# Physically-Based Simulation Material Point Method (MPM)

The A-Team
Kenneth Blomqvist
Simon Dünser
Velko Vechev

# The Pingu World



## One Sim to rule them all?

- Rigid
- Elastic
- Plastic
- Fluid
- Springy
- Fluffy
- Mushy
- Spongy
- Fishy
- Seals

### One Sim to rule them all?

- Rigid
- Elastic
- Plastic
- Fluid
- Springy
- Fluffy
- Mushy
- Spongy
- Fishy
- Seals

Objects changing state



# Material Point Method (MPM)



Stomakhin A. et al. 2013. A material point method for snow simulation. ACM Trans. Graph. 32(4).

#### Related Work

# [1] Disney's Frozen



[2] Chenfanfu J. et al. 2016. The material point method for simulating continuum materials. In ACM SIGGRAPH 2016 Courses (SIGGRAPH '16).

#### Target

## **Minimal**

- Basic MPM Implementation
  - Working for <u>a</u> type of Material (probably some deformable solid)
  - Explicit time integration
- Gaining insights into the method's
  - up- and downsides
  - shortcomings and limitations
- Learning about practical aspects, implications and pitfalls of implementing MPM

#### Target

# Desired

- Different Material models
- Wide range of material properties
  - fairly stiff
  - almost fluid

#### Target

# Overambitious

- Decent computational efficiency
- Nice rendering
- Implicit time integration

## Milestones & Timeline

- (1) by 27/11
  - P2G & G2P transfer
  - Grid & grid-based operations
  - Material Model
  - Collisions & Boundaries
  - Input & discretization
  - Output & rendering

- (2) by 18/12
  - Testing, determine limitations
  - More material models
  - Optimization
  - Better rendering
  - Implicit time integration
  - Compile results