Элементы тензорного исчисления

Верещагин Антон Сергеевич д-р. физ.-мат. наук, доцент

Кафедра аэрофизики и газовой динамики

14 мая 2024 г.

Аннотация

Криволинейные системы координат. Скаляр. Вектор. Ковариантность и контравариантность. Тензор. Тензорная алгебра. Произведение тензоров. Сокращение индексов. Теоремы о тензорах. Фундаментальная квадратичная форма и тензор. Метрика. Скалярное произведение векторов.

Системы координат

Определение

Пусть задана связь между криволинейными системами координат

$$x^{\alpha} = x^{\alpha}(\bar{x}^1, \bar{x}^2, \dots, \bar{x}^n), \quad (\alpha = 1, 2, \dots, n)$$

$$\tag{1}$$

И

$$\frac{D(x^1,x^2,\ldots,x^n)}{D(\bar{x}^1,\bar{x}^2,\ldots,\bar{x}^n)} = \begin{vmatrix} \frac{\partial x^1}{\partial \bar{x}^1} & \frac{\partial x^1}{\partial \bar{x}^2} & \cdots & \frac{\partial x^1}{\partial \bar{x}^n} \\ \frac{\partial x^2}{\partial \bar{x}^1} & \frac{\partial x^2}{\partial \bar{x}^2} & \cdots & \frac{\partial x^2}{\partial \bar{x}^n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial x^n}{\partial \bar{x}^1} & \frac{\partial x^n}{\partial \bar{x}^2} & \cdots & \frac{\partial x^n}{\partial \bar{x}^n} \end{vmatrix} \neq 0,$$

тогда существует обратное преобразование координат:

$$\bar{x}^{\alpha} = \bar{x}^{\alpha}(x^1, x^2, \dots, x^n), \quad (\alpha = 1, 2, \dots, n).$$

Скаляр

Определение

Если для каждой системы координат (x^1, x^2, \dots, x^n) определена функция $f(x^1, x^2, \dots, x^n)$ такая, что при преобразовании системы координат (1) выполняется условие

$$f(x^1, x^2, \dots, x^n) = f(\bar{x}^1, \bar{x}^2, \dots, \bar{x}^n),$$

то говорят, что функция точек $f(x^1, x^2, \dots, x^n)$ есть инвариант, или скаляр.

Контравариантный вектор

Определение

Если для каждой системы координат (x^1, x^2, \ldots, x^n) определена совокупность n функций A^1, A^2, \ldots, A^n такая, что для системы координат $(\bar{x}^1, \bar{x}^2, \ldots, \bar{x}^n)$ мы имеем свою совокупность функций $\bar{A}^1, \bar{A}^2, \ldots, \bar{A}^n$, и если при преобразовании координат (1) эти функции преобразуются по следующим формулам:

$$\bar{A}^i = \sum_{\alpha=1}^n \frac{\partial \bar{x}^i}{\partial x^{\alpha}} A^{\alpha} \quad (i = 1, \dots, n),$$

то говорят, что совокупность величин $A^1, A^2, ..., A^n$ определяет контравариантный вектор, а величины A^i называются компонентами контравариантного вектора A^i .

Пример контравариантного вектора

Соглашение

Условимся проводить суммирование по повторяющимся индексам в одночлене от 1 до *n*, если не сделано отдельных оговорок заранее.

Пример контравариантного вектора

Соглашение

Условимся проводить суммирование по повторяющимся индексам в одночлене от 1 до n, если не сделано отдельных оговорок заранее.

Вектор $d\bar{x}^i$

$$d\bar{x}^i = \frac{\partial \bar{x}^i}{\partial x^1} dx^1 + \frac{\partial \bar{x}^i}{\partial x^2} dx^2 + \ldots + \frac{\partial \bar{x}^i}{\partial x^n} dx^n = \frac{\partial \bar{x}^i}{\partial x^\alpha} dx^\alpha$$

Пример ковариантного вектора

Градиент функции

Рассмотрим градиент функции $\nabla \varphi(x^1, x^2, \dots, x^n)$:

$$\frac{\partial \varphi}{\partial \bar{x}^1}, \quad \frac{\partial \varphi}{\partial \bar{x}^2}, \quad \dots, \quad \frac{\partial \varphi}{\partial \bar{x}^n}.$$

Пример ковариантного вектора

Градиент функции

Рассмотрим градиент функции $\nabla \varphi(x^1, x^2, \dots, x^n)$:

$$\frac{\partial \varphi}{\partial \bar{x}^1}, \quad \frac{\partial \varphi}{\partial \bar{x}^2}, \quad \dots, \quad \frac{\partial \varphi}{\partial \bar{x}^n}.$$

