VE472 Lecture 6

Jing Liu

UM-SJTU Joint Institute

Summer

- Although a simple training-test split is done randomly, only one such split is actually used in the above approach. For a small n, the resulting $\lambda_{\rm opt}$ based on the above approach might vary a lot from one random split to another.
- Leave-one-out cross-validation (LOOCV) can remove this layer of variability. split: n-1 as trainging set, 1 as test set

Algorithm 1: Determining $\lambda_{\rm opt}$ using LOOCV

: Data matrix X, data vector y, set of parameters S_{λ} **Output :** Optimal shrinkage parameter λ_{opt}

1 Function LamLOOCV(X, y, S_{λ}):

for
$$i \leftarrow 1$$
 to n do

$$\mathbf{X}_{-i,} \leftarrow \mathbf{X}[-i,]$$
; /* Create n Training sets, the i th set */ $\mathbf{y}_{-i} \leftarrow \mathbf{y}[-i]$; /* consists all cases except the i th case */

end for

$$\lambda_{\mathrm{opt}} \leftarrow \operatorname*{arg\,min}_{\lambda \in \mathcal{S}_{\lambda}} \left\{ \sum_{i=1}^{n} \left(\mathbf{y}[i] - \mathbf{X}[i,] \left(\mathbf{X}_{-i}^{\mathrm{T}}, \mathbf{X}_{-i}, + \lambda \mathbf{I} \right)^{-1} \mathbf{X}_{-i, \mathbf{y}_{-i}}^{\mathrm{T}} \right)^{2} \right\};$$

return $\lambda_{\rm opt}$;

8 end

ullet Notice the last algorithm is only realistic for relatively small n since

$$\left(\mathbf{X}_{-i,}^{\mathrm{T}}\mathbf{X}_{-i,} + \lambda \mathbf{I} \right)^{-1}$$
 n大了算起来太慢就算用LU, etc也太慢了

need to be done n times for every λ , that is, one for every $i=1,2,\ldots,n$.

Q: Why does the following give a more efficient way to implement Algorithm 1.

Theorem 0.1

Let $\mathbf{H} = \mathbf{X} \left(\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I} \right)^{-1} \mathbf{X}^T$ and \mathbf{D} be a diagonal matrix of $n \times n$ with

$$\mathbf{D}_{ii} = \frac{1}{1 - \eta_{ii}}, \qquad \textit{where} \qquad \eta_{ii} = \mathbf{X}_{i,} \left(\mathbf{X}^{\mathrm{T}}\mathbf{X} + \lambda \mathbf{I}\right)^{-1} \mathbf{X}_{i,}^{\mathrm{T}}$$

and $\mathbf{A}_{-i} = \mathbf{X}_{-i}^{\mathrm{T}} \mathbf{X}_{-i} + \lambda \mathbf{I}$, then the following holds

只要算一遍inverse

$$\sum_{i=1}^{n} (y_i - \mathbf{X}_{i,} \mathbf{A}_{-i}^{-1} \mathbf{X}_{-i,}^{\mathrm{T}} \mathbf{y}_{-i})^2 = \|\mathbf{D} (\mathbf{I} - \mathbf{H}) \mathbf{y}\|^2$$

刖一贝的sum of squares

where $\|\cdot\|$ denotes the usual Euclidean norm.

Algorithm 2: Determining λ_{opt} using LOOCV with Woodbury identity

Input: Data matrix X, data vector y, set of parameters S_{λ}

Output : Optimal shrinkage parameter λ_{opt}

1 Function LamLOOCVWoodbury (X, y, S_{λ}) :

/* Create functions of
$$\lambda$$
 needed for the optimisation */ $\mathbf{A}^{-1}(\lambda) \leftarrow \left(\mathbf{X}^{\mathrm{T}}\mathbf{X} + \lambda \mathbf{I}\right)^{-1}$; /* matrix-valued function of λ */

$$\mathbf{H}(\lambda) \leftarrow \mathbf{X}\mathbf{A}^{-1}\mathbf{X}^{\mathrm{T}}$$
; /* matrix-valued function of λ */

