Predicting recipe sentiment from nutrient composition

Mike Touse

4 March 2017

Outline

- Introduction
- 2 Data Collection
- Oata Exploration
- 4 Classifiers
- Conclusion

Introduction

Recipe success is a high-stakes game

- 10% of the American labor force is employed by restaurants operating on razor-thin margins. Offering a recipe that customers will not like wastes precious resources (time and logistics).
- A top recipe website sees 100 million visits every month. Predicting the success of recipes before receiving feedback allows significant advantage in marketing revenue-generating advertisement space.

Goal:

Develop a model to predict recipe success, based only on nutrient quantities, to maximize extensibility across features such as ethnicity and audience.

Data collection and distribution

Process

- Query subsets of recipes using individual ingredients to get ratings and recipe id numbers.
- Concatenate subsets into single list of recipes.
- Query individual recipes from compiled list to capture complete recipe information.
- Parse necessary fields into individual components (nutrients).

Original data distribution:

Unbalanced ratings

 Initial API responses mostly rated 4

Data collection and distribution

Process

- Query subsets of recipes using individual ingredients to get ratings and recipe id numbers.
- Concatenate subsets into single list of recipes.
- Query individual recipes from compiled list to capture complete recipe information.
- Parse necessary fields into individual components (nutrients).

Unbalanced ratings

- Initial API responses mostly rated 4
- Adjusted API script to balance dataset
- Grouped ratings in Favorable (4-5) and Unfavorable (0-3)

Recipe response to JSON query

Each includes only nutrients present in the recipe. Example:

```
In [647]: recipes.iloc[0]['nutritionEstimates']
Out[647]: [{'attribute': 'K',
             'description': 'Potassium, K'.
             'unit': {'abbreviation': 'g'.
              'decimal': True,
              'id': '12485d26-6e69-102c-9a8a-0030485841f8'.
              'name': 'gram'.
              'plural': 'grams',
              'pluralAbbreviation': 'grams'},
             'value': 0.04}.
            {'attribute': 'FLD'.
             'description': 'Fluoride, F',
             'unit': {'abbreviation': 'g',
              'decimal': True.
              'id': '12485d26-6e69-102c-9a8a-0030485841f8'.
              'name': 'gram',
              'plural': 'grams'.
              'pluralAbbreviation': 'grams'}.
             'value': 0.0},
            {'attribute': 'PHYSTR',
              I de e e e d'est d'en l'. I Dhuste e de e e l'e l
```

Data overview

- 21,140 recipes
- 113 different nutrients
- Many sparse features
- Scaled to single-serving

Sample descriptive statistics

	FAT_KCAL	K	FLD	PHYSTR	$VAL_{-}G$
count	21140	21140	21140	21140	21140
mean	51.6	0.16	0.0000	0.005	0.19
std	94.8	0.23	0.0000	0.015	0.34
min	0.0	0.00	0.0000	0.000	0.00
25%	4.2	0.01	0.0000	0.000	0.00
50%	23.3	0.08	0.0000	0.001	0.04
75%	62.5	0.21	0.0000	0.005	0.28
max	1810.0	2.95	0.0025	0.630	5.54

Data Exploration

Observations

- Positive and negative ratings are largely overlapped
- No linear discriminants
- Correlations are small and mostly negative

Feature positivity

Evaluated portion of recipes rated positively at each decile of each nutrient

- Most nutrients exhibit single decile with sharp minimum
- Grouped by min decile (line width is number of nutrients)
- Confirms negative correlation

Logistic Regression (LR)

LR Setup

- Scikit-learn
 StandardScaler
- L1 penalty for sparsity: Zero-weights - little impact
- Minimal sensitivity to regularization parameter
- 80/20 train/test split

Logistic Regression Results

Performance Metrics				
Metric	Value			
Accuracy	0.66			
Precision	0.64			
Recall	0.87			
F1	0.73			
Area under ROC curve	0.70			

Performance observations

 High False Positive Rate (FPR) causes misleading Recall score (artificially high)

Random Forest

Parameters

- 10,000 estimators
- Gini criterion
- Max features: sqrt
- Unscaled (original per-serving data)

Relative feature importance (top 50)

- Water
- Vitamin A
- Starch
- Potassium
- Fiber
- **6** . . .

Random Forest Results

Performance Metrics				
Metric	Value			
Accuracy	0.74			
Precision	0.75			
Recall	0.78			
F1	0.76			
Area under ROC curve	0.80			

Performance observations

- Balanced True Positive Rate and True Negative Rate
- 10% increase across all metrics (except Recall) relative to LR classifier

Conclusion

Results

 Correctly predicted positive recipe ratings approximately 75% of the time (depending on metric used) using only nutrients.

Recommendations

- Restaurants should apply predictive model to recipes prior to preparing them for customers and avoid costly logistics (and potential customer turn-off) while collecting feedback.
- Recipe websites should use prior probabilities from model to tune advertisement sales algorithms.
- Recipe developers should use model discoveries to avoid overuse of specific nutrients.
- Despite mediocre predictive performance, favor inclusion of theobromine and caffeine as the nutrients found most positively correlated with favorability (and heavily concentrated in chocolate).