

Impacts of requeening practices on honey bee health

Victor Desclos le Peley, Anne Dalmon, Coline Kouchner, Maryline Pioz, Benjamin Basso, Axel Decourtye and Yves Le Conte

INSECTES SOCIAUX - Avignon 2019

~30 viruses in Apis mellifera

- 7 major honey bee viruses
- Overt or covert infections

Frequent co-infections

- Deformed wing virus (DWV)
- Black queen cell virus (BQCV)
- Acute bee paralysis virus (ABPV)
- Israeli acute bee paralysis virus(IAPV)
- Kashmir bee virus (KBV)
- Chronic bee paralysis virus (CBPV)
- Sac brood virus (SBV)

0.1 PV

In de Miranda and Genersch (2010)

02

Virus transmission in A. mellifera

Impact of requeening practices

Annual requeening

Low viral load

Natural supersedure

Experimental design

2016 > 2017 >

2018

Controlled practices

- **Annual requeening**
- Requeening population:

Breeding and artificial mating

Extensive practices

- Natural supersedure
- **Natural replacement** population:

Breeding on honey production and natural mating

WINTER APIARIES X 2 HARVESTS

15 colonies / treatment / apiary ⇔ 120 colonies

Impact on virus loads

- Factors impacting colony viral loads:
 - ► Environnement (apiary+year+season)
 - ▶ Varroa pressure
 - ► Requeening practices
 - **▶** Genetics
- Impact on colony strength & production

Seasonal variations

EG CP

CG EP

CG CP

Environnement

- Viral loads Plan d'Orgon winter apiary >> Nîmes
 - ► Ressources availability?
 - ► Pesticide exposure?

Impact of requeening practices on viral loads

Virus (log copies/bee)

(Colony)

Year Season Genetics Practices

Apiary + interactions

Factors		Varroa	DWV	BQCV	CBPV	ABPV	SBV
Intercept		/	+	-	-	/	+
Apiary	(Plan d'Orgon/Nimes)	+	+	+	/	+	1
Season	(Spring/Autumn)	-	-	-	/	/	+
Year	(2016/2017)	+	/	/	+	/	+
	(2016/2018)		1	1	+	-	/
Genetics	(Controlled/Extensive)	-	-	/	/	/	1
Practices	(Controlled/Extensive)	/	-	/	/	/	/
Varroa	Correlation	1	+	+	/	+	
Interaction Season*Year	Spring 2017	-	+	+	/	+	-
Interaction Apiary*Year	Plan d'orgon 2017	/	+	/	-	-	+
	Plan d'orgon 2018	-	+	/	-	-	+
Interaction Season*Apiary	Spring*Plan d'orgon	/	/	+	+	-	+

Impact of requeening practices on colony strength & production

Number of bees

 Controlled source produces more bees

Honey production (surface)

Extensive source stores more honey

Perspectives

September 2019: last samplings

- Vertical /horizontal transmission
 - ▶ Varroa loads
 - ▶ Viral loads Queens /colonies
 - Evolution of viral strains
- Correlation physiological markers / virus
- Evolution over time
 - Factors explaining viral loads
 - Environment effect (apiaries)
 - ► Renewal pratice effect
 - Genetics/source effect

Factors explaining system performances

Thank you

Merci

C. Alaux

Y. Le Conte

M. Pioz

V. Dievart

C. Kouchner

ITSAP

INSTITUT DE L'ABEILLE

B. Basso

E. Bœuf

C. Ferrus

M. Larribe

A. Gauthier

O. Labrakh

FranceAgriMer

victor.desclos-le-peley@etu.ephe.psl.eu anne.dalmon@inra.fr

