Fast Obstacle k-Nearest Neighbour Query on Navigation Mesh Final Presentation

Shizhe Zhao (27505928) Supervisors: David Taniar, Daniel Harabor

Outline

- 1 Introduction
- 2 Related works
- 3 Challenges
- 4 New Framework
- 5 My research
- 6 Experiments
- 7 Conclusion and future work
- 8 Enc

k-Nearest Neighbor:

Given:

Traditional k-Nearest Neighbor

- Given:
 - *q*: query point

- Given:
 - q: query point
 - *T*: target set (e.g. {*A*, *B*, *C*, *D*})

- Given:
 - q: query point
 - *T*: target set (e.g. {*A*, *B*, *C*, *D*})
 - *k*: number of retrieved targets (e.g. *k* = 1)

- Given:
 - q: query point
 - *T*: target set (e.g. {*A*, *B*, *C*, *D*})
 - k: number of retrieved targets (e.g. k = 1)
- Return: top k nearest targets regarding Euclidean distance d_e

- Given:
 - q: query point
 - *T*: target set (e.g. {*A*, *B*, *C*, *D*})
 - k: number of retrieved targets (e.g. k = 1)
- Return: top k nearest targets regarding Euclidean distance d_e
- the circle indicates that *D* is the nearest neighbor of *q*

Obstacle k-Nearest Neighbor

- traditional kNN has been well studied.
- when take obstacles into consideration...
- \blacksquare metric: Obstacle distance d_o

Obstacle k-Nearest Neighbor

- traditional kNN has been well studied.
- when take obstacles into consideration...
- \blacksquare metric: Obstacle distance d_o

Obstacle k-Nearest Neighbor

- traditional kNN has been well studied.
- when take obstacles into consideration...
- \blacksquare metric: Obstacle distance d_o

Application Scenario

In an industrial warehouse,

q is a robot.

It's interested in the closest storage locations.

but it can not cross obstacles

Outline

- 1 Introduction
- 2 Related works
- 3 Challenges
- 4 New Framework
- 5 My research
- 6 Experiments
- 7 Conclusion and future work
- 8 Enc

How to compute Obstacle Distance

- Existing works rely on visibility graph (VG)
 - any pair of visible points has an edge
- Run shortest path algorithm on *VG* (e.g. *Dijkstra*)
- Number of edge: up to $O(V^2)$

(V: the number of vertex

How to compute Obstacle Distance

- Existing works rely on visibility graph (VG)
 - any pair of visible points has an edge
- Run shortest path algorithm on *VG* (e.g. *Dijkstra*)
- Number of edge: up to $O(V^2)$

(V: the number of vertex

How to compute Obstacle Distance

- Existing works rely on visibility graph (VG)
 - any pair of visible points has an edge
- Run shortest path algorithm on *VG* (e.g. *Dijkstra*)
- Number of edge: up to $O(V^2)$

(V: the number of vertex

How to compute Obstacle Distance

- Existing works rely on visibility graph (VG)
 - any pair of visible points has an edge
- Run shortest path algorithm on *VG* (e.g. *Dijkstra*)
- Number of edge: up to $O(V^2)$

(V: the number of vertex)

How to compute Obstacle Distance

- Global VG: expansive
- Motivation: only consider query related area
- Zhang, EDBT 2004: Local Visibility Graph (LVG)

How to compute Obstacle Distance

- Global VG: expansive
- Motivation: only consider query related area
- Zhang, EDBT 2004: Local Visibility Graph (LVG)

How to compute Obstacle Distance

- Global VG: expansive
- Motivation: only consider query related area
- Zhang, EDBT 2004: Local Visibility Graph (LVG)

- Given: q, t
- Start with a small VG in *circle*(*q*, *r*)

$$r = d_e(q, t)$$

- Compute shortest path on current VG
- Enlarge the circle
 - update VG incrementally
 - compute new
- Terminate when $r > d_0(a, t)$

- Given: q, t
- Start with a small VG in circle(q, r)

$$r = d_e(q, t)$$

- Compute shortest path on current VG
- Enlarge the circle
 - update VG incrementally
 - compute new shortest path
- Terminate when $r > d_0(a, t)$

