

ANÁLISE DE DADOS UTILIZAND *CLUSTER* E BAIXO CUSTO

Tendências de consumo da azitromicina no Brasil antes e durante a pandemia da COVID-19

Felipe Fonseca Rocha

Orientador: Ítalo Fernando Scotá Cunha

Universidade Federal de Minas Gerais

09 de Fevereiro de 2022

UF MG

Sumário

- 1 Contexto e Motivação
- 2 Justificativa
- 3 Objetivo
- 4 Revisão de literatura
- 5 Método
- 6 Resultados
- 7 Conclusão

- 1 Contexto e Motivação
- 2 Justificativa
- 3 Objetivo
- 4 Revisão de literatura
- 5 Método
- 6 Resultados
- 7 Conclusão

Contexto de Dados - produção e uso

A todo momento nós geramos milhões de dados que são coletados por diferentes meios

Existem várias ferramentas disponíveis para transformá-los em informações e embasar decisões

Contexto de Dados - Área da Saúde

lsso também acontece na área da saúde

Porém o uso de ferramentas de *big data* em saúde ainda é pouco significativo

Boa parte dessas ferramentas implica processamento distribuído

Contexto de Dados - Desafios

Potencial de melhora do sistema de saúde através de análise de dados

Integrar times com trabalho interdisciplinar

Uso de ferramentas e recursos já disponíveis de maneira correta

- 1 Contexto e Motivação
- 2 Justificativa
 - Iustificativa Social
 - Justificativa Econômica
 - Iustificativa Técnica
 - 3 Objetivo
- 4 Revisão de literatura
- 5 Método
- 6 Resultados
- 7 Conclusão

Apoio a melhores decisões

- Tomada de decisão em saúde
- Escala: 152 milhões dependem exclusivamente do SUS
- Restrição: Gasto de R\$3.83 por pessoa por dia
- Volume de dados disponibilizados
- Assertividade
 - Ações em saúde
 - políticas publicas

- 1 Contexto e Motivação
- 2 Justificativa
 - Justificativa Social
 - Iustificativa Econômica
 - Justificativa Técnica
 - 3 Objetivo
- 4 Revisão de literatura
- 5 Método
- 6 Resultados
- 7 Conclusão

Restrições de orçamento a ciência

- Gasto na disponibilização dos dados
- Diminuição de verbas para ciência e tecnologia -2, 32%

Alterações de cenário econômico

- Aumento do dólar em mais de 327% diminuindo o poder de compra
- Aumento do custo de hardware e máquinas

Evolução do taxa de câmbio (IPEA, 2022)

R\$6.00

- 1 Contexto e Motivação
- 2 Justificativa
 - Justificativa Social
 - Justificativa Econômica
 - Iustificativa Técnica
- 3 Objetivo
- 4 Revisão de literatura
- 5 Método
- 6 Resultados
- 7 Conclusão

Viabilização de alternativas

- Necessário ser interdisciplinar
- Avaliar alternativas de processamento de dados
- Amenizar questões orçamentárias
- Melhorar uso dos recursos já existentes (e.g. inventário de universidades)

- 1 Contexto e Motivação
- 2 Justificativa
- 3 Objetivo
- 4 Revisão de literatura
- 5 Método
- 6 Resultados
- 7 Conclusão

Objetivo

Objetivos Geral:

Avaliar a viabilidade de orquestração de recursos em *cluster* de baixo custo em ambientes containerizados, para o processamento e a análise dos dados.

Objetivos Específicos:

- Realizar a orquestração de recursos em cluster de baixo custo;
- Avaliar tempo de provisionamento, tempo de execução e disponibilidade do cluster;
- Validar o uso de um cluster de utilização compartilhada para processamento de dados distribuídos;
- Propor um método de análise em cluster Kubernetes com uso de computadores desktops;
- Disponibilzar um cluster pronto para uso para UFMG, bem como ferramentas de auxilio no provisionamento;

- 1 Contexto e Motivação
- 2 Justificativa
- 3 Objetivo
- 4 Revisão de literatura
 - Análise de dados
 - Alternativas open source
 - Cluster orquestrador de container
- 5 Método
- 6 Resultados
- 7 Conclusão

