

Stochastic Processes

Sampling Techniques: Inverse Transform Technique, Rejection Sampling

Karthik P. N.

Assistant Professor, Department of Al

Email: pnkarthik@ai.iith.ac.in

15 April 2025

Objective

Given a cumulative distribution function (CDF) $F: \mathbb{R} \to [0,1]$, generate a sample $X \sim F$.

Objective

Given a cumulative distribution function (CDF) $F:\mathbb{R} o [0,1]$, generate a sample $X\sim F$.

Remarks:

• The CDF *F* may or may not be continuous

Objective

Given a cumulative distribution function (CDF) $F:\mathbb{R} o [0,1]$, generate a sample $X\sim F$.

Remarks:

- The CDF *F* may or may not be continuous
- If F is continuous and differentiable, it admits a probability density function f

Objective

Given a cumulative distribution function (CDF) $F:\mathbb{R} o [0,1]$, generate a sample $X\sim F$.

Remarks:

- The CDF *F* may or may not be continuous
- If F is continuous and differentiable, it admits a probability density function f
- Instead of the CDF F, we may be given a target PMF or PDF from which to sample

Objective

Given a cumulative distribution function (CDF) $F:\mathbb{R} o [0,1]$, generate a sample $X\sim F$.

Remarks:

- The CDF *F* may or may not be continuous
- If F is continuous and differentiable, it admits a probability density function f
- Instead of the CDF F, we may be given a target PMF or PDF from which to sample

Objective

Given a cumulative distribution function (CDF) $F:\mathbb{R} \to [0,1]$, generate a sample $X \sim F$.

Remarks:

- The CDF F may or may not be continuous
- If F is continuous and differentiable, it admits a probability density function f
- Instead of the CDF F, we may be given a target PMF or PDF from which to sample

The basic ingredient: Uniform (0, 1) sample(s) via PRNGs

Inverse Transform Technique (ITT)

Objective

Given a cumulative distribution function (CDF) $F: \mathbb{R} \to [0, 1]$, generate a sample $X \sim F$.

Objective

Given a cumulative distribution function (CDF) $F: \mathbb{R} \to [0,1]$, generate a sample $X \sim F$.

• Sample $U \sim \text{Unif}(0, 1)$

Objective

Given a cumulative distribution function (CDF) $F: \mathbb{R} \to [0,1]$, generate a sample $X \sim F$.

- Sample $U \sim \mathrm{Unif}(0,1)$
- Define the function F^{-1} as

$$F^{-1}(u) := \min\{x \in \mathbb{R} : F(x) \ge u\}$$

Objective

Given a cumulative distribution function (CDF) $F: \mathbb{R} \to [0,1]$, generate a sample $X \sim F$.

- Sample $U \sim \mathrm{Unif}(0,1)$
- Define the function F^{-1} as

$$F^{-1}(u) := \min\{x \in \mathbb{R} : F(x) \ge u\}$$

• F^{-1} is called the quantile function

Objective

Given a cumulative distribution function (CDF) $F:\mathbb{R} o [0,1]$, generate a sample $X\sim F$.

- Sample $U \sim \mathrm{Unif}(0,1)$
- Define the function F^{-1} as

$$F^{-1}(u) := \min\{x \in \mathbb{R} : F(x) \ge u\}$$

- F^{-1} is called the quantile function
- Set $X = F^{-1}(U)$

Objective

Given a cumulative distribution function (CDF) $F:\mathbb{R} o [0,1]$, generate a sample $X\sim F$.

- Sample $U \sim \text{Unif}(0, 1)$
- Define the function F^{-1} as

$$F^{-1}(u) := \min\{x \in \mathbb{R} : F(x) \ge u\}$$

- F^{-1} is called the quantile function
- Set $X = F^{-1}(U)$
- Claim: The CDF of X is exactly equal to F, i.e., $F_X = F$

Example

• Let *X* be a discrete random variable with the following PMF:

$$p_X(x) = egin{cases} 0.1, & x = 10, \ 0.2, & x = 20, \ 0.3, & x = 30, \ 0.4, & x = 40, \ 0, & ext{otherwise}. \end{cases}$$

Use the inverse transform method to generate a sample from the above distribution.

