

Manual

HIMax[®]

X-DI 32 52

Digital Input Module

All of the HIMA products mentioned in this manual are trademark protected. This also applies for other manufacturers and their products which are mentioned unless stated otherwise.

HIQuad®, HIQuad®X, HIMax®, HIMatrix®, SILworX®, XMR®, HICore® and FlexSILon® are registered trademarks of HIMA Paul Hildebrandt GmbH.

All of the technical specifications and information in this manual were prepared with great care and effective control measures were employed for their compilation. For questions, please contact HIMA directly. HIMA appreciates any suggestion on which information should be included in the manual.

Equipment subject to change without notice. HIMA also reserves the right to modify the written material without prior notice.

All the current manuals can be obtained upon request by sending an e-mail to: documentation@hima.com.

© Copyright 2019, HIMA Paul Hildebrandt GmbH All rights reserved.

Contact

HIMA Paul Hildebrandt GmbH P.O. Box 1261 68777 Brühl

Phone: +49 6202 709-0 Fax: +49 6202 709-107 E-mail: info@hima.com

Document designation	Description
HI 801 174 D, Rev. 11.00 (1942)	German original document
HI 801 175 E, Rev. 11.00.00 (1948)	English translation of the German original document

X-DI 32 52 Table of Contents

Table of Contents

1	Introduction	5
1.1	Structure and Use of This Manual	5
1.2	Target Audience	5
1.3	Writing Conventions	6
1.3.1 1.3.2	Safety Notices Operating Tips	6 7
2	Safety	8
2.1	Intended Use	8
2.1.1 2.1.2	Environmental Requirements ESD Protective Measures	8 8
2.2	Residual Risk	8
2.3	Safety Precautions	8
3	Product Description	9
3.1	Safety Function	9
3.1.1	Response in the Event of a Fault	9
3.2	Scope of Delivery	9
3.3	Type Label	10
3.4	Structure	11
3.4.1	Block Diagram	11
3.4.2	Indicators Madula Status Indicators	12
3.4.3 3.4.4	Module Status Indicators System Bus Indicators	14 15
3.4.5	I/O Indicators	15
3.5	Product Data	16
3.6	Connector Boards	18
3.6.1	Mechanical Coding of Connector Boards	18
3.6.2	Coding of X-CB 005 5x Connector Boards	19
3.6.3 3.6.4	Connector Boards with Screw Terminals Terminal Assignment for Connector Boards with Screw Terminals	20 21
3.6.5	Connector Boards with Cable Plug	22
3.6.6	Pin Assignment for Connector Boards with Cable Plug	23
3.6.7	Mono Connector Board Redundancy using 2 Base Plates	24
3.6.8	Pin Assignment for X-CB 005 55	25
3.7	System Cables	26
3.7.1 3.7.2	System Cable X-CA 002 System Cable X-CA 009	26 27
3.7.3	Cable Plug Coding	27
4	Start-Up	28
4.1	Mounting	28
4.1.1	Wiring Unused Inputs	28
4.2	Mounting and Removing the Module	29
4.2.1	Mounting a Connector Board	29
4.2.2	Mounting and Removing a Module	31
4.3	Configuring the Module in SILworX	33

HI 801 175 E Rev. 11.00.00 Page 3 of 54

Table of Contents	X-DI 32 5

4.3.1 4.3.2	The Module Tab The I/O Submodule DI 32_52 Tab	34 35
4.3.2	The I/O Submodule DI32 52: Channels Tab	37
4.3.4	Description of Submodule Status [DWORD]	38
4.3.5	Description of Diagnostic Status [DWORD]	39
4.4	Connection Variants	40
4.4.1	Wiring with Proximity Switch or Wired Mechanical Contact	40
4.4.2	Wiring Transmitters via Field Termination Assembly	42
4.4.3	Redundant Connection via 2 Base Plates	43
5	Operation	44
5.1	Handling	44
5.2	Diagnostics	44
6	Maintenance	45
6.1	Maintenance Measures	45
7	Decommissioning	46
8	Transport	47
9	Disposal	48
	Appendix	49
	Glossary	49
	Index of Figures	50
	Index of Tables	51
	Index	52

Page 4 of 54 HI 801 175 E Rev. 11.00.00

X-DI 32 52 1 Introduction

1 Introduction

This manual describes the technical characteristics of the module and its use. It provides information on how to install, start up and configure the module in SILworX.

1.1 Structure and Use of This Manual

The content of this manual is part of the hardware description of the HIMax programmable electronic system.

This manual contains the following main chapters:

- Introduction
- Safety
- Product description
- Start-up
- Operation
- Maintenance
- Decommissioning
- Transport
- Disposal

Additionally, the following documents must be taken into account:

Document	Content	Document no.
HIMax system manual	Hardware description of the HIMax system	HI 801 001 E
HIMax safety manual	Safety functions of the HIMax system	HI 801 003 E
HIMax maintenance manual	Description of significant operational and maintenance actions.	HI 801 171 E
Communication manual	Description of safeethernet communication and of the available protocols.	HI 801 101 E
Automation security manual	Description of automation security aspects related to the HIMA systems.	HI 801 373 E
SILworX first steps manual	Introduction to SILworX	HI 801 103 E
SILworX online help (OLH)	Instructions on how to use SILworX	

Table 1: Additional Applicable Manuals

The current manuals can be obtained upon request by sending an e-mail to: documentation@hima.com. Registered customers can download the product documentation from the HIMA Extranet.

1.2 Target Audience

This document is aimed at the planners, design engineers, programmers and the persons authorized to start up, operate and maintain the automation systems. Specialized knowledge of safety-related automation systems is required.

HI 801 175 E Rev. 11.00.00 Page 5 of 54

1 Introduction X-DI 32 52

1.3 Writing Conventions

To ensure improved readability and comprehensibility, the following writing conventions are used in this document:

Bold To highlight important parts.

Names of buttons, menu functions and tabs that can be clicked and used

in the programming tool.

Italics Parameters and system variables, references.

Courier Literal user inputs.

RUN Operating states are designated by capitals.

Chapter 1.2.3 Cross-references are hyperlinks even if they are not specially marked.

In the electronic document (PDF): When the mouse pointer hovers over a hyperlink, it changes its shape. Click the hyperlink to jump to the

corresponding position.

Safety notices and operating tips are specially marked.

1.3.1 Safety Notices

Safety notices must be strictly observed to ensure the lowest possible risk.

The safety notices are represented as described below.

- Signal word: warning, caution, notice.
- Type and source of risk.
- Consequences arising from non-observance.
- Risk prevention.

The signal words have the following meanings:

- Warning indicates hazardous situations which, if not avoided, could result in death or serious injury.
- Caution indicates hazardous situation which, if not avoided, could result in minor or moderate injury.
- Notice indicates a hazardous situation which, if not avoided, could result in property damage.

SIGNAL WORD

Type and source of risk!

Consequences arising from non-observance.

Risk prevention.

NOTICE

Type and source of damage! Damage prevention.

Page 6 of 54 HI 801 175 E Rev. 11.00.00

X-DI 32 52 1 Introduction

1.3.2 Operating Tips Additional information is structured as presented in the following example: The text giving additional information is located here. Useful tips and tricks appear as follows:

TIP

The tip text is located here.

HI 801 175 E Rev. 11.00.00 Page 7 of 54

2 Safety X-DI 32 52

2 Safety

All safety information, notes and instructions specified in this document must be strictly observed. The product may only be used if all guidelines and safety instructions are adhered to.

