1	SEARCH FOR PRODUCTION OF A HIGGS BOSON AND A SINGLE TOP
2	QUARK IN MULTILEPTON FINAL STATES IN pp COLLISIONS AT $\sqrt{s}=13$
3	${ m TeV}.$
4	by
5	Jose Andres Monroy Montañez
6	A DISSERTATION
7	Presented to the Faculty of
,	
8	The Graduate College at the University of Nebraska
9	In Partial Fulfilment of Requirements
10	For the Degree of Doctor of Philosophy
11	Major: Physics and Astronomy
10	Under the Curewigier of Drefessors Verneth Dleam and Asner Devicemen
12	Under the Supervision of Professors Kenneth Bloom and Aaron Dominguez
13	Lincoln, Nebraska
14	July, 2018

SEARCH FOR PRODUCTION OF A HIGGS BOSON AND A SINGLE TOP QUARK IN MULTILEPTON FINAL STATES IN pp COLLISIONS AT $\sqrt{s}=13$ TeV.

Jose Andres Monroy Montañez, Ph.D.

University of Nebraska, 2018

19 Adviser: Kenneth Bloom and Aaron Dominguez

20 The exciting work in HEP includes not only the analysis of the data taken by the experiment but

21 also the development of detection systems. In this thesis, the results of the search for the production

22 of a Higgs-boson in association with a single top-quark (tH) are presented; the focus is on leptonic

23 signatures provided by the $H \to WW, H \to \tau\tau$, and $H \to ZZ$ decay modes. This process is of

24 particular interest due to its sensitivity to the relative sign of the top-Higgs coupling and the vector

25 bosons-Higgs coupling.

15

16

17

18

30

The analysis exploits signatures with two same-sign leptons or three leptons in the final state and

27 uses the 2016 data sample collected with the CMS detector at the LHC at a center of mass energy of

28 13 TeV. Multivariate techniques are used to discriminate the signal from the dominant backgrounds.

The analysis yields a 95% confidence level (C.L.) upper limit on the combined $tH + t\bar{t}H$ production

cross section times branching ratio of 0.64 pb, with an expected limit of 0.32 pb, for a scenario with

31 $\kappa_t = -1.0$ and $\kappa_{\rm V} = 1.0$. Values of κ_t outside the range of -1.25 to +1.60 are exclude at 95% C.L.,

32 assuming $\kappa_{\rm V}=1.0$. Sensitivity to CP mixing in the Higgs sector was investigated by considering

33 scenarios for different values of the mixing angle α_{CP} . Upper limit on the combined $tH + t\bar{t}H$

production cross section times branching ratio of 0.6 pb is set for a scenario with $\alpha_{CP} = 180^{\circ}$ which

35 corresponds to the scenario with $\kappa_t = -1.0$ and $\kappa_{\rm V} = 1.0$.

On the detection systems side, contributions to the construction of the CMS forward pixel

37 detector (FPix) are presented; it is responsible for tracking with extreme accuracy the paths of

38 particles emerging from the proton-proton collisions at CMS. FPix is a modular detector composed

39 of 672 modules built using a semiautomatic pick-and-place robotic system which integrates optical

40 tools, pattern recognition algorithms, and glue dispensing subsystems, to locate the constituent

41 module parts on the work field and glue them together with a precision of 10 μ m. Fully assembled

42 modules were tested and characterized.

DEDICATION

43

ACKNOWLEDGMENTS

44

Table of Contents

46	Ta	able (of Con	tents	\mathbf{v}
47	Li	st of	Figure	es	xi
48	Li	${ m st}$ of	Tables	S	xviii
49	1	Intr	roducti	ion	1
50	2	The	eoretica	al approach	5
51		2.1	Introd	luction	5
52		2.2	Standa	ard model of particle physics	6
53			2.2.1	Fermions	8
54			2.2.2	Fundamental interactions	15
55			2.2.3	Gauge invariance	18
56			2.2.4	Gauge bosons	21
57		2.3	Electr	oweak unification and the Higgs mechanism	22
58			2.3.1	Spontaneous symmetry breaking (SSB)	30
59			2.3.2	Higgs mechanism	34
60			2.3.3	Masses of the gauge bosons	37
61			2.3.4	Masses of the fermions	38

