MATH 8301 Homework V

David DeMark

9 October 2017

1.)

We let \mathcal{C} be the category with a single object * and morphisms $\operatorname{Hom}(*,*) = G$.

a.)

Proposition. For functor $F: \mathcal{C} \to \operatorname{Vect}_k$, show that V:=F(*) is a representation of V.

Proof. We define a representation of a group G as a pair (V,ϕ) where V is a vector space and $\phi: G \to GL(V)$ is a homomorphism. We note that the morphisms of Vect_k are linear maps, and further, as F takes morphisms $A \to B$ to morphisms $F(A) \to F(B)$, we have that the only morphisms in the image of F lie in $\operatorname{Hom}(F(*), F(*))$. Further, we note that for all $g \in \operatorname{Hom}_C(*,*)$, there exists some g^{-1} with $g \circ g^{-1} = g^{-1} \circ g = \operatorname{id}_*$; as F preserves identity and respects composition, we have that $F(g) \circ F(g^{-1}) = F(g^{-1}) \circ F(g) = \operatorname{id}_V$, that is, F(g) is an invertible linear transformation. Thus, F induces a map $\operatorname{Hom}(*,*) \to GL(V)$, and as F respects composition and preserves identity, F may be viewed as a homomorphism. This completes our proof.

b.)

Prompt. Conversely, show a functor can be constructed from a representation (V, ϕ) .

Proof. We let $F: \mathcal{C} \to \operatorname{Vect}_k$ be our functor and let F(*) = V, with $F: \operatorname{Hom}_{\mathcal{C}}(*,*) \to \operatorname{Hom}_{\operatorname{Vect}_k}(V,V)$ being given by $F(g) = \phi(g)$. Then, as ϕ respects the group operation, it respects composition, and as ϕ respects the group identity, F respects the identity morphism and is hence functorial.

2.)

a.)

Proposition. We let $f: A \to B$ be a morphism in the category Set. Then, f is a [categorical] isomorphism if and only if f is a bijection.

Proof. We suppose that $a, b \in A$ with f(a) = f(b). Then, $id_A(a) = g(f(a)) = g(f(b)) = id_A(b)$, so a = b and f is injective. On the other hand, we suppose there exists some $b \in B$ such that $b \notin \inf$. Then $f(g(b)) \neq b$, so we have established a contradiction and f is surjective and thus bijective.

On the other hand, we suppose f is a bijection. Then, f is invertible, with unique two-sided inverse f^{-1} , with $ff^{-1} = \mathrm{id}_A$ and $f^{-1}f = \mathrm{id}_B$. This completes our proof.

b.)

Proposition. We let $f: A \to B$ be a morphism in the category Top. f is an isomorphism if and only if it is a homeomorphism.

Proof. We have that Top is a concrete category and hence a subcategory of Set. Thus, the isomorphisms of Set are bijections, and as the morphisms of Set are continuous maps, we have that f, g are continuous bijections and thus homeomorphisms.

On the other hand, we suppose f is a homeomorphism. Then, by definition, there exists a unique continuous two-sided inverse f^{-1} such that $ff^{-1} = \mathrm{id}_A$ and $f^{-1}f = \mathrm{id}_B$, so f is an isomorphism.

c.)

Proposition. We let $f: A \to B$ be a morphism in the category hTop. f is an isomorphism if and only if it is a homotopy equivalence.

Proof. We suppose f is an isomorphism. Then, there exists some map $g: B \to A$ such that $fg \cong id_B$ and $gf \cong id_A$. Then, by definition, f is a homotopy equivalence. The converse follows just as obviously.

d.)

Proposition. All maps of the category defined in problem 1 are isomorphisms.

Proof. By definition, for all $g \in G$, there exists some element g^{-1} such that $gg^{-1} = g^{-1}g = \mathrm{id}_G$. Then, viewing g, g^{-1} as morphisms in $\mathrm{Hom}_{\mathcal{C}}(*,*)$, g is an isomorphism.

e.)

