සියලු ම හිමිකම් ඇවිරිණි/ $\mathrm{A}\ell\ell$ Rights Reserved] **නව නිර්දේශය** / $extbf{New Syllabus}$

35, විශාඛා විදහාලකකා / විශාඛා විදහාලය කොළඹ 05, විශාඛා විදහලය කිරීම 05, විශාඛා විදහලය කොළඹ 05, විශාඛා විදහලය කොළඹ 05, විශාඛා විදහලය කොළඹ 05, විශාඛා විදහලය කිරීම 05, විශාඛා විදහලය කිරීම 05, විදහලය කිරීම 05, විශාඛා විදහලය 05, විශාඛා විදහලය 05, විශාඛා විදහලය 05, විදහලය 05, විදහලය 05, විදහලය 05, විදහලය 05, විදහලය

අධායන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2022 General Certificate of Education (Adv. Level) Examination, 2022

රසායන විද**ා**ව I

Chemistry

12- ශ්රණීය Grade -12

අනාවරණ පරීක්ෂණය - ජූනි 2021 Assessment Test - June 2021

මාර්ගගත ඇගයීම

Online assessment

පැය එකයි. One hours

02

උපදෙස් ඃ

- * ආවර්තිතා වගුවක් සපයා ඇත.
- 💥 මෙම පුශ්න පතුය පිටු 5 කින් යුක්ත වේ.
- 💥 සියලු ම පුශ්නවලට පිළිතුරු සපයන්න.
- 💥 ගණක යන්තු භවිතයට ඉඩ දෙනු නො ලැබේ.
- 🔆 උත්තර පතුයේ නියමිත ස්ථානයේ ඔබගේ විභාග අංකය ලියන්න.
- 🔻 මාර්ගගත පුශ්න පතුයේ දක්වා ඇති උපදෙස්වලට අනුව පිළිතුරු ඉදිරිපත් කරන්න..
- * 1 සිට 25 තෙක් වූ එක් එක් පුශ්නයට (1),(2),(3),(4),(5) යන පිළිතුරුවලින් **නිවැරදි හෝ ඉතාමත් ගැලපෙන** පිළිතුර තෝරාගෙන , එය උත්තර පතුයේ දැක්වෙන උපදෙස් පරිදි පිළිතුර මත ${
 m Click}$ කිරීමේන් දක්වන්න.

 $R = 8.314 \text{ J mol}^{-1} \text{ K}^{-1}$ සාර්වතු වායු නියතය ඇවගාඩ්රෝ නියතය $N_A=6.022 ext{ x } 10^{23} ext{ mol}^{-1}$ ප්ලෑන්ක් ගේ නියතය h = $6.626 \times 10^{-34} \text{ J s}$ ආලෝකයේ පුවේගය $c = 3 \times 10^8 \text{ ms}^{-1}$

- $^{18}_{8}0_{2}^{2-}$ අයනයේ අඩංගු පුෝටෝන, නාූුවෝන හා ඉලෙක්ටෝන ගණන අනුපිළිවෙළින් පෙන්නුම් කරන්නේ මින් (1) කුමන සංඛා කුලකය මගින් ද?
 - (1) (8, 10, 10)

(2) (1, 20, 14)

(3) (16, 20, 18)

(4) (8, 10, 6)

- (5) (16, 14, 20)
- (2) $XeOF_4$ අණුව සම්බන්ධව වැරදි පුකාශය වන්නේ,
 - (1) අණුවේ ඉලෙක්ටුෝන යුගල ජාාාමිතිය අෂ්ඨතලීය වේ.
 - (2) අණුවේ හැඩය චතුරසු පිරමීඩ වේ.
 - (3) අණුව ධැවීය වේ.
 - (4) මධා පරමාණුව වටා VSEPR යුගල හතක් පවතී.
 - (5) මධා පරමාණුවේ ඔක්සිකරණ අංක +6 කි.
- $_{53}^{63}Cu$ පරමාණුවේ භූමි අවස්ථාවේදී එහි පවතින යුග්ම නොවූ සංයුජතා ඉලෙක්ටුෝනය විස්තර කිරීම සඳහා භාවිතා කළ හැකි ක්වොන්ටම් අංක කුලකය n , l , $m_{
 m l}, m_{
 m s}$ වනුයේ,
 - (1) 3, 0, $0 + \frac{1}{2}$
- (2) 3, 2, 0, $-\frac{1}{2}$
- (3) $4, 0, 0, +\frac{1}{2}$

