Example 1

Compute the coefficient of correlation between X and Y, using the following data:

X: 1 Y: 8

12

5 15

7 17

8 18 10 20

x_i	y_i	x_i^2	y_i^2	$x_i y_i$
1	8	1	64	8
3	12	· 9	144	·36
5	15	25	225	75
7	17	49	289	119
8	18	64	324	144
10	20	100	400	200
34	90	248	1446	582

Thus

$$n = 6$$

$$\Sigma x_i = 34$$
, $\Sigma y_i = 90$

$$\Sigma x_i^2 = 248$$
, $\Sigma y_i^2 = 1446$

$$\sum x_i y_i = 582$$

$$r_{XY} = \frac{n \sum xy - \sum x \cdot \sum y}{\sqrt{\left\{n \sum x^2 - \left(\sum x\right)^2\right\} \left\{n \sum y^2 - \left(\sum y\right)^2\right\}}}$$

$$= \frac{6 \times 582 - 34 \times 90}{\sqrt{\left\{6 \times 248 - (34)^2\right\} \left\{6 \times 1446 - (90)^2\right\}}}$$
$$= \frac{432}{\sqrt{332 \times 576}} = 0.9879$$

Example 2

Compute the coefficients of correlation between X and Y using the following data:

X: 65 67 66 71 67 70 68 69 *Y*: 67 68 68 70 64 67 72 70

We effect change of origin in respect of both X and Y. The new origins are chosen at or near the average of extreme values. Thus we take $\frac{65+71}{2}=68$ as the new origin for X and $\frac{64+72}{2}=68$ as the new origin for Y. viz., we put $u_i=(x_i-68)$ and $v_i=y_i-68$ and find r_{IV} .

		ÜV				
$X = x_i$	$Y = y_i$	$u_i = x_i - 68$	$v_i = y_i - 68$	u_i^2	v_i^2	$u_i v_i$
65	67	- 3	- 1	9	1	3
67	68	- 1	0	1	0	0
66	68	- 2	0	4	0	0
- 71	70	3	2	9	4	6
67	64	- 1	-4	1	16	4
70	67	2	-1	4	1	-2
68	72	0	4	0	16	0
69	70	1	2	1	1	2
	Total	- 1	2	29	39	13

$$r_{XY} = r_{UV} = \frac{n \sum uv - \sum u \cdot \sum v}{\sqrt{\left\{n \sum u^2 - (\sum u)^2\right\} \left\{n \sum v^2 - (\sum v)^2\right\}}}$$
$$= \frac{8 \times 13 - (-1) \times 2}{\sqrt{(8 \times 29 - 1)(8 \times 39 - 4)}} = \frac{106}{\sqrt{231 \times 308}} = 0.3974$$

Example 3

Find the coefficient of correlation between X and Y using the following data:

X: 5 10 15 20 25 Y: 16 19 23 26 30

As the values of X are in arithmetic progression, we make the change of origin and scale, by choosing the middle most value 15 as the new origin and the common difference 5 as the new scale.

$$\rho_{XY} = r_{UV} = 1 - \frac{6 \Sigma d^2}{n(n^2 - 1)}$$
$$= 1 - \frac{6 \times 26}{10 \times 99} = 0.8424$$

Example 12

Ten competitors in a beauty contest were ranked by three judges as follows:

		Compeniors									
Judges	1	2	3	4	5	6	7	8	. 9	10	
Ä:											
B :	5	8	4	7	10	2	1	6	9	3	
<u></u>	4	0	0	1	2	2	10	5	7	6	

Discuss which pair of judges have the nearest approach to common taste of beauty.

Rank by A	Rank by B	Rank by C	$d_I =$	$d_2 =$	$d_3 =$	d_{I}^{2}	d_2^2	d_3^2
(U)	(V)	(W)	U-V	V-W	1			
6	5	4	1	1	2	1	1	4
5	8	9	- 3	- 1	-4	9	1	16
3	4	8	- 1	-4	- 5	1	16	25
10	7	1 -	3	6	9	9	36	81
2	10	2	-8	8	0	64	64	0
4	2	3	2	- 1	1	4	1	1
9	1	10	8	-9	- 1	64	81	1
7	6	5	1	1	2	1	1	4
8	9	7	- 1	2	1	1	4	1
1	3	6	- 2	- 3	- 5	4	9	25
				7	Total:	157	214	158

$$r_{UV} = 1 - \frac{6 \Sigma d_1^2}{n(n^2 - 1)} = 1 - \frac{6 \times 157}{10 \times 99} = 0.0485$$

$$r_{VW} = 1 - \frac{6 \Sigma d_2^2}{n(n^2 - 1)} = 1 - \frac{6 \times 214}{10 \times 99} = -0.2970$$

$$r_{UW} = 1 - \frac{6 \Sigma d_3^2}{n(n^2 - 1)} = 1 - \frac{6 \times 158}{10 \times 99} = 0.0424$$

Since r_{UV} is maximum, the judges A and B may be considered to have common taste of beauty to some extent compared to other pairs of judges.

19. Find the coefficient of correlation between X and Y from the following data:

X: 10 14 18 22 26 30 Y: 18 12 24 6 30 36

20. Calculate the coefficient of correlation between X and Y, by finding variances only, from the following data:

 \boldsymbol{X} : 92 113 84 100 83 110 *Y*:

21. Calculate r_{XY} from the following data, where X represents production (in crore tons) and Y represents exports (in crore tons), using only the variances.

 \boldsymbol{X} : *Y*:

22. The following table gives the frequency of scores obtained by 65 students in a general knowledge test according to age groups. Measure the degree of linear relationship between age and general knowledge:

Test		Age in	years	
scores	19	20	21	22
225	4	4	2	1
275	3	5	4	2
325	2	6	8	5
375	1	4	6	8

23. Compute the value of r_{XY} between X, the ages of husbands and Y the ages of wives from the following data:

of wives from the following tutti.									
X	15–25	25–35	35–45	45–55	55-65	65–75	Total		
Y	•								
15-25	1	1	_	_	_	-	2		
25–35	2	12	1	-	_	-	15		
35–45	-	4	10	1	_	_	15		
45–55	-	-	3	6	1	_	10		
55–65	-	-	-	2	4	. 2	8		
65–75	-	_	_	_	1	2	3		
Total	3	17	14	9	6	4	53		

24. Find the rank correlation coefficient between the ranks of the variable X and Y:

X: 10 Y: 30

25. The competitors in a musical contest were ranked by the three judges A, B, C in the following order:

Rank by A:1 Rank by B:3Rank by C:6