Monte Carlo Sampling and MCMC (Part I) Advanced Topics in Deep Learning

Vahid Tarokh

ECE 590-02

Spring 2022

Motivation

- Key to generative models we have discussed (and those that will be further covered in this course) is sampling from a distribution that estimates that of data points.
- Up to know, we intentionally designed these distributions such that sampling from them is easy, e.g. GANs, Normalizing Flows, RBMs, VAEs, etc.
- We also made approximations to make the training made simpler.
- In order to present more advanced generative methods (and also for other reasons we will discuss later), we need to briefly discuss **Sampling** from given distributions.
- In the first part of Lectures on Monte-Carlo sampling, we do not consider deep versions. We will revisit these later.

Outline

- Background and Related Work
 - Quick review of Markov Chains (prepared by Kevin Choy)
 - Monte Carlo Principal
 - Importance Sampling
 - Sequential Monte Carlo (SMC)
 - MCMC
 - Metropolis-Hastings Algorithm
 - Random-Walk Metropolis
 - Gibbs Sampling.
 - Hamiltonian Monte Carlo (HMC)
 - Metropolis Adjusted Langevin Algorithm (MALA) also known as Langevin Monte Carlo (LMC)

Quick Review of Markov Chains

Background on Markov Chains

- A stochastic model describing a sequence of possible events in which the probability of each event depends only on the state attained in the previous event.
- Markov Property:
 - $q(x^{(t)}|x^{(t-1)},x^{(t-2)},...,x^{(1)}) = q(x^{(t)}|x^{(t-1)})$
 - $(x^{(1)}, x^{(2)}, ..., x^{(t)})$ represent sequentially drawn samples at discrete times t.

Background on Markov Chains

Multiple types of Markov Chains used for different applications – all have Markov property

- Discrete Time Discrete Space
 - Finite time steps indexed by integers with finite number of states (we will focus on this for the initial understanding)
 - E.g., Turn based game with finite positions
- Discrete Time Continuous Space
 - Finite time steps with infinite states
 - E.g., Particle location at discrete observations
- Continuous Time Discrete Space
 - Infinite time steps with finite number of spaces
 - E.g., Particle oscillating continuously between two states
- Continuous Time Continuous Space
 - Infinite time steps with infinite spaces
 - E.g., Particle in physical space at physical time

Background on Markov Chains

- Markov chain: $q(x^{(t)}|x^{(t-1)}, x^{(t-2)}, ..., x^{(1)}) = q(x^{(t)}|x^{(t-1)})$.
 - $(x^{(1)}, x^{(2)}, ..., x^{(t)})$ represent sequentially drawn samples at discrete times t.
 - $p(\cdot|\cdot)$: transition distribution.
- Markov chains are characterized by:
 - A state space S, finite or countable set of values that the random variables may take. $S = \{1, 2, 3, ...\}$
 - Transition matrix q describing the probabilities of particular transitions between states
 - Initial distribution π_0 , denoting the distribution of the Markov chain at time 0.
 - $\pi_0(i)$ denotes the probability that the Markov chain starts out in state i for each state $i \in S$.

Some Properties of Markov Chains

Aperiodicity

- A state has period k if any return to this state must occur in multiples of k time steps
- $k = gcd\{n: q(x^{(n)} = i | x^{(0)} = i) > 0\}$
- If k = 1, the state is said to be *aperiodic*
- If all states are aperiodic, the chain is considered aperiodic

Irreducibility

- Two states communicate with each other if both are accessible from one another
- A Markov chain is irreducible all pairs of states communicate

Some Properties of Markov Chains

- Ergodicity
 - Ergodic state means the state is visited more than once with probability 1
 - If all states are ergodic the chain is considered ergodic
 - Any state can be reached from any other state in less than finite number of steps

Some Properties of Markov Chains

Transience

• A state is transient if there's a non-zero probability that the state will not be revisited

Recurrence

• A state is recurrent if, starting from this state at time 0, the chain will eventually return to this state

Modeling Long-Term Behavior

- Transitions between different states of a Markov chain describe *short-time* behavior of the chain.
- We want to model the long-term behavior of Markov chains
- Let $(x^{(1)}, x^{(2)}, ..., x^{(t)})$ be a finite-state, irreducible and aperiodic Markov chain, then the limiting distribution exists: $\lim_{t\to\infty} p_t = \pi$
- The limiting distribution of the chain is the *stationary distribution*.

