Graph Mining

Discovering Frequent Subgraphs
Discovering Frequent Geometric Subgraphs
Angela Eigenstetter und Christian Wirth

FSG und GFSG Allgemein

- Apriori Ansatz
 - Candidate Generation, Frequency Counting
 - Über eine Menge von Graphen
 - "Support" Grenze: min. Anzahl von Graphen die das Pattern beinhalten

- Isomorphie Test
 - über kanonische Labels (FSG)
 - Geometrische Transformationen (GFSG)

Anwendungen

- Allgemeiner Ansatz
- Chemische Verbindungen
 - Knoten = Atom
 - Kante = Verbindung
 - Kantenlabel = Verbindungstyp
 - Häufige Subgraphen dienen der Klassifizierung
- Andere Anwendungen möglich
- Athlon MP 1800+ (1,53Ghz), 2Gb Ram

Frequent Subgraph Discovery Algorithm

Übersicht

Allgemeine Informationen

Candidate Generation

Frequency Counting

Ergebnisse

Allgemein

Generalisiert

• (3D-) Strukturinformationen als Kantenlabel

Datenstrukturbasierte Verbesserungen

Candidate Generation I

- Zusammenfassen zweier k-Subgraphen
 - Jede mögliche Kombination
 - Auch zwei gleiche Subgraphen
- Gemeinsamer k-1 Kern
 - Isomorph
 - Primärer Subgraph
- Erzeugt k+1 Subgraph

Candidate Generation II

- Muss nicht eindeutig sein
 - Gleiches Label

Automorphismus

Frequency Counting

- Transaction Identifier List
 - Liste je Pattern
 - Beinhaltet alle Graphen die dieses Pattern enthalten
- Erstellen der k+1 Liste
 - Berechnen der Überschneidungen
 - Liste aller Graphen die in beiden Listen vorkommen
 - Länge < Grenzwert => Prune
 - Berechnen der Isomorphie
 - Canonical Labeling für alle Elemente
 - Neue TID List
 - Länge < Grenzwert => Prune

Canonical Labeling I

- Allgemein
 - Nutzung der Knoten Invarianten
 - Grad
 - Label
 - Nachbarschaft

		v0	v1	v2
		Α	Α	Α
v0	Α		z	х
v1	Α	z		У
v2	Α	Х	У	

Label: AAA zxy

- Erstellung
 - Kanonisches Label
 - Oberes Dreieck der Adjazenzmatrix
 - Labelreihe + Matrixspalten
 - Maximierung des Labels durch Permutation

		v1	v1 v0	
		Α	Α	Α
v1	Α		z	У
v0	Α	z		x
v2	Α	У	Х	

Maximiertes Label: AAA zyx

Canonical Labeling II

- Problem: Berechnung aller Permutationen
 - O(|V|!)
 - Bereits bei kleinen Graphen problematisch
- Lösung: Partitionierung
 - Äquivalenzklassen
 - Knoten Invarianten
- Erstellung
 - Iterativ
 - Erst Grad & Label
 - Dann Nachbarschaft

Canonical Labeling - Algorithmus

1. Partitionen nach Grad und Label

2. Repartitionierung nach Nachbarschaftsliste

3. Sortieren der Partitionen

4. Maximierung der Labels je Partition

5. Erstellen des Labels

Canonical Labeling - Beispiel I

- Erstellen der Partitionen
 - Eine Partition je Grad und Label

- ■1. Partitionierung
- •2. Repartitionierung
- ■3. Sortieren
- •4. Maximierung des Labels
- •5. Erstellen des Labels

Partitionen:

• p0 : Label = B und Grad = 3

• v1, v2, v3, v4

• p1 : Label = A und Grad = 1

• v0, v6

Canonical Labeling - Beispiel II

- Erstellen der Nachbarschaftslisten
 - Partitionsnummer
 - Edgelabel

Partitionen:

- p0 : Label = B und Grad = 3
 - v1, v2, v3, v4
- p1 : Label = A und Grad = 1
 - v0, v6

