Chapter 11 Fusion-Evaporation Reactions

11.1 Heavy Ions

In the quest for superheavy transuranium elements after the Second World War it soon became clear that neutron capture reactions followed by subsequent β -decay would not be able to reach elements beyond fermium (Z = 100). At the time, nuclear reactions were limited to light-particle induced reactions which again were not suitable to produce new elements. By 1950, the heaviest element produced in light-particle reactions was berkelium. Thompson, Ghiorso, and Seaborg had discovered ²⁴³Bk by irradiating ²⁴¹Am with α -particles [1]. If, however, it was possible to accelerate heavier ions, fusion reactions of these heavy ions with heavy targets could lead to new heavier elements. The first acceleration of a heavy-ion beam was achieved by Miller et al. at the Crocker Laboratory of the University of California at Berkeley in 1950. The intensity of the accelerated ¹²C and ¹⁶O nuclei was not sufficient to induce a detectable number of fusion reactions [2]. However, only a couple of months later, Ghiorso et al. succeeded in identifying ²⁴⁶Cf by irradiating ²³⁸U with ¹²C ions. The compound nucleus ²⁵⁰Cf evaporated four neutrons to populate ²⁴⁶Cf which then subsequently was identified by its α -radioactivity [3].

Soon thereafter it was realized that heavy-ion fusion-evaporation reactions were not only an excellent tool to produce new elements but that they also could be used to populate light neutron-deficient nuclides. Since these early attempts fusion-evaporation reactions have become one of the most productive reaction mechanisms to discover new nuclides. In addition to the almost 200 transuranium and superheavy nuclei well over 500 neutron-deficient nuclides were first identified in heavy-ion fusion-evaporation reactions.

The present chapter discusses the discovery of proton-bound neutron-deficient nuclides with Z < 92. The discovery of isotopes of transuranium ($92 \le Z \le 100$) and superheavy (Z > 100) elements using fusion-evaporation reactions are described in Chaps. 5 and 12, respectively. Nuclides beyond the proton drip-line are discussed in Chap. 16. In the present chapter the nuclides are arranged according to their

decay mechanism; β^+ -emitters in Sects. 11.2 and 11.3, α -emitters in Sect. 11.4, and β -delayed proton emitters in Sect. 11.5.

Initially, the detection and identification techniques were the same as for light-particle induced and spallation reactions. The element identification was somewhat easier at least for the dominant decay channels because charged-particle evaporation is suppressed relative to neutron evaporation for isotopes located not too far from the line of stability. Thus the most probable element of the residues was identical to the compound nucleus. Nevertheless chemical separation was important to discriminate against nuclei populated by other reaction mechanisms like inelastic scattering or incomplete fusion.

The mass identification was quite uncertain as the incident beam energy was not well known. In addition, the energy could not easily be changed so that excitation functions were measured by inserting different absorber foils into the beam.

A major breakthrough occurred when it was realized that the incoming heavy-ion beam imparted significant recoil velocities to the residues which was sufficient to knock them out of the target. The recoils were caught on catcher foils which were then chemically analyzed or placed directly in front of detectors. Later helium-jets were developed where the fragments recoiled into flowing helium gas which then transported them to catcher foils.

11.2 Beta-Decay

Neutron-deficient isotopes that decay by β^+ emission and that have been discovered in fusion-evaporation reactions are listed in Tables 11.1, 11.2 and 11.3. New isotopes populated by fusion-evaporation typically did not decay back to stable nuclei but to radioactive nuclei that had previously been populated by different methods. Thus the observation of the subsequent known daughter decay could be used to help in the identification of the new isotope.

Table 11.1 lists isotopes that were identified following chemical separation. The first non-transuranium isotope populated in a fusion-evaporation reaction was $^{74}{\rm Br}$ in 1953. Hollander irradiated enriched $^{63}{\rm Cu}$ and $^{65}{\rm Cu}$ targets with $\sim\!90\,{\rm MeV}$ carbon ions from the Berkeley 60-in. cyclotron [4]. He assigned a 36-min activity to $^{74}{\rm Br}$ based on the relative intensity observed with the two different copper targets. $^{73}{\rm Br}$ was ruled out because there was no evidence for the known 7.1-h activity of the $^{73}{\rm Se}$ daughter.

Later in 1953, Rossi et al. discovered 119 I also at Berkeley by irradiating palladium targets with a 14 N beam. They linked the observed 18-min activity to the known 4.5-d 119 Te daughter activity [5]. A year later Kalkstein and Hollander used a mass separator to achieve simultaneous chemical mass separation of 126 Cs and thus establish the decay sequence 126 Ba $^{-126}$ Cs $^{-126}$ Xe in the reaction 115 In(14 N,3n) [6].

The first isotopes discovered in fusion-evaporation reactions in Europe were ⁷⁹Rb and ⁷¹Se in 1956 and 1957, respectively, at the Centre d'Etudes Nucléaires de Saclay, in Gif-sur-Yvette, France. The paper on ⁷⁹Rb by Beydon et al. [7] was followed

11.2 Beta-Decay 199

Table 11.1 Isotopes discovered in fusion-evaporation reactions and identified by chemical separation: The submission date, first author and reference of the publication, as well as the target, beam, and the evaporation channel are listed

Date	First author	Ref.	Target	Beam	Evaporation	Isotope
08/11/1953	Hollander	[4]	65,63Cu	¹² C	3n, 1n	⁷⁴ Br
11/25/1953	Rossi	[5]	^{110,108} Pd	¹⁴ N	5n, 3n	¹¹⁹ I
07/09/1954	Kalkstein	[6]	¹¹⁵ In	¹⁴ N	3n	¹²⁶ Ba, ¹²⁶ Cs ^a
09/28/1956	Beydon	[7]	⁶⁵ Cu	¹⁶ O	2n	⁷⁹ Rb
01/21/1957 ^b	Beydon	[8]	^{nat} Cu	¹⁴ N	xn	⁷¹ Se ^a
11/03/1958	Toth	[9]	¹⁴¹ Pr	¹² C	5n	¹⁴⁸ Tb
04/15/1959	Faler	[10]	¹⁶⁵ Ho	¹⁴ N	6n, 5n, 4n	¹⁷³ Ta, ¹⁷⁴ Ta, ¹⁷⁵ Ta
05/28/1959	Chackett	[11]	¹⁸⁴ W	¹⁴ N	5n	¹⁹³ Tl
05/16/1960	Hoff	[12]	^{71,69} Ga	¹⁴ N	5n, 3n	⁸⁰ Sr, ⁸⁰ Rb ^a
05/27/1960	Preiss	[13]	^{nat} Mo	¹⁶ O	2pxn	¹⁰³ Cd
02/23/1961	Diamond	[14]	¹⁶⁹ Tm	¹⁶ O	3n	¹⁸² Ir
11/20/1961	Sheline	[15]	¹²¹ Sb	¹² C	7n, 5n, 3n	¹²⁶ La, ¹²⁸ La, ¹³⁰ La
01/10/1962	Preiss	[16]	^{nat} In	¹⁶ O	pxn	¹²³ Ba, ¹²⁵ Ba
03/05/1962	Maxia	[17]	⁷⁵ As	¹² C	4n, 3n	⁸³ Y, ⁸⁴ Y
08/13/1962	Preiss	[18]	^{nat} In	¹⁶ O	xn	¹²⁷ La, ¹²⁹ La
12/21/1964	Nurmia	[19]	⁵⁸ Ni	⁶ Li	1n	⁶³ Ga
07/09/1965	Belyaev	[20]	¹⁶⁹ Tu	¹⁵ N	4n	¹⁸⁰ Os
03/15/1967	Nadjakov	[21]	¹⁶⁵ Ho	¹⁶ O	6n, 5n	¹⁷⁵ Re, ¹⁷⁶ Re
03/30/1967	Bakhru	[22]	^{nat} Mo	¹¹ B	xn	⁹⁹ Ag
1968 ^c	Belyaev	[23]	¹⁶⁹ Tm	¹⁴ N	4n	¹⁷⁹ Os
10/17/1969	Murray	[24]	⁵⁹ Co	¹⁶ O	2n	⁷³ Br
1971 ^c	Nadjakov	[25]	¹⁵⁵ Gd	²⁰ Ne	5n	¹⁷⁰ W
04/18/1973	Schmeing	[26]	⁵⁸ Ni	¹⁶ O	2n	⁷² Kr
09/25/1974	Kaba	[27]	⁵⁴ Fe	³² S	2p1n	⁸³ Zr
06/19/1981	Bruchertseifer	[28]	¹⁴⁷ Sm	²² Ne	5n, 4n	¹⁶⁴ Hf, ¹⁶⁵ Hf
02/10/1982	Bruchertseifer	[29]	¹⁵¹ Eu	²⁰ Ne	6n	¹⁶⁵ Ta
07/19/1982	Eichler	[30]	¹⁵¹ Eu	²⁰ Ne	7n	¹⁶⁴ Ta

^aPopulated by β^+ -decay

immediately in the same issue of Nuclear Physics by three additional papers by various coauthors from Saclay and Stockholm reporting on the same set of experiments [31–33]. All four papers were submitted on the same day. It is also interesting to note that all authors on the discovery paper of ⁷¹Se were female [8].

The husband and wife team of Ken and Alma Chackett discovered ¹⁹³Tl with the Nuffield cyclotron at the University of Birmingham in England in 1959 [11]. Preiss and collaborators utilized the Yale University heavy-ion linear accelerator to produce ¹⁰³Cd [13], ¹²³Ba and ¹²⁵Ba [16], and ¹²⁷La and ¹²⁹La [18] between 1960 and 1962.

^bDate of session

^cNo date listed

The other isotopes discovered during this time period were produced at Berkeley with the HILAC (Heavy-Ion Linear Accelerator) where Hoff, Hollander, and Michel used a mass separator in addition to β - and γ -ray measurements to identify 80 Sr and its daughter 80 Rb [12].

In the subsequent years until 1982 when the last isotope was discovered utilizing chemical separation, the majority of the new isotopes were produced at the Joint Institute for Nuclear Research at Dubna, Russia. While Belyaev and collaborators still utilized the U150 cyclotron to identify $^{180}\mathrm{Os}$ [20] and $^{179}\mathrm{Os}$ [23], the experiments by Nadjakov and collaborators ($^{175}\mathrm{Re}$ and $^{176}\mathrm{Re}$, [21]) and $^{170}\mathrm{W}$ [25] and later by the group of Bruchertseifer ($^{164}\mathrm{Hf}$ and $^{165}\mathrm{Hf}$ [28], $^{165}\mathrm{Ta}$ [29], and $^{164}\mathrm{Ta}$ [30]) were performed with the U300 accelerator.

By 1970 the development of high-resolution Ge-detectors allowed the clear identification of isotopes by their γ -ray spectra eliminating the need for chemical separation. Table 11.2 lists the isotopes identified by β - and γ -decay without chemical separation. By that time many institutes had acquired either cyclotrons or various linear accelerators and since the discovery measurements required only a few small detectors, the 52 isotopes published in the 38 papers listed in the table were discovered at 19 different institutions in 9 different countries.

In the first experiments, the produced activities were measured directly at or near the target position of the beam. For example, in 1970, Droste et al. discovered a long-lived isomeric state of $^{137}{\rm Nd}$ by placing a Ge(Li) detector and a toroidal electron spectrometer directly next to the target to measure γ -spectra and conversion electrons, respectively. They measured the activities in between the beam pulses from the Dubna U300 accelerator [34]. Later in the same year $^{72}{\rm Br}$ was identified by Nolte et al. at the Max Planck Institut für Kernphysik in Heidelberg, Germany. They stopped recoils from the fusion-evaporation reactions in a gold catcher foil and measured off-beam γ -spectra with a Ge(Li) detector [35]. Zioni et al. used a mechanical beam chopper at the EN tandem of the Racah Institute of Physics of the Hebrew University in Jerusalem, Israel, to determine the short half-life (260 \pm 6 ms) of $^{46}{\rm Cr}$ [37]. For isotopes with longer half-lives longer beam-on and beam-off periods were chosen for the irradiations and measurements, respectively.

Measurements at the target position were limited to the strongest decay channels. In order to populate and detect the weaker channels it was necessary to increase the beam intensities which also increased the background activities. In addition, neutrons which were present in the target area during the irradiation damaged the Ge(LI) detectors. Thus it was necessary to move the irradiated targets to a separate, well shielded detection station. For the identification of the relatively long-lived isotopes $^{87}{\rm Nb}$ (3.5 \pm 0.2 min) and $^{88}{\rm Mo}$ (8.2 \pm 0.5 min) with $^{32}{\rm S}$ beams from the Rochester University MP tandem Van de Graaff accelerator, Doron and Blann moved the irradiated targets manually in front of a Ge(Li) detector [36].

