2. ESTIMATING THE SURVIVAL AND HAZARD FUNCTIONS

This chapter's topics:

- Life table method
- Role of assumptions on censoring distributions
- Nonparametric maximum likelihood
- Derivation of Kaplan-Meier estimator: NPMLE
- Derivation of Greenwood's formula
- Nelson-Aalen estimator: Properties and derivation of variance
- Role of counting processes
- Approximating stochastic integrals

This chapter's goal:

- 1. Estimating the survival function (and other functions) when there are no covariates.
- 2. Both informally and with a connection to counting processes and martingales

References: TG Chapter 2; FH Chapter 0; KP Chapter 1

Distributional Assumptions

- Distributional assumptions on T_i :
 - need to balance objectives of data reduction (via assumptions) with robustness
 - i.e., the stronger and/or more numerous are the assumptions, the less robust will be the results
 - two ends of the continuum:

nonparametric methods, ..., (fully) parametric models

- Distributional assumptions on C_i :
 - since C_i is typically of no interest, distributional assumptions are best avoided
 - we illustrate this idea through an example

Life Table Methods

- Life table methods are often applied to grouped survival data (exact survival times unknown)
- the $(0, \tau]$ interval is divided into K non-overlapping subintervals:

$$(\tau_0, \tau_1], (\tau_1, \tau_2], \dots, (\tau_{K-1}, \tau_K],$$

where $\tau_0 \equiv 0$ and $\tau_K \equiv \tau$

- τ represents the end of the observation period, while τ_k is the end of the kth subinterval
- Label the kth subinterval $I_k = (\tau_{k-1}, \tau_k]$
- Assume (as usual) C_i is independent of T_i
- Assumptions on C_i : required

- i.e., how to account for censoring within intervals?

Life Table Methods: Example

- <u>Life table</u>: A summary of the survival data grouped into convenient intervals
- Oldest estimator of survival functions
- Example: Consider a prospective cohort study to evaluate a new treatment for hypertension
 - patients begin follow-up when treatment is assigned
 - patients are examined at the end of each year of follow-up
 - event of interest: death (all causes)
 - exact times of death/censoring are not known, although the year of occurrence is recorded
 - patients who do not show up for their annual follow-up visit are telephoned, to determine their status (dead, alive)
 - **Objective**: to estimate S(t) for t = 5 years

Life Table Method: Observed Data

- The kth subinterval is labeled $I_k = (\tau_{k-1}, \tau_k]$ where
 - $-y_k = \text{number at risk at start of } I_k$
 - $-d_k = \text{number of events in } I_k$
 - $-c_k$ = number of subjects censored in I_k
- The following data are observed over the first 5 years

Note: Data beyond t = 5 are not required to estimate S(5)

Life Table Example: Censoring Assumption #A1-A2

Let us begin with some unrealistic censoring assumptions

A1. Assume that all censoring occurs at the end of 5 years

$$\widehat{S}(5) = 1 - \widehat{F}(5) = 1 - \frac{\sum_{k=1}^{5} d_k}{y_1}$$

$$= 1 - \frac{76}{146} = 0.479$$

A2. Assume that all censoring occurs at the start of (0, 5]

$$\widehat{S}(5) = 1 - \widehat{F}(5) = 1 - \frac{\sum_{k=1}^{5} d_k}{y_1 - \sum_{k=1}^{5} c_k}$$
$$= 1 - \frac{76}{146 - 29} = 0.350$$

- Both of these estimators are biased, since C_i clearly does not follow the assumed distribution (and we are ignoring information we have)
- A more realistic assumption on C_i would incorporate the fact that the interval in which C_i occurs is always observed
 - need only to make assumptions on C_i within each I_k
- Necessitates an estimator for S(t) which combines interval-specific probabilities

• Set $q_k = P(T_i \le \tau_k | T_i > \tau_{k-1}) = P(T_i \in I_k | T_i > \tau_{k-1})$, such that

$$S(\tau_k) = \prod_{j=1}^k (1 - q_k)$$

• The estimator for q_k will depend on the assumptions regarding C_i over I_k

Life Table Example: Censoring Assumption #A3 and #A4

- A3. Consider a more realistic censoring assumption: censoring occurs at the start of each year
 - Set $\widehat{q}_k = d_k/(y_k c_k)$

k	τ_{k-1}	$ au_k$	y_k	d_k	c_k	\widehat{q}_k	$\widehat{S}(\tau_k)$
1	0	1	146	27	3	0.189	0.811
2	1	2	116	18	10	0.170	0.673
3	2	3	88	21	10	0.269	0.492
4	3	4	57	9	3	0.167	0.410
5	4	5	45	1	3	0.024	0.400

