RINGS OF FRACTIONS, THE CRT, EUCLIDEAN DOMAINS, PIDS, UFDS

COLTON GRAINGER (MATH 6130 ALGEBRA)

11. ASSIGNMENT DUE 2018-12-05

- 11.1. [1, No. 7.5.4]. Any subfield of R must contain Q.
- 11.2. **[1, No. 7.5.5].** If F is a field, the field of fractions of F[[x]] (the ring of formal power series in the indeterminate x with coefficients in F) is the ring F((x)) of formal Laurent series. The field of fractions of the power series ring $\mathbf{Z}[[x]]$ is *properly* contained in the field of Laurent series $\mathbf{Q}((x))$ (hint: consider the series for e^x).
- 11.3. **[1, No. 7.6.1].** An element $e \in R$ is called *idempotent* if $e^2 = e$. Assume e is idempotent in R and er = re for all $r \in R$. Re and R(1-e) are two-sided ideals of R. e and 1-e are identities for the subrings Re and R(1-e) respectively.
- 11.4. **[1, No. 7.6.6].** Let $f_1(x), f_2(x), \ldots, f_k(x)$ be polynomials with integer coefficients of the same degree d. Let n_1, n_2, \ldots, n_k be integers which are relatively prime in pairs $(\gcd(n_i, n_j) = 1 \text{ for all } i \neq j)$. There exists a polynomial f(x) with integer coefficients and of degree d with $f(x) \equiv f_1(x) \pmod{n_1}$, $f(x) \equiv f_2(x) \pmod{n_2}$, ..., $f(x) \equiv f_k(x) \pmod{n_k}$, i.e., the coefficients of f(x) agree with the coefficients of $f_i(x) \pmod{n_i}$. If all the $f_i(x)$ are monic, then f(x) may also be chosen monic. [Hint: apply the CRT in \mathbf{Z} to each of the coefficients separately.]
- 11.5. **[1, No. 8.1.3].** Let R be a Euclidean Domain. Let m be the minimum integer in the set of norms of nonzero elements of R. Every nonzero element of R of norm m is a unit. Therefore, a nonzero element of norm zero (if such and element exists) is a unit.
- 11.6. **[1, No. 8.1.7].** We find a generator for the ideal (85, 1 + 13i) in $\mathbb{Z}[i]$, i.e., the greatest common divisor for 85 and 1 + 13i. We find a generator for the ideal (47 13i, 53 + 56i) as well. [Hint: use the Euclidean algorithm.]
- 11.7. **[1, No. 8.2.6].** Let R be an entire ring and suppose that every *prime* ideal in R is principal. (We'll prove that every ideal of R is principal.)
 - (a) Assume that the set of ideals of R that are not principal is nonempty. This set has a maximal element under inclusion (which, by hypothesis, is not prime). [Hint: use Zorn's Lemma.]
 - (b) Let \mathfrak{m} be an ideal which is maximal with respect to being nonprincipal, and let $\mathfrak{a},\mathfrak{b}\in R$ with $\mathfrak{a}\mathfrak{b}\in \mathfrak{m}$ but $\mathfrak{a}\notin \mathfrak{m}$ and $\mathfrak{b}\notin \mathfrak{m}$. Let $\mathfrak{a}=(\mathfrak{m},\mathfrak{a})$ be the ideal generated by \mathfrak{m} and \mathfrak{a} , let $\mathfrak{b}=(\mathfrak{m},\mathfrak{b})$ be the ideal generated by \mathfrak{m} and \mathfrak{b} , and define $\mathfrak{q}=\{r\in R: r\mathfrak{a}\subset \mathfrak{m}\}$. Then $\mathfrak{a}=(\mathfrak{a})$ and $\mathfrak{b}=(\mathfrak{b})$ are principal ideals in R with $\mathfrak{m}\subsetneq\mathfrak{b}\subset\mathfrak{q}$ and $\mathfrak{a}\mathfrak{q}=(\mathfrak{a}\mathfrak{b})\subset\mathfrak{m}$.
 - (c) If $x \in \mathfrak{m}$, then $x = s\alpha$ for some $s \in \mathfrak{q}$. So $\mathfrak{m} = \mathfrak{m}_{\mathfrak{q}}\mathfrak{q}$ is principal, a contradiction. Therefore R is a PID.

Date: 2018-11-28. Compiled: 2018-11-30. 11.8. **[1, No. 8.2.7].** An entire ring R in which every ideal generated by two elements is principal (i.e., for every $a, b \in R$, (a, b) = (d) for some $d \in R$) is called a *Bezout Domain*.¹

- (a) An entire ring R is a Bezout Domain if and only if every pair of elements a, b of R has a g.c.d. d in R that can be written as an R-linear combination of a and b. (That is, d = ax + by for some $x, y \in R$.)
- (b) Every finitely generated ideal of a Bezout Domain is principal.²
- (c) Let F be the fraction field of the Bezout Domain R. Every element of F can be written³ in the form a/b with $a, b \in R$ and a relatively prime to b.
- 11.9. **[1, No. 8.2.8].** If R is a PID and D is a multiplicatively closed subset of R, then $D^{-1}R$ is also a PID.⁴
- 11.10. **[1, No. 8.3.2].** Let a and b be nonzero elements of the UFD R. Then a and b have a least common multiple. We describe a least common multiple of a and b in terms of the prime factorizations of a and b.

11.11. [1, No. 8.3.6].

- (a) The quotient ring $\mathbf{Z}[i]/(1+i)$ is a field of order 2.
- (b) Let $q \in \mathbb{Z}$ be a prime with $q \equiv 3 \mod 4$. The quotient ring $\mathbb{Z}[i]/(q)$ is a field with q^2 elements.
- (c) Let $p \in \mathbf{Z}$ be a prime with $p \equiv 1 \mod 4$ and write $p = \pi \bar{\pi}$ as in Proposition 18.
 - The hypotheses for the Chinese Remainder Theorem (Theorem 17 in Section 7.6) are satisfied.
 - Moreover $\mathbf{Z}[i]/(p) \cong \mathbf{Z}[i]/(\pi) \times \mathbf{Z}[i]/(\bar{\pi})$ as rings.
 - The quotient ring $\mathbf{Z}[i]/(p)$ has order p^2 .
 - Therefore, $\mathbf{Z}[i]/(\pi)$ and $\mathbf{Z}[i]/(\bar{\pi})$ are both fields of order p.

11.12. Characterization of PIDs [1, No. 8.3.11]. R is a PID if and only if R is a UFD that is also a Bezout Domain. 6

REFERENCES

[1] D. Dummit and R. Foote, Abstract algebra. Prentice Hall, 2004.

¹See also [1, No. 8.3.11].

²See also [1, Sec. 9.2] and [1, Sec. 9.3] in which not every ideal is principal.

³See also [1, No. 8.2.1]

⁴See also [1, Sec. 7.5].

⁵See also [1, No. 8.1.11].

⁶One direction is given by Theorem 14. For the converse, let α be a nonzero element of the ideal α with a minimum number of irreducible factors. Then prove $\alpha = (\alpha)$ by showing if there's an element $b \in \alpha$ that's not in (α) , then $(\alpha, b) = (d)$ leads to a contradiction.