

AREAS

cates, cates,

. DETERMINATION OF AREAS .

• AREAS BOUNDED BY SOME STANDARD CURVES •

__ 3.0 = INTRODUCTION ____

If y = f(x) is a non-negative continuous function in [a, b] then the definite integral $\int_a^b f(x)dx$ geometrically represents the area bounded by the curve y = f(x) above the *X*-axis between the lines x = a and x = b.

Based on the nature of the region bounded by the given curves we discuss the possible ways of calculating the areas of these regions using definite integrals. The process of finding areas using definite integrals is known as *quadrature*.

_ 3.1 _ DETERMINATION OF AREAS _

1) If f(x) is continuous on [a,b] and $f(x) \ge 0 \ \forall x \in [a,b]$ then the area A of the region bounded by the curve y = f(x), the x-axis and the lines x = a and x = b is given by $A = \int_{a}^{b} f(x) dx$ (or) $A = \int_{a}^{b} y dx$

2) If f(x) is continuous on [a, b] and $f(x) \le 0 \ \forall x \in [a, b]$ then the area A of the region bounded by the curve y = f(x) the x-axis and the lines x = a, x = b is given by

$$A = \int_{a}^{b} -f(x) dx \text{ (or) } A = -\int_{a}^{b} f(x) dx \text{ (or) } A = \left| \int_{a}^{b} f(x) dx \right|.$$

3) Let f(x) be continuous on [a, b] such that $f(x) \ge 0 \ \forall x \in [a, c]$ and $f(x) \le 0 \ \forall x \in [c, b]$ where a < c < b. Then the area A of the region bounded by the curve y = f(x) the x-axis and the lines x = a and x = b is given by

$$A = \int_{a}^{c} f(x)dx + \int_{c}^{b} -f(x)dx \quad \text{i.e., } A = \int_{a}^{c} f(x)dx + \left| \int_{c}^{b} f(x)dx \right|$$

4) The area A of the region bounded by the curve y = f(x), the x-axis between the lines x = a and x = b (as shown in the fig 3.4) is given by $A = \int_{a}^{b} |f(x)| dx$.

i.e.,
$$A = \int_{a}^{c_1} f(x) dx + \left| \int_{c_2}^{c_2} f(x) dx \right| + \int_{c_2}^{c_3} f(x) dx + \left| \int_{c_3}^{b} f(x) dx \right|$$

5) If f and g are two continuous functions on [a, b] such that $f(x) \ge g(x) \ \forall x \in [a, b]$ then the area A of the region bounded by y = f(x), y = g(x) between the lines x = a and x = b (fig 3.5 (a), (b), (c)) is given by $A = \int_a^b f(x) dx - \int_a^b g(x) dx$ i.e., $A = \int_a^b [f(x) - g(x)] dx$ i.e., $A = \int_a^b (y_{UC} - y_{LC}) dx$

where UC and LC stand for upper curve and lower curve respectively.

6) If f and g are two continuous functions on [a, b] such that the curves y = f(x) and y = g(x) intersect at $c \in (a,b)$ and $f(x) > g(x) \ \forall x \in [a,c)$ and $f(x) < g(x) \ \forall x \in [a,c)$ then the area A bounded by the curves between the lines x = a and x = b is given by

$$A = \int_{a}^{c} [f(x) - g(x)] dx + \int_{c}^{b} [g(x) - f(x)] dx \quad \text{(or)} \quad A = \int_{a}^{c} (y_{UC} - y_{LC}) dx + \int_{c}^{b} (y_{UC} - y_{LC}) dx$$

7) Let f and g be two continuous functions on [a, b] such that the curves y = f(x) and y = g(x) intersect at $x_1, x_2 \in (a, b)$ and $x_1 < x_2$. If f(x) > g(x) $\forall x \in (x_1, x_2)$ then the area A of the region enclosed by the curves between their points of intersection is given by $A = \int_{x_1}^{x_2} [f(x) - g(x)] dx$ (or) $A = \int_{x_1}^{x_2} (y_{UC} - y_{LC}) dx$

In the case of some regions it is more convenient to find the areas about y- axis (instead of x- axis as is done in the above cases 1 to 7). For this, we have to consider x as a function of y and determine the limits of y accordingly.

8) If $g(y) \ge 0 \ \forall y \in [c,d]$, then the area bounded by the curve x = g(y) the y-axis and the lines y=c and y=d is given by $A = \int_{0}^{d} x dy = \int_{0}^{d} g(y) dy$

9) If $g(y) \le 0 \ \forall y \in [c,d]$ then the area A bounded by x = g(y), y-axis, y = c and y = d is given by $A = -\int_{c}^{d} g(y)dy = \left|\int_{c}^{d} g(y)dy\right|$

10) The areas of the regions shown in the following figures are given by

a)
$$A = \begin{vmatrix} c_1 \\ c_2 \end{vmatrix} g(y)dy + \int_{c_1}^d g(y)dy$$
 (fig 3.10 (a))

b)
$$A = \int_{c}^{d_{1}} g(y) dy + \left| \int_{d_{1}}^{d} g(y) dy \right|$$
 (fig 3.10 (b))

$$d y = d$$

$$d_1 x = g(y)$$

$$c y = c$$
Fig 3.10 (b)

Fig 3.10 (c)

x = g(y)

c)
$$A = \int_{c}^{d} [f(y) - g(y)] dy$$

i.e.,
$$A = \int_{c}^{d} \left[x_{RC} - x_{LC} \right] dy$$
 (fig 3.10 (c))

where RC = Right most curve;

LC= Left most curve.

