AMENDMENTS TO THE CLAIMS:

The following listing of claims will replace all prior versions and listings of claims in the application.

Claims 1-18 (canceled)

Claim 19 (currently amended): An oxathiincarboxamide of formula (I)

$$G^{3} \xrightarrow{\text{(O)}_{n}} O \xrightarrow{\text{R}^{1}} \overset{\text{R}^{2}}{\underset{\text{I}}{\bigvee}} R^{3}$$

$$G^{2} \xrightarrow{\text{O}} G^{1} \overset{\text{R}^{5}}{\underset{\text{R}^{5}}{\bigvee}} Z$$

$$(I),$$

in which

G¹ represents halogen, trifluoromethyl, difluoromethyl, or cyclopropyl, G² and G³ independently of one another represent hydrogen or methyl, n represents 0, 1 or 2,

R¹, R², R³, and R⁴ independently of one another represent hydrogen, fluorine, chlorine, methyl, isopropyl, or methylthio,

represents hydrogen, C₁-C₈-alkyl, C₁-C₆-alkylsulfinyl, C₁-C₆-alkylsulfonyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-cycloalkyl; represents C₁-C₆-haloalkyl, C₁-C₄-haloalkylthio, C₁-C₄-haloalkylsulfinyl, C₁-C₄-haloalkylsulfonyl, halo-C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms; represents formyl-C₁-C₃-alkyl, (C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl, or (C₁-C₃-alkoxy)carbonyl-C₁-C₃-alkyl; represents (C₁-C₃-haloalkyl)carbonyl-C₁-C₃-alkyl or (C₁-C₃-haloalkoxy)-carbonyl-C₁-C₃-alkyl having in each case 1 to 7 fluorine, chlorine, and/or bromine atoms; represents (C₁-C₃-alkyl)carbonyl-C₁-C₃-haloalkyl or (C₁-C₃-alkoxy)carbonyl-C₁-C₃-haloalkyl having in each case 1 to 6 fluorine, chlorine, and/or bromine atoms; represents (C₁-C₃-haloalkyl having in each case 1 to 13 fluorine, chlorine, and/or bromine atoms; or represents -COR⁶, -CONR⁷R⁸, or -CH₂NR⁹R¹⁰,

- represents hydrogen, C₁-C₈-alkyl, C₁-C₈-alkoxy, C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-cycloalkyl; represents C₁-C₆-haloalkyl, C₁-C₆-haloalkoxy, halo-C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms; or represents -COR¹¹,
- R⁷ and R⁸ independently of one another represent hydrogen, C₁-C₈-alkyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-cycloalkyl; represent C₁-C₈-haloalkyl, halo-C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms; or R⁷ and R⁸ together with the nitrogen atom to which they are attached form a saturated heterocycle having 5 to 8 ring atoms, where the heterocycle optionally contains 1 or 2 further nonadjacent heteroatoms selected from the group consisting of oxygen, sulphur, and NR¹² and is optionally mono- or polysubstituted by identical or different substituents selected from the group consisting of halogen and C₁-C₄-alkyl,
- R^9 and R^{10} independently of one another represent hydrogen, C_1 - C_8 -alkyl, or C_3 - C_8 -cycloalkyl; or represent C_1 - C_8 -haloalkyl, C_3 - C_8 -halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms; or R^9 and R^{10} together with the nitrogen atom to which they are attached form a saturated heterocycle having 5 to 8 ring atoms, where the heterocycle optionally contains 1 or 2 further nonadjacent heteroatoms selected from the group consisting of oxygen, sulphur, and NR^{12} and is optionally mono- or polysubstituted by identical or different substituents selected from the group consisting of halogen and C_1 - C_4 -alkyl,
- R¹¹ represents hydrogen, C₁-C₈-alkyl, C₁-C₈-alkoxy, C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-cycloalkyl; represents C₁-C₆-haloalkyl, C₁-C₆-haloalkoxy, halo-C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms,
- R¹² represents hydrogen or C₁-C₆-alkyl, and
- Z represents $[[Z^1,]]$ Z^2 , Z^3 , or Z^4 , where
 - Z¹ represents phenyl that is optionally mono- to pentasubstituted by identical or different substituents,
 - z² represents cycloalkyl or bicycloalkyl <u>having in each case 3 to 10 carbon</u>
 <u>atoms, that each of which radicals</u> is optionally mono- or poly-

