

MODUL 7 - Case Method 1

A. TUJUAN

 Mahasiswa menganalisis dan memecahkan permasalahan kualitas citra wajah manusia menggunakan kombinasi teknik brightness, histogram equalization, dithering, dan spatial filtering dalam Python-OpenCV.

B. ALAT DAN BAHAN

- 1. PC/LAPTOP
- 2. Github
- 3. Google Colaborator

C. INSTRUKSI PENGERJAAN

- 1. Kerjakan soal ini **secara berkelompok**, masing-masing kelompok terdiri dari 3-4 orang.
- 2. Setiap kelompok **membuat kode program** berdasarkan studi kasus yang telah diberikan. Pastikan program berjalan dengan baik
- 3. **Penting**: Setiap anggota kelompok harus **berkontribusi** dan **memahami** seluruh bagian program dan dapat menjelaskan setiap bagian kode program yang dikerjakan, baik itu bagian yang dikerjakan sendiri maupun oleh anggota lain.

D. SOAL STUDI KASUS

Seorang peneliti sedang mengembangkan sistem face recognition berbasis machine learning dari dataset wajah manusia yang diambil di berbagai kondisi pencahayaan (terang, gelap, dan berbayang).

Namun, hasil akurasi model masih rendah karena:

- beberapa wajah tampak terlalu gelap,
- sebagian memiliki kontras rendah,
- dan beberapa hasil masking kehilangan detail tepi wajah (mata, bibir).

Anda diminta melakukan pra-pemrosesan citra wajah manusia agar siap digunakan dalam pelatihan model.

Bagian A - Observasi & Eksperimen

Gunakan 3 citra wajah (misalnya face1.jpg, face2.jpg, face3.jpg) dengan variasi kondisi cahaya.

- 1. Tampilkan histogram tiap citra dan analisis distribusi intensitasnya.
- 2. Terapkan transformasi brightness dan contrast (linear/log brightness).
 - Tentukan nilai b (brightness) dan a (contrast) yang sesuai agar wajah tampak natural.
- 3. Lakukan histogram equalization untuk memperbaiki sebaran kontras.
 - o Bandingkan hasil visual dan histogram sebelum-sesudah.
- 4. Terapkan filter spasial:
 - o Low-pass filter untuk menghaluskan noise kulit wajah.
 - o High-pass atau Laplacian filter untuk menajamkan tepi mata dan bibir.

Pengolahan Citra dan Visi Komputer — Jurusan Teknologi Informasi

5. Implementasikan **Floyd–Steinberg Dithering** untuk menurunkan kedalaman warna wajah (bit-depth 4–6 bit), lalu analisis bagaimana efeknya terhadap detail dan ekspresi wajah.

Bagian B - Analisis

Jawablah dalam bentuk narasi atau tabel analisis singkat:

- 1. Bagaimana perubahan nilai brightness dan contrast memengaruhi hasil histogram wajah gelap?
- 2. Apakah histogram equalization selalu memperbaiki detail wajah? Jelaskan alasannya dengan contoh hasil Anda.
- 3. Bandingkan hasil *low-pass* dan *high-pass filter* pada area wajah bagian mana yang paling terpengaruh?
- 4. Mengapa proses dithering bisa mempertegas atau justru mengaburkan ekspresi wajah?
- 5. Berdasarkan hasil percobaan Anda, kombinasi teknik mana yang paling efektif untuk meningkatkan *readability* fitur wajah sebelum tahap deteksi?

Bagian C - Implementasi (Python-OpenCV)

```
Gunakan struktur kode seperti:
```

```
import cv2, numpy as np, matplotlib.pyplot as plt
img = cv2.imread('face1.jpg', cv2.IMREAD_COLOR)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
```

```
# Brightness & Contrast
```

b, a = 30, 1.2

img bc = cv2.convertScaleAbs(gray, alpha=a, beta=b)

Histogram Equalization

img_he = cv2.equalizeHist(img_bc)

Spatial Filtering (contoh High-pass)

kernel hp = np.array([[-1, -1, -1], [-1, 8, -1], [-1, -1, -1]])

img_hp = cv2.filter2D(img_he, -1, kernel_hp)

Kemudian tampilkan hasil 4 tahap (asli \rightarrow BC \rightarrow HE \rightarrow Filter \rightarrow Dithered).

