

MSP430® Peripheral Driver Library for FR57xx Devices

USER'S GUIDE

Copyright

Copyright © 2014 Texas Instruments Incorporated. All rights reserved. MSP430 and 430ware are registered trademarks of Texas Instruments. Other names and brands may be claimed as the property of others.

APlease be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this document.

Texas Instruments Post Office Box 655303 Dallas, TX 75265 http://www.ti.com/msp430

Revision Information

This is version 1.90.00.65 of this document, last updated on 2014-06-25.

Table of Contents

Copy	yright	1
Revi	sion Information	1
1	Introduction	3
2	Navigating to driverlib through CCS Resource Explorer	5
3	How to create a new user project that uses Driverlib	14
4	How to include driverlib into your existing project	16
5	10-Bit Analog-to-Digital Converter (ADC10_B)	18
5.1	Introduction	18
5.2	API Functions	19
5.3	Programming Example	
6	Comparator (COMP_D)	39
6.1 6.2	Introduction	
6.3	Programming Example	51
7	Cyclical Redundancy Check (CRC)	53
7.1	Introduction	53
7.2	API Functions	
7.3	Programming Example	
8	Clock System (CS)	
8.1 8.2	Introduction	59 60
8.3	Programming Example	61
9	Direct Memory Access (DMA)	62
9.1	Introduction	62
9.2	API Functions	62
9.3	Programming Example	75
10 10.1	EUSCI Universal Asynchronous Receiver/Transmitter (EUSCI_A_UART)	77 77
	API Functions	77
	Programming Example	
11	EUSCI Synchronous Peripheral Interface (EUSCI A SPI)	
	Introduction	90
	Functions	
	Programming Example	
12 12.1	EUSCI Synchronous Peripheral Interface (EUSCI_B_SPI)	103 103
	Introduction	103
	Programming Example	115
13	EUSCI Inter-Integrated Circuit (EUSCI_B_I2C)	116
	Introduction	116
	API Functions	118
	Programming Example	141
14	FRAM Controller	142
14.1	INITOQUUGION	142

14.2 14.3	API Functions	142 147
15.2	API Functions	148 148 149 166
	API Functions	168 168 168 175
17.2	Introduction	177 177 177 190
18.2	Introduction	191 191 191 197
		199 199
20.2	Real-Time Clock (RTC_B)	206 206
21.2	SFR Module	220 220
22.2	SYS Module	226 226
23.1 23.2	16-Bit Timer_A (TIMER_A) Introduction	238
	Introduction	265 265 266 293
25.2	Introduction	295 295 295 300
26 26.1	WatchDog Timer (WDT_A)	301 301

Tahl	۵	Ωf	Con	tents
avi	C	UI	CUIII	ເບເເເວ

	Functions	
26.3	gramming Example	5
MPO	ANT NOTICE 300	6

1 Introduction

The Texas Instruments® MSP430® Peripheral Driver Library is a set of drivers for accessing the peripherals found on the MSP430 FR5xx/FR6xx family of microcontrollers. While they are not drivers in the pure operating system sense (that is, they do not have a common interface and do not connect into a global device driver infrastructure), they do provide a mechanism that makes it easy to use the device's peripherals.

The capabilities and organization of the drivers are governed by the following design goals:

- They are written entirely in C except where absolutely not possible.
- They demonstrate how to use the peripheral in its common mode of operation.
- They are easy to understand.
- They are reasonably efficient in terms of memory and processor usage.
- They are as self-contained as possible.
- Where possible, computations that can be performed at compile time are done there instead of at run time.
- They can be built with more than one tool chain.

Some consequences of these design goals are:

- The drivers are not necessarily as efficient as they could be (from a code size and/or execution speed point of view). While the most efficient piece of code for operating a peripheral would be written in assembly and custom tailored to the specific requirements of the application, further size optimizations of the drivers would make them more difficult to understand.
- The drivers do not support the full capabilities of the hardware. Some of the peripherals provide complex capabilities which cannot be utilized by the drivers in this library, though the existing code can be used as a reference upon which to add support for the additional capabilities.
- The APIs have a means of removing all error checking code. Because the error checking is usually only useful during initial program development, it can be removed to improve code size and speed.

For many applications, the drivers can be used as is. But in some cases, the drivers will have to be enhanced or rewritten in order to meet the functionality, memory, or processing requirements of the application. If so, the existing driver can be used as a reference on how to operate the peripheral.

Each MSP430ware driverlib API takes in the base address of the corresponding peripheral as the first parameter. This base address is obtained from the msp430 device specific header files (or from the device datasheet). The example code for the various peripherals show how base address is used. When using CCS, the eclipse shortcut "Ctrl + Space" helps. Type __MSP430 and "Ctrl + Space", and the list of base addresses from the included device specific header files is listed.

The following tool chains are supported:

- IAR Embedded Workbench®
- Texas Instruments Code Composer Studio[™]

Using assert statements to debug

Assert statements are disabled by default. To enable the assert statement edit the hw_regaccess.h file in the inc folder. Comment out the statement define NDEBUG -> //define NDEBUG Asserts in CCS work only if the project is optimized for size.

2 Navigating to driverlib through CCS Resource Explorer

In CCS, click View->TI Resource Explorer

In Resource Explorer View, click on MSP430ware

Clicking MSP430ware takes you to the introductory page. The version of the latest MSP430ware installed is available in this page. In this screenshot the version is 1.30.00.15 The various software, collateral, code examples, datasheets and user guides can be navigated by clicking the different topics under MSP430ware. To proceed to driverlib, click on Libraries->Driverlib as shown in the next two screenshots.

Driverlib is designed per Family. If a common device family user's guide exists for a group of devices, these devices belong to the same 'family'. Currently driverlib is available for the following family of devices. MSP430F5xx_6xx MSP430FR57xx MSP430FR5xx_6xx MSP430i2xx

Click on the MSP430FR5xx 6xx to navigate to the driverlib based example code for that family.

The various peripherals are listed in alphabetical order. The names of peripherals are as in device family user's guide. Clicking on a peripheral name lists the driverlib example code for that peripheral. The screenshot below shows an example when the user clicks on GPIO peripheral.

Now click on the specific example you are interested in. On the right side there are options to Import/Build/Download and Debug. Import the project by clicking on the "Import the example project into CCS"

The imported project can be viewed on the left in the Project Explorer. All required driverlib source and header files are included inside the driverlib folder. All driverlib source and header files are linked to the example projects. So if the user modifies any of these source or header files, the original copy of the installed MSP430ware driverlib source and header files get modified.

Now click on Build the imported project on the right to build the example project.

Now click on Build the imported project on the right to build the example project.

The COM port to download to can be changed using the Debugger Configuration option on the right if required.

To get started on a new project we recommend getting started on an empty project we provide. This project has all the driverlib source files, header files, project paths are set by default.

The main.c included with the empty project can be modified to include user code.

3 How to create a new user project that uses Driverlib

To get started on a new project we recommend using the new project wizard. For driver library to work with the new project wizard CCS must have discovered the driver library RTSC product. For more information refer to the installation steps of the release notes. The new project wizard adds the needed driver library source files and adds the driver library include path.

To open the new project wizard go to File -> New -> CCS Project as seen in the screenshot below.

Once the new project wizard has been opened name your project and choose the device you would like to create a Driver Library project for. The device must be supported by driver library.

Then under "Project templates and examples" choose "Empty Project with DriverLib Source" as seen below.

Finally click "Finish" and begin developing with your Driver Library enabled project.

4 How to include driverlib into your existing project

To add driver library to an existing project we recommend using CCS project templates. For driver library to work with project templates CCS must have discovered the driver library RTSC product. For more information refer to the installation steps of the release notes. CCS project templates adds the needed driver library source files and adds the driver library include path.

To apply a project template right click on an existing project then go to Source -> Apply Project Template as seen in the screenshot below.

In the "Apply Project Template" dialog box under "MSP430 DriverLib Additions" choose either "Add Local Copy" or "Point to Installed DriverLib" as seen in the screenshot below. Most users will want to add a local copy which copies the DriverLib source into the project and sets the compiler settings needed.

Pointing to an installed DriverLib is for advandced users who are including a static library in their project and want to add the DriverLib header files to their include path.

Click "Finish" and start developing with driver library in your project.

5 10-Bit Analog-to-Digital Converter (ADC10_B)

Introduction	. 18
API Functions	.19
Programming Example	.38

5.1 Introduction

The 10-Bit Analog-to-Digital (ADC10_B) API provides a set of functions for using the MSP430Ware ADC10_B modules. Functions are provided to initialize the ADC10_B modules, setup signal sources and reference voltages, and manage interrupts for the ADC10_B modules.

The ADC10_B module supports fast 10-bit analog-to-digital conversions. The module implements a 10-bit SAR core together, sample select control and a window comparator.

ADC10 B features include:

- Greater than 200-ksps maximum conversion rate
- Monotonic 10-bit converter with no missing codes
- Sample-and-hold with programmable sampling periods controlled by software or timers
- Conversion initiation by software or different timers
- Software-selectable on chip reference using the REF module or external reference
- Twelve individually configurable external input channels
- Conversion channel for temperature sensor of the REF module
- Selectable conversion clock source
- Single-channel, repeat-single-channel, sequence, and repeat-sequence conversion modes
- Window comparator for low-power monitoring of input signals
- Interrupt vector register for fast decoding of six ADC interrupts (ADC10IFG0, ADC10TOVIFG, ADC10OVIFG, ADC10LOIFG, ADC10INIFG, ADC10HIIFG)

This driver is contained in adc10_b.c, with adc10_b.h containing the API definitions for use by applications.

Т

he following code metrics were performed with the TI Compiler 4.2.1 compiler, IAR 5.51.6 compiler and MSPGCC 4.8.0 compiler with different optimization settings. Users may see different code sizes depending on their project settings so it is best to perform your benchmarks within your project. These sizes contain all functions of the peripheral but only functions that are used will be linked into the application and added to the total code size. To see individual API code metrics see the specific API below.

Optimization	Code Size
None	718
Size	284
Speed	284
None	432
Size	310
Speed	310
None	1086
Size	308
Speed	310
	None Size Speed None Size Speed None Size

5.2 API Functions

Functions

- void ADC10_B_clearInterrupt (uint16_t baseAddress, uint8_t interruptFlagMask)
- void ADC10_B_disable (uint16_t baseAddress)
- void ADC10_B_disableConversions (uint16_t baseAddress, bool preempt)
- void ADC10_B_disableInterrupt (uint16_t baseAddress, uint8_t interruptMask)
- void ADC10_B_disableReferenceBurst (uint16_t baseAddress)
- void ADC10_B_disableSamplingTimer (uint16_t baseAddress)
- void ADC10 B enable (uint16 t baseAddress)
- void ADC10_B_enableInterrupt (uint16_t baseAddress, uint8_t interruptMask)
- void ADC10 B enableReferenceBurst (uint16 t baseAddress)
- uint8 t ADC10 B getInterruptStatus (uint16 t baseAddress, uint8 t interruptFlagMask)
- uint32 t ADC10 B getMemoryAddressForDMA (uint16 t baseAddress)
- uint16 t ADC10 B getResults (uint16 t baseAddress)
- bool ADC10_B_init (uint16_t baseAddress, uint16_t sampleHoldSignalSourceSelect, uint8_t clockSourceSelect, uint16_t clockSourceDivider)
- uint8_t ADC10_B_isBusy (uint16_t baseAddress)
- void ADC10_B_memoryConfigure (uint16_t baseAddress, uint8_t inputSourceSelect, uint8_t positiveRefVoltageSourceSelect, uint8_t negativeRefVoltageSourceSelect)
- void ADC10 B setDataReadBackFormat (uint16 t baseAddress, uint16 t readBackFormat)
- void ADC10_B_setReferenceBufferSamplingRate (uint16_t baseAddress, uint16_t samplingRateSelect)
- void ADC10_B_setResolution (uint16_t baseAddress, uint8_t resolutionSelect)
- void ADC10_B_setSampleHoldSignalInversion (uint16_t baseAddress, uint16_t invertedSignal)
- void ADC10_B_setupSamplingTimer (uint16_t baseAddress, uint16_t clockCycleHoldCount, uint16_t multipleSamplesEnabled)
- void ADC10_B_setWindowComp (uint16_t baseAddress, uint16_t highThreshold, uint16_t lowThreshold)
- void ADC10_B_startConversion (uint16_t baseAddress, uint8_t conversionSequenceModeSelect)

5.2.1 Detailed Description

The ADC10_B API is broken into three groups of functions: those that deal with initialization and conversions, those that handle interrupts, and those that handle Auxiliary features of the ADC10.

The ADC10 B initialization and conversion functions are

- ADC10_B_init()
- ADC10 B memoryConfigure()
- ADC10 B setupSamplingTimer()
- ADC10_B_disableSamplingTimer()
- ADC10_B_setWindowComp()
- ADC10 B startConversion()
- ADC10 B disableConversions()
- ADC10_B_getResults()
- ADC10_B_isBusy()

The ADC10_B interrupts are handled by

- ADC10_B_enableInterrupt()
- ADC10_B_disableInterrupt()
- ADC10_B_clearInterrupt()
- ADC10 B getInterruptStatus()

Auxiliary features of the ADC10 B are handled by

- ADC10 B setResolution()
- ADC10 B setSampleHoldSignalInversion()
- ADC10 B setDataReadBackFormat()
- ADC10 B enableReferenceBurst()
- ADC10 B disableReferenceBurst()
- ADC10_B_setReferenceBufferSamplingRate()
- ADC10_B_getMemoryAddressForDMA()
- ADC10 B enable()
- ADC10_B_disable()

5.2.2 Function Documentation

5.2.2.1 void ADC10_B_clearInterrupt (uint16_t baseAddress, uint8_t interruptFlagMask)

Clears ADC10B selected interrupt flags.

The selected ADC10B interrupt flags are cleared, so that it no longer asserts. The memory buffer interrupt flags are only cleared when the memory buffer is accessed.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	28
TI Compiler 4.2.1	Size	8
TI Compiler 4.2.1	Speed	8
IAR 5.51.6	None	14
IAR 5.51.6	Size	4
IAR 5.51.6	Speed	4
MSPGCC 4.8.0	None	46
MSPGCC 4.8.0	Size	10
MSPGCC 4.8.0	Speed	10

Parameters:

baseAddress is the base address of the ADC10B module.

interruptFlagMask is a bit mask of the interrupt flags to be cleared. Mask value is the logical OR of any of the following:

- ADC10_B_OVIFG Interrupt flag for when a new conversion is about to overwrite the previous one
- ADC10_B_TOVIFG Interrupt flag for when a new conversion is starting before the previous one has finished
- ADC10_B_HIIFG Interrupt flag for when the input signal has gone above the high threshold of the window comparator
- ADC10_B_LOIFG Interrupt flag for when the input signal has gone below the low threshold of the window comparator
- ADC10_B_INIFG Interrupt flag for when the input signal is in between the high and low thresholds of the window comparator
- ADC10_B_IFG0 Interrupt flag for new conversion data in the memory buffer

Modified bits of ADC10IFG register.

Returns:

None

5.2.2.2 void ADC10 B disable (uint16 t baseAddress)

Disables the ADC10B block.

This will disable operation of the ADC10B block.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	18
TI Compiler 4.2.1	Size	8
TI Compiler 4.2.1	Speed	8
IAR 5.51.6	None	10
IAR 5.51.6	Size	8
IAR 5.51.6	Speed	8
MSPGCC 4.8.0	None	24
MSPGCC 4.8.0	Size	8
MSPGCC 4.8.0	Speed	8

Parameters:

baseAddress is the base address of the ADC10B module.

Modified bits are ADC10ON of ADC10CTL0 register.

Returns:

None

5.2.2.3 void ADC10 B disableConversions (uint16 t baseAddress, bool preempt)

Disables the ADC from converting any more signals.

Disables the ADC from converting any more signals. If there is a conversion in progress, this function can stop it immediately if the preempt parameter is set as ADC10_B_PREEMPTCONVERSION, by changing the conversion mode to single-channel, single-conversion and disabling conversions. If the conversion mode is set as single-channel, single-conversion and this function is called without preemption, then the ADC core conversion status is polled until the conversion is complete before disabling conversions to prevent unpredictable data. If the ADC10CTL1 and ADC10CTL0

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	58
TI Compiler 4.2.1	Size	28
TI Compiler 4.2.1	Speed	28
IAR 5.51.6	None	40
IAR 5.51.6	Size	32
IAR 5.51.6	Speed	32
MSPGCC 4.8.0	None	86
MSPGCC 4.8.0	Size	32
MSPGCC 4.8.0	Speed	34

Parameters:

baseAddress is the base address of the ADC10B module.

preempt specifies if the current conversion should be pre-empted stopped before the end of the conversion Valid values are:

- ADC10_B_COMPLETECONVERSION Allows the ADC10B to end the current conversion before disabling conversions.
- ADC10_B_PREEMPTCONVERSION Stops the ADC10B immediately, with unpredicatble results of the current conversion. Cannot be used with repeated conversion.

Modified bits of ADC10CTL1 register and bits of ADC10CTL0 register.

Returns:

None

5.2.2.4 void ADC10_B_disableInterrupt (uint16_t baseAddress, uint8_t interruptMask)

Disables selected ADC10B interrupt sources.

