

アジェンダ

- マスワークス製品のAUTOSAR対応について
- AUTOSAR コード生成 (Classic)
- AUTOSAR コード生成 (Adaptive)
- AUTOSAR関連機能

2

▲ MathWorks^a

♠ MathWorks

マスワークスツールのAUTOSARへの対応

R2018b以前

Embedded Coder Support Package for AUTOSAR Standard を提供しています

- Embedded Coderユーザーなら無料で利用可能です
- Classic Platformのみ対応しています
- モデルの編集のみでもEmbedded Coderが必要です

R2019a~

AUTOSAR Blockset を提供します

- モデルの編集はSimulinkのみで可能です。
- コード生成にはEmbedded Coderが必要です

AUTOSAR AUTOSAR

Adaptive Platform

6

▲ MathWorks^a

AUTOSAR Blockset 概要

- AUTOSARソフトウェアのモデリング&シミュレーション
- モデルからのAUTOSARコード&ARXMLファイルの自動生成
- AUTOSARオーサリングツールと連携した開発が可能

AUTOSAR Classic (Cコード生成)

void UpdateOdometerRunnable(void)
{
 uint8 rtb_TmpSignalConversionAtPulseO;
 uint16 rtb_Sum;
 rtb_TmpSignalConversionAtPulseO =
 Rte_IrvIRead_UpdateOdometerRunnable_pulsedata();
 rtb_Sum = (uint16)((uint32)(uint8)(rtb_TmpSignalConversionAtPulseO -

AUTOSAR Adaptive (C++コード生成)

8

AUTOSAR Blockset 主な機能

Simulinkのみで可能

- SimulinkモデルとAUTOSARプロパティのマッピング
- ソフトウェアのプロパティ・インターフェース・データ型等を設定する ディクショナリ
- BSWサービスを模擬するブロック(診断/不揮発メモリサービス)
- AUTOSARライブラリルーチン用ブロック
- AUTOSARオーサリングツールで作成されたARXMLファイルの取り込み

Embedded Coderが必要

- AUTOSAR準拠C/C++コードおよびARXMLファイルの自動生成
- 生成コードのSIL/PIL実行

♠ MathWorks

対応スキーマバージョン (R2019a時点)

Classic Platform

Schema Version Value	Schema Revisions Supported for Import	Export Schema Revision
4.3 (default)	4.3.0, 4.3.1	4.3.1
4.2	4.2.1, 4.2.2	4.2.2
4.1	4.1.1, 4.1.2, 4.1.3	4.1.3
4.0	4.0.1, 4.0.2, 4.0.3	4.0.3
3.2	3.2.1, 3.2.2	3.2.2
3.1	3.1.1, 3.1.2, 3.1.3, 3.1.4	3.1.4
3.0	3.0.1, 3.0.2, 3.0.3, 3.0.4, 3.0.5, 3.0.6	3.0.2
2.1	2.1 (XSD rev 0014, 0015, 0017, 0018)	2.1 (XSD rev 0017)

Adaptive Platform

18.10

※対応スキーマバージョンはMATLABリリースにより異なります

アジェンダ

- マスワークス製品のAUTOSAR対応について
- AUTOSAR コード生成 (Classic)
- AUTOSAR コード生成 (Adaptive)
- AUTOSAR関連機能

📣 MathWorks

アジェンダ

- マスワークス製品のAUTOSAR対応について
- AUTOSAR コード生成 (Classic)
- AUTOSAR コード生成 (Adaptive)
- AUTOSAR関連機能

Adaptive C++ 生成コード 留意事項

- R2019a時点ではブロックパラメータは全てインライン化された数値になります。
 - Adaptive Platformで適合/測定パラメータの扱いがどうなるか決まっていないため

♠ MathWorks

アジェンダ

- マスワークス製品のAUTOSAR対応について
- AUTOSAR コード生成 (Classic)
- AUTOSAR コード生成 (Adaptive)
- AUTOSAR関連機能

32

♠ MathWorks^a 周期処理のみ サポートされるモデリングスタイル例 1 In1_1s 1秒周期 最終的に下記がランナブルとなります - 周期処理 2秒周期 Function-Call 非同期Function-call Simulink Function Initialize / Reset / Terminate Function 1秒周期 非同期 Function-call1 Function-Call 周期処理+Simulink Function Function-callのみ Simulink **Function** Function-call3 >> web(fullfile(docroot, 'ecoder/ug/model-for-autosar-platform.html')) 33

♠ MathWorks^a

AUTOSAR ルックアップテーブル関数の利用

- Library Routines/Interpolationに各種ルックアップテーブルが提供されています。
- コード生成するとIFL/IFXライブラリ関数呼び出し処理が生成されます。

38

▲ MathWorks^a

AUTOSAR BSWサービスを含むモデルの検証

BSWサービスをコールするSW-Cを検証する場合、Simulink Testが便利です

ユースケース AUTOSAR DEM BSWライブラリを利用して、自己診断(OBD II)機能を実現してい		
課題	検証時にBSW経由の入出力信号を入れたいが、手動で作成する必要があり面倒	
解決策	Simulink Testのテストハーネス作成機能+BSWサーバー置換で上記課題を自動化できます	

◆ MathWorks

ソフトウェアアーキテクチャ図の作成

- SW-Cコンポジション・ソフトアーキテクチャを 記述できます
 - System Composerライセンスが必要です
 - Classicプラットフォームのみに対応
- 各SW-CロジックをSimulinkモデルと 関連付けて開発できます
- SW-Cコンポジションを含むCコード およびARXMLコードを生成できます

AUTOSAR生成コードのSIL/PIL検証 (2/2)

- モデル全体/参照モデルのシミュレーションモードとしてMIL/SIL/PILを選択できます
 - 参照モデルの場合、コードインターフェースを最上位モデルに設定する必要があります
 - RTE/VFBはスタブとして実装、SW-CロジックにフォーカスしたB2Bテストになります

シミュレーションデータインスペクターを用いたMIL/SIL比較例

>> web(fullfile(docroot, 'ecoder/autosar/verifying-the-autosar-code-with-sil-and-pil-simulations.html'))

