Jean-Marie Dufour Août 1998

INTRODUCTION À LA THÉORIE DES PROCESSUS STOCHASTIQUES

1. NOTIONS DE BASE

1.1 Espace de probabilité

- 1.1.1 DÉFINITION : Un espace de probabilité est un triplet (Ω, \mathcal{A}, P) où
 - (1) Ω est l'ensemble des résultats possibles d'une expérience;
 - (2) \mathcal{A} est une classe de sous-ensembles de Ω (appelés événements) formant une σ -algèbre, *i.e.*
 - (i) $\Omega \in \mathcal{A}$,
 - (ii) $A \in \mathcal{A} \Rightarrow A^c \in \mathcal{A}$,
 - (iii) $\bigcup_{j=1}^{\infty} A_j \in \mathcal{A}$, pour toute suite $\{A_1, A_2, ...\} \subseteq \mathcal{A}$;
 - (3) $P: \mathcal{A} \to [0, 1]$ est une fonction qui assigne à chaque événement $A \in \mathcal{A}$ un nombre $P(A) \in [0, 1]$, appelé la probabilité de A, et telle que
 - (i) $P(\Omega) = 1$,
 - (ii) si $\{A_j\}_{j=1}^{\infty}$ est une suite d'événements disjoints, alors $P(\bigcup_{j=1}^{\infty} A_j) = \sum_{j=1}^{\infty} P(A_j)$.

1.2 Variable aléatoire réelle (v.a.)

1.2.1 DÉFINITION (heuristique) : Une variable aléatoire réelle X est une variable à valeurs réelles dont le comportement peut être décrit par une loi de probabilité. Habituellement, cette loi de probabilité est décrite par une fonction de distribution :

$$F_X(x) = P[X \le x] .$$

1.2.2 DÉFINITION (formelle) : Une variable aléatoire réelle est une fonction X : $\Omega \to \mathbb{R}$ telle que $X^{-1}((-\infty, x]) \equiv \{\omega \in \Omega : X(\omega) \leq x\} \in \mathcal{A}, \forall x \in \mathbb{R}$ (fonction mesurable). La loi de distribution de X est définie par $F_X(x) = P[X^{-1}((-\infty, x])]$.

1.3 Processus stochastique

1.3.1 DÉFINITION : Soit T un ensemble non vide. Un processus stochastique sur T est une collection de v.a.'s $X_t: \Omega \to \mathbb{R}$ telle qu'à chaque élément $t \in T$ est associée une v.a. X_t . Le processus s'écrit $\{X_t: t \in T\}$. Si $T = \mathbb{R}$ (nombres réels), on a un processus en temps continu. Si $T = \mathbb{Z}$ (nombres entiers) où $T \subseteq \mathbb{Z}$, on a un processus en temps discret.

L'ensemble T peut être fini ou infini, mais habituellement, on suppose qu'il est infini. Dans la suite, nous allons nous intéresser principalement à des processus où T est un intervalle infini à droite de nombres entiers : i.e., $T=(n_0, \infty)$ où $n_0 \in \mathbb{Z}$ ou $n_0 = -\infty$. On peut aussi considérer des v.a.'s prenant leurs valeurs dans des espaces plus généraux, i.e.

$$X_t:\Omega\to\Omega_0$$

où Ω_0 est un espace quelconque. À moins d'avis contraire, nous allons nous limiter au cas où $\Omega_0 = \mathbb{R}$.

Observer une série chronologique, c'est observer une réalisation d'un processus $\{X_t : t \in T\}$ ou une portion d'une telle réalisation : étant donné (Ω, \mathcal{A}, P) , on tire d'abord $\omega \in \Omega$; ensuite, à ω sont associées les variables $X_t(\omega)$, $t \in T$. Chaque réalisation est déterminée d'un seul coup par ω .

$$S_2 = \{X_t(\omega_2) : t \in T\}$$

$$S_1 = \{X_t(\omega_1) : t \in T\}$$

 $T = \mathbb{R}$

La loi de probabilité d'un processus stochastique $\{X_t : t \in T\}$ où $T \subseteq \mathbb{R}$ peut être décrite en spécifiant, pour chaque sous-ensemble $\{t_1, t_2, \dots, t_n\} \subseteq T$ (où $n \geq 1$), la fonction de distribution conjointe de $(X_{t_1}, \dots, X_{t_n})$:

$$F(x_1, \ldots, x_n; t_1, \ldots, t_n) = P[X_{t_1} \le x_1, \ldots, X_{t_n} \le x_n]$$
.

Ceci résulte du théorème de Kolmogorov [voir Brockwell et Davis (1987, p. 11)].

1.4 Espaces L_r

1.4.1 DÉFINITION : Soit r un nombre réel. L_r est l'ensemble des variables aléatoires réelles X définies sur (Ω, \mathcal{A}, P) telles que $E[|X|^r] < \infty$.

L'espace L_r est toujours défini par rapport à un espace de probabilité (Ω, \mathcal{A}, P) . L_2 est l'ensemble des v.a.'s sur (Ω, \mathcal{A}, P) dont les seconds moments sont finis

(variables de carré intégrable). Un processus stochastique $\{X_t : t \in T\}$ est dans L_r ssi $X_t \in L_r$, $\forall t \in T$, i.e.

$$E[|X_t|^r] < \infty$$
, $\forall t \in T$.

Les propriétés des moments de v.a.'s sont résumées dans l'annexe « Propriétés des moments de variables aléatoires ».

2. PROCESSUS STATIONNAIRES

En général, les variables d'un processus $\{X_t : t \in T\}$ ne sont ni identiquement distribuées ni indépendantes. En particulier, si on suppose que $E(X_t^2) < \infty$, on a

(2.1)
$$E(X_t) = \mu_t$$
,

$$(2.2) \quad Cov(X_{t_1}, X_{t_2}) = E[(X_{t_1} - \mu_{t_1})(X_{t_2} - \mu_{t_2})] = C(t_1, t_2) .$$

Les moyennes, variances et covariances des variables du processus dépendent de la position dans la série. Le comportement des X_t peut changer avec le temps. On appelle la fonction $C: T \times T \to \mathbb{R}$, la fonction de covariance du processus $\{X_t: t \in T\}$.

Dans cette section, nous allons considérer le cas où T est un intervalle infini à droite de nombres entiers.

2.1 HYPOTHÈSE (Processus sur un intervalle de nombres entiers).

$$T = \{t \in \mathbb{Z} : t > n_0\}$$
, où $n_0 \in \mathbb{Z} \cup \{-\infty\}$.

- 2.2 DÉFINITION (Processus stationnaire au sens strict): Un processus stochastique $\{X_t: t \in T\}$ est stationnaire au sens strict (SSS) ssi la loi de probabilité conjointe du vecteur $(X_{t_1+k}, X_{t_2+k}, \ldots, X_{t_n+k})'$ est identique à celle de $(X_{t_1}, X_{t_2}, \ldots, X_{t_n})'$, pour tout sous-ensemble fini $\{t_1, t_2, \ldots, t_n\} \subseteq T$ et tout entier $k \geq 0$. Pour indiquer que $\{X_t: t \in T\}$ est SSS, on peut écrire $\{X_t: t \in T\} \sim SSS$ ou $X_t \sim SSS$.
- 2.3 PROPOSITION. Si le processus $\{X_t : t \in T\}$ est SSS, alors la loi de probabilité conjointe du vecteur $(X_{t_1+k}, X_{t_2+k}, \dots, X_{t_n+k})'$ est identique à celle de $(X_{t_1}, X_{t_2}, \dots, X_{t_n})'$, pour tout sous-ensemble fini $\{t_1, t_2, \dots, t_n\}$ et tout entier $k > n_0 \min\{t_1, \dots, t_n\}$.

2.4 PROPOSITION (Stationnarité stricte d'un processus sur les entiers). Un processus $\{X_t : t \in \mathbb{Z}\}$ est SSS ssi la loi de probabilité conjointe de $(X_{t_1+k}, X_{t_2+k}, \dots, X_{t_n+k})'$ est identique à celle de $(X_{t_1}, X_{t_2}, \dots, X_{t_n})'$, pour tout sous-ensemble $\{t_1, t_2, \dots, t_n\} \subseteq \mathbb{Z}$ et tout entier k.

Supposons que $E(X_t^2) < \infty$, pour tout $t \in T$. Si le processus $\{X_t : t \in T\}$ est SSS, on voit aisément que

$$(2.3) E(X_s) = E(X_t), \forall s, t \in T,$$

(2.4)
$$E(X_s X_t) = E(X_{s+k} X_{t+k}), \forall s, t \in T, \forall k \ge 0$$
.

De plus, comme

(2.5)
$$Cov(X_s, X_t) = E(X_sX_t) - E(X_s)E(X_t)$$
,

on a aussi

(2.6)
$$Cov(X_s, X_t) = Cov(X_{s+k}, X_{t+k}), \forall s, t \in T, \forall k \ge 0$$
.

Les conditions (2.3) et (2.4) sont équivalentes aux conditions (2.3) et (2.6). La moyenne de X_t est constante et la covariance entre deux variables quelconques du processus ne dépend que de la distance entre ces variables, et non de leur position dans le processus.

- 2.5 DÉFINITION (Processus stationnaire du second ordre). Un processus stochastique $\{X_t : t \in T\}$ est stationnaire du second ordre (SL2) ssi
 - (1) $E(X_t^2) < \infty$, $\forall t \in T$,
 - (2) $E(X_s) = E(X_t)$, $\forall s, t \in T$,
 - (3) $Cov(X_s, X_t) = Cov(X_{s+k}, X_{t+k}), \forall s, t \in T, \forall k \geq 0$.
- Si $\{X_t: t \in T\}$ est SL2, on peut écrire $\{X_t: t \in T\} \sim SL2$ ou $X_t \sim SL2$.

REMARQUE: À la place de stationnaire du second ordre, on dit aussi stationnaire au sens large (SSL).

2.6 PROPOSITION (Relation entre stationnarité stricte et stationnarité du second ordre). Si le processus $\{X_t:t\in T\}$ est stationnaire au sens strict et $E(X_t^2)<\infty$ pour tout $t\in T$, alors le processus $\{X_t:t\in T\}$ est stationnaire du second ordre.

2.7 PROPOSITION (Existence d'une fonction d'autocovariance). Si le processus $\{X_t : t \in T\}$ est stationnaire du second ordre, alors il existe une fonction $\gamma : \mathbb{Z} \to \mathbb{R}$ telle que

$$Cov(X_s, X_t) = \gamma(t-s), \forall s, t \in T$$
.

On appelle la fonction γ la fonction d'autocovariance du processus $\{X_t : t \in T\}$ et $\gamma(k)$, pour k donné, l'autocovariance de délai k du processus $\{X_t : t \in T\}$.

 $D\acute{e}monstration$: Soit $r \in T$ un élément quelconque de T. Comme le processus $\{X_t : t \in T\}$ est SL2, on a, pour tout $s, t \in T$ tels que $s \leq t$,

(2.7a)
$$Cov(X_r, X_{r+t-s}) = Cov(X_{r+s-r}, X_{r+t-s+s-r}) = Cov(X_s, X_t)$$
, si $s \ge r$,

(2.7b) Cov
$$(X_s, X_t) = Cov(X_{s+r-s}, X_{t+r-s}) = Cov(X_r, X_{r+t-s})$$
, si $s < r$.

De plus, dans le cas où s > t, on a

(2.8)
$$Cov(X_s, X_t) = Cov(X_t, X_s) = Cov(X_r, X_{r+s-t})$$
.

Donc,

(2.9)
$$Cov(X_s, X_t) = Cov(X_r, X_{r+|t-s|}) = \gamma(t-s)$$
. Q.E.D.

- 2.8 PROPOSITION (Propriétés de la fonction d'autocovariance). Soit $\{X_t : t \in T\}$ un processus stationnaire du second ordre. La fonction d'autocovariance $\gamma(k)$ du processus $\{X_t : t \in T\}$ possède les propriétés suivantes :
 - (1) $\gamma(0) = Var(X_t) \ge 0$, $\forall t \in T$;
 - (2) $\gamma(k) = \gamma(-k)$, $\forall k \in \mathbb{Z}$ (i.e. $\gamma(k)$ est une fonction paire de k);
 - (3) $|\gamma(k)| \leq \gamma(0)$, $\forall k \in \mathbb{Z}$;
 - (4) la fonction $\gamma(k)$ est positive semi-définie, i.e.

$$\sum_{i=1}^{N} \sum_{j=1}^{N} a_i a_j \gamma(t_i - t_j) \ge 0$$

pour tout entier positif N et pour tous les vecteurs $a=(a_1,\ldots,a_N)'\in\mathbb{R}^N$ et $\tau=(t_1,\ldots,t_N)'\in T^N$;

(5) toute matrice $N \times N$ de la forme

$$\Gamma_{N} = [\gamma(j-i)]_{i, j=1, \dots, N} = \begin{bmatrix} \gamma_{0} & \gamma_{1} & \gamma_{2} & \cdots & \gamma_{N-1} \\ \gamma_{1} & \gamma_{0} & \gamma_{1} & \cdots & \gamma_{N-2} \\ \vdots & \vdots & \vdots & & \vdots \\ \gamma_{N-1} & \gamma_{N-2} & \gamma_{N-3} & \cdots & \gamma_{0} \end{bmatrix}$$

est positive semi-définie, où $\gamma_k \equiv \gamma(k)$.

- 2.9 PROPOSITION (Existence d'une fonction d'autocorrélation). Si le processus $\{X_t: t \in T\}$ est stationnaire du second ordre, alors il existe une fonction $\rho: \mathbb{Z} \to [-1, 1]$ telle que $\rho(t-s) = Corr(X_s, X_t) = \gamma(t-s)/\gamma(0), \, \forall s, t \in T, \text{ où } 0/0 \equiv 1$. On appelle la fonction ρ la fonction d'autocorrélation du processus $\{X_t: t \in T\}$ et $\rho(k)$, pour k donné, l'autocorrélation de délai k du processus $\{X_t: t \in T\}$.
- 2.10 PROPOSITION (Propriétés de la fonction d'autocorrélation). Soit $\{X_t : t \in T\}$ un processus stationnaire du second ordre. La fonction d'autocorrélation $\rho(k)$ du processus $\{X_t : t \in T\}$ possède les propriétés suivantes :
 - (1) $\rho(0) = 1$;
 - (2) $\rho(k) = \rho(-k)$, $\forall k \in \mathbb{Z}$;
 - (3) $|\rho(k)| \le 1$, $\forall k \in \mathbb{Z}$;
 - (4) la fonction $\rho(k)$ est positive semi-définie, *i.e.*

$$\sum_{i=1}^{N} \sum_{j=1}^{N} a_i a_j \rho(t_i - t_j) \ge 0$$

pour tout entier positif N et pour tous les vecteurs $a=(a_1,\ldots,a_N)'\in\mathbb{R}^N$ et $\tau=(t_1,\ldots,t_N)'\in T^N$;

(5) toute matrice $N \times N$ de la forme

$$R_{N} = \frac{1}{\gamma_{0}} \Gamma_{N} = \begin{bmatrix} 1 & \rho_{1} & \rho_{2} & \cdots & \rho_{N-1} \\ \rho_{1} & 1 & \rho_{1} & \cdots & \rho_{N-2} \\ \vdots & \vdots & \vdots & & \vdots \\ \rho_{N-1} & \rho_{N-2} & \rho_{N-3} & \cdots & 1 \end{bmatrix}$$

est positive semi-définie, où $\gamma_0 = Var(X_t)$ et $\rho_k \equiv \rho(k)$.

