Algorithm Design, Analysis & Complexity Lecture 10 - \mathcal{NP} Completeness & Computational Intractability

Koushik Pal

University of Toronto

July 27, 2021

Definition

A function $f: \{0,1\}^* \to \{0,1\}^*$ is called **polynomial-time computable** if there exists a polynomial-time algorithm A that, given any input $x \in \{0,1\}^*$, produces as output f(x).

Let X and Y be two problems. We say Y is **polynomial-time** reducible to X (or, X is at least as hard as Y w.r.t. polynomial time) if there exists a polynomial-time computable function $f: \{0,1\}^* \to \{0,1\}^*$ such that

$$x \in Y \iff f(x) \in X \quad \forall x \in \{0, 1\}^*.$$

Notation: $Y \leq_p X$.

Fact

Suppose $Y \leq_p X$.

- 1. If X is solvable in polynomial time, then so is Y.
- 2. If Y is not solvable in polynomial time, then neither is X.

Definition (\mathcal{P})

 $\mathcal{P} := \{X \mid \exists \text{ a polytime algorithm } A \text{ that solves } X\}.$

Definition (Efficient Certifier)

B is an **efficient certifier** for a problem X if:

- ightharpoonup B is a polytime algorithm that takes two inputs s and t.
- There is a polynomial function p so that for every string s, we have $s \in X \iff$ there exists a string t such that $|t| \le p(|s|)$ and B(s,t) = "yes".

(B says that an input $s \in X \iff$ there exists a proposed proof t that is not too long and that will convince that $s \in X$.)

Definition (Formal definition of \mathcal{NP})

 $\mathcal{NP} := \{X \mid \exists \text{ an efficient certifier for decision problem } X\}.$

Believed (but not known yet): $P \neq \mathcal{NP}$ and $\mathcal{NP} \neq co-\mathcal{NP}$.

Unknown: $\mathcal{P} = \mathcal{NP} \bigcap co - \mathcal{NP}$?

We use \leq_p to identify "hardest problems" in \mathcal{NP} .

Definition

Decision problem D is called \mathcal{NP} -complete if

- 1. $D \in \mathcal{NP}$
- 2. D is \mathcal{NP} -hard: for all $D' \in \mathcal{NP}$, we have $D' \leq_p D$.

Theorem

If D is \mathcal{NP} -complete, then $D \in \mathcal{P} \iff \mathcal{P} = \mathcal{NP}$.

How to prove \mathcal{NP} -completeness?

Lemma

To show D is \mathcal{NP} -hard, it is sufficient to find some \mathcal{NP} -hard D' and prove $D' \leq_p D$.

Proof.

$$D'$$
 is \mathcal{NP} -hard $\Longrightarrow D'' \leq_p D'$ for all $D'' \in \mathcal{NP}$ $\Longrightarrow D'' \leq_p D$ for all $D'' \in \mathcal{NP}$ (since $D' \leq_p D$) $\Longrightarrow D$ is \mathcal{NP} -hard.

Corollary

To show D is \mathcal{NP} -complete, it is sufficient to show

- $\triangleright D \in \mathcal{NP}$, and
- ▶ $D' \leq_p D$ for some \mathcal{NP} -hard D'.

Satisfiability

Example

Different versions of the Satisfiability problem:

SAT: Given a propositional formula φ , is there some setting of the variables that will make φ TRUE?

CNF-SAT: Given a propositional formula φ in Conjunctive Normal Form (CNF), is φ satisfiable? A formula φ in CNF looks like

$$arphi = C_1 \wedge C_2 \wedge \cdots \wedge C_n,$$

where each clause $C_i = a_1 \vee a_2 \vee \cdots \vee a_\ell$ with each literal a_j being either a variable x_k or a negated variable $\neg x_k$, e.g.,

$$\varphi = (x_1 \vee \neg x_2) \wedge (x_3 \vee x_4 \vee \neg x_5 \vee \neg x_6) \wedge (x_1 \vee \neg x_3).$$

 $_{3}\text{-Sat}$: Given a propositional formula φ in CNF with each clause containing exactly $_3$ literals, is φ satisfiable?

CIRCUIT-SAT: Given a circuit built out of AND (\land), OR (\lor) and/or NOT (\neg) gates with a single output node, is there an assignment of values to the inputs that cause the output to take the value 1?

Theorem (Cook-Levin)

CIRCUIT-SAT is \mathcal{NP} -complete.

Proof Sketch.

