Customer:	University od Applied Science Vrbik 8a, 10000 Zagreb Croatia	
End customer:	University od Applied Science Konavoska ulica 2, 10000 Zagreb Croatia	
Object:	Electrical engineering department Konavoska ulica 2, 1000 Zagreb Croatia	
Project phase:	Main project	

Project name:	DATA CENTER COOLING	
---------------	---------------------	--

Approved:	mr.sc. Davor Gadže, dipl.ing.el.
Checked:	Tomislav Špoljarić, dipl.ing.el.
Drawn:	Matea Musladin, bacc.ing.el.

Project number:	PIEP-21/22
Project date:	10.2021.
Revision:	R0
Revision date:	05.10.2021.

1. Sadržaj

Project name: DATA CENTER COOLING

1. Sadržaj	. 1
2. Konstrukcijski zadatak	
3. Proračun potrošnje	
3.1. Proračun elektromotora	
3.2. Prikaz ukupne potrošnje po razdjelnicima	. 4
4. Proračun padova napona	. 5
5. Proračun struja kratkog spoja	. 6
6. Proviera zašite kabela	. 8

Project no.: PEIP-21/22

Revison: R0

2. Konstrukcijski zadatak

Tehničko veleučilište u Zagrebu

Elektrotehnički odjel

Specijalistički stručni studij elektrotehnike

Projektiranje i izvođenje elektrotehničkih postrojenja: konstrukcijski zadatak

Matea Musladin JMBAG: 0023105047

Zadatak: Projekt razvoda energije pumpne stanice za potrebe hlađenja podatkovnog centra

Za potrebe hlađenja podatkovnog centra potrebno je u okviru konstrukcijskih vježbi izraditi tehničku dokumentaciju do razine izvedbenog projekta za upravljanje i nadzor pumpi. Pumpe služe za dopremanje hladne vode u rashladne jedinice koje se nalaze u prostorijama sa serverima. Postrojenje se sastoji od ukupno šest pumpi koje su podijeljene u dvije grupe od kojih svaka grupa radi 12 sati dnevno. Postrojenje pumpne stanice sastoji se od tri dijela: prostorije sa pumpama (pump room), prostorije sa razdjelnim ormarom (MCC room) i hodnika (corridor).

U potrebno je izraditi do za razvod energije prema opisu. Projekt treba sadržavati:

- Projektni zadatak:
- Crtanu dokumetaciiu: 2.
 - strujne sheme razvoda i osnovnih krugova upravljanja,
 - priključni plan kabela,
 - prijedlog rasporeda dispoziciju opreme u razvodnom ormaru,
 - popis opreme;
- Tekstualnu dokumentaciju:
 - proračun presjeka kabela prema dopustivom padu napona,
 - nužne proračune i izbor elemenata:
 - Proračun instaliranih i vršnih snaga,
 - Proračun padova napona,
 - Provjera zaštitnih elemenata prema izboru kabela,
 - 0 Proračun kratkog spoja,
 - Proračun hlađenja/ventilacije razvoda.

Podaci postrojenja - potrošači:

Postrojenje se sastoji od ukupno šest pumpi koje su podijeljene u dvije grupe od kojih svaka grupa radi 12 sati dnevno. Pumpe su

raspoređene u grupe na slijedeći način:

- 1. grupa tri pumpe nazivnih snaga 4kW, 15kW i 22kW,
- 2. grupa tri pumpe nazivnih snaga 4kW, 15kW i 22kW. 0
- Način upravljanja pumpi je slijedeći: 0
 - pumpe nazivnih snaga 4kW DOL pomoću sklopnika
 - pumpe nazivnih snaga 15kW uređaj za meki zalet (soft-starter)
 - pumpe nazivnih snaga 22kW pretvarač frekvencije i napona.
- U sklopu cjevovoda nalaze se ventili za zaustavljanje protoka vode kojima je potrebno upravljati zbog mogućeg servisiranja pumpi.
- Ugrađeno je sveukupno 12 ventila, odnosno dva ventila po pumpi (jedan na ulazu, a drugi na izlazu pumpe).
- U prostorije pumpne stanice potrebno je predvidjeti:
 - soba sa pumpama:
 - 2x3p i 2x5p servisne priključnice,
 - tipkalo za isklop napajanja u nuždi;
 - soba sa razdielnim ormarom: 0
 - 1x3p i 1x5p servisne priključnice,
 - klima uređaj
 - tipkalo za isklop napajanja u nuždi;
 - hodnik:
 - 2×3p i 2×5p servisne priključnice.
- 0 Kabelske trase:
 - Udaljenost glavnog napojnog kabela iz transformatorske stanice je 50m.
 - Udaljenosti kabelskih trasa prema ostalim potrošačima predvidjeti iz dispozicije.
 - Sve kabele potrebne za napajanje opreme izvan razdjelnog ormara potrebno je položiti u kabelske police označene na tlocrtu postrojenja (PK200 i PK100). Kabelske police nalaze se na visini +4,50m od poda, ukupna visina postrojenja iznosi 5,00m, a sve ostale dimenzije prikazane su na tlocrtu postrojenia.

Podaci postrojenja - pomoćna potrošnja i sustav zaštite od indirektnog dodira:

- Sustav zaštite unutar razdjelnika je TN-S, a naponske razine unutar razdjelnika su:
 - glavno napajanje: 400VAC, 50HZ, 0
 - izmjenični upravljački napon: 230VAC, 50Hz, 0
 - istosmjerni upravljački napon: 24VDC (u sklopu istosmjernog upravljačkog napona predvidjeti UPS 0 uređaj).

