

MSE6701H, Multiscale Materials Modeling and Simulation-

Electronic DFT
Atomistic MD
Mesoscale PF

Lecture 10

Governing equation for microstructure evolution & Solutions

Guisen Liu (刘桂森)

Review: Introduction to Phase Field Modeling(PFM)

Mesoscale models

- I. Why model microstructure evolution?
- II. What can Phase Field method do?
- III. Basics for Phase Field method: Principles & how?
 - 1. Microstructure in PFM
 - 2. Driving forces for microstructure evolution
 - 3. Governing equation for microstructure evolution

Review: energy functional

- \triangleright Microstructure: composition (c_n) , phase (η_p) , phase interfaces
- Total free energy: short-range chemical interactions + interface energy

$$F = \int \left[f(c_1, c_2, \dots, c_n, \eta_1, \eta_2, \dots, \eta_p) + \sum_{i=1}^n \alpha_i (\nabla c_i)^2 \right.$$

$$\left. + \sum_{i=1}^3 \sum_{j=1}^3 \sum_{k=1}^p \beta_{ij} \nabla_i \eta_k \nabla_j \eta_k \right] d^3r + \iint G(r - r') d^3r d^3r'$$
Nonlocal long-range interactions

$$+E_{elastic}+E_{electric}+E_{magnetic}$$

Total free energy functional

> Total free energy: volume integration of local free energy density

$$F[\phi(oldsymbol{x},t)] = \int f[\phi(oldsymbol{x},t),
abla\phi(oldsymbol{x},t)]dV$$

- $> f[\phi(\mathbf{x},t),\nabla\phi(\mathbf{x},t)] : g = \nabla\phi(\mathbf{x},t)$ is small for diffuse interface
- > Taylor expansion $f[\phi, \nabla \phi]$ at $g = \nabla \phi(\mathbf{x}, t)$

$$f[\phi(\boldsymbol{x},t),g] = f[\phi(\boldsymbol{x},t),0] + \left(\frac{\partial f}{\partial g}\right) \bigg|_{g=0} g + \left(\frac{1}{2} \left(\frac{\partial^2 f}{\partial g^2}\right)\right) \bigg|_{g=0} g^2 + \mathcal{O}(g^2)$$

$$\equiv f[\phi], \ E_{\min} \ \text{for positive } E_{int} \qquad \equiv 0, \ \text{for } f[\phi,g=0] \qquad \text{Unknown}$$
Equilibrium, no interface to be minimum coefficient α

$$\Rightarrow f[\phi, \nabla \phi] = f[\phi(\boldsymbol{x}, t)] + \frac{\alpha}{2} |\nabla \phi(\boldsymbol{x}, t)|^2 \Rightarrow F[\phi(\boldsymbol{x}, t)] = \int_V \left[f(\phi) + \frac{\alpha}{2} |\nabla \phi|^2 \right] dV$$

III. Basics for Phase-Field method

- 1. Microstructure in PFM
- Driving forces for microstructure evolution → decrease
 of free energy → governing equation
- 3. Governing equation for microstructure evolution
 - Conserved variable: Cahn-Hilliard Equation
 - Non-conserved variable: Allen-Cahn equation
 - Functional and variation

Contents

- 1. Cahn-Hilliard equation for evolution of conserved field variables
- 2. Allen-Cahn equation for evolution of non-conserved field variables
- 3. Discussion, outlook and summary
 - Advantages & Limitations of PFM

Goals today

- ✓ Understand the governing equation
- ✓ Numerically solve evolution equation (Partial Differential Equation)
- ✓ Pros and Cons for PF

1.1 Conserved field variables: concentration or density

> A binary mixture of components A + B, local densities

$$c_A(\mathbf{x},t), c_B(\mathbf{x},t) : c_A(\mathbf{x},t) + c_B(\mathbf{x},t) = 1.$$

