# Содержание

| Ι | Интегрирование на многообразиях              | 2  |
|---|----------------------------------------------|----|
| 1 | $\mathbf{K}$ ривые в $R^n$                   | 2  |
| 2 | Криволинейные интегралы I рода               | 4  |
|   | Свойства криволинейных интегралов I рода     | 5  |
| 3 | Криволинейные интегралы II рода              | 8  |
|   | Формула Грина:                               | 11 |
|   | Формула Грина для многосвязных областей:     | 14 |
|   | Теорема 1.2                                  | 16 |
| 4 | Поверхности в $R^n$                          | 21 |
|   | I квадратичная форма поверхности             | 24 |
|   | Поверхностный интеграл I рода                | 24 |
|   | Свойства поверхностных интегралов I рода:    | 25 |
|   | Поверхностный интеграл II рода               | 25 |
|   | Свойства поверхностных интегралов II рода    | 26 |
|   | Формула Гаусса-Остроградского:               | 27 |
|   | Формула Стокса:                              | 30 |
| 5 | Полезности                                   | 31 |
|   | Связная область                              | 31 |
|   | Формула конечных приращений Лагранжа         | 31 |
|   | Теорема о смешанных производных              | 31 |
|   | Вывол $cos\gamma$ в т. Гаусса-Остроградского | 31 |

# Часть I

# Интегрирование на многообразиях

# 1 Кривые в $R^n$

Мы будем рассматривать наши кривые в пространстве  $\mathbb{R}^n$ . Иногда в формулировке теоремы или утверждения нет условия на непрерывность кривой. Это не означает, что его нет, возможно оно и так подразумевается и без него утверждение становится интуитивно некорректным.

# Определение 1.1:

**Непрерывная кривая** — множество точек  $\varphi_1(t), ..., \varphi_n(t), t \in [a, b]$ 

$$A = \varphi_1(a), ..., \varphi_n(a)$$

$$B = \varphi_1(b), ..., \varphi_n(b)$$

Если A = B, то кривая замкнута.

# Определение 1.2:

 $\Phi(t)=(arphi_1(t),...,arphi_n(t))$  — параметризация кривой

Важный факт: существует бесконечное кол-во способов параметризовать кривую

# Определение 1.3:

Если для кривой выполнятеся:  $\exists \varphi_1'(t),...,\varphi_n'(t)$  такие, что  $\varphi_1'^2(t)+...+\varphi_n'^2(t)>0, t\in [a,b]$ , то такую кривую называем **гладкой** Если  $\varphi_1'^2(t)+...+\varphi_n'^2(t)=0$ , при t=m, то такая точка **особенная** 

# Определение 1.4:

**Кусочно-гладкая кривая** — **непрервыная** гладкая кривая, состоящая из **конечного** числа гладких кривых.

Важный факт: не каждая кривая является спрямляемой

# Определение 1.5:

Спрямляемая кривая — кривая, имеющая конечную длину.

Важный факт: гладкая кривая всегда спрямляема

# Определение 1.6:

**Натуральная параметризация** — параметризация, параметром которой выступает длина **дуги** от начала до точки на кривой.

Обозначаем ее как  $\Psi(s)$ , где s — длина дуги



# Теорема 1.1:

Для любой гладкой кривой существует натуральная параметризация. Без доказательства.

# Любопытное утверждение:

Если кривая гладкая и без особых точек с гладкой параметризацией  $\Phi(t)$  и натуральной параметризацией  $\Psi(s)$  справедливо:

$$\frac{ds}{dt} = |\Phi'(t)|$$

# Некоторые факты:

Задание параметризации  $(\varphi_1(t),...,\varphi_n(t))$  определяет движение на кривой Гот ее начальной точки к конечной, или, другими словами, определяет ориентацию кривой, называемую положительной. Если при переходе от исходной параметризации начальная и конечная точки меняются местами (в случае замкнутой кривой — меняется направление движения), то происходит смена ориентации от положительной к отрицательной. Кривую  $\Gamma$  с положительной по отношению к исходной параметризации ориентацией обозначают  $\Gamma^+$ , с отрицательной —  $\Gamma^-$ .

# 2 Криволинейные интегралы I рода

# Определение 1.7:

Пусть задана гладкая, спрямляемая кривая с параметризацией  $\Phi(t)$ 

 $\Gamma: \Phi(t), t \in [a, b]$ 

Также есть натуральная параметризация:

 $\Gamma: \Psi(s), \, s \in [0, S_{\Gamma}]$ , в силу спрямляемости

И пусть задана функция  $F(x), x \in \Gamma$ 

Тогда **криволинейным интегралом I рода от** F **по**  $\Gamma$  назовем интеграл Римана:

$$I = \int_{0}^{S_{\Gamma}} F(\Psi(s)) ds = \int_{0}^{S_{\Gamma}} F(s) ds$$

И будем обозначать его, как

$$I = \int_{\Gamma} F_0(x) \, ds$$

# Свойства криволинейных интегралов І рода

Свойство 1:  $F(s) = 1 \Rightarrow I = S_{\Gamma}$ 

Док-во:

$$F(s) = 1 \Rightarrow I = \int_{0}^{S_{\Gamma}} 1 \, ds \Rightarrow I = S_{\Gamma} - 0 = S_{\Gamma}$$

ЧИТД

**Свойство 2:** Криволинейный интеграл I рода не зависит от ориентации кривой, те

$$\int_{\Gamma^+} F_0(x) \, ds = \int_{\Gamma^-} F_0(x) \, ds$$

Док-во:

Пусть дана кривая с натуральной параметризацией  $\Psi(s), s \in [0, S_{\Gamma}]$ :

 $\Gamma^+: A = \Psi(0), B = \Psi(S_{\Gamma})$ 

Возьмем точку  $M \in [A,B]$  на кривой, тогда  $M = \Psi(s)$ 

Определим параметр  $\sigma = S_{\Gamma} - s$ , те  $\sigma$  — расстояние от B до M.Тогда

$$\int_{\Gamma^{+}} F_{0}(x) ds = \int_{0}^{S_{\Gamma}} F(\Psi(s)) ds \stackrel{\sigma = S_{\Gamma} - s}{=} - \int_{S_{\Gamma}}^{0} F(\Psi(\sigma - S_{\Gamma})) d\sigma =$$

$$= \int_{0}^{S_{\Gamma}} F(\Psi(\sigma - S_{\Gamma})) d\sigma = \int_{\Gamma^{-}} F_{0}(x) d\sigma$$