Upravljački i nadzorni sustav postrojenja sastoji se od slijedećih uređaja:

- PLC CPU, DI, DQ, AI, proizvođača Siemens,
- nadzor mrežnog napajanja PAC 3200, proizvođača Siemens,
- grafičko sučelje HMI, proizvođača Siemens,
- uređaji upravljačkog i nadzornog sustava i pretvarači frekvencije i napona međusobno su povezani pomoću komunikacijskog potokola Profinet u mrežu.

Nastavnik: Tomislay Špoljarić, d.i.e., v. pred.

4.

Vrbik 8a, 10000 Zagreb

3. Proračun potrošnje

Project name: DATA CENTER COOLING

PRORAČUN VRŠNIH VRIJEDNOSTI SNAGA I STRUJA

3.1. Proračun elektromotora

$$\begin{split} P_{el} &= \sqrt{3} * U_n * I_n * \cos \varphi = \sqrt{3} * 400 * 8.5 * 0.8 = 4.711 \; kW \\ S_{el} &= \sqrt{3} * U_n * I_n = \sqrt{3} * 400 * 8.5 = 5.888 \; kVA \\ Q_{el} &= \sqrt{S_{el}^2 - P_{el}^2} = \sqrt{5.888^2 - 4.711^2} = 3.532 \; kVAr \end{split}$$

3.2. Prikaz ukupne potrošnje po razdjelnicima

		Nazivni	9	Snaga [kW] Faktor Str			Struja [A]	Struja [A]		
Razdjelnik	potrošač	napon [V]	L1	L2	L3	snage	L1	L2	L3	
=CST	=PS+MCC	400	15,68	15,08	15,08	-	80,25	77,5	77,5	
	=PR-M1	400	1,57	1,57	1,57	0,8	8,5	8,5	8,5	
	=PR-M2	400	1,57	1,57	1,57	0,8	8,5	8,5	8,5	
	=PR-M3	400	5,56	5,56	5,56	0,86	28	28	28	
\	=PR-M4	400	5,56	5,56	5,56	0,86	28	28	28	
S+MC	=PR-M5	400	7,95	7,95	7,95	0,84	41	41	41	
Š	=PR-M6	400	7,95	7,95	7,95	0,84	41	41	41	
Ы	=CR-H1	230	0,15	0	0	0,95	0,69	0	0	
"	=PR-H1	230	0,3	0	0	0,95	1,37	0	0	
	=CO-H1	230	0,15	0	0	0,95	0,69	0	0	

5.

Vrbik 8a, 10000 Zagreb

4. Proračun padova napona

Jednofazni pad napona:

$$\Delta U_{1F,\%} = \frac{2 * P * l}{U_{1F,n}^2 * s * \varkappa} * 100\%$$

Trofazni pad napona:

$$\Delta U_{3F,\%} = \frac{P * l}{U_{3F,n}^2 * s * \varkappa} * 100\%$$

Gdje je:

и=50

 $U_{1F,n}$ =230V

 $U_{3F,n}$ =400V

Razdjelnik	Potrošač	Nazivni napon [V]	Snaga [kW]	Duljina trase [m]	Spec. vodljivost kabela [Sm/mm²]	presjek kabela [mm²]	Pad napona na kabelu [%]	Ukupni pad napona [%]	Uvjet ispunjen Δu≤5%
=CTS	=PS+MCC	400	15,68	50	50	70	0,85	0,85	DA
	=PR-M1	400	4,71	30	50	2,5	0,71	1,55	DA
	=PR-M2	400	4,71	30	50	2,5	0,71	1,55	DA
	=PR-M3	400	16,68	20	50	4	1,04	1,89	DA
\	=PR-M4	400	16,68	25	50	4	1,30	2,15	DA
4	=PR-M5	400	23,85	20	50	16	0,37	1,22	DA
S	=PR-M6	400	23,85	25	50	16	0,47	1,31	DA
=PS+MCC	=CR-H1	230	0,15	15	50	1,5	0,11	0,96	DA
"	=PR-H1	230	0,3	20	50	1,5	0,30	1,15	DA
	=CO-H1	230	0,15	20	50	1,5	0,15	1,00	DA

Project no.: PEIP-21/22

Revison: R0

TEHNIČKO VELEUČILIŠTE U ZAGREBU Vrbik 8a, 10000 Zagreb

5. Proračun struja kratkog spoja

Jednofazni (minimalni) kratki spoj:

$$I_{KS,m} = 0.8 * \frac{0.8 * U_{1F,n}}{2 * \sqrt{(2 * R_{uk} + R_0)^2 + (2 * X_{uk} + X_0)^2}}$$

Trofazni (maksimalan) kratki spoj:

$$I_{KS,M} = 1.1 * \frac{U_{3F,n}}{\sqrt{R_{uk}^2 * X_{uk}^2}}$$

Gdje je:

