$X = (X_1, \dots, X_n), Y = (Y_1, \dots, Y_n), Z = (X_1, \dots, X_n, Y_1, \dots, Y_n).$

$$K_1(Z) = \sum_{i,j=1}^{n} |X_i - Y_j|, \tag{1}$$

$$K_2(Z) = (\overline{X} - \overline{Y})^2, \tag{2}$$

$$L_1(Z) = \sum_{i,j=1}^n \ln(1 + |X_i - Y_j|)$$
(3)

$$L_1^C(Z) = \sum_{i,j=1}^n \ln\left(1 + \left(\frac{|X_i - Y_j|}{C}\right)\right), \qquad C = \sum_{1 \le i < j \le 2n} |Z_i - Z_j| / (n(2n-1)), \tag{4}$$

$$L_2(Z) = \sum_{i,j=1}^n \ln(1+|X_i-Y_j|^2)$$
 (5)

$$L_2^C(Z) = \sum_{i,j=1}^n \ln\left(1 + \left(\frac{|X_i - Y_j|}{C}\right)^2\right), \qquad C = \sum_{1 \le i \le j \le 2n} |Z_i - Z_j| / (n(2n-1)), \tag{6}$$

$$T_1(Z) = -\left(\sum_{i=1}^n \ln(1 + [X_i - Z_{cen}]_+) + \sum_{j=1}^n \ln(1 + [Z_{cen} - Y_j]_+)\right), \quad X_{cen} \le Y_{cen}, \quad [a]_+ = a \quad if \quad a > 0,$$
 (7)

$$NC = \frac{S_X^2 + (\bar{X} - \bar{Y})^2}{S_Y^2} + \frac{S_Y^2 + (\bar{X} - \bar{Y})^2}{S_Y^2}, \tag{8}$$

$$CC^C = \sum_{i=1}^{n} \left\{ \ln \left(1 + \frac{|X_i - Y_{cen}|}{Y_{sd}} \right) + \ln \left(1 + \frac{|Y_i - X_{cen}|}{X_{sd}} \right) \right\}, \tag{9}$$

$$CC_2^C = -\left(\frac{1}{n}\sum_{i=1}^n \left\{ \ln\left(1 + \left(\frac{|X_i - Y_{cen}|}{Y_{sd}}\right)^2\right) + \ln\left(1 + \left(\frac{|Y_i - X_{cen}|}{X_{sd}}\right)^2\right) \right\} + \ln(X_{sd}) + \ln(Y_{sd}),$$

$$CC_3^C = \sum_{i,j=1}^n \ln\left(1 + \left|\frac{X_i}{Y_{sd}} - \frac{Y_j}{X_{sd}}\right|^2\right),\tag{11}$$

(10)

(12)

(13)

 $X_{cen}, \ X_{sd}$ — max likelihood estimations of mean and standard deviation with starting points the 24% trimmed mean and the interquartile range respectively.

Таблица 1: Мощность тестов при размерах выборок n=5

F_2	K_1	K_2	L_1	L_1^C	L_2	L_2^C	T_1	NC	CC^C	CC_2^C	CC_3^C	t	w	ks	f
C(0, 1)	0.054	0.055	0.046	0.05	0.044	0.049	0.056	0.052	0.051	0.051	0.056	0.011	0.029	0.005	0.439
C(1, 1)	0.128	0.119	0.126	0.126	0.119	0.127	0.117	0.095	0.108	0.121	0.087	0.034	0.08	0.031	0.449
C(2, 1)	0.328	0.285	0.376	0.364	0.371	0.321	0.292	0.27	0.294	0.346	0.21	0.152	0.212	0.11	0.453
C(3, 1)	0.486	0.413	0.553	0.536	0.556	0.473	0.421	0.419	0.452	0.528	0.342	0.257	0.327	0.233	0.436
C(4, 1)	0.624	0.522	0.682	0.673	0.683	0.608	0.542	0.552	0.555	0.654	0.409	0.378	0.441	0.313	0.421
C(0, 1)	0.053	0.053	0.062	0.064	0.057	0.052	0.054	0.057	0.051	0.059	0.059	0.012	0.029	0.011	0.443
C(0, 3)	0.089	0.074	0.152	0.135	0.153	0.087	0.076	0.144	0.131	0.149	0.15	0.018	0.046	0.016	0.554
C(0, 5)	0.128	0.076	0.303	0.269	0.303	0.11	0.082	0.322	0.227	0.293	0.288	0.019	0.04	0.014	0.682
C(0, 7)	0.128	0.082	0.394	0.332	0.391	0.118	0.092	0.409	0.288	0.393	0.374	0.022	0.05	0.029	0.74
C(0, 9)	0.144	0.08	0.438	0.388	0.442	0.126	0.092	0.452	0.335	0.424	0.42	0.014	0.041	0.023	0.76
C(0, 1)	0.066	0.06	0.053	0.064	0.061	0.059	0.062	0.057	0.058	0.057	0.066	0.018	0.033	0.006	0.474
C(1, 2)	0.12	0.112	0.138	0.136	0.138	0.111	0.118	0.129	0.109	0.136	0.116	0.035	0.067	0.028	0.486
C(2, 3)	0.182	0.146	0.258	0.242	0.257	0.178	0.151	0.237	0.179	0.242	0.208	0.051	0.113	0.061	0.597
C(3, 4)	0.223	0.168	0.361	0.331	0.355	0.214	0.184	0.332	0.264	0.345	0.321	0.058	0.109	0.05	0.646
C(4, 5)	0.282	0.219	0.461	0.426	0.458	0.268	0.236	0.419	0.341	0.441	0.391	0.087	0.145	0.08	0.678
C(0, 1)	0.054	0.048	0.044	0.047	0.043	0.056	0.047	0.037	0.059	0.05	0.052	0.009	0.025	0.007	0.443
C(1, 3)	0.108	0.093	0.184	0.162	0.177	0.102	0.097	0.176	0.118	0.163	0.173	0.022	0.05	0.013	0.597
C(2, 5)	0.147	0.091	0.316	0.272	0.315	0.139	0.104	0.331	0.241	0.309	0.301	0.025	0.054	0.03	0.671
C(3, 7)	0.21	0.121	0.474	0.431	0.475	0.183	0.145	0.46	0.346	0.467	0.408	0.031	0.08	0.04	0.743
C(4, 9)	0.253	0.147	0.554	0.488	0.557	0.232	0.168	0.537	0.372	0.535	0.473	0.039	0.092	0.051	0.802

