DEPARTMENT OF MATHEMATICS

Indian Institute of Technology Guwahati

MA101: Mathematics I, July - November, 2014

Tutorial Sheet: LA - 7

- 1. Examine whether the following maps $T:V\to W$ are linear transformations.
 - (a) $V = W = \mathbb{C}^2(\mathbb{C})$ and $T[z_1, z_2]^t = [\overline{z}_1, \overline{z}_2]^t$ for all $[z_1, z_2]^t \in \mathbb{C}^2$.
 - (b) $V = W = M_n(\mathbb{R})$ and fix $B \in M_n(\mathbb{R})$. Consider T(A) = AB BA for all $A \in V$.
- 2. Let $T: V \to V$ be a linear transformation such that $T \circ T = I$ and let $\mathbf{v} \in V$.
 - (a) Show that $\{\mathbf{v}, T(\mathbf{v})\}$ is linearly dependent if and only if $T(\mathbf{v}) = \pm \mathbf{v}$.
 - (b) Give an example of such a linear transformation with $V = \mathbb{R}^2$.
- 3. Find bases for the range space and the null space of the linear transformation $T: M_2(\mathbb{R}) \to M_2(\mathbb{R})$ defined by T(A) = AB BA for all $A \in M_2(\mathbb{R})$, where $B = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$. Hence find the rank and the nullity of T.
- 4. Let V and W be two finite-dimensional vector spaces and let $T:V\to W$ be a linear transformation. Show that
 - (a) if $\dim(V) < \dim(W)$ then T is not onto; and
 - (b) if $\dim(V) > \dim(W)$ then T is not one-one.
- 5. Let T be a linear transformation on a vector space V and let dim V = n. If

$$T^{n-1}(\mathbf{x}) \neq \mathbf{0}$$
 but $T^n(\mathbf{x}) = \mathbf{0}$ for some $\mathbf{x} \in V$,

then show that the set $\{\mathbf{x}, T(\mathbf{x}), \dots, T^{n-1}(\mathbf{x})\}$ is a basis for V. Also, find the matrix representation of T with respect to this basis.

6. Consider the linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^2$, defined by

$$T[x, y, z]^t = [2x + 3y - z, 4x - y + 2z]^t$$
 for all $[x, y, z]^t \in \mathbb{R}^3$.

Find $[T]_{C \leftarrow B}$, where $B = \{[1, 1, 0]^t, [1, 2, 3]^t, [1, 3, 5]^t\}$ and $C = \{[1, 2]^t, [2, 3]^t\}$.

7. Let $T: \mathbb{R}^n \to \mathbb{R}^n$ be a linear transformation and let $A = [a_{ij}]$ be the matrix of T with respect to an orthonormal basis $B = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ of \mathbb{R}^n . Show that $a_{ij} = \mathbf{v}_i.(T\mathbf{v}_j)$ for all i, j.

DEPARTMENT OF MATHEMATICS

Indian Institute of Technology Guwahati

MA101: Mathematics I, July - November, 2014

Tutorial Sheet: LA - 7

- 1. Examine whether the following maps $T: V \to W$ are linear transformations.
 - (a) $V = W = \mathbb{C}^2(\mathbb{C})$ and $T[z_1, z_2]^t = [\overline{z}_1, \overline{z}_2]^t$ for all $[z_1, z_2]^t \in \mathbb{C}^2$.
 - (b) $V = W = M_n(\mathbb{R})$ and fix $B \in M_n(\mathbb{R})$. Consider T(A) = AB BA for all $A \in V$.

Solution:

(a) T is not a linear transformation, as

$$\begin{bmatrix} -i \\ 0 \end{bmatrix} = T\left(\begin{bmatrix} i \\ 0 \end{bmatrix} \right) = T\left(i \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right) \neq iT\left(\begin{bmatrix} 1 \\ 0 \end{bmatrix} \right) = \begin{bmatrix} i \\ 0 \end{bmatrix}.$$

(b) Let $X, Y \in M_n(\mathbb{R})$ and $a, b \in \mathbb{R}$. We have

$$T(aX + bY) = (aX + bY)B - B(aX + bY)$$
$$= a(XB - BX) + b(YB - BY)$$
$$= aT(X) + bT(Y).$$

Hence T is a linear transformation.

2. Let $T: V \to V$ be a linear transformation such that $T \circ T = I$ and let $\mathbf{v} \in V$.

- (a) Show that $\{\mathbf{v}, T(\mathbf{v})\}$ is linearly dependent if and only if $T(\mathbf{v}) = \pm \mathbf{v}$.
- (b) Give an example of such a linear transformation with $V = \mathbb{R}^2$.

