$\begin{array}{c} {\rm ISE~417:~Nonlinear~Optimization} \\ {\rm FINAL~PROJECT~REPORT} \end{array}$

Xi He

A survey on some nonlinear programming algorithms

Contents

Ta	able of Contents	ii
Li	ist of Tables	iii
Li	ist of Figures	iv
1	Introduction	1
2	Fundamentals of Unconstrained Optimization	3
3	Algorithm Descriptions I: Flexible Step Method 3.1 Steepest Descent and Newton method 3.2 Line Search Methods 3.2.1 Wolfe Conditions 3.2.2 Backtracking Line Search 3.3 Quasi-newton method	6 7 7 9 10
4	Algorithm Descriptions II: Restricted Step Methods.4.1 Trust Region Method4.2 Conjugate Gradient Method4.3 Trust Region Subproblem with CG Method	12 12 13 14
5	Numerical Results	16
6	Conclusion and Experience	19
\mathbf{B}^{i}	ibliography	20

List of Tables

5.1	Default Parameter Set	16
5.2	Rosenbrock, with initial 0e	17
5.3	Genhumps, with initial e	17
5.4	Quadratic, with initial 0e	18
5.5	Leastsquares, with initial $(0,0,0,1)^T$	18

List of Figures

2.1	Global minimum and Local minimum	•	•	•		•	•	•	•		•	•	•	•		 •	4
3.1	Sufficient decrease condition									 							8
3.2	Wolfe curvature condition																8

Introduction

This project concerns the practical implementation of several classical optimization algorithms in the context of unconstrained nonlinear problems. By choosing proper parameter set and delicate implementation, we intend to achieve economy of computation or the solution of such problems. With respect to several test problems, we compare the various performance of each algorithms with different parameters setup. It also might be a reasonable instruction on deciding which algorithm should be applied when faced a new problem.

At the first part of this project, we study several algorithms on solving unconstrained nonlinear optimization problems, such as steepest descent method, newton method and BFGS method with two kinds of linear search strategy: backtrack line search method and wolfe line search method. Trust region method is also argued with two similar approaches to solve trust region subproblem: conjugate gradient method and conjugate gradient method with SR1 Hessian matrix update method¹. Throughout the introduction of each algorithm, we also list convergence and complexity issues, however, one should note that we state some correct conclusions without rigorous proof.

In the latter part of this project, some detailed implementation concerns are discussed with respect to different problems and algorithms, including practical parameter set choosing, tricks on attaining economy computation and also some difficulties with respect to implementation. Results on numerical experiment are shown to clearly compare the performance of each algorithm with different parameters on each problem. Also, some analysis of the numerical result are presented.

The structure of this project report is as follows. Chapter 2 includes relevant background on unconstrained optimization problems which forms the basis of the discussions in later chapters. In Chapter 3, after showing the very basic two descent directions we used in implementation, we discuss two kinds of linear search strategy. And then we present two kinds of quasi-newton method and show the global convergence results when applying the two line search method mentioned before. We introduce in Chapter 4 about trust region algorithms and conjugate gradient method with is proposed by solving the trust region subproblems. SR1 update which is stated in Chapter 3 will be reconsidered as a approach to solving trust region subproblem when combining with conjugate gradient method. Finally, in Chapter 5, we present, analyze and provide numerical results with respect to the algorithms we discuss in above chapters on some test problems. Brief summary of this project and some general conclusion will be stated in the Chapter 6.

In this report, we use the following notation. Let f(x) be original nonlinear, smooth and differentiable objective function we want to minimize and x be decision variables. We also denote gradient function of f(x) by $g(x) = \nabla f(x)$ and denote $H(x) = \nabla^2 f(x)$ and B(x) by the Hessian

¹Most of figures and algorithms pseudocode come from [1].

and approximation Hessian matrix of f(x) at point x. With respect to algorithms, we use d(x) to be an acceptable descent directions at point x and $\alpha(x)$ to be an acceptable step-size along d(x). At the last, $H \succ (\succeq) 0$ represents that the matrix is (semi) positive definite.

