```
In [1]: import pandas as pd
        meteorites = pd.read_csv('Meteorite_Landings.csv',nrows=5) # pd.read_csv is a comma
        meteorites
Out[1]:
                                                   mass
                       id nametype
                                        recclass
                                                         fall
                                                                                       reclong (
               name
                                                                    year
                                                                             reclat
                                                     (g)
                                                              01/01/1880
         0
             Aachen
                               Valid
                                             L5
                                                     21 Fell
                                                                 12:00:00
                                                                           50.77500
                                                                                       6.08333
                                                                     AM
                                                              01/01/1951
                                                                 12:00:00
         1
             Aarhus
                       2
                               Valid
                                             H6
                                                    720 Fell
                                                                          56.18333
                                                                                      10.23333
                                                                     AM
                                                              01/01/1952
         2
                               Valid
                                                                 12:00:00
               Abee
                       6
                                            EH4 107000 Fell
                                                                          54.21667 -113.00000
                                                                     AM
                                                              01/01/1976
         3 Acapulco
                      10
                               Valid Acapulcoite
                                                                 12:00:00
                                                                                     -99.90000
                                                   1914 Fell
                                                                           16.88333
                                                                     AM
                                                              01/01/1902
             Achiras 370
                               Valid
                                             L6
                                                    780 Fell
                                                                 12:00:00
                                                                         -33.16667
                                                                                     -64.95000
                                                                     AM
        meteorites.name # it shows the entries under the column named "name"
Out[2]: 0
                Aachen
         1
                Aarhus
         2
                  Abee
         3
              Acapulco
               Achiras
         Name: name, dtype: object
In [3]:
        meteorites.columns # this shows the names of the columns in the dataframe
Out[3]: Index(['name', 'id', 'nametype', 'recclass', 'mass (g)', 'fall', 'year',
                 'reclat', 'reclong', 'GeoLocation'],
               dtype='object')
        meteorites.index #this shows the number of indexes in the dataframe
In [4]:
Out[4]: RangeIndex(start=0, stop=5, step=1)
In [5]:
        import requests #requests is the library that gets the data using API
         response = requests.get('https://data.nasa.gov/resource/gh4g-9sfh.json',params=({'$
        if response.ok:
```

```
payload = response.json()
        else:
            print(f'Request was not succesful and returned code: {response.status code}.')
            payload = None
In [6]: payload[1] #the payload result in in list, so when calling an entry use list type of
Out[6]: {'name': 'Aarhus',
          'id': '2',
          'nametype': 'Valid',
          'recclass': 'H6',
          'mass': '720',
          'fall': 'Fell',
          'year': '1951-01-01T00:00:00.000',
          'reclat': '56.183330',
          'reclong': '10.233330',
          'geolocation': {'latitude': '56.18333', 'longitude': '10.23333'}}
In [7]: import pandas as pd
        df = pd.DataFrame(payload) # the list is then placed as a dataframe
        df.head(3)
Out[7]:
                                                                                    reclong g
             name id nametype recclass
                                            mass fall
                                                                          reclat
                                                                year
                                                             1880-01-
        0 Aachen 1
                                      L5
                                                                      50.775000
                            Valid
                                              21 Fell
                                                                                   6.083330
                                                       01T00:00:00.000
                                                             1951-01-
         1 Aarhus 2
                            Valid
                                      H6
                                                                      56.183330
                                             720 Fell
                                                                                  10.233330
                                                       01T00:00:00.000
                                                             1952-01-
        2
             Abee 6
                            Valid
                                     EH4 107000 Fell
                                                                      54.216670 -113.000000
                                                       01T00:00:00.000
In [8]: import pandas as pd
        meteorites = pd.read_csv('Meteorite_Landings.csv') # pd.read_csv is a command to re
        meteorites
        meteorites.shape # this shows the rows and columns of the dataframe
Out[8]: (45716, 10)
In [9]: meteorites.columns # this shows the names of the columns in the dataframe
```

```
Out[9]: Index(['name', 'id', 'nametype', 'recclass', 'mass (g)', 'fall', 'year',
                'reclat', 'reclong', 'GeoLocation'],
               dtype='object')
In [10]: meteorites.dtypes #this shows the data types that each column contain
Out[10]: name
                       object
                        int64
         id
         nametype
                       object
         recclass
                       object
         mass (g)
                      float64
         fall
                       object
                        object
         year
                       float64
         reclat
         reclong
                       float64
                       object
         GeoLocation
         dtype: object
In [11]: meteorites.head(10) # the head() command shows the first 5 rows in the dataframe by
```

Out[11]:		name	id	nametype	recclass	mass (g)	fall	year	reclat	reclong
	0	Aachen	1	Valid	L5	21.0	Fell	01/01/1880 12:00:00 AM	50.77500	6.08333
	1	Aarhus	2	Valid	Н6	720.0	Fell	01/01/1951 12:00:00 AM	56.18333	10.23333
	2	Abee	6	Valid	EH4	107000.0	Fell	01/01/1952 12:00:00 AM	54.21667	-113.00000
	3	Acapulco	10	Valid	Acapulcoite	1914.0	Fell	01/01/1976 12:00:00 AM	16.88333	-99.90000
	4	Achiras	370	Valid	L6	780.0	Fell	01/01/1902 12:00:00 AM	-33.16667	-64.95000
	5	Adhi Kot	379	Valid	EH4	4239.0	Fell	01/01/1919 12:00:00 AM	32.10000	71.80000
	6	Adzhi- Bogdo (stone)	390	Valid	LL3-6	910.0	Fell	01/01/1949 12:00:00 AM	44.83333	95.16667
	7	Agen	392	Valid	H5	30000.0	Fell	01/01/1814 12:00:00 AM	44.21667	0.61667
	8	Aguada	398	Valid	L6	1620.0	Fell	01/01/1930 12:00:00 AM	-31.60000	-65.23333
	9	Aguila Blanca	417	Valid	L	1440.0	Fell	01/01/1920 12:00:00 AM	-30.86667	-64.55000
	4									•