62			2.3.5	The Higgs field	39
63			2.3.6	Production of Higgs bosons at LHC	40
64			2.3.7	Higgs boson decay channels	44
65		2.4	Experi	imental status of the anomalous Higgs-fermion coupling	46
66		2.5	Associ	ated production of a Higgs boson and a single top quark	48
67		2.6	CP-mi	ixing in tH processes	53
68	3	The	CMS	experiment at the LHC	58
69		3.1	Introd	uction	58
70		3.2	The L	HC	59
71		3.3	The C	MS experiment	69
72			3.3.1	CMS coordinate system	72
73			3.3.2	Tracking system	74
74			3.3.3	Silicon strip tracker	77
75			3.3.4	Electromagnetic calorimeter	78
76			3.3.5	Hadronic calorimeter	80
77			3.3.6	Superconducting solenoid magnet	81
78			3.3.7	Muon system	83
79			3.3.8	CMS trigger system	84
80			3.3.9	CMS computing	85
81	4	Eve	nt gen	eration, simulation and reconstruction	90
82		4.1	Introd	uction	90
83		4.2	Event	generation	91
84		4.3	Monte	e Carlo Event Generators	94
85		4.4	CMS o	detector simulation.	96
86		4.5	Event	reconstruction	98

87			4.5.1	Particle-Flow Algorithm		•	98
88			4.5.2	Event reconstruction examples		•	113
	_	G	1				446
89	5			methods			117
90		5.1	Introd	luction		•	117
91		5.2	Multiv	variate analysis		•	117
92			5.2.1	Decision trees		•	121
93			5.2.2	Boosted decision trees (BDT)			124
94			5.2.3	Overtraining			126
95			5.2.4	Variable ranking			127
96			5.2.5	BDT output example			127
97		5.3	Statist	tical inference			128
98			5.3.1	Nuisance parameters			129
99			5.3.2	Maximum likelihood estimation method			130
L00		5.4	Upper	limits			131
101		5.5	Asymp	ptotic limits			136
102	6	The	invert	ted top-Higgs coupling			137
103		6.1		luction			137
104				ignature			140
		6.3		round processes			140
L05			Ü	•			
106		6.4		and MC Samples			144
L07			6.4.1	Full 2016 data set		•	144
108			6.4.2	Triggers		•	145
L09			6.4.3	MC samples			149
110		6.5	Object	t Identification		•	151
111			6.5.1	Lepton reconstruction and identification			151

112			6.5.2	Lepton selection efficiency	158
113			6.5.3	Jets and b -jet tagging	161
114		6.6	Event	selection	163
115		6.7	Backgr	round modeling and predictions	164
116			6.7.1	$t\bar{t}{ m V}$ and diboson backgrounds	165
117			6.7.2	Non-prompt and charge mis-ID backgrounds	167
118		6.8	Pre-sel	lection yields	171
119		6.9	Signal	discrimination	174
120			6.9.1	MVA classifiers evaluation	174
121			6.9.2	Discriminating variables	176
122			6.9.3	BDTG classifiers response	181
123			6.9.4	Additional discriminating variables	183
124			6.9.5	Signal extraction procedure	185
125		6.10	Forwar	rd jet mismodeling	187
126		6.11	Signal	$\bmod el\ldots\ldots\ldots\ldots\ldots\ldots\ldots$	189
127		6.12	System	natic uncertainties	192
128		6.13	Result	s	196
129			6.13.1	CL_S and cross section limits	200
130			6.13.2	Best fit	204
131			6.13.3	Effect of the nuisance parameters	207
132		6.14	CP-mi	xing in tH process	212
133	7	Pha	se 1 F	Pix upgrade module production	217
134		7.1	Introd	uction	217
135		7.2	CMS I	pixel detector upgrade	218
136		7.3	Phase	1 FPix upgrade	220