Remark:

If a region consists of n symmetric portions then the area A of the whole region is given by A = n (area of one symmetric portion).

3.2 AREAS BOUNDED BY SOME STANDARD CURVES

1. The area enclosed by one arch of $y = \sin x$ and the x-axis is 2 sq. units.

Note:

- i) The area enclosed by y = sinx and x-axis between x = 0 and x = nπ is 2n sq. units (: there are n portions of 2 sq units each).
- ii) The area enclosed by one arch of y=cosx and x-axis is 2 sq units.
- iii) The area enclosed by y = cosx and x-axis between x=0 and x = nπ is 2n sq units.

Sol. Area = $\int_{0}^{\pi} \sin x dx = [-\cos x]_{0}^{\pi} = 2 \text{ sq units}$

- 2. The area enclosed by $y^2 = 4ax$ and its latus rectum is $\frac{8a^2}{3}$ sq units.
- Sol. A rough sketch of the required region is shown in the fig

There are two symmetric portions in the region

:. Area =
$$2\int_{0}^{a} 2\sqrt{a}\sqrt{x}dx = 4\sqrt{a}\frac{2}{3}\left[x^{3/2}\right]_{0}^{a} = \frac{8}{3}a^{2}$$
 sq units

- 3. The area enclosed between $y^2 = 4ax$ and y = mx is $\frac{8a^2}{3m^3}$ sq units.
- **Sol.** The curves $y^2 = 4ax$ and y = mx(m > 0) intersect of (0,0) and $\left(\frac{4a}{m^2}, \frac{4a}{m}\right)$

A rough sketch of the required region is shown in the figure.

Note:

If m<0 then the required area is $\frac{8}{3} \frac{a^2}{|m|^3}$ sq units.

Area =
$$\int_{0}^{4a/m^{2}} (y_{UC} - y_{LC}) dx = \int_{0}^{4a/m^{2}} \left[2\sqrt{a}\sqrt{x} - mx \right] dx = 2\sqrt{a} \frac{2}{3} \left[x^{3/2} \right]_{0}^{4a/m^{2}} - \frac{m}{2} \left[x^{2} \right]_{0}^{4a/m^{2}}$$
$$= \frac{32}{3} \frac{a^{2}}{m^{3}} - \frac{8a^{2}}{m^{3}} = \frac{8}{3} \frac{a^{2}}{m^{3}} \text{ sq units.}$$

- 4. The area enclosed by the curves $x^2 = 4by$ and y = mx is $\frac{8}{3}b^2m^3$ sq units.
- **Sol.** The curves $x^2 = 4by$ and y = mx(m > 0) intersect at 0(0, 0) and $P(4bm, 4bm^2)$ A rough sketch of the required region is shown in the fig

Note:

If m < 0 then the area is $\frac{8}{3}b^2|m|^3$ sq units.

Area =
$$\int_{0}^{4bm} (y_{UC} - y_{LC}) dx = \int_{0}^{4bm} \left(mx - \frac{x^2}{4b} \right) dx = \frac{m}{2} \left[x^2 \right]_{0}^{4bm} - \frac{1}{12b} \left[x^3 \right]_{0}^{4bm}$$
$$= 8b^2 m^3 - \frac{16}{3}b^2 m^3 = \frac{8}{3}b^2 m^3 \text{ sq units}$$

- *5. The area enclosed between two parabolas $y^2 = 4ax$ and $x^2 = 4by$ is $\frac{16}{3}ab$ sq units.
- **Sol.** The two curves $y^2 = 4ax$ and $x^2 = 4by$ intersect at O(0, 0) and $P\left(4a^{1/3}.b^{2/3}, 4a^{2/3}.b^{1/3}\right)$ A rough sketch of the region is shown in the figure.

Dedcution:
The area enclosed between the parabolas
$$y^2 = 4ax$$
 and $x^2 = 4ay$ is $\frac{16}{3}a^2$ sq units.

