Digitaltechnik Wintersemester 2017/2018 3. Vorlesung

Inhalt

- 1. Einleitung
- 2. XOR Gatter als Paritätsfunktion
- 3. Spannungen als Logikpegel
- 4. Feldeffekt-Transistoren
- CMOS-Gatter
- 6. Leistungsaufnahme
- 7. Moor'sches Gesetz
- 8. Zusammenfassung

Einleitung

110011111110001110000100101100000000111
000000110100100001010110010100011010010
0011010111100100010110110100001100000111
01011101111110010110100100101111100010010
1100010001100101000111100001000100010001
1101101010110011000100001101101100011111
111111101010100101100011110111011010010
11110100111111000000001101111011110011010
01100000000010000000111111010001111100010
100101111001000110110000000000111110100
111011010101111101000001000101111111000100
01011010100110100101011111000000001010110
0100010011001100010100011101110000000101
011100001110010110001010101111010111010
1010101111010111000010000101011110111011
01000110011111111110111001101000011101111

Organisatorisches

- ► Erste Übungswoche abgeschlossen
 - bisher 750 Anmeldungen im Moodle
 - 660 Zuordnungen zu Übungsgruppen
 - G22 auf Mo 15:20-17:00 verlegt
- Lösungsvorschläge für Übungsblatt Freitag ca. 16:00
- Übungen möglichst direkt auf Aufgabenblatt lösen ("Klausurmodus")
- das "richtige" Moodle-Forum verwenden

Rückblick auf letzte Vorlesung

- Zahlensysteme
 - vorzeichenlos u_{b.k}
 - vorzeichenbehaftet bv_{b,k} und s_k
 - Addition
 - Negieren durch Komplement und Inkrement
 - Bitbreitenerweiterung
- ▶ Logikgatter $\mathbb{B}^n \to \mathbb{B}$
 - Symbole
 - Wahrheitswertetabellen

$\textbf{Dezimal} \leftrightarrow \textbf{Zweierkompliment, Addition}$

- ▶ 7 Bit Zweierkomplement von 15₁₀ =
- ▶ 6 Bit Zweierkomplement von −20₁₀ =
- binär addieren:

- ▶ Überlauf?
- Ergebnis hexadezimal:

Überblick der heutigen Vorlesung

- XOR Gatter als Paritätsfunktion
- Physikalische Realisierung von Logikgattern
 - Logikpegel
 - Feldeffekt-Transistoren
 - CMOS-Gatter
 - Leistungsaufnahme
 - Moor'sches Gesetz

Kap. 1.6 - 1.8 Seite 22 - 35

XOR Gatter als Paritätsfunktion

000110110001010111010000	001011111111101
111101110011101011011011	1111110101101011
101001010001010000010011	1011001111111000
010011101001110110100101	1100110001000110
001011010011010001010110	0110010010010101
001100010011101000001011	1100011000111010
100110010110001011110110	1101101110111011
001011101110110111001001	1100000011010001
111100010111010011000000	1111001101010110
100111010010111010010010	0000001100101000
110010011111101000100010	0100100110000011
010001010111100111111011	1001000111001001
011000000011001110111010	1100001100100110
100010011100010100011101	1000111010001111
100111110100001010111010	1111101001000011
001100001111000101011100	1000000011110010

Logikgatter: XOR : $\mathbb{B}^2 \to \mathbb{B}$

Logikgatter: XOR3 : $\mathbb{B}^3 \to \mathbb{B}$

Α	В	С	Υ
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

XOR mit mehreren Eingängen

- "Zählt" Einsen in Eingängen
- \Rightarrow Paritätsfunktion p : $(a_{k-1} ... a_0) \in \mathbb{B}^k \mapsto a_{k-1} \oplus ... \oplus a_0 \in \mathbb{B}$
 - ▶ $p(a) = 0 \Rightarrow$ Quersumme von a ist gerade
 - ▶ $p(a) = 1 \Rightarrow$ Quersumme von a ist ungerade

