Матан

Сергей Григорян

14 октября 2024 г.

Содержание

1	Лекция 4					
	1.1	§2. Предел последовательности	3			
	1.2	Определение предела				
2	Лег	кция 5	7			
	2.1	Монотонные п-ти	8			
	2.2	Последовательность вложенных отрезков	10			
3	Лен	кция 6	1			
	3.1	Бесконечные пределы	11			
	3.2	Дополнения к ранним теоремам				
	3.3		13			
4	Лег	кция 7	L 5			
	4.1	·	15			
			17			
5	Лег	кция 11 2	20			
	5.1	Непрерывность ф-ции в точке	20			
	5.2		24			
6	Лен	кция 12	26			
		·	29			

1 Лекция 4

1.1 §2. Предел последовательности

1.2 Определение предела

Определение 1.1. $a: \mathbb{N} \to A$ - п-ть эл-ов мн-а A. Значение a(n) - наз-ся n-ым членом п-ти. (Обозначается a_n). Сама п-ть обозначается $\{a_n\}$ или $a_n, n \in \mathbb{N}$

Если $A = \mathbb{R}$ - то $\{a_n\}$ - числовая п-ть.

Пример. 1)

$$a: \mathbb{N} \to \{c\}, c \in \mathbb{R}$$

3десь постоянная n-ть $(a_n = c, \forall n \in \mathbb{N})$

- 2) $a_n = n^2, n \in \mathbb{N}$
- 3) $a_{n+2} = a_{n+1} + a_n, a_1 = a_2 = 1$ n-ть Фиббоначи.

Определение 1.2. Число a наз-ся пределом п-ти $\{a_n\}$, если для любого $\varepsilon>0$ найдётся такой номер N, что $|a_n-a|<\varepsilon$ для всех $n\geq N$. Обозначается, как $\lim_{n\to\infty}a_n=a$

Определение 1.3 (В кванторах).

$$\lim_{n \to \infty} a_n = a \iff \forall \varepsilon > 0 \exists N \in \mathbb{N} \colon \forall n \in \mathbb{N} (n \ge N \Rightarrow |a_n - a| < \varepsilon)$$

Или, $a_n \to a \; (\text{при } n \to \infty)$

Замечание.

$$\lim_{n\to\infty} a_n = a \iff \forall \varepsilon > 0, M = \{n \in \mathbb{N} : a_n \not\in (a-\varepsilon, a+\varepsilon)\}, M - \kappa o n e u n o$$

<u>Определение</u> 1.4. Если $\exists \lim_{n\to\infty} a_n$, то $\{a_n\}$ наз-ся сходящейся птью, иначе - расходящейся птью

Π ример.

$$\lim_{n \to \infty} \frac{1}{n} = 0$$

Зафикс. $\varepsilon>0$. Рассмотрим $|\frac{1}{n}-0|<\varepsilon\iff\frac{1}{n}<\varepsilon\iff n>\frac{1}{\varepsilon}\Rightarrow$ нам подойдёт $N=\left\lfloor\frac{1}{\varepsilon}\right\rfloor+1$. Если $n\geq N\Rightarrow n>\frac{1}{\varepsilon}\Rightarrow |\frac{1}{n}-0|<\varepsilon$

Теорема 1.1. (О единственности предела) Если $\lim_{n\to\infty} a_n = a \ u \lim_{n\to\infty} a_n = b$.

Доказательство. Зафикс. $\varepsilon > 0$. По опред. предела $\exists N_1, \forall n \geq N_1(|a_n - a| < \frac{\varepsilon}{2})$ и $\exists N_2, \forall n \geq N_2(|a_n - b| < \frac{\varepsilon}{2})$.

Положим $N = max(N_1, N_2)$:

$$|a - b| = |a - a_N + a_N - b| \le |a - a_N| + |b - a_N| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

Т. к.
$$\varepsilon > 0$$
 - любое \Rightarrow , то $|a-b|=0$, т. е. $a=b$

Задача 1.1.

$$\lim_{n \to \infty} a_n = a \iff \lim_{n \to \infty} |a_n| = |a|$$

Определение 1.5. П-ть $\{a_n\}$ наз-ся ограниченной, если $\{a_n \colon n \in \mathbb{N}\}$ ограничено.

Теорема 1.2. (Об ограниченности сходящейся n-ти) Если $\{a_n\}$ сходит-ся, то она ограничена.

Доказательство. Пусть $\lim_{n\to\infty} a_n = a$. По опред. предела (для $\varepsilon = 1$) $\exists N, \forall n \geq N (a-1 < a_n < a+1)$. Положим $m = min\{a_1, \dots, a_{N-1}, a-1\}, M = max\{a_1, \dots, a_{N-1}, a+1\}$. Тогда $m \leq a_n \leq M$ для всех $n \in \mathbb{N}$. \square

Замечание. Обратное утв. неверно:

Пример.

$$a_n = (-1)^n, n \in \mathbb{N}$$

Предположим, что a_n сходится:

По опред. предела $(\varepsilon = 1)$ $\exists N, \forall n \geq N(a-1 < (-1)^n < a+1)$

- При чётном $n \Rightarrow 1 < a + 1$
- При нечётном $n \Rightarrow a-1 < -1$

 $\Rightarrow a < 0 \land a > 0!!!$ - противоречие

<u>Лемма</u> **1.3.** Для всякого $m \in \mathbb{N}$ n- $mu \{a_n\}$ $u \{b_n\}$, где $b_n = a_{n+m}, \forall n \in \mathbb{N}$ имеют предел одновременно, u если имеют, m0 пределы равны.

Доказательство. Зафикс. $\varepsilon > 0 \Rightarrow$

$$\forall n \ge N_1 \colon (|a_n - a| < \varepsilon) \Rightarrow (\forall n \ge N_1 (|a_{n+m} - a| < \varepsilon))$$
$$(\forall n \ge N_2 (|a_{n+m} - a| < \varepsilon)) \Rightarrow (\forall n \ge N_2 + m(|a_n - a| < \varepsilon))$$
$$\Rightarrow \lim_{n \to \infty} a_n = a \iff \lim_{n \to \infty} b_n = a$$

Определение 1.6. П-ть $\{b_n\}$ об-ся $\{a_{n+m}\}$ и наз-ся m-ным хвостом $\{a_n\}$

Теорема 1.4 (О пределе в нер-вах). Если $a_n \leq b_n$ для всех $n \in \mathbb{N}$ и $\lim_{n \to \infty} a_n = a, \lim_{n \to \infty} b_n = b, \ mo \ a \leq b$

Доказательство. От прот. Пусть b < a. По опред. предела

$$\exists N_1 \colon \forall n \ge N_1 (a - \frac{a - b}{2} < a_n)$$

$$\exists N_2 \colon \forall n \ge N_2(b_n < b + \frac{a-b}{2})$$

Положим $N = max(N_1, N_2)$, тогда:

$$\frac{a+b}{2} < a_N$$
 и $b_N < \frac{a+b}{2} \Rightarrow b_N < a_N!!!$

Замечание.

Пример.

$$0 < \frac{1}{2}, \text{ Ho } \lim_{n \to \infty} \frac{1}{n} = 0$$

Следствие. Eсли $\lim_{n\to\infty}a_n=a,\lim_{n\to\infty}b_n=b,a< b\Rightarrow \exists N, \forall n\geq N$

Теорема 1.5 (О зажатой п-ти). *Если* $a_n \le c_n \le b_n, \forall n \in \mathbb{N}$ $u \lim_{n \to \infty} a_n = \lim_{n \to \infty} \overline{b_n} = a, \ mo \ \exists \lim_{n \to \infty} c_n = a$

Доказательство. Зафикс. $\varepsilon > 0$. По опр. предела:

$$\exists N_1, \forall n \geq N_1(a - \varepsilon < a_n)$$

$$\exists N_2, \forall n \geq N_2(b_n < a + \varepsilon)$$

Положим $N = max(N_1, N_2)$. Тогда при всех $n \ge N$ имеем:

$$a - \varepsilon < a_n \le c_n \le b_n < a + \varepsilon \Rightarrow |c_n - a| < \varepsilon$$

$$\Rightarrow \lim_{n\to\infty} c_n = a$$
. Ч. Т. Д.