$$\mathbf{H}(\lambda) \leftarrow \mathbf{X}\mathbf{A}^{-1}\mathbf{X}^{-1}$$
; /* matrix-valued function of λ *,

for
$$i \leftarrow 1$$
 to n do

$$\eta_{ii}\left(\lambda
ight)\leftarrow\mathbf{X}[i,]\mathbf{A}^{-1}\mathbf{X}[i,]^{\mathrm{T}}$$
 ; /* real-valued functions of λ */

end for

$$\mathbf{D}(\lambda) \leftarrow \operatorname{diag}\left(\frac{1}{1 - \eta_{11}(\lambda)}, \frac{1}{1 - \eta_{22}(\lambda)}, \cdots, \frac{1}{1 - \eta_{nn}(\lambda)}\right);$$

/* matrix-valued function of λ

$$\lambda_{\mathrm{opt}} \leftarrow \operatorname*{arg\,min}_{\lambda \in \mathcal{S}_{\lambda}} \left\{ \left\| \mathbf{D} \left(\lambda \right) \left(\mathbf{I} - \mathbf{H} \left(\lambda \right) \right) \mathbf{y} \right\|^{2} \right\};$$

return $\lambda_{\rm opt}$;

10 end

*/

• Notice the following desirable property that the least squares estimator has.

ullet However, it isn't true in our current formulation of $\hat{eta}_{\mathrm{ridge}}$, i.e. penalising \hat{eta}_0

• The above simulation illustrates a desirable property of $\hat{\beta}_{lse}$ that our current formulation of $\hat{\beta}_{ridge}$ does not have, namely, altering the centre of y,

目标:slope不change

$$ar{y} = rac{1}{n} \mathbf{1}^{\mathrm{T}} \mathbf{y}, \qquad$$
 where $\mathbf{1}$ denotes the vector of ones,

y bar: mean of all components

only alters the intercept component of $\hat{m{eta}}_{
m lse}$, while it alters $\hat{m{eta}}_{
m ridge}$ completely.

• To understand why, let $\mathbf{y}_c = \mathbf{y} - \bar{y}\mathbf{1}$, then for any centre \bar{y} we can rewrite yc centered at 0 first colum of

$$\mathbf{b}_{\mathrm{lse}} = \left(\mathbf{X}^{\mathrm{T}}\mathbf{X}\right)^{-1}\mathbf{X}^{\mathrm{T}}\left(\mathbf{y}_{\mathrm{c}} + \bar{y}\mathbf{1}\right)$$
 first colum of XTX (X第一 列都是1 · 因 为有intercep t)

ullet Note $\mathbf{X}^{\mathrm{T}}\mathbf{1}$ is the 1st column of $\mathbf{X}^{\mathrm{T}}\mathbf{X}$, so $\left(\mathbf{X}^{\mathrm{T}}\mathbf{X}
ight)^{-1}\mathbf{X}^{\mathrm{T}}\mathbf{1}=\begin{bmatrix}1 & \mathbf{0}_{1 imes k}\end{bmatrix}^{\mathrm{T}}$ and

$$\underset{\mathbf{b} \in \mathbb{R}^{k+1}}{\arg\min} \left\{ \|\mathbf{y} - \mathbf{X}\mathbf{b}\|^2 \right\} = \underbrace{ \underset{\mathbf{b}_{c} \in \mathbb{R}^{k+1}}{\arg\min} \left\{ \|\mathbf{y}_{c} - \mathbf{X}\mathbf{b}_{c}\|^2 \right\} }_{\mathbf{b}_{c} \in \mathbb{R}^{k+1}} + \underbrace{ \begin{bmatrix} \bar{y} & \mathbf{0}_{1 \times k} \end{bmatrix}^{\mathrm{T}} }_{\mathbf{changing according to changing of intercept}}$$

ullet However, in terms of our current formulation of $\hat{eta}_{\mathrm{ridge}}$, we have

