11-442 / 11-642 / 11-742: Search Engines

Diversity

Jamie Callan and Chenyan Xiong Carnegie Mellon University callan@cs.cmu.edu

1

Introduction

The methods covered until now assume that each document is <u>independent</u> of other documents in the ranking

- This is a simple approach
- Often it is effective ... but not always

When does it produce poor results?

- A query may have multiple interpretations or <u>user intents</u>
- If the ranking covers just one intent
 - ... and it is the wrong intent
 - ... the user will not find any relevant documents
 - ... extremely bad case, must avoid!

2

Introduction

Query: Michael Jordan

Which interpretation is intended?

- The basketball player?
- The Berkeley professor?
- The former CEO of Pepsi, CBS & EDS?
- The actor?
- The State Farm insurance agent?

The first four are well-known

• The last is important to his customers

2021 Jamie Callan & Chenyan Xiong

3

Introduction

Most short queries have multiple interpretations

- Jamie Callan
- java
- jaguar
- avp
- ...

4

2021 Jamie Callan & Chenyan Xiong

4

Introduction

Longer queries also have multiple interpretations

- Query: arizona game and fish
 - Arizona Game and Fish Department home page?
 - Regulations for hunting and fishing in Arizona?
 - The Arizona Fishing report site?
 - Guides and outfitters for hunting trips in Arizona?
- Query: discovery channel store
 - The Discovery Channel store homepage?
 - Discovery Channel store locations?
 - Toys and products sold by Discovery Channel stores?
 - Products based on the Animal Planet program?

5

© 2021 Jamie Callan & Chenyan Xiong

5

Introduction

There can be multiple <u>tasks</u> for the same interpretation:

- Query: Carnegie Mellon University
 - Find the home page of CMU (Navigational)
 - Find the location of CMU (Location)
 - Check recent news about CMU (News)
 - Find pictures of CMU (Pictures)

6

2021 Jamie Callan & Chenyan Xiong

Introduction: Why Diversification?

Relevance based ranking model's target:

- Maximize the expected user satisfaction in each position
- Mostly based on textual similarity with the original query

This leads to a ranking that

- Mainly focuses on the most probable intent
- Is good for some users, but bad for the other users

Diversification is a trade-off between robustness and relevance

- Reduce relevance for the most probable intent
- Increase robustness by covering multiple intents

When it is clear what this user wants, no need to diversify

• But user intent is often unclear

7

© 2021 Jamie Callan & Chenvan Xiong

7

Introduction: Multiple Dimensions of Diversification

There are multiple levels of diversity

- <u>Interpretation</u> of the original query
 - What does this query refer to?
 - What aspects of this query does the user want?
- Different tasks for each interpretation
 - What task does the user want to complete?
 - » Image, Map, Video, Navigational, etc.

We mainly focus on diversification of interpretations

• But Google may treat the two as equally important

8

Introduction: Diversification of Interpretations

Query: avp

Interpretations:

- Volleyball
- Wikipedia disambiguation page
- Company (Avon Products)
- Movie (Alien vs. Predator)

Purpose: Reduce the risk of focusing on wrong interpretations

9

© 2021 Jamie Callan & Chenyan Xiong

9

Introduction: Diversification of Interpretations

Query: mountain goats

After click on disambiguation dialog to select animal

© 2021 Jamie Callan & Chenyan Xiong

10

Topic Outline

- Introduction
- Diversity Evaluation Metrics
- Implicit Methods
 - Maximum Marginal Relevance (MMR)
 - Learning to Rank for diversification
- Explicit Methods
 - Query intents (subtopics) discovery
 - -xQuAD
 - -PM-2
 - DSPApprox: Query intents (subtopics) discovery revisited

13

© 2021 Jamie Callan & Chenyan Xiong

13

Diversity Metrics: P@k

Remember Precision at rank k (P@k)

- Easy to compute, easy to understand
- P@k ignores the diversity of the ranking

•

© 2021 Jamie Callan & Chenyan Xiong

14

Diversity Notation Alert

Earlier lectures defined qi as the ith term of query q

- q: search engines course
- q₂: 'engines'

