## PHYC10003 Physics I

Lecture 18: Equilibrium

Static equilibrium and elasticity

#### Last lecture

- Conservation of angular momentum
- Analogies between linear and rotational motion

## Equilibrium and stability

- We often want objects to be stable despite forces acting on them
- Consider a book resting on a table, an ice puck sliding with constant velocity, a rotating ceiling fan, a rolling bicycle wheel with constant velocity
- These objects have the characteristics that:
  - The linear momentum of the center of mass is constant
  - 2. The angular momentum about the center of mass, or any other point, is constant

## Equilibrium

Such objects are in equilibrium

$$\vec{P}= ext{a constant} \quad ext{and} \quad \vec{L}= ext{a constant}. \quad ext{Eq. (12-1)}$$

- Here, we are largely concerned with objects that are not moving at all; P = L = 0
- These objects are in static equilibrium
- The only one of the examples from the previous page in static equilibrium is the book at rest on the table

## Stable and unstable equilibrium

- As discussed in 8-3, if a body returns to static equilibrium after a slight displacement, it is in *stable* static equilibrium
- If a small displacement ends equilibrium, it is unstable
- Despite appearances, this rock is in stable static equilibrium, otherwise it would topple at the slightest gust of wind



Figure 12-1

## Stable and unstable equilibrium

- In part (a) of the figure, we have unstable equilibrium
- A small force to the right results in (b)
- In (c) equilibrium is stable, but push the domino so it passes the position shown in (a) and it falls
- The block in (d) is even more stable

To tip the block, the center of mass must pass over the supporting edge.



(c)

Figure 12-2

PHYC10003 Lecture 18: Equilibrium [Copyright John Wiley and Sons (2014)]

#### Equilibrium - requirements

 Requirements for equilibrium are given by Newton's second law, in linear and rotational form

$$\vec{F}_{\rm net} = 0$$
 (balance of forces). Eq. (12-3)  $\vec{\tau}_{\rm net} = 0$  (balance of torques). Eq. (12-5)

- Therefore we have for equilibrium:
  - I. The vector sum of the external forces that act on the body is zero.
  - 2. The vector sum of all torques that act on the body is zero, measured around *any* possible fixed point.

## Equilibrium - conditions

Simple case: consider forces only in the xy plane,:

$$F_{{
m net},x}=0$$
 (balance of forces), Eq. (12-7)  $F_{{
m net},y}=0$  (balance of forces), Eq. (12-8)  $au_{{
m net},z}=0$  (balance of torques). Eq. (12-9)

For static equilibrium additional requirements are:

- 3. The linear momentum,  $\vec{P}$ , of the body must be zero
- 4. The angular momentum of the body,  $\vec{L}$ , must be zero.

## Centre of gravity

- The gravitational force on a body is the sum of gravitational forces acting on individual elements (atoms) of the body
- The gravitational force,  $F_g$ : on a body effectively acts at a single point called the centre of gravity (cog).
- Until now we have assumed that the gravitational force acts at the centre of mass (com)
- This is approximately true for the everyday case: if g
  is the same everywhere in the body then the centre
  of mass coincides with the centre of gravity.

## Torque and gravitational force

Consider a sum of torques on each element vs. the torque caused by the gravitational force at the cog

$$x_{\rm cog} \sum F_{gi} = \sum x_i F_{gi}.$$

Substitute  $m_i g_i$  for  $F_{\alpha i}$ :

$$x_{cog} \sum m_i g_i = \sum x_i m_i g_i$$

$$x_{cog}g\sum m_i = g\sum x_i m_i$$

$$x_{cog} = \frac{\sum x_i m_i}{\sum m_i}$$

$$x_{cog} = \frac{1}{M} \sum x_i m_i$$





Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.

#### Balancing a horizontal beam

- M=2.7 kg, m=1.8 kg
- Set rotation axis at x=0

Sum the torques

$$\frac{1}{4}$$
 Mg L+  $\frac{1}{2}$  mgL = F<sub>L</sub>

F<sub>r</sub>: force at RHS of beam

Hence,  $F_r = 15 \text{ N}$ .



Figure 12-5

#### Balance vertical forces

$$F_l = (M+m)g - F_r$$
$$= 29N$$



Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.

#### Balancing a leaning beam:

Find the tension in the cable, in the rope and the size of force *F* at the hinge.

$$M = 430 \text{ kg}, m = 85 \text{ kg},$$
  
 $a = 1.9 \text{ m}, b = 2.5 \text{ m}$   
Set rotation axis at x=0,  
y=0



# I: Sum the torques, using $T_r = Mg$

$$aT_c - bT_r - \frac{1}{2}bmg = 0$$

$$T_c = 6100N$$

#### 2: Balance the forces

$$F_h = T_c = 6100 \text{ N}$$
  
 $F_v = (m+M)g = 5050 \text{ N}$   
 $F = 7900 \text{ N}$ 



Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.

