CAPE1330Energy Balances

Nonreactive Processes

General procedures:

- 1. **Perform** all the required materials balance calculations
- 2. **Use** the appropriate form of the energy balances

closed system: $Q + W = \Delta U + \Delta E_k + \Delta E_p$

open system: $\dot{Q} + \dot{W}_s = \Delta \dot{H} + \Delta \dot{E}_k + \Delta \dot{E}_p$

- 3. **Choose** a reference state (phase, temperature, and pressure) for each species involved in the process
- 4. Calculate all the required values of \widehat{U}_i or \widehat{H}_i
- 5. Solve the energy balances for unknown variables

1. Heat Capacity of a Mixture

Calculate the heat required to bring 150 mol/h of a stream containing $60\% C_2H_6$ and $40\% C_3H_8$ by volume from 0°C to 400°C. Determine a heat capacity for the mixture as part of the problem solution.

2. Waste-Heat Boiler

A gas stream at 500°C containing 8 mol% CO and 92 mol% CO₂ that was originally going to be sent up a stack is instead sent to a heat exchanger and flows across tubes through which water is flowing.

The water enters at 25°C and is fed at a ratio of 0.2 mol water/mol hot gas, is heated to its boiling point, and forms saturated steam at 5 bar. The steam may be used for heating or power generation in the plant or as the feed to another process unit. The heat exchanger can be assumed to operate adiabatically - that is, all heat transferred from the hot gas goes to heat the water.

The flowchart for an assumed basis of 1 mol feed gas is shown below. Calculate the temperature of the gas leaving the heat exchanger.

2. Waste-Heat Boiler

Table B.5 Saturated Steam

		$\hat{V}(m^3/kg)$		$\hat{U}(\mathbf{k},$	J/kg)	$\hat{H}(kJ/kg)$			
$T(^{\circ}C)$	P(bar)	Water	Steam	Water	Steam	Water	Evaporation	Steam	
70	0.3117	0.001023	5.045	293.0	2469	293.0	2333	2626	
72	0.3396	0.001024	4.655	301.4	2472	301.4	2329	2630	
74	0.3696	0.001025	4.299	309.8	2474	309.8	2323	2633	
76	0.4019	0.001026	3.975	318.2	2476	318.2	2318	2636	
78	0.4365	0.001028	3.679	326.4	2479	326.4	2313	2639	
80	0.4736	0.001029	3.408	334.8	2482	334.9	2308	2643	
82	0.5133	0.001030	3.161	343.2	2484	343.3	2303	2646	
84	0.5558	0.001032	2.934	351.6	2487	351.7	2298	2650	
86	0.6011	0.001033	2.727	360.0	2489	360.1	2293	2653	
88	0.6495	0.001034	2.536	368.4	2491	368.5	2288	2656	
90	0.7011	0.001036	2.361	376.9	2493	377.0	2282	2659	
92	0.7560	0.001037	2.200	385.3	2496	385.4	2277	2662	
94	0.8145	0.001039	2.052	393.7	2499	393.8	2272	2666	
96	0.8767	0.001040	1.915	402.1	2501	402.2	2267	2669	
98	0.9429	0.001042	1.789	410.6	2504	410.7	2262	2673	
100	1.0131	0.001044	1.673	419.0	2507	419.1	2257	2676	
102	1.0876	0.001045	1.566	427.1	2509	427.5	2251	2679	

One hundred g-moles per hour of liquid n-hexane at 25°C and 7 bar is vaporised and heated to 300°C at constant pressure. Neglecting the effect of pressure on enthalpy, estimate the rate at which heat must be supplied.

