6.3 线性空间的子空间

子空间的概念

三维空间中有时需要考虑坐标平面: xy-平面, yz-平面, xz-平面, 然后考虑 空间中向量在这些平面的投影. 这些xy-平面, yz-平面, xz-平面就是子空间.

三维空间还可以考虑过原点的其它平面, 如两个无关向量 α_1 , α_2 构成的平面,这也是子空间.

若 $\alpha_1, \alpha_2, \ldots, \alpha_n$ 是空间V的一组基, 由部分基向量 $\alpha_{i1}, \alpha_{i2}, \ldots, \alpha_{ir}$ 构成的空间 { $k_1\alpha_{i1}+k_2\alpha_{i2}+\ldots+k_r\alpha_{ir}\mid k_1,k_2,\ldots,k_r\in \mathbf{R}$ } 就称为空间V的子空间.

定义6.3.1 (子空间) 设W是数域K上的线性空间V的一个非空子集,若W关于V上的加法和数乘也构成数域K上的一个线性空间,则称W是V的一个线性子空间,简称子空间,记为W $\subseteq V$,若 $W \neq V$,记为W $\subset V$.

子空间的判定

- 定理6.3.1 线性空间V的一个非空子集W是V的子空间的充要条件是
 - (1) 对任意的 $\alpha, \beta \in W$,有 $\alpha + \beta \in W$,即对加法封闭;
 - (2) 对任意的 $\alpha \in W$, $\lambda \in K$, 有 $\lambda \alpha \in W$, 即对数乘封闭.
- 定理6.3.2 线性空间V的一个非空子集W是V的子空间的充要条件是对任意的 α , $\beta \in W$, λ , $\mu \in K$, $\beta \lambda \alpha + \mu \beta \in W$.

上述两个定理容易验证。

每个线性空间V都有两个子空间:零子空间 $\{0\}$ 和自身V,称为平凡子空间,其余子空间称为非平凡子空间(或真子空间).

定义6.3.2 设V是数域K上的线性空间,向量组 $\alpha_1, \alpha_2, \ldots, \alpha_s \in V$,由这组向量所有可能的线性组合构成的集合

 $W(\alpha_1,\alpha_2,...,\alpha_s)$ ={ $\alpha \mid \alpha = \sum k_i \alpha_i, k_i \in K, i=1,2,...,s$ } 是非空集合,且构成V的子空间,称为由向量组 $\alpha_1,\alpha_2,...,\alpha_s$ **生成的子空间**,记作

 $\operatorname{span}\{\alpha_1,\alpha_2,...,\alpha_s\}$ 或 $L\{\alpha_1,\alpha_2,...,\alpha_s\}$ 特别地,零子空间是由零向量生成的子空间 $\operatorname{span}\{0\}$.

齐次方程组 $Ax=\theta, A \in \mathbb{R}^{m \times n}$ 的解集是 \mathbb{R}^n 的一个子空间,称为解空间.

子空间构造子空间

定义6.3.3 (子空间的交与和) 设 W_1 与 W_2 是数域K上线性空间V的两个子空间,定义 W_1 与 W_2 的交为

$$W_1 \cap W_2 = \{ \alpha \mid \alpha \in W_1, \alpha \in W_2 \},$$
 $W_1 = \{ W_1, \alpha \in W_2 \},$
 $W_1 = \{ W_2 \in W_2 \},$
 $W_1 = \{ Y_1 \mid \gamma = \alpha + \beta, \forall \beta \in W_1, \beta \in W_2 \}.$

定理6.3.3 数域K上线性空间V的两个子空间 W_1 与 W_2 的交与和仍是V的子空间.

说明:
$$\alpha$$
 , $\beta \in W_1$, $W_2 => \lambda \alpha + \mu \beta \in W_1$, W_2 ;
$$\alpha = \alpha_1 + \alpha_2$$
 , $\beta = \beta_1 + \beta_2$, $=> \lambda \alpha + \mu \beta = (\lambda \alpha_1 + \mu \beta_1) + (\lambda \alpha_2 + \mu \beta_2) \in W_1 + W_2$

例6.3.1 \mathbb{R}^3 中子空间 W_1 直线, W_2 垂直平面,则 $W_1 \cap W_2 = \{0\}, W_1 + W_2 = \mathbb{R}^3$.

子空间的交与和满足交换律和结合律:子空间 $W_1, W_2, W_3 \subseteq V$

$$\begin{split} &W_1 + W_2 = W_2 + W_1 \;, \\ &(W_1 + W_2) + W_3 = W_1 + (W_2 + W_3) \;, \\ &W_1 \cap W_2 = W_2 \cap W_1 \;, \\ &(W_1 \cap W_2) \; \cap W_3 = W_1 \; \cap \; (W_2 \; \cap \; W_3) \;. \end{split}$$

多个子空间的交与和: 子空间 $W_1, W_2, \ldots, W_m \subseteq V$ $W_1 \cap W_2 \cap \ldots \cap W_m = (W_1 \cap W_2 \cap \ldots \cap W_{m-1}) \cap W_m,$ $W_1 + W_2 + \ldots + W_m = (W_1 + W_2 + \ldots + W_{m-1}) + W_m.$

定理6.3.4 若 W_1 , W_2 是线性空间V的两个有限维子空间,则 $\dim W_1 + \dim W_2 = \dim(W_1 + W_2) + \dim(W_1 \cap W_2)$.

证明思路: $\alpha_1, \ldots, \alpha_n$ $iEA:\alpha_1,...,\alpha_p,\beta_1,...,\beta_{n1-p},\gamma_1,...,\gamma_{n2-p}$ $W_1 \cap W_2$ W_1+W_2 是 W_1+W_2 的一组基. 显然A可表示任意向量. 下面证4无关性: $k_1\alpha_1 + \dots + k_p\alpha_p + s_1\beta_1 + \dots + s_{n1-p}\beta_{n1-p} + t_1\gamma_1 + \dots + t_{n2-p}\gamma_{n2-p} = \theta$ $k_1\alpha_1 + \dots + k_p\alpha_p + s_1\beta_1 + \dots + s_{n1-p}\beta_{n1-p} \in W_1$ 即 $= t_1 \gamma_1 - \dots - t_{n2-p} \gamma_{n2-p} \qquad \in W_2$ $=c_1\alpha_1+\ldots+c_p\alpha_p$ $\in W_1 \cap W_2$ 故 $c_1\alpha_1+...+c_p\alpha_p+t_1\gamma_1+...+t_{n2-p}\gamma_{n2-p}=\theta$, W_2 的基向量无关

得到 $c_1 = \ldots = c_p = t_1 = \ldots = t_{n2-p} = 0$,进一步: $k_1 \alpha_1 + \ldots + k_p \alpha_p + s_1 \beta_1 + \ldots + s_{n1-p} \beta_{n1-p} = \theta$

得到 $k_1 = ... = k_p = s_1 = ... = s_{n1-p} = 0$

注意: $W_1 \cup W_2$ 通常不是子空间(W_1, W_2 包含除外)

定义6.3.4 (直和) 若 W_1+W_2 中任一向量只能唯一地表示为子空间 W_1 的一个向量与子空间 W_2 的一个向量的和,则称 W_1+W_2 是直和(或直接和),记为 $W_1\oplus W_2$ 或 W_1+W_2 . 若 $W=W_1\oplus W_2$,则称在W内 W_1 是 W_2 的补空间,或 W_2 是 W_1 的补空间.

定理6.3.5 W_1+W_2 是直和的充要条件是 $W_1 \cap W_2=\{0\}$.

证明思路: 若 $W_1 \cap W_2 = \{0\}$, $\gamma = \alpha_1 + \beta_1 = \alpha_2 + \beta_2$, $\xi = \alpha_1 - \alpha_2 = \beta_2 - \beta_1 \in W_1 \cap W_2 = \{0\}$ 若 $W_1 + W_2$ 是直和, $\alpha \in W_1 \cap W_2$,则 $-\alpha \in W_1 \cap W_2$, $\alpha + (-\alpha) = 0 = 0 + 0$, $\alpha = 0$

推论6.3.6 W_1+W_2 是直和的充要条件是 $\dim(W_1+W_2)=\dim W_1+\dim W_2$.

证明:由定理6.3.5,定理6.3.4直接得到

定义6.3.5 设 W_1, W_2, \ldots, W_m 是线性空间V的子空间,若

- (1) $W_1+W_2+...+W_m=V$;
- (2) $W_1 \cap W_2 = \{0\}$, $(W_1 + W_2) \cap W_3 = \{0\}$, ... , $(W_1 + W_2 + ... + W_{m-1}) \cap W_m = \{0\}$, 则称 $V = W_1, W_2, ..., W_m$ 的直和,记作

$$V=W_1\oplus W_2\oplus \ldots \oplus W_m$$
.

例6.3.2 设 F^n 是数域F上的n维列向量空间,A是F上的n阶方阵,令 $V_1=\{Ax: 任给x \in F^n\}$, $V_2=\{x: Ax=0, x \in F^n\}$, 试证: (1) V_1,V_2 是 F^n 的子空间; (2) 若A是幂等矩阵, 即 $A^2=A$,则 $F^n=V_1 \oplus V_2$.

证明 (1) 易见 V_1,V_2 都是 F^n 的非空子集,对任意 $k,l \in F$ 和任意 $x,y \in F^n$,因 $kAx+lAy=A(kx+ly) \in V_1$,

故 V_1 是 F^n 的子空间;

任给 $\xi, \eta \in V_2$,有 $A\xi=0$, $A\eta=0$,且对任意 $k,l \in F$,有 $A(k\xi+l\eta)=kA\xi+lA\eta=0$,

故 $k\xi + l\eta \in V_2$, 即 V_2 是 F^n 的子空间.

(2) 当A是幂等矩阵时,将 F^n 中任一向量表示成: x=Ax+(x-Ax),注意到 $Ax \in V_1$,以及因 $A(x-Ax)=Ax-A^2x=0$,得 $x-Ax \in V_2$,所以 $F^n \subseteq V_1+V_2$,从而 $F^n = V_1+V_2$.

设 $\xi \in V_1 \cap V_2$ 中的任一向量,因 $\xi \in V_1$,所以存在 $\eta \in F^n$ 使得 $\xi = A\eta$. 又因 $\xi \in V_2$,所以 $A\xi = 0$,于是 $\xi = A\eta = A^2\eta = A(A\eta) = A\xi = 0$,即 $V_1 \cap V_2 = \{0\}$,所以 $F^n = V_1 \oplus V_2$.