Отчет о выполнении работы №1.3.3 Измерение вязкости воздуха при течении в тонких трубках

Воейко Андрей Александрович, Б01-109 Долгопрудный, 2022

1 Аннотация.

В работе экспериментально исследуется свойства течения газов по тонким трубкам, а также выявляется область применимости закона Пуассона и с его помощью определяется коэффицент вязкости воздуха.

2 Теоретические сведения.

Движение жидкости или газа в трубке вызвается перепадом внешнего давления ΔP на концах. Препятствуют движению силы вязкого трения, действующие между соседними слоями жидкости, а также со стороны стенок трубы. Сила вязкого трения в жидкостях и газах описывается законом Ньютона. В частности, если жидкость течет вдоль оси x, а скорость течения $v_x(y)$ зависит от координты и y, в каждом слое возникает направленное по x касательное напряжение:

$$\tau_{xy} = -\eta \frac{\delta v_x}{\delta y},\tag{1}$$

Где τ_{xy} – касательное напряжение, η – коэффицент динамической вязкости среды. Характер течения в трубе может быть ламинарным – когда слои жидкости или газа не перемешиваются между собой, и турбулентным – когда они перемешиваются. Определяется числом Рейнольдса:

$$Re = \frac{\rho uR}{\eta},\tag{2}$$

где ρ – плотность среды, u – характерная скорость потока, a – характерный размер системы (размер, на котором существенно меняется скорость течения). Из опыта известно, что переход к турбулентному течению для трубок круглого сечения наблюдается при $Re_{\rm KP} \approx 10^3$.

В целях упрощения теоретической модели газа в услоаиях экспериента можно считать несжимаемым, то есть принять плотность среды постоянной: $\rho = const.$ Для газов такое приближение допустимо, если относительный перепад давления в трубе мал: $\Delta P \ll P$. Расход воздуха найдем по формуле Пуазейля:

$$Q = \frac{\pi R^4 \Delta P}{8\eta l},\tag{3}$$

где R – радиус трубки, l – длина отрезка трубки. При этом, чтобы движение стало Пуазейлевским, необходимо, чтобы оно установилось. Длина установления вычисляется по формуле:

$$l_{\text{VCT}} \approx 0, 2R \cdot Re.$$
 (4)

При турбулентном течении расход будет определяться по такой формуле:

$$Q = \pi R^2 \overline{u} \sim R^{\frac{5}{2}} \sqrt{\frac{\Delta P}{\rho l}} \ . \tag{5}$$

3 Оборудование.

3.1 Импользуемое оборудование.

В работе используются:

- компрессор и проводящие трубки для подвода воздуха
- \bullet газовый счетчик. Диалазон измерений 5 л. Цена деления 0,02 л
- спиртовой манометр с регулируемым наклоном. Угол наклона использовался такой, что его sin равен 0, 2

изображена

• трубка диаметра примерно мм

3.2 Описание экспериментальная установка.

установка

Экспериментальная Трубка имеет несколько отверстий, которые либо закрываются заглушками, либо подключаются к микроманометру. Один конец открыт, другой поключен к системе подачи воздуха. Сама подача воздуха регулируется краном К. К ней же подключен маслянный

U-образный мано-

на

рисунке

1.

Рис. 1: Схема экспериментальной установки.

метр с бачком Б, который издает заметный звук при превышении определенного значения. Расход воздуха измеряется газовым счетчиком.

4 Результаты измерений и и обработка данных.

4.1 Предварительные вычисления.

Вычислим такой расход воздуха, при котором число Рейнольдса Re будет примерно равна 10^3 :

$$\begin{split} Re &= \frac{\rho \overline{u} R}{\eta} \Rightarrow \overline{u} = \frac{Re \cdot \eta}{\rho R}. \\ \overline{u} &= \frac{Q_{\text{\tiny KP}}}{\pi R^2} = \frac{Re \cdot \eta}{\rho R} \Rightarrow Q_{\text{\tiny KP}} = \pi R \cdot \frac{Re \cdot \eta}{\rho}. \end{split}$$

$$Q_{\mathrm{Kp}} = 0,106 \; \frac{\pi}{\mathrm{c}} = 2,96 \; \frac{\pi}{\mathrm{muh}}.$$

Теперь найдем критическое ΔP , при котором ламинарное течение переходит в турбулентное:

$$\Delta P = 177 \text{ }\Pi \text{a.}$$

Далее найдем l_{vcr} :

$$l_{\text{vct}} = 0,395 \text{ M}.$$

4.2 Результаты измерений.

4.2.1 Измерение зависимости перепада давления ΔP от расхода газа Q.

Проведем измерения ΔP от Q на длине 131,2 мм. Результаты занесем в таблицу. Результаты измерений представлены в таблице 1.

