

# DATABASE FOR COMPUTER REPAIR SHOP

# **TABLE OF CONTENTS**

| LI | ST OF FIG | GURES                                                                | . 2 |
|----|-----------|----------------------------------------------------------------------|-----|
| LI | ST OF TA  | ABLES                                                                | . 2 |
| 1  | PROBL     | EM SPECIFICATION                                                     | 3   |
| 2  | SOLUT     | ION STEPS                                                            | 3   |
|    | 2.1       | Discover Entities                                                    |     |
|    | 2.2       | Assign Attributes                                                    |     |
|    | 2.3       | Select identifiers and primary keys from attributes of each entity 4 |     |
|    | 2.4       | Build the E-E Matrix                                                 |     |
|    | 2.5       | List assertions for all relationships (Optionality: Cardinality) 5   |     |
|    | 2.6       | Create ER Diagram6                                                   |     |
|    | 2.7       | Create Implementable RM Diagram                                      |     |
|    | 2.8       | Data Dictionary9                                                     |     |
|    | 2.9       | Indexes                                                              |     |
| 3  | IMPLE     | MENTATION SNAPSHOTS                                                  | 13  |
| 4  | SOFTW     | ARE TOOLS                                                            | 15  |
| RF | EFERENC   | ES                                                                   | 16  |

# LIST OF FIGURES

|       | Figure 1:Entities and attributes of computer repair shop database | 4 |
|-------|-------------------------------------------------------------------|---|
|       | Figure 2: PK and identifiers of computer repair shop database     | 4 |
|       | Figure 4: Assertion rules.                                        | 5 |
|       | Figure 5: ERD of the computer repair shop.                        | 7 |
|       | Figure 6: crow's foot RM Diagram of the computer repair shop.     | 9 |
|       | Figure 7: Show exists databases from MySQL Command Line           | 3 |
|       | Figure 8: Show database columns from MySQL Command Line           | 3 |
|       | Figure 9: Show table column from MySQL Command Line               | 4 |
|       | Figure 10: Schema information from MySQL workbench                | 4 |
|       | Figure 11: Table information from MySQL workbench.                | 4 |
|       | Figure 12: Show table details from MySQL workbench.               | 4 |
|       | Figure 13: Export the SQL Script from MySQL workbench             | 5 |
|       | Figure 14:Software tools.                                         | 5 |
|       |                                                                   |   |
| LICT  | OF TABLEC                                                         |   |
| LIS I | OF TABLES                                                         |   |
|       | Table 1: E-E Matrix of computer repair shop                       | 5 |
|       | Table 2: Database dictionary                                      | Э |

## 1 PROBLEM SPECIFICATION

The owners of a computer repair shop would like to keep track of the repair jobs for computers they repair, the items used for each repair job, the labor costs for each repair job, the repairmen performing each repair job, and the total cost of each repair job.

When customers bring their computers in to be repaired, they make a deposit on the repair job and are given a date to return and uplift their computer. Repairmen then perform repairs on the customers' computers based on the repair job and detail the labor costs and the items used for each repair job.

When customers return, they pay the total cost of the repair job less the deposit, collect a receipt for their payment, and uplift the repaired computer using this payment receipt.

### **2 SOLUTION STEPS**

#### 2.1 Discover Entities

List of all the discovered entities:

- Repair Jobs
- Computers
- Items
- Repairmen
- Customers
- Deposits
- Payment Receipts (Payments)

## 2.2 Assign Attributes

list of the possible properties and/or characteristics recorded in the problem domain and those relevant to the client.



Figure 1:Entities and attributes of computer repair shop database.

#### 2.3 Select identifiers and primary keys from attributes of each entity

Every attribute must depend on the primary key, the whole primary key.



Figure 2: PK and identifiers of computer repair shop database.

