

BABEŞ-BOLYAI UNIVERSITY

Faculty of Mathematics and Computer Science

Inteligență Artificială

5: Proiectarea Algoritmilor Evolutivi

Camelia Chira

cchira@cs.ubbcluj.ro

Algoritmi evolutivi

- O *populatie* de solutii candidat este <u>evoluata</u> in iteratii succesive de *variatie si selectie aleatoare*.
 - Reprezentarea solutiilor
 - Functia criteriu (de evaluare a solutiilor)
 - Operatori specifici de variatie si selectie
 - Marimea si initializarea populatiei
 - Optimum set of choices?
- NU exista o metoda optima de a proiecta un algoritm de cautare eficient pentru orice problema!
- NU exista o singura metoda cea mai buna de a cauta solutia in orice problema individuala!

Schema AE

An example (after Goldberg)

- Simple problem: $\max x^2$ over $\{0,1,...,31\}$
- GA approach:
 - Representation: binary code, e.g. $01101 \leftrightarrow 13$
 - Population size: 4
 - 1-point xover, bitwise mutation
 - Roulette wheel selection
 - Random initialisation

Sa vedem ce se intampla intr-o generatie...

x² example: selection

String	Initial	x Value	Fitness	$Prob_i$	Expected	Actual
no.	population		$f(x) = x^2$		count	count
1	01101	13	169	0.14	0.58	1
2	$1\ 1\ 0\ 0\ 0$	24	576	0.49	1.97	2
3	$0\ 1\ 0\ 0\ 0$	8	64	0.06	0.22	0
4	$1\ 0\ 0\ 1\ 1$	19	361	0.31	1.23	1
Sum			1170	1.00	4.00	4
Average			293	0.25	1.00	1
Max			576	0.49	1.97	2

X² example: crossover

String	Mating	Crossover	Offspring	x Value	Fitness
no.	pool	point	after xover		$f(x) = x^2$
1	0 1 1 0 1	4	$0\ 1\ 1\ 0\ 0$	12	144
2	1 1 0 0 0	4	$1\ 1\ 0\ 0\ 1$	25	625
2	11 000	2	$1\ 1\ 0\ 1\ 1$	27	729
4	10 0 1 1	2	$1\ 0\ 0\ 0\ 0$	16	256
Sum					1754
Average					439
Max					729

x² example: mutation

String	Offspring	Offspring	x Value	Fitness
no.	after xover	after mutation		$ f(x) = x^2 $
1	01100	1 1 1 0 0	26	676
2	$1\ 1\ 0\ 0\ 1$	$1\ 1\ 0\ 0\ 1$	25	625
2	$1\ 1\ 0\ 1\ 1$	$1\ 1\ 0\ 1\ 1$	27	729
4	$1\ 0\ 0\ 0\ 0$	$1\ 0\ 1\ 0\ 0$	18	324
Sum				2354
Average				588.5
Max				729

8Q: Problema celor 8 regine

• Asezati 8 regine pe o tabla de sah 8x8 astfel incat sa nu se atace

8Q: Reprezentare

Phenotype

1 3 5 2 6 4 7 8

Genotype

8Q: Functia de fitness

- Penalizare
 - Pentru o regina numarul de regine pe care le ataca
 - Pentru o configuratie suma penalizarilor /regina
 - Scop: minimizarea penalizarii
 - Optim: 0
- Fitness-ul unei configuratii este inversul penalizarii (maximizare)

8Q: Mutatie

- Variatii in permutari
- Schimb 2 pozitii aleatoare (Swap)

8Q: Recombinare

- Combinarea a doua permutari pentru a obtine 2 permutari noi
- Exemplu
 - Aleg un punct de incrucisare aleator
 - Copiez prima parte de la fiecare parinte in cei doi copii
 - Construiesc a doua parte de la celalalt parinte

8Q: Selectie

- Selectia parintilor:
 - Alege k indivizi din populatia curenta si cei mai buni 2 parinti incrucisare
- Selectia supravietuitorilor:
 - Un nou cromozom creat (offspring) inlocuieste un individ din populatie
 - Varianta 1:
 - Sortarea populatiei dupa fitness
 - Primul individ cu un fitness mai slab decat noul individ este inlocuit
 - Varianta 2 (des folosita):
 - Inlocuieste cel mai slab individ din intreaga populatie

