Fjerde ordens Runge-Kutta metode for drevet harmonisk pendel

Numerisk Prosjekt – TFY4163 Bølgefysikk og Fluidmekanikk 2025 Institutt for Fysikk, NTNU

Innledning og Teori

Bevegelsesligningen for en pendel med friksjon og drivkraft er

$$\frac{\mathrm{d}^2 \theta}{\mathrm{d}t^2} + q \frac{\mathrm{d}\theta}{\mathrm{d}t} + \frac{g}{l} \sin\left(\theta\right) = \frac{F_{\mathrm{D}}}{ml} \sin\left(\omega_{\mathrm{D}}t\right),\tag{1}$$

hvor θ er pendelens utslagsvinkel, g er tyngdeakselerasjonen, l er lengden av snora pendelen er festet i, q er en friksjonsparameter, $F_{\rm D}/ml$ er drivkraften som pendelen utsettes for, og $\omega_{\rm D}$ er drivkraftens vinkelfrekvens. Vi definerer $\omega_0 = \sqrt{g/l}$, som er pendelens vinkelfrekvens.

Du kan anta at $\sin(\theta) \approx \theta$ i alle oppgavene om ikke annet blir oppgitt, slik at bevegelesesligningen du skal løse er gitt ved

$$\frac{\mathrm{d}^2 \theta}{\mathrm{d}t^2} + q \frac{\mathrm{d}\theta}{\mathrm{d}t} + \frac{g}{l}\theta = \frac{F_D}{ml} \sin(\omega_D t), \qquad (2)$$

Benytt parametrene under når du løser ligningen:

- Lengden av snora, $l = 1 \,\mathrm{m}$
- Tyngeakselerasjonen, $g = 9.8 \,\mathrm{m/s^2}$
- Initiell vinkel med hensyn til vertikalen, $\theta_0 = 0.2 \,\mathrm{rad}$
- Initiell vinkelhastighet $\dot{\theta}_0 = 0.0 \, \text{rad/s}$
- Friksjonsparameter, $q = 1.0 \, \mathrm{s}^{-1}$
- Drivkraftens vinkelfrekvens, $\omega_D = 3.13 \, \mathrm{rad/s}$
- Drivkraft $\frac{F_{\rm D}}{ml} = 0.2 \, {\rm s}^{-2}$

Når drivfrekvensen, ω_D er nær pendelens vinkelfrekvens, $\omega_0 = \sqrt{g/l}$, får vi resonans, som vi skal undersøke i oppgavene under.

Oppgaver

- 1. Bruk fjerdeordens Runge-Kutta (RK4) metoden for å løse bevegelsesligningen. Plot vinkelutslaget som funksjon av tid, opp til $t = 20 \, \text{s}$. Bruk tidssteg $\Delta t = 0.01 \, \text{s}$.
- 2. Finn en passende steglengde, Δt , ved å utføre en konvergenstest av løsningen fra RK4-metoden. Utfør den samme konvergenstesten for Euler-Cromer metoden, som du også må implementere. Plot de to konvergenstestene i hver sin figur. Vurder ut fra konvergenstesten om tidssteget brukt i oppgave 1 var tilstrekkelig. Merk at energien ikke vil være bevart i dette systemet.
- 3. Undersøk hvordan utslaget avhenger av drivfrekvensen ω_D . Plot vinkelutslaget for minst fem ulike verdier av ω_D , som du mener viser denne sammenhengen.
- 4. Undersøk hvordan resonansamplituden avhenger av friksjonsparameteren, q. Plot vinkelutslaget for minst fem ulike verdier av q, som du mener viser denne sammenhengen.
- 5. For en dempet pendel uten drivkraft, $F_D = 0$, skiller vi mellom overkritisk, underkritisk og kritisk dempning. Plot vinkelutslaget opp til t = 4 s, og bestem for hvilke q vi finner disser regimene.
- 6. Frivillig oppgave:
 - (a) Gå nå bort fra småvinkeltilnærmelsen $\sin(\theta) \approx \theta$. Plot vinkelutslaget som funksjon av tid med og uten småvinkeltilnærmelsen i samme plot for $\theta_0 = 60^{\circ}$ og $\dot{\theta}_0 = 0.0$. Bruk tiddssteg $\Delta t = 0.01$ s, og samme parametre som i oppgave 1. Tips: Konverter fra grader til radianer med np.radians.
 - (b) Prøv deg frem med initialverdiene og parametrene, og finn når kaotisk oppførsel begynner å oppstå. Plot vinkelutslaget som funksjon av tid for slik kaotisk oppførsel.

Krav til godkjenning

Kravene under må være oppfylt for å få godkjent prosjektet.

- 1. Besvarelsen skal leveres i Jupyter Notebook.
- 2. Figurene fra alle oppgavene skal være i notebooken du leverer.
- 3. Alle oppgavene skal også ha en (kort) tekst som besvarer oppgaven/forklarer hva figuren viser
- 4. Alle figurer skal ha tittel på aksene, tittel på figuren, og legend (legend kreves kun dersom det er mer enn ett plot).

Det er ikke krav om å gjøre oppgave 6 for å få prosjektet godkjent.