- substituted to tetrasubstituted by identical or different substituents selected from the group consisting of halogen and C₁-C₄-alkyl,
- represents unsubstituted C₂-C₂₀-alkyl or represents C₁-C₂₀-alkyl that is mono- or polysubstituted by identical or different substituents selected from the group consisting of halogen fluorine, chlorine, bromine, iodine, and C₃-C₆-cycloalkyl in which the cycloalkyl moiety is optionally mono-or polysubstituted to tetrasubstituted by identical or different substituents selected from the group consisting of halogen and fluorine, chlorine, bromine, iodine, C₁-C₄-alkyl, and C₁-C₄-haloalkyl, and
- Z⁴ represents C₂-C₂₀-alkenyl or C₂-C₂₀-alkynyl that are optionally mono- or polysubstituted by identical or different substituents selected from the group consisting of halogen fluorine, chlorine, bromine, iodine, and C₃-C₆-cycloalkyl, where the cycloalkyl moiety is optionally be mono- or polysubstituted to tetrasubstituted by identical or different substituents selected from the group consisting of halogen fluorine, chlorine, bromine, iodine, C₁-C₄-alkyl, and C₁-C₄-haloalkyl, or
- Z and R⁴ together with the carbon atoms to which they are attached form an optionally substituted 5- or 6-membered carbocyclic or heterocyclic ring and R¹, R², and R³ independently of one another represent hydrogen or fluorine.

Claim 20 (previously presented): The oxathiincarboxamide of formula (I) as claimed in Claim 19 in which

G¹ represents fluorine, chlorine, bromine, iodine, trifluoromethyl, difluoromethyl, or cyclopropyl,

G² and G³ independently of one another represent hydrogen, or methyl, and n represents 0 or 2.

Claim 21 (previously presented): The oxathiincarboxamide of formula (I) as claimed in Claim 19 in which R⁵ represents hydrogen.

Claim 22 (previously presented): The oxathiincarboxamide of formula (I) as claimed in Claim 19 in which

R¹ represents hydrogen, fluorine, chlorine, or methyl, CS8582 - 4 -

R² represents hydrogen, fluorine, chlorine, isopropyl, or methylthio,

R³ represents hydrogen, fluorine, chlorine, or methyl, and

R⁴ represents hydrogen, fluorine, chlorine, or methyl.

Claims 23-26 (canceled)

Claim 27 (currently amended): A process for preparing a oxathiincarboxamide of formula (I) as claimed in Claim 19 comprising

(a) reacting an oxathiincarboxylic acid derivative of formula (II)

$$G^{3} \xrightarrow{(O)_{n}} O \xrightarrow{O} X^{1}$$
 (II)

in which

G¹, G², G³ and n are as defined for formula (I) in Claim 19,

X¹ represents halogen or hydroxyl,

with an aniline derivative of formula (III)

in which R^1 , R^2 , R^3 , R^4 , R^5 , and Z are as defined for formula (I) in Claim 19,

optionally in the presence of a catalyst, optionally in the presence of a condensing agent, optionally in the presence of an acid binder, and optionally in the presence of a diluent, or

(b) reacting a halooxathiincarboxamide of formula (IV)

$$\begin{array}{c|c}
 & (O)_n & O \\
\hline
G^3 & S \\
G^2 & O \\
G^1 & R^5 & X^2
\end{array}$$
(IV)

in which

G¹, G², G³, n, R¹, R², R³, R⁴, and R⁵ are as defined for formula (I) in Claim 19, and

X² represents bromine or iodine.

with a boronic acid derivative of formula (V)

$$\frac{A^{1}-O-B-O-A^{2}}{Z^{1}}$$

in which

Z¹ is as defined for formula (I) in Claim-19, and

A⁴ and A² each represent hydrogen or together represent tetramethylether,

in the presence of a catalyst, optionally in the presence of an acid binder, and optionally in the presence of a diluent, or

