DEVOIR SURVEILLE n⁰1

Durée de l'épreuve : 1h30

Exercice 1

On considére l'équation du second degré à coefficients complexes :

$$z^{2} + (1 + i\sqrt{3})z - 1 + i\sqrt{3} = 0.$$
 (*)

- 1. Calculer les racines carrées de $\Delta = 2 2i\sqrt{3}$.
- 2. En utilisant la question précédente, résoudre l'équation (*).

Exercice 2

Soient les nombres complexes $z_1 = 4 + 4i$ et $z_2 = 1 + i\sqrt{3}$.

- 1. Exprimer le nombre complexe $\frac{z_1}{z_2}$ sous forme exponentielle.
- 2. Exprimer le nombre complexe $z_1^2 z_2$ sous forme exponentielle.

Exercice 3

Soit f la fonction définie par $f(x) = \frac{x^2 + 3x}{x - 1}$.

- 1. Déterminer le domaine de définition \mathcal{D}_f de f.
- 2. Calculer $\lim_{x \to +\infty} f(x)$, $\lim_{x \to -\infty} f(x)$, $\lim_{x \to 1^+} f(x)$, $\lim_{x \to 1^-} f(x)$ et préciser si la courbe C_f de f admet des asymptotes horizontales ou verticales.
- 3. Déterminer le domaine $\mathcal{D}_{f'}$ sur lequel f est dérivable et calculer sa dérivée f'.
- 4. (a) Déterminer tous les $x \in \mathcal{D}_{f'}$ tels que f'(x) = 0.
 - (b) Déterminer tous les $x \in \mathcal{D}_{f'}$ tels que f'(x) > 0.
 - (c) Déterminer tous les $x \in \mathcal{D}_{f'}$ tels que f'(x) < 0.
- 5. Établir le tableau de variations de f.
- 6. (a) Déterminer $a \in \mathbb{R}$ tel que $\lim_{x \to +\infty} \frac{f(x)}{x} = a$.
 - (b) Déterminer $b \in \mathbb{R}$ tel que $\lim_{x \to +\infty} f(x) ax = b$.

On admettra que les limites trouvées en a) et b) sont identiques en $-\infty$.

- (c) On déduit de (a) et (b) que C_f a une asymptote oblique en $\pm \infty$. Préciser l'équation de cette asymptote oblique.
- (d) Déterminer la position relative de C_f par rapport à son asymptote oblique au voisinage de $+\infty$ et $-\infty$.
- 7. Donner l'allure de C_f avec les asymptotes trouvées.