КАРБОНИЛЬНЫЕ СОЕДИНЕНИЯ - АЛЬДЕГИДЫ И КЕТОНЫ СТРОЕНИЕ

ОБЩАЯ ФОРМУЛА - С.Н.,О

Функциональная группа: карбонильная группа (или оксо-группа).

в альдегидах - на конце моле-

в кетонах - НЕ на конце.

НОМЕНКЛАТУРА

пропанон (ацетон)

$$H_3C$$
 CH_2 C CH_3 C CH_3

бутанон

- 1) Выбираем самую длинную цепь (в ней обязательно должна быть функциональная группа!)
- 2) Нумеруем атомы углерода, начиная с того конца, где ближе карбонильная группа
- 3) Составляем название вещества по схеме: "местоположение заместителя + название заместителя + число атомов углерода в главной цепи + АЛЬ/ОН (+ местоположение кетоно-группы)". Пример:

ГОМОЛОГИЧЕСКИЙ РЯД МЕТАНАЛЯ

- 1) метаналь
- 2) формальдегид
- 3) муравьиный альдегид

- 1) этаналь
- 3) уксусный альдегид

ИЗОМЕРИЯ

углеродного скелета	н ₃ с——сн——с н ₃ с— сн ₃ н 2-метилпропаналь	—сн ₂ —сн ₂ —с
положения оксогруппы в кетонах	H ₃ C	с——СН ₂ —С—СН ₂ —СН ₃
межклассовая (у альдегидов с кетонами)	н ₃ ссн ₂ с	н ₃ с

ФИЗИЧЕСКИЕ СВОЙСТВА

Метаналь - газ, растворимый в воде, этаналь - легкокипящая жидкость, также растворимая в воде, высшие альдегиды - твёрдые вещества.

Низшие альдегиды - резкий запах, $\mathsf{C}_{_{\!4}}\text{-}\mathsf{C}_{_{\!6}}$ - неприятный запах, высшие альдегиды - цветочный аромат.

ИХ МОЛЕКУЛЫ НЕ СВЯЗАНЫ ВОДОРОДНЫМИ СВЯЗЯМИ!

Поэтому температуры кипения ниже, чем у соответствующих спиртов.

химические свойства

L C

РЕАКЦИИ ПРИСОЕДИНЕНИЯ

- -> гидрирование
- -> реакция с НСМ
- -> реакция с NaHSO,
 - -> реакция с ROH
 - -> реакция с НОН
- -> реакция с NH, и -NH,

РЕАКЦИИ ПОЛИ-МЕРИЗАЦИИ И ПОЛИКОНДЕНСАЦИИ

РЕАКЦИИ ОКИСЛЕНИЯ

-> окисление + [Ag(NH₃)₂]OH + Cu(OH),

-> горение

РЕАКЦИИ ЗАМЕЩЕНИЯ

-> + PCl5

-> + NH₃ и -NH₂ -> + Hal₃

тянется за пи-связью

РЕАКЦИИ ПРИСОЕДИНЕНИЯ

-> гидрирование [+ H₂, условия - Ni/Pt/Pd + t]

При гидрировании альдегидов образуются первичные спирты, при гидрировании кетонов - вторичные спирты.

-> реакция с синильной кислотой HCN [катализатора и условий нет]

$$H_3C$$
 \longrightarrow H_3C \longrightarrow H_3C \longrightarrow CH \longrightarrow $C\equiv N$

-> реакция со спиртами [катализатора и условий нет]

Поначалу (при взаимодействии <u>с ОДНОЙ молекулой</u> спирта) образуются ПОЛУацетали, при взаимодействии с ДВУМЯ молекулами спирта - ацетали.

$$H_3C$$
 — C + H_3C — CH — CH

-> реакция с водой [катализатора и условий нет]

-> реакция с NaHSO, [катализатора и условий нет]

