Espacios Hilbertianos

Cristo Daniel Alvarado

20 de febrero de 2024

Índice general

1.	Espa	acios Hilbertianos	2
	1.1.	Conceptos básicos. Proyecciones ortogonales	2
	1.2.	Autodualidad de espacios hilbertianos	13

Capítulo 1

Espacios Hilbertianos

1.1. Conceptos básicos. Proyecciones ortogonales

Definición 1.1.1

Sea H un espacio vectorial sobre el campo \mathbb{K} . Decimos que H es un **espacio prehilbertiano** si está dotado de una aplicación $(\vec{x}, \vec{y}) \mapsto (\vec{x}|\vec{y})$ con las propiedades siguientes:

1). $\forall \vec{y} \in H$ fijo, $\vec{x} \mapsto (\vec{x}|\vec{y})$ es una aplicación lineal de H en \mathbb{K} , o sea

$$(\vec{x_1} + \vec{x_2}|\vec{y}) = (\vec{x_1}|\vec{y}) + (\vec{x_2}|\vec{y})$$
$$(\alpha \vec{x}|\vec{y}) = \alpha \cdot (\vec{x}|\vec{y})$$

para todo $\vec{x}, \vec{x_1}, \vec{x_2} \in H$ y $\alpha \in \mathbb{K}$.

- 2). $(\vec{y}|\vec{x}) = \overline{(\vec{x}|\vec{y})}$, para todo $\vec{x} \in H$.
- 3). $(\vec{x}|\vec{x}) \ge 0$, para todo $\vec{x} \in H$.
- 4). $(\vec{x}|\vec{x}) = 0$ si y sólo si $\vec{x} = 0$.

Observación 1.1.1

Si $\mathbb{K} = \mathbb{R}$, entonces 1) y 2) implican que $\forall \vec{x} \in H$ fijo, la aplicación $\vec{y} \mapsto (\vec{x}|\vec{y})$ de H en \mathbb{R} es lineal. En este caso se dice que $(\vec{x}, \vec{y}) \mapsto (\vec{x}|\vec{y})$ es una **forma bilineal sobre** H.

Si $\mathbb{K} = \mathbb{C}$, entonces

$$(\vec{x}|\vec{y_1} + \vec{y_2}) = (\vec{x}|\vec{y_1}) + (\vec{x}|\vec{y_2})$$

$$(\vec{x}|\alpha\vec{y}) = \overline{\alpha} (\vec{x}|\vec{y})$$

Se dice que $\vec{y} \mapsto (\vec{x}|\vec{y})$ es entonces **semilineal** y que $(\vec{x}, \vec{y}) \mapsto (\vec{x}|\vec{y})$ es **sesquilineal** $(1\frac{1}{2}$ -lineal). La aplicación $(\vec{x}, \vec{y}) \mapsto (\vec{x}|\vec{y})$ se llama **producto escalar sobre** H.

Definición 1.1.2

Para todo $\vec{x} \in H$ se define la **norma de** \vec{x} como: $||\vec{x}|| = \sqrt{(\vec{x}|\vec{x})}$.

Ejemplo 1.1.1

Sea $H = \mathbb{K}^n$

Ejemplo 1.1.2

Sea $S \subseteq \mathbb{R}^n$ medible y sea $H = L_2(S, \mathbb{K})$. Para todo $f, g \in H$ se define

$$(f|g) = \int_{S} f\overline{g}$$

La integral existe por Hölder con $p=p^*=2$. Este es un producto escalar sobre H y, en este caso:

$$||f|| = \left[\int_{S} |f|^{2}\right]^{\frac{1}{2}} = \mathcal{N}_{2}(f), \quad \forall f \in H$$

Ejemplo 1.1.3

Sea $H=l_2(\mathbb{K})$ el espacio de sucesiones en \mathbb{K} que son cuadrado sumables. Se sabe que $\vec{x}=(x_1,x_2,\ldots)\in l_2(\mathbb{K})$ si y sólo si

$$\sum_{i=1}^{\infty} |x_i|^2 < \infty$$

 $l_2(\mathbb{K})$ es un espacio prehilbertiano con el producto escalar:

$$(\vec{x}|\vec{y}) = \sum_{i=1}^{\infty} x_i \overline{y_i}$$

donde la serie es convergente por Hölder. En este caso:

$$\|\vec{x}\| = \left[\sum_{i=1}^{\infty} |x_i|^2\right]^{\frac{1}{2}} = \mathcal{N}_2(\vec{x}), \quad \forall \vec{x} \in l_2(\mathbb{K})$$

Teorema 1.1.1 (Desigualdad de Cauchy-Schwartz)

Sea H un espacio prehilbertiano. Entonces:

1). Se cumple la desigualdad de Cauchy-Schwartz:

$$|(\vec{x}|\vec{y})| \le ||\vec{x}|| ||\vec{y}||, \quad \forall \vec{x}, \vec{y} \in H$$

y, la igualdad se da si y sólo si los vectores son linealmente dependientes.

2). Se cumple la desigualdad triangular:

$$\|\vec{x} + \vec{y}\| \le \|\vec{x}\| + \|\vec{y}\|, \quad \forall \vec{x}, \vec{y} \in H$$

y la igualdad se da si y sólo si uno de los vectores es múltiplo no negativo del otro.

Demostración:

De 1): Se supondrá que $\mathbb{K} = \mathbb{C}$ (el caso en que sea \mathbb{R} es similar y se deja como ejercicio).

