Homework week 2

Nguyễn Hoàng Long - DSEB 62

Example 1:

Stochastic Neighbor Embedding (SNE):

Define

$$q_{j/i} = \frac{e^{-||y_i - y_j||^2}}{\sum_{k \neq i} e^{-||y_i - y_k||^2}} = \frac{E_{ij}}{\sum_{k \neq i} E_{ik}} = \frac{E_{ij}}{Z_i}$$
(1)

Notice that $E_{ij} = E_{ji}$. The loss function is defined as

$$C = \sum_{k,l \neq k} p_{l|k} \log \frac{p_{l|k}}{q_{l|k}} = \sum_{k,l \neq k} p_{l|k} \log p_{l|k} - p_{l|k} \log q_{l|k}$$
$$= \sum_{k,l \neq k} p_{l|k} \log p_{l|k} - p_{l|k} \log E_{kl} + p_{l|k} \log Z_K$$
(2)

We derive with respect to y_i . To make the derivation less cluttered, I will omit the ∂y_i term at the denominator

$$\frac{\partial C}{\partial y_i} = \sum_{k,l \neq k} -p_{l|k} \partial \log E_{kl} + \sum_{k,l \neq k} p_{l|k} \partial \log Z_k$$

We start with the first term, noting that the derivative is non-zero when $\forall j \neq i, k = i$ or l = i

$$\sum_{k,l\neq k} -p_{l|k}\partial \log E_{kl} = \sum_{j\neq i} -p_{j|i}\partial \log E_{ij} - p_{i|j}\partial \log E_{ji}$$
 (3)

Since $\partial E_{ij} = E_{ij}(-2(y_i - y_j))$ we have

$$\sum_{j\neq i} -p_{j|i} \frac{E_{ij}}{E_{ij}} (-2(y_i - y_j)) - p_{i|j} \frac{E_{ji}}{E_{ji}} (-2(y_j - y_i)) = 2 \sum_{j\neq i} (p_{j|i} + p_{i|j}) (y_i - y_j)$$
(4)

We conclude with the second term. Since $\sum_{l\neq j} p_{l|j} = 1$ and Z_j does not depend on k, we can write (changing variable from l to j to make it more similar to the already computed terms)

$$\sum_{j,k\neq j} p_{k|j} \partial \log Z_j = \sum_j \partial \log Z_j$$

The derivative is non-zero when k = i or j = i (also, in the latter case we can move Z_i inside the summation because constant)

$$= \sum_{j} \frac{1}{Z_{j}} \sum_{k \neq j} \partial E_{jk}$$

$$= \sum_{j \neq i} \frac{E_{ji}}{Z_{j}} (2(y_{j} - y_{i})) + \sum_{j \neq i} \frac{E_{ij}}{Z_{i}} (-2(y_{i} - y_{j}))$$

$$= 2 \sum_{j \neq i} (-q_{j|i} - q_{i|j}) (y_{i} - y_{j})$$
 (5)

Combining eq. (4) and (5) we arrive at the final result

$$\frac{\partial C}{\partial y_i} = 2\sum_{j \neq i} (p_{j|i} - q_{j|i} + p_{i|j} - q_{i|j})(y_i - y_j)$$
 (6)

t-distributed Stochastic Neighbor Embedding (t-SNE):

Define

$$q_{ji} = q_{ij} = \frac{(1 + ||y_i - y_j||^2)^{-1}}{\sum_{k,l \neq k} (1 + ||y_k - y_l||^2)^{-1}} = \frac{E_{ij}^{-1}}{\sum_{k,l \neq k} E_{kl}^{-1}} = \frac{E_{ij}^{-1}}{Z}$$
(7)

Notice that $E_{ij} = E_{ji}$. The loss function is defined as

$$C = \sum_{k,l \neq k} p_{lk} \log \frac{p_{lk}}{q_{lk}} = \sum_{k,l \neq k} p_{lk} \log p_{lk} - p_{lk} \log q_{lk}$$
$$= \sum_{k,l \neq k} p_{lk} \log p_{lk} - p_{lk} \log E_{kl}^{-1} + p_{lk} \log Z$$
(8)

We derive with respect to y_i . To make the derivation less cluttered, I will omit the ∂y_i term at the denominator.

$$\frac{\partial C}{\partial y_i} = \sum_{k,l \neq k} -p_{lk} \partial \log E_{kl}^{-1} + \sum_{k,l \neq k} p_{lk} \partial \log Z$$

We start with the first term, noting that the derivative is non-zero when $\forall j \neq i, k = i$ or l = i, that $p_{ji} = p_{ij}$ and $E_{ji} = E_{ij}$

$$= \sum_{k,l\neq k} -p_{lk}\partial \log E_{kl}^{-1} = -2\sum_{j\neq i} -p_{ji}\partial \log E_{ij}^{-1} \qquad (9)$$

Since $\partial E_{ij}^{-1} = E_{ij}^{-2}(-2(y_i - y_j))$ we have

$$-2\sum_{j\neq i} p_{ji} \frac{E_{ij}^{-2}}{E_{ij}^{-1}} (2(y_i - y_j)) = 4\sum_{j\neq i} p_{ji} E_{ji}^{-1} (y_i - y_j)$$
 (10)

We conclude with the second term. Using the fact that $\sum_{k,l\neq k} p_{kl} = 1$ and that Z does not depend on k or l

$$\sum_{k,l \neq k} p_{lk} \partial \log Z = \frac{1}{Z} \sum_{k',l' \neq k'} \partial E_{kl}^{-1}$$

$$= 2 \sum_{j \neq i} \frac{E_{ji}^{-2}}{Z} (-2(y_j - y_i))$$

$$= -4 \sum_{j \neq i} q_{ij} E_{ji}^{-1} (y_i - y_j) \qquad (11)$$

Combining eq. (10) and (11) we arrive at the final result

$$\frac{\partial C}{\partial y_i} = 4 \sum_{j \neq i} (p_{ji} - q_{ji}) E_{ji}^{-1} (y_i - y_j)
\frac{\partial C}{\partial y_i} = 4 \sum_{j \neq i} (p_{ji} - q_{ji}) (1 + ||y_i - y_j||^2)^{-1} (y_i - y_j)$$
(12)

Example 4: So sánh t-SNE và PCA

No	PCA	t-SNE
1	Linear dimensionality reduction	Non-linear dimensionality reduc-
	technique.	tion technique.
2	Preserve global structure	Preserve local structure
		Involves Hyperparameters such
3	Not involve Hyperparameters	as perplexity, learning rate and
		number of steps
4	Gets highly affected by outliers	Can handle outliers
5	Deterministic algorithm	Non-deterministic or randomised
		algorithm
6	Rotating the vectors for preserv-	Minimising the distance between
	ing variance.	the point in a gaussian
7	We can find decide on how much	We cannot preserve variance in-
	variance to preserve using eigen	stead we can preserve distance us-
	values	ing hyperparameters.