I. Measures

1. Motivation

Let *X* be a set and let $A \subseteq X$. We aim to develop a *meaningful* theory of integration that is

$$\int_A f$$
,

where $f: X \to \mathbb{R}$.

There are a bunch of natural question that come out here.

- (a) Which A are appropirate?
- (b) Which f are appropirate?
- (c) What does $\int_A f$ even mean?

Moreover, we want the following:

$$\mu\left(A\right) = \int_{A} 1$$

to be some meaningful idea of size/volume/measure. Some μ 's do this better than others. Here are some properties we want μ to satisfy:

- (a) $\mu(\emptyset) = 0$.
- (b) $\mu(A \cup B) = \mu(A) + \mu(B)$.
- (c) $\mu(A \cup B) \le \mu(A) + \mu(B)$.
- (d) $A \subseteq B \implies \mu(A) \le \mu(B)$.
- (e) $\mu(X) \in [0, \infty]$.
- (f) $\mu\left(\bigcup_{n=1}^{\infty} A_n\right) \leq \sum_{n=1}^{\infty} \mu\left(A_n\right)$.
- (g) $\mu\left(\bigcup_{n=1}^{\infty} A_n\right) = \sum_{n=1}^{\infty} \mu\left(A_n\right)$.

Let's take a step back. If we are going to achieve those things, we want some basics. Let D be the domain of μ – the *nonprecise measure function* handed on us. We need:

- (a) $\emptyset \in D$; and
- (b) if $A_1, A_2, \ldots \in D$, then $\bigcup_{n=1}^{\infty} A_n \in D$.

2. σ -algebras

Def'n 1.1. σ -algebra of Subsets of X

Let *X* be a set and let $A \subseteq \mathcal{P}(X)$. We say A is an *algebra*¹ of subsets of *X* if

- (a) $\emptyset \in \mathcal{A}$;
- (b) $A \in \mathcal{A}$ implies $X \setminus A \in \mathcal{A}$; and

closure under complements

closure under finite union

(c) $A, B \in \mathcal{A}$ implies $A \cup B \in \mathcal{A}$.

Moreover, we say A is a σ -algebra if it satisfies in addition

$${A_n}_{n=1}^{\infty} \subseteq \mathcal{A} \implies \bigcup_{n=1}^{\infty} A_n \in \mathcal{A}.$$

That is, A is closed under countable unions.

¹The word *algebra* comes from boolean algebra, one of the most universal objects in abstract math.

Question 1.1.

Are all algebra a σ -algebra?

Answer. To answer this question, we should think about:

what is preserved for finite sets but not infinite sets?

The easiest answer is *finiteness*. Let *X* be an infinite set and let

$$\mathcal{A} = \{ A \subset X : A \text{ is finite or } X \setminus A \text{ is finite} \}.$$

Then A is an algebra but not a σ -algebra.

QED

Let $A \subseteq P$ be an algebra. Then, as a corollary to Def'n 1.1,

(a) $A, B \in \mathcal{A}$ implies $X \setminus A, X \setminus B \in \mathcal{A}$, so that $A \cap B = X \setminus ((X \setminus A) \cup (X \setminus B)) \in \mathcal{A}$;

closure under closure

- (b) $X = X \setminus \emptyset \in \mathcal{A}$;
- (c) $A, B \in \mathcal{A}$ implies $A \setminus B = A \cap (X \setminus B) \in \mathcal{A}$; and

closure under set difference

(d) $A, B \in \mathcal{A}$ implies $A \triangle B \in \mathcal{A}$.

closure under symmetric set difference

Moreover, if A is a σ -algebra, then (a) holds with countable number of sets.

Proposition 1.1. Generating σ -algebra from a Collection of Subsets

Let *X* be a set and let $\mathcal{E} \subseteq \mathcal{P}(X)$. Then

$$\langle \mathcal{E} \rangle = \bigcap \{ \mathcal{A} \supseteq \mathcal{E} : \mathcal{A} \text{ is a } \sigma\text{-algebra} \}$$

is a σ -algebra.

Exercise

Def'n 1.2. σ -algebra **Generated** by \mathcal{E}

Consider Proposition 1.1. We call $\langle \mathcal{E} \rangle$ the σ -algebra *generated* by \mathcal{E} .

Def'n 1.3. **Borel** σ -algebra of a Topological Space

Let (X, τ) be a topological space. Then

Bor
$$(X) = \langle \tau \rangle$$

is called the *Borel* σ -algebra of (X, τ) .

We call elements of Bor (X) the *Borel sets*.

Def'n 1.4. Measurable Space

Let X be a set and let A be a σ -algebra of X. Then we call (X, A) a measurable space.

The elements of A are called the *measurable sets*.

3. Measures

In this course, we often work in the extend real numbers $\mathbb{R} \cup \{-\infty, \infty\} = [-\infty, \infty]$. Here are things that we assume.

Assumption 1. Assumptions about Extended Real Numbers

For all $a \in \mathbb{R}$,

- (a) $a + \infty = \infty$;
- (b) $a \infty = -\infty$;
- (c) $\infty + \infty = \infty$; and
- (d) $-\infty \infty = -\infty$.

However, we leave the following expressions to be undefined:

- (a) $\infty \infty$;
- (b) $\frac{\infty}{\infty}$; and
- (c) 0∞ .

Def'n 1.5. Measure on a Measurable Space

Let (X, A) be a measurable space. A *measure* on (X, A) is a function $\mu : A \to [0, \infty]$ such that

- (a) $\mu(\emptyset) = 0$; and
- (b) we have

$$\mu\left(\bigcup_{n\in\mathbb{N}}A_n\right)=\sum_{n\in\mathbb{N}}\mu\left(A_n\right)$$

for every $\{A_n\}_{n\in\mathbb{N}}\subseteq\mathcal{A}$ with $A_n\cap A_m$ for $n\neq m$.

countable additivity

In case μ is a measure on (X, A), we call (X, A, μ) a *measure space*.

Example 1.2. Examples of Measures

Let *X* be a set.

(a) $\mu(A) = 0$ for all $A \in \mathcal{P}(X)$ is a measure on $(X, \mathcal{P}(X))$.

zero measure

- (b) $\mu(\emptyset) = 0, \mu(A) = \infty$ for all $A \in \mathcal{P}(X) \setminus \{\emptyset\}$ is a measure on $(X, \mathcal{P}(X))$.
- (c) $\mu(A) = |A|$ (where $|A| = \infty$ if A is infinite) is a measure on $(X, \mathcal{P}(X))$.

counting measure

(d) Fix $x \in X$ and define

$$\mu(A) = \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{if } x \notin A \end{cases}$$

for all $A \in \mathcal{P}(X)$. Then μ is a measure on $(X, \mathcal{P}(X))$.

point-mass measure

Proposition 1.2.

Let (X, \mathcal{A}, μ) be a measure space.

(a) For all $A, B \in \mathcal{A}$ and $A \subseteq B$, $\mu(A) \le \mu(B)$.

monotonicity

(b) For all $A, B \in \mathcal{A}$ with $A \subseteq B$ and $\mu(A) < \infty$, then $\mu(B \setminus A) = \mu(B) - \mu(A)$.

excision

(c) If $\{A_n\}_{n\in\mathbb{N}}\subseteq\mathcal{A}$, then $\mu\left(\bigcup_{n\in\mathbb{N}}A_n\right)\leq\sum_{n\in\mathbb{N}}\mu\left(A_n\right)$.

countable subadditivity

Proof.

(a) Consider $B \setminus A$, which is measurable since A is closed under set difference. Hence we have

$$\mu(B) = \mu(A) + \mu(B \setminus A) \ge \mu(A)$$
.

(b) We have

$$\mu(A) + \mu(B \setminus A) = \mu(B)$$

as seen in (a). Since $\mu(A) < \infty$, we can freely subtract $\mu(A)$ from both sides to obtain that $\mu(B \setminus A) = \mu(B) - \mu(A)$.

(c) Let $B_1 = A_1$ and let $B_n = A_n \setminus \bigcup_{m=1}^{n-1} A_m$ for all $n \ge 2$. Then each B_n is measurable with $B_n \subseteq A_n$ and we have

$$\mu\left(\bigcup_{n\in\mathbb{N}}A_{n}\right)=\mu\left(\bigcup_{n\in\mathbb{N}}B_{n}\right)=\sum_{n\in\mathbb{N}}\mu\left(B_{n}\right)\leq\sum_{n\in\mathbb{N}}\mu\left(A_{n}\right).$$

 $^{^{1}}$ Or, *measure* on *X* if we are lazy.

Proposition 1.3. Continuity of Measure

Let (X, \mathcal{A}, μ) be a measure space.

(a) Let $\{A_n\}_{n\in\mathbb{N}}\subseteq\mathcal{A}$ be an ascending chain. That is,

$$A_1 \subseteq A_2 \subseteq \cdots$$
.

Then

$$\mu\left(\bigcup_{n\in\mathbb{N}}A_n\right)=\lim_{n\to\infty}\mu\left(A_n\right).$$

continuity from below

(b) Let $\{B_n\}_{n\in\mathbb{N}}\subseteq\mathcal{A}$ be a decending chain with $\mu(B_1)<\infty$. That is,

$$B_1 \supseteq B_2 \supseteq \cdots$$
.

Then

$$\mu\left(\bigcap_{n\in\mathbb{N}}B_n\right)=\lim_{n\to\infty}\mu\left(B_n\right).$$

continuity from above

Proof.

(a) Let $C_1 = A_1$ and let $C_n = A_n \setminus A_{n-1} = A_n \setminus \bigcup_{m=1}^{n-1} A_m$ for all $n \ge 2$, where the last equality follows from the ascending chain condition.

$$\mu\left(\bigcup_{n\in\mathbb{N}}A_{n}\right)=\mu\left(\bigcup_{n\in\mathbb{N}}C_{n}\right)=\sum_{n\in\mathbb{N}}\mu\left(C_{n}\right)=\lim_{N\to\infty}\sum_{n=1}^{N}\mu\left(C_{n}\right)=\lim_{N\to\infty}\mu\left(\bigcup_{n=1}^{N}C_{n}\right)=\lim_{N\to\infty}\mu\left(A_{N}\right).$$

(b) Let $D_n = B_1 \setminus B_n$ for all $n \in \mathbb{N}$, so that $\{D_n\}_{n \in \mathbb{N}}$ is an ascending chain. Then

$$B_1 \setminus \bigcap_{n \in \mathbb{N}} B_n = \bigcup_{n \in \mathbb{N}} D_n,$$

so that

$$\mu\left(B_{1}\setminus\bigcap_{n\in\mathbb{N}}B_{n}\right)=\mu\left(\bigcup_{n\in\mathbb{N}}D_{n}\right)=\lim_{n\to\infty}\mu\left(D_{n}\right)=\lim_{n\to\infty}\mu\left(B_{1}\right)-\mu\left(B_{n}\right)=\mu\left(B_{1}\right)-\lim_{n\to\infty}\mu\left(B_{n}\right).$$

The result then follows from excision property of μ .

QED

Def'n 1.6. Finite, Probability, σ -finite, Semifinite, Complete Measure

Let (X, \mathcal{A}, μ) be a measure space. We say μ is

- (a) finite if $\mu(X) < \infty$;
- (b) a *probability* measure if $\mu(X) = 1$;
- (c) σ -finite if

$$X = \bigcup_{n=1}^{\infty} A_n$$

for some $\{A_n\}_{n=1}^{\infty} \subseteq \mathcal{A}$ with $\mu(A_n) < \infty$ for all $n \in \mathbb{N}$;

(d) semifinite if

$$\forall A \in \mathcal{A} \left[\mu \left(A \right) \neq 0 \implies B \in \mathcal{A} \left[B \subseteq A, 0 < \mu \left(B \right) < \infty \right] \right];$$

and

(e) complete if

$$\forall A \in \mathcal{A} \left[\mu \left(A \right) = 0 \implies \forall B \subseteq A \left[B \in \mathcal{A} \right] \right].$$

Example 1.3. An Example of Non-complete Measure

Let $X = \{a, b\}$, $A = \{\emptyset, \{a, b\}\}$, $\mu = 0$. Then μ is not complete, as $\{a\} \in A$.

The goal of this section is:

given a measure space (X, μ, A) , if μ is not complete, we extend A and μ so that the result is complete.

A natural way of doing this is throw every subsets of measure-zero sets into A.

Proposition 1.4. Completion of a Measure Space

Let (X, μ, A) be a measure space. Let

$$\overline{\mathcal{A}} = \{ A \cup F : A \in \mathcal{A}, \exists N \in \mathcal{A} \left[F \subseteq N, \mu(N) = 0 \right] \}$$

and define

$$\overline{\mu}: \overline{\mathcal{A}} \to [0, \infty]$$
 $A \cup F \mapsto \mu(A)$

Then

- (a) \overline{A} is a σ -algebra;
- (b) $\overline{\mu}$ is a measure;
- (c) $\overline{\mu}|_{\mathcal{A}} = \mu$; and
- (d) $\overline{\mu}$ is complete.

Proof.

(a) Note that $\emptyset = \emptyset \cup \emptyset$ with $\emptyset \subseteq \emptyset$ where $\mu(\emptyset) = 0$. Hence $\emptyset \in \overline{\mathcal{A}}$. Let $E = A \cup F$ with $A \in \mathcal{A}, F \subseteq N \in \mathcal{A}$ where $\mu(N) = 0$. Then

$$X \setminus E = \underbrace{X \setminus (A \cup N)}_{\in \mathcal{A}} \cup \underbrace{(N \setminus (A \cup F))}_{\subseteq N} \in \overline{\mathcal{A}}.$$

Let $\{E_n\}_{n=1}^{\infty} \subseteq \mathcal{A}$ with $E_n = A_n \cup F_n$ where $F_n \subseteq N_n$ for some $n \in \mathbb{N}$. Then

$$\bigcup_{n=1}^{\infty} E_n = \left(\bigcup_{n=1}^{\infty} A_n\right) \cup \left(\bigcup_{n=1}^{\infty} F_n\right).$$

But $\bigcup_{n=1}^{\infty} F_n \subseteq \bigcup_{n=1}^{\infty} N_n$ with $\mu(\bigcup_{n=1}^{\infty} N_n) \leq \sum_{n=1}^{\infty} \mu(N_n) = 0$. Thus $\bigcup_{n=1}^{\infty} E_n \in \overline{\mathcal{A}}$.

(b) We first check that $\overline{\mu}$ is well-defined. Let

$$E = A_1 \cup F_1 = A_2 \cup F_2$$

for some $A_1, A_2 \in \mathcal{A}$ and $F_1 \subseteq N_1, F_2 \subseteq N_2$ with $\mu(N_1) = \mu(N_2) = 0$.

Then note that

$$A_1 \cap A_2 \subseteq A_i \subseteq E \subseteq (A_1 \cup F_1) \cap (A_2 \cup F_2) \subseteq (A_1 \cap A_2) \cup N_1 \cup N_2.$$

Hence

$$\mu\left(A_{1}\cap A_{2}\right)\leq\mu\left(A_{i}\right)\leq\mu\left(E_{1}\cap E_{2}\right).$$

This means $\mu(A_i) = \mu(A_1 \cap A_2)$, so hat $\mu(E_1) = \mu(E_2)$.

Thus $\overline{\mu}$ is well-defined.

To show $\overline{\mu}$ is a measure, note that

$$\overline{\mu}(\emptyset) = \overline{\mu}(\emptyset \cup \emptyset) = \mu(\emptyset) = 0.$$

Say we have a collection of disjoint sets in \overline{A} , $\{E_n\}_{n=1}^{\infty} \subseteq \overline{A}$, with

$$E_n = A_n \cup F_n$$

for some $E_n \subseteq N_n$ with $\mu(N_n) = 0$. Then

$$\bigcup_{n=1}^{\infty} E_n = \left(\bigcup_{n=1}^{\infty} A_n\right) \cup \underbrace{\left(\bigcup_{n=1}^{\infty} F_n\right)}_{\subseteq \bigcup_{n=1}^{\infty} N_n}.$$

Thus

$$\overline{\mu}\left(\bigcup_{n=1}^{\infty} E_n\right) = \mu\left(\bigcup_{n=1}^{\infty} A_n\right) = \sum_{n=1}^{\infty} \mu\left(E_n\right) = \sum_{n=1}^{\infty} \overline{\mu}\left(A_n\right),$$

so $\overline{\mu}$ is a measure.

- (c) Given $A \in \mathcal{A}$, $A = A \cup \emptyset$, so that $\overline{\mu}(A) = \mu(A)$.
- (d) Let $A \subseteq B \in \overline{A}$ with $\overline{\mu}(B) = 0$. We are going to show $A \in \overline{A}$.

We can write

$$B = E \cup F$$

for some $F \subseteq N \in \mathcal{A}$ with $\mu(N) = 0$. Then

$$\overline{\mu}\left(B\right) =\mu\left(E\right) =0.$$

Since $A \subseteq B \subseteq E \cup N$ with $\mu(E \cup N) = 0$ (complete this).

QED

Def'n 1.7. Completion of a Measure Space

Let (X, μ, A) be a measure space. We call $(X, \overline{\mu}, \overline{A})$ the *completion* of (X, μ, A) .

5. Construction of Measures

Def'n 1.8. Outer Measure on a Set

Let *X* be a nonempty set. An *outer measure* on *X* is a function $\mu^* : \mathcal{P}(X) \to [0, \infty]$ such that

- (a) $\mu^*(\emptyset) = 0$;
- (b) $A \subseteq B$ implies $\mu^*(A) \le \mu^*(B)$; and

monotonicity

(c) $\{A_n\}_{n=1}^{\infty} \mathcal{P}(X)$ implies $\mu^*(\bigcup_{n=1}^{\infty} A_n) \leq \sum_{n=1}^{\infty} \mu^*(A_n)$.

countable subadditivity

The idea is that

outer measures are naive approaches to measure every subset of X.

We start with $\mathcal{E} \subseteq \mathcal{P}(X)$ which are *easy* to measure. We use the outer measure μ^* and \mathcal{E} to construct a measure.

Proposition 1.5. Construction of an Outer Measure

Suppose $\{\emptyset, X\} \subseteq \mathcal{E} \subseteq \mathcal{P}(X)$ and $\mu : \mathcal{E} \to [0, \infty]$ satisfies $\mu(\emptyset) = 0$. For $A \subseteq X$, define

$$\mu^*\left(A\right) = \inf \left\{ \sum_{n=1}^{\infty} \mu\left(E_n\right) : \left\{E_n\right\}_{n=1}^{\infty} \subseteq \mathcal{E}, A \subseteq \bigcup_{n=1}^{\infty} E_n \right\}.$$

Then μ^* is an outer measure on X.

Example 1.4. Lebesgue Outer Measure

Let $X = \mathbb{R}$, $\mathcal{E} = \{(a, b) : -\infty < a < b < \infty\} \cup \{\emptyset, X\}$. Define

$$\mu\left((a,b)\right) = b - a, \mu\left(X\right) = \infty.$$

Then μ^* as said in Proposition 1.5 is called the *Lebesgue outer measure*.

Proposition 1.6.

Suppose $\{\emptyset, X\} \subseteq \mathcal{E} \subseteq X$ and let $\mu : \mathcal{E} \to [0, \infty]$. If $\mu(\emptyset) = 0$, then $\mu^* : \mathcal{P}(X) \to [0, \infty]$ by

$$\mu^*(A) = \inf \left\{ \sum_{n=1}^{\infty} \mu(A_n) : \left\{ A_n \right\}_{n=1}^{\infty} \subseteq \mathcal{E}, A \subseteq \bigcup_{n=1}^{\infty} A_n \right\}, \qquad \forall A \in \mathcal{E}$$

is an outer measure.

Proof. We verify few things.

- (a) Note that $\emptyset \subseteq \bigcup_{n=1}^{\infty} \emptyset$ and so $0 \le \mu^*(\emptyset) \le \sum_{n=1}^{\infty} \mu(\emptyset) = 0$.
- (b) Say $A \subseteq B \subseteq X$. Then

$$\left\{\sum_{n=1}^{\infty}\mu\left(A_{n}\right):\forall n\in\mathbb{N}\left[A_{n}\in\mathcal{E}\right],A\subseteq\bigcup_{n=1}^{\infty}A_{n}\right\}\supseteq\left\{\sum_{n=1}^{\infty}\mu\left(A_{n}\right):\forall n\in\mathbb{N}\left[A_{n}\in\mathcal{E}\right],B\subseteq\bigcup_{n=1}^{\infty}A_{n}\right\}$$

by definition. By taking infimum, we see that

$$\mu^*\left(A\right) \leq \mu^*\left(B\right).$$

(c) Say $\{A_n\}_{n=1}^{\infty} \subseteq \mathcal{P}(X)$ and consider $\bigcup_{n=1}^{\infty} A_n$. We claim that

$$\mu^* \left(\bigcup_{n=1}^{\infty} A_n \right) \leq \sum_{n=1}^{\infty} \mu^* \left(A_n \right).$$

We may assume $\sum_{n=1}^{\infty} \mu^* (A_n) < \infty$.

Let $\varepsilon > 0$ be given. For every A_i , we may find $\{E_{i,j}\}_{j=1}^{\infty} \subseteq \mathcal{E}$ such that

$$A_i \subseteq \bigcup_{n=1}^{\infty} E_{i,j}$$

and

$$\sum_{j=1}^{\infty} \mu\left(E_{i,j}\right) < \mu^*\left(A_i\right) + \frac{\varepsilon}{2^i}$$

We then have

$$\bigcup_{i=1}^{\infty} A_i \subseteq \bigcup_{i,j=1}^{\infty} E_{i,j}.$$

Hence

$$\mu^* \left(\bigcup_{i=1}^{\infty} A_i \right) \stackrel{\inf}{\leq} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \mu \left(E_{i,j} \right) \leq \sum_{i=1}^{\infty} \mu^* \left(A_i \right) + \frac{\varepsilon}{2^i} = \left(\sum_{i=1}^{\infty} \mu^* \left(A_i \right) \right) + \varepsilon.$$

Since ε is an arbitary positive number, we see that μ^* is countably subadditive.

Def'n 1.9. μ^* -measurable Set

Let μ^* be an outer measure on X. We say $A \subseteq X$ is μ^* -measurable if

$$\mu^* (E) = \mu^* (E \cap A) + \mu^* (E \cap (X \setminus A))$$

for all $E \subseteq X$.

Let $A, E \subseteq X$.

(a) Note

$$\mu^*(E) \leq \mu^*(E \cap A) + \mu^*(E \cap (X \setminus A)).$$

Hence it suffices to prove the reverse inequality to show that A is μ^* -measurable.

- (b) As a corollary to (a), we may assume $\mu^*(E) < \infty$ when proving A is μ^* -measurable.
- (c) When $A = \emptyset$,

$$\mu^{*}\left(E\cap\emptyset\right)+\mu^{*}\left(E\cap\left(X\setminus\emptyset\right)\right)=0+\mu^{*}\left(E\right)=\mu^{*}\left(E\right).$$

Thus \emptyset is μ^* -measurable.

(d) If *A* is μ^* -measurable, then $X \setminus A$ is also μ^* -measurable. This is direct from the definition of μ^* -measurability.

Theorem 1.7. Caratheodory

Let μ^* be an outer measure on X. Then the collection of μ^* -measurable subsets of X,

$$\mathcal{A} = \{ A \subseteq X : A \text{ is } \mu^*\text{-measurable} \},$$

is a σ -algebra.

Moreover, $\mu = \mu^*|_{\mathcal{A}}$ is a complete measure on (X, \mathcal{A}) .

Proof. Let $A, B \in \mathcal{A}$ and let $E \subseteq X$. Then

$$\mu^*\left(E\right) = \mu^*\left(E\cap A\right) + \mu^*\left(E\cap (X\setminus A)\cap B\right) + \mu^*\left(E\cap (X\setminus A)\cap (X\setminus B)\right) \qquad \text{since } A,B \text{ are } \mu^*\text{-measurable} \\ \geq \mu^*\left(E\cap (A\cup B)\right) + \mu^*\left(E\cap (X\setminus (A\cup B))\right). \qquad \text{by subadditivity of } \mu^* \text{ and de Morgan's Law}$$

Since we know the other direction of the above inequality, we see that $A \cup B \in \mathcal{A}$. Inductively, \mathcal{A} is closed under finite union, which means \mathcal{A} is an algebra on X (we know $\emptyset \in \mathcal{A}$).

