







#### **CETECOM ICT Services**

consulting - testing - certification >>>

# **TEST REPORT**

Test Report No.: 1-9470/15-01-02





#### **Testing Laboratory**

#### **CETECOM ICT Services GmbH**

Untertürkheimer Straße 6 – 10 66117 Saarbrücken/Germany Phone: + 49 681 5 98 - 0 Fax: + 49 681 5 98 - 9075 Internet: http://www.cetecom.com

e-mail: ict@cetecom.com

#### **Accredited Test Laboratory:**

The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2005) by the Deutsche Akkreditierungsstelle GmbH (DAkkS)

The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate with

the registration number: D-PL-12076-01-00

### **Applicant**

#### Coppernic SAS

185 avunue archimede

13100 Aix-en-Provence, Cedex 3/Frankreich

Phone: ---

Contact: Philippe Porte

e-mail: Philippe.Porte@coppernic.fr

Phone: +33 4 42 65 25 77

Fax: --

#### Manufacturer

#### Coppernic SAS

185 avunue archimede

13100 Aix-en-Provence, Cedex 3/Frankreich

#### **Test Item**

Kind of test item: RFID Module
Device type: portable device

Model name: Motorola Workabout Pro4

 S/N serial number:
 WPQACE240073C1

 FCC-ID:
 XGKSE3210

 IC:
 8402A-SE3210

 Hardware status:
 Model SE3210

Hardware status: Model SE3210 Software status: XW2DMT

Frequency: WLAN 2.4 and 5 GHz
Antenna: integrated antenna
Battery option: 3.7V / 4400 mAh

Accessories: ---

Test sample status: identical prototype

Exposure category: general population / uncontrolled environment



This test report is electronically signed and valid without handwriting signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

| lest Report authorised:                         | l est performed:                           |
|-------------------------------------------------|--------------------------------------------|
|                                                 |                                            |
|                                                 |                                            |
|                                                 |                                            |
| Oleksandr Hnatovskiy Radio Communications & EMC | Marco Scigliano Radio Communications & EMC |



# 1 Table of contents

| 1   | Table o | of contents                                             | 2   |
|-----|---------|---------------------------------------------------------|-----|
| 2   | Genera  | al information                                          | 3   |
|     |         | Notes and disclaimer                                    |     |
|     |         | Application details                                     |     |
|     |         | RF exposure limits                                      |     |
| 3   | Test E  | nvironment                                              | 4   |
| 4   |         | et-up                                                   |     |
| 4   |         | •                                                       |     |
|     |         | Measurement system                                      |     |
|     | 4.1     |                                                         |     |
|     | 4.1     |                                                         |     |
|     | 4.1     | · · · · · · · · · · · · · · · · · · ·                   |     |
|     | 4.1     |                                                         |     |
|     | 4.1     |                                                         | 7   |
|     | 4.1     | , , , , , , , , , , , , , , , , , , ,                   |     |
|     | 4.1     |                                                         |     |
|     | 4.1     | · ·                                                     |     |
|     | 4.1     |                                                         |     |
|     |         | .10 Tissue simulating liquids: dielectric properties    |     |
|     |         | .11 Tissue simulating liquids: parameters               |     |
|     |         | .12 Measurement uncertainty evaluation for SAR test     |     |
|     |         | .13 Measurement uncertainty evaluation for System Check |     |
|     |         | .14 System check                                        |     |
|     |         | .15 System check procedure                              |     |
|     |         | .16 System validation                                   |     |
| 5   | SAR te  | st results                                              | .24 |
|     | 5.1 I   | Results overview                                        | .24 |
|     | 5.2     | General description of test procedures                  | .24 |
| 6   | Test ed | quipment and ancillaries used for tests                 | .2  |
| 7   |         | <br>/ations                                             |     |
| •   | Observ  |                                                         |     |
| Anr | nex A:  | System performance check                                | .26 |
| Anr | nex B:  | DASY5 measurement results                               | .30 |
|     | Annex   | B.1: WLAN 2450MHz                                       | .30 |
|     |         | B.2: WLAN 5GHz                                          |     |
|     | Annex   | B.3: Liquid depth                                       | 46  |
| _   |         | ·                                                       |     |
| Anr | nex C:  | Photo documentation                                     |     |
| Anr | nex D:  | Calibration parameters                                  | .54 |
| Anr | nex E:  | Document History                                        | .5  |
| Anr | nex F:  | Further Information                                     | .5  |



#### 2 General information

#### 2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CETECOM ICT Services GmbH does not assume responsibility for any conclusions and generalisations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item. The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CETECOM ICT Services GmbH.

This test report is electronically signed and valid without handwriting signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

The testing service provided by CETECOM ICT Services GmbH has been rendered under the current "General Terms and Conditions for CETECOM ICT Services GmbH".

CETECOM ICT Services GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CETECOM ICT Services GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CETECOM ICT Services GmbH test report include or imply any product or service warranties from CETECOM ICT Services GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CETECOM ICT Services GmbH.

All rights and remedies regarding vendor's products and services for which CETECOM ICT Services GmbH has prepared this test report shall be provided by the party offering such products or services and not by CETECOM ICT Services GmbH.

In no case this test report can be considered as a Letter of Approval.

#### 2.2 Application details

Date of receipt of 2015-02-25

order:

 Date of receipt of test item:
 2015-02-25

 Start of test:
 2015-02-27

 End of test:
 2015-03-04

Person(s) present during the test:



### 2.3 RF exposure limits

| Human Exposure                               | Uncontrolled Environment<br>General Population | Controlled Environment Occupational |
|----------------------------------------------|------------------------------------------------|-------------------------------------|
| Spatial Peak SAR* (Brain and Trunk)          | 1.60 mW/g                                      | 8.00 mW/g                           |
| Spatial Average SAR** (Whole Body)           | 0.08 mW/g                                      | 0.40 mW/g                           |
| Spatial Peak SAR*** (Hands/Feet/Ankle/Wrist) | 4.00 mW/g                                      | 20.00 mW/g                          |

Table 1: RF exposure limits

The limit applied in this test report is shown in bold letters

#### Notes:

- \* The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time
- \*\* The Spatial Average value of the SAR averaged over the whole body.
- \*\*\* The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation).

#### 3 Test Environment

Ambient temperature:  $20 - 24 \,^{\circ}\text{C}$ Tissue Simulating liquid:  $20 - 24 \,^{\circ}\text{C}$ 

Relative humidity content: 40 - 50 %

Air pressure: not relevant for this kind of testing

Power supply: 230 V / 50 Hz

Exact temperature values for each test are shown in the table(s) under 7.1 and/or on the measurement plots.



#### 4 Test Set-up

# 4.1 Measurement system

### 4.1.1 System Description



- The DASY system for performing compliance tests consists of the following items:
- A standard high precision 6-axis robot (Stäubli RX family) with controller and software. An arm extension for accommodating the data acquisition electronics (DAE).
- A dosimetric probe, i.e. an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- A data acquisition electronic (DAE) which performs the signal amplification, signal multiplexing, ADconversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- A unit to operate the optical surface detector which is connected to the EOC.
- The <u>Electro-Optical Coupler</u> (EOC) performs the conversion from the optical into a digital electric signal of the DAE. The EOC is connected to the DASY measurement server.
- The DASY measurement server, which performs all real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operation. A computer operating Windows 7.
- DASY software and SEMCAD data evaluation software.
- Remote control with teach panel and additional circuitry for robot safety such as warning lamps, etc.
- The generic twin phantom enabling the testing of left-hand and right-hand usage.
- The device holder for handheld mobile phones.
- Tissue simulating liquid mixed according to the given recipes.
- System check dipoles allowing to validate the proper functioning of the system.



#### 4.1.2 Test environment

The DASY measurement system is placed at the head end of a room with dimensions:

 $5 \times 2.5 \times 3 \text{ m}^3$ , the SAM phantom is placed in a distance of 75 cm from the side walls and 1.1m from the rear wall. Above the test system a 1.5 x 1.5 m<sup>2</sup> array of pyramid absorbers is installed to reduce reflections from the ceiling.

Picture 1 of the photo documentation shows a complete view of the test environment.

The system allows the measurement of SAR values larger than 0.005 mW/g.

### 4.1.3 Probe description

| Isotropic E-F | ield Probe EX3DV4 for Dosimetric Measurements                  |
|---------------|----------------------------------------------------------------|
| Tec           | chnical data according to manufacturer information             |
| Construction  | Symmetrical design with triangular core                        |
|               | Interleaved sensors                                            |
|               | Built-in shielding against static charges                      |
|               | PEEK enclosure material (resistant to organic solvents, e.g.,  |
|               | DGBE)                                                          |
| Calibration   | ISO/IEC 17025 calibration service available.                   |
| Frequency     | 10 MHz to >6 GHz (dosimetry); Linearity: ± 0.2 dB (30 MHz to   |
|               | 6 GHz)                                                         |
| Directivity   | ± 0.3 dB in HSL (rotation around probe axis)                   |
|               | ± 0.5 dB in tissue material (rotation normal to probe axis)    |
| Dynamic range | 10 μW/g to > 100 mW/g; Linearity: ± 0.2 dB (noise: typically<1 |
|               | μW/g)                                                          |
| Dimensions    | Overall length: 337 mm (Tip: 20mm)                             |
|               | Tip length: 2.5 mm (Body: 12mm)                                |
|               | Typical distance from probe tip to dipole centers: 1mm         |
| Application   | High precision dosimetric measurements in any exposure         |
|               | scenario (e.g., very strong gradient fields). Only probe which |
|               | enables compliance testing for frequencies up to 6 GHz with    |
|               | precision of better 30%.                                       |



### 4.1.4 Phantom description

The used ELI4 Phantom meets the requirements specified in KDB865664 D01 for Specific Absorption Rate (SAR) measurements. The phantom consists of a fibreglass shell integrated in a wooden table.



The ELI4 phantom is intended for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30MHz to 6 GHz. ELI4 is fully compatible with the standard IEC 62209-2 and all known tissue simulating liquids.

### 4.1.5 Device holder description



The DASY device holder has two scales for device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear openings). The plane between the ear openings and the mouth tip has a rotation angle of 65°. The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. This device holder is used for standard mobile phones or PDA's only. If necessary an additional support of polystyrene material is used.

Larger DUT's (e.g. notebooks) cannot be tested using the device holder without the extension kit described below.

### 4.1.6 Laptop Extension Kit for Device holder

SPEAG released a simple but effective extension for their Mounting Device that facilitates the testing of larger devices according to IEC 62209-2 (e.g., laptops, cameras, etc).



The extension is lightweight and made of POM, PET-G acrylic glass and foam. It fits easily on the upper part of the Mounting Device in place of the phone positioner.



### 4.1.7 Scanning procedure

- The DASY installation includes predefined files with recommended procedures for measurements and system check. They are read-only document files and destined as fully defined but unmeasured masks. All test positions (head or body-worn) are tested with the same configuration of test steps differing only in the grid definition for the different test positions.
- The "reference" and "drift" measurements are located at the beginning and end of the batch process. They measure the field drift at one single point in the liquid over the complete procedure. The indicated drift is mainly the variation of the DUT's output power and should vary max. +/- 5 %.
- The "surface check" measurement tests the optical surface detection system of the DASY system by repeatedly detecting the surface with the optical and mechanical surface detector and comparing the results. The output gives the detecting heights of both systems, the difference between the two systems and the standard deviation of the detection repeatability. Air bubbles or refraction in the liquid due to separation of the sugar-water mixture gives poor repeatability (above ± 0.1mm). To prevent wrong results tests are only executed when the liquid is free of air bubbles. The difference between the optical surface detection and the actual surface depends on the probe and is specified with each probe. (It does not depend on the surface reflectivity or the probe angle to the surface within ± 30°.)
- The "area scan" measures the SAR above the DUT or verification dipole on a parallel plane to the surface. It is used to locate the approximate location of the peak SAR with 2D spline interpolation. The robot performs a stepped movement along one grid axis while the local electrical field strenth is measured by the probe. The probe is touching the surface of the SAM during acquisition of measurement values. The standard scan uses large grid spacing for faster measurement. Standard grid spacing for head measurements is 15 mm in x- and y- dimension. If a finer resolution is needed, the grid spacing can be reduced. Grid spacing and orientation have no influence on the SAR result. For special applications where the standard scan method does not find the peak SAR within the grid, e.g. mobile phones with flip cover, the grid can be adapted in orientation. Results of this coarse scan are shown in annex 2.
- A "7x7x7 zoom scan" measures the field in a volume around the 2D peak SAR value acquired in the previous "coarse" scan. This is a fine 7x7 grid where the robot additionally moves the probe in 7 steps along the z-axis away from the bottom of the Phantom. Grid spacing for the cube measurement is 5 mm / 4 mm in x and y-direction and 5 mm / 2 mm in z-direction. DASY is also able to perform repeated zoom scans if more than 1 peak is found during area scan. In this document, the evaluated peak 1g and 10g averaged SAR values are shown in the 2D-graphics in annex 2. Test results relevant for the specified standard (see section 3) are shown in table form in section 7.
- A Z-axis scan measures the total SAR value at the x-and y-position of the maximum SAR value found during the cube 7x7x7 scan. The probe is moved away in z-direction from the bottom of the SAM phantom in 2mm steps. This measurement shows the continuity of the liquid and can - depending in the field strength – also show the liquid depth. A z-axis scan of the measurement with maximum SAR value is shown in annex 2.