- Given: q, t
- Start with a small VG in circle(q, r)

$$r = d_e(q, t)$$

- Compute shortest path on current VG
- Enlarge the circle
 - update VG incrementally
 - compute new shortest path
- Terminate when $r > d_r(a, t)$

- Given: q, t
- Start with a small VG in circle(q, r)

$$r = d_e(q, t)$$

- Compute shortest path on current VG
- Enlarge the circle
 update VG
 incrementally
 - compute new shortest path
- Terminate when $r > d_0(a, t)$

- Given: q, t
- Start with a small VG in circle(q, r)

$$r = d_e(q, t)$$

- Compute shortest path on current VG
- Enlarge the circle
 - update VG incrementally
 - compute new shortest path
- Terminate when $r > d_0(a, t)$

- Given: q, t
- Start with a small VG in circle(q, r)

$$r = d_e(q,t)$$

- Compute shortest path on current VG
- Enlarge the circle
 - update VG incrementally
 - compute new shortest path
- Terminate when $r > d_r(a, t)$

- Given: q, t
- Start with a small VG in circle(q, r)

$$r = d_e(q,t)$$

- Compute shortest path on current VG
- Enlarge the circle
 - update VG incrementally
 - compute new shortest path
- Terminate when $r > d_n(a, t)$

- Given: *q*, *t*
- Start with a small VG in circle(q, r)

$$r = d_e(q, t)$$

- Compute shortest path on current VG
- Enlarge the circle
 - update VG incrementally
 - compute new shortest path
- Terminate when $r > d_o(q, t)$

Outline

- 1 Introduction
- 2 Related works
- 3 Challenges
- 4 New Framework
- 5 My research
- 6 Experiments
- 7 Conclusion and future work
- 8 Enc

State of the art

■ The *LVG* algorithm is widely used in many Obstacle Spatial Query Processing.

State of the art

- The *LVG* algorithm is widely used in many Obstacle Spatial Query Processing.
 - It can be easily extended to multi-targets scenario

State of the art

- The *LVG* algorithm is widely used in many Obstacle Spatial Query Processing.
 - It can be easily extended to multi-targets scenario
- It's still the state-of-the-art.

State of the art

- The *LVG* algorithm is widely used in many Obstacle Spatial Query Processing.
 - It can be easily extended to multi-targets scenario
- It's still the state-of-the-art.
- However ...

Disadvantages

It has some disadvantages:

- Costly online visibility checking
- An incremental construction can easily reach to $O(V^2)$ edges
- Duplicated effort: the VG is discarded each time the q changes

Disadvantages

It has some disadvantages:

- Costly online visibility checking
- An incremental construction can easily reach to $O(V^2)$ edges
- Duplicated effort: the VG is discarded each time the q changes

Disadvantages

It has some disadvantages:

- Costly online visibility checking
- An incremental construction can easily reach to $O(V^2)$ edges
- Duplicated effort:
 the VG is discarded each time the q changes

Outline

- 1 Introduction
- 2 Related works
- 3 Challenges
- 4 New Framework
- 5 My research
- 6 Experiments
- 7 Conclusion and future work
- 8 Enc

Navigation Mesh

Finally, navigation mesh comes to our sight.

Navigation Mesh

Finally, navigation mesh comes to our sight.

traversable space => convex polygons

Advantage

Advantage

We can easily preprocess the entire map!

Advantage

Previous works are not suitable for database scenario

- Previous works are not suitable for database scenario
 - not optimal

- Previous works are not suitable for database scenario
 - not optimal
 - inefficient

- Previous works are not suitable for database scenario
 - not optimal
 - inefficient
 - requiring costly preprocessing

- Previous works are not suitable for database scenario
 - not optimal
 - inefficient
 - requiring costly preprocessing
- But a recent work in 2017: Polyanya

- Previous works are not suitable for database scenario
 - not optimal
 - inefficient
 - requiring costly preprocessing
- But a recent work in 2017: *Polyanya*
 - fast, optimal, flexible

- Previous works are not suitable for database scenario
 - not optimal
 - inefficient
 - requiring costly preprocessing
- But a recent work in 2017: Polyanya
 - fast, optimal, flexible
 - a new direction for Obstacle kNN query

What's the Polyanya?

