Für einen kommutativen Ring R definieren wir \mathcal{M} als die Kategorie der R-Module

Lemma 1. In \mathcal{M} existieren Coprodukte und Differenzenkokerne, wobei:

- 1. das Coprodukt $\prod_i M_i = \bigoplus_i M_i$ entspricht der direkten Summe
- 2. der Differenzenkokern zweier Homomorphismen $f,g:M_1\longrightarrow M_2$ entspricht $dem\ Kokern\ M/im(f-g)\ der\ Differenzenabbildung.$

Beweis. für 1. Sei $\phi:\{M_i\}\longrightarrow \mathcal{M}$ ein beliebiger Morphismus. Zeige:

Für ein beliebiges i existiert genau ein $\varphi_i:M_i\bigoplus 0\longrightarrow M'$, $(0,...,0,m_i,0,...,0\longmapsto \psi_i'(m_i)$ mit $\psi'_i = \psi_i \circ \varphi_i$ $\Rightarrow \exists ! \varphi : \bigoplus_i M_i \longrightarrow M', (m_1, ..., m_n) \longmapsto \sum_i \psi_i(m_i)$

$$\Rightarrow \exists ! \varphi : \bigoplus_i M_i \longrightarrow M', (m_1, ..., m_n) \longmapsto \sum_i \psi_i(m_i)$$

2. ist Analog zu PENIS