

RUVDS.com

VDS/VPS-хостинг. Скидка 15% по коду **HABR15**

Подписаться

«Удалённо» управляем компьютером с доступом в BIOS

О 9 мин **О** 49К

Блог компании RUVDS.com, C#*, DIY или Сделай сам, GitHub*, Open source*

Туториал

Итак, о чём это? Сейчас для удалённого управления компьютером есть великое множество программ на любой цвет, вкус и запах. Но что, если мы хотим пойти немного дальше, и наши требования к удалённому управлению становятся немного жёстче:

- Мы хотим иметь возможность не только работать в операционной системе, но и заходить в биос, или вообще эту систему переустановить.
- По тем или иным причинам, компьютер не может быть подключён к сети, но управлять им мы от этого меньше не хотим, а рядом у нас есть компьютер, который в сети находиться может.

Но как это сделать? Вот этим мы тут и будем заниматься...

Как я к этому пришёл

Иногда мне приносят разное железо с просьбами переустановить винду/почистить вирусы и т. д. А я что? Я ж программист простой: мне приносят и просят сделать — я делаю. Но порой не очень удобно подключать к этому всему отдельную мышь/клавиатуру и монитор, а бывает, что там идёт долгий процесс, не требующий особого вмешательства, но периодически надо сделать пару кликов, что я мог бы сделать удалённо с работы, будь у меня такая возможность, и сэкономить кучу времени вечером. Я знаю, что такое удалённое управление бывает на серверных материнских платах, но в последний раз мне приносили сервер, чтобы я переустановил на нём Windows никогда, или даже ещё раньше.

В какой-то момент у меня возникла в голове идея: есть же недорогие устройства видеозахвата USB-HDMI, а ещё есть ESP32 S2/S3, которые умеют эмулировать USB. А что нам ещё надо? Изображение с компьютера мы можем получить, клавиатуру/мышь можем проэмулировать. Может быть, такие проекты даже уже есть, но когда мне в голову приходит идея, которая кажется мне интересной, я:

Поискать, вдруг клю-то ухке сделал что-то подобное

> Ивобрести свой деливоокея

Ну что ж, проекту быть, и для него нам потребуется следующий минимум:

- HDMI-плата захвата видео
- Плата ESP32 S3 у неё сразу есть 2 ТуреС разъёма, что упростит нам жизнь
- HDMI-кабель
- 2 кабеля USB TypeA TypeC
- Компьютер с Windows, стоящий рядом

С железом условно всё, и если нам не нужно управлять аппаратной перезагрузкой/ включением компьютера, то нам даже не придётся ничего паять. А если нужно, то всему своё время...

Итак, возможно, когда я написал пункт «Компьютер с Windows, стоящий рядом», я кого-то очень сильно огорчил. И я согласен, что решение не самое оптимальное, если бы всё работало под Linux, да ещё выводить всё в Web, то можно было бы взять Малинку/ Апельсинку и... Но нет. Хотя, может и да, ведь проект открытый, и если у кого-нибудь будет время, желание и умение, то он может переделать под Линукс мой проект, сделанный на .Net, но пока я всё основное время работаю под осью одной из корпораций зла, проект только под Винду.

■ Приступаем к работе

Ладно, начинаем. Схема подключения простая:

Теперь, когда у нас всё подключено, что дальше? Дальше пишем ПО.

ПО написано, что делаем дальше? Для начала надо залить прошивку на нашу ESP32 S3. Убеждаемся, что драйверы ком-порта у нас установлены (откуда их брать, обычно указывает продавец этой самой платы). Для заливки прошивки я использовал Arduino IDE, тем более что скетч написан именно в нём. В этой статье я не буду подробно описывать процесс настройки Arduino IDE на работу с платами EST32 и прошивки — его можно найти, например, везде, и он довольно прост. Дальше перейдём непосредственно к ПО для удалённого управления, а тут всё ещё проще:

Подключаем всё, включаем компьютер, которым мы хотим управлять, и в программе нажимаем кнопку подключения. И если все звёзды на небе сошлись, то мы видим изображение с монитора компьютера, у нас есть мышь и клавиатура и они работают.

Немного о коде

Прежде чем продолжить проект, добавив к нему ещё пару крутых фич, я предпочту немного замедлиться и погрузиться в код, который был написан. И если со стороны всё выглядит как вжух и готово, то на деле было не совсем так. Начиная этот проект, я стал искать библиотеки для .Net для работы с устройствами видеозахвата. И первое, что мне попалось, было OpenCvSharp. Я проверил, что эта библиотека работает с веб-камерами и другими подобными устройствами и выдаёт изображение на WinForms. Отказался я от неё потому, что не нашёл у неё возможности нормально перечислить список всех камер с их именами для выбора в меню, а городить это отдельно не очень хотелось, и пока я ещё не сильно привык к этой библиотеке, я стал смотреть другие.

