Mathematics

Part I: Calculus

Joanna Franaszek spring 2019/2020

Warsaw School of Economics

Organisation

Important contacts

- · joint course by Maria Ekes and me
- · name: Joanna Franaszek
- · mail: jfrana@sgh.waw.pl,
- webpage (slides, notes, announcements etc.): https://jfranaszek.github.io/
- office hours: Monday 14:20, room TBA (please e-mail me in advance)

Grading

- 0-30 points: average of two written tests (mid-term and end-term, roughly 1/2 of the material)
- · 0-30 points: final written exam (full material)
- 0-5 points: activity in exercise classes

score	grade
0-30	2
31-36	3
37-42	3.5
43-48	4
49-54	4.5
55+	5

Textbooks and other helpful resources

- · official e-book
- WolframAlpha (desktop App or https://www.wolframalpha.com/
 - · some tutorials are available
- Stewart James: Calculus Early Transcendentals, 2011, Brooks/Cole, Belmont CA,USA;
- Howard Anton, Chris Rorres: Elementary Linear Algebra with Suplemental Applications, 2010, Clarence Center Inc, Denver MA.

Sequences and limits

Key points

- definition of a sequence; arithmetic sequence; geometric sequence;
- · bounded and monotone sequences;
- definition of a limit; simple arithmetic rules;
- squeeze theorem
- · conditions for convergence;
- · indeterminate forms

$$\frac{0}{0}, \frac{\infty}{\infty}, +\infty - \infty, 0 \cdot \infty, 1^{\infty}, 0^{0}, \infty^{0}$$

• the magical number **e**

Sequence

Definition (Sequence)

A sequence is a function $a : \mathbb{N} \to \mathbb{R}$, where \mathbb{N} is the set of natural numbers, and \mathbb{R} is the set of real numbers. The value $a(n) = a_n$ is called the n-th term of the sequence.

Notation: a_n is a single number, while $(a_n)_{n=1}^{\infty}$ or $(a_n)_{n=1}^{\infty}$ or simply $(a_n)_n$ or $\{a_n\}_n$ denote a sequence.

• A sequence $(a_n)_n$ that satisfies: $a_{n+1} = a_n + r \quad \forall_{n>1}$ is called an **arithmetic sequence** with a common difference r.

- A sequence $(a_n)_n$ that satisfies: $a_{n+1} = a_n + r \quad \forall_{n>1}$ is called an **arithmetic sequence** with a common difference r.
- A sequence $(a_n)_n$ that satisfies: $a_{n+1} = a_n \cdot q \quad \forall_{n>1}$ is called a **geometric sequence** with a common ratio r.

- A sequence $(a_n)_n$ that satisfies: $a_{n+1} = a_n + r \quad \forall_{n>1}$ is called an **arithmetic sequence** with a common difference r.
- A sequence $(a_n)_n$ that satisfies: $a_{n+1} = a_n \cdot q \quad \forall_{n>1}$ is called a **geometric sequence** with a common ratio r.
- sequence is (weakly) increasing if $a_{n+1} \ge a_n \quad \forall_n$

- A sequence $(a_n)_n$ that satisfies: $a_{n+1} = a_n + r \quad \forall_{n>1}$ is called an **arithmetic sequence** with a common difference r.
- A sequence $(a_n)_n$ that satisfies: $a_{n+1} = a_n \cdot q \quad \forall_{n>1}$ is called a **geometric sequence** with a common ratio r.
- sequence is (weakly) increasing if $a_{n+1} \ge a_n \quad \forall_n$
- A sequence is (weakly) decreasing if $a_{n+1} \le a_n \ \forall_n$

- A sequence $(a_n)_n$ that satisfies: $a_{n+1} = a_n + r \quad \forall_{n>1}$ is called an **arithmetic sequence** with a common difference r.
- A sequence $(a_n)_n$ that satisfies: $a_{n+1} = a_n \cdot q \quad \forall_{n>1}$ is called a **geometric sequence** with a common ratio r.
- sequence is (weakly) increasing if $a_{n+1} \ge a_n \quad \forall_n$
- A sequence is (weakly) decreasing if $a_{n+1} \le a_n \ \forall_n$
- A sequence is **bounded from below** if $\exists m \ \forall_n \ a_n \geq m$

