Ball Picking System

Capstone Design I: 1st Presentation

Contents

- 1. System Definition
- 2. Pick-up Design
- 3. Subsystem Design & Analysis
- 4. Progress Report
- 5. Conclusion & Future Plan

1. System Definition

- 2. Pick-up Design
- 3. Subsystem Design & Analysis
- 4. Progress Report
- 5. Conclusion & Future Plan

1. System Definition

2. Pick-up Design

- 2-1. Design Gathering
- 2-2. Design Comparing
- 2-3. Developing our Design
- 3. Subsystem Design & Analysis
- 4. Progress Report
- 5. Conclusion & Future Plan

2-1. Design Gathering

2-1. Design Gathering

3. Pickup with other structure

We needed evaluation criteria.

Overall Operation Speed		Robustness for Picking up		Energy Consumption
Short the time, higher the score!		Losing the ball is critical		Lower the temperature, higher the
Time taken to pick up the ball		Consider the accuracy of picking		score!
How many time does it stop in		Size of pick-up area		Mass & Inertia should be small
between pick up?				Needs very low torque
	Manufacture Cost		Control Difficulty	
	Cheap material, small volumeSimple shape for manufacturing		How many actuators do we need?	
			Numbers of Coordinate	
Low motor specification is better		Stability for all co	onditions	

Criteria

Good

Bad

<Comparing Method>

- 1. Draw a Criterial Line
- 2. Left side is Good, and right side is Bad.
- 3. List the methods for each criteria.

No need to stop for picking up the balls

Overall Operation Speed

- Short the time, higher the score!
- Time taken to pick up the ball
- How many time does it stop in between pick up?

Robustness for Picking up

- Consider the accuracy of picking
- Losing the ball is critical
- Range of pick-up area

Wide entrance: Higher opportunity

Meliod # | : Belt Mobs Mobs Move Move

Need very small torque

2-2. Design Comparing

Energy Consumption

Lower the temperature, higher the score!

- Mass & Inertia should be small
- Needs very low to rque

Large Inertia

Idea 1. Spring Enteronce

Sperior Reason Sperior only of the allow to allow the allow the allow to allow the allow the allow the allow to allow the al

2-2. Design Comparing

Manufacture Cost

- Cheap material, small volume
- Simple shape for manufacturing
- Low motor specification is better

Mrthod #2 Coil

Hard to manufacture

Control Difficulty

How many actuators do we need?

Numbers of Coordinate

Stability for all conditions

Needs only one actuator

Result of Pugh's Decision Matrix

#11 is the best method for picking up the balls

There are certain strengths and weakness.

Identified a need to eliminate the weaknesses by further development

2-3. Developing our Design

Our First 3D Prototype by Solidworks

2-3. Developing our Design

Problems

- 1. Requires rather high speed for the ball to reach to the top basket
- 2. Balls could bounce, leading to capture failure
- 3. Difficult to release the balls to the basket (Additional actuators needed)

2-3. Developing our Design

Rotate only when ball comes in

Our Second 3D Prototype by Solidworks

Non-actuator mechanism

Problems

- 1. Requires rather high speed for the ball to reach to the top basket
- 2. Balls could bounce, leading to capture failure
- 3. Difficult to release the balls to the basket (Additional actuators needed)

Solutions

- 1. No need to "throw" the balls upwards. Just "push" the balls behind when they enter the fan
- 2. Then, the balls just roll down along the slope
- 3. Non-actuator mechanism for ball release

Contact Basket

2-3. Developing our Design

< Opening Non-actuator stopper sequence>

- 1. As the car moves backwards, the stopper contacts with the basket.
- 2. The stopper is opened and the slope is formed towards the basket.
- 3. The balls roll down the slope.

Non-actuator mechanism

Our Third 3D Prototype by Solidworks

2-3. Developing our Design

<RPLIDAR location : L frame>

- Single height detection system
- The body can obscure the field of view.
- For wide angle detection

<Webcam Location : Same with RPLIDAR >

 By making the positions of Webcam, and RPLIDAR same, it is not necessary to perform additional calculation on position correction.

- 1. System Definition
- 2. Pick-up Design

3. Subsystem Design & Analysis

- Body part
- Heat Transfer
- Vibration Reduction
- ROS Integration
- 4. Progress Report
- 5. Conclusion & Future Plan

3-1. Body part

- To prevent body from being heavier → Reducing load for motor control
- Calculate slope which balls can't escape when mobile system brakes abruptly

3-1. Body part

- Experimented picking balls with physical prototype of the fan
- Need to experiment more accurately by motor

3-2. Heat Transfer

- Minimizing battery load
- Using less motors
- Making body much lighter by skeleton shape
- Maximizing ventilation
- Allowing air flow by skeleton shape
- Various methods to minimize heat
- Fin fan cooler, heat exchanger etc

3-3. Vibration Reduction

Cantilever beam

- Accelerate or brake abruptly
- Resonance between rotating wheels and RPLIDAR, webcam structure
- Design the structure avoiding resonance by changing natural frequency
- Tuned mass damper

3-4. ROS Integration

<SLAM>

<Navigation>

3-4. ROS Integration

*Capstone bot operation without xbox controller(self driving mode)

- 1. System Definition
- 2. Pick-up Design
- 3. Subsystem Design & Analysis
- 4. Progress Report
- 5. Conclusion & Future Plan

4. Progress Report(Solidworks)

4. Progress Report(LABVIEW)

- Connect My Rio and LABVIEW
- Code using acceleration sensor, LED and button
- · Control dynamixel motor with mechanum wheel

4. Progress Report(ROS)

4. Progress Report(Open CV)

Find parameter values by calibration

- 1. System Definition
- 2. Pick-up Design
- 3. Subsystem Design & Analysis
- 4. Progress Report
- 5. Conclusion & Future Plan

5. Conclusion & Future plan

Easy to pick and move balls quickly

- Able to pick up balls as it moves
- Non-actuator mechanism for releasing balls

Minimize battery load

- Using less motors
- Skeleton body for light weight

Maximize ventilation

Allowing air flow by skeleton body

Easy to manufacture

Simple structure

5. Conclusion & Future plan

- Solid Works: Complete dividing the whole design into sub parts
- LABVIEW: Calculate motor input to move mobile system
- ROS: Integrate data from RPLIDAR and webcam or XBOX
- Open CV: Detect the balls and distinguish their color
- Heat Transfer & Vibration Reduction : Begin after a prototype is tested