### 4.1.8 Spatial Peak SAR Evaluation

The spatial peak SAR - value for 1 and 10 g is evaluated after the Cube measurements have been done. The basis of the evaluation are the SAR values measured at the points of the fine cube grid consisting of  $7 \times 7 \times 7$  points. The algorithm that finds the maximal averaged volume is separated into three different stages.

- The data between the dipole center of the probe and the surface of the phantom are extrapolated. This data cannot be measured since the center of the dipole is 2.7 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is about 1 mm (see probe calibration sheet). The extrapolated data from a cube measurement can be visualized by selecting 'Graph Evaluated'.
- The maximum interpolated value is searched with a straight-forward algorithm. Around this maximum
  the SAR values averaged over the spatial volumes (1g or 10 g) are computed using the 3d-spline
  interpolation algorithm. If the volume cannot be evaluated (i.e., if a part of the grid was cut off by the
  boundary of the measurement area) the evaluation will be started on the corners of the bottom plane
  of the cube.
- All neighbouring volumes are evaluated until no neighbouring volume with a higher average value is found.

### **Extrapolation**

The extrapolation is based on a least square algorithm [W. Gander, Computermathematik, p.168-180]. Through the points in the first 3 cm along the z-axis, polynomials of order four are calculated. These polynomials are then used to evaluate the points between the surface and the probe tip. The points, calculated from the surface, have a distance of 1 mm from each other.

#### Interpolation

The interpolation of the points is done with a 3d-Spline. The 3d-Spline is composed of three one-dimensional splines with the "Not a knot"-condition [W. Gander, Computermathematik, p.141-150] (x, y and z -direction) [Numerical Recipes in C, Second Edition, p.123ff].

#### **Volume Averaging**

At First the size of the cube is calculated. Then the volume is integrated with the trapezoidal algorithm. 8000 points (20x20x20) are interpolated to calculate the average.

#### **Advanced Extrapolation**

DASY uses the advanced extrapolation option which is able to compensate boundary effects on E-field probes.



#### 4.1.9 Data Storage and Evaluation

#### **Data Storage**

The DASY software stores the acquired data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files with the extension ".DA4", ".DA5x". The software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of incorrect parameter settings. For example, if a measurement has been performed with a wrong crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be re-evaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type ([V/m], [A/m], [°C], [mW/g], [mW/cm²], [dBrel], etc.). Some of these units are not available in certain situations or show meaningless results, e.g., a SAR output in a lossless media will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

#### Data Evaluation by SEMCAD

The SEMCAD software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters: - Sensitivity Norm<sub>i</sub>, a<sub>i0</sub>, a<sub>i1</sub>, a<sub>i2</sub>

Conversion factor
 Diode compression point
 Frequency
 ConvFi
 Dcpi
 f

Device parameters: - Frequency f

- Crest factor cf - Conductivity  $\sigma$ 

Media parameters: - Conductivity  $\sigma$  - Density  $\rho$ 

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics.





If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot cf/dcp_i$$

with  $V_i$  = compensated signal of channel i (i = x, y, z) $U_i$  = input signal of channel i (i = x, y, z)

cf = crest factor of exciting field (DASY parameter) dcp<sub>i</sub> = diode compression point (DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

E-field probes:  $E_i = (V_i / Norm_i \cdot ConvF)^{1/2}$ 

H-field probes:  $H_i = (V_i)^{1/2} \cdot (a_{i0} + a_{i1}f + a_{i2}f^2)/f$ 

with  $V_i$  = compensated signal of channel i (i = x, y, z)

Norm<sub>i</sub> = sensor sensitivity of channel i (i = x, y, z)

[mV/(V/m)<sup>2</sup>] for E-field Probes

ConvF = sensitivity enhancement in solution

a<sub>ii</sub> = sensor sensitivity factors for H-field probes

f = carrier frequency [GHz]

E<sub>i</sub> = electric field strength of channel i in V/m H<sub>i</sub> = magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = (E_x^2 + E_y^2 + E_z^2)^{1/2}$$

The primary field data are used to calculate the derived field units.

$$SAR = (E_{tot}^2 \cdot \sigma) / (\rho \cdot 1000)$$

with SAR = local specific absorption rate in mW/g

 $E_{tot}$  = total field strength in V/m

 $\sigma$  = conductivity in [mho/m] or [Siemens/m]  $\rho$  = equivalent tissue density in g/cm<sup>3</sup>

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid. The power flow density is calculated assuming the excitation field to be a free space field.

$$P_{pwe} = E_{tot}^2 / 3770$$
 or  $P_{pwe} = H_{tot}^2 \cdot 37.7$ 

with P<sub>pwe</sub> = equivalent power density of a plane wave in mW/cm<sup>2</sup>

E<sub>tot</sub> = total electric field strength in V/m H<sub>tot</sub> = total magnetic field strength in A/m



# 4.1.10 Tissue simulating liquids: dielectric properties

The following materials are used for producing the tissue-equivalent materials.

(Liquids used for tests described in section 7. are marked with  $\boxtimes$ ):

| Ingredients (% of weight) |          | Frequency (MHz) |       |       |             |          |          |        |         |  |  |  |  |  |  |
|---------------------------|----------|-----------------|-------|-------|-------------|----------|----------|--------|---------|--|--|--|--|--|--|
| frequency band            | <u> </u> | 750             | □ 835 | 900   | <u>1450</u> | <u> </u> | <u> </u> | ⊠ 2450 | ⊠ 5000  |  |  |  |  |  |  |
| Water                     | 51.16    | 51.7            | 52.4  | 56.0  | 71.40       | 71.45    | 71.56    | 71.65  | 64 - 78 |  |  |  |  |  |  |
| Salt (NaCl)               | 1.49     | 0.9             | 1.40  | 0.76  | 0.55        | 0.5      | 0.39     | 0.3    | 2 - 3   |  |  |  |  |  |  |
| Sugar                     | 46.78    | 47.2            | 45.0  | 41.76 | 0.0         | 0.0      | 0.0      | 0.0    | 0.0     |  |  |  |  |  |  |
| HEC                       | 0.52     | 0.0             | 1.0   | 1.21  | 0.0         | 0.0      | 0.0      | 0.0    | 0.0     |  |  |  |  |  |  |
| Bactericide               | 0.05     | 0.1             | 0.1   | 0.27  | 0.1         | 0.1      | 0.1      | 0.1    | 0.0     |  |  |  |  |  |  |
| Tween 20                  | 0.0      | 0.0             | 0.0   | 0.0   | 27.95       | 27.95    | 27.95    | 27.95  | 0.0     |  |  |  |  |  |  |
| Emulsifiers               | 0.0      | 0.0             | 0.0   | 0.0   | 0.0         | 0.0      | 0.0      | 0.0    | 9 - 15  |  |  |  |  |  |  |
| Mineral Oil               | 0.0      | 0.0             | 0.0   | 0.0   | 0.0         | 0.0      | 0.0      | 0.0    | 11 - 18 |  |  |  |  |  |  |

Table 2: Body tissue dielectric properties

Salt: 99+% Pure Sodium Chloride Water: De-ionized, 16MΩ+ resistivity

Sugar: 98+% Pure Sucrose HEC: Hydroxyethyl Cellulose

Tween 20: Polyoxyethylene (20) sorbitan monolaurate





# 4.1.11 Tissue simulating liquids: parameters

| I dan dal     | <b></b>     | Target b     | ody tissue   | N            | /leasurem | ent <b>body</b> | tissue  |        | N/               |
|---------------|-------------|--------------|--------------|--------------|-----------|-----------------|---------|--------|------------------|
| Liquid<br>MSL | Freq. (MHz) | Permittivity | Conductivity | Permittivity | Dev. %    | Condu           | ctivity | Dev. % | Measurement date |
| IVIOL         | (IVIIIZ)    | Permittivity | (S/m)        | Perminivity  | Dev. %    | ٤"              | (S/m)   | Dev. % | uale             |
| 2450          | 2412        | 52.75        | 1.91         | 51.8         | -1.9%     | 14.31           | 1.92    | 0.3%   | 2015-03-02       |
|               | 2437        | 52.72        | 1.94         | 51.6         | -2.0%     | 14.39           | 1.95    | 0.7%   |                  |
|               | 2442        | 52.71        | 1.94         | 51.6         | -2.1%     | 14.40           | 1.96    | 0.7%   |                  |
|               | 2450        | 52.70        | 1.95         | 51.6         | -2.0%     | 14.44           | 1.97    | 0.9%   |                  |
|               | 2462        | 52.68        | 1.97         | 51.6         | -2.0%     | 14.51           | 1.99    | 1.0%   |                  |
|               | 2472        | 52.67        | 1.98         | 51.6         | -2.0%     | 14.57           | 2.00    | 1.1%   |                  |
| 2600          | 2502        | 52.63        | 2.02         | 51.5         | -2.2%     | 14.55           | 2.02    | 0.1%   |                  |
|               | 2510        | 52.62        | 2.04         | 51.4         | -2.3%     | 14.56           | 2.03    | -0.1%  |                  |
|               | 2535        | 52.59        | 2.07         | 51.3         | -2.5%     | 14.54           | 2.05    | -1.0%  |                  |
|               | 2560        | 52.56        | 2.11         | 51.3         | -2.5%     | 14.66           | 2.09    | -0.9%  |                  |
|               | 2568        | 52.55        | 2.12         | 51.2         | -2.5%     | 14.72           | 2.10    | -0.7%  |                  |
|               | 2600        | 52.51        | 2.16         | 51.1         | -2.7%     | 14.78           | 2.14    | -1.2%  |                  |
| 5GHz          | 5180        | 49.04        | 5.28         | 50.6         | 3.1%      | 17.95           | 5.17    | -2.0%  | 2015-03-03       |
|               | 5200        | 49.01        | 5.30         | 50.5         | 3.0%      | 17.92           | 5.18    | -2.2%  |                  |
|               | 5220        | 48.99        | 5.32         | 50.5         | 3.0%      | 17.97           | 5.22    | -2.0%  |                  |
|               | 5240        | 48.96        | 5.35         | 50.4         | 2.9%      | 17.97           | 5.24    | -2.0%  |                  |
|               | 5260        | 48.93        | 5.37         | 50.3         | 2.9%      | 18.00           | 5.27    | -1.9%  |                  |
|               | 5280        | 48.91        | 5.39         | 50.3         | 2.9%      | 18.08           | 5.31    | -1.5%  |                  |
|               | 5300        | 48.88        | 5.42         | 50.3         | 3.0%      | 18.07           | 5.33    | -1.6%  |                  |
|               | 5320        | 48.85        | 5.44         | 50.3         | 3.0%      | 18.09           | 5.35    | -1.6%  |                  |
|               | 5500        | 48.61        | 5.65         | 50.0         | 2.9%      | 18.24           | 5.58    | -1.2%  |                  |
|               | 5520        | 48.58        | 5.67         | 50.0         | 2.9%      | 18.32           | 5.63    | -0.8%  |                  |
|               | 5540        | 48.55        | 5.70         | 49.9         | 2.8%      | 18.35           | 5.65    | -0.7%  |                  |
|               | 5560        | 48.53        | 5.72         | 50.0         | 2.9%      | 18.41           | 5.69    | -0.5%  |                  |
|               | 5580        | 48.50        | 5.74         | 49.9         | 2.9%      | 18.34           | 5.69    | -0.9%  |                  |
|               | 5600        | 48.47        | 5.77         | 49.9         | 2.9%      | 18.40           | 5.73    | -0.6%  |                  |
|               | 5620        | 48.44        | 5.79         | 49.8         | 2.7%      | 18.40           | 5.75    | -0.7%  |                  |
|               | 5640        | 48.42        | 5.81         | 49.8         | 2.8%      | 18.42           | 5.78    | -0.6%  |                  |
|               | 5660        | 48.39        | 5.84         | 49.7         | 2.7%      | 18.45           | 5.81    | -0.5%  |                  |
|               | 5680        | 48.36        | 5.86         | 49.7         | 2.8%      | 18.52           | 5.85    | -0.1%  |                  |
|               | 5700        | 48.34        | 5.88         | 49.7         | 2.8%      | 18.54           | 5.88    | -0.1%  |                  |
|               | 5745        | 48.27        | 5.94         | 49.5         | 2.6%      | 18.50           | 5.91    | -0.4%  |                  |
|               | 5765        | 48.25        | 5.96         | 49.5         | 2.6%      | 18.57           | 5.95    | -0.1%  |                  |
|               | 5785        | 48.22        | 5.98         | 49.5         | 2.7%      | 18.63           | 5.99    | 0.2%   |                  |
|               | 5800        | 48.20        | 6.00         | 49.5         | 2.7%      | 18.66           | 6.02    | 0.3%   |                  |
|               | 5805        | 48.20        | 6.00         | 49.5         | 2.7%      | 18.68           | 6.03    | 0.5%   |                  |
|               | 5825        | 48.20        | 6.00         | 49.5         | 2.6%      | 18.62           | 6.03    | 0.6%   |                  |

Table 3: Parameter of the body tissue simulating liquid Note: The dielectric properties have been measured using the contact probe method at 22°C.