Compound	Formula	Mol. Wt.	SG (20°/4°)	$T_{\mathfrak{m}}(^{\circ}\mathbf{C})^{b}$	$\Delta \hat{H}_{ m m}(T_{ m m})^{c,j}$ kJ/mol	$T_{\rm b}(^{\circ}{ m C})^d$	$\Delta \hat{H}_{ m v}(T_{ m b})^{e,j}$ kJ/mol	$T_{\rm c}({ m K})^f$	$P_{\rm c}({\rm atm})^g$	$(\Delta \hat{H_{ m f}}^{\circ})^{h,j}$ k $J/{ m mol}$	$(\Delta \hat{H_{ m c}}^{\circ})^{i,j}$ kJ/mol
<i>n</i> -Heptane	C_7H_{16}	100.20	0.684	-90.59	14.03	98.43	31.69	540.2	27.0	-224.4(1) -187.8(g)	-4816.9(l) -4853.5(g)
<i>n</i> -Hexane	C_6H_{14}	86.17	0.659	-95.32	13.03	68.74	28.85	507.9	29.9	-198.8(1) -167.2(g)	-4163.1(1) -4194.8(g)
Hydrogen	H_2	2.016		-259.19	0.12	-252.76	0.904	33.3	12.8	0(g)	-285.84(g)
Hydrogen bromide	HBr	80.92	_	-86	_	-67	_	_	_	-36.23(g)	_
Hydrogen chloride	HCl	36.47	_	-114.2	1.99	-85.0	16.1	324.6	81.5	-92.31(g)	_
Hydrogen cyanide	HCN	27.03	_	-14	_	26	_	_	_	+130.54(g)	_
Hydrogen fluoride	HF	20.0	_	-83	_	20	_	503.2	_	-268.6(g) -316.9(aq, 200)	_
Hydrogen sulfide	H_2S	34.08	_	-85.5	2.38	-60.3	18.67	373.6	88.9	-19.96(g)	-562.59(g)
Iodine	\mathbf{I}_2	253.8	4.93	113.3	_	184.2	_	826.0	_	0(c)	
Iron	Fe	55.85	7.7	1535	15.1	2800	354.0	_	_	0(c)	_
Lead	Pb	207.21	$11.337^{20^{\circ}/20^{\circ}}$	327.4	5.10	1750	179.9	_		0(c)	_
Lead oxide	PbO	223.21	9.5	886	11.7	1472	213	_		-219.2(c)	
Magnesium	Mg	24.32	1.74	650	9.2	1120	131.8	_		0(c)	
Magnesium chloride	$MgCl_2$	95.23	$2.325^{25^{\circ}}$	714	43.1	1418	136.8	_	_	-641.8(c)	_
Magnesium hydroxide	$Mg(OH)_2$	58.34	2.4		Decompose	es at 350°C		_			_
Magnesium oxide	MgO	40.32	3.65	2900	77.4	3600	_	_	_	-601.8(c)	_
Mercury	Hg	200.61	13.546	-38.87		-356.9		_		0(c)	
Methane	$ m CH_4$	16.04	_	-182.5	0.94	-161.5	8.179	190.70	45.8	-74.85(g)	-890.36(g)