■1. Partitionierung

- ■2. Repartitionierung
- ■3. Sortierung
- 4. Maximierung des Labels
- ■5. Erstellen des Labels

Nachbarschaften:

- p0
- v1 : (p0,y),(p0,y),(p1,x)
- v2 : (p0,y),(p0,y),(p0,y)
- v3 : (p0,y),(p0,y),(p1,z)
- v4 : (p0,y),(p0,y),(p0,y)
- p'
- v0 : (p0,x)
- v5 : (p0,z)

Canonical Labeling - Beispiel III

- Repartitionierung
 - Erstellen neuer Partitionen nach Nachbarschaft
 - Kann erneutes Repartitionieren verursachen

- ■1. Partitionierung
- ■2. Repartitionierung
- ■3. Sortieren
- •4. Maximierung des Labels
- ■5. Erstellen des Labels

Partitionen:

- p0 : Label = B und Grad = 3
 - v1, v2, v3, v4
- p1 : Label = A und Grad = 1
 - v0, v6

Nachbarschaften:

- p0
- v1 : (p0,y),(p0,y),(p1,x)
- v2 : (p0,y),(p0,y),(p0,y)
- v3 : (p0,y),(p0,y),(p1,z)
- v4 : (p0,y),(p0,y),(p0,y)
- p1
- v0 : (p0,x)
- v5 : (p0,z)

Partitionen:

• p0 : Label = B, Grad = 3 und

Nachbarschaft =
$$(p0,y),(p0,y),(p0,y)$$

- v2, v4
- p1 : Label = B, Grad = 3 und

Nachbarschaft =
$$(p0,y),(p0,y),(p1,x)$$

- v1
- p2 : Label = B, Grad = 3 und

Nachbarschaft =
$$(p0,y),(p0,y),(p1,z)$$

- v3
- p3 : Label = A und Grad = 1 und Nachbarschaft = (p0,x)
 - v0
- p4 : Label = A und Grad = 1 und

Nachbarschaft = (p0,z)

Canonical Labeling - Beispiel IV

- Sortierung
 - Isomorphe Graphen haben gleiche Partitionen
 - Reinfolge egal solange Eindeutig
 - Sollte schnelles Pruning ermöglichen
 - Große Variationen am Anfang
 - Sortieren nach Grad

Partitionen:

- p0 : Label = B, Grad = 3 und
 Nachbarschaft = (p0,y),(p0,y),(p0,y)
- p1 : Label = B, Grad = 3 undNachbarschaft = (p0,y),(p0,y),(p1,x)
- p2 : Label = B, Grad = 3 und Nachbarschaft = (p0,y),(p0,y),(p1,z)
- p3 : Label = A und Grad = 1 und Nachbarschaft = (p0,x)
- p4 : Label = A und Grad = 1 und Nachbarschaft = (p0,z)

- •2. Repartitionierung
- ■3. Sortieren
- ■4. Maximierung des Labels
- ■5. Erstellen des Labels

Canonical Labeling - Beispiel V

- Maximierung des Labels
 - Partitionsreinfolge definiert
 - Reinfolge innerhalb der Partition
 - Maximierung
 - Vertauschung

∎1 Pai	rtiti∩r	nieruna	

- 2. Repartitionierung
- ■3. Sortieren
- ■4. Maximierung des Labels
- ■5. Erstellen des Labels

		v3	v2	v4	v1	v5	v0
		В	В	В	В	Α	Α
v3	В		У	У		Z	
v2	В	У		У	У		
v4	В	У	У		У		
v1	В		У	У			Х
v5	Α	Z					
v0	Α				Х		
		p2	p0		p1	p4	р3

P0 : mögliche Label

- yyy
- keine Permutationen möglich

Canonical Labeling - Beispiel VI

- Erstellen des Labels
 - Reihe der Labels
 - Spaltenkonkatenation

- •1. Partitionierung
- •2. Repartitionierung
- ■3. Sortieren
- •4. Maximierung des Labels
- ■5. Erstellen des Labels

		v3	v2	v4	v1	v5	v0
		В	В	В	В	Α	Α
v3	В		У	У		Z	
v2	В	У		У	У		
v4	В	У	У		У		
v1	В		У	У			X
v5	Α	z					
v0	Α				Х		
		p2	p0		p1	p4	р3