Тк криволинейный интеграл I рода не зависит от выбранной параметризации, то свойство 2 доказано. читд

**Свойство 3:** Пусть  $\Gamma$  есть кривая в  $R^n$  с непрерывно дифференцируемой на отрезке [a,b] параметризацией  $\Phi(t)$  без особых точек, тогда справедливо равенство

$$\int_{\Gamma} F_0(x) \, ds = \int_a^b F(\Phi(t)) [\varphi_1'^2(t) + \dots + \varphi_n'^2(t)]^{\frac{1}{2}} \, dt$$

Без доказательства

**Свойство 4:** Пусть  $\tau=\{s_i\}_{i=0}^m$  есть разбиение отрезка  $[0,S_\Gamma],\ \xi_i$  есть точки из отрезков  $[s_{i-1},s_i], i=1,...,m, \Delta s_i=s_i-s_{i-1}$  длина дуги кривой  $\Gamma$  от точки  $\Psi_0(s_{i-1})$  до точки  $\Psi_0(s_i),\ \sigma_{\tau}$  — интегральная сумма функции  $F_0(s)$  по отрезку  $[0,S_\Gamma]$ 

$$\sigma_{\tau} = \sum_{i=1}^{m} F_0(\Psi_0(\xi_i)) \Delta s_i$$

Тогда, если криволинейный интеграл I первого рода существует, то

$$\lim_{\max(\Delta s_i) \to 0} \sigma_{\tau} = I$$

Док-во:

Вспомним, как мы определяли интеграл Римана. Мы составляли интегральные суммы, потом устремляли разбиение к нулю и говорили, если вот существует такой предел, то назовем его интегралом Римана. Тут у нас условие, что криволинейный интеграл I первого рода существует, значит существует интеграл Римана, значит и предел сумм есть, который как раз и равен нашему интегралу Римана.

**Свойство 5:** Если функция F(x) представляет собой комбинацию  $\alpha F_1(x) + \beta F_2(x)$ ,  $\alpha, \beta$  — фиксированные числа, криволинейные интегралы по кривой  $\Gamma$  от функций  $F_1(x)$  и  $F_2(x)$  существуют, то выполняется равенство.

$$\int_{\Gamma} F_0(x) ds = \alpha \int_{\Gamma} F_1(x) ds + \beta \int_{\Gamma} F_2(x) ds$$

Док-во:

$$\int_{\Gamma} F_{0}(x) ds = \int_{0}^{S_{\Gamma}} F(\Psi(s)) ds = \int_{0}^{S_{\Gamma}} \alpha F_{1}(\Psi(s)) + \beta F_{2}(\Psi(s)) ds = \int_{0}^{S_{\Gamma}} \alpha F_{1}(\Psi(s)) ds + \int_{0}^{S_{\Gamma}} \beta F_{2}(\Psi(s)) ds = \alpha \int_{0}^{S_{\Gamma}} F_{1}(\Psi(s)) ds + \beta \int_{0}^{S_{\Gamma}} F_{2}(\Psi(s)) ds = \alpha \int_{0}^{S_{\Gamma}} F_{1}(\Psi(s)) ds + \beta \int_{0}^{S_{\Gamma}} F_{2}(\Psi(s)) ds = \alpha \int_{0}^{S_{\Gamma}} F_{1}(\Psi(s)) ds + \beta \int_{0}^{S_{\Gamma}} F_{2}(\Psi(s)) ds = \alpha \int_{0}^{S_{\Gamma}} F_{2}(x) ds$$

ЧИТД

Вообщем сводим криволинейный интеграл к интегралу Римана, а там эти свойства уже доказаны в прошлом семестре.  $_{\it c}$ 

# Определение 1.8:

Криволинейным интегралом по кусочно-гладкой кривой  $\Gamma$  называется число

$$\int_{\Gamma_1} F_0(x) ds + \int_{\Gamma_2} F_0(x) ds \tag{1}$$

если каждый из криволинейных интегралов по  $\Gamma_1$  и  $\Gamma_2$  существуют.

Замечание Поскольку понятие определенного интеграла

$$\int_{a}^{b} F(x) \, dx$$

по отрезку можно расширить — например, до несобственного интеграла от неограниченных функций или по неограниченному промежутку — то и понятие криволинейного интеграла первого рода можно расширить, определив несобственный криволинейный интеграл первого рода, или же перейти к какой-либо иной конструкции, расширяющей понятие обычного определенного интеграла.

# 3 Криволинейные интегралы II рода

Пусть  $\Gamma$  есть кривая, параметризованная непрерывно-дифференцируемой на отрезке [a,b] вектор-функцией  $\Phi(t)$ , и пусть эта кривая не имеет особых точек. Тогда, во-первых, в каждой точке  $\Phi(t)$  определена касательная к  $\Gamma$ , и, во-вторых, от параметризации  $\Phi(t)$  можно перейти к эквивалентной ей натуральной параметризации  $\Psi(s)$ . Обозначим через  $\cos\alpha_k, k=1,...,n$ , направляющие косинусы единичного вектора  $\vec{l}=\vec{l}(t)$  касательной к  $\Gamma$  в текущей точке (другими словами, искомый вектор  $\vec{l}$  задается равенством  $\vec{l}=(\cos\alpha_1,...,\cos\alpha_n)$ и  $\alpha_k, k=1,...,n$ , есть углы между вектором  $\vec{l}$  и положительным направлением соответствующей оси  $Ox_k$ ).

# Определение 1.9:

Пусть задана функция  $F_0(x)$ , определенная при  $x \in \Gamma$ ,

и пусть  $F_0(s) = F(\Psi(s)).(Я$  тут переобозначил F и  $F_0$ , так как это было в интегралах I рода, ибо можно запутаться, когда F и  $F_0$  меняются местами просто так)

Тогда криволинейным интегралом второго рода по кривой  $\Gamma$  от функции  $\mathbf{F}(\mathbf{x})$  по координате  $x_k, \ k=1,...,n,$  называется интеграл:

$$I = \int_{\Gamma} F_0 * cos \alpha_k ds,$$

если последний существует

Обозначают как:

$$I = \int_{\Gamma} F_0 dx_k,$$

# Определение 1.10:

Область G из пространства  $R^2$  называется **элементарной относительно оси** Oy, если ее граница состоит из графиков двух непрерывных функций  $\phi(x)$  и  $\psi(x)$ , определенных при  $x \in [a,b]$  и таких, что  $\phi(x) \leq \psi(x)$  для всех x, а также, быть может, из некоторых отрезков прямых x=a и x=b.