$$\begin{aligned} \mathbf{b}_{\mathrm{ridge}} &= \left(\mathbf{X}^{\mathrm{T}}\mathbf{X} + \lambda \mathbf{I}\right)^{-1}\mathbf{X}^{\mathrm{T}}\left(\mathbf{y}_{\mathrm{c}} + \bar{y}\mathbf{1}\right) \\ &= \left(\mathbf{X}^{\mathrm{T}}\mathbf{X} + \lambda \mathbf{I}\right)^{-1}\mathbf{X}^{\mathrm{T}}\mathbf{y}_{\mathrm{c}} + \bar{y}\left(\mathbf{X}^{\mathrm{T}}\mathbf{X} + \lambda \mathbf{I}\right)^{-1}\mathbf{X}^{\mathrm{T}}\mathbf{1} \end{aligned}$$

ullet Note the vector $\mathbf{X}^T\mathbf{1}$ is not the 1st column of $\mathbf{X}^T\mathbf{X} + \lambda \mathbf{I}$, thus in general,

$$(\mathbf{X}^{\mathrm{T}}\mathbf{X} + \lambda \mathbf{I})^{-1}\mathbf{X}^{\mathrm{T}}\mathbf{1} \neq \begin{bmatrix} 1 & \mathbf{0}_{1 \times k} \end{bmatrix}^{\mathrm{T}}$$

hence the estimate will change more than just the first component,

$$\begin{aligned} \mathbf{b}_{\mathrm{ridge}} &= \mathop{\mathrm{arg\,min}}_{\mathbf{b} \in \mathbb{R}^{k+1}} \left\{ \|\mathbf{y} - \mathbf{X}\mathbf{b}\|^2 + \lambda \|\mathbf{b}\|^2 \right\} \\ &\neq \mathop{\mathrm{arg\,min}}_{\mathbf{b}_{\mathrm{c}} \in \mathbb{R}^{k+1}} \left\{ \|\mathbf{y}_{\mathrm{c}} - \mathbf{X}\mathbf{b}_{\mathrm{c}}\|^2 + \lambda \|\mathbf{b}_{\mathrm{c}}\|^2 \right\} + \begin{bmatrix} \bar{y} & \mathbf{0}^{\mathrm{T}} \end{bmatrix}^{\mathrm{T}} \end{aligned}$$

ullet A small change in our formulation of $\hat{oldsymbol{eta}}_{
m ridge}$ will allow us to rectify it.

ullet Suppose $\mathbf{X} = egin{bmatrix} \mathbf{1} & \mathbf{X}_{-0} \end{bmatrix}$ and $\mathbf{b}^{\mathrm{T}} = egin{bmatrix} b_0 & \mathbf{b}_{-0}^{\mathrm{T}} \end{bmatrix}$, then we have the following

$$\begin{aligned} \|\mathbf{y} - \mathbf{X}\mathbf{b}\|^2 &= \|\mathbf{y}_c + \bar{y}\mathbf{1} - b_0\mathbf{1} - \mathbf{X}_{-0}\mathbf{b}_{-0}\|^2 \\ &= \|\mathbf{y}_c - (b_0 - \bar{y})\mathbf{1} - \mathbf{X}_{-0}\mathbf{b}_{-0}\|^2 = \|\mathbf{y}_c - \mathbf{X}\mathbf{b}_c\|^2 \end{aligned}$$

from which we can conclude $\mathbf{b}_{\mathrm{c}}^{\mathrm{T}} = \begin{bmatrix} b_0 - \bar{y} & \mathbf{b}_{-0}^{\mathrm{T}} \end{bmatrix}$ for any centre \bar{y} .

 \bullet Note $\|\mathbf{b}_{\mathrm{c}}\|$ varies as \bar{y} varies due to the 1st component, so does the penalty

$$\lambda \|\mathbf{b}_{c}\|^{2}$$

for the same ${\bf b}$ and $\lambda,$ which suggests an approach of rectifying the difference

$$\begin{aligned} \mathbf{b}_{\mathrm{ridge}} &= \mathop{\mathrm{arg\,min}}_{\mathbf{b} \in \mathbb{R}^{k+1}} \left\{ \|\mathbf{y} - \mathbf{X}\mathbf{b}\|^2 + \lambda \|\mathbf{b}\|^2 \right\} \\ &\neq \mathop{\mathrm{arg\,min}}_{\mathbf{b}_{\mathrm{c}} \in \mathbb{R}^{k+1}} \left\{ \|\mathbf{y}_{\mathrm{c}} - \mathbf{X}\mathbf{b}_{\mathrm{c}}\|^2 + \lambda \|\mathbf{b}_{\mathrm{c}}\|^2 \right\} + \begin{bmatrix} \bar{y} & \mathbf{0}^{\mathrm{T}} \end{bmatrix}^{\mathrm{T}} \end{aligned}$$

Q: Can you guess what this approach is?

