

The Optimal Mechanism in Differential Privacy

Quan Geng

Advisor: Prof. Pramod Viswanath

Outline

- Background on Differential Privacy
- ϵ -Differential Privacy: Single Dimensional Setting
- ϵ -Differential Privacy: Multiple Dimensional Setting
- (ϵ, δ) -Differential Privacy
- Conclusion

Vast amounts of personal information are collected

Data analysis produces a lot of useful applications

 How to release the data while protecting individual's privacy?

 How to protect PRIVACY resilient to attacks with arbitrary side information?

- How to protect PRIVACY resilient to attacks with arbitrary side information?
 - Answer: randomized releasing mechanism

- How to protect PRIVACY resilient to attacks with arbitrary side information?
 - Answer: randomized releasing mechanism
- How much randomness is needed?
 - completely random (no utility)
 - deterministic (no privacy)

- How to protect PRIVACY resilient to attacks with arbitrary side information?
 - Answer: randomized releasing mechanism
- How much randomness is needed?
 - completely random (no utility)
 - deterministic (no privacy)
- **Differential Privacy** [Dwork et. al. 06]: one way to quantify the level of randomness and privacy

 Database Curator: How to answer a query, providing useful data information to the analyst, while still protecting the privacy of each user.

dataset: D

Age

A: 20

B: 35

C: 43

D: 30

11/07/2013

query function: q (D)

q: How many people are older than 32?

$$q(D) = 2$$

randomized released mechanism: K(D)

$$K(D) = 1$$
 w.p. 1/8

$$K(D) = 2$$
 w.p. $1/2$

$$K(D) = 3$$
 w.p. $1/4$

$$K(D) = 4$$
 w.p. $1/8$

• Two neighboring datasets: differ only at one element

Age	
A: 20	
B: 35	
C: 43	
D: 30	

Age	
A: 20	
B: 35	
D: 30	

 D_1

 D_2

• Two neighboring datasets: differ only at one element

Age	
A: 20	
B: 35	
C: 43	
D: 30	

$$K(D_1) \approx K(D_2)$$

$$D_1$$

$$D_2$$

Differential Privacy: presence or absence of any individual record in the dataset should not affect the released information significantly.

• A randomized mechanism K gives ϵ -differential privacy, if for any two neighboring datasets D_1, D_2 , and all $S \subset \text{Range}(K)$,

$$Pr(K(D_1) \in S) \le e^{\epsilon} Pr(K(D_2) \in S)$$

• A randomized mechanism K gives ϵ -differential privacy, if for any two neighboring datasets D_1, D_2 , and all $S \subset \text{Range}(K)$,

$$Pr(K(D_1) \in S) \le e^{\varepsilon} Pr(K(D_2) \in S)$$

Make hypothesis testing hard:

$$e^{\epsilon}P_{FA} + P_{MD} \ge 1$$

 $P_{FA} + e^{\epsilon}P_{MD} \ge 1$

• A randomized mechanism K gives ϵ -differential privacy, if for any two neighboring datasets D_1, D_2 , and all $S \subset \text{Range}(K)$,

$$Pr(K(D_1) \in S) \le e^{\epsilon} Pr(K(D_2) \in S)$$

- *e* quantifies the level of privacy
 - $\epsilon \rightarrow 0$, high privacy
 - $\epsilon \to +\infty$, low privacy
 - a social question to choose ϵ (can be 0.01, 0.1, 1, 10 ...)

- Q: How much perturbation needed to achieve ϵ -DP?
- A: depends on how different $q(D_1)$, $q(D_2)$ are

- Q: How much perturbation needed to achieve ϵ -DP?
- A: depends on how different $q(D_1)$, $q(D_2)$ are

- Q: How much perturbation needed to achieve ϵ -DP?
- A: depends on how different $q(D_1)$, $q(D_2)$ are

- Q: How much perturbation needed to achieve ϵ -DP?
- A: depends on how different $q(D_1)$, $q(D_2)$ are

• Global Sensitivity Δ : how different when q is applied to neighboring datasets

$$\Delta \coloneqq \max_{(D_1,D_2) \text{ are neighbors}} |q(D_1) - q(D_2)|$$

• Example: for a count query, $\Delta = 1$

Laplace Mechanism:

$$K(D) = q(D) + Lap(\frac{\Delta}{\epsilon}),$$

$$Lap\left(\frac{\Delta}{\epsilon}\right)$$
 is a r.v. with p.d.f $f(x) = \frac{1}{2\lambda}e^{-\frac{|x|}{\lambda}}, \ \lambda = \frac{\Delta}{\epsilon}$

Basic tool in DP

Optimality of Existing work?

