Semaine 8-9 2022

Flèches de poutres 1/2

PARTIE 1: (slide 4 - 27)

intro flèche et relations différentielles (Chapitre 9 de Gere et Goodno)

PARTIE 2: (slide 28 - 37)

flèche pour poutres avec plusieurs « zones » (Chapitre 9 de Gere et Goodno)

PARTIE 3: (slide 38 - 49)

calcul de flèche par principe de superposition (Chapitre 9 de Gere et Goodno)

PROGRAMME DU COURS, semaines 7-10

5	Sem	Date	Matière	Cours	Exos
			Herbert Shea		
	7	mardi 01.11	Poutre: forces internes, relation différentielles, forces distribuées	X	
	7	jeudi 03.11	ϵ et σ_n ormale en flexion pure. Moment inertie de poutre	X	Série 7
	8	1:00.44	charge axiale (et normales). poutre		64 . 7
	8	jeudi 10.11	Flèche des poutres pt1	Х	Série 8
	9	marui 13.11	rieche des podities priz	^	Jene o
	9	jeudi 17.11	Systèmes indéterminés et thermiques	Х	Série 9
	10	mardi 22.11	Energie déformation Flambage	x	Série 9+10
	10		fin Flambage	X	Série 10

Flèche – partie 1 (slides 4-27) Objectifs d'apprentissage

- Savoir définir la flèche d'une poutre
- Calculer la flèche pour cas simples en utilisant les relations différentielles entre flèche et moment interne de flexion

Flèche d'une poutre

La déformation de <u>l'axe neutre</u> est décrite par la fonction w(x), appelée **la flèche** de la poutre (anglais: *deflection*).

Hypothèses pour flèche (Euler-Bernoulli)

- (même hypothèses que précédemment dans ce cours)
- Charge en y, moment de flexion en z
- Déformations élastiques linéaires
- Petites déformations
- Poutre de section symétrique par rapport à l'axe y, des charges qui ne dépendent pas de z, la flèche sera en direction de y (= nous n'aurons pas de flèche en z)

Flèche w d'une poutre

Sans approximations – définitions locales

- On peut lier courbure et flèche
- Localement: Translation en y + rotation axe z
- lacktriangle Une poutre a localement un rayon de courbure ρ
- Formule générale pour courbure: $\kappa = \frac{1}{\rho} = \frac{d\theta}{ds} = \frac{\frac{d^2w}{dx^2}}{\left[1 + \left(\frac{dw}{dx}\right)^2\right]^{\left(\frac{3}{2}\right)}}$
- w(x): translation en y de l'axe neutre (zéro)
- $tan(\theta) = \frac{dw}{dx}$

Flèche d'une poutre

Approximation pour petites déflections (=ce que nous allons utiliser)

■ Si petite déflection : $\left(\frac{dw}{dx}\right)^2 \ll 1$ alors

$$\kappa = \frac{1}{\rho} = \frac{d\theta}{ds} = \frac{\frac{d^2w}{dx^2}}{\left[1 + \left(\frac{dw}{dx}\right)^2\right]^{\left(\frac{3}{2}\right)}} \approx \frac{d^2w}{dx^2}$$

■ et aussi $\theta \approx \tan(\theta) = \frac{dw}{dx}$

■ ainsi:
$$\kappa = \frac{1}{\rho} \approx \frac{d\theta}{dx} \approx \frac{d^2w}{dx^2}$$

■ nous savons (voir chapitre précédent du cours) lier rayon de courbure ρ aux moments de flexion $M_z(x)$ et donc:

$$\kappa = \frac{1}{\rho} = \frac{M_Z(x)}{EI_{Z,y_0}} \approx \frac{d^2w}{dx^2}$$

Relation: Moment de flexion – flèche

Flèche
$$w(x)$$
:
$$w''(x) = \frac{d^2w}{dx^2} = \frac{M_Z(x)}{EI_Z}$$

 $M_z(x)$: Moment interne de flexion Unités: [Nm]

E: Module de Young (« rigidité » du matériau) ∪nités: [Pa] ≈ 100 GPa pour du métal, 2 GPa pour nylon, 1 MPa pour du silicone

I_{z, y₀}: Moment quadratique (d'inertie): (« rigidité » de la forme) donné par la géometrie de la section et l'axe de déflection. À l'axe neutre.
 Unités: [m⁴]

