BACCALAURÉAT, SÉRIE S ENSEIGNEMENT OBLIGATOIRE ET ENSEIGNEMENT DE SPÉCIALITÉ FORMULAIRE DE MATHÉMATIQUES

I. COMBINATOIRE - DÉNOMBREMENTS

Soit E un ensemble de n éléments

Nombre de sous-ensembles de p éléments de E:

$$C_n^p = {n \choose p} = \frac{n(n-1) \cdots (n-p+1)}{p!} = \frac{n!}{p!(n-p)!}$$

où $n! = 1 \times 2 \times 3 \times \cdots \times n$; 0! = 1

$$C_n^p = C_n^{n-p}$$
; $C_{n+1}^{\rho+1} = C_n^p + C_n^{\rho+1}$

II. PROBABILITÉS

Si A et B sont incompatibles : $P(A \cup B) = P(A) + P(B)$

Dans le cas général : $P(A \cup B) = P(A) + P(B) - P(A \cap B)$

$$P(\overline{A}) = 1 - P(A)$$
 ; $P(\Omega) = 1$; $P(\emptyset) = 0$

Si A_1, \dots, A_n forment une partition de A, $P(A) = \sum_{i=1}^n P(A_i)$

Dans le cas équiprobable : $P(A) = \frac{\text{Card } A}{\text{Card } O}$

Probabilité conditionnelle de A sachant que B est réalisé

$$P(A \cap B) = P(A|B)P(B)$$
; $P(A|B)$ se note aussi $P_B(A)$

Cas où A et B sont indépendants : $P(A \cap B) = P(A)P(B)$

Variable aléatoire

Fonction de répartition : $F(x) = P(X \le x)$

Espérance mathématique : $E(X) = \sum_{i=1}^{n} p_i x_i$

Variance: $V(X) = \sum_{i=1}^{n} p_i (x_i - E(X))^2 = \sum_{i=1}^{n} p_i x_i^2 - (E(X))^2$

Ecart type $\sigma(X) = \sqrt{V(X)}$

III. ALGÈBRE

A. NOMBRES COMPLEXES

Forme algébrique : z = x + i y

Forme trigonométrique : $z = \rho(\cos\theta + i\sin\theta) = \rho e^{i\theta}$, $\rho > 0$

$$\overrightarrow{OM} = x \overrightarrow{u} + y \overrightarrow{v}$$

$$\overrightarrow{OP} = x = \Re e(z) = \rho \cos \theta$$

$$\overrightarrow{OQ} = y = \Im m(z) = \rho \sin \theta$$

$$\overrightarrow{OM} = \rho = |z| = \sqrt{x^2 + y^2}$$

Opérations algébriques

$$z + z' = (x + iy) + (x' + iy') = (x + x') + i(y + y')$$
$$zz' = (x + iy)(x' + iy') = (xx' - yy') + i(xy' + x'y)$$

Conjugué

$$z = x + iy = \rho e^{i\theta} ; \quad \overline{z} = x - iy = \rho e^{-i\theta}$$

$$x = \frac{1}{2} (z + \overline{z}) ; \quad y = \frac{1}{2i} (z - \overline{z})$$

$$\overline{z + z'} = \overline{z} + \overline{z'} ; \quad \overline{zz'} = \overline{z} \overline{z'}$$

$$z\overline{z} = x^2 + y^2 = |z|^2$$

$$\frac{1}{z} = \frac{\overline{z}}{z\overline{z}} = \frac{x}{x^2 + y^2} + i\frac{-y}{x^2 + y^2} = \frac{1}{\rho} e^{-i\theta}$$

Module et argument d'un produit, d'un quotient

$$zz' = \left(\rho e^{i\theta}\right) \left(\rho' e^{i\theta'}\right) = \rho \rho' e^{i\left(\theta + \theta'\right)}$$

$$\begin{vmatrix} zz' \\ = |z| |z'| \end{vmatrix}$$

$$\frac{z}{z'} = \frac{\rho e^{i\theta}}{\rho' e^{i\theta'}} = \frac{\rho}{\rho'} e^{i\left(\theta - \theta'\right)}$$

$$\begin{vmatrix} z \\ z' \end{vmatrix} = \frac{|z|}{|z'|}$$

$$z'' = \left(\rho e^{i\theta}\right)^n = \rho^n e^{in\theta}, n \in \mathbb{Z}$$

