Содержание

- 1 Интеграл Фурье как предельный случай ряда Фурье 1
- 2 Интегралы Фурье абсолютно интегрируемых функций 4
- 3 Локально интегрируемые функции. Интеграл в смысле главного значения. Пример 5
- 4 Признак Дини сходимости интеграла Фурье. Представление функции интегралом Фурье 6
- 5 Комплексная форма интеграла Фурье 10

1 Интеграл Фурье как предельный случай ряда Фурье

Пусть функция f(x) определена на всей числовой прямой и абсолютно интегрируема на любом конечном интервале. Тогда на любом интервале (-l,+l) функцию f(x) можно разложить в ряд Фурье по соответствующей интервалу тригонометрической системе

$$f(x) \sim \frac{a_0}{2} + \sum_{k=1}^{+\infty} \left(a_k \cos\left(\frac{k\pi x}{l}\right) + b_k \sin\left(\frac{k\pi x}{l}\right)\right). \tag{(TS)}$$

Здесь $a_0=\frac{1}{l}\int\limits_{-l}^{+l}f(x)dx,\ a_k=\frac{1}{l}\int\limits_{-l}^{+l}f(x)\cos\left(\frac{k\pi x}{l}\right)dx,\ b_k=\frac{1}{l}\int\limits_{-l}^{+l}f(x)\sin\left(\frac{k\pi x}{l}\right)dx,$ $k=1,2,\ldots$ Не вдаваясь в строгие обоснования, выясним, во что перейдет ряд (TS) при переходе к пределу при $l\to+\infty$.

1. Если функция f(x) определена и абсолютно интегрируема на всей числовой прямой, то интеграл $\int\limits_{-l}^{+l} f(x) dx$ как функция переменной l ограничен: $|\int\limits_{-l}^{+l} f(x) dx| \leq \int\limits_{-\infty}^{+\infty} |f(x)| dx \; \forall l \geq 0$. Следовательно, в этом случае $a_0 = a_0(l)$ стремится к нулю при $l \to +\infty$. Естественно предположить, что и в случае функций f(x) из более общего класса

нежели абсолютно интегрируемые на всей числовой прямой, предельное соотношение $\lim_{l\to +\infty} a_0(l)=0$ также имеет место.

2. Сумму слагаемых с косинусами в разложении (TS) запишем в равносильном виде

$$\sum_{k=1}^{+\infty} a_k \cos(\frac{k\pi x}{l}) = \sum_{k=1}^{+\infty} (\frac{1}{\pi} \int_{-l}^{+l} f(t) \cos(\frac{k\pi t}{l}) dt) \cos(y_k x) \cdot \Delta_{y_k}, \quad ((CS))$$

где $y_k = \frac{k\pi}{l}$, $k = 1, 2, \dots$ и $\Delta_{y_k} = y_{k+1} - y_k = \frac{\pi}{l}$. Предположим теперь, что существует следующий предел:

$$a(y) = \lim_{l \to +\infty} \frac{1}{\pi} \int_{-l}^{+l} f(t) \cos(yt) dt. \tag{(A)}$$

Тогда при достаточно больших l можем записать приближенные равенства

$$\frac{1}{\pi} \int_{-l}^{+l} f(t) \cos\left(\frac{k\pi t}{l}\right) dt \approx a(y_k), \ k = 1, 2, \dots$$
 ((CS'))

Подставляя их в формулу (CS), приходим к соотношению

$$\sum_{k=1}^{+\infty} a_k \cos\left(\frac{k\pi x}{l}\right) \approx \sum_{k=1}^{+\infty} a(y_k) \cos\left(y_k x\right) \cdot \Delta_{y_k}.$$
 ((CS'))

Выражение в правой части этого приближенного равенства представляет собой интегральную сумму для несобственного интеграла $\int_0^{+\infty} a(y)\cos(yx)dy$ по положительной полуоси. Узлами этой интегральной суммы служат числа $y_1,y_2,\ldots,y_k,\ldots$, расстояние между соседними узлами $\Delta_{y_k}=y_{k+1}-y_k=\frac{\pi}{l}$ при $l\to +\infty$ стремится к нулю. В качестве предельного значения интегральной суммы (CS') при $l\to +\infty$ естественно рассматривать несобственный интеграл $\int_0^{+\infty} a(y)\cos(yx)dy$, если, конечно, существуют как сам предел так и несобственный интеграл по полуоси. Вэтом случае имеем $\lim_{l\to +\infty} \sum_{k=1}^{+\infty} a_k \cos\left(\frac{k\pi x}{l}\right) = \int_0^{+\infty} a(y)\cos(yx)dy$.