The product is operated with SELV or PELV. No imminent risk results from the product itself. Use in the Ex zone is only permitted if additional measures are taken.

2.1 Intended Use

HIMax components are designed for assembling safety-related controller systems.

When using the components in the HIMax system, comply with the following general requirements.

2.1.1 Environmental Requirements

All the environmental requirements specified in this manual must be observed when operating the HIMax system. The environmental requirements are listed in the product data.

2.1.2 ESD Protective Measures

Only personnel with knowledge of ESD protective measures may modify or extend the system or replace components.

NOTICE

Damage to the HIMax system due to electrostatic discharge!

- When performing the work, make sure that the workspace is free of static, and wear a grounding strap.
- If not used, ensure that the components are protected from electrostatic discharge, e.g., by storing them in their packaging.

2.2 Residual Risk

No imminent risk results from a HIMA system itself.

Residual risk may result from:

- Faults related to engineering.
- Faults in the user program.
- Faults related to the wiring.

2.3 Safety Precautions

Observe all local safety requirements and use the protective equipment required on site.

Page 8 of 54 HI 801 175 E Rev. 11.00.00

3 Product Description

The X-DI 32 52 is a digital NonSIL input module and it is intended for use in the programmable electronic system (PES) HIMax.

The module is used to evaluate up to 32 proximity switches in accordance with EN 60947-5-6 (NAMUR) or wired contacts.

The module can be inserted into any of the base plate slots with the exception of the slots reserved for system bus modules. Refer to the system manual (HI 801 001 E) for details.

It can be operated with safety-related modules and other NonSIL modules within one base plate. Safety-related and NonSIL modules may not be wired redundantly.

The module is interference-free. In particular with respect to EMC, electrical safety, communication to the X-SB and X-CPU modules, and the user program.

Module and connector boards are mechanically coded, see Chapter 3.6. Coding prevents installation of unsuitable I/O modules.

Refer to the HIMax safety manual (HI 801 003 E) for further information on the standards used to test and certify the modules and the HIMax system.

The certificates and the EU type test certificate are available on the HIMA website.

3.1 Safety Function

The module does not perform any safety-related functions.

The module evaluates the input signals of proximity switches and mechanical contacts and monitors the proximity switch and mechanical contact circuit for open-circuits and short-circuits.

The parameters and status for this module must not be used for safety functions.

3.1.1 Response in the Event of a Fault

If a fault occurs, the assigned input variables transmit the initial value (default value = 0) to the user program.

The initial values must be set to 0 to ensure that the input variables transmit the value 0 to the user program if a fault occurs. If the raw value is evaluated instead of the process value, users must program the monitoring function and the value in the event of faults from within the user program.

The module activates the Error LED on the front plate.

3.2 Scope of Delivery

To operate, the module must be installed on a matching connector board. If a field termination assembly (FTA) is used, a system cable is required to connect the connector board to the FTA. Connector boards, system cables and FTAs are not included within the scope of delivery.

The connector boards are described in Chapter 3.7, the system cables are described in Chapter 3.8. The FTAs are described in separate manuals.

HI 801 175 E Rev. 11.00.00 Page 9 of 54

3.3 Type Label

The type label specifies the following important details:

- Product name
- Mark of conformity
- Bar code (2D or 1D code)
- Part number (Part-No.)
- Hardware revision index (HW-Rev.)
- Operating system revision index (OS-Rev.)
- Supply voltage (Power)
- Ex specifications (if applicable)
- Production year (Prod-Year:)

Figure 1: Sample Type Label

Page 10 of 54 HI 801 175 E Rev. 11.00.00

3.4 Structure

The module has 32 digital inputs. Each channel measures the input signals through an internal measuring facility.

4 short-circuit-proof, current limited supplies feed 8 supply outputs each. One supply output is assigned to each input.

The 32 inputs can be used to evaluate the values measured for the proximity switches or wired contacts.

The switching thresholds for generating digital signals can be set in SILworX.

The processor system within the I/O module controls and monitors the I/O level. The data and states of the I/O module are provided to the processor modules via the redundant system bus. The system bus has a redundant structure for reasons of availability. Redundancy is only ensured if both system bus modules are inserted in the base plates and configured in SILworX.

The module is equipped with LEDs to indicate the status of the digital inputs, see Chapter 3.4.2.

3.4.1 Block Diagram

The following block diagram illustrates the structure of the module.

Figure 2: Block Diagram

HI 801 175 E Rev. 11.00.00 Page 11 of 54

3.4.2 Indicators

The following figure shows the front view of the module with the LEDs.

Figure 3: Indicators

Page 12 of 54 HI 801 175 E Rev. 11.00.00

The LEDs indicate the operating state of the module. All LEDs should be considered together. The LEDs on the module are divided into the following groups:

- Module status indicators (Run, Error, Stop, Init).
- System bus indicators (A, B).
- I/O indicators (DI 1...32, Field).

After connecting the supply voltage, an LED test is performed and all the LEDs are lit for at least 2 s. The color of 2-color LEDs changes once during the test.

Definition of blinking frequencies

The following table defines the blinking frequencies:

Definition	Blinking frequencies
Blinking1	Long (600 ms) on, long (600 ms) off.
Blinking2	Short (200 ms) on, short (200 ms) off, short (200 ms) on, long (600 ms) off.
Blinking-x	Ethernet communication: Blinking synchronously with data transmission.

Table 2: Blinking Frequencies of the LEDs

Some LEDs can report warnings (On) and faults or errors (Blinking1), see the following tables. The indication of errors or faults has priority over the indication of warnings. Warnings cannot be reported if errors or faults are being signaled.

HI 801 175 E Rev. 11.00.00 Page 13 of 54

3.4.3 Module Status Indicators

These LEDs are located on the upper part of the front plate.

LED	Color	Status	Description
Run	Green	On	Module in the RUN state, normal operation.
		Blinking1	Module state STOP / LOADING OS
		Off	Module not in the RUN state, observe the other status LEDs.
Error	Red	On	System warning, for example: No license for additional functions (e.g., communication protocols), test mode. Temperature warning
		Blinking1	 System error, for example: Internal module faults detected by self-tests, e.g., hardware or voltage supply faults. Fault while loading the operating system.
		Off	No faults detected
Stop	Yellow	On	Module state STOP / VALID CONFIGURATION
		Blinking1	The module is in one of the following states: STOP / INVALID CONFIGURATION STOP / LOADING OS
		Off	Module not in the STOP state, observe the other status LEDs.
Init	Yellow	On	Module state: INIT
		Blinking1	The module is in one of the following states: LOCKED STOP / LOADING OS
		Off	Module is in none of the states described, observe the other status LEDs.

Table 3: Module Status Indicators

Page 14 of 54 HI 801 175 E Rev. 11.00.00

3.4.4 System Bus Indicators

The system bus indicator LEDs are labeled Sys Bus.

LED	Color	Status	Description
A Green On		On	Physical and logical connection to the system bus module in slot 1.
		Blinking1	No physical connection to the system bus module in slot 1.
	Yellow	Blinking1	The physical connection to the system bus module in slot 1 has been established.
			No connection to a (redundant) processor module running in system operation.
B Green		On	Physical and logical connection to the system bus module in slot 2.
		Blinking1	No physical connection to the system bus module in slot 2.
	Yellow	Blinking1	The physical connection to the system bus module in slot 2 has been established.
			No connection to a (redundant) processor module running in system operation.
A+B	Off	Off	Neither physical nor logical connection to the system bus modules in slot 1 and slot 2.

