Architecture matérielle CE312/CE318

III Les composants reconfigurables

Vincent Beroulle

Plan global du cours

- I Introduction
- II Les bases du VHDL pour la synthèse
- III Les composants programmables
 - Introduction
 - Objectifs
 - II SPLD
 - III CPLD
 - IV FPGA
 - V Conclusion

I Introduction

Objectifs

- Dans ce chapitre, nous allons succinctement étudier les principales architectures et technologies des composants programmables suivants : PLD, CPLD, FPGA
- Objectifs : Connaître les spécificités de ces composants afin de définir des critères de choix

Plan de ce chapitre

- I Introduction
- II CPLD
 - Architectures des SPLD PAL
 - Principaux fournisseurs
 - Architecture
 - Programmation / Exemple
- III FPGA
- IV Conclusion

Architectures des SPLD – PAL

Les CPLD héritent leurs architectures des SPLD, et, en particulier, des PAL

PAL: Programmable Array Logic

Exercice 1

 Compléter le circuit de droite en ajoutant les fils manquants

4:1 Mux Symbol

4:1 Mux Circuit

Exercice - Solution

S=I0.S0\.S1\+I1.S0.S1\+I2.S0\.S1+I3.S0.S1

4:1 Mux Symbol

4:1 Mux Circuit

Architectures des SPLD - PAL

Extrait d'une ligne d'une PAL séquentielle

une seule horloge et un seul enable

rebouclage permettant de générer des fonctions combinatoires d'un état

Exemple du 22V10

Macrocellule:

Possibilité de choisir entre

- Séquentiel ou combinatoire
- ·Complémenté ou non

9

Plan de ce chapitre

- I Introduction
- II CPLD
 - Architectures des SPLD PAL
 - Principaux fournisseurs
 - Architecture
 - Programmation / Exemple
- III FPGA
- IV Conclusion

Principaux fournisseurs

Société	Type de circuit	Site Web
Altera	CPLD, FPGA	www.altera.com
Actel	FPGA	www.actel.com
ATMEL	FPGA	www.atmel.com/atmel/products
Cypress	FPGA, CPLD	www.cypress.com/pld/index.html
Lattice Semiconductor	FPGA, CPLD	www.latticesemi.com
Corporation (+ Vantis)		
Lucent	FPGA	www.lucent.com/micro/netcom/orca
Quick Logic	FPGA	www.quicklogic.com
Xilinx	FPGA, CPLD	www.xilinx.com

Architecture

- Un CPLD contient plusieurs blocs logiques du type 22V10
 - Les blocs communiquent par l'intermédiaire d'interconnexions programmables

Architecture

Interconnexion programmable

- contient 1 million de portes logiques,
- 38 400 bascules D
- 327 680 bits de RAM.

Blocs logiques

- Blocs logiques = Tableaux de ET programmables et de OR fixes + macrocellules (idem PLD comme 22V10)
- Métrique : <u>nb de macrocellules</u> (souvent la seule métrique donnée) + nb d'entrées/sorties + tailles des termes produits et sommes
 - Par exemple, un compteur 16 bits « tourne » sur un seul bloc logique contenant 16 macrocellules, 15 entrées (une pour chaque bit sauf le bit de poids fort), et suffisamment de termes produits...

Plan de ce chapitre

- I Introduction
- II CPLD
- III FPGA
 - Architecture
 - Technologies
 - Composants enfouis
 - Familles disponibles
- IV Conclusion

Architecture

- « Field
 Programmable
 Gate Array »
 - Tableau de blocs logiques programmables interconnectés entre eux (et vers les entrées/sorties) par des canaux de routage

Cellule élémentaire plus fine que dans un CPLD

Architecture

Architecture & vocabulaire Xilinx

- Chaque fabriquant de FPGA a sa propre terminologie pour décrire ses circuits :
 - Chez Xilinx
 - Élément de base : Logic Cell
 - Métrique : Slice = 2 Logic Cell
 - Configurable Logic Bloc
 - CLB = 2 ou 4 Slices pouvant communiquer entre elles