Area =
$$\int_0^{4a^{3}3}b^{3/3}$$

$$= 2\sqrt{a}\frac{2}{3}\left[x^{\frac{3}{2}}\right]^{\frac{3}{2}}$$

- Area = $\int_{0}^{4a\sqrt{3}b^{\frac{3}{3}}} (y_{UC} y_{LC}) dx = \int_{0}^{4a\sqrt{3}b^{\frac{3}{3}}} \left(2\sqrt{a}\sqrt{x} \frac{x^{2}}{4b} \right) dx$ $= 2\sqrt{a} \frac{2}{3} \left[x^{\frac{3}{2}} \right]^{4a\sqrt{3}b^{\frac{3}{3}}} \frac{1}{12b} \left[x^{3} \right]_{0}^{4a\sqrt{3}b^{\frac{3}{3}}} = \frac{32}{3}ab \frac{16}{3}ab = \frac{16}{3}ab \text{ sq units}$
- 6. The area enclosed between the parabolas $y^2 = 4a(x+a)$ and $y^2 = 4b(b-x)$ where a > 0, b > 0 is $\frac{8}{3}(a+b)\sqrt{ab}$ sq units.
- **Sol.** The two curves are symmetric about the x-axis and intersect at $P(b-a,2\sqrt{ab})$ and $Q(b-a,-2\sqrt{ab})$

The required region (shown in the fig) lies between x = -a and x = b and the boundary of the region changes at x = b - a.

It contains 2 symmetric portions.

Area =
$$2\left\{\int_{a}^{b} \int_{a}^{a} 2\sqrt{a}\sqrt{x+a}dx + \int_{b}^{b} 2\sqrt{b}\sqrt{b-x}dx\right\} = 2\left\{\frac{4}{3}\sqrt{a}(x+a)^{\frac{3}{2}}\right\}_{a}^{b-a} - \frac{4}{3}\sqrt{b}(b-x)^{\frac{3}{2}}\right\}_{b-a}^{b}$$

= $2\left(\frac{4}{3}\sqrt{a}b^{\frac{3}{2}} + \frac{4}{3}\sqrt{b}a^{\frac{3}{2}}\right) = \frac{8}{3}\sqrt{ab}(a+b)$ sq units

- 7. The area enclosed between two intersecting quadratic curves $y = a_i x^2 + b_i x + c_i$ and $y = a_1 x^2 + b_2 x + c_2$ is $\frac{\Delta^{3/2}}{(a_1 + b_2)^2}$ sq units where $\Delta = B^2 - 4AC$ and $A = a_1 - a_2$, $B = b_1 - b_2$ and $C = c_1 - c_2$.
- **Sol.** Let the two curves $y = a_1 x^2 + b_1 x + c_1$ and $y = a_2 x^2 + b_2 x + c_2$ intersect at $x = x_1$ and $x = x_2$ Then X_1 , X_2 are the roots of $(a_1 - a_2)x^2 + (b_1 - b_2)x + (c_1 - c_2) = 0$ i.e., $Ax^2 + Bx + C = 0$ where $A = a_1 - a_2$, $B = b_1 - b_2$, $C = c_1 - c_2$.

(Caution: Common factor, if any, among A, B, C should not be cancelled as the same symbols are being used in the area integral).

$$\therefore x_1 + x_2 = -\frac{B}{A}, x_1 x_2 = \frac{C}{A} \text{ Let } \Delta = B^2 - 4AC$$

The area enclosed between the curves is

Area =
$$\begin{vmatrix} x_2 \\ x_1 \end{vmatrix} \Big[\Big(a_1 x^2 + b_1 x + c_1 \Big) - \Big(a_2 x^2 + b_2 x + c_2 \Big) dx \Big] = \begin{vmatrix} x_2 \\ x_1 \end{vmatrix} \Big[\Big(A x^2 + B x + C \Big) dx \end{vmatrix}$$

= $\begin{vmatrix} \frac{A}{3} \Big(x_2^3 - x_1^3 \Big) + \frac{B}{2} \Big(x_2^2 - x_1^2 \Big) + C \Big(x_2 - x_1 \Big) \Big| = \begin{vmatrix} \frac{(x_2 - x_1)}{6} \Big\{ 2A \Big(x_1^2 + x_1 x_2 + x_2^2 \Big) + 3B \Big(x_2 + x_1 \Big) + 6C \Big\} \Big|$
= $\begin{vmatrix} \frac{\sqrt{B^2 - 4AC}}{6A} \Big\{ 2A \Big(\frac{B^2}{A^2} - \frac{C}{A} \Big) + 3B \Big(\frac{-B}{A} \Big) + 6C \Big\} \Big| = \frac{\sqrt{B^2 - 4AC}}{6A^2} \Big| B^2 - 4AC \Big|$
= $\frac{(B^2 - 4AC)^{\frac{3}{2}}}{6A^2} = \frac{\Delta^{\frac{3}{2}}}{6A^2}$ sq units

Example: The area enclosed between $y = 5x^2$ and $y = 2x^2 + 9$ is $\frac{\Delta^{\frac{3}{2}}}{6A^2} = \frac{(4.3.9)^{\frac{3}{2}}}{6.9} = 12\sqrt{3}$

- **8. The area enclosed by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is πab sq units. Also deduce the area of the
- **Sol.** The ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is symmetric about both the axes and there are 4 symmetric portions in the region (see fig).

