Teoria dei Sistemi e Controllo Ottimo e Adattativo (C. I.) Teoria dei Sistemi (Mod. A)

Docente: Giacomo Baggio

Lez. 19: Osservabilità e ricostruibilità di sistemi lineari

Corso di Laurea Magistrale in Ingegneria Meccatronica A.A. 2019-2020

In questa lezione

- Deservabilità e ricostruibilità: definizioni generali
 - Deservabilità di sistemi lineari a t.d.
 - ▶ Ricostruibilità di sistemi lineari a t.d.
 - Osservabilità e ricostruibilità di sistemi lineari a t.c.

Osservabilità e ricostruibilità

sistema con stato x(t), ingresso u(t) e uscita y(t)

Osservabilità = possibilità di stimare lo stato iniziale x(0) del sistema a partire da misure di ingresso e uscita nell'intervallo $[0, \bar{t}]$

Ricostruibilità = possibilità di stimare lo stato finale $x(\bar{t})$ del sistema a partire da misure di ingresso e uscita nell'intervallo $[0, \bar{t}]$

Stati e spazi non osservabili

sistema con stato x(t), ingresso u(t) e uscita y(t)

Definizione: Uno stato \bar{x} si dice non osservabile nell'intervallo $[0, \bar{t}]$ se per ogni ingresso $u(\cdot)$, l'uscita $y(\cdot)$ corrispondente allo stato iniziale $x(0) = \bar{x}$ coincide su $[0, \overline{t}]$ con l'uscita corrispondente allo stato iniziale x(0) = 0.

Definizione: L'insieme di tutti gli stati non osservabili nell'intervallo $[0, \bar{t}]$ è detto spazio non osservabile in $[0, \bar{t}]$.

Giacomo Baggio

IMC-TdS-1920: Lez. 19

November 26, 2019 5 / 27

Stati indistinguibili (nel futuro)

sistema con stato x(t), ingresso u(t) e uscita y(t)

$$u(t) \longrightarrow \sum_{|x(t)|} y(t)$$

Definizione: Due stati \bar{x}' e \bar{x}'' si dicono indistinguibili (nel futuro) nell'intervallo $[0, \bar{t}]$ se per ogni ingresso $u(\cdot)$, l'uscita $y'(\cdot)$ corrispondente allo stato iniziale $x(0) = \bar{x}'$ e l'uscita $y''(\cdot)$ corrispondente allo stato iniziale $x(0) = \bar{x}''$ coincidono su $[0, \bar{t}]$.

stato non osservabile = stato indistinguibile da zero

-	
-	
-	
-	
-	
	-

Giacomo Baggio

IMC-TdS-1920: Lez. 19

November 26, 2019 6 / 27

Esempio introduttivo

$$x_1(t) = i_{L_1}(t), x_2(t) = i_{L_2}(t)$$

 $y(t) = i_R(t) = i_{L_1}(t) + i_{L_2}(t)$

$$ar{x} = egin{bmatrix} lpha \ -lpha \end{bmatrix}$$
 , $lpha \in \mathbb{R}$, è non osservabile $orall t > 0$

Giacomo Baggio

IMC-TdS-1920: Lez. 19

November 26, 2019 7 / 27

Stati e spazi non ricostruibili

sistema con stato x(t), ingresso u(t) e uscita y(t)

Definizione: Uno stato \bar{x} si dice non ricostruibile nell'intervallo $[0, \bar{t}]$ se ogni ingresso $u(\cdot)$ e uscita $y(\cdot)$ in $[0, \bar{t}]$ "compatibili" con un'evoluzione di stato x'(t) con stato finale $x'(\bar{t}) = \bar{x}$ sono anche "compatibili" con un'evoluzione di stato x''(t) con $x''(\bar{t}) \neq \bar{x}$.

Definizione: L'insieme di tutti gli stati non ricostruibili nell'intervallo $[0, \bar{t}]$ è detto spazio non ricostruibile in $[0, \bar{t}]$.

