Chapter 14 Power Management Unit (PMU)

14.1 Overview

In order to meet high performance and low power requirements, a power management unit is designed for saving power when RK3128 in low power mode. The RK3128 PMU is dedicated for managing the power of the whole chip.

14.1.1 Features

- Support 2 voltage domains including VD_CORE, VD_LOGIC
- Support 4 separate power domains in the whole chip, which can be power up/down by software based on different application scenes
- In low power mode, the pmu could power up/down vd_core by hardware
- Support CORTEX-A7 core source clock gating in low power mode
- Support Logic Bus source clock gating in low power mode.
- Support global interrupt disablein low power mode
- Support pd pmuclock switch to 32KHz or pvtm clock in low power mode
- Support DDR self-refresh in low power mode
- Support DDR controller clock auto gating in low power mode
- Support to send idle requests to all NIU in the SoC (details will be described later)
- A group of configurable counter in PMU for HW control (such as PMIC, Core power up/down and so on)
- Support varies configurable wakeup source for low power mode

14.2 Block Diagram

14.2.1 power domain partition

Fig.14-1Power Domain Partition

The above diagram describes the power domain and voltage domain partition, and the following table lists all the power domains.

Table 14-1RK3128 Power Domain and Voltage Domain Summary

Voltage Domain	Power Domain	Description
VD_CORE	PD_CORE	A7 logic
VD_LOGIC	PD_BUS	include pd_bus, pd_peri and other system control unit (GRF, CRU and so on)
	PD_VIO	Video input/output system, include VOP, VIP, IEP, RGA, EBC, MIPI-DSI, HDMI
	PD_VIDEO	Video Encode&Decode, include VEPU, VDPU
	PD GPU	GPU

14.2.2 PMU block diagram

The following figure is the PMU block diagram. The PMU includes the 3 following sections:

- APB interface and register, which can accept the system configuration
- Low Power State Control, which generate low power control signals.
- Power Switch Control, which control all power domain switch

Fig.14-2PMU Bock Diagram

14.3 Power Switch Timing Requirement

The following table describe the switch time for power down and power up progress of each power domain. This table gives the time range, and each power domain switch time will be more than the min time and less than the max time.

Power domain	type	Power down Switch Timing①(ns)	Power up Switch Timing①(ns)
	min	170.3	132.4
PD_CORE	max	306.7	237.5
A	max	199.0	156.1
DD MIO	min	280.6	217.5
PD_VIO	max	518.5	407.8
DD VIDEO	min	315.4	244.2
PD_VIDEO	max	586.2	460.4
DD CDU	min	470.2	364
PD_GPU	max	871.4	684.1

Table 14-2 Power Switch Timing

Notes: the power switch timing is just the chip power electrical parameter, this is not the parameter for the software to determine the power domain status. The software need to check each power domain status register to determine the power status.

14.4 Function Description

14.4.1 Normal Mode

First of all, we define two modes of power for chip, normal mode and low power mode.

In normal mode, the PMU can power off/on all power domain (except pd_core)

by setting PMU_PWRDN_CON register. At same, pmu can send idle request for every power domain by setting PMU_IDLE_REQ register.

Don't set pd_core power off or send idle_req_core and idle_req_sys in normal mode. This will cause the system to not work properly.

Basically, there are 2 configurations that software can do in normal mode to save power.

- Configure DDR to self-refresh, DDR IO retention and DDR IO power off
- Power down power domains

The first one will save power consumption of using DDR controller and DDR IO. For avoiding confliction, the software must make sure the execution code of this step is not in DDR.

The second one will save power of the power domain which software is shutting down.

14.4.2 Low Power Mode

PMU can work in the Low Power Mode by setting bit[0] of PMU_PWRMODE_CON register. After setting the register, PMU would enter the Low Power mode. In the low power mode, pmu will auto power on/off the specified power domain, send idle req to specified power domain, disable/enable config bus clock and so on. All of above are configurable by setting corresponding registers.