A4. Now, assume that censoring occurs at the end of each year

• Set $\widehat{q}_k = d_k/y_k$

k

$$\tau_{k-1}$$
 τ_k
 y_k
 d_k
 c_k
 \widehat{q}_k
 $\widehat{S}(\tau_k)$

 1
 0
 1
 146
 27
 3
 0.185
 0.815

 2
 1
 2
 116
 18
 10
 0.155
 0.689

 3
 2
 3
 88
 21
 10
 0.239
 0.524

 4
 3
 4
 57
 9
 3
 0.158
 0.441

 5
 4
 5
 45
 1
 3
 0.022
 0.432

• Censoring assumptions #A3 and #A4 are clearly more realistic than #A3 and #A4 but is this enough?

Life Table Example: Censoring Assumption #A5 (Uniform)

- Note: Actual censoring time is not used and may not even be known.
 - seems incorrect to have them count as much as uncensored subjects
 - however, they do contribute some follow-up to I_k
- A5. Most commonly, it is assumed that C_i is distributed uniformly within each I_k
 - Average censoring time is $E[C_i|C_i \in I_k] = (\tau_{k-1} + \tau_k)/2$
 - implies that each censored subject should count as 1/2 an observation
 - which suggests $\hat{q}_k = d_k/(y_k c_k + c_k/2)$

k	τ_{k-1}	$ au_k$	y_k	d_k	c_k	\widehat{q}_k	$\widehat{S}(\tau_k)$
						0.187	
2	1	2	116	18	10	0.162	0.681
3	2	3	88	21	10	0.253	0.509
4	3	4	57	9	3	0.162	0.426
5	4	5	45	1	3	0.023	0.417

Standard One-Sample Set-Up

- We now return to the setting where exact observation times are available
- Specifically, we observe (X_i, Δ_i) for a sample of i = 1, ..., n subjects, where (recall) $X_i = T_i \wedge C_i$ and $\Delta_i = I(T_i < C_i)$
- Assume that $\{(X_i, \Delta_i)\}_{i=1}^n \sim \text{i.i.d.}$
- Objective: to estimate S(t) for $t \in (0, \tau]$ where $\tau = \max\{X_1, \dots, X_n\}$
- We wish to make no distributional assumptions on T_i or C_i , except that $T_i \perp T_j \ (i \neq j)$ and $T_i \perp C_i$
- Set-up: the (unique) observed death times are given by:

$$t_1 < t_2 < \ldots < t_D$$

- Let d_i be the number of deaths observed at t_i
- Let c_j be the number of censored subjects in $(t_j, t_{j+1}]$, with the exact censoring times in $(t_j, t_{j+1}]$ given by

$$c_{j1} < c_{j2} < \ldots < c_{jc_i}$$

Kaplan-Meier Estimator

- Observed failure times: $t_1 < t_2 < \ldots < t_D$, where D is the number of unique times at which deaths are observed
- the Kaplan-Meier estimator of S(t) is given by:

$$\widehat{S}(t) = \prod_{j:t_j \le t} \left\{ 1 - \frac{d_j}{Y_j} \right\}$$

- $-Y_j = Y(t_j)$, number at risk at $t = t_j$ and
- $-d_j = dN(t_j)$, number of failures at $t = t_j$

- also known as product limit estimator
- could consider d_j/Y_j to be an estimator of $d\Lambda(t_j)$
- Intuitively why does the K-M estimator work?

For any set of small intervals:

$$S(t) = P(T > t) = P(T > t|T > v_4)P(T > v_4|T > v_3)$$

$$\times P(T > v_3|T > v_2)P(T > v_2|T > v_1)P(T > v_1)$$

For very small intervals:

If this interval contains an observed event time:

If the interval does not:

$$rac{1}{v_{j-1}} v_{j}$$
 $rac{1}{v_{j}} rac{1}{v_{j}} rac{$

$$\widehat{S}(t) = 1 \cdot 1 \cdot 1 \cdot (1 - \frac{d_1}{N_1}) \cdot (1 - \frac{d_2}{N_2}) \cdot 1 \cdot 1 \cdot \dots \cdot (1 - \frac{d_i}{N_i}) = \prod_{j: t_j \le t_i} (1 - \frac{d_j}{N_j})$$

where t_i is the largest observed event time $\leq t$.