Disables the indicated ADC10B interrupt sources. Only the sources that are enabled can be reflected to the processor interrupt; disabled sources have no effect on the processor.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	28
TI Compiler 4.2.1	Size	8
TI Compiler 4.2.1	Speed	8
IAR 5.51.6	None	14
IAR 5.51.6	Size	6
IAR 5.51.6	Speed	6
MSPGCC 4.8.0	None	46
MSPGCC 4.8.0	Size	10
MSPGCC 4.8.0	Speed	10

Parameters:

baseAddress is the base address of the ADC10B module.

interruptMask is the bit mask of the memory buffer interrupt sources to be disabled. Mask value is the logical OR of any of the following:

- ADC10_B_OVIE Interrupts when a new conversion is about to overwrite the previous one
- ADC10_B_TOVIE Interrupts when a new conversion is starting before the previous one has finished
- ADC10_B_HIIE Interrupts when the input signal has gone above the high threshold of the window comparator
- ADC10_B_LOIE Interrupts when the input signal has gone below the low threshold of the low window comparator
- ADC10_B_INIE Interrupts when the input signal is in between the high and low thresholds of the window comparator
- ADC10 B IE0 Interrupt for new conversion data in the memory buffer

Modified bits of **ADC10IE** register.

Returns:

None

5.2.2.5 void ADC10 B disableReferenceBurst (uint16 t baseAddress)

Disables the reference buffer's burst ability.

Disables the reference buffer's burst ability, forcing the reference buffer to remain on continuously.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	18
TI Compiler 4.2.1	Size	6
TI Compiler 4.2.1	Speed	6
IAR 5.51.6	None	10
IAR 5.51.6	Size	8
IAR 5.51.6	Speed	8
MSPGCC 4.8.0	None	26
MSPGCC 4.8.0	Size	6
MSPGCC 4.8.0	Speed	6

Parameters:

baseAddress is the base address of the ADC10B module.

Modified bits are ADC10REFBURST of ADC10CTL2 register.

Returns:

None

5.2.2.6 void ADC10_B_disableSamplingTimer (uint16_t baseAddress)

Disables Sampling Timer Pulse Mode.

Disables the Sampling Timer Pulse Mode. Note that if a conversion has been started with the startConversion() function, then a call to disableConversions() is required before this function may be called.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	20
TI Compiler 4.2.1	Size	8
TI Compiler 4.2.1	Speed	8
IAR 5.51.6	None	12
IAR 5.51.6	Size	10
IAR 5.51.6	Speed	10
MSPGCC 4.8.0	None	28
MSPGCC 4.8.0	Size	8
MSPGCC 4.8.0	Speed	8

Parameters:

baseAddress is the base address of the ADC10B module.

Modified bits are ADC10SHP of ADC10CTL1 register.

Returns:

None

5.2.2.7 void ADC10 B enable (uint16 t baseAddress)

Enables the ADC10B block.

This will enable operation of the ADC10B block.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	18
TI Compiler 4.2.1	Size	8
TI Compiler 4.2.1	Speed	8
IAR 5.51.6	None	10
IAR 5.51.6	Size	8
IAR 5.51.6	Speed	8
MSPGCC 4.8.0	None	24
MSPGCC 4.8.0	Size	8
MSPGCC 4.8.0	Speed	8

Parameters:

baseAddress is the base address of the ADC10B module.

Modified bits are **ADC10ON** of **ADC10CTL0** register.

Returns:

None

5.2.2.8 void ADC10_B_enableInterrupt (uint16_t baseAddress, uint8_t interruptMask)

Enables selected ADC10B interrupt sources.

Enables the indicated ADC10B interrupt sources. Only the sources that are enabled can be reflected to the processor interrupt; disabled sources have no effect on the processor. Does not clear interrupt flags.

Code Metrics:

Optimization	Code Size
None	28
Size	8
Speed	8
None	14
Size	6
Speed	6
None	42
Size	10
Speed	10
Ороса	
	None Size Speed None Size Speed None Size

Parameters:

baseAddress is the base address of the ADC10B module.

interruptMask is the bit mask of the memory buffer interrupt sources to be enabled. Mask value is the logical OR of any of the following:

- ADC10_B_OVIE Interrupts when a new conversion is about to overwrite the previous one
- ADC10_B_TOVIE Interrupts when a new conversion is starting before the previous one has finished
- ADC10_B_HIIE Interrupts when the input signal has gone above the high threshold of the window comparator
- ADC10_B_LOIE Interrupts when the input signal has gone below the low threshold of the low window comparator
- ADC10_B_INIE Interrupts when the input signal is in between the high and low thresholds of the window comparator
- ADC10_B_IE0 Interrupt for new conversion data in the memory buffer

Modified bits of **ADC10IE** register.

Returns:

None

5.2.2.9 void ADC10_B_enableReferenceBurst (uint16_t baseAddress)

Enables the reference buffer's burst ability.

Enables the reference buffer's burst ability, allowing the reference buffer to turn off while the ADC is not converting, and automatically turning on when the ADC needs the generated reference voltage for a conversion.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	18
TI Compiler 4.2.1	Size	6
TI Compiler 4.2.1	Speed	6
IAR 5.51.6	None	10
IAR 5.51.6	Size	8
IAR 5.51.6	Speed	8
MSPGCC 4.8.0	None	26
MSPGCC 4.8.0	Size	6
MSPGCC 4.8.0	Speed	6

Parameters:

baseAddress is the base address of the ADC10B module.

Modified bits are ADC10REFBURST of ADC10CTL2 register.

Returns:

None

5.2.2.10 uint8_t ADC10_B_getInterruptStatus (uint16_t baseAddress, uint8_t interruptFlagMask)

Returns the status of the selected memory interrupt flags.

Returns the status of the selected interrupt flags.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	22
TI Compiler 4.2.1	Size	8
TI Compiler 4.2.1	Speed	8
IAR 5.51.6	None	10
IAR 5.51.6	Size	10
IAR 5.51.6	Speed	10
MSPGCC 4.8.0	None	38
MSPGCC 4.8.0	Size	8
MSPGCC 4.8.0	Speed	8

Parameters:

baseAddress is the base address of the ADC10B module.

interruptFlagMask is a bit mask of the interrupt flags status to be returned. Mask value is the logical OR of any of the following:

- ADC10_B_OVIFG Interrupt flag for when a new conversion is about to overwrite the previous one
- ADC10_B_TOVIFG Interrupt flag for when a new conversion is starting before the previous one has finished

- ADC10_B_HIIFG Interrupt flag for when the input signal has gone above the high threshold of the window comparator
- ADC10_B_LOIFG Interrupt flag for when the input signal has gone below the low threshold of the window comparator
- ADC10_B_INIFG Interrupt flag for when the input signal is in between the high and low thresholds of the window comparator
- ADC10 B IFG0 Interrupt flag for new conversion data in the memory buffer

Modified bits of ADC10IFG register.

Returns:

The current interrupt flag status for the corresponding mask.

5.2.2.11 uint32_t ADC10_B_getMemoryAddressForDMA (uint16_t baseAddress)

Returns the address of the memory buffer for the DMA module.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	18
TI Compiler 4.2.1	Size	8
TI Compiler 4.2.1	Speed	8
IAR 5.51.6	None	8
IAR 5.51.6	Size	8
IAR 5.51.6	Speed	8
MSPGCC 4.8.0	None	24
MSPGCC 4.8.0	Size	8
MSPGCC 4.8.0	Speed	8

Parameters:

baseAddress is the base address of the ADC10B module.

Returns:

Returns the address of the memory buffer. This can be used in conjunction with the DMA to store the converted data directly to memory.

5.2.2.12 uint16 t ADC10 B getResults (uint16 t baseAddress)

Returns the raw contents of the specified memory buffer.

Returns the raw contents of the specified memory buffer. The format of the content depends on the read-back format of the data: if the data is in signed 2's complement format then the contents in the memory buffer will be left-justified with the least-significant bits as 0's, whereas if the data is in unsigned format then the contents in the memory buffer will be right-justified with the most-significant bits as 0's.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	14
TI Compiler 4.2.1	Size	6
TI Compiler 4.2.1	Speed	6
IAR 5.51.6	None	8
IAR 5.51.6	Size	8
IAR 5.51.6	Speed	8
MSPGCC 4.8.0	None	18
MSPGCC 4.8.0	Size	6
MSPGCC 4.8.0	Speed	6

Parameters:

baseAddress is the base address of the ADC10B module.

Returns:

A Signed Integer of the contents of the specified memory buffer.

5.2.2.13 bool ADC10_B_init (uint16_t baseAddress, uint16_t sampleHoldSignalSourceSelect, uint16_t clockSourceDivider)

Initializes the ADC10B Module.

This function initializes the ADC module to allow for analog-to-digital conversions. Specifically this function sets up the sample-and-hold signal and clock sources for the ADC core to use for conversions. Upon successful completion of the initialization all of the ADC control registers will be reset, excluding the memory controls and reference module bits, the given parameters will be set, and the ADC core will be turned on (Note, that the ADC core only draws power during conversions and remains off when not converting). Note that sample/hold signal sources are device dependent. Note that if re-initializing the ADC after starting a conversion with the startConversion() function, the disableConversion() must be called BEFORE this function can be called.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	108
TI Compiler 4.2.1	Size	54
TI Compiler 4.2.1	Speed	54
IAR 5.51.6	None	94
IAR 5.51.6	Size	76
IAR 5.51.6	Speed	76
MSPGCC 4.8.0	None	146
MSPGCC 4.8.0	Size	64
MSPGCC 4.8.0	Speed	64

Parameters:

baseAddress is the base address of the ADC10B module.

sampleHoldSignalSourceSelect is the signal that will trigger a sample-and-hold for an input signal to be converted. This parameter is device specific and sources should be found in the device's datasheet. Valid values are:

- ADC10 B SAMPLEHOLDSOURCE SC [Default]
- ADC10 B SAMPLEHOLDSOURCE 1
- ADC10 B SAMPLEHOLDSOURCE 2
- ADC10 B SAMPLEHOLDSOURCE 3

Modified bits are ADC10SHSx of ADC10CTL1 register.

clockSourceSelect selects the clock that will be used by the ADC10B core and the sampling timer if a sampling pulse mode is enabled. Valid values are:

- ADC10_B_CLOCKSOURCE_ADC10OSC [Default] MODOSC 5 MHz oscillator from the clock system
- ADC10 B CLOCKSOURCE ACLK The Auxiliary Clock
- ADC10 B CLOCKSOURCE MCLK The Master Clock
- ADC10_B_CLOCKSOURCE_SMCLK The Sub-Master Clock Modified bits are ADC10SSELx of ADC10CTL1 register.

clockSourceDivider selects the amount that the clock will be divided. Valid values are:

- ADC10 B CLOCKDIVIDER 1 [Default]
- ADC10_B_CLOCKDIVIDER_2
- ADC10 B CLOCKDIVIDER 3
- ADC10 B CLOCKDIVIDER 4
- ADC10_B_CLOCKDIVIDER_5
- ADC10_B_CLOCKDIVIDER_6
- ADC10 B CLOCKDIVIDER 7
- ADC10_B_CLOCKDIVIDER_8
- ADC10_B_CLOCKDIVIDER_12
- ADC10_B_CLOCKDIVIDER_16
- ADC10_B_CLOCKDIVIDER_20
- ADC10_B_CLOCKDIVIDER_24
- ADC10_B_CLOCKDIVIDER_28
- ADC10_B_CLOCKDIVIDER_32
- ADC10_B_CLOCKDIVIDER_64 ■ ADC10 B CLOCKDIVIDER 128
- ADC10 B CLOCKDIVIDER 192
- ADC10 B CLOCKDIVIDER 256
- ADC10_B_CLOCKDIVIDER_320
- ADC10_B_CLOCKDIVIDER_384
- ADC10 B CLOCKDIVIDER 448
- ADC10_B_CLOCKDIVIDER_512 Modified bits are ADC10DIVx of ADC10CTL1 register; bits ADC10PDIVx of ADC10CTL2 register.

Returns:

STATUS_SUCCESS or STATUS_FAILURE of the initialization process.

5.2.2.14 uint8_t ADC10_B_isBusy (uint16_t baseAddress)

Returns the busy status of the ADC10B core.

Returns the status of the ADC core if there is a conversion currently taking place.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	16
TI Compiler 4.2.1	Size	8
TI Compiler 4.2.1	Speed	8
IAR 5.51.6	None	8
IAR 5.51.6	Size	8
IAR 5.51.6	Speed	8
MSPGCC 4.8.0	None	28
MSPGCC 4.8.0	Size	8
MSPGCC 4.8.0	Speed	8

Parameters:

baseAddress is the base address of the ADC10B module.

Returns:

ADC10_B_BUSY or ADC10_B_NOTBUSY dependent if there is a conversion currently taking place. Return one of the following:

- ADC10_B_NOTBUSY
- ADC10_B_BUSY
- 5.2.2.15 void ADC10_B_memoryConfigure (uint16_t baseAddress, uint8_t inputSourceSelect, uint8_t positiveRefVoltageSourceSelect, uint8_t negativeRefVoltageSourceSelect)

Configures the controls of the selected memory buffer.

Maps an input signal conversion into the memory buffer, as well as the positive and negative reference voltages for each conversion being stored into the memory buffer. If the internal reference is used for the positive reference voltage, the internal REF module has to control the voltage level. Note that if a conversion has been started with the startConversion() function, then a call to disableConversions() is required before this function may be called.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	42
TI Compiler 4.2.1	Size	10
TI Compiler 4.2.1	Speed	10
IAR 5.51.6	None	22
IAR 5.51.6	Size	14
IAR 5.51.6	Speed	14
MSPGCC 4.8.0	None	58
MSPGCC 4.8.0	Size	10
MSPGCC 4.8.0	Speed	10

Parameters:

baseAddress is the base address of the ADC10B module.

inputSourceSelect is the input that will store the converted data into the specified memory buffer. Valid values are:

- ADC10 B INPUT A0 [Default]
- ADC10 B INPUT A1
- ADC10 B INPUT A2
- ADC10_B_INPUT_A3
- ADC10 B INPUT A4
- ADC10 B INPUT A5
- ADC10 B INPUT A6
- ADC10_B_INPUT_A7
- ADC10 B INPUT VEREF P
- ADC10_B_INPUT_VEREF_N
- ADC10_B_INPUT_TEMPSENSOR
- ADC10 B INPUT BATTERYMONITOR
- ADC10 B INPUT A12
- ADC10 B INPUT A13
- ADC10_B_INPUT_A14
- ADC10_B_INPUT_A15

Modified bits are ADC10INCHx of ADC10MCTL0 register.

positiveRefVoltageSourceSelect is the reference voltage source to set as the upper limit for the conversion that is to be stored in the specified memory buffer. Valid values are:

- ADC10_B_VREFPOS_AVCC [Default]
- ADC10 B VREFPOS EXT
- ADC10_B_VREFPOS_INT

Modified bits are ADC10SREF of ADC10MCTL0 register.

negativeRefVoltageSourceSelect is the reference voltage source to set as the lower limit for the conversion that is to be stored in the specified memory buffer. Valid values are:

- ADC10_B_VREFNEG_AVSS [Default]
- ADC10_B_VREFNEG_EXT

 Modified bits are ADC10SREF of ADC10MCTL0 register.

Returns:

None

5.2.2.16 void ADC10_B_setDataReadBackFormat (uint16_t baseAddress, uint16_t readBackFormat)

Use to set the read-back format of the converted data.

Sets the format of the converted data: how it will be stored into the memory buffer, and how it should be read back. The format can be set as right-justified (default), which indicates that the number will be unsigned, or left-justified, which indicates that the number will be signed in 2's complement format. This change affects all memory buffers for subsequent conversions.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	32
TI Compiler 4.2.1	Size	12
TI Compiler 4.2.1	Speed	12
IAR 5.51.6	None	18
IAR 5.51.6	Size	8
IAR 5.51.6	Speed	8
MSPGCC 4.8.0	None	54
MSPGCC 4.8.0	Size	12
MSPGCC 4.8.0	Speed	12

Parameters:

baseAddress is the base address of the ADC10B module.

readBackFormat is the specified format to store the conversions in the memory buffer. Valid values are:

- ADC10_B_UNSIGNED_BINARY [Default]
- ADC10_B_SIGNED_2SCOMPLEMENT

 Modified bits are ADC10DF of ADC10CTL2 register.

Returns:

None

5.2.2.17 void ADC10_B_setReferenceBufferSamplingRate (uint16_t baseAddress, uint16_t samplingRateSelect)

Use to set the reference buffer's sampling rate.

Sets the reference buffer's sampling rate to the selected sampling rate. The default sampling rate is maximum of 200-ksps, and can be reduced to a maximum of 50-ksps to conserve power.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	32
TI Compiler 4.2.1	Size	12
TI Compiler 4.2.1	Speed	12
IAR 5.51.6	None	18
IAR 5.51.6	Size	8
IAR 5.51.6	Speed	8
MSPGCC 4.8.0	None	54
MSPGCC 4.8.0	Size	12
MSPGCC 4.8.0	Speed	12

Parameters:

baseAddress is the base address of the ADC10B module.

samplingRateSelect is the specified maximum sampling rate. Valid values are:

■ ADC10_B_MAXSAMPLINGRATE_200KSPS [Default]

■ ADC10_B_MAXSAMPLINGRATE_50KSPS Modified bits are ADC10SR of ADC10CTL2 register.

Modified bits of ADC10CTL2 register.

Returns:

None

5.2.2.18 void ADC10_B_setResolution (uint16_t baseAddress, uint8_t resolutionSelect)

Use to change the resolution of the converted data.