137		7.4	FPix module structure	221
138		7.5	FPix module assembly	222
139			7.5.1 Pick and place machine setup	225
140			7.5.2 The gluing routine	250
141			7.5.3 The encapsulation routine	257
142			7.5.4 FPix module production yields	268
143	8	CO	NCLUSIONS	272
144		8.1	Search for production of a Higgs boson and a single top quark	272
145		8.2	Phase 1 FPix upgrade module production	274
146	A	Dat	asets and triggers	276
147	В	Adi	tional plots	280
148		B.1	Pre-selection kinematic variables	280
149		B.2	BDTG input variables for $2lss$ channel	284
150		B.3	Input variables distributions from BDTG classifiers	285
151		B.4	Pulls and impacts	289
152	\mathbf{C}	Bin	ning and selection optimization	292
153		C.1	Binning and selection optimization	292
154		C.2	Other binning strategies	294
155	D	BD'	$\Gamma \mathrm{G}$ output variation with $\kappa_{\mathbf{V}}$ and κ_{t}	297
156	\mathbf{E}	tHq-	$-tar{t}H$ overlap	298
157	\mathbf{F}	Forv	ward jet impact plots	300
158	\mathbf{G}	Cro	ss section and branching ratio scalings	304

159	Bibliography	311
160	References	312

List of Figures

162	2.1	Standard Model of particle physics	7
163	2.2	Transformations between quarks	15
164	2.3	Fundamental interactions in nature	16
165	2.4	SM interactions diagrams	17
166	2.5	Neutral current processes	23
167	2.6	Spontaneous symmetry breaking mechanism	31
168	2.7	SSB Potential form	32
169	2.8	Potential for complex scalar field	33
170	2.9	SSB mechanism for complex scalar field	34
171	2.10	Proton-Proton collision	40
172	2.11	Proton PDFs	41
173	2.12	Higgs boson production mechanism Feynman diagrams	42
174	2.13	Higgs boson production cross section and decay branching ratios	43
175	2.14	$\kappa_t\text{-}\kappa_V$ plot of the coupling modifiers. ATLAS and CMS combination	46
176	2.15	Higgs boson production in association with a top quark	49
177	2.16	Cross section for tHq process as a function of κ_t	52
178	2.17	Cross section for tHW process as a function of κ_{HH}	52

179	2.18	NLO cross section for tX_0 and $t\bar{t}X_0$	56
180	2.19	NLO cross section for tWX_0 , $t\bar{t}X_0$	57
181	3.1	CERN accelerator complex	59
182	3.2	LHC protons source. First acceleration stage	60
183	3.3	The LINAC2 accelerating system at CERN	61
184	3.4	LHC layout and RF cavities module	62
185	3.5	LHC dipole magnet	64
186	3.6	Integrated luminosity delivered by LHC and recorded by CMS during 2016	66
187	3.7	LHC interaction points	67
188	3.8	Multiple pp collision bunch crossing at CMS	69
189	3.9	Layout of the CMS detector	70
190	3.10	CMS detector transverse slice	71
191	3.11	CMS detector coordinate system	73
192	3.12	CMS tracking system schematic view	74
193	3.13	CMS pixel detector	75
194	3.14	SST Schematic view	77
195	3.15	CMS ECAL schematic view	79
196	3.16	CMS HCAL schematic view	81
197	3.17	CMS solenoid magnet	82
198	3.18	CMS Muon system schematic view	83
199	3.19	CMS Level-1 trigger architecture	85
200	3.20	WLCG structure	86
201	3.21	Data flow from CMS detector through hardware Tiers	88
202	4.1	Event generation process	91
203	4.2	Particle flow algorithm	99

