.01 3.06	3.02 2.92 3.17 3.11 2.84 3.06	2.93 3.04 2.94 2.92 2.85	2.52 2.62 2.62 2.62 2.64 2.65 2.65 2.66	2.67 2.67 2.54 2.38 2.38 2.38
1SP (SEC)	462.2 457.8 464.1 459.4 456.5 460.8	456.2 459.5 461.0 458.3 461.3	456.3 457.6 456.4 458.4 456.7	461.0 462.5 458.4 461.7 461.6 462.1 458.7 459.8	460.0 455.8 460.8 458.5 462.1 459.5 462.1
CUM Impul.Se (18F-Sec)	53521 53665 53809 53953 54097 54241 54385	54529 54673 54818 54962 55106	55394 55538 55682 55826 55970	56114 56258 56401 56545 5689 5683 56976 57120	57408 57552 57695 57839 57983 58127 58271
CUM IMPULSE IMPULSE ISP CUM CUM	144.3 144.1 144.1 143.9 143.9 144.4	144.4 144.0 144.2 144.1 144.1	144.0 144.0 143.9 143.9 143.8	143.5 143.5 143.6 144.0 143.6 143.5	143.9 143.9 143.9 143.7 143.8 143.8 143.5
THRUST (18F)	0.03971 0.03970 0.03967 0.03951 0.03961 0.03961	0.03974 0.03964 0.03968 0.03967 0.03984	0.03965 0.03964 0.03961 0.03951	0.03955 0.03953 0.03953 0.03953 0.03953 0.03959	0.03951 0.03958 0.03957 0.03957 0.03959 0.03953
Pc (PSIA)	54.9 55.3 55.4 55.0 55.0 55.0	54.8 54.8 54.8 54.8 54.8	54.1 54.0 54.0 54.1	¥ 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
CUM FUEL USED (18M)	121.92 122.24 122.55 122.86 123.18 123.18 123.18	124.12 124.43 124.75 125.06 125.37 175.69	126.01 126.32 126.64 126.95 127.27	127.58 128.21 128.21 128.52 128.83 129.14 129.14 129.77	130.39 130.70 131.02 131.33 131.65 131.65 132.27
FUEL USED (18M)	0.31 0.31 0.31 0.32 0.32	0.32 0.31 0.31 0.31 0.33	0.37 0.31 0.31 0.31	0.31 0.31 0.31 0.31 0.31 0.31	0.31 0.32 0.31 0.31 0.31
FLOW (LBM/SFC)	0.0000859 0.0000867 0.0000862 0.0000868 0.0000860 0.0000860	0.0000871 0.0000863 0.0000861 0.0000865 0.0000859	0.0000868 0.0000868 0.0000868 0.0000864 0.0000867	0.0000855 0.0000864 0.0000856 0.0000859 0.0000859 0.0000863	0.0000841 0.0000868 0.0000863 0.0000863 0.0000857 0.0000858
Pf (PSIA)	218.4 218.2 218.0 218.0 218.1 218.2 218.3	218.4 218.4 218.4 218.3 218.3 221.7	219.0 219.0 218.7 218.5 218.5	217.3 217.3 217.3 217.2 217.0 217.0 217.0	217.2 217.5 217.5 217.5 217.4 217.4 217.2
CUM ON TIME (HR)	353.2 354.2 355.2 356.2 357.2 358.2 359.2	360.2 361.3 362.3 362.3 364.3 364.3	366.3 367.3 368.3 369.3 370.3	371.3 373.4 373.4 375.4 375.4 376.4 376.4 376.4 378.4	380.4 381.4 382.4 383.5 384.5 386.5 386.5
CUM ON TIME (MIN)	21190.9 21251.4 21312.0 21372.5 21433.1 21493.6 21554.1	21614.7 21675.2 21735.8 21796.3 21856.9 21917.4	21978.0 22038.5 22099.1 22159.6 22220.1	22280.7 22341.2 22401.8 22462.3 22522.9 22583.4 22644.0 22704.5	22825.6 22886.2 22946.7 23007.2 23067.8 23128.3 23249.4
ON TIME (MIN)	60.5 60.5 60.5 60.5 60.5 60.5	60.5 60.5 60.5 60.5 60.5 60.5	60.6 60.6 60.6 60.5 60.5	6.06 6.06 6.06 6.06 6.06 6.06 6.06 6.06	60.6 60.6 60.5 60.5 60.5 60.6 60.6 60.6
DATE	(2/27/89 (2/27/89 (2/27/89 (2/27/89 (2/27/89) (2/27/89	12/27/89 12/27/89 12/27/89 12/27/89 12/27/89	12/28/89 12/28/89 12/28/89 12/28/89	12/28/89 12/28/89 12/29/89 12/29/89 12/29/89 12/29/89	12/29/89 12/29/89 12/29/89 12/29/89 12/29/89 12/29/89
SAMP #	377 I. 390 II. 403 I. 416 I. 429 II. 442 I. 442 I. 455 II.			21/1 248 1 279 1 341 1 403 1 455 1	
RUM	329-33 329-33 329-33 329-33 329-33 329-33	329-33 329-33 329-33 329-33 329-33	329-34 329-34 329-34 329-34 329-34	329-34 329-34 329-34 329-34 329-34 329-34 329-34 329-34	329-34 329-34 329-34 329-34 329-34 329-34 329-34

START	354 355	356	357	358	340	361	362	363	364	366	367	368	369	370	371	372	373	374	375	376	377	3/8	379	380	381	382	383	384	385	986	387	388
NUMBER S Staris N		_			-		_					-	_	_			_				_	_			_		_					_
Tpcu Mi	80	80	8	8 8	8	8	80	8	⊋ 6	2 60	26	6/	8	8	8	80	8	81	8	80	æ :	80	8	80	90	80	8	8	8	8	80	80
Tinj (F)	971 970	116	970	972	896	196	971	973	716) o / o	896	896	196	970	896	971	971	971	970	971	972	970	896	696	896	896	196	981	696	9/6	196	672
T3 (F)	-74	757	757	756	756	756	756	756	<u> </u>	757	757	757	757	758	138	-108	-128	-116	-109	96-	758	758	758	373	757	757	-87	-41	-84	-77	-79	-91
(F.)	1597	1597	15%	1595	1594	1594	1594	1595	1595	1598	1599	1598	1599	1601	1600	1601	1603	1602	1091	1600	1601	1601	1600	1600	1598	1598	1598	1598	1598	1599	1598	1598
Tcon (F)	248	248	248	247	248	248	248	248	248	245	246	247	247	247	247	248	248	247	247	247	247	247	247	246	246	246	246	247	247	247	242	247
199 (F)	908	906	905	906 906	906	906	906	906	906	907	707	404	906	906	906	905	707	906	905	905	905	707	707	806	707	806	707	903	404	803	606	903
('F)	211	211	211	210	210	210	211	<u></u>	717	71.7 7 0 6	210	311	212	212	212	212	213	213	213	212	212	212	212	212	212	212	212	213	212	213	213	213
P/FLOW (3/Kg)	31904200 31588100	31979600	31821500	31499900	31515200	31411400	31710200	31746400	31590700	31479800	31462200	31549600	31505600	31658100	31553900	31889600	32040600	31645400	31977900	31835900	32011200	31659500	31872000	31685500	317/1900	31513500	31853800	31655800	31961700	31776900	31719900	31961100
ARC EFF	32.23 31.94	32.42	31.93	31.85 32.04	31.93	31.89	37.06	32.22	32.UI	32.17	31.86	31.95	31,83	31.95	31.82	37.08	32.14	31.97	32.08	32.21	32.11	31.98	31.93	31.92	32.05	31.73	37.09	31.97	32.16	31.98	31.83	32.16
PCU EFF	88.74	88.53	88.83	88.64 88.85	88.90	88.73	88.77	88.65	7.00	98.01	88.89	88.76	88.62	88.53	88.58	88,37	88.38	88.28	88.51	88.47	88.41	88.35	88.53	88.63	88.74	88.80	88.69	88.50	88.65	79.88	88.63	88.57
PCU POWER (WATTS)	1249.14	1245.65	1249.50	1245.38	1249.12	1246.80	1246.37	1245.20	78.04.21	1245.00	1245.62	1245.08	1245.97	1246.72	1246.62	1247.71	1248.60	1246,29	1247.92	1245.68	1248.14	1245.57	1248.03	1747.68	1246.74	1247.00	1248.27	1244.71	1247.96	1248.04	1247.66	1247.28
ARC POWER (WATTS)	1243.15	1239.64	1243.51	1239.46	1243.21	1240.86	1240.45	1239.32	54.45	1239 98	1239.82	1239.27	1240.03	1240.67	1240.61	1241.53	1242.38	1240.12	1241.82	1239.67	1241.95	1239.46	1241.90	1241.66	1240,83	1241.11	1242.28	1238.75	1241.93	1242.02	1241.63	1741.25
ARC CURRENT (AMPS)	12.91	12.91	12.90	12.87	12.82	12.85	12.78	12.78	8/.21	12.71	12.69	12.69	12.84	12.96	12.92	13.10	13.15	13.08	13.01	12.93	13.12	13.02	13.04	12.93	12.82	12.79	12.92	12.87	12.94	12.93	12.94	12.94
ARC 901.TAGE (Vnl.15)	96.31	6.00	96.36	94.70	97.01	96.55	60.79	97.00	97.03	97.11	97.72	97.63	96.55	95.74	95.99	94.78	94.47	94.78	95.43	95.91	64.69	95.16	95.22	66.04	98.82	67.07	96.13	96.75	65.99	96.04	95.97	95.97
INPUT POWER (WATTS)	1407.61	1407.09	1406.69	1405.04	1405.04	1405.17	1403.99	1404.67	1404.32	1407.41	1401.26	1402.76	1405.97	1408.25	1407.62	1411.85	1412.81	1411.73	1409.87	1408.06	1411.74	1409.76	1409.76	1407.71	1404.87	1404.32	1407.39	1406.42	1407.78	1407.48	1407.77	1408.24
INPUT CURRENT (AMPS)	44.23	44.23	44.23	44.17	44.16	44.16	44.14	44.14	44.14	64.23	44.07	44.08	44.15	44.28	44.27	44.39	44.40	44.38	44.32	44.26	44.36	44.34	44.32	44.26	44.15	44.12	44.23	44.19	44.23	44.23	44.24	44.23
INPUT VOL TAGE (VOL.TS)	31.83	31.81	31.81	31.81	31.82	31.82	31.81	31.82	31.81	31.82	31.83	31.82	31.84	31.81	31.79	31.81	31.82	31.81	31.81	31.82	31.82	31.80	31.81	31.81	31.82	31.83	31.82	31.83	31.83	31.83	31.82	31.84
DATE	12/27/89	12/27/89	12/27/89	12/27/89	12/27/89	12/2//89	12/27/89	12/27/89	12/2//89	68/17/71	12/28/89	12/28/89	12/28/89	12/28/89	12/28/89	12/28/89	12/28/89	12/28/89	12/29/89	12/29/89	12/29/89	12/29/89	12/29/89	12/29/89	12/29/89	12/29/89	12/29/89	12/29/89	12/29/89	12/29/89	15/53/89	12/29/89
SAMP #	377	403	418	429	455	468	481	464	207	75U	6,5	93	124	155	186	217	248	279	310	341	372	403	434	465	496	527	558	589	620	651	289	713
RUN	329-33	329-33	329-33	329-33	379-33	329-33	379-33	329-33	329-33	329-34	309-34	329-34	329-34	329-34	329-34	329-34	329-34	329-34	329-34	329-34	329-34	329-34	329-34	329-34	329-34	329-34	329-34	329-34	329-34	329-34	329-34	329-34

LPAJ NASA LEWIS (121581-4840) LIFE TEST NASA S/N 002 IN CH. 11

(Pf-Pc)/Flow2 (PSI-SEC2/ LBM2)	2.192E+10 2.201E+10 2.201E+10 2.202E+10 2.224E+10 2.224E+10 2.22E+10 2.236E+10 2.236E+10 2.236E+10 2.236E+10 2.236E+10 2.222E+10 2.236E+10 2.236E+10 2.222E+10 2.151E+10	2.174E+10
PC/Flow (P PSIA-SEC/ LBM)	635832 638675 638675 634618 631924 631924 636362 636362 633695 633695 637101 642756 637101 642756 640927 633883 643733 633784 641456 637862 637862 637862 637862 637862	637285
REL. ROUGH (PSIA)	2.22 2.23 2.33 2.13 2.23 2.23 2.23 2.23	2.52
1SP (SEC)	460.0 459.4 460.7 460.7 460.7 460.7 460.3 460.1 460.1 460.1 460.2 460.2 460.3	465.1
CUM IMPULSE LBF-SEC)	58558 58702 58845 58845 58845 58845 58707 59851 59954 60138 60281 60705 60714 60856 60714 60856 60714 60856 61423 61423 61564 61706 61847 61989 62131 62272 62414 62555	63263
CUM IMPULSE IMPULSE ISP CUM CUM	8.6.8.4.8.4.8.4.8.4.8.4.8.4.8.4.8.4.8.4.	141.3
THRUST (LBF) (0.03957 0.03958 0.03958 0.03958 0.03958 0.03958 0.03958 0.03958 0.03968 0.03978 0.03898 0.03898 0.03899 0.03899 0.03899 0.03899	0.03890
Pc (PSIA)	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	53.3
CUM FUEL USED (18M)	132.30 133.52 133.83 134.14 134.77 135.08 135.08 136.02 136.03 136.03 136.03 137.54 137.54 137.54 139.09 139.09 140.01 140.01 141.52 141.53	143.04
FUEL USED	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.30
FLOW (18M/SFC)	0.0000856 0.0000856 0.0000858 0.0000858 0.0000858 0.0000853 0.0000858 0.0000834 0.0000834 0.0000834 0.0000834 0.0000841 0.0000841 0.0000838 0.0000841 0.0000838 0.0000838 0.0000838	0.0000836
Pf (PSIA)		203.7
CUM ON TIME (HR)	388.5 389.5 390.5 391.5 391.5 392.5 392.5 392.5 392.5 392.5 401.6 401.6 401.6 402.6 403.7 403.7 406.7	421.9
CUM ON TIME (MIN)	23310.0 23370.5 23431.1 23491.6 23552.2 23612.7 23673.3 23673.3 23733.8 23733.8 23733.8 24097.1 24157.6 2422.1 2423.2 2436.3 2456.4 2456.4 2456.4 2456.4 2456.3 2466.3 2466.3 2466.3 2466.3 2466.3 2466.3 2466.3 2466.3 2466.3 2466.3 2466.3 2466.3 2466.3 2466.3 2466.3 2466.3 2466.3 2466.3 2569.7 2569.7 2569.7	25.21.9 25311.9
ON TIME (MIN)	60 60 60 60 60 60 60 60 60 60 60 60 60 6	9.09
DATE	12/29/89 12/30/89 12/30/89 12/30/89 12/30/89 12/30/89 12/30/89 12/30/89 12/30/89 12/30/89 12/30/89 12/30/89 12/30/89 12/30/89 12/30/89 12/31/89 12/31/89 01/01/90 01/01/90 01/01/90 01/01/90 01/01/90	01/01/90
SAMP #) ES9) 779
RUN	329-34 329-34 329-34 329-34 329-34 329-34 329-34 329-35 329-35 329-35 329-35 329-35 329-35 329-35 329-35 329-35 329-35 329-35 329-35 329-35 329-35 329-35 329-35 329-35 329-35	35-62E

~		6	0		2	3	₩.	Š	وب	7	œ	٥	0		2	က္	-	Ž.	9	7	œ	6	0	_	2	က	→	2	9	7	&	419	470	_	122	<u>τ</u>
START NUMBER	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	38	390	39	39	39	39	39	39	38	33	39	40	40	₽	40	404	40	\$	407	40	409	7	₩.	412	413	414	4	416	4	4	4	*	421	=	4
NUMBER Starts	1	-	_	-	_		_	-	_	-		-		-		_		-			_				-	-	-	_	-		-	-	_	-		
Tpcu M	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	80	8	81	8	8	8	80	8	80	8	8	8	81	81	81	85	21	8	8	80	8	8	81	8	8		81	8	8	8	8	8		8	æ
Tinj (F)	!	964	964	964	964	696	696	696	965	964	696	965	696	964	957	952	957	938	955	096	959	0%	926	957	952	951	950	951	951	951	948	951	950	646	950	948
T3 (`F)	1	-79	-118	-115	-110	-91	96-	-107	96-	-90	-108	-117	-109	-95	-139	-145	-149	-207	-107	-111	-125	-157	-138	-130	-135	-132	-127	-85	-92	-116	-45	120	-41	63	760	179
(£.)	1	1598	1091	0091	1599	1599	1598	1598	1598	1598	1598	1598	1598	1597	1605	1605	8091	1522	1603	1603	1602	1605	1604	1605	1607	1606	1607	1606	1604	1604	1603	1602	1604	1604	1603	1605
Con (F)	:	246	247	247	247	247	247	247	247	247	247	248	247	247	248	248	248	09	244	245	245	245	245	245	245	245	245	245	245	245	245	245	346	546	546	246
[gg 1	<u> </u>	606	806	806	806	905	806	206	905	206	806	905	806	806	903	903	305	828	903	305	903	902	305	901	305	305	902	305	900	206	305	901	305	206	306	206
rvf (F)	!	212	213	213	213	213	213	213	213	214	214	214	215	215	215	316	216	101	508	210	211	111	211	211	211	211	211	71	711	211	111	211	212	717	213	212
P/FLOW (3/Kg)		31812700	31950000	31802000	00098816	31864900	32002800	32046100	31773600	31883400	31926600	32068400	31843900	32028600	33025300	33062500	32797800	32446200	32304300	32748200	32939100	32860500	32,605,900	32423400	32808500	32555700	32637700	32654900	32572600	37806000	32623500	32535600	326/5500	32682000	37882900	32743800
APC EFF	1 1 1	32.02 3	.13							31.99 3	32.10 3	32.25 3	32.00 3	32.03 3	31.95 3	31.89	31.80		31.76 3	32.05 3	32.31 3	37.08 3		31.74 3	31.89 3	31.79	•	31.92 3	31.71			31.75	31.85	31.86	31.92	31.80
PCII		89.88	88.44	88.46	88.56	88.74	88.78	88.71	19.88	88.79	88.63	88.51	88.54	88.77	88.40	88.39	88.08	89.19	88.43	09.88	88.30	88.38	88.43	88.12	88.42	88.32	88.49	88.23	88.48	88.31	88.30	88.39	98.38	88,37	88.49	88,33
PCU POWER (WATTS)	i : : !	1247,13		_							1247.35	1246.89	1246.51	1248.78	1249.92	1250.81	1246.93	1248.45	1245.56	1249.27	1245.87	1248.21	1249.87	1245.07	1249.81	1247.83	1250.99	1246.77	1248.49	1247.11	1247.12	1248.03	1248.31	1247.51	1249.19	1248.26
ARC POWER (WATIS)	! ! !	1241.19	1240.99	1240.86	1241.73	1241.76	1242.60	1242.40	1240,25	1241.59	1241,35	1240.85	1240.52	1242.87	1243.64	1244.49	1240.60	1242.54	1239.46	1243.12	1239,70	1241.97	1243.57	1738.84	1243.52	1241.59	1244.66	1240.52	1242.31	1240.89	1240.94	1241.83	1242.08	1241.31	1242.99	1241.98
ARC CURRENT (AMPS)	: : :	17.85	13.04	13.01	12.99	12.86	12.89	12.92	12.85	12.81	12.91	12.96	12.90	12,86	13.21	13.75	13.25	12.82	13.05	13.07	13.09	13.16	13,23	13.16	13.21	13.17	13.26	13.17	13.10	13.15	13.10	13.12	13.15	13,12	13.12	13.21
ARC VOL.TAGE (VOL.TS)	: : : : : : : : : : : : : : : : : : : :	39.95	95.13	95,38	95.61	96.55	96.44	96.17	96.54	66.93	96.16	95.76	74.17	96.63	94.16	93.93	93.60	96.96	95.19	95.10	94.72	94.34	93.99	94.15	94.11	94.28	93.83	94.18	94.82	94.39	94.73	94.66	94.47	94.58	64.74	94.01
INPUT POWER (WATTS)	i ! !	1406.36	1410.17	1409.63	1408.92	1406.11	1406.46	1407.34	1406.37	1405.03	1407.32	1408.78	1407.85	1406.83	1413.91	1415.15	1415.68	1399.75	1408.48	1409.96	1410.90	1412.30	1413.46	1412.94	1413.45	1412.80	1413.72	1413.03	1410.98	1412.16	1412.31	1411.97	1412.76	1411.72	1411.62	1413.16
INPUT CURRENT (AMPS)	1 1 1	44.19	44.29	44.31	44.29	44.20	44.19	44.24	44.20	44.16	44.23	44.28	44.17	44.18	44.41	44.45	44.49	44.20	44.26	44.29	44.36	44.37	44.41	44.40			44.42	44.38	44.33	44.39	44.35	44.35	44.36	44.35	44.34	44.41
INPUT VOLTAGE (VOLTS)	† † †	31.83	31.84	31.82	31.81	31.81	31.82	31.81	31.82	31.82	31.82	31.82	31.87	31.84	31.84	31.84	31.82	31.67	31.82	31.83	31.81	31.83	31.82	31.82	31.86	31,83	31.83	31.84	31.83	31.81	31.85	31.84	31.85	31.83	31,83	31.87
DATE	1	12/29/89	12/30/89	12/30/89	12/30/89	12/30/89	12/30/89	12/30/89	12/30/89	12/30/89	12/30/89	12/30/89	12/30/89			12/30/89	12/30/89	12/31/89			12/31/89				01/01/30	01/01/90	06/10/10		01/01/30	01/01/90					01/01/90	01/01/30
SAMP #	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	744	775	808	837	898	899	930	196	992	1023	1054	1085	1116	3	62	93	95	126	157	188	219	250	281	312	343	374	405	436	467	498	529	280	591	622	653
RUN	1	329-34	329-34	329-34	329-34	329-34	329-34	329-34	329-34	329-34	329-34	329-34	329-34	329-34	329-35	329-35	329-35	329-35	329-35	329-35	329-35	329-35	329-35	329-35	329-35	329-35	329-35	329-35	329-35	329-35	329-35	329-35	329-35	329-35	329-35	329-35

