

Lesson 2 – DC Railway Systems

Semester 3 – Advanced Simulation of Railway Power Systems

Lecturer: Pablo Arboleya Arboleya

Traditional DC traction systems for light railways

Single group non-reversible conventional substation

Conventional DC scenario

Positive feeder: $R_p = 51 \text{m}\Omega/\text{km}$

Negative feeder: $R_n = 14 \text{m}\Omega/\text{km}$

Train max. traction and braking power (0,65MW)

Substations rated power:

 $P_r = 0.35 \text{ MW}$

No load and rated load DC voltage: $V_0 = 750$ V, $V_n = 700$ V

Power transformer s.c. voltage:

 $V_{cc} = 8\%$

Cases of study (Summary)

	Substations ****	Trains Acc. ***	Train controls **	Pref T1 *	Pref T2 *
Case 1	Non-reversible	No	No 650		350
Case 2	Non-reversible	No	No	-650	564
Case 3	Non-reversible	No	Yes	650	350
Case 4	Non-reversible	No	Yes	-650	474
Case 5	Reversible	No	Yes	650	350
Case 6	Reversible	No	Yes	-650	474
Case 7	Non-rev + Acc	No	Yes	650	350
Case 8	Non-rev + Acc	No	Yes	-650	474
Case 9	Non-reversible	Yes	Yes	650	350
Case 10	Non-reversible	Yes	Yes	-650	474

^{*} Negative reference power in the trains means that the train is braking and regenerating

^{**} The considered train controls are the overcurrent protection and the overvoltage protection or squeeze control

^{***} Trains equipped or not with on-board accumulation system

^{****} The substations can be conventional (non-reversible), reversible (with dead band) and non-reversible with off-board accumulation

Conventional DC scenario (Case 2)

Conventional DC scenario

How often each scenario is present?

Effect of the trains overcurrent and overvoltage protection

From now on it will be assumed:

Eficiency = 0.9

V1 = 550V; V2=600V

V3 = 850V; V4=900V

Effect of the trains overcurrent protection

Efficiency = 0.9 V1 = 550V; V2=600V

Assuming Vcat = 570V

Pref = 650kW → I need from the catenary Pref/EF = 722kW

The overcurrent protection limits the power to 308kW

Effect of the trains overvoltage protection

Efficiency = 0.9 V3 = 850V; V4=900V

Assuming Vcat = 870V

Pref = 650kW → I would like to inject in the catenary Pref*EF= 585kW

The overvoltage protection limits the power to 351kW

Conventional DC scenario (Case 2)

Conventional DC scenario (Case 4)

Reversible substations as a solution to increase the efficiency

Conventional DC scenario (Case 4)

Off-board accumulation as a solution to increase the efficiency (Discharging mode)

Off-board accumulation as a solution to increase the efficiency (Charging mode)

Assuming Vcat = 765V and SOC = 50%

Conventional DC base scenario (case 3)

586V

Eff = 78%

Conventional DC base scenario (Case 4)

Eff = 85%

On board accumulation systems

Technologies/ Features Bad Medium Good	Life Cycle Cost	Energy Density	Power	Fast Charging	Availability	Safety	Maturity
Fuel-Cell (Hydr.)	Low	High	Med.	Yes	Med.	Low	Low
Batteries	Med.	High	Low	No	High	High	High
Flywheel	Med.	Low	High	Yes	Med.	Med.	High
Supercapacitors	Med.	Med.	High	Yes	High	High	High

Hybridization of On-board accumulation systems

On board accumulation systems – Kaohsiung example

- 100% Catenary free
- 5 module version (tare 49 tones, max. mass 69 tones)
- 48 seats, 228 people.
- 750V, 400kW rated power (800kW max)
- Total energy ultracapacitors (7stacks):
 4.1kWh (8,2kWh/train)
- Total energy ultracapacitors (7stacks): 15kWh (30kWh/train)
- Actions in abnormal conditions:
 - Preventive actions: do not modify the train performance.
 - Reduce the cooling 50%,
 - Disconnect the cooling keeping the ventilation
 - Activate the hybrid traction mode
 - Corrective actions: 2 kind, they do affect the train performance.
 - Decrease train performance gradually
 - Back-up mode (speed limited to 5km/h)

