

Construções Geométricas

Trabalhos: P2

Sumário

1	Aula 05: Segmentos Construtíveis - Introdução	3	
2	Aula 06: Segmentos Proporcionais. Média Geométrica. Expressões Algébricas. 2.1 Exemplos em sala		
3	Aula 07 - Expressões Algébricas3.1 Equações Quadráticas		
4	Trabalho Final 4.1 O Triângulo Áureo		

1 Aula 05: Segmentos Construtíveis - Introdução

Ver notas de aula Números Construtíveis e o Capítulo 9 de [1].

2 Aula 06: Segmentos Proporcionais. Média Geométrica. Expressões Algébricas.

2.1 Exemplos em sala

Exemplo 1 Dados dois segmentos a e b, a > b, obtenha graficamente o segmento a + b.

Exemplo 2 Dados dois segmentos a e b, a > b, obtenha graficamente o segmento a - b.

Teorema 1 [Teorema Fundamental da Proporcionalidade:] $Sejam \triangle ABC$ um triângulo $e \ D \in \overline{AB}, \ E \in \overline{AC}$ pontos tais que $\overline{DE} \parallel \overline{BC}$. $Então, \ \frac{AD}{DB} = \frac{AE}{EC}$.

Teorema 2 [Teorema de Tales:] Quando três ou mais retas paralelas são cortadas por duas transversais, os segmentos das transversais, determinados pelas paralelas, são proporcionais.

Definição 1 Os segmentos a e b são ditos **proporcionais** aos segmentos c e d quando é verificada a relação $\frac{a}{b} = \frac{c}{d}$, ou qualquer outra equivalente.

- 1. Dizemos que o segmento x é a 4^a proporcional entre os segmentos a, b e c quando for válida a relação $\frac{a}{b} = \frac{c}{x}$.
- 2. Dizemos que o segmento x é a 3^a proporcional entre os segmentos a e b, nessa ordem, quando for válida a relação $\frac{a}{b} = \frac{b}{x}$.

3

Exemplo 3 Para obter a 4^a proporcional, usamos o Teorema Fundamental da Proporcionalidade. O procedimento é o seguinte:

- 1. Construímos um ângulo qualquer de vértice O e, sobre os seus lados, transportamos os segmentos $a + b = \overline{OA} + \overline{AB}$ e $c = \overline{OC}$ (um em cada lado).
- 2. A partir do final do segmento a e do segmento c, construímos um segmento. Ao final do segmento a + b, construímos uma paralela a este, tocando o outro lado em X.
- 3. Como $\overline{AC} \parallel \overline{BX}$, pelo TFP temos que

$$\frac{\overline{OA}}{\overline{AB}} = \frac{\overline{OC}}{\overline{OX}} \Leftrightarrow \frac{a}{b} = \frac{c}{x},$$

como queríamos construir.

Exemplo 4 Vamos dividir o segmento \overline{AB} dado em partes proporcionais a 2, 3 e 5.

3 Aula 07 - Expressões Algébricas

3.1 Equações Quadráticas

Exemplo 5 Dados os segmentos u, a e b, obtenha os segmentos:

- a) $\sqrt{a^2 + b^2}$.
- b) $\sqrt{a^2 b^2}$, a > b.
- c) $\sqrt{a+b}$.

Exemplo 6 Dados os segmentos a e b, determine os segmentos x e y tais que

$$x + y = a$$
 e $xy = b^2$.

Antes de começar a construção, determine os valores de b que tornam o problema solucionável.

De modo geral, podemos resolver graficamente uma equação do segundo grau do tipo $ax^2 + bx + c = 0$, onde a, b e c são números construtíveis dados.

- Obtenha graficamente os segmentos $r = \frac{b}{a} e s = \frac{c}{a}$.
- Transforme a equação dada na nova equação $x^2 + rx + s = 0$. Verifique a condição para que a equação tenha solução.
- Sabemos que:
 - 1. Se s > 0, então as soluções possuem o mesmo sinal.