Sean $\vec{x}, \vec{y} \in H$. En el caso de que alguno de los vectores sea $\vec{0}$, el resultado es inmediato (ambos miembros de la desigualdad son cero). Por lo cual, supongamos que ambos son no cero. Se tiene para

todo $\lambda \in \mathbb{K}$ que

$$0 \leq (\vec{x} + \lambda \vec{y} | \vec{x} + \lambda \vec{y})$$

$$= (\vec{x} | \vec{x}) + \overline{\lambda} (\vec{x} | \vec{y}) + \lambda (\vec{y} | \vec{x}) + \lambda \overline{\lambda} (\vec{y} | \vec{y})$$

$$= (\vec{x} | \vec{x}) + \overline{\lambda} (\vec{y} | \vec{x}) + \lambda (\vec{y} | \vec{x}) + \lambda \overline{\lambda} (\vec{y} | \vec{y})$$

$$= ||\vec{x}||^2 + 2\Re \lambda (\vec{y} | \vec{x}) + |\lambda|^2 ||\vec{y}||^2$$
(1.1)

En particular, para

$$\lambda(t) = \begin{cases} t \frac{\left(\vec{x}|\vec{y}\right)}{\left|\left(\vec{x}|\vec{y}\right)\right|} & \text{si} \quad \left(\vec{x}|\vec{y}\right) \neq 0 \\ t & \text{si} \quad \left(\vec{x}|\vec{y}\right) = 0 \end{cases}$$

con $t \in \mathbb{R}$, la desigualdad (1) se convierte en

$$0 \le \|\vec{x}\|^2 + 2t |(\vec{y}|\vec{x})| + t^2 \|\vec{y}\|^2 \tag{1.2}$$

El trinomio anterior es mayor o igual a cero si y sólo si su discriminante:

$$\left| (\vec{x}|\vec{y}) \right|^2 - \|\vec{x}\|^2 \|\vec{y}\|^2 \le 0$$

es decir

$$\left| \left(\vec{x} | \vec{y} \right) \right| \le \| \vec{x} \| \| \vec{y} \|$$

Si $|(\vec{x}|\vec{y})| = ||\vec{x}||^2 ||\vec{y}||^2$, entonces el trinomio en (2) tiene una raíz doble. Luego, existe $\lambda \in \mathbb{C}$ tal que

$$(\vec{x} + \lambda \vec{y} | \vec{x} + \lambda \vec{y}) = 0$$

pero lo anterior solo sucede si y sólo si $\vec{x} + \lambda \vec{y} = 0$, es decir si \vec{x} y \vec{y} son linealmente dependientes. De 2): Se tiene lo siguiente:

$$\begin{aligned} \|\vec{x} + \vec{y}\|^2 &= (\vec{x} + \vec{y}|\vec{x} + \vec{y}) \\ &= \|\vec{x}\| + 2\Re(\vec{y}|\vec{x}) + \|\vec{y}\|^2 \\ &\leq \|\vec{x}\| + 2|(\vec{y}|\vec{x})| + \|\vec{y}\|^2 \\ &\leq \|\vec{x}\| + 2\|\vec{x}\| \|\vec{y}\| + \|\vec{y}\|^2 \\ &= (\|\vec{x}\| + \|\vec{y}\|)^2 \end{aligned}$$

lo cual implica la desigualdad que se quiere probar. Ahora, la igualdad se cumple si y sólo si

$$|(\vec{x}|\vec{y})| = \Re(\vec{x}|\vec{y}) \text{ y } |(\vec{x}|\vec{y})| = ||\vec{x}|| ||\vec{y}||$$

la primera igualdad implica que $(\vec{x}|\vec{y})$ es real (en particular, ≥ 0 por el valor absoluto) y la segunda implica que \vec{x} y \vec{y} son linealmente dependientes. Es decir, si y sólo si un vector es multiplo no negativo del otro.

Se concluye del teorema anterior que $\|\cdot\|$ es una norma sobre H. En lo sucesivo se consdierará a H como espacio normado dotado de esta norma.

Proposición 1.1.1

La aplicación $(\vec{x}, \vec{y}) \mapsto (\vec{x} | \vec{y})$ es una función continua del espacio normado producto $H \times H$ en \mathbb{K} .

Demostración:

Sean $\vec{x}, \vec{y} \in H$ y, $\{\vec{x_n}\}_{n=1}^{\infty}$ y $\{\vec{y_n}\}_{n=1}^{\infty}$ dos sucesiones que convergen a \vec{x} y \vec{y} , respectivamente. Se probará que $\{(\vec{x_n}|\vec{y_n})\}_{n=1}^{\infty}$ converge a $(\vec{x}|\vec{y})$ en \mathbb{K} . Se tiene que

$$|(\vec{x}|\vec{y}) - (\vec{x_n}|\vec{y_n})| \le |(\vec{x} - \vec{x_n}|\vec{y})| + |(\vec{x_n}|\vec{y} - \vec{y_n})| \le ||\vec{x} - \vec{x_n}|| ||\vec{y}|| + ||\vec{x_n}|| ||\vec{y} - \vec{y_n}||$$

$$(1.3)$$

para todo $n \in \mathbb{N}$. Como $\{\vec{x_n}\}$ es convergente, es acotada. Luego existe M > 0 tal que

$$\|\vec{x_n}\| \le M, \quad \forall n \in \mathbb{N}$$

Se sigue de (3) que

$$|(\vec{x}|\vec{y}) - (\vec{x_n}|\vec{y_n})| \le ||\vec{x} - \vec{x_n}|| ||\vec{y}|| + M||\vec{y} - \vec{y_n}||$$

y, por ende

$$\lim_{n \to \infty} \left| \left(\vec{x} \middle| \vec{y} \right) - \left(\vec{x_n} \middle| \vec{y_n} \right) \right| = 0$$

con lo que se tiene el resultado.

Definición 1.1.3

Decimos que un espacio prehilbertiano se llama **Hilbertiano**, si la norma $\|\cdot\|$ hace de él un espacio normado completo (o sea, un espacio normado de Banach).