This function can be used to change the resolution of the converted data from the default of 12-bits.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	36
TI Compiler 4.2.1	Size	16
TI Compiler 4.2.1	Speed	16
IAR 5.51.6	None	22
IAR 5.51.6	Size	10
IAR 5.51.6	Speed	10
MSPGCC 4.8.0	None	60
MSPGCC 4.8.0	Size	18
MSPGCC 4.8.0	Speed	18

Parameters:

baseAddress is the base address of the ADC10B module.

resolutionSelect determines the resolution of the converted data. Valid values are:

- ADC10 B RESOLUTION 8BIT
- ADC10_B_RESOLUTION_10BIT [Default]

 Modified bits are ADC10RES of ADC10CTL2 register.

Returns:

None

5.2.2.19 void ADC10_B_setSampleHoldSignalInversion (uint16_t baseAddress, uint16_t invertedSignal)

Use to invert or un-invert the sample/hold signal.

This function can be used to invert or un-invert the sample/hold signal. Note that if a conversion has been started with the startConversion() function, then a call to disableConversions() is required before this function may be called.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	34
TI Compiler 4.2.1	Size	14
TI Compiler 4.2.1	Speed	14
IAR 5.51.6	None	20
IAR 5.51.6	Size	10
IAR 5.51.6	Speed	10
MSPGCC 4.8.0	None	56
MSPGCC 4.8.0	Size	14
MSPGCC 4.8.0	Speed	14

baseAddress is the base address of the ADC10B module.

invertedSignal set if the sample/hold signal should be inverted Valid values are:

- ADC10_B_NONINVERTEDSIGNAL [Default] a sample-and-hold of an input signal for conversion will be started on a rising edge of the sample/hold signal.
- ADC10_B_INVERTEDSIGNAL a sample-and-hold of an input signal for conversion will be started on a falling edge of the sample/hold signal.

 Modified bits are ADC10ISSH of ADC10CTL1 register.

Returns:

None

5.2.2.20 void ADC10_B_setupSamplingTimer (uint16_t baseAddress, uint16_t clockCycleHoldCount, uint16_t multipleSamplesEnabled)

Sets up and enables the Sampling Timer Pulse Mode.

This function sets up the sampling timer pulse mode which allows the sample/hold signal to trigger a sampling timer to sample-and-hold an input signal for a specified number of clock cycles without having to hold the sample/hold signal for the entire period of sampling. Note that if a conversion has been started with the startConversion() function, then a call to disableConversions() is required before this function may be called.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	54
TI Compiler 4.2.1	Size	20
TI Compiler 4.2.1	Speed	20
IAR 5.51.6	None	26
IAR 5.51.6	Size	20
IAR 5.51.6	Speed	20
MSPGCC 4.8.0	None	84
MSPGCC 4.8.0	Size	20
MSPGCC 4.8.0	Speed	20

Parameters:

baseAddress is the base address of the ADC10B module.

clockCycleHoldCount sets the amount of clock cycles to sample-and- hold for the memory buffer. Valid values are:

- ADC10 B CYCLEHOLD 4 CYCLES [Default]
- ADC10_B_CYCLEHOLD_8_CYCLES
- ADC10 B CYCLEHOLD 16 CYCLES
- ADC10_B_CYCLEHOLD_32_CYCLES
- ADC10 B CYCLEHOLD 64 CYCLES
- ADC10_B_CYCLEHOLD_96_CYCLES
- ADC10 B CYCLEHOLD 128 CYCLES
- ADC10 B CYCLEHOLD 192 CYCLES
- ADC10_B_CYCLEHOLD_256_CYCLES
- ADC10_B_CYCLEHOLD_384_CYCLES
- ADC10 B CYCLEHOLD 512 CYCLES
- ADC10_B_CYCLEHOLD_768_CYCLES
- ADC10_B_CYCLEHOLD_1024_CYCLES

 Modified bits are ADC10SHTx of ADC10CTL0 register.

multipleSamplesEnabled allows multiple conversions to start without a trigger signal from the sample/hold signal Valid values are:

- ADC10_B_MULTIPLESAMPLESDISABLE a timer trigger will be needed to start every ADC conversion.
- ADC10_B_MULTIPLESAMPLESENABLE during a sequenced and/or repeated conversion mode, after the first conversion, no sample/hold signal is necessary to start subsequent samples.

Modified bits are ADC10MSC of ADC10CTL0 register.

Returns:

None

5.2.2.21 void ADC10_B_setWindowComp (uint16_t *baseAddress*, uint16_t *highThreshold*, uint16_t *lowThreshold*)

Sets the high and low threshold for the window comparator feature.

Sets the high and low threshold for the window comparator feature. Use the ADC10HIIE, ADC10INIE, ADC10LOIE interrupts to utilize this feature.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	36
TI Compiler 4.2.1	Size	10
TI Compiler 4.2.1	Speed	10
IAR 5.51.6	None	20
IAR 5.51.6	Size	18
IAR 5.51.6	Speed	18
MSPGCC 4.8.0	None	46
MSPGCC 4.8.0	Size	10
MSPGCC 4.8.0	Speed	10

baseAddress is the base address of the ADC10B module.

highThreshold is the upper bound that could trip an interrupt for the window comparator. **lowThreshold** is the lower bound that could trip on interrupt for the window comparator.

Modified bits of ADC10LO register and bits of ADC10HI register.

Returns:

None

5.2.2.22 void ADC10_B_startConversion (uint16_t baseAddress, uint8_t conversionSequenceModeSelect)

Enables/Starts an Analog-to-Digital Conversion.

This function enables/starts the conversion process of the ADC. If the sample/hold signal source chosen during initialization was ADC10OSC, then the conversion is started immediately, otherwise the chosen sample/hold signal source starts the conversion by a rising edge of the signal. Keep in mind when selecting conversion modes, that for sequenced and/or repeated modes, to keep the sample/hold-and-convert process continuing without a trigger from the sample/hold signal source, the multiple samples must be enabled using the ADC10_B_setupSamplingTimer() function. Also note that when a sequence conversion mode is selected, the first input channel is the one mapped to the memory buffer, the next input channel selected for conversion is one less than the input channel just converted (i.e. A1 comes after A2), until A0 is reached, and if in repeating mode, then the next input channel will again be the one mapped to the memory buffer. Note that after this function is called, the ADC10_B_stopConversions() has to be called to re-initialize the ADC, reconfigure a memory buffer control, enable/disable the sampling timer, or to change the internal reference voltage.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	40
TI Compiler 4.2.1	Size	18
TI Compiler 4.2.1	Speed	18
IAR 5.51.6	None	24
IAR 5.51.6	Size	22
IAR 5.51.6	Speed	22
MSPGCC 4.8.0	None	72
MSPGCC 4.8.0	Size	20
MSPGCC 4.8.0	Speed	20

Parameters:

baseAddress is the base address of the ADC10B module.

conversionSequenceModeSelect determines the ADC operating mode. Valid values are:

- ADC10_B_SINGLECHANNEL [Default] one-time conversion of a single channel into a single memory buffer
- ADC10_B_SEQOFCHANNELS one time conversion of multiple channels into the specified starting memory buffer and each subsequent memory buffer up until the conversion is stored in a memory buffer dedicated as the end-of-sequence by the memory's control register

- ADC10_B_REPEATED_SINGLECHANNEL repeated conversions of one channel into a single memory buffer
- ADC10_B_REPEATED_SEQOFCHANNELS repeated conversions of multiple channels into the specified starting memory buffer and each subsequent memory buffer up until the conversion is stored in a memory buffer dedicated as the end-of-sequence by the memory's control register Modified bits are ADC10CONSEQx of ADC10CTL1 register.

Returns:

None

5.3 Programming Example

The following example shows how to initialize and use the ADC10_B API to start a single channel, single conversion.

```
// Initialize ADC10_B with ADC10_B's built-in oscillator
   ADC10_B_init (ADC10_B_BASE,
                            ADC10_B_SAMPLEHOLDSOURCE_SC,
                            ADC10_B_CLOCKSOURCE_ADC100SC,
                            ADC10_B_CLOCKDIVIDEBY_1);
    //Switch ON ADC10_B
ADC10_B_enable(ADC10_B_BASE);
    // Setup sampling timer to sample-and-hold for 16 clock cycles
   ADC10_B_setupSamplingTimer (ADC10_B_BASE,
                                                      ADC10_B_CYCLEHOLD_16_CYCLES,
                                                      FALSE);
    // Configure the Input to the Memory Buffer with the specified Reference Voltages
   ADC10_B_memoryConfigure (ADC10_B_BASE,
                                               ADC10 B INPUT AO,
                                               ADC10_B_VREFPOS_AVCC, // Vref+ = AVcc
                                               ADC10_B_VREFNEG_AVSS // Vref- = AVss
    while (1)
            // Start a single conversion, no repeating or sequences.
            ADC10_B_startConversion (ADC10_B_BASE,
                                                       ADC10_B_SINGLECHANNEL);
            // Wait for the Interrupt Flag to assert
            while( !(ADC10_B_getInterruptStatus(ADC10_B_BASE,ADC10IFG0)) );
            // Clear the Interrupt Flag and start another conversion
            ADC10_B_clearInterrupt(ADC10_B_BASE, ADC10IFG0);
```

6 Comparator (COMP D)

Introduction	39
API Functions	39
Programming Example	

6.1 Introduction

The Comparator D (COMP_D) API provides a set of functions for using the MSP430Ware COMP_D modules. Functions are provided to initialize the COMP_D modules, setup reference voltages for input, and manage interrupts for the COMP_D modules.

The COMP_D module provides the ability to compare two analog signals and use the output in software and on an output pin. The output represents whether the signal on the positive terminal is higher than the signal on the negative terminal. The COMP_D may be used to generate a hysteresis. There are 16 different inputs that can be used, as well as the ability to short 2 input together. The COMP_D module also has control over the REF module to generate a reference voltage as an input.

The COMP_D module can generate multiple interrupts. An interrupt may be asserted for the output, with separate interrupts on whether the output rises, or falls.

This driver is contained in comp_d.c, with comp_d.h containing the API definitions for use by applications.

Т

he following code metrics were performed with the TI Compiler 4.2.1 compiler, IAR 5.51.6 compiler and MSPGCC 4.8.0 compiler with different optimization settings. Users may see different code sizes depending on their project settings so it is best to perform your benchmarks within your project. These sizes contain all functions of the peripheral but only functions that are used will be linked into the application and added to the total code size. To see individual API code metrics see the specific API below.

Optimization	Code Size
None	768
Size	394
Speed	392
None	556
Size	402
Speed	432
None	1164
Size	428
	None Size Speed None Size Speed

6.2 API Functions

Functions

- void COMP_D_clearInterrupt (uint16_t baseAddress, uint16_t interruptFlagMask)
- void COMP_D_disable (uint16_t baseAddress)
- void COMP_D_disableInputBuffer (uint16_t baseAddress, uint8_t inputPort)
- void COMP_D_disableInterrupt (uint16_t baseAddress, uint16_t interruptMask)
- void COMP_D_enable (uint16_t baseAddress)
- void COMP_D_enableInputBuffer (uint16_t baseAddress, uint8_t inputPort)
- void COMP D enableInterrupt (uint16 t baseAddress, uint16 t interruptMask)
- uint8_t COMP_D_getInterruptStatus (uint16_t baseAddress, uint16_t interruptFlagMask)
- bool COMP_D_init (uint16_t baseAddress, uint8_t positiveTerminalInput, uint8_t negativeTerminalInput, uint8_t outputFilterEnableAndDelayLevel, uint16_t invertedOutputPolarity)

- bool COMP_D_initialize (uint16_t baseAddress, COMP_D_initializeParam *param)
- void COMP D interruptSetEdgeDirection (uint16 t baseAddress, uint16 t edgeDirection)
- void COMP_D_interruptToggleEdgeDirection (uint16_t baseAddress)
- void COMP_D_IOSwap (uint16_t baseAddress)
- uint16_t COMP_D_outputValue (uint16_t baseAddress)
- void COMP_D_setReferenceAccuracy (uint16_t baseAddress, uint16_t referenceAccuracy)
- void COMP_D_setReferenceVoltage (uint16_t baseAddress, uint16_t supplyVoltageReferenceBase, uint16_t lowerLimitSupplyVoltageFractionOf32, uint16_t upperLimitSupplyVoltageFractionOf32)
- void COMP_D_shortInputs (uint16_t baseAddress)
- void COMP D unshortInputs (uint16 t baseAddress)

6.2.1 Detailed Description

The COMP_D API is broken into three groups of functions: those that deal with initialization and output, those that handle interrupts, and those that handle Auxiliary features of the COMP_D.

The COMP D initialization and output functions are

- COMP D init()
- COMP_D_setReferenceVoltage()
- COMP_D_enable()
- COMP_D_disable()
- COMP_D_outputValue()

The COMP_D interrupts are handled by

- COMP_D_enableInterrupt()
- COMP_D_disableInterrupt()
- COMP_D_clearInterrupt()
- COMP_D_getInterruptStatus()
- COMP_D_interruptSetEdgeDirection()
- COMP_D_interruptToggleEdgeDirection()

Auxiliary features of the COMP D are handled by

- COMP_D_enableShortOfInputs()
- COMP D disableShortOfInputs()
- COMP_D_disableInputBuffer()
- COMP_D_enableInputBuffer()
- COMP D IOSwap()
- COMP_D_setReferenceAccuracy()

6.2.2 Function Documentation

6.2.2.1 void COMP_D_clearInterrupt (uint16_t baseAddress, uint16_t interruptFlagMask)

Clears Comparator interrupt flags.

The Comparator interrupt source is cleared, so that it no longer asserts. The highest interrupt flag is automatically cleared when an interrupt vector generator is used.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1 TI Compiler 4.2.1	None Size	26 6
TI Compiler 4.2.1	Speed	6
IAR 5.51.6	None	12
IAR 5.51.6	Size	0
IAR 5.51.6	Speed	0
MSPGCC 4.8.0	None	42
MSPGCC 4.8.0	Size	6
MSPGCC 4.8.0	Speed	6

baseAddress is the base address of the COMP_D module.

interruptFlagMask Mask value is the logical OR of any of the following:

- COMP_D_INTERRUPT_FLAG Output interrupt flag
- COMP_D_INTERRUPT_FLAG_INVERTED_POLARITY Output interrupt flag inverted polarity

6.2.2.2 void COMP D disable (uint16 t baseAddress)

Turns off the Comparator module.

This function clears the CDON bit disabling the operation of the Comparator module, saving from excess power consumption.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	20
TI Compiler 4.2.1	Size	8
TI Compiler 4.2.1	Speed	8
IAR 5.51.6	None	12
IAR 5.51.6	Size	10
IAR 5.51.6	Speed	10
MSPGCC 4.8.0	None	28
MSPGCC 4.8.0	Size	8
MSPGCC 4.8.0	Speed	8

Parameters:

baseAddress is the base address of the COMP_D module.

Returns:

None

6.2.2.3 void COMP_D_disableInputBuffer (uint16_t baseAddress, uint8_t inputPort)

Disables the input buffer of the selected input port to effectively allow for analog signals.

This function sets the bit to disable the buffer for the specified input port to allow for analog signals from any of the comparator input pins. This bit is automatically set when the input is initialized to be used with the comparator module. This function should be used whenever an analog input is connected to one of these pins to prevent parasitic voltage from causing unexpected results.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	34
TI Compiler 4.2.1 TI Compiler 4.2.1	Size Speed	16 16
IAR 5.51.6	None	24
IAR 5.51.6	Size	10
IAR 5.51.6	Speed	20
MSPGCC 4.8.0	None	54
MSPGCC 4.8.0	Size	30
MSPGCC 4.8.0	Speed	30

baseAddress is the base address of the COMP_D module.

inputPort is the port in which the input buffer will be disabled. Valid values are:

- COMP_D_INPUT0 [Default]
- COMP_D_INPUT1
- COMP D INPUT2
- COMP D INPUT3
- COMP_D_INPUT4
- COMP_D_INPUT5
- COMP_D_INPUT6
- COMP_D_INPUT7
- COMP_D_INPUT8
- COMP_D_INPUT9
- COMP_D_INPUT10
- COMP_D_INPUT11
- COMP_D_INPUT12
- COMP_D_INPUT13
- COMP D INPUT14
- COMP_D_INPUT15
- COMP_D_VREF

Modified bits are CDPDx of CDCTL3 register.

Returns:

None

6.2.2.4 void COMP_D_disableInterrupt (uint16_t baseAddress, uint16_t interruptMask)

Disables selected Comparator interrupt sources.

Disables the indicated Comparator interrupt sources. Only the sources that are enabled can be reflected to the processor interrupt; disabled sources have no effect on the processor.

Code Metrics:

TI Compiler 4.2.1 None 26 TI Compiler 4.2.1 Size 6 TI Compiler 4.2.1 Speed 6 IAR 5.51.6 None 12 IAR 5.51.6 Size 2 IAR 5.51.6 Speed 2 MSPGCC 4.8.0 None 42 MSPGCC 4.8.0 Size 6 MSPGCC 4.8.0 Speed 6	Compiler	Optimization	Code Size
IAR 5.51.6 Size 2 IAR 5.51.6 Speed 2 MSPGCC 4.8.0 None 42 MSPGCC 4.8.0 Size 6	TI Compiler 4.2.1	Size	6
MSPGCC 4.8.0 Size 6	IAR 5.51.6	Size	2
<u> </u>	MSPGCC 4.8.0	Size	6

baseAddress is the base address of the COMP_D module.

interruptMask Mask value is the logical OR of any of the following:

- COMP_D_INTERRUPT Output interrupt
- COMP_D_INTERRUPT_INVERTED_POLARITY Output interrupt inverted polarity

6.2.2.5 void COMP_D_enable (uint16_t baseAddress)

Turns on the Comparator module.

