

=====

Sequence Listing was accepted.

If you need help call the Patent Electronic Business Center at (866) 217-9197 (toll free).

Reviewer: markspencer

Timestamp: Mon Jul 23 15:28:13 EDT 2007

=====

Application No: 10531475 Version No: 1.0

Input Set:

Output Set:

Started: 2007-07-23 11:51:54.640
Finished: 2007-07-23 11:53:18.911
Elapsed: 0 hr(s) 1 min(s) 24 sec(s) 271 ms
Total Warnings: 21
Total Errors: 0
No. of SeqIDs Defined: 2776
Actual SeqID Count: 2776

Error code	Error Description
W 213	Artificial or Unknown found in <213> in SEQ ID (2756)
W 213	Artificial or Unknown found in <213> in SEQ ID (2757)
W 213	Artificial or Unknown found in <213> in SEQ ID (2758)
W 213	Artificial or Unknown found in <213> in SEQ ID (2759)
W 213	Artificial or Unknown found in <213> in SEQ ID (2760)
W 213	Artificial or Unknown found in <213> in SEQ ID (2761)
W 213	Artificial or Unknown found in <213> in SEQ ID (2762)
W 213	Artificial or Unknown found in <213> in SEQ ID (2763)
W 213	Artificial or Unknown found in <213> in SEQ ID (2764)
W 213	Artificial or Unknown found in <213> in SEQ ID (2765)
W 213	Artificial or Unknown found in <213> in SEQ ID (2766)
W 213	Artificial or Unknown found in <213> in SEQ ID (2767)
W 213	Artificial or Unknown found in <213> in SEQ ID (2768)
W 213	Artificial or Unknown found in <213> in SEQ ID (2769)
W 213	Artificial or Unknown found in <213> in SEQ ID (2770)
W 213	Artificial or Unknown found in <213> in SEQ ID (2771)
W 213	Artificial or Unknown found in <213> in SEQ ID (2772)
W 213	Artificial or Unknown found in <213> in SEQ ID (2773)
W 213	Artificial or Unknown found in <213> in SEQ ID (2774)
W 213	Artificial or Unknown found in <213> in SEQ ID (2775)

Input Set:

Output Set:

Started: 2007-07-23 11:51:54.640
Finished: 2007-07-23 11:53:18.911
Elapsed: 0 hr(s) 1 min(s) 24 sec(s) 271 ms
Total Warnings: 21
Total Errors: 0
No. of SeqIDs Defined: 2776
Actual SeqID Count: 2776

Error code	Error Description
	This error has occurred more than 20 times, will not be displayed

SEQUENCE LISTING

<110> CropDesign N.V.