$N_{\overline{0}}$	Объем, л	Время, с	$Q, \cdot 10^{-3} \frac{\pi}{c}$	ΔP , дел	ΔP , Πa			
Ламинарный поток								
1	$2 \pm 0,02$	$49,8 \pm 0,6$	$40, 2 \pm 0, 9$	30 ± 1	$58,9 \pm 1,96$			
2	$3 \pm 0,02$	$58, 5 \pm 0, 6$	$51, 3 \pm 0, 9$	40 ± 1	$78,5\pm 1,96$			
3	$4 \pm 0,02$	$61, 2 \pm 0, 6$	$65, 4 \pm 1, 0$	51 ± 1	$ 100, 1 \pm 1, 96 $			
4	$4 \pm 0,02$	$54, 3 \pm 0, 6$	$73, 7 \pm 1, 2$	56 ± 1	$ 109,9 \pm 1,96 $			
5	$5 \pm 0,02$	$64,9 \pm 0,6$	$77,0 \pm 1,0$	60 ± 1	$ 117, 7 \pm 1, 96 $			
6	$6 \pm 0,02$	$67, 3 \pm 0, 6$	$89, 2 \pm 1, 1$	69 ± 1	$ 135, 4 \pm 1, 96 $			
Турбулентный поток								
7	$6 \pm 0,02$	$58, 4 \pm 0, 6$	$102, 7 \pm 0, 9$	95 ± 1	$186, 4 \pm 1, 96$			
8	$6,5 \pm 0,02$	$63,0 \pm 0,6$	$103, 2 \pm 0, 9$	99 ± 1	$194, 3 \pm 1, 96$			
9	$7 \pm 0,02$	$64,7 \pm 0,6$	$108, 2 \pm 0, 9$	122 ± 1	$239, 4 \pm 1, 96$			
10	$7 \pm 0,02$	$62,5 \pm 0,6$	$112,0 \pm 0,9$	130 ± 1	$255, 2 \pm 1, 96$			
11	$7 \pm 0,02$	$61,9 \pm 0,6$	$113, 1 \pm 0, 9$	143 ± 1	$280,6 \pm 1,96$			
12	$8 \pm 0,02$	$68,7 \pm 0,6$	$116, 4 \pm 0, 9$	150 ± 1	$294, 3 \pm 1, 96$			
13	$8 \pm 0,02$	$65,7 \pm 0,6$	$121,8\pm0,9$	165 ± 1	$323,7 \pm 1,96$			

Таблица 1: Результаты измерения зависимости ΔP от Q.

4.2.2 Измерение зависимости перепада давления ΔP от длины отрезка трубки.

Проведем измерения ΔP от Q на длине 131,2 мм. Результаты измерений представлены в таблице 1. В ней в шапке и первом столбце обозначено расстояние от начала трубки до отверстия, а в теле таблицы в первой части — разница давлений в делениях, а во второй — в паскалях.

Разница давлений в делениях									
	0	11, 2	41, 2	81, 2	131, 2				
0	_	59	110	177	246				
11,2	_	_	51	119	187				
41,2	_	_	_	66	135				
81,2	_	_	_	_	68				
Разница давлений в паскалях									
	0	11, 2	41, 2	81, 2	131, 2				
0	_	155, 8	215, 8	347, 3	482, 7				
11, 2	_	_	100, 1	233, 5	366, 9				
41,2	_	_	_	129, 5	264,9				
81, 2	_	_	_	_	133,4				

Таблица 2: Результаты измерения зависимости ΔP от a.

4.3 Обработка данных.

4.3.1 Зависимость расхода воздуха от разности давлений.

Построим график зависимости Q от ΔP . Более светлым цветом обозначены точки при ламинарном движении, более темным – при турбулентном. Также жирной черной точкой отмечена точка $(\Delta P_{\rm kp}; Q_{\rm kp})$, координаты которой (177; 0, 106), найденные в разделе 4.1.

Рис. 2: Зависимость расхода воздуха от разницы давлений.

На графике заметно, что зависимость при ламинарном движении в целом является линейной. При этом ламинароное движение заканчивается

примерно при $Q_{\rm kp}\approx 0,1$ $\frac{\pi}{\rm c}$ и $\Delta P_{\rm kp}\approx 150$ Па. Аппроксимируем данные, полученные при ламинарном течении, к прямой $Q=k\Delta P$:

$$k = \frac{\langle Q\Delta P \rangle}{\langle \Delta P^2 \rangle} = \frac{42,160}{63893} = 0,660 \cdot 10^{-3} \pm 0,003.$$

Отсюда можно найти вязкость воздуха. Из формулы 3:

$$\eta = \frac{\pi R^4}{8kl} = \frac{3.14 \cdot (0.00395/2)^4}{8 * 0.660 \cdot 10^{-6} \cdot 0.5} = 1.81 \cdot 10^{-5} \pm 0.01 \cdot 10^{-5} \text{ Ha} \cdot \text{c}.$$

Табличное значение при $25^{\circ} - \eta_{\text{табл.}} = 1.84 \cdot 10^{-5}$ Па, что выходит за рамки погрешности разница составляет 1,65%.

Теперь найдем критическое значение числа Рейнольдса:

$$\begin{split} Re_{\mathrm{kp}} &= \frac{\rho \overline{u_{\mathrm{kp}}} R}{\eta} = \frac{\rho R}{\eta} \cdot \frac{Q_{\mathrm{kp}}}{\pi R^2} = \frac{\rho}{\eta} \cdot \frac{Q_{\mathrm{kp}}}{\pi R} = \\ &= \frac{1,17}{1,81 \cdot 10^{-5}} \cdot \frac{0,1 \cdot 10^{-3}}{3,14 \cdot 0,00395/2} = 1042. \end{split}$$

Погрешность искать не имеет смысла, так как нахождение $Q_{\rm kp}$ было произведено по визуальным данным и носит оценочный характер. Тем не менее оно довольно близко к данному в описании работы примерному значению.

4.3.2 Зависимость разности давлений от длины участка трубы.

Построим график зависимости разности давлений ΔP от длины участка трубы x, приняв за начало отсчета точку 0.

Рис. 3: Зависимость разницы давлений от длины отрезка трубы.

Здесь видно, что $l_{\rm np} \approx 20-30 {\rm cm}.$

5 Выводы.

В ходе работы была найдена вязкость воздуха в условиях эксперимента, то есть при температуре $25,8^\circ$ и давлении 100,88 кПа. Оно составило $1,81\cdot 10^{-5}$ Па · с, что всего на 1,65% отличается от табличного значения $-1,84\cdot 10^{-5}$ Па · с. Также было найдено число Рейнольдса для данного радиуса трубы, составившее 1040.