Physikpraktikum für Naturwissenschaftler

Versuch: Schallwellen

Durchgeführt am 25. Oktober 2018 Betreuer: Richard Waltrich

Gruppe 13
Felix Burr: felix.burr@uni-ulm.de
Johannes Spindler: johannes.spindler@uni-ulm.de

Wir bestätigen hiermit, das Protokoll selbstständig erarbeitet zu haben und in genauer Kenntnis über dessen Inhalt zu sein.

Felix Burr

Johannes Spindler

Inhaltsverzeichnis

1	Einl	eitung	3
2	2.1 2.2 2.3 2.4	Such 1: Schallgeschwindigkeiten in Gasen (Luft und CO_2) Versuchsdurchführung Messwerte und Ergebnisse 2.2.1 Im Medium Luft 2.2.2 Im Medium CO_2 Fehlerrechnung Ergebnisdiskussion	5
3	3.1 3.2 3.3	Versuchsdurchführung	10
4	Vers 4.1 4.2 4.3	Versuchsdurchführung	11
5	5.1 5.2 5.3	Versuchsdurchführung	12

1 Einleitung

Schallwellen sind uns aus dem Alltag wohlbekannt. Als menschliche Stimme werden sie im Kehlkopf geformt, physikalisch betrachtet ist der Luftdruck hier die Größe, die sich zeitlich und örtlich periodisch ändert. Mit dem Ohr kann diese Druckänderung wahrgenommen und im Gehirn verarbeitet werden.

Die Entfernung eines Blitzeinschlags kann auch einfach abgeschätzt werden, wenn die Schallgeschwindigkeit in Luft bekannt ist: Ist der Einschlag einen Kilometer entfernt, verstreichen drei Sekunden zwischen Blitz und Donner.

Grund genug, sich dem interessanten Phänomen der Schallwellen zu widmen.

2 Versuch 1: Schallgeschwindigkeiten in Gasen (Luft und CO_2)

2.1 Versuchsdurchführung

Ziel des Versuches ist es, mithilfe eines Quincke'schen Resonanzrohres die Schallgeschwindigkeiten in Luft und CO_2 und daraus den Adiabatenexponenten in CO_2 zu berechnen.

Der Versuchsaufbau sieht aus wie in Abbildung 1: Ein Lautsprecher ist an einen Frequenzgenerator angeschlossen und ist über einem oben offenen Glasrohr angebracht. Innerhalb des Glasrohrs befindet sich ein vertikal beweglicher Stempel mit einem Mikrofon. Das Mikrofon ist an ein Voltmeter angeschlossen. Am Rohr kann an einer Millimeter-Skala die Position des Stempels abgelesen werden.

Abbildung 1: Quincke'sches Resonanzrohr (aus der Versuchsanleitung)

Zuerst wird die tiefstmögliche Stempelposition x_0 gesucht, an der das Voltmeter maximal ausschlägt. An den Maximapositionen muss es sich um eine stehende Welle handeln.

Eine Welle ist stehend, wenn die Schwingungsknoten sich zeitlich nicht bewegen. Dann ist die Wellenreflexion deckungsgleich zur Welle, was bedeutet dass die Bäuche übereinander liegen und sich also verstärken. Da das Trägermedium (Gas in der Glasröhre) nach beiden Seiten begrenzt ist, gilt hier die folgende Bedingung für stehende Wellen:

$$d = n \cdot \frac{\lambda}{2}, n \in \mathbb{N} \tag{1}$$

Wenn x_0 gefunden ist, wird der Stempel bis zu einem Maximum an Position x_n geschoben, die möglichst nahe am oberen Rohrende liegt. Dabei wird die Anzahl n der zurückgelegten Intervalle zwischen Maxima gezählt. Der Abstand $d = x_n - x_0$ entspricht dann dem n-Fachen der halben Wellenlänge. Also kann aus Gleichung 1 die Wellenlänge λ berechnet werden:

$$\lambda = 2\frac{d}{n} = 2\frac{x_n - x_0}{n} \tag{2}$$

Die Wellenlänge und die eingestellte Frequenz f führen zur Schallgeschwindigkeit c:

$$c = \lambda f \tag{3}$$

Bei der Bestimmung der Schallgeschwindigkeit in CO_2 wird genauso vorgegangen, mit dem Unterschied, dass über einen seitlichen Anschluss am Glasrohr vor den Messungen CO_2 eingeleitet wird. Zwischen den Messungen muss immer wieder etwas CO_2 nachgefüllt werden um Verluste auszugleichen.

