Material de reforzamiento

Kenny J. Tinoco

ASJT - Nicaragua

1. Congruencias

Definición (Congruencias de Números Enteros). Sea n un entero positivo. Si a y b son enteros cualesquiera, decimos que $a \equiv b \pmod{n}$ si $n \mid a - b$. Es decir, ambos números dejan el mismo resto en la división por n. Y se lee como

a es congruente con b en módulo n.

1.1. Propiedades básicas

Sea n un entero positivo. Si a, b, c, d son todos números enteros, entonces se cumplen las siguientes propiedades

- $a \equiv a \pmod{n}$
- $a \equiv b \pmod{n} \Longrightarrow b \equiv a \pmod{n}$
- $a \equiv b \pmod{n} \Longrightarrow b \equiv a \pmod{n}$
- $a \equiv b \pmod{n}$ y $b \equiv c \pmod{n} \Longrightarrow a \equiv c \pmod{n}$
- $a \equiv b \pmod{n}$ y $c \equiv d \pmod{n} \Longrightarrow a + b \equiv c + d \pmod{n}$
- $a \equiv b \pmod{n}$ y $c \equiv d \pmod{n} \Longrightarrow a b \equiv c d \pmod{n}$
- $a \equiv b \pmod{n}$ y $c \equiv d \pmod{n} \Longrightarrow ab \equiv cd \pmod{n}$
- $ka \equiv kb \pmod{n} \ \forall k \in \mathbb{Z}$
- $a^k \equiv b^k \pmod{n} \ \forall k \in \mathbb{Z}$
- Si mcd(k, n) = d, entonces $ka \equiv kb \pmod{n} \Leftrightarrow a \equiv b \pmod{\frac{n}{d}}$

1.2. Algunas congruencias potenciales útiles

Dado $x \in \mathbb{Z}$, entonces se cumple

$$\begin{array}{ll} x^2 \equiv 0,1 \; (\text{m\'od} \; 3) & x^3 \equiv -1,0,1 \; (\text{m\'od} \; 9) \\ x^2 \equiv 0,1 \; (\text{m\'od} \; 4) & x^4 \equiv 0,1 \; (\text{m\'od} \; 16) \\ x^2 \equiv 0,1,4 \; (\text{m\'od} \; 8) & x^5 \equiv -1,0,1 \; (\text{m\'od} \; 11) \\ x^2 \equiv 0,1,4,9 \; (\text{m\'od} \; 16) & \end{array}$$

1.3. Ejercicios

Ejercicio 1.1. Sean $n, r \in \mathbb{Z}$, tal que $n \equiv r \pmod{7}$. Probar que $1000n \equiv 7 - r \pmod{7}$.

Ejercicio 1.2. Calcular el resto de 4^{100} por 3.

Ejercicio 1.3. Calcular el resto de 4^{100} por 5.

Ejercicio 1.4. Calcular el resto de 4^{100} por 7.

Ejercicio 1.5. Demuestre que n es divisible por 5 si y solo si su dígito de las unidades es divisible por 5.

Ejercicio 1.6. ¿Cuál es el resto de $36^{36} + 41^{41}$ en la división por 77?

Ejercicio 1.7. Probar que $p^2 - 1$ es divisible por 24 si p es un primo mayor que 3.

Ejercicio 1.8. Hallar el menor natural n tal que 2001 es la suma de los cuadrados de n enteros.

Ejercicio 1.9. Sea s(n) la suma de los dígitos de n. Si $N=4444^{4444},\,A=s(N)$ y B=s(A). ¿Cuánto vale s(B)?

Ejercicio 1.10. Pruebe que $11^{n+2} + 12^{12n+1}$ es divisible por 5 para todo entero n.

Ejercicio 1.11. Sea n > 6 un entero positivo tal que n - 1 y n + 1 son primos. Muestre que $n^2(n^2 + 16)$ es divisible por 720. Además, ¿el recíporoco de este ejercicio es verdadero?