• Consider the following alternative formulation β_{ridge}

$$\mathbf{b}_{\text{ridge}} = \underset{b_0 \in \mathbb{R}, \mathbf{b}_{-0} \in \mathbb{R}^k}{\arg \min} \left\{ \|\mathbf{y} - b_0 \mathbf{1} - \mathbf{X}_{-0} \mathbf{b}_{-0}\|^2 + \lambda \|\mathbf{b}_{-0}\|^2 \right\}$$

which differs from our original formulation by exempting b_0 from penalty.

Differentiating the above objective function with respect to b_0 , we have

$$-2\mathbf{1}^{\mathrm{T}}\mathbf{y} + 2nb_0 + 2\mathbf{1}^{\mathrm{T}}\mathbf{X}_{-0}\mathbf{b}_{-0}$$

setting which to zero, we have

center of y

intercept
$$\mathbf{b_0} = \frac{1}{n} \left(\mathbf{1}^{\mathrm{T}} \mathbf{y} - \mathbf{1}^{\mathrm{T}} \mathbf{X}_{-0} \mathbf{b}_{-0} \right) = \bar{y} - \frac{1}{n} \left(\mathbf{1}^{\mathrm{T}} \mathbf{X}_{-0} \right) \mathbf{b}_{-0}$$

row vector of sample mean of each variable

which means if we apply a mean-centring shift to X_{-0} , then the value of b_0 that attains the minimum is given by $b_0 = \bar{y}$ independent of b_{-0} and λ .

ullet Let us denote the mean-centring shift in ${f X}_{-0}$ by

$$z_{ij} = x_{ij} - \bar{x}_j \qquad \text{for} \quad j = 1, 2, \cdots, k \quad \text{and} \quad i = 1, 2, \cdots, n$$

where \bar{x}_j is the mean of the jth column of \mathbf{X}_{-0} , in matrix notation, we have

 $\mathbf{Z}_{-0} = \mathbf{X}_{-0} - \mathbf{1}\bar{\mathbf{x}}^{\mathrm{T}}$ where $\bar{\mathbf{x}}^{\mathrm{T}} = \frac{1}{2}\mathbf{1}^{\mathrm{T}}\mathbf{X}_{-0}$

so
$$\mathbf{b}_{\text{ridge}} = \underset{b_{0} \in \mathbb{R}, \mathbf{b}_{-0} \in \mathbb{R}^{k}}{\arg \min} \left\{ \|\mathbf{y} - b_{0}\mathbf{1} - \mathbf{X}_{-0}\mathbf{b}_{-0}\|^{2} + \lambda \|\mathbf{b}_{-0}\|^{2} \right\}$$

$$= \underset{b_{0} \in \mathbb{R}, \mathbf{b}_{-0} \in \mathbb{R}^{k}}{\arg \min} \left\{ \|\mathbf{y} - b_{0}\mathbf{1} - (\mathbf{Z}_{-0} + \mathbf{1}\bar{\mathbf{x}}^{T}) \mathbf{b}_{-0}\|^{2} + \lambda \|\mathbf{b}_{-0}\|^{2} \right\}$$

$$= \underset{b_{0} \in \mathbb{R}, \mathbf{b}_{-0} \in \mathbb{R}^{k}}{\arg \min} \left\{ \|\mathbf{y} - (b_{0} + \bar{\mathbf{x}}^{T}\mathbf{b}_{-0}) \mathbf{1} - \mathbf{Z}_{-0}\mathbf{b}_{-0}\|^{2} + \lambda \|\mathbf{b}_{-0}\|^{2} \right\}$$

where the minimiser $b_0 = \bar{y} - \frac{1}{n} \left(\mathbf{1}^T \mathbf{X}_{-0} \right) \mathbf{b}_{-0}$, and $\mathbf{y} = \mathbf{y}_c - \bar{y} \mathbf{1}$ are used.