Example: K-M Procedure

37

• Example: The following data are observed, with + denoting censoring:

$$\begin{split} \widehat{S}(20) &= \{1 - d\widehat{\Lambda}(2)\}\{1 - d\widehat{\Lambda}(8)\}\{1 - d\widehat{\Lambda}(15)\} \\ &= \left\{1 - \frac{dN(2)}{Y(2)}\right\} \left\{1 - \frac{dN(8)}{Y(8)}\right\} \left\{1 - \frac{dN(15)}{Y(15)}\right\} \\ &= \{1 - 1/10\}\{1 - 1/8\}\{1 - 1/6\} \\ &= 0.656 \end{split}$$

• We compute the KM estimator across the entire observation period

Kaplan-Meier Estimator: Properties

- $\widehat{S}(t)$ has a total of D jumps; one at each unique failure time
- $\widehat{S}(t)$ is well-defined up to the last observation time, $\tau = \max\{X_1, \dots, X_n\}$
- If last subject at risk is a death, $\widehat{S}(t)$ will drop to 0; if not, $\widehat{S}(t)$ will not reach 0

• Variance of K-M estimator can be estimated by Greenwood's formula:

$$\widehat{\sigma}_G^2(t) = \widehat{S}(t)^2 \sum_{j:t_i \le t} \frac{d_j}{Y_j(Y_j - d_j)}$$

Kaplan-Meier Estimator as a NPMLE

- We now derive the Kaplan-Meier estimator of S(t) as a nonparametric MLE
- The likelihood contribution, under independent censoring,

$$L_{i} = \{f(X_{i})S_{C}(X_{i})\}^{\Delta_{i}}\{S(X_{i})f_{C}(X_{i})\}^{1-\Delta_{i}}$$

$$\propto f(X_{i})^{\Delta_{i}}S(X_{i})^{1-\Delta_{i}} = S(X_{i})\lambda(X_{i})^{\Delta_{i}}$$

where S_C and f_C pertain to C_i

 \bullet We can build up L through the following probabilities,

$$P(T_i = t_j) = S(t_j^-) - S(t_j)$$

$$P(T_i > t_j) = S(t_j)$$

• Likelihood is given by,

$$L(S) = L = \prod_{j=1}^{D} \left[\{ S(t_j^-) - S(t_j) \}^{d_j} \prod_{\ell=1}^{c_j} S(c_{j\ell}) \right]$$

where we interpret L = L(S) as a likelihood across the parameter space of all valid S(t) functions

- To maximize L,
 - set $\widehat{S}(t)$ to be discontinuous at t_j for $j = 1, \ldots, D$
 - $\operatorname{set} \widehat{S}(c_{j\ell}) = \widehat{S}(t_j) \text{ for } \ell = 1, \dots, c_j$
- Therefore, L(S) is maximized by \widehat{S} which is cadlag (right continuous with left-hand limits), with jumps at t_j

• Re-expressing the likelihood, given our new information on its maximization,

$$L = \prod_{j=1}^{D} \{\lambda_j S(t_j^-)\}^{d_j} S(t_j)^{c_j}$$
 (1)

where $\lambda_i = d\Lambda(t_i)$

- Now, the jumps at $t = t_j$ (j = 1, ..., D) in S(t) will result in jumps in $\Lambda(t)$ at the same times
- Recall:

$$S(t) = \prod_{s \in (0,t]} \{1 - d\Lambda(s)\}$$

• We will now re-write the likelihood in terms of Λ increments, λ_j (j = $1, \dots, D$), then compute the MLEs, $\hat{\lambda}_j$; after which, the following will be the maximizer of L,

$$\widehat{S}(t) = \prod_{j:t_j \in (0,t]} \{1 - \widehat{\lambda}_j\}$$

- We now compute the $\widehat{\lambda}_j$ for $j = 1, \dots, D$
- Note that

$$S(t_j) = \prod_{\ell=1}^{j} (1 - \lambda_{\ell})$$

 $S(t_j^-) = \prod_{\ell=1}^{j-1} (1 - \lambda_{\ell})$

$$S(t_j^-) = \prod_{\ell=1}^{j-1} (1 - \lambda_\ell)$$

• Substituting these expressions into (1), we get

$$L = \prod_{j=1}^{D} \left\{ \lambda_{j} \prod_{\ell=1}^{j-1} (1 - \lambda_{\ell}) \right\}^{d_{j}} \left\{ \prod_{\ell=1}^{j} (1 - \lambda_{\ell}) \right\}^{c_{j}}$$

