Lecture 4 Notes

Kyle Chui

2021-1-11

Kyle Chui Page 1

1 Subspaces

Note (Subset \neq Subspace). Most subsets of vector spaces are not subspaces!

Example. Subspaces

- 1. Let F be a field. Then $F = F[t]_0 < F[t]_1 < \cdots < F[t]_n < \cdots < F[t]$ are vector spaces over F, each a subspace of the vector space that contains them.
- 2. If $W_1 \subseteq W_2 \subseteq V$, where W_1, W_2 are subspaces of V, then $W_1 \subseteq W_2$ is a subspace.
- 3. If $W_1 \subseteq W_2$ is a subspace and $W_2 \subseteq V$ is a subspace, then $W \subseteq V$ is a subspace.
- 4. Let $W := \{(0, \alpha_1, \dots, \alpha_n) \mid \alpha_i \in F, 2 \le i \le n\} \subseteq \mathbb{F}^n$.
- 5. Every line or plane through the origin in \mathbb{R}^3 is a subspace.

1.1 Linear Combinations and Span

Definition. Linear Combination

Let V be a vector space over a field $F, v_1, v_2, \ldots, v_n \in V$. We say $v \in V$ is a linear combination of v_1, \ldots, v_n if there exists $\alpha_1, \ldots, \alpha_n \in F$ such that $v = \alpha_1 v_1 + \cdots + \alpha_n v_n$.

Let span $(v_1, \ldots, v_n) := \{\text{All linear combinations of } v_1, v_2, \ldots, v_n\}$. We may also write

$$\operatorname{span}(v_1,\ldots,v_n) = \left\{ \sum_{i=1}^n \alpha_i v_i \mid \alpha_1,\ldots,\alpha_n \in F \right\}.$$

This is a subspace of V (by Subspace Theorem) called the span of v_1, \ldots, v_n . It is the (unique) "smallest" subspace of V containing v_1, \ldots, v_n . i.e. if $W \subseteq V$ is a subspace and $v_1, \ldots, v_n \in W$, then $\mathrm{span}(v_1, \ldots, v_n) \subseteq W$. We also let $\mathrm{span}(\varnothing) := \{0_V\} = 0$. The smallest vector space containing no vectors.

Question. If we view \mathbb{C} as a vector space over \mathbb{R} , then \mathbb{R} is a subspace of \mathbb{C} , but if we view \mathbb{C} as a vector space over \mathbb{C} , then \mathbb{R} is *not* a subspace of \mathbb{C} (why?). What is going on?

Definition. Span of a Set of Vectors

Let V be a vector space over a field $F, \varnothing \neq S \subseteq V$ a subset. Then

 $\operatorname{span}(S) := \operatorname{the set}$ of all *finite* linear combinations of vectors in S.

i.e. if $v \in \text{span}(S)$, then

$$\exists v_1, \ldots, v_n \in S, \alpha_1, \ldots, \alpha_n \in F \text{ such that } v = \alpha_1 v_1 + \cdots + \alpha_n v_n.$$

Thus $\operatorname{span}(S) \subseteq V$ is a subspace.

Question. What is the smallest set of vectors in V such that span(S) = V?

Note (Vector spaces). There exist sets that are not vector spaces over one field, but are vector spaces over other fields.

Definition. Kernel of a Matrix

The kernel of a matrix A is the set of all vectors that get mapped to the zero vector. In other words,

$$\ker A \coloneqq \left\{ x \in F^{n \times 1} \mid Ax = 0 \right\}.$$

Kyle Chui Page 2

Theorem — Intersection of Subspaces is a Subspace

Let $W_i \in V$, $i \in I$ be subspaces. Then

$$\bigcap_{I} W = \bigcap_{i \in I} W_i = \{ x \in V \mid x \in W_i, \forall i \in I \}$$

is a subspace of V.

Note (Union of Subspaces). The union of subspaces is not necessarily a subspace. For instance, consider two lines going through the origin in \mathbb{R}^2 that are not the same line.

Definition. Sum of Subspaces

Let $W_1, W_2 \subseteq V$ be subspaces. Define

$$W_1 + W_2 := \{ w_1 + w_2 \mid w_1 \in W_1, w_2 \in W_2 \}$$

= span $(W_1 \cup W_2)$.

So $W_1 + W_2 \subseteq V$ is a subspace and the smallest subspace of V containing W_1 and W_2 .

1.2 Linear Independence

We know that \mathbb{R}^n is an *n*-dimensional vector space over \mathbb{R} . Since we need *n* coordinates to describe all vectors in \mathbb{R}^n but no fewer will do. We want something like the following:

Let V be a vector space over a field F with $V \neq 0$. Can we find distinct vectors v_1, \ldots, v_n in V, some n with the following properties:

- 1. $V = \operatorname{span}(v_1, \dots, v_n)$
- 2. No v_i is a linear combination of $v_1, \ldots, v_{i-1}, v_{i+1}, \ldots, v_n$

Then we want to call V an n-dimensional vector space over F.

Lemma. Let V be a vector space over F, and n > 1. Suppose v_1, \ldots, v_n are distinct. Then (2) is equivalent to if

$$\alpha_1 v_1 + \dots + \alpha_n v_n = \beta_1 v_1 + \dots + \beta_n v_n, \alpha_i, \beta_i \in F, \forall i,$$

then $\alpha_i = \beta_i, \forall i$. In other words, the "coordinates" are unique.

Proof. (Contradiction) Without loss of generality, suppose $\alpha_1 \neq \beta_1$. Then $\alpha_1 - \beta_1 \neq 0$, so it has a multiplicative inverse. Thus

$$(\alpha_1 - \beta_1)v_1 = \sum_{i=2}^n (\beta_i - \alpha_i)v_i$$

$$v_1 = \frac{1}{\alpha_1 - \beta_1} \cdot \sum_{i=2}^n (\beta_i - \alpha_i)v_i \qquad (\alpha_1 - \beta_1 \neq 0)$$

so $v_1 \in \text{span}(v_2, \dots, v_n)$, which is a contradiction.