#### Reproducible Research for crimes datset

```
Name Surname 2020.02.08
```

#### **Synopsis**

The main aim of this notebook is going to be a very high-level Exploratory Data A

#### Loading the data

Firstly let's import necessary packages.

```
# modules we'll use
import numpy as np
import pandas as pd
import seaborn as sns
from matplotlib import pyplot as plt
from wordcloud import WordCloud, STOPWORDS
%matplotlib inline
def load_data(file):
    url = 'https://raw.githubusercontent.com/HikkaV/VNTU-ML-Courses/master/assignm
    try:
        df = pd.read csv('../files/{}'.format(file))
    except:
        df = pd.read_csv(url)
    return df
# read in our data
crime = load_data('crime.csv')
# set seed for reproducibility
np.random.seed(0)
```

#### **Results**

| ₽ |   | Dates              | Category          | Descript                     | DayOfWeek | PdDistric <sup>†</sup> |
|---|---|--------------------|-------------------|------------------------------|-----------|------------------------|
|   | 0 | 5/13/2015<br>23:53 | WARRANTS          | WARRANT ARREST               | Wednesday | NORTHER!               |
|   | 1 | 5/13/2015<br>23:53 | OTHER<br>OFFENSES | TRAFFIC VIOLATION ARREST     | Wednesday | NORTHERI               |
|   | 2 | 5/13/2015<br>23:33 | OTHER<br>OFFENSES | TRAFFIC VIOLATION ARREST     | Wednesday | NORTHERI               |
|   | 3 | 5/13/2015<br>23:30 | LARCENY/THEFT     | GRAND THEFT FROM LOCKED AUTO | Wednesday | NORTHERI               |
|   | 4 | 5/13/2015<br>23:30 | LARCENY/THEFT     | GRAND THEFT FROM LOCKED AUTO | Wednesday | PARI                   |

len(crime)

[→ 835

It's quite a small and concise dataset but there should be quite a lot that can b So let's get started from the left to the right with the "Category" column.

# Most common categories of crime committed:

crime.Category.value\_counts()

 $\Box$ 

| LARCENY/THEFT                | 223         |  |  |
|------------------------------|-------------|--|--|
| NON-CRIMINAL                 | 102         |  |  |
| OTHER OFFENSES               | 98          |  |  |
| ASSAULT                      | 60          |  |  |
| VEHICLE THEFT                | 54          |  |  |
| VANDALISM                    | 40          |  |  |
| BURGLARY                     | 39          |  |  |
| SUSPICIOUS OCC               | 35          |  |  |
| MISSING PERSON               | 27          |  |  |
| WARRANTS                     | 26          |  |  |
| DRUG/NARCOTIC                | 15          |  |  |
| ROBBERY                      | 14          |  |  |
| SECONDARY CODES              | 14          |  |  |
| FRAUD                        | 14          |  |  |
| PROSTITUTION                 | 13          |  |  |
| TRESPASS                     | 11          |  |  |
| WEAPON LAWS                  | 11          |  |  |
| SEX OFFENSES FORCIBLE        | 10          |  |  |
| DRUNKENNESS                  | 6           |  |  |
| DRIVING UNDER THE INFLUENCE  | 5           |  |  |
| KIDNAPPING                   | 4           |  |  |
| ARSON                        | 3<br>3<br>2 |  |  |
| STOLEN PROPERTY              | 3           |  |  |
| DISORDERLY CONDUCT           | 2           |  |  |
| LIQUOR LAWS                  | 2<br>2      |  |  |
| FORGERY/COUNTERFEITING       |             |  |  |
| EMBEZZLEMENT                 |             |  |  |
| BRIBERY                      | 1           |  |  |
| Name: Category, dtype: int64 |             |  |  |

category = pd.DataFrame(list(zip(crime.Category.value counts().index,crime.Category

sns.catplot(x='value', y = 'Category', data=category, kind="bar", height=4.25, asp plt.title('Catplot of the category of crime and number of occurences ')

Text(0.5, 1, 'Catplot of the category of crime and number of occurences ')



wordcloud = WordCloud(

```
stopwords=SIOPWORDS,
background_color='black',
width=1200,
height=800
).generate(" ".join(category['Category'].values))
```

```
plt.imshow(wordcloud, alpha=0.7)
plt.axis('off')
plt.show()
```





From all data visualizations result is the same: THEFT is most common crime in th

