ielos Numérico:

Modelo numérico:

- · Usa ed. para representar la atmósfera (descripción)
- M. Fisicos + realidad en una maquela 14 makmaticas a representación matemática de la realidad.

Parametinación usado

- Coordenada: + projección.
- · Limitantes · ed. no tienen solución analítica Zo se usan métodos numeros para resolver: Macroescala (Sinoptica) « Conous despreciable Finitas, Espectrales, precido-espectrales,
- Meso escala Da « (Conolis No despreciable) (Hidiostatico) Microescala (Local) - a comparable con g (Quasigeostótico) · Escalas -
- · Se basa en el cálculo numérico, refuta o valida koñas, o derivados de estas. Coordinadas
- . Cortexonas Esféricas Cilindricces Lambertionces
 - $\frac{\partial u}{\partial t} = -u \frac{\partial u}{\partial x} v \frac{\partial u}{\partial y} \omega \frac{\partial u}{\partial z} + fv g \frac{\partial z}{\partial x} + fx$ $\frac{\partial v}{\partial x} = -u \frac{\partial v}{\partial x} v \frac{\partial v}{\partial y} \omega \frac{\partial v}{\partial p} fu g \frac{\partial z}{\partial y} + fy$ Navier - Stokes
 - Variables Sundamentales u, v, w, T, p, P, ration de mercla
 - $-\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial p} = 0$ Continuidad
 - $-\frac{\partial T}{\partial t} = -\frac{\partial T}{\partial x} \frac{\partial T}{\partial y} \frac{\omega}{\omega} \left(\frac{\partial T}{\partial p} \frac{RT}{c_p P} \right) + \frac{H}{C_0}$ Termo dinamica
 - $\frac{\partial q}{\partial t} = -4 \frac{\partial q}{\partial x} \nu \frac{\partial q}{\partial y} \omega \frac{\partial q}{\partial p} + E P$ Conservación de Vapor de Agrica
 - $\frac{\partial z}{\partial P} = \frac{-RT}{P9}$ Hidrostotica

 - · Importancia -o meteorología basada en ecucaciones físicas. In preserver condiciones atmosféricos
 - Núcleo dinámico Componentes: - Asimilación de clatos - Malla

Tipos de Modelos sumar Numéricos (Temporalidad)

- → de 1-8 días, a reces 15 días de pronóstico, utilio ecuaciones mencionados antenormente (muchos variables)
- · Estaciondes · 1,2, meses usan menos variables que los del tempo, parametricación es resultado, no se da retroalimentación entre resultados
- · Clinia 1-100 años. Sólu tiene un Broamiento de temperatura. I Variables de Emperatue, muy completes.

· Otros: dependiendo de la Malla, espectrates, no espectrates, Hidrostáticos, No Highostáticos,

Barotropicos y Baroclínicos.

Usa a para calculo de fenomenos. & tem grande como Enemeno

Calculo inducek del emperje hidros tako, erea primero AP Luogo convergencia y movimuento vertical

emplye hidrostolic 4 mounteento cheal

Hidro

Empuje hudro

Indirecto

- 1. Gradiente presión homantal
- 2. Convergencia
- 3. Movimiento vertical.

NO Hidro

Directo

Empuje hidro

Mov. vertical

Efecto de presión de pertur bación contra empuje hidro

No importa

Importa para regular velocidad de corrientes convectivas ascendentes y estructura de nube convectivo, y propagar energía de ondas de

Se propaga.

Movimiento vertical previo

Acumulación agua

Resolución

· Horitantal · Dada por les puntos de grilla que tiene para hacer el cálculo, (cálculos que hace entre punto y punto)

Sí

Frente - 50 Km

SCM + 25Km

ERA INTERIM 0.750

ENCAR 1.250 (

SFSR 0.500

ERA-5 0.25°

Japones 1.250

· Se interpolan los datos que genera el modelo, pues calcula datos en cada punto de grila.

these to outside the temporal facility of the south and a

Model of paraginal states of states of the s

Anidados se hacen calculos en resolución mayores en las primeras corridas, y sectimina se disminago la resolución succesivamente con las corridas obteniendo una resolución mayor sin usar nucho tiempo computacional.

· Vertical

Theta 0 + representa bien gradientes verticales de temperatura (Frentes, tropopausa)

Insemópicos

Transformar 0 40 Z

Transformar 0 40 Z

Sigmo 0 = P/Ps (presión reducida) - Estructura de orografía, representa bien

Atmosfenca la Mar procesos en topografía.

4 Procesos de adrección y zonas de AT.

Híbrido - or (7) = (P - Ptop)/(Pstc - Ptop) - or Zonas de gradientes y topo.

Le Complicado (1) transformar Z → 1 Propositional.

WRF - ARW

- · Núcleo dinámico ARW s sto orden, Runge Kutta.
- · Coord . vertical p = pgh , sigue terreno.
- · Mismos riveles verticales en cada punto.
- · Normalmente no-hidrostático.

Otros - ETA, MME, WRF NCAC (ARW) WRF EMS (ARW-NMM)

Gilles - Manera en como calcula el modelo, dónde catada

- · Arakawo C-Grid Más esiciente
 - Variables & definen en el centro de malla. (masa/termo)
 - Variables adrección en la frontera dinámicas

- · Arakawa B-Grid » Rotada 90° de la C
- · Arakawa E-Grid n Rotada 45° de la B, Calculo diagonal

- Termo + H , Advection V

· Icosaedrales - muchos poligonos que asimilan una esfera.

