

Red Hat Advanced Cluster Management for Kubernetes 2.6

Install

Read more about installing on connected and disconnected networks, requirements and recommendations for installation, multicluster advanced configurations, and instructions for upgrading and uninstalling.

Last Updated: 2023-01-12

Red Hat Advanced Cluster Management for Kubernetes 2.6 Install

Read more about installing on connected and disconnected networks, requirements and recommendations for installation, multicluster advanced configurations, and instructions for upgrading and uninstalling.

Legal Notice

Copyright © 2023 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is available at

http://creativecommons.org/licenses/by-sa/3.0/

. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert, Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift, Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other countries.

Linux [®] is the registered trademark of Linus Torvalds in the United States and other countries.

Java [®] is a registered trademark of Oracle and/or its affiliates.

XFS [®] is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack [®] Word Mark and OpenStack logo are either registered trademarks/service marks or trademarks/service marks of the OpenStack Foundation, in the United States and other countries and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Read more about installing on connected and disconnected networks, requirements and recommendations for installation, multicluster advanced configurations, and instructions for upgrading and uninstalling.

Table of Contents

CHAPTER 1. INSTALLING	4
1.1. REQUIREMENTS AND RECOMMENDATIONS	4
1.1.1. Supported operating systems and platforms	4
1.1.2. Supported browsers	5
1.1.3. Network configuration	5
1.1.3.1. Hub cluster networking requirements	5
1.1.3.2. Managed cluster networking requirements	6
1.1.3.3. Additional networking requirements when installing using the infrastructure operator	8
1.1.3.4. Submariner networking requirements	8
1.1.3.5. Additional networking requirements when installing using the Hive Operator	9
1.1.3.6. Application deployment network requirements	9
1.1.3.7. Namespace connection network requirements	9
1.2. PERFORMANCE AND SCALABILITY	10
1.2.1. Maximum number of managed clusters	10
1.2.2. Search scalability	11
1.2.2.1. Physical memory	11
1.2.2.2. Write throughput (cache recovery time)	11
1.2.2.3. Query execution considerations	12
1.2.3. Scaling for observability	12
1.2.3.1. Sample observability environment	12
1.2.3.2. Write throughput	13
1.2.3.3. CPU usage (millicores)	13
1.2.3.4. RSS and working set memory	13
1.2.3.5. Persistent volume for thanos-receive component	14
1.2.3.6. Network transfer	14
1.2.3.7. Amazon Simple Storage Service (S3)	14
1.2.4. Sizing your hub cluster	14
1.2.4.1. Product environment	15
1.2.4.1.1. OpenShift Container Platform on additional services	15
1.2.4.1.2. Creating and managing single node OpenShift Container Platform clusters	21
1.3. INSTALLING WHILE CONNECTED ONLINE	22
1.3.1. Prerequisites	22
1.3.2. Confirm your OpenShift Container Platform installation	23
1.3.3. Installing from the OperatorHub web console interface	24
1.3.4. Installing from the OpenShift Container Platform CLI	25
1.3.5. Installing the Red Hat Advanced Cluster Management hub cluster on infrastructure nodes	27
1.3.5.1. Add infrastructure nodes to the OpenShift Container Platform cluster	27
1.3.5.2. Operator Lifecycle Manager Subscription additional configuration	27
1.3.5.3. MultiClusterHub custom resource additional configuration	28
1.4. INSTALL IN DISCONNECTED NETWORK ENVIRONMENTS	28
1.4.1. Prerequisites	28
1.4.2. Confirm your OpenShift Container Platform installation	29
1.4.3. Confirm availability of a local image registry	29
1.4.4. Configure Operator Lifecycle Manager	29
1.4.4.1. Additional requirements	29
1.4.4.1.1. Include operator packages in mirror catalog	29
1.4.4.1.2. Configure to use your mirror registry	30
1.4.4.1.3. Find the catalog source name	31
1.4.5. Verify required packages are available	31
1.4.6. Configure image content source policies	31
1.4.7. Install the Red Hat Advanced Cluster Management for Kubernetes operator and hub cluster	32

1.4.8. Additional considerations when using governance policies	33
1.5. MULTICLUSTERHUB ADVANCED CONFIGURATION	33
1.5.1. Custom Image Pull Secret	33
1.5.2. availabilityConfig	34
1.5.3. nodeSelector	34
1.5.4. tolerations	35
1.5.5. disableHubSelfManagement	35
1.5.6. disableUpdateClusterImageSets	36
1.5.7. customCAConfigmap	36
1.5.8. sslCiphers	36
1.5.9. ClusterBackup	37
1.5.10. ManagedServiceAccount add-on (Technology Preview)	37
1.5.11. Hypershift add-on (Technology Preview)	38
1.6. UPGRADING	38
1.6.1. Managing cluster pools with an upgrade	39
1.7. UPGRADING IN A DISCONNECTED NETWORK ENVIRONMENT	40
1.7.1. Upgrade from release 2.5 or later	40
1.7.2. Upgrade from release 2.4	40
1.8. UNINSTALLING	42
1.8.1. Prerequisite: Detach enabled services	42
1.8.2. Removing resources by using commands	43
18.3. Deleting the components by using the console	45

CHAPTER 1. INSTALLING

Before you install, review the required hardware and system configuration for each product. You can install online on Linux with a supported version of Red Hat OpenShift Container Platform.

- 1. You must have a supported version of OpenShift Container Platform. For example, you can use Red Hat OpenShift Service on AWS, or Red Hat OpenShift Dedicated.
- 2. You must install the multicluster engine operator.

FIPS notice: If you do not specify your own ciphers in **spec.ingress.sslCiphers**, then the **multiclusterhub-operator** provides a default list of ciphers. For 2.3, this list includes two ciphers that are *not* FIPS approved. If you upgrade from a version 2.3.x or earlier and want FIPS compliance, remove the following two ciphers from the **multiclusterhub** resource: **ECDHE-ECDSA-CHACHA20-POLY1305** and **ECDHE-RSA-CHACHA20-POLY1305**.

Installing Red Hat Advanced Cluster Management for Kubernetes sets up a multi-node cluster production environment. You can install Red Hat Advanced Cluster Management for Kubernetes in either standard or high-availability configurations. View the following documentation for more information about the installation procedure:

- Requirements and recommendations
- Sizing your cluster
- Performance and scalability
- Installing while connected online
- Install on disconnected networks
- MultiClusterHub advanced configuration
- Upgrading
- Upgrading in a disconnected network environment
- Uninstalling

1.1. REQUIREMENTS AND RECOMMENDATIONS

Before you install Red Hat Advanced Cluster Management for Kubernetes, review the following system configuration requirements and settings:

- Supported operating systems and platforms
- Supported browsers
- Network configuration

1.1.1. Supported operating systems and platforms

To see recent information about hub cluster and managed cluster platforms, refer to the Red Hat Advanced Cluster Management 2.6 Support matrix.

1.1.2. Supported browsers

You can access the Red Hat Advanced Cluster Management console from Mozilla Firefox, Google Chrome, Microsoft Edge, and Safari. See the following versions that are tested and supported:

Platform	Supported browsers
Microsoft Windows	Microsoft Edge - 44 or later, Mozilla Firefox - 82.0 or later, Google Chrome - Version 86.0 and later
Linux	Mozilla Firefox - 82.0 and later, Google Chrome - Version 86.0 and later
macOS	Mozilla Firefox - 82.0 and later, Google Chrome - Version 86.0 and later, Safari - 14.0 and later

1.1.3. Network configuration

Configure your network settings to allow the connections in the following sections.

1.1.3.1. Hub cluster networking requirements

For the hub cluster networking requirements, see the following table:

Direction	Protocol	Connection	Port (if specified)
Outbound to managed cluster	HTTPS	Retrieval of logs dynamically from Search console for the pods of the managed cluster. This connection creates a route called klusterlet-addon- workmgr in the open- cluster- management-agent- addon namespace of the managed cluster. The host of the route is <route name="">- <namespace>.apps. <cluster domain="">.</cluster></namespace></route>	443
Outbound to managed cluster	HTTPS	Kubernetes API server of the managed cluster that is provisioned during installation to install the Klusterlet	6443

Direction	Protocol	Connection	Port (if specified)
Outbound to the channel source	HTTPS	The channel source, including GitHub, Object Store, and Helm repository. This is only required when you are using Application lifecycle, OpenShift GitOps or ArgoCD to connect to these sources.	443
Inbound from the managed cluster	HTTPS	Managed cluster to push metrics and alerts (alerts are gathered only for managed clusters running OpenShift Container Platform version 4.8, or later)	443
Inbound from the managed cluster	HTTPS	Kube API Server of hub cluster being watched for changes from managed cluster	6443
Outbound to ObjectStore	HTTPS	Sends metric data of Observability for long term storage in the ObjectStore and/or when the Cluster Backup Operator is running.	443
Outbound to image repository	HTTPS	Access images for OpenShift Container Platform and Red Hat Advanced Cluster Management	443

1.1.3.2. Managed cluster networking requirements

Note: Registration Agent and **Work Agent** on the managed cluster do not support proxy settings because they communicate with **apiserver** on the hub cluster by establishing an mTLS connection, which cannot pass through the proxy.