#### **2.4** Build the E-E Matrix

The intersection of the rows and columns represents the relationships that may exist between the entities

- $Diagonal \rightarrow Express the unary relationships (No unary relationship in the problem).$
- Empty cell  $\rightarrow$  No Relationships between the 2 rational entities.

|             | Repair Jobs | Computers | Items | Repairmen | Customers | Deposits | Payments |
|-------------|-------------|-----------|-------|-----------|-----------|----------|----------|
| Repair Jobs |             |           |       |           |           |          |          |
| Computers   | Conducted   |           |       |           |           |          |          |
| Items       | Use         |           |       |           |           |          |          |
| Repairmen   | Perform     |           | Order |           |           |          |          |
| Customers   | Request     | Own       |       |           |           |          |          |
| Deposits    | Make        |           |       |           |           |          |          |
| Payments    | Make        |           |       |           |           |          |          |

Table 1: E-E Matrix of computer repair shop

# 2.5 List assertions for all relationships (Optionality: Cardinality)

By looking at each relationship from Entity A to Entity B and writing out the relationship in words, using the entities involved in the relationship, the optionality, and cardinalities. Then, Look at each relationship in reverse, from Entity B to Entity A, and write out the relationship in words, using the entities involved in the relationship, the optionality, and the cardinalities.



Figure 3: Assertion rules.

First, we list the assertions of the 8 relationships, mentioned in the E-E matrix above, as follows:

- A Repair Job must be <u>conducted</u> on **only one** Computer  $\rightarrow$  (1: 1)
- A Repair Job may use many Items  $\rightarrow$  (0: N)
- A Repair Job **must** be <u>requested</u> by **only one** Customer  $\rightarrow$  (1: 1)

- A Repair Job must be performed by at least one Repairman  $\rightarrow$  (1: N)
- A Repair Job must have <u>made</u> at least one Deposit  $\rightarrow$  (1: N)
- A Repair Job may have <u>made</u> many Payments  $\rightarrow$  (0: N)
- An Item may be ordered by many Repairmen  $\rightarrow$  (0: N)
- A Customer must own at least one Computer  $\rightarrow$  (1: N)

Second, we list the reverse of the 8 relationships as follows:

- Each Computer must have conducted at least one Repair Jobs  $\rightarrow$  (1: N)
- Each Item may be used in many Repair Jobs  $\rightarrow$  (0: N)
- Each Customer may request many Repair Jobs  $\rightarrow$  (0: N)
- Each Repairman may perform many Repair Jobs  $\rightarrow$  (0: N)
- Each Deposit must be made for only one Repair Job  $\rightarrow$  (1: 1)
- Each Payment **must** be made for **only one** Repair Job  $\rightarrow$  (1: 1)
- Each Repairman may order many Items  $\rightarrow$  (0: N)
- Each Computer **must** be owned by **only one** Customer  $\rightarrow$  (1: 1)

#### 2.6 Create ER Diagram

Using the documented information above, I created this ERD using the Draw.io website.

- 1. With the aid of section 2.1, I created the entities as rectangles.
- 2. With the aid of section 2.2, I Listed the attributes of each entity.
- 3. With the aid of section 2.3, I distinguish the primary keys by bolding and underlining the font and the identifiers by bolding only.
- 4. With the aid of section 2.4, I created the relationships as diamonds.
- 5. Join the relationship (diamond) with its 2 entities (rectangles).
- 6. With the aid of <u>section 2.5</u>, I positioned the assertion on the 2 sides of the relationship as *(optionality: cardinality)*.



Figure 4: ERD of the computer repair shop.

## 2.7 Create Implementable RM Diagram

Transforming the detailed ER diagram into a Crow's Foot RM diagram and handling all many-to-many relationships. Crow's feet can only represent one-to-one and one-to-many relationships. Many-to-many relationships are created using a join-table.

To identify the many-to-many relationships, I created new (1: N), or (1: N) relationships that connect the two existing Relations to the new Relation. The many sides (Crow's Foot) of

the two new relationships should be on the new Relation. Ensure that the primary key for each of the two existing Relations becomes a foreign key in the new Relation and create a new and separate primary key for the new Relation, such as a unique identifier (Id) the new Relations handled as follows:

**Note**: some attributes may be transported to the new Relation between the 2 sides many-to-many when it belongs to both sides.

#### RepairmenItems

I created a new Relation posed between Repairmen and Items Relations with 3 attributes to define more information about the item's orders by the repairmen.