Пример.

$$\lim_{n \to \infty} q^n = 0, |q| < 1$$

- q = 0: верно
- $q \neq 0 \Rightarrow \frac{1}{|q|} > 1 \Rightarrow \frac{1}{|q|} = 1 + \alpha, \alpha > 0$ $\frac{1}{|q|^n} = (1 + \alpha)^n \ge 1 + n\alpha > n\alpha$ $\Rightarrow 0 < |q|^n < \frac{1}{n\alpha} (\frac{1}{n\alpha} \to 0) \Rightarrow |q|^n \to 0$

Теорема 1.6. (Арифметические операции с пределами) Пусть $\lim_{n\to\infty} a_n = a$, $\lim_{n\to\infty} b_n = b$. Тогда:

- $1) \quad \lim_{n \to \infty} (a_n + b_n) = a + b$
- 2) $\lim_{n\to\infty} (a_n b_n) = ab$
- 3) Echu $b \neq 0$ u $b_n \neq 0, \forall n \in \mathbb{N}$, mo

$$\frac{\lim_{n\to\infty} a_n}{\lim_{n\to\infty} b_n} = \frac{a}{b}$$

Доказательство. 1) Заф. $\varepsilon > 0$. По опр. предела:

$$\exists N_1, n \ge N_1(|a_n - a| < \frac{\varepsilon}{2})$$

$$\exists N_2, n \ge N_2(|b_n - b| < \frac{\varepsilon}{2})$$

Положим $N = max(N_1, N_2)$. Тогда $\forall n \geq N$:

$$|(a_n + b_n) - (a + b)| \le |(a_n - a) + (b_n - b)| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

2) По теор. 2 п-ть $\{a_n\}$ огр., т. е.

$$\exists C > 0, \forall n \in \mathbb{N}(|a_n| \le C)|b| \le C$$

Заф. $\varepsilon > 0$. По опр. предела:

$$\exists N_1, \forall n \ge N_1(|a_n - a| < \frac{\varepsilon}{2C})$$

$$\exists N_2, \forall n \ge N_2(|b_n - b| < \frac{\varepsilon}{2C})$$

Тогда $\forall n > N = max(N_1, N_2)$:

$$|a_nb_n - ab| = |a_nb_n - a_nb + a_nb - ab| \le |a_n||b_n - b| + |b||a_n - a| < C\frac{\varepsilon}{2C} + C\frac{\varepsilon}{2C} = \varepsilon$$

3) Т. к. $\frac{a_n}{b_n}=a_n*\frac{1}{b_n}$, то дост-но д-ть, что $\lim_{n\to\infty}\frac{1}{b_n}=\frac{1}{b}$, и восп. утв. 2: Т. к. $b\neq 0$, то $\exists N_1, \forall n\geq N_1(|b_n-b|<\frac{|b|}{2})$. Поэтому:

$$|b| = |b - b_n + b_n| \le |b_n - b| + |b_n| \le \frac{|b|}{2} + |b_n|,$$

откуда:

$$|b_n| > \frac{|b|}{2},$$

а значит: $\frac{1}{|b_n|} < \frac{2}{|b|}, \forall n \geq N_1$

Заф. $\varepsilon > 0$. По опр. предела: $\exists N_2, \forall n \geq N_2(|b_n - b| < \frac{|b|^2}{2}\varepsilon)$ Положим $N = max(N_1, N_2)$. Тогда при $\forall n \geq N$:

$$\left| \frac{1}{b_n} - \frac{1}{b} \right| = \frac{|b_n - b|}{|b_n b|} < \frac{2}{|b|^2} \frac{|b|^2}{2} \varepsilon = \varepsilon$$

2 Лекция 5

Пример.

$$a_n = \frac{1}{n^2 + 1} + \frac{2}{n^2 + 2} + \dots + \frac{n}{n^2 + n}, n \in \mathbb{N}$$
$$\frac{1 + 2 + \dots + n}{n^2 + n} \le a_n \le \frac{1 + 2 + \dots + n}{n^2 + 1}$$

$$\frac{n(n+1)}{2(n^2+n)} \le a_n \le \frac{n(n+1)}{2(n^2+1)}$$

$$\frac{1}{2} \le a_n \le \frac{1+\frac{1}{n}}{2+\frac{2}{n^2}} \left(\frac{2}{n^2} \to 0, \frac{1}{n} \to 0\right)$$

$$\Rightarrow \lim_{n \to \infty} a_n = \frac{1}{2}$$

Определение 2.1. Посл-ть $\{\alpha_n\}_1^\infty$ наз-ся беск. малой, если

$$\lim_{n\to\infty}\alpha_n=0$$

Замечание.

$$\lim_{n\to\infty} a_n = a \iff a_n = a + \alpha_n, \, \text{rde } \alpha_n \text{ - 6. M.}$$

Пример. Пусть $\{\alpha_n\}_1^{\infty}$ - б. м., а $\{\beta_n\}_1^{\infty}$ - огранич. Тогда: $\{\alpha_n\beta_n\}_1^{\infty}$ - б. м.

Доказательство. Т. к. $\{\beta_n\}_1^\infty$ - огр., то $\exists C>0\colon \forall n(|\beta_n|\leq C)$

$$-C|\alpha_n| \le \alpha_n \beta_n \le C|\alpha_n|$$

Крайние части $\to 0 \Rightarrow \Pi$ о. т. о двух полицейских $\lim_{n\to\infty} \alpha_n \beta_n = 0$

2.1 Монотонные п-ти

Определение 2.2. П-ть $\{a_n\}_1^{\infty}$ наз-ся нестрого возрастающей (строго возрастающей), если

$$a_n \le a_{n+1}(a_n < a_{n+1}), \forall n \in \mathbb{N}$$

П-ть $\{a_n\}_1^\infty$ наз-ся **нестрого убывающей (строго убыв.**), если:

$$a_n \ge a_{n+1}(a_n > a_{n+1}), \forall n \in \mathbb{N}$$

Такие п-ти наз-ся монотонными.

<u>Замечание</u>. Из onp-я следует, что $\{a_n\}_1^\infty$ нестрого возрастает \iff $\{-a_n\}_1^\infty$ нестрого убывает.

<u>Замечание</u>. Если $a_n \leq a_{n+1}, \forall n \in N \Rightarrow \forall n, m (n < m \rightarrow a_n \leq a_m)$

Теорема 2.1 (Теорема о пределе монотонной п-ти). ПУсть $\{a_n\}_1^{\infty}$ нестрово возрастает и огр. сверху, тогда $\{a_n\}_1^{\infty}$ сходиться и $\lim_{n\to\infty} a_n = \sup\{a_n\}_1^{\infty}$

Пусть $\{a_n\}_1^\infty$ нестрого убывает и огр снизу, тогда $\{a_n\}_1^\infty$ сходиться $u\lim_{n\to\infty}a_n=\inf\{a_n\}_1^\infty$

Доказательство. Док-ем первое утв. По условию $\exists c = \sup\{a_n\}_1^\infty \in \mathbb{R}$. Зафикс. $\varepsilon > 0$. По опр. супремума $\forall n(a_n \leq c)$, также:

$$\exists N(a_N > c - \varepsilon)$$

Поскольку $\{a_n\}_1^\infty$ нестрого возр., то $a_n \ge a_N, \forall n \ge N \Rightarrow$ при всех таких $n \ge N$ имеем:

$$a_N \le a_n$$
 $c-arepsilon < a_N \le a_n \le c < c+arepsilon,$ откуда $|a_n-c| $\Rightarrow \lim_{n \to \infty} a_n = c$$

Второе утв. док-ся аналогично.

