$7_7 (K7a_1)$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle u^4 + u^2 - u + 1 \rangle$$

$$I_2^u = \langle u^6 + u^5 + 2u^4 + 2u^3 + 2u^2 + 2u + 1 \rangle$$

* 2 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 10 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle u^4 + u^2 - u + 1 \rangle$$

(i) Arc colorings

$$a_{1} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{2} + 1 \\ -u^{2} + u - 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u \\ u^{2} - u + 1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -1 \\ u^{3} + 1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -1 \\ u^{3} + 1 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-4u^3 4u^2 + 2$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
$c_1, c_3, c_5 \\ c_7$	$u^4 + u^2 - u + 1$
c_2	$u^4 - 3u^3 + 4u^2 - 3u + 2$
c_4, c_6	$u^4 + 2u^3 + 3u^2 + u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
$c_1, c_3, c_5 \ c_7$	$y^4 + 2y^3 + 3y^2 + y + 1$
c_2	$y^4 - y^3 + 2y^2 + 7y + 4$
c_4, c_6	$y^4 + 2y^3 + 7y^2 + 5y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.547424 + 0.585652I	0.98010 + 1.39709I	3.77019 - 3.86736I
u = 0.547424 - 0.585652I	0.98010 - 1.39709I	3.77019 + 3.86736I
u = -0.547424 + 1.120870I	-2.62503 - 7.64338I	-1.77019 + 6.51087I
u = -0.547424 - 1.120870I	-2.62503 + 7.64338I	-1.77019 - 6.51087I

II.
$$I_2^u = \langle u^6 + u^5 + 2u^4 + 2u^3 + 2u^2 + 2u + 1 \rangle$$

(i) Arc colorings

$$a_{1} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{2} + 1 \\ u^{4} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{4} + u^{2} + 1 \\ -u^{4} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{5} + 2u^{3} + u + 1 \\ u^{5} + u^{3} + u^{2} + u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{5} + 2u^{3} + u + 1 \\ u^{5} + u^{3} + u^{2} + u \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-4u^3 4u 2$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_3, c_5 c_7	$u^6 + u^5 + 2u^4 + 2u^3 + 2u^2 + 2u + 1$
c_2	$(u^3 + u^2 - 1)^2$
c_4, c_6	$u^6 + 3u^5 + 4u^4 + 2u^3 + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
$c_1, c_3, c_5 \ c_7$	$y^6 + 3y^5 + 4y^4 + 2y^3 + 1$
c_2	$(y^3 - y^2 + 2y - 1)^2$
c_4, c_6	$y^6 - y^5 + 4y^4 - 2y^3 + 8y^2 + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.498832 + 1.001300I	-0.26574 + 2.82812I	1.50976 - 2.97945I
u = 0.498832 - 1.001300I	-0.26574 - 2.82812I	1.50976 + 2.97945I
u = -0.284920 + 1.115140I	-4.40332	-5.01951 + 0.I
u = -0.284920 - 1.115140I	-4.40332	-5.01951 + 0.I
u = -0.713912 + 0.305839I	-0.26574 + 2.82812I	1.50976 - 2.97945I
u = -0.713912 - 0.305839I	-0.26574 - 2.82812I	1.50976 + 2.97945I

III. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_3, c_5 c_7	$(u^4 + u^2 - u + 1)(u^6 + u^5 + 2u^4 + 2u^3 + 2u^2 + 2u + 1)$
c_2	$(u^3 + u^2 - 1)^2(u^4 - 3u^3 + 4u^2 - 3u + 2)$
c_4, c_6	$(u^4 + 2u^3 + 3u^2 + u + 1)(u^6 + 3u^5 + 4u^4 + 2u^3 + 1)$

IV. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_3, c_5 c_7	$(y^4 + 2y^3 + 3y^2 + y + 1)(y^6 + 3y^5 + 4y^4 + 2y^3 + 1)$
c_2	$(y^3 - y^2 + 2y - 1)^2(y^4 - y^3 + 2y^2 + 7y + 4)$
c_4, c_6	$(y^4 + 2y^3 + 7y^2 + 5y + 1)(y^6 - y^5 + 4y^4 - 2y^3 + 8y^2 + 1)$