Introdução à Fundamentos da Informática

Conceitos Básicos

Profa. Emilia

SUMÁRIO

- Introdução e conceitos básicos
- Hardware
- Software

Tecnologia da Informação

- Bases tradicionais da economia:
 - Terra / Meios de Produção
 - Trabalho
 - Capital Financeiro
- Novo elemento:
 - Informação

- Terceira Revolução Industrial (tecnocientífica)
 - Era da Informação
 - Computação + Telecomunicações

Comunicação

E-mail, conversa on-line, vídeo conferência, redes sociais,...

Entretenimento e multimídia

Vídeo-game, música eletrônica, estúdio de som, imagem e vídeo.

- Empresas, Governo e Burocracia
 Automação do controle, documentação e processamento digital das informações, ...
- Indústria

Máquinas autônomas, de precisão...

Comércio

Venda por internet, organização da logística...

Características do Computador

- Alta velocidade de processamento
- Alta capacidade de armazenamento
- Possibilidade de replicação
- Processamento ininterrupto
- Programável

Benefícios trazidos pelo computador

- Confiabilidade e Exatidão
- Precisão no controle de processos
- Aumento da produtividade
- Análise de grandes quantidades de informação
- Auxílio à tomada de decisões
- Agilidade nas operações
- Redução da burocracia

Desvantagens

- Limitado ao que está programado
- Sem criatividade
- Difícil tratamento da ambigüidade
- Obsolescência
- Dependência

Tipos de computadores gerais

- Computadores pessoais (desktop)
- Computadores portáteis (notebooks)
- Computadores manuais (handheld)
- Servidores
- Mainframes
- Supercomputadores

Computadores Pessoais (PC)

- Computadores de Mesa (desktop):
 - Também conhecidos como PCs, microcomputadores, ou computadores domésticos.
- Terminal de Rede:
 - Unidade central de processamento e memória mínima.
 - Projetado para ser usado em uma rede.
 - Às vezes chamado de cliente magro (thin client)
 - Realiza a interface entre o usuário e um servidor

Computadores Portáteis

- Computadores pequenos e leves – notebooks, netbooks
- Suas capacidades se comparam às dos computadores de mesa:
 - Processamento e memória similares.
 - Disco rígido, CD/DVD
- Capacidade de conexão em rede cabeada e sem fio

Computadores Manuais – Handheld ou PDA

- Exemplos
 - Palm
 - Pocket PC
 - BlackBerry
 - Smartphones
- Usos
 - Agenda de compromissos, contatos, tarefas
 - Rodam versões reduzidas de software: processador de texto, planilhas eletrônicas, email, web
 - Acesso sem fio (Wi-Fi ou celular) à Internet

Servidores

- Computadores multiusuário projetados para suprir as necessidades de organizações de porte médio ou departamentos
- Configurados como servidores
 - Centenas ou milhares de usuários conectados.
 - Suportam bancos de dados, sistemas integrados de gestão (controle de estoques, pedidos, faturamento) e outras aplicações empresariais
 - Suportam serviços de rede e Internet
 - Armazenam arquivos de uso compartilhado

Mainframes

- Computadores muito grandes e potentes:
 - Capazes de processar bilhões de instruções por segundo.
 - Grande capacidade de armazenamento de dados
- Freqüentemente usados para aplicações com milhares de usuários:
 - Sistemas de reservas de passagens aéreas, hotéis
 - Sistemas financeiros (bancos, seguradoras, financeiras)
 - Servidores de bancos de dados corporativos

Supercomputadores

- Os computadores mais rápidos e mais poderosos:
 - Capazes de processar trilhões de instruções por segundo.
- Usados para aplicações muito sofisticadas que requerem gigantescas manipulações de dados:
 - Previsão do tempo.
 - Simulações e cálculos de alta precisão.
 - Efeitos especiais para cinema.

O que um computador faz?