Análise de dados

- Descisões em saúde costumam ser complexas precisam de suporte científico (dados) e avaliação de Contexto
- Com o crescimento dos 3V's de dados (Big Data), na área da saúde, processar e analisar esses dados tornou-se fundamental para tomada de descisões adequadas
- Desafios:
 - complexidade dos dados obtidos
 - ausência de validação de sistemas, métodos e ferramentas para o tratamento de dados na área
 - custos de novos equipamentos capazes de analisar tal volume
- Há grande oportunidade para a proposição de estratégias de processamento e análise de dados nesse setor

- 1 Contexto e Motivação
- 2 Justificativa
- 3 Objetivo
- 4 Revisão de literatura
 - Análise de dados
 - Alternativas open source
 - Cluster orquestrador de container
- 5 Método
- 6 Resultados
- 7 Conclusão

Alternativas open source

- Considerando
 - O escopo deste trabalho
 - Limitações de hardware
 - As estratégias para processamento
 - Ferramentas de análise de dados disponíveis no mercado

As soluções encontradas no mercado foram agrupadas em dois grupos:

- Soluções de Computação em nuvem privada:
 - ► Se estendem para além do proposito desse trabalho
 - ► Requisitos de hardware elevados
 - Complexidade de configuração devido a sua abrangência

Alternativas open source

- Soluções de Orquestração de Containers:
 - Kubernetes®
 - Apache Mesos®
 - Hashicorp Nomad®
 - Docker Swarm®

- 1 Contexto e Motivação
- 2 Justificativa
- 3 Objetivo
- 4 Revisão de literatura
 - Análise de dados
 - Alternativas open source
 - Cluster orquestrador de container
- 5 Método
- 6 Resultados
- 7 Conclusão

- Origem de 15 anos de trabalho da Google (Borg)
- Estrutura de objetos componentizados
 - ► Kube-apiserver
 - Kube-scheduler
 - ► Kube-controller-manager
 - ► Kubelet
 - ► Kube-proxy
 - ▶ Pod

- Origem de 15 anos de trabalho da Google (Borg)
- Estrutura de objetos componentizados
 - ► Kube-apiserver
 - Kube-scheduler
 - ► Kube-controller-manager
 - ► Kubelet
 - Kube-proxy
 - ▶ Pod

- Origem de 15 anos de trabalho da Google (Borg)
- Estrutura de objetos componentizados
 - ► Kube-apiserver
 - Kube-scheduler
 - ► Kube-controller-manager
 - ► Kubelet
 - Kube-proxy
 - ▶ Pod

- Origem de 15 anos de trabalho da Google (Borg)
- Estrutura de objetos componentizados
 - ► Kube-apiserver
 - Kube-scheduler
 - ► Kube-controller-manager
 - ► Kubelet
 - Kube-proxy
 - ▶ Pod

- Origem de 15 anos de trabalho da Google (Borg)
- Estrutura de objetos componentizados
 - ► Kube-apiserver
 - Kube-scheduler
 - ► Kube-controller-manager
 - Kubelet
 - Kube-proxy
 - ▶ Pod

- Origem de 15 anos de trabalho da Google (Borg)
- Estrutura de objetos componentizados
 - Kube-apiserver
 - Kube-scheduler
 - ► Kube-controller-manager
 - Kubelet
 - Kube-proxy
 - ▶ Pod

- Origem de 15 anos de trabalho da Google (Borg)
- Estrutura de objetos componentizados
 - ► Kube-apiserver
 - Kube-scheduler
 - ► Kube-controller-manager
 - ► Kubelet
 - Kube-proxy
 - ▶ Pod

- Origem de 15 anos de trabalho da Google (Borg)
- Estrutura de objetos componentizados
 - ► Kube-apiserver
 - Kube-scheduler
 - ► Kube-controller-manager
 - ► Kubelet
 - Kube-proxy
 - ▶ Pod

- Origem de 15 anos de trabalho da Google (Borg)
- Estrutura de objetos componentizados
 - ► Kube-apiserver
 - Kube-scheduler
 - ► Kube-controller-manager
 - Kubelet
 - Kube-proxy
 - ► Pod

- 1 Contexto e Motivação
- 2 Justificativa
- 3 Objetive
- 4 Revisão de literatura
- 5 Método
 - Abordagem
 - Especificações
 - Arquitetura Orquestrador
 - Gerenciamento de configuração
 - Monitoramento
 - Avaliação viabilidade
 - Análise de dados
- 6 Resultados

Abordagem - Cluster e Análise

Utilizar um *Cluster* Kubernetes® como plataforma de orquestração de cargas de trabalho em computadores desktops.

