2012 Science Atlantic Math Competition

QUESTIONS

1. Determine whether the series

$$\sum_{j=1}^{\infty} \left(\sum_{k=1}^{j} k\right)^{-1}$$

converges or diverges. If the series converges, find the value of the sum.

2. Solve the following system of equations:

$$xy - x - y = 11$$
$$yz - y - z = 14$$

$$zx - z - x = 19$$

3. Let $U = \{(x, y) : x^2 + y^2 < 1\}$ be the open unit disc in the plane \mathbb{R}^2 . A *chord* of U is naturally defined to be a chord of the unit circle with its distinct endpoints removed.

Prove or disprove: there is a bijection $f: \mathbb{R}^2 \to U$ such that every straight line in \mathbb{R}^2 is mapped by f onto a chord of U.

- 4. Let $\lfloor x \rfloor$ denote the greatest integer less than or equal to x. Let $n = \lfloor \frac{1}{a \lfloor a \rfloor} \rfloor$, for a positive non integer real number a. Show that $\lfloor (n+1)a \rfloor \equiv 1 \pmod{n+1}$
- 5. Find all real values of a such that $x^3 6x^2 + 11x + a = 0$ has three integer solutions.
- 6. To see who pays for the beer, A and B play the following simple game. They shuffle a deck of cards, and then in turns draw cards. The first person to draw an ace pays for the beer. If A draws first, what is the probability that he buys? (Express your answer as a fraction in lowest terms.)
- 7. Suppose UV is a diameter of a circle, and that P and Q are points on the same semicircle with UP < UQ. The tangents to the semicircle at P and Q meet at R. Suppose that S is the point of intersection of UP and VQ. Prove that RS is perpendicular to UV.
- 8. Let $[L_n]$ be the $n \times n$ matrix with $[L_n]_{ij} = \frac{1 (-1)^{\min\{i,j\}}}{2}$. Show that $[L_n]$ is invertible for all n and that every element of $[L_n]^{-1}$ is in $\{-1,0,1\}$.