

NCERT solutions for class 9 Maths Polynomials Ex 2.1

Q1. Which of the following expressions are polynomials in one variable and which are not? State reasons for your answer.

(i)
$$4x^2 - 3x + 7$$

(ii)
$$y^2 + \sqrt{2}$$

(iii)
$$3\sqrt{t} + t\sqrt{2}$$

(iv)
$$y + \frac{2}{y}$$

(v)
$$x^{10} + y^3 + t^{50}$$

Ans: (i)
$$4x^2 - 3x + 7$$

We can observe that in the polynomial $4x^2-3x+7$, we have x as the only variable and the powers of x in each term are a whole number.

Therefore, we conclude that $4x^2 - 3x + 7$ is a polynomial in one variable.

(ii)
$$y^2 + \sqrt{2}$$

We can observe that in the polynomial $y^2 + \sqrt{2}$, we have y as the only variable and the powers of y in each term are a whole number.

Therefore, we conclude that $y^2 + \sqrt{2}$ is a polynomial in one variable.

(iii)
$$3\sqrt{t} + t\sqrt{2}$$

We can observe that in the polynomial $3\sqrt{t} + t\sqrt{2}$, we have t as the only variable and the powers of t in each term are not a whole number.

Therefore, we conclude that $3\sqrt{t} + t\sqrt{2}$ is not a polynomial in one variable.

(iv)
$$y + \frac{2}{v}$$

We can observe that in the polynomial $y + \frac{2}{y}$, we have y as the only variable and the powers of y in each term are not a whole number.

Therefore, we conclude that $y + \frac{2}{y}$ is not a polynomial in one variable.

(v)
$$x^{10} + y^3 + t^{50}$$

We can observe that in the polynomial $x^{10} + y^3 + t^{50}$, we have x, y and t as the variables and the powers of x, y and t in each term is a whole number.

Therefore, we conclude that $x^{10} + y^3 + t^{50}$ is a polynomial but not a polynomial in one variable.

Q2. Write the coefficients of x^2 in each of the following:

(i)
$$2 + x^2 + x$$

(ii)
$$2 - x^2 + x^3$$

(iii)
$$\frac{\pi}{2}x^2 + x$$

(iv)
$$\sqrt{2}x - 1$$

Ans: (i)
$$^{2+x^2+x}$$

The coefficient of x^2 in the polynomial $2 + x^2 + x$ is 1.

(ii)
$$2 - x^2 + x^3$$

The coefficient of x^2 in the polynomial $2-x^2+x^3$ is -1.

(iii)
$$\frac{\pi}{2}x^2 + x$$

The coefficient of x^2 in the polynomial $\frac{\pi}{2}x^2 + x$ is

$$\frac{\pi}{2}$$
.

(iv)
$$\sqrt{2}x-1$$

The coefficient of x^2 in the polynomial $\sqrt{2}x-1$ is o.

Q3. Give one example each of a binomial of degree 35, and of a monomial of degree 100.

Ans: The binomial of degree 35 can be $x^{35} + 9$.

The binomial of degree 100 can be t^{100} .

Q4. Write the degree of each of the following polynomials:

(i)
$$p(x) = 5x^3 + 4x^2 + 7x$$

(ii)
$$p(y) = 4 - y^2$$

(iii)
$$f(t) = 5t - \sqrt{7}$$

(iv)
$$f(x) = 3$$

Ans: (I)
$$5x^3 + 4x^2 + 7x$$

We know that the degree of a polynomial is the highest power of the variable in the polynomial.

We can observe that in the polynomial $5x^3 + 4x^2 + 7x$, the highest power of the variable x is 3.

Therefore, we conclude that the degree of the polynomial $5x^3 + 4x^2 + 7x$ is 3.

(ii)
$$4 - y^2$$

We know that the degree of a polynomial is the highest power of the variable in the polynomial.

We can observe that in the polynomial $^{4-y^{2}}$, the highest power of the variable y is 2.

Therefore, we conclude that the degree of the polynomial $4 - y^2$ is 2.

(iii)
$$5t - \sqrt{7}$$

We know that the degree of a polynomial is the highest power of the variable in the polynomial.

We observe that in the polynomial $5t - \sqrt{7}$, the highest power of the variable t is 1.

Therefore, we conclude that the degree of the polynomial $5t - \sqrt{7}$ is 1.

(iv) 3

We know that the degree of a polynomial is the highest power of the variable in the polynomial.

We can observe that in the polynomial 3, the highest power of the assumed variable x is 0.

Therefore, we conclude that the degree of the polynomial 3 is 0.

Q5. Classify the following as linear, quadratic and cubic polynomials:

(i)
$$x^2 + x$$

(ii)
$$x - x^3$$

(iii)
$$y + y^2 + 4$$

(iv)
$$1+x$$

$$(vi)^{r^2}$$

$$(vii)^7 x^3$$

Ans: (I)
$$x^2 + x$$

We can observe that the degree of the polynomial $x^2 + x$ is 2.

Therefore, we can conclude that the polynomial $x^2 + x$ is a quadratic polynomial.

(ii)
$$x - x^3$$

We can observe that the degree of the polynomial $x = x^3$ is 3.

Therefore, we can conclude that the polynomial $x-x^3$ is a cubic polynomial.

(iii)
$$v + v^2 + 4$$

We can observe that the degree of the polynomial $y + y^2 + 4$ is 2.

Therefore, the polynomial $y + y^2 + 4$ is a quadratic polynomial.

(iv) 1+x

We can observe that the degree of the polynomial (1+x) is 1.

Therefore, we can conclude that the polynomial 1+x is a linear polynomial.

(v) 3t

We can observe that the degree of the polynomial (3t) is 1.

Therefore, we can conclude that the polynomial 3t is a linear polynomial.

We can observe that the degree of the polynomial r^2 is 2.

Therefore, we can conclude that the polynomial r^2 is a quadratic polynomial.

(vii)
$$7x^3$$

We can observe that the degree of the polynomial $7\chi^3$ is 3.

Therefore, we can conclude that the polynomial $7x^3$ is a cubic polynomial.

