

Data Processing Using Python

Data statistics, mining and application

ZHANG Li/Dazhuang

Nanjing University

Department of Computer Science and Technology

Department of University Basic Computer Teaching

Data Processing Using

Python

BASIC DATA
CHARACTERISTICS
ANALYSIS OF DATA
EXPLORATION

Data Exploration

check data errors

Data Exploration

understand data distribution characteristics and inherent regularities

Detect Data Errors

- Missing values
- Outliers
- Inconsistent data
 - **149 2 -> 149 2.0**
 - 1569936600 -> 2019-10-01

Basic Data Characteristics Analysis Method

Distribution Analysis

Statistical Analysis

Name: sepal length (cm), dtype: float64

Correlation Analysis

Distribution Analysis

- Distribution Analysis
 - quantitative data
 - qualitative data

Quantitative Data Distribution Analysis

histogram

```
>>> plt.hist(iris_df.iloc[:,0], 5, color = 'c')
```

normal distribution

test

>>> scipy.stats.normaltest(iris_df.iloc[:,0])

Qualitative Data Distribution Analysis

>>> iris_df.target.value_counts()

```
2 50
```

Name: target, dtype: int64

>>> iris_df.target.value_counts().plot(kind = 'pie')

Statistical Analysis

- Statistical Analysis
 - Central tendency analysis
 mean value, median
 - Dispersion tendency analysis

standard deviation, IQR(the difference between the upper quartile and the lower quartile)

Statistical Analysis

- Statistical Analysis
 - Central tendency analysis:

```
mean(), median()
```

Dispersion tendency analysis std(), quantile()

```
iris df.iloc[:,0].describe()
         150,000000
count
           5,843333
mean
std
           0.828066
min
           4,300000
25%
           5.100000
50%
           5.800000
75%
           6.400000
           7,900000
max
```

Name: sepal length (cm), dtype: float64

Correlation Analysis

- Common way
 - single graph
 - graph matrix
 - correlation coefficient

correlation coefficient - Pearson

$$\mathsf{r}_{\mathsf{X}\mathsf{Y}} = \frac{\sum (X - \bar{X})(Y - \bar{Y})}{(\sqrt{\sum_{i=1}^{n} (X_i - \bar{X})^2})(\sqrt{\sum_{i=1}^{n} (Y_i - \bar{Y})^2})}$$

Constraints:

- Linear relationship between two variables.
- 2. All variables are continuous.
- 3. The variables are all in normal distribution, and the binary distribution is also in normal distribution.
- 4. Two variables are independent.

correlation coefficient - Pearson

```
positive correlation: r > 0
negative correlation: r < 0
unrelated: |r| = 0
complete linear correlation: |r| = 1
```

```
      sepal length (cm)
      sepal width (cm)
      target

      sepal length (cm)
      1.000000
      -0.117570
      0.782561

      sepal width (cm)
      -0.117570
      1.000000
      -0.426658

      target
      0.782561
      -0.426658
      1.000000
```

Data Processing Using

Python

DATA STATISTICS AND ANALYSIS BASED ON DANDAS

Data Display

	code	name	price
0	MMM	3M	155.82
1	AXP	American Express	114.41
2	AAPL	Apple	227.01
3	BA	Boeing	375.70
4	CAT	Caterpillar	121.04
5	CVX	Chevron	113.85
6	CSCO	Cisco	47.52
7	KO	Coca-Cola	54.54
8	DIS	Disney	130.27
9	DOW	Dow Chemical	45.34
10	MOX	Exxon Mobil	68.97
11	GS	Goldman Sachs	200.80
12	HD	Home Depot	227.93
13	IBM	IBM	142.99
14	INTC	Intel	50.92
15	כמכ	Johnson & Johnson	133.66
16	JPM	JPMorgan Chase	114.62
17	MCD	McDonald's	211.69
18	MRK	Merck	85.00
19	MSFT	Microsoft	138.12
20	NKE	Nike	93.07
21	PFE	Pfizer	35.93
22	PG	Procter & Gamble	124.00
23	TRV	Travelers Companies Inc	144.96
24	UTX	United Technologies	133.21
25	UNH	UnitedHealth	219.80
26	VZ	Verizon	59.90
27	V	Visa	175.98
28	WMT	Wal-Mart	118.16
29	WBA	Walgreen	52.97