8Q: Parametri

Populatie - size	100
Initializare	Aleatoare
Probabilitate de recombinare	100%
Recombinare	"Cut-and-crossfill" crossover
Selectia parintilor	Cei mai buni 2 din k = 10 aleatori
Probabilitate de mutatie	80%
Mutatie	Swap
Selectia supravietuitorilor	Replace worst
Conditie de stop	Solutie gasita sau 10,000 de evaluari fitness

AEs

- AE permit folosirea oricarei reprezentari dar operatorii de variatie vor depinde de reprezentarea aleasa
- Exista multe diferente intre AEs, insa toti au cam aceeasi "reteta" de evaluare-selectie-variatie:
 - Crearea unei populatii de inidivizi ce reprezinta solutii potentiale
 - Evaluarea indivizilor
 - Introducerea unei presiuni de selectie ce promoveaza indivizii mai buni si ii elimina pe cei mai slabi
 - Aplicarea unor operatori de variatie pentru a genera solutii noi
- AEs pot combina cele 2 categorii de algoritmi (solutii complete vs incomplete): indivizii pot descrie supspatii sau solutii particulare
- Parametri
 - Exista: marimea populatiei, probabilitati de incrucisare/mutatie
 - Pot fi insa evoluati: *Tuning the algorithm to the problem while solving the problem!*

EA: comportament tipic

Inceputul rularii:

Distributia populatiei cvasi-aleator

Mijloc:

Populatia se aranjeaza spre dealuri

Final:

Populatia se concentreaza de dealurile inalte

Avantaje AEs

- Inerent adaptivi
 - Inidvizii se pot adapta natural la schimbari din mediu probleme dinamice
 - AEs nu trebuie restartati cu fiecare schimbare in model
- Usor de hibridizat cu alte tehnici
 - Operatori de variatie specializati: ex. hill-climbing
- Modele co-evolutive
- Paralelism
 - Ex. Un procesor opereaza cu un individ sau cu o subpopulatie

...you are playing the role the creator!

Decizii importante in proiectarea AE

- Reprezentarea indivizilor
- Functia de evaluare sau de fitness cum este evaluat fiecare individ?
- Operatori de variatie
- Selectia
- Initializarea

Initializarea

• EA inseamna:

$$x[t+1] = s(v(x[t]))$$

unde

- x[t] este populatia cu reprezentarea x la timpul t
- v reprezinta operatorii de variatie
- s este operatorul de selectie
- Populatia initiala x[0] trebuie determinata *inainte* de a incepe procesul evolutiv
- Tipic: populatia initiala este generata aleator
- Alte metode?
 - Putem tine cont de problema
 - Putem initializa un individ cu cea mai buna solutie gasita de un alt algoritm (ex. greedy)
- Diversitatea populatiei

Reprezentare

- O reprezentare buna permite aplicarea unor operatori de cautare care sa mentina o legatura functionala intre parinti si copii
- Nepotrivirea operatorilor de cautare si a reprezentarii => cautare aleatoare (sau chiar mai rau)
- Recomandare: alegeti intotdeauna o reprezentare care este intuitiva pentru problema data
 - Codificarea binara
 - Codificarea reala
 - Codificarea specifica

- Vectori de lungime fixa
- Permutari
- Expresii simbolice

Reprezentare: Vectori de lungime fixa

Subset selection problem

- Obiectiv: ce obiecte vor fi alese dintr-o multime
- Aplicatii: statistica, optimizare in transporturi
- Reprezentare: lista de biti {0,1}
- Optimizarea unghiurilor de torsiune intr-un compus chimic
 - Vector de valori reale in $[0,2\pi)$

• Model liniar de predictie a unor valori

- Estimarea unui pret pentru o actiune se bazeaza pe istoric
- $y[t] = a_1y[t-1] + \cdots + a_ky[t-k]$, unde y[i] este sirul de preturi din istoric și a sunt coeficienții
- Reprezentare: $[k, a_1, ..., a_{max}]$, unde max este numarul maxim de valori precedente considerate
- Operatorii de cautare pentru k difera de cei pentru a

