BJT and Integrated Circuits Chapter 6 & 9 – THE END!

ELEC 424
John Peeples

Reverse Biased P-N Junction

• I_o (reverse saturation current) depends on generation current, not electric field.

Why not use a forward biased p+-n junction as the generation source?

Common Base Configuration

Since the collected current will have little dependence on the load resistance, this is a pretty good constant current source.

So, what is really going on?

- The base (n) region should be very thin relative to hole lifetime.
- Current at the emitter/base junction should be nearly entirely holes. Thus p^+ doping.
- A small amount of base current recombines with injected holes in the thin base region.
- A very small amount of base current will be injected into the emitter region across the forward biased junction.
- Some holes and electrons will recombine across the base collector junction (thermally generated)

Amplification

$$au_t = 0.1 \ \mu \text{s}$$
 $au_C = \frac{i_C}{i_B} = \beta = \frac{\tau_p}{\tau_t} = 100$ Neglecting v_{BE} $I_B = \frac{5 \text{ V}}{50 \text{ k}\Omega} = 0.1 \text{ mA}$

 $I_C = \beta I_B = 10 \text{ mA}$

Semiconductor Processing

Figure 9.1

A 300-mm diameter (about 12-inch) wafer of integrated circuits. The circuits are tested on the wafer and then sawed apart into individual chips for mounting into packages. (Photograph courtesy of Texas Instruments.)

Moore's Law

CMOS

Figure 9.4

Complementary MOS structure: (a) CMOS inverter; (b) formation of p-channel and n-channel devices together.

Speed and Power Enhancements

Figure 9.11

Silicon on insulator. Both n-channel and p-channel enhancement transistors are made in islands of Si film on the insulating substrate. These devices can be interconnected for CMOS applications.

Vertical Integration

SOI

Resistors and Capacitors are Easy

Monolithic Resistors

Memory cell capacitor and its bit and word lines

Wires (Interconnections) can be Hard

What Great Applications

CCD Imaging (digital cameras) is just a bunch of capacitors.

DRAMS are getting smaller (or larger) all the time

Smaller Features mean More on Each Chip

G4 Power PC for you Mac fans.

90 nm 1.5 GHz

Small is Pretty Small

180 nm features (the thin lines)

A big fat human hair

The Back End is Critical

Testing is expensive

and so is packaging

Many Packaging Options

Bond 'em

Cut 'em

or Flip and/or Grid 'em

Many Packaging Options

Smaller costs initially, but once it is commodity, is less expensive

Closing Thought

Regardless of your career choices, you will continue to be influenced by semiconductor technology in your everyday and professional lives. Knowing a little about its genesis, capabilities and promises is a good thing.

Thanks for taking my course.

John Cel. Reepler
April 18, 2014