Label: BBBBAA yyy0yyz000000x0

Zusammenfassung

- Apriori
 - Generieren der Kandidaten
 - Primäre Subgraphen
 - Mehrere Kandidaten
 - Häufigkeit testen
 - Transaction Identifier Lists
 - Isomorphie über Canonical Labels
 - Canonical Labels
 - Partitionen nach Vertex Invarianten
 - Maximieren des Labels

Verbesserungen

- Vertex Stabilisation
 - Große Partitionen haben O(k!) Permutationen
 - Kann verkleinert werden
 - Zufälliges Vertex mit neuer Partition
 - Erzeugt ~ (k/2) neue Partitionen
 - Muss für alle k Möglichkeiten berechnet werden
 - O(k(k/2)!) < O(k!)
- Datenbank Unterteilung
 - Unterteilen der Graphmenge
 - Berechnen der Häufigkeit je Teil
 - ∑ Häufigkeiten ergibt Obergrenze => Pruning
 - Speicherersparnis

Ergebnisse

- Keine Vergleiche mit anderen Algorithmen
- Evaluation der Eigenschaften
 - Auf natürlichem Datenset
 - Verhältnis Graphen/Laufzeit
 - Verhältnis Support/Laufzeit
 - Speicherbedarf/Datenbank Unterteilungen
 - Auf synthetischem Datenset
 - Verhältnis Anzahl Vertexlabel/Laufzeit
 - Verhältnis Patterngröße/Laufzeit
 - Verhältnis Graphgröße/Laufzeit
- System: Athlon MP 1800+ (1,53Ghz), 2Gb Ram

Ergebnisse I

- Natürliches Datenset
 - Predictive Toxicology Evaluation (PTE) Challenge
 - Developmental Therapeutics Program (DTP)
 - Beides Molekularstrukturen

Support	Rı	Runtime t [sec], Size of Largest Frequent Pattern k^* , and Number of Frequent Patterns $ \mathcal{F} $												
threshold	PTE D = 340			DTP D = 50,000			DTP D = 100,000			DTP D = 200,000				
[%]	t[sec]	k^*	$ \mathcal{F} $	t[sec]	k^*	$ \mathcal{F} $	t[sec]	k^*	$ \mathcal{F} $	t[sec]	k^*	$ \mathcal{F} $		
10.0	3	11	844	74	9	351	156	9	360	337	9	373		
9.0	3	11	977	80	9	400	169	10	420	366	10	442		
8.0	4	11	1323	87	11	473	184	11	490	401	11	512		
7.0	4	12	1770	94	11	562	200	11	591	437	11	635		
6.0	6	13	2326	109	12	782	230	12	813	503	12	860		
5.0	9	14	3608	122	12	1017	259	12	1068	570	12	1140		
4.0	16	15	5935	146	13	1523	316	13	1676	705	13	1855		
3.0	60	22	22758	186	14	2705	398	14	2810	894	14	3004		
2.0	459	25	136927	263	14	5295	571	14	5633	1343	15	6240		
1.0		_		658	16	19373	1458	16	20939	3776	17	24683		

- Ergebnis
 - Verhältnis Graphen/Laufzeit: Sehr gut, fast linear
 - Verhältnis Support/Laufzeit: Starke Abhängigkeit, Datenabhängig

Ergebnisse II

Datenbank Unterteilungen zur Speicherreduktion

					Runti	ime [sec]				
$ \mathcal{D} $	Number of Partitions									
	1	2	3	4	5	10	20	30	40	50
100,000	1432	1878	2032	2189	2356	2924	3899	4842	6122	7459
200,000	3698	4494	5095	5064	5538	6418	7856	9516	11165	12670

