(15 puncte) B. SUBIECTUL III -

Rezolvați următoarea problemă:

Motorul unui automobil funcționează după ciclul Otto. În tabelul alăturat sunt indicate pentru un singur ciclu: variația energiei interne $\Delta \textit{U}_{12}$ în cursul compresiei, căldura \textit{Q}_{23} primită în urma exploziei amestecului carburant și lucrul mecanic L_{34} efectuat de gaz în cursul destinderii acestuia. Toate mărimile sunt exprimate în kJ.

Procesul $i \rightarrow j$	<i>Q_{ij}</i> [kJ]	Lij [kJ]	ΔU_{ij} [kJ]
1→2			720
2→3	480		
3→4		900	
4→1			

- a. Reprezentați ciclul Otto în coordonate p-V, specificând tipul fiecărei transformări.
- **b**. Calculați valorile căldurii Q_{12} și Q_{34} schimbate de gaz cu exteriorul în procesele $1\rightarrow 2$ și $3\rightarrow 4$. **c.** Stabiliți care sunt valorile L_{23} și L_{41} ale lucrului mecanic schimbat de gaz cu mediul exterior în procesele 2→3 şi 4→1.
- **d.** Determinați variația energiei interne a gazului ΔU_{41} în procesul $4 \rightarrow 1$ și căldura Q schimbată de gaz cu mediul exterior în cursul unui ciclu.