По правилам дифференцирования:

$$\frac{\partial \varphi}{\partial \bar{x}^i} = \frac{\partial \varphi}{\partial x^1} \frac{\partial x^1}{\partial \bar{x}^i} + \frac{\partial \varphi}{\partial x^2} \frac{\partial x^2}{\partial \bar{x}^i} + \ldots + \frac{\partial \varphi}{\partial x^n} \frac{\partial x^n}{\partial \bar{x}^i} = \frac{\partial \varphi}{\partial x^\alpha} \frac{\partial x^\alpha}{\partial \bar{x}^i}.$$

Пример ковариантного вектора

Градиент функции

Рассмотрим градиент функции $\nabla \varphi(x^1, x^2, \dots, x^n)$:

$$\frac{\partial \varphi}{\partial \bar{x}^1}, \quad \frac{\partial \varphi}{\partial \bar{x}^2}, \quad \dots, \quad \frac{\partial \varphi}{\partial \bar{x}^n}.$$

По правилам дифференцирования:

$$\frac{\partial \varphi}{\partial \bar{x}^i} = \frac{\partial \varphi}{\partial x^1} \frac{\partial x^1}{\partial \bar{x}^i} + \frac{\partial \varphi}{\partial x^2} \frac{\partial x^2}{\partial \bar{x}^i} + \ldots + \frac{\partial \varphi}{\partial x^n} \frac{\partial x^n}{\partial \bar{x}^i} = \frac{\partial \varphi}{\partial x^\alpha} \frac{\partial x^\alpha}{\partial \bar{x}^i}.$$

Положим, что

$$\frac{\partial \varphi}{\partial x^{\alpha}} = A_{\alpha}, \quad \frac{\partial \varphi}{\partial \bar{x}^{\alpha}} = \bar{A}_{\alpha},$$

тогда получим

$$\bar{A}_i = A_\alpha \frac{\partial x^\alpha}{\partial \bar{x}^i}.$$

Ковариантный вектор

Определение

Если для каждой системы координат x^{α} определена совокупность n функций A_{α} и если при преобразовании координат (1) эти функции преобразуются по формуле

$$\bar{A}_i = A_\alpha \frac{\partial x^\alpha}{\partial \bar{x}^i},$$

то величины A_{α} определяют ковариантный вектор, составляющими, или компонентами, которого они являются.

Соглашение

Будем различать ковариантные векторы от контравариантных тем, что у контравариантных векторов индексы будем ставить сверху (например, dx^i), а у ковариантных – снизу (например, A_i).

Тензор второго ранга (контравариантный)

Определение

Если для каждой системы координат x^{α} определена совокупность n^2 функций $A^{\alpha\beta}$, которые при преобразовании координат (1) испытывают преобразование

$$\bar{A}^{ik} = A^{\alpha\beta} \frac{\partial \bar{x}^i}{\partial x^{\alpha}} \frac{\partial \bar{x}^k}{\partial x^{\beta}},$$

то эти функции определяют контравариантный тензор второго ранга, составляющими которого они являются.

Тензор второго ранга (ковариантный)

Определение

Если же определена совокупность n^2 функций $A_{\alpha\beta}$, которые при преобразовании координат (1) испытывают преобразование

$$\bar{A}_{ik} = A_{\alpha\beta} \frac{\partial x^{\alpha}}{\partial \bar{x}^{i}} \frac{\partial x^{\beta}}{\partial \bar{x}^{k}},$$

то эти функции определяют ковариантный тензор второго ранга, составляющими которого они являются.

Тензор второго ранга (смешанный)

Определение

Если же определена совокупность n^2 функций A_{α}^{β} , которые при преобразовании координат (1) испытывают преобразование

$$\bar{A}_{i\cdot}^{\cdot k} = A_{\alpha\cdot}^{\cdot\beta} \frac{\partial x^{\alpha}}{\partial \bar{x}^{i}} \frac{\partial \bar{x}^{k}}{\partial x^{\beta}},$$

то эти функции определяют смешанный тензор второго ранга, составляющими которого они являются.

Пример смешанного тензора

Символ Кронекера

$$\delta_{\alpha}^{\beta} = \left\{ \begin{array}{ll} 1, & \alpha = \beta, \\ 0, & \alpha \neq \beta \end{array} \right.$$

является смешанным тензором 2-го ранга.

Доказательство

$$\bar{\delta}_{i}^{k} = \delta_{\alpha}^{\beta} \frac{\partial x^{\alpha}}{\partial \bar{x}^{i}} \frac{\partial \bar{x}^{k}}{\partial x^{\beta}} = \frac{\partial x^{\alpha}}{\partial \bar{x}^{i}} \frac{\partial \bar{x}^{k}}{\partial x^{\alpha}} = \left\{ \begin{array}{ll} 1, & i = k, \\ 0, & i \neq k. \end{array} \right.$$

Тензоры более высоких рангов

Пример

По аналогии можно ввести тензоры более высоких рангов — это такой набор величин, для которых при переходе из одной системы координат в другую (1) выполняются аналогичные соотношения, например:

$$\bar{A}_{ik}^{l} = A_{\alpha\beta}^{\gamma} \frac{\partial x^{\alpha}}{\partial \bar{x}^{l}} \frac{\partial x^{\beta}}{\partial \bar{x}^{k}} \frac{\partial \bar{x}^{l}}{\partial x^{\gamma}}.$$

В данном случае тензор $A_{\alpha\beta}^{\gamma}$ является смешанным тензором 3-го ранга дважды ковариантным и один раз контравариантным.