This function sets the bit that enables the operation of the Comparator module.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	20
TI Compiler 4.2.1	Size	8
TI Compiler 4.2.1	Speed	8
IAR 5.51.6	None	12
IAR 5.51.6	Size	10
IAR 5.51.6	Speed	10
MSPGCC 4.8.0	None	28
MSPGCC 4.8.0	Size	8
MSPGCC 4.8.0	Speed	8

Parameters:

baseAddress is the base address of the COMP_D module.

Returns:

None

6.2.2.6 void COMP D enableInputBuffer (uint16 t baseAddress, uint8 t inputPort)

Enables the input buffer of the selected input port to allow for digital signals.

This function clears the bit to enable the buffer for the specified input port to allow for digital signals from any of the comparator input pins. This should not be reset if there is an analog signal connected to the specified input pin to prevent from unexpected results.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	34
TI Compiler 4.2.1	Size	16
TI Compiler 4.2.1	Speed	16
IAR 5.51.6	None	24
IAR 5.51.6	Size	10
IAR 5.51.6	Speed	20
MSPGCC 4.8.0	None	56
MSPGCC 4.8.0	Size	30
MSPGCC 4.8.0	Speed	30

Parameters:

baseAddress is the base address of the COMP_D module.

 $\emph{inputPort}$ is the port in which the input buffer will be enabled. Valid values are:

- COMP D INPUT0 [Default]
- COMP_D_INPUT1

- COMP_D_INPUT2
- COMP_D_INPUT3
- COMP_D_INPUT4
- COMP_D_INPUT5
- COMP_D_INPUT6
- COMP_D_INPUT7
- COMP_D_INPUT8
- COMP_D_INPUT9
- COMP_D_INPUT10
- COMP_D_INPUT11
- COMP_D_INPUT12
- COMP_D_INPUT13
- COMP_D_INPUT14
- COMP D INPUT15
- COMP_D_VREF

Modified bits are CDPDx of CDCTL3 register.

Returns:

None

6.2.2.7 void COMP_D_enableInterrupt (uint16_t baseAddress, uint16_t interruptMask)

Enables selected Comparator interrupt sources.

Enables the indicated Comparator interrupt sources. Only the sources that are enabled can be reflected to the processor interrupt; disabled sources have no effect on the processor. **Does not clear interrupt flags.**

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	26
TI Compiler 4.2.1 TI Compiler 4.2.1	Size Speed	6 6
IAR 5.51.6	None	12
IAR 5.51.6	Size	4
IAR 5.51.6	Speed	4
MSPGCC 4.8.0	None	38
MSPGCC 4.8.0 MSPGCC 4.8.0	Size Speed	6 6

Parameters:

baseAddress is the base address of the COMP_D module.

interruptMask Mask value is the logical OR of any of the following:

- COMP_D_INTERRUPT Output interrupt
- COMP_D_INTERRUPT_INVERTED_POLARITY Output interrupt inverted polarity

6.2.2.8 uint8_t COMP_D_getInterruptStatus (uint16_t baseAddress, uint16_t interruptFlagMask)

Gets the current Comparator interrupt status.

This returns the interrupt status for the Comparator module based on which flag is passed.

Code Metrics:

Compiler	Optimization	Code Size
Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	22
TI Compiler 4.2.1	Size	8
TI Compiler 4.2.1	Speed	8
IAR 5.51.6	None	10
IAR 5.51.6	Size	10
IAR 5.51.6	Speed	10
MSPGCC 4.8.0	None	44
MSPGCC 4.8.0	Size	8
MSPGCC 4.8.0	Speed	8

baseAddress is the base address of the COMP_D module.

interruptFlagMask Mask value is the logical OR of any of the following:

- COMP D INTERRUPT FLAG Output interrupt flag
- COMP_D_INTERRUPT_FLAG_INVERTED_POLARITY Output interrupt flag inverted polarity
- 6.2.2.9 bool COMP_D_init (uint16_t baseAddress, uint8_t positiveTerminalInput, uint8_t negativeTerminalInput, uint8_t outputFilterEnableAndDelayLevel, uint16_t invertedOutputPolarity)

DEPRECATED - Initializes the COMP D Module.

Upon successful initialization of the COMP_D module, this function will have reset all necessary register bits and set the given options in the registers. To actually use the COMP_D module, the COMP_D_enable() function must be explicitly called before use. If a Reference Voltage is set to a terminal, the Voltage should be set using the setReferenceVoltage() function.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1 TI Compiler 4.2.1	None Size	80 64
TI Compiler 4.2.1	Speed	64
IAR 5.51.6	None	64
IAR 5.51.6	Size	54
IAR 5.51.6	Speed	54
MSPGCC 4.8.0	None	82
MSPGCC 4.8.0 MSPGCC 4.8.0	Size Speed	38 160

Parameters:

baseAddress is the base address of the COMP_D module.

positiveTerminalInput selects the input to the positive terminal. Valid values are:

- COMP D INPUT0 [Default]
- COMP_D_INPUT1
- COMP_D_INPUT2
- COMP D INPUT3
- COMP_D_INPUT4
- COMP_D_INPUT5
- COMP_D_INPUT6
- COMP_D_INPUT7
- COMP_D_INPUT8
- COMP_D_INPUT9
- COMP D INPUT10
- COMP_D_INPUT11

- COMP_D_INPUT12
- COMP D INPUT13
- COMP_D_INPUT14
- COMP_D_INPUT15
- COMP D VREF

Modified bits are CDRSEL of CDCTL2 register; bits CDPDx of CDCTL3 register; bits CDIPEN of CDCTL0 register.

negativeTerminalInput selects the input to the negative terminal. Valid values are:

- COMP D INPUT0 [Default]
- COMP_D_INPUT1
- COMP_D_INPUT2
- COMP_D_INPUT3
- COMP_D_INPUT4
- COMP_D_INPUT5
- COMP D INPUT6
- COMP_D_INPUT7
- COMP_D_INPUT8
- COMP D INPUT9
- COMP_D_INPUT10
- **COMP D INPUT11**
- COMP D INPUT12
- COMP_D_INPUT13
- COMP_D_INPUT14
- COMP D INPUT15
- COMP_D_VREF

Modified bits are CDRSEL of CDCTL2 register; bits CDPDx of CDCTL3 register; bits CDIMEN of CDCTL0 register.

outputFilterEnableAndDelayLevel controls the output filter delay state, which is either off or enabled with a specified delay level. This parameter is device specific and delay levels should be found in the device's datasheet. Valid values are:

- COMP_D_FILTEROUTPUT_OFF [Default]
- COMP_D_FILTEROUTPUT_DLYLVL1
- COMP_D_FILTEROUTPUT_DLYLVL2
- COMP_D_FILTEROUTPUT_DLYLVL3
- COMP_D_FILTEROUTPUT_DLYLVL4

 Modified bits are CDFDLY of CDCTL1 register.

invertedOutputPolarity controls if the output will be inverted or not Valid values are:

- COMP_D_NORMALOUTPUTPOLARITY [Default]
- **COMP D INVERTEDOUTPUTPOLARITY**

Returns:

STATUS_SUCCESS or STATUS_FAILURE of the initialization process

6.2.2.10 bool COMP_D_initialize (uint16_t baseAddress, COMP_D_initializeParam * param)

Initializes the COMP_D Module.

Upon successful initialization of the COMP_D module, this function will have reset all necessary register bits and set the given options in the registers. To actually use the COMP_D module, the COMP_D_enable() function must be explicitly called before use. If a Reference Voltage is set to a terminal, the Voltage should be set using the setReferenceVoltage() function.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	188
TI Compiler 4.2.1 TI Compiler 4.2.1	Size Speed	114 114
IAR 5.51.6	None	174
IAR 5.51.6	Size	142
IAR 5.51.6	Speed	150
MSPGCC 4.8.0	None	304
MSPGCC 4.8.0	Size	146
MSPGCC 4.8.0	Speed	160

 $\textit{baseAddress}\$ is the base address of the COMP_D module.

param is the pointer to struct for initialization.

Returns:

STATUS SUCCESS or STATUS FAILURE of the initialization process

6.2.2.11 void COMP_D_interruptSetEdgeDirection (uint16_t baseAddress, uint16_t edgeDirection)

Explicitly sets the edge direction that would trigger an interrupt.

This function will set which direction the output will have to go, whether rising or falling, to generate an interrupt based on a non-inverted interrupt.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	44
TI Compiler 4.2.1	Size	20
TI Compiler 4.2.1	Speed	20
IAR 5.51.6	None	28
IAR 5.51.6	Size	22
IAR 5.51.6	Speed	24
MSPGCC 4.8.0	None	70
MSPGCC 4.8.0	Size	22
MSPGCC 4.8.0	Speed	20

Parameters:

baseAddress is the base address of the COMP_D module.

edgeDirection determines which direction the edge would have to go to generate an interrupt based on the non-inverted interrupt flag. Valid values are:

- COMP_D_FALLINGEDGE [Default] sets the bit to generate an interrupt when the output of the comparator falls from HIGH to LOW if the normal interrupt bit is set(and LOW to HIGH if the inverted interrupt enable bit is set).
- COMP_D_RISINGEDGE sets the bit to generate an interrupt when the output of the comparator rises from LOW to HIGH if the normal interrupt bit is set(and HIGH to LOW if the inverted interrupt enable bit is set). Modified bits are CDIES of CDCTL1 register.

Returns:

None

6.2.2.12 void COMP_D_interruptToggleEdgeDirection (uint16_t baseAddress)

Toggles the edge direction that would trigger an interrupt.

This function will toggle which direction the output will have to go, whether rising or falling, to generate an interrupt based on a non-inverted interrupt. If the direction was rising, it is now falling, if it was falling, it is now rising.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	18
TI Compiler 4.2.1	Size	6
TI Compiler 4.2.1	Speed	6
IAR 5.51.6	None	10
IAR 5.51.6	Size	8
IAR 5.51.6	Speed	8
MSPGCC 4.8.0	None	26
MSPGCC 4.8.0	Size	6
MSPGCC 4.8.0	Speed	6

Parameters:

baseAddress is the base address of the COMP_D module.

Returns:

None

6.2.2.13 void COMP_D_IOSwap (uint16_t baseAddress)

Toggles the bit that swaps which terminals the inputs go to, while also inverting the output of the comparator.

This function toggles the bit that controls which input goes to which terminal. After initialization, this bit is set to 0, after toggling it once the inputs are routed to the opposite terminal and the output is inverted.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1 TI Compiler 4.2.1	None Size	20 8
TI Compiler 4.2.1	Speed	8
IAR 5.51.6	None	12
IAR 5.51.6	Size	10
IAR 5.51.6	Speed	10
MSPGCC 4.8.0	None	28
MSPGCC 4.8.0	Size	8
MSPGCC 4.8.0	Speed	8

Parameters:

baseAddress is the base address of the COMP_D module.

Returns:

None

6.2.2.14 uint16_t COMP_D_outputValue (uint16_t baseAddress)

Returns the output value of the COMP_D module.

Returns the output value of the COMP_D module.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	18
TI Compiler 4.2.1	Size	10
TI Compiler 4.2.1	Speed	10
IAR 5.51.6	None	8
IAR 5.51.6	Size	8
IAR 5.51.6	Speed	8
MSPGCC 4.8.0	None	18
MSPGCC 4.8.0	Size	8
MSPGCC 4.8.0	Speed	8

baseAddress is the base address of the COMP D module.

Returns:

COMP_D_HIGH or COMP_D_LOW as the output value of the Comparator module. Return one of the following:

- COMP_D_HIGH
- COMP_D_LOW

indicates the output should be normal

6.2.2.15 void COMP_D_setReferenceAccuracy (uint16_t baseAddress, uint16_t referenceAccuracy)

Sets the reference accuracy.

The reference accuracy is set to the desired setting. Clocked is better for low power operations but has a lower accuracy.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	34
TI Compiler 4.2.1	Size	14
TI Compiler 4.2.1	Speed	14
IAR 5.51.6	None	20
IAR 5.51.6	Size	10
IAR 5.51.6	Speed	10
MSPGCC 4.8.0	None	56
MSPGCC 4.8.0	Size	14
MSPGCC 4.8.0	Speed	14

Parameters:

baseAddress is the base address of the COMP_D module.

referenceAccuracy is the reference accuracy setting of the comparator. Clocked is for low power/low accuracy. Valid values are:

- COMP_D_ACCURACY_STATIC
- COMP_D_ACCURACY_CLOCKED

 Modified bits are CDREFACC of CDCTL2 register.

Returns:

None

6.2.2.16 void COMP_D_setReferenceVoltage (uint16_t baseAddress, uint16_t supplyVoltageReferenceBase, uint16_t lowerLimitSupplyVoltageFractionOf32, uint16_t upperLimitSupplyVoltageFractionOf32)

Generates a Reference Voltage to the terminal selected during initialization.

Use this function to generate a voltage to serve as a reference to the terminal selected at initialization. The voltage is determined by the equation: Vbase * (Numerator / 32). If the upper and lower limit voltage numerators are equal, then a static reference is defined, whereas they are different then a hysteresis effect is generated. Note that the "limit" voltage is the voltage triggers a change in COMP_D value.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None Size	118 68
TI Compiler 4.2.1	Speed	66
IAR 5.51.6	None	98
IAR 5.51.6 IAR 5.51.6	Size Speed	72 72
MSPGCC 4.8.0	None	192
MSPGCC 4.8.0 MSPGCC 4.8.0	Size Speed	68 96

Parameters:

 $\textit{baseAddress}\$ is the base address of the COMP_D module.

supplyVoltageReferenceBase decides the source and max amount of Voltage that can be used as a reference.
Valid values are:

- **COMP D REFERENCE AMPLIFIER DISABLED**
- COMP D VREFBASE1 5V
- COMP_D_VREFBASE2_0V
- COMP D VREFBASE2 5V

Modified bits are CDREFL of CDCTL2 register.

lowerLimitSupplyVoltageFractionOf32 is the numerator of the equation to generate the reference voltage for the lower limit reference voltage.

Modified bits are CDREF0 of CDCTL2 register.

upperLimitSupplyVoltageFractionOf32 is the numerator of the equation to generate the reference voltage for the upper limit reference voltage.

Modified bits are CDREF1 of CDCTL2 register.

Returns:

None

6.2.2.17 void COMP_D_shortInputs (uint16_t baseAddress)

Shorts the two input pins chosen during initialization.

This function sets the bit that shorts the devices attached to the input pins chosen from the initialization of the comparator.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	20
TI Compiler 4.2.1	Size	8
TI Compiler 4.2.1	Speed	8
IAR 5.51.6	None	12
IAR 5.51.6	Size	10
IAR 5.51.6	Speed	10
MSPGCC 4.8.0	None	28
MSPGCC 4.8.0	Size	8
MSPGCC 4.8.0	Speed	8

Parameters:

baseAddress is the base address of the COMP_D module.

Returns:

None

6.2.2.18 void COMP_D_unshortInputs (uint16_t baseAddress)

Disables the short of the two input pins chosen during initialization.

This function clears the bit that shorts the devices attached to the input pins chosen from the initialization of the comparator.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	20
TI Compiler 4.2.1	Size	8
TI Compiler 4.2.1	Speed	8
IAR 5.51.6	None	12
IAR 5.51.6	Size	10
IAR 5.51.6	Speed	10
MSPGCC 4.8.0	None	28
MSPGCC 4.8.0	Size	8
MSPGCC 4.8.0	Speed	8

Parameters:

baseAddress is the base address of the COMP_D module.

Returns:

None

6.3 Programming Example

The following example shows how to initialize and use the COMP_D API to turn on an LED when the input to the positive terminal is higher than the input to the negative terminal.

```
// Initialize the Comparator D module
/\star Base Address of Comparator D,
 Pin CD2 to Positive(+) Terminal,
  Reference Voltage to Negative (-) Terminal,
  Normal Power Mode,
  Output Filter On with minimal delay,
  Non-Inverted Output Polarity
COMP_D_init(COMP_D_BASE,
    COMP_D_INPUT2,
    COMP_D_VREF,
    COMP_D_FILTEROUTPUT_OFF,
    COMP_D_NORMALOUTPUTPOLARITY
// Set the reference voltage that is being supplied to the (-) terminal
/* Base Address of Comparator D,
Reference Voltage of 2.0 V,
Upper Limit of 2.0*(32/32) = 2.0V,
Lower Limit of 2.0*(32/32) = 2.0V
COMP_D_setReferenceVoltage(COMP_D_BASE,
    COMP_D_VREFBASE2_0V,
    32,
    32,
```

```
COMP_D_ACCURACY_STATIC
    );
  //Disable Input Buffer on P1.2/CD2
      /\star Base Address of Comparator D,
Input Buffer port
Selecting the CDx input pin to the comparator
multiplexer with the CDx bits automatically
disables output driver and input buffer for
that pin, regardless of the state of the
associated CDPD.x bit
        COMP_D_disableInputBuffer(COMP_D_BASE,
                COMP_D_INPUT2);
// Allow power to Comparator module
COMP_D_enable(COMP_D_BASE);
__delay_cycles(400);
                        // delay for the reference to settle
```

7 Cyclical Redundancy Check (CRC)

Introduction	53
API Functions	53
Programming Example	

7.1 Introduction

The Cyclic Redundancy Check (CRC) API provides a set of functions for using the MSP430Ware CRC module. Functions are provided to initialize the CRC and create a CRC signature to check the validity of data. This is mostly useful in the communication of data, or as a startup procedure to as a more complex and accurate check of data.

The CRC module offers no interrupts and is used only to generate CRC signatures to verify against pre-made CRC signatures (Checksums).

This driver is contained in crc.c, with crc.h containing the API definitions for use by applications.

