

Escuela de Ingeniería de Sistemas

PROGRAMA DEL CURSO: Modelado y Simulación 2

TIPO: Obligatoria PRELACIÓN: Modelado y Simulación 1, Matemáticas

Discretas

CÓDIGO: ISPMS2 UBICACIÓN: 7^{mo} semestre

TPLU: 4 0 2 5 CICLO: Profesional

JUSTIFICACIÓN

Durante los últimos años ha habido un auge significativo en el uso de la simulación como herramienta para el estudio de sistemas de diversa índole. Tal ha sido el auge y la importancia que ha cobrado la simulación, que se ha establecido como una tercera metodología básica para hacer investigación científica, junto a la teoría y la experimentación. La mayoría de los sistemas que el hombre esta interesado en estudiar son tan complejos que es imposible atacarlos desde un punto de vista analítico y en muchos caso la experimentación con ellos es prohibitiva bien sea por los costos o implicaciones de las mismas, o porque simplemente el sistema no existe. Esto deja a la simulación como única herramienta para estudiarlos.

OBJETIVOS

- Presentar conocimientos más avanzados del modelado y la simulación que aquellos estudiados en el primer curso de Modelado y Simulación.
- Presentar los conocimientos fundamentales de la simulación de sistemas continuos.
- Presentar los conocimientos fundamentales del análisis de los datos de la simulación.
- Ilustrar los principios estudiados en la materia con algunos modelos y herramientas usados para la simulación.
- Introducir algunas de las herramientas usadas para desarrollar modelos de simulación.
- Proporcionar al estudiante la oportunidad de aplicar e integrar las técnicas aprendidas.

CONTENIDO PROGRAMÁTICO

Unidad I: Modelos de simulación continua usando ecuaciones diferenciales ordinarias y parciales.

Tema 1. Introducción

Tema 2. Ecuaciones diferenciales ordinarias

Tema 3. Ecuaciones diferenciales parciales

Tema 4. Métodos numéricos para resolver ecuaciones diferenciales.

Tema 5. Ejemplos

Unidad II: Verificación y validación de los modelos de simulación

Tema 1. Construcción del modelo, verificación y validación.

Tema 2. Verificación de un modelo de simulación.

Tema 3. Calibración y validación de modelos

Unidad III: Análisis de las salidas de un solo modelo.

- Tema 1. Naturaleza estocástica de la salida
- Tema 2. Medidas de comportamiento y su estimación
- Tema 3. Análisis de salidas de sistemas terminantes (que nunca alcanzan el estado estable)
- Tema 4. Análisis de salidas de simulaciones en estado estable

Unidad IV: Comparación y evaluación de diseños alternativos del sistema

- Tema 1. Comparación de dos diseños del sistema.
- Tema 2. Comparación de varios diseños del sistema.
- Tema 3. Modelos estadísticos para estimar el efecto de diseños alternativos.
- Tema 4. Metamodelado

Unidad V: Simulación de Sistemas Multiagente y Simulación Social

- Tema 1. Simulación por agentes
- Tema 2. Areas de aplicación de la simulación por agentes: simulación de organizaciones, simulación social, simulación de espacios celulares.
- Tema 3. Programación declarativa vs. programación procedural.
- Tema 4. Validación en simulación social: propiedades emergentes.

Unidad VI: Otros temas avanzados (recientes) en el área de simulación

- Tema 1. Simulación del cambio estructural
- Tema 2. Simulación paralela
- Tema 3. Algoritmos y técnicas emergentes: redes neuronales, algoritmos genéticos.

Unidad VII: Introducción a la Dinámica de Sistemas

- Tema 1. ¿Que es?, ¿para qué sirve?
- Tema 2 Construcción de un primer modelo en DS
- Tema 3 Representaciones usadas en la dinámica de sistemas
- Tema 4 Representación con diagramas causales
- Tema 5 Representación con diagramas de niveles-tasas
- Tema 6 Circuitos positivos y negativos de orden 1 y 2
- Tema 7 Feedback positivos y problemas asociados a los mismos

Unidad VIII: Observaciones sobre construcción de modelos con dinámica de sistemas

- Tema 1 Multiplicadores, etc. En la construcción de modelos
- Tema 2 La importancia del intervalo de tiempo correcto
- Tema 3 Modelos formados de varios bloques
- Tema 4 Importancia del método de integración
- Tema 5 Ejemplos en diferentes áreas

METODOLOGÍA DE ENSEÑANZA

La duración del curso es de un semestre. La metodología de enseñanza consistirá de clases teóricas que se complementarán con ejercicios y el uso del computador. Las clases teóricas se darán usando como soporte guías de clase o material seleccionado de la bibliografía del programa. En estos ejercicios el material cubierto en las clases se aplicará a problemas seleccionados para ilustrar el alcance y limitaciones de los conceptos e introducir algunas

de las herramientas disponibles para modelado y simulación. Opcionalmente, los estudiantes podrán tener la oportunidad de realizar un proyecto durante el semestre en el que los conceptos adquiridos en el curso se aplicarán a un sistema de mediana complejidad.

RECURSOS

- Recursos multimedia: proyector multimedia, proyector de transparencias.
- Computadores, Software de Simulación.
- Pizarrón
- Bibliotecas de la ULA, fotocopias y guías disponibles en publicaciones de la Facultad de Ingeniería.

EVALUACIÓN

- Evaluación del conocimiento teórico-práctico a través de pruebas parciales escritas Opcionalmente pueden asignarse proyectos durante el semestre
- Participación en clase

BIBLIOGRAFÍA

Averill Law y David Kelton, Simulation Modeling and Analysis, McGraw Hill, 1999.

Banks, J., Carson J.s. y Nelson B.N., Discrete-Event System Simulation, Prentice Hall, 1996

Zeigler, B., Theory of Modeling and Simulation, Robert E. Krieger Publishing Company, Malabar, Fl, USA, 1976

Karian, Z. y Dudewicz, E. Modern Statistical Systems and GPSS Simulation. CRC Press, 1998.

Passino, K. y Burgess, K. Stability Analysis of Discrete Event Systems. Wiley, 1998.

Pidd, M. Computer Simulation in Managements Science. Wiley, 1998.

Pritsker, A.; O'Reilly, J. y LaVal, D. Simulation with Visual SLAM y AweSim. Wiley, 1997.

Profozich, D. Managing Change with Business Process Simulation. Prentice Hall, 1997.

Robinson, S. Successful Simulation: A Practical Approach to Simulation Projects. McGraw-Hill. 1994.

Ross, S. Simulation. Academic Press. 1997.

Rubinstein, R. y Melamed, B. Modern Simulation and Modeling. Wiley. 1998.

Rubinstein, R. y Shapiro, A. Discrete Event Systems: Sensitivity Analysis and Stochastic Optimization. John Wiley & Sons, 1993.

Herbert Hoeger, 'Notas de Clase'

Terán Oswaldo, Modelado de Organizaciones, Publicaciones Facultad de Ingeniería