COMPLEX ANALYSIS

Midterm (2012/4/17, 10:20 AM-12:10 PM)

- 1. Find the derivative of $\tanh^{-1}(z)$ at $z = \sqrt{2}$. (10%)
- 2. Use the formula $\sin z = \sin x \cosh y + i \cos x \sinh y$ to find all values of z satisfying the equation $\sin z = \cosh \pi$. (10%)
- 3. Show that $u(x, y) = \log_e(x^2 + y^2)$ is harmonic in the domain D: x = Re(z) > 0, y = Im(z) > 0 and find a corresponding function f(z) = u + iv that is analytic in D (v is the conjugate harmonic function of u). Please express f in terms of z. (10%)

[Hint: you might need the Cauchy-Riemann equations in polar coordinates $\begin{cases} \frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial \theta} \\ \frac{\partial v}{\partial r} = -\frac{1}{r} \frac{\partial u}{\partial \theta} \end{cases}$

- 4. Find all values of $\ln(i^{3i})$. (10%)
- 5. Evaluate the given integrals along the indicated contour C. (10% each)
 - (1) $\oint_C \frac{2z^2 z 2}{z z_0} dz$, where $|z_0| \neq 3$ and C: |z| = 3 in the positive direction
 - (2) $\oint_C z^m (\bar{z})^n dz$, where m and n are integers and C: |z| = 1 in the positive direction.
 - (3) $\oint_C \frac{\sinh z}{(z-\pi i)^4} dz$, where $C: \operatorname{Im}\left(\frac{1}{\overline{z}}\right) = \frac{1}{4}$ in the positive direction.
 - (4) $\oint_C \frac{\tan(z/2)}{(z-x_0)^2} dz$, where $-2 < x_0 < 2$ and C is the negatively oriented boundary of the square whose sides lie along the lines $x = \pm 2$ and $y = \pm 2$.
 - (5) $\oint_C z^{-2n} e^{-z} dz$, where *n* is a positive integer and $C: z = e^{-it}$ for $0 \le t \le 2\pi$.
- 6. Show that $\int_0^{\pi} e^{a\cos\theta} \cos(a\sin\theta) d\theta = \pi$, where a is real. (10%)

[Hint: evaluate the integral $\oint_C \frac{e^{az}}{z} dz$, with $C: z = e^{i\theta} (-\pi \le \theta \le \pi)$]