# Определение 1.11:

Область G из пространства  $R^2$  называется **элементарной относительно оси** Ox областью, если ее граница состоит из графиков двух непрерывных функций  $\alpha(y)$  и  $\beta(y)$ , определенных при  $y \in [c,d]$  и таких, что  $\alpha(y) \leq \beta(y)$  для всех y, а также, быть может, из некоторых отрезков прямых y = c и y = d.



#### Замечание:

Группы Шваб идут по Крючковичу, у которого такие области называются **просты-ми** и, к тому же, оси меняются местами.

Область D на плоскости xOy назовем простой областью; 1) (относительно оси Ox) если она ограничена сверху линией  $y=\varphi_2(x)$ , снизу  $y=\varphi_1(x)$  [функции  $\varphi_1(x)$  и  $\varphi_2(x)$  непрерывны] и с боков отрезками прямых x=a и x=b (рис. 175);

в частных случаях один из этих отрезков (или оба вместе) могут превратиться в точку (рис. 176);





2) (относительно оси Oy), если она ограничена слева линией  $x=\psi_1(y)$ , справа  $x=\psi_2(y)$  [функции  $\psi_1(y)$  и  $\psi_2(y)$  непрерывны] и сверху и снизу отрезками прямых y=d и y=c (рис. 177, 178).





# Формула Грина:

Пусть D есть ограниченная область из пространства  $R^2$  с кусочно-гладкой границей  $\Gamma$ , ориентированной положительно, и пусть эту область можно разбить на конечное число непересекающихся элементарных областей с кусочно-гладкими положительно-ориентированными границами. Далее, пусть P(x,y) и Q(x,y) есть заданные функции такие, что

- 1) P и Q непрерывны в замкнутой области D
- 2) P и Q имеют непрерывные частные производные  $\frac{\partial Q}{\partial x}, \frac{\partial P}{\partial y}$  в замкнутой D тогда верна формула Грина:

$$\int_{D} \int \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) dx dy = \oint_{\Gamma} \left(P dx + Q dy\right) \tag{2}$$

Док-во для элементарной (u no Ox, u no Oy) D:

Сведем двойной интеграл к повторному и применим формулу Ньютона-Лейбница:

$$\int_{D} \int \frac{\partial Q}{\partial x} dx dy = \int_{c}^{d} dy \int_{\alpha(y)}^{\beta(y)} \frac{\partial Q}{\partial x} dx = \int_{c}^{d} Q(x, \beta(y) - Q(x, \alpha(y))) dy = 0$$

$$\int_{c}^{d} Q(x,\beta(y))dy - \int_{c}^{d} Q(x,\alpha(y))dy$$

Мы можем параметризовать наши кривые

$$\gamma_1: \alpha(t), t \in [c, d].$$

$$\gamma_2: \beta(t), t \in [c, d].$$

$$\gamma_3: y = c, x = t, t \in [\alpha(c), \beta(c)].$$

$$\gamma_4: y = d, x = t, t \in [\alpha(d), \beta(d)].$$



Перепишем наши интегралы как криволинейные. Не забываем, что есть разница в направлении кривой!!!

$$\int_{\gamma_1} Q(x,y)dy - \int_{\gamma_2^-} Q(x,y)dy = \int_{\gamma_1} Q(x,y)dy + \int_{\gamma_2} Q(x,y)dy$$

Заметим, что

$$\int_{\gamma_3} Q(x,y)dy = \int_{\gamma_4} Q(x,y)dy = 0$$

У нас получился интеграл по замкнутому контуру

$$\int_{\gamma_1} Q(x,y)dy + \int_{\gamma_2} Q(x,y)dy + \int_{\gamma_3} Q(x,y)dy = \int_{\gamma_4} Q(x,y)dy = \oint_{\Gamma} Qdy$$

$$\int\limits_{D} \int \frac{\partial Q}{\partial x} dx dy = \oint\limits_{\Gamma} Q dy$$

Аналогично:

$$\int\limits_{D}\int\frac{\partial P}{\partial y}dxdy = -\oint\limits_{\Gamma}Pdx$$

Складывая, получаем:

$$\int_{D} \int \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) dx dy = \oint_{\Gamma} \left(P dx + Q dy\right)$$

читд

Док-во, если D состоит из мн-ва непересекающихся, ненулеых элементарных областей:

 $D = D_1 \cup D_2 \cup ... \cup D_m$  при  $D_i \cap D_j \neq \emptyset, i \neq j$  В силу свойства аддитивности двойного интеграла и факта, что граница области имеет нулевую меру:

$$\int\limits_{D} \int \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) dx dy = \sum_{i=1}^{m} \int\limits_{D_i} \int \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) dx dy$$

Применяя теперь для каждого слагаемого в правой части данного равенства доказанную выше формулу, получим

$$\int_{D} \int \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) dx dy = \sum_{i=1}^{m} \oint_{D_{i}} \left(P dx + Q dy\right)$$

В сумме, стоящей справа, содержатся интегралы по положительно ориентированным частям границ областей  $D_i$ , составляющим в целом границу D, а также содержатся интегралы по тем частям границ областей  $D_i$ , которые лежат внутри D, причем эти интегралы берутся дважды по одинаковым кривым, но с противоположной ориентацией — в силу свойств криволинейных интегралов второго рода они взаимно уничтожаются. В результате суммирования как раз и получится требуемое равенство.

ЧИТД

#### Замечание:

Может возникнуть вопрос, что это за странная запись такая?

$$\oint_{\Gamma} (Pdx + Qdy)$$

Ведь у нас никогда не было, что разные функции интегрируются по разным переменным в одном интеграле. Можно это понимать так: Мы хотим вычислить силу, поэтому интегрируем работу по составляющим, где P x-составляющая, Q y-составляющая.

