

Linear Inequations Ex 15.6 Q6(i)

We have,

 $2x + y \ge 8$, $x + 2y \ge 8$, and $x + y \le 6$

Converting the inequations into equations, we obtain,

2x + y = 8, x + 2y = 8, and x + y = 6

Region represented by $2x + y \ge 8$.

Putting x = 0 in 2x + y = 8, we get y = 8.

Putting y = 0 in 2x + y = 8, we get $x = \frac{8}{2} = 4$

.. The line 2x+y=8 meets the coordinate axes at (0,8) and (4,0). Join these points by a thick line.

Now, putting x = 0 and y = 0 in $2x + y \ge 8$, we get $0 \ge 8$ This is not possible.

: We find that (0,0) is not satisfies the inequation $2x + y \ge 8$.

So, the portion not containing the origin is represented by the given inequation.

Region represented by $x + 2y \ge 8$

Putting x = 0 in x + 2y = 8, we get $y = \frac{8}{2} = 4$

Putting y = 0 in x + 2y = 8, we get x = 8.

:. The line x + 2y = 8 meets the coordinate axes at (0,4) and (8,0). Joining these points by a thick line.

Now, putting x = 0 and y = 0 in $x + 2y \ge 8$, we get, $0 \ge 8$, This is not possible.

: we find that (0,0) is not satisfies the inequation $x + 2y \ge 8$. so the portion not containing the origin is represented by the given inequation.

Region represented by $x+y \le 6$: Putting x=0 in x+y=6, we get, y=6.

Putting y = 0 in x + y = 6, we get, x = 6.

.. The line x+y=6 meets the coordinate axes at (0,6) and (6,0). Joining these points by a thick line. Now, putting x=0 and y=0 in $x+y\le 6$, we get $0\le 6$

Therefore, (0,0) satisfies $x+y \le 6$. so the portion containing the origin is represented by the given inequation. The common region of the above three regions represents the solution set of the given inequations as shown below:

Linear Inequations Ex 15.6 Q6(ii)

We have,

 $12x + 12y \le 840$, $3x + 6y \le 300$, $8x + 4y \le 480$, $x \ge 0$ and $y \ge 0$

Converting the inequations into equations, we obtain, 12x + 12y = 840, 3x + 6y = 300, 8x + 4y = 480, x = 0 and y = 0

Region represented by 12x + 12y ≤84α

Putting x = 0 in 12x + 12y = 840, we get $y = \frac{840}{12} = 70$ Putting y = 0 in $12x + 12y \le 840$, we get $x = \frac{840}{12} = 70$

.. The line 12x + 12y = 840, meets the coordinate axes at (0,70) and (70,0). Join these points by a thick line.

Now, putting x = 0 and y = 0 in $12x + 12y \le 840$, we get $0 \le 840$

Therefore, (0,0) satisfies the inequality $12x+12y \le 840$, so, the portion containing the origin represents the solution set of the inequation $12x + 12y \le 840$

Region represented by $3x + 6y \le 300$:

Putting
$$x = 0$$
 in $3x + 6y \le 300$, we get $y = \frac{300}{6} = 50$

Putting y = 0 in
$$x = \frac{300}{3} = 100$$
.

:. The line 3x + 6y = 300 meets the coordinate axes at (0,50) and (100,0). Joining these points by a thick line

Now, putting x = 0 and y = 0 in $3x + 6y \le 300$, we get, $0 \le 300$

Therefore (0,0) satisfies the inequality $3x + 6y \le 300$, so, the portion containing the origin represents the solution set of the inequation $3x + 6y \le 300$.

Region represented by $8x + 4y \le 480$.

Putting
$$x = 0$$
 in $8x + 4y = 480$, we get, $y = \frac{480}{4} = 120$

Putting
$$y = 0$$
 in $8x + 4y = 480$, we get, $y = \frac{480}{8} = 60$.

:. The line 8x + 4y = 480 meets the coordinate axes at (0,120) and (60,0). Join these points by a thick line.

Now, putting x = 0 and y = 0 in 8x + 4y = 480, we get $0 \le 480$.

Therefore, (0,0) satisfies the inequality $8x + 4y \le 480$.

So, the portion containing the origin represents the solution set of the inequation $8x + 4y \le 480$. Region represented by $x \ge 0$ and $y \ge 0$: clearly, $x \ge 0$ and $y \ge 0$ represent the first quadrant.

The common region of the above five regions represents the solution set of the given inequations as shown below:

****** END ******