Laplace Mechanism:

$$K(D) = q(D) + Lap(\frac{\Delta}{\epsilon}),$$

- Two Questions:
 - Is data-independent perturbation optimal?
 - Assume data-independent perturbation, is Laplacian distribution optimal?

Optimality of Existing work?

Laplace Mechanism:

$$K(D) = q(D) + Lap(\frac{\Delta}{\epsilon}),$$

- Two questions:
 - Is data-independent perturbation optimal?
 - Assume data-independent perturbation, is Laplacian distribution optimal?
- Our results:
 - data-independent perturbation is optimal
 - Laplacian distribution is not optimal: the optimal is staircase distribution

Part One:

The Optimal Mechanism in ϵ -Differential Privacy: Single Dimensional Setting

presented in my preliminary exam

Recap of Part One: Problem Formulation

$$\mathbf{minimize} \sup_{\mathbf{t} \in R} \int_{x \in R} L(x) \nu_t(dx)$$

s.t.
$$\mathbf{v}_{t_1}(S) \leq e^{\epsilon} \mathbf{v}_{t_2}(S + t_1 - t_2)$$
, \forall measurable set S , $\forall t_1, t_2 \in R$, s.t. $|t_1 - t_2| \leq \Delta$,

 $L: R \rightarrow R$ cost function on the noise v_t noise probability distribution given query output t Δ global sensitivity

Recap of Part One: Main Results

Optimality of query-output independent perturbation

In the optimal mechanism, v_t is **independent** of t (under a technical condition).

Staircase Mechanism

Optimal noise probability distribution has staircase-shaped p.d.f.

Minimize $\int L(x)P(dx)$ $Pr(X \in S) \le e^{\epsilon} Pr(X \in S + d)$, $\forall |d| \leq \Delta$, measurable set S

Recap of Part One: Applications

•
$$\ell^1$$
: $L(x) = |x|$

$$V(P_{\gamma^*}) = \Delta \frac{e^{\frac{\epsilon}{2}}}{e^{\epsilon} - 1}$$

 $\epsilon \to 0$, the additive gap $\to 0$

$$\epsilon \to +\infty$$
, $V(P_{\gamma^*}) = \Theta(\Delta e^{-\frac{\epsilon}{2}})$

•
$$\ell^2$$
: $L(x) = x^2$

$$V(\mathcal{P}_{\gamma^*}) = \Delta^2 \frac{2^{-2/3}b^{2/3}(1+b)^{2/3} + b}{(1-b)^2}.$$

 $\epsilon \to 0$, the additive gap $\leq c\Delta^2$

$$\epsilon \to +\infty$$
, $V(P_{\gamma^*}) = \Theta(\Delta^2 e^{-\frac{2\epsilon}{3}})$

$$V_{Lap} = \frac{\Delta}{\epsilon}$$

$$V_{Lap} = \frac{2\Delta^2}{\epsilon^2}$$

Recap of Part One: Applications

• Properties of γ^* (for $L(x) = |x|^m$)

$$\gamma^* \to \frac{1}{2}$$
, as $\epsilon \to 0$,
 $\gamma^* \to 0$, as $\epsilon \to +\infty$.

Extension to Discrete Setting

Extension to Abstract Setting

11/07/2013

Conclusion of Part One:

- Fundamental tradeoff between privacy and utility in ϵ -Differential Privacy
- Staircase Mechanism, optimal mechanism for single real-valued query
 - Huge improvement in low privacy regime
- Extension to discrete setting and abstract setting

Part Two:

The Optimal Mechanism in ϵ -Differential Privacy:

Multiple Dimensional Setting

Query output can have multiple components

$$q(D) = \left(q_1(D), q_2(D), \dots, q_d(D)\right) \in R^d$$

Query output can have multiple components

$$q(D) = \left(q_1(D), q_2(D), \dots, q_d(D)\right) \in R^d$$

• If all components are uncorrelated, perturb each component independently to preserve DP.