3. Аналогично преобразуется сумма слагаемых с синусами в разложении (TS):

$$\sum_{k=1}^{+\infty} b_k \sin\left(\frac{k\pi x}{l}\right) = \sum_{k=1}^{+\infty} \left(\frac{1}{\pi} \int_{-l}^{+l} f(t) \sin\left(\frac{k\pi t}{l}\right) dt\right) \sin\left(y_k x\right) \cdot \Delta_{y_k}, \quad ((SS))$$

где, как и раньше, $y_k = \frac{k\pi}{l}, k = 1, 2, \ldots,$ и $\Delta_{y_k} = \frac{\pi}{l} = y_{k+1} - y_k$. Предполагая, что существует конечный предел

$$b(y) = \lim_{l \to +\infty} \frac{1}{\pi} \int_{-l}^{+l} f(t) \sin(yt) dt, \qquad ((B))$$

записываем при достаточно больших l последовательность приближенных равенств

$$\frac{1}{\pi} \int_{-l}^{+l} f(t) \sin\left(\frac{k\pi t}{l}\right) dt \approx b(y_k), \ k = 1, 2, \dots$$

Подставляя их в формулу (SS), приходим к соотношению

$$\sum_{k=1}^{+\infty} b_k \sin\left(\frac{k\pi x}{l}\right) \approx \sum_{k=1}^{+\infty} b(y_k) \sin\left(y_k x\right) \cdot \Delta_{y_k}.$$
 ((SS'))

Выражение в правой части этого приближенного равенства представляет собой интегральную сумму для несобственного интегрально $\int_0^{+\infty} b(y) \sin{(yx)} dy$ по положительной полуоси. Узлами этой интегральной суммы служат числа $y_1, y_2, \ldots, y_k, \ldots$, расстояние между соседними узлами $\Delta_{y_k} = y_{k+1} - y_k = \frac{\pi}{l}$ стремится к нулю при $l \to +\infty$. В качестве предельного значения интегральной суммы (SS') при $l \to +\infty$ естественно рассматривать несобственный интеграл $\int_0^{+\infty} b(y) \sin{(yx)} dy$, если, конечно, существуют как сам предел так и несобственный интеграл по полуоси. Вэтом случае имеем $\lim_{l \to +\infty} \sum_{k=1}^{+\infty} b_k \sin{(\frac{k\pi x}{l})} = \int_0^{+\infty} b(y) \sin{(yx)} dy$.

В результате проведенных нами неформальных рассуждений приходим к заключению, что сумма тригонометрического ряда в пределе при $l \to +\infty$ переходит в интеграл вида $\int\limits_0^{+\infty} (a(y)\cos{(yx)} + b(y)\sin{(yx)})dy$, где функции a(y) и b(y) определяются равенствами (A) и (B). В частности, a(y) и b(y) зависят от исходной функции f(x). Для того чтобы эту зависимость подчеркнуть, иногда пишут $a = a_f(y)$ и $b = b_f(y)$.

Определение

Несобственный интеграл

$$\int_{0}^{+\infty} (a(y)\cos(yx) + b(y)\sin(yx))dy, \qquad ((AB))$$

если только он существует, называется интегралом Фурье для исходной функции f(x).

Выясним, для каких именно функций интеграл Фурье существует.