Example

• [Generating a Sample from Rayleigh Distribution]

The PDF of the Rayleigh distribution is given by

$$f(r) = r e^{-r^2/2}, \quad r > 0.$$

Use the inverse transform method to generate a sample from the above distribution.

Gaussian Samples on Python via ITT

Python's built-in module

generates n independent samples from $\mathcal{N}(\mu, \sigma^2)$, where

$$n=$$
 size, $\mu=$ loc, $\sigma=$ scale.

• In principle, the above module uses the inverse transform technique

Gaussian Samples on Python via ITT

- 1. Let $U_1, U_2 \stackrel{\text{i.i.d.}}{\sim} \text{Unif}(0, 1)$
- 2. Let R and Θ be two random variables defined via

$$R = F_1^{-1}(U_1), \qquad \Theta = 2\pi U_2,$$

where F_1 is the CDF of the Rayleigh distribution

3. Let Y_1 and Y_2 be defined as

$$Y_1 = R \cos(\Theta),$$
 $Y_2 = R \sin(\Theta).$

- 4. Then, $Y_1, Y_2 \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0, 1)$
- 5. To get $X \sim \mathcal{N}(\mu, \sigma^2)$, simply discard Y_2 , and

$$X = \sigma Y_1 + \mu$$
.

6. Repeat steps 1-5 a total of *n* times to get $X_1, X_2, \dots, X_n \overset{\text{i.i.d.}}{\sim} \mathcal{N}(\mu, \sigma^2)$

• Many a times, computing F^{-1} is tedious

- Many a times, computing F^{-1} is tedious
- For instance, consider the PDF

$$f(x) = 6x(1-x), \qquad x \in [0,1]$$

- Many a times, computing F^{-1} is tedious
- For instance, consider the PDF

$$f(x) = 6x(1-x), \qquad x \in [0,1]$$

The CDF corresponding to the above PDF is given by

$$F(x) = \begin{cases} 0, & x < 0, \\ 3x^2 - 2x^3, & 0 \le x < 1, \\ 1, & x \ge 1. \end{cases}$$

- Many a times, computing F^{-1} is tedious
- For instance, consider the PDF

$$f(x) = 6x(1-x), \qquad x \in [0,1]$$

The CDF corresponding to the above PDF is given by

$$F(x) = \begin{cases} 0, & x < 0, \\ 3x^2 - 2x^3, & 0 \le x < 1, \\ 1, & x \ge 1. \end{cases}$$

• Computation of F^{-1} is non-trivial; need to use numerical techniques

- Many a times, computing F^{-1} is tedious
- For instance, consider the PDF

$$f(x) = 6x(1-x), \qquad x \in [0,1]$$

The CDF corresponding to the above PDF is given by

$$F(x) = \begin{cases} 0, & x < 0, \\ 3x^2 - 2x^3, & 0 \le x < 1, \\ 1, & x \ge 1. \end{cases}$$

- Computation of F^{-1} is non-trivial; need to use numerical techniques
- Alternative solution: Rejection sampling!

Objective

Given a PDF f with CDF F for which computing F^{-1} is tedious, generate a sample $X \sim f$.

Objective

Given a PDF f with CDF F for which computing F^{-1} is tedious, generate a sample $X \sim f$.

• Let U, Z be a pair of continuous random variables satisfying the following properties:

Objective

Given a PDF f with CDF F for which computing F^{-1} is tedious, generate a sample $X \sim f$.

• Let U, Z be a pair of continuous random variables satisfying the following properties: 1. $U \sim \text{Unif}(0, 1)$.

Objective

Given a PDF f with CDF F for which computing F^{-1} is tedious, generate a sample $X \sim f$.

- Let U, Z be a pair of continuous random variables satisfying the following properties:
 - 1. $U \sim \text{Unif}(0, 1)$.
 - 2. U is independent of Z.

Objective

Given a PDF f with CDF F for which computing F^{-1} is tedious, generate a sample $X \sim f$.

