Johns Hopkins Engineering

Methods in Neurobiology

Experimental Approach to Nerve Regeneration in the CNS

Models to study nerve regeneration in the CNS

Animal models

Rats, mice (GEM)

Cats, dogs

Lower vertebrates (fish, frogs)

Invertebrates (C. Elegans)

Conditioning lesion paradigm

Models for Spinal Cord Injury

Co	ntusion	Co	mpression	Tr	ansection
•	The model is useful for neuroprotective mechanism study [114].		Simple and reliable method [116]. Suitable method to	•	To study specific pathway function and regeneration [34].
	Ideal injury model for studying pathology and secondary injury		study secondary injury mechanism [16].		Easy to trace the axona tract [34].
	mechanism [7]. Difficult method with high	•	Useful for cell transplantation therapy	•	Precise control over th injury.
	variability [115].		Difficult to control the		Least variability
•	Recommended for translational research.		variability between subjects.		between subjects.
			Suitable model for translational research [20].	•	neuroscience research

Strategies to improve nerve regeneration in the CNS

Enhancing intrinsic axon regenerative ability

Strategies to improve nerve regeneration in the CNS

Strategy	Target	Methods/Drugs	
Reactivating development	Degradation of ECM	chondroitinase-ABC	
Blocking Inhibitory guidance cues	Blocking Wnt/Ryk signaling	Gene therapy	
Delivery of neurotrophic factors	Increased neurogenesis	BDNF	
Cell replacement therapy	Fetal tissue or pluripotent stem cells	Surgery/injections	

References

Slide	Reference
2	Curcio M, Bradke F. Axon Regeneration in the Central Nervous System: Facing the Challenges from the Inside. <i>Annu Rev Cell Dev Biol.</i> 2018;34:495-521.
3	Yu, W-M., Chen, Z-L., Strickland, S. 2007 Peripheral Regeneration Annu. Rev. Neurosci. 30:209–33.
4	Ahmed RU, Alam M, Zheng YP. Experimental spinal cord injury and behavioral tests in laboratory rats. <i>Heliyon</i> . 2019;5(3):e01324. Published 2019 Mar 8
5	He Z, Jin Y. Intrinsic Control of Axon Regeneration. Neuron. 2016;90(3):437-451