Rappel: Relation différentielle entre:

- charge q(x) (perpendiculaire à poutre)
- force cisaillement V(x)
- moment M(x)

$$V'(x) = -q(x)$$

$$M'(x) = V(x)$$

$$M''(x) = -q(x)$$

• la définition du sens conventionnels de q(x) et M(x) sont importants pour le signe des relations différentielles

Relation entre flèche w(x) et charge q(x)

$$V(x) = -\int q(x) \, dx$$

$$M_Z(x) = \int V(x) \, dx$$

$$w'(x) = \theta(x) = \int \frac{M_Z(x)}{EI_{Z,y_0}} dx$$

$$w(x) = \int w'(x) \, dx$$

$$w'(x) = \theta(x)$$

$$w''(x) = \frac{M_Z(x)}{EI_Z}$$

$$w'''(x) = \frac{V_Y(x)}{EI_Z}$$

$$\frac{d^4w(x)}{d^4x} = -\frac{q(x)}{q(x)}$$

La poutre monte = w positif

Vice-versa: trouver forces, charge et moments à partir de de la déflection

Ça marche dans les deux sens:

- À partir de la flèche, nous pouvons calculer:
 - Moment de flexion
 - Force de cisaillement
 - Charges ponctuelles et distribuées
- À partir des charges on peut calculer la flèche

Constantes d'intégration

$$\frac{d^4w(x)}{dx^4} = -\frac{q(x)}{EI_z} \to w(x) = -\frac{1}{EI} \iiint \int q(x)$$

Oh malheur, il y a donc 4 constantes d'intégration!

Par example, si
$$q = \text{constante}$$
, $w = \frac{q x^4}{24} + A \frac{x^3}{6} + \frac{B x^2}{2} + C x + D$

Nous trouvons les constantes par:

- les conditions aux bords. M(x), V(x), $\theta(x)$ et w(x) aux supports ou extrémités
- Continuité de $\theta(x)$ et w(x) si plusieurs zones (attention, si plusieurs zones, nous aurons plus de constantes d'intégration, car une fonction w(x) par zone)

Conditions aux limites sur w et w'

(cas simple d'une seule région)

$$w(0) = 0$$
 flèche connue $w(L) = 0$ flèche connue

w'(0) et w'(L): pas connues

$$w''(0) = 0$$
 Moment $w''(L) = 0$ Moment

$$w(0) = 0$$
 flèche connue
 $w'(0) = 0$ angle connue à l'encastrement

w(L) et w'(L): pas connues

$$w''(L) = 0$$
 moment
 $w'''(L) = 0$ effort tranchant V

Les quatre conditions aux limites permettent de déterminer les quatre constantes d'intégration nécessaires.

Il suffit de 2 si on commence déjà avec M(x)

Dans le cas de **l'encastrement** (à droite), la **tangente** de w(x) est **horizontale** pour x=0.

Réfléchir : quels sont forces, moments, angles et flèches au supports?

Conditions aux limites pour trouver les 4 constantes d'intégration pour w(x)

- Si pivot ou poutre simplement posé:
 - seule la flèche (=0) au pivot est connue (pas sa dérivée)
- Si la poutre est encastrée, alors
 - la flèche et l'angle à l'encastrement (dérivée de la flèche) sont connues
- Angle = 0 est l'angle de la poutre sans charges (pas l'angle par rapport au sol)

Conditions limites

Turning point: MICRO200

w(0)=0 w'(0)=θ

w(0)=0 w'(0)=inconnue

B.
$$w(0) = 0$$
 $w'(0) = \theta$

c.
$$w(0) = 0$$
 $w'(0) = inconnue$

D.
$$w(0) = inconnue \quad w'(0) = \theta$$

Conditions aux bords

supports typiques

Le type de support nous donne directement des conditions limites

Conditions aux bords

supports typiques

Le type de support nous donne directement des conditions limites

Extrémité libre

$$w^{\prime\prime}=w^{\prime\prime\prime}=0$$

Conditions aux bords à x=0

- A. w(0)=0 w'(0)=0
- B. w(0)=inconnue w'(0)=inconnue
- c. w(0)=0 w'(0)=inconnue
- D. w(0)=inconnue w'(0)=0

Conditions aux bords à x=L

- A. w(L)=0 w'(L)=0
- B. w(L)=inconnue w'(L)=inconnue
- c. w(L)=0 w'(L)=inconnue
- D. w(L)=inconnue w'(L)=0