Тензорная алгебра: умножение на число и сумма

Умножение тензора на число При умножении всех компонентов тензора $A_{\alpha\beta}^{\gamma}$ на число λ получается новый тензор с компонентами $\lambda A_{\alpha\beta}^{\gamma}$ (док-во очевидно).

Тензорная алгебра: умножение на число и сумма

Умножение тензора на число

При умножении всех компонентов тензора $A_{\alpha\beta}^{\gamma}$ на число λ получается новый тензор с компонентами $\lambda A_{\alpha\beta}^{\gamma}$ (док-во очевидно).

Сложение

Суммой двух тензоров $A_{\alpha\beta}^{\gamma}$ и $B_{\alpha\beta}^{\gamma}$ одинаковой размерности будет тензор $C_{\alpha\beta}^{\gamma}$ такого же вида с компонентами

$$C_{\alpha\beta}^{\gamma} = A_{\alpha\beta}^{\gamma} + B_{\alpha\beta}^{\gamma}.$$

Видно, что сложение тензоров обладает свойствами коммутативности, ассоциативности, а вместе с операцией умножение на число образует векторное пространство.

Тензорная алгебра: симметричность, антисимметричность

Симметричность Тензор $A^{\alpha\beta}$ называется симметричным, если для всех α и β

$$A^{\alpha\beta} = A^{\beta\alpha}.$$

Тензорная алгебра: симметричность, антисимметричность

Симметричность

Тензор $A^{\alpha\beta}$ называется симметричным, если для всех α и β

$$A^{\alpha\beta} = A^{\beta\alpha}.$$

Антисимметричность

Тензор $A^{\alpha\beta}$ называется антисимметричным, если для всех α и β

$$A^{\alpha\beta} = -A^{\beta\alpha}.$$

Тензорная алгебра: симметричность, антисимметричность

Симметричность

Тензор $A^{\alpha\beta}$ называется симметричным, если для всех α и β

$$A^{\alpha\beta} = A^{\beta\alpha}.$$

Антисимметричность

Тензор $A^{\alpha\beta}$ называется антисимметричным, если для всех α и β

$$A^{\alpha\beta} = -A^{\beta\alpha}.$$

По аналогии с ортогональными тензорами 2-го ранга можно показать, что любой тензор можно представить в виде суммы симметричного и антисимметричного по двум выбранным (одновременно ковариантным или контравариантным) индексам, причем единственным образом.

Тензорная алгебра: произведение тензоров

Определение

Назовем произведением тензора A_{α}^{β} и тензора $B_{\gamma\delta}^{\varepsilon}$ тензор $C_{\alpha\gamma\delta}^{\beta\varepsilon}$, образуемый по формуле $C_{\alpha\gamma\delta}^{\beta\varepsilon}=A_{\alpha}^{\beta}B_{\gamma\delta}^{\varepsilon}$.

Тензорная алгебра: произведение тензоров

Определение

Назовем произведением тензора A_{α}^{β} и тензора $B_{\gamma\delta}^{\varepsilon}$ тензор $C_{\alpha\gamma\delta}^{\beta\varepsilon}$, образуемый по формуле $C_{\alpha\gamma\delta}^{\beta\varepsilon}=A_{\alpha}^{\beta}B_{\gamma\delta}^{\varepsilon}$.

Корректность определения Для тензоров A_{lpha}^{eta} и $B_{\gamma\delta}^{arepsilon}$ справедливы соотношения:

$$\bar{A}_{i}^{k} = A_{\alpha}^{\beta} \frac{\partial x^{\alpha}}{\partial \bar{x}^{i}} \frac{\partial \bar{x}^{k}}{\partial x^{\beta}}, \quad \bar{B}_{lm}^{n} = B_{\gamma\delta}^{\varepsilon} \frac{\partial x^{\gamma}}{\partial \bar{x}^{l}} \frac{\partial x^{\delta}}{\partial \bar{x}^{m}} \frac{\partial \bar{x}^{n}}{\partial x^{\varepsilon}},$$

следовательно компоненты $C_{\alpha\gamma\delta}^{\beta\varepsilon}$ в новой системе координат:

$$\bar{C}_{ilm}^{kn} = \bar{A}_{i}^{k} \bar{B}_{lm}^{n} = C_{\alpha\gamma\delta}^{\beta\varepsilon} \frac{\partial x^{\alpha}}{\partial \bar{x}^{i}} \frac{\partial \bar{x}^{k}}{\partial x^{\beta}} \frac{\partial x^{\gamma}}{\partial \bar{x}^{l}} \frac{\partial x^{\delta}}{\partial \bar{x}^{m}} \frac{\partial \bar{x}^{n}}{\partial x^{\varepsilon}}.$$

Тензорная алгебра: сокращение индексов

Докажем, что тензор $B_{\alpha}=A_{\alpha\beta}^{\beta}$, полученный из смешанного тензора $A_{\alpha\beta}^{\gamma}$ путем суммирования по повторяющемуся индексу β от 1 до n, является тензором 1-го ранга.

