Exam 2 (1.5.4, 7.1.7, 2.7.4)a, 2.3.18, 2.4.9a) Helleton Sec. 1.5. problem(1) looking for 10° at depth X. At

8° at f(9) and $15^{\circ}a+f(5)$. What is x by seccent method?

So we are approximating f(x)-10=0=g(x) $[x_1=9]$ $[x_2=9]$ $[x_3=1]$ $[x_4=9]$ $[x_6=5]$ $[x_6=5]$ $[x_6=5]$ $[x_6=6]$ $[x_6=6]$

 $X_{n+1} = 9 - \frac{2(9-5)}{-7-5} = 9 - \frac{8}{7} = \frac{55}{7} \approx 7.857m$

By One pass of the secont nettod and without being able to know our actual temp at 7.857m. I conclude our best approximation is 55/2 meters.

Sec 2.1
Problem (7) A given computation require 0-002s to Complete 4/000x 4000 mex upper triangular Mutrix equation. Estimat time needed for a 9,000 Equations and 9,000 unknowns.

Our computer does (4000) opperator in 0.0025 on 8×10^9 opperation/second. A general 9000×9000 set of equitors and unknowns talces $2(9000)^3 = 41.86\times10$ opperations

So we get 8×109 - [60.755]

Exam 2 (2.2.4a, 2.3.18, 2.4.9a) + Reflection

Section 7.2
Problem (1a) Solve the system by LU factorization
and 2 stop lack Substitution.

a) $3 \cdot 1 \cdot 2 \cdot |x_1| \cdot 0$ $6 \cdot 3 \cdot 1 \cdot |x_2| = 1$ $3 \cdot 1 \cdot 5 \cdot |x_3| \cdot 3$

 $E_{1} = \begin{bmatrix} 100 \\ 100 \end{bmatrix}$ $E_{2} = \begin{bmatrix} 100 \\ 100 \end{bmatrix}$

A=LO. L

Now we use back

3.17 100 312 Substitution

(3.4 = 210 010 010 Lc=b

	Exam 2 (2.3.18, 7.4.9a) + Refleton
	Section 2.3. a) Show the system of equitions
	Section 2.3. a) Show the system of equations Problem (18) [811802 810901] [x] = [901] has the 810901 810001] [xz] = [900]
	$50/\omega t_{100}$ [1,-1]; $81180Z(1) + 810901(-1) = 901$
	811807(1) + 810901(-1) = 901 810901(1) + 810001(-1) = 900
	b) Solve using double precision anithmetic using guasium elimination (in tabeau or any other form). How many correct decimal places. Explain using Cond(A)
	-17-12-12-12-12-12-12-12-12-12-12-12-12-12-
	811802 810901900] Re - 810901 R, becomes
	[81/802 810901 901
39	81186201813007.4676 [10,1.00148497001(ez) $01(ez)$ $01 -1.001487805$
	So by double precision we get 2 decinal places of accuracy. We can find Cond(A) =
	· Mallis (1A1) Next Page

Exam 2 (2.3.18, 2.4.9a) + Reflection Problem (18) contined = 811867 810901 810001 Section 2.3 Cond(A) = 11A11 x 11A-11/2 A = 811807 810901 10 22 8691 810961 810001 01 811802 810901 1 0. R2/1.73e6 81180Z-810901 1 0 LO 4171057914813008.1301 R,-810901(Rz) 811802 0 6.585374e! -6.592691e" 7 LO 1 -812(05.8 8.13008.1301] 12/8/1862 $\begin{bmatrix} 1 & 0 \\ 8 \\ 1 \\ 20 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 8 \\ 1 \\ 20 \\ 1$ 1/A/1/ \$ 1625113.972 So our CondA) = 1622703 x 1625 113.922 = 7.637e12 Our error magnification must be less tran or equal too 7.637 212 Cont

0001