- A sequence $(a_n)_n$ that satisfies: $a_{n+1} = a_n + r \quad \forall_{n>1}$ is called an **arithmetic sequence** with a common difference r.
- A sequence $(a_n)_n$ that satisfies: $a_{n+1} = a_n \cdot q \quad \forall_{n>1}$ is called a **geometric sequence** with a common ratio r.
- sequence is (weakly) increasing if $a_{n+1} \ge a_n \quad \forall_n$
- A sequence is (weakly) decreasing if $a_{n+1} \le a_n \ \forall_n$
- A sequence is **bounded from below** if $\exists m \ \forall_n \ a_n \geq m$
- A sequence is **bounded from above** if $\exists M \forall_n \ a_n \leq M$

- A sequence $(a_n)_n$ that satisfies: $a_{n+1} = a_n + r \quad \forall_{n>1}$ is called an **arithmetic sequence** with a common difference r.
- A sequence $(a_n)_n$ that satisfies: $a_{n+1} = a_n \cdot q \quad \forall_{n>1}$ is called a **geometric sequence** with a common ratio r.
- sequence is (weakly) increasing if $a_{n+1} \ge a_n \quad \forall_n$
- A sequence is (weakly) decreasing if $a_{n+1} \le a_n \ \forall_n$
- A sequence is **bounded from below** if $\exists m \ \forall_n \ a_n \geq m$
- A sequence is **bounded from above** if $\exists M \ \forall_n \ a_n \leq M$
- A sequence is **bounded** if it is bounded from above and below

Limit of a sequence

Definition (Limit)

A number $g \in \mathbb{R}$ is a limit of a sequence $(a_n)_n$ if:

$$\forall_{\epsilon>0}\exists_N\forall_{n>N}\ |a_n-g|<\epsilon.$$

If such a number exists, we say the sequence **converges to g.** Otherwise, the sequence is **divergent**.

Lemma

If $(a_n)_n$ has a limit, it is unique.

"Limits" in $+\infty$ or ∞

Definition (Improper limit)

A sequence $(a_n)_n$ has an improper limit in $+\infty$ $(-\infty)$ if:

$$\forall_{\mathsf{M}} \exists_{\mathsf{N}_{\mathsf{M}}} \forall_{n > \mathsf{N}_{\mathsf{M}}} \ a_n > \mathsf{M} \quad (a_{\mathsf{N}} < \mathsf{M}).$$

We say the sequence diverges to infinity (minus infinity) and denote it by $\lim_{n\to\infty} a_n = +\infty$ ($\lim_{n\to\infty} a_n = -\infty$) or, shorter $a_n \to \pm \infty$

·
$$\lim_{n\to\infty}(a_n\pm b_n)=(\lim_{n\to\infty}a_n)\pm(\lim_{n\to\infty}b_n)=a\pm b$$

·
$$\lim_{n\to\infty} (a_n \pm b_n) = (\lim_{n\to\infty} a_n) \pm (\lim_{n\to\infty} b_n) = a \pm b$$

·
$$\lim_{n\to\infty}(a_n\cdot b_n)=a\cdot b$$

- · $\lim_{n\to\infty} (a_n \pm b_n) = (\lim_{n\to\infty} a_n) \pm (\lim_{n\to\infty} b_n) = a \pm b$
- · $\lim_{n\to\infty}(a_n\cdot b_n)=a\cdot b$
- $\lim_{n\to\infty} \frac{a_n}{b_n} = \frac{a}{b}$ if only both sides well-defined i.e. $b_n, b \neq 0$

- · $\lim_{n\to\infty}(a_n\pm b_n)=(\lim_{n\to\infty}a_n)\pm(\lim_{n\to\infty}b_n)=a\pm b$
- · $\lim_{n\to\infty}(a_n\cdot b_n)=a\cdot b$
- $\lim_{n\to\infty} \frac{a_n}{b_n} = \frac{a}{b}$ if only both sides well-defined i.e. $b_n, b \neq 0$
- $\lim_{n\to\infty} a_n^{b_n} = a^b$, if only both sides well-defined (note: 0^0 not well-defined)

