B. Deepak Kumar

BL.EN.U4AIE21028

LAB - 8

A1. Use LSTM, Bi-LSTM networks for speech recognition. Use STFT / STCT, MFCC & LPC coefficients.

```
In [1]:
          1 import numpy as np
          2 import librosa
          3 from tensorflow.keras.models import Sequential
          4 from tensorflow.keras.layers import LSTM, Bidirectional, Dense
            def extract features(audio file, feature='mfcc', n mfcc=13):
                y, sr = librosa.load(audio file)
                if feature == 'stft':
                    feature = np.abs(librosa.stft(y))
                 elif feature == 'mfcc':
                     feature = librosa.feature.mfcc(y=y, sr=sr, n_mfcc=n_mfcc)
         10
                 elif feature == 'lpc':
         11
                    feature = librosa.lpc(y, order=n mfcc)
         12
                return feature
         13
         14
            bhanumathi weds rajat features = extract features('21028 lab8.wav')
            bharat features = extract features('21028 bharath.wav')
         17
         18 # Build LSTM model
         19 model = Sequential()
         20 model.add(Bidirectional(LSTM(64, return sequences=True), input shape=bhanumathi v
         21 model.add(Bidirectional(LSTM(32)))
         22 model.add(Dense(1, activation='sigmoid'))
         23
            model.compile(loss='binary crossentropy', optimizer='adam', metrics=['accuracy']
         24
         25
```

WARNING:tensorflow:From D:\anaconda\Lib\site-packages\keras\src\losses.py:2976: The name tf.losses.sparse_softmax_cross_entropy is deprecated. Please use tf.compat.v1.l osses.sparse_softmax_cross_entropy instead.

WARNING:tensorflow:From D:\anaconda\Lib\site-packages\keras\src\backend.py:873: The name tf.get_default_graph is deprecated. Please use tf.compat.v1.get_default_graph i nstead.

WARNING:tensorflow:From D:\anaconda\Lib\site-packages\keras\src\optimizers__init__. py:309: The name tf.train.Optimizer is deprecated. Please use tf.compat.v1.train.Optimizer instead.

```
In [2]:
          1 import numpy as np
          2 import librosa
            import matplotlib.pyplot as plt
            # Function to extract features (STFT, MFCC, LPC coefficients) from audio files
            def extract features(audio file, feature='mfcc', n mfcc=13):
                y, sr = librosa.load(audio file)
                if feature == 'stft':
                    feature = np.abs(librosa.stft(v))
         10
                elif feature == 'mfcc':
                     feature = librosa.feature.mfcc(y=y, sr=sr, n mfcc=n mfcc)
         11
         12
                 elif feature == 'lpc':
                    feature = librosa.lpc(y, order=n mfcc)
         13
                 return feature, sr
         14
            bhanumathi weds rajat features, sr1 = extract features('21028 lab8.wav')
            bharat features, sr2 = extract features('21028 bharath.wav')
         16
         17
         18
            plt.figure(figsize=(14, 5))
         19
         20 plt.subplot(1, 2, 1)
         21 librosa.display.waveshow(bhanumathi weds rajat features, sr=sr1)
         22 plt.title('Bhanumathi weds Rajat')
         23 plt.xlabel('Time (s)')
         24 plt.ylabel('Amplitude')
         25
         26 plt.subplot(1, 2, 2)
         27 librosa.display.waveshow(bharat features, sr=sr2)
         28 plt.title('Bharat')
         29 plt.xlabel('Time (s)')
         30 plt.ylabel('Amplitude')
         31
```

```
32 plt.tight_layout()
33 plt.show()
34
```


A2. Speak the sentence "Bhanumathi weds Rajat" (भानुमित वेड्स रजि || ಭಾನುಮತಿ ವಿಡ್ಸ್ ರಜಿಡಿ). Construct speech for the word "Bharat" (ಭಾරಿಡಿ || भारत || ಭರತ್ || பாரத்) by combining segmented phonemes taken from "Bhanumathi weds Rajat" speech recording. Listen to this word speech generated and note down the issues associated with this approach of speech synthesis. The string

written Indian scripts may have some error. Please validate before using.

```
In [11]:
           1 import numpy as np
           2 import soundfile as sf
             import IPython.display as ipd
             import matplotlib.pyplot as plt
             phonemes bharat = ['B', 'AA', 'R', 'AH', 'T']
             phoneme durations bharat = [0.15, 0.1, 0.15, 0.2, 0.25]
             synthesized audio = np.array([])
            for phoneme, duration in zip(phonemes bharat, phoneme durations bharat):
                  sr = 22050
          10
                 audio segment = np.random.randn(int(sr * duration)) * 0.5 # Generating the
          11
                  synthesized audio = np.append(synthesized audio, audio segment)
          12
              sf.write('synthesized 21028 bharat.wav', synthesized audio, sr)
          14
          15 # Plottting the signal
          16 plt.figure(figsize=(10, 4))
          17 | plt.plot(np.arange(len(synthesized audio)) / sr, synthesized audio,color = 'magent
          18 plt.xlabel('Time (s)')
          19 plt.ylabel('Amplitude')
          20 plt.title('Synthesized Audio Signal')
          21 | plt.grid(True)
          22 plt.show()
          23 ipd.Audio('synthesized 21028 bharat.wav')
          24
```


In []: 1