Num	Hardware Flow	Description of Flow	
0	NORMAL	nomal status	
1	TRANS_NO_FIN	wait transfer to finish	bit[22:16] of PMU_PWRMODE_CON
2	SREF_ENTER	enter to self refresh	bit[8:7] of PMU_PWRMODE_CON
3	CORE_CLK_DIS	core clock gating	bit[1] of PMU_PWRMODE_CON
4	BUS_CLK_DIS	cfgbus clock disable	bit[2] of PMU_PWRMODE_CON
5	CLOCK_LF	switch to 32KHz or pvtm	bit[5] of PMU_PWRMODE_CON
6	CORE_PWRDN	vd core power down	bit[4] of PMU_PWRMODE_CON
7	WAIT_WAKEUP	wait wakeup	
8	WAIT_24M	wait 24MHz stable	bit[6] of PMU_PWRMODE_CON
9	CLOCK_HF	switch to 24MHz	
10	BUS_CLK_EN	cfgbus clock enable	
11	CORE_CLK_EN	core时钟恢复	
12	SREF_EXIT	exit self refresh	
13	CORE_PWRUP	vd core power up	
14	TRANS_RESTORE	restroe transfer	

Table 14-3 Low Power State

The Low Power mode have three steps:

- Enter Low Power mode, there are some sub-steps in the enter step, every sub-step can be enable/disable by setting the corresponding register.
- Wait wakeup, there is only armint wakeup source by setting PMU_WAKEUP_CFG[0] register
- Exit Low Power mode, the sub-step are executed depend on whether they were executed in enter low power step.

14.4.3 Wakeup source

There is only one wakeup source, armint which can trigger PMU from power mode to normal mode.

If software expect PMU be woken up from power mode it should be enabled by

write 1 to $PMU_WAKEUP_CFG[0]$ register before entering into power mode.

14.5 Register Description

14.5.1 Register Summary

Name	Offset	Size	Reset Value	Description
PMU_WAKEUP_CFG	0x0000	W	0x00000000	PMU wake-up source
	021000			configuration register
PMU_PWRDN_CON	0x0004	W	0×00000000	System power gating configuration register
PMU_PWRDN_ST	0x0008	W	0x00000000	System power gating status register
PMU_IDLE_REQ	0x000c	W	0x00000000	PMU Noc idle req control
PMU_IDLE_ST	0x0010	W	0x00000000	PMU Noc idle status
PMU_PWRMODE_CO	0x0014	W	0×00000000	PMU configuration register in power mode flow
PMU_PWR_STATE	0x0018	W	0x00000000	PMU Low power mode state
PMU_OSC_CNT	0x001c	W	0x00005dc0	24MHz OSC stabilization counter threshold
PMU_CORE_PWRDW N_CNT	0x0020	W	0x00005dc0	CORE domain power down waiting counter in sleep mode
PMU_CORE_PWRUP_ CNT	0x0024	W	0x00005dc0	CORE domain power up waiting counter in sleep mode
PMU_SFT_CON	0x0028	W	0x0000000	PMU Software control in normal mode
PMU_DDR_SREF_ST	0x002c	W	0x00000000	PMU DDR self refresh status
PMU_INT_CON	0x0030	W	0x00000000	PMU interrupt configuration register
PMU_INT_ST	0x0034	W	0x00000000	PMU interrupt status register
PMU_SYS_REG0	0x0038	W	0x00000000	PMU system register0
PMU_SYS_REG1	0x003c	W	0x0000000	PMU system register1
PMU_SYS_REG2	0x0040	W	0x00000000	PMU system register2
PMU_SYS_REG3	0x0044	W	0x00000000	PMU system register3

14.5.2 Detail Register Description

PMU_WAKEUP_CFG

Address: Operational Base + offset (0x0000)PMU wake-up source configuration register

TITO Wai	The wake up source configuration register				
Bit	Attr	Reset Value	Description		
31:1	RO	0x0	reserved		
0	RW		armint_wakeup_en ARM interrupt wake-up enable 1'b0: disable 1'b1: enable		

PMU_PWRDN_CON

Address: Operational Base + offset (0x0004)System power gating configuration register

Bit	Attr	Reset Value	Description
31:4	RO	0x0	reserved

Bit	Attr	Reset Value	Description
			PD_VIO_DWN_EN
3	RW	0x0	Power domain VIO power down enable
٦	KVV	0.00	1'b0: power on
			1'b1: power off
			PD_VIDEO_DWN_EN
2	RW	0x0	Power domain VIDEO power down enable
	KVV	UXU	1'b0: power on
			1'b1: power off
		/ 0×0	PD_GPU_DWN_EN
1	RW		Power domain GPU power down enable
1	KVV		1'b0: power on
			1'b1: power off
			CORE_PWROFF_EN
0	0 RW	0×0	software conifg power off pd_core
0			1'b1: power off
			1'b0: not power off

