Electronic Devices

Lecture 14
Bipolar Junction Transistor

Dr. Roaa Mubarak

Signal

• A signal is a function that conveys information about a phenomenon.

• In electronics and telecommunications, it refers to any time varying voltage, current, or electromagnetic wave that carries

information.

- An amplifier, electronic amplifier is an electronic device that can increase the power of a signal (a time-varying voltage or current).
- It is a two-port electronic circuit that uses electric power from a power supply to increase the amplitude of a signal applied to its input terminals, producing a proportionally greater amplitude signal at its output.
- The amount of amplification provided by an amplifier is measured by its gain: the ratio of output voltage, current, or power to input.
 An amplifier is a circuit that has a power gain greater than one.

Amplification means increasing the amplitude (voltage or current) of a time-varying signal by a given factor, as shown here.

The graph shows the input (blue) $V_i(t)$ and output voltage (red) $V_o(t)$ of an ideal linear amplifier with an arbitrary signal applied as input. In this example the amplifier has a voltage gain of 3; that is at any instant $V_o = 3 V_i$

• The Effect of R_s & R_L

This amplifier fed with a signal source having an open-circuit voltage V_i and internal resistance R_s . The amplifier has load resistance R_L connected to the output terminal

• The Effect of R_s & R_L

Amplifier configurations: (a) unloaded; (b) loaded; (c) loaded with a source resistance.

$$A_{v_{
m NL}} = rac{V_o}{V_i}$$

$$A_{v_L} = \frac{V_o}{V_i}$$
 with R_L

$$A_{v_s} = \frac{V_o}{V_s}$$

with R_L and R_s

- The Effect of R_s & R_L
- The loaded voltage gain of an amplifier is always less than the no-load gain.
- The gain obtained with a source resistance in place will always be less than that obtained under loaded or unloaded conditions due to the drop in applied voltage across the source resistance.
- For the same configuration AVNL>AVL> AVS.
- For a particular design, the larger the level of RL, the greater is the level of ac gain.
- For a particular amplifier, the smaller the internal resistance of the signal source, the greater is the overall gain.
- For any network that have coupling capacitors, the source and load resistance do not affect the dc biasing levels.

- A dependent source is a current or voltage source whose value is not fixed, but rather which depends on some other circuit current or voltage.
- The general form for the value of a dependent source is Y=kX where X and Y are currents and/or voltages and k is the proportionality factor.
- For example, the value of a dependent voltage source may be a function of a current, so instead of the source being equal to, say, 10 volts, it could be equal to twenty times the current passing through a particular resistor, or V=20I.
- There are four possible dependent sources: the voltage-controlled voltage source (VCVS), the current-controlled voltage source (CCVS), the voltage-controlled current source (VCCS), and the current-controlled current source (CCCS).

- The source and control parameters are the same for both the VCVS and the CCCS so kk is unitless (although it may be given as volts/volt and amps/amp, respectively).
- For the VCCS and CCVS, kk has units of amps/volt and volts/amp, respectively. These are referred to as the trans-resistance and transconductance of the sources with units of ohms and siemens.

Amplifiers Types

- Although amplifiers are sometimes classified according to input and output parameters (we'll get to that), there are 4 basic types, which are:
- <u>Current Amplifier</u>: As the name suggests, an amplifier that makes the given input current higher. It is characterized by a low input impedance and high output impedance.
- <u>Voltage Amplifier</u>: An amplifier that amplifies given voltage for a larger voltage output. It is characterized by a high input impedance and low output impedance.
- <u>Transconductance Amplifier</u>: An amplifier that changes output current according to changing input voltage.
- <u>Transresistance Amplifier</u>: An amplifier that changes output voltage according to changing input current. It is also known as a current-to-voltage converter.

Amplifiers Types

voltage amplifier

current amplifier

transconductance amp.

transresistance amp.

Amplifiers Types

Туре	Circuit Model	Gain Parameter Ideal Characteristics
Voltage Amplifier	$ \begin{array}{c c} R_o & i_o \\ \downarrow & \downarrow \\ v_i & \downarrow \\ - & \downarrow \\ R_i & \downarrow \\ - & \downarrow \\ R_i & \downarrow \\ A_{io}v_i & v_o \\ - & \downarrow \\ - & \downarrow \\ \end{array} $	Open-Circuit Voltage Gain $R_i = \infty$ $R_o = 0$ $R_o = 0$
Current Amplifier	$ \begin{array}{c c} & i_o \\ & \downarrow \\ & \downarrow$	Short-Circuit Current Gain $R_i = 0$ $R_o = \infty$ $A_{is} \equiv \frac{i_o}{i_i} \Big _{v_o = 0} (A/A)$
Transconductance Amplifier	$ \begin{array}{c c} & & & \downarrow \\ & & & & & & & \downarrow \\ $	Short-Circuit Transconductance $R_i = \infty$ $R_o = \infty$ $R_o = \infty$
Transresistance Amplifier	$R_{o} \xrightarrow{i_{o}} R_{o} \xrightarrow{i_{o}} R_{o}$	Open-Circuit Transresistance $R_i=0$ $R_o=0$ $R_o=0$

