

Numele şi prenumele	
Grupa	
Problema 1. Definim pe mulțimea numerelor complexe $\mathbb C$ următoarea relație l	oinară:
$x\rho y \Longleftrightarrow x - y \in \mathbb{R}.$	
(1) Să se arate că ρ este o relație de echivalență.	(5 pct.)
(2) Aflați clasa de echivalență a lui π în raport cu ρ .	(5 pct.)
(3) Aflați clasa de echivalență a lui $1+2i$ în raport cu ρ .	(5 pct.)
(4) Aflați clasa de echivalență a lui $a+bi,$ cu $a,b\in\mathbb{R},$ în raport cu $\rho.$	(5 pct.)
(5) Determinați un sistem complet și independent de reprezentanți pentru ρ .	(5 pct.)
(6) Folosind teorema de izomorfism pentru grupuri să se arate că grupul facto	or $(\mathbb{C}/\mathbb{R},+)$
este izomorf cu grupul $(\mathbb{R}, +)$.	(10 pct.)
Problema 2. Fie permutarea $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\ 3 & 4 & 5 & 7 & 9 & 2 & 8 & 6 & 1 & 11 & 10 \end{pmatrix} \in$	S_{11} .
(1) Descompuneți σ în produs de cicli disjuncți.	(5 p.)
(2) Descompuneți σ în produs de transpoziții.	(5 p.)
(3) Calculați $\operatorname{sgn}(\sigma)$ și $\operatorname{ord}(\sigma)$.	(5 p.)
(4) Există permutări de ordin 35 în S_{11} ?	(5 p.)
(5) Rezolvați ecuația $x^{2011} = \sigma$ în S_{11} .	(10 p.)
Problema 3. Fie idealele $I=(X^2)$, respectiv $J=(X^2+1)$ ale inelului de polino	pame $\mathbb{Q}[X]$.
(1) Dați un exemplu de polinom care aparține idealului I și are exact 3 term	eni nenuli,
respectiv un exemplu de polinom care nu aparține idealului J și are exact	3 termeni
nenuli.	(5 p.)
(2) Determinați elementele nilpotente din inelul $\mathbb{Q}[X]/I$, respectiv $\mathbb{Q}[X]/J$.	(10 p.)
(3) Determinați elementele idempotente din inelul $\mathbb{Q}[X]/I$, respectiv $\mathbb{Q}[X]/J$.	(10 p.)
(4) Sunt izomorfe inelele $\mathbb{Q}[X]/I$ şi $\mathbb{Q}[X]/J$? Justificaţi.	(5 p.)

¹Toate subiectele sunt obligatorii. Se acordă 5 puncte din oficiu. Timp de lucru 3 ore. Succes!