2. Desigualdades

Lo números reales tienen la importante propiedad de poseer un orden. El orden en los números reales nos permitirá comparar dos números y decidir cual de ellos es mayor o bien si son iguales. Para ser prácticos, denotaremos a \mathbb{R}^+ como el conjunto de todos los números reales positivos, si tenemos que un número x pertenece a los reales positivos lo denotaremos como $x \in \mathbb{R}^+$ y simbólicamente escribiremos x > 0.

Cada número real x tiene una y sólo una de las siguientes características:

- $\mathbf{x} = 0$
- $x \in \mathbb{R}^+$ (es decir x > 0)
- $-x \in \mathbb{R}^+$ (es decir -x > 0)

Ahora definamos la relación, a es mayor que b, si $a - b \in \mathbb{R}^+$ (en símbolos a > b). Análogamente, a es menor que b, si $b - a \in \mathbb{R}^+$ (en símbolos a < b). Observemos que a < b es equivalente a b > a. Definimos también a es menor o igual que b, si a < b ó a = b, (en símbolos a < b).

Si tenemos dos números a y b, una y sólo una de las siguientes afirmaciones se cumple

$$a = b$$
, $a > b$, $a < b$

Finalmente, una desigualdad muy útil en los números reales es $x^2 \ge 0$, la cual es válida para cualquier número real x. De esta se deducen muchas otras desigualdades.

2.1. Propiedades básicas

$$a > 0, b > 0 \Longrightarrow a + b > 0$$

$$\bullet$$
 $a > 0, b > 0 \Longrightarrow ab > 0$

•
$$a > b$$
, $\Longrightarrow a + c > b + c$.
(Donde c es cualquier número)

$$\bullet$$
 $a > b, c > 0 \Longrightarrow ac > bc$

$$\bullet$$
 0 > a, 0 > b \Longrightarrow ab > 0

$$\bullet$$
 $a > 0, 0 > b \Longrightarrow ab < 0$

$$a > b, c > d \Longrightarrow a + c > b + d$$

$$a > b \Longrightarrow -b > -a$$

$$a > 0 \Longrightarrow \frac{1}{a} > 0$$

$$a < 0 \Longrightarrow \frac{1}{a} < 0$$

$$a > 0, b > 0 \Longrightarrow \frac{a}{b} > 0$$

$$b > a > 0, d > c > 0 \Longrightarrow bd > ac$$

$$a > b, b > 0 \Longrightarrow \frac{a}{b} > 1$$

$$a > 1 \Longrightarrow a^2 > a$$

$$1 > a > 0 \Longrightarrow a > a^2$$

2.2. Media Aritmética - Media Geométrica (MA-MG)

Si a_1, a_2, \dots, a_n son n números reales no negativos, tomamos los números A y G definidos como

$$A = \frac{a_1 + a_2 + \dots + a_n}{n} \quad \text{y} \quad G = \sqrt[n]{a_1 \cdot a_2 \cdots a_n}$$

Estos números se conocen como la **media aritmética** y la **media geométrica** de los números a_1, a_2, \dots, a_n , respectivamente.

Teorema 2.1 (Media aritmética \geq Media geométrica). Sean a_1, a_2, \dots, a_n números reales no negativos. Entonces

$$\boxed{\frac{a_1 + a_2 + \dots + a_n}{n} \ge \sqrt[n]{a_1 \cdot a_2 \cdots a_n}}$$

La igualdad ocurre si $a_1 = a_2 = \cdots = a_n$.

Demostración. $\frac{a+b}{2} \ge \sqrt{ab} \Leftrightarrow (a+b)^2 \ge 4ab \Leftrightarrow a^2 + 2ab + b^2 \ge 4ab \Leftrightarrow (a-b)^2 \ge 0$, lo cual se cumple siempre. La igualdad sólo puede ocurrir si a=b. El caso n>2 requiere una demostración distinta (por inducción matemática).