Ejemplo 1.1.4

Los espacios $L_2(S, \mathbb{K})$, $l_2(\mathbb{K})$ y todo espacio prehilbertiano de dimensión finita (\mathbb{K}^n) son hilbretianos (ya que, todo espacio prehilbertiano de dimensión finita es isomorfo a \mathbb{R}^k , para algún $k \in \mathbb{N}$).

De ahora en adelante, H denotará siempre a un espacio prehilbertiano (a menos que se indique lo contrario).

Definición 1.1.4

Sean $\vec{x}, \vec{y} \in H$. Se dice que $\vec{x} \mathbf{y} \vec{y}$ son ortogonales y se escribe $\vec{x} \perp \vec{y}$, si $(\vec{x}|\vec{y}) = 0$.

Observación 1.1.2

La condición $\vec{x} \perp \vec{y}$ para todo $\vec{x} \in H$ implica que $\vec{y} = \vec{0}$, pues en particular $(\vec{y}|\vec{y}) = 0 \Rightarrow \vec{y} = \vec{0}$.

Teorema 1.1.2 (Teorema de Pitágoras)

Si $(\vec{x_1}, \dots, \vec{x_n})$ es un sistema de vectores ortogonales (a pares), entonces

$$\|\vec{x_1} + \dots + \vec{x_n}\|^2 = \|\vec{x_1}\|^2 + \dots + \|\vec{x_n}\|^2$$

Demostración:

Se procederá por inducción sobre n. Veamos el caso n=2. En este caso, veamos que

$$\begin{aligned} \|\vec{x_1} + \vec{x_2}\|^2 &= (\vec{x_1} + \vec{x_2} | \vec{x_1} + \vec{x_2}) \\ &= \|\vec{x_1}\|^2 + (\vec{x_1} | \vec{x_2}) + (\vec{x_2} | \vec{x_1}) + \|\vec{x_2}\|^2 \\ &= \|\vec{x_1}\|^2 + \|\vec{x_2}\|^2 \end{aligned}$$

Suponga que el resultado se cumple para $n \geq 2$. Sea $\vec{x_1}, ... \vec{x_{n+1}} \in H$ un sistema de vectores ortogonales. Observemos que

$$(\vec{x_1} + \dots + \vec{x_n} | \vec{x_{n+1}}) = (\vec{x_1} | \vec{x_{n+1}}) + \dots + (\vec{x_n} | \vec{x_{n+1}})$$

$$= 0 + \dots + 0$$

$$= 0$$

por lo cual, $x_{n+1} \perp \vec{x_1} + \cdots + \vec{x_n}$. Por el caso n=2 se sigue que:

$$\|\vec{x_1} + \dots + \vec{x_{n+1}}\|^2 = \|\vec{x_1} + \dots + \vec{x_n}\|^2 + \|\vec{x_{n+1}}\|^2$$

Pero, por hipótesis de inducción:

$$\|\vec{x_1} + \dots + \vec{x_n}\|^2 = \|\vec{x_1}\|^2 + \dots + \|\vec{x_n}\|^2$$

Por lo cual:

$$\|\vec{x_1} + \dots + \vec{x_{n+1}}\|^2 = \|\vec{x_1}\|^2 + \dots + \|\vec{x_n}\|^2 + \|\vec{x_{n+1}}\|^2$$

Aplicando inducción se sigue el resultado.

Proposición 1.1.2 (Identidad del paralelogramo)

Para todo $\vec{x}, \vec{y} \in H$ se cumple la identidad del paralelogramo:

$$\|\vec{x} + \vec{y}\|^2 + \|\vec{x} - \vec{y}\|^2 = 2(\|\vec{x}\|^2 + \|\vec{y}\|^2)$$

Demostración:

Sean $\vec{x}, \vec{y} \in H$. Veamos que

$$\begin{aligned} \|\vec{x} + \vec{y}\|^2 + \|\vec{x} - \vec{y}\|^2 &= (\vec{x} + \vec{y}|\vec{x} + \vec{y}) + (\vec{x} - \vec{y}|\vec{x} - \vec{y}) \\ &= \|\vec{x}\|^2 + 2\Re(\vec{y}|\vec{x}) + \|\vec{y}^2\| + \|\vec{x}\|^2 - 2\Re(\vec{y}|\vec{x}) + \|\vec{y}\|^2 \\ &= 2(\|\vec{x}\|^2 + \|\vec{y}\|^2) \end{aligned}$$

Este resultado anterior es importante, pues en espacios donde la norma no venga de un producto escalar, no necesariamente se cumple la igualdad.

Ejemplo 1.1.5

Los vectores $\chi_{[0,1]}$ y $\chi_{[1,2]}$ son ortogonales en $L_2(\mathbb{R},\mathbb{R})$ (es inmediato del producto escalar en $L_2(\mathbb{R},\mathbb{R})$).

Ejemplo 1.1.6

Los vectores sen y cos son ortogonales en $L_2([-\pi, \pi[, \mathbb{R})])$. En efecto, veamos que

$$(\operatorname{sen} | \cos) = \int_{-\pi}^{\pi} \operatorname{sen} x \cos x dx = \frac{1}{2} \int_{-\pi}^{\pi} \operatorname{sen} 2x dx = 0$$

En particular, por Pitágoras se tiene que

$$\int_{-\pi}^{\pi} |\sin x + \cos x|^2 dx = \int_{-\pi}^{\pi} |\sin x|^2 dx + \int_{-\pi}^{\pi} |\cos x|^2 dx$$

Ejemplo 1.1.7

Si $\vec{x} = (1, 1, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{3}{3}, ...)$ y $\vec{x} = (1, -1, \frac{1}{2}, -\frac{1}{2}, \frac{1}{2}, -\frac{3}{3},)$ son elementos de $l_2(\mathbb{R})$, se tiene que $\vec{x} \perp \vec{y}$. En efecto, veamos que

$$(\vec{x}|\vec{y}) = \sum_{n=1}^{\infty} x_n \overline{y_n}$$
$$= \lim_{n \to \infty} s_n$$

donde $\{s_n\}_{n=1}^{\infty}$ es la sucesión de sumas parciales, siendo $s_{2m}=0$ y $s_{2m-1}=\frac{1}{m}$. Por lo cual

$$\left(\vec{x}\middle|\vec{y}\right) = \lim_{n \to \infty} s_n = 0$$

Teorema 1.1.3

Sea M un subespacio de un espaco prehilbertiano H y sea $\vec{x} \in H$.

