Programme de khôlle de maths n° 15

Semaine du 27 Janvier

Cours

Chapitre 9: Matrices

- Matrices $n \times m$. Opérations, transposée.
- Matrices carrées : matrice identité, matrices diagonales, matrices triangulaires supérieures/inférieures
- Produit de matrices diagonales, formule du binôme pour des matrices qui commutent.
- Trace d'une matrice carrée
- Matrices inversibles. Si A et B inversibles alors AB inversible et $(AB)^{-1} = B^{-1}A^{-1}$. Si A est inversible alors tA aussi et $(^tA)^{-1} = ^t(A^{-1})$.
- Une matrice triangulaire supérieure/inférieure ou une matrice diagonale est inversible ssi ses coefficients diagonaux sont tous non nuls.
- Déterminant d'une matrice 2×2 .
- Systèmes linéaires de n équations à p inconnues, matrice $n \times p$ associée à ce système.
- Système homogène, solution triviale.
- Méthode du pivot de Gauss pour la résolution d'un système linéaire. Opérations élémentaires sur les lignes. Forme échelonnée d'un système
- Rang d'un système, lien entre le rang et le nombre de solutions
- Si S est un système de n équations et n inconnues tel que $S \iff AX = Y$, alors S admet une unique solution ssi A est inversible et la solution est donnée par $X = A^{-1}Y$. A est inversible d'inverse B ssi pour tout $X, Y \in \mathcal{M}_{n,1}(\mathbb{R})$, $AX = Y \iff X = BY$.
- AX = 0 admet des solutions non triviales si n < m ou si A est carrée et non inversible
- Rang d'une matrice = rang du système associé à cette matrice
- Matrice échelonnée en ligne, algorithme de Gauss pour déterminer le rang d'une matrice. $A \in \mathcal{M}_n(\mathbb{R})$ est inversible ssi $\operatorname{rg}(A) = n$.

Questions de cours

- Montrer que pour tout $A \in \mathcal{M}_{n,m}(\mathbb{R})$, $I_n A = A$ et $AI_m = A$.
- Montrer que la matrice identité de taille n est l'unique matrice $A \in \mathcal{M}_n(\mathbb{R})$ telle que $\forall X \in \mathcal{M}_{n,1}(\mathbb{R}), AX = X$.
- Montrer que pour tout $A, B \in \mathcal{M}_{n,1}(\mathbb{R}), \operatorname{tr}(AB) = \operatorname{tr}(BA)$.

Exercices

- 1. Exprimer A^n en fonction de n avec $A = \begin{pmatrix} 3 & 1 & 1 \\ 1 & 3 & 1 \\ 1 & 1 & 3 \end{pmatrix}$
- 2. Montrer que le produit de deux matrices triangulaires supérieures/inférieures est une matrice triangulaire supérieure/inférieure.
- 3. Si $tr(^tAA) = 0$, que peut-on dire de A?
- 4. Déterminer toutes les matrices $A \in \mathcal{M}_2(\mathbb{R})$ telles que $A = A^{-1}$.
- 5. Soient $A, B \in \mathcal{M}_{n,m}(\mathbb{R})$ telles que pour tout $X \in \mathcal{M}_{m,1}(\mathbb{R})$, AX = BX. Montrer que A = B.