$$= \prod_{j=1}^{D} \lambda_{j}^{d_{j}} \prod_{\ell=1}^{j} (1 - \lambda_{\ell})^{d_{j} + c_{j}} (1 - \lambda_{j})^{-d_{j}}$$

$$= \prod_{j=1}^{D} \lambda_{j}^{d_{j}} (1 - \lambda_{j})^{-d_{j}} \prod_{\ell=1}^{j} (1 - \lambda_{\ell})^{d_{j} + c_{j}}$$

$$= \prod_{j=1}^{D} \lambda_{j}^{d_{j}} (1 - \lambda_{j})^{-d_{j}} \prod_{\ell=1}^{D} \prod_{j=1}^{j} (1 - \lambda_{\ell})^{d_{j} + c_{j}}$$

$$= \prod_{j=1}^{D} \lambda_{j}^{d_{j}} (1 - \lambda_{j})^{-d_{j}} \prod_{\ell=1}^{D} (1 - \lambda_{\ell})^{\sum_{j=\ell}^{D} (d_{j} + c_{j})}$$

$$= \prod_{j=1}^{D} \lambda_{j}^{d_{j}} (1 - \lambda_{j})^{-d_{j}} \prod_{\ell=1}^{D} (1 - \lambda_{\ell})^{Y_{\ell}}$$

$$= \prod_{j=1}^{D} \lambda_{j}^{d_{j}} (1 - \lambda_{j})^{Y_{j} - d_{j}}$$

$$= \prod_{j=1}^{D} \lambda_{j}^{d_{j}} (1 - \lambda_{j})^{Y_{j} - d_{j}}$$

where
$$Y_j = Y(t_j) = \sum_{k=j}^{D} (d_k + c_k)$$

• We obtain the MLEs for λ_i ,

$$\ell = \log L = \sum_{j=1}^{D} [d_j \log \lambda_j + (Y_j - d_j) \log(1 - \lambda_j)]$$

$$\frac{\partial \ell}{\partial \lambda_j} = \frac{d_j}{\lambda_j} - \frac{Y_j - d_j}{1 - \lambda_j}$$

$$\widehat{\lambda}_j = \frac{d_j}{Y_j}$$

• Through the invariance property, the NPMLE of S(t) is given by

$$\widehat{S}(t) = \prod_{j:t_j \le t} (1 - \widehat{\lambda}_j)$$

41

Cumulative Hazard Estimator

• Aside: Using the invariance property, an estimator for the cumulative hazard can be derived,

$$\Lambda(t) = \int_0^t d\Lambda(s)$$

$$\widehat{\Lambda}(t) = \int_0^t d\widehat{\Lambda}(s) = \sum_{j:t_i \le t} \frac{d_j}{Y_j}$$

• Known as the Nelson-Aalen estimator

Kaplan-Meier Estimator: Deriving Variance

• Obtaining the (observed) information matrix,

$$I_{jj} = \frac{-\partial^2 \ell}{\partial \lambda_j^2} = \frac{d_j}{\lambda_j^2} + \frac{Y_j - d_j}{(1 - \lambda_j)^2}$$
$$I_{j\ell} = \frac{-\partial^2 \ell}{\partial \lambda_j \partial \lambda_k} = 0$$

- ullet i.e., ${f I}$ matrix is diagonal, implying that $\widehat{\lambda}_j$ and $\widehat{\lambda}_k$ are uncorrelated
- Delta Method
 - Suppose that $\widehat{\boldsymbol{\theta}}$ is a consistent estimator of $\boldsymbol{\theta}_0$
 - First-order Taylor series, for $g(\cdot)$ invertible and differentiable,

$$g(\widehat{\boldsymbol{\theta}}) - g(\boldsymbol{\theta}_0) = \frac{\partial g}{\partial \boldsymbol{\theta}'} \bigg|_{\boldsymbol{\theta}_0} (\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta}_0)$$

- Then

$$V\{g(\widehat{\boldsymbol{\theta}})\} = \frac{\partial g}{\partial \boldsymbol{\theta}'} V(\widehat{\boldsymbol{\theta}}) \frac{\partial g}{\partial \boldsymbol{\theta}}$$

• With a view to estimating $V(\widehat{\lambda}_j)$, we estimate the diagonal elements of \mathbf{I} ,

$$\widehat{I}_{jj} = I_{jj}(\widehat{\lambda}_j) = \frac{d_j Y_j^2}{d_j^2} + \frac{(Y_j - d_j)Y_j^2}{(Y_j - d_j)^2}$$

$$= \frac{Y_j^2}{d_j} + \frac{Y_j^2}{(Y_j - d_j)}$$

$$= Y_j^2 \left\{ \frac{1}{d_j} + \frac{1}{(Y_j - d_j)} \right\} = \frac{Y_j^3}{d_j (Y_j - d_j)}$$