LPAJ NASA LEWIS (121581-4840) LIFE IEST NASA S/N 002 IN CH. 11

(Pf-Pc)/Flow2 (PSI-SEC2/ LBM2)	2.234E+10	2.165E+10 2.157E+10	2.134E+10	2.183E+10	2.157E+10	2.196E+10	2.205E+10	2.126£ +10	2.213E110	2,218E+10	2.203E+10	2.155E+10	2.167E+10	2.196E+10	2.208E+10	2.201E+10	2.217E+10	2.154E+10	2.197E+10	2.201E+10	2.177E+10	2.222E+10	2.242E+10	2.165E+10	2.196E+10	2.186E+10	2.189E+10	2.220E+10	2.172E+10	2.193E+10	2.148[+10	2.184E+10	2.156E+10
1-19) 1-19)																																	
Pc/Flow (PSIA-SEC/ LBM)	644763	636327	632131	638334	637551	641906	644624	631255	644008	644233	641234	634438	998989	934787	641227	640601	640274	631148	938805	936902	92138	640204	643356	631772	636644	932802	633648	908889	83888	636207	628482	633763	631047
REL. ROUGH (PSIA)	2.00	2.03	2.17	2.08	2.03	1.97	2.39	2.33	2.44	1.71	2.47	2.42	2.48	2.53	2.11	1.96	2.15	2.04	1.91	2.19	2.65	2.04	2.38	2.07	2.55	2.29	2.28	2.14	2.04	2.11	2.16	2.30	2.07
1SP (SEC)	471.8	464.4	461.3	466.2	464.1	467.8	469.1	460.4	467./ 466.8	469.8	468.3	462.5	463.5	466.7	468.5	467.8	469.5	462.5	467.1	466.2	464.7	469.4	471.6	463.2	466.8	465.1	465.9	1.691	463.8	467.1	462.2	465.8	462.9
CUN Impulse LBF-Sec)	63404	63546	63828	69669	64111	64252	64393	64534	646/3	64867	62009	65150	65291	65433	65574	85715	95859	65997	66138	66273	66408	66542	66684	66825	99699	67107	67248	67389	67530	67671	67812	67953	98084
CUM IMPULSE IMPULSE ISP CUM CUM	141.4	141.3	141.3	141.1	141.2	141.1	141.2	141.2	7.141 5.08	141.2	141.4	141.4	141.3	141.3	141.2	141.1	141.2	141.1	141.1	134.5	134.7	134.6	141.4	141.2	141.2	141.0	141.0	141.0	140.9	141.1	141.1	141.0	141.0
THRUST (18F)	0.03893	0.03890	0.03889	0.03886	0.03887	0.03885	0.03886	0.0388/	0.0388/	0,03887	0.03892	0.03893	0.03890	0.03888	0.03887	0.03885	0.03887	0.03884	0.03883	0.03894	0.03900	0.03899	0.03892	0.03886	0.03886	0.03881	0.03882	0.03880	0.03877	0.03884	0.03883	0.03880	0.03880
Pc (PSIA)	53.2	 	53.3	53.2	53.4	53.3	53.4	53.3	53.3	53,3	53.3	53.4	53.4	53.3	53.2	53.2	53.0	53.0	53.1	53.2	53.3	53.2	53.1	53.0	53.0	52.8	52.8	52.8	52.9	57.9	57.8	52.8	52.9
CUM Fuel used (18m)	143.35	143.65	144.25	144.56	144.86	145.17	145.47	145.//	145.08	146.49	146.79	147.09	147.40	147.70	148.00	148.30	148.60	148.90	149.21	149.50	149.79	150.08	150.39	150.68	150.99	151.29	151.59	151.90	152,20	152.50	152.80	153.11	153.41
FUEL. USED (18M)	0.30	0.30	0.30	0.31	0.30	0.30	0.30	0.30	05.0 11.0	0:30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.29	0.29	0.29	0.31	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.31	0.30
FLOW (18M/SFC)	0.0000825	0.0000838	0.0000843	0.0000833	0.0000838	0.0000830	0.0000828	0.0000844	0.0000828	0.0000827	0.0000831	0.0000842	0.0000839	0.0000833	0.0000830	0.0000830	0.0000828	0.0000840	0.0000831	0,0000835	0.0000839	0.0000831	0.0000825	0.0000839	0.0000832	0.0000834	0,0000833	0.0000827	0.0000836	0.0000831	0.0000840	0.0000833	0.0000838
Př (PSTA)	205.3	205.2	205.0	204.8	204.7	204.7	204.7	204.9	205.0	205.1	205.5	206.1	206.0	205.7	205.2	205.0	204.9	204.9	204.9	8.902	9.902	206.5	205.8	205.4	205.2	205.0	204.8	204.7	204.7	204.5	204.4	204.4	204.4
CUM ON TIME (HR)	422.9	423.9	425.9	426.9	427.9	428.9	429.9	430.9	432.0	433.3	434.3	435.3	436.4	437.4	438.4	439.4	440.4	441.4	442.4	443.4	444.3	445.3	446.3	447.3	448.3	449.3	450.3	451.3	452.4	453.4	454.4	455.4	426.4
CUM ON TIME (MIN)	25372.5	25433.0	25554.1	25614.7	25675.2	25735.8	25796.3	25856.9	25030 2	25999.8	26060.3	26120.9	26181.4	26242.0	26302.5	26363.1	26423.6	26484.2	26544.7	26602.3	26659.8	26717.4	26777.9	26838.5	26899.0	26959.6	27020.1	27080.7	27141.2	27201.8	27267.3	27322.9	27383.4
ON TIME (MIN)	9.09	9.09	9.09	60.5	9.09	9.09	9.09	9.09	9.10	9.09	9.09	9.09	9.09	9.09	9.09	9.09	60.5	9.09	9.09	57.6	57.6	57.6	60.5	60.5	60.5	60.5	60.5	60.5	60.5	60.5	60.5	60.5	60.5
DATE	01/01/90	01/01/90	01/05/90	01/05/90	01/05/90	01/05/90	01/05/90	01/02/90	01/05/70	01/05/70	01/05/90	01/05/90	01/05/90	01/05/90	01/05/90	01/05/90	01/05/90	01/03/90	01/03/90	01/03/90	01/03/90	01/03/90	01/03/90	01/03/40	01/03/90	01/03/90	01/03/90	01/03/90	01/04/90	01/04/90	01/04/90	01/04/90	01/04/90
SAMP #	_	715 01							963 01				1098 01	1129 01	1191 01	1222 01	1253 01	1284 01			26 01	39 01	13 01		39 01	52 01	10 59	78 01	91 01	104 0	117 01	130 051	143 01
RUN * S	329-35	329-35	329-35	329-35	329-35	329-35	329-35	329-35	354-35	329-35	329-35	329-35	329-35	329-35	329-35	329-35	329-35	329-35	329-32	329-38	329-36	329-38	329-37	329-37	329-37	329-37	359-13	37.	379 37	329-37	329-37	376-37	329-37

START	NUMBER	424	425	426	427	428	458	430	431	432	433	434	435	436	437	438	439	440	441	442	443	444	4.45	446	447	448	677	420	451	452	453	454	455	456	457	458
		_	_	_	*****	_	_	_	_			_	_	_	_	_		_	_	_	_			_			_	_			_			_	_	-
I NUMBER) STARTS			_	_				_		_	74							_	18	18	2	79	79	8	79	&	0	&	0	88	90	8	88	8	9
	(H.)	00	· œ	<u>8</u>	æ										_	8	8				_															
Tin.	(H.)	948	953	947	954	957	953	926	949	953	954	948	952	955	951	951	949			951			196		955		396		996		396	196	951		_	196
3	E	-119	-120	-131	-135	-138	-146	-78	297	760	760	757	760	760	760	760	760	-107	-115	-122	-131	-136	760	-45	760	760	-27	4 20	-140	-140	-142	-148	-144	-152	152	. 41
=	(.E)	1606	1607	1609	1606	1607	1609	1605	1603	1603	1603	1599	1601	1601	1603	1603	1601	1602	1601	1602	1604	1605	1607	1604	1091	1603	1604	1603	1604	1605	1605	1608	1606	1604	1605	1607
Tcon	(E.)	246	246	246	246	246	246	246	245	245	245	214	246	245	246	246	246	245	245	245	245	246	239	241	241	240	241	241	241	241	241	241	241	241	241	241
Ţ00	(F)	902	902	903	902	901	902	901	902	305	305	899	305	901	903	903	305	903	903	903	306	904	900	904	904	904	901	901	305	901	106	301	904	£05	903	206
Ivi	(L)	212	212	212	213	212	212	212	211	211	212	204	212	212	212	213	212	213	213	213	213	214	212	211	211	210	212	212	212	213	213	213	212	213	212	213
3 0	(3/Kg)	33167800	32,652,300	32607800	32536100	32760600	32696500	32974300	32961400	32405300	33051700	32941900	33091200	32900900	32552200	32547800	32917200	33035900	33036500	33085600	32603700	37960300	32840100	32587300	32918500	33212600	32640100	32935100	32819600	32888500	33114100	32758100	33012700	32587200	32925500	32773900
/d					•						٠.	•		•														• •	•		٠.	• 1	• •		• •	• •
APC	5	32 30	31.80	31.74	31.48	31.94	31.71	31.95	32.13	31.48	32.13	31.85	32.11	32.08	31.63	31.78	31.85	31.98	31.88	32.08	31.58	31.86	31.85	31.90	32.22	32.73	31.64	31.84	31.73	31.77	31.98	31.61		31.55	31.72	31.47
PCU		88 23	88.15	88.11	88.44	87.96	88.18	88.37	88.13	88,30	88.30	88.76	88.43	88.36	88.41	88.12	88,50	88.41	88.55	88,39	88.35	88.31	19.88	88.27	88.33	88.57	88.29	88.45	88.33	88.34	88.27	88.16	88.44	88.20	88.43	88.47
PCU	(WATTS)	47 44	246.68	246.90	250.46	244.55	248.35	247.97	244.51	247.10	246.77	247.06	247.78	246.40	248.81	244.86	249.87	249.23	250.43	248.24	247.90	248.83	250,33	246.46	746.14	249.44	248.10	249.72	248.16	249.14	248.55	248.22	251.20	247.86	1750.23	1252.34
		_			_	_	_			_	_	_	_		_	_		_	_		_	_	_	-	_	_	_	_	_	_	_	_	_	_	_	_
ARC	(WATTS)	¥1 1¥61	1740.38	1240.55	1244.16	1238.25	1241.99	1241.71	1238.32	1240,88	1240.56	1240.87	1341.61	1240.25	1242,58	1238.65	1243.67	1243.02	1244.25	1242.05	1241.67	1242.53	1244.04	1240.22	1239,99	1243.20	1241.82	1243.46	1241.90	1242.86	1242.25	1241.88	1244.89	1241.60	1243.97	1245,99
ARC	(AMPS)	13 23	13.23	13.29	13.23	13.23	13.29	13.19	13.11	13.15	13.13	13.11	13.09	13.07	13.16	13.14	13.12	13.13	13.10	13.11	13.16	13.23	13.21	13.16	13.07	13.16	13.21	13.18	13.19	13.21	13.23	13.27	13.73	13.19	13.18	13.28
ARC UNI TAGE		۶. د	3 75	93,38	94.06	93.59	93.45	94.17	4.44	94.37	94.51	94.64	4.84	4.87	94.44	4.29	94.77	94.65	16.4	94.73	4.34	93.95	94.14	94.22	94.87	94.44	94.00	94.31	94.16	94.12	93.88	09.86	94.08	94.15	94.37	93.85
A E		~																																		
INDUI	(MATTS)	1414 00	1414 35	1415.25	1413.94	1414.97	1415.66	1413.01	1412.18	1412.42	1411.98	1404.94	1411.06	1410.62	1412.45	1412.63	1412.23	1413.06	1412.07	1412.22	1412.47	1414.10	1411.11	1412.14	1410.83	1410.71	1413.66	1412.9	1413.06	1414.03	1414.48	1415.88	1414.68	1414.75	1413.82	1415.67
INPUT	(AMPS)	**	14.44	44.46	44.38	44.44	44.46	44.38	44.40	44.36	44.32	44.13	44.31	44.27	44.34	44.36	44.33	44.38	44.37	44.36	44.34	44.40	44.30	44.33	44.28	44.30	44.41	44.38	44.40	44.43	44.44	44.43	44.43	44.43	44.41	41.45
	(VOL 1S) (70	5 8	83	98.	1.84	1.84	1.84	1.80	1.84	1.86	1.83	1.84	1.87	31.85	1.84	31.86	31.84	1.82	31.84	31.85	31.85	31.85	31.85	31.86	31.84	31.83	31.84	31.83	31.83	31.83	31.87	31.84	31.84	31.83	31.85
X 5	3 5 1	~		5 6	(1)					9	3	31	3				_	_			_				_					_						
DATE	UMIC	01/01/00	01/01/0	01/01/90	01/05/90	01/05/90	01/05/90	01/05/90	01/05/90	01/05/90	01/05/90	01/05/90	01/05/90	01/05/90	01/05/90	01/05/90	01/05/90	01/05/90	01/05/90	01/05/90	01/03/90	01/03/90	01/03/90	01/03/90	01/03/90	01/03/90	01/03/30	01/03/90	01/03/90	01/03/90	01/03/90	01/04/90	04 01/01/30	01/04/90	01/04/90	01/04/90
=	<u>.</u>	3	715 01				839 01			932 01	963 01		1005 0	1036 01					222 0		284 0				39 0	13 0	26 0	39 0	52 0	65 0	78 0		104 0	117 0	130 0	143 0
CAMO	Since 1		.	~	~											_			_	-		_		~	\$,	7	7	7	7	۲.	r~	/	7	/	<i>(</i> -
N. Co	NON I	370-35	356-35	379-35	329-35	329-35	329-35	329-35	329-35	329-35	329-35	329-35	329-35	329-35	329-35	329-35	329-35	379-35	329-35	329-35	329-35	329-35	329-36	329-38	329-38	329-3	329-37	329-37	329-37	329-37	329-37	329-37	379-37	329-37	379-31	329-37

LPAJ NASA LEWIS (121581-4840) LIFE TEST NASA S/N 002 IN CH. 11

(Pf-Pc)/Flow2 EC/ (PSI-SEC2/ LBM2)	219 2.198E+10											310 2.200E+10		807 2.222E+10	644253 2.246F:10	815 2.203E+10	350 2.18IE+10		931 2.175E+10	212 2.208E+10	900 2.221E+10	561 2.245E+10		638685 2.203E+10	638326 2.210E+10	643792 2.227E+10	643293 2.224E+10	027 2.176E+10	642958 2.220E+10	645860 2.240E+10	748 2.218E+10	542482 2.236E+10	01+3800 C SYB
PC/Flow (PSIA-SEC, LBM)	637219																				642900												539865
REL. ROUGH (PSIA)	2.00				•	2.46	1.96		•	• •											2,35												
1SP) (SEC)	467.0	407.1	470.8	469.7	467.9	469.2		-	469.0	-	_	-	-	-	-	•	•	•	_	-	468.2	-	_	_	-			•	467.9	-	_	469.4	_
CUM SUMPLLSE NUO	68235	68516	68657	86289	86689	62069	61269	09869	9500	69640	18/69	69921	70061	70202	70342	70482	70622	70763	70904	71045	71186	71327	71467	71608	71749	71889	72030	72170	72311	72452	72592	72732	7287
(18F-SEC) (LBF-SEC)	140.9	140.9	140.9	140.6	140.6	140.5	140.4	140.4	140.5	140.3	140.4	140.3	140.3	140.4	140.3	140.2	140.1	141.0	141.0	141.0	140.7	140.7	140.6	_	_	140.7	140.5	140.6	140.4	140.7	140.3	140.4	7 071
THRUST (LBF)	0.03877	0.03877	0.03877	0.03870	0.03870	0.03867	0.03865	0.03864	0.03868	0.03863	0.03864	0.03861	0.03861	0.03864	0.03861	0.03858	0.03856	0.03883	0.03881	0.03880	0.03874	0.03877	0.03871	0.03878	0.03870	0.03872	0.03867	0.03870	0.03864	0.03872	0.03863	0.03865	17000
Pc (PSIA)	52.9	57.8	52.7	52.7	52.8	52.8	52.7	52.6	52.7	52.7	52.6	52.8	52.6	52.6	52.6	52.6	52.7	53.4	53.1	53.1	53.2	53.1	53.0	53.0	52.9	53.1	53.1	53.2	53.1	53.1	53.1	52.9	S
CUN (LBM)	153.71	154.37	154.62	154.92	155.22	155.53	155.83	156.13	156.43	156.73	157.04	157.34	157.64	157.94	158.25	158.55	158.85	159.15	159.46	159.76	160.06	160.36	160.65	160.96	161.27	161.57	161.87	162.17	162.47	162.77	163.07	163.37	110 17
FUEL USED (LBM)	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	•
FLOW (LBM/SEC)	0.0000830	0.0000825	0.0000824	0,0000824	0.0000827	0.0000824	0,0000825	0.0000824	0.0000825	0,0000829	0,0000825	0.0000825	0.0000816	0.0000821	0.0000816	0,0000825	0.0000828	0,0000833	0.0000838	0.0000831	0,0000828	0.0000823	0.0000821	0.0000930	0.0000829	0.0000825	0.0000825	0,0000834	0.0000826	0.0000822	0.0000826	0.0000823	0000000
Pf (PSIA)	204.4	203.5	203.3	203.2	203.1	203.0	202.9	202.8	202.7	202.6	202.5	202.4	202.4	202.3	202.3	202.4	202.3	206.4	205.7	205.5	205.3	205.0	204.7	204.7	204.7	204.6	204.6	204.5	204.5	204.5	204.5	204.5	30.6
CUM ON TIME (HR)	457.4	458.4	460.4	461.4	462.4	463.5	464.5	465.5	466.5	467.5	468.5	469.5	470.5	471.5	472.5	473.5	474.6	475.6	476.6	477.6	478.6	479.6	480.6	481.6	482.6	483.6	484.6	485.7	486.7	487.7	188.7	489.7	7 007
CUM ON TIME (MIN)	27444.0	27565 1	27625.6	27686.2	27746.7	27807.3	27867.8	27928.4	27988.9	28049.5	28110.0	28170.6	28231.1	28291.7	28352.2	28412.8	28473.3	28533.9	28594.4	28655.0	28715.5	28776.1	28836.6	28897.2	28957.7	29018.3	29078.8	29139.4	29199.9	29260.5	29321.0	29381.5	1 01100
ON TIME (MIN)	60.5	6.09 5.03	60.5	60.5	60.5	60.5	60.5	60.5	80.5	60.5	60.5	60.5	60.5	60.5	60.5	60.5	60.5	60.5	9.09	9.09	9.09	9.09	9.09	9.09	9.09	9.09	9.09	9.09	9.09	9.09	9.09	60.5	•
DATE	01/04/90	01/04/90	01/04/90	01/04/90	01/04/90	01/04/90	01/04/90	01/04/90	01/04/90	01/04/90	01/04/90	01/04/90	01/04/90	01/04/90	01/04/90	01/04/90	01/04/90	01/02/90	01/02/90	01/02/90	01/02/90	01/02/90	01/02/90	01/02/90	01/02/90	04/90/10	06/90/10	01/04/90	06/90/10	01/06/90	01/09/10	01/06/90	00//0/10
SAMP #	156 0	25.0	39.0	52 0								156 0	169	182 0				31.0	62 (155 (981	217 (248 (310 (341 (372 (403 (
RUN *	329-37	329-38 379-38	329-38	329-38	329-38	329-38	329-38	329-38	329-38	329-38	329-38	329-38	329-38	329-38	329-38	329-38	329-38	329-39	329-39	329-39	329-39	329-39	329-39	356-36	329-39	329-39	329-39	329-39	329-39	329-39	329-39	329-39	00 000

START	05/	460	461	462	463	464	465	466	467	468	469	470	471	472	473	474	475	476	477	478	479	480	481	482	483	484	485	186	487	488	489	490	491	492	493
NUMBER S'	-				-				-	-			-		_	_	-	-	*	_		_		-	_			-	-	-	-		-	_	
Ipcu N	G	8 8	8	8	8	8	8		81	8	8	8	8	81	81	8	8	8	8	80	8	81	81	æ	8	8	81	8	83	81	8	81	8	8	8
Tinj (F)	950	971	926	926	996	096	196	696	970	196	395	398	896	315	965	973	973	315	896	972	973	973	974	676	970	411	971	118	970	980	970	981	477	974	.286 9
T3 (F)	ā	-90	35	762	64	-113	-165	-129	-159	-157	-164	-159	-164	-109	-146	761	69-	-155	761	761	761	762	762	762	761	761	292	763	762	762	762	763	762	782	292
11 (F)	0171	1609	1606	1604	9091	1606	1610	1604	1603	1601	1604	1602	1610	1602	1600	1602	1603	1608	1603	1091	1602	9091	1606	1604	1600	1602	1604	1608	1605	1607	1604	1609	1606	1605	1604
Tcon ('F)	741	241	241	242	242	242	242	242	242	242	241	241	242	241	241	241	242	245	240	241	241	242	242	241	240	240	241	241	240	241	241	242	241	7.41	241
199 (°F)	003	20.0	903	903	305	902	305	902	901	901	901	901	899	868	899	888	889	901	901	90	901	901	901	899	8	900	900	866	900	868	900	868	006	899	808
Ivř (*F)	21.5	213	213	214	215	214	215	216	216	218	215	215	216	216	215	216	216	216	215	215	215	216	216	216	215	215	215	215	215	215	216	216	216	217	217
P/FLOW (J/Kg)	00077000	33016200	33211200	33270400	33287700	33091400	33274800	33220200	33284500	33231800	33019900	33146500	33216200	33553100	33385000	33668400	33230900	33026600	32881000	32678100	32985300	33101700	33342600	33379700	32999100	33074600	33220900	33183400	32945200	33704600	33292100	33700300	33252300	33057600	33114200
ARC	25 70	31.81	32.01	32.04	31.91	31.84	31.85	31.81	31.83	31.86		31.84	31.77	32.09	31.95		31.70	31.60	31.77	31.63	31.83	31.88	31.99	32.07			31.93	31.84	31.48	31.73	32.07	31.70	31.89	31.80	31.73
PCU	100	98.05	88.17	16.88	88.33	88.28	88.31	88.29	88.47	88.38	88.22	88.24	88.16	88.36	88.41	79.88	88.37	80.88	09.88	88.44	88.46	88.34	88.46	88.38	88.40	88.46	88.39	88.37	88.56	88.37	88.27	88.31	88.38	88.25	88.35
PCU POWER (WATTS)	62 0701	1247.81	1248.76	1249.45	1250.16	1247.75	1250.24	1249.11	1249.63	1249.10	1246.93	1246.77	1248.54	1248.46	1249.00	1252.95	1249.12	1246.80	1249.06	1247.55	1248.95	1248.55	1250.12	1248.83	1248.09	1249.34	1248.95	1248.52	1252.16	10.0871	1247.60	1250.29	1247.99	1247.89	1248.65
ARC POWER (WATTS)	16 6761	1241.44	1242.46	1243.20	1243.87	1241.46	1243.87	1242.82	1243.35	1242,86	1240.68	1240.53	1242.18	1242.24	1242.81	1246.65	1242.86	1240.42	1242.84	1241.36	1242.69	1242.25	1243.79	1242,56	1741.89	1243.07	1242.66	1242.21	1245.82	1243.65	1241.33	1243,90	1241.67	1241.61	1242.39
ARC CURRENT (AMPS)	12.21	13.30	13.23	13.18	13.22	13.22	13.30	13.22	13.21	13.17	13.18	13.16	13.29	13.15	13.12	13.23	13.18	13.30	13.15	13.11	13.19	13.24	13.27	13.19	13.12	13.19	13.72	13.24	13.27	13.29	13.70	13,37	13.25	13,20	13.18
ARC Vol.tage (volts)	07 60	93.31	93.95	94.29	94.06	93.94	93.52	93.99	94.13	94.37	94.15	94.27	93.45	94.47	94.76	94.25	94.28	93.23	94.54	94.67	94.24	93.85	93.75	94.19	94.63	94.24	63.99	93.83	93.88	93.59	94.02	03.38	93.73	64,03	94.74
INPUT POWER (WATTS)	02 7171	1417.74	1416.30	1414.85	1415.36	1413.74	1415.77	1414.82	1413.33	1413.59	1413.44	1412.91	1416.15	1412.89	1412.73	1413.08	1413.44	1415.58	1409.78	1410.60	1411.89	1413.32	1413.19	1412.96	1411.94	1412.32	1413.07	1413.66	1413.99	1414.57	1413,40	1415.77	1413.99	1414.12	1413.30
INPUT CURRENT (AMPS)		44.49	44.50	44.44	44.44	44.41	44.48	44.45	44.37	44.42	44.43	44.38	44.46	44.38	44.36	44.36	44.37	44.46	44.24	44.29	44.34	44.41	44.38	44.38	44.37	44.37	44.40	44.40	44.39	44.42	44.41	44.44	44.37	44.40	44.33
INPUT Vol.Tage (vol.TS)	70 10	31.04	31.83	31.84	31.85	31.84	31.83	31.83	31.85	31.82	31.81	31.84	31.85	31.84	31.85	31.85	31.86	31.84	31.87	31.85	31.84	31.82	31.84	31.83	31.83	31,83	31.83	31.84	31.85	31.84	31.83	31.86	31.87	31.85	31.88
	00/10/10				01/04/90	01/04/90		01/04/90		01/04/90	01/04/90	01/04/90	01/04/90	01/04/90	01/04/90	01/04/90	01/04/90	01/04/90	01/02/90	01/02/30	01/02/90	01/02/90	01/02/90		01/02/90	01/02/90	01/06/90	01/04/90	01/04/90	06/90/10	01/06/90	01/09/40	01/09/30	06/90/10	01/06/90
SAMP #		130	26	39	52	65	78	91	104	117	130	143	156	169	182	195	208	22.1	31	62	93	124	155	186	217	248	579	310	341	372	403	434	465	464	27.7
RON **		329-38	379-38	329-38	329-38	329-38	329-38	329-38	329-38	358-38	329-38	329-38	329-38	329-38	329-38	329-38	329-38	329-38	329-39	358-38	329-39	329-39	356-36	329-39	329-39	329-39	356-36	379-39	329-39	329-39	356-36	329-39	379-39	329-39	329-39

