Problème. Série harmonique et série harmonique alternée.

Dans tout ce problème, on notera, pour $n \in \mathbb{N}^*$,

$$H_n = \sum_{k=1}^n \frac{1}{k}.$$

Dans un autre contexte, la suite H est appelée $s\acute{e}rie$ harmonique.

Partie A. Divergence de la suite (H_n) .

- 1. Justifier que (H_n) est une suite croissante.
- 2. Soit $n \in \mathbb{N}^*$. Prouver l'inégalité

$$H_{2n} - H_n \ge \frac{1}{2}.$$

3. Démontrer par l'absurde que (H_n) tend vers $+\infty$.

Partie B. Vitesse de divergence de (H_n) .

1. Soit $k \in \mathbb{N}^*$. En intégrant l'inégalité $\forall x \in [k, k+1]$ $\frac{1}{k+1} \leq \frac{1}{x} \leq \frac{1}{k}$, justifier

$$\frac{1}{k+1} \le \ln(k+1) - \ln(k) \le \frac{1}{k}.$$

En déduire l'encadrement

$$\forall n \ge 2 \quad H_n - 1 \le \ln(n) \le H_{n-1}.$$

2. Démontrer que $\frac{H_n}{\ln(n)} \longrightarrow 1$.

Plus tard dans l'année, nous noterons ceci $H_n \sim \ln(n)$.

Partie C. Constante d'Euler.

Pour $n \ge 1$, posons $u_n = H_n - \ln(n)$.

Démontrer que (u_n) converge, vers une limite finie comprise entre 0 et 1.

On note γ la limite précédente. Ce nombre, appelé constante d'Euler, vaut environ 0.577. et à ce jour, on ne sait pas s'il est rationnel ou irrationnel.

Notons $\varepsilon_n := H_n - \ln(n) - \gamma$. Ce qui précède prouve que $\varepsilon_n \to 0$. On vient donc d'obtenir le « développement asymptotique » ci-dessous :

$$H_n = \ln(n) + \gamma + \varepsilon_n$$
 avec $\varepsilon_n \to 0$.

Partie D. Série harmonique alternée.

Pour $n \geq 1$, on définit

$$S_n = \sum_{k=1}^n \frac{(-1)^k}{k}.$$

1. Démontrer que les suites (S_{2n}) et (S_{2n+1}) sont convergentes, et de même limite. Nous noterons cette limite commune ℓ .

Ce qui précède prouve que (S_n) converge vers ℓ , on le verra dans le cours.

- 2. Pour tout entier naturel n non nul, exprimer S_{2n} à l'aide de H_n et de H_{2n} .
- 3. À l'aide du développement asymptotique encadré en partie C, prouver que

$$\ell = -\ln(2).$$