2.11 THÉORÈME (Caractérisation des fonctions d'autocovariance) : Une fonction paire $\gamma: \mathbb{Z} \to \mathbb{R}$ est positive semi-définie ssi γ est la fonction d'autocovariance d'un processus stationnaire du second ordre $\{X_t: t \in \mathbb{Z}\}$.

PREUVE: Voir Brockwell et Davis (1987, p. 27).

- 2.12 COROLLAIRE (Caractérisation des fonctions d'autocorrélation). Une fonction paire $\rho: \mathbb{Z} \to [-1, 1]$ est positive semi-définie ssi ρ est la fonction d'autocorrélation d'un processus stationnaire du second ordre $\{X_t: t \in \mathbb{Z}\}$.
- 2.13 DÉFINITION (Processus déterministe). Soit $\{X_t : t \in T\}$ un processus stochastique, $T_1 \subseteq T$ et $I_t = \{X_s : s \leq t\}$. On dit que le processus $\{X_t : t \in T\}$ est déterministe dans T_1 soi il existe une collection de fonctions $\{g_t(I_{t-1}) : t \in T_1\}$ telles que $X_t = g_t(I_{t-1})$ avec probabilité $1, \forall t \in T_1$.

Un processus déterministe est un processus qui peut être prévu parfaitement à partir de son propre passé (aux points où le processus est déterministe).

2.14 PROPOSITION (Critère pour un processus déterministe). Soit $\{X_t : t \in T\}$ un processus stationnaire du second ordre, où $T = \{t \in \mathbb{Z} : t > n_0\}$ et $n_0 \in \mathbb{Z} \cup \{-\infty\}$, et soit $\gamma(k)$ sa fonction d'autocovariance. S'il existe un entier $N \geq 1$ tel que la matrice Γ_N est singulière [où Γ_N est définie en 2.8(5)], alors le processus $\{X_t : t \in T\}$ est déterministe pour $t > n_0 + N - 1$. En particulier, si $Var(X_t) = \gamma(0) = 0$, le processus est déterministe pour $t \in T$.

Pour un processus stationnaire du second ordre non déterministe en tout $t \in T$, toutes les matrices Γ_N , $N \ge 1$, sont inversibles.

2.15 DÉFINITION (Processus stationnaire d'ordre m). Soit m un entier non négatif. Un processus stochastique $\{X_t : t \in T\}$ est stationnaire d'ordre m ssi

(1)
$$E(|X_t|^m) < \infty$$
, $\forall t \in T$,

et

$$(2) \ E \left[X_{t_1}^{m_1} X_{t_2}^{m_2} \ \dots \ X_{t_n}^{m_n} \ \right] = E \left[X_{t_1+k}^{m_1} X_{t_2+k}^{m_2} \ \dots \ X_{t_n+k}^{m_n} \ \right]$$

pour tout $k \geq 0$, tout sous-ensemble $\{t_1, \ldots, t_n\} \in T^N$ et tous les entiers non négatifs m_1, \ldots, m_n tels que $m_1 + m_2 + \ldots + m_n \leq m$.

Si m = 1, la moyenne est constante, mais pas nécessairement les autres moments. Si m = 2, le processus est stationnaire du second ordre.

- 2.16 DÉFINITION (Processus asymptotiquement stationnaire d'ordre m). Soit m un entier non négatif. Un processus stochastique $\{X_t: t \in T\}$ est asymptotiquement stationnaire d'ordre m ssi
 - (1) il existe un entier N tel que

$$E(|X_t|^m) < \infty$$
, pour $t \ge N$,

et

$$(2) \lim_{t_1 \to \infty} \left\{ E\left(X_{t_1}^{m_1} X_{t_1 + \Delta_2}^{m_2} ... X_{t_1 + \Delta_n}^{m_n}\right) - E\left(X_{t_1 + k}^{m_1} X_{t_1 + \Delta_2 + k}^{m_2} ... X_{t_1 + \Delta_n + k}^{m_n}\right) \right\} = 0$$

pour tout $k \geq 0$, $t_1 \in T$, tous les entiers positifs Δ_2 , Δ_3 , ..., Δ_n tels que $\Delta_2 < \Delta_3 < \ldots < \Delta_n$ et tous les entiers non négatifs m_1 , ..., m_n tels que $m_1 + m_2 + \ldots + m_n \leq m$.

3. QUELQUES MODÈLES IMPORTANTS

Dans cette section, nous allons continuer à supposer que T est un intervalle infini à droite de nombres entiers (Hypothèse 2.1):

$$T = \{t \in \mathbb{Z} : t > n_0\}$$
, où $n_0 \in \mathbb{Z} \cup \{-\infty\}$.

3.1 Modèles de bruit

(1) Suite de v.a.'s indépendantes : processus $\{X_t : t \in T\}$ tel que les variables X_t sont mutuellement indépendantes. On écrit

$$\{X_t : t \in T\} \sim IND \text{ ou } \{X_t\} \sim IND ;$$

$$\{X_t : t \in T\} \sim IND(\mu_t) \text{ , si } E(X_t) = \mu_t ;$$

$$\{X_t : t \in T\} \sim IND(\mu_t, \sigma_t^2) \text{ , si } E(X_t) = \mu_t \text{ et } Var(X_t) = \sigma_t^2 .$$

(2) Échantillon aléatoire : suite de v.a.'s indépendantes et identiquement distribuées (i.i.d.). On écrit

$$\{X_t: t \in T\} \sim IID$$
.

Un échantillon aléatoire est un processus SSS. Si $E(X_t^2) < \infty$, pour tout $t \in T$, le processus est SL2. Dans ce cas, on écrit

$$\{X_t: t \in T\} \sim IID(\mu, \sigma^2)$$
, si $E(X_t) = \mu$ et $V(X_t) = \sigma^2$.

(3) Bruit blanc : suite de v.a.'s dans L_2 de moyenne nulle, de même variance et non corrélées entre elles, i.e.

$$E(X_t^2) < \infty$$
, $\forall t \in T$,

$$E(X_t) = 0 , \forall t \in T ,$$

$$E(X_t^2) = \sigma^2 , \forall t \in T ,$$

$$Cov(X_s, X_t) = 0$$
, si $s \neq t$.

On écrit :

$$\{X_t: t \in T\} \sim BB(0, \sigma^2) \text{ ou } \{X_t\} \sim BB(0, \sigma^2)$$
.

(4) Bruit blanc hétéroscédastique : suite de v.a.'s dans L_2 de moyenne nulle et non corrélées entre elles :

$$E(X_t^2) < \infty$$
, $\forall t \in T$,

$$E(X_t) = 0$$
 , $\forall t \in T$,

$$Cov(X_t, X_s) = 0$$
, si $s \neq t$,

$$E(X_t^2) = \sigma_t^2 , \forall t \in T$$
.

On écrit :
$$\{X_t: t \in \mathbb{Z}\} \ \sim \ BB(0,\,\sigma_t^2)$$
 ou $\{X_t\} \ \sim \ BB(0,\,\sigma_t^2)$.

Chacun des quatre modèles précédents sera appelé un bruit.

3.2 Processus harmoniques

Beaucoup de séries chronologiques semblent comporter des périodicités exactes ou approximatives. Cela suggère l'utilisation de fonctions périodiques.

3.2.1 Une fonction f(t), $t \in \mathbb{R}$, est périodique de période P si

$$f(t+P) = f(t)$$
, $\forall t$.

 $\frac{1}{P}$ est la fréquence associée à la fonction (nombre de cycles par unité de temps).

3.2.2 EXEMPLES.

(1)
$$\sin(t) = \sin(t + 2\pi) = \sin(t + 2\pi k)$$
, $\forall k \in \mathbb{Z}$.

(2)
$$\cos(t) = \cos(t + 2\pi) = \cos(t + 2\pi k)$$
, $\forall k \in \mathbb{Z}$.

(3)
$$\sin(\nu t) = \sin\left[\nu\left(t + \frac{2\pi}{\nu}\right)\right] = \sin\left[\nu\left(t + \frac{2\pi k}{\nu}\right)\right], \forall k \in \mathbb{Z}$$
.

(4)
$$\cos(\nu t) = \cos\left[\nu\left(t + \frac{2\pi}{\nu}\right)\right] = \cos\left[\nu\left(t + \frac{2\pi k}{\nu}\right)\right], \forall k \in \mathbb{Z}$$
.

Pour $\sin(\nu t)$ et $\cos(\nu t),$ la période est $P=2\pi/\nu$.

(5)
$$f(t) = C \cos(\nu t + \theta) = C[\cos(\nu t)\cos(\theta) - \sin(\nu t)\sin(\theta)]$$

$$= A \cos(\nu t) + B \sin(\nu t)$$

où
$$C \geq 0$$
, $A = C \cos(\theta)$ et $B = -C \sin \theta$. De plus,

$$C = \sqrt{A^2 + B^2}$$
, $\tan(\theta) = -B/A$ (si $C \neq 0$).

On appelle : C = amplitude;

 $\nu = \text{fréquence angulaire (radians/unité de temps)};$

$$P = 2\pi/\nu = \text{période};$$

$$\bar{v} = \frac{1}{P} = \frac{v}{2\pi} =$$
 fréquence (nombre de cycles par unité de temps);
 $\theta =$ angle de phase (habituellement $0 \le \theta < 2\pi$ ou $-\pi/2 < \theta \le \pi/2$).

(6)
$$f(t) = C \sin(\nu t + \theta) = C \cos(\nu t + \theta - \pi/2)$$

$$= C[\sin(\nu t)\cos(\theta) + \cos(\nu t)\sin(\theta)]$$

$$= A \cos(\nu t) + B \sin(\nu t)$$
où $0 \le \nu < 2\pi$, $A = C \sin(\theta) = C \cos(\theta - \frac{\pi}{2})$, $B = C \cos(\theta) = -C \sin(\theta - \frac{\pi}{2})$.

3.2.3 Considérons le modèle

(3.2.1)
$$X_t = C \cos(\nu t + \theta)$$

= $A \cos(\nu t) + B \sin(\nu t)$, $t \in \mathbb{Z}$.

Si A et B sont des constantes,

$$E(X_t) = A \cos(\nu t) + B \sin(\nu t), t \in \mathbb{Z}$$

et donc le processus X_t est non stationnaire (la moyenne n'est pas constante). Supposons maintenant que A et B sont des v.a.'s telles que

$$E(A)=E(B)=0$$
 , $E(A^2)=E(B^2)=\sigma^2$, $E(AB)=0$.

A et B ne dépendent pas de t mais sont fixes pour chaque réalisation du processus $[A = A(\omega), B = B(\omega)]$. Dans ce cas,

$$E(X_t) = 0 ,$$

$$E(X_s X_t) = E(A^2) \cos(\nu s) \cos(\nu t) + E(B^2) \sin(\nu s) \sin(\nu t)$$
$$= \sigma^2 [\cos(\nu s) \cos(\nu t) + \sin(\nu s) \sin(\nu t)] = \sigma^2 \cos[\nu (t - s)].$$

Le processus X_t est stationnaire d'ordre 2 avec les fonctions d'autocovariance et d'autocorrélation suivantes :

(3.2.2)
$$\gamma_X(k) = \sigma^2 \cos(\nu k)$$
, $\rho_X(k) = \cos(\nu k)$.

Si on additionne m processus cycliques de la forme (3.2.1), on obtient un processus harmonique d'ordre m.

3.2.4 DÉFINITION (Processus harmonique d'ordre m). On dit que le processus $\{X_t : t \in T\}$ est un processus harmonique d'ordre m s'il peut s'écrire sous la forme

(3.2.3)
$$X_t = \sum_{j=1}^{m} [A_j \cos(\nu_j t) + B_j \sin(\nu_j t)], \forall t \in T,$$

où ν_1, \ldots, ν_m sont des constantes distinctes dans l'intervalle $[0, 2\pi)$.

Si on suppose que A_j , B_j , $j=1,\ldots,m$, sont des v.a.'s dans L_2 telles que

$$E(A_j) = E(B_j) = 0$$
, $E(A_j^2) = E(B_j^2) = \sigma_j^2$, $j = 1, ..., m$, $E(A_j A_k) = E(B_j B_k) = 0$, pour $j \neq k$, $E(A_j B_k) = 0$, $\forall j, k$,

le processus X_t peut être considéré comme stationnaire du second ordre :

$$E(X_t) = 0 ,$$

$$E(X_s X_t) = \sum_{j=1}^{m} \sigma_j^2 \cos[\nu_j (t - s)] ,$$

d'où

(3.2.4)
$$\gamma_X(k) = \sum_{j=1}^m \sigma_j^2 \cos(\nu_j k)$$
,

(3.2.5)
$$\rho_X(k) = \sum_{j=1}^m \sigma_j^2 \cos(\nu_j k) / \sum_{j=1}^m \sigma_j^2$$
.

3.2.5 Si on ajoute un bruit blanc u_t à X_t dans (3.2.3), on obtient à nouveau un processus stationnaire du second ordre :

$$(3.2.6) X_t = \sum_{j=1}^m [A_j \cos(\nu_j t) + B_j \sin(\nu_j t)] + u_t, t \in T,$$

où le processus $\{u_t:t\in T\}\sim BB(0,\,\sigma^2)$ est non corrélé avec $A_j,\,B_j$, $j=1,\,\dots\,,\,m$. Dans ce cas, $E(X_t)=0$ et

(3.2.7)
$$\gamma_X(k) = \sum_{j=1}^{m} \sigma_j^2 \cos(\nu_j k) + \sigma^2 \delta(k)$$

où $\delta(k) = 1$ pour k = 0, et $\delta(k) = 0$ autrement. Si une série peut être décrite par une équation de la forme (3.2.6), on peut considérer qu'elle constitue une réalisation d'un processus stationnaire du second ordre.

3.3 Processus linéaires

Beaucoup de processus stochastiques avec dépendance sont obtenus par des transformations linéaires de bruits blancs (ou plus généralement de bruits).

3.3.1 Le processus $\{X_t: t \in T\}$ est un processus autorégressif d'ordre p s'il satisfait une équation de la forme

$$X_t = \bar{\mu} + \sum_{j=1}^p \varphi_j X_{t-j} + u_t , \forall t \in T ,$$

où $\{u_t: t \in \mathbb{Z}\}\ \sim BB(0, \sigma^2)$. Dans ce cas, on note

$$\{X_t: t \in T\} \sim AR(p)$$
.

Habituellement, $T = \mathbb{Z}$ ou $T = \mathbb{Z}_+$ (entiers positifs). Si $\sum_{j=1}^p \varphi_j \neq 1$, on peut définir

$$\mu = \bar{\mu}/(1-\sum_{j=1}^p \varphi_j)$$
 et écrire

$$\tilde{X}_t = \sum_{j=1}^p \varphi_j \tilde{X}_{t-j} + u_t , \forall t \in T ,$$

où
$$\tilde{X}_t \equiv X_t - \mu$$
.

