

Breadth First Search Depth First Search

Week-09, Lecture-02

Course Code: CSE221

Course Title: Algorithms

Program: B.Sc. in CSE

Course Teacher: Tanzina Afroz Rimi

Designation: Lecturer

Email: tanzinaafroz.cse@diu.edu.bd

Graph Traversal

- Application example
 - Given a graph representation and a vertex s in the graph
 - Find paths from **s** to other vertices
- Two common graph traversal algorithms
 - Breadth-First Search (BFS)
 - Find the shortest paths in an unweighted graph
 - Depth-First Search (DFS)
 - Topological sort
 - Find strongly connected components

BFS and Shortest Path Problem

- Given any source vertex *s*, BFS visits the other vertices at increasing distances away from s. In doing so, BFS discovers paths from s to other vertices
- What do we mean by "distance"? The number of edges on a path from s

Example

Consider s=vertex 1

Nodes at distance 1? 2, 3, 7, 9

Nodes at distance 2? 8, 6, 5, 4

Nodes at distance 3?

Graph Searching

- Given: a graph G = (V, E), directed or undirected
- Goal: methodically explore every vertex and every edge
- Ultimately: build a tree on the graph
 - Pick a vertex as the root
 - Choose certain edges to produce a tree
 - Note: might also build a *forest* if graph is not connected

Breadth-First Search

- "Explore" a graph, turning it into a tree
 - One vertex at a time
 - Expand frontier of explored vertices across the *breadth* of the frontier
- Builds a tree over the graph
 - Pick a source vertex to be the root
 - Find ("discover") its children, then their children, etc.

Breadth-First Search

- Every vertex of a graph contains a color at every moment:
 - White vertices have not been discovered
 - All vertices start with white initially
 - Grey vertices are discovered but not fully explored
 - They may be adjacent to white vertices
 - Black vertices are discovered and fully explored
 - They are adjacent only to black and gray vertices
- Explore vertices by scanning adjacency list of grey vertices

Breadth-First Search: The Code

```
Data: color[V], prev[V],d[V]
BFS(G) // starts from here
   for each vertex u ∈
 V-{s}
      color[u]=WHITE;
   prev[u]=NIL;
   d[u]=inf;
   color[s]=GRAY;
 d[s]=0; prev[s]=NIL;
 Q=empty;
 ENQUEUE(Q,s);
```

```
While(Q not empty)
  u = DEQUEUE(Q);
  for each v \in adj[u]
    if (color[v] == WHITE) {
        color[v] = GREY;
        d[v] = d[u] + 1;
        prev[v] = u;
        Enqueue(Q, v);
  color[u] = BLACK;
```


Vertex	r	S	t	u	V	w	Х	У
color	W	W	W	W	W	W	W	W
d	∞	∞	∞	∞	∞	∞	∞	∞
8 prev	nil							

vertex	r	S	t	u	V	w	Х	У
Color	W	G	W	W	W	W	W	W
d	∞	0	∞	∞	∞	∞	∞	∞
9 prev	nil							

vertex	r	S	t	u	V	W	X	У
Color	G	В	W	W	W	G	W	W
d	1	0	∞	∞	∞	1	∞	∞
10 prev	S	nil	nil	nil	nil	S	nil	nil

vertex	r	S	t	u	V	w	X	У
Color	G	В	G	W	W	В	G	W
d	1	0	2	∞	∞	1	2	∞
11 prev	S	nil	w	nil	nil	S	w	nil

BFS: The Code (again)

```
Data: color[V], prev[V],d[V]
BFS(G) // starts from here
   for each vertex u ∈
 V-{s}
      color[u]=WHITE;
   prev[u]=NIL;
   d[u]=inf;
   color[s]=GRAY;
 d[s]=0; prev[s]=NIL;
 Q=empty;
 ENQUEUE(Q,s);
```

```
While(Q not empty)
  u = DEQUEUE(Q);
  for each v \in adj[u]
    if (color[v] == WHITE) {
        color[v] = GREY;
        d[v] = d[u] + 1;
        prev[v] = u;
        Enqueue(Q, v);
  color[u] = BLACK;
```

Breadth-First Search: Print Path

```
Data: color[V], prev[V],d[V]
Print-Path(G, s, v)
 if(v==s)
   print(s)
   else if(prev[v]==NIL)
   print(No path);
 else{
   Print-Path(G,s,prev[v]);
   print(v);
```

Amortized Analysis

- Stack with 3 operations:
 - Push, Pop, Multi-pop
- What will be the complexity if "n" operations are performed?