Имеем

$$\bar{A}_{ik}^{l} = A_{\alpha\beta}^{\gamma} \frac{\partial x^{\alpha}}{\partial \bar{x}^{i}} \frac{\partial x^{\beta}}{\partial \bar{x}^{k}} \frac{\partial \bar{x}^{l}}{\partial x^{\gamma}},$$

тогда

$$\bar{B}_i = \bar{A}_{ik}^k = A_{\alpha\beta}^{\gamma} \frac{\partial x^{\alpha}}{\partial \bar{x}^i} \frac{\partial x^{\beta}}{\partial \bar{x}^k} \frac{\partial \bar{x}^k}{\partial x^{\gamma}} = A_{\alpha\beta}^{\gamma} \frac{\partial x^{\alpha}}{\partial \bar{x}^i} \delta_{\gamma}^{\beta} = A_{\alpha\beta}^{\beta} \frac{\partial x^{\alpha}}{\partial \bar{x}^i} = B_{\alpha} \frac{\partial x^{\alpha}}{\partial \bar{x}^i},$$

что доказывает, что B_{α} – ковариантный вектор.

Вывод

Для каждого смешанного тензора можно получить новый тензор путем сокращения одного ковариантного и контравариантного индекса.

Примеры

Скалярное произведение векторов: $a = A^{\alpha}B_{\alpha}$.

Примеры

Скалярное произведение векторов: $a=A^{\alpha}B_{\alpha}$.

Скалярное произведение тензора и вектора: $C_{\beta} = A_{\alpha\beta}B^{\alpha}$.

Примеры

Скалярное произведение векторов: $a = A^{\alpha}B_{\alpha}$. Скалярное произведение тензора и вектора: $C_{\beta} = A_{\alpha\beta}B^{\alpha}$. Бискалярное произведение тензоров: $b = A_{\alpha\beta}B^{\beta\alpha}$.

Теорема

Если для каждой системы координат (x^1, x^2, \dots, x^n) имеем совокупность n^3 величин $A^{\gamma}_{\alpha\beta}$ и если при любом выборе трех векторов u^{α} , v^{β} и w_{γ} выражение

$$f = A^{\gamma}_{\alpha\beta} u^{\alpha} v^{\beta} w_{\gamma}$$

является инвариантом, то величины $A_{\alpha\beta}^{\gamma}$ являются составляющими тензора два раза ковариантного и один раз контравариантного.

Доказательство

$$\bar{u}^{\alpha} = \delta^{\alpha}_{i}, \quad \bar{v}^{\beta} = \delta^{\beta}_{k}, \quad \bar{w}_{\gamma} = \delta^{j}_{\gamma}.$$

Доказательство

$$\bar{u}^{\alpha} = \delta^{\alpha}_{i}, \quad \bar{v}^{\beta} = \delta^{\beta}_{k}, \quad \bar{w}_{\gamma} = \delta^{j}_{\gamma}.$$

Тогда
$$u^{\alpha} = \frac{\partial x^{\alpha}}{\partial \bar{x}^{r}} \bar{u}^{r} = \frac{\partial x^{\alpha}}{\partial \bar{x}^{r}} \delta^{r}_{i} = \frac{\partial x^{\alpha}}{\partial \bar{x}^{i}}, v^{\beta} = \frac{\partial x^{\beta}}{\partial \bar{x}^{k}}, w_{\gamma} = \frac{\partial \bar{x}^{j}}{\partial x^{\gamma}}.$$

Доказательство

$$\bar{u}^{\alpha} = \delta^{\alpha}_{i}, \quad \bar{v}^{\beta} = \delta^{\beta}_{k}, \quad \bar{w}_{\gamma} = \delta^{j}_{\gamma}.$$

Тогда
$$u^{\alpha}=rac{\partial x^{lpha}}{\partial \overline{x}^{r}}\overline{u}^{r}=rac{\partial x^{lpha}}{\partial \overline{x}^{r}}\delta_{i}^{r}=rac{\partial x^{lpha}}{\partial \overline{x}^{i}},\,v^{eta}=rac{\partial x^{eta}}{\partial \overline{x}^{k}},\,w_{\gamma}=rac{\partial \overline{x}^{j}}{\partial x^{\gamma}}.$$

$$\bar{f} = \bar{A}_{\alpha\beta}^{\gamma} \bar{u}^{\alpha} \bar{v}^{\beta} \bar{w}_{\gamma} = \bar{A}_{ik}^{j},$$

