CSE 101 - Sep 30, 2019 (Week 1)

Notes provided by Ben Sihota bsihota@ucsc.edu

Cost of Insertion Sort

Define $c_i = \cos t$ of step i in insertion sort $(1 \le i \le 7)$

Goal: Find runtime T(n) as a function of the length of the input array

~ Unit of the "cost" is not given, but it's usually runtime

3 Cases

- 1. Best Case
 - ~ You can arrange a bookshelf of n elements in n! ways
- 2. Worst Case
 - Take the max n!
 - ~ Focus on the most
- 3. Average Case
 - ~ Most difficult to compute

Pseudocode

$$T(N) = c_1 n + c_2 (n-1) + c_3 (n-1) + c_4 * \sum_{j=2}^{n} t_j + c_5 * \sum_{j=2}^{n} (t_j - 1) + c_6 * \sum_{j=2}^{n} (t_j - 1) + c_7 (n-1)$$

 $\sim c_2$ and c_3 is n-1 since it's in the while loop

Notation

Let $t_j = \#$ of tests of while loop repitition condition on the j^{th} iteration of the outer for loop

1. Best Case: $t_i = 1$

$$\therefore \sum_{j=2}^{n} t_j = \sum_{j=2}^{n} 1 = (n-1)$$

$$\therefore T(n) = c_1 n + (c_2 + c_3 + c_4 + c_7)(n-1)$$

$$= (c_1 + c_2 + c_3 + c_4 + c_7)n - (c_2 + c_3 + c_4 + c_7)$$

2. Worst Case: $t_j = j$

$$\sum_{j=2}^{n} t_j = \sum_{j=2}^{n} j = (\sum_{j=1}^{n} j) - 1 = \frac{n(n+1)}{2} - 1$$

$$\sum_{j=2}^{n} (t_j - 1) = \sum_{j=2}^{n} (i - 1) = \sum_{j=1}^{n-1}$$

(truncated:/)

So:

$$T(n) = (\frac{1}{2}c_4 + \frac{1}{2}c_5 + \frac{1}{2}c_6)n^2 + (c_1 + c_2 + \dots)n + (-c_2 - c_3\dots)$$

3. Average Case: $t_j = \frac{i}{2}$

So

$$T(n) = (...)n^2 + (...)n + (...)$$

Summary:

Best: $\frac{T(n)}{an+b}$

 $\Theta(n)$

Worst: $cn^2 + dn + e$

 $\Theta(n^2)$

Average: $fn^2 + gn + h$

 $\Theta(n^2)$

Notation to be defined:

 $\Theta, O, \Omega, o, \omega$

Informal definition of Θ

- Drop lower order terms
- Replace leading coefficient by 1

Example

Given algorithm A, B, C, D – all solving same problem

Results:

Algorithm	T(n)	Asymp Runtime
A	n^2	$\Theta(n^2)$
В	$10n^{2}$	$\Theta(n^2)$
\mathbf{C}	$10n^2 + 2n - 100$	$\Theta(n^2)$
D	1000n + 10,000	$\Theta(n)$

Notice

•

$$\frac{C}{B} = (1 + \frac{1}{5n} - \frac{10}{n^2}) \to 1$$

- Comparing A to B: A is 10 times better
 - We can equalize by running B on a faster machine
- Comparing A to D: No matter how steep the line or shallow the parabola, there will be a crossover point. After crossover, D is the better algorithm
 D is superior

Procedure:

Pick a basic operation and count the number of times it is executed in best, worst, and average case

In sorting algorithms, basic operation is the comparison of array elements

$$A_i < A_j$$

For insertion sort

Algorithm	T(n)	Asymp Runtime
Best	n-1	$\Theta(n)$
Worst	$\frac{n(n-1)}{2}$	$\Theta(n^2)$
Average	$\frac{n(n-1)}{4}$	$\Theta(n^2)$