Или просто воспринимайте его как сумму:

$$\oint_{\Gamma} (Pdx + Qdy) = \oint_{\Gamma} Pdx + \oint_{\Gamma} Qdy$$

### Замечание:

Не обязательно писать именно интеграл по замкнутой кривой, можно просто интеграл. Просто два нулевых интеграла нам дают такую возможность.

### Определение 1.12:

Зададим (m+1) гладкие, замкнутые кривые  $\Gamma_0, \Gamma_1 \dots \Gamma_m$  Пусть  $\Gamma_0$  - граница области G и  $\Gamma_i \cap \Gamma_j = \emptyset$  при  $i \neq j$   $\Gamma_i$  - граница области  $G_i, \Gamma_i \in G$  ,  $i=1\dots m$  Тогда  $G \setminus (G_1 \cup G_2 \cup \dots \cup G_m)$  - (m+1)-связная область



Заметим, что при таком задании ориентации границы (m+1)-связной области кривые  $\Gamma_i, i=1,...,m$ , будут ориентированы отрицательно по отношению к ограниченным областям  $G_i$ , кривые же  $\Gamma_i^-$ , наоборот, будут положительно ориентированы по отношению к  $G_i$ .

# Формула Грина для многосвязных областей:

Пусть область G (m+1)-связна, ее внешний и внутренние контуры  $\Gamma_0$ ,  $\Gamma_1$ ,...,  $\Gamma_m$  являются замкнутыми кусочно-гладкими кривыми без самопересечений, и пусть граница области G положительно ориентирована. Далее, пусть P(x,y) и Q(x,y) есть заданные функции такие, что

- 1) P и Q непрерывны в замкнутой области G
- 2) P и Q имеют непрерывные частные производные  $\frac{\partial Q}{\partial x}, \frac{\partial P}{\partial y}$  в замкнутой G Тогда имеет место равенство

$$\int_{G} \int \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) dx dy = \int_{\Gamma_{0}} \left(P dx + Q dy\right) - \sum_{i=1}^{m} \int_{\Gamma_{i}^{-}} \left(P dx + Q dy\right)$$
(3)

Док-во для двусвязной области G:

Соединим область  $G_1$  с кривой  $\Gamma_0$  разрезом, который представляет собой кусочно-гладкую кривую без самопересечений. Обозначим разрез как L

Обозначим через  $G^*$  область, полученную из G удалением данного разреза, предполагая, что граница области  $G^*$  состоит из границы G (с сохранением ориентации) и разреза, проходимого дважды. Граница  $G^*$  представляет собой кусочно-гладкую кривую, а значит по Формуле Грина для односвязной области имеем:



$$\int_{G^*} \int \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) dx dy = \int_{\delta G^*} (Pdx + Qdy)$$

Далее, поскольку двойной интеграл не меняется при присоединении к множеству интегрирования множества нулевой двумерной меры, то имеет место равенство

$$\int_{G^*} \int \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) dx dy = \int_{\delta G} (P dx + Q dy) = \int_{G} \int \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) dx dy$$

Заметим, что  $\delta G = \Gamma_0 \cup L \cup \Gamma_1$ , вспомниая определение (1) интеграла по кусочногладкой кривой:

$$\int_{\delta G} (Pdx + Qdy) = \int_{\Gamma_0} (Pdx + Qdy) + \int_{L^+} (Pdx + Qdy) + \int_{L^-} (Pdx + Qdy) + \int_{\Gamma_1} (Pdx + Qdy)$$

Учитывая, что направление движения по кривой имеет значение:

$$\int\limits_{G}\int (\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y})dxdy=\int\limits_{\delta G}(Pdx+Qdy)=\int\limits_{\Gamma_{0}}(Pdx+Qdy)-\int\limits_{\Gamma_{0}^{-}}(Pdx+Qdy)$$

Таким образом, мы получили формулу (3) для случая двусвязной области G

Что будет в случае, если G - (m+1)-связная область? Да то же самое, только  $\delta G = \Gamma_0 \cup (L_1 \cup ... \cup L_m) \cup (\Gamma_1 \cup ... \cup \Gamma_m)$ 

$$\int_{\delta G} (Pdx + Qdy) = \int_{\Gamma_0} (Pdx + Qdy) + \sum_{i=1}^m (\int_{L_i^+} (Pdx + Qdy) - \int_{L_i^-} (Pdx + Qdy)) - \sum_{i=1}^m \int_{\Gamma_i^-} (Pdx + Qdy) + \sum_{i=1}^m (Pdx + Qdy) - \int_{L_i^-} (Pdx + Qdy) - \sum_{i=1}^m (Pdx + Qdy) - \sum_{i=1}^m$$

Отсюда немедленно получаем

$$\int_{\delta G} (Pdx + Qdy) = \int_{\Gamma_0} (Pdx + Qdy) - \sum_{i=1}^m \int_{\Gamma_i^-} (Pdx + Qdy)$$

ЧИТД

### Теорема 1.2

Пусть

- 1) P и Q непрерывны в замкнутой, связной области G
- 2) P и Q имеют непрерывные частные производные  $\frac{\partial Q}{\partial x}, \frac{\partial P}{\partial y}$  в замкнутой G тогда 4 свойства эквивалентны:
- 1) Независимость P(x,y), Q(x,y) от пути интегрирования в G
- 2) Для любой замкнутой кусочно-гладкой кривой  $\Gamma$ , целиком лежащей в G, выполняется

$$\int_{\Gamma} (Pdx + Qdy) = 0$$

3) Существует функция u(x,y) такая, что для любых точек (x,y) из G выполняется

$$du(x,y) = P(x,y)dx + Q(x,y)dy;$$

4) Для любых точек (x,y) из G выполняется

$$\frac{\partial Q(x,y)}{\partial x} = \frac{\partial P(x,y)}{\partial y}$$

Док-во: 
$$(1 \Rightarrow 2)$$

$$\int_{\Gamma_1} (Pdx + Qdy) = \int_{\Gamma_2} (Pdx + Qdy)$$

$$\int_{\Gamma_1} (Pdx + Qdy) - \int_{\Gamma_2} (Pdx + Qdy) = 0$$

$$\int_{\Gamma_1} (Pdx + Qdy) + \int_{\Gamma_2^-} (Pdx + Qdy) = 0$$



В силу того, что  $\Gamma = \Gamma_1 \cup \Gamma_2^-$  (с учетом направления):

$$\int_{\Gamma} (Pdx + Qdy) = \int_{\Gamma_1} (Pdx + Qdy) + \int_{\Gamma_2^-} (Pdx + Qdy) = 0$$

В силу произвольности выбора  $\Gamma_1$  и  $\Gamma_2$  получаем, что  $\Gamma$  - тоже произвольная кривая.