(c) reacting an exathiincarboxamide-boronic acid derivative of formula (VI)

$$G^3$$
 G^3
 G^3
 G^4
 G^3
 G^4
 G^3
 G^4
 G^3
 G^4
 G^4
 G^3
 G^4
 G^4

in which

G¹, G², G³, n, R¹, R², R³, R⁴, and R⁵ are as defined for formula (I) in Claim 19, and

A³-and A⁴-each represent hydrogen or together represent tetramethylethylene,

with a phenyl derivative of formula (VII)

$$\frac{X^3-Z^1}{}$$
 (VII)

in which

Z¹ is as defined for formula (I) in Claim 19, and

X³—represents chlorine, bromine, iodine, or trifluoromethylsulfonate, in the presence of a catalyst, optionally in the presence of an acid binder, and optionally in the presence of a diluent, or

(d) reacting a halooxathiincarboxamide of formula (IV)

$$\begin{array}{c|c}
 & & & & & & \\
\hline
 & & & & & \\
\hline
 & & & & & \\
\hline
 & & & & & & \\
\hline$$

in-which

G¹, G², G³, n, R¹, R², R³, R⁴, and R⁵-are as defined for formula (I) in Claim 19, and

X² represents bromine or iodine,

with a phenyl derivative of formula (VII)

$$X^3 = Z^1$$
 (VII)

in which

Z¹ is as defined for formula (I) in Claim 19, and

X³—represents chlorine, bromine, iodine, or trifluoromethylsulfonate, in the presence of a palladium or nickel catalyst and in the presence of 4,4,4',4',5,5,5',5'-octamethyl-2,2'-bis-1,3,2-dioxaborolane, optionally in the presence of an acid binder, and optionally in the presence of a diluent, or (e) (b) hydrogenating an oxathiincarboxamide of formula (la)

$$G^{3} \xrightarrow{S} G^{1} \xrightarrow{R^{5}} X^{4}$$

$$(Ia),$$

in which

 G^1 , G^2 , G^3 , n, R^1 , R^2 , R^3 , R^4 , and R^5 are as defined for formula (I) in Claim 19, and

X⁴ represents C₂-C₂₀-alkenyl or C₂-C₂₀-alkynyl, each of which is optionally mono- or polysubstituted by identical or different substituents selected from the group consisting of halogen fluorine, chlorine, bromine, iodine, and C₃-C₆-cycloalkyl, where the cycloalkyl moiety for its part-may is optionally be substituted

mono- to tetrasubstituted by halogen fluorine, chlorine, bromine, iodine, and/or C₁-C₄-alkyl,

optionally in the presence of a diluent and optionally in the presence of a catalyst, or

(f) (c) dehydrating a hydroxyalkyloxathiincarboxamide of formula (VIII)

$$G^{3} \xrightarrow{(O)_{n}} G^{R^{1}} \xrightarrow{R^{2}} R^{3}$$

$$G^{2} \xrightarrow{Q} G^{1} \xrightarrow{R^{5}} X^{5}$$

$$(VIII),$$

in which

 G^1 , G^2 , G^3 , n, R^1 , R^2 , R^3 , R^4 , and R^5 are as defined for formula (I) in Claim 19, and

represents C₂-C₂₀-hydroxyalkyl that is optionally additionally mono- or polysubstituted by identical or different substituents selected from the group consisting of halogen fluorine, chlorine, bromine, iodine, and C₃-C₆-cycloalkyl in which the cycloalkyl moiety is optionally substituted mono- to tetrasubstituted by halogen fluorine, chlorine, bromine, iodine, and/or C₁-C₄-alkyl,

optionally in the presence of a diluent and optionally in the presence of an acid, or