2 Интегралы Фурье абсолютно интегрируемых функций

Пусть функция f(x) абсолютно интегрируема на всей числовой прямой, т.е. $\int_{-\infty}^{+\infty} |f(t)| dt < +\infty$. Тогда соответствующие ей пределы (A) и (B) заведомо существуют и обозначаются следующим образом

$$a(f;y) = \frac{1}{\pi} \int_{-\infty}^{+\infty} f(t) \cos(yt) dt, \qquad ((A'))$$

$$b(f;y) = \frac{1}{\pi} \int_{-\infty}^{+\infty} f(t) \sin(yt) dt. \tag{(B')}$$

При этом функции a(f;y) и b(f;y) определены на всей числовой прямой и ограничены на своей области определения: $\sup_{y\in\mathbb{R}} |a(f;y)| \leq \frac{1}{\pi} \int\limits_{-\infty}^{+\infty} |f(t)| dt,$

 $\sup_{y\in\mathbb{R}}|b(f;y)|\leq \frac{1}{\pi}\int\limits_{-\infty}^{+\infty}|f(t)|dt.$ Более того для абсолютно интегрируемой функции f(x) интегралы a(f;y) и b(f;y) непрерывны по переменной y и, как следует из теоремы Римана об осцилляции, удовлетворяют следующим предельным соотношениям на бесконечности: $\lim_{y\to\pm\infty}a(f;y)=0$, $\lim_{y\to\pm\infty}b(f;y)=0$. Если же функция f(x) не является абсолютно интегрируемой, то сделанные утверждения о свойствах функций a(f;y) и b(f;y), вообще говоря, неверны.

3 Локально интегрируемые функции. Интеграл в смысле главного значения. Пример

Интеграл Фурье существует для функций из более широкого класса нежели абсолютно интегрируемые.

Определение

Функция f(x) называется локально интегрируемой, если она абсолютно интегрируема на любом конечном интервале числовой прямой. Для любой локально интегрируемой функции $\varphi(x), x \in \mathbb{R}$, предел $\lim_{l \to +\infty} \int_{-l}^{+l} \varphi(x) dx$, если он существует, называется интегралом от $-\infty$ до $+\infty$ от функции $\varphi(x)$ в смысле главного значения. При этом применяется следующее обозначение: V. P. $\int\limits_{-\infty}^{+\infty} \varphi(x) dx = \lim\limits_{l \to +\infty} \int\limits_{-l}^{+l} \varphi(x) dx$. Этот же предел иногда называют интегралом в смысле Коши. Таким образом, формулы (A') и (B') в случае локально интегрируемой функции $f(x), x \in \mathbb{R}$, принимают следующий вид:

$$a(f;y) = V. P. \frac{1}{\pi} \int_{-\infty}^{+\infty} f(t) \cos(yt) dt, \qquad ((A''))$$

$$b(f;y) = V. P. \frac{1}{\pi} \int_{-\infty}^{+\infty} f(t) \sin(yt) dt.$$
 ((B"))

Символ V. P. перед интегралом часто не пишут, что как правило не приводит к недоразумениям.

Пример. Для локально суммируемой функции $f(x) = \frac{\sin{(\delta x)}}{x}$, где $\delta > 0$, найти соответствующие ей интегралы в смысле главного значения a(f;y) и b(f;y).

Решение. Рассматриваемая функция f(x) является четной: f(-x)=f(x). Следовательно, для любого вещественного y произведение $f(x)\cdot\sin(yx)$ — это нечетная функция, интеграл от которой по любому симметричному интервалу (-l,+l) обязательно равен нулю. Это означает, что функция b(f;y) тождественно равна нулю. Далее из четности произведения $f(x)\cdot\cos(yx)$ по переменной x и определения (A'') имеем $a(f;y)=\frac{2}{\pi}\int\limits_0^{+\infty}\frac{\sin(\delta x)}{x}\cos(yx)dx=\frac{1}{\pi}\int\limits_0^{+\infty}\frac{\sin((\delta+y)x)}{x}dx+\frac{1}{\pi}\int\limits_0^{+\infty}\frac{\sin((\delta-y)x)}{x}dx=\frac{1}{2}\operatorname{sgn}(\delta+y)+\frac{1}{2}\operatorname{sgn}(\delta-y).$ Здесь $\operatorname{sgn} x=\frac{x}{|x|}$ при $x\neq 0$ и $\operatorname{sgn} 0=0$. Таким образом, функция a(f;y) равна единице при $|y|<\delta$ и равна нулю при $|y|>\delta$. Кроме того $a(f;-\delta)=a(f;+\delta)=\frac{1}{2}$. \square

Отметим, что полученная в предыдущем примере функция a(f;y) разрывна по y. Это ни- чему не противоречит: функция $f(x) = \frac{\sin{(\delta x)}}{x}$ локально суммируема, но не является абсолютно интегрируемой на числовой прямой.

