MM8021 Representation Theory of Finite Groups

Problem 1. Let the symmetric group S_n act on the vector space k^n in the usual way: S_n acts on the standard coordinate basis (e_1, \ldots, e_n) by $\sigma e_i = e_{\sigma(i)}$ for $\sigma \in S_n$ and we extend this action to k^n by requiring it to be linear: $\sigma(\sum c_i e_i) := \sum c_i \sigma(e_i)$.

- (a) Let $a := (a_1, \dots, a_n) \in k^n$. Show that $\sigma(a) = (a_{\sigma^{-1}(1)}, \dots, a_{\sigma^{-1}(n)})$. [So care must be taken when we say that S_n acts by permuting the coordinates.]
- **(b)** Show that the resulting representation $\rho: S_n \to \mathsf{GL}(n,k)$ contains a subrepresentation isomorphic to the trivial representation 1.
- (c) If k has characteristic zero, show that $\rho = \mathbb{1} \oplus \rho'$ is the direct sum of the trivial representation and a representation ρ' of dimension n-1.
- (d) Assume k has characteristic 2 and n = 2. Show that ρ is not a direct sum of two nontrivial subspaces. In other words, ρ is reducible but not completely reducible. What goes wrong as opposed to (c)?
- (e) Let p be a prime and assume k has characteristic p. Show that ρ is a direct sum as in (c) if and only if p does not divide n.

Solution.

(a) We have

$$\sigma(a) = \sigma\left(\sum_{i} a_{i} e_{i}\right) = \sum_{i} a_{i} e_{\sigma(i)}.$$

Since a permutation is a bijection, if we change variable to $j = \sigma^{-1}(i)$, we are simply changing the order of summation. This yields the same summand in a finite sum. Therefore

$$\sigma(a) = \sum_{i} a_{i} e_{\sigma(i)} = \sum_{j} a_{j} e_{\sigma(j)} = \sum_{\sigma^{-1}(i)} a_{\sigma^{-1}(i)} e_{\sigma(\sigma^{-1}(i))} = \sum_{\sigma^{-1}(i)} a_{\sigma^{-1}(i)} e_{i} = (a_{\sigma^{-1}(1)}, \dots, a_{\sigma^{-1}(n)}),$$

as desired.

- **(b)** ρ maps the permutations to the appropriate permutation matrices, which are $n \times n$ -matrices of rank n whose rows consist of zeros except for a single non-zero element, which is 1. The vector $(1,\ldots,1)\in k^n$ is an eigenvector of any permutation matrix with eigenvalue 1. Therefore, the subspace spanned by $(1,\ldots,1)$ constitutes a S_n -stable subspace E of k^n on which S_n acts trivially. Therefore $\rho|_E$, the restriction of ρ onto E, is a subrepresentation isomorphic to the trivial representation.
- (c) Let W be the orthogonal complement of E, so that $E+W=k^n$. Define $\rho':=\rho|_W$. Denote $(1,1,\ldots,1):=1_n$. W contains precisely the vectors v such that $v\cdot 1_n=0$, that is, the column sum of all $v\in W$ is 0. The action of S_n on W simply exchanges coordinates, which does not affect the row sum. Therefore W is also S_n -stable, so $\rho|_W$ is a subrepresentation. Moreover, $E\oplus W=k^n$ and E has dimension 1 (it has a basis 1_n), so W has dimension n-1. Hence $\rho=\rho|_E\oplus\rho|_W\cong \mathbb{1}\oplus\rho|_W$, where $\rho|_W$ has dimension n-1, as desired.
- (d) Suppose we can indeed write ρ as the product of two non-trivial subspaces. By Theorem 1.10. in Isaacs, this is equivalent to every S_n -stable subspace having a S_n -stable complement. Consider the subspace E as in (c). E is the span of (1,1), so any candidate E must be a space which is the span of a basis vector E which is linearly independent from (1,1). That is, E = Span(E = E = E b). The only choice of E of E that makes E is putting E = E that is not possible since E in characteristic 2, so E is the coordinates of E and E in turn proves that E cannot be written as a direct sum of two nontrivial subspaces. The problem is precisely that E in characteristic 0, but not necessarily in other characteristics.