Fundamentals of Unconstrained Optimization

We frame this report in the context of the unconstrained optimization problem

$$\min_{x} \quad f(x), \tag{2.1}$$

where $x \in \mathbb{R}^n$ is a real vector with $n \ge 1$ components $f : \mathbb{R}^n \to \mathbb{R}$ is a smooth function. Generally, we intend to find out a global minimizer of f, a point where the function attains its least value in whole space. We state a formal definition as

Definition 2.1. A point x^* is a global minimizer if $f(x^*) \leq f(x)$ for all x.

Note that it can be very difficult to find the global minimizer, since our knowledge of f is usually only local. Actually, most algorithms are able to find only a local minimizer, a point that achieves the smallest value of f in its neighborhood.

Definition 2.2. A point x^* is a local minimizer if there is a neighborhood \mathcal{N} of x^* such that $f(x^*) \leq f(x)$ for $x \in \mathcal{N}$.

As it is shown in Figure 2.1, in general case, a function f may have a lot of local minimizers but just one global minimizer. Most algorithms is sensitive on the initial point we chose, which means, by choosing different initial point to run those algorithms, we may get different local minimizer.

Figure 2.1: Global minimum and Local minimum

A special case we should concern is that of convex functions, every local minimizer is also a global minimizer. We state formal definition of convex as following

Definition 2.3. A function $f: \mathbb{R}^n \to \mathbb{R}$ is convex if for all $\{x_1, x_2\} \in \mathbb{R}^n$ and $\alpha \in [0, 1]$ we have

$$f(\alpha x_1 + (1 - \alpha)x_2) \le \alpha f(x_1) + (1 - \alpha)f(x_2). \tag{2.2}$$

Therefore, to solve a unconstrained optimization with respect to a convex objective function, we have conclusion that

Theorem 2.4. When f is convex, any local minimizer x^* is a global minimizer of f. If in addition f is differentiable, then any stationary point x^* is a global minimizer of f.

When turns to general case, i.e., objective function is not assuming to be convex but still smooth, we have following efficient and practical ways to identify local minima. To do it, we need have knowledge of the gradient $g(x^*)$ and the Hessian $H(x^*)$ of function f at point x^* .

Theorem 2.5. (First-Order Necessary Conditions) If x^* is a local minimizer and f is continuously differentiable in an open neighborhood of x^* , then $g(x^*) = 0$.

We call x^* a stationary point if $g(x^*) = 0$. According to Theorem 2.5, any local minimizer must be a stationary point. When consider Hessian matrix, we have the following conditions

Theorem 2.6. (Second-Order Necessary Conditions) If x^* is a local minimizer of f and H is continuous in an open neighborhood of x^* , then $g(x^*) = 0$ and $H(x^*)$ is positive semidefinite.

Now, we state sufficient conditions, which are conditions on the derivatives of f at the point x^* that guarantee that x^* is a local minimizer.

Theorem 2.7. (Second-Order Sufficient Conditions) Suppose that H is continuous in an open neighborhood of x^* and that $g(x^*) = 0$ and $H(x^*)$ is positive definite. Then x^* is a strict local minimizer of f.

Algorithm Descriptions I: Flexible Step Method

In flexible step method, general framework of algorithms is as following

Algorithm 1 General Algorithm of Flexible Step Method

Require: Initial point x_0 and k := 0.

- 1: repeat
- 2: Derive descent direction d_k satisfying $g(x_k)^T d_k < 0$
- 3: Compute step-size α_k alone descent direction d_k by line search method
- 4: Update $x_{k+1} = x_k + \alpha_k d_k$, set k = k + 1
- 5: until Termination condition satisfied.

3.1 Steepest Descent and Newton method

Steepest descent direction and newton descent direction are two natural ways to get descent direction. In terms of steepest descent direction, due to ||g(x)|| > 0 when x is not a stationary point, we can simply choose

$$d = -q(x), (3.1)$$

where we have $g(x)^{T}d = -\|g(x)\|^{2} < 0$.

For newton descent method, first we note that if H(x) is a positive definite matrix, we have $H(x)^{-1}$ is positive definite and furthermore $d^T H(x)^{-1} d > 0$, whenever $d \neq 0$. By considering that since $g(x) \neq 0$ when x is not a stationary point, we have

$$g(x)^T H(x)^{-1} g(x) > 0,$$
 (3.2)

therefore, we can select

$$d = -H(x)^{-1}g(x) (3.3)$$

to be one possible descent direction.