204	4.3	Stable cones identification	107
205	4.4	Jet reconstruction	108
206	4.5	Jet energy corrections	110
207	4.6	Secondary vertex in a b-hadron decay	112
208	4.7	HIG-13-004 Event 1 reconstruction	114
209	4.8	$e\mu$ event reconstruction	115
210	4.9	Recorded event reconstruction	116
211	5.1	Scatter plots-MVA event classification	119
212	5.2	Scalar test statistical	120
213	5.3	Decision tree	121
214	5.4	Decision tree output example	124
215	5.5	BDT output example	127
216	5.6	t_r p.d.f. assuming each H_0 and H_1	133
217	5.7	Illustration of the CL_s limit	134
218	5.8	Example of Brazilian flag plot	135
219	6.1	Analysis strategy workflow	139
220	6.2	tHq event signature	141
221	6.3	$t \bar t$ and $t \bar t W$ events signature	143
222	6.4	Trigger efficiency for the same-sign $\mu\mu$ category	146
223	6.5	Trigger efficiency for the $e\mu$ category	147
224	6.6	Trigger efficiency for the $3l$ category	148
225	6.7	tHq and tHW cross section in the κ_t - κ_V phase space	149
226	6.8	Tight vs loose lepton selection efficiencies in the $2lss$ channel	160
227	6.9	Tight vs loose lepton selection efficiencies in the $3l$ channel	161
228	6.10	Kinematic distributions in the diboson control region	167

229	6.11	Fake rates	170
230	6.12	Electron mis-ID probabilities	171
231	6.13	Discriminating variables for the event pre-selection	173
232	6.14	MVA classifiers performance	175
233	6.15	BDTG classifier Input variables distributions	177
234	6.16	BDT input variables. Discrimination against $t\bar{t}$ and $t\bar{t}\mathrm{V}$ in $3l$ channel	179
235	6.17	Correlation matrices for the BDT input variables	180
236	6.18	BDTG classifier response. Default parameters	181
237	6.19	BDTG classifier output	182
238	6.20	Additional discriminating variables distributions	184
239	6.21	2D BDT classifier output planes	185
240	6.22	Binning overlaid on the S/B ratio map on the plane of classifier outputs.	186
241	6.23	Kinematic distributions for forward jet mismodeling study	188
242	6.24	Most forward jets η distributions	189
243	6.25	Scaling of the tHq , tHW , and $t\bar{t}H$ production cross section with $\kappa_t/\kappa_{\rm V}$.	191
244	6.26	Fake rates closure test	198
245	6.27	Fake rates closure test in the $3l$ selection	199
246	6.28	Pre-fit BDT classifier outputs	200
247	6.29	Pre-fit distributions in the final binning	201
248	6.30	Post-fit distributions in the final binning	202
249	6.31	Background-subtracted distributions in the final binning (ITC)	203
250	6.32	Background-subtracted distributions in the final binning (SM) $\ \ldots \ \ldots$	204
251	6.33	Asymptotic limits on the combined $tH + t\bar{t}H \sigma \times BR \dots \dots$	206
252	6.34	Asymptotic limits on the combined $tH+t\bar{t}H$ $\sigma\times \mathrm{BR},$ κ_{V} =0.5,1.0,1.5	207
253	6.35	Observed and a priori expected significance of the fit result	209
254	6.36	Best fit values of the combined $tH + t\bar{t}H \sigma \times BR$	210

255	6.37	Post-fit pulls and impacts	
256	6.38	Post-fit pulls an impacts for a fit to the Asimov dataset	
257	6.39	BDT shape variations for five CP-mixing angles	
258	6.40	Asymptotic limits on the combined $tH + t\bar{t}H$ $\sigma \times \mathrm{BR}$ for CP-mixing angle. 215	
259	7.1	Expected performance of the previous pixel detector in simulated $t\bar{t}$ events. 219	
260	7.2	Layout of the upgraded and old pixel detectors	
261	7.3	FPix half disk design	
262	7.4	FPix module structure	
263	7.5	UNL module assembly work flow	
264	7.6	Full gluing and encapsulation setup	
265	7.7	Bare and full chucks	
266	7.8	BBM/HDI plate	
267	7.9	Glue reservoir plate	
268	7.10	Stamp and Weight tools in chucks	
269	7.11	Stamp and Weight tools	
270	7.12	Stamp patterns	
271	7.13	Test of amount of glue deposited	
272	7.14	Glue contact area test	
273	7.15	Grabber tool	
274	7.16	Pick and place tool	
275	7.17	Fiducial marks on tools	
276	7.18	Fiducial mark recognition	
277	7.19	Setup used to measure the GHCO	
278	7.20	Scratches scheme if the tool is not straight	
279	7.21	Dispensing system components	