Now assume $A, B \in \mathcal{A}$ with $A \cap B = \emptyset$. For any $E \subseteq X$,

$$\mu^* (E \cap (A \cup B)) = \mu^* (E \cap (A \cup B) \cap A) + \mu^* (E \cap (A \cup B) \cap (X \setminus A)) = \mu^* (E \cap A) + \mu^* (E \cap B).$$

By taking E = X, we see that

$$\mu^* (A \cup B) = \mu^* (A) + \mu^* (B)$$

so that μ^* is finitely additive.

Assume $\{A_n\}_{n=1}^{\infty}\subseteq\mathcal{A}$, let $B_n=\bigcup_{k=1}^nA_k$, and let $A'_n=A_1\setminus\bigcup_{k=1}^{n-1}A_k$ for all $n\in\mathbb{N}$. Since \mathcal{A} is an algebra, each $A'_n,B_n\in\mathcal{A}$. Then $B_n=\bigcup_{n=1}^{\infty}A'_k$ and $B=\bigcup_{n=1}^{\infty}A_n=\bigcup_{n=1}^{\infty}A'_n$. For any $E\subseteq X$,

$$\mu^{*}(E) = \mu^{*}(E \cap B_{n}) + \mu^{*}(E \cap (X \setminus B_{n}))$$

$$\geq \mu^{*}(E \cap B_{n}) + \mu^{*}(E \cap (X \setminus B))$$
 by monotonicity of μ^{*}

$$= \sum_{k=1}^{n} \mu^{*}(E \cap A'_{k}) + \mu^{*}(E \cap (X \setminus B))$$

$$\geq \lim_{n \to \infty} \sum_{k=1}^{n} \mu^{*}(E \cap A'_{k}) + \mu^{*}(E \cap (X \setminus B))$$

$$\geq \mu^{*}(E \cap B) + \mu^{*}(E \cap (X \setminus B))$$

$$\geq \mu^{*}(E).$$
 by subadditivity of μ^{*}

This means $\mu^*(E) = \mu^*(E \cap B) + \mu^*(E \cap (X \setminus B))$, so $\bigcup_{n=1}^{\infty} A_n = B \in \mathcal{A}$. Hence \mathcal{A} is a σ -algebra. Assume $\{A_n\}_{n=1}^{\infty} \subseteq \mathcal{A}$ is a collection of disjoint sets in \mathcal{A} . By taking $A'_n = A_n$ for all $n \in \mathbb{N}$ and E = B, we see that

$$\mu^{*}\left(B\right) \geq \sum_{n=1}^{\infty} \mu^{*}\left(B \cap A_{n}\right) + \underbrace{\mu^{*}\left(B \cap \left(X \setminus B\right)\right)}_{=0} \geq \mu^{*}\left(B\right) \implies \mu^{*}\left(B\right) = \sum_{n=1}^{\infty} \mu^{*}\left(B \cap A_{n}\right)$$

from the series of inequalities we used for proving closure of A under countable union.

We now show that μ is complete. Let $A \subseteq X$ with $\mu^*(A) = 0$. For any $E \subseteq X$,

$$\mu^{*}\left(E\right) \leq \mu^{*}\left(E \cap A\right) + \mu^{*}\left(E \cap \left(X \setminus A\right)\right) \leq \underbrace{\mu^{*}\left(A\right)}_{=0} + \mu^{*}\left(E\right).$$

This means every set A with $\mu^*(A) = 0$ is measurable. But given any $B \in \mathcal{A}$ with $\mu(B) = 0$, we have

$$0 \le \mu^* (A) \le \mu^* (B) = \mu (B) = 0, \qquad \forall A \subseteq B,$$

so that $\mu^*(A) = 0$ and that *A* is measurable.

We can construct a measure as follows. Given $\mathcal{E} \subseteq \mathcal{P}(X)$ with $\{\emptyset, X\} \subseteq \mathcal{E}$ and $\mu : \mathcal{E} \to [0, \infty]$, we let $\mu^* : \mathcal{P}(X) \to [0, \infty]$ be an outer measure as defind in Proposition 1.6.

In general, $A = \{A \subseteq X : A \text{ is } \mu^*\text{-measurable}\}$ and $\mu^*|_{A}$ are very different from \mathcal{E}, μ . To resolve this, we introduce the following notion.

Def'n 1.10. Premeasure on an Algebra of Subsets

Let $A \subseteq \mathcal{P}(X)$ be an algebra of subsets of X. We say $\mu : A \to [0, \infty]$ is a *premeasure* on A if

- (a) $\mu(\emptyset) = 0$; and
- (b) for any $\{A_n\}_{n=1}^{\infty} \subseteq \mathcal{A}$ with $\bigcup_{n=1}^{\infty} A_n \in \mathcal{A}$, we have

$$\mu\left(\bigcup_{n=1}^{\infty}A_{n}\right)=\sum_{n=1}^{\infty}\mu\left(A_{n}\right).$$

Theorem 1.8. Constructing Measure from Premeasure I

Let $\mathcal{A} \subseteq \mathcal{P}(X)$ be an algebra and let $\mu : \mathcal{A} \to [0, \infty]$ be a premeasure on \mathcal{A} . Let μ^* be the outer measure constructed with \mathcal{A} :

$$\mu^*(A) = \inf \left\{ \sum_{n=1}^{\infty} \mu(A_n) : \left\{ A_n \right\}_{n=1}^{\infty} \subseteq \mathcal{A}, A \subseteq \bigcup_{n=1}^{\infty} A_n \right\}, \quad \forall A \in \mathcal{P}(X).$$

Then

- (a) $\mu^*|_{\mathcal{A}} = \mu$; and
- (b) every $A \in \mathcal{A}$ is μ^* -measurable.

Proof.

(a) We show $\mu^*|_{\mathcal{A}} = \mu$. Let $E \in \mathcal{A}$. Say

$$E\subseteq\bigcup_{n=1}^{\infty}A_n$$

where each $A_n \in \mathcal{A}$. Then by taking $A'_n = A_n \setminus \bigcup_{k=1}^{n-1} A_k$,

$$E = \bigcup_{n=1}^{\infty} (A_n \cap E) = \bigcup_{n=1}^{\infty} (A'_n \cap E).$$

But each $A'_n \cap E \in \mathcal{A}$, so that

$$\mu(E) = \sum_{n=1}^{\infty} \mu(A'_n \cap E) \le \sum_{n=1}^{\infty} \mu(A_n)$$

by the monotonicity of μ . Therefore, $\mu(E) \leq \mu^*(E)$ by taking infimum.

On the other hand, by letting $\{A_n\}_{n=1}^{\infty} \subseteq \mathcal{A}$ with $A_1 = E, A_2 = A_3 = \cdots = \emptyset$, we see that $\mu^*(E) \ge \mu(E)$. Hence $\mu^*|_{\mathcal{A}} = \mu$.

(b) Let $A \in \mathcal{A}$. We show A is μ^* -measurable. Let $E \subseteq X$ and let $\varepsilon > 0$ be given. We may find $\{B_n\}_{n=1}^{\infty} \subseteq \mathcal{A}$ such that $E \subseteq \bigcup_{n=1}^{\infty} B_n$ and

$$\sum_{n=1}^{\infty} \mu(B_n) < \mu^*(E) + \varepsilon.$$

Then,

$$\mu^{*}(E) + \varepsilon \geq \sum_{n=1}^{\infty} \mu(B_{n})$$

$$= \sum_{n=1}^{\infty} \mu(B_{n} \cap A) + \mu(B_{n} \cap (X \setminus A))$$

$$= \sum_{n=1}^{\infty} \mu^{*}(B_{n} \cap A) + \sum_{n=1}^{\infty} \mu^{*}(B_{n} \cap (X \setminus A))$$
by (a)
$$\geq \mu^{*}\left(\left(\bigcup_{n=1}^{\infty} B_{n}\right) \cap A\right) + \mu^{*}\left(\left(\bigcup_{n=1}^{\infty} B_{n}\right) \cap (X \setminus A)\right)$$
by subadditivity of μ^{*}

$$\geq \mu^{*}(E \cap A) + \mu^{*}(E \cap (X \setminus A)).$$
by monotonicity of μ^{*} since $E \subseteq \bigcup_{n=1}^{\infty} B_{n}$

QED

Theorem 1.9. Constructing Measure from Premeasure II

Let $A \subseteq \mathcal{P}(X)$ be an algebra and let μ^* be as in Theorem 1.8. Let $\mathcal{B} = \sigma(A)$. Then

- (a) $\overline{\mu} = \mu^*|_{\mathcal{B}}$ is a complete measure with $\overline{\mu}|_{\mathcal{A}} = \mu$.
- (b) Let ν be another measure on \mathcal{B} with $\nu|_{\mathcal{A}} = \mu$. Then $\nu \leq \overline{\mu}$. That is,

$$v(A) \leq \overline{\mu}(A), \quad \forall A \in \mathcal{B}.$$

- (c) For any $E \in \mathcal{B}$, if $\overline{\mu}(E) < \infty$, then $\nu(E) = \overline{\mu}(E)$.
- (d) If μ is σ -finite, then $\overline{\mu} = \nu$.

Proof.

(a) Let

$$C = \{A \subseteq P(X) : A \text{ is } \sigma\text{-measurable}\},$$

which is a σ -algebra. Then by Theorem 1.8, $\mathcal{A} \subseteq \mathcal{C}$, and so $\mathcal{B} \subseteq \mathcal{C}$ by minimality of \mathcal{B} . Therefore,

$$\overline{\mu} = \mu^*|_{\mathcal{B}}$$

is the restriction of $\mu^*|_{\mathcal{C}}$ to \mathcal{B} . Since $\mu^*|_{\mathcal{C}}$ is a complete measure on (X,\mathcal{C}) , it follows $\overline{\mu} = \mu^*|_{\mathcal{B}}$ is a complete measure on (X,\mathcal{B}) . Since $\mu^*|_{\mathcal{A}} = \mu$, $\overline{\mu}|_{\mathcal{A}} = \mu$ as well.

¹It suffices to note that premeasures are finitely additive, which implies monotonicity.

¹We say a premeasure is σ -finite if $X = \bigcup_{n=1}^{\infty} A_n$ for some $\{A_n\}_{n=1}^{\infty} \subseteq A$ with $\mu(A_n) < \infty$ for all $n \in \mathbb{N}$.

(b) Let $A \in \mathcal{B}$ and let $\{A_n\}_{n=1}^{\infty} \subseteq \mathcal{A}$ be such that $A \subseteq \bigcup_{n=1}^{\infty} A_n$. Since ν is a measure extending μ ,

$$\nu\left(A\right) \leq \nu\left(\bigcup_{n=1}^{\infty} A_{n}\right) \leq \sum_{n=1}^{\infty} \nu\left(A_{n}\right) \stackrel{\nu|_{\mathcal{A}} = \mu}{=} \sum_{n=1}^{\infty} \mu\left(A_{n}\right).$$

By recalling that μ^* is defined as the *greatest* lower bound, it follows

$$v(A) \leq \mu^*(A) = \overline{\mu}(A)$$
.

(c) Let $A \in \mathcal{B}$ with $\overline{\mu}(A) < \infty$. Let $\varepsilon > 0$ be given. We may find $\{A_n\}_{n=1}^{\infty} \subseteq \mathcal{A}$ such that $A \subseteq \bigcup_{n=1}^{\infty} A_n$ and

$$\sum_{n=1}^{\infty} \mu\left(A_{n}\right) < \overline{\mu}\left(A\right) + \varepsilon.$$

Let $B = \bigcup_{n=1}^{\infty} A_n \in \mathcal{B}$. Note that

$$v\left(B\right) = v\left(\bigcup_{n=1}^{\infty} A_n\right) = \lim_{k \to \infty} v\left(\bigcup_{n=1}^{k} A_n\right) = \lim_{k \to \infty} \overline{\mu}\left(\bigcup_{n=1}^{k} A_n\right) = \overline{\mu}\left(\bigcup_{n=1}^{\infty} A_n\right) = \overline{\mu}\left(B\right).$$

Moreover

$$\overline{\mu}(B) \leq \sum_{n=1}^{\infty} \mu(A_n) < \overline{\mu}(A) + \varepsilon < \infty.$$

It follows

$$\overline{\mu}(B\setminus A)<\varepsilon$$
,

so that

$$\overline{\mu}\left(A\right) \leq \overline{\mu}\left(B\right) = \nu\left(B\right) = \nu\left(A\right) + \nu\left(B \setminus A\right) \leq \nu\left(A\right) + \overline{\mu}\left(B \setminus A\right) < \nu\left(A\right) < \varepsilon.$$

Since ε was given arbitrarily, we have $\overline{\nu}(A) \leq \nu(A)$. Since the reverse inequality is given in (b), we thus conclude $\overline{\mu}(A) = \nu(A)$.

(d) Say $\{A_n\}_{n=1}^{\infty} \subseteq \mathcal{A}$ is such that $X = \bigcup_{n=1}^{\infty} A_n$ with $\mu(A_n) < \infty$. Write $A'_n = A_n \setminus \bigcup_{m=1}^{n-1} A_m$ so that

$$X = \bigcup_{n=1}^{\infty} A'_n.$$

Therefore,

$$\overline{\mu}\left(A\right) = \overline{\mu}\left(\bigcup_{n=1}^{\infty} \left(A \cap A'_{n}\right)\right) = \sum_{n=1}^{\infty} \overline{\mu}\left(A \cap A'_{n}\right) = \sum_{n=1}^{\infty} \nu\left(A \cap A'_{n}\right) = \nu\left(A\right).$$

QED

6. Lebesgue-Stieltjes Measures on \mathbb{R}

Suppose we have a measure space $(\mathbb{R}, \operatorname{Bor}(\mathbb{R}), \mu)$, where we are working with the usual topology on \mathbb{R} . We further assume that for all compact $K \subseteq \mathbb{R}$, $\mu(K) < \infty$.

We consider

$$F: \mathbb{R} \to \mathbb{R}$$

$$x \mapsto \begin{cases} \mu([0, x]) & x \ge 0 \\ -\mu((x, 0)) & x < 0 \end{cases}$$

Then by definition, *F* is increasing.

Let $(x_n)_{n=1}^{\infty} \in \mathbb{R}^{\mathbb{N}}$ be a decreasing sequence with $x_n \to x \in \mathbb{R}$. In case $x \ge 0$,

$$F(x) = \mu\left(\left[0, x\right]\right) = \mu\left(\bigcap_{n=1}^{\infty} \left[0, x_n\right]\right) = \lim_{n \to \infty} \mu\left(\left[0, x_n\right]\right) = \lim_{n \to \infty} F\left(x_n\right),$$

where we are using the compactness assumption to use the continuity from above. Hence *F* is *right-continuous* on $[0, \infty)$.

Exercise 1.5.

Show that *F* is right-continuous on $(-\infty, 0)$. That is, when x < 0,

$$F(x) = \lim_{n \to \infty} F(x_n).$$

Example 1.6.

Consider the point-mass measure

$$\begin{split} \mu_0: \mathrm{Bor}\,(\mathbb{R}) &\to [0,\infty] \\ A &\mapsto \begin{cases} 0 & \text{if } 0 \notin A \\ 1 & \text{if } 0 \in A \end{cases} \end{split}$$

and the measure space $(\mathbb{R}, \text{Bor}(\mathbb{R}), \mu_0)$.

Then note that,

$$F(x) = \begin{cases} 0 & \text{if } x < 0 \\ 1 & \text{if } x \ge 0 \end{cases},$$

which is right-continuous but not left-continuous.

The goal of this section is, then:

given an increasing right-continuous $F: \mathbb{R} \to \mathbb{R}$, we make a measure μ_F on $(\mathbb{R}, \text{Bor}(\mathbb{R}))$.

That is, we are doing the converse of the motivation for this section.

The idea is to start with

$$\mu_{\mathbb{F}}((a,b]) = F(b) - F(a), \quad \forall a, b \in \mathbb{R}, a < b.$$

Let \mathcal{A} be the set of finite unions of half-open intervals of the form (a, b], where $a \in [-\infty, \infty)$, $b \in (-\infty, \infty]$ (we note that when $b = \infty$, we are taking (a, ∞) instead of $(a, \infty]$, since we are working with subsets of \mathbb{R}).

We note that

$$\mathbb{R}\setminus(a,b]=(-\infty,a]\cup(b,\infty)\in\mathcal{A}$$

so that A is an algebra.

In addition, we insist

(a)
$$F(\infty) = \lim_{x \to \infty} F(x)$$
 and $F(-\infty) = \lim_{x \to -\infty} F(x)$; and

(b)
$$\mu_F(\bigcup_{k=1}^n (a_k, b_k]) = \sum_{k=1}^n F(b_k) - F(a_k).$$

In this way we get a fuction $\mu_F : \mathcal{A} \to [0, \infty]$.

Fact 1.10.

 μ_F is a premeasure on $(\mathbb{R}, \mathcal{A})$.

Theorem 1.11.

Consider the above setting. There is a complete measure space $(\mathbb{R}, \mathcal{B}, \overline{\mu_E})$ such that

- (a) $\overline{\mu_F}|_{\mathcal{A}} = \mu_F$; and
- (b) Bor $(\mathbb{R}) \subseteq \mathcal{B}$.

Proof. Consider μ_F^* be the outer measure constructed as in Theorem 1.8 and let \mathcal{B} be the σ -algebra of μ_F^* -measurable sets. We set $\overline{\mu_F} = \mu_F^*|_{\mathcal{B}}$. By Theorem 1.8, we know that $(\mathbb{R}, \mathcal{B}, \overline{\mu_F})$ is complete and $\overline{\mu_F}|_{\mathcal{A}} = \mu_F$.

By Theorem 1.8 again, $A \subseteq \mathcal{B}$ (which was implicit in restricting $\overline{\mu_F}$ to A). In particular, half-open intervals are \mathcal{B} , so that

$$(a,b) = \bigcup_{n=1}^{\infty} \left(a,b-\frac{1}{n}\right] \in \mathcal{B}$$

for all a < b in \mathbb{R} . Since \mathcal{B} has every open intervals, which generate the Borel σ -algebra on \mathbb{R} , it follows Bor $(\mathbb{R}) \subseteq \mathcal{B}$.

QED

Theorem 1.12.

When F(x) = x for all $x \in \mathbb{R}$, then

- (a) $\overline{\mu_F}$ is the Lebesgue measure; and
- (b) \mathcal{B} is the set of Lebesgue measurable sets.

Def'n 1.11. Lebesgue-Steltjes Measure

Any measure of the form $\overline{\mu_F}$ is called a *Lebesgue-Steltjes measure*.

Theorem 1.13. Regularity of Lebesgue-Steltjes Measures

Let $(\mathbb{R}, \mathcal{B}, \overline{\mu_F})$ as above and let $A \subseteq \mathbb{R}$. The following are equivalent.

- (a) $A \in \mathcal{B}$ (i.e. A is μ_F^* -measurable).
- (b) For all $\varepsilon > 0$, there is open $U \subseteq \mathbb{R}$ such that $A \subseteq U$ and $\mu_F^*(U \setminus A) < \varepsilon$.
- (c) For all $\varepsilon > 0$, there is closed $C \subseteq \mathbb{R}$ such that $C \subseteq A$ and $\mu_E^*(A \setminus C) < \varepsilon$.
- (d) There exists a G_{δ} -set¹ such that $A \subseteq G$ and $\mu_F^*(G \setminus A) = 0$.
- (e) There exists a F_{σ} -set² such that $F \subseteq A$ and $\mu_F^*(A \setminus F) = 0$.

Proof. (1) \Longrightarrow (2) Assume $A \in \mathcal{B}$ and let $\varepsilon > 0$ be given.

Case 1. Suppose A is bounded.

Then $A \subseteq (a, b]$ and $\overline{\mu_F}(A) \leq F(b) - F(a) < \infty$. We may find $\{(a_n, b_n]\}_{n=1}^{\infty}$ such that

$$B = \bigcup_{n=1}^{\infty} (a_n, b_n]$$

contains A and

$$\overline{\mu_F}(B) < \overline{\mu_F}(A) + \frac{\varepsilon}{2}.$$

Now, choose $c_n > b_n$ such that

$$F(c_n) < F(b_n) + \frac{\varepsilon}{2^{n+1}}$$

by the right-continuity of *F*. Let $U = \bigcup_{n=1}^{\infty} (a_n, c_n)$. Since $A \in \mathcal{B}$, we have

$$\overline{\mu_F}(B) = \overline{\mu_F}(A) + \overline{\mu_F}(B \setminus A)$$

by Caratheodory measurability condition (Def'n 1.9). So by excision,

$$\overline{\mu_F}(B\setminus A) = \overline{\mu_F}(B) - \overline{\mu_F}(A) < \frac{\varepsilon}{2}.$$

¹A set is G_{δ} if it is a countable intersection of open sets.

²A set is F_{σ} if it is a countable union of closed sets.

Hence

$$\overline{\mu_F}(U\setminus A) \leq \overline{\mu_F}(U\setminus B) + \overline{\mu_F}(B\setminus A) < \overline{\mu_F}\left(\bigcup_{n=1}^{\infty} (b_n, c_n)\right) + \frac{\varepsilon}{2} \leq \sum_{n=1}^{\infty} \frac{\varepsilon}{2^{n+1}} + \frac{\varepsilon}{2} = \varepsilon.$$

(End of Case 1)

Case 2. Let $A \in \mathcal{B}$ and consider $A_n = A \cap [-n, n]$ for all $n \in \mathbb{N}$. Let $\varepsilon > 0$ be given and choose open U_n such that $A_n \subseteq U_n$ and

$$\mu_F^*\left(U_n\setminus A_n
ight)<rac{arepsilon}{2^n}$$

for all $n \in \mathbb{N}$. Consider $U = \bigcup_{n=1}^{\infty} U_n$. Then $A = \bigcup_{n=1}^{\infty} A_n \subseteq U$ and

$$\mu_F^*\left(U\setminus A\right) \leq \mu_F^*\left(\bigcup_{n=1}^{\infty}\left(U_n\setminus A_n\right)\right) \leq \sum_{n=1}^{\infty}\mu_F^*\left(U_n\setminus A_n\right) < \sum_{n=1}^{\infty}\frac{\varepsilon}{2^n} = \varepsilon.$$

(End of Case 2)

(2) \Longrightarrow (4) For every $n \in \mathbb{N}$, find open $U_n \subseteq \mathbb{R}$ containing A such that

$$\mu_F^*(U_n\setminus A)<\frac{1}{n}.$$

Take

$$G=\bigcap_{n=1}^{\infty}U_n.$$

Then $A \subseteq G$ and

$$\mu_F^*(G \setminus A) \le \mu_F^*(U_n \setminus A) < \frac{1}{n}$$

for all $n \in \mathbb{N}$. Thus $\mu_F^*(G \setminus A) = 0$.

(4) \Longrightarrow (1) Take a G_{δ} -set $G \subseteq \mathbb{R}$ containing A with μ^* ($G \setminus A$) = 0. In particular, we have that $G \setminus A \in \mathcal{B}$. Since every open set is in \mathcal{B} and \mathcal{B} is closed under countable intersection, $G \in \mathcal{B}$ as a countable intersection of open sets, and

$$A = G \setminus (G \setminus A) \in \mathcal{B}$$
.