т

he following code metrics were performed with the TI Compiler 4.2.1 compiler, IAR 5.51.6 compiler and MSPGCC 4.8.0 compiler with different optimization settings. Users may see different code sizes depending on their project settings so it is best to perform your benchmarks within your project. These sizes contain all functions of the peripheral but only functions that are used will be linked into the application and added to the total code size. To see individual API code metrics see the specific API below.

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	146
TI Compiler 4.2.1	Size	46
TI Compiler 4.2.1	Speed	46
IAR 5.51.6	None	60
IAR 5.51.6	Size	30
IAR 5.51.6	Speed	30
MSPGCC 4.8.0	None	168
MSPGCC 4.8.0	Size	46
MSPGCC 4.8.0	Speed	46

7.2 API Functions

Functions

- uint16_t CRC_getData (uint16_t baseAddress)
- uint16_t CRC_getResult (uint16_t baseAddress)
- uint16_t CRC_getResultBitsReversed (uint16_t baseAddress)
- void CRC_set16BitData (uint16_t baseAddress, uint16_t dataIn)
- void CRC_set16BitDataReversed (uint16_t baseAddress, uint16_t dataIn)
- void CRC_set8BitData (uint16_t baseAddress, uint8_t dataIn)
- void CRC set8BitDataReversed (uint16 t baseAddress, uint8 t dataIn)
- void CRC_setSeed (uint16_t baseAddress, uint16_t seed)

7.2.1 Detailed Description

The CRC API is one group that controls the CRC module. The APIs that are used to set the seed and data are

■ CRC_setSeed()

- CRC_set16BitData()
- CRC_set8BitData()
- CRC_set16BitDataReversed()
- CRC_set8BitDataReversed()
- CRC_setSeed()

The APIs that are used to get the data and results are

- CRC_getData()
- CRC_getResult()
- CRC_getResultBitsReversed()

7.2.2 Function Documentation

7.2.2.1 uint16_t CRC_getData (uint16_t baseAddress)

Returns the value currently in the Data register.

This function returns the value currently in the data register. If set in byte bits reversed format, then the translated data would be returned.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	14
TI Compiler 4.2.1	Size	4
TI Compiler 4.2.1	Speed	4
IAR 5.51.6	None	4
IAR 5.51.6	Size	4
IAR 5.51.6	Speed	4
MSPGCC 4.8.0	None	14
MSPGCC 4.8.0	Size	4
MSPGCC 4.8.0	Speed	4

Parameters:

baseAddress is the base address of the CRC module.

Returns:

The value currently in the data register

7.2.2.2 uint16_t CRC_getResult (uint16_t baseAddress)

Returns the value pf the Signature Result.

This function returns the value of the signature result generated by the CRC.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	14
TI Compiler 4.2.1	Size	6
TI Compiler 4.2.1	Speed	6
IAR 5.51.6	None	6
IAR 5.51.6	Size	6
IAR 5.51.6	Speed	6
MSPGCC 4.8.0	None	16
MSPGCC 4.8.0	Size	6
MSPGCC 4.8.0	Speed	6

baseAddress is the base address of the CRC module.

Returns:

The value currently in the data register

7.2.2.3 uint16_t CRC_getResultBitsReversed (uint16_t baseAddress)

Returns the bit-wise reversed format of the Signature Result.

This function returns the bit-wise reversed format of the Signature Result.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	14
TI Compiler 4.2.1	Size	6
TI Compiler 4.2.1	Speed	6
IAR 5.51.6	None	8
IAR 5.51.6	Size	8
IAR 5.51.6	Speed	8
MSPGCC 4.8.0	None	18
MSPGCC 4.8.0	Size	6
MSPGCC 4.8.0	Speed	6

Parameters:

baseAddress is the base address of the CRC module.

Returns

The bit-wise reversed format of the Signature Result

7.2.2.4 void CRC_set16BitData (uint16_t baseAddress, uint16_t dataIn)

Sets the 16 bit data to add into the CRC module to generate a new signature.

This function sets the given data into the CRC module to generate the new signature from the current signature and new data.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	22
TI Compiler 4.2.1	Size	6
TI Compiler 4.2.1	Speed	6
IAR 5.51.6	None	6
IAR 5.51.6	Size	2
IAR 5.51.6	Speed	2
MSPGCC 4.8.0	None	22
MSPGCC 4.8.0	Size	6
MSPGCC 4.8.0	Speed	6

Parameters:

baseAddress is the base address of the CRC module.

dataIn is the data to be added, through the CRC module, to the signature. Modified bits are CRCDI of CRCDI register.

Returns:

None

7.2.2.5 void CRC_set16BitDataReversed (uint16_t baseAddress, uint16_t dataIn)

Translates the 16 bit data by reversing the bits in each byte and then sets this data to add into the CRC module to generate a new signature.

This function first reverses the bits in each byte of the data and then generates the new signature from the current signature and new translated data.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	20
TI Compiler 4.2.1	Size	6
TI Compiler 4.2.1	Speed	6
IAR 5.51.6	None	10
IAR 5.51.6	Size	2
IAR 5.51.6	Speed	2
MSPGCC 4.8.0	None	24
MSPGCC 4.8.0	Size	6
MSPGCC 4.8.0	Speed	6

Parameters:

baseAddress is the base address of the CRC module.

dataIn is the data to be added, through the CRC module, to the signature.

Modified bits are **CRCDIRB** of **CRCDIRB** register.

Returns:

None

7.2.2.6 void CRC_set8BitData (uint16_t baseAddress, uint8_t dataIn)

Sets the 8 bit data to add into the CRC module to generate a new signature.

This function sets the given data into the CRC module to generate the new signature from the current signature and new data.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	22
TI Compiler 4.2.1	Size	6
TI Compiler 4.2.1	Speed	6
IAR 5.51.6	None	6
IAR 5.51.6	Size	2
IAR 5.51.6	Speed	2
MSPGCC 4.8.0	None	24
MSPGCC 4.8.0	Size	6
MSPGCC 4.8.0	Speed	6

Parameters:

baseAddress is the base address of the CRC module.

dataIn is the data to be added, through the CRC module, to the signature. Modified bits are CRCDI of CRCDI register.

Returns:

None

7.2.2.7 void CRC_set8BitDataReversed (uint16_t baseAddress, uint8_t dataIn)

Translates the 8 bit data by reversing the bits in each byte and then sets this data to add into the CRC module to generate a new signature.

This function first reverses the bits in each byte of the data and then generates the new signature from the current signature and new translated data.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	20
TI Compiler 4.2.1	Size	6
TI Compiler 4.2.1	Speed	6
IAR 5.51.6	None	10
IAR 5.51.6	Size	2
IAR 5.51.6	Speed	2
MSPGCC 4.8.0	None	26
MSPGCC 4.8.0	Size	6
MSPGCC 4.8.0	Speed	6

Parameters:

baseAddress is the base address of the CRC module.

dataIn is the data to be added, through the CRC module, to the signature.

Modified bits are **CRCDIRB** of **CRCDIRB** register.

Returns:

None

7.2.2.8 void CRC_setSeed (uint16_t baseAddress, uint16_t seed)

Sets the seed for the CRC.

This function sets the seed for the CRC to begin generating a signature with the given seed and all passed data. Using this function resets the CRC signature.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	20
TI Compiler 4.2.1	Size	6
TI Compiler 4.2.1	Speed	6
IAR 5.51.6	None	10
IAR 5.51.6	Size	4
IAR 5.51.6	Speed	4
MSPGCC 4.8.0	None	24
MSPGCC 4.8.0	Size	6
MSPGCC 4.8.0	Speed	6

Parameters:

 ${\it baseAddress}\>\>$ is the base address of the CRC module.

seed is the seed for the CRC to start generating a signature from. Modified bits are **CRCINIRES** of **CRCINIRES** register.

Returns:

None

7.3 Programming Example

The following example shows how to initialize and use the CRC API to generate a CRC signature on an array of data.

```
unsigned int crcSeed = 0xBEEF;
unsigned int data[] = \{0x0123,
                        0x4567,
                        0x8910,
                        0x1112,
                        0x1314};
unsigned int crcResult;
int i;
// Stop WDT
WDT_hold(WDT_A_BASE);
// Set P1.0 as an output
GPIO_setAsOutputPin(GPIO_PORT_P1,
                    GPIO_PIN0);
// Set the CRC seed
CRC_setSeed(CRC_BASE,
            crcSeed);
for (i = 0; i < 5; i++)
      //Add all of the values into the CRC signature
      CRC_set16BitData(CRC_BASE,
                       data[i]);
\ensuremath{//} Save the current CRC signature checksum to be compared for later
crcResult = CRC_getResult(CRC_BASE);
```

8 Clock System (CS)

Introduction	59
API Functions	60
Programming Example	

8.1 Introduction

The clock system module supports low system cost and low power consumption. Using three internal clock signals, the user can select the best balance of performance and low power consumption. The clock module can be configured to operate without any external components, with one or two external crystals, or with resonators, under full software control.

The clock system module includes up to five clock sources:

- XT1CLK Low-frequency/high-frequency oscillator that can be used either with low-frequency 32768-Hz watch crystals, standard crystals, resonators, or external clock sources in the 4 MHz to 24 MHz range. When optional XT2 is present, the XT1 high-frequency mode may or may not be available, depending on the device configuration. See the device-specific data sheet for supported functions.
- VLOCLK Internal very-low-power low-frequency oscillator with 10-kHz typical frequency
- DCOCLK Internal digitally controlled oscillator (DCO) with three selectable fixed frequencies
- XT2CLK Optional high-frequency oscillator that can be used with standard crystals, resonators, or external clock sources in the 4 MHz to 24 MHz range. See device-specific data sheet for availability.

Four system clock signals are available from the clock module:

- ACLK Auxiliary clock. The ACLK is software selectable as XT1CLK, VLOCLK, DCOCLK, and when available, XT2CLK. ACLK can be divided by 1, 2, 4, 8, 16, or 32. ACLK is software selectable by individual peripheral modules.
- MCLK Master clock. MCLK is software selectable as XT1CLK, VLOCLK, DCOCLK, and when available, XT2CLK. MCLK can be divided by 1, 2, 4, 8, 16, or 32. MCLK is used by the CPU and system.
- SMCLK Subsystem master clock. SMCLK is software selectable as XT1CLK, VLOCLK, DCOCLK, and when available, XT2CLK. SMCLK is software selectable by individual peripheral modules.
- MODCLK Module clock. MODCLK is used by various peripheral modules and is sourced by MODOSC.

Fail-Safe logic The crystal oscillator faults are set if the corresponding crystal oscillator is turned on and not operating properly. Once set, the fault bits remain set until reset in software, regardless if the fault condition no longer exists. If the user clears the fault bits and the fault condition still exists, the fault bits are automatically set, otherwise they remain cleared.

The OFIFG oscillator-fault interrupt flag is set and latched at POR or when any oscillator fault is detected. When OFIFG is set and OFIE is set, the OFIFG requests a user NMI. When the interrupt is granted, the OFIE is not reset automatically as it is in previous MSP430 families. It is no longer required to reset the OFIE. NMI entry/exit circuitry removes this requirement. The OFIFG flag must be cleared by software. The source of the fault can be identified by checking the individual fault bits.

If XT1 in LF mode is sourcing any system clock (ACLK, MCLK, or SMCLK), and a fault is detected, the system clock is automatically switched to the VLO for its clock source (VLOCLK). Similarly, if XT1 in HF mode is sourcing any system clock and a fault is detected, the system clock is automatically switched to MODOSC for its clock source (MODCLK).

When XT2 (if available) is sourcing any system clock and a fault is detected, the system clock is automatically switched to MODOSC for its clock source (MODCLK).

The fail-safe logic does not change the respective SELA, SELM, and SELS bit settings. The fail-safe mechanism behaves the same in normal and bypass modes.

This driver is contained in cs.c, with cs.h containing the API definitions for use by applications.

т

he following code metrics were performed with the TI Compiler 4.2.1 compiler, IAR 5.51.6 compiler and MSPGCC 4.8.0 compiler with different optimization settings. Users may see different code sizes depending on their project settings so it is best to perform your benchmarks within your project. These sizes contain all functions of the peripheral but only functions that are used will be linked into the application and added to the total code size. To see individual API code metrics see the specific API below.

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	1270
TI Compiler 4.2.1	Size	944
TI Compiler 4.2.1	Speed	966
IAR 5.51.6	None	1038
IAR 5.51.6	Size	672
IAR 5.51.6	Speed	958
MSPGCC 4.8.0	None	2492
MSPGCC 4.8.0	Size	1038
MSPGCC 4.8.0	Speed	2174

8.2 API Functions

The CS API is broken into four groups of functions: an API that initializes the clock module, those that deal with clock configuration and control, and external crystal and bypass specific configuration and initialization, and those that handle interrupts.

General CS configuration and initialization are handled by the following API

- CS clockSignalInit()
- CS_enableClockRequest()
- CS disableClockRequest()
- CS_getACLK()
- CS_getSMCLK()
- CS_getMCLK()
- CS_setDCOFreq()

The following external crystal and bypass specific configuration and initialization functions are available for FR57xx devices:

- CS_XT1Start()
- CS_bypassXT1()
- CS_bypassXT1WithTimeout()
- CS_XT1StartWithTimeout()
- CS_XT1Off()
- CS_XT2Start()
- CS_bypassXT2()
- CS XT2StartWithTimeout()
- CS_bypassXT2WithTimeout()
- CS_XT2Off()

The CS interrupts are handled by

- CS_enableClockRequest()
- CS_disableClockRequest()
- CS_faultFlagStatus()
- CS_clearFaultFlag()
- CS_clearAllOscFlagsWithTimeout()

CS_setExternalClockSource must be called if an external crystal XT1 or XT2 is used and the user intends to call CS_getMCLK, CS_getSMCLK or CS_getACLK APIs and XT1Start, XT1ByPass, XT1StartWithTimeout, XT1ByPassWithTimeout. If not any of the previous API are going to be called, it is not necessary to invoke this API.

8.3 Programming Example

The following example shows the configuration of the CS module that sets ACLK=SMCLK=MCLK=DCOCLK

```
//Set DCO Frequency to 8MHz
CS_setDCOFreq(CS_BASE,CS_DCORSEL_0,CS_DCOFSEL_3);

//configure MCLK, SMCLK and ACLK to be source by DCOCLK
CS_clockSignalInit(CS_BASE,CS_ACLK,CS_DCOCLK_SELECT,CS_CLOCK_DIVIDER_1);
CS_clockSignalInit(CS_BASE,CS_SMCLK,CS_DCOCLK_SELECT,CS_CLOCK_DIVIDER_1);
CS_clockSignalInit(CS_BASE,CS_MCLK,CS_DCOCLK_SELECT,CS_CLOCK_DIVIDER_1);
```

9 Direct Memory Access (DMA)

Introduction	62
API Functions	62
Programming Example	

9.1 Introduction

The Direct Memory Access (DMA) API provides a set of functions for using the MSP430Ware DMA modules. Functions are provided to initialize and setup each DMA channel with the source and destination addresses, manage the interrupts for each channel, and set bits that affect all DMA channels.

The DMA module provides the ability to move data from one address in the device to another, and that includes other peripheral addresses to RAM or vice-versa, all without the actual use of the CPU. Please be advised, that the DMA module does halt the CPU for 2 cycles while transferring, but does not have to edit any registers or anything. The DMA can transfer by bytes or words at a time, and will automatically increment or decrement the source or destination address if desired. There are also 6 different modes to transfer by, including single-transfer, block-transfer, and burst-block-transfer, as well as repeated versions of those three different kinds which allows transfers to be repeated without having re-enable transfers.

The DMA settings that affect all DMA channels include prioritization, from a fixed priority to dynamic round-robin priority. Another setting that can be changed is when transfers occur, the CPU may be in a read-modify-write operation which can be disastrous to time sensitive material, so this can be disabled. And Non-Maskable-Interrupts can indeed be maskable to the DMA module if not enabled.

The DMA module can generate one interrupt per channel. The interrupt is only asserted when the specified amount of transfers has been completed. With single-transfer, this occurs when that many single transfers have occurred, while with block or burst-block transfers, once the block is completely transferred the interrupt is asserted.

т

he following code metrics were performed with the TI Compiler 4.2.1 compiler, IAR 5.51.6 compiler and MSPGCC 4.8.0 compiler with different optimization settings. Users may see different code sizes depending on their project settings so it is best to perform your benchmarks within your project. These sizes contain all functions of the peripheral but only functions that are used will be linked into the application and added to the total code size. To see individual API code metrics see the specific API below.

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	612
TI Compiler 4.2.1	Size	370
TI Compiler 4.2.1	Speed	376
IAR 5.51.6	None	466
IAR 5.51.6	Size	362
IAR 5.51.6	Speed	382
MSPGCC 4.8.0	None	980
MSPGCC 4.8.0	Size	406
MSPGCC 4.8.0	Speed	430

9.2 API Functions

Functions

- void DMA_clearInterrupt (uint8_t channelSelect)
- void DMA_clearNMIAbort (uint8_t channelSelect)
- void DMA_disableInterrupt (uint8_t channelSelect)
- void DMA_disableNMIAbort (void)
- void DMA_disableRoundRobinPriority (void)
- void DMA_disableTransferDuringReadModifyWrite (void)

- void DMA_disableTransfers (uint8_t channelSelect)
- void DMA_enableInterrupt (uint8_t channelSelect)
- void DMA_enableNMIAbort (void)
- void DMA_enableRoundRobinPriority (void)
- void DMA enableTransferDuringReadModifyWrite (void)
- void DMA_enableTransfers (uint8_t channelSelect)
- uint16_t DMA_getInterruptStatus (uint8_t channelSelect)
- bool DMA_init (uint8_t channelSelect, uint16_t transferModeSelect, uint16_t transferSize, uint8_t triggerSourceSelect, uint8_t transferUnitSelect, uint8_t triggerTypeSelect)
- bool DMA initialize (DMA initializeParam *param)
- uint16_t DMA_NMIAbortStatus (uint8_t channelSelect)
- void DMA_setDstAddress (uint8_t channelSelect, uint32_t dstAddress, uint16_t directionSelect)
- void DMA_setSrcAddress (uint8_t channelSelect, uint32_t srcAddress, uint16_t directionSelect)
- void DMA setTransferSize (uint8 t channelSelect, uint16 t transferSize)
- void DMA startTransfer (uint8 t channelSelect)

9.2.1 Detailed Description

The DMA API is broken into three groups of functions: those that deal with initialization and transfers, those that handle interrupts, and those that affect all DMA channels.