PMU_PWRDN_ST

Address: Operational Base + offset (0x0008)

System power gating status register

Bit	Attr	Reset Value	Description
31:4	RO	0x0	reserved
3	RW	0x0	pd_vio_pwr_st Power domain VIO power status 1'b0: power on 1'b1: power off
2	RW	0x0	pd_video_pwr_st Power domain VIDEO power status 1'b0: power on 1'b1: power off
1	RW	0x0	pd_gpu_pwr_st Power domain GPU power status 1'b0: power on 1'b1: power off
0	RW	0x0	pd_core_pwr_st Power domain core power status 1'b0: power on 1'b1: power off

PMU_IDLE_REQ

Address: Operational Base + offset (0x000c)

PMU Noc idle req control

Bit	Attr	Reset Value	Description
31:8	RO	0x0	reserved
7	RW	0x0	idle_req_crypto_cfg software configcrypto domain flush trasaction request 1'b1: idle req 1'b0: not idle req

PMU_IDLE_ST

Address: Operational Base + offset (0x0010)

PMU Noc idle status

Bit	Attr	Reset Value	Description
31:24	RO	0x0	reserved
23	RW	0×0	idle_ack_crypto crypto domain flush transaction acknowledge 1'b0: no ack 1'b1: ack
22	RW	0x0	idle_ack_msch msch domain flush transaction acknowledge 1'b0: no ack 1'b1: ack

Bit	Attr	Reset Value	Description
			idle_ack_sys
2.1	DW		sys domain flush transaction acknowledge
21	RW	0x0	1'b0: no ack
			1'b1: ack
			idle_ack_core
			core domain flush transaction acknowledge
20	RW	0x0	1'b0: no ack
			1'b1: ack
			idle_ack_gpu
19	RW	0x0	gpu domain flush transaction acknowledge
			1'b0: no ack
			1'b1: ack
			idle_ack_vio
18	RW	0x0	vio domain flush transaction acknowledge
10	IK VV	UXU	1'b0: no ack
			1'b1: ack
			idle_ack_video
l			video domain flush transaction acknowledge
17	RW	0x0	1'b0: no ack
			1'b1: ack
			idle_ack_peri
			peri domain flush transaction acknowledge
16	RW	0x0	
			1'b0: no ack
45.0	D.O.	0.0	1'b1: ack
15:8	RO	0x0	reserved
			IDLE_CRYPTO
7	RW	0x0	crypto domain flush transaction finish(idle)
	IXVV	0.00	1'b0: no finish
			1'b1: finish
		•	IDLE_MSCH
_	D.4.		msch domain flush transaction finish(idle)
6	RW	0x0	1'b0: no finish
			1'b1: finish
		, ()	IDLE SYS
	A	1	sys domain flush transaction finish(idle)
5	RW	0x0	1'b0: no finish
		7	1'b1: finish
		/	
			IDLE_CORE
4	RW	0x0	core domain flush transaction finish(idle)
		1'b0: no finish	
	,		1'b1: finish
			IDLE_GPU
2	RW	0x0	gpu domain flush transaction finish(idle)
3	LVV	UXU	1'b0: no finish
			1'b1: finish
			IDLE VIO
			vio domain flush transaction finish(idle)
2	RW	0x0	1'b0: no finish
	1		1'b1: finish

Bit	Attr	Reset Value	Description
1	RW	0×0	IDLE_VIDEO video domain flush transaction finish(idle) 1'b0: no finish 1'b1: finish
0	RW	0×0	IDLE_PERI peri domain flush transaction finish(idle) 1'b0: no finish 1'b1: finish

PMU_PWRMODE_CON

Address: Operational Base + offset (0x0014) PMU configuration register in power mode flow

