Problem 1

 $Z: \Omega \to \{0,1\}$, measurable, $P(Z^{-1}(\{1\})) = P(Z^{-1}(\{0\})) = 0.5$, so let $A = Z^{-1}(\{1\}), B = A^c$, then $A := \{\phi, A, B, A \cup B\}$ is a σ -algebra, $\Omega = A \cup B, A \cap B = \phi$, and Z is A-measurable, so we have $Z = \mathbf{1}_A$.

Let $X_n: \Omega^n \to \{1, 2, ..., n\}$, for $\omega \in \Omega^n$, write $\omega = (\omega_k)$, then set $X_n((\omega_k)) = \sum_{k=1}^n Z(\omega_k)$.

Let P^n be the product measure on \mathcal{A}^n , i.e., $P^n = P \times P \times ... \times P$, n-times. Then $E_{P^n}[f] = \int_{\Omega^n} f \, dP^n = \int$. By Fubini's theorem, $E_{P^n}[\mathbf{1}_A] = \int_{\Omega} \left(... \left(\int_{\Omega} \mathbf{1}_A \, dP \right) ... \right) dP = \int_{\Omega} \left(... \int_{\Omega} \left(P(A) \right) dP ... \right) dP = P(A) \int_{\Omega} \left(... \int_{\Omega} \left(1 \right) dP ... \right) dP = P(A) \cdot 1 = P(A)$. Thus $E_{P^n}[X_n] = \sum_{k=1}^n E_{P^n}[Z] = \sum_{k=1}^n E_{P^n}[\mathbf{1}_A] = \sum_{k=1}^n P(A) = \frac{1}{2}n$

So, with $X(\omega', (\omega_k)) = \sum_{k=1}^{N(\omega')} Z(\omega_k)$, where $N(\omega') = \sum_{k=1}^4 k \mathbf{1}_{A_k}(\omega')$, $P(A_1) = 0.5$, $P(A_2) = 0.1$, $P(A_3) = 0.2$, $P(A_4) = 0.2$, and $\{A_k\}$ are independent events, $\Omega = \bigcup_k A_k$. So $E[X|N] = \sum_{k=1}^4 \frac{1}{P(A_k)} E[\mathbf{1}_{A_k} X] \mathbf{1}_{A_k}$. Now $E[\mathbf{1}_{A_k} X] = \int_{\Omega \times \Omega^4} \mathbf{1}_{A_k} X \, d(P \times P^4) = \int_{\Omega \times \Omega^4} \mathbf{1}_{A_k} (\omega') \sum_{k=1}^{N(\omega')} \mathbf{1}_{A}(\omega_k) \, d(P \times P^4)$

Problem 2

Consider the discrete stochastic process, $X : \mathbb{N} \times \Omega \to \mathbb{Z}$, where $X_0 > 0$, $X_{n+1} = 0$ if $X_n = 0$, and if $X_n > 0$, then $X_{n+1} = X_n \pm 1$ with each half probability. X_0 is a parameter of the process; it is not a random variable.

1) X is a non-negative martingale. First, we already have that X_0 is positive, suppose that $X_n > 0$, then by definition, $X_{n+1} = X_n \pm 1 > 0$, then and if $X_n = 0$ then $X_{n+1} = 0 \ge 0$, so by induction, $X_n(\omega) \ge 0$ for all $x \in \mathbb{N}$, $X_n(\omega) = |X_n(\omega)|$.

Problem 3

 $\begin{array}{lll} X: \, \mathbb{N} \times \Omega \to \mathbb{N}, \ \text{let} \ \mathbb{P}_k = (P_{k,i,j}), P_{k,i,j} = P(\{X_{k+1} = i\} | \{X_k = j\}), \ x_k = (x_{k,i}), x_{k,i} = P(\{X_k = i\}). \\ \text{Claim:} \ x_{k+1} = \mathbb{P}_k x_k, \ \text{so} \ x_{k+1,i} = \sum_j P_{k,i,j} x_{k,j}. \\ \text{Proof:} \ P_{k,i,j} = P(\{X_{k+1} = i\} | \{X_k = j\}) = \frac{P(\{X_{k+1} = i\} \cap \{X_k = j\})}{P(\{X_k = i\})}, \ \text{so} \ \sum_j P_{k,i,j} x_{k,j} = \sum_j \frac{P(\{X_{k+1} = i\} \cap \{X_k = j\})}{P(\{X_k = j\})} \cdot P(\{X_k = j\}) = \sum_j P(\{X_{k+1} = i\} \cap \{X_k = j\}), \\ \text{now} \ \{X_k = j_1\} \cap \{X_k = j_2\} = \phi \ \text{when} \ i_1 \neq j_2, \ \text{becasue inverse images commute with intersections, then} \\ \sum_j P_{k,i,j} x_{k,i} = P\left(\bigcup_j \left(\{X_{k+1} = i\} \cap \{X_k = j\}\right)\right) = P\left(\{X_{k+1} = i\} \cap \bigcup_j \{X_k = j\}\right), \ \text{by countable additivity.} \\ \text{Now}, \ \bigcup_{j \in \mathbb{N}} \{X_k = j\} = \Omega, \ \text{so} \ \sum_j P_{k,i,j} x_{k,i} = P\left(\{X_{k+1} = i\}\right) = x_{k+1}, \ \text{and the claim is proved.} \end{array}$

If $\Omega = \bigcup_k E_k$, $\{E_k\}$ is disjoint, $A, E_k \in \mathcal{U}$, then $\sum_k P(E_k|A) = \sum_k \frac{(P(E_k \cap A))}{P(A)} = \frac{1}{P(A)} P\left(\bigcup_k (E_k \cap A)\right) = \frac{1}{P(A)} P\left(A \cap \bigcup_k (E_k)\right) = \frac{1}{P(A)} P\left(A \cap \Omega\right) = 1$. Then, $X_k^{-1}(i), i \in \mathbb{N}$ generates a measurable disjoint partition of Ω , thus $\sum_{i \in \mathbb{N}} P_{k,i,j} = \sum_{i \in \mathbb{N}} P(\{X_{k+1} = i\} | \{X_k = j\}) = 1$. So the columns of \mathbb{P} are are normalized, i.e. they sum to one. Then, if x_k is normalized in the same sense, so $\sum_i x_i = 1$, and all $x_i \geq 0$, then $x_{k+1} = \mathbb{P}x_k$, $\sum_i x_{k+1,i} = \sum_i \sum_j P_{k,i,j} x_{k,j} = \sum_j \sum_i P_{k,i,j} x_{k,j} = \sum_j x_{k,j} \sum_i P_{k,i,j} = \sum_j x_{k,j} \cdot 1 = 1$, because

all pobabilities are non-negative, as are the entries in x_k , and clearly $x_{k+1,i} \ge 0$ for all i. This shows that $\mathbb P$ preserves normalization, we we'd expect.

Problem 4

Problem 5