In [12]: meteorites.tail() # the tail() command shows the last 5 rows by default, can place

	name	id	nametype	recclass	mass (g)	fall	year	reclat	r
45711	Zillah 002	31356	Valid	Eucrite	172.0	Found	01/01/1990 12:00:00 AM	29.03700	17
45712	Zinder	30409	Valid	Pallasite, ungrouped	46.0	Found	01/01/1999 12:00:00 AM	13.78333	8
45713	Zlin	30410	Valid	H4	3.3	Found	01/01/1939 12:00:00 AM	49.25000	17
45714	Zubkovsky	31357	Valid	L6	2167.0	Found	01/01/2003 12:00:00 AM	49.78917	41
45715	Zulu Queen	30414	Valid	L3.7	200.0	Found	01/01/1976 12:00:00 AM	33.98333	-115

In [13]: meteorites.info()

this shows the information about the dataframe the column names, it shows non-nul #if there are misssing entries in the dataframe, and the data types of the of each

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 45716 entries, 0 to 45715
Data columns (total 10 columns):

#	Column	Non-Null Count	Dtype
0	name	45716 non-null	object
1	id	45716 non-null	int64
2	nametype	45716 non-null	object
3	recclass	45716 non-null	object
4	mass (g)	45585 non-null	float64
5	fall	45716 non-null	object
6	year	45425 non-null	object
7	reclat	38401 non-null	float64
8	reclong	38401 non-null	float64
9	GeoLocation	38401 non-null	object
dtyp	es: float64(3), int64(1), obj	ect(6)
memo	ry usage: 3.5	+ MB	

In [14]: #meteorites["name","year"]
 #the comment above will result in an error because in accessing columns it must be
 meteorites[["name","year"]] # this is the correct command

	name	year
0	Aachen	01/01/1880 12:00:00 AM
1	Aarhus	01/01/1951 12:00:00 AM
2	Abee	01/01/1952 12:00:00 AM
3	Acapulco	01/01/1976 12:00:00 AM
4	Achiras	01/01/1902 12:00:00 AM
•••		
45711	Zillah 002	01/01/1990 12:00:00 AM
45712	Zinder	01/01/1999 12:00:00 AM
45713	Zlin	01/01/1939 12:00:00 AM
45714	Zubkovsky	01/01/2003 12:00:00 AM
45715	Zulu Queen	01/01/1976 12:00:00 AM

45716 rows × 2 columns

Out[14]:

In [15]: meteorites[100:104] #this outputs the index with the specific number used until the #example [100:104] it first output the 100th index and it outputs the 103rd index d

Out[15]:		name	id	nametype	recclass	mass (g)	fall	year	reclat	reclon
	100	Benton	5026	Valid	LL6	2840.0	Fell	01/01/1949 12:00:00 AM	45.95000	-67.5500
	101	Berduc	48975	Valid	L6	270.0	Fell	01/01/2008 12:00:00 AM	-31.91000	-58.3283
	102	Béréba	5028	Valid	Eucrite- mmict	18000.0	Fell	01/01/1924 12:00:00 AM	11.65000	-3.6500
	103	Berlanguillas	5029	Valid	L6	1440.0	Fell	01/01/1811 12:00:00 AM	41.68333	-3.8000
	4 @									Þ

In [16]: meteorites.iloc[[0,3,4,6]] #this outputs the 0, 3, 4, 6 columns using iloc

Out[16]:		name	id	nametype	recclass	mass (g)	fall	year	reclat	reclong	Ge
	0	Aachen	1	Valid	L5	21.0	Fell	01/01/1880 12:00:00 AM	50.77500	6.08333	
	3	Acapulco	10	Valid	Acapulcoite	1914.0	Fell	01/01/1976 12:00:00 AM	16.88333	-99.90000	
	4	Achiras	370	Valid	L6	780.0	Fell	01/01/1902 12:00:00 AM	-33.16667	-64.95000	
	6	Adzhi- Bogdo (stone)	390	Valid	LL3-6	910.0	Fell	01/01/1949 12:00:00 AM	44.83333	95.16667	
	4					_					•
In [17]:	me	teorites.	iloc[100:104, [6	0,3,4,6]] #t	his sho	ows t	he 100th to	100rd row	as explai	n a
Out[17]:			name		ss mass (g)			year		,	
	10		enton		L6 2840.0	01/01/	10/0	12:00:00 AM			
	10		erduc		L6 270.0			12:00:00 AM			
	10		éréba	Eucrite-mm				12:00:00 AM			
	10	5 benang	uillas		L6 1440.0	01/01/	1011	12:00:00 AM			
In [18]:	me	teorites.	loc[[0,3,4,6]]#	meteorites.	iloc[[0	3,3,4	,6]] # works	the same	as iloc	
Out[18]:		name	id	nametype	recclass	mass (g)	fall	year	reclat	reclong	Ge
	0	Aachen	1	Valid	L5	21.0	Fell	01/01/1880 12:00:00 AM	50.77500	6.08333	
	3	Acapulco	10	Valid	Acapulcoite	1914.0	Fell	01/01/1976 12:00:00 AM	16.88333	-99.90000	
	4	Achiras	370	Valid	L6	780.0	Fell	01/01/1902 12:00:00 AM	-33.16667	-64.95000	
	6	Adzhi- Bogdo	390	Valid	LL3-6	910.0	Fell	01/01/1949 12:00:00	44.83333	95.16667	

In [20]: meteorites[(meteorites['mass (g)']> 50) & (meteorites.fall == 'Found')] #this shows

