SOTTOSPAZIO GENERATO VA ALCUNI VETTOR In R prendiano V = (5, 1) e a chediamo qual e(se esiste) le pri piccolo sottosp {A(1,3) | AER } = {(4,32) | AER } = Se U i un sotlospazo che contiene de R2 contenente (5,1) (1,3) de e contenere anche Inth E la reta di equin $\chi = \frac{1}{5}\chi$ · · etan' all to d(1,3) an ER vale in generale: il più piccoto so Hospato di R² che contiene e proto 2 al il più picroto sottosp & di TRE che contiene up 5 U dere (a,b) e la retta per (0,0) e v(a,b) contenere di equatione bx-ay=0 tuth i muliple di u e di J Hota Come gon seguença, abbiamo e le la o samme che gli unici sottospar di PZZ JU conhème this punh 2 del piano, use U=R Sono sotosp. banale $V = \frac{5}{5}(0,0)\frac{3}{5}$ le rette pu (0,0) (2) 25 htho R2 (3) **Definizione 3.1.1** Siano V uno spazio vettoriale, $\mathbf{v}_1, \dots, \mathbf{v}_n$ vettori di V e $\lambda_1, \dots, \lambda_n \in \mathbb{R}$. Il vettore $\mathbf{w} = \lambda_1 \mathbf{v}_1 + \dots + \lambda_n \mathbf{v}_n$ si dice combinazione lineare Lot + Mu * di v_1, \ldots, v_n con scalari $\lambda_1, \ldots, \lambda_n$. a R2 che contiene u e v e futto R2 Per esempio (1,1) è combinazione lineare di (1,0) e (0,1) con scalari $\lambda_1 = 1$ e λ_2 = 1, ma anche combinazione lineare di (2,1) e (1,0) con scalari λ_1 = 1 e Dim algebrica scrivere oin; vettore del paro come furant del arè Sc= 1+3 m abbamo I d = 2 d - M cerchiamo roglio servere (c,d)comes dobb am D nsolvere le $(c,d) = \lambda_{0}(1,2) + \mu(3,-1)$ sistema associati , x + 3 m = o enone dere surcedore che 1 3 4 R-2R 0 (-7) d-2c 1-7/L = d-2c (c,d) = (A,2A) + (3M,-M)2 pivot, 2 inc = 1 solar solar (c,d) = (d+3), 2d-m

Definizione 3.1.2 Siano V uno spazio vettoriale e $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ un insieme di vettori di V. Il sottospazio generato di vettori $\mathbf{v}_1, \dots, \mathbf{v}_n$ è l'insieme di tutte le loro combinazioni lineari, in simboli $\mathsf{v}_1, \dots, \mathsf{v}_n$

$$\langle \mathbf{v}_1, \dots, \mathbf{v}_n \rangle = \{ \lambda_1 \mathbf{v}_1 + \dots + \lambda_n \mathbf{v}_n \mid \lambda_1, \dots, \lambda_n \in \mathbb{R} \}$$

Abbiamo visto che, per esempio, il sottospazio generato da un vettore non nullo in \mathbb{R}^2 corrisponde a una retta, mentre il sottospazio generato dai due vettori (1.0) e (0.1) di \mathbb{R}^2 è tutto \mathbb{R}^2 . \diamond Osservazione 3.1.3 Se V è uno spazio vettoriale e $\mathbf{v} \in V$, allora il sottospazio

generato da \mathbf{v} è l'insieme dei multipli di \mathbf{v} , cioè $\langle \mathbf{v} \rangle = \{ \lambda \mathbf{v} | \lambda \in \mathbb{R} \}$.

Inoltre, il sottospazio generato dal vettore nullo è il sottospazio banale, cioè contiene solo il vettore nullo: $\langle 0 \rangle = \{0\}$.