- a map with polygonal obstacles
- q: query point
- t: target
- a precomputed navigation mesh
- convex polygon: all inside points are visible
- find the shortest path along meshes

What's the Polyanya?

- a map with polygonal obstacles
- q: query point
- t: target
- a precomputed navigation mesh
- convex polygon: all inside points are visible
- find the shortest path along meshes

What's the Polyanya?

- a map with polygonal obstacles
- *q*: query point
- t: target
- a precomputed navigation mesh
- convex polygon: all inside points are visible
- find the shortest path along meshes

What's the Polyanya?

- a map with polygonal obstacles
- *q*: query point
- t: target
- a precomputed navigation mesh
- convex polygon:
 all inside points
 are visible
- find the shortest path along meshes

What's the Polyanya?

- a map with polygonal obstacles
- q: query point
- *t*: target
- a precomputed navigation mesh
- convex polygon: all inside points are visible
- find the shortest path along meshes

What's the Polyanya?

- a map with polygonal obstacles
- *q*: query point
- t: target
- a precomputed navigation mesh
- convex polygon: all inside points are visible
- find the shortest path along meshes

What's the Polyanya?

- a map with polygonal obstacles
- *q*: query point
- t: target
- a precomputed navigation mesh
- convex polygon: all inside points are visible
- find the shortest path along meshes

Polyanya: Overview

Polyanya is an A^* like algorithm, it has three components

- 1 Search Node
- 2 Successors
- 3 Evaluation Function

Polyanya: Overview

Polyanya is an A^* like algorithm, it has three components

- Search Node
- 2 Successors
- Evaluation Function

Polyanya: Overview

Polyanya is an A^* like algorithm, it has three components

- Search Node
- 2 Successors
- 3 Evaluation Function

Polyanya: Search Node

- root r: $r \in (V \cup \{q\})$
- interval /: on an edge
- all points $\in I$: visible from r

Polyanya: Search Node

- root r: $r \in (V \cup \{q\})$
- interval *I*: on an edge
- all points \in I: visible from r

Polyanya: Search Node

- root r: $r \in (V \cup \{q\})$
- interval *I*: on an edge
- all points \in *I*: visible from *r*

- Successors are also search nodes
- Generated by pushing the parent node away to adjacent mesh.

- Successors are also search nodes
- Generated by pushing the parent node away to adjacent mesh.

- Observable successors
 - root: parent's root
- Non-observable
 - root: an end point of I

- Observable successors
 - root: parent's root
- Non-observable successors
 - root: an end point of /

- Observable successors
 - root: parent's root
- Non-observable successors
 - root: an end point of /

- Observable successors
 - root: parent's root
- Non-observable successors
 - root: an end point of I

Polyanya: Evaluation Function

Evaluation function of a search node (r, I) has:

- g-value: |shortestPath(q, r)| (certain)
- h-value: r to t cross l (underestimation)
- f-value:
 g-value + h-value
 (underestimation of lshortestPath(α, t))

Polyanya: Evaluation Function

Evaluation function of a search node (r, I) has:

- g-value: |shortestPath(q, r)| (certain)
- h-value: r to t cross I (underestimation)
- f-value:
 g-value + h-value
 (underestimation of
 |shortestPath(q, t|)

Polyanya: Evaluation Function

Evaluation function of a search node (r, I) has:

- g-value: |shortestPath(q, r)| (certain)
- h-value: r to t cross I (underestimation)
- f-value: g-value + h-value (underestimation of |shortestPath(q, t|)

Polyanya: Example

Initial Search Nodes are edges of mesh that contains the q.

Search Node (q, [e, c]) has the best estimation, so popped out

Expand successors in adjacent mesh.

Pop (q, [g, h]), adjacent to obstacle, so we discard it.

Pop (q, [c, g]).

Expand successors.

Pop (q, [g, o]), the adjacent mesh contains t. We've found the shortest path!

