Cross-site synthesis: Patterns & drivers of plant reproduction across LTER sites

Jalene M. LaMontagne¹, Elizabeth E. Crone², Miranda Redmond³, Jessica Barton¹, David Bell⁴, V. Bala Chaudhary⁵, Angel Chen⁶, Natalie Cleavitt⁷, David Greene⁸, E. Penelope Holland⁹, Jill Johnstone¹⁰, Walt Koenig⁷, Nicholas Lyon⁶, Diana Macias¹¹, Tom Miller¹², Katherine Nigro¹³, Ian S. Pearse¹⁴, Akiko Satake¹⁵, Mark Schulze¹⁶, Ingrid Slette⁶, Rebecca Snell¹⁷, Jess Zimmerman¹⁸

¹DePaul University, ²UC Davis, ³UC Berkeley, ⁴USFS, ⁵Dartmouth College, ⁶NCEAS, ⁷Cornell University, ⁸Cal Poly Humboldt, ⁹University of York, ¹⁰University of Alaska-Fairbanks, ¹¹University of New Mexico, ¹²Rice University, ¹

3Colorado State University, ¹⁴USGS, ¹⁵Kyushu University, ¹⁶Oregon State University, ¹⁷Ohio University, ¹⁸University of Puerto Rico

1. WHAT IS MAST SEEDING?

- Mast seeding is the pattern of synchronous & highly variable production of seed crops by a population of perennial plants^{1,2}; it is widespread both taxonomically and geographically³.
- · Abundant seed crops ('mast events') are orders of magnitude higher than low seed years, which has cascading impacts in ecosystems^{4,5} (Fig. 1).
- Environmental drivers of mast-seeding patterns include temperature and precipitation^{6,7}.
- There remain major knowledge gaps in understanding emergent properties of mast seeding at a community level & their sensitivity to climate across broad geographies.

Working Group Objective: Synthesize data to identify patterns and drivers of reproduction in plant populations across LTER sites.

Fig. 1: Mast events show reproduction orders of magnitude higher than during intervening periods of low reproduction.

2. LTER DATASETS

- Our working group has compiled time series of woody plant reproduction (trees, shrubs) from LTER sites (Fig. 2).
- Data come from either seed traps (sizes vary) or from direct counts of reproduction on trees.
- Criteria for inclusion of plant reproduction datasets:
 - Minimum time series length = 10 years; Data identified to species.
 - Omit data when: i) seeds for a species found in <5% of traps, or ii) ≥80% of zeros, or iii) <4 non-zero years across the time series.

3. MAP OF LTER SITES & PHOTOS

- LTER sites with data collection on woody-plant reproduction span latitudes from 18°N (Luquillo) to 65°N (Bonanza Creek) (Fig. 2).
- Species at LTER sites show mast-seeding patterns, with high temporal variability (Table 1, Fig. 2).

Table 1: Temporal variation in seed production (coefficient of variation (CV)) differs greatly across LTER sites, as does **synchrony** (r_{Spearman}) between pairs of species within sites. Time series lengths, and the number of species in datasets are also shown. Sites are ordered by latitude.

LTER Site	N_{Years}	N _{Species}	CV _{Mean}	r_s mean (min, max)*
Bonanza Creek	62	7	2.36	0.04 (-0.40, 0.57)
Andrews Forest	61	10	1.14	0.53 (-0.22, 0.99)
Hubbard Brook	28	3	1.13	0.54 (0.36, 0.82)
Sevilleta	23	3	1.54	0.21 (0.09, 0.38)
Coweeta	28	20	0.50	0.08 (-0.60, 0.75)
Luquillo	30	more to come		·

*A correlation matrix was created for each LTER site. The mean (min, max) pairwise correlations are shown.

5. Kelly, D., Koenig, W. D. & Liebhold, A. M. An intercontinental comparison of the dynamic behavior of mast seeding communities. Popul. Ecol. 50, 329–342 (2008).

6. Koenig, W. D. & Knops, J. M. H. Scale of mast-seeding and tree-ring growth. Nature 396, 225–226 (1998).
7. Krebs, C. J., LaMontagne, J. M., Kenney, A. J. & Boutin, S. Climatic determinants of white spruce cone crops in the boreal forest of southwestern Yukon. Botany 90, 113–119 (2012).

- Community-level synchrony in mastseeding patterns across species and across LTER sites. How does communitylevel synchrony vary across biomes?
- How are mast-seeding metrics related to species attributes?
- How does mast seeding behavior & seed production response to climate vary in relation to a species climate zone?

SYNTHESIS DATA PRODUCT

- Mast seeding is a resource pulse.
- Connections between seed production & plant community dynamics.
- Connections between mast-seeding and seed-eating small mammals & bird population dynamics.

Picea mariana

ACKNOWLEDGEMENTS

Quercus rubra Fraxinus americana Example reproductive structures included in the LTER datasets.

within three sites as examples of the temporal dynamics.