Definizione 3.1.4 Siano V uno spazio vettoriale e $\{v_1, \dots, v_n\}$ un insieme di vettori di V. Si dice che $\mathbf{v}_1, \dots, \mathbf{v}_n$ generano V, o che $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ è un insieme di generatori di V se $V = (\mathbf{v}_1, \dots, \mathbf{v}_n)$.

Nell'esempio visto inizialmente abbiamo che i vettori (1,0) e (0,1) generano lo spazio vettoriale \mathbb{R}^2 in quanto ogni vettore (a,b) di \mathbb{R}^2 si può scrivere come combinazione lineare di (1,0) e (0,1):

$$(a,b) = a(1,0) + b(0,1)$$

Proposizione 3.1.8 Siano V uno spazio vettoriale, $\mathbf{v}_1, \dots, \mathbf{v}_n$ vettori di V e w una loro combinazione lineare, cioè: $w = \lambda_1 v_1 + \cdots + \lambda_n v_n$. Allora

$$\langle \mathbf{v}_1, \ldots, \mathbf{v}_n \rangle = \langle \mathbf{v}_1, \ldots, \mathbf{v}_n, \mathbf{w} \rangle$$

Viceversa se

$$\langle \mathbf{v}_1, \dots, \mathbf{v}_n \rangle = \langle \mathbf{v}_1, \dots, \mathbf{v}_n, \mathbf{w} \rangle$$

allora w è combinazione lineare di v1,..., vn.

Dimostrazione – Per mostrare la prima affermazione è sufficiente osservare che per ipotesi $\mathbf{w} \in \langle \mathbf{v}_1, \dots, \mathbf{v}_n \rangle$, quindi dalla Proposizione 3.1.5 segue che $Z = \langle \mathbf{v}_1, \dots, \mathbf{v}_n \rangle$ è un sottospazio che contiene $\{\mathbf{v}_1, \dots, \mathbf{v}_n, \mathbf{w}\}$, allora $\langle \mathbf{v}_1,\ldots,\mathbf{v}_n,\mathbf{w}\rangle\subseteq\langle \mathbf{v}_1,\ldots,\mathbf{v}_n\rangle$ sempre per la Proposizione 3.1.5. L'inclusione opposta è ovvia.

Per mostrare la seconda affermazione, basta notare che, siccome si ha che $\langle \mathbf{v}_1, \dots, \mathbf{v}_n \rangle = \langle \mathbf{v}_1, \dots, \mathbf{v}_n, \mathbf{w} \rangle$, segue in particolare che $\mathbf{w} \in \langle \mathbf{v}_1, \dots, \mathbf{v}_n \rangle$, cioè

we combinazione lineare di
$$v_1, \dots, v_n$$
.

Esercisio 3. 4. 6 Par quali $x_1 = x_1 + x_2 + x_3 + x_4 +$

 $V_0 = -x^2 + 3x + 1$

NE L VI, V27 (= esistemo 21, 22 e R tal

$$|x|^{2} + |x|^{2} = (2\lambda_{1}\lambda_{2})x + (-\lambda_{1} + 3\lambda_{2})x + \lambda_{2}$$

$$|x|^{2} + |x|^{2} = |x|^{2}$$

$$22(A) = 2$$

 $22(A) = 2$ $2 \neq 3 = ez(A|b)$

$$\Rightarrow$$
 non a sono sol $\Rightarrow \forall \notin \angle \sqrt{2}, \sqrt{2}$
 $\Rightarrow \text{Se} \text{K} = \pm \sqrt{3}$ $22(A) = 22(A|b) = 2 \Rightarrow 2 \leq 5$ of ha soe $\Rightarrow \forall \in \angle \sqrt{2}$

Proposizione 3.1.5 Siano V uno spazio vettoriale $e\{v_1, ..., v_n\}$ un insieme di vettori di V. Allora abbiamo che (v_1, \ldots, v_n) è un sottospazio vettoriale di V. Inoltre se Z è un sottospazio vettoriale di V contenente $v_1, \dots v_n$, allora $\langle \mathbf{v}_1, \dots, \mathbf{v}_n \rangle \subseteq Z$, quindi $\langle \mathbf{v}_1, \dots, \mathbf{v}_n \rangle$ è il più piccolo sottospazio vettoriale di V contenente $\mathbf{v}_1, \ldots, \mathbf{v}_n$.