<120> Identification of novel E2F target genes and use thereof

<130> 4982-3

<140> 10531475

<141> 2007-07-23

<150> 10/531,475

<151> 2005-04-15

<150> PCT/EP2003/011658

<151> 2003-10-20

<150> EP 02079408.7

<151> 2002-10-18

<160> 2776

<170> PatentIn version 3.1

<210> 1

<211> 1768

<212> DNA

<213> Arabidopsis thaliana

<400> 1

atctctcctt ttccttcattt tcctttctct gtttatttgc ttcgtttctt 60

cttctctttc tccgattttt tatccatctt cgctcagatc ttccccgttt caactcttg 120

gatccagatt ctccttcattt ttatgttaggt aacacgcata tcaagtgtta aagagtcaag 180

atcacaaaaaa gttctatcgg gtgatctggg ctgctttttt ttgttatcta attgcagaaa 240

cttgctctg acttggatag ctcgtaaaa ggtcaatct ttcccgttt ttcataatg 300
agttagtaact aatctggaaa ttgttggga gagaaaggc acattgcact gctattgcta 360
gagaacgtt ctgcattccat gctggtagag agcatgcgtg qatactgtgt tttgggtgat 420
gccccctgaca aaattagttc ccgatgcatt cggcggtgtg acgatatgtc tagtcgctct 480
gctagttctt ttgggtctcc ttgcattcgc ttactcggtt tatttccagt ctcacggtcg 540
taagcaaggc tatattcaac ttggttactt cagtggtccc tggattatcc gaatcacttt 600
cattctctt gctatctggt gggctgttgg tgagatttt cgatttagtt tggaggcg 660
tcacagaagg ttgttgagtg gggtggatct gagatggcaa gaaaacgttt gcaagtggta 720
catcgtttcc aatctaggat ttgcggagcc ttgtctctt ctgactctca tgtttctct 780
gcgtgctccc ttgaagatgg aatcaggggc tttgagcggaa aatggaaca gggacacagc 840
aggttatatt attctttatt gtctcccgat gcttgctctt caacttgccg ttgtgttgc 900
cgagtacgc ctaaatggtg gtatggctc ttatgtaaag ctgccacacg acttcacaag 960
aacgtattcc cgagtattta ttgatcacga cgaggtggcc ttatgcacat atcctctact 1020
gagtaaccatc cttcttggtg tgttgcagc cgtcctaaca gcttacttgt tctggcttgg 1080
aaggcagata ctgaaacttg tcattaacaa gcgtttacag aagagagttt acactttgtat 1140
attctcggtc tcgagttcc ttccattaag gattgttatg ctctgtttgt cggttctcac 1200
agcagcagac aagattatat tcgaagccct ttctttcttgc gcttcctct ccctttctg 1260
ctttgcgtg gtatccatct gcttgcttgc ctacttcccg gttcagatt ccatggccct 1320
gagaggtcta agagacacag atgatgagga tacggctgtg accgaagaac gcagtgggtgc 1380
tctgttactt gcaccaaact cttcacaaac tcatgagggta ttgagctaa gaggtcggag 1440
agactcgaaa tgcgttacac aggagaggta tgtgaaactc agcctatttc tggaagctga 1500
gaactaaaat cgccaaaggc tgtttctatt tggctttgg caatgtacat attcctggtg 1560
aaacaagcag agagagaggg ataaagagtt taagtatgag aatatgtttg cgcaaaaaaaaa 1620
ggcataattt cagttttgtg gcaaagacac tttgactgtaa aaggagggtt taagggggtt 1680
tactcttgcgtg agggtttgtt gttgaaatg tttctgctt gatggatcat atttttgtac 1740
ctttattatg tgatcaattt tgatttag 1768