djidf

```
close
                               high
                                             low
                                                                volume
                                                         open
2018-10-19
            106.730003
                         107.550003
                                     104.059998
                                                  104.059998
                                                               5726300
2018-10-22
            104.510002
                         106.959999
                                     104,449997
                                                  106.610001
                                                               5003100
2018-10-23
            104.379997
                         104.519997
                                     101.839996
                                                  102.410004
                                                               4223800
2018-10-24
            101.839996
                         104.949997
                                     101.510002
                                                  104.430000
                                                               4056700
                                                               3378900
2018-10-25
            103.599998
                         104.169998
                                     101.800003
                                                  102.480003
2018-10-26
            101.250000
                         102,660004
                                     100.139999
                                                  102.540001
                                                               5395700
2018-10-29
            101.190002
                         103.250000
                                     100.040001
                                                  102,470001
                                                               4238700
2018-10-30
            102.080002
                         102.389999
                                     100.410004
                                                  101.599998
                                                               3778200
2018-10-31
            102.730003
                         103.709999
                                     102.550003
                                                  103.059998
                                                               4511300
                                                               2786800
2018-11-01
            104.040001
                         104.269997
                                      103.019997
                                                  103.260002
2018-11-02
            103,709999
                         105.050003
                                      102,889999
                                                  104.930000
                                                               4322200
2018-11-05
            105,209999
                         105.400002
                                     103,800003
                                                  104.040001
                                                               2697700
2018-11-06
            104,980003
                         105.660004
                                                  104.980003
                                                               2856000
                                     104.370003
2018-11-07
            107.309998
                         107.480003
                                     104.900002
                                                  105.730003
                                                               3606900
2018-11-08
            108.500000
                         108,629997
                                      107.029999
                                                  107.029999
                                                               2896700
2018-11-09
            108.279999
                         109.330002
                                     107.349998
                                                  108.379997
                                                               4444000
2018-11-12
            106,489998
                         108,440002
                                     106.300003
                                                  108.160004
                                                               3154600
2018-11-13
            107.860001
                         108.199997
                                     106.470001
                                                  106.650002
                                                               3021800
2018-11-14
            107,769997
                         109.330002
                                     106,889999
                                                  108.610001
                                                               4978100
2018-11-15
            109.599998
                         109.699997
                                      106.339996
                                                  106.680000
                                                               3742600
```

quotesdf

Basic Filtering and Statistics

- Compute the average of last trade price for all DJI constituents.
- 2. Select the name of all companies whose last trade price are greater than or equal to 300.

>>> djidf.price.mean()

133.148

>>> djidf[djidf.price >= 300].name

3 Boeing

Name: name, dtype: object

Basic Statistics and Filtering

- Seek the company information that the latest trade price in the DJI constituent stocks is more than or equal to 300 or less than or equal to 50.
- Count the opening days of AXP in September 2019.

```
Source
```

Basic Statistics and Filtering

 Compute the total number of rise and fall days in form.

 Compute the number of rise and fall days according to close price of every adjacent pair of days.

```
>>> len(quotesdf[quotesdf.close > quotesdf.open])
130
>>> len(quotesdf)-130
122
```

```
>>> status = np.sign(np.diff(quotesdf.close))
>>> status
array([-1., 1., -1., ..., 1., -1., 1.])
>>> len(status[status==1])
131
>>> len(status[status==-1])
118
```