Exemple: Flèche d'une poutre soumise à force ponctuelle

Poutre encastrée de longueur L. force F à l'extrémité (on néglige la masse de la poutre):

$$M(x) = F(x - L)$$
 (vous savez le calculer)

$$w(x) = \iint \frac{M(x)}{EI} dx^2$$

$$w(x) = \frac{F}{6EI} \left(x^3 - 3Lx^2 \right)$$

$$M(x) = F(x - L)$$

$$w'(x) = \int \frac{M_Z(x)}{EI_{Z,y_0}} dx$$

$$\omega'(x) = \left[F\frac{x^2}{2} - fLx + A\right] \stackrel{f}{=} I$$

$$\omega(x) = \left[F\frac{x^3}{6} - FLx^2 + Ax + B\right] \stackrel{f}{=} I$$

$$\omega'(\chi=0)=0 \rightarrow A=0$$

$$\omega(\chi=0)=0 \rightarrow B=0$$

$$\omega(\chi)=\frac{F}{E}\left(\frac{\chi^{3}-\chi^{2}L}{6}\right)$$

La flèche doit aller dans la direction physique!

Exemple: Flèche d'une poutre soumise à force ponctuelle

Calculer la flèche w(x) et l'angle de la poutre aux points A et B

$$w''(x) = \frac{M(x)}{EI}$$

Conditions aux bords: w(0)=0 et w(L)=0

$$M_z(x) = kx \frac{L^2}{6} - k \frac{x^3}{6}$$

d'un calcul précédent

$$w''(x) = \frac{M(x)}{EI}$$

$$w'(x) = \int \frac{M(x)}{EI} dx = \frac{1}{EI} \int \left(-k \frac{x^3}{6} + kx \frac{L^2}{6} \right) dx$$
$$w'(x) = \frac{1}{EI} \left(-k \frac{x^4}{24} + kL^2 \frac{x^2}{12} + A \right)$$

$$w(x) = \frac{1}{EI} \left(-k \frac{x^5}{120} + kL^2 \frac{x^3}{36} + Ax + B \right)$$

$$w(0) = 0$$
 donc $B = 0$
 $w(L) = 0$ donc $A = -kL^4$ (7/360)

$$w(x) = \frac{1}{EI} \left(-k \frac{x^5}{120} + kL^2 \frac{x^3}{36} - \frac{7kL^4}{360} x \right)$$

Méthode alternative pour les constantes (mais il faut les même infos sur les conditions aux bords)

$$w'(x) - w'(x = 0) = \frac{1}{EI} \int_0^x \left(\frac{kuL^2}{6} - \frac{ku^3}{6} \right) du$$

$$w'(x) - w'(x = 0) = \frac{1}{EI} \left(\frac{kL^2x^2}{12} - \frac{kx^4}{24} \right)$$

$$w'(x) = w'(x = 0) + \frac{1}{EI} \left(\frac{kL^2x^2}{12} - \frac{kx^4}{24} \right)$$

Des conditions aux bords

1.
$$w(0) = 0$$

2.
$$w(L) = 0$$
 donc $w'(0) = -kL^4 (7/360)$

$$w(x) = \frac{1}{EI} \left(-k \frac{x^5}{120} + kL^2 \frac{x^3}{36} - \frac{7kL^4}{360} x \right)$$

On peut trouver les angles w'(x) aux supports

$$w'(x) = \frac{1}{EI} \left(-\frac{kx^4}{24} + \frac{kL^2x^2}{12} - \frac{7kL^4}{360} \right)$$

$$w'(x=0) = -\frac{7kL^4}{360}$$

$$w'(x = L) = +\frac{8kL^4}{360}$$

Flèche-partie 2 Continuité

Objectifs d'apprentissage

• Utiliser la <u>continuité</u> de flèche et de la pente pour trouver les constantes d'intégrations pour des poutres avec de multiples zones.