·
$$\lim_{n\to\infty}(a_n\pm b_n)=\pm\infty$$

$$\cdot \lim_{n \to \infty} (a_n \pm b_n) = \pm \infty$$

$$\cdot \lim_{n \to \infty} (a_n \cdot b_n) = \begin{cases} +\infty & \text{if } a > 0 \\ -\infty & \text{if } a < 0 \\ \text{indeterminate} & \text{if } a = 0 \end{cases}$$

$$\cdot \lim_{n \to \infty} (a_n \pm b_n) = \pm \infty$$

$$\cdot \lim_{n \to \infty} (a_n \cdot b_n) = \begin{cases} +\infty & \text{if } a > 0 \\ -\infty & \text{if } a < 0 \end{cases}$$

$$\cdot \lim_{n \to \infty} \frac{a_n}{b_n} = 0$$

$$\cdot \lim_{n \to \infty} (a_n \pm b_n) = \pm \infty$$

$$\cdot \lim_{n \to \infty} (a_n \cdot b_n) = \begin{cases} +\infty & \text{if } a > 0 \\ -\infty & \text{if } a < 0 \\ \text{indeterminate} & \text{if } a = 0 \end{cases}$$

$$\cdot \lim_{n \to \infty} \frac{a_n}{b_n} = 0$$

$$\cdot \lim_{n \to \infty} a_n^{b_n} = \begin{cases} +\infty & \text{if } a > 1 \\ 0 & \text{if } |a| < 1 \\ \text{does not exist} & \text{if } a < -1 \\ \text{indeterminate} & \text{if } a = 1 \end{cases}$$

Assume $\lim_{n\to\infty} a_n = a \in \mathbb{R}$ and $\lim_{n\to\infty} b_n = +\infty$:

$$\cdot \lim_{n \to \infty} (a_n \pm b_n) = \pm \infty$$

$$\cdot \lim_{n \to \infty} (a_n \cdot b_n) = \begin{cases} +\infty & \text{if } a > 0 \\ -\infty & \text{if } a < 0 \\ \text{indeterminate} & \text{if } a = 0 \end{cases}$$

$$\cdot \lim_{n \to \infty} \frac{a_n}{b_n} = 0$$

$$\cdot \lim_{n \to \infty} a_n^{b_n} = \begin{cases} +\infty & \text{if } a > 1 \\ 0 & \text{if } |a| < 1 \\ \text{does not exist} & \text{if } a < -1 \\ \text{indeterminate} & \text{if } a = 1 \end{cases}$$

• Note: rules for $b_n \to -\infty$ can be derived using last two clidac.

 when trying to apply arithmetic rules, we can calculate well-defined limits...

- when trying to apply arithmetic rules, we can calculate well-defined limits...
- · ...but sometimes we encounter ill-defined statements:

$$\frac{0}{0}, \frac{\infty}{\infty}, +\infty - \infty, 0 \cdot \infty, 1^{\infty}, 0^{0}, \infty^{0}$$

- when trying to apply arithmetic rules, we can calculate well-defined limits...
- · ...but sometimes we encounter ill-defined statements:

$$\frac{0}{0}, \frac{\infty}{\infty}, +\infty - \infty, 0 \cdot \infty, 1^{\infty}, 0^{0}, \infty^{0}$$

· indeterminate forms

- when trying to apply arithmetic rules, we can calculate well-defined limits...
- · ...but sometimes we encounter ill-defined statements:

$$\frac{0}{0}, \frac{\infty}{\infty}, +\infty - \infty, 0 \cdot \infty, 1^{\infty}, 0^{0}, \infty^{0}$$

- · indeterminate forms
- important note: encountering indeterminate form does not necessarily mean the limit does not exist; it means we have to work harder to find it!

- when trying to apply arithmetic rules, we can calculate well-defined limits...
- · ...but sometimes we encounter ill-defined statements:

$$\frac{0}{0}, \frac{\infty}{\infty}, +\infty - \infty, 0 \cdot \infty, 1^{\infty}, 0^{0}, \infty^{0}$$

- · indeterminate forms
- important note: encountering indeterminate form does not necessarily mean the limit does not exist; it means we have to work harder to find it!
- important note 2: 'true' limits of statements in indeterminate form could be anything: a 'nice' number, zero, $-\infty$ etc.

"Classic" limits to remember

· exponential function diverges quicker than polynomial:

$$\lim_{n\to\infty}\frac{n^k}{2^n}=0 \text{ for any } k>0$$

(also works if we replace 2 with any number a > 1)

"Classic" limits to remember

· exponential function diverges quicker than polynomial:

$$\lim_{n\to\infty}\frac{n^k}{2^n}=0 \text{ for any } k>0$$

(also works if we replace 2 with any number a > 1)

 factorial converges quicker than polynomial and exponential:

$$\lim_{n \to \infty} \frac{n^k}{n!} = 0 \text{ and } \lim_{n \to \infty} \frac{2^n}{n!} = 0$$

