Tutorat mathématiques : TD7

Université François Rabelais

Département informatique de Blois

Mathématiques générales

Problème 1

On considère les matrices P et D appartenant à $\mathcal{M}_2(\mathbb{Z})$ telles que :

$$P = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \text{ et } D = \begin{pmatrix} 3 & 0 \\ 0 & -1 \end{pmatrix}$$

- 1. Calcul matriciel
 - (a) Montrer que P est inversible et calculer son inverse P^{-1} .
 - (b) Soit la matrice $A = P.D.P^{-1}$. Calculer A.
 - (c) Soit la propriété $P(n): \forall n \in \mathbb{N}, A^n = P.D^n.P^{-1}$. Démontrer que P(n) est vraie.
- 2. Soient les deux suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ de premier terme $u_0=1$ et $v_0=2$ et définies par récurrence telles que : $\begin{cases} u_{n+1} &= u_n + 2v_n \\ v_{n+1} &= 2u_n + v_n \end{cases}$
 - (a) On note $X_n = \begin{pmatrix} u_n \\ v_n \end{pmatrix}$. Traduire ces suites par un système matriciel. Quelle relation vérifie ce système?
 - (b) On pose $X_n = P.D^n.P^{-1} \binom{1}{2}$. Déterminer (u_n) et (v_n) en fonction de n.

Problème 2

On considère la matrice $A_m=\left(\begin{array}{ccc}-1&2&-1\\m&-1&1\\1&1&1\end{array}\right)$ où $m\in\mathbb{R}.$

- 1. Calculer $A_0 A_1$ et $A_0 A_1$
- 2. Écrire le système linéaire (S_m) d'écriture matricielle $A_m \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ m \\ 3m \end{pmatrix}$
- 3. Calculer $\det(A_m)$ puis donner $\det(A_0)$, $\det(2^t A_0)$, $\det(A_0^3)$.
- 4. Pour quelles valeurs de m la matrice A_m est-elle inversible?
- 5. Déterminer sans calcul l'ensemble des solutions (S_0) .
- 6. Résoudre (S_1) .

Problème 3

Soient $n \in \mathbb{N}^*$, $U = (1)_{1 \leq i,j \leq n}$ et $A \in \mathcal{M}_n(\mathbb{R})$. On note $\sigma(A)$ la somme des coefficients de A.

$$\sigma(A) = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij}$$

Exprimer U.A.U en fonction de $\sigma(A)$ et U.

Problème 4

Soient $a \in \mathbb{R}$ et $n \in \mathbb{N}^*$, on note Δ_n le déterminant suivant de taille $n \times n$ tel que :

$$\Delta_n = \begin{pmatrix} a & 0 & \cdots & 0 & 0 & n-1 \\ 0 & a & \cdots & 0 & 0 & n-2 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & a & 0 & 2 \\ 0 & 0 & \cdots & 0 & a & 1 \\ n-1 & n-2 & \cdots & 2 & 1 & a \end{pmatrix} \qquad n$$

1. Calculer Δ_n en fonction de Δ_{n-1} . On pourra penser à factoriser selon les colonnes.

2. Démontrer que :
$$\forall n \geq 2, \Delta_n = a^n - a^{n-2} \sum_{k=1}^{n-1} k^2$$

Problème 5

Les matrices stochastiques sont des structures très utilisées en informatique et en probabilités. Elles sont à la base des chaînes de Markov qui servent en particulier à modéliser des processus aléatoires complexes de manière très simple et forment ainsi des outils puissants pour l'étude de problèmes. Une matrice M est dite stochastique si et seulement si :

$$M \in \mathcal{M}_n([0,1]) \text{ et } \forall i \in [1,n], \sum_{j=1}^n m_{ij} = 1$$

C'est-à-dire que tous les coefficients m_{ij} de M appartiennent à [0,1] (en fait ces coefficients représentent des probabilités), et la somme des coefficients en ligne vaut 1. On note S_n l'ensemble des matrices stochastiques de taille n.

Soit $A \in \mathcal{S}_n$ et $B \in \mathcal{S}_n$. Montrer que $A \times B$ est une matrice stochastique.

Problème 6

Soient
$$A = \begin{pmatrix} 1 & 2 \\ 1 & -1 \end{pmatrix}$$
 et $B = \begin{pmatrix} 4 & 6 \\ 2 & 3 \end{pmatrix}$.

- 1. Calculer $A^2+2AB+B^2$ et $(A+B)^2$. Que peut-on constater ? Pourquoi ? Développer $(A+B)^2$, factoriser A^3-I_2 .
- 2. Calculer A^n pour tout $n \in \mathbb{N}$. En déduire que A est inversible et donner A^{-1} .
- 3. Déterminer $C_B = \{M \in \mathcal{M}_2(\mathbb{R}) | BM = MB\}.$
- 4. Déterminer $\mathcal{O}_{MB} = \{ M \in \mathcal{M}_2(\mathbb{R}) | MB = \mathcal{O}_2 \}.$