280	7.22	Webcam setup	243
281	7.23	Webcam setup calibration	243
282	7.24	Needle tip offset measurement	244
283	7.25	Wire bond region	245
284	7.26	Sylgard deposition synchronization	247
285	7.27	Time delay measurements	248
286	7.28	Speed function for sylgard deposition	249
287	7.29	Time delay functions	249
288	7.30	Gluing routine workflow	250
289	7.31	Materials used during gluing stage	251
290	7.32	Gluing routine LabVIEW front panel	252
291	7.33	Fiducial finder LabVIEW front panel	254
292	7.34	Fiducial finder step LabVIEW front panel	255
293	7.35	Gluing and pick-and-place LabVIEW front panels	256
294	7.36	Gluing steps pictures	257
295	7.37	Gluing session report	258
296	7.38	ROC-HDI wirebonding	259
297	7.39	Encapsulation workflow	260
298	7.40	Encapsulation LabVIEW main front panel	261
299	7.41	Encapsulation region	262
300	7.42	Encapsulation reference positions	264
301	7.43	Sylgard deposition LabVIEW front panel	265
302	7.44	Encapsulation session report	266
303	7.45	Encapsulation results	267
304	7.46	Module in carrier	268
305	7.47	Module assembly over time	269

Post-fit pulls and impacts with p_T cut 30 GeV for the forward jet

Post-fit pulls and impacts with p_T cut 25 GeV for the forward jet

327

List of Tables

328	2.1	Fermions of the SM	8
329	2.2	Fermion masses	9
330	2.3	Lepton properties	11
331	2.4	Quark properties	12
332	2.5	Fermion weak isospin and weak hypercharge multiplets	13
333	2.6	Fundamental interactions features.	18
334	2.7	SM gauge bosons	22
335	2.8	Higgs boson properties	40
336	2.9	Predicted branching ratios for a SM Higgs boson with $m_H=125~{\rm GeV/c^2}.$	45
337	2.10	Predicted SM cross sections for tH production at $\sqrt{s}=13$ TeV	50
338	2.11	Predicted enhancement of the tHq and tHW cross sections at LHC	53
339	6.1	Trigger efficiency scale factors and associated uncertainties	148
340	6.2	MC signal samples	150
341	6.3	Effective areas, for electrons and muons	155
342	6.4	Requirements on each of the three muon selections	158
343	6.5	Criteria for each of the three electron selections	159
344	6.6	Summary of event pre-selection	164

345	6.7	Electron charge mis-ID probabilities	171
346	6.8	Expected and observed yields for 35.9 ${\rm fb^{-1}}$ after the pre-selection	172
347	6.9	Signal yields split by decay channels of the Higgs boson	174
348	6.10	BDTG input variables	176
349	6.11	Configuration used in the final BDTG training	182
350	6.12	Input variables ranking for BDTG classifiers	183
351	6.13	ROC-integral for all the testing cases	185
352	6.14	Forward jet Data/MC scale factors	190
353	6.15	κ_t/κ_V ratios	193
354	6.16	Pre-fit size of systematic uncertainties	197
355	6.17	Expected and observed upper limits	205
356	6.18	Expected and observed 95% C.L. cross section upper limits	208
357	6.19	Expected and observed CL_S limits on the signal strength	208
358	6.20	Fit results for the ITC and SM scenarios	208
359	6.21	Best-fit signal strengths for a SM-like Higgs signal	209
360	6.22	Cross sections for tHq , tHW and $t\bar{t}H$ as a function of $\cos(\alpha_{CP})$	213
361	6.23	Summary of expected and observed upper limits for CP-mixing angles. $% \left(1\right) =\left(1\right) \left(1\right)$	216
362	7.1	Values of the needle tip height h	246
363	7.2	FPix module grading scheme.	269
364	A.1	Full 2016 dataset	276
365	A.2	HLT paths	277
366	A.3	$\kappa_{\rm V}$ and κ_t combinations	278
367	A.4	List of background samples used in this analysis (CMSSW 80X)	279
368	C.1	Selection cuts optimization	293