- (4) 4, 1, 1, $+\frac{1}{2}$
- (5) 4, 3, 1, $+\frac{1}{2}$
- (4) පහත සඳහන් කුමන වගන්තිය අසතාවේ ද?
 - (1) වායු අණුවක චාලක ශක්තිය එහි නිරපේක්ෂ උෂ්ණත්වයට අනුලෝමව සමානුපාතික වේ.
 - (2) නා වර දක්ණ අත්වයේ දී හරි හුරින් වා වා වෙම නිවා හ නා ත්වන වායුවන හින නග වඩ වැඩිය.
 - (3) වායුවක උෂ්ණත්වය වැඩි කරන විට එහි උපරිම සම්භවාතා වේගය වැඩි වේ.
 - (4) යම් උෂ්ණත්වයකදී දෙන ලද වායු පරිමාවක අණු සියල්ලේම චාලක ශක්තිය එකම වේ.
 - (5) යම් වායුවක දෙන ලද වේගයක් සහිත අණු භාගය උෂ්ණත්වය වැඩිවන විට විචලනය වේ.

(1) nitrous oxide(3) dinitrogen monox		වක්සයිඩයේ IUPAC නම ව (2) nitric oxide (4) nitrogen monor	
උෂ්ණත්වයන් පිළිවෙළින් P_{so_2} නම්, Po_2 : P_{so_2} අතර	ie වෙවෘත බඳුන් දෙකක O ₂ 8g 27 ⁰ C හා 127 ⁰ C වේ. O ₂ වේ (අනුපාතය මින් කවරක් ද?) 3:4 (3) 4:	ා SO ₂ මගින් ඇති කරන වි (S- 32 , O - 16)	්ඩන පිළිවෙළින් Po₂ හා
(b) පදාර්ථයේ ධන අ (c) උචිත තත්ත්ව යට	දි පිළිතුර තෝරන්න. අාරෝපිත අංශු ඒකරාශීව ාරෝපණ පවතී යැයි මැඹිමිම වතේ දී විකිරණ ශක්තියට අ දර්ශනය කළ හැකි බවත් අ	න් විසින් පෙන්නුම් කරන (ංශු ධාරාවක් ලෙස හැසිරිය	 හැකි බවත්, පදාර්ථයක
 (1) (a) පමණක් සතා වේ. (3) (c) හා (a) පමණක් සත (5) (a), (b) හා (c) සියල්((2) (b) හා (c) පමණක් (4) (a), (b) හා (c) සිය	
${ m I}_{({ m g})}$ හි සම්මත උත්පාදන එන	රධවපාතන එන්තැල්පිය ΔH ₁ ශ් ත්තැල්පිය ΔH ₂ වේ නම් ත එන්තැල්පිය අගය සමාන වද		
(1) $\Delta H_1 + \Delta H_2$ (4) $\Delta H_1 + \frac{\Delta H_2}{2}$	(2) $2\Delta H_2 + (5) \frac{\Delta H_2}{2} + \Delta I$	· ·) $2\Delta H_2 - \Delta H_1$
2	ඩයක් වන $\mathrm{N}x\mathrm{Hy}$ වලින් 20 ි ලබා දේ. වායුමය හයිඩුයිඩ ෙ		ය කිරීමෙන් $N_{2(g)}30~{ m cm}^3$
(1) HN₃(4) N₂H₄	(2) NH ₃ (5) N ₂ H ₅	(3) N ₂ H ₂
(10) පහත සංයෝග / අයනවල A - NCl ₃		අනුපිළිවෙළ නිවැරදි ව නිරූප $\mathrm{Cl}_4 \qquad \qquad \mathrm{D} ext{ - } \mathrm{I} \mathit{Cl}_4^-$	ණය වන්නේ, ${ m E}$ - ${ m BC} l_3$
 (1) D < C < A < E < B (3) D < A < B < E < C (5) B < C < D < A < I 		(2) D < B < A < C <(4) B < A < C < D <	
(11) නිශ්කීය දවාක් සහිත ටෙරින පරිදි පුතිකියා කරවන ලදී.	නැලික් අම්ල $(\mathrm{C_8H_6O_4})$ සාම්	-	\mathbf{D}_3 දාවණයක් සමඟ පහත
	ООН + Na ₂ CO ₃ — — ООН	COONa + CO ₂ + H ₂ C COONa)
මෙහිදී පිට වූ CO_2 වායුවේ පුතිශතය වන්නේ, (C = 12 , 1		m ³ වේ. සාම්පලයේ අඩංගු	නිශ්ඛීය දුවාගේ ස්කන්ධ

