Matematica Discreta - Esame Scritto: Appello 4

Domanda 1 Siano A, B, C insiemi. Allora l'identità

$$(B \cup C) \cap A = (B \cap A) \cup (B \cap C)$$

- (a) è sempre vera
- (b) è sempre falsa
- (c) è sempre vera se $C \subseteq A$
- (d) è sempre vera se $A \subseteq C$
- (e) Nessuna di queste

Domanda 2 Siano $f, g : [5] \rightarrow [5]$ le funzioni definite ponendo

$$f(1) = 3, f(2) = 2, f(3) = 4, f(4) = 5, f(5) = 1$$

е

$$g(1) = 3, g(2) = 3, g(3) = 4, g(4) = 1, g(5) = 1.$$

Allora:

- (a) $f \circ g$ è iniettiva, $g \circ f$ è suriettiva, e $g \circ f$ è iniettiva
- (b) $f \circ g$ è iniettiva, $g \circ f$ non è suriettiva, e $g \circ f$ non è iniettiva
- (c) $f \circ g$ non è iniettiva, $g \circ f$ è suriettiva, e $g \circ f$ è iniettiva
- (d) $f \circ g$ non è iniettiva, $g \circ f$ non è suriettiva, e $g \circ f$ non è iniettiva
- (e) Nessuna di queste

 ${\bf Domanda~3}~{\rm Siano}~p,q$ proposizioni. Consideriamo la proposizione composta:

$$p \rightarrow q$$

Allora una proposizione composta logicamente equivalente alla sua negazione logica è:

- (a) $(\neg p) \to (\neg q)$
- (b) $(\neg q) \to (\neg p)$
- (c) $q \to (\neg p)$

- (d) $\neg (q \land (\neg p))$
- (e) Nessuna di queste

Domanda 4 Consideriamo la frase:

"Non c'è un italiano che non sia contento che l'Italia ha vinto gli Europei"

Consideriamo i predicati

$$I(x) := x$$
 è italiano

е

C(x) := x è contento che l'Italia ha vinto gli Europei

(dove x è nell'universo delle persone). Allora un predicato logicamente equivalente a questa affermazione è:

- (a) $\forall x.((\neg C(x)) \rightarrow (\neg I(x)))$
- (b) $\forall x.((\neg I(x)) \rightarrow (\neg C(x)))$
- (c) $\forall x.(C(x) \lor I(x))$
- (d) $\neg(\exists x.(C(x) \land (\neg I(x))))$
- (e) Nessuna di queste

Domanda 5 Siano $a, b \in \mathbb{P}$. Allora è sempre vero che:

- (a) $\Phi(ab) = \Phi(a)\Phi(b)$
- (b) $\Phi(ab) = \Phi(a)\Phi(b)$ se a = b
- (c) $\Phi(a) \mid \Phi(b)$ se $a \mid b$
- (d) $a \mid b \text{ se } \Phi(a) \mid \Phi(b)$
- (e) Nessuna di queste

Domanda 6 Siano $n, a \in \mathbb{P}$ tali che (n, a) = 1. Allora è sempre vero che:

- (a) $a^{\Phi(n)} \equiv 1 \pmod{\Phi(n)}$
- (b) $a^{\Phi(n)} \equiv 1 \pmod{a}$
- (c) $a^{\Phi(n)+1} \equiv a \pmod{n}$
- (d) $a^{\Phi(n)+1} \equiv n \pmod{a}$

- (e) Nessuna di queste
- Domanda 7 Una nota catena italiana di supermercati regala, per ogni 20 Euro di spesa, una cartolina contenente un Gratta e Vinci. Nella cartolina ci sono 4 posizioni "grattabili" (posizione 1, posizione 2, etc...) ognuna delle quali nasconde un numero che puo' essere 5, 10, 20, 50, o 100. Se si trovano almeno 3 numeri uguali si vince un buono spesa del valore corrispondente. Quante possibili cartoline vincenti, tra loro diverse, si possono formare?
 - (a) 625
 - (b) 85
 - (c) 125
 - (d) 25
 - (e) Nessuna di queste

Domanda 8 Quanti multinsiemi di cardinalità 21 su [7] ci sono?

- (a) 116280
- (b) 203490
- (c) 888030
- (d) 296010
- (e) Nessuna di queste

Domanda 9 Siano $f, g, h : \mathbb{R}_{>0} \to \mathbb{R}_{>0}$ le funzioni definite ponendo:

$$f(x) := e^{7ln(x)}$$
 $g(x) := ln(ln(x^8))$ $h(x) := (e^x)^{1/8}$

per ogni x > 0. Allora:

(a)
$$g = \Omega(f)$$
, $g = O(h)$ e $h = \Omega(f)$

(b)
$$g = o(f), g = \Omega(h) \in h = O(f)$$

(c)
$$g = o(f), g = O(h) \in h = \Omega(f)$$

(d)
$$g = \Theta(f), g = O(h)$$
 e $h = o(f)$

(e) Nessuna di queste

Domanda 10 La somma

$$\sum_{k=1}^{n} \frac{1}{(k+1)\ln(k+1)}$$

è asintoticamente equivalente a:

- (a) ln((n+1)ln(n+1))
- (b) ln(ln(n+1))
- (c) $(n+1)^{n+2}$
- (d) $(n+1)^{n+1}$
- (e) Nessuna di queste

Domanda 11 Sia G il grafo rappresentato graficamente qui sotto:

Allora il numero cromatico di G è:

- (a) 1
- (b) 2
- (c) 3
- (d) 4
- (e) Nessuno di questi

Domanda 12 Sia D il grafo diretto rappresentato graficamente qui sotto:

(dove tutti gli spigoli sono diretti da sinistra verso destra). Allora il numero di processori di un orario parallelo di tempo minimo per D è:

4

- (a) 1
- (b) 2
- (c) 3
- (d) 4
- (e) Nessuno di questi