LPAJ NASA LEWIS (121581-4840) LIFE TEST NASA S/N 002 IN CH. 11

SAMP # DATE ON TIME ON (MIN) (6	CUM ON TIME (MIN)	CUM ON TIME (HR)	Pf (PSIA)	(LOW	FUEL USED (LBM)	CUM FUEL USED (LBM)	Pc (PSIA)	THRUST (LBF) (CUM	CUM IMPULSE (LBF-SEC)		REL. ROUGH (PSIA)	Pc/Flow (PSIA-SEC/ LBM)	(Pf-Pc)/Flow2 (PSI-SEC2/ LBM2)
01/06/90 60.6 29563.2 492.7 204.5	60.6 29563.2 492.7 204.5	29563.2 492.7 204.5	204.5		0.00	0.0000826	0.30	164.27	53.1	0.03871	140.6	73154	468.5	2.36	642725	2.218E+10 2.256E+10
204.3	60.3 27623.7 473.7 204.3 40 6 29684 3 494.7 204.4	473.7 204.3	204.3		0.00	0818	0:30	164.86	53.1	0.03863	140.3	73435	471.6	2.18	648201	2.255E+10
60.6 29744.8 495.7 204.4	60.6 29744.8 495.7 204.4	495.7 204.4	204.4		0.0	0.0000825	0.30	165.17	53.2	0,03865	140.4	73575	468.4	2.25	644794	2.221E+10
01/06/90 60.6 29805.4 496.8 204.3	60.6 29805.4 496.8 204.3	29805.4 496.8 204.3	204.3		0.00	30828	0.30	165.46	53.2	0.03862	140.3	73715	4.994	2.11	642481	2.204E+10
01/06/90 60.6 29865.9 497.8 204.2	60.6 29865.9 497.8 204.2	29865.9 497.8 204.2	204.2		0.00	0.0000826	0.30	165.77	53.2	0.03860	140.2	73826	467.4	2.39	644216	2.214E+10
01/06/90 60.5 29926.5 498.8 204.1	60.5 29926.5 498.8 204.1	29926.5 498.8 204.1	204.1		0.0	0.0000828	0.30	166.07	53.3	0.03861	140.2	73996	466.4	2.28	643906	2.201E+10
01/07/90 60.6 29987.0 499.8 204.1	60.6 29987.0 499.8 204.1	29987.0 499.8 204.1	204.1	<u> </u>	0.0	0.0000820	0.30	166.37	53.3	0.03859	140.2	74136	4/0.5	2.26	649842	2.242E+10 2.230E+10
01/07/90 60.6 3004/.6 500.8 204.1	60.6 3004/.6 500.8 204.1	3004/.6 500.8 204.1	204.1		0.00	7790000 0	0.30	160.00/	53.3	0.03860	140.3	74417	471.2	2.26	620239	2.246E+10
502.8 204.0	60.6 30106.1 301.8 504.1 An A 30168 7 502.8 204.0	30106.1 301.6 204.1	204.0	- 0	0.000	9856	0:30	167.27	53.3	0.03856	140.1	74557	466.8	2.19	645278	2.209E+10
01/07/90 60.6 30229.2 503.8 204.0	60.6 30229.2 503.8 204.0	30229.2 503.8 204.0	204.0	-	0.00	0,0000825	0.30	167.57	53.3	0.03856	140.1	74697	467.2	2.23	645779	2.212E+10
01/07/90 60.6 30289.8 504.8 204.1	60,6 30289.8 504.8 204.1	30289.8 504.8 204.1	504.8 204.1		0.00	9,00000.0	0.30	167.87	53.1	0.03862	140.3	74837	467.8	2.16	643236	2.216E+10
01/07/90 60.6 30350.3 505.8 204.0	60,6 30350.3 505.8 204.0	30350.3 505.8 204.0	505.8 204.0		0.00	0.0000818	0.30	168.16	53.0	0.03858	140.2	74977	471.5	2.19	647629	2.255E+10
60.6 30410.9 506.8 204.1	60.6 30410.9 506.8 204.1	30410.9 506.8 204.1	506.8 204.1		0.00	0821	0.30	168.46	53.1	0.03863	140.3	75118	470.6	2.24	64/009	2.242E+10
01/07/90 51.2 30462.0 507.7 204.1	51.2 30462.0 507.7 204.1	30462.0 507.7 204.1	507.7 204.1	_	0.0	0.0000822	0.25	•	53.0	0.03842	11/.9	9575/	46/.1	77.7	6444/7	2.234E110
31 01/07/90 60.6 30522.6 508.7 196.8 0.0000808	60.6 30522.6 508.7 196.8	30522.6 508.7 196.8	508.7 196.8		0.000	9080	0.29	169.01	7.7c	0.03807	138.1	75512	471.7	2.16	649222	2.229(+10
01/07/90 60.5 30643.7 510.7 196.2	60.5 30643.7 510.7 196.2	30643.7 510.7 196.2	510.7 196.2		0.00	0080	0.30	. —	52.1	0.03801	138.1	75650	475.0	2.36	651128	2.251E+10
01/07/90 60.6 30704.2 511.7 196.1	60.6 30704.2 511.7 196.1	30704.2 511.7 196.1	511.7 196.1	196.1	0.00	0,0000007	0.29	_	52.2	0.03799	138.0	75788	470.7	2.08	946808	2.209E+10
60.6 30764.8 512.7 196.0	60.6 30764.8 512.7 196.0	30764.8 512.7 196.0	512.7 196.0	196.0	0.00	0.0000802	62.0		52.3	0.03801	138.1	75926	474.1	2.22	652445	2.236E+10
01/07/90 60.6 30825.3 513.8 195.9	60.6 30825.3 513.8 195.9	30825.3 513.8 195.9	513.8 195.9	195.9	<u>0</u>	0.0000811	0.29		52.2	0.03/98	138.0	/6064	468.6	2.13	044037	2.18/E+10
01/07/90 60.6 30885.9 514.8 195.8	60.6 30885.9 514.8 195.8	30885.9 514.8 195.8	514.8 195.8	195.8	0.0	0.0000792	0.29		52.3	0.03/92	137.8	7079/	4/7.0	27.7	6000/7	2.2705110
248 01/08/90 60.5 30/46.4 515.8 175.6 0.00	60.5 30946.4 515.8 195.6 40.2 21004 9 514.8 195.5	30946.4 515.8 195.6 31004 9 514 8 195.5	515.8 195.6	6.CYI		0.00000803	0.29	171.35	52.3	0.03782	137.4	76477	472.8	2.27	653734	2.237E+10
01/08/10 60.6 31067.5 517.8 195.3	60.6 31067.5 517.8 195.3	31067.5 517.8 195.3	517.8 195.3	195.3	0.0	0,0000804	0.29		52.3	0.03793	137.8	76615	471.4	2.14	650126	2.210E+10
01/08/90 60.6 31128.0 518.8 195.4	60.6 31128.0 518.8 195.4	31128.0 518.8 195.4	518.8 195.4	195.4	0.0	0.0000802	62.0		57.4	0.03802	138.1	76753	473.9	2.00	280859	2.221E+10
01/08/90 60.6 31188.6 519.8 195.5	60.6 31188.6 519.8 195.5	31188.6 519.8 195.5	519.8 195.5	195.5	0.00	0,0000803	0.79		52.4	0.03799	138.0	76891	473.2	2.03	652732	2.220E+10
01/08/90 60.6 31249.1 520.8 195.4	60,6 31249.1 520.8 195.4	31249.1 520.8 195.4	520.8 195.4	195.4	0.000	767.0	0.29	177.57	52.4	0.03796	137.9	77029	476.2	2.63	657416	2.251E+10
01/08/90 60.5 31309.7 521.8 195.6	60.5 31309.7 521.8 195.6	31309.7 521.8 195.6	521.8 195.6	195.6	0.000	0811	0.30		52.4	0.03834	139.3	77168	472.6	1.84	645893	2.176E+10
01/08/90 60.5 31370.2 522.8	60.5 31370.2 522.8 192.1	31370.2 522.8 192.1	572.8 197.1	192.1	0.000	8080	0.29	_	52.0	0.03806	138.3	77307	471.2	2.00	643811	2.148[+10
39 01/08/90 60.5 31430.8 523.8 188.9	60.5 31430.8 523.8 188.9	31430.8 523.8 188.9	523.8 188.9	188.9	0.0	0.0000791	0.29	173.40	51.5	0.03783	137.4	77444	478.3	1.96	651124	2.196E+10
52 01/08/90 60 5 31491.3 524.9 185.7	60.5 31491.3 524.9 185.7	31491.3 524.9 185.7	524.9 185.7	185.7	0.0	0,0009792	6:0	_	51.1	0.03755	136.4	77580	474.3	2.18	645471	2.148F+10
65 01/08/90 60.5 31551.9 525.9 182.7	60.5 31551.9 525.9 182.7	31551.9 525.9 182.7	525.9 182.7	182.7	0.00	00785	0.29	_	50.8	0.03/33	135.6	77716	475.6	2.32	647150	2.14IE+10
78 01/08/90 60.5 31612.4 526.9 179.8	60.5 31612.4 526.9 179.8	31612.4 526.9 179.8	526.9 179.8	179.8	0.00	0.0000772	0.78	_	50.5	0.03718	135.1	77851	481.7	2.19	654255	2.170F+10

START Number	767	495	496	497	498	468	200	201	205	203	504	202	206	207	208	509	510	S11	512	513	514	515	516	217	518	519	520	521	522	573	524	575	526	527	228
NUMBER S				_	-				-			-	-		-		-	-	_			-		-				-	-				-	_	_
Tpcu NC	-	. =	8	81	81	81	81	8	81	8	81	81	81	81	81	8	81	85	28	28	85	85	85	85	85	85	28	85	82	85	83	85	85	83	83
Tinj ('F)	975	679	8/6	976	8/6	981	976	626	981	980	980	981	885	981	186	986	83	676	086	8/6	983	975	984	975	981	8/6	974	976	116	975	973	971	970	6/3	2.15
T3 (.F)	671	762	762	762	2,63	764	764	764	764	763	764	764	762	762	762	762	187	89/	167	89/	89/	768	69/	768	770	768	767	768	89/	766	89/	697	171	772	774
11 (F)	1402	1603	1604	1603	1607	1610	1610	1610	1609	1609	1612	1610	1603	1602	1603	1601	1618	1626	1621	1625	1625	1625	1631	1625	1634	1625	1620	1625	1623	1615	1623	1626	9691	8891	1642
('F')	247	242	242	242	242	242	242	242	241	241	241	241	241	240	240	239	241	242	242	242	242	242	243	242	243	242	241	242	242	242	242	242	243	243	243
799 ('F)	800	899	868	899	899	868	838	866	897	897	868	888	868	897	897	868	893	894	894	893	895	894	895	868	868	866	894	894	863	894	893	892	891	889	883
1vf (F)	217	218	218	218	218	217	218	218	218	217	217	217	218	218	218	217	219	219	219	219	220	220	220	220	220	219	219	219	220	519	220	221	222	573	224
P/FLOW (J/Kg)	33114400	33461700	33460200	33219500	33053600	33126300	33128000	33422900	33342200	33343600	33175800	33156400	33160700	33475000	33373300	33330700	33933400	33958200	34215600	33889300	34153900	33773100	34568900	34060800	34236000	34027400	34217100	34144700	34375300	33843000	33880500	34619700	34527800	3.1844000	35426600
ARC EFF	31	32.01	31.99	31.80	31.68	31.74	31.61	31.89	31.82	37.05	31.61	31.69	31.77	31.96	31.95	31.52	31.45	31.54	31.74	31.47	31.69	31.29	31.95	31.49	31.43		31.59	31,57		31.76	31.55	31,80	31.37		31.53
PCU EFF	88 23	88.43	88.43	88.41	88.20	88.13	88.32	88.34	88,33	88.01	88.27	88.15	88.34	88.47	88.45	09.88	88.33	87.99	88.10	16.78	88.04	88.01	87.89	88.23	87.93	88.06	88.43	88.19	88.15	88.44	87.99	88.03	87.79	87.79	87.76
PCU POWER (WATTS)	1246 99	1249.94	1249.36	1249.29	1247.61			1249.61	1249.75	1245.29	1249.19	1247.45	1247.71	1348.61	1248.36	1249.30			1248.11	1246.86	1248.19	1248.00	1247.74	1249.57	1248.90	1248,00	1251.54	1249.64	1249.14	1251.67	1247.66	1248.46	1246.42	1247.25	1246.94
ARC POWER (WATTS)	1240 73	1243.64	1243.09	1243.00	1241.26	1240.64	1243.64	1243.24	1243,35	1738.95	1242.78	1241.08	1241.48	1242.40	1242.14	1243.09	1244.11	1240,64	1241.62	1240.36	1241.63	1241.42	1241.06	1242.98	1242.16	1241.43	1245,08	1243.09	1242.60	1245,17	1241.04	1241.82	1539.67	1240,45	1240.12
ARC CURRENT (AMPS)	13 19	13.23	13.19	13.21	13.29	13,33	13.31	13.31	13,33	13.26	13.34	13.30	13.16	13.14	13.14	13.14	13.46	13.52	13.42	13.44	13.51	13.52	13.63	13,55	13.68	13.51	13,39	13.49	13.48	13.43	13.55	13.58	13.70	13.74	13.77
ARC VOLTAGE (VOLTS)	7U V6	93.99	94.22	94.07	93.47	93.07	93.45	93.40	93.27	93.40	93.17	93.32	94.34	94.56	94.55	94.62	92.40	91.78	92.49	92,30	91.93	91.82	91.06	91.78	90.78	91.92	95.36	92.17	52.17	92.72	91.57	91.44	90.47	90.28	20.07
INPUT POWER (WATTS)	1413 34	1413.55	1412.82	1413.08	1414.51	1414.95	1415.26	1414.57	1414.86	1414.98	1415.23	1415.19	1412.34	1411.32	1411.38	1410.09	1415.91	1417.44	1416.63	1417.45	1417.77	1418.04	1419.67	1416.21	1420.32	1417.21	1415.26	1416.95	1417.09	1415.29	1418.01	1418.24	1419.74	1420,81	1420.79
INPUT CURRENT (AMPS)	76 44	44.38	44.35	44.36	44.40	44.44	44.45	44.41	44.44	44.41	44.44	44.44	44.37	44.33	44.29	44.26	44.46	44.51	44.45	44.49	44.50	44.48	44.56	44.43	44.60	44.50	44.47	44.48	44.52	44.43	44.52	44.56	44.58	44.61	44.61
INPUT VOLTAGE (VOLTS)	31 94	31.85	31.86	31.85	31.86	31.84	31.84	31.86	31,83	31.87	31.85	31.84	31.83	31.83	31.87	31.86	31.85	31.85	31.87	31.86	31.86	31.88	31.86	31.87	31.85	31.85	31.83	31.85	31.83	31.85	31.85	31.82	31.85	31.85	31.85
DATE	01/04/60	06/90/10	01/06/90	01/09/10	01/06/90	06/90/10	01/06/90	01/01/90	01/02/00	01/03/90	01/03/90	06/20/10	01/02/10	01/01/00	01/02/90	01/02/40	01/01/30	01/07/90	01/02/10	01/0//0	01/01/10	01/01/40	01/0//00	01/08/30	01/08/90	01/08/40	01/08/30	01/08/30	01/08/30	01/08/90	01/08/90	39 01/08/90	52 01/08/90	01/08/90	01/08/90
SAMP	5.58			651	985 (713 (775 (908	837 (899 (930 (196	992 (1018	31 (95 (93 (124 (372 (403 (13	58	39	52	92 (78
RUN	300-30	329-39	329-39	379-39	329-39	329-39	356-36	356-36	329-39	329-39	329-39	329-39	356-36	329-39	329-39	329-39	329-40	329-40	329-40	329-40	329-40	329-40	329-40	329-40	329-40	329-40	329-40	329-40	329-40	329-43	329-43	329-43	329-43	329-43	329-43

LPAJ NASA LEWIS (121581-4840) LIFE IESI NASA S/N 002 IN CH. 11

(Pf-Pc)/Flow ² (PSI-SEC ² / LBM ²)	2.161E+10 2.132E+10	2.118€+10	2,133E+10 2,137E+10	2.155E+10	2.163E+10	2.179E+10 2.140E+10	2.157E+10	2.136E+10	2.158E+10	2.167E+10	2.176E+10	2.206E+10	2.150E+10	2.186E+10	2.179E+10	2.171E+10	2.153E+10	2.201E+10	2.183E+10	2.142E+10	2.194E+10	2.193E+10	2.206E+10	2.154E+10	2.1496+10	2.211E+10	2.179E+10	2.1878 +10	2.1/2E+10	2.169E+10	2.172E+10	2.210E+10
Pc/Flow (PSIA-SEC/ LBM)	655104	654369	65/02/	6333363	635120	638150	632997	632061	633269	996969	639439	641066	634650	068689	639085	637925	632239	646455	644711	637131	645508	643597	646068	641702	641240	647872	641890	641900	938859	641146	641866	645681
REL. Rough (PSIA)	2.30	2.33	2.43	2.39	2.33	2.06	2.36	2.46	2.32	2.38	2.33	2.37	2.33	2.24	2.15	2.37	2.44	2.22	2.07	2.03	2.09	2.14	1.94	2.13	2.38	2.44	2.28	2.22	2.45	2.50	2.44	2.61
1SP (SEC)	481.9	481.5	485.8	471.0	471.4	473.5	471.5	470.0	471.2	471.5	472.4	476.8	471.1	474.0	474.1	473.4	470.8	475.3	473.8	468.6	474.8	475.0	476.1	472.2	471.1	477.1	473.6	474.4	472.2	474.4	473.4	475.8
CUM IMPULSE (18F-SEC)	77985 78118	78251	78515	78654	78793	78931	79209	79347	79485	79623	79761	79900	80038	80176	80314	80453	80591	80729	29808	81005	81142	81281	81418	81557	81695	81832	81970	82108	82245	87384	82521	82,659
CUM IMPULSE IMPULSE ISP (1.BF-SEC)(LBF-SEC)	134.2 133.1	132.9	137.1	139.1	138.9	138.8	138.6	138.6	138.3	138.1	137.9	138.3	138.3	138.0	138.3	138.3	138.1	137.8	138.0	137.9	137.9	138.1	137.9	138.2	138.0	137.8	137.8	137.7	137.5	138.2	137.7	137.3
THRUST (LBF)	0.03693	0.03657	0.03613	0.03830	0.03823	0.03821	0.03814	0.03815	0.03808	0.03801	0.03797	0.03808	0.03808	0.03800	0.03806	0.03807	0.03802	0.03794	0.03799	0.03795	0.03796	0.03801	0.03795	0.03804	0.03799	0.03793	0.03793	0.03791	0.03786	0.03803	0.03791	0.03780
Pc (PSIA)	50.2 50.1	49.7	49.2	51.5	51.5	51.5	51.2	51.3	51.2	51.3	51.4	51.2	51.3	51.3	51.3	51.3	51.3	51.6	51.7	51.6	51.6	51.5	51.5	51.7	51.7	51.5	51.4	51.3	51.3	51.4	51.4	51.3
CUM FUEL USED (18M)	174.54	175.09	175.63	175.93	176.22	176.52	177.11	177.40	177.69	177.99	178.28	178.57	178.87	179.16	179.45	179.74	180.03	180.33	180.62	180.91	181,20	181.50	181.79	182.08	182.37	182.66	187.95	183.24	183,53	183,87	184.11	184.40
FUEL USED (LBM)	0.28	0.28	0.27	0.29	0.30	0.39	0.30	0.29	0.29	0.29	0.29	67.0	0.29	0.29	0.29	0.29	0.29	0.29	62.0	0.29	0.30	0.29	67.0	0.39	0.29	0.29	67.0	0.29	0.29	0.7.0	0.29	62.0
FI.0W (18M/SEC)	0.0000766	09/0000.0	0.0000/30	0.0000813	0.0000811	0.00000807	0.0000809	0.0000812	0.0000808	9080000.0	0.0000804	0.0000799	0,0000808	0.0000802	0.0000803	0.0000804	0.0000808	0.0000798	0,0000000	0.0000810	0,0000799	0.000000.0	0.0000797	9080000.0	9080000'0	0.0000795	0.0000801	66/0000.0	0,0000802	0.0000802	0.0000801	0.0000795
Pf (PSIA)	177.1	171.9	167.4	194.0	193.7	193.4	197.3	192.0	192.1	192.1	192.0	191.9	191.8	191.8	191.7	191.7	191.7	191.8	192.1	192.1	8.161	191.9	191.7	191.5	191.4	191.2	1.191	191.0	6.061	190.8	190.7	190.8
CUM ON TIME (HR)	527.9	529.9	531.9	532.9	533.9	534.9	537.0	538.0	539.0	540.0	541.0	542.0	543.0	544.0	545.0	546.0	547.1	548.1	549.1	550.1	551.1	552.1	553.1	554.1	555.1	556.1	557.1	558.2	559.2	2.093	561.2	567.2
CUM ON TIME (MIN)	31673.0 31733.5	31794.1	31915.2	31975.7	32036.3	32096.8	32217.9	32278.5	32339.0	32399.6	32460.1	32520.7	32581.2	32641.8	32702.3	32762.9	32823.4	32883.9	32944.5	33005.0	33065.6	33126.1	33186.7	33247.2	33307.8	33368.3	33128.9	33489,4	33550.0	33610.5	33671.1	33731.6
ON TIME (MIN)	60.5 60.5	60.5	60.5 5.09	60.5	9.09	5.09	60.5	60.5	60.5	60.5	60.5	9.09	60.5	60.5	60.5	9.09	60.5	60.5	60.5	60.5	60.5	60.5	60.5	60.5	8.09	60.5	60.5	60.5	60.5	60.5	60.5	60.5
DATE	01/06/60	01/06/90	01/04/90	06/60/10	01/09/90	01/09/90	06/60/10	01/06/60	01/09/90	06/60/10	01/10/90	01/10/90	01/10/90	01/10/90	06/01/10	01/10/90	06/01/10	01/10/90	01/10/90	01/10/90	01/10/90	01/10/90	01/10/90	01/10/90	01/10/90	01/10/90	01/11/30	01/11/90	01/11/30	01/11/90	01/11/30	01/11/90
SAMP #	91 0 104 0		143 0			39 0			91 0	104 0						182 0			221 0	234 0		260 0		286 0	299 0	312 0	325 0	338 0	351 0	364 0	377 0	390 0
RUN	329-43 329-43	329-43	329-43	329-44	329-44	329-44	329-44	329-44	329-44	329-44	329-44	329-44	329-44	329-44	329-44	329-44	329-44	329-44	329-44	329-44	329-44	329-44	329-44	329-44	329-44	329-44	37.	329 44	329-44	329-44	329-44	329-44

