Chapter 3.3

TECHNIQUES OF CAPITAL BUDGETING

CAPITAL EXPENDITURES AND THEIR IMPORTANCE

- The basic characteristics of a capital expenditure (also referred to as a capital investment or just project) is that it involves a current outlay (or current and future outlays) of funds in the expectation of receiving a stream of benefits in future
- Importance stems from
 - Long-term consequences
 - Substantial outlays
 - Difficulty in reversing

CAPITAL BUDGETING PROCESS

- Identification of Potential Investment Opportunities
- Assembling of Investment Proposals
- Decision Making
- Preparation of Capital Budget and Appropriations
- Implementation
- Performance Review

INVESTMENT CRITERIA

NET PRESENT VALUE

NET PRESENT VALUE

The net present value of a project is the sum of the present value of all the cash flows associated with it. The cash flows are discounted at an appropriate discount rate (cost of capital)

Naveen Enter	prise's Capital	Project (Cos	t of Capital=15%

Year	Cash flow	Discount factor	Present
			value
0	-100.00	1.000	-100.00
1	34.00	0.870	29.58
2	32.50	0.756	24.57
3	31.37	0.658	20.64
4	30.53	0.572	17.46
5	79.90	0.497	39.71
			Sum = 31.96

Pros

Cons

- Reflects the time value of money
- Considers the cash flow in its entirety
- Squares with the objective of wealth maximisation

• Is an absolute measure and not a relative

measure

BENEFIT COST RATIO

Benefit-cost Ratio :
$$BCR = \frac{PVB}{I}$$

PVB = present value of benefits

I = initial investment

To illustrate the calculation of these measures, let us consider a project which is being evaluated by a firm that has a cost of capital of 12 percent.

	Rs 100,000
Year 1	25,000
Year 2	40,000
Year 3	40,000
Year 4	50,000
	Year 2 Year 3

The benefit cost ratio measures for this project are:

$$\frac{25,000}{(1.12)} + \frac{40,000}{(1.12)^2} + \frac{40,000}{(1.12)^3} + \frac{50,000}{(1.12)^4}$$
BCR =
$$= -1.145 \quad \text{NBCR} = \text{BCR} - 1 = 0.145$$

INTERNAL RATE OF RETURN

The internal rate of return (IRR) of a project is the discount rate that makes its NPV equal to zero.

Net Present Value

- Assumes that the discount rate (cost of capital) is known.
- Calculates the net present value, given the discount rate.

Internal Rate of Return

- Assumes that the net present value is zero
- Figures out the discount rate that makes net present value zero

CALCULATION OF IRR

You have to try a few discount rates till you find the one that makes the NPV zero

Year	Cash	Disc	ounting	Discou	nting	Disc	counting
	flow	rate	: 20%	rate :	24%	rat	e: 28%
		Discount	t Present	_Discount_	Present	_Discount	Present
		factor	Value	factor	Value	factor	Value
0	-100	1.000	-100.00	1.000	-100.00	1.000	-100.00
1	34.00	0.833	28.32	0.806	27.40	0.781	26.55
2	32.50	0.694	22.56	0.650	21.13	0.610	19.83
3	31.37	0.579	18.16	0.524	16.44	0.477	14.96
4	30.53	0.482	14.72	0.423	12.91	0.373	11.39
5	79.90	0.402	32.12	0.341	27.25	0.291	23.25

NPV = 15.88

NPV = 5.13

NPV = -4.02

CALCULATION OF IRR

Smaller discount + rate

NPV at the smaller rate

Sum of the absolute values of the NPV at the smaller and the bigger discount rates

Bigger Smaller
X discount – discount
rate rate

$$\begin{array}{c}
5.13 \\
24\% + \overline{)5.13 + 4.02}
\end{array} \left[28\% - 24\% \right] = 26.24\%$$

PROBLEMS WITH IRR

Non-conventional cash flows

Mutually exclusive projects

Lending vs. Borrowing

Differences between short-term and

long-term interest rates

NON-CONVENTIONAL CASH FLOWS

MUTUALLY EXCLUSIVE PROJECTS

		C_1	IRR	NPV (12%)
P	-10,000	20,000	100%	7,857
Q	-50,000	75,000	50%	16,964

LENDING VS BORROWING

	C_0	C_1	IRR	NPV (10%)
A	-4000	6000	50%	145
В	4000	-7000	75%	-236

PAYBACK PERIOD

Payback period is the length of time required to recover the initial outlay on the project

Naveen Enterprise's Capital Project

Year	Cash flow	Cumulative cash flow
0	-100	-100
1	34	- 66
2	32.5	-33.5
3	31.37	- 2.13
4	30.53	28.40
Dung		Cara

