

TD APPROXIMATION DE FONCTIONS

Partie: CAO

Intervenant: Robin Bouclier

TD1 - Interpolation de données

Exercice 1. On souhaite déterminer la spline σ d'interpolation des 3 points (0,0), (1,1) et (2,0).

- 1. Calculer les 4-uplets $(\sigma_j, \sigma'_j, \sigma''_j, \sigma'''_j)_{j=0:2}$ de la spline d'interpolation.
- 2. Donner une expression analytique pour σ (écriture locale).
- 3. Tracer sur un même graphe σ , σ' , σ'' , σ''' . Le tracé sera réalisé « à la main » de la façon la plus précise possible.
- 4. Calculer finalement $\int_0^2 (\sigma''(x))^2 dx$ (les calculs peuvent être faits de façon simple), et comparer cette valeur avec celles d'autres interpolants de ces trois points (*cf.* section 1.4 du cours).

Exercice 2. On cherche à présent la spline s d'interpolation des 4 points (0,0), (1,1), (2,0) et (3,0). Pour cet exercice, votre calculatrice vous sera utile.

- 1. Tracer sur un même graphe s, s', s'', s'''.
- 2. Démontrer qu'il existe un unique point d'inflexion sur R.
- 3. Calculer les coordonnées du point d'inflexion.

Exercice 3. On s'intéresse maintenant à la spline $\sigma - s$ où σ et s sont les splines des exercices précédents.

- 1. Démontrer la propriété générale suivante : Soient σ et s les splines d'interpolation des points $(x_i, \sigma_i)_{i \in [0:n]}$ et $(x_i, s_i)_{i \in [0:n]}$, alors σs est la spline d'interpolation des points $(x_i, \sigma_i s_i)_{i \in [0:n]}$.
- 2. Montrer maintenant que σ et s étant les splines des exercices précédents, σs est la spline d'interpolation des points (0,0), (1,0), (2,0) et $(3,-\frac{3}{2})$.

Exercice 4. Soient $(x_i, y_i)_{i=0:n}$ n+1 éléments de \mathbb{R}^2 , et soit s la spline cubique naturelle d'interpolation de ces points. Soient ensuite a, b, et c trois réels et, pour tout i dans [0:n], $z_i = a \, x_i + b + c \, y_i$. Soit finalement σ la spline cubique naturelle d'interpolation des points $(x_i, z_i)_{i=0:n}$.

- 1. Donner « intuitivement » une expression simple de σ en fonction de s.
- 2. Démontrer, rigoureusement, l'expression donnée ci-dessus.
- 3. Déduire, en vous servant des valeurs trouvées lors d'un exercice précédent, la spline d'interpolation des points (0,1), (1,1) et (2,0).

TD2 - Ajustement/lissage de données

Exercice 1. On souhaite déterminer la spline σ d'ajustement de paramètre ρ (et de $\rho_j = 1$) des 3 points (0,0), (1,1) et (2,0).

- 1. Calculer les 4-uplets $(\sigma_j, \sigma'_j, \sigma''_j, \sigma'''_j)_{j=0:2}$ de la spline d'ajustement (on utilisera le paramètre $\mu = 6/\rho$).
- 2. Tracer sur un même graphe les splines d'ajustement dans les deux cas limite $\rho \to 0$ et $\rho \to +\infty$. Vérifier la cohérence de vos résultats avec ceux obtenus à l'exercice 1 du TD1.
- 3. Montrer que toutes les splines d'ajustement (c'est-à-dire $\forall \rho$) passent par deux même points. Tracer enfin la spline d'ajustement correspondant à un ρ intermédiaire.

Exercice 2. On se propose à présent de montrer que la spline d'ajustement « oscille moins » que la spline d'interpolation. Soit σ la spline d'interpolation des données $(x_j,y_j)_{j\in[0:n]}$ et σ_ρ la spline d'ajustement de paramètre ρ associée à ces mêmes données.

- 1. Montrer que $\int_{\mathbb{R}} (\sigma''_{\rho}(x))^2 dx \leq \int_{\mathbb{R}} (\sigma''(x))^2 dx$.
- 2. Dans quel cas a-t-on l'égalité?

TD3 - Interpolation et ajustement

Exercice 1. (Tiré d'annales)

Soient $y_0=1/3$, $y_1=y_2=2$, $y_3=4/3$, $y_4=3$, $y_5=1$, $y_6=1/3$. Soient σ la spline d'interpolation des points $(i,y_i)_{i=0,\dots,6}$ et σ_ρ la spline cubique d'ajustement de paramètre ρ de ces mêmes données.

- 1. Déterminer le système linéaire que doivent vérifier les valeurs σ_i'' pour $i \in [1:5]$ de la spline d'interpolation.
- 2. Vérifier que les valeurs suivantes sont solutions du système linéaire :

$$\sigma''(1) = \sigma''(2) = -2$$
; $\sigma''(3) = 6$; $\sigma''(4) = -8$; $\sigma''(5) = 4$.

- 3. Déterminer l'expression explicite de $\sigma(x)$ pour $x \in [1..3]$.
- 4. Déterminer la pente de σ en x = 0, en x = 3, en x = 4 et en x = 6.
- 5. Déterminer l'abscisse des points d'inflexion éventuels entre x=0 et x=4.
- 6. Faire un graphe approximatif de σ .
- 7. Déterminer la droite des moindres carrés des points $(i, y_i)_{i \in [0:6]}$.
- 8. Dessiner qualitativement la forme de σ_{ρ} pour deux valeurs de ρ , l'une « plutôt forte », l'autre « plutôt faible ».

