Machine Learning Model

1.1 Model

model แนะนำยาต้านจุลชีพในระบบแบ่งออกเป็น 2 กลุ่ม คือ model แนะนำยาสำหรับเชื้อแบคทีเรียแกรม บวก (GP) และ model แนะนำยาสำหรับเชื้อแบคทีเรียแกรมลบ (GN) แต่ละกลุ่มประกอบด้วย model สำหรับยาต้านจุล ชีพชนิดละ 1 model ผลลัพธ์ของ model จะบ่งชี้ว่า model แนะนำให้ใช้ยาต้านจุลชีพชนิดนั้น ๆ หรือไม่ กล่าวคือ เมื่อ ผลลัพธ์เป็น True แสดงว่า model แนะนำให้ใช้ยาต้านจุลชีพชนิดนี้ และเมื่อผลลัพธ์เป็น False แสดงว่า model ไม่แนะนำให้ใช้ยาต้านจุลชีพชนิดนี้

ทั้งนี้จะทำการสร้าง model แนะนำยาต้านจุลชีพกลุ่มละ 11 model โดยเลือกจากยาต้านจุลชีพที่ถูกแนะนำ มากที่สุด (พิจารณาจาก dataset ที่มี) model แนะนำยาต้านจุลชีพในระบบมีดังนี้ (เรียงตามจำนวนครั้งที่ถูกแนะนำ จาก มากไปน้อย)

model แนะนำยาต้านจุลชีพ		
กลุ่มเชื้อแบคทีเรียแกรมบวก		
1	Amoxicillin/clavulanic acid	
2	Trimethoprim/sulfamethoxazole	
3	Cefovecin	
4	Cefalexin	
5	Clindamycin	
6	Nitrofurantoin	
7	Amikacin	
8	Doxycycline	
9	Marbofloxacin	
10	Vancomycin	
11	Enrofloxacin	

model แนะนำยาต้านจุลชีพ		
กลุ่มเชื้อแบคทีเรียแกรมลบ		
1	Trimethoprim/sulfamethoxazole	
2	Marbofloxacin	
3	Cefovecin	
4	Amikacin	
5	Amoxicillin/clavulanic acid	
6	Imipenem	
7	Enrofloxacin	
8	Cefalexin	
9	Gentamicin	
10	Nitrofurantoin	
11	Doxycycline	

1.2 Dataset

ชุดข้อมูลที่ใช้ในการสร้างและทดสอบ model แนะนำยาต้านจุลชีพได้มาจากรายงานผลการระบุชนิดจุลชีพ และการทดสอบความไวรับต่อยา (Results of Antimicrobial Susceptibility Testing : AST) ปี พ.ศ. 2559 – 2564 เป็น ข้อมูลของสัตว์ป่วย 2 ประเภท คือ สุนัขและแมว รวมทั้งหมด 6,811 รายการ

ข้อมูลแบ่งออกเป็น 2 ชุด ตามชนิดของแบคทีเรีย ได้แก่ ชุดข้อมูลของแบคทีเรียแกรมบวก และ ชุดข้อมูลของ แบคทีเรียแกรมลบ ชุดข้อมูลแกรมบวกมีข้อมูลจำนวน 3,385 รายการ และชุดข้อมูลแกรมลบมีข้อมูลจำนวน 3,426 รายการ ข้อมูลที่ใช้ในการสร้าง model มีดังนี้

- vitek_id คือ ชนิดของ card ที่ใช้ตรวจ
- species คือ ชนิดของสัตว์เลี้ยง
- submitted sample คือ ตัวอย่างที่ส่งตรวจ

- bacteria_genus คือ สกุลแบคทีเรีย
- S/I/R_[ชื่อยาต้านจุลชีพ] คือ ผลตรวจความไวต่อยาต้านจุลชีพแต่ละชนิด
- ans_[ชื่อยาต้านจุลชีพ] คือ ยาต้านจุลชีพที่สัตวแพทย์แนะนำ

ชุดข้อมูลจะถูกแบ่งเป็น training dataset และ test dataset ในสัดส่วน 80:20 โดยทั้ง 2 ชุดข้อมูลมี อัตราส่วนของผลลัพธ์ (True และ False) เท่ากัน

1.3 Data Preprocessing

- สร้าง feature ใหม่ คือ bacteria genus สร้างจาก bacteria species โดยการตัดมาเฉพาะคำแรก
- สร้างข้อมูลใหม่ คือ other และแปลงข้อมูล submitted_sample ทุกตัวที่มีจำนวนน้อยกว่า 10 เป็น other
- เข้ารหัส feature ประเภท nominal ทั้งหมดแบบ one-hot encoding

1.4 Machine Learning Algorithm

algorithm ที่ใช้ใน model แนะนำยาต้านจุลชีพทั้ง 22 model คือ Support Vector Machine

1.5 Model Evaluation

ประเมินประสิทธิภาพของ model จาก test dataset ด้วยวิธี 10-Fold Cross-Validation โดยมีตัววัดคือ Accuracy (ความถูกต้อง), Precision (ความแม่นยำ), Recall (ความระลึก) และ F1-Score (ความถ่วงดุล)