2.3. Ejercicios

Ejercicio 2.1. Probar que la suma de un número positivo y su inverso es mayor o igual a 2.

Ejercicio 2.2. Si $a, b, c \ge 0$, demostrar que $(ab + bc + ca)^3 \ge 27a^2b^2c^2$.

Ejercicio 2.3. Sean $x_i > 0$, $i = 1, 2, \dots, n$. Demostrar que

$$(x_1 + x_2 + \dots + x_n) \left(\frac{1}{x_1} + \frac{1}{x_2} + \dots + \frac{1}{x_n} \right) \ge n^2$$

Ejercicio 2.4. Si $a, b, c \ge 0$, demostrar que $\frac{a^3}{b} + \frac{b^3}{c} + \frac{c^3}{a} \ge ab + bc + ca$.

Ejercicio 2.5. Si $a, b, c \ge 0$ y (1+a)(1+b)(1+c) = 8, entonces, demostrar que $1 \ge abc$.

Ejercicio 2.6. Si a, b, c > 0, probar que $\frac{(a+b+c)^3}{27} \ge \frac{(a+b)(b+c)(c+a)}{8}$.

Ejercicio 2.7. Si a, b, c > 0, probar que $\frac{a+b}{c} + \frac{b+c}{a} + \frac{c+a}{b} \ge 6$.

Ejercicio 2.8. Sean a, b y c enteros no negativos tales que a + b + c = 12. Determinar el valor máximo de la suma A = abc + ab + bc + ca.

Ejercicio 2.9. Sean $a, b, c \in \mathbb{R}^+$ que satisfacen abc = 1. Probar que

$$\frac{a}{(a+1)(b+1)} + \frac{b}{(b+1)(c+1)} + \frac{c}{(c+1)(a+1)} \ge \frac{3}{4}.$$

Ejercicio 2.10. Si a, b, c > 0, probar que $a^3 + b^3 + c^3 + ab^2 + bc^2 + ca^2 \ge 2(a^2b + b^2c + c^2a)$.

Ejercicio 2.11. Si a, b son positivos, probar que $a^2 + b^2 \ge 2ab$, $a^3 + b^3 \ge a^2b + ab^2$, y en general, $a^{n+1} + b^{n+1} \ge a^nb + ab^n$ para todo entero positivo n.

Advertencia y regla de oro: El signo \geq tiene la propiedad transitiva. Para demostrar $A \geq B$, podemos demostrar que $A \geq C \geq B$. Pero debemos estar dispuestos a soportar ...admitir que no es fácil encadenar satisfactoriamente más de una desigualdad. Por ejemplo, para demostrar que $2(a^2 + b^2) \geq (a + b)^2$, no podemos empezar acotando $2(a^2 + b^2) \geq 4ab$ porque $4ab \not\geq (a + b)^2 \dots^1$.

2.4. Desigualdad de Cauchy-Schwarz

Teorema 2.2 (Desigualdad de Cauchy-Schwarz). Para cualesquiera números reales a_1, a_2, \dots, a_n y b_1, b_2, \dots, b_n , se tiene que

$$\left[\left(a_1^2 + a_2^2 + \dots + a_n^2 \right) \left(b_1^2 + b_2^2 + \dots + b_n^2 \right) \ge \left(a_1 b_1 + a_2 b_2 + \dots + a_n b_n \right)^2 \right]$$

La igualdad ocurre si las sucesiones son proporcionales, es decir $\frac{a_1}{b_1} = \frac{a_2}{b_2} = \cdots = \frac{a_n}{b_n}$.

¹Pero tranqui, con el tiempo y mucha práctica estos encadenamientos de desigualdades se vuelven más fácil de identificar.