3.3.2 Le processus $\{X_t : t \in T\}$ est un processus de moyenne mobile d'ordre q s'il peut s'écrire sous la forme

$$X_t = \bar{\mu} + \sum_{j=0}^{q} \psi_j u_{t-j} , \forall t \in T ,$$

où $\{u_t: t \in \mathbb{Z}\} \sim BB(0, \sigma^2)$. Dans ce cas, on note

$$\{X_t: t \in T\} \sim MA(q)$$
.

Il est traditionnel dans ce cas de poser $\psi_0=1$ et $\psi_j=-\theta_j,\ j=1,\ \dots,\ q$:

$$X_t = \bar{\mu} + u_t - \sum_{j=1}^{q} \theta_j u_{t-j} , t \in T ,$$

ou, encore,

$$\tilde{X}_t = u_t - \sum_{j=1}^q \theta_j u_{t-j}$$
 où $\tilde{X}_t \equiv X_t - \bar{\mu}$.

3.3.3 Le processus $\{X_t : t \in T\}$ est un processus autorégressif-moyenne-mobile (ARMA) d'ordre (p, q) s'il peut s'écrire sous la forme

$$X_{t} = \bar{\mu} + \sum_{j=1}^{p} \varphi_{j} X_{t-j} + u_{t} - \sum_{j=1}^{q} \theta_{j} u_{t-j}, \forall t \in T$$

où $\{u_t: t \in \mathbb{Z}\} \sim BB(0, \sigma^2)$. Dans ce cas, on note

$$\{X_t : t \in T\} \sim ARMA(p, q)$$
.

Si $\sum_{j=1}^{p} \varphi_j \neq 1$, on peut aussi écrire

$$\tilde{X}_t = \sum_{j=1}^p \varphi_j \tilde{X}_{t-j} + u_t - \sum_{j=1}^q \theta_j u_{t-j}$$

où
$$\tilde{X}_t = X_t - \mu$$
 et $\mu = \bar{\mu}/(1 - \sum_{j=1}^p \varphi_j)$.

3.3.4 Le processus $\{X_t: t\in T\}$ est un processus de moyenne mobile d'ordre infini s'il peut s'écrire sous la forme

$$X_t = \bar{\mu} + \sum_{j=-\infty}^{+\infty} \psi_j u_{t-j} , \forall t \in \mathbb{Z} ,$$

où $\{u_t:t\in\mathbb{Z}\}\sim BB(0,\,\sigma^2)$. On dit aussi que X_t est un processus linéaire. Dans ce cas, on note

$$\{X_t: t \in T\} \sim MA(\infty)$$
.

En particulier, si $\psi_j = 0$ pour j < 0, *i.e.*

$$X_t = \bar{\mu} + \sum_{j=0}^{\infty} \psi_j u_{t-j} , \forall t \in \mathbb{Z} ,$$

on dit que X_t est une fonction causale de u_t (processus linéaire causal). [Box et Jenkins (1976) parlent de processus linéaire général.]

3.3.5 Le processus $\{X_t : t \in T\}$ est un processus autorégressif d'ordre infini s'il peut s'écrire sous la forme

$$X_t = \bar{\mu} + \sum_{j=1}^{\infty} \varphi_j X_{t-j} + u_t , t \in T ,$$

où $\{u_t: t \in \mathbb{Z}\}\ \sim BB(0, \sigma^2)$. Dans ce cas, on note

$$\{X_t: t \in T\} \sim AR(\infty)$$
.

3.3.6 $G\acute{e}n\acute{e}ralisation$: On peut géréraliser les notions définies plus haut en supposant que $\{u_t : t \in \mathbb{Z}\}$ est un bruit. À moins d'avis contraire, on supposera que $\{u_t\}$ est un bruit blanc.

3.3.7 QUESTIONS:

- (1) Sous quelles conditions les processus définis plus haut sont-ils stationnaires (au sens strict ou dans L_r)?
- (2) Sous quelles conditions les processus $MA(\infty)$ ou $AR(\infty)$ sont-ils bien définis (séries convergentes)?
- (3) Quels sont les liens entre les différentes classes de processus définies plus haut?
- (4) Lorsqu'un processus est stationnaire, quelles sont sa fonction d'autocovariance et sa fonction d'autocorrélation?

3.4 Processus intégrés

3.4.1 Le processus $\{X_t : t \in T\}$ est une promenade aléatoire s'il satisfait une équation de la forme

$$X_t - X_{t-1} = v_t$$
, $\forall t \in T$,

où $\{v_t : t \in \mathbb{Z}\}\$ ~ IID. Pour qu'un tel processus soit bien défini, il faut supposer que $n_0 \neq -\infty$ (le processus ne peut commencer à $-\infty$). Si $n_0 = -1$, on peut écrire

$$X_t = X_0 + \sum_{j=1}^t v_j$$

d'où le nom « processus intégré ». Si $E(v_t) = \bar{\mu}$ ou $Med(v_t) = \bar{\mu}$, on écrit souvent

$$X_t - X_{t-1} = \bar{\mu} + u_t$$

où $u_t \equiv v_t - \bar{\mu} \sim \text{IID et } E(u_t) = 0 \text{ ou } Med(u_t) = 0 \text{ (selon que } E(u_t) = 0 \text{ ou } Med(u_t) = 0).$ Si $\bar{\mu} \neq 0$, la promenade aléatoire a une tendance (« drift »).

3.4.2 Le processus $\{X_t : t \in T\}$ est une promenade aléatoire engendrée par un bruit blanc [ou un bruit blanc hétéroscédastique, ou une suite de v.a.'s indépendantes] si X_t satisfait une équation de la forme

$$X_t - X_{t-1} = \bar{\mu} + u_t$$

où
$$\{u_t : t \in T\} \sim BB(0, \sigma^2)$$
 [ou $\{u_t : t \in T\} \sim BB(0, \sigma_t^2)$, ou $\{u_t : t \in T\} \sim IND(0)$].

3.4.3 Le processus $\{X_t: t \in T\}$ est un processus intégré d'ordre d s'il peut s'écrire sous la forme

$$(1-B)^d X_t = Z_t , \forall t \in T ,$$

où $\{Z_t : t \in T\}$ est un processus stationnaire (habituellement stationnaire d'ordre 2) et d est un entier non négatif (d = 0, 1, 2, ...). En particulier, si $\{Z_t : t \in T\}$ est un processus ARMA(p, q) stationnaire, $\{X_t : t \in T\}$ est un processus ARIMA(p, d, q) : $\{X_t : t \in T\}$ ~ ARIMA(p, d, q). On note

$$B X_{t} = X_{t-1} ,$$

$$(1-B)X_{t} = X_{t} - X_{t-1} ,$$

$$(1-B)^{2}X_{t} = (1-B)(1-B)X_{t} = (1-B)(X_{t} - X_{t-1})$$

$$= X_{t} - 2X_{t-1} + X_{t-2} ,$$

$$(1-B)^{d}X_{t} = (1-B)(1-B)^{d-1}X_{t}, d = 1, 2, ...$$

où
$$(1 - B)^0 = 1$$
.

3.5 Modèles de tendance déterministe

Le processus $\{X_t : t \in T\}$ suit une tendance déterministe s'il peut s'écrire sous la forme

$$X_t = f(t) + Z_t$$
, $\forall t \in T$,

où f(t) est une fonction déterministe du temps et $\{Z_t : t \in T\}$ est un bruit ou un processus stationnaire.

Cas importants de tendances déterministes :

$$X_t = \beta_0 + \beta_1 t + u_t ,$$

$$X_t = \sum_{j=0}^k \beta_j t^j + u_t ,$$
où $\{u_t : t \in T\} \sim BB(0, \sigma^2) .$

4. TRANSFORMATIONS DE PROCESSUS STATIONNAIRES

4.1 THÉORÈME : Soient $\{X_t: t \in \mathbb{Z}\}$ un processus stochastique sur les entiers, $r \geq 1$ et $\{a_j: j \in \mathbb{Z}\}$ une suite de nombres réels. Si $\sum\limits_{j=-\infty}^{\infty} |a_j| E(|X_{t-j}|^r)^{1/r} < \infty$, alors, pour tout t, la série aléatoire $\sum\limits_{j=-\infty}^{\infty} a_j X_{t-j}$ converge absolument p.s. et en moyenne d'ordre r vers une v.a. Y_t telle que $E(|Y_t|^r) < \infty$.

PREUVE : Voir NTA (« Notions de théorie asymptotique »), Proposition 4.9.

4.2 THÉORÈME : Soit $\{X_t : t \in \mathbb{Z}\}$ un processus stationnaire du second ordre et $\{a_j : j \in \mathbb{Z}\}$ une suite de nombres réels absolument convergente, i.e. $\sum_{j=-\infty}^{\infty} |a_j| < \infty$.

Alors la série aléatoire $\sum_{j=-\infty}^{\infty} a_j X_{t-j}$ converge absolument p.s. et en moyenne d'ordre 2 vers une v.a. $Y_t \in L_2$, $\forall t$, et le processus $\{Y_t : t \in \mathbb{Z}\}$ est stationnaire du second ordre.

PREUVE: Voir Gouriéroux et Monfort (1990, Propriété 5.6).

4.3 Si $\{X_t : t \in \mathbb{Z}\}$ est stationnaire du second ordre avec pour fonction d'autocovariance $\gamma_X(k)$, la fonction d'autocovariance du processus transformé

$$Y_t = \sum_{j=-\infty}^{\infty} a_j X_{t-j} ,$$

où $\sum\limits_{j=-\infty}^{\infty}\,|a_j|<\infty$, est donnée pour

$$\gamma_Y(k) = \sum_{i=-\infty}^{\infty} \sum_{j=-\infty}^{\infty} a_i a_j \gamma_X(k-i+j)$$
.

4.4 THÉORÈME : La série $\sum_{j=-\infty}^{\infty} a_j X_{t-j}$ converge absolument p.s. pour tout processus $\{X_t: t \in \mathbb{Z}\}$ stationnaire d'ordre 2 ssi $\sum_{j=-\infty}^{\infty} |a_j| < \infty$.

5. ÉTUDES DES PRINCIPALES CLASSES DE PROCESSUS

5.1 Processus de moyenne mobile d'ordre infini

Considérons la série aléatoire

$$\sum_{j=-\infty}^\infty \psi_j u_{t-j} \ , \ t \in \mathbb{Z}$$
 où $\{u_t: t \in \mathbb{Z}\} \ \sim \ BB(0, \ \sigma^2)$.

5.1.1 Conditions de convergence

On peut écrire

$$\sum_{j=-\infty}^{\infty} \psi_j u_{t-j} = \sum_{j=-\infty}^{\infty} Y_j(t) = \sum_{j=-\infty}^{-1} Y_j(t) + \sum_{j=0}^{\infty} Y_j(t)$$

où
$$Y_j(t) \equiv \psi_j u_{t-j}$$
 et

$$E[|Y_j(t)|] = |\psi_j|E[|u_{t-j}|] \le |\psi_j|[E(u_{t-j}^2)]^{\frac{1}{2}} = |\psi_j|\sigma < \infty$$
,

$$E[Y_j(t)Y_k(t)] = E[Y_j(t)^2] = \psi_j^2 \sigma^2, \text{ si } j = k ,$$

= 0, si $j \neq k$.

 $\sum_{j=-\infty}^{\infty} \psi_j u_{t-j}$ est une série de variables orthogonales.

Supposons que
$$\sum_{j=-\infty}^{-1} \psi_j^2 < \infty$$
. Alors

$$Y_m^1(t) \equiv \sum_{j=-m}^{-1} \psi_j u_{t-j} \xrightarrow[m \to \infty]{2} Y^1(t) \equiv \sum_{j=-\infty}^{-1} \psi_j u_{t-j}$$
,

$$Y_n^2(t) \equiv \sum_{j=0}^n \psi_j u_{t-j} \xrightarrow[n \to \infty]{2} Y^2(t) \equiv \sum_{j=1}^\infty \psi_j u_{t-j}$$

[voir NTA, 4.14], et donc

$$Y_{m,n}(t) \equiv Y_m^1(t) + Y_n^2(t) \underset{\substack{m \to \infty \\ n \to \infty}}{\overset{2}{\longrightarrow}} \tilde{X}_t \equiv Y^1(t) + Y^2(t) \equiv \sum_{j=-\infty}^{\infty} \psi_j u_{t-j}, \forall t \in \mathbb{Z}$$
.

Il est clair aussi que

$$X_n(t) \equiv Y_n^1(t) + Y_n^2(t) = \sum_{j=-n}^{-1} \psi_j u_{t-j} + \sum_{j=0}^n \psi_j u_{t-j} \xrightarrow[n \to \infty]{2} \tilde{X}_t \equiv \sum_{j=-\infty}^{\infty} \psi_j u_{t-j} , \forall t \in \mathbb{Z} .$$

$$(5.1.2)$$

Donc,

$$\sum_{j=-\infty}^{+\infty} \psi_j^2 < \infty \Rightarrow \sum_{j=-\infty}^{\infty} \psi_j u_{t-j} \text{ converge en } m.q. \text{ vers une } v.a. \ \tilde{X}_t$$

[voir NTA, 4.14 et 3.3]. En outre

$$\sum_{j=-\infty}^{\infty} |\psi_j| < \infty \Rightarrow \sum_{j=-\infty}^{\infty} \psi_j u_{t-j} \text{ converge } p.s. \text{ vers une } v.a. \ \tilde{X}_t$$

[voir NTA, 4.8],

$$\sum_{j=-\infty}^{\infty} |\psi_j| < \infty \Rightarrow \sum_{j=-\infty}^{\infty} \psi_j^2 < \infty$$

$$\Rightarrow \sum_{j=-\infty}^{\infty} \psi_j u_{t-j} \text{ converge en } m.q. \text{ vers une } v.a. \ \tilde{X}_t \ .$$

Si les variables $\{u_t : t \in \mathbb{Z}\}$ sont mutuellement indépendantes,

$$\sum_{j=-\infty}^{+\infty} \psi_j^2 < \infty \Rightarrow \sum_{j=-\infty}^{+\infty} \psi_j u_{t-j} \text{ converge } p.s. \text{ vers une } v.a. \ \tilde{X}_t$$

[voir NTA, 4.16]. On appelle \tilde{X}_t la limite (en m.q. ou p.s.) de la série $\sum_{j=-\infty}^{\infty} \psi_j u_{t-j}$ et on écrit

$$\tilde{X}_t = \sum_{j=-\infty}^{\infty} \psi_j u_{t-j} .$$

En définissant $X_t \equiv \mu + \tilde{X}_t$, on obtient le processus linéaire

$$X_t = \mu + \sum_{j=-\infty}^{\infty} \psi_j u_{t-j}$$

où on suppose que la série converge.