Condition limites de continuité

pour tout point d'une poutre:

$$\lim_{x \to x_0^+} w(x) = \lim_{x \to x_0^-} w(x) = w(x_0)$$

$$\lim_{x \to x_0^+} w'(x) = \lim_{x \to x_0^-} w'(x) = w'(x_0)$$

- La flèche est continue
- L'angle de la flèche est continue

- Chaque « région » d'une poutre a une équation pour w(x), tout comme chaque « région » de la poutre a une expression pour M(x) et pour V(x).
- Continuité de la flèche et de la pente de la flèche: donne des équations de continuité entre les « régions »

$$M_1(x)$$
 pour $0 < x < d$
 $M_2(x)$ pour $d < x < 2d$
 $M_3(x)$ pour $2d < x < 2d + e$
 $w_1(x)$ pour $0 < x < d$
 $w_2(x)$ pour $d < x < 2d$
 $w_3(x)$ pour $d < x < 2d + e$

Pour trouver $w_1(x)$, $w_2(x)$, $w_3(x)$, il faut non seulement $M_1(x)$, $M_2(x)$, $M_3(x)$ mais aussi les conditions au bord (incl. de continuité) afin de trouver toutes les constantes d'intégration.

Q: Trouver w(x) le long de cette poutre

 w_0 en N/m

2 zones

$$M_1(x) = \frac{5}{4} w_0 L x - \frac{1}{2} w_0 x^2 \qquad 0 < x < L$$

$$M_2(x) = \frac{9}{4} w_0 L x - \frac{1}{2} w_0 L^2 - w_0 x^2 \qquad L < x < 2L$$

Conditions au bords:

$$w_1(x = 0) = 0$$

 $w_2(x = 2L) = 0$

Conditions de continuité:

$$w_1(x = L) = w_2(x = L)$$

 $w'_1(x = L) = w'_2(x = L)$

$$M_1(x) = \frac{5}{4} w_0 L x - \frac{1}{2} w_0 x^2 \qquad 0 < x < L$$

$$M_2(x) = \frac{9}{4} w_0 L x - \frac{1}{2} w_0 L^2 - w_0 x^2 \qquad L < x < 2L$$

EI₃
$$W_1'(x) = \frac{5}{4} w_0 L \frac{x^2}{2} - \frac{1}{2} w_0 \frac{x^3}{3} + \alpha$$

EI₃ $w_1(x) = \frac{5}{4} w_0 L \frac{x^3}{6} - \frac{1}{4} \frac{1}{6} w_0 x^4 + \alpha x + \beta$
EI₃ $w_2'(x) = \frac{9}{4} w_0 L \frac{x^2}{2} - \frac{1}{2} w_0 L^2 x - w_0 \frac{x^3}{3} + \lambda$
II₃ $w_2(x) = \frac{9}{8} w_0 L \frac{x^3}{3} - \frac{1}{2} w_0 L^2 \frac{x^2}{2} - w_0 \frac{x^4}{3} + \delta x + \delta$

4 inconnues, 4 équations On peut résoudre!

Algèbre pour trouver $\alpha, \beta, \gamma, \delta$

Ici, poutre de section et module E constant

Poutres avec section non-constante

poutre encastrée avec moment Mo appliqué en extrémité de la poutre

Trouver la flèche le long de cette poutre de section carrée. Module Young E constant

$$0 < x < 2L/3$$
, section de coté $2t$, $2L/3 < x < L$, section de coté t

d'abord, calculer le moment de flexion

$$M_z(x) = M_0$$
 Pour toute la poutre

■ Puis intégrer pour trouver la flèche:

$$w''(x) = \frac{M_0}{EI(x)} \to w''(x) = \begin{cases} \frac{M_0}{EI_{z1}}; & 0 \le x \le 2L/3\\ \frac{M_0}{EI_{z2}}; & \frac{2L}{3} < x < L \end{cases}$$

attention, $I_{z,1} \neq I_{z,2}$ $I_{z,1} = \frac{4}{3}t^4$ $I_{z,2} = \frac{1}{4}t^4$

poutre encastrée avec moment Mo appliqué en extrémité de la poutre

- Intégrer deux fois M(x). 4 constantes d'intégration (2 par zone)
- utiliser les 2 conditions à x=0 et la continuité de la flèche et de la pente à x=2L/3

$$w_1(x=0) = 0$$

 $w'_1(x=0) = 0$

$$w'_{1}(x = 0) = 0$$
 $w_{1}(x = \frac{2L}{3}) = w_{2}(x = \frac{2L}{3})$

$$w_1'\left(x = \frac{2L}{3}\right) = w_2'(x = \frac{2L}{3})$$

$$w'(x) = \begin{cases} \frac{3M_0}{4Et^4}x; & 0 \le x \le 2L/3\\ \frac{12M_0}{Et^4}\left(x - \frac{2L}{3}\right) + \frac{M_0L}{2Et^4}; & x \ge \frac{2L}{3} \end{cases}$$