Nun wird die Zimmertemperatur gemessen, um die (temperaturabhängige) Dichte ρ des CO_2 zu bestimmen:

$$\rho = \frac{\rho_0}{1 + \frac{\vartheta}{273.2^{\circ}C}} \tag{4}$$

$$\rho_0 = 1,9768 \frac{kg}{m^3} \tag{5}$$

Mit diesem Wert und dem gemessenen Umgebungsdruck p erhält man schließlich den Adiabatenexponenten κ von CO_2 :

$$\kappa = \frac{c^2 \cdot \rho}{p} \tag{6}$$

- 2.2 Messwerte und Ergebnisse
- 2.2.1 Im Medium Luft

Messung	f [Hz]	$x_0 [mm]$	n	$x_n [mm]$	d [mm]	$\lambda [m]$	c [m/s]
1	1666	43	3	350	307	0,205	341,0
2	1666	39	3	350	311	0,207	345,4
3	2000	30	3	288	258	0,172	344,0
4	2000	28	3	287	259	0,173	345,3
5	2333	27	4	321	294	0,147	343,0
6	2333	27	4	322	295	0,148	344,1
7	2666	27	5	349	322	0,129	343,4
8	2666	28	5	349	321	0,128	342,3
9	3000	27	6	373	346	0,115	346,0
10	3000	27	6	372	345	0,115	345,0
11	3333	33	6	350	317	0,106	352,2
12	3333	34	6	343	309	0,103	343,3
13	3666	40	6	322	282	0,094	344,6
14	3666	42	6	323	281	0,094	343,4
15	4000	47	7	352	305	0,087	348,6
16	4000	46	7	350	304	0,087	347,4
17	4333	17	8	338	321	0,080	347,7
18	4333	16	8	340	324	0,081	351,0
19	4666	27	8	321	294	0,074	343,0
20	4666	26	8	324	298	0,075	347,6
Mittelwert							345,4

Messung	f [Hz]	$x_0 [mm]$	n	$x_n [mm]$	d [mm]	λ [m]	c [m/s]
1	1666	43	3	295	252	0,168	279,9
2	1666	49	3	297	248	0,165	275,4
3	2000	48	4	330	282	0,141	282,0
4	2000	56	4	330	274	0,137	274,0
5	2333	68	5	361	293	0,117	273,4
6	2333	69	5	362	293	0,117	273,4
7	2666	78	5	335	257	0,103	274,1
8	2666	68	5	330	262	0,105	279,4
9	3000	29	6	315	286	0,095	286,0
10	3000	32	6	313	281	0,093	281,0
11	3333	20	7	304	284	0,081	270,4
12	3333	18	7	306	288	0,082	274,3
13	3666	0	9	331	331	0,074	269,7
14	3666	27	9	364	337	0,075	274,5
15	4000	42	9	350	308	0,068	273,8
16	4000	50	9	360	310	0,069	275,6
17	4333	33	10	345	312	0,062	270,4
18	4333	32	10	349	317	0,063	274,7
19	4666	11	11	331	320	0,058	271,5
20	4666	10	11	332	322	0,059	273,2
Mittelwert							275,0

2.2.2 Im Medium CO_2

Gemessene Raumtemperatur $\vartheta=22,9^{\circ}C,$ daraus folgt

$$\rho = \frac{1,9768 \frac{kg}{m^3}}{1 + \frac{22,9°G}{273,2°C}} = 1,8239 \frac{kg}{m^3}.$$

Gemessener Luftdruck p = 951mBar = 95100Pa.

$$\kappa = \frac{c^2 \cdot \rho}{p} = \frac{(275, 3\frac{m}{s} \cdot 1,8239\frac{kg}{m^3}}{95100Pa} = 1,45\frac{kg}{ms^2} = 1,45\frac{N}{m^2} = 1,45$$

2.3 Fehlerrechnung

$$\Delta d = \left| \frac{\partial d}{\partial x_n} \right| \Delta x_n + \left| \frac{\partial d}{\partial x_0} \right| \Delta x_0 = |1| \Delta x_n + |-1| \Delta x_0 = \Delta x_n + \Delta x_0$$

$$\Delta \lambda = \left| \frac{\partial \lambda}{\partial d} \right| \Delta d + \left| \frac{\partial \lambda}{\partial n} \right| \Delta n = \left| \frac{2}{n} \right| (\Delta x_n + \Delta x_0) + \left| -\frac{2d}{n^2} \right| \Delta n$$

$$= \frac{2}{n} \Delta x_n + \frac{2}{n} \Delta x_0 + \frac{2d}{n^2} \Delta n = \frac{2}{n} (\Delta x_n + \Delta x_0 + \frac{d}{n} \Delta n)$$

$$= \frac{2}{n} (\Delta x_n + \Delta x_0 + \frac{x_n - x_0}{n} \Delta n)$$

$$\Delta c = \left| \frac{\partial c}{\partial \lambda} \right| \Delta \lambda = |f| \Delta \lambda = \frac{2f}{n} (\Delta x_n + \Delta x_0 + \frac{x_n - x_0}{n} \Delta n)$$