Query output can have multiple components

$$q(D) = \left(q_1(D), q_2(D), \dots, q_d(D)\right) \in R^d$$

• If all components are uncorrelated, perturb each component independently to preserve DP.

Composition Theorem:

For each component q_i (D) preserving ϵ -DP, end-to-end achieves $d\epsilon$ -DP.

Query output can have multiple components

$$q(D) = \left(q_1(D), q_2(D), \dots, q_d(D)\right) \in R^d$$

For some query, all components are coupled together.

Histogram query: one user can affect only one component

Query output can have multiple components

$$q(D) = (q_1(D), q_2(D), ..., q_d(D)) \in R^d$$

- For some query, all components are coupled together.
- Global sensitivity

$$\Delta \coloneqq \max_{D_1,D_2 \text{ are neighbors}} ||q(D_1) - q(D_2)||_1$$

Histogram query: $\Delta = 1$

Problem Formulation:

Query-output independent perturbation:

$$K(D) = q(D) + X$$

= $(q_1(D) + x_1, q_2(D) + x_2, ..., q_d(D) + x_d)$

Problem Formulation:

Query-output independent perturbation:

$$K(D) = q(D) + X$$

= $(q_1(D) + x_1, q_2(D) + x_2, ..., q_d(D) + x_d)$

Cost function on the noise:

$$L: \mathbb{R}^d \to \mathbb{R}$$

Problem Formulation:

Query-output independent perturbation:

$$K(D) = q(D) + X$$

= $(q_1(D) + x_1, q_2(D) + x_2, ..., q_d(D) + x_d)$

Cost function on the noise:

$$L: \mathbb{R}^d \to \mathbb{R}$$

Optimization problem:

minimize
$$\iiint_{R^d} L(x_1, ..., x_d) P(dx_1 \cdots dx_d)$$

s.t. $P(S) \le e^{\epsilon} P(S + t), \forall S \subset R^d, ||t||_1 \le \Delta$

Our Result: Optimality of Staircase Mechanism

Theorem: If $L(x_1, ..., x_d) = |x_1| + \cdots + |x_d|, d = 2$, then optimal probability distribution has multidimensional

staircase-shaped p.d.f.

$$f_{\gamma}(\mathbf{x}) = \begin{cases} e^{-k\epsilon} a(\gamma) & \|\mathbf{x}\|_{1} \in [k\Delta, (k+\gamma)\Delta) \text{ for } k \in \mathbb{N} \\ e^{-(k+1)\epsilon} a(\gamma) & \|\mathbf{x}\|_{1} \in [(k+\gamma)\Delta, (k+1)\Delta) \text{ for } k \in \mathbb{N} \end{cases}$$

Our Result: Optimality of Staircase Mechanism

Theorem: If $L(x_1, ..., x_d) = |x_1| + \cdots + |x_d|, d = 2$, then optimal probability distribution has multidimensional

staircase-shaped p.d.f.

$$f_{\gamma}(\mathbf{x}) = \begin{cases} e^{-k\epsilon} a(\gamma) & \|\mathbf{x}\|_{1} \in [k\Delta, (k+\gamma)\Delta) \text{ for } k \in \mathbb{N} \\ e^{-(k+1)\epsilon} a(\gamma) & \|\mathbf{x}\|_{1} \in [(k+\gamma)\Delta, (k+1)\Delta) \text{ for } k \in \mathbb{N} \end{cases}$$

Our Result: Optimality of Staircase Mechanism

Theorem: If $L(x_1, ..., x_d) = |x_1| + \cdots + |x_d|, d = 2$, then optimal probability distribution has multidimensional

staircase-shaped p.d.f.

$$f_{\gamma}(\mathbf{x}) = \begin{cases} e^{-k\epsilon} a(\gamma) & \|\mathbf{x}\|_{1} \in [k\Delta, (k+\gamma)\Delta) \text{ for } k \in \mathbb{N} \\ e^{-(k+1)\epsilon} a(\gamma) & \|\mathbf{x}\|_{1} \in [(k+\gamma)\Delta, (k+1)\Delta) \text{ for } k \in \mathbb{N} \end{cases}$$