 $(2 \Rightarrow 1)$ 

Пусть  $\Gamma$  - замкнутая кусочно-гладкая кривая и выполняется  $\int\limits_{\Gamma}(Pdx+Qdy)=0$ 

Разобьем(с учетом направления)  $\Gamma = \Gamma_1 \cup \Gamma_2$ , где  $\Gamma_1$  и  $\Gamma_2$  - кусочно-гладкие или просто гладкие кривые. Тогда:

$$\int_{\Gamma} (Pdx + Qdy) = \int_{\Gamma_1} (Pdx + Qdy) + \int_{\Gamma_2} (Pdx + Qdy) = 0$$

Отсюда:

$$\int_{\Gamma_1} (Pdx + Qdy) = \int_{\Gamma_2^-} (Pdx + Qdy)$$
17

 $(1 \Rightarrow 3)$ **Надо еще исправлять** Пусть  $M_0 = (x_0, y_0)$  есть фиксированная точка  $G, M = (x^*, y^*)$  есть текущая точка  $G, \Gamma : M_0 M$  есть кусочно-гладкая кривая без самопересечений, целиком лежащая в G и соединяющая точки  $M_0$  и M. Пусть

$$u(x,y) = \int_{M_0M} (Pdx + Qdy) = \int_{\Gamma} (Pdx + Qdy)$$

В силу условия связности G:  $\exists h: (x^*+h,y^*) \in G$ 

Пусть прямая L, прямая соединяющая  $M(x^*, y^*)$  и  $M^*(x^* + h, y^*)$  Покажем, что

$$u_x = \lim_{h \to 0} \frac{u(x^* + h, y^*) - u(x^*, y^*)}{h} = P(x^*, y^*)$$



Имеем

$$\frac{u(x^* + h, y^*) - u(x^*, y^*)}{h} = \frac{1}{h} (u(x^* + h, y^*) - u(x^*, y^*))$$
$$= \frac{1}{h} \int_{M}^{M^*} (Pdx + Qdy) = \frac{1}{h} \int_{L} (Pdx + Qdy)$$

Параметризуем отрезок L:

$$x = x^* + th, t \in [0, 1] \Rightarrow dt = dx$$
  
 $y = y^* \Rightarrow dy = 0$ 

$$\int_{L} (P(x,y)dx + Q(x,y)dy) = \int_{0}^{1} P(x^* + th, y^*)dt = P(x^* + h, y^*) - P(x^*, y^*)$$

Применим формулу конечных приращений Лагранжа

$$P(x^* + h, y^*) - P(x^*, y^*) = P(x^* + \theta h, y^*)h, \theta \in (0, 1)$$

Отсюда:

$$P(x^* + \theta h, y^*) = \frac{u(x^* + h, y^*) - u(x^*, y^*)}{h}$$

Теперь при  $h \to 0$  получаем:

$$P(x^*, y^*) = u_x$$

Аналогично доказываем, что  $Q(x^*, y^*) = u_y$ 

$$du(x^*, y^*) = u_x dx + u_y dy = P(x^*, y^*) dx + Q(x^*, y^*) dy$$

Но нам нужно еще доказать дифференцируемость u(x,y) в G

$$u_x = P(x, y) \ u_y = Q(x, y)$$

Тк по условию у нас P и Q имеют непрерывные частные производные  $\frac{\partial Q}{\partial x}, \frac{\partial P}{\partial y}$  в замкнутой G, то существую вторые производные для u(x,y), отсюда немедленно следует дифференцируемостьu(x,y) читд

$$(3 \Rightarrow 1)$$

**Одно звено** :  $M_0(x_0, y_0)$  и  $M(x^*, y^*)$ 



$$\int_{\Gamma} (Pdx + Qdy) = \int_{\Gamma} (u_x dx + u_y dy)$$

Параметризуем Г:

$$x = \varphi(t)$$
 
$$y = \psi(t) \text{ , где } t \in [\alpha, \beta]$$

$$\int_{\Gamma} (Pdx + Qdy) = \int_{\alpha}^{\beta} P(\varphi'(t), \psi'(t)) * \varphi'(t)dt + Q(\varphi'(t), \psi'(t)) * \psi'(t)dt = 19$$

$$\int_{\alpha}^{\beta} \frac{d}{dt} (u(\varphi(t), \psi(t))) dt = u(\varphi(\beta), \psi(\beta)) - u(\varphi(\alpha), \psi(\alpha))$$

Получается, что интеграл зависит лишь от начальных точек, а значит не зависит от пути интегрирования

#### Если п звеньев:



$$u(x_1, y_1) - u(x_0, y_0) + u(x_2, y_2) - u(x_1, y_1) + u(x_3, y_3) - u(x_2, y_2) + \dots + u(x^*, y^*) - u(x_{n-1}, y_{n-1}) =$$

$$= u(x^*, y^*) - u(x_0, y_0)$$

Получается, что и от количества звеньев не завсисит

читд

$$(3 \Rightarrow 4)$$

$$u_{xy}(x,y) = \frac{\partial P}{\partial y} = P_y$$

$$u_{yx}(x,y) = \frac{\partial Q}{\partial x} = Q_x$$

В силу непрерывности  $P_y, Q_y$ , получается, что и  $u_{xy}(x,y), u_{yx}(x,y)$  непрерывны в G. А если если существуют смешанные непрерывные производные, то они равны.

Теорема о смешанных производных

$$u_{xy} = u_{yx} \Rightarrow Q_x = P_y$$

читд  $(4\Rightarrow 2\Rightarrow 3)$  Пусть  $P_y=P_y$ 

Рассмотрим кусочно-гладкую замкнутую кривую в замкнутой G Тогда справедлива формула Грина:

$$\int_{\Gamma} (Pdx + Qdy) = \int_{G} \int (\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}) dx dy = 0$$

Отсюда получаем свойство 2:

$$\int_{\Gamma} (Pdx + Qdy) = 0$$

Ранее уже доказали, что  $(2 \Rightarrow 3)$  читд

# 4 Поверхности в $R^n$

# Определение 1.13

Пусть G есть ограниченная область из пространства  $R^2$ , f(u,v), g(u,v), h(u,v) — определенные при  $(u,v) \in G$  и непрерывные на G функции. **Непрерывной поверхностью** S называется множество:

$$S = \{(x, y, z) : x = f(u, v), y = g(u, v), z = h(u, v), (u, v) \in G\}$$

Вектор-функция  $\Phi(u,v)=(f(u,v),g(u,v),h(u,v))$  называется представлением, или **параметризацией** поверхности.