START NUMBER	529	23 153	532	533	534	535	536	538 538	539	540	541	545	543	244	545	246	547	548	549	220	551	552	233	554	555	556	557	558	559	280	261	262	263
NUMBER STARTS P	 .			-					-		_	-	-	_			-	_			-			,			-	_	-		-	_	_
Tpcu N	83	8 6	5 8	84	8	28	28	26	28	82	28	85	28	85	28	85	83	85	85	83	83	83	83	æ :	83	83	83	85	83	83	83	85	83
Tinj (T.)	971	494	64	196	973	974	4/4	973	973	973	974	974	974	474	926	974	975	972	973	973	973	972	9/3	9/4	456	957	9/6	086	382	988	696	985	616
13 (F)	776	8//	778	780	7.65	765	(6)	99/	766	747	89/	169	767	767	768	187	167	768	769	49/	69/	769	/6/	69/	89/	769	769	768	767	3,48	167	89/	69%
(F.)	1651	1658	1655	1663	1613	1614	1616	1614	1614	1617	1623	1629	1617	1616	1622	1616	1616	1617	1625	1626	1622	1624	1621	1623	1620	1624	1621	1615	1613	1616	1613	1615	1620
Tcon (F)	244	244	244	244	240	242	242	242	241	241	242	242	241	241	242	242	241	242	242	242	243	243	243	242	242	242	242	241	241	241	241	241	741
661 (4.)	888	/88	88	883	893	894	893	893	893	892	892	892	892	893	892	892	892	90	891	892	891	893	892	861	893	894	892	168	890	883	892	889	893
Tvf (F)	725	335	225	227	218	219	219	0.77 2.70 2.70 2.70	221	516	220	220	220	221	220	220	221	223	220	220	221	223	221	<u>ਹ</u>	246	248	248	3.46	546	747	247	249	122
P/FLOW (J/Kg)	35705400	35/60200	36424500	36775744	33727700	33749400	33960400	33/28100	33786000	33901700	33933200	34046200	34347300	33882100	34161100	34082200	33942700	33898700	34280500	34076500	33841800	34325600	34288900	34323400	34099200	33898600	34468900	34758900	34334000	34160600	34199500	34166200	34488300
ARC	31.31	30.97	31.02	32.71	31.67	31.70	31.78	31.41	31.47	31.52	31.54	31.55	31.86	31.53	31.66	31.74	31.79	31.48	31.73	31.71	31.24	31.62	31.67	31.79	31.47	31.43	31.79	31.52	31.55	31.42	31.68	31.58	31.59
PCU EFF	87.72	87.49	87.56 87.56	87.63	88,35	88,10	88.18	27.88	88.29	88.13	16.78	87.84	88.19	88.01	87.94	87.97	17.78	80.88	87.93	87.77	88.02	88.09	88.13	87.90	62.88	88.09	88.01	88.24	88.24	87.99	88.14	87.94	87.99
PCU POWER (WAITS)	1247.77	1245.32	1246.48	1247.52	1250,10	1247.50	1249.41	1250.18	1250.03	1248.96	1247.13	1247.82	1750.55	1248.57	1248.60	1247.20	1244.36	1248.02	1247.54	1245.88	1749.59	1251.02	1250.88	1247.38	1252.50	1249.73	1249.21	1250.59	1250.87	1248.66	1749.88	1747,78	1249.74
ARC POWER (WATTS)	1240.86	1238.31	1239.51	1240,45	1243.76	1241.11	1242.93	1243./3	1243.61	1242.48	1240.59	1241.15	1244.09	1242.06	1242,04	1240.73	1237.90	1241.52	1240.93	1239.29	1242.98	1244.39	1244.34	1240.82	1245.93	1243.14	1242.62	1244.13	1244.41	1242.15	1243.47	1240.81	1242.68
ARC CURRENT (AMPS)	13.86	13.95	13.70	14.01	13.27	13.32	13.42	13.39	13.35	13.42	13,48	13.60	13,40	13.45	13.50	13.41	13,39	13,43	13.55	13.53	13.56	13.57	13.47	13.50	13.51	13.53	13.53	13.39	13.39	13.45	13.39	13.41	13.50
ARC VOLTAGE (VOLTS)	89.53	88.76	89,11	88.54	93.71	93.18	92.64	92.91	93.15	92.61	92.02	91.24	92.81	92,38	91.99	92.51	92.44	97.42	91.58	91.59	91.69	61.69		91.89		91.88	91.86	92.89	65.53	92.35	92.85	97, .56	47.07
INPUT POWER (WATTS)	1422.39	1423.34	1423.49	1423.71	1415.00	1416.00	1416.89	1417.16	1415.87	1417.12	1418.60	1420.56	1418.11	1418.64	1419.77	1417.69	1417.71	1417.00	1418.84	1419.55	1419.76	1420.17	1419.30	1419.06	1418.69	1418.63	1419.47	1417.26	1417.52	1419.05	1418.08	1418.35	1419.79
INPUT CURRENT (AMPS)	44.66	44.69	44.63	44.69	44.44	44.46	44.49	44.51	44.45	44.51	44.58	44.60	44.52	44.53	44.59	44.54	44.55	44.49	44.57	44.56	44.56	44.61	44.59	44.58	44.58	44.58	44.59	44.54	44.54	44.56	44.53	44.55	44.58
INPUT VOL TAGE (VOLTS)	31.85	31.85	31.86	31.85	31.84	31.85	31,85	31.84	31.85	31.84	31.82	31.85	31.85	31.86	31.84	31.83	31.82	31.85	31.84	31.86	31.86	31.84	31.83	31.83	31.83	31.82	31.83	31.82	31.83	31.84	31.85	31,83	31,85
DATE	01/06/60	06/60/10	01/09/90	01/00//0	06/60/10	01/06/60	06/60/10	01/09/90	01/04/10	01/09/90	01/09/90	01/10/90	01/10/90	01/10/90	01/10/90	01/10/90	01/10/90	01/10/90	01/10/90	01/10/90	01/10/90	01/10/90	01/10/90	01/10/90	01/10/90	01/10/90	01/10/90	01/11/90	01/11/90	01/11/10	01/11/90	01/11/90	01/11/90
SAMP #	_		130		13 (52 (62.		104 (117 (130	143 (156		187	195 (208						982	566	312	325	338			377	
RUN *	329-43	329-43	329-43	379-43	329-44	329-44	329-44	329-44	329-44	329-44	329-44	329-44	329-44	329-44	329-44	329-44	329-44	329-44	329-44	329-44	329-44	329-44	329-44	329-44	329-44	329-44	329-44	329-44	379-44	379-44	379-44	329-44	17-6CE

LPAJ NASA LEWIS (121581-4840) LIFE TEST NASA S/N 002 IN CH. 11

(Pf-Pc)/Flow ² (PSI-SEC ² / LBM ²)	2.209E+10 2.217E+10 2.204E+10	2.218E+10 2.200E+10 2.189E+10 2.246E+10 2.246E+10	2.246E110 2.192E110 2.192E110 2.205E110 2.196E110	2.178E+10 2.184E+10 2.189E+10 2.203E+10	2.219E+10 2.230E+10 2.212E+10 2.204E+10	2.171E+10 2.211E+10 2.205E+10 2.188E+10 2.201E+10 2.223E+10	2.23E+10 2.24E+10 2.225E+10 2.225E+10 2.24E+10 2.24E+10
PC/Flow (PSIA-SEC/ LBM)	646622 642025 638072	640750 637215 637168 645440	645720 648720 640247 640247	638389 636779 637457 640530	642169 642169 642541 640075 637715 639374	636135 643079 642897 639162 642928 645113	646739 646839 643795 644938 646702 647048
REL. ROUGH (PSIA)	2.44 1.90 2.33	2.49 2.31 2.37 2.38	2.37 2.39 2.39	2.48	2.60 2.71 2.41 2.19 2.15	2.28 2.30 2.30 2.44 2.50 2.33	2.29 2.29 2.34 2.34 2.35 2.40
ISP (SEC)	476.2 472.2 470.9	472.0 470.6 469.2 475.2	474.8 469.3 470.3	467.6	471.7 473.2 470.5 469.9 470.5	466.6 471.2 471.2 469.6 473.7 473.7	474.3 475.6 473.4 473.6 475.1 476.1
CUM IMPULSE 	82796 82890 83030	83170 83309 83449 83589	83868 84007 84147 84286	84425 84564 84704 84843	84982 85122 85261 85401 85540	85679 85818 85957 86096 86235 86374 86513	86652 86791 86790 87069 87346 87346
CUM CUM CUM CUM CUM CUM CUM CUM	137.5 93.9 139.9	139.7 139.8 139.7 139.6	139.4 139.5 139.3	139.2 139.4 139.4	139.3 139.7 139.4 139.5	139.1 139.0 139.0 139.1 139.0	138.9 138.9 139.0 138.8 138.9
THRUST (LBF)	0.03785 0.03847 0.03852	0.03848 0.03848 0.03844 0.03843	0.03839 0.03839 0.03834 0.03834	0.03831 0.03832 0.03837 0.03833	0.03834 0.03844 0.03837 0.03839	0.03829 0.03827 0.03828 0.03828 0.03825 0.03825	0.03821 0.03823 0.03873 0.03826 0.03820 0.03826
Pc (PSIA)	51.4 52.3 52.2	52.2 52.1 52.2 52.2	52.2 52.2 52.2 52.3	\$2.3 \$2.1 \$2.1	52.2 52.2 52.2 52.2 52.1	52.2 52.2 52.2 52.1 52.1 52.1	52.1 52.0 52.0 52.1 52.0 52.0 52.0
CUM (18H)	184.69 184.89 185.19	185.49 185.79 186.08 186.38	186.97 187.27 187.56 187.56	188.16 188.46 188.75	189.35 189.64 189.94 190.23	190.83 191.12 191.42 191.71 192.01 192.31	192.89 193.19 193.48 193.77 194.07 194.65
FUEL USED (18M)	0.29	0.30	0.30	0.30	0.30 0.30 0.30 0.30	0:30	0.29 0.29 0.29 0.29 0.29
FLOW (LBM/SEC)	0.0000795 0.0000815 0.0000818	0.0000815 0.0000818 0.0000819 0.0000809	0.0000808 0.0000818 0.0000815	0.0000819 0.0000818 0.0000817	0.0000813 0.0000812 0.0000816 0.0000817 0.0000815	0.0000821 0.0000812 0.0000815 0.0000815 0.0000808	0.0000804 0.0000808 0.0000808 0.0000808 0.0000804 0.0000804
pf (PSIA)	191.0 199.4 199.7	199.4 199.2 199.1 199.1	199.0 198.9 198.8 198.8	198.3 198.3 198.3	198.8 199.4 199.3 199.2	198.4 197.9 197.6 197.5 197.3	197.0 197.0 197.0 197.0 196.9 196.9
CUM ON TIME (HR)	563.2 563.9 564.9	565.9 566.9 567.9 568.9	570.9 572.0 573.0 574.0	575.0 576.0 577.0	579.0 579.0 580.0 581.0 582.0	584.1 585.1 586.1 587.1 588.1 589.1	591.1 592.1 593.1 594.2 595.2 595.2 597.2
CUM ON TIME (MIN)	33792.2 33832.8 33893.4	33953.9 34014.5 34075.0 34135.6	34256.7 34317.2 34377.8 34377.8	34498.8 34559.4 34619.9	34741.0 34801.6 34862.1 34922.7 34983.2	35043.8 35104.3 35164.9 35225.4 3526.0 35346.5	35467.6 35528.2 35588.7 35649.3 35709.8 35770.4
ON TIME (MIN)	60.5 40.7 60.5	60.6 60.6 60.6 60.6	60.5 60.5 60.6 60.6	60.6 60.6 60.5 60.5	60.5 60.5 60.5 60.5 60.5	60 60 60 60 60 60 60 60 60 60 60 60 60 6	60.5 60.5 60.5 60.5 60.5 60.5 60.5
DATE	01/11/90 01/11/90 01/11/90	01/11/90 01/11/90 01/11/90 01/11/90	01/11/90 01/11/90 01/12/90 01/12/90	01/12/90 01/12/90 01/12/90 01/12/90	01/12/90 01/12/90 01/12/90 01/12/90	01/12/90 01/12/90 01/12/90 01/12/90 01/13/90 01/13/90	01/13/90 01/13/90 01/13/90 01/13/90 01/13/90 01/13/90
SAMP #			35 0 40 0 45 0				255 0 268 0 268 0 281 0 274 0 370 0 333 0
RUN	329-44 329-44 329-45	329-45 329-45 329-45 329-45	329-45 329-45 329-45 329-45	329-45 329-45 329-45 329-45	329-45 329-45 329-45 329-45 329-45	329-45 329-45 329-45 329-45 329-45 329-45	329-45 329-45 329-45 329-45 329-45 329-45

START	564	363 566	267	895	269	570	571	572	5.72	575	276	21.1	578	579	280	581	285	583	584	282	286	287	288	283	590	591	592	293	594	595	206	597	598
NUMBER SI STARTS NU			_		_	<u></u> .	<u> </u>					-		_	_	_		_	_	_		_	_		-	_	-		_			_	_
Tpcu MU	83	æ æ	28	28	85	28	జ	28 8	70 20	7 &	28	85	85	85	28	85	85	83	85	85	81	85	85	87	28	85	28	85	28	85	85	85	မွ
Tinj	679	781 975	981	086	186	981	781	285	107	80%	98	8/6	626	6/6	626	6/6	6/6	086	6/6	616	8/6	8/6	6/6	978	8/6	8/6	626	6/6	8/6	616	6/6	6/6	626
T3 (.F.)	692	/64 763	764	292	764	764	764	766	77,	99/	191	765	765	765	764	763	764	764	766	765	99/	765	765	99/	99/	765	766	765	765	765	765	765	765
E (E.)	1621	1603	1603	1599	1604	1604	0091	1608) 191	1,604	1614	9091	1605	1603	1600	1297	1601	1299	1606	1602	1606	1604	1603	9091	1605	1603	1606	1602	1602	1601	1600	0091	1602
Tcon ('F)	241	236	240	240	241	241	241	242	747	2 4 2	242	242	241	241	241	245	242	242	242	242	242	242	242	242	242	242	242	242	242	242	242	343	242
799 (F)	892	894	893	268	892	892	892	892	073	7/0	892	891	892	892	892	892	892	892	892	892	892	892	892	893	893	892	892	892	892	893	863	168	
(F.)	221	219	219	219	220	221	221	222	777	333	222	222	222	222	223	223	223	224	224	224	224	224	224	* 27	224	224	124	223	224	224	224	224	224
P/FLOW (J/Kg)	34466700	33555300 33502800	33610100	33512800	33496400	33901600	33733700	33820000	3371700	33626200	33432500	33480600	33501600	33504000	33700000	33696000	33499100	33619200	33627700	33372200	33709600	33736800	33653100	33773800	33986100	33791100	34027700	34077400	33915600	33890700	34024900	34090300	33840200
ARC EFF	31.66	31.89	31.91	31.81	31.64	32.06	31.96	32.09	31.03	31.00	31.49		31.67	31.78	31.78	31.99	31.81	31.61	31.68	31.41	31.74					31.78	31.83	31.94	31.80	31.86	31.93		31.78
PCU	94.78	88.32 88.24	88.09	88.32	88.28	88.15	88.26	88.03	82.88 00 22	27.00	88.11	88.25	88.22	86.78	88.31	88.37	88.07	88.62	98.36	88.30	88.12	88.21	88.33	88,26	88,37	88.11	88.32	88.38	88.37	88.32	88.24	88,35	88.26
PCU POWER (WATTS)		1249.72 t 1249.33 t							1046.78					1244,58	1248.64	1247.72		1251.88		1248.23	1247.31						1249.52	1248.70	1248.64	1247.92			1247.97
ARC POWER (WATTS)	1242.52	1243.39 1243.01	1241.77	1242.66	1244.53	1243.44	1242.70	1239.92	1543.71	1245.04	1242.16	1242,32	1241.78	1238.28	1242.35	1241.48	1238.98	1245.63	1242.72	1241.93	1240.94	1242,29	1244.06	1243.60	1244.78	1241.21	1243.18	1242,41	1747.35	1241,64	1240.75	1247.48	1241.63
ARC CURRENT (AMPS)	13.46	13.26	13.24	13.19	13.27	13.30	13,25	13.33	13.31	13.37	13.41	13.29	13.25	13.23	13.72	13.16	13.20	13.18	13.25	13.23	13.30	13.31	13.29	13.32	13.78	13.24	13.27	13.22	13.21	13.22	13.20	13.20	13.28
ARC VOL TAGE (VOL TS)	92.29	93.77	93.82	94.19	93.77	93.48	93.81	93.01	73.43	17.03	97.64	93.46	93.71	93.57	93.98	94.34	93.89	94.50	93.78	93.87	93.31	93.31	93.58	93,35	93.71	93.78	69.66	93.98	\$4.03	93.95	93.98	94.10	93.52
INPUT POWER (WATTS)	1419.96	1414.92	1416.78	1414.15	1416.96	1417.88	1415.12	1415.80	1415.49	1416.00	1417.07	1414.91	1414.80	1414.64	1413.98	1411.89	1413.90	1412.62	1413.54	1413.58	1415.50	1415.63	1415.62	1416.26	1415.84	1415.89	1414.71	1412.92	1412.99	1413.02	1413.22	1413,46	1413.97
INPUT CURRENT (AMPS)	44.57	44.44	44.47	44.36	44.46	44.49	44.38	44.42	44.42	44.47	44.49	44.42	44.41	44.43	44.38	44.30	44.41	44.32	44.36	44.36	44.42	44.45	44.42	44.45	44.43	44.41	44.42	44.34	44.33	44.33	44.31	44,33	44.34
JNPUT VOLTAGE (VOLTS)	31.86	31.84	31.86	31.88	31.87	31.87	31.88	31.87	31.8/	31.83	31.85	31.86	31.86	31.84	31.86	31.87	31.84	31.88	31.87	31.86	31.86	31.85	31.87	31.86	31.87	31.88	31.85	31.87	31.88	31.88	31.89	31.89	31.89
DATE	33	5 01/11/90	0 01/11/90	5 01/11/90	20 01/11/90				40 01/12/90	40 01/12/90				86 01/12/90				138 01/12/90		164 01/12/90	177 01/12/90	190 01/12/90	203 01/12/90	216 01/13/90	29 01/13/90	242 01/13/90	255 01/13/90	268 01/13/90	281 01/13/90	294 01/13/90	307 01/13/90	320 01/13/90	333 01/13/90
SAMP																													•				
RUN	329-44	329-44	329-45	329-45	329-45	329-45	329-45	329-45	329-45	37.9-65	329-45	329-45	329-45	329-45	329-45	329-45	329-45	329-45	329-45	329-45	329-45	329-45	329-45	329-45	329-45	329-45	329-45	329-45	329-45	329-45	329-45	329-45	329-45

LPAJ NASA LEWIS (121581-4840) LIFE TEST NASA S/N 002 IN CH. 11

(Pf-Pc)/Flow ² (PSI-SEC ² / LBM ²)	2.239E+10 2.203E+10 2.216E+10	2.203E+10 2.265E+10	2.240E+10 2.240E+10	2.221E+10 2.180E+10	2.227F:10	2.255E+10	2.224E+10	2.22/E+10 2.222E+10	2.243E+10	2,283E+10	2.252E+10 2.252E+10	2.232E+10	2.221E+10	2.248€+10	2.246E+10	2.223E+10 2.249E+10	2.258E+10	2.273E+10	2.281E+10	2.286E+10	2.272E+10	2.214E+10	2.246E+10	2.267E+10	2.235E+10	2.244E+10
(Pf-Pc (PSI LB	7 7 7	. 60 63	2 2	2 63		4 (4	.,	7 (.,	,	. •										. •	
PC/Flow (PSIA-SEC/ LBM)	647253 640702 643015	642916 653497	650103 650354	647828 643249	650376	655959	649262	653678	658022	664762	659210	655030	654960	657437	655810	650932	656314	657178	656947	960959	657604	652797	657716	\$66099	654717	655912
REL. ROUGH (PSIA)	2.36	2.59	2.43	2.41	2.27	2.49	2.47	2.00	2.05	2.05	2.00	2.07	2.00	2.23	2.19	2.16	2.27	2.01	2.01	2.27	2.41	1.95	1.94	2.18	2.0/	2.08
1SP (SEC)	474.8 470.8 472.6	470.8	475.3 474.8	472.7	473.3	475.9	472.9	477.4	480.0	484.6	481.6	479.9	478.4	481.1	481.1	479.1	481.7	480.6	481.1	479.7	480.9	477.8	481.3	483.4	480.2	481.0
CUN INPULSE LBF-SEC)	87624 87763 87902	88040 88179	88318 88456	88595 88733	88871	89148	89210	69E68	89505	89640	89776	90047	90183	90319	90454	90590	90861	96606	91131	91264	91399	91534	69916	91804	91939	92074
CUM CUM CUM CUM CUM CUM	138.8 138.8	138.6 138.8	138.7 138.5	138.4	138.3	138.1	62.3	135.9	135.7	135.6	135.6	135.8	135.6	135.6	135.7	135.8	135.4	134.7	134.6	133.9	134.5	135.0	135.0	135.0	135.1	135.1
THRUST (18F)	0.03822 0.03821 0.03822	0.03815	0.03817	0.03809	0.03806	0.03802	0.03810	0.03//3	0.03735	0.03732	0.03733	0.03737	0.03733	0.03732	0.03734	0.03739	0.03729	0.03708	0.03705	0.03685	0.03701	0.03718	0.03717	0.03/15	0.03719	0.03718
Pc (PSIA)	52.1 52.0 52.0	52.1 52.2	52.2 52.2	52.2 52.3	52.3	52.4	52.3	Y :-	51.2	51.2	-: S	51.0	51.1	51.0	50.9	80.8 0.12	50.8	50.7	50.6	50.4	50.6	50.8	50.8	50.8	50.7	50.7
CUM (18H)	194.95	195.83	196.41	197.00	197.58	198.17	198.30	198.35	198.92	199.20	199.48	200.04	200,33	200.61	200.89	201.17	201.74	202.02	202.30	202.58	202.86	203,15	203.43	203.71	203.99	204.27
FUEL USED (LBM)	0.29	0.29	0.79	0.29	0.29	67.0	0.13	0.05	0.28	0.28	0.28	0.78	0.28	0.28	0.28	0.28	0.28	0.28	0.28	0.28	0.28	0.28	0.28	0.28	0.28	0.78
FLOW (18M/SEC)	0.0000805 0.0000812 0.0000809	0.0000810	0.0000803	0.0000806	0.0000804	0,0000000	9080000.0	0.0000789	0.0000778	0.0000770	0.0000775	0.0000.0	0.0000780	0.0000776	0.0000776	0.0000780	0.0000774	0,0000771	0.0000070	0.0000768	0,0000/69	0,0000778	0.0000772	692000000	0.0000774	0,0000773
Př (PSIA)	197.2	196.8	196.6 196.5	196.4	196.3	196.3	9.961	189.9	187.0	186.6	186.4	186.3	186.3	186.3	186.2	186.2	186.1	186.0	185.9	185.3	185.1	184.9	184.8	184.7	184.7	184.8
CUM ON TIME (HR)	598.2 599.2 600.2	601.2	603.2 604.2	605.3	607.3	609.3	2.609	609.9	611.9	612.9	614.0	616.0	617.0	0.818	619.0	620.0	622.0	623.0	624.0	625.1	626.1	627.1	628.1	629.1	630.1	631.1
CUM ON TIME (MIN)	35891.4 35952.0 36012.5	36073.1	36194.2 36254.7	36315.3	36436.4	36557.5	36584.7	36594.9	36716.0	36776.5	36837.1	36958.2	37018.7	37079.3	37139.8	37200.4	37321.5	37382.0	37442.6	37503.1	37563.7	37624.2	37684.8	37745.3	37805.9	37866.4
ON TIME (MIN)	60.5 60.5	60.5	60.5	60.5	60.5	60.5	27.2	10.1	60.5	60.5	60.5	60.5	60.5	60.5	\$.09	60.5	60.5	60.5	60.5	60.5	60.5	60.5	60.5	60.5	60.5	5.09
DATE	01/13/90 01/13/90 01/13/90	01/13/90	01/13/90	01/14/90	01/14/90	01/14/90	01/14/90	01/14/90	01/14/90	01/14/90	01/14/90	01/14/70	01/14/90	01/14/90	01/14/90	01/15/90	01/12/70	01/15/90	01/12/90	13 01/15/90	01/12/90	01/12/90	01/12/90	65 01/15/90	01/15/90	01/12/90
SAMP #	346 0 359 0 372 0			437 0		4/6 0		498 0			550 0			602 0	615 0	929) /99	089	13 (36 (52 (65 t		91 (
RUN	329-45 329-45 329-45	329-45 329-45	329-45 329-45	329-45 329-45	329-45	329-45	329-45	329-45	329-45	329-45	329-45	329-45	329-45	329-45	329-45	329-45	329-45	329-45	329-45	379-46	329-46	329-46	329 - 46	329-48	359-46	379-46