Table 4: System Bus Indicators

3.4.5 I/O Indicators

The LEDs of the I/O indicators are labeled Channel.

LED	Color	Status	Description
DI 1DI 3	Yellow	On	High level present
2		Blinking2	Channel fault
		Off	Low level present
Field	Red	Blinking2	Without function
		Off	

Table 5: I/O Indicators

HI 801 175 E Rev. 11.00.00 Page 15 of 54

3.5 Product Data

General information	
Supply voltage	24 VDC, -15+20 %, r _p ≤ 5 %
	SELV, PELV
Current consumption	250 mA at 24 VDC (without channels and supplies)
	Max. 1 A (in case of short-circuit of the supplies)
Protection class	Protection class III in accordance with IEC/EN 61131-2
Ambient temperature	0+60 °C
Transport and storage	-40+70 °C
temperature	
Humidity	Max. 95 % relative humidity, non-condensing
Pollution	Pollution degree II in accordance with IEC/EN 60664-1
Installation height	< 2000 m
Degree of protection	IP20
Dimensions (H x W x D) in mm	310 x 29.2 x 230
Weight	Approx. 1 kg

Table 6: Product Data

Figure 4: Views

Page 16 of 54 HI 801 175 E Rev. 11.00.00

Digital inputs	
Number of inputs (number of channels)	32 unipolar with reference pole DI-
	Not galvanically separated from one another
Type of input	Digital signal inputs for proximity switches in accordance with EN 60947-5-6 (NAMUR) or wired contacts
Rated input current	09 mA
	Switching thresholds freely configurable in SILworX
Operating range: input current	09.3 mA (max. 12.5 mA with proximity switch supply)
Resolution	12-bit
LSB value (LSB = Least Significant Bit)	0.1 μΑ
Shunt for current measurement	1000 Ω , on the connector board
Cable length	The wire length depends on the wire resistance ≤ 50 Ω, in accordance with EN 60947-5-6
Measured value refresh (in the user program)	Cycle time of the user program
Metrological errors from the full scale	
Accuracy: intrinsic errors	< ± 0.5 % incl. shunt
Accuracy: operating errors	< ± 1 % at 060 °C, incl. shunt

Table 7: Specifications for Digital Inputs

Standard values for the digital inputs	
Proximity switch in accordance with EN 60947-5	Verify the values of the proximity switches actually in use
Switch-on threshold Low -> High	1.7 mA
Switch-off threshold High -> Low	1.5 mA
Open-circuit	≤ 0.2 mA
Short-circuit Short-circuit	≥ 6.25 mA
Mechanical contact with resistor combination (1 $k\Omega$ / 10 $k\Omega$)	Verify the values actually used for the resistor combination
Switch-on threshold Low -> High	1.8 mA
Switch-off threshold High -> Low	1.4 mA
Open-circuit	≤ 0.2 mA
Short-circuit	≥ 6.55 mA

Table 8: Standard Values for Digital Inputs

Supply				
Number of supplies 4 with 8 outputs each				
Output voltage for supply	8.2 VDC, ± 5 %			
Assignment of supply outputs				
The voltage output assigned to eac	h input must be used for power supply.			
S1+S8+	DI1+DI8+			
S9+S16+ DI9+DI16+				
S17+S24+ DI17+DI24+				
S25+S32+ DI25+DI32+				

Table 9: Supply Specifications

HI 801 175 E Rev. 11.00.00 Page 17 of 54

3.6 Connector Boards

A connector board connects the module to the field level. Module and connector board together form a functional unit. Insert the connector board into the appropriate slot prior to mounting the module.

The following connector boards are available for the module:

Connector board	Description			
X-CB 005 51	Mono connector board with screw terminals.			
X-CB 005 52	Redundant connector board with screw terminals.			
X-CB 005 53	Mono connector board with cable plug.			
X-CB 005 54	Redundant connector board with cable plug.			
X-CB 005 55	Mono connector board with cable plug, redundant FTA.			

Table 10: Available Connector Boards

3.6.1 Mechanical Coding of Connector Boards

I/O modules and connector boards are mechanically coded starting from hardware revision index (HW-Rev.) 00. Coding avoids installation of improper I/O modules thus preventing negative effects on redundant modules and the field level.

Apart from that, improper equipment has no effect on the HIMax system since only I/O modules properly configured in SILworX can enter the RUN state.

I/O modules and the corresponding connector boards have a mechanical coding in the form of wedges. The coding wedges in the female connector of the connector board match with the male connector recesses of the I/O module plug, see Figure 5.

Coded I/O modules can only be plugged in to the corresponding connector boards.

Page 18 of 54 HI 801 175 E Rev. 11.00.00

Figure 5: Coding Example

Coded I/O modules can be plugged in to uncoded connector boards. Uncoded I/O modules cannot be plugged in to coded connector boards.

3.6.2 Coding of X-CB 005 5x Connector Boards

The following table specifies the position of the coding wedges on the I/O module plug:

a7	a13	a20	a26	e7	e13	e20	e26
				X	X	X	

Table 11: Position of Coding Wedges

HI 801 175 E Rev. 11.00.00 Page 19 of 54

3 Product Description X-DI 32 52

3.6.3 Connector Boards with Screw Terminals

1 I/O module plug Connection to the field level (screw terminals)

Figure 6: Connector Boards with Screw Terminals

Page 20 of 54 HI 801 175 E Rev. 11.00.00

3.6.4 Terminal Assignment for Connector Boards with Screw Terminals

Pin no.	Designation	Signal	Pin no.	Designation	Signal
1	01a	S1+	1	02a	S2+
2	01b	DI1+	2	02b	DI2+
3	03a	S3+	3	04a	S4+
4	03b	DI3+	4	04b	DI4+
5	05a	S5+	5	06a	S6+
6	05b	DI5+	6	06b	DI6+
7	07a	S7+	7	08a	S8+
8	07b	DI7+	8	08b	DI8+
Pin no.	Designation	Signal	Pin no.	Designation	Signal
1	09a	S9+	1	10a	S10+
2	09b	DI9+	2	10b	DI10+
3	11a	S11+	3	12a	S12+
4	11b	DI11+	4	12b	DI12+
5	13a	S13+	5	14a	S14+
6	13b	DI13+	6	14b	DI14+
7	15a	S15+	7	16a	S16+
8	15b	DI15+	8	16b	DI16+
Pin no.	Designation	Signal	Pin no.	Designation	Signal
1	17a	S17+	1	18a	S18+
2	17b	DI17+	2	18b	DI18+
3	19a	S19+	3	20a	S20+
4	19b	DI19+	4	20b	DI20+
5	21a	S21+	5	22a	S22+
6	21b	DI21+	6	22b	DI22+
7	23a	S23+	7	24a	S24+
8	23b	DI23+	8	24b	DI24+
Pin no.	Designation	Signal	Pin no.	Designation	Signal
1	25a	S25+	1	26a	S26+
2	25b	DI25+	2	26b	DI26+
3	27a	S27+	3	28a	S28+
4	27b	DI27+	4	28b	DI28+
5	29a	S29+	5	30a	S30+
6	29b	DI29+	6	30b	DI30+
7	31a	S31+	7	32a	S32+
8	31b	DI31+	8	32b	DI32+

Table 12: Terminal Assignment for Connector Boards with Screw Terminals

Cable plugs attached to the connector board pin headers are used to connect to the field level.