Besides, when H(x) is not positive definite, we can perturb it to be positive definite by add positive number to its diagonal. Actually, we use the following procedure to implement this perturbation.

Algorithm 2 Perturbation for non-positive definite matrix

Require: A non-positive definite matrix P and a same-size identity matrix I

- 1: **if** $\min \operatorname{eig}(P) < 0.1$ **then**
- 2: $P = P + (1 \min \operatorname{eig}(P))I$
- 3: end if
- 4: Output a positive definite matrix P

Note that by using this approach, we guarantee the perturbed matrix P to be positive definite and its minimal eigenvalue is at least greater than 0.9, which suppose to be well-defined matrix when solving the linear system (3.3).

After we pick up a descent direction, we need find a proper step-size, which is what we called line search method in the next section.

3.2 Line Search Methods

Always, step-size are chosen to give a sufficient reduction of f, but at the same time, we prefer to spend less time to choose a proper step-size. At current point x_k with a descent direction d_k , we let

$$\phi(\alpha) = f(x_k + \alpha d_k), \alpha > 0, \tag{3.4}$$

we may say the ideal choice is to find a global minimizer α^* of the one-dimensional function $\phi(\alpha)$. However, it is too costly to find the global minimizer. Therefore, we apply some more practical strategies that calculating step in an inexact approach. In this project, we discuss two kinds of line search method as following.

3.2.1 Wolfe Conditions

It contain two parts when find a proper step-size by wolfe conditions. Firstly, we should choose a step-size that provide sufficient reduction. We use the following condition to guarantee it

$$f(x_k + \alpha d_k) \le f(x_k) + c_1 \alpha \nabla f_k^T d_k, \tag{3.5}$$

which $c_1 \in (0,1)$ is a parameter. By noting that $\nabla f_k^T d_k < 0$ since d_k is a descent direction, we say that (3.5) is sufficient decrease condition. We show geometry explanation in Figure 3.1.

Figure 3.1: Sufficient decrease condition

Except this condition, we make other condition called curvature condition to get rid of unacceptably short steps

$$\nabla f(x_k + \alpha_k p_k)^T \ge c_2 \nabla f_k^T p_k, \tag{3.6}$$

where $c_2 \in (c_1, 1)$ is another parameter. Geometry illustration is shown in Figure 3.2.

Figure 3.2: Wolfe curvature condition

Practically, we implement wolfe condition as following

Algorithm 3 Wolfe Conditions

```
Require: Initial step-size \alpha_0 > 0, \alpha_1 > 0 and \alpha_{\text{max}}. Set i := 1.
  1: \alpha = \bar{\alpha}
  2: repeat
          if \phi(\alpha_i) > \phi(0) + c_1 \alpha_i \phi'(0) or [\phi(\alpha_i) \ge \phi(\alpha_{i-1}) \text{ and } i > 1] then
             \alpha_* \leftarrow \mathbf{zoom}(\alpha_{i-1}, \alpha_i) and stop;
  4:
          end if
  5:
         if |\phi'(\alpha_i)| \leq -c_2\phi'(0) then
  6:
  7:
             set \alpha_* \leftarrow a_i and stop;
          end if
  8:
         if \phi'(\alpha_i) \geq 0 then
 9:
10:
             set \alpha_* \leftarrow \mathbf{zoom}(\alpha_i, \alpha_{i-1}) and stop;
11:
          end if
          Choose \alpha_{i+1} \in (\alpha_i, \alpha_{\max})
12:
          i \leftarrow i + 1
13:
14: until
15: Terminate with \alpha_k = \alpha
```

Here zoom function is proposed to find a proper step-size in an interval.