Exercice 2. Démontrer la propriété de symétrie suivante :

Si l'ensemble des données $(x_j, y_j)_{j=0:n}$ possède une propriété de symétrie (axe, point), alors la spline d'interpolation possède la même propriété de symétrie.

TD4 - Approximation B-spline

Exercice 1. Soit σ l'approximation B-spline des données $(jh, y_j)_{j=0:n}$. On va établir dans cet exercice une méthode permettant de réaliser une construction graphique simple et fiable de σ .

- 1. Montrez qu'en x_j la courbe représentative de σ est parallèle au segment reliant les points de coordonnées (x_{j-1}, y_{j-1}) et (x_{j+1}, y_{j+1}) .
- 2. Montrez qu'en x_j la courbe représentative de σ se trouve à 2/3 entre le point (x_j, y_j) et le milieu du segment reliant les points de coordonnées (x_{j-1}, y_{j-1}) à (x_{j+1}, y_{j+1}) .
- 3. En mettant à profit les résultats obtenus, réaliser maintenant une construction graphique assez précise de l'approximation B-spline des données (0,1), (1,1), (2,3), (3,3), (4,3), (5,1), (6,0), (7,4) et (8,3). Comment procéder sur les bords?

Exercice 2. Soit σ l'approximation B-spline des points (0,1), (1,4), (2,2), (3,-3), (4,1) et (5,2).

- 1. Faire un graphique assez précis de σ .
- 2. Faire un graphe soigné de σ'' . Montrer que σ admet deux points d'inflexion, et déterminer l'abscisse du premier point d'inflexion.
- 3. Déterminer l'équation de la spline σ pour $x \in [2..3]$, puis déterminer l'ordonnée du premier point d'inflexion et le mettre sur le graphe.
- 4. Déterminer la pente de la tangente en ce point, et tracer la tangente sur le graphe.

Exercice 3. On souhaite à présent caractériser l'approximation B-spline d'une parabole.

- 1. Soit $n \in \mathbb{N}^*$ et h = 1/n. Déterminer l'expression analytique sur [-5..5] de l'approximation B-spline des points $(jh, j^2h^2)_{j \in [-5/h:5/h]}$.
- 2. Comparer avec la parabole d'équation $y=x^2$. Constater qu'il y a convergence, et donner la vitesse de convergence (lorsque $h \to 0$).
- 3. Est-ce qu'on aurait pu s'attendre à un tel résultat?

TD5 - Approximation B-spline (suite)

Exercice 1. On cherche dans cet exercice à retrouver la spline d'interpolation à partir de la technologie B-spline.

- 1. Déterminer un système linéaire en $(a_j)_{j \in [0:n]}$ tel que l'approximation B-spline de $(jh, a_j)_{j \in [0:n]}$ soit aussi la spline d'interpolation des donnés $(jh, y_j)_{j \in [0:n]}$.
- 2. Comparez ce système avec le système linéaire en σ'' de détermination de la spline d'interpolation des $(jh, y_j)_{j \in [0:n]}$.

Exercice 2. (Tiré d'annales)

On note, pour $j \in \mathbb{Z}$, $x_j = j$; $y_0 = y_1 = y_4 = y_5 = 4$, et $y_2 = y_3 = y_6 = y_7 = -2$. On note aussi $z_0 = z_1 = z_2 = z_4 = z_5 = 4$, et $z_3 = z_6 = z_7 = -2$. Soit enfin σ l'approximation B-spline des points $(x_j, y_j)_{j \in [0:7]}$ et s l'approximation B-spline des points $(x_j, z_j)_{j \in [0:7]}$.

- 1. Représenter graphiquement σ .
- 2. Déterminer l'expression de σ dans les intervalles $[x_j ... x_{j+1}]$ pour j = 0, 1, 2, 3.
- 3. Donner la position et valeur du (ou des) point(s) d'inflexion éventuel(s) dans [0..4].
- 4. Donner la position et valeur du minimum éventuel dans [2..3].
- 5. Donner une expression simple de $s-\sigma$. Dans quel intervalle s est-elle différente de σ ? Expliquer.

TD6 - Approximation d'un cercle avec les B-splines

Exercice 1. Soient les points $(i, y_i)_{i \in [-6:6]}$, avec $y_{2p} = 0$, et $y_{2p+1} = (-1)^p$.

- 1. On appelle σ l'approximation B-spline des points $(i, y_i)_{i \in [-6:6]}$. Représenter graphiquement σ .
- 2. Donner l'expression de $\sigma(x)$ pour $x \in [2p ... 2p+1]$, pour $x \in [2p+1 ... 2p+2]$ $(-3 \le p \le 2)$, et pour $x \ge 6$.
- 3. Soit s la spline cubique naturelle d'interpolation des points $(i, y_i)_{i \in [-6:6]}$. Donner l'expression de s(x) pour tout x réel. Justifier.
- 4. On désire maintenant approcher un cercle de rayon r par une spline cubique paramétrique. Pour cela, on considère l'interpolation spline paramétrique des quatre points (r,0), (0,r), (-r,0), (0,-r). Exprimer ainsi l'approximation du cercle (on pourra compléter les points par périodicité).
- 5. Quel point obtient-on pour t=1/2? Comparer avec le point correspondant sur le cercle. Le point de la spline paramétrique est-il à l'intérieur ou à l'extérieur du cercle? Quel est le pourcentage d'erreur commise en assimilant le cercle à la spline?
- 6. En modifiant légèrement la position des points de contrôle, rapprocher encore la courbe B-spline du cercle (la spline sera en partie à l'intérieur et en partie à l'extérieur du cercle).
- 7. Que pourrait-on faire pour améliorer encore plus l'approximation du cercle?