- DateOrdered the date at which the repairman ordered an item.
- *Quantity number of ordered items.*
- *TotalCost total cost (cost of item \* quantity).*

**Note**: TotalCost is a delivered attribute.

#### **RepairJobsItems**

I created a new Relation posed between RepairJobs and Items Relations with 3 attributes to define more information about the items used in the repair job.

- *DateUsed the date at which the repair job used an item.*
- *Quantity Number of used items.*
- *TotalCost total cost (cost of item \* quantity).*

#### RepairJobsOfRepairmen

I created a new Relation posed between RepairJobs and Repairmen Relations and transport the 3 attributes (DateStarted, DateEnded, and Comment) of the ReparJobs to this new Relation.

- DateStarted the date at which the repairman starts working in a repair job.
- DateEnded the date at which the repairman ends the repair job.
- Comment.



Figure 5: crow's foot RM Diagram of the computer repair shop.

# 2.8 Data Dictionary

The table below gives a breakdown of the possible data types along with the other important considerations that need to be taken into account when implementing the columns of the tables.

Table 2: Database dictionary

| Table Name | Columns      | Data<br>Type | Length | Indexed           | Required (Default) |
|------------|--------------|--------------|--------|-------------------|--------------------|
|            | ItemNum      | INT          | NA     | Yes, PK           | Yes                |
|            | SerialNum    | VARCHAR      | 50     | Yes               | Yes                |
| Items      | ShortName    | VARCHAR      | 75     | Yes               | Yes                |
|            | Cost         | DECIMAL      | 12     | No                | Yes (0.00)         |
|            | NumInStock   | INT          | 6      | No                | Yes (1)            |
|            | RepairmenID  | INT          | NA     | Yes, PK           | Yes                |
|            | LastName     | VARCHAR      | 50     | Yes,<br>Composite | Yes                |
|            | FirstName    | VARCHAR      | 50     | No                | Yes                |
| Repairmen  | MI           | CHAR         | 1      | No                | No                 |
|            | Email        | VARCHAR      | 75     | No                | No                 |
|            | Mobile       | VARCHAR      | 14     | No                | Yes                |
|            | HTel         | VARCHAR      | 50     | No                | No                 |
|            | Extension    | VARCHAR      | 5      | No                | No                 |
|            | CustomerID   | INT          | NA     | Yes, PK           | Yes                |
|            | LastName     | VARCHAR      | 50     | Yes,<br>Composite | Yes                |
|            | FirstName    | VARCHAR      | 50     | No                | Yes                |
|            | MI           | CHAR         | 1      | No                | No                 |
|            | Email        | VARCHAR      | 75     | No                | No                 |
| Customers  | Mobile       | VARCHAR      | 14     | No                | Yes                |
|            | HTel         | VARCHAR      | 50     | No                | No                 |
|            | AddressLine1 | VARCHAR      | 75     | No                | Yes                |
|            | AddressLine2 | VARCHAR      | 75     | No                | No                 |
|            | City         | VARCHAR      | 50     | No                | Yes                |
|            | State        | VARCHAR      | 50     | No                | Yes                |
|            | ZIP          | VARCHAR      | 50     | No                | Yes                |