	Maximum amount of memory for storing TID lists [Mbytes]											
$ \mathcal{D} $	Number of Partitions											
	1	2	3	4	5	10	20	30	40	50		
100,000	53.8	27.0	18.1	13.6	11.0	5.6	2.9	2.0	1.5	1.2		
200,000	118	59.1	39.5	29.6	23.9	12.1	6.2	4.2	3.2	2.6		

- Ergebnis
 - Starke Reduktion bis ~ 20 Unterteilungen
 - Geringer Anstieg der Laufzeit

Ergebnisse III

- Synthetisches Datenset
 - Diverse Kontrollparameter
 - Anzahl Graphen |D|
 - Durchschnittliche Anzahl Kanten je Graph |T|
 - Durchschnittliche Anzahl Kanten je FSG |I|
 - Durchschnittliche Anzahl FSG je Graph |S|
 - Anzahl der unterschiedlichen Kantenlabels |L_F|
 - Anzahl der unterschiedlichen Knotenlabels |L_V|

Ergebnisse IV

- Ergebnis
 - ullet Die Laufzeit sinkt mit $|L_V|$, weniger Automorphismen, weniger Isomorphismen
 - Die Laufzeit steigt mit |I|, komplexere Patterns
 - Die Laufzeit steigt mit |T|, mehr Pattern je Graph möglich

Frequent Geometric Subgraph Discovery Algorithm

Übersicht

- Wichtige Begriffe
- Isomorphismus in geometrischen Graphen
- Parameter und High Level Struktur des gFSG Algorithmus
 - Candidate Generation
 - Frequency Counting
 - Iterative Shape Adjustment
- Experimentelle Evaluation

Begriffe I

- Geometric Graph
 - Ungerichteter Graph
 - Mit Labeln, nicht eindeutig
 - Jeder Knoten hat eine zwei bzw. dreidimensionale Koordinaten
- Coordinate Matching Tolerance r

Begriffe II

- r tolerant frequent Subgraph
 - D Menge von Graphen
 - $0 < \sigma ≤ 1.0$
 - Ein Subgraph ist frequent, wenn er mindestens σ|D| % aller Graphen gefunden wird (Minimum Support)

Begriffe III

- Geometric Configuration
 - Koordinatensystems ergibt sich aus Kanten des Graphen
 - 2D : Kante des Graphen entspricht X-Achse

3D: zwei Kanten (nicht parallel) mit einem gemeinsamen Knoten als XY-Ebene

Geometric Configuration Example

- Skalierung des Graphen eine Kante besitzt Länge eins
- ⇒ Erlaubt uns skalen-invariante Isomorphismen zu finden

Geometric Graph Isomorphism

- Finde geometrische Transformation zwischen g₁ und g₂
 - Rotation, Skalierung und Translation
 - Nur zwischen den Knoten
- Überprüfe die Topologie (und Label) jeder Transformation
 - Topologie: Struktur des Graphen

Geometric Graph Isomorphism

- 1. g₁ und g₂ haben unterschiedliche Anzahl Knoten oder Kanten
 -> false
- 2. Zufällige geometrische Konfiguration von g₂
 - Für jede geometrische Konfiguration von g₁
 - 2. Für jeden Knoten v in ${\sf g}_{\scriptscriptstyle 1}$
 - 1. Finde den nächsten Knoten u in g₂ mit gleichem Label
 - 2. Distanz zwischen den Knoten größer r -> break
 - 3. u wird dem Knoten v zugeordnet
 - 3. Bijektion gefunden
 - 4. Ist Bijektion eine zulässiger topologischer Isomorphismus zwischen g_1 und g_2
 - -> return true
- 3. Return false

Parameter von gFSG

- Eingabe
 - Graphenmenge D
 - Support threshold σ
 - Matching Tolerance r
 - Shape Adjustment Type type
 - Anzahl der Shape Adjustment Iterationen N
- Ausgabe
 - Alle Subgraphen die den Minimum Support erfüllen
 - Frequent Subraphs (FSG) genannt