 $= \mathop{\arg\min}_{\mathbf{b}_0 \in \mathbb{R}, \mathbf{b}_{-0} \in \mathbb{R}^k} \left\{ \|\mathbf{y}_c - \mathbf{Z}_{-0} \mathbf{b}_{-0}\|^2 + \lambda \|\mathbf{b}_{-0}\|^2 \right\}$

• Therefore, we can conclude b_{-0} is invariant under mean-centring

$$\begin{aligned} \mathbf{b_{ridge}} &= \underset{\mathbf{b}_{-0} \in \mathbb{R}^k}{\min} \left\{ \|\mathbf{y} - b_0 \mathbf{1} - \mathbf{X}_{-0} \mathbf{b}_{-0}\|^2 + \lambda \|\mathbf{b}_{-0}\|^2 \right\} \\ &= \underset{\mathbf{v}_{-0} \in \mathbb{R}^k}{\min} \left\{ \|\mathbf{y} - v_0 \mathbf{1} - \mathbf{Z}_{-0} \mathbf{v}_{-0}\|^2 + \lambda \|\mathbf{v}_{-0}\|^2 \right\} \end{aligned}$$

where $v_0 = \bar{y}$ and $\mathbf{b}_{-0} = \mathbf{v}_{-0}$, and prediction is also invariant

$$\hat{y}_i = b_0 + \mathbf{x}_{i,}^{\mathrm{T}} \mathbf{b}_{-0} = (v_0 - \bar{\mathbf{x}}^{\mathrm{T}} \mathbf{b}_{-0}) + \mathbf{x}_{i,}^{\mathrm{T}} \mathbf{b}_{-0}$$
$$= v_0 + (\mathbf{x}_{i,}^{\mathrm{T}} - \bar{\mathbf{x}}^{\mathrm{T}}) \mathbf{b}_{-0}$$
$$= v_0 + \mathbf{z}_{i,}^{\mathrm{T}} \mathbf{v}_{-0}$$

since the last expression is the prediction for Y in terms of the centred data

$$\mathbf{z}_{i.} = \mathbf{x}_{i.} - \bar{\mathbf{x}}$$

ullet Note this invariant property is actually true for any shift $\mathbf{Z}_{-0} = \mathbf{X}_{-0} - \mathbf{1}oldsymbol{lpha}^{\mathrm{T}}.$

Recall what we have defined

$$\mathbf{X} = \begin{bmatrix} \mathbf{1} & \mathbf{X}_{-0} \end{bmatrix}; \qquad \mathbf{b}^{\mathrm{T}} = \begin{bmatrix} b_0 & \mathbf{b}_{-0}^{\mathrm{T}} \end{bmatrix}; \qquad \mathbf{y} = \mathbf{y}_{\mathrm{c}} + \bar{y}\mathbf{1}$$
$$\mathbf{Z}_{-0} = \mathbf{X}_{-0} - \mathbf{1}\bar{\mathbf{x}}^{\mathrm{T}}; \qquad \mathbf{v}^{\mathrm{T}} = \begin{bmatrix} v_0 & \mathbf{v}_{-0}^{\mathrm{T}} \end{bmatrix}; \qquad \mathbf{v}_{-0} = \mathbf{b}_{-0}$$