Terminologia

- Dado
 - Informação que será trabalhada durante o processamento
 - Exemplos
 - 10 (idade), 12 x 8 (pressão arterial), 1.99 (altura em metros), Maria (nome)
- Instrução
 - Operação elementar que o computador tem a capacidade de processar
 - Trabalha com os dados
 - Ordens executadas pelo computador
 - Exemplos
 - instruções para entrada e saída (E/S) de dados
 - instrução de movimentação de dados (transferência)
 - instruções aritméticas
 - instrução de comparação
 - etc

Terminologia

Programa

- roteiro que orienta o computador, mostrando-lhe a sequência de operações necessárias para executar uma determinada tarefa
- seqüência de instruções que dirigem a CPU na execução de alguma tarefa
- composto por uma série de comandos ou instruções

Hardware

 conjunto de componentes mecânicos, elétricos e eletrônicos com os quais são construídos os computadores e equipamentos periféricos

Software

 conjunto de programas e procedimentos que permitem usufruir da capacidade de processamento fornecida pelo hardware

Componentes de um Sistema Computacional

Hardware

Software

Usuário

SUMÁRIO

- Introdução e conceitos básicos
- Hardware
 - Organização funcional do computador
 - Sistema central
 - Sistema de entrada/saída
 - Representação de dados
 - Níveis de memória
- Software

Hardware

O hardware é a parte física do computador

Sistema Central:

Processamento

Periféricos:

Entrada, Saída, Armazenamento e Comunicação.

Hardware: Periféricos

Computador Pessoal

Viagem ao centro do Computador

Organização funcional

- Sistema Central que contém:
 - Unidade Central de Processamento (UCP/CPU/microprocessador)
 - Unidade de Controle
 - Unidade Aritmética e Lógica
 - Clock
 - Memória Principal
 - Interfaces
- Unidades de Entrada e Saída (E/S)
 - Teclado, mouse, impressora, vídeo, etc...

Organização funcional

Exemplo de placa-mãe (motherboard)

A-processador (UCP-CPU)

B-Memória RAM

C-Slots de Expansão

D-Cabo de força

E-Drivers fixos como HD

F1-Bateria

F2-BIOS (Basic I-O System)

AG-conectores USB, impressora

H-Furos para prender a placa

I-chip de controle da placa (barramentos)

Processador e memória

- Processador
 - Unidade Central de Processamento (CPU – Central Processing Unit)

- Memória (armazenamento primário)
 - Memória RAM
 - Memória Cache

Sistema central

CPU/microprocessador

- Unidade de Controle
 - Controla o fluxo de informações entre todas as unidades do computador e executa as instruções na seqüência correta
- Unidade Aritmética e Lógica (ULA)
 - Realiza operações aritméticas (cálculos) e lógicas (decisões), comandada por instruções armazenadas na memória
- Fica em uma placa de circuitos chamada placa-mãe (motherboard)

Clock (relógio)

- Os microprocessadores trabalham regidos por um padrão de tempo
 - determinado por um clock
- gera pulsos a intervalos regulares
- a cada pulso uma ou mais instruções internas são realizadas

Sistema central

- Memória principal
 - Armazena temporariamente as informações (instruções e dados)
 - dados ficam disponíveis ao processamento (pela ULA) e para transferência para os equipamentos de saída
 - organizada em porções de armazenamento, cada qual com um endereço
 - ROM (Read Only Memory)
 - tipicamente menor que a RAM
 - não depende de energia para manter o seu conteúdo
 - memória permanente
 - informações não podem ser apagadas (casos especiais)
 - geralmente vem gravada do fabricante
 - apenas de leitura
 - Programas em memória ROM: BIOS
 - rotina de inicialização do computador, reconhecimento do hardware, identificação do sistema operacional, contagem de memória
 - Orientar o computador nas 1^as operações

Sistema central

- Memória principal
 - RAM (Random Access Memory)
 - memória temporária
 - utilizada pelo usuário para executar seus programas
 - uso restringe-se ao período em que o equipamento está em funcionamento
 - memória é volátil (seu conteúdo pode ser apagado)
 - armazenar programas e dados
 - guardar resultados intermediários do processamento
 - Informações podem ser lidas e gravadas