<u>Лемма</u> **2.2** (Нер-во Бернулли). *Если* $n \in \mathbb{N}$ u $x \ge -1$, mo:

$$(1+x)^n \ge 1 + nx$$

Доказательство. МММ:

n = 1 Верно.

 $n \Rightarrow n+1$ Пусть утв. верно для n. Тогда:

$$(1+x)^{n+1} = (1+x)(1+x)^n \ge (1+x)(1+nx) = 1+(n+1)x+nx^2 \ge 1+(n+1)x$$

<u>Пример</u>. Для $\forall x \in \mathbb{R}$ n-mb $a_n = (1 + \frac{x}{n})^n$ cxodumcs.

Доказательство. Зафикс. $m \in \mathbb{N}$, что $m \geq |x|$. Тогда при:

$$n \ge m \colon a_n(x) > 0,$$

а также:

$$\frac{a_{n+1}(x)}{a_n(x)} = \frac{\left(1 + \frac{x}{n+1}\right)^{n+1}}{\left(1 + \frac{x}{n}\right)^n} = \left(1 + \frac{x}{n}\right) \left(\frac{1 + \frac{x}{n} - \frac{x}{n} + \frac{x}{n+1}}{1 + \frac{x}{n}}\right)^{n+1} = \left(1 + \frac{x}{n}\right) \left(1 - \frac{\frac{x}{n(n+1)}}{1 + \frac{x}{n}}\right)^{n+1}$$

Исследуем: $\left(-\frac{\frac{x}{n(n+1)}}{1+\frac{x}{n}}\right)$. Она:

$$\begin{cases} > 0, x < 0 \\ \ge -1, x \ge 0 \end{cases}$$

По нер-ву Бернулли:

$$(1+\frac{x}{n})\left(1-\frac{\frac{x}{n(n+1)}}{1+\frac{x}{n}}\right)^{n+1} \ge (1+\frac{x}{n})(1-\frac{\frac{x}{n}}{1+\frac{x}{n}}) = 1$$

Итак, $\{a_n\}_1^\infty(x)$ нестрого возр. при $n\geq m$. По доказанному $a_n(-x)\geq a_m(-x)$, при $n\geq m$.

Т. к.

$$a_n(x)a_n(-x) = \left(1 - \frac{x^2}{n^2}\right)^n \le 1,$$

TO:

$$a_n(x) \le \frac{1}{a_n(-x)} \le \frac{1}{a_m(-x)}$$
, T. e.

 $\{a_n\}_1^\infty$ огр. сверху.

Сл-но, по теореме о пределе монот. посл-ти. $\{a_n(x)\}_{1}^{\infty}$ сход-ся.

Определение 2.3.

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n$$

Задача 2.1. Док-те, что 2 < e < 3

2.2 Последовательность вложенных отрезков

Определение 2.4. П-ть отрезков $\{[a_n,b_n]\}_1^\infty$ наз-ся вложенной, если $\forall n \in \mathbb{N}([a_{n+1},b_{n+1}] \subset [a_n,b_n])$

Если к тому же, $b_n-a_n\to 0$, то п-ть $\{[a_n,b_n]\}_1^\infty$ наз-ся **стягиваю- щейся**.

Теорема 2.3 (Кантор). Всякая п-ть вложенных отрезков имеет общую точку. Если п-ть стягивающаяся, то такая точка единственная.

Доказательство. Пусть задана п-ть $\{[a_n,b_n]\}_1^{\infty}$ вложенных отр-ов. Тогда:

$$\forall n \in \mathbb{N} \colon a_1 \le a_n \le a_{n+1} \le b_{n+1} \le b_n \le b_1$$

П-ть $\{a_n\}_1^{\infty}$ нестрого возр. и огр. сверху (числом b_1). П-ть $\{b_n\}_1^{\infty}$ нестрого убыв. и огр. снизу (числом a_1) $\Rightarrow \{a_n\}_1^{\infty}, \{b_n\}_1^{\infty}$ сход., $a_n \to \alpha, b_n \to \beta$ и $\alpha \le \beta$. Итак $\forall n (a_n \le \alpha \le \beta \le b_n)$, т. е.:

$$[\alpha, \beta] \subset \bigcap_{n=1}^{\infty} [a_n, b_n]$$

Если п-ть $\{[a_n,b_n]\}_1^\infty$ - стягив., то $b_n-a_n\to 0$ Пусть $x,y\in \bigcap_{n=1}^\infty [a_n,b_n]$, тогда $|x-y|\le b_n-a_n\Rightarrow x=y$ Т. е. $\bigcap_{n=1}^\infty [a_n,b_n]=x$, где $x=\alpha=\beta$.

3 Лекция 6

Рассм. $\bigcap_{i=1}^{\infty}(0,\frac{1}{n})$ По аксиоме Архимеде, заключаем, что $\bigcap_{i=1}^{\infty}(0,\frac{1}{n})=\emptyset$

3.1 Бесконечные пределы

Выделим классы п-ть, расход. особым образом:

Определение 3.1. Говорят, что $\{a_n\}_1^{\infty}$ стремится к $+\infty$, если $\forall \varepsilon > 0, \exists N \in \mathbb{N}, \forall n \in \mathbb{N} (n \geq N \Rightarrow a_n > \frac{1}{\varepsilon})$

Обозначение. Пишут вот так: $\lim_{n\to\infty} a_n = +\infty$ или $a_n \to +\infty$

Определение 3.2. Говорят, что $\{a_n\}_1^{\infty}$ стремится к $-\infty$, если $\forall \varepsilon > 0, \exists N \in \mathbb{N}, \forall n \in \mathbb{N} (n \geq N \Rightarrow a_n < -\frac{1}{e})$

Обозначение. Пишут, что $\lim_{n\to\infty} a_n = -\infty$ или $a_n \to -\infty$

Определение 3.3. П-ть $\{a_n\}_1^\infty$ наз-ся беск. большой, если $\lim_{n\to\infty}|a_n|=+\infty$

Замечание. Из onp-ий следует, что $a_n \to -\infty \iff (-a_n) \to +\infty$

Пример. 1)

$$a_n = n^2, n \in \mathbb{N} \Rightarrow a_n \to +\infty$$

Возъмём $N=\left|\frac{1}{\sqrt{\varepsilon}}\right|+1\Rightarrow n\geq N\Rightarrow n^2\geq \frac{1}{\varepsilon}$

 $(-n^2) \to -\infty$

3)
$$(-1)^n n^2 - 6$$
. 6., $HO, (-1)^n n^2 \nrightarrow +\infty, (-1)^n n^2 \nrightarrow -\infty$

Задача 3.1. Док-ть, что всякая ББ п-ть является неограниченной.

Замечание. П-ть не может одновременно стремиться к числу и к символу $+\infty$ (T. к. она либо ограничена, либо неогр.), а также к бесконечностям разных знаков. Таким образом, если n-ть имеет предел в \mathbb{R} , то он единственный.

