Doris Chen

Lesson 22 (K-Means Algorithm) Apply K-Means clustering to the five points shown below with the number of clusters set equal to K = 2. The locations of the initial centroids c_1 and c_2 are given below. List C_1 or C_2 under the numbers 1, 2, 3, 5 and 7 to indicate which cluster each number belongs to.

(a) Complete the two tables below.

centroid	c_1	c_2
iteration 0	1	4.25
1	1.5	5
2	2	6
3	2	6

point	l				
iteration 0					
1	с1	с1	с1	c2	c2
	c1				
3	с1	с1	с1	c2	c2

(b) Compute the total SSE for the two initial clusters given above and the total SSE for the final two clusters the K-Means algorithm converges to. Which is smaller? Note that SSE (Sum of Square Error) is defined to be

$$SSE = \sum_{i=1}^{K} \sum_{x \in C_i} \operatorname{dist}(x, c_i)^2$$

where K equals the number of clusters, C_i is the *i*th cluster, and $\operatorname{dist}(x, c_i)^2$ is the squared distance between the data point x and the centroid of the *i*th cluster, c_i .

C1=
$$(1-1)^2+(2-1)^2$$

C2= $(3-4.25)^2+(5-4.25)^2+(7-4.25)^2$ Final SSE = $(1-2)^2+(2-2)^2+(3-2)^2+(5-6)^2+(7-6)^2=4$