1). Suponiendo que existe $\vec{x_0} \in M$ tal que $\vec{x} - \vec{x_0} \perp M$, es decir que $\vec{x} - \vec{x_0} \perp \vec{y}$, para todo $\vec{y} \in M$, se tiene

$$\|\vec{x} - \vec{x_0}\| < \|\vec{x} - \vec{y}\|, \quad \forall \vec{y} \in M, \vec{y} \neq \vec{x_0}$$

Así pues, si existe $\vec{x_0}$, tal vector es único y es llamado la proyección ortogonal de \vec{x} sobre M. Además

$$d(\vec{x}, M)^2 = \|\vec{x} - \vec{x_0}\|^2 = \|\vec{x}\|^2 - \|\vec{x_0}\|^2$$

2). Recíprocamente, si existe un $\vec{x_0} \in M$ tal que $d(\vec{x}, M) = ||\vec{x} - \vec{x_0}||$, entonces $\vec{x_0}$ es la proyección ortogonal de \vec{x} sobre M. En particular, si $\vec{x} \in M$ entonces $\vec{x} = \vec{x_0}$, es decir que \vec{x} es su propia proyección ortogonal sobre M.

Demostración:

De 1): Suponga que existe $\vec{x_0} \in M$ con la condición especificada. Sea $\vec{y} \in M$ distinto de $\vec{x_0}$. Como $\vec{x_0} - \vec{x} \perp \vec{x_0} - \vec{y}$, por el Teorema de Pitágoras se tiene que

$$\|\vec{x} - \vec{y}\|^2 = \|\vec{x} - \vec{x_0}\|^2 + \vec{x_0} - \vec{y}^2 > \|\vec{x} - \vec{x_0}\|^2$$
(1.4)

pues $\vec{x_0} \neq \vec{y}$. Así pues, $\vec{x_0}$ es único. Además $d(\vec{x}, M) = ||\vec{x} - \vec{x_0}||$. Aplicando la ecuación 4) con $\vec{y} = \vec{0}$ se tiene que

$$\|\vec{x}\|^2 = \|\vec{x} - \vec{x_0}\|^2 + \|\vec{x_0}\|^2$$

$$\Rightarrow d(\vec{x}, M)^2 = \|\vec{x} - \vec{x_0}\|^2 = \|\vec{x}\|^2 - \|\vec{x_0}\|^2$$

De 2) Si existe $\vec{x_0} \in M$ tal que $d(\vec{x}, M) = ||\vec{x} - \vec{x_0}||$, entonces $\vec{x_0}$ debe ser la proyección ortogonal de \vec{x} sobre M. En efecto, para todo $\vec{y} \in M$ y para todo $\lambda \in \mathbb{K}$ se tiene

$$\|\vec{x} - (\vec{x_0} + \lambda \vec{y})\|^2 \ge \|\vec{x} - \vec{x_0}\|^2$$

$$\Rightarrow \|(\vec{x} - \vec{x_0}) - \lambda \vec{y}\|^2 \ge \|\vec{x} - \vec{x_0}\|^2$$

$$\Rightarrow \|\vec{x} - \vec{x_0}\|^2 + 2\Re[\overline{\lambda}(\vec{x} - \vec{x_0}|\vec{y})] + |\lambda|^2 \|\vec{y}\|^2 \ge \|\vec{x} - \vec{x_0}\|^2$$

$$\Rightarrow -2\Re[\lambda(\vec{x} - \vec{x_0}|\vec{y})] + |\lambda|^2 \|\vec{y}\|^2 \ge 0$$
(1.5)

en particular, para $\lambda = t (\vec{x} - \vec{x_0} | \vec{y})$, con $t \in \mathbb{R}$, la ecuación anterior se transforma en:

$$\left| \left(\vec{x} - \vec{x_0} | \vec{y} \right) \right|^2 \left[-2t + t^2 ||\vec{y}|| \right] \ge 0$$

para todo $t \in \mathbb{R}$. Esto exige que $(\vec{x} - \vec{x_0}|\vec{y}) = 0$, o sea que $\vec{x} - \vec{x_0} \perp \vec{y}$.

Dado un subespacio M de un espacio prehilbertiano H un vector $\vec{x} \in H$, puede no existir la proyección ortogonal de \vec{x} sobre M. Esto motiva la siguiente definición:

Definición 1.1.5

Un subespacio M de H se dice que es **distinguido** si para cada $\vec{x} \in H$ existe la proyección ortogonal de \vec{x} sobre M.