<u>Лемма</u> 3.1. Пусть $a_n \neq 0, \forall n \in \mathbb{N}, mor \partial a \{a_n\}_1^{\infty} - BB \iff \{\frac{1}{a_n}\}_1^{\infty} - BM$

Доказательство. Это следует из $|a_n| > \frac{1}{\varepsilon} \iff \left|\frac{1}{a_n}\right| < \varepsilon$

3.2 Дополнения к ранним теоремам

Теорема 3.2 (4'). Пусть $a_n \leq b_n, \forall n \in \mathbb{N}$. Тогда:

- 1) Ecnu $a_n \to +\infty$, mo $b_n \to +\infty$
- 2) Ecau $b_n \to -\infty$, mo $a_n \to -\infty$

Доказательство. 1) Заф. $\varepsilon>0$. По опр. предела $\exists N\in\mathbb{N}, \forall n\geq N\colon (a_n>\frac{1}{\varepsilon})$. Тогда $b_n\geq a_n>\frac{1}{\varepsilon}, \forall n\geq N$. Тогда $b_n\to+\infty$

2) Вытекает из (1): $(-b_n) \to +\infty, -b_n \le -a_n, \forall n \to (-a_n) \to +\infty \Rightarrow a_n \to -\infty$

Теорема 3.3 (6'). 1) Если n-ть $\{a_n\}_1^{\infty}$ нестрого возр. u неогр. свер-xy, то $\exists \lim_{n\to\infty} a_n = +\infty$

- 2) Если п-ть $\{a_n\}_1^\infty$ нестрого убыв. и неогр. снизу, то $\exists \lim_{n\to\infty} a_n = -\infty$
- \mathcal{A} оказательство. 1) Зафикс. $\varepsilon>0$. Из неогр. сверху следует, что $\exists N\colon a_N>\frac{1}{\varepsilon}\Rightarrow$ Тогда $a_n\geq a_N>\frac{1}{\varepsilon}, \forall n\geq N\Rightarrow \lim_{n\to\infty}a_n=+\infty$
 - 2) Аналогично (1), или с помощью сведения a_n к $(-a_n)$

<u>Следствие</u>. Всякая монотонная n-ть имеет предел a \mathbb{R} : если $\{a_n\}_1^\infty$ нестрого возр., то $\exists \lim_{n\to\infty} a_n = \sup\{a_n\}$

Если п-ть $\{a_n\}_1^\infty$ нестрого убыв., то $\exists \lim_{n\to\infty} a_n = \inf\{a_n\}$

<u>Задача</u> **3.2.** Д-те, что теорема 5 (арифм. операции с пределами), остаётся верно и для $a, b \in \overline{\mathbb{R}}$ (с допуст. операциями)

Пример. Пусть $\lim_{n\to\infty} a_n = x \in \mathbb{R}, x < 0, \ a \lim_{n\to\infty} b_n = +\infty.$ Тогда $\lim_{n\to\infty} a_n b_n = -\infty$

Доказательство.

$$\exists N_1, \forall n \ge N_1(a_n < \frac{x}{2})$$
$$\exists N_2, \forall n \ge N_2(b_n > \frac{2}{|x| \varepsilon})$$

Возьмём $N = max(N_1, N_2) \Rightarrow \forall n \geq N$:

$$a_n b_n < \frac{x}{2} \frac{2}{|x| \, \varepsilon} = \frac{1}{\varepsilon}$$

3.3 Подпоследовательности

Определение 3.4. Пусть $\{a_n\}_1^{\infty}$ - п-ть и $\{n_k\}_1^{\infty}$ строго возрастающая п-ть нат. чисел. П-ть $\{b_k\}_1^{\infty}$, где $b_k=a_{n_k}, k\in\mathbb{N}$, наз-ся подпоследовательностью и об-ся $\{a_{n_k}\}_1^{\infty}$

Пример.

$$a_n = n, n \in \mathbb{N}$$

$$a_{n_k} = k^2, k \in \mathbb{N} - no\partial n - mb$$

 ${\bf \underline{3}ameчahue}.$ 1) Подп-ть $\{\,a_{n_k}\,\}$ - это композиция строго возрастающей ф-ции $\sigma: \mathbb{N} \to \mathbb{N}, \sigma(k) = n_k,$ и самой n-ти $a: \mathbb{N} \to \mathbb{N}$

2) Верно, что $n_k \geq k, \forall k$ $(n_1 \ge 1, n_k \ge k, n_{k+1} > n_k \ge k \Rightarrow n_{k+1} \ge k+1)$

<u>Лемма</u> 3.4. Если n-ть $\{a_n\}$ имеет предел в $\overline{\mathbb{R}}$, то любая её подn-ть имеет тот же предел

Доказательство. Пусть $\lim_{n\to\infty}a_n=a,$ а $\{a_{n_k}\}$ - подп-ть $\{a_n\}$

- а) Пусть $a \in \mathbb{R}$. Зафикс. $\varepsilon > 0$. По опр. предела $\exists N, \forall n \geq N(|a_n a| <$ Тогда $|a_{nk} - a| < \varepsilon$ при всех $k \ge N$ (т. к. $n_k \ge k \ge N$) Сл-но, $\lim_{k\to\infty} a_{n_k} = a$.
- b) Если $a=+\infty$, получаем результат, если заменить $|a_n-a|<\varepsilon$ на $a_n > \frac{1}{5}(a_n < -\frac{1}{5})$

Теорема 3.5 (Больцано-Вейерштрасса). Всякая огр. посл-ть имеет сход. $nodnoc \Lambda$ -ть.

Доказательство. Пусть задана $\{a_n\}_1^\infty$ - ограниченная,

$$\Rightarrow \exists [c,d] \ni a_n, \forall n \in \mathbb{N}$$

Определим п-ть отрезков $[c_k,d_k]$ Положим $[c_1,d_1]=[c,d]$. Если определён отрезок $[c_k,d_k]$, то разделим его пополам $(y=\frac{c_k+d_k}{2})$

$$[c_{k+1},d_{k+1}]=egin{cases} [c_k,y],$$
если $\{\;k\mid a_k\in [c_k,y]\;\}\;$ - бесконечно $[y,d_k],$ иначе

П-ть $\{[c_k, d_k]\}$ стягивающаяся:

$$\forall k : \begin{cases} [c_{k+1}, d_{k+1}] \subset [c_k, d_k] \\ d_k - c_k = \frac{d-c}{2^k} \end{cases}$$

По т. Кантора $\exists a \in \bigcap_{k=1}^{\infty} [c_k, d_k]$, причём $c_k \to a, d_k \to a$ Определим a_{n_k} :

 $a_{n_1} = a_1$, если определён a_{n_k} , то положим

$$a_{n_{k+1}} \in [c_{k+1}, d_{k+1}], n_{k+1} \ge n_k$$

Т. к. $c_k \leq a_{n_k} \leq d_k$, то по т. о зажатой п-ти (о двух полицейских), то $a_{n_k} \to a$

Теорема 3.6. Если n-ть неограничена сверху (снизу), то она имеет nodnocallon, стремящуюся $\kappa + \infty$ $(-\infty)$

$$a_{n_1} > 1$$

Пусть определён эл-т a_{n_k} , определим:

$$a_{n_{k+1}} > max\{k+1, a_1, \dots, a_{n_k}\} \Rightarrow n_{k+1} > n_k$$

Опр-на
$$\{a_{n_k}\}$$
. Т. к. $a_{n_k}>k, \forall k\Rightarrow a_{n_k}\to +\infty$ (По теореме 4')

Следствие. Всякая n-ть имеет подпосл-ть, стремящуюся κ некот. $\exists n$ -т $y \in \overline{\mathbb{R}}$

4 Лекция 7

4.1 Критерий Коши

Определение 4.1. Посл-ть $\{a_n\}_1^\infty$ наз-ся фундаментальной, если:

$$\forall \varepsilon > 0, \exists N : \forall n, m \ge N(|a_n - a_m| < \varepsilon)$$