This lecture defines \boldsymbol{q}_i as the i^{th} \underline{intent} of query \boldsymbol{q}

- q: michael jordan
- q₂: The Berkeley professor Michael Jordan

This is how notation is used in most of the published work

• I'm sorry – don't be confused

15

© 2021 Jamie Callan & Chenyan Xiong

15

Diversity Metrics: Precision-IA@k

Intent-aware Precision at rank k

- Assume a query q has n intents $\{q_1, ..., q_n\}$
- Each intent may have a different probability $p(q_i \mid q)$
 - Typically in research publications $p(q_i | q)$ is uniform (1/n)
 - However, uniform $p(q_i | q)$ is <u>not</u> required
- Use some method to rank the documents for query q
- Calculate P@k_{qi} for each intent q_i
 - Use relevance of the document to query intent \boldsymbol{q}_{i}
- \bullet Average the $P@k_{q_i}$ for each intent to produce Precision-IA@k

Precision - IA@ $k = \sum_{q_i} p(q_i | q)P@k_{q_i}$

(Agrawal, et al., 2009)

16

Diversity Metrics: Precision-IA@k

Example: Precision-IA@5 for a query with two intents

17

Diversity Metrics: Precision-IA@k

Usually a good strategy is to give higher priority to documents that satisfy multiple intents

- That improved Precision-IA@k for Ranking 3 in the previous example
- Satisfying multiple intents with one document is an efficient way to lower risk
- We will see that idea again throughout the lecture

18

2021 Jamie Callan & Chenyan Xiong

Diversity Metrics: NDCG

Remember NDCG

- It considers the position of each document
- It allows multi-valued relevance assessments
- It ignores the diversity of the ranking

$$NDCG @ k = Z_k \sum_{i=1}^k \frac{2^{R(i)} - 1}{\log_2(1+i)} \leftarrow$$
 Gain (based on relevance) Calculated Gain (based on rank)

19

19

Diversity Metrics: α-NDCG

NDCG consists of two components

 $G@k = 2^{R(k)} - 1$ • Gain from a document worth R(k) at rank k:

 $D@k = \frac{1}{\log_2(1+k)}$ • Discount for selecting a document at rank k:

α-NDCG uses an intent-aware gain calculation

**NDCG uses an intent-aware gain calculation
$$G@k = \sum_{q_i} R(d_k, q_i) \underbrace{(1-\alpha)^{r_{q_i,k-1}}}_{\text{Discount for covering an intent again}}^{\text{Discount for covering an intent again}}_{\text{an intent again}}$$

$$r_{q_i,k-1} = \sum_{j=1}^{k-1} R(d_j, q_i)$$

$$r_{q_i,0} = 0$$
Intent redundancy of d_k: Relevance of docs already selected for intent q_i

(Clarke, et al., 2008) © 2021 Jamie Callan & Chenyan Xiong

20

Diversity Metrics: α -NDCG

The gain vector for α-NDCG discounts intent redundancy

- $1-\alpha$ controls the discount
- If α =0.5

Value $(j+1_{th} \text{ reldoc}, q_i) = 0.5 \times \text{Value} (j_{th} \text{ reldoc}, q_i)$ (each document is worth ½ the previous document)

(Clarke, et al., 2008)

© 2021 Jamie Callan & Chenyan Xiong

21

Diversity Metrics: α-NDCG

21

The gain vector for α-NDCG discounts intent redundancy

• Assume α =0.5 and relevance values are $\{0, 1\}$

Ranking 1	G@k	Ranking 2	G@k	Ranking 3	G@k
Rel_1	1.000	Rel_1	1.000	Rel ₁	1.000
Rel_1	0.500	Rel_2	1.000	$Rel_{1,2}$	1.500
NotRel _{1.2}	0.000	NotRel _{1.2}	0.000	NotRel _{1,2}	0.000
Rel ₁	0.250	Rel_2	0.500	Rel_2	0.500
Rel_1	0.125	Rel_1	0.500	Rel_1	0.250