Ejemplo 1.1.8

El subespacio ϕ_0 de las sucesiones eventualmente constantes de valor cero es un subespacio del espacio hilbretiano $l_2(\mathbb{R})$. Sea M el subespacio de ϕ_0 dado como sigue:

$$M = {\vec{x} \in \phi_0 | x_2 = 0}$$

Sea $\vec{x} = (0, \frac{1}{2^{0/2}}, \frac{1}{2^{1/2}}, \frac{1}{2}, \frac{1}{2^{3/2}}, ...)$. Se tiene que:

$$d(\vec{x}, M) = \inf_{\vec{y} \in M} \left\{ \|\vec{x} - \vec{y}\| \right\}$$

$$= \inf_{\vec{y} \in M} \left\{ \left[|y_1| + \sum_{i=2}^{\infty} \left| \frac{1}{2^{(i-2)/2}} - y_i \right|^2 \right]^{1/2} \right\}$$

$$= 1$$

$$= \inf_{\vec{y} \in M} \left\{ \left[|y_1| + 1 + \sum_{i=3}^{\infty} \left| \frac{1}{2^{(i-2)/2}} - y_i \right|^2 \right]^{1/2} \right\}$$

$$= 1$$

(pues, $y_2 = 0$). Pero $||\vec{x} - \vec{y}|| > 1$, para todo $\vec{y} \in M$. En efecto, sea $\vec{y} \in M$, entonces $\exists m \in \mathbb{N}$ tal que si $k \ge m$ se tiene que $y_k = 0 = y_2$. Veamos que

$$\|\vec{x} - \vec{y}\| = \left[|y_1| + 1 + \sum_{i=3}^{\infty} \left| \frac{1}{2^{(i-2)/2}} - y_i \right|^2 \right]^{1/2}$$

$$\geq \left[1 + \sum_{i=3}^{k-1} \left| \frac{1}{2^{(i-2)/2}} - y_i \right|^2 + \sum_{i=k}^{\infty} \left| \frac{1}{2^{(i-2)/2}} - y_i \right|^2 \right]^{1/2}$$

$$= \left[1 + \sum_{i=3}^{k-1} \left| \frac{1}{2^{(i-2)/2}} - y_i \right|^2 + \sum_{i=k}^{\infty} \left| \frac{1}{2^{(i-2)/2}} \right|^2 \right]^{1/2}$$

$$\geq \left[1 + \sum_{i=k}^{\infty} \left| \frac{1}{2^{(i-2)/2}} \right|^2 \right]^{1/2}$$

$$\geq [1]^{1/2}$$

Luego no existe $\vec{x_0} \in M$ tal que $d(\vec{x}, M) = ||\vec{x} - \vec{x_0}||$. Por lo tanto, no existe la proyección ortogonal de \vec{x} sobre M (es decir, M no es distinguido).

Sin embargo, si $\vec{x} = (1, 1, 0, ...) \in l_2(\mathbb{R})$, entonces si existe la proyección ortogonal de \vec{x} sobre

M, pues

$$d(\vec{x}, M) = \inf_{\vec{y} \in M} \{ \|\vec{x} - \vec{y}\| \}$$

$$= \inf_{\vec{y} \in M} \left\{ \left[\left| 1 - y_1 \right|^2 + 1^2 + \sum_{i=3}^{\infty} \left| y_i \right|^2 \right]^{1/2} \right\}$$

$$= 1$$

y $\|\vec{x} - \vec{e_1}\| = 1$, donde $\vec{e_1} \in M$. Por tanto, $\vec{e_1}$ es la proyección ortogonal de \vec{x} sobre M.

Teorema 1.1.4

Si M es un subespacio completo de un espacio prehilbertiano, entonces M es distinguido. En particular todo subespacio de dimensión finita de un espacio prehilbertiano siempre es distinguido.

Demostración:

Sea $\vec{x} \in H$. Se debe probar que existe un $\vec{x_0} \in M$ tal que $d(\vec{x}, M) = ||\vec{x} - \vec{x_0}||$. Sea $a = d(\vec{x}, M)$. Por propiedades del ínfimo existe una sucesión $\{\vec{y_\nu}\}_{\nu=1}^{\infty}$ tal que

$$\lim_{\nu \to \infty} \|\vec{x} - \vec{y_{\nu}}\| = a \tag{1.6}$$

Sean $\nu, \mu \in \mathbb{N}$ arbitrarios. Por la identidad del paralelogramo se tiene que

$$2 (\|\vec{x} - \vec{y_{\nu}}\|^{2} + \|\vec{x} - \vec{y_{\mu}}\|^{2}) = \|\vec{y_{\nu}} - \vec{y_{\mu}}\|^{2} + \|2\vec{x} - (\vec{y_{\nu}} + \vec{y_{\mu}})\|^{2}$$

$$= \|\vec{y_{\nu}} - \vec{y_{\mu}}\|^{2} + 4\|\vec{x} - \frac{\vec{y_{\nu}} + \vec{y_{\mu}}}{2}\|^{2}$$

$$\geq \|\vec{y_{\nu}} - \vec{y_{\mu}}\|^{2} + 4a^{2}$$

de donde

$$\|\vec{y_{\nu}} - \vec{y_{\mu}}\|^2 \le 2(\|\vec{x} - \vec{y_{\nu}}\|^2 + \|\vec{x} - \vec{y_{\mu}}\|^2) - 4a^2$$

Tomando límite cuando ν, μ tienden a infinito y por (6), se tiene que

$$\lim_{\nu,\mu\to\infty} \|\vec{y_{\nu}} - \vec{y_{\mu}}\|^2 = 0$$

por tanto, $\{\vec{y_{\nu}}\}_{\nu=1}^{\infty}$ es de Cauchy. Por ser M completo, existe $\vec{x_0} \in M$ tal que $\lim_{\nu \to \infty} \vec{y_{\nu}} = \vec{x_0}$. Por (6):

$$a = \lim_{\nu \to \infty} \|\vec{x} - \vec{y_{\nu}}\| = \|\vec{x} - \vec{x_0}\|$$

Ejemplo 1.1.9

¿Es distinguido el subespacio de $L_2(\mathbb{R}, \mathbb{R})$ dado por:

$$M = \{ f \in \mathcal{L}_2(\mathbb{R}, \mathbb{R}) | f(x) = 0 \text{ c.t.p. en } [1, 2] \}$$

?