Доказательство

$$\begin{split} \bar{u}^\alpha &= \delta^\alpha_i, \quad \bar{v}^\beta = \delta^\beta_k, \quad \bar{w}_\gamma = \delta^j_\gamma. \end{split}$$
 Тогда $u^\alpha = \frac{\partial x^\alpha}{\partial \bar{x}^r} \bar{u}^r = \frac{\partial x^\alpha}{\partial \bar{x}^r} \delta^r_i = \frac{\partial x^\alpha}{\partial \bar{x}^i}, v^\beta = \frac{\partial x^\beta}{\partial \bar{x}^k}, w_\gamma = \frac{\partial \bar{x}^j}{\partial x^\gamma}. \end{split}$ $\bar{f} = \bar{A}^\gamma_{\alpha\beta} \bar{u}^\alpha \bar{v}^\beta \bar{w}_\gamma = \bar{A}^j_{ik}, \quad f = A^\gamma_{\alpha\beta} u^\alpha v^\beta w_\gamma = A^\gamma_{\alpha\beta} \frac{\partial x^\alpha}{\partial \bar{x}^i} \frac{\partial x^\beta}{\partial \bar{x}^k} \frac{\partial \bar{x}^j}{\partial x^\gamma}. \end{split}$

Доказательство

В силу произвольности u^{α} , v^{β} и w_{γ} возьмем их так, что для заранее заданных i,j,k в новой системе координат:

$$\bar{u}^{\alpha} = \delta^{\alpha}_{i}, \quad \bar{v}^{\beta} = \delta^{\beta}_{k}, \quad \bar{w}_{\gamma} = \delta^{j}_{\gamma}.$$

Тогда
$$u^{\alpha}=rac{\partial x^{lpha}}{\partial \overline{x}^{r}} \overline{u}^{r}=rac{\partial x^{lpha}}{\partial \overline{x}^{r}} \delta^{r}_{i}=rac{\partial x^{lpha}}{\partial \overline{x}^{i}}, v^{eta}=rac{\partial x^{eta}}{\partial \overline{x}^{k}}, w_{\gamma}=rac{\partial \overline{x}^{j}}{\partial x^{\gamma}}.$$

$$\bar{f} = \bar{A}_{\alpha\beta}^{\gamma} \bar{u}^{\alpha} \bar{v}^{\beta} \bar{w}_{\gamma} = \bar{A}_{ik}^{j}, \quad f = A_{\alpha\beta}^{\gamma} u^{\alpha} v^{\beta} w_{\gamma} = A_{\alpha\beta}^{\gamma} \frac{\partial x^{\alpha}}{\partial \bar{x}^{i}} \frac{\partial x^{\beta}}{\partial \bar{x}^{k}} \frac{\partial \bar{x}^{j}}{\partial x^{\gamma}}.$$

По условию теоремы f – скаляр, значит, $\bar{A}_{\alpha\beta}^{\gamma} = A_{\alpha\beta}^{\gamma} \frac{\partial x^{\alpha}}{\partial \bar{x}^{i}} \frac{\partial x^{\beta}}{\partial \bar{x}^{k}} \frac{\partial \bar{x}^{j}}{\partial x^{\gamma}}$.

Теорема

Если для каждой системы координат x^{α} имеется совокупность n^2 величин $A_{\alpha\beta}$ и если при любом выборе вектора u^{α} выражение

$$f = A_{\alpha\beta} u^{\alpha} u^{\beta}$$

является инвариантом, то величина

$$B_{\alpha\beta} = \frac{1}{2} \left(A_{\alpha\beta} + A_{\beta\alpha} \right)$$

является составляющей ковариантного тензора.

Доказательство

Положим, $u^{\alpha} = v^{\alpha} + w^{\alpha}$ – произвольное разложение вектора u^{α} в сумму двух векторов, тогда

$$f = A_{\alpha\beta}(v^{\alpha} + w^{\alpha})(v^{\beta} + w^{\beta}) = A_{\alpha\beta}v^{\alpha}v^{\beta} + A_{\alpha\beta}w^{\alpha}w^{\beta} + A_{\alpha\beta}v^{\alpha}w^{\beta} + A_{\alpha\beta}v^{\alpha}w^{\beta} + A_{\alpha\beta}v^{\beta}w^{\alpha}.$$

Заметим, что

$$A_{\alpha\beta}v^{\alpha}v^{\beta}, \quad A_{\alpha\beta}w^{\alpha}w^{\beta}$$

являются инвариантами по условию теоремы, а

$$A_{\alpha\beta}v^{\alpha}w^{\beta} = A_{\beta\alpha}v^{\alpha}w^{\beta}.$$

Поэтому выражение $g = (A_{\alpha\beta} + A_{\beta\alpha})v^{\alpha}w^{\beta}$ является инвариантом, а $A_{\alpha\beta} + A_{\beta\alpha}$ – ковариантным тензором по теореме 1.