Out[20]:		name	id	nametype	recclass	mass (g)	fall	year	reclat	
	37	Northwest Africa 5815	50693	Valid	L5	256.80	Found	NaN	0.00000	
	757	Dominion Range 03239	32591	Valid	L6	69.50	Found	01/01/2002 12:00:00 AM	NaN	
	804	Dominion Range 03240	32592	Valid	LL5	290.90	Found	01/01/2002 12:00:00 AM	NaN	
	1111	Abajo	4	Valid	Н5	331.00	Found	01/01/1982 12:00:00 AM	26.80000	-1
	1112	Abar al' Uj 001	51399	Valid	H3.8	194.34	Found	01/01/2008 12:00:00 AM	22.72192	,
	•••									
	45709	Zhongxiang	30406	Valid	Iron	100000.00	Found	01/01/1981 12:00:00 AM	31.20000	1
	45710	Zillah 001	31355	Valid	L6	1475.00	Found	01/01/1990 12:00:00 AM	29.03700	
	45711	Zillah 002	31356	Valid	Eucrite	172.00	Found	01/01/1990 12:00:00 AM	29.03700	
	45714	Zubkovsky	31357	Valid	L6	2167.00	Found	01/01/2003 12:00:00 AM	49.78917	
	45715	Zulu Queen	30414	Valid	L3.7	200.00	Found	01/01/1976 12:00:00 AM	33.98333	-1

18854 rows × 10 columns

In [21]: meteorites[(meteorites['mass (g)']> 1e6) & (meteorites.fall == 'Fell')] #this shows