Remarks:

If

 $\Delta = B^2 - 4AC < 0$ then the given curves doesnot intersect and hence no region is enclosed between them.

- 2) The above formula is also valid when one of the curves is a linear curve (straight line)
- 3) The area enclosed between quadratic

$$x = a_1 y^2 + b_1 y + c_1$$

$$x = a_2 y^2 + b_2 y + c_2$$
is $\frac{\Delta^{3/2}}{6A^2}$ sq units
(using the same notation as above)

4) The area enclosed between $y = ax^2 + bx + c$ and y=0 when they intersect, is $\frac{\Delta^{3/2}}{6a^2}$ sq units where $\Delta = b^2 - 4ac > 0$

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \Rightarrow y = \pm \frac{b}{a} \sqrt{a^2 - x^2}$$

Deduction :

The area of the circle $x^2 + y^2 = a^2$ is $\pi a^2 sq$ units.

The curve meets the x-axis at (a, 0) and (-a, 0) and the y-axis at (0, b) and (0, -b)

Area = 4 (area of one symmetric portion)

$$=4\int_{0}^{a} \frac{b}{a} \sqrt{a^{2}-x^{2}} dx = \frac{4b}{a} \left[\frac{x}{2} \sqrt{a^{2}-x^{2}} + \frac{a^{2}}{2} \sin^{-1} \left(\frac{x}{a} \right) \right]_{0}^{a} = \frac{4b}{a} \left[0 + \frac{\pi a^{2}}{4} \right] = \pi ab$$

*9. The area enclosed by the line segments |x| + |y| = 1 is 2 sq units.

Sol. The given curves are
$$|x| + |y| = 1 \Rightarrow$$

$$\begin{cases} x + y = 1 & \text{if } x \ge 0, y \ge 0 \\ -x + y = 1 & \text{if } x < 0, y \ge 0 \\ -x - y = 1 & \text{if } x < 0, y < 0 \\ x - y = 1 & \text{if } x \ge 0, y < 0 \end{cases}$$

There are 4 symmetric portions in the region

Area = 4(area of one symmetric portion)

$$=4\int_{0}^{1} (1-x) dx 4 \left[x - \frac{x^{2}}{2} \right]_{0}^{1} = 4 \left(1 - \frac{1}{2} \right) = 2 \text{ sq units.}$$

10. The area enclosed between the curves y = x and $y = x^3$ is $\frac{1}{2}$ sq unit.

Sol. The curves y = x and $y = x^3$ intersect at $x = 0, \pm 1$ the rough sketch of the region is shown in the figure.

Area =
$$\int_{-1}^{0} (x^3 - x) dx + \int_{0}^{1} (x - x^3) dx = 2 \int_{0}^{1} (x - x^3) dx = 2 \left[\frac{x^2}{2} - \frac{x^4}{4} \right]_{0}^{1} = \frac{1}{2} \text{ sq unit.}$$

SOLVED EXAMPLES

- 业 *1. Find the area of one of the curvili-near triangles formed by $y = \sin x$, $y = \cos x$ and x-axis. (March-19)
 - The given curves are $y = \sin x$, $y = \cos x$ and x axis

A rough sketch of the region is shown in the figure.

Area =
$$\int_{0}^{\frac{\pi}{4}} \sin x dx + \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \cos x dx = \left[-\cos x \right]_{0}^{\frac{\pi}{4}} + \left[\sin x \right]_{\frac{\pi}{4}}^{\frac{\pi}{2}}$$

= $-\left(\frac{1}{\sqrt{2}} - 1 \right) + \left(1 - \frac{1}{\sqrt{2}} \right) = 2 - \sqrt{2}$ sq units.

- # #2. Find the area bounded by $y = \sin x$ and $y = \cos x$ between any two consecutive points of their inter-section
 - Two of the consecutive points of intersection of $y = \sin x$ and $y = \cos x$ are $x = \frac{\pi}{4}$ and $x = \frac{5\pi}{4}$ A rough sketch of the region is shown in the figure.

Area =
$$\int_{\frac{\pi}{4}}^{\frac{5\pi}{4}} (y_{uc} - y_{LC}) dx = \int_{\frac{\pi}{4}}^{\frac{5\pi}{4}} (\sin x - \cos x) dx$$
= $\left[-\cos x - \sin x \right]_{\frac{\pi}{4}}^{\frac{5\pi}{4}} = -\left[\left(-\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} \right) - \left(\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} \right) \right]$
= $\sqrt{2} + \sqrt{2} = 2\sqrt{2}$ sq units

3. Find the area bouned by $y^2 = 4x$ and y = 2x-4

Sol.

y = 2x - 4 -- (2) F or points of intersection of (1) & (2)

The given curves are $y^2 = 4x$ -- (1)

$$y^2 = 4\left(\frac{y+4}{2}\right) \implies y^2 - 2y - 8 = 0 \implies (y+2)(y-4) = 0$$

A rough sketch of the region is showin in the figure.

It is bounded by the curves (1) & (2) between y = -2 and y = 4.