(g) (d) reacting a halooxathiincarboxamide of formula (IV)

$$G^{3} \xrightarrow{(O)_{n}} O \xrightarrow{R^{1}} \overset{R^{2}}{\underset{R^{5}}{\bigvee}} R^{3}$$

$$G^{2} \xrightarrow{O} G^{1} \overset{R^{5}}{\underset{R^{5}}{\bigvee}} X^{2}$$

$$(IV)$$

in which

 G^1 , G^2 , G^3 , n, R^1 , R^2 , R^3 , R^4 , and R^5 are as defined for formula (I) in Claim 19, and

X² represents bromine or iodine,

with an alkyne of formula (IX)

$$HC = A^5$$
 (IX),

in which A^5 represents C_2 - C_{18} -alkyl, each of which is optionally monor polysubstituted by identical or different substituents selected from the group consisting of halogen fluorine, chlorine, bromine, iodine, and C_3 - C_6 -cycloalkyl in which the cycloalkyl moiety is optionally substituted by halogen fluorine, chlorine, bromine, iodine, and/or C_1 - C_4 -alkyl,

or with an alkene of the formula (X)

$$A^{6} \xrightarrow{A^{7}} A^{8} \qquad (X),$$

in which A⁶, A⁷ and A⁸ independently of one another each represent hydrogen or alkyl that is optionally mono- or polysubstituted by identical or different substituents selected from the group consisting of halogen fluorine, chlorine, bromine, iodine, and C₃-C₆-cycloalkyl in which the cycloalkyl moiety is optionally substituted mono- to tetrasubstituted by halogen fluorine, chlorine, bromine, iodine, and/or C₁-C₄-alkyl and in which the total number of carbon atoms of the open-chain part of the molecule does not exceed the number 20,

optionally in the presence of a diluent, optionally in the presence of an acid binder, and in the presence of one or more catalysts, or

(h) (e) reacting a ketone of formula (XI)

$$G^{3} \xrightarrow{(O)_{n}} O \xrightarrow{R^{1}} R^{2}$$

$$G^{2} \xrightarrow{O} G^{1} \xrightarrow{R^{5}} O \xrightarrow{A^{9}} A^{9}$$
(XI),

in which

 G^1 , G^2 , G^3 , n, R^1 , R^2 , R^3 , R^4 , and R^5 are as defined for formula (I) in Claim 19, and

A⁹ represents hydrogen or C₁-C₁₈-alkyl that is optionally mono- or polysubstituted by identical or different substituents selected from the group consisting of halogen fluorine, chlorine, bromine, iodine, and C₃-C₆-cycloalkyl in which the cycloalkyl moiety is

optionally substituted mono- to tetrasubstituted by halogen fluorine, chlorine, bromine, iodine, and/or C₁-C₄-alkyl,

with a phosphorus compound of formula (XII)

$$A^{10}$$
— P_X (XII),

in which

A¹⁰ represents C₁-C₁₈-alkyl that is optionally mono- or polysubstituted by identical or different substituents selected from the group consisting of halogen fluorine, chlorine, bromine, iodine, and C₃-C₆-cycloalkyl in which the cycloalkyl moiety is optionally substituted mono- to tetrasubstituted by halogen fluorine, chlorine, bromine, iodine, and/or C₁-C₄-alkyl, and

Px represents a grouping -P⁺(C₆H₅)₃ Cl⁻, -P⁺(C₆H₅)₃ Br⁻, -P⁺(C₆H₅)₃ l⁻, -P(=O)(OCH₃)₃, or -P(=O)(OC₂H₅)₃,

optionally in the presence of a diluent, or

(i) (f) reacting an oxathiincarboxamide of formula (lb)

$$G^3$$
 G^2
 G^3
 G^3
 G^3
 G^4
 G^3
 G^4
 G^3
 G^4
 G^3
 G^4
 G^3
 G^4
 G^5
 G^6
 G^7
 G^7

in which G¹, G², G³, n, R¹, R², R³, R⁴, and Z are as defined for formula (I) in Claim 19,

with a halide of formula (XIII)

$$R^{5-1} X^6$$
 (XIII)