369	C.2	Limit variation as a function of bin size, $3l$ channel	293
370	C.3	Limit variation as a function of bin size, $2lss$ channel	294
371	E.1	Differences in event selection tHq - $t\bar{t}H$ multilepton analysis	298
372	E.2	Individual and shared event yields tHq - $t\bar{t}H$ multilepton selections	299
373	G.1	Scalings of Higgs decay branching ratios vs. κ_t and $\kappa_{\rm V} = 0.5$	305
374	G.2	Scalings of Higgs decay branching ratios vs. κ_t and $\kappa_{\rm V} = 1.0$	306
375	G.3	Scalings of Higgs decay branching ratios vs. κ_t and $\kappa_V = 1.5$	307
376	G.4	Scalings of $\sigma \times BR$ for the signal components and $\kappa_V = 0.5$	308
377	G.5	Scalings of $\sigma \times BR$ for the signal components and $\kappa_V = 1.0$	309
378	G.6	Scalings of $\sigma \times BR$ for the signal components and $\kappa_V = 1.5$	310
379	G.7	Expected and observed upper limits for CP-mixing angles	311

Chapter 1

381

392

393

394

395

396

397

398

Introduction

Along the last hundred years, the kploration of nature at the atomic and subatomic 382 scales has revealed the existence of the quantum world; several theories attempting 383 to describe it have been created and many experiments to test it have been designed. 384 Thus, challenges are three-fold; on the theoretical side, the standard model of particle 385 physics (SM) gathers the best understanding of nature that is consistent with the 386 experimental data and although it is extremely successful is known that SM is 387 not the final version of a theory of everything; on the data analysis side, statistical 388 methods have been developed in order to obtain the most from that experimental 389 data; on the experimental side, detection systems are under continuous research and 390 developm In this thesis, all three aspects are explored. 391

The context of SM is presented in Chapter 2, starting with a description of the basic components of the matter, quarks and leptons, and how they interact to produce a universe as it is. The language used in this description is the quantum field theory based on the principles of the gauge invariance, which states that the function describing the energy of a system is invariant under certain transformations; from the physics point of view, that gauge invariance means that a physical system can be described by more than one mathematical model. Although the choice of the gauge

could make, for instance, the mathematical treatment of the model more or less challenging, it does not have any effect on the observables of the physical system, i.e., a physical system is independent of the model used to describe it.

Interactions the SM are represented in terms of the exchange of particles, known as 402 Gauge bosons; among the gauge bosons, the Higgs boson is responsible for providing 403 the mass to the elementary particles, hence, a fundamental part of characterization 404 of the Higgs boson constant of finding the way it interacts with the rest of elementary 405 particles, i.e., how the Higgs boson couples with other particles. In this thesis the 406 coupling of the Higgs boson with the top quark is investigated; in particular, the 407 search for the production of a Higgs-boson in association with a single top-quark 408 (tH) is considered; the focus is on the $H \to WW$, $H \to \tau\tau,$ and $H \to ZZ$ decay 409 modes that provide leptonic signatures in the final state. This process is of special 410 interest due to its sensitivity to the relative sign of the top-Higgs coupling and the 411 vector bosons-Higgs coupling; in addition, tH process is sensitive to Charge-Parity 412 (CP) symmetry violation effects related with the Higgs boson. Thus, a description of 413 the incorporation of the Higgs boson in the SM and the specifics of the tH process 414 are also presented in Chapter 2. 415

Despite the fact that the SM is a very successful theory, capable of explaining and make predictions about a vast amount of natural phenomena, by early 2012 a fundamental piece of it was missing; the Higgs boson had not been found and the verification of the theory was not complete. Its existence was postulated in the 1960s and several efforts to find it were mad the experiments at the Fermi National accelerator Laboratory (Fermilab). The Higgs boson discovery was announced in July 2012 by the CMS and ATLAS experiments at CERN¹ from proton-proton collision

CMS stand for Compact Muon Solenoid, ATLAS stand for A Toroidal LHC ApparatuS, CERN stand for Conseil Européen pour la Recherche Nucléaire

experiments. The data set used in this thesis were collected by the CMS experiment and the description of the experimental setup and the different subdetection systems is presented in Chapter 3.

