1. If $ac \mid bc$ and $c \neq 0$, prove that $a \mid b$.

Proof. Since $ac \mid bc$ there exists a $q \in \mathbb{Z}$ such that acq = bc. Since $c \neq 0$ we can divide both sides by c and get aq = b. Therefore $a \mid b$.

2. Prove that gcd(ad, bd) = |d| gcd(a, b)

Proof. Since |d| | d we have that $|d| \gcd(a, b) | ad$ and $|d| \gcd(a, b) | bd$. Hence $|d| \gcd(a, b)$ is a common divisor of ad and bd. We will now show that $|d| \gcd(a, b)$ is the largest common divisor. Since $\gcd(a, b) \ge 1$ we have that

$$|d\gcd(a,b)| = |d|\gcd(a,b).$$

By the characterization of the greatest common divisor there exist integers x and y such that $ax + by = \gcd(a, b)$. Hence,

$$adx + bdy = d\gcd(a, b).$$

If c is a common divisor of ad and bd then $c \mid adx + bdy$. Hence, $c \leq |c| \leq |d| \gcd(a, b)$ by Proposition 2.11(iv).

3. Prove that gcd(a, c) = gcd(b, c) = 1 if and only if gcd(ab, c) = 1.

Proof. Suppose that gcd(a,c) = gcd(b,c) = 1. There exist some $x_0, y_0, x_1, y_1 \in \mathbb{Z}$ such that

$$ax_0 + cy_0 = 1$$

and

$$bx_1 + cy_1 = 1.$$

Therefore,

$$1 = bx_1 + cy_1 = b(ax_0 + cy_0)x_1 + cy_1 = ab(x_0x_1) + c(by_0x_1 + y_1)$$

Hence, we have that gcd(ab, c) = 1 by Proposition 2.27 (i).

Conversely, suppose that gcd(ab, c) = 1. There exist some $x, y \in \mathbb{Z}$ such that

$$abx + cy = 1.$$

However, this implies that gcd(a,c)=1 and gcd(b,c)=1 by Proposition 2.27 (i) since $ax,bx\in\mathbb{Z}$.

4. Prove that any two consecutive integers are relatively prime.

Proof. Let $n \in \mathbb{Z}$ be an arbitrary integer. Suppose for the sake of contradiction that there exists a $q \in \mathbb{Z}$ such that $q \neq 1$ and $q = \gcd(n, n+1)$. Then $q \mid n$ and $q \mid (n+1)$ so $q \mid (n+1) - n$ i.e. $q \mid 1$. Since $1 \mid q$ we have $q = \pm 1$ by 2.11 (iii). This is a contradiction and thus $\gcd(n, n+1) = 1$ for all integers n.

Alternatively, we can do the following.

Proof. Since for every integer n we have (n+1)(1)+(n)(-1)=1 we have the gcd(n,n+1)=1 by Proposition 2.27(i).

5. Prove that $\{ax + by \mid x, y \in \mathbb{Z}\} = \{n \cdot \gcd(a, b) \mid n \in \mathbb{Z}\}$

Proof. We will show the following set inclusions

$$\{ax + by \mid x, y \in \mathbb{Z}\} \subseteq \{n \cdot \gcd(a, b) \mid n \in \mathbb{Z}\}$$
 (1)

and

$$\{n \cdot \gcd(a, b) \mid n \in \mathbb{Z}\} \subseteq \{ax + by \mid x, y \in \mathbb{Z}\}. \tag{2}$$

To show (1) let $z \in \{ax + by \mid x, y \in \mathbb{Z}\}$ be an arbitrary element. Then

$$z = ax_0 + by_0$$
 for some $x_0, y_0 \in \mathbb{Z}$.

By Theorem 2.31 the equation

$$z = ax + by$$

has integer solutions if and only if $gcd(a, b) \mid z$ i.e. $z = n \cdot gcd(a, b)$ for some $n \in \mathbb{Z}$. Hence we have that $z \in \{n \cdot gcd(a, b) \mid n \in \mathbb{Z}\}$. Since z was arbitrary we have

$$\{ax+by\mid x,y\in\mathbb{Z}\}\subseteq\{n\cdot\gcd(a,b)\mid n\in\mathbb{Z}\}.$$

To show (2), let n be an arbitrary integer. By the characterization of the greatest common divisor there exist $x_0, y_0 \in \mathbb{Z}$ such that

$$\gcd(a,b) = ax_0 + by_0.$$

Then,

$$n \gcd(a,b) = anx_0 + bny_0 \in \{ax + by \mid x, y \in \mathbb{Z}\}.$$

Since n was arbitrary we have that

$${n \cdot \gcd(a, b) \mid n \in \mathbb{Z}} \subseteq {ax + by \mid x, y \in \mathbb{Z}}.$$