Additional possible FYPs with Dr. Amy Pang, Fall 2019

Here are some other project ideas that you can do with me. Please speak to me if you are interested.

3. Determinants of Almost-Triangular Matrices

Let $S = \{-1, 0\}$ and consider $n \times n$ matrices of the form

$$UH(S)_n = \left\{ \begin{bmatrix} 0 & * & * & \dots & * \\ 1 & \ddots & * & \dots & * \\ 0 & \ddots & \ddots & * & \vdots \\ \vdots & \ddots & \ddots & * & * \\ 0 & \dots & 0 & 1 & 0 \end{bmatrix} \middle| * \in S \right\}.$$

(The *s in different entries can be different.)

Let F_n denote the *n*th Fibonacci number, i.e. from the sequence $0, 1, 1, 2, 3, 5, 8, 13, \ldots$. Computer calculations suggest that

- a. the determinant of any matrix from $UH(S)_n$ is at most F_n ;
- b. the number of distinct determinants for matrices from $UH(S)_n$ is $1 + F_n$.

In this project, we will attempt to prove a. and b., by expanding the determinant along a suitable row or column and then applying induction with the recurrence $F_n = F_{n-1} + F_{n-2}$. A similar result has been proved in [2], and suitably varying the proof there should work.

- [1, Conjectures 12-20] gives several other sets S for which a. above is true. So, if there is time, then we may also consider
 - c. What condition on the set S guarantees that the determinant on $UH(S)_n$ is at most F_n ?
 - d. How does the number of distinct determinants for matrices from $UH(S)_n$ depend on S?

Prerequisites: Ability to write clear accurate proofs, and to work independently.

References

- [1] S. E. Thornton, The Characteristic Polynomial Database, published electronically at http://bohemianmatrices.com/cpdb, January 2019.
- [2] Ching, L. (1993). The maximum determinant of an $n \times n$ lower Hessenberg (0,1) matrix. Linear algebra and its applications, 183, 147-153.