ASSIGNMENT 2: Backward Propagation Technique

Due: Tuesday, February 2

Name:		
maille.		

Objective: The main objective of this programming assignment is to experience image formation by backward propagation for a simplified 2D case instead of the full-scale 3D *plan-to-plane model*.

There are 6 active point sources, located at (x_n, y_n) , n = 1, 2, ... 6.

	scatters	scatter locations
1	(x_1, y_1)	(0, +10 λ)
2	(x_2, y_2)	$(+10 \lambda, 0)$
3	(x_3, y_3)	(0, -10 λ)
4	(x4, y4)	(-10 λ, 0)
5	(x_5, y_5)	(-8 λ, -6 λ)
6	(x_6, y_6)	(+8 λ, -6 λ)

The receiver aperture is organized in the form of a centered linear receiver array with a span of 60λ (from $x = -30\lambda$ to $x = +30\lambda$). This linear receiver array is located at

$$y = y_o = -60\lambda.$$

With quarter-wavelength spacing ($\lambda/4$) spacing, there are 241 wavefield data samples in total over the 60λ -long linear aperture.

- (A) Perform image reconstruction of the 60λ x 60λ 2D source region. The source region is a square area centered at (0, 0) and bounded by $x = \pm 30\lambda$ and $y = \pm 30\lambda$. For consistency, use quarter-wavelength spacing as the sample spacing in both directions.
- (B) Plot the magnitude distribution of your reconstructed images.

Report format:

- 1. Cover page.
- 2. Figures
- 3. Summary: (comments based on your observations)
- 4. Appendix: (computer code)