Tutorial 1

niceguy

January 11, 2024

Theorem 0.1. Let A be a $n \times n$ matrix and $h : \mathbb{R}^n \to \mathbb{R}^n$ be given by h(x) = Ax. Let S be a rectifiable set in \mathbb{R}^n and T = h(S). Then $v(T) = |\det A|v(S)$.

Proof. First consider if A is nonsingular. Then h is a diffeomorphism of \mathbb{R}^n onto itself, so

$$v(T) = \int_{T} 1$$

$$= \int_{S} |\det Dg|$$

$$= \int_{S} |\det A|$$

$$= |\det A| \int_{S} 1$$

$$= |\det A| v(S)$$

Or else, det A = 0, so the dimension of T is less than n. V has measure zero in \mathbb{R}^n , hence

$$v(T)=0=|\det A|=|\det A|v(S)$$

Definition 0.1. Let a_1, \ldots, a_k be linearly independent vectors in \mathbb{R}^n . We define the k dimensional parallelpiped $P = P(a_1, \ldots, a_k)$ be the set of all $x \in \mathbb{R}^n$ such that

$$x = \sum_{i} c_i a_i, 0 \le c_i \le 1$$

Theorem 0.2. Let a_1, \ldots, a_n be n linearly independent vectors in \mathbb{R}^n . Let $A = [a_1, \ldots, a_n]$ be an $n \times n$ matrix. Then $v(P) = |\det A|$.

Proof. Consider the linear transformation h(x) = Ax. Then $h(e_i) = a_i$, so h carries the unit cube to P. Then the previous theorem shows that

$$v(P) = |\det A|v(I) = |\det A|$$

Definition 0.2. (Probably useless) Let V be an n dimentional vector space. An n tuple (a_1, \ldots, a_n) of linearly independent vectors in V is called an n-frame in V. In \mathbb{R}^n , we call it right-handed if $\det[a_1, \ldots, a_n] > 0$, and vice versa. An **orientation** is a choice of either the set of right- or left-handed frames.

More generally, choose a linear isomorphism $T: \mathbb{R}^n \to V$ and define one orientation of V to consist of all frame $(T(a_1), \ldots, T(a_n))$ for (a_1, \ldots, a_n) , a right-handed frame in \mathbb{R}^n .

Example 0.1. In \mathbb{R} , a frame is just one number, whose orientation depends on its sign. In \mathbb{R}^2 , it is when a_2 is 0 to π counterclockwise from a_1 . In \mathbb{R}^3 , this is if $a_1 \times a_2$ points "in the direction of" a_3 , i.e. the dot product is positive.

Theorem 0.3. Let C be an $n \times n$ nonsingular matrix. Let $h : \mathbb{R}^n \to \mathbb{R}^n$ be h(X) = Cx. Let (a_1, \ldots, a_n) be a frame in \mathbb{R}^n . If $\det C > 0$, then (a_1, \ldots, a_n) and $(h(a_1), \ldots, h(a_n))$ have the same orientation. If $\det C < 0$, they have opposite orientation.

Proof. Let $b_i = h(a_i)$. Then $C[a_1, \ldots, a_n] = [b_1, \ldots, b_n]$, and $\det(C) \det(A) = \det(B)$. The rest is trivial.