Cyclistic Case Study Q2_2021

Hezar K

2022-11-29

This is an analysis for Cyclistic Case Study for Google Data Analytics Course. This is an analysis for 2021's second quarter.

STEP ONE: INSTALL REQUIRED PACKAGES AND IMPORT DATA

Install the required packages. **Tidyverse** package to import and wrangling the data and **ggplot2** package for visualization of the data. **Lubridate** package for date parsing and **anytime** package for the datetime conversion.

- install.packages("tidyverse")
- install.packages("ggplot2")
- install.packages("lubridate")
- install.packages("anytime")

library(tidyverse)

```
## — Attaching packages -
                                                               – tidyverse 1.3.2 <del>–</del>
## / ggplot2 3.4.0
                    ✓ purrr
                                 0.3.5
## ✓ tibble 3.1.8
                       √ dplyr
                                  1.0.10
## ✔ tidyr
            1.2.1
                       ✓ stringr 1.4.1
## ✓ readr 2.1.3
                       ✓ forcats 0.5.2
## — Conflicts -
                                                         — tidyverse_conflicts() —
## * dplyr::filter() masks stats::filter()
## * dplyr::lag()
                   masks stats::lag()
```

library(lubridate)

```
## Loading required package: timechange
##
## Attaching package: 'lubridate'
##
## The following objects are masked from 'package:base':
##
## date, intersect, setdiff, union
```

library(data.table)

```
##
## Attaching package: 'data.table'
##
##
  The following objects are masked from 'package:lubridate':
##
##
       hour, isoweek, mday, minute, month, quarter, second, wday, week,
##
       yday, year
##
## The following objects are masked from 'package:dplyr':
##
##
       between, first, last
##
## The following object is masked from 'package:purrr':
##
##
       transpose
```

```
library(ggplot2)
library(anytime)
```

Import data from local drive.

```
Apr21 <- read_csv("202104-divvy-tripdata.csv")
```

```
## Rows: 337230 Columns: 13
## — Column specification —
## Delimiter: ","
## chr (7): ride_id, rideable_type, start_station_name, start_station_id, end_...
## dbl (4): start_lat, start_lng, end_lat, end_lng
## dttm (2): started_at, ended_at
##
## i Use `spec()` to retrieve the full column specification for this data.
## i Specify the column types or set `show_col_types = FALSE` to quiet this message.
```

```
May21 <- read_csv("202105-divvy-tripdata.csv")
```

```
## Rows: 531633 Columns: 13
## — Column specification —
## Delimiter: ","
## chr (7): ride_id, rideable_type, start_station_name, start_station_id, end_...
## dbl (4): start_lat, start_lng, end_lat, end_lng
## dttm (2): started_at, ended_at
##
## i Use `spec()` to retrieve the full column specification for this data.
## i Specify the column types or set `show_col_types = FALSE` to quiet this message.
```

```
Jun21 <- read_csv("202106-divvy-tripdata.csv")</pre>
```

```
## Rows: 729595 Columns: 13
## — Column specification —
## Delimiter: ","
## chr (7): ride_id, rideable_type, start_station_name, start_station_id, end_...
## dbl (4): start_lat, start_lng, end_lat, end_lng
## dttm (2): started_at, ended_at
##
## i Use `spec()` to retrieve the full column specification for this data.
## i Specify the column types or set `show_col_types = FALSE` to quiet this message.
```

STEP TWO: EXAMINE THE DATA

Examine the dataframe for an overview of the data. Review column names, **colnames()**. Then, we need to combine all data one dataframe. Then we examine dataframes to find dimensions, **dim()**, the first, **head()**, and the last, **tail()**, six rows in the dataframe, the summary, **summary()**, statistics on the columns of the dataframe, and review the data type structure of columns, **str()**.

```
colnames(Apr21)
```

```
colnames(May21)
```

```
colnames(Jun21)
```