Giacomo Baggio

IMC-TdS-1920: Lez. 19

November 26, 2019 8 / 27

•	
-	
-	

Osservabilità di sistemi a tempo discreto: setup

$$x(t+1) = Fx(t) + Gu(t)$$

$$y(t) = Hx(t)$$

$$x(0) = x_0 \in \mathbb{R}^n$$

$$y(t) \in \mathbb{R}^m \longrightarrow \sum_{x(t)} y(t) \in \mathbb{R}^p$$

$$y(t) = HF^t x_0 + \sum_{k=0}^{t-1} HF^{t-k-1} Gu(k) = HF^t x_0 + H\mathcal{R}_t u_t$$

Giacomo Baggio

IMC-TdS-1920: Lez. 19

November 26, 2019 9 / 27

Osservabilità di sistemi a tempo discreto: setup

$$x(t+1) = Fx(t) + Gu(t)$$

$$y(t) = Hx(t)$$

$$x(0) = \bar{x}$$

$$y(0) = y(0), y(1), y(2), \dots$$

$$y(k) = HF^{k}\bar{x} + H\mathcal{R}_{k}u_{k}, \quad k = 0, 1, \dots, t-1$$

Insieme di stati \bar{x} osservabili da misure $\{u(k)\}_{k=0}^{t-1}, \{y(k)\}_{k=0}^{t-1}$?

Quando possiamo osservare tutti i possibili stati $\bar{x} \in \mathbb{R}^n$?

Giacomo Baggio

IMC-TdS-1920: Lez. 19

November 26, 2019

Spazio non osservabile

$$x(0) = \bar{x}$$
: $y(k) = HF^k\bar{x} + H\mathcal{R}_k u_k$, $k = 0, 1, \dots, t-1$

$$x(0) = 0$$
: $y_0(k) = H\mathcal{R}_k u_k$, $k = 0, 1, ..., t - 1$

$$y(k) - y_0(k) = 0, \quad k = 0, 1, \dots, t - 1 \iff \underbrace{\begin{bmatrix} H \\ HF \\ HF^2 \\ \vdots \\ HF^{t-1} \end{bmatrix}}_{\triangleq \mathcal{O}_t} \bar{x} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix} \iff \bar{x} \in \ker \mathcal{O}_t$$

 $\mathcal{O}_t = \text{matrice di osservabilità in } t \text{ passi}$

Giacomo Baggio

IMC-TdS-1920: Lez. 19

November 26, 2019

11 / 27

Spazio non osservabile

$$X_{NO}(t) = ext{spazio non osservabile in } t ext{ passi} = ext{ker}(\mathcal{O}_t)$$
(o nell'intervallo $[0, t-1]$)
(o con t misure)

Teorema: Gli spazi non osservabili soddisfano:

$$X_{NO}(1) \supseteq X_{NO}(2) \supseteq X_{NO}(3) \supseteq \cdots$$

Inoltre, esiste un primo intero $i \leq n$ tale che

$$X_{NO}(i) = X_{NO}(j), \forall j \geq i.$$

$$X_{NO} \triangleq X_{NO}(i) = \text{(minimo) spazio non osservabile}$$

Giacomo Baggio

IMC-TdS-1920: Lez. 19

November 26, 2019

Criterio di osservabilità

Definizione: Un sistema Σ a t.d. si dice (completamente) osservabile se $X_{NO} = \{0\}$. Un sistema Σ a t.d. si dice (completamente) osservabile in t passi (o con t misure) se t è il più piccolo intero tale che $X_{NO}(t) = \{0\}$.

 $\mathcal{O} \triangleq \mathcal{O}_n = \mathsf{matrice}$ di osservabilità del sistema

$$\Sigma$$
 osservabile \iff ker $(\mathcal{O}) = \{0\} \iff$ rank $(\mathcal{O}) = n$

$$p = 1$$
: Σ osservabile \iff $\det(\mathcal{O}) \neq 0$

$$p > 1$$
: Σ osservabile \iff $det(\mathcal{O}^{\top}\mathcal{O}) \neq 0$

Giacomo Baggio

IMC-TdS-1920: Lez. 19

November 26, 2019

13 / 27

Esempi

1.
$$x(t+1) = \begin{bmatrix} f_1 & 1 \\ 0 & f_2 \end{bmatrix} x(t), \quad f_1, f_2 \in \mathbb{R}$$
 \implies non osservabile $y(t) = \begin{bmatrix} 0 & 1 \end{bmatrix} x(t)$