- ▶ CIRCUIT-SAT ∈ \mathcal{NP} : Given a particular assignment of the inputs, evaluate each connective one-by-one until you reach the final output node. This can be done in polynomial time. If the final output is 1, the circuit is satisfiable. Moreover, if φ is satisfiable, then there is some certificate that will make this verifier output "yes".
- ▶ CIRCUIT-SAT is \mathcal{NP} -hard: Let $D \in \mathcal{NP}$. Let B(s,t) be a polytime verifier for D. This verifier can be implemented as a circuit with input gates representing the values of s and t. For any input s for D, we can hard code the value of s into this circuit in such a way that there is a value of the certificate for which the verifier outputs "yes" if and only if there is some setting of the input gates corresponding to t that makes the circuit output 1. It is possible to show that this transformation can be done in polytime (as a function of the size of s).

Example (for Cook's Theorem)

Given a graph G, does it contain a two-node independent set?

Assume G = (V, E) with $V = \{u, v, w\}$ and $E = \{(u, v), (v, w)\}$.

SAT and CNF-SAT

Since every circuit made of $A_{\rm ND}$, $O_{\rm R}$ and/or $N_{\rm OT}$ gates with one output node can be converted into a propositional formula with the variables corresponding to the input sources, and since every propositional formula can be converted into an equivalent CNF, it follows immediately that

Corollary

SAT and CNF-SAT are both \mathcal{NP} -hard (and consequently, \mathcal{NP} -complete).

Theorem

3-SAT is \mathcal{NP} -complete.

Proof.

Since 3-SAT is a special case of SAT, it follows that $3\text{-SAT} \in \mathcal{NP}$.

We now show that $CNF-SAT \leq_p 3-SAT$: given a CNF formula φ , construct a 3-CNF formula φ' such that

 φ is satisfiable $\iff \varphi'$ is satisfiable.

For each clause C of φ :

$$ightharpoonup$$
 if $C=(a_1)$, replace C with $(a_1\vee a_1\vee a_1)$

▶ if
$$C = (a_1 \lor a_2)$$
, replace C with $(a_1 \lor a_1 \lor a_2)$

$$ightharpoonup$$
 if $C = (a_1 \lor a_2 \lor a_3)$, leave C as is

▶ if
$$C = (a_1 \lor a_2 \lor \cdots \lor a_r)$$
 where $r > 3$, replace C with

$$(a_1 \lor a_2 \lor z_1)$$

$$\land (\neg z_1 \lor a_3 \lor z_2)$$

$$\land \quad (\neg z_2 \lor a_4 \lor z_3)$$

$$\wedge \cdots$$

$$\wedge \quad (\neg z_{r-4} \lor a_{r-2} \lor z_{r-3})$$
$$\wedge \quad (\neg z_{r-3} \lor a_{r-1} \lor a_r),$$

where z_1, \ldots, z_{r-3} are new variables (not in φ).

Clearly this transformation can be carried out in polytime : each clause of length r gets replaced with $\mathcal{O}(r)$ 3-clauses using $\mathcal{O}(r)$ new variables.

If φ is satisfiable, then there is an assignment of truth values to the variables of φ that makes at least one literal true in each clause of φ . This can be extended to include values for new variables of φ' :

- ightharpoonup trivial for 1-,2-,3-clauses of φ
- ightharpoonup for r-clauses of φ with r > 3, suppose a_i is true
 - \blacktriangleright if i=1 or i=2, set $z_1=z_2=\cdots=z_{r-3}={\rm FALSE}$
 - ightharpoonup if $i=r_1$ or $i=r_1$, set $z_1=z_2=\cdots=z_{r-3}=\mathrm{True}$
 - ▶ if $2 < i < r_{-1}$, set $z_1 = z_2 = \cdots = z_{i-2} = \text{True}$ and $z_{i-1} = z_i = \cdots = z_{r-3} = \text{False}$.

Verify that these assignments satisfy φ' .

Conversely, if φ' is satisfiable, then let z_i be the first new variable set to FALSE (so either i=1 or $z_1=z_2=\cdots=z_{i-1}=\mathrm{TRUE}$ or all the z_i are TRUE).

- ▶ if i = 1, the clause $(a_1 \lor a_2 \lor z_1)$ can only be satisfied by setting $a_1 = \text{True}$ or $a_2 = \text{True}$.
- ▶ if i > 1, the clause $(\neg z_{i-1} \lor a_{i+1} \lor z_i)$ can only be satisfied by setting $a_{i+1} = \text{True}$.
- ▶ if all the z_i are TRUE, the clause $(\neg z_{r-3} \lor a_{r-1} \lor a_r)$ can only be satisfied by setting $a_{r-1} = \text{TRUE}$ or $a_r = \text{TRUE}$.

