Floating Point Reference Sheet

Denormalized

Sign	Exponent (exp)			Frac			
1/0	0	0	0	0	1/0	1/0	1/0

e = 0 (since exp always has 0's)

Bias = $(2^{(\# of exp bits - 1)}) - 1 = 2^{(4-1)} - 1 = 7$

E = 1- bias = 1 - 7 = -6

 $f = (Value \text{ of Frac As Int})/(2^{(\# \text{ of frac Bits})}) = (Value \text{ of Frac as Int})/(2^{3})$

M = f

(sign) = -1 if Sign=1

(sign) = +1 if Sign=0

 $V = M x (2^E) x (sign) = M x (2^(-6)) x (sign)$

Normalized

Sign	Sign Expone			nt (exp)		Frac		
1/0	1/0	1/0	1/0	1/0	1/0	1/0	1/0	

Exp field needs at least one '1' in it and at least one '0' in it (i.e. Range 0001 to 1110 in binary).

e = int value of exp field

Bias = $(2^{(\# of exp bits - 1)}) - 1 = 2^{(3)} - 1 = 7$

E = e - bias

 $f = (Value of Frac As Int)/(2^{(\# of frac Bits)}) = (Value of Frac as Int)/(2^3)$

 $M = f + 1 = ((Value of frac as Int)/(2^3)) + (2^3)/(2^3)$

(sign) = -1 if Sign=1

(sign) = +1 if Sign=0

 $V = M \times (2^E) \times (sign)$

Infinity (+00 / -00)

Sign Expone			nt (exp)		Frac		
1/0	1	1	1	1	0	0	0

NaN (Not a Number)

Sign	Exponent (exp			Frac		Frac		
1/0	1	1	1	1	<	1 anywhere	>	

Frac contains at least one '1' in it

^{*(}using an 8-bit representation like pg.86 of CS324 book) – look at the examples there as well

^{*}Bolded words are key differences between Denormalized and Normalized

pg. 90 Default is to Round to Even i.e. On tie round to nearest even number

Mode	\$1.40	\$1.60	\$1.50	\$2.50	\$-1.50
Round-to-even	\$1	\$2	\$2	\$2	\$-2

Example Denormalized

0 0000 010

e = 0

E = -6

 $f = (0b010 / (2^3)) = 2 / (2^3) = (2/8)$

M = 2/8

Value = (2/8) x $(2^{(-6)})$ = $(2/(2^3))$ x $(1/(2^6))$ = $(2/(2^9))$ = (2/512) = (1/256)

Example Normalized

1 0111 001

e = 0b0111 = 7

E = e-7 = 7-7 = 0

 $f = (0b001/(2^3)) = (1/8)$

M = (1/8) + 1 = (1/8) + (8/8) = (9/8)

Value = $(9/8) \times (2^0) \times (-1) = (-9/8)$

Side Notes (pg.83-84)

Single-precision floating-point format (a float in C)

s = 1 bit

 $\exp(k) = 8 \text{ bits}$

frac (n) = 23 bits

32 bits total

Double-precision floating-point format (a double in C)

s = 1 bit

 $\exp(k) = 11 \text{ bits}$

frac (n) = 52 bits

64 bits total