(e) Suppose $\rho = \mathbb{1} \oplus \rho'$, and suppose p does not divide n. By Maschke's theorem, it follows that every G-stable subspace has a G-stable complement. Again, we have the G-stable subspace E spanned by 1_n on which the restriction $\rho|_E$ is isomorphic to the trivial representation. Maschke's theorem thus yields that E has a G-stable complement W, which must then be of dimension n-1 since $E \oplus W = V$. Hence ρ decomposes as $\mathbb{1} \oplus \rho'$ where ρ' has dimension n-1.

For the other direction, we prove the contrapositive, i.e. if p divides n then ρ does not decompose as in (c). Define $\phi: k^n \to k; v \xrightarrow{\phi} \sum_i v_i$. Clearly, $\text{Ker}(\phi)$ forms a subspace of k^n , and $E \subseteq \text{Ker}(\phi)$ since E is spanned by 1_n which evaluates to n = 0 in k if Char(k) = p divides n. Suppose $\text{Ker}(\phi)$ has a G-stable complement W. Let $w \in W$. Since E is assumed to not be in W, there is a $\rho(g)$ such that $\rho(g)w \neq w$.

INTE KLAR. Maschke? **Problem 2.** Some representations of cyclic and dihedral groups.

- (a) Let $n \ge 2$. Describe n distinct, one-dimensional representations of \mathbb{Z}/n over \mathbb{C} and explain why they are pairwise non-isomorphic.
- **(b)** Let $D_{2n} := \langle x, y \mid x^n = y^2 = 1, yxy^{-1} = x^{-1} \rangle$ be the dihedral group of order 2n. Show that setting

$$\rho(x) \coloneqq \begin{bmatrix} \cos(2\pi/n) & -\sin(2\pi/n) \\ \sin(2\pi/n) & \cos(2\pi/n) \end{bmatrix}, \quad \rho(y) \coloneqq \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix},$$

gives a unique, well-defined representation of D_{2n} over \mathbb{R} .

- (c) Show that ρ is irreducible over \mathbb{C} . [A priori, this is at least as strong as showing that ρ is irreducible over \mathbb{R} .]
- (d) Show that the restriction $\operatorname{Res}_{\langle x \rangle}^{D_{2n}}$ of ρ to $\langle x \rangle$ is irreducible over $\mathbb R$ if and only if $n \geq 3$. (e) By contrast, show that the same restriction $\operatorname{Res}_{\langle x \rangle}^{D_{2n}}$ is always reducible over $\mathbb C$.

Solution.

(a) Since \mathbb{Z}/n is cyclic, any representation is completely determined by its mapping of a generator of \mathbb{Z}/n , say 1. The proposed representations are

$$\rho_k : \mathbb{Z}/n \to \mathbb{C},$$

$$1 \mapsto \exp(2\pi i k/n), k = 1, \dots, n,$$

$$\rho_k(l) = p_k(1)^l.$$

Indeed, this is a representation because

$$\rho_k(a+b) = \exp(2\pi i k/n)^{a+b} = \exp(2\pi i k/n)^a \exp(2\pi i k/n)^b = \rho_k(a)\rho_k(b).$$

These representations are also non-isomorphic because their characters are not equal. This can be seen by considering the character of a generator: $\rho_k(1) = \exp(2\pi i k/n) \neq \exp(2\pi i l/n)$ for $l \neq k, 1 \leq k, l \leq n$.

(b) We have to verify that $\rho(x)$, $\rho(y)$ fulfil the same relations as x, y. We have

$$\rho(x)^{n} = \begin{pmatrix} \cos(2\pi/n) & -\sin(2\pi/n) \\ \sin(2\pi/n) & \cos(2\pi/n) \end{pmatrix}^{n} = \begin{bmatrix} \cos(2\pi n/n) & -\sin(2\pi n/n) \\ \sin(2\pi n/n) & \cos(2\pi n/n) \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \rho(0),$$

$$\rho(y)^{2} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \rho(0),$$

$$\rho(y)\rho(x)\rho(y)^{-1} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} \cos(2\pi/n) & -\sin(2\pi/n) \\ \sin(2\pi/n) & \cos(2\pi/n) \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} \cos(2\pi/n) & \sin(2\pi/n) \\ -\sin(2\pi/n) & \cos(2\pi/n) \end{bmatrix} = \rho(x)^{-1}, \text{ since}$$

$$\begin{bmatrix} \cos(2\pi/n) & \sin(2\pi/n) \\ -\sin(2\pi/n) & \cos(2\pi/n) \end{bmatrix} \rho(x) = \begin{bmatrix} \cos(2\pi/n) & \sin(2\pi/n) \\ -\sin(2\pi/n) & \cos(2\pi/n) \end{bmatrix} \begin{bmatrix} \cos(2\pi/n) & -\sin(2\pi/n) \\ \sin(2\pi/n) & \cos(2\pi/n) \end{bmatrix}$$

$$= \begin{bmatrix} \cos^{2}(2\pi/n) + \sin^{2}(2\pi/n) & 0 \\ 0 & \cos^{2}(2\pi/n) + \sin^{2}(2\pi/n) \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.$$
3

