

6 RGB effect

The Raspberry Pi RGB_Cooling_HAT needs to be properly plugged into the GPIO port of the Raspberry Pi and open the Raspberry Pi system **I2C** function.

This experimental phenomenon shows that all RGB light become purple breathing light.

1. File transfer

1.1 Install **WinSCP** tool on the computer side, connect the Raspberry Pi and transfer the **temp_control.zip** package to the pi directory of the Raspberry Pi.

Path of WinSCP:[Raspberry Pi

RGB_Cooling_HAT]---[Tools]---[winscp556_setup.1416364912.exe]

1.2 Extract file

Open the Raspberry Pi terminal and input command **s** to find the temp_control.zip file. As shown below:

Input command to extract file:

unzip temp control.zip


```
pi@raspberrypi:~ $ unzip temp control.zip
Archive: temp control.zip
  creating: temp control/
  inflating: temp_control/fan
  inflating: temp_control/fan.c
  inflating: temp control/fan temp
  inflating: temp control/fan temp.c
  inflating: temp control/oled
  inflating: temp control/oled.c
  inflating: temp_control/oled_fonts.h
  inflating: temp_control/rgb
  inflating: temp_control/rgb.c
  inflating: temp control/rgb effect
  inflating: temp control/rgb effect.c
  inflating: temp control/ssdl306 i2c.c
  inflating: temp control/ssdl306 i2c.h
  inflating: temp_control/start.desktop
  inflating: temp control/start.sh
  inflating: temp control/temp control
  inflating: temp control/temp control.c
pi@raspberrypi:~ $
```

2. Compiling and running program

2.1 Input command to enter temp control find file:

```
cd temp_control/
```

ls

2.2 Input command to compile:

gcc -o rgb_effect rgb_effect.c -lwiringPi

```
pi@raspberrypi:~/temp_control $ gcc -o rgb rgb.c -lwiringPi
pi@raspberrypi:~/temp_control $ ls
fan fan_temp.c oled_fonts.h rgb_effect ssdl306_i2c.h temp_control
fan.c oled rgb rgb_effect.c start.desktop temp_control.c
fan_temp oled.c rgb.c ssdl306_i2c.c start.sh
pi@raspberrypi:~/temp_control $
```

Among them, the gcc compiler is called, -o means to generate the file, **rgb_effect** is the generated file name, **rgb_effect.c** is the source program, **-lwiringPi** is the wiringPi library that references the Raspberry Pi.

2.3 Input command to run the program

```
./rgb effect
```

```
pi@raspberrypi:~/temp_control $ ./rgb_effect
pi@raspberrypi:~/temp_control $
```

We can see that all RGB light become purple breathin light.

3. About code

3.1 There are three RGB lights on the expansion board, so the number of defined lights is 3, Define the register address: RGB_Effect is 0x04, RGB_Speed is 0x05, and RGB_Color is 0x06. Declare the function you need to use.

```
#define Max_LED 3
#define RGB_Effect 0x04
#define RGB_Speed 0x05
#define RGB_Color 0x06

int fd_i2c;
void setRGB(int num, int R, int G, int B);
void closeRGB();

void setRGBEffect(int effect);
void setRGBSpeed(int speed);
void setRGBColor(int color);
```

3.2 void setRGB(int num, int R, int G, int B) function:

Set the RGB light color, num refers to which light, 0 is the first light, 1 is the second light, 2 is the third light. If it is greater than or equal to 3, then, all the lights are set at the same time. The R, G, and B values range from 0 to 255.

```
void setRGB(int num, int R, int G, int B)
{
    if (num >= Max_LED)
    {
        wiringPiI2CWriteReg8(fd_i2c, 0x00, 0xff);
        wiringPiI2CWriteReg8(fd_i2c, 0x01, R);
        wiringPiI2CWriteReg8(fd_i2c, 0x02, G);
        wiringPiI2CWriteReg8(fd_i2c, 0x03, B);
    }
    else if (num >= 0)
    {
        wiringPiI2CWriteReg8(fd_i2c, 0x00, num);
        wiringPiI2CWriteReg8(fd_i2c, 0x01, R);
        wiringPiI2CWriteReg8(fd_i2c, 0x02, G);
        wiringPiI2CWriteReg8(fd_i2c, 0x03, B);
    }
}
```

3.3 Turn off RGB. According to the protocol, the RGB register is turned off to 0x07 and the data is 0x00.

```
void closeRGB()
{
    wiringPiI2CWriteReg8(fd_i2c, 0x07, 0x00);
}
```


4. void setRGBEffect(int effect) function:

First, we need to judge the input value. There are five kinds of special effects to choice, 0-water light, 1-breathing light, 2-marquee, 3-rainbow lights, 4-colorful lights.

```
void setRGBEffect(int effect)
{
    if (effect >= 0 && effect <= 4)
    {
        wiringPiI2CWriteReg8(fd_i2c, RGB_Effect, effect);
    }
}</pre>
```

5. void setRGBSpeed(int speed) function:

Modify the RGB light switching speed of the mode. 1-low speed, 2-medium speed (default), 3-high speed. If you do not set, it is medium speed(default).

```
void setRGBSpeed(int speed)
{
   if (speed >= 1 && speed <= 3)
   {
      wiringPiI2CWriteReg8(fd_i2c, RGB_Speed, speed);
   }
}</pre>
```

6. void setRGBColor(int color) function:

Set the color of the water light and breathing light, 0-red, 1-green (default), 2-blue, 3-yellow, 4-purple, 5-cyan, 6-white.

7.Initialize the I2C configuration

```
wiringPiSetup();
fd_i2c = wiringPiI2CSetup(0x0d);
if (fd_i2c < 0)
{
    fprintf(stderr, "fail to init I2C\n");
    return -1;
}</pre>
```

8.An example of setting a purple high-speed breathing light.


```
closeRGB();
delay(1);

setRGBEffect(1);
setRGBSpeed(3);
setRGBColor(4);
```