Algorithm 4 Wolfe Conditions (zoom function)

```
Require: Initial step-size \alpha_{low} > 0 and \alpha_{high} > 0
  1: repeat
          Choose \alpha_j between \alpha_{low} and \alpha_{high}.
  2:
          if \phi(\alpha_i) > \phi(0) + c_1 \alpha_i \phi'(0) or \phi(\alpha_i) \ge \phi(\alpha_{low}) then
  3:
  4:
              \alpha_{high} \leftarrow \alpha_j
          else
  5:
             if |\phi'(\alpha_j)| \leq -c_2\phi'(0) then
  6:
  7:
                 set \alpha_* \leftarrow a_i and stop
             end if
  8:
             if \phi'(\alpha_i)(\alpha_{high} - \alpha_{low}) \geq 0 then
  9:
                 set \alpha_{high} \leftarrow \alpha_{low}
10:
             end if
11:
12:
             \alpha_{low} \leftarrow \alpha_j
13:
          end if
14: until
```

3.2.2 Backtracking Line Search

Another popular approach is to drop curvature condition (3.6) by appropriately choosing candidate step lengths, which we called backtracking strategy.

Algorithm 5 Backtracking Line Search

Require: Initial step-size $\bar{\alpha} > 0$ and shrinking parameter $\rho \in (0,1)$

- 1: $\alpha = \bar{\alpha}$
- 2: repeat
- 3: $\alpha = \rho \alpha$
- 4: **until** $f(x_k + \alpha p_k) \le f(x_k) + c\alpha \nabla f_k^T p_k$
- 5: Terminate with $\alpha_k = \alpha$

Global convergence result for line search methods with respect to steepest descent method is given in the appendix.

3.3 Quasi-newton method

Another approach to derive descent direction is to use Quasi-newton method, which only depends on only first derivatives. Actually, what we do in Quasi-newton method is to approximate Hessian matrix by first derivatives instead of computing accurate Hessian matrix directly, which is sometimes computational expensive.

In this project, we use BFGS method to update Hessian matrix with flexible step, which is one type of Quasi-newton method.

Let B_k be BFGS approximate Hessian matrix at point current point x_k . And then we can derive descent direction from

$$B_k d_k = -\nabla f(x_k). \tag{3.7}$$

Furthermore, we have $x_{k+1} = x_k + a_k d_k$, where a_k is a proper step-size derived from line search method in section 3.2. By defining

$$s_k = x_{k+1} - x_k \text{ and } y_k = \nabla f_{k+1} - \nabla f_k,$$
 (3.8)

we have

$$B_{k+1} = B_k - \frac{B_k s_k s_k^T B_k}{s_k^T B_k s_k} + \frac{y_k y_k^T}{y_k^T s_k},$$
(3.9)

where $-\frac{B_k s_k s_k^T B_k}{s_k^T B_k s_k} + \frac{y_k y_k^T}{y_k^T s_k}$ is a rank two matrix which only depends on first derivatives. Notice that to derive descent direction by (3.7), we need guarantee B_k to be positive definite, luckily, as long as $B_k > 0$ and the curvature condition

$$s_k^T y_k > 0 (3.10)$$

is satisfied, then we have B_{k+1} is positive definite.

Practically, we use damped BFGS updating to overcome some shortage of BFGS updating, such as to avoid $y_k^T s_k \approx 0$ or poorly conditioned Hessian approximation. We state damped BFGS updating as following

Algorithm 6 Damped BFGS updating

Require: H_k , $s_k = x_{k+1} - x_k$ and $r_k = \nabla f(x_{k+1}) - \nabla f(x_k)$ at current point x_k . A parameter θ .

1: Compute

$$\theta_k = \begin{cases} 1, & \text{if } r_k^T s_k \ge \theta s_k^T H_k s_k \\ \frac{(1-\theta)s_k^T H_k s_k}{s_k^T H_k s_k - r_k^T s_k}, & \text{otherwise} \end{cases}$$
(3.11)

2: Set $y_k = \theta_k r_k + (1 - \theta_k) H_k s_k$

By this procedure, we guarantee that

$$y_k^T s_k \ge \theta s_k^T H_k s_k > 0, \tag{3.12}$$

which leads to a well-defined BFGS updating.

It is proved that BFGS method with Wolfe line search is global convergent and shares a superlinear convergence rate.

Algorithm Descriptions II: Restricted Step Methods.

In restricted step method, general framework of algorithms is as following

Algorithm 7 General Algorithm of Restricted Step Method

Require: Initial point x_0 and k := 0.

- 1: repeat
- 2: Generate a proper subproblem G(d) at x_k
- 3: Solve subproblem to derive descent direction d_k
- 4: Update $x_{k+1} = x_k + d_k$, set k = k + 1
- 5: **until** Termination condition satisfied.

4.1 Trust Region Method

Instead of calculate step size at each iteration, trust region method is one other approach to solve nonlinear optimization problems. In a sense, trust region is a restricted step method as the direction and step size are uniquely decided at each iteration. The main idea of trust region method is to generate a subproblem on a neighborhood of current point x_k . Normally, we set the subproblem as

$$\min_{d_k} \quad m_k(d_k) := f(x_k) + \nabla f(x_k)^T d_k + \frac{1}{2} d_k^T H_k d_k \tag{4.1}$$

$$s.t. \quad \|d_k\| \le \Delta_k. \tag{4.2}$$

Note that $m_k(d_k)$ is a approximate function of f at point x_k and with respect to H_k , we often set $H_k > 0$, but not necessarily, for example, we can choose H_k to be the SR1 approximate Hessian matrix.

Therefore, based on the framework 7, we have the following algorithm

Algorithm 8 Trust Region Method

```
Require: Current point x_k, trust region radius \Delta_k, subproblem m_k(d_k) and two threshold 0 < \infty
    c_1 < c_2 < 1.
 1: repeat
       Solve subproblem m_k(d_k)
 2:
       Compute the ratio
 3:
                                            \rho_k(d_k) := \frac{f(x_k) - f(x_k + d_k)}{m_k(0) - m_k(d_k)}.
                                                                                                                   (4.3)
       if \rho_k(d_k) \geq c_2 then
 4:
          Update x_{k+1} = x_k + d_k and expand trust region \Delta_{k+1} > \Delta_k
 5:
 6:
 7:
          if \rho_k(d_k) \in (c_1, c_2) then
             Update x_{k+1} = x_k + d_k and keep trust region \Delta_{k+1} = \Delta_k
 8:
 9:
10:
       else
          if \rho_k(d_k) \leq c_1 then
11:
             Keep x_{k+1} = x_k and shrink trust region \Delta_{k+1} < \Delta_k
12:
13:
          end if
       end if
14:
15: until Meet termination condition
```

4.2 Conjugate Gradient Method

By deriving a set of n vectors which is all conjugated for each other, we build a cheaper way to compute descent direction for quadratic problem

$$\min_{x} \quad \phi(x) := \frac{1}{2} x^{T} A x - b^{T} x. \tag{4.4}$$

Actually, if we have a set of conjugated direction $\{p_0, \ldots, p_{n-1}\}$, we can solve the problem in at most n steps by repeating the following procedure

• Compute the current residual

$$r_k = Ax_k - b (4.5)$$

• Compute a steplength to minimize $\phi(x)$ along $x_k + \alpha p_k$

$$\alpha_k = -\frac{r_k^T p_k}{p_k^T A p_k} \tag{4.6}$$

• Update $x_{k+1} = x_k + \alpha_k p_k$

Actually, by letting the first conjugated direction $p_0 = -r_0$, we can derive others conjugated direction step by step by the following algorithm

Algorithm 9 Conjugate Direction Method

```
Require: Initial point x_0, set r_0 = Ax_0 - b and p_0 = -r_0

1: repeat

2: \alpha_k = \frac{r_k^T r_k}{p_k^T A p_k}

3: x_{k+1} = x_k + \alpha_k p_k

4: r_{k+1} = r_k + \alpha_k A p_k

5: \beta_{k+1} = \frac{r_{k+1}^T r_{k+1}}{r_k^T r_k}

6: p_{k+1} = -r_{k+1} + \beta_{k+1} p_k

7: until Meet termination condition
```

4.3 Trust Region Subproblem with CG Method

Here we state a nice approach to solve the trust region subproblem (4.1).

```
Algorithm 10 Trust Region Subproblem with CG Method
```

```
Require: Initial point x_0, trust region radius \Delta_k and we set r_0 = Ax_0 - b and p_0 = -r_0
 1: repeat
        if p_k^T A p_k < 0 then
 2:
           Set \alpha_k to be a positive value such that ||x_k + \alpha_k p_k||_2 = \Delta_k
 3:
           Update x_{k+1} = x_k + \alpha_k p_k and stop
 4:
 5:
           \alpha_k = \frac{r_k^T r_k}{p_k^T A p_k}
 6:
 7:
        if ||x_k + \alpha_k p_k||_2 > \Delta_k then
 8:
           Set \alpha_k to be a positive value such that ||x_k + \alpha_k p_k||_2 = \Delta_k
 9:
10:
           Update x_{k+1} = x_k + \alpha_k p_k and stop
11:
           x_{k+1} = x_k + \alpha_k p_k and r_{k+1} = r_k + \alpha_k A p_k
12:
        end if
13:
        if ||r_{k+1}||_2 \approx 0 then
14:
           Update x_{k+1} = x_k + \alpha_k p_k and stop
15:
16:
           \beta_{k+1} = \frac{r_{k+1}^T r_{k+1}}{r_k^T r_k} and p_{k+1} = -r_{k+1} + \beta_{k+1} p_k
17:
18:
19: until Meet termination condition
```

Note that in this algorithm, A can be chosen directly as Hessian matrix at current point x_k or SR1 approximate Hessian matrix. With respect to SR1 update, which means to update $A(H_k)$ by the following formula

$$H_{k+1} = H_k + \frac{(y_k - H_k s_k)(y_k - H_k s_k)^T}{(y_k - H_k s_k)^T s_k},$$
(4.7)

where y_k and s_k are defined same as BFGS method in Section 3.3, and $\frac{(y_k - H_k s_k)(y_k - H_k s_k)^T}{(y_k - H_k s_k)^T s_k}$ is a rank-one matrix.

Note that to make this update well-defined, we need the extra judgment that

$$|(y_k - H_k s_k)^T s_k| \ge c||y_k - H_k s_k|| ||s_k||,$$
 (4.8)

where $c \in (0,1)$ is a user-specified constant. Also there is no guarantee that this update $H_{k+1} \succ 0$ even if $H_k \succ 0$. However, it is not necessary to restrict H_k to be positive definite, since the trust region subproblem are a constraint optimization problems.

Numerical Results

This chapter contains numerical results with respect to those algorithms we discussed in Chapter 3 and 4.

Note that all algorithms are implemented by Matlab under Intel Core i5 2.6 GHz processor and 8 GB memory. Throughout this chapter, with respect to each algorithm, we use Iter. to represent the total number of Iterations it takes to meet termination conditions. If the actual Iter is greater than defined maxiter, we mark Iter by a slash. Cputime stands for total time of a algorithms spend to find the minimizer and when the corresponding Iter is marked as a slash, Cputime means time cost up to maxiter iteration. We denote xNorm by the norm of difference between ending point of an algorithm and the accurate minimizer. gNorm represents for the norm of gradient at the ending point.

We begin by providing some general comments that may be useful for achieve a economy computation.

We set the default parameter value as following

Table 5.1: Default Parameter Set

i	maxiter	opttol	(c1ls,c2ls)	(c1tr,c2tr)	
value	1000	10^{-6}	$(10^{-4}, 0.9)$	(0.3, 0.9)	
i	$\operatorname{cgopttol}$	cgmaxiter	sr1updatetol	bfgsupdatetol	initialradius
value	10^{-6}	50	10^{-6}	0.2	0.25
i	perturbHession shrinkradius		expandradius	shrinkbacktrack	residuetol
value	10^{-4}	0.25	2	0.25	10^{-6}
i	wolfemax	posdeftol	mineigtol		
value	10	0.1	1.0		

By this default set, we state numerical results for all four test problems, respectively.

(1) Rosenbrock

Objective function:

$$f(x_1, x_2) = 100(x_2 - x_1^2)^2 + (1 - x_1)^2. (5.1)$$

Accurate minimizer:

$$(x_1, x_2) = (1, 1).$$
 (5.2)

Numerical results with initial point 0e:

Table 5.2: Rosenbrock, with initial 0e

ROSENBROCK	gNorm	Iter.	Cputime	feval	geval	Hevel
steepestbacktrack	1.000e - 01	_	0.5183	10469	7238	0
steepestwolfe	8.583e - 05	_	0.5777	10528	5048	0
newtonbacktrack	7.406e - 07	13	0.0475	33	44	13
newtonwolfe	3.116e - 10	15	0.0588	57	66	15
trustregioncg	1.363e - 06	45	0.0674	91	92	45
sr1trustregioncg	2.174e - 08	69	0.0775	139	278	0
bfgsbacktrack	3.416e - 08	23	0.0529	63	125	0
bfgswolfe	2.455e - 07	21	0.0577	83	133	0

(2) Genhumps

Objective function:

$$f(x) = \sum_{i=1}^{4} (\sin(2x_i)^2 \sin(2x_{i+1})^2 + 0.05(x_i^2 + x_{i+1}^2)).$$
 (5.3)

Accurate minimizer:

$$x = 0e. (5.4)$$

Numerical results with initial point **e**:

Table 5.3: Genhumps, with initial e

GENHUMPS	gNorm	Iter.	Cputime	feval	geval	Hevel
steepestbacktrack	3.589e - 06	102	0.1373	317	364	0
steepestwolfe	4.275e - 06	131	0.1380	487	562	0
newtonbacktrack	2.716e - 06	18	0.0545	39	57	18
newtonwolfe	5.305e - 08	12	0.0696	46	55	12
trustregioncg	4.060e - 06	34	0.0685	69	70	34
sr1trustregioncg	2.194e - 06	65	0.0919	131	262	0
bfgsbacktrack	3.330e - 06	29	0.0642	67	151	0
bfgswolfe	3.543e - 06	37	0.0746	150	243	0

(3) Quadratic

Objective function:

$$f(x) = g^{T}x + \frac{1}{2}x^{T}Hx. (5.5)$$

where $g \in \mathbb{R}^{10}$ and $H \in \mathbb{R}^{10 \times 10}$.

Accurate minimizer:

$$x = (H^T H)^{\dagger} H^T g. \tag{5.6}$$

Numerical results with initial point 0e:

QUADRATIC	gNorm	Iter.	Cputime	feval	geval	Hevel
steepestbacktrack	1.537e - 06	18	0.1445	37	56	0
steepestwolfe	1.537e - 06	18	0.1375	55	74	0
newtonbacktrack	4.591e - 16	1	0.0538	3	5	1
newtonwolfe	4.591e - 16	1	0.0607	4	6	1
trustregioncg	6.004e - 07	28	0.1554	57	58	28
sr1trustregioncg	2.463e - 06	21	0.1376	43	86	0
bfgsbacktrack	2.952e - 06	10	0.0992	21	52	0
bfgswolfe	2.952e - 06	10	0.1170	31	62	0

Table 5.4: Quadratic, with initial 0e

(4) Leastsquares

Objective function:

$$f(x) = \frac{1}{2} \|x_1 \mathbf{e} + x_2 e^{-\frac{t + x_3 \mathbf{e}}{x_4}} - y\|^2.$$
 (5.7)

where $y = z_1 \mathbf{e} + z_2 e^{-\frac{t+z_3 \mathbf{e}}{z_4}} + \epsilon \in \mathbb{R}^{100}$, $z = (2, 1, -5, 4)^T$ and $\epsilon \in \mathbb{R}^{100}$ is a perturbation. Accurate minimizer:

$$x = (189.9 - 187.2 - 4.948 - 4862)^{T}. (5.8)$$

Numerical results with initial point $(0,0,0,1)^T$:

Table 5.5: Leastsquares, with initial $(0,0,0,1)^T$

LEASTSQUARES	gNorm	Iter.	Cputime	feval	geval	Hevel
steepestbacktrack	4.093e - 03	_	1.1486	7579	5793	0
steepestwolfe	2.296e - 04	545	0.7112	5418	2716	0
newtonbacktrack	2.227e - 04	49	0.0821	99	149	49
newtonwolfe	2.363e - 04	45	0.0891	142	185	45
trustregioncg	6.026e - 05	35	0.0857	71	72	35
sr1trustregioncg	1.490e - 04	45	0.0926	91	182	0
bfgsbacktrack	1.981e - 05	86	0.1142	187	439	0
bfgswolfe	1.087e - 04	70	0.1371	390	532	0

Conclusion and Experience

Bibliography

[1] J. Nocedal and S. J. Wright. *Numerical Optimization*. Springer Series in Operations Research. Springer, New York, NY, USA, 2nd edition, 2006.