CS-Club, осенний семестр 2014, курс алгоритмов Реализация бинарной кучи

Сергей Копелиович

Собрано 14 ноября 2014 г. в 18:12

1. Постановка задачи

Реализовать бинарную кучу.

Протестировать корректность реализации.

Протестировать скорость работы.

Cравнить c set<int>, priority_queue<int>

2. Реализация

Реализован следующий основной интерфейс:

```
void build( int an, POINTER a ); // O(n)
void add( int x ); // O(log n)
T extractMin(); // O(logn)
T getMin(); O(1)
```

И две внутренние дополнительные функции:

```
void siftUp( int i ); // O(log i)
int siftDown( int i ); // O(log(n/i))
```

3. Тестирование

Тест #1: генерируем случайный массив из n чисел, строим по нему кучу, достаем по очереди элеметы из кучи. Замеряем время работы. Сравниваем результат работы решения с результатом наивного решения, вынимающего минимумы из массива за $\mathcal{O}(n)$.

Тест #2: генерируем случайный массив из n чисел, добавляем по одному элементы в кучу, достаем по очереди элеметы из кучи. Сравниваем результат работы решения с результатом наивного решения, вынимающего минимумы из массива за $\mathcal{O}(n)$.

Чтобы воспроизвести тесты, запустите bash run.sh

4. Результаты тестирования

Н – наша реализация бинарной кучи

Q - priority_queue<int>

S-multiset < int >

n/algo	Н	Q	S
10^{6}	$0.61~{ m sec}$	$0.50 \sec$	$1.64 \sec$
10^{7}	$11.14 \mathrm{sec}$	$10.13 \mathrm{sec}$	$26.82 \mathrm{sec}$