Proposition. For $F: \mathcal{C} \to \mathcal{D}$ a functor, $f: X \to Y$ an isomorphism in \mathcal{C} , F(f) is an isomorphism in \mathcal{D} .

Proof. We have that $F(\mathrm{id}_{\mathcal{C}}) = \mathrm{id}_{\mathcal{D}}$, and $F(\beta \circ \alpha) = F(\beta) \circ F(\alpha)$. Thus, if $f: A \to B$ is an isomorphism in \mathcal{C} such that $g \circ f = \mathrm{id}_A$ and $f \circ g = \mathrm{id}_B$, we have that $F(f) \circ F(g) = F(f \circ g) = F(\mathrm{id}_B) = \mathrm{id}_{F(B)}$, and $F(g) \circ F(f) = F(g \circ f) = F(\mathrm{id}_A) = \mathrm{id}_{F(A)}$. Thus, F(f) is an isomorphism in \mathcal{D}

3.)

a.)

Let X and Y be topological spaces.

Proposition. For $f: X \to Y$ continuous, the induced map $\phi_0(f): [x] \mapsto [f(x)]$ is well-defined.

Proof. We wish to show that for any x y, f(x) = f(y). We let $\phi : [0,1] \to X$ be a path from x to y. Then, $(f \circ \phi) : [0,1] \to Y$ is continuous with $(f \circ \phi)(0) = f(x)$ and $(f \circ \phi)(1) = f(y)$. Hence, $f \circ \phi$ is a path connection from f(x) to f(y), so $f(x) \circ f(y)$ and $\pi_0(f)$ is well-defined.

b.)

Proposition. π_0 defines a functor $\pi_0 : \text{Top} \to \text{Set}$.

Proof. There are two things to show: (i) for any $X \in \text{Top}$, $\pi_0(\text{id}_X) = \text{id}_{\pi_0(x)}$, and (ii) for $f \in \text{Hom}_{\text{Top}}(A, B)$, $g \in \text{Hom}_{\text{Top}}(B \to C)$, $\pi_0(g \circ f) = \pi_0(g) \circ \pi_0(f)$

(i) $\pi_0(\mathrm{id}_X):[x]\mapsto[\mathrm{id}_X(x)]=[x]$ simply sends an equivalence class to itself, and is hence the identity morphism on $\pi_0(X)$.

(ii) $(\pi_0(g) \circ \pi_0(f)) : x \mapsto [f(x)] \mapsto \pi_0(g)[f(x)] = [g(f(x))] = \pi_0 * (f \circ g)[x]$

This completes our proof.

c.)

Corollary. π_0 defines a functor π_0 : hTop \to Set.

Proof. We have already shown the functoriality of π_0 as a functor from Top to Set, so what is left to show is that π_0 respects equivalence classes of morphisms, that is, for $f,g \in \operatorname{Hom}_{\operatorname{Top}}(A,B)$ with $f \cong g$, $\pi_0(f) = \pi_0(g)$. We let $H: I \times A \to B$ be a homotopy from f to g, with H(0,x) = f(x) and H(1,x) = g(x). Then, for any $x_0 \in A$, $h: I \to B$ given by $t \mapsto H(t,x_0)$ gives a continuous map with $h(0) = f(x_0)$ and $h(1) = g(x_0)$ and is hence a path-connection from $f(x_0)$ to $g(x_0)$, so $f(x_0) \sim g(x_0)$ and $\pi_0(f) = \pi_0(g)$. Thus, π_0 is well-defined on morphisms of hTop, and is hence functorial as inherited from Top.

d.)

Proposition. If $X \cong Y$, then $\#\pi_0(X) = \#\pi_0(Y)$

Proof. If $X \cong Y$, then there exists some isomorphism (homotopy equivalence) $f \in \operatorname{Hom}_{hTop}(X, Y)$. Then, by question $2(e), \pi_0(f) \in \operatorname{Hom}_{Set}(\pi_0(X), \pi_0(Y))$ is an isomorphism in Set, and by problem $2(b), \pi_0(f)$ is a bijection. This completes our proof.