Rel: 1 **NotRel:** 0

22 © 2021 Jamie Callan & Chenyan Xion

Diversity Metrics: α -NDCG

The gain vector for α-NDCG discounts intent redundancy

• Assume α =0.5 and relevance values are $\{0, 1, 2\}$

Ranking 1	G@k	Ranking 2	G@k	Ranking 3	G@k
Rel_1	1.000	Rel ₁	1.000	$HRel_1$	2.000
$HRel_1$	1.000	$HRel_2$	2.000	$Rel_{1,2}$	1.250
$NotRel_{1.2}$	0.000	$NotRel_{1,2}$	0.000	NotRel _{1,2}	0.000
$HRel_1$	0.250	Rel_2	0.250	Rel_2	0.500
Rel_1	0.031	Rel_1	0.500	Rel_1	0.125

HRel: 2 Rel: 1 NotRel: 0

23 © 2021 Jamie Callan & Chenyan Xion

23

Diversity Metrics

Both metrics are used

- E.g., the TREC 2009-2012 Diversity task
- E.g., All the recent diversification research papers

There are also many other evaluation metrics

• All of them have somewhat similar motivation and behavior

Which metric better matches your expectations?

24

Topic Outline

- Introduction
- Diversity Evaluation Metrics
- Implicit Methods
 - Maximum Marginal Relevance (MMR)
 - Learning to Rank for diversification
- Explicit Methods
 - Query intents (subtopics) discovery
 - -xQuAD
 - PM-2
 - DSPApprox: Query intents (subtopics) discovery revisited

25

© 2021 Jamie Callan & Chenyan Xiong

25

Introduction: Types of Diversification Algorithms

Implicit

- Query intents are implicit in the document ranking
- Similar documents are assumed to cover similar intents

Explicit

- Query intents are specified explicitly
- Rerank documents so that all query intents are covered

26

2021 Jamie Callan & Chenyan Xiong

Maximum Marginal Relevance (MMR)

Maximum Marginal Relevance (MMR) was one of the first diversification algorithms

(Interesting trivia: A SIGIR Test of Time award winner)

- Use the query to retrieve a ranking R of documents
- Use MMR to rerank the top N documents (build a new ranking S)
 - Select the 1st document based on how well it satisfies the query
 - Select subsequent documents based on two criteria
 - » How well it satisfies the query
 - » How different it is from documents ranked above it

(Carbonell and Goldstein, 1998)

27

© 2021 Jamie Callan & Chenyan Xion

27

Maximum Marginal Relevance (MMR)

MMR is a greedy algorithm

• At each step, select a document to append to the ranking

 $MMR = \underset{d_i \in R \setminus S}{\operatorname{arg\,max}} (\lambda \operatorname{Sim}(q, d_i) - (1 - \lambda) \operatorname{max} \operatorname{Sim}(d_i, d_j))$ $\underset{d_j \in S}{\operatorname{Similar to}} \qquad \underset{d_j \in S}{\operatorname{Different from the}}$

the query

documents ranked above

- R: The initial ranking
- S: Documents already selected for the diverse ranking
- Documents ranked above this position

 $Sim(d_i, d_i)$: Use your favorite similarity metric

- E.g., vector space model or Jensen-Shannon Divergence

(Carbonell and Goldstein, 1998)

28

 $\begin{array}{c|c} \textbf{Maximum Marginal Relevance (MMR):} \\ \textbf{Example with } \lambda = \textbf{0.6} \\ \\ \textbf{Diversified} \\ \textbf{Initial} \\ \textbf{Ranking,} \\ \textbf{Ranking} \\ \textbf{Step 1} \\ \textbf{d}_1, 0.80 \\ \textbf{d}_2, 0.78 \\ \end{array}$

d₃, 0.76 d₄, 0.74 d₅, 0.72 d₆, 0.70

30 © 2021 Jamie Callan & Chenyan Xiong

Initial Ranking	$Similarity \\ to \\ \{d_1\}$		Diversified Ranking, Step 1
$d_1, 0.80$			\mathbf{d}_1
$d_2, 0.78$	0.7		
$d_3, 0.76$	0.4		
$d_4, 0.74$	0.7		
$d_5, 0.72$	0.2		
$d_6, 0.70$	0.4		
:	:		
		31	© 2021 Jamie Callan & Chenyan Xiong