<210> 2

<211> 362

<212> PRT

<213> Arabidopsis thaliana

<400> 2

Met Pro Leu Thr Lys Leu Val Pro Asp Ala Phe Gly Val Val Thr Ile
1 5 10 15

Cys Leu Val Ala Leu Leu Val Leu Leu Gly Leu Leu Cys Ile Ala Tyr
20 25 30

Ser Phe Tyr Phe Gln Ser His Val Arg Lys Gln Gly Tyr Ile Gln Leu
35 40 45

Gly Tyr Phe Ser Gly Pro Trp Ile Ile Arg Ile Thr Phe Ile Leu Phe
50 55 60

Ala Ile Trp Trp Ala Val Gly Glu Ile Phe Arg Leu Ser Leu Leu Arg
65 70 75 80

Arg His Arg Arg Leu Leu Ser Gly Leu Asp Leu Arg Trp Gln Glu Asn
85 90 95

Val Cys Lys Trp Tyr Ile Val Ser Asn Leu Gly Phe Ala Glu Pro Cys
100 105 110

Leu Phe Leu Thr Leu Met Phe Leu Leu Arg Ala Pro Leu Lys Met Glu
115 120 125

Ser Gly Ala Leu Ser Gly Lys Trp Asn Arg Asp Thr Ala Gly Tyr Ile
130 135 140

Ile Leu Tyr Cys Leu Pro Met Leu Ala Leu Gln Leu Ala Val Val Leu
145 150 155 160

Ser Glu Ser Arg Leu Asn Gly Gly Ser Gly Ser Tyr Val Lys Leu Pro
165 170 175

His Asp Phe Thr Arg Thr Tyr Ser Arg Val Ile Ile Asp His Asp Glu
180 185 190

Val Ala Leu Cys Thr Tyr Pro Leu Leu Ser Thr Ile Leu Leu Gly Val
195 200 205

Phe Ala Ala Val Leu Thr Ala Tyr Leu Phe Trp Leu Gly Arg Gln Ile
210 215 220

Leu Lys Leu Val Ile Asn Lys Arg Leu Gln Lys Arg Val Tyr Thr Leu
225 230 235 240

Ile Phe Ser Val Ser Ser Phe Leu Pro Leu Arg Ile Val Met Leu Cys
245 250 255

Leu Ser Val Leu Thr Ala Ala Asp Lys Ile Ile Phe Glu Ala Leu Ser
260 265 270

Phe Leu Ala Phe Leu Ser Leu Phe Cys Phe Cys Val Val Ser Ile Cys
275 280 285

Leu Leu Val Tyr Phe Pro Val Ser Asp Ser Met Ala Leu Arg Gly Leu
290 295 300

Arg Asp Thr Asp Asp Glu Asp Thr Ala Val Thr Glu Glu Arg Ser Gly
305 310 315 320

Ala Leu Leu Ala Pro Asn Ser Ser Gln Thr Asp Glu Gly Leu Ser
325 330 335

Leu Arg Gly Arg Arg Asp Ser Gly Ser Ser Thr Gln Glu Arg Tyr Val
340 345 350

Glu Leu Ser Leu Phe Leu Glu Ala Glu Asn
355 360

<210> 3

<211> 626

<212> DNA

<213> Arabidopsis thaliana

<400> 3
catcgccggtc tggaacagcg atgactcgca tttaaatttg tttctctgct tcactcttt 60

gatttcttc tacttctttt tttcacacag atcttaagat actacaactg cgaccatgga 120
gcttccatct ctttacagct caagaaagga ggaatcaact gttcctccga agagaggccg 180
agtcaagatc atgatcttc gtgtatctgt cagatcgaa acctcgatgg caccgactcc 240
gaggagaggc cgaatcaaga aatgtatcgc gggtgatcta gtcggatcag ggaaacagaa 300
caactacgac ggagacggta agagaggagg ctagttaagc agactctccg actacataca 360
ctttatctcc atgccagctt ccagacaatc ctttctctg agaagatgtat cgatcttc 420
tattcatttg aaaatcttgt atgaaatgtat atatagttgt tggctttggc ttcttcttc 480
gaatatgtta tacaaaaagt ttattatTT tgTTgggta aatTTaaagat ttAAaggtaa 540
gttactctgt ttcatacaaa gtttggcct ctgggctaat attttggat ctatgtaaaa 600
atgtaaatat tatgtttctt tagaag 626