Stationary Distributions

- A distribution $\pi = (\pi(i))_{i \in S}$ on state space S of a Markov chain is a stationary distribution if:
 - $\Pr(\mathbf{x}^{(2)} = i) = \pi(i)$ for all $i \in S$, whenever $\Pr(\mathbf{x}^{(1)} = i) = \pi(i)$ for all $i \in S$
 - i.e., the distribution of $x^{(2)}$ is equal to the distribution of $x^{(1)}$ when the distribution of $x^{(1)}$ is π .

Stationary Distributions

- A nonnegative vector $\pi = (\pi(i))_{i \in S}$ with $\sum_{i \in S} \pi(i) = 1$ is a stationary distribution if and only if $\pi = \pi q$.
 - Here π is interpreted as a row vector.
- In that case the Markov chain with initial distribution π and transition matrix q is stationary and the distribution of $\mathbf{x}^{(t)}$ is π .

Stationary Distributions

- Basic Limit Theorem
 - Let $(\boldsymbol{x}^{(1)}, \boldsymbol{x}^{(2)}, ..., \boldsymbol{x}^{(t)})$ be an irreducible, aperiodic Markov chain having a stationary distribution $\pi(\cdot)$. Let $\boldsymbol{x}^{(0)}$ have the distribution π_0 , an arbitrary initial distribution. Then $\lim_{t\to\infty} \pi_t(i) = \pi(i)$ for all states i.
- Markov Chain Monte Carlo (MCMC)
 - Main Idea: create a Markov chain with stationary distribution equal to target distribution.

Additional Resources

- Prof. Joe Chang's Stochastic Processes notes
 - http://www.stat.yale.edu/~pollard/Courses/251.spring 2013/Handouts/Chang-MarkovChains.pdf
- Material on Stationary and Limiting
 Distributions by Prof. Gordan Žitkovic
 - https://web.ma.utexas.edu/users/gordanz/notes/statio
 nary_distributions_color.pdf

Discussion of Monte Carlo Methods

The Monte Carlo principle

- p(x): a target density
- Monte Carlo techniques draws a set of (iid) samples $\{x_1,...,x_N\}$ from p in order to approximate p with the empirical distribution

$$p(x) \approx \frac{1}{N} \sum_{i=1}^{N} \delta(x = x^{(i)})$$

• Using these samples we can approximate expectations with tractable empirical sums that converge to the true expectation, e.g.

$$\int f(x)p(x)dx \approx \frac{1}{N} \sum_{i=1}^{N} f(x^{(i)})$$

Importance Sampling

• p(x) is known, and we want to compute

$$\int f(x)p(x)dx$$

• We introduce another an auxiliary (**proposal**) density that its support is a superset of the support of p. Then:

$$\int f(x) \underbrace{p(x)/q(x)}_{w(x) \text{ 'importance weight'}} *q(x)dx \approx \sum_{i=1}^{N} f(x^{(i)})w(x^{(i)})$$

- Idea: Sample from q instead of p and
 - Weight the samples according to their importance as above
- Key issue is a 'good' choice of q.
 - Sampling from q must be easy and calculations must not be costly

Sequential Monte Carlo (SMC)

- SMC is an online algorithm whose goal is to estimate the distribution $p(x_{0:t} | y_{1:t})$, where
 - $-y_t$ is observation at each time t
 - $x_{0:t}$ are hidden parameters/states that must be estimated
 - We have a model:
 - Initial distribution:
 - Dynamic model:
 - Measurement model:

$$p\left(x_0\right)$$

$$p(x_t|x_{0:t-1}, y_{1:t-1})$$
 for $t \ge 1$

$$p(y_t|x_{0:t}, y_{1:t-1})$$
 for $t \ge 1$

Sequential Monte Carlo (SMC)

• We define a *proposal* distribution:

$$q(\widetilde{x}_{0:t}|y_{1:t}) = p(x_{0:t-1}|y_{1:t-1})q(\widetilde{x}_t|x_{0:t-1},y_{1:t})$$