<u>Лемма</u> 4.1. Всякая фундаментальная n-ть огр-на

Доказательство. Пусть $\{a_n\}_1^\infty$ - фундаментальна. По опр-ю:

$$\exists N \colon \forall n, m \ge N(|a_n - a_m| < 1)$$

В част-ти:

$$a_N - 1 < a_n < a_N + 1$$

для всех $n \ge N \ (m = N)$

Положим

$$\alpha = min(a_1, \dots, a_{N-1}, a_N - 1)$$

$$\beta = max(a_1, \dots, a_{N-1}, a_N + 1)$$

. Тогда:

$$\alpha \le a_n \le \beta$$

при всех $n \in \mathbb{N}$

 $\underline{\text{Теорема}}_{maльна.}$ 4.2 (Коши). П-ть $\{a_n\}_1^\infty$ - $cxodumcs \iff \{a_n\}_1^\infty$ - dyhdamen-

Доказательство. \Rightarrow) Пусть $\lim_{n\to\infty}a_n=a$. Зафикс. $\varepsilon>0$. По опр-ю предела:

$$\exists N, \forall n \in \mathbb{N}(|a_n - a| < \frac{\varepsilon}{2})$$

Тогда при всех $n, m \ge N$:

$$|a_n - a_m| \le |a_n - a| + |a_m - a| < \frac{\varepsilon}{2} * 2 = \varepsilon$$

 \Leftarrow) По предыдущей лемме, п-ть $\{a_n\}_1^\infty$ - ограничена \Rightarrow по т. Больцано-Вейерштрасса (Б-В) $\{a_n\}_1^\infty$ имеет сход. подпосл-ть $\{a_{n_k}\}_1^\infty \to a$ Покажем, что $a=\lim_{n\to\infty}$. Зафикс. $\varepsilon>0$. По опр-ю фундаментальности:

$$\exists N, \forall n, m \ge N(|a_n - a_m| < \frac{\varepsilon}{2})$$

Т. к. $\{a_{n_k}\} \to a \Rightarrow$

$$\exists K \colon \forall k \ge K(|a_{n_k} - a| < \frac{\varepsilon}{2})$$

Положим $M=\max(N,K)$. Тогда $n_M\geq M\geq N; n_M\geq M\geq K$ Поэтому при всех $n\geq N$:

$$|a_n - a| \le |a_n - a_{n_M}| + |a_{n_M} - a| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

<u>Замечание</u>. Критерий Коши позволяет доказывать существование предела, без явного нахождения его значения

Кроме того, критерий позволяет **оценить скорость сходимости к пределу** (перейдём к пределу по т в определении фунд-ти):

$$|a_n - a| < \varepsilon$$
, npu $\sec x \ n > N$

Задача 4.1. Покажите, что если всякая фундаментальная посл-ть сх-ся (сходится), то выполняется аксиома непрерывности. А именно:

Пусть \mathbb{F} - упоряд. поле, на котором выполняется аксиома Архимеда

4.2 Частичные пределы

Определение 4.2. Точка $a \in \mathbb{R}$ наз-ся частичным пределом числовой посл-ти $\{a_n\}_1^{\infty}$, если $\exists \{a_{n_k}\}$ - подпосл-ть $\{a_n\}$: $\lim_{k\to\infty} a_{n_k} = a$

$$L\left\{a_n\right\}$$
 — мн-во частичных пределов $\left\{a_n\right\}$

Пример. ± 1 - частичные пределы $a_n = (-1)^n$

$$a_{2k} \to 1, a_{2k-1} \to -1$$

Пусть задана числовая посл-ть $\{a_n\}$

Положим

$$M_n = \sup_{k \ge n} \{ a_k \}$$

$$m_n = \inf_{k \ge n} \{ a_k \}$$

Пусть $\{a_n\}$ огр. сверху. Тогда все $M_n \in \mathbb{R}$

Поскольку при переходе к подмн-ву sup не увеличивается, то $\{M_n\}$ нестрого убывает

$$\Rightarrow \exists \lim_{n\to\infty} M_n$$

Пусть $\{a_n\}$ не огр. сверху. Тогда все $M_n=+\inf$ Положим $\lim_{n\to\infty}M_n=+\infty$

Аналогично для $\{m_n\}$ (Огр./Неогр. снизу).

Итак, посл-ти $\{m_n\}$ и $\{M_n\}$ имеют предел в $\overline{\mathbb{R}}$

<u>Определение</u> 4.3. Величина $\lim_{n\to\infty}\sup_{k\geq n}\{a_k\}$ - верхний предел $\{a_n\}$ и об-ся $\overline{\lim_{n\to\infty}}a_n$

Величина $\lim_{n \to \infty} \inf_{k \ge n} \{ a_k \}$ - нижний предел $\{ a_n \}$ и об-ся $\underline{\lim_{n \to \infty}} a_n$

Замечание. $T. \kappa. m_n \leq M_n, \forall n \in \mathbb{N}, mor \partial a:$

$$\lim_{n \to \infty} a_n \le \overline{\lim}_{n \to \infty} a_n$$

Задача 4.2.

$$\overline{\lim}_{n\to\infty}(-a_n) = -\lim_{n\to\infty}a_n$$

Теорема 4.3. Верхний (нижний) предел - наибольший (наименьший) из част. пределов посл-ти.

Доказательство.

$$M = \overline{\lim}_{n \to \infty} a_n, m = \lim_{n \to \infty} a_n$$

Нужно показать, что M,m - это ч. п. $\{a_n\}$ и любой ч. п. лежит между ними.

- 1) Покажем, что есть подп-ть $\{a_n\}$, сх-ся к M:
 - I. $M \in \mathbb{R}$. Имеем

$$M = \inf \{ M_n \}$$

По опр-ю $\sup, \exists n_1 \colon (M-1 < a_{n_1})$

$$M_{n_1+1} = \sup_{k \ge n_1+1} \{ a_k \} \Rightarrow \exists n_2 > n_1 : (M - \frac{1}{2} < a_{n_2})$$

ит. д.

Таким образом, по индукции, будет построена подп-ть $\{a_{n_k}\}$, т. ч.

$$M - \frac{1}{k} < a_{n_k}$$

Имеем:

$$M - \frac{1}{k} < a_{n_k} \le M_{n_k}$$

Края нер-ва сх-ся к $M\Rightarrow$ по т. о зажатой посл-ти, $a_{n_k}\to M$

- II. $M = +\infty$, тогда $\{a_n\}$ неогр. сверху \Rightarrow (по Теореме 8') она имеет под-пть, сх-ся к $+\infty$
- III. $M=-\infty$. T. K. $a_n \leq M_n, \forall n \Rightarrow \lim_{n\to\infty} a_n = -\infty$
- 2) Для m док-во аналогично, или сводиться к M по задаче prot-pred
- 3) Пусть $\{a_{n_k}\}, a_{n_k} \to a$. Тогда:

$$m_{n_k} \le a_{n_k} \le M_{n_k}, \forall k \Rightarrow m \le a \le M$$
(част. пределы)

Следствие. $\exists \lim_{n\to\infty} a_n \ (e \ \overline{\mathbb{R}}) \iff \overline{\lim_{n\to\infty}} a_n = \underline{\lim_{n\to\infty}} a_n$ $\exists \lim_{n\to\infty} a_n = \underline{\lim_{n\to\infty}} a_n$ $\exists \lim_{n\to\infty} a_n = \underline{\lim_{n\to\infty}} a_n$

⇐)

$$m_n \le a_n \le M_n$$

для всех $n \Rightarrow a_n \to a \text{ (Края} \to a)$

<u>Лемма</u> 4.4. Для $c \in \mathbb{R}$ верно:

$$c = \overline{\lim}_{n \to \infty} a_n \iff \begin{cases} \forall \varepsilon > 0, \exists N, \forall n \ge N (a_n < c + \varepsilon) \ (1) \\ \forall \varepsilon > 0, \forall N, \exists n \ge N (a_n > c - \varepsilon) \ (2) \end{cases}$$

$$c = \lim_{n \to \infty} a_n \iff \begin{cases} \forall \varepsilon > 0, \forall N, \exists n \ge N (a_n < c + \varepsilon) \\ \forall \varepsilon > 0, \exists N, \forall n \ge N (a_n > c - \varepsilon) \end{cases}$$

Доказательство. Докажем, для верх предела:

$$\overline{\lim_{n\to\infty}} a_n = \lim_{n\to\infty} M_n, M_n = \sup_{k\geq n} \{ a_k \}$$

(1)
$$\iff \forall \varepsilon > 0, \exists N(M_N < c + \varepsilon)$$

(2)
$$\iff \forall \varepsilon > 0, \forall N(M_n > c - \varepsilon)$$

Напомним, что $\{M_n\}$ - нестрого убыв.