<210> 4

<211> 72

<212> PRT

<213> Arabidopsis thaliana

<400> 4

Met Glu Leu Pro Ser Pro Tyr Ser Ser Arg Lys Glu Glu Ser Thr Val
1 5 10 15

Pro Pro Lys Arg Gly Arg Val Lys Ile Met Ile Phe Arg Asp Leu Val
20 25 30

Arg Ser Glu Thr Ser Met Ala Pro Thr Pro Arg Arg Gly Arg Ile Lys
35 40 45

Lys Met Ile Ala Gly Asp Leu Val Gly Ser Gly Lys Gln Asn Asn Tyr
50 55 60

Asp Gly Asp Gly Lys Arg Gly Gly
65 70

<210> 5

<211> 1176

<212> DNA

<213> Oryza sativa

<400> 5
ccggccgcggc tcacctggaa actgggcaga ttggacaatc gctcgagcga gctagcgaga 60
gagagcgcgca gagagcgagg cgccgcgcgc ggtggttgcg gattttagc ttagagcgcg 120
gggccatggg gaggtcgccg tgctgcgaga aggcgcacac gaacaagggg gcgtggacga 180
aggaggaggaa ccagccgcgc atcgcgtaca tcagggcgca tggcgaaggc tgctggcgct 240
cgctgccccaa ggccggccggc ctccctcgct gcggcaagag ctgcgcgcgc cggtggtatga 300
actacacctcg ccccgacctc aagcgccgcgca acttcaccga cgacgaggac gagctcatca 360
tccgcctcca cagcctccctc ggcaacaagt ggtctctgat cggccggcag ctggccgggga 420
ggacggacaa cgagatcaag aactactgga acacgcacat caagcgcaag ctccctcgccc 480
cgccgcattcg a cccgcagacg caccgcggc tgctcagcgg cggtgacggc atcgccgcga 540
gcaacaagcg gcaccaccgc cgccgcattcc catatccgtc cggcgaagg cggccggccgc 600
ggcgatcttc gccgtgcgaa gcccggcccg cccggcgcc cggtcgactc ctggacgac 660
ggctggcgca gcagcagcgg cacaacgagc acggggggagc cggcgtgccc cgacctcaac 720
ctcgagctct cggtcgggccc gacgcccggc tcgcccggg cggagacgccc caccagcgcg 780
cggccggctct gcctctgcta ccacctcgcc ttccggcgcc gggaggcgtg cagctgtcag 840
gctgacagca agggcccaca cgagttttaga tatttcaggc cgtttggaaaca aggccagttac 900
atatgagata tgaccatgag atgtgagatg gcttaatttgc cttcaattcc caacatgtgt 960
aacacaggga gttttcttag tggacgacaa tactgtttaa tttcagaaaa aaaaggggaaa 1020
gaaaaagggtt ctaatctgtt catatttctt actattatcc aatcttcattg atctcaatct 1080
ctctctctct ttattatattt tctttgttgtt aattaacttc atgttggttc ctctaaaaaa 1140
gattggtcga tgttattcag tgataaaatat tccttag 1176