$$w(x) = \begin{cases} \frac{3M_0}{8Et^4}x^2; & 0 \le x \le 2L/3\\ \frac{6M_0}{Et^4}\left(x - \frac{2L}{3}\right)^2 + \frac{M_0L}{2Et^4}\left(x - \frac{2L}{3}\right) + \frac{M_0L^2}{6Et^4}; & x \ge \frac{2L}{3} \end{cases}$$

Quel equation est juste pour w''(x) si E est différent pour différentes parties de la poutre?

$$w''(x) = \begin{cases} \frac{M_Z(x)}{E_1 I_Z}; & 0 \le x \le L_1\\ \frac{M_Z(x)}{E_2 I_Z}; & L_1 < x < L_1 + L_2 \end{cases}$$

$$w''(x) = \frac{M_Z(x)}{\langle E I_Z \rangle} \qquad 0 \le x \le L_1 + L_2$$

$$w''(x) = \begin{cases} \frac{M_Z(x)}{E_1 I_Z}; & 0 \le x \le L_1 \\ \frac{M_Z(x)}{E_1 I_Z} + \frac{M_Z(x)}{E_2 I_Z}; & L_1 < x < L_1 + L_2 \end{cases}$$

Flèche-partie 3: <u>Superposition</u> Objectifs d'apprentissage

 Savoir utiliser la superposition pour (plus) facilement trouver la flèche de poutres avec de multiples charges

Outil puissant!

Principe de superposition pour flèche des poutres

- Pour des poutres linéairement élastique, nous avons des équations différentielles linéaires.
- Pour une telle situation, nous pouvons séparer une charge compliquée $q_{total}(x)$ en plusieurs charges plus simples :

$$q_{total}(x) = q_{1facile}(x) + q_{2facile}(x) \dots$$

- Nous pouvons ensuite faire les intégrations pour w(x) sur les $q_i(x)$ séparément
- Puis nous ajoutons les flèches dues à chaque charge.

$$w(x) = w_1(x) + w_2(x) \dots$$

■ Nous pouvons utiliser un tableau des flèches correspondants aux cas habituels ...

On peut ajouter <u>linéairement</u> les déplacements dues à différentes forces (somme <u>pondérée</u>)

annexe G ou H de Gere et Goodno

- voir fichier sur Moodle semaine 8. tableau très complet pour poutres sous différentes contraintes
- (tableau G ou H: dépend de l'édition du livre)

Table G-1

Deflections and Slopes of Cantilever Beams

v = deflection in the y direction (positive upward)

v' = dv/dx =slope of the deflection curve

 $\delta_{B} = -v(L) = \text{deflection at end } B \text{ of the beam (positive downward)}$

 $\theta_B = -v'(L) = \text{angle of rotation at end } B \text{ of the beam (positive clockwise)}$

 $v = -\frac{qx^2}{24E}(6L^2 - 4Lx + x^2)$ $v' = -\frac{qx}{6E}(3L^2 - 3Lx + x^2)$

$$\delta_B = \frac{qL^4}{8EI} \qquad \theta_B = \frac{qL^3}{6EI}$$

 $v = -\frac{qx^2}{2AFI}(6a^2 - 4ax + x^2) \qquad (0 \le x \le a)$

$$v' = -\frac{qx}{6FI}(3a^2 - 3ax + x^2)$$
 $(0 \le x \le a)$

$$v = -\frac{qa^3}{24Fl}(4x - a)$$
 $v' = -\frac{qa^3}{6Fl}$ $(a \le x \le L)$

At
$$x = a$$
: $v = -\frac{qa^4}{8EI}$ $v' = -\frac{qa^3}{6EI}$

$$v = -\frac{Px^2}{6EI}(3a - x) \qquad v' = -\frac{Px}{2EI}(2a - x) \qquad (0 \le x \le a)$$

$$v = -\frac{Pa^2}{6EI}(3x - a) \qquad v' = -\frac{Pa^2}{2EI} \qquad (a \le x \le L)$$