(2) 25%

(5) 80%

(3) 50%

(1) 20%

(4) 75%

- (12) සමාන සාන්දුණය සහිත A අම්ල සහ B භෂ්මය සමාන පරිමාවකින් මිශු කළ විට පද්ධතියේ ΔH^0 සඳහා කවර පුකාශය අසතා ද?
 - (1) A, HCl හා B, NaOH වූ විට ΔH^0 අගය $\overline{}$ 57 kJmol $\overline{}$ 1 ට සමාන වේ.
 - (2) A, CH_3COOH හා NaOH වූ විට ΔH^0 අගය $57~kmol^{-1}$ ට වඩා අඩු වේ.
 - (3) A, H_2SO_4 හා B, NaOH වූ විට ΔH^0 අගය $57~kJmol^{-1}$ ට වඩා වැඩි වේ.
 - (4) A, H_2SO_4 හා B, $Ba(OH)_2$ වූ විට ΔH^0 අගය $57~kJmol^{-1}$ ට සමාන වේ.
 - (5) A, HCl හා B, NH4OH වූ විට ΔH^0 අගය $57~\mathrm{kJmol}^{-1}$ ට වඩා අඩු වේ.
- (13) නියත උෂ්ණත්වයේ දී පරිපූර්ණ වායුවක් සම්පීඩනය කිරීමේදී වෙනස් නොවන්නේ මින් කවරක් ද?
 - (1) ඝනත්වය

(2) අණු අතර දුර

(3) අණුවල මධාන වේගය

- (4) පිඩනය
- (5) වායු අණු අතර සිදුවන ගැටුම් සංඛාාව
- (14) Na_3PO_4 492 g ක ඇති මුළු අයන සංඛාාවම අඩංගු වන්නේ $Al(NO_3)_3$ හි කුමන ස්කන්ධයක ද?

$$(Na = 23, P = 31, O = 16, Al = 27, N = 14)$$

(1) 164 g

(2) 213 g

(3) 328 g

(4) 426 g

- (5) 639 g
- (15) $CO_{2(g)} + H_{2(g)} \longrightarrow CO_{(g)} + H_2O_{(g)}$

 25^{0} C 1atm හිදී ඉහත පුතිකියාව සඳහා $\Delta G = 28 \text{ kJmol}^{-1}$ ද $\Delta S = 42 \text{ Jmol}^{-1} \text{K}^{-1}$ ද වේ නම්, පුතිකියාව ස්වයංසිද්ධ වීමට පද්ධතිය රත් කළ යුතු උෂ්ණත්වය (0 C) වනුයේ,

(1) 40.5

(2) 567

(3) 691

(4) 798

(5) 94

• අංක 16 සිට 20 දක්වා පුශ්න වලට උපදෙස්

අංක 16 සිට 20 තෙක් වූ එක් එක් පුශ්නයේ දක්වා ඇති (a), (b), (c) හා (d) යන පුතිචාර හතර අතරෙන් එකක් හෝ වැඩි සංඛාාවක් හෝ නිවැරදිය. නිවැරදි පුතිචාරය / පුතිචාර කවරේදැයි තෝරා ගන්න.