Тогда
$$(1) \wedge (2) \iff c = \lim_{n \to \infty} M_n \ (= \inf \{ M_n \})$$

5 Лекция 11

5.1 Непрерывность ф-ции в точке

Определение 5.1. Пусть $E \subset \mathbb{R}, a \in E$ и $f: E \to \mathbb{R}$. Ф-ция f наз-ся непрерывной в точке a, если:

$$\forall \varepsilon > 0, \exists \delta > 0, \forall x \in E(|x - a| < \delta \Rightarrow |f(x) - f(a)| < \varepsilon)$$

Иначе:

$$x \in B_{\delta}(a) \Rightarrow f(x) \in B_{\varepsilon}(f(a))$$

Замечание. Из опр-я следует, что ф-ция не меняет значение резко

Св-во (отделимость): если $f: E \to \mathbb{R}$ - непр-на в точке a и f(a) > 0 (< 0), то

$$\exists \delta > 0, \forall x \in B_{\delta}(a) \cap E(f(x) > \frac{f(a)}{2} (< \frac{f(a)}{2}))$$

Доказательство. Пусть f(a)>0. По непр-ти ф-ции в a, положим $\varepsilon=\frac{f(a)}{2}$. Тогда

$$\exists \delta > 0, \forall x \in B_{\delta}(a) \cap E(f(a) - \frac{f(a)}{2} < f(x) < f(a) + \frac{f(a)}{2}) \Rightarrow f(x) > \frac{f(a)}{2}$$

<u>Замечание</u>. В определении непр-ти ф-ции точка $a \in E$ - области определения, но **не обязана** быть предельной точкой E.

<u>Определение</u> **5.2.** Точка, принадлежащая мн-ву, но не явл-ся его предельной точкой наз-ся **изолированной**.

Пример.

$$E = (1, 2] \cup \{5\}$$

Tогда точка 5 - изолированная точка мн-ва E

Теорема 5.1. Пусть $f: E \to \mathbb{R}, a \in E$. Следующие утв-я эквив-ны:

- *1) f* непр-на в а
- 2) $\forall \{x_n\}, x_n \in E(x_n \to a \Rightarrow f(x_n) \to f(a))$

3) Либо a - изолированная точка мн-ва E, либо a - предельная точка мн-ва E и $\lim_{x\to a} f(x) = f(a)$

Доказательство.

 $1 \Rightarrow 2$) Рассм. $\{x_n\}, x_n \in E, x_n \to a$. Заф. $\varepsilon > 0$. По опр-ю непр-ти

$$\exists \delta > 0, \forall x \in B_{\delta}(a) \cap E(|f(x) - f(a)| < \varepsilon)$$

Т.к. $x_n \to a$, то $\exists N, \forall n \geq N (x_n \in B_\delta(a) \cap E)$, а значит,

$$|f(x_n) - f(a)| < \varepsilon, \forall n \ge N$$

Сл-но, $f(x_n) \to f(a)$

 $2\Rightarrow 3)$ Если a - предельная точка мн-ва E, то $\lim_{x\to a}f(x)=f(a)$, по опр-ю предела по Гейне.

В противном случае, a - изолированная точка области определения.

 $3 \Rightarrow 1$) Если a - изолированная точка мн-ва E, то $\exists \delta_0 > 0 \colon (B_{\delta_0}(a) \cap E = \{a\})$. Тогда опредение непр-ти выполняется для $\delta = \delta_0$.

Если a - предельная точка мн-ва E, то по опр-ю предела по Коши:

$$\forall \varepsilon > 0, \exists \delta > 0, \forall x \in E(0 < |x - a| < \delta \Rightarrow |f(x) - f(a)| < \varepsilon)$$

При x=a, следствие выше выпол-ся (очевидно). Это означает, что f непр-на в a.

<u>Следствие</u>. Если $f,g\colon E\to\mathbb{R}$ - непр-ны $g:E\to\mathbb{R}$ - непр-ны $g:E\to\mathbb{R}$ то в этой точке непр-ны $g:E\to\mathbb{R}$ непр-ны $g:E\to\mathbb{R}$ непр-ны $g:E\to\mathbb{R}$ то в этой точке

- 1) $f \pm g$
- 2) $f \cdot g$
- 3) При доп. усл-ии $g \neq 0$: $\frac{f}{g}$

Доказательство. Рассм. произвольную п-ть $\{x_n\}, x_n \in E, x_n \to a$. Т. к. f,g - непр-ны в a, то $f(x_n) \to f(a)$ и $g(x_n) \to g(a)$. Тогда по св-вам предела п-ти имеем:

- 1) $f(x_n) \pm g(x_n) \rightarrow f(a) \pm g(a)$
- 2) $f(x_n)g(x_n) \to f(a)g(a)$
- $3) \quad \frac{f(x_n)}{g(x_n)} \to \frac{f(a)}{g(a)}$

По Теореме (5.1), эти ф-ции непрерывны в a.

Пример.

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \dots + a_0, (a_i \in \mathbb{R})$$

Эта ф-ция непр-на в каждой точке $a \in \mathbb{R}$

Доказательство.

$$x \mapsto x$$

$$x \mapsto c, c \in \mathbb{R}$$

 Φ -ции выше непрерывны. Тогда по сл-ию (5.1) в a непр-ны:

$$x \mapsto x^k, k \in \mathbb{N}$$

A значит P непр-на в a.

Теорема 5.2 (Непрерывность композиции). Если ф-ция $f: E \to \mathbb{R}$ неприа $g: E \to \mathbb{R}$ неп

Доказательство. Рассм. произвольную п-ть $\{x_n\}, x_n \in E, x_n \to a$. Тогда: $f(x_n) \to f(a)$ по непр-ти f в a. Кроме того:

$$g(f(x_n)) o g(f(a))$$
 - по непр-ти g в $f(a) \iff$

$$(g \circ f)(x_n) \to (g \circ f)(a)$$

По Теореме 5.1, ф-ция $g \circ f$ непр-на в т. a.

Определение 5.3. Пусть $f: E \to \mathbb{R}$ и $a \in E$. Если $f|_{[a,+\infty)}$ непр-но в a, то говорят, что f непр-на справа в т. a.

Аналогично: $f|_{(-\infty,a]}$ непр-на в a, то f непр-на слева в a.

<u>Замечание</u>. Если a - предел. точка мн-ва $[a, +\infty) \cap E$, то f непр. справа g m. $a \iff f(a+0) = f(a)$

Определение 5.4. Пусть $f: E \to \mathbb{R}$ и $a \in E$.

Если f не явл. непрерывной в т. a, то говорят, что f разрывна (имеет разрыв) в т. a, а саму т. a наз-ют точкой разрыва f.

