Second Surveillance Radar Coverage

ES21: Modelling and Simulation Project

March 2018

Zhigang SU Professor Sino-European Institute of Aviation Engineering Civil Aviation University of China

Mission description

1 Background

Surveillance purposes within CNS

Second Surveillance Radar Coverage

Zhigang SU

④中国氏航大学

Background

Non-Cooperative Independent Surveillance:

2D aircraft position determined by ground station without reliance on aircraft avionics

- Primary Surveillance Radar (PSR)

Cooperative Independent Surveillance:

3D aircraft position determined by ground station , and acquisition of other aircraft avionic data (Mode A/C/S, DAPs or ADD)

- (Monopulse) Secondary Surveillance Radar (SSR), SSR Mode S,
- Airport Multilateration (MLAT) and Wide Area Multilateration (WAM)

Background

Mission description

Cooperative Dependent Surveillance:

Aircraft position determined by on board equipment (GPS /INS/DME) and broadcast for "air-ground" and "air-air" surveillance

- ADS-B, (ADS-C)

Cooperative Target with Secondary Radar

Second Surveillance Radar Coverage

Zhigang SU

④中国人航大学

Background

Secondary radar principle

Second Surveillance Radar Coverage

Zhigang SU

40 中國民航大学

Background

Mission description

Radar Interrogation's Frequency: 1030 Mhz Transponder's Response's Frequency: 1090 Mhz

The duration between P1 and P3 represents and

Military	Civilian
1 : 3μs	A : 8μs
Military ID	ID D
2 : 5μs	B : 17μs
Military ID	Unused
3:8µs Similar to Mode A	C : 21µs Flight Level
4:?	D : 25μs
	Abandonned

The interrogation sequence will be A?/C?/A?/C?

Distance Measurement (SSR)

Second Surveillance Radar Coverage

Zhigang SU

Background

Monopulse Technique

The mono-impulsion technology for calculating the sight of the axis of aircraft is improved by the measurement of the Offset-Boresight-Angle (OBA). With one (mono-pulse) interrogation and Axe de l'antenne one reply, we can get both a very precise position of the axis of the antenna, and a good measure of the offset (OBA) between the axis of antenna and the angle sight of the interrogated aircraft. $Az_{aircraft} = Az_{angle\ axis\ antenna} + \delta\theta_{OBA-measureme}$ Advantages This technology allows to: Get a best accuracy in the measurement of the azimuth La possibility of resolving up to 90% for Garbling with two aircraft and 50% for Garbling with tree aircrafts obligatory technique in the context Mode S Sensor

Second Surveillance Radar Coverage

Zhigang SU

●中國氏航大学

Background

SSR Antenna

Second Surveillance Radar Coverage

Zhigang SU

④中国人航大学

Background

SSR Antenna

Second Surveillance Radar Coverage

Zhigang SU

Background

SSR Coverage

Second Surveillance Radar Coverage

Zhigang SU

④中国氏航大学

Background

Mission description

Outline

Second Surveillance Radar Coverage

Zhigang SU

●中國氏航大学

Background

Mission description

Background

Mission description

Second Surveillance Radar Coverage

Zhigang SU

Background

- A group with 2 or 3 students, and each group hand in one final reports
- each student give one presentation at least
- finish the task on time
- read references and work out the software structure
- realize your idea into program (JAVA)
- debug and improve the program
- check the program
- give presentation and report