It is convenient to find the area about the y-axis than the x-axis (1)

$$\Rightarrow x = \frac{y^2}{4} (2) \Rightarrow x = \frac{y+4}{2} \therefore \text{Area} = \int_{2}^{4} (x_{RC} - x_{LC}) dy$$

(RC : Right most curve LC : Left most curve)

$$= \int_{2}^{4} \left(\frac{y+4}{2} - \frac{y^{2}}{4} \right) dy = \frac{1}{2} \left[\left(\frac{y^{2}}{2} + 4y \right) \right]_{2}^{4} - \frac{1}{4} \left[\frac{y^{3}}{3} \right]_{2}^{4}$$
$$= \frac{1}{2} \left[(8+16) - (2-8) \right] - \frac{1}{4} \left(\frac{64}{3} + \frac{8}{3} \right) = 15 - 6 = 9 \text{ sq units.}$$

Aliter: The given curves are
$$x = \frac{y^2}{4}$$
, $x = \frac{y}{2} + 2$ -- (2)

(1) - (2)
$$\Rightarrow Ay^2 + By + C = \frac{y^2}{4} - \frac{y}{2} - 2$$

$$A = \frac{1}{4}, B = -\frac{1}{2}, C = -2$$

Area =
$$\frac{\Delta^{\frac{3}{2}}}{6A^2}$$
 = 9 sq units.

Sol. The given curves are $y = \sin 2x$

$$y = \sqrt{3} \sin x \qquad -(2)$$

and the lines are x = 0 and $x = \frac{\pi}{6}$

For points of intersection of (1) & (2) $\sin 2x = \sqrt{3} \sin x$

$$\Rightarrow \sin x = 0 \text{ or } \cos x = \frac{\sqrt{3}}{2}$$

$$\therefore x = 0, x = \frac{\pi}{6}$$
 (since x lies between 0 and $\frac{\pi}{6}$)

A rough sketch of the region is shown in the figure

Area =
$$\int_{0}^{\frac{\pi}{6}} (y_{uc} - y_{LC}) dx = \int_{0}^{\frac{\pi}{6}} (\sin 2x - \sqrt{3} \sin x) dx$$

$$= \left[-\frac{1}{2}\cos 2x + \sqrt{3}\cos x \right]_{0}^{\frac{\pi}{6}} = \left(-\frac{1}{4} + \frac{3}{2} \right) - \left(-\frac{1}{2} + \sqrt{3} \right) = \left(\frac{7}{4} - \sqrt{3} \right) \text{ sq units}$$

5. Find the area bounded by the curves
$$y = x^3 - x$$
 and $y = x^2 + x$

The given curves are $y = x^3 - x$ -(1) $y = x^2 + x$ -(2)

$$v = x^2 + x \qquad --(2)$$

For points of intersection $x^3 - x = x^2 + x \implies x = 0, 2, -1$

curve (1) cuts the x - axis at x = 0, x = 1, x = -1 and the curve (2) at x = -1

$$(1) \Rightarrow y = x(x-1)(x+1)$$

y is +ve for
$$x \in (-1,0) \cup (1,\infty)$$
 -ve for $x \in (-\infty,-1) \cup (0,1)$

(2) \Rightarrow y = x(x+1) this is +ve for $x \in (-\infty, -1) \cup (0, \infty)$ and -ve for $x \in (-1, 0)$

Sign scheme for $y = x^2 + x$ Sign scheme for $y = x^3 - x$

A rough sketch of the required region is shown in the figure.

Area =
$$\int_{1}^{0} (y_{vc} - y_{tc}) dx + \int_{0}^{2} (y_{vc} - y_{tc}) dx$$

= $\int_{1}^{0} [(x^{3} - 3) - (x^{2} + x)] dx + \int_{0}^{2} (x^{2} + x) - (x^{3} - x) dx$
= $\int_{1}^{0} (x^{3} - x^{2} - 2x) dx + \int_{0}^{2} (2x + x^{2} - x^{3}) dx$
= $\left[\frac{x^{4}}{4} - \frac{x^{3}}{3} - x^{2} \right]_{1}^{0} + \left[x^{2} + \frac{x^{3}}{3} - \frac{x^{4}}{4} \right]_{0}^{2} = \frac{5}{12} + \frac{8}{3} = \frac{37}{12} \text{ sq units.}$

*6. Find the area of the region $\{(x,y): x^2 - x - 1 \le y \le -1\}$

Sol. Let the given region be $R = \{(x, y) : x^2 - x - 1 \le y \le -1\}$

Consider the curves $y = x^2 - x - 1$ —(1)

and
$$y = -1$$
 -- (2)

The curves (1) & (2) intersect at the points x for which $x^2 - x - 1 = -1$

$$\Rightarrow x(x-1)=0 \Rightarrow x=0, x=1$$

$$y = x^2 - x - 1 \Longrightarrow \left(x - \frac{1}{2}\right)^2 = y + \frac{5}{4}$$

This is a parabola with vertex at $\left(\frac{1}{2}, -\frac{5}{4}\right)$ and cuts the

x-axis at
$$x = \frac{1 - \sqrt{5}}{2}$$
 and $x = \frac{1 + \sqrt{5}}{2}$

Further y < 0 for $x \in \left(\frac{1 - \sqrt{5}}{2}, \frac{1 + \sqrt{5}}{2}\right)$ and y > 0 for $x < \frac{1 - \sqrt{5}}{2}$ or $x > \frac{1 + \sqrt{5}}{2}$

.. The parabola is oriented upwards with a vertical axis.

