Московский Авиационный Институт (Национальный Исследовательский Университет)

Кафедра 806 «Вычислительная информатика и программирование» Факультет: «Информационные технологии и прикладная математика»

Лабораторная работа Дисциплина: «Объектно-ориентированное программирование» III семестр

Задание 1: «Простые классы»

Группа:	М8О-206Б-18, №16
Студент:	Павлова Ксения Андреевна
Преподаватель:	Журавлёв Андрей Андреевич
Оценка:	
Дата:	27.09.2019

1. Задание

(вариант № 16): Создать класс Position для работы с географическими координатами. Координаты задаются двумя числами: широта и долгота. Долгота находится в диапазоне от -180 до 180 градусов. Широта находится в диапазоне от -90 до 90 градусов. Реализовать арифметические операции сложения, вычитания, умножения и деления, а также операции сравнения.

2. Адрес репозитория на GitHub

https://github.com/KsuPav/oop_exercise_01

3. Код программы на С++

CMakeLists.txt

```
стаке_minimum_required(VERSION 2.8)
project(lab1) #Название проекта
set(SOURCE_EXE main.cpp)
set(SOURCE_LIB Position.cpp)
add_library(Position STATIC ${SOURCE_LIB}) #Создание статической библиотеки
add_executable(main ${SOURCE_EXE}) #Создает исполняемый файл с именем main
target_link_libraries(main Position) # Линковка программы с библиотекой
```

Position.cpp

```
#include "Position.h"
#include <iostream>
#include <inttypes.h>
#include <cmath>
#define PI 3.14159265

Position::Position() {
    this->W = 0;
    this->L = 0;
}

Position::Position(double W, double L) {
```

```
this->W = W;
      this->L = L;
}
Position Position::add(Position B) { //Cymma
       Position C \{(this->W)+(B.W), (this->L)+(B.L)\};
      return C:
}
Position Position::inc(Position B) { //Разность
      Position C \{(this->W)-(B.W), (this->L)-(B.L)\};
      return C;
}
Position Position::mult(Position B) { //Произведение
       Position C \{(this->W)*(B.W), (this->L)*(B.L)\};
      return C;
}
Position Position::div(Position B) { //Деление
       Position C \{(this->W)/(B.W), (this->L)/(B.L)\};
      return C:
}
double Position::comp(Position MAI) { //Подсчёт расстояния
      double S:
      int R = 6371; //Среднее значение радиуса Земли
      S = R * acos(sin((this->W) * PI / 180) * sin((MAI.W) * PI / 180) + cos((this-wave) + cos((this-wave)
>W) * PI / 180) * cos((MAI.W) * PI / 180) * cos(fabs(((this->L) - MAI.L) * PI /
180)));
      //Формулка для нахождения расстояния между точками при наличии их
координат в градусах S=R*arccos(sin(W1)sin(W2)+cos(W1)cos(W2)cos(|L1-
L2|))
      return S;
void Position::print() {
      std::cout << this->W << "; " << this->L << std::endl;
}
Position.h
#ifndef Position h
#define Position h
#include <inttypes.h>
```

```
class Position {
  private:
  double W;
  double L;
  public:
  Position();
  Position(double W, double L);
  Position add(Position B);
  Position inc(Position B);
  Position mult(Position B);
  Position div(Position B);
  double comp(Position B);
  void print();
};
#endif
main.cpp
#include <iostream>
#include "Position.h"
#include <cmath>
int main() {
  double W, L; //Широта и долгота
  double S, S1, S2;
  int R;
  W = 55.811152; //Координаты МАИ
  L = 37.501312;
  Position MAI = Position (W, L);
  std::cout << "Введите значения широты (|x|<91) и долготы (|x|<181) первой
точки\п";
  std::cin >> W >> L;
  Position A = Position(W, L);
  std::cout << "Введите значения широты (|x|<91) и долготы (|x|<181) второй
точки\п";
  std::cin >> W >> L;
  Position B = Position(W, L);
  Position C;
  std::cout << "Результаты сложения:\n";
  C = A.add(B);
```

```
C.print();
  std::cout << "Результаты вычитания:\n";
  C = A.inc(B);
  C.print();
  std::cout << "Результаты умножения:\n";
  C = A.mult(B);
  C.print();
  std::cout << "Результаты деления:\n";
  C = A.div(B);
  C.print();
  std::cout << "Результаты сравнения расстояний от МАИ до точек:\n";
  S1 = A.comp(MAI);
  std::cout << "Расстояние до первой точки: " << S1 << " км" << std::endl;
  S2 = B.comp(MAI);
  std::cout << "Расстояние до второй точки: " << S2 << " км" << std::endl;
  if (S1 > S2) {
    std::cout << "Вердикт: до второй точки ближе.\n";
  } else {
    if (S2 > S1) {
       std::cout << "Вердикт: до первой точки ближе.\n";
     } else {
       std::cout << "Вердикт: одинаково.\n";
  }
  return 0;
}
test_01.txt
0.0
55.811152 37.501312
test_02.txt
12 - 179
-44 0
```

4. Результаты выполнения тестов

Результаты сложения:

55.8112; 37.5013

Результаты вычитания:

-55.8112; -37.5013

Результаты умножения:

0; 0

Результаты деления:

0;0

Результаты сравнения расстояний от МАИ до точек:

Расстояние до первой точки: 7063.74 км

Расстояние до второй точки: 0 км Вердикт: до второй точки ближе.

test_02_result.txt

Результаты сложения:

-32; -179

Результаты вычитания:

56; -179

Результаты умножения:

-528; -0

Результаты деления:

-0.272727; -inf

Результаты сравнения расстояний от МАИ до точек:

Расстояние до первой точки: 11748.3 км Расстояние до второй точки: 11643.3 км

Вердикт: до второй точки ближе.

5. Объяснение результатов работы программы

Программа получает на вход координаты двух точек, происходит выполнение арифметических операций. Далее, для придания заданию практичности, было принято решение модифицировать его. Таким образом, в программе осуществляется подсчёт расстояний от заданной точки (в данном случае выбраны координаты МАИ) до точек, полученных на вход, и сравнение расстояний.

6. Вывод

Были изучены основы объектно-ориентированного программирования, методы, классы, был написан простой класс Position.