In all cases, $(a_1 \lor a_2 \lor \cdots \lor a_r)$ is also satisfied.

The cases of 1-, 2-, 3-clauses are trivial again.

Thus, CNF-SAT $\leq_p 3$ -SAT.

Since CNF-SAT is \mathcal{NP} -hard and 3-SAT $\in \mathcal{NP}$, it follows that 3-SAT is \mathcal{NP} -complete.

Definition (SubsetSum)

Given a finite set S of positive integers, and a positive integer target t, is there some subset S' of S whose sum is exactly t?

Theorem

SubsetSum is \mathcal{NP} -complete.

Proof.

SubsetSum $\in \mathcal{NP}$ because it takes polytime to verify the certificate represents a subset of S whose sum is t.

We now show that $3\text{-Sat} \leq_p \text{SubsetSum}$: given a 3-CNF formula φ , construct a set S of integers and an integer t such that

 φ is satisfiable $\iff \exists S' \subseteq S \text{ whose sum is } t.$

Given $\varphi = (a_1 \vee b_1 \vee c_1) \wedge \cdots \wedge (a_r \vee b_r \vee c_r)$, where $a_i, b_i, c_i \in \{x_1, \neg x_1, \dots, x_s, \neg x_s\}$, construct S as follows:

ightharpoonup for j=1 to s:

number $x_j=1$ followed by s-j 0s followed by r digits where k^{th} next digit equals 1 if x_j appears in clause C_k , 0 otherwise.

number $\neg x_j = 1$ followed by s-j 0s followed by r digits where k^{th} next digit equals 1 if $\neg x_j$ appears in clause C_k , 0 otherwise.

• for j = 1 to r:

number $C_j = 1$ followed by r-j 0s and number $D_j = 2$ followed by r-j 0s.

► target t = s 1s followed by r 4s.

Clearly, this can be constructed in polytime.

Example

$$\varphi = (x_1 \lor \neg x_2 \lor \neg x_4) \land (x_2 \lor \neg x_3 \lor x_1) \land (\neg x_3 \lor x_4 \lor \neg x_2)$$

$$x_1 = 1000110$$

$$\neg x_1 = 1000000$$

$$x_2 = 100010$$

$$\neg x_2 = 100101$$

$$x_3 = 10000$$

$$\neg x_3 = 10011$$

$$x_4 = 1001$$

$$\neg x_4 = 1100$$

$$D_1 = 200$$

$$C_1 = 100$$

$$D_2 = 20$$

$$C_2 = 10$$

$$D_3 = 2$$

$$C_3 = 1$$

$$t = 1111444$$

If φ is satisfiable, then there is a setting of variables such that each clause of φ contains at least one true literal.

Let $S' = \{\text{numbers that correspond to true literals}\}.$

By construction, $\sum_{x \in S'} x = s$ 1s followed by r digits, each of which is either 1, 2 or 3 (because each clause contains at least one true literal).

This means it is possible to add suitable numbers from $\{C_1, D_1, \dots, C_r, D_r\}$ so that the last r digits of the sum are equal to q, i.e., there is a subset S'' of S such that $\sum_{x \in S''} x = t$.

Conversely, if there is a subset S' of S such that $\sum_{x \in S'} x = t$, then S' must contain exactly one of $\{x_j, \neg x_j\}$ for j = 1 to s.

Then φ is satisfied by setting each variable according to the numbers in S': for each clause j, the corresponding digit in the target is equal to 4, but the numbers C_j and D_j together only add up to 3 in that digit. This means that the selection of numbers in S' must include some literal with a 1 in that digit, i.e., clause C_j contains at least one true literal.

Since 3-SAT is \mathcal{NP} -hard and SUBSETSUM $\in \mathcal{NP}$, it follows that SUBSETSUM is \mathcal{NP} -complete.

Categories of \mathcal{NP} -complete problems

- Packing Problems
 - ► INDEPENDENTSET
 - SETPACKING
- Covering Problems
 - VERTEXCOVER.
 - ► SetCover
- Partitioning Problems
 - ► 3-DIMENSIONALMATCHING
 - ► GRAPHCOLORING
- Sequencing Problems
 - ► HAMPATH, UHAMPATH
 - ► HAMCYCLE, UHAMCYCLE
 - ► TRAVELINGSALESMAN

- Numerical Problems
 - ► SubsetSum
 - PARTITION
 - KNAPSACK
 - ► IntegerProgramming
- Constraint Satisfaction Problems
 - ► CIRCUIT-SAT, SAT
 - ► CNF-SAT, 3-SAT

Class Diagram

