Задание 5 (на 10.10.13)

Определение. $\Sigma_0 = \Pi_0$ — множество разрешимых предикатов на множестве натуральных чисел. Σ_{k+1} — это множество предикатов, которые представляются в виде $\exists y P(x,y)$, где $P \in \Pi_k$, а предикаты из Π_{k+1} представляются в виде $\forall y P(x,y)$, где $P \in \Sigma_k$. Последовательность Σ_k (и Π_k) называется арифметической иерархией.

- СС30. а) Покажите, что Σ_1 это множество перичислимых предикатов, а Π_1 коперечислимых. 6) Покажите, что $Q \in \Sigma_k$ тогда и только тогда, когда Q можно представить в виде: Q(x) = $\exists y_1 \forall y_2 \exists y_3 \dots P(x,y_1,y_2,\dots,y_n)$, где P — разрешимый предикат. (соответственно $Q \in \Pi_k$ $Q(x) = \forall y_1 \exists y_2 \forall y_3 \dots P(x, y_1, y_2, \dots, y_n).$
 - в) Покажите, что $\Sigma_k \cup \Pi_k \subseteq \Sigma_{k+1} \cap \Pi_{k+1}$.
 - г) Покажите, что каждый арифметичный предикат содержится в Σ_k для некоторого k.
 - д) Покажите, что все предикаты из Σ_k являются арифметичными.

Определение. Множество A m-сводится к множеству B, если существует такая вычислимая всюду определенная функция f, что $x \in A \iff f(x) \in B$. Обозначение: $A \leq_m B$.

 $|\mathbf{CC31.}|$ a) $A \leq_m B$, B — разрешимо, докажите, что A — разрешимо.

- б) $A \leq_m B, B$ перечислимо, докажите, что A перечислимо.
- в) Докажите, что $A \leq_m B \iff \mathbb{N} \setminus A \leq_m \mathbb{N} \setminus B$.
- г) $A \leq_m B$, $B \in \Sigma_k$ докажите, что $A \in \Sigma_k$.

СС32. а) Докажите, что существует универсальное перечислимое множество. Т.е. такое перечислимое множество пар U, что для любого перечислимого множества A найдется элемент a, что $A = \{x \mid (a, x) \in U\}.$

- б) Докажите, что для всех $k \ge 1$ существует универсальное множество в Σ_k и Π_k .
- в) Докажите, что универсальное множество для Σ_k не содержится в Π_k .
- г) Докажите, что $\Sigma_k \subsetneq \Sigma_{k+1}$.

| **СС33.** | Пусть T — это множество номеров замкнутых формул в сигнатуре $\{+, \times, =\}$, которые истинны в естественной интерпретации на множестве натуральных чисел.

- а) Докажите, что для любого $P \in \Sigma_k$ выполняется $P \leq_m T$.
- б) (Теорема Тарского) Докажите, что T не является арифметичным.
- в) (Теорема Геделя о неполноте) Покажите, что T не является перечислимым.
- **СС34.** Докажите, что a) DSpace $[n^2] \subseteq D$ Space $[n^3]$; б) NSpace $[n^2] \subseteq N$ Space $[n^3]$.

СС35. Покажите, что язык простых чисел содержится в классе а) со-NP; б) а) (Критерий Пратта) Докажите, что число n простое тогда и только тогда, когда для каждого простого делителя q числа n-1 существует $a \in \{2, 3, ..., n-1\}$ при котором $a^{n-1} = 1 \mod n$ и $a^{\frac{n-1}{q}} \neq 1 \mod n$. в) Докажите, что язык простых чисел лежит в NP.

Машина Тьюринга называется забывчивой, если положение головки в любой момент времени зависит только от длины входа. Докажите, что любую машину Тьюринга, работающую время T(n) можно промоделировать за время $O(T^2(n))$ на забывчивой одноленточной машине. б) А на забывчивой двухленточной за время $O(T(n) \log T(n))$.

СС 23. Покажите, что каждый язык, который принимается к-ленточной недетерминированной машиной Тьюринга за время f(n) может быть принят 2-ленточной недетерминорованной машиной за время O(f(n)).

СС 28. б) Покажите, что если в сигнатуре есть достаточное количество функциональных и предикатных символов арности 1 и 2, то множество тавтологий в этой сигнатуре неразрешимо.

СС 29. Покажите, что язык, состоящий из выполнимых формул в $KH\Phi$, в которых каждый дизъюнкт является либо хорновским (дизъюнкт называется хорновским, если не более одной переменной входит в него без отрицания), либо состоит из двух литералов, является NP-полным.