|                 | ComputerID           | INT     | NA  | Yes, PK               | Yes        |
|-----------------|----------------------|---------|-----|-----------------------|------------|
|                 | SerialNum            | VARCHAR | 50  | Yes                   | Yes        |
| C               | Make                 | VARCHAR | 50  | No                    | No         |
| Computers       | Model                | VARCHAR | 50  | No                    | No         |
|                 | Description          | VARCHAR | 255 | No                    | No         |
|                 | CustomerID           | INT     | NA  | Yes, FK               | Yes        |
|                 | DepositNum           | INT     | NA  | Yes, PK               | Yes        |
| <b>D</b> ''     | DepositDate          | DATE    | NA  | No                    | No         |
| Deposits        | Amount               | INT     | 12  | No                    | Yes (0)    |
|                 | ItemNum              | INT     | NA  | Yes, FK               | Yes        |
|                 | PaymentNum           | INT     | NA  | Yes, PK               | Yes        |
| D4              | PaymentDate          | DATE    | NA  | No                    | No         |
| <b>Payments</b> | Amount               | INT     | 12  | No                    | Yes (0)    |
|                 | ItemNum              | INT     | NA  | Yes, FK               | Yes        |
|                 | JobNum               | INT     | NA  | Yes, PK               | Yes        |
|                 | DateReceived         | DATE    | NA  | Yes                   | Yes        |
|                 | DatetoReturn         | DATE    | NA  | Yes                   | Yes        |
|                 | DateReturned         | DATE    | NA  | Yes                   | No         |
| RepairJobs      | RepairDetails        | VARCHAR | 255 | No                    | No         |
|                 | LaborCost            | DECIMAL | 12  | No                    | Yes (0.00) |
|                 | TotalCost            | DECIMAL | 12  | No                    | Yes (0.00) |
|                 | CustomerID           | INT     | NA  | Yes, FK               | Yes        |
|                 | ComputerID           | INT     | NA  | Yes, FK               | Yes        |
|                 | (JobNum,RepairmenId) | INT     | NA  | Yes, PK,<br>Composite | Yes        |
| RepairJob       | JobNum               | INT     | NA  | Yes, FK               | Yes        |
| Repairmen       | RepairmenId          | INT     | NA  | Yes, FK               | Yes        |
|                 | DateStarted          | DATE    | NA  | No                    | Yes        |
|                 | DateEnded            | DATE    | NA  | No                    | Yes        |

|           | TotalCost             | DECIMAL | 12 | No                    | Yes (0.00) |
|-----------|-----------------------|---------|----|-----------------------|------------|
|           | Comment               | TXET    | NA | No                    | No         |
|           | (ItemNum,RepairmenId) | INT     | NA | Yes, PK,<br>Composite | Yes        |
|           | ItemNum               | INT     | NA | Yes, FK               | Yes        |
| Repairmen | RepairmenId           | INT     | NA | Yes, FK               | Yes        |
| Items     | DateOrdered           | DATE    | NA | No                    | No         |
|           | Quantity              | INT     | 6  | No                    | Yes (1)    |
|           | TotalCost             | DECIMAL | 12 | No                    | Yes (0.00) |
|           | (JobNum, ItemNum)     | INT     | NA | Yes, PK,<br>Composite | Yes        |
|           | JobNum                | INT     | NA | Yes, FK               | Yes        |
| RepairJob | ItemNum               | INT     | NA | Yes, FK               | Yes        |
| Items     | DateUsed              | DATE    | NA | No                    | No         |
|           | Quantity              | INT     | 6  | No                    | Yes (1)    |
|           | TotalCost             | DECIMAL | 12 | No                    | Yes (0.00) |

# 2.9 Indexes

- All mentioned indexes ON UPDATE CASCADE.
- All mentioned indexes ON DELETE RESTRACT.

# **3 IMPLEMENTATION SNAPSHOTS**



Figure 6: Show exists databases from MySQL Command Line.



Figure 7: Show database columns from MySQL Command Line.



| mysql> SHOW CC                                                            | LUMNS IN compu                                                          | ters;                                        |                                           |                          |                |  |  |
|---------------------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------|-------------------------------------------|--------------------------|----------------|--|--|
| Field                                                                     | Туре                                                                    | Null                                         | Key                                       | Default                  | Extra          |  |  |
| ComputerID     SerialNum     Make     Model     Descrption     CustomerID | int<br>varchar(50)<br>varchar(50)<br>varchar(50)<br>varchar(255)<br>int | NO<br>  NO<br>  NO<br>  YES<br>  YES<br>  NO | PRI<br>  MUL<br> <br> <br> <br> <br>  MUL | NULL NULL NULL NULL NULL | auto_increment |  |  |
| ++++++++                                                                  |                                                                         |                                              |                                           |                          |                |  |  |

Figure 8: Show table column from MySQL Command Line.



Figure 9: Schema information from MySQL workbench



Figure 11: Show table details from MySQL workbench.



Figure 12: Export the SQL Script from MySQL workbench.

## **4 SOFTWARE TOOLS**

- MySQL shell
- MySQL workbench
- Sublime text editor
- Draw.io
- Microsoft word



Figure 13:Software tools.

# **REFERENCES**

CAPTAIN, FIDEL A. Six-Step Relational Database Design  $^{TM}$ . Fidel A. Captain, May 2013.