12: Support Vector Machines (SVMs)

Support Vector Machine (SVM) - Optimization objective

- So far, we've seen a range of different algorithms
 - With supervised learning algorithms performance is pretty similar
 - What matters more often is:
 - The amount of training data
 - Skill of applying algorithms
- One final supervised learning algorithm that is widely used support vector machine (SVM)
 - Compared to both logistic regression and neural networks, a SVM sometimes gives a cleaner way of learning non-linear functions
 - Later in the course we'll do a survey of different supervised learning algorithms

An alternative view of logistic regression

- Start with logistic regression, see how we can modify it to get the SVM
 - As before, the logistic regression hypothesis is as follows

$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$$

o And the sigmoid activation function looks like this

- o In order to explain the math, we use z as defined above
- What do we want logistic regression to do?
 - We have an example where y = 1
 - Then we hope $h_{\theta}(x)$ is close to 1
 - With $h_{\theta}(x)$ close to 1, $(\theta^T x)$ must be **much larger** than o

- \circ Similarly, when y = 0
 - Then we hope $h_{\theta}(x)$ is close to o
 - With $h_{\theta}(x)$ close to o, $(\theta^T x)$ must be **much less** than o

- This is our classic view of logistic regression
 - Let's consider another way of thinking about the problem
- Alternative view of logistic regression
 - If you look at cost function, each example contributes a term like the one below to the overall cost function

$$-(y \log h_{\theta}(x) + (1-y) \log(1 - h_{\theta}(x)))$$

- For the overall cost function, we sum over all the training examples using the above function, and have a 1/m term
- If you then plug in the hypothesis definition $(h_{\theta}(x))$, you get an expanded cost function equation;

$$= -y \log \frac{1}{1 + e^{-\theta^T x}} - (1 - y) \log(1 - \frac{1}{1 + e^{-\theta^T x}})$$

- So each training example contributes that term to the cost function for logistic regression
- If y = 1 then only the first term in the objective matters
 - If we plot the functions vs. z we get the following graph

- This plot shows the cost contribution of an example when y = 1 given z
 - So if z is big, the cost is low this is good!
 - But if z is o or negative the cost contribution is high
 - This is why, when logistic regression sees a positive example, it tries to set θ^T x to be a very large term
- If y = 0 then only the second term matters
 - We can again plot it and get a similar graph

- Same deal, if z is small then the cost is low
 - But if s is large then the cost is massive

SVM cost functions from logistic regression cost functions

- To build a SVM we must redefine our cost functions
 - \circ When y = 1
 - Take the y = 1 function and create a new cost function
 - Instead of a curved line create two straight lines (magenta) which acts as an approximation to

the logistic regression y = 1 function

- Take point (1) on the z axis
 - Flat from 1 onwards
 - Grows when we reach 1 or a lower number
- This means we have two straight lines
 - Flat when cost is o
 - Straight growing line after 1
- So this is the new y=1 cost function
 - Gives the SVM a computational advantage and an easier optimization problem
 - We call this function **cost**₁(**z**)
- Similarly
 - \circ When y = 0
 - Do the equivalent with the y=o function plot

- We call this function **cost**₀(**z**)
- So here we define the two cost function terms for our SVM graphically
 - How do we implement this?

The complete SVM cost function

• As a comparison/reminder we have logistic regression below

$$\min_{\theta} \frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \left(-\log h_{\theta}(x^{(i)}) \right) + (1 - y^{(i)}) \left((-\log(1 - h_{\theta}(x^{(i)}))) \right) \right] + \frac{\lambda}{2m} \sum_{j=1}^{n} \theta_{j}^{2}$$

- If this looks unfamiliar its because we previously had the sign outside the expression
- For the SVM we take our two logistic regression y=1 and y=0 terms described previously and replace with $\circ \cot_1(\theta^T x)$
 - $\circ \cos t_0(\theta^T \mathbf{x})$
- So we get

$$\min_{\theta} \frac{1}{m} \sum_{i=1}^{m} \left[y^{(i)} cost_1(\theta^T x^{(i)}) + (1 - y^{(i)}) cost_0(\theta^T x^{(i)}) \right] + \frac{\lambda}{2m} \sum_{i=1}^{n} \theta_j^2$$