Architecture - LUT: Look-Up Table

 La logique programmable des cellules logiques est basée sur une mémoire appelée Look-Up Table

Architecture - LUT: Look-Up Table

Une LUT de taille 2ⁿ peut implanter n'importe quelle fonction de n variables

Exemple de fonction logique câblée avec une LUT 20

Exercice 2

- Complétez la table de vérité de la LUT donnée précédemment
- Donnez la fonction combinatoire avant simplification et après simplification réalisée par cette LUT

Technologies

- Deux technologies principales existent :
 - La technologie majeure : SRAM
 - Flash
 - Anti-Fusible
- De ces technologies dépendent l'architecture du routage et des blocs logiques

Technologies – anti-fusibles

- Anti-Fusible :
 - simplement un via (initialement isolant) qui, lors de la programmation (avec une « sur »tension de 10 à 12V) devient conducteur; créant ainsi un contact entre deux lignes
- Un anti-fusible est de la taille d'un via! (auquel il faut ajouter un transistor et une logique d'adressage pour sa programmation)

Technologies – anti-fusibles

100 nm

Vue transversale fusible "ViaLink" de Quicklogic (avant et après programmation)

Technologies – anti-fusibles

Grande densité d'intégration des éléments programmables

⇒ De très nombreuses interconnexions

(mais retard technologique par rapport au FPGA SRAM)

Une fois programmés, ils ne sont pas reprogrammables!

Technologies – FLASH

• FLASH:

- Le FPGA conserve sa configuration, il est autonome (pas besoin de mémoire supplémentaire)
- Technologie non standard (retard techno.)

Technologies - SRAM

- Les points mémoires SRAM peuvent être utilisés pour contrôler des transistors créant des interconnexions ou configurer les LUT
- Un point mémoire SRAM est constitué de 5 transistors :
 - 2 transistors pour chacun des 2 inverseurs + 1 transistor de sélection (à cela il faut encore ajouter la logique d'adressage)

Technologies - SRAM- Programmation

- Les FPGA SRAM sont volatiles : ils perdent leur configuration quand le système est éteint
- Il faut leur associer sur la carte une EEPROM pour charger leur configuration au démarrage

Technologies – SRAM – Interconnexions

Routage sur de longues distances (avec changement d'orientation direction Nord-Est)

Technologies – Comparatif

- Dans les FPGA SRAM, la densité des éléments mémoires est faible : les canaux de routage sont faiblement configurables
- MAIS avance technologique par rapport aux technologies "anti-fusibles"

Composants enfouis - Soft, Hard

- Les FPGA sont fournis avec :
 - Soft IP : descriptions VHDL synthétisables de composants classiques
 - Hard IP: composants câblés et optimisés pour la technologie du FPGA
 - Multiplieurs, Blocs RAM, MAC (Multiplieur-Accumulateur pour les applications de traitement du signal), processeur, contrôleur d'horloge...

Composants enfouis – Hard, Soft, Firm IP

Hard IP Contrôleur d'horloge : Génération de signaux d'horloge internes

Plan de ce chapitre

- I Introduction
- II CPLD
- III FPGA
- IV Conclusion
 - FPGA versus CPLD
 - Choisir un composant
 - Perspectives

V Conclusion

FPGA versus CPLD

CPLD

- Peu de blocs logiques mais des blocs logiques avec un grand nombre d'entrées/sorties
- Un seul grand bloc d'interconnexions : peu flexibles
- Souvent non volatiles
- Performances élevées et reproductibles

FPGA

- Plusieurs milliers de blocs logiques avec peu d'entrées/sorties
- Majoritairement volatiles
- Des interconnexions « omniprésentes » dans l'architecture
- Temps dépendant du routage

V Conclusion

Choisir un composant

- Celui qui s'ajuste le mieux à votre application
 - Quantité de logique
 - Nb de blocs RAM et de I/O
 - Coût
 - Performances
 - Nb d'horloges
 - Structures câblées internes (MAC)...
 - Consommation
 - Types d'I/O (différentielles ou pas)
 - Boîtiers