(atom**camp**)

MICROSOFT POWER BI MANUAL FOR DESKTOP

Creating a data model

What is a data model?

This IS NOT a data model

- This is a collection of independent tables, which share no connections or relationships
- If you tried to visualize Current Sale, this is what you'd get

Database Normalization

The tables are connected via relationships, based on a common field \cdot Now Current Sales can be filtered using fields from the Lookup table

	76.	•				
Department Name	CurrentSale					
Aquatics	67,400,285.51					
Arts & Crafts	21,773,750.43	Ш				
Astronomy	66,565,374.40	Ш				
Automotive	13,924,659.09	Ш				
Baby Essentials	111,569,458.03	U				
Bakery	53,932,127.36					
Beauty & Cosmetics	128,912,417.47					
Bedding & Bath	130,038,975.66					
Beverages	139.06					
Bicycles & Accessories	2,352,575.63					
Books & Magazines	38,897,216.08	1				
Business Books	197,663,588.55					
Camping & Outdoors	19,446,709.84					
Cleaning Supplies	6,182.87					
Collectibles	195,216,073.03					
Commercial Kitchen	299,461,722.85					
Dairy & Eggs	5,236,160.15					
Deli	10,211,053.43					
Eco-Friendly Goods	31,292,100.42					
Educational Supplies	19,747,611.13					
Electronics	20,229,881.83					
Total	4,448,332,866.70	_				

Now this is a data model

Database normalization

Normalization

Normalization is the process of organizing the tables and columns in a relational database to reduce redundancy and preserve data integrity. It's commonly used to:

- Eliminate redundant data to decrease table sizes and improve processing speed & efficiency
- Minimize errors and anomalies from data modifications (inserting, updating or deleting records)
- Simplify gueries and structure the database for meaningful analysis

Models that aren't normalized contain redundant, duplicate data. Selection of the first column shows that there are some duplicates present in the data.

Facts and dimensions table

Data models generally contain two types of tables: fact ("data") tables, and dimension ("lookup") tables:

- Fact tables contain numerical values or metrics used for summarization (sales, orders, transactions, pageviews, etc.)
- Dimension tables contain descriptive attributes used for filtering or grouping (products, customers, dates, stores, etc.)

This **Fact table** contains quantity values, along with product id and other fields

This **Calendar Lookup** table contains attributes about each date (month, year, quarter, etc.)

Primary Keys and foreign keys

These are **primary keys (PK)** They uniquely identify each row of the table, and relate to foreign keys in fact tables

These are foreign keys (FK)
They contain multiple
instances of each value, and
relate to primary keys in
dimension tables

_	Customer ID	Customer Name	-	Email	-	Phone Number	-
\blacksquare	00246-15080-LE	Francesco Dressel					
铝	00256-19905-YG	Stanislaus Valsler				+353 (479) 865-92	222
	00445-42781-KX	Faunie Brigham		fbrighamhg@blog.com		+353 (620) 657-29	946
(XAO	00539-42510-RY	Nickey Youles		nyoules2t@reference.com		+353 (641) 846-765	
	00841-75330-ZV	Rori Ollin				+1 (626) 704-3749	9
	00852-54571-WP	De Drewitt		ddrewittnf@mapquest.com		+1 (571) 504-1175	
	00886-35803-FG	Edeline Edney				+1 (205) 866-7629	9
	00888-74814-UZ	Theresita Newbury		tnewburys@usda.gov		+353 (803) 587-00	026
	01035-70465-UO	Anselma Attwater		aattwater5u@wikia.com		+1 (434) 821-8618	В
	01282-28364-RZ	Koressa O'Geneay		kogeneayrd@utexas.edu		+1 (303) 637-0326	5
	01297-94364-XH	Deana Staite		dstaite3z@scientificamerican.com		+1 (713) 478-3937	7
	01304-59807-OB	Nico Hubert				+1 (646) 228-3492	2
	01338-83217-GV	Mord Meriet		mmeriet56@noaa.gov		+1 (701) 560-2604	4
	01433-04270-AX	Felecia Dodgson				+1 (973) 434-8662	2
	01474-63436-TP	Read Cutts		rcuttspy@techcrunch.com		+1 (815) 758-8653	3
	01603-43789-TN	Brice Romera		bromeramj@list-manage.com		+353 (640) 110-98	801
	01811-60350-CU	Sarette Ducarel				+1 (914) 915-4328	В
	01841-48191-NL	Cam Jewster		cjewsterlu@moonfruit.com		+1 (937) 925-7390	0
	01881-40815-VO	Faith Powley		fpowleybp@dyndns.org		+1 (504) 873-5980	0
	01927-46702-YT	Nelie Garnson				+44 (141) 640-711	13

Relationships VS Merged Tables

Merging tables creates redundancy and often requires significantly more memory and processing power to analyze compared to a relational model with multiple small tables

The model view

Creating Table Relationships

OPTION 1: Click and drag to connect primary and foreign keys within the **Model** view

OPTION 2: Add or detect relationships using the Manage Relationships dialog box

Star and snowflake schema

A **star schema** is the simplest and most common type of data model, characterized by a single fact table surrounded by related dimension tables

A **snowflake schema** is an extension of a star, and includes relationships between dimension tables and related sub-dimension tables

Relationship cardinality

Cardinality refers to the uniqueness of values in a column

 Ideally, all relationships in the data model should follow a one-to-many cardinality: one instance of each primary key, and many instances of each foreign key

In this example there is only ONE instance of each Product ID in the Products table, since each row contains attributes of a single product. There are MANY instances of each Product ID in the orders table (noted by an asterisk *), since there are multiple sales for each product.

One-one cardinality

In a one-to-one relationship, the column in one table has only one instance of a particular value, and the other related table has only one instance of a particular value.

Both table contains only one instance of a value

Many-many cardinality

With composite models, you can establish a many-to-many relationship between tables, which removes requirements for unique values in tables.

Composite model: Allows two or more data connections, including DirectQuery connections or Import mode.

*: Both table contains more than one instance of a value.

Connecting with multiple fact tables

There are four fact tables in this model

- Behaviour
- Attendance
- Enrolment
- Suspensions

Connecting multiple fact tables in a data model is a common scenario in data warehousing and BI. This approach is often used to analyze different types of events or transactions that share common dimensions.

Filter Context and Flow

Here we have two data tables, connected to Territory Lookup

The arrows show the filter direction, and point from the one (1) side of the relationship to the many (*) side

- When you filter a table, that filter context is passed to any related "downstream" tables, following the arrow's direction
- Filter context CANNOT flow "upstream"

Bi directional filter

Updating the cross-filter direction from Single to Both allows filter context to flow in either direction

Data Formats and categories

Customize data formats from the Column tools menu in the **Data** view or the Properties pane in the **Model** view

Assign data categories for geospatial fields, URLs or barcodes. This is commonly used to help Power BI map location-based fields like addresses, countries, cities, coordinates, zip codes, etc

Hierarchies

Hierarchies are groups of columns that reflect multiple levels of granularity

- For example, a Geography hierarchy might include Country, State and City fields
- Hierarchies are treated as a single item in tables and reports, allowing users to "drill up" and "drill down" through each level

In the Data pane, right-click a field and select Create hierarchy You can keep on adding hierarchy till you reach your desired outcome.
For example in case of a territory you will add continent, then country, city and area and so on.