For shorter-lived activities the helium-jet technique developed in the early 1960s by Macfarlane and Griffioen [72] to measure short-lived α -emitters (see Sect. 11.4), was widely used. It was first applied for the discovery of a β -emitting isotope in 1974 by Newman et al. in the identification of ¹⁴⁶Tb with the Oak Ridge Isochronous cyclotron (ORIC) [40]. A schematic diagram of the helium-jet transfer system at

11.2 Beta-Decay 201

Table 11.2 Isotopes discovered in fusion-evaporation reactions and identified by β - and γ -decay without chemical separation: The submission date, first author and reference of the publication, as well as the target, beam, and the evaporation channel are listed

wen as the tar	get, beam, and the	vapor		1		
Date	First author	Ref.	Target	Beam	Evaporation	Isotope
04/15/1970	Droste	[34]	¹¹⁹ Sn	²² Ne	4n	¹³⁷ Nd
09/01/1970	Nolte	[35]	⁵⁸ Ni	¹⁶ O	pn	⁷² Br
10/23/1970	Doron	[36]	⁵⁸ Ni	³² S	3p, 2p	⁸⁷ Nb, ⁸⁸ Mo
03/11/1971	Zioni	[37]	³² S	¹⁶ O	2n	⁴⁶ Cr
1972 ^a	Akhmadzhanov	[38]	¹⁶⁹ Tm	¹⁶ O	7n, 5n, 4n	¹⁷⁸ Ir, ¹⁸⁰ Ir, ¹⁸¹ Ir
04/26/1972	LadenbBellis	[39]	⁶⁹ Ga	¹⁴ N	4n	⁷⁹ Sr
08/27/1973	Newman	[40]	¹⁴¹ Pr	¹² C	7n	¹⁴⁶ Tb
01/10/1974	Nolte	[41]	⁴⁰ Ca	³² S	2p1n	⁶⁹ Se
07/09/1974	Newton	[42]	¹⁸¹ Ta	¹⁹ F	7n	¹⁹³ Pb
02/27/1975	Toth	[43]	¹⁴¹ Pr	¹⁴ N	8n	¹⁴⁷ Dy
05/12/1975	Hamilton	[44]	¹⁸¹ Ta	¹⁶ O	9n	¹⁸⁶ Tl
01/30/1976	Chojnacki	[45]	¹⁸¹ Ta	²⁰ Ne	5n	¹⁹⁶ Bi
05/13/1976	Varley	[46]	⁹² Mo	¹⁶ O	p3n	¹⁰⁴ In
08/19/1976	Leber	[47]	¹⁵⁹ Tb	¹⁶ O	9n	¹⁶⁶ Ta
10/08/1976	Parks	[48]	⁴⁸ Ca	⁷ Li	pn	⁵³ Ti
01/25/1977	Korschinek	[49]	⁵⁸ Ni	³² S	α2p, αpn	⁸⁴ Zr, ⁸⁴ Nb
					2p1n	⁸⁷ Mo
03/25/1977	Hunter	[50]	¹⁵⁵ Gd	¹⁴ N	5n	¹⁶⁴ Lu
06/23/1977	Nathan	[51]	⁴⁸ Ca	⁹ Be	pn	55 V
08/17/1977	Burman	[52]	¹⁵¹ Eu	¹⁶ O	5n	¹⁶² Lu
01/03/1978	Davids	[53]	⁴⁸ Ca	¹¹ B	pn	⁵⁷ Cr
03/06/1978	Norman	[54]	⁴⁸ Ca	¹⁸ O	αpn	⁶⁰ Mn
06/19/1978	Toth	[55]	¹⁴⁴ Sm	¹⁰ B	6n, 5n	¹⁴⁸ Ho, ¹⁴⁹ Ho
07/05/1978	Alburger	[56]	⁵⁸ Ni	¹⁰ B, ¹⁴ N	2n	⁶⁶ As, ⁷⁰ Br
02/18/1980	Deprun	[57]	⁵⁴ Fe	³² S	3p1n	82 Y
03/27/1980	Murphy	[58]	⁵⁸ Ni	¹⁴ N	αn	⁶⁷ As
01/28/1981	Lister	[59]	⁵⁸ Ni	^{24,25} Mg	pn	⁸⁰ Y, ⁸¹ Y
09/15/1981	Sousa	[60]	¹⁴⁴ Sm	¹⁰ B	α6n	¹⁴⁴ Tb
01/22/1982	Schrewe	[61]	¹⁴² Nd	²⁴ Mg	4n, 3n	¹⁶² Hf, ¹⁶³ Hf
01/25/1982	Gui	[62]	⁹⁰ Zr	⁵⁸ Ni	pn	¹⁴⁶ Ho
02/11/1982	Nolte	[63]	⁹⁰ Zr	⁵⁸ Ni	2p1n	¹⁴⁵ Dy
			⁹⁴ Mo	⁵⁸ Ni	2p, pn	¹⁵⁰ Er, ¹⁵⁰ Tm
			⁹² Mo	⁵⁸ Ni	3p, 2p, pn	¹⁴⁷ Ho, ¹⁴⁸ Er, ¹⁴⁸ Tm
01/03/1985	Ollivier	[64]	¹¹² Sn	³⁵ Cl	2p2n	¹⁴³ Tb
08/01/1986	Szymanski	[65]	¹⁶⁵ Ho	¹⁶ O	8n	¹⁷³ Re

(continued)

Date	First author	Ref.	Target	Beam	Evaporation	Isotope
07/17/1987	Runte	[66]	¹³⁹ La	³⁶ Ar	4n	¹⁷¹ Re
07/16/1990	Heiguchi	[67]	⁶⁰ Ni	³² S	p2n	⁸⁹ Tc
07/31/1991	Bosch-Wicke	[68]	¹⁴⁸ Nd	³⁶ Ar	p4n	¹⁷⁹ Ir
08/15/1991	Zhou	[69]	⁵⁸ Ni	³⁵ Cl	p2n	⁹⁰ Ru
06/02/1999	Xie	[70]	¹⁰⁶ Cd	³⁶ Ar	p2n	¹³⁹ Tb
11/20/2003	Xu	[71]	⁹² Mo	⁴⁰ Ca	p2n	¹²⁹ Pm

Table 11.2 (continued)

Brookhaven National Laboratory used in the discovery of ⁸⁰Y and ⁸¹Y in 1981 by Lister et al. is shown in Fig. 11.1.

In a different technique designed for short-lived activities, the target was moved from the irradiation position to the detection position by a pneumatic transfer or "rabbit" system. First developed by Goosman and Alburger in 1972 [73] it was used for the first time to identify a new isotope by Varley, Cunnane, and Gelletly in 1976 at the HILAC of the Schuster Laboratory at the University of Manchester, UK. They actually used three different methods, "namely the study of radiation emitted between accelerator pulses, the use of a mechanical rabbit system and the He-jet recoil transport system" [46] to identify ¹⁰⁴In. Later in the year, Parks, Davids, and Pardo from Argonne National Laboratory discovered ⁵³Ti with a multiple rabbit system. The advantage of using several targets is that it reduced the build-up of background radiation from longer-lived activities produced in the irradiation [48].

In yet another approach, Heiguchi et al. from the University of Tsukuba, Japan, identified ⁸⁹Tc by catching the recoils from the target on tantalum foils positioned on a rotating disk. After the irradiation, the disk was rotated by 180° to move the activities in front of two high-purity Ge (HPGe) detectors before another foil was moved behind the target [67].

The first isotope ever discovered in China was measured with a similar technique. Zhou et al. identified ⁹⁰Ru at the HI-13 tandem accelerator of the China Institute of Atomic Energy in Beijing in 1991. The residual nuclei recoiled on tantalum foils of a wheel system with 60 positions. The wheel rotated by 174° so that irradiation and detection could be done simultaneously [69].

Online isotope separators had been well established for the discovery of new isotopes in neutron fission (Sect. 6.5), spallation (Sect. 10.4), and charged-particle fission (Sect. 10.5) by the mid-sixties. In the 1970s several ISOL facilities dedicated for fusion evaporations were established all over the world. Isotopes discovered in fusion-evaporation reactions using online isotope and mass separation are listed in Table 11.3. The first new β -emitting isotope discovered in fusion-evaporation reactions using an online-mass separation system was ¹¹⁶I. It was first produced by Gowdy et al. in 1975 with the Oak Ridge Isochronous Cyclotron (ORIC) and

a No submission date listed

11.2 Beta-Decay 203

Fig. 11.1 Schematic diagram of the Brookhaven helium-jet transfer system used in the discovery of ⁸⁰Y and ⁸¹Y [59] (Reprinted figure with permission from C.J. Lister et al., *New isotope* ⁸⁰Y, *and the decays of* ⁷⁹Sr, ⁸¹Y, *and* ⁸²Y, Phys. Rev. C 24 (1981) 260. Copyright 1981 by the American Physical Society.)

identified using the UNISOR on-line isotope separator [74]. A total of 23 new isotopes were discovered with the BEMS-2 isotope separator at the Dubna U300 heavy-ion cyclotron in three separate experiments by Bogdanov et al. in 1976 [75] and 1978 [76] and by Nowicki et al. in 1980 [79].

¹⁰³In [77], ⁹⁷Ag and ⁹⁸Ag [78], ¹⁰⁴Sn [82], and ¹⁰¹In [90] were discovered by the group of Huyse between 1978 and 1988 with the Louvain isotope separator (LISOL) installed at the CYCLONE cyclotron at Louvain-la-Neuve, Belgium. In 1981 Beraud et al. measured ¹⁰²In with the Grenoble cyclotron [80] and a year later Hagberg et al. discovered ⁷¹Br using the Chalk River online-isotope separator in Canada [81].

After 1984, most isotopes were discovered with the online mass separator at the UNILAC at GSI, Darmstadt, by Kirchner, Klepper, Roeckl, and collaborators [83, 87, 97, 98] and the isotope separator OASIS at the SuperHILAC at Berkeley by Nitschke, Wilmarth, and collaborators [85, 86, 88, 92–95]. In 1986, Redon et al. coupled a helium-jet recoil system with the ion source of the on-line mass separator

Table 11.3 Isotopes discovered in fusion-evaporation reactions using online isotope and mass separation: The submission date, first author and reference of the publication, as well as the target, beam, and the evaporation channel are listed

Date	First author	Ref.	Target	Beam	Evaporation	Isotope
09/08/1975	Gowdy	[74]	¹⁰³ Rh	¹⁶ O	3n	¹¹⁶ I
07/23/1976	Bogdanov	[75]	¹⁰² Pd	³² S	3p2n	¹²⁹ Pr
			¹⁰⁶ Cd	³² S	5p3n, 5p2n	¹³⁰ Pr, ¹³¹ Pr
			¹⁰⁶ Cd	³² S	4pxn	¹³⁰ Nd, ¹³¹ Nd, ¹³² Nd, ¹³³ Nd
			¹⁰⁶ Cd	³² S	3pxn	¹³² Pm, ¹³³ Pm, ¹³⁴ Pm
			¹⁰⁶ Cd	³² S	2p2n, 2p1n	¹³⁴ Sm, ¹³⁵ Sm
04/28/1978	Bogdanov	[76]	^{96,98} Ru	³² S	2pxn	¹²³ La, ¹²⁴ La
					3pxn	¹²⁴ Ce, ¹²⁵ Ce, ¹²⁶ Ce, ¹²⁷ Ce
05/30/1978	Lhersonneau	[77]	^{nat} Mo	¹⁴ N	xn	¹⁰³ In
08/14/1978	Huyse	[78]	⁹² Mo	¹⁴ N	2p7n, 2p6n	⁹⁷ Ag, ⁹⁸ Ag
10/18/1980	Nowicki	[79]	¹¹² Sn	³² S	4p4n, 4p2n	¹³⁶ Sm, ¹³⁸ Sm
					3pxn	¹³⁷ Eu, ¹³⁸ Eu, ¹⁴⁰ Eu
01/26/1981	Beraud	[80]	⁹² Mo	¹⁴ N	4n	¹⁰² In
02/02/1982	Hagberg	[81]	⁴⁰ Ca	³⁵ Cl	2p2n	⁷¹ Br
11/29/1984	Deneffe	[82]	⁹² Mo	²⁰ Ne	2p6n	¹⁰⁴ Sn
11/26/1985	Kleinheinz	[83]	⁹⁶ Ru	⁵⁸ Ni	2p1n	¹⁵¹ Yb
06/05/1986	Redon	[84]	¹⁰⁶ Cd	³⁵ Cl	3p1n	¹³⁷ Sm
			¹¹² Sn	³² S, ³⁵ Cl	2p1n, p2n	¹⁴¹ Gd, ¹⁴⁴ Dy
08/04/1986	Toth	[85]	⁹⁶ Ru	⁵⁸ Ni	pn	¹⁵² Lu
09/23/1986	Wilmarth	[86]	⁹² Mo	⁵⁴ Fe	3p2n	¹⁴¹ Tb
12/10/1986	Sekine	[87]	¹² C	⁴⁰ Ca	p3n	⁴⁸ Mn
03/23/1987	Toth	[88]	⁹⁴ Mo	⁵⁸ Ni	p2n	¹⁴⁹ Tm
05/11/1987	Kern	[89]	⁹² Mo	⁴⁸ Ti	p3n	¹³⁶ Eu
03/14/1988	Huyse	[90]	⁹² Mo	²⁰ Ne	3p8n	¹⁰¹ In
07/11/1988	Sekine	[91]	⁹² Mo	³² S	p2n	¹²¹ La
01/09/1989	Vierinen	[92]	⁹² Mo	⁵⁸ Ni	2p3n	¹⁴⁵ Er
06/26/1989	Nitschke	[93]	⁹² Mo	⁶⁴ Zn	p2n	¹⁵³ Lu
08/31/1990	Firestone	[94]	⁹² Mo	⁵⁴ Fe	3p1n	¹⁴² Tb
02/23/1993	Toth	[95]	⁹² Mo	⁵⁸ Ni	2p2n	¹⁴⁶ Er
02/07/1995	Gizon	[96]	⁹² Mo	⁴⁰ Ca	αρ	¹²⁷ Pr
02/07/1995	Guglielmetti	[97]	⁵⁸ Ni	⁵⁸ Ni	2n	¹¹⁴ Ba
04/14/1997	Janas	[98]	⁶⁰ Ni	⁵⁸ Ni	3n, 2n	¹¹⁵ Ba, ¹¹⁶ Ba
			⁶³ Cu	⁵⁸ Ni	1p2n	¹¹⁸ Ba

11.2 Beta-Decay 205

at the SARA accelerator at Grenoble to identify ¹³⁷Sm, ¹⁴¹Gd, and ¹⁴⁴Dy [84] and in 1988 ¹²¹La was discovered by Sekine et al. by mass separation at the Japan Atomic Energy Research Institute (JAERI) in Tokai [91].

11.3 In-Beam γ-Ray Spectroscopy

The discoveries described in the previous section were achieved with techniques developed earlier for isotope discoveries using other probes and reaction mechanisms. They involved the measurements of the β -decay half-lives and were identified based on excitation functions and/or characteristic known radiation of the daughter nuclides. In a different approach, Stephens, Lark, and Diamond from Berkeley realized that heavy-ion fusion-evaporation reactions transfer a large amount of angular momentum to the compound nucleus [99]. If the nuclides populated after particle evaporation are prolate deformed they deexcite by γ -rays of rotational bands. Coupled with excitation function measurements the in-beam detection of these γ -ray cascades can be used to uniquely identify an isotope without measuring the β -decay. Stephens, Lark, and Diamond credit Morinaga and Gugelot [100] for the first observation of γ -rays from a rotational band in $(\alpha,4n)$ reactions. Although this technique was not primarily intended to search for new isotopes but to understand the evolution of nuclear structure in neutron-deficient nuclei, over 40 new nuclides were discovered during these investigations. The isotopes discovered in fusion-evaporation reactions using in-beam γ -ray spectroscopy are listed in Table 11.4.