Conjecture: the result holds for any d

Step 1: Argue only need to consider multi-dimensional piecewise

constant p.d.f. by averaging

Averaging preserves DP

Step 1: Argue only need to consider multi-dimensional piecewise

constant p.d.f. by averaging

Averaging preserves DP

$$P1 \le e^{\epsilon} P6$$

 $P1 \le e^{\epsilon} P16$
 $P1 \le e^{\epsilon} P7$
 $P1 \le e^{\epsilon} P15$
...
 $P4 \le e^{\epsilon} P12$
 $P4 \le e^{\epsilon} P13$
 $P4 \le e^{\epsilon} P14$
 $P4 \le e^{\epsilon} P15$
 $P4 \le e^{\epsilon} P16$

 $P1 < e^{\epsilon} P5$

$$\frac{\sum_{i=1}^{4} Pi}{4} \le e^{\epsilon} \frac{\sum_{i=5}^{16} Pi}{12}$$

Averaging preserves DP

Formulate a matrix filling-in problem

- row sum is a constant
- column sum is a constant

Explicit formula for d=2, and arbitrary Δ

Due to Step 1, the p.d.f. is a function of $||X||_1$

Step 2: Monotonicity

Step 3: Geometrically Decaying

Step 4: Staircase-Shape

Optimal γ^* for ℓ^1 cost function (d=2)

$$f_{\gamma}(\mathbf{x}) = \begin{cases} e^{-k\epsilon} a(\gamma) & \|\mathbf{x}\|_{1} \in [k\Delta, (k+\gamma)\Delta) \text{ for } k \in \mathbb{N} \\ e^{-(k+1)\epsilon} a(\gamma) & \|\mathbf{x}\|_{1} \in [(k+\gamma)\Delta, (k+1)\Delta) \text{ for } k \in \mathbb{N} \end{cases}$$

$$\gamma^* = \underset{\gamma \in [0,1]}{\operatorname{arg\,min}} \frac{\gamma^3 + \frac{3b}{1-b}\gamma^2 + \frac{3(b^2+b)}{(1-b)^2}\gamma + b\frac{1+4b+b^2}{(1-b)^3}}{\gamma^2 + \frac{2b}{1-b}\gamma + \frac{b+b^2}{(1-b)^2}}$$

Asymptotic analysis

Laplacian Mechanism: $V = \frac{2\Delta}{\epsilon}$

Multidimensional Staircase Mechanism:

High privacy regime($\epsilon \rightarrow 0$):

$$V^* = \frac{2\Delta}{\epsilon} - \frac{\Delta \epsilon^2}{36\sqrt{3}} + O(\epsilon^3)$$

Low privacy regime($\epsilon \rightarrow \infty$):

$$V^* = \sqrt[3]{2} \Delta e^{-\frac{\epsilon}{3}} + \frac{\Delta e^{-\frac{2\epsilon}{3}}}{\sqrt[3]{2}} + o(e^{-\frac{2\epsilon}{3}})$$

Asymptotic analysis

Laplacian Mechanism: $V = \frac{2\Delta}{\epsilon}$

Multidimensional Staircase Mechanism:

High privacy regime($\epsilon \rightarrow 0$):

$$V^* = \frac{2\Delta}{\epsilon} - \frac{\Delta \epsilon^2}{36\sqrt{3}} + O(\epsilon^3)$$

Low privacy regime($\epsilon \rightarrow \infty$):

$$V^* = \sqrt[3]{2} \Delta e^{-\frac{\epsilon}{3}} + \frac{\Delta e^{-\frac{2\epsilon}{3}}}{\sqrt[3]{2}} + o(e^{-\frac{2\epsilon}{3}})$$

Independent Staircase Mechanism:

$$V = \Theta(2\Delta e^{-\frac{\epsilon}{4}})$$

Conclusion of Part Two:

- Extension of Optimality of Staircase Mechanism to Multi-dimensional Setting (d=2)
 - Conjecture: holds for any dimension
- Approximate Optimality of Laplacian Mechanism in High Privacy Regime
- Huge Improvement in Low Privacy Regime

Part Three:

The Optimal Mechanism in (ϵ, δ) -Differential Privacy

Part Three: (ϵ, δ) -differential privacy

• (ϵ, δ) -differential privacy

$$Pr(K(D_1) \in S) \le e^{\epsilon} Pr(K(D_2) \in S) + \delta$$

- Two special cases:
 - $(\epsilon, 0)$ -differential privacy
 - well studied in Part 1 and Part 2
 - $(0, \delta)$ -differential privacy

$$||P_{K(D_1)} - P_{K(D_2)}||_{TV} \le \delta$$

(ϵ, δ) -Differential Privacy

• (ϵ, δ) -differential privacy

$$Pr(K(D_1) \in S) \le e^{\epsilon} Pr(K(D_2) \in S) + \delta$$

Make hypothesis testing hard:

$$e^{\epsilon} P_{FA} + P_{MD} \ge 1 - \delta$$

 $P_{FA} + e^{\epsilon} P_{MD} \ge 1 - \delta$

(ϵ, δ) -Differential Privacy

• (ϵ, δ) -differential privacy

$$Pr(K(D_1) \in S) \le e^{\epsilon} Pr(K(D_2) \in S) + \delta$$

Make hypothesis testing hard:

$$e^{\epsilon} P_{FA} + P_{MD} \ge 1 - \delta$$

 $P_{FA} + e^{\epsilon} P_{MD} \ge 1 - \delta$

Standard approach: adding Gaussian noise

(ϵ, δ) -Differential Privacy

• (ϵ, δ) -differential privacy $\Pr(K(D_1) \in S) \le e^{\epsilon} \Pr(K(D_2) \in S) + \delta$

• What is the optimal noise probability distribution in this setting?

- Our Results:
 - $(0, \delta)$ -DP Optimality of **Uniform Noise Mechanism**
 - (ϵ, δ) -DP Not much more general than $(\epsilon, 0)$ - and $(0, \delta)$ -DP Near-Optimality of Laplacian and Uniform Noise Mechanism in high privacy regime as $(\epsilon, \delta) \to (0, 0)$

Problem Formulation

$$V^* := \min \sum_{i=-\infty}^{+\infty} L(i)P(i)$$
s.t.
$$P(S) \le e^{\epsilon}P(S+d) + \delta,$$

$$\forall S \subset Z, d \in Z, |d| \le \Delta$$

$(0,\delta)$ -Differential Privacy

$$V^* := \min \sum_{i=-\infty}^{+\infty} L(i)P(i)$$

s.t.
$$P(S) \le P(S + d) + \delta$$
,
 $\forall S \subset Z, d \in Z, |d| \le \Delta$

• Theorem:

If $\Delta=1$, assuming $\frac{1}{2\delta}$ is an integer, optimal noise P.D. is

$(0,\delta)$ -Differential Privacy

$$V^* := \min \sum_{i=-\infty}^{+\infty} L(i)P(i)$$

s.t.
$$P(S) \le P(S+d) + \delta$$
,
 $\forall S \subset Z, d \in Z, |d| \le \Delta$

• Theorem:

If $\Delta=1$, assuming $\frac{1}{2\delta}$ is an integer, optimal noise P.D. is

Proof idea:

choose
$$S = S_k = \{l: l \ge k\}$$
,
then $P(k) \le \delta, \forall k$

$(0,\delta)$ -DP: General Δ

$$V^* := \min \sum_{i=-\infty}^{+\infty} L(i)P(i)$$

s.t.
$$P(S) \le P(S + d) + \delta$$
,
 $\forall S \subset Z, d \in Z, |d| \le \Delta$

Upper Bound: Uniform Noise Mechanism

$$V^* \le V_{UB} \coloneqq 2 \sum_{i=1}^{\frac{\delta}{2\Delta} - 1} \frac{\delta}{\Delta} L(i) + \frac{\delta}{\Delta} L(\frac{\Delta}{2\delta})$$

$(0,\delta)$ -DP: General Δ

$$V^* := \min \sum_{i=-\infty}^{+\infty} L(i)P(i)$$

s.t.
$$P(S) \le P(S + d) + \delta$$
,
 $\forall S \subset Z, d \in Z, |d| \le \Delta$