Inégalité triangulaire

$$||z|-|z'||\leqslant |z+z'|\leqslant |z|+|z'|$$

B. IDENTITÉS REMARQUABLES

(valables sur C et donc sur R)

$$(a+b)^{2} = a^{2} + 2ab + b^{2} ; (a-b)^{2} = a^{2} - 2ab + b^{2}$$

$$(a+b)^{3} = a^{3} + 3a^{2}b + 3ab^{2} + b^{3} ;$$

$$(a-b)^{3} = a^{3} - 3a^{2}b + 3ab^{2} - b^{3}$$

$$(a+b)^{n} = a^{n} + C_{n}^{1}a^{n-1}b + \dots + C_{n}^{k}a^{n-k}b^{k} + \dots + b^{n}$$

$$a^{2} - b^{2} = (a+b)(a-b) ; a^{2} + b^{2} = (a+ib)(a-ib)$$

C. TRIGONOMÉTRIE

$$\overline{OP} = \cos \theta$$

$$\overline{OQ} = \sin \theta$$

$$\cos^2 \theta + \sin^2 \theta = 1$$

$$\tan \theta = \frac{\sin \theta}{\cos \theta}, \quad \bar{\theta} \neq \frac{\pi}{2} + k\pi$$

Formules d'Euler

$$\cos\theta = \frac{1}{2} \left(e^{i\theta} + e^{-i\theta} \right)$$
; $\sin\theta = \frac{1}{2i} \left(e^{i\theta} - e^{-i\theta} \right)$

Formules d'addition

$$e^{i(a+b)} = e^{ia}e^{ib}$$

$$cos(a+b) = cos a cos b - sin a sin b$$

$$cos(a-b) = cos a cos b + sin a sin b$$

$$sin(a+b) = sin a cos b + cos a sin b$$

$$sin(a-b) = sin a cos.b - cos a sin b$$

$$tan(a+b) = \frac{tan a + tan b}{1 - tan a tan b}, tan(a-b) = \frac{tan a - tan b}{1 + tan a tan b}$$

$$\cos 2a = \cos^2 a - \sin^2 a = 2\cos^2 a - 1 = 1 - 2\sin^2 a$$

sin 2a = 2 sin a cos a

$$\cos^2 a = \frac{1}{2} (1 + \cos 2a)$$
; $\sin^2 a = \frac{1}{2} (1 - \cos 2a)$

Valeurs remarquables

	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π
sin	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	I	0
cos	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	1 2	0	-1
tan	0	$\frac{\sqrt{3}}{3}$	1	√3		0

Formules de Moivre et applications

Pour tout entier naturel non nul n, $\left(e^{i\theta}\right)^n = e^{in\theta}$

soit encore
$$(\cos\theta + i\sin\theta)^n = \cos n\theta + i\sin n\theta$$

D. ÉQUATION DU SECOND DEGRÉ

Soient a, b, c des nombres réels, $a \neq 0$, et $\Delta = b^2 - 4ac$.

L'équation $az^2 + bz + c = 0$ admet :

- $si \Delta > 0$, deux solutions réelles

$$z_1 = \frac{-b + \sqrt{\Delta}}{2a}$$
 et $z_2 = \frac{-b - \sqrt{\Delta}}{2a}$

- si $\Delta = 0$, une solution réelle double

$$z_1 = z_2 = -\frac{b}{2a}$$

- si Δ < 0, deux solutions complexes conjuguées

$$z_1 = \frac{-b + i\sqrt{-\Delta}}{2a}$$
 et $z_2 = \frac{-b - i\sqrt{-\Delta}}{2a}$

Dans tous les cas : $az^2 + bz + c = a(z - z_1)(z - z_2)$.

$$z_1 + z_2 = -\frac{b}{a}$$
, $z_1 z_2 = \frac{c}{a}$

E. SUITES ARITHMÉTIQUES, SUITES GÉOMÉTRIQUES (formules valables sur C et donc sur R)

Suites arithmétiques

Premier terme
$$u_0$$
; $u_{n+1} = u_n + a$; $u_n = u_0 + na$
 $1 + 2 + \dots + n = \frac{n(n+1)}{2}$