• Then the importance weights are:

$$w_{t} = \frac{p(\widetilde{x}_{0:t}|y_{1:t})}{q(\widetilde{x}_{0:t}|y_{1:t})} = \frac{p(x_{0:t-1}|y_{1:t})}{p(x_{0:t-1}|y_{1:t-1})} \frac{p(\widetilde{x}_{t}|x_{0:t-1},y_{1:t})}{q(\widetilde{x}_{t}|x_{0:t-1},y_{1:t})}$$

$$\propto \frac{p(y_{t}|\widetilde{x}_{t}) p(\widetilde{x}_{t}|x_{0:t-1},y_{1:t-1})}{q_{t}(\widetilde{x}_{t}|x_{0:t-1},y_{1:t})}.$$

- Please note that by simplifying choice for proposal distribution: $q(\widetilde{x}_t|x_{0:t-1},y_{1:t}) = p(\widetilde{x}_t|x_{0:t-1},y_{1:t-1})$ we arrive at $w_t \propto p(y_t|\widetilde{x}_t)$
 - This is intuitively appealing.

Sequential Monte Carlo (SMC)

Sequential importance sampling step

- For i = 1, ..., N, sample from the transition priors

$$\widetilde{x}_{t}^{(i)} \sim q_{t} \left(\widetilde{x}_{t} | x_{0:t-1}^{(i)}, y_{1:t} \right)$$

and set

$$\widetilde{x}_{0:t}^{(i)} \triangleq \left(\widetilde{x}_t^{(i)}, x_{0:t-1}^{(i)}\right)$$

- For i = 1, ..., N, evaluate and normalize the importance weights

$$w_t^{(i)} \propto \frac{p\left(y_t | \widetilde{x}_t^{(i)}\right) p\left(\widetilde{x}_t^{(i)} | x_{0:t-1}^{(i)}, y_{1:t-1}\right)}{q_t\left(\widetilde{x}_t^{(i)} | x_{0:t-1}^{(i)}, y_{1:t}\right)}.$$

$Selection \ step$

- Multiply/Discard particles $\left\{\widetilde{x}_{0:t}^{(i)}\right\}_{i=1}^{N}$ with high/low importance weights $w_t^{(i)}$ to obtain N particles $\left\{x_{0:t}^{(i)}\right\}_{i=1}^{N}.$

Graphical Example

Markov Chain Monte Carlo

- Main Idea: create a Markov chain with stationary distribution equal to target distribution.
 - Simulate the chain long enough that samples eventually come from the stationary distribution.

Markov Chain Theory (Very Short Review)

- Markov chain: $q(x^{(t)}|x^{(t-1)}, x^{(t-2)}, ..., x^{(1)}) = q(x^{(t)}|x^{(t-1)})$.
 - $\succ (x^{(1)}, x^{(2)}, ..., x^{(t)})$ represent sequentially drawn samples at discrete times t.
 - $\triangleright p(\cdot|\cdot)$: transition distribution.
- π is the stationary or target distribution of a Markov chain with transition probabilities p if $\pi = \pi q$
- Need to prove:
 - 1. Law of large numbers for dependent samples from Markov chain.
 - 2. Stationary distribution of Markov chain exists.

Ergodic Theorem

• **Theorem 1** (Ergodic Theorem). If a Markov chain is ergodic and $E_{\pi}[f(\mathbf{x})] < \infty$ for the unique target distribution π , then

$$\frac{1}{N} \sum_{i=1}^{N} f(\mathbf{x}^{(i)}) \stackrel{a.s.}{\longrightarrow} E_{\pi}[f(\mathbf{x})],$$

as $N \to \infty$.

- Conditions for a Markov chain to be ergodic:
 - >Aperiodicity, recurrence and irreducibility.

Detailed Balance

• **Theorem 2** (Detailed Balance). Suppose a Markov chain with transition distribution $q(\cdot|\cdot)$) satisfies the detailed balance condition with probability density function π :

$$q(y|x)\pi(x) = q(x|y)\pi(y)\forall x, y.$$

Then π is the stationary distribution of the Markov chain and the chain is reversible.