Logikgatter: XOR3 : $\mathbb{B}^3 \to \mathbb{B}$

$$\begin{array}{c}
A \\
B \\
C
\end{array}$$

$$Y = A \oplus B \oplus C$$

Α	В	С	Y		Α	В	С	Υ
0	0	0	0		0	0	0	0
0	0	1	1		0	0	1	1
0	1	0	1	Cray Cada	0	1	1	0
0	1	1	0	Gray Code	0	1	0	1
1	0	0	1		1	1	0	0
1	0	1	0		1	1	1	1
1	1	0	0		1	0	1	0
1	1	1	1		1	0	0	1

Fehlerhafte Datenübertragung

Fehlererkennung mit Paritätsfunktion

Fehlererkennung mit Paritätsfunktion

- ► (Gerades) Paritätsbit *PB* = p(*a*) vor der Übertragung von *a* anhängen
- Gesamtparität (Nachricht und Paritätsbit) nach der Übertragung berechnen
 - ▶ $p(a, PB) = 0 \Rightarrow$ gerade Anzahl von Übertragungsfehlern
 - ▶ $p(a, PB) = 1 \Rightarrow$ ungerade Anzahl von Übertragungsfehlern
- ⇒ einzelnes Paritätsbit ist
 - 1-fehlererkennend
 - 0-fehlerkorrigierend
 - verschiedene Typen von Paritätsbits
 - perade: PB = p(a)ungerade: PB = p(a)

Fehlerkorrektur mit Paritätsfunktion

- mehrere Paritätsbits pro Nachricht für Fehlerkorrektur notwendig
- bspw. Längs- und Querparität:

⇒ Verhältnis von Nutzdaten zu Paritätsbits wird schlechter

Spannungen als Logikpegel

1100010100111110100101010111101001000111
1001100110111001100101011001000001000001
1110100111010001000110111101011110000010
0011100101110010000111010001010011111011
1111101010000110100001111111111101000000
1010001110011100100111100011010010110100
0011100100011011111101101100011000101011
1010010001010011010011010000011110011111
1010101010111011011111111110101111110101
0100111111100100110111000101010110110100
0111111111100011100011001111101011111011
0001000010011010000100000010111000100100
101101011010001111001101111111100011001
1100001000111011111111100101001111011111
1111011010000000110010110010011110011110
0100111100111110000111010100000100011011

Schichtenmodell eines Computers

Anwendungssoftware

Programme

Betriebssysteme

Gerätetreiber

Architektur

Befehle Register

Mikroarchitektur Datenpfade Steuerung

Logik

Addierer Speicher

Digitalschaltungen

UND Gatter Inverter

Analogschaltungen Verstärker Filter

Bauteile

Transistoren Dioden

Physik

Elektronen

Binärwerten als Spannungenpegel

- Definiere Spannungspegel f
 ür die Werte 0 und 1
 - Logikpegel (logic levels)
- Beispiel:
 - ▶ $0 \text{ V} \mapsto 0 \text{ (Erde, GND, V}_{SS})$
 - ▶ $5 \text{ V} \mapsto 1 \text{ (Versorgungsspannung, V}_{DD} \text{)}$
- Aber: Reale Spannungspegel unterliegen Rauschen
 - Temperaturabhängige Widerstände
 - Übersprechen zwischen benachbarten Leitungen
 - Instabile Betriebsspannungen

Beispiel für Rauschen

- Treiber gibt 5 V aus
- Lange Leitung hat hohen Widerstand
- Spannungsabfall 0,5 V
- ► Empfänger sieht nur 4,5 V
- ► Ist das noch eine "Eins"?