Lower Bound: Duality of Linear Programming

choose
$$S = S_k = \{l: l \ge k\}$$
, then $\sum_{i=k}^{k+\Delta-1} P(i) \le \delta$, $\forall k$

$$V_{LB} := \min \quad 2 \sum_{k=1}^{\infty} \mathcal{L}(k) \mathcal{P}_k$$
such that $\mathcal{P}_k \ge 0 \quad \forall k \in \mathbb{N}$

$$\frac{\mathcal{P}_0}{2} + \sum_{k=1}^{\infty} \mathcal{P}_k \ge \frac{1}{2}$$

$$-\sum_{\ell=0}^{\Delta-1} \mathcal{P}_{k+\ell} \ge -\delta, \quad \forall k \in \mathbb{N}.$$

$(0,\delta)$ -DP: General Δ

$$V^* := \min \sum_{i=-\infty}^{+\infty} L(i)P(i)$$

s.t.
$$P(S) \le P(S+d) + \delta$$
,
 $\forall S \subset Z, d \in Z, |d| \le \Delta$

Lower Bound: Duality of Linear Programming

choose
$$S = S_k = \{l: l \ge k\}$$
, then $\sum_{i=k}^{k+\Delta-1} P(i) \le \delta$, $\forall k$

$$V_{LB} := \min \quad 2 \sum_{k=1}^{\infty} \mathcal{L}(k) \mathcal{P}_k$$
such that $\mathcal{P}_k \ge 0 \quad \forall k \in \mathbb{N}$

$$\frac{\mathcal{P}_0}{2} + \sum_{k=1}^{\infty} \mathcal{P}_k \ge \frac{1}{2}$$

$$-\sum_{\ell=0}^{\Delta-1} \mathcal{P}_{k+\ell} \ge -\delta, \quad \forall k \in \mathbb{N}.$$

$$V_{LB} = 2\delta \sum_{i=0}^{\frac{1}{2\delta}-1} L(1+i\Delta)$$

$(0,\delta)$ -DP: Comparison of V_{LB} , V_{UB}

•
$$L(i) = |i|$$

$$V_{LB} = \frac{\Delta}{4\delta} + 1 - \frac{\Delta}{2},$$
$$V_{UB} = \frac{\Delta}{4\delta},$$

Constant additive gap

61

11/07/2013

$(0,\delta)$ -DP: Comparison of V_{LB} , V_{UB}

•
$$L(i) = |i|$$

$$V_{LB} = \frac{\Delta}{4\delta} + 1 - \frac{\Delta}{2},$$
$$V_{UB} = \frac{\Delta}{4\delta},$$

Constant additive gap

$$\cdot L(i) = |i|^2$$

$$V_{LB} = \frac{\Delta^2}{12\delta^2} - \frac{\Delta^2}{4\delta} + \Delta(\frac{1}{2\delta} - 1) + \frac{\Delta^2}{6} + 1,$$

$$V_{UB} = \frac{\Delta^2}{12\delta^2} + \frac{1}{6},$$

Constant multiplicative gap

$(0,\delta)$ -DP: Comparison of V_{LB} , V_{UB}

•
$$L(i) = |i|$$

$$V_{LB} = \frac{\Delta}{4\delta} + 1 - \frac{\Delta}{2},$$
$$V_{UB} = \frac{\Delta}{4\delta},$$

Constant additive gap

$$\cdot L(i) = |i|^2$$

$$V_{LB} = \frac{\Delta^2}{12\delta^2} - \frac{\Delta^2}{4\delta} + \Delta(\frac{1}{2\delta} - 1) + \frac{\Delta^2}{6} + 1,$$

$$V_{UB} = \frac{\Delta^2}{12\delta^2} + \frac{1}{6},$$

Constant multiplicative gap

•
$$L(i) = |i|^m$$

$$\lim_{\delta \to 0} \frac{V_{UB}}{V_{LB}} = 1.$$

(ϵ, δ) -DP: Upper Bound

$$V^* := \min \sum_{i=-\infty}^{+\infty} L(i)P(i)$$

s.t.
$$P(S) \le e^{\epsilon} P(S + d) + \delta$$
,
 $\forall S \subset Z, d \in Z, |d| \le \Delta$