The first isotopes discovered utilizing this method were 166 Hf, 172 W, and 174 W submitted for publication by Stephens, Lark, and Diamond in 1964 [101]. Until 1973, the Berkeley group was the only one identifying new isotopes with γ -ray spectroscopy. As an example, the 124 Ba spectrum and the corresponding rotational band is shown in Fig. 11.2 [103]. In the following 13 years the method was then adopted by nine different laboratories. Anholt, Rasmussen, and Rezanka used γ -ray spectroscopy to identify millisecond isomers. They identified 161 Lu using the pulsed beam structure of the Yale heavy ion accelerator to begin the recording of γ -spectra at the end of the 2 ms wide beam pulses [107].

In Germany, isotopes were identified at the tandem accelerators in Heidelberg (120 Ba and 122 Ba [109]), Munich (159 Yb [110] and 152 Yb [114]) and the VICKSI (Van-de-Graaff Isochron Cyclotron Kombination für Schwere Ionen) facility at the Hahn-Meitner Institut in Berlin (169 W [116]). In addition, 151 Tm, 78 Sr, and 171 W were discovered at Argonne [112], Brookhaven [113], and Louvain-la-Neuve [115], respectively.

The first—of only two—isotopes ever discovered in Australia was ¹⁶⁷W in 1985. It was produced by Gerl et al. with the 14UD Pelletron accelerator from the Australian National University in Canberra [117].

Table 11.4 Isotopes discovered in fusion-evaporation reactions using in-beam γ -ray spectroscopy: The submission date, first author and reference of the publication, as well as the target, beam, and the evaporation channel are listed

- the evaporation	on chamier are	Hotea				
Date	First author	Ref.	Target	Beam	Evap.	Isotope
08/24/1964	Stephens	[101]	¹⁵⁹ Tb, ¹⁶⁵ Ho	¹⁴ N	7n	¹⁶⁶ Hf, ¹⁷² W
			¹⁶⁹ Tm	¹¹ B	6n	¹⁷⁴ W
09/06/1966	Burde	[102]	¹⁶⁹ Tm	¹⁴ N	5n	¹⁷⁸ Os
09/29/1966	Clarkson	[103]	¹¹⁶ Sn, ¹²⁷ I	¹² C	4n,5n	¹²⁴ Ba, ¹³⁴ Pr
10/09/1967	Ward	[104]	¹²⁰ Sn	⁴⁰ Ar	4n	¹⁵⁶ Er
			^{122,124} Te	⁴⁰ Ar	4n	¹⁵⁸ Yb, ¹⁶⁰ Yb
06/06/1968	Ward	[105]	¹¹⁶ Sn	¹⁶ O	4n	¹²⁸ Ce
01/18/1971	Stephens	[106]	¹⁴⁴ Sm	²⁸ Si	2p2n	¹⁶⁸ W
04/09/1973	Anholt	[107]	¹⁴⁸ Sm	¹⁹ F	6n	¹⁶¹ Lu
04/17/1973	Nakai	[108]	¹¹⁶ Sn	¹⁴ N	5n	¹²⁵ La
07/19/1974	Conrad	[109]	^{106,108} Cd	¹⁶ O	2n	¹²⁰ Ba, ¹²² Ba
09/15/1975	Trautmann	[110]	¹⁴⁴ Sm	¹⁸ O	3n	¹⁵⁹ Yb
05/23/1977	Gizon	[111]	¹¹⁶ Sn	¹⁶ O	3n	¹²⁹ Ce
03/05/1982	Helppi	[112]	⁹² Mo	⁶⁰ Ni	p	¹⁵¹ Tm
05/28/1982	Lister	[113]	⁵⁸ Ni	²⁴ Mg	2p2n	⁷⁸ Sr
08/04/1982	Nolte	[114]	⁹⁶ Ru	⁵⁸ Ni	2p	¹⁵² Yb
10/20/1982	Arciszewski	[115]	¹⁵⁵ Gd	²⁰ Ne	4n	¹⁷¹ W
12/19/1984	Recht	[116]	¹⁵⁴ Gd	²⁰ Ne	5n	¹⁶⁹ W
03/23/1985	Gerl	[117]	¹⁴² Nd	²⁸ Si	3n	¹⁶⁷ W
05/20/1985	Lister	[118]	^{92,92,94} Mo	⁴⁰ Ca, ⁵⁰ Cr	2p2n	¹²⁸ Nd, ¹³⁸ Gd, ¹⁴⁰ Gd
06/01/1987	Lister	[119]	²⁴ Mg	⁵⁸ Ni	2n	⁸⁰ Zr
08/17/1987	Goettig	[120]	⁹² Mo	⁵⁶ Fe	p2n	¹⁴⁵ Ho
03/19/1988	Kuroyanagi	[121]	^{58,60} Ni	²⁸ Si	p2n	⁸³ Nb, ⁸⁵ Nb
07/04/1989	Wadsworth	[122]	⁹⁶ Ru	⁴⁰ Ca	2p2n	¹³² Sm
05/17/1990	Lister	[123]	¹² C, ²⁴ Mg	⁵⁸ Ni, ⁵⁴ Fe	2n	⁶⁸ Se, ⁷⁶ Sr
10/22/1990	Gelletly	[124]	²⁸ Si	⁵⁸ Ni	2n	⁸⁴ Mo
03/18/1991	Rudolph	[125]	⁵⁸ Ni	³² S	p2n, pn	⁸⁷ Tc, ⁸⁸ Tc
07/18/1991	Gross	[126]	⁴⁰ Ca	⁵⁰ Cr	2p2n	⁸⁶ Mo
04/06/1992	de Angelis	[127]	⁹² Mo	⁵⁸ Ni	2pn	¹⁴⁷ Er
09/14/1993	Seweryniak	[128]	⁵⁴ Fe	⁵⁸ Ni	3p2n	¹⁰⁷ Sb
12/19/1997	Parry	[129]	⁹⁶ Ru	⁴⁰ Ca	αρ	¹³¹ Pm
02/13/2002	Krolas	[130]	⁹² Mo	⁵⁴ Fe	2p4n	¹⁴⁰ Dy
03/20/2002	Wilson	[131]	⁶⁴ Zn	⁶⁴ Zn	p2n	¹²⁵ Pr
04/22/2005	Smith	[132]	⁶⁴ Zn	⁶⁴ Zn	α2n	¹²² Ce

Fig. 11.2 In-beam γ -ray spectrum (*left*) and corresponding level scheme (*right*) of ¹²⁴Ba [103] (Reprinted from J.E. Clarkson et al., *Collective excitations in neutron-deficient barium, xenon, and cerium isotopes*, Nucl. Phys. A 93 (1967) 272. Copyright 1967, with permission from Elsevier.)

Between 1985 and 1991 the field was again dominated by a single laboratory. With the exception of 83 Nb and 85 Nb which were discovered by Kuroyanagi et al. [121] at the tandem accelerator of Kyushu University in Fukuoka, Japan, all isotopes during this period were produced with the Daresbury Laboratory Van de Graaff accelerator in the UK. For the identification of 128 Nd, 138 Gd, and 140 Gd [118] and 145 Ho [120] these weaker residue channels were enhanced by measuring the γ -ray spectra in coincidence with evaporated neutrons and light-charged-particles. In subsequent experiments an increasing number of bismuth germanate (BGO) suppressed germanium detectors were placed at the target position of the Daresbury recoil separator. In the discovery of 87 Tc and 88 Tc by Rudolph et al. the 20 element array had been named POLYTESSA (TESSA—The Energy Suppression Shield Array) [125].

The combination of high-resolution suppressed γ -ray arrays and light-charged-particle arrays and recoil separators was a sensitive tool to measure γ -ray spectra of residues populated with small cross-sections. In 1992, ¹⁴⁷Er was discovered with four Compton suppressed germanium detectors and the Recoil Mass Spectrometer (RMS) of the Laboratori Nazionali di Legnaro (LNL) in Italy by de Angelis et al. [127]. Seweryniak et al. identified ¹⁰⁷Sb in 1993 using the NORDBALL array consisting of 15 detectors and a 21 element Δ E silicon detector array at the Tandem Accelerator Laboratory of the Niels Bohr Institute in Roskilde, Denmark [128]. Similarly, ¹³¹Pm was identified by Parry et al. at the TASCC (Tandem Accelerator SuperConducting Cyclotron) facility of Chalk River, Canada, in 1997. They used the 8π array, consisting of an outer shell of 20 Compton suppressed HPGe detectors and an inner shell of 71 BGO scintillation detectors. It was used in conjunction with a 4π modular array of cesium iodide detectors for the reaction channel selection [129].

In 2002, Krolas et al. placed the Clover Germanium Detector Array for Recoil Decay Spectroscopy (CARDS) at the focal plane of the Recoil Mass Spectrometer RMS of the Holifield Radioactive Ion Beam Facility (HRIBF) at Oak Ridge in order to measure short-lived isomers and discovered a $7\,\mu s$ isomer in 140 Dy [130].

The sensitivity was improved even further for the discovery of the two most recent isotopes by utilizing 78 75%-efficient high-purity germanium detectors of Gammasphere coupled to the Microball and the Neutron Shell in addition to measuring the recoils in the Fragment Mass Analyser (FMA). The experiment was performed at the Argonne Tandem Linear Accelerator System (ATLAS) by Wilson et al. [131] and Smith [132] discovering the neutron deficient isotopes ¹²⁵Pr and ¹²²Ce, respectively.

11.4 Alpha Emitters

As mentioned in the introduction fusion-evaporation reactions were originally intended for the discovery of transuranium elements. These nuclides decay predominantly by the emission of α -particles so that techniques to detect these α -particles were developed in order to identify the new isotopes. The realization that the recoils were leaving the targets after the reaction by Ghiorso et al. was then also used to identify α -emitters in lighter mass regions. Table 11.5 lists α -emitting isotopes discovered in fusion-evaporation and identified following chemical separation or by implantation in a solid catcher.

The second facility to accelerate heavy-ions after the initial success at Berkeley was the 60-in. Nuffield cyclotron of the University of Birmingham, UK. In 1954, Burcham used a ^{14}N beam with a continuous energy distribution up to 120 MeV to irradiate gold foils and measured α -spectra following chemical separation of radon to identify ^{206}Rn and ^{207}Rn . The α -spectrum is shown in Fig. 11.3 [133]. The discovery of ^{149}Dy , and ^{150}Dy , ^{151}Dy by Toth and Rasmussen at the Berkeley 60-in. cyclotron was achieved without chemical separation by measuring the α activities of the irradiated gold foil directly. ^{149}Dy is a β^+ -emitter which was identified by the subsequent α -decay of the ^{149}Tb daughter nucleus [134]. Five neutron-deficient astatine isotopes were measured after chemical separation for the first time by Latimer et al. [135] and Hoff et al. [136] using the HILAC at Berkeley. For the discovery of ^{200}At and ^{201}At Hoff, Asaro, and Perlman employed a magnetic spectrograph to measure the energy of the α -particles.

Rotter et al. collected the recoils from "complete amalgamation reactions" of 80 MeV carbon ions irradiating lead and bismuth targets from the Dubna 150 cm cyclotron on an aluminum foil. The collecting foil was tilted by 45° so that it also faced a Au-Si semiconductor detector measuring the α energies from the decays of ²¹³Rn, ²¹⁴Ra, ²¹⁵Ra, ²¹⁶Ac, ²¹⁴Fr [137]. Also at Dubna—using the U300 cyclotron (U stands for Uskoritel, russian for accelerator)—Sung-Ching-Yang et al. identified ²¹⁶Pa by slowing the recoils in a gas to collect them on filters which were then pneumatically transported in front of two Si(Au) detectors [138].

	I ,			,		
Date	First author	Ref.	Target	Beam	Evap.	Isotope
03/09/1954	Burcham	[133]	¹⁹⁷ Au	¹⁴ N	5n, 4n	²⁰⁶ Rn, ²⁰⁷ Rn
09/13/1957	Toth	[134]	¹⁴¹ Pr	¹⁴ N	6n, 5n, 4n	¹⁴⁹ Dy ^a , ¹⁵⁰ Dy, ¹⁵¹ Dy
07/12/1960	Latimer	[135]	¹⁹⁷ Au	¹² C	7n, 5n, 3n	²⁰² At, ²⁰⁴ At, ²⁰⁶ At
04/03/1963	Hoff	[136]	¹⁹⁷ Au	¹² C	9n, 8n	²⁰⁰ At, ²⁰¹ At
12/13/1965	Rotter	[137]	²⁰⁸ Pb	¹² C	6n, 5n, 3n	²¹⁴ Ra, ²¹⁵ Ra, ²¹³ Rn ^b
			²⁰⁹ Bi	¹² C	5n, 3n	²¹⁶ Ac, ²¹⁴ Fr ^b
07/12/1971	Sung-Ching-Yang	[138]	¹⁹⁰ Os	³¹ P	5n	²¹⁶ Pa
10/13/1971	Cerny	[139]	⁴⁰ Ca	⁶ Li	2n	⁴⁴ V
06/14/1972	Nomura	[140]	²⁰⁸ Pb	¹⁴ N, ¹² C	5n, 4n	²¹⁷ Ac, ²¹⁶ Ra
05/22/1973	Hiruta	[141]	²⁰⁹ Bi	¹⁴ N	5n	²¹⁸ Th
06/05/1973	Häusser	[142]	²⁰⁷ Pb	¹⁶ O	4n, 3n	²¹⁹ Th, ²²⁰ Th
12/22/1995	Batchelder	[143]	¹⁴⁴ Sm	⁴⁸ Ti	2n	¹⁹⁰ Po
04/30/1996	Toth	[144]	¹⁴⁴ Sm	⁴⁰ Ca	4n	¹⁸⁰ Pb

Table 11.5 Isotopes discovered in fusion-evaporation and identified by their α -decay following chemical separation or by implantation in a solid catcher: The submission date, first author and reference of the publication, as well as the target, beam, and the evaporation channel are listed

In 1971, ⁴⁴V was discovered by Cerny et al. at the Brookhaven three-stage MP tandem Van de Graaff facility by its β -delayed α -decay [139]. The short-lived (\sim 100 ns) α -emitters ²¹⁶Ra, ²¹⁷Ac [140] and ²¹⁸Th [141] were identified by Nomura et al. and Hiruta et al. respectively, using the pulsed-beam of the IPCR cyclotron at RIKEN in 1972 and 1973. The activities were measured at the target position with a silicon surface barrier detector and the identification was achieved from excitation function measurements and the observation of α -energies of known daughter nuclides. Essen-

Fig. 11.3 Alpha-spectrum following the 5n, and 4n fusion-evaporation reaction of 14 N on 197 Au to produce the radon (emanation) isotopes 206 Rn and 207 Rn, respectively [133] (W.E. Burcham, *The* α activity induced in gold by irradiation with nitrogen ions, Proc. Phys. Soc. A 67 (1954) 555. Copyright IOP Publishing, reproduced with permission, all rights reserved.)