The DMA initialization and transfer functions are: DMA_init() DMA_setSrcAddress() DMA_setDstAddress() DMA enableTransfers() DMA disableTransfers() DMA startTransfer() DMA setTransferSize()

The DMA interrupts are handled by: DMA_enableInterrupt() DMA_disableInterrupt() DMA_getInterruptStatus() DMA_clearInterrupt() DMA_NMIAbortStatus() DMA_clearNMIAbort()

Features of the DMA that affect all channels are handled by: DMA_disableTransferDuringReadModifyWrite() DMA_enableTransferDuringReadModifyWrite() DMA_enableRoundRobinPriority() DMA_disableRoundRobinPriority() DMA_disableRoundRobinPriority() DMA_disableNMIAbort()

9.2.2 Function Documentation

9.2.2.1 void DMA clearInterrupt (uint8 t channelSelect)

Clears the interrupt flag for the selected channel.

This function clears the DMA interrupt flag is cleared, so that it no longer asserts.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	20
TI Compiler 4.2.1 TI Compiler 4.2.1	Size Speed	8 8
IAR 5.51.6	None	12
IAR 5.51.6	Size	10
IAR 5.51.6	Speed	12
MSPGCC 4.8.0	None	34
MSPGCC 4.8.0 MSPGCC 4.8.0	Size Speed	10 10
14101 000 4.0.0	Оросса	10

Parameters:

channelSelect is the specified channel to clear the interrupt flag for. Valid values are:

- DMA_CHANNEL_0
- **DMA CHANNEL 1**
- DMA_CHANNEL_2

- DMA_CHANNEL_3
- DMA_CHANNEL_4
- DMA_CHANNEL_5
- DMA_CHANNEL_6
- DMA_CHANNEL_7

Returns:

None

9.2.2.2 void DMA_clearNMIAbort (uint8_t channelSelect)

Clears the status of the NMIAbort to proceed with transfers for the selected channel.

This function clears the status of the NMI Abort flag for the selected channel to allow for transfers on the channel to continue.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	20
TI Compiler 4.2.1	Size	8
TI Compiler 4.2.1	Speed	8
IAR 5.51.6	None	12
IAR 5.51.6	Size	10
IAR 5.51.6	Speed	12
MSPGCC 4.8.0	None	34
MSPGCC 4.8.0	Size	10
MSPGCC 4.8.0	Speed	10

Parameters:

channelSelect is the specified channel to clear the NMI Abort flag for. Valid values are:

- DMA_CHANNEL_0
- DMA_CHANNEL_1
- DMA CHANNEL 2
- DMA_CHANNEL_3
- DMA_CHANNEL_4
- DMA_CHANNEL_5
- DMA_CHANNEL_6
- DMA_CHANNEL_7

Returns:

None

9.2.2.3 void DMA_disableInterrupt (uint8_t channelSelect)

Disables the DMA interrupt for the selected channel.

Disables the DMA interrupt source. Only the sources that are enabled can be reflected to the processor interrupt; disabled sources have no effect on the processor.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	20
TI Compiler 4.2.1	Size	8
TI Compiler 4.2.1	Speed	8
IAR 5.51.6	None	12
IAR 5.51.6	Size	10
IAR 5.51.6	Speed	12
MSPGCC 4.8.0	None	34
MSPGCC 4.8.0	Size	10
MSPGCC 4.8.0	Speed	10

channelSelect is the specified channel to disable the interrupt for. Valid values are:

- **DMA_CHANNEL_0**
- DMA_CHANNEL_1
- DMA_CHANNEL_2
- DMA CHANNEL 3
- DMA CHANNEL 4
- DMA_CHANNEL_5
- DMA_CHANNEL_6
- DMA_CHANNEL_7

Returns:

None

9.2.2.4 void DMA_disableNMIAbort (void)

Disables any NMI from interrupting a DMA transfer.

This function disables NMI's from interrupting any DMA transfer currently in progress.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	6
TI Compiler 4.2.1 TI Compiler 4.2.1	Size Speed	6 6
IAR 5.51.6	None	 6
IAR 5.51.6	Size	6
IAR 5.51.6	Speed	6
MSPGCC 4.8.0	None	18
MSPGCC 4.8.0 MSPGCC 4.8.0	Size Speed	6 6
WISI GCC 4.8.0	opeeu	0

Returns:

None

9.2.2.5 void DMA_disableRoundRobinPriority (void)

Disables Round Robin prioritization.

This function disables Round Robin Prioritization, enabling static prioritization of the DMA channels. In static prioritization, the DMA channels are prioritized with the lowest DMA channel index having the highest priority (i.e. DMA Channel 0 has the highest priority).

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	6
TI Compiler 4.2.1 TI Compiler 4.2.1	Size Speed	6 6
IAR 5.51.6	None	6
IAR 5.51.6	Size	6
IAR 5.51.6	Speed	6
MSPGCC 4.8.0	None	18
MSPGCC 4.8.0	Size	6
MSPGCC 4.8.0	Speed	6

Returns:

None

9.2.2.6 void DMA_disableTransferDuringReadModifyWrite (void)

Disables the DMA from stopping the CPU during a Read-Modify-Write Operation to start a transfer.

This function allows the CPU to finish any read-modify-write operations it may be in the middle of before transfers of and DMA channel stop the CPU.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	6
TI Compiler 4.2.1	Size	6 6
TI Compiler 4.2.1	Speed	0
IAR 5.51.6	None	6
IAR 5.51.6 IAR 5.51.6	Size Speed	6 6
	<u>'</u>	
MSPGCC 4.8.0 MSPGCC 4.8.0	None Size	18 6
MSPGCC 4.8.0	Speed	6
	- 1	

Returns:

None

9.2.2.7 void DMA_disableTransfers (uint8_t channelSelect)

Disables transfers from being triggered.

This function disables transfer from being triggered for the selected channel. This function should be called before any re-initialization of the selected DMA channel.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	22
TI Compiler 4.2.1	Size	10
TI Compiler 4.2.1	Speed	10
IAR 5.51.6	None	14
IAR 5.51.6	Size	12
IAR 5.51.6	Speed	14
MSPGCC 4.8.0	None	36
MSPGCC 4.8.0	Size	12
MSPGCC 4.8.0	Speed	12

channelSelect is the specified channel to disable transfers for. Valid values are:

- DMA_CHANNEL_0
- DMA_CHANNEL_1
- DMA_CHANNEL_2
- **DMA CHANNEL 3**
- DMA_CHANNEL_4
- DMA_CHANNEL_5
- DMA_CHANNEL_6
- DMA_CHANNEL_7

Returns:

None

9.2.2.8 void DMA_enableInterrupt (uint8_t channelSelect)

Enables the DMA interrupt for the selected channel.

Enables the DMA interrupt source. Only the sources that are enabled can be reflected to the processor interrupt; disabled sources have no effect on the processor. Does not clear interrupt flags.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1 TI Compiler 4.2.1	None Size	20 8
TI Compiler 4.2.1	Speed	8
IAR 5.51.6	None	12
IAR 5.51.6	Size	10
IAR 5.51.6	Speed	12
MSPGCC 4.8.0	None	34
MSPGCC 4.8.0	Size	10
MSPGCC 4.8.0	Speed	10

Parameters:

channelSelect is the specified channel to enable the interrupt for. Valid values are:

- DMA_CHANNEL_0
- DMA_CHANNEL_1
- DMA_CHANNEL_2
- DMA_CHANNEL_3
- DMA_CHANNEL_4
- DMA_CHANNEL_5
- DMA_CHANNEL_6
- DMA_CHANNEL_7

Returns:

None

9.2.2.9 void DMA_enableNMIAbort (void)

Enables a NMI to interrupt a DMA transfer.

This function allow NMI's to interrupting any DMA transfer currently in progress and stops any future transfers to begin before the NMI is done processing.

Code Metrics:

Optimization	Code Size
None	6
Size	6
Speed	6
None	6
Size	6
Speed	6
None	18
Size	6
Speed	6
	None Size Speed None Size Speed None Size

Returns:

None

9.2.2.10 void DMA_enableRoundRobinPriority (void)

Enables Round Robin prioritization.

This function enables Round Robin Prioritization of DMA channels. In the case of Round Robin Prioritization, the last DMA channel to have transferred data then has the last priority, which comes into play when multiple DMA channels are ready to transfer at the same time.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	6
TI Compiler 4.2.1	Size	6
TI Compiler 4.2.1	Speed	6
IAR 5.51.6	None	6
IAR 5.51.6	Size	6
IAR 5.51.6	Speed	6
MSPGCC 4.8.0	None	18
MSPGCC 4.8.0	Size	6
MSPGCC 4.8.0	Speed	6

Returns:

None

9.2.2.11 void DMA_enableTransferDuringReadModifyWrite (void)

Enables the DMA to stop the CPU during a Read-Modify-Write Operation to start a transfer.

This function allows the DMA to stop the CPU in the middle of a read- modify-write operation to transfer data.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	6
TI Compiler 4.2.1	Size	6
TI Compiler 4.2.1	Speed	6
IAR 5.51.6	None	6
IAR 5.51.6	Size	6
IAR 5.51.6	Speed	6
MSPGCC 4.8.0	None	18
MSPGCC 4.8.0	Size	6
MSPGCC 4.8.0	Speed	6

Returns:

None

9.2.2.12 void DMA enableTransfers (uint8 t channelSelect)

Enables transfers to be triggered.

This function enables transfers upon appropriate trigger of the selected trigger source for the selected channel.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	22
TI Compiler 4.2.1	Size	10
TI Compiler 4.2.1	Speed	10
IAR 5.51.6	None	14
IAR 5.51.6	Size	12
IAR 5.51.6	Speed	14
MSPGCC 4.8.0	None	36
MSPGCC 4.8.0	Size	12
MSPGCC 4.8.0	Speed	12

Parameters:

channelSelect is the specified channel to enable transfer for. Valid values are:

- DMA_CHANNEL_0
- DMA_CHANNEL_1
- DMA_CHANNEL_2
- DMA_CHANNEL_3
- DMA_CHANNEL_4
- DMA_CHANNEL_5
- DMA_CHANNEL_6
- DMA_CHANNEL_7

Returns:

None

9.2.2.13 uint16_t DMA_getInterruptStatus (uint8_t channelSelect)

Returns the status of the interrupt flag for the selected channel.

Returns the status of the interrupt flag for the selected channel.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	18
TI Compiler 4.2.1	Size	12
TI Compiler 4.2.1	Speed	12
IAR 5.51.6	None	12
IAR 5.51.6	Size	10
IAR 5.51.6	Speed	12
MSPGCC 4.8.0	None	22
MSPGCC 4.8.0	Size	12
MSPGCC 4.8.0	Speed	12

Parameters:

channelSelect is the specified channel to return the interrupt flag status from. Valid values are:

- DMA_CHANNEL_0
- DMA CHANNEL 1
- DMA_CHANNEL_2
- **DMA_CHANNEL_3**
- DMA CHANNEL 4
- DMA_CHANNEL_5
- DMA_CHANNEL_6
- DMA_CHANNEL_7

Returns:

One of the following:

- DMA_INT_INACTIVE
- DMA_INT_ACTIVE

indicating the status of the current interrupt flag

9.2.2.14 bool DMA_init (uint8_t channelSelect, uint16_t transferModeSelect, uint8_t transferSize, uint8_t triggerSourceSelect, uint8_t triggerTypeSelect)

DEPRECATED - Initializes the specified DMA channel.

This function initializes the specified DMA channel. Upon successful completion of initialization of the selected channel the control registers will be cleared and the given variables will be set. Please note, if transfers have been enabled with the enableTransfers() function, then a call to disableTransfers() is necessary before re-initialization. Also note, that the trigger sources are device dependent and can be found in the device family data sheet. The amount of DMA channels available are also device specific.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	84
TI Compiler 4.2.1	Size	74
TI Compiler 4.2.1	Speed	74
IAR 5.51.6	None	74
IAR 5.51.6	Size	70
IAR 5.51.6	Speed	70
MSPGCC 4.8.0	None	96
MSPGCC 4.8.0	Size	76
MSPGCC 4.8.0	Speed	92

Parameters:

channelSelect is the specified channel to initialize. Valid values are:

- DMA_CHANNEL_0
- DMA_CHANNEL_1
- DMA_CHANNEL_2
- DMA_CHANNEL_3
- DMA_CHANNEL_4
- DMA_CHANNEL_5
- DMA_CHANNEL_6
- DMA_CHANNEL_7

transferModeSelect is the transfer mode of the selected channel. Valid values are:

- DMA_TRANSFER_SINGLE [Default] Single transfer, transfers disabled after transferAmount of transfers.
- DMA_TRANSFER_BLOCK Multiple transfers of transferAmount, transfers disabled once finished.
- DMA_TRANSFER_BURSTBLOCK Multiple transfers of transferAmount interleaved with CPU activity, transfers disabled once finished.
- DMA_TRANSFER_REPEATED_SINGLE Repeated single transfer by trigger.

- DMA_TRANSFER_REPEATED_BLOCK Multiple transfers of transferAmount by trigger.
- DMA_TRANSFER_REPEATED_BURSTBLOCK Multiple transfers of transferAmount by trigger interleaved with CPU activity.

Modified bits are **DMADT** of **DMAxCTL** register.

transferSize is the amount of transfers to complete in a block transfer mode, as well as how many transfers to complete before the interrupt flag is set. Valid value is between 1-65535, if 0, no transfers will occur. Modified bits are DMAxSZ of DMAxSZ register.

triggerSourceSelect is the source that will trigger the start of each transfer, note that the sources are device specific. Valid values are:

- DMA TRIGGERSOURCE 0 [Default]
- **DMA TRIGGERSOURCE 1**
- DMA_TRIGGERSOURCE_2
- DMA TRIGGERSOURCE 3
- DMA_TRIGGERSOURCE_4
- DMA_TRIGGERSOURCE_5
- **DMA TRIGGERSOURCE 6**
- DMA_TRIGGERSOURCE 7
- DMA_TRIGGERSOURCE_8
- DMA TRIGGERSOURCE 9
- DMA_TRIGGERSOURCE_10
- DMA_TRIGGERSOURCE_11
- DMA TRIGGERSOURCE 12
- DMA_TRIGGERSOURCE_13
- DMA_TRIGGERSOURCE_14
- DMA_TRIGGERSOURCE_15
- DMA_TRIGGERSOURCE_16
- DMA_TRIGGERSOURCE_17
- DMA_TRIGGERSOURCE_18
- DMA_TRIGGERSOURCE_19
- DMA_TRIGGERSOURCE_20
- DMA_TRIGGERSOURCE_21
- DMA_TRIGGERSOURCE_22 ■ DMA_TRIGGERSOURCE_23
- DMA TRIGGERSOURCE 24
- DMA_TRIGGERSOURCE_25
- DMA_TRIGGERSOURCE_26
- DMA_TRIGGERSOURCE_27
- DMA_TRIGGERSOURCE_28
- DMA_TRIGGERSOURCE_29
- DMA TRIGGERSOURCE 30
- DMA_TRIGGERSOURCE_31

Modified bits are DMAxTSEL of DMACTLx register.

transferUnitSelect is the specified size of transfers. Valid values are:

- DMA_SIZE_SRCWORD_DSTWORD [Default]
- DMA_SIZE_SRCBYTE_DSTWORD
- DMA SIZE SRCWORD DSTBYTE
- DMA_SIZE_SRCBYTE_DSTBYTE

Modified bits are **DMASRCBYTE** and **DMADSTBYTE** of **DMAxCTL** register.

triggerTypeSelect is the type of trigger that the trigger signal needs to be to start a transfer. Valid values are:

- DMA TRIGGER RISINGEDGE [Default]
- DMA_TRIGGER_HIGH A trigger would be a high signal from the trigger source, to be held high through the length of the transfer(s).

Modified bits are **DMALEVEL** of **DMAXCTL** register.

Returns:

STATUS_SUCCESS or STATUS_FAILURE of the initialization process.

9.2.2.15 bool DMA_initialize (DMA_initializeParam * param)

Initializes the specified DMA channel.

This function initializes the specified DMA channel. Upon successful completion of initialization of the selected channel the control registers will be cleared and the given variables will be set. Please note, if transfers have been enabled with the enableTransfers() function, then a call to disableTransfers() is necessary before re-initialization. Also note, that the trigger sources are device dependent and can be found in the device family data sheet. The amount of DMA channels available are also device specific.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	154
TI Compiler 4.2.1	Size	94
TI Compiler 4.2.1	Speed	100
IAR 5.51.6	None	144
IAR 5.51.6	Size	94
IAR 5.51.6	Speed	92
MSPGCC 4.8.0	None	244
MSPGCC 4.8.0	Size	94
MSPGCC 4.8.0	Speed	102

Parameters:

param is the pointer to struct for initialization.