SVM notation is slightly different

- In convention with SVM notation we rename a few things here
- 1) Get rid of the 1/m terms
 - This is just a slightly different convention
 - By removing 1/m we should get the same optimal values for
 - 1/m is a constant, so should get same optimization
 - e.g. say you have a minimization problem which minimizes to u = 5
 - If your cost function * by a constant, you still generates the minimal value
 - That minimal value is different, but that's irrelevant
- 2) For logistic regression we had two terms;
 - Training data set term (i.e. that we sum over m) = A
 - \circ Regularization term (i.e. that we sum over n) = **B**
 - So we could describe it as A + \(\lambda\)B
 - Need some way to deal with the trade-off between regularization and data set terms
 - Set different values for λ to parametrize this trade-off
 - Instead of parameterization this as A + λ B
 - For SVMs the convention is to use a different parameter called C
 - So do CA + B
 - If C were equal to $1/\lambda$ then the two functions (CA + B and A + λ B) would give the same value
- So, our overall equation is

$$\min_{\theta} C \sum_{i=1}^{m} \left[y^{(i)} cost_1(\theta^T x^{(i)}) + (1 - y^{(i)}) cost_0(\theta^T x^{(i)}) \right] + \frac{1}{2} \sum_{i=1}^{n} \theta_j^2$$

- Unlike logistic, $h_{\theta}(x)$ doesn't give us a probability, but instead we get a direct prediction of 1 or 0
 - So if θ^T x is equal to or greater than $\theta -> h_{\theta}(x) = 1$
 - \circ Else --> $h_{\theta}(x) = o$

Large margin intuition

- Sometimes people refer to SVM as large margin classifiers
 - We'll consider what that means and what an SVM hypothesis looks like
 - The SVM cost function is as above, and we've drawn out the cost terms below

If
$$y = 0$$
, we want $\theta^T x \le 1$ (not just ≤ 0)

If
$$y = 0$$
, we want $\theta^T x \le -1$ (not just < 0)

- Left is cost₁ and right is cost₀
- What does it take to make terms small
 - If y = 1
 - $cost_1(z) = 0$ only when z >= 1
 - - $cost_0(z) = 0$ only when $z \le -1$
- Interesting property of SVM
 - If you have a positive example, you only really need z to be greater or equal to o
 - If this is the case then you predict 1
 - SVM wants a bit more than that doesn't want to *just* get it right, but have the value be quite a bit bigger than zero
 - Throws in an extra safety margin factor
- Logistic regression does something similar
- What are the consequences of this?
 - Consider a case where we set C to be huge

- C = 100,000
- So considering we're minimizing CA + B
 - If C is huge we're going to pick an A value so that A is equal to zero
 - What is the optimization problem here how do we make A = 0?
- Making A = 0
 - If y = 1
 - Then to make our "A" term o need to find a value of θ so $(\theta^T x)$ is greater than or equal to 1
 - Similarly, if y = 0
 - Then we want to make "A" = 0 then we need to find a value of θ so $(\theta^T x)$ is equal to or less than -1
- So if we think of our optimization problem a way to ensure that this first "A" term is equal to o, we re-factor our optimization problem into just minimizing the "B" (regularization) term, because
 - When A = o --> A*C = o
- So we're minimizing B, under the constraints shown below

• Turns out when you solve this problem you get interesting decision boundaries

- The green and magenta lines are functional decision boundaries which could be chosen by logistic regression
 - But they probably don't generalize too well
- The black line, by contrast is the the chosen by the SVM because of this safety net imposed by the optimization graph
 - More robust separator
- Mathematically, that black line has a larger minimum distance (margin) from any of the training examples

- By separating with the largest margin you incorporate robustness into your decision making process
- We looked at this at when C is very large
 - SVM is more sophisticated than the large margin might look
 - If you were just using large margin then SVM would be very sensitive to outliers

- You would risk making a ridiculous hugely impact your classification boundary
 - A single example might not represent a good reason to change an algorithm
 - If C is very large then we do use this quite naive maximize the margin approach

- So we'd change the black to the magenta
- But if C is reasonably small, or a not too large, then you stick with the black decision boundary
- What about non-linearly separable data?
 - Then SVM still does the right thing if you use a normal size C
 - So the idea of SVM being a large margin classifier is only really relevant when you have no outliers and you can easily linearly separable data
- o Means we ignore a few outliers

Large margin classification mathematics (optional)

Vector inner products

• Have two (2D) vectors u and v - what is the inner product $(u^T v)$?

$$u = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} v = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$$