$$R_{uk,WM1} = R_{M1} + R_{W2} + R_{W1}$$

$$X_{uk,WM1} = X_{M1} + X_{W2} + X_{W1}$$

$$X_L = 2\pi * f * L$$

	Uvjet 2: IscB < Iksmin	DA	DA	DA	DA	DA	DA	DA	DA	DA	DA
	Uvjet 1: Iksmax < Isc	DA	DA	DA	DA	DA	DA	DA	DA	DA	DA
	lksmin	7205,286	430,8854	430,8854	960,387	788,6362	2751,418	2380,837	272,3945	207,9001	207,9001
	lksmax	18013,22	1077,214	1077,214	2400,968	1971,59	6878,545	5952,093	374,5425	285,8626	285,8626
Ukupni otpor trase	(a) x	0,004396	0,007684	0,007684	0,006581	0,007128	0,006242	0,006704	0,006162	0,006751	0,2554 0,006751 285,8626 207,9001
Ukupni o	R (Ω)	0,0134	0,2357	0,2357	0,1056	0,12865	0,0364	0,04215	0,1949	0,2554	
Otpor kabela	хк (Ω)	0,004396	0,003288	0,003288	0,002185	0,002732	0,001846	0,002308	0,001766	0,002355	0,002355
Otpor	Rk (Ω)	0,0134	0,2223	0,2223	0,0922	0,11525	0,023	0,02875	0,1815	0,242	0,242
Specifični r, I po	Lk (mH/km)	0,28	0,349	0,349	0,348	0,348	0,294	0,294	0,375	0,375	0,375
	Rk (Ω/km)	0,268	7,41	7,41	4,61	4,61	1,15	1,15	12,1	12,1	12,1
Trenutna		1400	155	155	496	496	200	200	30	30	30
	Nazivna Prekidna struja moć zaštitnog zaštitnog elementa elementa In/Ir [A] Isc [A]	25000	150000	150000	150000	150000	120000	120000	0009	0009	0009
	Nazivna struja zaštitnog elementa In/Ir [A]	140	10	10	30	30	63	63	9	9	9
Zaštitni element	Тiр	MC116131	PKZM0-10	PKZM0-10	PKZM0-32	PKZM0-32	OFAF000H63	OFAF000H63	BM617106	BM617106	BM617106
Zaštitn	Proizvođač	Schrack	Eaton	Eaton	Eaton	Eaton	ABB	ABB	Schrack	Schrack	Schrack
	Pogonska struja IB [A]	80,25	5'8	5'8	87	87	41	41	69'0	1,37	69'0
	Presjek [mm²]	02	2,5	2,5	4	4	16	16	1,5	1,5	1,5
	Duljina trase [m]	05	30	30	70	52	20	52	15	70	20
	Snaga [kW]	15,68	4,71	4,71	16,68	16,68	23,85	23,85	0,15	6'0	0,15
	Nazivni napon [V]	400	400	400	400	400	400	400	230	230	230
	Potrošač	=PS+MCC	=PR-M1	=PR-M2	=PR-M3	=PR-M4	=PR-M5	=PR-M6	=CR-H1	=PR-H1	=CO-H1
	Razdjelnik	=CTS		;)	ν	V +	S	d=	:	

8.

6. Provjera zašite kabela

 $\underline{\text{Uvjet 1}}: \qquad \qquad \mathsf{I}_{p} \leq \mathsf{In} \leq \mathsf{I}_{z}$

 $\underline{\text{Uvjet 2}}: \qquad \qquad \mathsf{I}_2 \leq 1.45^*\mathsf{I}_\mathsf{Z}$

Razdjelnik	Potrošač	Nazivni napon [V]	Snaga [kW]	Duljina trase [m]	Pogonska struja Ip [A]	Nazivna struja zaštitnog elementa In/Ir [A]	Brza isklopna struja 12 [A]	Presjek [mm²]		abela 30min max 1.45*Iz [A]	Uvjet 1 Ip ≤ In ≤ Iz	Uvjet 2 I2 ≤ 1.45*Iz
=CTS	=PS+MCC	400	15,68	50	80,25	140	175	70	199	288,55	DA	DA
	=PR-M1	400	4,71	30	8,5	10	12,5	2,5	25	36,25	DA	DA
	=PR-M2	400	4,71	30	8,5	10	12,5	2,5	25	36,25	DA	DA
\sim	=PR-M3	400	16,68	20	28	30	37,5	4	34	49,3	DA	DA
\	=PR-M4	400	16,68	25	28	30	37,5	4	34	49,3	DA	DA
ž +	=PR-M5	400	23,85	20	41	63	61,5	16	79	114,55	DA	DA
Š	=PR-M6	400	23,85	25	41	63	61,5	16	79	114,55	DA	DA
=PS	=CR-H1	230	0,15	15	0,69	6	7,5	1,5	19,5	28,275	DA	DA
"	=PR-H1	230	0,3	20	1,37	6	7,5	1,5	19,5	28,275	DA	DA
	=CO-H1	230	0,15	20	0,69	6	7,5	1,5	19,5	28,275	DA	DA

Customer: University of Applied Science

Vrbik 8a, 10000 Zagreb

Croatia

End customer: University of Applied Science

Konavoska 2, 10000 Zagreb

Croatia

Object: Electrical engineering department

Konavoska 2, 10000 Zagreb

Croatia

Project name: DATA CENTER COOLING

Cabinet name: MCC

Cabinet description: Motor control cabinet

Drawn: Matea Musladin, bacc.ing.el

Checked: Tomislav Špoljarić, dip.ing. el

Approved: mr. sc. Davor Gadže, dipl.ing.el

Number of page: 31

Project number: PIEP-21/22

Project date: 15.11.2021

Revision: R0

Revision date: 05.01.2021.