- Cargas de trabalho:
 - Análise de tendência de uso de azitromicina entre 2014 e 2021
- Composição do cluster com computadores desktops reaproveitados
- Minimizar trabalho local e priorizar a possibilidade de provisionamneto remoto
- redução do CAPEX e otimizar utilização de hardware ocioso ou subutilizado
- reaproveitamento de maquinas

Abordagem - Condução do projeto

O uso de conceitos e metodologias de DevOps:

- Versionamento (Git)
- Cl (integração contínua) make build
- CD (entrega contínua) make deploy
- Monitoramento
 - método USE, parâmetros de utilização, saturação e erro
 - avaliação de utilização dos nós durante processamento

- 1 Contexto e Motivação
- 2 Justificativa
- 3 Objetive
- 4 Revisão de literatura
- 5 Método
 - Abordagem
 - Especificações
 - Arquitetura Orquestrador
 - Gerenciamento de configuração
 - Monitoramento
 - Avaliação viabilidade
 - Análise de dados
- 6 Resultados

UF MG

Especificações I

- Cluster:
 - Composição:
 - ▶ 1 computadores com 6 CPUs e 8GB de RAM (load balancer)
 - ▶ 3 computadores com 6 CPUs e 8GB de RAM (control-plane)
 - ▶ 4 computadores com 6 CPUs e 16GB de RAM (workers)
 - Containers para processamento e análise:
 - ▶ 90 containers (1/mês de análise) [procesamento]
 - ► 1 container / usuário [análise]
 - ► arquitetura: amd64
 - ► 1 vCPU
 - ▶ 2 GB de RAM

Especificações II

- Orquestração do processamento dos dados originias:
 - Apache Airflow®
 - Kubernetes executor (onde)
 - ► Python Operators (como)
- Consumo e análise de dados tratados:
 - JupyterHub Notebooks para multi-usuários (gerenciamento)
 - Jupyter Lab Notebooks para análise dos dados (execução)

- 1 Contexto e Motivação
- 2 Justificativa
- 3 Objetive
- 4 Revisão de literatura
- 5 Método
 - Abordagem
 - Especificações
 - Arquitetura Orquestrador
 - Gerenciamento de configuração
 - Monitoramento
 - Avaliação viabilidade
 - Análise de dados
- 6 Resultados

Arquitetura Orquestrador

kubeadm HA topology - stacked etcd

- 1 Contexto e Motivação
- 2 Justificativa
- 3 Objetivo
- 4 Revisão de literatura
- 5 Método
 - Abordagem
 - Especificações
 - Arquitetura Orquestrador
 - Gerenciamento de configuração
 - Monitoramento
 - Avaliação viabilidade
 - Análise de dados
- 6 Resultados

Gerenciamento de configuração

- 1 Contexto e Motivação
- 2 Justificativa
- 3 Objetivo
- 4 Revisão de literatura
- 5 Método
 - Abordagem
 - Especificações
 - Arquitetura Orquestrador
 - Gerenciamento de configuração
 - Monitoramento
 - Avaliação viabilidade
 - Análise de dados
- 6 Resultados

Monitoramento

- Node Exporter Expor métricas de Host
- Prometheus Monitoramento de sistemas e Banco de dados de series temporais
- Grafana Dashboard e observabilidade
- Airflow Relatório de tempo de execução, falhas, tentativas

Figura: Airflow - Relatório de execução

- 1 Contexto e Motivação
- 2 Justificativa
- 3 Objetivo
- 4 Revisão de literatura
- 5 Método
 - Abordagem
 - Especificações
 - Arquitetura Orquestrador
 - Gerenciamento de configuração
 - Monitoramento
 - Avaliação viabilidade
 - Análise de dados
- 6 Resultados