• Therefore, an estimator of the variance is given by

$$\widehat{V}(\widehat{\lambda}_j) = \widehat{I}_{jj}^{-1} = \frac{d_j(Y_j - d_j)}{Y_j^3} = \frac{\widehat{\lambda}_j(1 - \widehat{\lambda}_j)}{Y_j}$$

• To avoid taking variance of a product, we work with

$$\log \widehat{S}(t) = \sum_{j:t_j \le t} \log(1 - \widehat{\lambda}_j)$$

knowing that, via the Delta method,

$$V\{\log \widehat{S}(t)\} = S(t)^{-2}V\{\widehat{S}(t)\}\$$

• We now recover the variance as follows,

$$V\{\widehat{S}(t)\} = S(t)^{2}V \left\{ \sum_{j:t_{j} \leq t} \log(1 - \widehat{\lambda}_{j}) \right\}$$
$$= S(t)^{2} \sum_{j:t_{j} \leq t} V\{\log(1 - \widehat{\lambda}_{j})\}$$
$$= S(t)^{2} \sum_{j:t_{j} \leq t} \frac{\lambda_{j}}{(1 - \lambda_{j})Y_{j}}$$

• Since

$$V\{\log(1-\widehat{\lambda}_j)\} = \frac{1}{(1-\lambda_j)^2} V(\widehat{\lambda}_j)$$
$$= \frac{1}{(1-\lambda_j)^2} \frac{\lambda_j (1-\lambda_j)}{Y_j} = \frac{\lambda_j}{Y_j (1-\lambda_j)}$$

• Plugging in the MLEs,

$$\widehat{V}\{\widehat{S}(t)\} = S(t)^2 \sum_{j:t_i \le t} \frac{d_j}{Y_j(Y_j - d_j)}$$

which is Greenwood's formula.

Notes on Kaplan-Meier Estimator

- Heuristic derivation of K-M estimator's properties is obtained by assuming that the death process behaves locally like a binomial variates; results obtained are equal to those just shown
- Greenwood's formula is consistent for $V\{\widehat{S}(t)\}$
- However, its justification via MLE theory is invalid
 - as $n \to \infty$, the parameter space also goes to ∞
 - violates regularity conditions required to employ standard MLE asymptotic results
 - in addition, the observed (instead of the expected) information matrix was used

Kaplan-Meier: Confidence Intervals

• $n^{1/2}\{\widehat{S}(t) - S(t)\}$ is asymptotically normal, meaning that a 95% CI could be estimated by,

$$\widehat{S}(t) \pm 1.96 \ \widehat{\sigma}_G(t)$$

where $\widehat{\sigma}_G(t)$ is the standard deviation estimated by Greenwood's method

- CI bounds need not lie within [0,1]
- Often, CI's for S(t) are based on a transformation
 - apply normal approximation to $g(\widehat{S}(t))$, rather than $\widehat{S}(t)$ itself, then back-transform
 - e.g., common choices for g are $g(x) = \log(x)$ and $g(x) = \log\{-\log(x)\}$
- Set $g(x) = \log(x)$
- using the Delta Method,

$$\widehat{V}\{\log \widehat{S}(t)\} = \widehat{S}(t)^{-2} \widehat{\sigma}_G^2(t)$$

$$\operatorname{CI}\{\log S(t)\} = \log \widehat{S}(t) \pm 1.96 \widehat{\sigma}_G(t) \widehat{S}(t)^{-1}$$

$$= (\widehat{L}_{\ell}, \widehat{U}_{\ell})$$

$$\operatorname{CI}\{S(t)\} = (\exp{\{\widehat{L}_{\ell}\}}, \exp{\{\widehat{U}_{\ell}\}})$$

- lower CI bound constrained to be non-negative; no constraint on upper CI bound
- Another option: $g(x) = \log\{-\log(x)\}\$

$$g'(x) = \frac{1}{x \log x}$$
 $g^{-1}(x) = \exp\{-e^x\}$

• Using the Delta method,

$$\widehat{V}\{\log(-\log \widehat{S}(t))\} = \widehat{\sigma}_G^2(t)\{\widehat{S}(t)\log \widehat{S}(t)\}^{-2}$$

$$\text{CI }\{\log[-\log S(t)]\} = \log\{-\log \widehat{S}(t)\} \pm 1.96 \frac{\widehat{\sigma}_G(t)}{\{\widehat{S}(t)\log \widehat{S}(t)\}}$$

$$= (\widehat{L}_{\ell\ell}, \widehat{U}_{\ell\ell})$$

$$\text{CI }\{S(t)\} = (\exp\{-\exp(\widehat{U}_{\ell\ell})\}, \exp\{-\exp(\widehat{L}_{\ell\ell})\})$$