The origin O(0, 0) lies inside the parabola and also satisifies the inequality

$$y \ge x^2 - x - 1$$

 $y \ge x^2 - x - 1$ represents the region inside the parabola (1) including the curve. $y \le -1$ represents the region below the line y = -1 including the line.

A rough sketch of the region R is shown in the figure.

It is bounded between x = 0 and x = 1 : Area = $\int_{0}^{1} (y_{vc} - y_{tc}) dx$

$$= \int_{0}^{1} \left[\left(-1 \right) - \left(x^{2} - x - 1 \right) \right] dx = \int_{0}^{1} \left(x - x^{2} \right) dx = \left[\frac{x^{2}}{2} - \frac{x^{3}}{3} \right]_{0}^{1} = \frac{1}{6} \text{ sq units.}$$

*7. Find the area of the region enclosed by $y^2 = 4(4-x)$ and $y^2 = 4x$ (May-19)

Sol. The given curves
$$y^2 = 4(4-x)$$
 -- (1)

$$y^2 = 4x --(2)$$

are both parabolas symmetric about x - axis

For the points of intersection $4(4-x) = 4x \implies x = 2, y = \pm \sqrt{8}$

(1) and (2) intersect at (2,±8).

A rough sketch is shown in the figure.

The region has two symmetric portions and it is bounded between x = 0 and x = 4 and the boundary of the region changes at x = 2

$$\therefore \text{ Area} = 2 \left[\int_{0}^{2} 2\sqrt{x} dx - \int_{2}^{4} 2\sqrt{4 - x} dx \right] = 4 \left\{ \left[\frac{2}{3} x^{\frac{3}{2}} \right]_{0}^{2} + \left[\frac{2}{3} (4 - x)^{\frac{3}{2}} \right]_{2}^{4} \right\}$$

$$= \frac{8}{3} \left(2\sqrt{2} + 2\sqrt{2} \right) = \frac{32\sqrt{2}}{3} \text{ sq units (or) Area} = \int_{\sqrt{8}}^{\sqrt{8}} \left(x_{RC} - x_{LC} \right) dy = \int_{\sqrt{8}}^{\sqrt{8}} \left[\left(4 - \frac{y^{2}}{4} \right) - \frac{y^{2}}{4} \right] dy$$

$$= 2 \int_{0}^{\sqrt{8}} \left(4 - \frac{y^{2}}{2} \right) dy = 2 \left[4y - \frac{y^{3}}{6} \right]_{0}^{\sqrt{8}} = 2 \left(8\sqrt{2} - \frac{16}{6}\sqrt{2} \right) = \frac{32\sqrt{2}}{3} \text{ sq units.}$$

*8. The parabola $y = \frac{1}{2}x^2$ divides the circle $x^2 + y^2 = 8$ into two parts find the area of each part

Sol. The given curves $y = \frac{1}{2}x^2$ -- (1)

$$x^2 + y^2 = 8 --(2)$$

are both symmetric about y - axis for the points of intersection of (1) & (2)

$$=2y+y^2=8$$

$$\Rightarrow$$
 $(y-2)(y+4)=0 \Rightarrow y=2, y=-4$

$$y = -4$$
 does not satisfy equation (1) $\therefore y = 2 \Rightarrow x = \pm 2$

The points of intersection are (-2, 2), (2, 2).

The smallar region R_i is shown in the figure as shaded portion.

It is bounded between x = -2 and x = 2 and it has 2 symmetric portions.

:. Area of
$$R_1 = 2 \int_{0}^{2} (y_{vc} - y_{LC}) dx = 2 \int_{0}^{2} (\sqrt{8 - x^2} - \frac{x^2}{2}) dx$$

$$=2\left\{\frac{x}{2}\sqrt{8-x^2}+\frac{8}{2}\sin^{-1}\left(\frac{x}{2\sqrt{2}}\right)-\frac{x^3}{6}\right\}_0^2=2\left\{\left(2+\pi-\frac{4}{3}\right)-0\right\}=2\pi+\frac{4}{3} \text{ sq units}$$

Since the area of the circle is 8π , the area of the larger portion R, is

$$8\pi - \left(2\pi + \frac{4}{3}\right) = 6\pi - \frac{4}{3}$$
 sq units

 \therefore The areas of the two parts are $2\pi + \frac{4}{3}$ sq units and $6\pi - \frac{4}{3}$ sq units.

