KEPLEROVI PÁTEČNÍCI

1. sada příkladů

18. září 2023

1. Běž Merkure, běž...

Oběžná doba Merkuru kolem Slunce je $T_{\rm Merkur}=88$ dní. S pomocí $a_{\rm Zeme}=1$ au, $T_{\rm Zeme}=1$ rok určete hlavní poloosu Merkuru $a_{\rm Merkur}$ v au i km.

[Výsledek: 0,387 au, $5,80 \times 10^7$ km]

2. Kolik váží Slunce?

Ze znalosti $a_{\text{Zeme}} = 1$ au, $T_{\text{Zeme}} = 1$ rok a $G = 6,67.10^{-11} \text{ N.m}^2 \text{.kg}^{-2}$ dopočtěte hmotnost Slunce M.

[Výsledek: $1,99 \times 10^{30} \text{ kg}$]

3. Souboj Země s Venuší

Najděte poměr oběžných rychlostí Země a Venuše, tj. $v_{\rm Zeme}/v_{\rm Venuse}$ za předpokladu, že se obě planety pohybují po kruhových trajektoriích o poloměrech $r_{\rm Zeme}=1,5\times10^8$ km a $r_{\rm Venuse}=1,08\times10^8$ km.

[Výsledek: 0,85]

4. Rychlost Země kolem Slunce

Ze znalosti $a_{\rm Zeme}=1$ au, $M_{\rm Slunce}=2\times10^{30}$ kg a $G=6,67.10^{-11}$ N.m².kg⁻² vypočtěte oběžnou rychlost Země kolem Slunce. Uvažujte, že Země se pohybuje po kruhové trajektorii.

[Výsledek: 29,9 km/s]

5. Halleyova kometa

Halleyova kometa obíhá kolem Slunce po eliptické trajektorii s relativní výstředností $\epsilon=0,967$ a periodou T=75,3 let. Použijte tyto informace abyste určili: a) hlavní poloosu a, b) vzdálenost k perihéliu $r_{\rm p}$ a aféliu $r_{\rm a}$, c) poměr $v_{\rm p}/v_{\rm a}$.

[Výsledek: a) 17,8 au, b) 0,587 au a 35,0 au, c) 59,6]

6. Umělá družice

Vzdálenost Měsíce od středu Země se mění od $r_{\rm p}=363300~{\rm km}$ v perigeu do $r_{\rm a}=405500~{\rm km}$ v apogeu, navíc perioda oběhu Měsíce kolem Zeme je 27,322 dní. Umělá družice Země se pohybuje po eliptické trajektorii tak, že v perigeu se nachází 225 km nad povrchem Země a v apogeu 710 km. Střední průměr Země je $D=12756~{\rm km}$. Určete periodu oběhu umělé družice.

[Výsledek: 1,56 hod.]

7. Pád Země na Slunce*

Jak dlouho by padala Země na Slunce, kdyby se náhle zastavila na své dráze?

[Výsledek: 0,18 let]

8. Zhroucení oblaku*

Uvažujme mezihvězdný oblak, který je dostatečně studený na to, aby bylo možné zanedbat jeho vnitřní tlak (teplota $T \to 0$, takže tlak $p \to 0$). Gravitační síla je tak jedinou hybnou silou, která udává vývoj tohoto systému. Jestliže v čase $t_0 = 0$ lze oblak považovat za kouli o poloměru R a uniformní hustotě ρ , jak dlouho bude trvat, než se oblak zhroutí sám do sebe? Tento čas t vyjádřete v závislosti na G, ρ, R .

[Výsledek: $t=\sqrt{\frac{3\pi}{2}\frac{1}{G\rho}},$ tzn. výsledek nezávisí na poloměru koule]

9. Hustota Slunce*

Jestliže úhlová velikost Slunce je 30' a doba oběhu Země kolem Slunce je 1 rok, odhadněte hustotu Slunce.

[Výsledek: 1700 kg/m^3]

* náročnější úloha