 $(1) \Longrightarrow (3)$ Let $A \in \mathcal{B}$ and let $\varepsilon > 0$. Since $X \setminus A \in \mathcal{B}$, we may find open $U \supseteq X \setminus A$ such that

$$\mu_F^*(U\setminus (X\setminus A))<\varepsilon.$$

Letting $C = X \setminus U$, $C \subseteq A$ and

$$\mu_F^*(A \setminus C) = \mu_F^*(U \setminus (X \setminus A)) < \varepsilon.$$

 $(3) \Longrightarrow (5)$ Choose $C_n \subseteq A$ such that

$$\mu_F^*(A \setminus C_n) < \frac{1}{n}$$

for all $n \in \mathbb{N}$ and let

$$K=\bigcup_{n=1}^{\infty}C_{n}.$$

(5) \Longrightarrow (1) Let K be a F_{σ} -set contained in A with $\mu_F^*(A \setminus F) = 0$. Then we observe that $A = (A \setminus F) \cup F \in \mathcal{B}$.

¹See the proof of Theorem 1.7, Caratheodory theorem.

II. Measurable Functions

1. Measurable Functions

Let (X, A), (Y, B) be measurable spaces. We care about functions $f: X \to Y$ which relay information about the measurable spaces.

Def'n 2.1. Measurable Function

Let (X, A), (Y, B) be measurable spaces. We say $f: X \to Y$ is *measurable* if

$$f^{-1}(B) = \{x \in X : f(x) \in B\} \in \mathcal{A}, \quad \forall B \in \mathcal{B}.$$

Before we proceed, here is a convention that we are going to use. Let \mathbb{F} be \mathbb{R} or \mathbb{C} and let (X, A). We say

$$f: X \to Y$$
 is measurable $\iff f$ is measurable with respect to (X, \mathcal{A}) , $(\mathbb{F}, \text{Bor } (\mathbb{F}))$.

By Assignment 1, we see that

$$f: X \to Y$$
 is measurable \iff for all open $B, f^{-1}(B) \in \mathcal{A}$,

since Bor (\mathbb{F}) is generated by open subsets of \mathbb{F} . In case $\mathbb{F} = \mathbb{R}$, we can replace B with open interval, since every open subset of \mathbb{R} is a countable union of open intervals.

Recall the following trick for analysis. Let a < b in \mathbb{R} . Then

$$(a,b] = \bigcap_{n=1}^{\infty} \left(a, b + \frac{1}{n} \right)$$

$$(a,b) = \bigcup_{n=1}^{\infty} \left(a, b - \frac{1}{n} \right]$$

$$[a,b] = \bigcap_{n=1}^{\infty} \left(a - \frac{1}{n}, b + \frac{1}{n} \right).$$

$$(a,\infty) = \bigcup_{n=1}^{\infty} (a, a + n)$$

$$(a,b] = (-\infty, b] \cap (a,\infty)$$

$$\vdots$$

That is, all interval types independently generate Bor (\mathbb{R}) .

Proposition 2.1.

Let (X, A) be a measurable space and let $f: X \to \mathbb{R}$. The following are equivalent.

- (a) *f* is measurable.
- (b) For all $\alpha \in \mathbb{R}$, $f^{-1}((\alpha, \infty)) \in \mathcal{A}$.
- (c) For all $\alpha \in \mathbb{R}$, $f^{-1}([\alpha, \infty)) \in \mathcal{A}$.
- (d) For all $\alpha \in \mathbb{R}$, $f^{-1}((-\infty, \alpha)) \in \mathcal{A}$.
- (e) For all $\alpha \in \mathbb{R}$, $f^{-1}((-\infty, \alpha]) \in \mathcal{A}$.

Proposition 2.2.

Let (X, A) be a measurable space and let $f: X \to \mathbb{C}$. The following are equivalent. Then

f is measurable \iff Re $\circ f$ and Im $\circ f$ are measurable.

Proof Sketch. (\iff) Every open $U \subseteq \mathbb{C}$ can be written as a countable union of open rectangles $(a, b) \times (c, d)$. Then

$$f^{-1}((a,b)\times(c,d)) = (\text{Re}\circ f)^{-1}((a,b))\cap (\text{Im}\circ f)^{-1}((c,d)).$$

 (\Longrightarrow) Note that

$$(\text{Re} \circ f)^{-1}((a,b)) = f^{-1}(V)$$

where

$$V = \{x + iy : a < x < b\}.$$

Similarly,

$$(\operatorname{Im} \circ f)^{-1}((c,d)) = f^{-1}(H)$$

where

$$H = \{ x + iy : c < y < d \} .$$

Proposition 2.3.

Let (X, τ) be a topological space. If $f: X \to \mathbb{F}$ is continuous, then f is measurable.

Proof. It suffices to check that $f^{-1}(U) \in \text{Bor}(X)$ for all open $U \subseteq \mathbb{F}$, which is guaranteed by the continuity of f.

QED

QED

Proposition 2.4.

Let (X, A) be a measurable space and let $f, g : X \to \mathbb{F}$ be measurable.

- (a) For any $\lambda \in \mathbb{F}$, $\lambda f + g$ is measurable.
- (b) fg is measurable.
- (c) If $g(x) \neq 0$ for all $x \in X$, then $\frac{1}{g}$ is measurable.

Proof. By considering Proposition 2.2, we assume $\mathbb{F} = \mathbb{R}$.

(a) Suppose $\lambda > 0$. Then given $\alpha \in \mathbb{R}$,

$$(\lambda f)^{-1}((\alpha,\infty)) = \{x \in X : \lambda f(x) > \alpha\} = \left\{x \in X : f(x) > \frac{\alpha}{\lambda}\right\} = f^{-1}\left(\left(\frac{\alpha}{\lambda},\infty\right)\right),$$

which is measurable.

In case $\lambda < 0$,

$$(\lambda f)^{-1}((\alpha,\infty)) = f^{-1}\left(\left(-\infty,\frac{\alpha}{\lambda}\right)\right)$$

is measurable.

When $\lambda = 0$, λf is the constant 0 function, which is trivially measurable.

Let $\alpha \in \mathbb{R}$. Then

$$(f+g)^{-1}((\alpha,\infty)) = \{x \in X : f(x) + g(x) > \alpha\} = \{x \in X : f(x) > \alpha - g(x)\}$$

$$= \bigcup_{q \in \mathbb{Q}} (\{x \in X : f(x) > q\} \cap \{x \in X : g(x) > \alpha - q\}) = \bigcup_{q \in \mathbb{Q}} (f^{-1}((q,\infty)) \cap g^{-1}(\alpha - q,\infty)),$$

which is measurable as a countable union of measurable sets.

(b) Note

$$(f+g)^2 = f^2 + 2fg + g^2.$$

Hence it suffices to show that f^2 is measurable. Let $\alpha \in \mathbb{R}$.

Suppose $\alpha \geq 0$. Then

$$f^{-1}((\alpha,\infty)) = \left\{ x \in X : f(x)^2 > \alpha \right\} = \left\{ x \in X : f(x) > \sqrt{\alpha} \right\} \cup \left\{ x \in X : f(x) < -\sqrt{\alpha} \right\}$$
$$= f^{-1}\left(\left(\sqrt{\alpha}, \infty\right)\right) \cup f^{-1}\left(\left(-\infty, -\sqrt{\alpha}\right)\right)$$

is a union of measurable of measurable sets.

If $\alpha < \infty$, then

$$(f^2)^{-1}((\alpha,\infty)) = \{x \in X : f(x)^2 > \alpha\} = X$$

is measurable.

(c) Let $\alpha \in \mathbb{R}$. Suppose $\alpha > 0$. Then

$$\left(\frac{1}{g}\right)^{-1}((-\infty,\alpha)) = \left\{x \in X : \frac{1}{g(x)} < \alpha\right\} = \left\{x \in X : g(x) > \frac{1}{\alpha}\right\} \cup \left\{x \in X : g(x) < 0\right\}$$
$$= g^{-1}\left(\left(\frac{1}{\alpha}, \infty\right)\right) \cup g^{-1}\left((-\infty, 0)\right).$$

The cases where $\alpha < 0, \alpha = 0$ are similar.

QED

Notation 2.2. $\overline{\mathbb{R}}$

We write $\overline{\mathbb{R}}$ to denote

$$\overline{\mathbb{R}} = [-\infty, \infty]$$
.

Def'n 2.3. **Borel** *σ***-algebra** of Subsets of $\overline{\mathbb{R}}$

We define the *Borel* σ -algebra of subsets of $\overline{\mathbb{R}}$, denoted as Bor $(\overline{\mathbb{R}})$, by

$$\mathrm{Bor}\left(\overline{\mathbb{R}}\right) = \left\{ A \subseteq \overline{\mathbb{R}} : A \cap \mathbb{R} \in \mathrm{Bor}\left(\mathbb{R}\right) \right\}.$$

To show that Bor $(\overline{\mathbb{R}})$ is *really Borel*, we consider the following metric on $\overline{\mathbb{R}}$. Define

$$d: \overline{\mathbb{R}}^2 \to [0, \infty)$$

 $(x, y) \mapsto |\arctan(x) - \arctan(y)|,$

where $\arctan(-\infty) = -\frac{\pi}{2}$, $\arctan(\infty) = \frac{\pi}{2}$.

Exercise 2.1.

Show that Bor $(\overline{\mathbb{R}})$ is generated by the open subsets of $(\overline{\mathbb{R}}, d)$.

Bor $(\overline{\mathbb{R}})$ is (independently) generated by intervals of the form $(\alpha, \infty]$, $[-\infty, \alpha)$.

Proposition 2.5.

Let $(f_n)_{\mathbb{R}}^{\infty}$ be a sequence of measurable functions from X to \mathbb{R} .

(a) $\sup_{n\in\mathbb{N}} f_n$ is measurable.

- (b) $\inf_{n \in \mathbb{N}} f_n$ is measurable.
- (c) $\limsup_{n \in \mathbb{N}} f_n$ is measurable.
- (d) $\lim \inf_{n \in \mathbb{N}} f_n$ is measurable.

Proof.

(a) Note that, given $\alpha \in \mathbb{R}$,

$$\left(\sup_{n\in\mathbb{N}}f_n\right)^{-1}\left((\alpha,\infty]\right) = \left\{x\in X : \sup_{n\in\mathbb{N}}f_n\left(x\right) > \alpha\right\} = \bigcup_{n\in\mathbb{N}}\left\{x\in X : f_n\left(x\right) > \alpha\right\} = \bigcup_{n\in\mathbb{N}}f_n^{-1}\left((\alpha,\infty)\right).$$

- (b) It suffices to note that $\inf_{n\in\mathbb{N}} f_n = -\sup_{n\in\mathbb{N}} (-f_n)$.
- (c) Recall that

$$\limsup_{n\in\mathbb{N}} f_n = \lim_{n\to\infty} \sup_{k>n} f_k = \inf_{n\in\mathbb{N}} \sup_{k>n} f_k.$$

Hence by (a), (b), $\limsup_{n \in \mathbb{N}} f_n$ is measurable.

(d) Similar to (c),

$$\liminf_{n\in\mathbb{N}} f_n = \sup_{n\in\mathbb{N}} \inf_{k\geq n} f_k.$$

Hence $\liminf_{n\in\mathbb{N}} f_n$ is measurable.

QED

Corollary 2.5.1.

Let $(f_n)_{n=1}^{\infty}$ be a sequence of measurable functions from X to \mathbb{R} . If $f_n \to x$ pointwise, then f is measurable.

Proof. Note that

$$f_n \to x \iff \liminf_{n \in \mathbb{N}} f_n = \limsup_{n \in \mathbb{N}} f_n = \lim_{n \to \infty} f_n.$$

QED

Let (X, A) be a measurable space. Then given measurable $f: X \to \mathbb{F}$ and continuous $g: \mathbb{F} \to \mathbb{F}$, $g \circ f$ is measurable, as for any open $U \subseteq \mathbb{F}$,

$$(g\circ f)^{-1}(U)=f^{-1}\left(g^{-1}(U)\right),\,$$

where $g^{-1}(U)$ is open.

In particular, this gives alternative proofs that f^2 , $\frac{1}{f}$, Re $\circ f$, Im $\circ f$ are measurable. Moreover, |f| is measurable.

Def'n 2.4. *µ*-almost Everywhere Predicate

Let (X, \mathcal{A}, μ) be a measure space and let P be a predicate on X. We say P is true μ -almost everywhere (or μ -ae) if there exists $N \in \mathcal{A}$ with $\mu(N) = 0$ such that P(x) is true for all $x \in X \setminus N$.

Note that the definition of μ -almost everywhere does not say that

$$N = \{x \in X : P(x) \text{ is false}\}$$

is measurable. But in case μ is complete, N is measurable with μ (N) = 0.

Proposition 2.6.

Let (X, \mathcal{A}, μ) be a complete measure space and let $f: X \to \mathbb{F}$ be measurable. Suppose that $g: X \to \mathbb{F}$ is such that $f = g \mu$ -ae. Then g is measurable.

Proof. Let $N \in \mathcal{A}$ be such that $\mu(N) = 0$ with f = g on $X \setminus N$. Then given any measurable $U \subseteq \mathbb{R}$,

$$g^{-1}(U) = \left(g^{-1}(U) \cap N\right) \cup \left(g^{-1}(U) \setminus N\right).$$

Note that $g^{-1}(U) \cap N \subseteq N$ so has measure 0, which means $g^{-1}(U) \cap N \in A$ by the completeness of μ . Moreover, f = g on $X \setminus N$ so that $g^{-1}(U) \setminus N = f^{-1}(U) \setminus N$, which is measurable. Thus $g^{-1}(U)$ is measurable, as required.

2. Simple Approximation

Def'n 2.5. Characteristic Function of a Subset

Let *X* be a set and let $A \subseteq X$. The *characteristic function* of *A*, denoted as χ_A , is defined as

$$\chi_A: X \to \mathbb{R}$$

$$x \mapsto \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{if } x \notin A \end{cases}$$

Note that, given $A \subseteq X$,

 χ_A is measurable \iff A is measurable.

Def'n 2.6. Simple Function

Let (X, A) be a measurable space. We say $\varphi : X \to \mathbb{F}$ is *simple* if

$$\varphi = \sum_{k=1}^{n} a_k \chi_{A_k}$$

where $a_1, \ldots, a_n \in \mathbb{F}$ and $A_1, \ldots, A_n \in \mathcal{A}$ are pairwise disjoint.

Let (X, A) be a measurable space and let $\varphi : X \to \mathbb{F}$. Then

 φ is simple $\iff \varphi$ is measurable and $\varphi(X)$ is finite.

To see the reverse direction, suppose φ is measurable and $\varphi(X)$ is finite, say

$$\varphi(X) = \{a_k\}_{k=1}^n.$$

Then each $A_k = \varphi^{-1}(\{a_k\})$ is measurable and $\varphi = \sum_{k=1}^n a_k \chi_{a_k}$.

The goal of this subsection is to show

 $f: X \to \mathbb{R}$ is measurable $\iff f$ is a pointwise limit of simple functions.

Proposition 2.7.

Let (X, \mathcal{A}) be a measurable space and let $f: X \to \mathbb{R}$ be measurable and bounded. Then for all $\varepsilon > 0$, there are simple $\varphi_{\varepsilon}, \psi_{\varepsilon}: X \to \mathbb{R}$ such that

- (a) $\varphi_{\varepsilon} \leq f \leq \psi_{\varepsilon}$; and
- (b) $0 \le \psi_{\varepsilon} \varphi_{\varepsilon} < \varepsilon$.

Proof. Let $\varepsilon > 0$. Say $f(X) \subseteq [a, b)$. Let y_0, \dots, y_n be given such that

$$a = y_0 < y_1 < \cdots < y_n = b,$$

where each $y_k - y_{k-1} < \varepsilon$. Let $I_k = [y_{k-1}, y_k)$. Then each $A_k = f^{-1}(I_k)$ is measurable. Define

$$\varphi = \sum_{k=1}^{n} y_{k-1} \chi_{A_k}, \psi = \sum_{k=1}^{n} y_k \chi_{A_k}.$$

Then for any $x \in X$, we have $x \in I_k$ for some k, so that $\varphi(x) = y_{k-1} \le f(x) \le y_k = \psi(x)$. Moreover,

$$0 < \psi(x) - \varphi(x) = y_k - y_{k-1} < \varepsilon.$$

Theorem 2.8. Simple Approximation

Let (X, A) be a measure space and let $f: X \to \mathbb{R}$. Then

f is measurable \iff there are simple $\varphi_1, \varphi_2, \ldots : X \to \mathbb{R}$ with $\varphi_n \to f$ pointwise and $|\varphi_n| \le f$ for all $n \in \mathbb{N}$.

Proof. (\iff) Recall that pointwise limit of measurable functions is measurable, where each φ_n is measurable. (\implies) We split into few cases.

Case 1. Suppose $f \ge 0$.

Let

$$A_n = \{x \in X : f(x) \le n\}.$$

Note that

$$\mathcal{A}' = \{B \cap A_n : B \in \mathcal{A}\}$$

is a σ -algebra of subsets of A_n . Then (A_n, \mathcal{A}') is a measurable space and $f|_{A_n}$ is measurable, since

$$(f|_{A_n})^{-1}(U) = f^{-1}(U) \cap A_n \in \mathcal{A}'$$

for all measurable $U \subseteq \mathbb{R}$. Moreover, by definition $f|_{A_n}$ is bounded.

Hence by Proposition 2.7, we can find simple $\varphi_m, \psi_m : A_n \to \mathbb{R}, m \in \mathbb{N}$, such that

$$0 \le \varphi_m \le f \le \psi_m$$

and

$$0 \le \psi_m - \varphi_m < \frac{1}{m}$$

for all $m \in \mathbb{N}$ on A_n .

Extend $\varphi_m(x) = n$ for all $x \in X \setminus A_n$, so that $\varphi_m \leq f$ on X.

Now fix $x \in X$. Then $x \in A_N$ for some N, and so

$$0 \le f(x) - \varphi_N(x) \le \psi_N(x) - \varphi_N(x) < \frac{1}{N}.$$

This means given any $\varepsilon > 0$ we can take N' > N so that $\frac{1}{N'} < \varepsilon$, which means for all $m \ge N'$,

$$0 \le f(x) - \varphi_m(x) < \frac{1}{N'} < \varepsilon.$$

Thus $\varphi_m \to f$ pointwise.

(End of Case 1)

Case 2. Consider the general case on f. That is, we only assume that f is measurable.

Let

$$A = \{x \in X : f(x) \ge 0\} \in \mathcal{A}$$

$$B = \{x \in X : f(x) < 0\} \in \mathcal{A}$$

and let $g = f\chi_A$, $h = -f\chi_B$, so that both $g, h \ge 0$. By Case 1, there exist $(\varphi_n)_{n=1}^{\infty}$, $(\psi_n)_{n=1}^{\infty}$ such that $\varphi_n \nearrow g$ and $\psi_n \nearrow h$ pointwise as $n \to \infty$. Then f = g - h so that $\varphi_n - \psi_n \to g - h = f$ pointwise. Moreover,

$$|\varphi_n - \psi_n| \le |\varphi_n| + |\psi_n| = \varphi_n + \psi_n \le g + h = |f|.$$

(End of Case 2)

Note that in the proof, we know that, given a fixed $n \in \mathbb{N}$, we have

$$0 \le f - \varphi_m \le \frac{1}{m}$$

on A_n . That is,

$$0 \le f(x) - \varphi_m(x) \le \frac{1}{m}, \quad \forall x \in A_n,$$

so that $\varphi_m \to f$ uniformly as $m \to \infty$ on A_n .

Suppose that $f \ge 0$ is measurable and that

$$0 \le \varphi_n \le f, \quad \forall n \in \mathbb{N}$$

with $\varphi_n o f$ pointwise. Then by taking $\psi_n = \max \big\{ \varphi_1, \dots, \varphi_n \big\}$, φ_n is still simple. Then

$$0 \le \psi_n \le f, \quad \forall n \in \mathbb{N}$$

as well, so that $\psi_n \nearrow f$ pointwise as $n \to \infty$.

3. Two Theorems

We are going to prove two useful theorems in measure theory in this subsection.

Lemma 2.9.

Let (X, \mathcal{A}, μ) be a finite measure space and let $(f_n)_{n=1}^{\infty} \in (\mathbb{R}^X)^{\mathbb{N}}$ be a sequence of measurable functions such that $f_n \to f$ pointwise for some measurable $f: X \to \mathbb{R}$. Then for every $\alpha, \beta > 0$, there exist $B \in \mathcal{A}, N \in \mathbb{N}$ such that

$$|f_n(x) - f(x)| < \alpha, \quad \forall x \in B, n \ge N$$

and

$$\mu(X \setminus B) < \beta$$
.

Proof Sketch. Let

$$A_n = \{x \in X : \forall k \ge n \left[f_k(x) - f(x) < \alpha \right] \}, \qquad \forall n \in \mathbb{N}.$$

Then

$$A_n = \bigcap_{k>n} |f_k - f|^{-1} \left(\left(-\infty, \alpha \right) \right),\,$$

which is measurable. Since $f_n \to f$ pointwise, we have

$$X = \bigcup_{n=1}^{\infty} A_n.$$

We also have an increasing chain

$$A_1 \subseteq A_2 \subseteq \cdots$$
,

so that

$$\lim_{n\to\infty}\mu\left(A_{n}\right)=\mu\left(\bigcup_{n=1}^{\infty}A_{n}\right)=\mu\left(X\right)<\infty$$

by the continuity from below. Hence we may find $N \in \mathbb{N}$ such that

$$\mu(X) - \mu(A_n) < \beta, \quad \forall n \geq N.$$

Since $\mu\left(X\right)<\infty$, each $\mu\left(A_{n}\right)<\infty$ as well, so that

$$\mu(X \setminus A_n) < \beta, \qquad \forall n \geq N.$$

By taking $B = A_N$, we are done.

- QED

Theorem 2.10. Egoroff

Let (X, \mathcal{A}, μ) be a finite measure space and let $(f_n)_{n=1}^{\infty} \in (\mathbb{R}^X)^{\mathbb{N}}$ be a sequence of measurable functions such that $f_n \to f$ pointwise for some measurable $f: X \to \mathbb{R}$. Then for all $\varepsilon > 0$ there exists $A \in \mathcal{A}$ such that

- (a) $f_n \rightarrow f$ uniformly on A; and
- (b) $\mu(X \setminus A) < \varepsilon$.

Proof. Let $\varepsilon > 0$ be given. For all $n \in \mathbb{N}$, we may find $A_n \in \mathcal{A}$ and $N_n \in \mathbb{N}$ such that

$$\forall x \in A_n, k \ge N_n \left[|f_k(x) - f(x)| < \frac{1}{n} \right]$$

and

$$\mu\left(X\setminus A_n\right)<\frac{\varepsilon}{2^n}.$$

Let

$$A = \bigcap_{n=1}^{\infty} A_n.$$

Given any $\varepsilon' > 0$, by taking $n \in \mathbb{N}$ such that $\frac{1}{n} < \varepsilon'$, we have, for all $k \ge N_n$ and $x \in A$,

$$|f_k(x) - f(x)| < \frac{1}{n} < \varepsilon'.$$

Hence $f_k \to f$ uniformly on A. Finally,

$$\mu\left(X\setminus A\right) = \mu\left(\bigcup_{n=1}^{\infty}\left(X\setminus A_{n}\right)\right) \leq \sum_{n=1}^{\infty}\mu\left(X\setminus A_{n}\right) < \sum_{n=1}^{\infty}\frac{\varepsilon}{2^{n}} = \varepsilon.$$

QED

Let m be the Lebesgue measure on \mathbb{R} and let $A \subseteq \mathbb{R}$ with $m(A) < \infty$. Let $(f_n)_{n=1}^{\infty}$ be a sequence of measurable functions from A to \mathbb{R} that converges to $f: A \to \mathbb{R}$. Then by Egoroff's theorem, for every $\varepsilon > 0$, there is $B \subseteq A$ such that

 $f_n \rightarrow f$ uniformly on B

and

$$m(A\setminus B)<\frac{\varepsilon}{2}.$$

Then we can find a closed subset $C \subseteq B$ with

$$m(B\setminus C)<\frac{\varepsilon}{2}$$

by the regularity of Lebesgue measure. Then

$$f_n \to f$$
 uniformly on C

and

$$m(A \setminus C) = m(A \setminus B) + m(B \setminus C) < \varepsilon.$$

Hence for the Lebesgue measure (in fact, any Lebesgue-Steltjes measure), we can assume that $f_n \to f$ uniformly on a closed set with arbitrarily small difference.