5.1.2 Moyenne, variance et covariances

Par (5.1.2), on peut déduire que :

$$E[X_n(t)] \underset{n \to \infty}{\longrightarrow} E(\tilde{X}_t)$$
,

$$E[X_n(t)^2] \underset{n \to \infty}{\longrightarrow} E(\tilde{X}_t^2)$$
,

$$E[X_n(t)X_n(t+k)] \underset{n\to\infty}{\longrightarrow} E(\tilde{X}_t|\tilde{X}_{t+k}) ;$$

voir NTA (3.6 et 3.7). Par conséquent,

$$E(\tilde{X}_{t}) = 0 ,$$

$$Var(\tilde{X}_{t}) = E(\tilde{X}_{t}^{2}) = \lim_{n \to \infty} \sum_{j=-n}^{n} \psi_{j}^{2} \sigma^{2} = \sigma^{2} \sum_{j=-\infty}^{\infty} \psi_{j}^{2} ,$$

$$Cov(\tilde{X}_{t}, \tilde{X}_{t+k}) = E(\tilde{X}_{t} \tilde{X}_{t+k})$$

$$= \lim_{n \to \infty} E\left[\left(\sum_{i=-n}^{n} \psi_{i} u_{t-i}\right) \left(\sum_{j=-n}^{n} \psi_{j} u_{t+k-j}\right)\right]$$

$$= \lim_{n \to \infty} \sum_{i=-n}^{n} \sum_{j=-n}^{n} \psi_{i} \psi_{j} E(u_{t-i} u_{t+k-j})$$

$$= \lim_{n \to \infty} \sum_{i=-n}^{n-k} \psi_{i} \psi_{i+k} \sigma^{2} = \sigma^{2} \sum_{i=-\infty}^{\infty} \psi_{i} \psi_{i+k} , \text{ si } k \ge 1 ,$$

$$= \lim_{n \to \infty} \sum_{i=-n}^{n} \psi_{j} \psi_{j+|k|} \sigma^{2} = \sigma^{2} \sum_{i=-\infty}^{\infty} \psi_{j} \psi_{j+|k|} , \text{ si } k \le -1 ,$$

car $t-i=t+k-j \Rightarrow j=i+k$ et i=j-k. Pour tout $k \in \mathbb{Z}$, on peut écrire

$$Cov(\tilde{X}_t, \tilde{X}_{t+k}) = \sigma^2 \sum_{j=-\infty}^{\infty} \psi_j \psi_{j+|k|},$$

$$Corr(\tilde{X}_t, \tilde{X}_{t+k}) = \sum_{j=-\infty}^{\infty} \psi_j \psi_{j+|k|} / \sum_{j=-\infty}^{\infty} \psi_j^2$$
.

La série $\sum_{j=-\infty}^{\infty} \psi_j \psi_{j+k}$ converge absolument, car

$$\left| \sum_{j=-\infty}^{\infty} \psi_j \psi_{j+k} \right| \leq \sum_{j=-\infty}^{\infty} \left| \psi_j \psi_{j+k} \right| \leq \left[\sum_{j=-\infty}^{\infty} \psi_j^2 \right]^{\frac{1}{2}} \left[\sum_{j=-\infty}^{\infty} \psi_{j+k}^2 \right]^{\frac{1}{2}} < \infty .$$

Si
$$X_t = \mu + \tilde{X}_t = \mu + \sum_{j=-\infty}^{+\infty} \psi_j u_{t-j}$$
, alors

$$E(X_t) = \mu$$
, $Cov(X_t, X_{t+k}) = Cov(\tilde{X}_t, \tilde{X}_{t+k})$.

Dans le cas d'un processus $MA(\infty)$ causal, on a

$$X_t = \mu + \sum_{j=0}^{\infty} \psi_j u_{t-j}$$

où $\{u_t : t \in \mathbb{Z}\} \sim BB(0, \sigma^2)$,

$$Cov(X_t, X_{t+k}) = \sigma^2 \sum_{j=0}^{\infty} \psi_j \psi_{j+|k|} ,$$

$$Corr(X_t, X_{t+k}) = \sum_{j=0}^{\infty} \psi_j \psi_{j+|k|} / \sum_{j=0}^{\infty} \psi_j^2 .$$

5.1.3 <u>Stationnarité</u>

Le processus

$$X_t = \mu + \sum_{j=-\infty}^{\infty} \psi_j u_{t-j} , t \in \mathbb{Z} ,$$

où $\{u_t: t \in \mathbb{Z}\} \sim BB(0, \sigma^2)$ et $\sum_{j=-\infty}^{\infty} \psi_j^2 < \infty$, est stationnaire du second ordre, car $E(X_t)$ et $Cov(X_t, X_{t+k})$ ne dépendent pas de t. Si on suppose que $\{u_t: t \in \mathbb{Z}\}$ \sim IID, avec $E|u_t| < \infty$ et $\sum_{j=-\infty}^{\infty} \psi_j^2 < \infty$, le processus est stationnaire au sens strict.

5.1.4 Notation opérationnelle

On peut noter le processus $MA(\infty)$

$$X_t = \mu + \psi(B)u_t = \mu + \left(\sum_{j=-\infty}^{\infty} \psi_j B^j\right) u_t$$
où $\psi(B) = \sum_{j=-\infty}^{\infty} \psi_j B^j$ et $B^j u_t = u_{t-j}$.

5.2 Moyennes mobiles d'ordre fini

5.2.1 Le processus MA(q) s'écrit

$$X_t = \mu + u_t - \sum_{j=1}^q \theta_j u_{t-j}$$

$$= \mu + \theta(B)u_t ,$$

où $\theta(B)=1-\theta_1B-\ldots-\theta_qB^q$. Ce processus est un cas spécial du processus $MA(\infty)$ avec

$$\psi_0=1$$
 , $\psi_j=-\theta_j$, pour $1\leq j\leq q$,
$$\psi_j=0 \mbox{ , pour } j<0 \mbox{ ou } j>q \mbox{ .}$$

5.2.2 Ce processus est clairement stationnaire d'ordre 2, avec

$$E(X_t) = \mu ,$$

$$V(X_t) = \sigma^2 \left(1 + \sum_{j=1}^q \theta_j^2 \right) ,$$

$$\gamma(k) \equiv Cov(X_t, X_{t+k}) = \sigma^2 \sum_{j=-\infty}^\infty \psi_j \psi_{j+|k|} .$$

En définissant $\theta_0 \equiv -1$, on voit alors que

$$\gamma(k) = \sigma^2 \sum_{j=0}^{q-k} \theta_j \theta_{j+k}$$

$$= \sigma^2 \left[-\theta_k + \sum_{j=1}^{q-k} \theta_j \theta_{j+k} \right]$$

$$= \sigma^2 [-\theta_k + \theta_1 \theta_{k+1} + \dots + \theta_{q-k} \theta_q] , \text{ pour } 1 \le k \le q ,$$

$$\gamma(k) = 0 , \text{ pour } k \ge q+1 ,$$

$$\gamma(-k) = \gamma(k) , \text{ pour } k < 0 .$$

La fonction d'autocorrélation de X_t est donc

$$\rho(k) = \left(-\theta_k + \sum_{j=1}^{q-k} \theta_j \theta_{j+k}\right) / \left(1 + \sum_{j=1}^q \theta_j^2\right), \ 1 \le k \le q$$
$$= 0 \qquad , \ k \ge q+1$$

Les autocorrélations sont nulles pour $k \ge q + 1$.

5.2.3 Pour q = 1,

$$\rho(k) = -\theta_1/(1 + \theta_1^2) , k = 1 ,$$

= 0 , $k \ge 2 ,$

d'où $|\rho(1)| \leq 0.5$. Pour q = 2,

$$\rho(k) = (-\theta_1 + \theta_1 \theta_2)/(1 + \theta_1^2 + \theta_2^2) , k = 1 ,$$

$$= -\theta_2/(1 + \theta_1^2 + \theta_2^2) , k = 2 ,$$

$$= 0 , k > 3 ,$$

d'où $|\rho(2)| \leq 0.5$. Pour un processus MA(q),

$$\rho(q) = -\theta_q/(1 + \theta_1^2 + \dots + \theta_q^2)$$
,

d'ou $|\rho(q)| \le 0.5$.

5.2.4 Il existe des contraintes générales sur les autocorrélations d'un processus MA(q):

$$|\rho(k)| \le \cos(\pi/\{[q/k] + 2\})$$

où [x] = le plus grand entier plus petit ou égal à x. À partir de cette formule, on trouve :

pour
$$q = 1$$
, $|\rho(1)| \le \cos(\pi/3) = 0.5$,

pour
$$q = 2$$
, $|\rho(1)| \le \cos(\pi/4) = 0.7071$, $|\rho(2)| \le \cos(\pi/3) = 0.5$,

pour
$$q = 3$$
, $|\rho(1)| \le \cos(\pi/5) = 0.809$, $|\rho(2)| \le \cos(\pi/3) = 0.5$, $|\rho(3)| \le \cos(\pi/3) = 0.5$.

Voir Chanda (1962), Anderson (1975) et Kendall et Stuart (1983, vol. 3, p. 519).

5.3 Processus autorégressifs

5.3.1 Considérons un processus $\{X_t : t \in \mathbb{Z}\}$ qui satisfait l'équation :

(5.3.1)
$$X_t = \bar{\mu} + \sum_{j=1}^p \varphi_j X_{t-j} + u_t , \forall t \in \mathbb{Z} ,$$

où $\{u_t: t \in \mathbb{Z}\}\ \sim BB(0, \sigma^2)$. En notation symbolique,

$$\varphi(B)X_t = \bar{\mu} + u_t , t \in \mathbb{Z} ,$$

où
$$\varphi(B) = 1 - \varphi_1 B - \dots - \varphi_p B^p$$
.

5.3.2 <u>Stationnarité</u>

Considérons le processus AR(1)

$$X_t = \varphi_1 X_{t-1} + u_t$$
, $\varphi_1 \neq 0$.

 $\operatorname{Si} X_t \operatorname{est} \operatorname{SL}2$,

$$E(X_t) = \varphi_1 E(X_{t-1}) = \varphi_1 E(X_t) ,$$

d'où $E(X_t)=0$. Par substitutions successives,

$$X_{t} = \varphi_{1}[\varphi_{1}X_{t-2} + u_{t-1}] + u_{t}$$

$$= u_{t} + \varphi_{1}u_{t-1} + \varphi_{1}^{2}X_{t-2}$$

$$= \sum_{i=0}^{N-1} \varphi_{1}^{j}u_{t-j} + \varphi_{1}^{N}X_{t-N} .$$

Si on suppose que X_t est SL2 avec $E(X_t^2) \neq 0$, on voit que

$$E\left[\left(X_t - \sum_{j=0}^{N-1} \varphi_1^j u_{t-j}\right)^2\right] = \varphi_1^{2N} E(X_{t-N}^2) = \varphi_1^{2N} E(X_t^2) \underset{N \to \infty}{\longrightarrow} 0 \Leftrightarrow |\varphi_1| < 1.$$

La série $\sum_{j=0}^{\infty} \varphi_1^j u_{t-j}$ converge en m.q. vers X_t :

$$X_t = \sum_{j=0}^{\infty} \varphi_1^j u_{t-j} \equiv (1 - \varphi_1 B)^{-1} u_t = \frac{1}{1 - \varphi_1 B} u_t$$

οù

$$(1 - \varphi_1 B)^{-1} = \sum_{j=0}^{\infty} \varphi_1^j B^j$$
.

Comme

$$\sum_{j=0}^{\infty} E|\varphi_1^j u_{t-j}| \le \sigma \sum_{j=0}^{\infty} |\varphi_1|^j = \frac{\sigma}{1-|\varphi_1|} < \infty$$

lorsque $|\varphi_1| < 1$, la convergence est aussi p.s. Le processus $X_t = \sum_{j=0}^{\infty} \varphi_1^j u_{t-j}$ est SL2.

Lorsque $|\varphi_1| < 1$, l'équation de récurrence

$$(1 - \varphi_1 B) X_t = u_t$$

possède une et une seule solution stationnaire qui peut s'écrire

$$X_t = \sum_{j=0}^{\infty} \varphi_1^j u_{t-j} = (1 - \varphi_1 B)^{-1} u_t$$
.

Il s'agit donc d'un processus $MA(\infty)$ causal.

Cette condition est suffisante (mais non nécessaire) pour l'existence d'une solution stationnaire unique. On exprime souvent la condition de stationnairé en disant que le polynôme $\varphi(z) = 1 - \varphi_1 z$ a toutes ses racines à l'extérieur du cercle unité |z| = 1:

$$1 - \varphi_1 z_* = 0 \Leftrightarrow z_* = \frac{1}{\varphi_1},$$

où $|z_*|=1/|\varphi_1|>1$. Dans ce cas, on a aussi $E(X_{t-k}u_t)=0,\,\forall k\geq 1$. La même conclusion tient si on considère le processus général

$$X_t = \bar{\mu} + \varphi_1 X_{t-1} + u_t .$$

Pour le processus AR(p),

$$(5.3.2) X_t = \bar{\mu} + \sum_{j=1}^{p} \varphi_j X_{t-j} + u_t$$

ou

$$\varphi(B)X_t = \bar{\mu} + u_t ,$$

la condition de stationnarité est la suivante :

si le polynôme $\varphi(z) = 1 - \varphi_1 z - \dots - \varphi_p z^p$ a toutes ses racines à l'extérieur du cercle unité, l'équation (5.3.2) possède une et une seule solution SL2.

Le polynôme (d'ordre p) $\varphi(z)$ peut s'écrire

$$\varphi(z) = (1 - G_1 z)(1 - G_2 z) \dots (1 - G_p z)$$

et a pour racines

$$z_1^* = 1/G_1 \ , \ldots \ , \ z_p^* = 1/G_p \ .$$

La condition de stationnarité peut alors s'écrire :

$$|G_i| < 1, j = 1, ..., p$$
.

La solution stationnaire peut s'écrire

$$X_{t} = \varphi(B)^{-1}\bar{\mu} + \varphi(B)^{-1}u_{t} = \mu + \varphi(B)^{-1}u_{t}$$
où $\mu = \bar{\mu}/(1 - \sum_{j=1}^{p} \varphi_{j})$,
$$\varphi(B)^{-1} = \prod_{j=1}^{p} (1 - G_{j}B)^{-1} = \prod_{j=1}^{p} \left(\sum_{k=0}^{\infty} G_{j}^{k}B^{k}\right)$$

$$= \sum_{j=1}^{p} \frac{K_{j}}{1 - G_{j}B}$$

et K_1, \ldots, K_p sont des constantes (expansion en fractions partielles). Par conséquent,

$$X_{t} = \mu + \sum_{j=1}^{p} \frac{K_{j}}{1 - G_{j}B} u_{t}$$

$$= \mu + \sum_{k=0}^{\infty} \psi_{k} u_{t-k} = \mu + \psi(B) u_{t}$$

où
$$\psi_k = \sum_{j=1}^p K_j G_j^k$$
. Donc

$$E(X_{t-j}u_t) = 0 , \forall j \ge 1 .$$

Pour les processus AR(1) et AR(2), les conditions de stationnarité peuvent s'écrire :

a) AR(1):
$$(1 - \varphi_1 B)X_t = \bar{\mu} + u_t$$

 $|\varphi_1| < 1$

b) AR(2):
$$(1 - \varphi_1 B - \varphi_2 B^2) X_t = \bar{\mu} + u_t$$

$$\varphi_2 + \varphi_1 < 1$$

$$\varphi_2 - \varphi_1 < 1$$

$$-1 < \varphi_2 < 1$$

5.3.3 Moyennes, variances et covariances

Supposons que

a) le processus autorégressif X_t est stationnaire du second ordre avec $\sum_{j=1}^p \varphi_j \neq 1$ et

b)
$$E(X_{t-i}u_t) = 0 , \forall j \ge 1 ,$$

i.e. on suppose que X_t est une solution SL2 de l'équation (5.3.2) telle que $E(X_{t-j}u_t) = 0, \forall j \geq 1.$

Par l'hypothèse de stationnarité,

$$E(X_t) = \mu$$
, $\forall t \Rightarrow \mu = \bar{\mu} + \sum_{j=1}^p \varphi_j \mu \Rightarrow E(X_t) = \mu = \bar{\mu} / \left(1 - \sum_{j=1}^p \varphi_j\right)$.