• Both $(\epsilon,0)$ -DP and $(0,\delta)$ -DP imply (ϵ,δ) -DP

$$V^* \leq min(V_{Lap}, V_{Uniform})$$

Laplacian Mechanism:

continuous:
$$f(x) = \frac{1}{2\lambda} e^{-\frac{|x|}{\lambda}}, \ \lambda = \frac{\Delta}{\epsilon}$$

discrete:
$$P(k) = \frac{1 - e^{-\frac{\epsilon}{\Delta}}}{1 + e^{-\frac{\epsilon}{\Delta}}} e^{-|k|^{\epsilon}_{\Delta}}$$

(ϵ, δ) -DP: Lower Bound

$$V^* := \min \sum_{i=-\infty}^{+\infty} L(i)P(i)$$

s.t.
$$P(S) \le e^{\epsilon} P(S + d) + \delta$$
,
 $\forall S \subset Z, d \in Z, |d| \le \Delta$

• Lower Bound: Duality of Linear Programming choose $S = S_k = \{l: l \ge k\}$, by symmetry

$$V_{LB} := \min \quad 2\sum_{k=1}^{\infty} \mathcal{L}(k)\mathcal{P}_k$$
 such that
$$\mathcal{P}_k \geq 0 \quad \forall k \in N$$

$$\frac{\mathcal{P}_0}{2} + \sum_{k=1}^{\infty} \mathcal{P}_k \geq \frac{1}{2}$$

$$\mathcal{P}_0 \frac{1+\epsilon^{\epsilon}}{2} + e^{\epsilon} \sum_{k=1}^{\Delta-1} \mathcal{P}_k \leq \delta + \frac{e^{\epsilon}-1}{2}$$

$$\mathcal{P}_0 \frac{e^{\epsilon}-1}{2} + e^{\epsilon} \sum_{k=1}^{\Delta} \mathcal{P}_k \leq \delta + \frac{e^{\epsilon}-1}{2}$$

$$\mathcal{P}_0 \frac{e^{\epsilon}-1}{2} + (e^{\epsilon}-1) \sum_{k=1}^{i-1} \mathcal{P}_k + e^{\epsilon} \sum_{k=1}^{i+\Delta-1} \mathcal{P}_k \leq \delta + \frac{e^{\epsilon}-1}{2}, \forall i \geq 2.$$

(ϵ, δ) -DP: Comparison of V_{LB} , V_{UB}

•
$$L(i) = |i|$$
, as $(\epsilon, \delta) \rightarrow (0,0)$

$$\frac{min\left(V_{Lap}, V_{Uniform}\right)}{5.29} \le V_{LB} \le V^* \le V_{UB} = min\left(V_{Lap}, V_{Uniform}\right)$$
$$= \Theta(\min\left(\frac{1}{\epsilon}, \frac{1}{\delta}\right))$$

(ϵ, δ) -DP: Comparison of V_{LB} , V_{UB}

• L(i) = |i|, as $(\epsilon, \delta) \rightarrow (0,0)$

$$\frac{min (V_{Lap}, V_{Uniform})}{5.29} \le V_{LB} \le V^* \le V_{UB} = min (V_{Lap}, V_{Uniform})$$
$$= \Theta(\min\left(\frac{1}{\epsilon}, \frac{1}{\delta}\right))$$

• $L(i) = |i|^2$, as $(\epsilon, \delta) \rightarrow (0,0)$

$$\frac{min\left(V_{Lap}, V_{Uniform}\right)}{40} \leq V_{LB} \leq V^* \leq V_{UB} = min\left(V_{Lap}, V_{Uniform}\right)$$
$$= \Theta(min\left(\frac{1}{\epsilon^2}, \frac{1}{\delta^2}\right))$$

$$V^* \coloneqq \min \sum_{Z^d} L(i_1, i_2, ..., i_d) P(i_1, i_2, ..., i_d)$$
s.t.
$$P(S) \le P(S + d) + \delta,$$

$$\forall S \subset Z^d, d \in Z^d, ||d||_1 \le \Delta$$

Upper Bound

Uniform Noise Mechanism

$$\mathcal{P}(i_1, i_2, \dots, i_d) = \begin{cases} \frac{\delta^d}{\Delta^d} & -\frac{\Delta}{2\delta} \le i_m \le \frac{\Delta}{2\delta} - 1, \forall m \in \{1, 2, \dots, d\} \\ 0 & \text{otherwise} \end{cases}$$