Lemma 2.11.

Let $A \subseteq \mathbb{R}$ be Lebesgue measurable and let $\varphi : A \to \mathbb{R}$ be Lebesgue-simple. Then for all $\varepsilon > 0$, there exists closed $C \subseteq \mathbb{R}$ and a continuous $g : \mathbb{R} \to \mathbb{R}$ such that

- (a) $C \subseteq A$;
- (b) $\varphi = g$ on C; and
- (c) $m(A \setminus C) < \varepsilon$.

Proof. Write

$$\varphi = \sum_{i=1}^n a_i \chi_{A_i},$$

where each $a_i \neq 0$ and $A_i = \varphi^{-1}(\{a_i\})$. Let $A_0 = \varphi^{-1}(\{0\})$. We also insist that $a_i \neq a_j$ for $i \neq j$. Then

$$A = \bigcup_{i=0}^{n} A_i.$$

Let $\varepsilon > 0$ be given. For each i, let C_i be a closed such that $C_i \subseteq A_i$ and

$$m(A_i \setminus C_i) < \frac{\varepsilon}{n+1}$$

by regularity of Lebesgue measure. Let

$$C = \bigcup_{i=0}^{n} C_i,$$

which is closed. Since φ is continuous on each C_i and $C_i \cap C_j = \emptyset$, φ is continuous on C. Then there is continuous $g : \mathbb{R} \to \mathbb{R}$ that extends $\varphi : C \to \mathbb{R}$. Finally,

$$m(A \setminus C) = m\left(\bigcup_{i=0}^{n} A_i \setminus C_i\right) = \sum_{i=0}^{n} m(A_i \setminus C_i) < \varepsilon.$$

QED

Theorem 2.12. Lusin

Let $f: A \to \mathbb{R}$ be Lebesgue measurable. Then for all $\varepsilon > 0$, there exists continuous $g: \mathbb{R} \to \mathbb{R}$ and closed $C \subseteq \mathbb{R}$ such that

- (a) $C \subseteq A$;
- (b) f = g on C; and
- (c) $m(A \setminus C) < \varepsilon$.

Proof. We split the proof into two cases. Let $\varepsilon > 0$ be given.

Case 1. Suppose $m(A) < \infty$.

Let $(\varphi_n)_{n=1}^{\infty}$ be a sequence of simple functions such that $\varphi_n \to f$ pointwise by simple approximation. For each $n \in \mathbb{N}$, let $C_n \subseteq \mathbb{R}$ be closed and $g_n : \mathbb{R} \to \mathbb{R}$ be continuous such that $\varphi_n = g_n$ on C_n and

$$m(A\setminus C_n)<\frac{\varepsilon}{2^{n+1}}.$$

By Egoroff, let C_0 be the closed set such that

 $\varphi_n \to f$ uniformly on C_0

and

$$m(A \setminus C_0) < \frac{\varepsilon}{2}.$$

Let

$$C=\bigcap_{n=0}^{\infty}C_{n}.$$

Then,

 $g_n = \varphi_n \rightarrow f$ uniformly on C.

In particular, f is continuous on C. This means we can extend $f|_C$ to continuous $g: \mathbb{R} \to \mathbb{R}$. Finally,

$$m\left(A\setminus C\right)=m\left(A\setminus\bigcap_{n=0}^{\infty}C_{n}\right)=m\left(\bigcup_{n=0}^{\infty}\left(A\setminus C_{n}\right)\right)\leq m\left(A\setminus C_{0}\right)+\sum_{n=1}^{\infty}m\left(A\setminus C_{n}\right)<\varepsilon.$$

(End of Case 1)

Case 2. Suppose $m(A) < \infty$.

This is left as an exercise.

(End of Case 2)

III. Integration

1. Nonnegative Measurable Functions

Def'n 3.1. Integral of a Nonnegative Simple Function

Let (X, \mathcal{A}, μ) be a measure space and let

$$\varphi = \sum_{i=1}^n a_i \chi_{A_i} : X \to [0, \infty]$$

be simple. We define the *integral* of φ , denoted as $\int \varphi d\mu$, by

$$\int \varphi d\mu = \sum_{i=1}^{n} a_{i}\mu \left(A_{i}\right).^{1}$$

Proposition 3.1.

Let $\varphi: X \to [0, \infty]$ be simple. Then $\int \varphi d\mu$ is well-defined.

Proof Sketch. Say

$$\varphi = \sum_{i=1}^n a_i \chi_{E_i} = \sum_{j=1}^m b_j \chi_{F_j}.$$

Suppose that $\varphi(X) = \{c_1, \dots, c_p\}$ and let

$$A_k = \varphi^{-1}(\{c_k\}), \qquad \forall k \in \{1, \dots, p\}.$$

Then

$$\sum_{i=1}^{n} a_{i} \mu(E_{i}) = \sum_{k=1}^{p} c_{k} \sum_{i:a_{i}=c_{k}} \mu(E_{i}) = \sum_{k=1}^{p} c_{k} \mu\left(\bigcup_{i:a_{i}=c_{k}} E_{i}\right) = \sum_{k=1}^{p} c_{k} \mu(A_{k}).$$

By symmetry, $\sum_{j=1}^{m} b_{j} \chi_{F_{j}} = \sum_{k=1}^{p} c_{k} \mu (A_{k})$. Thus $\int \varphi d\mu$ is well-defined.

QED

Proposition 3.2.

Let $\varphi, \psi: X \to [0, \infty]$ be simple.

(a) If $\alpha \geq 0$, then

$$\int \alpha \varphi d\mu = \alpha \int \varphi d\mu.$$

(b)

$$\int \varphi + \psi d\mu = \int \varphi d\mu + \int \psi d\mu.$$

(c) $\varphi \leq \psi \implies \int \varphi d\mu \leq \int \psi d\mu$.

Proof. Write

$$\varphi = \sum_{i=1}^n a_i \chi_{E_i}, \psi = \sum_{j=1}^m b_j \chi_{F_j}$$

¹For this, we use the convention $0\infty = \infty 0 = 0$.

and let $a_0 = b_0 = 0$, with $E_0 = X \setminus \bigcup_{i=1}^n E_i$, $F_0 = X \setminus \bigcup_{j=1}^m F_j$. This means

$$\varphi = \sum_{i=0}^n a_i \chi_{E_i}, \psi = \sum_{j=0}^m b_j \chi_{F_j}$$

as well.

(a) Note that

$$\int \alpha \varphi d\mu = \sum_{i=1}^{n} \alpha a_{i} \mu \left(A_{i} \right) = \alpha \sum_{i=1}^{n} a_{i} \mu \left(A_{i} \right) = \alpha \int \varphi d\mu.$$

(b) For all $i \in \{0, ..., n\}$, $j \in \{0, ..., n\}$, let

$$A_{i,j} = E_i \cap F_j$$
.

Then it follows that

$$\varphi = \sum_{i=0}^n \sum_{j=0}^m a_i \chi_{A_{i,j}}$$

and

$$\psi = \sum_{j=0}^m \sum_{i=0}^n b_j \chi_{A_{i,j}}.$$

Thus

$$\int \varphi + \psi d\mu = \sum_{i=0}^{n} \sum_{j=0}^{m} \left(a_i + b_j \right) \mu \left(A_{i,j} \right) = \sum_{i=0}^{n} \sum_{j=0}^{m} a_i \mu \left(A_{i,j} \right) + \sum_{i=0}^{m} \sum_{j=0}^{n} b_j \mu \left(A_{i,j} \right) = \int \varphi d\mu + \int \psi d\mu.$$

(c) Given $i \in \{0, ..., n\}$, $j \in \{0, ..., m\}$, if $A_{i,j} \neq \emptyset$, then $a_i \leq b_j$. Otherwise, $\mu(A_{i,j}) = 0$. This means

$$a_{i}\mu\left(A_{i,j}\right) \leq b_{j}\mu\left(A_{i,j}\right), \qquad \forall i \in \left\{0,\ldots,n\right\}, j \in \left\{0,\ldots,m\right\},$$

so that

$$\int \varphi d\mu = \sum_{i=0}^{n} \sum_{j=0}^{m} a_{i}\mu\left(A_{i,j}\right) \leq \sum_{j=0}^{m} \sum_{i=0}^{n} b_{j}\mu\left(A_{i,j}\right) = \int \psi d\mu.$$

QED

Def'n 3.2. Integral of a Nonnegative Simple Function over a Measurable Subset

Let $\varphi: X \to [0, \infty]$ be simple and let $A \in \mathcal{A}$. We define the *integral* of φ over A, denoted as $\int_A \varphi d\mu$, by

$$\int_{A} \varphi d\mu = \int \varphi \chi_{A} d\mu.$$

Proposition 3.3.

Let $\varphi: X \to [0, \infty]$ be simple. Define $\nu: \mathcal{A} \to [0, \infty]$ by

$$v(A) = \int_{A} \varphi d\mu.$$

Then ν is a measure on (X, A).

Proof. Write

$$\varphi = \sum_{i=1}^n a_i \chi_{E_i}.$$

We have

$$v\left(\emptyset\right) = \int \chi_{\emptyset} \varphi d\mu = 0.$$

Let $\{A_m\}_{m=1}^{\infty} \subseteq \mathcal{A}$ be a collection of disjoint sets and $A = \bigcup_{m=1}^{\infty} A_m$. Then

$$\begin{split} v\left(A\right) &= \int_{A} \varphi d\mu = \int \varphi \chi_{A} d\mu = \int \sum_{i=1}^{n} a_{i} \chi_{E_{i}} \chi_{A} d\mu = \int \sum_{i=1}^{n} a_{i} \chi_{E_{i} \cap A} d\mu = \sum_{i=1}^{n} a_{i} \mu\left(E_{i} \cap A\right) = \sum_{i=1}^{n} a_{i} \mu\left(\bigcup_{m=1}^{\infty} \left(E_{i} \cap A_{m}\right)\right) \\ &= \sum_{i=1}^{n} a_{i} \sum_{m=1}^{\infty} \mu\left(E_{i} \cap A_{m}\right) = \sum_{m=1}^{\infty} \sum_{i=1}^{n} a_{i} \mu\left(E_{i} \cap A_{m}\right) = \sum_{m=1}^{\infty} \int_{A_{m}} \varphi d\mu = \sum_{m=1}^{\infty} v\left(A_{m}\right). \end{split}$$

QED

Notation 3.3. L⁺ (X, \mathcal{A}, μ)

We write $L^+(X, A, \mu)$, or simply L^+ when (X, A, μ) is understood, to mean

$$L^+(X, \mathcal{A}, \mu) = \{f : X \to [0, \infty] : f \text{ is measurable} \}.$$

Def'n 3.4. Integral of a L⁺-function

Let $f \in L^+$. We define the *integral* of f, denoted as $\int f d\mu$, by

$$\int f d\mu = \sup \left\{ \int \varphi d\mu : \varphi : [0, \infty] \to X, \varphi \le f, \varphi \text{ is simple} \right\}.$$

If $A \in \mathcal{A}$, we define the *integral* of f over A, denoted as $\int_A f d\mu$, by

$$\int_{A} f d\mu = \int f \chi_{A} d\mu.$$

Proposition 3.4.

Let $f, g \in L^+$.

(a) If $\alpha \geq 0$, then

$$\int \alpha f d\mu = \alpha \int f d\mu.$$

(b) If $f \le g$, then

$$\int f d\mu \leq \int g d\mu.$$

Proof.

(a) This is trivial when $\alpha = 0$. For $\alpha > 0$,

$$\begin{split} \{\varphi: X \to [0,\infty]: \varphi \leq \alpha f, \varphi \text{ is simple}\} &= \left\{\varphi: X \to [0,\infty]: \frac{1}{\alpha} \varphi \leq f, \varphi \text{ is simple}\right\} \\ &= \left\{\alpha \psi: \psi: X \to [0,\infty], \psi \leq f, \psi \text{ is simple}\right\}. \end{split}$$

By taking sup, we have the desired equality.

(b) It suffices to note

$$\{\varphi:X\to[0,\infty]:\varphi\le f, \varphi \text{ is simple}\}\subseteq \{\psi:X\to[0,\infty]:\psi\le g, \psi \text{ is simple}\}\ .$$

2. Nonnegative Limit Theorems

Lemma 3.5.

Let $\varphi: X \to [0,\infty]$ be simple and let $(A_n)_{n=1}^\infty \in \mathcal{A}^\mathbb{N}$ be an ascending chain with $X = \bigcup_{n=1}^\infty A_n$. Then

$$\lim_{n\to\infty}\int_{A_n}\varphi d\mu=\int\varphi d\mu.$$

Proof. Recall that $v : A \to [0, \infty]$ by

$$v\left(A
ight)=\int_{A}arphi d\mu, \qquad orall A\in\mathcal{A}$$

is a measure. Hence by the continuity from below,

$$\lim_{n\to\infty}\int_{A_n}\varphi d\mu=\lim_{n\to\infty}\nu\left(A_n\right)=\nu\left(\bigcup_{n=1}^\infty A_n\right)=\nu\left(X\right)=\int\varphi d\mu.$$

QED

Theorem 3.6. Monotone Convergence Theorem (MCT) Let $(f_n)_{n=1}^{\infty} \in L^{+\mathbb{N}}$ be an increasing sequence and define $f \in L^+$ by

$$f(x) = \lim_{n \to \infty} f_n(x), \quad \forall x \in X.$$

Then

$$\lim_{n\to\infty}\int f_n d\mu=\int f d\mu.$$

For every $x \in X$, $(f_n(x))_{n=1}^{\infty}$ is an increasing sequence. Hence by the MCT for sequences, $\lim_{n\to\infty} f_n(x)$ converges in $[0,\infty]$. Define

$$f(x) = \lim_{n \to \infty} f_n(x), \quad \forall x \in X.$$

In fact, MCT for sequences tells us that

$$f(x) = \sup_{n \in \mathbb{N}} f_n(x), \quad \forall x \in X,$$

so that

$$f_1 \leq f_2 \leq \cdots \leq f$$
.

This means

$$\int f_1 d\mu \le \int f_2 d\mu \le \cdots \le \int f d\mu$$

using monotonicity of integral, so that

$$\lim_{n\to\infty}\int f_n d\mu = \sup_{n\in\mathbb{N}}\int f_n d\mu \leq \int f d\mu.$$

Let $\varphi: X \to [0, \infty]$ be a simple function with $\varphi \leq f$. Let $\varepsilon \in (0, 1)$ and let

$$A_n = \{x \in X : (1 - \varepsilon) \varphi(x) \le f_n(x)\}, \quad \forall n \in \mathbb{N}.$$

Then

$$A_1 \subseteq A_2 \subseteq \cdots$$

and

$$X = \bigcup_{n=1}^{\infty} A_n,$$

since $f_n\left(x\right) \to f(x)$ means there must be $N \in \mathbb{N}$ such that $\left(1 - \varepsilon\right) \varphi\left(x\right) \leq f_n\left(x\right)$, as $\left(1 - \varepsilon\right) \varphi\left(x\right) < \varphi\left(x\right) \leq f(x)$. This means

$$(1-\varepsilon)\int \varphi d\mu = \int \left(1-\varepsilon\right)\varphi d\mu = \lim_{n\to\infty}\int_{A_n} \left(1-\varepsilon\right)\varphi d\mu \leq \lim_{n\to\infty}\int_{A_n} f_n d\mu \leq \lim_{n\to\infty}\int f_n d\mu.$$

Since the choice of ε was arbitrary, we conclude

$$\int \varphi d\mu \leq \lim_{n\to\infty} \int f_n d\mu.$$

But $\int f d\mu$ is the supremum of such φ , so it follows that

$$\int f d\mu \leq \lim_{n\to\infty} \int f_n d\mu,$$

as required.

QED

Proposition 3.7.

Let $f, g \in L^+$. Then

$$\int f + g d\mu = \int f d\mu + \int g d\mu.$$

Proof. By simple approximation, we can find increasing sequence of simple functions $(\varphi_n)_{n=1}^{\infty}$, $(\psi_n)_{n=1}^{\infty}$ such that $\varphi_n \nearrow f$, $\psi_n \nearrow f$ g pointwise. Thus by the MCT,

$$\int f + g d\mu = \lim_{n \to \infty} \int \varphi_n + \psi_n d\mu = \lim_{n \to \infty} \int \varphi_n d\mu + \int \psi_n d\mu = \int f d\mu + \int g d\mu.$$

QED

Proposition 3.8. Let $(f_n)_{n=1}^{\infty} \in L^{+\mathbb{N}}$. Then

$$\int \sum_{n=1}^{\infty} f_n d\mu = \sum_{n=1}^{\infty} \int f_n d\mu.$$

Proof. Note that $\left(\sum_{n=1}^k f_n\right)_{k=1}^{\infty} \in L^{+\mathbb{N}}$ is increasing, so that

$$\int \sum_{n=1}^{\infty} f_n d\mu = \int \lim_{k \to \infty} \sum_{n=1}^{k} f_n d\mu = \lim_{k \to \infty} \int \sum_{n=1}^{k} f_n d\mu = \lim_{k \to \infty} \int \sum_{n=1}^{k} f_n d\mu = \sum_{n=1}^{\infty} \int f_n d\mu.$$

QED

Proposition 3.9.

Let $f \in L^+$. Then

$$\nu: \mathcal{A} \to [0, \infty]$$

$$A \mapsto \int_A f d\mu$$

is a measure.

Proof. Clearly $\nu(\emptyset) = \int_{\emptyset} f d\mu = 0$. Write $\{A_n\}_{n=1}^{\infty} \subseteq \mathcal{A}$ be a collection of disjoint sets and let $A = \bigcup_{n=1}^{\infty} A_n$. Then

$$v(A) = \int f \chi_A d\mu = \int \sum_{n=1}^{\infty} f \chi_{A_n} d\mu = \sum_{n=1}^{\infty} \int_{A_n} f d\mu = \sum_{n=1}^{\infty} v(A).$$

Lemma 3.10.

Let $f \in L^+$. Then

$$\int f d\mu = 0 \iff f = 0 \text{ μ-ae.}$$

Proof. (\iff) Suppose f = 0 μ -ae. Let $\varphi : X \to [0, \infty]$ be simple with $\varphi \le f$, say

$$\varphi = \sum_{i=1}^n a_i \chi_{A_i}.$$

Then $\varphi = 0$ ae. This means each $a_i > 0$ implies $\mu(A_i) = 0$. Thus

$$\int \varphi d\mu = 0$$

so that

$$\int f d\mu = 0.$$

 (\Longrightarrow) Suppose $\int f d\mu = 0$. Let

$$A = \{ x \in X : f(x) > 0 \}$$

and let

$$A_n = \left\{ x \in X : f(x) \ge \frac{1}{n} \right\}, \quad \forall n \in \mathbb{N}.$$

Then

$$A_1 \subseteq A_2 \subseteq \cdots$$

with

$$\bigcup_{n=1}^{\infty} A_n = A.$$

Therefore

$$\mu\left(A\right) = \lim_{n \to \infty} \mu\left(A_n\right)$$

and

$$0 = \int f d\mu \geq \int \frac{1}{n} \chi_{A_n} d\mu = \frac{1}{n} \mu \left(A_n \right),$$

so that each $\mu\left(A_{n}\right)=0$. Thus $\mu\left(A\right)=0$, as required.

QED

Proposition 3.11.

Let $f \in L^+$ and let $A, B \in \mathcal{A}$ with $A \cap B = \emptyset$. Then

$$\int_{A \cup B} f d\mu = \int_{A} f d\mu + \int_{B} f d\mu.$$

Proof. Note that

$$\int_{A\cup B} f d\mu = \int f(\chi_A + \chi_B) d\mu = \int f \chi_A d\mu + \int f \chi_B d\mu = \int_A f d\mu + \int_B f d\mu.$$

Proposition 3.12.

Let $f \in L^+$ and let $A \in \mathcal{A}$ with $\mu(A) = 0$. Then

$$\int_A f d\mu = 0.$$

Proof. Note that $f\chi_A = 0$ μ -ae.

Proposition 3.13. Let $(f_n)_{n=1}^{\infty} \in L^{+\mathbb{N}}$ be such that

$$f_n \leq f_{n+1} \mu$$
-ae, $\forall n \in \mathbb{N}$

and let $f \in L^{+^{\mathbb{N}}}$ be such that

$$\lim_{n\to\infty} f_n = f$$
 pointwise μ -ae.

Then

$$\lim_{n\to\infty}\int f_n d\mu=\int f d\mu.$$

Proof. Let

$$A_n = \{x \in X : f_n(x) > f_{n+1}(x)\}$$

and let

$$A_0 = \left\{ x \in X : \lim_{n \to \infty} f_n(x) \neq f(x) \right\}.$$

Then $\mu(A_n)=0$ for all $n\in\mathbb{N}\cup\{0\}$. Let $A=\bigcup_{n=0}^\infty A_n$, so that $\mu(A)=0$ as well. We have

$$f_n \chi_{X \setminus A} \le f_{n+1} \chi_{X \setminus A}, \quad \forall n \in \mathbb{N}$$

and

$$f_n \chi_{X \setminus A} \to f \chi_{X \setminus A}$$
 pointwise.

By the MCT,

$$\int_{X\setminus A} f_n d\mu \to \int_{X\setminus A} f d\mu.$$

The result then follows from Proposition 3.11 and 3.12.

QED

Theorem 3.14. Fatou's Lemma Let
$$(f_n)_{n=1}^{\infty} \in L^{+\mathbb{N}}$$
. Then

$$\int \liminf_{n\to\infty} f_n d\mu \leq \liminf_{n\to\infty} \int f_n d\mu.$$

Proof. Let

$$g_n = \inf_{k > n} f_k.$$

Then $(g_n)_{n=1}^{\infty}$ is an increasing sequence in L^+ such that

$$\lim_{n\to\infty}g_n=\liminf_{n\to\infty}f_n$$

pointwise. By the monotone convergence theorem,

$$\int \liminf_{n\to\infty} f_n d\mu = \int \lim_{n\to\infty} g_n d\mu = \lim_{n\to\infty} \int g_n d\mu = \liminf_{n\to\infty} \int g_n d\mu \leq \liminf_{n\to\infty} \int f_n d\mu.$$

QED

Corollary 3.14.1. Let $(f_n)_{n=1}^{\infty} \in L^{+\mathbb{N}}$ such that $f_n \to f$ pointwise for some $f \in L^+$. Then

$$\int f d\mu \leq \liminf_{n\to\infty} \int f_n d\mu.$$

3. General Integration

Def'n 3.5. Integrable Complex-valued Function

Let $f: X \to \mathbb{C}$ be measurable. We say f is *integrable* if

$$\int |f|\,d\mu<\infty.$$

In case $f: X \to \mathbb{R}$ is integrable, we consider the *positive part* f^+ and *negative part* f^- of f defined as

$$f^{+} = \max\{f, 0\},$$

 $f^{-} = -\min\{f, 0\}.$

Note that both f^+, f^- are nonnegative and we define the *integral* of f, denoted as $\int f d\mu$, by

$$\int f d\mu = \int f^+ d\mu - \int f^- d\mu.$$

Let $f: X \to \mathbb{C}$ be integrable. Then we define the *integral* of f, denoted as $\int f d\mu$, by

$$\int f d\mu = \int \operatorname{Re} \circ f d\mu + i \int \operatorname{Im} \circ f d\mu.^{2}$$

In case $f: X \to \mathbb{C}$ is measurable, we define

$$||f||_1 = \int |f| \, d\mu.$$

Notation 3.6. $L^1(X, \mathcal{A}, \mu)$

We define

$$L^{1}\left(X,\mathcal{A},\mu\right)=\left\{ f\colon X\to\mathbb{C}:f\text{ is measurable and }\left\Vert f\right\Vert _{1}<\infty\right\} .$$

We shall write L^1 when (X, \mathcal{A}, μ) are understood.

We state few results without proof.