Классифицируем точки разрыва:

- 1) Пусть ф-ция f определена в некот. проколотой окр-ти т. a. Если сущ-ют конечные односторонние пределы f(a-0), f(a+0) и среди трёх чисел f(a+0), f(a-0), f(a) не все равны, то т. a наз-ся точкой разрыва I рода ф-ции f
- 2) В противном случае т. a наз-ся точкой разрыва II рода ф-ции f

Если a - т. разрыва I рода и f(a+0)=f(a-0), то точка a наз-ся точкой устранимого разрыва.

Пример. 1) $f: \mathbb{R} \to \mathbb{R}$:

$$f(x) = sign(x) \colon = \begin{cases} 1, x > 0 \\ 0, x = 0 \\ -1, x < 0 \end{cases}$$

$$f(0+0) = 1, f(0-0) = -1$$

 $T. \ x = 0$ - $m. \ pазрыва \ I \ poda.$

2) $f: \mathbb{R} \to \mathbb{R}$:

$$f(x) = sign^2(x)$$

Tогда x=0 - m. yсmранимого разрыва.

3) $f:\mathbb{R}\backslash \left\{\,0\,\right\}\to \mathbb{R}, f(x)=\frac{1}{x}$ $f(0+0)=+\infty, f(0-0)=-\infty \Rightarrow x=0\text{ - точка разрыва II рода.}$

4)

$$D(x) = \begin{cases} 1, x \in \mathbb{Q} \\ 0, x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$

Покажем, что D - разрывна в каждой точке.

Доказательство. a) $a \in \mathbb{Q}$:

$$x_n = a + \frac{1}{n} \to a, a_n > a, D(x_n) = 1 \to 1$$

$$x'_n = a + \frac{\sqrt{2}}{n} \to a, x'_n > a, D(x'_n) = 0 \to 0$$

Получаем, что правого предела в a не сущ-ет

b) $a \notin \mathbb{Q}$:

$$x_n = a + \frac{1}{n} \to a, x_n > a, D(x_n) = 0 \to 0$$

 $x'_n = \frac{[na] + 1}{n} \to a, x'_n > a, D(x'_n) = 1 \to 1$

Сл-но, не сущ-ет D(a+0).

Таким образом, a - т. разрыва II рода.

5.2 Непрерывность ф-ции на мн-ве

Определение 5.5. Ф-ция $f:E\to\mathbb{R}$ наз-ся непрерывной (на E), если f непр-на на каждой точке $a\in E$

Если $D\subset E$, то f непр-на на D, если $f|_D$ непр-на.

Пример. $x \mapsto \frac{P(x)}{Q(x)}$ - рациональная ф-ция. Она непр-на на $E = \{ s \colon Q(x) \neq 0 \}$. (по сл-ию 5.1)

Замечание. Чарльз. Лью курс по мат. анализу "Скелет мат. анализа"

<u>Лемма</u> 5.3. Если ф-ция f непр-на на [a,b], то f огр. на [a,b]

Доказательство. Предположим, что f не огр-на. Тогда:

$$\forall n \in \mathbb{N}, \exists x_n \in [a, b] : (|f(x_n)| > n)$$

По инд-ции опр-на $\{x_n\} \subset [a,b]$. По т. Больцано-Вейерштрасса $\{x_n\}$ имеет сх-ся подп-ть $\{x_{n_k}\}, x_{n_k} \to x_0$. Переходя к пределу при $k \to \infty$ в:

$$a \leq x_{n_k} \leq b$$

получаем, что $x_0 \in [a, b]$. По непр-ти $f(x_{n_k}) \to f(x_0)!!!$ Но ведь,

$$(|f(x_{n_k})| > n_k \ge k \to +\infty)$$

Теорема 5.4 (Теорема Вейерштрасса). *Если* f - *непр-на на* [a,b], *то* $\exists x_m, x_M \in [a,b]$, b *кот. вып-но:*

$$f(x_M) = \sup_{[a,b]} f(x), f(x_m) = \inf_{[a,b]} f(x)$$

Доказательство. По лемме (5.3) мн-во значений f([a,b]) ограничено, поэтому опр-ны числа $M=\sup_{[a,b]}f(x), m=\inf_{[a,b]}f(x).$

По опр-ю sup, $\forall n \in N, \exists x_n \in [a,b](M-\frac{1}{n} < f(x_n) \leq M)$. По инд-ции опр-на п-ть $\{x_n\} \subset [a,b]$, причём $f(x_n) \to M$.

По т. Больцано-Вейерштрасса $\{x_n\}$ имеет сх-ся подп-ть $\{x_{n_k}\}$:

$$x_{n_k} \to x_M \in [a, b]$$

Тогда по непр-ти:

$$f(x_{n_k}) \to f(x_M)$$

С другой стороны, $f(x_{n_k}) \to M \Rightarrow f(x_M) = M$ в силу ед-ти предела. Случай inf док-ся аналогично.

<u>Замечание</u>. Утв-я, аналогичные лемме (5.3) и теореме 5.4 неверны для интервалов.

<u>Пример.</u> f(x) = x. f непр-на на (0,1). f - огр-на, но $\not \exists$ минимального и максимального значения.

$$\sup_{(0,1)} f(x) = 1 \neq f(x) \forall x \in (0,1)$$

6 Лекция 12

<u>Лемма</u> 6.1. Если f - непр-на на [a,b] и f(a)f(b) < 0, то

$$\exists c \in [a, b] \colon f(c) = 0$$

Доказательство. Можно считать, что f(a) < 0 < f(b). В противном случае заменим f на (-f).

Построим п-ть отр-ов $\{[a_n, b_n]\}$ по индукции:

 $[a_1,b_1]\colon = [a,b]$ и если $[a_k,b_k]$ - построен, положим

$$[a_{k+1},b_{k+1}] = \begin{cases} [a_k,\frac{a_k+b_k}{2}], & \text{если } f(\frac{a_k+b_k}{2}) \ge 0\\ [\frac{a_k+b_k}{2},b_k], & \text{если } f(\frac{a_k+b_k}{2}) < 0 \end{cases}$$

По индукции будет построена стягивающаяся п-ть вложенных отр-ов $\{[a_n,b_n]\}$, т. ч.:

$$f(a_n) \le 0 f(b_n) > 0$$

По т. Кантора о вложенных отр-ах, сущ-ет $c\in \bigcap_{n=1}^\infty [a_n,b_n]$, причём $a_n\to c$ и $b_n\to c$. По непр-ти в точке c, переходя в нер-ве к пределу:

$$f(a_n) \le 0 < f(b_n) \Rightarrow f(c) \le 0 \le f(c) \Rightarrow f(c) = 0$$

Определение 6.1. Будем говорить, что число s лежит строго между числа α и β , если max(a,b) > s > min(a,b).

Теорема 6.2 (Больцано-Коши о промежуточных значениях). Если фильм f непр-на на [a,b] и число s лежит строго между f(a) и f(b), то:

$$\exists c \in (a,b) \colon f(c) = s$$

Доказательство. Рассм. g=f-s. Тогда g непр-на на [a,b]. Сл-но, g(a)g(b)<0. Тогда по лемме (6.1)

$$\exists c \in (a,b) \colon g(c) = 0 \iff f(c) = s$$

Задача 6.1. Приведите пример разрывной ф-ции $f:[0,1] \to \mathbb{R}$, т. ч. $\forall [a,b] \subset [0,1], f$ принимает все значения между f(a) и f(b)

Напомним, что $I \subset \mathbb{R}$ - промежуток \iff

$$\forall x, y \in I([x, y] \subset I)$$

<u>Следствие</u>. Если ф-ция f непр-на на промеж. I, то f(I) - промежсуток.

