Socially Damaging Behavior MASON

User Guide

Michele Carillo
Ada Mancuso
Francesco Milone
Francesco Raia
Flavio Serrapica
Carmine Spagnuolo

May 16, 2013

1 Download della simulazione

Il primo passo per l'esecuzione della simulazione è scaricare il file eseguibile reperibile a questo link rinominato *SociallyDamagingBehavior.jar*. L'eseguibile ha estensione .jar dal momento che il modello è stato implementato utilizzando il toolkit MASON.

2 Avvio della simulazione

Il secondo passo è l'avvio della simulazione. Prima di poter eseguire il file bisogna installare $Java\ Runtime\ Environment\ (JRE)$ se non è gia installato sulla macchine. La simulazione può essere avviata in due modi: doppio-click sul file jar oppure digitando da linea di comando:

java -jar SociallyDamagingBehavior.jar

3 Parametri della simulazione

Una volta avviata la simulazione il sistema mostra due finestre rispettivamente: Display della simulazione e Console. Nella Console sono presenti i controlli per avviare la simulazione e per modificare i parametri del modello. Nel tab Model è possibile modificare i parametri del modello che sono:

^{*}tutti i parametri hanno una certa validità a seconda del modello in cui vengono utilizzati, tale validità è espressa tra parentesi quadre.

- 1. Width e Height: due valori interi $value_i \ge 1$, rispettivamente larghezza e altezza del campo di simulazione $[0-4]^*$;
- 2. **NumHumanBeing**: un valore intero $value \ge 0$, numero totale di agenti della simulazione $[0-4]^*$;
- 3. **PERCENT_HONEST**: un valore intero $0 \le value \le 100$, percentuale di agenti onesti $[0-4]^*$;
- 4. **EPOCH**: un valore intero $value \ge 1$, dimensione di ogni epoca espressa in numero di step $[0-4]^*$;
- 5. **Neighborhood**: un valore reale $value \ge 0.1$, dimensione del raggio visivo degli agenti $[0-4]^*$;
- 6. **MODEL**: un valore intero $0 \le value \le 4$, modello che si vuole utilizzare tra i 5 modelli implementati $[0-4]^*$;
- 7. MIN_AOI_AGGREGATION_MODEL3: un valore reale $value \ge 0.1$, minimo raggio visivo degli agenti $[3-4]^*$;
- 8. MAX_AOI_AGGREGATION_MODEL3: un valore reale $value \ge 0.1$, massimo raggio visivo degli agenti, bisogna utilizzare lo steso valore per Neighborhood [3-4]*;
- 9. **DAMAGING_PAYOFF_PROB**: un valore reale $0.0 \le value \le 1.0$, probabilità di compiere una azione disonesta $[0-4]^*$;
- 10. **DAMAGING_PAYOFF**: un valore reale $value \ge 0.0$, danno inflitto ad un agente a seguito di una azione disonesta e fitness ricevuto in seguito alla stessa azione $[0-4]^*$;
- 11. **PUNISHIMENT_PROB**: un valore reale $0.0 \le value \le 1.0$, probabilità di essere punito $[0-4]^*$;
- 12. **PUNISHIMENT_SEVERITY**: un valore intero $1 \le value \le 3$, severità della punizione: STRICT, FAIR, LAX $[0-4]^*$;
- 13. **HONEST_PAYOFF**: un valore reale $value \ge 0.1$, guadagno di un agente in seguito ad una azione onesta $[0-4]^*$;
- 14. **HONEST_PROB**: un valore reale $0.0 \le value \le 1.0$, probabilità di compiere una azione onesta [0-4];*
- 15. **SOCIAL_INFLUENCE**: un valore reale $0.0 \le value \le 1.0$, valore di influenza sociale $[0-4]^*$;
- 16. **PERCENTAGE_PAYOFF_FITNESS**: un valore intero $0 \le value \le 100$, valore percentuale del danno inflitto in seguito ad una azione disonesta $[1-4]^*$;