Supply voltage:

400VAC, 50Hz

Control voltage:

230VAC, 50Hz; 24VDC

Rated current:

16 A

Rated short circuit current: 10 kA

Table of contents

Page no.	Plant	Cabinet	Page description
1			Title page
2			Table of contents
50	=PS	+MCC	Panel layout - cabinet external view
52	=PS	+MCC	Panel layout - mounting panel - internal view
100	=PS	+MCC	Incoming power supply
102	=PS	+MCC	Emergency stop
104	=PS	+MCC	Emergency stop relay
106	=PS	+MCC	Cabinet illumination
108	=PS	+MCC	Power monitorning
110	=PS	+MCC	Phase monitorning
112	=PS	+MCC	Control voltage (230VAC/24VDC)
114	=PS	+MCC	Control voltage distribution (230VAC&24VDC)
116	=PS	+MCC	PLC power supply
118	=PS	+MCC	PLC digital input module
120	=PS	+MCC	PLC digital output module
122	=PS	+MCC	Water pump 1
124	=PS	+MCC	Water pump 2
126	=PS	+MCC	Water pump 3
128	=PS	+MCC	Water pump 4
130	=PS	+MCC	Water pump 5
132	=PS	+MCC	Water pump 6
134	=PS	+MCC	Input valve control
136	=PS	+MCC	Output valve control
138	=PS	+MCC	Light and socket (cabinet room)
140	=PS	+MCC	Light and socket (pump room)
142	=PS	+MCC	Light and socket (corridor)
152	=PS	+MCC	Part list
153	=PS	+MCC	Part list
154	=PS	+MCC	Part list
155	=PS	+MCC	Cable overview
156	=PS	+MCC	Cable overview

Project no.: PIEP-21/22 Revision: R0 Revision date: 05.01.2021.	TVZ TEHNIČKO VELEUČILIŠTE U ZAGREBU	Customer: University of Applied Science	Project name: DATA CENTER COOLING	Cabinet: +
Drawn: Matea Musladin, bacc.ing.el	POLYTECHNICUM ZAGRABIENSE Vibil 8a, 1000 Zagreb	Vrbik 8a, 10000 Zagreb		Plant: =
Checked: Tomislav Špoljarić, dip.ing. el	Page description: Table of contents	End customer: University of Applied Science	Object: Electrical engineering department	Page: 2
Approved: mr. sc. Davor Gadže, dipl.ing.el		Konavoska 2, 10000 Zagreb	Konavoska 2, 10000 Zagreb	Follow: =PS+MCC/50

Konavoska 2, 10000 Zagreb

Konavoska 2, 10000 Zagreb

Follow: 106

Approved: mr. sc. Davor Gadže, dipl.ing.el

Project no.: PIEP-21/22 Revision: R0 Revision date: 05.01.2021.	TVŽ TEHNIČKO VELEUČILIŠTE U ZAGREBU	Customer: University of Applied Science	Project name: DATA CENTER COOLING	Cabinet: +MCC
Drawn: Matea Musladin, bacc.ing.el	POLYTECHNICUM ZAGRABIENSE Vibia ĉia, 16010 Zagrab	Vrbik 8a, 10000 Zagreb		Plant: =PS
Checked: Tomislav Špoljarić, dip.ing. el	Page description: Cabinet illumination	End customer: University of Applied Science	Object: Electrical engineering department	Page: 106
Approved: mr. sc. Davor Gadže, dipl.ing.el		Konavoska 2, 10000 Zagreb	Konavoska 2, 10000 Zagreb	Follow: 108