Solution:

(a) If $T(\mathbf{v}) = \pm \mathbf{v}$, then it is clear that $\{\mathbf{v}, T(\mathbf{v})\}$ is linearly dependent. Conversely, suppose that $\{\mathbf{v}, T(\mathbf{v})\}$ is linearly dependent. If $\mathbf{v} = \mathbf{0}$ then clearly $T(\mathbf{v}) = \mathbf{0}$

 $\pm \mathbf{v}$. If $\mathbf{v} \neq \mathbf{0}$, then $T(\mathbf{v}) = a\mathbf{v}$ for some $a \in \mathbb{F}$. We have

$$T(\mathbf{v}) = a\mathbf{v} \Rightarrow T(T(\mathbf{v})) = T(a\mathbf{v}) \Rightarrow T^2(\mathbf{v}) = aT(\mathbf{v})$$

 $\Rightarrow \mathbf{v} = a^2\mathbf{v}$
 $\Rightarrow (1 - a^2)\mathbf{v} = \mathbf{0}$
 $\Rightarrow 1 - a^2 = 0$, since $\mathbf{v} \neq \mathbf{0}$
 $\Rightarrow a = \pm 1$
 $\Rightarrow T(\mathbf{v}) = \pm \mathbf{v}$.

(b) Consider $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined by $T([x,y]^t) = [-x,-y]^t$ for all $[x,y]^t \in \mathbb{R}^2$.

3. Find bases for the range space and the null space of the linear transformation $T: M_2(\mathbb{R}) \to M_2(\mathbb{R})$ defined by T(A) = AB - BA for all $A \in M_2(\mathbb{R})$, where $B = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$. Hence find the rank and the nullity of T.

Solution: Let $A = \begin{bmatrix} x & y \\ z & w \end{bmatrix} \in \ker(T)$ (the null space of T). Then we have

$$T(A) = \mathbf{O} \Rightarrow AB - BA = \mathbf{O}$$

$$\Rightarrow \begin{bmatrix} x & y \\ z & w \end{bmatrix} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} - \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} x & y \\ z & w \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} z - y & w - x \\ x - w & y - z \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$\Rightarrow z - y = 0, w - x = 0, x - w = 0, y - z = 0$$

$$\Rightarrow y = z, x = w.$$

Thus $A = \begin{bmatrix} x & y \\ z & w \end{bmatrix} = \begin{bmatrix} x & y \\ y & x \end{bmatrix} = x \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + y \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$. Also, the set $\mathcal{B} = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \right\}$ is linearly independent. Hence \mathcal{B} is a basis for $\ker(T)$.

Now let $X \in \text{range}(T)$. Then X = T(A) = AB - BA, for some $A = \begin{bmatrix} x & y \\ z & w \end{bmatrix} \in M_2(\mathbb{R})$. We have

$$X = AB - BA = \begin{bmatrix} z - y & w - x \\ x - w & y - z \end{bmatrix} = (z - y) \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} + (w - x) \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}.$$

Also, the set $C = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \right\}$ is linearly independent. Hence C is a basis for range(T).

We see that $\operatorname{nullity}(T) = 2$ and $\operatorname{rank}(T) = 2$.

- 4. Let V and W be two finite-dimensional vector spaces and let $T:V\to W$ be a linear transformation. Show that
 - (a) if $\dim(V) < \dim(W)$ then T is not onto; and
 - (b) if $\dim(V) > \dim(W)$ then T is not one-one.

Solution: Let $\dim(V) = n$ and $\dim(W) = m$.

- (a) Let T be onto. Then we have $\operatorname{range}(T) = W$, and so $\operatorname{rank}(T) = \dim(W) = m$. We have $\operatorname{rank}(T) + \operatorname{nullity}(T) = n \Rightarrow \operatorname{nullity}(T) = n m \ge 0 \Rightarrow n \ge m$.
- (b) Let T be one-one. Then we have $\ker(T)=\{\mathbf{0}\}$, and so $\operatorname{nullity}(T)=0$. We have $\operatorname{rank}(T)+\operatorname{nullity}(T)=n\Rightarrow n=\operatorname{rank}(T)\leq \dim(W)=m.$

5. Let T be a linear transformation on a vector space V and let dim V = n. If

$$T^{n-1}(\mathbf{x}) \neq \mathbf{0}$$
 but $T^n(\mathbf{x}) = \mathbf{0}$ for some $\mathbf{x} \in V$,

then show that the set $\{\mathbf{x}, T(\mathbf{x}), \dots, T^{n-1}(\mathbf{x})\}$ is a basis for V. Also, find the matrix representation of T with respect to this basis.

Solution: Let $a_1\mathbf{x} + a_2T(\mathbf{x}) + \ldots + a_nT^{n-1}(\mathbf{x}) = \mathbf{0}$. Applying T^k on both sides of this equation, successively for $k = n - 1, \ldots, 2, 1$, we find that $a_1 = a_2 = \ldots = a_{n-1} = a_n = 0$. Hence the vectors $\mathbf{x}, T(\mathbf{x}), \ldots, T^{n-1}(\mathbf{x})$ are linearly independent.

We have

$$T(\mathbf{x}) = 0\mathbf{x} + T(\mathbf{x}) + 0T^{2}(\mathbf{x}) + \dots + 0T^{n-1}(\mathbf{x})$$

$$T(T(\mathbf{x})) = 0\mathbf{x} + 0T(\mathbf{x}) + T^{2}(\mathbf{x}) + \dots + 0T^{n-1}(\mathbf{x})$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$T(T^{n-2}(\mathbf{x})) = 0\mathbf{x} + 0T(\mathbf{x}) + 0T^{2}(\mathbf{x}) + \dots + T^{n-1}(\mathbf{x})$$

$$T(T^{n-1}(\mathbf{x})) = 0\mathbf{x} + 0T(\mathbf{x}) + 0T^{2}(\mathbf{x}) + \dots + 0T^{n-1}(\mathbf{x}).$$

Hence the required matrix is $[a_{ij}]$, where

$$a_{ij} = \begin{cases} 1 & \text{if } i = j+1, \\ 0 & \text{otherwise.} \end{cases}$$

6. Consider the linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^2$, defined by

$$T[x, y, z]^t = [2x + 3y - z, 4x - y + 2z]^t$$
 for all $[x, y, z]^t \in \mathbb{R}^3$.

Find $[T]_{C \leftarrow B}$, where $B = \{[1, 1, 0]^t, [1, 2, 3]^t, [1, 3, 5]^t\}$ and $C = \{[1, 2]^t, [2, 3]^t\}$.

Solution: We have

$$T([1,1,0]^t) = [5,3]^t = -9[1,2]^t + 7[2,3]^t$$

$$T([1,2,3]^t) = [5,8]^t = [1,2]^t + 2[2,3]^t$$

$$T([1,3,5]^t) = [6,11]^t = 4[1,2]^t + [2,3]^t.$$

Hence

$$[T]_{C \leftarrow B} = [[T([1, 1, 0]^t)]_C, [T([1, 2, 3]^t)]_C, [T([1, 3, 5]^t)]_C] = \begin{bmatrix} -9 & 1 & 4 \\ 7 & 2 & 1 \end{bmatrix}.$$

7. Let $T: \mathbb{R}^n \to \mathbb{R}^n$ be a linear transformation and let $A = [a_{ij}]$ be the matrix of T with respect to an orthonormal basis $B = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ of \mathbb{R}^n . Show that $a_{ij} = \mathbf{v}_i.(T\mathbf{v}_j)$ for all i, j.

Solution: For $1 \le j \le n$, we have

$$T\mathbf{v}_{j} = a_{1j}\mathbf{v}_{1} + a_{2j}\mathbf{v}_{2} + \dots + a_{ij}\mathbf{v}_{i} + \dots + a_{nj}\mathbf{v}_{n}$$

$$\Rightarrow \mathbf{v}_{i}.(T\mathbf{v}_{j}) = \mathbf{v}_{i}.(a_{1j}\mathbf{v}_{1} + a_{2j}\mathbf{v}_{2} + \dots + a_{ij}\mathbf{v}_{i} + \dots + a_{nj}\mathbf{v}_{n}, \quad (1 \leq i \leq n)$$

$$\Rightarrow \mathbf{v}_{i}.(T\mathbf{v}_{j}) = a_{1j}(\mathbf{v}_{i}.\mathbf{v}_{1}) + a_{2j}(\mathbf{v}_{i}.\mathbf{v}_{2}) + \dots + a_{ij}(\mathbf{v}_{i}.\mathbf{v}_{i}) + \dots + a_{nj}(\mathbf{v}_{i}.\mathbf{v}_{n})$$

$$\Rightarrow \mathbf{v}_{i}.(T\mathbf{v}_{j}) = a_{ij}.$$