in which

R⁵⁻¹ represents C_1 - C_8 -alkyl, C_1 - C_6 -alkylsulfinyl, C_1 - C_6 -alkylsulfonyl, C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl, or C_3 - C_8 -cycloalkyl; represents C_1 - C_6 -haloalkyl, C_1 - C_4 -haloalkylthio, C_1 - C_4 -haloalkylsulfinyl, C_1 - C_4 -haloalkylsulfonyl, halo- C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl, or C_3 - C_8 -halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms; represents formyl- C_1 - C_3 -alkyl, (C_1 - C_3 -alkyl)carbonyl- C_1 - C_3 -alkyl, or (C_1 - C_3 -alkoxy)carbonyl- C_1 - C_3 -alkyl; represents (C_1 - C_3 -haloalkyl)carbonyl- C_1 - C_3 -alkyl or (C_1 - C_3 -alkyl)carbonyl- C_1 - C_3 -alkyl or (C_1 - C_3 -alkyl)carbonyl- C_1 - C_3 -alkyl or (C_1 - C_3 -alkyl)carbonyl- C_1 - C_3 -alkyl or (C_1 - C_3 -alkyl)carbonyl- C_1 - C_3 -alkyl or (C_1 - C_3 -alkyl)carbonyl- C_1 - C_3 -alkyl or (C_1 - C_3 -alkyl)carbonyl- C_1 - C_3 -alkyl or (C_1 - C_3 -alkyl)carbonyl- C_1 - C_3 -alkyl or (C_1 - C_3 -alkyl)carbonyl- C_1 - C_3 -alkyl or (C_1 - C_3 -alkyl)

haloalkoxy)carbonyl- C_1 - C_3 -alkyl having in each case 1 to 7 fluorine, chlorine, and/or bromine atoms; represents (C_1 - C_3 -alkyl)carbonyl- C_1 - C_3 -haloalkyl or (C_1 - C_3 -alkoxy)carbonyl- C_1 - C_3 -haloalkyl having in each case 1 to 6 fluorine, chlorine, and/or bromine atoms; represents (C_1 - C_3 -haloalkyl)carbonyl- C_1 - C_3 -haloalkyl or (C_1 - C_3 -haloalkoxy)carbonyl- C_1 - C_3 -haloalkyl having in each case 1 to 13 fluorine, chlorine, and/or bromine atoms; or represents - COR^6 , - $CONR^7R^8$ or - $CH_2NR^9R^{10}$ in which R^6 , R^7 , R^8 , R^9 and R^{10} are as defined for formula (I) in Claim 19, and represents chlorine, bromine or iodine,

in the presence of a base and in the presence of a diluent.

Claim 28 (previously presented): A composition for controlling unwanted microorganisms comprising one or more oxathiincarboxamides of formula (I) as claimed in Claim 19 and one or more extenders and/or surfactants.

Claim 29 (withdrawn): A method for controlling unwanted microorganisms comprising applying one or more oxathiincarboxamides of formula (I) as claimed in Claim 19 to the microorganisms and/or their habitat.

Claims 30-31 (canceled)

 X^6

Claim 32 (previously presented): An oxathiincarboxamideboronic acid derivative of formula (VI)

$$G^{3}$$
 G^{2}
 G^{1}
 G^{1}
 G^{2}
 G^{2}
 G^{3}
 G^{1}
 G^{2}
 G^{3}
 G^{2}
 G^{3}
 G^{3}
 G^{4}
 G^{5}
 G^{1}
 G^{2}
 G^{3}
 G^{4}
 G^{5}
 G^{5}
 G^{5}
 G^{7}
 G^{7

in which

G¹ represents halogen, trifluoromethyl, difluoromethyl, or cyclopropyl, G² and G³ independently of one another represent hydrogen or methyl,