Part list

Part list			1		
Device tag	Part description	Part number	Manufacturer	Quantity	Page
-104A2	24V AC/DC	PNOZ X2 24VAC/DC	PILZ	1	/104.2
-116A0	SIMATIC S7-1500, CPU 1511-1 PN, CENTRAL PROCESSING UNIT WITH WORKING MEMORY 150 KB FOR PROGRAM AND 1 MB FOR DATA, 1. INTERFACE:	6ES7511-1AK02-0AB0	SIE	1	/116.0
-116A1	SIMATIC S7-1500, DIGITAL INPUT MODULE, DI 16xDC 24V BA, 16 CHANNELS IN GROUPS OF 16/ INPUT DELAY TYP. 3.2MS/ INPUT TYPE 3 (IEC 61131) INCL.	6ES7521-1BH10-0AA0	SIE	1	/116.1
-116A2	SIMATIC S7-1500, DIGITAL INPUT MODULE, DI 16xDC 24V BA, 16 CHANNELS IN GROUPS OF 16/ INPUT DELAY TYP. 3.2MS/ INPUT TYPE 3 (IEC 61131) INCL.	6ES7521-1BH10-0AA0	SIE	1	/116.2
-116A3	SIMATIC S7-1500, DIGITAL OUTPUT MODULE, DQ 16 X 24VDC/0.5A BA/ 16 CHANNELS IN GROUPS OF 8, 4 A PER GROUP/ INCL. FRONT CONNECTOR PUSH-IN	6ES7522-1BH10-0AA0	SIE	1	/116.3
-116A3.1	SIMATIC S7-1500, DIGITAL OUTPUT MODULE, DQ 16 X 24VDC/0.5A BA/ 16 CHANNELS IN GROUPS OF 8, 4 A PER GROUP/ INCL. FRONT CONNECTOR PUSH-IN	6ES7522-1BH10-0AA0	SIE	1	/116.3
-106E1		SZ.4140840	RIT	1	/106.1
-106E3		SZ.4140840	RIT	1	/106.3
-100F1	Fuse Carrier 3 pole, 32A, 10x38	IS506103	SCHR	1	/100.1
	Fuse Carrier 1 pole, 32A, 10x38	IS506101	SCHR	1	/100.2
-100F1	Cylindrical fuse link 10x38, 25A, characteristic gG, 400V AC	ISZ10025	SCHR	4	/100.1;/100.2
-114F2	CIRCUIT BREAKER 240V 14KA, 1-POLE, C, 10A, D=70MM ACC. TO UL 489, SAME POLARITY	5SJ4110-7HG40	SIE	1	/114.2
-114F3	CIRCUIT BREAKER 240V 14KA, 1-POLE, C, 10A, D=70MM ACC. TO UL 489, SAME POLARITY	5SJ4110-7HG40	SIE	1	/114.3
-114F6	CIRCUIT BREAKER 240V 14KA, 1-POLE, C, 10A, D=70MM ACC. TO UL 489, SAME POLARITY	5SJ4110-7HG40	SIE	1	/114.6
-130F0	Holder for cylindrical fuse links 32A 690V 3-polig	SI311130	SCHR	1	/130.0
-130F0	Cylindrical fuse link 10x38, 32A, characteristic gG, 400V AC	ISZ10032	SCHR	3	/130.0
-132F0	Holder for cylindrical fuse links 32A 690V 3-polig	SI311130	SCHR	1	/132.0
-132F0	Cylindrical fuse link 10x38, 32A, characteristic gG, 400V AC	ISZ10032	SCHR	3	/132.0
-138F2	Miniature circuit breaker 230/400 V 25kA, 1-pole, B, 10 A for precounter area	5SY7110-6KK13	SIE	1	/138.2
-138F3	Circuit breaker 230/400 V D=70 mm 25 kA according to EN 60947-2, 1P, C16	5SY8116-7	SIE	1	/138.3
-138F5	Miniature circuit breaker 400 V D=70 mm 25 kA according to EN 60947-2, 3P, C25	5SY8325-7	SIE	1	/138.5
-138F7	Circuit breaker 230/400 V D=70 mm 25 kA according to EN 60947-2, 1P, C16	5SY8116-7	SIE	1	/138.7
-140F2	Miniature circuit breaker 230/400 V 25kA, 1-pole, B, 10 A for precounter area	5SY7110-6KK13	SIE	1	/140.2
-140F3	Circuit breaker 230/400 V D=70 mm 25 kA according to EN 60947-2, 1P, C16	5SY8116-7	SIE	1	/140.3
-140F4	Miniature circuit breaker 400 V D=70 mm 25 kA according to EN 60947-2, 3P, C25	5SY8325-7	SIE	1	/140.4
-140F6	Circuit breaker 230/400 V D=70 mm 25 kA according to EN 60947-2, 1P, C16	5SY8116-7	SIE	1	/140.6
-140F7	Miniature circuit breaker 400 V D=70 mm 25 kA according to EN 60947-2, 3P, C25	5SY8325-7	SIE	1	/140.7
-142F2	Miniature circuit breaker 230/400 V 25kA, 1-pole, B, 10 A for precounter area	5SY7110-6KK13	SIE	1	/142.2
-142F4	Circuit breaker 230/400 V D=70 mm 25 kA according to EN 60947-2, 1P, C16	5SY8116-7	SIE	1	/142.4
-142F5	Circuit breaker 230/400 V D=70 mm 25 kA according to EN 60947-2, 1P, C16	5SY8116-7	SIE	1	/142.5
-110K1		RM35TF30	SE	1	/110.1
-122K2	Thermistor motor prot. relay Compact evaluation unit 17.5 mm enclosure Screw terminals 1 CO contact US = 24 V AC/DC Auto RESET Suitable for bimetal switches	3RN2000-1AA30	SIE	1	/122.2
-122K5	CONTACTOR, AC-3, 7.5KW/400V, 1NO, DC 24V, 3-POLE, SZ S00 SCREW TERMINAL .	3RT2018-1BB41	SIE	1	/122.5
-124K2	Thermistor motor prot. relay Compact evaluation unit 17.5 mm enclosure Screw terminals 1 CO contact US = 24 V AC/DC Auto RESET Suitable for bimetal switches	3RN2000-1AA30	SIE	1	/124.2
-124K5	CONTACTOR, AC-3, 7.5KW/400V, 1NO, DC 24V, 3-POLE, SZ S00 SCREW TERMINAL .	3RT2018-1BB41	SIE	1	/124.5
-126K2	Thermistor motor prot. relay Compact evaluation unit 17.5 mm enclosure Screw terminals 1 CO contact US = 24 V AC/DC Auto RESET Suitable for bimetal switches	3RN2000-1AA30	SIE	1	/126.2

Project no.: PIEP-21/22 Revision: R0 Revision date: 05.01.2021.	TVZ TEHNIČKO VELEUČILIŠTE U ZAGREBU WASS AV. N.	Customer: University of Applied Science	Project name: DATA CENTER COOLING	Cabinet: +MCC
Drawn: Matea Musladin, bacc.ing.el	POLYTECHNICUM ZAGRABIENSE Wibb. 8a, 10000 Zagrab	Vrbik 8a, 10000 Zagreb		Plant: =PS
Checked: Tomislav Špoljarić, dip.ing. el	Page description: Part list	End customer: University of Applied Science	Object: Electrical engineering department	Page: 152
Approved: mr. sc. Davor Gadže, dipl.ing.el		Konavoska 2, 10000 Zagreb	Konavoska 2, 10000 Zagreb	Follow: 153

