Multiple Linear Regression Cross Validation - I

Contents

- 1. Cross Validation in Predictive Modelling
- 2. Model Fitting
- 3. Hold-out Cross Validation

Cross Validation in Predictive Modeling

Cross Validation is a

process of evaluating the model on 'Out of Sample' data

- Model performance measures such as R-squared or Root Mean Squared Error (RMSE) tend to be optimistic on 'In sample data'
- Model performance on out of sample data gives more realistic picture of model performance.

Cross validation is important because although a model is built on historical data, ultimately it is to be used on future data. However good the model, if it fails on out of sample data then it defeats the purpose of predictive modeling.

Cross Validation in Predictive Modeling

There are different approaches to cross validation. Five most important of them are:

Hold-Out Validation

K-Fold Cross Validation

Repeated K-Fold Cross Validation

Leave-One-Out Cross Validation (LOOCV)

Re-sampling Validation Method (Bootstrap Method)

Case Study – Modeling Motor Insurance Claims

Background

 A car insurance company collects range of information from their customers at the time of buying and claiming insurance. The company wishes to check if any of this information can be used to model and predict claim amount

Objective

 To model motor insurance claim amounts based on vehicle related information collected at the time of registering and claiming insurance

Available Information

- Sample size is 1000
- Independent Variables: Vehicle Information Vehicle Age, Engine Capacity, Length and Weight of the Vehicle
- Dependent Variable: Claim Amount

Data Snapshot

				Moto	r_C	Claim					
			Independent variables					Dependent variable			
		vehage		CC L		Length		Veight	claimamt		
		4		1495	1	4250		1023	720	000	
		2		1061	3495			875	72000		
		Ž.	2 1405		3675		980	50400			
S			7	1298	_	4090 4250		930	10000000	960	
ion		4	2		1495			1023	106800		
vat	\dashv	1		1086	1086			854	69592.8		
Observations	Columns		Description		Type		Measurement P		Possik	le values	
O	vehage		Age of the vehicle at the time of claim		integer		Years		positi	ve values	
	CC		Engine capacity			numeric		СС		positive values	
	Length		Length of the vehicle		numeric		mm		positive values		
	Weight		Weight of the vehicle		numeric		kg		positive values		
	claimamt		Claim amount			numeric		INR		positi	ve values

Data Visualization

```
#Importing the Data
import pandas as pd
motor=pd.read_csv('Motor_Claims.csv')

# Install package "seaborn" if not installed previously
# Obtain scatter plot matrix

import seaborn as sns
import matplotlib.pyplot as plt

sns.pairplot(motor);plt.title('ScatterPlot Matrix')
```

Using the pairplot function in the seaborn library to get a scatter plot of the variables in the data set

Scatter Plot

Output

Interpretation:
The scatter plot matrix gives an indication of multicollinearity.

Modeling Using ols Function

Linear regression model

```
import statsmodels.formula.api as smf
motormodel = smf.ols('claimamt~Length+CC+vehage+Weight', data=motor).fit()
motormodel.summary()
```

Output

			OLS R	egress	ion Re	sults		
Dep. Varia	ble:	claimamt			R-squ	0.738		
Model:				OLS	Adj.	R-squared:		0.737
Method:		Leas	t Squ	ares	F-sta	700.3		
Date:		Fri, 25 Oct 2019			Prob	1.83e-287		
Time:		Access to the	16:3	8:15		ikelihood:	•	-10754.
No. Observ	ations:	1000			AIC:	2.152e+04		
Df Residua		995	BIC:			2.154e+04		
Df Model:			4					
Covariance	Type:		nonro	bust				
	coef	f std	err		t	P> t	[0.025	0.975]
Intercept	-5.477e+04	1 5569	.375	-9	.833	0.000	-6.57e+04	-4.38e+04
Length	35.4607	7 1	.990	17	.824	0.000	31.557	39.365
CC	15.413	3 2	.114	7	. 292	0.000	11.265	19.561
vehage	-6637.2134	1 154	.098	-43	.071	0.000	-6939.607	-6334.820
Weight	-16.2547	7 3	.678	-4	.420	0.000	-23.472	-9.038
Omnibus:		7	.335	Durbi	in-Watson:	=======	2.094	
Prob(Omnib		0	.026	Jarqu	9.587			
Skew:	-0.058			Prob(0.00828			
Kurtosis:		3	.466	Cond.	No.		6.33e+04	

Interpretation:

All independent variables in the model are significant.

