Bab 13 PREDIKSI ERROR

Tujuan

 Membahas tentang prediksi error: Mean Error (Me), Mean absolute Error (MAE), Mean Square Error (MSE), Mean Precentage Error (MPE), Mean Absolute Precentage Error (MAPE).

Peramalan (Forecasting)

- Evaluasi atau Peramalan merupakan sebuah teknik peramalan yang bergantung terutama pada perbandingan nilai estimasi dengan nilai aktual.
- Sedangkan Teknik Peramalan Naïve adalah metode peramalan yang sangat sederhana, dimana hanya menggunakan data nilai aktual periode sebelumnya (t-1) sebagai estimasi atau prediksi untuk periode sekarang, dan begitu seterusnya.

Peramalan

- Metode peramalan (forecasting) terdiri dari:
- 1. metode kualitatif
- 2. Metode kuantitatif.

Metode Kualitatif

- Metode kualitatif adalah metode yang menganalisis kondisi obyektif dengan apa adanya atau peramalan yang didasarkan atas data kualitatif pada masa lalu.
- Peramalan kualitatif memanfaatkan factor-faktor penting seperti intuisi, pendapat, pengalaman pribadi, dan sistem nilai pengambilan keputusan.
- Metode ini meliputi metode delphi, metode nominal grup, survey pasar dan analisis historikal analogy and life cycle.

Metode kuantitatif

- Metode kuantitatif adalah peramalan yang didasarkan atas data kuantitatif atau model matematis yang beragam dengan data masa lalu.
- Hasil peramalan yang dibuat sangat bergantung pada metode evaluasi yang dipergunakan dalam peramalan tersebut.

Metode Evaluasi

- 1. Mean Error (ME)
- 2. Mean Absolute Error (MAE)
- 3. Mean Squared Error (MSE)
- 4. Mean Percentage Error (MPE)
- 5. Mean Absolute Percentage Error (MAPE).

Mean Error (ME)

- Sebuah nilai 0 dari ME dapat berarti bahwa metode yang diterapkan dapat memprediksi nilai secara akurat atau kesalahan positif dan negatif masingmasing bersinggungan.
- Hal ini cenderung mencegah dan mengatasi kesalahan dalam berbagai kasus.

$$ME = \frac{\left(\sum_{i=1}^{n} (A_t - F_t)\right)}{n}$$

Mean Absolute Error (MAE)

- Dimana A_t merupakan nilai hasil estimasi, F_t adalah nilai aktual atau nilai sebenarnya, dan n adalah jumlah data.
- Berdasarkan rumus di atas, MAE secara intuitif menghitung rata – rata error dengan memberikan bobot yang sama untuk seluruh data (i = {1.....n}).

$$MAE = \frac{\left(\sum_{i=1}^{n} |A_t - F_t|\right)}{n}$$

Mean Squared Error (MSE)

- MSE sangat baik dalam memberikan gambaran terhadap seberapa konsisten model yang dibangun.
- Dengan meminimalkan nilai MSE, berarti meminimalkan varian model.
- Model yang memiliki varian kecil mampu memberikan hasil yang relatif lebih konsisten untuk seluruh data input dibandingkan dengan model dengan varian besar (MSE besar).

$$MSE = \frac{\left(\sum_{i=1}^{n} (A_t - F_t)^2\right)}{n}$$

Mean Percentage Error (MPE)

- MPE merupakan sebuah pengukuran perkiraan error yang relatif.
- MPE mengambil nilai rata-rata dari nilai positif dan negatif error.

$$MPE = \frac{\left(\sum_{i=1}^{n} \left(\frac{A_t - F_t}{A_t}\right) x \ 100\right)}{n}$$

Mean Absolute Percentage Error (MAPE)

 Pada MAPE ini karena digunakan nilai mutlak terhadap nilai rata-rata yang nantinya akan dijadikan ke dalam bentuk prosentase, maka sudah tidak ditemukan lagi permasalahan terhadap rata-rata dari positif dan negatif error.

$$MAPE = \frac{\left(\sum_{i=1}^{n} \left(\left| \frac{A_t - F_t}{A_t} \right| \right) x \ 100 \right)}{n}$$

Manfaat Metode Pengukuran Error

- Untuk mengetahui metode estimasi terbaik.
- Untuk mengetahui nilai parameter terbaik dari metode tertentu.
- MSE dan MAE adalah metode yang paling banyak digunakan.

Contoh

Berikut disajikan nilai estimasi dan nilai aktual dari pajak kemitraan non pertanian dengan α = 7

$$F_{t+1} = (\alpha)A_t + (1 - \alpha)F$$

Year	Actual	Forecast	Error
1	1402		
2	1458	1402.0	56.0.8
3	1553	1441.2	111
4	1613	1519.5	93.5
5	1676	1584.9	91.1
6	1755	1648.7	106.3
7	1807	1723.1	83.9
8	1824	1781.8	42.2
9	1826	1811.3	14.7
10	1780	1821.6	-41.6
11	1759	1792.5	-33.5

Perhitungan

1. Mean Error (ME)
$$ME = \frac{\sum e_i}{jumlah \ forecasts}$$
$$= \frac{524.3}{10}$$
$$= 52.43$$

2. Mean Absolute Error (MAE)

$$MAE = \frac{\sum |e_i|}{jumlah \ forecasts}$$
$$= \frac{674.5}{10}$$
$$= 67.45$$

3. Mean Error (ME)

$$MSE = \frac{\sum e_i^2}{jumlah forecasts}$$
$$= \frac{55864.2}{10}$$
$$= 5586.42$$

4. Mean Procentage Error (MPE)

$$MPE = \frac{\sum \left(\frac{e_i}{X_i} \times 100\right)}{jumlah \ forecasts}$$
$$= \frac{31.8}{10}$$
$$= 3.18 \%$$

5. Mean Absolute Percentage Error (MAPE)

$$MAPE = \frac{\sum \left(\frac{|e_i|}{X_i} \times 100\right)}{jumlah \ forecasts}$$
$$= \frac{40.3}{10}$$
$$= 4.03 \%$$

KOLMOGOROV SMIRNOV (KS)

- Uji Kolmogorov Smirnov merupakan pengujian normalitas yangbanyak dipakai, terutama setelah adanya banyak program statistik yang beredar.
- Kelebihan dari uji ini adalah sederhana dan tidak menimbulkan perbedaan persepsi di antara satu pengamat dengan pengamat yang lain, yang sering terjadi pada uji normalitas dengan menggunakan grafik.

KOLMOGOROV SMIRNOV (KS)

- Konsep dasar dari uji normalitas Kolmogorov Smirnov adalah dengan membandingkan distribusi data (yangakan diuji normalitasnya) dengan distribusi normal baku.
- Distribusi normal baku adalah data yang telahditransformasikan ke dalam bentuk Z-Score dan diasumsikan normal.
- Jadi sebenarnya uji Kolmogorov Smirnov adalah ujibeda antara data yang diuji normalitasnya dengan data normal baku.

- KS jika signifikansi di bawah 0,05 berarti terdapat perbedaan yang signifikan.
- KS jika signifikansi di atas 0,05 maka tidak terjadi perbedaan yang signifikan.

RUMUS KS

$$D = |F_S(x) - F_t(x)|$$

Dengan:

 $F_s(x)$ = distribusi frekuensi kumulatif sampel

 $F_t(x) = distribusi frekuensi kumulatif teoritis$

TERIMA KASIH