Homework Assignment 11

Matthew Tiger

November 18, 2015

Problem 5.1. The sunspot numbers $\{X_t, t = 1, ..., 100\}$, filed as SUNSPOTS.TSM, have sample autocovariances $\hat{\gamma}(0) = 1382.2$, $\hat{\gamma}(1) = 1114.4$, $\hat{\gamma}(2) = 591.73$, and $\hat{\gamma}(3) = 96.216$. Use these values to find the Yule-Walker estimates of ϕ_1 , ϕ_2 , and σ^2 in the model

$$Y_t = \phi_1 Y_{t-1} + \phi_2 Y_{t-2} + Z_t, \quad \{Z_t\} \sim WN(0, \sigma^2),$$

for the mean-corrected series $Y_t = X_t - 46.93$, t = 1, ..., 100. Assuming the data really are a realization of an AR(2) process, find 95% confidence intervals for ϕ_1 and ϕ_2 .

Solution. We wish to find $\hat{\phi}_1, \hat{\phi}_2$, and $\hat{\sigma}^2$ given $\hat{\gamma}(0), \hat{\gamma}(1)$, and $\hat{\gamma}(2)$. By the Yule-Walker equations for sample autocovariances,

$$\begin{bmatrix} \hat{\gamma}(0) & \hat{\gamma}(1) \\ \hat{\gamma}(1) & \hat{\gamma}(0) \end{bmatrix} \begin{bmatrix} \hat{\phi}_1 \\ \hat{\phi}_2 \end{bmatrix} = \begin{bmatrix} \hat{\gamma}(1) \\ \hat{\gamma}(2) \end{bmatrix}.$$

Solving this system yields $\hat{\phi}_1 = 1.31755$ and $\hat{\phi}_2 = -0.634168$. Using the Yule-Walker equation $\hat{\sigma}^2 = \hat{\gamma}(0) - \hat{\phi}_1 \hat{\gamma}(1) - \hat{\phi}_2 \hat{\gamma}(2)$, we see that $\hat{\sigma}^2 = 289.2$.

Since our sample size n=100 is large, a 95% confidence interval for the parameter ϕ_j is given by

$$\hat{\phi}_j \pm \Phi_{1-\frac{\alpha}{2}} n^{-1/2} \hat{\nu}_{jj}^{1/2}$$

where $\Phi_{1-\frac{\alpha}{2}} = 1.96$ and $\hat{\nu}_{jj}$ is the *j*-th element on the diagonal of $\hat{\sigma}^2\Gamma_2^{-1}$ for j = 1, 2. Using this formula, we see that $\nu_{jj} = 0.5979$ for j = 1, 2 and 95% confidence intervals for the model parameters are given by

$$(1.1660, 1.4961)$$
 for ϕ_1
 $(-0.7858, -0.4827)$ for ϕ_2 .

Problem 5.2. From the information given in the previous problem, use the Durbin-Levinson algorithm to compute the sample partial autocorrelations $\hat{\phi}_{11}$, $\hat{\phi}_{22}$, and $\hat{\phi}_{33}$ of the sunspot series. Is the value of $\hat{\phi}_{33}$ compatible with the hypothesis that the data are generated by an AR(2) process? (Use significance level $\alpha = 0.05$.)

Solution. Note that the sample partial autocorrelation function is given by $\hat{\alpha}(0) = 1$ and $\hat{\alpha}(n) = \hat{\phi}_{nn}$. We can use the Durbin-Levinson algorithm to compute $\hat{\phi}_{nn}$. Following the recursive equations presented by the algorithm, we have that for n = 1,

$$\hat{\phi}_{11} = \hat{\gamma}(1)/\hat{\gamma}(0) = 0.8063$$

$$\hat{\nu}_1 = \hat{\nu}_0(1 - \hat{\rho}(1)^2) = 483.7140.$$

Similarly, for n=2, we have that

$$\hat{\phi}_{22} = \nu_1^{-1} (\hat{\gamma}(2) - \hat{\phi}_{11} \hat{\gamma}(1)) = -0.6342$$

$$\hat{\phi}_{21} = \hat{\phi}_{11} - \hat{\phi}_{22} \hat{\phi}_{11} = 1.3175$$

$$\hat{\nu}_2 = \hat{\nu}_1 (1 - \hat{\phi}_{22}^2) = 289.1791.$$

Thus, for n=3,

$$\hat{\phi}_{33} = \nu_2^{-1}(\hat{\gamma}(3) - \hat{\phi}_{21}\hat{\gamma}(2) - \hat{\phi}_{22}\hat{\gamma}(1)) = 0.0806.$$