At
$$x = a$$
: $v = -\frac{Pa^3}{3EI}$ $v' = -\frac{Pa^2}{2EI}$

$$\delta_B = \frac{Pa^2}{6EI}(3L - a)$$
 $\theta_B = \frac{Pa^2}{2EI}$

$$v = -\frac{qx}{24LEl}(a^4 - 4a^3L + 4a^2l^2 + 2a^2x^2 - 4alx^2 + Lx^3) \qquad (0 \le x \le a)$$

$$v' = -\frac{q}{24LEl}(a^4 - 4a^3l + 4a^2l^2 + 6a^2x^2 - 12alx^2 + 4Lx^3) \qquad (0 \le x \le a)$$

$$v = -\frac{qa^2}{24LEl}(-a^2l + 4l^2x + a^2x - 6Lx^2 + 2x^3) \qquad (a \le x \le l)$$

$$v' = -\frac{qa^2}{24LEl}(4l^2 + a^2 - 12lx + 6x^2) \qquad (a \le x \le l)$$

$$\theta_A = \frac{qa^2}{24LEl}(2l - a)^2 \qquad \theta_B = \frac{qa^2}{24LEl}(2l^2 - a^2)$$

Attention, y est positif vers le haut pour ces formules!

Formules utiles

$$w(x) = -\frac{FL^{3}}{6EI} \left(3\left(\frac{x}{L}\right)^{2} - \left(\frac{x}{L}\right)^{3} \right)$$

$$w(x) = \begin{cases} -\frac{Fa^{3}}{6EI} \left(3\left(\frac{x}{a}\right)^{2} - \left(\frac{x}{a}\right)^{3} \right); & x \leq a \\ -\frac{Fa^{3}}{6EI} \left(3\left(\frac{x}{a}\right) - 1 \right); & x > a \end{cases}$$

$$w(x) = -\frac{q_{0}L^{4}}{24EI} \left(6\left(\frac{x}{L}\right)^{2} - 4\left(\frac{x}{L}\right)^{3} + \left(\frac{x}{L}\right)^{4} \right)$$

$$w(x) = -\frac{q_{0}L^{4}}{120EI} \left(10\left(\frac{x}{L}\right)^{2} - 10\left(\frac{x}{L}\right)^{3} + 5\left(\frac{x}{L}\right)^{4} - \left(\frac{x}{L}\right)^{5} \right)$$

$$w(x) = -\frac{q_{0}L^{4}}{120EI} \left(20\left(\frac{x}{L}\right)^{2} - 10\left(\frac{x}{L}\right)^{3} - \left(\frac{x}{L}\right)^{5} \right)$$

On peut ajouter <u>linéairement</u> les déplacements dues à différentes forces (somme pondérée)

http://ruina.tam.cornell.edu/Courses/ME4730%20Fall%202013/Rand4770Vibrations/BeamFormulas.pdf

BEAM DEFLECTION FORMULAS

BEAM TYPE	SLOPE AT FREE END	DEFLECTION AT ANY SECTION IN TERMS OF x	MAXIMUM DEFLECTION
1. Cantilever Beam – Concentrated load P at the free end			
V I V	$\theta = \frac{Pl^2}{2EI}$	$y = \frac{Px^2}{6EI} (3l - x)$	$\delta_{\text{max}} = \frac{Pl^3}{3EI}$
2. Cantilever Beam – Concentrated load P at any point			
$\begin{array}{c c} a & P & b \\ \hline y & l & \\ \hline \end{array}$	$\theta = \frac{Pa^2}{2EI}$	$y = \frac{Px^2}{6EI}(3a - x) \text{ for } 0 < x < a$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$	$\delta_{\max} = \frac{Pa^2}{6EI} (3l - a)$
3. Cantilever Beam – Uniformly distributed load ω (N/m)			
$\begin{array}{c c} \omega & \downarrow & x \\ \hline y & l & \downarrow \\ \end{array}$	$\theta = \frac{\omega l^3}{6EI}$	$y = \frac{\omega x^2}{24EI} \left(x^2 + 6I^2 - 4Ix \right)$	$\delta_{\max} = \frac{\omega l^4}{8EI}$
 Cantilever Beam – Uniformly varying load: Maximum intensity ω₀ (N/m) 			
$\omega_{o} = \frac{\omega_{o}}{l}(l-x)$ $\omega_{o} = \frac{\omega_{o}}{l}(l-x)$ δ_{max}	2.121	$y = \frac{\omega_0 x^2}{120lEI} \left(10l^3 - 10l^2 x + 5lx^2 - x^3 \right)$	$\delta_{\max} = \frac{\omega_o I^4}{30EI}$
5. Cantilever Beam $-$ Couple moment M at the free end			
$\frac{1}{v}$ $\frac{x}{\delta_{\text{max}}}$	$\Theta = \frac{Ml}{EI}$	$y = \frac{Mx^2}{2EI}$	$\delta_{\max} = \frac{Ml^2}{2EI}$

Attention, y est positif vers le bas pour ces formules!