Since all column names are the same. We can combine the data for each month into quarters.

```
q2_2021 <- bind_rows(Apr21, May21, Jun21)
```

```
View(q2_2021)
```

```
nrow(q2_2021)
## [1] 1598458
dim(q2 2021)
## [1] 1598458
                    13
head(q2 2021)
```

```
## # A tibble: 6 × 13
                    ridea…¹ started_at
## ride_id
                                                                        start...2 start...3
                                                   ended at
## <chr>
                    <chr> <dttm>
                                                   <dttm>
                                                                        <chr> <chr>
## 1 6C992BD37A98A... classi... 2021-04-12 18:25:36 2021-04-12 18:56:55 State ... TA1307...
## 2 1E0145613A209... docked... 2021-04-27 17:27:11 2021-04-27 18:31:29 Dorche... KA1503...
## 3 E498E15508A80... docked... 2021-04-03 12:42:45 2021-04-07 11:40:24 Loomis... 20121
## 4 1887262AD101C... classi... 2021-04-17 09:17:42 2021-04-17 09:42:48 Honore... TA1305...
## 5 C123548CAB2A3... docked... 2021-04-03 12:42:25 2021-04-03 14:13:42 Loomis... 20121
## 6 097E76F3651B1... classi... 2021-04-25 18:43:18 2021-04-25 18:43:59 Clinto... 15542
## # ... with 7 more variables: end station name <chr>, end station id <chr>,
## #
       start_lat <dbl>, start_lng <dbl>, end_lat <dbl>, end_lng <dbl>,
       {\tt member\_casual~<chr>,~and~abbreviated~variable~names~^1rideable\_type,}
```

tail(q2 2021)

²start station name, ³start station id

#

```
## # A tibble: 6 × 13
##
    ride id
                     ridea…¹ started_at
                                                   ended at
                                                                        start...2 start...3
                     <chr> <dttm>
    <chr>
##
                                                   <dttm>
                                                                        <chr> <chr>
## 1 547E5403EE677... electr... 2021-06-12 15:31:50 2021-06-12 16:38:22 Wells ... SL-011
## 2 CB282292CCFCE... electr... 2021-06-14 00:17:31 2021-06-14 00:56:46 Wells ... SL-011
## 3 47BD346FAFB9B... classi... 2021-06-30 17:35:10 2021-06-30 17:43:20 Clark ... 13303
## 4 52467C23D17C6... classi... 2021-06-13 19:24:30 2021-06-13 19:34:11 Indian... TA1307...
## 5 7DF6D74420D7D... electr... 2021-06-08 15:44:28 2021-06-08 16:15:01 Clark ... 13303
## 6 0C01F8BA99E51... electr... 2021-06-03 16:18:38 2021-06-03 16:47:49 Clark ... 13303
## # ... with 7 more variables: end_station_name <chr>, end_station_id <chr>,
     start lat <dbl>, start lng <dbl>, end lat <dbl>, end lng <dbl>,
       member casual <chr>, and abbreviated variable names ¹rideable type,
## #
       <sup>2</sup>start station name, <sup>3</sup>start station id
```