# 4.1.12 Measurement uncertainty evaluation for SAR test

|                              |      | DAS    | Υ5 <b>ι</b> | Jncertainty  | Budg    | et   |         |     |               |      |           |                                |
|------------------------------|------|--------|-------------|--------------|---------|------|---------|-----|---------------|------|-----------|--------------------------------|
| According to IEEE            |      |        |             | _            | _       |      | 1Hz - 3 | GH  | z range       | !    |           |                                |
| Source of                    | cert | tainty | Valu        | Probability  | Divisor | Ci   | Ci      | 3   | Standard      | l Un | certainty | v <sub>i</sub> <sup>2</sup> or |
| uncertainty                  |      | ± %    |             | Distribution |         | (1g) | (10g)   | ± ° | %, (1g)       | ± %  | %, (10g)  | V <sub>eff</sub>               |
| Measurement System           |      |        |             |              |         |      |         |     |               |      |           |                                |
| Probe calibration            | ±    | 6.0    | %           | Normal       | 1       | 1    | 1       | ±   | 6.0 %         | ±    | 6.0 %     | 8                              |
| Axial isotropy               | ±    | 4.7    | %           | Rectangular  | √ 3     | 0.7  | 0.7     | ±   | 1.9 %         | Ħ    | 1.9 %     | 8                              |
| Hemispherical isotropy       | ±    | 9.6    | %           | Rectangular  | √ 3     | 0.7  | 0.7     | ±   | 3.9 %         | H    | 3.9 %     | 8                              |
| Boundary effects             | ±    | 1.0    | %           | Rectangular  | √ 3     | 1    | 1       | ±   | 0.6 %         | H    | 0.6 %     | 8                              |
| Probe linearity              | ±    | 4.7    | %           | Rectangular  | √ 3     | 1    | 1       | H   | 2.7 %         | H    | 2.7 %     | 8                              |
| System detection limits      | ±    | 1.0    | %           | Rectangular  | √ 3     | 1    | 1       | ±   | 0.6 %         | H    | 0.6 %     | 8                              |
| Readout electronics          | ±    | 0.3    | %           | Normal       | 1       | 1    | 1       | ±   | 0.3 %         | ±    | 0.3 %     | 8                              |
| Response time                | ±    | 8.0    | %           | Rectangular  | √ 3     | 1    | 1       | ±   | 0.5 %         | ±    | 0.5 %     | 8                              |
| Integration time             | ±    | 2.6    | %           | Rectangular  | √ 3     | 1    | 1       | ±   | 1.5 %         | ±    | 1.5 %     | 8                              |
| RF ambient noise             | ±    | 3.0    | %           | Rectangular  | √ 3     | 1    | 1       | ±   | 1.7 %         | H    | 1.7 %     | 8                              |
| RF ambient reflections       | ±    | 3.0    | %           | Rectangular  | √ 3     | 1    | 1       | ±   | 1.7 %         | ±    | 1.7 %     | 8                              |
| Probe positioner             | ±    | 0.4    | %           | Rectangular  | √ 3     | 1    | 1       | ±   | 0.2 %         | H    | 0.2 %     | 8                              |
| Probe positioning            | ±    | 2.9    | %           | Rectangular  | √ 3     | 1    | 1       | ±   | 1.7 %         | H    | 1.7 %     | 8                              |
| Max.SAR evaluation           | ±    | 1.0    | %           | Rectangular  | √ 3     | 1    | 1       | H   | 0.6 %         | H    | 0.6 %     | 8                              |
| Test Sample Related          |      |        |             |              |         |      |         |     |               |      |           |                                |
| Device positioning           | ±    | 2.9    | %           | Normal       | 1       | 1    | 1       | ±   | 2.9 %         | ±    | 2.9 %     | 145                            |
| Device holder uncertainty    | ±    | 3.6    | %           | Normal       | 1       | 1    | 1       | ±   | 3.6 %         | ±    | 3.6 %     | 5                              |
| Power drift                  | ±    | 5.0    | %           | Rectangular  | √ 3     | 1    | 1       | ±   | 2.9 %         | ±    | 2.9 %     | 8                              |
| Phantom and Set-up           |      |        |             |              |         |      |         |     |               |      |           |                                |
| Phantom uncertainty          | ±    | 4.0    | %           | Rectangular  | √ 3     | 1    | 1       | ±   | 2.3 %         | ±    | 2.3 %     | 8                              |
| Liquid conductivity (target) | ±    | 5.0    | %           | Rectangular  | √3      | 0.64 | 0.43    | ±   | 1.8 %         | ±    | 1.2 %     | 8                              |
| Liquid conductivity (meas.)  | ±    | 5.0    | %           | Rectangular  | √ 3     | 0.64 | 0.43    | ±   | 1.8 %         | ±    | 1.2 %     | 8                              |
| Liquid permittivity (target) | ±    | 5.0    | %           | Rectangular  | √3      | 0.6  | 0.49    | ±   | 1.7 %         | ±    | 1.4 %     | 8                              |
| Liquid permittivity (meas.)  | ±    | 5.0    | %           | Rectangular  | √3      | 0.6  | 0.49    | ±   | 1.7 %         | ±    | 1.4 %     | 8                              |
| Combined Std.                |      |        |             |              |         |      |         | ±   | 11.1 %        | ±    | 10.8 %    | 387                            |
| Expanded Std.                |      |        |             |              |         |      |         | ±   | <b>22.1</b> % | ±    | 21.6 %    |                                |

Table 4: Measurement uncertainties

Worst-Case uncertainty budget for DASY5 assessed according to IEEE 1528/2003.

The budget is valid for 2G and 3G communication signals and frequency range 300MHz - 3 GHz.

For these conditions it represents a worst-case analysis. For specifc tests and configurations, the uncertainty could be considerable smaller.



#### **Relative DASY5 Uncertainty Budget for SAR Tests** According to IEEE 1528/2013 and IEC62209/2011 for the 0.3 - 3GHz range certainty Valu Divisor Standard Uncertainty Ci Ci v<sup>2</sup> or Probability **Error Description** ± % Distribution (1g)(10g)± %, (1g) ± %, (10g) $V_{eff}$ Measurement System Probe calibration ± 6.0 % Normal 1 6.0 % 6.0 % 1 1 ± ± Axial isotropy ± 4.7 % √ 3 0.7 0.7 1.9 % 1.9 % Rectangular ∞ √3 Hemispherical isotropy ± 9.6 % Rectangular 0.7 0.7 ± 3.9 % ± 3.9 % Boundary effects Rectangular √3 0.6 % 0.6 % 8 ± 1.0 % 1 1 ± ± Probe linearity ± 4.7 % √ 3 2.7 % 2.7 % ∞ Rectangular 1 1 ± ± √3 0.6 % System detection limits ± 1.0 % Rectangular 1 1 0.6 % √ 3 1 1 1.4 % 1.4 % Modulation Response ± 2.4 % Rectangular ± ∞ ± Readout electronics ± 0.3 % Normal 1 1 1 0.3 % 0.3 % ± ± 0.5 % 0.5 % Response time ± 0.8 % Rectangular √ 3 1 1 ∞ Integration time ± 2.6 % Rectangular √ 3 1 1.5 % 1.5 % ∞ 1 ± ± √3 RF ambient noise ± 3.0 % 1 1 1.7 % 1.7 % 8 Rectangular ± √ 3 1.7 % ± 3.0 % 1 1.7 % RF ambient reflections Rectangular ± Probe positioner % Rectangular √ 3 1 1 0.2 % 0.2 % ∞ ± 0.4 ± ± ± 2.9 % √ 3 1.7 % 1.7 % Probe positioning Rectangular 1 1 ∞ ± Max. SAR evaluation √ 3 ± 2.0 % Rectangular 1 1 1.2 % 1.2 % Test Sample Related Normal 2.9 % 2.9 % 145 Device positioning ± 2.9 % 1 1 1 ± ± Device holder uncertainty Normal 1 1 1 3.6 % ± 3.6 % 3.6 % 5 Power drift ± 5.0 % Rectangular √3 2.9 % ± 2.9 % 1 ± Phantom and Set-up Rectangular √3 3.5 % ± 6.1 % 1 3.5 % Phantom uncertainty 1 ± SAR correction ± 1.9 % Rectangular √|3 1 0.84 1.1 % 0.9 % ± ± Liquid conductivity (meas.) ± 5.0 % Rectangular √|3 0.78 2.3 % 2.0 % ∞ 0.71 0.8 % Liquid permittivity (meas.) ± 5.0 % Rectangular √ 3 0.26 0.26 0.8 % √3 1.5 % Temp. Unc. - Conductivity ± 3.4 % Rectangular 0.78 0.71 1.4 % ∞ ± Temp. Unc. - Permittivity √ 3 0.23 0.26 0.1 % 0.1 % ± 0.4 % Rectangular ± ± Combined Uncertainty ± 11.3 % 330 ± 11.3 % **Expanded Std.** ± 22.7 % ± 22.5 % Uncertainty

Table 5: Measurement uncertainties

Worst-Case uncertainty budget for DASY5 assessed according to IEEE 1528/2013 and IEC 62209-1/2011 standards. The budget is valid for the frequency range 300MHz -3 GHz and represents a worst-case analysis. For specific tests and configurations, the uncertainty could be considerable smaller.



|                             |       | D 4 6  | V5 I | Jncertainty    | Ruda    | ot   |       |    |                |      |                |                                |
|-----------------------------|-------|--------|------|----------------|---------|------|-------|----|----------------|------|----------------|--------------------------------|
| A                           |       |        |      | _              |         |      | OLI   |    |                |      |                |                                |
|                             |       |        |      | -2/2010 for th | 1       |      |       | _  |                |      |                |                                |
| Source of                   | iceri | tainty | valu | Probability    | Divisor | Ci   | Ci    | ,  | Standard       | l Un | certainty      | v <sub>i</sub> <sup>2</sup> or |
| uncertainty                 |       | ± %    |      | Distribution   |         | (1g) | (10g) | ±° | %, (1g)        | ± %  | %, (10g)       | V <sub>eff</sub>               |
| Measurement System          |       |        |      |                |         |      |       |    |                |      |                |                                |
| Probe calibration           | ±     | 6.6    | %    | Normal         | 1       | 1    | 1     | ±  | 6.6 %          | ±    | 6.6 %          | 8                              |
| Axial isotropy              | ±     | 4.7    | %    | Rectangular    | √ 3     | 0.7  | 0.7   | ±  | 1.9 %          | ±    | 1.9 %          | ∞                              |
| Hemispherical isotropy      | ±     | 9.6    | %    | Rectangular    | √ 3     | 0.7  | 0.7   | ±  | 3.9 %          | ±    | 3.9 %          | ∞                              |
| Boundary effects            | ±     | 2.0    | %    | Rectangular    | √ 3     | 1    | 1     | ±  | 1.2 %          | ±    | 1.2 %          | ∞                              |
| Probe linearity             | ±     | 4.7    | %    | Rectangular    | √ 3     | 1    | 1     | ±  | 2.7 %          | ±    | 2.7 %          | ∞                              |
| System detection limits     | ±     | 1.0    | %    | Rectangular    | √ 3     | 1    | 1     | ±  | 0.6 %          | ±    | 0.6 %          | ∞                              |
| Modulation Response         | ±     | 2.4    | %    | Rectangular    | √ 3     | 1    | 1     | H  | 1.4 %          | H    | 1.4 %          | 8                              |
| Readout electronics         | ±     | 0.3    | %    | Normal         | 1       | 1    | 1     | ±  | 0.3 %          | ±    | 0.3 %          | ∞                              |
| Response time               | ±     | 0.8    | %    | Rectangular    | √ 3     | 1    | 1     | ±  | 0.5 %          | ±    | 0.5 %          | ∞                              |
| Integration time            | ±     | 2.6    | %    | Rectangular    | √ 3     | 1    | 1     | ±  | 1.5 %          | ±    | 1.5 %          | ∞                              |
| RF ambient noise            | ±     | 3.0    | %    | Rectangular    | √ 3     | 1    | 1     | ±  | 1.7 %          | ±    | 1.7 %          | 8                              |
| RF ambient reflections      | ±     | 3.0    | %    | Rectangular    | √ 3     | 1    | 1     | ±  | 1.7 %          | ±    | 1.7 %          | 8                              |
| Probe positioner            | ±     | 0.8    | %    | Rectangular    | √ 3     | 1    | 1     | ±  | 0.5 %          | ±    | 0.5 %          | ∞                              |
| Probe positioning           | ±     | 6.7    | %    | Rectangular    | √ 3     | 1    | 1     | ±  | 3.9 %          | ±    | 3.9 %          | ∞                              |
| Post-processing             | ±     | 4.0    | %    | Rectangular    | √ 3     | 1    | 1     | ±  | 2.3 %          | ±    | 2.3 %          | ∞                              |
| Test Sample Related         |       |        |      |                |         |      |       |    |                |      |                |                                |
| Device positioning          | ±     | 2.9    | %    | Normal         | 1       | 1    | 1     | ±  | 2.9 %          | ±    | 2.9 %          | 145                            |
| Device holder uncertainty   | ±     | 3.6    | %    | Normal         | 1       | 1    | 1     | ±  | 3.6 %          | ±    | 3.6 %          | 5                              |
| Power drift                 | ±     | 5.0    | %    | Rectangular    | √ 3     | 1    | 1     | ±  | 2.9 %          | ±    | 2.9 %          | ∞                              |
| Phantom and Set-up          |       |        |      |                |         |      |       |    |                |      |                |                                |
| Phantom uncertainty         | ±     | 7.9    | %    | Rectangular    | √ 3     | 1    | 1     | ±  | 4.6 %          | ±    | 4.6 %          | 8                              |
| SAR correction              | ±     | 1.9    | %    | Rectangular    | √ 3     | 1    | 0.84  | ±  | 1.1 %          | ±    | 0.9 %          | 8                              |
| Liquid conductivity (meas.) | ±     | 5.0    | %    | Rectangular    | √ 3     | 0.78 | 0.71  | ±  | 2.3 %          | ±    | 2.0 %          | ∞                              |
| Liquid permittivity (meas.) | ±     | 5.0    | %    | Rectangular    | √ 3     | 0.26 | 0.26  | ±  | 0.8 %          | ±    | 0.8 %          | ∞                              |
| Temp. Unc Conductivity      | ±     | 3.4    | %    | Rectangular    | √ 3     | 0.78 | 0.71  | ±  | 1.5 %          | ±    | 1.4 %          | ∞                              |
| Temp. Unc Permittivity      | ±     | 0.4    | %    | Rectangular    | √ 3     | 0.23 | 0.26  | ±  | 0.1 %          | ±    | 0.1 %          | ∞                              |
| Combined Uncertainty        |       |        |      |                |         |      |       | ±  | 12.7 %         | ±    | 12.6 %         | 330                            |
| Expanded Std.               |       |        |      |                |         |      |       |    | <b>OF</b> 4.0/ |      | <b>0F 0</b> 0/ |                                |
| Uncertainty                 |       |        |      |                |         |      |       | ±  | 25.4 %         | ±    | 25.3 %         |                                |

Table 6: Measurement uncertainties.