Exemple

Poutre encastrée. Force F_L et moment externe M_L appliqués à l'extrémité libre (à x=L)

Trouver w(x) et θ_L en fonction de (F_L, M_L)

Solution

(d'abord, péniblement, sans superposition)

Moment de flexion: $M(x) = M_L + F_L(L - x)$

$$\frac{d^2w(x)}{dx^2} = \frac{M(x)}{EI} = \frac{M_L + F_L(L - x)}{EI}$$

Intégration:

$$\theta(x) = \frac{dw(x)}{dx} = \frac{1}{EI} \left[M_L x + F_L \left(Lx - \frac{x^2}{2} \right) + c_1 \right]$$

$$w(x) = \frac{1}{EI} \left[\frac{M_L x^2}{2} + F_L \left(\frac{Lx^2}{2} - \frac{x^3}{6} \right) + c_1 x + c_2 \right]$$

les constantes d'intégration c_1 et c_2 seront calculées à l'aide de conditions limites

Solution

Conditions limites (encastrée à x=0)

1-
$$w(0) = 0$$

2-
$$\theta(0) = \frac{dw(0)}{dx} = 0$$

$$\theta(0) = \frac{1}{EI} \left[F_L \left(L \times 0 - \frac{0^2}{2} \right) + c_1 \right] = 0 \implies c_1 = 0$$

$$w(0) = \frac{1}{EI} \left[\frac{M_L 0^2}{2} + F_L \left(\frac{L0^2}{2} - \frac{0^3}{6} \right) + c_1 \times 0 + c_2 \right] = 0 \implies c_2 = 0$$

$$\theta(x) = \frac{1}{EI} \left[M_L x + F_L \left(Lx - \frac{x^2}{2} \right) \right] \Rightarrow \theta_L = \theta(L) = \frac{M_L L}{EI} + \frac{F_L L^2}{2EI}$$

$$w(x) = \frac{1}{EI} \left[\frac{M_L x^2}{2} + F_L \left(\frac{L x^2}{2} - \frac{x^3}{6} \right) \right] \Rightarrow w_L = w(L) = \frac{M_L L^2}{2EI} + \frac{F_L L^3}{3EI}$$

résolution par superposition directement (en nous servant des tables de réponses)

c'est 10x plus rapide...

mais faites bien attention aux conventions dans les tableaux et à bien pondérer

la forme matricielle de w(L) permet de voir la superposition

Présentation matricielle

$$\widetilde{w_L} = \frac{w_L}{L}$$

$$\widetilde{F_L} = \frac{F_L L^2}{EI}$$

$$\widetilde{M_L} = \frac{M_L L}{FI}$$

$$\begin{bmatrix} \widetilde{W_L} \\ \theta_L \end{bmatrix} = \begin{bmatrix} \frac{1}{3} & \frac{1}{2} \\ \frac{1}{2} & 1 \end{bmatrix} \begin{bmatrix} \widetilde{F_L} \\ \widetilde{M_L} \end{bmatrix}$$

matrice de souplesse

$$\begin{bmatrix} \widetilde{F_L} \\ \widetilde{M_L} \end{bmatrix} = \begin{bmatrix} 12 & -6 \\ -6 & 4 \end{bmatrix} \begin{bmatrix} \widetilde{W_L} \\ \theta_L \end{bmatrix}$$

matrice de rigidité

Exemple en apparence plus complexe

(9.20 de Geere et Goodno). Trouver la flèche en B

$$\delta_B = \frac{qb^4}{8EI} + \frac{Fb^3}{3EI}$$

$$\delta_B = \frac{qb^4}{8EI} + \frac{2Pb^3}{9EI}$$

Flèche de charge distribuée

Flèche de force ponctuelle

Trouver la deflection au point B

Trouver la deflection au point B