The first relation $\rho(x)^n = 1$ is indeed in one-to-one correspondence with the relation $x^n = 1$ since n is the smallest non-negative integer k such that $\cos(2\pi k/n)$, $\sin(2\pi k/n) = 1$, 0 respectively which implies that $\rho(x)^k \neq 1$ for k < n.

(c) Let χ_{ρ} be the trace of ρ . We know that irreducible representations are characterized by $[\chi_{\rho}, \chi_{\rho}] = 1$ over \mathbb{C} . We have

$$\begin{split} [\chi_{\rho},\chi_{\rho}] &= \frac{1}{2n} \sum_{g \in D_{2n}} \chi_{\rho}(g) \overline{\chi_{\rho}(g)} = \frac{1}{2n} \sum_{j=1}^{n} \chi_{\rho}(x^{j}) \overline{\chi_{\rho}(x^{j})} + \frac{1}{2n} \sum_{j=1}^{n} \chi_{\rho}(yx^{j}) \overline{\chi_{\rho}(yx^{j})} \\ &= \frac{1}{2n} \sum_{j=1}^{n} \mathrm{Tr} \begin{bmatrix} \cos(2\pi j/n) & -\sin(2\pi j/n) \\ \sin(2\pi j/n) & \cos(2\pi j/n) \end{bmatrix} \overline{\mathrm{Tr} \begin{bmatrix} \cos(2\pi j/n) & -\sin(2\pi j/n) \\ \sin(2\pi j/n) & \cos(2\pi j/n) \end{bmatrix}} \\ &+ \frac{1}{2n} \sum_{j=1}^{n} \mathrm{Tr} \begin{bmatrix} \sin(2\pi j/n) & \cos(2\pi j/n) \\ \sin(2\pi j/n) & -\sin(2\pi j/n) \end{bmatrix} \overline{\mathrm{Tr} \begin{bmatrix} \sin(2\pi j/n) & \cos(2\pi j/n) \\ \sin(2\pi j/n) & -\sin(2\pi j/n) \end{bmatrix}} \\ &= \frac{1}{2n} \sum_{j=1}^{n} 4 \cos^{2}(2\pi j/n). \end{split}$$

We use a result hailing from the famous mathematician Wolf Ramalpha which states that, for $n \ge 2$,

$$\sum_{j=1}^{n} \cos^2(2\pi j/n) = n/2.$$

It follows that $[\chi_{\rho}, \chi_{\rho}] = 1$, so ρ is irreducible over \mathbb{C} as desired.

(d) We have that

$$\begin{split} (\chi_{\mathsf{Res}_{\langle x \rangle}^{D_{2n}}}, \chi_{\mathsf{Res}_{\langle x \rangle}^{D_{2n}}}) &= \frac{1}{n} \sum_{g \in G} \chi_{\rho}(g) \chi_{\rho}(g^{-1}) \\ &= \frac{1}{n} \sum_{j=1}^{n} \chi_{\rho}(x^{j}) \chi_{\rho}(x^{n-j}). \end{split}$$

For n = 2, this is

$$\frac{1}{2} \sum_{j=1}^{2} \chi_{\rho}(x^{j}) \chi_{\rho}(x^{n-j})$$

$$= \frac{1}{2} (\chi_{\rho}(x) \chi_{\rho}(x) + \chi(\text{Id}) \chi(\text{Id}))$$

$$= \frac{1}{2} (4+4),$$
4

which is 4, not 1. For $n \ge 3$, this is

$$\begin{split} &\frac{1}{n} \sum_{j=1}^{n} \chi_{\rho}(x^{j}) \chi_{\rho}(x^{n-j}) \\ &= \frac{1}{n} \sum_{j=1}^{n} \chi_{\rho}(x^{j}) \chi_{\rho}(x^{n-j}) \\ &= \frac{1}{n} \sum_{j=1}^{n} 4 \cos(2\pi j/n) \cos(2\pi (n-j)/n). \end{split}$$

This evaluates to 2, not 1, which is unfortunate. There must be something I'm missing.