• Both bounds are constrained to lie in [0, 1] under this transform

Stochastic Integrals of Counting Processes

•

$$\widehat{\Lambda}(t) = \int_0^t Y(s)^{-1} dN(s)$$

: stochastic integral with respect to the counting process N(t)

- We will show that $\widehat{\Lambda}(t)$ is asymptotically unbiased for $\Lambda(t)$ under certain conditions.
- Recall: N(t) is a counting process;
 - counts events in (0,t]
 - cadlag: right continuous with left hand limits
 - non-decreasing, piece-wise constant, increments of size 1
- Y(t) is the at-risk process:
 - left-continuous: $Y(t) = Y(t^{-})$
 - non-increasing, with decrements of size 1

Nelson-Aalen Estimator: Properties

- We now demonstrate that the Nelson-Aalen estimator is asymptotically unbiased over the $(0, \tau_*]$ where
 - $-\tau_*$ is a constant chosen such that $P(X_i \ge \tau_*) > 0$;
 - the importance of this condition will become clear later

• We begin with,

$$\{\widehat{\Lambda}(t) - \Lambda(t)\} = \int_0^t Y(s)^{-1} dN(s) - \int_0^t d\Lambda(s)$$
$$= \int_0^t Y(s)^{-1} \{dN(s) - Y(s)d\Lambda(s)\}$$

• Now, break (0,t] up into m non-overlapping subintervals of equal length

$$-0 \equiv t_0 < t_1 < t_2 < \ldots < t_{m-1} < t_m \equiv t;$$

- subintervals:
$$(0, t_1], (t_1, t_2], \dots, (t_{m-1}, t]$$

$$-t_0 = 0, t_1 = t/m, t_2 = 2t/m, ..., t_m = t$$

• Define:

$$\Delta N_j = N(t_j) - N(t_{j-1})$$

$$\Delta(t_j) = t_j - t_{j-1}$$

- When $m \to \infty$, each $(t_{j-1}, t_j]$ can contain only 1 event
- We have,

$$\int_{0}^{t} Y(s)^{-1} \{ dN(s) - Y(s) d\Lambda(s) \}$$

$$= \lim_{m \to \infty} \sum_{j=1}^{m} Y(t_{j})^{-1} \{ \Delta N_{j} - Y(t_{j}) \lambda(t_{j}) \Delta(t_{j}) \}$$

where we would replace = with \approx for finite m

- Let F_j denote all the death and censoring information up to time t_j i.e., the process history up to time t_j
- Key points:

$$E[Y(t_j)|F_j] = Y(t_j)$$

$$\Delta N_j |F_j \sim \text{Binomial}\{Y(t_j), p_j\}$$

$$p_j = P(t_{j-1} < X_i \le t_j, \Delta_i = 1) |X_i > t_{j-1})$$

$$\approx \lambda_1^{\#}(t_j) \Delta(t_j)$$

where

$$\lambda_1^{\#}(t_j) = \lim_{\delta \to 0} \frac{1}{\delta} P(t_j \le X_i < t_j + \delta, \Delta_i = 1 | X_i \ge t_j).$$

• Under the independent censoring, we have

$$p_j \approx \lambda(t_j)\Delta(t_j)$$

$$\left(:: \lambda_T^{\#}(t) = \lim_{\delta \downarrow 0} \frac{1}{\delta} P(t \le X_i < t + \delta, \Delta_i = 1 | X_i \ge t) \right)$$

$$= \lim_{\delta \downarrow 0} \frac{1}{\delta} \frac{P(t \le X_i < t + \delta, \Delta_i = 1)}{P(X_i \ge t)}$$

$$= \lim_{\delta \downarrow 0} \frac{1}{\delta} \frac{P(t \le T_i < t + \delta, C_i > T_i)}{P(T_i \ge t, C_i \ge t)}$$

$$= \lim_{\delta \downarrow 0} \frac{1}{\delta} \frac{P(t \le T_i < t + \delta, C_i \ge t)}{P(T_i \ge t, C_i \ge t)}$$