Pour avoir la stationnarité, il est nécessaire que $\sum_{j=1}^p \varphi_j \neq 1$. Réécrivons maintenant le processus sous la forme

$$\tilde{X}_t = \sum_{j=1}^p \varphi_j \tilde{X}_{t-j} + u_t$$

où $\tilde{X}_t = X_t - \mu$, $E(\tilde{X}_t) = 0$. Alors, pour $k \geq 0$,

$$\tilde{X}_{t+k} = \sum_{j=1}^{p} \varphi_j \tilde{X}_{t+k-j} + u_{t+k}$$
,

$$E(\tilde{X}_{t+k}|\tilde{X}_t) = \sum_{j=1}^{p} \varphi_j E(\tilde{X}_{t+k-j}|\tilde{X}_t) + E(u_{t+k}|\tilde{X}_t),$$

$$\gamma(k) = \sum_{j=1}^{p} \varphi_j \gamma(k-j) + E(u_{t+k} \tilde{X}_t) ,$$

οù

$$E(u_{t+k} \tilde{X}_t) = \sigma^2$$
, si $k = 0$,

$$=0$$
 , si $k \geq 1$.

Donc

$$(5.3.3) \rho(k) = \sum_{j=1}^{p} \varphi_{j} \rho(k-j) , k \ge 1 .$$

On appelle ces formules les « équations de Yule-Walker ». Si on connaît $\rho(0)$, ..., $\rho(p-1)$, on peut calculer aisément $\rho(k)$ pour $k \geq p+1$. On peut aussi écrire les équations de Yule-Walker sous la forme :

$$\varphi(B)\rho(k) = 0 , k \ge 1 ,$$

où $B^j\rho(k)\equiv\rho(k-j)$. Pour obtenir $\rho(1),$... , $\rho(p-1)$ lorsque (p>1), il suffit de résoudre le système d'équations :

$$\rho(1) = \varphi_1 + \varphi_2 \rho(1) + \dots + \varphi_p \rho(p-1)
\rho(2) = \varphi_1 \rho(1) + \varphi_2 + \dots + \varphi_p \rho(p-2)
\vdots
\rho(p-1) = \varphi_1 \rho(p-2) + \varphi_2 \rho(p-3) + \dots + \varphi_p \rho(1)$$

où on se sert de l'identité $\rho(-j) = \rho(j)$. Les autres autocorrélations sont ensuite obtenues par la formule de récurrence

$$\rho(k) = \sum_{j=1}^{p} \varphi_j \rho(k-j) , k \ge p .$$

Pour calculer $\gamma(0) = Var(X_t)$, on résout l'équation

$$\gamma(0) = \sum_{j=1}^{p} \varphi_j \gamma(-j) + E(u_t \ \hat{X}_t)$$

$$= \sum_{j=1}^{p} \varphi_j \gamma(j) + \sigma^2,$$

d'où, comme $\gamma(j) = \rho(j)\gamma(0)$,

$$\gamma(0) \left[1 - \sum_{j=1}^{p} \varphi_j \rho(j) \right] = \sigma^2$$

et

$$\gamma(0) = \frac{\sigma^2}{1 - \sum_{j=1}^p \varphi_j \rho(j)} .$$

Cas spéciaux

(1) AR(1):
$$\tilde{X}_t = \varphi_1 \ \tilde{X}_{t-1} + u_t$$

$$\rho(1) = \varphi_1$$

$$\rho(k) = \varphi_1 \rho(k-1) \ , \ k \ge 1$$

$$\rho(2) = \varphi_1 \rho(1) = \varphi_1^2$$

$$\rho(k) = \varphi_1^k \ , \ k \ge 1$$

$$\gamma(0) = Var(X_t) = \frac{\sigma^2}{1-\varphi_1^2} \ .$$

Il n'y a pas de contrainte sur $\rho(1)$, mais il y en a sur $\rho(k)$ pour $k \geq 2$.

(2) AR(2):
$$X_t = \varphi_1 \tilde{X}_{t-1} + \varphi_2 \tilde{X}_{t-2} + u_t$$

$$\rho(1) = \varphi_1 + \varphi_2 \rho(1)$$

$$\Rightarrow \rho(1) = \frac{\varphi_1}{1 - \varphi_2}$$

$$\rho(2) = \frac{\varphi_1^2}{1 - \varphi_2} + \varphi_2 = \frac{\varphi_1^2 + \varphi_2 (1 - \varphi_2)}{1 - \varphi_2}$$

$$\rho(k) = \varphi_1 \rho(k - 1) + \varphi_2 \rho(k - 2) , k \ge 2 .$$

Contraintes sur $\rho(1)$ et $\rho(2)$ impliquées par la stationnarité :

$$|\rho(1)|<1\ , \ |\rho(2)|<1$$

$$\rho(1)^2<\tfrac{1}{2}[1+\rho(2)] \qquad \qquad \text{[voir Box et Jenkins (1976, p. 61)]}.$$

Forme explicite des autocorrélations

Les autocorrélations d'un processus AR(p) satisfont l'équation

$$(5.3.3) \ \rho(k) = \sum_{j=1}^p \varphi_j \rho(k-j) \ , \ k \ge 1 \ ,$$
 où $\rho(0) = 1$ et $\rho(-k) = \rho(k)$, ou encore
$$\varphi(B)\rho(k) = 0 \ , \ k \ge 1 \ .$$

Les autocorrélations peuvent être obtenues en résolvant l'équation de récurrence homogène (5.3.3).

Le polynôme $\varphi(z)$ possède m racines distinctes et non nulles z_1^*,\ldots,z_m^* (où $1\leq m\leq p$) de multiplicités p_1,\ldots,p_m (où $\sum\limits_{j=1}^m p_j=p$), de sorte que $\varphi(z)$ peut s'écrire

$$\varphi(z) = (1 - G_1 z)^{p_1} (1 - G_2 z)^{p_2} \dots (1 - G_m z)^{p_m}$$

où $G_j = 1/z_j^*$, j = 1, ..., m. Les racines sont des nombres réels ou complexes. Si z_j^* est une racine complexe (non réelle), son conjugué \bar{z}_j^* est aussi une racine. Par conséquent, les solutions de l'équation (5.3.3) ont la forme générale

(5.3.4)
$$\rho(k) = \sum_{j=1}^{m} \left(\sum_{\ell=1}^{p_j-1} A_{j\ell} k^{\ell} \right) G_j^k, k \ge 1,$$

où les $A_{j\ell}$ sont des constantes (possiblement complexes) qu'on peut déterminer à partir des valeurs de p autocorrélations. On peut trouver aisément $\rho(1), \ldots, \rho(p)$ à l'aide des équations de Yule-Walker.

Si on écrit $G_j = r_j e^{i\theta_j}$, où $i = \sqrt{-1}$ et r_j de même que θ_j sont des nombres réels $(r_j > 0)$, on voit que

$$\rho(k) = \sum_{j=1}^{m} \left(\sum_{\ell=0}^{p_{j}-1} A_{j\ell} k^{\ell} \right) r_{j}^{k} e^{i\theta_{j}k}$$

$$= \sum_{j=1}^{m} \left(\sum_{\ell=0}^{p_{j}-1} A_{j\ell} k^{\ell} \right) r_{j}^{k} [\cos(\theta_{j}k) + i \sin(\theta_{j}k)]$$

$$= \sum_{j=1}^{m} \left(\sum_{\ell=0}^{p_{j}-1} A_{j\ell} k^{\ell} \right) r_{j}^{k} \cos(\theta_{j}k) .$$

Par la condition de stationnarité, $0 < |G_j| = r_j < 1$ de sorte que $\rho(k) \to 0$ lorsque $k \to \infty$. Les autocorrélations diminuent de façon exponentielle possiblement avec des oscillations.

5.3.4 Représentation $MA(\infty)$ d'un processus AR(p)

On a vu que le processus SL2

$$\varphi(B)\tilde{X}_t = u_t$$

où $\varphi(B) = 1 - \varphi_1 B - \dots - \varphi_p B^p$, peut s'écrire

$$\tilde{X}_t = \psi(B)u_t$$

οù

$$\psi(B) = \varphi(B)^{-1} = \sum_{j=0}^{\infty} \psi_j B^j$$
.

Pour calculer les coefficients $\psi_j,$ il suffit de noter que

$$\varphi(B)\psi(B) = 1$$
.

En définissant $\psi_j = 0$ pour j < 0, on voit que

$$\left(1 - \sum_{k=1}^{p} \varphi_k B^k\right) \left(\sum_{j=-\infty}^{\infty} \psi_j B^j\right) = \sum_{j=-\infty}^{\infty} \psi_j \left(B^j - \sum_{k=1}^{p} \varphi_k B^{j+k}\right)$$
$$= \sum_{j=-\infty}^{\infty} \left(\psi_j - \sum_{k=1}^{p} \varphi_k \psi_{j-k}\right) B^j = \sum_{j=-\infty}^{\infty} \tilde{\psi}_j B^j = 1.$$

Donc $\tilde{\psi}_j = 1$, si j = 0, et $\tilde{\psi}_j = 0$, si $j \neq 0$. Par conséquent,

$$\varphi(B)\psi_j = \psi_j - \sum_{k=1}^p \varphi_k \psi_{j-k} = 1 \text{ , si } j = 0$$
$$= 0 \text{ , si } j \neq 0 \text{ ,}$$

où $B^k \psi_j \equiv \psi_{j-k}$. Comme $\psi_j = 0$ pour j < 0 , on voit que

$$\psi_0 = 1$$

$$\psi_j = \sum_{k=1}^p \varphi_k \psi_{j-k} , j \ge 1 .$$

De façon plus explicite,

$$\psi_{0} = 1$$

$$\psi_{1} = \varphi_{1}\psi_{0} = \varphi_{1}$$

$$\psi_{2} = \varphi_{1}\psi_{1} + \varphi_{2}\psi_{0} = \varphi_{1}^{2} + \varphi_{2}$$

$$\psi_{3} = \varphi_{1}\psi_{2} + \varphi_{2}\psi_{1} + \varphi_{3} = \varphi_{1}^{3} + 2 \varphi_{2}\varphi_{1} + \varphi_{3}$$

$$\vdots$$

$$\psi_{p} = \sum_{k=1}^{p} \varphi_{k}\psi_{j-k}$$

$$\psi_j = \sum_{k=1}^p \varphi_k \psi_{j-k} \ , \ j \ge p+1 \ .$$

Sous la condition de stationnarité [racines de $\varphi(z) = 0$ à l'extérieur du cercle unité], les coefficients ψ_j décroissent de façon exponentielle lorsque $j \to \infty$, possiblement avec des oscillations.

Étant donné la représentation

$$\tilde{X}_t = \psi(B)u_t = \sum_{j=0}^{\infty} \psi_j u_{t-j}$$

on peut aisément calculer les autocovariances et autocorrélations de X_t :

$$Cov(X_{t}, X_{t+k}) = \sigma^{2} \sum_{j=0}^{\infty} \psi_{j} \psi_{j+|k|} ,$$

$$Corr(X_{t}, X_{t+k}) = \sum_{j=0}^{\infty} \psi_{j} \psi_{j+|k|} / \sum_{j=0}^{\infty} \psi_{j}^{2} .$$

Toutefois, un inconvénient de cette méthode vient du fait qu'on doit calculer les limites de séries.

5.3.5 Autocorrélations partielles

Les équations de Yule-Walker permettent de déterminer les autocorrélations à partir des coefficients $\varphi_1, \ldots, \varphi_p$. De la même façon, on peut déterminer $\varphi_1, \ldots, \varphi_p$ à partir des autocorrélations

$$\rho(k) = \sum_{j=1}^{p} \varphi_j \rho(k-j), k = 1, 2, 3, ...$$

En tenant compte du fait que $\rho(0) = 1$ et $\rho(-k) = \rho(k)$, on trouve pour un processus AR(p):

$$\begin{bmatrix} 1 & \rho(1) & \rho(2) & \dots & \rho(p-1) \\ \rho(1) & 1 & \rho(1) & \dots & \rho(p-2) \\ \vdots & \vdots & \vdots & & \vdots \\ \rho(p-1) & \rho(p-2) & \rho(p-3) & \dots & 1 \end{bmatrix} \begin{bmatrix} \varphi_1 \\ \varphi_2 \\ \vdots \\ \varphi_p \end{bmatrix} = \begin{bmatrix} \rho(1) \\ \rho(2) \\ \vdots \\ \rho(p) \end{bmatrix}$$

ou, dans une notation plus compacte,

$$P_p \; \bar{\phi}_p = \bar{\rho}_p \; .$$

Il s'ensuit que

$$\bar{\phi}_p = P_p^{-1} \bar{\rho}_p \ .$$

Considérons la suite d'équations

$$P_k \bar{\phi}_k = \bar{\rho}_k \ , \ k = 1, \, 2, \, 3, \, \dots$$

où $\bar{\phi}_k = (\varphi_{k1}, \, \varphi_{k2}, \, \dots \, , \, \varphi_{kk})'$, et résolvons pour $\bar{\phi}_k$:

$$\bar{\phi}_k = P_k^{-1} \bar{\rho}_k \ .$$

[Si $\sigma^2 > 0$, on peut montrer que P_k^{-1} existe, $\forall k \geq 1$]. Pour un processus AR(p), on voit aisément

$$\varphi_{kk} = 0$$
, $\forall k \ge p + 1$.

On appelle φ_{kk} l'autocorrélation partielle de délai k.

