1 Домашняя работа №1

- 1. Ошибка в том, что $X_{(n)}$ это функция на выборке, а X_1 один из элементов выборки. Пример: пусть дана выборка $X_1..X_n$, где $X_i \equiv U(0,\Theta)$ $F_{X_{(n)}}(t) = F_{X_i}^n(t) \neq F_X(t) \Rightarrow X_{(n)}$ имеет отличное от X_1 распределение.
- 2. (a) $F_n(x) = \frac{1}{n} \sum_{i=1}^n I(X_i < x)$ $E[F_n(x)] = E[\frac{1}{n} \sum_{i=1}^n I(X_i < x)] =$ $\frac{1}{n} \sum E[I(X_i < x)] = [EI(X_i < x) = P(X_i < x)] = \frac{1}{n} \sum P(X_i < x) = P(X_i < x) =$ $F_X(x)$
 - (b) $E[F_n(x)]^2 = \frac{1}{n^2} \cdot E[\sum_{i=1}^n I(X_i < x)]^2 = \frac{1}{n^2} \cdot (E[\sum_{i=1}^n I(X_i < x)] + 2E[\sum_{(i,j)} I(X_i < x)I(X_i < x)]) = [E[I(X_i < x)I(X_j < x)] = EI(X_i < x) \cdot EI(X_j < x)] = \frac{1}{n^2} \cdot (nF_X(x) + 2\binom{n}{2}F_X^2(x)) = \frac{F_X(x)}{n} + \frac{(n-1)F_X^2(x)}{n} + \frac{n}{n} + \frac{(n-1)F_X^2(x)}{n} + \frac{F_X(x)}{n} + \frac{(n-1)F_X^2(x)}{n} + \frac{(n-1)F_X^2(x)}{n} + \frac{n}{n} + \frac{(n-1)F_X^2(x)}{n} + \frac{(n-1)F_X^2(x)}{n} + \frac{n}{n} + \frac{n}{n} + \frac{n}{n} + \frac{(n-1)F_X^2(x)}{n} + \frac{n}{n} + \frac{n}{n$
 - (c) $D[F_n(z) F_n(y)] = \frac{1}{n^2} D[\sum_{i=1}^n I(X_i < max(z,y)) \sum_{i=1}^n I(X_i < min(z,y))] = \frac{1}{n^2} D[\sum_{i=1}^n I(min(z,y) < X_i < max(z,y))] = [P(min(z,y) < X_i < max(z,y)) = F(max(z,y)) F(min(z,y))] = \frac{F(max(z,y)) F(min(z,y))}{n} (1 F(max(z,y)) + F(min(z,y)))$
- 3. Так как X_i может принимать значения 0 или 1, то $F(X_i)$ может принимать значения 0 и 1-p.

Найдем распределение Y_i .

$$P(Y_i = 0) = P(F(X_i) = 0) = P(X_i = 0) = 1 - p$$

 $P(Y_i = 1 - p) = P(F(X_i) = 1 - p) = P(X_i = 1) = p$