- Plot *u* on graph
 - i.e u_1 vs. u_2

- One property which is good to have is the **norm** of a vector
 - Written as ||u||
 - This is the euclidean length of vector u
 - So $||\mathbf{u}|| = \text{SQRT}(u_1^2 + u_2^2) = \text{real number}$
 - i.e. length of the arrow above
 - Can show via Pythagoras
- For the inner product, take v and orthogonally project down onto u
 - First we can plot v on the same axis in the same way $(v_1 \text{ vs } v_1)$
 - Measure the length/magnitude of the projection

- So here, the green line is the projection
 - p = length along u to the intersection
 - \blacksquare p is the magnitude of the projection of vector v onto vector u
- o Possible to show that
 - $u^T v = p * ||u||$
 - So this is one way to compute the inner product
 - $u^T v = u_1 v_1 + u_2 v_2$
 - So therefore
 - $| p * ||u|| = u_1v_1 + u_2v_2$
 - This is an important rule in linear algebra
 - We can reverse this too
 - So we could do
 - $v^T u = v_1 u_1 + v_2 u_2$
 - Which would obviously give you the same number
- o p can be negative if the angle between them is 90 degrees or more

- So here p is negative
- Use the vector inner product theory to try and understand SVMs a little better

SVM decision boundary

$$\begin{aligned} & \min_{\theta} \frac{1}{2} \sum_{j=1}^{n} \theta_{j}^{2} \\ & \text{s.t.} \quad \theta^{T} x^{(i)} \geq 1 & \text{if } y^{(i)} = 1 \\ & \theta^{T} x^{(i)} \leq -1 & \text{if } y^{(i)} = 0 \end{aligned}$$

- For the following explanation two simplification
 - \circ Set θ_0 = o (i.e. ignore intercept terms)
 - \circ Set n = 2 (x_1, x_2)
 - i.e. each example has only 2 features
- Given we only have two parameters we can simplify our function to

• And, can be re-written as

- Should give same thing
- We may notice that

$$= ||\Theta||$$

- \circ The term in red is the norm of θ
 - If we take θ as a 2x1 vector
 - If we assume θ_0 = 0 its still true
- So, finally, this means our optimization function can be re-defined as

- So the SVM is minimizing the squared norm
- Given this, what are the $(\theta^T x)$ parameters doing?
 - \circ Given θ and given example x what is this equal to
 - We can look at this in a comparable manner to how we just looked at u and v
 - Say we have a single positive training example (red cross below)

12_Support_Vector_Machines

• Although we haven't been thinking about examples as vectors it can be described as such

 \circ Now, say we have our parameter vector θ and we plot that on the same axis

• The next question is what is the inner product of these two vectors

- p, is in fact pⁱ, because it's the length of p for example i
 - Given our previous discussion we know

$$(\theta^T \mathbf{x}^i) = \mathbf{p}^{i*} ||\theta||$$
$$= \theta_1 \mathbf{x}^{i_1} + \theta_2 \mathbf{x}^{i_2}$$

- So these are both equally valid ways of computing $\theta^T x^i$
- What does this mean?
 - The constraints we defined earlier

$$\bullet$$
 (θ^T x) >= 1 if y = 1

$$\bullet$$
 (θ^T x) <= -1 if y = 0

• $(\theta^T x) >= 1$ if y = 1• $(\theta^T x) <= -1$ if y = 0• Can be replaced/substituted with the constraints

$$p^{i} * ||\theta|| >= 1 \text{ if } y = 1$$

$$p^{i} * ||\theta|| <= -1 \text{ if } y = 0$$

• Writing that into our optimization objective

$$\min_{\theta} \frac{1}{2} \sum_{j=1}^{n} \theta_{j}^{2} = \frac{1}{2} \|\theta\|^{2}$$
s.t. $p^{(i)} \cdot \|\theta\| \ge 1$ if $y^{(i)} = 1$

$$p^{(i)} \cdot \|\theta\| \le -1$$
 if $y^{(i)} = 1$

• So, given we've redefined these functions let us now consider the training example below

- \circ Given this data, what boundary will the SVM choose? Note that we're still assuming $\theta_0 = 0$, which means the boundary has to pass through the origin (0,0)
 - Green line small margins

- SVM would not chose this line
 - Decision boundary comes very close to examples
 - Lets discuss why the SVM would **not** chose this decision boundary
- o Looking at this line
 - We can show that θ is at 90 degrees to the decision boundary

- θ is always at 90 degrees to the decision boundary (can show with linear algebra, although we're not going to!)
- So now lets look at what this implies for the optimization objective
 - Look at first example (x1)