Returns:

STATUS SUCCESS or STATUS FAILURE of the initialization process.

9.2.2.16 uint16 t DMA NMIAbortStatus (uint8 t channelSelect)

Returns the status of the NMIAbort for the selected channel.

This function returns the status of the NMI Abort flag for the selected channel. If this flag has been set, it is because a transfer on this channel was aborted due to a interrupt from an NMI.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	18
TI Compiler 4.2.1	Size	12
TI Compiler 4.2.1	Speed	12
IAR 5.51.6	None	12
IAR 5.51.6	Size	10
IAR 5.51.6	Speed	12
MSPGCC 4.8.0	None	22
MSPGCC 4.8.0	Size	12
MSPGCC 4.8.0	Speed	12

Parameters:

channelSelect is the specified channel to return the status of the NMI Abort flag for. Valid values are:

- DMA_CHANNEL_0
- DMA_CHANNEL_1
- DMA_CHANNEL_2
- DMA_CHANNEL_3
- DMA_CHANNEL_4
- DMA_CHANNEL_5
- DMA_CHANNEL_6

■ DMA_CHANNEL_7

Returns:

One of the following:

- DMA_NOTABORTED
- DMA_ABORTED

indicating the status of the NMIAbort for the selected channel

9.2.2.17 void DMA_setDstAddress (uint8_t channelSelect, uint32_t dstAddress, uint16_t directionSelect)

Sets the destination address and the direction that the destination address will move after a transfer.

This function sets the destination address and the direction that the destination address will move after a transfer is complete. It may be incremented, decremented, or unchanged.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	70
TI Compiler 4.2.1	Size	38
TI Compiler 4.2.1	Speed	38
IAR 5.51.6	None	46
IAR 5.51.6	Size	28
IAR 5.51.6	Speed	30
MSPGCC 4.8.0	None	116
MSPGCC 4.8.0	Size	48
MSPGCC 4.8.0	Speed	48

Parameters:

channelSelect is the specified channel to set the destination address direction for. Valid values are:

- DMA_CHANNEL_0
- DMA_CHANNEL_1
- DMA_CHANNEL_2
- DMA_CHANNEL_3
- DMA_CHANNEL_4
- DMA_CHANNEL_5
- DMA_CHANNEL_6
- DMA_CHANNEL_7

dstAddress is the address of where the data will be transferred to.

Modified bits are **DMAxDA** of **DMAxDA** register.

directionSelect is the specified direction of the destination address after a transfer. Valid values are:

- DMA_DIRECTION_UNCHANGED
- DMA_DIRECTION_DECREMENT
- DMA_DIRECTION_INCREMENT

Modified bits are **DMADSTINCR** of **DMAxCTL** register.

Returns:

None

9.2.2.18 void DMA_setSrcAddress (uint8_t channelSelect, uint32_t srcAddress, uint16_t directionSelect)

Sets source address and the direction that the source address will move after a transfer.

This function sets the source address and the direction that the source address will move after a transfer is complete. It may be incremented, decremented or unchanged.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	66
TI Compiler 4.2.1	Size	36
TI Compiler 4.2.1	Speed	36
IAR 5.51.6	None	42
IAR 5.51.6	Size	28
IAR 5.51.6	Speed	30
MSPGCC 4.8.0	None	104
MSPGCC 4.8.0	Size	44
MSPGCC 4.8.0	Speed	44

Parameters:

channelSelect is the specified channel to set source address direction for. Valid values are:

- DMA_CHANNEL_0
- DMA_CHANNEL_1
- DMA_CHANNEL_2
- DMA_CHANNEL_3
- **DMA CHANNEL 4**
- DMA_CHANNEL_5
- DMA_CHANNEL_6
- DMA_CHANNEL_7

srcAddress is the address of where the data will be transferred from.

Modified bits are **DMAxSA** of **DMAxSA** register.

directionSelect is the specified direction of the source address after a transfer. Valid values are:

- DMA_DIRECTION_UNCHANGED
- DMA_DIRECTION_DECREMENT
- DMA_DIRECTION_INCREMENT

 Modified bits are DMASRCINCR of DMAxCTL register.

Returns:

None

9.2.2.19 void DMA_setTransferSize (uint8_t channelSelect, uint16_t transferSize)

Sets the specified amount of transfers for the selected DMA channel.

This function sets the specified amount of transfers for the selected DMA channel without having to reinitialize the DMA channel.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	22
TI Compiler 4.2.1	Size	8
TI Compiler 4.2.1 IAR 5.51.6	Speed None	12
IAR 5.51.6	Size	12
IAR 5.51.6	Speed	12
MSPGCC 4.8.0	None	26
MSPGCC 4.8.0	Size	10
MSPGCC 4.8.0	Speed	10

Parameters:

channelSelect is the specified channel to set source address direction for. Valid values are:

■ DMA_CHANNEL_0

- DMA_CHANNEL_1
- DMA_CHANNEL_2
- DMA_CHANNEL_3
- DMA_CHANNEL_4
- DMA_CHANNEL_5
- DMA_CHANNEL_6
- DMA_CHANNEL_7

transferSize is the amount of transfers to complete in a block transfer mode, as well as how many transfers to complete before the interrupt flag is set. Valid value is between 1-65535, if 0, no transfers will occur. Modified bits are DMAxSZ of DMAxSZ register.

Returns:

None

9.2.2.20 void DMA startTransfer (uint8 t channelSelect)

Starts a transfer if using the default trigger source selected in initialization.

This functions triggers a transfer of data from source to destination if the trigger source chosen from initialization is the DMA_TRIGGERSOURCE_0. Please note, this function needs to be called for each (repeated-)single transfer, and when transferAmount of transfers have been complete in (repeated-)block transfers.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	20
TI Compiler 4.2.1	Size	8
TI Compiler 4.2.1	Speed	8
IAR 5.51.6	None	12
IAR 5.51.6	Size	10
IAR 5.51.6	Speed	12
MSPGCC 4.8.0	None	34
MSPGCC 4.8.0	Size	10
MSPGCC 4.8.0	Speed	10

Parameters:

channelSelect is the specified channel to start transfers for. Valid values are:

- DMA_CHANNEL_0
- DMA_CHANNEL_1
- DMA_CHANNEL_2
- DMA_CHANNEL_3
 DMA_CHANNEL_4
- DMA_CHANNEL_5
- DMA_CHANNEL_6
- DMA_CHANNEL_7

Returns:

None

9.3 Programming Example

The following example shows how to initialize and use the DMA API to transfer words from one spot in RAM to another.

```
// Initialize and Setup DMA Channel 0
Base Address of the DMA Module
Configure DMA channel 0
Configure channel for repeated block transfers
DMA interrupt flag will be set after every 16 transfers
Use DMA_startTransfer() function to trigger transfers
Transfer Word-to-Word
Trigger upon Rising Edge of Trigger Source Signal
 */
DMA_init(DMA_BASE,
          DMA_CHANNEL_0,
          DMA_TRANSFER_REPEATED_BLOCK,
          DMA_TRIGGERSOURCE_0,
          DMA_SIZE_SRCWORD_DSTWORD,
          DMA_TRIGGER_RISINGEDGE);
/*
Base Address of the DMA Module
Configure DMA channel 0
Use 0x1C00 as source
Increment source address after every transfer
DMA_setSrcAddress(DMA_BASE,
                   DMA_CHANNEL_0,
                   0x1C00,
                   DMA_DIRECTION_INCREMENT);
/*
Base Address of the DMA Module
Configure DMA channel 0
Use 0x1C20 as destination
Increment destination address after every transfer
DMA_setDstAddress(DMA_BASE,
                   DMA_CHANNEL_0,
                   0x1C20,
                   DMA_DIRECTION_INCREMENT);
 // Enable transfers on DMA channel 0
DMA_enableTransfers(DMA_BASE,
                     DMA_CHANNEL_0);
while(1)
   // Start block transfer on DMA channel 0
  DMA_startTransfer(DMA_BASE,
                     DMA_CHANNEL_0);
 }
```

10 EUSCI Universal Asynchronous Receiver/Transmitter (EUSCI_A_UART)

ntroduction	.77
PI Functions	.77
rogramming Example	

10.1 Introduction

The MSP430Ware library for UART mode features include:

- Odd, even, or non-parity
- Independent transmit and receive shift registers
- Separate transmit and receive buffer registers
- LSB-first or MSB-first data transmit and receive
- Built-in idle-line and address-bit communication protocols for multiprocessor systems
- Receiver start-edge detection for auto wake up from LPMx modes
- Status flags for error detection and suppression
- Status flags for address detection
- Independent interrupt capability for receive and transmit

In UART mode, the USCI transmits and receives characters at a bit rate asynchronous to another device. Timing for each character is based on the selected baud rate of the USCI. The transmit and receive functions use the same baud-rate frequency.

This driver is contained in <code>eusci_a_uart.c</code>, with <code>eusci_a_uart.h</code> containing the API definitions for use by applications.

Т

he following code metrics were performed with the TI Compiler 4.2.1 compiler, IAR 5.51.6 compiler and MSPGCC 4.8.0 compiler with different optimization settings. Users may see different code sizes depending on their project settings so it is best to perform your benchmarks within your project. These sizes contain all functions of the peripheral but only functions that are used will be linked into the application and added to the total code size. To see individual API code metrics see the specific API below.

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	820
TI Compiler 4.2.1	Size	480
TI Compiler 4.2.1	Speed	480
IAR 5.51.6	None	626
IAR 5.51.6	Size	426
IAR 5.51.6	Speed	486
MSPGCC 4.8.0	None	1284
MSPGCC 4.8.0	Size	496
MSPGCC 4.8.0	Speed	738

10.2 API Functions

Functions

■ void EUSCI A UART clearInterruptFlag (uint16 t baseAddress, uint8 t mask)

- void EUSCI_A_UART_disable (uint16_t baseAddress)
- void EUSCI_A_UART_disableInterrupt (uint16_t baseAddress, uint8_t mask)
- void EUSCI_A_UART_enable (uint16_t baseAddress)
- void EUSCI_A_UART_enableInterrupt (uint16_t baseAddress, uint8_t mask)
- uint8 t EUSCI A UART getInterruptStatus (uint16 t baseAddress, uint8 t mask)
- uint32_t EUSCI_A_UART_getReceiveBufferAddress (uint16_t baseAddress)
- uint32_t EUSCI_A_UART_getTransmitBufferAddress (uint16_t baseAddress)
- bool EUSCI A UART init (uint16 t baseAddress, EUSCI A UART initParam *param)
- bool EUSCI_A_UART_initAdvance (uint16_t baseAddress, uint8_t selectClockSource, uint16_t clockPrescalar, uint8_t firstModReg, uint8_t secondModReg, uint8_t parity, uint16_t msborLsbFirst, uint16_t numberofStopBits, uint16_t uartMode, uint8_t overSampling)
- uint8_t EUSCI_A_UART_queryStatusFlags (uint16_t baseAddress, uint8_t mask)
- uint8_t EUSCI_A_UART_receiveData (uint16_t baseAddress)
- void EUSCI_A_UART_resetDormant (uint16_t baseAddress)
- void EUSCI_A_UART_selectDeglitchTime (uint16_t baseAddress, uint16_t deglitchTime)
- void EUSCI_A_UART_setDormant (uint16_t baseAddress)
- void EUSCI_A_UART_transmitAddress (uint16_t baseAddress, uint8_t transmitAddress)
- void EUSCI A UART transmitBreak (uint16 t baseAddress)
- void EUSCI A UART transmitData (uint16 t baseAddress, uint8 t transmitData)

10.2.1 Detailed Description

The EUSI_A_UART API provides the set of functions required to implement an interrupt driven EUSI_A_UART driver. The EUSI_A_UART initialization with the various modes and features is done by the EUSCI_A_UART_init(). At the end of this function EUSI_A_UART is initialized and stays disabled. EUSCI_A_UART_enable() enables the EUSI_A_UART and the module is now ready for transmit and receive. It is recommended to initialize the EUSI_A_UART via EUSCI_A_UART_init(), enable the required interrupts and then enable EUSI_A_UART via EUSCI_A_UART_enable().

The EUSI_A_UART API is broken into three groups of functions: those that deal with configuration and control of the EUSI_A_UART modules, those used to send and receive data, and those that deal with interrupt handling and those dealing with DMA.

Configuration and control of the EUSI_UART are handled by the

- EUSCI A UART init()
- EUSCI_A_UART_initAdvance()
- EUSCI_A_UART_enable()
- EUSCI_A_UART_disable()
- EUSCI_A_UART_setDormant()
- EUSCI_A_UART_resetDormant()
- EUSCI_A_UART_selectDeglitchTime()

Sending and receiving data via the EUSI_UART is handled by the

- EUSCI_A_UART_transmitData()
- EUSCI_A_UART_receiveData()
- EUSCI_A_UART_transmitAddress()
- EUSCI_A_UART_transmitBreak()

Managing the EUSI_UART interrupts and status are handled by the

- EUSCI_A_UART_enableInterrupt()
- EUSCI_A_UART_disableInterrupt()
- EUSCI_A_UART_getInterruptStatus()
- EUSCI_A_UART_clearInterruptFlag()
- EUSCI_A_UART_queryStatusFlags()

DMA related

- EUSCI_A_UART_getReceiveBufferAddressForDMA()
- EUSCI_A_UART_getTransmitBufferAddressForDMA()

10.2.2 Function Documentation

10.2.2.1 void EUSCI A UART clearInterruptFlag (uint16 t baseAddress, uint8 t mask)

Clears UART interrupt sources.

The UART interrupt source is cleared, so that it no longer asserts. The highest interrupt flag is automatically cleared when an interrupt vector generator is used.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	28
TI Compiler 4.2.1	Size	8
TI Compiler 4.2.1	Speed	8
IAR 5.51.6	None	14
IAR 5.51.6	Size	6
IAR 5.51.6	Speed	6
MSPGCC 4.8.0	None	46
MSPGCC 4.8.0	Size	10
MSPGCC 4.8.0	Speed	10

Parameters:

baseAddress is the base address of the EUSCI_A_UART module.

mask is a bit mask of the interrupt sources to be cleared. Mask value is the logical OR of any of the following:

- EUSCI_A_UART_RECEIVE_INTERRUPT_FLAG
- EUSCI_A_UART_TRANSMIT_INTERRUPT_FLAG
- EUSCI A UART STARTBIT INTERRUPT FLAG
- EUSCI_A_UART_TRANSMIT_COMPLETE_INTERRUPT_FLAG

Modified bits of UCAxIFG register.

Returns:

None

10.2.2.2 void EUSCI_A_UART_disable (uint16_t baseAddress)

Disables the UART block.

This will disable operation of the UART block.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	16
TI Compiler 4.2.1	Size	6
TI Compiler 4.2.1	Speed	6
IAR 5.51.6	None	8
IAR 5.51.6	Size	6
IAR 5.51.6	Speed	6
MSPGCC 4.8.0	None	22
MSPGCC 4.8.0	Size	6
MSPGCC 4.8.0	Speed	6

Parameters:

baseAddress is the base address of the EUSCI_A_UART module.

Modified bits are UCSWRST of UCAxCTL1 register.

Returns:

None

10.2.2.3 void EUSCI A UART disableInterrupt (uint16 t baseAddress, uint8 t mask)

Disables individual UART interrupt sources.

Disables the indicated UART interrupt sources. Only the sources that are enabled can be reflected to the processor interrupt; disabled sources have no effect on the processor.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	62
TI Compiler 4.2.1	Size	26
TI Compiler 4.2.1	Speed	26
IAR 5.51.6	None	36
IAR 5.51.6	Size	14
IAR 5.51.6	Speed	22
MSPGCC 4.8.0	None	96
MSPGCC 4.8.0	Size	24
MSPGCC 4.8.0	Speed	24

Parameters:

baseAddress is the base address of the EUSCI_A_UART module.

mask is the bit mask of the interrupt sources to be disabled. Mask value is the logical OR of any of the following:

- EUSCI_A_UART_RECEIVE_INTERRUPT Receive interrupt
- EUSCI_A_UART_TRANSMIT_INTERRUPT Transmit interrupt
- EUSCI_A_UART_RECEIVE_ERRONEOUSCHAR_INTERRUPT Receive erroneous-character interrupt enable
- EUSCI A UART BREAKCHAR INTERRUPT Receive break character interrupt enable
- EUSCI_A_UART_STARTBIT_INTERRUPT Start bit received interrupt enable
- EUSCI_A_UART_TRANSMIT_COMPLETE_INTERRUPT Transmit complete interrupt enable

Modified bits of UCAxCTL1 register and bits of UCAxIE register.

Returns:

None

10.2.2.4 void EUSCI_A_UART_enable (uint16_t baseAddress)

Enables the UART block.

This will enable operation of the UART block.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	16
TI Compiler 4.2.1	Size	6
TI Compiler 4.2.1 IAR 5.51.6	Speed None	8
IAR 5.51.6	Size	6
IAR 5.51.6	Speed	6
MSPGCC 4.8.0	None	22
MSPGCC 4.8.0	Size	6
MSPGCC 4.8.0	Speed	6

Parameters:

baseAddress is the base address of the EUSCI_A_UART module.

Modified bits are UCSWRST of UCAxCTL1 register.

Returns:

None

10.2.2.5 void EUSCI A UART enableInterrupt (uint16 t baseAddress, uint8 t mask)

Enables individual UART interrupt sources.

