## **Group 3 Presentation**

LI Weihao 1155077142 LI Jinzhao 1155077016 Wang Yiqun 1155062115 Peng Zhichao 1155062015

Project 1: Fraud detection of insurance claims

October 16.2018

## Outline

Data Processing

Selection Criteria

Methodology

► Result Comparison & Best Model

Limitations & Difficulties

# Data processing

- 1. Time gap
- 2. Mapping to numeric values
- 3. Change to dummy variables
- 4. Create new features using PCA

### Variables concerned:

Year, Month, WeekOfMonth, DayOfWeek, DayOfWeekClaimed, MonthClaimed, WeekOfMonthClaimed

### Goal:

Calculating the time gap between the claim and the accident

## **Assumption:**

1. Assume claim and accident happened in the same year, but if claim happened before accident, assume that claim happened next year.

### **Histogram of Time Gap**



## **Assumption:**

2. Assume the first week of the month (WeekOfMonth) starts from the first day of the very month (instead of the first calendar week of the month).



### Method:

Date(MonthClaimed, DayOfWeekClaimed, DayOfWeek)

- Date(Year, Month, WeekOfMonth, DayOfWeek)

## Mapping to numeric values

### Variables concerned:

NumberOfCars, VehiclePrice, AgeOfVehicle, Days\_Policy\_Claim,

Days\_Policy\_Accident, PastNumberOfClaims,

 $Number Of Suppliments,\ Address Change\_Claim$ 

### Goal:

Converting the interval variables to some values so that they can be fitted into models.

# Mapping to numeric values

### **Assumption:**

Assume that for a certain interval variable, two values are similar if falling into the same interval. E.g. for NumberOfCars, "3 cars" and "4 cars" are similar as they fall into "3 to 4"

### Method:

Taking the midpoint of the interval.

E.g. assign 3.5 to "3 to 4" in NumberOfCars

## Change to dummy variable

### Variables concerned:

Binary: Sex, AccidentArea, Fault, WitnessPresent,

PoliceReportFiled, AgentType

Categorical: MaritalStatus, Make, VehicleCategory, BasePolicy,

Deductible

### Goal:

Change these variables to dummy variables

|          | MaritalStatus<br>Divorced |   | MaritalStatus<br>Single | MaritalStatus<br>Widow |
|----------|---------------------------|---|-------------------------|------------------------|
| Divorced | 0                         | 0 | 0                       | 0                      |
| Married  | 0                         | 1 | 0                       | 0                      |
| Single   | 0                         | 0 | 1                       | 0                      |
| Widow    | 0                         | 0 | 0                       | 1                      |

# Create new feature using PCA

### Goal:

Help to improve the performance of the classifier and reduce the dimensionality of the data.

Method:

Perform PCA analysis to the dataset.

# Random Under-Sampling

### Advantages

▶ It can help improve run time and storage problems by reducing the number of training data samples when the training data set is huge

## Disadvantages

- It can discard potentially useful information which could be important for building rule classifiers.
- The sample chosen by random under sampling may be a biased sample. And it will not be an accurate representative of the population. Thereby, resulting in inaccurate results with the actual test data set.

# Random Over-Sampling

## Advantages

- Unlike under sampling this method leads to no information loss.
- Outperform under sampling
- Disadvantages
  - It increases the likelihood of overfitting since it replicates the minority class events.

# Informed Over Sampling: Synthetic Minority Over-sampling Technique

## Advantages

- Mitigates the problem of overfitting caused by random oversampling as synthetic examples are generated rather than replication of instances.
- No loss of useful information.

### Disadvantages

- While generating synthetic examples SMOTE does not take into consideration neighboring examples from other classes. This can result in increase in overlapping of classes and can introduce additional noise.
- ▶ SMOTE is not very effective for high dimensional data.

