MA3071 Financial Mathematics - DLI, Year 2023-2024

Exercises for Feedback session 1

Exercise 1 You are the seller of a European call option with a strike price of K = 100 and a premium of D = 5. It is expected that, on the expiry date, the price S_T of the underlying asset will follow a probability distribution

$$\mathbb{P}[S_T = 90 + k] = 0.05, \quad k = 1, 2, \dots, 20$$

Find the cumulative probability distribution of your loss.

Exercise 2 A European call option has a strike price of K = 100 and a premium of D = 10. It is expected that, on the expiry date, the price S_T of the underlying asset will follow a uniform distribution supported on the interval [0, 120]. Calculate the cumulative probability distribution of loss for the short position.

Solution 1 We know that the strike price K and the premium D are constants, while only S_T is a random variable with a discrete uniform distribution. At expiry, S_T will have 20 possible values (91, \cdots , 110), each with a probability of 5%. Then, according to the profit formula,

Profit of buyer =
$$(S_T - K)_+ - D = (S_T - 100)_+ - 5$$

k	$1, \cdots, 9$	10	$11, \cdots, 15$	$16, \cdots, 20$
S_T	91,, 99	100	$101, \cdots, 105$	$106, \cdots, 110$
P	$0.05, \cdots, 0.05$	0.05	$0.05, \cdots, 0.05$	$0.05, \cdots, 0.05$
Profit of buyer	$-5,\cdots,-5$	-5	$-4,\cdots,0$	$1, \cdots, 5$
P	$0.05, \cdots, 0.05$	0.05	$0.05, \cdots, 0.05$	$0.05, \cdots, 0.05$
Loss of seller	$-5,\cdots,-5$	-5	$-4,\cdots,0$	$1,\cdots,5$
P	$0.05, \cdots, 0.05$	0.05	$0.05, \cdots, 0.05$	$0.05, \cdots, 0.05$

As we know, Profit of buyer = Loss of seller,

$$\begin{cases} P(L = -5) = 10 \times 0.05 = 0.5 \\ P(L = -4) = 0.05 \\ P(L = -3) = 0.05 \\ \vdots \\ P(L = 4) = 0.05 \\ P(L = 5) = 0.05 \end{cases}$$

Therefore, the cumulative probability distribution of seller's loss:

$$F_L(x) = P(L \leqslant x) = \begin{cases} 0, & x < -5 \\ 0.5, & -5 \leqslant x < -4 \\ 0.55, & -4 \leqslant x < -3 \\ \vdots \\ 0.95, & 4 \leqslant x < 5 \\ 1, & 5 \leqslant x \end{cases} = \begin{cases} 0, & x < -5 \\ 0.5 + 0.05i, & -5 + i \leqslant x < -5 + i + 1, & i = 0, \dots, 9 \\ 1, & 5 \leqslant x \end{cases}$$

Solution 2 We know that the strike price K and the premium D are constants, while only S_T is a random variable with a uniform distribution on [0, 120]. Thus, the density function is

$$f(x) = \begin{cases} 0, & x < 0\\ \frac{1}{120}, & 0 \le x \le 120\\ 0, & x > 120 \end{cases}$$

And we know the loss of short position equals the profit of long position,

$$L = (S_T - K)_+ - D = (S_T - 100)_+ - 10$$

Therefore, when $S_T < 100$, the option won't be exercised, and the loss L = -10.

For any x < -10,

$$P(L \leqslant x) = 0$$

When $100 \leqslant S_T \leqslant 120$, the option will be exercised, $L = S_T - 110$ and $L \in [-10, 10]$.

For any $-10 \leqslant x \leqslant 10$,

$$P(L \le x) = P(S_T \le x + 110)$$

$$= \int_{-\infty}^{x+110} f(t)dt$$

$$= \int_{0}^{x+110} \frac{1}{120} dt$$

$$= \left[\frac{t}{110}\right]_{0}^{x+110}$$

$$= \frac{x+110}{120}$$

It is impossible for $S_T > 120$, therefore, $L \not > 10$, and for any x > 10,

$$P(L \leqslant x) = 1$$

Hence, the cumulative probability distribution of loss for short position is

$$F_L(x) = \begin{cases} 0, & x < -10\\ \frac{x+110}{120}, & -10 \le x \le 10\\ 1, & x > 10 \end{cases}$$