一、開啟新局

(1)編譯結果

sandra@LAPTOP-AD1R60F7:~/chess2\$ gcc main.c
sandra@LAPTOP-AD1R60F7:~/chess2\$

圖一。編譯結果。

(2)執行結果

引數: -n -s shogi.txt

如下圖一,玩家先輸入想移動的棋子的座標,再輸入該棋子的目的地,都先輸入行在輸入列。確認移動方式符合規則後,則會顯示新的棋盤,若不符合,則會請該玩家在輸入一次。移動完之後再輪到另一位玩家。

圖二。遊戲開始。

當某一方的「王」被吃掉時,則遊戲結束,並顯示哪一方贏得此棋局。如下圖 三。

圖三。

玩家輸入 0 則可悔棋,棋盤便會顯示上一步驟的棋盤。當雙方還沒分出勝負時,玩家可輸入-1 結束遊戲。如下圖四。

```
Tenderson Tend
```

圖四。

下棋過程中也會將資料儲存到文字檔(shogi.txt)。檔案會儲存:回合數 (turns)、移動的旗子代號(chess)、原本座標(from)以及目標座標(to),座標 儲存形式為:(行,列)。如圖四。

如果玩家悔棋,則會直接蓋掉上一輪下棋所儲存的資料。因此圖四的回和數會從2跳到4,是因為中間有悔棋的過程。

圖五。

(3)流程圖(見下頁)

二、讀取棋譜

(1)編譯結果

sandra@LAPTOP-AD1R60F7:~/chess2\$ gcc main.c -lm
sandra@LAPTOP-AD1R60F7:~/chess2\$

圖六。編譯結果。

(2)執行結果

引數:-l shogi.txt

讀取之前所儲存的檔案,將資料存入 stack 裡,再依照 turns 的順序一一顯示 出每個回合的棋盤。如圖八、圖九。

≣ shogi.txt				
1	turns	from	to chess	
2	1	7 7	76 i	
3	2	7 3	7 4 a	
4	3	7 6	75 i	
5	4	7 4	7 5 a	
6				

圖七。此圖為前一局下棋時所存的檔案。

圖八。

圖九。

(3)流程圖

read a old game