Compound	Formula	Mol. Wt.	State	Form	Temp. Unit	$a \times 10^3$	$b \times 10^5$	$c \times 10^8$	$d \times 10^{12}$	Range (Units of <i>T</i>)
Cumene	C_9H_{12}	120.19	g	1	$^{\circ}\mathrm{C}$	139.2	53.76	-39.79	120.5	0-1200
(Isopropyl benzene)										
Cyclohexane	C_6H_{12}	84.16	g	1	$^{\circ}\mathrm{C}$	94.140	49.62	-31.90	80.63	0-1200
Cyclopentane	C_5H_{10}	70.13	g	1	$^{\circ}\mathrm{C}$	73.39	39.28	-25.54	68.66	0-1200
Ethane	C_2H_6	30.07	g	1	$^{\circ}\mathrm{C}$	49.37	13.92	-5.816	7.280	0-1200
Ethyl alcohol	C_2H_5OH	46.07	1	1	$^{\circ}\mathrm{C}$	103.1				0
(Ethanol)			1	1	$^{\circ}\mathrm{C}$	158.8				100
			g	1	$^{\circ}\mathrm{C}$	61.34	15.72	-8.749	19.83	0–1200
Ethylene	C_2H_4	28.05	g	1	$^{\circ}\mathrm{C}$	+40.75	11.47	-6.891	17.66	0-1200
Ferric oxide	Fe_2O_3	159.70	c	2	K	103.4	6.711	-17.72×10^{10}		273-1097
Formaldehyde	CH_2O	30.03	g	1	$^{\circ}\mathrm{C}$	34.28	4.268	0.0000	-8.694	0–1200
Helium	He	4.00	g	1	$^{\circ}\mathrm{C}$	20.8				0–1200
<i>n</i> -Hexane	C_6H_{14}	86.17	1	1	$^{\circ}\mathrm{C}$	216.3				20–100
			g	1	$^{\circ}\mathrm{C}$	137.44	40.85	-23.92	57.66	0–1200
Hydrogen	H_2	2.016	g	1	$^{\circ}\mathrm{C}$	28.84	0.00765	0.3288	-0.8698	0–1500
Hydrogen bromide	HBr	80.92	g	1	$^{\circ}\mathrm{C}$	29.10	-0.0227	0.9887	-4.858	0–1200
Hydrogen chloride	HCl	36.47	g	1	$^{\circ}\mathrm{C}$	29.13	-0.1341	0.9715	-4.335	0–1200
Hydrogen cyanide	HCN	27.03	g	1	$^{\circ}\mathrm{C}$	35.3	2.908	1.092		0–1200
Hydrogen sulfide	H_2S	34.08	g	1	$^{\circ}\mathrm{C}$	33.51	1.547	0.3012	-3.292	0–1500
Magnesium chloride	$MgCl_2$	95.23	c	1	K	72.4	1.58			273–991
Magnesium oxide	MgO	40.32	c	2	K	45.44	0.5008	-8.732×10^{10}		273–2073
Methane	$\mathrm{CH_4}$	16.04	g	1	$^{\circ}\mathrm{C}$	34.31	5.469	0.3661	-11.00	0–1200
			g	1	K	19.87	5.021	1.268	-11.00	273–1500
Methyl alcohol	CH_3OH	32.04	1	1	$^{\circ}\mathrm{C}$	75.86	16.83			0–65

An equimolar liquid mixture of benzene (B) and toluene (T) at 10°C is fed continuously to a vessel in which the mixture is heated to 50°C. The liquid product is 40.0 mole% B, and the vapor product is 68.4 mole% B. How much heat must be transferred to the mixture per mole of feed?

References: B(l, 10°C, 1 atm), T(l, 10°C, 1 atm)

Substance	n _{in} mol	$\hat{H}_{ ext{in}}$ (kJ/mol)	n _{out} (mol)	$\hat{H}_{ m out}$ (kJ/mol)
B(l)	0.500	0	0.259	\hat{H}_1
T(1)	0.500	0	0.389	\hat{H}_2
B(v)	_		0.241	\hat{H}_3
T(v)	_		0.111	\hat{H}_4