2.4 Ergebnisdiskussion

In Versuch 2 wurde die Schallgeschwindigkeit in Luft bei der gemessenen Raumtemperatur mit Gleichung 11 berechnet, dies ergab $344\frac{m}{s}$. Für die Geschwindigkeit in CO_2 kann laut Anleitung $266\frac{m}{s}$ als Vergleichswert herangezogen werden. Man erkennt, dass die Messung in Luft um 0,4 % abweicht, während die Messung in CO_2 mit 3,5 % stärker abweicht. Der Grund hierfür ist, dass beim Verschieben des Stempels nach oben und anschließendem Zurückschieben nach unten ein Unterdruck in der Glasröhre entsteht und dadurch Luft angesaugt wird. Außerdem verschließt der Stempel den unteren Rohrausgang nicht völlig luftdicht, weshalb hier etwas CO_2 ausfließen kann.

3 Versuch 2: Schallgeschwindigkeit in einem Messingstab

3.1 Versuchsdurchführung

Mit einem Kundt'schen Staubrohr wird die Schallgeschwindigkeit c in einem Messingstab und daraus das Elastizitätsmodul E des Stabs berechnet.

Beim Kundt'schen Staubrohr (siehe Abbildung 2) handelt es sich um ein mit etwas Korkmehl gefülltes Glasrohr, das auf einer Seite mit einem beweglichen Stempel geschlossen ist und in dessen andere Seite ein Messingstab ragt. Der Stab ist an zwei Punkten über dem Tisch eingespannt.

Der Stempel wird nun so eingestellt, dass für die Länge l und die Wellenlänge λ der Luftsäule zwischen Ende des Messingstabs und Stempel gilt:

$$l = n \cdot \frac{\lambda}{2}, n \in N \tag{7}$$

Abbildung 2: Kundt'sches Staubrohr (aus der Versuchsanleitung)

Selbiges muss für den Messingstab gelten, wobei l dann der Abstand zwischen den Einspannpunkten und λ die Länge und gleichzeitig Wellenlänge des Stabs ist. Also werden die Einspannpunkte bei einer viertel Stablänge und bei einer dreiviertel Stablänge gewählt. Wird mit einem ethanolbefeuchteten Tuch am Stab gerieben, schwingt dieser mit der Frequenz $f = f_{Stab} = f_{Luft}$, die sich auf die Luftsäule überträgt. Mit

$$f = \frac{c}{\lambda} \tag{8}$$

ergibt sich folgender Zusammenhang zwischen Stab und Luft:

$$\frac{c_{Stab}}{\lambda_{Stab}} = \frac{c_{Luft}}{\lambda_{Luft}} \tag{9}$$

Durch die Schwingung der Luftsäule formt der Staub im Rohr ein Wellenmuster, wobei der Abstand zweier Wellenbäuche gerade $\lambda_L/2$ beträgt. Es wird in mehreren Messungen also der Stab zum Schwingen angeregt, dann wird die Anzahl b der sichtbaren Halbwellenlängen im Staub (das Intervall zwischen zwei Wellenbäuchen ist eine Halbwellenlänge) und der Abstand x zwischen erstem und letztem erkennbaren Wellenbauch ermittelt und λ_L berechnet:

$$\frac{\lambda_L}{2} = \frac{x}{b} \tag{10}$$

 λ_S entspricht gerade der Länge des Stabs und c_L erhält man, abhängig von der Raumtemperatur ϑ durch

$$c_L = c_{L,0} \cdot \sqrt{1 + \frac{\vartheta}{273, 2^{\circ}C}} \tag{11}$$

$$c_{L,0} = 331 \frac{m}{s} \tag{12}$$

Damit sind alle Größen bekannt, um c_S mit (6) zu berechnen. Für das Elastizitätsmodul gilt dann:

$$c_S = \sqrt{\frac{E}{\rho}} \tag{13}$$

$$E = c_S^2 \rho \tag{14}$$

Die Temperaturabhängigkeit der Dichte ρ der Messinglegierung kann bei Metallen vernachlässigt werden.

3.2 Messwerte und Ergebnisse

Messung	b	x [m]	$\lambda_L [\mathrm{m}]$
1	4	0,32	0,160
2	6	0,39	0,130
3	4	0,31	$0,\!155$
4	4	0,31	$0,\!155$
5	4	0,31	$0,\!155$
6	3	0,26	$0,\!173$
7	4	0,31	$0,\!155$
8	3	0,24	0,160
Mittelwert			0,155

Gemessene Raumtemperatur $\vartheta = 22,9^{\circ}C,$

daraus folgt
$$c_L = 331 \frac{m}{s} \cdot \sqrt{1 + \frac{22,9^{\circ}C}{273,2^{\circ}C}} = 344 \frac{m}{s}.$$

Stablänge $\lambda_S = 1,60m$.

