ATIVIDADES BÁSICAS DE CÁLCULO

PROFESSOR MSC: KENNEDY SCOPEL

Sumário

1	LIMITE	2
2	LIMITE $x \to \infty$	4
3	LIMITES LATERAIS 3.1 Considerando a Função:	6
4	TEOREMA DO CONFRONTO	7
5	DERIVADA VIA LIMITE 5.1 Use a definição de derivada via limite para calcular a derivada de f(x)	8
6	REGRA DA CADEIA 6.1 Encontre a derivada da função	9 9
7	DERIVADA DE f(x) TRIGONOMÉTRICAS 7.1 CALCULE A DERIVADA f	10 10
8	DIFERENCIAÇÃO IMPLÍCITA 8.1 Encontre dy/dx diferenciando implicitamente	11 11
9	INTEGRAIS INDEFINIDAS 9.1 Calcule a integral indefinida	
10	10.1 Calcule a integral definida	
11	1 ÁREA 11.1 Esboce a região delimitada pelos gráficos das equações e calcule sua área	
12	2 VOLUME	16
	12.1 Esboce a região delimitada pelos gráficos das equações e calcule o volume do sólido gerado pela revolução da região em torno do eixo indicado	16

12.1.1 Respostas	 16
13 INTEGRAÇÃO POR PARTES 13.1 Calcule a integral	 17 17
14 INTEGRAIS TRIGONOMÉTRICAS 14.1 Calcule a integral	 18 18
15 INTEGRAÇÃO DE FUNÇÕES RACIONAIS 15.1 Calcule a integral	 19