- (a) හා (b) පමණක් නිවැරදි නම් (1) මත ද
- (b) හා (c) පමණක් නිවැරදි නම් (2) මත ද
- (c) හා (d) පමණක් නිවැරදි නම් (3) මත ද
- (a) හා (d) පමණක් නිවැරදි නම් (4) මත ද

වෙනත් පුතිචාර සංඛාාවක් හෝ සංයෝජනයක් හෝ නිවැරදි නම් 5 මත ද

උත්තර පතුයේ දැක්වෙන උපදෙස් පරිදි Click කරන්න.

උපදෙස් සම්පිණ්ඩනය				
(1)	(2)	(3)	(4)	(5)
(a) සහ (b) පමණක්	(b) සහ (c) පමණක්	(c) සහ (d) පමණක්	(a) සහ (d) පමණක්	වෙනක් පුතිචාර සංඛානවක් හෝ
නිවැ <i>ර</i> දියි	නිවැ <i>ර</i> දියි	නිවැ <i>ර</i> දියි	නිවැ <i>ර</i> දියි	සංයෝජනයක් හෝ නිවැරදියි

- (16) පහත අණු/ අයන අතුරින් sp^3 මුහුම්කරණයක් සහිත මධා පරමාණුවක් පවතින්නේ,
 - (a) BF_4^-
- (b) CCl_3^+
- (c) ICl_2^+
- (d) AsCl₃
- - (a) $Cr_2O_7^{2-} + H_2O \longrightarrow 2CrO_4^{2-} + 2H^+$
 - (b) $4HNO_3 \longrightarrow 4NO_2 + O_2 + 2H_2O$
 - (c) $2H_2O_2 \longrightarrow 2H_2O + O_2$
 - (d) $Cl_2 + 2NaOH \longrightarrow NaCl + NaOCl + H_2O$

- (18) 27^{0} C පවතින A නම් වායුව අඩංගු පරිමාව $75~\mathrm{dm}^{3}$ වන දෘඪ බඳුනක් තුළ අභාවන්තර පීඩනය $1520~\mathrm{cmHg}$ වේ. මෙම තත්ව යටතේ දී A වායුවේ සම්පීඩානා සාධකය $0.75~\mathrm{m}$. මෙම පද්ධතිය සම්බන්ධයෙන් පහත කවරක් සතාවේ ද?
 - (a) බඳුන තුළ A වායු මවුල 80.2 ක් ඇත.
 - (b) මෙම තත්ත්ව යටතේ දී A වායුව පරිපුර්ණව හැසිරේ නම් බඳුන තුළ වායු මවුල 60. 1 ක් පැවතිය යුතුය.
 - (c) මෙම පද්ධතියේ උෂ්ණත්වය $-48^{0}\mathrm{C}$ දක්වා අඩු කිරීමේදී A වායුව පරිපුර්ණ හැසිරීම පෙන්වයි.
 - (d) A අණු අතර ආකර්ෂණ බල පුබලතාව විකර්ෂණ බල පුබලතාවට වඩා වැඩිය.
- (19) පහළ උෂ්ණත්වයකදී හා $100 \mathrm{kPa}$ පීඩනයේදී ස්වයංසිද්ධ වන පුතිකිුයාවක්, එම පීඩනයේදී හා ඉහළ උෂ්ණත්වවලදී ස්වයංසිද්ධ නොවේ. එම පුතිකිුයාව සඳහා නිවැරදි පුකාශ වනුයේ,

	ΔG	ΔΗ	ΔS
(a) පහළ උෂ්ණත්වයේදී	_	-	
(b) පහළ උෂ්ණත්වයේදී	_	+	+
(c) ඉහළ උෂ්ණත්වයේදී	+	-	+
(d) ඉහළ උෂ්ණත්වයේදී	+	_	_