31

Maximum Marginal Relevance (MMR): Example with λ =0.6

Initial	Similari to	score Score	Diversified Ranking,	
Ranking	$\{\mathbf{d_1}\}$	of d _i	Step 1	
$d_1, 0.80$			d_1	
$d_2, 0.78$	0.7	$0.6 \times 0.78 - 0.4 \times 0.7 =$	-	
$d_3, 0.76$	0.4	$0.6 \times 0.76 - 0.4 \times 0.4 =$	0.2960	
$d_4, 0.74$	0.7	$0.6 \times 0.74 - 0.4 \times 0.7 =$	0.1640	
$d_5, 0.72$	0.2	$0.6 \times 0.72 - 0.4 \times 0.2 =$	0.3520	
$d_6, 0.70$	0.4	$0.6 \times 0.70 - 0.4 \times 0.4 =$	0.2600	
:	:	:		

33

Maximum Marginal Relevance (MMR): Example with λ =0.6

Initial Ranking	ArgMax Similarity to {d ₁ , d ₅ }	Diversified Ranking, Step 2
$d_1, 0.80$		d_1
$d_2, 0.78$	0.7	d_5
$d_3, 0.76$	0.5	
d_4 , 0.74 d_5 , 0.72	0.7	
$d_6, 0.70$	0.6	
:	:	

Initial Ranking	ArgMax Similarity to {d ₁ , d ₅ }		Diversified Ranking, Step 2
$d_1, 0.80$			d_1
$d_2, 0.78$	0.7	$0.6 \times 0.78 - 0.4 \times 0.7 = 0.1880$	d_5
$d_3, 0.76$	0.5	$0.6 \times 0.76 - 0.4 \times 0.5 = 0.2560$	
$d_4, 0.74$	0.7	$0.6 \times 0.74 - 0.4 \times 0.7 = 0.1640$	
$d_5, 0.72$			
$d_6, 0.70$	0.6	$0.6 \times 0.70 - 0.4 \times 0.6 = 0.1800$	
:	:	:	
		35	© 2021 Jamie Callan & Chenyan Xiong

35

Maximum Marginal Relevance (MMR): Example with λ =0.6

Initial Ranking	Diversified Ranking, Step 3
d ₁ , 0.80 d ₂ , 0.78 d ₃ , 0.76 d ₄ , 0.74 d ₅ , 0.72	$egin{array}{c} d_1 \\ d_5 \\ d_3 \end{array}$
d ₆ , 0.70 :	

ArgM Initial Similar Ranking {d ₁ , d ₅	ity to	Diversified Ranking, Step 3	
d ₁ , 0.80 d ₂ , 0.78 d ₃ , 0.76		$egin{array}{c} d_1 \\ d_5 \\ d_3 \end{array}$	
$d_4, 0.74$ 0.7 $d_5, 0.72$ $d_6, 0.70$ 0.6 :			
·	37	© 2021 Jamie Callan & Chenyan Xiong	

37

Maximum Marginal Relevance (MMR): Example with λ =0.6

Initial Ranking	ArgMax Similarity to {d ₁ , d ₅ , d ₃ }	Score of d _i	Diversified Ranking, Step 3
$d_1, 0.80$	(41, 45, 43)	or u ₁	d_1
$d_1, 0.00$ $d_2, 0.78$	0.8	$0.6 \times 0.78 - 0.4 \times 0.8 = 0.1480$	
$d_3, 0.76$			d_3
$d_4, 0.74$	0.7	$0.6 \times 0.74 - 0.4 \times 0.7 = 0.1640$	J
$d_5, 0.72$			
$d_6, 0.70$	0.6	$0.6 \times 0.70 - 0.4 \times 0.6 = 0.1800$	
:	:	:	

Diversified Initial Ranking, **Ranking** Step 4 $d_1, 0.80$ d_1 d_2 , 0.78 d_5 $d_3, 0.76$ d_3 d_4 , 0.74 d_6 $d_5, 0.72$ $d_6, 0.70$: 39