START	899	109	805	603	604	909	909	709	809	609	019	611	612	613	614	615	919	617	818	619	620	621	622	623	624	625	979	129	829	629	630	169	789	££9
STARTS !		-		_	-	-	-		_		_	-	_	-	-	_	-		_				-	_	-	•	-			-		_	_	-
Tpcu N	82	82	85	85	83	85	82	85	85	85	85	11	73	83	83	83	83	83	83	83	83	83	83	83	83	83	83	85	83	83	83	83	83	83
Tinj ('F)	979	980	980	981	980	626	086	983	984	885	885	980	696	385	982	385	980	626	980	980	616	177	8/6	789	1000	1007	1008	1012	1008	385	981	981	086	980
T3 ('F)	766	765	766	99/	766	99/	167	797	768	768	769	99/	764	773	174	774	773	772	773	773	112	112	111	772	773	174	775	176	7/5	774	774	774	114	273
= (1)	1605	1091	1605	1602	1604	1604	1608	1610	1611	1614	1618	1611	1615	1632	1632	1634	1630	1627	1628	1629	1827	1626	1620	1624	1625	1632	1633	1636	1631	1631	1630	1631	1629	1629
Tcon ('F)	242	242	243	242	242	242	242	243	243	243	243	223	216	244	244	244	244	243	243	243	243	243	243	243	243	244	243	242	243	243	243	243	243	243
[gg]	892	892	892	893	892	892	892	883	891	891	891	8	881	889	888	888	887	887	888	887	887	887	887	882	882	882	885	188	884	888	888	887	888	888
Tvf (°F)	225	225	222	225	222	225	225	222	222	225	328	221	226	226	227	227	227	137	227	227	77	227	227	528	280	797	262	260	261	97.	226	922	226	962
P/FLOW (3/Kg)	34092100	33836900	33831000	34257500	34153100	34185300	34022000	33758700	34085000	34057100	34282700	33922800	34657900	34945300	35205900	35469300	35293400	35172000	35726600	35097900	35252400	35280200	35130500	35242100	35363100	35433800	35614500	35658600	35706200	35247300	35474800	35691400	35317700	35410100
ARC	31.83	31.78	31.53	32.13	31.84	31.75	31.62	31.29	31.64	31.52	31.80	31.74	31.79	31.43	31.51	31.87	31.63	31.55	31.47	31.40	31.60	31.58	31.45	31.75	31.59	31.38	31,28	31.06	31.18	31.18	31.43	31.51	31.43	31.44
PCU	88.45	88.28	88.35	88.24	88.42	88.43	88.37	88.41	88.22	88.32	88.13	88.35	88.33	87.88	87.93	19.78	87.79	87.85	88.09	88.05	87.94	88.02	88.13	87.87	88.01	87.82	88.09	80.88	88.29	88.13	88.04	88.14	87.84	87.96
PCU POWER (WATTS)	1250.90	1247.22	1249.72	1247.30	1249.98	1250.71	1249.63	1251.21	1249.52	1251.06	1248.49	1245.64	1246.09	1248.00	1249.02	1245.61	1247.40	1247.59	1250.48	1248.52	1246.82	1248.44	1249.93	1245.89	1247.93	1246.40	1250,73	1249.08	1252,64	1250.61	1249.24	1250.67	1246.96	1247.94
ARC POWER (WATTS)	1244.54	1240.98	1243.34	1241.01	1243.68	1744.37	1243.27	1744.80	1243.06	1244.57	1742.01	1239.27	1239.59	1241.32	1242.33	1238.93	1240.74	1241.00	1243.87	1241.88	1240.21	1241.83	1243.38	1239.35	1241.36	1239,74	1244.05	1242,39	1746.00	1243.96	1247.61	1244.01	1240.34	1241,32
ARC CURPENT (AMPS)	13.29	13.17	13.31	13.22	13.23	13.27	13.29	13.35	13.39	13.43	13.42	13.30	13.44	13.62	13.64	13.62	13.60	13.53	13.56	13,58	13.55	13.55	13.49	13.48	13.51	13.59	13.63	13.64	13.58	13.60	13.57	13.60	13.56	13.57
ARC VOLTAGE (VOLTS)	93.68	94.24	93.41	93.88	93.98	93.77	93.54	93.27	92,82	65.69	92.55	93.17	92,25	91.13	91.08	90.93	91.22	91.72	91.78	91.43	91,53	91.66	92.14	91.93	91.88	91.70	66.19	91.12	91,75	91.49	91.57	91.44	91.18	91.50
INPUT POWER (WATTS)	1414.30	1412.85	1414.56	1413.59	1413.75	1414.31	1414.17	1415.29	1416.37	1416.55	1416.59	1409.89	1410.80	1420.14	1420.56	1420.79	1420.90	1420.17	1419.62	1417.90	1417.74	1418.43	1418.30	1417.84	1417.94	1419.21	1419.78	1418.17	1418.79	1419.00	1418.90	1419.03	1419.51	1418.76
INPUT CURRENT (AMPS)	44.36	44.36	44.37	44.36	44.36	44.36	44.37	44.40	44.44	44.46	44.46	44.25	44.35	44.57	44.60	44.61	44.58	44.58	44.55	44.49	44.47	44.51	44.54	44.52	44.51	44.55	44.55	44.49	44.53	44.52	44.54	44.54	44.57	44.53
INPUT VOLTAGE (VOLTS)	31.88	31.85	31.88	31.86	31.87	31.88	31.87	31.87	31.87	31.86	31.86	31.86	31.81	31.86	31.85	31.85	31.88	31.86	31.87	31.87	31.88	31.86	31.85	31.84	31.86	31.86	31.87	31.87	31.86	31.88	31.86	31.86	31.85	31.86
♣ BATE	346 01/13/90			398 01/13/90	411 01/13/90					476 01/14/90	489 01/14/90	495 01/14/90	498 01/14/90	511 01/14/90	524 01/14/90	537 01/14/90	550 01/14/90	563 01/14/90		589 01/14/90	602 01/14/90				654 01/15/90	96/51/10 299	680 01/15/90	13 01/15/90	26 01/15/90	39 01/15/90	52 01/15/90	65 01/15/90	78 01/15/90	91 01/12/90
RUN # SAMP #	329-45 34			329-45 36								329-45 4	329-45 4	329-45 5	329-45 5.		329-45 5.									329-45 61	329 45 6	329-46				329-46	329-46	329-46

LPAJ NASA LEWIS (121581-4840) LIFE TEST NASA S/N 002 IN CH. 11

//Flow ² SEC ² / i ²)	2.261E+10 2.271E+10 2.268E+10	2.274E+10	2.262E+10	2.288E+10	2.280E+10	2.293E+10 2.285E+10	2.193£+10	2.287E+10	2.256E+10	2.31/E+10 2.316F+10	2.312E+10	2.255E+10	2.226E+10	2.253E+10	2.276E+10	2.730E+10	2.265110	2.245E+10	2,288E+10	2.326E+10	2.319E+10	2.233E410	2.210E+10	2.308E+10	2.327E+10	2.345F+10	2.286E+10	2.309£+10
(Pf-Pc)/Flow ² (PSI-SEC ² / LBM ²)	2.2.2			. 2	, 2	7 67	2.	ci (2	7 6	Cu	2	7			7 6			2	2	2	CA	رع	2	ر ۲	C-3	(3)	2
PC/Flow (PSIA-SEC/ LBM)	658536 661872 661605	9061999	086099	664517	661723	65736	947008	657314	969299	659738 660118	601099	655466	654285	690528	962036	659490	6736757	651491	658355	655130	657431	800659	647692	640019	990400	655617	658315	661930
REL. ROUGH (PSIA)	2.00	1.99	2.22	2.08	2.05	2.10	2.21	2.13	2.35	2.61	2.83	2.92	2.81	2.84	2.79	2.38	7.34 0. c	2.90	2.36	2.23	2.40	2.26	2.18	2.49	2.69	2.73	2.66	2.74
ISP (SEC)	482.6 483.8 483.5	484.1	482.2	4/8.0	483.9	482.8	474.8	483.1	479.8	484.0	483.3	479.6	480.4	482.2	484.0	484.8	6,8/4	476.6	483.4	479.7	481.4	476.1	474.3	483.6	485.4	482.6	483.6	486.0
CUM LIMPULSE LBF-SEC)	92209 92344 92479	92614	92883	93152	93286	93420	68986	93824	93959	94094	94362	94497	94632	94767	94902	95037	7/164	95442	95578	95711	95845	95980	96115	96249	96384	96517	96652	98/96
CUM IMPULSE IMPULSE ISP CUM CUM CUM	135.0 134.9	134.7	134.5	134.5	134.4	133.8	135.7	135.1	134.9	134.3	134.1	134.5	135.5	135.0	134.9	135.1	134.8	135.0			134.0	134.8	134.9	134.4	134.3		_	134.7
THRUST (LBF)	0.03716	0.03708	0.03702	0.03702	0.03700	0.03682	0.03735	0.03719	0.03714	0.0369/	0.03690	0.03702	0.03730	0.03717	0.03714	0.03/20	0.03711	0.03720	0.03730	0.03676	0.03890	0.03711	0.03713	0.03700	0.03697	0.03666	0.03710	0,03708
Pc (PSIA)	50.7	50.7	50.7	50.7	50.6	50.5 5. 4.	50.9	50.6	50.6	. S . A	50.4	50.6	50.8	50.9	50.8	50.6	. os	50.8	50.8	50.5	50.4	50.9	50.7	50.5	50.3	46.8	50.5	50.5
CUM (LBM)	204.55 204.83 205 11	205.39	205.95	206.51	206.79	207.07	207.63	207.91	208.19	208.47	209.03	209.31	209.59	209.87	210.15	210.43	710.71	211.27	211.56	211.83	212.11	212.39	212.68	212.96	213.24	213.51	213.79	214.07
(LBM)	0.28	0.28	87.0 87.0	0.28	0.28	87.0 0.78	0.28	0.28	0,28	0.28	82.0	0.28	0.28	0.28	0.28	87.0 87.0	\$2.0 0.0	0.28	0.28	0.28	0.78	0.28	0.78	0.78	0.28	0.27	0.28	0.28
FLOW (LBM/SEC)	0.0000770	0.0000766	0.0000768	0.0000//4	0.0000765	0.0000763	0.0000787	0.0000070	0.0000774	0.0000764	0.0000764	0.0000772	0.0000776	0,0000771	0,0000767	0.0000767	0.0000//6	0.0000780	0,0000772	99/0000.0	0,0000767	0.0000779	0,0000,83	0,0000765	0.0000762	09/0000.0	79/0000'0	0,0000763
Pf (PSIA)	184.7	184.1	184.0	184.0	183.9	183.9	9.981	186.1	185.8	185.6	185.2	185.0	185.0	184.8	184.8	184.8	184./	187.3	187.0	186.8	186.7	186.6	186.1	185.6	185.3	185.1	185.0	184.9
CUM ON TIME (HR)	632.1	635.1	637.2	638.2	640.2	641.2	643.2	644.2	645.2	646.2	648.3	649.3	650.3	651.3	652.3	653.3	654.3	656.3	657.3	658.4	659.4	660.4	661.4	662.4	653.4	664.4	665.4	666.4
CUM ON TIME (MIN)	37927.0 37987.5	38108.6	38229.7	38290.3 38350.8	38411.4	38471.9	38593.0	38653.6	38714.1	38774.6	38895.7	38956.3	39016.8	39077.4	39137.9	39198.5	39259.0	39319.6	39440.7	39501.2	39561.7	39622.3	39682.8	39743.4	39803.9	39864.5	39925.0	39985.4
ON TIME (MIN)	60.5	60.5	60.5	60.5 60.5	9.09	60.5	60.5	60.5	80.8	60.5	60.5	60.5	60.5	60.5	60.5	60.5	60.5	60.5	60.5	60.5	60.5	60.5	60.5	60.5	60.5	60.5	60.5	60.5
DATE	01/15/90	01/16/90	06/91/10	01/16/90	01/16/90	01/16/90	01/16/90	01/16/90	01/16/90	01/16/90	01/16/90	91 01/17/90	01/17/90	01/11/90	01/11/90	01/11/10	156 01/17/90	13 01/17/90	01/17/90	01/17/90	01/11/10	01/11/90	06//1/10	01/11/90	01/11/190	01/11/00	06/81/10	01/18/90
SAMP #	104 0			182 C 195 C		221 0				25 (28,2	3 7	104 (117		143 (126	169	9.7	36	25 (92	78	91	104	117	130	143
PUIN *	329-46 329-46	329-46	329-46	329-46 329-46	329-46	329-46	329-49	329-49	329-49	329-49	329-49	329-49	329-49	329-49	329-49	329-49	3,9-49	329-49	329-50	329-50	329-50	379.50	37.	329-30	329-50	329-50	359-50	379-50

START NUMBER	634	636	637	869	639	640	641	643	644	645	646	647	648	649	959	651	652	653	654	655	929	657	829	659	099	199	299	663	664	945	999	199	899
NUMBER S Staris N	,		_	_	_						_			_		_			_		-	- ·	_	-						_		_	-
Tpcu NU	83	3 83	33	83	83	æ :	£ 6	88	83	82	85	85	85	85	85	85	85	85	85	85	85	28	28	83	85	83	83	82	85	85	28	83	83
Tinj (F)	980	680	616	6/6	61.6	77.6	9//6	1007	1012	985	1013	1013	1013	1013	1014	101	116	916	926	474	973	971	1008	970	101	1009	372	971	1003	1005	1012	896	696
T3 ('F)	774	774	774	774	775	37.5	1/4	776	775	775	773	773	774	174	775	174	112	773	174	773	774	774	1/4	774	111	176	776	775	3//	775	1:11	114	\$7.4
E (E)	1629	0691	1630	1632	1633	1637	1633	1634	1633	1626	1624	1625	1628	1628	1631	1629	1624	1625	1628	1626	1631	1629	1630	1631	1637	1635	1637	1634	1633	1628	1635	1629	1629
Tcon ('F)	243	243	243	243	243	243	242	242	242	242	242	242	242	242	242	242	242	243	242	242	243	242	242	243	243	243	243	243	242	242	242	37.	741
(J.) 661	888	88	988	988	883	885	788 788	883	881	884	883	882	881	881	881	881	887	888	887	887	888	888	882	88	880	885	840	889	988	889	880	888	887
101 (F)	227	228	229	229	230	730	962 23	261	262	230	7,91	261	292	262	262	292	223	27.5	225	224	528	225	561	227	263	583	227	227	593	264	592	224	273
P/FI.0W (J/Kg)	35523700	35660000	35684400	35565100	35637200	35286300	35839300	35870200	35819900	34868600	35531000	35396400	35872400	35887800	35804300	35523100	35292600	35481600	35753800	35686900	35303100	35586900	35092000	35395300	35623200	35/13900	35111100	34956100	35746100	36001800	36013500	35/36000	35820000
ARC EFF	31.56	31.56	31.61	31.42	31,40	31.16	31,62	31.78	31.15	31.12	31.67	31.30	31.43	31.56	31.40	31.17	31.47	31.54	31.54	31.70	31,22	31.52	31.15	31.77	31.09	31.23	31.07	30.97	31.49	31.50	31.13		31.74
PCU	87.90	88.05	87.84	87.89	87.83	87.79	87.88	87.95	88.00	88.31	87.97	88.16	88.15	88.16	98.78	88.19	88.16	88.01	88.26	88.11	88.05	98,26	88.03	87.89	87.75	88.00	87.95	88.07	88.00	88,20	87.93	88.16	87.95
PCU POWER (WATTS)	1246.96	1248.42	1246.26	1246.89	1247.53	1245.96	1246./9	1247.36	1248.47	1250.62	1246.98	1249.16	1249.47	1249.24	1246.44	1250.32	1249.28	1247.08	1750.82	1248.38	1248.41	1250.40	1247.56	1245.19	1244.66	1248.35	1247.84	1247,55	1246.98	1250.22	1247.32	1549.87	1245.95
ARC POWER (WATTS)	1240.33	1241.76	1239.60	1240.23	1240.82	1239.23	1240.10	1240.67	1241.80	1244.05	1240,43	1242.58	1242.82	1242.64	1239.77	1243.66	1242.72	1240.51	1244.21	1241.77	1241.78	1243.80	1240.96	1238.63	1737.95	1241.67	1241.17	1240,95	1240.38	1743.59	1240.61	1243.25	1239.36
ARC CURRENT (AMPS)	13.57	13.36	13.60	13.60	13.66	13.67	13.64	13.63	13.62	13.52	13.49	13.52	13.58	13.54	13.61	13.59	13.50	13.51	13.55	13.55	13.57	13.54	13.54	13.50	13.65	13.62	13.61	13.53	13.54	13.58	13.66	13.57	13.53
ARC VOI TAGE (VOI.TS)	91.38	91.18	91.15	91.22	90.87	29.06	90.93	91 01	91.17	97.03	91.98	91.88	91.51	91.79	91.12	91.48	92.09	91.84	91.84	91.64	91.52	91.87	31.62	91.73	79.06	91.18	91.23	69.16	91.61	91.60	90,83	61.63	91.62
INPUT POWER (WATTS)	1418.55	1417.17	1418,78	1418.77	1420.37	1419.24	1418.71	1418 22	1418.81	1416.19	1417.51	1416.90	1417.48	1416.95	1418.72	1417.75	1417.02	1417.05	1417.15	1416.89	1417.90	1416.78	1417.16	1416.69	1418.35	1418,55	1418.84	1416.51	1417.04	1417.57	1418.48	1417,81	1416.77
INPUT CURRENT (AMPS)	44.53	44.34 44.48	44.51	44.50	44.57	44.53	44.54	44.32	44.53	44.45	44.49	44.46	44.49	44.47	44.52	44.49	44.47	44.49	44.47	44.47	44.49	44.46	44.48	44.46	44.52	44.53	44.54	44.47	44.48	44.52	44.54	44,55	44.46
INPUT VOLTAGE (VOLTS)	31.86	31.87	31.87	31,88	31.87	31.87	31.86	31.85	31.86	31.86	31.86	31.87	31.86	31.87	31.87	31.87	31.87	31.85	31.87	31.86	31.87	31.87	31.86	31.86	31.86	31.86	31.85	31.85	31.86	31.84	31.84		31.87
DATE	01/15/90	01/15/90	01/16/90	01/16/90	06/91/10	01/16/90	01/16/90	01/10/10	01/16/90	01/16/90	01/16/90	01/19/90	01/16/90	01/16/90	01/16/90	01/11//90	01/11/10	06//1/10	01/11/10	01/11/10	01/11/10	01/11/10	01/17/90	01/11/10		01/11/10	01/17/90	01/11/10	01/11/10	01/11/10	01/17/90	01/18/90	01/18/90
SAMP	104	/ 130			691			221		13	9,7		52	92		91	104	1117	130	143	156	169	13	52	39	22	65	/8	91	104	117	130	143
RUN *	329-46	327-46	329-46	329-46	329 -46	359-46	329-46	327-46	379-46	329-49	329-49	329-49	329-49	329-49	329-49	329-49	329-49	329-49	329-49	329-49	358-48	356-46	329-50	329-50	329-50	329-50	379-50	329-50	329-50	329-50	379-50	329 -50	379-50

LPAJ NASA LEWIS (121581-4840) LIFE TEST NASA S/N 002 IN CH. 11

(Pf-Pc)/Flow ² (PSI-SEC ² / LBM ²)	2.282E+10	2.314E+10	2.353E+10	2.384E+10	2.353E+10	2.328E+10	2,358E+10	2.357E+10	2.314E+10	2.376E+10	2.372E+10	2.355E+10	2.369E+10	2.390E+10	2.405E+10	2.391E+10	2.340E+10	2.459E+10	1.953€+10	1.939E+10	1.969€+10	1.924E+10	1.959E+10	1.936E+10	1.960E+10	1.990E+10	1.989€+10	1.984E+10	1.919E+10	1.950E+10	1.938E:10	1.940E+10	1.954E+10	1.967E+10
PC/Flow (PSIA-SEC/ LBH)	654897	035360	659207	666237	068099	653994	659962	978099	657602	984099	664231	96/099	661601	808099	662456	663817	658591	663881	638144	634476	639973	631473	806869	632438	637972	643445	643414	641465	631150	634647	634198	633057	634824	636811
REL. ROUGH (PSIA)	2.59	2.78	2.94	3.04	2.84	2.32	2.35	1.02	2.48	2.39	2.84	2.61	2.74	2.72	2.59	2.63	2.70	2.63	2.87	3.15	2.98	3.01	3.07	3.06	3.00	2.85	3.03	2.96	2.94	3.07	2.94	3.96	2.82	2.93
1SP (SEC)	482.7	481.9	484.0	486.9	481.7	478.8	482.0	483.8	480.1	484.5	484.8	482.5	484.5	486.4	485.5	484.6	483.6	487.1	471.4	469.2	473.6	467.9	472.6	469.7	472.8	476.1	476.5	475.7	468.1	471.7	470.7	470.1	472.2	473.7
	96921	97189	97322	97457	97590	97724	97858	87992	98125	98258	98390	98523	98655	88/86	98920	99051	99184	99315	99457	86266	99740	99881	100022	100164	100305	100446	100587	100728	100870	10101	101152	101293	101435	101576
CUM IMPULSE IMPULSE (LBF-SEC)(LBF-SEC)	134.7	133.5	133.1	134.3	133.8	133.8	133.7	133.8	133.4	132.7	132.6	132.4	132.5	132.5	131.8	131.8	132.9	130.9	141.7	141.3	141.4	141.3	141.3	141.4	141.4	141.1	141.3	141.2	141.2	141.2	141.3	141.1	141.3	141.4
THRUST (18F)	0.03708	0.03/03	0.03564	86980.0	0.03583	0.03683	0.03681	0.03682	0.03672	0.03653	0.03850	0.03644	0.03647	0.03646	0.03628	0.03628	0.03657	0.03602	0.03901	0.03890	0.03893	0.03890	0.03890	0.03892	0.03891	0.03885	0.03888	0.03886	98880.0	0.03887	0.03889	0.03884	0.03890	0.03891
Pc (PS1A)	50.3	50.0	49.9	50.6	50.5	50.3	50.4	50.3	50.3	49.8	50.0	49.9	49.8	49.5	49.5	49.7	49.8	49.1	52.8	52.6	52.8	52.5	52.6	52.4	52.5	52.5	52.5	52.4	52.4	52.3	52.4	52.3	52.3	57.3
CUM FUEL USED (1BM)	214.35	214.91	215.18	215.46	215.74	216.01	216.29	216.56	216.84	217.11	217.39	217.67	217.94	218.21	218.49	218.76	219.03	219.30	219.60	219.91	220.21	220.51	220.81	221.11	221.41	221.71	222.01	222.31	222.61	222.91	273.21	273.51	223.81	224.11
FUEL USED (18M)	0.28	87.0 0.78	0.28	0.28	0.27	0.27	0.28	0.53	0.28	0.28	0.78	0.27	0.27	0.27	0.27	0.27	0.27	0.27	0.31	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30
FL.0W (18M/SEC)	0.0000768	0.0000763	0.0000757	0.0000759	0.0000765	6920000.0	0.0000764	0.0000761	0.0000765	0.0000754	0.0000753	0.0000755	0.0000753	0.0000750	0.0000747	0.0000749	0.0000756	0.0000740	0.0000827	0.0000829	0,0000822	0.0000831	0.00000873	0.0000029	0,00000823	0.0000816	0.0000816	0.0000817	0.0000830	0.0000824	0.0000826	0.0000826	0.0000824	0,0000871
Pf (PSIA)	184.9	184.7		188.1	188.1		187.9	186.8	185.7		184.4	184.2	184.0	183.8	183.8	183.7	183.6	183.6	186.5	185.9		185.5	185.4	185.3	185.2	185.0	184.9	184.8	184.7	184.7	184.7	184.7	184.9	185.0
CUM ON TIME (HR)	4.799	668.4	670.5	671.5	672.5	673.5	674.5	675.5	676.5	677.5	678.5	679.5	9.089	681.6	682.6	9.689	684.6	685.6	9.989	9.789	9.889	9.689	9.069	691.7	692.7	693.7	694.7	695.7	1.969	1.769	7.869	1.889	7.007	701.7
CUM ON TIME (MIN)	40046.1	40106.7	40227.8	40288.3	40348.9	40409.4	40470.0	40530.5	40591.1	40651.6	40712.2	40772.7	40833.3	40893.8	40954.4	41014.9	41075.4	41136.0	41196.5	41257.1	41317.6	41378.2	41438.7	41499.3	41559.8	41620.4	41680.9	41741.5	41802.0	41862.6	41923.1	41983.7	42044.2	42104.8
ON TIME (MIN)	60.5	60.5	60.5	60.5	60.5	60.5	60.5	60.5	60.5	60.5	60.5	60.5	60.5	60.5	60.5	60.5	60.5	60.5	60.5	60.5	8.09	9.09	9.09	9.09	9.09	9.09	9.09	60.5	60.5	60.5	9.09	9.09	9.09	9.09
SAMP # DATE	156 01/18/90	187 01/18/90		13 01/18/90	26 01/18/90	39 01/18/90	52 01/18/90	65 01/18/90	78 01/18/90	91 01/18/90	104 01/18/90	117 01/18/90	130 01/18/90	143 01/19/90	156 01/19/90	169 01/19/90	182 01/19/90	195 01/19/90	5 01/26/90	10 01/26/90	15 01/26/90	20 01/26/90	25 01/26/90	30 01/27/90	35 01/27/90	40 01/27/90	45 01/27/90	50 01/27/90	55 01/27/90	60 01/27/90	65 01/27/90	70 01/27/90	75 01/27/90	80 01/27/90
RUN *	329-50	329-50 329-50	329-50	329-51	329-51	329-51	329-51	329-51	329-51	329-51	329-51	329-51	329-51	329-51	329-51	329-51	329-51	379-51	329-55	379-55	329-55	329-55	329-55	329-55	329-55	329-55	329-55	329-55	329-55	329-55	329-55	329-55	329-55	329-55