Outline

- 1 Introduction
- 2 Related works
- 3 Challenges
- 4 New Framework
- 5 My research
- 6 Experiments
- 7 Conclusion and future work
- 8 End

- Polyanya only work for single pair shortest path
- My research
 - multi-targets search based on framework of Polyanya
 - with good scalability

- Polyanya only work for single pair shortest path
- My research:
 - multi-targets search based on framework of *Polyanya*
 - with good scalability

oduction Related works Challenges New Framework **My research** Experiments Conclusion and future work

- Polyanya only work for single pair shortest path
- My research:
 - multi-targets search based on framework of Polyanya
 - with good scalability

oduction Related works Challenges New Framework **My research** Experiments Conclusion and future work

- Polyanya only work for single pair shortest path
- My research:
 - multi-targets search based on framework of Polyanya
 - with good scalability

A naive solution is calling *Polyanya* for each target:

Proposed algorithm 1: brute-force *Polyanya*

A naive solution is calling *Polyanya* for each target:

```
for t in targets:
  polyanya.run(q, t)
```

Drawback: inefficient when targets many.

Proposed algorithm 1: brute-force Polyanya

A naive solution is calling *Polyanya* for each target:

```
for t in targets:
   polyanya.run(q, t)
```

Drawback: inefficient when targets many.

- Let's review the evaluation function in Polyanya
- When there are multiple targets...
 h-value shouldn't affected by a specific target
- How about remove t from h-value?

- Let's review the evaluation function in Polyanya
- When there are multiple targets...
 - h-value shouldn't affected by a specific target
- How about remove t from h-value

- Let's review the evaluation function in Polyanya
- When there are multiple targets...
 - h-value shouldn't affected by a specific target
- How about remove t from h-value

- Let's review the evaluation function in Polyanya
- When there are multiple targets...
 - h-value shouldn't affected by a specific target
- How about remove t from h-value?

Then we get: Interval heuristic

- g-value is same
- \blacksquare h-value: distance from r to I

Then we get: Interval heuristic

- *g-value* is same
- h-value: distance from r to I

- interval heuristic causes redundant expansions
- especially in sparse targets scenario
- e.g.: query is "nearest storage locations where capacity >= 100".
- motivation: we may need t in h-value to make search smarter

- interval heuristic causes redundant expansions
- especially in sparse targets scenario
- e.g.: query is "nearest storage locations where capacity >= 100".
- motivation: we may need t in h-value to make search smarter

- interval heuristic causes redundant expansions
- especially in sparse targets scenario
- e.g.: query is "nearest storage locations where capacity >= 100".
- motivation: we may need t in h-value to make search smarter

- interval heuristic causes redundant expansions
- especially in sparse targets scenario
- e.g.: query is "nearest storage locations where capacity >= 100".
- motivation: we may need t in h-value to
 make search smarter

- interval heuristic causes redundant expansions
- especially in sparse targets scenario
- e.g.: query is "nearest storage locations where capacity >= 100".
- motivation: we may need t in h-value to make search smarter

Let me introduce the detail of *h-value* in *Polyanya*,

- Case 1: $d_e(r, t_1)$
- Case 2: $d_e(r, a) + d_e(a, t_2)$
- Case 3: when r and t₃ at same side, compute mirror point of t₃, and go to Case 1 or Case 2

Let me introduce the detail of h-value in *Polyanya*,

- Case 1: $d_e(r, t_1)$
- \blacksquare Case 3: when r and t_3 at same

Let me introduce the detail of h-value in *Polyanya*,

- Case 1: $d_e(r, t_1)$
- Case 2: $d_e(r, a) + d_e(a, t_2)$
- \blacksquare Case 3: when r and t_3 at same

Let me introduce the detail of h-value in *Polyanya*,

- Case 1: $d_e(r, t_1)$
- Case 2: $d_e(r, a) + d_e(a, t_2)$
- Case 3: when r and t_3 at same side, compute mirror point of t_3 , and go to Case 1 or Case 2

When there are multiple targets ...

When there are multiple targets ...

Definition

closest target of search node is a target t that $h_p(node, t)$ is minimal.

When there are multiple targets ...

Definition

closest target of search node is a target t that $h_p(node, t)$ is minimal.

How to find the closest target for a search node?

