Today's Agenda

Exploring bivariate and multivariate visualizations

Justin Leinaweaver (Spring 2022)

Dataset 1: The Motivating Problem

What drives economic investment in US states?

Why do some states attract greater investment by companies and individuals than others?

Last Week: Univariate Analyses

Measures of Central Tendency

- Mean
- Median

Deviations from Central Tendency

Standard deviation

Measures of Variability

- Range
- IQR

The standard way to

compare the size of

things. Must always

See above

Bivariate and Multivariate Visualizations

Bivariate and Multivariate Visualizations

Subset the data and then make your bar plot or histogram

Is a state with no income tax better or worse for your finances?

manufacturing_thousands and income_tax

1. Copy the data to a new sheet

	Α	В	С	
1	State	manufacturing_thousands	income_tax	
2	Alabama	257.8	1	
3	Alaska	11.6	0	
4	Arizona	176.4	1	
5	Arkansas	155.1	1	
6	California	1261.7	1	
7	Colorado	146.5	1	
8	Connecticut	153.6	1	
9	Delaware	25.6	1	
10	Florida	376.7	0	
11	Georgia	385.3	1	
12	Hawaii	11.9	1	
13	ldaho	68.2	1	
	1			

2. Sort the data by the categorical variable

	Α	В	С	
1	State	manufacturing_thousands	income_tax	
2	Alaska	11.6	0	
3	Florida	376.7	0	
4	Nevada	56.1	0	
5	New Hampshi⊁	67.3	0	
6	South Dakota	43.2	0	
7	Tennessee	335.1	0	
8	Texas	868.7	0	
9	Washington	272	0	
10	Wyoming	9.5	0	
11	Alabama	257.8	1	
12	Arizona	176.4	1	
13	Arkansas	155.1	1	
14	California	1261.7	1	
15	Colorado	146 5	1	

3. Split the data by subset

	Α	В	С	D	Е	F	G
1	State	manufacturing_thousands	income_tax		State	manufacturing_thousands	income_tax
2	Alaska	11.6	0		Alabama	257.8	1
3	Florida	376.7	0		Arizona	176.4	1
4	Nevada	56.1	0		Arkansas	155.1	1
5	New Hampshi⊁	67.3	0		California	1261.7	1
6	South Dakota	43.2	0		Colorado	146.5	1
7	Tennessee	335.1	0		Connecticut	153.6	1
8	Texas	868.7	0		Delaware	25.6	1
9	Washington	272	0		Georgia	385.3	1
	Wyoming	9.5	0		Hawaii	11.9	1
11					Idaho	68.2	1
12					Illinois	554.2	1
11 12 13					Indiana	505.1	1
14					Iowa	216.6	1
15					Kansas	159	1

4. Make a histogram for each subset

Does population size predict the size of your manufacturing sector?

manufacturing_thousands and pop_category

Bivariate Viz: Numerical x Categorical

1. Using Facets to Extend Univariate Visualizations

Make three histograms of manufacturing employment (5 bins)

- pop_category = "Under 5 million"
- pop_category = "Under 10 million"
- pop_category = "Above 10 million"

1. Using Facets to Extend Univariate Visualizations

Make two bar plots of manufacturing category

- One for states with an income tax, and
- One for states without an income tax.

1. Copy the data, insert a pivot table

2. Choose the variable to count

3. Count the levels separately

4. Add the second variable as columns

5. Clean up the row order and labels

6. Insert a bar plot

7. Use the chart filter to separate plots

1. Using Facets to Extend Univariate Visualizations

Make three bar plots of GDP category

- pop_category = "Under 5 million"
- pop_category = "Under 10 million"
- pop_category = "Above 10 million"

1. Facets

Histogram

Ordered column

2.

Boxplot

3.

Scatterplot

Bivariate Viz: Numerical x Categorical

Using Scatter Plots: Numerical x Numerical

Do states with bigger populations have higher levels of employment in manufacturing?

Make a scatter plot of manufacturing employment and population.

Bivariate Viz: Numerical x Numerical

Time to Practice!

- Make two histograms of unemployment, one for states with an income tax and one for states without.
- Remake the above as a box plot
- Make and analyze the following four scatter plots:
 - GDP (actual) x Unemployment
 - GDP (actual) x Bachelors' Degrees
 - GDP (rate) x Unemployment
 - GDP (rate) x Bachelors' Degrees

Unemployment x Income Taxes

Scatter plots of GDP (actual)

Scatter plots of GDP (rate)