Avaliação de utilização do cluster I

- macrobenchmark (system level benchmark) Teste utizando uma solução avaliando tempo de execução métricas de Desempenho (nós do cluster, guests):
- Taxa de Utilização de CPU e Memória
- Taxa de saturação de CPU e Memória
 Tempo de Implementação:
- Tempo de configuração do cluster
 Método base utilizado para coleta de informações:
- Metodo USE de avaliação (Checklist Linux)

- 1 Contexto e Motivação
- 2 Justificativa
- 3 Objetivo
- 4 Revisão de literatura
- 5 Método
 - Abordagem
 - Especificações
 - Arquitetura Orquestrador
 - Gerenciamento de configuração
 - Monitoramento
 - Avaliação viabilidade
 - Análise de dados
- 6 Resultados

Exemplo da Análise de dados

- Vendas de Medicamentos Controlados e Antimicrobianos Medicamentos Industrializados
- 530 · 10⁶ linhas com mais de 70 GB
- Análise de tendência do consumo de azitromicina por região
- Análise de tendência do consumo de azitromicina no país
- Avaliação compartiva de 2 anos anteriores ao COVID-19

Disponibilidade dos recursos

Todos os componentes definidos neste trabalho estarão contidos em um repositório público Github, sob a licença pública geral GNU versão 3, para livre acesso.

- 1 Contexto e Motivação
- 2 Justificativa
- 3 Objetivo
- 4 Revisão de literatura
- 5 Método
- 6 Resultados
 - Provisionamento
 - Configuração
 - Resultados do Monitoramento
 - Resultados das Análises
- 7 Conclusão

Figura: Diagrama de deploy - OS e versões

NgRok - Acesso Remoto

Figura: Funcionamento NgRok

NgRok - Painel

An Endpoint is the access point for anything you use with ngrok.

Q Filter endpoints...

- 1 Contexto e Motivação
- 2 Justificativa
- 3 Objetivo
- 4 Revisão de literatura
- 5 Método
- 6 Resultados
 - Provisionamento
 - Configuração
 - Resultados do Monitoramento
 - Resultados das Análises
- 7 Conclusão

Jupyter Execution	

Figura: Jupyter - Diagrama de Sequencia

	Jupyter Execution
0	
Ť	
11.	
ΙĖ	

Figura: Jupyter - Diagrama de Sequencia

Figura: Jupyter - Diagrama de Sequencia

	UNIVERSIDAD DE MINAS GER	E FED BAIS
Kubernetes Cluster		

Figura: Jupyter - Diagrama de Deploy

Figura: Jupyter - Diagrama de Deploy

Figura: Jupyter - Diagrama de Deploy

Figura: Jupyter - Diagrama de Deploy

Figura: Jupyter - Diagrama de Deploy

Figura: Jupyter - Diagrama de Deploy

Figura: Jupyter - Diagrama de Deploy

Figura: Airflow - Diagrama de Sequencia

Figura: Ariflow - Diagrama de Deploy

Figura: Monitoramento - Diagrama de Deploy

Figura: Fluxo de Process - Diagrama de Fluxo

			DE MINAS GERAI
ETL Process			
Remote Files	Extract	Transform	Load

Figura: Processo ETL - Diagrama de Fluxo

			DE MINAS GERAI
ETL Process			
Remote Files	Extract	Transform	Load
Bucket Raw Data			

Figura: Processo ETL - Diagrama de Fluxo

ETL Process			
Remote Files	Extract	Transform	Load
Remote Files	Extract	Iransform	Load
Bukket Raw Data	List Files		

Figura: Processo ETL - Diagrama de Fluxo

Figura: Processo ETL - Diagrama de Fluxo

Resultados e discussões

- Provisionamento
 - Tempo de configuração inicial
 - ▶ sem imagem personalizada: 2 dias
 - cloud-init: 2h (possivel redução se utilizado imagens em rede)
 - Tempo de configuração cluster
 - ► automação de configuração Ansible: 20 35m
 - ► Helm (deploy aplicação) + Terraform (orquestração de deploy): 10 25 m
- Execussão dos job (2GB de RAM e 1CPU, 90 pods):
 - Tempo ingestão dos dados: $\approx 53m$