 $^{{}^{}a}\beta^{+}$ -emitter, identified by subsequent α -decay of ${}^{149}\mathrm{Tb}$

^bPopulated by α-decay

tially at the same time Häusser et al. reported the discovery of ²¹⁹Th and ²²⁰Th using a similar technique at the Chalk River MP tandem by catching the recoils in carbon foil placed behind the target [142].

More than twenty years later, Batchelder et al. and Toth et al. used a rapidly rotating recoil catcher wheel system at the 88-in. Berkeley cyclotron to discover ¹⁹⁰Po [143] and ¹⁸⁰Pb [144], respectively.

While only about ten isotopes were discovered with solid catchers, well over a hundred isotopes were first identified with helium gas techniques originally developed by Ghiorso et al. for transuranium elements and they are listed in Tables 11.6 and 11.7.

Essentially all isotopes discovered until 1970 listed in Table 11.6 were first identified at Berkeley. Macfarlane and Griffioen first adopted the helium gas technique for α -emitters in the lighter mass region [72, 164] (see Fig. 11.4) and discovered 24 new neutron-deficient nuclides with the HILAC in several papers between 1962 and 1964 [145–149]. Subsequently several other researchers used similar experimental set-ups at the HILAC to identify an additional 65 isotopes until 1970. As a sole author Siivola discovered nine platinum [150], seven iridium [151], four polonium [155], and five gold [159] isotopes. Valli and collaborators added four astatine [152], five radon [153], one francium [154], seven radium [156], seven actinium [158], and five thorium and one protactinium [160] isotopes during this time.

In addition, in 1971, Borggreen, Valli, and Hyde measured the three protactinium isotopes 222 Pa, 223 Pa, and 224 Pa as well as their α -decaying daughters and two of their granddaughters [162]. Borggreen and Hyde then also observed three osmium isotopes (172 Os, 173 Os, and 174 Os) in the same year [163].

The only isotopes not discovered at Berkeley during this period with this method were ¹⁸²Hg identified by Demin et al. at the U300 Dubna cyclotron [157] and ²²¹Th and ²²²Th as well as their daughter nuclides ²¹⁷Ra and ²¹⁸Ra, and the grand-daughter

Fig. 11.4 Schematic of the set-up to collect recoils in helium gas by Macfarlane and Griffioen [72] (Reprinted from R.D. Macfarlane and R.D. Griffioen, System for studying accelerator-produced short-lived alpha emitters, Nucl. Instrum. Meth. 24 (1963) 461. Copyright 1963, with permission from Elsevier.)

Table 11.6 Isotopes discovered in fusion-evaporation and identified by their α -decay using heliumgas transfer techniques until 1970: The submission date, first author and reference of the publication, as well as the target, beam, and the evaporation channel are listed

as well as the	target, ocum,	und the	Craporatio	ii ciidiiiici di	- Hotea	
Date	First author	Ref.	Target	Beam	Evap.	Isotope
12/10/1962	Macfarlane	[145]	¹⁴¹ Pr	¹⁶ O	7-4n	¹⁵⁰ Ho, ¹⁵¹ Ho, ¹⁵² Ho, ¹⁵³ Ho
04/22/1963	Macfarlane	[146]	¹⁴² Nd	¹⁶ O	6-4n	¹⁵² Er, ¹⁵³ Er, ¹⁵⁴ Er
09/20/1963	Griffioen	[147]	¹⁹⁷ Au	¹⁶ O	9-6n	²⁰⁴ Fr, ²⁰⁵ Fr, ²⁰⁶ Fr, ²⁰⁷ Fr
			²⁰⁵ Tl	¹² C	9-6,4n	²⁰⁸ Fr, ²⁰⁹ Fr, ²¹⁰ Fr, ²¹¹ Fr,
						²¹³ Fr
11/02/1963	Macfarlane	[148]	¹⁴⁴ Sm	¹⁹ F, ²⁰ Ne	7n, 6n	¹⁵⁵ Lu, ¹⁵⁶ Lu, ¹⁵⁷ Hf, ¹⁵⁸ Hf
07/15/1964	Macfarlane	[149]	¹⁴¹ Pr	²⁰ Ne	8n, 7n	¹⁵³ Tm, ¹⁵⁴ Tm
			¹⁴⁴ Sm	¹⁶ O	6n, 5n	¹⁵⁴ Yb, ¹⁵⁵ Yb
01/28/1966	Siivola	[150]	^{nat} Er	²⁰ Ne	xn	¹⁷³ Pt, ¹⁷⁴ Pt, ¹⁷⁵ Pt, ¹⁷⁶ Pt, ¹⁷⁷ Pt
			nat Yb	¹⁶ O	xn	¹⁷⁸ Pt, ¹⁷⁹ Pt, ¹⁸⁰ Pt, ¹⁸¹ Pt
09/09/1966	Siivola	[151]	^{162,164} Er	¹⁹ F	10n, 9n	¹⁷¹ Ir, ¹⁷² Ir, ¹⁷³ Ir, ¹⁷⁴ Ir
			¹⁶⁶ Er	¹⁹ F	10-8n	¹⁷⁵ Ir, ¹⁷⁶ Ir, ¹⁷⁷ Ir
01/18/1967	Treytl	[152]	¹⁸⁵ Re	²⁰ Ne	9-6n	¹⁹⁶ At, ¹⁹⁷ At, ¹⁹⁸ At, ¹⁹⁹ At
01/19/1967	Valli	[153]	¹⁹⁷ Au	¹⁴ N	10-6n	²⁰¹ Rn, ²⁰² Rn, ²⁰³ Rn, ²⁰⁴ Rn, ²⁰⁵ Rn
03/19/1967	Valli	[154]	¹⁹⁷ Au	¹⁶ O	10n	²⁰³ Fr
04/17/1967	Siivola	[155]	¹⁸⁵ Re	¹⁹ F	11-8n	¹⁹³ Po, ¹⁹⁴ Po, ¹⁹⁵ Po, ¹⁹⁶ Po
04/28/1967	Valli	[156]	¹⁹⁷ Au	¹⁹ F	10-7n	²⁰⁶ Ra, ²⁰⁷ Ra, ²⁰⁸ Ra, ²⁰⁹ Ra
					6-4n	²¹⁰ Ra, ²¹¹ Ra, ²¹² Ra
06/20/1967	Demin	[157]	¹⁷⁰ Yb	²⁰ Ne	8n	¹⁸² Hg
10/06/1967	Valli	[158]	¹⁹⁷ Au	²⁰ Ne	8-5n	²⁰⁹ Ac, ²¹⁰ Ac, ²¹¹ Ac, ²¹² Ac
			²⁰⁵ Tl	¹⁶ O	8-6n	²¹³ Ac, ²¹⁴ Ac, ²¹⁵ Ac
10/24/1967	Siivola	[159]	¹⁶⁸ Yb	¹⁹ F	10-8n	¹⁷⁷ Au, ¹⁷⁸ Au, ¹⁷⁹ Au
					6n, 4n	¹⁸¹ Au, ¹⁸³ Au
06/14/1968	Valli	[160]	²⁰⁶ Pb	¹⁶ O	9-5n	²¹³ Th, ²¹⁴ Th, ²¹⁵ Th, ²¹⁶ Th, ²¹⁷ Th
			²⁰³ Tl	²⁰ Ne	6n	²¹⁷ Pa
01/23/1970	Torgerson	[161]	²⁰⁸ Pb	¹⁶ O	3n	²²¹ Th, ²¹⁷ Ra ^a
					2n	²²² Th, ²¹⁸ Ra ^a , ²¹⁴ Rn ^a
05/11/1970	Borggreen	[162]	²⁰⁸ Pb	¹⁹ F	5n	²²² Pa, ²¹⁸ Ac ^a
					4n	²²³ Pa, ²¹⁹ Ac ^a , ²¹⁵ Fr ^a
					3n	²²⁴ Pa, ²²⁰ Ac ^a , ²¹⁶ Fr ^a
09/23/1970	Borggreen	[163]	¹⁶⁴ Er	¹⁶ O	8-6n	¹⁷² Os, ¹⁷³ Os, ¹⁷⁴ Os
						·

^aPopulated by α-decay

	,	1	, ,	I		
Date	First author	Ref.	Target	Beam	Evap.	Isotope
08/19/1971	Toth	[165]	^{144,147} Sm	¹⁴ N	3n, 5n	¹⁵⁵ Tm, ¹⁵⁶ Tm
01/02/1972	Toth	[166]	¹⁴⁴ Sm	²⁰ Ne	5-3n	¹⁵⁹ Hf, ¹⁶⁰ Hf, ¹⁶¹ Hf
03/13/1972	Toth	[167]	¹⁵⁶ Dy	²⁰ Ne	6n, 5n	¹⁷⁰ Os, ¹⁷¹ Os
06/19/1972	Toth	[168]	¹⁵⁶ Dy	²⁰ Ne	7n	¹⁶⁹ Os
07/10/1972	Gauvin	[171]		⁴⁰ Ar	9-5n	¹⁸⁶ Pb, ¹⁸⁷ Pb, ¹⁸⁸ Pb, ¹⁸⁹ Pb, ¹⁹⁰ Pb
			¹⁵⁹ Tb	⁴⁰ Ar	9n, 8n	¹⁹⁰ Bi, ¹⁹¹ Bi
01/09/1973	Bogdanov	[181]	⁹⁶ Ru	¹⁶ O	4n	¹⁰⁸ Te
02/08/1973	Eastham	[182]	¹⁴⁴ Sm	²⁴ Mg	7-4n	¹⁶¹ W, ¹⁶² W, ¹⁶³ W, ¹⁶⁴ W
03/29/1973	Gauvin	[172]	¹⁵⁹ Tb	⁴⁰ Ar	10n	¹⁸⁹ Bi
07/09/1973	Le Beyec	[179]	¹⁸¹ Ta	¹⁹ F	9n, 8n	¹⁹¹ Pb, ¹⁹² Pb
12/16/1974	Cabot	[173]	¹⁴¹ Pr	⁴⁰ Ca	6n, 5n	¹⁷⁵ Au, ¹⁷⁶ Au
			¹⁵⁰ Sm	⁴⁰ Ca	5n	¹⁸⁵ Pb
04/28/1975	Toth	[169]	¹⁵⁶ Dy	¹⁶ O	7n, 6n	¹⁶⁵ W, ¹⁶⁶ W
10/06/1975 ^a	Cabot	[174]	¹⁴² Nd	⁴⁰ Ca	5n	¹⁷⁷ Hg
06/01/1977	Cabot	[175]	¹⁰⁶ Cd, ¹¹⁰ Cd	⁶³ Cu	p2n, 3n	¹⁶⁶ Os, ¹⁷⁰ Ir
			¹⁰⁹ Ag	⁶³ Cu	5n, 4n	¹⁶⁷ Os, ¹⁶⁸ Os
07/11/1977	Della Negra	[176]	¹⁸² W	²⁰ Ne	10n	¹⁹² Po
03/21/1978	Cabot	[177]	^{nat} Cd	⁶³ Cu	xpxn	¹⁶⁹ Re, ¹⁶⁸ Ir, ¹⁶⁹ Ir, ¹⁶⁵ Os
05/02/1978	Schrewe	[183]	⁸⁹ Y	⁸⁴ Kr	7n	¹⁶⁶ Re
12/17/1979	Dufour	[180]	¹⁴⁸ Sm	⁴⁰ Ca	4n	¹⁸⁴ Pb
03/26/1981	Della Negra	[178]	¹¹² Sn	⁶³ Cu	p2n	¹⁷² Pt
10/24/1988	Toth	[170]		⁹⁰ Zr	3n	¹⁸¹ Pb
03/16/1992	Meissner	[184]	¹⁴¹ Pr	³² S	6n, 5n	¹⁶⁷ Re, ¹⁶⁸ Re

Table 11.7 Isotopes discovered in fusion-evaporation reactions and identified by their α -decay using helium-gas transfer techniques after 1970: The submission date, first author and reference of the publication, as well as the target, beam, and the evaporation channel are listed

²¹⁴Rn discovered at the Yale University Heavy Ion Accelerator by Torgerson et al. [161].

In the 1970s the technique was most productively used to discover new α -emitting nuclides at Oak Ridge and Orsay (see Table 11.7). Toth and collaborators identified ten isotopes of elements between thulium and osmium using the Oak Ridge Isochronous Cyclotron (ORIC) [165–169] and ¹⁸¹Pb in 1988 [170]. Between 1972 and 1981, the group of Le Beyec discovered twenty-four isotopes of elements between rhenium and bismuth mostly with the ALICE accelerator at Orsay [171–178]. For the discovery of ¹⁹¹Pb and ¹⁹²Pb they used the Berkeley HILAC [179]. Also at Orsay, Dufour et al. identified ¹⁸⁴Pb in 1979 by using an electrostatic deflector to deposit lead recoils stopped in nitrogen gas onto the surface of a solid state detector [180].

^aPopulated by α -decay

^bDate of presentation

Other than in Oak Ridge and Orsay, Bogdanov, Karnaukhov, and Petrov identified ¹⁰⁸Te with the 300 cm Dubna cyclotron [181], Eastham and Grant measured several tungsten isotopes at the University of Manchester HILAC [182], and Schrewe et al. reported the observation of ¹⁶⁶Re at the GSI UNILAC [183]. In 1992, measurements by Meissner et al. at the VICKSI accelerator of the Berlin Hahn-Meitner Institut resulted in the revision of previous assignments of neutron-deficient rhenium isotopes and they are credited with the discovery of ¹⁶⁷Re and ¹⁶⁸Re [184].

