— 1.º mini-teste — 24 de outubro de 2023 ————

Duração: 45 minutos —

Número: _

Nome: _____

O mini-teste é constituído por 5 perguntas, cada uma com 4 afirmações, que poderão ser verdadeiras ou falsas. Cada afirmação corretamente assinalada como verdadeira ou como falsa (circundando \mathbf{V} ou \mathbf{F} , respetivamente) tem cotação de 1 valor, cada afirmação incorrectamente assinalada tem cotação (negativa) de -0,25 valores, mas a classificação final em cada pergunta é, no mínimo, 0 valores.

- 1. Seja $\varphi = (\neg \neg p_0 \lor \bot) \leftrightarrow p_0$.
 - **F** Qualquer sequência de formação de φ tem, pelo menos, 7 elementos.
 - **V** Para todo $\psi \in \mathcal{F}^{CP}$, se $p_0 \in var(\psi)$, então $p_0 \in var(\varphi[\psi/p_0])$.
- $\mathbf{V} \qquad \varphi[\neg \perp /p_0] \text{ tem (exatamente) 6 subfórmulas.}$
 - **F** Para todo $\psi \in \mathcal{F}^{CP}$, $subf(\varphi) \subseteq subf(\varphi[\psi/p_0])$.
- 2. Seja f a função de \mathcal{F}^{CP} em \mathbb{N}_0 que a cada fórmula φ faz corresponder o número de ocorrências de variáveis proposicionais em φ . Seja $P(\varphi)$ a condição " $f(\varphi) > 0$ ".
- $\mathbf{V} \qquad P(\neg(p_1 \lor \bot)).$
- **V** Para todo $\varphi, \psi \in \mathcal{F}^{CP}$, se $P(\varphi)$ e $P(\psi)$, então $P(\varphi \to \psi)$.
 - **F** Para todo $\varphi \in \mathcal{F}^{CP}$, se $\varphi \neq \perp$, então $P(\varphi)$.
 - **F** Para todo $\varphi, \psi \in \mathcal{F}^{CP}, f(\varphi \to \neg \psi) > f(\psi).$
- 3. Seja $\varphi = \neg p_1 \wedge (p_1 \leftrightarrow \neg p_2)$.
 - **V** Para qualquer valoração v, se $v(\varphi) = 1$, então $v(p_2) = 1$.
 - $\mathbf{F} \quad \varphi \vee (p_1 \vee p_2)$ é uma tautologia.
- V Há uma infinidade de valorações que atribuem valor lógico 1 a φ .
- $\mathbf{V} \qquad \varphi \Leftrightarrow (p_1 \to \perp) \wedge (\neg p_1 \leftrightarrow p_2).$
- 4. Seja φ uma contradição.
 - **F** Para todo $\varphi_1, \varphi_2 \in \mathcal{F}^{CP}$, se $\varphi_1 \wedge \varphi_2 \Leftrightarrow \varphi$, então φ_1 é uma contradição ou φ_2 é uma contradição.
 - **V** Para qualquer $\psi \in \mathcal{F}^{CP}$, $\psi \to \neg \varphi$ é uma tautologia.
 - **F** Para qualquer $\psi \in \mathcal{F}^{CP}$, $\neg \varphi \to \psi$ é uma tautologia.
 - **V** Existe ψ tal que $\psi \Leftrightarrow \varphi$ e os conetivos que ocorrem em ψ pertencem a $\{\neg, \rightarrow\}$.
- 5. Seja $\varphi = p_1 \wedge \neg p_0$.
 - V Qualquer fórmula que pertença ao conjunto $\{\varphi \land (p_i \lor \neg p_i) : i \in \mathbb{N}_0\}$ é uma FNC logicamente equivalente a φ .
 - V Qualquer conjunto de conetivos que contenha o conjunto dos conetivos que ocorrem em φ é completo.
 - **F** A fórmula $\varphi[p_2 \vee \neg p_1/p_0]$ é uma FNC.
- V A fórmula $\varphi[p_2 \wedge \neg p_0/p_1]$ é uma FND.