4 Признак Дини сходимости интеграла Фурье. Представление функции интегралом Фурье

Установим некоторые условия, достаточные для сходимости соответствующего функции f(x) интеграла Фурье. Пусть функция f(x) определена и абсолютно интегрируема на всей числовой прямой. Тогда a(f;y) и b(f;y) непрерывны на $\mathbb R$ и вопрос о сходимости интеграла Фурье $\int\limits_0^{+\infty} (a(f;y)\cos{(yx)} + b(f;y)\sin{(yx)})dy$ сводится к вопросу о существовании предела функции

$$t_{\eta}(f;x) = \int_{0}^{\eta} (a(f;y)\cos(yx) + b(f;y)\sin(yx))dy$$
при $\eta \to +\infty$. ((T))

Подставляя в равенство (T) формулы $a(f;y) = \frac{1}{\pi} \int_{-\infty}^{+\infty} f(t) \cos(yt) dt$, $b(f;y) = \frac{1}{\pi} \int_{-\infty}^{+\infty} f(t) \sin(yt) dt$, получим следующее представление:

$$t_{\eta}(f;x) = \frac{1}{\pi} \int_{0}^{\eta} dy \int_{-\infty}^{+\infty} f(t) \cos(y(x-t)) dt. \tag{(T')}$$

Для внутреннего интеграла здесь справедлива оценка $|\int\limits_{-\infty}^{+\infty}f(t)\cos{(y(x-t))}dt|\leq \int\limits_{-\infty}^{+\infty}|f(t)|dt$. Выполнение этого условия позволяет поменять в формуле (T') порядок интегрирования и получить равенство $t_{\eta}(f;x)=\frac{1}{\pi}\int\limits_{-\infty}^{+\infty}f(t)(\int\limits_{0}^{\eta}\cos{(y(x-t))}dy)dt$. Внутренний интеграл по dy здесь вычисляется явно: $\int\limits_{0}^{\eta}\cos{(y(x-t))}dy=\frac{\sin{(\eta(x-t))}}{x-t}$. Подставляя это равенство в предыдущее и делая замену переменной интегрирования $t=x+\xi$, получаем $t_{\eta}(f;x)=\frac{1}{\pi}\int\limits_{-\infty}^{+\infty}f(x+\xi)\frac{\sin{(\eta\xi)}}{\xi}d\xi$. Воспользовавшись вэтом равенстве четностью функции $\frac{\sin{(\eta\xi)}}{\xi}$ по переменной ξ , получаем представление

$$t\eta(f;x) = \frac{1}{\pi} \int_{0}^{+\infty} \frac{f(x+\xi) + f(x-\xi)}{\xi} \sin(\eta \xi) d\xi.$$
 ((T"))

Определение

Функция f(x), $x \in \mathbb{R}$, удовлетворяет в точке x_0 односторонним условиям Дини, если

- 1. вэтой точке существуют оба односторонних предела $f(x_0 + 0)$ и $f(x_0 0)$;
- 2. функции $F_+(\xi)=\frac{f(x_0+\xi)-f(x_0+0)}{\xi}$ и $F_-(\xi)=\frac{f(x_0-\xi)-f(x_0-0)}{\xi}$ абсолютно интегрируемы на некотором интервале вида $(0,\delta)$, где $\delta>0$.