Worst-Case uncertainty budget for DASY5 assessed according to according to IEC 62209-2/2010 standard. The budget is valid for the frequency range 30MHz - 6 GHz and represents a worst-case analysis. For specific tests and configurations, the uncertainty could be considerable smaller.



| Relat                        | ive DASY5    | Uncertainty   | , Rudo  | net fo   | r SAR | ? Tasts         |             |                                |
|------------------------------|--------------|---------------|---------|----------|-------|-----------------|-------------|--------------------------------|
|                              |              | /2003 and IEC |         | <u> </u> |       |                 |             |                                |
| According                    | TO IEEE 1328 | /2003 and IEC |         | 1        | 1     | _               |             |                                |
| Error Description            | Uncertainty  | Probability   | Divisor | Ci       | Ci    | Standard        | Uncertainty | v <sub>i</sub> <sup>2</sup> or |
| Error Description            | Value        | Distribution  |         | (1g)     | (10g) | ± %, (1g)       | ± %, (10g)  | V <sub>eff</sub>               |
| Measurement System           |              |               |         |          |       |                 |             |                                |
| Probe calibration            | ± 6.6 %      | Normal        | 1       | 1        | 1     | ± 6.6 %         | ± 6.6 %     | ∞                              |
| Axial isotropy               | ± 4.7 %      | Rectangular   | √ 3     | 0.7      | 0.7   | ± 1.9 %         | ± 1.9 %     | ∞                              |
| Hemispherical isotropy       | ± 9.6 %      | Rectangular   | √ 3     | 0.7      | 0.7   | ± 3.9 %         | ± 3.9 %     | ∞                              |
| Boundary effects             | ± 2.0 %      | Rectangular   | √ 3     | 1        | 1     | ± 1.2 %         | ± 1.2 %     | 8                              |
| Probe linearity              | ± 4.7 %      | Rectangular   | √3      | 1        | 1     | ± 2.7 %         |             | 8                              |
| System detection limits      | ± 1.0 %      | Rectangular   | √ 3     | 1        | 1     | ± 0.6 %         | ± 0.6 %     | 8                              |
| Readout electronics          | ± 0.3 %      | Normal        | 1       | 1        | 1     | ± 0.3 %         | ± 0.3 %     | 8                              |
| Response time                | ± 0.8 %      | Rectangular   | √3      | 1        | 1     | ± 0.5 %         | ± 0.5 %     | 8                              |
| Integration time             | ± 2.6 %      | Rectangular   | √ 3     | 1        | 1     | ± 1.5 %         | ± 1.5 %     | 8                              |
| RF ambient noise             | ± 3.0 %      | Rectangular   | √ 3     | 1        | 1     | ± 1.7 %         | ± 1.7 %     | 8                              |
| RF ambient reflections       | ± 3.0 %      | Rectangular   | √ 3     | 1        | 1     | ± 1.7 %         | ± 1.7 %     | 8                              |
| Probe positioner             | ± 0.8 %      | Rectangular   | √3      | 1        | 1     | ± 0.5 %         | ± 0.5 %     | 8                              |
| Probe positioning            | ± 6.7 %      | Rectangular   | √3      | 1        | 1     | ± 3.9 %         | ± 3.9 %     | 8                              |
| Max. SAR evaluation          | ± 4.0 %      | Rectangular   | √3      | 1        | 1     | ± 2.3 %         | ± 2.3 %     | 8                              |
| Test Sample Related          |              |               |         |          |       |                 |             |                                |
| Device positioning           | ± 2.9 %      | Normal        | 1       | 1        | 1     | ± 2.9 %         | ± 2.9 %     | 145                            |
| Device holder uncertainty    | ± 3.6 %      | Normal        | 1       | 1        | 1     | ± 3.6 %         | ± 3.6 %     | 5                              |
| Power drift                  | ± 5.0 %      | Rectangular   | √3      | 1        | 1     | ± 2.9 %         | ± 2.9 %     | 8                              |
| Phantom and Set-up           |              |               |         |          |       |                 |             |                                |
| Phantom uncertainty          | ± 4.0 %      | Rectangular   | √ 3     | 1        | 1     | ± 2.3 %         | ± 2.3 %     | 8                              |
| Liquid conductivity (target) | ± 5.0 %      | Rectangular   | √ 3     | 0.64     | 0.43  | ± 1.8 %         | ± 1.2 %     | 8                              |
| Liquid conductivity (meas.)  | ± 5.0 %      | Rectangular   | √ 3     | 0.64     | 0.43  | ± 1.8 %         |             | ∞                              |
| Liquid permittivity (target) | ± 5.0 %      | Rectangular   | √3      | 0.6      | 0.49  | ± 1.7 %         | ± 1.4 %     | ∞                              |
| Liquid permittivity (meas.)  | ± 5.0 %      | Rectangular   | √ 3     | 0.6      | 0.49  | ± 1.7 %         | ± 1.4 %     | ∞                              |
| Combined Uncertainty         |              |               |         |          |       | ± 12.1 %        | ± 11.9 %    | 330                            |
| Expanded Std.                |              |               |         |          |       | ± 24.3 %        | ± 23.8 %    |                                |
| Uncertainty                  |              |               |         |          |       | ± <b>24.3</b> % | ± 23.0 %    |                                |

Table 7: Measurement uncertainties

Worst-Case uncertainty budget for DASY5 valid for 3G communication signals and frequency range 3 - 6 GHz. Probe calibration error reflects uncertainty of the EX3D probe. For specific tests and configurations, the uncertainty could be considerable smaller.



| Relat                       | ive | DA    | SY5  | Uncertaint     | y Bud   | get fo | or SAF         | <b>₹</b> Τ | ests           |      |          |                                |
|-----------------------------|-----|-------|------|----------------|---------|--------|----------------|------------|----------------|------|----------|--------------------------------|
|                             |     |       |      | 28/2013 and II |         |        |                |            |                |      |          |                                |
|                             | Un  | certa | intv | Probability    | Divisor | Ci     | C <sub>i</sub> | St         | andard I       | Jnce | ertainty | v <sub>i</sub> <sup>2</sup> or |
| Error Description           |     | Value | ,    | Distribution   |         | (1g)   | (10g)          | ± °        | %, (1g)        | ± %  | %, (10g) | V <sub>eff</sub>               |
| Measurement System          |     |       |      |                |         |        |                |            |                |      |          |                                |
| Probe calibration           | ±   | 6.6   | %    | Normal         | 1       | 1      | 1              | ±          | 6.6 %          | ±    | 6.6 %    | 8                              |
| Axial isotropy              | ±   | 4.7   | %    | Rectangular    | √ 3     | 0.7    | 0.7            | ±          | 1.9 %          | ±    | 1.9 %    | 8                              |
| Hemispherical isotropy      | ±   | 9.6   | %    | Rectangular    | √ 3     | 0.7    | 0.7            | ±          | 3.9 %          | ±    | 3.9 %    | ∞                              |
| Boundary effects            | ±   | 2.0   | %    | Rectangular    | √ 3     | 1      | 1              | ±          | 1.2 %          | ±    | 1.2 %    | ~                              |
| Probe linearity             | ±   | 4.7   | %    | Rectangular    | √ 3     | 1      | 1              | ±          | 2.7 %          | ±    | 2.7 %    | ~                              |
| System detection limits     | ±   | 1.0   | %    | Rectangular    | √ 3     | 1      | 1              | ±          | 0.6 %          | ±    | 0.6 %    | 8                              |
| Modulation Response         | ±   | 2.4   | %    | Rectangular    | √ 3     | 1      | 1              | ±          | 1.4 %          | ±    | 1.4 %    | 8                              |
| Readout electronics         | ±   | 0.3   | %    | Normal         | 1       | 1      | 1              | ±          | 0.3 %          | ±    | 0.3 %    | 8                              |
| Response time               | ±   | 8.0   | %    | Rectangular    | √ 3     | 1      | 1              | ±          | 0.5 %          | ±    | 0.5 %    | 8                              |
| Integration time            | ±   | 2.6   | %    | Rectangular    | √ 3     | 1      | 1              | ±          | 1.5 %          | ±    | 1.5 %    | 8                              |
| RF ambient noise            | ±   | 3.0   | %    | Rectangular    | √ 3     | 1      | 1              | ±          | 1.7 %          | ±    | 1.7 %    | 8                              |
| RF ambient reflections      | ±   | 3.0   | %    | Rectangular    | √ 3     | 1      | 1              | ±          | 1.7 %          | ±    | 1.7 %    | 8                              |
| Probe positioner            | ±   | 8.0   | %    | Rectangular    | √ 3     | 1      | 1              | ±          | 0.5 %          | ±    | 0.5 %    | 8                              |
| Probe positioning           | ±   | 6.7   | %    | Rectangular    | √ 3     | 1      | 1              | ±          | 3.9 %          | ±    | 3.9 %    | 8                              |
| Max. SAR evaluation         | ±   | 4.0   | %    | Rectangular    | √ 3     | 1      | 1              | ±          | 2.3 %          | ±    | 2.3 %    | 8                              |
| Test Sample Related         |     |       |      |                |         |        |                |            |                |      |          |                                |
| Device positioning          | ±   | 2.9   | %    | Normal         | 1       | 1      | 1              | ±          | 2.9 %          | ±    | 2.9 %    | 145                            |
| Device holder uncertainty   | ±   | 3.6   | %    | Normal         | 1       | 1      | 1              | ±          | 3.6 %          | ±    | 3.6 %    | 5                              |
| Power drift                 | ±   | 5.0   | %    | Rectangular    | √3      | 1      | 1              | ±          | 2.9 %          | ±    | 2.9 %    | ∞                              |
| Phantom and Set-up          |     |       |      |                |         |        |                |            |                |      |          |                                |
| Phantom uncertainty         | ±   | 6.6   | %    | Rectangular    | √ 3     | 1      | 1              | ±          | 3.8 %          | ±    | 3.8 %    | ∞                              |
| SAR correction              | ±   | 1.9   | %    | Rectangular    | √ 3     | 1      | 0.84           | ±          | 1.1 %          | ±    | 0.9 %    | ∞                              |
| Liquid conductivity (meas.) | ±   | 5.0   | %    | Rectangular    | √3      | 0.78   | 0.71           | ±          | 2.3 %          | ±    | 2.0 %    | ∞                              |
| Liquid permittivity (meas.) | ±   | 5.0   | %    | Rectangular    | √ 3     | 0.26   | 0.26           | ±          | 0.8 %          | ±    | 0.8 %    | ∞                              |
| Temp. Unc Conductivity      | ±   | 3.4   | %    | Rectangular    | √ 3     | 0.78   | 0.71           | ±          | 1.5 %          | ±    | 1.4 %    | ∞                              |
| Temp. Unc Permittivity      | ±   | 0.4   | %    | Rectangular    | √ 3     | 0.23   | 0.26           | ±          | 0.1 %          | ±    | 0.1 %    | ∞                              |
| <b>Combined Uncertainty</b> |     |       |      |                |         |        |                | ±          | 12.4 %         | ±    | 12.4 %   | 330                            |
| Expanded Std.               |     |       |      |                |         |        |                | _          | 24.9 %         | _    | 24.8 %   |                                |
| Uncertainty                 |     |       |      |                |         |        |                | I          | <b>24.3</b> /0 | I    | 24.0 %   |                                |

Table 8: Measurement uncertainties

Worst-Case uncertainty budget for DASY5 assessed according to IEEE 1528/2013 and IEC 62209-1/2011 standards. The budget is valid for the frequency range 3GHz -6GHz and represents a worst-case analysis. For specific tests and configurations, the uncertainty could be considerable smaller.