Valeurs particulières de φ_{kk} [en prenant $\rho_k = \rho(k)$]:

$$\varphi_{11} = \rho_{1} ,$$

$$\varphi_{22} = \frac{\begin{vmatrix} 1 & \rho_{1} \\ \rho_{1} & \rho_{2} \\ 1 & \rho_{1} \end{vmatrix}}{\begin{vmatrix} 1 & \rho_{1} \\ \rho_{1} & 1 \end{vmatrix}} = \frac{\rho_{2} - \rho_{1}^{2}}{1 - \rho_{1}^{2}} ,$$

$$\varphi_{33} = \frac{\begin{vmatrix} 1 & \rho_{1} & \rho_{1} \\ \rho_{1} & 1 & \rho_{2} \\ \rho_{2} & \rho_{1} & \rho_{3} \\ \rho_{2} & \rho_{1} & 1 \end{vmatrix}}{\begin{vmatrix} 1 & \rho_{1} & \rho_{2} \\ \rho_{2} & \rho_{1} & 1 \end{vmatrix}} .$$

<u>Formule de récurrence de Durbin-Levinson</u> : On peut calculer les autocorrélations partielles au moyen des formules suivantes :

$$\begin{split} \varphi_{k+1,\;k+1} &= \frac{\rho(k+1) - \sum\limits_{j=1}^k \varphi_{kj} \rho(k+1-j)}{1 - \sum\limits_{j=1}^k \varphi_{kj} \rho(j)} \; , \\ \varphi_{k+1,\;j} &= \varphi_{kj} - \varphi_{k+1,\;k+1} \varphi_{k,\;k-j+1} \; , \; j=1,\; 2,\; \dots \; , \; k \; . \end{split}$$

Étant donné $\rho(1)$, ..., $\rho(k+1)$ et φ_{k1} , ..., φ_{kk} , on peut calculer $\varphi_{k+1,j}$, $j=1,\ldots,k+1$. Voir Durbin (1960) et Box et Jenkins (1976, p. 82-84).

5.4 Processus mixtes

Considérons un processus $\{X_t : t \in \mathbb{Z}\}$ qui satisfait l'équation

$$(5.4.1) X_t = \bar{\mu} + \sum_{j=1}^p \varphi_j X_{t-j} + u_t - \sum_{j=1}^q \theta_j u$$

où $\{u_t: t \in \mathbb{Z}\}\ \sim BB(0, \sigma^2)$. En notation opérationnelle

$$\varphi(B)X_t = \bar{\mu} + \theta(B)u_t .$$

5.4.1 Conditions de stationnarité

Si le polynôme $\varphi(z) = 1 - \varphi_1 z - \dots - \varphi_p z^p$ a toutes ses racines à l'extérieur du cercle unité, l'équation (5.4.1) possède une et une seule solution SL2 qui peut s'écrire

$$X_t = \mu + \frac{\theta(B)}{\varphi(B)} u_t = \mu + \sum_{j=0}^{\infty} \psi_j u_{t-j} ,$$

οù

$$\mu = \bar{\mu}/\varphi(B) = \bar{\mu}/(1 - \sum_{j=1}^{p} \varphi_j) ,$$

$$\frac{\theta(B)}{\varphi(B)} \equiv \psi(B) = \sum_{j=0}^{\infty} \psi_j B^j .$$

Les coefficients ψ_j sont obtenus en résolvant l'équation

$$\varphi(B)\psi(B) = \theta(B)$$
.

Dans ce cas, on a aussi

$$E(X_{t-j}u_t) = 0 , \forall j \ge 1 .$$

Le calcul des coefficients ψ_j se fait de la façon suivante (en définissant $\theta_0 = -1$) :

$$\left(1 - \sum_{k=1}^{p} \varphi_k B^k\right) \left(\sum_{j=0}^{\infty} \psi_j B^j\right) = 1 - \sum_{j=1}^{q} \theta_j B^j = -\sum_{j=1}^{q} \theta_j B^j$$

d'où

$$\varphi(B)\psi_j = -\theta_j , j = 0, 1, \dots, q$$

= 0 , $j \ge q + 1,$

où $\psi_j = 0$, pour j < 0. Par conséquent,

$$\psi_{j} = \sum_{k=1}^{p} \varphi_{k} \psi_{j-k} - \theta_{j} , j = 0, 1, \dots, q$$
$$= \sum_{k=1}^{p} \varphi_{k} \psi_{j-k} , j \geq q+1,$$

et

$$\begin{split} & \psi_0 = 1 \\ & \psi_1 = \varphi_1 \psi_0 - \theta_1 = \varphi_1 - \theta_1 \\ & \psi_2 = \varphi_1 \psi_1 + \varphi_2 \psi_0 - \theta_2 = \varphi_1 \psi_1 + \varphi_2 - \theta_2 = \varphi_1^2 - \varphi_1 \theta_1 + \varphi_2 - \theta_2 \\ & \vdots \\ & \psi_j = \sum_{k=1}^p \varphi_k \psi_{j-k} \ , \ j \geq q+1 \ . \end{split}$$

Les coefficients ψ_j se comportent comme les autocorrélations d'un processus AR(p) sauf pour les coefficients initiaux ψ_1, \ldots, ψ_q .

5.4.2 <u>Autocovariances et autocorrélations</u>

Supposons que

a) le processus X_t est stationnaire du second ordre avec $\sum_{j=1}^p \varphi_j \neq 1$;

b)
$$E(X_{t-j}u_t) = 0 , \forall j \ge 1 .$$

Par l'hypothèse de stationnarité,

$$E(X_t) = \mu , \forall t,$$

d'où

$$\mu = \bar{\mu} + \sum_{j=1}^{p} \varphi_j \mu$$

et

$$E(X_t) = \mu = \bar{\mu} / \left(1 - \sum_{j=1}^p \varphi_j\right).$$

La moyenne est la même que dans le cas d'un processus AR(p) pur. La partie MA(q) n'a pas d'effet sur la moyenne. Réécrivons maintenant le processus sous la forme

$$\tilde{X}_t = \sum_{j=1}^p \varphi_j \tilde{X}_{t-j} + u_t - \sum_{j=1}^q \theta_j u_{t-j}$$

où $\tilde{X}_t = X_t - \mu$. Par conséquent,

$$\tilde{X}_{t+k} = \sum_{j=1}^{p} \varphi_j \ \tilde{X}_{t+k-j} + u_{t+k} - \sum_{j=1}^{q} \theta_j u_{t+k-j} ,$$

$$E(\tilde{X}_t \ \tilde{X}_{t+k}) = \sum_{j=1}^{p} \varphi_j E(\tilde{X}_t \ \tilde{X}_{t+k-j}) + E(\tilde{X}_t \ u_{t+k}) - \sum_{j=1}^{q} \theta_j E(\tilde{X}_t \ u_{t+k-j}) ,$$

$$(5.4.2) \quad \gamma(k) = \sum_{j=1}^{p} \varphi_j \gamma(k-j) + \gamma_{xu}(k) - \sum_{j=1}^{q} \theta_j \gamma_{xu}(k-j) ,$$

οù

$$\gamma_{xu}(k) = E(\tilde{X}_t \ u_{t+k}) = 0 \ , \text{ si } k \ge 1 \ ,$$

$$\neq 0 \ , \text{ si } k \le 0 \ ,$$

$$\gamma_{xu}(0) = E(\tilde{X}_t \ u_t) = \sigma^2.$$

Pour $k \ge q + 1$,

(5.4.3)
$$\gamma(k) = \sum_{j=1}^{p} \varphi_j \gamma(k-j)$$
,
(5.4.4) $\rho(k) = \sum_{j=1}^{p} \varphi_j \rho(k-j)$.

La variance est donnée par

$$\gamma(0) = \sum_{j=1}^{p} \varphi_j \gamma(j) + \sigma^2 - \sum_{j=1}^{q} \theta_j \gamma_{xu}(-j)$$

d'où

$$(5.4.5) \gamma(0) = \left[\sigma^2 - \sum_{j=1}^q \theta_j \gamma_{xu}(-j)\right] / \left[1 - \sum_{j=1}^p \varphi_j \rho(j)\right].$$

En notation opérationnelle, les autocovariances satisfont l'équation

$$\varphi(B)\gamma(k)=\theta(B)\gamma_{xu}(k)\ ,\ k\geq 0\ ,$$
 où $\gamma(-k)=\gamma(k)\ ,\ B^j\gamma(k)\equiv\gamma(k-j)$ et $B^j\gamma_{xu}(k)\equiv\gamma_{xu}(k-j)$. En particulier,
$$\varphi(B)\gamma(k)=0\ ,\ k\geq q+1\ ,$$

$$\varphi(B)\rho(k)=0\ ,\ k\geq q+1\ .$$

Pour calculer la suite des autocovariances, on résout les équations (5.4.2) pour k = 0, 1, ..., p, puis on applique l'équation (5.4.3). Les autocorrélations d'un processus ARMA(p, q) se comportent comme celles d'un processus AR(p), sauf que les valeurs initiales sont modifiées.

EXEMPLE: Processus ARMA(1, 1)

$$X_{t} = \bar{\mu} + \varphi_{1} X_{t-1} + u_{t} - \theta_{1} u_{t-1} , |\varphi_{1}| < 1$$

$$\tilde{X}_{t} - \varphi_{1} \ \tilde{X}_{t-1} = u_{t} - \theta_{1} u_{t-1}$$

où
$$\tilde{X}_t = X_t - \mu$$
. On a

$$\gamma(0) = \varphi_1 \gamma(1) + \gamma_{xu}(0) - \theta_1 \gamma_{xu}(-1) ,$$

$$\gamma(1) = \varphi_1 \gamma(0) + \gamma_{xu}(1) - \theta_1 \gamma_{xu}(0)$$

et

$$\gamma_{xu}(1) = 0 ,$$

$$\gamma_{xu}(0) = \sigma^{2} ,$$

$$\gamma_{xu}(-1) = E(\tilde{X}_{t}u_{t-1}) = \varphi_{1}E(\tilde{X}_{t-1}u_{t-1}) + E(u_{t}u_{t-1}) - \theta_{1}E(u_{t-1}^{2})$$

$$= \varphi_{1}\gamma_{xu}(0) - \theta_{1}\sigma^{2} = (\varphi_{1} - \theta_{1})\sigma^{2} .$$

Donc,

$$\gamma(0) = \varphi_1 \gamma(1) + \sigma^2 - \theta_1 (\varphi_1 - \theta_1) \sigma^2$$
$$= \varphi_1 \gamma(1) + [1 - \theta_1 (\varphi_1 - \theta_1)] \sigma^2 ,$$
$$\gamma(1) = \varphi_1 \gamma(0) - \theta_1 \sigma^2$$

$$= \varphi_1 \{ \varphi_1 \gamma(1) + [1 - \theta_1(\varphi_1 - \theta_1)] \sigma^2 \} - \theta_1 \sigma^2 ,$$

$$\gamma(1) = \{ \varphi_1 [1 - \theta_1(\varphi_1 - \theta_1)] - \theta_1 \} \sigma^2 / (1 - \varphi_1^2)$$

$$= \{ \varphi_1 - \theta_1 \varphi_1^2 + \varphi_1 \theta_1^2 - \theta_1 \} \sigma^2 / (1 - \varphi_1^2)$$

$$= (1 - \theta_1 \varphi_1) (\varphi_1 - \theta_1) \sigma^2 / (1 - \varphi_1^2) .$$

De même,

$$\begin{split} \gamma(0) &= \varphi_1 \gamma(1) + [1 - \theta_1(\varphi_1 - \theta_1)] \sigma^2 \\ &= \varphi_1 \frac{(1 - \theta_1 \varphi_1)(\varphi_1 - \theta_1) \sigma^2}{1 - \varphi_1^2} + [1 - \theta_1(\varphi_1 - \theta_1)] \sigma^2 \\ &= \frac{\sigma^2}{1 - \varphi_1^2} \left\{ \varphi_1 (1 - \theta_1 \varphi_1)(\varphi_1 - \theta_1) + (1 - \varphi_1^2)[1 - \theta_1(\varphi_1 - \theta_1)] \right\} \\ &= \frac{\sigma^2}{1 - \varphi_1^2} \left\{ \varphi_1^2 - \theta_1 \varphi_1^3 + \varphi_1^2 \theta_1^2 - \varphi_1 \theta_1 + 1 - \varphi_1^2 - \theta_1 \varphi_1 + \theta_1 \varphi_1^3 + \theta_1^2 - \varphi_1^2 \theta_1^2 \right\} \\ &= \frac{\sigma^2}{1 - \varphi_1^2} \left\{ 1 - 2 \varphi_1 \theta_1 + \theta_1^2 \right\} . \end{split}$$

Donc,

$$\gamma(0) = (1 - 2 \varphi_1 \theta_1 + \theta_1^2) \sigma^2 / (1 - \varphi_1^2) ,$$

$$\gamma(1) = (1 - \theta_1 \varphi_1) (\varphi_1 - \theta_1) \sigma^2 / (1 - \varphi_1^2) ,$$

$$\gamma(k) = \varphi_1 \gamma(k - 1) , k \ge 2 .$$

6. INVERSIBILITÉ

- 6.1 Tout processus AR(p) stationnaire du second ordre peut s'écrire sous la forme $MA(\infty)$. De même, tout processus ARMA(p, q) stationnaire du second ordre peut aussi s'écrire sous la forme $MA(\infty)$. Par analogie, on peut aussi poser la question : un processus MA(q) ou ARMA(p, q) peut-il s'écrire sous une forme autorégressive?
- 6.2 Considérons le processus MA(1):

$$X_t = u_t - \theta_1 u_{t-1}$$
, $t \in \mathbb{Z}$

où $\{u_t: t\in \mathbb{Z}\}\ \sim BB(0,\,\sigma^2)$ et $\sigma^2>0$. On voit aisément que

$$u_t = X_t + \theta_1 u_{t-1}$$

$$= X_t + \theta_1(X_{t-1} + \theta_1 u_{t-2})$$

$$= X_t + \theta_1 X_{t-1} + \theta_1^2 u_{t-2}$$

$$= \sum_{j=0}^n \theta_1^j X_{t-j} + \theta_1^{n+1} u_{t-n-1}$$

et

$$E\left[\left(\sum_{j=0}^{n} \theta_{1}^{j} X_{t-j} - u_{t}\right)^{2}\right] = E\left[\left(\theta_{1}^{n+1} u_{t-n-1}\right)^{2}\right] = \theta_{1}^{2(n+1)} \sigma^{2} \underset{n \to \infty}{\to} 0,$$

pourvu que $|\theta_1| < 1$. Par conséquent, la série $\sum_{j=0}^n \theta_1^j X_{t-j}$ converge en m.q. vers u_t si $|\theta_1| < 1$. En d'autres termes, lorsque $|\theta_1| < 1$, on peut écrire

$$\sum_{j=0}^{\infty} \theta_1^j X_{t-j} = u_t , t \in \mathbb{Z} ,$$

ou encore

$$(1-\theta_1 B)^{-1} X_t = u_t$$
, $t \in \mathbb{Z}$,

où $(1 - \theta_1 B)^{-1} = \sum_{j=0}^{\infty} \theta_1^j B^j$. La condition $|\theta_1| < 1$ est équivalente à ce que toutes les racines de l'équation $1 - \theta_1 z = 0$ soient à l'extérieur du cercle unité. Si $\theta_1 = 1$,

$$X_t = u_t - u_{t-1}$$

et la série

$$(1 - \theta_1 B)^{-1} X_t = \sum_{j=0}^{\infty} \theta_1^j X_{t-j} = \sum_{j=0}^{\infty} X_{t-j}$$

ne converge pas, car $E(X_{t-j}^2)$ ne converge pas vers 0 lors $j \to \infty$. De même, si $\theta_1 = -1$,

$$X_t = u_t + u_{t-1}$$

et la série

$$(1 - \theta_1 B)^{-1} X_t = \sum_{j=0}^{\infty} (-1)^j X_{t-j}$$

ne converge pas non plus. Ce sont des processus non inversibles.