Basic Statistics and Filtering

 Sort DJI constituent stocks according to the last trade price, and choose the first three companies.

```
Source
>>> tempdf = djidf.sort_values(by = 'price', ascending = False)
>>> tempdf
   code
                             price
                  name
                           372.31
     BA
                  Boeing
25 UNH UnitedHealth
                           238.50
   CSCO
                   Cisco
                            47.01
21
     PFE
                   Pfizer
                            36.65
>>> tempdf[:3].name
3
          Boeing
25
    UnitedHealth
12
     Home Depot
Name: name, dtype: object
```

Grouping

 Calculate the number of opening days of AXP for each month in the past year.


```
>>> month = [item[5:7] for item in quotesdf.index] 
>>> x = quotesdf.groupby(month).open.count()
```

```
Output:
     19
     21
03
     21
22
05
     20
06
     22
22
80
     20
09
Name: close, dtype: int64
```

Grouping

Order of Grouping

- Splitting
- ② Applying
- 3 Combining

groupby()与apply()

 Calculate the number of opening days of AXP for each month in the past year.


```
>>> month = [item[5:7] for item in quotesdf.index]
```

>>> quotesdf.groupby(month).apply(len)

```
Output:
    21
02
    19
03
    21
04
    21
05
    22
06
    20
07
    22
09
    20
10
    23
Name: close, dtype: int64
```

apply()

```
Source
```

```
>>> quotesdf.max()
>>> quotesdf.max(axis = 1)
>>> quotesdf.loc[:, ['close', 'open']].astype(int)
>>> quotesdf.apply(max)
>>> quotesdf.apply(max, axis = 1)
>>> quotesdf.loc[:, ['close', 'open']].apply(np.int32)
>>> quotesdf.loc[:, ['close', 'open']].apply(int)
>>> quotesdf.loc[:, ['close', 'open']].applymap(int)
>>> quotesdf.volume.apply(float) # apply() also can be applied on every element of a Series object
>>> quotesdf.loc[:, ['close', 'open']]= quotesdf.loc[:, ['close', 'open']].apply(np.int32)
```

Merge

Form of Merge

- Append
 - add additional row into
 DataFrame
- Concat
 - Connect pandas objects
- Join
 - Connect SQL type

Append

Merge the trade information between September 1st and 5th of year 2019 into the record of the last two days of June.

```
S_{\text{ource}}
>>> p = quotesdf['2019-06-01':'2019-06-30'][-2:]
>>> p
                            high
                                        low
                close
                                                  open
                                                         volume
2019-06-27 123.940002 124.410004 123.559998 123.690002 1504300
2019-06-28 123.440002 124.550003 123.199997 124.290001 4338900
>>> q = quotesdf['2019-09-01':'2019-09-05']
>>> q
                                                  open
                close
                            high
                                                         volume
2019-09-03 117.599998 120.279999 117.519997 119.860001 3198700
2019-09-04 118.400002 118.730003 117.800003 118.419998 3746900
2019-09-05 120.669998 121.629997 119.500000 119.500000 5261100
>>> p.append(q)
                close
                            high
                                        low
2019-06-27 123.940002 124.410004 123.559998 123.690002 1504300
2019-06-28 123.440002 124.550003 123.199997 124.290001 4338900
2019-09-03 117.599998 120.279999 117.519997 119.860001 3198700
2019-09-04 118.400002 118.730003 117.800003 118.419998 3746900
2019-09-05 120.669998 121.629997 119.500000 119.500000 5261100
```

Concat

Merge the first 3 and the last 3 records of AXP stock data in September 2019.

Join

code	name
AXP	
КО	

code	name	volume	month
AXP			
AXP			
КО			
КО			

Join

 Merge the monthly mean volume result of American Express and Coca-Cola with DJI constituents information.