- Project a line from x^1 on to to the θ vector (so it hits at 90 degrees)
 - The distance between the intersection and the origin is (p¹)
- Similarly, look at second example (x²)
 - Project a line from x^2 into to the θ vector
 - This is the magenta line, which will be **negative** (p²)
- If we overview these two lines below we see a graphical representation of what's going on;

- We find that both these p values are going to be pretty small
- If we look back at our optimization objective
 - We know we need $p^{1} * ||\theta||$ to be bigger than or equal to 1 for positive examples
 - If p is small
 - Means that $\|\theta\|$ must be pretty large
 - Similarly, for negative examples we need $p^2 * ||\theta||$ to be smaller than or equal to -1
 - We saw in this example p² is a small negative number
 - So $||\theta||$ must be a large number
- Why is this a problem?
 - The optimization objective is trying to find a set of parameters where the norm of theta is small
 - So this doesn't seem like a good direction for the parameter vector (because as p values get smaller $||\theta||$ must get larger to compensate)
 - So we should make p values larger which allows $|\theta|$ to become smaller
- So lets chose a different boundary

- \circ Now if you look at the projection of the examples to θ we find that p^1 becomes large and $||\theta||$ can become small
- o So with some values drawn in

- \circ This means that by choosing this second decision boundary we can make $|\theta|$ smaller
 - Which is why the SVM choses this hypothesis as better
 - This is how we generate the large margin effect

- The magnitude of this margin is a function of the p values
 - So by maximizing these p values we minimize $||\theta||$
- Finally, we did this derivation assuming $\theta_0 = 0$,
 - o If this is the case we're entertaining only decision boundaries which pass through (0,0)
 - If you allow θ_0 to be other values then this simply means you can have decision boundaries which cross through the x and y values at points other than (0,0)
 - \circ Can show with basically same logic that this works, and even when θ_0 is non-zero when you have optimization objective described above (when C is very large) that the SVM is looking for a large margin separator between the classes

Kernels - 1: Adapting SVM to non-linear classifiers

- What are kernels and how do we use them
 - We have a training set
 - We want to find a non-linear boundary

- o Come up with a complex set of polynomial features to fit the data
 - Have $h_{\theta}(x)$ which
 - Returns 1 if the combined weighted sum of vectors (weighted by the parameter vector) is less than or equal to 0
 - Else return o
 - Another way of writing this (new notation) is
 - That a hypothesis computes a decision boundary by taking the sum of the parameter vector multiplied by a **new feature vector f**, which simply contains the various high order x terms
 - e.g.
 - $h_{\theta}(x) = \theta_0 + \theta_1 f_1 + \theta_2 f_2 + \theta_3 f_3$
 - Where
 - \blacksquare $f_1 = x_1$
 - $f_2 = x_1 x_2$
 - f₃ = ...
 - i.e. not specific values, but each of the terms from your complex polynomial function
 - Is there a better choice of feature f than the high order polynomials?

- As we saw with computer imaging, high order polynomials become computationally expensive
- New features
 - \circ Define three features in this example (ignore x_0)
 - \circ Have a graph of x_1 vs. x_2 (don't plot the values, just define the space)
 - Pick three points in that space

- These points l¹, l², and l³, were chosen manually and are called **landmarks**
 - Given x, define f1 as the similarity between (x, l1)

$$= \exp(-(||x-l^1||^2)/2\sigma^2)$$

$$= \exp\left(-\frac{||x-l^{(1)}||^2}{2\sigma^2}\right)$$

- $\| \| \mathbf{x} \mathbf{l}^1 \|$ is the euclidean distance between the point x and the landmark \mathbf{l}^1 squared
 - Disussed more later
- If we remember our statistics, we know that
 - \bullet o is the **standard deviation**
 - \bullet σ^2 is commonly called the **variance**
- Remember, that as discussed

$$||x-l^{(1)}||^2 = \sum_{j=1}^n (x_j - l_j^{(1)})^2$$

- o So, f2 is defined as
 - $f_2 = similarity(x, l^1) = exp(-(||x l^2||^2) / 2\sigma^2)$
- And similarly
 - $f_3 = similarity(x, l^2) = exp(-(||x-l^1||^2)/2\sigma^2)$
- This similarity function is called a **kernel**
 - This function is a Gaussian Kernel
- o So, instead of writing similarity between x and l we might write
 - \blacksquare f1 = k(x, l¹)

Diving deeper into the kernel

- So lets see what these kernels do and why the functions defined make sense
 - Say x is close to a landmark
 - Then the squared distance will be ~o
 - So

- Which is basically e⁻⁰
 - Which is close to 1
- Say x is far from a landmark
 - Then the squared distance is big
 - Gives e-large number
 - Which is close to zero
- Each landmark defines a new features

- If we plot f1 vs the kernel function we get a plot like this
 - Notice that when x = [3,5] then $f_1 = 1$
 - As x moves away from [3,5] then the feature takes on values close to zero
 - So this measures how close x is to this landmark

What does σ do?