 \triangleright Field variable: only one concentration c(x,t)

$$c_A(\mathbf{x},t) := c(\mathbf{x},t); \quad c_B(\mathbf{x},t) := 1 - c(\mathbf{x},t).$$

- ightharpoonup Flux: $\mathbf{J} = -M\nabla(\mu_A \mu_B)$
- *M*: mobility μ_i : chemical potential of component *i*.
 - Difference of chemical potentials: variation of a corresponding free energy functional $\mu_{A} - \mu_{B} = rac{\delta F\left[c\left(oldsymbol{x},t
 ight)
 ight]}{\delta c\left(oldsymbol{x},t
 ight)} \Rightarrow \mathbf{J} = -M
 ablaigg(rac{\delta F\left[c\left(oldsymbol{x},t
 ight)
 ight]}{\delta c\left(oldsymbol{x},t
 ight)}igg).$
- Under assumption of mass conservation

$$\frac{\partial c(\boldsymbol{x},t)}{\partial t} = -\nabla \cdot \mathbf{J} = \nabla \cdot M\nabla \left(\frac{\delta F[c(\boldsymbol{x},t)]}{\delta c(\boldsymbol{x},t)}\right)$$

$$\frac{\partial c\left(\boldsymbol{x},t\right)}{\partial t} = -\nabla \cdot \mathbf{J} = \nabla \cdot M\nabla \left(\frac{\delta F\left[c\left(\boldsymbol{x},t\right)\right]}{\delta c\left(\boldsymbol{x},t\right)}\right) + \xi_{c}\left(\boldsymbol{x},t\right) \leftarrow \text{Thermal noise}$$

Differential time derivative of concentration: Evolution of the field variable

Variational derivative of total free energy functional

Local variation of the field variable (composition, concentration etc.): $\delta c(x, t)$

Variation of the total free energy $\delta F[c(x,t)]$

1.3 Analogy: Fick's law for diffusion

$$\frac{\partial c(\mathbf{x}, t)}{\partial t} = \nabla \cdot \left(M \nabla \frac{\delta F}{\delta c(\mathbf{x}, t)} \right) + \xi_c(\mathbf{x}, t)$$

Fick's Law (1st, 2nd)

$$\mathbf{J} = -D\frac{\partial C}{\partial x}, \quad \frac{\partial C}{\partial t} = -\nabla \cdot \mathbf{J} = D\frac{\partial^2 C}{\partial^2 x}$$

$$\mathbf{C}: concentration$$

J: flux

D: diffusion coefficient

Generalized Fick's law

$$\mathbf{J} = Mf$$

$$f = -\nabla \mu = -\nabla \frac{\delta F}{\delta C(r,t)}, \quad \mu = \frac{\delta F}{\delta C(r,t)}$$

$$\frac{\partial C}{\partial t} = -\nabla \cdot J = \nabla \cdot \left[M \nabla \frac{\delta F}{\delta C(r,t)} \right]$$

- $\mu = \delta F/\delta C(r, t)$: chemical potential
- f: driving force, gradient of μ
- M: mobility of atom migration

1.4 Example (1)

- > Typical total free energy functional: $F[c(\mathbf{x},t)] = \int_{V} \left[f[c] + \frac{k}{2} |\nabla c|^2 \right] d\mathbf{x}$
 - Local energy density (double well function) $f[c] = \frac{\alpha}{2}c^2 + \frac{\beta}{4}c^4, \beta > 0$
 - α : depends on temperature (T), and it determines whether a phase separation will occur.
 - $T < T_c$: two-phase (super cooling)
 - $T > T_c$: one-phase region

$$\Rightarrow \delta F = \int_{V} \left[f'(c) \delta c - \frac{\partial}{\partial x} (k \nabla c) \delta c \right] d\mathbf{x}$$

$$\Rightarrow \frac{\partial c(\mathbf{x}, t)}{\partial t} = \nabla \cdot M \nabla \left(\frac{\delta F}{\delta c} \right)$$

$$= \nabla \cdot M \nabla \left[\alpha c(\mathbf{x}, t) + \beta c(\mathbf{x}, t)^{3} - k \Delta c(\mathbf{x}, t) \right]$$

