# Project 2 AMES, IA HOUSING SALE PRICE PREDICTION

Group 3

#### Problem Statement

To create a regression model based on the Ames Housing Dataset to predict the most accurate sale price vs other competitors.



Measure of Success

To analyse the data and make recommendations on development/investment opportunities and how to increase the value of home.

# Data Cleaning and EDA





Missing Values

Outliers

# Data Cleaning and EDA





# Preprocessing

Change ordinal data to a ranking system

Dummy creation - from 73 to 204 features

Multicollinearity between variables





# Preprocessing

- 1. Feature engineering (Property age)
- 2. Sale price normalisation
- 3. Train-test split (train set: 0.9)
- 4. Scaling





# Modeling

|                                    | Optimal Value                   | Scores             |               |
|------------------------------------|---------------------------------|--------------------|---------------|
| Model                              | Hyperparameters                 | R-Squared          | RMSE          |
| Vanilla Linear Regression (LR)     | -                               | -845069952923141.5 | 11076079.2310 |
| LR with Ridge Regularization       | Alpha = 76.634                  | 0.92689            | 0.10301       |
| LR with Lasso Regularization       | Alpha = 0.00316                 | 0.93237            | 0.09908       |
| LR with Elastic Net Regularization | Alpha = 0.00803<br>Lambda = 0.5 | 0.93183            | 0.099475      |

The selected model for predicting sale price in test dataset is LR with Lasso regularization

#### Evaluation



- → Certainly strong model with R-squared score of 0.93
- → There are very few poor predictions and overall no outliers to be highlighted
- → No evidence of overfitting as the R2 score on training set was slightly lower at 0.91
- → The model generalized well on unseen data
- → Produced one of the best RSME score on Kaggle 21247.42348

#### Inferential Learning with Lasso



- 1. Prediction of sale price is not the only output from Lasso Regression model.
- 2. It helps with **inferential learning** as to the features that positively and negatively impacts sale price of a property.
- This will be particularly helpful in making recommendations to home owners preparing to sell their home.

#### Conclusions and Recommendations (for home owners and real estate co)

- Addressed problem statement by developing a relatively accurate model to predict housing prices based on various features
- Obtained reliable and significant features/Lasso coefficients to guide our recommendations:

| Top 3 house features that fetch <u>higher price</u>                                                                                                                                         | Top 3 house features that <u>hurt price</u>                                                                          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| <ol> <li>Bigger houses</li> <li>Well renovated (or good quality)         houses (Priorities: i. Ext qual, ii. kitchen         quality, iii. basement qual)</li> <li>Newer houses</li> </ol> | <ol> <li>Unfinished basement</li> <li>Houses located in commercial zone</li> <li>Townhouse is not popular</li> </ol> |

#### Recommendations for investors and real estate co

- Strong selling point: Good property investment and higher commission
- Richer (with better amenities)
   neighbourhood



#### Future Recommendations to increase our user base

Improve accuracy of our model by collecting more data

- Expand scope of our model to predict housing price for other cities:
  - Supply and demand
  - Interest rates
  - Economic growth
  - Demographics (e.g. profiling of homeowners)

