MAT 150C: MODERN ALGEBRA Homework 2

Recall that a polynomial $f \in \mathbb{C}[x_1, \dots, x_n]$ is called *irreducible* if it cannot be factored into non-constant polynomials.

COMPUTATIONAL EXERCISES

- 1. How many maximal ideals in $\mathbb{C}[x,y]$ contain both $f(x,y)=x^2+y^2-5$ and g(x,y)=xy-2? (OPTIONAL: How many ideals in $\mathbb{C}[x,y]$, maximal or not, contain f(x,y) and g(x,y)?)
- 2. Factor the following polynomials into irreducible factors in $\mathbb{F}_p[x]$:
 - (a) $x^3 + x^2 + x + 1$, p = 2.
 - (b) $x^2 3x 3$, p = 5.

THEORETICAL EXERCISES

- 1. Let $f_1, \ldots, f_k, g_1, \ldots, g_m \in \mathbb{C}[x_1, \ldots, x_n]$. We have the algebraic varieties $V(f_1, \ldots, f_k) \subseteq \mathbb{C}^n$ and $V(g_1, \ldots, g_m) \subseteq \mathbb{C}^n$. Show that $V(f_1, \ldots, f_k) \cup V(g_1, \ldots, g_m)$ is an algebraic variety.
- 2. (Special case of Bézout's theorem) Let $L = V(ax + by + c) \subseteq \mathbb{C}^2$ be a complex line, and let $f \in \mathbb{C}[x,y]$ be an irreducible degree d polynomial. Show that $V(f) \cap L$ has at most d points, unless V(f) contains L.
- 3. Show that the ring of formal power series $\mathbb{C}[[x]]$ is a unique factorization domain.
- 4. (OPTIONAL) Let $f \in \mathbb{C}[x,y]$ be an irreducible polynomial. A point $p \in V(f)$ is called a *singular* point if

$$f(p) = \frac{\partial f}{\partial x}(p) = \frac{\partial f}{\partial y}(p) = 0$$

Show that V(f) has finitely many singular points.