2.
$$x(t+1) = \begin{bmatrix} f_1 & 1 \\ 0 & f_2 \end{bmatrix} x(t), \quad f_1, f_2 \in \mathbb{R}$$
 \implies osservabile (in 2 passi) $y(t) = \begin{bmatrix} 1 & 0 \end{bmatrix} x(t)$

Giacomo Baggio

IMC-TdS-1920: Lez. 19

November 26, 2019 14

Osservabilità ed equivalenza algebrica

$$\begin{cases} x(t+1) = Fx(t) & \xrightarrow{z=T^{-1}x} & \begin{cases} z(t+1) = \bar{F}z(t) \\ y(t) = \bar{H}z(t) \end{cases} \\ \bar{F} = T^{-1}FT. \ \bar{H} = HT \end{cases}$$

$$\bar{\mathcal{O}} = \begin{bmatrix} \bar{H} \\ \bar{H}\bar{F} \\ \vdots \\ \bar{H}\bar{F}^{n-1} \end{bmatrix} = \mathcal{O}T$$

 $rank(\bar{\mathcal{O}}) = rank(\mathcal{O}) \implies$ cambio di base non modifica l'osservabilità !!

Inoltre, se Σ osservabile: $\mathcal{O}^{\top}\bar{\mathcal{O}} = \mathcal{O}^{\top}\mathcal{O}\mathcal{T} \implies \mathcal{T} = (\mathcal{O}^{\top}\mathcal{O})^{-1}\mathcal{O}^{\top}\bar{\mathcal{O}}$

Giacomo Baggio

IMC-TdS-1920: Lez. 19

wember 26, 2010

15 / 27

Calcolo dello stato iniziale

Se Σ è osservabile in t passi, come calcolare la condizione iniziale del sistema $\bar{x}=x(0)$ a partire da dati ingresso/uscita?

$$y_{\ell}(k) = HF^{k}\bar{x} = y(k) - H\mathcal{R}_{k}u_{k}, \quad k = 0, 1, \dots, t-1$$

$$\begin{bmatrix} y_{\ell}(0) \\ y_{\ell}(1) \\ \vdots \\ y_{\ell}(t-1) \end{bmatrix} = \begin{bmatrix} \bar{H} \\ \bar{H}\bar{F} \\ \vdots \\ \bar{H}\bar{F}^{t-1} \end{bmatrix} \bar{x} = \mathcal{O}_t \bar{x} \implies \bar{x} = (\mathcal{O}_t^{\top} \mathcal{O}_t)^{-1} \mathcal{O}_t^{\top} \begin{bmatrix} y_{\ell}(0) \\ y_{\ell}(1) \\ \vdots \\ y_{\ell}(t-1) \end{bmatrix}$$

 $\mathcal{V}_t \triangleq \mathcal{O}_t^{\top} \mathcal{O}_t = \text{Gramiano di osservabilità in } t \text{ passi}$

Giacomo Baggio

IMC-TdS-1920: Lez. 19

November 26, 2019

Esempi

1.
$$x(t+1) = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} x(t) + \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} u(t)$$

 $y(t) = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} x(t)$

Calcolare x(0) dalle misure u(0) = 1, u(1) = 1 e y(0) = 1, y(1) = 2, y(2) = 2?

Poichè il sistema è osservabile lo stato iniziale è unico e pari a $x(0) = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$.