# Informed Over Sampling: Synthetic Minority Over-sampling Technique



## Selection Criterion

Precision is equal to the proportion of correctly raised alarms, as follows:

$$Pr = \frac{TP}{TP + FP}$$

► Recall is equal to the proportion of deviant signatures, which are correctly identified as such:

$$Re = \frac{TP}{TP + FN}$$

|        |          | Classified as     |                   |
|--------|----------|-------------------|-------------------|
| Actual |          | Fraud             | No fraud          |
|        | Fraud    | TP-true positive  | FN-false negative |
| ĺ      | No fraud | FP-false positive | TN-true negative  |

## Selection Criterion

► *F-measure* is a measure that calculates a harmonic mean between precision and recall, as follows:

$$F
-measure = \frac{2 * Pr * Re}{Pr + Re}$$

- ▶ Use Recall and F-measure as final criterion and not use accuracy rate
  - Main purpose is detecting fraud cases
  - Common process
    - Select all potential fraud cases first
    - Classify selected cases artificially next
  - accuracy rate does not work under imbalanced situation
    - Accuracy rate is dominated by not fraud part
    - Extreme case: Given no fraud detection, accuracy rate=0.94

|              |                     |                             |                 | no change  |                | PCA             |                |                   |
|--------------|---------------------|-----------------------------|-----------------|------------|----------------|-----------------|----------------|-------------------|
| F_score      |                     |                             | claims2_us      | claims2_os | claims2_smote_ | claims2_pca_us  | claims2_pca_os | claims2_pca_smote |
| -            | Logistic Regression |                             | 0.2144          | 0.2098     | 0.2311         | 0.2119          | 0.2110         | 0.2120            |
|              | Classification Tree |                             | 0.2338          | 0.2171     | 0.2378         | 0.2081          | 0.1939         | 0.1940            |
|              | Random Forest       |                             | 0.2415144(10/60 | )          | 0.2651934      | 0.2372159(10/27 | )              | 0.2577777         |
|              |                     | KNN                         |                 | 0.1872     | 0.1833         | 0.1801          | 0.1776         | 0.1707            |
|              | SVM                 |                             | 0.2109          | 0.2172     | 0.2167         | 0.2188          | 0.2180         | 0.2160            |
| Supervised   | Neural Network (5)  |                             | 0.2323          | 0.2214     | 0.2149         | 0.2161          | 0.2298         | 0.1993            |
| Supervised   | Bagging             | Bagging x Classification Tr | 0.2386          | 0.2171     | 0.2513         | 0.2324          | 0.1958         | 0.2191            |
|              |                     | Bagging x KNN               | 0.1723          | 0.1505     | 0.1747         | 0.1732          | 0.1483         | 0.1733            |
|              |                     | Bagging x SVM               | 0.2110          | 0.2096     | 0.2115         | 0.2109          | 0.2112         | 0.2112            |
|              | Boosting            | Boosting x Classification T | 0.2138          | 0.2213     | 0.2254         | 0.1992          | 0.2170         | 0.2112            |
|              |                     | Boosting x KNN              | 0.1663          | 0.1250     | 0.1626         | 0.1578          | 0.1507         | 0.1683            |
|              |                     | Boosting x SVM              | 0.2085          | 0.2090     | 0.2079         | 0.2256          | 0.2181         | 0.2389            |
| Unsupervised | K-mean clustering   |                             | 0.2021          | 0.1865     | 0.1872         | 0.1955          | 0.2086         | 0.1900            |
|              | One Class SVM       |                             | 0.0992          | 0.0998     | 0.1076         | 0.1011          | 0.1011         | 0.1048            |
|              |                     |                             |                 |            |                |                 |                |                   |

## Finding:

- 1. Most method give similar result, F score is about 0.22.
- 2. KNN and unsupervised one class SVM give bad result compared with others.
- 3. RF works better than others on average.

- Bagging and boosting may be unchanged or even worsen the result(except the classification tree method using bagging).
- In the boosting, the weight decrease sharply, the first classifier dominate the result, which may make no difference with only one classifier.