Out[21]:		name	id	nametype	recclass	mass (g)	fall	year	reclat	reclon
	29	Allende	2278	Valid	CV3	2000000.0	Fell	01/01/1969 12:00:00 AM	26.96667	-105.3166
	419	Jilin	12171	Valid	Н5	4000000.0	Fell	01/01/1976 12:00:00 AM	44.05000	126.1666
	506	Kunya- Urgench	12379	Valid	Н5	1100000.0	Fell	01/01/1998 12:00:00 AM	42.25000	59.2000
	707	Norton County	17922	Valid	Aubrite	1100000.0	Fell	01/01/1948 12:00:00 AM	39.68333	-99.8666
	920	Sikhote- Alin	23593	Valid	Iron, IIAB	23000000.0	Fell	01/01/1947 12:00:00 AM	46.16000	134.6533
	4 @									•
In [22]:	mete	orites.qu	ery("`n	nass (g)`>	1e6 and	fall == 'Fe	11'")	# the quer	y is	
Out[22]:		name	id	nametype	recclass	mass (g)	fall	year	reclat	reclon
	29	Allende	2278	Valid	CV3	2000000.0	Fell	01/01/1969 12:00:00 AM	26.96667	-105.3166
	419	Jilin	12171	Valid	H5	4000000.0	Fell	01/01/1976 12:00:00 AM	44.05000	126.1666
	506	Kunya- Urgench	12379	Valid	H5	1100000.0	Fell	01/01/1998 12:00:00 AM	42.25000	59.2000
	707	Norton County	17922	Valid	Aubrite	1100000.0	Fell	01/01/1948 12:00:00 AM	39.68333	-99.8666
	920	Sikhote- Alin	23593	Valid	Iron, IIAB	23000000.0	Fell	01/01/1947 12:00:00 AM	46.16000	134.6533
	4									•
In [23]:	mete	orites.fa	ll.valu	ue_counts()	# this	command ret	urns	the entries	in the c	olumn gro
Out[23]:	fall Foun Fell Name	d 4466	97	int64						
In [24]:	mete	orites.va	lue_cou	ınts(subset	=['namet	ype','fall'] , no	ormalize= Fal	.se)	

```
Out[24]: nametype fall
         Valid
                    Found
                             44534
                    Fell
                              1107
          Relict
                    Found
                                75
          Name: count, dtype: int64
In [25]: type(meteorites['mass (g)'].mean()) #this takes the mean of the whole column entrie
Out[25]: numpy.float64
         meteorites['mass (g)'].quantile([0.01,0.05,0.5,0.95,0.99]) #this shows the quantile
In [26]:
Out[26]: 0.01
                      0.44
          0.05
                      1.10
          0.50
                     32.60
          0.95
                   4000.00
          0.99
                  50600.00
         Name: mass (g), dtype: float64
In [27]: meteorites['mass (g)'].median() #this shows the median, or the 50th percentile
Out[27]: 32.6
In [28]:
         meteorites['mass (g)'].max() #this shows the maximum entry in the "mass (g)" column
Out[28]: 60000000.0
         meteorites.loc[meteorites['mass (g)'].idxmax()] # this shows the row where the maxi
Out[29]: name
                                           Hoba
          id
                                          11890
                                          Valid
         nametype
                                      Iron, IVB
          recclass
                                     60000000.0
         mass (g)
          fall
                                          Found
                         01/01/1920 12:00:00 AM
         year
         reclat
                                      -19.58333
          reclong
                                       17.91667
         GeoLocation
                          (-19.58333, 17.91667)
         Name: 16392, dtype: object
In [30]: meteorites.recclass.nunique() #this shows the number of values that are not unique
Out[30]: 466
         meteorites.name.nunique() #this shows the number of values that are not unique
Out[31]: 45716
In [32]: meteorites.recclass.unique() #this shows the number of values that are unique
```

```
Out[32]: array(['L5', 'H6', 'EH4', 'Acapulcoite', 'L6', 'LL3-6', 'H5', 'L',
                 'Diogenite-pm', 'Unknown', 'H4', 'H', 'Iron, IVA', 'CR2-an', 'LL5',
                 'CI1', 'L/LL4', 'Eucrite-mmict', 'CV3', 'Ureilite-an',
                 'Stone-uncl', 'L3', 'Angrite', 'LL6', 'L4', 'Aubrite',
                 'Iron, IIAB', 'Iron, IAB-sLL', 'Iron, ungrouped', 'CM2', 'OC',
                 'Mesosiderite-A1', 'LL4', 'C2-ung', 'LL3.8', 'Howardite',
                 'Eucrite-pmict', 'Diogenite', 'LL3.15', 'LL3.9', 'Iron, IAB-MG',
                 'H/L3.9', 'Iron?', 'Eucrite', 'H4-an', 'L/LL6', 'Iron, IIIAB',
                 'H/L4', 'H4-5', 'L3.7', 'LL3.4', 'Martian (chassignite)', 'EL6',
                 'H3.8', 'H3-5', 'H5-6', 'Mesosiderite', 'H5-7', 'L3-6', 'H4-6',
                 'Ureilite', 'Iron, IID', 'Mesosiderite-A3/4', 'CO3.3', 'H3',
                 'EH3/4-an', 'Iron, IIE', 'L/LL5', 'H3.7', 'CBa', 'H4/5', 'H3/4',
                 'H?', 'H3-6', 'L3.4', 'Iron, IAB-sHL', 'L3.7-6', 'EH7-an', 'Iron',
                 'CR2', 'CO3.2', 'K3', 'L5/6', 'CK4', 'Iron, IIE-an', 'L3.6',
                 'LL3.2', 'Pallasite', 'CO3.5', 'Lodranite', 'Mesosiderite-A3',
                 'L3-4', 'H5/6', 'Pallasite, PMG', 'Eucrite-cm', 'L5-6', 'C03.6',
                 'Martian (nakhlite)', 'LL3.6', 'C3-ung', 'H3-4', 'C03.4', 'EH3',
                 'Iron, IAB-ung', 'Winonaite', 'LL', 'Eucrite-br', 'Iron, IIF',
                 'R3.8-6', 'L4-6', 'EH5', 'LL3.00', 'H3.4', 'Martian (shergottite)',
                 'Achondrite-ung', 'LL3.3', 'C', 'H/L3.6', 'Iron, IIIAB-an', 'LL7',
                 'Mesosiderite-B2', 'LL4-6', 'CO3.7', 'L/LL6-an',
                 'Iron, IAB complex', 'Pallasite, PMG-an', 'H3.9/4', 'L3.8',
                 'LL5-6', 'LL3.8-6', 'L3.9', 'L4-5', 'L3-5', 'LL4/5', 'L4/5',
                 'H3.9', 'H3.6-6', 'H3.8-5', 'H3.8/4', 'H3.9-5', 'CH3', 'R3.8-5',
                 'L3.9/4', 'E4', 'C03', 'Chondrite-ung', 'H~5', 'H~6', 'L/LL3.10',
                 'EL5', 'LL3', 'L~6', 'L~3', 'H~4', 'L(LL)3.5-3.7', 'Iron, IIIE-an',
                 'H3.6', 'L3.4-3.7', 'L3.5', 'CM1/2', 'Martian (OPX)', 'Brachinite',
                 'LL7(?)', 'LL6(?)', 'Eucrite-Mg rich', 'H3.5-4', 'EL3', 'R3.6',
                 'H3.5', 'CM1', 'L/LL3', 'H7', 'L(?)3', 'L3.2', 'L3.7-3.9',
                 'Mesosiderite-B1', 'Eucrite-unbr', 'LL3.7', 'CO3.0', 'LL3.5',
                 'L3.7-4', 'CV3-an', 'Lunar (anorth)', 'L3.3', 'Iron, IAB-sLM',
                 'Lunar', 'Iron, IC', 'Iron, IID-an', 'Iron, IIIE', 'Iron, IVA-an',
                 'CK6', 'L3.1', 'CK5', 'H3.3', 'H3.7-6', 'E6', 'H3.0', 'H3.1',
                 'L3.0', 'L/LL3.4', 'C6', 'LL3.0', 'Lunar (gabbro)', 'R4', 'C4',
                 'Iron, IIG', 'Iron, IIC', 'C1-ung', 'H5-an', 'EH4/5', 'Iron, IIIF',
                 'R3-6', 'Mesosiderite-B4', 'L6/7', 'Relict H', 'L-imp melt', 'CK3',
                 'H3-an', 'Iron, IVB', 'R3.8', 'L~5', 'Mesosiderite-an',
                 'Mesosiderite-A2', 'Pallasite, PES', 'C4-ung', 'Iron, IAB?',
                 'Mesosiderite-A', 'R3.5-6', 'H3.9-6', 'Ureilite-pmict', 'LL~6',
                 'CK4/5', 'EL4', 'Lunar (feldsp. breccia)', 'L3.9-6', 'H-an',
                 'L/LL3-6', 'L/LL3-5', 'H/L3.5', 'H/L3', 'R3-4', 'CK3-an', 'LL4-5',
                 'H/L6', 'L3/4', 'H-imp melt', 'CR', 'Chondrite-fusion crust',
                 'Iron, IAB-sLH', 'H(L)3-an', 'L(LL)3', 'H(L)3', 'R3', 'L7',
                 'CM-an', 'L/LL~6', 'L/LL~5', 'L~4', 'L/LL~4', 'LL(L)3', 'H3.2',
                 'L-melt breccia', 'H6-melt breccia', 'H5-melt breccia',
                 'H-melt rock', 'Eucrite-an', 'Lunar (bas/anor)', 'LL5/6', 'LL3/4',
                 'H3.4/3.5', 'Lunar (basalt)', 'H/L5', 'H(5?)', 'LL-imp melt',
                 'Mesosiderite?', 'H~4/5', 'L6-melt breccia', 'L3.5-3.7',
                 'Iron, IIAB-an', 'L3.3-3.7', 'L3.2-3.6', 'L3.3-3.6',
                 'Acapulcoite/Lodranite', 'Mesosiderite-B', 'CK5/6', 'L3.05', 'C2',
                 'C4/5', 'L/LL3.2', 'Iron, IIIAB?', 'L3.5-5', 'L/LL(?)3', 'H4(?)',
                 'Iron, IAB-sHH', 'Relict iron', 'EL4/5', 'L5-7', 'Diogenite-an',
                 'L-melt rock', 'CR1', 'H5 ', 'L5 ', 'H4 ', 'L4 ', 'E', 'L6 ',
                 'H3 ', 'LL6 ', 'H-metal', 'H6 ', 'L-metal', 'Relict OC'
                 'Mesosiderite-A4', 'L/LL5/6', 'H3.8-4', 'CBb', 'EL6/7', 'EL7',
                 'CH/CBb', 'CO3.8', 'H/L~4', 'Mesosiderite-C2', 'R5', 'H4/6',
```

```
'H3.7-5', 'LL3.7-6', 'H3.7/3.8', 'L3.7/3.8', 'EH-imp melt', 'R',
'Fusion crust', 'Aubrite-an', 'R6', 'LL-melt rock', 'L3.5-3.9',
'L3.2-3.5', 'L3.3-3.5', 'L3.0-3.7', 'E3-an', 'K', 'E3',
'Acapulcoite/lodranite', 'CK4-an', 'L(LL)3.05', 'L3.10', 'CB',
'Diogenite-olivine', 'EL-melt rock', 'EH6', 'Pallasite, ungrouped',
'L/LL4/5', 'L3.8-an', 'Iron, IAB-an', 'C5/6-ung', 'CV2',
'Iron, IC-an', 'Lunar (bas. breccia)', 'L3.8-6', 'R3/4', 'R3.9',
'CK', 'LL3.10', 'R4/5', 'L3.8-5', 'Mesosiderite-C', 'Enst achon',
'H/L3-4', 'L(H)3', 'LL6/7', 'LL3.1', 'OC3', 'R3.7', 'CO3 ', 'CH3 ',
'LL~4', 'LL~4/5', 'L(LL)~4', 'H3.05', 'H3.10',
'Impact melt breccia', 'LL3-5', 'H/L3.7', 'LL3-4', 'CK3/4',
'Martian', 'CO3.1', 'Lunar (bas/gab brec)', 'Achondrite-prim',
'LL<3.5', 'CK3.8', 'L/LL-melt rock', 'H6/7', 'EL6 ',
'Iron, IAB-sHL-an', 'CM2-an', 'R3-5', 'L4-melt rock',
'L6-melt rock', 'H/L4/5', 'EL3/4', 'H/L6-melt rock',
'Enst achon-ung', 'L3-7', 'R3.4', 'LL3.05', 'LL4/6', 'LL3.8-4',
'H3.15', 'C3.0-ung', 'LL-melt breccia', 'LL6-melt breccia',
'L5-melt breccia', 'LL(L)3.1', 'LL6-an', 'L4-melt breccia',
'Howardite-an', 'H4-melt breccia', 'Martian (basaltic breccia)',
'L3-melt breccia', 'L~4-6', 'LL~5', 'R3.5-4', 'CR7',
'H-melt breccia', 'Lunar (norite)', 'L3.00', 'H3.0-3.4', 'L/LL4-6',
'CM', 'EH7', 'L4-an', 'E-an', 'H3.8/3.9', 'L3.9-5', 'H3.8-6',
'H3.4-5', 'L3.0-3.9', 'L3.5-3.8', 'H3.2-3.7', 'L3.6-4',
'Iron, IIE?', 'C3/4-ung', 'L/LL3.5', 'L/LL3.6/3.7', 'H/L4-5',
'LL~3', 'Pallasite?', 'LL5-7', 'LL3.9/4', 'H3.8-an', 'CR-an',
'L/LL5-6', 'L(LL)5', 'L(LL)6', 'LL3.1-3.5', 'E5', 'Lodranite-an',
'H3.2-6', 'H(?)4', 'E5-an', 'H3.2-an', 'EH6-an', 'Stone-ung',
'C1/2-ung', 'L/LL'], dtype=object)
```