(e) This follows from realizing that

$$\begin{split} [\chi_{\mathsf{Res}_{\langle x \rangle}^{D_{2n}}}, \chi_{\mathsf{Res}_{\langle x \rangle}^{D_{2n}}}] &= \frac{1}{n} \sum_{g \in \langle x \rangle} \chi_{\rho}(g) \overline{\chi_{\rho}(g)} \\ &= \frac{1}{n} \sum_{j=1}^{n} \chi_{\rho}(x^{j}) \overline{\chi_{\rho}(x^{j})} \\ &= 2 \frac{1}{2n} \sum_{j=1}^{n} \chi_{\rho}(x^{j}) \overline{\chi_{\rho}(x^{j})} \\ &= 2 [\chi_{\rho}, \chi_{\rho}] \\ &= 2. \end{split}$$

Since $2 \neq 1$, $\text{Res}_{\langle x \rangle}^{D_{2n}}$ must be reducible. We could also have noted that all irreducible representations of abelian groups have dimension 1.

Problem 3. Let ρ be as in in Problem 1 with $k = \mathbb{C}$.

- (a) Describe explicitly the character χ_{ρ} of ρ : Given a permutation σ , what is the value $\chi_{\rho}(\sigma)$ in terms of its cycle type?
- **(b)** Assume a finite group *G* acts on a finite set *X*. Let $Fix(g) := \{x \in X \mid gx = x\}$; the fixed points of *g*. What is $\sum_{g \in G} |Fix(g)|$?
- (c) Deduce that $[\chi_{\rho}, 1] = 1$.
- (d) Recall that G acts doubly-transitively on X if the action of G on $X \times X$ has precisely two orbits (necessarily the diagonal and the rest). If G acts doubly-transitively on X and r is the corresponding linear representation of G, show that $[\chi_r, 1] = 1$ and $[\chi_r, \chi_r] = 2$. [Hint: Consider also the character of the linear representation gotten from the action of G on $X \times X$.]
- (e) Deduce that $[\chi_{\rho'}, \chi_{\rho'}] = 1$.

Solution.

- (a) A permutation matrix σ has exactly one nonzero element per row, and it is contained in the i:th diagonal if and only if it keeps the i:th coordinate fixed. Therefore, a permutation on n coordinates that keeps k coordinates fixed has character k.
 - **(b)** By Burnside's lemma, the number of orbits of G in X (denoted by |X/G|) is

$$|X/G| = \frac{1}{|G|} \sum_{g \in G} |\mathsf{Fix}(g)|,$$

so $\sum_{g \in G} |Fix(g)|$ is $|G| \cdot |X/G|$.

(c) A group action $G \cap X$ induces a homomorphism $\phi: G \to S_X$, where S_X is the group of permutations of X under function composition, by $g \mapsto \psi_g, \psi_g(x) = g \cdot x$. For the finite case, $S_X = S_n$, where n = |X| and S_n is the group of permutations on n letters. Therefore, we can think of $g \in G$ as permutation matrices acting on the n-element vector of elements $x_1, \ldots x_n \in X$. Then, our reasoning in (a) shows that $|F| \times (g)|$ is the trace of its corresponding permutation matrix M_g , since the number of fixed points is the number of coordinates of the vector (x_1, \ldots, x_n) left fixed by the permutation M_g . That is,

$$\sum_{g \in G} |\mathsf{Fix}(g)| = \sum_{g \in G} \chi(g).$$

Over \mathbb{C} , this expression is equal to $|G| \cdot [\chi_{\rho}, \mathbb{1}]$. By **(b)** (Burnside's lemma does not require that X is finite), we have

$$|G|[\chi_\rho,\mathbb{1}] = \sum_{g \in G} |\mathsf{Fix}(g)| = |G||X/G|,$$

where |X/G| is the number of orbits of G in X. But the symmetric group acts transitively on \mathbb{C}^n with the given action, so by the above we get $[\chi, 1] = 1$.

Problem 4. Let $k = \mathbb{C}$. Let ρ be the representation of the dihedral group from Problem 2.

- (a) Compute the character of ρ .
- **(b)** Let χ, ψ be one-dimensional characters of a finite group G. Show that

$$(\chi, \psi) = \delta_{\rho, \psi} := \begin{cases} 1, \chi = \psi, \\ 0, \text{ otherwise} \end{cases}$$

[This is the first orthogonality relation in the special case of one-dimensional characters. You

- may not cite the general orthogonality relation or use its proof here.]

