CMPS 130: HW 1

Kevin Wang

February 5, 2019

Definition 1.1. An all-NFA N is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$ that accepts a string x if every possible state that N could be in after reading x is an accepting state.

Definition 1.2. A language \mathcal{L} is regular if there exists some DFA A such that $L(A) = \mathcal{L}^{1}$

Lemma 1.1 (Hopcroft Theorem 2.11). If $D = (Q_D, \Sigma, \delta_D, q_{0_D}, F_D)$ is the DFA constructed from NFA $N = (Q_N, \Sigma, \delta_N, q_{0_N}, F_N)$ by the subset construction, then L(D) = L(N)

Lemma 1.2 (Hopcroft Theorem 2.12). A language \mathcal{L} is accepted by some DFA if and only if \mathcal{L} is accepted by some NFA.

Theorem 1. All-NFAs recognize the class of regular languages.

Proof. To prove that all-NFAs recognize the class of regular languages, we must show:

- 1. Every all-NFA recognizes some regular language.
- 2. Every regular language is recognized by some all-NFA.

Let $N = (Q_N, \Sigma, \delta_N, q_{0_N}, F_N)$ be an all-NFA that recognizes some language L(N). If L(N) is regular, then there is a DFA $M = (Q_M, \Sigma, \delta_M, q_{0_M}, F_M)$ that recognizes some language L(N) such that L(M) = L(N) (Definition 1.2). We construct M as follows:²

- 1. $Q_M = 2^{Q_N}$ (set of all subsets of Q_N)
- 2. Σ is the same
- 3. For $S \subseteq Q_N$, $S \in Q_M$ and $\exists a \in \Sigma$: $\delta_M(S, a) = \bigcup_{r \in R} \text{ECLOSE}(r)$, where $R = \bigcup_{s \in S} \delta_N(s, a)$
- 4. $q_{0_M} = \text{ECLOSE}(q_{0_N}) \in Q_M$, where $q_{0_N} \in Q_N$
- 5. $F_M = \{S | S \in Q_M, S \subseteq F_N\}$

Let $x \in \Sigma^*$. Let $\hat{\delta}_N$ be the set of states N could be in after reading x. DFA M then reads x, ending at state $\hat{\delta}_M$.

By definition of an all-NFA (Definition 1.1), $x \in L(N)$ if and only if $\hat{\delta}_N(q_{0_N}, x) \subseteq F_N \implies x \in \mathcal{L}$. Thus, every all-NFA recognizes some regular language.

By the construction of M, $x \in L(M) = \mathcal{L}$ if and only if $\hat{\delta}_N(q_{0_N}, x) \in F_M \implies \hat{\delta}_N(q_{0_N}, x) \subseteq F_N \implies x \in L(N)$. Thus, every regular language is recognized by some all-NFA.

Therefore, all-NFAs recognize the class of regular languages.

¹Referenced lec2.pdf

²Referenced lec3.pdf

³Referenced lec4.pdf

Definition 2.1. A language \mathcal{L} is regular if there exists some DFA A such that $L(A) \iff \mathcal{L}^{A}$.

Theorem 2. Given a regular language \mathcal{L} over the alphabet Σ , we can define a language:

$$PREFIX(\mathcal{L}) = \{x | \exists w, xw \in \mathcal{L}\}$$

that is regular.

Proof. If \mathcal{L} is regular, then there is a DFA $D=(Q,\Sigma,\delta,q_0,F)$ such that $L(D)=\mathcal{L}$ (Definition 2.1). We will prove PREFIX(\mathcal{L}) is regular by constructing a DFA D' that accepts PREFIX(\mathcal{L}). DFA $D'=(Q',\Sigma,\delta',q'_0,F')$ is constructed as follows:

- 1. Q' = Q
- $2. \Sigma$
- 3. $\delta' = \delta$
- 4. $q_0' = q_0$
- 5. For $S \subseteq Q$ and $\exists x \in \Sigma^*, F' = \{S | \delta(s \in S, x) = f \in F\}$

We end up with a DFA D' that is very similar to DFA D with the exception of the set of accepting states F'. By construction of D', we determine based on F' that $x \in \text{PREFIX}(\mathcal{L})$ if $x \in \mathcal{L}$.

As the set of accepting states F' of D' is the set of prerequisite states for reaching $f \in F$ of D, we can determine that by definition of the language $\text{PREFIX}(\mathcal{L})$, containing all prefixes of strings in \mathcal{L} , $x \in \mathcal{L}$ if $x \in \text{PREFIX}(\mathcal{L})$.

Thus DFA D recognizes language PREFIX(\mathcal{L}), proving that it is regular (Definition 2.1)

⁴Referenced lec2.pdf

Theorem 3. All languages recognized by PFSAs are regular.