Таблица 2: Мощность тестов при размерах выборок n=50

F_2	K_1	K_2	L_1	L_1^C	La	L_2^C	T_1	NC	CC^C	CC_2^C	CC_3^C	t	w	ks	f
			_		L_2							0.000			0.014
C(0, 1)	0.051	0.062	0.039	0.046	0.042	0.056	0.058	0.054	0.033	0.044	0.048	0.028	0.053	0.038	0.814
C(0.5, 1)	0.178	0.091	0.292	0.239	0.276	0.144	0.194	0.048	0.341	0.299	0.17	0.04	0.289	0.297	0.831
C(1, 1)	0.552	0.127	0.825	0.725	0.803	0.437	0.497	0.062	0.826	0.813	0.583	0.066	0.733	0.805	0.848
C(1.5, 1)	0.858	0.224	0.988	0.963	0.988	0.733	0.8	0.068	0.934	0.94	0.881	0.144	0.959	0.984	0.818
C(2, 1)	0.972	0.306	1	0.998	1	0.867	0.94	0.084	0.976	0.987	0.934	0.203	0.992	0.999	0.82
C(0, 1)	0.036	0.038	0.034	0.037	0.039	0.044	0.041	0.041	0.041	0.041	0.038	0.016	0.05	0.031	0.815
C(0, 2)	0.259	0.063	0.524	0.416	0.51	0.225	0.049	0.17	0.311	0.521	0.611	0.022	0.056	0.188	0.858
C(0, 3)	0.621	0.056	0.907	0.816	0.898	0.487	0.064	0.345	0.697	0.86	0.907	0.024	0.064	0.467	0.873
C(0, 4)	0.832	0.049	0.993	0.944	0.992	0.65	0.054	0.437	0.862	0.951	0.952	0.023	0.058	0.69	0.914
C(0, 5)	0.905	0.044	0.999	0.987	1	0.732	0.062	0.523	0.933	0.985	0.964	0.013	0.078	0.834	0.922
C(0, 1)	0.049	0.053	0.055	0.046	0.052	0.047	0.046	0.065	0.039	0.045	0.044	0.022	0.05	0.034	0.825
C(0.5, 1.5)	0.194	0.052	0.375	0.306	0.367	0.171	0.143	0.106	0.347	0.399	0.39	0.025	0.195	0.244	0.844
C(1, 2)	0.515	0.102	0.825	0.727	0.824	0.411	0.309	0.164	0.735	0.788	0.79	0.063	0.44	0.679	0.847
C(1.5, 2.5)	0.755	0.115	0.97	0.919	0.966	0.605	0.454	0.247	0.891	0.937	0.933	0.061	0.628	0.884	0.871
C(2, 3)	0.881	0.135	0.992	0.966	0.992	0.735	0.579	0.358	0.95	0.98	0.961	0.084	0.715	0.945	0.895
C(0, 1)	0.054	0.054	0.052	0.055	0.052	0.053	0.056	0.046	0.064	0.069	0.055	0.017	0.071	0.06	0.808
C(0.5, 2)	0.341	0.078	0.628	0.502	0.614	0.266	0.126	0.17	0.449	0.628	0.668	0.03	0.16	0.32	0.837
C(1, 3)	0.712	0.082	0.961	0.901	0.962	0.579	0.201	0.317	0.826	0.931	0.926	0.028	0.262	0.704	0.877
C(1.5, 4)	0.896	0.093	0.998	0.979	0.998	0.758	0.308	0.457	0.94	0.977	0.964	0.04	0.393	0.893	0.922
C(2, 5)	0.959	0.085	0.998	0.992	0.998	0.827	0.319	0.532	0.949	0.99	0.968	0.039	0.411	0.959	0.92