Note that a process is an AR(2) process if $\alpha(n) = 0$ for n > 2. As we have a sample size of n = 100, we have for a significance level $\alpha = 0.05$ the identically-zero bounds $0 \pm 1.96/\sqrt{100}$. Using these bounds we see that $\hat{\alpha}(3) = \hat{\phi}_{33} = 0.0806$ which does in fact fall within our identically-zero bounds. So, the data suggests $\hat{\alpha}(3)$ is identically 0 which supports the hypothesis that the data is a realization of an AR(2) process.

Problem 5.3. Consider the AR(2) process $\{X_t\}$ satisfying

$$X_t - \phi X_{t-1} - \phi^2 X_{t-2} = Z_t, \quad \{Z_t\} \sim WN(0, \sigma^2).$$

- a. For what values of ϕ is this a causal process?
- b. The following sample moments were computed after observing X_1, \ldots, X_{200} :

$$\hat{\gamma}(0) = 6.06, \quad \hat{\rho}(1) = 0.687.$$

Find estimates of ϕ and σ^2 by solving the Yule-Walker equations. (If you find more than one solution, choose the one that is causal.)

Solution. The characteristic polynomial of this AR(2) process is given by $\phi(z) = 1 - \phi z - \phi^2 z^2$. The AR(2) process $\{X_t\}$ is causal if the roots of $\phi(z)$ occur outside the unit circle. Note that the roots of $\phi(z)$ are given by $z_1 = \frac{-1+\sqrt{5}}{2}$ and $z_2 = \frac{-1-\sqrt{5}}{2}$. Note that $|z_i| > 1$ for i = 1, 2 if $|\phi| < \frac{-1+\sqrt{5}}{2}$. Therefore, the process is causal if $|\phi| < \frac{-1+\sqrt{5}}{2} = 0.618034$.

Given $\hat{\gamma}(0) = 6.06$ and $\hat{\rho}(1) = \frac{\hat{\gamma}(1)}{\hat{\gamma}(0)} = 0.687$, we see that $\hat{\gamma}(1) = 4.16322$. By the Yule-Walker equations,

$$\begin{bmatrix} \hat{\gamma}(0) & \hat{\gamma}(1) \\ \hat{\gamma}(1) & \hat{\gamma}(0) \end{bmatrix} \begin{bmatrix} \phi \\ \phi^2 \end{bmatrix} = \begin{bmatrix} \hat{\gamma}(1) \\ \hat{\gamma}(2) \end{bmatrix}.$$

The solution to this system of equations suggests that $\phi = 1.30106 - 0.214696\hat{\gamma}(2)$ and $\phi^2 = -0.893828 + 0.3125\hat{\gamma}(2)$. Therefore,

$$1.30106 - 0.214696\hat{\gamma}(2) = \sqrt{\phi^2} = \pm \sqrt{-0.893828 + 0.3125\hat{\gamma}(2)}.$$

This suggests that $\hat{\gamma}(2) = 15.2107$ or $\hat{\gamma}(2) = 3.68918$. For $\hat{\gamma}(2) = 15.2107$, we have that $\phi = -1.96462$. As this value of ϕ violates the causality of the process, we reject this value so $\hat{\gamma}(2) = 3.68918$ and $\phi = 0.509008$. These values of ϕ and $\hat{\gamma}(2)$ can be used to show that

$$\sigma^2 = \hat{\gamma}(0) - \phi \hat{\gamma}(1) - \phi^2 \hat{\gamma}(2) = 2.98506.$$

Problem 5.4. Two hundred observations of a time series X_1, \ldots, X_{200} , gave the following sample statistics:

sample mean: $\bar{x}_{200} = 3.82;$ sample variance: $\hat{\gamma}(0) = 1.15;$ sample ACF: $\hat{\rho}(1) = 0.427;$ $\hat{\rho}(2) = 0.475;$ $\hat{\rho}(3) = 0.169.$