"Classic" limits to remember

· exponential function diverges quicker than polynomial:

$$\lim_{n\to\infty}\frac{n^k}{2^n}=0 \text{ for any } k>0$$

(also works if we replace 2 with any number a > 1)

 factorial converges quicker than polynomial and exponential:

$$\lim_{n\to\infty}\frac{n^k}{n!}=0 \text{ and } \lim_{n\to\infty}\frac{2^n}{n!}=0$$

• for a > 0:

$$\lim_{n\to\infty} \sqrt[n]{a} = \lim_{n\to\infty} a^{\frac{1}{n}} = 1$$

"Classic" limits to remember

• exponential function diverges quicker than polynomial:

$$\lim_{n\to\infty}\frac{n^k}{2^n}=0 \text{ for any } k>0$$

(also works if we replace 2 with any number a > 1)

 factorial converges quicker than polynomial and exponential:

$$\lim_{n \to \infty} \frac{n^k}{n!} = 0 \text{ and } \lim_{n \to \infty} \frac{2^n}{n!} = 0$$

• for a > 0:

$$\lim_{n\to\infty} \sqrt[n]{a} = \lim_{n\to\infty} a^{\frac{1}{n}} = 1$$

· but also (which is less obvious):

$$\lim_{n\to\infty} \sqrt[n]{n} = \lim_{n\to\infty} n^{\frac{1}{n}} = 1$$

Squeeze theorem

Very, very useful

Theorem (Squeeze theorem)

Let sequences $(a_n)_n, (b_n)_n, (c_n)_n$, satisfy:

$$a_n \le b_n \le c_n \quad \forall_n \quad \text{(or at least } \exists_N \forall_{n>N}\text{)}$$

Then if $a_n \to g$ and $c_n \to g$, it must be that $b_n \to g$.

Theorem (Divergence)

Let sequences $(a_n)_n$, $(b_n)_n$ satisfy:

$$a_n \le b_n \quad \forall_n \quad \text{(or at least } \exists_N \forall_{n>N}\text{)}$$

Then if $a_n \to \infty$, it must be that $b_n \to \infty$.

Theorem (Monotone convergence theoretm)

Every monotone and bounded sequence converges (to a proper limit).

Example

Let $a_n = \left(1 + \frac{1}{n}\right)^n$. We will show that the sequence a_n is strictly increasing and bounded and therefore has a limit.

Definition

$$e := \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n \approx 2.71828$$

Note: this is a *definition* of *e* (one of few alternatives).

Definition

$$e := \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n \approx 2.71828$$

Note: this is a *definition* of *e* (one of few alternatives).

Lemma

Let $(a_n)_n$ be a sequence satisfying $a_n \to +\infty$ or $a_n \to -\infty$.

Then:
$$\left(1+\frac{1}{a_n}\right)^{a_n}=e$$

Definition

$$e := \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n \approx 2.71828$$

Note: this is a *definition* of *e* (one of few alternatives).

Lemma

Let $(a_n)_n$ be a sequence satisfying $a_n \to +\infty$ or $a_n \to -\infty$.

Then:
$$\left(1+\frac{1}{a_n}\right)^{a_n}=e$$

Special case: $\left(1 + \frac{c}{n}\right)^n = e^c$.

Functions of one variable

Function. Domain and image.

Definition

A function $f: x \to Y$ is relation that associates with each element of X exactly one element of Y.

Function. Domain and image.

Definition

A function $f: x \to Y$ is relation that associates with each element of X exactly one element of Y.

- X is the **domain** of f (also denoted D_f , especially if we need to determine it!)
- Y is the **co-domain**; but usually we are interested in:
- $f(X) \subset Y$ is an **image** (sometimes: range) of f

• function is **one-to-one** (injective) if $x \neq y \Rightarrow f(x) \neq f(y)$; (it is usually easier to show equivalent statement $f(x) = f(y) \Rightarrow x = y$)

- function is **one-to-one** (injective) if $x \neq y \Rightarrow f(x) \neq f(y)$; (it is usually easier to show equivalent statement $f(x) = f(y) \Rightarrow x = y$)
- function is **"onto"** (surjective) if $\forall_{y \in Y} \exists_{x \in X} : f(x) = y$

- function is **one-to-one** (injective) if $x \neq y \Rightarrow f(x) \neq f(y)$; (it is usually easier to show equivalent statement $f(x) = f(y) \Rightarrow x = y$)
- function is "onto" (surjective) if $\forall_{y \in Y} \exists_{x \in X} : f(x) = y$
- function is bijective (⇒ invertible!) if it is one-to-one and 'onto'