Proposition 3.15. Linearity

Let $f, g \in L^1$ and $\alpha \in \mathbb{C}$. Then $\alpha f + g \in L^1$ with

$$\int \alpha f + g d\mu = \alpha \int f d\mu + \int g d\mu.$$

Proposition 3.16. Monotonicity

Let $f, g \in L^1$ be real-valued functions. If $f \leq g$, then

$$\int f d\mu \leq \int g d\mu.$$

¹Note that $f = f^+ - f^-$ and $|f| = f^+ + f^-$. Hence $f^+, f^- \le |f|$ so that both $\int f^+ d\mu$, $\int f^- d\mu$ are finite.

²Observe that $|\text{Re} \circ f|$, $|\text{Im} \circ f| \le |f|$, so that $|\text{Re} \circ f|$, $|\text{Im} \circ f|$ are integrable.

Def'n 3.7. Integral over a Measurable Set

Let $f \in L^1$. For $A \in \mathcal{A}$, we define the *integral* of f over A, denoted as $\int_A f d\mu$, by

$$\int_{A} f d\mu = \int f \chi_{A} d\mu.$$

Proposition 3.17.

Let $f \in L^1$ and let $A, B \in A$ be disjoint. Then

$$\int_{A\cup B}fd\mu=\int_{A}fd\mu+\int_{B}fd\mu.$$

The following proposition is surprisingly non-trivial.

Proposition 3.18.

Let $f \in L^1$. Then

$$\left|\int f d\mu\right| \leq \int |f| \, d\mu.$$

The case when *f* is real-valued is trivial:

$$\left| \int f d\mu \right| = \left| \int f^+ d\mu - \int f^- d\mu \right| \le \int f^+ d\mu + \int f^- d\mu = \int f^+ + f^- d\mu = \int |f| d\mu.$$

Let

$$z = \int f d\mu$$
.

Write

$$z = re^{i\theta}$$

in polar form, so that r = |z|. Therefore,

$$\left| \int f d\mu \right| = r = e^{-i\theta} z = \int e^{-i\theta} f d\mu = \operatorname{Re} \int e^{-i\theta} f d\mu = \int \operatorname{Re} \circ e^{-i\theta} f d\mu \le \int |g| d\mu \le \int |f| d\mu.$$

QED

Theorem 3.19. Lebesgue Dominated Convergence Theorem (LDCT) Let $(f_n)_{n=1}^{\infty} \in (L^1)^{\mathbb{N}}$ and let $g \in L^1$. If $f_n \to f$ pointwise for some $f: X \to \mathbb{C}$ and $|f_n| \le g$ for all $n \in \mathbb{N}$, then $f \in L^1$ with

$$\int \lim_{n\to\infty} f_n d\mu = \lim_{n\to\infty} \int f_n d\mu.$$

Proof. We are going to only prove the case where f, g, f_n are real-valued.

Since $|f| \le g$ by taking limits as $n \to \infty$,

$$\int |f| \, d\mu \le \int g d\mu < \infty.$$

Hence $f \in L^1$. Then

$$\int g + f d\mu \stackrel{\text{Fatou}}{\leq} \liminf_{n \to \infty} \int g + f_n d\mu = \int g d\mu + \liminf_{n \to \infty} \int f_n d\mu.$$

Similarly,

$$\int g - f d\mu \stackrel{\text{Fatou}}{\leq} \liminf_{n \to \infty} \int g - f_n d\mu = \int g d\mu - \limsup_{n \to \infty} \int f_n d\mu.$$

Since $\int g d\mu < \infty$,

$$\int f d\mu \leq \liminf_{n \to \infty} \int f_n d\mu$$

and

$$-\int f d\mu \leq -\limsup_{n\to\infty} \int f_n d\mu.$$

Therefore,

$$\limsup_{n\to\infty}\int f_n d\mu \leq \int f d\mu \leq \liminf_{n\to\infty}\int f_n,$$

which means

$$\lim_{n\to\infty}\int f_n d\mu=\int f d\mu.$$

QED

In our progression of theory of integration, we proceeded in the order

simple \downarrow measurable, $[0,\infty]$ -valued \downarrow measurable, \mathbb{R} -valued \downarrow measurable, \mathbb{C} -valued

So what has been missing are the measurable functions which take extended real values. We are going to address this problem quickly.

4. Spaces of Integrable Functions

Proposition 3.20.

 $L^{1}(X, \mathcal{A}, \mu)$ is a Banach space.

Here are some ideas for the proof.

Suppose that *V* is a normed linear space and let $(a_n)_{n=1}^{\infty} \in V^n$ be Cauchy. Then we know

there is a subsequence $(a_{n_k})_{k=1}^{\infty}$ such that $a_{n_k} \to a \in V \implies a_n \to a$.

Let $(f_n)_{n=1}^{\infty} \in L^1(X, \mathcal{A}, \mu)^{\mathbb{N}}$ be Cauchy. Then

$$|\operatorname{Re}\circ f_n - \operatorname{Re}\circ f_m|^2 \le |\operatorname{Re}\circ f_n - \operatorname{Re}\circ f_m|^2 + |\operatorname{Im}\circ f_n - \operatorname{Im}\circ f_m| = |f_n - f_m|^2$$

so that

$$|\operatorname{Re}\circ f_n-\operatorname{Re}\circ f_m|\leq |f_n-f_m|$$
.

Hence by monotonicity,

$$\|\operatorname{Re}\circ f_n - \operatorname{Re}\circ f_m\|_1 \le \|f_n - f_m\|_1$$
,

which means $(\text{Re }\circ f_n)_{n=1}^\infty$ is Cauchy. Similarly, $(\text{Im }\circ f_n)_{n=1}^\infty$ is also Cauchy.

Proof of Proposition 3.20

Let $(f_n)_{n=1}^{\infty} \in L^1(X, \mathcal{A}, \mu)$ be Cauchy. Assume each f_n is real-valued without loss of generality. For all $k \in \mathbb{N}$, there is $n_k \in \mathbb{N}$ such that

$$\|f_n-f_m\|_1<\frac{1}{2^k}, \qquad \forall n,m\geq n_k.$$

Without loss of generality assume $(n_k)_{k=1}^{\infty}$ is increasing. Let

$$\hat{g} = |f_{n_1}| + \sum_{k=1}^{\infty} |f_{n_{k+1}} - f_{n_k}|.$$

By the MCT,

$$\int \hat{g} d\mu = \int |f_{n_1}| d\mu + \sum_{k=1}^{\infty} \int |f_{n_{k+1}} - f_{n_k}| d\mu = ||f_{n_1}||_1 + \sum_{k=1}^{\infty} ||f_{n_{k+1}} - f_{n_k}||_1 = ||f_{n_1}||_1 + 1 < \infty.$$

This means \hat{g} is finite almost everywhere – that is, there is $N \in \mathcal{A}$ such that $\hat{g}|_{X \setminus N}$ is finite and $\mu(N) = 0$. Hence define $g: X \to \mathbb{R}$ by

$$g(x) = \begin{cases} \hat{g}(x) & \text{if } x \in X \setminus N \\ 0 & \text{if } x \in N \end{cases}, \quad \forall x \in X.$$

Let $f: X \to \mathbb{R}$ by

$$f(x) = \begin{cases} f_{n_1}(x) + \sum_{k=1}^{\infty} f_{n_{k+1}}(x) - f_{n_k}(x) & \text{if } x \in X \setminus N \\ 0 & \text{if } x \in N \end{cases}, \quad \forall x \in X.$$

Then $f_{n_k} \to f$ pointwise almost everywhere and we have that $|f| \le g$. Then by the LDCT,

$$f \in L^{1}(X, \mathcal{A}, \mu)$$
.

Moreover,

$$|f_{n_k}| \leq |f_{n_1}| + \sum_{j=1}^{k-1} |f_{n_{j+1}} - f_{n_j}| \stackrel{\mathrm{ae}}{\leq} g, \qquad \forall k \in \mathbb{N}.$$

Finally,

$$|f-f_{n_k}|\leq 2g, \qquad \forall k\in\mathbb{N},$$

so by the LDCT,

$$||f-f_{n_k}||_1 = \int |f-f_{n_k}| d\mu \to 0.$$

IV. Product Measures

1. Product Measures

Def'n 4.1. Measurable Rectangle

Let (X, \mathcal{A}, μ) , (Y, \mathcal{B}, ν) be measure spaces. For every $A \in \mathcal{A}$, $B \in \mathcal{B}$, we call $A \times B$ a *measurable rectangle*.

Lemma 4.1. —

Let (X, \mathcal{A}, μ) , (Y, \mathcal{B}, ν) be measure spaces and let $\{A_k \times B_k\}_{k=1}^{\infty}$ be a collection of measurable rectangles that are pairwise disjoint. Also assume that

$$\bigcup_{k=1}^{\infty} A_k \times B_k = A \times B$$

for some $A \in \mathcal{A}, B \in \mathcal{B}$. Then

$$\mu(A) \nu(B) = \sum_{k=1}^{\infty} \mu(A_k) \nu(B_k).$$

Proof. Fix $x \in A$. For all $y \in B$, there exists a unique $k \in \mathbb{N}$ such that $(x, y) \in A_k \times B_k$. Hence

$$B = \bigcup_{k \in \mathbb{N}: x \in A_k} B_k$$

This means

$$\mu\left(B\right) = \sum_{k \in \mathbb{N}: x \in A_k} \mu\left(B_k\right),\,$$

so that

$$v(B) \chi_A(x) = \sum_{k=1}^{\infty} v(B_k) \chi_{A_k}, \quad \forall x \in X.$$

By MCT,

$$\nu(B) \mu(A) - \sum_{k=1}^{\infty} \sum_{k=1}^{\infty} \nu(B_k) \mu(A_k).$$

QED

Let

$$\mathcal{R} = \left\{ \bigcup_{k=1}^{n} A_k \times B_k : n \geq 0, \forall k \in \{1, \dots, n\} \left[A_k \in \mathcal{A}, B_k \in \mathcal{B} \right] \right\}.$$

Proposition 4.2.

Let

$$\lambda: \mathcal{R} \to [0, \infty]$$

$$\bigcup_{k=1}^{n} A_k \times B_k \mapsto \sum_{k=1}^{n} \mu(A_k) \nu(B_k)$$

Then λ is a premeasure.

 $^{^{1}}$ We are using the convention $0\infty = 0$.

By Caratheodory, there is a complete measure

$$(X \times Y, \overline{\mathcal{A} \times \mathcal{B}}, \mu \times \nu)$$

on $X \times Y$ such that

$$\mathcal{A} \times \mathcal{B} \subseteq \overline{\mathcal{A} \times \mathcal{B}} = \left\{ A \times B \in \mathcal{A} \times \mathcal{B} : A \times B \text{ is } \lambda^*\text{-measurable} \right\}.$$

and

$$(\mu \times \nu) (A \times B) = \mu (A) \nu (B), \qquad \forall A \in \mathcal{A}, B \in \mathcal{B}.$$

Def'n 4.2. Product Measure

Consider the above setting. We call $\mu \times \nu$ the *product measure* on $\mathcal{A} \times \mathcal{B}$.

2. Product Integration

Theorem 4.3. Fubini

Let (X, \mathcal{A}, μ) , (Y, \mathcal{B}, ν) be complete measure spaces. If $f \in L^1(X \times Y, \overline{\mathcal{A} \times \mathcal{B}}, \mu \times \nu)$, then

(a) For all $x \in X$, let

$$f_x: Y \to \mathbb{F}$$
$$y \mapsto f(x, y).$$

Then $f_x \in L^1(Y, \mathcal{B}, \nu)$ for almost all x.

(b) For all $y \in Y$, let

$$f^{y}: X \to \mathbb{F}$$
$$x \mapsto f(x, y).$$

Then $f^{y} \in L^{1}(X, \mathcal{A}, \mu)$ for almost all y.

(c) Let

$$F: X \to \mathbb{F}$$
$$x \mapsto \int f_x dv$$

Then $F \in L^1(X, \mathcal{A}, \nu)$.

(d) Let

$$G: X \to \mathbb{F}$$
$$y \mapsto \int f^y d\mu$$

Then $G \in L^1(X, \mathcal{A}, \nu)$.

(e) We have

$$\int_{X\times Y} fd(\mu \times \nu) = \int_{X} \int_{Y} f(x,y) \, d\nu d\mu = \int_{Y} \int_{X} f(x,y) \, d\mu d\nu.$$

Given $E \subseteq X \times Y$, let us write write

$$E_x = \{ y \in Y : (x, y) \in E \}, \quad \forall x \in X$$

and

$$E^{y} = \{x \in X : (x, y) \in E\}, \qquad \forall y \in Y.$$

Lemma 4.4.

Let (X, \mathcal{A}, μ) , (Y, \mathcal{B}, ν) be measure spaces and let

$$\mathcal{R} = \left\{ \bigcup_{k=1}^{n} A_k \times B_k : n \geq 0, \forall k \in \{1, \dots, n\} \left[A_k \in \mathcal{A}, B_k \in \mathcal{B} \right] \right\}.$$

Let $E \in \mathcal{R}_{\sigma\delta}$ with $(\mu \times \nu)$ $(E) < \infty$. Then

- (a) $g: X \to \mathbb{R}$ by $g(x) = v(E_x)$ for all $x \in X$ is μ -measurable;
- (b) $g \in L^+ \cap L^1$; and
- (c) $\int g d\mu = (\mu \times \nu) (E)$.

Proof.

Case 1. Suppose $E = A \times B$ for some $A \in \mathcal{A}, B \in \mathcal{B}$.

Then

$$E_x = \begin{cases} B & \text{if } x \in A \\ \emptyset & \text{if } x \notin A \end{cases} \in \mathcal{B}, \qquad \forall x \in X$$

Now

$$g(x) = v(E_x) = v(B) \chi_A(x), \quad \forall x \in X$$

so that *g* is a nonnegative measurable function, with

$$\int g d\mu = \int v(B) \chi_A d\mu = v(B) \mu(A) = (\mu \times \nu)(E) < \infty,$$

as needed.

(End of Case 1)

Case 2. Consider $E = \bigcup_{i=1}^{\infty} A_i \times B_i$ for some $A_1, \ldots \in \mathcal{A}, B_1, \ldots \in \mathcal{B}$.

Without loss of generality, we may assume that the union is disjoint, since intersection of rectangles is still a rectangle.

Define $g_i = v(B_i) \chi_{A_i}$ for all $i \in \mathbb{N}$. Then

$$g = \sum_{i=1}^{\infty} g_i$$

so that g is μ -measurable. Moreover, every $E_x = \bigcup_{i=1}^{\infty} (A_i \times B_i)_x$ is measurable.

Then by the MCT,

$$\int g d\mu = \sum_{i=1}^{\infty} \int g_i d\mu = \sum_{i=1}^{\infty} \mu(A_i) \nu(B_i) = \sum_{i=1}^{\infty} (\mu \times \nu) (A_i \times B_i) = (\mu \times \nu) (E) < \infty.$$

(End of Case 2)

Case 3. Consider $E = \bigcap_{n=1}^{\infty} E_n$, where each $E_n \in \mathcal{R}_{\sigma}$.

Without loss of generality, we may assume

$$E_1 \supset E_2 \supset \cdots$$
.

Moreover, we may also assume that

$$(\mu \times \nu)(E_1) < \infty$$
,

since $(\mu \times \nu)(E) < \infty$.

Then we have that

$$E_x = \bigcap_{n=1}^{\infty} \left(E_n \right)_x$$

and

$$(E_1)_x \supseteq (E_2)_x \supseteq \cdots,$$

so

$$\lim_{n\to\infty}\nu\left(\left(E_n\right)_x\right)=\nu\left(E\right)$$

and

$$\lim_{n\to\infty} (\mu\times\nu)(E_n) = (\mu\times\nu)(E).$$

Let

$$g_n: X \to \mathbb{R}$$

 $x \mapsto v\left(\left(E_n\right)_x\right), \qquad \forall n \in \mathbb{N}.$

Then $0 \ge g$ and $g_n \searrow g$ pointwise with

$$\int g_1 d\nu = (\mu \times \nu) (E_1) < \infty,$$

so by the LDCT,

$$\int g d\mu = \lim_{n \to \infty} \int g_n d\mu = \lim_{n \to \infty} (\mu \times \nu) (E_n) = (\mu \times \nu) (E).$$

(End of Case 3)

- QED

Theorem 4.5. Tonelli

Let (X, \mathcal{A}, μ) , (Y, \mathcal{B}, ν) be complete measure spaces and suppose $\mu \times \nu$ is σ -finite. If $f \in L^+$ $(X \times Y, \overline{\mathcal{A} \times \mathcal{B}}, \mu \times \nu)$, then

(a) $f_x, f^y \in L^+$ almost everywhere;

(b) for all $y \in Y$

$$F: X \to Y$$
$$x \mapsto \int_Y f_x dv$$

is integrable; and

(c)

$$\int_{X\times Y} fd\left(\mu \times \nu\right) = \int_{X} \int_{Y} fd\nu d\mu = \int_{Y} \int_{X} fd\mu d\nu.$$

Proof. Since $v \times \mu$ is σ -finite, let $\{C_n\}_{n=1}^{\infty} \subseteq \overline{\mathcal{A} \times \mathcal{B}}$ be such that

$$X \times Y = \bigcup_{n=1}^{\infty} C_n$$

with

$$(\mu \times \nu)(C_n) < \infty, \qquad \forall n \in \mathbb{N}.$$

Without loss of generality, we assme

$$C_1 \subseteq C_2 \subseteq \cdots$$

by replacing C_n with $C_1 \cup \cdots \cup C_n$.

Let

$$f_n = \min(f, n) \chi_{C_n},$$

 $\forall n \in \mathbb{N}$.

Then note that $f_n \to f$ pointwise where $(f_n)_{n=1}^{\infty}$ is an increasing sequence of measurable functions. Hence

$$\int fd\left(\mu \times \nu\right) \stackrel{\mathrm{MCT}}{=} \lim_{n \to \infty} \int f_n d\left(\mu \times \nu\right) \stackrel{\mathrm{Fub}}{=} \lim_{n \to \infty} \int_X \underbrace{\int_Y f_n d\nu}_{=F_n} d\mu.$$

Note that $F_n \nearrow F$ pointwise, so by the MCT,

$$\lim_{n\to\infty}\int_{X}F_{n}\left(x\right) d\mu=\int_{X}F\left(x\right) d\mu.$$

Thus

$$\int fd\left(\mu\times\nu\right)=\int_{X}\int_{Y}fd\nu d\mu.$$

V. Differentiation

1. Introduction

We ask the following questions.

- (a) Is there a Lebesgue-measure-theoretic fundamental theorem of calculus?
- (b) Is there a measure theoretic differentiation?
- (c) Given integrable $f: X \to \mathbb{R}$, to what extent is

$$F: X \to \mathbb{R}$$
$$x \mapsto C + \int_{a}^{x} f dm$$

differentiable?

We are going to consider functions of the form

$$f: [a,b] \to \mathbb{R}$$
.

By considering f^+, f^- , we first assume $f \ge 0$. In this way, we see that F (in (c)) is increasing.

Def'n 5.1. Upper Derivative, Lower Derivative of a Real-valued Function

Let $f: [a, b] \to \mathbb{R}$. We define the

(a) upper derivative from the right of f, denoted as $\overline{D_r}f$, by

$$\overline{D_r}f(x) = \limsup_{h \downarrow 0} \frac{f(x+h) - f(x)}{h}, \qquad \forall x \in [a,b];$$

(b) *upper derivative from the left* of f, denoted as $\overline{D_l}f$, by

$$\overline{D_{l}}f(x) = \limsup_{h \downarrow 0} \frac{f(x) - f(x - h)}{h}, \qquad \forall x \in [a, b];$$

(c) *lower derivative from the right* of f, denoted as $D_r f$, by

$$\underline{D_r}f(x) = \liminf_{h \downarrow 0} \frac{f(x+h) - f(x)}{h}, \quad \forall x \in [a,b];$$

and

(d) *lower derivative from the left* of f, denoted as $D_l f$, by

$$\underline{D_l}f(x) = \liminf_{h \downarrow 0} \frac{f(x) - f(x - h)}{h}, \qquad \forall x \in [a, b].$$

Def'n 5.2. Differentiable Function

We say $f: [a, b] \to \mathbb{R}$ is *differentiable* if

$$\overline{D}_r f(x) = \overline{D}_l f(x) = D_r f(x) = D_l f(x) \in \mathbb{R}, \qquad \forall x \in [a, b].$$

In case $f:[a,b]\to\mathbb{R}$ is differentiable in Def'n 5.2 sense, then all four quantities in Def'n 5.1 are equal to

$$f: [a, b] \to \mathbb{R}$$

$$x \mapsto \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}.$$

Def'n 5.3. **Degenerate** Interval

We say an interval is *degenerate* if it is \emptyset or a singleton.

Def'n 5.4. Vitali Covering of a Set

Let $E \subseteq \mathbb{R}$. We say a collection of non-degenerate intervals \mathcal{C} is a *Vitali covering* of E if

$$\forall x \in E, \varepsilon > 0 \exists I \in \mathcal{C} [x \in I, m(I) < \varepsilon].$$

Theorem 5.1. Vitali Covering Lemma

Let $E \subseteq \mathbb{R}$ be such that

$$m^*(E) < \infty$$

and let \mathcal{C} be a Vitali covering of E. Then for every $\varepsilon > 0$, there exist disjoint $I_1, \ldots, I_N \in \mathcal{C}$ such that

$$m^*\left(E\setminus\bigcup_{n=1}^NI_n\right)<\varepsilon.$$

Proof. Fix $\varepsilon > 0$.

Recall that when $x \in \mathbb{R}$ and $C \subseteq \mathbb{R}$ is closed,

$$d(x,C) = \inf_{c \in C} |x - c|$$

is well-defined, and

$$x \in C \iff d(x, C) = 0.$$

Fix open $U \supseteq E$ with $m(U) < \infty$ and let

$$\mathcal{C}' = \{ I \in \mathcal{C} : I \subseteq U \} .$$

Claim 1. C' is a Vitali covering of E.

Let $x \in E$ and

$$\delta = d(x, \mathbb{R} \setminus U)$$
.

then for any $I \in \mathcal{C}$ such that $x \in I$ and $m(I) < \delta$, $I \subseteq U$, so that $I \in \mathcal{C}'$.

(End of Claim 1)

Let $I_1 \in \mathcal{C}$. For every k > 1, define $I_k \in \mathcal{C}'$ such that I_1, \ldots, I_k are pairwise disjoint and

$$m(I_k)>\frac{\alpha_k}{2},$$

where

$$\alpha_{k} = \sup \{m(I) : I \in \mathcal{C}', I \text{ is disjoint from } I_{1}, \dots, I_{k-1}\}.$$

If this construction halts, then we are done; we have covered E by intervals, except possibly at finitely many points. Hence assume that the construction does not halt and we have countably many disjoint intervals $I_1, I_2, \ldots \in C'$.

Now,

$$m\left(\bigcup_{k=1}^{\infty}I_{k}\right)=\sum_{k=1}^{\infty}m\left(I_{k}\right)\leq m\left(U\right)<\infty.$$

We may find $N \in \mathbb{N}$ such that such that

$$\sum_{k=N+1}^{\infty} m\left(I_{k}\right) < \frac{\varepsilon}{5}.$$

Claim 2. $I_1, \ldots, I_N \in \mathcal{C}$ are disjoint with

$$m^*\left(E\setminus\bigcup_{k=1}^NI_k\right)<\varepsilon.$$

Let

$$X = E \setminus \bigcup_{k=1}^{N} \overline{I_k}.$$

If $x \in X$, let

$$\delta = d\left(x, \bigcup_{k=1}^{N} \overline{I_k}\right).$$

Since C' is a Vitali covering of E, we may find $I \in C'$ such that $x \in I$ and $m(I) < \delta$. Hence I is disjoint from $\bigcup_{k=1}^{N} I_k$. This means $m(I) \le \alpha_{N+1}$.

Pick K > N such that

$$\alpha_{K+1} < m(I) \le \alpha_K$$
.