| Recall       |                     |                                |        |        |        |        |        |       |
|--------------|---------------------|--------------------------------|--------|--------|--------|--------|--------|-------|
|              |                     | Logistic Regression            | 0.7195 | 0.8374 | 0.8211 | 0.7115 | 0.8659 | 0.861 |
|              | Classification Tree |                                | 0.9228 | 0.9675 | 0.8943 | 0.6545 | 0.7398 | 0.719 |
|              | Random Forest       |                                | 0.752  |        | 0.5854 | 0.6789 |        | 0.707 |
|              | KNN                 |                                | 0.6237 | 0.6245 | 0.7284 | 0.58   | 0.5166 | 0.753 |
|              | SVM                 |                                | 0.9187 | 0.9187 | 0.9431 | 0.8618 | 0.7967 | 0.947 |
|              | Neural Network (5)  |                                | 0.7846 | 0.9228 | 0.7927 | 0.7967 | 0.8171 | 0.719 |
|              |                     | Bagging x Classification Tree  | 0.8415 | 0.9675 | 0.7967 | 0.5772 | 0.7846 | 0.796 |
|              |                     | Bagging x KNN                  | 0.5772 | 0.1992 | 0.561  | 0.5691 | 0.1992 | 0.601 |
|              | Bagging             | Bagging x SVM                  | 0.9024 | 0.9024 | 0.9106 | 0.9268 | 0.9309 | 0.930 |
|              |                     | Boosting x Classification Tree | 0.6318 | 0.7195 | 0.4932 | 0.5813 | 0.4715 | 0.63  |
|              |                     | Boosting x KNN                 | 0.5708 | 0.2194 | 0.5166 | 0.5448 | 0.2248 | 0.58  |
| Supervised   | Boosting            | Boosting x SVM                 | 0.7834 | 0.6234 | 0.6543 | 0.7558 | 0.5317 | 0.725 |
|              | K-mean clustering   |                                | 0.3862 | 0.3943 | 0.374  | 0.3699 | 0.374  | 0.415 |
| Unsupervised |                     | One Class SVM                  | 0.4837 | 0.4878 | 0.4512 | 0.4837 | 0.4919 | 0.447 |

## Finding:

- ► Except the classification tree give worse result, PCA or not give similar result.
- SVM and Classification tree give higher recall compared with others.



## Finding:

► For the recall part, except the KNN, when the fraud case increase, most of classifier tend to have higher recall.

Table 1: Best VS Ordinary

| Result | 0       | 1   |   | Result | 0     | 1   |
|--------|---------|-----|---|--------|-------|-----|
| 0      | 3170    | 72  |   | 0      | 2558  | 34  |
| 1      | 930     | 174 |   | 1      | 1542  | 212 |
| F      | 0.25778 |     | F | =      | 0.212 |     |
| Recall | 0.71    |     | F | Recall | 0.86  |     |

### Observation:

Although the right result has higher recall, but it categorize many non-fraud to fraud, which make the F score lower.

# Methodology

Random Forest is an extension of bagging with classification tree.

To understand RF, we need some knowledge about classification tree and bagging.

## Methodology

#### Classification Tree

$$IG(T, a) = H(T) - H(H|a)$$
  
=  $-\sum_{i=1}^{J} p_i log_2 p_i - \sum_{a} p(a) \sum_{i=1}^{J} -Pr(i|a) log_2 Pr(i|a)$ 

where IG(T, a) stands for information gain, H(T) stands for the entropy of the parent nodes and H(H|a) is the weighted sum of the entropy of the children nodes.

## Algorithm:

- 1. Calculated the information gain of each possible first split.
- 2. Select the best first split that provides the most information gain.
- 3. This process is repeated for each impure node until the tree is complete.

# Methodology

## **Bagging - Bootstrap aggregating**

The random forests method applies the general technique of bootstrap aggregating, or bagging, to tree learners.

## Algorithm:

Given a training set  $X = x_1, ..., x_n$  with responses  $Y = y_1, ..., y_n$ ,

- 1. Repeatedly (B times) selects a random sample with replacement of the training set and fits trees to these samples.
- Result is given by taking the majority vote in the case of classification trees.

#### Random Forest

It differs from bagging in only one way: at each candidate split in the learning process, a random subset of the features is selected. This process is sometimes called "feature bagging".

## Limitations and Problems

- Time gap cannot by calculated correctly in some cases
  - There exists a complete fifth week in a month.
- Certain variables should provide exact data.
  - NumberOfSuppliments
  - Days\_Policy\_Claim
- Few Numerical variables
  - Numeric variables transferred from categorical variables may not express real information
  - Classifiers working with numeric variables does not perform well.
    - ANN
    - Knn
    - SVM