code|name|volume|month

	code	name	price
0	MMM	3M	155.82
1	AXP	American Express	114.41
2	AAPL	Apple	227.01
1 2 3 4	BA	Boeing	375.70
4	CAT	Caterpillar	121.04
5 6	CVX	Chevron	113.85
	CSC0	Cisco	47.52
7	KO	Coca-Cola	54.54
8	DIS	Disney	130.27
9	DOW	Dow Chemical	45.34
10	MOX	Exxon Mobil	68.97
11	GS	Goldman Sachs	200.80
12	HD	Home Depot	227.93
13	IBM	IBM	142.99
14	INTC	Intel	50.92
15	JNJ	Johnson & Johnson	133.66
16	JPM	JPMorgan Chase	114.62
17	MCD	McDonald's	211.69
18	MRK	Merck	85.00
19	MSFT	Microsoft	138.12
20	NKE	Nike	93.07
21	PFE	Pfizer	35.93
22	PG	Procter & Gamble	124.00
23	TRV	Travelers Companies Inc	144.96
24	UTX	United Technologies	133.21
25	UNH	UnitedHealth	219.80
26	VZ	Verizon	59.90
27	V	Visa	175.98
28	WMT	Wal-Mart	118.16
29	WBA	Walgreen	52.97

djidf

	volume	code	month
01	4.216338e+06	AXP	01
02	3.096963e+06	AXP	02
02 03	3.366676e+06	AXP	03
04	3.439100e+06	AXP	04
0 -1	3.163909e+06	AXP	05 05
96	2.856915e+06	AXP	96
07 07	3.324177e+06	AXP	97
08	3.291932e+06	AXP	08
09	3.936210e+06	AXP	09
10	3.572539e+06	AXP	10
11	3.437376e+06	AXP	11
12	5.076395e+06	AXP	12
01	1.384537e+07	KO	01
02	2.045106e+07	КО	02
03	1.733149e+07	КО	03
04	1.133406e+07	КО	04
05	1.173954e+07	ко	05
06	1.242934e+07	ко	06
07	1.171300e+07	ко	07
08	1.235928e+07	ко	08
09	1.082578e+07	КО	09
10	1.389021e+07	ко	10
11	1.333130e+07	КО	11
12	1.621624e+07	KO	12

AKdf

Join

```
Source
```

```
>>> pd.merge(djidf.drop(['price'], axis = 1), AKdf, on = 'code')
  code
                                volume month
                  name
   AXP American Express 4.216338e+06
                                           01
   AXP American Express 3.096963e+06
                                           02
   AXP American Express
                         3.366676e+06
                                           03
                         5.076395e+06
                                            12
11
   AXP American Express
12
    KO
               Coca-Cola
                         1.384537e+07
                                           01
13
                         2.045106e+07
    KO
               Coca-Cola
                                           02
21
    KO
               Coca-Cola
                         1.389021e+07
                                            10
22
               Coca-Cola
                         1.333130e+07
    KO
                                            11
23
               Coca-Cola 1.621624e+07
                                            12
    KO
```

	code	name	volume	month
0	AXP	American Express	4.216338e+06	01
1	AXP	American Express	3.096963e+06	02
2	AXP	American Express	3.366676e+06	03
3	AXP	American Express	3.439100e+06	04
4	AXP	American Express	3.163909e+06	05
5	AXP	American Express	2.856915e+06	06
6	AXP	American Express	3.324177e+06	07
7	AXP	American Express	3.291932e+06	08
8	AXP	American Express	3.936210e+06	09
9	AXP	American Express	3.572539e+06	10
10	AXP	American Express	3.437376e+06	11
11	AXP	American Express	5.076395e+06	12
12	KO	Coca-Cola	1.384537e+07	01
13	KO	Coca-Cola	2.045106e+07	02
14	KO	Coca-Cola	1.733149e+07	03
15	KO	Coca-Cola	1.133406e+07	04
16	KO	Coca-Cola	1.173954e+07	05
17	KO	Coca-Cola	1.242934e+07	06
18	KO	Coca-Cola	1.171300e+07	07
19	KO	Coca-Cola	1.235928e+07	08
20	KO	Coca-Cola	1.082578e+07	09
21	KO	Coca-Cola	1.389021e+07	10
22	KO	Coca-Cola	1.333130e+07	11
23	KO	Coca-Cola	1.621624e+07	12

Data Processing Using

Python

CLUSTER ANALYSIS

Cluster

cluster analysis

grouping a set of objects in such a way that objects in the same group (called a cluster) are more similar (in some sense or another) to each other than to those in other groups (clusters).

