Method of Undetermined Coefficients (Revisited)

To find a particular solution to the differential equation

$$ay'' + by' + cy = P_m(t)e^{rt},$$

where $P_m(t)$ is a polynomial of degree m, use the form

(13)
$$y_p(t) = t^s (A_m t^m + \cdots + A_1 t + A_0) e^{rt};$$

if r is not a root of the associated auxiliary equation, take s = 0; if r is a simple root of the associated auxiliary equation, take s = 1; and if r is a double root of the associated auxiliary equation, take s = 2.

To find a particular solution to the differential equation

$$ay'' + by' + cy = P_m(t)e^{\alpha t}\cos\beta t + Q_n(t)e^{\alpha t}\sin\beta t$$
, $\beta \neq 0$,

where $P_m(t)$ is a polynomial of degree m and $Q_n(t)$ is a polynomial of degree n, use the form

(14)
$$y_p(t) = t^s (A_k t^k + \dots + A_1 t + A_0) e^{\alpha t} \cos \beta t + t^s (B_k t^k + \dots + B_1 t + B_0) e^{\alpha t} \sin \beta t,$$

where k is the larger of m and n. If $\alpha + i\beta$ is not a root of the associated auxiliary equation, take s = 0; if $\alpha + i\beta$ is a root of the associated auxiliary equation, take s = 1.

Variation of Parameters

Theorem 7. If y_1 and y_2 are two linearly independent solutions to the homogeneous equation (10) on an interval I where p(t), q(t), and g(t) are continuous, then a particular solution to (11) is given by $y_p = v_1y_1 + v_2y_2$, where v_1 and v_2 are determined up to a constant by the pair of equations

$$y_1v'_1 + y_2v'_2 = 0,$$

 $y'_1v'_1 + y'_2v'_2 = g,$

which have the solution

(12)
$$v_1(t) = \int \frac{-g(t) y_2(t)}{W[y_1, y_2](t)} dt, \quad v_2(t) = \int \frac{g(t) y_1(t)}{W[y_1, y_2](t)} dt.$$

Note the formulation (12) presumes that the differential equation has been put into standard form [that is, divided by $a_2(t)$].