On board accumulation systems – Kaohsiung example

- 100% Catenary free
- 5 module version (tare 49 tones, max. mass 69 tones)
- 48 seats, 228 people.
- 750V, 400kW rated power (800kW max)
- Total energy ultracapacitors (7stacks):
 4.1kWh (8,2kWh/train)
- Total energy ultracapacitors (7stacks): 15kWh (30kWh/train)
- Actions in abnormal conditions:
 - Preventive actions: do not modify the train performance.
 - Reduce the cooling 50%,
 - Disconnect the cooling keeping the ventilation
 - Activate the hybrid traction mode
 - Corrective actions: 2 kind, they do affect the train performance.
 - Decrease train performance gradually
 - Back-up mode (speed limited to 5km/h)

Charging stations

On-board accumulation as a solution to increase the efficiency

- The target at each instant is to make Pcat=0.
- The whole system will assign priority to the accumulation
- In traction mode, it will try to extract all demanded power from the accumulator, the rest will be extracted from the catenary (if possible).
- In braking mode, it will try to inject all the regenerated power into the accumulation system, the surplus will be injected in the network if possible, if not it will be burned in the rheostatic system.
- For calculation purposes the train and the storage system as considered as a separated devices as it will be shown in the next slides.

Train in traction mode – accumulator discharging

Efficiency = 0.9 V1 = 550V; V2=600V

Assuming Vcat = 570V

Pref = 650kW → I need from the catenary Pref/EF = 722kW

The overcurrent protection limits the power to 308kW

Train in traction mode – accumulator discharging

SOC1 = 5%

SOC2 = 10%

Pmax = 300kW

Emax = 20kWh

Eff = 90%

Assuming Vcat = 570V and SOC =50%

SOC =50% --- P2 = Pmax = 300kW ---- Pacc_available = Pmax*Eff= 270kW

Pacc = min (Pacc_available, Ptrain) = min(270,308) = 270kW

Pcat = Ptrain-Pacc = 308 - 270 = 38kW

Train in traction mode – accumulator discharging

SOC1 = 5%

SOC2 = 10%

Pmax = 300kW

Emax = 20kWh

Eff = 90%

Assuming Vcat = 570V and SOC =50%

SOC =50% --- P2 = Pmax = 300kW ---- Pacc_available = Pmax*Eff= 270kW

Pacc = min (Pacc_available, Ptrain) = min(270,308) = 270kW

Pcat = Ptrain-Pacc = 308 - 270 = 38kW

Train in braking mode – accumulator charging

Assuming Vcat = 870V

Pref = 650kW → I would like to inject in the catenary Pref*EF= 585kW

The overvoltage protection limits the power to 351kW

Train in braking mode – accumulator charging

SOC1 = 90%

SOC2 = 95%

Pmax = 300kW

Emax = 20kWh

Eff = 90%

Pcat max = 351kW

Assuming Vcat = 870V and SOC =50%

SOC =50% --- P1 = Pmax = 300kW ---- Pacc_available = Pmax/Eff= 333kW

Pacc = min (Pacc_available, Ptrain) = min(585,333) = 333kW

Pcat = min(Ptrain-Pacc, Pcat) = min(252, 351) = 252kW

Prhe = Ptrain - Pacc - Pcat = 585 - 333 - 252 = 0kW

Train in braking mode – accumulator charging

SOC1 = 90%

SOC2 = 95%

Pmax = 300kW

Emax = 20kWh

Eff = 90%

Pcat max = 351kW

Assuming Vcat = 870V and SOC =50%

SOC =50% --- P1 = Pmax = 300kW ---- Pacc_available = Pmax/Eff= 333kW

Pacc = min (Pacc_available, Ptrain) = min(585,333) = 333kW

Pcat = min(Ptrain-Pacc, Pcat) = min(252, 351) = 252kW

Prhe = Ptrain - Pacc - Pcat = 585 - 333 - 252 = 0kW

Conventional DC base scenario (case 3)

586V

Eff = 78%

On-board accumulation (case 9)

Conventional DC base scenario (Case 4)

Eff = 85%

On-board accumulation (Case 10)

Cases of study (Summary)