# 4.1.13 Measurement uncertainty evaluation for System Check

| Uncertainty of              | _        |     |              |         |      | with l | DA | SY5 S    | yst | tem      |                                |
|-----------------------------|----------|-----|--------------|---------|------|--------|----|----------|-----|----------|--------------------------------|
|                             | T        | for | the 0.3 - 3  | 1       | ange | ī      |    |          |     |          |                                |
| Source of                   | Uncertai | nty | Probability  | Divisor | Ci   | Ci     | St | andard I | Unc | ertainty | v <sub>i</sub> <sup>2</sup> or |
| uncertainty                 | Value    | ,   | Distribution |         | (1g) | (10g)  | ±' | %, (1g)  | ± % | %, (10g) | V <sub>eff</sub>               |
| Measurement System          |          |     |              |         |      |        |    |          |     |          |                                |
| Probe calibration           | ± 6.0    | %   | Normal       | 1       | 1    | 1      | ±  | 6.0 %    | ±   | 6.0 %    | 8                              |
| Axial isotropy              | ± 4.7    | %   | Rectangular  | √3      | 0.7  | 0.7    | ±  | 1.9 %    | ±   | 1.9 %    | 8                              |
| Hemispherical isotropy      | ± 0.0    | %   | Rectangular  | √ 3     | 0.7  | 0.7    | ±  | 0.0 %    | ±   | 0.0 %    | 8                              |
| Boundary effects            | ± 1.0    | %   | Rectangular  | √3      | 1    | 1      | ±  | 0.6 %    | ±   | 0.6 %    | 8                              |
| Probe linearity             | ± 4.7    | %   | Rectangular  | √ 3     | 1    | 1      | ±  | 2.7 %    | ±   | 2.7 %    | 8                              |
| System detection limits     | ± 1.0    | %   | Rectangular  | √3      | 1    | 1      | ±  | 0.6 %    | ±   | 0.6 %    | 8                              |
| Readout electronics         | ± 0.3    | %   | Normal       | 1       | 1    | 1      | ±  | 0.3 %    | ±   | 0.3 %    | 8                              |
| Response time               | ± 0.0    | %   | Rectangular  | √3      | 1    | 1      | ±  | 0.0 %    | ±   | 0.0 %    | 8                              |
| Integration time            | ± 0.0    | %   | Rectangular  | √3      | 1    | 1      | ±  | 0.0 %    | ±   | 0.0 %    | 8                              |
| RF ambient conditions       | ± 3.0    | %   | Rectangular  | √3      | 1    | 1      | ±  | 1.7 %    | ±   | 1.7 %    | 8                              |
| Probe positioner            | ± 0.4    | %   | Rectangular  | √3      | 1    | 1      | ±  | 0.2 %    | ±   | 0.2 %    | 8                              |
| Probe positioning           | ± 2.9    | %   | Rectangular  | √3      | 1    | 1      | ±  | 1.7 %    | ±   | 1.7 %    | 8                              |
| Max. SAR evaluation         | ± 1.0    | %   | Rectangular  | √ 3     | 1    | 1      | ±  | 0.6 %    | ±   | 0.6 %    | 8                              |
| Test Sample Related         |          |     |              |         |      |        |    |          |     |          |                                |
| Dev. of experimental dipole | ± 0.0    | %   | Rectangular  | √3      | 1    | 1      | ±  | 0.0 %    |     | 0.0 %    | 8                              |
| Source to liquid distance   | ± 2.0    | %   | Rectangular  | √3      | 1    | 1      | ±  | 1.2 %    | ±   | 1.2 %    | 8                              |
| Power drift                 | ± 3.4    | %   | Rectangular  | √3      | 1    | 1      | ±  | 2.0 %    | ±   | 2.0 %    | 8                              |
| Phantom and Set-up          |          |     |              |         |      |        |    |          |     |          |                                |
| Phantom uncertainty         | ± 4.0    | %   | Rectangular  | √3      | 1    | 1      | ±  | 2.3 %    | ±   | 2.3 %    | 8                              |
| SAR correction              | ± 1.9    | %   | Rectangular  | √3      | 1    | 0.84   | ±  | 1.1 %    | ±   | 0.9 %    | 8                              |
| Liquid conductivity (meas.) | ± 5.0    | %   | Normal       | 1       | 0.78 | 0.71   | ±  | 3.9 %    | ±   | 3.6 %    | 8                              |
| Liquid permittivity (meas.) | ± 5.0    | %   | Normal       | 1       | 0.26 | 0.26   | ±  | 1.3 %    | ±   | 1.3 %    | 8                              |
| Temp. unc Conductivity      | ± 1.7    | %   | Rectangular  | √3      | 0.78 | 0.71   | ±  | 0.8 %    | ±   | 0.7 %    | 8                              |
| Temp. unc Permittivity      | ± 0.3    | %   | Rectangular  | √ 3     | 0.23 | 0.26   | ±  | 0.0 %    | ±   | 0.0 %    | 8                              |
| <b>Combined Uncertainty</b> |          |     |              |         |      |        | ±  | 9.1 %    | ±   | 8.9 %    | 330                            |
| Expanded Std.               |          |     |              |         |      |        | _  | 18.2 %   | _   | 17.9 %   |                                |
| Uncertainty                 |          |     |              |         |      |        | ī  | 10.2 /0  | T   | 17.9 /0  |                                |

Table 9: Measurement uncertainties of the System Check with DASY5 (0.3-3GHz)





| Uncertainty of              | of a System | n Performa    | nce C   | heck           | with                                    | DASY5 S          | vstem       |                                |
|-----------------------------|-------------|---------------|---------|----------------|-----------------------------------------|------------------|-------------|--------------------------------|
| Officertainty               | _           | r the 3 - 6 ( |         |                | WICH                                    | JA010 0          | yotom       |                                |
| Source of                   | Uncertainty | Probability   | Divisor | C <sub>i</sub> | C <sub>i</sub>                          | Standard         | Uncertainty | v <sub>i</sub> <sup>2</sup> or |
| uncertainty                 | Value       | Distribution  |         | (1g)           | (10g)                                   | ± %, (1g)        | ± %, (10g)  | V <sub>eff</sub>               |
| Measurement System          |             |               |         | ( 0)           | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | , ( 0,           | , , , ,     | ell                            |
| Probe calibration           | ± 6.6 %     | Normal        | 1       | 1              | 1                                       | ± 6.6 %          | ± 6.6 %     | 8                              |
| Axial isotropy              | ± 4.7 %     | Rectangular   | √3      | 0.7            | 0.7                                     | ± 1.9 %          |             | 8                              |
| Hemispherical isotropy      | ± 0.0 %     | Rectangular   | √3      | 0.7            | 0.7                                     | ± 0.0 %          | ± 0.0 %     | 8                              |
| Boundary effects            | ± 1.0 %     | Rectangular   | √3      | 1              | 1                                       | ± 0.6 %          |             | 8                              |
| Probe linearity             | ± 4.7 %     | Rectangular   | √3      | 1              | 1                                       | ± 2.7 %          | ± 2.7 %     | 8                              |
| System detection limits     | ± 1.0 %     | Rectangular   | √3      | 1              | 1                                       | ± 0.6 %          | ± 0.6 %     | 8                              |
| Readout electronics         | ± 0.3 %     | Normal        | 1       | 1              | 1                                       | ± 0.3 %          | ± 0.3 %     | 8                              |
| Response time               | ± 0.0 %     | Rectangular   | √3      | 1              | 1                                       | ± 0.0 %          | ± 0.0 %     | 8                              |
| Integration time            | ± 0.0 %     | Rectangular   | √3      | 1              | 1                                       | ± 0.0 %          | ± 0.0 %     | 8                              |
| RF ambient conditions       | ± 3.0 %     | Rectangular   | √3      | 1              | 1                                       | ± 1.7 %          | ± 1.7 %     | 8                              |
| Probe positioner            | ± 0.8 %     | Rectangular   | √3      | 1              | 1                                       | ± 0.5 %          | ± 0.5 %     | 8                              |
| Probe positioning           | ± 6.7 %     | Rectangular   | √3      | 1              | 1                                       | ± 3.9 %          | ± 3.9 %     | 8                              |
| Max. SAR evaluation         | ± 1.0 %     | Rectangular   | √ 3     | 1              | 1                                       | ± 0.6 %          | ± 0.6 %     | 8                              |
| Test Sample Related         |             |               |         |                |                                         |                  |             |                                |
| Dev. of experimental dipole | ± 0.0 %     | Rectangular   | √3      | 1              | 1                                       | ± 0.0 %          | ± 0.0 %     | 8                              |
| Source to liquid distance   | ± 2.0 %     | Rectangular   | √3      | 1              | 1                                       | ± 1.2 %          | ± 1.2 %     | 8                              |
| Power drift                 | ± 3.4 %     | Rectangular   | √3      | 1              | 1                                       | ± 2.0 %          | ± 2.0 %     | 8                              |
| Phantom and Set-up          |             |               |         |                |                                         |                  |             |                                |
| Phantom uncertainty         | ± 4.0 %     | Rectangular   | √3      | 1              | 1                                       | ± 2.3 %          | ± 2.3 %     | 8                              |
| SAR correction              | ± 1.9 %     | Rectangular   | √3      | 1              | 0.84                                    | ± 1.1 %          | ± 0.9 %     | 8                              |
| Liquid conductivity (meas.) | ± 5.0 %     | Normal        | 1       | 0.78           | 0.71                                    | ± 3.9 %          | ± 3.6 %     | 8                              |
| Liquid permittivity (meas.) | ± 5.0 %     | Normal        | 1       | 0.26           | 0.26                                    | ± 1.3 %          | ± 1.3 %     | 8                              |
| Temp. unc Conductivity      | ± 1.7 %     | Rectangular   | √ 3     | 0.78           | 0.71                                    | ± 0.8 %          | ± 0.7 %     | 8                              |
| Temp. unc Permittivity      | ± 0.3 %     | Rectangular   | √3      | 0.23           | 0.26                                    | ± 0.0 %          |             | 8                              |
| Combined Uncertainty        |             |               |         |                |                                         | ± 10.1 %         | ± 10.0 %    | 330                            |
| Expanded Std.               |             |               |         |                |                                         | ± 20.2 %         | ± 19.9 %    |                                |
| Uncertainty                 |             |               |         |                |                                         | £ <b>20.2</b> 70 | T 13.3 /0   |                                |

Table 10: Measurement uncertainties of the System Check with DASY5 (3-6GHz)

Note: Worst case probe calibration uncertainty has been applied for all probes used during the measurements.



# 4.1.14 System check

The system check is performed for verifying the accuracy of the complete measurement system and performance of the software. The system check is performed with tissue equivalent material according to IEEE 1528. The following table shows system check results for all frequency bands and tissue liquids used during the tests (plot(s) see annex A).

|                       | System performence check (1000 mW) |                                                   |                                                    |                                         |                           |                                          |                            |               |  |  |  |  |
|-----------------------|------------------------------------|---------------------------------------------------|----------------------------------------------------|-----------------------------------------|---------------------------|------------------------------------------|----------------------------|---------------|--|--|--|--|
| System validation Kit | Frequency                          | Target<br>SAR <sub>1g</sub><br>/mW/g<br>(+/- 10%) | Target<br>SAR <sub>10g</sub><br>/mW/g (+/-<br>10%) | Measured<br>SAR <sub>1g</sub> /<br>mW/g | SAR <sub>1g</sub><br>dev. | Measured<br>SAR <sub>10g</sub> /<br>mW/g | SAR <sub>10g</sub><br>dev. | Measured date |  |  |  |  |
| D2450V2<br>S/N: 710   | 2450 MHz<br>body                   | 51.00                                             | 23.80                                              | 54.40                                   | 6.7%                      | 25.20                                    | 5.9%                       | 2015-03-02    |  |  |  |  |
| D2450V2<br>S/N: 710   | 2450 MHz<br>body                   | 51.00                                             | 23.80                                              | 52.80                                   | 3.5%                      | 24.40                                    | 2.5%                       | 2015-03-03    |  |  |  |  |
| D5GHzV2<br>S/N: 1055  | 5200 MHz<br>body                   | 74.20                                             | 20.80                                              | 74.40                                   | 0.3%                      | 21.30                                    | 2.4%                       | 2015-03-03    |  |  |  |  |
| D5GHzV2<br>S/N: 1055  | 5200 MHz<br>body                   | 74.20                                             | 20.80                                              | 75.10                                   | 1.2%                      | 21.30                                    | 2.4%                       | 2015-03-04    |  |  |  |  |

Table 11: Results system check



#### 4.1.15 System check procedure

The system check is performed by using a validation dipole which is positioned parallel to the planar part of the SAM phantom at the reference point. The distance of the dipole to the SAM phantom is determined by a plexiglass spacer. The dipole is connected to the signal source consisting of signal generator and amplifier via a directional coupler, N-connector cable and adaption to SMA. It is fed with a power of 1000 mW for frequencies below 2 GHz or 100 mW for frequencies above 2 GHz. To adjust this power a power meter is used. The power sensor is connected to the cable before the system check to measure the power at this point and do adjustments at the signal generator. At the outputs of the directional coupler both return loss as well as forward power are controlled during the validation to make sure that emitted power at the dipole is kept constant. This can also be checked by the power drift measurement after the test (result on plot).

System check results have to be equal or near the values determined during dipole calibration (target SAR in table above) with the relevant liquids and test system.







### 4.1.16 System validation

The system validation is performed in a similar way as a system check. It needs to be performed once a SAR measurement system has been established and allows an evaluation of the system accuracy with all components used together with the specified system. It has to be repeated at least once a year or when new system components are used (DAE, probe, phantom, dipole, liquid type).

In addition to the procedure used during system check a system validation also includes checks of probe isotropy, probe modulation factor and RF signal.

