Robert Christie MATHS 326 S1 2024

Assignment 1 Due: 20-03-2024

Q1

(a) Call the graph *G*, and apply deletion contraction theorem to the edge *e* in red:

Thus, $P_G(x) = P_{G-e}(x) - P_{G_e}(x)$ This produces two graphs, G - e and G_e :

Notice that G - e can be constructed by adding a vertex to $H = G_e$. Applying deletion contraction to H:

We see that $H_e = C_4$, and H - e is C_4 with an additional vertex v added, which can take any color except that of its neighbor. Thus:

$$P_{H-e}(x) = (x - 1)C_4(x)$$

 $P_{H_e}(x) = C_4(x)$

Using this with the deletion contraction gives the chromatic polynomial of *H*:

$$P_{H}(x) = P_{H-e}(x) - P_{H_{e}}(x)$$

$$= (x - 2)C_{4}(x)$$

$$= (x - 2)((x - 1)^{4} + x - 1)$$

Since G - e, is just H with an additional vertex v with a single neighbor, we find:

$$P_{G-e}(x) = (x-1)H$$

From deletion contraction we can use our results to determine:

$$\begin{aligned} P_G(x) &= P_{G-e}(x) - P_{G_e}(x) \\ &= (x-1)H - H \\ &= (x-2)H \\ &= (x-2)^2((x-1)^4 + x - 1) \end{aligned}$$

(b) We apply deletion contraction theorem to G on the edge in red:

This produces graphs:

Notice that G_e is the graph from part a, while G-e can be constructed by adding two vertices to the graph H from part a. Notice that the added vertices have only one neighbor each meaning they can take on (x-1) colors for

each existing coloring of *H*. Thus, the chromatic polynomials are:

$$P_{G-e} = (x-1)^2 P_H(x)$$

$$= (x-1)^2 (x-2)((x-1)^4 + x - 1)$$

$$P_{G_e}(x) = P_{G_a}(x)$$

$$= (x-2)^2 ((x-1)^4 + x - 1)$$

Finally we use these results in the deletion contraction theorem applied to G:

$$P_G(x) = (x-1)^2(x-2)((x-1)^4 + x - 1)$$

$$- (x-2)^2((x-1)^4 + (x-1))$$

$$= ((x-1)^2 - x + 2)(x-2)((x-1)^4 + x - 1)$$

Q2

(a) First we show that: $P_G(x)$ contains an x term, implies G is connected.

We prove the contrapositive: G is disconnected implies that $P_G(x)$ does not contain a nonzero x term.

Consider any disconnected graph G which can be expressed as the disjoint union of $k \ge 2$ subgraphs $H_1, ..., H_k$.

By Lemma 1.7:

$$P_{G}(x) = \prod_{i=1}^{k} P_{H_{i}}(x)$$

Since $P_{H_i}(x)$ are chromatic polynomials, they do not contain a constant term. Thus, the product is of terms:

$$P_{G}(x)$$
= $(x^{n_{1}} + \dots + c_{2,1}x^{2} + c_{1,1}x)$
 \times
 \vdots
 \times
 $(x^{n_{k}} + \dots + c_{2,k}x^{2} + c_{1,k}x)$
= $H.O.T. + (c_{1,1} \dots c_{1,k})x^{k}$

Thus, there is no non-zero x term in $P_G(x)$.

Now we show that: G is connected, implies $P_G(x)$ contains a non-zero x term.

Apply strong induction on m = |E| for connected graphs G = (V, E).

Base case:

For |E| = 0, the only connected graph is a single vertex with $P_G(x) = x$.

Induction Step "1, ..., m \implies m + 1":

Consider a graph with |E| = m + 1, apply deletion contraction, thus:

$$P_{G}(x) = P_{G-e}(x) - P_{G_{e}}(x)$$

Where G_e has m or fewer edges. Clearly G_e is connected, as any path from u, v in G_e can be constructed from an existing path in G.

Since G_e is connected with $\leq m$ edges, the induction hypothesis applies and P_{G_e} contains a non-zero x term.