<u>Pros</u>

- Simple
- Rough and ready method for dealing with risk
- Emphasises earlier cash inflows

Cons

- Fails to consider the time value of money
- Ignores cash flows beyond the payback period

AVERAGE RATE OF RETURN

Average PAT

Average Book Value of Investment (Beginning)

Naveen Enterprise's Capital Project

Year	Book value of	PAI
	Investment(Beg)	
1	100	14
2	80	17.5
3	65	20.12
4	53.75	22.09
5	45.31	23.57

$$ARR = \frac{\frac{1/5(14+17.5+20.12+22.09+23.57)}{1/5(100+80+65+53.75+45.31)} = 28.31\%$$

Pros

- Simple
- Based on accounting information
 businessmen are familiar with
 Considers benefits over the entire project life

Cons

- Based on accounting profit, not cash flow
- Does not take into account the time value of money

INVESTMENT APPRAISAL IN PRACTICE

- Over time, discounted cash flow methods have gained in importance and internal rate of return is the most popular evaluation method.
- Firms typically use multiple evaluation methods.
- Accounting rate of return and payback period are widely employed as supplementary evaluation methods.

SUMMING UP

• NPV =
$$\sum_{t=1}^{n} \frac{C_t}{(1+r)^t}$$
 - I
• BCR = $\frac{PVB}{}$

• IRR is the value of r in the following equation

$$I = \sum_{t=1}^{n} \frac{C_t}{(1+r)^t}$$

- •The payback period is the length of time required to recover the initial cash outlay on the project
- The accounting rate is defined as:

Average profit after tax

Average book value of investment

Example

 1) The expected cash flows of a project are as follows:

Year	Cash Flow
0	-100000
1	20000
2	30000
3	40000
4	50000
5	30000

• The cost of capital is 12%. Calculate the following: a) net present value b) benefit cost ratio c) internal rate of return d) modified internal rate of return e) payback period f) discounted payback period

Solution

- A) NPV=-1000000 + (200000/1.12) + (300000/1.12^2) + (400000/1.12^3) + (50000 / 1.12^4) + (300000/1.12^5) = 19060
- B) Benefit cost ratio is = 119060/100000=1.19

• C) Try discount rate of 18%. The NPV is 1750. Try a discount rate of 19%. The NPV at 19% discount rate is -780

- Hence IRR is
- (1750/2530) = 0.69 = 18% + 0.69 = 18.69%

- D) MIRR = The future value of benefits when compounded at 12% is
- = 20000* (1.12^4) + 30000 * (1.12^3) + 40000 * (1.12^2) + 50000 * (1.12) + 30000 = 209790
- $=1000000 * (1+r) ^5 = 209790$
- MIRR = 15.97%

- E) The payback period is slightly more than
 3 years
- F) The discounted payback period is slightly less than 4 years

 Q.1 Sulabh International is evaluating a project whose expected cash flows are as follows:

Year	Cash flow (Rs.)
0	-1000000
1	100000
2	200000
3	300000
4	600000
5	300000

- a) What is the NPV of the project, if the discount rate is 14% for the entire period?
- b) What is the NPV of the project if the discount rate is 12% for year 1 and rises every year by 1%?

• Q.2 What is the internal rate of return of an investment which involves a current outlay of Rs. 300000 and results in a annual cash inflow of Rs. 60000 for 7 years?

Q.3) What is the internal rate of return of the following cash flow stream?

Year	Cash Flow (Rs.)
0	(3000)
1	9000
2	(3000)

• Q.4 If an equipment costs Rs. 500000 and lasts 8 years, what should be the minimum annual cash inflow before it is worthwhile to purchase the equipment? Assume that the cost of capital is 10%.

Q.5 How much can be paid for a machine brings an annual cash inflow of Rs. 25000 for 10 years? Assume that the discount rate is 12%.

 Q.6 The cash flows associated with three projects P,Q and R are given below:

	Net	Cash	Flows
Year	P	Q	R
0	(2000)	(2000)	(2000)
1	1400	500	500
2	600	1100	500
3	400	900	1600

Calculate the net present value of each project at discount rate of 5%, 10%, 15%, 25% and 30%

 Q.7) Phoenix Company is considering two mutually exclusive investments, Project P and Project Q. the expected cash flows of these projects are as follows:

Year	Project P (Rs.)	Project (Q) Rs.
0	(1000)	(1600)
1	(1200)	200
2	(600)	400
3	(250)	600
4	2000	800
5	4000	100