Discrete Laplacian Mechanism

$$P(i_1, \dots, i_d) = \left(\frac{1-\lambda}{1+\lambda}\right)^d \lambda^{|i_1|+\dots+|i_d|}, \lambda = e^{-\epsilon/\Delta}$$

$$V^* \coloneqq \min \sum_{Z^d} L(i_1, i_2, ..., i_d) P(i_1, i_2, ..., i_d)$$
s.t.
$$P(S) \le P(S + d) + \delta,$$

$$\forall S \subset Z^d, d \in Z^d, ||d||_1 \le \Delta$$

Lower Bound

- 1. Choose certain sets $S = S_k^m \coloneqq \{(i_1, \dots, i_d) \in \mathbb{Z}^d | i_m \ge k\}$
- 2. Write down Linear program, and derive the dual problem
- 3. Find proper dual variables to get lower bound

Primal Problem

Dual Problem

$$V^* \geq V_{LB} := \min \sum_{\mathbf{i} \in \mathbb{Z}^d} \mathcal{P}(\mathbf{i}) \mathcal{L}(\mathbf{i}) \qquad V_{LB} := \max \quad \mu - \delta \left(\sum_{i_1 \in \mathbb{Z}} y_{i_1}^{(1)} + \sum_{i_2 \in \mathbb{Z}} y_{i_2}^{(2)} + \dots + \sum_{i_d \in \mathbb{Z}} y_{i_d}^{(d)} \right)$$

$$(4.30)$$
such that $\mathcal{P}(\mathbf{i}) \geq 0 \quad \forall \mathbf{i} \in \mathbb{Z}^d$

$$\sum_{\mathbf{i} \in \mathbb{Z}^d} \mathcal{P}(\mathbf{i}) \geq 1$$

$$\forall k \in \mathbb{N}, \forall m \in \{1, 2, \dots, d\},$$

$$\sum_{(i_1, i_2, \dots, i_d) \in \mathbb{Z}^d: k \leq i_m \leq k + \Delta - 1} \mathcal{P}(i_1, i_2, \dots, i_d) - (e^{\epsilon} - 1) \sum_{(i_1, i_2, \dots, i_d) \in \mathbb{Z}^d: i_m \geq k + \Delta} \mathcal{P}(i_1, i_2, \dots, i_d) \leq \delta.$$

$$\leq |k_1| + |k_2| + \dots + |k_d|, \forall (k_1, \dots, k_d) \in \mathbb{Z}^d.$$

• $(0,\delta)$ -DP:

 ℓ^1

$$V_{LB} \ge \frac{d\Delta}{4\delta} - \frac{\Delta - 1}{2}d,$$

$$V_{UB} = \frac{d\Delta}{4\delta},$$

$$V_{LB} \ge \frac{d\Delta^2}{12\delta^2} + (\frac{1}{\Delta} - 1)\frac{d\Delta^2}{4\delta} + \frac{1 - \Delta}{2}d + \frac{d\Delta^2}{6},$$

$$V_{UB} = \frac{d\Delta^2}{12\delta^2} + \frac{d}{6},$$

Uniform Noise Mechanism is Optimal when $\Delta=1$

• (ϵ, δ) -DP:

$$\frac{min(V_{Lap}, V_{Uniform})}{C} \le V_{LB} \le V^* \le V_{UB} = min(V_{Lap}, V_{Uniform})$$

Conclusion of Part Three

• Near-Optimality of Uniform Noise Mechanism in $(0,\delta)$ -DP

• (ϵ, δ) -DP is not much more general than $(0, \delta)$ -DP and $(\epsilon, 0)$ -DP

$$\frac{min(V_{Lap}, V_{Uniform})}{C} \le V_{LB} \le V^* \le V_{UB} = min(V_{Lap}, V_{Uniform})$$

Conclusion

- Fundamental tradeoff between privacy and utility in Differential Privacy
- Staircase Mechanism, optimal mechanism in ϵ -DP
 - Huge improvement in low privacy regime
 - Extension to Multi-Dimensional Setting
- Uniform Noise Mechanism, near-optimal mechanism in $(0,\delta)$ -DP
- (ϵ, δ) -DP is not much more general than $(0, \delta)$ -DP and $(\epsilon, 0)$ -DP

Acknowledgment

Thanks to my advisor, Prof. Pramod Viswanath

Thank you!