Problems Solution

Pierre Parisé

Problem 4

$$S_0$$
, $|z| = \frac{1}{(\sqrt{2})^4} = \frac{1}{4}$.

The argument of Z 15 a little more delicate. We have

$$arg(1+i) = \begin{cases} \frac{\pi}{4} + 2k\pi i : k \in \mathbb{Z} \end{cases}$$

So
$$arg\left(\frac{1}{1+i}\right)^{4} = -arg(1+i)^{4} = \begin{cases} -\pi + 2k\pi i : k \in \mathbb{Z} \end{cases}$$

So,
$$Arg\left(\frac{1}{1+i}\right)^2 = \pi$$

$$\Rightarrow \log\left(\frac{1}{1+i}\right)^{-1} = \log\left(\frac{1}{4}\right) + \left(\pi + 2k\pi\right)i, k \in \mathbb{Z}.$$

(b)
$$|z| = (\sqrt{2})'' = (\sqrt{2})'^{\circ} \sqrt{2} = 32\sqrt{2}$$
.

Also

$$\arg Z = \| \arg(1-i) = \left\{ -\frac{\|\pi\|}{4} + \partial k\pi : k \in \mathbb{Z} \right\}.$$

$$\Rightarrow log(z) = log(32\sqrt{2}) + (-3\pi + 2k\pi);$$

(c)
$$|z| = 4^8 = 65536 = 2^{16}$$

Also,

$$arg \neq = 8 arg (1+i\sqrt{3}) = \begin{cases} 8\pi + 2k\pi : k \in \mathbb{Z} \end{cases}$$

$$\Rightarrow \text{ flrg 7} = \frac{8\pi}{3} - 2\pi = \frac{2\pi}{3}$$

$$\Rightarrow \log(z) = 16 \log(2) + \left(\frac{2\pi}{3} + 2k\pi\right); \quad k \in \mathbb{Z}.$$

$$\frac{e^{-i\pi/7}}{2e^{-i\pi/5}} = \frac{1}{2} e^{i(-\pi/7 + \pi/5)}$$

$$= \frac{1}{2} e^{i(\frac{2\pi}{35})}$$

$$= \frac{1}{2} e^{i(\frac{2\pi}{35})}$$

$$\Rightarrow \log(z) = \log(\frac{1}{2}) + (\frac{2\pi}{35} + 2k\pi)i, k \in \mathbb{Z}.$$

Problem 6

(a)
$$Log(Z) = log(\frac{1}{4}) + \pi i$$
.

(b)
$$Log(z) = log(32\sqrt{z}) - \frac{3\pi}{4}i$$
.

(c)
$$Log(z) = 16 log(z) + \frac{2\pi}{3}i$$
.

(d)
$$Log(z) = log(\frac{1}{2}) + \frac{2\pi}{35}i$$
.

Problem 14

$$e^{-\frac{7}{2}} = 1+i$$
 $\Longrightarrow \frac{1}{1+i} = e^{\frac{7}{2}}$

Thus,
$$Z = Log(\frac{1}{1+i}) + 2k\pi i$$
, $k \in \mathbb{Z}$.

So,
$$arg\left(\frac{1}{1+i}\right) = \left\{-\frac{\pi}{4} + 2k\pi : k \in \mathbb{Z}\right\}.$$

Thus,
$$\Xi = log\left(\frac{1}{\sqrt{2}}\right) + \frac{-\pi}{4}i + 2k\pi i, k\in\mathbb{Z}.$$

Problem 18

$$e^{\frac{7}{2}} = \frac{1+i}{1-i}$$
 \iff $e^{\frac{7}{2}} = i$

Thus,
$$Z = Log(i) + 2k\pi i$$
, $k \in \mathbb{Z}$.
 $\Rightarrow Z = log(i) + \pi i + 2k\pi i$, $k \in \mathbb{Z}$.

Problem 19

(a)
$$Log(e^{i\pi}) = log(i) + \pi i$$
 $(Arg(e^{i\pi}) = \pi)$.

$$Log(e^{3i\pi}) = log(1) + \pi i = \pi i \left(Arg(e^{i3\pi}) = \pi\right)$$

$$Log\left(\frac{5i\pi}{e}\right) = log + \pi i = \pi i \quad \left(Arg\left(e^{iS\pi}\right) = \pi\right).$$

Log(z)=
$$z \iff log(e^{2}) + i Arg(e^{2}) = x + i y$$

 $\iff log e^{x} + i Arg(e^{2}) = x + i y$
 $\iff Arg(e^{2}) = y \iff -\pi < y \leq \pi \cdot D$

Problem 20

Assume that log z = i arg(z). Then, there is a $k \in \mathbb{Z}$ and $m \in \mathbb{Z}$ s.t.

 $log|z|+(Arg(z)+2k\pi)i=i(Arg(z)+2m\pi)$

Comparing complex number, we obtain $log |z| = 0 \Rightarrow |z| = 1$.

Now, let |z|=1. Then, $\log z = \log |z| + i \left(Arg z + 2k\pi \right)$

 $= i \left(Arg + 2k\pi \right) = i arg + 2k\pi$

Roblem 30

$$(1+i)^{3+i} = (3+i)Log(1+i)$$

So, $Log(1+i) = log(2 + \frac{\pi}{4}i)$

 \Rightarrow (3+i) $Log(1+i) = 3log(2 - \frac{\pi}{4} + (log(2 + 3\pi)i)$

$$\Rightarrow (1+i)^{3+i} = e^{3\log(2-\frac{\pi}{4}+(\log(2+\frac{3\pi}{4}))i})$$

$$= e^{3\log(2-\frac{\pi}{4}+(\log(2+\frac{3\pi}{4}))i})$$

$$= e^{3\log(2-\frac{\pi}{4}+(\log(2+\frac{3\pi}{4}))i})$$

$$+ i Sin(\log(2+\frac{3\pi}{4}))$$

2 - 0.9412 + 0.4417

Problem 31

$$i' = e^{iLogi}$$

Here, $Logi = \frac{\pi}{2}i \Rightarrow i' = e^{i(\frac{\pi}{4}i)} = e^{\pi/4}$
 $\Rightarrow i' \approx 0.4559$.