Dimostrazione – Per prima cosa notiamo che $0 \in \langle v_1, \dots, v_n \rangle$, infatti 0 = $0\mathbf{v}_1 + \cdots + 0\mathbf{v}_n$. Siano $\mathbf{v}, \mathbf{w} \in (\mathbf{v}_1, \dots, \mathbf{v}_n)$. Allora per definizione esistono degli scalari $\alpha_1, \ldots, \alpha_n \in \beta_1, \ldots, \beta_n$ tali che:

$$\mathbf{v} = \alpha_1 \mathbf{v}_1 + \dots + \alpha_n \mathbf{v}_n, \quad \mathbf{w} = \beta_1 \mathbf{v}_1 + \dots + \beta_n \mathbf{v}_n$$

e pertanto

$$\mathbf{v} + \mathbf{w} = (\alpha_1 + \beta_1)\mathbf{v}_1 + \dots + (\alpha_n + \beta_n)\mathbf{v}_n \in \langle \mathbf{v}_1, \dots, \mathbf{v}_n \rangle$$

Inoltre se $k \in \mathbb{R}$

$$k\mathbf{v} = (k\alpha_1)\mathbf{v}_1 + \dots + (k\alpha_n)\mathbf{v}_n \in \langle \mathbf{v}_1, \dots, \mathbf{v}_n \rangle$$

Questo dimostra che $(v_1, ..., v_n)$ è un sottospazio vettoriale di V.

Vediamo ora che $(v_1, ..., v_n)$ è il più piccolo sottospazio vettoriale contenento $(v_1, ..., v_n)$ è il più piccolo sottospazio vettoriale $(v_1, ..., v_n)$ te $\{\mathbf{v}_1,\ldots,\mathbf{v}_n\}$. Siano $\lambda_1,\ldots,\lambda_n\in\mathbb{R}$ e sia $\mathbf{v}=\lambda_1\mathbf{v}_1+\cdots+\lambda_n\mathbf{v}_n\in\langle\mathbf{v}_1\ldots\mathbf{v}_n\rangle$ sia inoltre Z un sottospazio vettoriale di V contenente $\mathbf{v_1}, \dots \mathbf{v_n}$. Allora Z contiene anche $\lambda_1 \mathbf{v}_1, \dots, \lambda_n \mathbf{v}_n$, perché essendo uno spazio vettoriale se contiene

un vettore, contiene anche tutti i suoi multipli. Inoltre, poiché è chiuso rispette alla somma, contiene anche $\lambda_1 \mathbf{v}_1 + \dots + \lambda_n \mathbf{v}_n = \mathbf{v}$. Quindi $\langle \mathbf{v}_1, \dots, \mathbf{v}_n \rangle \subseteq Z$.

Esempi 3.1.6

Vogliamo determinare il sottospazio generato dai vettori (1,1), (2,k) al variare del parametro k.

$$\langle (1,1), (2,k) \rangle = \{ \lambda_1(1,1) + \lambda_2(2,k) | \lambda_1, \lambda_2 \in \mathbb{R} \}$$

= $\{ (\lambda_1 + 2\lambda_2, \lambda_1 + k\lambda_2) | \lambda_1, \lambda_2 \in \mathbb{R} \}$

Dato che stiamo considerando vettori di R² possiamo rappresentare i vettori tramite punti del piano cartesiano. Il disegno seguente illustra i vettori (1,1) e (2,k) per i valori k=1 e

Vediamo subito che, se k = 2, allora i due punti giacciono sulla stessa retta per l'origine, perciò il più piccolo sottospazio che li contiene entrambi sarà appunto tale retta e cioè la retta di equazione y = x.