Compound	Formula	Mol. Wt.	SG (20°/4°)	$T_{\mathrm{m}}(^{\circ}\mathrm{C})^{b}$	$\Delta \hat{H}_{ m m}(T_{ m m})^{c,j}$ kJ/mol	$T_{\rm b}(^{\circ}{ m C})^d$	$\Delta \hat{H}_{ m v}(T_{ m b})^{e,j}$ kJ/mol	$T_{\rm c}({\bf K})^f$	$P_{\rm c}({\rm atm})^g$	$(\Delta \hat{H}_{\mathrm{f}}^{\circ})^{h,j}$ kJ/mol	$(\Delta \hat{H}_{ m c}^{\circ})^{i,j}$ kJ/mol
Acetaldehyde	CH ₃ CHO	44.05	$0.783^{18^{\circ}}$	-123.7	_	20.2	25.1	461.0	_	-166.2(g)	-1192.4(g)
Acetic acid	CH ₃ COOH	60.05	1.049	16.6	12.09	118.2	24.39	594.8	57.1	-486.18(1)	-871.69(1)
										-438.15(g)	-919.73(g)
Acetone	C_3H_6O	58.08	0.791	-95.0	5.69	56.0	30.2	508.0	47.0	-248.2(1)	-1785.7(1)
										-216.7(g)	-1821.4(g)
Acetylene	C_2H_2	26.04	_	_	_	-81.5	17.6	309.5	61.6	+226.75(g)	-1299.6(g)
Ammonia	NH_3	17.03	_	-77.8	5.653	-33.43	23.351	405.5	111.3	-67.20(1)	
										-46.19(g)	-382.58(g)
Ammonium hydroxide	NH_4OH	35.03	_		_	_	_	_	_	-366.48(aq)	
Ammonium	NH_4NO_3	80.05	$1.725^{25^{\circ}}$	169.6	5.4		Decompose	s at 210°C		-365.14(c)	_
nitrate							•			-399.36(aq)	
Ammonium	$(NH_4)_2SO_4$	132.14	1.769	513	_		Decompose	s at 513°C		-1179.3(c)	
sulfate							after me	elting		-1173.1(aq)	
Aniline	C_6H_7N	93.12	1.022	-6.3	_	184.2	_	699	52.4	_	_
Benzaldehyde	C_6H_5CHO	106.12	1.046	-26.0	_	179.0	38.40	_	_	-88.83(1)	-3520.0(1)
										-40.04(g)	_
Benzene	C_6H_6	78.11	0.879	5.53	9.837	80.10	30.765	562.6	48.6	+48.66(1)	-3267.6(1)
										+82.93(g)	-3301.5(g)
Benzoic acid	$C_7H_6O_2$	122.12	$1.266^{15^{\circ}}$	122.2		249.8		_		_	-3226.7(g)
Benzyl alcohol	C_7H_8O	108.13	1.045	-15.4		205.2				_	-3741.8(1)
Bromine	Br_2	159.83	3.119	-7.4	10.8	58.6	31.0	584	102	0(1)	_
1,2-Butadiene	C_4H_6	54.09	_	-136.5	_	10.1	_	446	_	_	_
1,3-Butadiene	C_4H_6	54.09	_	-109.1	_	-4.6	_	425	42.7	_	_
<i>n</i> -Butane	C_4H_{10}	58.12	_	-138.3	4.661	-0.6	22.305	425.17	37.47	-147.0(1) -124.7(g)	-2855.6(1) -2878.5(g)
Isobutane	C_4H_{10}	58.12		-159.6	4.540	-11.73	21.292	408.1	36.0	-158.4(1)	-2849.0(1)

Compound	Formula	Mol. Wt.	SG (20°/4°)	$T_{\mathrm{m}}(^{\circ}\mathrm{C})^{b}$	$\Delta \hat{H}_{ m m}(T_{ m m})^{c,j}$ kJ/mol	$T_{\rm b}(^{\circ}{ m C})^d$	$\Delta \hat{H}_{ m v}(T_{ m b})^{e,j}$ kJ/mol	$T_{\rm c}({ m K})^f$	$P_{\rm c}({\rm atm})^g$	$(\Delta \hat{H_{ m f}}^{\circ})^{h,j}$ kJ/mol	$(\Delta \hat{H_{ m c}}^{\circ})^{i,j}$ kJ/mol
Sodium thiosulfate	$Na_2S_2O_3$	158.11	1.667	_	_	_	_	_	_	-1117.1(c)	_
Sulfur (rhombic)	S_8	256.53	2.07	113	10.04	444.6	83.7	_	_	0(c)	_
Sulfur (monoclinic)	S_8	256.53	1.96	119	14.17	444.6	83.7	_	_	+0.30(c)	_
Sulfur dioxide	SO_2	64.07	_	-75.48	7.402	-10.02	24.91	430.7	77.8	-296.90(g)	_
Sulfur trioxide	SO_3	80.07	_	16.84	25.48	43.3	41.80	491.4	83.8	-395.18(g)	_
Sulfuric acid	H_2SO_4	98.08	1.834 ^{18°}	10.35	9.87	Decompo	oses at 340°C	_	_	-811.32(l) -907.51(aq)	_
Toluene	C_7H_8	92.13	0.866	-94.99	6.619	110.62	33.47	593.9	40.3	+12.00(1) +50.00(g)	-3909.9(1) -3947.9(g)
Water	H_2O	18.016	$1.00^{4^{\circ}}$	0.00	6.0095	100.00	40.656	647.4	218.3	-285.84(l) -241.83(g)	
<i>m</i> -Xylene	C_8H_{10}	106.16	0.864	-47.87	11.569	139.10	36.40	619	34.6	-25.42(1) +17.24(g)	-4551.9(l) -4594.5(g)
o-Xylene	C_8H_{10}	106.16	0.880	-25.18	13.598	144.42	36.82	631.5	35.7	-24.44(1) +18.99(g)	-4552.9(1) -4596.3(g)
<i>p</i> -Xylene	C_8H_{10}	106.16	0.861	13.26	17.11	138.35	36.07	618	33.9	-24.43(l) 17.95(g)	-4552.91(l) -4595.2(g)
Zinc	Zn	65.38	7.140	419.5	6.674	907	114.77	_	_	0(c)	