Since G has n vertices, so does G - e so $P_{G-e}(x)$ is of degree n while G_e has n-1 vertices so $P_{G_e}(x)$ has degree n-1.

Fo a chromatic polynomial, the x^n has coefficient 1 and the signs alternate, since P_{G-e} and P_{G_e} differ in degree by 1 they have opposite signs for the x term.

So by deletion contraction for some $c_a \ge 0$, $c_b > 0$:

$$P_{G}(x) = P_{G-e}(x) - P_{G_{e}}(x)$$

$$= (x^{n} + \dots \pm c_{a}x)$$

$$- (x^{n-1} + \dots \mp c_{b}x)$$

$$= x^{n} + \dots \pm (c_{a} + c_{b})x$$

As $c_a + c_b > 0$, $P_G(x)$ must also contain a non-zero x term.

Thus, we have shown that G is connected if and only if $P_G(x)$ contains a non-zero x term.

(b) When *G* is connected, *Corollary 1.15* still applies and so *G* is a tree if and only if $P_G(x) = x(x-1)^{n-1}$. So the new statement holds in this case.

When G is disconnected, G is not a graph as graphs are connected by definition. However, $P_G(x)$ cannot contain a non-zero x term by (a). Again the statement holds.

Since all simple graphs are either connected or disconnected, the new statement holds in all cases.

- (a) Expanding $P(x) = (x-1)^4$ results in a polynomial with constant term $(-1)^4 = 1$, so by *Theorem 1.14*, P(x) is not the chromatic polynomial of any graph as it has a non-zero constant term.
- (b) Let $P(x) = x^6 + 6x^5 + 7x^3 2x$. As x^3 and -2x have different signs but are 2 terms apart the signs of coefficients do not alternate. Thus, by *Theorem 1.14*, P(x) is not the chromatic polynomial of any graph.
- (c) Assume $P(x) = x^4 3x^3 + 4x^2 2x$ is a chromatic polynomial for some G. We can deduce the following using *Theorem 1.14*:
 - Since it has degree 4, it corresponds to a graph of 4 vertices.
 - The $x^{n-1} = x^3$ term has a coefficient of -3, so G must have 3 edges.
 - The *x* term has a non-zero coefficient, thus *G* is connected.

We can't have a cycle in G as this requires all 3 edges and doesn't connect all vertices. As G is connected and acyclic it is a tree.

By (2), G is a tree if and only if it has chromatic polynomial $P_G(x) = x(x-1)^{n-1}$. Now see that:

$$P_G(2) = 2 \neq P(2) = 2^4 - 3 \cdot 2^3 + 4 \cdot 2^2 - 2 \cdot 2 = 4$$

As this resulted in a contraction, *P* is not the chromatic polynomial for any graph *G*.

Q4

Let G = (V, E) be any planar simple graph.

When $|V| \le 2$, G has at most 1 edge so the statement holds.

For the case with $3 \neq n \leq 11$ vertices and m edges. We use proof by contraction:

By *Theorem 1.19*, we know that $m \le 3n - 6$.

Assume all vertices of *G* have degree at least 5. By the handshaking lemma:

$$5n \le \sum_{v \in V} \deg(v) = 2|E| = 2m$$

Thus, $2.5n \le m \le 3n - 6$. We can only find such m when:

$$2.5n \le 3n - 6$$

$$\iff 6 \le 0.5n$$

$$\iff 12 < n$$

This is a contraction for n < 12, so the assumption must be false and for graphs with n < 12, there exists a vertex with degree at most 4.

To show the bound is sharp we look for a graph on 12 vertices such that $\forall_{v \in V} \deg v \geq 5$. We derived the bound:

$$2.5n = 30 \le m \le 3n - 6 = 30$$

So we have exactly m = 30 edges. Since $5 \cdot 12 = 2 \cdot 30$ each vertex has degree exactly 5.

The regular icosahedron is a Platonic solid with 12 vertices and 30 edges where each vertex is adjacent to 5 edges. This is similar to our graph requirements.

In the 2D projection above, the 3 vertices of the back most face can be scaled up to remove all edge-edge intersections in the protection. We can consider the edges and vertices in the projection as the edges and vertices of a planar embedding of a graph. This produces the graph below:

This is a planar simple 5-regular graph on 12 vertices demonstrating the bound is sharp.

