Résultats de l'article 1

Maxime Cochennec

July 9, 2020

Outline

Introduction

Results

Flow regimes and instabilities in Hele-Shaw cell

- Flow regimes:
 - continuous stream
 - drop and/or ganglia flow

Break-up of the invading fluid by snap-off?

- Instabilities:
 - Saffman-Taylor
 - Rayleigh-Plateau (see (b) bellow from [1])

FIG. 1. (Color online) Typical capillary number-based flow map with flow patterns: (a) threading (), (b) jetting (), (c) dripping (), (d) tubing (), (e) viscous displacement (+), fluid pair: G3B.

Boundary conditions and simulation parameters

Boundary	и	n	φ	Para
Boaridary		Ρ	Ψ	
Outlet	-	0	$\mathbf{n} \cdot \nabla \phi = 0$	Ca
Inlet o	U_{O}	-	0	M _v
Inlet w	U_W	-	1	t_f
				n*

Parameters	Value		
$Ca = \frac{U_t \mu_o}{\gamma}$ $M_W = \frac{\mu_W}{\mu_o}$ $f_f = \frac{U_w}{U_t}$ $h^* = h/L$	from 0.125 to 0.005		
$M_W = \frac{\dot{\mu}_W}{\mu_0}$	1		
$f_f = \frac{u_w^{-1}}{U_t}$	1/4		
$h^* = h/L$	from 5 to 1/20		

Table: Boundary conditions (left) and simulation parameters (right)

Equations

If $\nabla \epsilon_i \approx 0$, the momentum transport equations read

$$0 = -\varepsilon_w \nabla \langle p_w \rangle^w - \mu_w k^2 \langle \bar{\mathbf{u}}_w \rangle + \mathbf{d}_{wc} + \mathbf{d}_{wo}, \tag{1a}$$

$$0 = -\varepsilon_o \nabla \langle p_o \rangle^o - \mu_o k^2 \langle \bar{\mathbf{u}}_o \rangle + \mathbf{d}_{ow}. \tag{1b}$$

where, \mathbf{d}_{ii} has dimensions $Pa.m^{-1}$ i.e. drag forces per unit surface area (of unit-cell).

Drag definition

$$\mathbf{d}_{ij} = \frac{1}{S} \int_{\Gamma_{ij}} \sigma_i \cdot \mathbf{n}_{ij} \, \mathrm{d}\Gamma,$$

- σ_i is the stress-tensor for a Newtonian fluid i,
- S is the unit-cell's surface
- \mathbf{n}_{ii} is the unit normal vector pointing toward the *j*-phase.

Drag of upon	Fluid o	Fluid w	
Plates	$-\mu_{o}\langle \bar{\mathbf{u}}_{o}\rangle \frac{12}{h^{2}}$	$-\mu_{W}\langle \bar{\mathbf{u}}_{W}\rangle \frac{12}{h^{2}}$	$\Sigma = \mathbf{d}_s$
Wedge	- -	\mathbf{d}_{WC}	3
Fluid o	-	d _{wo}	$\Sigma = \mathbf{d}_f$
Fluid w	d_{ow}	-	,

Table: Summary of each drag force terms involved in the averaged momentum transport equations for two-phase flows in a Hele-Shaw cell.

Information

In the following we are interested in the x-component of the drag (i.e. component align with the main flow direction).

Maxime Cochennec Résultats de l'article 1

Results: flow regimes

Results: saturation

Figure: Saturation in wetting fluid as a function of the dimensionless gap between the plates.

Results: fluid-fluid interface

Results: solid-fluid drag force (1)

Figure: Comparison of the solid-fluid drag upon the wedge and upon the Hele-Shaw plates as a function of the dimensionless gap.

Results: solid-fluid drag force (2)

Drag upon the plates

- constant inlet velocity whereas the gap between the plates is narrowing
- 2 drag : $-\mu_i \langle u_i \rangle \frac{12}{h^2}$
- \odot the drag upon the plates scales as h^{-2}

Drag upon the wedge

- constant geometry
- velocity gradient depends on the fluid-fluid interface position
- pressure increases as the gap is narrowing

Maxime Cochennec Résultats de l'article 1

Results: fluid-fluid drag force (1)

Fluid-fluid drag

- interface is changing (slightly)
- pressure gradient increases as the gap is narrowing since the inlet velocity is constant

Results: fluid-fluid drag force (2)

Results: drag ratio

Figure: Ratio of fluid-fluid drag over solid-fluid drag as a function of the dimensionless gap between the plates.

Results: drag

Figure: Comparison of fluid-fluid and solid-fluid drag force for different capillary numbers as a function of the dimensionless gap.

- < □ > < □ > < □ > < Ē > = = - < ○ < ○

Results: Flat interface

What happens if the fluid-fluid interface is flat for 1 < h/L?

- we keep the drag upon the plates in the momentum transport equations
- the contact angle is 0 and the pressure jump across the interface is only due to the x - y curvature

Results: Dynamic film formation

By following [2], the thickness of the wetting fluid film scales, at leading order, as

$$\frac{h}{6}$$
 (2)

for $Ca = 1.25 \times 10^{-1}$.

Maxime Cochennec

References

C-W Park and GM Homsy. Two-phase displacement in hele shaw cells: theory. *Journal of Fluid Mechanics*, 139:291–308, 1984.