6.3 THÉORÈME (Condition d'inversibilité d'un processus MA) : Soit $\{X_t : t \in \mathbb{Z}\}$ un processus stationnaire du second ordre tel que

$$X_t = \mu + \theta(B)u_t$$

où $\theta(B) = 1 - \theta_1 B - \dots - \theta_q B^q$. Alors le processus X_t satisfait une équation de la forme

$$(6.3.1) \sum_{j=0}^{\infty} \bar{\phi}_j X_{t-j} = \bar{\mu} + u_t$$

ssi les racines du polynôme $\theta(z)$ sont à l'extérieur du cercle unité. De plus, lorsque la représentation (6.3.1) existe, on a :

$$\bar{\phi}(B) = \theta(B)^{-1}, \ \bar{\mu} = \theta(B)^{-1}\mu = \mu / \left(1 - \sum_{j=1}^{q} \theta_j\right).$$

6.4 COROLLAIRE (Inversibilité d'un processus ARMA) : Soit $\{X_t : t \in \mathbb{Z}\}$ un processus ARMA stationnaire du second ordre satisfaisant l'équation

$$\varphi(B)X_t = \bar{\mu} + \theta(B)u_t$$

où $\varphi(B) = 1 - \varphi_1 B - \dots - \varphi_p B^p$ et $\theta(B) = 1 - \theta_1 B - \dots - \theta_q B^q$. Alors le processus X_t satisfait une équation de la forme

$$(6.3.2) \sum_{j=0}^{\infty} \bar{\phi}_j X_{t-j} = \overline{\mu} + u_t$$

ssi les racines du polynôme $\theta(z)$ sont à l'extérieur du cercle unité. De plus, lorsque la représentation (6.3.2) existe, on a :

$$\bar{\phi}(B) = \theta(B)^{-1} \varphi(B), \ \bar{\bar{\mu}} = \theta(B)^{-1} \bar{\mu} = \mu / \left(1 - \sum_{j=1}^{q} \theta_j\right).$$

7. REPRÉSENTATION DE WOLD

7.1 Nous avons déjà vu que tous les processus ARMA stationnaires du second ordre peuvent s'écrire sous la forme $MA(\infty)$ causal. À peu de choses près, cette propriété se généralise à tous les processus stationnaires du second ordre.

7.2 THÉORÈME (Wold) : Soit $\{X_t, t \in \mathbb{Z}\}$ un processus stationnaire du second ordre tel que $E(X_t) = \mu$. Alors X_t peut s'écrire sous la forme

$$(7.2.1) X_t = \mu + \sum_{j=0}^{\infty} \psi_j u_{t-j} + v_t$$

où $\{u_t : t \in \mathbb{Z}\}\ \sim BB(0, \sigma^2)$, $\sum_{j=0}^{\infty} \psi_j^2 < \infty$, $E(u_t X_{t-j}) = 0$, $\forall j \ge 1$, et $\{v_t : t \in \mathbb{Z}\}$

est un processus déterministe tel que $E(v_t) = 0$ et $E(u_s v_t) = 0$, $\forall s, t$. De plus, si $\sigma^2 > 0$, les suites $\{\psi_i\}$ et $\{u_t\}$ sont uniques, et

$$u_t = \tilde{X}_t - P(\tilde{X}_t | \tilde{X}_{t-1}, \, \tilde{X}_{t-2}, \, \dots)$$

où
$$\tilde{X}_t = X_t - \mu$$
.

PREUVE: Voir Anderson (1971, Section 7.6.3, pp. 420-421).

7.3 Si $E(u_t^2) > 0$ dans la représentation de Wold, on dit que le processus X_t est régulier. On appelle v_t la partie déterministe du processus et $\sum_{j=0}^{\infty} \psi_j u_{t-j}$ sa partie indéterministe. Lorsque $v_t = 0$, $\forall t$, on dit que le processus X_t est strictement indéterministe.

7.4 COROLLAIRE (Théorème de Wold rétrospectif) : Soit $\{X_t : t \in \mathbb{Z}\}$ un processus stationnaire du second ordre tel que $E(X_t) = \mu$. Alors X_t peut s'écrire sous la forme

$$(7.4.1) X_t = \mu + \sum_{j=0}^{\infty} \bar{\psi}_j \bar{u}_{t+j} + \bar{v}_t$$

où $\{\bar{u}_t : t \in \mathbb{Z}\}\ \sim BB(0, \bar{\sigma}^2)\ , \sum_{j=0}^{\infty} \bar{\psi}_j^2 < \infty\ , \ E(\bar{u}_t X_{t+j}) = 0\ , \ \forall j \ge 1, \ \text{et}\ \{\bar{v}_t : t \in \mathbb{Z}\}$

est un processus déterministe (par rapport à \bar{v}_{t+1} , \bar{v}_{t+2} , ...) tel que $E(\bar{v}_t) = 0$ et $E(\bar{u}_s\bar{v}_t) = 0$, $\forall s$, t. De plus, si $\bar{\sigma}^2 > 0$, les suites $\{\bar{\psi}_j\}$ et $\{\bar{u}_t\}$ sont uniques, et

$$\bar{u}_t = \tilde{X}_t - P(\tilde{X}_t | \tilde{X}_{t+1}, \, \tilde{X}_{t+2}, \, \dots \,)$$

où
$$\tilde{X}_t = X_t - \mu$$
.

PREUVE : Il suffit d'appliquer le théorème de Wold au processus $Y_t \equiv X_{-t}$ qui est aussi stationnaire du second ordre. Q.E.D.

8. FONCTIONS GÉNÉRATRICES ET DENSITÉ SPECTRALE

- 8.1 Les fonctions génératrices constituent une technique souvent commode pour représenter ou trouver la structure d'autocovariance d'un processus stationnaire.
- 8.2 DÉFINITION (Fonction génératrice) : Soit $(a_k : k = 0, 1, 2, ...)$ et $(b_k : k = ..., -1, 0, 1, ...)$ deux suites de nombres complexes. Soit $D(a) \subseteq \mathbf{C}$ l'ensemble des points $z \in \mathbf{C}$ où la série $\sum_{k=0}^{\infty} a_k z^k$ converge, et soit $D(b) \subseteq \mathbf{C}$ l'ensemble des points z où la série $\sum_{k=-\infty}^{\infty} b_k z^k$ converge. Alors on appelle les fonctions

$$a(z) = \sum_{k=0}^{\infty} a_k z^k$$
, $z \in D(a)$

et

$$b(z) = \sum_{k=-\infty}^{\infty} b_k z^k$$
, $z \in D(b)$

les fonctions génératrices des suites a_k et b_k respectivement.

8.3 PROPOSITION (Anneau de convergence d'une fonction génératrice) : Soit $(a_k : k \in \mathbb{Z})$ une suite de nombres complexes. Alors la fonction génératrice

$$a(z) = \sum_{k=-\infty}^{\infty} a_k z^k$$

converge pour $R_1 < |z| < R_2$ où

$$R_1 = \limsup_{k \to \infty} |a_{-k}|^{1/k} ,$$

$$R_2 = 1 / \left[\limsup_{k \to \infty} |a_k|^{1/k} \right] ,$$

et diverge pour $|z| < R_1$ ou $|z| > R_2$. Si $R_2 < R_1$, a(z) ne converge nulle part et, si $R_1 = R_2$, a(z) diverge partout sauf, possiblement, pour $|z| = R_1 = R_2$. De plus, lorsque $R_1 < R_2$, les coefficients a_k sont définis de façon unique et

$$a_k = \frac{1}{2\pi i} \int_C \frac{a(z) dz}{(z-z_0)^{k+1}}, k = 0, \pm 1, \pm 2, \dots$$

où
$$C = \{z \in \mathbf{C} : |z - z_0| = R\}$$
 et $R_1 < R < R_2$.

- 8.4 PROPOSITION (Somme et produit de fonctions génératrices) : Soient $(a_k : k \in \mathbb{Z})$ et $(b_k \in \mathbb{Z})$ deux suites de nombres complexes telles que les fonctions génératrices a(z) et b(z) convergent pour $R_1 < |z| < R_2$, où $0 \le R_1 < R_2 \le \infty$. Alors,
- (1) la fonction génératrice de la somme $c_k = a_k + b_k$ est c(z) = a(z) + b(z);
- (2) si la suite produit

$$d_k = \sum_{j=-\infty}^{\infty} a_j b_{k-j}$$

converge pour tout k, la fonction génératrice de la suite d_k est

$$d(z) = a(z)b(z) .$$

De plus, les séries c(z) et d(z) convergent pour $R_1 < |z| < R_2$.

8.5 Nous allons nous intéresser aux fonctions génératrices des autocovariances γ_k et des autocorrélations ρ_k d'un processus X_t stationnaire du second ordre :

$$\gamma_x(z) = \sum_{k=-\infty}^{\infty} \gamma_k z^k ,$$

$$\rho_x(z) = \sum_{k=-\infty}^{\infty} \rho_k z^k = \gamma_x(z)/\gamma_0 .$$

On voit immédiatement que les fonctions génératrices associées à un bruit blanc $\{u_t: t \in \mathbb{Z}\} \sim BB(0, \sigma^2)$ sont constantes :

$$\gamma_u(z) = \sigma^2$$
, $\rho_u(z) = 1$.

- 8.6 PROPOSITION (Convergence de la fonction génératrice des autocovariances) : Soient $\gamma_k, k \in \mathbb{Z}$, les autocovariances d'un processus stationnaire du second ordre X_t , et $\rho_k, k \in \mathbb{Z}$, les autocorrélations correspondantes.
 - (1) Si $R \equiv \limsup_{k \to \infty} |\rho_k|^{1/k} < 1$, les fonctions génératrices $\gamma_x(z)$ et $\rho_x(z)$ convergent pour R < |z| < 1/R.
 - (2) Si R=1, les fonctions $\gamma_x(z)$ et $\rho_x(z)$ divergent partout sauf, possiblement, sur le cercle |z|=1.

- (3) Si $\sum_{k=0}^{\infty} |\rho_k| < \infty$, les fonctions $\gamma_x(z)$ et $\rho_x(z)$ convergent absolument et uniformément sur le cercle |z| = 1.
- 8.7 PROPOSITION (Unicité) : Soient γ_k et ρ_k , $k \in \mathbb{Z}$, des fonctions d'autocovariance et d'autocorrélation telles que

$$\gamma(z) = \sum_{k=-\infty}^{\infty} \gamma_k z^k = \sum_{k=-\infty}^{\infty} \gamma'_k z^k ,$$

$$\rho(z) = \sum_{k=-\infty}^{\infty} \rho_k z^k = \sum_{k=-\infty}^{\infty} \rho'_k z^k$$

où les séries considérées convergent pour R < |z| < 1/R, où $R \ge 0$. Alors $\gamma_k = \gamma_k'$ et $\rho_k = \rho_k'$ pour tout $k \in \mathbb{Z}$.

8.8 PROPOSITION (Fonction génératrice des autocovariances d'un processus $MA(\infty)$) : Soit $\{X_t : t \in \mathbb{Z}\}$ un processus stationnaire du second ordre tel que

$$X_t = \sum_{j=-\infty}^{\infty} \psi_j u_{t-j}$$

où $\{u_t: t \in \mathbb{Z}\} \sim BB(0, \sigma^2)$. Si les séries

$$\psi(z) = \sum_{j=-\infty}^{\infty} \psi_j z^j$$

et $\psi(z^{-1})$ convergent absolument, alors

$$\gamma_x(z) = \sigma^2 \psi(z) \psi(z^{-1}) .$$

8.9 COROLLAIRE (Fonction génératrice des autocovariances d'un processus ARMA) : Soit $\{X_t:t\in\mathbb{Z}\}$ un processus ARMA(p,q) stationnaire du second ordre et causal, tel que

$$\varphi(B)X_t = \bar{\mu} + \theta(B)u_t$$

où $\{u_t: t \in \mathbb{Z}\} \sim BB(0,\sigma^2), \, \varphi(z) = 1 - \varphi_1 z - \ldots - \varphi_p z^p \text{ et } \theta(z) = 1 - \theta_1 z - \ldots - \theta_q z^q$. Alors la fonction génératrice des autocovariances de X_t est

$$\gamma_x(z) = \sigma^2 \frac{\theta(z) \theta(z^{-1})}{\varphi(z) \varphi(z^{-1})}$$

pour R < |z| < 1/R, où

$$0 < R = \max\{|G_1|, |G_2|, \dots, |G_p|\} < 1$$

et $G_1^{-1}, G_2^{-1}, ..., G_p^{-1}$ sont les racines du polynôme $\varphi(z)$.

8.10 PROPOSITION (Fonction génératrice des autocovariances d'un processus filtré) : Soit $\{X_t : t \in \mathbb{Z}\}$ un processus stationnaire du second ordre et

$$Y_t = \sum_{j=-\infty}^{\infty} c_j X_{t-j} , t \in \mathbb{Z} ,$$

où $(c_j:j\in\mathbb{Z})$ est une suite de constantes réelles telles que $\sum_{j=-\infty}^{\infty}|c_j|<\infty$. Si les séries $\gamma_x(z)$ et $c(z)=\sum_{j=-\infty}^{\infty}c_jz^j$ convergent absolument, alors

$$\gamma_y(z) = c(z)c(z^{-1})\gamma_x(z) .$$

8.11 DÉFINITION (Densité spectrale) : Soit X_t un processus stationnaire du second ordre tel que la fonction génératrice des autocovariances $\gamma_x(z)$ converge pour |z|=1. On appelle densité spectrale du processus X_t la fonction

$$f_x(\omega) = \frac{1}{2\pi} \left[\gamma_0 + 2 \sum_{k=1}^{\infty} \gamma_k \cos(\omega k) \right]$$
$$= \frac{\gamma_0}{2\pi} + \frac{1}{\pi} \sum_{k=1}^{\infty} \gamma_k \cos(\omega k)$$

où les coefficients γ_k sont les autocovariances du processus X_t . La fonction $f_x(\omega)$ est définie pour toutes les valeurs de ω telles que la série $\sum_{k=1}^{\infty} \gamma_k \cos(\omega k)$ converge.

REMARQUE : Si la série $\sum_{k=1}^{\infty} \gamma_k \cos(\omega k)$ converge, on voit immédiatement que $\gamma_x(e^{-i\omega})$ converge et

$$f_x(\omega) = \frac{1}{2\pi} \gamma_x(e^{-i\omega}) = \frac{1}{2\pi} \sum_{k=-\infty}^{\infty} \gamma_k e^{-i\omega k}$$
 où $i = \sqrt{-1}$.

