Trường Đại học Bách Khoa Tp HCM Bộ môn: Toán Ứng Dụng

Đề thi mẫu Học kỳ 3 năm học 2019-2020 Môn: Phương pháp tính

Thời gian làm bài 90 phút

- o O o -

LƯU Ý:

- Sinh viên ghi đầy đủ Họ, Tên, MSSV và làm bài trực tiếp lên đề thi.
- Sinh viên được sử dụng tài liệu, máy tính bỏ túi, **không được** sử dụng máy tính có chức năng lập trình.
- Đề thi gồm 10 câu (2 mặt trên 1 tờ giấy A4). Mọi thắc mắc, sinh viên ghi trực tiếp lên đề thi.
- Gọi m và n là hai chữ số cuối cùng của mã số sinh viên (m là chữ số hàng chục, n là chữ số hàng đơn vị, $0 \le m, n \le 9$). Đặt $\mathcal{M} = \frac{m+2n+12}{10}$. Ví dụ nếu mã số sinh viên là 15115276 thì m=7, m=6 và $\mathcal{M} = 1$
- Sinh viên tự điền vào bảng sau. Nếu không điền, bài thi bị xem là không hợp lệ.

•

Họ và tên	
MSSV	Chữ ký giám thị 1
\mathcal{M}	Chữ ký giám thị 2

Điểm toàn bài

YÊU CẦU:

- Không làm tròn kết quả trung gian. Không ghi đáp án ở dạng phân số.
- Đáp số ghi vào bài thi **phải được** làm tròn đến 4 chữ số sau dấu phẩy thập phân.
- Câu 1. Cường độ chiếu sáng của một vật nhận ánh sáng từ một nguồn sáng được cho bởi công thức $I=\frac{k}{x^2}$, với k là cường độ sáng của nguồn và x là khoảng cách từ vật đến nguồn. Một vật được đặt ở giữa 2 nguồn sáng A, B, với cường độ sáng của A gấp 3 lần B và khoảng cách từ A đến B là 10m. Dùng phương pháp chia đôi, sau [M]+3 lần lặp, xác định khoảng cách từ vật đến nguồn A sao cho cường độ sáng của vật là yếu nhất. Đánh giá sai số kết quả tìm được.([M] là phần nguyên của M)

Kết quả: $x_{[M]+3} =$

Câu 2. Cho hệ $\begin{cases} 10x_1 - Mx_2 - 3x_3 = 1 \\ -2x_1 + 20x_2 + x_3 = 3 \end{cases}$ với $\begin{pmatrix} 0.5 \\ 0.2 \\ 0.3 \end{pmatrix}$. Dùng phương pháp lặp Jacobi, tìm sai số $\Delta x^{(2)}$ của vector lặp thứ hai $x^{(2)}$ theo công thức hâu nghiệm với chuẩn một.

Kết quả: $\Delta x^{(2)} =$

Câu 3. Cho hệ $\begin{cases} 10x_1 - x_2 + x_3 - x_4 = 1 \\ -x_1 + 11x_2 - x_3 + 3x_4 = 2 \\ 2x_1 - x_2 + 12x_3 + x_4 = 3 \\ 6x_1 + 2x_2 + Mx_3 + 20x_4 = M \end{cases}$ với $X^{(0)} = \begin{pmatrix} 1 \\ 2 \\ -1 \\ -2 \end{pmatrix}$. Sử dụng phương pháp lặp Causs. Saidal tìm vector lặp thứ ba $X^{(3)}$

Kết quả: $X^{(3)} =$

Kết quả: A =_____; B =_____

$$x$$
 1.2
 1.4
 1.6
 1.8
 2.0
 2.2
 2.4

 $f(x)$
 0.65
 a
 2.35
 1.15
 M
 2.1
 4.2

Tìm giá trị a để tích phân $I = \int\limits_{1.2}^{2.4} \left[xf(x) + \sqrt{x}f(x)\right] dx = 5$ bằng phương pháp hình thang mở rộng.

Kết quả: a =_____

$$x$$
 x
 x

Cho tích phân $I=\pi I_1$ với $\pi=3.14\pm0.0016$ và $I_1=\int\limits_2^{3.2}\left[xf^2(x)+3.2f(x)\right]dx\pm0.0025$. Dùng phương pháp Simson mở rộng, tính I và sai số của I.

Kết quả: I=_____; $\Delta_I=$ _____

Câu 7. Giải phương trình vi phân $y' = x^2 + y - \sin(x + y)$ với điều kiện y(1.0) = M. Tìm y(1.2) và y(1.4) với bước chia h = 0.2 theo công thức Runge - Kutta 4.

Kết quả: $y(1.2) = _______; y(1.4) = ________;$

Câu 8. Tốc độ tăng kích thước của khối u trong cơ thể được mô tả bởi phương trình $\frac{dV}{dt}=a(\ln b-\ln V)V$, V là thể tích khối u, t là thời gian đo bằng ngày. Gía sử một bệnh nhân có kích thước khối u ban đầu là $1mm^3$, sử dụng phương pháp Euler cải tiến, tính kích thước khối u sau đó 1 tuần, với bước chia h=0.5, với a=2/3 và b=M

Kết quả: Kích thước khối u sau một tuần =

Câu 9. Cho phương trình vi phân bậc 2: $e^x y''(x) - xy'(x) + y(x) = x + M$ với điều kiện ban đầu y(1) = 0 và y'(1) = M. Tính gần đúng y(1,4) với bước chia h = 0.2 bằng phương pháp Euler cải tiến.

Kết quả: y(1.4) =

Câu 10. Cho bài toán biên $\begin{cases} (M+x)y'' + \ln xy' - 2x^2y = x^2(x-1) \\ y(0.5) = 2.5 \qquad y(1.5) = M \end{cases}$, dùng phương pháp sai phân hữu hạn tính gần đúng $y(0.75), \ y(1.0), \ y(1.25)$ với bước h=0.25.

<u>Kết quả:</u> $y(0.75) = ____; y(1.0) = ___; y(1.25) = ___;$

Giảng viên ra đề

PHÓ CHỦ NHIỆM BỘ MÔN

Hoàng Hải Hà

TS. Trần Ngọc Diễm