Model Checking

Ivo Melse s
1088677 & Floris Van Kuijen s 1155667 ${\it March~2025}$

1

1

- 1. $\frac{1}{2}$
- 2. $\frac{1}{3}$
- 3. $\frac{2}{3}$

2

Oops: the transition from s2 after a after s1 should go to s0.

3

 $3 \cdot 2 = 6$

4

In both cases, the qualitative reachability set $R_{\min} = R_{\max} = \{s_0, s_1, s_2\}$. Now we solve linear programming for both cases.

• max: $x_0 = 1, x_1 = 1, x_2 = 1, x_3 = 0$. Then $P_{\text{max}}(\lozenge s_2) = \frac{2}{3}$.

• min: $x_0 = \frac{1}{2}, x_1 = \frac{1}{2}, x_2 = 1, x_3 = 0$. Then $P_{\min}(\lozenge s_2) = \frac{1}{3}$.

2

1

If you sum all the transitions, the result will always be at least 2.

 $\mathbf{2}$

The only well-defined value for x is 0.

3

1

Use your imagination.

2

- R_1 : $\frac{81}{200}$ R_2 : $\frac{4}{18}$ R_3 : $\frac{27}{100}$

4

 $(1-x)x^2$

$$\frac{\frac{1}{2}x^2}{1 - \frac{5}{4}x - \frac{3}{4}x^2 - \frac{1}{4}x^3}$$