Part list

Device tag	Part description	Part number	Manufacturer	Quantity	Page
-126K5	COUPL. CONT., AC3:22KW/400V, 1NO+1NC, 24 V DC, W. VARISTOR, 3-POLE, SIZE S2, SCREW TERMINALS SUITABLE FOR 2A PLC OUTPUTS	3RT2036-1KB40	SIE	1	/126.5
-126K6	The CR-PSS socket is from the CR-P (pcb) relay range. The standard socket is suitable for CR-P relays with 1 or 2 c/o (SPDT) output contacts. The socket has screw	CR-PSS	ABB	1	/126.6
-128K2	Thermistor motor prot. relay Compact evaluation unit 17.5 mm enclosure Screw terminals 1 CO contact US = 24 V AC/DC Auto RESET Suitable for bimetal switches	3RN2000-1AA30	SIE	1	/128.2
-128K5	COUPL. CONT., AC3:22KW/400V, 1NO+1NC, 24 V DC, W. VARISTOR, 3-POLE, SIZE S2, SCREW TERMINALS SUITABLE FOR 2A PLC OUTPUTS	3RT2036-1KB40	SIE	1	/128.5
-128K6	The CR-PSS socket is from the CR-P (pcb) relay range. The standard socket is suitable for CR-P relays with 1 or 2 c/o (SPDT) output contacts. The socket has screw	CR-PSS	ABB	1	/128.6
-134K1	The CR-PSS socket is from the CR-P (pcb) relay range. The standard socket is suitable for CR-P relays with 1 or 2 c/o (SPDT) output contacts. The socket has screw	CR-PSS	ABB	1	/134.1
-134K2	The CR-PSS socket is from the CR-P (pcb) relay range. The standard socket is suitable for CR-P relays with 1 or 2 c/o (SPDT) output contacts. The socket has screw	CR-PSS	ABB	1	/134.2
-134K3	The CR-PSS socket is from the CR-P (pcb) relay range. The standard socket is suitable for CR-P relays with 1 or 2 c/o (SPDT) output contacts. The socket has screw	CR-PSS	ABB	1	/134.3
-134K4	The CR-PSS socket is from the CR-P (pcb) relay range. The standard socket is suitable for CR-P relays with 1 or 2 c/o (SPDT) output contacts. The socket has screw	CR-PSS	ABB	1	/134.4
-134K6	The CR-PSS socket is from the CR-P (pcb) relay range. The standard socket is suitable for CR-P relays with 1 or 2 c/o (SPDT) output contacts. The socket has screw	CR-PSS	ABB	1	/134.6
-134K7	The CR-PSS socket is from the CR-P (pcb) relay range. The standard socket is suitable for CR-P relays with 1 or 2 c/o (SPDT) output contacts. The socket has screw	CR-PSS	ABB	1	/134.7
-136K1	The CR-PSS socket is from the CR-P (pcb) relay range. The standard socket is suitable for CR-P relays with 1 or 2 c/o (SPDT) output contacts. The socket has screw	CR-PSS	ABB	1	/136.1
-136K2	The CR-PSS socket is from the CR-P (pcb) relay range. The standard socket is suitable for CR-P relays with 1 or 2 c/o (SPDT) output contacts. The socket has screw	CR-PSS	ABB	1	/136.2
-136K3	The CR-PSS socket is from the CR-P (pcb) relay range. The standard socket is suitable for CR-P relays with 1 or 2 c/o (SPDT) output contacts. The socket has screw	CR-PSS	ABB	1	/136.3
-136K4	The CR-PSS socket is from the CR-P (pcb) relay range. The standard socket is suitable for CR-P relays with 1 or 2 c/o (SPDT) output contacts. The socket has screw	CR-PSS	ABB	1	/136.4
-136K6	The CR-PSS socket is from the CR-P (pcb) relay range. The standard socket is suitable for CR-P relays with 1 or 2 c/o (SPDT) output contacts. The socket has screw	CR-PSS	ABB	1	/136.6
-136K7	The CR-PSS socket is from the CR-P (pcb) relay range. The standard socket is suitable for CR-P relays with 1 or 2 c/o (SPDT) output contacts. The socket has screw	CR-PSS	ABB	1	/136.7
-50M0				0	/50.0
-52M0				0	/52.0
-108P3	SENTRON, measuring device, 7KM PAC3200, LCD, L-L: 500 V, L-N: 289 V, 5 A, 3-phase, Modbus TCP, optional Modbus RTU / PROFINET / PROFIBUS, apparent/	7KM2111-1BA00-3AA0	SIE	1	/108.3
-100Q1	SURGE ARRESTER TYPE 2 REQUIREMENT CATEGORY C, UC 350V PLUG-IN PROTECTION BLOCKS 4POLE, 3+1 CIRCUIT FOR TN-S AND TT SYSTEMS W. REMOTE	5SD7464-1	SIE	1	/100.1
-100Q3	CIRCUIT BREAKER 3VA1 IEC FRAME 160 BREAKING CAPACITY CLASS N ICU=25KA 415 V 3-POLE, LINE PROTECTION TM210, FTFM, IN=160A OVERLOAD	3VA1116-3ED32-0AA0	SIE	2	/52.1;/100.3
-100Q3	FRONT MOUNTED ROTARY OPERATOR STANDARD WITH DOOR INTERLOCKING IEC IP30/40 ACCESSORY FOR: 3VA1 100/160	3VA9157-0EK21	SIE	1	/100.3
-100Q3	TERMINAL COVER BROADENED 3 POLE 1 PCS. ACCESSORY FOR: 3VA1 100/160	3VA9111-0WG30	SIE	2	/100.3
-108Q3	CIRCUIT-BREAKER SZ S00, FOR MOTOR PROTECTION, CLASS 10, A-RELEASE 2.84A, N-RELEASE 52A, SCREW CONNECTION, STANDARD SW. CAPACITY, W.	3RV2011-1EA15	SIE	1	/108.3
-110Q1	CIRCUIT-BREAKER SZ S00, FOR MOTOR PROTECTION, CLASS 10, A-RELEASE 710A, N-RELEASE 130A, SCREW CONNECTION, STANDARD SW. CAPACITY W.	3RV2011-1JA15	SIE	1	/110.1
-112Q1	CIRCUIT-BREAKER SZ S00, FOR MOTOR PROTECTION, CLASS 10, A-REL.1.11.6A, N-RELEASE 21A, SCREW CONNECTION, STANDARD SW. CAPACITY, W.	3RV2011-1AA15	SIE	1	/112.1
-114Q7	CIRCUIT-BREAKER SZ S00, FOR MOTOR PROTECTION, CLASS 10, A-REL.1.11.6A, N-RELEASE 21A, SCREW CONNECTION, STANDARD SW. CAPACITY, W.	3RV2011-1AA15	SIE	1	/114.7
-122Q1	CIRCUIT-BREAKER SZ SO, FOR MOTOR PROTECTION, CLASS 10, A-REL. 710A, N-REL. 130A SCREW CONNECTION, STANDARD SW. CAPACITY W. TRANSVERSE	3RV2021-1JA15	SIE	1	/122.1
-124Q1	CIRCUIT-BREAKER SZ SO, FOR MOTOR PROTECTION, CLASS 10, A-REL. 710A, N-REL. 130A SCREW CONNECTION, STANDARD SW. CAPACITY W. TRANSVERSE	3RV2021-1JA15	SIE	1	/124.1
-126Q1	Circuit breaker size S0 for motor protection, CLASS 10 A-release 2732 A N-release 400 A screw terminal Standard switching capacity	3RV2021-4EA10	SIE	1	/126.1
-128Q1	Circuit breaker size S0 for motor protection, CLASS 10 A-release 2732 A N-release 400 A screw terminal Standard switching capacity	3RV2021-4EA10	SIE	1	/128.1
-138Q1	Residual current operated circuit breaker, 4-pole, type A, In: 40 A, 30 mA, Un AC: 400 V	5SV3344-6	SIE	1	/138.1
-106S1		SZ.4315810	RIT	1	/106.1
-106S3		SZ.4315810	RIT	1	/106.3
-108T1	current transformer 400/5 A, 5 VA CL 1.0	4NC5325-2CE21	SIE	1	/108.1