1.4 Example (2)

$$f[c(\mathbf{x})] = \frac{\alpha}{2}c^2 + \frac{\beta}{4}c^4, \beta > 0$$

$$rac{\partial f}{\partial c} = c(eta c^2 + oldsymbol{lpha})$$

$$\begin{split} F[c] &= \int_{V} \left[f[c] + \frac{k}{2} |\nabla c|^{2} \right] d\boldsymbol{x} \\ &\frac{\partial c\left(\boldsymbol{x},t\right)}{\partial t} = \nabla \cdot M \nabla \left(\frac{\delta F[c]}{\delta c} \right) = \nabla \cdot M \nabla \left[\alpha c\left(\boldsymbol{x},t\right) + \beta c\left(\boldsymbol{x},t\right)^{3} - k \Delta c\left(\boldsymbol{x},t\right) \right] \end{split}$$

1.4 Example (3)

Decrease of the free energy?

$$\begin{split} \frac{dF[c]}{dt} &= \int_{V} \frac{\delta F[c]}{\delta c} \frac{\partial c}{\partial t} d\boldsymbol{x} = \int_{\boldsymbol{V}} \frac{\delta F[c]}{\delta c} \nabla \cdot M \nabla \left(\frac{\delta F[c]}{\delta c} \right) d\boldsymbol{x} \\ &= -\int_{V} \nabla \frac{\delta F[c]}{\delta c} \cdot M \nabla \left(\frac{\delta F[c]}{\delta c} \right) d\boldsymbol{x} = -\int_{V} M \left[\nabla \left(\frac{\delta F[c]}{\delta c} \right) \right]^{2} d\boldsymbol{x} \leq 0 \end{split}$$

- \triangleright Minimization of F[c]?
 - Minimize f[c(x)]: evolve to either c_A or c_B
 - Minimize $\frac{\kappa}{2} |\nabla c|^2$: reduce interfaces between regions with c_A or c_B \rightarrow coarsening, regions with c merge to larger regions with less interfaces.

$$egin{align} F[c] &= \int_{V} \left[f[c] + rac{k}{2} \left|
abla c
ight|^{2}
ight] doldsymbol{x} \ rac{\partial c \left(oldsymbol{x}, t
ight)}{\partial t} &=
abla \cdot M
abla \left(rac{\delta F[c]}{\delta c \left(oldsymbol{x}, t
ight)}
ight) \end{aligned}$$

1.5 Example: particle coarsening

- \triangleright Two spherical precipitates: smaller r_2 vs larger r_1
 - Solution concentration X ____? with increasing r.
 - solute gradient (X) → solute diffuse along ____?
 - → small particles shrink & disappear, large particles grow.
- ightharpoonup Coarsening rate $\dot{r} \propto k/r^2$, with $k \propto D\gamma X_e$
 - Volume diffusion controlled $r^3 = r_0^3 + kt$
 - D: Diffusion coefficient.
 - γ : Interface energy
 - $X_{\rm e}$: equilibrium solubility of large particles
 - D, X_e exponentially increase with T

D.A. Porter, K.E. Easterling, Phase transformations in metals and alloys (revised reprint), CRC press2009.

2.1 Allen-Cahn equation for non-conserved field variables

Analogy: velocity = $\dot{\mathbf{r}} = \mathbf{Force} \cdot \mathbf{time/mass} = -\nabla E \cdot \mathbf{const}$

*(Time Dependent or Non-conserved) Ginzburg-Landau equation

S.M. Allen, J.W.J.A.m. Cahn, A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening, 27(6) (1979) 1085-1095.

