Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики

УЧЕБНЫЙ ЦЕНТР ОБЩЕЙ ФИЗИКИ ФТФ

Группа: <u>R3137</u>	_К работе допущен: .
Студент: Нестеров И.А,	Работа выполнена:
Преподаватель: Крылов В.А.	Отчет принят:

Рабочий протокол и отчет по лабораторной работе № 3.07. «Изучение свойств ферромагнетика»

1. Цель работы.

Изучение свойств ферромагнетика.

2. Задачи, решаемые при выполнении работы.

- 1. Изучение зависимости магнитной индукции в ферромагнетике от напряженности магнитного поля B = B(H)
- 2. Определение по предельной петле гистерезиса индукции насыщения, остаточной индукции и коэрцитивной силы
- 3. Получение зависимости магнитной проницаемости от напряженности магнитного поля $\mu =$ $\mu(H)$ и оценка максимального значения величины магнитной проницаемости
- 4. Расчет мощности потерь энергии в ферромагнетике в процессе его перемагничивания

3. Объект исследования.

Ферромагнетик

4. Метод экспериментального исследования.

Изменение напряженности магнитного поля

5. Рабочие формулы и исходные данные.

- 5.1. Коэффициент α : $\alpha = \frac{N_1}{l \cdot R_1}$ 5.2. Коэффициент β : $\beta = \frac{R_2 \cdot C_1}{N_2 \cdot S}$
- 5.3. Магнитная проницаемость μ : $\mu = \frac{B_m}{\mu_0 \cdot H_m}$ 5.4. Коэффициент χ : $\chi = K_\chi K_y \cdot \frac{N_1 R_2 C_1}{N_2 R_1} \cdot f$
- 5.5. Остаточная индукция $B: B = \beta \cdot K_{\nu} \cdot Y$
- 5.6. Коэрцитивная сила $H: H = \alpha \cdot K_x \cdot X$
- 5.7. Средняя мощность P, расходуемая на перемагничивание образца: $P = \chi \cdot S_{\Pi\Gamma}$

6. Измерительные приборы.

№ п/п	Наименование	Дена деления	Диапазон	Δи
1	Цифровой			
	запоминающий	-	-	-
	осциллограф			

7. Схема установки.

- 1. Генератор сигналов АКИП-3409/2
- 2. Стенд с образцом
- 3. Цифровой запоминающий осциллограф (ЦЗО)

Принципиальная схема установки

В лабораторной работе в качестве образца для изучения магнитных свойств ферромагнитного материала выбран сердечник (магнитопровод) трансформатора, размещенного на лабораторном стенде.

Объект измерений имеет прямоугольную форму с прямоугольным же поперечным сечением.

Параметры установки

R_1	68 Ом
R ₂	470 кОм
C_1	0,47 мкФ

Параметры трансформатора

S	$0,64 \text{ cm}^2$
L	7,8 см
N ₁	1665 вит
N ₂	970 вит

8. Результаты прямых измерений и расчетов

Таблица 1

Х _с , дел	Y_r , дел	H_c , $A/$ м	B_r , T л
0.6	1.6	44	0,23

Таблица 2

Х _с , дел	У пеп У пеп		B_r , T л	μ_m	
4	3.8	239	0,7	2369	

Таблица 3. Результаты прямых измерений и расчетов

U, B	Х, дел	$K_{\chi}, \frac{\mathrm{B}}{\mathrm{\pi e}\mathrm{\pi}}$	Н, А/м	Ү, дел	$K_y, \frac{B}{\pi e \pi}$	В, Тл	μ
		¹¹ х, дел			¹¹ у, дел		
20	3,8	0,20	239	4	0,05	0,71	2369
19	3,2	0,20	201	4	0,05	0,71	2814
18	3,0	0,20	188	3,8	0,05	0,67	2851
17	2,8	0,20	176	3,6	0,05	0,64	2894
16	2,6	0,20	163	3,4	0,05	0,61	2944
15	2,2	0,20	138	3,2	0,05	0,56	3274
14	2,0	0,20	126	3,0	0,05	0,53	3376
13	3,6	0,10	113	2,8	0,05	0,50	3501
12	3,2	0,10	100	2,6	0,05	0,46	3658
11	2,8	0,10	88	2,4	0,05	0,43	3859
10	2,6	0,10	82	2,2	0,05	0,39	3810
9	2,2	0,10	69	2,0	0,05	0,36	4093
8	2,0	0,10	63	1,8	0,05	0,32	4052
7	3,6	0,05	57	1,6	0,05	0,28	4002
6	3,4	0,05	53	3,6	0,02	0,26	3813
5	3,0	0,05	47	3,0	0,02	0,21	3601