La respuesta es que sí, ya que M es cerrado. En efecto, sea $\{f_{\nu}\}_{\nu=1}^{\infty}$ una sucesión en M convergente en promedio cuadrático a una $f \in \mathcal{L}_{2}(\mathbb{R}, \mathbb{R})$, es decir:

$$\lim_{\nu \to \infty} \mathcal{N}_2(f_{\nu} - f) = 0$$

Se sabe que existe una subsucesión de $\{f_{\nu}\}_{\nu=1}^{\infty}$, digamos $\{f_{\alpha(\nu)}\}_{\nu=1}^{\infty}$ que converge c.t.p. a f en \mathbb{R} . Como $f_{\alpha(\nu)}=0$ c.t.p. en [1,2], entonces f=0 c.t.p. en [1,2], es decir $f\in M$. Por tanto, M es distinguido.

Ahora, dada $f \in \mathcal{L}_2(\mathbb{R}, \mathbb{R})$, ¿Cuál será la proyección ortogonal de f sobre M? Es claro que

$$f_0 = f \cdot \chi_{\mathbb{R} \setminus [1,2]} \in M$$

es la proyección ortogonal de f sobre M, y además $f - f_0 \perp M$.

Definición 1.1.6

Sea $S \subseteq H$ un conjunto arbitrario. Para este conjunto se define

$$S^{\perp} = \{ \vec{x} \in H | \vec{x} \perp \vec{s}, \forall \vec{s} \in S \}$$

Es claro que S^{\perp} es un subespacio cerrado de H.

Solución:

En efecto, si $\{\vec{x_{\nu}}\}$ es una sucesión en S^{\perp} que converge a $\vec{x} \in H$, entonces

$$(\vec{x}|\vec{s}) = \lim_{\nu \to \infty} (\vec{x_{\nu}}|\vec{y}) = 0, \quad \forall \vec{s} \in S$$

por continuidad y para todo $\vec{s} \in S$. Luego $\vec{x} \in S^{\perp}$. Otra forma es definiendo una función $T_{\vec{s}} : H \to \mathbb{K}$ como

$$T_{\vec{s}}(\vec{x}) = (\vec{x}|\vec{s}), \quad \forall \vec{x} \in H$$

Entonces

$$S^{\perp} = \bigcap_{\vec{s} \in S} \ker T_{\vec{s}}$$

Como $T_{\vec{s}}$ es lineal continua para todo $\vec{s} \in S$, entonces se sigue que S^{\perp} es cerrado.

Proposición 1.1.3

Un subespacio M de un espacio prehilbertiano H es distinguido si y sólo si

$$H = M \oplus M^{\perp}$$

Demostración:

 \Rightarrow): Suponga que M es distinguido. Como $M \cap M^{\perp} = \{\vec{0}\}$, para probar que $H = M \oplus M^{\perp}$, basta probar que es la suma simplemente, es decir que $H = M + M^{\perp}$.

Sea $\vec{x} \in H$, como M es distinguido entonces existe $\vec{x_1} \in M$ tal que $\vec{x} - \vec{x_1} \perp M$, tomando $\vec{x_2} = \vec{x} - \vec{x_1}$ se tiene que $\vec{x_2} \in M^{\perp}$. Además $\vec{x} = \vec{x_1} + \vec{x_2}$, lo que prueba el resultado.

 \Leftarrow): Suponga que $H = M \oplus M^{\perp}$. Hay que probar que M es distinguido. Sea $\vec{x} \in H$ arbitrario. Por hipótesis existen $\vec{x_1} \in M$ y $\vec{x_2} \in M^{\perp}$ únicos tales que $\vec{x} = \vec{x_1} + \vec{x_2}$. Se afirma que $\vec{x_1}$ es la proyección ortogonal de \vec{x} sobre M.

En efecto,

$$\vec{x} - \vec{x_1} = \vec{x_2} \in M^\perp$$

pero $\vec{x_2} \perp M$, por tanto $\vec{x_1}$ es la proyección ortogonal.

Ejemplo 1.1.10

Sea $M = \{x \in l_2(\mathbb{R}) | x(2n) = 0, \forall n \in \mathbb{N} \}$. Afirmamos que M es distinguido, para lo cual basta ver que este subespacio es cerrado (por ser $l_\ell\mathbb{R}$) completo, es decir por ser un espacio Hilbertiano).

Sea $\{\vec{x_n}\}$ una sucesión en $l_2(\mathbb{R})$ que converge a $\vec{x} \in l_2(\mathbb{R})$, es decir

$$\lim_{n \to \infty} \mathcal{N}_2(\vec{x} - \vec{x_n}) = 0$$

$$\lim_{k \to \infty} (\vec{x}(2k) - \vec{x_n}(2k)) = 0, \quad \forall k \in \mathbb{N}$$

$$\Rightarrow \vec{x}(2k) = 0 \quad \forall x \in \mathbb{N}$$
(1.7)

por lo cual, $\vec{x} \in M$. Luego, M es cerrado. Dado que M es distinguido, si $\vec{x} \in l_2(\mathbb{R}) = M \oplus M^{\perp}$, se tiene

$$\vec{x} = \vec{x_1} + \vec{x_2}$$

donde $\vec{x_1} \in M$ y $\vec{x_2} \in M^{\perp}$ son únciso y están dados por:

$$\vec{x_1} = (\vec{x}(1), 0, \vec{x}(3), ...)$$

 $\vec{x_2} = (0, \vec{x}(2), 0, \vec{x}(4), ...)$

Corolario 1.1.1

Si M es un subespacio distinguido de H, entonces M^{\perp} es también un subespacio distinguido.