BFS: Complexity

```
Data: color[V], prev[V],d[V]
BFS(G) // starts from here
   for each vertex u ∈
 V-{s}
      color[u]=WHITE;
   prev[u]=NIL;
   d[u]=inf;
   color[s]=GRAY;
 d[s]=0; prev[s]=NIL;
 Q=empty;
 ENQUEUE(Q,s);
                             21
```

```
While (Q notu empty) vertex, but only once
                            (Why?)
  u = DEQUEUE(Q);
  for each v \in adj[u]
   if(color[v] == WHITE) {
        color[v] = GREY;
        d[v] = d[u] + 1;
        prev[v] = u;
        Enqueue(Q, v);
  color[u] = BLACK;
```

What will be the running time?

Total running time: O(V+E)

Breadth-First Search: Properties

- BFS calculates the *shortest-path distance* to the source node
 - Shortest-path distance $\delta(s,v)$ = minimum number of edges from s to v, or ∞ if v not reachable from s
 - Proof given in the book (p. 472-5)
- BFS builds breadth-first tree, in which paths to root represent shortest paths in G
 - Thus can use BFS to calculate shortest path from one vertex to another in O(V+E) time

Application of BFS

- Find the shortest path in an undirected/directed unweighted graph.
- Find the bipartiteness of a graph.
- Find cycle in a graph.
- Find the connectedness of a graph.

Depth-First Search

Depth-First Search

• Input:

• G = (V, E) (No source vertex given!)

• Goal:

- Explore the edges of G to "discover" every vertex in V starting at the most current visited node
- Search may be repeated from multiple sources

• Output:

- 2 **timestamps** on each vertex:
 - d[v] = discovery time
 - f[v] = finishing time (done with examining v's adjacency list)
- Depth-first forest

Depth-First Search

- Search "deeper" in the graph whenever possible
- Edges are explored out of the most recently discovered vertex v that still has unexplored edges 5

- After all edges of v have been explored, the search "backtracks" from the parent of v
- The process continues until all vertices reachable from the original source have been discovered
- If undiscovered vertices remain, choose one of them as a new source and repeat the search from that vertex
- DFS creates a "depth-first forest"

DFS Additional Data Structures

- Global variable: time-stamp
 - Incremented when nodes are discovered or finished
- color[u] similar to BFS
 - White before discovery, gray while processing and black when finished processing
- prev[u] predecessor of u
- d[u], f[u] discovery and finish times

```
Data: color[V], time,
      prev[V],d[V], f[V]
DFS(G) // where prog starts
                      Initialize
   for each vertex u ∈ V
      color[u] = WHITE;
   prev[u]=NIL;
   f[u]=inf; d[u]=inf;
   time = 0;
   for each vertex u ∈ V
     if (color[u] == WHITE)
         DFS Visit(u);
```

28

```
DFS Visit(u)
   color[u] = GREY;
   time = time+1;
   d[u] = time;
   for each v \in Adj[u]
      if(color[v] == WHITE) {
      prev[v]=u;
         DFS Visit(v);}
   color[u] = BLACK;
   time = time+1;
   f[u] = time;
```

```
Data: color[V], time,
      prev[V],d[V], f[V]
DFS(G) // where prog starts
   for each vertex u \in V
      color[u] = WHITE;
   prev[u]=NIL;
   f[u]=inf; d[u]=inf;
   time = 0;
   for each vertex u ∈ V
     if (color[u] == WHITE)
         DFS Visit(u);
```

```
DFS Visit(u)
   color[u] = GREY;
   time = time+1;
   d[u] = time;
   for each v \in Adj[u]
      if(color[v] == WHITE) {
      prev[v]=u;
         DFS Visit(v);}
   color[u] = BLACK;
   time = time+1;
   f[u] = time;
```

```
Data: color[V], time,
      prev[V],d[V], f[V]
DFS(G) // where prog starts
   for each vertex u \in V
      color[u] = WHITE;
   prev[u]=NIL;
   f[u]=inf; d[u]=inf;
   time = 0;
   for each vertex u ∈ V
     if (color[u] == WHITE)
         DFS Visit(u);
```

```
DFS Visit(u)
   color[u] = GREY;
   time = time+1;
   d[u] = time;
   for each v \in Adj[u]
      if(color[v] == WHITE) {
      prev[v]=u;
         DFS Visit(v);}
   color[u] = BLACK;
   time = time+1;
   f[u] = time;
```

```
Data: color[V], time,
      prev[V],d[V], f[V]
DFS(G) // where prog starts
   for each vertex u \in V
      color[u] = WHITE;
   prev[u]=NIL;
   f[u]=inf; d[u]=inf;
   time = 0;
   for each vertex u \in V
     if (color[u] == WHITE)
         DFS Visit(u);
      31 Will all vertices eventually be colored black?
```

```
DFS Visit(u)
   color[u] = GREY;
   time = time+1;
   d[u] = time;
   for each v \in Adj[u]
      if(color[v] == WHITE) {
      prev[v]=u;
         DFS Visit(v);
   } }
   color[u] = BLACK;
   time = time+1;
   f[u] = time;
```