For the managed cluster networking requirements, see the following table:

Direction	Protocol	Connection	Port (if specified)
Inbound from the hub cluster	HTTPS	Sending of logs dynamically for the pods of the managed cluster. This connection uses a service running on the managed cluster called - klusterlet-addon- workmgr	443
Inbound from the hub cluster	HTTPS	Kubernetes API server of the managed cluster that is provisioned during installation to install the Klusterlet	6443
Outbound to image repository	HTTPS	Access images for OpenShift Container Platform and Red Hat Advanced Cluster Management	443
Outbound to the hub cluster	HTTPS	Managed cluster to push metrics and alerts (alerts are gathered only for managed clusters running OpenShift Container Platform version 4.8, or later)	443
Outbound to the hub cluster	HTTPS	Watches the Kubernetes API server of the hub cluster for changes	6443
Outbound to the channel source	HTTPS	The managed cluster to the channel source, which includes GitHub, Object Store, and Helm repository. This is only required when you are using application lifecycle to connect to these sources.	443
Outbound to the hub cluster	HTTPS	For cluster-proxy add- on on the managed cluster to register.	443

1.1.3.3. Additional networking requirements when installing using the infrastructure operator

When you are installing bare metal managed clusters with the Infrastructure Operator, see the following table for the additional networking requirements:

Direction	Protocol	Connection	Port (if specified)
Hub cluster outbound to the ISO/rootfs image repository	HTTPS (HTTP in a disconnected environment	Used to create an ISO image on the Red Hat Advanced Cluster Management hub	443 (80 in disconnected environments)
Hub cluster outbound to BMC interface at single node OpenShift Container Platform managed cluster	HTTPS (HTTP in disconnected environment)	Boot the OpenShift Container Platform cluster	443
Outbound from the OpenShift Container Platform managed cluster to the hub cluster	HTTPS	Reports hardware information using the assistedService route	443
Outbound from the OpenShift Container Platform managed cluster to the ISO/rootfs image repository	HTTP	Downloads the rootfs image	80

1.1.3.4. Submariner networking requirements

Clusters that are using Submariner require three open ports. The following table shows which ports you might use:

Direction	Protocol	Connection	Port (if specified)
Outbound and inbound	UDP	Each of the managed clusters	4800
Outbound and inbound	UDP	Each of the managed clusters	4500, 500, and any other ports that are used for IPSec traffic on the gateway nodes
Inbound	TCP	Each of the managed clusters	8080
Inbound	TCP	When Globalnet is enabled	8081

1.1.3.5. Additional networking requirements when installing using the Hive Operator

When you are installing bare metal managed clusters with the Hive Operator, which includes using Central Infrastructure Management, you must configure a layer 2 or layer 3 port connection between the hub cluster and the **libvirt** provisioning host. This connection to the provisioning host is required during the creation of a base metal cluster with Hive. See the following table for more information:

Direction	Protocol	Connection	Port (if specified)
Hub cluster outbound and inbound to the libvirt provisioning host	IP	Connects the hub cluster, where the Hive operator is installed, to the libvirt provisioning host that serves as a bootstrap when creating the bare metal cluster	

Note: These requirements only apply when installing, and are not required when upgrading clusters that were installed with Infrastructure Operator.

1.1.3.6. Application deployment network requirements

In general, the application deployment communication is one way from a managed cluster to the hub cluster. The connection uses **kubeconfig**, which is configured by the agent on the managed cluster. The application deployment on the managed cluster needs to access the following namespaces on the hub cluster:

- The namespace of the channel resource
- The namespace of the managed cluster

1.1.3.7. Namespace connection network requirements

- Application lifecycle connections:
 - The namespace **open-cluster-management** needs to access the console API on port 4000.
 - The namespace **open-cluster-management** needs to expose the Application UI on port 3001.
- Application lifecycle backend components (pods):
 On the hub cluster, all of the application lifecycle pods are installed in the open-cluster-management namespace, including the following pods:
 - multicluster-operators-hub-subscription
 - multicluster-operators-standalone-subscription
 - multicluster-operators-channel
 - multicluster-operators-application
 - multicluster-integrations

As a result of these pods being in the **open-cluster-management** namespace:

• The namespace **open-cluster-management** needs to access the Kube API on port 6443.

On the managed cluster, only the **klusterlet-addon-appmgr** application lifecycle pod is installed in the **open-cluster-management-agent-addon** namespace:

- The namespace **open-cluster-management-agent-addon** needs to access the Kube API on port 6443.
- Governance and risk:

On the hub cluster, the following access is required:

- The namespace **open-cluster-management** needs to access the Kube API on port 6443.
- The namespace **open-cluster-management** needs to access the OpenShift DNS on port 5353.

On the managed cluster, the following access is required:

• The namespace **open-cluster-management-addon** needs to access the Kube API on port 6443.

See the Red Hat Advanced Cluster Management for Kubernetes 2.6 Support matrix for additional information.

1.2. PERFORMANCE AND SCALABILITY

Red Hat Advanced Cluster Management for Kubernetes is tested to determine certain scalability and performance data. The major areas that are tested are cluster scalability and search performance.

You can use this information to help you plan your environment.

Note: Data is based on the results from a lab environment at the time of testing. Your results might vary, depending on your environment, network speed, and changes to the product.

- Maximum number of managed clusters
- Search scalability
- Scaling for observability

1.2.1. Maximum number of managed clusters

The maximum number of clusters that Red Hat Advanced Cluster Management can manage varies based on several factors, including:

- Number of resources in the cluster, which depends on factors like the number of policies and applications that are deployed.
- Configuration of the hub cluster, such as how many pods are used for scaling.

The following table shows the configuration information for the clusters on the Amazon Web Services cloud platform that were used during this testing:

Node	Flavor	vCPU	RAM (GiB)	Disk type	Disk size (GiB)	Count	Region
Master	m5.2xlarg e	8	32	gp2	100	3	us-east-1
Worker or Infrastruct ure	m5.2xlarg e	8	32	gp2	100	3 or 5 nodes	us-east-1

For more information about infrastructure nodes, see, Installing the Red Hat Advanced Cluster Management hub cluster on infrastructure nodes. Also see Creating infrastructure machine sets.

1.2.2. Search scalability

The scalability of the Search component depends on the performance of the data store. The following variables are important when analyzing the search performance:

- Physical memory
- Write throughput (Cache recovery time)
- Query execution time

1.2.2.1. Physical memory

Search keeps the data in-memory to achieve fast response times. The memory required is proportional to the number of Kubernetes resources and their relationships in the cluster.

Clusters	Kubernetes resources	Relationships	Observed size (with simulated data)
1 medium	5000	9500	50 Mi
5 medium	25,000	75,000	120 Mi
15 medium	75,000	20,0000	492 Mi
30 medium	150,000	450,000	1 Gi
50 medium	250,000	750,000	2 Gi

For more information on how you can change the amount of memory used for the search component, see Options to increase the redisgraph memory.

1.2.2.2. Write throughput (cache recovery time)

Most clusters in steady state generate a small number of resource updates. The highest rate of updates happen when the data in RedisGraph is cleared, which causes the remote collectors to synchronize their full state around the same time. When the datastore is cleared, recovery times are measured for a

different number of managed clusters.

Clusters	Kubernetes resources	Relationships	Average recovery time from simulation
1 medium	5000	9500	less than 2 seconds
5 medium	25,000	75,000	less than 15 seconds
15 medium	75,000	200,000	2 minutes and 40 seconds
30 medium	150,000	450,000	5-8 minutes

Remember: Times might increase for clusters that have a slow network connection to the hub. The write throughput information that is previously stated is applicable only if **persistence** is disabled.

1.2.2.3. Query execution considerations

There are some things that can affect the time that it takes to run and return results from a query. Consider the following items when planning and configuring your environment:

- Searching for a keyword is not efficient.
 If you search for **RedHat** and you manage a large number of clusters, it might take a longer time to receive search results.
- The first search takes longer than later searches because it takes additional time to gather user role-based access control rules.
- The length of time to complete a request is proportional to the number of namespaces and resources the user is authorized to access.
 Note: If you save and share a Search query with another user, returned results depend on access

level for that user. For more information on role access, see Using RBAC to define and apply permissions in the OpenShift Container Platform documentation.

• The worst performance is observed for a request by a non-administrator user with access to all of the namespaces, or all of the managed clusters.

1.2.3. Scaling for observability

You need to plan your environment if you want to enable and use the observability service. The resource consumption later is for the OpenShift Container Platform project, where observability components are installed. Values that you plan to use are sums for all observability components.

Note: Data is based on the results from a lab environment at the time of testing. Your results might vary, depending on your environment, network speed, and changes to the product.

1.2.3.1. Sample observability environment

In the sample environment, hub clusters and managed clusters are located in Amazon Web Services cloud platform and have the following topology and configuration:

Node	Flavor	vCPU	RAM (GiB)	Disk type	Disk size (GiB)	Count	Region
Master node	m5.4xlarg e	16	64	gp2	100	3	sa-east-1
Worker node	m5.4xlarg e	16	64	gp2	100	3	sa-east-1

The observability deployment is configured for high availability environments. With a high availability environment, each Kubernetes deployment has two instances, and each StatefulSet has three instances.

