Inequitable Access*

An Analysis of Licenced Child Care in Toronto's 25 Wards

Thomas Fox

April 3, 2024

First sentence. Second sentence. Third sentence. Fourth sentence.

Table of contents

1	Introduction	1
2	Data 2.1 Licensed Child Care Centres 2.2 Toronto Ward Profiles	
3	Model 3.1 Model set-up	
4	Results	4
5	Discussion 5.1 First discussion point	4
Αŗ	pendix	6
Α	Additional data details	6
В	Model details B. 1. Posterior predictive check	6

^{*}Code and data are available at: https://github.com/ThomasWilliamFox/child_care_access.git.

B.2	Diagnostics	 	 	•		 				•					(
Referen	ces														7

1 Introduction

Using R Core Team (2023) and Wickham et al. (2019).

The paper's estimand is that average household income has a negative relationship with the number of children per child care space by ward.

The remainder of this paper is structured as follows. Section 2....

2 Data

2.1 Licensed Child Care Centres

Table 1: Sample of Cleaned Toronto Licensed Child Care Centre Data

Facility ID	Ward Number	Total Spaces	Type	Subsidy	SWELCC
1	3	164	Non Profit Agency	Y	Y
2	8	83	Non Profit Agency	Y	Y
3	25	102	Non Profit Agency	Y	Y
4	10	65	Non Profit Agency	Y	Y
5	20	26	Non Profit Agency	\mathbf{Y}	Y
6	24	62	Non Profit Agency	Y	Y

2.2 Toronto Ward Profiles

Table 2: Sample of Cleaned Toronto Ward Data

	Total	Children	Average	Median	English spoken	Population
P	opula-	under	Household	Household	most often in	identifying as
Ward	tion	15	Income	Income	household	racialized
1	115120	18500	95200	81000	67360	90130
2	117200	17300	146600	100000	85330	37210
3	139915	18460	127200	90000	105230	48675
4	104715	15015	127200	85000	85720	30445

Table 2: Sample of Cleaned Toronto Ward Data

	Total	Children	Average	Median	English spoken	Population
Popula-		under	Household	Household	most often in	identifying as
War	d tion	15	Income	Income	household	racialized
5	115675	18465	88700	72000	76075	67120
6	107355	15555	107500	82000	63260	56405

3 Model

The goal of our modelling strategy is twofold. Firstly,...

Here we briefly describe the Bayesian analysis model used to investigate... Background details and diagnostics are included in Appendix B.

3.1 Model set-up

Define y_i as the number of seconds that the plane remained a loft. Then β_i is the wing width and γ_i is the wing length, both measured in millimeters.

$$y_i | \mu_i, \sigma \sim \text{Normal}(\mu_i, \sigma)$$
 (1)

$$\mu_i = \alpha + \beta_i + \gamma_i \tag{2}$$

$$\alpha \sim \text{Normal}(0, 2.5)$$
 (3)

$$\beta \sim \text{Normal}(0, 2.5)$$
 (4)

$$\gamma \sim \text{Normal}(0, 2.5)$$
 (5)

$$\sigma \sim \text{Exponential}(1)$$
 (6)

We run the model in R (R Core Team 2023) using the rstanarm package of Goodrich et al. (2022). We use the default priors from rstanarm.

3.1.1 Model justification

We expect a negative relationship between average household income and the number of children per child care space by ward. In particular...

We can use maths by including latex between dollar signs, for instance θ .

Figure 1: Child care centres in Toronto

4 Results

Figure 2: Relationship between income and child care spaces

Our results are summarized in ?@tbl-modelresults.

5 Discussion

5.1 First discussion point

The discussion is a chance to show off what you know and what you learnt from all this.

5.2 Second discussion point

5.3 Third discussion point

5.4 Weaknesses and next steps

Figure 3: Relationship between language and child care spaces

Figure 4: Relationship between non-racialized population by ward and child care spaces

Appendix

A Additional data details

B Model details

B.1 Posterior predictive check

In $\mathbf{?@fig\text{-}ppcheckandposteriorvsprior}\mathbf{-1}$ we implement a posterior predictive check. This shows...

In **?@fig-ppcheckandposteriorvsprior-2** we compare the posterior with the prior. This shows...

B.2 Diagnostics

?@fig-stanareyouokay-1 is a trace plot. It shows... This suggests...

?@fig-stanareyouokay-2 is a Rhat plot. It shows... This suggests...

References

- Goodrich, Ben, Jonah Gabry, Imad Ali, and Sam Brilleman. 2022. "Rstanarm: Bayesian Applied Regression Modeling via Stan." https://mc-stan.org/rstanarm/.
- R Core Team. 2023. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/.
- Wickham, Hadley, Mara Averick, Jennifer Bryan, Winston Chang, Lucy D'Agostino McGowan, Romain François, Garrett Grolemund, et al. 2019. "Welcome to the tidyverse." *Journal of Open Source Software* 4 (43): 1686. https://doi.org/10.21105/joss.01686.