- (20) මින් සතා පුකාශය / පුකාශ තෝරන්න. (с-12 н-1 0-16)
 - (a) තාත්වික වායුවක් දුව තත්වයට පත් කළ හැකි වුවත් පරිපූර්ණ වායුවක් දුව තත්වයට පත්කළ නොහැක.
 - (b) H_2 හා O_2 පරිපූර්ණව හැසිරේ නම් එකම භාජනයක් තුළ ඇති H_2 හා O_2 සමාන ස්කන්ධ මගින් ඇතිකරන ආංශික පීඩන සමාන වේ.
 - (c) එකම තත්ව යටතේ දී පරිපූර්ණව හැසිරෙන මීතේන් හා ඔක්සිජන් වායු අණු සඳහා සමාන වර්ග මධානා මූල වේග ඇත.
 - (d) කිසියම් වායු පුමාණයක උෂ්ණත්වය වැඩි කළ විට හැමවිටම යම් වේගයකට වඩා අඩු වේගයක් තිබූ අණුවල භාගය අඩුවේ.

• අංක 21 සිට 25දක්වා පුශ්න වලට උපදෙස්

අංක 21 සිට 25 දක්වා පුශ්නවල දී එක් එක් පුශ්නය සදහා පුකාශ දෙක බැගින් ඉදිරිපත් කර ඇත. මෙම පුකාශ යුගලයට **හොඳින් ම** ගැලපෙනුයේ පහත වගුවෙහි දැක්වෙන (1), (2), (3), (4) සහ (5)යන පුතිවාර වලින් කවර පුතිවාරය දැයි තෝරා පිළිතුරු පතුයේ උචිත ලෙස click කරන්න.

පුතිචාරය	පළමු වැනි පුකාශය	දෙවන පුකාශය
(1)	සතඵය	සතාවන අතර පළමුවැනි පුකාශය නිවැදිරව පහදා දෙයි
(2)	සතාය	සතාාවන අතර පළමුවැනි පුකාශය නිවැදිරව පහදා නො දෙයි
(3)	සතුඵය	අසතාය
(4)	අසතාය	සතාය
(5)	අසතාය	අසතාය

	පළමුවැනි පුකාශය	දෙවැනි පුකාශය
21.	ඔක්සිජන් වල පළමුවන අයනීකරණ ශක්තිය, කාබන් හා නයිටුජන් වල පළමුවන අයනීකරණ ශක්ති අතර අගය අතරමැදි අගයක් ගනී.	ඔක්සිජන් පරමාණුවේ සහසංයුජ අරය කාබන් හා නයිටුජන් පරමාණුවල සහසංයුජ අරයන් අතර අතරමැදි අගයක් ගනී.
22.	කාමර උෂ්ණත්වයේදී ජලයේ අදාවා සමහර ලවණ වල ජලදාවානාව වැඩි කිරීමට රත් කළ යුතුය.	සම්මත සදුාවණ එන්තැල්පිය උෂ්ණත්වය වැඩිවන විට වැඩි වේ.
23.	NaCl ට වඩා NaBr හි අයනික ලක්ෂණ වැඩි වේ.	Cl^- ට වඩා Br^- හි ධුැවනශීලීතාව වැඩි වේ.
24.	නියත උෂ්ණත්වයේදී වායු අණුවක ස්කන්ධය වැඩිවන විට එහි වර්ග මධානා මූල වේගය අඩුවේ.	උෂ්ණත්වය නියත විට වායුවක චාලක ශක්තිය නියතයකි.
25.	කාබන්හි බහුරූපී ආකාර වන C(s,graphite) හා C (s,diamond) හි උත්පාදන එන්තැල්පි ශූනා වේ.	සමුද්දේශ ආකාරය ඇති ඕනෑම මූලදුවායක සම්මත උත්පාදන එන්තැල්පිය ශූනා වේ.

ආවර්තිතා වගුව

Visakha Vidyalaya , Colombo –05