- Let U, Z be a pair of continuous random variables satisfying the following properties:
 - 1. $U \sim \text{Unif}(0, 1)$.
 - 2. U is independent of Z.
 - 3. There exists a real number $a \ge 1$ such that

$$f(x) \leq a f_Z(x) \qquad \forall x \in \mathbb{R},$$

Objective

Given a PDF f with CDF F for which computing F^{-1} is tedious, generate a sample $X \sim f$.

- Let U, Z be a pair of continuous random variables satisfying the following properties:
 - 1. $U \sim \text{Unif}(0, 1)$.
 - 2. U is independent of Z.
 - 3. There exists a real number $a \ge 1$ such that

$$f(x) \leq a f_{\mathbb{Z}}(x) \qquad \forall x \in \mathbb{R},$$

where f_Z is the PDF of Z

• Generate (U, Z) satisfying 1-3 above

Objective

Given a PDF f with CDF F for which computing F^{-1} is tedious, generate a sample $X \sim f$.

- Let U, Z be a pair of continuous random variables satisfying the following properties:
 - 1. $U \sim \text{Unif}(0, 1)$.
 - 2. U is independent of Z.
 - 3. There exists a real number $a \ge 1$ such that

$$f(x) \leq a f_Z(x) \qquad \forall x \in \mathbb{R},$$

- Generate (U, Z) satisfying 1-3 above
 - (i) If $a U f_Z(U) \leq f(U)$, accept (U, Z), and set X = Z.

Objective

Given a PDF f with CDF F for which computing F^{-1} is tedious, generate a sample $X \sim f$.

- Let U, Z be a pair of continuous random variables satisfying the following properties:
 - 1. $U \sim \text{Unif}(0, 1)$.
 - 2. U is independent of Z.
 - 3. There exists a real number $a \ge 1$ such that

$$f(x) \leq a f_Z(x) \qquad \forall x \in \mathbb{R},$$

- Generate (U, Z) satisfying 1-3 above
 - (i) If $a U f_Z(U) \leq f(U)$, accept (U, Z), and set X = Z.
 - (ii) If not, reject current (U, Z) and generate new (U, Z). Repeat till (i) holds.

- Let U, Z be a pair of continuous random variables satisfying the following properties:
 - 1. $U \sim \text{Unif}(0, 1)$.
 - 2. U is independent of Z.
 - 3. There exists a real number $a \ge 1$ such that

$$f(x) \leq a f_Z(x) \qquad \forall x \in \mathbb{R},$$

- Generate (U, Z) satisfying 1-3 above
 - (i) If $a U f_Z(Z) \leq f(Z)$, accept (U, Z), and set X = Z.
 - (ii) If not, reject current (U, Z) and generate new (U, Z). Repeat till (i) holds.

- Let U, Z be a pair of continuous random variables satisfying the following properties:
 - 1. $U \sim \text{Unif}(0, 1)$.
 - 2. *U* is independent of *Z*.
 - 3. There exists a real number $a \ge 1$ such that

$$f(x) \leq a f_Z(x) \qquad \forall x \in \mathbb{R},$$

where f_Z is the PDF of Z

- Generate (U, Z) satisfying 1-3 above
 - (i) If $a U f_Z(Z) \le f(Z)$, accept (U, Z), and set X = Z.
 - (ii) If not, reject current (U, Z) and generate new (U, Z). Repeat till (i) holds.

Theorem (Rejection Sampling)

Let
$$E = \{a U f_Z(Z) \le f(Z)\}$$
. Then,

$$F_X(x) = \mathbb{P}(X \le x) = \mathbb{P}(Z \le x \mid E).$$

Example

• Design an algorithm to generate a sample $X \sim f$, where

$$f(x) = 6x(1-x), \qquad x \in [0,1].$$

Example

• For fixed constants $\lambda, t > 0$, the Gamma (λ, t) PDF is given by

$$f(x) = e^{-\lambda x} \frac{\lambda^t x^{t-1}}{\Gamma(t)}, \qquad x > 0.$$

- 1. When $t \in \mathbb{N}$, suggest a technique to generate a sample $X \sim f$ via ITT.
- 2. When $t \notin \mathbb{N}$, design an algorithm to sample $X \sim f$ via rejection sampling. **Hint:** Take $Z \sim \text{Exponential}(1/t)$.