8.12 PROPOSITION (Convergence et propriétés de la densité spectrale) : Soit γ_k , $k \in \mathbb{Z}$, une fonction d'autocovariance telle que $\sum_{k=0}^{\infty} |\gamma_k| < \infty$. Alors

(1) la série

$$f_x(\omega) = \frac{\gamma_0}{2\pi} + \frac{1}{\pi} \sum_{k=1}^{\infty} \gamma_k \cos(\omega k)$$

converge absolument et uniformément en ω ;

(2) la fonction $f_x(\omega)$ est continue;

(3)
$$f_x(\omega + 2\pi) = f_x(\omega)$$
 et $f_x(-\omega) = f_x(\omega)$, $\forall \omega$;

(4)
$$\gamma_k = \int_{-\pi}^{\pi} f_x(\omega) \cos(\omega k) d\omega, \forall k$$
;

- (5) $f_x(\omega) \ge 0$;
- (6) $\gamma_0 = \int_{-\pi}^{\pi} f_x(\omega) d\omega$.

8.13 PROPOSITION (Densités spectrales de processus particuliers) : Soit $\{X_t : t \in \mathbb{Z}\}$ un processus stationnaire du second ordre dont la fonction d'autocovariance est $\gamma_k, k \in \mathbb{Z}$.

(1) Si
$$X_t = \mu + \sum_{j=-\infty}^{\infty} \psi_j u_{t-j}$$
 où $\{u_t : t \in \mathbb{Z}\} \sim BB(0, \sigma^2)$ et $\sum_{j=-\infty}^{\infty} |\psi_j| < \infty$, alors

$$f_x(\omega) = \frac{\sigma^2}{2\pi} \psi(e^{i\omega}) \psi(e^{-i\omega}) = \frac{\sigma^2}{2\pi} |\psi(e^{i\omega})|^2.$$

(2) Si
$$\varphi(B)X_t = \bar{\mu} + \theta(B)u_t$$

où
$$\varphi(B) = 1 - \varphi_1 B - \dots - \varphi_p B^p$$
, $\theta(B) = 1 - \theta_1 B - \dots - \theta_q B^q$ et $\{u_t : t \in \mathbb{Z}\} \sim BB(0, \sigma^2)$, alors

$$f_x(\omega) = rac{\sigma^2}{2\pi} \left| rac{ heta(e^{i\omega})}{arphi(e^{i\omega})}
ight|^2$$

(3) Si $Y_t = \sum_{j=-\infty}^{\infty} c_j X_{t-j}$ où $(c_j : j \in \mathbb{Z})$ est une suite de constantes réelles que

$$\sum_{j=-\infty}^{\infty} |c_j| < \infty$$
, et si $\sum_{k=0}^{\infty} |\gamma_k| < \infty$, alors

$$f_y(\omega) = |c(e^{i\omega})|^2 f_x(\omega)$$
.

9. AUTOCORRÉLATIONS INVERSES

9.1 DÉFINITION (Autocorrélations inverses) : Soit $f_x(\omega)$ la densité spectrale d'un processus stationnaire du second ordre $\{X_t : t \in \mathbb{Z}\}$. Si la fonction $1/f_x(\omega)$ est elle aussi une densité spectrale, on appelle <u>autocovariances inverses</u> du processus X_t les autocovariances $\gamma_x^{(I)}(k)$, $k \in \mathbb{Z}$, associées au spectre inverse $1/f_x(\omega)$, *i.e.*

$$\gamma_x^{(I)}(k) = \int_{-\pi}^{\pi} \frac{1}{f_x(\omega)} \cos(\omega k) d\omega , k \in \mathbb{Z}.$$

9.2 Les autocovariances inverses satisfont l'équation

$$\frac{1}{f_x(\omega)} = \frac{1}{2\pi} \sum_{k=-\infty}^{\infty} \gamma_x^{(I)}(k) \cos(\omega k) = \frac{1}{2\pi} \gamma_x^{(I)}(0) + \frac{1}{\pi} \sum_{k=1}^{\infty} \gamma_x^{(I)} \cos(\omega k).$$

Les autocorrélations inverses sont

$$\rho_x^{(I)}(k) = \gamma_x^{(I)}(k) / \gamma_x^{(I)}(0) , k \in \mathbb{Z} .$$

- 9.3 Une condition suffisante pour que la fonction $1/f_x(\omega)$ soit une densité spectrale est que la fonction $1/f_x(\omega)$ soit continue sur l'intervalle $-\pi \leq \omega \leq \pi$, ce qui implique notamment que $f_x(\omega) > 0$, $\forall \omega$.
- 9.4 Si le processus X_t est un processus ARMA(p, q) stationnaire du second ordre tel que

$$\varphi_p(B)X_t = \bar{\mu} + \theta_q(B)u_t$$

où $\varphi_p(B) = 1 - \varphi_1 B - \dots - \varphi_p B^p$ et $\theta_q(B) = 1 - \theta_1 B - \dots - \theta_q B^q$ sont des polynômes qui ont toutes leurs racines à l'extérieur du cercle unité et $\{u_t : t \in \mathbb{Z}\} \sim BB(0, \sigma^2)$, alors

$$f_x(\omega) = \frac{\sigma^2}{2\pi} \left| \frac{\theta_q(e^{i\omega})}{\varphi_p(e^{i\omega})} \right|^2$$

et

$$\frac{1}{f_x(\omega)} = \frac{2\pi}{\sigma^2} \left| \frac{\varphi_p(e^{i\omega})}{\theta_q(e^{i\omega})} \right|^2$$
.

Les autocovariances inverses $\gamma_x^{(I)}(k)$ sont les autocovariances associées au processus

$$\theta_q(B)X_t = \overline{\overline{\mu}} + \varphi_p(B)v_t$$

où $\{v_t : t \in \mathbb{Z}\}\ \sim BB(0, 1/\sigma^2)$ et $\overline{\mu}$ est une constante quelconque. Par conséquent, les autocorrélations inverses d'un processus ARMA(p, q) se comportent comme les autocorrélations d'un processus ARMA(q, p). Pour un processus AR(p),

$$\rho_x^{(I)}(k) = 0$$
, pour $k > p$.

Pour un processus MA(q), les autocorrélations partielles inverses (i.e. les autocorrélations partielles associées aux autocorrélations inverses) deviennent nulles pour k > q. Ces propriétés peuvent être utilisées pour décider de l'ordre d'un processus.

10. MULTIPLICITÉ DES REPRÉSENTATIONS

10.1 Représentation rétrospective des modèles ARMA

Pour le théorème de Wold rétrospectif, nous savons que tout processus stationnaire du second ordre strictement indéterministe $\{X_t : t \in \mathbb{Z}\}$ peut s'écrire sous la forme

(10.1.1)
$$X_t = \mu + \sum_{j=0}^{\infty} \bar{\psi}_j \bar{u}_{t+j}$$

où \bar{u}_t est un bruit blanc tel que $E(X_{t-j}\bar{u}_t)=0$, $\forall j\geq 1$. En particulier, si

$$(10.1.2) \varphi_p(B)(X_t - \mu) = \theta_q(B)u_t$$

où les polynômes $\varphi_p(B) = 1 - \varphi_1 B - \dots - \varphi_p B^p$ et $\theta_q(B) = 1 - \theta_1 B - \dots - \theta_q B^q$ ont toutes leurs racines à l'extérieur du cercle unité et $\{u_t : t \in \mathbb{Z}\} \sim BB(0, \sigma^2)$, la densité spectrale de X_t est

(10.1.3)
$$f_x(\omega) = \frac{\sigma^2}{2\pi} \left| \frac{\theta_q(e^{i\omega})}{\varphi_p(e^{i\omega})} \right|^2$$
.

Considérons le processus

$$(10.1.4) Y_t = \frac{\varphi_p(B^{-1})}{\theta_q(B^{-1})} (X_t - \mu) = \sum_{j=0}^{\infty} c_j (X_{t+j} - \mu) .$$

Pour la Proposition 8.13, la densité spectrale de Y_t est

(10.1.5)
$$f_y(\omega) = \left| \frac{\varphi_p(e^{i\omega})}{\theta_q(e^{i\omega})} \right|^2 f_x(\omega) = \frac{\sigma^2}{2\pi}$$

et donc $\{Y_t: t \in \mathbb{Z}\}\ \sim BB(0, \sigma^2)$. Si on définit $\bar{u}_t = Y_t$, on voit que

$$(10.1.6) \frac{\varphi_p(B^{-1})}{\theta_q(B^{-1})} (X_t - \mu) = \bar{u}_t$$

ou encore

$$\varphi_p(B^{-1})X_t = \bar{\mu} + \theta_q(B^{-1})\bar{u}_t$$
,

et

$$(10.1.7) X_t - \varphi_1 X_{t+1} - \dots - \varphi_p X_{t+p} = \bar{\mu} + \bar{u}_t - \theta_1 \bar{u}_{t+1} - \dots - \theta_q \bar{u}_{t+q}$$

où $(1-\varphi_1-...-\varphi_p)\mu=\bar{\mu}$. On appelle (10.1.6) ou (10.1.7) la représentation rétrospective du processus X_t .

10.2 Multiplicité des modèles de moyenne mobile

Soit
$$\{X_t\} \sim ARIMA(p, d, q)$$
. Alors

$$W_t = (1 - B)^d X_t \sim ARMA(p, q)$$
.

Si on suppose que $E(W_t) = 0$, W_t satisfait une équation de la forme

$$\varphi_p(B)W_t = \theta_q(B)u_t$$

ou

$$W_t = \frac{\theta_q(B)}{\varphi_p(B)} \ u_t = \psi(B) u_t \ .$$

Pour déterminer le processus ARMA approprié, on estime la fonction d'autocorrélation ρ_k . Celle-ci est déterminée de façon unique par la fonction génératrice des autocovariances :

$$\gamma_x(z) = \sigma^2 \psi(z) \psi(z^{-1}) = \sigma^2 \frac{\theta_q(z)}{\varphi_n(z)} \frac{\theta_q(z^{-1})}{\varphi_n(z^{-1})}$$
.

Si

$$\theta_q(z) = 1 - \theta_1 z - \dots - \theta_q z^q = (1 - H_1 z) \dots (1 - H_q z) = \prod_{j=1}^q (1 - H_j z)$$

alors

(10.2.1)
$$\gamma_x(z) = \frac{\sigma^2}{\varphi_p(z)\varphi_p(z^{-1})} \prod_{j=1}^q (1 - H_j z)(1 - H_j z^{-1})$$
.

Toutefois

$$(1 - H_j z)(1 - H_j z^{-1}) = 1 - H_j z - H_j z^{-1} + H_j^2 = H_j^2 (1 - H_j^{-1} z - H_j^{-1} z^{-1} + H_j^{-2})$$
$$= H_j^2 (1 - H_j^{-1} z)(1 - H_j^{-1} z^{-1})$$

d'où

$$(10.2.2) \gamma_x(z) = \frac{\left[\sigma^2 \prod_{j=1}^q H_j^2\right]}{\varphi_p(z)\varphi_p(z^{-1})} \prod_{j=1}^q \left(1 - H_j^{-1}z\right) \left(1 - H_j^{-1}z^{-1}\right)$$
$$= \bar{\sigma}^2 \frac{\theta_q'(z)\theta_q'(z^{-1})}{\varphi_p(z)\varphi_p(z^{-1})}$$

οù

$$\bar{\sigma}^2 = \sigma^2 \prod_{j=1}^q H_j^2 \ ,$$

$$\theta'_q(z) = \prod_{j=1}^q (1 - H_j^{-1}z)$$
.

 $\gamma_x(z)$ tel que défini en (10.2.2) peut être considéré comme la fonction génératrice d'un processus de la forme

(10.2.3)
$$\varphi_p(B)W_t = \theta'_q(B)\bar{u}_t = \left[\prod_{j=1}^q (1 - H_j^{-1}B)\right]\bar{u}_t$$

tandis que $\gamma_x(z)$ en (10.2.1) est la fonction génératrice de

$$(10.2.4) \varphi_p(B)W_t = \theta_q(B)u_t = \left[\prod_{j=1}^q (1 - H_j B)\right]u_t.$$

Les processus (10.2.3) et (10.2.4) ont exactement la même fonction d'autocovariance et donc ne peuvent être distingués sur la base de leurs seconds moments.

Exemple:
$$(1 - 0.5B)W_t = (1 - 0.2B)(1 + 0.1B)u_t$$

 $(1 - 0.5B)W_t = (1 - 5B)(1 + 10B)\bar{u}_t$

ont la même fonction d'autocorrélation.

D'une façon plus générale, les modèles

$$\varphi_p(B)W_t = \left[\prod_{j=1}^q \left(1 - H_j^{\pm 1}B\right)\right] \bar{u}_t$$

ont tous la même fonction d'autocovariance (et sont donc indistinguables). Comme il est plus facile de travailler avec un modèle inversible, on choisit

$$H_j^* = \begin{cases} H_j, & \text{si } |H_j| < 1 \\ H_j^{-1}, & \text{si } |H_j| > 1 \end{cases},$$

où $|H_i| \leq 1$, de façon à ce que le processus soit inversible.

10.3 Paramètres redondants

Supposons que $\varphi_p(B)$ et $\theta_q(B)$ ont un facteur commun, disons G(B):

$$\varphi_p(B) = G(B)\varphi_{p_1}(B)$$
, $\theta_q(B) = G(B)\theta_{q_1}(B)$.

Considérons les modèles

$$(10.3.1) \varphi_p(B)W_t = \theta_q(B)u_t$$

$$(10.3.2) \varphi_{p_1}(B)W_t = \theta_{q_1}(B)u_t$$
.

Les représentations $MA(\infty)$ de ces deux modèles sont

$$W_t = \psi(B)u_t$$
.

οù

$$\psi(B) = \frac{\theta_q(B)}{\varphi_p(B)} = \frac{\theta_{q_1}(B)G(B)}{\varphi_{p_1}(B)G(B)} = \frac{\theta_{q_1}(B)}{\varphi_{p_1}(B)} \equiv \psi_1(B)$$

et

$$W_t = \psi_1(B)u_t$$
.

(10.3.1) et (10.3.2) ont la même représentation $MA(\infty)$ et donc la même fonction génératrice des autocovariances :

$$\gamma_x(z) = \sigma^2 \psi(z) \psi(z^{-1}) = \sigma^2 \psi_1(z) \psi_1(z^{-1})$$
.

On ne peut distinguer empiriquement entre une série engendrée par (10.3.1) et une série engendrée par (10.3.2). Des deux modèles, on choisit le plus simple, *i.e.* (10.3.2). De toute manière, si on essayait d'estimer (10.3.1) au lieu de (10.3.2), la matrice de covariance asymptotique des estimateurs serait singulière.

BIBLIOGRAPHIE

- Anderson, O.D. (1975), « On a Paper by Davies, Pete and Frost Concerning Maximum Autocorrelations for Moving Average Processes », Australian Journal of Statistics 17, p. 87.
- Chanda, K.C. (1962), \ll On Bounds of Serial Correlations \gg , Annals of Mathematical Statistics 33, p. 1457.
- Durbin, J. (1960), « The Fitting of Time Series Models », Revue de l'Institut International de Statistique 28, 233- .
- Kendall, M., A. Stuart et J.K. Ord (1983), *The Advanced Theory of Statistics* 3, Fourth Edition, Macmillan, New York.