2.1 Allen-Cahn equation for non-conserved field variables

$$\frac{\partial \phi_p(\boldsymbol{x},t)}{\partial t} = M \cdot - \frac{\delta F}{\delta \phi_p(\boldsymbol{x},t)} \qquad F[\phi] = \int_V \left[f[\phi] + \frac{\alpha}{2} |\nabla \phi|^2 \right] d\boldsymbol{x}$$

$$\Rightarrow \frac{\partial \phi(\boldsymbol{x},t)}{\partial t} = -M \frac{\delta F[\phi(\boldsymbol{x},t)]}{\delta \phi(\boldsymbol{x},t)} = -M \left[\frac{\partial f(\phi)}{\partial \phi} - \alpha \nabla^2 \phi(\boldsymbol{x},t) \right]$$

Mobility for boundary migration

Condition for minimum total energy

$$\Leftrightarrow \frac{\delta F[\phi(\boldsymbol{x},t)]}{\delta \phi(\boldsymbol{x},t)} = 0 = \frac{\partial f(\phi)}{\partial \phi} - \alpha \nabla^2 \phi(\boldsymbol{x},t)$$

$$|\nabla \phi|^2 = \left(\frac{\partial \phi}{\partial x}\right)^2 + \left(\frac{\partial \phi}{\partial y}\right)^2 + \left(\frac{\partial \phi}{\partial z}\right)^2$$

$$\Delta \phi = \nabla^2 \phi = \frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} + \frac{\partial^2 \phi}{\partial z^2}$$
(Laplacian operator)

- Energy depends on ϕ and $\nabla \phi$
- Driving force depends on 2^{nd} derivative of ϕ w.r.t. x

2.2 Mobility Coefficient M

$$rac{\partial \phi(m{x},t)}{\partial t} = -M rac{\delta F[\phi(m{x},t)]}{\delta \phi(m{x},t)}$$

- Kinetic nature, time-scale
- Anisotropic nature: migration rate of the interface is sensitive to interface orientation (kinetics controlled)
- Coupling the dynamics between multiple order parameters

$$rac{\partial \phi_i(m{x},t)}{\partial t} = -\sum_{j
eq i} M_{ij} rac{\delta F[\phi_1,\phi_2,\cdots]}{\delta \phi_j(m{x},t)}$$

2.3 Example (1): one-dimensional interface

Figure 12.1 (a) A schematic view of the one-dimensional diffuse interface. Plotted is the variation of the order parameter through an interface, $\phi(x)$. (b) Schematic drawing of the integrand of the energy expression from Eq. (12.5), showing the peak in free-energy density in the interface.

- Each grid point: a certain volume v = a³
- throughout the grid volume: same

Figure 12.2 A one-dimensional model showing the values of the order parameter at t = 0.

• Fixed
$$\phi_1 = 1$$

• **Fixed**
$$\phi_{15} = -1$$

2.3 Example (2): numerical solution

Solid-liquid in equilibrium

$$f[\phi(x,t)] = 4U\left(-rac{1}{2}\phi^2 + rac{1}{4}\phi^4
ight)$$

To model the **phenomenological** behavior of a system with two phases of equal energy

Finite difference method:

$$egin{aligned} rac{d\phi_i}{dx} &= rac{\phi_{i+1} - \phi_{i-1}}{2a}, \quad rac{d^2\phi_i}{dx^2} = rac{\phi_{i+1} + \phi_{i-1} - 2\phi_i}{a^2} \ \Rightarrow rac{\partial\phi_i}{\partial t} &= -Migg[4U(-\phi_i + \phi_i^3) - lphaigg(rac{\phi_{i+1} + \phi_{i-1} - 2\phi_i}{a^2}igg)igg] \end{aligned}$$

Numerical methods: Finite difference/element method, Fast Fourier Transformation method

$$rac{\partial \phi(m{x},t)}{\partial t} = -M igg[rac{\partial f(\phi)}{\partial \phi} - lpha
abla^2 \phi(m{x},t) igg]$$