Project no.: PIEP-21/22 Revision: R0 Revision date: 05.01.2021.	TVZ TEHNIČKO VELEUČILIŠTE U ZAGREBU	Customer: University of Applied Science	Project name: DATA CENTER COOLING	Cabinet: +MCC
Drawn: Matea Musladin, bacc.ing.el	POLYTECHNICUM ZAGRABIENSE Vibil, Eu., 1000 Zagrab	Vrbik 8a, 10000 Zagreb		Plant: =PS
Checked: Tomislav Špoljarić, dip.ing. el	Page description: Part list	End customer: University of Applied Science	Object: Electrical engineering department	Page: 153
Approved: mr. sc. Davor Gadže, dipl.ing.el		Konavoska 2, 10000 Zagreb	Konavoska 2, 10000 Zagreb	Follow: 154

Part list

Device tag	Part description	Part number	Manufacturer	Quantity	Page
-108T1.1	current transformer 400/5 A, 5 VA CL 1.0	4NC5325-2CE21	SIE	1	/108.1
-108T1.2	current transformer 400/5 A, 5 VA CL 1.0	4NC5325-2CE21	SIE	1	/108.1
-112T1	SITOP PSU8200 24 V/20 A STABILIZED POWER SUPPLY INPUT: 3 400-500 V AC OUTPUT: 24 V/20 A DC	6EP3436-8SB00-0AY0	SIE	1	/112.1
-126U1	Softstarter PSR30-600-70 for max 600V main voltage and 100-240V 50/60Hz control supply voltage	PSR30-600-70	ABB	1	/126.1
-128U1	Softstarter PSR30-600-70 for max 600V main voltage and 100-240V 50/60Hz control supply voltage	PSR30-600-70	ABB	1	/128.1
-128U5	Softstarter PSR30-600-70 for max 600V main voltage and 100-240V 50/60Hz control supply voltage	PSR30-600-70	ABB	1	/128.5
-130U0		ACS880-01-045A-3	ABB	1	/130.0
-132U0		ACS880-01-045A-3	ABB	1	/132.0
-126UO5	Softstarter PSR30-600-70 for max 600V main voltage and 100-240V 50/60Hz control supply voltage	PSR30-600-70	ABB	1	/126.5
-XYZ		SE.5846500	RIT	2	/52.0;/100.0

Project no.: PIEP-21/22 Revision: R0 Revision date: 05.01.2021.	TVŽ TEHNIČKO VELEUČILIŠTE U ZAGREBU	Customer: University of Applied Science	Project name: DATA CENTER COOLING	Cabinet: +MCC
Drawn: Matea Musladin, bacc.ing.el	POLYTECHNICUM ZAGRABIENSE Vibil &a, 1000 Zagrab	Vrbik 8a, 10000 Zagreb		Plant: =PS
Checked: Tomislav Špoljarić, dip.ing. el	Page description: Part list	End customer: University of Applied Science	Object: Electrical engineering department	Page: 154
Approved: mr. sc. Davor Gadže, dipl.ing.el	1	Konavoska 2, 10000 Zagreb	Konavoska 2, 10000 Zagreb	Follow: 155

