

RAPPORT - CRÉATION D'ANTENNE

SAE LoRaWAN - Semestre 3

Créé par :

Hugo Meleiro Marius Deias

Responsables : M. Diallo & M. Laurent - GEII

1 Introduction

Au cours du semestre 3 de notre cursus en BUT Génie Électrique et Informatique Industrielle (GEII), nous nous lançons dans un projet axé sur la transformation d'un tricycle électrique en un véhicule "communicant" avec le monde extérieur en embarquant une carte mBED.

L'accent est particulièrement mis sur le développement des fonctions nécessaires à la communication entre tricycle et à une plateforme "Smart Cities IoT". Au cœur de cette initiative se trouve la conception d'une antenne LoRa à 868 MHz, intégrée au système pour assurer une connectivité fiable et une portée étendue. Lors de ce rapport, nous évoquerons les étapes de la conception et l'intégration de cette antenne grâce au logiciel Advanced Design System (ADS) concu par Keysight.

Table des matières

1	Introduction	i
2	Définition du substrat	1
3	Design de l'antenne	2
4	Paramètres S	3
5	Far Field	4
6	Circuit d'adaptation	5

2 Définition du substrat

Substrate Layers

	Туре	Name	Material	Thickness	Er	TanD		
	Dielectric		AIR					
1	Conductor Layer	antenne (39)	Copper	35 um				
1	Conductor Layer	cond (1)	Copper	35 um				
	Dielectric		FR_4_Core	1.6 mm	4.6	0.01		
2	Conductor Layer	cond2 (2)	Copper	35 um				
	Dielectric		AIR					

Substrate Vias

I.U.T. Nice Côte d'Azur - SAE LoRaWAN

3 Design de l'antenne

4 Paramètres S

Discrete Frequencies vs. Fitted (AFS or Linear)

Dataset: antenneLORA_MomUW_a - Nov 14, 2023

5 Far Field

Dataset: emFar - Nov 14, 2023

Frequency	E_max	Theta_max	Phi_max	Directivity_max	Gain_max	RadiatedPower	InputPower	Efficiency	CutType	CutAngle
8.680E8	0.329	4.000	167.000	2.410	1.115	0.001	0.001	0.742	Phi	0.000

I.U.T. Nice Côte d'Azur - SAE LoRaWAN

6 Circuit d'adaptation

Nous pouvons voir que sur l'abaque (issue de la simulation de fonctionnement de l'antenne non-adaptée), les réflexions d'impédance peuvent entraîner des pertes significatives de puissance et une inefficacité dans la transmission des signaux LoRa à 868 MHz.

Afin de remédier à cette situation, le circuit d'adaptation (une impédence série et un condensateur en parallèle) intervient en ajustant les paramètres électriques pour garantir une transition en douceur de l'antenne vers le système électronique. En optimisant l'impédance, le circuit d'adaptation permet d'exploiter pleinement le potentiel de l'antenne.

S-PARAMETERS

S_Param SP1 Start=0.7 GHz Stop=1.5 GHz Step=1.0 MHz

I.U.T. Nice Côte d'Azur - SAE LoRaWAN

Abaque - Antenne non-adaptée

freq (700.0 MHz to 1.500 GHz)

Abaque - Antenne adaptée grâce aux lumped components

m1 freq=868.0 MHz S(1,1)=2.959E-4 / -89.152 impedance = Z0 * (1.000 - j5.918E-4)

freq (700.0 MHz to 1.500 GHz)

SAE LoRaWAN I.U.T. Nice Côte d'Azur 2023-2024 | Conçu avec LaTeX