	Substations ****	Trains Acc. ***	Train controls **	Pref T1 *	Pref T2 *	Total P(kW)	P burned (kW)	P non-sup. (kW)	Efficiency (%)
Case 1	Non-reversible	No	No	650	350	1335	0	0	74
Case 2	Non-reversible	No	No	-650	564	658	0	0	85
Case 3	Non-reversible	No	Yes	650	350	1144	0	209	78
Case 4	Non-reversible	No	Yes	-650	474	616	12	0	85
Case 5	Reversible	No	Yes	650	350	1144	0	0	78
Case 6	Reversible	No	Yes	-650	474	693	0	0	90
Case 7	Non-rev + Acc	No	Yes	650	350	1280	0	0	90
Case 8	Non-rev + Acc	No	Yes	-650	474	771	0	0	93
Case 9	Non-reversible	Yes	Yes	650	350	1197	0	0	93
Case 10	Non-reversible	Yes	Yes	-650	474	878	0	0	98

^{*} Negative reference power in the trains means that the train is braking and regenerating

^{**} The considered train controls are the overcurrent protection and the overvoltage protection or squeeze control

^{***} Trains equipped or not with on-board accumulation system

^{****} The substations can be conventional (non-reversible), reversible (with dead band) and non-reversible with off-board accumulation

Summary of technologies

Technologies/ Features Bad Medium Good		Cost of Infrastructure	Life Cycle Cost	Availability	Safety	Energy Recovery	Catenary Free	Energy Transmission Efficiency	Provider dependency
Reversible Substation		High	Med.	High	High	High	No	High	Low
Enorgy Storago	Off-Board	High	Med.	High	High	High	No	High	Low
Energy Storage	On-board	Low	Med.	High	High	High	Yes	High	Low

- Red line 30.84km
- Blue line 36.93km
- Substations 3MW
- Short circuit voltage of 5%,
- No load output voltage 3kV
- Voltage at rated load (1000A) is 2880V
- Equivalent impedance in forward mode is $270m\Omega$
- Equivalent impedance in reverse mode $540m\Omega$
- Equivalent impedance of the overhead conductor and the rails (return circuit) are respectively 28.605m Ω/km and 7m Ω/km .
- Off board accumulators: 25kWh, 1MW, SOC1,2,3,4 0,10,90 and 100%, V1, V2, V3 and V4 will be set respectively to 2685V, 2985V, 3015V and 3315V

- Rolling Stock
- All EMUs, 5 cars per train
- Total unladen weight of 157.3t.
- Maximum speed 120km/h
- Maximum traction power is 2.2MW
- On-board acc. 7kWh, and 1MW.
- V1, V2, V3 and V4 (1980V,2280V, 3300V and 3600V)

	Required	Mechanic.	Required	Electrical	Min. Elect.
	Mechanic.	Regen.	Electrical	Regen.	Consump.
Trip	Energy	Capacity	Energy	Capacity	Theoretical
S1 to S6 Red	245	112	258	106	151
S6 to S1 Red	240	107	253	102	151
S1 to S4 Blue	243	61	256	58	198
S4 to S1 Blue	187	99	197	94	103
Average Trip	229	95	241	90	151

All data in kWh

- Simulation interval about 8 hours
- Description of the scenarios:
 - 2 traffic levels

Scenario	Traffic	Revers.	Off-board	On-board	Number	Train
	Density	Subst.	Acc.	Acc.	of	Headset
Code		System			Trains	(min)
L1	Light	No	No	No	40	50
L2	Light	Yes	No	No	40	50
L3	Light	No	Yes	No	40	50
L4	Light	No	No	Yes	40	50
H1	Heavy	No	No	No	96	20
H2	Heavy	Yes	No	No	96	20
H3	Heavy	No	Yes	No	96	20
H4	Heavy	No	No	Yes	96	20