Binärwerte als Spannungsbereiche

- Definiere Spannungsbereiche für die Werte 0 und 1
- Steigere Robustheit durch unterschiedliche Bereiche für Ein-/Ausgänge
 - V_{IL}: größte Spannung, die Empfänger als 0 interpretiert
 - V_{IH}: kleinste Spannung, die Empfänger als 1 interpretiert
 - V_{OL}: größte Spannung, die Treiber als 0 ausgibt
 - V_{OH}: kleinste Spannung, die Treiber als 1 interpretiert
- lacktriangle gültiger Logikpegel am Ausgang o gültiger Logikpegel am Ausgang
- idR. Einheitliche Spannungsbereiche für Logikpegel in gesamter Schaltung

Störabstände

- ▶ Unterer Störabstand: $NM_L = V_{IL} V_{OL}$
- ▶ Oberer Störabstand: $NM_H = V_{OH} V_{IH}$

Gleichstrom-Transferkurve (DC transfer characteristics)

Gleichstrom-Transferkurve

Absenken der Versorgungsspannung V_{DD}

- $V_{DD} = 5 \text{ V in 70er-80er Jahren}$
- Verbesserte Chip-Fertigungstechnologie erforderten/ermöglicht Absenkung
 - ▶ Hohe Spannungen würden immer kleinere Transistoren beschädigen
 - Energiebedarf reduzieren
 - ightharpoonup 3,3 V ightharpoonup 2,5 V ightharpoonup 1,8 V ightharpoonup 1,5 V ightharpoonup 1,0 V
- ⇒ Vorsicht beim Verbinden von Chips mit unterschiedlichen Versorgungsspannungen!

Logikfamilien mit kompatiblen Spannungspegel

Logikfamilie	TTL	CMOS	LVTTL	LVCMOS
min V _{DD}	4,75 V	4,5 V	3 V	3 V
typ V_{DD}	5 V	5 V	3,3 V	3,3 V
$\max V_{DD}$	5,25 V	6 V	3,6 V	3,6 V
V _{IL}	0,8 V	1,35 V	0,8 V	0,9 V
V_{IH}	2,0 V	3,15 V	2,0 V	1,8 V
V_{OL}	0,4 V	0,33 V	0,4 V	0,36 V
V_{OH}	2,4 V	3,84 V	2,4 V	2,7 V

Feldeffekt-Transistoren

01100011010000111001000111010001111	01010
1001100111101101001010000110101101	00000
10011011110110100101011010000101011	00101
01111110101100000010001011010000101	10001
11110001110100101000010001000100010	01011
10111101101000011000001000110100010	00000
11000010101000101101111101101110000	01011
000101100100001000 0100 0111010001110	00000
111111011000111111111110000010111111	10011
101101011010111101111000111001011010	01100
1100000001000000011110111110010001	01010
1110110110001100100011001000000011	11000
011101001001111111101100110000001111	11011
01010011001111100011011011110100101	01111
00010011100011000101000100010101010	01111
0000011101111111000100010001000101	00000

Transistoren

- Logikgatter werden üblicherweise aus Transistoren aufgebaut
 - Heute überwiegend Feldeffekttransistoren (FET)
 - Bipolartransistoren (BJTs) in dieser Vorlesung nicht relevant
- Transistoren sind spannungsgesteuerte Schalter
 - Zwei Anschlüsse werden je nach Spannung am dritten Eingang verbunden oder getrennt

Der Feldeffekt Prinzip des spannungsgesteuerten Widerstands

- Zwei metallischen Streifen mit dünner isolierender Zwischenlage
- Streifen bilden Plattenkondensator (Kapazität C)
- Gleichspannung U an Kondensator lädt diesen auf
- \Rightarrow Jeweils Ladung $Q = C \cdot U$ auf beiden Streifen (gegensätzliche Ladung)
- ⇒ U beeinflußt Menge der freien Ladungsträger, also Widerstand R

Der Feldeffekt

- Etwa 10¹⁴ zuätzliche freie Ladungsträger pro Kubikzentimeter bei 1 V Steuerspannung
- ► Etwa 10²² freie Ladungsträger pro Kubikzentimeter in Metallen
- ⇒ Ladungsträgeranreicherung durch Feldeffekt in Metallen unerheblich.
- ► Etwa 10¹³ freie Ladungsträger pro Kubikzentimeter in Halbleitern
- erst mit Halbleitern wird Feldeffekt technisch nutzbar