Bagian D – Analisis Akhir & Kesimpulan

Tuliskan 1 halaman analisis:

- Urutan proses terbaik untuk menghasilkan wajah paling siap recognition
- Perbandingan nilai PSNR antara citra asli yang memiliki pencahanyaan baik dan hasil prapemrosesan
- Rekomendasi metode peningkatan kualitas wajah untuk sistem pengenalan wajah real-time

E. RUBRIK PENILAIAN

Penilaian Kelompok (70%)

Tahap A – Observasi & Eksperimen Awal (20%)

		-				
	Komponen	Kriteria Baik	Kriteria	Kriteria Cukup	Kriteria Kurang	Bobot
		Sekali (4)	Baik (3)	(2)	(1)	(%)

Pengolahan Citra dan Visi Komputer — Jurusan Teknologi Informasi

Penggunaan Python– OpenCV	Semua fungsi (import, read, visualisasi) benar, kode rapi dan terdokumentasi	Fungsi benar, ada minor error format	Ada error namun konsep fungsi benar	Tidak dapat menjalankan kode	5
Brightness & Contrast	Transformasi linier/log diterapkan dengan nilai optimal dan hasil natural	Nilai baik tapi belum optimal	Terlalu terang/gelap	Tidak berfungsi/salah rumus	5
Histogram & Equalization	Histogram benar dan analisis distribusi jelas	Histogram benar tapi tanpa analisis	Histogram tampil tapi tidak sesuai	Tidak menampilkan histogram	5
Filter & Dithering	Kernel filter dan algoritma dithering tepat; hasil jelas	Berjalan tapi hasil kurang stabil	Tidak konsisten pada semua area	Tidak diterapkan	5

Tahap B – Analisis Tiap Tahap (30%)

Komponen	Kriteria Baik Sekali (4)	Kriteria Baik (3)	Kriteria Cukup (2)	Kriteria Kurang (1)	Bobot (%)
Analisis Brightness– Contrast	Analisis logis & mendalam berdasarkan histogram	Penjelasan logis namun belum lengkap	Penjelasan umum tanpa data	Tidak ada analisis	10
Analisis Histogram Equalization	Menjelaskan efek pada detail & noise dengan contoh	Menyebutkan efek visual umum	Analisis dangkal	Tidak ada analisis	10
Analisis Filter Spasial	Menjelaskan efek tiap filter pada tepi & tekstur	Menyebutkan hasil umum tanpa teknis	Tidak menyebutkan efek spesifik	Tidak ada pembahasan	5
Analisis Dithering	Mengaitkan efek dithering pada ekspresi & detail wajah	Analisis umum tentang warna	Tidak menjelaskan teori kuantisasi	Tidak ada analisis	5

Tahap C – Implementasi Kode Program (10%)

Komponen	Kriteria Baik Sekali (4)	Kriteria Baik (3)	Kriteria Cukup (2)	Kriteria Kurang (1)	Bobot (%)
Visualisasi Pipeline	Menampilkan semua tahap (Asli–BC–HE– Filter–Dithered) lengkap dengan	Semua tahap tampil tapi tanpa caption	Sebagian tidak dijelaskan	Tidak menampilkan hasil	10

Pengolahan Citra dan Visi Komputer — Jurusan Teknologi Informasi

caption dan			l
interpretasi			ĺ

Tahap D – Analisis Akhir & Kesimpulan (10%)

Komponen	Kriteria Baik Sekali (4)	Kriteria Baik (3)	Kriteria Cukup (2)	Kriteria Kurang (1)	Bobot (%)
Penyajian hasil (grafik, tabel PSNR, visualisasi tahap demi tahap)	Layout rapi, label jelas, disertai caption dan interpretasi	Menampilkan semua gambar tanpa caption	Sebagian gambar tidak dijelaskan	Tidak menampilkan hasil	5
Argumentasi dan Kesimpulan	Menarik kesimpulan logis, menyarankan kombinasi metode terbaik dengan alasan teknis	Menyimpulkan hasil secara umum	Kesimpulan tidak berdasar eksperimen	Tidak ada kesimpulan	5

Penilaian Individu (30%)

Aspek	Kriteria Baik Sekali (4)	Kriteria Baik (3)	Kriteria Cukup (2)	Kriteria Kurang (1)	Bobot (%)
Kontribusi Teknis	Aktif mengerjakan bagian kode/analisis penting; kontribusi terlihat jelas	Berkontribusi tetapi tidak konsisten	Kontribusi minim	Tidak terlibat	15
Pemahaman Konsep	Mampu menjelaskan bagian yang dikerjakan ataupun tidak secara mendalam saat presentasi	Dapat menjelaskan sebagian	Penjelasan dangkal	Tidak memahami bagian yang dikerjakan	15