Теорема (признак Дини сходимости интеграла Фурье)

Пусть функция f(x), $x \in \mathbb{R}$, абсолютно интегрируема на числовой прямой и удовлетворяет в точке x_0 односторонним условиям Дини. Тогда соответствующий этой функции интеграл Фурье в точке x_0 сходится и равен величине

$$M_f(x_0) = \frac{f(x_0 + 0) + f(x_0 - 0)}{2}.$$

Доказательство

Воспользуемся равенством $\int_0^{+\infty} \frac{\sin{(\eta \xi)}}{\xi} d\xi = \int_0^{+\infty} \frac{\sin{(\xi)}}{\xi} d\xi = \frac{\pi}{2} \ \forall \eta > 0 \ \text{и пред-}$ ставим величину $M_f(x_0)$ в следующем виде $M_f(x_0) = \frac{1}{\pi} \int_0^{+\infty} \frac{f(x_0+0)+f(x_0-0)}{\xi} \sin{(\eta \xi)} d\xi.$ Вычитая это равенство из соотношения (T'') и пользуясь определением функций $F(\pm \xi)$, получаем $T_\eta(f;x_0) - M_f(x_0) = \frac{1}{\pi} \int_0^{+\infty} [F_+(\xi) + F_-(\xi)] \sin{(\eta \xi)} d\xi = \frac{1}{\pi} \int_0^{+\infty} F_+(\xi) \sin{(\eta \xi)} d\xi + \frac{1}{\pi} \int_0^{+\infty} F_-(\xi) \sin{(\eta \xi)} d\xi.$ Каждый из двух интегралов по $d\xi$ в правой части этого равенства представим в виде следующей суммы

$$\int_{0}^{+\infty} F_{\pm}(\xi) \sin(\eta \xi) d\xi = \int_{0}^{\delta} F_{\pm}(\xi) \sin(\eta \xi) d\xi + \int_{\delta}^{+\infty} \frac{f(x_0 \pm \xi)}{\xi} \sin(\eta \xi) d\xi - f(x_0 \pm 0) \int_{\delta}^{+\infty} \frac{\sin(\eta \xi)}{\xi} d\xi.$$

$$((F_{\pm}))$$

В качестве положительного предела интегрирования $\delta > 0$ здесь возьмем параметр из односторонних условий Дини, которым по условию удовлетворяет функция f(x).

Далее, функции $F_+(\xi) = \frac{f(x_0+\xi)-f(x_0+0)}{\xi}$ и $F_-(\xi) = \frac{f(x_0-\xi)-f(x_0-0)}{\xi}$ абсолютно интегрируемы на интервале $(0,\delta)$ и, следовательно, по теореме Римана об осцилляции имеют место предельные равенства $\lim_{\eta \to +\infty} \int\limits_0^\delta F_\pm(\xi) \sin{(\eta \xi)} d\xi = 0$. Из условия, что функция f(x) абсолютно интегрируема на числовой прямой заключаем, что отношения $\frac{f(x_0+\xi)}{\xi}$ и $\frac{f(x_0-\xi)}{\xi}$ на интервале $(\delta,+\infty)$ также абсолютно интегрируемы: $|\int\limits_\delta^{+\infty} \frac{f(x_0\pm\xi)}{\xi} d\xi| \leq \frac{1}{\delta} \int\limits_\delta^{+\infty} |f(x_0\pm\xi)| d\xi <$

 $+\infty$. Применяя к этим отношениям теорему Римана об осцилляции, получаем предельные равенства $\lim_{\eta \to +\infty} \int\limits_{\delta}^{+\infty} \frac{f(x_0 \pm \xi)}{\xi} \sin{(\eta \xi)} d\xi = 0$. Для третьего интеграла в разложении (F_\pm) справедливы следующие соотношения: $\lim_{\eta \to +\infty} \int\limits_{\delta}^{+\infty} \frac{\sin{(\eta \xi)}}{\xi} d\xi = \lim_{\eta \to +\infty} \int\limits_{\delta_{\eta}}^{+\infty} \frac{\sin{(t)}}{t} dt = 0$. Последнее равенство справедливо в силу сходимости несобственного интеграла $\int\limits_{0}^{+\infty} \frac{\sin{(t)}}{t} dt = \frac{\pi}{2}$. Таким образом, при $\eta \to +\infty$ существует предел суммы в правой части равенств (F_\pm) и этот предел равен нулю. Следовательно, предел при $\eta \to +\infty$ разности $T_{\eta}(f;x_0) - M_f(x_0)$ также существует и равен нулю. \square

