

MULTI-CUT REBAR(16)

Advisor: Prof. K.C.Chang

Presenters: You-Ran Nai

Closed 2 Project

Flexural Reinforcement

$$\rho_{max} = \min(\frac{f_c' + 100}{4f_y}, 0.025)$$

$$\rho_{min} = \max(\frac{0.8\sqrt{f_c'}}{f_y}, \frac{14}{f_y})$$

15.4.2 縱向鋼筋

- 15.4.2.1 構材上下兩面鋼筋比各不得小於 $\frac{0.8\sqrt{f_c'}}{f_y}$, 亦不得小於 $\frac{14}{f_y}$ 。 拉力鋼筋比不得大於 $\frac{f_c'+100}{4f_y}$,亦不得大於 0.025 。 構材上下兩面至少各須有兩支鋼筋全長貫通配置。
- 15.4.2.2 撓曲構材在梁柱交接面及其它可能產生塑鉸位置,其壓力鋼筋量不得小於拉力鋼筋量之半。在沿構材長度上任何斷面,不論正彎矩鋼筋量或負彎矩鋼筋量均不得低於兩端柱面處所具最大負彎矩鋼筋量之 1/4。
- 15.4.2.3 受撓鋼筋之搭接必須於搭接範圍配置閉合箍筋或螺箍,此橫向鋼筋之最大間距不得大於 d/4 或 10 cm。搭接不得用於:(1)構材接頭內;(2)距接頭交接面 2 倍構材深度以內範圍,及(3)分析顯示由構架非彈性側向變位所引起撓曲降伏之位置。
- 15.4.2.4 鋼筋針接與機械式續接須滿足第 15.3.0 即之規定。

Development Length

圖R5.11.2 連續梁之撓曲鋼筋伸展

Combinations

Shear Reinforcement

$$V_{\rm u}=V_{\rm p}+V_{\rm D+L} \\ V_p=\max(V_{p1}=\frac{M_I^-+M_J^+}{L},V_{p2}=\frac{M_I^-+M_J^+}{L}) \\ >2h, \ {\rm Consider} \ {\rm Vc}$$

15.4.3 横向鋼筋

- 15.4.3.1 閉合箍筋應設置於構架構材之下列部位:
 - (1)受撓構材之兩端由支承構材面向跨度中央 2 倍構材深度之範圍內。
 - (2)由構架非彈性側向變位所引起撓曲降伏之斷面向兩側各2倍構材深度之範圍內。
- 15.4.3.2 第一個閉合箍筋距支承構材面不得超過 5 cm。閉合箍筋最大間距不得超過(1)d/4,(2)最小主鋼筋直徑之 8 倍,(3)閉合箍筋直徑之 24 倍,及(4)30 cm。

→ Combinations

2h

Flexural Reinforcement

$$\rho_{max} = \min(\frac{f_c' + 100}{4f_y}, 0.025)$$

$$\rho_{min} = \max(\frac{0.8\sqrt{f_c'}}{f_y}, \frac{14}{f_y})$$

15.4.2 縱向鋼筋

- 15.4.2.1 構材上下雨面鋼筋比各不得小於 $\frac{0.8\sqrt{f_c'}}{f_y}$, 亦不得小於 $\frac{14}{f_y}$ 。拉力鋼筋比不得大於 $\frac{f_c'+100}{4f_v}$,亦不得大於 0.025 。構材上下雨面至少各須有雨支鋼筋全長貫通配置 。
- 15.4.2.2 撓曲構材在梁柱交接面及其它可能產生塑鉸位置,其壓力鋼筋量不得小於拉力鋼筋量之半。在沿構材長度上任何斷面,不論正彎矩鋼筋量或負彎矩鋼筋量均不得
- 15.4.2.3 受撓鋼筋之搭接必須於搭接範圍配置閉合箍筋或螺箍,此横向鋼筋之最大間距不得大於 d/4 或 10 cm。搭接不得用於:(1)構材接頭內;(2)距接頭交接面 2 倍構核深度以內範圍,及(3)分析顯示由橫架非優性側向攀位所引起始曲階依之位置。
- 15.4.2.4 鋼筋銲接與機械式續接須滿足第 15.3.6 即之規定。

Combinations

Development Length

Shear Reinforcement

$$V_{\rm u}=V_{\rm p}+V_{\rm D+L} \qquad \qquad >2h, \mbox{ Consider Vc}$$

$$V_p=\max(V_{p1}=\frac{M_I^-+M_J^+}{I},V_{p2}=\frac{M_I^-+M_J^+}{I})$$

11 Models

結構設計變數						
反應譜	樓層數	跨距				
影響疊加的彎矩圖		影響最佳化效果				
地震力小		6m				
地震力中	4	9m				
地震力大		12m				

結構設計變數							
反應譜	樓層數	跨距					
影響疊加的彎矩圖	考慮高模態	影響最佳化效果					
	4						
地震力中	12	9m					
	20						

Model Assume

		常數					
混凝土強度 kgf/cm2	主筋強度 kgf/cm2	箍筋強度 kgf/cm2	DL tonf/m2	LL tonf/m2	Rigid Zone	柱底	強柱弱梁
280	4200	4200	0.2	0.3	0.75	FIX	1.2
			住宅 0.3	住宅 0.2			
			辦公室 0.2	辦公室 0.3			
				公共 0.4			