Parametrizacions

Microhisica - Deobahificados

Son cosas que no se pueden calcular y por eso se parametrizan. Cumulo a concelho Ejemplos. Radiación solar, dispersión, absorción, condensación, turbulencia, niere, topografía, vegetación, calor sensible, lluvia, etc.

· Esquemas . Cúmulos, microfísica, Capa limite Planetaria, Física de la Tierra, Rodición.

Cámulos

- · Predecir precipt. convectiva, cambiar estabilidad de la columna atmost. añadir y redistribuir calos, quitar humedad, crear nubes.
 - · Revolución de 10 km (modelos)
 - · Ax> 10km s paranutración de cúmulos.
 - · 4-10km payuda con tormentas de convección más estrecha.

Dependiendo de la inestabilidad en la columna el modelo

create lluvia on.

Ver diapositivas 53-55

ax 3 km - o menos benediciosa, tempo de iniciación más temprano.

1x < 4Km - Delemanade precipitación, precipt. directa-· EnAlta resolución mente en la malla e indirectamente de la parametritación; excepto "Grell 3D".

sol y sus movimientes. Crea asecusos o descensos dependiendo de patrones - P Radiosondeos. Mas concurs: Kain - Fritsch(KF), Betts - Miller - Janjic(BMJ), Grell - Devenyi (Conjunto),

Hechos para lat- etc. tudes extra hopicales.

& No genera teenter precipitación como los otros, usa dimatologías que da problemos pare entos

· Cuando pasa que está húmedo-seco - un poco húmedo - precipitación estratificada con la P.C.

Microfisica

- · Greneración de la nube y cuánta agua priede generar la precipt. Depende de como se forma la nube como tal, variables termodinàmicas anicamente,
- · Trópicos » Genera conección (mucha radiación)

o Actua en las Jases de las nuebes.

Simple - Kessler, Complejo - Lin, Goddard, Amboi + WSM, Intermedio + Fenier.

ECMWF (16KM) Termodinami co menos sensible

GFS (13Km)

NAM (12km) Lo Más hio en monta Tres: 1 . 60

Diapontiva (Temperatura)

Mejor para frentes Mos

GFS()8KM)

Menos recurso computacional

NAM L 12Km

HRRR(8Km)

La Bueno pora orografia por la resolución

Evento Resi	occide homent	al.
Ciclon Tropical	10-12 KM	Modelo se ajusta dinámicamente No estadísticamente, parque la dinámica es lo
Frente	250 KM	o Modelos tienen mayore modes de conhama en
Linea turbonada	50 km	invierno en el (H.N) va para el Caribe
Supercelda	SORM	No funcionan bien en abil por la primarera
Tornuntas masa aire	~ 13 Km.	· Pronóstico de ensamble: colección de saledas de modelos · Niembro: solución individual del modelo. · Control: miembro obtenido del mejor análisis. · Promedio de ensamble: promedio de los miembros. · Diferencia: des viación estactistica del promedio.

Ensambles

Es una colección de dos o 1 o más modelos de pronóstico válidos, para y que se reinscan para una misma hora. * Tener audado con la calidad de los datos.

Errores:

- · Condiciones iniciales
- · Venticación de análisis
- · Dist. de asimilación de datos e imprecisiones de los mismos, etc.

· Sist. de Pronúst. de ensamble (SPE) -o considera noturaleza caótica de la atrusfera Ventajas: y limitantes de la predicción.

La Evalua avan grande es la incertidumbre.

La No estima la probabilidad de renticuarón de un ciento.

· Comendo un modelo con diferentes condiciones iniciales se puede determinar la mayor o nonor probabilidad de que el evento realmente ocurra. con base en el grado de acierto.

Pronostico determista: busca establer causalescato basodo en condicioner iniciales.

Limitaciones:

- · Ecuaciones no capturan todos los procesos atm. (aproximención)
- · No solucionem procesos de menor escala sobre un nivel deferminado.
- · Incerti deimbre comienta en inciditación, no se miden datos en puntos infinitesimades.

- · UCED + 21 miembros, 100 2 sectors. (GF; global, SREF regional)
- · CE + 50 membros
- ECMNF & UKMET + ensumble global

Interpretación de ensambles

· FOP à que tan bueno o malo es el premetro pronóstico, continúo o descreto. Tiene promedio, rango y forma. Calcula probabilidad del esento. Implícita en la mayoría de los cólculos.

· Pronéstico numérico del tiempo utilità climatología, persistencia, pronéstica análogos.

Ver diapolitiva 93

· Subjetivo.

- G. Espagueti: Miembros del ensamble agrupados durante primeras horas.
 - · Differen con el paso del tiempo, perturbaiones se hacen mayores.
 - · Entre más separados los periodos del pionóstico mayor incertidambre.
 - Muestra distribución de diferentes miembros en un nivel y contorno.

Requiere into adicional para buena interpretación, no da visión complete del patrón.

Muestra todos los miembros, información conciso.

Promedios: - Agrepanientos, identifica, extrae salidas parecidas y deriva productos.

Miembros del ensamble desviados o Baja confianza.

agrapados o alta constanza.

Lat. medias y altas buen agrupamiento (68 - 84 horos).

Promedio y dikrencia: Objetiva.

- 2 Dipolos - diferencias temporales entre miembros.

- 1 Núcleo → diferencias de amplified.

La Erdúa incertidumbre.

le Vendica mejor después de 84 horas, presentación concisa,

U→Variabilidade boja o conhanta y probabilidad de venticar altas y al revés.

" - Asume distribución normal, malo en compatamiento caótico.

La Probabilidad de que un umbral sea excedido.