Show that the area enclosed between the curves
$$y^2 = 12(x+3)$$
 and $y^2 = 20(5-x)$ is $64\sqrt{\frac{5}{3}}$.

Sol. Equation of the curves are
$$y^2 = 12(x+3)$$
(1)

$$y^2 = 20(5-x)$$
(2)

Eliminating 12(x+3) = 20(5-x)

$$3x + 9 = 25 - 5x$$

$$8x = 16$$

$$x = 2$$

$$y^{2} = 12(2 + 3) = 60$$

$$y = \sqrt{60} = \pm 2\sqrt{15}$$

Points of intersection are $B(2,2\sqrt{15})$; $B'(+2,-2\sqrt{15})$

The required area is symmetrical about x- axis Area ABCB'

$$= 2\left[\int_{-3}^{2} 2\sqrt{3}\sqrt{x+3} \, dx + \int_{2}^{5} 2\sqrt{5}\sqrt{5-x} \, dx\right] = 4\sqrt{3}\left[\frac{(x+3)^{\frac{3}{2}}}{\frac{3}{2}}\right]_{-3}^{2} + 4\sqrt{5}\left[\frac{(5-x)^{\frac{3}{2}}}{\frac{3}{2}}\right]_{2}^{5}$$

$$= \frac{8\sqrt{3}}{3}\left(5^{\frac{3}{2}} - 0\right) - \frac{8\sqrt{5}}{3}\left[0 - 3^{\frac{3}{2}}\right] = \frac{8\sqrt{3}}{3}.5\sqrt{5} + \frac{8\sqrt{5}}{3}.3\sqrt{3}$$

$$= \frac{40.\sqrt{15}}{3} + \frac{24\sqrt{15}}{3} = \frac{64}{3}\sqrt{15} \text{ sq units}$$

$$= 64\sqrt{\frac{15}{9}} \text{ sq units} = 64\sqrt{\frac{5}{3}} \text{ sq units}$$

EXERCISE - 3.1

Tina the area of the region bounded by	
**************************************	//////////////////////////////////////
	//////////////////////////////////////
//////////////////////////////////////	XAns./XX
	//////////////////////////////////////
	//////////////////////////////////////
	//////////////////////////////////////
2. Find the area of the region bounded by	
*55 X = since and the s-axis in the inversal 10,248	//////////////////////////////////////
//////////////////////////////////////	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
The parabolic $v = x^2$, x-axis, and the lines $v = -\lambda$ and $x = 2$.	1,4xns; 21
*\dy\x\=\@\and\x\=\x\bebs\een\x\=\0\and\x\=\	XAns::\\$
*6\ \(\nu = \sin \nu \and \nu = \cos \netween \nu = \nu \and \nu = \frac{\pi}{2}	XAns., 12152-1511

	Ados Na
$\frac{\partial g_{x}}{\partial y} = A - x$ and the y-oxis	(Ans. 132)
970), y = 20000 000	SAns (2/2)
*is	(Ans: \(\frac{51}{4}\)
	XA918 ; XV9(2)X
	//////////////////////////////////////
*1\(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\)	XAns:: * X
*100\	\\\Ans:\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
*us	(Aus - 2)
*05	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
*103	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
A Find the area of the region enclosed by the euroes	
/%\\ \\ \= \si^ \ank\\ \\ \= 24	//////////////////////////////////////
1965 15° = 35; and x = 3	//////////////////////////////////////
**\ \x = 2 - 5\(\disp - 2\disp' \) and \(\disp = 3\disp' \)	Ans: (343)
*6\$\ \structure = 4\structure x = 2x \text{ and }\structure = 5\\	\(\lambda\) Ans \(\lambda\) \(\frac{\fir}}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac}\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\
	NAME (XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
*\$\\ \y = 16x - 15^2 and \x = 25\$	19as : (2)
*\frac{1}{2})Ans: , 2)
%his 1,2 = 85x, and xy = 25x	\(\frac{\frac{1}{3}}{3}\)
***	12kns
*/\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	/(Ans./10(