Reprezentare: Permutari

- Problema de planificare a sarcinilor: *o lista de j sarcini trebuie ordonata pentru a fi executate intr-o fabrica*
 - Ordinea pozitiilor importanta
- TSP
 - Pozitiile *adiacente* importante
- Reprezentare: [1,2,...,j]
 - Ordinea din permutare corespunde ordinii aplicarii sarcinilor
 - E posibila existenta a mai multor instante pentru anumite sarcini

Reprezentare: Arbori

- Probleme ce necesita construirea unei functii (pentru o anumita sarcina de mapare)
- Reprezentare
 - Expresie simbolica in forma unui arbore
 - $(*(+\sin(x) 1.25) (t))$
 - $(\sin(x)+1.25)*t$

Functia de evaluare

- Este modul de a determina calitatea solutiilor evaluate
- Common sense: "The optimum solution(s) should be given the optimum evaluation(s)".

Problema One Max

Obiectiv: gasiti un vector de 10 valori din {0,1} astfel incat numarul de 1 este maximizat.

Evident: best solution is [111111111]

$$f(x) = \sum_{i=1}^{n} x_i \qquad vs. \qquad f(x) = \prod_{i=1}^{n} x_i$$

- Scopul este de a obtine solutii bune intr-un timp scurt => functia de evaluare trebuie sa fie capabila sa ghideze cautarea si spre solutii mai putin perfecte
- Evaluarea solutiilor consuma de obicei cel mai mult timp intr-un AE

Operatorii de cautare (variatie)

- De obicei se aleg pe baza reprezentarii alese
- Implementarea practica a operatorilor se bazeaza pe reprezentare si pe intuitia despre cum arata spatiul de cautare (landscape) indus de functia de evaluare
- Orice spatiu de cautare are si o metrica de distanta: de obicei, numarul de operatori necesari pentru a trece dintr-un punct in altul
- Operatori pentru 1 parinte, 2 parinti, combinatii...
- NU exista o cea mai buna alegere pentru toate problemele!

Selectia

Termenul poate fi folosit in 2 contexte:

- Selectia parintilor
- Selectia indivizilor pentru generatia urmatoare

Initialization

Population

Variation/search operators

Survival selection

Offspring

Putem avea tipuri diferite de selectie pentru cele 2 aspecte

Ex:

- Selectia
 proportionala
 pentru a alege
 parintii
- Selectie turnir pentru a elimina inidivizi din populatie
- Regula elitista
 pentru a nu pierde
 cea mai buna solutie

Selectia

- Determinarea noii populatii pe baza calitatii indivizilor
 - 1) Unii indivizi sunt eliminati in timp ce ceilalti supravietuiesc pentru a deveni parinti in generatia urmatoare
 - Un individ poate aparea o singura data in generatia urmatoare
 - 2) Indivizii sunt selectati pe baza calitatii lor relative Un individ poate fi ales de mai multe ori
- Filtrul prin care algoritmul stabileste generatia urmatoare
- Determinista
 - Selectia elimina aceeasi indivizi
- > Stocastica
 - Supravietuitorii sunt alesi in mod probabilistic

Selectia parintilor

- Indivizii mai performanti au mai multe sanse de reproducere
- Stabileste indivizii din populatia curenta ce vor contribui la constituirea generatiei urmatoare
- Se bazeaza pe calitatea indivizilor (functia de fitness)
- Sarcina selectiei: *exploatarea* celor mai bune solutii gasite

Selectia determinista

- μ numarul parintilor
- λ numarul descendentilor

• Selectia (μ+ λ)

- λ descendenti sunt creati din μ parinti
- μ+ λ indivizi sunt evaluati
- Selectia: Cei mai buni μ sunt pastrati

• Selectia (μ,λ)

- λ descendenti sunt creati din μ parinti, $\lambda \geq \mu$
- Selectia: Cei mai buni μ din cei λ indivizi sunt pastrati

Selectia stocastica

- Selectia proportionala
- Selectia prin ordonare
- Selectia turnir
- Selectia elitista
- etc