The cable plugs feature the following characteristics:

Connection to the field level				
Cable plugs	8 pieces, with 8 poles			
Wire cross-section	0.21.5 mm ² (single-wire)			
	0.21.5 mm ² (finely stranded)			
	0.21.5 mm ² (with wire end ferrule)			
Stripping length	6 mm			
Screwdriver	Slotted 0.4 x 2.5 mm			
Tightening torque	0.20.25 Nm			

Table 13: Cable Plug Characteristics

HI 801 175 E Rev. 11.00.00 Page 21 of 54

3 Product Description X-DI 32 52

3.6.5 Connector Boards with Cable Plug

Figure 7: Connector Boards with Cable Plug

Page 22 of 54 HI 801 175 E Rev. 11.00.00

3.6.6 Pin Assignment for Connector Boards with Cable Plug

HIMA provides ready-made system cables for use with these connector boards, see Chapter 3.7. The cable plug and the connector boards are coded.

Connector pin assignment!

The following table describes the connector pin assignment of the system cable plug.

The wire color coding complies with IEC 60304. The color abbreviations used are in accordance with IEC 60757.

D	С		b		а	
Row	Signal	Color	Signal	Color	Signal	Color
1	S32+	PKBN 1)	DI32+	WHPK 1)		BNRD 1)
2	S31+	GYBN 1)	DI31+	WHGY 1)	Internal use	WHRD 1)
3	S30+	YEBN 1)	DI30+	WHYE 1)	2)	BNBU 1)
4	S29+	BNGN 1)	DI29+	WHGN 1)		WHBU 1)
5	S28+	RDBU 1)	DI28+	GYPK 1)		
6	S27+	VT 1)	DI27+	BK 1)		
7	S26+	RD 1)	DI26+	BU 1)		
8	S25+	PK 1)	DI25+	GY 1)		
9	S24+	YE 1)	DI24+	GN 1)		
10	S23+	BN 1)	DI23+	WH 1)		
11	S22+	RDBK	DI22+	BUBK		
12	S21+	PKBK	DI21+	GYBK		
13	S20+	PKRD	DI20+	GYRD		
14	S19+	PKBU	DI19+	GYBU		
15	S18+	YEBK	DI18+	GNBK		
16	S17+	YERD	DI17+	GNRD		
17	S16+	YEBU	DI16+	GNBU		
18	S15+	YEPK	DI15+	PKGN		
19	S14+	YEGY	DI14+	GYGN		
20	S13+	BNBK	DI13+	WHBK		
21	S12+	BNRD	DI12+	WHRD		
22	S11+	BNBU	DI11+	WHBU		
23	S10+	PKBN	DI10+	WHPK		
24	S9+	GYBN	DI9+	WHGY		
25	S8+	YEBN	DI8+	WHYE		
26	S7+	BNGN	DI7+	WHGN		
27	S6+	RDBU	DI6+	GYPK		
28	S5+	VT	DI5+	BK		
29	S4+	RD	DI4+	BU		
30	S3+	PK	DI3+	GY		
31	S2+	YE	DI2+	GN		
32	S1+	BN	DI1+	WH		

¹⁾ Additional orange ring if one wire color is repeated.

Table 14: Pin Assignment for the System Cable Plug

HI 801 175 E Rev. 11.00.00 Page 23 of 54

²⁾ The wires must be isolated individually! No other use is permitted!

3 Product Description X-DI 32 52

3.6.7 Mono Connector Board Redundancy using 2 Base Plates

Figure 8: X-CB 005 55 Mono Connector Board with Cable Plug

Page 24 of 54 HI 801 175 E Rev. 11.00.00

3.6.8 Pin Assignment for X-CB 005 55

HIMA provides ready-made system cables for use with this connector board, see Chapter 3.7. The cable plug and the connector boards are coded.

Connector pin assignment!

The following table describes the connector pin assignment of the system cable plug.

The wire color coding complies with IEC 60304. The color abbreviations used are in accordance with IEC 60757.

_	е		d		С		b		а	
Row	Signal	Color	Signal	Color	Signal	Color	Signal	Color	Signal	Color
1	S32+	RD ²⁾	DI_R32+	PKBN 1)	DI32+	WHPK 1)			J	BNRD ²⁾
2	S31+	BU ²⁾	DI_R31+	GYBN 1)	DI31+	WHGY 1)			Internal	WHRD ²⁾
3	S30+	PK ²⁾	DI_R30+	YEBN 1)	DI30+	WHYE 1)			use 3)	BNBU ²⁾
4	S29+	GY ²⁾	DI_R29+	BNGN 1)	DI29+	WHGN 1)				WHBU ²⁾
5	S28+	YE 2)	DI_R28+	RDBU 1)	DI28+	GYPK 1)				
6	S27+	GN ²⁾	DI_R27+	VT 1)	DI27+	BK 1)				
7	S26+	BN ²⁾	DI_R26+	RD 1)	DI26+	BU 1)				
8	S25+	WH ²⁾	DI_R25+	PK 1)	DI25+	GY 1)				
9	S24+	RDBK 1)	DI_R24+	YE 1)	DI24+	GN 1)				
10	S23+	BUBK 1)	DI_R23+	BN 1)	DI23+	WH 1)				
11	S22+	PKBK 1)	DI_R22+	RDBK	DI22+	BUBK				
12	S21+	GYBK 1)	DI_R21+	PKBK	DI21+	GYBK				
13	S20+	PKRD 1)	DI_R20+	PKRD	DI20+	GYRD				
14	S19+	GYRD ¹⁾	DI_R19+	PKBU	DI19+	GYBU				
15	S18+	PKBU 1)	DI_R18+	YEBK	DI18+	GNBK				
16	S17+	GYBU 1)	DI_R17+	YERD	DI17+	GNRD				
17	S16+	YEBK 1)	DI_R16+	YEBU	DI16+	GNBU	S-	BNRD ²⁾		
18	S15+	GNBK 1)	DI_R15+	YEPK	DI15+	PKGN	S-	WHRD ²⁾		
19	S14+	YERD 1)	DI_R14+	YEGY	DI14+	GYGN	S-	BNBU ²⁾		
20	S13+	GNRD 1)	DI_R13+	BNBK	DI13+	WHBK	S-	WHBU ²⁾		
21	S12+	YEBU 1)	DI_R12+	BNRD	DI12+	WHRD	S-	PKBN ²⁾		
22	S11+	GNBU 1)	DI_R11+	BNBU	DI11+	WHBU	S-	WHPK ²⁾		
23	S10+	YEPK 1)	DI_R10+	PKBN	DI10+	WHPK	S-	GYBN ²⁾		
24	S9+	PKGN 1)	DI_R9+	GYBN	DI9+	WHGY	S-	WHGY ²⁾		
25	S8+	YEGY 1)	DI_R8+	YEBN	DI8+	WHYE	DI-	YEBN ²⁾		
26	S7+	GYGN 1)	DI_R7+	BNGN	DI7+	WHGN	DI-	WHYE ²⁾		
27	S6+	BNBK 1)	DI_R6+	RDBU	DI6+	GYPK	DI-	BNGN ²⁾		
28	S5+	WHBK 1)	DI_R5+	VT	DI5+	BK	DI-	WHGN ²⁾		
29	S4+	BNRD 1)	DI_R4+	RD	DI4+	BU	DI-	RDBU ²⁾		
30	S3+	WHRD 1)	DI_R3+	PK	DI3+	GY	DI-	GYPK ²⁾		
31	S2+	BNBU 1)	DI_R2+	YE	DI2+	GN	DI-	VT ²⁾		
32	S1+	WHBU 1)	DI_R1+	BN	DI1	WH	DI-	BK ²⁾		

¹⁾ Additional orange ring if one wire color is repeated for the first time.