- σ^2 is a parameter of the Gaussian kernel
 - o Defines the steepness of the rise around the landmark
- Above example $\sigma^2 = 1$
- Below $\sigma^2 = 0.5$

- We see here that as you move away from 3,5 the feature f1 falls to zero much more rapidly
- The inverse can be seen if $\sigma^2 = 3$

- Given this definition, what kinds of hypotheses can we learn?
 - With training examples x we predict "1" when
 - $\theta_0 + \theta_1 f_1 + \theta_2 f_2 + \theta_3 f_3 >= 0$
 - For our example, lets say we've already run an algorithm and got the
 - $\theta_0 = -0.5$
 - $\theta_1 = 1$
 - $\theta_2 = 1$
 - $\theta_3 = 0$
 - Given our placement of three examples, what happens if we evaluate an example at the magenta dot below?

- Looking at our formula, we know f1 will be close to 1, but f2 and f3 will be close to 0
 - So if we look at the formula we have
 - $\theta_0 + \theta_1 f_1 + \theta_2 f_2 + \theta_3 f_3 >= 0$
 - -0.5 + 1 + 0 + 0 = 0.5
 - 0.5 is greater than 1
- If we had another point far away from all three

- This equates to -0.5
 - So we predict o
- \circ Considering our parameter, for points near l^1 and l^2 you predict 1, but for points near l^3 you predict 0
- Which means we create a non-linear decision boundary that goes a lil' something like this;

- Inside we predict y = 1
- Outside we predict y = 0
- So this show how we can create a non-linear boundary with landmarks and the kernel function in the support vector machine
 - o But
 - How do we get/chose the landmarks
 - What other kernels can we use (other than the Gaussian kernel)

Kernels II

- Filling in missing detail and practical implications regarding kernels
- Spoke about picking landmarks manually, defining the kernel, and building a hypothesis function
 - Where do we get the landmarks from?
 - For complex problems we probably want lots of them

Choosing the landmarks

- Take the training data
- For each example place a landmark at exactly the same location
- So end up with m landmarks
 - One landmark per location per training example
 - Means our features measure how close to a training set example something is
- Given a new example, compute all the f values
 - Gives you a feature vector f (fo to fm)
 - $f_0 = 1$ always
- A more detailed look at generating the f vector
 - If we had a training example features we compute would be using (xi, yi)
 - So we just cycle through each landmark, calculating how close to that landmark actually xⁱ is
 - f_1^i , = k(xⁱ, l¹)
 - f_2^i , = k(xⁱ, l²)
 - **.**.
 - f_m^i , = $k(x^i, l^m)$
 - Somewhere in the list we compare x to itself... (i.e. when we're at f₁i)
 - So because we're using the Gaussian Kernel this evalues to 1
 - Take these m features (f₁, f₂ ... f_m) group them into an [m +1 x 1] dimensional vector called f
 - fⁱ is the f feature vector for the ith example
 - And add a oth term = 1
- Given these kernels, how do we use a support vector machine

SVM hypothesis prediction with kernels

- Predict y = 1 if $(\theta^T f) >= 0$
 - \circ Because $\theta = [m+1 \times 1]$
 - \circ And $f = [m + 1 \times 1]$
- So, this is how you make a prediction assuming you already have θ
 - How do you get θ ?

SVM training with kernels

• Use the SVM learning algorithm

$$\min_{\theta} C \sum_{i=1}^{m} y^{(i)} cost_1(\theta^T f^{(i)}) + (1 - y^{(i)}) cost_0(\theta^T f^{(i)}) + \frac{1}{2} \sum_{j=1}^{n} \theta_j^2$$

- Now, we minimize using f as the feature vector instead of x
- By solving this minimization problem you get the parameters for your SVM
- In this setup, m = n
 - Because number of features is the number of training data examples we have
- One final mathematic detail (not crucial to understand)
 - \circ If we ignore θ_0 then the following is true

$$\sum_{j=1}^{n} \theta_j^2 = \theta^T \theta$$

• What many implementations do is

$$\theta^T \mathbf{M} \hat{\theta}$$

- Where the matrix M depends on the kernel you use
- Gives a slightly different minimization means we determine a rescaled version of θ
- Allows more efficient computation, and scale to much bigger training sets
- If you have a training set with 10 000 values, means you get 10 000 features
 - Solving for all these parameters can become expensive