Note that such K>N exists, since $\sum_{k=1}^{\infty}\frac{\alpha_k}{2}\leq\sum_{k=1}^{\infty}m\left(I_k\right)<\infty$, which means $\lim_{k\to\infty}\alpha_k=0$. But this means I is not disjoint from $\bigcup_{k=1}^KI_k$. Hence let $j\leq K$ be such that

$$I \cap I_j \neq \emptyset$$
.

Then

$$m\left(I_{j}\right)>rac{lpha_{j}}{2}\geqrac{lpha_{K}}{2}\geqrac{m\left(I
ight)}{2}.$$

Now, let $z \in I_j$ be the midpoint of I_j . Then

$$|x-z| \leq m(I) + \frac{1}{2}m(I_j) \leq 2m(I_j) + \frac{1}{2}m(I_j) = \frac{5}{2}m(I_j).$$

Let J_i be the closed interval with the same midpoint z as I_i and

$$m(J_j) = 5m(I_j)$$
.

This means $|x-z|=\frac{1}{2}m(J_j)$, so that $x\in J_j$. This means

$$X \subseteq \bigcup_{j=N+1}^{\infty} J_j$$
.

Hence

$$m^*\left(E\setminus\bigcup_{k=1}^NI_k\right)=m^*\left(X\right)\leq\sum_{j=N+1}^\infty m\left(J_j\right)=5\sum_{j=N+1}^\infty m\left(I_j\right)<5\frac{\varepsilon}{5}=\varepsilon.$$

(End of Claim 2)

QED

Theorem 5.2.

Let $f: [a, b] \to \mathbb{R}$ be increasing. Then

- (a) f is continuous except on a countable set;
- (b) *f* is differentiable except on a set of measure zero; and
- (c) the derivative $f^{\prime 1}$ of f is L^1 and

$$\int_{a}^{b} f dm \le f(b) - f(a) .$$

¹Since f is differentiable ae, we may define f' in usual way for points at where f is differentiable and set f'(x) = 0 for every x where f is not differentiable.

Proof of (a). Extend f to \mathbb{R} by f(x) = f(a) for x < a and f(x) = f(b) for x > b. For all $c \in [a, b]$,

$$\lim_{x \uparrow c} f(x) = \sup_{x < c} f(x) \le f(c) \le \inf_{x > c} f(x) = \lim_{x \downarrow c} f(x).$$

Hence *f* is continuous at *c* unless *f* has a jump of length

$$j(c) = \lim_{x \downarrow c} f(x) - \lim_{x \uparrow c} f(x).$$

But note that

$$\sum_{c \in [a,b]} j(c) \le f(b) - f(a).$$

This means for every $n \in \mathbb{N}$, the number of jumps length at least $\frac{1}{n}$ is finite, so there are countably many jumps.

Proof of (b). Clearly we have

$$D_r f \leq \overline{D_r} f$$

and

$$D_l f \leq \overline{D_l} f$$
.

Claim 1. We have

$$\overline{D_l} f \leq D_r f$$

almost everywhere.

For u < v in \mathbb{Q} , let

$$E_{u,v} = \left\{ x \in [a,b] : D_r f(x) < u < v < \overline{D_l} f(x) \right\}.$$

Let

$$E = \bigcup_{u,v \in \mathbb{Q}: u < v} E_{u,v}. \tag{5.1}$$

Then by the density of rationals, $E = \{x \in [a, b] : \underline{D_t}f(x) < \overline{D_t}f(x)\}$. Hence it remains to show

$$m^*(E) = 0.$$

By [5.1], it suffices to show that

$$m^*(E_{u,v})$$

for all u < v in \mathbb{Q} . Hence fix u < v in \mathbb{Q} and say $m^*(E_{u,v}) = s$. Let $\varepsilon > 0$ be given and find an open $E_{u,v} \subseteq U$ such that

$$m(U) < s + \varepsilon$$

by the definition of outer measure. Consider

$$C = \left\{ [x, x+h] \subseteq U : h > 0, \frac{f(x+h) - f(x)}{h} < u \right\}.$$

For $x \in E_{u,v}$, we have

$$D_r f(x) < u$$

so that

$$\lim_{\delta \downarrow 0} \inf_{h \in (0,\delta)} \frac{f(x+h) - f(x)}{h} < u.$$

This means C has arbitrarily small intervals of the form [x, x + h], where $x \in E_{u,v}$. Hence C is a Vitali covering for $E_{u,v}$. By the Vitali covering lemma, we have disjoint

$$I_1 = \left[x_1, x_1 + h_1\right], \ldots, I_N = \left[x_N, x_N + h_N\right] \in \mathcal{C}$$

such that

$$m^*\left(E_{u,\nu}\setminus \bigcup_{j=1}^N I_j\right)<\varepsilon.$$

Therefore,

$$s - \varepsilon < \sum_{j=1}^{n} m\left(I_{j}\right) = \sum_{j=1}^{N} h_{j} < m\left(U\right) < s + \varepsilon.$$

Note

$$s = m^* \left(E_{u,v} \right) = m^* \left(E_{u,v} \cap \left(\bigcup_{j=1}^N I_j \right) \right) + m^* \left(E_{u,v} \setminus \bigcup_{j=1}^N I_j \right) < m^* \left(E_{u,v} \cap \left(\bigcup_{j=1}^N I_j \right) \right) + \varepsilon.$$

by Caratheodory's criterion. This means

$$m^*\left(E_{u,v}\cap\left(\bigcup_{j=1}^N I_j\right)\right)>s-arepsilon.$$

Let

$$F=E_{u,v}\cap\left(igcup_{j=1}^Nig(x_j,x_j+h_jig)
ight)\subseteqigcup_{j=1}^Nig(x_j,x_j+h_jig)=V.$$

As before,

$$C' = \left\{ [x - k, x] \subseteq V : k > 0, \frac{f(x) - f(x - k)}{k} > \nu \right\}$$

is a Vitali cover for F. Again by the Vitali covering lemma, we find

$$J_1 = [y_1 - k_1, y_1], \dots, J_M = [y_M - k_M, y_M] \in \mathcal{C}'$$

disjoint such that

$$m^*\left(F\setminus\bigcup_{i=1}^M J_i\right)<\varepsilon.$$

Then

$$\sum_{i=1}^{M}K_{i}=\sum_{i=1}^{N}m\left(J_{i}\right)>m^{*}\left(F\right)-\varepsilon=m^{*}\left(E_{u,\nu}\cap\left(\bigcup_{j=1}^{N}\left(x_{j},x_{j}+h_{j}\right)\right)\right)-\varepsilon>s-2\varepsilon.$$

Note that

$$J_i \subseteq \bigcup_{j=1}^N I_j$$

for all $i \in \{1, ..., M\}$. Hence

$$(s-2\varepsilon) v < \sum_{i=1}^{M} v k_i < \sum_{i=1}^{M} (f(y_i), f(y_i - k_i)) \le \sum_{j=1}^{N} f(x_j + h_j) - f(x_j) \le \sum_{j=1}^{N} u h_j < u (s + \varepsilon).$$

So for all $\varepsilon > 0$,

$$v(s-2\varepsilon) < u(s+\varepsilon)$$
,

and by letting $\varepsilon \to 0$,

$$vs \leq us$$
.

But u < v, so we conclude that

$$s = 0$$
.

(End of Claim 1)

In a similar fashion,

$$\overline{D_r} f \leq D_l f$$

almost everywhere.

Proof of (c). Consider

$$g_n: [a,b] \to \mathbb{R}$$

$$x \mapsto \frac{f(x+\frac{1}{n}) - f(x)}{\frac{1}{n}}, \quad \forall n \in \mathbb{N}.$$

Since f is monotone, f is measurable, so that each g_n is measurable. Also,

$$g_n(x) \to f'(x)$$

almost everywhere. Therefore, f is measurable with $f \ge 0$, since each $g_n \ge 0$. Then, by Fatou's lemma,

$$\int_{a}^{b} f dm \leq \liminf_{n \to \infty} \int_{a}^{b} g_{n} dm = \liminf_{n \to \infty} n \int_{a}^{b} f \left(\cdot + \frac{1}{n} \right) dm - n \int_{a}^{b} f dm = \liminf_{n \to \infty} \int_{a+\frac{1}{n}}^{b+\frac{1}{n}} f dm - n \int_{a}^{b} f dm$$

$$= \liminf_{n \to \infty} n \int_{b}^{b+\frac{1}{n}} f dm - n \int_{a}^{a+\frac{1}{n}} f dm \leq f(b) - f(a).$$

QED

2. Bounded Variation and Absolute Continuity

Def'n 5.5. Bounded Variation

We say $f: [a, b] \to \mathbb{R}$ is of **bounded variation** if the **variation** of f,

$$V_a^b(f) = \sup \left\{ \sum_{k=1}^n |f(x_k) - f(x_{k-1})| : n \in \mathbb{N}, a = x_0 < x_1 < \dots < x_n = b \right\},$$

is finite.

Example 5.1.

 $\chi_{Q\cap [0,1]}:[0,1]\to \mathbb{R}$ is not of bounded variation.

Example 5.2.

If $f: [a, b] \to \mathbb{R}$ is increasing, then for $a = x_0 < x_1 < \cdots < x_n = b$,

$$V_a^b(f) = \sum_{k=1}^n (f(x_k) - f(x_{k-1})) = f(b) - f(a).$$

Proposition 5.3.

Let $f: [a, b] \to \mathbb{R}$. Then

f is of bounded variation $\iff f = g - h$ for some increasing g, h.

Proof. (\iff) Suppose f = g - h for some increasing g, h. Then for any partition $a = x_0 < x_1 < \cdots < x_n = b$,

$$\sum_{k=1}^{n} |f(x_k) - f(x_{k-1})| \le \sum_{k=1}^{n} |g(x_k) - g(x_{k-1})| + \sum_{k=1}^{n} |h(x_k) - h(x_{k-1})| = g(b) - g(a) + h(b) - h(a) < \infty.$$

 (\Longrightarrow) Suppose f is of bounded variation. Define

$$g:[a,b]\to\mathbb{R}$$

 $x\mapsto V_a^x(f)$

Then *g* is increasing. Let h = g - f. For x < y,

$$h(y) - h(x) = V_a^y(f) - f(y) - V_a^x f(x) + f(x) = V_x^y(f) - (f(y) - f(x)) \ge |f(y) - f(x)| - (f(y) - f(x)) \ge 0.$$

Corollary 5.3.1.

Let $f: [a, b] \to \mathbb{R}$ be of bounded variation. Then

- (a) *f* is continuous except on a countable set;
- (b) *f* is differentiable except on a set of measure zero; and
- (c) the derivative f' of f is L^1 and

$$\int_{a}^{b} f dm \le f(b) - f(a).$$

Corollary 5.3.2.

If $f: [a, b] \to \mathbb{R}$ is L¹, then

$$F: [a,b] \to \mathbb{R}$$
$$x \mapsto \int_{a}^{x} f dm$$

is of BV.

Def'n 5.6. Absolutely Continuous Function

We say $f:[a,b]\to\mathbb{R}$ is *absolutely continuous* if for all $\varepsilon>0$, there exists $\delta>0$ such that whenever $(x_1,y_1),\ldots,(x_n,y_n)\subseteq[a,b]$ are disjoint with

$$\sum_{k=1}^{n} y_k - x_k < \delta,$$

then $\sum_{k=1}^{n} |f(y_k) - f(x_k)| < \varepsilon$.

Proposition 5.4.

Let $f \in L^1(X, \mathcal{A}, \mu)$. For all $\varepsilon > 0$, there is $\delta > 0$ such that for any $A \in \mathcal{A}$ with $\mu(A) < \delta$, we have

$$\int_A |f|\,d\mu<\varepsilon.$$

Proof. Let $\varepsilon > 0$. We may find a simple nonnegative function $\varphi \leq |f|$ such that

$$\int |f| \, d\mu < \int \varphi d\mu + \frac{\varepsilon}{2}.$$

Note that, for all $A \in \mathcal{A}$,

$$\int_{A} |f| - \varphi d\mu \le \int |f| - \varphi d\mu < \frac{\varepsilon}{2},$$

so that

$$\int_A |f| \, d\mu < \int_A \varphi d\mu + \frac{\varepsilon}{2}.$$

Say $\varphi \leq M$ for some $M \geq 0$. Take $\delta = \frac{\varepsilon}{2M}$ and suppose $A \in \mathcal{A}$ with $\mu\left(A\right) < \delta$. Then

$$\int_{A}\left|f\right|d\mu<\int_{A}\varphi d\mu+\frac{\varepsilon}{2}\leq M\mu\left(A\right)+\frac{\varepsilon}{2}<\varepsilon.$$

Corollary 5.4.1.

Let $f: [a, b] \to \mathbb{R}$ be L¹. Then

$$F: [a, b] \to \mathbb{R}$$
$$x \mapsto \int_{[a, x]} f dm$$

is absolutely continuous.

Proof. Let $\varepsilon > 0$ be given and let $\delta > 0$ be such that

$$\mu\left(A\right)<\delta\implies\int_{A}\left|f\right|dm<\varepsilon.$$

Let $(x_1, y_1), \ldots, (x_n, y_n) \subseteq [a, b]$ be disjoint with

$$\sum_{k=1}^{n} m\left((x_k, y_k)\right) < \delta.$$

Let $A = \bigcup_{k=1}^{n} (x_k, y_k)$. Then $m(A) < \delta$, so that $\int_A |f| < \varepsilon$. Thus,

$$\sum_{k=1}^{n}\left|F\left(y_{k}\right)-F\left(x_{k}\right)\right|=\sum_{k=1}^{n}\left|\int_{x_{k}}^{y_{k}}fdm\right|\leq\sum_{k=1}^{n}\int_{x_{k}}^{y_{k}}\left|f\right|dm=\int_{A}\left|f\right|dm<\varepsilon.$$

QED

QED

Proposition 5.5.

Let $f: [a, b] \to \mathbb{R}$. If f is absolutely continuous, then f is of bounded variation.

Proof. Let $\varepsilon = 1$ and let $\delta > 0$ be such that whenever $(x_1, y_1), \ldots, (x_n, y_n) \subseteq [a, b]$ are disjoint with $\sum_{k=1}^n y_k - x_k < \delta$, then $\sum_{k=1}^n |f(y_k) - f(x_k)| < \varepsilon$ by definition of absolute continuity. Write

$$[a,b] = \bigcup_{j=1}^{p} \left[a_{j-1}, a_j \right]$$

such that $a_j - a_{j-1} < \delta$. For any partition $a_{j-1} = x_0 < x_1 < \cdots < x_m = a_j$, we have

$$\sum_{s=1}^m x_s - x_{s-1} < \delta.$$

Hence

$$\sum_{s=1}^{m} |f(x_s) - f(x_{s-1})| < 1,$$

so that

$$V_{a_{j-1}}^{a_j}(f) \le 1 \implies V_a^b(f) = \sum_{j=1}^p V_{a_{j-1}}^{a_j}(f) \le p.$$

Thus *f* is of bounded variation.

QED

Example 5.3. Cantor's Function

Let $f: [0,1] \to \mathbb{R}$ be the *Cantor's function*. We know that f is an increasing continuous function that is continuous on each of the intervals $(\frac{1}{3}, \frac{2}{3}), (\frac{1}{9}, \frac{2}{9}), \ldots$, so that

$$f = 0 \text{ on } [0,1] \setminus C,$$

where *C* is the *Cantor set*. Since m(C) = 0, f is differentiable everywhere. But

$$\int_0^1 f dm = 0 < 1 = f(1) - f(0).$$

Since f is increasing, f is of bounded variation. However, f is not absolutely continuous. Indeed, if x_j, y_j for $1 \le j \le 2^n$ are the endpoitns of the intervals remaining at nth stage of the construction of the Cantor set, then

$$\sum_{j=1}^{2^n} y_j - x_j = \left(\frac{2}{3}\right)^n \to 0$$

but

$$\sum_{j=1}^{2^{n}} |f(y_j) - f(x_j)| = f(1) - f(0) = 1.$$

Proposition 5.6.

Let $f: [a, b] \to \mathbb{R}$ be L¹. If

$$F: [a, b] \to \mathbb{R}$$
$$x \mapsto \int_{a}^{x} f dm$$

is increasing, then $f \ge 0$ almost everywhere.

Proof. Let

$$E = \{x \in [a, b] : f(x) < 0\}$$

and let

$$E_n = \left\{ x \in [a, b] : f(x) < \frac{-1}{n} \right\}, \quad \forall n \in \mathbb{N},$$

which means $E = \bigcup_{n=1}^{\infty} E_n$.

Suppose for contradiction m(E) > 0 so that there is $n \in \mathbb{N}$ such that $m(E_n) > 0$. Let

$$\varepsilon = \frac{m(E_n)}{2n}$$

and let $\delta > 0$ be such that

$$m(A) < \delta \implies \int_{A} |f| \, dm < \varepsilon.$$

By regularity of the Lebesgue measure, there is open $U \supseteq E_n$ such that

$$m(U \setminus E_n) < \delta$$
.

Since any open subset of \mathbb{R} can be written as a disjoint union of open sets, write

$$U = \bigcup_{k=1}^{\infty} (x_k, y_k) .$$

Then

$$0 \leq \sum_{k=1}^{\infty} F(y_k) - F(x_k) = \int_{U} f dm = \int_{U \setminus E_n} f dm + \int_{E_n} f dm < \varepsilon - \frac{m(E_n)}{n} = -\frac{m(E_n)}{2n},$$

which is a contradiction.

Thus we conclude m(E) = 0, as required.

QED

Corollary 5.6.1.

Let $f: [a, b] \to \mathbb{R}$ be L¹ and let

$$F: [a, b] \to \mathbb{R}$$
$$x \mapsto \int_{-x}^{x} f dm$$

If F(x) = 0 for all $x \in [a, b]$, then f = 0 almost everywhere.

Theorem 5.7. Lebesgue Differentiation Theorem

Let $f: [a, b] \to \mathbb{R}$ be L¹ and let

$$F: [a, b] \to \mathbb{R}$$

 $x \mapsto C + \int_a^x f dm$

for some $C \in \mathbb{R}$. Then F' = f almost everywhere.

Proof. Since F is of bounded variation, F' exists almost everywhere and is L^1 . For convenience, extend

$$f(x) = 0, \qquad \forall x > b$$

so that

$$F(x) = F(b),$$
 $\forall x > b.$

Also, $(g_n)_{n=1}^{\infty}$ by

$$g_{n}(x) = n\left(F\left(x + \frac{1}{n}\right) - F(x)\right), \qquad \forall n \in \mathbb{N}, x \ge a$$

converges to F' pointwise almost everywhere.

Case 1. $|f| \leq M$ for some $M \geq 0$.

Then

$$g_n(x) = n \int_x^{x+\frac{1}{n}} f dm \implies |g_n(x)| \le n \int_x^{x+\frac{1}{n}} |f| dm \le n \frac{1}{n} M = M,$$
 $\forall n \in \mathbb{N}, x \ge a$

But $\int_a^b Mdm < \infty$, so we are at a position to apply the Lebesgue dominated convergence theorem. That is, for $c \in [a,b]$,

$$\int_{a}^{c} F' dm = \lim_{n \to \infty} \int_{a}^{c} g_{n} dm = \lim_{n \to \infty} n \underbrace{\int_{a}^{c} F\left(x + \frac{1}{n}\right) - F(x) dx}_{\text{Riemann integral}} = \lim_{n \to \infty} n \underbrace{\int_{a + \frac{1}{n}}^{c + \frac{1}{n}} F(x) dx - n \int_{a}^{c} F(x) dx}_{\text{Riemann integral}}$$
$$= \lim_{n \to \infty} n \int_{c}^{c + \frac{1}{n}} F(x) dx - n \underbrace{\int_{a}^{c + \frac{1}{n}} F(x) dx}_{\text{Riemann integral}} = \lim_{n \to \infty} n \underbrace{\int_{a}^{c + \frac{1}{n}} F(x) dx - n \int_{a}^{c} F(x) dx}_{\text{Riemann integral}} = \lim_{n \to \infty} n \underbrace{\int_{a}^{c + \frac{1}{n}} F(x) dx - n \int_{a}^{c} F(x) dx}_{\text{Riemann integral}} = \lim_{n \to \infty} n \underbrace{\int_{a}^{c + \frac{1}{n}} F(x) dx - n \int_{a}^{c} F(x) dx}_{\text{Riemann integral}}$$

Note that we can replace Lebesgue integral by the corresponding Riemann integral since *F* is (absolutely) continuous.

Hence

$$\int_{c}^{c} F' - f dm = 0, \quad \forall c \in [a, b] \implies F' - f = 0 \text{ almost everywhere}$$

by Corollary 5.6.1.

(End of Case 1)

Case 2. $f \ge 0$.

Let

$$f_n = \min(f, n), \quad \forall n \in \mathbb{N},$$

so that each $|f_n| < n$. Hence Case 1 applies to each f_n . Then, for almost every $x \in [a, b]$,

$$F(x) = \int_{a}^{x} f_{n} dm + \int_{a}^{x} f - f_{n} dm \implies F'(x) = f_{n}(x) + \frac{d}{dx} \int_{a}^{x} f - f_{n} dm \ge f(x).$$

For all $c \in [a, b]$, since F is of bounded variation and $F' \ge f_n$ almost everywhere for all $n \in \mathbb{N}$ implies $F' \ge f$ almost everywere,

$$\int_{a}^{c} F'dm \le F(c) - F(a) = \int_{a}^{c} fdm \le \int_{a}^{c} F'dm \implies \int_{a}^{c} fdm = \int_{a}^{c} F'dm.$$

Hence F' - f = 0 almost everywhere.

(End of Case 2)

For the general case, consider f^+, f^- and use Case 2.

— QED

Lemma 5.8

Let $f: [a, b] \to \mathbb{R}$ be absolutely continuous. If f = 0 almost everywhere, then f is constant.

Proof. Let $c \in (a, b]$ and let $\varepsilon > 0$ be given. Take $\delta > 0$ as per the definition of absolute continuity. Consider

$$E = \left\{ x \in (a,c) : f(x) = 0 \right\},\,$$

which is measurable since f is a pointwise limit of measurable functions (or we can simply invoke completeness of Lebesgue measure), so that

$$m([a,c]\setminus E)=0.$$

Define

$$C = \{ [x, x+h] \subseteq (a, c) : x \in E, h > 0, |f(x+h) - f(x)| < \varepsilon h \}.$$

We see that C is a Vitali covering for E. So by the Vitali covering lemma, we may find disjoint $I_1, \ldots, I_n \in C$ such that

$$m\left(E\setminus\bigcup_{i=1}^nI_i\right)<\delta.$$

Since $m([a, c] \setminus E) = 0$,

$$m\left([a,c]\setminus\bigcup_{i=1}^nI_i\right)<\delta$$

as well. Say

$$I_i = [a_i, b_i], \quad \forall i \in \{1, \dots, n\}$$

with

$$a < a_1 < b_1 < a_2 < b_2 < \cdots < a_n < b_n < c$$
.

Therefore,

$$|f(c) - f(a)| \leq \sum_{i=1}^{n} |f(b_i) - f(a_i)| + |f(a_1) - f(a)| + |f(c) - f(b_n)| + \sum_{i=1}^{n-1} |f(a_{i+1}) - f(b_i)|$$

$$< \sum_{i=1}^{n} |f(b_i) - f(a_i)| + \varepsilon$$

$$< \sum_{i=1}^{n} \varepsilon (b_i - a_i) + \varepsilon$$

$$\leq \varepsilon (c - a) + \varepsilon.$$
by definition of C

Since our choice of $\varepsilon > 0$ was arbitrary, it follows f(a) = f(c).

QED

Theorem 5.9.

Let $F : [a, b] \to \mathbb{R}$. The following are equivalent.

(a) There is $f: L^1([a,b])$ such that

$$F(x) = C + \int_{a}^{x} f dm, \quad \forall x \in [a, b].$$

- (b) *F* is absolutely continuous.
- (c) F is differentiable almost everywhere with $F' \in L^1([a,b])$ and

$$F(x) = F(a) + \int_{a}^{x} F'dm, \quad \forall x \in [a, b].$$

Proof. (c) \Longrightarrow (a) is trivial and (a) \Longrightarrow (b) is proven in Corollary 5.4.1.