During the sample test, a different number of managed clusters are simulated to push metrics, and each test lasts for 24 hours. See the following throughput:

1.2.3.2. Write throughput

Pods	Interval (minute)	Time series per min
400	1	83000

1.2.3.3. CPU usage (millicores)

CPU usage is stable during testing:

Size	CPU Usage
10 clusters	400
20 clusters	800

1.2.3.4. RSS and working set memory

View the following descriptions of the RSS and working set memory:

- Memory usage RSS: From the metrics container_memory_rss and remains stable during the test.
- Memory usage working set: From the metrics container_memory_working_set_bytes, increases along with the test.

The following results are from a 24-hour test:

Size	Memory usage RSS	Memory usage working set
10 clusters	9.84	4.93

Size	Memory usage RSS	Memory usage working set
20 clusters	13.10	8.76

1.2.3.5. Persistent volume for thanos-receive component

Important: Metrics are stored in **thanos-receive** until retention time (four days) is reached. Other components do not require as much volume as **thanos-receive** components.

Disk usage increases along with the test. Data represents disk usage after one day, so the final disk usage is multiplied by four.

See the following disk usage:

Size	Disk usage (GiB)
10 clusters	2
20 clusters	3

1.2.3.6. Network transfer

During tests, network transfer provides stability. See the sizes and network transfer values:

Size	Inbound network transfer	Outbound network transfer
10 clusters	6.55 MBs per second	5.80 MBs per second
20 clusters	13.08 MBs per second	10.9 MBs per second

1.2.3.7. Amazon Simple Storage Service (S3)

Total usage in Amazon Simple Storage Service (S3) increases. The metrics data is stored in S3 until default retention time (five days) is reached. See the following disk usages:

Size	Disk usage (GiB)
10 clusters	16.2
20 clusters	23.8

1.2.4. Sizing your hub cluster

Each Red Hat Advanced Cluster Management for Kubernetes cluster is unique and the following guidelines provide sample deployment sizes for you. Recommendations are classified by size and purpose. Red Hat Advanced Cluster Management applies the following dimensions for sizing and placement of supporting services:

- Availability Zones isolate potential fault domains across the cluster. Typical clusters should have nearly equivalent worker node capacity in three or more availability zones.
- vCPU reservations and limits, which establish vCPU capacity on a worker node to assign to a container. A vCPU is equivalent to a Kubernetes compute unit. For more information, see Kubernetes Meaning of CPU.
- Memory reservations and limits, which establish memory capacity on a worker node to assign to a container.
- Persistent data, which is managed by the product and stored in the etcd cluster that is used by Kubernetes.

Best practice: For OpenShift Container Platform, distribute the master nodes of the cluster across three (3) availability zones.

1.2.4.1. Product environment

Note: The following requirements are *not* minimum requirements.

Table 1.1. Product environment

Node type	Availability zones	etcd	Total reserved memory	Total reserved CPU
Master	3	3	Per OpenShift Container Platform sizing guidelines	Per OpenShift Container Platform sizing guidelines
Worker or infrastructure	3	1	12 GB	6

In addition to Red Hat Advanced Cluster Management, the OpenShift Container Platform cluster runs additional services to support cluster features. The recommended node size is three nodes. See Installing the Red Hat Advanced Cluster Management hub cluster on infrastructure nodes for more details.

1.2.4.1.1. OpenShift Container Platform on additional services

Table 1.2. Additional services

Service	Node	Availabilit	Instance	vCPU	Memory	Storage	Resource
	count	y zones	size			size	s

Service	Node count	Availabilit y zones	Instance size	vCPU	Memory	Storage size	Resource s
OpenShift Container Platform on Amazon Web Services	3	3	m5.xlarge	4	16 GB	120 GB	See the Amazon Web Services informatio n in the OpenShift Container Platform product document ation for more informatio n. Also learn more about machine types.
OpenShift Container Platform on Google Cloud Platform	3	3	N1- standard- 4 (0.95- 6.5 GB)	4	15 GB	120 GB	See the Google Cloud Platform product document ation for more informatio n about quotas. Also learn more about machine types.
OpenShift Container Platform on Microsoft Azure	3	3	Standard_ D4_v3	4	16 GB	120 GB	See the following product document ation for more details.

Service	Node count	Availabilit y zones	Instance size	vCPU	Memory	Storage size	Resource s
OpenShift Container Platform on VMware vSphere	3	3		4 (2 cores per socket)	16 GB	120 GB	See the following product document ation for more details.
OpenShift Container Platform on IBM Z systems	3	3		10	16 GB	100 GB	See Installing a cluster on IBM Z systems in the OpenShift Container Platform document ation for more informatio n. IBM Z systems provide the ability to configure simultane ous multithrea ding (SMT), which extends the number of vCPUs that can run on each core. If you configure d SMT, One physical core (IFL) provides two logical cores

Service	Node count	Availabilit y zones	Instance size	vCPU	Memory	Storage size	(threads). Resource s _{typervisor}
							can provide two or more vCPUs.
							One vCPU is equivalent to one physical core when simultane ous multithrea ding (SMT), or hyperthre ading, is not enabled. When enabled, use the following formula to calculate the correspon ding ratio: (threads per core × cores) × sockets = vCPUs. For more informatio n about SMT, see Simultane ous multithrea ding.
OpenShift Container Platform on IBM Power systems	3	3		16	16 GB	120 GB	See Installing a cluster on Power systems in the OpenShift Container

n. IBM Powe system proving the all to configure simulting configure system that the all to configure system that the system t	Service	Node count	Availabilit y zones	Instance size	vCPU	Memory	Storage size	Platform Resource Sation for
Power system provides the all to configuration of the simulting simulting ding (SMT) which extense the numb vCPU that configuration of the system of the sys								informatio
Two cruning on SN (the default configuration of system that a running IBM Power								IBM Power systems provide the ability to configure simultane ous multithrea ding (SMT), which extends the number of vCPUs that can run on each core. If you configure d SMT, your SMT level determine s how you satisfy the 16 vCPU requireme nt. The most common configurat ions are: Two cores running on SMT-8 (the default configurat ion for systems that are running

Service	Node count	Availabilit y zones	Instance size	vCPU	Memory	Storage size	the Resource So vCPUs.
							Four cores running on SMT-4 provides the required 16 vCPUs.
							For more informatio n about SMT, see Simultane ous multithrea ding.

Service	Node count	Availabilit y zones	Instance size	vCPU	Memory	Storage size	Resource s
OpenShift Container Platform on Bare metal assets	3			4	16 GB	120 GB	See the following product document ation for more details.
							A Red Hat Advanced Cluster Managem ent for Kubernet es hub cluster can be installed and supported on OpenShift Container Platform bare metal. The hub cluster can run on a compact bare metal topology, in which there are 3 schedulab le control plane nodes, and O additional workers.

1.2.4.1.2. Creating and managing single node OpenShift Container Platform clusters

See example requirements for creating and managing 2200 single node OpenShift Container Platform clusters. See the minimum requirements for using Red Hat Advanced Cluster Management to create

single node OpenShift (SNO) clusters (230 and more provisioned at the same time), and manage those SNO clusters with a hub cluster:

Table 1.3. Master (schedulable)

Node count	Memory (peak cluster usage)	Memory (single node max)	CPU cluster max	CPU single node max
3	289 GB	110 GB	90	44

Note: The CPU utilization values peaked while multiple clusters were created at the same time.

1.3. INSTALLING WHILE CONNECTED ONLINE

Red Hat Advanced Cluster Management for Kubernetes is installed through Operator Lifecycle Manager, which manages the installation, upgrade, and removal of the components that encompass the Red Hat Advanced Cluster Management hub cluster.

Before you get started, review the Requirements and recommendations section, then see the following documentation:

Required access: Cluster administrator. OpenShift Container Platform Dedicated environment required access: You must have cluster-admin permissions. By default dedicated-admin role does not have the required permissions to create namespaces in the OpenShift Container Platform Dedicated environment.

- By default, the hub cluster components are installed on worker nodes of your OpenShift
 Container Platform cluster without any additional configuration. You can install the hub cluster
 on worker nodes by using the OpenShift Container Platform OperatorHub web console
 interface, or by using the OpenShift Container Platform CLI.
- If you have configured your OpenShift Container Platform cluster with infrastructure nodes, you can install the hub cluster on those infrastructure nodes by using the OpenShift Container Platform CLI with additional resource parameters. See the *Installing the Red Hat Advanced Cluster Management hub cluster on infrastructure node* section for more details.
- If you plan to import Kubernetes clusters that were not created by OpenShift Container Platform or Red Hat Advanced Cluster Management, you need to configure an image pull secret.

For information on how to configure advanced configurations, see options in the MultiClusterHub advanced configuration section of the documentation.