Se invece $k \neq 2$, i due punti giacciono su due rette distinte passanti per l'origine, quindi il più piccolo sottospazio che li contiene entrambi deve contenere tali rette, e anche la somma di due punti qualsiasi su tali rette, per cui, con un ragionamento analogo a quello fatto all'inizio di questo capitolo, si ha che il più piccolo sottospazio che contiene entrambi i punti di coordinate (1,1), (2,k) è tutto il piano, cioè i vettori (1,1), (2,k)

Vediamo ora una dimostrazione algebrica di questo fatto. Sia (a,b) un generico vettore di \mathbb{R}^2 , ci chiediamo quando (a,b) appartiene a $\langle (1,1),(2,k) \rangle$, cioè quando esistono $\lambda_1, \lambda_2 \in \mathbb{R}$ tali che

niuscine a soiver
$$(\lambda_1 + 2\lambda_2, \lambda_1 + k\lambda_2) = (a,b)$$
 (a,b) come comb

In altre parole dobbiamo risolvere il sistema lineare:

1 2 3
$$\rho = \frac{1}{2}$$
 2 3 $\rho = \frac{1}{2}$ 3 $\rho = \frac{1}{2}$ 3 $\rho = \frac{1}{2}$ 3 $\rho = \frac{1}{2}$ 4 $\rho = \frac{1}{2}$ 6 $\rho = \frac{1}{2}$ 7 $\rho = \frac{1}{2}$ 6 $\rho = \frac{1}{2}$ 7 $\rho = \frac{1}{2}$ 7 $\rho = \frac{1}{2}$ 7 $\rho = \frac{1}{2}$ 7 $\rho = \frac{1}{2}$ 8 $\rho = \frac{1}{2}$ 9 $\rho = \frac{1}{2}$

asciamo per esercizio la verifica che questo sistema nelle incognite λ_1,λ_2 ammette sempre soluzione se $k \neq 2$. Se invece k=2 la matrice completa associata al sistema è:

$$\begin{pmatrix} 1 & 2 & a \\ 1 & 2 & b \end{pmatrix}$$

che ridotta a scala diventa la compania di compania d

Dunque, se $a \neq b$ Il sistema non ammette soluzioni, cioè si ha che $(a,b) \notin ((1,1),(2,2))$, se invece a=b il sistema ammette soluzioni, cioè $(a,a)\in ((1,1),(2,2))$. Quindi ((1,1),(2,2)) è l'insieme dei vettori che hanno prima coordinata uguale alla seconda, cioè $\langle (1,1), (2,2) \rangle = \{(a,a) | a \in \mathbb{R} \}$

Definizione 3.2.1 Sia V uno spazio vettoriale. I vettori $\mathbf{v}_1, \ldots, \mathbf{v}_n \in V$ s dicono lincarmente indipendenti se per ogni combinazione lineare arrivare ad un certo punto ove se cancello il sottospazio generato cambia $v_n = 0$ abbiamo $\lambda_1 = \cdots = \lambda_n = 0$. In altre parole, l'unica combinazione lineare de vettori $\mathbf{v}_1, \dots, \mathbf{v}_n$ uguale al vettore nullo è quella con scalari tutti nulli. Diremo anche che l'insieme dei vettori $\{v_1, \dots, v_n\}$ è linearmente indipendente². I vettori $\mathbf{v}_1,\dots,\mathbf{v}_n$ si dicono linearmente dipendenti se non sono indipendenti. In altre parole, i vettori dell'insieme $\{\mathbf v_1,\dots,\mathbf v_n\}$ sono linearmente dipendenti se esistono scalari $\lambda_1, \ldots, \lambda_n$ non tutti nulli tali che $\lambda_1 \mathbf{v}_1 + \cdots + \lambda_n \mathbf{v}_n = \mathbf{0}$. Sia W il sottospazio vettoriale di \mathbb{R}^4 dato dall'insieme delle soluzioni del siste. ma lineare omogeneo: $(x_1 + x_2 - x_4 = 0)$ $\begin{cases} x_1+x_2-x_4=0\\ 2x_1+x_2-x_3+3x_4=0 \end{cases}$ sue sols non è mai un sottospazio perchè non contiene il vect nullo nelle incognite x_1, x_2, x_3, x_4 . Si determini, se possibile, un insieme finito di generatori di W. Per sim the i un sotto locale =>