- function is **one-to-one** (injective) if $x \neq y \Rightarrow f(x) \neq f(y)$; (it is usually easier to show equivalent statement $f(x) = f(y) \Rightarrow x = y$)
- function is "onto" (surjective) if $\forall_{y \in Y} \exists_{x \in X} : f(x) = y$
- function is bijective (⇒ invertible!) if it is one-to-one and 'onto'
- note: it hinges crucially on X and Y; take $f(x) = x^2$:

- function is **one-to-one** (injective) if $x \neq y \Rightarrow f(x) \neq f(y)$; (it is usually easier to show equivalent statement $f(x) = f(y) \Rightarrow x = y$)
- function is "onto" (surjective) if $\forall_{y \in Y} \exists_{x \in X} : f(x) = y$
- function is bijective (⇒ invertible!) if it is one-to-one and 'onto'
- note: it hinges crucially on X and Y; take $f(x) = x^2$:
 - if $f: \mathbb{R} \to \mathbb{R}$ it is neither 'onto' nor 1-1

- function is **one-to-one** (injective) if $x \neq y \Rightarrow f(x) \neq f(y)$; (it is usually easier to show equivalent statement $f(x) = f(y) \Rightarrow x = y$)
- function is "onto" (surjective) if $\forall_{y \in Y} \exists_{x \in X} : f(x) = y$
- function is bijective (⇒ invertible!) if it is one-to-one and 'onto'
- note: it hinges crucially on X and Y; take $f(x) = x^2$:
 - if $f: \mathbb{R} \to \mathbb{R}$ it is neither 'onto' nor 1-1
 - if $f: \mathbb{R} \to [0, +\infty)$ it is 'onto'

- function is **one-to-one** (injective) if $x \neq y \Rightarrow f(x) \neq f(y)$; (it is usually easier to show equivalent statement $f(x) = f(y) \Rightarrow x = y$)
- function is "onto" (surjective) if $\forall_{y \in Y} \exists_{x \in X} : f(x) = y$
- function is bijective (⇒ invertible!) if it is one-to-one and 'onto'
- note: it hinges crucially on X and Y; take $f(x) = x^2$:
 - if $f: \mathbb{R} \to \mathbb{R}$ it is neither 'onto' nor 1-1
 - if $f: \mathbb{R} \to [0, +\infty)$ it is 'onto'
 - if $f:[0,+\infty)\to\mathbb{R}$ it is 'onto' and one-to-one and has an inverse! $f^{-1}(y)=\sqrt{y}$

Image and preimage of a set

Let $f: X \to Y$ be a function

• image of $A \subset X$ is:

$$\{f(x)\in Y:x\in A\}$$

Notation: f(A) or f[A]

Image and preimage of a set

Let $f: X \to Y$ be a function

• image of $A \subset X$ is:

$$\{f(x)\in Y:x\in A\}$$

Notation: f(A) or f[A]

• preimage of $B \subset Y$ is:

$$\{x \in X : f(x) \in B\}$$

Notation: $f^{-1}(B)$ (not to be confused with an inverse function!) or $f^{-1}[B]$

Limit of a function

Definition (Limit points of a set) A point $x \in X$ is a **limit point** of X if there exists a sequence $(x_n)_n$ such that $x_n \in X \setminus x_0$ and $x_n \to x$. Otherwise, we call x an isolated point.

Definition (Heine's limit)

Let x_0 be a limit point of X. A function $f(x): X \to Y$ has a limit L in x_0 if for every sequence $(x_n)_n$ such that $x_n \in X \setminus x_0$ and $x_n \to x_0$ we have $f(x_n) \to L$.

Definition

A function f is **continuous** at $x_0 \in X$ if for every sequence $\lim_{n\to\infty} x_n \to x_0$ we have $\lim_{n\to\infty} f(x_n) = f(x_0)$.

Definition

A function f is **continuous** at $x_0 \in X$ if for every sequence $\lim_{n\to\infty} x_n \to x_0$ we have $\lim_{n\to\infty} f(x_n) = f(x_0)$.

• note: x_0 must be in domain of X to consider continuity!

Definition

A function f is **continuous on the domain** (or: on a set $A \subset X$) if it is continuous in every point of its domain (or: of $A \subset X$).

Definition

A function f is **continuous** at $x_0 \in X$ if for every sequence $\lim_{n\to\infty} x_n \to x_0$ we have $\lim_{n\to\infty} f(x_n) = f(x_0)$.