In [33]: meteorites.describe()

Out[33]:

	id	mass (g)	reclat	reclong
count	45716.000000	4.558500e+04	38401.000000	38401.000000
mean	26889.735104	1.327808e+04	-39.122580	61.074319
std	16860.683030	5.749889e+05	46.378511	80.647298
min	1.000000	0.000000e+00	-87.366670	-165.433330
25%	12688.750000	7.200000e+00	-76.714240	0.000000
50%	24261.500000	3.260000e+01	-71.500000	35.666670
75%	40656.750000	2.026000e+02	0.000000	157.166670
max	57458.000000	6.000000e+07	81.166670	354.473330

```
In [34]: meteorites.describe(include='all')
```

ıt[34]:		name	id	nametype	recclass	mass (g)	fall	year	
	count	45716	45716.000000	45716	45716	4.558500e+04	45716	45425	3840
	unique	45716	NaN	2	466	NaN	2	266	
	top	Aachen	NaN	Valid	L6	NaN	Found	01/01/2003 12:00:00 AM	
	freq	1	NaN	45641	8285	NaN	44609	3323	
	mean	NaN	26889.735104	NaN	NaN	1.327808e+04	NaN	NaN	-39
	std	NaN	16860.683030	NaN	NaN	5.749889e+05	NaN	NaN	46
	min	NaN	1.000000	NaN	NaN	0.000000e+00	NaN	NaN	-87
	25%	NaN	12688.750000	NaN	NaN	7.200000e+00	NaN	NaN	-76
	50%	NaN	24261.500000	NaN	NaN	3.260000e+01	NaN	NaN	-7 <i>°</i>
	75%	NaN	40656.750000	NaN	NaN	2.026000e+02	NaN	NaN	(
	max	NaN	57458.000000	NaN	NaN	6.000000e+07	NaN	NaN	8.
4	4								•
Tn []:									

Excercise (Part 1)

Seatwork 6.2 Programming Exercise: Getting Started with Pandas!

""" Using the 2019_Yellow_Taxi_Trip_Data.csv dataset, accomplish the following items and submit a PDF of the notebook:

Create a DataFrame by reading in the 2019_Yellow_Taxi_Trip_Data.csv file. Examine the first 5 rows.

Find the dimensions (number of rows and number of columns) in the data.

