Logarithmic & Exponential Functions

Total: 33,5/35

Unit 6 & 7 TEST

1. Express as a sum or difference of logarithms, and then simplify. No exponents. State restrictions.

2. Solve for x. Check for any extraneous roots. Where necessary, round to 2 decimal places.

a)
$$\log_7(x+2) + \log_7(x-4) = 1$$

 $\log_{7}((x_{12})(x_{14})) = 1$ $(x_{12})(x_{14}) = 1$ $x^{2} - 4x_{12}x_{13} = 1$ $x^{2} - 2x_{13} = 0$

b)
$$3^x + 1 - 56(3^{-x}) = 0$$

 $3^{x} + 1 - 5b(\frac{1}{3^{x}}) = 0$ $3^{x} + 1 - \frac{5b}{3^{x}} = 0$ $1 + 1 - \frac{5b}{2} = 0$ $1^{2} + 1 - 5b = 0$

Hule or

109'. X=

(proven on

baux-puge)

d) $\log \sqrt{x} = \log 1 - 2 \log 3$

$$0 = log \left(\frac{1}{4\sqrt{2}} \right)$$

$$10 = \frac{1}{4\sqrt{2}}$$

$$10 = \frac{1}{4\sqrt{2}}$$

$$1 = \frac{1}{4\sqrt{2}}$$

(F. Form)

e) $log_3(log_2x) = 1$ $log_3(\frac{log_2x}{log_2}) = 1$ $log_3 = 3$ $log_3 = 3$

Logx = 3 Log 2

Logx = 3 Log 2

Logx = 10 Logo

x = 3

(3)

	Equation of Asymptote	Domain	Range
f(x)	7=2	(x621 x (52) (0,8)	(YER)

- Consider the expression $log_3 a$.
 - a) For what values of a will this expression yield positive numbers?

(aGRIa>1)

b) For what values of a will this expression yield negative numbers?

(acr 1(1 > 2 > 0))

ok, be careful about

c) For what values of a will this expression be undefined?

notation

(GERICI GO)

8. Show if $log_b a = c$ and $log_y b = c$ then, $log_a y = c^{-2}$

Loga = c $\log_9 y = c$ $\log_9 a = c$

Logy = c

Logo =

3