□ EDA_Industrializados_201401.csv	653.0 MB
□ EDA_Industrializados_201402.csv	623.3 MB
► EDA_Industrializados_201403.csv	666.2 MB
□ EDA_Industrializados_201404.csv	693.3 MB
□ EDA_Industrializados_201405.csv	737.0 MB
□ EDA_Industrializados_201406.csv	701.4 MB
EDA_Industrializados_201407.csv	720.6 MB

Figura: S3 Lista de arquivos

Auto-refresh		a
	Duration	
	01:09:09	
	00:34:34	
	00:00:00 -	
download_files_2014		
download_files_2015	•	
download_files_2016		
download_files_2017		
download_files_2018		
download_files_2019		
download_files_2020		
download_files_2021		
process_data_sets []		
process_data_sets1[]		
process_data_sets2[]		
process_data_sets3[]		
process_data_sets4[]		
process_data_sets5 []		-
process_data_sets6 []		
process_data_sets7 []	•	
resume		

Figura: grafo DAG

- 1 Contexto e Motivação
- 2 Justificativa
- 3 Objetivo
- 4 Revisão de literatura
- 5 Método
- 6 Resultados
 - Provisionamento
 - Configuração
 - Resultados do Monitoramento
 - Resultados das Análises
- 7 Conclusão

DAG Details	
DAG Runs Summary	
Total Runs Displayed	10
■ Total success	2
■ Total failed	8
First Run Start	2022-07-02, 23:45:08 UTC
Last Run Start	2022-07-03, 04:15:45 UTC
Max Run Duration	00:53:11
Mean Run Duration	00:13:27
Min Run Duration	00:01:20
DAG Summary	
Total Tasks	17
S3ListOperators	8
_PythonDecoratedOperators	9

Figura: Relatório de Orquestração

Figura: Monitoramento execução

Figura: Monitoramento Jupyter

DE MINAS GERAIS

Figura: Monitoramento Postgres

- 1 Contexto e Motivação
- 2 Justificativa
- 3 Objetivo
- 4 Revisão de literatura
- 5 Método
- 6 Resultados
 - Provisionamento
 - Configuração
 - Resultados do Monitoramento
 - Resultados das Análises
- 7 Conclusão

Resultados das Análises

- Total de prescrições 95.345.640
- Aumento de prescrições de +32, 1% (2014-2020)
- Prescrições por 1000*hab*: +26, 59% (2014-2020)
- Regiões:
 - Sudeste: 47,44% {*MG*: 13,17,*SP*: 24,76%}
 - Sul: 22,47% {*RS*: 12,49%}
- Estados destaque para aumento: Minas Gerais (+125, 38%), Rondônia (+191, 73% e Roraima (+168, 27%))

Figura: Presciçõe por ano

Figura: Prescições por por ano por UF

Resultados das Análises

Relevância estatística (p valor) para correlação por τ de Kendall:

UF	τ	p valor
MT	1.0	0.003
RJ	1.0	0.003
RN	1.0	0.003
RO	1.0	0.003
TO	0.87	0.017

UF MG

Conclusão

- Entendimento da complexidade dos fatores considerados no processo de decisão em saúde
- Análise dos impactos sociais-econômicos relativos a restrição orçamentária na ciência
- Seleção de tecnologias com base em requisitos e restrições
- Stack de tecnologia de mercado (maior suporte e melhores praáticas)
- Desenho de uma estratégia de extração de informações em saúde
- Avaliação da viabilidade de uso de clusters de baixo custo na processamento de dados
- Interdisciplinariedade, especificidade e especialidade
- Produção de conhecimento de suporte prático
- Viés politico nas descisões em saúde.
- Observabilidade dos dados em saúde

Conclusão

Para trabalho futuro visa se a otimização de estratégia de dimensionamento de recursos, avaliação comparativa de outras técnologias e técnicas para abordar o problema de processamneto paralelo e distribuído. Ainda sugere-se, baseado nos resultados desse trabalho, discutir formas de recrutamento de computadores para o cluster de outros laboratórios, de maneira a criar elasticidade para cargas de trabalho ainda mais extensas.

Referências I

OBRIGADO :)