

B - A Suburbia

1 of 3 29-08-2024, 22:54

Problem Statement

Imagine you're the mayor of a small town with N residents. Each resident lives in a different house numbered 1 to N, and the houses are connected by roads. The town's map can be represented as a tree, where each vertex represents a house and each edge represents a road.

Your goal is to determine the "remoteness" of each house. The remoteness of a house is defined as the total distance (in terms of the number of roads) to all other houses in the town.

Constraints

- ullet $2 \leq N \leq 2 imes 10^5$
- $1 \leq u_i < v_i \leq N$
- The given graph is a tree.
- All values in input are integers.

Input

Input is given from Standard Input in the following format:

Output

Print N lines.

The *i*-th line should contain "remoteness" of *i*-th house

Sample 1

	Input	сору	Output	сору
3			3	
1 2			2	
2 3			3	

We have:

$$dis(1,1)+dis(1,2)+dis(1,3)=0+1+2=3, \ dis(2,1)+dis(2,2)+dis(2,3)=1+0+1=2, \ dis(3,1)+dis(3,2)+dis(3,3)=2+1+0=3.$$

Sample 2

_	Input	сору	Output	сору
2 1 2			1	

Sample 3

_				
	Input	сору	Output	сору
6			5	
1 6			9	
1 5			9	
1 3			9	

All Copyright Reserved © 2010-2024 Xu Han Server Time: 2024-08-29 22:54:15 UTC+5.5

3 of 3 29-08-2024, 22:54