39

Maximum Marginal Relevance (MMR): Example with λ =0.6

ArgMax Initial Similarity to	Diversified Ranking,
Ranking $\{\mathbf{d}_1, \mathbf{d}_5, \mathbf{d}_3, \mathbf{d}_6\}$	Step 4
d ₁ , 0.80	d_1
d ₂ , 0.78 0.8	d_5
d ₃ , 0.76	d_3
$d_4, 0.74 \qquad 0.9$	d_6
$d_5, 0.72$	
d ₆ , 0.70	
: :	

41

Maximum Marginal Relevance (MMR): Example with λ =0.6

Initial Ranking	Diversified Ranking, Step 5
d_1 , 0.80 d_2 , 0.78 d_3 , 0.76 d_4 , 0.74 d_5 , 0.72 d_6 , 0.70	$\begin{array}{c} \mathbf{d_1} \\ \mathbf{d_5} \\ \mathbf{d_3} \\ \mathbf{d_6} \\ \mathbf{d_2} \end{array}$
:	

Initial Ranking d_1 , 0.80 d_2 , 0.78 d_3 , 0.76 d_4 , 0.74 d_5 , 0.72 d_6 , 0.70 \vdots	Repeat until all documents in the initial ranking are added to the diversified ranking	Diversified Ranking, Step 5 d ₁ d ₅ d ₃ d ₆ d ₂
--	---	---

43

Anything-to-Anything Similarity

43

The vector space can compare the similarity of any two vectors

- E.g., lnc.ltc
- This is convenient for a wide variety of tasks, e.g., clustering

BM25 is not designed for anything-to-anything similarity

Can it be done within the language modeling framework?

44

2021 Jamie Callan & Chenyan Xiong

Probabilistic Similarity

There are many ways of measuring the similarity of two probability distributions

• Kullback-Leibler divergence is a popular measure

$$KL(d_1 \parallel d_2) = \sum_{t \in V} p(t \mid d_1) \ln \frac{p(t \mid d_1)}{p(t \mid d_2)}$$
$$p(t \mid d) = \frac{tf_{t,d}}{length(d)}$$

• But ... KL divergence isn't symmetric $KL(d_1||d_2) \neq KL(d_2||d_1)$

Term	$\mathbf{d_1}$	$\mathbf{d_2}$
apple	0.00	0.00
buy	0.02	0.00
camera	0.05	0.03
dog	0.00	0.00
image	0.07	0.02
like	0.03	0.00
mode	0.04	0.00
movie	0.03	0.00
up	0.01	0.00
zooms	0.02	0.05
Total		

© 2021 Jamie Callan & Chenyan

45

Probabilistic Similarity

45

Jensen-Shannon Divergence is a symmetric and smoothed version of KL divergence

$$JS(x \parallel y) = \frac{1}{2}KL(x \parallel M) + \frac{1}{2}KL(y \parallel M)$$

$$M = \frac{x+y}{2}$$

This is simpler than it may look

$$JS(d_1||d_2) = \frac{1}{2}\sum_{t \in V} p(t|d_1)\log \frac{p(t|d_1)}{p(t|d_1 \cup d_2)} + p(t|d_2)\log \frac{p(t|d_2)}{p(t|d_1 \cup d_2)}$$

Often used for anything-to-anything similarity tasks

46

Topic Outline

- Introduction
- Diversity Evaluation Metrics
- Implicit Methods
 - Maximum Marginal Relevance (MMR)
 - Learning to Rank for diversification
- Explicit Methods
 - Query intents (subtopics) discovery
 - -xQuAD
 - PM-2
 - DSPApprox: Query intents (subtopics) discovery revisited

47

© 2021 Jamie Callan & Chenyan Xiong

47

LeToR for Diversification

MMR is the diversified version of unsupervised retrieval

- Standard retrieval model + Similarity with previous documents
 - E.g., vector space model, language model
- Simple and intuitive
- No supervision used

Can we do it in learning to rank framework?