Bit	Attr	Reset Value	Description
31:24	RO	0x0	reserved
23	RW	0×0	clr_peri issue idle_req_peri in low power mode 1'b0: not issue 1'b1: issue
22	RW	0×0	clr_video issue idle_req_video in low power mode 1'b0: not issue 1'b1: issue
21	RW	0×0	clr_vio issue idle_req_vio in low power mode 1'b0: not issue 1'b1: issue
20	RW	0×0	clr_gpu issue idle_req_gpu in low power mode 1'b0: not issue 1'b1: issue
19	RW	0x0	clr_core issue idle_req_core in low power mode 1'b0: not issue 1'b1: issue
18	RW	0x0	clr_sys issue idle_req_sys in low power mode 1'b0: not issue 1'b1: issue
17	RW	0×0	clr_msch issue idle_req_msch in low power mode 1'b0: not issue 1'b1: issue
16	RW	0x0	clr_crypto issue idle_req_crypto in low power mode 1'b0: not issue 1'b1: issue
15:10	RW	0x0	ddr0io_ret_de_req ddr0io retention de-assert request 1'b0: de-assert request 1'b1: not de-assert request

Bit	Attr	Reset Value	Description
9	RW	0×0	pmu_int_en pmuint enable 1'b1: enable 1'b0: disable
8	RW	0x0	ddr_gating_en ddrc auto gating in low power mode 1'b0: disable 1'b1: enable
7	RW	0x0	sref_enter_en DDR enter self-refresh enable in low power mode 1'b0: disable DDR enter self-refresh 1'b1: enable DDR enter self-refresh
6	RW	0x0	wait_osc_24m wait 24MHz OSC when wakeup in low power mode 1'b0: disable 1'b1: enable
5	RW	0x0	pmu_use_lf pmu domain clock switch to low clock enable 1'b0: not switch to low clock 1'b1: switch to low clock
4	RW	0x0	core_pd_en core power off enable in low power mode 1'b0: core power on 1'b1: core power off
3	RW	0x0	global_int_disable Global interrupt disable 1'b0: enable global interrupt 1'b1: disable global interrupt
2	RW	0x0	clk_bus_src_gate_en config bus clock source gating enable in idle mode 1'b0: enable 1'b1: disable
1	RW	0×0	clk_core_src_gate_en A7 core clock source gating enable in idle mode 1'b0: enable 1'b1: disable
0	RW	0×0	power_mode_en power mode flow enable 1'b0: disable 1'b1: enable

PMU_PWR_STATE

Address: Operational Base + offset (0x0018)

PMU Low power mode state

Bit	Attr	Reset Value	Description
31:15	RO	0x0	reserved

Bit	Attr	Reset Value	Description
			TRANS_RESTORE
14	RW	0x0	noc trans restore
14		UXU	1'b0: state not happened
			1'b1: state happened
			CORE_PWRUP
1.2	DW	0.40	pd core power up state
13	RW	0x0	1'b0: state not happened
			1'b1: state happened
			SREF_EXIT
12	DW	0.40	ddr exit self-refresh
12	RW	0x0	1'b0: state not happened
			1'b1: state happened
			CORE_CLK_EN
	DVV	00	pd_core source clock enable
11	RW	0x0	1'b0: state not happened
			1'b1: state happened
			BUS_CLK_EN
4.0	5,47	0.0	config bus source clock enable
10	RW	0x0	1'b0: state not happened
			1'b1: state happened
			CLOCK HF
	5,47		pd_pmu switch to normal clock
9	RW	0x0	1'b0: state not happened
			1'b1: state happened
			WAIT 24M
	DVV	00	wait 24M osc stable
8	RW	0x0	1'b0: state not happened
			1'b1: state happened
			WAIT_WAKEUP
7	DW	0.40	wati wakeup state
7	RW	0x0	1'b0: state not happened
		$\lambda (\lambda)^{\gamma}$	1'b1: state happened
			CORE_PWRDN
6	RW 🔺	0x0	pd core down state
O	KVV	UXU	1'b0: state not happened
			1'b1: state happened
) *	CLOCK_LF
5	RW	0x0	pd_pmu switch to low speed clock
	ICVV	0.00	1'b0: state not happened
	-		1'b1: state happened
			BUS_CLK_DIS
4	RW	0x0	config bus source clock disable
		OXO	1'b0: state not happened
			1'b1: state happened
			CORE_CLK_DIS
3	RW	0x0	pd_core source clock disable
J	IZ VV	UXU	1'b0: state not happened
			1'b1: state happened
			SREF_ENTER
2	RW	0x0	ddrselfrefresh enter
2	17.44		1'b0: state not happened
			1'b1: state happened