Suites géométriques

Premier terme u_0 ; $u_{n+1} = bu_n$; $u_n = u_0 b^n$

Si
$$b \neq 1$$
, $S_n = 1 + b + b^2 + \dots + b^n = \frac{1 - b^{n+1}}{1 - b}$

Si
$$b = 1$$
, $S_n = n+1$

IV. ANALYSE

A. PROPRIÉTÉS ALGÉBRIQUES DES FONCTIONS USUELLES

1. Fonctions logarithme et exponentielle

$$lnx = \int_{\frac{1}{2}}^{x} \frac{dt}{t} \quad (x > 0)$$

$$ln = 0$$

$$ln = 1$$

$$lnab = lna + lnb$$

$$lnab = lna - inb$$

$$e^{a-b} = \frac{e^{a}}{e^{b}}$$
Si $x \in]-\infty, +\infty[$ et $y \in]0, +\infty[$, $a^{x} = e^{x \ln a} \quad (a > 0)$

$$y = expx = e^{x} \quad \text{équivaut à } x = lny$$

$$logx = \frac{lnx}{ln10}$$

$$(e^{a})^{b} = e^{ab}$$

$$(e^{a})^{b} = e^{ab}$$

$$lna^{x} = x \ln a$$
2. Fonctions puissances

2. Fonctions puissances

$$x^{\alpha} = e^{\alpha \ln x} \quad (x > 0)$$
$$x^{0} = 1$$

$$x^{\alpha+\beta} = x^{\alpha}x^{\beta}$$
$$x^{\alpha-\beta} = \frac{x^{\alpha}}{x^{\beta}}$$

$$(x^{\alpha})^{\beta} = x^{\alpha\beta}$$
Si $n \in \mathbb{N}^{+}$, $x \in [0, +\infty[$ et $y \in [0, +\infty[$, $y = \sqrt[n]{x}$ équivaut à $x = y^{n}$

B. LIMITES USUELLES DE FONCTIONS ET DE SUITES

1. Fonctions

Comportement à l'infini

$$\lim_{x \to +\infty} \ln x = +\infty$$

$$\lim_{x \to +\infty} e^x = +\infty$$

$$\lim_{x \to +\infty} e^x = 0$$

$$\lim_{x \to -\infty} e^x = 0$$
Si $\alpha > 0$, $\lim_{x \to +\infty} x^{\alpha} = +\infty$; si $\alpha < 0$, $\lim_{x \to +\infty} x^{\alpha} = 0$

Croissances comparées à l'infini

$$\lim_{x \to +\infty} \frac{e^{x}}{x} = +\infty$$

$$\lim_{x \to +\infty} xe^{x} = 0$$

$$\lim_{x \to -\infty} \frac{\ln x}{x} = 0$$

$$\lim_{x \to +\infty} \frac{\ln x}{x} = 0$$
Si $\alpha > 0$,
$$\lim_{x \to +\infty} \frac{e^{x}}{x^{\alpha}} = +\infty$$
Si $\alpha > 0$,
$$\lim_{x \to +\infty} x^{\alpha} e^{-x} = 0$$
Si $\alpha > 0$,
$$\lim_{x \to +\infty} \frac{\ln x}{x^{\alpha}} = 0$$

2. Suites

Si
$$\alpha > 0$$
, $\lim_{n \to +\infty} n^{\alpha} = +\infty$; si $\alpha < 0$, $\lim_{n \to +\infty} n^{\alpha} = 0$

Si
$$a > 1$$
, $\lim_{n \to +\infty} a^n = +\infty$; si $0 < a < 1$, $\lim_{n \to +\infty} a^n = 0$

Comportement à l'origine

$$\lim_{x\to 0} \ln x = -\infty$$

$$x\to 0$$
Si $\alpha > 0$, $\lim_{x\to 0} x^{\alpha} = 0$; si $\alpha < 0$, $\lim_{x\to 0} x^{\alpha} = +\infty$