### Most common crimes carried out per it's description:

crime.Descript.value counts()

| ₽ | GRAND THEFT FROM LOCKED AUTO             | 76 |
|---|------------------------------------------|----|
|   | STOLEN AUTOMOBILE                        | 30 |
|   | PETTY THEFT OF PROPERTY                  | 30 |
|   | AIDED CASE, MENTAL DISTURBED             | 30 |
|   | BATTERY                                  | 22 |
|   |                                          |    |
|   | ATTEMPTED GRAND THEFT PURSESNATCH        | 1  |
|   | EMBEZZLED VEHICLE                        | 1  |
|   | PROBATION VIOLATION, DV RELATED          | 1  |
|   | ATTEMPTED THEFT FROM UNLOCKED VEHICLE    | 1  |
|   | TRANSPORTATION OF MARIJUANA              | 1  |
|   | Name: Descript, Length: 165, dtype: int6 | 4  |

This column contains a lot more detailed information about the type of the crime And right-away we can observe that Grand Theft Auto is the most common crime desc Again, we create another dataframe which will make it convenient for the plotting



#### Day on which there is most crimes:

DOW = pd.DataFrame(list(zip(crime.DayOfWeek.value\_counts(),crime.DayOfWeek.value\_counts(),crime.DayOfWeek.value\_counts(),crime.DayOfWeek.value\_counts(),crime.DayOfWeek.value\_counts(),crime.DayOfWeek.value\_counts(),crime.DayOfWeek.value\_counts(),crime.DayOfWeek.value\_counts(),crime.DayOfWeek.value\_counts(),crime.DayOfWeek.value\_counts(),crime.DayOfWeek.value\_counts(),crime.DayOfWeek.value\_counts(),crime.DayOfWeek.value\_counts(),crime.DayOfWeek.value\_counts(),crime.DayOfWeek.value\_counts(),crime.DayOfWeek.value\_counts(),crime.DayOfWeek.value\_counts(),crime.DayOfWeek.value\_counts(),crime.DayOfWeek.value\_counts(),crime.DayOfWeek.value\_counts(),crime.DayOfWeek.value\_counts(),crime.DayOfWeek.value\_counts(),crime.DayOfWeek.value\_counts(),crime.DayOfWeek.value\_counts(),crime.DayOfWeek.value\_counts(),crime.DayOfWeek.value\_counts(),crime.DayOfWeek.value\_counts(),crime.DayOfWeek.value\_counts(),crime.DayOfWeek.value\_counts(),crime.DayOfWeek.value\_counts(),crime.DayOfWeek.value\_counts(),crime.DayOfWeek.value\_counts(),crime.DayOfWeek.value\_counts(),crime.DayOfWeek.value\_counts(),crime.DayOfWeek.value\_counts(),crime.DayOfWeek.value\_counts(),crime.DayOfWeek.value\_counts(),crime.DayOfWeek.value\_counts(),crime.DayOfWeek.value\_counts(),crime.DayOfWeek.value\_counts(),crime.DayOfWeek.value\_counts(),crime.DayOfWeek.value\_counts(),crime.DayOfWeek.value\_counts(),crime.DayOfWeek.value\_counts(),crime.DayOfWeek.value\_counts(),crime.DayOfWeek.value\_counts(),crime.DayOfWeek.value\_counts(),crime.DayOfWeek.value\_counts(),crime.DayOfWeek.value\_counts(),crime.DayOfWeek.value\_counts(),crime.DayOfWeek.value\_counts(),crime.DayOfWeek.value\_counts(),crime.DayOfWeek.value\_counts(),crime.DayOfWeek.value\_counts(),crime.DayOfWeek.value\_counts(),crime.DayOfWeek.value\_counts(),crime.DayOfWeek.value\_counts(),crime.DayOfWeek.value\_counts(),crime.DayOfWeek.value\_counts(),crime.DayOfWeek.value\_counts(),crime.DayOfWeek.value\_counts(),crime.DayOfWeek.value\_counts(),crime.DayOfWeek.value\_counts(),crime.DayOfWeek.value\_counts(),crime.DayOfWeek.value\_counts(

## 



Saturday is most dangerous day according to this dataset.

#### How good crimes are being resolved:



sns.catplot(x='value' , y = 'resolution', data=Resolution, kind="bar", height=3.25

#### 



NONE means that most of crimes in this dataset are not resolved...

#### **SUMMARY**

We have performed multiple actions in order to test and understand crime dataset Even few simple steps discover many interesting facts regarding the data, for exa And it's not a good idea to have a walk at Saturday.

- 4