Proof. Let PFSA $P_k = (Q, \Sigma, \delta, q_0, F)$ where k is the number of pebbles initially at q_0 . Let DFA $D = (Q, \Sigma, \delta, q_0, F)$ accept some regular language L(D). We first observe that P_1 , a PFSA with 1 pebble, is equivalent to DFA D, as there is no non-deterministic choosing of a pebble to move. Thus, $L(P_1) = L(D)$ and thus $L(P_1)$ is regular.

Assume $L(P_k)$ is regular and accepted by some DFA $M = (Q, \Sigma, \delta, q_0, F)$. Observe that any input x accepted by a PFSA with k pebbles is also accepted by a PFSA with n > k pebbles (by keeping n - k pebbles at the start, q_0). Thus, we can conclude that $L(P_k) \subsetneq L(P_{k+1})$. We then construct a DFA M' by adding a path from each state in DFA M to a copy of DFA D, such that DFA M' becomes a fractal of D of scale k. Thus $L(P_{k+1})$ is regular.

R٦	induction,	all lan	ന്നാനെ	accented	hv	PFSAc 6	ro ro	milar		Г	٦
Ð٧	mauchon,	an ian	iguages a	accepted	IJΥ	FFSAS	пе ге	guiai.		L	_

Lemma 4.1 (Closure Under Complement). The complement of a regular language is regular.

Lemma 4.2 (Pumping Lemma for Regular Languages). Let \mathcal{L} be a regular language. There exists a constant n (which depends on \mathcal{L}) such that $\forall w \in \mathcal{L}$ such that $|w| \geq n$, we can break w into three strings, w = xyz such that:

- 1. $y \neq \epsilon$.
- $2. |xy| \leq n.$
- 3. For all $k \geq 0$, the string $xy^k z$ is also in \mathcal{L} .

Theorem 4.1. Let the alphabet $\Sigma = \{0,1\}$. The language \mathcal{L} – defined as the set of strings that are not of the form ss – is not regular.

Proof. Assume \mathcal{L} is regular. Let $\overline{\mathcal{L}}$ be the complement of language \mathcal{L} . We define this language as the set of strings that are exactly of the form ss. By the closure properties of regular languages – specifically Closure under Complement (Lemma 4.1) – $\overline{\mathcal{L}}$ must also be regular.

Let n be the number of states in $\overline{\mathcal{L}}$. Since $\overline{\mathcal{L}}$ is regular, the Pumping Lemma (Lemma 4.2) should hold. Let $w = 0^n 1^n 0^n 1^n$, satisfying $|w| = 4n \ge n$. Let w = xyz, where by the Pumping Lemma $|xy| \le n$. Therefore, y consists of only 0's where $y \ne \epsilon$.

Let k=0. The Pumping Lemma states that xy^kz is in $\overline{\mathcal{L}}$, if $\overline{\mathcal{L}}$ is regular.⁵ However, xz has 2n 1's since all the 1's of w are in z. But xz also has fewer than 2n 0's, because we lost the 0's of y. Since $y \neq \epsilon$ we know that there can be no more than 2n-1 0's among both x and z. Thus xz is not a part of $\overline{\mathcal{L}}$ contradicting our prior assumption of $\overline{\mathcal{L}}$'s regularity.

Having proven by contradiction that $\overline{\mathcal{L}}$ is not regular, this contradicts the Closure under Complement properties (Lemma 4.1) thus proving that the language \mathcal{L} , is not regular.

Theorem 4.2. Let the alphabet $\Sigma = \{0,1\}$. The language $C = \{1^i a | a \text{ has at most } i \text{ 1's, } i \geq 0\}$ is not regular.

Proof. Assume \mathcal{C} is regular. Let i=n be the number of states in \mathcal{C} . Since \mathcal{C} is regular, the Pumping Lemma (Lemma 4.2) should hold. Let $w=1^n0^n1^n$, satisfying $|w|=3n\geq n$. Let w=xyz, where by the Pumping Lemma $|xy|\leq n$. Therefore, y consists of only 1's where $y\neq \epsilon$.

Let k=0. The Pumping Lemma states that xy^kz is in \mathcal{C} , if \mathcal{C} is regular. As such, $xy \to x$ has at most n-1 1's since $y \neq \epsilon$. However, z still has n 1's since all the latter 1's of the string are in z. Hence, a=xz does not have at most i=n 1's. Thus xz is not a part of \mathcal{C} contradicting our prior assumption, proving that \mathcal{C} is not regular.

⁵Referenced Hopcroft 4.1

Lemma 5.1. A language \mathcal{L} is regular if and only if \mathcal{L} can be described by a regular expression.⁶

Theorem 5. Let $\Sigma = \{0,1\}$. Prove that language $\mathcal{B} = \{1^k y | y \text{ has at least } k \text{ 1's, } k \geq 1\}$ is regular.