Double well chemical energy density $f(\phi)$

$$rac{\partial f(\phi)}{\partial \phi} = 4U(-\phi + \phi^3), U = 1$$

2.3 Example (3): numerical solution

$$egin{aligned} rac{\partial \phi_i}{\partial t} = &-M igg[4U(-\phi_i + \phi_i^3) - lpha igg(rac{\phi_{i+1} + \phi_{i-1} - 2\phi_i}{a^2} igg) igg] \end{aligned}$$

Integrate the equation of motion (1st order Taylor expansion):

$\phi_i(t+\delta t) = \phi_i(t) + \frac{\partial \phi_i}{\partial t} \delta t.$
δt : accuracy, efficiency
(Euler equation)

EOM in PF	EOM in MD
Decrease of total free energy	Accurate integration

• Kinetic parameter M = 1 for convenience

$$\begin{split} f[\phi_i] + \frac{\alpha}{2} \left(\frac{d\phi_i}{dx}\right)^2 \\ = 4U \left(-\frac{1}{2}\phi_i^2 + \frac{1}{4}\phi_i^2\right) + \frac{\alpha}{2} \left(\frac{\phi_{i+1} - \phi_{i-1}}{2a}\right)^2 \end{split}$$

2.3 Example (4): numerical solution

$$\left\{egin{aligned} 1. \; \phi_i, rac{d\phi_i}{dx} &\Rightarrow Figg[\phi_i, rac{d\phi_i}{dx}igg] \ 2. \; \phi_i, rac{d^2\phi_i}{dx^2} &\Rightarrow rac{\partial\phi_i}{\partial t} \end{aligned}
ight\} \Longrightarrow \phi_i(t+\delta t) = \phi_i(t) + rac{\partial\phi_i}{\partial t} \cdot \delta t$$

- Periodic boundary condition
 - 1. Initialize $\phi(x)$ at each mesh grid at t = 0, random [-0.1, 0.1]
 - 2. Calculate $F[\phi_i, d\phi_i/dx] \& d\phi_i/dt$ for each grid point at time t
 - 3. Update new $\phi(x)$ at $t + \delta t$
 - 4. Go to 2 and repeat till F converges to a minimum $\Leftrightarrow d\phi_i/dt \approx 0$

Influence of interface energy?

- Equilibrium: no interfaces to minimize the interface energy
- Q: $\alpha = 0$?

Condition for minimum total energy (equilibrium)

$$\Leftrightarrow \frac{\delta F[\phi(\boldsymbol{x},t)]}{\delta \phi(\boldsymbol{x},t)} = 0 \Rightarrow \frac{\partial f(\phi)}{\partial \phi} - \alpha \nabla^2 \phi(\boldsymbol{x},t) = 0$$

- Interface located in yz plane at x = 0, with $f[\phi(x,t)] = 4U\left(-\frac{1}{2}\phi^2 + \frac{1}{4}\phi^4\right)$
- Free energy per unit area $\frac{F}{A} = \int_x \left[4U \left(-\frac{1}{2}\phi^2 + \frac{1}{4}\phi^4 \right) + \frac{\alpha}{2} \left(\frac{\partial \phi}{\partial x} \right)^2 \right] dx$

•
$$\frac{\delta(F/A)}{\delta\phi} = 0 \Rightarrow 4U[-\phi(x) + \phi^3(x)] - \alpha \left[\frac{\partial^2\phi(x)}{\partial x^2}\right] = 0$$

2.4 Example: analytical solution for equilibrium interface

$$\frac{\delta(F/A)}{\delta\phi} = 0 \Rightarrow 4U[-\phi(x) + \phi^{3}(x)] - \alpha \left[\frac{\partial^{2}\phi(x)}{\partial x^{2}}\right] = 0$$
$$\Rightarrow \phi(x) = \tanh\left(x\sqrt{2U/\alpha}\right)$$

• Minimum interface energy?

$$\frac{F}{A} = \frac{4\sqrt{2}}{3}\sqrt{U\alpha}$$

• Interface width?