Silizium-basierte Halbleiter

- ▶ Reines Silizium ist schlechter Leiter (keine freien Ladungsträger)
- Dotierung ermöglicht gezieltes einbringen freier Ladungsträger)

Тур	freie Ladungsträger	dotierte Elemente	Bezeichnung
n	Elektronen (-)	Arsen (As), Phosphor (P)	Donator
p	Defektelektronen (+)	Bor (B), Gallium (Ga)	Akzeptor

MOS Feldeffekttransistoren (MOSFETs)

- Metalloxid-Halbleiter (MOS) Transistoren
 - ▶ Undotiertes Silizium (früher Metallschicht) als Gate
 - Oxid (Siliziumdioxid = Glas) als Isolator
 - Dotiertes Silizium als Substrat und Anschlüsse (Source, Drain)

MOSFET Schaltverhalten

- ► nMOS
 - Gate = 0, ausgeschaltet (keine Source-Drain Verbindung)
 - Gate = 1, eingeschaltet (leitfähiger Source-Drain Kanal)
- pMOS
 - Gate = 1, ausgeschaltet (keine Source-Drain Verbindung)
 - Gate = 0, eingeschaltet (leitfähiger Source-Drain Kanal)

MOSFET Schaltverhalten

Grundschaltungen eines MOSFET Inverters

Nachteil: Betriebszustände mit statischen Leistungsumsatz

CMOS-Gatter

01100111110100011101000101010101100100	01
010011111111101010001000101111010010110	10
110111011111101101111110110101010000100	11
111101100101001100011101011111001111001	11
1100010011111110000000101011110101000100	10
0010000010000011110000101001101111001	00
10010000101011110000101100110100000010	10
001010111011100010010111011000111000010	01
011110001010001010111001111001110001101	11
0111100111001100111111111111011100100001	11
01101110010100010001101100010110011000	01
01001011011010100000011011010011101101	00
01100011010100101111100101110011100101	10
110101101101111110000101100000000000110	01
10101001010111100101011010110001011100	00
100010100011100101101100111111010110101	10

Kombinieren von komplementären Transistoren

- nMOS Transistoren leiten 0'en "gut" zwischen source und drain weiter
 - 1'en werden abgeschwächt ⇒ source an GND anschließen
- pMOS Transistoren leiten 1'en "gut" zwischen source und drain weiter
 - ▶ 0'en werden abgeschwächt ⇒ drain an V_{DD} anschließen
- ⇒ Complementary Metal-Oxide-Semiconductor (CMOS) Logik

CMOS Gatter: NOT

Α	P1	N1	Υ
0	EIN	AUS	1
1	AUS	EIN	0

CMOS Gatter: NAND

Α	В	P1	P2	N1	N2	Υ
0	0	EIN	EIN	AUS	AUS	1
0	1	EIN	AUS	AUS	EIN	1
1	0	AUS	EIN	EIN	AUS	1
1	1	EIN EIN AUS AUS	AUS	EIN	EIN	0

Struktur eines CMOS Gatters

Aufbau eines NOR-Gatters mit drei Eingängen

Pseudo-nMOS Gatter

- ersetzen das Pull-Up Netz durch schwachen, immer eingeschalteten pMOS
- ⇒ Pull-Up kann durch das Pull-Down Netz "überstimmt" werden
- Nützlich, um lange Reihen von Transistoren zu vermeiden

Beispiel für Pseudo-nMOS Gatter

- Pseudo-nMOS NOR4
- Verbraucht aber mehr Energie: Schwacher Dauerkurzschluss bei Y=0

Transmissionsgatter (transmission gates)