GFSG High Level Structure

- 1. Spezifizieren aller FGS der Größe 1,2 und 3 in D
- 2. Solange es 2 FGS der Größe k-1 gibt
 - 1. Generiere alle Kandidaten g^k der Größe k (Candidate Generation)
 - 2. Für jeden Kandidaten der Größe k
 - 1. Berechne die Menge S der Graphen $t \in D$ in denen der Kandidat vorkommt (Frequency Counting)
 - 2. Kommt der Kandidat in keinem der Graphen vor fahre mit nächstem Kandidaten fort
 - 3. Gegebenenfalls wird die geometrische Form des Kandidaten angepasst (Iterative Shape Adjustment)
 - 3. Verwirft Subgraphen g^k die den Minimum Support nicht erfüllen

GFSG High Level Structure

- 1. Spezifizieren aller FGS der Größe 1,2 und 3 in D
- 2. Solange es 2 FGS der Größe k-1 gibt
 - 1. Generiere alle Kandidaten g^k der Größe k (Candidate Generation)
 - 2. Für jeden Kandidaten der Größe k
 - 1. Berechne die Menge S der Graphen $t \in D$ in denen der Kandidat vorkommt (Frequency Counting)
 - 2. Kommt der Kandidat in keinem der Graphen vor fahre mit nächstem Kandidaten fort
 - 3. Gegebenenfalls wird die geometrische Form des Kandidaten angepasst (Iterative Shape Adjustment)
 - 3. Verwirft Subgraphen g^k die den Minimum Support nicht erfüllen

Candidate Generation

- Zusammenfügen FGS der Größe k zu einem der Größe k+1
 - müssen gleichen k-1 Subgraph (Kern) enthalten
 - nicht unbedingt eindeutig
 - Kern hat mehrere Authomorphismen
 - FSG hat mehrere geometrische Kerne

Candidate Generation Algo

- 1. Für jedes Paar g_i, g_i von FSG der Größe k
 - 1. Für jede Kante e des 1. FSG
 - 1. Entferne Kante e aus FSG -> k-1 Subgraph
 - 2. Enthält der 2. FSG g_j den k-1 Subgraph -> gleicher Kern
 - 1. Zusammenfügen der beiden FSG g_i und g_j zu einem neuen Subgraphen der Größe k+1
 - 2. k+1 Subgraph wurde bereits generiert -> continue
 - Subgraph ist neuer Kandidat Größe k+1

Join Beisipiel

- 1. Spezifizieren aller FGS der Größe 1,2 und 3 in D
- 2. Solange es 2 FGS der Größe k-1 gibt
 - 1. Generiere alle Kandidaten g^k der Größe k
 - 2. Für jeden Kandidaten der Größe k
 - 1. Berechne die Menge S der Graphen t ε D in denen der Kandidat vorkommt
 - 2. Kommt der Kandidat in keinem der Graphen vor fahre mit nächstem Kandidaten fort
 - 3. Gegebenenfalls wird die geometrische Form des Kandidaten angepasst
 - 3. Verwirft Subgraphen g^k die den Minimum Support nicht erfüllen

- 1. Spezifizieren aller FGS der Größe 1,2 und 3 in D
- 2. Solange es 2 FGS der Größe k-1 gibt
 - 1. Generiere alle Kandidaten g^k der Größe k
 - 2. Für jeden Kandidaten der Größe k
 - Berechne die Menge S der Graphen t ε D in denen der Kandidat vorkommt
 - 2. Kommt der Kandidat in keinem der Graphen vor fahre mit nächstem Kandidaten fort
 - 3. Gegebenenfalls wird die geometrische Form des Kandidaten angepasst
 - 3. Verwirft Subgraphen g^k die den Minimum Support nicht erfüllen

Count Frequency (EAL)

- Edge Angle List (eal)
 - Multimenge von Winkeln zwischen jedem Kantenpaar mit gemeinsamem Knoten

eal(g)=
$$\{\theta_1, \theta_2, \theta_3\}$$

- Winkel sind invariant gegenüber geometrischen Transformationen
- wenn g isomorph zu einem Subgraphen aus t ∈ D dann eal(g) Teilmenge eal(t)