- Feature
 - Based on similarity
 - Have multiple cluster centers

K-MEANS

K-means algorithm uses k points in space as the centers to cluster all objects.

A Daily Example

print(result)

	Math	English	Python	Music
ming	88	64	96	85
MING	92	99	95	94
peng	91	87	99	95
PENG	78	99	97	81
meng	88	78	98	84
MENG	100	95	100	92

Output:

[100110]

```
# Filename: kmeansStu1.pv
import numpy as np
from scipy.cluster.vq import vq, kmeans, whiten
list1 = [88.0, 74.0, 96.0, 85.0]
list2 = [92.0, 99.0, 95.0, 94.0]
list3 = [91.0, 87.0, 99.0, 95.0]
list4 = [78.0, 99.0, 97.0, 81.0]
list5 = [88.0, 78.0, 98.0, 84.0]
list6 = [100.0, 95.0, 100.0, 92.0]
data = np.array([list1,list2,list3,list4,list5,list6])
whiten = whiten(data)
centroids, = kmeans(whiten, 2)
result, = vg(whiten, centroids)
```

Solve with Specific Tools

```
learn
# Filename: kmeansStu2.py
import numpy as np
from sklearn.cluster import KMeans
list1 = [88.0,74.0,96.0,85.0]
list2 = [92.0,99.0,95.0,94.0]
list3 = [91.0,87.0,99.0,95.0]
list4 = [78.0,99.0,97.0,81.0]
list5 = [88.0,78.0,98.0,84.0]
list6 = [100.0,95.0,100.0,92.0]
X = np.array([list1, list2, list3, list4, list5, list6])
kmeans = KMeans(n clusters = 2).fit(X)
pred = kmeans.predict(X)
print(pred)
```

```
from sklearn import datasets
from sklearn import svm
clf = svm.SVC(gamma=0.001, C=100.)
digits = datasets.load_digits()
clf.fit(digits.data[:-1], digits.target[:-1])
clf.predict(digits.data[-1])
```

Output:

[0 1 1 1 0 1]

Another Example

• Cluster 10 DJI constituents according to close price trend of every adjacent pair of days.

```
['MMM','AXP','AAPL','BA','CAT','CVX','CSCO','KO','DIS','DD']
# Filename: kmeansDJI.py
listDji = ['MMM','AXP','AAPL','BA','CAT','CVX','CSCO','KO','DIS','DD']
listTemp = [0] * len(listDji)
for i in range(len(listTemp)):
  listTemp[i] = create df(listDji[i]).close
                                          # a function for creating a DataFrame
status = [0] * len(listDji)
for i in range(len(status)):
  status[i] = np.sign(np.diff(listTemp[i]))
kmeans = KMeans(n clusters = 3).fit(status)
                                                 Output:
pred = kmeans.predict(status)
                                                 [2022002211]
print(pred)
```

Model Selection and Evaluation

Data Processing Using

Python

ADDLICATIONS OF DYTHON INTO SCIENCE AND ENGINEERING FIELDS

Computation of Trigonometric Function

```
# Filename: mathA.py
import numpy as np
import matplotlib.pyplot as plt
x = np.linspace(-np.pi, np.pi, 256)
s = np.sin(x)
c = np.cos(x)
plt.title('Trigonometric Function')
plt.xlabel('X')
plt.ylabel('Y')
plt.plot(x, s)
plt.plot(x, c)
```


Fast Fourier Transformation

Array: [1,1,...,1,-1,-1,...,1,1,1...,1]

Filename: mathB.py
import scipy as sp
import matplotlib.pyplot as plt
listA = sp.ones(500)
listA[100:300] = -1
f = sp.fft(listA)
plt.plot(f)

