Training and deploying SNN applications with Rockpool and Xylo

OpenNeuromorphic | April 26th 2023

All code: https://github.com/synsense/OpenNeuromorphic_26042023

Hardware / IP / Applications
Ultra-low-power compute
Sensory processing
At the edge

Neuromorphic Smart Sensors

- Highly informative output / low bandwidth output
- Smart condition detection
- Smart wake-up
- Continuous monitoring
- Low latency → <200 ms
- Low power \rightarrow <10 mW

Hardware families

Vision processing with high speed, low power

DynapCNN

Scalable CNN cores

Speck

Integrated vision sensing

Smart visual wake-up
Object trakeing
Presence detection

Real-time motion estimation Behaviour detection Gesture interaction

Natural signal processing

Xylo

Ultra-low-power

Audio processing
Bio-signal processing
IMU processing
Condition monitoring

Temporal computation with SNNs

$$y = \Theta\left(W \cdot x + b\right)$$

$$\tau_{s} \underline{I_{s}} + \underline{I_{s}} = W \cdot \underline{z_{i}}(t)$$

$$\tau_{m} \dot{V}_{m} + V_{m} = \underline{I_{s}} + b$$

$$\underline{V_{m}}(t_{j}) > \theta \rightarrow \begin{cases} \underline{V_{m}}(t_{j}) & \leftarrow \underline{V_{m}}(t_{j}) - \theta \\ \underline{z_{o}}(t) & \leftarrow \underline{z_{o}}(t) + \delta(t_{j}) \end{cases}$$

nn.modules.LIF

class nn.modules.LIF(*args, **kwargs) [source]

Bases: rockpool.nn.modules.module.Module

A leaky integrate-and-fire spiking neuron model

This module implements the update equations:

$$I_{syn}+=S_{in}(t)+S_{rec}\cdot W_{rec} \ I_{syn}*=\exp(-dt/au_{syn}) \ V_{mem}*=\exp(-dt/au_{mem}) \ V_{mem}+=I_{syn}+b+\sigma\zeta(t)$$

where $S_{in}(t)$ is a vector containing 1 (or a weighed spike) for each input channel that emits a spike at time t; b is a N vector of bias currents for each neuron; $\sigma\zeta(t)$ is a Wiener noise process with standard deviation σ after 1s; and τ_{mem} and τ_{syn} are the membrane and synaptic time constants, respectively. $S_{rec}(t)$ is a vector containing 1 for each neuron that emitted a spike in the last timestep. W_{rec} is a recurrent weight matrix, if recurrent weights are used. b is an optional bias current per neuron (default 0.).

On spiking:

When the membrane potential for neuron j, $V_{mem,j}$ exceeds the threshold voltage V_{thr} , then the neuron emits a spike. The spiking neuron subtracts its own threshold on reset.

$$V_{mem,j} > V_{thr}
ightarrow S_{rec,j} = 1 \ V_{mem,j} = V_{mem,j} - V_{thr}$$

● ● ■ Terminal

(base) dylan@Statics ~ % conda create --name rp rockpool -c conda-forge

● ● ■ Terminal

(base) dylan@Statics ~ % pip install rockpool

Spiking Hiedelberg Digits

Heidelberg Digits

- Spoken digits, English and German
- 20 classes
- Pre-processed with highly detailed basilar membrane / cochlea model
- Input data provided as spike events

Tonic

tonic.readthedocs.io

- Neuromorphic datasets
 - SHD, S-MNIST, DVSGesture, ...
- Data transformations
- Data augmentation
- Caching
- Open source

•

Xylo digital SNN architecture Logical network architecture

Xylo digital SNN architecture Digital LIF Neuron

Network architecture

Mapping process

- PyTorch, Jax backends
- GPU/CUDA, TPU, MPS acceleration
- Constrained optimization for SNNs
- Time constant & threshold training
- Deployable adaptive LIF models
- Quantization-aware training
- Mixed-signal HW-aware training
- Easily extensible
- Open source ♥

• ,,,