Следующей была **AForge**. В ней список камер перечислялся нормально, с именами и фамилиями, и, казалось бы, всё было хорошо, но нет. Когда я тестировал программу на реальном устройстве видеозахвата, всё было хорошо, но когда отлаживался на виртуальной веб-камере от OBS Studio, картинку я не получал. При этом ошибку тоже. Я не получал ничего, я был просто проигнорирован и видел, как происходит ничего. Мне не понравилось. Я бы подумал, что что-то не так с самой камерой у OBS, но в OpenCvSharp всё прекрасно работало. И я стал копать... И вот щетина на моём лице уже выросла, вся

водка была выпита, медведь доиграл свою арию на балалайке, но ничего по-прежнему не работало. Но вскоре проблема вскрылась. АForge принудительно запрашивает у камеры формат RGB24, и если устройство его поддерживает, то всё ОК. А если нет, тады ой. Камера от OBS поддерживала формат NV12, но AForge не умела его декодировать, как и многие другие форматы. Можно было оставить эту библиотеку и пойти к следующей, но это уже было делом принципа, я потратил на поиск этой особенности слишком много времени, и раз уж исходный код AForge открыт, я решил его поправить. В очередной раз я убедился, насколько ChatGPT (и ему подобные) делают нашу программистскую жизнь легче.

▶ Магия XXI века

Вот так легко и просто ChatGPT сгенерировал мне функцию перекодировки YUY2 в RGB, также я сделал для NV12, YUYV и I420. Если бы я писал это сам, я бы потратил на это, может быть, весь день, пока разбирался в этих форматах пикселей и отлаживал баги. А тут код написан за минуту и после визуальной проверки на отсутствие явной лажи уже работал в проекте, сразу же после компиляции. Ладно, если нужна бочка дёгтя на вашу ложку мёда, я вам её таки дам: так хорошо бывает не всегда, иногда он генерит нерабочий код, иногда рабочий, но неэффективный. Но можно попросить его ещё раз? и часто у него получается лучше.

Немного про экран

При удалённом управлении часто бывает, что размеры удалённого экрана превышают размеры окна, в котором мы работаем. И самый простой вариант — это обычное пропорциональное растягивание/сжатие картинки под размер рабочей области окна.

Но, бывают ситуации, когда хочется видеть всё в масштабе 1 к 1, а удалённый экран больше нашего. И я отметил для себя 4 разных варианта, один из которых и реализовал:

1. Просто скроллбары по краям, которые нужно скроллить мышкой вручную. Это не очень удобно.

- 2. Стиль RAdmin когда мы подводим мышку к краю окна и ведём её дальше, экран начинает скроллиться, а движение мышки блокируется. Уже лучше, но мне не нравится, что в этом случае при проскролливании нужно блокировать движении мыши.
- 3. Стиль Aspia когда мы подводим мышку к краю окна, окно начинает само скроллиться, перемещение мышки при этом не блокируется.

4. По мере того, как мы ведём мышью от одного края нашего окна к другому, экран сам проскролливается к этому краю. Поначалу не привычно, но потом вполне удобно. Этот вариант мне понравился больше, и именно его я и реализовал.

Эмуляция устройства ввода

С ESP32 S3 программа взаимодействует через ком порт. Она просто отправляет ей команды (KeyDown, KeyUp, MouseDown, MouseUp, MouseMove). Для мышки была выбрана эмуляция устройства с абсолютным позиционированием курсора, там передаются координаты х и у в пределах от 0 до 32768. Таким образом мне не нужно думать, какое разрешение на удалённом компьютере, всё будет работать само. С клавиатурой оказалось немного сложнее — получаемые коды клавиш нельзя было просто передать один в один в класс USBHIDKeyboard, точнее можно, но со своими приколами, которые местами все портили. Но можно было передавать сырые USBHID-коды, в которые нажатые клавиши надо было сконвертировать. Этот путь я и выбрал. Дальше эти нажатия/отжатия уже отправляются на устройство и эмулируются на конечной системе. Я не стал заморачиваться с перехватом особых спец-клавиш типа CapsLock, но на сегодняшний день у меня нет сценариев, где это могло бы потребоваться.

Переходим к проверке:

Заходим в биос, загружаемся в ОС, проверяем, как работает мышь и клавиатура

А теперь сделаем это ещё лучше!