Признак тензорной природы для симметричного объекта

Следствие

Если величины $A_{\alpha\beta}$ обладают свойством симметричности, т.е. $A_{\alpha\beta}=A_{\beta\alpha}$, то из инвариантности

$$f = A_{\alpha\beta} u^{\alpha} u^{\beta}$$

для любого вектора u^{α} следует, что $A_{\alpha\beta}$ являются компонентами ковариантного тензора.

Фундаментальный тензор

Определение Выражение

$$ds^{2} = g_{ik}(x^{1}, x^{2}, \dots, x^{n})dx^{i}dx^{k},$$
 (2)

определяющее расстояние между двумя бесконечно близкими точками многообразия, называется фундаментальной квадратичной формой.

Инвариантность

 ds^2 – инвариант по определению.

Инвариантность

 ds^2 – инвариант по определению.

Симметричность

$$g_{ij}=g_{ji}$$

Инвариантность

 ds^2 – инвариант по определению.

Симметричность

$$g_{ij}=g_{ji}$$

Определитель

$$g = \begin{vmatrix} g_{11} & g_{12} & \cdots & g_{1n} \\ g_{21} & g_{22} & \cdots & g_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ g_{n1} & g_{n2} & \cdots & g_{nn} \end{vmatrix} \neq 0$$

Инвариантность

 ds^2 – инвариант по определению.

Симметричность

$$g_{ij}=g_{ji}$$

Определитель

$$g = \begin{vmatrix} g_{11} & g_{12} & \cdots & g_{1n} \\ g_{21} & g_{22} & \cdots & g_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ g_{n1} & g_{n2} & \cdots & g_{nn} \end{vmatrix} \neq 0$$

Тензорная природа (следствие) g_{ij} – ковариантный тензор по тензорному признаку для симметричного объекта.

Контравариантный фундаментальный тензор

Определение Пусть A^k — произвольный вектор, тогда рассмотрим вектор

$$A_i = g_{ik}A^k.$$

Контравариантный фундаментальный тензор

Определение

Пусть A^k — произвольный вектор, тогда рассмотрим вектор

$$A_i = g_{ik}A^k.$$

Эти равенства можно рассматривать как систему из n линейных уравнений относительно A^k , и т. к. $g \neq 0$, то существуют такие числа g^{ik} , что

$$A^i=g^{ik}A_k.$$

Контравариантный фундаментальный тензор

Определение

Пусть A^k – произвольный вектор, тогда рассмотрим вектор

$$A_i = g_{ik}A^k.$$

Эти равенства можно рассматривать как систему из n линейных уравнений относительно A^k , и т. к. $g \neq 0$, то существуют такие числа g^{ik} , что

$$A^i = g^{ik}A_k.$$

Так как A^i , A_k — произвольные векторы, то по признаку тензорного объекта g^{ik} является контравариантным тензором и называется контравариантным фундаментальным тензором.

Смешанный фундаментальный тензор

Определение Смешанный тензор

$$g_i^k = g_{i\alpha}g^{\alpha k}$$

называется смешанным фундаментальным тензором.

Смешанный фундаментальный тензор

Определение Смешанный тензор

$$g_i^k = g_{i\alpha}g^{\alpha k}$$

называется смешанным фундаментальным тензором.

Свойства

1) равенство $A_i=g_{i\alpha}A^\alpha=g_{i\alpha}g^{\alpha k}A_k=g_i^kA_k$ имеет место для всех A_k , поэтому

$$g_i^k = \delta_i^k = \left\{ \begin{array}{ll} 1, & i = k, \\ 0, & i \neq k. \end{array} \right.$$

2) сокращение смешанного фундаментального тензора по его индексам дает размерность рассматриваемого многообразия, т.к.

$$g_i^i = \delta_i^i = n.$$

Формулы перехода для векторов

$$A_i = g_{ik}A^k, \quad A^i = g^{ik}A_k,$$

где A_i , A^k – ковариантные и контравариантные компоненты одного и того же вектора.

Формулы перехода для векторов

$$A_i = g_{ik}A^k, \quad A^i = g^{ik}A_k,$$

где A_i , A^k — ковариантные и контравариантные компоненты одного и того же вектора.

Формулы перехода для тензоров

$$A_{i\cdot}^{\cdot\beta}=A^{\alpha\beta}g_{i\alpha}, \quad A_{\cdot k}^{\alpha\cdot}=A^{\alpha\beta}g_{\beta k},$$

Формулы перехода для векторов

$$A_i = g_{ik}A^k, \quad A^i = g^{ik}A_k,$$

где A_i , A^k — ковариантные и контравариантные компоненты одного и того же вектора.