<210> 6

<211> 239

<212> PRT

<213> Oryza sativa

<400> 6

Met Gly Arg Ser Pro Cys Cys Glu Lys Ala His Thr Asn Lys Gly Ala
1 5 10 15

Trp Thr Lys Glu Glu Asp Gln Arg Leu Ile Ala Tyr Ile Arg Ala His
20 25 30

Gly Glu Gly Cys Trp Arg Ser Leu Pro Lys Ala Ala Gly Leu Leu Arg
35 40 45

Cys Gly Lys Ser Cys Arg Leu Arg Trp Met Asn Tyr Leu Arg Pro Asp
50 55 60

Leu Lys Arg Gly Asn Phe Thr Asp Asp Glu Asp Glu Leu Ile Ile Arg
65 70 75 80

Leu His Ser Leu Leu Gly Asn Lys Trp Ser Leu Ile Ala Gly Gln Leu
85 90 95

Pro Gly Arg Thr Asp Asn Glu Ile Lys Asn Tyr Trp Asn Thr His Ile
100 105 110

Lys Arg Lys Leu Leu Ala Arg Gly Ile Asp Pro Gln Thr His Arg Pro
115 120 125

Leu Leu Ser Gly Gly Asp Gly Ile Ala Ala Ser Asn Lys Arg His His
130 135 140

Arg Arg Arg Ile Pro Tyr Pro Ser Arg Arg Arg Arg Pro Arg Arg
145 150 155 160

Ser Ser Pro Cys Glu Ala Ala Ala Ala Ala Pro Gly Arg Leu Leu
165 170 175

Gly Arg Arg Leu Pro Gln Gln Gln Arg His Asn Glu His Gly Gly Ala
180 185 190

Ala Val Pro Arg Pro Gln Pro Arg Ala Leu Gly Arg Ala Asp Ala Glu
195 200 205

Leu Ala Ala Gly Gly Asp Ala His Gln Arg Ala Ala Gly Leu Pro Leu
210 215 220

Leu Pro Pro Arg Leu Pro Arg Arg Gly Gly Val Gln Leu Ser Gly
225 230 235

<210> 7

<211> 1264

<212> DNA

<213> Oryza sativa

<400> 7

gcagcatcaa caaaggcagc agcagcagca gcagcagcag cagcggtgg ggtgggtgg 60
tgtcatcacc aacatttca cgagaggaga aggatggaaa tggcggcggc ggttgggggc 120
agcgggagga gggacgcgga ggcggagctg aacctgccgc cgggcttccg tttccacccg 180
accgacgagg agctcgtggt gcactacctc tgccgcaagg ttgcccggca gccgctcccc 240
gtcccaatca tcgccgaggt cgacctctac aagctcgacc cctggatct ccctgagaag 300
gcgttgttcg ggagggaaaga gtggtaatcc ttcacgcccga gggaccggaa gtacccgaaac 360
gggtcgaggc cgaaccgcgc agcggggaga gggtaactgga aggcgacggg agccgacaag 420
ccggtggcgc ccaaggggag cgcgaggacg gtggggatca agaaggcgct cgtgttctac 480
tccgggaagg cgccgagggg ggtcaagacg gactggatca tgcacgagta ccgcctcgcc 540
gacgcccacc gcgccccggg cggcaagaag ggctcacaga agctggacga gtgggtgctg 600
tgccggctgt acaacaagaa gaacaactgg gagaaggta agctggagca gcaggacgtg 660
gcctccgtgg cggcgccggc gcccgcac caccaccatc agaacggcga ggtcatggac 720
gcggcgccgg ctgacaccat gtccgacacgc ttccagacgc acgactccga catcgacaac 780
gcctccgccc gcctgcccga cggtaactgc ggcggccggc gttcggcga cgtggcgccg 840
ccgaggaatg gttcgtgac ggtgaaggag gacaacgact gttcaccgg cctcaacttc 900
gacgagctgc agccggcgt a catgatgaac ctgcacaca tgcagatgca gatggtaat 960
ccggcgccgc cagggcacga cggcggtac ttgcagtcca tcagctcgcc gcagatgaag 1020
atgtggcaga caatcctgcc accattctga gatggatgga gcaagaaaaa gttgctgta 1080
gataaaggc gaaatagga gtatggcta gaaaattatt agattacta gaacgaaaat 1140
gattagaaat ctggcaagca tgattctgca aatgtggtg tagatgcttgc cgtatgtaa 1200