$$w \propto \sqrt{\alpha/U}$$

Contents

- 1. Cahn-Hilliard equation for evolution of conserved field variables
- 2. Allen-Cahn equation for evolution of non-conserved field variables
- 3. Discussion, outlook and summary
 - Advantages & Limitations of PFM

3.1 phase preference

$$f[\phi] = 4U\left(-\frac{1}{2}\phi^2 + \frac{1}{4}\phi^4\right) + \frac{15\gamma}{8}\left(\phi - \frac{2}{3}\phi^3 + \frac{1}{5}\phi^5\right)(T - T_m), \gamma > 0.$$

- > $T = T_m$: $f[\phi = 1] = f[\phi = -1]$ solid liquid > $T \neq T_m$: one phase is preferred
- Accurate free energy model?
 - thermodynamic calculations such as CALPHAD
 - database

3.2 multi-phase system (1)

- Example: grain growth--many "phases" with same composition, each phase (ϕ_i) represents a grain with a different orientation.
- Free energy
 - arbitrary # of order parameters for different orientations

• Distinct minima, each has only one ϕ_i is non-zero.

$$egin{align} f[\{\phi_i\}] = & -rac{\gamma}{2} \sum_{i=1}^P \phi_i^2 + rac{eta}{4} iggl(\sum_{i=1}^P \phi_i^2 iggr)^2 \ & + iggl(\lambda - rac{eta}{2} iggr) \sum_{i=1}^P \sum_{j
eq i=1}^P \phi_i^2 \phi_j^2 \ & P = 2 \,, \; eta = \lambda = 1 \,. \end{split}$$

other options?

3.2 multi-phase system (2)

• Free energy: Distinct minima, each has only one ϕ_i approaching unity or zero (pure phase)

$$f[\{\phi_i\}] = U(|\phi_1\phi_2| + |\phi_2\phi_3| + |\phi_3\phi_1|)$$

3.3 Current state of Phase Field Modeling

- Modeling meso-(micro-) scale microstructure
 - Based on thermodynamic principles

- Current topics
 - Realistic, complex, multi component systems
 More realistic description of free energy
 - Quantitative aspects

3.4 Quantitative PFM (1)

- Accurately reproduce bulk properties, and interfaces as observed.
 - Effective model description and parameters
 - Numerical issues
- Provide insights into evolution of complex morphologies (i.e. grain assemblies, twin evolution etc.)
 - Effect of individual bulk and interface properties on results
- Predictive ability ?
 - Depends on availability and accuracy of input data
 - Requires composition and orientation dependence

3.4 Quantitative PFM (2)

3.5 Parameter assessment

- Different kinds of input data
 - Bulk phase stabilities, bulk phase diagram information (CALPHAD)
 - Interfacial energy and mobility
 - Elastic properties, crystal structure, lattice parameters
 - Diffusion mobilities/coefficients (DICTRA mobilities)
- Orientation and composition dependence
 - Anisotropy, segregation, solute drag
 - Very important for microstructure evolution, but difficult to measure/calculate

Coupling phase-field with thermodynamic databases

Summary for PFM

- Microstructure in PFM
 - Field variables (conserved, non-conserved)
- > Driving forces for microstructure evolution
 - Decrease of free energy
 - Free energy
- Governing equation for microstructure evolution
 - Conserved variable (Cahn-Hilliard Equation)
 - Non-conserved (Allen-Cahn equation)
- > Solve the governing equation to obtain microstructure
 - Determine parameters (atomic scale models, experiments)
 - Initialize variables, apply boundary conditions
 - Numerical solutions

Next Week:

Hands-On Phase Filed Method

Appendix: functional, variation

Functional: functions of a function. i.e.

$$I[y(x)] = \int_{x_1}^{x_2} F[x,y(x),y'(x)]dx, \ \ y'(x) \equiv dy(x)/dx$$

• Variation: small change in $y(x) \rightarrow variation of the functional$

$$\tilde{y}(x) = y(x) + \delta y(x)$$

$$\delta I = I [\tilde{y}(x)] - I [y(x)]$$

Appendix: calculus of variations

- The calculus of variations: find an extremum (maximum or minimum)
 of a quantity that is expressible as an integral.
- Explicit expression of variation?

$$\delta I = I[y(x) + \delta y(x)] - I[y(x)]$$

- Define the infinitesimal $\delta y(x) = \epsilon \phi(x)$,
 - $\phi(x)$: an arbitrary continuous and sufficiently smooth function
 - ϵ : an infinitesimal number.