Using the data in the 2019_Yellow_Taxi_Trip_Data.csv file, calculate summary statistics for the fare_amount, tip_amount, tolls_amount, and total_amount columns.

Isolate the fare_amount, tip_amount, tolls_amount, and total_amount for the longest trip by distance (trip_distance).

.....

In [35]: import pandas as pd

#1 Create a DataFrame by reading in the 2019_Yellow_Taxi_Trip_Data.csv file. Ex

#the pd.read_csv is a command to read the csv file, the dataframe is then stored in
df = pd.read_csv('2019_Yellow_Taxi_Trip_Data.csv')
df.head()

Out[35]:		vendorid	tpep_pickup_datetime	$tpep_dropoff_datetime$	passenger_count	trip_distance
	0	2	2019-10- 23T16:39:42.000	2019-10- 23T17:14:10.000	1	7.93
	1	1	2019-10- 23T16:32:08.000	2019-10- 23T16:45:26.000	1	2.00
	2	2	2019-10- 23T16:08:44.000	2019-10- 23T16:21:11.000	1	1.36
	3	2	2019-10- 23T16:22:44.000	2019-10- 23T16:43:26.000	1	1.00
	4	2	2019-10- 23T16:45:11.000	2019-10- 23T16:58:49.000	1	1.96
	4					•
In [36]:	#2	Find	the dimensions (number	er of rows and number	of columns) in t	he data.

In [36]: #2 Find the dimensions (number of rows and number of columns) in the data.

#using the shape command this outputs the number of rows and columns in the datafra
a,x = df.shape
print(f'The number of rows is {a}')
print(f'The number of columns is {x}')

The number of rows is 10000 The number of columns is 18

```
In [37]: #3
  #Using the data in the 2019_Yellow_Taxi_Trip_Data.csv file, calculate summary stati
  #tip_amount, tolls_amount, and total_amount columns.

# the 'fare_amount', 'tip_amount', 'tolls_amount' is in double brackets to output t
  #and the describe() command is then used to describe those columns with details
  df[['fare_amount', 'tip_amount', 'total_amount']].describe()
```

	fare_amount	tip_amount	tolls_amount	total_amount
count	10000.000000	10000.000000	10000.000000	10000.000000
mean	15.106313	2.634494	0.623447	22.564659
std	13.954762	3.409800	6.437507	19.209255
min	-52.000000	0.000000	-6.120000	-65.920000
25%	7.000000	0.000000	0.000000	12.375000
50%	10.000000	2.000000	0.000000	16.300000
75%	16.000000	3.250000	0.000000	22.880000
max	176.000000	43.000000	612.000000	671.800000

```
In [38]: #4
#Isolate the fare_amount, tip_amount, tolls_amount, and total_amount for the longes

#this command finds row with the longest trip distance using loc and idxmax and usi
#the "[['fare_amount', 'tip_amount', 'tolls_amount', 'total_amount']]" is then used
#to output the fare_amount, tip_amount, tolls_amount, and total_amount of the row w
df.loc[df['trip_distance'].idxmax()][['fare_amount', 'tip_amount', 'tolls_amount',
```

Out[38]: fare_amount 176.0 tip_amount 18.29 tolls_amount 6.12 total_amount 201.21 Name: 8338, dtype: object

Out[37]:

Conclusion / Reflection

After doing this activity, I learned many ways to visualize data, by using the appropriate commands to output the output necessary, there are many functions

to be used in making the specific outputs, other than taking data from your own directory in a device, you can also take data from the internet, this is done by using the "requests" library, but this activity is more focused on the "pandas" library visualizing a dataframe. The some syntax is quite easy to follow the data statistics is quite hard because I don't quite understand the syntax being used. I still need more time to practice those syntax to do a better visualization of the data.

Data wrangling

```
In [39]: import pandas as pd
taxis = pd.read_csv('2019_Yellow_Taxi_Trip_Data.csv') # load the csv file using pan
taxis.head()
```

Out[39]:	vendorid	tpep_pickup	_datetime	tpep_dropof	f_datetime	passen	ger_count	trip_distance		
	0 2	23T10	2019-10- 6:39:42.000	23T1	2019-10- 7:14:10.000		1	7.93		
	1 1	23T1	2019-10- 6:32:08.000	23T1	2019-10- 6:45:26.000		1	2.00		
	2 2	23T10	2019-10- 6:08:44.000	23T1	2019-10- 6:21:11.000		1	1.36		
	3 2	23T1	2019-10- 6:22:44.000	23T1	2019-10- 6:43:26.000		1	1.00		
	4 2	23T10	2019-10- 6:45:11.000	23T1	2019-10- 6:58:49.000		1	1.96		
	4							•		
In [40]:	mask = taxi	s.columns.st drop = taxis	r.contains	s('id\$ store				re_and_fwd_fl ue)		
Out[40]:	<pre>Index(['vendorid', 'ratecodeid', 'store_and_fwd_flag', 'pulocationid',</pre>									
In [41]:		.drop(column		hat contain ns_to_drop)	the stored	' columr	s in the	code above		
Out[41]:	tpep_pick	up_datetime	tpep_drop	off_datetime	passenger	_count	trip_distan	ce payment_t		
	0 23	2019-10- T16:39:42.000	23	2019-10- T17:14:10.000		1	7.	93		
	1 23	2019-10- T16:32:08.000	23	2019-10- T16:45:26.000		1	2.	00		
	2 23	2019-10- T16:08:44.000	23	2019-10- T16:21:11.000		1	1.	36		
	3 23	2019-10- T16:22:44.000	23	2019-10- T16:43:26.000		1	1.	00		
	4 23	2019-10- T16:45:11.000	23	2019-10- T16:58:49.000		1	1.	96		
	4							•		