Bit	Attr	Reset Value	Description
			TRANS_NO_FIN
1	RW	0x0	transfer no finish
1	IK VV	UXU	1'b0: state not happened
			1'b1: state happened
		0x0	NORMAL
0	DW		normal state
	RW		1'b0: state not happened
			1'b1: state happened

PMU_OSC_CNT

Address: Operational Base + offset (0x001c) 24MHz OSC stabilization counter threshold

Bit	Attr	Reset Value	Description
31:0	RW	IIIVIISACII	osc_stabl_cnt_thresh
			24MHz OSC stabilization counter threshold

PMU_CORE_PWRDWN_CNT

Address: Operational Base + offset (0x0020)

CORE domain power down waiting counter in sleep mode

Bit	Attr	Reset Value	Description
31:0	RW	0x05dc0	core_pwrdwn_cnt_thresh CORE domain power down waiting counter threshold

PMU_CORE_PWRUP_CNT

Address: Operational Base + offset (0x0024)

CORE domain power up waiting counter in sleep mode

CONL de	CONE domain power up waiting counter in sieep mode				
Bit	Attr	Reset Value	Description		
31:0	RW	0x05dc0	core_pwrup_cnt_thresh CORE domain power up waiting counter threshold		

PMU_SFT_CON

Address: Operational Base + offset (0x0028)

PMU Software control in normal mode

Bit	Attr	Reset Value	Description
31:5	RO	0x0	reserved
4	RW	0×0	clk_core_src_gating_cfg pd core source clock disable 1'b1: disable 1'b0: enable
3	RW	0×0	clk_bus_src_gating_cfg config bus source clock disable 1'b1: disable 1'b0: enable
2	RW	0x0	upctl_c_sysreq_cfg software config enter DDR self-refresh by lowpower interface 1'b1: request enter self-refresh 1'b0: not enter self-refresh

Bit	Attr	Reset Value	Description
1	RW	0x0	pmu_lf_ena_cfg software config PMU domain clock switch to low clock 1'b1: switch to low speed clock 1'b0: not switch
0	RW	0x0	low_clk_sel low clock in low power mode select 1'b0: clock pvtm 1'b1: 32KHz clock

PMU_DDR_SREF_ST

Address: Operational Base + offset (0x002c)

PMU DDR self refresh status

Bit	Attr	Reset Value	Description
31:2	RO	0x0	reserved
1	RW	0x0	upctl_c_sysack DDR enter self-refresh acknowledge 1'b0: no ack 1'b1: ack
0	RW	0x0	upctl_c_active DDR enter self-refresh 1'b0: no active 1'b1: active

PMU_INT_CON

Address: Operational Base + offset (0x0030)

PMU interrupt configuration register

Bit	Attr	Reset Value	Description
31:6	RO	0x0	reserved
5	RW	0x0	pd_core_int_en Power domain core power switch interrupt enable 1'b0: disable 1'b1: enable
4	RW	0x0	pd_gpu_int_en Power domain gpu power switch interrupt enable 1'b0: disable 1'b1: enable
3	RW	0×0	pd_video_int_en Power domain video power switch interrupt enable 1'b0: disable 1'b1: enable
2	RW	0×0	pd_vio_int_en Power domain vio power switch interrupt enable 1'b0: disable 1'b1: enable

Bit	Attr	Reset Value	Description
			wakeup_int_en wakeup status interrupt enable
1	RW	0x0	1'b0: disable
			1'b1: enable
0	RW		armint_wakeup_int_en
			ARM interrupt wakeup status interrupt enable
			1'b0: disable
			1'b1: enable

PMU_INT_ST

Address: Operational Base + offset (0x0034)

PMU interrupt status register

Bit	Attr	Reset Value	Description
31:6	RO	0x0	reserved
5	RW	0×0	pd_core_int_st Power domain core power switch status 1'b0: no power switch happen 1'b1: power switch happen
4	RW	0×0	pd_gpu_int_st Power domain gpu power switch status 1'b0: no power switch happen 1'b1: power switch happen
3	RW	0×0	pd_video_int_st Power domain video power switch status 1'b0: no power switch happen 1'b1: power switch happen
2	RW	0x0	pd_vio_int_st Power domain vio power switch status 1'b0: no power switch happen 1'b1: power switch happen
1	RW	0×0	pwrmode_wakeup_event_trig power mode flow wakeup 1'b0: no wakeup 1'b1: wakeup
0	RW	0×0	armint_wakeup_event_trig ARM interrupt wake-up enent trigger 1'b0: no wakeup 1'b1: wakeup

