	Grading
Your PRINTED name is:	. 1
	2
	3

Please circle your recitation:

r01	T 11	4-159	Ailsa Keating	ailsa
r02	T 11	36-153	Rune Haugseng	haugseng
r03	T 12	4-159	Jennifer Park	jmypark
r04	T 12	36-153	Rune Haugseng	haugseng
r05	T 1	4-153	Dimiter Ostrev	ostrev
r06	T 1	4-159	Uhi Rinn Suh	ursuh
r07	T 1	66-144	Ailsa Keating	ailsa
r08	T 2	66-144	Niels Martin Moller	moller
r09	T 2	4-153	Dimiter Ostrev	ostrev
r10	ESG		Gabrielle Stoy	gstoy

1 (33 pts.)

Suppose an $n \times n$ matrix A has n independent eigenvectors x_1, \ldots, x_n . Then you could write the solution to $\frac{du}{dt} = Au$ in three ways:

$$u(t) = e^{At}u(0), \text{ or}$$

$$u(t) = Se^{\Lambda t}S^{-1}u(0), \text{ or}$$

$$u(t) = c_1e^{\lambda_1 t}x_1 + \dots + c_ne^{\lambda_n t}x_n.$$

Here, $S = [x_1 | x_2 | \dots | x_n].$

(a) From the definition of the exponential of a matrix, show why e^{At} is the same as $Se^{\Lambda t}S^{-1}$.

(b) How do you find c_1, \ldots, c_n from u(0) and S?

(c) For this specific equation, write u(t) in any one of the three forms, using *numbers* not symbols: You can choose which form.

$$\frac{du}{dt} = \begin{bmatrix} 1 & 2 \\ -1 & 4 \end{bmatrix} u, \text{ starting from } u(0) = \begin{bmatrix} 4 \\ 3 \end{bmatrix}.$$

 $This \ page \ intentionally \ blank.$

2 (30 pts.)

This question is about the real matrix

$$A = \begin{bmatrix} 1 & c \\ 1 & -1 \end{bmatrix}, \text{ for } c \in \mathbb{R}.$$

(a) Find the eigenvalues of A, depending on c. For which values of c does A have real eigenvalues?

(b) - For one particular value of c, convince me that A is similar to both the matrix

$$B = \begin{bmatrix} 2 & 0 \\ 0 & -2 \end{bmatrix},$$

and to the matrix

$$C = \begin{bmatrix} 2 & 2 \\ 0 & -2 \end{bmatrix}.$$

- Don't forget to say which value c this happens for.

For one particular value of c, convince me that A cannot be diagonalized. It is not similar to a diagonal matrix Λ , when c has that value.

- Which value c?
- Why not?

 $This \ page \ intentionally \ blank.$

3 (37 pts.)

- (a) Suppose A is an $n \times n$ symmetric matrix with eigenvalues $\lambda_1 \leq \lambda_2 \leq \ldots \leq \lambda_n$.
 - What is the largest number real number c that can be subtracted from the diagonal entries of A, so that A-cI is positive semidefinite?
 - Why?

- \times (b) Suppose B is a matrix with independent columns.
 - What is the null space N(B)?
 - Show that $A = B^T B$ is positive definite. Start by saying what that means about $x^T A x$.

(c) This matrix A has rank r = 1:

$$A = \begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix}.$$

- Find its largest singular value σ from A^TA .
- From its column space and row space, respectively, find unit vectors u and v so that

$$Av = \sigma u$$
, and $A = u\sigma v^T$.

- From the null spaces of A and A^T put numbers into the full SVD (Singular Value Decomposition) of A:

$$A = \begin{bmatrix} | & & | \\ u & & \dots \\ | & & | \end{bmatrix} \begin{bmatrix} \sigma & & 0 \\ & & & \\ 0 & & \dots \end{bmatrix} \begin{bmatrix} | & & | \\ v & & \dots \\ | & & | \end{bmatrix}^T.$$

 $This \ page \ intentionally \ blank.$