Giacomo Baggio

IMC-TdS-1920: Lez. 19

November 26, 2019

17 / 27

Indistinguibilità

$$x(0) = \bar{x}', \ u(\cdot) \implies y'(k) = HF^k\bar{x}' + H\mathcal{R}_k u_k$$

$$x(0) = \bar{x}'', \ u(\cdot) \implies y''(k) = HF^k\bar{x}'' + H\mathcal{R}_k u_k$$

$$ar{x}', \ ar{x}''$$
 indistinguibili in t passi $\implies y'(k) = y''(t), \qquad k = 0, 1, \ldots, t-1$
$$\implies HF^k(ar{x}' - ar{x}'') = 0, \quad k = 0, 1, \ldots, t-1$$

$$\implies ar{x}' - ar{x}'' \in X_{NO}(t)$$

 $\bar{x} + X_{NO}(t)$: classe di stati indistinguibili in t passi da \bar{x}

 $\bar{x} + X_{NO}$: classe di stati indistinguibili da \bar{x}

Giacomo Baggio

IMC-TdS-1920: Lez. 19

November 26, 2019

Ricostruibilità di sistemi a tempo discreto: setup

$$x(t+1) = Fx(t) + Gu(t)$$

$$y(t) = Hx(t)$$

$$x(0) = x_0$$

$$y(0), y(1), y(2), \dots$$

$$y(k) = HF^k x_0 + H\mathcal{R}_k u_k, \quad k = 0, 1, \dots, t-1$$

Giacomo Baggio

IMC-TdS-1920: Lez. 19

November 26, 2019

Ricostruibilità di sistemi a tempo discreto: setup

$$x(t+1) = Fx(t) + Gu(t)$$

$$y(t) = Hx(t)$$

$$x(0) = x_0$$

$$y(0), y(1), y(2), \dots$$

$$y(k) = HF^k x_0 + H\mathcal{R}_k y_k, \quad k = 0, 1, \dots, t-1$$

Insieme di stati $\bar{x} = x(t-1)$ ricostruibili da misure $\{u(k)\}_{k=0}^{t-1}, \{y(k)\}_{k=0}^{t-1}$?

Quando possiamo ricostruire tutti i possibili stati $\bar{x} = x(t-1) \in \mathbb{R}^n$?

Giacomo Baggio

IMC-TdS-1920: Lez. 19

November 26, 2019

-	

Spazio non ricostruibile

$$x(t-1) = F^{t-1}x(0) + \mathcal{R}_{t-1}u_{t-1}$$

misure $\{u(k)\}_{k=0}^{t-1}, \{y(k)\}_{k=0}^{t-1}$

stati iniziali compatibili con le misure: $x(0) = x_0 + X_{NO}(t)$

$$x(t-1) = F^{t-1}x_0 + F^{t-1}X_{NO}(t) + \mathcal{R}_{t-1}u_{t-1}$$

 $F^{t-1}X_{NO}(t)$ = insieme di stati non ricostruibili in t passi

Giacomo Baggio

IMC-TdS-1920: Lez. 19

November 26, 2019

20 / 27

Spazio non ricostruibile

 $X_{NR}(t) = \text{spazio non ricostruibile in } t \text{ passi} = \{F^{t-1}x, \ x \in \ker(\mathcal{O}_t)\}$ (o nell'intervallo [0, t-1])
(o con t misure)

Teorema: Gli spazi non ricostruibili soddisfano:

$$X_{NR}(1) \supseteq X_{NR}(2) \supseteq X_{NR}(3) \supseteq \cdots$$

Inoltre, esiste un primo intero $i \leq n$ tale che

$$X_{NR}(i) = X_{NR}(j), \quad \forall j \geq i.$$

$$X_{NR} \stackrel{\triangle}{=} X_{NR}(i) = \text{(minimo) spazio non ricostruibile}$$

Giacomo Baggio

IMC-TdS-1920: Lez. 19

November 26, 2019

Criterio di non ricostruibilità

Definizione: Un sistema Σ a t.d. si dice (completamente) ricostruibile se $X_{NR} = \{0\}$. Un sistema Σ a t.d. si dice (completamente) ricostruibile in t passi (o con t misure) se t è il più piccolo intero tale che $X_{NR}(t) = \{0\}$.

$$\Sigma$$
 ricostruibile \iff $\ker(F^n) \supseteq \ker(\mathcal{O}) = X_{NO}$

$$\Sigma$$
 osservabile $(X_{NO} = \{0\}) \Rightarrow \Sigma$ ricostruibile

 Σ ricostruibile $\not\Rightarrow \Sigma$ osservabile !!!

