1 Mengen und Relationen

1.1 Naive Mengenlehre

- Georg Cantor 1845 -1918

Menge: "Sammlung" von Objekten Diese Objekte heissen Elemente.

Notation: $X / in M \rightarrow X$ ist Element von M

Eine Menge ist durch ihre Elemente eindeutig bestimmt.

Bsp:
$$M = 1,2,3, M = N \rightarrow N = 3,1,2$$

Beschreibung von Mengen

- 1. Durch Aufzählung: M = 1,2,3
- 2. Durch Prädikate: M = x | P(x) "Menge aller x, die das Prädikat P erfüllen"
- 3. grafische Darstellung (Venn-Diagramme)

Bsp. $a \in A, d \in B, c \in A, c \in B$

1.1.1 Notation

 $\forall x \in G$: "Für alle x aus der Menge G ..."

 $\exists x \in G$: "Es existiert ein Element x in der Menge G ..."

Beispiele:

1. G := N = 0,1,2,3...

A := 1,2

B := 3,4

 $AB = \emptyset$

1.1.2 Satz 1

- 1. G Grundmenge
- 2. A, B, C Teilmengen von G

1.2 weitere Mengen-Konstruktionen

1.2.1 Potenzmenge

Definition: P(M) := x | xM Potenzmenge von M

Die Menge aller Teilmengen von M

Beispiele

a) $M := 1 \to P(M) = \emptyset, 1$

b)
$$M := 1, 2, 3 \rightarrow P(M) = \emptyset, 1, 2, 3, 1, 2, 2, 3, 1, 3, 1, 2, 3$$

c)
$$M := \emptyset \to P(M) = \emptyset$$

1.2.2 das kartesische Produkt

Seien A, B Mengen, $a \in A$, $b \in B$

Definition: Das Symbol (a,b) heisst das geordnete Paar von a und b.

Bemerkung: $(a,b) = (c,d) \rightarrow a=c \text{ und } b=d$

Definition: Seien A,B Mengen

 $AxB := (x,y)|x \in A, y \in B$ heisst das kartesische Produkt von A und B.

Beispiel:

a)
$$1, 2, 3x4, 5 // \text{ i.a. } AxB \neq BxA$$

$$= (1,4),(1,5),(2,4),(2,5),(3,4),(3,5)$$

b)
$$1,2x1,2 = (1,1),(1,2),(2,1),(2,2)$$

c)
$$A = a,b$$

$$Ax\emptyset = (a,\emptyset), (b,\emptyset)$$

1.2.3 Partitionen

Gegeben eine Menge M

Definition: Eine Partition von M ist eine Menge π

$$\pi := \{A_i | i \in I\}$$

(I = Indexmenge) mit

- 1.) $A_i \neq \emptyset$
- 2.) $A_i \subset M$
- 3.) $A_i \cap A_J = \emptyset$
- 4.) $\cup A_i = M = A_1 \cup A_2 \cup A_3...$

Beispiel:

a)
$$M := N^* = 1,2,3,...$$

$$A_1 := 1, A_2 := 2, A_3 := x \in N * |x \ge 3|$$

 $\pi = A_1, A_2, A_3$ ist eine Partition von M.

b)
$$M := RxR$$

$$A_a = (x,y) - x = a, y \in R$$

$$\pi = A_a - a \in R$$

2 Relationen

Durch Relationen werden Beziehungen zwischen Objekten ausgedrückt. Eine Relation ist stets eine Teilmenge des kartesischen Produktes. Seien $M_1, ..., M_n$ Mengen

Definition

Eine Teilmenge $R \subset M_1xM_2x...xM_n$ heisst eine n-stellige Relation auf $M_1, M_2, ..., M_n$

Beispiel 1:

M = Einwohner von Brugg $R_1\subset MxMxM//M^3$ (a,b,c) $\in R_1:<==>$ "a ist Vater von c", "b ist Mutter von c"

Beispiel 2:

$$R_2 \subset R^2 = RyR$$

$$R_2 = (x, y)|x^2 + y^2 = 1 \subset RxR$$

Beispiel 3:

$$R_3 \subset R^2 = RyR$$
$$R_2 = (x, y)|y = e^x$$

Beispiel 4:

Sei A eine beliebige Menge. $R_4:=(B,C)|B\subset C\subset C\subset AP(A)x(PaA)$

2.1 Beschränkung auf binäre Relationen: $R \subset M_1xM_2$

Notation: $xRy : \langle == \rangle (x,y) \in R \subset M_1xM_2$

2.2 Darstellung von binären Relationen auf endlichen Mengen

Sei R $\subset M^2=$ MxM // Relation "auf" der Menge M 1) Matrizen M:= m_1,m_2,m_3 Wir nummerieren die Elemente $A_R:=3$ x3 Matrix, $a_ij=$

- 0, falls $(m_i,j) \notin R$, 1, sonst
- 2) (gerichtete Graphen)

 $M := a_y, a_2, a_3, a_4$

 $R \subset M^2$: $R = (a_1, a_4), (a_4, a_3), (a_2, a_3)$

 G_R Punkte = Elemente der Menge M

2.3 Spezielle Eigenschaften von Relationen

Definition

- 1) $R \subset M^2$ reflexiv : $<==> \forall x \in M : (x,x) \in R$
- 2) $R \subset M^2$ irreflexiv : $<==> \forall x \in M : (x,x) \notin R$
- 3) $R \subset M^2$ symmetrisch :<==> $\forall x, y \in M : (y, x) \in R \to (y, x) \in R$
- 4) $R \subset M^2$ antisymmetrisch :<==> $\forall x, y \in M : (y, x) \in R \rightarrow x = y$
- 5) $R \subset M^2$ transitiv : $\langle == \rangle \forall x, y, z \in M : (x, y), (y, z) \in R \rightarrow (x, z) \in R$

Beispiel M := 1,2,3,4

- 1) $R_1 = \{(1,1), (2,2), (1,2), (3,3), (4,4)\} \subset M^2$
- reflexiv, antisymmetrisch, transitiv
- 2) $R_2 = \{(1,2), (2,1), (2,3), (3,2), (1,1)\} \subset M^2$
- nur symmetrisch
- 3) $R_3 = \{(1,1), (1,2), (1,3), (1,4), (2,1), (2,2), (2,3), (2,4), (4,4)\} \subset M^2$
- transitiv
- 4) $R_4 = \{(1,2), (2,3), (2,4), (3,3)\} \subset M^2$
- keine speziellen Eigenschaften
- 5) $R_5 = \emptyset$