PREDICTING CUSTOMER CHURN WITH MACHINE LEARNING

by Leo Evancie

Agenda

Problem and solution

Data science method

Data wrangling Exploratory analysis Preprocessing Modeling

Conclusions and next steps

The Problem

- Customer acquisition costs more than customer retention
- Some customers leave, or "churn"
- Failing to predict churn -> loss of revenue

The Solution

- Apply the data science method
- Analyze thousands of telecom customers (demo and behavior)
- Logistic regression model to classify 1 ("churn") or 0 ("no churn")
- Churn analysis and prediction could:
 - Guide interventions
 - Shape sales and marketing

DATA WRANGLING

Raw Data

- Over 7,000 TelCo customers (IBM sample dataset via Kaggle)
- Demographic, behavioral, and purchasing
- Minimal data quality issues

#	Column	Non-Null Count	Dtype
0	customerID	7043 non-null	object
1	gender	7043 non-null	object
2	SeniorCitizen Partner	7043 non-null 7043 non-null	int64 object
4	Dependents	7043 non-null	object
5	tenure	7043 non-null	int64
6	PhoneService	7043 non-null	object
7	MultipleLines	7043 non-null	object
8	InternetService	7043 non-null	object
9	OnlineSecurity	7043 non-null	object
10	OnlineBackup	7043 non-null	object
11	DeviceProtection	7043 non-null	object
12	TechSupport	7043 non-null	object
13	StreamingTV	7043 non-null	object
14	StreamingMovies	7043 non-null	object
15	Contract	7043 non-null	object
16	PaperlessBilling	7043 non-null	object
17	PaymentMethod	7043 non-null	object
18	MonthlyCharges	7043 non-null	float64
19	TotalCharges	7043 non-null	object
20	Churn	7043 non-null	object

EXPLORATORY ANALYSIS

Target variable ■ 26.65% of 7,000 customers churned

Categorical features

- Showing four of several key features
- PhoneService and MultipleLines showed no clear relationship to churn

Numerical features

PREPROCESSING

1

Encode 'Churn' as 0 or 1

2

Create dummies for categorical features

3

Train/test split

4

Rescale numerical features to between 0 and 1

MODELING

- Built models with default parameters for initial comparison:
 - Logistic regression
 - Random forest classifier
 - Support vector classifier
- Hyperparameter tuning for LR model
- Default LR outperformed tuned LR:
 - penalty=12, C=1.0, solver='lbfgs'

training scores						
	precision	recall	f1-score	support		
0 1	0.85 0.66	0.90 0.56	0.87 0.61	3635 1295		
accuracy macro avg weighted avg	0.76 0.80	0.73 0.81	0.81 0.74 0.80	4930 4930 4930		

testing scores						
	precision	recall	f1-score	support		
0 1	0.83 0.65	0.90 0.51	0.86 0.57	1539 574		
accuracy macro avg weighted avg	0.74 0.78	0.70 0.79	0.79 0.72 0.78	2113 2113 2113		

CONCLUSIONS AND NEXT STEPS

- Bivariate analyses revealed patterns between churn and certain variables
 - Churn happens early in tenure
 - Senior citizens are more likely to churn, however,
 - Customers using more internet-based services also churned more often
 - Lower monthly costs associated with less churn
 - Customers paying month-to-month were far likelier to churn
- Qualified success using logistic regression model to predict churn
- Even limited predictive power could save resources: Targeted intervention to at-risk customers and strategic promotion of low-churn services and products