#### Определение 1.14

Рассмотрим точку  $(u_0, v_0) \in S$ 

$$(u_0, v_0) = \begin{cases} \mathbf{He} \ \mathbf{ocoбas}, \mathbf{ecли} \ \Phi_u(u_0, v_0), \Phi_v(u_0, v_0) - \mathbf{ЛH}; \\ \mathbf{ocoбas}, \mathbf{ecли} \ \Phi_u(u_0, v_0), \Phi_v(u_0, v_0) - \mathbf{Л3}; \end{cases}$$

### Определение 1.15

Поверхность назывется гладкой, если все ее точки не особые.

# Определение 1.16

Совокупность касательных прямых к поверхности в точке -касательная плоскость к поверхности в этой точке.

# Определение 1.17

Пусть задана поверхность S и  $M_0(x_0, y_0, x_0) \in S$ , где  $x_0 = f(u_0, v_0), y_0 = g(u_0, v_0), z_0 = h(u_0, v_0)$ 

Тогда **касательная к плоскости** S **в**  $(u_0, v_0)$  определяется через определитель данной матрицы:

$$\begin{vmatrix} x - x_0 & y - y_0 & z - z_0 \\ f_u(u_0, v_0) & g_u(u_0, v_0) & h_u(u_0, v_0) \\ f_v(u_0, v_0) & g_v(u_0, v_0) & h_v(u_0, v_0) \end{vmatrix} = 0$$
(4)

# Определение 1.18

Прямая, проходящая через точку касания поверхности с касательной плоскостью и перпендикулярная этой плоскости, называется **нормальной прямой к поверхности в указанной точке.** Нормаль определяется матрицей:

$$\vec{n} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ f_u(u_0, v_0) & g_u(u_0, v_0) & h_u(u_0, v_0) \\ f_v(u_0, v_0) & g_v(u_0, v_0) & h_v(u_0, v_0) \end{vmatrix};$$
(5)

### Замечание

У плоскости в точке есть две нормали, верная из них та, которая задается матрицей из определениия 1.17(5).

**Важный факт** В каждой точке гладкой поверхности S однозначно определена нормаль, вычисляемая по формуле (5).

# Определение 1.19

Если на поверхности S эта нормаль меняется непрерывно, то поверхность S называется **ориентированной**. При задании ориентации поверхности считается, что поверхность S является **двусторонней**, и та сторона поверхности, которая прилегает к нормали (5), называется **положительной стороной и обозначается**  $S^+$ , противоположная же сторона называется **отрицательной и обозначается**  $S^-$ .

Пример неориентированной поверхности: Лента Мебиуса

### Определение 1.20

Две поверхности  $S_i$  и  $S_j$  называются **соседними**, если кривые  $\Gamma_i$  и  $\Gamma_j$  имеют одну или несколько общих дуг (общих участков,не вырождающихся в точку).

# Определение 1.21

Поверхность называется **кусочно-гладкой**, если она состоит конечного числа гладких поверхностей, которые могут пересекаться лишь по своим граничным точкам.

Если S - кусочно-гладкая поверхность, то ее можно представить ввиде:

 $S = S_1 \cup S_2 \cup ... \cup S_p$ , где  $S_i$  и  $S_j$  или соседние или могут быть соеденены некоторой последовательностью поверхностей.

Пример: Кубик



### Определение 1.22

Кусочно-гладкая поверхность S, состоящая из m частей  $S_1,...,S_m$ , называется **ориентируемой**, если существует такая ориентация кривых  $\Gamma_1, ..., \Gamma_m$  (границ поверхностей  $S_1, ..., S_m$ ), что части (дуги) этих кривых, принадлежащие двум различным кривым  $\Gamma_i$  и  $\Gamma_j$ , получают от них противоположную ориентацию.

# I квадратичная форма поверхности

Введем обозначения:

$$E(u,v)=(\vec{\Phi}_u(u,v),\vec{\Phi}_u(u,v))=|\vec{\Phi}_u^2(u,v)|$$
 - квадрат скалярного произведения.  $G(u,v)=(\vec{\Phi}_v(u,v),\vec{\Phi}_v(u,v))=|\vec{\Phi}_v^2(u,v)|$  - квадрат скалярного произведения.  $F(u,v)=(\vec{\Phi}_u(u,v),\vec{\Phi}_v(u,v))$ 

Тогда:

$$(d\vec{\Phi})^2 = (\vec{\Phi}_u du + \vec{\Phi}_v dv)^2 = E du^2 + 2F du dv + G dv^2$$

I квадратичная форма имеет вид:

$$Edu^2 + 2Fdudv + Gdv^2$$

Замечание: І квадратичная форма не отрицательна

Док-во: Как известно из курса Линала, квадрат скалаярного произведения неотрицателен.

$$Edu^2 + 2Fdudv + Gdv^2 = (d\vec{\Phi})^2 \geqslant 0$$

### Поверхностный интеграл І рода

Пусть  $S:\Phi(u,v)$  - Гладкая поверхность и задана функция  $\psi(u,v)$ , тогда **поверхностным интегралом I рода от**  $\psi(u,v)$  назовем:

$$\int_{S} \psi(u, v) ds = \int_{\Omega} \int \psi(u, v) \sqrt{EG - F^{2}} du dv$$

Также введем меру:

$$\int_{S} ds = mesS;$$

# Свойства поверхностных интегралов І рода:

1) Линейность

$$\int_{S} (\alpha F_1 + \beta F_2) ds = \alpha \int_{S} F_1 ds + \beta \int_{S} F_2 ds$$

2) Аддитивность

$$\int_{S} F_2 ds + \int_{S} F_1 ds$$

# Поверхностный интеграл II рода

# Некторые факты про нормаль

Пусть есть поверхность S с заданной параметризацией  $\Phi(u,v)$ , где (u,v) из замкнутой области  $\Omega$ . Если  $\vec{n}$  - нормаль, вычисляемая по (5), то единичная нормаль будет вычисляться так:

$$\vec{V} = \frac{\vec{n}}{|n|}$$

Однако единичную нормаль можно задать подругому:

Пусть 
$$\vec{n} = (n_x, n_y, n_z)$$

Тогда

$$n_x = |n| cos\alpha;$$

$$n_y = |n| cos \beta;$$

$$n_z = |n| cos \gamma;$$

h cost & B nearly

. . .

