In [1]:

```
import pandas as pd
import numpy as np
import seaborn as sns
import statsmodels.formula.api as smf
```

In [2]:

```
# import dataset
dataset=pd.read_csv('delivery_time.csv')
dataset
```

Out[2]:

	Delivery Time	Sorting Time
0	21.00	10
1	13.50	4
2	19.75	6
3	24.00	9
4	29.00	10
5	15.35	6
6	19.00	7
7	9.50	3
8	17.90	10
9	18.75	9
10	19.83	8
11	10.75	4
12	16.68	7
13	11.50	3
14	12.03	3
15	14.88	4
16	13.75	6
17	18.11	7
18	8.00	2
19	17.83	7
20	21.50	5

In [3]:

```
dataset.info()
sns.distplot(dataset['Delivery Time'])
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 21 entries, 0 to 20

Data columns (total 2 columns):

Column Non-Null Count Dtype
--- O Delivery Time 21 non-null float64
1 Sorting Time 21 non-null int64

dtypes: float64(1), int64(1)
memory usage: 464.0 bytes

Out[3]:

<matplotlib.axes._subplots.AxesSubplot at 0x24da73e1f70>

In [4]:

sns.distplot(dataset['Sorting Time'])

Out[4]:

<matplotlib.axes._subplots.AxesSubplot at 0x24da7b76190>

In [5]:

```
# Renaming Columns
dataset=dataset.rename({'Delivery Time':'delivery_time', 'Sorting Time':'sorting_time'
},axis=1)
dataset
```

Out[5]:

	delivery_time	sorting_time
0	21.00	10
1	13.50	4
2	19.75	6
3	24.00	9
4	29.00	10
5	15.35	6
6	19.00	7
7	9.50	3
8	17.90	10
9	18.75	9
10	19.83	8
11	10.75	4
12	16.68	7
13	11.50	3
14	12.03	3
15	14.88	4
16	13.75	6
17	18.11	7
18	8.00	2
19	17.83	7
20	21.50	5

In [6]:

```
# correlation analysis
dataset.corr()
```

Out[6]:

	delivery_time	sorting_time
delivery_time	1.000000	0.825997
sorting_time	0.825997	1.000000

In [7]:

```
sns.regplot(x=dataset['sorting_time'],y=dataset['delivery_time'])
```

Out[7]:

<matplotlib.axes._subplots.AxesSubplot at 0x24da7be4460>

In [8]:

```
# model building
model=smf.ols("delivery_time~sorting_time",data=dataset).fit()
```

In [9]:

```
# model testing
# Finding Coefficient parameters
model.params
```

Out[9]:

Intercept 6.582734 sorting_time 1.649020

dtype: float64

In [10]:

```
# Finding tvalues and pvalues model.tvalues, model.pvalues
```

Out[10]:

```
(Intercept     3.823349
  sorting_time     6.387447
  dtype: float64,
  Intercept     0.001147
  sorting_time      0.000004
  dtype: float64)
```

```
In [11]:
```

```
# Finding Rsquared Values
model.rsquared , model.rsquared_adj
```

Out[11]:

(0.6822714748417231, 0.6655489208860244)

In [12]:

```
# model prediction
# Manual prediction for say sorting time 5
delivery_time = (6.582734) + (1.649020)*(5)
delivery_time
```

Out[12]:

14.827834

In [13]:

```
# Automatic Prediction for say sorting time 5, 8
new_data=pd.Series([5,8])
new_data
```

Out[13]:

0518

dtype: int64

In [14]:

```
data_pred=pd.DataFrame(new_data,columns=['sorting_time'])
data_pred
```

Out[14]:

sorting_time 0 5 1 8

In [15]:

```
model.predict(data_pred)
```

Out[15]:

0 14.827833 1 19.774893 dtype: float64