summary(q2_2021)

```
##
      ride id
                      rideable_type
                                           started at
                      Length: 1598458
                                         Min. :2021-04-01 00:03:18.00
##
   Lenath: 1598458
                      Class :character
                                         1st Qu.:2021-05-04 14:09:53.00
##
   Class :character
##
   Mode :character
                      Mode :character
                                         Median :2021-05-29 06:21:16.50
##
                                         Mean :2021-05-24 03:33:00.96
##
                                         3rd Qu.:2021-06-13 15:32:47.00
##
                                         Max. :2021-06-30 23:59:59.00
##
##
      ended at
                                    start station name start station id
##
         :2021-04-01 00:14:29.00
                                    Length: 1598458
                                                       Length: 1598458
   1st Ou.:2021-05-04 14:27:43.50
                                                       Class :character
##
                                    Class :character
##
   Median :2021-05-29 06:58:11.50
                                    Mode :character
                                                      Mode :character
##
         :2021-05-24 03:58:40.43
##
   3rd Qu.:2021-06-13 16:02:30.00
##
   Max. :2021-07-13 22:51:35.00
##
##
   end station name
                      end station id
                                           start_lat
                                                           start_lng
                                         Min. :41.64
##
   Length: 1598458
                      Length: 1598458
                                                        Min. :-87.78
##
    Class :character
                      Class :character
                                         1st Qu.:41.88
                                                         1st Qu.:-87.66
##
   Mode :character
                      Mode :character
                                         Median :41.90
                                                         Median :-87.64
##
                                         Mean :41.90
                                                         Mean :-87.64
##
                                         3rd Qu.:41.93
                                                         3rd Qu.:-87.63
##
                                         Max. :42.07 Max. :-87.52
##
##
      end lat
                      end_lng
                                    member casual
##
   Min. :41.51
                   Min. :-87.86
                                    Length: 1598458
##
   1st Qu.:41.88
                   1st Qu.:-87.66
                                    Class :character
   Median :41.90
                                    Mode :character
##
                   Median :-87.64
   Mean :41.90
                   Mean :-87.64
##
   3rd Qu.:41.93
                   3rd Qu.:-87.63
##
   Max. :42.15
                   Max. :-87.49
##
   NA's
          :1436
                   NA's
                          :1436
```

str(q2 2021)

```
## spc tbl [1,598,458 \times 13] (S3: spec tbl df/tbl df/tbl/data.frame)
                       : chr [1:1598458] "6C992BD37A98A63F" "1E0145613A209000" "E498E15508A80BAD" "1887262AD101C
## $ ride_id
604" ...
                        : chr [1:1598458] "classic bike" "docked bike" "docked bike" "classic bike" ...
## $ rideable_type
## $ started at
                        : POSIXct[1:1598458], format: "2021-04-12 18:25:36" "2021-04-27 17:27:11" ...
                        : POSIXct[1:1598458], format: "2021-04-12 18:56:55" "2021-04-27 18:31:29" ...
## $ ended_at
    $ start_station_name: chr [1:1598458] "State St & Pearson St" "Dorchester Ave & 49th St" "Loomis Blvd & 84th
##
St" "Honore St & Division St" ...
    $ start_station_id : chr [1:1598458] "TA1307000061" "KA1503000069" "20121" "TA1305000034"
   $ end station name : chr [1:1598458] "Southport Ave & Waveland Ave" "Dorchester Ave & 49th St" "Loomis Blvd
##
& 84th St" "Southport Ave & Waveland Ave" ...
   $ end station id
                      : chr [1:1598458] "13235" "KA1503000069" "20121" "13235" ...
##
   $ start_lat
                        : num [1:1598458] 41.9 41.8 41.7 41.9 41.7 ..
##
                        : num [1:1598458] -87.6 -87.6 -87.7 -87.7 -87.7 ...
    $ start lng
##
    $ end lat
                        : num [1:1598458] 41.9 41.8 41.7 41.9 41.7 ...
                        : num [1:1598458] -87.7 -87.6 -87.7 -87.7 -87.7 ...
##
    $ end lna
                        : chr [1:1598458] "member" "casual" "casual" "member" ...
##
    $ member casual
##
    - attr(*, "spec")=
##
     .. cols(
##
        ride_id = col_character(),
     . .
##
          rideable type = col character(),
     . .
          started_at = col_datetime(format = ""),
##
     . .
          ended_at = col_datetime(format = ""),
##
##
          start station name = col character(),
     . .
##
          start_station_id = col_character(),
     . .
##
          end_station_name = col_character(),
##
          end_station_id = col_character(),
     . .
##
          start lat = col double(),
     . .
##
          start lng = col double(),
     . .
##
          end lat = col double(),
     . .
##
          end lng = col double(),
     . .
##
          member_casual = col_character()
     . .
##
     ..)
    - attr(*, "problems")=<externalptr>
```