Следствие

В условиях предыдущей теоремы справедливо равенство

$$\frac{1}{\pi} \int_{0}^{+\infty} dy \int_{-\infty}^{+\infty} f(t) \cos(y(x_0 - t)) dt = \frac{f(x_0 + 0) + f(x_0 - 0)}{2},$$

называемое формулой Фурье для функции f в точке x_0 .

Доказательство

Несобственный интеграл в левой части формулы Фурье по определению представляет собой предел при $\eta \to +\infty$ функции $T_{\eta}(f;x_0) = \frac{1}{\pi} \int\limits_0^{\eta} dy \int\limits_{-\infty}^{+\infty} f(t) \cos{(y(x_0-t))} dt$. Но этот же предел, как уже доказано, равен полусумме $M_f(x_0)$. В силу единственности предела записанная выше формула Фурье действительно справедлива. \square

В частности, если функция f(x) абсолютно интегрируема и непрерывна всюду на числовой прямой, а также удовлетворяет в точке x односторонним условиям Дини, то имеет место разложение

$$f(x) = \frac{1}{\pi} \int_{0}^{+\infty} dy \int_{-\infty}^{+\infty} f(t) \cos(y(x-t)) dt \ \forall x \in \mathbb{R}.$$

Это равенство называется представлением функции f(x) интегралом Фурье, или же формулой Фурье для функции f(x).

Определение

Пусть функция f(x) определена в некоторой окрестности точки x_0 из интервала (a,b). Если для некоторого положительного $\alpha>0$ существуют такие постоянные L и $\delta>0$, что

$$|f(x_0 + \xi) - f(x_0)| \le L|\xi|^{\alpha} \,\forall \xi \in (-\delta, +\delta), \tag{(LC)}$$

то функция f(x), как говорят, удовлетворяет условию Липшица порядка α .

Если в точке x_0 функция f(x) удовлетворяет условию Липшица порядка $\alpha>0$, то она непрерывна в этой точке.

Если функция f(x) удовлетворяет в точке x_0 условию Липшица положительного порядка $\alpha > 0$, то в этой точке f(x) удовлетворяет и односторонним условиям Дини.

Следствие

Если функция f(x) абсолютно интегрируема всюду на числовой прямой и удовлетворяет в точке x_0 условию Липшица положительного порядка, то ее интеграл Фурье вэтой точке сходится к значению x_0 .

5 Комплексная форма интеграла Фурье

Пусть функция f(x) локально интегрируема на числовой прямой и при этом существуют соответствующие ей интегралы в смысле главного значения: $a(f;y) = V. P. \frac{1}{\pi} \int_{-\pi}^{+\infty} f(t) \cos{(yt)} dt, b(f;y) = V. P. \frac{1}{\pi} \int_{-\pi}^{+\infty} f(t) \sin{(yt)} dt.$

Тогда есть возможность определить следующую комплекснозначную функцию:

$$c(f;y) = \frac{1}{2}(a(f;y) - ib(f;y)) = \frac{1}{2\pi} \text{ V. P.} \int_{-\infty}^{+\infty} f(t)e^{-iyt}dt.$$
 ((FT))

Последнее равенство здесь справедливо в силу линейности операций предельного перехода и интегрирования. Домножая обе части первого из равенств (FT) на функцию e^{iyx} и интегрируя результат по переменной y из интервала $(-\eta, +\eta)$, получаем соотношение $\int\limits_{-\eta}^{+\eta} c(f;y)e^{iyx}dy =$