Although the helium gas jet technique was used in the discovery of many nuclides it had the disadvantage that the identification relied on excitation function measurements and/or the observation of known daughter α -emitters. With the application of the Isotope Separation On-Line (ISOL) method for the fusion-evaporation recoil products it was possible to identify the mass of the fragments and measure the subsequent α -decay. Table 11.8 lists the α -emitting isotopes discovered with the ISOL technique.

Already in 1969, Tarantin, Kabachenko, and Demyanov discovered five bismuth isotopes with the heavy-ion beam mass separator at the U300 Dubna cyclotron [185]. Several years later, Toth et al. used the UNISOR facility at Oak Ridge to identify 184 Tl, 185 Tl, and 187 Tl [186]. All other ISOL measurements of new α -emitters were performed with the GSI online mass separator by the group of Kirchner, Klepper, Roeckl, and collaborators, who observed sixteen new isotopes between 1977 and 1981 as listed in the table.

An even more efficient method to measure and identify the evaporation residues and correlate the subsequent α -emission was to separate the recoils directly, rather than stopping them in an ion source of a mass separator. One of the first such devices was the velocity filter SHIP (Separator for Heavy Ion reaction Products) developed at GSI shown in Fig. 11.5. It was not only instrumental in the discovery of many transuranium and especially superheavy nuclides, SHIP was also used in the discovery of many lighter-mass α -emitting isotopes as listed in Table 11.9. Almost fifty isotopes of the elements between lutetium and uranium were discovered with SHIP since 1978; the most recent one was ¹⁹⁷Fr in 2013 [213].

In addition to SHIP at GSI, recoil separators were installed at several other heavyion accelerator facilities around the world. Isotopes discovered at these separators are listed in Table 11.10. In 1979, DiRienzo et al. discovered ¹⁹⁹Rn at the three-stage tandem accelerator in Brookhaven using an MIT designed velocity selector [214]. The in-flight kinematic separator VASSILISSA located at the U400 Dubna cyclotron was used by Andreyev et al. to discover ²²⁵U [215], ²²³U, ²²⁴U [217], ²¹⁸U [218], and ²¹⁹U [219] between 1988 and 1993. Seven year later, Malyshev et al. pushed the knowledge of neutron-deficient uranium isotopes even further to ²¹⁷U [237]. Page et al. and Sellin et al. measured α -decays in coincidence with fragments identified with the Daresbury recoil separator in the discovery of ¹⁰⁸I [216] and ¹⁷²Au [220], respectively.

One of the most productive devices next to SHIP was the gas-filled recoil separator RITU (Recoil Ion Transport Unit) at the K130 cyclotron of the University of Jyväskylä Accelerator Laboratory (JYFL) in Finland. Between 1994 and 2012, the group of Leino and Uusitalo discovered sixteen α -emitting nuclei with RITU.

cir do tire tu	get, etam, ar	10 1110 0 11	porturon or		15104	
Date	First author	Ref.	Target	Beam	Evap.	Isotope
10/06/1969	Tarantin	[185]	¹⁸¹ Ta	²⁰ Ne	9n, 8n, 7n	¹⁹² Bi, ¹⁹³ Bi, ¹⁹⁴ Bi
					6n, 4n	¹⁹⁵ Bi, ¹⁹⁷ Bi
06/15/1976	Toth	[186]	¹⁸⁰ W	¹⁴ N	10n, 9n	¹⁸⁴ Tl, ¹⁸⁵ Tl
			¹⁸² W	¹⁴ N	9n	¹⁸⁷ Tl
07/08/1977	Kirchner	[187]	⁶³ Cu	⁵⁸ Ni	2p5n	¹¹⁴ I
			⁵⁸ Ni	⁵⁸ Ni	4p2n, 2p	¹¹⁰ Te, ¹¹⁴ Xe
					3p3-0n	¹¹⁰ I, ¹¹¹ I, ¹¹² I, ¹¹³ I
07/11/1978	Roeckl	[188]	⁵⁸ Ni	⁵⁸ Ni	2p2n	¹¹² Xe
04/17/1979	Schardt	[189]	⁵⁸ Ni	⁵⁸ Ni	2p3n	¹¹¹ Xe, ¹⁰⁷ T ^a
01/02/1980	Schrewe	[190]	¹⁴² Nd	⁴⁸ Ti	p6n, 7n	¹⁸³ Tl, ¹⁸³ Pb
			¹⁰⁷ Ag	⁸⁴ Kr	3n	¹⁸⁸ Bi
03/30/1981	Schardt	[191]	⁵⁸ Ni	⁵⁸ Ni	2p4n	¹¹⁰ Xe, ¹⁰⁶ Te ^a
08/26/1981	Plochocki	[192]	⁵⁸ Ni	⁵⁸ Ni	pn	¹⁰⁶ Sb ^a

Table 11.8 Isotopes discovered in fusion-evaporation and identified by their α -decay using Isotope Separation OnLine (ISOL): The submission date, first author and reference of the publication, as well as the target, beam, and the evaporation channel are listed

^aPopulated by α -decay

Fig. 11.5 Schematic diagram of the GSI velocity filter [193] (Reprinted from H. Ewald et al., *Report on the heavy ion separator SIS at the GSI*, Nucl. Instrum. Meth. 139 (1976) 223. Copyright 1976, with permission from Elsevier.)

Figure 11.6 shows the measured energies of mother and daughter α -emitters correlated with evaporation residues observed in the discovery of 210 Th and 211 Th [223]. For the most recent discoveries of 161 Os and its α daughter 157 W [244] and 198 Fr [245] the Gamma Recoil Electron Alpha Tagging (GREAT) Spectrometer [249] was installed at the focal plane of RITU.

Table 11.9 Isotopes discovered in fusion-evaporation reactions and identified by their α -decay using the velocity filter SHIP at GSI: The submission date, first author and reference of the publication, as well as the target, beam, and the evaporation channel are listed

08/25/1978			Target	Beam	Evap.	Isotope
	Schmidt	[194]	¹⁸¹ Ta	⁴⁰ Ar	6n, 3n	²¹⁵ Pa, ²¹⁸ Pa
11/27/1978	Hofmann	[195]	¹⁰⁷ Ag, ¹⁰⁸ Pd	⁵⁸ Ni	p4n	¹⁶⁰ W, ¹⁵⁶ Hf ^a , ¹⁶¹ Ta
			¹⁰⁹ Ag	⁵⁸ Ni	4n	¹⁶³ Re, ¹⁵⁹ Ta ^a
			¹⁰⁹ Ag	⁵⁸ Ni	3n	¹⁶⁴ Re, ¹⁶⁰ Ta ^a
			¹⁰⁷ Ag	⁵⁸ Ni ^b	3n	¹⁶² Re, ¹⁵⁸ Ta ^a
09/05/1979	Vermeulen	[196]	¹⁷⁶ Hf	⁴⁰ Ar	4n	²¹² Th
02/03/1981	Hofmann	[197]	¹¹⁰ Cd	⁵⁸ Ni	5n, 4n	¹⁶³ Os, ¹⁵⁹ W ^a , ¹⁶⁴ Os
			^{nat} Sn	⁵⁸ Ni ^c	xn	¹⁶⁸ Pt, ¹⁶⁹ Pt, ¹⁷⁰ Pt, ¹⁷¹ Pt
			^{nat} Cd	⁵⁸ Ni	xpyn	¹⁵⁵ Hf ^a , ¹⁶⁵ Re
			¹⁰⁶ Cd	⁵⁸ Ni	2p4n	¹⁵⁸ W, ¹⁵⁴ Hf ^a , ¹⁵⁴ Lu ^d
02/24/1983	Schneider	[198]	^{nat} Rb	⁹² Mo	xn	¹⁷³ Au, ¹⁷⁴ Au
			^{nat} Sr	⁹² Mo	xn	¹⁷⁵ Hg, ¹⁷⁶ Hg
			⁸⁹ Y	⁹² Mo	2n	¹⁷⁹ Tl
05/30/1983	Hingmann	[199]	¹⁸⁶ W	⁴⁰ Ar	p4n, 4n	²²¹ Pa, ²²² U
09/05/1985	Keller	[200]	⁹⁴ Mo	⁹⁰ Zr	2n	¹⁸² Pb
11/06/1986	Heßberger	[201]	¹⁵⁹ Tb	51 V	5n	²⁰⁵ Ra
02/21/1989	Hofmann	[202]	¹⁰⁶ Cd	⁵⁸ Ni	2n	¹⁶² Os
12/22/1992	Quint	[203]	¹⁰⁰ Mo	⁹⁴ Mo	3n	¹⁹¹ Po
12/20/1994	Ninov	[204]	¹⁷⁰ Er	51 V	8n, 7n	²¹³ Pa, ²¹⁴ Pa
10/15/1999	Andreyev	[205]	¹⁴² Nd	⁵² Cr	6n, 5n	¹⁸⁸ Po, ¹⁸⁹ Po
03/14/2003	Andreyev	[206]	⁹³ Nb	⁹⁴ Mo	3n	¹⁸⁴ Bi
04/08/2005	Andreyev	[207]	¹⁴⁴ Sm	⁴⁶ Ti	4n, 3n	¹⁸⁶ Po, ¹⁸⁷ Po
10/25/2005	Andreyev	[208]	¹⁴⁴ Sm	51 V	3n	¹⁹² At
10/02/2006	Andreyev	[209]	¹⁴⁴ Sm	⁵² Cr	3n, 2n	¹⁹³ Rn, ¹⁹⁴ Rn
05/04/2009	Andreyev	[210]	¹⁴¹ Pr	⁵⁶ Fe	3n	¹⁹⁴ At
11/13/2009	Andreyev	[211]	¹⁴⁴ Sm	⁴⁰ Ca	5n	¹⁷⁹ Pb
07/16/2010	Heredia	[212]	¹⁴⁷ Sm	⁶⁴ Ni	3n	²⁰⁸ Th
01/29/2013	Kalaninova	[213]	¹⁴¹ Pr	⁶⁰ Ni	4n	¹⁹⁷ Fr

^aPopulated by α -decay

During this time period (1994 through 2006) another ten isotopes were discovered at Argonne National Laboratory with the Fragment Mass Analyzer (FMA) designed and constructed by Davids and Larson [250]. It is interesting to note that out of eight discovery publications only two had first authors from Argonne (¹⁷⁸Tl [232] and ¹⁰⁵Te [242]). The other discoveries were led by researchers affiliated with six different institutions who collaborated with the group of Davids: ²⁰⁴Ra (University of Manchester) [222], ¹⁸¹Tl (Oak Ridge National Laboratory) [225], ¹⁶⁶Pt and ¹⁶⁷Pt

bThese reactions also produced the proton-unbound nuclides ¹⁶¹Re and ¹⁵⁷Ta (see Sect. 16.4)

^cThese reactions also produced the proton-unbound nuclides ¹⁶⁶Ir and ¹⁶⁷Ir (see Sect. 16.4)

^dPopulated by β^+ -decay

Table 11.10 Isotopes discovered in fusion-evaporation reactions and identified by their α -decay using recoil separators: The submission date, first author and reference of the publication, as well as the target, beam, and the evaporation channel are listed

Date	First author	Ref.	Target	Beam	Evap.	Isotope
12/28/1979	DiRienzo	[214]	¹⁶⁹ Tm	³⁵ Cl	5n	199Rn
12/16/1988	Andreyev	[215]	²⁰⁸ Pb	²² Ne	5n	²²⁵ U
05/14/1990	Page	[216]	⁵⁴ Fe	⁵⁸ Ni	p3n	¹⁰⁸ I
11/01/1990	Andreyev	[217]	²⁰⁸ Pb	²⁰ Ne	5n, 4n	²²³ U, ²²⁴ U
02/04/1992	Andreyev	[218]	¹⁹⁷ Au	²⁷ Al	6n	²¹⁸ U
01/18/1993	Andreyev	[219]	¹⁹⁷ Au	²⁷ Al	5n	²¹⁹ U
07/12/1993	Sellin	[220]	¹⁰⁶ Cd	⁷⁰ Ge	p3n	¹⁷² Au
03/10/1994	Leino	[221]	¹⁷⁵ Lu	⁴⁰ Ar	8n, 7n	²⁰⁷ Ac, ²⁰⁸ Ac
12/28/1994	Leddy	[222]	¹⁸² W	²⁸ Si	6n	²⁰⁴ Ra
03/02/1995	Uusitalo	[223]	¹⁸¹ Ta	³⁵ Cl	6n, 5n	²¹⁰ Th, ²¹¹ Th
03/21/1995	Morita	[224]	¹⁶⁶ Er	³⁶ Ar	6n, 5n	¹⁹⁶ Rn, ¹⁹⁷ Rn
			¹⁶⁹ Tm	³⁶ Ar	5n	²⁰⁰ Fr
12/11/1995	Toth	[225]	⁹⁰ Zr	⁹² Mo	p	¹⁸¹ Tl
03/06/1996	Leino	[226]	¹⁷⁵ Lu	³⁵ Cl	7n	²⁰³ Ra
03/11/1996	Bingham	[227]	⁹² Mo	⁷⁸ Kr	4n, 3n	¹⁶⁶ Pt, ¹⁶⁷ Pt
06/13/1996	Ikezoe	[228]	¹⁸² W	³² S	5n	²⁰⁹ Th
09/03/1996	Batchelder	[229]	⁹⁷ Mo	⁹² Mo	p2n	¹⁸⁶ Bi
11/13/1996	Mitsuoka	[230]	¹⁸² W	³⁵ Cl	5n	²¹² Pa
02/17/1997	Uusitalo	[231]	¹⁴⁴ Sm	³⁶ Ar	6n	¹⁷⁴ Hg
02/27/1997	Carpenter	[232]	¹⁰³ Rh	⁷⁸ Kr	3n	¹⁷⁸ Tl
09/18/1997	Eskola	[233]	¹⁷⁵ Lu	³⁶ Ar	5n	²⁰⁶ Ac
09/10/1998	Batchelder	[234]	⁹⁷ Mo	⁹² Mo	pn	¹⁸⁷ Bi
03/26/1999	Tagaya	[235]	¹⁶⁹ Tm	³⁶ Ar	α6n, 6n	¹⁹⁵ At, ¹⁹⁹ Fr
06/02/1999	Seweryniak	[236]	^{78,80} Kr	⁹⁶ Ru	1n, 3n	¹⁷² Hg, ¹⁷³ Hg
05/18/2000	Malyshev	[237]	¹⁸² W	⁴⁰ Ar	5n	²¹⁷ U
12/22/2000	Kettunen	[238]	¹⁴² Nd	⁵⁶ Fe	3n	¹⁹⁵ Rn
12/16/2002	Kettunen	[239]	¹⁴¹ Pr	^{54,56} Fe	4n	¹⁹¹ At, ¹⁹³ At
12/09/2003	Kettunen	[240]	⁹⁶ Ru	⁷⁸ Kr	3n	¹⁷¹ Hg
10/27/2004	Uusitalo	[241]	¹⁴¹ Pr	⁶³ Cu	3n, 2n	²⁰¹ Ra, ²⁰² Ra
03/09/2006	Seweryniak	[242]	⁵⁰ Cr	⁵⁸ Ni	3n	¹⁰⁵ Te
05/16/2006	Liddick	[243]	⁵⁴ Fe	⁵⁸ Ni	3n	¹⁰⁹ Xe
12/20/2009	Bianco	[244]	¹⁰⁶ Cd	⁵⁸ Ni	3n	¹⁶¹ Os, ¹⁵⁷ W ^a
11/30/2012	Uusitalo	[245]	¹⁴¹ Pr	⁶⁰ Ni	3n	¹⁹⁸ Fr
12/01/2013	Zhang	[246]	¹⁶⁹ Tm	⁴⁰ Ca	4n	²⁰⁵ Ac
04/09/2015	Ma	[247]	¹⁸⁰ W	⁴⁰ Ar	4n	²¹⁶ U
07/14/2015	Khuyagbaatar	[248]	¹⁷⁶ Yb	⁵⁰ Ti	5n	²²¹ U