Расчёт коэффициента α :

$$\alpha = \frac{N_1}{l \cdot R_1} = \frac{1665}{0,078 \cdot 68} = 313,91403 = \frac{1}{M \cdot 0M} = 314 \frac{1}{M \cdot 0M}$$

Расчёт коэффициента β :

$$\beta = \frac{R_2 \cdot C_1}{N_2 \cdot S} = \frac{470000 \cdot 0,47 \cdot 10^{-6}}{970 \cdot 0,64 \cdot 10^{-4}} = 3,55831 \ \frac{\text{Om} \cdot \Phi}{\text{m}^2} = 4 \ \frac{\text{Om} \cdot \Phi}{\text{m}^2}$$

Расчёт коэрцитивной силы H_c :

$$H_c = \alpha \cdot K_x \cdot X_c = 313,91403 \cdot 0,1 \cdot 1,4 = 43,947 \text{ A/M} = 44 \text{ A/M}$$

Расчёт остаточной индукции B_r :

$$B_r = \beta \cdot K_v \cdot Y_r = 3,55831 \cdot 0,05 \cdot 1,3 = 0,231 \,\mathrm{T}\pi = 0,23 \,\mathrm{T}\pi$$

Расчёт коэрцитивной силы H_m :

$$H_m = \alpha \cdot K_x \cdot X_m = 313,91403 \cdot 0,2 \cdot 4 = 238,5746 \text{ A/m} = 239 \text{ A/m}$$

Расчёт остаточной индукции B_m :

$$B_m = \beta \cdot K_y \cdot Y_r = 3,55831 \cdot 0,05 \cdot 4 = 0,71 \,\mathrm{T}\pi = 0,7 \,\mathrm{T}\pi$$

Расчёт магнитной проницаемости μ :

$$\mu = \frac{B_m}{\mu_0 \cdot H_m} = \frac{0.71}{4\pi \cdot 10^{-7} \cdot 238,5746} = 2369,433 = 2369$$

Расчёт коэффициента χ:

$$\chi = K_x K_y \cdot \frac{N_1 R_2 C_1}{N_2 R_1} \cdot f = 0.2 \cdot 0.05 \cdot \frac{1665 \cdot 470000 \cdot 0.47 \cdot 10^{-6}}{970 \cdot 68} \cdot 30 = 16,728 \cdot 10^{-4} \, \text{Дж/c} = 1.6 \, \text{мДж/c}$$

Площадь петли $S_{\Pi\Gamma}$:

$$S_{\rm пr} = 8$$
 де $\rm де \pi^2$

Максимальное значение проницаемости $\mu max = 4093$, напряженность поля, при которой она наблюдается = 69 А/м.

Расчёт средней мощности P, расходуемой на перемагничивание образца:

$$P = \chi \cdot S_{\text{IIF}} = 16,728 \cdot 10^{-4} \cdot 8 = 13,3826 \text{ MBT} = 13 \text{ MBT}$$

11. Графики:

График зависимости магнитной индукции от напряженности. Bm = Bm(Hm)

График зависимости проницаемости от напряженности. $\mu = \mu(Hm)$

Изображение петли Гистерезиса:

Окончательные результаты:

1. Коэрцитивная сила: $H_m = 239 \text{ A/M}$

Остаточная индукция: $B_m = 0.7$ Тл Магнитная проницаемость: $\mu_m = 2369$

- 2. Мощность потерь на перемагничивание: P = 13 мВт
- 3. Построены графики зависимостей $B_m = B_m(H_m)$ и $\mu = \mu(H_m)$
- 4. Максимальное значение магнитной проницаемости: $\mu_{max} = 4093$
- 5. Напряжённость: H = 69 A/м

Выводы:

По ходу выполнения данной лабораторной работы были рассчитаны коэрцитивная сила, остаточная индукция и магнитная проницаемость, а также построены графики следующих зависимостей: $B_m = B_m(H_m)$ и $\mu = \mu(H_m)$. Кроме того, были рассчитаны мощность потерь на перемагничивание ферромагнетика, максимальное значение проницаемости. Проведенное исследование и получение указанных выше результатов позволяет сделать вывод о том, что свойства ферромагнетика были изучены.