 (c) Let $n \ge 2$. Show that $\sum_{m=1}^{n} e^{2\pi i m/n} = 0$ in two ways: Use (b) and use the polynomial $x^n 1$.

 (d) Show that $[\chi_{\rho}, \chi_{\rho}] = 1$. [Hint: Use (c). I found it helpful to distinguish between the cases neven and *n* odd.]

Solution.

- (a) The details of this calculation are covered in problem 2. The trace of x^j is $2\cos(2\pi i/n)$ and the trace of yx^{j} is 0.
 - (b) We have that

$$(\chi,\psi)=$$

(c) Note that $\sum_{m=1}^{n} e^{2\pi i m/n} = [\rho, 1]$, where ρ is the restricted representation of $\langle x \rangle$ from the dihedral group from problem 2, but over the complex numbers $(x^m \mapsto e^{2\pi i m/n})$, and 1 is the trivial representation

of the restricted group $\langle x \rangle$ from the same problem. By **(b)**, their sum must be 0. One can also view this as a geometric series $\sum_{m=1}^{n} \rho(1)^m$ which by standard methods is equal to $\rho(1)(\rho(1)^n-1)/(\rho(1)-1)$. Since ρ is a one-dimensional representation and $x^n=1$ in $\langle x \rangle$, we have that $\rho(1)^n = 1$ in \mathbb{C}^* , so the sum evaluates to 0.

(d) I did this in Problem 2.

Problem 5. Assume k is algebraically closed and $Char(k) \neq 2$.

- (a) Let (V, ρ) be a self-dual irreducible representation of G over k. Show that ρ is either symplectic or orthogonal.
- **(b)** Assume (V, ρ) is a representation which is both symplectic and orthogonal. Show that (V, ρ) is reducible.

Solution.

(a) Suppose (V, ρ) is self-dual. Then, for all $g \in G$, we have that $\rho(g^{-1})^T = \rho(g)$.

Problem 6. Consider the two permutation representations

$$\rho_1, \rho_2: \mathbb{Z}/2 \times \mathbb{Z}/2 \to S_6$$

given by

$$\rho_1((1,0)) = \rho_2((1,0)) = (12)(34),$$

while

$$\rho_1((0,1)) = (13)(24), \rho_2((0,1)) = (12)(56).$$

- (a) Show that ρ_1 and ρ_2 are element-conjugate.
- **(b)** Show that ρ_1 and ρ_2 are not globally conjugate.

Solution.

(a) Of the given cases, we need only examine how $\rho_1((0,1))$ relates to $\rho_2((0,1))$. What we have to show is that there is some $\tau \in S_6$ such that $\tau \rho_2((0,1))\tau^{-1} = \rho_1((0,1))$. Take $\tau = (235)(64)$. Then

$$\tau \rho_2((0,1))\tau^{-1} = (235)(64)(12)(56)(64)(532) = (13)(24).$$

By representations being homomorphisms, we have that

$$\rho_1((1,1)) = \rho_1((1,0) + (0,1)) = \rho_1((1,0))\rho_1((0,1)) = (12)(34)(13)(24) = (14)(23)$$

and

$$\rho_2((1,1)) = \rho_2((1,0) + (0,1)) = \rho_2((1,0))\rho_2((0,1)) = (12)(34)(12)(56) = (34)(56).$$

Take $\sigma = (31526)$. Then

$$\sigma \rho_1((1,1))\sigma^{-1} = (31526)(34)(56)(62513) = (14)(23) = \rho_2((1,1)).$$

Hence we have proved that ρ_1 and ρ_2 are element-conjugate.

(b) Suppose they are globally conjugate by τ . Then we must have that

$$\tau \rho_1((0,1))\tau^{-1} = \rho_2((0,1)) \iff \tau(13)(24)\tau^{-1} = (12)(56),$$

$$\tau \rho_1((1,1))\tau^{-1} = \rho_2((1,1)) \iff \tau(14)(23)\tau^{-1} = (34)(56).$$

This would mean

$$\tau(13)(24)\tau^{-1}\tau(14)(23)\tau^{-1} = (12)(56)(34)(56).$$

By decomposition into disjoint cycles, this is equivalent to

$$\tau(1342)\tau^{-1} = (12)(34)$$

which is impossible since two permutations are conjugate iff they have the same cycle type. Hence ρ_1, ρ_2 are not globally conjugate.