• note: x_0 must be in domain of X to consider continuity!

Definition

A function f is **continuous on the domain** (or: on a set $A \subset X$) if it is continuous in every point of its domain (or: of $A \subset X$).

 sum, difference, product of continuous functions is continuous

Definition

A function f is **continuous** at $x_0 \in X$ if for every sequence $\lim_{n\to\infty} x_n \to x_0$ we have $\lim_{n\to\infty} f(x_n) = f(x_0)$.

• note: x_0 must be in domain of X to consider continuity!

Definition

A function f is **continuous on the domain** (or: on a set $A \subset X$) if it is continuous in every point of its domain (or: of $A \subset X$).

- sum, difference, product of continuous functions is continuous
- quotient of continuous functions is continuous if well-defined (do not divide by 0!)

Definition

A function f is **continuous** at $x_0 \in X$ if for every sequence $\lim_{n\to\infty} x_n \to x_0$ we have $\lim_{n\to\infty} f(x_n) = f(x_0)$.

• note: x_0 must be in domain of X to consider continuity!

Definition

A function f is **continuous on the domain** (or: on a set $A \subset X$) if it is continuous in every point of its domain (or: of $A \subset X$).

- sum, difference, product of continuous functions is continuous
- quotient of continuous functions is continuous if well-defined (do not divide by 0!)
- polynomial, exponential, rational, logarithmic,
 trigonometric functions are continuous on their respective

Composition

Definition (Composition) Let $f: X \to Y$ and $g: Y \to Z$. Then a composition $g \circ f =: h$ if a function $h: X \to Z$ defined by:

$$h(x) = g(f(x))$$

Composition

Definition (Composition)

Let $f: X \to Y$ and $g: Y \to Z$. Then a composition $g \circ f =: h$ if a function $h: X \to Z$ defined by:

$$h(x) = g(f(x))$$

Lemma

A composition of continuous functions is a continuous function.

Definition (Vertical asymptote) A function f(x) has a vertical asymptote x = c if f has at least one-sided improper limit in c:

$$\lim_{x\to c^{-}} f(x) = \pm \infty \text{ or } \lim_{x\to c^{+}} f(x) = \pm \infty$$

Definition (Vertical asymptote) A function f(x) has a vertical asymptote x = c if f has at least one-sided improper limit in c:

$$\lim_{x\to c^-} f(x) = \pm \infty \text{ or } \lim_{x\to c^+} f(x) = \pm \infty$$

• we do not require (and typically do not have) that $c \in D_f$.

Definition (Vertical asymptote) A function f(x) has a vertical asymptote x = c if f has at least one-sided improper limit in c:

$$\lim_{x\to c^-} f(x) = \pm \infty \text{ or } \lim_{x\to c^+} f(x) = \pm \infty$$

- we do not require (and typically do not have) that $c \in D_f$.
- if f is continuous in x_0 , there can't be an asymptote in x_0 .

Definition (Vertical asymptote) A function f(x) has a vertical asymptote x = c if f has at least one-sided improper limit in c:

$$\lim_{x\to c^-} f(x) = \pm \infty \text{ or } \lim_{x\to c^+} f(x) = \pm \infty$$

- we do not require (and typically do not have) that $c \in D_f$.
- if f is continuous in x_0 , there can't be an asymptote in x_0 .
- $\cdot \Rightarrow$ vertical asymptotes may exist only in the limit points outside of the domain or in discontinuity points.

Definition (Horizontal asymptote)

A function f(x) has a horizontal asymptote y = b if:

$$\lim_{x \to +\infty} f(x) = b \text{ or } \lim_{x \to -\infty} f(x) = b$$

Definition (Oblique asymptote)

A function f(x) has an oblique asymptote y = ax = b if:

$$\lim_{x \to +\infty} (f(x) - ax - b) = 0 \text{ or } \lim_{x \to -\infty} (f(x) - ax - b) = 0$$

Useful rules for oblique asymptotes:

$$a := \lim \frac{f(x)}{x}, \quad b := \lim f(x) - ax$$

Three improtant limits

It is useful to remember those three rules:

$$\lim_{X\to 0}\frac{\sin X}{X}=1$$

Click here for a beaufiful visual proof.

$$\lim_{X\to 0}\frac{\ln(1+X)}{X}=1$$

Here is a proof with *e*, but I'll also show another one.

$$\lim_{X\to 0}\frac{e^X-1}{X}=1$$

Another visual proof.