Формулы перехода для тензоров

$$A_{i\cdot}^{\cdot\beta}=A^{\alpha\beta}g_{i\alpha}, \quad A_{\cdot k}^{\alpha\cdot}=A^{\alpha\beta}g_{\beta k},$$

$$A_{ik} = A_{i.}^{\beta} g_{\beta k} = A^{\alpha \beta} g_{i\alpha} g_{\beta k},$$

Формулы перехода для векторов

$$A_i = g_{ik}A^k, \quad A^i = g^{ik}A_k,$$

где A_i , A^k — ковариантные и контравариантные компоненты одного и того же вектора.

Формулы перехода для тензоров

$$A_{i\cdot}^{\cdot\beta} = A^{\alpha\beta}g_{i\alpha}, \quad A_{\cdot k}^{\alpha\cdot} = A^{\alpha\beta}g_{\beta k},$$

$$A_{ik} = A_{i\cdot}^{\beta} g_{\beta k} = A^{\alpha\beta} g_{i\alpha} g_{\beta k},$$

$$A^{\alpha\beta} = A_{i\cdot}^{\cdot\beta} g^{i\alpha} = A_{ik} g^{k\beta} g^{i\alpha},$$

где A_{ik} , $A^{\alpha\beta}$, $A^{\beta}_{i\cdot}$, $A^{\alpha\cdot}_{\cdot k}$ – компоненты одного и того же тензора.

Связь фундаментальной формы и преобразования координат

Пусть подпространство E_n вложено в евклидово пространство E_m $(m \ge n)$ и преобразование координат задается

$$\begin{cases} y_1 = y_1(x^1, x^2, \dots, x^n), \\ \vdots & \vdots & \vdots \\ y_m = y_m(x^1, x^2, \dots, x^n), \end{cases}$$

где y_{α} – координаты точек в прямолинейной ортогональной системе координат.

Связь фундаментальной формы и преобразования координат

Пусть подпространство E_n вложено в евклидово пространство E_m $(m \ge n)$ и преобразование координат задается

$$\begin{cases} y_1 = y_1(x^1, x^2, \dots, x^n), \\ \vdots & \vdots \\ y_m = y_m(x^1, x^2, \dots, x^n), \end{cases}$$

где y_{α} – координаты точек в прямолинейной ортогональной системе координат.

Тогда фундаментальная квадратичная форма будет иметь вид

$$ds^2=\sum_{lpha=1}^m dy_lpha^2=g_{ik}dx^idx^k$$
, где $g_{ik}=\sum_{lpha=1}^m rac{\partial y_lpha}{\partial x^i}rac{\partial y_lpha}{\partial x^k}.$

Длина вектора

Рассмотрим контравариантный вектор A^i . Подберем бесконечно малый вектор dx^i такой, что

$$dx^i = \lambda A^i, \quad A^i = \frac{1}{\lambda} dx^i.$$

Так как при преобразовании системы координат компоненты векторов dx^i и A^k преобразуются по одним и тем же формулам, то величина λ является инвариантом.

Длина вектора

Рассмотрим контравариантный вектор A^i . Подберем бесконечно малый вектор dx^i такой, что

$$dx^i = \lambda A^i, \quad A^i = \frac{1}{\lambda} dx^i.$$

Так как при преобразовании системы координат компоненты векторов dx^i и A^k преобразуются по одним и тем же формулам, то величина λ является инвариантом.

Вектору в подпространстве R^n с координатами dx^i отвечает вектор в пространстве R^m с координатами y_{α} , длина которого равна ds. Таким образом,

$$ds^2 = \lambda^2 g_{ik} A^i A^k.$$

Длина вектора

Определение Длиной вектора будем называть величину

$$l(A^i) = \sqrt{g_{ik}A^iA^k}.$$

Свойства

$$l(A^{i}) = \sqrt{g_{ik}A^{i}A^{k}} = \sqrt{A_{i}A^{i}} = \sqrt{g^{ij}A_{i}A_{j}}$$

Так как скалярному вектору dx^i отвечает в пространстве вектор с составляющими

$$dy_{\alpha} = \frac{\partial y_{\alpha}}{\partial x^{i}} dx^{i} \quad (\alpha = 1, \dots, m),$$

то вектор $A^i=dx^i/\lambda$ в пространстве R^m будет иметь компоненты

$$a_{\alpha} = \frac{\partial y_{\alpha}}{\partial x^{i}} A^{i} \quad (\alpha = 1, \dots, m).$$

Рассмотрим еще один вектор с компонентами B^i , имеющий в R^m компоненты

$$b_{\alpha} = \frac{\partial y_{\alpha}}{\partial x^k} B^k \quad (\alpha = 1, \dots, m).$$