-> реакция с NH₃ и NH₂-содержащими в-вами [катализатора и условий нет]

$$H_3C$$
 — C + NH_3 — H_3C — CH — NH + H — OH

РЕАКЦИИ ПОЛИМЕРИЗАЦИИ И ПОЛИКОНДЕНСАЦИИ

-> полимеризация низших альдегидов [условия - Н*]

$$nH - C \stackrel{O}{\swarrow}_{H} \xrightarrow{H_{2}O} \begin{bmatrix} H \\ | \\ -C - O - \\ | \\ H \end{bmatrix}$$

-> поликонденсация фенола с метаналем [условия - H⁺/OH⁻ + t]

элементарное звено фенолформальдегидного полимера

РЕАКЦИИ ОКИСЛЕНИЯ И ГОРЕНИЯ

ОКИСЛЕНИЕ

МЯГКОЕ

ЖЁСТКОЕ

несмотря ни на что - до карбоновых кислот и их солей!

в кислой/щелочной среде, до карбоновых кислот и их солей

Качественными реакциями на альдегиды являются 1) реакция с реактивом Толенса (аммиачным р-ром оксида серебра); 2) реакция с гидроксидом меди (II).

$$\begin{split} \text{CH}_3\text{CHO} + 2[\text{Ag}(\text{NH}_3)_2]\text{OH} &= 2\text{Ag} + \text{H}_2\text{O} + 3\text{NH}_3 + \text{CH}_3\text{COONH}_4 \\ \text{CH}_3\text{CHO} + 2\text{Cu}(\text{OH})_2 &= \text{Cu}_2\text{O} + 2\text{H}_2\text{O} + \text{CH}_3\text{COOH} \\ \\ 5\text{CH}_3\text{CHO} + 2\text{KMnO}_4 + 3\text{H}_2\text{SO}_4 &= 5\text{CH}_3\text{COOH} + 2\text{MnSO}_4 + \text{K}_2\text{SO}_4 + 3\text{H}_2\text{O} \\ \\ 2\text{CH}_3\text{CHO} + 5\text{O}_2 &= 4\text{CO}_2 + 4\text{H}_2\text{O} \end{split}$$

РЕАКЦИИ ЗАМЕЩЕНИЯ

-> галогенирование [условия - свет или температура]

Замещение водорода происходит при альфа-атоме углерода (т.е. при том атоме углерода, который находится непосредственно у карбонильной группы).

$$H_3C$$
 — C + $CI-CI$ — CI — CI

-> реакция с PCl_s/PBr_s [катализаторов и условий HET]

$$H_3C$$
 \longrightarrow H_3C \longrightarrow

-> реакция с NH₃ и NH₂-содержщаими в-вами [условий и катализаторов HET]

Происходит замещение КИСЛОРОДА на NH при взаимодействии альдегидов с NH_3 , NH_2OH , N_2H_4 , C_6H_5NH - NH_2 .

ПОЛУЧЕНИЕ

мягкое окисление спиртов	H ₃ C ——CH ₂ Cu, t° H ₃ C ——C + H—H	
щелочной гидролиз ди- галогенпроизводных	H_3C CH CI CH CH CI CH CI CH CH CI CH CH CH CH CH CH CH CH	
каталитическое ок-е алкенов	$2H_2C$ \longrightarrow $CuCl_2, PdCl_2, t^{\circ}$ $2H_3C$ \longrightarrow $2H_3C$ \longrightarrow H	
термическое разложение кальциевых и бариевых солей карбоновых кислот	(CH₃COO)₂Ca — t°→CH₃-C-CH₃ + CaCO₃ Ö	
кумольный метод	см. тему "спирты и фенолы"	
получение НСНО	$2CH_3OH + O_2 (Cu, t) = 2HCHO + 2H_2O$ $CH_4 + O_2 (Ni, t) = HCHO + H_2O$	

ПРИМЕНЕНИЕ

Формальдегид: получение фенолформальдегидной смолы, формалина; для протравливания семян.

Ацетальдегид: получение уксусной кислоты.

Ацетон: растворитель, производство лакокрасочных изделий.

для заметок