Instruções

- Programa
 - seqüência de instruções
- Computador analisa e executa as instruções uma a uma
- Execução ocorre na ULA, sob coordenação da UC
- Na execução:
 - instruções e dados estão na memória
 - são trazidos da memória para a CPU
 - UC analisa a instrução

Categorias de Instruções

- Instruções de E/S
 - leituras de fita, disco magnético, pendrive, cd, dvd, gravação, etc
- Instruções de transferência
 - da memória para a CPU, de um registrador para outro
- Instruções Aritméticas
 - adição, subtração, multiplicação, divisão
- Instruções Lógicas
 - E (AND), OU (OR), NÃO (NOT)
- Instruções de Comparação

Sistemas de E/S

- Periféricos (ou Unidades de Entrada e Saída)
 - dispositivos conectados a um computador que possibilitam a comunicação do computador com o mundo externo
 - Unidades de entrada
 - Permitem que informações sejam introduzidas na memória do computador
 - Exemplos
 - Mouse, teclado
 - Unidades de saída
 - Transformam a codificação interna dos dados em uma forma legível pelo usuário
 - Exemplos
 - Impressora, vídeo, caixa de som

• Bit

- Blnary digiT
- componente básico da memória
- é a menor unidade de informação
- pode assumir dois valores ou sentidos
 - 1 --> ligado (ON) ou 0 --> desligado (OFF)

Byte

- Agrupamento de 8 bits
- Normalmente corresponde a um caractere: letra, dígito numérico, caractere de pontuação,...
- Com um byte é possível representar-se até 256 símbolos diferentes.

Representação dos dados

Códigos de representação de dados

- caractere é a unidade básica de armazenamento na maioria dos sistemas
- armazenamento de caracteres (letras, algarismos e outros símbolos) é feito através de um esquema de codificação
 - certos conjuntos de bits representam certos caracteres
- Bastante utilizados: ASCII, EBCDIC e UNICODE
 - ASCII (American Standard Code for Information Interchange)
 - Código utilizado pela maioria dos microcomputadores

Ex.:	Caracteres	EBCDIC	ASCII
	А	1100 0001	10100001
	Z	1110 1001	10111010

Unidades de Medida

- quantificar a memória principal do equipamento
- indicar a capacidade de armazenamento (disco, CD, etc.), em bytes

K	quilo	mil	2 ¹⁰	1.024
М	mega	milhão	2 ²⁰	1.048.576
G	giga	bilhão	2 ³⁰	1.073.741.824
Т	tera	trilhão	2 ⁴⁰	1.099.511.627.776

Níveis de memória

Diferentes velocidades de acesso

Memória Cache

- altíssima velocidade de acesso
- acelera o processo de busca de informações na memória
- localizada logicamente entre o processador e a memória principal
- pode tanto integrar o microprocessador (cache interna), como consistir de chips adicionais instalados na placa-mãe do micro (cache externa)
- tamanho tipicamente pequeno
- Memórias Auxiliar e Auxiliar-Backup
 - discos, CDs e fitas

Exemplo de anúncio de computador:

- Notebook
- Proc. Intel Core i3 2,10GHz
- Memória RAM 4GB
- Hard Disk 320 GB
- Drive optico DVD/RW
- Tela 15,6 polegadas
- webCam embutida
- Windows 7 Professional

SUMÁRIO

- Introdução e conceitos básicos
- Hardware
- Software
 - Software básico
 - Sistema operacional
 - Linguagens de programação
 - Utilitários
 - Software aplicativo

Software

- Software aplicativo
 - aplicações criadas para solucionar problemas específicos
 - Exemplos
 - contabilidade, folha de pagamento, correção de provas, editor de texto, planilha eletrônica

Software básico

- conjunto de softwares que permite ao usuário criar, depurar e modificar as aplicações criadas por ele
 - sistema operacional, linguagens de programação, utilitários
- Sistema operacional (ex: Windows, Linux, DOS, ...)
 - Gerência de memória
 - Gerência de processador
 - Gerência de arquivos
 - Gerência de dispositivos de E/S