Markov Chain Theory Summary

- If we can choose $q(\cdot|\cdot)$ such that the target distribution is the stationary distribution of an ergodic Markov chain:
 - > Sampling from the Markov chain is asymptotically the same as sampling from the target distribution.
 - ➤ No matter initial starting point, will eventually get samples from the target distribution.
 - Can use collection of samples from the Markov chain to summarize the target distribution.
- In practice, common MCMC algorithms designed so the Markov chain is ergodic and satisfies detailed balance.

Metropolis-Hastings Algorithm

- Defines the acceptance probability such that the Markov chain satisfies detailed balance when combined with an arbitrary proposal distribution, $q(\cdot|\cdot)$.
 - \geq q(·|·) relates to transition probability discussed above.

- Don't need to know the normalizing constant of the posterior.
- Can be used with discrete and continuous parameters, in general.
 - ➤ Wide range of choices for the proposal distribution, leading to different convergence rates.

Metropolis-Hastings Algorithm

- Initialise x⁽⁰⁾.
- 2. For i = 0 to N 1
 - Sample $u \sim \mathcal{U}_{[0,1]}$.
 - Sample $x^* \sim q(x^*|x^{(i)})$.
 - $\quad \text{If } u < \mathcal{A}(x^{(i)}, x^\star) = \min \left\{ 1, \frac{p(x^\star)q(x^{(i)}|x^\star)}{p(x^{(i)})q(x^\star|x^{(i)})} \right\}$ $x^{(i+1)} = x^\star$

else

$$x^{(i+1)} = x^{(i)}$$

The Metropolis algorithm assumes a symmetric random walk proposal $q(x^*|x^{(i)}) = q(x^{(i)}|x^*)$ and, hence, the acceptance ratio simplifies to

$$\mathcal{A}(x^{(i)}, x^{\star}) = \min\left\{1, \frac{p(x^{\star})}{p(x^{(i)})}\right\}.$$

MCMC Challenges and Extensions

- Basic random-walk Metropolis-Hastings can be very slow to converge.
 - > Especially for highly correlated parameters in the posterior.
 - > Reparameterization or auxiliary variables can sometimes help.
 - ➤ Multi-modal posterior distributions.
 - Simulated tempering methods.

• Other extensions:

- ➤ Slice-sampling, reversible-jump sampling, sequential Monte Carlo, genetic algorithms.
- Approaches to rapidly explore the posterior by suppressing randomwalk behavior.

Gibbs Sampling

• Component-wise proposal q:

$$q(x^\star|x^{(i)}) = \begin{cases} p(x_j^\star|x_{-j}^{(i)}) & \text{If } x_{-j}^\star = x_{-j}^{(i)} \\ 0 & \text{Otherwise.} \end{cases}$$

Where the notation means:

$$p(x_j|x_{-j}) = p(x_j|x_1, \dots, x_{j-1}, x_{j+1}, \dots, x_n)$$

• In this case, the acceptance probability

is
$$\mathcal{A}(x^{(i)}, x^{\star})=1$$

The Gibbs Sampling Algorithm

- 1. Initialise $x_{0,1:n}$.
- 2. For i = 0 to N 1
 - Sample $x_1^{(i+1)} \sim p(x_1|x_2^{(i)}, x_3^{(i)}, \dots, x_n^{(i)}).$
 - Sample $x_2^{(i+1)} \sim p(x_2|x_1^{(i+1)}, x_3^{(i)}, \dots, x_n^{(i)})$.

:

- Sample $x_j^{(i+1)} \sim p(x_j|x_1^{(i+1)}, \dots, x_{j-1}^{(i+1)}, x_{j+1}^{(i)}, \dots, x_n^{(i)})$.

:

- Sample $x_n^{(i+1)} \sim p(x_n|x_1^{(i+1)}, x_2^{(i+1)}, \dots, x_{n-1}^{(i+1)})$.

Hamiltonian Monte Carlo (HMC)

- As before, suppose the target distribution to sample is p(x).
- The Hamiltonian (which comes from Newtonian Mechanics) is defined by

$$H(x,p) = U(x) + \frac{1}{2} p^{T} M^{-1} p$$

where M is the mass matrix which is symmetric and positive, p is the momentum, x is the position and U(x) is the potential energy.

Hamiltonian Monte Carlo

• If p(x) is the target distribution, then we let $U(x) = -\ln(p(x))$. Thus

$$p(x) = \exp(-U(x)).$$

- This is related to Boltzmann distribution.
- The algorithm fixes an integer L > 0 referred to as number of leap-frog steps and a step size Δt .
- Suppose the chain is at $X_n = x_n$. It (sets the initial state of the leap-frog to $x_n(0) = x_n$; It also samples a random momentum $p_n(0)$ according to Gaussian distribution N(0, M).

HMC Algorithm

Next we recall the Hamilton Equations

$$\frac{dx}{dt} = \frac{\partial H}{\partial \boldsymbol{p}},$$

and

$$\frac{d\mathbf{p}}{dt} = -\frac{\partial H}{\partial x}.$$

- We will use the above and finite difference approximations to derivatives in every leap-from step, combined with $U(x) = -\ln(p(x))$. Discretization gives the following update rule.
- The particle under Hamiltonian dynamics for L Δt seconds corresponding to L leap-frog states of Δt seconds each.

HMC Algorithm

• The finite difference to Hamiltonian equations leads to the following updates:

$$\begin{aligned} \mathbf{p}_n \left(t + \frac{\Delta t}{2} \right) &= \mathbf{p}_n(t) - \frac{\Delta t}{2} \nabla U(\mathbf{x})|_{\mathbf{x} = \mathbf{x}_n(t)} \\ \mathbf{x}_n(t + \Delta t) &= \mathbf{x}_n(t) + \Delta t M^{-1} \mathbf{p}_n \left(t + \frac{\Delta t}{2} \right) \\ \mathbf{p}_n(t + \Delta t) &= \mathbf{p}_n \left(t + \frac{\Delta t}{2} \right) - \frac{\Delta t}{2} \nabla U(\mathbf{x})|_{\mathbf{x} = \mathbf{x}_n(t + \Delta t)} \end{aligned}$$

- These finite difference equations when applied to $x_n(0)$ and $p_n(0)$ give $x_n(L \Delta t)$ and $p_n(L \Delta t)$.
- The Hamiltonian Monte-Carlo (HMC) now uses the Metropolis-Hasting update technique in order to guarantee the convergence of stationary distribution to p(x).

HMC Algorithm

• The transition from $X_n = x_n$ to X_{n+1} is given by the Metropolis-Hasting update:

$$\mathbf{X}_{n+1}|\mathbf{X}_n = \mathbf{x}_n = egin{cases} \mathbf{x}_n(L\Delta t) & \text{with probability } \alpha\left(\mathbf{x}_n(0), \mathbf{x}_n(L\Delta t)\right) \\ \mathbf{x}_n(0) & \text{otherwise} \end{cases}$$

where the acceptance probability is given by:

$$\alpha\left(\mathbf{x}_n(0), \mathbf{x}_n(L\Delta t)\right) = \min\left(1, \frac{\exp[-H(\mathbf{x}_n(L\Delta t), \mathbf{p}_n(L\Delta t))]}{\exp[-H(\mathbf{x}_n(0), \mathbf{p}_n(0))]}\right)$$

- This process is repeated for X_{n+1}, X_{n+2}, \dots
- Under mild assumption the limiting distribution can be proved to be p(x).

Metropolis Adjusted Langevin Algorithm (MALA)

- MALA is of interest due to its simplicity.
- Updates for iteration t + 1:

$$\tilde{x}^{(n+1)} = x^{(n)} + \frac{\epsilon}{2} \nabla \ln(p(x^{(n)})) + N(\mathbf{0}, \epsilon \mathbf{I})$$

• This proposal is accepted or rejected according to

probability min (1,
$$\frac{p(\tilde{x}^{(n+1)})q(x^{(n)}|\tilde{x}^{(n+1)})}{p(x^{(n)})q(\tilde{x}^{(n+1)}|x^{(n)})}$$
), where

$$q(y|x) \propto \exp(-|\frac{y-x-\frac{\epsilon}{2}\nabla \ln(p(x^{(n)}))}{2\epsilon}|^2).$$

• Under mild assumption the limiting distribution can be proved to be p(x).