The following table lists the system validations relevant for this test report:

| Frequency<br>(MHz) | Test System            | DASY<br>SW | Dipole<br>Type /SN | Probe<br>Type /<br>SN | Calibrated signal type(s) | DAE unit<br>Type / SN | head<br>validation | body<br>validation |
|--------------------|------------------------|------------|--------------------|-----------------------|---------------------------|-----------------------|--------------------|--------------------|
| 2450               | Saarbrücken<br>/ SAR-1 | V52.8.7    | D2450V2<br>/ 710   | EX3DV4<br>/ 3944      | CW                        | DAE3/<br>477          | 2014-07-26         | 2014-07-26         |
| 5200               | Saarbrücken<br>/ SAR-1 | V52.8.7    | D5GHzV2<br>/ 1055  | EX3DV4<br>/ 3944      | CW                        | DAE3/<br>477          | 2014-09-05         | 2014-09-02         |



#### 5 SAR test results

#### 5.1 Results overview

|     | measured / extrapolated SAR numbers - Body worn - WLAN 2450 MHz |                          |            |         |                                 |       |                          |         |                           |         |                |                |       |
|-----|-----------------------------------------------------------------|--------------------------|------------|---------|---------------------------------|-------|--------------------------|---------|---------------------------|---------|----------------|----------------|-------|
| Ch. | Freq.                                                           | req. test<br>(IHz) cond. | Position   | Antenna | cond. P <sub>max</sub><br>(dBm) |       | SAR <sub>1g</sub> (W/kg) |         | SAR <sub>10g</sub> (W/kg) |         | power<br>drift | liquid<br>(°C) | dist. |
|     | (IVITZ)                                                         |                          |            |         | decl.**                         | meas. | meas.                    | extrap. | meas.                     | extrap. | (dB)           | ( C)           | (mm)  |
| 6   | 2437                                                            | 1Mbit/s                  | rear       | main    | 18.5                            | 18.1  | 0.131                    | 0.143   | 0.075                     | 0.082   | 0.020          | 21.9           | 15    |
| 6   | 2437                                                            | 1Mbit/s                  | left side  | main    | 18.5                            | 18.1  | 0.238                    | 0.260   | 0.130                     | 0.142   | 0.010          | 21.9           | 20    |
| 6   | 2437                                                            | 1Mbit/s                  | rear       | aux     | 18.5                            | 17.9  | 0.086                    | 0.099   | 0.045                     | 0.052   | -0.120         | 21.9           | 15    |
| 6   | 2437                                                            | 1Mbit/s                  | right side | aux     | 18.5                            | 17.9  | 0.112                    | 0.129   | 0.062                     | 0.072   | 0.010          | 21.9           | 20    |

Table 12: Test results body worn SAR WLAN 2.4 MHz

<sup>\*\* -</sup> maximum possible output power declared by manufacturer

|     | measured / extrapolated SAR numbers - Extremities - WLAN 2450 MHz (Limit for 10g: 4W/Kg) |         |            |         |                                 |       |                          |         |                           |         |                |        |       |
|-----|------------------------------------------------------------------------------------------|---------|------------|---------|---------------------------------|-------|--------------------------|---------|---------------------------|---------|----------------|--------|-------|
| Ch. | Freq.                                                                                    |         | Position   | Antenna | cond. P <sub>max</sub><br>(dBm) |       | SAR <sub>1g</sub> (W/kg) |         | SAR <sub>10g</sub> (W/kg) |         | power<br>drift | liquid | dist. |
| (1  | (MHz)                                                                                    | cond.   |            |         | decl.**                         | meas. | meas.                    | extrap. | meas.                     | extrap. | (dB)           | (°C)   | (mm)  |
| 6   | 2437                                                                                     | 1Mbit/s | rear       | main    | 18.5                            | 18.1  | 0.443                    | 0.485   | 0.187                     | 0.205   | -0.180         | 21.8   | 0     |
| 6   | 2437                                                                                     | 1Mbit/s | left side  | main    | 18.5                            | 18.1  | 3.330                    | 3.643   | 1.290                     | 1.411   | 0.050          | 21.9   | 0     |
| 6   | 2437                                                                                     | 1Mbit/s | rear       | aux     | 18.5                            | 17.9  | 0.249                    | 0.286   | 0.134                     | 0.154   | -0.120         | 21.9   | 0     |
| 6   | 2437                                                                                     | 1Mbit/s | right side | aux     | 18.5                            | 17.9  | 1.600                    | 1.837   | 0.646                     | 0.742   | -0.020         | 21.9   | 0     |

Table 13: Test results extremities SAR WLAN 2.4 MHz

<sup>\*\* -</sup> maximum possible output power declared by manufacturer

|     | management / system political CAD mysteless. Dody years. 18/1 AN 5 CHr |         |            |         |                                 |       |                          |         |                           |         |                |                |       |
|-----|------------------------------------------------------------------------|---------|------------|---------|---------------------------------|-------|--------------------------|---------|---------------------------|---------|----------------|----------------|-------|
|     | measured / extrapolated SAR numbers - Body worn - WLAN 5 GHz           |         |            |         |                                 |       |                          |         |                           |         |                |                |       |
| Ch. | Ch. Freq. (MHz)                                                        |         | Position   | Antenna | cond. P <sub>max</sub><br>(dBm) |       | SAR <sub>1g</sub> (W/kg) |         | SAR <sub>10g</sub> (W/kg) |         | power<br>drift | liquid<br>(°C) | dist. |
| (   |                                                                        |         |            |         | decl.**                         | meas. | meas.                    | extrap. | meas.                     | extrap. | (dB)           | ( 0)           | (mm)  |
| 56  | 5280                                                                   | 6Mbit/s | rear       | main    | 15.5                            | 15.4  | 0.144                    | 0.149   | 0.054                     | 0.056   | -0.110         | 21.8           | 15    |
| 56  | 5280                                                                   | 6Mbit/s | left side  | main    | 15.5                            | 15.4  | 0.194                    | 0.200   | 0.075                     | 0.077   | 0.010          | 21.8           | 20    |
| 52  | 5260                                                                   | 6Mbit/s | rear       | aux     | 15.5                            | 15.3  | 0.078                    | 0.082   | 0.028                     | 0.029   | -0.050         | 22.0           | 15    |
| 52  | 5260                                                                   | 6Mbit/s | right side | aux     | 15.5                            | 15.3  | 0.145                    | 0.153   | 0.053                     | 0.056   | 0.040          | 22.0           | 20    |

Table 14: Test results body worn SAR WLAN 5 GHz

<sup>\*\* -</sup> maximum possible output power declared by manufacturer

|         | measured / extrapolated SAR numbers - Extremities - WLAN 5 GHz (Limit for 10g: 4W/Kg) |         |            |         |         |                           |                   |                                                |       |          |                |        |       |
|---------|---------------------------------------------------------------------------------------|---------|------------|---------|---------|---------------------------|-------------------|------------------------------------------------|-------|----------|----------------|--------|-------|
| Ch.     | Ch. Freq. (MHz)                                                                       |         | Position   | Antenna |         | . P <sub>max</sub><br>8m) | SAR <sub>1g</sub> | (W/kg) <b>SAR</b> <sub>10g</sub> <b>(W/kg)</b> |       | g (W/kg) | power<br>drift | liquid | dist. |
| (IVITIZ | (IVITZ)                                                                               |         |            |         | decl.** | meas.                     | meas.             | extrap.                                        | meas. | extrap.  | (dB)           | (°C)   | (mm)  |
| 56      | 5280                                                                                  | 6Mbit/s | rear       | main    | 15.5    | 15.4                      | 0.219             | 0.226                                          | 0.080 | 0.082    | -0.080         | 21.8   | 0     |
| 56      | 5280                                                                                  | 6Mbit/s | left side  | main    | 15.5    | 15.4                      | 1.470             | 1.518                                          | 0.365 | 0.377    | -0.100         | 21.8   | 0     |
| 52      | 5260                                                                                  | 6Mbit/s | rear       | aux     | 15.5    | 15.3                      | 0.168             | 0.177                                          | 0.056 | 0.059    | -0.150         | 22.0   | 0     |
| 52      | 5260                                                                                  | 6Mbit/s | right side | aux     | 15.5    | 15.3                      | 1.380             | 1.452                                          | 0.330 | 0.347    | 0.180          | 22.0   | 0     |

Table 15: Test results extremities SAR WLAN 5 GHz

### 5.2 General description of test procedures

The tests were performed according to customer request.

<sup>\*\* -</sup> maximum possible output power declared by manufacturer



### 6 Test equipment and ancillaries used for tests

To simplify the identification of the test equipment and/or ancillaries which were used, the reporting of the relevant test cases only refer to the test item number as specified in the table below.

| Equipment                               | Туре                | Manufacturer                       | Serial No. | Last Calibration | Frequency (months) |
|-----------------------------------------|---------------------|------------------------------------|------------|------------------|--------------------|
| Dosimetric E-Field Probe                | EX3DV4              | Schmid & Partner<br>Engineering AG | 3944       | August 19, 2014  | 12                 |
| 2450 MHz System Validation Dipole       | D2450V2             | Schmid & Partner<br>Engineering AG | 710        | August 11, 2014  | 24                 |
| 5 GHz System Validation Dipole          | D5GHzV<br>2         | Schmid & Partner<br>Engineering AG | 1055       | August 19, 2013  | 24                 |
| Data acquisition electronics            | DAE3V1              | Schmid & Partner<br>Engineering AG | 413        | January 15, 2015 | 12                 |
| Software                                | DASY52<br>52.8.7    | Schmid & Partner<br>Engineering AG |            | N/A              |                    |
| Phantom ELI 4.0                         | QDOVA0<br>01BA      | Schmid & Partner<br>Engineering AG | 1046       | N/A              |                    |
| Universal Radio<br>Communication Tester | CMU 200             | Rohde & Schwarz                    | 106826     | January 27, 2014 | 24                 |
| Network Analyser<br>300 kHz to 6 GHz    | 8753ES              | Hewlett Packard)*                  | US39174436 | January 28, 2014 | 24                 |
| Dielectric Probe Kit                    | 85070C              | Hewlett Packard                    | US99360146 | N/A              | 12                 |
| Signal Generator                        | 8671B               | Hewlett Packard                    | 2823A00656 | January 22, 2014 | 24                 |
| Amplifier                               | 25S1G4<br>(25 Watt) | Amplifier<br>Reasearch             | 20452      | N/A              |                    |
| Power Meter                             | NRP                 | Rohde & Schwarz                    | 101367     | January 21, 2014 | 24                 |
| Power Meter Sensor                      | NRP Z22             | Rohde & Schwarz                    | 100227     | January 21, 2014 |                    |
| Power Meter Sensor                      | NRP Z22             | Rohde & Schwarz                    | 100234     | January 21, 2014 | 12                 |
| Directional Coupler                     | 778D                | Hewlett Packard                    | 19171      | January 21, 2014 | 12                 |

<sup>)\*:</sup> Network analyzer probe calibration against air, distilled water and a shorting block performed before measuring liquid parameters.

### 7 Observations

No observations exceeding those reported with the single test cases have been made.



### Annex A: System performance check

Date/Time: 02.03.2015 08:21:56

# SystemPerformanceCheck-D2450 body 2015-03-02

**DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 710** 

Communication System: UID 0, CW (0); Communication System Band: D2450 (2450.0 MHz); Frequency:

2450 MHz; Communication System PAR: 0 dB; PMF: 1

Medium parameters used: f = 2450 MHz;  $\sigma = 1.968$  S/m;  $\epsilon_r = 51.63$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section Measurement Standard: DASY5

DASY5 Configuration:

- Probe: EX3DV4 - SN3944; ConvF(7.43, 7.43, 7.43); Calibrated: 19.08.2014;

- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0

- Electronics: DAE3 Sn477; Calibrated: 14.05.2014

- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1046

- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

# MSL2450/d=10mm, Pin=250 mW, dist=2.0mm/Area Scan (81x81x1):

Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 20.9 W/kg

# MSL2450/d=10mm, Pin=250 mW, dist=2.0mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 95.143 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 27.8 W/kg

SAR(1 g) = 13.6 W/kg; SAR(10 g) = 6.3 W/kg Maximum value of SAR (measured) = 20.7 W/kg



0 dB = 20.7 W/kg = 13.16 dBW/kg

#### Additional information:

ambient temperature: 22.7°C; liquid temperature: 21.8°C



Date/Time: 03.03.2015 08:48:33

# SystemPerformanceCheck-D2450 body 2015-03-03

**DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 710** 

Communication System: UID 0, CW (0); Communication System Band: D2450 (2450.0 MHz); Frequency:

2450 MHz; Communication System PAR: 0 dB; PMF: 1

Medium parameters used: f = 2450 MHz;  $\sigma = 1.968$  S/m;  $\varepsilon_r = 51.63$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section Measurement Standard: DASY5

**DASY5** Configuration:

- Probe: EX3DV4 SN3944; ConvF(7.43, 7.43, 7.43); Calibrated: 19.08.2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE3 Sn477; Calibrated: 14.05.2014
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1046
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

# MSL2450/d=10mm, Pin=250 mW, dist=2.0mm/Area Scan (81x81x1):

Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 20.4 W/kg

# MSL2450/d=10mm, Pin=250 mW, dist=2.0mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 102.6 V/m; Power Drift = -0.11 dB

Peak SAR (extrapolated) = 27.1 W/kg

SAR(1 g) = 13.2 W/kg; SAR(10 g) = 6.1 W/kg Maximum value of SAR (measured) = 20.1 W/kg



0 dB = 20.1 W/kq = 13.03 dBW/kq

#### Additional information:

ambient temperature: 22.8°C; liquid temperature: 21.9°C



Date/Time: 03.03.2015 13:06:23

# SystemPerformanceCheck-D5GHz body 2015-03-03

DUT: Dipole 5 GHz; Type: D5GHzV2; Serial: 1055

Communication System: UID 0, CW (0); Communication System Band: D5GHz (5000.0 - 6000.0 MHz);

Frequency: 5200 MHz; Communication System PAR: 0 dB; PMF: 1

Medium parameters used: f = 5200 MHz;  $\sigma = 5.183 \text{ S/m}$ ;  $\varepsilon_r = 50.481$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Phantom section: Flat Section Measurement Standard: DASY5