	,	

START	699	670	179	872	673	674	675	9/9	677	8/9	6/9	089	681	289	683	884	982	989	289	889	689	069	691	769	663	† 69	695	969	269	869	669	/00	701	70/	/03
NUMBER ST STARTS NO	_		_	_		_		-				_	_	_		_						_	_				_				 .	_	<u> </u>	- .	_
Tpcu NU	ćá	82	Z8	28	85	83	83	83	83	83	83	83	83	83	83	83	83	83	83	78	79	79	28	6/	6/	6/	6/	8	3,8	80	6/	79	79	5/ 1	79
Tinj (F.)	246	1001	1006	1007	1008	1008	1012	1009	1007	1005	1009	1006	1007	9001	1008	1008	1007	1001	1008	1010	1219	1048	1037	1036	1034	1031	1219	1083	1046	1043	1042	1043	1219	1219	1062
(F.)	775	775	777	178	111	111	778	111	111	778	778	780	780	780	179	781	782	179	783	919	615	615	614	615	614	614	919	616	919	919	615	615	615	519	614
(F.)	1671	1630	1637	1640	1641	1639	1642	1639	1637	1640	1640	1648	1648	1646	1642	1649	1653	1642	1657	1623	1622	1623	1619	1620	1613	1612	9191	1614	1613	1613	1606	1607	1602	1598	1600
(F)	241	241	241	241	241	242	243	243	244	243	242	243	242	242	242	242	242	245	242	254	254	255	254	254	254	254	254	254	253	254	253	733	223	723	253
799 ('F)	987	885	882	884	887	988	884	887	887	887	883	883	883	885	881	880	881	882	879	945	951	646	947	947	946	947	951	926	946	944	647	8¥6	951	951	944
Tvf (`F)	700	262	263	282	292	283	264	7.65	265	265	265	265	265	265	365	265	264	264	265	197	701	661	199	199	198	198	200	661	198	199	161	161	661	661	166
P/Ft.0W (J/Kg)	35,451200	35454700	35885700	36119900	35922100	35739900	35489200	35810800	36065500	35747400	36721600	36300700	36134400	36262100	36466800	36584200	36510300	36142000	36937100	32944700	32955300	33255100	32916100	33276600	33002100	33218300	33516700	33535400	33542600	32927100	33195100	33187200	33080400	33187000	33294700
ARC	31 46	31.78	31.15	31.22	31.77	31.25					31.20		31.02	31.17	31.23	31.02	30.96	31.15	30.92	32.47	32.15	32.47	32.02	32,35	32.18	32,39	37.56	32.58	32.48	37,03	32.27	37.13	37.15	32.34	37.45
PCU	70 88	87.92	88.03	87.83	87.66	87.78	87.63	87.83	88.07	87.75	87.64	19.18	87.61	87.65	87.72	19.78	19.18	87.71	87.56	88.18	88.32	88.25	88.32	88.31	88.35	88,25	88.17	88,25	88.43	88.23	88.45	88.57	88.50	88.48	88.50
PCU POWER (WATTS)	1249 43	1245.94	1248.35	1246.75	1244.04	1246.19	1244.66	1247.04	1251.55	1246.84	1245.37	1246.10	1244.39	1244.70	1246.58	1246.62	1246.60	1246.17	1245.88	1247.30	1245.15	1245,74	1247.30	1246.77	1246.24	1245.95	1246.46	1247,23	1248.89	1246.00	1246.79	1749.77	1245.53	1246.03	1246.24
ARC Power (Watts)	1941 82	1240.33	1241.67	1239.98	1237.31	1239.47	1237.89	1240.28	1244.81	1240.06	1738.58	1239.24	1237.51	1237.88	1239.79	1239.75	1239.69	1239.42	1238.92	1236.22	1239.05	1239,58	1241.09	1240.57	1240.06	1739.72	1240.20	1740.98	1247.65	1239.78	1240.61	1243.56	1239.43	1539.98	1240,10
ARC CURRENT (AMPS)	12 55	13.55	13.62	13.71	13.67	13.66	13.71	13.71	13.69	13.72	13.73	13.80	13.82	13.76	13.73	13.82	13.86	13.68	13.90	13.00	13.02	13.08	13,13	13.12	13.10	13,15	13.19	13.18	13.17	13.14	13,10	13.13	13.01	17.98	13,05
ARC VOLTAGE (VOLTS)	67 10	25.55	91.18	90.42	90.50	82.06	90.31	90.46	90.95	90,35	90.21	89.79	89.52	89.95	90.27	89.70	89.44	90.57	89.13	95.12	95.14	94.75	94.56	94.59	64.46	94.27	94.03	94.19	94.35	94.35	94.70	94.77	62.73	95.57	60.16
INPUT POWER (WATTS)	1117 50	1418.20	1418.13	1419.54	1419.21	1419.68	1420.42	1419.90	1421.11	1420.85	1420.96	1421.43	1420.41	1420.07	1421.16	1421.98	1421.92	1420.74	1422.88	1408.90	1409.88	1411.59	1412.30	1411.84	1410.56	1411.91	1413.69	1413.25	1412.28	1412.16	1409.61	1410.98	1407.37	1408.32	1408.24
INPUT CURRENT (AMPS)		44.55	44.52	44.57	44.54	44.52	44.57	44.55	44.60	44.58	44.58	44.64	44.61	44.58	44.62	44.64	44.65	44.59	44.68	44.29	44.29	44.33	44.36	44.30	44.29	44.34	44.37	44.37	44.33	44.37	44.23	44.29	44.20	44.21	44.19
INPUT VOLTAGE (VOLTS)	20 16	31.63	31.85	31.85	31.86	31.89	31.87	31.87	31.86	31.87	31.87	31.84	31.84	31.85	31.85	31.85	31.85	31.86	31.85	31.81	31.84	31.84	31.83	31.87	31.85	31.84	31.86	31.85	31.86	31.82	31.87	31.86	31.84	31.88	31.87
DATE	00/01/10	01/16/70	01/18/90	01/18/90	01/18/90	01/18/90	01/18/90	01/18/90	01/18/90	01/18/90	01/18/90	01/18/90	01/18/90	01/18/90	01/19/90	01/19/90	01/19/90	01/19/90	01/19/90	01/56/90	01/26/90	01/56/90	01/26/90	01/56/90	01/27/90	01/27/90	01/57/90	01/27/90	01/27/90	01/27/40	01/53/40	01/27/90	01/27/90	01/27/40	01/27/90
SAMP *	731				13	52	39	25	65		91	104	117	130	143			182		5	01	15	20	25	30	35	40	45	20	55	09	65	70	7.5	90
RUN	000	329-50	379-50	329-50	329-51	329-51	329-51	329-51	329-51	329-51	329-51	329-51	329-51	329-51	329-51	329-51	329-51	329-51	329-51	329-55	329-55	329-55	329-55	329-55	329-55	329-55	329-55	329~55	329-55	329-55	379-55	329-55	329-55	329-55	329-53

LPAJ NASA LEWIS (121581-4840) LIFE TEST NASA S/N 002 IN CH. 11

(Pf-Pc)/Flow ² (PSI-SEC ² / LBM ²)	2.015E+10 1.929E+10 1.972E+10 1.973E+10 1.971E+10 1.970E+10 1.940E+10 1.940E+10 1.940E+10 1.940E+10 1.950E+10 1.960E+10 1.960E+10 1.960E+10 1.960E+10 1.976E+10	1.974E410
PC/Flow (PSIA-SEC/ (LBM)	644239 636881 639922 637393 637393 631373 634705 634705 634247 634871 634871 634871 6367859 634735 649044 647819 647819 647819 647819 651775 646156 651780 651780	652386
REL. ROUGH (PSIA)	2.95 3.18 3.18 3.18 3.18 3.18 3.18 3.18 3.18	2.85
1SP (SEC)	478.4 472.9 472.9 473.3 472.4 472.3 472.3 472.3 472.3 472.3 472.3 472.3 473.3 484.3 484.3 488.3 488.3 488.3 488.3 488.3 488.3 488.3 488.3	482.0
THPULSE (LBF-SEC)	101717 101858 101999 102140 102422 102563 102704 103751 103834 103551 103693 104574 104534 104534 104534 104534 105631 105631 1056041 105767	106450
CUM IMPULSE IMPULSE (LBF-SEC)(LBF-SEC)	144 144 144 144 144 145 145 145 145 145	136.8
THRUST (18F)	0.03884 0.03884 0.03881 0.03887 0.03883 0.03883 0.03883 0.03883 0.03883 0.03883 0.03883 0.03883 0.03883 0.03883 0.03775 0.03778 0.03778 0.03778 0.03778 0.03778	0.03753
Pc (PSIA)	28 28 28 28 28 28 28 28 28 28 28 28 28 2	50.8
CUM (LBM) CUM	224.46 225.30 225.30 225.50 225.50 227.70 227.10 227.70 230.37 230.37 230.37 230.37 231.22 231.22 231.22 232.33 233.23	234.07 234.35
FUEL USED (LBM)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.78 0.78
(18M/SEC)	0.0000812 0.0000821 0.0000821 0.0000821 0.0000827 0.0000828 0.0000828 0.0000828 0.0000829 0.0000829 0.0000829 0.0000819 0.0000819 0.0000819 0.0000819 0.0000819 0.0000819 0.0000819 0.0000819 0.0000819 0.0000819 0.0000819	0.000073
Pt (PSIA)	185.1 185.0 185.0 185.0 184.8 184.8 184.7 184.7 184.7 184.7 184.7 184.7 184.7 184.7 171.7 171.7 171.6 171.6 171.6 171.6 171.6 171.6 171.6 171.6 171.6 171.6 171.6 170.9	170.5
CUM ON TIME (HR)	702.8 704.8 705.8 706.8 706.8 709.8 711.8 711.9 715.9 715.9 717.9 718.9 718.9 718.9 722.9 722.9 722.9 723.0 733.0	737.1
CUM ON TIME (MIN)	42165.3 4225.9 42286.4 42347.0 42468.1 42528.6 42528.6 42589.2 42770.8 42770.8 42770.8 43013.0 43073.6 43134.1 43134.1 43136.8 43476.8 43476.8 43476.8 43476.8 43476.8 43476.8 43477.0 43476.8 43477.0 43476.8 43477.0 43477.0 43477.0 43477.0 43477.0	44163.4
ON TIME (MIN)	60 60 60 60 60 60 60 60 60 60 60 60 60 6	60.5
DATE	•••••	01/30/90
SAMP #	95 90 100 1115 1116 1116 1117 1117 1118 1118 1118 1118	466
RUM -	329-55 329-55	329~55 329~55

START NUMBER	704	705	706	707	708	709	710	711	712	713	714	715	716	717	718	719	720	721	722	723	724	725	726	121	87.	129	730	731	732	733	734	735	736	737	738
NUMBER S			_	_	_	_	-		_	_	_		-	_				_		_			-		_	_	_	_	-	_			-		
Tpcii NU	26	79	79	8	6/	79	79	78	79	79	42	79	79	79	5/	8	79	13	79	79	79	8	80	8	80	8	80	80	80	88	81	98	80	81	181
Tinj ('F)	1048	1069	1084	1038	1062	1225	1057	1036	1044	1054	1030	1037	1037	1032	1035	1230	1042	1049	1045	1229	1052	1040	1044	1230	1043	1040	1038	1049	1052	1232	1054	1048	1040	1237	1047
(1.)	615	614	615	615	613	613	613	612	612	612	613	612	612	612	612	613	613	613	613	613	818	819	618	819	617	617	618	618	618	619	618	618	620	620	0.79
(F)	1601	1600	1604	1603	1596	1595	1599	1594	1595	1594	1595	1591	1592	1593	1590	1589	1591	1881	1593	1589	1619	1617	1618	1616	1616	1615	1616	1618	1617	1616	8191	1817	1624	0791	1674
Tcon	254	254	254	255	254	253	253	250	222	222	252	252	252	222	253	252	253	253	253	253	254	254	253	253	253	253	253	253	253	253	723	253	223	254	254
199 ('F)	947	944	946	646	944	951	943	942	946	945	945	944	944	941	944	950	944	941	943	616	934	939	940	943	935	935	934	935	935	942	935	986	938	941	ó36
Tof ('F)	601	198	189	200	198	202	200	195	196	161	197	161	198	167	198	201	199	200	700	200	200	661	199	202	198	138	198	661	661	203	199	198	551	704	661
P/FLOW (J/Kg)	33431800	33221300	32973100	33415800	33307300	33274700	33145900	33083100	33303700	33400300	33221000	33198400	33237900	33198700	33412600	3306/600	33529800	33420500	33281200	33393500	35086900	34966000	34946200	35091500	35016400	35052200	34797900	34/68000	35051900	34823300	35167800	35364600	35097300	35318100	35071000
ARC EFF	37.78	32.41	31.91	32.38	32.37	32.28	31.99	32.33	32,48	32.43	37.13	32,36	32.30	32,25	32.39	32.04	32.44	32,29	37.11	35.42	32.15	32.00	31.99	32.17	32.12	37.05	31.91	31.74	32.05	31./1	32.06	32.16	32.02	32,70	31.80
PCU EFF	88.36	88.25	88.47	88.47	88.51	88.48	88.64	88.39	88.41	88.58	88.52	88.33	88.33	88.38	88.40	88.34	88.53	88.55	88.50	88.15	90.88	88.05	88.14	87.88	87.98	88.24	87.90	87.86	87.81	87.68	87.85	88.10	87.81	87.73	87.78
PCU POWER (WATTS)		1243.31		1247.09	1245.53	1244.59		1244.77				1244,40	1245.86	1246,38	1248.30		1248.44		1247.34									1247.64	1245,68	1245.60	1247.16	1248.43	1243.94	1245.22	
ARC POWER (WATTS)	1238.21	1237.24	1240.68	1240.93	1239,44	1238.58	1242.82	1338.67	1739.56	1241.99	1247.36	1238.35	1239.79	1240.30	1242.20	1240.27	1242,34	1241.40	1241.28	1235.54	1240.98	1241.17	1247.79	1240.40	1240.18	1243.28	1739.46	1241.15	1239.21	1239.17	1240,64	1241.96	1237.41	1238.74	1238.51
ARC CURRENT (AMPS)	13.02	12.99	13.10	13.08	13.01	12.92	13.06	13.02	13.02	13.01	13.07	12.96	12.99	13.00	13.02	17.92	13.02	13.01	12.97	12.90	13.36	13,35	13,33	13.33	13.35	13.35	13.32	13.42	13.41	13,37	13.46	13.40	13.47	13.42	13.47
ARC VOLTAGE (VOLTS)	95.07	95.27	94.73	94.87	95.30	98,88	95.20	95.16	95.21	95.45	95.03	95.53	95.47	95.41	95.40	66.56	95.43	95.41	95.68	95.81	92.88	95.96	93.25	93.08	92.91	93.12	93.04	92.46	92.41	97.69	92.17	92.87	91.86	97.32	61.93 61.93
INPUT POWER (WATTS)	1408.22	1408.84	1409.43	1409.66	1407.28	1406.71	1409.05	1408.35	1409.00	1409.07	1410.46	1408.79	1410.48	1410.65	1412.06	1410.71	1410.23	1408.87	1409.51	1408.44	1416.55	1416.91	1417.24	1418.73	1416.92	1416.29	1417.41	1420.11	1418.66	1420.58	1419.66	1417.14	1416.71	1419.35	1418,38
INPUT CURRENT (AMPS)	44.24	44.23	44.24	44.26	44.19	44.15	44.24	44.23	44.21	44.23	44.30	44.22	44.27	44.28	44.33	44.29	44.25	44.26	44.27	44.23	44.51	44.51	44.52	44.55	44.46	44.46	44.54	44.57	44.56	44.61	44.57	44.47	14.49	44.54	44.53
INPUT VOLTAGE (VOLTS)	31 83	31.85		31.85			31.85	31.84	31.87	31.86	31.84	31.86	31.86	31.86	31.85	31.85	31.87	31.83	31.84	31.84	31.82	31.84	31.84	31.85	31.87	31.85	31.83	31.86	31.84	31.84	31.85	31.87	31.84	31.8/	31.85
DATE	04/22/10	01/27/90	01/27/90	01/27/10	01/27/90	01/58/90	01/58/90	06/82/10	01/28/90	01/58/90	01/28/90	01/28/90	01/28/90	01/28/90	01/28/90	01/59/90	01/29/90	01/59/90	01/53/30	06/67/10	01/59/90	01/59/90	01/59/90	01/53/30	01/58/80	01/53/30	01/29/90	01/53/30	01/58/60	01/53/90	01/58/60	01/30/90	01/30/90	01/30/90	01/30/90
SAMP #	85.0	06	95 (100	105 (110	115 (128	141	154 (167	180	193 (306 (219 (232 (258 (271 (297 (323 (349 (375 (388	401	414 (477 (440	453 (466	479
RUN	3,9-55	329-55	329-55	329-55	329-55	329-55	329-55	329-55	329-55	329-55	329-55	329-55	329-55	329-55	329-55	329-55	329-55	329-55	329-55	329-55	329-55	329-55	329-55	359-55	329-55	329 - 22	329-55	329-55	379-55	329-55	329.55	329-55	379-55	329-52	329-55

LPAJ NASA LEWIS (121581-4840) LIFE IESI NASA S/N 002 IN CH. 11

(Pf-Pc)/Flow? (PSI-SEC2/ LBM2)	1.969E+10 1.985E+10 1.984E+10 1.988E+10 1.988E+10 1.986E+10 1.996E+10 2.013E+10 2.013E+10 2.034E+10 2.034E+10 2.038E+10 2.003E+10 2.003E+10 2.005E+10	1.994E110 2.024E110 2.009E110 1.995E110 1.979E110 2.012E110 2.009E110 2.004E110 2.004E110 2.006E110
PC/Flow (PSIA-SEC/ LBM)	649933 648946 647484 648135 648080 651729 651729 651884 657895 651888 652777 652339 651882 651882 65239 651882 653290 653290 653290 653290 653290	654488 660192 658205 658205 653977 661007 659153 658299 661250 653064
REL. ROUGH (PSIA)	2.95 3.07 3.07 3.01 3.01 3.01 2.83 2.98 2.98 2.72 2.72 2.70 2.65	2.64 2.83 2.83 2.63 2.73 2.75 2.64 1.11
1SP (SEC)	481.8 480.0 480.0 480.0 480.0 480.0 483.1 482.3 483.7 483.7 483.7 483.7 483.7 483.8	488.3 488.3 488.3 488.0 488.0 487.1 485.0 488.4 483.5
CUM Impulse LBF-SEC)	106587 106724 106861 106998 107134 107271 107408 107544 107580 107816 108224 108224 108231 109039 109175 109175	109717 109882 109988 110123 110358 110528 110528 110798 111070
CUM	136.6 136.9 137.1 136.8 136.2 136.0 136.0 136.0 136.0 135.7 135.9 135.7 135.7 135.7	135.3 135.1 135.1 135.1 135.0 135.0 135.0 136.4
THRUST (LBF) (0.03759 0.03774 0.03773 0.03773 0.03764 0.03748 0.03741 0.03745 0.03745 0.03736 0.03736 0.03736 0.03736	0.03725 0.03727 0.03727 0.03718 0.03714 0.03714 0.03717 0.03715
Pc (PSIA)	50.05 50	50 50 50 50 50 50 50 50 50 50 50 50 50 5
CUM (LBM)	234 .63 235 .20 235 .20 235 .77 236 .34 236 .34 237 .74 237 .74 237 .74 238 .30 239 .42 239 .78 239 .88 239 .88 239 .88 239 .88	241.10 241.38 241.38 242.21 242.49 243.04 243.32 243.88 243.88
FUEL USED (18M)	0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28	0.28 0.28 0.28 0.28 0.28 0.28
FLOW FLOW	0.0000780 0.0000786 0.0000785 0.0000787 0.0000774 0.0000774 0.0000774 0.0000775 0.0000775 0.0000775 0.0000775 0.0000775	0.0000769 0.0000762 0.0000764 0.0000769 0.0000761 0.0000763 0.0000763 0.0000763
pf (PSIA)	170.5 173.5 173.5 173.5 173.8 172.3 171.4 170.7 170.7 170.3 170.3 170.3 170.3 170.3	168.1 167.8 167.4 167.4 167.3 167.3 167.3 167.3
CUM ON TIME (HR)	738.1 739.1 740.1 741.1 742.1 743.1 747.2 749.2 750.2 750.2 750.2 755.2 756.2 756.2 756.3	761.3 762.3 762.3 763.3 764.3 765.3 766.3 767.3 770.4
CUM ON TIME (MIN)	44284.5 44345.0 44466.1 44526.7 44587.2 44647.8 44768.9 44768.9 44768.9 44768.9 44768.9 44768.9 44768.9 44890.0 44950.1 45011.1 45011.1 45192.7 45192.7 45334.9 45334.9	45677.1 45737.6 45737.6 4578.2 45858.7 45919.3 46040.4 46100.9 46161.5 46282.0
ON TIME (MIN)	60 60 60 60 60 60 60 60 60 60 60 60 60 6	60.5 60.5 60.5 60.5 60.5 60.5 60.5 60.5
OATE	92 01/30/90 5 01/30/90 10 01/30/90 15 01/30/90 25 01/30/90 35 01/30/90 40 01/30/90 45 01/31/90 65 01/31/90 65 01/31/90 65 01/31/90 85 01/31/90 95 01/31/90 95 01/31/90 96 01/31/90	01/31/90 01/31/90 01/31/90 02/01/90 02/01/90 02/01/90 02/01/90 02/01/90 02/01/90 02/01/90
SAMP #	472 0 10 0 10 0 10 0 10 0 10 0 10 0 10 0	
N CON	329-55 329-56	329-59 329-59 329-59 329-59 329-59 329-59 329-59 329-59 329-59 329-59