Table 15: Pin Assignment for the System Cable Plug

HI 801 175 E Rev. 11.00.00 Page 25 of 54

²⁾ Additional violet ring if one wire color is repeated for the second time.

³⁾ The wires must be isolated individually! No other use is permitted!

3.7 System Cables

Depending on the type of connector board, system cable X-CA 002 or X-CA 009 is available.

Identical cable plugs

Figure 9: System Cables

3.7.1 System Cable X-CA 002

System cable X-CA 002 is used to connect the X-CB 005 53/54 connector board to the field termination assembly.

General information	
Cable	LIYY-TP 34 x 2 x 0.25 mm ²
Wire	Finely stranded
Average outer diameter (d)	Approx. 15.2 mm
	Max. 20 mm for all types of system cables
Minimum bending radius	
Fixed installation	5 x d
Flexible application	10 x d
Burning behavior	Flame retardant and self-extinguishing in accordance with IEC 60332-1-2, IEC 60332-2-2
Length	830 m
Color coding	Based on DIN 47100, see Table 14.

Table 16: Cable Data X-CA 002

The system cable is available in the following standard length:

System cables	Description	Length	Weight
X-CA 002 01 8	Coded cable plugs on	8 m	3.5 kg
X-CA 002 01 15	both sides.	15 m	6.5 kg
X-CA 002 01 30		30 m	13 kg

Table 17: Available System Cables X-CA 002

Page 26 of 54 HI 801 175 E Rev. 11.00.00

3.7.2 System Cable X-CA 009

System cable X-CA 009 is used to connect the X-CB 005 55 connector board to the field level via field termination assembly.

General information	
Cable	LIYCY-TP 58 x 2 x 0.14 mm ²
Wire	Finely stranded
Average outer diameter (d)	Approx. 18.3 mm,
	Max. 20 mm for all types of system cables
Minimum bending radius	
Fixed installation	5 x d
Flexible application	10 x d
Burning behavior	Flame retardant and self-extinguishing in accordance with IEC 60332-1-2, IEC 60332-2-2
Length	830 m
Color coding	Based on DIN 47100, see Table 15.

Table 18: Cable Data X-CA 009

The system cable is available in the following standard length:

System cables	Description	Length	Weight
X-CA 009 01 8	Coded cable plugs on	8 m	4.25 kg
X-CA 009 01 15	both sides.	15 m	8 kg
X-CA 009 01 30		30 m	16 kg

Table 19: Available System Cables X-CA 009

3.7.3 Cable Plug Coding

The cable plugs are equipped with 3 coding pins. Therefore, cable plugs only match connector boards and FTAs with the corresponding recesses, see Figure 7 and Figure 8.

HI 801 175 E Rev. 11.00.00 Page 27 of 54

4 Start-Up X-DI 32 52

4 Start-Up

This chapter describes how to install, configure and connect the module. For further details, refer to the HIMax system manual (HI 801 001 E).

4.1 Mounting

Observe the following points when mounting the module:

- Only operate the module with the appropriate fan components. For further details, see the system manual (HI 801 001 E).
- Only operate the module with the suitable connector board. For further details, see Chapter 3.6.
- The module, including its connected components, must be installed to ensure compliance with the requirements for degree of protection IP20 or higher in accordance with EN 60529:1991 + A1:2000.

NOTICE

Damage due to incorrect wiring!

Failure to comply with these instructions can damage the electronic components. Observe the following points.

- Plugs and terminals connected to the field level.
 - Take the appropriate grounding measures when connecting the plugs and terminals to the field level.
 - Use shielded cables with twisted pairs.
 - Use one twisted pair for each measuring inputs.
 - If shielded cables are used, connect the shielding on both sides. On the module side, the shielding must be connected to the cable shield rail (use SK 20 shield connection terminal block or similar).
 - If finely stranded wires are used, HIMA recommends fastening ferrules to the wire ends.
 The terminals must be suitable for fastening the cross-sections of the cables in use.
- If the supply is used, utilize the supply output used for the assigned input, see Table 9.
- HIMA recommends using the supply of the module.
 - If an external current source is malfunctioning, the affected module's measuring input can be overloaded and damaged. If an external current source is used, the switching thresholds must be checked after a non-transient overload occurred at the measuring inputs.
- The inputs can be interconnected redundantly using the corresponding connector boards, see Chapter 3.6.

4.1.1 Wiring Unused Inputs

Inputs that are not being used may stay open and need not be terminated. To prevent short-circuits in the field, never connect a wire to a connector board if it is open on the field level.

Page 28 of 54 HI 801 175 E Rev. 11.00.00

X-DI 32 52 4 Start-Up

4.2 Mounting and Removing the Module

This chapter describes how to replace an existing module or mount a new one.

When removing the module, the connector board remains in the HIMax base plate. This saves additional wiring effort at the clamp terminals since all field terminals are connected via the connector board of the module.

4.2.1 Mounting a Connector Board

Tools and utilities:

- Screwdriver, cross PH 1 or slotted 0.8 x 4.0 mm.
- Matching connector board.

To install the connector board

- 1. Insert the connector board into the guiding rail with the groove facing upwards (see following drawing). Fit the groove into the guiding rail pin.
- 2. Place the connector board on the cable shield rail.
- 3. Secure the captive screws to the base plate. First screw in the lower screws than the upper ones.

To remove the connector board

- 1. Release the captive screws from the base plate.
- 2. Carefully lift the lower section of the connector board from the cable shield rail.
- 3. Remove the connector board from the guiding rail.

Figure 10: Example of how to Insert the Mono Connector Board

HI 801 175 E Rev. 11.00.00 Page 29 of 54

4 Start-Up X-DI 32 52

Figure 11: Example of how to Secure the Mono Connector Board with Captive Screws

These instructions also apply for redundant connector boards. The number of used slots varies in accordance with the connector board type. The number of captive screws depends on the connector board type.

Page 30 of 54 HI 801 175 E Rev. 11.00.00

X-DI 32 52 4 Start-Up

4.2.2 Mounting and Removing a Module

This chapter describes how to mount and remove the HIMax module. A module can be mounted and removed while the HIMax system is operating.

NOTICE

Damage to bus and power sockets due to module jamming! Failure to comply with these instructions can damage the controller.

Always insert the module in the base plate carefully.

Tools and utilities:

- Screwdriver, slotted 0.8 x 4.0 mm.
- Screwdriver, slotted 1.2 x 8.0 mm.

To insert the modules

- 1. Open the cover plate on the fan rack:
 - ☑ Move the locks to the *open* position.
 - ☑ Lift the cover plate and insert it into the fan rack.
- Insert the top of the module into the hook-in rail, see
- 3. Swivel the lower edge of the module towards the base plate and apply light pressure to snap it into place, see 2.
- 4. Tighten the screws, see 3.
- 5. Pull the cover plate out of the fan rack and close it.
- 6. Lock the cover plate.

To remove the modules

- 1. Open the cover plate on the fan rack:
 - ☑ Move the locks to the *open* position.
 - ☑ Lift the cover plate and insert it into the fan rack.
- 2. Release the screw, see 3.
- 3. Swivel the lower edge of the module away from the base plate. Lift and apply light pressure to remove the module from the hook-in rail, see 2 and 1.
- 4. Pull the cover plate out of the fan rack and close it.
- 5. Lock the cover plate.