- Prerequisites
- Confirm your OpenShift Container Platform installation
- Installing from the OperatorHub web console interface
- Installing from the OpenShift Container Platform CLI
- Installing the Red Hat Advanced Cluster Management hub cluster on infrastructure nodes

1.3.1. Prerequisites

Before you install Red Hat Advanced Cluster Management, see the following requirements:

- Your Red Hat OpenShift Container Platform cluster must have access to the Red Hat Advanced Cluster Management operator in the OperatorHub catalog from the OpenShift Container Platform console.
- You need access to the catalog.redhat.com.
- OpenShift Container Platform version 4.8, or later, must be deployed in your environment, and you must be logged into with the OpenShift Container Platform CLI. OpenShift Container Platform version 4.8, or later, must be deployed in your environment, and you must be logged into with the OpenShift Container Platform CLI. See the following install documentation for OpenShift Container Platform and change to earlier versions of needed: OpenShift Container Platform version 4.10
- Your OpenShift Container Platform command line interface (CLI) must be configured to run oc commands. See Getting started with the CLI for information about installing and configuring the OpenShift Container Platform CLI.
- Your OpenShift Container Platform permissions must allow you to create a namespace. Without a namespace, installation will fail.
- You must have an Internet connection to access the dependencies for the operator.
- Important: To install in a OpenShift Container Platform Dedicated environment, see the following requirements:
 - You must have the OpenShift Container Platform Dedicated environment configured and running.
 - You must have **cluster-admin** authority to the OpenShift Container Platform Dedicated environment where you are installing the hub cluster.
 - To import, you must use the **stable-2.0** channel of the klusterlet operator for 2.6.

1.3.2. Confirm your OpenShift Container Platform installation

You must have a supported OpenShift Container Platform version, including the registry and storage services, installed and working. For more information about installing OpenShift Container Platform, see the OpenShift Container Platform documentation.

- Verify that a Red Hat Advanced Cluster Management hub cluster is not already installed on your OpenShift Container Platform cluster. Red Hat Advanced Cluster Management allows only one single Red Hat Advanced Cluster Management hub cluster installation on each OpenShift Container Platform cluster. Continue with the following steps if there is no Red Hat Advanced Cluster Management hub cluster installed:
- 2. To ensure that the OpenShift Container Platform cluster is set up correctly, access the OpenShift Container Platform web console with the following command:
 - kubectl -n openshift-console get route

See the following example output:

openshift-console console console-openshift-console.apps.new-coral.purple-chesterfield.com console https reencrypt/Redirect None

 Open the URL in your browser and check the result. If the console URL displays consoleopenshift-console.router.default.svc.cluster.local, set the value for openshift_master_default_subdomain when you install OpenShift Container Platform. See the following example of a URL: https://console-openshift-console.apps.new-coral.purplechesterfield.com.

You can proceed to install Red Hat Advanced Cluster Management from the console or the CLI. Both procedures are documented.

1.3.3. Installing from the OperatorHub web console interface

Best practice: From the *Administrator* view in your OpenShift Container Platform navigation, install the OperatorHub web console interface that is provided with OpenShift Container Platform.

- 1. Select **Operators** > **OperatorHub** to access the list of available operators, and select *Advanced Cluster Management for Kubernetes* operator.
- 2. On the Operator subscription page, select the options for your installation:
 - Namespace information:
 - The Red Hat Advanced Cluster Management hub cluster must be installed in its own namespace, or project.
 - By default, the OperatorHub console installation process creates a namespace titled open-cluster-management. Best practice: Continue to use the open-clustermanagement namespace if it is available.
 - If there is already a namespace named **open-cluster-management**, choose a different namespace.
 - Channel: The channel that you select corresponds to the release that you are installing. When you select the channel, it installs the identified release, and establishes that the future Errata updates within that release are obtained.
 - Approval strategy for updates: The approval strategy identifies the human interaction that is required for applying updates to the channel or release to which you subscribed.
 - Select **Automatic** to ensure any updates within that release are automatically applied.
 - Select **Manual** to receive a notification when an update is available. If you have concerns about when the updates are applied, this might be best practice for you.

Important: To upgrade to the next minor release, you must return to the *OperatorHub* page and select a new channel for the more current release.

- 3. Select **Install** to apply your changes and create the operator.
- 4. Create the MultiClusterHub custom resource.
 - a. In the OpenShift Container Platform console navigation, select Installed Operators > Advanced Cluster Management for Kubernetes.
 - b. Select the MultiClusterHub tab.
 - c. Select Create MultiClusterHub.

- d. Update the default values in the YAML file. See options in the *MultiClusterHub advanced* configuration section of the documentation.
 - The following example shows the default template. Confirm that **namespace** is your project namespace. See the sample:

apiVersion: operator.open-cluster-management.io/v1

kind: MultiClusterHub

metadata:

name: multiclusterhub namespace: <namespace>

5. Select **Create** to initialize the custom resource. It can take up to 10 minutes for the Red Hat Advanced Cluster Management hub cluster to build and start.

After the Red Hat Advanced Cluster Management hub cluster is created, the **MultiClusterHub** resource status displays *Running* from the *MultiClusterHub* tab of the Red Hat Advanced Cluster Management operator details. You can now access the console for the Red Hat Advanced Cluster Management hub cluster. See the following steps:

- 6. In the OpenShift Container Platform console navigation, select **Networking** > **Routes**.
- 7. View the URL for your Red Hat Advanced Cluster Management hub cluster in the list, and navigate to it to access the console.

1.3.4. Installing from the OpenShift Container Platform CLI

 Create a Red Hat Advanced Cluster Management hub cluster namespace where the operator requirements are contained. Run the following command, where **namespace** is the name for your Red Hat Advanced Cluster Management hub cluster namespace. The value for **namespace** might be referred to as *Project* in the OpenShift Container Platform environment:

oc create namespace <namespace>

2. Switch your project namespace to the one that you created. Replace **namespace** with the name of the Red Hat Advanced Cluster Management hub cluster namespace that you created in step 1.

oc project <namespace>

3. Create a YAML file to configure an **OperatorGroup** resource. Each namespace can have only one operator group. Replace **default** with the name of your operator group. Replace **namespace** with the name of your project namespace. See the following sample:

apiVersion: operators.coreos.com/v1

kind: OperatorGroup

metadata:

name: <default>

spec:

targetNamespaces:

- <namespace>

4. Run the following command to create the **OperatorGroup** resource. Replace **operator-group** with the name of the operator group YAML file that you created:

oc apply -f <path-to-file>/<perator-group>.yaml

5. Create a YAML file to configure an OpenShift Container Platform subscription. Your file is similar to the following sample:

apiVersion: operators.coreos.com/v1alpha1

kind: Subscription

metadata:

name: acm-operator-subscription

spec:

sourceNamespace: openshift-marketplace

source: redhat-operators channel: release-2.5

installPlanApproval: Automatic

name: advanced-cluster-management

Note: For installing the Red Hat Advanced Cluster Management hub cluster on infrastructure nodes, the see the Operator Lifecycle Manager Subscription additional configuration section.

6. Run the following command to create the OpenShift Container Platform subscription. Replace **subscription** with the name of the subscription file that you created:

oc apply -f <path-to-file>/<subscription>.yaml

7. Create a YAML file to configure the **MultiClusterHub** custom resource. Your default template should look similar to the following example. Replace **namespace** with the name of your project namespace:

apiVersion: operator.open-cluster-management.io/v1

kind: MultiClusterHub

metadata:

name: multiclusterhub namespace: <namespace>

spec: {}

Note: For installing the Red Hat Advanced Cluster Management hub cluster on infrastructure nodes, see the MultiClusterHub custom resource additional configuration section:

8. Run the following command to create the **MultiClusterHub** custom resource. Replace **custom-resource** with the name of your custom resource file:

oc apply -f <path-to-file>/<custom-resource>.yaml

If this step fails with the following error, the resources are still being created and applied. Run the command again in a few minutes when the resources are created:

error: unable to recognize "./mch.yaml": no matches for kind "MultiClusterHub" in version "operator.open-cluster-management.io/v1"

9. Run the following command to get the custom resource. It can take up to 10 minutes for the MultiClusterHub custom resource status to display as Running in the status.phase field after you run the command:

oc get mch -o=jsonpath='{.items[0].status.phase}'

10. After the status is **Running**, view the list of routes to find your route:

oc get routes

If you are reinstalling Red Hat Advanced Cluster Management and the pods do not start, see Troubleshooting reinstallation failure for steps to work around this problem.

Notes:

- A ServiceAccount with a ClusterRoleBinding automatically gives cluster administrator
 privileges to Red Hat Advanced Cluster Management and to any user credentials with access to
 the namespace where you install Red Hat Advanced Cluster Management.
- The installation also creates a namespace called **local-cluster** that is reserved for the Red Hat Advanced Cluster Management hub cluster when it is managed by itself. There cannot be an existing namespace called **local-cluster**. For security reasons, do not release access to the **local-cluster** namespace to any user who does not already have **cluster-administrator** access.

1.3.5. Installing the Red Hat Advanced Cluster Management hub cluster on infrastructure nodes

An OpenShift Container Platform cluster can be configured to contain infrastructure nodes for running approved management components. Running components on infrastructure nodes avoids allocating OpenShift Container Platform subscription quota for the nodes that are running those management components.

After adding infrastructure nodes to your OpenShift Container Platform cluster, follow the Installing from the OpenShift Container Platform CLI instructions and add configurations to the Operator Lifecycle Manager subscription and **MultiClusterHub** custom resource.