START	739 740 741	742 743 744 745	746 747 748	749 750 751	752 753	754	757 758	759	761 762 763	764	767 768 768	769	771	27.2
NUMBER				- - -										_
Ipcn P	80 80 80	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	8 8 8 8 1		81 81	<u> </u>	28 33	28 83 83	æ æ æ	80 80	2 2 2	8 8	80 79	8
Tinj (F)	1039 1238 1043	1036 1242 1033 1048	1033 1033 1244	1038 1049 1041	1244 1047	1041	1036 1041	1205	1015 1031 1245	1021	1245 1018	1033	1037 1036	1026
(F)	619 619 619	619 620 621 621	621 621 622	629 629	621 621	620 621	621 621 621	622	622 622 622	622	623 623	£29	073 570	0.79
(±.)	1622 1616 1614	1616 1617 1626 1624	1623 1623 1620	1617 1617 1615	1615 1616	1615	1614 1614 1618	1616	1614 1617 1614	1613	1616	1617	1613 1603	1603
Tcon ('F)	254 254 254	254 255 255 255	255 255 255	254 254 254	254 254	25.4	25.	254	254 254 253	253	252	253	253	252
1gg (i.)	935 942 936	934 941 934 934	935 934 939	934 933 934	938 935	932	933 933	936	932 932 936	931	935	931	937	932
1vf (F)	200 204 199	204 200 201 201	201 201 206	2 2 2	205 201	201	76 65 76 65 76 65		200 200 204	200	763	199	198	200
P/FL0W (J/Kg)	34968900 34721300 34827100	34759000 34602700 34765400 34859700	35069200 35203400 35042800	35401100 3525 66 00 35759200	35147000 35375900	35206900	35236000 35236000 35620900	35436500 35277500	35813800 35494100 35738000	35674500	357831700 35783100 35810200	35671900	35762100 34981900	35056900
ARC		31.97 31.85 31.90 31.91	32.04 31.96 31.67	32.22 31.94 32.30	31.86 32.01	31.86	31.96 31.96 32.30	32.04	31.87 32.11	37.09	32,04 31,99	37.02	37.11 37.17 37.17	37,12
PCU EFF	87.70 87.82 88.02	87.80 87.61 87.63 87.46	87.46 87.60 87.74	87.62 87.76 87.87	87.73	87.79 87.51	86.90 87.18	87.24 87.59	87.12 87.34 87.31	87.62	87.55 87.55 87.73	87.47	87.46 87.56	87.58
PCU POWER (WATTS)	1243.63 1243.93 1748.16	1241,43 1241,39 1242,68 1241,24	1240.28 1242.72 1244.74	1241.30 1244.58 1246.28	1242.02 1245.30	1243.40	1241.76 1241.76 1241.02	1243.77	1243.69 1241.36	1242.91	1241.41	1241.09	1240.26 1238.50	17:40.73
ARC POWER (WATTS)	1237.12 1237.51 1241.65	1234.93 1234.93 1236.15 1234.71	1233.73 1236.18 1238.20	1234.81 1238.08 1239.78	1235.56 1238.75	1236.92	1235.27 1235.27 1237.47	1237.26	1733.64 1237.13 1234.86	1236.39	1734.90	1734.53		1734.79
ARC CURPENT (AMPS)	13,44 13,38	13.40 13.39 13.47 13.47	13.49 13.48 13.49	13.43 13.43 13.44	13.40	13.48	13.43	13.45	13.49	13.45	13.31 13.45 13.50	13,50	13.47 13.31	13.37
ARC VOL.TAGE (VOL.TS)	92.02 92.65 92.34	92.41 92.21 91.76 91.65	91.44 91.70 91.82	91.95 92.16 92.22	92.23	92.21	91.96	92.01	91.67	91.90	91.83	91.44	91.57 92.58	66.56
INPUT POWER (WATTS)	1418.05 1416.45 1418.01	1416.98 1416.98 1418.14 1419.14	1418.15 1418.68 1418.71	1416.68 1418.22 1418.40	1415.76 1419.38	1416.39	1429.02	1425.66	1423.98 1423.98 1421.79	1418.58	1419.74	1418.91	1418.11	1416.64
INPUT CURRENT (AMPS)	44.50	44.50 44.53 44.53 44.54	44.54 44.53 44.54	44.45 44.51	44.42	44.49	44.85	44.76	44.70	44.48	44.53	44.53	44.49	44.45
INPUT VOL TAGE (VOLTS)	31.87 31.83 31.88	31.85 31.85 31.85 31.86	31.84 31.86 31.85	31.87 31.86 31.87	31.87	31.84	31.86 31.86 31.82	31.85	31.87 31.86 31.84	31.85	31.85	31.87	31.87 31.87 31.87	31.87
DATE	01/30/90	01/30/90 01/30/90 01/30/90 01/30/90	01/30/90 01/30/90 01/30/90	01/30/90 01/30/90 01/31/90	01/31/90	01/31/90	01/31/70	01/31/90	01/31/90 01/31/90 01/31/90	01/31/90	02/01/90	02/01/90	02/01/90	05/01/30
SAMP	492 (3 2 2 2		55 69		75 (% 9 9 9 9 9		3 6 3 6 2 7		104 (187
RUM	329-55 329-56 329-56	329-56 329-56 329-56 379-56	379-56 329-56 329-56	329-56 329-56 329-56	329-56 329-56	329-56	329-56 329-56 329-56	329-56	329-59 329-59	329-59	329-59 329-59 379-59	379-59	329-59 329-59	379-59

LPAJ NASA LEWIS (121581-4840) LIFE IEST NASA S/N 002 IN CH. 11

(Pt-Pc)/Flow ² (PSI-SEC ² / LBM ²)	1.996E+10	1.996E+10	2,004E+10	2.011E+10	2.032E+10	2.006E+10	1.983E+10	1.0745+10	2,072F+10	1,998E+10	1.981E+10	2.019E+10	1.999E+10	1.998€+10	2.021E+10	2.013E+10	2.013E+10	1.997E+10				2.001E+10	2.04/E+10					2.018E+10	2.008E+10	2.017E+10	2.034E+10	2.037E+10	1
PC/Flow (PSIA-SEC/ LBM)	652981	653139	654923	656427	659782	654365	652079	754769	645191	653223	650513	654526	649392	649317	623053	654576	654841	621020	98259	656330	624869	651938	206659	65/251	862859	991549	991299	16/959	655410	658434	658677	979099	
REL. ROUGH (PSIA)	1.78	1.70	1.86	1.90	1.89	1.77	1.74	11	1.0/	1.73	1.82	1.75	1.75	1.69	1.70	1.81	1.84	1.71	1.71	1.82	1.78	1.79	1.72	1.78	.88	1.82	1.74	1.78	1.68	1.75	1.74	1.74	
1SP (SEC)	482.2	483.2	484.1	484.6	486.9	484.9	482.4	486.8	401.3	483.8	480.7	484.8	482.2	481.6	483.7	484.8	485.5	483.5	487.6	485.9	485.4	483.8	489.0	486.8	486.6	488.2	489.3	484.8	482.8	484.3	486.9	487.1	
CUM IMPULSE (LBF-SEC)	111342	111614	111750	111886	112021	112157	112293	679711	112701	112837	112972	113110	113247	113384	113520	113656	113792	113928	114064	114200	114336	114472	114608	114/43	114879	115014	115150	115285	115420	115556	115691	115828	
CUM IMPULSE IMPULSE (18F-SEC)	136.3	136.0	135.9	135.7	135.7	135.9	136.0	133.7	135.9	135.9	135.5	137.2	137.0	136.9	136.7	136.2	136.0	136.0	136.0	135.8	135.7	135.9	135.7	135.6	135.6	135.4	135.6	135.4	135.1	135.2	135.3	135.3	
THRUST (LBF)	0.03752	0.03743	0.03741	0.03735	0.03734	0.03742	0.03744	0.03/39	0.03/43	0.03740	0.03731	0.03777	0.03772	0.03768	0.03763	0.03748	0.03744	0.03743	0.03743	0.03739	0.03736	0.03740	0.03735	0.03733	0.03733	0.03728	0.03732	0.03728	0.03720	0.03722	0.03725	0.03723	
Pc (PSIA)	50.8	50.6	50.8	50.6	50.6	50.5	50.6	20.5	5.05	50.5	50.5	51.0	50.8	50.8	50.8	50.6	50.5	50.4	50.5	50.5	50.4	50.4	50.4	20°	50.5	50.5	50.5	50.5	50.5	50.6	50.4	50.5	
CUM FUEL USED (LBM)	244.44	245.00	245,28	745.56	245.84	246.12	246.41	746.67	240.77	247.53	247.81	248.10	248.38	248.66	248.95	249.23	249.51	249.79	250.07	250.35	250,63	250.91	251.19	251.47	251.75	252,03	252.31	252.58	252.86	253.14	253.42	253.70	
FUEL USED (LBM)	0.78	0.28	0.28	0.28	0.28	0.28	0.28	£ 7.0	97.0	0.28	0.28	0.28	0.28	0.29	0.29	0.28	0.28	0.28	0.28	0.28	0.78	0.28	0.78	0.28	0.28	0.28	0.28	0.28	0.28	0.28	0.78	0.28	
FLOW (18M/SEC)	0.0000778	0.000075	0,0000773	0,0000771	0.0000767	0,0000772	9/20000.0	0.0000/68	0.000078	0.000073	0,0000776	0.0000779	0.0000782	0.0000782	0,0000778	0.0000773	0.0000771	0.0000774	0.0000768	0.0000769	0.00000.0	0.0000773	0.0000764	0.0000767	0.0000767	0.0000764	0,0000763	0.0000769	0.0000771	0,0000768	0.0000765	0.0000764	
pf (PSIA)	171.6			170.1					0.0/1					173.1	173.1		.								169.9	169.9	169.8	169.8	169.7	1.69.7	169.5	169.5	
CUM ON TIME (HR)	773.4	775.4	776.4	177.4	778.4	779.4	780.5	781.5	787 5	784.5	785.5	786.5	787.5	788.5	789.5	9.067	9.167	792.6	793.6	794.6	795.6	796.6	797.6	9.867	799.6	9.008	801.7	802.7	803.7	804.7	805.7	808.7	
CUM ON TIME (MIN)	46403.7	46524.8	46585.3	46645.9	46706.4	46767.0	46827.5	46888.1	46748.6	47069.7	47130.3	47190.8	47251.4	47311.9	47372.5	47433.0	47493.6	47554.1	47614.7	47675.2	47735.8	47796.3	47856.9	47917.4	47978.0	48038.5	48099.1	48159.6	48220.2	48280.7	48341.3	48401.8	
ON TIME (MIN)	9.09	9.09 9.09	9.09	60.5	9.09	9.09	9.09	9.09	9.09 7.07	9.09	60.5	60.5	60.5	60.5	60.5	60.5	60.5	60.5	60.5	60.5	60.5	60.5	60.5	60.5	60.5	60.5	60.5	60.5	60.5	60.5	60.5	60.5	
DATE	02/01/90	05/01/70	05/10/20	05/01/30	02/01/90	02/01/90	05/05/90	06/20/20	06/20/20	06/20/20	05/05/00	02/05/00	05/05/30	05/05/00	05/05/60	05/05/40	02/05/20	02/05/90	05/05/30	05/05/60	05/05/30	05/03/30	05/03/30	05/03/30	05/03/30	05/03/30	02/03/90	05/03/30	05/03/30	05/03/90	05/03/90	05/03/90	
SAMP #	3			25		35			S 5				28		25	65	78	91					156	691	182	195	208	221	234	247	260	273	;
RUN *	329-60	329-60	329-60	329-60	329-60	379-60	329-60	09-628	329-40	329-60	329-60	329-61	329-61	329-61	329-61	329-61	329-61	329-61	329-61	329-61	329-61	329-61	329-61	329-61	379-61	359-61	329-61	329-61	3,9-61	329-61	329-61	329-61	1

RUN .	SAMP # DATE	INPUT VOLTAGE (VOLTS)	INPUT CURRENT (AMPS)	INPUT POWER (WALTS)	ARC VOL. 1AGE (VOL. 1S.)	ARC CURRENT (AMPS)	ARC POWER (WATTS)	PCU POWER (WATTS)	PCU	ARC EFF	P/FLOW (J/Kg)	Tvf ('F)) (j.)	Tcon (F.)) (J.)	T3 (4.)	Tinj Tp	Tpcu NUMBFR	FR STARI 15 NUMBER	₹ 3FR
929-60	2 05/01/90	31.87	44.45	1416.62	92.57	13.34	1234.45	1240.85	87.59	31.99	34987700	200	935	253	109	_	070	98	_	174
359-60	10 02/01/90	31.85	44.46	1416.17	65.07	13.39	1233.28	1239.72	87.54	32.22	35432700	198	934	253	909	1179	810	80	_	775
09-628	15 02/01/90	31.86	44.44	1415.59	92.14	13.42	1236.20	1242.68	87.78	31.94	35184500	198	930	253	909	621 10	024	80		9/1
329-60	20 02/01/90	31.84	44.48	1416.48	92.26	13.41	1736.87	1243.34	87,78	31.96	35299700	661	626	253	902	621 10	023	80		111
379.60	25 02/01/90	31.84	44.47	1415.86	92,45	13.36	1235.14	1241.57	69.78	31.99	35331600	202	935	253	604	622	190	80		8//
09-628	30 02/01/90	31.85	44.49	1416.69	92.46	13.34	1233.77	1240.18	87.54	32.17	35472500	204	935	253	603	622 13	243	80		6/1
379-60		31.85	44.50	1417.41	92.20	13.38	1234.03	1240.48	87.52	32.10	35258500	199	35	252	109	_	041	80		780
379-60		31.84	44.49	1416.54	92,50	13.37	1236.83	1743.27	11.18	31.88	35145300	661	626	252	298	950 10		80	_	781
95-678	45 02/02/90	31.83	44.45	1414.81	92.85	13.30	1234.64	1241.00	87.72	32.18	35441000	202	934	252	595	621	199	80	_	782
32960	50 02/02/90	31.85	44.47	1416.19	92.73	13.37	1234,97	1241.31	87.65	31.85	35014700	198	925	252	1595	620 11		80		783
379-60		31.87	44.37	1414.22	92,88	13.27	1232.81	1239.15	39.78	37.66	35806400	861	826	_	595			80	_	784
379-60	60 02/02/90	31.84	44.45	1415.53	92.94	13.36	1241.16	1247,58	88.14	31,83	35400300	198	427		9651		1029	80		785
329-60	73 02/02/90	31.86	44.39	1414.10	93.31	13.27	1238.06	1244.39	88.00	31.63	35165400	201	934	_	1592	620 1		80	-	786
329-61	13 02/02/90	31.84	44.41	1413.88	93.73	13.20	1236.86	1243.13	87.92	32,32	35001600	199	626	_	1587			80	_	787
329-61		31.84	44.38	1413.07	93.49	13.23	1236.37		87.94	32.12	34849700	661	930		288			79		788
329-61		31.86	44.37	1413.65	93,55	13.19	1233.69	1239.95	87.71	32.11	34770400	199	626	251	1585		8101	52		789
329-61	52 02/02/90	31.85	44.31	1411.48	94.13	13.10	1233,47	1239.65	87.83	32.21	34962700	200	935	251	1585	1 619		79	_	062
329-61		31.87	44.39	1414.68	92.92	13.27	1232.84	1239.18	87.59	32.17	35166300	200	928	252	_	11 619		79	_	791
329-61	78 02/02/90	31.84	44.46	1415.49	92.92	13.32	1237.29	1243.68	87.86	32.07	35377400	198	626			-		80	_	262
329-61	91 02/02/90	31.88	44.38	1414.78	92.89	13.28	1234.01	1240,36	19.78	32.01	35147400	199	626					80		793
329-61		31.87	44.40	1414.91	92.89	13.29	1234.38	1240.74	69.78	37.28	35458200	199	457		1593			80		194
329-61		31.87	44.41	1415.04	92.88	13.30	1235.37	1241.74	87.75	32.11	35402900	199	826	_		_		80	_	262
329-61		31.87	44.40	1414.80	93,15	13.28	1536.69	1243,04	87.86	32.01	35431900	202	934	-	_		_	80	_	961
329-61		31.86	44.42	1415.36	65.79	13,34	1237.47	1243,87	87.88	31.92	35295200	199	87.6		-	_		80		161
19-628		31.88	44.42	1416.20	92.55	13,35	1235.59	1242.01	87.70	32.27	35672500	166	626	252	1595			80	_	86,
356-81		31.89	44.37	1414.84	65.86	13.37	1237.52	1243.91	26.78	32,05	35584300	202	933	_	-	_	1200	80	_	66/
329-61	182 02/03/90	31.86	44.46	1416.28	92.33	13,39	1236.05	1242.50	87.73	37.07	35528600	ό <u>ό</u> Ι	828		_	621 10		80	_	300
329-61	195 02/03/90	31.87	44.46	1416.90	92.21	13.41	1536.67	1243.14	87.74	32.13	35/05/20	200	928	253	_	_	010	80	_	108
37961	208 02/03/90	31.86	44.44	1416.09	92.20	13.38	1234.00	1240.45	87.60	37.30	35677500	200	657	254	287	672 10	011	80	_	802
329-61	221 02/03/90	31.88	44.43	1416.10	92,15	13,40	1734,49	1240.95	87,63	31.96	35402100	200	676	254 1	299	623 10	016	80	_	803
329-61	234 02/03/90	31.86	44.44	1415.75	22.37	13,38	1236.14	1242.58	11.18	31.72	35375200	704	933	254	298	623 11	199	80	_	804
32961	247 02/03/90	31.84	44.48	1416.35	91,143	13,46	1235.41	1247,13	87.70	31.85	35453100	201	928	254 1	603	623 10	007	80		805
379-61	06/80/20 092	31.87	14.46	1416.74	16.19	13,42	1234.69	1241.17	19.78	32.07	35580000	5,00	878	254		1(22)	200	80		806
329-61	273 02/03/90	31.87	44.43	1415.98	19.56	13.34	1235,66	1242.07	87.72	32,03	35645500	204	932	_	•			81		80,7
329-61	286 02/03/90	31.89	44.47	1416.76	61.97	13.43	1234.86	1241.35	87.62	31.85	35400800	701	12 ó	_	297	_		81	_	808
													ı							

LPAJ NASA LEWIS (121581-4840) LIFE IEST NASA S/N 002 IN CH. 11

(Pf-Pc)/Flow2 (PSI-SEC2/ IBM2)	1	2.031E+10	2.026E+10	2.030F+10
Pc/Flow (PSIA-SEC/		658677	781859	658755
REL. ROUGH	(HICL)		1.83	
(SF)	/ 3FC/	487.0	485.6	485.9
THPULSE IN THE STUDY!	100	116097	116232	116367
IMPULSE (186-ser)	ווייין ארפין	135.4	135.1	135.0
THRUST	/ 101/		0.03719	
Pc (pc (a)	(41517)	50.4	50.4	50.4
CUM FINEL USED (18M)		254.26	254.53	254.81
FUEL USED		0.28	0.28	0.28
FLOW FU	True of o	0.0000765	99/0000.0	0,0000765
Pf (DCIA)		169.3	169.2	169.7
CUM ON TIME	(min)	808.7	809.7	810.7
CUM ON TIME	(NIII.)	48522.9	48583.5	-
ON TIME	()	60.5	60.5	60.5
DATE	!		05/03/90	375 02/03/90
SAMP #)))	599	312	375
RUN .	!	329-61	329-61	329-61

I PAJ NASA LEWIS (I JFE TEST NASA

START	809 810 811
~ თ	
Tpcu NUMBE	81 81 80
Tinj ('F)	1016 1010 1014
T3 (*F)	622 623 624
(F) (F)	1595 1599 1600
	254 254 254
Tgg Tcon (3.)	930 927 929
Tuf (°F)	201 201 201
p/FLOW (J/Kg)	35628000 35578500 35606100
ARC EFT	32.04 31.91 31.92
PCII	87.74 87.64 87.61
PCII POWER (WATTS)	1242.77 1242.06 1241.95
ARC POWER (WATIS)	1236.35 1235.54 1735.44
ARC CUPPENT (AMPS)	13.36 13.46 13.44
ARC VOLTAGE (VOLTS)	92.53 91.82 91.89
INPUT POWER (WATTS)	1416.43 1417.22 1417.54
INPUT CURRENT (AMPS)	44.43 44.45 44.44
INPUT VOLTAGE (VOLTS)	31.88 31.89 31.89
DATE	02/03/90 02/03/90 02/03/90
SAMP #	299 (312 (325 (
** : ** :	329-61 329-61 329-61

PM REPORT LPAJ NASA LEWIS (121581-4840) PERFORMANCE NAP

P/FLOW (J/Kg)	26019900 26785100	29235800	31805700 33831300	35509200	35377000	35408300	00774807	27736700	29479400	32126400	34002600	0	0	35451900	25866900	26551400		0	0	26174600	28427600	32174700	35910000		0	0	26090200	28287500	32329500	35700700
рс (кра)	417.1	384.0	361.3	337.8	339.9	339.9	474.0	407.5	395.8	372.3	358.5	229.6	166.2	350.3	433.7	426.8		231.7	167.5	435.7	409.5	375.8	350.3		222.7	160.0	429.5	405.4	371.6	346.1
Pc (PSIA)	60.5 59.1	55.7	52.4	49.0	49.3	49.3	C. 10	59.1	57.4	54.0	52.0	33.3	24.1	50.8	62.9	61.9		33.6	24.3	63.2	59.4	54.5	50.8		32.3	23.2	62.3	58.8	53.9	50.2
pf (KPa)	2055.3 1954.0	1645.1	1407.9	1165.2	1157.6	1159.0	8.9cn2	1793.3	1649.2	1408.6	1276.2	2061.5	1173.5	1179.0	2067.7	1974.0		2113.2	1225.9	2053.9	1795.4	1435.5	1194.2		2095.3	1214.2	2069.8	1805.0	1430.0	1212.8
Pf (PSIA)	298.1	238.6	204.2	169.0	167.9	168.1	0.872	260.1	239.2	204.3	185.1	299.0	170.2		299.9	286.3		306.5	177.8	297.9	260.4	208.2	173.2		303.9	176.1	300.2	261.8	207.4	175.9
1SP (SEC)	427.8	447.3	462.6	489.9	490.9	492.7	432./	436.2	447.8	462.2	472.4	141.6	133.5	483.9	426.2	431.4		139.9	133.2	426.2	441.1	459.5	8.081		139.4	132.3	427.9	440.8	462.4	481.6
FLOW (Kg/SEC)	0.047918	0.042763	0.039346	0.035030	0.035020	0.034950	0. 048022	0.045048	0.042692	0.039308	0.037071	0.051043	0.039151	0.035345	0.048381	0.047183		0.051166	0.038852	0.047591	0.043925	0.039039	0.034934		0.049891	0.037996	0.047410	0.043573	0.038392	0.034/69
(LBM/SEC)	0.00010564	0.00009428	0.00008674	0.00007723	0.00007721	0.00007705	0.0001038/	0.00009931	0.00009412	99980000.0	0.00008173	0.00011253	0.00008631	0.00007792	0.00010666	0.00010402		0.00011280	0.00008565	0.00010492	0.00009684	0.00008607	0,00007702		0.00010999	0.00008377	0.00010452	90960000.0	0.00008464	0.00007665
THRUST (N)	0.201014 0.198078	0.187581	0.178506	0.168275	0.168587	0.168854	0.203//2	0.192696	0.187447	0.178195	0.171745	0.070904	0.051243	0.167742	0.202215	0.199635		0.070193	0.050754	0.198924	0.190027	0.175926	0.164717		0.068191	0.049286	0.198968	0.188248	0.174103	0.164183
THRUST (LBF)	0.045190	0.042170	0.040130	0.037830	0.037900	0,037960	0.043610	0.043320	0.042140	0.040060	0.038610	0.015940	0.011520	0.037710	0.045460	0.044880		0.015780	0.011410	0.044720	0.042720	0.039550	0.037030		0.015330	0.011080	0.044730	0.042320	0.039140	0.036910
ARC V/I	7.9888 7.9968 7.8502	7.4333	6.9190	6.1079	6.2406	6.1174	0700.0	8.0602	7.6797	7.1680	6.6471	0.0000	0.0000	6.0745	8.6183	8.4425		0.0000	0.0000	8.9331	8.1454	7.1114	6.3640		0.0000	0.0000	9.8280	9.0308	7.2741	6.5279
ARC POWER (WATTS)	1246.6	1250.0	1251.2	1243.7	1238.7	1237.3	0.0421	1249.3	1258.3	1262.6	1260.3	0.0	0.0	1252.8	1251.2	1252.5		0.0	0.0	1245.5	1248.5	1255.8	1254.3		0.0	0.0	1236.8	1232.3	1241.0	1241.1
ARC VOL TAGE (VOL TS)	99.78 100.04 99.07	96.41	93.06 90.07	87.16	87.93	86.99	103.32	100.35	98.30	95.12	91.53	-0.19	-0.05	87.23	103.85	102.83		-0.47	-0.26	105.50	100.84	94.51	89.35		-0.10	-0.55	110.27	105.48	95.00	90.02
PCU POWER (WATTS) (1252.2 1256.8 1255.7	1256.1	125 <i>7.7</i> 1252.6	1251.0	1245.8	1244.6	0.0421	1254.8	1264.2	1269.0	1267.1	0.0	0.0	1260.3	1256.5	1257.9		0.0	0.0	1250.5	1254.0	1262.2	1261.3		0.0	0.0	1241.3	1237.3	1247.1	1247.9
ARC CURRENT (AMPS) (12.49		13.45 13.83			14.22		12.45	12.80	13.27	13.77	0.0	0.00	14.36	12.05	12.18		0.00				13.29			0.00	0.0	11.22	11.68	13.06	13.79
NOM Pou	1260	1260	1260 1260	1260	1260	1260	0071	1260	1260	1260	1260	0	0	1260	1260	1260		0	0	1260	1260	1260	1260		0	0	1260	1260	1260	1260
Pf	300 285 260		185			22	300	260		202					300	285			170	300	260	202	170			170	300	260		170
DATE	11/15/89	11/15/89	11/15/89	11/15/89	11/12/89	11/15/89	10/01/11	11/29/89	11/29/89	11/29/89	11/29/89	11/30/89	11/30/89	11/30/89	11/30/89	11/30/89		12/08/89	12/08/89	12/08/89	12/08/89	12/08/89	12/08/89		01/08/90	01/08/30	01/08/30	01/08/90	01/08/90	01/08/90
SAMP	23	9%	7	129	01	ਜ਼ ਜ਼	3	20	21	33	28	11	34	63	8	66		11	34	51	89	82	102		17	33	23	70	<u>۰</u>	28
RUN #	329-07 329-07 329-07	329-07	329-07	329-07	329-08	329-08			329-13	329-13	329-13	329-14	329-14	329-14	329-14	329-14	1 3	329-21	329-21	329-21	329-21	329-21			329-41	329-41	329-41	329-41	329-42	329-42
SEO :	2 6		ა ~	7	7		PM TEST	14	91	17	18	19	50	22	23		PM TEST		2	က	~	5		PA IES	-	2	က	*	2	9