Form 1: $C_p[kJ/(mol \cdot ^{\circ}C)]$ or $[kJ/(mol \cdot K)] = a + bT + cT^2 + dT^3$ Form 2: $C_p[kJ/(mol \cdot ^{\circ}C)]$ or $[kJ/(mol \cdot K)] = a + bT + cT^{-2}$

Example: $(C_p)_{\text{acetone(g)}} = 0.07196 + (20.10 \times 10^{-5})T - (12.78 \times 10^{-8})T^2 + (34.76 \times 10^{-12})T^3$, where T is in °C.

Note: The formulas for gases are strictly applicable at pressures low enough for the ideal gas equation of state to apply.

Compound	Formula	Mol. Wt.	State	Form	Temp. Unit	$a \times 10^3$	$b \times 10^5$	$c \times 10^8$	$d \times 10^{12}$	Range (Units of <i>T</i>)
Acetone	CH ₃ COCH ₃	58.08	1	1	°C	123.0	18.6			-30-60
			g	1	$^{\circ}\mathrm{C}$	71.96	20.10	-12.78	34.76	0-1200
Acetylene	C_2H_2	26.04	g	1	$^{\circ}\mathrm{C}$	42.43	6.053	-5.033	18.20	0-1200
Air		29.0	g	1	$^{\circ}\mathrm{C}$	28.94	0.4147	0.3191	-1.965	0-1500
			g	1	K	28.09	0.1965	0.4799	-1.965	273-1800
Ammonia	NH_3	17.03	g	1	$^{\circ}\mathrm{C}$	35.15	2.954	0.4421	-6.686	0-1200
Ammonium sulfate	$(NH_4)_2SO_4$	132.15	c	1	K	215.9				275-328
Benzene	C_6H_6	78.11	1	1	$^{\circ}\mathrm{C}$	126.5	23.4			6–67
			g	1	$^{\circ}\mathrm{C}$	74.06	32.95	-25.20	77.57	0-1200
Isobutane	C_4H_{10}	58.12	g	1	$^{\circ}\mathrm{C}$	89.46	30.13	-18.91	49.87	0-1200
<i>n</i> -Butane	C_4H_{10}	58.12	g	1	$^{\circ}\mathrm{C}$	92.30	27.88	-15.47	34.98	0-1200
Isobutene	C_4H_8	56.10	g	1	$^{\circ}\mathrm{C}$	82.88	25.64	-17.27	50.50	0-1200
Calcium carbide	CaC_2	64.10	c	2	K	68.62	1.19	-8.66×10^{10}		298-720
Calcium carbonate	CaCO ₃	100.09	c	2	K	82.34	4.975	-12.87×10^{10}		273-1033
Calcium hydroxide	$Ca(OH)_2$	74.10	c	1	K	89.5				276-373
Calcium oxide	CaO	56.08	c	2	K	41.84	2.03	-4.52×10^{10}		273-1173
Carbon	C	12.01	c	2	K	11.18	1.095	-4.891×10^{10}		273-1373
Carbon dioxide	CO_2	44.01	g	1	$^{\circ}\mathrm{C}$	36.11	4.233	-2.887	7.464	0-1500
Carbon monoxide	CO	28.01	g	1	$^{\circ}\mathrm{C}$	28.95	0.4110	0.3548	-2.220	0-1500
Carbon tetrachloride	CCl_4	153.84	ĺ	1	K	93.39	12.98			273-343
Chlorine	Cl_2	70.91	g	1	$^{\circ}\mathrm{C}$	33.60	1.367	-1.607	6.473	0-1200
Copper	Cu	63.54	c	1	K	22.76	0.6117			273–1357

