STA 6448 Homework 1

Due January 25

20 pts for each problem below (in total, 100pts):

1. Suppose random variable $X \ge 0$ admits a moment generating function in an interval near zero. Given any $\delta > 0$, show that

$$\inf_{k=0,1,2,\dots} \frac{\mathbb{E}[|X|^k]}{\delta^k} \le \inf_{\lambda>0} \frac{\mathbb{E}[e^{\lambda X}]}{e^{\lambda \delta}}.$$

Consequently, an optimized bound based on polynomial moments is always at least as good as the Chernoff upper bound.

- **2.** Assume X to be a zero-mean random variable. Show the following statements are equivalent. Therefore, they provide equivalent characterizations of sub-exponential random variables.
 - a. There are nonnegative numbers (ν^2, b) such that

$$\mathbb{E}[e^{\lambda X}] \le e^{\frac{\lambda^2 \nu^2}{2}} \quad \text{for all } |\lambda| \le \frac{1}{b}.$$

- b. There is some positive number c_0 , such that $\mathbb{E}[e^{\lambda X}] < \infty$ for all $|\lambda| \leq c_0$.
- c. There are constants $c_1, c_2 > 0$ such that

$$\mathbb{P}[|X| \ge t] \le c_1 e^{-c_2 t} \quad \text{for all } t > 0.$$

- 3. Prove the following statements concerning properties of the sub-Gaussian maxima.
 - a. Suppose X_i are i.i.d. sequence of $\mathcal{N}(0, \sigma^2)$. Then

$$\lim_{n \to \infty} \frac{\mathbb{E}[\max_{i=1,\dots,n} |X_i|]}{\sqrt{2\sigma^2 \log n}} = 1.$$

b. Let X_i be a sequence of zero-mean sub-Gaussian variables with parameter σ^2 (no independence assumptions are needed). Then

$$\mathbb{E}[\max_{i=1,\dots,n} X_i] \le \sqrt{2\sigma^2 \log n} \quad \text{for all } n \ge 1.$$

(Hint: Apply Jensen's inequality and the convexity of the exponential function.) Consequently, the upper bound $\sqrt{2\sigma^2 \log n}$ is sharp for the sub-Gaussian maxima.

4. Let X_1, \ldots, X_n be i.i.d. samples of random variable with density f on the real line. A standard estimator of f is the kernel density estimator

$$\widehat{f}_n = \frac{1}{nh} \sum_{i=1}^n K\left(\frac{x - X_i}{h}\right),$$

where $K: \mathbb{R} \to [0, \infty)$ is a kernel function satisfying $\int_{-\infty}^{\infty} K(t) dt = 1$, and h is a bandwidth parameter. Suppose we choose the loss function as the L^1 norm $\|\widehat{f} - f\|_1 = \int_{-\infty}^{\infty} |\widehat{f}(t) - f(t)| dt$. Prove that

$$\mathbb{P}[\|\widehat{f} - f\|_1 \ge \mathbb{E}[\|\widehat{f} - f\|_1] + \delta] \le e^{-n\delta^2/8} \quad \text{for all } \delta > 0.$$

- **5.** Suppose X_1 and X_2 are zero-mean sub-Gaussian variables with parameters σ_1^2 and σ_2^2 respectively.
 - a. If X_1 and X_2 are independent, show that $X_1 + X_2$ is sub-Gaussian with parameter $\sigma_1^2 + \sigma_2^2$.
 - b. Show that in general (without the independence assumption), $X_1 + X_2$ is sub-Gaussian with parameter $4\sigma_1^2 + 4\sigma_2^2$.
 - c. If X_1 and X_2 are independent, show that X_1X_2 is sub-exponential with parameters $(2\sigma_1^2\sigma_2^2, \frac{1}{\sqrt{2}\sigma_2\sigma_2})$.