- In Case 3, instead of flipping targets, we can flip the *r*
- Let $NN_e(area, p)$: traditional nearest neighbor of p in area.

- In Case 3, instead of flipping targets, we can flip the r
- Let $NN_e(area, p)$: traditional nearest neighbor of p in area.

- In Case 3, instead of flipping targets, we can flip the r
- Let $NN_e(area, p)$: traditional nearest neighbor of p in area.

- In Case 3, instead of flipping targets, we can flip the r
- Let $NN_e(area, p)$: traditional nearest neighbor of p in area.

- \blacksquare In Case 3, instead of flipping targets, we can flip the r
- Let $NN_e(area, p)$: traditional nearest neighbor of p in area.

- NN_e(areaB∪areaB',b) Or
- \blacksquare $NN_e(areaC,r)$ or

- \blacksquare In Case 3, instead of flipping targets, we can flip the r
- Let $NN_e(area, p)$: traditional nearest neighbor of p in area.

- \blacksquare $NN_e(areaA \cup areaA', a)$ Or
- $NN_e(areaB \cup areaB', b)$ Or
- NN_e(areaC,r) or
- \blacksquare $NN_e(areaC',r')$

- In Case 3, instead of flipping targets, we can flip the r
- Let $NN_e(area, p)$: traditional nearest neighbor of p in area.

- $NN_e(areaB \cup areaB', b)$ Or
- NN_e(areaC,r) or
- NN_e(areaC',r')
- Choose the best

- For each successor, assign the closest target to it
- Correctness

- For each successor, assign the closest target to it
- Correctness:

Lemma

Non-decreasing property: Whenever the closest target of a search node changes, the h-value never decrease.

Proposed algorithm 3: target heuristic

- For each successor, assign the closest target to it
- Correctness:

Lemma

Non-decreasing property: Whenever the closest target of a search node changes, the h-value never decrease.

■ Four *R-tree* queries for each search node is expensive

Proposed algorithm 3: target heuristic

- Four *R-tree* queries for each search node is expensive
- So we are looking for further refinements...

Lazy query

Lazy query

Definition

In expansion, instead of finding a new target, successors can inherit the closest target from their parent if the *h-value* doesn't change.

Lazy query

Definition

In expansion, instead of finding a new target, successors can inherit the closest target from their parent if the *h-value* doesn't change.

Correctness

Lazy query

Definition

In expansion, instead of finding a new target, successors can inherit the closest target from their parent if the *h-value* doesn't change.

Correctness

Lemma

In this case, it is impossible to find a target with less h-value.

■ Reassignment

Reassignment

Definition

Once t be retrieved, we must reassign another target to those search nodes who are regarding t as their closest target

Reassignment

Definition

Once t be retrieved, we must reassign another target to those search nodes who are regarding t as their closest target

■ Lazy reassignment

■ Reassignment

Definition

Once t be retrieved, we must reassign another target to those search nodes who are regarding t as their closest target

Lazy reassignment

Definition

Instead of exploring the entire open list, we can do reassignment when such search node pop out

Reassignment

Definition

Once t be retrieved, we must reassign another target to those search nodes who are regarding t as their closest target

Lazy reassignment

Definition

Instead of exploring the entire open list, we can do reassignment when such search node pop out

Correctness

Reassignment

Definition

Once t be retrieved, we must reassign another target to those search nodes who are regarding t as their closest target

Lazy reassignment

Definition

Instead of exploring the entire open list, we can do reassignment when such search node pop out

Correctness

Lemma

Lazy reassignment doesn't change relative expansion order.