## Elasticity

- For problems in the xy plane we have 3 independent equations
- Therefore we can solve for 3 unknowns
- If we have more unknown forces, we cannot solve for them and the situation is indeterminate
- This assumes that bodies are rigid and do not deform (there are no such bodies)
- With some knowledge of elasticity, we can solve more problems

## Elasticity

- All rigid bodies are partially **elastic**, meaning we can change their dimensions by applying forces
- A stress, deforming force per unit area, produces a strain, or unit deformation
- There are 3 main types of stress:
  (a) Tensile, (b) Shearing, (c) Hydraulic





**Figure 12-11** 

## Elasticity – stress and strain

- Stress and strain are proportional in the elastic range
- Related by the modulus of elasticity:

stress = modulus  $\times$  strain. Eq. (12-22)

- As stress increases, eventually a yield strength is reached and the material deforms permanently
- At the ultimate strength, the material breaks



**Figure 12-13** 

PHYC10003 Lecture 18: Equilibrium (No. All rights reserved.)
[Copyright John Wiley and Sons (2014)]

## Elasticity- Young's modulus

- In simple tension/compression, stress is F/A
- The strain is the dimensionless quantity  $\Delta L/L$
- Young's modulus, E, used for tension/compression

$$\frac{F}{A} = E \frac{\Delta L}{L}.$$
 Eq. (12-23)

- Note that many materials have very different tensile and compressive strengths, despite the same modulus being used for both
- Example concrete: high compressive strength, very low tensile strength



#### Elasticity - measurement

- Strain can be measured by a strain gage
- Placed on the material, it becomes subject to the same strain
- Strain can be read out as a change in electrical resistance, for strains up to 3%

**Figure 12-14** 



Courtesy Micro Measurements, a Division of Vishay Precision Group, Raleigh, NC

#### Elasticity – shear and bulk modulus

• Shear modulus, G, used for shearing

$$\frac{F}{A} = G \frac{\Delta x}{L}.$$
 Eq. (12-24)

- Δx is along a different axis than L
- Bulk modulus, B, used for hydraulic compression

$$p=B\,rac{\Delta V}{V}$$
. Eq. (12-25)

Relates pressure to volume change

## Elasticity – some examples

# The table shows some elastic properties for common materials, for comparison purposes

Table 12-1 Some Elastic Properties of Selected Materials of Engineering Interest

| Material              | Density $\rho$ (kg/m <sup>3</sup> ) | Young's Modulus $E$ $(10^9 \text{ N/m}^2)$ | Ultimate Strength $S_u$ (10 <sup>6</sup> N/m <sup>2</sup> ) | Yield<br>Strength $S_y$<br>$(10^6 \text{ N/m}^2)$ |
|-----------------------|-------------------------------------|--------------------------------------------|-------------------------------------------------------------|---------------------------------------------------|
| Steel <sup>a</sup>    | 7860                                | 200                                        | 400                                                         | 250                                               |
| Aluminum              | 2710                                | 70                                         | 110                                                         | 95                                                |
| Glass                 | 2190                                | 65                                         | $50^{b}$                                                    | 2°————————————————————————————————————            |
| Concrete <sup>c</sup> | 2320                                | 30                                         | $40^b$                                                      | —                                                 |
| $Wood^d$              | 525                                 | 13                                         | $50^{b}$                                                    | ·                                                 |
| Bone                  | 1900                                | $9^b$                                      | $170^b$                                                     | <u> </u>                                          |
| Polystyrene           | 1050                                | 3                                          | 48                                                          | 3 <del></del> 3                                   |

<sup>&</sup>lt;sup>a</sup>Structural steel (ASTM-A36).

<sup>d</sup>Douglas fir.

<sup>b</sup>In compression.

Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.

<sup>&</sup>lt;sup>c</sup>High strength

## Elasticity - example

#### Balancing a wobbly table:

Three legs are 1.00m long but the fourth is longer by 0.50mm

- Compressed by M = 290 kg: legs are compressed but not buckled and the table does not wobble
- Legs are wooden cylinders with area  $A = 1.0 \text{ cm}^2$
- $E = 1.3 \times 10^{10} \text{ N/m}^2 \text{ (value for Douglas fir)}$
- 3 shorter legs must compress the same amount, the longer leg compresses more
- Write length comparison, use the stress-strain equation, and approximate all legs to be length L

#### Elasticity - example

I: Use elasticity equation

$$\frac{F}{A} = E \frac{\Delta L}{L}$$
.

$$\frac{F_3L}{AE} = \Delta L, \quad \frac{F_4L}{AE} = \Delta L + d, \qquad \therefore \quad \frac{F_4L}{AE} = \frac{F_3L}{AE} + d$$

$$\therefore \quad \frac{F_4L}{AE} = \frac{F_3L}{AE} + d$$

2: Balance the forces

$$3F_3 + F_4 - Mg = 0$$

3: Solve for  $F_3$  and  $F_4$ :

$$F_3 = 550 \text{ N} F_4 = 1200 \text{ N}$$

Each short leg is compressed by 0.42 mm, and the long leg is compressed by 0.92 mm

## Summary

#### Static Equilibrium

$$\vec{F}_{\text{net}} = 0$$
 (balance of forces).

Eq. (12-3)

$$\vec{\tau}_{\rm net} = 0$$
 (balance of torques).

Eq. (12-5)

#### Center of Gravity

 If the gravitational acceleration is the same for all elements of the body, the cog is at the com.

#### Elastic Moduli

- Three elastic moduli
- Strain: fractional length change
- Stress: force per unit area
   stress = modulus × strain.

#### **Tension and Compression**

• E is Young's modulus

$$\frac{F}{A} = E \frac{\Delta L}{L}$$
. Eq. (12-23)

Eq. (12-22)

## Summary

#### Shearing

G is the shear modulus

$$\frac{F}{A}=G\frac{\Delta x}{L}$$
. Eq. (12-24)  $p=B\,\frac{\Delta V}{V}$ . Eq. (12-25)

#### **Hydraulic Stress**

B is the bulk modulus

$$p=B\,rac{\Delta V}{V}$$
. Eq. (12-25)