Count Frequency (TID List)

- TID List (Transaction ID List)
 - Liste von Graphen (Transactions) in denen ein FSG enthalten
 - Berechnung der Häufigkeit eines Kandidaten der Größe k+1 :
 - 1. Berechne Schnittmenge der TIDs der beiden zugrunde liegenden FSG der Größe k
 - 2. Größe der Schnittmenge kleiner als Minimum Support =>Subgraph der Größe k+1 verworfen
 - 3. Sonst
 Berechne Häufigkeit mit Subgraph Isomorphismus auf den
 Graphen die sich in der Schnittmenge befinden

Count Frequency (Hybrid)

- Finden der frequent edge angles
- TID list für jeden frequent edge angle der Graphen die eine Instanz des Winkels enthalten

$$tid(\theta) = \{t_1, t_2, ..., t_n\}$$

- 3. Kandidat g hat eine eal(g)= $\{\theta_1, \theta_2, ..., \theta_n\}$
- 4. Berechnung der Schnittmenge der TID Listen der verschiedenen edge angles in g

$$I=Schnitt_i(tid(\theta_i))$$

 $\theta_i \in eal(g)$

=>Wenn g den Minimum Support erfüllt ist |I|≥σ|D|

Frequency Counting

- Bewertung der drei Ansätze
 - Edge Angle List
 - Sehr langsam
 - TID List
 - Schnell verbraucht aber sehr viel Speicher
 - Speichere Listen von allen FSG der Größe k
 - Hybrid
 - 5 mal schneller als Edge Angle List
 - 2 mal langsamer als TID List
 - Verbraucht allerdings viel weniger Speicher

=> Hybrid wurde in allen Experimenten verwendet

- 1. Spezifizieren aller FGS der Größe 1,2 und 3 in D
- 2. Solange es 2 FGS der Größe k-1 gibt
 - 1. Generiere alle Kandidaten g^k der Größe k
 - 2. Für jeden Kandidaten der Größe k
 - 1. Berechne die Menge S der Graphen t ε D in denen der Kandidat vorkommt
 - 2. Kommt der Kandidat in keinem der Graphen vor fahre mit nächstem Kandidaten fort
 - 3. Gegebenenfalls wird die geometrische Form des Kandidaten angepasst
 - 3. Verwirft Subgraphen g^k die den Minimum Support nicht erfüllen

- 1. Spezifizieren aller FGS der Größe 1,2 und 3 in D
- 2. Solange es 2 FGS der Größe k-1 gibt
 - 1. Generiere alle Kandidaten g^k der Größe k
 - 2. Für jeden Kandidaten der Größe k
 - 1. Berechne die Menge S der Graphen t ε D in denen der Kandidat vorkommt
 - 2. Kommt der Kandidat in keinem der Graphen vor fahre mit nächstem Kandidaten fort
 - 3. Gegebenenfalls wird die geometrische Form des Kandidaten angepasst
 - 3. Verwirft Subgraphen g^k die den Minimum Support nicht erfüllen

Anpassung der geometrischen Form

- Geometrische Konfiguration eines Kandidaten nicht unbedingt optimal
 - Problem: Einige vorkommen des Kandidaten können nicht gefunden werden
 - Lösung: Anpassung der From des Kandidaten
- Führe Frequency Counting für jeden Kandidaten mehrmals durch
- In jeder Iteration :
 - Berechne Menge der vorkommenden isomorphen Subgraphen
 - Berechne Durchschnitt der Knotenkoordinaten
- Diese Koordinaten sind die neuen Koordinaten des Kandidaten (Angepasste Form)