Svolgimento

La matrice completa associata al sistema è quolenque sistemi $(A|b) = \begin{pmatrix} 1 & 1 & 0 & -1 & 0 \\ 2 & 1 & -1 & 3 & 0 \end{pmatrix}$ Proposizione 3.2.4 In uno spazio vettoriale V i vettori v_1, \dots, v_n sono linitropotion , che, ridotta a scala con l'algoritmo di Gauss, diventa: $\mathbb{R}_{\mathbf{a}} - 2\mathbb{R}_{\mathbf{i}} \quad (A'|\underline{b}') = \begin{pmatrix} \mathbf{0} & \mathbf{1} & \mathbf{0} & -1 & |\mathbf{0}| \\ \mathbf{0} & \mathbf{0} & -1 & \mathbf{5} & |\mathbf{0}| \end{pmatrix} \quad \text{TH}(A) = 2 = \text{NT}(A'\underline{b})$ Le soluzioni del sistema sono: $(x_3-4x_4,-x_3+5x_4,x_3,x_4)$, con $x_3,x_4\in\mathbb{R}$. Per determinare i generatori di W separiamo le variabili libere. Quindi $W = \{(x_3 - 4x_4, -x_3 + 5x_4, x_3, x_4) | x_3, x_4 \in \mathbb{R}\}$ $= \{(x_3, -x_3, x_3, 0) + (-4x_4, 5x_4, 0, x_4) | x_3, x_4 \in \mathbb{R}\}$ $(4,5,0,1) > = \{x_3(1,-1,1,0) + x_4(-4,5,0,1) | x_3, x_4 \in \mathbb{R} \}$ Ricordiamo che $x_3, x_4 \in \mathbb{R}$ possono assumere qualsiasi valore reale. A questo punto è chiaro che W = ((1, -1, 1, 0), (-4, 5, 0, 1)), cioè i vettori (1, -1, 1, 0), (-4, 5, 0, 1) generano W. in its different function of the configuration of (1, -1, 1, 0), (-4, 5, 0, 1) generano W. in the different function of (1, -1, 1, 0), (-4, 5, 0, 1) generano (1, -1, 1, 0) generano (1, -1, 1, 0Trovare un inneme al generatur de W costituto de 4 rettori mon mulh $W = \langle \mathcal{S}_{L}, \mathcal{S}_{2}, \mathcal{S}_{3}, \mathcal{S}_{4} \rangle = \langle \mathcal{S}_{L}, \mathcal{S}_{2} \rangle$

Busta prendere 53 e 54 comb lin d July

esempo $V_3 = 5$ V_2 $V_4 = 2J_2 - 7J_2$

le sue somo {(21,,-31,1,0) | 1, ∈ M} a noi basta 1 solutione non mulla (\$9 coi] « k +0)
ad e semp to (2,-3,1,0)

quad 25,-35+53+05=0 abhamo (, #D waviamo J,

 $V_2 = 3V_2 - 2V_L$ potevamo anche nicolare $J_2 = J_2 = \frac{3}{5}J_2 - \frac{1}{5}J_3$