В процессе создания всего этого безобразия я решил, что его можно сделать ещё безобразней! А именно: мне внезапно может потребоваться перезагрузить компьютер, если он завис наглухо. Или выключить, а то чего он тут работает? А потом включить потому, а то чего это он не работает? Для этого надо замкнуть соответствующие пины на материнской плате. Это разъём Fpanel и нам нужны вот эти ребята:

У меня дома валялось пара реле с управлением от 3 вольт, и я подключил его управление к пинам ESP32 S3, а замыкание к пинам материнской платы и... естественно, ничего не заработало, потому что нельзя подключать реле к пинам ESP32 напрямую, они не дают такой ток, чтобы сработала катушка реле, но:

Дяденька, я, на самом деле, не настоящий электронщик, я этот паяльник нашёл!

Ладно, у меня валялись ещё IFR3205. Не надо на меня так смотреть, я понимаю, что использовать их для включения реле — это дикая дичь, они были рождены летать, а не ползать. Но ничего не выйдет, потому что, я сказал «ползать» и они поползли! Я не буду выкладывать схему подключения этого безобразия, потому что мне стыдно. Проще взять готовые к подключению напрямую реле типа этих и не париться:

Я использовал пины 17 и 18, но если нужны другие, можно поменять это в скетче.

Итак, теперь у меня заработали кнопки перезагрузки и включения удалённого компьютера. Также я добавил возможность ввода текста из буфера обмена эмуляцией нажатия этих клавиш (как в HyperV). Программа даже умеет переключать раскладку, если видит русские буквы в тексте. Главное, чтобы изначально раскладка на удалённой системе всегда была выбрана английской, а то будет всё наоборот. И вроде бы всё было закончено. Но тут мне пришла в голову ещё одна безумная идея...

А как насчёт реальной камеры?

Да, ведь мне могут принести ноутбук или моноблок, у которого может и не быть второго видеовыхода, а если и быть, то не факт, что он будет выводить туда стартовую загрузку.

Поэтому я могу просто поставить камеру перед экраном и брать изображение с него. Но! Я же никогда не смогу поставить камеру настолько идеально ровно, чтобы экран был чётко в кадре, не вылезая из него и не оставляя лишнего по краям. А если экран не будет точно заполнять кадр, то собьются и координаты мыши. Поэтому мы будем натягивать сову на гло изображение с камеры на наш виртуальный экран. Здесь мне было откровенно лень. Я попросил ChatGPT сгенерить мне функции для Perspective Image Distortion. После N попыток он привёл меня к библиотеке Emgu.CV, которая делала это достаточно быстро, и я накидал редактор для этого растягивания.

Теперь мы можем натянуть картинку с камеры на наш экран, и мышка ездит от угла к углу достаточно точно. Качество изображения, конечно, прекрасно настолько, что от работы с такой картинкой возникает непременное желание куда-нибудь выйти, например, в какоенибудь ближайшее окно. Но тут уже всё зависит от качества камеры. Главное, возможность есть.

Готовы поработать так на удалёнке весь день?)

Бонус

Не люблю я, когда устройство не похоже на устройство. У меня давно сложилась простая схема для создания корпусов:

А ещё у меня есть 3D-принтер! Поэтому проектируем такую коробочку:

Я делал под свои реле, но это OpenSCAD и там легко можно задать размеры и количество для своих.

Я всегда делаю корпуса под болтики для компьютерных вентиляторов, они хорошо вкручиваются и крепко держатся в пластике и не нужно вплавлять гайки

Воплощаем это в пластике

Теперь собираем всё вместе

Термоклеем делаем блямбы на проводах, чтобы не оторвать пайку, если дёрнуть за них

А вот и устройство. Во всяком случае похоже на устройство. Если бы я не знал, как выглядят устройства, я бы подумал, что это, возможно, оно.

Кажется, это устройство

Дайте мне это немедленно!

Как обычно, всё, что я сюда выкладываю — MIT, поэтому делайте с этим, что хотите, кроме модифицированной AForge, там GPL/LGPL, но я все исходники выложил и чист перед ними)

Страница проекта: тут.

Но на всякий случай предупреждаю, что я особо не сижу на GitHub, редко туда захожу, не часто там отвечаю, просто выложил и забыл. А сюда пишите, отвечу)

© 2024 ООО «МТ ФИНАНС»

Telegram-канал со скидками, розыгрышами призов и новостями IT 💂

Теги: ruvds_cтатьи, DIY, удаленное управление компьютером, remote control, esp32 s3

Публикации

