COEP Technogical University

Department of Mathematics
(MA- 21001) Probability and Statistics for Engineers
T.Y. B. Tech. Semester V
Academic Year 2024-25 (Autumn Semester)
Course Coordinator: Dr. Yogita Mahatekar

1 Tutorial: Week 8

- 1. What is meant by the word 'Statistic'?.
- 2. What is meant by an unbiased estimator of a population parameter θ ? What is biased estimator of a population parameter?
- 3. Let X_1, X_2, \ldots, X_n be *n* random variables with $E(X_i) = \mu$ and $Var(X_i) = \sigma^2$, $i = 1, 2, \ldots, n$. What is an unbiased estimator of mean μ and that of σ^2 ?
- 4. Define suitable populations from which the following samples are selected:
 - (a) Persons in 200 homes are called by telephone in the city of Richmond and asked to name the candidate that they favor for election to the school board
 - (b) A coin is tossed 100 times and 34 tails are recorded.
- 5. The numbers of incorrect answers on a true-false compentency test for a random sample of 15 students were recorded as follows: 2, 1, 3, 0, 1, 3, 6, 0, 3, 3, 5, 2, 1, 4, 2. Find the mean, the median, the mode.
- 6. Find the probability that a random sample of 25 observations, from a normal population with variance $\sigma^2 = 6$, will have a variance (a) S^2 greater than 9.1. (b) S^2 lying in between 3.462 and 10.745.

Ans: (a) 0.05 (b) 0.94

- 7. Prove that the sample mean $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ is an unbiased estimator for the population mean μ .
- 8. Find an unbiased estimator for the population variance σ^2 .
- 9. Explain the use of z- test, t- test, Chi-square test and F-test in testing of hypothesis.
- 10. Using statistical tables find the following:
 - (i) $\chi^2_{0.025}$ when degree of freedom is 15 ANS: 27.488
 - (ii) $\chi^2_{0.01}$ when degree of freedom is 18 ANS:34.805
 - (iii) $\chi^2_{0.05}$ when degree of freedom is 25 ANS:37.652
 - (iv) $t_{0.025}$ when degree of freedom is 15 ANS:2.131
 - (v) $t_{0.995}$ when degree of freedom is 17 ANS: 2.898

- (vi) $f_{0.05}$ when degree of freedom are 7 and 15
- (vi) $f_{0.05}$ when degree of freedom are 7 and 15
- (vii) $f_{0.99}$ when degree of freedom are 28 and 12
- (viii) $f_{0.01}$ when degree of freedom are 24 and 19
- (ix) χ^2_{α} if $P(X^2 < \chi^2_{\alpha}) = 0.95$ when degree of freedom is 6
- (x) χ^2_{α} if $P(X^2>\chi^2_{\alpha})=0.05$ when degree of freedom is 16
- (xi) χ^2_{α} if $P(\chi^2_{\alpha} < X^2 < 23.209) = 0.015$ when degree of freedom is 10
- (xii) P(T < 2.365) when degree of freedom is 7 ANS: 0.975
- (xii) P(T > -2.567) when degree of freedom is 17 ANS:0.99
- (xiii) $P(-t_{0.005} < T < t_{0.01})$ when degree of freedom is 20 ANS:0.985
- (xiv) k such that P(k < T < 2.807) = 0.095 for a random sample of size 24 from a normal population.
- 11. If S_1^2 and S_2^2 represent the variances of independent random samples of size 8 and 12 respectively, taken from a normal populations with equal varinces, find $P(\frac{S_1^2}{S_2^2} < 4.89)$.
- 12. Find the probability that a random sample of size 28 from a normal population with variance 4 will have a variance
 - (i) greater than 6.1
 - (ii) between 2.168 and 5.749. Assume that measurements are continuous.