If $C_i \perp T_i$, then

$$\lambda_T^{\#}(t) = \lim_{\delta \downarrow 0} \frac{1}{\delta} \frac{P(t \le T_i < t + \delta, C_i \ge t)}{P(T_i \ge t, C_i \ge t)}$$

$$= \lim_{\delta \downarrow 0} \frac{1}{\delta} \frac{P(t \le T_i < t + \delta)P(C_i \ge t)}{P(T_i \ge t)P(C_i \ge t)}$$

$$= \lim_{\delta \downarrow 0} \frac{1}{\delta} \frac{P(t \le T_i < t + \delta)}{P(T_i \ge t)}$$

$$= \lambda_T(t)$$

• Taking the mean of our N-A integral,

$$E\left[\widehat{\Lambda}(t) - \Lambda(t)\right] = E\left[\sum_{j=1}^{m} \frac{1}{Y(t_j)} \{\Delta N_j - Y(t_j)\lambda(t_j)\Delta(t_j)\}\right]$$

• Consider each summand,

$$E\left[\frac{1}{Y(t_j)} \{\Delta N_j - Y(t_j)\lambda(t_j)\Delta(t_j)\}\right]$$

$$= E\left[E\left[\frac{1}{Y(t_j)} \{\Delta N_j - Y(t_j)\lambda(t_j)\Delta(t_j)\}|F_j\right]\right]$$

$$= E\left[\frac{1}{Y(t_j)} \{E[\Delta N_j|F_j] - Y(t_j)\lambda(t_j)\Delta(t_j)\}\right]$$

S. Kang, STAT 6220 48

- The inner expectation equals $0 \ (\because \Delta N_j | F_j \sim \text{Binomial}\{Y(t_j), \lambda(t_j)\Delta(t_j)\})$
- Therefore, the marginal mean will also equal 0.
- Finally, summing the m zero-mean quantities,

$$E\left[\widehat{\Lambda}(t) - \Lambda(t)\right] = 0.$$

Technical Issues: Tail of Distribution

- Technical note: Even as $m \to \infty$ (meaning that $\Delta(t_j) \to 0$), $\widehat{\Lambda}(t)$ is still not unbiased.
- For t towards the tail of the X_i distribution, $P\{Y(t) = 0\} > 0$, leading to 0/0 terms in $\widehat{\Lambda}(t)$
 - It is typical to adopt the convention that $0/0 \equiv 0$;
 - It is also helpful to re-write the estimator as follows,

$$\widehat{\Lambda}(t) = \int_0^t I\{Y(s) > 0\} Y(s)^{-1} dN(s)$$

which is consistent for $\int_0^t P\{Y(s) > 0\} d\Lambda(s)$

• We can then state the following,

$$E\left[\int_{0}^{t} \{Y(s)^{-1}dN(s) - \lambda(s)ds\}I\{Y(s) > 0\}\right] = 0$$

implying that $E[\widehat{\Lambda}(t)] = E[\Lambda^*(t)]$ where $\Lambda^*(t) = \int_0^t I\{Y(s) > 0\} d\Lambda(s)$.

• Next, we derive the variance of the Nelson-Aalen estimator

Martingales: Introduction

• Define the Martingale and its corresponding increment as

$$M(t) = N(t) - \int_0^t Y(s)\lambda(s)ds$$
$$dM(t) = dN(t) - Y(t)\lambda(t)dt$$

• For the purposes of approximating stochastic integrals with sums, define

$$\Delta M_j = \Delta N_j - Y(t_j)\lambda(t_j)\Delta(t_j)$$

- Since $E[\Delta N_j|F_j] = Y(t_j)\lambda(t_j)\Delta(t_j)$, we have $E[\Delta M_j|F_j] = 0$.
- Letting $m \to \infty$,

$$E[dN(t)|\mathcal{F}(t^-)] = Y(t)\lambda(t)dt$$
 such that $E[dM(t)|\mathcal{F}(t^-)] = 0$

• In terms of martingale increments, we can write

$$\widehat{\Lambda}(t) - \Lambda(t) = \int_0^t \frac{dM(s)}{Y(s)} = \lim_{m \to \infty} \sum_{j=1}^m \frac{\Delta M_j}{Y(t_j)}.$$

• We now derive the variance.