Доказательство. Выберем $y_1, y_2 \in f(I)$ $(y_1 < y_2) \Rightarrow$

$$\exists x_1, x_2 \in I : (f(x_1) = y_1, f(x_2) = y_2)$$

Если $y_1 < y < y_2$, то, по теореме (6.2) $\exists x \in (x_1, x_2) \colon f(x) = y$. Т. к. I - промежуток, $x_1, x_2 \in I$, то $x \in I$, а значит $y \in f(I)$, т. е. f(I) - промежуток.

Задача 6.2. Док-те, что если f - непр-на на [a,b], то f([a,b]) - отрезок

<u>Лемма</u> **6.3.** Пусть f монотонна на пром-ке I. Если f(I) - это пром-к, то f - непр-на на I.

Доказательство.

Пусть f нестрого возрастает на I. Если f разрывна в точке $c \in I$. То $f(c-0) \le f(c) \le f(c+0)$ и хотя бы один из интервалов (f(c-0), f(c)) или (f(c), f(c+0)) непуст.

(Если c - концевая точка I, то сущ-ет только один из пределов, для кот. и проводим рассуждение.)

Пусть $Y = (f(c), f(c+0)) \neq \emptyset$. Тогда

$$\forall t \in I, t \le c(f(t) \le f(c))$$

Также

$$\forall t \in I, t > c(f(t) \ge \inf_{(c, \sup I)} f(x) = f(c+0))$$

Сл-но, f(I) не явл. пром-ом.

Теорема 6.4 (об обратной ф-ции). Пусть f непр-на и строго монотонна на пром. I, тогда:

1)
$$f(I)$$
 - $npoм-o\kappa$

- 2) $f:I \to f(I)$ биекция
- 3) $f^{-1}:f(I) o I$ непр-на и строго монотонна на f(I)

Доказательство. По следствию (6), Y = f(I) явл-ся пром-ом. Ф-ция f инъективна в силу строгой монотонности.

Сл-но, $f:I \to Y$ - биекция, и сущ-ют $f^{-1}:Y \to I$

Б. О. О. пусть f строго возрастает на I

Пусть
$$y_1, y_2 \in Y, y_1 < y_2 \Rightarrow \exists x_1, x_2 \in I : f(x_1) = y_1, f(x_2) = y_2$$

Если $x_1 \ge x_2 \Rightarrow f(x_1) \ge f(x_2)$ - в силу возрастания $f \Rightarrow y_1 \ge y_2!!!$

Таким образом, если $y_1,y_2 \in Y(y_1 < y_2 \Rightarrow f^{-1}(y_1) < f^{-1}(y_2))$ - т. е. f^{-1} строго возрастает на Y.

$$f^{-1}(Y) = I$$
 - пром-к $\Rightarrow f^{-1}$ - непр-на на Y

Пример. Для $\forall x \ge 0, n \in \mathbb{N} \exists ! y \ge 0 : y^n = x$. Пишут, что:

$$y = \sqrt[n]{x}$$

Кроме того, $f(x)\colon [0;+\infty)\to \mathbb{R}, f(x)=\sqrt[n]{x}$ - непр-на и строго монотонна.

Доказательство. Рассм. ф-цию $g:[0;+\infty) \to \mathbb{R}, g(y)=y^n$

Ф-ция g - непр-на и строго возрастает на $[0;+\infty)$, причём:

$$g(0) = 0$$
, $\lim_{y \to +\infty} g(y) = +\infty$

По теореме (6.4) $\exists f = g^{-1} \colon [0; +\infty) \to [0; +\infty)$:

$$f(x) = \sqrt[n]{x}$$

6.1 Счётные и несчётные мн-ва

Определение 6.2. Мн-во A наз-ся <u>счётным</u> если $\exists f: \mathbb{N} \to A$ - биекция.

Замечание.

$$A = \{ a_1, a_2, \dots \}$$

$$\forall i, j (i \neq j \Rightarrow a_i \neq a_j)$$

Пример.

$$\mathbb{Z}$$
 - счётно
$$\ldots -2, -1, 0, 1, 2, \ldots$$
 $h(n) = \begin{cases} rac{n-1}{2}, & n ext{ - нечётно} \\ -rac{n}{2}, & n ext{ - чётно} \end{cases}$

Лемма 6.5. Всякое бесконечное мн-во $A \subset \mathbb{N}$ - счётно.

Доказательство. Пусть $n_1 = min(A)$. Если $n_1 \dots n_k$ - определена, то по инд-ции определим:

$$n_{k+1} = min(A \setminus \{ n_1 \dots n_k \})$$

Поскольку при переходе к подмн-ву минимум не уменьшается и $n_{k+1} \not\in \{n_1, \dots n_k\}$, то $n_{k+1} > n_k$

Предположим, что $\exists m \in A$ и $m \neq n_k, \forall k$. Тогда по инд-ции

$$n_k < m, \forall k \Rightarrow m > n_m \geq m!!!$$

Сл-но, $\sigma: \mathbb{N} \to A, \sigma(k) = n_k$ - строго возр. биекция.

<u>Определение</u> **6.3.** Мн-во <u>не более чем счётно</u>, если оно конечно или счётно.

Следствие. Всякое подмн-во счётного мн-ва не более чем счётно.

Доказательство. Рассм. конечное подмн-ва A счётного мн-ва $X.~g:X\to\mathbb{N}$ - биекция \Rightarrow

$$g\colon A\to g(A)$$
 - биекция мн-ва A и $g(A)\subset\mathbb{N}$

Теорема 6.6. $\mathbb{N} \times \mathbb{N}$ - счётно

Доказательство. Идея: Сделаем таблицу и рассматриваем её подиагонально, затем нумеруем эл-ты в диагоналях.

(k,m)	1	2	3	
1	(1,1)	(1, 2)	(1,3)	
2	(2,1)	(2,2)	(2,3)	
3	(3,1)	(3, 2)	(3,3)	
4	(4,1)	(4,2)	(4,3)	

$$p \in \mathbb{N}$$

$$M_p = \{ (k, m) : 1 \le m \le p, k = p + 1 - m \}$$

$$g(p) = 1 + 2 + \dots + p - 1 = \frac{p(p - 1)}{2}$$

$$N_p = \{ n : g(p) + 1 \le n \le g(p) + p = g(p + 1) \}$$

$$f : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$$

$$f(k, m) = g(k + m - 1) + m$$

Следствие. Mн-во $\mathbb Q$ - cчётно.

Доказательство. Любое рац. число можно записать в виде несокр. дроби $\frac{p}{q}$, т. е.:

$$f_1\colon r o (p,q)$$
 - инъекция $\mathbb{Q} o \mathbb{Z} imes \mathbb{N} o \mathbb{N} imes \mathbb{N} o \mathbb{N}$ $F:\mathbb{Q} o \mathbb{N}, F=f_3\circ f_2\circ f_1$ - инъекция $\Rightarrow F(\mathbb{Q})\subset \mathbb{N}\Rightarrow \mathbb{Q}$ - не более чем счётно и беск \Rightarrow счётно

Теорема 6.7. \mathbb{R} несчётно

Доказательство. Пред-м, что $\mathbb{R} = \{ x_n \mid n \in \mathbb{N} \}$ Рассм. $[a,b] \subset \mathbb{R}$. Разобъём [a,b] на три отр-ка и обозн. $[a_1,b_1]$ тот из ни, который не сод-т x_1 . По инд-ции построим п-ть влож. отр-ов $\{ [a_k,b_k] \}$, не содержащую $x_k, \forall k$. Однако сущ-ет точка, общая для всех отр-ов $\Rightarrow \forall nx \in [a,b], x_n \notin x_n \Rightarrow \forall n: x_n \neq x$