- nMOS leiten 1'en "schlecht" weiter
- pMOS leiten 0'en "schlecht" weiter
- Transmissionsgatter ist ein besserer Schalter
 - Leitet 0 und 1 gut weiter
- Wenn EN = 1, Schalter ist EIN:
 - $ightharpoonup \overline{EN} = 0$
 - A ist verbunden mit B
- Wenn EN = 0, Schalter ist AUS:
 - ► *EN* = 1
 - A ist nicht verbunden mit B

Leistungsaufnahme

0001011001101001100000000111100000	10001
100101000000010100011010101011111110)11110
10110110101000000001101111100001111	110100
011011000101111111111110101100010101	101011
000001110101011100001111111011000111	111100
111111001110101011000111111101011011	110001
01010011010001001101011101001000110	00000
00011101111011011001101101111010101	100011
00001101110000010010111001111001110)11110
010110101111111011001110110110111111	100111
1000000010001100000110000011011111	100111
001001110101100010011111110110010111	101010
10100011110010101000111101111100100	01111
00111111110100101010110011101001100	01111
011011000001110110001011111110110011	101110
01000100011100100001000011101110001	111111

Vergleich des Inverters mit einem Feldeffekttransistoren und dem CMOS Gatter

- Die Funktion des Inverters leisten beide Schaltungen
- Wo sind die Unterschiede?
 - Erinnerung: statischer Leistungsumsatz
 - ▶ Und bei CMOS?

Leistungsaufnahme

- Leistungsaufnahme/Leistungsumsatz/Leistungsverbrauch (verschiedene Begriffe für eine Sache)
- Leistung = Energieumsatz/Energieverbrauch pro Zeiteinheit
- Zwei Arten der Leistungsaufnahme:
 - Statische Leistungsaufnahme
 - Dynamische Leistungsaufnahme

Statische Leistungsaufnahme

- Leistungsbedarf wenn kein Gatter schaltet
- Wird verursacht durch Schaltung selbst (vgl. Inverter mit Feldeffekttransistor)
- Wird verursacht durch den Leckstrom I_D
 - Immer kleinere Transistoren schalten nicht mehr vollständig ab
 - Pseudo-nMOS, ...
- Statische Leistungsaufnahme ist also $P_{static} = I_{DD} \cdot V_{DD}$

Dynamische Leistungsaufnahme

- Leistung um Gates der Transistoren umzuladen
 - Wirken als Kondensator
- ▶ Ladungen auf einen Kondensator der Kapazität C auf V_{DD}:
 - $Q = C \cdot V_{DD}$
- Schaltung wird mit Frequenz f betrieben
 - ► Transistoren schalten f-mal pro Sekunde
 - $I = Q/t = Q \cdot f = C \cdot V_{DD} \cdot f$
- Leistungsaufnahme ist: $P = I \cdot V = (C \cdot V_{DD}\dot{f})(V_{DD}) = C \cdot V_{DD}^2 \cdot f$
- Aber aufladen kostet (0-1), entladen (1-0) kostet nichts
 - Hälfte der Zeit schalten die Gatter von 0 bis 1
- ▶ Die dynamische Leistungsaufnahme ist also: $P = \frac{1}{2} \cdot C \cdot V_{DD}^2 \cdot f$

Beispielrechnung Leistungsaufnahme

- Abschätzen der Leistungsaufnahme für einen Netbook-Prozessor
- Parameter
 - ▶ Versorgungsspannung $V_{DD} = 1,2V$
 - Transistorkapazität C = 20nF
 - ► Taktfrequenz *f* = 1*GHz*
 - ▶ Leckstrom I_{DD} = 20mA

$$P = \frac{1}{2} \cdot C \cdot V_{DD}^2 \cdot f + I_{DD} \cdot V_{DD}$$

$$P = \frac{1}{2} (20nF)(1, 2V)^2 (1GHz) + (20mA)(1, 2V)$$

$$P = (14, 4 + 0, 024)W$$

$$P = 14, 4W$$

CMOS-Logik Funktion des Inverters

Funktionsweise des Inverters

CMOS-Logik Stromfluß beim Inverter

- Nur beim Umschalten fließt kurzeitig ein Strom
- ▶ Im Wesentlichen: Dynamische Leistungsaufnahme