**DASY5** Configuration:

- Probe: EX3DV4 SN3944; ConvF(4.56, 4.56, 4.56); Calibrated: 19.08.2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 23.0
- Electronics: DAE3 Sn477; Calibrated: 14.05.2014
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1046
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

### MSL 5GHz/d=10mm, Pin=100mW 5.2GHz/Area Scan (61x61x1): Interpolated grid:

dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 15.9 W/kg

# MSL 5GHz/d=10mm, Pin=100mW 5.2GHz/Zoom Scan (7x7x12)/Cube 0:

Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 60.391 V/m; Power Drift = -0.15 dB

Peak SAR (extrapolated) = 29.3 W/kg

SAR(1 g) = 7.44 W/kg; SAR(10 g) = 2.13 W/kg Maximum value of SAR (measured) = 15.2 W/kg



0 dB = 15.2 W/kq = 11.82 dBW/kq

#### Additional information:

ambient temperature: 22.3°C; liquid temperature: 21.8°C



Date/Time: 04.03.2015 08:51:45

# SystemPerformanceCheck-D5GHz body 2015-03-04

DUT: Dipole 5 GHz; Type: D5GHzV2; Serial: 1055

Communication System: UID 0, CW (0); Communication System Band: D5GHz (5000.0 - 6000.0 MHz);

Frequency: 5200 MHz; Communication System PAR: 0 dB; PMF: 1

Medium parameters used: f = 5200 MHz;  $\sigma = 5.183 \text{ S/m}$ ;  $\varepsilon_r = 50.481$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Phantom section: Flat Section Measurement Standard: DASY5

**DASY5** Configuration:

- Probe: EX3DV4 SN3944; ConvF(4.56, 4.56, 4.56); Calibrated: 19.08.2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 23.0
- Electronics: DAE3 Sn477; Calibrated: 14.05.2014
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1046
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

### MSL 5GHz/d=10mm, Pin=100mW 5.2GHz/Area Scan (61x61x1): Interpolated grid:

dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 16.0 W/kg

# MSL 5GHz/d=10mm, Pin=100mW 5.2GHz/Zoom Scan (8x8x12)/Cube 0:

Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 59.263 V/m; Power Drift = -0.11 dB

Peak SAR (extrapolated) = 29.5 W/kg

SAR(1 g) = 7.51 W/kg; SAR(10 g) = 2.13 W/kg Maximum value of SAR (measured) = 15.1 W/kg



0 dB = 15.1 W/kq = 11.79 dBW/kq

#### Additional information:

ambient temperature: 22.4°C; liquid temperature: 22.0°C



#### Annex B: DASY5 measurement results

#### Annex B.1: WLAN 2450MHz

Date/Time: 27.02.2015 11:16:56

### FCC\_EN62209-2 WLAN2450 body worn

DUT: Motorola; Type: Workabout Pro4; Serial: WPQACE240073C1

Communication System: UID 0, WLAN 2450 (0); Communication System Band: 2.4 GHz; Frequency: 2437

MHz; Communication System PAR: 0 dB; PMF: 1

Medium parameters used: f = 2437 MHz;  $\sigma = 1.951 \text{ S/m}$ ;  $\varepsilon_r = 51.642$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Phantom section: Flat Section Measurement Standard: DASY5

**DASY5** Configuration:

- Probe: EX3DV4 - SN3944; ConvF(7.43, 7.43, 7.43); Calibrated: 19.08.2014;

- Sensor-Surface: 2mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-

Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0

- Electronics: DAE3 Sn477; Calibrated: 14.05.2014

- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1046

- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

# MSL2450/Rear Middle 15mm (Main Antenna) (MNB 0)/Area Scan

(161x301x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.177 W/kg

# MSL2450/Rear Middle 15mm (Main Antenna) (MNB 0)/Zoom Scan

(7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 9.693 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 0.234 W/kg

SAR(1 g) = 0.131 W/kg; SAR(10 g) = 0.075 W/kg Maximum value of SAR (measured) = 0.182 W/kg



0 dB = 0.182 W/kg = -7.40 dBW/kg

#### Additional information:

position or distance of DUT to SAM: 15mm

ambient temperature: 22.0°C; liquid temperature: 21.9°C



Date/Time: 27.02.2015 12:48:09

# FCC\_EN62209-2 WLAN2450 body worn

DUT: Motorola; Type: Workabout Pro4; Serial: WPQACE240073C1

Communication System: UID 0, WLAN 2450 (0); Communication System Band: 2.4 GHz; Frequency: 2437

MHz; Communication System PAR: 0 dB; PMF: 1

Medium parameters used: f = 2437 MHz;  $\sigma = 1.951$  S/m;  $\varepsilon_r = 51.642$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section Measurement Standard: DASY5

**DASY5** Configuration:

- Probe: EX3DV4 SN3944; ConvF(7.43, 7.43, 7.43); Calibrated: 19.08.2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE3 Sn477; Calibrated: 14.05.2014
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1046
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

# MSL2450/Left Side Middle 20mm (Main Antenna) (MNB 1)/Area Scan

(111x301x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.318 W/kg

# MSL2450/Left Side Middle 20mm (Main Antenna) (MNB 1)/Zoom Scan

(7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 11.396 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 0.431 W/kg

SAR(1 g) = 0.238 W/kg; SAR(10 g) = 0.130 W/kg Maximum value of SAR (measured) = 0.333 W/kg



0 dB = 0.333 W/kg = -4.78 dBW/kg

#### Additional information:

position or distance of DUT to SAM: 20mm

ambient temperature: 22.0°C; liquid temperature: 21.9°C



Date/Time: 03.03.2015 10:01:52

# FCC\_EN62209-2 WLAN2450 body worn

DUT: Motorola; Type: Workabout Pro4; Serial: WPQACE240073C1

Communication System: UID 0, WLAN 2450 (0); Communication System Band: 2.4 GHz; Frequency: 2437

MHz; Communication System PAR: 0 dB; PMF: 1

Medium parameters used: f = 2437 MHz;  $\sigma = 1.951$  S/m;  $\varepsilon_r = 51.642$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section Measurement Standard: DASY5

**DASY5** Configuration:

- Probe: EX3DV4 SN3944; ConvF(7.43, 7.43, 7.43); Calibrated: 19.08.2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE3 Sn477; Calibrated: 14.05.2014
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1046
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

# MSL2450/Rear Middle 15mm (Aux Antenna) (MNB 2)/Area Scan

(161x301x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.100 W/kg

# MSL2450/Rear Middle 15mm (Aux Antenna) (MNB 2)/Zoom Scan

(7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 7.247 V/m; Power Drift = -0.12 dB

Peak SAR (extrapolated) = 0.247 W/kg

SAR(1 g) = 0.086 W/kg; SAR(10 g) = 0.045 W/kg Maximum value of SAR (measured) = 0.102 W/kg



0 dB = 0.102 W/kg = -9.91 dBW/kg

#### Additional information:

position or distance of DUT to SAM: 15mm

ambient temperature: 22.8°C; liquid temperature: 21.9°C



Date/Time: 03.03.2015 11:24:29

# FCC\_EN62209-2 WLAN2450 body worn

DUT: Motorola; Type: Workabout Pro4; Serial: WPQACE240073C1

Communication System: UID 0, WLAN 2450 (0); Communication System Band: 2.4 GHz; Frequency: 2437

MHz; Communication System PAR: 0 dB; PMF: 1

Medium parameters used: f = 2437 MHz;  $\sigma = 1.951$  S/m;  $\varepsilon_r = 51.642$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section Measurement Standard: DASY5

**DASY5** Configuration:

- Probe: EX3DV4 SN3944; ConvF(7.43, 7.43, 7.43); Calibrated: 19.08.2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE3 Sn477; Calibrated: 14.05.2014
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1046
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

# MSL2450/Right Side Middle 20mm (Aux Antenna) (MNB 3)/Area Scan

(111x301x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.160 W/kg

# MSL2450/Right Side Middle 20mm (Aux Antenna) (MNB 3)/Zoom Scan

(7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 7.761 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 0.206 W/kg

SAR(1 g) = 0.112 W/kg; SAR(10 g) = 0.062 W/kg Maximum value of SAR (measured) = 0.157 W/kg



0 dB = 0.157 W/kg = -8.04 dBW/kg

#### Additional information:

position or distance of DUT to SAM: 20mm

ambient temperature: 22.8°C; liquid temperature: 21.9°C



Date/Time: 02.03.2015 17:28:25

# FCC\_EN62209-2 WLAN2450 body worn

DUT: Motorola; Type: Workabout Pro4; Serial: WPQACE240073C1

Communication System: UID 0, WLAN 2450 (0); Communication System Band: 2.4 GHz; Frequency: 2437

MHz; Communication System PAR: 0 dB; PMF: 1

Medium parameters used: f = 2437 MHz;  $\sigma = 1.951$  S/m;  $\varepsilon_r = 51.642$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section Measurement Standard: DASY5

**DASY5** Configuration:

- Probe: EX3DV4 SN3944; ConvF(7.43, 7.43, 7.43); Calibrated: 19.08.2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE3 Sn477; Calibrated: 14.05.2014
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1046
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

# MSL2450/Rear Middle 0mm (Main Antenna) (MNB 4)/Area Scan

(161x301x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.716 W/kg

# MSL2450/Rear Middle 0mm (Main Antenna) (MNB 4)/Zoom Scan

(8x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 18.780 V/m; Power Drift = -0.18 dB

Peak SAR (extrapolated) = 1.10 W/kg

SAR(1 g) = 0.443 W/kg; SAR(10 g) = 0.187 W/kg Maximum value of SAR (measured) = 0.658 W/kg



0 dB = 0.658 W/kg = -1.82 dBW/kg

#### Additional information:

position or distance of DUT to SAM: 0mm

ambient temperature: 22.7°C; liquid temperature: 21.8°C



Date/Time: 27.02.2015 11:57:48

# FCC\_EN62209-2 WLAN2450 body worn

DUT: Motorola; Type: Workabout Pro4; Serial: WPQACE240073C1

Communication System: UID 0, WLAN 2450 (0); Communication System Band: 2.4 GHz; Frequency: 2437

MHz; Communication System PAR: 0 dB; PMF: 1

Medium parameters used: f = 2437 MHz;  $\sigma = 1.951 \text{ S/m}$ ;  $\varepsilon_r = 51.642$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Phantom section: Flat Section Measurement Standard: DASY5

**DASY5** Configuration:

- Probe: EX3DV4 SN3944; ConvF(7.43, 7.43, 7.43); Calibrated: 19.08.2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE3 Sn477; Calibrated: 14.05.2014
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1046
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

# MSL2450/Left Side Middle 0mm (Main Antenna) (MNB 5)/Area Scan

(111x301x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 5.72 W/kg

# MSL2450/Left Side Middle 0mm (Main Antenna) (MNB 5)/Zoom Scan

(7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 44.525 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 7.64 W/kg

SAR(1 g) = 3.33 W/kg; SAR(10 g) = 1.29 W/kg Maximum value of SAR (measured) = 5.50 W/kg



0 dB = 5.50 W/kg = 7.40 dBW/kg

#### Additional information:

position or distance of DUT to SAM: 0mm

ambient temperature: 22.0°C; liquid temperature: 21.9°C



Date/Time: 03.03.2015 09:23:31

# FCC\_EN62209-2 WLAN2450 body worn

DUT: Motorola; Type: Workabout Pro4; Serial: WPQACE240073C1

Communication System: UID 0, WLAN 2450 (0); Communication System Band: 2.4 GHz; Frequency: 2437

MHz; Communication System PAR: 0 dB; PMF: 1

Medium parameters used: f = 2437 MHz;  $\sigma = 1.951$  S/m;  $\varepsilon_r = 51.642$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section Measurement Standard: DASY5

**DASY5** Configuration:

- Probe: EX3DV4 SN3944; ConvF(7.43, 7.43, 7.43); Calibrated: 19.08.2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE3 Sn477; Calibrated: 14.05.2014
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1046
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

# MSL2450/Rear Middle 0mm (Aux Antenna) (MNB 6)/Area Scan (161x301x1):

Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.385 W/kg

# MSL2450/Rear Middle 0mm (Aux Antenna) (MNB 6)/Zoom Scan

(7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 13.599 V/m; Power Drift = -0.12 dB

Peak SAR (extrapolated) = 0.458 W/kg

SAR(1 g) = 0.249 W/kg; SAR(10 g) = 0.134 W/kg Maximum value of SAR (measured) = 0.351 W/kg



0 dB = 0.351 W/kg = -4.55 dBW/kg

#### Additional information:

position or distance of DUT to SAM: 0mm

ambient temperature: 22.8°C; liquid temperature: 21.9°C



Date/Time: 03.03.2015 10:52:26

# FCC\_EN62209-2 WLAN2450 body worn

DUT: Motorola; Type: Workabout Pro4; Serial: WPQACE240073C1

Communication System: UID 0, WLAN 2450 (0); Communication System Band: 2.4 GHz; Frequency: 2437

MHz; Communication System PAR: 0 dB; PMF: 1

Medium parameters used: f = 2437 MHz;  $\sigma = 1.951$  S/m;  $\varepsilon_r = 51.642$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section Measurement Standard: DASY5

**DASY5** Configuration:

- Probe: EX3DV4 SN3944; ConvF(7.43, 7.43, 7.43); Calibrated: 19.08.2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE3 Sn477; Calibrated: 14.05.2014
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1046
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

# MSL2450/Right Side Middle 0mm (Aux Antenna) (MNB 7)/Area Scan

(111x301x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 2.52 W/kg

# MSL2450/Right Side Middle 0mm (Aux Antenna) (MNB 7)/Zoom Scan

(7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 27.836 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 3.63 W/kg