Thanks to the increasing development in computing, tools like Monte Carlo (MC) 426 generators, simulation and reconstruction algorithms and software, allow for evalu-427 ating the theory predictions and comparing them with real data. MC generators are 428 used to create a set of data samples that reflects the theoretical principles and details 429 of the process under investigation, thus, predictions are obtained from the numerical 430 solution of the mathematical models; however, a direct comparison with the data 431 obtained from the experiments is not possible because of a variety of factors, for in-432 stance, the presence of the detection systems. The effect of the detection systems can 433 be simulated and attached to the MC data samples such that the resulting samples 434 account for these effects. 435

Experimental data are also processed; given that the whole detector is composed 436 of several subdetectors, the information coming from these subdetection systems is 437 combined to reconstruct the features of the particles produced after the proton-proton 438 collision. The process of matching the information from different subdetection sys-439 tems is known as event reconstruction. The result of the event reconstruction is a set 440 of objects that are identified with the particles expected in the final state and that 441 are predicted by the theory; in the tH process case, those final state particles are leptons and jets. Chapter 4 presents the details about the computational tools used 443 in this thesis. 444

The statistical tools used to treat the data samples are described in Chapter 5; these tools include the Boosted Decision Trees (BDT) method employed to discriminate signal and background events based on their features, and the statistical inference methods used to account for the uncertainties introduced in the analysis

and to extract the asymptotic limits on the $tH + t\bar{t}H$ production cross section.

In Chapter 6, the search for the production of a Higgs-boson in association with 450 a single top-quark (tH) is presented. First, the features of the signal and background 451 processes are described; then, the MC and data samples considered, and the strategies 452 oriented to identify the physics objects are defined. The event selection proceeds in 453 two steps; first, an event pre-selection based on the signal features is performed; later, 454 the signal is extracted based on BDT discriminators, and upper limits on the $tH + t\bar{t}H$ 455 production cross section are set. Finally, the sensitivity to CP-mixing in tH process 456 is investigated and upper limits on the $tH + t\bar{t}H$ production cross section are set. 457 In Chapter 7, the upgrade of the CMS forward pixel detection systems (FPix) 458 is presented. The HEP group at University of Nebrasi UNL), played a leading 459 role in the so called Phase 1 FPix upgrade, serving as a FPix modules assembly site; 460 the assembly process was designed as a production line composed of several stages 461 among which the gluing and encapsulation stages are described in detail. These stages 462 were implemented using a semi automated pick-and-place robotic system integrating 463 vision, vacuum, and dispensing subsystems. The employment of the semi automated 464 setup, capable to provide a precision in motion of about 10 μ m, endow of uniformity 465 and speed up the module production. The commissioning of the assembly site started 466 from scratch in late 2012 and by mid 2015 the production yields reached the same 467 level as other experienced assembly sites. 468 Chapter 8 preson the conclusions from both analysis and hardware development 469

sides.

Chapter 2

Theoretical approach

173 2.1 Introduction

472

474 The physical description of the universe is a challenge that physicists have faced by

475 making theories that refine existing principles and proposing new ones in an attempt

476 to embrace emerging facts and phenomena.

477 At the end of 1940s Julian Schwinger [1] and Richard P. Feynman [2], based on

478 the work of Sin-Itiro Tomonaga [3], developed an electromagnetic theory consistent

479 with special relativity and quantum mechanics that describes how matter and light

interact; the so-called quantum electrodynamics (QED) was born.

QED has become the blueprint for developing theories that describe the universe.

482 It was the first example of a quantum field theory (QFT), which is the theoretical

483 framework for building quantum mechanical models that describes particles and their

484 interactions. QFT is composed of a set of mathematical tools that combines classical

485 fields, special relativity and quantum mechanics, while keeping the quantum point

486 particles and locality ideas.

This chapter gives an overview of the standard model of particle physics, starting

with a description of the particles and their interactions, followed by a description of

the electroweak interaction, the Higgs boson and the associated production of Higgs