La desigualdad de Cauchy-Schwarz admite otra formulación equivalente, que es muy útil para 'sumar denominadores'

Teorema 2.3 (Cauchy-Schwarz en forma de Engel). Para números reales a_1, a_2, \dots, a_n arbitrarios y b_1, b_2, \dots, b_n positivos, se tiene que

$$\boxed{\frac{a_1^2}{b_1} + \frac{a_2^2}{b_2} + \dots + \frac{a_n^2}{b_n} \ge \frac{(a_1 + a_2 + \dots + a_n)^2}{(b_1 + b_2 + \dots + b_n)}}$$

2.5. Ejercicios

Ejercicio 2.12. Sean a, b, c números reales postivos, muestre que

$$\frac{a^2 + b^2}{a + b} + \frac{b^2 + c^2}{b + c} + \frac{c^2 + a^2}{c + a} \ge a + b + c$$

Ejercicio 2.13. Sea a, b, c números reales postivos. Probar que

$$\frac{a}{b+1} + \frac{b}{c+1} + \frac{c}{a+1} \ge \frac{3(a+b+c)}{3+a+b+c}$$

Ejercicio 2.14. Si a, b, c > 0, probar que $3 \ge \frac{\sqrt{2a+b} + \sqrt{2b+c} + \sqrt{2c+a}}{\sqrt{a+b+c}}$.

Ejercicio 2.15. Probar que $2(x + y + z) \ge \sqrt{3x^2 + xy} + \sqrt{3y^2 + yz} + \sqrt{3z^2 + zx}$.

Ejercicio 2.16. Si a, b, c son positivos, probar que $\frac{(a^2 + b^2 + c^2)^3}{3} \ge (a^2b + b^2c + c^2a)^2$.

Ejercicio 2.17. Si a, b, c > 0, demostrar que $\frac{a}{a+2b} + \frac{b}{b+2c} + \frac{c}{c+2a} \ge 1$.

Ejercicio 2.18. Si a, b, c son positivos, demostrar que $\frac{a^2}{b} + \frac{b^2}{c} + \frac{c^2}{a} \ge \sqrt{3(a^2 + b^2 + c^2)}$.

Ejercicio 2.19. Sean a, b, c números reales tales que a + b + c = 1. Demostrar que

$$(a+b)^2(1+2c)(2a+3c)(2b+3c) \ge 54abc.$$

Ejercicio 2.20. Sean a, b, c números reales positivos tales que

$$\frac{1}{a+b+1} + \frac{1}{b+c+1} + \frac{1}{c+a+1} \ge 1.$$

Demostrar que la siguiente desigualdad se cumple

$$a + b + c \ge ab + bc + ca.$$

Ejercicio 2.21. Sean $x, y, z \ge 1$ números reales positivos tales que $\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 2$. Probar que

$$\sqrt{x+y+z} \ge \sqrt{x-1} + \sqrt{y-1} + \sqrt{z-1}.$$

Ejercicio 2.22. Sean a, b, c números reales positivos tales que ab + bc + ca = 1. Probar que la desigualdad siguiente se cumple

$$\frac{1}{4a^2 - bc + 1} + \frac{1}{4b^2 - ca + 1} + \frac{1}{4c^2 - ab + 1} \ge \frac{3}{2}.$$

J_tinoco Encuentro 3 Pág. 6

Referencias

- [BGV14] Radmila Bulajich, José Gómez, and Rogelio Valdez. Desigualdades. UNAM, 2014.
- [Her20] Josué Hernández. It's Cauchy Time! Academia Sabatina de Jóvenes Talento. Nicaragua, Abril 2020.
- [Lar21] Ricardo Largaespada. Teoría de Números. Nivel centro. Congruencias I. Academia Sabatina de Jóvenes Talento. Nicaragua, Octubre 2021.
- [Sae23] Andrés Saez. Preparación para la Olimpíada Matemática Española 2013. Desigualdades. *Universidad de León*, Enero 2023.
- [Sal] Eduardo Salas. Clase congruencias. Olcoma.