SAR(1 g) = 1.6 W/kg; SAR(10 g) = 0.646 W/kg Maximum value of SAR (measured) = 2.64 W/kg



0 dB = 2.64 W/kg = 4.22 dBW/kg

#### Additional information:

position or distance of DUT to SAM: 0mm



#### Annex B.2: WLAN 5GHz

Date/Time: 03.03.2015 14:57:53

# FCC EN62209-2 WLAN 5GHz body worn

DUT: Motorola; Type: Workabout Pro4; Serial: WPQACE240073C1

Communication System: UID 0, WLAN 5GHz (0); Communication System Band: 5 GHz Band; Frequency:

5280 MHz; Communication System PAR: 0 dB; PMF: 1

Medium parameters used: f = 5280 MHz;  $\sigma$  = 5.31 S/m;  $\epsilon_r$  = 50.31;  $\rho$  = 1000 kg/m<sup>3</sup>

Phantom section: Flat Section Measurement Standard: DASY5

**DASY5** Configuration:

- Probe: EX3DV4 - SN3944; ConvF(4.4, 4.4, 4.4); Calibrated: 19.08.2014;

- Sensor-Surface: 2mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 23.0

- Electronics: DAE3 Sn477; Calibrated: 14.05.2014

- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1046

- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

## MSL5000/Rear Middle 15mm (Main Antenna)/Area Scan (161x301x1):

Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.209 W/kg

## MSL5000/Rear Middle 15mm (Main Antenna)/Zoom Scan (8x8x12)/Cube 0:

Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 6.940 V/m; Power Drift = -0.11 dB

Peak SAR (extrapolated) = 0.503 W/kg

SAR(1 g) = 0.144 W/kg; SAR(10 g) = 0.054 W/kgMaximum value of SAR (measured) = 0.251 W/kg



0 dB = 0.251 W/kg = -6.00 dBW/kg

#### Additional information:

position or distance of DUT to SAM: 15mm



Date/Time: 03.03.2015 16:25:23

## FCC\_EN62209-2 WLAN 5GHz body worn

DUT: Motorola; Type: Workabout Pro4; Serial: WPQACE240073C1

Communication System: UID 0, WLAN 5GHz (0); Communication System Band: 5 GHz Band; Frequency:

5280 MHz; Communication System PAR: 0 dB; PMF: 1

Medium parameters used: f = 5280 MHz;  $\sigma$  = 5.31 S/m;  $\varepsilon_r$  = 50.31;  $\rho$  = 1000 kg/m<sup>3</sup>

Phantom section: Flat Section Measurement Standard: DASY5

**DASY5** Configuration:

- Probe: EX3DV4 SN3944; ConvF(4.4, 4.4, 4.4); Calibrated: 19.08.2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 23.0
- Electronics: DAE3 Sn477; Calibrated: 14.05.2014
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1046
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

## MSL5000/Left Side Middle 20mm (Main Antenna)/Area Scan (111x301x1):

Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.255 W/kg

## MSL5000/Left Side Middle 20mm (Main Antenna)/Zoom Scan (8x8x12)/Cube

**0:** Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 8.439 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 0.671 W/kg

SAR(1 g) = 0.194 W/kg; SAR(10 g) = 0.075 W/kg Maximum value of SAR (measured) = 0.341 W/kg



0 dB = 0.341 W/kg = -4.67 dBW/kg

#### Additional information:

position or distance of DUT to SAM: 20mm



Date/Time: 04.03.2015 10:20:08

## FCC\_EN62209-2 WLAN 5GHz body worn

DUT: Motorola; Type: Workabout Pro4; Serial: WPQACE240073C1

Communication System: UID 0, WLAN 5GHz (0); Communication System Band: 5 GHz Band; Frequency:

5260 MHz; Communication System PAR: 0 dB; PMF: 1

Medium parameters used: f = 5260 MHz;  $\sigma = 5.268 \text{ S/m}$ ;  $\varepsilon_r = 50.327$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Phantom section: Flat Section Measurement Standard: DASY5

**DASY5** Configuration:

- Probe: EX3DV4 SN3944; ConvF(4.4, 4.4, 4.4); Calibrated: 19.08.2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 23.0
- Electronics: DAE3 Sn477; Calibrated: 14.05.2014
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1046
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

## MSL5000/Rear Middle 15mm (Aux Antenna)/Area Scan (161x301x1):

Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.196 W/kg

## MSL5000/Rear Middle 15mm (Aux Antenna)/Zoom Scan (12x9x12)/Cube 0:

Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 5.503 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 0.287 W/kg

SAR(1 g) = 0.078 W/kg; SAR(10 g) = 0.028 W/kg Maximum value of SAR (measured) = 0.155 W/kg



0 dB = 0.155 W/kg = -8.10 dBW/kg

#### Additional information:

position or distance of DUT to SAM: 15mm



Date/Time: 04.03.2015 12:01:20

## FCC\_EN62209-2 WLAN 5GHz body worn

DUT: Motorola; Type: Workabout Pro4; Serial: WPQACE240073C1

Communication System: UID 0, WLAN 5GHz (0); Communication System Band: 5 GHz Band; Frequency:

5260 MHz; Communication System PAR: 0 dB; PMF: 1

Medium parameters used: f = 5260 MHz;  $\sigma$  = 5.268 S/m;  $\epsilon_r$  = 50.327;  $\rho$  = 1000 kg/m³

Phantom section: Flat Section Measurement Standard: DASY5

**DASY5** Configuration:

- Probe: EX3DV4 SN3944; ConvF(4.4, 4.4, 4.4); Calibrated: 19.08.2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 23.0
- Electronics: DAE3 Sn477; Calibrated: 14.05.2014
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1046
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

# MSL5000/Right Side Middle 20mm (Aux Antenna)/Area Scan (111x301x1):

Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.197 W/kg

## MSL5000/Right Side Middle 20mm (Aux Antenna)/Zoom Scan

(8x8x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 7.491 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 0.520 W/kg

SAR(1 g) = 0.145 W/kg; SAR(10 g) = 0.053 W/kg Maximum value of SAR (measured) = 0.268 W/kg



0 dB = 0.268 W/kg = -5.72 dBW/kg

#### Additional information:

position or distance of DUT to SAM: 20mm



Date/Time: 03.03.2015 13:35:55

## FCC\_EN62209-2 WLAN 5GHz body worn

DUT: Motorola; Type: Workabout Pro4; Serial: WPQACE240073C1

Communication System: UID 0, WLAN 5GHz (0); Communication System Band: 5 GHz Band; Frequency:

5280 MHz; Communication System PAR: 0 dB; PMF: 1

Medium parameters used: f = 5280 MHz;  $\sigma = 5.31$  S/m;  $\varepsilon_r = 50.31$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section Measurement Standard: DASY5

**DASY5** Configuration:

- Probe: EX3DV4 SN3944; ConvF(4.4, 4.4, 4.4); Calibrated: 19.08.2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 23.0
- Electronics: DAE3 Sn477; Calibrated: 14.05.2014
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1046
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

## MSL5000/Rear Middle 0mm (Main Antenna)/Area Scan (161x301x1):

Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.371 W/kg

## MSL5000/Rear Middle 0mm (Main Antenna)/Zoom Scan (8x9x12)/Cube 0:

Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 9.191 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 0.756 W/kg

SAR(1 g) = 0.219 W/kg; SAR(10 g) = 0.080 W/kg Maximum value of SAR (measured) = 0.386 W/kg



0 dB = 0.386 W/kg = -4.13 dBW/kg

#### Additional information:

position or distance of DUT to SAM: 0mm



Date/Time: 03.03.2015 15:44:44

## FCC\_EN62209-2 WLAN 5GHz body worn

DUT: Motorola; Type: Workabout Pro4; Serial: WPQACE240073C1

Communication System: UID 0, WLAN 5GHz (0); Communication System Band: 5 GHz Band; Frequency:

5280 MHz; Communication System PAR: 0 dB; PMF: 1

Medium parameters used: f = 5280 MHz;  $\sigma = 5.31$  S/m;  $\varepsilon_r = 50.31$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section Measurement Standard: DASY5

**DASY5** Configuration:

- Probe: EX3DV4 SN3944; ConvF(4.4, 4.4, 4.4); Calibrated: 19.08.2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 23.0
- Electronics: DAE3 Sn477; Calibrated: 14.05.2014
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1046
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

## MSL5000/Left Side Middle 0mm (Main Antenna)/Area Scan (111x301x1):

Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 2.17 W/kg

## MSL5000/Left Side Middle 0mm (Main Antenna)/Zoom Scan (8x8x12)/Cube

**0:** Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 24.574 V/m; Power Drift = -0.10 dB Peak SAR (extrapolated) = 6.83 W/kg

SAR(1 g) = 1.47 W/kg; SAR(10 g) = 0.365 W/kg Maximum value of SAR (measured) = 3.11 W/kg



0 dB = 3.11 W/kg = 4.93 dBW/kg

#### Additional information:

position or distance of DUT to SAM: 0mm



Date/Time: 04.03.2015 09:29:27

## FCC\_EN62209-2 WLAN 5GHz body worn

DUT: Motorola; Type: Workabout Pro4; Serial: WPQACE240073C1

Communication System: UID 0, WLAN 5GHz (0); Communication System Band: 5 GHz Band; Frequency:

5260 MHz; Communication System PAR: 0 dB; PMF: 1

Medium parameters used: f = 5260 MHz;  $\sigma = 5.268 \text{ S/m}$ ;  $\varepsilon_r = 50.327$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Phantom section: Flat Section Measurement Standard: DASY5

**DASY5** Configuration:

- Probe: EX3DV4 SN3944; ConvF(4.4, 4.4, 4.4); Calibrated: 19.08.2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 23.0
- Electronics: DAE3 Sn477; Calibrated: 14.05.2014
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1046
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

# MSL5000/Rear Middle 0mm (Aux Antenna)/Area Scan (161x301x1): Interpolated

grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.301 W/kg

# MSL5000/Rear Middle 0mm (Aux Antenna)/Zoom Scan (9x9x12)/Cube 0:

Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 8.343 V/m; Power Drift = -0.15 dB

Peak SAR (extrapolated) = 0.567 W/kg

SAR(1 g) = 0.168 W/kg; SAR(10 g) = 0.056 W/kg Maximum value of SAR (measured) = 0.314 W/kg



0 dB = 0.314 W/kg = -5.03 dBW/kg

#### Additional information:

position or distance of DUT to SAM: 0mm



Date/Time: 04.03.2015 11:20:26

# FCC\_EN62209-2 WLAN 5GHz body worn

DUT: Motorola; Type: Workabout Pro4; Serial: WPQACE240073C1

Communication System: UID 0, WLAN 5GHz (0); Communication System Band: 5 GHz Band; Frequency:

5260 MHz; Communication System PAR: 0 dB; PMF: 1

Medium parameters used: f = 5260 MHz;  $\sigma = 5.268 \text{ S/m}$ ;  $\varepsilon_r = 50.327$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Phantom section: Flat Section Measurement Standard: DASY5

**DASY5** Configuration:

- Probe: EX3DV4 SN3944; ConvF(4.4, 4.4, 4.4); Calibrated: 19.08.2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 23.0
- Electronics: DAE3 Sn477; Calibrated: 14.05.2014
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1046
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

# MSL5000/Right Side Middle 0mm (Aux Antenna)/Area Scan (111x301x1):

Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 2.52 W/kg

## MSL5000/Right Side Middle 0mm (Aux Antenna)/Zoom Scan (8x8x12)/Cube

**0:** Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 20.653 V/m; Power Drift = 0.18 dB

Peak SAR (extrapolated) = 6.57 W/kg

SAR(1 g) = 1.38 W/kg; SAR(10 g) = 0.330 W/kg Maximum value of SAR (measured) = 2.97 W/kg



0 dB = 2.97 W/kg = 4.73 dBW/kg

#### Additional information:

position or distance of DUT to SAM: 0mm



# Annex B.3: Liquid depth





Photo 2: Liquid depth 5 GHz body simulating liquid





# Annex C: Photo documentation

Photo 1: Measurement System DASY 5



Photo 2: DUT - front view







Photo 4: DUT - bottom view





Photo 5: DUT - rear view



Photo 6: DUT - rear view (open with battery)





Photo 7: DUT - rear view (open without battery)



Photo 8: DUT - label





Photo 9: Test position body rear with 15 mm distance



Photo 10: Test position body left side with 20 mm distance









Photo 12: Test position body rear with 0 mm distance





Photo 13: Test position left side with 0 mm distance



Photo 14: Test position right side with 0 mm distance





# Annex D: Calibration parameters

Calibration parameters are described in the additional document:

Appendix to test report no. 1-9470/15-01-02 Calibration data, Phantom certificate and detail information of the DASY5 System



#### **Document History** Annex E:

| Version | Applied Changes | Date of Release |
|---------|-----------------|-----------------|
|         | Initial Release | 2015-03-05      |
|         |                 |                 |

#### **Further Information** Annex F:

#### **Glossary**

BW Bandwidth

DTS Distributed Transmission System

DUT Device under Test **EUT Equipment under Test** 

**Federal Communication Commission FCC** 

Company Identifier at FCC FCC ID

HW Hardware **Industry Canada** IC

Inventory number Inv. No. LTE Long Term Evolution

N/A not applicable

PCE Personal Consumption Expenditure Office of Engineering and Technology OET

RB resource block(s) SAR Specific Absorption Rate

S/N Serial Number

SPLSR<sub>i</sub> SAR-to-(peak-locations spacing) ratio

SW Software

UNII Unlicensed National Information Infrastructure