Diffusion Processes on Complex Networks - Lab

Assignment 4

Janusz Szwabiński

- 1. Simulate a random walk of an agent on a square lattice. The program should take a snapshot of the lattice in every time step and save it to a jpg or png file. These files should then be used to generate a movie (avi or animated gif).
- 2. Write a computer program to simulate Pearson's random walk in the plane, where the steps have constant length a=1 and uniformly distributed random angles. By simulating many long walks of N steps (e.g. N=1000) starting from the origin, compute and plot normalized histograms (i.e. the PDFs) of A_N , the fraction of time steps when the walker is in right half plane (x>0) and of B_N , the fraction of time the walker is in the first quadrant (x>0, y>0). The expected values are clearly $\langle A_N \rangle = \frac{1}{2}$ and $\langle B_N \rangle = \frac{1}{4}$, but what are the most probable values? Plot several trajectories to illustrate your results.
- 3. Write a program that...
 - will illustrate a random walk on a given graph (avi or animated gif),
 - for a given origin node will estimate average hitting times of all other nodes.

Compare the results for graphs of different topologies. Set N=20 for visualization purposes and N=100 otherwise.