Detecting Multicollinearity

```
# Obtaining vif
```

Intercept	240.261728
Length	3.396171
CC	5.881428
vehage	1.038357
Weight	6.552811
dtype: float6	4

variance_inflation_factor in library statsmodels gives the VIFs of the independent variables in the regression model.

Interpretation:

□ *CC* and Weight have VIF >5

Re- Modeling

New model

```
motormodel1 = smf.ols('claimamt~Length+CC+vehage', data=motor).fit()
motormodel1.summary()
```

New model after removing weight to remove multicollinearity.

Output of the new model

		OLS Re	gression	Results		
Dep. Varia	ble:	claim	amt R-s	quared:	0.733	
Model:			OLS Adj	. R-squared:		0.732
Method:		Least Squa	res F-s	tatistic:		910.3
Date:		Thu, 31 Oct 2	019 Pro	b (F-statist	8.79e-285	
Time:		12:48	:57 Log	-Likelihood:	-10764.	
No. Observ	ations:	1	000 AIC	:		2.154e+04
Df Residua	ls:		996 BIC	:		2.156e+04
Df Model:			3			
Covariance	Type:	nonrob	ust			
=======	coef	std err	 t	P> t	[0.025	0.975]
Intercept	-4.92e+04	5475.151	-8.985	0.000	-5.99e+04	-3.85e+04
Length	32.0652	1.852	17.312	0.000	28.431	35.700
CC	8.6886	1.481	5.867	0.000	5.783	11.595
vehage	-6638.0765	155.525	-42.682	0.000	-6943.270	-6332.883
Omnibus:		10.	======= 930 Dur	bin-Watson:		2.081
Prob(Omnib	us):	0.	004 Jar	que-Bera (JB	15.892	
Skew:		-0.	072 Pro	b(JB):	0.000354	
Kurtosis:		3.	600 Con	d. No.	5.99e+04	
	========					

Interpretation:

All independent variables in the model are significant.

Dropping one independent variable is one of the remedial measures to adjust for multicollinearity (when not many variables are multicollinear). As weight had the maximum VIF value, it is excluded from the model to adjust for multicollinearity.

VIF of New Model

VIF

VIFs of variables in the new model

```
Intercept 227.959103
Length 2.889718
CC 2.833931
vehage 1.038355
dtype: float64
```

Interpretation: All VIF s are <5.

RMSE of the Model

RMSE of the model

```
motor=motor.assign(res=pd.Series(motormodel1.resid))

from math import sqrt

RMSE = sqrt((motor['res']**2).mean())

RMSE
```

Output

11444.512861029943

Interpretation: RMSE for the model is 1144.51

Hold-Out Validation

In Hold-Out validation method, available data is split into two non-overlapped parts: 'Training Data' and 'Testing Data'

- The model is,
 - Developed using training data
 - Evaluated using testing data

Training data should have more sample size. Typically 70%-80% data is used for model development

Hold Out Validation in Python

```
motor_train.shape
motor_test.shape

# Output

[800, 5]

Dimension of training set

Dimension of testing set
```

Hold Out Validation in Python

RMSE of training data motor model=smf.ols('claimamt~vehage+CC+Length', data = motor train).fit() motor_train=motor_train.assign(res=pd.Series(motor_model.resid)) motor train.head() RMSEtrain=pd.Series(np.sqrt((motor train.res)**2).mean()) **RMSEtrain** # RMSE for testing data motor test=motor test.assign(pred=pd.Series(motor model.predict(motor test))) motor test=motor test.assign(res=pd.Series(motor test.claimamt motor test.pred)) RMSEtest=pd.Series(np.sqrt((motor test.res)**2).mean()) **RMSEtest**

Hold Out Validation in Python

Output

Interpretations:

Comparing RMSE of training and testing data shows not much difference between the two and also are in line with the RMSE of the original model. Thus we can say that the model is stable.

Quick Recap

Cross Validation - Meaning and Need

- Process of evaluating the model on 'Out of Sample' data
- •Important because although a model is built on historical data, ultimately it is to be used on future data

Hold Out Validation

• Data is split into training and testing. Model developed on training and validated on testing