Demostración:

Se probará que cualquier $\vec{x} \in H$ posee una proyección ortogonal sobre M^{\perp} . Por el teorema anterior:

$$\vec{x} = \vec{x_1} + \vec{x_2}$$

con $\vec{x_1} \in M$ y $\vec{x_2} \in M^{\perp}$ únicos. Luego, $\vec{x} - \vec{x_2} = \vec{x_1} \in M$, por lo que cualquier vector en M^{\perp} se cumple que $\vec{x_1} \perp \vec{y}$, para todo $\vec{y} \in M$, es decir que $\vec{x_2}$ es la proyecicón ortogonal de \vec{x} sobre M^{\perp} .

Proposición 1.1.4

Si M es un subespacio distinguido de H, entonces $M^{\perp \perp} = M$.

Demostración:

Claramente $M \subseteq M^{\perp \perp}$. Ahora, sea $\vec{x} \in M^{\perp \perp}$, por el teorema $\vec{x} = \vec{x_1} + \vec{x_2}$ donde $\vec{x_1} \in M$ y $\vec{x_2} \in M^{\perp}$ únicos.

Se tiene que

$$0 = (\vec{x}|\vec{x_2}) = (\vec{x}|\vec{x_1}) + (\vec{x_2}|\vec{x_2}) = (\vec{x_2}|\vec{x_2})$$

es decir que $\vec{x_2} = \vec{0}$. Por tanto, $\vec{x} \in M$.

Luego, $M = M^{\perp \perp}$.

Corolario 1.1.2

En un espacio hilbertiano H, un subespacio es distinguido si y sólo si es cerrado.

Demostración:

Si es cerrado es inmediato que es distinguido. Ahora, si es distinguido entonces es cerrado, pues por el corolario anterior $M=M^{\perp\perp}$, donde $M^{\perp\perp}$ es cerrado por ser intersección arbitraria de cerrados, luego M es cerrado.

Proposición 1.1.5

Sea H un espacio prehilbertiano y sea M un subespacio distinguido de H (que no se reduce al $\left\{\vec{0}\right\}$). $\forall \vec{x} \in H$ sea $\pi(\vec{x})$ la **proyección ortogonal de** \vec{x} **sobre** M.

Entonces $\pi: H \to M$ es lineal continua y tal que $\|\pi\| = 1$. Además, $\pi \circ \pi = \pi$, y $(\pi(\vec{x})|\vec{y}) =$

 $(\vec{x}|\pi(\vec{y})).$

Demostración:

Sea $\vec{x} \in H$ y $\alpha \in \mathbb{K}$. Si $\alpha = 0$, el resultado es inmediato. Suponga que $\alpha \neq 0$. Se tiene que $\alpha \pi(\vec{x}) \in M$ por ser subespacio, y

$$\alpha \vec{x} - \alpha \pi(\vec{x}) = \alpha(\vec{x} - \pi(\vec{x})) \perp M$$

Luego, $\alpha\pi(\vec{x})$ es una proyección ortogonal de $\alpha\pi(\vec{x})$ sobre M, pero por unicidad de la proyección ortogonal, se tiene que $\pi(\alpha\vec{x}) = \alpha\pi(\vec{x})$.

Ahora, sean $\vec{x}, \vec{y} \in H$. Entonces, $\pi(\vec{x}) + \pi(\vec{y}) \in M$ y:

$$(\vec{x} + \vec{y}) - (\pi(\vec{x}) + \pi(\vec{x})) = (\vec{x} - \pi(\vec{x})) + (\vec{y} - \pi(\vec{y})) \perp M$$

es decir que $\pi(\vec{x}) + \pi(\vec{y})$ es una proyección ortogonal de $\vec{x} + \vec{y}$ sobre M. Por unicidad,

$$\pi(\vec{x} + \vec{y}) = \pi(\vec{x}) + \pi(\vec{y})$$

Por tanto, π es lineal.

Ahora, veamos que es continua. Se sabe que:

$$d(\vec{x}, M)^{2} = \|\vec{x} - \pi(\vec{x})\|^{2}$$

$$= \|\vec{x}\|^{2} - \|\pi(\vec{x})\|^{2}$$

$$\Rightarrow \|\pi(\vec{x})\|^{2} = \|\vec{x}\|^{2} - \|\vec{x} - \pi(\vec{x})\|^{2}$$

$$\leq \|\vec{x}\|^{2}$$

luego, π es continua y, $\|\pi\| \le 1$.

Sea ahora $\vec{x} \in M$, $\vec{x} \neq 0$. Entonces:

$$\|\vec{x}\| = \|\pi(\vec{x})\| \le \|\pi\| \|\vec{x}\|$$

por tanto, $\|\pi\| \ge 1$, por lo anterior se sigue que $\|\pi\| = 1$.

Ya se sabe que $\pi \circ \pi = \pi^2 = \pi$ (por la proposición anterior).

Sean $\vec{x}, \vec{y} \in H$ arbitrarios. Entonces, $\pi(\vec{x}) \in M$ y $\vec{y} - \pi(\vec{y}) \perp M$, por lo cual

$$0 = (\pi(\vec{x})|\vec{y} - \pi(\vec{y}))$$
$$= (\pi(\vec{x})|\vec{y}) - (\pi(\vec{x})|\pi(\vec{y}))$$
$$\Rightarrow (\pi(\vec{x})|\vec{y}) = (\pi(\vec{x})|\pi(\vec{y}))$$

Intercambiando los papeles de \vec{x} y \vec{y} se obtiene que: $(\pi(\vec{y})|\vec{x}) = (\pi(\vec{y})|\pi(\vec{x}))$ o sea:

$$(\vec{x}|\pi(\vec{y})) = (\pi(\vec{x})|\pi(\vec{y}))$$

por lo cual $(\pi(\vec{x})|\vec{y}) = (\vec{x}|\pi(\vec{y})).$

Proposición 1.1.6

Sea H prehilbertiano. Suponga que π es una aplicación lineal de H en H tal que

- $\quad \blacksquare \quad \pi^2 = \pi.$
- $\bullet \ \left(\pi(\vec{x})\big|\vec{y}\right) = \left(\vec{x}\big|\pi(\vec{y})\right), \forall \vec{x}, \vec{y} \in H.$

Entonces existe un único subespacio distinguido M de H tal que π es la proyección ortogonal de H sobre M.