n represents 0, 1 or 2, CS8582

- R¹, R², R³, and R⁴ independently of one another represent hydrogen, fluorine, chlorine, methyl, isopropyl, or methylthio,
- represents hydrogen, C₁-C₈-alkyl, C₁-C₆-alkylsulfinyl, C₁-C₆-alkylsulfonyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-cycloalkyl; represents C₁-C₆-haloalkyl, C₁-C₄-haloalkylthio, C₁-C₄-haloalkylsulfinyl, C₁-C₄-haloalkylsulfonyl, halo-C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms; represents formyl-C₁-C₃-alkyl, (C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl, or (C₁-C₃-alkoxy)carbonyl-C₁-C₃-alkyl; represents (C₁-C₃-haloalkyl)carbonyl-C₁-C₃-alkyl or (C₁-C₃-haloalkoxy)-carbonyl-C₁-C₃-alkyl having in each case 1 to 7 fluorine, chlorine, and/or bromine atoms; represents (C₁-C₃-alkyl)carbonyl-C₁-C₃-haloalkyl or (C₁-C₃-alkoxy)carbonyl-C₁-C₃-haloalkyl having in each case 1 to 6 fluorine, chlorine, and/or bromine atoms; represents (C₁-C₃-haloalkyl)carbonyl-C₁-C₃-haloalkyl or (C₁-C₃-haloalkyl) or (C₁-C₃-haloalkoxy)carbonyl-C₁-C₃-haloalkyl having in each case 1 to 13 fluorine, chlorine, and/or bromine atoms; or represents -COR⁶, -CONR⁷R⁸, or -CH₂NR⁹R¹⁰,
- R⁶ represents hydrogen, C₁-C₈-alkyl, C₁-C₈-alkoxy, C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-cycloalkyl; represents C₁-C₆-haloalkyl, C₁-C₆-haloalkoxy, halo-C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms; or represents -COR¹¹,
- R⁷ and R⁸ independently of one another represent hydrogen, C₁-C₈-alkyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-cycloalkyl; represent C₁-C₈-haloalkyl, halo-C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms; or R⁷ and R⁸ together with the nitrogen atom to which they are attached form a saturated heterocycle having 5 to 8 ring atoms, where the heterocycle optionally contains 1 or 2 further nonadjacent heteroatoms selected from the group consisting of oxygen, sulphur, and NR¹² and is optionally mono- or polysubstituted by identical or different substituents selected from the group consisting of halogen and C₁-C₄-alkyl,
- R⁹ and R¹⁰ independently of one another represent hydrogen, C₁-C₈-alkyl, or C₃-C₈-cycloalkyl; or represent C₁-C₈-haloalkyl, C₃-C₈-halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms; or R⁹ and R¹⁰ together with the nitrogen atom to which they are attached form a saturated hetero-

cycle having 5 to 8 ring atoms, where the heterocycle optionally contains 1 or 2 further nonadjacent heteroatoms selected from the group consisting of oxygen, sulphur, and NR^{12} and is optionally mono- or polysubstituted by identical or different substituents selected from the group consisting of halogen and C_1 - C_4 -alkyl,

R¹¹ represents hydrogen, C₁-C₈-alkyl, C₁-C₈-alkoxy, C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-cycloalkyl; represents C₁-C₆-haloalkyl, C₁-C₆-haloalkoxy, halo-C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms,

R¹² represents hydrogen or C₁-C₆-alkyl, and A³ and A⁴ each represent hydrogen or together represent tetramethylethylene.

Claim 33 (previously presented): A hydroxyalkyloxathiincarboxamide of formula (VIII)

$$G^{3} \xrightarrow{(O)_{n}} O \xrightarrow{R^{1}} R^{2} \xrightarrow{R^{2}} R^{3}$$

$$G^{2} \xrightarrow{O} G^{1} \xrightarrow{R^{5}} X^{5}$$

$$(VIII),$$

in which

 G^1 represents halogen, trifluoromethyl, difluoromethyl, or cyclopropyl, G^2 and G^3 independently of one another represent hydrogen or methyl,

n represents 0, 1 or 2,

R¹, R², R³, and R⁴ independently of one another represent hydrogen, fluorine, chlorine, methyl, isopropyl, or methylthio,

represents hydrogen, C₁-C₈-alkyl, C₁-C₆-alkylsulfinyl, C₁-C₆-alkylsulfonyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-cycloalkyl; represents C₁-C₆-haloalkyl, C₁-C₄-haloalkylthio, C₁-C₄-haloalkylsulfinyl, C₁-C₄-haloalkylsulfonyl, halo-C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms; represents formyl-C₁-C₃-alkyl, (C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl, or (C₁-C₃-alkoxy)carbonyl-C₁-C₃-alkyl; represents (C₁-C₃-haloalkyl)carbonyl-C₁-C₃-alkyl or (C₁-C₃-haloalkoxy)-carbonyl-C₁-C₃-alkyl having in each case 1 to 7 fluorine, chlorine, and/or bromine atoms; represents (C₁-C₃-alkyl)carbonyl-C₁-C₃-haloalkyl or (C₁-C₃-baloalkyl) or (C₁-C₃-baloalkyl)

