Learning From Data Lecture 7 Approximation Versus Generalization

The VC Dimension Approximation Versus Generalization Bias and Variance The Learning Curve

> M. Magdon-Ismail CSCI 4100/6100

Bias-Variance Analysis

Another way to quantify the tradeoff:

- 1. How well can the learning approximate f.
 - ... as opposed to how well did the learning approximate f in-sample (E_{in}) .
- 2. How close can you get to that approximation with a finite data set.

... as opposed to how close is E_{in} to E_{out} .

Bias-variance analysis applies to squared errors (classification and regression)

Bias-variance analysis can take into account the *learning algorithm*Different learning algorithms can have different E_{out} when applied to the same \mathcal{H} !

A Simple Learning Problem

2 Data Points. 2 hypothesis sets:

$$\mathcal{H}_0: h(x) = b$$

$$\mathcal{H}_0: \quad h(x) = b$$

 $\mathcal{H}_1: \quad h(x) = ax + b$

Let's Repeat the Experiment Many Times

For each data set \mathcal{D} , you get a different $g^{\mathcal{D}}$.

So, for a fixed \mathbf{x} , $g^{\mathcal{D}}(\mathbf{x})$ is random value, depending on \mathcal{D} .

What's Happening on Average

We can define:

$$g^{\mathcal{D}}(\mathbf{x})$$

 \leftarrow random value, depending on \mathcal{D}

$$\bar{g}(\mathbf{x}) = \mathbb{E}_{\mathcal{D}} \left[g^{\mathcal{D}}(\mathbf{x}) \right]$$

$$\approx \frac{1}{K} (g^{\mathcal{D}_1}(\mathbf{x}) + \dots + g^{\mathcal{D}_K}(\mathbf{x}))$$

 \leftarrow your average prediction on \mathbf{x}

$$\operatorname{var}(\mathbf{x}) = \mathbb{E}_{\mathcal{D}} \left[(g^{\mathcal{D}}(\mathbf{x}) - \bar{g}(\mathbf{x}))^{2} \right]$$
$$= \mathbb{E}_{\mathcal{D}} \left[g^{\mathcal{D}}(\mathbf{x})^{2} \right] - \bar{g}(\mathbf{x})^{2}$$

← how variable is your prediction?

E_{out} on Test Point x for Data \mathcal{D}

$$E_{\text{out}}^{\mathcal{D}}(\mathbf{x}) = (g^{\mathcal{D}}(\mathbf{x}) - f(\mathbf{x}))^2$$

 \leftarrow squared error, a random value depending on \mathcal{D}

$$E_{\mathrm{out}}(\mathbf{x}) = \mathbb{E}_{\mathcal{D}}\left[E_{\mathrm{out}}^{\mathcal{D}}(\mathbf{x})\right]$$

 $E_{\text{out}}(\mathbf{x}) = \mathbb{E}_{\mathcal{D}} \left[E_{\text{out}}^{\mathcal{D}}(\mathbf{x}) \right] \leftarrow \text{expected } E_{\text{out}}(\mathbf{x}) \text{ before seeing } \mathcal{D}$

The Bias-Variance Decomposition

$$E_{\text{out}}(\mathbf{x}) = \mathbb{E}_{\mathcal{D}} \left[(g^{\mathcal{D}}(\mathbf{x}) - f(\mathbf{x}))^{2} \right]$$

$$= \mathbb{E}_{\mathcal{D}} \left[g^{\mathcal{D}}(\mathbf{x})^{2} - 2g^{\mathcal{D}}(\mathbf{x})f(\mathbf{x}) + f(\mathbf{x})^{2} \right]$$

$$= \mathbb{E}_{\mathcal{D}} \left[g^{\mathcal{D}}(\mathbf{x})^{2} \right] - 2\bar{g}(\mathbf{x})f(\mathbf{x}) + f(\mathbf{x})^{2} \qquad \leftarrow \text{understand this; the rest is just algebra}$$

$$= \mathbb{E}_{\mathcal{D}} \left[g^{\mathcal{D}}(\mathbf{x})^{2} \right] - \bar{g}(\mathbf{x})^{2} + \bar{g}(\mathbf{x})^{2} - 2\bar{g}(\mathbf{x})f(\mathbf{x}) + f(\mathbf{x})^{2}$$

$$= \mathbb{E}_{\mathcal{D}} \left[g^{\mathcal{D}}(\mathbf{x})^{2} \right] - \bar{g}(\mathbf{x})^{2} + (\bar{g}(\mathbf{x}) - f(\mathbf{x}))^{2}$$

$$= \mathbb{E}_{\mathcal{D}} \left[g^{\mathcal{D}}(\mathbf{x})^{2} \right] - \bar{g}(\mathbf{x})^{2} + (\bar{g}(\mathbf{x}) - f(\mathbf{x}))^{2}$$

$$= \mathbb{E}_{\mathcal{D}} \left[g^{\mathcal{D}}(\mathbf{x})^{2} \right] - \bar{g}(\mathbf{x})^{2} + (\bar{g}(\mathbf{x}) - f(\mathbf{x}))^{2}$$

$$E_{\mathrm{out}}(\mathbf{x}) = \mathsf{bias}(\mathbf{x}) + \mathsf{var}(\mathbf{x})$$

Very small model

Very large model

If you take average over \mathbf{x} : $E_{\text{out}} = \mathsf{bias} + \mathsf{var}$

Back to \mathcal{H}_0 and \mathcal{H}_1 ; and, our winner is ...

$$\mathcal{H}_0$$
 bias = 0.50
$$var = 0.25$$

$$E_{out} = 0.75 \checkmark$$

$$\mathcal{H}_1$$
 bias = 0.21
$$var = 1.69$$

$$E_{out} = 1.90$$

Match Learning Power to Data, ... Not to f

2 Data Points

$$\mathcal{H}_0$$
 bias = 0.50;
$$var = 0.25.$$

$$E_{out} = 0.75 \checkmark$$

$$\mathcal{H}_1$$
 bias = 0.21;
$$var = 1.69.$$

$$E_{out} = 1.90$$

5 Data Points

$$\mathcal{H}_0$$
 bias = 0.50;
$$var = 0.1.$$

$$E_{out} = 0.6$$

$$\mathcal{H}_1 \\ \text{bias} = 0.21; \\ \text{var} = 0.21. \\ \hline E_{\text{out}} = 0.42 \quad \checkmark$$