# Big data science Day 3



F. Legger - INFN Torino <a href="https://github.com/Course-bigDataAndML/MLCourse-2324">https://github.com/Course-bigDataAndML/MLCourse-2324</a>

### Yesterday

- Big data, analytics
- Distributed computing
- ML: Feature engineering

# Today

- Machine learning
  - Architectures
  - Train model and evaluate



### Remember:







Machine learning involves two mathematical entities

**Model**: a mathematical model describes the relationship between different aspects of the data

**Features**: a feature is a representation of raw data





### Feature engineering

to us as feature vectors.

### Raw Data

```
house info: {
num rooms: 6
num bedrooms: 3
street name: "Shorebird Way"
num basement rooms: -1
                      Raw data doesn't come
```

# Feature Vector



1116

Process of creating features from raw data is **feature engineering**.

# Example: supervised classification

### Ingredients

- Inputs: X, is a matrix of size n
   (number of samples) x m
   (number of features)
- Features: X, transformed inputs, matrix nxm
- Labels: y, vector size n



### Recipe: supervised classification

For each input vector
 X<sub>i</sub> predict z<sub>i</sub>, i=1...n



- $z_i = \phi(W^T X_i) \text{ yields } (0,1)$
- Weights: W (matrix) contains the model parameters
- Activation function: φ (step function, sigmoid)



- Cost function == loss function == prediction
   error, function of the model parameters W
- Aim: find weights W that <u>minimize cost function</u>

### Activation function

- Turns unbounded output into a known range/shape
- For example, **sigmoid** function only outputs numbers in the range (0, 1)
  - big negative numbers become ~0
  - big positive numbers become ~1.

$$S(x) = \frac{1}{1 + e^{-x}} = \frac{e^x}{e^x + 1}.$$



### Another example, linear regression

- Inputs (features): x;
- Labels: y<sub>i</sub>
- Model: y = a + bx
- Weight+bias (parameters to be found): a, b
- Cost function: Mean
   Square Error (MSE)
- No activation function: problem is linear



x (independent)

$$ext{MSE} = rac{1}{n} \sum_{i=1}^n (Y_i - \hat{Y_i})^2.$$

# Supervised learning

### Decision trees: supervised classification





Typically used in combinations (Random forest, Gradient Tree Boosting)



 Each tree sees part of the training sets and captures part of the information it contains

### Ensembles

### Bagging

 building multiple models (typically of the same type) from different subsamples of the training dataset

#### Boosting

 building multiple models (typically of the same type) each of which learns to fix the predictions errors of a prior model in the chain

#### Stacking

 building multiple models (typically of different types) and a supervisor model that learns how to best combine the predictions of the primary model

### Weighting|Blending

 combine multiple models into single prediction using different weight functions

# Neural networks: supervised classification

 Basic unit: Neuron. A neuron takes inputs, does some math with them, and produces one output

More on NN tomorrow!



# Support vector machines (SVG), supervised classification



# Unsupervised learning

### Challenges

- No label (ground truth) in input dataset
- The system must have the ability to recognize patterns in the data without explicitly being told what patterns to identify



# Principal Component Analysis (PCA), unsupervised

original data space



# K-means clustering, unsupervised



1. *k* initial "means" (in this case *k*=3) are randomly generated within the data domain (shown in color).



2. *k* clusters are created by associating every observation with the nearest mean. The partitions here represent the Voronoi diagram generated by the means.



3. The centroid of each of the *k* clusters becomes the new mean.



 Steps 2 and 3 are repeated until convergence has been reached.

You must define **k**, **the number of clusters**, and which **distance** to use!

### K-means: Distances

**Taxicab** or **Manhattan** distance: sum of the projections along all axis









|                 | TYPE      | NAME                   | DESCRIPTION                                                                                                                                                                                        | ADVANTAGES                                                                                   | DISADVANTAGES                                                                                                                         |
|-----------------|-----------|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| Linear          | /         | Linear<br>regression   | The "best fit" line through all data points. Predictions are numerical.                                                                                                                            | Easy to understand –<br>you clearly see what the<br>biggest drivers of the<br>model are.     | Sometimes too simple to capture complex relationships between variables.      Tendency for the model to "overfit".                    |
|                 | 1         | Logistic<br>regression | The adaptation of <b>linear regression</b> to problems of classification (e.g., yes/no questions, groups, etc.)                                                                                    | Also easy to understand.                                                                     | X Sometimes too simple to capture complex relationships between variables.  X Tendency for the model to "overfit".                    |
|                 | *         | Decision<br>tree       | A graph that uses a <b>branching method</b> to match all possible outcomes of a decision.                                                                                                          | Easy to understand and implement.                                                            | X Not often used on its own for prediction because it's also often too simple and not powerful enough for complex data.               |
| Tree-based      | N/<br>YIN | Random<br>Forest       | Takes the average of many decision trees, each of which is made with a sample of the data. Each tree is weaker than a full decision tree, but by combining them we get better overall performance. | A sort of "wisdom of the crowd". Tends to result in very high quality models. Fast to train. | X Can be slow to output predictions relative to other algorithms.      X Not easy to understand predictions.                          |
|                 | Y         | Gradient<br>Boosting   | Uses even weaker decision trees, that are increasingly focused on "hard" examples.                                                                                                                 | High-performing.                                                                             | A small change in the feature set or training set can create radical changes in the model.      Not easy to understand predictions.   |
| Neural networks | *         | Neural<br>networks     | Mimics the behavior of the brain.  Neural networks are interconnected neurons that pass messages to each other. Deep learning uses several layers of neural networks put one after the other.      | Can handle extremely complex tasks - no other algorithm comes close in image recognition.    | X Very, very slow to train, because they have so many layers. Require a lot of power.  X Almost impossible to understand predictions. |

# All models are wrong, but some are useful (George Box)

### Hyperparameters vs parameters

- Model parameters are learned during training when we optimize a loss function -> weights
- Hyperparameters are not model parameters and they cannot be directly trained from the data -> model architecture

| Hyperparameters                                          | Parameters           | Score |
|----------------------------------------------------------|----------------------|-------|
| n_layers = 3<br>n_neurons = 512<br>learning_rate = 0.1   | Weights optimization | 85%   |
| n_layers = 3<br>n_neurons = 1024<br>learning_rate = 0.01 | Weights optimization | 80%   |
| n_layers = 5<br>n_neurons = 256<br>learning rate = 0.1   | Weights optimization | 92%   |

# Hyperparameter tuning



### Modeling Algorithm



# Overfitting / underfitting







Underfitting

Model doesn't have enough (hyper-)parameters to describe data



Overfitting
Model has too many
(hyper-)parameters

### Classification metrics

- ROC: Receiver Operating Characteristics
- AUC: Area under the curve
- TPR: True positive rate
- FPR: False positive rate

Column totals:

TNR/FNR: True/False negative rate





# **Confusion** matrix

1/precision+1/recall

# Training and test set



### Cross-validation: is you model robust?

- Train/test split
- K-folds cross validation





Loss, or could be any other metrics of interest



Or training epochs (number of iterations)

### Uncertainties

 Covariate shift/domain shift: change in the distribution of the input variables between the training and the test datasets

#### How to treat:

- Propagate all errors in your input variables to the output model
- Use cross-validation and get an estimate of the variance of the model performances when changing hyperparameters
- Compare model performances when dropping/adding features
- If possible, compare your model results with another architecture
- Ideally, measure error with independent model-data comparison (such as tag&probe method) just like any other classifier

#### Reference