Selectia proportionala

$$P(t) = \{x_1, x_2, ..., x_n\}$$

- Functia de fitness f:X->R; $f(x) \ge 0$ (scalare altfel)
- Performanta totala a populatiei $F = \sum_{i=1}^{n} f(x_i)$
- Probabilitatea de selectie pentru x_i

$$p_i = \frac{f(x_i)}{F}$$

 Selectia se aplica de n ori => valoarea medie a descendentilor individului i este:

$$n_i = n \cdot p_i = \frac{n \cdot f(x_i)}{\sum_{i=1}^n f(x_i)} = \frac{f(x_i)}{\overline{f}}$$

Algoritmul Monte Carlo de selectie (Algoritmul ruletei)

P1. Pentru fiecare cromozom se calculeaza:

$$q_i = \sum_{k=1}^{i} p_k; i = 1, 2, ..., n$$

- P2. Pentru i=1,2,...,n executa
 - P2.1 Se genereaza aleator g in intervalul [0,1]
 - P2.2 Regula de selectie:
 - a. Daca $0 \le g \le q_1$ atunci este selectat x_1
 - b. Daca $q_{i-1} \le g \le q_i$ atunci este selectat x_i

- Dominanta unui individ performant => convergenta prematura!
- Spre sfarsitul rularii –
 fitness similar => se pierde
 presiunea de selectie

Selectia bazata pe ordonare (Rank based)

- Aranjarea indivizilor in ordinea crescatoare a calitatii (maximizarea functiei de fitness): worst primeste rank 1, fittest primeste rank n
- Probabilitatea de selectie a unui individ depinde de rangul sau in sirul ordonat => se foloseste un fitness relativ nu unul absolut!
- Presiunea de selectie numarul mediu de descendenti ai celui mai performant individ
 - Constanta a metodei
 - Se exprima printr-un numar s din [1,2]

Selectia prin ordonare

$$P(t) = \{x_1, x_2, ..., x_n\}$$

- r_i rangul individului i (r_i =1 pentru cel mai slab individ)
- *s* presiunea de selectie
- Probabilitatea de selectie depinde de pozitia relativa a cromozomilor:

$$p_i = \frac{2-s}{n} + \frac{2(r_i - 1)(s-1)}{n-1}$$

Rank based selection: Exemplu

Observatii

Selectia turnir (tournament size k)

- Se aleg in mod aleator k cromozomi
- Se calculeaza fitness-ul cromozomilor selectati
- Cromozomul mai performant este selectat
- Mecanismul este aplicat de n ori pentru a selecta n parinti

Population

Alte mecanisme de selectie

- Strategii elitiste
- Folosirea unei rate de inlocuire
 - Numai o parte din parinti sunt inlocuiti
 - Cromozomii noi generati inlocuiesc indivizii apropiati de ei
- Inlocuirea asincrona a indivizilor (vs generationala)
- Selectie dinamica (vs statica)

Structura generala AE

begin

```
t \leftarrow 0
Initializare P(t)
Evaluare P(t)
while (not termination-condition) do
begin
      t \leftarrow t + 1
      Select P(t) din P(t-1)
      Modificare P(t)
      Evaluare P(t)
end
```

end

Generational GA

Steady-state GA

```
Initialization P(0)
Evaluation(P(0))
g = 0;
While (not stop_condition) do
  Repeat
      Select 2 parents p1 and p2 from P(g)
      Crossover(p1,p2) =>01 and o2
       Mutation(o1) => o1*
       Mutation(o2) => o2*
       Evaluation(o1*)
       Evaluation(o2*)
      Add o1* and o* into P(g+1)
  Until P(g+1) is full.
  g++
EndWhile
```

```
Initialization P
Evaluation(P)
While (not stop_condition) do
     Select 2 parents p1 and p2 from P
     Crossover(p1,p2) =>01 and o2
      Mutation(o1) => o1*
      Mutation(o2) => o2*
      Evaluation(o1*)
      Evaluation(o2*)
      Best(o1*,o2*) replaces Worst(P)
```

EndWhile

Next time...

More on AEs