LIMITE

a)
$$\lim_{x \to 2} \frac{x^2 - 7x + 10}{x^2 - 4}$$

b)
$$\lim_{x \to -1} \frac{x^2 + x - 2}{x^2 - 1}$$

c)
$$\lim_{x \to 5} \frac{x^2 + 2x - 35}{x^2 - 10x + 25}$$

$$d\lim_{x\to 25} \frac{5-\sqrt{x}}{25-x}$$

e)
$$\lim_{x \to 9} \frac{9-x}{\sqrt{x}-3}$$

f)
$$\lim_{x\to 0} \frac{(x+3)^3 - 27}{x}$$

g)
$$\lim_{x\to 0} \frac{x^2}{\sqrt{x^2+12}-\sqrt{12}}$$

h)
$$\lim_{x\to 0} \frac{3}{x} \left(\frac{1}{5+x} - \frac{1}{5-x} \right)$$

i)
$$\lim_{x \to 3} \frac{5x^2 - 8x - 13}{x^2 - 5}$$

$$\mathrm{j})\!\lim_{x\to 2}\frac{3x^2-x-10}{x^2-4}$$

$$1)\lim_{x\to 3} \frac{x^4 - 81}{2x^2 - 5x - 3}$$

$$\mathrm{m)}\lim_{x\to 4}\frac{3-\sqrt{x-5}}{x-4}$$

n)
$$\lim_{x\to 27} \frac{x-27}{x^{\frac{1}{3}}-3}$$

o)
$$\lim_{x \to 1} \frac{x^{\frac{1}{3}} - 1}{x^{\frac{1}{4}} - 1}$$

$$p)\lim_{x\to 0}\frac{\sin(5x)}{3x}$$

$$q)\lim_{x\to 0}\frac{\cos(2x)-1}{\cos(x)-1}$$

$$\mathbf{r}) \lim_{x \to 0} \frac{x^3 - 7x}{x^3}$$

s)
$$\lim_{x \to 0} \frac{x^4 + 5x - 3}{2 - \sqrt{x^2 + 4}}$$

LIMITE $x \to \infty$

1.
$$\lim_{x \to \infty} \frac{100}{x^2 + 5}$$

$$2. \lim_{x \to -\infty} \frac{7}{x^3 - 20}$$

3.
$$\lim_{x \to \infty} 3x^3 - 1000x^2$$

4.
$$\lim_{x \to -\infty} x^4 + 5x^2 + 1$$

5.
$$\lim_{x \to \infty} x^5 - x^2 + x - 10$$

$$6. \lim_{x \to -\infty} \frac{x+7}{3x+5}$$

7.
$$\lim_{x \to \infty} \frac{7x^2 + x - 100}{2x^2 - 5x}$$

8.
$$\lim_{x \to \infty} \frac{x^2 - 3x + 7}{x^3 + 10x - 4}$$

9.
$$\lim_{x \to -\infty} \frac{7x^2 + x + 11}{4 - x}$$

10.
$$\lim_{x \to \infty} \sqrt{\frac{x^3 + 7x}{4x^3 + 5}}$$

11.
$$\lim_{x \to \infty} x - \sqrt{x^2 + 7}$$

12.
$$\lim_{x \to \infty} \frac{x+3}{\sqrt{9x^2 - 5x}}$$

13.
$$\lim_{x \to \infty} \frac{4x - 3}{2x + 5}$$

14.
$$\lim_{x \to -\infty} \frac{2x^2 - x + 5}{4x^3 - 1}$$

15.
$$\lim_{x \to \infty} \frac{3x+4}{\sqrt{2x^2-5}}$$

- 16. $\lim_{x \to -\infty} \frac{3x+4}{\sqrt{2x^2-5}}$
- 17. $\lim_{x \to \infty} \frac{x^2}{x+1}$ 18. $\lim_{x \to \infty} \frac{2x x^2}{3x+5}$

LIMITES LATERAIS

Considerando a Função: 3.1

$$f(x) = \begin{cases} \frac{1}{x^2} & se, x < -1\\ 2 & se, -1 \le x < 1\\ 3 & se, x = 1\\ x+1 & se, 1 < x \le 2\\ \frac{-1}{(x-2)^2} & se, x > 2 \end{cases}$$

- a) Desenhe o gráfico de f(x).
- b) Determine os seguintes limites.

$$(b.1) \lim_{x \to -1+} f(x)$$

$$b.2$$
 $\lim_{x \to -1-} f(x)$

b.1)
$$\lim_{x \to -1+} f(x)$$
 b.2) $\lim_{x \to -1-} f(x)$ b.3) $\lim_{x \to -1} f(x)$

b.4)
$$\lim_{x \to 1+} f(x)$$
 b.5) $\lim_{x \to 1-} f(x)$ b.6) $\lim_{x \to 1} f(x)$

$$b.5$$
 $\lim_{x \to 1-} f(x)$

$$b.6\lim_{x\to 1} f(x)$$

b.7)
$$\lim_{x \to 2+} f(x)$$
 b.8) $\lim_{x \to 2-} f(x)$ b.9) $\lim_{x \to 2} f(x)$

$$f(x) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x) dx$$

$$b.9$$
 $\lim_{x \to 2} f(x)$

b.10)
$$\lim_{x \to -3} f(x)$$
 b.11) $\lim_{x \to 5} f(x)$ b.12) $\lim_{x \to 1.5} f(x)$