Create new columns as for date, month, day, year, day_of_week, and ride_length in seconds.

```
q2_2021$date <- as.Date(q2_2021$started_at)
q2_2021$month <- format(as.Date(q2_2021$date), "%m")
q2_2021$day <- format(as.Date(q2_2021$date), "%d")
q2_2021$year <- format(as.Date(q2_2021$date), "%Y")
q2_2021$yday_of_week <- format(as.Date(q2_2021$date), "%A")
q2_2021$ride_length <- difftime(q2_2021$ended_at,q2_2021$started_at)</pre>
```

Convert ride_length column to numeric in order to run calculations on the data. First, check to see if the data type is numeric, and then convert if needed.

```
is.numeric(q2_2021$ride_length)
```

```
## [1] FALSE
```

Recheck ride_length data type.

```
q2_2021$ride_length <- as.numeric(as.character(q2_2021$ride_length))
is.numeric(q2_2021$ride_length)</pre>
```

```
## [1] TRUE
```

STEP THREE: CLEAN DATA

na.omit() will remove all NA from the dataframe.

```
q2_2021 <- na.omit(q2_2021)
```

Remove rows with the ride_id column character length is not 16. This will remove all the scientific ride ids that we noticed while examining the data.

```
q2_2021 <- subset(q2_2021, nchar(as.character(ride_id)) == 16)</pre>
```

Remove rows with the ride_length less than 1 minute.

```
q2_2021 <- subset (q2_2021, ride_length > "1")
```

STEP FOUR: ANALYZE DATA

Analyze the dataframe by find the mean, median, max (maximum), and min (minimum) of ride_length.

```
mean(q2_2021$ride_length)
```

[1] 1552.903

```
median(q2_2021$ride_length)
```

```
## [1] 818
```

```
max(q2_2021$ride_length)
```

```
## [1] 3356649
```

```
min(q2_2021$ride_length)
```

```
## [1] 2
```

Run a statistical summary of the ride length.

```
summary(q2 2021$ride length)
```

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 2 460 818 1553 1494 3356649
```

Compare the members and casual users

```
aggregate(q2\_2021\$ride\_length \sim q2\_2021\$member\_casual, \ FUN = mean)
```

```
## q2_2021$member_casual q2_2021$ride_length
## 1 casual 2333.0912
## 2 member 854.3924
```

```
aggregate(q2_2021$ride_length \sim q2_2021$member_casual, FUN = median)
```

```
## q2_2021$member_casual q2_2021$ride_length
## 1 casual 1122
## 2 member 635
```

```
aggregate(q2_2021$ride_length ~ q2_2021$member_casual, FUN = max)
```

```
## q2_2021$member_casual q2_2021$ride_length
## 1 casual 3356649
## 2 member 89738
```

```
aggregate(q2_2021$ride_length ~ q2_2021$member_casual, FUN = min)
```

Aggregate the average ride length by each day of the week for members and users.

```
aggregate(q2_2021$ride_length ~ q2_2021$member_casual + q2_2021$day_of_week, FUN = mean)
```

```
##
      q2_2021$member_casual q2_2021$day_of_week q2_2021$ride_length
## 1
                                                             2299.2610
                      casual
                                           Friday
## 2
                      member
                                           Friday
                                                             824.3160
## 3
                      casual
                                           Monday
                                                             2133.1622
## 4
                      member
                                           Monday
                                                             817.3250
## 5
                                         Saturday
                                                             2446.6268
                      casual
## 6
                                                              948.7822
                      member
                                         Saturday
## 7
                      casual
                                           Sunday
                                                             2698.7507
## 8
                      member
                                           Sunday
                                                             983.0797
## 9
                                                             2007.7604
                      casual
                                         Thursday
## 10
                      member
                                         Thursday
                                                              797.9416
## 11
                      casual
                                          Tuesday
                                                             2124.1913
## 12
                      member
                                          Tuesday
                                                              814.5701
## 13
                      casual
                                        Wednesday
                                                             2132.7238
## 14
                                        Wednesday
                                                              804.8338
                      member
```

Sort the days of the week in order.