Тогда вектор

$$(cos\alpha, cos\beta, cos\gamma) = (\frac{n_x}{|n|}, \frac{n_y}{|n|}, \frac{n_z}{|n|})$$

А это не что иное как нормированный вектор  $\vec{n}$ , те  $\vec{V}$ 

# Определение 1.23:

Поверхностным интегралом II рода по поверхности S по переменным x,y назовем

$$\int\limits_{S} \int \Psi dx dy = \int\limits_{S^{+}} \int \Psi dx dy = \int\limits_{S} \Psi cos \gamma ds$$

Соотвествено, если интеграл по y, z будет такой же, но с  $cos\alpha$ 

Замечание:

$$\int_{S^{+}} \int \Psi dx dy = -\int_{S^{-}} \int \Psi dx dy$$

# Свойства поверхностных интегралов II рода

- 1) Линейность
  - 2) Аддитивность
  - 3) Зависимость от стороны поверхность (замечание выше)

# Определение 1.24

Пусть S есть кусочно-гладкая поверхность, состоящая из частей  $S_1,...,S_m$ , и пусть на S имеется согласованная ориентация  $S^+$ . Далее, пусть на S задана функция F(x,y,z). Поверхностным интегралом второго рода по поверхности  $S^+$  по координатам x,y называется сумма:

$$I = \sum_{i=1}^{m} \int_{S_i^+} \int F dx dy$$

Для dxdz, dydz определяется аналогично.

# Формула Гаусса-Остроградского:

Обозначаю: R = R(x, y, z), Q = Q(x, y, z), P = P(x, y, z);

Пусть V есть ограниченная поверхностью  $\Omega$ , область из пространства  $R^3$ , и V можно разбить кусочно-гладкими поверхностями на конечное число элементарных областей. Далее, пусть P(x,y,z), Q(x,y,z) и R(x,y,z) есть заданные функции такие, что

- 1) P, Q и R непрерывны в замкнутой области V
- 2) P,Q и R имеют непрерывные частные производные  $\frac{\partial Q}{\partial x}, \frac{\partial P}{\partial y}, \frac{\partial R}{\partial z}$  в замкнутой V Тогда верная формула Гаусса-Остроградского:

$$\int\int\limits_V\int(\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial R}{\partial z})dxdydz=\int\limits_S(Pcos\alpha+Qcos\beta+Rcos\gamma)ds$$

в которой  $(cos\alpha, cos\beta, cos\gamma)$  есть направляющие косинусы вектора **внешней** нормали к границе S области V



Док-во для элементарной V:

Поверхность S можно представить как:  $S = S_0 \cup S_1^- \cup S_2^+$ 

Коль V элементарна, значит и по Oz элементарна, а значит  $\varphi(x,y) \leq z \leq \psi(x,y)$ 

Рассмотрим

$$\int \int_{V} \int R_{z}(x,y,z)$$

Tк V элементарна по Oz:

$$\int \int_{V} \int R_{z}(x,y,z)dxdxydz = \int_{\Omega} \int (\int_{\varphi(x,y)}^{\psi(x,y)} R_{z}(x,y,z)dz)dxdy =$$

$$= \int_{\Omega} \int (R(x,y,\psi(x,y)) - R(x,y,\varphi(x,y)))dxdy$$

 $T_{\mathsf{K}}$ 

- 1)  $\varphi(x,y) < z < \psi(x,y)$
- (2)  $\vec{n_1}$  внешний к  $z=\psi(x)$  , но  $\vec{n_2}$  внутренний к z=arphi(x)

3) 
$$\cos\gamma = \frac{1}{\sqrt{1+\psi_u^2+\psi_v^2}}$$
 для  $S_2$ , и  $\cos\gamma = -\frac{1}{\sqrt{1+\varphi_u^2+\varphi_v^2}}$  для  $S_1$ 
4)  $\sqrt{EG-F^2} = \sqrt{(1+\psi_u^2)(1+\psi_v^2)-(\psi_u\psi_v)^2} = \sqrt{1+\psi_u^2+\psi_v^2}$ 

$$(4)\sqrt{EG-F^2} = \sqrt{(1+\psi_u^2)(1+\psi_v^2)-(\psi_u\psi_v)^2} = \sqrt{1+\psi_u^2+\psi_v^2}$$

Можно сделать вывод:

$$\int\limits_{\Omega}\int R(x,y,\psi(x,y))dxdy \stackrel{?}{=} \int\limits_{S_2^+}\int R(x,y,z)cos\gamma\sqrt{EG-F^2}dxdy = \int\limits_{S_2^+}\int R(x,y,z)dxdy$$

$$\int_{\Omega} \int R(x, y, \varphi(x, y)) dx dy \stackrel{?}{=} \int_{S_2^+} \int R(x, y, z) \cos\gamma \sqrt{EG - F^2} dx dy = -\int_{S_1^+} \int R(x, y, z) dx dy$$

По определению поверхностного интеграла II рода, учитывая то, что для  $S_2^+$  нормаль будет внешней, а для  $S_1^+$  - внутренней, можно переписать наши поверхностные интегралы II рода, как поверхностные интегралы I рода:

$$\int\limits_{S_2^+}\int R(x,y,z)dxdy=\int\limits_{S_2}R(x,y,z)cos\gamma ds$$

$$\int_{S_1^+} \int R(x, y, z) dx dy = \int_{S_1} R(x, y, z) \cos \gamma ds$$

Осознать, почему там не  $\gamma_1, \gamma_2!!!$ 

Тогда, зная, что  $S_0$  - боковая поверхность(это интеграл равен нулю, тк  $\gamma = 90$ (нормаль к  $S_0$  перпендикулярная Oz), а значит  $cos\gamma = 0$ ) можно сделать вывод:

$$\int \int \int \int \frac{\partial R}{\partial z} dx dy dz = \int \int R(x, y, z) \cos \gamma ds + \int \int R(x, y, z) \cos \gamma ds - \int \int \int R(x, y, z) \cos \gamma ds = \int \int R(x, y, z) \cos \gamma ds$$

$$= \int \int \int R(x, y, z) \cos \gamma ds$$

Аналогично доказывается:

$$\int \int_{V} \int \frac{\partial P}{\partial x} dx dy dz = \int_{S} R(x, y, z) \cos\alpha ds$$
$$\int \int_{V} \int \frac{\partial Q}{\partial y} dx dy dz = \int_{S} R(x, y, z) \cos\beta ds$$

Суммируя, получаем нужную формулу.

