Wärme- und Stoffübertragung I Flächenhelligkeiten

Prof. Dr.-Ing. Reinhold Kneer Dr.-Ing. Dr. rer. pol. Wilko Rohlfs

Lernziele

- Flächenhelligkeit
 - Verständnis von Flächenhelligkeiten und deren Bedeutung

- HeatQuiz
 - Erlernen und üben, Flächenhelligkeiten von Körpern und Körpersystemen zu formulieren

Flächenhelligkeit

Flächenhelligkeit

Gesamtstrahlungsfluss einer Fläche: Summe aus Reflektion, Transmission und Emission

(Beispiel: Fensterscheibe)

Flächenhelligkeit Objekt 1, rechts

 $\dot{Q}_{1,\text{rechts}} = \text{Emission} + \text{Reflektion} + \text{Transmission}$

Flächenhelligkeit

Flächenhelligkeit

Gesamtstrahlungsfluss einer Fläche: Hier: Summe aus

Reflektion und Emission

keine Transmission

(Beispiel: Festkörper aus Stahl, Beton etc.)

Flächenhelligkeit Objekt 2

 \dot{Q}_2 = Emission + Reflektion

Flächenhelligkeit

Flächenhelligkeit Schwarzer Körper

 \dot{Q}_{S} = Emission

Flächenhelligkeit mit mehreren Strahlungsquellen

Flächenhelligkeit mit spektralen Objekteigenschaften

Wellenlänge λ

Flächenhelligkeit mit spektralen Objekteigenschaften

HeatQuiz: Flächenhelligkeiten

HeatQuiz: Flächenhelligkeit eines schwarze Körpers

Schwarzer Körper

→ Nur Eigenemission berücksichtigen

$$\dot{Q}_1$$
 = Emission + Reflection + Transmission

Lösung:
$$\dot{Q}_1 = A_1 \varepsilon_1 \sigma T_1^4$$

Oder alternativ, da $\varepsilon_1 = 1$:

$$\dot{Q}_1 = A_1 \sigma T_1^4$$

HeatQuiz: Flächenhelligkeit sich umschließender Körper

Grauer Körper

→ Eigenemission und Reflexion sind zu berücksichtigen

$$\dot{Q}_1$$
 = Emission + Reflektion + Transmission

Lösung:

$$\dot{Q}_{1} = A_{1} \varepsilon_{1} \sigma T_{1}^{4} + \bar{\rho}_{1} (\varphi_{11} \dot{Q}_{1} + \varphi_{21} \dot{Q}_{2})$$

$$\dot{Q}_{2} = A_{2} \varepsilon_{2} \sigma T_{2}^{4} + (\bar{\rho}_{2}) \varphi_{12} \dot{Q}_{1} + (\bar{\tau}_{2}) \varphi_{12} \dot{Q}_{1}$$

Systematisches aufstellen der Flächenhelligkeit:

Verwenden von Sichtfaktoren: ϕ_{11} (nicht direkt einsetzen) Implizetes Aufstellen mittels der Flächenhelligkeiten (\dot{Q}_1, \dot{Q}_2)

HeatQuiz: Flächenhelligkeit eines transparenten Körpers

Grauer Körper

- → Eigenemission und Transmission sind zu berücksichtigen
- → Hier soll die Flächenhelligkeit der rechten Körperseite bestimmt werden

$$\dot{Q}_{3,r}$$
 = Emission + Reflection + Transmission

$$\dot{Q}_{3,r} = A_{3,r} \varepsilon_3 \sigma T_3^4 + \rho_3 (\phi_{23} \dot{Q}_2) + \tau_3 (\phi_{13} \dot{Q}_1)$$

$$\rho_3 = 0$$

$$\dot{Q}_1 = A_1 \varepsilon_1 \sigma T_1^4$$

$$\dot{Q}_2 = A_2 \varepsilon_2 \sigma T_2^4 + \rho_2 (\phi_{32} \dot{Q}_{3,r})$$

Verständnisfragen

Wie kann man Flächenhelligkeiten physikalisch deuten?

Welche Prinzipien sollten beim Aufstellen von Flächenhelligkeiten beachtet werden?

