Solution for Problem Set 6

Mianzhi Pan, 181240045

October 24, 2020

1 Problem 1

First randomly choose a bucket from the m buckets. Suppose the length of the chosen bucket is k, we use RANDOM(1,L) and suppose the return value is a. If $a \leq k$, return the a^{th} element in that bucket. Otherwise, we continue this process until $a \leq k$. By this way, each element is chosen with probability $\frac{1}{mK}$.

The probability that we succeed chosing an element in a particular bucket is $\frac{k}{L}$, so the expected chosing times are $\frac{L}{k}$. Together with a times for retriving the element, total time is $O(a + \frac{L}{k}) = O(L \cdot (a/L + 1/k))$, so the excepted time is $O(L \cdot (1 + 1/\alpha))$ (excepted value of k is α and $a/L \le 1$).

2 Problem 2

(a) Suppose string x of length l+1: $x_lx_{l-1}\cdots x_0$, x has key value $x_l\times (m+1)^l+\cdots+x_0\times (m+1)^0$. We have

$$h(x) = x \mod m$$

= $((x_l \times (m+1)^l) \mod m + \dots + (x_0 \times (m+1)^0) \mod m) \mod m$
= $(x_l \mod m + \dots + x_0 \mod m) \mod m$

We can find the hash value of a string is determined by all its characters but is independent with the order of them. Hence, x and y has the same value.