

R:g D

/|~XI

CoreMS Framework Overview

July 15th, 2020

Yuri E. Corilo

Allison Thompson, Will Kew, Lisa Bramer,
Qian Zhao, Aditi Sengupta, Rosalie Chu,
Lee Ann McCue

PNNL is operated by Battelle for the U.S. Department of Energy

/ | ~ X I

CoreMS Framework Overview

- Modern, flexible, stable and sustainable software framework and platform for mass spectra data-processing workflows, including hyphened methods, i.e., LC-MS, IM-MS targeting small molecules analysis of complex mixtures
- Comprehensive molecular formula assignment algorithm merging state of the art approaches and universal mass spectrometry features
- Robust confidence metric for formula assignment enables analysis validation, comparison of algorithms results and ensures analytical reproducibility

FadEZd

dvs ny

ī (=%^)

R:g D

/|~XI

Software Framework

CoreMS Hierarchical Data Structure

CoreMS Molecular Formula Assignment Workflow

For available input, output and data structure types please refer to: https://github.com/EMSL-Computing/CoreMS/blob/master/README.md

fadEZd

iYc7^~ /]Tb nc-o.` H%mg+

ba D?

dvs ny

/ | ~ X I

Software Framework

CoreMS Basic Molecular Formula Assignment Script

```
file_name = 'neg_esi_srfa_1ppm_test.d'
                               bruker reader = ReadBrukerSolarix(file location)
                     Input
                               bruker_transient_obj = bruker reader.get transient()
                               T = bruker_transient_obj.transient_time
                               mass_spectrum_obj = bruker transient.get mass spectrum(plot result=False, auto process=True)
      Signal processing
                               SearchMolecularFormulas(first hit=False).run worker mass spectrum(mass_spectrum_obj)
Molecular Identification
                               for mspeak in mass_spectrum_obj.sort_by_abundance():
                                    if mspeak:
                                         molecular_formula = mspeak.molecular_formula_lowest_error
                                         pyplot.plot(mspeak.mz exp, mspeak.abundance, 'o', c='g')
                                          for molecular formula in mspeak:
           Data analysis
                                              if molecular formula.is isotopologue:
       and visualization
                                                  print (molecular_formula.to string())
                                                  print (molecular_formula['13C'])
                                     else:
                                          print(mspeak.mz exp,mspeak.abundance)
                               mass_spectrum_obj.to_csv("output_file_name")
                               mass_spectrum_obj.to_excel("output_file_name")
                   Output
                               mass_spectrum_obj.to_hdf("output_file_name")
                               df = mass_spectrum_obj.get_pandas()
```

More examples available at:

https://github.com/EMSL-Computing/CoreMS/tree/master/doc/examples

ī (=%^F

R:g D

/|~XI

Software Framework

CoreMS Hierarchical Data Structure CoreMS GC-MS Workflow LC-MS(n) Retention Mass IM-MS GC-MS index (TODO) Spectra (Active Dev) calibration Chrom. Signal Peak Obj **Processing** m/z Domain Mass Reference **Transient** database Spectrum data search SQL3 **Post** Mass Spec gres Peak obj Molecular **Spectral** Compound Obj Object Matching

For available input, output and data structure types please refer to: https://github.com/EMSL-Computing/CoreMS/blob/master/README.md

ī (=%^)

R:g D

/|~XI

Web Application

• Graphical User Interface (GUI):

- Back-End:
 - User based temporary storage, and data model for raw, mass-list and reference file data
 - User based data model and storage for results and metadata
 - User based data model and storage of workflow parameters

Redis: Data processing queue management

PostgreSQL: User, Data, Parameters Results

PostgreSQL: Dynamic Molecular Formula Generation

FadEZd

: ba⊓D? k;nihW

dvs ny

Web Application

• Graphical User Interface (GUI):

Front-End:

- Web Application framework (HTML, CSS, JavaScript and, jQuery)
- Data management for temporary raw data storage
- Data management for workflow parameters, and parameters presets
- Raw data visualization (Thermo, and Bruker)
- Workflow result visualization

opyright PNNL and Battelle Memorial Institute, All Rights Reserved

R:g D

/|~XI

Thank you