- Multiple sources of evidence are available
 - Relevance evidence
 - Document similarity evidence
- Many LeToR models are available for combining evidence

48

LeToR for Diversification: Directly Apply LeToR Models

Approach: Directly fit a standard learning-to-rank model to optimize a diversity measure (e.g., α -NDCG)

- Use same model and features that we saw in the LeToR lecture
- Use diversification based training data
 - E.g., pointwise, pairwise, or listwise training data
- Let machine learning algorithms figure out how to produce diversified rankings

This approach does not work well

- No consistent gains on various metrics
- No consistent performances on training data vs testing data

(Santos, et al., 2011)

© 2021 Jamie Callan & Chenyan Xio

49

LeToR for Diversification: Directly Apply LeToR Models

49

Approach: Directly fit a standard learning-to-rank model to optimize a diversity measure (e.g., α -NDCG)

Why doesn't this approach work well?

- There are no diversification features
 - Nothing about document-to-document similarity
 - Nothing about sub-intents
- Relevance-based features can not produce a diverse ranking
- Thus, the diversified training data just confuses learning models

(Santos, et al., 2011)

50

LeToR for Diversification: Relational-LeToR

Diversification requires relevance and relationship features

- Traditional LeToR features to handle relevance
- Relationships among documents to handle diversity

This is implicit diversification, so the relationship is similarity

- Similarities to higher-ranked documents (as done by MMR)
- Multiple ways to measure such similarity
- Combined by LeToR Model

The relational version of LeToR can be viewed as a supervised version of MMR

(Zhu, et al. 2014)

© 2021 Jamie Callan &

51

Relational-LeToR: Similarities between Documents

Similarity/relation measures between documents:

- Text similarity:
 - E.g. KL-Divergence of document language models
- Topic similarity:
 - E.g. Cosine between docs' topic distributions in topic models
- Category similarity:
 - E.g. Overlap of docs' categories in a predefined ontology
- Link similarity:
 - E.g. whether does have hyperlinks to each other
- URL similarity:
 - E.g. whether does are from same website or not.

(Zhu, et al. 2014)

© 2021 Jamie Callan & Chenyan Xiong

Relational-LeToR: Features from Similarities

Combine similarity with all higher-ranked documents by:

- Minimal similarity with previous documents
- Average similarity with previous documents
- Maximal similarity with previous documents

Each similarity measure is combined to one feature

- The relationship of the current doc to all higher-ranked documents
 - In one similarity dimension
- E.g. Maximum text similarity with higher-ranked docs

Each combination is one method in experiments

• Like a hyper-parameter to choose (by cross-validation)

53

(Zhu, et al. 2014)

© 2021 Jamie Callan & Chenyan Xion;

53

Relational-ListMLE: An Example Model

ListMLE can be easily modified to handle relational features

- Other LeToR models can be modified too
- ListMLE is the first one studied, perhaps also the easiest

Recall the sequential assumption of ListMLE

- Documents are picked one by one from top to bottom
 - Same with MMR's sequential assumption
- Each position is independent of previous ones
 - Relational features break this independence assumption

(Zhu, et al. 2014)

54

Relational-ListMLE: New Generative Process

Relational-ListMLE's new generative process

- The ranking is assembled iteratively from candidate documents
- Given a set of $S_i = \{d_1, ..., d_n\}$ of candidate documents
 - Pick the best candidate d_i from S_i to appear at rank i

$$p(d_i|S_i;w) = \frac{\exp(w_r \cdot x_i + w_d \cdot y_i)}{\sum_{x_j \in S_i} \exp(w_r \cdot x_j + w_d \cdot y_j)}$$

 $-S_{i+1} = S_i \setminus d_i$

- Repeat until all documents are reranked

w_r: Relevance weights

x_i: Relevance features for d_i

w_d: Diversity weights

y_i: Diversity features for d_i

 $p(d_i|S_i;w)$ depends on higher-ranked documents via similarities

55

(Zhu, et al. 2014)

55

Relational-ListMLE: Learning and Ranking

Learning is exactly the same as with ListMLE

Write down likelihood, use MLE

In ranking, iteratively pick the doc with largest $p(d_i|S_i, w)$

- Cannot directly calculate ranking score as ListMLE does
 - Now documents depend on previous positions
- Complexity is $O(n^2)$
 - In each of n positions
 - » Pick the best document from remaining documents
 - » Update the similarity features of other documents (O(n))
 - n isn't huge because diversification is a re-ranking method

n < 1000 in most cases

(Zhu, et al. 2014)