Q: Have we rectified our first formulation of $\hat{oldsymbol{eta}}_{\mathrm{ridge}}$ with our second formulation

$$\begin{aligned} \mathbf{b}_{\text{ridge}} &= \underset{b_0 \in \mathbb{R}, \mathbf{b}_{-0} \in \mathbb{R}^k}{\text{arg min}} \left\{ \|\mathbf{y} - b_0 \mathbf{1} - \mathbf{X}_{-0} \mathbf{b}_{-0}\|^2 + \lambda \|\mathbf{b}_{-0}\|^2 \right\} \\ &= \underset{v_0 \in \mathbb{R}, \mathbf{v}_{-0} \in \mathbb{R}^k}{\text{arg min}} \left\{ \|\mathbf{y} - v_0 \mathbf{1} - \mathbf{Z}_{-0} \mathbf{v}_{-0}\|^2 + \lambda \|\mathbf{v}_{-0}\|^2 \right\} \\ &= \underset{v_0 = \bar{y}, \mathbf{v}_{-0} \in \mathbb{R}^k}{\text{arg min}} \left\{ \|\mathbf{y}_c - \mathbf{Z}_{-0} \mathbf{v}_{-0}\|^2 + \lambda \|\mathbf{v}_{-0}\|^2 \right\} \\ &= \left[\bar{y} \quad \left(\left(\mathbf{Z}_{-0}^T \mathbf{Z}_{-0} + \lambda \mathbf{I} \right)^{-1} \mathbf{y}_c \right)^T \right]^T \end{aligned}$$

Q: Is the above estimator invariant under scaling of ${\bf y}$ or columns of ${\bf Z}_{-0}$?

ullet Let ${f M}$ be an invertible diagonal matrix of k imes k, and ${f U} = {f Z}_{-0} {f M}^{-1}$, then

$$\frac{\left(\mathbf{Z}_{-0}^{\mathrm{T}}\mathbf{Z}_{-0} + \lambda \mathbf{I}\right)^{-1}\mathbf{y}_{\mathrm{c}}}{= \left(\left(\mathbf{U}\mathbf{M}\right)^{\mathrm{T}}\mathbf{U}\mathbf{M} + \lambda \mathbf{I}\right)^{-1}\mathbf{y}_{\mathrm{c}}} = \left(\mathbf{M}^{\mathrm{T}}\mathbf{U}^{\mathrm{T}}\mathbf{U}\mathbf{M} + \lambda \mathbf{I}\right)^{-1}\mathbf{y}_{\mathrm{c}} \neq \left(\mathbf{U}^{\mathrm{T}}\mathbf{U} + \lambda \mathbf{I}\right)^{-1}\mathbf{y}_{\mathrm{c}}$$

since $\mathbf{U}^T\mathbf{U}\mathbf{M} \neq \mathbf{M}\mathbf{U}^T\mathbf{U}$ and \mathbf{M} is not orthogonal in general, which means our second formulation is not invariant under column scaling of \mathbf{Z}_{-0} .

- Q: Should we scale the the data matrix \mathbb{Z}_{-0} ? If so, what should we use for \mathbb{M} ?
 - Unless the independent variables have the same units, to be "fair" we scale the columns of the data matrix so that the sample variances become 1,

$$\mathbf{U} = \mathbf{Z}_{-0} \operatorname{diag}(s_1, s_2, \dots, s_k)^{-1}, \text{ where } s_j^2 = \frac{1}{n-1} \sum_{i=1}^n (\mathbf{X}_{ij} - \bar{x}_j)^2$$

which is the usual formulation of $\hat{\beta}_{\rm ridge}$ that is widely implemented.

Algorithm 3: Ridge Estimation

Input : Data matrix $\mathbf{X}_{n\times(k+1)}$, data vector $\mathbf{y}_{n\times 1}$, set of parameters \mathcal{S}_{λ}

Output : Vector of estimated parameters $\mathbf{b}_{\mathrm{ridge}}$

¹ Function RIDGE(X, y, S_{λ}):

$$\mathbf{X}_{-0} \leftarrow \mathbf{X}[,-1]$$
 ; /* remove the column of ones */