Comportement à l'origine de ln(1+x), e^x , sin x, $(1+x)^{\alpha}$

$$\lim_{h \to 0} \frac{\ln(1+h)}{h} = 1$$

$$\lim_{h \to 0} \frac{e^{h} - 1}{h} = 1$$

$$\lim_{h \to 0} \frac{\sin h}{h} = 1$$

$$\int_{h \to 0} (1+h)^{\alpha} = 1 + \alpha h + h \varepsilon(h) \qquad (\alpha \neq 0)$$

$$\lim_{h \to 0} \varepsilon(h) = 0$$

Si
$$\alpha > 0$$
 et $\alpha > 1$, $\lim_{n \to +\infty} \frac{\alpha^n}{n^{\alpha}} = +\infty$

C. DÉRIVÉES ET PRIMITIVES (Les formules ci-dessous peuvent servir à la fois pour calculer des dérivées et des primitives)

1. Dérivées et primitives des fonctions usuelles							
f(x)	<i>f</i> ′(<i>x</i>)	Intervalle de validité					
k	0]-∞,+∞[
х	1]-∞,+∞[
$x^n, n \in \mathbb{N}^*$	nx ⁿ⁻¹	}−∞,⊹∞[
1 x	$-\frac{1}{x^2}$]-∞,0[ou]0,+∞[
$\frac{1}{x^n}, n \in \mathbb{N}^*$	$\frac{n}{x^{n+1}}$	$]-\infty,0[$ ou $]0,+\infty[$					
\sqrt{x}	$\frac{1}{2\sqrt{x}}$]0,+∞[
$x^{\alpha}, \alpha \in \mathbb{R}$	$\alpha x^{\alpha-1}$]0,+∞[
lnx	1 - x]0,+∞[
e ^x	e ^x]-∞,+∞[
cos x	– sin x]∞,+∞[
sin x	cos x]-∞,+∞[

2. Opérations sur les dérivées

$$(u+v)'=u'+v'$$

$$(ku)'=ku'$$

$$(uv)' = u'v + uv'$$

$$\left(\frac{1}{u}\right)' = -\frac{u'}{u^2}$$

$$\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$$

$$(v \circ u)' = (v' \circ u)u'$$

$$(e^u)'=e^uu'$$

 $(\ln u)' = \frac{u'}{u}$, u à valeurs strictement positives

$$\left(u^{\alpha}\right)' = \alpha u^{\alpha-1} u'$$

D. CALCUL INTÉGRAL

Formules fondamentales

Si F est une primitive de f, alors
$$\int_a^b f(t)dt = F(b) - F(a)$$

Si
$$g(x) = \int_{0}^{x} f(t)dt$$
, alors $g'(x) = f(x)$

$$f(x) - f(a) = \int_{a}^{x} f'(t)dt$$

Formule de Chasles

$$\int_{a}^{c} f(t)dt = \int_{a}^{b} f(t)dt + \int_{b}^{c} f(t)dt$$
$$\int_{a}^{a} f(t)dt = -\int_{a}^{b} f(t)dt$$

$$\int_{b} f(t)dt = -\int_{a} f(t)dt$$

Linéarité

$$\int_{a}^{b} (\alpha f(t) + \beta g(t)) dt = \alpha \int_{a}^{b} f(t) dt + \beta \int_{a}^{b} g(t) dt$$

Positivité

Si
$$a \le b$$
 et $f \ge 0$, alors $\int_a^b f(t)dt \ge 0$.

Intégration d'une inégalité

Si
$$a \le b$$
 et $f \le g$, alors $\int_a^b f(t)dt \le \int_a^b g(t)dt$

Si $a \le b$ et $m \le f \le M$,

alors
$$m(b-a) \leqslant \int_a^b f(t)dt \leqslant M(b-a)$$

Valeur moyenne de f sur [a, b]: $\frac{1}{b-a} \int_{a}^{b} f(t)dt$

Intégration par parties

$$\int_{a}^{b} u(t)v'(t)dt = \left[u(t)v(t)\right]_{a}^{b} - \int_{a}^{b} u'(t)v(t)dt$$

E. ÉOUATIONS DIFFÉRENTIELLES

É	and produced the first of the control of the contro	P. C.
Equations	Solutions sur $]-\infty$, $+\infty[$	
y'-ay=0	$f(x) = ke^{ax}$	
$y'' + \omega^2 y = 0$	$f(x) = A\cos \alpha x + B\sin \alpha x$	