1.3.5.1. Add infrastructure nodes to the OpenShift Container Platform cluster

Follow the procedures that are described in Creating infrastructure machine sets in the OpenShift Container Platform documentation. Infrastructure nodes are configured with a Kubernetes **taint** and **label** to keep non-management workloads from running on them.

To be compatible with the infrastructure node enablement provided by Red Hat Advanced Cluster Management, ensure your infrastructure nodes have the following **taint** and **label** applied:

metadata:
labels:
node-role.kubernetes.io/infra: ""
spec:
taints:
- effect: NoSchedule
key: node-role.kubernetes.io/infra

1.3.5.2. Operator Lifecycle Manager Subscription additional configuration

Add the following additional configuration before applying the Operator Lifecycle Manager Subscription:

spec:

config:

nodeSelector:

node-role.kubernetes.io/infra: ""

tolerations:

- key: node-role.kubernetes.io/infra

effect: NoSchedule operator: Exists

1.3.5.3. MultiClusterHub custom resource additional configuration

Add the following additional configuration before applying the **MultiClusterHub** custom resource:

spec:

nodeSelector:

node-role.kubernetes.io/infra: ""

1.4. INSTALL IN DISCONNECTED NETWORK ENVIRONMENTS

You might need to install Red Hat Advanced Cluster Management for Kubernetes on Red Hat OpenShift Container Platform clusters that are not connected to the Internet (disconnected). To install on a disconnected hub cluster, perform the following steps in addition to the usual install or upgrade steps that are for the connected network environment.

Required access: You need cluster administration access for all installation and upgrade tasks.

Before you get started, review the Requirements and recommendations section, then see the following sections:

- Prerequisites
- Confirm your OpenShift Container Platform installation
- Configure Operator Lifecycle Manager
- Configure image content source policies
- Install the Red Hat Advanced Cluster Management for Kubernetes operator and hub

1.4.1. Prerequisites

You must meet the following requirements before you install Red Hat Advanced Cluster Management for Kubernetes:

- Since you are installing in a disconnected network environment, you need access to a local
 image registry to store mirrored Operator Lifecycle Manager catalogs and operator images.
 You probably already set up a local image registry when installing the OpenShift Container
 Platform cluster in this environment, so you should be able to use the same local image registry.
- You must have a workstation that has access to both the Internet and your local mirror registry.
- A supported Red Hat OpenShift Container Platform version must be deployed in your environment, and you must be logged in with the command line interface (CLI). See the OpenShift Container Platform version 4.11 install documentation for information on installing Red Hat OpenShift Container Platform. See Getting started with the CLI for information about installing and configuring oc commands with the Red Hat OpenShift CLI.

• Review Sizing your cluster to learn about setting up capacity for your hub cluster.

1.4.2. Confirm your OpenShift Container Platform installation

 While you are connected, run the oc -n openshift-console get route command to access the OpenShift Container Platform web console. See the following example output:

openshift-console console console-openshift-console.apps.new-coral.purple-chesterfield.com console https reencrypt/Redirect None

Open the URL in your browser and check the result. If the console URL displays **console-openshift-console.router.default.svc.cluster.local**, set the value for **openshift_master_default_subdomain** when you install OpenShift Container Platform.

1.4.3. Confirm availability of a local image registry

Best practice: Use your existing mirror registry for the Operator Lifecycle Manager operator related content.

Installing Red Hat Advanced Cluster Management for Kubernetes in a disconnected environment involves the use of a local mirror image registry. Because you have already completed the installation of the OpenShift Container Platform cluster in your disconnected environment, you already set up a mirror registry for use during the Red Hat OpenShift Container Platform cluster installation.

If you do not already have a local image registry, create one by completing the procedure that is described in Mirroring images for a disconnected installation of the Red Hat OpenShift Container Platform documentation.

1.4.4. Configure Operator Lifecycle Manager

Because Red Hat Advanced Cluster Management for Kubernetes is packaged as an operator, installing is completed by using Operator Lifecycle Manager.

In disconnected environments, Operator Lifecycle Manager cannot access the standard operator sources that Red Hat provided operators can because they are hosted on image registries that are not accessible from a disconnected cluster. Instead, a cluster administrator can enable the installation and upgrade of operators in a disconnected environment by using mirrored image registries and operator catalogs.

To prepare your disconnected cluster for installing Red Hat Advanced Cluster Management for Kubernetes, follow the procedure that is described in Using Operator Lifecycle Manager on restricted networks in the OpenShift Container Platform documentation.

1.4.4.1. Additional requirements

When you complete the previous procedures, note the following requirements that are also specific to Red Hat Advanced Cluster Management for Kubernetes:

1.4.4.1.1. Include operator packages in mirror catalog

• Include the required operator packages in your mirror catalog. Red Hat provides the Red Hat Advanced Cluster Management for Kubernetes operator in the Red Hat operators catalog, which is delivered by the **registry.redhat.io/redhat/redhat-operator-index** index image. When

you prepare your mirror of this catalog index image, you can choose to either mirror the entire catalog as provided by Red Hat, or you can mirror a subset that contains only the operator packages that you intend to use.

If you are creating a full mirror catalog, no special considerations are needed as all of the packages required to install Red Hat Advanced Cluster Management for Kubernetes are included. However, if you are creating a partial or filtered mirrored catalog, for which you identify particular packages to be included, you need to include the following package names in your list:

- o advanced-cluster-manager
- o multicluster-engine
- Use one of the two mirroring procedures.
- If you are creating the mirrored catalog or registry by using the OPM utility, **opm index prune**, include the following package names in the value of the **-p** option as displayed in the following example:

opm index prune \

- -f registry.redhat.io/redhat/redhat-operator-index:v4.10 \
- -p advanced-cluster-management, multicluster-engine \
- -t myregistry.example.com:5000/mirror/my-operator-index:v4.10
- If you are populating the mirrored catalog or registry by using the oc-mirror plugin instead, include the following package names in the packages list portion of your ImageSetConfiguration, as displayed in the following example:

```
kind: ImageSetConfiguration
apiVersion: mirror.openshift.io/v1alpha2
storageConfig:
 registry:
   imageURL: myregistry.example.com:5000/mirror/oc-mirror-metadata
mirror:
 platform:
  channels:
  - name: stable-4.10
   type: ocp
 operators:
 - catalog: registry.redhat.io/redhat/redhat-operator-index:v4.11
  packages:
  - name: advanced-cluster-management
  - name: multicluster-engine
 additionallmages: []
 helm: {}
```

1.4.4.1.2. Configure to use your mirror registry

When you have populated a local mirror registry with the previous packages that are required for installing Red Hat Advanced Cluster Management for Kubernetes, complete the steps that are described in the topic Using Operator Lifecycle Manager on restricted networks to make your mirror registry and catalog available on your disconnected cluster, which includes the following steps:

- 1. Disabling the default OperatorHub sources
- 2. Mirroring the Operator catalog

3. Adding a catalog source for your mirrored catalog

1.4.4.1.3. Find the catalog source name

As described in the procedures in the Red Hat OpenShift Container Platform documentation, you need to add a **CatalogSource** resource to your disconnected cluster. **Important:** Take note of the value of the **metadata.name** field, which you will need later.

Add the **CatalogSource** resource into the **openshift-marketplace** namespace by using a YAML file similar to the following example:

apiVersion: operators.coreos.com/v1alpha1

kind: CatalogSource

metadata:

name: my-mirror-catalog-source namespace: openshift-marketplace

spec:

image: myregistry.example.com:5000/mirror/my-operator-index:v4.10

sourceType: grpc

You need the **metadata.name** field value for the annotation in the **MulticlusterHub** resource that you will create later.

1.4.5. Verify required packages are available

Operator Lifecycle Manager polls catalog sources for available packages on a regular timed interval. After Operator Lifecycle Manager polls the catalog source for your mirrored catalog, you can verify that the required packages are available from on your disconnected cluster by querying the available **PackageManifest** resources.

Run the following command, directed at your disconnected cluster:

oc -n openshift-marketplace get packagemanifests

The list that is displayed should include entries showing that the following packages are supplied by the catalog source for your mirror catalog:

- advanced-cluster-manager
- multicluster-engine

1.4.6. Configure image content source policies

In order to have your cluster obtain container images for the Red Hat Advanced Cluster Management for Kubernetes operator from your mirror registry, rather than from the internet-hosted registries, you must configure an **ImageContentSourcePolicy** on your disconnected cluster to redirect image references to your mirror registry.

If you mirrored your catalog using the **oc adm catalog mirror** command, the needed image content source policy configuration is in the **imageContentSourcePolicy.yaml** file inside of the **manifests-*** directory that is created by that command.

If you used the oc-mirror plugin to mirror your catalog instead, the **imageContentSourcePolicy.yaml** file is within the **oc-mirror-workspace/results-*** directory create by the oc-mirror plugin.