 $\mathbf{Z}_{-0} \leftarrow \mathbf{X}_{-0} - \frac{1}{\pi} \mathbf{1}^{\mathrm{T}} \mathbf{X}_{-0}$; /* mean-centre the columns of \mathbf{X}_{-0} */

for $j \leftarrow 1$ to k do

$$s_j = \sqrt{\frac{1}{n-1} \sum_{i=1}^n \left(\mathbf{Z}_{-0}[i,j]\right)^2} \; ; \quad /* \; \text{column standard deviation}$$

end for

$$\mathbf{U} \leftarrow \mathbf{Z}_{-0} \operatorname{diag}\left(s_1, s_2, \dots, s_k\right)^{-1}$$
; /* scale the columns of \mathbf{Z}_{-0} */ $\mathbf{b}_{\operatorname{ridge}}[1] \leftarrow \frac{1}{n} \mathbf{1}^{\operatorname{T}} \mathbf{y}$; /* set the mean of \mathbf{y} as b_0 */

$$\begin{aligned} \mathbf{y}_{c} \leftarrow \mathbf{y} - \mathbf{b}_{\mathrm{ridge}}[1] \cdot \mathbf{1} \;; & \text{/* mean-centre } \mathbf{y} \; * \text{/} \\ \lambda_{\mathrm{opt}} \leftarrow \text{LamLOOCVWoodbury}(\mathbf{U}, \mathbf{y}_{c}, \mathcal{S}_{\lambda}) \;; & \text{/* find the optimal } \lambda \; * \text{/} \end{aligned}$$

$$\mathbf{b}_{\mathrm{ridge}}[-1] \leftarrow \left(\mathbf{U}^{\mathrm{T}}\mathbf{U} + \lambda_{\mathrm{opt}}\mathbf{I}\right)^{-1}\mathbf{y}_{\mathrm{c}};$$
 /* Slope estimates */

return b_{ridge} ;

ıз end

11 12 • $\hat{m{\beta}}_{\mathrm{ridge}}$ only slightly outperform $\hat{m{\beta}}_{\mathrm{lse}}$ for a narrow range of λ if ${\color{red}m{\beta}}$ is mostly big.

small proportion of large coefficients -> a large number of lamba that we can choose to outperform b lse

0.5

0.7

0.9

0.3

0.1

ullet As σ^2 grows, the tradeoff between variance and bias becomes more notable.

 \bullet However, as n increases, the performance of $\hat{\pmb{\beta}}_{lse}$ catches up with $\hat{\pmb{\beta}}_{ridge}.$

n很大, both converge to real beta

ullet Our motivation for $\hat{eta}_{\mathrm{ridge}}$, i.e. bypass variable selection and achieve a smaller

$$MSE\left(\hat{Y}_{i}\right) = MSE\left(\mathbf{x}_{i}^{T}\hat{\boldsymbol{\beta}}\right)$$

becomes weak if n as well as k is relatively large.

ridge其实适用的是me dium size data n或者k太大不行

Although it is not exclusive to big/complex datasets, rank deficiency issue,

$$\det\left(\mathbf{X}^{\mathrm{T}}\mathbf{X}\right)\approx0$$

is often more prominent in more complex datasets.

ullet We will show later on the motivation for using the ridge estimate for large n

$$\mathbf{b}_{ ext{ridge}} = egin{bmatrix} ar{y} \ ig(\mathbf{U}^{ ext{T}} \mathbf{U} + \lambda \mathbf{I} ig)^{-1} \, \mathbf{U}^{ ext{T}} \mathbf{y}_{ ext{c}} \end{bmatrix}$$

is the fact that the matrix $\mathbf{U}^T\mathbf{U} + \lambda \mathbf{I}$ is always invertible for $0 < \lambda < \infty$.

• Highly Correlated

用ridge更好

Recap: Regression

• Linear least squares regression has zero bias but suffers from high variance.

$$MSE(\hat{Y}_i) = \mathbb{E}\left[\left(\hat{Y}_i - Y_i\right)^2\right] = Var\left[\hat{Y}_i\right] + \left(\underbrace{\mathbb{E}\left[\hat{Y}_i\right] - \mathbb{E}\left[Y_i\right]}_{\mathsf{Bias}}\right)^2 + \sigma^2$$

- Ridge regression reduces mean square error without doing variable selection.
- Various things, the size of k and n, the relative size of the true coefficients, and the relationship between independent variables, decides when we prefer ridge over linear least square regression when building a predictive model.
- It is used for building predictive models, where k is relatively large while n is relatively small. It is particularly good if the independent variables are highly correlated, and there is a subset of true coefficients that are relatively small.
- Q: What should we do in terms of regression if n is very large? Very large k?