Anpassung der geometrischen From

- Terminierung
 - Simple Adjustment (SA)
 - Terminiert nach N Iterationen (Benutzerspezifiziert)
 - Supporting Transaction Monitoring (STM)
 - Wie Simple Adjustment, aber ...
 - ...frühere Terminierung möglich, wenn die Menge der gefundenen Subgraphen sich in zwei aufeinanderfolgenden Iterationen nicht verändert
 - Downward Closure Check (DWC)
 - Wie Supporting Transaction Monitoring, aber...
 - ...wenn Veränderungen des Kandidaten zu groß werden kann es passieren, dass die k-1 Subgraphen des Kandidaten nicht mehr den Minimum Support erfüllen => Terminiert

Experimentelle Evaluierung

- Skalierbarkeit bezüglich der Datenbankgröße D
- Skalierbarkeit bezüglich der Graphengröße T
- Effektivität der Formanpassung

- σ Minimum Support Threshold
- t Laufzeit in Sekunden
- I Größe des größten FSG
- # f Gesamtzahl der gefunden FSG

Skalierbarkeit bezüglich der Datenbankgröße

	Total Number of Transactions D														
σ	D = 1000			D = 2000			D = 5000			D = 10000			D = 20000		
%	t[sec]	l	#f	t[sec]	l	#f	t[sec]	l	#f	t[sec]	l	#f	t[sec]	l	#f
5.0	8	6	119	14	6	113	34	6	114	75	5	117	179	6	111
4.5	9	6	137	20	6	138	45	6	139	83	5	132	209	6	126
4.0	10	6	168	22	6	157	52	6	160	96	6	151	244	6	154
3.5	12	6	206	30	6	209	57	6	184	110	6	185	281	6	182
3.0	14	7	236	35	6	246	73	7	236	126	6	217	321	6	224
2.5	20	7	314	55	7	329	85	7	287	150	6	259	357	7	268
2.0	26	7	415	72	7	430	124	7	404	205	7	352	522	7	359
1.5	48	7	687	107	7	613	218	8	630	410	7	552	842	7	526
1.0	123	8	1393	315	8	1395	460	9	1189	1107	8	1295	1974	8	1019
0.5	694	10	4960	1478	10	4623	2108	10	3593	4621	9	3869	9952	9	3354
0.25	2043	13	14235	5674	12	15232	8972	12	11103	17421	9	10929	41895	11	11177

Skalierbarkeit bezüglich der Graphengröße

	Average Transaction Size T												
σ	T	' = 14	1	T = 19			7	T=23	3	T = 28			
%	t[sec] l # f		t[sec]	l	# <i>f</i>	t[sec] l		# <i>f</i>	t[sec]	l	# <i>f</i>		
5.0	15	6	74	21	6	93	37	6	116	92	6	201	
4.5	16	6	86	26	6	112	46	6	142	102	6	236	
4.0	17	6	110	29	6	130	54	6	166	115	7	277	
3.5	19	7	127	34	6	162	64	6	205	128	7	309	
3.0	22	7	154	41	6	196	73	6	249	175	7	408	
2.5	27	7	195	59	6	247	96	7	302	331	7	658	
2.0	36	7	264	81	6	325	142	7	420	543	8	993	
1.5	53	7	386	138	6	502	291	7	729	1002	8	1599	
1.0	92	9	680	284	8	927	612	9	1385	2530	10	3936	
0.5	406	9	2072	1438	9	2859	3050	9	4620	9923	12	13178	
0.25	1226	10	5358	4997	10	8949	10824	12	15232	29686	14	38788	

Effektivität der Formanpassung

Dataset	σ [%]	Adjustment	N	t[sec]	#f]
DTP	2.0	None	_	124	404]
5,000			2	155	541	1 . 04 0/
compounds		SA	5	209	562	+ 34 %
			10	248	558	
			2	138	543	1
		STM	5	187	542	
			10	233	536	
			2	138	543	1
		DWC	5	187	542	
			10	248	557	
DTP	1.0	None	_	1107	1295]
10,000			2	1180	1637] ,
compounds		SA	5	1509	1638	+ 25 %
			10	1720	1678	
			2	1026	1618	1
		STM	5	1383	1666	
			10	1676	1699	
			2	1123	1631	1
		DWC	5	1461	1628	
			10	1737	1683	

Danke für die Aufmerksamkeit

Fragen???