

DISTA

Corso: Analisi Numerica Docente: Roberto Piersanti

Radici di equazioni non lineari Lezione 1.5b

Iterazioni di punto fisso per la ricerca degli zeri e sistemi di equazioni non lineari

Metodo di Newton e delle corde come metodi di punto fisso

> Reinterpretare Metodi di Newton e delle corde, sfruttando

$$f(x) = 0 \iff x = g(x)$$

Metodo delle Corde

$$x_{n+1} = x_n - \frac{(b-a)f(x_n)}{f(b) - f(a)} \quad \forall n \ge 0$$
 $g(x_n) = x_n - \frac{(b-a)f(x_n)}{f(b) - f(a)}$

Metodo di Newton

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} \qquad \forall n \ge 0 \qquad g(x_n) = x_n - \frac{f(x_n)}{f'(x_n)}$$

$$x_{n+1} = g(x_n) \quad \forall n \ge 0$$

Sistemi di equazioni non lineari

- Generalizzare i metodi per la ricerca degli zeri a problemi vettoriali
- Risoluzione di sistemi di equazioni non lineari
- ightharpoonup Data una funzione vettoriale $F(\mathbf{x})$ di variabile vettoriale \mathbf{x}

$$F(\mathbf{x}): I \subset \mathbb{R}^n \to \mathbb{R}^m \ n, m > 1,$$

si cerca $\alpha \in I$ t.c. $F(\alpha) = \mathbf{0}$

- ightharpoonup Determinare il **vettore incognito** α che soddisfa $F(\alpha)=0$
- > Esempio: n=m=2 ($F(\mathbf{x})$ definita nel piano bidimensionale)

$$F(\mathbf{x}): I \subset \mathbb{R}^2 \to \mathbb{R}^2, \quad F = (f_1, f_2)$$

si cerca α_1 e α_2 t.c. $F(\alpha_1, \alpha_2) = (0, 0)$

Sistemi di equazioni non lineari (geometricamente)

ightharpoonup Determinare i punti (x_1,x_2) nel piano delle variabili indipendenti $x_1|x_2$ tale che

$$f_1(x_1, x_2) = \mathbf{0}$$
 e $f_2(x_1, x_2) = \mathbf{0}$

> Stiamo cercando l'intersezione dei luoghi geometrici $\begin{cases} f_1(x_1,x_2)=\mathbf{0} \\ \text{nel piano } x_1|x_2 \text{, le soluzioni del sistema non lineare} \end{cases}$

$$rac{f_1(x_1,x_2)}{f_2(x_1,x_2)}$$
 sono superfici nello spazio 3D

$$F(\alpha_1, \alpha_2) = (0, 0)$$

- 1. Trovare le intersezioni di queste due superfici 3D nel piano $x_1|x_2$ $f_1(x_1,x_2)=\mathbf{0}$ $f_2(x_1,x_2)=\mathbf{0}$
- 2. I punti α_1, α_2 di intersezione delle curve $f_1 = \mathbf{0} \ \& \ f_2 = \mathbf{0}$

Sistemi di equazioni non lineari (metodi numerici)

> Estendere i metodi di ricerca degli zeri a sistemi di equazioni non lineari

$$\{\mathbf{x}_k\} \longrightarrow \lim_{k \to \infty} \mathbf{x}_k = \alpha$$

Riformulazione del Metodo di Newton

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}, \ \forall k \ge 0$$
 $=$ $f'(x_k)(x_{k+1} - x_k) = -f(x_k), \ \forall k \ge 0$

 \triangleright Caso in cui ho una funzione vettoriale $F(\mathbf{x})$

$$F'(\mathbf{x}_k)(\mathbf{x}_{k+1} - \mathbf{x}_k) = -F(\mathbf{x}_k), \quad \forall k \ge 0$$

- $-F(\mathbf{x}_k) \doteq \mathbf{b}_k$ è un vettore (termine noto)
- $\mathbf{x}_{k+1} \mathbf{x}_k \doteq \tilde{\mathbf{x}}_{k+1}$ è un vettore (incognita)
- $F'(\mathbf{x}_k) \doteq A(\mathbf{x}_k)$ è una matrice (del sistema)

$$A(\mathbf{x}_k)\tilde{\mathbf{x}}_{k+1} = \mathbf{b}_k$$

$$\forall k \ge 0$$

Metodo di Newton per sistemi di equazioni non lineari

- Metodo di Newton in forma vettoriale:
- $-F(\mathbf{x}_k) \doteq \mathbf{b}_k$ termine noto (vettore residuo)
- $\mathbf{x}_{k+1} \mathbf{x}_k \doteq \tilde{\mathbf{x}}_{k+1}$ incognita (vettore incremento)
- $F'(\mathbf{x}_k) \doteq A(\mathbf{x}_k)$ matrice Jacobiana

$$A(\mathbf{x}_k)\tilde{\mathbf{x}}_{k+1} = \mathbf{b}_k$$
$$\forall k \ge 0$$

ightharpoonup La matrice Jacobiana $F'(\mathbf{x}_k)$ contiene le derivate parziali di $F=(f_1,...,f_m)$ rispetto alle variabili $\mathbf{x}=(x_1,...,x_n)$ calcolate in \mathbf{x}_k

$$A(\mathbf{x}_k) = F'(\mathbf{x}_k) = \begin{pmatrix} \frac{\partial f_1}{\partial x_1}(\mathbf{x}_k) & \cdots & \frac{\partial f_1}{\partial x_n}(\mathbf{x}_k) \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1}(\mathbf{x}_k) & \cdots & \frac{\partial f_m}{\partial x_n}(\mathbf{x}_k) \end{pmatrix}$$