#renames the column "tpep_pickup_datetime" to "pickup" and the column "tpep_dropoff

taxis.columns

```
Out[42]: Index(['pickup', 'dropoff', 'passenger_count', 'trip_distance', 'payment_type',
                 'fare_amount', 'extra', 'mta_tax', 'tip_amount', 'tolls_amount',
                 'improvement_surcharge', 'total_amount', 'congestion_surcharge'],
               dtype='object')
In [43]: taxis.dtypes #this outputs the datatypes of each column
Out[43]: pickup
                                   object
         dropoff
                                   object
         passenger_count
                                    int64
         trip_distance
                                  float64
         payment_type
                                    int64
                                  float64
         fare_amount
         extra
                                  float64
         mta_tax
                                  float64
         tip_amount
                                  float64
         tolls_amount
                                  float64
         improvement_surcharge
                                  float64
         total_amount
                                  float64
                                  float64
         congestion_surcharge
         dtype: object
In [44]: | taxis[['pickup','dropoff']] = taxis[['pickup','dropoff']].apply(pd.to_datetime)
         taxis.dtypes
         #this rewrites the dataframe with the changes pickup and dropoff datatype
Out[44]: pickup
                                   datetime64[ns]
         dropoff
                                   datetime64[ns]
                                           int64
         passenger_count
         trip_distance
                                         float64
         payment_type
                                           int64
                                         float64
         fare_amount
         extra
                                         float64
                                         float64
         mta_tax
         tip_amount
                                         float64
         tolls_amount
                                        float64
         improvement_surcharge
                                        float64
         total_amount
                                         float64
                                        float64
         congestion_surcharge
         dtype: object
```

Creating new columns

```
In [45]: taxis['elapsed_time'] = taxis['dropoff'] - taxis['pickup']#making a new column in t
In [46]: taxis['elapsed_time']
```

```
Out[46]: 0
                 0 days 00:34:28
          1
                 0 days 00:13:18
          2
                 0 days 00:12:27
                 0 days 00:20:42
          3
                 0 days 00:13:38
                        . . .
          9995
                 0 days 00:09:27
          9996
                 0 days 00:07:43
          9997
                 0 days 00:04:19
                 0 days 00:11:02
          9998
          9999
                 0 days 00:29:55
          Name: elapsed_time, Length: 10000, dtype: timedelta64[ns]
In [47]: taxis = taxis.assign(cost_before_tip=lambda x: x.total_amount - x.tip_amount,
                                tip_pct = lambda x: x.tip_amount/x.cost_before_tip,
                                fees=lambda x: x.cost_before_tip - x.fare_amount,
                                avg_speed = lambda x: x.trip_distance.div(x.elapsed_time.dt.to
          taxis.head()
          #this is another way of making new columns
Out[47]:
              pickup dropoff passenger_count trip_distance payment_type fare_amount extra m
               2019-
                        2019-
               10-23
                        10-23
                                             1
                                                        7.93
                                                                         1
                                                                                    29.5
                                                                                            1.0
             16:39:42 17:14:10
               2019-
                        2019-
               10-23
                        10-23
                                             1
                                                        2.00
                                                                         1
                                                                                    10.5
                                                                                            1.0
             16:32:08 16:45:26
               2019-
                        2019-
                                             1
                                                        1.36
                                                                         1
                                                                                     9.5
                                                                                            1.0
               10-23
                        10-23
             16:08:44 16:21:11
               2019-
                        2019-
          3
               10-23
                        10-23
                                             1
                                                        1.00
                                                                         1
                                                                                    13.0
                                                                                            1.0
             16:22:44 16:43:26
                        2019-
               2019-
               10-23
                        10-23
                                             1
                                                        1.96
                                                                         1
                                                                                    10.5
                                                                                            1.0
             16:45:11 16:58:49
In [48]: taxis.sort_values(['passenger_count', 'pickup'], ascending=[False,True]).head() # t
```

Out[48]:		pickup	dropoff	passenger_count	trip_distance	payment_type	fare_amount	extra
	5997	2019- 10-23 15:55:19	2019- 10-23 16:08:25	6	1.58	2	10.0	1.0
	443	2019- 10-23 15:56:59	2019- 10-23 16:04:33	6	1.46	2	7.5	1.0
	8722	2019- 10-23 15:57:33	2019- 10-23 16:03:34	6	0.62	1	5.5	1.0
	4198	2019- 10-23 15:57:38	2019- 10-23 16:05:07	6	1.18	1	7.0	1.0
	8238	2019- 10-23 15:58:31	2019- 10-23 16:29:29	6	3.23	2	19.5	1.0
	4							•
In [49]:	taxis	.nlargest	:(3,'elap	sed_time') #this	code finds t	he 3 Largest e	lapsed_time	•
In [49]: Out[49]:	taxis			sed_time') #this passenger_count	-			extra
	taxis				-			extra
		pickup 2019- 10-23 16:52:51 2019- 10-23	dropoff 2019- 10-24	passenger_count	trip_distance	payment_type	fare_amount	
	7576	pickup 2019- 10-23 16:52:51 2019- 10-23	2019- 10-24 16:51:44 2019- 10-24 16:50:22	passenger_count	trip_distance	payment_type	fare_amount	1.0
	7576 6902	pickup 2019- 10-23 16:52:51 2019- 10-23 16:51:42 2019- 10-23	2019- 10-24 16:51:44 2019- 10-24 16:50:22 2019- 10-24	passenger_count 1	trip_distance 3.75 11.19	payment_type 1	fare_amount 17.5 39.5	1.0

Out[50]:		pickup	dropoff	passenger_count	trip_distance	payment_type	fare_amount	extra
	729	2019- 10-23 16:52:27	2019- 10-23 16:52:27	1	0.0	2	52.0	4.5
	3912	2019- 10-23 16:21:26	2019- 10-23 16:21:26	1	0.0	2	8.0	3.5
	4716	2019- 10-23 16:07:59	2019- 10-23 16:07:59	1	0.0	2	80.0	0.0
	4	_	_					•
	Everci	(Part 2)						

Exercise (Part 2)

In [51]: meteorite =pd.read_csv("Meteorite_Landings.csv")
meteorite # this reads the csv file