читд

Док-во для V - cocmaвленной из гладких noверхностей:

Пусть теперь область V есть множество  $V = V_1 \cap V_2 \cap S^*$ , причем  $V_1$  и  $V_2$  есть элементарные области,  $S^*$  есть разделяющая их кусочно-гладкая поверхность. Представляя интеграл по области V в виде суммы интегралов по областям  $V_1$  и  $V_2$  (что возможно вследствие свойства аддитивности тройного интеграла), применяя формулу Гаусса-Остроградского для элементарной области к каждой области  $V_1$  и  $V_2$ , учитывая, что внешняя нормаль на поверхности  $S^*$  направлена взаимно противоположно по отношению к областям  $V_1$  и  $V_2$ , а также то, что оставшиеся части границ областей  $V_1$  и  $V_2$  составят вместе границу V, получим требуемую формулу для составной области V.

Если область G составлена из более чем двух областей  $V_1$  и  $V_2$  и разделяющих их поверхностей, то рассуждения будут вполне аналогичны, и тем самым формула Гаусса-Остроградского для элементарной области будет справедлива и для такой области.

# Формула Стокса:

- 1) Пусть S поверхность в  $R^3$ , заданная своей вектор-функцией  $\Phi(u,v)$  ,  $(u,v)\in\overline{\Omega}$
- 2) Пусть вектор-функция  $\Phi(u,v)$  есть дважды непрерывно дифференцируемая при  $(u,v)\in\overline{\Omega}$  функция
- 3) Пусть  $\Omega$  есть плоская ограниченная область такая, что для нее выполняется формула Грина
- 4) Путь  $\gamma_0$  граница  $\Omega$  ,  $\gamma_0$  замкнутая, кусочно-гладкая без самопересечений с положительным направление обхода с параматризацией  $\gamma_0: u(t), v(t), t \in [a,b]$
- 5) На S определена номаль  $\vec{V}(cos\alpha, cos\beta, cos\gamma)$
- 6) Определим кривую  $\gamma$  в пространстве  $R^3$  как кривую с параметризацией  $\Phi(u(t),v(t)),t\in[a,b],$  и пусть эта кривая представляет собой границу,или край поверхности S (говорят также, что поверхность S натянута на кривую  $\gamma$ ).
- 7) Пусть область G из пространства  $R^3$  есть такая область, что выполняется вложение  $S\subset G$ , и пусть функции P(x,y,z), Q(x,y,z), R(x,y,z) определены при  $(x,y,z)\in G$

#### Формула Стокса

- 1) Пусть функции P(x,y,z), Q(x,y,z), R(x,y,z) непрерывны в области G
- 2) Все частные производные P, Q, R тоже непрерывны в G (9 штук)
- 3) Для поверхности S, для кривых  $\gamma_0$  и  $\gamma$  выполняются сделанные выше предположения. Тогда выполняется равенство

$$\int_{\gamma} Pdx + Qdy + Rdz = \int_{\gamma} [(R_y - Q_z)\cos\alpha + (P_z - R_x)\cos\beta + (Q_x - P_y)\cos\gamma]ds \quad (6)$$

# 5 Полезности

#### Связная область

Определение. Пусть задана область E, т.е. множество, состоящее из внутренних точек. Множество E называется связным, если любые две точки этого множества можно соединить ломаной, целиком лежащей в этой области.

# Формула конечных приращений Лагранжа

Если функция F непрерывна на отрезке [a,b] и дифференцируема в интервале (a,b), то найдётся такая точка  $c \in (a,b)$ , что

$$F(a) - F(b) = F'(c)(b - a)$$

Можно записать так:

$$F(x + \Delta x) - F(x) = F'(x + \theta \Delta x) \Delta x, \theta \in (0, 1)$$

# Теорема о смешанных производных

**Теорема.** Предположим, что 1) f(x,y), определена в открытой области  $\Omega$ , 2) в этой области f имеет частные производные  $f_x$ ,  $f_y$ , а также вторые смешанные производные  $f_{xy}$ ,  $f_{yx}$ , 3) эти последние производные непрерывны в некоторой точке  $(x_0, y_0) \in \Omega$ . Тогда в этой точке

$$f_{xy}(x_0, y_0) = f_{yx}(x_0, y_0).$$

### Вывод $cos\gamma$ в т. Гаусса-Остроградского

Учитывая, что

$$\begin{cases} f = u \\ g = v \\ h = \psi(u, v) \end{cases} \Rightarrow \vec{n} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ (f_u = 1) & (g_u = 0) & h_u \\ (f_v = 0) & (g_v = 1) & h_v \end{vmatrix} = h_u \vec{i} - h_v \vec{j} + \vec{k}$$

Отсюда:

$$|\vec{n}| = \sqrt{\frac{1 + h_u^2 + h_v^2}{31}}$$

А значит:

$$\vec{V} = (..., ..., \frac{1}{\sqrt{1 + h_u^2 + h_v^2}}) = (..., ..., \frac{1}{\sqrt{1 + \psi_x^2 + \psi_y^2}})$$

те  $cos\gamma=\frac{1}{\sqrt{1+h_u^2+h_v^2}}=\frac{1}{\sqrt{1+\psi_x^2+\psi_y^2}}>0,\ \gamma$  - острый, а значит  $\vec{V}$  - внешняя нормаль к  $S_2$  Аналогично для  $\varphi(x,y)$ :

$$\cos\gamma = -\frac{1}{\sqrt{1 + \varphi_u^2 + \varphi_v^2}}$$