In either case, you can apply the policies to your disconnected command using an **oc apply** or **oc replace** command such as:

oc replace -f ./<path>/imageContentSourcePolicy.yaml

The required image content source policy statements can vary based on how you created your mirror registry, but are similar to this example:

apiVersion: operator.openshift.io/v1alpha1 kind: ImageContentSourcePolicy metadata: labels: operators.openshift.org/catalog: "true" name: operator-0 spec: repositoryDigestMirrors:

- mirrors:
 - myregistry.example.com:5000/rhacm2 source: registry.redhat.io/rhacm2
- mirrors:
 - myregistry.example.com:5000/multicluster-engine source: registry.redhat.io/multicluster-engine
- mirrors
- myregistry.example.com:5000/openshift4 source: registry.redhat.io/openshift4
- mirrors:
 - myregistry.example.com:5000/redhat source: registry.redhat.io/redhat

1.4.7. Install the Red Hat Advanced Cluster Management for Kubernetes operator and hub cluster

After you have configured Operator Lifecycle Manager and Red Hat OpenShift Container Platform as previously described, you can install Red Hat Advanced Cluster Management for Kubernetes by using either the OperatorHub console or a CLI. Follow the same guidance described in the Installing while connected online topic.

Important: Creating the **MulticlusterHub** resource is the beginning of the installation process of your hub cluster.

Because operator installation on a cluster requires the use of a non-default catalog source for the mirror catalog, a special annotation is needed in the **MulticlusterHub** resource to provide the name of the mirror catalog source to the operator. The following example displays the required **mce-subscription-spec** annotation:

```
apiVersion: operator.open-cluster-management.io/v1
kind: MultiClusterHub
metadata:
    namespace: open-cluster-management
    name: hub
    annotations:
    installer.open-cluster-management.io/mce-subscription-spec: '{"source": "my-mirror-catalog-source"}'
spec: {}
```

If you are creating the resource with a CLI, include the **mce-subscription-spec** annotation in the YAML that you apply with the **oc apply** command to create the **MulticlusterHub** resource.

If you create the resource by using the OperatorHub console, switch to the *YAML view* and insert the annotation as previously displayed. **Important:** There is no field in the OperatorHub console for the annotation in the the *Field view* panel to create the **MulticlusterHub**.

1.4.8. Additional considerations when using governance policies

Complete the following additional steps when using governance policies with disconnected Red Hat OpenShift Container Platform clusters:

- 1. TBD
- 2. Edit your **ImageContentSourcePolicy** resource to specify additional mirrors for disconnected image registries if you need to use any of following governance policies:

Governance policy type	Image source location
Container security	registry.redhat.io/quay
Compliance	registry.redhat.io/compliance
Gatekeeper	registry.redhat.io/rhacm2

See the following example that lists all three operators:

- mirrors:
 - <your_registry>/rhacm2

source: registry.redhat.io/rhacm2

- mirrors:
- <your_registry>/quay

source: registry.redhat.io/quay

- mirrors:
- <your_registry>/compliance

source: registry.redhat.io/compliance

3. Apply the changes to your **ImageContentSourcePolicy** resource.

1.5. MULTICLUSTERHUB ADVANCED CONFIGURATION

Red Hat Advanced Cluster Management for Kubernetes is installed using an operator that deploys all of the required components. Red Hat Advanced Cluster Management can be further configured during or after installation by adding one or more of the following attributes to the **MultiClusterHub** custom resource:

1.5.1. Custom Image Pull Secret

If you plan to import Kubernetes clusters that were not created by OpenShift Container Platform or Red Hat Advanced Cluster Management, generate a secret that contains your OpenShift Container Platform pull secret information to access the entitled content from the distribution registry.

The secret requirements for OpenShift Container Platform clusters are automatically resolved by

OpenShift Container Platform and Red Hat Advanced Cluster Management, so you do not have to create the secret if you are not importing other types of Kubernetes clusters to be managed. Your OpenShift Container Platform pull secret is associated with your Red Hat Customer Portal ID, and is the same across all Kubernetes providers.

Important: These secrets are namespace-specific, so make sure that you are in the namespace that you use for your hub cluster.

- 1. Go to cloud.redhat.com/openshift/install/pull-secret to download the OpenShift Container Platform pull secret file.
- 2. Click Download pull secret
- 3. Run the following command to create your secret:

oc create secret generic <secret> -n <namespace> --from-file=.dockerconfigjson=<path-to-pull-secret> --type=kubernetes.io/dockerconfigjson

- Replace **secret** with the name of the secret that you want to create.
- Replace **namespace** with your project namespace, as the secrets are namespace-specific.
- Replace path-to-pull-secret with the path to your OpenShift Container Platform pull secret that you downloaded.

The following example displays the **spec.imagePullSecret** template to use if you want to use a custom pull secret. Replace secret with the name of your pull secret:

apiVersion: operator.open-cluster-management.io/v1

kind: MultiClusterHub

metadata:

name: multiclusterhub namespace: <namespace>

spec:

imagePullSecret: <secret>

1.5.2. availabilityConfig

The Red Hat Advanced Cluster Management hub cluster has two availabilities: **High** and **Basic**. By default, the hub cluster has an availability of **High**, which gives hub cluster components a **replicaCount** of **2**. This provides better support in cases of failover but consumes more resources than the **Basic** availability, which gives components a **replicaCount** of **1**.

The following examples shows the **spec.availabilityConfig** template with **Basic** availability:

apiVersion: operator.open-cluster-management.io/v1

kind: MultiClusterHub

metadata:

name: multiclusterhub namespace: <namespace>

spec:

availabilityConfig: "Basic"

1.5.3. nodeSelector

You can define a set of node selectors in the Red Hat Advanced Cluster Management hub cluster to install to specific nodes on your cluster. The following example shows **spec.nodeSelector** to assign Red Hat Advanced Cluster Management pods to nodes with the label **node-role.kubernetes.io/infra**:

apiVersion: operator.open-cluster-management.io/v1

kind: MultiClusterHub

metadata:

name: multiclusterhub namespace: <namespace>

spec:

nodeSelector:

node-role.kubernetes.io/infra: ""

1.5.4. tolerations

You can define a list of tolerations to allow the Red Hat Advanced Cluster Management hub cluster to tolerate specific taints defined on the cluster.

The following example shows a **spec.tolerations** that matches a **node-role.kubernetes.io/infra** taint:

apiVersion: operator.open-cluster-management.io/v1

kind: MultiClusterHub

metadata:

name: multiclusterhub namespace: <namespace>

spec:

tolerations:

- key: node-role.kubernetes.io/infra

effect: NoSchedule operator: Exists

The previous infra-node toleration is set on pods by default without specifying any tolerations in the configuration. Customizing tolerations in the configuration replaces this default.

1.5.5. disableHubSelfManagement

By default, the Red Hat Advanced Cluster Management hub cluster is automatically imported and managed by itself. This *managed* hub cluster is named, **local-cluster**.

Note: On a Red Hat Advanced Cluster Management hub cluster that is managing a multicluster engine for Kubernetes operator cluster, any previous manual configurations are replaced by this action.

If you do not want the Red Hat Advanced Cluster Management hub cluster to manage itself, you need to change the setting for **spec. disableHubSelfManagement** from **false** to **true**. If the setting is not included in the YAML file that defines the custom resource, you need to add it. The hub cluster can only be managed with this option.

Setting this option to **true** and attempting to manage the hub manually leads to unexpected behavior.

The following example shows the default template to use if you want to disable the hub cluster self-management feature. Replace **namespace** with the name of your project:

apiVersion: operator.open-cluster-management.io/v1

kind: MultiClusterHub

metadata:

name: multiclusterhub namespace: <namespace>

spec:

disableHubSelfManagement: true

To enable the default **local-cluster**, return the setting to **false**, or remove this setting.

1.5.6. disableUpdateClusterImageSets

If you want to ensure that you use the same release image for all of your clusters, you can create your own custom list of release images that are available when you create a cluster.

See the following instructions in Maintaining a custom list of release images when connected to manage your available release images and to set the **spec.disableUpdateClusterImageSets** attribute, which stops the custom image list from being overwritten.

The following example shows the default template that disables updates to the cluster image set. Replace **namespace** with the name of your project:

apiVersion: operator.open-cluster-management.io/v1

kind: MultiClusterHub

metadata:

name: multiclusterhub namespace: <namespace>

spec:

disableUpdateClusterImageSets: true

1.5.7. customCAConfigmap

By default, Red Hat OpenShift Container Platform uses the Ingress Operator to create an internal CA.

The following example shows the default template used to provide a customized OpenShift Container Platform default ingress CA certificate to Red Hat Advanced Cluster Management. Replace **namespace** with the name of your project. Replace the **spec.customCAConfigmap** value with the name of your **ConfigMap**:

apiVersion: operator.open-cluster-management.io/v1

kind: MultiClusterHub

metadata:

name: multiclusterhub namespace: <namespace>

spec:

customCAConfigmap: <configmap>

1.5.8. sslCiphers

By default, the Red Hat Advanced Cluster Management hub cluster includes the full list of supported SSL ciphers.

The following example shows the default **spec.ingress.sslCiphers** template that is used to list **sslCiphers** for the management ingress. Replace **namespace** with the name of your project:

apiVersion: operator.open-cluster-management.io/v1

kind: MultiClusterHub

metadata:

name: multiclusterhub namespace: <namespace>

spec: ingress: sslCiphers:

- "ECDHE-ECDSA-AES128-GCM-SHA256"

- "ECDHE-RSA-AES128-GCM-SHA256"

1.5.9. ClusterBackup

The **enableClusterBackup** field is no longer supported and is replaced by this component.

