Buses: Connecting I/O to Processor and Memory

- A bus is a shared communication link
- ° It uses one set of wires to connect multiple subsystems

Advantages of Buses

- New devices can be added easily
- Peripherals can be moved between computer systems that use the same bus standard

° Low Cost:

A single set of wires is shared in multiple ways

Disadvantages of Buses

- ° It creates a communication bottleneck
 - The bandwidth of that bus can limit the maximum I/O throughput
- * The maximum bus speed is largely limited by:
 - The length of the bus
 - The number of devices on the bus

The General Organization of a Bus

- $^{\circ}$ Control lines:
 - Signal requests and acknowledgments
 - Indicate what type of information is on the data lines
- Data lines carry information between the source and the destination:
 - Data and Addresses
 - Complex commands
- ° A bus transaction includes two parts:
 - Sending the address
 - Receiving or sending the data

Master versus Slave

- Master is the one who starts the bus transaction by:
 - Sending the address
- $^\circ$ Salve is the one who responds to the address by:
 - Sending data to the master if the master ask for data
 - Receiving data from the master if the master wants to send data

Types of Buses

- ° Processor-Memory Bus
 - Short and high speed
 - Only need to match the memory system
 - Maximize memory-to-processor bandwidth
 - Connects directly to the processor

° I/O Bus

- Usually is lengthy and slower
- Need to match a wide range of I/O devices
- Connects to the processor-memory bus or backplane bus

Backplane Bus

- Backplane: an interconnection structure within the chassis
- Allow processors, memory, and I/O devices to coexist
- Cost advantage: one single bus for all components

A Computer System with One Bus: Backplane Bus

- $^{\circ}$ A single bus (the backplane bus) is used for:
 - Processor to memory communication
 - Communication between I/O devices and memory
- ° Example: IBM PC

A Two-Bus System

- ° I/O buses tap into the processor-memory bus via bus adaptors:
 - Processor-memory bus: mainly for processor-memory traffic
 - I/O buses: provide expansion slots for I/O devices
- Apple Macintosh-II
 - NuBus: Processor, memory, and a few selected I/O devices
 - SCCI Bus: the rest of the I/O devices

A Three-Bus System

- ° A small number of backplane buses tap into the processor-memory bus
 - Processor-memory bus is used for processor memory traffic
 - I/O buses are connected to the backplane bus
- Advantage: loading on the processor bus is greatly reduced

USB

- Oniversal Serial Bus
 - Originally developed in 1995 by a consortium including
 - Compaq, HP, Intel, Lucent, Microsoft, and Philips
 - USB 1.1 supports
 - Low-speed devices (1.5 Mbps)
 - Full-speed devices (12 Mbps)
 - USB 2.0 supports
 - High-speed devices
 - Up to 480 Mbps (a factor of 40 over USB 1.1)
 - Uses the same connectors
 - Transmission speed is negotiated on device-by-device basis

Synchronous and Asynchronous Bus

° Synchronous Bus:

- Includes a clock in the control lines
- A fixed protocol for communication that is relative to the clock
- Advantage: involves very little logic and can run very fast
- Disadvantages:
 - Every device on the bus must run at the same clock rate
 - To avoid clock skew, they cannot be long if they are fast

° Asynchronous Bus:

- It is not clocked
- It can accommodate a wide range of devices
- It can be lengthened without worrying about clock skew
- It requires a handshaking protocol

Obtaining Access to the Bus

- ° One of the most important issues in bus design:
 - How is the bus reserved by a devices that wishes to use it?
- ° Chaos is avoided by a master-slave arrangement:
 - Only the bus master can control access to the bus:
 It initiates and controls all bus requests
 - A slave responds to read and write requests
- ° The simplest system:
 - Processor is the only bus master
 - All bus requests must be controlled by the processor
 - Major drawback: the processor is involved in every transaction

Bus Arbitration

- The arbitration procedure comes into picture whenever there are more than one processors requesting the services of bus.
- Because only one unit may at a time be able to transmit successfully over the bus, there is some selection mechanism is required to maintain such transfers. This mechanism is called as *Bus Arbitration*.
- Bus arbitration decides which component will use the bus among various competing requests.
- A selection mechanism must be based on fairness or priority basis.
- Various methods are available that can be roughly classified as either centralized or distributed.
- There are three arbitration schemes-
 - Daisy chaining
 - Polling
 - Independent requesting

The

- ° PRS method, all requesting components are attached serially on to the bus. **Sch**
- ° This method involves three control signals-
 - BUS REQUEST
 - BUS GRANT
 - BUS BUSY
- ° All the bus units are connected to BUS REQUEST line.
- ° When activated, it indicates that one or more devices are requesting to use the bus.
- Bus Controller responds to a BUS REQUEST only if BUS BUSY is inactive. When bus control is given to requesting device, it enables its physical bus connection and activates BUS BUSY.

The

- * When the 1st requesting device gets control of the bus and recievies BUS GRANT sometime it blocks further propagation of signals, activates BUS BUSY and begins to use bus.
- When a non requesting device receives BUS GRANT signal, it forwards the signal to next device.
- Thus if two devices simultaneously request bus access, the device that is closer to the bus controller receives BUS GRANT and receives the bus control.
- Means the devices that are closed to the bus controller are of higher priority than those of the other devices.

cs 152 buses.15 ©DAP & SIK 1995

Polling

- This method replaces the BUS GRANT line of daisy chain method with a set of poll count lines that are connected directly to all devices on the bus.
- ° Devices request access to the bus via a common BUS REQUEST line.
- ° Bus controller generates a sequence of numbers on the poll count lines.
- Each device compares these numbers as their device address already assigned to them.
- ° When a requesting device finds that its address matches the numbers on the poll-count lines, the device activates BUS BUSY.
- ° The bus controller responds by terminating the polling process and the device connects to the bus.

Independent Requesting

- ° There are separate BUS REQUEST and BUS GRANT lines for every device that are sharing bus.
- ° In this, bus controller has the capability of immediate identifying all the requesting devices.
- Bus controller responds rapidly to the request by determining the highest priority device that has sent the bus request.
- ° This priority is programmable and is predetermined.