HI 801 175 E Rev. 11.00.00 Page 31 of 54

4 Start-Up X-DI 32 52

- 1 Inserting and removing a module
- 2 Swiveling the module in and out

3 Securing and releasing a module

Figure 12: Mounting and Removing a Module

If the HIMax system is operating, do not open the cover plate of the fan rack for more than a few minutes (< 10 min) since this affects the forced cooling.

Page 32 of 54 HI 801 175 E Rev. 11.00.00

X-DI 32 52 4 Start-Up

4.3 Configuring the Module in SILworX

The module is configured in the Hardware Editor of the SILworX programming tool.

Observe the following points when configuring the module:

- To diagnose the module and channels, both the statuses and the measured value can be evaluated within the user program. For further details on the system parameters, refer to the following tables.
- For short-circuit and open-circuit monitoring, 2 thresholds are detected by the module. The switching thresholds can be set in SILworX in the module configuration.
- When scaling the input value -> Raw Value [DINT], users must make sure that the scaling result is within the range of values for the REAL data type. Representation of the scaling result must be possible with a REAL variable.
- If the proximity switch supply of the module is used, activate the parameter Supply X ON parameter.
- If the modules are redundantly connected, the proximity switch supply group must be activated using the parameter *Supply X ON*.
- If a redundancy group is created, its configuration is defined in the tabs. The tabs specific to the redundancy group differ from those of the individual modules, see the following tables.

To evaluate the system parameters in the user program, they must be assigned to global variables. Perform this step in the Hardware Editor using the module's detail view.

The following tables present the system parameters for the module in the same order as in the SILworX Hardware Editor.

TIP A scientific calculator such as the Windows® calculator with the corresponding view can be used to convert hexadecimal values to bit strings.

HI 801 175 E Rev. 11.00.00 Page 33 of 54

4 Start-Up X-DI 32 52

4.3.1 The **Module** Tab

The **Module** tab contains the following system parameters for the module:

System parameter	Data type	R/W	Description			
Name		W	Module name.			
Spare Module		W	Activated: It is not considered a fault if a module of the redundancy group is missing in the base plate. Deactivated: It is considered a fault if a module of the redundancy group is missing in the base plate. Default setting: Deactivated It is only displayed in the redundancy group tab!			
Noise Blanking		W	Allow noise blanking performed by the process module (Activated/Deactivated). Default setting: Activated The processor module delays its response to transient interference until the safety time. The user program retains its last valid process value. Refer to the system manual (HI 801 001 E) for further details on noise blanking.			
System parameter	Data type	R/W	Description			
	· ·		1	ariables and used in the user program.		
Module OK	BOOL	R	TRUE: Mono operation: No module faults. Redundancy operation: At least one of the redundant modules has no module fault (OR logic). FALSE: Module fault. Channel fault (no external faults). The module is not plugged in. Observe the <i>Module Status</i> parameter!			
Module Status	DWORD	R	Status of the m	odule.		
				Description Module fault. 1) Temperature threshold 1 exceeded. Temperature threshold 2 exceeded. Incorrect temperature value. Voltage on L1+ is defective. Voltage on L2+ is defective. Internal voltage is defective. No connection to the module. 1) Its affect the Module OK status and need arately evaluated in the user program.		
Timestamp [µs]	DWORD	R	Microsecond fr	action of the timestamp.		
		_	Point in time when the digital inputs were measured.			
Timestamp [s]	DWORD	R	Second fraction of the timestamp. Point in time when the digital inputs were measured.			

Table 20: The Module Tab in the Hardware Editor

Page 34 of 54 HI 801 175 E Rev. 11.00.00

X-DI 32 52 4 Start-Up

4.3.2 The **I/O Submodule DI 32_52** Tab

The **I/O Submodule DI32_52** tab contains the following system parameters:

System parameters	Data type	R/W	Description	
Enter these statuses and parameters directly in the Hardware Editor.				
Name		R	Tab name	
Show Signal Overflow	BOOL	W	Show signal overflow with Field LED (Activated/Deactivated). Default setting: Activated	
Supply 1 ON	BOOL	W	Use module's proximity switch supplies for Channel 1 to Channel 8 (Activated/Deactivated). Default setting: Activated	
Supply 2 ON	BOOL	W	Use module's proximity switch supplies for Channel 9 to Channel 16 (Activated/Deactivated). Default setting: Activated	
Supply 3 ON	BOOL	W	Use module's proximity switch supplies for Channel 17 to Channel 24 (Activated/Deactivated). Default setting: Activated	
Supply 4 ON	BOOL	W	Use module's proximity switch supplies for Channel 25 to Channel 32 (Activated/Deactivated). Default setting: Activated	
System parameter	Data type	R/W	Description	
The following statuses and parameters can be assigned global variables and used in the user program.				
Diagnostic Request	DINT	W	To request a diagnostic value, the appropriate ID must be sent to the module using the parameter <i>Diagnostic Request</i> (for coding details, see Chapter 4.3.5).	
Diagnostic Response	DINT	R	As soon as <i>Diagnostic Response</i> returns the ID of <i>Diagnostic Request</i> (for coding details, see Chapter 4.3.5), <i>Diagnostic Status</i> contains the diagnostic value requested.	
Diagnostic Status	DWORD	R	Requested diagnostic value in accordance with <i>Diagnostic Response</i> . The IDs of <i>Diagnostic Request</i> and <i>Diagnostic Response</i> can be evaluated in the user program. <i>Diagnostic Status</i> only contains the requested diagnostic value when both <i>Diagnostic Request</i> and <i>Diagnostic Response</i> have the same ID.	
Background Test Error	BOOL	R	TRUE: Background test is faulty. FALSE: Background test is not faulty.	
Restart on Error	BOOL	W	The Restart on Error parameter can be used to cause any I/O module that is shut down permanently due to errors or faults to once again enter the RUN state. To do so, set the Restart on Error parameter from FALSE to TRUE. The I/O module performs a complete self-test and only enters the RUN state if no faults are detected. Default setting: FALSE	

HI 801 175 E Rev. 11.00.00 Page 35 of 54

4 Start-Up X-DI 32 52

System parameters	Data type	R/W	Description
Submodule OK	BOOL	R	TRUE: No submodule fault, no channel faults. FALSE: Submodule fault, channel faults (external faults included).
Submodule Status	DWORD	R	Bit-coded submodule status. For coding details, see Chapter 4.3.4.

Table 21: The I/O Submodule DI 32 52 Tab in the Hardware Editor

The proximity switch supplies of the module are short-circuit-proof. The module switches off the corresponding proximity switch supply if the total current is exceeded (> 200 mA). If the overload disappears within 30 s, the proximity switch supply is switched on again. If the overload is still present after 30 s, the module attempts to restart the proximity switch supply in intervals of 60 s.

Short transient interferences (< 5 ms) do not cause the proximity switch supply to switch off.

Switching off a proximity switch supply affects all inputs of this group (Table 9), i.e., the digital values of these inputs are reset to their initial values. If line monitoring (OC) was configured, the module also reports an open-circuit in all 8 inputs.

The configured proximity switch supplies are switched on in the STOP-VALID status of the HIMax controller.

The proximity switch supply outputs of the module cannot be forced and may only be configured in the Hardware Editor.

The voltage limits of the proximity switch supply outputs are safely monitored by the module. In case of overvoltage, undervoltage or overcurrent, the corresponding status *Supply X OK* is set to FALSE.