AC Analysis of BJT

- AC analysis of BJT included the large signal and small signal.
- Here we deal with small signal (large signal used power amplifiers).
- The analysis is complex so, we use a small signal model to replace the BJT.
- The total response = the dc response + the AC response.
- A model is an equivalent circuit that represents the AC characteristics of the transistor.
- A model uses circuit elements that approximate the behavior of the transistor.
- There are two models commonly used in small signal AC analysis of a transistor:
- re model
- Hybrid model

BJT Modeling

The ac equivalent of a transistor network is obtained by:

- 1- Setting all dc sources to zero and replacing them by a short-circuit equivalent
- 2- Replacing all capacitors by a short-circuit equivalent
- 3- Removing all elements bypassed by the short-circuit equivalents introduced by steps 1 and 2
- 4- Redrawing the network in a more convenient and logical form

BJT small signal Modeling

- 5- replacing the BJT with appropriate model
- re transistor model
- Hybrid model

RE Transistor Model

 BJTs are basically current-controlled devices; therefore the re model uses a diode and a current source to duplicate the behavior of the transistor.

 One disadvantage to this model is its sensitivity to the DC level. This model is designed for specific circuit conditions.

Hybrid model

• The hybrid π model is most useful for analysis of high-frequency transistor applications.

• At lower frequencies the hybrid π model closely approximate the reparameters, and can be replaced by them.

Hybrid π model

Voltage Controlled Current Source "VCCS"

$$g_m = \frac{I_C}{V_T}$$
$$r_{\pi} = \frac{V_T}{I_B}$$

Current Controlled Current Source "CCCS"

$$r_{\mathbf{\pi}} = \frac{\mathbf{\beta}}{g_m}$$

<u>Hybrid T model</u>

$$g_m = \frac{I_C}{V_T}$$

$$r_e = \frac{V_T}{I_E} = \frac{\alpha}{g_m}$$

Voltage Controlled Current Source "VCCS"

Current Controlled Current Source "CCCS"

The steps for solving AC analysis of BJT

First DC Analysis

Using the DC analysis to calculate the parameters of small signal model g_m , r_{π} and r_e .

Second AC Analysis

- 1- Replace all the capacitors by short circuits, the inductors by open circuits.
- 2-replace the voltage Dc source by short circuit, and replace the current DC source by open circuit.
- 3- replace the BJT with one of small signal models.
- 4- Analyze the circuit to determine the amplifier gain.

BJT Configurations

Common Emitter

Common Base

 R_C

 v_o

Common Collector

Example

Determine the gain of the following amplifier as β = 100

Solution

1- Using the DC analysis to determine the Q point

Assuming Active mode

By KVL in input loop:

$$-3 + 100I_B + 0.7 = 0$$

$$I_B = \frac{3-0.7}{100} = 0.023$$
mA

$$I_C = \beta I_B = 2.3 \text{mA}$$

$$I_E = I_C + I_B = 2.323mA$$

$$V_o = V_c = V_{cc} - I_C R_c = 10 - (2.3)(3)=3.1$$
V

 $V_c > 0.7$ then our assumption is true

1- Using the DC analysis to determine the Q point

Assuming Active mode

By KVL in input loop:

$$-3 + 100I_B + 0.7 = 0$$

$$I_B = \frac{3-0.7}{100} = 0.023 \text{mA}$$

$$I_C = \beta I_C = 2.3 \text{mA}$$

$$I_E = I_C + I_B = 2.323 mA$$

$$V_o = V_c = V_{cc} - I_c R_c = 10 - (2.3)(3) = 3.1V$$

 $V_c > 0.7$ then our assumption is true

3 V

Solution

2- Determine the AC parameters.

$$g_m = \frac{I_C}{V_T} = \frac{2.3mA}{26mv} = 88\text{mA/v}$$

$$r_{\pi} = \frac{V_T}{I_B} = \frac{26mv}{0.023mA} = 1.13\text{k}\Omega$$

3- Draw the circuit with AC model (π Model)

Note: short circuit the DC voltage source and open circuit the DC current source

Solution

4- Analyze the small signal equivalent circuit

$$v_{o} = -g_{m}v_{be}R_{C}$$

$$v_{be} = \left(\frac{r_{\pi}}{R_{BB} + r_{\pi}}\right)v_{i} = \left(\frac{1.13}{101.13}\right)v_{i} = 0.011v_{i}$$

$$v_{o} = -(88)(0.011) v_{i}(3) = -2.94 v_{i}$$

$$A_{v} = \frac{v_{o}}{v_{i}} = |-2.94| = 2.94$$

 $R_{\mathcal{C}}$

Uo

 R_{BB}