Giacomo Baggio

IMC-TdS-1920: Lez. 19

November 26, 2019

2 / 27

Esempi

1.
$$x(t+1) = \begin{bmatrix} f_1 & 1 \\ 0 & f_2 \end{bmatrix} x(t)$$
, $f_1, f_2 \in \mathbb{R}$ \Rightarrow non osservabile ma ricostruibile se $f_1 = 0$

2.
$$x(t+1) = \begin{bmatrix} f_1 & 1 \\ 0 & f_2 \end{bmatrix} x(t), \quad f_1, f_2 \in \mathbb{R}$$
 \implies osservabile e (quindi) ricostruibile $y(t) = \begin{bmatrix} 1 & 0 \end{bmatrix} x(t)$

Giacomo Baggio

IMC-TdS-1920: Lez. 19

November 26, 2019

Osservabilità di sistemi a tempo continuo: setup

$$\dot{x}(t) = Fx(t) + Gu(t)$$

 $y(t) = Hx(t)$ $x(0) = \bar{x} \in \mathbb{R}^n$

$$u(t) \in \mathbb{R}^m \longrightarrow \sum_{x(t)} y(t) \in \mathbb{R}^p$$

$$y(t) = He^{Ft}\bar{x} + \int_0^t He^{F(t-\tau)}Gu(\tau)d\tau$$

Insieme di stati \bar{x} osservabili da misure nell'intervallo [0, t]?

Quando possiamo osservare tutti i possibili stati $\bar{x} \in \mathbb{R}^n$?

Giacomo Baggio

IMC-TdS-1920: Lez. 19

November 26, 2019

Criterio di osservabilità

 $X_{NO}(t)$ = spazio non osservabile nell'intervallo [0, t]

 $X_{NO} = (minimo)$ spazio non osservabile

Definizione: Un sistema Σ a t.c. si dice (completamente) osservabile se $X_{NO} = \{0\}$.

$$\mathcal{O} \triangleq \mathcal{O}_n = \begin{bmatrix} H \\ HF \\ \vdots \\ HF^{n-1} \end{bmatrix} = \text{matrice di osservabilità del sistema}$$

$$\Sigma$$
 osservabile \iff ker $(\mathcal{O}) = \{0\} \iff$ rank $(\mathcal{O}) = n$

N.B. Se un sistema Σ a t.c. è osservabile allora $X_{NO}(t)=\{0\}$ per ogni t>0!!

Giacomo Baggio

IMC-TdS-1920: Lez. 19

November 26, 2019 25 / 27

Esempio

$$x_1(t) = i_{L_1}(t), x_2(t) = i_{L_2}(t)$$

$$y(t) = i_R(t) = i_{L_1}(t) + i_{L_2}(t)$$

$$\mathcal{O} = \begin{bmatrix} 1 & 1 \\ -R(\frac{1}{L_1} + \frac{1}{L_2}) & -R(\frac{1}{L_1} + \frac{1}{L_2}) \end{bmatrix}$$

 $\mathsf{rank}(\mathcal{O}) = 1 \implies \Sigma \mathsf{ non osservabile}$

Giacomo Baggio

IMC-TdS-1920: Lez. 19

November 26, 2019

26 / 2

Spazio non ricostruibile a t.c.

$$x(t) = e^{Ft}x(0) + \int_0^t e^{F(t-\tau)}Gu(\tau)d\tau$$

misure $u(\tau)$, $y(\tau)$, $\tau \in [0, t]$

stati iniziali compatibili con le misure: $x(0) = x_0 + X_{NO}(t)$

$$x(t) = e^{Ft}x_0 + e^{Ft}X_{NO}(t) + \int_0^t e^{F(t- au)}Gu(au)\mathrm{d} au$$

 $X_{NR}(t) = e^{Ft} X_{NO}(t)$ = insieme di stati non ricostruibili nell'intervallo [0, t]

$$e^{Ft}$$
 invertibile $\implies X_{NR}(t) = X_{NO}(t)$

osservabilità = ricostruibilità !!

Giacomo Baggio

IMC-TdS-1920: Lez. 19

November 26, 2019