ttcatttgtt cagtatatgc atttgtaat ctgcaaaaca aaaaaaaaaa aaaaaaaaaa 1260

aaaa 1264

<210> 8

<211> 316

<212> PRT

<213> Oryza sativa

<400> 8

Met Ala Ala Ala Val Gly Gly Ser Gly Arg Arg Asp Ala Glu Ala Glu
1 5 10 15

Leu Asn Leu Pro Pro Gly Phe Arg Phe His Pro Thr Asp Glu Glu Leu
20 25 30

Val Val His Tyr Leu Cys Arg Lys Val Ala Arg Gln Pro Leu Pro Val
35 40 45

Pro Ile Ile Ala Glu Val Asp Leu Tyr Lys Leu Asp Pro Trp Asp Leu
50 55 60

Pro Glu Lys Ala Leu Phe Gly Arg Lys Glu Trp Tyr Phe Phe Thr Pro
65 70 75 80

Arg Asp Arg Lys Tyr Pro Asn Gly Ser Arg Pro Asn Arg Ala Ala Gly
85 90 95

Arg Gly Tyr Trp Lys Ala Thr Gly Ala Asp Lys Pro Val Ala Pro Lys
100 105 110

Gly Ser Ala Arg Thr Val Gly Ile Lys Lys Ala Leu Val Phe Tyr Ser
115 120 125

Gly Lys Ala Pro Arg Gly Val Lys Thr Asp Trp Ile Met His Glu Tyr
130 135 140

Arg Leu Ala Asp Ala Asp Arg Ala Pro Gly Gly Lys Lys Gly Ser Gln
145 150 155 160

Lys Leu Asp Glu Trp Val Leu Cys Arg Leu Tyr Asn Lys Lys Asn Asn
165 170 175

Trp Glu Lys Val Lys Leu Glu Gln Gln Asp Val Ala Ser Val Ala Ala
180 185 190

Ala Ala Pro Arg Asn His His Gln Asn Gly Glu Val Met Asp Ala
195 200 205

Ala Ala Ala Asp Thr Met Ser Asp Ser Phe Gln Thr His Asp Ser Asp
210 215 220

Ile Asp Asn Ala Ser Ala Gly Leu Arg His Gly Gly Cys Gly Gly
225 230 235 240

Gly Phe Gly Asp Val Ala Pro Pro Arg Asn Gly Phe Val Thr Val Lys
245 250 255

Glu Asp Asn Asp Trp Phe Thr Gly Leu Asn Phe Asp Glu Leu Gln Pro
260 265 270

Pro Tyr Met Met Asn Leu Gln His Met Gln Met Gln Met Val Asn Pro
275 280 285

Ala Ala Pro Gly His Asp Gly Gly Tyr Leu Gln Ser Ile Ser Ser Pro
290 295 300

Gln Met Lys Met Trp Gln Thr Ile Leu Pro Pro Phe
305 310 315

<210> 9

<211> 1057

<212> DNA

<213> Oryza sativa

<400> 9
tttcctcctc ttcttccctcc atatcacacg gttttcggtcc atcgatcatc agagctcgat 60
cgggcgccat ggatggggag gaggacagcg agtggatgtat gatggacgtt ggagggaagg 120
gcgggaaaggc cggcggcggc ggcggcgcgg cggacaggaa gaagcggttc agcgaggagc 180

agatcaagt c gctggagtcc atgttcgcga cgcatcacaa gctggagccg aggcaaga	240
tgcagctcg c caggagctc ggctgcgc ctgcgcagg cgcacatctgg ttccagaaca	300
agcgccgcgc gtggaagtcc aagcagctcg agcgccgcgtc ctccgcgc cgcacgcact	360
acgacgcgcct cctctgcgc tacgagtccc tcaagaagga gaagctcgcc ctcatcaagc	420
agctggagaa gctggcgag atgctgcagg agccacgggg gaagtacggc gataatgccg	480
gggacgacgc gcggtcgggc ggctgcgc gcatgaagaa ggaggatgc gtcggcgccg	540
gcggcgccgc cacgctctac tcgtcgccg agggtggccg gacgtcgcc acggagcaga	600
cctgcagcag cacgccccatgg tggaaattcg agagcgagtg agcatccaca ctgttactac	660
taggctactc atggatgatc catcgatcgc cacagatcat gcatgccacg atcagaattt	720
caattcgccg cgaggacgga tcaaaccctgt actagatcg atcagagcaa acatagcaga	780
gaagatgatc aaaccaacag tgatgtgtac atagatttct gttagatcaa accccaggca	840
gtctcctctc catccagcca tcagcatgcg aaaattctct ctctttttt tccccctccaa	900
gtcttactcg acttcgatgt tgttatcaca acaccacatc atgtaatcca gcaacacgcc	960
gagatgaaaaaa aaaggtaaaa aagcttatag agttcggtca tttgatggat ccaaaaaaaaaa	1020
aaaaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa	1057

<210> 10

<211> 190

<212> PRT

<213> Oryza sativa

<400> 10

Met Asp Gly Glu Asp Ser Glu Trp Met Met Met Asp Val Gly Gly			
1	5	10	15

Lys Gly Gly Lys Gly Gly Gly Gly Ala Ala Asp Arg Lys Lys		
20	25	30

Arg Phe Ser Glu Glu Gln Ile Lys Ser Leu Glu Ser Met Phe Ala Thr		
35	40	45

Gln Thr Lys Leu Glu Pro Arg Gln Lys Leu Gln Leu Ala Arg Glu Leu		
50	55	60