ıt[51]:		name	id	nametype	recclass	mass (g)	fall	year	reclat
	0	Aachen	1	Valid	L5	21.0	Fell	01/01/1880 12:00:00 AM	50.77500
	1	Aarhus	2	Valid	H6	720.0	Fell	01/01/1951 12:00:00 AM	56.18333
	2	Abee	6	Valid	EH4	107000.0	Fell	01/01/1952 12:00:00 AM	54.21667
	3	Acapulco	10	Valid	Acapulcoite	1914.0	Fell	01/01/1976 12:00:00 AM	16.88333
	4	Achiras	370	Valid	L6	780.0	Fell	01/01/1902 12:00:00 AM	-33.16667
	•••								
	45711	Zillah 002	31356	Valid	Eucrite	172.0	Found	01/01/1990 12:00:00 AM	29.03700
	45712	Zinder	30409	Valid	Pallasite, ungrouped	46.0	Found	01/01/1999 12:00:00 AM	13.78333
	45713	Zlin	30410	Valid	H4	3.3	Found	01/01/1939 12:00:00 AM	49.25000
	45714	Zubkovsky	31357	Valid	L6	2167.0	Found	01/01/2003 12:00:00 AM	49.78917
	45715	Zulu Queen	30414	Valid	L3.7	200.0	Found	01/01/1976 12:00:00 AM	33.98333
	45746	40							

45716 rows × 10 columns

In [54]: meteorite = meteorite.rename(columns = {'mass (g)':"mass"}) meteorite #.rename command renames the column

Out[54]:		name	id	nametype	recclass	mass	fall	year	reclat
	0	Aachen	1	Valid	L5	21.0	Fell	01/01/1880 12:00:00 AM	50.77500
	1	Aarhus	2	Valid	H6	720.0	Fell	01/01/1951 12:00:00 AM	56.18333
	2	Abee	6	Valid	EH4	107000.0	Fell	01/01/1952 12:00:00 AM	54.21667
	3	Acapulco	10	Valid	Acapulcoite	1914.0	Fell	01/01/1976 12:00:00 AM	16.88333
	4	Achiras	370	Valid	L6	780.0	Fell	01/01/1902 12:00:00 AM	-33.16667
	•••		•••						
	45711	Zillah 002	31356	Valid	Eucrite	172.0	Found	01/01/1990 12:00:00 AM	29.03700
	45712	Zinder	30409	Valid	Pallasite, ungrouped	46.0	Found	01/01/1999 12:00:00 AM	13.78333
	45713	Zlin	30410	Valid	H4	3.3	Found	01/01/1939 12:00:00 AM	49.25000
	45714	Zubkovsky	31357	Valid	L6	2167.0	Found	01/01/2003 12:00:00 AM	49.78917

45716 rows × 10 columns

45715

Zulu

Queen

30414

```
In [63]: coordinates = meteorite.columns.str.contains('lat|long', regex = True)
    to_drop = meteorite.columns[coordinates]
    meteorite = meteorite.drop(columns = to_drop)
    meteorite
#this drops the latitude and Longitude
```

L3.7

200.0 Found

Valid

01/01/1976

12:00:00

AM

33.98333

Out[63]:		name	id	nametype	recclass	mass	fall	year
	0	Aachen	1	Valid	L5	21.0	Fell	01/01/1880 12:00:00 AM
	1	Aarhus	2	Valid	H6	720.0	Fell	01/01/1951 12:00:00 AM
	2	Abee	6	Valid	EH4	107000.0	Fell	01/01/1952 12:00:00 AM
	3	Acapulco	10	Valid	Acapulcoite	1914.0	Fell	01/01/1976 12:00:00 AM
	4	Achiras	370	Valid	L6	780.0	Fell	01/01/1902 12:00:00 AM
	•••							
	45711	Zillah 002	31356	Valid	Eucrite	172.0	Found	01/01/1990 12:00:00 AM
	45712	Zinder	30409	Valid	Pallasite, ungrouped	46.0	Found	01/01/1999 12:00:00 AM
	45713	Zlin	30410	Valid	H4	3.3	Found	01/01/1939 12:00:00 AM
	45714	Zubkovsky	31357	Valid	L6	2167.0	Found	01/01/2003 12:00:00 AM
	45715	Zulu Queen	30414	Valid	L3.7	200.0	Found	01/01/1976 12:00:00 AM

45716 rows × 7 columns

In [64]: meteorite.sort_values(['mass'], ascending=[False])# sorts the mass column descendin

_		-	_	-	-	
()11	+	1 6	L	/	-	0
υu	L	١ ١	U	+	-	۰

	name	id	nametype	recclass	mass	fall	year
16392	Hoba	11890	Valid	Iron, IVB	60000000.0	Found	01/01/1920 12:00:00 AM
5373	Cape York	5262	Valid	Iron, IIIAB	58200000.0	Found	01/01/1818 12:00:00 AM
5365	Campo del Cielo	5247	Valid	Iron, IAB- MG	50000000.0	Found	12/22/1575 12:00:00 AM
5370	Canyon Diablo	5257	Valid	Iron, IAB- MG	30000000.0	Found	01/01/1891 12:00:00 AM
3455	Armanty	2335	Valid	Iron, IIIE	28000000.0	Found	01/01/1898 12:00:00 AM
•••							
38282	Wei-hui-fu (a)	24231	Valid	Iron	NaN	Found	01/01/1931 12:00:00 AM
38283	Wei-hui-fu (b)	24232	Valid	Iron	NaN	Found	01/01/1931 12:00:00 AM
38285	Weiyuan	24233	Valid	Mesosiderite	NaN	Found	01/01/1978 12:00:00 AM
41472	Yamato 792768	28117	Valid	CM2	NaN	Found	01/01/1979 12:00:00 AM
45698	Zapata County	30393	Valid	Iron	NaN	Found	01/01/1930 12:00:00 AM

45716 rows × 7 columns