lecture 3

Combinational logic 1

- truth tables
- Boolean algebra
- sum of products and product-of-sums
- logic gates

Let A, B be binary variables

("boolean")

, l = true, 0 = false

Notation: A - B = A and B A + B = A or B A = A

One uses t. instead of V, M. which you may have seen elsewhere.

Truth Tables

Notation:
$$A \cdot B \equiv A \text{ and } B$$

$$A + B \equiv A \text{ or } B$$

$$A = A \text{ or } B$$

A	3	A.B	A + B
0	0	\bigcirc	0
6	(0	
Į.	\bigcirc	Õ	\

(exclusive or) XOR

NAND NOR

		•		
A	B	A.B	A+8	A DB
\bigcirc	\bigcirc			
			0	
	\circ		0	
		0	0	

There are $2^4 = 16$ possible boolean functions.

$$\{: \{0,1\} \times \{0,1\} \longrightarrow \{0,1\}$$

[A B	7, 12 73	· , .	716
0 0			
0			
1 0			

We typically only work with AND, OR, NAND, NOR, XOR.

Laws of Boolean Algebra

identity

A.1 = A

inverse

$$A + \overline{A} = 1$$

 $A \cdot \overline{A} = 0$

one and zero

A - 0 = 0

commutative

A.B=B·A

associative

$$(A+B)+C=A+(B+C)$$

(A·B)· c = A·(B·c)

distributive

$$A \cdot (B+C)$$

$$= (A \cdot B) + (A \cdot C)$$

A+ (B·C)

$$= (A + B) \cdot (A + C)$$

de Morgan

$$(\overline{A+B}) = \overline{A} \cdot \overline{B}$$

$$\overline{A \cdot B} = \overline{A} + \overline{B}$$

Laws of Boolean Algebra

Note this one behaves differently from integers or reals.

Example

A.B.C. (A.B.+ A.C.)

A	BC	A.B.C	A.B.C	A·B	A . C	A.B+A.C	À
0	0 1 0 1 0 0 1	0 0 0 0	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	5 0 5 3	0 0 0	0	0 6

Sum of Products

Q: For 3 variables A, B, C, how many terms can we have in a sum of products representation?

A: $2^3 = 8$ i.e. previous slide

$$Y = \overline{A \cdot B \cdot C} + \overline{A \cdot B \cdot C}$$

$$= \overline{A \cdot B \cdot C} + \overline{A \cdot B \cdot C}$$

$$= \overline{A \cdot B \cdot C} \cdot \overline{A \cdot B \cdot C}$$

$$= \overline{A \cdot B \cdot C} \cdot \overline{A \cdot B \cdot C}$$

$$= \overline{A \cdot B \cdot C} \cdot \overline{A \cdot B \cdot C}$$

called a "product of sums"

How to write Y as a "product of sums" ?

First, write its complement Y as a sum of products.

Because of time constraints, I decided to skip this example in the lecture.

You should go over it on your own.

A F	3 C	Y	À
	0010101	00000	1 1 0 0 1

Then write Y = Y and apply de Morgan's Law.

Sometimes we have expressions where various combinations of input variables give the same output. In the example below, if A is false then any combination of B and C will give the same output (namely true).

Don't Care

We can simplify the truth table in such situations.

$$Y = A \cdot B \cdot C + A$$

$$A \cdot B \cdot C + A$$

means we "don't care" what values are there.

What are the 0's and 1's in a computer?

A wire can have a voltage difference between two terminals, which drives current.

In a computer, wires can have two voltages: high (1, current ON) or low (0, current ~OFF)

Using circult elements called "transistors" and "resistors", one can built circuits called "gates" that compute logical operations.

For each of the OR, AND, NAND, XOR gates, you would have a different circuit.

Moore's Law (Gordon Moore was founder of Intel)

The number of transisters per mm² approximately doubles every two years. (1965)

It is an observation, not a physical law.

It still holds true today, although people think that this cannot continue, because of limits on the size of atom and laws of quantum physics.

http://phys.org/news/2015-07-law-years.html

Logic Gates

NOR NAND XOR

Logic Circuit

Example:

Example: XOR without using an XOR gate

Multiplexor (selector)

$$Y = \overline{S} \cdot A + S \cdot B$$

Notation

Suppose A and B are each 3 bits (A₂ A₁ A₀, B₂ B₁ B₀)

Suppose A and B are each 8 bits (A₇ A_{6 ...} A₀, B₇ B_{6 ...} B₀) We can define an 8 bit multiplexor (selector).

Notation:

In fact we would build this from 8 separate one-bit multiplexors.

Note that the selector S is a single bit. We are selecting either all the A bits or all the B bits.