Image Processing

- Useful Python Library
 - Pillow(PIL)
 - OpenCV

Skimage


```
File
```

```
# Filename: pasteimg.py
from PIL import Image
im1 = Image.open('1.jpg')
print(im1.size, im1.format, im1.mode)
Image.open('1.jpg').save('2.png')
im2 = Image.open('2.png')
size = (288, 180)
im2.thumbnail(size)
out = im2.rotate(45)
im1.paste(out, (50,50))
```

Biopython 3000

- Developed by Biopython, a group focusing on computational biology with Python
- Sequence, Alphabet and Chromosome Map

```
>>> from Bio.Seq import Seq
>>> my_seq = Seq("AGTACACTGGT")
>>> my_seq.alphabet
Alphabet()
>>> print(my_seq)
```

AGTACACTGGT

Data Processing Using

Python

NLTK Library

Gutenberg Project

Count all books currently included in Gutenberg Project

```
>>> from nltk.corpus import gutenberg
>>> gutenberg.fileids()
['austen-emma.txt', 'austen-persuasion.txt', 'austen-sense.txt', 'bible-kjv.txt', 'blake-poems.txt', 'bryant-stories.txt', 'burgess-busterbrown.txt', 'carroll-alice.txt', 'chesterton-ball.txt', 'chesterton-brown.txt', 'chesterton-thursday.txt', 'edgeworth-parents.txt', 'melville-moby_dick.txt', 'milton-paradise.txt', 'shakespeare-caesar.txt', 'shakespeare-hamlet.txt', 'shakespeare-macbeth.txt', 'whitman-leaves.txt']
```

Gutenberg Project

Some simple calculation

```
>>> from nltk.corpus import gutenberg
>>> allwords = gutenberg.words('shakespeare-hamlet.txt')
>>> len(allwords)
37360
>>> len(set(allwords))
5447
>>> allwords.count('Hamlet')
99
>>> A = set(allwords)
>> longwords = [w for w in A if len(w) > 12]
>>> print(sorted(longwords))
```

```
Output:
['Circumstances',
'Guildensterne',
'Incontinencie',
'Recognizances',
'Vnderstanding',
'determination',
'encompassement',
'entertainment',
'imperfections',
'indifferently',
'instrumentall',
'reconcilement',
'stubbornnesse',
'transformation',
```

'vnderstanding']

Gutenberg Project

Filename: freqG20.py

from nltk.corpus import gutenberg

from nltk.probability import *

fd2 = FreqDist([sx.lower() for sx in allwords if sx.isalpha()]

print(fd2.B())

print(fd2.N())

fd2.tabulate(20)

fd2.plot(20)

fd2.plot(20, cumulative = True)

Output:

4699

30266

the and to of i you a my it in that ham is not his this with your but for

993 863 685 610 574 527 511 502 419 400 377 337 328 300 285 276 254 253 249 245

Inaugural Library

```
>>> from nltk.corpus import inaugural
>>> from nltk.probability import *
>>> fd3 = FreqDist([s for s in inaugural.words()])
>>> print(fd3.freq('freedom'))
0.00119394791917
```

```
# Filename: inaugural.py
from nltk.corpus import inaugural
from nltk.probability import *
cfd = ConditionalFreqDist(
            (fileid, len(w))
            for fileid in inaugural.fileids()
            for w in inaugural.words(fileid)
            if fileid > '1980' and fileid < '2010')
print(cfd.items())
cfd.plot()
```

Inaugural Library

```
Output:
dict items([('1981-Reagan.txt',
FreqDist({2: 538, 3: 525, 1: 420, 4:
390, 5: 235, 7: 192, 6: 176, 8: 109, 9:
93, 10: 66, ...})), ..., ('2005-Bush.txt',
FreqDist({3: 469, 2: 395, 4: 332, 1:
320, 7: 234, 5: 203, 6: 162, 9: 90, 8:
79, 10: 49, ...})), ('2009-Obama.txt',
FreqDist({3: 599, 2: 441, 4: 422, 1:
350, 5: 236, 6: 225, 7: 198, 8: 96, 9:
```

63, 10: 59, ...}))])

Summary