PM REPORT LPAJ NASA LEWIS (121581-4840) PERFOR

ARC CUM Impulse (lbf-sec)		86.7	10/01	6,067	7.076	403.4	4/3.6	546.3	564.9	647.0	729.5	, 3501	0.0/01	1184.7	1.1921	1340.5	1340.5	1340.5	1456.3	1543.7	1629.9		0 0071	1.701	1.7201	17071	1050	0.0001	1925.3	1025 2	1005 3	6,6271	2011.2	2087.4	2222.5	2289.0
ARC IMPULSE (18F-SEC)	6	80°.	00.6	03.50 75.0	7.5.	-: 6	70.2	12.7	9.8	82.1	82.5	6	7.00	g3.5	0./	78.8	0.0	0.0	49.8	87.4	86.2	:	c		9 6	2.00	ر 17 د	7.17	66./	c			65.4	7.9/	58.7	66.5
GG CUM Inpulse (18F-sec) (9.0	9 6	•	2 6) ·	o .	0.0	0.0	0.0	0.0	1	? :	C		14.5	43.2	64.0	64.0	64.0	64.0) • •	7 60	113.0	113.0	2.5	113.0	2.0	113.0	140 4	2 071	5001	C.081	160.5	160.5	160.5
GG ONLY IMPULSE LBF-SEC)		9 6	9.0	9 6	9 6		o •	n .	0.0	0.0	0.0	c	•		0,0	0.0	28.7	20.8	0.0	0.0	0.0	•	78.4	20.5			• •	•	0.0	27 6	10 0) o	o (0.0	0.0
ARC CUM FUEL USED (LBM) (16.0	17:0		27.0	500	1	90'-	17.1	1.24	1.4	1.60	07 6	71.7	9,00	60.7	3.00	3.00	3.00	3.24	3.44	3.64		P9 E	177 6	3 6	6.5	71.4		4. 30	4.30	J. 70	25.4	06.4	6.08	4.4/	5.11
ARC FUEL USED (LBM)	0.2050	0.1857	0.1860	0.1684	0 1440	0.1100	0.14/3	0.14/8	0.0385	0.16/1	0.1708	0 1905	0 1891	1/01.0	001.0	1891.0	0.0000	0.000	0.1026	0.2020	0.2001		0 0000	0000	0.1876	1771 0	0 1534	0.100	0.1372	0.000	0.000	1000	00/1.0	0.1/47	0.12/5	0.1386
GG CUM FUEL USED (LBM)		0.47	99.0	0.83	66.0		‡	77.1		7.4	5/-1	2 85	3 10	2 27	77.0	44.0	3.64	3.80	4.05	4.25	4.45		4.65	18	66	2 18	5.37	75.5	00.0	5.75	5.91	7 10	01.0	07.0	8°.5	6./1
.UET NSED 10367 10367	0.2726	0.1987	0.1860	0.1684	0.1660	0 1473	0 1470	0.14/0	0.0383	1,91.0	1007.0	0.2162	0.1950	1663	2001.0	0.1081	0,2068	0.1574	0.1026	0.2020	0.2001		0.2025	0.1553	0.1876	0.1876	0.1876	7281 0	0.01.0	0.1985	0.1512	0 1988	0 1710	1,47	6/71.0	0.1386
ARC CUM ON TIME I (MIN)	32.0	62.1	94.1	124.1	156.1	186.2	210.5	7.017	4.077	\$ 000	6,2/2	422.6	465.6	497 7	531.7	7.165	531./	531.7	583.7	615.8	8.749		647.8	847.8	8.779	707.8	737.8	0 777		767.9	7.67	6 662	0 000	0000	000.1	718.7
ARC ON TIME (MIN)	•		32.0									32.0	33.0	32.0	37.0		o. o	0.0	22.0	32.0	32.0		0.0	0.0	30.0	30.0	30.0	30	?	0.0	0.0	32.0	30.08	 	0.00	30.0
GG CUM ON TIME (MIN)	42.0	74.1	106.1	136.1	168.1	198.2	230.2	7.007	376	311.5	?	486.6	530.7	562.7	2 765		g. 979	626.8	708.8	740.9	772.9		802.9	832.9	862.9	892.9	923.0	953.0	2	983.0	1013.0	1045.0	1075 0	1134.0	0.4511	1.4011
66 ON TINE (MIN)	42.0	32.0	32.0	30.0	32.0	30.0	32.0	2 2	37. 1	37.0	?	36.0	34.0	32.0	34.0	2 6	0.06 0.1	30.0	22.0	32.0	32.0		30.0	30.0	30.0	30.0	30.0	30.0	! !	30.0	30.0	32.0	30.0	25.0	20.00	2.00
NOM Pou	1260	1260	1260	1260	1260	1260	1260	12,40	1240	1240	2	1260	1260	1260	1260		-	0	1760	1260	1260		0	0	1260	1260	1260	1260		0	0	1260	1260	1260	1240	1707
NOM Pef	300	285	260	240						30.5		260	240	202	185	200	3 :	2 :	2 :	200 200	282		300	170	300	260	202	170		300	170	300	260	205	17	?
DATE	11/15/89	11/15/89	11/15/89	11/15/89	11/15/89	11/15/89	11/15/89	11/15/89	11/15/89	11/16/89		11/29/89	11/29/89	11/29/89	11/29/89	11/30/80	11/30/05	48/08/11	11/30/RA	68/08/11	11/30/89		12/08/89	12/08/89	12/08/89	12/08/89	12/08/89	12/08/89		01/08/90	01/08/30	01/08/30	01/08/30	01/08/90	01/08/40	200
SANP	23	4	29	7,6	46	11	129	2	: =	25		20	71	39	28	17	: 7	4,	63	=	66		17	35	51	89	82	102		17						3
RUN *	329-07	329-07	329-07	329-07	329-07	329-07	329-07	329-08	329-08	329-09	12	329-12	329-13	329-13	329-13	329-14	77000	327-14	327-14	327-14	329-14	<u></u>	329-21	329-21	329-21	329-21	329-21	329-21	**	329-41	329-41	329-41	329-41	329-42	67-668	!
SEO #	_	2	3	→	5	9	7	7	7		PM TEST	7	<u>9</u>	17	81	2	<u> </u>	2 8	77	3 3		PI JEST	_	2	က	→	5	9	PM TEST	-	~	က	~	5	9	i

PH REPORT LPAJ NASA LEWIS (121581-4840) PERFOR

Tpcu (066 C)		77	27	; 2	2 8	÷ 6	3 8	: =	29	75	3	24	58	90	0, 6	3	2	2	28	%	26		=	2	23	24	"	3 2	67	0	۰ ۰	` .	7 .	77	3 2
Tpcu (DEG F)	7	2 &	8 2	: &	8	*	8 2	59	84	77	=	7,6	79	6	3 6	3 ;	51	21	85	79	8		55	ಽ	74	76	=		6	67	• •	? ?	2 5	۲۲ در	\
Tinj (DEG C)	503	5.75	210	510	503	499	495	477	489	228	370	520	519	717		316	987	164	515	256	522		492	498	220	232	530	505	176	520	007	535	533	255 5.35	521 521
Tinj (DEG F)	937	977	950	950	937	930	922	880	912	676		896	196	040	750	5 6	2	867	959	616	971		918	929	296	990	986	071		8%	931	906	000	0//	696
1con (0EG C)	=	117	117	11	117	117	118	49	113	108	?	108	1117	120	121	7		85	116	117	118	;	æ	83	113	109	118	01	}	88	2 %	201	Ŷ0.	8 -	1 2
lcon (DEG F)	731	242	243	242	243	242	244	120	235	227	i i	227	243	747	250	22	8/1	28. 190	241	242	245		183	181	235	228	245	7176	0 + 7	187	173	217	223	230	338
199 (DEG C)	518	512	511	507	498	493	488	480	490	515		505	503	496	763	1 0	477	1/4	48/	514	511	9	473	468	SII	206	495	787	2	482	454	497	(6)	7/7	474
199 (0EG F)	196	954	952	944	929	919	911	895	914	959		942	938	924	917	000	730	188	707	45/	952	ć	07 <i>k</i>	8/4	952	943	923	606		900	853	926	716	898	988
	98	88	90	91	92	92	9.4	58	88	88		98	16	93	9.5	17	6 9	8 6	5 5	88	83	,	7/	7/	88	7	94	4.6	:	81	79	95	98	101	104
Tvf Tvf (DEG F) (DEG C)	187	192	194	195	198	198	201	137	191	187		187	197	200	203	153	3	661		0.4	191	=	6 5	791	190	195	201	207		178	175	203	208	214	220
13 (06G C) (384	385	388	391	395	398	401	388	402	382		390	394	399	402	717	200	707	# C	79¢	383	950	000	\$ 0.7	390	395	402	408		236	200	392	396	404	412
13 (DEG F) (724	726	730	737	743	748	755	730	756	725		733	741	751	755	657	202	750	757	97/	/35	177	100	775	134	/44	756	191		457	393	739	746	759	773
11 (0.66 c)	831	831	842	859	874	88	893	895	838	825		820	865	988	893	208	175	600	200	070	838	204	72.1	0/1	/78	825	875	897		204	173	924	840	898	894
11 (0EG F)	1528	1527	1548	1579	1604	1619	1639	1643	1649	1517	:	1561	1589	1626	1640	405	346	1457	1503	6761	1340	707	070		1701	1366	8091	1647		400	344	1515	1543	1595	1641
HOM BOM	1260	1260	1260	1260	1260	1260	1260	1260	1260	1260		1260	1260	1260	1260	0	· c	1240	0761	070	0071	_		2 2	2071	ne7 :	1260	1260		0	0	1260	1260	1260	1260
NOM Pf	300	282	260	240	202	185	170	170	120	99	;	N97	240	202	185	300	021	2.2	2	30.0	697	300	2	2 6		007	SQ !	20		300		300			
DATE	11/15/89	11/15/89	11/15/89	11/12/89	11/15/89	11/15/89	11/12/89	11/15/89	11/15/89	11/16/89		KR/47/11	11/29/89	11/29/89	11/29/89	11/30/89	11/30/89	11/30/89	11/30/89	1/30/00	17 307 67	2/08/89	12/08/89	12/00/00	10/00/01	10/00/0	12/08/89	5/08/89		01/08/90	01/08/90	01/08/30	01/08/30	01/08/90	01/08/90
SAMP					76				 ਜ	52	8	_			~ 85			63			-	17 1	75					105		_		23			26 0
RUH #	329-07	329-07	329-07	329-07	329-07	329-07	329-07	329-08	329-08	329-09	#2	21-426	329-13	329-13	329-13	329-14	329-14	329-14	379-14	11-662	17, 74	329-21	329-21	229-21	320-21	17 /70	17-476	329-21	<u> </u>	329-41	329-41	329-41	329-41	329-42	329-42
SEO #	-	2	က	~	S.	9	7	7	~ ·	_	₩		9!	/1	<u>8</u>			22			_		2	יה	> -	- ⊔	· .	•	PN 1ES1	-	7	က	-	S	•

PM REPORT LPAJ NASA LEWIS (121581-4840) PERFOR

_															
ARC CUM IMPULSE (LBF-SEC)				2368.9										-	3005.9
ARC IMPULSE (LBF-SEC) (0.0	0.0	79.9	65.3		0.0	0.0	82.7	80.9	78.0	75.6	71.9	69.7	67.7
66 CUM IMPULSE (18F-SEC) (179.3	206.5	206.5	206.5		235.4	256.3	256.3	256.3	256.3	256.3	256.3	256.3	256.3
GG ONLY IMPULSE (LBF-SEC)		18.8	27.2	0.0	0.0		28.9	20.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0
ARC CUM TUEL USED (LBM) (5.11	5.11	5.30	5.43		5.43	5.43	5.62	5.81	5.99	6.16	6.31	6.46	69.9
ARC UEL USED ((LBM)		0.0000	0000.0	0.1851	0.1363		0.0000	0.0000	0.1921	0.1856	0.1775	0.1688	0.1541	0.1472	0.1417
66 CUM FUEL USED F (LBM)		98.9	7.05	7.24	7.38		7.58	7.73	7.92	8.11	9.29	8.46	8.61	8.76	8.99
GG FUEL USED F (LDM)		0.1460	0.1929	0.1851	0.1363		0.2034	0.1532	0.1921	0.1856	0.1775	0.1688	0.1541	0.1472	0.1417
ON TIME FI		918.9	918.9	948.9	978.9		978.9	978.9	1008.9	1038.9	1068.9	1098.9	1128.9	1158.9	1208.9
ARC ON TIME (MIN)		0.0	0.0	30.0	30.0		0.0	0.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0
66 CUM ON TIME (MIN)		1194.1	1224.1	1254.1	1284.1		1314.1	1344.1	1374.1	1404.1	1434.1	1464.1	1494.1	1524.1	1574.1
66 0N TIME (MIN)		30.0	30.0	30.0	30.0		30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0
POM		0	0	1260	1260		0	0	1260	1260	1260	1260	1260	1260	1260
NOM Pf		170	300	300	170		300	170	300	282	260	240	202	185	170
DATE		01/16/90	06/91/10	01/16/90	01/16/90		02/04/90	02/04/90	02/04/90	02/04/90	02/04/90	02/04/90	05/04/90	02/04/90	02/02/90
SAMP		6	17	æ	16		&	16	77	35	40	48	26	99	c c
SEO # RUN #	PM TEST #5	329-47	329-47	329-48	329-48	9	329-62	329-62	329-62	329-62	329-62	329-62	329-62	329-62	329-63
SEO #	PM TEST	_	2	က	9	PM TEST		2	m	~	S	9	7	œ	13

PH REPORT LPAJ HASA LEWIS (121581-4840) PERFORMANCE MAP

P/FLOW (J/Kg)		•	>	00672776	00000076	20126100	c	~ C	00312736	0001007	0074/707	001/15/7	21912/00	00021010	33877000 34882400
Рс (KPa)	1	7 071	217.0	1 707	1.026	7.766	0000	1.022	104.1	0. /64	7.004	300 0	7.110	6,076	350.9
Pc (PSIA)	!	7 16	71.7	2 7	0.10	?									50.9
pf (KPa)	1	1220 4	7074 6	2074 6	1183 1	110011	2045 7	1175.4	20.5.00	1977 4	1704 0	2.61.71	1111	1287 0	1179.0
Pf PSIA)	;	0 771	300	300 9	171 4	2.1.1	7 666	170 5	300.8	286.1	2,002	230.7	7 100	184.9	171.0
ISP PF (SEC) (PSIA)		120 0	139.1	132	0 107	: : :									482.1
FLOW (Kg/SEC) (0 034404	0.049338	0.046290	0 033454	2000									0.035403
FLOW (LBM/SEC)		0_00008028	0.00010877	0.00010205	0.00007376		0.00011237	0 00008513	0.00010625	0.00010355	0 00009819	0.00009379	0 00008508	0.00008091	0.00007805
THRUST (N)	1 1	0.046350	0.067301	0.197500	0.161381										0.167386
THRUST (LBF)	!	0.010420	0.015130	0.044400	0.036280		0.016070	0.011580	0.045930	0.044950	0.043330	0.042000	0.039960	0.038740	0.037630
ARC V/I	!	0.000	0.0000	10.0913	6.5149		0.0000	0.000	10,9915	10.6893	10.0479	9.4688	8.0999	7.5051	6.9805
ARC POWER (Watts)	1 1 1	0.0	0.0	1234.5	1235.4										1234.7
ARC VOLTAGE (VOLTS)	:	-0.15	0.16	111.61	89.71		0.38	0.42	116.62	114.91	111.13	107.66	17.66	96.29	92.84
PCU POWER Watts)	! ! !	0.0	0.0	1238.9	1242.2		0.0	0.0	1241.3	1239.0	1233.4	1229.1	1232.9	1241.7	1241.1
ARC CURRENT (AHPS) (0.00	0.00	11.06	13.77		0.00	0.00	10.61	10.75	11.06	11.37	12.31	12.83	13.30
NOM	!	0	0	1260	1260		0	0	1260	1260	1260	1260	1260	1260	1260
NOM P.f	! !	170	300	300	170		300	170	300	282	260	240	202	185	170
DATE	! ! !	01/16/90	01/16/90	01/16/90	01/16/90		02/04/90	02/04/90	02/04/90	05/04/90	02/04/90	02/04/90	02/04/90	02/04/90	02/02/40
SAMP		6	17	&	91		æ	91	24	32	40	48	99	64	8
SEO # RUN #	PH TEST #5	1 329-47	2 329-47	3 329-48	6 329-48	PM 1EST 16	1 329-62	2 329-62	3 329-62	4 329-62	5 329-62	9329-62	7 329-62	8 329-62	13 329-63

PM REPORT LPAJ NASA LEWIS (121581-4840) PERFOR

lpcu DEG C)		ċ	, c	~ ;	7	%	٢	- 1	œ	18	; ;	3 6	7 6	77	೭	77	4.7	23
Tpcu 1 0EG F) (0E		07	6 0	0 (6	۲,	3	Q :	46	29	: 5	2 7	: 5	7/	74	7,4	2 1	/3
Tinj DEG C) (DE	-	530	020	775	747	224	763	476	513	554	655	756	33	0	555	248		238
Tinj 0EG F) (C	•	070	007	101	1010	4/2	7.0	0//	436	1029	1025	1217	1200	1071	1031	1019		1000
Tcon DEG C) (7.	58 77	3 5	5 -	711	. 5	5 6	g	Ξ	117	711	?:	011	<u> </u>	118	2	106
Tcon (DEG F) (171	191	210	717	734	178	2 6	187	232	242	241	2,41	14.7	242	245		577
Tgg (DEG C) (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	877	474	707	67.1	6	2 04	107	463	525	525	520	217	3 3	206	205	701	470
1gg DEG F)	!	838	889	921	077	//0	636	6 6	7	971	972	696	649	2 6	743	935	000	677
Tvf 199 (DEG C) (DEG F)		66	£	2 0	10.7	è	79	87	00	85	84	88	8	5 8	λ	91	00	00
Tvf () (0EG F) (C	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	210	181	212	225	677	151	5	3 :	180	184	190	192		173	195	101	7 / 7
T3 DEG C) (1	193	234	393	\$1 7	2	189	27	3 :	313	315	317	317	000	970	323	768	220
T3 (066 F) (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	379	454	739	778		373	328	2 2	2%6	299	602	603	007	000	914	617	ì
11 0EG C) (!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	166	202	819	897	3	203	174		۱۸۵	798	807	811	000	170	847	648	3
11 (0EG F) (330	395	1506	1647	:	398	345	2	1404	1468	1485	1492	1534	+ 7C 1	1557	1585	•
NOM Pour	:	0	0	1260	1260		0	0	0/01	0071	1260	1260	1260	1240	2071	1260	1260	
NOM P.f	!	170	300	300	170	· :	300	170	000	3	382	560	240	205	3 4	182	170	:
DATE	!	01/16/90	01/16/90	01/16/90	01/16/90		02/04/90	05/04/90	00/10/60	04/40/70	05/04/30	05/04/90	02/04/90	05/04/90	90,1010	05/04/30	02/02/90	
SAMP	 			_	91		_	_	_	5	35	9	48	35	; :	_		
SEO # RUN #	PM TEST #5	329-47	329-47	329-48	329-48	9#	329-62	329-62	67-6CE	70 /70	359-62	329-62	329-62	29-628	27 000	30-476	329-63	
SEO #	PN TEST	-	2	က	9	PM TEST	-	7	٣	, -	~	S	9	7	. c	Ð	E E	

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE	3. REPORT TYPE AND DATES	COVERED				
The state of the s	March 1991		ntractor Report				
4. TITLE AND SUBTITLE	5. FUND	DING NUMBERS					
Arcjet Thruster Research and	d Technology, Phase II Final Rep	oort					
		-506-42-31					
6. AUTHOR(S)		NAS3-24631					
6. AUTHOR(S)							
Prepared by S.E. Yano							
7. PERFORMING ORGANIZATION NA	ME(S) AND ADDDESS/ES	8 DEDE	ORMING ORGANIZATION				
	מוזיב(ט) אוזט אטטחבסט(בס)		ORT NUMBER				
Rocket Research Company							
1141 Willows Road N.E.		E-9	332				
P.O. Box 97009							
Redmond, WA 98073-9709							
9. SPONSORING/MONITORING AGEN	NCY NAME(S) AND ADDRESS(ES)	10. SPO	NSORING/MONITORING				
. SPONSORING/MONITORING AGE!	יייייייייייייייייייייייייייייייייייייי		NCY REPORT NUMBER				
National Aeronautics and Sp	pace Administration						
Lewis Research Center		NA:	SA CR-182276				
Cleveland, Ohio 44135–31	91						
]							
11. SUPPLEMENTARY NOTES							
	ran Chaca Dranulaian Tachnalas	TV Division NASA Lawis Dasa	arch Center				
Project manager, Frank Curi	ran, Space Propulsion Technolog	57 DIVISION, MASA LEWIS RESE	mon comon				
organization code 5330, (21	UJ 433-1424.						
12a. DISTRIBUTION/AVAILABILITY S	TATEMENT	12b. DIS	STRIBUTION CODE				
Unclassified - Unlimited							
Subject Category 01							
1							
This publication is available from	n the NASA Center for Aerospace Info	ormation, (301) 621–0390.					
13. ABSTRACT (Maximum 200 words							
I .	report was performed by Rocket	Research Company (RRC) und	er Phase II of contract NAS3-				
24631 for the Lewis Research	ch Center (LeRC) of the National	Aeronautics and Space Admir	nistration. The reporting				
period covers the time between	een March 1987 and February 19	990.					
portou covers the time betw							
1							
1							
1							
1							
Í							
1							
1							
1							
14. SUBJECT TERMS		· · · · · · · · · · · · · · · · · · ·	15. NUMBER OF PAGES				
			252				
Arcjet; Electric propulsion			16. PRICE CODE				
			A12				
11. 020011111	18. SECURITY CLASSIFICATION	19. SECURITY CLASSIFICATION	20. LIMITATION OF ABSTRACT				
OF REPORT	OF THIS PAGE	OF ABSTRACT					
Unclassified	Unclassified	Unclassified	<u></u>				