For supplying a channel, the voltage output assigned to the input must be used (e.g., S1+ with DI1+).

Page 36 of 54 HI 801 175 E Rev. 11.00.00

4.3.3 The I/O Submodule DI32_52: Channels Tab

The **I/O Submodule DI32_52: Channels** tab contains the following system parameters for each digital input.

Global variables can be assigned to the system parameters with -> and used in the user program. The value without -> must be directly entered.

System parameter	Data type	R/W	Description	
Channel no.		R	Channel number, preset and cannot be changed.	
SP LOW	DINT	W	Upper limit of LOW level. SP LOW (switching point LOW) is the limit value: if this limit is exceeded, the module detects LOW and switches off the Channel LED. Restriction: SP LOW ≤ SP HIGH Default setting: 14 000 (1.4 mA)	
SP HIGH	DINT	W	Lower limit for the high level. SP HIGH (switching point HIGH) is the limit value: if this limit is exceeded, the module detects a HIGH and switches on the Channel LED. Restriction: SP LOW ≤ SP HIGH Default setting: 18 000 (1.8 mA)	
-> Channel Value [BOOL]	BOOL	R	Boolean channel process value in accordance with the limits <i>SP LOW</i> and <i>SP HIGH</i> .	
-> Channel OK [BOOL]	BOOL	R	TRUE: Fault-free channel. The input value is valid. FALSE: Faulty channel. The input value is set to 0.	
OC Limit	DINT	W	Threshold in mA for detecting an open-circuit. If the analog measured value falls under <i>OC Limit</i> , the module detects an open-circuit and switches off the <i>Channel</i> LED for this channel. Default setting: 2000 (0.2 mA)	
-> OC [BOOL]	BOOL	R	TRUE: Open-circuit present. FALSE: No open-circuit present. Defined through OC Limit.	
SC Limit	DINT	W	Threshold in mA for detecting a short-circuit. If the measured analog value exceeds SC Limit, the module detects a short-circuit and sets the Channel LED for this channel to Blinking2. Default setting: 65 500 (6.55 mA)	
-> SC [BOOL]	BOOL	R	TRUE: Short-circuit present. FALSE: No short-circuit present. Defined through SC Limit.	
T on [µs]	UDINT	W	Time on Delay The module only indicates a level change from LOW to HIGH if the high level is present for longer than the configured time ton. The time on delay cannot be extended by more than the cycle time of the module. This also results in a delayed evaluation of the -> Channel Value [BOOL] parameter. Range of values: 0(2 ³² -1) Granularity: 1000 µs, e.g., 0, 1000, 2000, Default setting: 0	

HI 801 175 E Rev. 11.00.00 Page 37 of 54

4 Start-Up X-DI 32 52

System parameter	Data type	R/W	Description
T off [μs]	UDINT	W	Time off delay The module only indicates a level change from HIGH to LOW if the low level is present for longer than the configured time toff. The time off delay cannot be extended by more than the cycle time of the module. This also results in a delayed evaluation of the -> Channel Value [BOOL] parameter. Range of values: 0(2 ³² -1) Granularity: 1000 µs, e.g., 0, 1000, 2000, Default setting: 0
-> Raw Value [DINT]	DINT	R	Unhandled analog value measured for the channel Range of values: 093 000 (09.3 mA)
Redund.	BOOL	R	Requirement: The redundant module must exist. Activated: The channel redundancy for this channel is active. Deactivated: Deactivate the channel redundancy for this channel. Default setting: Deactivated
Redundancy Value	BYTE	W	Setting for determining the redundancy value. Min Max Average Default setting: Max It is only displayed in the redundancy group tab!

Table 22: The I/O Submodule DI32_52: Channels Tab in the Hardware Editor

4.3.4 Description of Submodule Status [DWORD]

The following table specifies the coding of the *Submodule Status* parameter:

Coding	Description
0x0000001	Fault in hardware unit (submodule).
0x00000004	Faults detected while configuring the hardware unit.
0x00000008	Fault detected while checking the coefficients.

Table 23: Coding of Submodule Status [DWORD]

Page 38 of 54 HI 801 175 E Rev. 11.00.00

4.3.5 Description of *Diagnostic Status [DWORD]*

The following table specifies the coding of the *Diagnostic Status* parameter:

ID	Description			
0	Diagnostic values are indicated consecutively.			
100	Bit-coded temperature status.			
	0 = normal.			
	Bit0 = 1: Temperature threshold 1 has been exceeded.			
	Bit1 = 1: Temperature threshold 2 has been exceeded.			
	Bit2 = 1: Fault in temperature measurement.			
101	+	mperature (10 000 digits/ °C).		
200	Bit-coded vo	Itage status.		
	0 = normal.	(24) 0.1. (
		· (24 V) is faulty.		
	Bit1 = 1: L2+ (24 V) is faulty.			
201	Not used!			
202				
203				
300	Comparator 24 V undervoltage (BOOL).			
10011032	Status of the channels 132.			
	Coding	Description		
	0x0001	Fault in hardware unit (submodule).		
	0x0002	Channel fault due to internal fault.		
	0x0400	SC / OC limits violated or		
		Channel or module fault.		
	Underflow or overflow of the measured value.			
	Channel not configured.			

Table 24: Coding for *Diagnostic Status* [DWORD]

HI 801 175 E Rev. 11.00.00 Page 39 of 54

4 Start-Up X-DI 32 52

4.4 Connection Variants

This chapter describes the technically proper wiring of the module. The following connection variants are permitted.

The mechanical contacts must be connected to a resistor combination, e.g., 1 k Ω and 10 k Ω , to detect open-circuits and short-circuits, see also Chapter 3.4.1 and Chapter 3.5.

4.4.1 Wiring with Proximity Switch or Wired Mechanical Contact

The inputs are wired via connector boards. Special connector boards are available for redundantly wiring the modules.

The proximity switch supplies are decoupled using diodes. This ensures that the proximity switch supplies of 2 modules can supply one proximity switch if the modules are redundant to one another.

Connector boards X-CB 005 51 (with screw terminals) or X-CB 005 53 (with cable plug) can be used to perform the wiring in accordance with Figure 13.

1 Proximity switch supply

2 Processing of analog measured value

Figure 13: 1-Channel Proximity Switch or Wired Mechanical Contact

Page 40 of 54 HI 801 175 E Rev. 11.00.00

When redundantly wired as specified in Figure 14, the modules are inserted in the base plate next to each other and on a common connector board. Connector boards X-CB 005 52 (with screw terminals) or X-CB 005 54 (with cable plug) can be used.

1 Proximity switch supply

2 Processing of analog measured value

Figure 14: Redundant Proximity Switch or Wired Mechanical Contact

HI 801 175 E Rev. 11.00.00 Page 41 of 54

4 Start-Up X-DI 32 52

4.4.2 Wiring Transmitters via Field Termination Assembly

Proximity switches are connected via the X-FTA 002 01 as described in Figure 15. For further information, refer to the X-FTA 002 01 manual (HI 801 117 E).

- System cable X-CA 002 01 n
- 3 Processing of analog measured value

2 Proximity switch supply

Figure 15: Connection via Field Termination Assembly

Page 42 of 54 HI 801 175 E Rev. 11.00.00

4.4.3 Redundant Connection via 2 Base Plates

The figure shows the connection of one proximity switch or wired contact if the redundant modules are inserted in different base plates or not located adjacently in the rack. The shunts are placed on the field termination assembly.