- a. Based on these sample statistics, is it reasonable to suppose that $\{X_t \mu\}$ is white noise?
- b. Assuming $\{X_t \mu\}$ can be modeled as an AR(2) process

$$X_t - \mu - \phi_1(X_{t-1} - \mu) - \phi_2(X_{t-2} - \mu) = Z_t,$$

where $\{Z_t\} \sim \text{IID}(0, \sigma^2)$, find estimates of μ , ϕ_1 , ϕ_2 , σ^2 .

- c. Would you conclude that $\mu = 0$?
- d. Construct 95% confidence intervals for ϕ_1 and ϕ_2 .
- e. Assuming that the data were generated from an AR(2) model, derive estimates for the PACF for all lags $h \ge 1$.

Solution. a. The process $\{X_t - \mu\}$ is white noise with mean 0 if $\rho(i) = 0$ for i > 0. As the process $\{X_t - \mu\}$ is zero-mean, a 95% confidence interval for zero with 200 samples is given by

$$\left(-\frac{1.96}{\sqrt{(200)}}, \frac{1.96}{\sqrt{(200)}}\right) = (-0.1386, 0.1386).$$

As the sample autocorrelations fall outside this interval, they are not identically 0 and we reject the hypothesis that the process $\{X_t - \mu\}$ is white noise.

b. By the Yule-Walker equations,

$$\begin{bmatrix} \hat{\phi}_1 \\ \hat{\phi}_1 \end{bmatrix} = \begin{bmatrix} \hat{\rho}(0) & \hat{\rho}(1) \\ \hat{\rho}(1) & \hat{\rho}(0) \end{bmatrix}^{-1} \begin{bmatrix} \hat{\rho}(1) \\ \hat{\rho}(2) \end{bmatrix}$$

so we see that $\hat{\phi}_1 = 0.2742$ and $\hat{\phi}_2 = 0.3579$ and

$$\hat{\sigma}^2 = \hat{\gamma}(0) \left[1 - \begin{bmatrix} \hat{\rho}(1) \\ \hat{\rho}(2) \end{bmatrix}^{\mathsf{T}} = \begin{bmatrix} \hat{\rho}(0) & \hat{\rho}(1) \\ \hat{\rho}(1) & \hat{\rho}(0) \end{bmatrix}^{-1} \begin{bmatrix} \hat{\rho}(1) \\ \hat{\rho}(2) \end{bmatrix} \right] = 0.8199.$$

An estimate for μ is given by the sample mean, i.e. $\hat{\mu} = \bar{x}_{200} = 3.82$.

- c. As our sample size n=200 is large, the sample mean is normally distribute with mean μ and variance $\sum \gamma(i) \approx 3.61$. Thus, a 95% confidence interval for the mean is given by (3.5567, 4.0833). As $\mu=0$ falls outside this interval, we reject the hypothesis that $\mu=0$.
- d. Since our sample size n=200 is large, a 95% confidence interval for the parameter ϕ_j is given by

$$\hat{\phi}_j \pm \Phi_{1-\frac{\alpha}{2}} n^{-1/2} \hat{\nu}_{jj}^{1/2}$$

where $\Phi_{1-\frac{\alpha}{2}} = 1.96$ and $\hat{\nu}_{jj}$ is the *j*-th element on the diagonal of $\hat{\sigma}^2 \Gamma_2^{-1}$ for j = 1, 2. Using this formula, we see that $\nu_{jj} = 0.8719$ for j = 1, 2 and 95% confidence intervals for the model parameters are given by

$$(0.1450, 0.4050)$$
 for ϕ_1
 $(0.2279, 0.4879)$ for ϕ_2 .

e. If the data were generated from an AR(2) process then, by the Durbin-Levinson algorithm, $\hat{\alpha}(1) = \hat{\phi}_{11} = \hat{\rho}(1) = 0.427$, $\hat{\alpha}(2) = \hat{\phi}_{22} = 0.3579$, and $\hat{\alpha}(h) = 0$ for $h \geq 3$.