Nelson-Aalen Estimator: Deriving Variance

• To begin, we work with the centered process,

$$V\{\widehat{\Lambda}(t) - \Lambda(t)\} = V\left\{\sum_{j=1}^{m} \frac{\Delta M_j}{Y(t_j)}\right\} = E\left[\left\{\sum_{j=1}^{m} \frac{\Delta M_j}{Y(t_j)}\right\}^2\right]$$
$$= \sum_{j=1}^{m} E\left[\left\{\frac{\Delta M_j}{Y(t_j)}\right\}^2\right] + 2\sum_{j=1}^{m} \sum_{k=j+1}^{m} E\left[\frac{\Delta M_j}{Y(t_j)}\frac{\Delta M_k}{Y(t_k)}\right].$$

• First, consider the second term, recalling that k > j,

$$E\left[\frac{\Delta M_j}{Y(t_j)}\frac{\Delta M_k}{Y(t_k)}\right] = E\left[E\left[\frac{\Delta M_j}{Y(t_j)}\frac{\Delta M_k}{Y(t_k)}\middle|F_k\right]\right]$$
$$= E\left[\frac{\Delta M_j}{Y(t_j)}E\left[\frac{\Delta M_k}{Y(t_k)}\middle|F_k\right]\right]$$
$$= 0$$

• Now, consider the first term,

$$E\left[\left\{\frac{\Delta M_j}{Y(t_j)}\right\}^2\right] = E\left[E\left[\left\{\frac{\Delta M_j}{Y(t_j)}\right\}^2 \middle| F_j\right]\right]$$
$$= E\left[Y(t_j)^{-2}E\left[(\Delta M_j)^2 \middle| F_j\right]\right]$$

• Now, since $\Delta N_j | F_j \sim \text{Binomial}\{Y(t_j), \lambda(t_j)\Delta(t_j)\},\$

$$E[\Delta N_j|F_j] = Y(t_j)\lambda(t_j)\Delta(t_j).$$

such that

$$E [(\Delta M_j)^2 | F_j] = E [\{\Delta N_j - E[\Delta N_j | F_j]\}^2 | F_j]$$

$$= V \{\Delta N_j | F_j\}$$

$$= Y(t_j) \lambda(t_j) \Delta(t_j) \{1 - \lambda(t_j) \Delta(t_j)\}$$

$$= Y(t_j) \lambda(t_j) \Delta(t_j)$$

since $\Delta(t_j)^2 \to 0$ faster than $\Delta(t_j) \to 0$ as $m \to \infty$

• Collecting the preceding results,

$$V\left\{\sum_{j=1}^{m} \frac{\Delta M_j}{Y(t_j)}\right\} = \sum_{j=1}^{m} E\left[Y(t_j)^{-2}E\left[(\Delta M_j)^2 | F_j\right]\right]$$
$$= \sum_{j=1}^{m} E\left[Y(t_j)^{-2}Y(t_j)\lambda(t_j)\Delta(t_j)\right]$$
$$= \sum_{j=1}^{m} E\left[\frac{\lambda(t_j)\Delta(t_j)}{Y(t_j)}\right]$$

• Taking the limit as $m \to \infty$,

$$V\left\{\widehat{\Lambda}(t) - \Lambda(t)\right\} = V\left\{\widehat{\Lambda}(t)\right\} = E\left[\int_0^t \frac{\lambda(s)}{Y(s)} ds\right]$$

• We can estimate this variance by

$$\widehat{\sigma}_{\Lambda}^{2}(t) = \int_{0}^{t} Y(s)^{-1} d\widehat{\Lambda}(s) = \int_{0}^{t} \frac{dN(s)}{Y(s)^{2}}$$
 (2)

<u>Note</u>: This variance can also be derived using a Poisson process argument. (Virtually) Any counting process can be modeled as a Poisson process. Check page 11 of TG for more details.

Comparison to Greenwood's Formula

Note: $-\log \widehat{S}_{KM}(t)$ converges almost surely to $\Lambda(t)$

• This implies another variance estimator for $\widehat{\Lambda}(t)$ via the Delta method,

$$V\{\widehat{\Lambda}(t)\} = V\{-\log \widehat{S}_{KM}(t)\} = \widehat{S}_{KM}(t)^{-2}V\{\widehat{S}_{KM}(t)\}$$

Greenwood's formula: $\widehat{V}\{\widehat{S}_{KM}(t)\} = \widehat{S}_{KM}(t)^2 \sum_{i:t_i \leq t} \frac{d_i}{Y_j(Y_j - d_j)}$.

Consequently, we have
$$\widehat{V}_1\{\widehat{\Lambda}(t)\} = \int_0^t \frac{dN(s)}{Y(s)\{Y(s) - \Delta N(s)\}}$$