Определение

$$\vec{a} \cdot \vec{b} = \sum_{\alpha=1}^{m} a_{\alpha} b_{\alpha} = \sum_{\alpha=1}^{m} \frac{\partial y_{\alpha}}{\partial x^{i}} A^{i} \frac{\partial y_{\alpha}}{\partial x^{k}} B^{k} = \sum_{\alpha=1}^{m} \frac{\partial y_{\alpha}}{\partial x^{i}} \frac{\partial y_{\alpha}}{\partial x^{k}} A^{i} B^{k} = g_{ik} A^{i} B^{k}$$

Определение

$$\vec{a} \cdot \vec{b} = \sum_{\alpha=1}^{m} a_{\alpha} b_{\alpha} = \sum_{\alpha=1}^{m} \frac{\partial y_{\alpha}}{\partial x^{i}} A^{i} \frac{\partial y_{\alpha}}{\partial x^{k}} B^{k} = \sum_{\alpha=1}^{m} \frac{\partial y_{\alpha}}{\partial x^{i}} \frac{\partial y_{\alpha}}{\partial x^{k}} A^{i} B^{k} = g_{ik} A^{i} B^{k}$$

Свойства:

1)
$$\vec{a} \cdot \vec{b} = g_{ik}A^iB^k = A_kB^k = A^iB_i = g^{ij}A_iB_j;$$

Определение

$$\vec{a} \cdot \vec{b} = \sum_{\alpha=1}^{m} a_{\alpha} b_{\alpha} = \sum_{\alpha=1}^{m} \frac{\partial y_{\alpha}}{\partial x^{i}} A^{i} \frac{\partial y_{\alpha}}{\partial x^{k}} B^{k} = \sum_{\alpha=1}^{m} \frac{\partial y_{\alpha}}{\partial x^{i}} \frac{\partial y_{\alpha}}{\partial x^{k}} A^{i} B^{k} = g_{ik} A^{i} B^{k}$$

Свойства:

1)
$$\vec{a} \cdot \vec{b} = g_{ik}A^iB^k = A_kB^k = A^iB_i = g^{ij}A_iB_j;$$

2)
$$cos\theta = \frac{\vec{a} \cdot \vec{b}}{ab} = \frac{g_{ik}A^iB^k}{\sqrt{g_{ik}A^iA^k}\sqrt{g_{ik}B^iB^k}};$$

Определение

$$\vec{a} \cdot \vec{b} = \sum_{\alpha=1}^{m} a_{\alpha} b_{\alpha} = \sum_{\alpha=1}^{m} \frac{\partial y_{\alpha}}{\partial x^{i}} A^{i} \frac{\partial y_{\alpha}}{\partial x^{k}} B^{k} = \sum_{\alpha=1}^{m} \frac{\partial y_{\alpha}}{\partial x^{i}} \frac{\partial y_{\alpha}}{\partial x^{k}} A^{i} B^{k} = g_{ik} A^{i} B^{k}$$

Свойства:

1)
$$\vec{a} \cdot \vec{b} = g_{ik}A^iB^k = A_kB^k = A^iB_i = g^{ij}A_iB_j;$$

2)
$$cos\theta = \frac{\vec{a} \cdot \vec{b}}{ab} = \frac{g_{ik}A^iB^k}{\sqrt{g_{ik}A^iA^k}\sqrt{g_{ik}B^iB^k}};$$

3)
$$\vec{a} \perp \vec{b} \Leftrightarrow \vec{a} \cdot \vec{b} = 0 \Leftrightarrow g_{ik}A^iB^k = 0.$$

Векторное произведение

Определение Пусть $\boldsymbol{u} = \boldsymbol{A} \times \boldsymbol{B}$, тогда

$$\begin{split} u_i &= e^{\alpha\beta}{}_i A_\alpha B_\beta = g_{i\gamma} e^{\alpha\beta\gamma} A_\alpha B_\beta = \\ &= \frac{1}{\sqrt{g}} \left\{ g_{i1} (A_2 B_3 - A_3 B_2) + g_{i2} (A_3 B_1 - A_1 B_3) + g_{i3} (A_1 B_2 - A_2 B_1) \right\}. \end{split}$$

Обозначения

$$e_{lphaeta\gamma} = \sqrt{g}\delta_{lphaeta\gamma}, \quad e^{lphaeta\gamma} = rac{1}{\sqrt{g}}\delta_{lphaeta\gamma}, \quad g = |g_{ik}|.$$
 $\delta_{123} = \delta_{231} = \delta_{312} = 1,$ $\delta_{132} = \delta_{213} = \delta_{321} = -1,$ $\delta_{iik} = 0$ во всех остальных случаях.

Литература

Кочин Н. Е. Векторное исчисление и начала тензорного исчисления. Изд. 9-е. М.: Наука, 1965.