Homework #2

CS209, Spring 2017

- 1. Consider a (first-order) logic language with the following parameters: \forall , Px (x is a person), Ty (y is a time instant), Fxy (you can fool person x at time instant y), Translate the following English sentences into this logic language. (If a sentence is ambiguous and you will need more than one translation.)
 - (a) You can fool some of the people all of the time.
 - (b) You can fool all of the people some of the time.
 - (c) You can't fool all of the people all of the time.
- 2. Let Γ be a set of wffs, φ and ψ be wffs in some first-order language \mathcal{L} . Prove the following:
 - (a) $\Gamma; \varphi \models \psi \text{ iff } \Gamma \models (\varphi \rightarrow \psi).$
 - (b) $\varphi \models = \psi$ iff $\models (\varphi \leftrightarrow \psi)$.
- 3. Let α and β be two wffs. Prove the following: $\{\forall x(\alpha \to \beta), \forall x\alpha\} \models \forall x\beta$.
- 4. Show that a wff θ is valid iff $\forall x \theta$ is valid.
- 5. Let \mathcal{L} be a logic language with one unary predicate symbol R, no contant symbols, no function symbols. Let V be a set of variables. We define the set of wffs $\Gamma = \{\neg Ry \mid y \in V\} \cup \{\exists x \, Rx\}$. Is Γ satisfiable? Prove your answer.
- 6. Let \mathfrak{R} be the structure $(\mathbb{R}, +, \times)$ for real numbers for the language consists of \forall , +, and \times (no constants). The addition and multiplication operations in \mathfrak{R} are the usual operations.
 - (a) Write a formula that defines the set $\{0\}$ (i.e., containing a single element 0).
 - (b) Write a formula that defines the interval $[0, \infty)$ (a set of real numbers).
 - (c) Write a formula that defines the set $\{2\}$.
- 7. Consider a new quantifier: $\exists !x\alpha$ (read "there exists a unique x such that α ") is to be satisfied in a structure $\mathfrak A$ with an assignment v iff there is one and only one element $d \in |\mathfrak A|$ such that $\models_{\mathfrak A} \alpha[v(x/d)]$. Assume that the language has the equality symbol. Find a formula in the original language that is logically equivalent to $\exists !x\alpha$.
- 8. Prove Part (3) and Part (4) of the Homomorphism Theorem.
- 9. Let h be an isomorphic embedding of $\mathfrak A$ into $\mathfrak B$. Show that there is a structure $\mathfrak C$ isomorphic to $\mathfrak B$ such that $\mathfrak A$ is a substructure of $\mathfrak C$.
 - Hint: Let g be a one-to-one function with domain $|\mathfrak{B}|$ such that g(h(a)) = a for all $a \in |\mathfrak{A}|$. Define the structure \mathfrak{C} such that g is an isomorphism onto \mathfrak{C} .
- 10. Consider the structure structure $(\mathbb{R}, +)$ of real numbers for the language consisting of \forall , + (no multiplication nor constants). The addition operation is the usual operations. Prove that the set $\{1\}$ cannot be defined by any formula.
 - Hint: Consider automorphisms defined by linear functions.