The following example shows the **spec.overrides** default template used to enable **ClusterBackup**. Replace **namespace** with the name of your project:

apiVersion: operator.open-cluster-management.io/v1

kind: MultiClusterHub

metadata:

name: multiclusterhub namespace: <namespace>

spec:

overrides: components:

- name: cluster-backup

enabled: true

Alternatively, you can run the following command. Replace namespace with the name of your project.

oc patch MultiClusterHub multiclusterhub -n <namespace> --type=json -p='[{"op": "add", "path": "/spec/overrides/components/-","value":{"name":"cluster-backup","enabled":true}}]'

1.5.10. ManagedServiceAccount add-on (Technology Preview)

The following example shows the **spec.overrides** default template used to enable **ManagedServiceAccount**. Replace **namespace** with the name of your project:

apiVersion: operator.open-cluster-management.io/v1

kind: MultiClusterHub

metadata:

name: multiclusterhub namespace: <namespace>

spec:

overrides: components:

- name: managedserviceaccount-preview

enabled: true

Alternatively, you can run the following command. Replace **namespace** with the name of your project.

oc patch MultiClusterHub multiclusterhub -n <namespace> --type=json -p='[{"op": "add", "path": "/spec/overrides/components/-","value":{"name":"managedserviceaccount-preview","enabled":true}}]'

1.5.11. Hypershift add-on (Technology Preview)

The following example shows the **spec.overrides** default template used to enable **Hypershift**. Replace **namespace** with the name of your project:

apiVersion: operator.open-cluster-management.io/v1

kind: MultiClusterHub

metadata:

name: multiclusterhub namespace: <namespace>

spec:

overrides: components:

- name: hypershift-preview

enabled: true

Alternatively, you can run the following command. Replace **namespace** with the name of your project.

oc patch MultiClusterHub multiclusterhub -n <namespace> --type=json -p='[{"op": "add", "path": "/spec/overrides/components/-","value":{"name":"hypershift-preview","enabled":true}}]'

1.6. UPGRADING

You control your Red Hat Advanced Cluster Management for Kubernetes upgrades by using the operator subscription settings in the Red Hat OpenShift Container Platform console. When you initially deploy Red Hat Advanced Cluster Management by using the operator, you make the following selections:

- Channel: Channel corresponds to the version of the product that you are installing. The initial channel setting is often the most current channel that was available at the time of installation.
- Approval: Approval specifies whether approval is required for updates within the channel, or if they are done automatically.
 - If set to **Automatic**, then minor release updates in the selected channel are deployed without administrator intervention.
 - If set to **Manual**, then each update to the minor release within the channel requires an administrator to approve the update.

Required access: OpenShift Container Platform administrator

You also use these settings when you upgrade Red Hat Advanced Cluster Management by using the operator. Complete the following steps to upgrade your operator:

Important: You cannot revert back to an earlier version after upgrading to a later version in the channel selection. You must uninstall the operator and reinstall it with the earlier version to use a previous version.

- 1. Log in to your OpenShift Container Platform operator hub.
- 2. In the OpenShift Container Platform navigation, select **Operators** > **Installed operators**.
- 3. Select the **Red Hat Advanced Cluster Management for Kubernetes**operator.

- 4. Select the Subscription tab to edit the subscription settings.
- 5. Ensure that the *Upgrade Status* is labeled *Up to date*. This status indicates that the operator is at the latest level that is available in the selected channel. If the *Upgrade Status* indicates that there is an upgrade pending, complete the following steps to update it to the latest minor release that is available in the channel:
 - a. Click the Manual setting in the Approval field to edit the value.
 - b. Select **Automatic** to enable automatic updates.
 - c. Select Save to commit your change.
 - d. Wait for the automatic updates to be applied to the operator. The updates automatically add the required updates to the latest version in the selected channel. When all of the updated updates are complete, the *Upgrade Status* field indicates **Up to date**.
 Note: It can take up to 10 minutes for the MultiClusterHub custom resource to finish upgrading. You can check whether the upgrade is still in process by entering the following command:

oc get mch

While it is upgrading, the **Status** field shows **Updating**. After upgrading is complete, the **Status** field shows **Running**.

- 6. Now that the *Upgrade Status* is **Up to date**, click the value in the *Channel* field to edit it.
- 7. Select the channel for the next available feature release. **Deprecated: release-2.4** and **release-2.3** channels do not receive updates, you must use the **stable-2.0** channel. To import, you must use the **stable-2.0** channel of the klusterlet operator for 2.6. You cannot skip channels when upgrading. For example, you cannot skip versions 2.2.z through 2.4.
- 8. Select **Save** to save your changes.
- 9. Wait for the automatic upgrade to complete. After the upgrade to the next feature release completes, the updates to the latest patch releases within the channel are deployed.
- 10. If you have to upgrade to a later feature release, repeat steps 7-9 until your operator is at the latest level of the desired channel. Make sure that all of the patch releases are deployed for your final channel.
- 11. Optional: You can set your *Approval* setting to **Manual**, if you want your future updates within the channel to require manual approvals.

For more information about upgrading your operator, see Operators in the OpenShift Container Platform documentation.

1.6.1. Managing cluster pools with an upgrade

If you are Managing cluster pools (Technology Preview), you need further configuration to stop automatic management of these cluster pools after upgrade.

Set cluster.open-cluster-management.io/createmanagedcluster: "false" in the ClusterClaim metadata.annotations.

All existing cluster claims are automatically imported when the product is upgraded unless you change this setting.

1.7. UPGRADING IN A DISCONNECTED NETWORK ENVIRONMENT

See the steps and information to upgrade Red Hat Advanced Cluster Management for Kubernetes in a disconnected network environment.

Note: This information follows the upgrading procedure in Upgrading. Review that procedure, then see the following information:

1.7.1. Upgrade from release 2.5 or later

During your installation, or upgrade, of Red Hat Advanced Cluster Management for Kubernetes to release 2.5 or later, you encountered important information that is related to the interdependency between the Red Hat Advanced Cluster Management for Kubernetes and multicluster engine for Kubernetes operators. See Install in disconnected network environments. Similar considerations are required when you upgrade.

As is the case for upgrading in a connected network environment, the upgrade process is started by changing the upgrade channel in your Operator Lifecycle Manager subscription for Red Hat Advanced Cluster Management for Kubernetes to the upgrade channel for the new release.

However, because of the special characteristics of the disconnected environment, you need to address the following mirroring requirements before changing the update channel to start the upgrade process:

Ensure that required packages are updated in your mirror catalog.
 During installation, or during a previous update, you created a mirror catalog and a registry that contains operator packages and images that are needed to install Red Hat Advanced Cluster Management for Kubernetes in a disconnected network environment. To upgrade, you need to update your mirror catalog and registry to pick up the updated versions of the operator packages.

Similar to your installation actions, you need to ensure that your mirror catalog and registry include the following operator packages in the list of operators to be included or updated:

- advanced-cluster-manager
- multicluster-engine
- 2. Verify your **MutliclusterHub** resource instance.

During installation or a previous update, you created an instance of the **MulticlusterHub** resource, and due to the disconnected environment, you added a **mce-subscription-spec** annotation to that resource.

If your procedures for updating your mirror catalog and registry resulted in the updated catalog being available on the OpenShift Container Platform cluster through a **CatalogSource** with the same name as the one that you previously used, you do not need to update your **MulticlusterHub** resource to update the **mce-subscriptino-spec** annotation.

However, if your procedures for updating your mirrored catalog and registry resulted in a newly named **CatalogSource** being created, update the **mce-subscription-spec** annotation in your **MulticlusterHub** resource to reflect the new catalog source name.

1.7.2. Upgrade from release 2.4

Red Hat Advanced Cluster Management for Kubernetes release 2.5 and later uses the related multicluster engine for Kubernetes operator functionality to provide foundational services that previously were delivered as part of Red Hat Advanced Cluster Management for Kubernetes. Releases 2.5 and later of the Red Hat Advanced Cluster Management for Kubernetes operator automatically install and manage the required multicluster engine for Kubernetes operator and **MulticlusterEngine** resource instance as part of the hub cluster installation and upgrade.

In connected network environments, the cluster administrator can install or upgrade Red Hat Advanced Cluster Management for Kubernetes without special mirror catalogs and catalog sources. However, because installation of any Operator Lifecycle Manager operator in a disconnected environment involves the use of special mirror catalogs and catalog sources (as described in the earlier sections), some additional steps are necessary beyond installation.

Update your procedures for populating the mirror catalog
 If, when installing Red Hat Advanced Cluster Management for Kubernetes release 2.4 and later,
 mirroring procedures created a full copy of the Red Hat Operators catalog, no special mirroring
 updates are required. Refresh your catalog to pick up the updated content for the new operator
 releases.

However, if your procedures populated mirror catalog that is a *filtered* catalog, you need to update your mirroring procedures to ensure that the **multcluster-engine** operator package is included in the mirror catalog, in addition to the **advanced-cluster-management** package.