Figure 16: Redundant Connection via 2 Base Plates

HI 801 175 E Rev. 11.00.00 Page 43 of 54

5 Operation X-DI 32 52

5 Operation

The module runs within a HIMax base plate and does not require any specific monitoring.

5.1 Handling

Direct handling of the module is not foreseen.

The module is operated from within the PADT, e.g., for forcing the digital inputs. For further details, refer to the SILworX documentation.

5.2 Diagnostics

LEDs on the front side of the module indicate the module state, see Chapter 3.4.2.

The diagnostic history of the module can also be read out using SILworX. Chapter 4.3.4 and Chapter 4.3.5 describe the most important diagnostic statuses.

initialization phase indicating faults such as incorrect voltage values.

These messages only indicate a module fault if they occur after the system starts operation.

Page 44 of 54 HI 801 175 E Rev. 11.00.00

X-DI 32 52 6 Maintenance

6 Maintenance

Defective modules must be replaced with a faultless module of the same type or with an approved replacement model.

When replacing modules, observe the instructions specified in the system manual (HI 801 001 E).

6.1 Maintenance Measures

As part of product maintenance, HIMA is continuously improving the operating systems of the modules. HIMA recommends using system downtimes to load the current operating system versions into the modules.

The current operating system versions of modules are displayed in the SILworX Control Panel. The type label specifies the delivered module version, see Chapter 3.3.

Before loading operating systems into the modules, check the system compatibilities and restrictions of the operating system versions. To this end, use the applicable release notes. Use SILworX to load the operating systems into the modules and ensure that these are in the STOP state.

HI 801 175 E Rev. 11.00.00 Page 45 of 54

7 Decommissioning X-DI 32 52

7 Decommissioning

To decommission the module, remove it from the base plate. For more details, refer to Chapter *Mounting and Removing the Module*.

Page 46 of 54 HI 801 175 E Rev. 11.00.00

X-DI 32 52 8 Transport

8 Transport

To avoid mechanical damage, the components must be transported in packaging.

Always store the components in their original product packaging. This packaging also provides protection against electrostatic discharge (ESD). Note that the product packaging alone is not sufficient for transport.

HI 801 175 E Rev. 11.00.00 Page 47 of 54

9 Disposal X-DI 32 52

9 Disposal

Industrial customers are responsible for correctly disposing of decommissioned hardware. Upon request, a disposal agreement can be arranged with HIMA.

All materials must be disposed of in an ecologically sound manner.

Page 48 of 54 HI 801 175 E Rev. 11.00.00

X-DI 32 52 Appendix

Appendix

Glossary

Term	Description
Al	Analog input
AO	Analog output
ARP	Address resolution protocol, ne2rk protocol for assigning the ne2rk addresses to
	hardware addresses
COM	Communication module
CRC	Cyclic redundancy check
DI	Digital input
DO	Digital output
EMC	Electromagnetic compatibility
EN	European standard
ESD	Electrostatic discharge
FB	Fieldbus
FBD	Function block diagrams
HW	Hardware
ICMP	Internet control message protocol, ne2rk protocol for status or error messages
IEC	International electrotechnical commission
Interference-free	Inputs are designed for interference-free operation and can be used in circuits with safety functions
MAC	Media access control address, hardware address of one ne2rk connection
PADT	Programming and debugging tool (in accordance with IEC 61131-3), PC with SILworX
PELV	Protective extra low voltage
PES	Programmable electronic system
R	Read, the variable is read out
R/W	Read/Write, column title for system variable type
Rack ID	Base plate identification (number)
r P	Peak value of a total AC component
SB	System bus (module)
SC/OC	Short-circuit/open-circuit
SELV	Safety extra low voltage
SFF	Safe failure fraction, portion of faults that can be safely controlled
SIL	Safety integrity level (in accordance with IEC 61508)
SILworX	Programming tool
SNTP	Simple ne2rk time protocol (RFC 1769)
SRS	System.Rack.Slot, addressing of a module
SW	Software
TMO	Timeout
W	Write, the variable receives a value, e.g., from the user program
WD	Watchdog, device for monitoring the system's correct operation. Signal for fault-free process
WDT	Watchdog time

HI 801 175 E Rev. 11.00.00 Page 49 of 54

Appendix X-DI 32 52

Index of Figures						
Figure 1:	Sample Type Label	10				
Figure 2:	Block Diagram	11				
Figure 3:	Indicators	12				
Figure 4:	Views	16				
Figure 5:	Coding Example	19				
Figure 6:	Connector Boards with Screw Terminals	20				
Figure 7:	Connector Boards with Cable Plug	22				
Figure 8:	X-CB 005 55 Mono Connector Board with Cable Plug	24				
Figure 9:	System Cables	26				
Figure 10:	Example of how to Insert the Mono Connector Board	29				
Figure 11:	Example of how to Secure the Mono Connector Board with Captive Screws	30				
Figure 12:	Mounting and Removing a Module	32				
Figure 13:	1-Channel Proximity Switch or Wired Mechanical Contact	40				
Figure 14:	Redundant Proximity Switch or Wired Mechanical Contact	41				
Figure 15:	Connection via Field Termination Assembly	42				
Figure 16:	Redundant Connection via 2 Base Plates	43				

Page 50 of 54 HI 801 175 E Rev. 11.00.00

X-DI 32 52 Appendix

Index of	Tables	
Table 1:	Additional Applicable Manuals	5
Table 2:	Blinking Frequencies of the LEDs	13
Table 3:	Module Status Indicators	14
Table 4:	System Bus Indicators	15
Table 5:	I/O Indicators	15
Table 6:	Product Data	16
Table 7:	Specifications for Digital Inputs	17
Table 8:	Standard Values for Digital Inputs	17
Table 9:	Supply Specifications	17
Table 10:	Available Connector Boards	18
Table 11:	Position of Coding Wedges	19
Table 12:	Terminal Assignment for Connector Boards with Screw Terminals	21
Table 13:	Cable Plug Characteristics	21
Table 14:	Pin Assignment for the System Cable Plug	23
Table 15:	Pin Assignment for the System Cable Plug	25
Table 16:	Cable Data X-CA 002	26
Table 17:	Available System Cables X-CA 002	26
Table 18:	Cable Data X-CA 009	27
Table 19:	Available System Cables X-CA 009	27
Table 20:	The Module Tab in the Hardware Editor	34
Table 21:	The I/O Submodule DI 32_52 Tab in the Hardware Editor	36
Table 22:	The I/O Submodule DI32_52: Channels Tab in the Hardware Editor	38
Table 23:	Coding of Submodule Status [DWORD]	38
Table 24:	Coding for Diagnostic Status [DWORD]	39

HI 801 175 E Rev. 11.00.00 Page 51 of 54

Appendix X-DI 32 52

Index

Block diagram	11	Light emitting diodes, LEDs	13
Connection variant	41	Module status indicators	14
Connector board	18	Safety function	9
with cable plug	23	Specifications	16
with screw terminals	20	Inputs	17
Diagnostics		Module	16
I/O indicators	15	Proximity switch supply	17
System bus indicators	15		

Page 52 of 54 HI 801 175 E Rev. 11.00.00

MANUAL **X-DI 32 52**

HI 801 175 E

For further information, please contact:

HIMA Paul Hildebrandt GmbH

Albert-Bassermann-Str. 28 68782 Brühl, Germany

Phone: +49 6202 709-0 Fax +49 6202 709-107 E-mail: info@hima.com

Learn more about HIMax online:

ttps://www.hima.com/en/products-services/himax/