$$b.11$$
 $\lim_{x \to 5} f(x)$

b.12)
$$\lim_{x \to 1.5} f(x)$$

TEOREMA DO CONFRONTO

1. Prove que
$$\lim_{x\to 0} x^2 \cos 20\pi x = 0$$

2. Prove que
$$\lim_{x\to 0} x^4 \cos \frac{2}{x} = 0$$

3. Prove que
$$\lim_{x\to\infty} \frac{\sin^2 x}{x^2} = 0$$

4. Prove que
$$\lim_{x\to\infty} \frac{\cos 3x}{10x+10} = 0$$

5. Prove que
$$\lim_{x \to \infty} \frac{5 - \cos x}{100x + 100} = 0$$

6. Prove que
$$\lim_{x \to -\infty} \frac{x^2(\sin x + \cos^3 x)}{(x^2 + 1)(x - 3)} = 0$$

7. Considerando que
$$\sin x \leq x \leq \tan x$$
mostre que
$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

DERIVADA VIA LIMITE

$$f'(x) = \lim_{d \to 0} \frac{f(x+d) - f(x)}{d}$$

5.1 Use a definição de derivada via limite para calcular a derivada de f(x)

1.
$$f(x) = \frac{x}{2} - \frac{3}{5}$$

$$2. \ f(x) = 6x^2 - 6x + 6$$

3.
$$f(x) = 4 - \sqrt{x+3}$$

4.
$$f(x) = \frac{x+1}{2-x}$$

$$5. \ f(x) = \cos 3x$$

6.
$$f(x) = x^{\frac{2}{3}}$$

$$7. \ f(x) = \sqrt{x^3 - x}$$

8.
$$f(x) = \frac{x-1}{x^2+3x}$$

REGRA DA CADEIA

6.1 Encontre a derivada da função.

1.
$$F(x) = (x^3 + 4x)^7$$

2.
$$F(x) = \sqrt[4]{1 + 2x + x^3}$$

3.
$$g(t) = \frac{1}{(t^4+1)^3}$$

4.
$$y = \cos(a^3 + x^3)$$

5.
$$F(x) = (x^2 - x + 1)^3$$

6.
$$f(x) = (1+x^4)^{2/3}$$

7.
$$f(t) = \sqrt[3]{1 + tgt}$$

8.
$$y = a^3 + \cos^3 x$$

$$9. \ y = e^{-mx}$$

$$10. \ y = 4\sec 5x$$

11.
$$g(x) = (1+4x)^5(3+x-x^2)^8$$

12.
$$h(t) = (t^4 - 1)^3(t^3 + 1)^4$$

13.
$$y = (2x - 5)^4 (8x^2 - 5)^{-3}$$

14.
$$y = xe^{-x^2}$$

15.
$$y = e^{x \cos x}$$

16.
$$y = (x^2 + 1)\sqrt[3]{x^2 + 2}$$

17.
$$y = e^{-5x} \cos 3x$$

18.
$$y = 10^{1-x^2}$$

DERIVADA DE f(x) TRIGONOMÉTRICAS

7.1 CALCULE A DERIVADA f

$$1. \ f(x) = 4\cos x$$

$$2. \ f(x) = 5x \csc x$$

$$3. \ f(x) = x - x^2 \cos x$$

$$4. \ f(x) = \frac{\sin x}{x}$$

$$5. \ f(x) = x^3 \sin x$$

$$6. \ f(x) = 2x \cot x + x^2 \tan x$$

$$7. \ f(x) = \frac{1 - \cos x}{1 + \cos x}$$

8.
$$f(x) = \frac{1}{\sin x \tan x}$$

9.
$$f(x) = \sin x \cot x$$

10.
$$f(x) = \frac{tgx}{1+x^2}$$

11.
$$f(x) = \frac{\csc x}{\sec x}$$

12.
$$f(x) = (\cot x + \csc x)(\tan x - \sin x)$$

13.
$$f(x) = \frac{1}{\cos x \cot x}$$

14.
$$f(x) = (\sin x + \cos x)^2$$

15.
$$f(x) = \sin x \sec x$$

DIFERENCIAÇÃO IMPLÍCITA

8.1 Encontre dy/dx diferenciando implicitamente.

1.
$$x^2 + y^2 = 1$$

$$2. \ x^2 - y^2 = 1$$

$$3. \ x^3 + x^2y + 4y^2 = 6$$

4.
$$x^2 - 2xy + y^3 = c$$

5.
$$x^2y + xy^2 = 3x$$

$$6. \ y^5 + x^2y^3 = 1 + ye^{x^2}$$

7.
$$x^2y^2 + x\sin y = 4$$

8.
$$1 + x = \sin(xy^2)$$

$$9. \ 4\cos x \sin y = 1$$

10.
$$y\sin(x^2) = x\sin(y^2)$$

11.
$$e^{x^2y} = x + y$$

12.
$$\sqrt{x+y} = 1 + x^2y^2$$

INTEGRAIS INDEFINIDAS

9.1 Calcule a integral indefinida

1.
$$\int x (2x^2 + 3)^{10} dx$$

$$2. \int \frac{x}{\left(x^2 + 5\right)^3} dx$$

3.
$$\int x^2 \sqrt[3]{3x^3 + 7} dx$$

$$4. \int \frac{5x}{\sqrt{x^2 - 3}} dx$$

$$5. \int \frac{(1+\sqrt{x})^3}{\sqrt{x}} dx$$

$$6. \int \frac{1}{(5x-4)^{10}} dx$$

7.
$$\int \sqrt{x} \cos(\sqrt{x^3}) dx$$

8.
$$\int \tan x \sec^2 x dx$$

$$9. \int \sqrt{3x - 2} dx$$

10.
$$\int \sqrt[3]{8t+5}dt$$

$$11. \int (3z+1)^4 dz$$