 $\frac{1}{2}\int\limits_{-\eta}^{+\eta}(a(f;y)-ib(f;y))(\cos{(yx)}+i\sin{(yx)})dy. \text{ Раскрывая в выражении под интегралом скобки и учитывая, что в силу четности } a(f;y) и нечетности <math>b(f;y)$ произведения $a(f;y)\cdot\sin{(yx)}$ и $b(f;y)\cdot\cos{(yx)}$ представляют собой нечетные функции переменной y, запишем последнее равенство в следующем виде: $\int\limits_{-\eta}^{+\eta}c(f;y)e^{iyx}dy = \frac{1}{2}\int\limits_{-\eta}^{+n}(a(f;y)\cos{(yx)}+b(f;y)\sin{(yx)})dy = \int\limits_{-\eta}^{+\eta}(a(f;y)\cos{(yx)}+b(f;y)\sin{(yx)})dy.$ Переходя здесь к пределу при $\eta\to$ $+\infty$ и учитывая, что правая часть переходит при этом в интеграл Фурье для функции f, заключаем, что этот самый интеграл Фурье представим в виде следующего интеграла в смысле главного значения:

$$\int_{0}^{+\infty} (a(f;y)\cos(yx) + b(f;y)\sin(yx))dy = V.P.\int_{-\infty}^{+\infty} c(f;y)e^{iyx}dy. \quad ((CFT))$$

Определение

Интеграл (CFT), в котором функция c(f;y) задается формулой (FT), называется интегралом Фурье в комплексной форме.

Теорема (представление функции интегралом Фурье)

Пусть функция f(x) непрерывна и абсолютно интегрируема на числовой прямой, а также удовлетворяет в каждой точке своей области определения условию Дини. Тогда в любой точке x_0 числовой прямой выполняется равенство

$$f(x) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \left(\int_{-\infty}^{+\infty} f(t)e^{-iyt}dt \right) e^{iyx}dy, \qquad ((CFT'))^{\frac{1}{2}}$$

где внешний интеграл понимается в смысле главного значения.

Доказательство

Заметим, что правые части формул (CFT') и (CFT) совпадают друг с другом. Это означает, что правая часть доказываемой формулы (CFT')

является интегралом Фурье рассматриваемой функции в обычной (вещественной) форме. Но для функций, удовлетворяющих условиям теоремы, интеграл Фурье в любой точке вещественной прямой равен значению порождающей его функции в этой же точке. \square

Интеграл в правой части равенства (CFT') называют повторным интегралом Фурье для функции f. Представимость функции повторным интегралом Фурье впервые была установлена Коши. Заметим, что функция c(f;y) удовлетворяет для вещественной функции f следующему интегральному тождеству: $\int\limits_{-\eta}^{+\eta} \overline{c}(f;y)e^{-iyx}dy = \int\limits_{-\eta}^{+\eta} s(f;y)e^{iyx}dy$, где $\eta>0$, а $\overline{c}(f;y)$ обозначает комплексно сопряженную к c(f;y) функцию. Переходя вэтом интегральном тождестве к пределу при $\eta\to+\infty$ и пользуясь формулой (CFT'), получаем в пределе еще одно полезное равенство

$$f(x) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \left(\int_{-\infty}^{+\infty} f(t)e^{iyt}dt \right) e^{-iyx}dy. \tag{(CFT'')}$$

Отличие этой формулы от (CFT') в показателях экспонент под интегралами в правой части.

Следствие

Пусть функция f(x) непрерывна и абсолютно интегрируема на числовой прямой, а также удовлетворяет в каждой точке своей области определения условию Дини. Тогда, если f(x) четная, то в любой точке x числовой прямой выполняется равенство $f(x) = \frac{2}{\pi} \int_{0}^{+\infty} (\int_{0}^{+\infty} f(t) \cos{(yt)} dt) \cos{(xy)} dy$.

прямой выполняется равенство $f(x)=\frac{2}{\pi}\int\limits_0^{+\infty}(\int\limits_0^{+\infty}f(t)\cos{(yt)}dt)\cos{(xy)}dy.$ Если же f(x) нечетная, то справедлива формула $f(x)=\frac{2}{\pi}\int\limits_0^{+\infty}(\int\limits_0^{+\infty}f(t)\sin{(yt)}dt)\sin{(xy)}dy.$