Outline

- 1 Introduction
- 2 Related works
- 3 Challenges
- 4 New Framework
- 5 My research
- 6 Experiments
- 7 Conclusion and future work
- 8 End

Benchmark Problem

Dataset in *Zhang*, *EDBT* 2004: no longer available, so we generate new benchmark problems:

- All parks (≈ 9000) in Australia from OpenStreetMap
- Use them as polygonal obstacles

Benchmark Problem

Dataset in *Zhang*, *EDBT* 2004: no longer available, so we generate new benchmark problems:

- All parks (≈ 9000) in Australia from OpenStreetMap
- Use them as polygonal obstacles

Benchmark Problem

Dataset in *Zhang, EDBT 2004*: no longer available, so we generate new benchmark problems:

- All parks (≈ 9000) in Australia from OpenStreetMap
- Use them as polygonal obstacles

Competitors

There are two types of test case:

- Dense targets: $|T| \approx |O|, |O| \approx 9000$
- Sparse targets: $|T| <= 10, |O| \approx 9000$

In dense targets experiments, we compare between:

- LVG (from Zhang, EDBT 2004)
- Interval heuristic
- Target heuristic

In sparse targets experiments, we compare between:

- burte-force Polyanya
- Interval heuristic
- Target heuristic

Dense targets

■ *Interval heuristic* is three order of magnitude faster than *LVG*, in all aspects.

Sparse targets: fix k = 1

- Target heuristic always has smaller search space. (left)
- It gradually lose such advantage when |T| increase. (right)
- Reason: the costly heuristic function.

Sparse targets: fix k = 1

- Target heuristic always has smaller search space. (left)
- It gradually lose such advantage when |T| increase. (right)
- Reason: the costly heuristic function.

Sparse targets: fix k = 1

- Target heuristic always has smaller search space. (left)
- It gradually lose such advantage when |T| increase. (right)
- Reason: the costly heuristic function.

Sparse targets: fix |T| = 10

- Target heuristic always has small search space. (left)
- It's outperformed by brute-force Polyanya when $k \ge 2$. (right)
- Reason: lazy reassignment becomes more frequent.

Sparse targets: fix |T| = 10

- Target heuristic always has small search space. (left)
- It's outperformed by brute-force Polyanya when $k \ge 2$. (right)
- Reason: lazy reassignment becomes more frequent.

Sparse targets: fix |T| = 10

- Target heuristic always has small search space. (left)
- It's outperformed by brute-force Polyanya when $k \ge 2$. (right)
- Reason: lazy reassignment becomes more frequent.

Outline

- 1 Introduction
- 2 Related works
- 3 Challenges
- 4 New Framework
- 5 My research
- 6 Experiments
- 7 Conclusion and future work
- 8 End

Conclusion

- Proposed algorithms outperform *LVG* in all cases
- Interval heuristic works well when targets are many
- Target heuristic works well when targets are few and k is also small

Conclusion

- Proposed algorithms outperform *LVG* in all cases
- Interval heuristic works well when targets are many
- Target heuristic works well when targets are few and k is also small

Conclusion

- Proposed algorithms outperform LVG in all cases
- Interval heuristic works well when targets are many
- Target heuristic works well when targets are few and k is also small

Conclusion

Shizhe Zhao, David Taniar, Daniel Harabor, "Fast k-Nearest Neighbor On A Navigation Mesh", Proceedings of the 11th Annual Symposium on Combinatorial Search (SoCS'2018), colocated with IJCAI/ECAI'2018, July 2018 (accepted for publication)

Future works 1: improve other query processing

Proposed algorithms can be used to speed up other types of spatial query which need to compute obstacle distance, e.g. Obstacle Reverse Nearest Neighbor.

Future works 2: improve target heuristic

- Target heuristic cost $\approx 80\%$ of total run time in *R*-tree query.
- Improve it by combining four queries into one, or using more suitable datastructure

Future works 2: improve target heuristic

- Target heuristic cost $\approx 80\%$ of total run time in R-tree query.
- Improve it by combining four queries into one, or using more suitable datastructure.

Future works 3: improve brute-force Polyanya

- We notice that *brute-force Polyanya* sometimes outperforms other proposed algorithms in sparse scenario.
- Instead of considering every target, maybe a smart pruning strategy can make it work in general scenario.

Future works 3: improve brute-force Polyanya

- We notice that *brute-force Polyanya* sometimes outperforms other proposed algorithms in sparse scenario.
- Instead of considering every target, maybe a smart pruning strategy can make it work in general scenario.

Outline

- 1 Introduction
- 2 Related works
- 3 Challenges
- 4 New Framework
- 5 My research
- 6 Experiments
- 7 Conclusion and future work
- 8 End

End

Q & A

End

Thank you!