Moor'sches Gesetz

10100010001010011001110	10100000101110011
0100011010001011001000	01010111000000010
10010011010010110001011	00110000001110111
10101101101001100101101	01110000000100100
111000110000011111110111	00000110010101001
10011011010100101011111	10110111111110010
01101100110110110000110)10111101000001111
010011000000111001 0111 0	001011000101111101
001100010001101001011	00001100100110010
00011010110100111000101	00110000111101000
10011011011111000101000	001100101111001000
10011001011101100001011	00011011111111001
11011001010110101010111	00011011100011000
11101000111011000110000	000000101110010010
10001111000011010100010	001100110001011100
10100011011010101101101	01110000000110011

Moore's Gesetz - Exponentielles Wachstum

Alle 18 Monate verdoppelt sich die Anzahl der Transistoren auf einem Chip. Dies ist allerdings eine abgewandelte Auslegung. Der Originalbeitrag von Gordon Moore ist im Moodle zu finden.

Prozessoren

Verbesserung der Fertigungsprozesse Auswirkungen - Transistoren schrumpfen um 13% jährlich

▶ pro Flächeneinheit 1/0, 87² = 33% mehr Elemente

Chip-Größen

Nicht nur kleinere Strukturen, auch größere Chip-Flächen

Ausbeute Effekte der Chip-Größe

Abbildung: Quelle: J. Rabaey, Digital Integrated Circuits

Heute zuverlässig erreichbar: Nur ca. 1 Fehler pro cm².

Beispiel Cell-Prozessor - Layout

Abbildung: Layout (Die) des Cell-Prozessors, Quelle: IBM

In der PlayStation 3 werden nur sechs SPEs verwendet.

Taktfrequenz - Entwicklung

Taktfrequenz - Bedeutung und Grenzen

- ► Leistungssteigerung wurde lange Zeit, durch erhöhen der Taktfrequenz erreicht. Aktuell liegt der Prozessortakt vieler Mikroprozessoren bei 3.x GHz.
 - Intel Pentium 4 EE, 3,8 GHz Takt, 11,5 SPECint2006
 - Intel Montecito 9050, 1,6 GHz Takt, 14,5 SPECint2006
- ▶ Bedingt durch die Technologie (CMOS-Technologie) steigt der Leistungsumsatz der Prozessoren mit dem Takt ($P \approx U^2 \cdot f \cdot C_L$).
- ▶ Die entstehende Wärme ist nur mit großem Aufwand abzutransportieren.
- Parallelrechner:
 - Integration mehrerer CPUs auf einem Chip (aktuell: 2-12 CPU-Kerne von Intel und AMD verfügbar), Cell B. E. Prozessor von IBM
 - Massiv parallele Systeme mit mehreren tausend Prozessoren,
 Spezialarchitekturen z. B. Vektorrechner

Zusammenfassung

110101111110010110111110001001011100	0110
100010110100000110000110001101110000	0100
0101101001111110001010011001010001110	0010
0001100010101000011101100111111111111	1001
00111000100101100001111111100011111110	0010
0011110111010010000001000110010101	0000
01100101101000111000000001010001110	0000
001000010111010010 1000 01011010000100	0111
101110101110010011010101111100011110	0101
1010110000010001101001001111101010000	1100
100001011011001100000100000111001000	1110
101110100000001110011010101100001001	0100
001000001110001001000111001010111000	1010
011000100000101010000000101011111101	0011
111100010101011000101010110110110011101	1100
1100011110110110001001100100101011	1011

Zusammenfassung und Ausblick

- Physikalische Realisierung von Logikgattern
 - Logikpegel
 - ► Feldeffekt-Transistoren
 - CMOS-Gatter
 - Leistungsaufnahme
 - Moor'sches Gesetz
- Nächste Vorlesung behandelt
 - Boolsche Algebra