Software básico

Linguagens de programação

- conjunto de convenções e regras que especificam como instruir o computador a executar determinadas tarefas
- serve como meio de comunicação entre o indivíduo que deseja resolver um determinado problema e o computador

Gerações de linguagens

1ª geração: linguagens em nível de máquina

2ª geração: linguagens de montagem (Assembly)

3ª geração: linguagens orientadas ao usuário

4ª geração: linguagens orientadas à aplicação

5ª geração: linguagens de conhecimento

45

Linguagens de Programação

- 1ª Geração: Linguagens em nível de máquina
 - Instrução 0010 0001 0110 1100
 - realiza a soma (código de operação 0010) do dado armazenado no registrador 0001, com o dado armazenado na posição de memória 108 (0110 1100)
 - Programa: seqüência de zeros e uns
 - programação trabalhosa, cansativa e fortemente sujeita a erros
- 2ª geração: Linguagens de Montagem (Assembly)
 - minimizar as dificuldades da programação em notação binária
 - Códigos de operação e endereços binários foram substituídos por mnemônicos
 - ADD R1, TOTAL
 - R1 representa o registrador 1 e TOTAL é o nome atribuído ao endereço de memória 108
 - processamento requer tradução para linguagem de máquina

Linguagens de Programação

- 3ª geração: Linguagens Orientadas ao Usuário
 - Maioria surgiu nas décadas de 50 e 60:
 - FORTRAN, COBOL, PL/1, Pascal, Basic, C, ...

- 4ª geração: Linguagens Orientadas à Aplicação
 - apressar o processo de desenvolvimento de aplicações
 - gerar código sem erros a partir de requisitos de expressões de alto nível
 - tornar fácil o uso de linguagens, tal que, usuários finais possam resolver seus problemas computacionais sem intermediários
 - SQL
 - select nome from alunos where CodCurso="EngCivil"

Software básico

- 5ª geração: Linguagens de Conhecimento
 - mecanismos da área de inteligência artificial
 - Sistemas especialistas, processadores de língua natural e sistemas com bases de conhecimento
 - Um sistema de 5ª geração armazena conhecimento complexo de modo que a máquina pode obter inferências a partir da informação codificada
 - Ex: PROLOG

Níveis de linguagem

- linguagens de baixo nível
 - primeira e segunda geração
- linguagens de alto nível
 - terceira geração em diante

- Tradutor
 - programa que recebe como entrada um programa escrito em uma linguagem de programação (chamada linguagem fonte) e produz como resultado as instruções deste programa traduzidas para linguagem de máquina (chamada linguagem objeto).
- Se a linguagem do programa fonte é uma linguagem de montagem (Assembly) o tradutor é chamado de Montador (Assembler)
- Tradutores que traduzem os programas escritos em linguagem de alto nível:
 - compiladores e interpretadores

Compilador

- traduz um programa escrito em linguagem de alto nível
- produz um programa em linguagem objeto (linguagem executável, ou seja, linguagem de máquina)
 - pode ser executado uma ou mais vezes no futuro
 - enquanto o código fonte do programa não for alterado, ele poderá ser executado sucessivas vezes, sem necessidade de nova compilação

Interpretador

- traduz um programa escrito em linguagem fonte, instrução a instrução, enquanto ele vai sendo executado
- cada vez que um programa interpretado tiver que ser re-executado, todo o processo de interpretação deverá ser refeito, independentemente de ter havido ou não modificações no código fonte do programa desde sua última execução
- Programas compilados tendem a ser executados mais rapidamente que seus correspondentes interpretados

OPERACAO GERENCIA DA PELO SISTEMA OPERACIONAL

Software básico

Utilitários

- Softwares de apoio à solução de problemas de disco, memória, etc
 - Desfragmentador, limpeza de disco...
- Compactadores e descompactadores de arquivos, programas anti-virus
 - Vírus
 - Programas capazes de se instalar de forma clandestina nos sistemas
 - Podem adotar procedimentos perturbadores
 - fazer uma bolinha pular na tela, ...
 - declaradamente destrutivos (apagar informações)