- 2. Se s < 0, então as soluções possuem sinais opostos.
- Desse modo, caímos nos seguintes sistemas:

1.
$$s > 0$$

$$\begin{cases} |x_1| + |x_2| = |r| \\ |x_1| \cdot |x_2| = s \end{cases}$$
2. $s < 0$

$$\begin{cases} |x_1| - |x_2| = |r| \\ |x_1| \cdot |x_2| = |s| \end{cases}$$
Para este segundo caso, precisaremos do seguinte teorema de Geometria Plana:

Teorema 3 Sejam dados uma circunferência C e um ponto exterior P. Sejam S e L pontos da circunferência tais que \overrightarrow{PS} e \overrightarrow{PL} são retas secantes à mesma. Seja, ainda, T um ponto de C tal que \overrightarrow{PT} seja tangente à circunferência. Então valem as iqualdades:

$$PR \cdot PS = PU \cdot PL = (PT)^2$$
.

3.2 Secção Áurea

Há anos, matemáticos, artistas, fotógrafos, dentistas e cientistas dedicam-se ao estudo do intrigante e fascinante número de ouro. Alguns focam a análise da razão áurea e os retângulos áureos presentes na geometria, os sólidos de Platão e o Pentagrama, por exemplo. Já outros focam-se nas medidas para obter uma imagem considerada esteticamente perfeita. Perfeição essa quando comparada a natureza: a espiral do náutilo, as espirais em sentidos opostos de margaridas e dos girassóis, o número de pétalas comuns serem associados a números áureos, entre tantos outros fenômenos naturais que encantam os olhos e estão relacionadas sobre um mesmo padrão, o padrão áureo [3].

Dado o segmento $a = \overline{AB}$, podemos determinar nele um ponto E tal que \overline{AE} seja a média geométrica entre \overline{AB} e \overline{BE} , ou seja, $AE = \sqrt{AB \cdot BE}$.

Definição 2 O segmento \overline{AE} , citado acima, é chamado **segmento áureo** interno de \overline{AB} e o ponto E é a **secção áurea** do segmento \overline{AB} .

Se denotarmos AE = x, obtemos EB = a - x e, então, podemos escrever

$$\frac{a}{x} = \frac{x}{a - x}. (1)$$

Encontrar x é resolver a equação $x^2 + ax - a^2 = 0$, com a > 0.

- a) Qual a solução algébrica dessa equação?
- b) Obtenha graficamente o segmento áureo x.

Trabalho 10/08

Exercício 1 Resolva graficamente $x^2 - 9x + 18 = 0$.

Exercício 2 Dados o segmento unitário u e os segmentos a, b e c, determine graficamente os segmentos que seguem.

a)
$$x = \sqrt{a^2 + b^2 + c^2}$$
.

b)
$$x = \frac{a^3 + a^2b}{c}$$

Exercício 3 Construa os segmentos x e y, dados pelo sistema:

$$\begin{cases} x + y = a \\ x^2 - y^2 = b^2 \end{cases}$$

Exercício 4 a) Construa um triângulo ABC cujos lados medem $AB = 7 \, cm$, $AB = 8 \, cm$ e $AB = 6 \, cm$.

- b) Inscreva nesse triânqulo um quadrado que tenha um de seus lados contido no lado BC.
- c) Agora, inscreva um retângulo áureo tendo o seu lado maior contido no lado BC do triângulo.

4 Trabalho Final

Para os dois grupos: escreva sobre a história envolvendo os tópicos, bem como suas aplicações.

4.1 O Triângulo Áureo

- 1. Construa um triângulo isósceles com um lado sendo um segmento áureo.
- 2. Construa triângulos áureos semelhantes.
- 3. Dado um triângulo, inscreva-o num retângulo tal que a área dos três triângulos restantes seja a mesma.
- 4. Mostre que se o retângulo acima for áureo, então o triângulo dado é isósceles e retângulo.
- 5. Descreva a espiral no triângulo áureo.

4.2 O Retângulo Áureo

- 1. Construa um retângulo áureo.
- 2. Construa um retângulo de Fibonacci.
- 3. Construa um pentágono regular e um pentagrama.
- 4. Descreva a espiral no retângulo áureo.
- 5. Fale sobre o ângulo ideal.

Referências

- [1] REZENDE, E. Q. F., Geometria euclidiana plana e construções geométricas, Ed. Unicamp, 2016. Baixe aqui. Obrigada, Lucas!
- [2] WAGNER, E., Construções geométricas., Rio de Janeiro, SBM, 2007. Baixe aqui.
- [3] AZEVEDO, N. C., O número de ouro e construções geométricas, UFG, 2013. Baixe aqui.