For (b) \Longrightarrow (c), assume F is absolutely continuous. This means F is of bounded variation, so F' exists almost everywhere with $F' \in L^1([a,b])$. Consider

$$G: [a,b] \to \mathbb{R}$$

 $x \mapsto \int_a^x F' dm.$

Then by the Lebesgue differentiation theorem, G' = F' almost everywhere. Now G - F is absolutely continuous as a sum of two absolutely continuous function. This means (G - F)' = G' - F' = 0 almost everywhere, so that G - F is constant, say G = F + C. That is,

$$F(x) = C + \int_{a}^{x} F'dm, \quad \forall x \in [a, b].$$

But by noticing

$$F(a) = C + \int_{a}^{a} F'dm = C,$$

we conclude

$$F(x) = F(a) + \int_{a}^{x} F'dm, \quad \forall x \in [a, b].$$

VI. Measure Decomposition

1. Signed Measure

Def'n 6.1. Signed Measure on a Measurable Space

Let (X, A) be a measurable space. A *signed measure* $v : A \to [-\infty, \infty]$ on (X, A) such that

- (a) $v(\emptyset) = 0$;
- (b) for all countable collection of disjoint sets $\{A_n\}_{n=1}^{\infty} \subseteq \mathcal{A}, \nu\left(\bigcup_{n=1}^{\infty} A_n\right) = \sum_{n=1}^{\infty} \nu\left(A_n\right)$; and
- (c) ν takes on at most one of the values $-\infty, \infty$.

Note (c) in Def'n 6.1 is essential; for, if we have disjoint $A, B \in \mathcal{A}$ with $v(A) = \infty, v(B) = -\infty$, then $v(A \cup B)$ would be a problem.

Proposition 6.1.

Suppose ν is a signed measure on (X, A). Suppose

$$\left| v \left(\bigcup_{n=1}^{\infty} A_n \right) \right| < \infty.$$

Then $\sum_{n=1}^{\infty} v(A_n)$ converges absolutely.

Proof. Suppose $\sum_{n=1}^{\infty} v(A_n)$ converges conditionally. Then the subseries of positive terms and negative terms diverges to $\infty, -\infty$, respectively. But this means, by taking A to be the union of A_n 's with positive measures and B to be the union of A_n 's with negative measures, we see that $v(A) = \infty, v(B) = -\infty$, which is a contradiction.

QED

Proposition 6.2. Example of Signed Measures

Let $f \in L^1(X, \mathcal{A}, \mu)$ be real-valued and define

$$v: \mathcal{A} \to [-\infty, \infty]$$

$$A \mapsto \int_A f d\mu$$

Then v is a signed measure.

Proof. Clearly $v(\emptyset) = 0$. Since f is L^1 , note that $|v(A)| \le \int_A |f| d\mu < \infty$, so that v takes neither ∞ nor $-\infty$. It remains to check countable additivity.

Let $A_1, A_2, \ldots \in \mathcal{A}$ be disjoint and let $A = \bigcup_{n=1}^{\infty} A_n$. Let

$$B_n = \bigcup_{k=1}^n A_k, \quad \forall n \in \mathbb{N}.$$

Then $f\chi_{B_n} \to f\chi_A$ pointwise and $|f\chi_{B_n}| \le |f|$, where |f| is L¹. Hence by the LDCT,

$$\int_{B_n} f d\mu \to \int_A f d\mu$$
.

This precisely means

$$\sum_{k=1}^{n} v(A_{k}) = \sum_{k=1}^{n} \int_{A_{k}} f d\mu = \int_{B_{n}} f d\mu \rightarrow v(A),$$

as needed.

Example 6.1.

Let $f \in L^+(X, A, \mu)$ and let $g \in L^1(X, A, \mu) \cap L^+(X, A, \mu)$, where both f, g are real-valued. Then

$$v: \mathcal{A} \to [-\infty, \infty]$$

$$A \mapsto \int_A f d\mu - \int_A g d\mu$$

is a signed measure, with possibly $v(A) = \infty$.

Def'n 6.2. Null Set, Positive Set, Positive Set for a Signed Measure

Let (X, A) be a measurable space and let ν be a signed measure on (X, A). We say $A \in A$ is

- (a) a *null set* for ν if for all $B \in \mathcal{A}$ with $B \subseteq A$, we have $\nu(B) = 0$;
- (b) a *positive set* for v if $v(B) \ge 0$ for all $B \in A$ with $B \subseteq A$; and
- (c) a *negative set* for v if $v(B) \leq 0$ for all $B \in A$ with $B \subseteq A$.

Theorem 6.3. Hahn Decomposition Theorem

Let (X, A) be a measurable space and let v be a signed measure on (X, A). Then there exists positive $P \in A$ and negative $N \in A$ such that

$$X = P \cup N$$
.

If $X = P' \cup N'$ is another such decomposition, then $P \triangle P'$, $N \triangle N'$ are null.

Postponed

Lemma 6.3.1.

Let (X, A) be a measurable space and let ν be a signed measure on (X, A). If $A \in A$ is such that $0 < \nu(A) < \infty$, then there is positive $P \subseteq A$ such that $\nu(P) > 0$.

Proof. If *A* is positive, take P = A and we are done.

Suppose A is not positive, so there is a subset of A with a negative signed measure. So take measurable $B_1 \subseteq A$ such that

$$v\left(B_{1}
ight)\leqrac{1}{2}\inf\left\{ v\left(B
ight):B\in\mathcal{A},B\subseteq A\setminusigcup_{k=1}^{n-1}B_{k}
ight\} .$$

Recursively, choose

$$B_n \subseteq A \setminus \bigcup_{k=1}^{n-1} B_k$$

so that

$$v(B_n) \leq \frac{1}{2} \left\{ v(B) : B \in \mathcal{A}, B \subseteq A \setminus \bigcup_{k=1}^{n-1} B_k \right\}.$$

We remark that, if we cannot find such a B_n at nth recursive step, then every measurable subset of $A \setminus \bigcup_{k=1}^{n-1} B_k$ has a positive signed measure. Moreover,

$$v\left(A\setminus\bigcup_{k=1}^{n-1}B_k\right)=\underbrace{v\left(A\right)}_{>0}-\underbrace{\sum_{k=1}^{n-1}v\left(B_k\right)}_{<0}>0,$$

so that $A \bigcup_{k=1}^{n-1} B_k \subseteq A$ is a positive set we were looking for.

Hence suppose the recursive process continues so that we have B_1, B_2, \ldots Take

$$P=A\setminus\bigcup_{k=1}^{\infty}B_k.$$

As before,

$$A = P \cup \bigcup_{k=1}^{\infty} B_k.$$

Since $|v(A)| < \infty$, by Proposition 6.1, $v(P) < \infty$.

Claim 1. P is positive.

Suppose there is measurable $B \subseteq P$ such that v(B) < 0. Since $\sum_{k=1}^{\infty} v(B_k)$ converges, $v(B_k) \to 0$. Hence we may take $n \in \mathbb{N}$ such that

$$v(B) < 2v(B_n)$$
.

But

$$2\nu\left(B_{n}\right)\leq\inf\left\{
u\left(C\right):C\in\mathcal{A},C\subseteq\bigvee_{k=1}^{n-1}B_{k}
ight\} \leq
u\left(B
ight),$$

which is a contradiction.

(End of Claim 1)

QED

Lemma 6.3.2. -

If $A_1, A_2, \ldots \in \mathcal{A}$ are positive, then $\bigcup_{n=1}^{\infty} A_n$ is positive.

Proof. Let $B \subseteq \bigcup_{n=1}^{\infty} A_n$ and let

$$B_n = B \cap \left(A_n \setminus \bigcup_{k=1}^{n-1} A_k\right).$$

Then $B = \bigcup_{n=1}^{\infty} B_n$ where each $B_n \subseteq A_n$. But each A_n is positive, so that $v(B_n) \ge 0$. Thus

$$v(B) = \sum_{n=1}^{\infty} v(B_n) \ge 0.$$

QED

Proof of Theorem 6.3

We may assume ν does not take on the value of ∞ (otherwise, consider $-\nu$). Let

$$M = \sup \{ v(A) : A \text{ is positive} \}.$$

Note that there is at least one positive set in A: namely \emptyset . We may find positive $A_1, A_2, \ldots \in A$ such that

$$\mu(A_n) \to M$$
.

By Lemma 6.3.2,

$$P = \bigcup_{n=1}^{\infty} A_n$$

is positive. Also,

$$\mu\left(P\right) = \nu\left(A_{n}\right) + \nu\left(P \setminus A_{n}\right) \ge \nu\left(A_{n}\right), \qquad \forall n \in \mathbb{N},$$

which means $M \leq v(P)$. But P is positive, so $v(P) \leq M$, so that

$$v(P) = M$$
.

Since *v* only takes finite values, it follows $M < \infty$ as well.

Let

$$N = X \setminus P$$
.

Claim 1. N is negative.

For contradiction, suppose there is $E \in \mathcal{A}$ such that $E \subseteq N$ and v(E) > 0. By Lemma 6.3.1, there is a positive subset $A \subseteq E$ such that v(A) > 0. But then $P \cup A$ is a disjoint union of positive sets, so that $P \cup A$ is positive and

$$v(P \cup A) = v(P) + v(A) = M + v(A) > M,$$

since $M < \infty$, which is a contradiction.

(End of Claim 1)

Suppose

$$X = P' \cup N'$$

similarly. Then $P \setminus P' = N' \setminus N$ and $P' \setminus P = N \setminus N'$. Note that the sets are null, since they are simultaneously positive and negative. It follows that

$$P \triangle P' = (P \setminus P') \cup (P' \setminus P) = (N' \setminus N) \cup (N \setminus N') = N \triangle N'$$

is also null, as a union of null sets.

QED

Example 6.2.

Let $f \in L^1(X, \mathcal{A}, \mu)$ be real-valued and let

$$v: \mathcal{A} \to [-\infty, \infty]$$

$$A \mapsto \int_A f d\mu$$

Let

$$P = \{x \in X : f(x) \ge 0\}$$
$$N = \{x \in X : f(x) < 0\}$$

Then, for all $A \subseteq P$,

$$v\left(A\right)=\int_{A}fd\mu\geq0$$

and similarly, for all $B \subseteq N$,

$$v\left(B\right)=\int_{B}fd\mu\leq0.$$

Thus $P \cup N$ is a Hahn decomposition of X.

Note that

$$v^+: \mathcal{A} \to [0, \infty]$$

 $A \mapsto v (A \cap P)$.

Then v^+ is measure on (X, A), with

$$v^{+}\left(A\right) = \int_{A\cap P} f d\mu = \int_{A} f \chi_{P} d\mu = \int_{A} f^{+} d\mu, \qquad \forall A \in \mathcal{A}.$$

Similarly,

$$v^-: \mathcal{A} \to [0, \infty]$$

$$A \mapsto -v (A \cap N)$$

is a measure on (X, A) with

$$u^{-}(A) = \int_{A} f^{-} d\mu, \qquad \forall A \in \mathcal{A}.$$

But then

$$v\left(A\right) = \int_{A} f d\mu = \int_{A} f^{+} d\mu - \int_{A} f^{-} d\mu = v^{+}\left(A\right) - v^{-}\left(A\right), \qquad \forall A \in \mathcal{A},$$

so that $v = v^+ - v^-$. That is, we *decomposed* a signed measure into its positive and negative parts.

Def'n 6.3. Mutually Singular Signed Measures

Suppose (X, A) is a measurable space and let μ, ν be signed measures. We say μ, ν are *mutually singular*, denoted as $\mu \perp \nu$, if $X = A \cup B$ such that A is ν -null and B is μ -null.

Consider the setting of Def'n 6.3. Given $C \in A$,

$$C = (C \cap A) \cup (C \cap B).$$

This means

$$\mu(C) = \mu(C \cap A)$$

and similarly

$$v(C) = v(C \cap B).$$

As we can see, v^+ , v^- from Example 6.2 are mutually singular, which is of interest of the next theorem.

Theorem 6.4. Jordan Decomposition Theorem

Let (X, A) be a measurable speak and let v be a signed measure on (X, A). Then there exists a unique pair (v^+, v^-) of mutually singular measures such that

$$v = v^+ - v^-$$
.

Proof. Let $X = P \cup N$ be a Hahn decomposition with respect to ν . Consider

$$v^{+}: \mathcal{A} \to [0, \infty]$$
 $A \mapsto v(A \cap P)$
 $v^{-}: \mathcal{A} \to [0, \infty]$
 $A \mapsto -v(A \cap N)$

By construction, v^+ , v^- are mutually singular measures such that $v = v^+ - v^-$. Indeed, given $A \subseteq N$,

$$v^{+}(A) = v(A \cap P) \ge v(N \cap P) = v(\emptyset) = 0$$

and similarly, given any $A \subseteq P$, $\nu^-(A) = 0$. We also have that

$$\mu\left(A\right) = \mu\left(\left(A \cap P\right) \cup \left(A \cap N\right)\right) = \mu\left(A \cap P\right) + \mu\left(A \cap N\right) = \mu^{+}\left(A\right) - \mu^{-}\left(A\right).$$

For uniqueness, suppose $v = \mu^+ - \mu^-$, where μ^+ , μ^- are mutually singular measures; say $X = P' \cup N'$ such that P' is μ^- -null and N' is μ^+ -null. For $A \in \mathcal{A}$, $A \subseteq P'$,

$$v\left(A\right)=\mu^{+}\left(A\right)-\mu^{-}\left(A\right)=\mu^{+}\left(A\right)\geq0,$$

so that P' is positive with respect to v. Similarly, N' is negative with respect to v. By Hahn decomposition, $P \triangle P' = N \triangle N'$ is null. Therefore, for all $A \in \mathcal{A}$,

$$\mu^{+}\left(A\right)=\mu^{+}\left(A\cap P'\right)=\nu\left(A\cap P'\right)=\nu\left(A\cap P\right)=\nu^{+}\left(A\right),$$

and similarly, $\mu^-(A) = \nu^+(A)$. Thus $\nu^+ = \mu^+, \nu^- = \mu^-$, as required.

2. Decomposing Measures

Proposition 6.5.

Suppose ν is a signed measure with the Jordan decomposition $\nu = \nu^+ - \nu^-$. The following are equivalent.

- (a) A is ν -null.
- (b) A is v^+ , v^- -null.
- (c) A is |v|-null.

Proof. We first observe that

$$|v| = v^+ - v^-.$$

(a) \Longrightarrow (b) Suppose $B \subseteq A$ and let $X = P \cup N$ be a Hahn decomposition of X. Then $v^+(B) = v(B \cap P) = 0$ since $B \cap P \subseteq B \subseteq A$. Similarly, $v^-(B) = v(B \cap N) = 0$.

(b)
$$\Longrightarrow$$
 (c) Clearly, given $B \subseteq A$,

$$|v(B)| = v^{+}(B) + v^{-}(B) = 0 + 0 = 0.$$

$$(c) \Longrightarrow (a)$$
 Suppose $B \subseteq A$. Then

$$v^{+}(B) + v^{-}(B) = 0,$$

where both v^+, v^- are measures, so that

$$v(B) = v^{+}(B) - v^{-}(B) = 0.$$

QED

Def'n 6.4. Absolutely Continuous Signed Measure with respect to a Measure

Let v be a signed measure and let μ be a measure on a measurable space (X, A). We say v is *absolutely continuous* with respect to μ , denoted as $v \ll \mu$, if for all $A \in A$,

$$\mu(A) = 0 \implies \nu(A) = 0.$$

Note that we are using the term *absolute continuity* again. The following exercise shows where this is coming from.

Exercise 6.3.

Let ν be a finite signed measure and let μ be a measure on a measurable space (X, \mathcal{A}) . Then

$$v \ll \mu \iff \forall \varepsilon > 0 \exists \delta > 0 \forall A \in \mathcal{A} \left[\mu(A) < \varepsilon \implies |v(A)| < \varepsilon \right].$$

In particular, Proposition 5.4 is a special case of the above exercise, with ν defined as ν (A) = $\int_A |f| d\mu$ for some $f \in L^1(X, \mathcal{A}, \mu)$.

Theorem 6.6. Radon-Nikodym Theorem

Let v, μ be σ -finite measures on a measurable space (X, A). If $v \ll \mu$, then there exists $f \in L^+(X, A, \mu)$ such that

$$v(A) = \int_A f d\mu, \qquad \forall A \in \mathcal{A}.$$

Moreover, f is uniquely determined μ -almost everywhere.

We will only prove the case when ν , μ are *finite*. The σ -finite case is left as an easy exercise.

Proof of Existence. For each $r \in \mathbb{Q}$, r > 0, let $X = P_r \cup N_r$ be a Hahn decomposition with respect to $v - r\mu$. Set $P_0 = X$, $N_0 = \emptyset$. Consider $f: X \to \mathbb{R}$ by

$$f(x) = \sup \{r \in \mathbb{Q} : x \in P_r\},$$
 $\forall x \in X.$

For t > 0,

$$f^{-1}((t,\infty]) = \bigcup_{r \in \mathbb{Q}: r > t} P_r \in \mathcal{A},$$

as a countable union of measurable subsets. Moreover, $f^{-1}([0,\infty]) = X$, so that $f \in L^+(X, \mathcal{A}, \mu)$. Suppose 0 < r < s in \mathbb{Q} . Then P_s is positive for $v - s\mu$ and so is positive for $v - r\mu$. This means

$$(\nu - r\mu) (N_r \cap P_s) = 0,$$

so that

$$v\left(N_r\cap P_s\right)=r\mu\left(N_r\cap P_s\right).$$

On the other hand, N_r is negative for $v - r\mu$ but r < s, so that N_r is negative for $v - s\mu$. This means

$$\nu\left(N_r\cap P_s\right)=s\mu\left(N_r\cap P_s\right)$$

as well, where $s \neq r$. Hence it follows that

$$\mu\left(N_r\cap P_s\right)=0.$$

It follows

$$\mu\left(N_r\cap\bigcup_{s\in\mathbb{Q}:s>r}P_s\right)=0.$$

Hence

 $f|_{N_r} \le r \, \mu$ -almost everywhere,

so that

$$\mu\left(f^{-1}\left((r,\infty]\right)\right) \leq \mu\left(P_r\right).$$

Now,

$$(v - r\mu) (P_r) \ge 0 \implies v (P_r) \ge rv (P_r)$$

 $\implies v (P_r) \le \frac{1}{r} v (P_r) \le \frac{1}{r} v (X) .$

Taking $r \to \infty$,

$$\mu\left(f^{-1}\left(\left(r,\infty\right]\right)\right)=\nu\left(P_{r}\right)\leq\frac{1}{r}\nu\left(X\right)\to0.$$

This means

$$v\left(f^{-1}\left(\{\infty\}\right)\right)=0,$$

which means *f* is finite almost everywhere.

Let $E \in \mathcal{A}$ and fix $N \in \mathbb{N}$. Consider

$$E_k = E \cap P_{rac{k}{N}} \cap N_{rac{k+1}{N}}, \qquad \qquad orall k \in \mathbb{N} \cup \{0\} \,.$$

Let

$$E_{\infty} = E \setminus \bigcup_{k=1}^{\infty} E_k.$$

We proceed to show that $\mu(E_{\infty}) = 0$. If $E_{\infty} = \emptyset$, we are done. Otherwise, fix $x \in E_{\infty}$. Since $P_0 = X$, $x \in P_0$. If there is $k \ge 0$ such that $x \in P_{\frac{k}{N}}$, $x \notin P_{\frac{k+1}{N}}$, then $x \in N_{\frac{k+1}{N}}$. But this means $x \in E_k$, which contradicts $x \in E_{\infty}$. It follows that $x \in P_{\frac{k}{N}}$ for all $k \ge 0$, so that

$$E_{\infty} \subseteq \bigcap_{k \in \mathbb{N} \cup \{0\}} P_{\frac{k}{N}}.$$

Hence,

$$\mu\left(E_{\infty}\right) \leq \mu\left(P_{\frac{k}{N}}\right) \leq \frac{N}{k}\mu\left(X\right) \to 0,$$

so that $\mu(E_{\infty}) = 0$ as well. It follows

$$v(E_{\infty})=0$$

by the absolute continuity of ν with respect to μ .

Now,

$$\left(v - \frac{k}{N}\mu\right)(E_k) \ge 0$$
 $\left(v - \frac{k+1}{N}\mu\right)(E_k) \le 0$

since $E_k \subseteq P_{\frac{k}{N}} \cap N_{\frac{k+1}{N}}$ where $P_{\frac{k}{N}}$ is positive for $v - \frac{k}{N}\mu$ and $N_{\frac{k+1}{N}}$ is negative for $v - \frac{k+1}{N}$. This implies

$$\frac{k}{N}\mu\left(E_{k}\right) \leq \nu\left(E_{k}\right) \leq \frac{k+1}{N}\mu\left(E_{k}\right). \tag{6.1}$$

Moreover, for $x \in E_k$,

$$\frac{k}{N} \le f(x)$$

by definition and

$$f(x) \le \frac{k+1}{N} \mu$$
-almost everywhere,

by considering $f(x) \leq f|_{N_{\frac{k+1}{N}}}(x)$ and that $f_{N_r} \leq r \mu$ -almost everywhere for $r \in \mathbb{Q}$. Hence

$$\frac{k}{N}x_{E_k} \le f\chi_{E_k} \le \frac{k+1}{N}\chi_{E_k}$$

μ-almost everywhere, so that

$$\frac{k}{N}\mu\left(E_{k}\right) \leq \int_{E_{k}} f d\mu \leq \frac{k+1}{N}\mu\left(E_{k}\right). \tag{6.2}$$

Summing over $k \ge 0$, we obtain that

$$\sum_{k=0}^{\infty} \frac{k}{N} \mu(E_k) \le \sum_{k=0}^{\infty} \nu(E_k) = \underbrace{E_{\infty}}_{=0} + \sum_{k=0}^{\infty} \nu(E_k) = \nu(E)$$

$$\le \sum_{k=0}^{\infty} \frac{k+1}{N} \mu(E_k) = \sum_{k=1}^{\infty} \frac{k}{N} \mu(E_k) + \sum_{k=0}^{\infty} \frac{1}{N} \mu(E_k) = \sum_{k=0}^{\infty} \frac{k}{N} \mu(E_k) + \frac{\mu(E)}{N}$$

from [6.1]. In a similar way, we obtain

$$\sum_{k=0}^{\infty}\frac{k}{N}\mu\left(E_{k}\right)\leq\int_{E}fd\mu\leq\sum_{k=0}^{\infty}\frac{k}{N}\mu\left(E_{k}\right)+\frac{\mu\left(E\right)}{N}.$$

It follows that

$$\left|v\left(E\right)-\int_{E}fd\mu\right|\leq\frac{\mu\left(E\right)}{N}\leq\frac{\mu\left(X\right)}{N}\to0.$$

It follows that $\int_{E} f d\mu = v(E)$.

Proof of Uniqueness upto μ -almost Everywhere. Let $f,g\in L^+(X,\mathcal{A},\mu)$ be such that

$$v(A) = \int_{A} f d\mu = \int_{A} g d\mu, \qquad \forall A \in \mathcal{A}.$$

Consider $B = \{x \in X : f(x) > g(x)\}$ and

$$B_n = \left\{ x \in X : f(x) \ge g(x) + \frac{1}{n} \right\}, \quad \forall n \in \mathbb{N}.$$

Suppose for contradiction that $\mu(B) > 0$. This means there is $n \in \mathbb{N}$ such that

$$\mu\left(B_{n}\right)>0.$$

Therefore, for such $n \in \mathbb{N}$,

$$v\left(B_{n}\right)=\int_{B_{n}}fd\mu\geq\int_{B_{n}}g+\frac{1}{n}d\mu=\int_{B_{n}}gd\mu+\underbrace{\frac{\mu\left(B_{n}\right)}{n}}_{>0}>\int_{B_{n}}gd\mu=v\left(B_{n}\right),$$

which is a contradiction.