(1,1) (1,3)sono hon in dipendenti $\lambda_{1}(l_{1}l) + \lambda_{2}(l_{1}3) = (0,0)$ i vuo de der succederé de 1=2=0? $(\lambda_{1} + \lambda_{2}, \lambda_{1} + 3\lambda_{2}) = (0,0)$ Aith = 0 dobbiano 1 1 0 Aith = 0 nisdure il 1 3 0 a Instrumo se d'isolo la

soly nulla 1 1 reton sono la radip

nearmente dipendenti se e solo se almeno uno di essi è combinazione lineare

Dimostrazione – Supponiamo che v_1, \ldots, v_n siano linearmente dipendenti. Allora esistono degli scalari $\alpha_1, \dots, \alpha_n \in \mathbb{R}$, non tutti nulli, tali che

$$\alpha_1 \mathbf{v}_1 + \dots + \alpha_n \mathbf{v}_n = \mathbf{0}$$

Dato che almeno uno degli scalari è non nullo, supponiamo $\alpha_k \neq 0$. Allora:

$$\mathbf{v}_k = -\frac{\alpha_1}{\alpha_k} \mathbf{v}_1 - \dots - \frac{\alpha_{k-1}}{\alpha_k} \mathbf{v}_{k-1} - \frac{\alpha_{k+1}}{\alpha_k} \mathbf{v}_{k+1} - \dots - \frac{\alpha_n}{\alpha_k} \mathbf{v}_n$$

e dunque \mathbf{v}_k è combinazione lineare degli altri vettori.

Viceversa supponiamo che esistano degli scalari $\alpha_1, \ldots, \alpha_{k-1}, \alpha_{k+1}, \ldots, \alpha_n$

 $\mathbf{v}_k = \alpha_1 \mathbf{v}_1 + \dots + \alpha_{k-1} \mathbf{v}_{k-1} + \alpha_{k+1} \mathbf{v}_{k+1} + \dots + \alpha_n \mathbf{v}_n$ allora si ottiene che

 $\alpha_1 \mathbf{v}_1 + \dots + \alpha_{k-1} \mathbf{v}_{k-1} + (-1) \mathbf{v}_k + \alpha_{k+1} \mathbf{v}_{k+1} + \dots + \alpha_n \mathbf{v}_n = 0$

e almeno uno dei coefficienti è non nullo, quello di \mathbf{v}_k . Quindi i vettori $\mathbf{v}_1, \dots, \mathbf{v}_n$ sono linearmente dipendenti.

Escraso Uhilitrando la definizione stabilize e i vettoni

somo lin dip e in caso affermatio sur une uno come comb l'en degli-altri

Sont and dist + dy = 0 o red and seid. $(\lambda_1 + \lambda_1 + \lambda_3 + 2\lambda_1) \times^3 + (2\lambda_1 - 4\lambda_5 + 2\lambda_4) \times^2 + (\lambda_1 + \lambda_2 - 5\lambda_1) \times$

+ 12+31,+214 = > => => motrie ascala =>. inf sols vs sole => une di essi é comb = lineare deglialtre (43.3) Le n'ophe mon nulle di una 325 2 soldon sono (lin dipendenti matrice a scala sono la indip Venfrando x casa su d'un esempio =7 12 2+ 12 2+ 13 23= (0,0,0,0,0) 17327 σ4 => (λ1,7λ1,3λ1+2 λ2) 00054 0000 $=>(\lambda_1,\lambda_2,\lambda_3)=(0,0,0,0)$ Per mentare der vetter in indip è sufficiente in-entroi un a matrice a scala

(=) uno d'em è mul plo dell'actro) Per 3 26 uno di con deve essere "combineazione lineare dellato", ave suo muetiplo < 07 = \{ \sigma \land | \land \text{R}\forall \quad \text{\sigma, \land \text{\sigma}} 328 de da un inviene di vettori lin indip ne cancelli amo qualcuno, Hen amo aniona un inserne di vettor him indip (segue da 3.2.4) idea : se abbiamo dei vitt indip allora nessuro dive comb. Rin degli actu e questo resta vero canullandone un po.