See the Include required operator packages in your mirror catalog topic, which provides examples of the options to use when populating the mirror catalog. Update the operator-package lists that are used in your procedures to match these new requirements.

Update your MutliclusterHub resource instance.
 As described in the Install in disconnected network environments topic, you need a new annotation on the MulticlusterHub resource when the hub cluster is installed or upgraded in a disconnected environment.

Best practice: Update your **MulticlusterHub** resource instance to include the required annotation before you change the Operator Lifecycle Manager update channel in your Operator Lifecycle Manager subscription to the **advanced-cluster-management** operator package to start the upgrade from release 2.4. This update allows the upgrade to proceed without delay.

Use the **oc edit** command to update your **Multiclusterub** resource to add the **mce-subscription-spec** annotation as displayed in the following example:

metadata:

annotations:

installer.open-cluster-management.io/mce-subscription-spec: '{"source": "<my-mirror-catalog-source>"}'

Replace <my-mirror-catalog-source> from the example with the name of the CatalogSource resource located in the openshift-marketplace namespace for your mirror catalog.

Important: If you begin an upgrade from release 2.4 to release 2.5 before you add the annotation, the upgrade begins but stalls when the operator attempts to install a subscription to **multicluster-engine** in the background. The status of the **MulticlusterHub** resource continues to display **upgrading** during this time

To resolve this issue, run **oc edit** to add the **mce-subscription-spec** annotation as shown previously.

1.8. UNINSTALLING

When you uninstall Red Hat Advanced Cluster Management for Kubernetes, you see two different levels of the uninstall process: A *custom resource removal* and a *complete operator uninstall*. The uninstall process can take up to 20 minutes.

- The first level is the custom resource removal, which is the most basic type of uninstall that removes the custom resource of the **MultiClusterHub** instance, but leaves other required operator resources. This level of uninstall is helpful if you plan to reinstall using the same settings and components.
- The second level is a more complete uninstall that removes most operator components, excluding components such as custom resource definitions. When you continue with this step, it removes all of the components and subscriptions that were not removed with the custom resource removal. After this uninstall, you must reinstall the operator before reinstalling the custom resource.

1.8.1. Prerequisite: Detach enabled services

Before you uninstall the Red Hat Advanced Cluster Management hub cluster, you must detach all of the clusters that are managed by that hub cluster. To resolve errors, detach all clusters that are still managed by the hub cluster, then try to uninstall again.

- If you use Discovery, you might see the following error when you attempt uninstall:
 - Cannot delete MultiClusterHub resource because DiscoveryConfig resource(s) exist

To disable Discovery, complete the following steps:

- From the console, navigate to the **Discovered Clusters** table and click **Disable cluster discovery**. Confirm that you want to remove the service.
- You can also use the terminal. Run the following command to disable Discover:
- \$ oc delete discoveryconfigs --all --all-namespaces
- If you have managed clusters attached, you might see the following message. **Note:** This does not include the **local-cluster**, which is your self-managed hub cluster:
 - Cannot delete MultiClusterHub resource because ManagedCluster resource(s) exist

For more information about detaching clusters, see the *Removing a cluster from management* section by selecting the information for your provider in Creating a cluster.

- If you have Bare metal assets, you might see the following:
 - Cannot delete MultiClusterHub resource because BareMetalAssets resource(s) exist
- If you have Observability, you might see the following:
 - Cannot delete MultiClusterHub resource because MultiClusterObservability resource(s) exist
 - To disable and remove the **MultiClusterObservability** using the terminal, see the following procedure:

- a. Log in to your hub cluster.
- Delete the **MultiClusterObservability** custom resource by entering the following command:

oc delete mco observability

- To remove **MultiClusterObservability** custom resource with the console, see the following procedure:
 - a. If the **MultiClusterObservability** custom resource is installed, select the tab for *MultiClusterObservability*.
 - b. Select the Options menu for the **MultiClusterObservability** custom resource.
 - c. Select **Delete MultiClusterObservability**.

 When you delete the resource, the pods in the **open-cluster-management-observability** namespace on Red Hat Advanced Cluster Management hub cluster, and the pods in **open-cluster-management-addon-observability** namespace on all managed clusters are removed.

Note: Your object storage is not affected after you remove the observability service.

1.8.2. Removing resources by using commands

- If you have not already. ensure that your OpenShift Container Platform CLI is configured to run
 oc commands. See Getting started with the OpenShift CLI in the OpenShift Container
 Platform documentation for more information about how to configure the oc commands.
- 2. Change to your project namespace by entering the following command. Replace *namespace* with the name of your project namespace:
 - oc project <namespace>
- 3. Enter the following command to remove the **MultiClusterHub** custom resource:
 - oc delete multiclusterhub --all

You can view the progress by entering the following command:

- oc get mch -o yaml
- 4. Remove any potential remaining artifacts by running the clean-up script. Run this clean-up script if you plan to reinstall with an older version of Red Hat Advanced Cluster Management on the same cluster.
 - a. Install the Helm CLI binary version 3.2.0, or later, by following the instructions at Installing Helm.
 - b. Copy the following script into a file:

#!/bin/bash
ACM_NAMESPACE=<namespace>
oc delete mch --all -n \$ACM_NAMESPACE
helm ls --namespace \$ACM_NAMESPACE | cut -f 1 | tail -n +2 | xargs -n 1 helm delete -

-namespace \$ACM_NAMESPACE

oc delete apiservice v1beta2.webhook.certmanager.k8s.io v1.admission.cluster.open-cluster-management.io v1.admission.work.open-cluster-management.io

oc delete clusterimageset --all

oc delete clusterrole multiclusterengines.multicluster.openshift.io-v1-admin

multiclusterengines.multicluster.openshift.io-v1-crdview

multiclusterengines.multicluster.openshift.io-v1-edit

multiclusterengines.multicluster.openshift.io-v1-view

oc delete configmap -n \$ACM_NAMESPACE cert-manager-controller cert-manager-

cainjector-leader-election cert-manager-cainjector-leader-election-core

oc delete consolelink acm-console-link

oc delete crd klusterletaddonconfigs.agent.open-cluster-management.io

placementbindings.policy.open-cluster-management.io policies.policy.open-cluster-

management.io userpreferences.console.open-cluster-management.io

searchservices.search.acm.com discoveredclusters.discovery.open-cluster-

management.io discoveryconfigs.discovery.open-cluster-management.io

oc delete mutatingwebhookconfiguration cert-manager-webhook cert-manager-webhook-

v1alpha1 ocm-mutating-webhook managedclustermutators.admission.cluster.open-

cluster-management.io multicluster-observability-operator

oc delete oauthclient multicloudingress

oc delete rolebinding -n kube-system cert-manager-webhook-webhook-authentication-reader

oc delete scc kui-proxy-scc

oc delete validatingwebhookconfiguration cert-manager-webhook cert-manager-webhook-v1alpha1 channels.apps.open.cluster.management.webhook.validator application-webhook-validator multiclusterhub-operator-validating-webhook ocm-validating-webhook multicluster-observability-operator

multiclusterengines.multicluster.openshift.io

Replace <namespace> in the script with the name of the namespace where Red Hat Advanced Cluster Management was installed. Ensure that you specify the correct namespace, as the namespace is cleaned out and deleted.

- c. Run the script to remove any possible artifacts that remain from the previous installation. If there are no remaining artifacts, a message is returned that no resources were found.
 Note: If you plan to reinstall the same Red Hat Advanced Cluster Management version, you can skip the next steps in this procedure and reinstall the custom resource. Proceed for a complete operator uninstall.
- 5. Enter the following commands to delete the Red Hat Advanced Cluster Management **ClusterServiceVersion** and **Subscription** in the namespace it is installed in:

> oc get csv

NAME DISPLAY VERSION REPLACES PHASE advanced-cluster-management.v2.4.0 Advanced Cluster Management for Kubernetes 2.4.0 Succeeded

> oc delete clusterserviceversion advanced-cluster-management.v2.4.0

) oc get sub

NAME PACKAGE SOURCE CHANNEL acm-operator-subscription advanced-cluster-management acm-custom-registry release-2.5

> oc delete sub acm-operator-subscription

Note: The name of the subscription and version of the CSV might differ.

1.8.3. Deleting the components by using the console

When you use the Red Hat OpenShift Container Platform console to uninstall, you remove the operator. Complete the following steps to uninstall by using the console:

- In the OpenShift Container Platform console navigation, select Operators > Installed Operators > Advanced Cluster Manager for Kubernetes.
- 2. Remove the **MultiClusterHub** custom resource.
 - a. Select the tab for Multiclusterhub.
 - b. Select the Options menu for the MultiClusterHub custom resource.
 - c. Select Delete MultiClusterHub.
- 3. Run the clean-up script according to the procedure in Removing a MultiClusterHub instance by using commands.

Tip: If you plan to reinstall the same Red Hat Advanced Cluster Management version, you can skip the rest of the steps in this procedure and reinstall the custom resource.

- 4. Navigate to **Installed Operators**.
- 5. Remove the *Red Hat Advanced Cluster Management* operator by selecting the *Options* menu and selecting **Uninstall operator**.