Floating Point

15-213: Introduction to Computer Systems 4th Lecture, Sept. 8, 2016

Today's Instructor:

Randy Bryant

Correction from last time

Unsigned Multiplication in C

Standard Multiplication Function

Ignores high order w bits

Implements Modular Arithmetic

$$UMult_w(u, v) = u \cdot v \mod 2^w$$

Signed Multiplication in C

Standard Multiplication Function

- Ignores high order w bits
- Some of which are different for signed vs. unsigned multiplication
- Lower bits are the same

Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

Fractional binary numbers

■ What is 1011.101₂?

Fractional Binary Numbers

- Bits to right of "binary point" represent fractional powers of 2
- Represents rational number: $\sum_{k=-i}^{i} b_k \times 2^k$

Fractional Binary Numbers: Examples

Value

$$5 3/4 = 23/4$$
 101.11_2 $2 7/8 = 23/8$ 10.111_2

$$= 2 + 1/2 + 1/4 + 1/8$$

= 4 + 1 + 1/2 + 1/4

$$1.0111_2 = 1 + 1/4 + 1/8 + 1/16$$

Observations

- Divide by 2 by shifting right (unsigned)
- Multiply by 2 by shifting left
- Numbers of form 0.111111...₂ are just below 1.0

■
$$1/2 + 1/4 + 1/8 + ... + 1/2^i + ... \rightarrow 1.0$$

■ Use notation 1.0 – ε

Representable Numbers

- Limitation #1
 - Can only exactly represent numbers of the form x/2^k
 - Other rational numbers have repeating bit representations
 - Value Representation
 - **1/3** 0.01010101[01]...2
 - 1/5 0.001100110011[0011]...₂
 - **1/10** 0.000110011[0011]...2
- Limitation #2
 - Just one setting of binary point within the w bits
 - Limited range of numbers (very small values? very large?)

Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

IEEE Floating Point

- IEEE Standard 754
 - Established in 1985 as uniform standard for floating point arithmetic
 - Before that, many idiosyncratic formats
 - Supported by all major CPUs
 - Some CPUs don't implement IEEE 754 in full e.g., early GPUs
- Driven by numerical concerns
 - Nice standards for rounding, overflow, underflow
 - Hard to make fast in hardware
 - Numerical analysts predominated over hardware designers in defining standard

Floating Point Representation

Numerical Form:

Example:
$$15213_{10} = (-1)^0 \times 1.1101101101101_2 \times 2^{13}$$

- Sign bit s determines whether number is negative or positive
- Significand M normally a fractional value in range [1.0,2.0).

 $(-1)^{s} M 2^{E}$

- Exponent E weights value by power of two
- Encoding
 - MSB S is sign bit s
 - exp field encodes E (but is not equal to E)
 - frac field encodes M (but is not equal to M)

s exp trac

Precision options

- Single precision: 32 bits
 - ≈ 7 decimal digits, $10^{\pm 38}$

S	ехр	frac
1	8-bits	23-bits

- Double precision: 64 bits
 - ≈ 16 decimal digits, $10^{\pm 308}$

Other formats: half precision, quad precision

"Normalized" Values

 $v = (-1)^s M 2^E$

- When: exp ≠ 000...0 and exp ≠ 111...1
- Exponent coded as a biased value: E = Exp Bias
 - Exp: unsigned value of exp field
 - Bias = 2^{k-1} 1, where k is number of exponent bits
 - Single precision: 127 (Exp: 1...254, E: -126...127)
 - Double precision: 1023 (Exp: 1...2046, E: -1022...1023)
- Significand coded with implied leading 1: M = 1.xxx...x₂
 - xxx...x: bits of frac field
 - Minimum when frac=000...0 (M = 1.0)
 - Maximum when frac=111...1 (M = 2.0ε)
 - Get extra leading bit for "free"

Normalized Encoding Example

$$v = (-1)^s M 2^E$$

 $E = Exp - Bias$

- Value: float F = 15213.0;
 - $15213_{10} = 11101101101101_2$ = $1.1101101101101_2 \times 2^{13}$
- Significand

Exponent

$$E = 13$$
 $Bias = 127$
 $Exp = 140 = 10001100_{2}$

Result:

16

Denormalized Values

$$v = (-1)^{s} M 2^{E}$$

 $E = 1 - Bias$

- **■** Condition: exp = 000...0
- Exponent value: E = 1 Bias (instead of 0 Bias)
- Significand coded with implied leading 0: M = 0.xxx...x₂
 - xxx...x: bits of frac
- Cases
 - exp = 000...0, frac = 000...0
 - Represents zero value
 - Note distinct values: +0 and -0 (why?)
 - exp = 000...0, $frac \neq 000...0$
 - Numbers closest to 0.0
 - Equispaced