> T1.		20.02			٥٥	20.00	0.24.00	0.5500	2.054	0.4500
Nitrogen	N_2	28.02	g	1	°C	29.00	0.2199	0.5723	-2.871	0–1500
Nitrogen dioxide	NO_2	46.01	g	1	$^{\circ}\mathrm{C}$	36.07	3.97	-2.88	7.87	0-1200
Nitrogen tetraoxide	N_2O_4	92.02	g	1	$^{\circ}\mathrm{C}$	75.7	12.5	-11.3		0-300
Nitrous oxide	N_2O	44.02	g	1	$^{\circ}\mathrm{C}$	37.66	4.151	-2.694	10.57	0-1200
Oxygen	O_2	32.00	g	1	$^{\circ}\mathrm{C}$	29.10	1.158	-0.6076	1.311	0 - 1500
<i>n</i> -Pentane	C_5H_{12}	72.15	l	1	$^{\circ}\mathrm{C}$	155.4	43.68			0–36
			g	1	$^{\circ}\mathrm{C}$	114.8	34.09	-18.99	42.26	0-1200
Propane	C_3H_8	44.09	g	1	$^{\circ}\mathrm{C}$	68.032	22.59	-13.11	31.71	0-1200
Propylene	C_3H_6	42.08	g	1	$^{\circ}\mathrm{C}$	59.580	17.71	-10.17	24.60	0-1200
Sodium carbonate	Na_2CO_3	105.99	c	1	K	121				288-371
Sodium carbonate	Na_2CO_3	286.15	c	1	K	535.6				298
decahydrate	$\cdot 10 H_2 O$									
Sulfur	S	32.07	c	1	K	15.2	2.68			273-368
		(Rho	ombic)							
			c	1	K	18.3	1.84			368-392
		(Mon	oclinic)							
Sulfuric acid	H_2SO_4	98.08	1	1	$^{\circ}\mathrm{C}$	139.1	15.59			10-45
Sulfur dioxide	SO_2	64.07	g	1	$^{\circ}\mathrm{C}$	38.91	3.904	-3.104	8.606	0-1500
Sulfur trioxide	SO_3	80.07	g	1	$^{\circ}\mathrm{C}$	48.50	9.188	-8.540	32.40	0 - 1000
Toluene	C_7H_8	92.13	ĺ	1	$^{\circ}\mathrm{C}$	148.8	32.4			0-110
			g	1	$^{\circ}\mathrm{C}$	94.18	38.00	-27.86	80.33	0-1200
Water	H_2O	18.016	ĺ	1	$^{\circ}\mathrm{C}$	75.4				0-100
	-		g	1	$^{\circ}\mathrm{C}$	33.46	0.6880	0.7604	-3.593	0-1500

5. Creativity Exercise

A gas emerges from a stack at 1200°C. Rather than being released directly to the atmosphere, it can be passed through one or several heat exchangers, and the heat it loses can be put to use in a variety of ways. Think of as many uses of this heat as you can.

5. Creativity Exercise