- alkoxy)carbonyl-C₁-C₃-haloalkyl having in each case 1 to 6 fluorine, chlorine, and/or bromine atoms; represents (C₁-C₃-haloalkyl)carbonyl-C₁-C₃-haloalkyl or (C₁-C₃-haloalkoxy)carbonyl-C₁-C₃-haloalkyl having in each case 1 to 13 fluorine, chlorine, and/or bromine atoms; or represents -COR⁶, -CONR⁷R⁸, or -CH₂NR⁹R¹⁰,
- represents hydrogen, C₁-C₈-alkyl, C₁-C₈-alkoxy, C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-cycloalkyl; represents C₁-C₆-haloalkyl, C₁-C₆-haloalkoxy, halo-C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms; or represents -COR¹¹,
- R^7 and R^8 independently of one another represent hydrogen, $\mathsf{C}_1\text{-}\mathsf{C}_8\text{-}\text{alkyl}$, $\mathsf{C}_1\text{-}\mathsf{C}_4\text{-}$ alkoxy- $\mathsf{C}_1\text{-}\mathsf{C}_4\text{-}$ alkyl, or $\mathsf{C}_3\text{-}\mathsf{C}_8\text{-}\text{cycloalkyl}$; represent $\mathsf{C}_1\text{-}\mathsf{C}_8\text{-}\text{haloalkyl}$, halo- $\mathsf{C}_1\text{-}\mathsf{C}_4\text{-}$ alkoxy- $\mathsf{C}_1\text{-}\mathsf{C}_4\text{-}$ alkyl, or $\mathsf{C}_3\text{-}\mathsf{C}_8\text{-}\text{halocycloalkyl}$ having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms; or R^7 and R^8 together with the nitrogen atom to which they are attached form a saturated heterocycle having 5 to 8 ring atoms, where the heterocycle optionally contains 1 or 2 further nonadjacent heteroatoms selected from the group consisting of oxygen, sulphur, and NR^{12} and is optionally mono- or polysubstituted by identical or different substituents selected from the group consisting of halogen and $\mathsf{C}_1\text{-}\mathsf{C}_4\text{-}\text{alkyl}$,
- R^9 and R^{10} independently of one another represent hydrogen, C_1 - C_8 -alkyl, or C_3 - C_8 -cycloalkyl; or represent C_1 - C_8 -haloalkyl, C_3 - C_8 -halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms; or R^9 and R^{10} together with the nitrogen atom to which they are attached form a saturated heterocycle having 5 to 8 ring atoms, where the heterocycle optionally contains 1 or 2 further nonadjacent heteroatoms selected from the group consisting of oxygen, sulphur, and NR^{12} and is optionally mono- or polysubstituted by identical or different substituents selected from the group consisting of halogen and C_1 - C_4 -alkyl,
- R¹¹ represents hydrogen, C₁-C₈-alkyl, C₁-C₈-alkoxy, C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-cycloalkyl; represents C₁-C₆-haloalkyl, C₁-C₆-haloalkoxy, halo-C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms,
- R¹² represents hydrogen or C₁-C₆-alkyl, and

 X^5 represents C_2 - C_{20} -hydroxyalkyl that is optionally additionally mono- or polysubstituted by identical or different substituents selected from the group consisting of halogen and C_3 - C_6 -cycloalkyl in which the cycloalkyl moiety is optionally substituted by halogen and/or C_1 - C_4 -alkyl.

Claims 34-35 (canceled)

CS8582 - 15 -