Building a hypothesis

Cognitive analysis

Hypothesis testing

```
A = \{f_{attn}, f_{ment}, \dots, f\{\cdot\}\}
P_{JA} \coloneqq \{f_{attn}, f_{ment}\} \subset A
```

$$P(f,t) = \beta_1 + \beta_2 JA + \beta_3 p JA + \beta_4 JA \cdot p JA$$

```
f_{ment} \mapsto P_{\beta}(TPJ)
f_{attn} \mapsto Nc_{ERP}
```

$$P(f,t) = \beta_1 + \beta_2 J A_{first} + \beta_3 J A$$

Positive controls, and first differences

Behavior was similar between TD and ASD

nJA trials (from valid trials)	52.7% ± 22.5 SD	61.8% ± 28.3 SD	.1
JA trials (from valid trials ^b)	47.3% ± 22.5 SD	38.2% ± 28.3 SD	.13

ERP signal differs precisely at Nc component

Source localization of Nc component differences

Beta power modulation in JA

 $f_{\text{ment}} \mapsto P_{\beta}(TPJ)$ $f_{\text{attn}} \mapsto Nc_{ERP} \mapsto Source$

Source localization of beta power modulation differences

 $f_{ment} \mapsto P_{\beta}(TPJ) \mapsto Source$ $f_{attn} \mapsto Nc_{ERP} \mapsto Source$