This means $\mu(B) = 0$, which implies

 $f \le g \mu$ -almost everywhere.

By symmetry, $g \le f \mu$ -almost everywhere, so that

 $f = g \mu$ -almost everywhere,

as required.

QED

Observe that absolute continuity is necessary for the Radon-Nikodym theorem. For instance, if $f \in L^+(X, A, \mu)$, then

$$v: \mathcal{A} \to [0, \infty]$$

$$A \mapsto \int_{\mathcal{A}} f d\mu$$

is such that

$$\mu(A) \implies \nu(A) = \int_{A} f d\mu = 0,$$

so that $v \ll \mu$.

The following example demonstrates that the σ -finite assumption is also necessary.

Example 6.4.

Let X = [0,1], A = Bor([0,1]) and let m_c be the counting measure on (X,A). This means $m \ll m_c$, where m is the Lebesgue measure on (X,A). Observe that m_c is not σ -finite.

Suppose for contradiction that there is $f \in L^+(X, A, m_c)$ such that

$$m(A) = \int_{A} f dm_{c}.$$

Then for all $a \in [0,1]$,

$$0 = m(\{a\}) = \int_{\{a\}} f dm_c = f(a) m_c(\{a\}) = f(a)$$

which means

$$m\left(\left[0,1\right] \right) =\int 0dm_{c}=0,$$

which is a contradiction.

Corollary 6.6.1.

Let μ , ν be measure and signed measure, respectively, on a measurable space (X, A). If $|\nu|$, μ are σ -finite and $|\nu| \ll \mu$, then there exists f = g - h with at least one of g, h is in L¹ (X, A, μ) and

$$v(A) = \int_A f d\mu, \quad \forall A \in \mathcal{A}.$$

Proof. We utilize the following claim.

Claim 1. There exists $p: X \to \mathbb{R}$ with |p(x)| = 1 for all $x \in X$ such that

$$v(A) = \int_{A} pd|v|.$$

Let $X = P \cup N$ be a Hahn decomposition of X with respect to ν and let

$$p = \chi_P - \chi_N$$
.

Then, with the Jordan decomposition

$$v = v^+ - v^-$$

for v, we have

$$\begin{split} \int_{A} \chi_{P} - \chi_{N} d \left| v \right| &= \int_{A} p dv^{+} + \int_{A} p dv^{-} = \int_{A \cap P} p dv^{+} + \int_{A \cap N} p dv^{-} = \int_{A \cap P} 1 dv^{+} + \int_{A \cap N} -1 dv^{-} \\ &= \int_{A \cap P} 1 dv^{+} - \int_{A \cap N} 1 dv^{-} = v^{+} \left(A \cap P \right) - v^{-} \left(A \cap N \right) = v^{+} \left(A \right) - v^{-} \left(A \right) = v \left(A \right). \end{split}$$

(End of Claim 1)

Since $v \ll \mu$, we have $|v| \ll \mu$. So by the Radon-Nikodym theorem, there exists $q \in L^+(X, A, \mu)$ such that

$$|v|(A) = \int_A q d\mu.$$

Then, for $A \in \mathcal{A}$,

$$v\left(A\right) = v^{+}\left(A\right) - v^{-}\left(A\right) = v\left(A \cap P\right) + v\left(A \cap N\right) = \left|v\right|\left(A \cap P\right) - \left|v\right|\left(A \cap N\right) = \int_{A \cap P} q d\mu - \int_{A \cap N} d\mu = \int_{A} p q d\mu,$$

so by letting f = pq, we have

$$\int_{A}fd\mu=\nu\left(A\right) .$$

But

$$f = pq = q(\chi_P - \chi_N) = q\chi_P - q\chi_N,$$

so let $g = q\chi_P$, $h = q\chi_N$. Since signed measure cannot take both $-\infty$, ∞ , it follows that

$$\int_{P} q d\mu < \infty \text{ or } \int_{N} p d\mu < \infty,$$

which means one of g, h is L^1 .

Theorem 6.7. Lebesgue Decomposition Theorem

Let ν , μ be σ -finite measures on (X, A). Then there exists a unique decomposition

$$v = v_a + v_s$$

such that $v_a \ll \mu$ and $v_s \perp \mu$.

Proof. Consider

$$\lambda = \mu + \nu$$
.

Then λ is a measure and $\nu, \mu \ll \lambda$. By the Radon-Nikodym theorem, there exists $f, g \in L^+(X, A, \lambda)$ such that

$$\mu\left(A\right)=\int_{A}fd\lambda, v\left(A\right)=\int_{A}gd\lambda, \qquad \forall A\in\mathcal{A}\,.$$

Let

$$A = f^{-1}((0,\infty]), B = f^{-1}(\{0\}).$$

Define $\nu_a, \nu_s: \mathcal{A} \to [0, \infty]$ by

$$v_a(E) = v(E \cap A), v_s(E) = v(E \cap B),$$
 $\forall E \in A.$

Clearly $v = v_a + v_s$.

Claim 1. $v_s \perp \mu$.

Consider $X = A \cup B$.

If $C \subseteq A$, then

$$v_s(C) = v(C \cap B) = v(\emptyset) = 0.$$

Hence *A* is v_s -null. On the other hand, given $C \subseteq B$,

$$\mu(C) = \int_C f d\lambda = \int_C 0 d\lambda = 0.$$

Hence *B* is μ -null.

(End of Claim 1)

Claim 2. $v_a \ll \mu$.

Suppose $E \in \mathcal{A}$ with $\mu(E) = 0$. Then

$$\int f\chi_E d\lambda = \int_E f d\lambda = 0.$$

Since $f \in L^+(X, A, \lambda)$, it follows that $f\chi_E$ is a measurable nonnegative function, so that

 $f\chi_E = 0 \lambda$ -almost everywhere.

Hence

$$v_a(E) = v(E \cap A) = \lambda(E \cap A) = 0.$$

(End of Claim 2)

Proof of uniqueness is left as an exercise.

VII. L^p Spaces

Fix a measure space (X, \mathcal{A}, μ) .

1. L^p Spaces

Given measurable $f: X \to \mathbb{R}$, let

$$[f] = \{g \in \mathbb{R}^X : g = f \mu\text{-almost everywhere}\}$$
.

Def'n 7.1. L^p (X, \mathcal{A}, μ)

Given $p \in [1, \infty)$, we define

$$\mathbf{L}^{p}\left(X,\mathcal{A},\mu\right)=\left\{ \left[f\right]:f\in\mathbb{R}^{X},f\text{ is measurable,}\left|f\right|^{p}\in\mathbf{L}^{1}\left(X,\mathcal{A},\mu\right)\right\} .$$

We define

$$\mathrm{L}^{\infty}\left(X,\mathcal{A},\mu\right)=\left\{\left[f\right]:f\in\mathbb{R}^{X},f\text{ is measurable, }\sup\left\{t\geq0:\mu\left(\left\{x\in X:\left|f(x)\right|>t\right\}\right)>0\right\}<\infty\right\}.$$

For convenience, we are going to *treat* equivalence classes [f] as functions f.

Example 7.1. *l*^p

Consider $(\mathbb{N}, \mathcal{P}(\mathbb{N}), m_c)$, where m_c is the counting measure on $(X, \mathcal{P}(\mathbb{N}))$. Then given $f: \mathbb{N} \to \mathbb{R}$, f is measurable and

$$\int f d\mu = \sum_{n=1}^{\infty} f(n) .$$

Hence for $p \in [1, \infty)$,

$$f \in L^p \iff \int |f|^p d\mu < \infty \iff \sum_{n=1}^\infty |f(n)|^p << \infty \iff f \in l^p.$$

Proposition 7.1

Let $p \in [1, \infty]$. Then $\left(\mathbf{L}^p, \left\|\cdot\right\|_p\right)$ is a Banach space, where

$$\left\|f\right\|_{p}=\left(\int\left|f\right|^{p}d\mu\right)^{\frac{1}{p}},\qquad \forall f\in\mathrm{L}^{p}$$

for $p \in [1, \infty)$ and

$$||f||_{\infty} = \sup \{t \ge 0 : \mu (\{x \in X : |f(x)| > t\}) > 0\}, \quad \forall f \in L^{\infty}.$$

Proposition 7.2.

Let $(X, \mathcal{A}, \mathcal{U})$ be a measure space.

- (a) For $p \in [1, \infty)$, the set of simple functions of finite support is dense in $L^p(X, \mathcal{A}, \mu)$.
- (b) The set of simple functions is dense in $L^{\infty}(X, \mathcal{A}, \mu)$.

Proof of (a). Let $f \in L^p$ and let $(\varphi_n)_{n=1}^{\infty}$ be an increasing sequence of simple functions converging pointwise to f. Then

$$\left|\varphi_{n}\right|^{p} \leq |f|^{p}, \qquad \forall n \in \mathbb{N},$$

so that $\varphi_n \in L^p$. This means, for a value a which φ_n takes, $\varphi_n^{-1}(a)$ have finite measure. So $(\varphi_n)_{n=1}^{\infty}$ is a sequence of simple functions of finite support. It remains to show $\varphi_n \to f$ in $\|\cdot\|_p$.

But
$$|\varphi_n - f| \le |\varphi_n| + |f| \le 2|f|$$
, so that

$$|\varphi_n - f| \leq 2^p |f|^p$$

for all $n \in \mathbb{N}$. Hence by the LDCT,

$$\int \left|\varphi_n - f\right|^p d\mu \to 0,$$

as required.

Proof of (b). Exercise.

QED

Recall 7.2. **Dual Space** of a Normed Linear Space

Let *V* be a normed linear space over \mathbb{K} . The *dual space* of *V*, denoted as V^* , is defined as

$$V^* = \{T : V \to \mathbb{K} : T \text{ is linear and continuous} \}.$$

Recall the following results for normed linear spaces.

Proposition 7.3.

Let $(V, \|\cdot\|)$ be a normed linear space and let $\varphi: V \to \mathbb{K}$ be a linear functional. The following are equivalent.

- (a) φ is continuous.
- (b) φ is continuous at 0.
- (c) φ is bounded.

Proposition 7.4.

Let $(V, \|\cdot\|)$ be a normed linear space. Then $(V^*, \|\cdot\|)$ is a Banach space.

Theorem 7.5. Holder's Inequality

Let (X, \mathcal{A}, μ) be a measure space and let $p, q \in [1, \infty]$ with $\frac{1}{p} + \frac{1}{q} = 1$ or $p = 1, q = \infty$. If $f \in L^p(X, \mathcal{A}, \mu)$, $g \in L^q(X, \mathcal{A}, \mu)$, then $fg \in L^1$ and

$$\left\|fg\right\|_{1} \leq \left\|f\right\|_{p} \left\|g\right\|_{q}.$$

Example 7.2. –

Let (X, \mathcal{A}, μ) be a finite measure space and let p < r in $[1, \infty)$.

Claim 1. $L^{\infty} \subseteq L^r$.

Let $f \in L^{\infty}$. Then $|f| \le M$ almost everywhere for some $M \ge 0$. This means $\int |f|^r d\mu \le \int M^r d\mu = M^r \mu(X) < \infty$. (*End of Claim 1*)

Claim 2. $L^r \subseteq L^p$.

For $f \in L^r$, $\int |f|^r d\mu < \infty$, so that $f^{\frac{r}{p}} \in L^p$. Let s be the Holder conjugate of $\frac{r}{p}$. Then

$$\left\|f\right\|_{p}^{p}=\left\|\left|f\right|^{p}\cdot 1\right\|_{1}\leq \left\|\left|f\right|^{p}\right\|_{\frac{r}{p}}\left\|1\right\|_{s}=\left\|f\right\|_{r}^{\frac{p}{r}}\mu\left(X\right)<\infty.$$

(End of Claim 2)

It turns out there are no containment relations for $L^p(\mathbb{R}, \mathcal{M}, m)$, where m is the Lebesgue measure and \mathcal{M} is the collection of Lebesgue measurable sets. On the other hand,

$$l^p \subseteq l^r$$

for p < r in $[1, \infty]$.

Theorem 7.6. Riesz Representation Theorem for L^p

Let (X, \mathcal{A}, μ) be a σ -finite measure space and let $p \in [1, \infty)$. Let q be the Holder conjugate for p. Then

$$\varphi: \mathbf{L}^q \to (\mathbf{L}^p)^*$$
$$g \mapsto \Phi_g$$

is an isometric isomorphism, where

$$\Phi_{g}\left(f\right)=\int fgd\mu, \qquad \forall g\in\mathcal{L}^{q}, f\in\mathcal{L}^{p}.$$

Proof. Claim 1. For $g \in L^q$,

$$\left\|\Phi_{g}\right\|=\left\|g\right\|_{q}.$$

We consider the case where $p \in (1, \infty)$ only.

For $f \in L^p$, by Holder's inequality,

$$\left|\Phi_{g}\left(f\right)\right| = \left|\int fg d\mu\right| \leq \int \left|fg\right| d\mu = \left\|fg\right\|_{1} \leq \left\|f\right\|_{p} \left\|g\right\|_{q},$$

so that

$$\|\Phi_g\| \leq \|g\|_q$$
.

Since the case g = 0 is trivial, assume $g \neq 0$ and let

$$f = \frac{|g|^{q-1} \operatorname{sgn}(g)}{\|g\|_q^{q-1}}.$$

Note $p(q-1) = pq\left(1 - \frac{1}{q}\right) = q$, so that

$$|f|^p = \frac{|g|^q}{||g||_q^q},$$

which means

$$||f||_p^p = \int |f|^p d\mu = \frac{1}{||g||_q^q} \int |g|^q d\mu = 1.$$

Moreover,

$$\left|\Phi_{g}\left(f\right)\right|=\left|\int fgd\mu\right|=\left|\int \frac{\left|g\right|^{q}}{\left\|g\right\|_{q}^{q-1}}\right|=\left\|g\right\|_{q}.$$

Thus $\|\Phi_g\| = \|g\|_q$, as required.

(End of Claim 1)

Claim 2. *If* $g: X \to \mathbb{R}$ *is measurable with*

$$\left|\int \psi g\mu\right| \leq M \|\psi\|_{p},$$

for all simple ψ with finite support, then $g \in L^q$ and $\|g\|_q \leq M$.

We first consider the case where $p, q \in (1, \infty)$.

Let $(\psi_n)_{n=1}^{\infty}$ be a sequence of simple functions such that $\psi_n \to g$ pointwise and

$$|\psi_n| \le |\psi_{n+1}| \le |g|, \quad \forall n \in \mathbb{N}.$$

Since X is σ -finite, write

$$X = \bigcup_{n=1}^{\infty} X_n,$$

where each $\mu(X_n) < \infty$ and $X_1 \subseteq X_2 \subseteq \cdots$. Let

$$\zeta_n = \psi_n \chi_{X_n},$$

which is a simple function with a finite support. Then

$$|\zeta_n| \le |\zeta_{n+1}| \le |g|, \quad \forall n \in \mathbb{N}$$

and $\zeta_n \to g$ pointwise. Define

$$f_n = \frac{|\zeta_n|^{q-1}\operatorname{sgn}(g)}{\|\zeta_n\|_q^{q-1}}$$

Then each f_n is simple with finite support and $||f_n||_p = 1$, just as in Claim 1. Then

$$M \geq \sup_{n \in \mathbb{N}} \left| \int f_n dg d\mu \right| = \sup_{n \in \mathbb{N}} \int \frac{\left| \zeta_n \right|^{q-1} |g|}{\left\| \zeta_n \right\|_q^{q-1}} d\mu \geq \sup_{n \in \mathbb{N}} \int \frac{\left| \zeta_n \right|^q}{\left\| \zeta_n \right\|_q^{q-1}} d\mu = \sup_{n \in \mathbb{N}} \left\| \zeta_n \right\|_q.$$

Now, $|\zeta_n|^q \le |g|^q$, $(|\zeta_n^q|)_{n=1}^{\infty}$ is increasing, and $|\zeta_n|^q \to |g|^q$ pointwise, so by the monotone convergence theorem,

$$\sup_{n\in\mathbb{N}}\left\|\zeta_{n}\right\|_{q}=\lim_{n\to\infty}\left\|\zeta_{n}\right\|_{q}=\left\|g\right\|_{q}.$$

Thus

$$M \geq \|g\|_q$$

as required.

Now suppose $p = 1, q = \infty$. Let $\varepsilon > 0$ be given and consider

$$A = \{x : |g(x)| > M + \varepsilon\}.$$

Since we want to show $\|g\|_{\infty} \le M$, suppose $\mu(A) > 0$ for contradiction. Since X is σ -finite, we may find $B \subseteq A$ such that

$$0 < \mu(B) < \infty$$
.

Take

$$f = \frac{1}{\mu(B)} \operatorname{sgn}(g) \chi_B$$

so that *f* is simple and $||f||_1 = 1$. Then

$$\int fg d\mu = \frac{1}{\mu(B)} \int |g| \, \chi_B d\mu = \frac{1}{\mu(B)} \int_B |g| \, d\mu \geq \frac{1}{\mu(B)} \int_B M + \varepsilon d\mu = M + \varepsilon > M = M \, ||f||_1 \,,$$

which is a contradiction.

Since the choice of ε was arbitrary, it follows M is an essential bound for |g|, so that

(End of Claim 2)

We now turn to the proof of the Riesz representation theorem. We consider two cases.

Case 1. $\mu(X) < \infty$.

Let $\Phi \in L^p(X, \mathcal{A}, \mu)^*$, where we desire to find $g \in L^q$ such that $\Phi = \Phi_g$. Consider

$$v: \mathcal{A} \mapsto \mathbb{R}$$

$$A \mapsto \Phi\left(\chi_A\right).$$

Note that

$$v\left(\emptyset\right) = \Phi\left(\chi_{\emptyset}\right) = \Phi\left(0\right) = 0.$$

Let $\{A_n\}_{n=1}^{\infty} \subseteq \mathcal{A}$ and let $A = \bigcup_{n=1}^{\infty} A_n$. Then

$$\left\|\chi_{A}-\sum_{n=1}^{N}\chi_{A_{n}}\right\|_{p}^{p}=\left\|\sum_{n=N+1}^{\infty}\chi_{A_{n}}\right\|_{p}^{p}=\left(\left(\int\left(\sum_{n=N+1}^{\infty}\chi_{A_{n}}\right)^{p}d\mu\right)^{\frac{1}{p}}\right)^{p}=\int\sum_{n=N+1}^{\infty}\chi_{A_{n}}d\mu=\mu\left(\bigcup_{n=N+1}^{\infty}A_{n}\right)=\sum_{n=N+1}^{\infty}\mu\left(A_{n}\right).$$

Since $\mu(X) < \infty$, it follows $\mu(A) = \sum_{n=1}^{\infty} \mu(A_n) < \infty$, so that

$$\sum_{n=N+1}^{\infty} \mu\left(A_n\right) \to 0.$$

Hence $\chi_A = \sum_{n=1}^{\infty} \chi_{A_n} \in L^p$. By continuity of Φ,

$$v\left(A\right) = \Phi\left(\chi_A\right) = \sum_{n=1}^{\infty} \Phi\left(\chi_{A_n}\right) = \sum_{n=1}^{\infty} v\left(A_n\right).$$

Hence v is a measure.

If $\mu\left(A\right)=0$, then $\chi_{A}=0$ μ -almost everywhere, so that

$$v(A) = \Phi(0) = 0.$$

This means $v \ll \mu$, so by the Radon-Nikodym theorem, there is $g \in L^1$ such that

$$v(A) = \int_{A} g d\mu.$$

Note that g is L^1 since the measure space is finite. Take a simple function

$$\psi = \sum_{k=1}^{n} a_k \chi_{A_k}.$$

Then

$$\Phi\left(\psi\right) = \sum_{k=1}^{n} a_{k} \chi_{A_{k}} = \sum_{k=1}^{n} a_{k} \nu\left(A_{k}\right) = \int \psi d\nu.$$

Also,

$$\sum_{k=1}^{n} a_k v(A_k) = \sum_{k=1}^{n} a_k \int_{A_k} g d\mu = \sum_{k=1}^{n} \int a_k \chi_{A_k} g d\mu = \int \psi g d\mu.$$

That is,

$$\Phi\left(\psi\right) = \int \psi d\nu = \int \psi g d\mu = \Phi_{g}\left(\psi\right).$$

Hence

$$\left|\int \psi g d\mu\right| = \left|\Phi\left(\psi\right)\right| \leq \left\|\Phi\right\| \left\|\psi\right\|_{p}.$$

By taking $M = \|\Phi\|$, we see that $g \in L^q$ with $\|g\|_q \le M$. Then Φ , Φ_g are continuous functions that coincide on a dense subset of L^p , so that $\Phi = \Phi_g$.

(End of Case 1)

We now consider the general case, where *X* is assumed to be σ -finite. Write $X = \bigcup_{n=1}^{\infty} X_n$ so that each $\mu(X_n) < \infty$ and

$$X_1 \subset X_2 \subset \cdots$$
.

We may identify $L^{r}(X_{n}, A \cap P(X_{n}), \mu)$ as a subset of $L^{r}(X, A, \mu)$.

Let $\Phi \in L^p(X, \mathcal{A}, \mu)^*$. For every $n \in \mathbb{N}$, there exists a unique $g_n \in L^q(X_n)$ such that

$$\Phi|_{X_n}=\Phi_{g_n}$$

by Case 1. Moreover,

$$\left\|g_n\right\|_q = \left\|\Phi_{g_n}\right\| \le \left\|\Phi\right\|.$$

By uniqueness, there is a unique $g: X \to \mathbb{R}$ such that for all $n \in \mathbb{N}$, $g|_{X_n} = g_n$. Since $X_1 \subseteq X_2 \subseteq \cdots$, $g_n \to g$ pointwise, which means g is measurable.

Note that, since X_n 's are nested, $(|g_n|^q)_{n=1}^{\infty}$ is an increasing sequence converging pointwise to $|g|^q$, so that

$$\|g_n\|_a \to \|g\|_a$$

by the monotone convergence theorem. It follows that

$$\|g\|_{a} \leq \|\Phi\| < \infty,$$

so that $g \in L^q(X, \mathcal{A}, \mu)$.

If $f \in L^p(X, A, \mu)$, we have

$$\left|f\chi_{X_n} - f\right|^p \le (2|f|)^p = 2^p |f|^p.$$

By the Lebesgue dominated convergence theorem,

$$f\chi_{X_n} \to f \text{ in } \mathbf{L}^p$$
.

Hence, by continuity of Φ ,

$$\Phi\left(f\right) = \lim_{n \to \infty} \Phi\left(f\chi_{X_n}\right) = \lim_{n \to \infty} \int \left(f\chi_{X_n}\right) g d\mu = \lim_{n \to \infty} \int_{Y} fg_n d\mu = \int fg d\mu = \Phi_g\left(f\right),$$

where the second last equality follows from the Lebesgue dominated convergence theorem.

QED

Example 7.3.

Consider $(\mathbb{N}, \mathcal{P}(\mathbb{N}), \mu)$ with

$$\mu(\emptyset) = 0$$

$$\mu(A) = \infty, \qquad \forall A \neq \emptyset$$

Then observe that, for $f: \mathbb{N} \to \mathbb{R}$, if there is $n \in \mathbb{N}$ such that $f(n) \neq 0$,

$$\int |f| \, d\mu \ge \int_{\{n\}} |f| \, d\mu = \infty,$$

so that $L^1 = \{0\}$.

But we have $L^{\infty} = l^{\infty}$, so that

$$(L^1)^* \neq L^{\infty}$$
.

Theorem 7.7. Riesz Representation Theorem II

Let (X, \mathcal{A}, μ) and let $p, q \in (1, \infty)$ be Holder conjugates. Then $g \mapsto \Phi_g$ is an isometric isomorphism from L^q to $(L^p)^*$.

Proof Idea. Use $M = \sup \Big\{ \|g_E\|_q : E \subseteq X \text{ is } \sigma\text{-finite} \Big\}.$