56

Relational-ListMLE: Performance

Web Track 2009, Diversity task data (similar results for 2010)

Method	ERR-IA	α -NDCG	NRBP		
QL	0.1637	0.2691	0.1382		
ListMLE	$0.1913 \ (+16.86\%)$	$0.3074 \ (+14.23\%)$	$0.1681 \ (+21.64\%)$		
MMR_{list}	$0.2022 \ (+23.52\%)$	$0.3083 \ (+14.57\%)$	$0.1715 \ (+24.09\%)$		
$xQuAD_{list}$	$0.2316 \ (+41.48\%)$	$0.3437 \ (+27.72\%)$	$0.1956 \ (+41.53\%)$		
$PM-2_{list}$	0.2294 (+40.13%)	$0.3369 \ (+25.20\%)$	$0.1788 \ (+29.38\%)$		
SVMDIV	0.2408 (+47.10%)	$0.3526 \ (+31.03\%)$	$0.2073 \ (+50.00\%)$		
$R-LTR_{min}$	0.2714 (+65.79%)	$0.3915 \ (+45.48\%)$	$0.2339 \ (+69.25\%)$		
$R-LTR_{avg}$	$0.2671 \ (+63.16\%)$	0.3964 (+47.31%)	$0.2268 \ (+64.11\%)$		
$R-LTR_{max}$	$0.2683 \ (+63.90\%)$	$0.3933 \ (+46.15\%)$	$0.2281 \ (+65.05\%)$		
TREC-Best	0.1922	0.3081	0.1617		
No diversity Explicit diversification (given subtopics) Relational-ListMLE					
			(Zhu, et al. 2014)		

57

Implicit Methods: Discussion

57

Implicit method characteristics

- Doesn't require prior knowledge about possible query intents
 - Thus called "implicit"
- Selects documents that match the query well
- Produces a diverse ranking
- Doesn't favor any query intent
 - Popular intents don't get more attention than rare intents
 - Is this good or bad?

MMR is a classic unsupervised method

R-LeToR is a newer supervised method

58

Topic Outline

- Introduction
- Diversity Evaluation Metrics
- Implicit Methods
 - Maximum Marginal Relevance (MMR)
 - Learning to Rank for diversification
- Explicit Methods
 - Query intents (subtopics) discovery
 - -xQuAD
 - -PM-2
 - DSPApprox: Query intents (subtopics) discovery revisited

59

© 2021 Jamie Callan & Chenyan Xiong

59

For More Information

- R. Agrawal, S. Gollapudi, A. Halverson, and S. Ieong. Diversifying search results. In WSDM '09 Proceedings. 2009.
- J. Carbonell and J. Goldstein. The use of MMR, diversity-based reranking for reordering documents and producing summaries. Proceedings for SIGIR '98. 1998.
- C. L.A. Clarke, M. Kolla, G. V. Cormack, O. Vechtomova, A. Ashkann, S. Büttcher, and I. MacKinnon. Novelty and diversity in information retrieval evaluation. In SIGIR '08 Proceedings. 2008.
- V. Dang and W.B. Croft. Diversity by proportionality: An election-based approach to search result diversification. In Proceedings of SIGIR '12. 2012.
- V. Dang and W. B. Croft. Term-level search result diversification. Proceedings of SIGIR '13. 2013.
- D. Lawrie, W.B. Croft, and A. Rosenberg. Finding topic words for hierarchical summarization. In Proceedings of SIGIR. 2001.
- R. L. T. Santos, C. Macdonald, and I. Ounis. Exploiting query reformulations for web search result diversification. Proceedings of WWW 2010. 2010.
- R. L. T. Santos. Explicit web search result diversification. Ph.D. dissertation. 2013.
- Y. Zhu, Y. Lan, J. Guo, X. Cheng and S. Niu. Learning for search result diversification. SIGIR 2014. 2014.

60