Exercice supplémentaire TD n°4, HLEE204

Champ et potentiel d'un cylindre considéré comme infini chargé en volume (extrait examen 2020)

Soit un cylindre considéré, compte tenu de ses dimensions, comme <u>infini suivant l'axe Oz</u>, de rayon R, de hauteur h, <u>uniformément chargé en volume</u> (charges positives, densité volumique de charge ρ). On se placera dans un repère cylindrique $(\overrightarrow{u_r}, \overrightarrow{u_\theta}, \overrightarrow{u_z})$.

On donne $\rho = 2x10^{-1} \text{C/m}^3$; R = 5 mm; h = 10 cm

- 1- Calculer la charge Q du cylindre.
- 2- En considérant les symétries du système, montrer que le champ électrique en un point M de tout l'espace $\overrightarrow{E(M)}$ est radial donc dirigé selon $\overrightarrow{u_r}$. Représenter les vecteurs champs électriques dans tout l'espace de permittivité ε_0
- 3- En utilisant le théorème de Gauss, établir l'expression du champ électrique radial $\overline{E(r)}$ dans tout l'espace, pour r variant de 0 à l'infini, en fonction de $(\rho, r, \epsilon_0, R, \overrightarrow{u_r})$, puis en en fonction de $(Q, r, \epsilon_0, R, \overrightarrow{u_r})$. On notera E_1 pour r < R et E_2 pour r > R.
- 4- Tracer approximativement E=f(r), vérifier la continuité du champ électrique en r=R.
- 5- A partir de l'expression $\overrightarrow{E(M)} = -\overrightarrow{grad}(V)$, établir les expressions du potentiel V_1 pour r < R et V_2 pour r > R en fonction de $(\rho, r, \varepsilon_0, R)$.

Afin de calculer V₁, on prendra comme origine des potentiels l'axe du cylindre V(r= 0) =0

Afin de calculer V_2 , on vérifiera la continuité du potentiel en $r = R : V_1(R) = V_2(R)$

6- Tracer approximativement V=f(r)

Exercice 2 - Champ et potentiel d'un cylindre considéré comme infini chargé en volume (10 pts)

Soit un cylindre considéré, compte tenu de ses dimensions, comme <u>infini suivant l'axe Oz</u>, de rayon R, de hauteur h, <u>uniformément chargé en volume</u> (charges positives, densité volumique de charge ρ). On se placera dans un repère cylindrique $(\overrightarrow{u_r}, \overrightarrow{u_\theta}, \overrightarrow{u_z})$.

On donne $\rho = 2x10^{-1} \text{C/m}^3$; R = 5 mm; h = 10 cm

- 1- Calculer la charge Q du cylindre. Q= PJ= P TOTAL P = 9
- 2- En considérant les symétries du système, montrer que le champ électrique en un point M de tout l'espace $\overrightarrow{E(M)}$ est radial donc dirigé selon $\overrightarrow{u_r}$. Représenter les vecteurs champs électriques dans tout l'espace de permittivité ε_0
- 3- En utilisant le théorème de Gauss, établir l'expression du champ électrique radial $\overline{E(r)}$ dans tout l'espace, pour r variant de 0 à l'infini, en fonction de (ρ , r, ϵ_0 , R, $\overline{u_r}$), puis en en fonction de (Q, r, ϵ_0 , R, $\overline{u_r}$).

On notera E_1 pour r < R et E_2 pour r > R.

- 4- Tracer approximativement E=f(r), vérifier la continuité du champ électrique en r = R
- 5- A partir de l'expression $\overline{E(M)} = -\overline{grad}(V)$, établir les expressions du potentiel V_1 pour r < R et V_2 pour r > R en fonction de (ρ, r, ϵ_0, R) .
- Afin de calculer V₁, on prendra comme origine des potentiels l'axe du cylindre V(r= 0) =0
- Afin de calculer V_2 , on vérifiera la continuité du potentiel en $r = R : V_1(R) = V_2(R)$