- So by adding this in we avoid a for loop and use a matrix multiplication algorithm instead
- You can apply kernels to other algorithms
 - But they tend to be very computationally expensive
 - But the SVM is far more efficient so more practical
- Lots of good off the shelf software to minimize this function

• SVM parameters (C)

- o Bias and variance trade off
- o Must chose C
 - C plays a role similar to 1/LAMBDA (where LAMBDA is the regularization parameter)
- Large C gives a hypothesis of **low bias high variance** --> overfitting
- Small C gives a hypothesis of **high bias low variance** --> underfitting

• SVM parameters (σ^2)

- Parameter for calculating f values
 - Large σ^2 f features vary more smoothly higher bias, lower variance
 - Small σ^2 f features vary abruptly low bias, high variance

SVM - implementation and use

- So far spoken about SVM in a very abstract manner
- What do you need to do this
 - \circ Use SVM software packages (e.g. liblinear, libsym) to solve parameters θ
 - Need to specify
 - Choice of parameter C
 - Choice of kernel

Choosing a kernel

- We've looked at the Gaussian kernel
 - Need to define $\sigma(\sigma^2)$
 - Discussed σ²
 - When would you chose a Gaussian?
 - If n is small and/or m is large
 - e.g. 2D training set that's large
 - If you're using a Gaussian kernel then you may need to implement the kernel function
 - e.g. a function
 - fi = kernel(x1,x2)
 - Returns a real number
 - Some SVM packages will expect you to define kernel
 - Although, some SVM implementations include the Gaussian and a few others
 - Gaussian is probably most popular kernel
 - NB make sure you perform **feature scaling** before using a Gaussian kernel
 - If you don't features with a large value will dominate the f value
- Could use no kernel linear kernel
 - Predict y = 1 if $(\theta^T x) >= 0$
 - So no f vector
 - Get a standard linear classifier
 - Why do this?
 - If n is large and m is small then
 - Lots of features, few examples
 - Not enough data risk overfitting in a high dimensional feature-space
- Other choice of kernel
 - Linear and Gaussian are most common
 - Not all similarity functions you develop are valid kernels
 - Must satisfy Merecer's Theorem
 - SVM use numerical optimization tricks
 - Mean certain optimizations can be made, but they must follow the theorem
 - o Polynomial Kernel
 - We measure the similarity of x and l by doing one of
 - $(x^T)^2$

- $\blacksquare (\mathbf{x}^T \mathbf{1})^3$
- $(x^T l+1)^3$
- General form is
 - $(x^T l + Con)^D$
- If they're similar then the inner product tends to be large
- Not used that often
- Two parameters
 - Degree of polynomial (D)
 - Number you add to l (Con)
- Usually performs worse than the Gaussian kernel
- Used when x and l are both non-negative
- String kernel
 - Used if input is text strings
 - Use for text classification
- Chi-squared kernel
- Histogram intersection kernel

Multi-class classification for SVM

- Many packages have built in multi-class classification packages
- Otherwise use one-vs all method
- Not a big issue

Logistic regression vs. SVM

- When should you use SVM and when is logistic regression more applicable
- If n (features) is large vs. m (training set)
 - e.g. text classification problem
 - Feature vector dimension is 10 000
 - Training set is 10 1000
 - Then use logistic regression or SVM with a linear kernel
- If n is small and m is intermediate
 - o n = 1 1000
 - o m = 10 10 000
 - o Gaussian kernel is good
- If n is small and m is large
 - o n = 1 1000
 - o m = 50 000+
 - SVM will be slow to run with Gaussian kernel
 - o In that case
 - Manually create or add more features
 - Use logistic regression of SVM with a linear kernel
- Logistic regression and SVM with a linear kernel are pretty similar
 - o Do similar things
 - Get similar performance
- A lot of SVM's power is using different kernels to learn complex non-linear functions
- For all these regimes a well designed NN should work
 - o But, for some of these problems a NN might be slower SVM well implemented would be faster
- SVM has a convex optimization problem so you get a global minimum
- It's not always clear how to chose an algorithm
 - Often more important to get enough data
 - Designing new features
 - Debugging the algorithm
- SVM is widely perceived a very powerful learning algorithm