	縣市	鄉鎮市區	地盤類別	SDS	SD1	SMS	SM1
地震力小	桃園縣	蘆竹鄉	1	0.5	0.3	0.7	0.4
地震力中	桃園縣	平鎮市	2	0.66	0.49	0.8	0.54
地震力大	宜蘭縣	蘇澳鎮	3	0.8	0.675	1	0.77

結構設計變數					
反應譜	樓層數	跨距			
影響疊加的彎矩圖	考慮高模態	影響最佳化效果			
地震力小	4	6m			
地震力中	12	9m			
地震力大	20	12m			

Model Design Problem

Roof Strong Column Weak Beam

Joint Shear

接頭四面皆受圍束	$5.3\sqrt{f_c'}A_j$
三面或一雙對面受圍束	$3.9\sqrt{f_c'}A_j$
其他	$3.2\sqrt{f_c'}A_j$

Model Design Problem

12m B50X60, C60X60, C80X80

6m B25X40, C50X50

Evaluation

結構設計變數					
反應譜	樓層數	跨距			
影響疊加的彎矩圖		影響最佳化效果			
地震力小		6m			
地震力中	4	9m			
地震力大		12m			

$$\frac{Seismic\ Load}{Gravity\ Load} = Small\ \&\ Long\ Span$$

$$\frac{Seismic\ Load}{Gravity\ Load} = Large\ \&\ Short\ Span$$

整體優化結果		85.1%	上下層	上層	78.7%	整體優化結果		97.1%	上下層	上層	94.8%
			優化比例	下層	90.7%				優化比例	下層	100.0%
主筋各號數	sum	100.0%	主筋各號數			主筋各號數	sum	100.0%	主筋各號數		
使用比例	#7		優化比例	#7		使用比例	#7		優化比例	#7	
	#8	70.6%		#8	87.6%	12/11/21		100.00/	支 口 口 7		07.10/
	#10	29.4%		#10	79.5%		#8	100.0%		#8	97.1%
	#11			#11			#10			#10	
	#14			#14			#11			#11	
					-		#14			#14	
	#18			#18							
							#18			#18	12

Evaluation

Time History

Find PGA and PGV

Max 10 ratio and no same earthquake

	PEER-NGA Record Information							
ID No.	Record	Lowest	File Names - Ho	rizontal Records				
110.	Seq. No.	Freq (Hz.)	Component 1	Component 2				
1	953	0.25	NORTHR/MUL009	NORTHR/MUL279				
2	960	0.13	NORTHR/LOS000	NORTHR/LOS270				
3	1602	0.06	DUZCE/BOL000	DUZCE/BOL090				
4	1787	0.04	HECTOR/HEC000	HECTOR/HEC090				
5	169	0.06	IMPVALL/H-DLT262	IMPVALL/H-DLT352				
6	174	0.25	IMPVALL/H-E11140	IMPVALL/H-E11230				
7	1111	0.13	KOBE/NIS000	(KOBE/NIS090)				
8	1116	0.13	KOBE/SHI000	KOBE/SHI090				
9	1158	0.24	KOCAELI/DZC180	KOCAELI/DZC270				
10	1148	0.09	(KOCAELI/ARC000)	KOCAELI/ARC090				
11	900	0.07	LANDERS/YER270	LANDERS/YER360				
12	848	0.13	LANDERS/CLW-LN	LANDERS/CLW-TR				
13	752	0.13	LOMAP/CAP000	LOMAP/CAP090				
14	767	0.13	LOMAP/G03000	LOMAP/G03090				
15	1633	0.13	MANJIL/ABBARL	MANJIL/ABBART				
16	721	0.13	SUPERST/B-ICC000	SUPERST/B-ICC090				
17	725	0.25	SUPERST/B-POE270	SUPERST/B-POE360				
18	829	0.07	CAPEMEND/RIO270	CAPEMEND/RIO360				
19	1244	0.05	CHICHI/CHY101-E	CHICHI/CHY101-N				
20	1485	0.05	CHICHI/TCU045-E	CHICHI/TCU045-N				
21	68	0.25	SFERN/PEL090	SFERN/PEL180				
22	125	0.13	FRIULI/A-TMZ000	FRIULI/A-TMZ270				

Spectrum

Hinge

Hinge

Without Initial Conditions

Hinge

一般斷筋要不要也設多個塑角

Pushover Load Pattern

Triangle

Multi-Modes Combination

$$F_j = \sum_{n=1}^N \Gamma_n \phi_{n_j}$$

Modal Pushover Analysis

Pushover Result

Pushover Result

耐震性能檢測 PGA

用途係數I	性能點	目標地表加速度 Ap		A _T
1.0	0.8V _{max} ⁺	最大層間位移角<3%	柱構件產	0.4S _{DS}
1.25	V_{max}	最大層間位移角<2%	生軸力破	0.4S _{DS}
1.5	0.8V _{max}	最大層間位移角<1%	壞	0.4S _{DS}

ATC-40

表 16 Damage level 規範

Damage Level & Desirable Function	Explanation	Drift Limit
Fully Operational	Structure and contents undamaged	0.2%
Operational (immediate occupancy)	Structural undamaged, content slightly damaged but functioning	0.5%
Life Safety	Structures damaged but remains safe, contents damaged and need some time to recover	1.5%
Near Collapse	Structures severely damages but remains stable, nonstructural and contents severely damaged	2.5%
Collapse	Structure collapsed	> 2.5%

Time history

Scaled to DBE, MCE

Story Drift

IDA

Limit-State
4% FEMA273
2.5% SEAOC 2000