^aPopulated by α -decay

Fig. 11.6 Energies of mother and daughter α -emitters correlated with evaporation residues detected in the gas-filled separator RITU [223] (Reprinted figure with permission from J. Uusitalo et al., α -decay of the new isotopes ^{210}Th and ^{211}Th , Phys. Rev. C 52 (1995) 113. Copyright 1995 by the American Physical Society.)

(University of Tennessee) [227], ¹⁸⁶Bi (Louisiana State University) [229], ¹⁸⁷Bi (Oak Ridge Associated Universities) [234], and ¹⁷²Hg and ¹⁷³Hg (University of Maryland) [236].

In Japan, the gas-filled separator GARIS at RIKEN and the recoil mass separator (RMS) at JAERI contributed to the discovery of α -emitting nuclides. At RIKEN, Morita et al. discovered ¹⁹⁶Rn, ¹⁹⁷Rn, and ²⁰⁰Fr in 1995 [224] and Tagaya et al. identified ¹⁹⁵At and ¹⁹⁹Fr in 1999 [235]. In 1996, Ikezoe et al. and Mitsuoka et al. discovered ²⁰⁹Th [228] and ²¹²Pa [230], respectively.

In 2006, Liddick et al. employed a digital processing system for the α -particle signals from the decay of 109 Xe implanted at the focal plane of the recoil mass separator at Oak Ridge. They were able to separate the first α -decay of 109 Xe with a half-life of 13 ± 2 ms from the subsequent α -decay of the daughter nuclide 105 Te with a half-life of only 620 ns [243].

Two new α -emitters were discovered at the Heavy Ion Research Facility in Lanzhou (HIRFL), China. Zhang et al. and Ma et al. identified 205 Ac in 2013 [246] and 216 U in 2015 [247], respectively, with the gas-filled recoil separator SHANS (Spectrometer for Heavy Atoms and Nuclear Structure).

Most recently, Khuyagbaatar et al. used the TransActinide Separator and Chemistry Apparatus (TASCA) at GSI in the discovery of ²²¹U [248].

11.5 Proton Emissions and Delayed Fission

Beta-delayed proton emitters were first observed by Barton et al. in 1963 at McGill University discovering ²⁵Si [251]. Beta-delayed proton emission occurs in neutron-deficient nuclides close to the proton drip-line. In light elements (up to titanium)

they can be populated with light-charged-particle beams, however, in order to reach β -delayed proton emitters in heavier elements fusion-evaporation reactions involving heavy ions are necessary. Isotopes discovered by β -delayed proton emission populated in fusion-evaporation reactions are listed in Table 11.11. The initial nuclide is identified by deducing its β^+ half-life from the decay curve measured by the promptly emitted protons from excited unbound states in the daughter nuclide. In most cases other properties of the daughter nuclides were either already known or no information about them could be extracted from the measured proton spectra.

The first β -delayed proton emitters produced in a fusion-evaporation reaction were 109 Te and 111 Te, discovered by Karnaukhov et al. in 1966 at the U300 Dubna cyclotron [252]. Subsequently, Bogdanov and collaborators identified the β -delayed proton emitters 119 Ba [255], 116 Cs, 121 Ba [256], 117 Ba, 129 Nd, and 133 Sm [75] at Dubna. For the latter two experiments they used the BEMS-2 mass separator to identify the recoils.

In 1970, Cerny et al. discovered ⁴⁹Fe at the Harwell variable-energy cyclotron [253]. The energy resolution of the semiconductor telescope used for the proton detection was sufficient to measure a discrete resonance in the daughter nuclide ⁴⁹Mn which had previously not been observed. The decay scheme is shown in Fig. 11.7.

In the same year, Cerny was also involved in two experiments reporting the discovery of proton radioactivity. He was a collaborator in an experiment by Jackson et al. from Oxford University which discovered the decay of an excited isomeric state in ⁵³Co by proton emission. The experiment was performed with the Harwell variable-energy cyclotron to populate the state and the emitted protons were detected with a semiconductor telescope [254]. In addition to this fusion-evaporation reaction, Cerny essentially immediately confirmed the results with the reaction ⁵⁴Fe(p,2n) at the 88-in. Berkeley cyclotron. The results were submitted on the same day as the paper by Jackson et al. and published adjacent to each other in the same issue of Physics Letters B [281].

Fig. 11.7 Decay diagram of 49 Fe. In addition to the discovery of 49 Fe the observation of a discrete level in 49 Mn also corresponds to the first observation of this nuclide [253] (Reprinted figure with permission from J. Cerny et al., 49 Fe: A New $T_Z = 3/2$ delayed-proton emitter, Phys. Rev. Lett. 24 (1970) 1128. Copyright 1970 by the American Physical Society.)

Table 11.11 Isotopes discovered in fusion-evaporation reactions and identified by β -delayed proton emission and delayed fission: The submission date, first author and reference of the publication, as well as the target, beam, and the evaporation channel are listed

Date	First author	Ref.	Target	Beam	Evap.	Isotope
01/03/1966	Karnaukhov	[252]	⁹² Mo	²⁰ Ne	3n, 1n	¹⁰⁹ Te, ¹¹¹ Te
04/07/1970	Cerny	[253]	⁴⁰ Ca	¹² C	3n	⁴⁹ Fe, ⁴⁹ Mn ^a
09/23/1970	Jackson	[254]	⁴⁰ Ca	¹⁶ O	1p2n	⁵³ Co ^b
07/09/1973	Bogdanov	[255]	¹⁰⁶ Cd	¹⁶ O	3n	¹¹⁹ Ba
02/25/1974	Bogdanov	[256]	⁹⁰ Zr, ⁹³ Nb	³² S	1p5n, 1p3n	¹¹⁶ Cs, ¹²¹ Ba
03/21/1974	Jackson	[257]	³² S	¹⁶ O	3n	⁴⁵ Cr, ⁴⁵ V ^a
12/02/1975	Vieira	[258]	⁴⁰ Ca	¹⁶ O, ²⁰ Ne	3n	⁵³ Ni, ⁵⁷ Zn, ⁵⁷ Cu ^a
05/18/1976	Hardy	[259]	⁴⁰ Ca	⁴⁰ Ca	2p1n	⁷⁷ Sr
07/23/1976	Bogdanov	[75]	⁹² Mo	³² S	2p5n	¹¹⁷ Ba
			¹⁰² Pd, ¹⁰⁶ Cd	³² S	2p3n	¹²⁹ Nd, ¹³³ Sm
08/11/1980	Nolte	[260]	⁵⁸ Ni	⁴⁰ Ca	2p1n	⁹⁵ Pd
06/25/1981	Tidemand-P.	[261]	⁵⁰ Cr	⁵⁸ Ni	2p3n, 2p1n	¹⁰³ Sn, ¹⁰⁵ Sn
06/07/1982	Kurcewicz	[262]	^{58,60} Ni, ⁶³ Cu	⁴⁰ Ca	2p2n, p3n, 3n	⁹⁴ Pd, ⁹⁶ Ag, ¹⁰⁰ In
08/23/1982	Hagberg	[263]	⁵⁴ Fe	⁴⁰ Ca	2p1n	⁹¹ Ru
05/17/1983	Nitschke	[264]	⁹⁰ Zr, ⁹² Mo	⁴⁰ Ca	p3n, αn	¹²⁶ Pr, ¹²⁷ Nd
			⁵⁰ Cr, ⁹² Mo	⁹² Mo, ⁵⁶ Fe	2p1n, αn	¹³⁹ Gd, ¹⁴³ Dy
02/16/1984	Toth	[265]	¹⁴⁴ Sm	¹² C	7n	¹⁴⁹ Er
02/17/1984	Nitschke	[266]	⁵⁸ Ni, ⁹² Mo	⁶⁴ Zn, ³⁶ Ar	pn, αpn	¹²⁰ La, ¹²² La
			⁹² Mo	³⁶ Ar, ⁵⁴ Fe	αn	¹²³ Ce, ¹⁴¹ Dy
03/08/1985	Wilmarth	[267]	⁹² Mo	⁴⁰ Ca	3p1n, pn	¹²⁸ Pr, ¹³⁰ Pm
08/25/1986	Hotchkis	[268]	⁴⁰ Ca	²⁴ Mg	3n	⁶¹ Ge, ⁶¹ Ga ^a
09/23/1986	Wilmarth	[86]	⁹² Mo, ⁹⁶ Ru	³⁶ Ar, ⁴⁰ Ca	p3n, 2p3n	¹²⁴ Pr, ¹³¹ Sm
			⁹² Mo	⁵⁴ Fe	3p3n, 2p2n	¹⁴⁰ Tb, ¹⁴² Dy
			⁹² Mo	⁵⁸ Ni	3p2n	¹⁴⁴ Ho
03/04/1987	Lazarev	[269]	¹⁴⁴ Sm	⁴⁰ Ca	p3n	¹⁸⁰ Tl ^c
07/11/1988	Vierinen	[270]	⁹² Mo	⁴⁶ Ti	p3n, p2n	¹³⁴ Eu, ¹³⁵ Eu
01/08/1993	Batchelder	[271]	⁴⁰ Ca	²⁸ Si	3n	⁶⁵ Se
07/19/1993	Batchelder	[272]	⁴⁰ Ca	³⁶ Ar	3n	⁷³ Sr
07/29/1996	Xu	[273]	¹⁰⁶ Cd	³² S	3n	¹³⁵ Gd
02/03/1997	Li	[274]	⁹² Mo	³² S	3n	¹²¹ Ce
09/17/1997	Huang	[275]	⁵⁸ Ni	³² S	4p5n	⁸¹ Zr
04/05/1999	Xu	[276]	⁹² Mo, ⁹⁶ Ru	³⁶ Ar	3n	¹²⁵ Nd, ¹²⁹ Sm
			⁹⁶ Ru	³⁶ Ar	p3n	¹²⁸ Pm
			¹⁰⁶ Cd	³⁶ Ar	2p3n, 3n	¹³⁷ Gd, ¹³⁹ Dy
05/12/1999	Sonzogni	[277]	⁵⁸ Ni	⁷⁸ Kr	1p4n	¹³⁰ Sm ^d
12/12/2000	Xu	[278]	¹⁰⁶ Cd	⁴⁰ Ca	p3n	¹⁴² Ho
03/14/2001	Xu	[279]	¹¹² Sn	⁴⁰ Ca	3n	¹⁴⁹ Yb
07/29/2002	Karny	[280]	⁹² Mo	⁵⁸ Ni	p4n	¹⁴⁴ Er ^d
1						

 a^+ -delayed proton emitter

^bProton emitter from an isomeric excited state

 $^{{}^{}c}\beta^{+}$ -delayed fission

^dPopulated by a direct proton emitter

Four years later Jackson et al. observed the next β -delayed proton emitter. In addition to the parent nuclide ⁴⁵Cr they also identified the proton emitting daughter ⁴⁵V for the first time with the Chalk River MP tandem accelerator [257]. The intermediate proton-emitting nuclide was also not known in two other cases. At the 88-in. cyclotron at Berkeley, Vieira et al. observed ⁵⁷Cu in the decay of ⁵⁷Zn in 1975 [258], and in 1986, Hotchkis et al. discovered ⁶¹Ga together with ⁶¹Ge [268].

Two more β -delayed proton emitters were discovered with the MP tandem at Chalk River, ⁷⁷Sr by Hardy et al. in 1976 [259] and ⁹¹Ru by Hagberg et al. in 1982 [263]. In the early 1980s six proton emitters were identified in Germany; Nolte and Hick captured the recoils on a rotating wheel behind the target at the Munich MP tandem to discover ⁹⁵Pd [260] while ¹⁰³Sn, ¹⁰⁵Sn [261], ⁹⁴Pd, ⁹⁶Ag, and ¹⁰⁰In [262] were discovered with the online mass separator at the UNILAC at GSI by Tidemand-Petersson et al. and Kurcewicz et al., respectively.