PMU_SYS_REGO

Address: Operational Base + offset (0x0038)

PMU system register0

Bit	Attr	Reset Value	Description
31:0	RW	0x00000000	pmu_sys_reg0 PMU system register0

PMU_SYS_REG1

Address: Operational Base + offset (0x003c)

PMU system register1

1110070	······································				
Bit	Attr	Reset Value	Description		
31:0	RW	0x00000000	pmu_sys_reg1 PMU system register1		

PMU_SYS_REG2

Address: Operational Base + offset (0x0040)

PMU system register2

Bit	Attr	Reset Value	Description
31:0	RW	0x00000000	pmu_sys_reg2 PMU system register2

PMU_SYS_REG3

Address: Operational Base + offset (0x0044)

PMU system register3

Bit	Attr	Reset Value	Description	
31:0	RW	0x00000000	pmu_sys_reg3 PMU system register3	

14.6 Timing Diagram

14.6.1 Each domain power switch timing

The following figure is the each domain power down and power up timing.

Fig.14-3 Each Domain Power Switch Timing

14.6.2 External wakeup PAD timing

The PMU supports a lot of external wakeup sources, such as SD/MMDC, USBDEV, SIMO/1 detect wakeup, GPIO0 wakeup source and so on. All these external wakeup sources must meet the timing requirement (at least 200us) when the wakeup event is asserted. The following figure gives the timing information.

Fig.14-4 External Wakeup Source PAD Timing

14.7 Application Notes

14.7.1 Recommend configurations for power mode.

The PMU is a design with great flexibilities, but just for facilities and inheritances, a group of recommend configurations will be shown below for software. And for convenience, we will define several modes.

The RK3128can support following 5 recommended power modes:

- normal
- idle mode
- deep idle mode
- sleep mode
- power off mode

The following table lists the detailed description of the modes.

mode1(idle) mode2(sleep) configurable Item power down Core standy Logic Clock enable disable Yes **Logic Clock Source** 24MHz 32KHz/PVTM Yes PLL Yes working power down DDR self refresh working Yes

Table 14-4 Power Domain Status Summary in all Work Mode

Normal mode

In this mode, you can power off/on or enable/disable the following power domain to save power: PD VIO/PD VIDEO/PD GPU

Idle mode

This mode is used when the core do not have load for a shot while such as waiting for interrupt and the software want to save power by gating Cortex-A7 source clock.

In idle mode, core1/2/3 of Cortex-A7 should be either power off or in WFI/WFE state. The core0 of A7 should be in WFI/WFE state. The configurations of core clock source gating and disable global interrupt are presented. The Cortex-A7 can waked up by an interrupt.

Sleep mode

The sleep mode can power off all power domains except TOP Logic. The VD_CORE is turned off externally, and other domains power off by software.

In sleep mode the clock of PD PMU can be switched from 24MHz to low speedclock optionally by hardware. The low speed clock can be selected from clock pvtm and 32KHz clock.

In sleep mode all PLLs power down mandatorily to save power by software.

In sleep mode OSC can be disabled optionally by software.

In sleep mode DDR self-refresh can be issued by hardware mandatorily.

14.7.2 System Register

PMU support 4 words register: PMU_SYS_REG0, PMU_SYS_REG1, PMU SYS REG2, PMU SYS REG3. These registers are always on no matter what low power mode. So software can use these registers to retain some information which is useful after wakeup from any mode.

14.7.3 Configuration Constraint

In order to shut down the power domains correctly, the software must obey the rules bellow:

- Send NIU request to the NIU in power domain that you want to shut down.
- Querying PMU_IDLE_ST register to get the information until the pacific NIU is in idle state.
- Send power request to the power domain through PMU PWRDN CON register.
- Querying PMU PWRDN ST register to make sure the pacific power domain is power down.

The power domains controlled only by software are showing below:

PD VIO, PD GPU, PD VIDEO.

So you must power off these power domains before enter low power mode if you need.