• Taylor expand
$$I[\tilde{y}(x)] = \int_{x_1}^{x_2} F(x, y(x) + \epsilon \phi(x), y'(x) + \epsilon \phi'(x)) dx$$

$$= \int_{x_1}^{x_2} \left[F(x, y(x), y'(x)) + \frac{\partial F}{\partial y} \epsilon \phi(x) + \frac{\partial F}{\partial y'} \epsilon \phi'(x) + \mathcal{O}(\epsilon^2) \right] dx$$

$$= I[y(x)] + \epsilon \int_{x_1}^{x_2} \left[\frac{\partial F}{\partial y} \phi(x) + \frac{\partial F}{\partial y'} \phi'(x) \right] dx + \mathcal{O}(\epsilon^2)$$

Appendix: calculus of variations

Variation of the integral: $\delta I = \epsilon \int_{x_1}^{x_2} \left[\frac{\partial F}{\partial y} \phi(x) + \frac{\partial F}{\partial y'} \phi'(x) \right] dx$ $= \int_{x_1}^{x_2} \left[\frac{\partial F}{\partial y} \delta y(x) + \frac{\partial F}{\partial y'} \delta y'(x) \right] dx$

Integration by parts:

$$\delta I = \epsilon \int_{x_1}^{x_2} \frac{\partial F}{\partial y} \phi(x) dx + \epsilon \int_{x_1}^{x_2} \frac{\partial F}{\partial y'} d\phi(x)$$

$$= \epsilon \int_{x_1}^{x_2} \frac{\partial F}{\partial y} \phi(x) dx + \epsilon \left[\frac{\partial F}{\partial y'} \phi(x) \right]_{x_1}^{x_2} - \epsilon \int_{x_1}^{x_2} \frac{d}{dx} \left(\frac{\partial F}{\partial y'} \right) \phi(x) dx$$

• If constrain $y(x_1)$, $y(x_2)$ to be constant (fixed boundary condition), then $f^{x_2} [\partial F + d / \partial F)]$

$$\delta I = \epsilon \int_{x_1}^{x_2} \left[\frac{\partial F}{\partial y} - \frac{d}{dx} \left(\frac{\partial F}{\partial y'} \right) \right] \phi(x) dx$$
$$= \int_{x_1}^{x_2} \left[\frac{\partial F}{\partial y} - \frac{d}{dx} \left(\frac{\partial F}{\partial y'} \right) \right] \delta y(x) dx$$

Appendix: variational (functional) derivative

$$I[y(x)] = \int_{x_1}^{x_2} F[x,y(x),y'(x)]dx$$

$$\delta I = \int_{x1}^{x2} g(x) \, \delta y(x) \, dx \Rightarrow \frac{\delta I}{\delta y(x)} = g(x) = \frac{\partial F}{\partial y} - \frac{d}{dx} \left(\frac{\partial F}{\partial y'} \right)$$

- Impossible to change only one $y(x_i)$ without change neighboring $y(x_i \pm dx)$ due to continuity
- vairations: local change in function $\delta \phi(\boldsymbol{x})$
 - \Rightarrow variation in total energy $\delta F[\phi(\boldsymbol{x}), \nabla \phi(\boldsymbol{x})]$

$$\frac{\delta I}{\delta y(x)} = \frac{\partial F}{\partial y} - \frac{d}{dx} \left(\frac{\partial F}{\partial y'} \right) = \lim_{\Delta x \to 0} \frac{\partial I_n}{\partial y_k} \frac{1}{\Delta x}$$