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

Cable overview

Cable ways

Cable way

Cable name	Source	Target	Cable type	Wires	Cross-section [mm²]	Length [m]	Page
-W-CST-MCC		-100Q3	NYY	5	70	50	/100.3
W-MCC-103S1	-106S1	-106S3	NYCY	2	0,75	3	/106.1
-W-MCC-103S3			NYCY	2	0,75	3	/106.3
-W-MCC-CO.H1	-X2	=CO-S2	NYY	2	1,5	20	/142.2
-W-MCC-CO.X1	-X2	=CO-X1	NYY	3	1,5	20	/142.3
-W-MCC-CO.X2	-X2	=CO-X1	NYY	3	1,5	20	/142.5
-W-MCC-CR.EMG1	-X10	=CR-S1	NYY	6	1,5	50	/102.1
-W-MCC-CR.H1	-X2	=CR-S2	NYY	2	1,5	15	/138.2
-W-MCC-CR.KL	-X2		NYY	3	1,5	15	/138.7
-W-MCC-CR.X1	-X2	=CR-X1	NYY	3	1,5	15	/138.3
-W-MCC-CR.X2	-X2	=CR-X2	NYY	5	2,5	15	/138.5
-W-MCC-M1	-X1	=PR-M1	NYY	4	2,5	30	/122.1
-W-MCC-M2	-X1	=PR-M2	NYY	4	2,5	30	/124.1
-W-MCC-M3	-X1	=PR-M3	NYY	4	4	20	/126.1
-W-MCC-M4	-X1	=PR-M4	NYY	4	4	25	/128.1
-W-MCC-M5	-X1	=PR-M5	NYCY	4	16	20	/130.0
-W-MCC-M6	-X1	=PR-M6	NYCY	4	16	25	/132.0
-W-MCC-PR.EMG1	-X10	=PR-S1	NYY	6	1,5	50	/102.6
-W-MCC-PR.H1	-X2	=PR-S2	NYY	2	1,5	20	/140.2
-W-MCC-PR.X1	-X2	=PR-X1	NYY	3	1,5	20	/140.3
-W-MCC-PR.X2	-X2	=PR-X2	NYY	5	2,5	20	/140.4
-W-MCC-PR.X3	-X2	=PR-X3	NYY	3	1,5	20	/140.6
-W-MCC-PR.X4	-X2	=PR-X4	NYY	5	2,5	20	/140.7
-W-MCC-TM1	-X11	=PR-M1	NYY	2	0,75	30	/122.2
-W-MCC-TM2	-X11	=PR-M2	NYY	2	0,75	25	/124.2
-W-MCC-TM3		=PR-M3	NYY	2	0,75	20	/126.2
-W-MCC-TM4	-X11	=PR-M4	NYY	2	0,75	25	/128.2
-W-MCC-V.IN1	-X12		NYY-O	2	0,5	30	/134.1
-W-MCC-V.IN2	-X12		NYY-O	2	0,5	30	/134.2
-W-MCC-V.IN3	-X12		NYY-O	2	0,5	20	/134.3
-W-MCC-V.IN4	-X12		NYY-O	2	0,5	25	/134.4
-W-MCC-V.IN5	-X12		NYY-O	2	0,5	20	/134.5
-W-MCC-V.IN6	-X12		NYY-O	2	0,5	25	/134.7
-W-MCC-V.OUT1	-X12		NYY	2	0,5	30	/136.1
-W-MCC-V.OUT2	-X12		NYY	2	0,5	30	/136.2
-W-MCC-V.OUT3	-X12		NYY	2	0,5	20	/136.3

Project no.: PIEP-21/22 Revision: R0 Revision date: 05.01.2021.	TVZ TEHNIČKO VELEUČILIŠTE U ZAGREBU	Customer: University of Applied Science	Project name: DATA CENTER COOLING	Cabinet: +MCC
Drawn: Matea Musladin, bacc.ing.el	POLYTECHNICUM ZAGRABIENSE V/bb 8a, 100/0 Zagrab	Vrbik 8a, 10000 Zagreb		Plant: =PS
Checked: Tomislav Špoljarić, dip.ing. el	Page description: Cable overview	End customer: University of Applied Science	Object: Electrical engineering department	Page: 155
Approved: mr. sc. Davor Gadže, dipl.ing.el		Konavoska 2, 10000 Zagreb	Konavoska 2, 10000 Zagreb	Follow: 156

Cable overview

Cable name	Source	Target	Cable type	Wires	Cross-section [mm²]	Length [m]	Page
-W-MCC-V.OUT4	-X12		NYY	2	0,5	25	/136.4
-W-MCC-V.OUT5	-X12		NYY	2	0,5	20	/136.6
-W-MCC-V.OUT6	-X12		NYY	2	0,5	25	/136.7

Project no.: PIEP-21/22 Revision: R0 Revision date: 05.01.2021.	TVŽ TEHNIČKO VELEUČILIŠTE U ZAGREBU usos kr. by	Customer: University of Applied Science	Project name: DATA CENTER COOLING	Cabinet: +MCC
Drawn: Matea Musladin, bacc.ing.el	POLYTECHNICUM ZAGRABIENSE Vibil: 8a, 10000 Zagreb	Vrbik 8a, 10000 Zagreb		Plant: =PS
Checked: Tomislav Špoljarić, dip.ing. el	Page description: Cable overview	End customer: University of Applied Science	Object: Electrical engineering department	Page: 156
Approved: mr. sc. Davor Gadže, dipl.ing.el		Konavoska 2, 10000 Zagreb	Konavoska 2, 10000 Zagreb	Follow: