CSE2202: Numerical Methods Online: 1 Section: A1

Time: 40 Minutes Total: 10

Problem Statement: Determine the real root of the equation: $f(x) = x^3 - x - 1$ using bisection/false position method. Employ initial guesses of $X_{lower} = 1$ and $X_{upper} = 2$ and iterate until the estimated relative error ϵ_a falls below a level of $\epsilon_s = 0.0001$

Tasks:

- 1. Write a program using bisection/false position method to locate the approximate root of the function $f(x) = x^3 x 1$ with initial guesses [1, 2].
- 2. Iterate until the estimated relative error ϵ_a falls below a level of $\epsilon_s = 0.0001$
- 3. Use Horner's method to evaluate the function.
- 4. Use appropriate math function for your code.
- 5. Print the following table that show the values of approximate root, absolute error, relative error and change of limits for each iteration.

 [Hint:

Absolute Error = $|new\ approximation\ of\ root - previous\ approximation\ of\ root|$ $Relative\ Error = \left| \frac{new\ approximation\ of\ root - previous\ approximation\ of\ root}{new\ approximation\ of\ root} \right|$

Sample Input/ Output:

Enter the highest degree of the equation: 3

Enter values of coefficients:

Coefficient x[3] =

Coefficient x[2] =

Coefficient x[1] =

Coefficient x[0] =

Enter initial guesses:

Table: Steps of Bisections /False Position Method

No. of	Approximate	Absolute	Relative	Change of
Iteration	Root	Error	Error	Limit

Approximate Root: