CSE 545 Good Health and Well Being

Bengaluru Bigdata Boys

Abhiram M Kaushik, Ajay Gopal Krishna, Rajat R Hande, Rajesh Prabhakar

Introduction

Give pointers to achieve the SDG Goal-3 related to

- Premature mortality
- Health impacts, caused by Air Pollution and Traffic Accidents

Background

Related Research:

- Health impacts due to Air pollution, 2019 [paper]
- Traffic accidents rates in the US [paper]
- Leading causes of deaths in US 2017(NVSS): [paper]
- California Air Pollution Analysis: [paper]

Datasets

Pollution dataset: <u>EPA</u>	1.2 GB	Daily AQI for different pollutants (8 hour run) : 1980 - 2019
Fatal traffic accidents: FARS	3.83 GB	Fatal accident (1.4M), Vehicle, Person related parameters: 1970-2018
Accident dataset: Kaggle	1 GB	Accidents data across United States : 2016-2019 (3M rows)
Chronic Respiratory Diseases Mortality Data: (GHDx)	700 MB	County wise mortality rates: 1980-2019
Mortality dataset from CDC	4 GB	All deaths in US: 2000-2015

Air Pollution - Method

Results

Pollutant	Betas	p-Value
Ozone	-0.06	0.0065
SO2	0.4	5.11e-15
СО	0.34	1.35e-13
NO2	0.24	1.27e-10

Results

Pollutant	Betas	p-Value
Ozone	0.048	0.3151
SO2	-0.43	0.0001
СО	0.040	0.34
NO2	0.516	3.094e-05

Results - LSTM

Pointers to reduce mortality due to AP

From our analysis we can clearly see that deaths due to air-pollution has steadily gone down.

This is due to the fact that US has adopted Clean Air Act Amendments (CAAA) of 1990.

Also, the results suggest that ozone pollutant has not steadily decreased. Few pointers to control ozone pollutant are

- Suggest EPA to set stronger limits on ozone pollution.
- Choose a cleaner commute.
- Use environmentally safe paints and cleaning products.
- Conserve electricity.

Traffic Accidents - Methods

Hypothesis Testing

City	p-Value	Significance	Feature Name
LOS ANGELES	2.31E-08	Significant	DAY_WEEK
	4.88E-11	Significant	ROUTE
	0.349228219	Not Significant	A_INTER
	5.07E-65	Significant	A_INTSEC
	1.98E-15	Significant	A_ROADFC
	1.91E-26	Significant	A_JUNC
	0.016845275	Not Significant	A_RD
	1.12E-23	Significant	A_HR
	1.15E-25	Significant	A_MC
	1.87E-72	Significant	A_ROLL

City	p-Value	Significance	Feature Name
	0.00066507	Significant	DRUNK_DR
	0.004962341	Significant	A_INTER
	1.15E-07	Significant	A_RELRD
	0.222741007	Not Significant	A_INTSEC
HOUSTON	4.27E-09	Significant	A_JUNC
	0.009455903	Not Significant	A_TOD
	2.32E-10	Significant	A_HR
	1.10E-13	Significant	A_MC
	5.05E-29	Significant	A_POSBAC
	3.93E-14	Significant	age65

City	p-Value	Significance	Feature Name
CHICAGO	0.246424494	Not Significant	DRUNK_DRf
	0.013847505	Not Significant	PEDS
	3.03E-06	Significant	A_INTER
	7.22E-35	Significant	A_ROADFC
	0.000231669	Significant	A_RD
	7.40E-41	Significant	A_TOD
	4.68E-20	Significant	A_HR
	5.69E-31	Significant	A_MC
	3.13E-26	Significant	A_PED
	8.44E-21	Significant	females

Results - Traffic Accidents

Pedestrians Involved

Time of the Day

Route

Hit and Run

Speeding Involved In crash

Day of The Week

Conclusion

We analysed the Air pollution and Traffic Fatalities data across the years and:

- Identified the counties/cities with most mortalites and found the factors which influences mortality the most.
- Gave pointers to reduce the mortalities.

Future work can include a detailed study and how effective these pointers are in reducing mortality.

Thank you