What do they represent?


```
Data: color[V], time,
      prev[V],d[V], f[V]
DFS(G) // where prog starts
   for each vertex u \in V
      color[u] = WHITE;
   prev[u]=NIL;
   f[u]=inf; d[u]=inf;
   time = 0;
   for each vertex u \in V
     if (color[u] == WHITE)
         DFS Visit(u);
```

```
DFS Visit(u)
   color[u] = GREY;
   time = time+1;
   d[u] = time;
   for each v \in Adj[u]
      if (color[v] == WHITE)
      prev[v]=u;
         DFS Visit(v);
   color[u] = BLACK;
   time = time+1;
   f[u] = time;
```

Data: color[V], time,

```
prev[V],d[V], f[V]
                                   DFS Visit(u)
DFS(G) // where prog starts
                                      color[u] = GREY;
                                      time = time+1;
   for each vertex u ∈ V
                                      d[u] = time;
                                      for each v \in Adj[u]
       color[u] = WHITE;
   prev[u]=NIL;
                                         if (color[v] == WHITE)
                                        prev[v]=u;
    f[u]=inf; d[u]=inf;
                                           DFS Visit(v);
   time = 0;
                                      color[u] = BLACK;
   for each vertex u ∈
                                      time = time+1;
      if (color[u] == WHITE)
                                      f[u] = time;
          DFS Visit(u);
       Running time: O(V^2) because call DFS_Visit on each vertex,
           and the loop over Adj[] can run as many as |V| times
```

```
Data: color[V], time,
      prev[V],d[V], f[V]
                                  DFS Visit(u)
DFS(G) // where prog starts
                                     color[u] = GREY;
                                     time = time+1;
   for each vertex u \in V
                                     d[u] = time;
                                     for each v \in Adj[u]
       color[u] = WHITE;
   prev[u]=NIL;
                                        if (color[v] == WHITE)
                                        prev[v]=u;
    f[u]=inf; d[u]=inf;
                                           DFS Visit(v);
   time = 0;
                                     color[u] = BLACK;
   for each vertex u \in V
                                     time = time+1;
      if (color[u] == WHITE)
                                     f[u] = time;
          DFS Visit(u);
                 BUT, there is actually a tighter bound.
           How many times will DFS Visit() actually be called?
```

```
Data: color[V], time,
      prev[V],d[V], f[V]
DFS(G) // where prog starts
   for each vertex u \in V
      color[u] = WHITE;
   prev[u]=NIL;
   f[u]=inf; d[u]=inf;
   time = 0;
   for each vertex u \in V
     if (color[u] == WHITE)
         DFS Visit(u);
```

```
DFS Visit(u)
   color[u] = GREY;
   time = time+1;
   d[u] = time;
   for each v \in Adj[u]
      if (color[v] == WHITE)
      prev[v]=u;
         DFS Visit(v);
   color[u] = BLACK;
   time = time+1;
   f[u] = time;
```

DFS: Kinds of edges

- DFS introduces an important distinction among edges in the original graph:
 - *Tree edge*: encounter new (white) vertex
 - The tree edges form a spanning forest
 - Can tree edges form cycles? Why or why not?
 - No

Textbooks & Web References

- Text Book (Chapter 22)
- www.geeksforgeeks.org

Thank you & Any question?