All identifications of new β -delayed proton emitters in the decade between 1983 and 1993 were achieved at Berkeley. The group of Nitschke and Wilmarth alone discovered fifteen new isotopes using the online isotope separator OASIS at the HILAC [86, 264, 266, 267]. In addition to the discovery of ⁶¹Ge mentioned above [268], Toth et al. and Batchelder et al. identified ¹⁴⁹Er [265] and ⁶⁵Se and ⁷³Sr [271, 272], respectively, with the helium-jet technique at the 88-in. cyclotron. ⁷³Sr decayed to an excited state of the proton-unbound nuclide ⁷³Rb which also was identified for the first time in the experiment (see Sect. 16.3) [272].

The helium-jet technique was also employed for the discovery of the ten most recent β -delayed proton emitters, all observed at the sector-focused cyclotron (SFC) of the Institute of Modern Physics in Lanzhou, China [273–276, 278, 279].

Two isotopes were not discovered by subsequent delayed proton emission but by preceding prompt proton emission populating states of the new nuclides. Sonzogni et al. deduced the energy of the first excited 2^+ state in 130 Sm from the observation of two peaks in the energy spectrum of the proton emitting parent nuclide 131 Eu which was implanted in the focal plane of the FMA at Argonne [277]. Similarly 144 Er was identified by observing two proton lines in the decay of 145 Tb. Karny et al. used digital data processing to separate the pulses of the short-lived proton emitter ($\sim 3\mu s$) from the implantation signals at the recoil mass separator at Oak Ridge in 2002 [280].

In addition to the isotopes discovered by β -delayed proton emission, one isotope was identified by observing its β -delayed fission decay. Lazarev et al. discovered ¹⁸⁰Tl with the U400 Dubna cyclotron in 1987. They irradiated enriched samarium targets deposited on a rotating copper cylinder with ⁴⁰Ca ions and detected the fission fragments in mica detectors surrounding the cylindrical target. Lazarev et al. argue that the fragments originate from excited states in ¹⁸⁰Hg following the β -decay of ¹⁸⁰Tl [269].

References 221

References

- 1. S.G. Thompson, A. Ghiorso, G.T. Seaborg, Phys. Rev. 77, 838 (1950)
- 2. J.F. Miller et al., Phys. Rev. 80, 486 (1950)
- 3. A. Ghiorso et al., Phys. Rev. 81, 154 (1951)
- 4. J.M. Hollander, Phys. Rev. 92, 518 (1953)
- 5. G.B. Rossi et al., Phys. Rev. 93, 256 (1954)
- 6. M.I. Kalkstein, J.M. Hollander, Phys. Rev. 96, 730 (1954)
- 7. J. Beydon et al., Nucl. Phys. **2**, 593 (1957)
- 8. J. Beydon et al., Compt. Rend. Acad. Sci. 244, 586 (1957)
- 9. K.S. Toth, J.O. Rasmussen, J. Inorg. Nucl. Chem. 12, 236 (1960)
- 10. K.T. Faler, J.O. Rasmussen, Phys. Rev. 118, 265 (1960)
- 11. K.F. Chackett, G.A. Chackett, J. Inorg. Nucl. Chem. 13, 1 (1960)
- 12. R.W. Hoff, J.M. Hollander, M.C. Michel, J. Inorg. Nucl. Chem. 18, 1 (1961)
- 13. I.L. Preiss, P.J. Estrup, R. Wolfgang, Nucl. Phys. 18, 624 (1960)
- 14. R.M. Diamond et al., Nucl. Phys. 25, 248 (1961)
- 15. R.K. Sheline, T. Sikkeland, R.N. Chanda, Phys. Rev. Lett. 7, 446 (1961)
- 16. I.L. Preiss, P.M. Strudler, J. Inorg. Nucl. Chem. 24, 589 (1962)
- 17. V. Maxia, W.H. Kelly, D.J. Horen, J. Inorg. Nucl. Chem. 24, 1175 (1962)
- 18. I.L. Preiss, P.M. Strudler, R. Wolfgang, Phys. Rev. **129**, 1284 (1963)
- 19. M.J. Nurmia, R.W. Fink, Phys. Lett. 14, 136 (1965)
- 20. B.N. Belyaev et al., Sov. J. Nucl. Phys. 4, 163 (1967)
- 21. E. Nadjakov et al., Compt. Rend. Acad. Bulgare Sci. 20, 533 (1967)
- 22. H. Bakhru, R.I. Morse, I.L. Preiss, Nucl. Phys. A 100, 145 (1967)
- 23. B.N. Belyaev et al., Bull. Acad. Sci. USSR Phys. Ser. 32, 59 (1968)
- 24. G. Murray et al., Nucl. Phys. A **142**, 21 (1970)
- 25. E. Nadjakov et al., Bull. Acad. Sci. USSR Phys. Ser. 35, 2004 (1971)
- 26. H. Schmeing et al., Phys. Lett. B **44**, 449 (1973)
- 27. M. Kaba, K. Miyanon, Radiochim. Acta 21, 203 (1974)
- 28. H. Bruchertseifer, B. Eichler, Radiochem. Radioanal. Lett. 48, 391 (1981)
- 29. H. Bruchertseifer et al., Radiochem. Radioanal. Lett. 51, 319 (1982)
- 30. B. Eichler et al., Radiochem. Radioanal. Lett. 53, 161 (1982)
- 31. H. Atterling et al., Nucl. Phys. 2, 619 (1957)
- 32. M. Crut et al., Nucl. Phys. 2, 624 (1957)
- 33. R. Chaminade et al., Nucl. Phys. **2**, 634 (1957)
- 34. Ch. Droste et al., Nucl. Phys. A **152**, 579 (1970)
- 35. E. Nolte et al., Phys. Lett. B 33, 294 (1970)
- 36. T.A. Doron, M. Blann, Nucl. Phys. A 161, 12 (1971)
- 37. J. Zioni et al., Nucl. Phys. A 181, 465 (1972)
- 38. A.I. Akhmadzhanov et al., Bull. Acad. Sci. USSR Phys. Ser. 36, 1820 (1972)
- 39. I.M. Ladenbauer-Bellis, H. Bakhru, B. Jones, Can. J. Phys. 50, 3071 (1972)
- 40. E. Newman et al., Phys. Rev. C 9, 674 (1974)
- 41. E. Nolte et al., Z. Phys. 268, 267 (1974)
- 42. J.O. Newton, F.S. Stephens, R.M. Diamond, Nucl. Phys. A 236, 225 (1974)
- 43. K.S. Toth et al., Phys. Lett. B 56, 29 (1975)
- 44. J.H. Hamilton et al., Phys. Rev. Lett. 35, 562 (1975)
- 45. S. Chojnacki et al., Acta Phys. Pol. B 7, 823 (1976)
- 46. B.J. Varley, J.C. Cunnane, W. Gelletly, J. Phys. G 3, 55 (1977)
- 47. R.E. Leber, P.E. Haustein, I.M. Ladenbauer-Bellis, J. Inorg. Nucl. Chem. 39, 927 (1977)
- 48. L.A. Parks, C.N. Davids, R.C. Pardo, Phys. Rev. C 15, 730 (1977)
- 49. G. Korschinek et al., Z. Phys. A 281, 409 (1977)
- 50. R.C. Hunter et al., Phys. Rev. C 16, 384 (1977)
- 51. A.M. Nathan et al., Phys. Rev. C 16, 1566 (1977)
- 52. C. Burman, P. Sen, H. Bakhru, Can. J. Phys. 56, 786 (1978)

- 53. C.N. Davids et al., Phys. Rev. C 17, 1815 (1978)
- 54. E.B. Norman et al., Phys. Rev. C 17, 2176 (1978)
- 55. K.S. Toth et al., Phys. Rev. C 19, 482 (1979)
- 56. D.E. Alburger, Phys. Rev. C 18, 1875 (1978)
- 57. C. Deprun et al., Z. Phys. A **295**, 103 (1980)
- 58. M.J. Murphy, C.N. Davids, E.B. Norman, Phys. Rev. C 22, 2204 (1980)
- 59. C.J. Lister et al., Phys. Rev. C 24, 260 (1981)
- 60. D.C. Sousa et al., Phys. Rev. C 25, 1012 (1982)
- 61. U.J. Schrewe et al., Phys. Rev. C 25, 3091 (1982)
- 62. S.Z. Gui, G. Colombo, E. Nolte, Z. Phys, A 305, 297 (1982)
- 63. E. Nolte et al., Z. Phys. A **306**, 223 (1982)
- 64. T. Ollivier et al., Z. Phys. A 320, 695 (1985)
- 65. A. Szymanski et al., Radiochim. Acta 40, 61 (1986)
- 66. E. Runte et al., Z. Phys. A **328**, 373 (1987)
- 67. K. Heiguchi et al., Z. Phys. A 338, 7 (1991)
- 68. U. Bosch-Wicke et al., Z. Phys. A 341, 245 (1992)
- 69. S. Zhou et al., Chin. J. Nucl. Phys. 13, 193 (1991)
- 70. Y. Xie et al., Eur. Phys. J. A 6, 239 (1999)
- 71. S.-W. Xu et al., Eur. Phys. J. A 21, 75 (2004)
- 72. R.D. Macfarlane, R.D. Griffioen, Nucl. Instrum. Meth. 24, 461 (1963)
- 73. D.R. Goosman, D.E. Alburger, Phys. Rev. C 5, 1252 (1972)
- 74. G.M. Gowdy et al., Phys. Rev. C 13, 1601 (1976)
- 75. D.D. Bogdanov et al., Nucl. Phys. A 275, 229 (1977)
- 76. D.D. Bogdanov et al., Nucl. Phys. A 307, 421 (1978)
- 77. G. Lhersonneau et al., Phys. Rev. C 18, 2688 (1978)
- 78. M. Huyse et al., Z. Phys. A **288**, 107 (1978)
- 79. M. Nowicki et al., Acta Phys. Pol. B 13, 879 (1982)
- 80. B. Beraud et al., Z. Phys. A 299, 279 (1981)
- 81. E. Hagberg et al., Nucl. Phys. A 383, 109 (1982)
- 82. K. Deneffe et al., J. Phys. G 11, L59 (1985)
- 83. P. Kleinheinz et al., Z. Phys. A **322**, 705 (1985)
- 84. N. Redon et al., Z. Phys. A 325, 127 (1986)
- 85. K.S. Toth et al., Phys. Rev. C **35**, 310 (1987)
- 86. P.A. Wilmarth et al., Z. Phys. A 325, 485 (1986)
- 87. T. Sekine et al., Nucl. Phys. A **467**, 93 (1987)
- 88. K.S. Toth et al., Phys. Rev. C 36, 826 (1987)
- 89. B.D. Kern et al., Phys. Rev. C 36, 1514 (1987)
- 90. M. Huyse et al., Z. Phys. A 330, 121 (1988)
- 91. T. Sekine et al., Z. Phys. A **331**, 105 (1988)
- 92. K.S. Vierinen et al., Phys. Rev. C 39, 1972 (1989)
- 93. J.M. Nitschke et al., Z. Phys. A **334**, 111 (1989)
- 94. R.B. Firestone et al., Phys. Rev. C 43, 1066 (1991)
- 95. K.S. Toth et al., Phys. Rev. C 48, 445 (1993) 96. A. Gizon et al., Z. Phys. A **351**, 361 (1995)
- 97. A. Guglielmetti et al., Phys. Rev. C 52, 740 (1995)
- 98. Z. Janas et al., Nucl. Phys. A **627**, 119 (1997)
- 99. F.S. Stephens, N.L. Lark, R.M. Diamond, Phys. Rev. Lett. 12, 225 (1964)
- 100. H. Morinaga, P.C. Gugelot, Nucl. Phys. 46, 210 (1963)
- 101. F.S. Stephens, N.L. Lark, R.M. Diamond, Nucl. Phys. **63**, 82 (1965)
- 102. J. Burde, R.M. Diamond, F.S. Stephens, Nucl. Phys. A **92**, 306 (1967)
- 103. J.E. Clarkson et al., Nucl. Phys. A **93**, 272 (1967)
- 104. D. Ward, F.S. Stephens, J.O. Newton, Phys. Rev. Lett. 19, 1247 (1967)
- 105. D. Ward, R.M. Diamond, F.S. Stephens, Nucl. Phys. A 117, 309 (1968)
- 106. F.S. Stephens, J.R. Leigh, R.M. Diamond, Nucl. Phys. A **170**, 321 (1971)

References 223

- 107. R. Anholt, J.O. Rasmussen, I. Rezanka, Nucl. Phys. A 209, 72 (1973)
- 108. K. Nakai et al., Phys. Lett. B 44, 443 (1973)
- 109. J. Conrad et al., Nucl. Phys. A 234, 157 (1974)
- 110. W. Trautmann et al., Phys. Rev. Lett. 35, 1694 (1975)
- 111. J. Gizon et al., Nucl. Phys. A 290, 272 (1977)
- 112. H. Helppi et al., Phys. Lett. B 115, 11 (1982)
- 113. C.J. Lister et al., Phys. Rev. Lett. 49, 308 (1982)
- 114. E. Nolte, G. Korschinek, Ch. Setzensack, Z. Phys, A 309, 33 (1982)
- 115. H.F.R. Arciszewski et al., Nucl. Phys. A 401, 531 (1983)
- 116. J. Recht et al., Nucl. Phys. A **440**, 366 (1985)
- 117. J. Gerl et al., Nucl. Phys. A **443**, 348 (1985)
- 118. C.J. Lister et al., Phys. Rev. Lett. 55, 810 (1985)
- 119. C.J. Lister et al., Phys. Rev. Lett. 59, 1270 (1987)
- 120. L. Goettig et al., Nucl. Phys. A 475, 569 (1987)
- 121. T. Kuroyanagi et al., Nucl. Phys. A 484, 264 (1988)
- 122. R. Wadsworth et al., Z. Phys. A 333, 411 (1989)
- 123. C.J. Lister et al., Phys. Rev. C 42, R1191 (1990)
- 124. W. Gelletly et al., Phys. Lett. B 253, 287 (1991)
- 125. D. Rudolph et al., J. Phys. G 17, L113 (1991)
- 126. C.J. Gross et al., Phys. Rev. C 44, 2253 (1991)
- 127. G. de Angelis et al., Z. Phys. A **343**, 121 (1992)
- 128. D. Seweryniak et al., Phys. Lett. B 321, 323 (1994)
- 129. C.M. Parry et al., Phys. Rev. C **57**, 2215 (1998)
- 130. W. Krolas et al., Phys. Rev. C **65**, 031303 (2002)
- 131. A.N. Wilson et al., Phys. Rev. C 66, 021305 (2002)
- J.F. Smith et al., Phys. Lett. B **625**, 203 (2005)
 W.E. Burcham, Proc. Phys. Soc. A **67**, 555 (1954)
- 133. W.E. Bulchall, Ploc. Phys. 30c. A 07, 333 (1934)
- 134. K.S. Toth, J.O. Rasmussen, Phys. Rev. **109**, 121 (1958)
- R.M. Latimer, G.E. Gordon, T.D. Thomas, J. Inorg. Nucl. Chem. 17, 1 (1961)
 R.W. Hoff, F. Asaro, I. Perlman, J. Inorg. Nucl. Chem. 25, 1303 (1963)
- 137. H. Rotter et al., Sov. J. Nucl. Phys. 4, 178 (1967)
- 138. G. Ya, Sung-Ching-Yang, V.A. Druin, A.S. Trofimov, Sov. J. Nucl. Phys. 14, 725 (1972)
- 139. J. Cerny, D.R. Goosman, D.E. Alburger, Phys. Lett. B 37, 380 (1971)
- 140. T. Nomura et al., Phys. Lett. B 40, 543 (1972)
- 141. K. Hiruta et al., Phys. Lett. B 45, 244 (1973)
- 142. O. Häusser et al., Phys. Rev. Lett. **31**, 323 (1973)
- 143. J.C. Batchelder et al., Phys. Rev. C 54, 949 (1996)
- 144. K.S. Toth et al., Z. Phys. A 355, 225 (1996)
- 145. R.D. Macfarlane, R.D. Griffioen, Phys. Rev. 130, 1491 (1963)
- 146. R.D. Macfarlane, R.D. Griffioen, Phys. Rev. **131**, 2176 (1963)
- 147. R.D. Griffioen, R.D. MacFarlane, Phys. Rev. **133**, B1373 (1964)
- 148. R.D. Macfarlane, Phys. Rev. 137, B1448 (1965)
- 149. R.D. Macfarlane, Phys. Rev. **136**, B941 (1964)
- 150. A. Siivola, Nucl. Phys. 84, 385 (1966)
- 151. A. Siivola, Nucl. Phys. A 92, 475 (1967)
- 152. W. Treytl, K. Valli, Nucl. Phys. A 97, 405 (1967)
- 153. K. Valli, M.J. Nurmia, E.K. Hyde, Phys. Rev. 159, 1013 (1967)
- 154. K. Valli, E.K. Hyde, W. Treytl, J. Inorg. Nucl. Chem. 29, 2503 (1967)
- 155. A. Siivola, Nucl. Phys. A **101**, 129 (1967)
- 156. K. Valli, W. Treytl, E.K. Hyde, Phys. Rev. 161, 1284 (1967)
- 157. A.G. Demin et al., Nucl. Phys. A 106, 337 (1968)
- 158. K. Valli, W. Treytl, E.K. Hyde, Phys. Rev. 167, 1094 (1968)
- 159. A. Siivola, Nucl. Phys. A 109, 231 (1968)
- 160. K. Valli, E.K. Hyde, Phys. Rev. **176**, 1377 (1968)

- 161. D.F. Torgerson, R.D. MacFarlane, Nucl. Phys. A **149**, 641 (1970)
- 162. J. Borggreen, K. Valli, E.K. Hyde, Phys. Rev. C 2, 1841 (1970)
- 163. J. Borggreen, E.K. Hyde, Nucl. Phys. A 162, 407 (1971)
- 164. R.D. Macfarlane, Phys. Rev. 126, 274 (1962)
- 165. K.S. Toth, R.L. Hahn, M.A. Ijaz, Phys. Rev. C 4, 2223 (1971)
- 166. K.S. Toth et al., Phys. Rev. C 7, 2010 (1973)
- 167. K.S. Toth et al., Phys. Rev. C 5, 2060 (1972)
- K.S. Toth et al., Phys. Rev. C 6, 2297 (1972)
 K.S. Toth et al., Phys. Rev. C 12, 533 (1975)
- 170. K.S. Toth, D.M. Moltz, J.D. Robertson, Phys. Rev. C 39, 1150 (1989)
- 171. H. Gauvin et al., Phys. Rev. Lett. 29, 958 (1972)
- 172. H. Gauvin et al., Nucl. Phys. A 208, 360 (1973)
- 173. C. Cabot et al., Nucl. Phys. A **241**, 341 (1975)
- 174. C. Cabot et al., Compt. Rend. Acad. Sci. 281, 453 (1975)
- 175. C. Cabot et al., Z. Phys. A 283, 221 (1977)
- 176. S.D. Negra, B. Lagarde, Y. Le Beyec, J. Phys. (Paris) Lett. 38, L393 (1977)
- 177. C. Cabot et al., Z. Phys. A 287, 71 (1978)
- 178. S.D. Negra et al., Z. Phys. A 300, 251 (1981)
- 179. Y. Le Beyec et al., Phys. Rev. C 9, 1091 (1974)
- 180. J.P. Dufour et al., Z. Phys. A 294, 107 (1980)
- 181. D.D. Bogdanov, V.A. Karnaukhov, L.A. Petrov, Sov. J. Nucl. Phys. 18, 1 (1974)
- 182. D.A. Eastham, I.S. Grant, Nucl. Phys. A 208, 119 (1973)
- 183. U.J. Schrewe et al., Z. Phys. A 288, 189 (1978)
- 184. F. Meissner et al., Z. Phys. A 343, 283 (1992)
- 185. N.I. Tarantin, A.P. Kabachenko, A.V. Demyanov, Sov. J. Nucl. Phys. 12, 248 (1971)
- 186. K.S. Toth et al., Phys. Lett. B 63, 150 (1976)
- 187. R. Kirchner et al., Phys. Lett. B **70**, 150 (1977)
- 188. E. Roeckl et al., Phys. Lett. B 78, 393 (1978)
- 189. D. Schardt et al., Nucl. Phys. A 326, 65 (1979)
- 190. U.J. Schrewe et al., Phys. Lett. B **91**, 46 (1980)
- 191. D. Schardt et al., Nucl. Phys. A 368, 153 (1981)
- 192. A. Plochocki et al., Phys. Lett. B **106**, 285 (1981)
- 193. H. Ewald et al., Nucl. Instrum. Meth. **139**, 223 (1976)
- 194. K.-H. Schmidt et al., Nucl. Phys. A 318, 253 (1979)
- 195. S. Hofmann et al., Z. Phys. A 291, 53 (1979)
- 196. D. Vermeulen et al., Z. Phys. A 294, 149 (1980)
- 197. S. Hofmann et al., Z. Phys. A 299, 281 (1981)
- 198. J.R.H. Schneider et al., Z. Phys. A **312**, 21 (1983)
- 199. R. Hingmann et al., Z. Phys. A 313, 141 (1983)
- 200. J.G. Keller et al., Nucl. Phys. A 452, 173 (1986)
- 201. F.P. Heßberger et al., Europhys. Lett. 3, 895 (1987)
- 202. S. Hofmann et al., Z. Phys. A 333, 107 (1989)
- 203. A.B. Quint et al., Z. Phys. A **346**, 119 (1993)
- 204. V. Ninov et al., Z. Phys. A 351, 125 (1995)
- 205. A.N. Andreyev et al., Eur. Phys. J. A 6, 381 (1999)
- 206. A.N. Andreyev et al., Eur. Phys. J. A 18, 55 (2003)
- 207. A.N. Andreyev et al., Phys. Rev. C 72, 014612 (2005)
- 208. A.N. Andreyev et al., Phys. Rev. C 73, 024317 (2006)
- 209. A.N. Andreyev et al., Phys. Rev. C 74, 064303 (2006)
- 210. A.N. Andreyev et al., Phys. Rev. C 79, 064320 (2009)
- 211. A.N. Andreyev et al., J. Phys. G 37, 035102 (2010)
- 212. J.A. Heredia et al., Eur. Phys. J. A 46, 337 (2010)
- 213. Z. Kalaninova et al., Phys. Rev. C 87, 044355 (2013)
- 214. A.C. DiRienzo et al., Phys. Rev. C 21, 2101 (1980)

References 225

- 215. A.N. Andreyev et al., Sov. J. Nucl. Phys. **50**, 381 (1989)
- 216. R.D. Page et al., Z. Phys. A 338, 295 (1991)
- 217. A.N. Andreyev et al., Sov. J. Nucl. Phys. 53, 554 (1991)
- 218. A.N. Andreyev et al., Z. Phys. A 342, 123 (1992)
- 219. A.N. Andreyev et al., Z. Phys. A 345, 247 (1993)
- 220. P.J. Sellin et al., Z. Phys. A 346, 323 (1993)
- 221. M. Leino et al., Z. Phys. A 348, 151 (1994)
- 222. M.J. Leddy et al., Phys. Rev. C 51, R1047 (1995)
- 223. J. Uusitalo et al., Phys. Rev. C 52, 113 (1995)
- 224. K. Morita et al., Z. Phys. A **352**, 7 (1995)
- 225. K.S. Toth et al., Phys. Rev. C 53, 2513 (1996)
- 226. M. Leino et al., Z. Phys. A 355, 157 (1996)
- 227. C.R. Bingham et al., Phys. Rev. C 54, R20 (1996)
- 228. H. Ikezoe et al., Phys. Rev. C **54**, 2043 (1996)
- 229. J.C. Batchelder et al., Z. Phys. A **357**, 121 (1997)
- 230. S. Mitsuoka et al., Phys. Rev. C 55, 1555 (1997)
- 231. J. Uusitalo et al., Z. Phys. A 358, 375 (1997)
- 232. M.P. Carpenter et al., Phys. Rev. Lett. 78, 3650 (1997)
- 233. K. Eskola et al., Phys. Rev. C 57, 417 (1998)
- 234. J.C. Batchelder et al., Eur. Phys. J. A 5, 49 (1999)
- 235. Y. Tagaya et al., Eur. Phys. J. A 5, 123 (1999)
- 236. D. Seweryniak et al., Phys. Rev. C 60, 031304 (1999)
- 237. O.N. Malyshev et al., Eur. Phys. J. A 8, 295 (2000)
- 238. H. Kettunen et al., Phys. Rev. C 63, 044315 (2001)
- 239. H. Kettunen et al., Eur. Phys. J. A 17, 537 (2003)
- 240. H. Kettunen et al., Phys. Rev. C $\mathbf{69}$, 054323 (2004)
- 241. J. Uusitalo et al., Phys. Rev. C 71, 024306 (2005)
- 242. D. Seweryniak et al., Phys. Rev. C **73**, 061301 (2006)
- 243. S.N. Liddick et al., Phys. Rev. Lett. 97, 802501 (2006)
- 244. L. Bianco et al., Phys. Lett. B 690, 15 (2010)
- 245. J. Uusitalo et al., Phys. Rev. C 87, 064304 (2013)
- 246. Z.Y. Zhang et al., Phys. Rev. C 89, 014308 (2014)
- 247. L. Ma et al., Phys. Rev. C 91, 051302 (2015)
- 248. J. Khuyagbaatar et al., Phys. Rev. Lett. 115, 242502 (2015)
- 249. R.D. Page et al., Nucl. Instrum. Meth. B **204**, 634 (2003)
- 250. C.N. Davids, J.D. Larson, Nucl. Instrum. Meth. B 40/41, 1224 (1989)
- 251. R. Barton et al., Can. J. Phys. 41, 2007 (1963)
- 252. V.A. Karnaukhov et al., Sov. J. Nucl. Phys. 4, 327 (1967)
- 253. J. Cerny et al., Phys. Rev. Lett. 24, 1128 (1970)
- 254. K.P. Jackson et al., Phys. Lett. B 33, 281 (1970)
- 255. D.D. Bogdanov, V.A. Karnaukhov, L.A. Petrov, Sov. J. Nucl. Phys. 19, 481 (1974)
- 256. D.D. Bogdanov et al., Sov. J. Nucl. Phys. 21, 123 (1975)
- 257. K.P. Jackson et al., Phys. Lett. B 49, 341 (1974)
- 258. D.J. Vieira et al., Phys. Lett. B 60, 261 (1976)
- 259. J.C. Hardy et al., Phys. Lett. B **63**, 27 (1976)
- 260. E. Nolte, H. Hick, Phys. Lett. B 97, 55 (1980)
- 261. P. Tidemand-Petersson et al., Z. Phys. A **302**, 343 (1981)
- 262. W. Kurcewicz et al., Z. Phys. A **308**, 21 (1982)
- 263. E. Hagberg et al., Nucl. Phys. A 395, 152 (1983)
- 264. J.M. Nitschke, M.D. Cable, W.D. Zeitz, Z. Phys, A 312, 265 (1983)
- 265. K.S. Toth et al., Phys. Rev. C 30, 712 (1984)
- 266. J.M. Nitschke et al., Z. Phys. A **316**, 249 (1984)
- 267. P.A. Wilmarth et al., Z. Phys. A 321, 179 (1985)
- 268. M.A.C. Hotchkis et al., Phys. Rev. C 35, 315 (1987)

- 269. YuA Lazarev et al., Europhys. Lett. 4, 893 (1987)
- 270. K.S. Vierinen et al., Nucl. Phys. A 499, 1 (1989)
- 271. J.C. Batchelder et al., Phys. Rev. C 47, 2038 (1993)
- 272. J.C. Batchelder et al., Phys. Rev. C 48, 2593 (1993)
- 273. S. Xu et al., Z. Phys. A **356**, 227 (1996)
- 274. Z. Li et al., Phys. Rev. C 56, 1157 (1997)
- 275. W.X. Huang et al., Z. Phys. A **359**, 349 (1997)
- 276. S.-W. Xu et al., Phys. Rev. C 60, 061302 (1999)
- 277. A.A. Sonzogni et al., Phys. Rev. Lett. 83, 1116 (1999)
- 278. S.-W. Xu et al., Phys. Rev. C 64, 017301 (2001)
- 279. S.-W. Xu et al., Eur. Phys. J. A 12, 1 (2001)
- 280. M. Karny et al., Phys. Rev. Lett. 90, 012502 (2003)
- 281. J. Cerny et al., Phys. Lett. B 33, 284 (1970)