Q5

(a) We can create a 3-coloring of the Petersen graph:

Therefore, $\chi(P) \leq 3$, however, since P contains an odd cycle of length 5, we also have $\chi(P) \geq 3$, hence $\chi(P) = 3$.

We can construct the following proper edge 4-coloring of *P*:

Thus $\chi_e(P) \leq 4$.

Next we show that no edge 3-coloring exists:

- The cycle C_5 has chromatic index 3. So no edge 2-coloring exists.
- If we take any subgraph of 3 edges where no pair is adjacent, then there a 6 vertices in the subgraph by definition of edge adjacency.

Since C_5 has only 5 vertices, we cannot find a subgraph with 3 edges such that no pair is adjacent.

Since we can't find 3 non-adjacent edges to give the same color, each color is used at most twice.

- We must use 2 colors twice and 1 color once in order to color all 5 edges if each color is used either once or twice.
- WLOG, let r be the color used once. The remaining colors g, b must alternate on the remaining edges.

 When edges are added to produce the following sub graph, their coloring is fully determined by the existing edges in the cycle.

 Consider the subgraph of P created by adding the two dashed edges from the Petersen graph to the previous subgraph:

Both edges are adjacent to r and b edges already, so they must both be g. However, since they are adjacent they cannot receive the same colors resulting in a contraction. Thus P is not 3 edge-colorable and $\chi_e(P) > 3$.

Since $3 < \chi_e(P) \le 4$, the chromatic index of the Petersen graph $\chi_e(P) = 4$.

(b) Contract the edges of P show in red below:

This produces K_5 so by Wagner's theorem, P must be non-planar.

Thus, we have shown that G is bipartite if and only if every subgraph H of G satisfies $\alpha(H) \ge m_H/2$.

First we prove that for a simple graph G, G is bipartite implies every subgraph H of G satisfies $\alpha(H) \ge m_H/2$:

Let G be a bipartite graph. By Theorem 1.6, G contains no odd cycle. So any subgraph H of G also contains no odd cycle, so by Theorem 1.6, H = (V, E) is bipartite and so its vertices can be written as the disjoint union $V = V_1 \uplus V_2$ and every edge in H has one endpoint in each of V_1, V_2 . Let V_i, V_i be the largest and smallest of the two

Let V_i , V_j be the largest and smallest of the two vertex sets respectively (or V_1 , V_2 if the sets have the same size). Clearly V_i must contain at least $m_H/2$ vertices, otherwise:

$$|V_i| \le |V_i| < m_H/2 \implies |V_1| + |V_2| < m_H = |V|$$

By the definition of a bipartite graph, no two vertices in V_i are adjacent, thus V_i is a set of independent vertices and so $\alpha(H) \ge V_i \ge m_H/2$.

Now we prove the inverse to show equivalence:

Consider any odd cycle graph C_{2k+1} with vertex set V. Assume that $\alpha(C_{2k+1}) \ge |V|/2$. There must be an independent set U containing at least |V|/2 vertices since |V| is odd |U| > |V|/2.

Every $v \in V$ is adjacent to exactly two other vertices. Therefore, every $u \in U$ is adjacent to two vertices $w_1, w_2 \in V \setminus U$. Let W be the count of how many distinct $\{u, w_i\}$ edges exist, W = 2|U|. Since each w_i vertex appears in at most 2 edges, there at least W/2 such vertices and so:

$$|V \setminus U| \ge \frac{W}{2} = |U|$$

Therefore:

$$|U| + |V \setminus U| = 2|U| > |V|$$

Which is a contraction as U and $V \setminus U$ are disjoint subsets of V, so we should have:

$$|U| + |V \setminus U| = |V|$$

Our assumption is false, so:

$$\alpha(C_{2k+1}) < |V|/2$$

For any odd cycle graph C_{2k+1} .

Now see that if G contains no subgraph H with $\alpha(H) \ge m_H/2$, then G contains no odd cycles by the previous working and so by *Theorem 1.6*, G is bipartite.