Proof. We make the observation that any string in \mathcal{B} start with at least one 1 (when k = 1). By definition of the substring y, the string also includes at least one other 1. As such, let language $\mathcal{B}_1 = \{1^1 y | y \text{ has at least } 1 \text{ l's, } \}$. By construction, we note that $\mathcal{B}_1 \subset \mathcal{B}$ and thus any string w accepted by the language \mathcal{B}_1 is also accepted by \mathcal{B} . Thereby, we can construct a regular expression:

$$1^k (0^*1)^k \Sigma^* = 10^*1 \Sigma^*$$

that defines this language. By Lemma 5.1, language \mathcal{B}_1 is regular, and thus the base case is satisfied.

Let \mathcal{B}_k be a regular language where $\mathcal{B}_k \subset \mathcal{B}$.

$$\mathcal{B}_{k+1} = 1^{k+1} (0^* 1)^{k+1} \Sigma^*$$
$$= 11^k 0^* 1 (0^* 1)^k \Sigma^*$$

As such, we have:

$$\mathcal{B}_{1} = 10^{*}1\Sigma^{*}$$

$$\mathcal{B}_{2} = 110^{*}10^{*}1\Sigma^{*}$$

$$\mathcal{B}_{3} = 1110^{*}10^{*}10^{*}1\Sigma^{*}$$

$$\mathcal{B}_{4} = 11110^{*}10^{*}10^{*}10^{*}1\Sigma^{*}$$

$$\vdots$$

$$\mathcal{B}_{k} = 1^{k}(0^{*}1)^{k}\Sigma^{*}$$

$$\vdots$$

Thus, because there is a regular expression defining \mathcal{B} ($\forall k \geq 1$) and $\mathcal{B} = \bigcup_{k \geq 1} \mathcal{B}_k$, \mathcal{B} must be a regular language.

⁶Referenced lec5.pdf

Lemma 6.1 (Closure Under Concatenation). Given two regular languages \mathcal{L} and \mathcal{M} , the language $\mathcal{L} \cdot \mathcal{M}$ is also regular.

Theorem 6. Regular languages are closed under rotational closure, where the rotational closure of a regular language \mathcal{L} is defined as $RC(\mathcal{L}) = \{xy | yx \in \mathcal{L}\}.$

Proof. Let language $\mathcal{L} = \mathcal{X} \cdot \mathcal{Y}$ such that $x \in \mathcal{X}$, $y \in \mathcal{Y}$, and $xy \in \mathcal{L}$. As \mathcal{L} is known to be regular, then by the converse of Lemma 6.1, languages \mathcal{X} and \mathcal{Y} must also be regular.

The rotational closure of \mathcal{L} can thus be formed by the concatenation of \mathcal{Y} and \mathcal{X} :

$$RC(\mathcal{L}) = \{xy | yx \in \mathcal{L}\}$$
$$= \{xy | yx, y \in \mathcal{Y} \text{ and } x \in \mathcal{X}\}$$
$$= \mathcal{Y} \cdot \mathcal{X}$$

Thus by closure under concatenation (Lemma 6.1), $RC(\mathcal{L})$ is regular – proving that regular languages are closed under rotational closure.

Lemma 7.1 (Closure Under Concatenation). Given two regular languages \mathcal{L} and \mathcal{M} , the language $\mathcal{L} \cdot \mathcal{M}$ is also regular.

Lemma 7.2 (Closure Under Intersection). Given two regular languages \mathcal{L} and \mathcal{M} , the language $\mathcal{L} \cap \mathcal{M}$ is also regular.

Lemma 7.3 (Closure Under Difference). Given two regular languages \mathcal{L} and \mathcal{M} , the language $\mathcal{L} - \mathcal{M}$ is also regular.

Theorem 7. Given two regular languages \mathcal{L} and \mathcal{M} , the language $\mathcal{L} \ominus \mathcal{M}$ is also regular, where:

$$\mathcal{L} \ominus \mathcal{M} = \{x | x \in \mathcal{L} \text{ and } x \text{ does not contain any string of } \mathcal{M} \text{ as substring}\}$$

Proof. Let $\mathcal{L} \oplus \mathcal{M} = \{x | x \in \mathcal{L} \text{ and } x \text{ contains some string of } \mathcal{M} \text{ as substring} \}$. Observe this is equal to the expression $\mathcal{L} \cap (\Sigma^* \cdot \mathcal{M} \cdot \Sigma^*)$.

By definition,

$$\begin{split} \mathcal{L} \ominus \mathcal{M} &= \mathcal{L} - (\mathcal{L} \oplus \mathcal{M}) \\ &= \mathcal{L} - (\mathcal{L} \cap (\Sigma^* \cdot \mathcal{M} \cdot \Sigma^*)) \\ &= \mathcal{L} - (\Sigma^* \cdot \mathcal{M} \cdot \Sigma^*) \end{split}$$

Therefore by closure under concatenation, intersection, and difference (Lemmas 7.1, 7.2, and 7.3), $\mathcal{L} \ominus \mathcal{M}$ is regular – proving closure under substring difference.

⁷Wasn't sure if $\mathcal{L} \oplus \mathcal{M} = \overline{\mathcal{L} \oplus \mathcal{M}}$. Otherwise would've used Closure under Complement.