AREAS

	XX not Xoo Social Colors of Social Social Color of Social	
	/%\s\;\\\x\=\A\x\-\x\\\x\\\\\x\\=\X\-\2\x\\	
	968	Ans: \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
		XAns : \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \
	/*dx//x/=x2+X/x=2x-2/md/ths/oritinates/x/=/X/md/x=2/	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
		(Ans:\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
	#\$\\ \x\\\=\2x\+\&\x\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	XA08 x 181
	*	XAns : 41
	/*NS(XAns . 3
	/*iv /v=\x\ and x\ = /x\ - 2	/Ams : \(\frac{20}{\sqrt{2}}\)
	*}}	
	Æind the snew between x-skis and the europ x = 1,x - X; - 25.	XXns-: - 5000 XXns-: - 5000
	Find the sires of the region introct by the segment entail from the parable is -2x + 8 = 10 and the har	014/5° = 85° 155° 156° 166° XANS 2° 361
	Tind the area of the region bounded by x = Aga between the lines to = 10 an	$\frac{\sqrt{208}}{\sqrt{305}} \sqrt{\frac{208}{3}} \sqrt{2}$
	Find the are of the region tuninged by the entre $\sqrt{x}+\sqrt{y}+\sqrt{x}+\sqrt{x}$ is a $x\geq 0, y\geq 0$	(a) and the coordinate $\frac{2}{6}$
	Find the area bounded by the 3-axis, gard of the curve $x=X+\frac{8}{X^2}$ and the x	ntdinates
*****	Let ADB be the positive quadrant of the ellipse $\frac{3}{2}$, $\frac{3}{2}$ = 3 with OA = 1 and	IDB = 16. 8how that the
	area heaneded between the choid AB and the arc AB of the ellipse is $\left rac{\pi - 2}{4} ight>$ ef	r sązopis,
	. That the area of the region in the Best quadrant enclosed by the x -axis, the B	ne x≠xand the enels X as x4nX
	Prove that the curves $S^2 = 4x$ and $x^2 = 4x$ aby ide the area of the square bount $x = 4$, $y = 4$ and $y = 8$ and three equal parts. (March 17)	ded by the lines x = bk

	Vind the steel of the right suggest Ale with baself and attitude it using the hundamental incorpor of
	integral estentis
** \$ \$	Find the area of the Ate torned by the straight line 2x 4 y = 2 and the coordinate axes using three gration. Lans: 11
	At the regions A and B are given by $A = \{(x,y), y > x\}$, $B = \{(x,y), y < 2-x\}$, find the area of $A = A$.
	EXERCISE - 3.2
	Find the area of the region bounded by $y = 30x - 130x - 25$, the x-axis and $x = 10$ and $x = 4$. (Aus: $\frac{33}{2}$)
	Find the sice of the region bounded by the curves y = /e/ y = e/ und/the/ine/x = //
	\A\a\s\z\e\frac{\frac{1}{2} - 2\chi_
	Find the area of the region bounded by $x = 2^{n}$ and the lines $y = 3$ and $x = 0$. (Ans $x = 3^{n}$) $\frac{2^{n}}{2^{n}}$
	Find the area of the region enclosed by the parabola $v = \sqrt[3]{+2}$, the lines $v = -x$, $x = 13$ and $x = 2$.
	$\Lambda \Delta ns \cdot \frac{N^{2}}{8} \lambda$
	Find the area enclosed by the surves $y \neq x_1 x_2 y \neq 2y$ and the lines $x \neq \frac{x}{2}$ and $y \neq 2y$
	XAiss = 3 - 3 to 2 + 4 - 55 x
	Vinit sien enclosed by \N=X-x ² .
	Nind the sign enclosed between $x=\sqrt{5-x^2}$ and the sines $x=x-x$.
	Find the ratio in which the area bounded by the croves $x^2 = 12x$ and $x^2 = 12x$ is divided by the line $x = x$.
	That the puller of the copyes notes which the seach of 4 % = 646 is divided by the curve 32 = 120x X40\$: An 4 \$\overline{2} : \overline{2} :
	Compute the area of the region bounded by the straight lines $x \neq 0$, $x \neq 2$ and the curves $y \neq 2^y$ and
	(N. 7. P. T.
	Now the sica of the region bounded by the curves x = x and x = 17/7 XAns x 10 + 7/3

AREAS 139

Flud the stee of the region bounded by the corves y = set x = xet and the line s	= N
Find the size of the region bisinded by the lines $y = x + 1$ and $y = 3 - y $.	(Ans . 4)
Find the area of the region bounded by the curves $x = y^2 - 1$ and $y = x - 5$.	1Ans : 109 5 1
Find the area of the region bounded by $x = \log x$ and $x + \sin^4(\pi x)$	1/Ans: 1/8/1
Find the mon of the region bounded by $AV=14-27$ and $V=7-12$	%Ans ; 32%
Finit the area enclosed by $\chi \neq \log_A x + e \chi$ and $x \neq \log_A \chi$ and the x-axis.	(Ans * 2)
Let MX7=max sux coosx 2 Descripting the area of the region bounder	/89/9/=/8/98/
>>5645 5660 x = 2 ₇₀	**************************************
X_{ex} $f(x) \neq max(x^2,0) + xy^2,2x(0 + xy)(xy)app(x) \leq x \leq x$. Determine the area of the by $x = f(x)$, x -axis, $x \neq 0$ and $x \neq 0$.	cegion bounded Ans 270278
Let A_n between area bounded by the curve $x = x_0 x_0^n$, $n \in \mathbb{N}$ and the lines $y = x_0 x_0$	ng
$n > 2$, prove that $A_n + A_{n-2} = \frac{N}{N-1}$ and declare that $\frac{N}{2n+2} < A_n < \frac{N}{2n-2}$	
At and the apon bounded by the energy + posts and y + sing between the ordinates x	= XV etriel X = // X1
	98 × 455-52