```
 q2\_2021\$day\_of\_week <- ordered(q2\_2021\$day\_of\_week, levels=c("Sunday", "Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday"))
```

Assign the aggregate the average ride length by each day of the week for members and users to x.

```
x <- aggregate(q2_2021$ride_length ~ q2_2021$member_casual + q2_2021$day_of_week, FUN = mean) head(x)
```

```
q2_2021$member_casual q2_2021$day_of_week q2_2021$ride length
## 1
                     casual
                                          Sunday
                                                            2698.7507
## 2
                                          Sunday
                                                            983.0797
                     member
## 3
                     casual
                                          Monday
                                                            2133.1622
## 4
                     member
                                          Monday
                                                            817.3250
## 5
                                                            2124.1913
                     casual
                                         Tuesday
## 6
                                                            814.5701
                     member
                                         Tuesday
```

Find the average ride length of member riders and casual riders per day and assign it to y.

```
## # A tibble: 6 × 4
##
     member_casual weekday number_of_rides average_duration
##
                     <int>
## 1 casual
                                                        2699.
                          1
                                     135805
## 2 casual
                          2
                                      71166
                                                        2133.
## 3 casual
                          3
                                      71572
                                                        2124.
## 4 casual
                          4
                                      68388
                                                        2133.
## 5 casual
                          5
                                                        2008.
                                      62120
## 6 casual
                                      87842
                                                        2299.
```

Analyze the dataframe to find the frequency of member riders, casual riders, classic bikes, docked bikes, and electric bikes.

```
table(q2_2021$member_casual)
```

```
##
## casual member
## 641386 716383
```

```
table(q2_2021$rideable_type)
```

```
##
## classic_bike docked_bike electric_bike
## 956079 119779 281911
```

```
table(q2_2021$day_of_week)
```

```
##
## Sunday Monday Tuesday Wednesday Thursday Friday Saturday
## 232364 168846 180953 180156 159141 189769 246540
```

```
table(q2_2021$month)
```

```
##
## 04 05 06
## 298169 450906 608694
```

STEP FIVE: VISUALIZATION

Display full digits instead of scientific number.

```
options(scipen=999)
```

Plot the number of rides by user type during the week.

Plot the duration of the ride by user type during the week.

Days of the Week vs Average Duration

Create new dataframe for plots for weekday trends vs weekend trends.

```
mc<- as.data.frame(table(q2_2021$day_of_week,q2_2021$member_casual))</pre>
```

Rename columns

```
mc<-rename(mc, day_of_week = Var1, member_casual = Var2)
head(mc)</pre>
```

```
##
     day_of_week member_casual
                                 Freq
## 1
                       casual 135805
          Sunday
## 2
          Monday
                        casual 71166
## 3
         Tuesday
                        casual 71572
## 4
      Wednesday
                        casual
                                68388
## 5
       Thursday
                        casual
                                62120
                        casual 87842
## 6
          Friday
```

Weekday trends (Monday through Friday).

Weekdays Trends

Weekend trends (Sunday and Saturday).

Create dataframe for member and casual riders vs ride type

```
rt<- as.data.frame(table(q2_2021$rideable_type,q2_2021$member_casual))
```

Rename columns.

```
rt<-rename(rt, rideable_type = Var1, member_casual = Var2)
head(rt)</pre>
```

```
##
   rideable_type member_casual
                             Freq
## 1 classic_bike casual 381358
     docked bike
## 2
                      casual 119779
## 3 electric bike
                     casual 140249
## 4 classic bike
                    member 574721
## 5 docked_bike
                    member
                                 0
## 6 electric_bike
                      member 141662
```

Plot for bike user vs bike type.

STEP SIX: EXPORT ANALYZED DATA

Save the analyzed data as a new file. fwrite(q2_2021, "q2_2021.csv")