Demostración:

Claramente, si M existe debe ser $M = \pi(H)$, o sea:

$$M = \pi(H) = \left\{ \pi(\vec{x}) \middle| \vec{x} \in H \right\}$$

Se debe probar que si $\vec{x} \in H$ es arbitrario $\vec{x} - \pi(\vec{x}) \perp M$, o sea

$$(\vec{x} - \pi(\vec{x}) | \pi(\vec{y})) = 0, \quad \forall \vec{y} \in H$$

Sean $\vec{x}, \vec{y} \in H$. Se tiene que:

$$(\vec{x} - \pi(\vec{x}) | \pi(\vec{y})) = (\vec{x} | \pi(\vec{y})) - (\pi(\vec{x}) | \pi(\vec{y}))$$

$$= (\vec{x} | \pi(\vec{y})) - (\vec{x} | \pi(\vec{y}))$$

$$= 0$$

usando las dos propiedades de π . Por tanto, $\pi(\vec{x})$ es la proyección ortogonal de \vec{x} , es decir que M es distinguido. La unicidad se sigue de la construcción.

1.2. Autodualidad de espacios hilbertianos

Si E es un espacio normado, E^* denota su **dual topológico** formado por todas las aplicaciones lineales continuas de E en \mathbb{K} . Si $W \in E^*$, se define la ||W|| como

$$||W|| = \inf \{ a \in \mathbb{R} | ||W(\vec{x})|| \le a ||\vec{x}||, \forall \vec{x} \}$$

Recuerde que E^* es siempre un espaico de Banach aunque E no lo sea.

Teorema 1.2.1 (Teorema de Riesz)

Sea H un espacio hilbertiano (no reducido a $\{\vec{0}\}$). Para cada $\vec{y} \in H$ se define una aplicación $G_{\vec{y}}: H \to \mathbb{K}$ como sigue:

$$G_{\vec{y}}(\vec{y}) = (\vec{x}|\vec{y}), \forall \vec{x} \in H$$

Entonces, $G_{\vec{y}}$ es un funcional lineal continuo sobre H. Además, la aplicación $G: H \to H^*$ dada por:

$$\vec{y} \mapsto G_{\vec{y}}$$

es una isometría semilineal de H en H^* que es suprayectiva.

Demostración:

Se probarán varias cosas:

1). Por propiedades del producto escalar, para cada $\vec{y} \in H$ la aplicación $G_{\vec{y}} : H \to \mathbb{K}$ es lineal. Dicha aplicación lineal es continua, pues

$$|G_{\vec{u}}| = |(\vec{x}|\vec{y})| \le ||\vec{x}|| ||\vec{y}||, \quad \forall \vec{x} \in H$$

(por Cauchy-Schwartz). Así que $G_{\vec{y}} \in H^*$. Además, $||G_{\vec{y}}|| \leq ||\vec{y}||$. Por otra, parte, si $\vec{y} \neq \vec{0}$, entonces

$$G_{\vec{y}}(\vec{y}) = (\vec{y}|\vec{y}) = ||\vec{y}||^2$$

pero, como el operador es continuo, se tiene que $G_{\vec{y}} \leq \|G_{\vec{y}}\| \|\vec{y}\|$. Por lo cual, $\|\vec{y}\| \leq \|G_{\vec{y}}\|$. Así pues, $\|G_{\vec{y}}\| = \|\vec{y}\|$.

Si $\vec{y} = \vec{0}$, entonces $||G_{\vec{y}}|| = 0 = ||\vec{y}||$, pues $G_{\vec{y}} = 0$.

2). La aplicación $G: H \to H^*, \ \vec{y} \mapsto G_{\vec{y}}$ es semilinel, es decir que $G_{\alpha \vec{y}} = \overline{\alpha} G_{\vec{y}}$ y separa sumas. En efecto, sea $\vec{y} \in H$ y $\alpha \in \mathbb{K}$. Entonces:

$$G_{\alpha \vec{y}}(\vec{x}) = (\vec{x}|\alpha \vec{y})$$

$$= \overline{\alpha} (\vec{x}|\vec{y})$$

$$= G_{\vec{y}}(\vec{x}), \quad \forall \vec{x} \in H$$

y además, para $\vec{z} \in H$ se tiene que

$$G_{\vec{y}+\vec{z}}(\vec{x}) = (\vec{x}|\vec{y}+\vec{z})$$

$$= (\vec{x}|\vec{y}) + (\vec{x}|\vec{z})$$

$$= G_{\vec{y}}(\vec{x}) + G_{\vec{z}}(\vec{x}), \quad \forall \vec{x} \in H$$

por tanto, G es semilineal. Ahora, veamos que es isometría; sean $\vec{y_1}, \vec{y_2} \in H$, entonces:

$$||G_{\vec{y_1}} - G_{\vec{y_2}}|| = ||G_{\vec{y_1} + \vec{y_2}}||$$
$$= ||\vec{y_1} + \vec{y_2}||$$

así, isometría. Automáticamente, G es inyectiva. Note que $\vec{y} \in (\ker G_{\vec{y}})^{\perp}$ y $G_{\vec{y}}(\vec{y}) = ||\vec{y}||^2$. Sea $W \in H^*$,