

Description

These N-Channel enhancement mode power field effect transistors are using trench DMOS technology. This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and with stand high energy pulse in the avalanche and commutation mode. These devices are well suited for high efficiency fast switching applications.

Features

- $60V,90A,R_{DS(ON).max}=7.9m\Omega@V_{GS}=10V$
- Improved dv/dt capability
- Fast switching
- ♦ 100% EAS Guaranteed
- Green device available

Applications

- Motor Drives
- UPS
- ♦ DC-DC Converter

Product Summary

 $\begin{array}{ll} V_{DSS} & 60V \\ R_{DS(on).max} \textcircled{0} \ V_{GS} = 10V & 7.9 m\Omega \\ I_D & 90A \end{array}$

Pin Configuration

S

Absolute Maximum Ratings Tc = 25°C unless otherwise noted

Parameter	Symbol	Value	Unit
Drain-Source Voltage	V _{DSS}	60	V
Continuous drain current (Tc = 25°C)C C C TO-220/TO-26		90	А
Continuous drain current (T _C = 10 0°C)C C TO-220/TO-2	I _D 263	57	A
Continuous drain current (T _C = 2 6°C)C C C TO-220F	lp.	50	A
Continuous drain current (T _C = 10 0°C)C C TO-220F	ID	31	A
Pulsed drain current ¹⁾	Іпм	360	Α
Gate-Source voltage	V _{GSS}	±20	٧
Avalanche energy ²⁾	Eas	144	mJ
Power Dissipation (T _C = 2 6°C)C C TO-220/TO-263	P _D	125	W
Power Dissipation (Tc = 25°C)C C TO-220F	P _D	38	W
Storage Temperature Range	T _{STG}	-55 to +150	°C
Operating Junction Temperature Range	TJ	-55 to +150	°C

Thermal Characteristics

Parameter	Symbol	Value	Unit
Thermal Resistance, Junction-to-CaSeC C C TO-220/TO-26	R _{0JC}	1.0	°C/W
Thermal Resistance, Junction-to-CaSeC C C TO-220F	Rejc	3.3	°C/W

Package Marking and Ordering Information

Device	Device Package	Marking
VSM90N06-T3	TO-263	VSM90N06-T3
VSM90N06-TF	TO-220F	VSM90N06-TF
VSM90N06-TC	TO-220C	VSM90N06-TC

Electrical Characteristics T_J = 25°C unless otherwise noted

Electrical Characteristics	T _J = 25°C unless otherwise noted					
Parameter	Symbol	Test Condition	Min.	Тур.	Max.	Unit
Static characteristics						
Drain-source breakdown voltage	BV _{DSS}	V _{GS} =0 V, I _D =250uA	60			V
Gate threshold voltage	V _{GS(th)}	V _{DS} =V _{GS} , I _D =250uA	0.8	1.3	1.8	V
Drain-source leakage current	I _{DSS}	V _{DS} =60V, V _{GS} =0V, T _J = 25°C			1	μA
		V _{DS} =48V, V _{GS} =0V, T _J = 125°C			30	μA
Gate leakage current, Forward	I _{GSSF}	V _{GS} =20V, V _{DS} =0 V			100	nA
Gate leakage current, Reverse	I _{GSSR}	V _{GS} =-20V, V _{DS} =0 V			-100	nA
Drain-source on-state resistance	_	V _{GS} =10V, I _D =30A		6.5	7.9	mΩ
	R _{DS(on)}	V _{GS} =4.5V, I _D =20A		7.6	9.5	mΩ
Forward transconductance	g _{fs}	V _{DS} =5V , I _D =30A		92		S
Dynamic characteristics						
Input capacitance	Ciss	25/1/		3752		pF
Output capacitance	Coss	V _{DS} = 25V, V _{GS} = 0V, F = 1MHz		269		
Reverse transfer capacitance	C _{rss}	- F = IMMZ		206		
Turn-on delay time	t _{d(on)}			16.5		ns
Rise time	t _r	V _{DD} = 30V,V _{GS} =10V, I _D =25A		170		
Turn-off delay time	t _{d(off)}			464		
Fall time	t _f	-		140		
Gate resistance	Rg	V _{GS} =0V, V _{DS} =0V, F=1MHz		2.95		Ω
Gate charge characteristics						•
Gate to source charge	Q _{gs}			11.7		
Gate to drain charge	Q_{gd}	V_{DS} =48V, I_D =25A, V_{GS} = 10V		13.1		nC
Gate charge total	Qg			69		
Drain-Source diode characteristic	s and Maxii	num Ratings				'
Continuous Source Current	Is				90	А
Pulsed Source Current ³⁾	I _{SM}]			360	А
Diode Forward Voltage	V _{SD}	V _{GS} =0V, I _S =20A, T _J =25°C			1.2	V
Reverse Recovery Time	t _{rr}	Is=25A,di/dt=100A/us, Tյ=25℃		26.8		ns
Reverse Recovery Charge	Qrr			29		nC

Notes:

- 1: Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2: V_{DD} =25V, V_{GS} =10V, L=0.5mH, I_{AS} =24A, R_G =25 Ω , Starting T_J =25 $^{\circ}$ C.
- 3: Pulse Test: Pulse Width $\leq 300~\mu$ s, Duty Cycle $\leq 2\%$.

Electrical Characteristics Diagrams

Figure 1. Typ. Output Characteristics

Figure 2. Transfer Characteristics

Figure 3. Capacitance Characteristics

Figure 4. Gate Charge Waveform

Figure 5. Body-Diode Characteristics

Figure 6. Rdson-Drain Current

Figure 8. Maximum Safe Operating Area

Figure 9. Normalized Maximum Transient Thermal Impedance (RthJC)

Test Circuit & Waveform

Figure 8. Gate Charge Test Circuit & Waveform

Figure 9. Resistive Switching Test Circuit & Waveforms

Figure 10. Unclamped Inductive Switching (UIS) Test Circuit & Waveform

Figure 11. Diode Recovery Circuit & Waveform