Also
$$c_S = \frac{c_L}{\lambda_L} \cdot \lambda_S = \frac{344 \frac{m}{s}}{0.155 m} \cdot 1,60 m = 3550 \frac{m}{s}$$

Mit dem Wert $\rho=8,44\frac{g}{cm^3}=8,44\frac{10^{-3}kg}{10^{-6}m^3}=8440\frac{kg}{m^3}$ aus der Versuchsanleitung kann das Elastizitätsmodul E berechnet werden:

$$E = c_S^2 \rho = 3550^2 \cdot 8440 \cdot \frac{m^2}{s^2} \frac{kg}{m^3} = 1,06 \cdot 10^{11} \frac{kg}{ms^2} = 1,06 \cdot 10^{11} \frac{N}{m^2} = 106GPa$$

3.3 Ergebnisdiskussion

Der hier bestimmte Wert c_S für die Schallgeschwindigkeit in Messing überschreitet den Literaturwert von 3530 m/s auf der Versuchsanleitung um 0,6 %. Das bedeutet, die Messungen 3, 4, 5, 7, die dem Mittelwert für c_L entsprechen, waren am genauesten. Fehler bei den anderen Messungen lassen sich durch schlechter ausgeprägte Wellenmuster im Staub und ungenaues Ablesen erklären.

Der berechnete Wert für E unterschreitet den Literaturwerts von 110 GPa um 3,6 %. Diese Abweichung ist wahrscheinlich auf das Vernachlässigen der Temperaturabhängigkeit der Dichte ρ zurückzuführen.

4 Versuch 3: Direkte Messung der Schallgeschwindigkeit in Luft

4.1 Versuchsdurchführung

In diesem Versuch wird per Frequenzgenerator eine Frequenz erzeugt, welche am Lautsprecher ein akustisches Signal erzeugt. Ein Mikrofon auf einer Schiene registriert das

Signal. Beide Signale - die des Frequenzgenerators und die des Mikrophons - werden mittels Oszilloskop angezeigt. Versetzt man nun das Mikrofon, sieht man am Oszilloskop wie sich die Welle verschiebt. Mittels Gleichung (3) kann man die Schallgeschwindigkeit ermitteln

4.2 Messwerte und Ergebnisse

Messung	Distanz $[cm]$	Anzahl Perioden	Frequenz $[hz]$	Wellenlänge $[cm]$
1	24.0	4	6000	6.00
2	22.1	4	6500	5.53
3	25.1	5	7000	5.02
4	21.1	4	7500	5.23
5	18.2	4	8000	4.55
6	16.8	4	8500	4.20
7	20.7	5	9000	4.14

Mit (3) resultiert, dass die Schallgeschwindigkeit im Mittel 365 Meter pro Sekunde beträgt.

4.3 Ergebnisdiskussion

Der hier Bestimmte Wert für die Schallgeschwindigkeit in Luft weicht im Vergleich mit dem Literaturwert von $343\frac{m}{s}$ um ganze $22\frac{m}{s}$ ab. Dies wird vor allem an Messfehlern beim Ablesen liegen.

5 Versuch 4: Messung der Schallgeschwindigkeit mittels Frequenzanalyse

5.1 Versuchsdurchführung

Wie in Versuch 2 beschrieben, wird hier ein Messingstab in Schwingung versetzt. Dies wird mit einem Mikrofon gemessen und im Oszilloskop mittels dem Fast Fourier TransformationModus visualisiert. Zu sehen ist nun das Frequenzspektrum des Signals. Wir lesen die Frequenz der einzelnen dargestellten Peaks ab und erhalten dadurch die Frequenzen der verschiedenen Schwingungsmoden. Durch Gleichung (13) kann die Schallgeschwindigkeit ermittelt werden.

$$V_{Schall} = f \cdot d_{Knoten} \tag{15}$$

5.2 Messwerte und Ergebnisse

Peak Nummer	Frequenz $[hz]$
1	2200
2	4400
3	6600
4	8800
5	111000
6	132000

Skizze der n-ten Harmonischen:

Auswertung der	Schallgesch	nwindigkeit n	nithilfe	von	Gleichung	(13):
n-te Harmonische	Distanz $[m]$	Frequenz $[hz]$	Schallgeschwindigkeit $\left[\frac{m}{s}\right]$			
1	1.6	2200	3520			
2	0.8	4400	3520			
3	0.533	6600	3520			
4	0.4	8800	3520			

5.3 Ergebnisdiskussion

Die Schallgeschwindigkeit in Messing beträgt nach diesen Messungen $3520\frac{m}{s}$. Somit unterschreitet dies den Literaturwert von $3530\frac{m}{s}$ um 0.3%.