Structure of Bohn-Sets

Recall that given $\Gamma \in \mathbb{Z}_N$ and $\varepsilon > 0$ we defined the Bohr set $B(\Gamma, \varepsilon)$ by $B(\Gamma, \varepsilon) = \{x \in \mathbb{Z}_N : ||\frac{x^2}{N}|| \in \varepsilon \ \forall \ 3 \in \Gamma \}$

and referred to $I\Gamma I$ as the rank of $B(\Gamma, \varepsilon)$ and ε as it radius.

Exercise 1: Use the pigeonbole principle to show that $|B(r, \epsilon)| \ge \epsilon^{|P|} N$ and cardude from this that $B(r, \epsilon)$ always cartains an arithmetic progression of length at least ϵN^{NPI} .

The nain result of this note is the following:

Theorem

Any Bohr set of rank d and radius OKEKI contains a proper symm generalized with prog. of dimension d and size at least $(\frac{\epsilon}{d})^d N$.

The proof of this theorem relies on some geometry of numbers, specifically

Minkowski's Second Theorem

Let $K \subseteq \mathbb{R}^d$ be a centrally symmetric convex body and Λ a non-deg lattice, then $2i\lambda_2 \cdots \lambda_d \operatorname{vol}(K) \le 2^d \det(\Lambda)$ (*)

where I's dendes the jth successive minima of K wort A.

Sinf { 200: 2K contains j lin. indep. elements Rom 13.

Note: Since $\lambda_1 \in \lambda_2 \leq \dots \leq \lambda_d$, $(*) \Rightarrow \lambda_1^d \text{vol}(k) \leq 2^d \det(\Lambda)$ and hence that k most contain a non-zero lattice on it inhomoger unlikely add to $1/\Lambda$)

- " Recall that if $\Lambda \subseteq \mathbb{R}^d$ is a (non-deg) lattice, that is a discrete subgraf \mathbb{R}^d , generated by the linearly independent vectors V_1, \dots, V_d , then $\det(\Lambda) := \det(V_1, V_2, \dots, V_d)$.
- · For a proof of Minkowski's 2nd Theorem, see Ben Green's notes.

Proof of Theorem: Suppose that our Bohn set $B(\Gamma, \varepsilon) \subseteq \mathbb{Z}_N$ with spectrum $\Gamma = \{3, ..., 3d\}$ with property that $(z_j, N) = 1$ for some $1 \le j \le d$.

Let $\Lambda:=N\mathbb{Z}^d+(\tilde{z}_1,...,\tilde{z}_d)\mathbb{Z}$ and $K=\{x\in\mathbb{R}^d:\|x\|_\infty\leq 1\}$. $C=\max |x_i|$

Exercise 2: Show that vol(K)=2d and det(A)=Nd-1.

Minkowski $\Rightarrow \exists \text{ lin. nidep } V_1,...,Vd \in \Lambda \text{ with } V_j \in \Lambda_j \times V \text{ Is } j \in d \in \Lambda_j \cdot \Lambda_d \times N^{d-1}$ Since $V_j \in \Lambda$ we know $\exists x_j \in \mathbb{Z} \text{ s.t. } V_j \equiv (x_j \not \not z_1,...,x_j \not z_d) \text{ mod } N$, combining this with fact that $V_j \in \Lambda_j \times V_j \times V_j \in \Lambda_j \times V_j \in \Lambda_j \times V_j \times$

words x; EB(P, 21/N) for each 15 jsd.

It Pollows that

 $P := \left\{ \ell_{1} \times_{i+1} + \ell_{d} \times_{d} : |\ell_{j}| \leq \frac{\epsilon N}{2d\lambda_{j}} \right\} \subseteq \mathcal{B}(\Gamma, \epsilon).$

Note that if P is proper, then it follows that IPI= (\(\frac{\xi}{d}\)\frac{\chi}{\lambda_1}\frac{\xi}{\d} \> \lambda_1\frac{\xi}{\d}\chi \chi.

Verification that P is proper: Suppose lixi+-+ laxa = lixi+-+laxa.

> livi+++ldvd = livi+++lavd mod N where O≤li, li' ≤ EN/dis.

⇒ w= (l,-l')v,+··+ (la-la')vd ∈ NZd with ||w||ω ≤ ∑ = N ||v;||ω ≤ EN.

Since Ocecl it follows that w=0 and honce li=li' V Isisd.