Energy (MWh)											
Scenario	L1	L2	L3	L4	H1	H2	H3	H4			
Req. Electrical	9.66	9.66	9.66	9.66	23.08	23.08	23.08	23.08			
Reg. Capacity	3.62	3.62	3.62	3.62	8.65	8.65	8.65	8.65			
Min. Consumpt.	6.04	6.04	6.04	6.04	14.43	14.43	14.43	14.43			
Train. Demand	8.94	9.66	9.59	7.30	21.67	23.08	22.94	17.52			
Train Inject.	1.61	3.62	3.26	0.58	5.93	8.65	8.26	2.00			
Train Net	7.32	6.04	6.32	6.73	15.74	14.43	14.68	15.52			
Rheostatic	2.01	0.00	0.36	0.49	2.72	0.00	0.39	0.79			
Non Supp	0.72	0.00	0.07	0.20	1.41	0.00	0.14	0.43			
Prov. Subs.	7.64	8.03	6.84	6.93	16.53	17.31	15.62	16.01			
Inject. Subs.	0.0	1.69	0.0	0.0	0.0	2.13	0.00	0.0			
Sub. Net	7.62	6.34	6.84	6.91	16.52	15.18	15.62	16.01			
Grid Losses	0.29	0.30	0.52	0.18	0.78	0.75	0.95	0.48			

System Analysis

Energy in % respec to the electrical energy required by trains										
	L1	L2	L3	L4	H1	H2	H3	H4		
Req. Electrical	100	100	100	100	100	100	100	100		
Reg. Capacity	37	37	37	37	37	37	37	37		
Min. Consumpt.	62	62	62	62	62	62	62	62		
Train Demand	92.5	100	99.2	75.5	93.9	100	99.3	75.9		
Train Inject.	16.6	37	33.7	5.9	25.7	37.4	35.8	8.6		
Train Net	75.8	62.4	65.4	69.6	68.2	62.5	63.5	67.2		
Rheostatic	20.8	0	3.7	5.0	11.7	0	1.6	3.4		
Non Supp	7.5	0	0.7	2.0	6.0	0	0.6	1.8		
Prov. Subs.	79.1	83.0	70.8	71.7	71.6	75.0	67.7	69.3		
Inject. Subs.	0	17.4	0	0.1	0	9.2	0	0		
Sub. Net	78.8	65.6	70.8	71.5	71.5	65.7	67.6	69.3		
Grid Losses	3.0	3.1	5.3	1.9	3.3	3.2	4.1	2.0		

Average Train Analysis

Energy (kWh)										
	L1	L2	L3	L4	H1	H2	H3	H4		
Train Demand	224	241	240	183	226	241	239	183		
Train Inject.	40	91	82	15	62	90	86	21		
Train Net	183	151	158	168	164	150	153	162		
Rheostatic	50	0	9	76	28	0	4	69		
Non Supp	18	0	2	4	15	0	1	3		
Prov. Subs.	191	201	171	173	172	180	163	167		
Inject. Subs.	0	42	0	0	0	22	0	0		
Sub. Net	191	159	171	173	172	158	163	167		
Grid Losses	7	8	13	5	8	8	10	5		

Jump to the real simulator

- It is necessary to have a very fast and accurate tool in order to evaluate the effect of the trains and accumulation and other infrastructure devices set-up over the whole system.
- Lets evaluate the Railneos 2.0 simulator developed by the LEMUR research group from the University of Oviedo for CAF Group.

Thanks:

Thanks to CAF company for supporting LEMUR research group research, specially to Urtzi Armendariz and Peru Bidaguren.

Thanks Bassam Mohamed and Islam El-Sayed for their work in the development of the previous described models and the Railneos 2.0 simulator.

Further reading:

P. Arboleya, P. Bidaguren and U. Armendariz, "Energy Is On Board: Energy Storage and Other Alternatives in Modern Light Railways," in *IEEE Electrification Magazine*, vol. 4, no. 3, pp. 30-41, Sept. 2016.

P. Arboleya, "Heterogeneous Multiscale Method for Multirate Railway Traction Systems Analysis," in *IEEE Transactions on Intelligent Transportation Systems*, vol.PP, no.99, pp.1-6

B. Mohamed; P. Arboleya; C. Gonzalez-Moran, "Modified Current Injection Method for Power Flow Analysis in Heavy-Meshed DC Railway Networks with Non-Reversible Substations," in *IEEE Transactions on Vehicular Technology*, vol.PP, no.99, pp.1-1

P. Arboleya, B. Mohamed, C. González-Morán and I. El-Sayed, "BFS Algorithm for Voltage-Constrained Meshed DC Traction Networks With Nonsmooth Voltage-Dependent Loads and Generators," in *IEEE Transactions on Power Systems*, vol. 31, no. 2, pp. 1526-1536, March 2016.