$$12. \int v^2 \sqrt{v^3 - 1} dv$$

13.
$$\int (s^2+1)^2 ds$$

$$14. \int (\sin x + \cos x)^2 dx$$

Sugestão:
$$(\sin 2x = 2\sin x \cos x)$$

1.
$$\frac{1}{44}(2x^2+3)^{11}+C$$

2.
$$dica: u = x^2 + 5$$

3.
$$\frac{1}{12}(3x^3+7)^{\frac{4}{3}}+C$$

4.
$$dica: u = x^2 - 3$$

5.
$$\frac{1}{2}(1+\sqrt{x})^4+C$$

6.
$$dica: u = 5x - 4$$

7.
$$\frac{2}{3}(\sin\sqrt{x^3}) + C$$

8.
$$dica: u = \tan x$$

9.
$$\frac{2}{9}(3x-2)^{\frac{3}{2}}+C$$

10.
$$\frac{3}{32}(8t+5)^{\frac{4}{3}} + C$$

11.
$$\frac{1}{15}(3z+1)^5 + C$$

12.
$$\frac{2}{9}(v^3-1)^{\frac{3}{2}}+C$$

13.
$$\frac{1}{5}s^5 + \frac{2}{3}s^3 + s + C$$

14.
$$x - \frac{1}{2}\cos 2x + C$$

INTEGRAIS DEFINIDAS

10.1 Calcule a integral definida

1.
$$\int_{1}^{4} x^2 - 4x - 3dx$$

$$2. \int_{1}^{3} \frac{2x^3 - 4x^2 + 5}{x^2} dx$$

$$3. \int_{-1}^{0} (2x+3)^2 dx$$

4.
$$\int_{1}^{4} \frac{1}{\sqrt{x}(\sqrt{x}+1)^{3}} dx$$

$$5. \int_{\frac{\pi}{2}}^{\pi} \cos \frac{x}{3} dx$$

$$1. -18$$

2.
$$\frac{10}{3}$$

3.
$$\frac{13}{3}$$

4.
$$\frac{5}{36}$$

5.
$$\frac{3}{2}(\sqrt{3}-1)$$

ÁREA

11.1 Esboce a região delimitada pelos gráficos das equações e calcule sua área.

1.
$$y = x^2; y = 4x$$

2.
$$y = x^2 + 1$$
; $y = 5$

3.
$$y = \frac{1}{x^2}$$
; $y = -x^2$; $x = 1$; $x = 2$

4.
$$y = x^2 + 1$$
; $y = x - 2$; $x = -2$ $x = 2$

- 1. $\frac{32}{3}$
- 2. $\frac{32}{3}$
- 3. $\frac{17}{6}$
- 4. $\frac{52}{3}$

VOLUME

12.1 Esboce a região delimitada pelos gráficos das equações e calcule o volume do sólido gerado pela revolução da região em torno do eixo indicado.

1.
$$y = \frac{1}{x}; x = 1; x = 3; y = 0$$
 eixo-x

2.
$$y = x^2 - 4x$$
; $y = 0$ eixo-x

3.
$$x = y^2$$
; $x = 2y$ eixo-y

4.
$$y = x^2$$
; $y = 4 - x^2$ eixo-x

5.
$$x = \sqrt{y}$$
; $y = 2$ eixo-y

1.
$$\frac{2\pi}{3}$$

2.
$$\frac{512\pi}{15}$$

3.
$$\frac{64\pi}{15}$$

4.
$$\frac{64\pi\sqrt{2}}{3}$$

5.
$$2\pi$$

INTEGRAÇÃO POR PARTES

13.1 Calcule a integral

1.
$$\int \theta \sec^2 \theta d\theta$$

$$2. \int x \cos 5x dx$$

$$3. \int xe^{-4x}dx$$

$$4. \int re^{r/2}dr$$

5.
$$\int t \sin 2t dt$$

6.
$$\int x^2 \sin \pi x dx$$

$$7. \int \ln(2x+1)dx$$

$$8. \int (\ln x)^2 dx$$

9.
$$\int t^3 e^t dt$$

INTEGRAIS TRIGONOMÉTRICAS

14.1 Calcule a integral

1.
$$\int \sin^3 x \cos^2 x dx$$

$$2. \int \sin^6 x \cos^3 x dx$$

3.
$$\int_{\pi/2}^{3\pi/4} \sin^5 x \cos^3 x dx$$

4.
$$\int_{0}^{\pi/2} \cos^5 x dx$$

$$5. \int \cos^5 x \sin^4 x dx$$

6.
$$\int \sin^3(mx)dx$$

7.
$$\int_0^{\pi/2} \cos^2 \theta d\theta$$

8.
$$\int_{0}^{\pi/2} \sin^{2}(2\theta) d\theta$$

9.
$$\int_0^{\pi} \sin^4(3t) dt$$

10.
$$\int x \cos^2 x dx$$

11.
$$\int \cos\theta \cos^5(\sin\theta) d\theta$$

12.
$$\int_0^{\pi/4} \sec^4 \theta \tan^4 \theta d\theta$$

INTEGRAÇÃO DE FUNÇÕES RACIONAIS

15.1 Calcule a integral.

$$1. \int \frac{x}{x-6} dx$$

$$2. \int \frac{x-9}{(x+5)(x-2)} dx$$

3.
$$\int_{2}^{3} \frac{1}{x^2 - 1}$$

$$4. \int \frac{ax}{x^2 - bx} dx$$

5.
$$\int_0^1 \frac{2x+3}{(x+1)^2} dx$$

6.
$$\int_{1}^{2} \frac{4y^2 - 7y - 12}{y(y+2)(y-3)} dy$$

7.
$$\int \frac{1}{(x+5)^2(x-1)} dx$$

$$8. \int \frac{5x^2 + 3x - 2}{x^3 + 2x^2} dx$$

9.
$$\int \frac{x^2}{(x+1)^3}$$