Enables the indicated UART interrupt sources. The interrupt flag is first and then the corresponding interrupt is enabled. Only the sources that are enabled can be reflected to the processor interrupt; disabled sources have no effect on the processor. Does not clear interrupt flags.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	62
TI Compiler 4.2.1	Size	22
TI Compiler 4.2.1	Speed	22
IAR 5.51.6	None	36
IAR 5.51.6	Size	14
IAR 5.51.6	Speed	22
MSPGCC 4.8.0	None	90
MSPGCC 4.8.0	Size	24
MSPGCC 4.8.0	Speed	24

Parameters:

baseAddress is the base address of the EUSCI A UART module.

mask is the bit mask of the interrupt sources to be enabled. Mask value is the logical OR of any of the following:

- EUSCI_A_UART_RECEIVE_INTERRUPT Receive interrupt
- EUSCI_A_UART_TRANSMIT_INTERRUPT Transmit interrupt
- EUSCI_A_UART_RECEIVE_ERRONEOUSCHAR_INTERRUPT Receive erroneous-character interrupt enable
- EUSCI_A_UART_BREAKCHAR_INTERRUPT Receive break character interrupt enable
- EUSCI_A_UART_STARTBIT_INTERRUPT Start bit received interrupt enable
- EUSCI_A_UART_TRANSMIT_COMPLETE_INTERRUPT Transmit complete interrupt enable

Modified bits of UCAxCTL1 register and bits of UCAxIE register.

Returns:

None

10.2.2.6 uint8 t EUSCI A UART getInterruptStatus (uint16 t baseAddress, uint8 t mask)

Gets the current UART interrupt status.

This returns the interrupt status for the UART module based on which flag is passed.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	22
TI Compiler 4.2.1	Size	8
TI Compiler 4.2.1	Speed	8
IAR 5.51.6	None	10
IAR 5.51.6	Size	6
IAR 5.51.6	Speed	6
MSPGCC 4.8.0	None	38
MSPGCC 4.8.0	Size	8
MSPGCC 4.8.0	Speed	8

Parameters:

baseAddress is the base address of the EUSCI_A_UART module.

mask is the masked interrupt flag status to be returned. Mask value is the logical OR of any of the following:

- EUSCI A UART RECEIVE INTERRUPT FLAG
- **EUSCI A UART TRANSMIT INTERRUPT FLAG**
- EUSCI_A_UART_STARTBIT_INTERRUPT_FLAG
- EUSCI_A_UART_TRANSMIT_COMPLETE_INTERRUPT_FLAG

Modified bits of UCAxIFG register.

Returns:

Logical OR of any of the following:

- EUSCI_A_UART_RECEIVE_INTERRUPT_FLAG
- EUSCI_A_UART_TRANSMIT_INTERRUPT_FLAG
- EUSCI_A_UART_STARTBIT_INTERRUPT_FLAG
- EUSCI_A_UART_TRANSMIT_COMPLETE_INTERRUPT_FLAG indicating the status of the masked flags

10.2.2.7 uint32_t EUSCI_A_UART_getReceiveBufferAddress (uint16_t baseAddress)

Returns the address of the RX Buffer of the UART for the DMA module.

Returns the address of the UART RX Buffer. This can be used in conjunction with the DMA to store the received data directly to memory.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None Size	18
TI Compiler 4.2.1 TI Compiler 4.2.1	Speed	8 8
IAR 5.51.6 IAR 5.51.6 IAR 5.51.6	None Size Speed	8 8 8
MSPGCC 4.8.0 MSPGCC 4.8.0 MSPGCC 4.8.0	None Size Speed	24 8 8

Parameters:

baseAddress is the base address of the EUSCI_A_UART module.

Returns:

Address of RX Buffer

10.2.2.8 uint32_t EUSCI_A_UART_getTransmitBufferAddress (uint16_t baseAddress)

Returns the address of the TX Buffer of the UART for the DMA module.

Returns the address of the UART TX Buffer. This can be used in conjunction with the DMA to obtain transmitted data directly from memory.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	18
TI Compiler 4.2.1	Size	8
TI Compiler 4.2.1	Speed	8
IAR 5.51.6	None	8
IAR 5.51.6	Size	8
IAR 5.51.6	Speed	8
MSPGCC 4.8.0	None	24
MSPGCC 4.8.0	Size	8
MSPGCC 4.8.0	Speed	8

Parameters:

baseAddress is the base address of the EUSCI_A_UART module.

Returns:

Address of TX Buffer

10.2.2.9 bool EUSCI_A_UART_init (uint16_t baseAddress, EUSCI_A_UART_initParam * param)

Advanced initialization routine for the UART block. The values to be written into the clockPrescalar, firstModReg, secondModReg and overSampling parameters should be pre-computed and passed into the initialization function.

Upon successful initialization of the UART block, this function will have initialized the module, but the UART block still remains disabled and must be enabled with EUSCI_A_UART_enable(). To calculate values for clockPrescalar, firstModReg, secondModReg and overSampling please use the link below.

http://software-dl.ti.com/msp430/msp430_public_sw/mcu/msp430/MSP430BaudRateConverter/index.html

Code Metrics:

Optimization	Code Size
None	232
Size	142
Speed	142
None	188
Size	160
Speed	158
None	398
Size	150
Speed	254
	None Size Speed None Size Speed None Size

Parameters:

baseAddress is the base address of the EUSCI_A_UART module.

param is the pointer to struct for initialization.

Modified bits are UCPEN, UCPAR, UCMSB, UC7BIT, UCSPB, UCMODEx and UCSYNC of UCAxCTL0 register; bits UCSSELx and UCSWRST of UCAxCTL1 register.

Returns

STATUS_SUCCESS or STATUS_FAIL of the initialization process

10.2.2.10 bool EUSCI_A_UART_initAdvance (uint16_t baseAddress, uint8_t selectClockSource, uint16_t clockPrescalar, uint8_t firstModReg, uint8_t secondModReg, uint8_t parity, uint16_t msborLsbFirst, uint16_t numberofStopBits, uint16_t uartMode, uint8_t overSampling)

DEPRECATED - Advanced initialization routine for the UART block. The values to be written into the clockPrescalar, firstModReg, secondModReg and overSampling parameters should be pre-computed and passed into the initialization function.

Upon successful initialization of the UART block, this function will have initialized the module, but the UART block still remains disabled and must be enabled with EUSCI_A_UART_enable(). To calculate values for clockPrescalar, firstModReg, secondModReg and overSampling please use the link below.

http://software-dl.ti.com/msp430/msp430_public_sw/mcu/msp430/MSP430BaudRateConverter/index.html

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	106
TI Compiler 4.2.1	Size	118
TI Compiler 4.2.1	Speed	118
IAR 5.51.6	None	106
IAR 5.51.6	Size	98
IAR 5.51.6	Speed	98
MSPGCC 4.8.0	None	130
MSPGCC 4.8.0	Size	98
MSPGCC 4.8.0	Speed	242

Parameters:

baseAddress is the base address of the EUSCI_A_UART module.

selectClockSource selects Clock source. Valid values are:

- EUSCI_A_UART_CLOCKSOURCE_SMCLK
- EUSCI A UART CLOCKSOURCE ACLK

clockPrescalar is the value to be written into UCBRx bits

firstModReg is First modulation stage register setting. This value is a pre-calculated value which can be obtained from the Device Users Guide. This value is written into UCBRFx bits of UCAxMCTLW.

secondModReg is Second modulation stage register setting. This value is a pre-calculated value which can be obtained from the Device Users Guide. This value is written into UCBRSx bits of UCAxMCTLW.

parity is the desired parity. Valid values are:

- EUSCI_A_UART_NO_PARITY [Default]
- EUSCI_A_UART_ODD_PARITY
- EUSCI_A_UART_EVEN_PARITY

msborLsbFirst controls direction of receive and transmit shift register. Valid values are:

- EUSCI_A_UART_MSB_FIRST
- EUSCI_A_UART_LSB_FIRST [Default]

numberofStopBits indicates one/two STOP bits Valid values are:

- EUSCI A UART ONE STOP BIT [Default]
- EUSCI_A_UART_TWO_STOP_BITS

uartMode selects the mode of operation Valid values are:

- EUSCI A UART MODE [Default]
- EUSCI_A_UART_IDLE_LINE_MULTI_PROCESSOR_MODE
- EUSCI_A_UART_ADDRESS_BIT_MULTI_PROCESSOR_MODE
- EUSCI_A_UART_AUTOMATIC_BAUDRATE_DETECTION_MODE

overSampling indicates low frequency or oversampling baud generation Valid values are:

- EUSCI_A_UART_OVERSAMPLING_BAUDRATE_GENERATION
- EUSCI_A_UART_LOW_FREQUENCY_BAUDRATE_GENERATION

Modified bits are UCPEN, UCPAR, UCMSB, UC7BIT, UCSPB, UCMODEx and UCSYNC of UCAxCTL0 register; bits UCSSELx and UCSWRST of UCAxCTL1 register.

Returns

STATUS_SUCCESS or STATUS_FAIL of the initialization process

10.2.2.11 uint8_t EUSCI_A_UART_queryStatusFlags (uint16_t baseAddress, uint8_t mask)

Gets the current UART status flags.

This returns the status for the UART module based on which flag is passed.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	22
TI Compiler 4.2.1	Size	8
TI Compiler 4.2.1	Speed	8
IAR 5.51.6	None	10
IAR 5.51.6	Size	4
IAR 5.51.6	Speed	4
MSPGCC 4.8.0	None	38
MSPGCC 4.8.0	Size	8
MSPGCC 4.8.0	Speed	8

Parameters:

baseAddress is the base address of the EUSCI A UART module.

mask is the masked interrupt flag status to be returned. Mask value is the logical OR of any of the following:

- EUSCI_A_UART_LISTEN_ENABLE
- EUSCI_A_UART_FRAMING_ERROR
- EUSCI_A_UART_OVERRUN_ERROR
- EUSCI_A_UART_PARITY_ERROR
- EUSCI_A_UART_BREAK_DETECT
- EUSCI_A_UART_RECEIVE_ERROR
- EUSCI_A_UART_ADDRESS_RECEIVED
- **EUSCI A UART IDLELINE**
- EUSCI_A_UART_BUSY

Modified bits of **UCAxSTAT** register.

Returns:

Logical OR of any of the following:

- EUSCI_A_UART_LISTEN_ENABLE
- EUSCI_A_UART_FRAMING_ERROR
- EUSCI_A_UART_OVERRUN_ERROR
- **EUSCI A UART PARITY ERROR**
- EUSCI_A_UART_BREAK_DETECT

- EUSCI_A_UART_RECEIVE_ERROR
- EUSCI_A_UART_ADDRESS_RECEIVED
- EUSCI_A_UART_IDLELINE
- EUSCI_A_UART_BUSY

indicating the status of the masked interrupt flags

10.2.2.12 uint8_t EUSCI_A_UART_receiveData (uint16_t baseAddress)

Receives a byte that has been sent to the UART Module.

This function reads a byte of data from the UART receive data Register.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	28
TI Compiler 4.2.1	Size	20
TI Compiler 4.2.1	Speed	20
IAR 5.51.6	None	32
IAR 5.51.6	Size	32
IAR 5.51.6	Speed	32
MSPGCC 4.8.0	None	54
MSPGCC 4.8.0	Size	24
MSPGCC 4.8.0	Speed	24

Parameters:

baseAddress is the base address of the EUSCI_A_UART module.

Modified bits of **UCAxRXBUF** register.

Returns

Returns the byte received from by the UART module, cast as an uint8_t.

10.2.2.13 void EUSCI_A_UART_resetDormant (uint16_t baseAddress)

Re-enables UART module from dormant mode.

Not dormant. All received characters set UCRXIFG.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	16
TI Compiler 4.2.1	Size	6
TI Compiler 4.2.1	Speed	6
IAR 5.51.6	None	8
IAR 5.51.6	Size	6
IAR 5.51.6	Speed	6
MSPGCC 4.8.0	None	22
MSPGCC 4.8.0	Size	6
MSPGCC 4.8.0	Speed	6

Parameters:

baseAddress is the base address of the EUSCI_A_UART module.

Modified bits are UCDORM of UCAxCTL1 register.

Returns:

None

10.2.2.14 void EUSCI_A_UART_selectDeglitchTime (uint16_t baseAddress, uint16_t deglitchTime)

Sets the deglitch time.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	34
TI Compiler 4.2.1	Size	14
TI Compiler 4.2.1	Speed	14
IAR 5.51.6	None	20
IAR 5.51.6	Size	8
IAR 5.51.6	Speed	8
MSPGCC 4.8.0	None	56
MSPGCC 4.8.0	Size	14
MSPGCC 4.8.0	Speed	14

Parameters:

baseAddress is the base address of the EUSCI_A_UART module.

deglitchTime is the selected deglitch time Valid values are:

- EUSCI_A_UART_DEGLITCH_TIME_2ns
- EUSCI_A_UART_DEGLITCH_TIME_50ns
- EUSCI_A_UART_DEGLITCH_TIME_100ns
- EUSCI_A_UART_DEGLITCH_TIME_200ns

Returns:

None

10.2.2.15 void EUSCI_A_UART_setDormant (uint16_t baseAddress)

Sets the UART module in dormant mode.

Puts USCI in sleep mode Only characters that are preceded by an idle-line or with address bit set UCRXIFG. In UART mode with automatic baud-rate detection, only the combination of a break and sync field sets UCRXIFG.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	16
TI Compiler 4.2.1	Size	6
TI Compiler 4.2.1	Speed	6
IAR 5.51.6	None	8
IAR 5.51.6	Size	6
IAR 5.51.6	Speed	6
MSPGCC 4.8.0	None	22
MSPGCC 4.8.0	Size	6
MSPGCC 4.8.0	Speed	6

Parameters:

baseAddress is the base address of the EUSCI_A_UART module.

Modified bits of UCAxCTL1 register.

Returns:

None

10.2.2.16 void EUSCI_A_UART_transmitAddress (uint16_t baseAddress, uint8_t transmitAddress)

Transmits the next byte to be transmitted marked as address depending on selected multiprocessor mode.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	30
TI Compiler 4.2.1	Size	12
TI Compiler 4.2.1	Speed	12
IAR 5.51.6	None	20
IAR 5.51.6	Size	4
IAR 5.51.6	Speed	4
MSPGCC 4.8.0	None	46
MSPGCC 4.8.0	Size	14
MSPGCC 4.8.0	Speed	14

Parameters:

 $\textit{baseAddress}\$ is the base address of the EUSCI_A_UART module.

transmitAddress is the next byte to be transmitted

Modified bits of UCAxTXBUF register and bits of UCAxCTL1 register.

Returns:

None

10.2.2.17 void EUSCI_A_UART_transmitBreak (uint16_t baseAddress)

Transmit break.

Transmits a break with the next write to the transmit buffer. In UART mode with automatic baud-rate detection, EUSCI_A_UART_AUTOMATICBAUDRATE_SYNC(0x55) must be written into UCAXTXBUF to generate the required break/sync fields. Otherwise, DEFAULT_SYNC(0x00) must be written into the transmit buffer. Also ensures module is ready for transmitting the next data.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	60
TI Compiler 4.2.1	Size	42
TI Compiler 4.2.1	Speed	42
IAR 5.51.6	None	68
IAR 5.51.6	Size	34
IAR 5.51.6	Speed	60
MSPGCC 4.8.0	None	92
MSPGCC 4.8.0	Size	54
MSPGCC 4.8.0	Speed	48

Parameters:

baseAddress is the base address of the EUSCI_A_UART module.

Modified bits of UCAxTXBUF register and bits of UCAxCTL1 register.

Returns:

None

10.2.2.18 void EUSCI A UART transmitData (uint16 t baseAddress, uint8 t transmitData)

Transmits a byte from the UART Module.

This function will place the supplied data into UART transmit data register to start transmission

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	34
TI Compiler 4.2.1	Size	20
TI Compiler 4.2.1	Speed	20
IAR 5.51.6	None	38
IAR 5.51.6	Size	6
IAR 5.51.6	Speed	26
MSPGCC 4.8.0	None	64
MSPGCC 4.8.0	Size	28
MSPGCC 4.8.0	Speed	28

Parameters:

baseAddress is the base address of the EUSCI_A_UART module. **transmitData** data to be transmitted from the UART module

Modified bits of **UCAxTXBUF** register.

Returns:

None

10.3 Programming Example

The following example shows how to use the EUSI_UART API to initialize the EUSI_UART, transmit characters, and receive characters.

11 EUSCI Synchronous Peripheral Interface (EUSCI_A_SPI)

Introduction	90
API Functions	. 90
Programming Example 1	

11.1 Introduction

The Serial Peripheral Interface Bus or SPI bus is a synchronous serial data link standard named by Motorola that operates in full duplex mode. Devices communicate in master/slave mode where the master device initiates the data frame.

This library provides the API for handling a SPI communication using EUSCI.

The SPI module can be configured as either a master or a slave device.

The SPI module also includes a programmable bit rate clock divider and prescaler to generate the output serial clock derived from the module's input clock.

This driver is contained in eusci_a_spi.c, with eusci_a_spi.h containing the API definitions for use by applications.

T

he following code metrics were performed with the TI Compiler 4.2.1 compiler, IAR 5.51.6 compiler and MSPGCC 4.8.0 compiler with different optimization settings. Users may see different code sizes depending on their project settings so it is best to perform your benchmarks within your project. These sizes contain all functions of the peripheral but only functions that are used will be linked into the application and added to the total code size. To see individual API code metrics see the specific API below.

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	818
TI Compiler 4.2.1	Size	462
TI Compiler 4.2.1	Speed	462
IAR 5.51.6	None	578
IAR 5.51.6	Size	462
IAR 5.51.6	Speed	470
MSPGCC 4.8.0	None	1150
MSPGCC 4.8.0	Size	470
MSPGCC 4.8.0	Speed	472

11.2 Functions

Functions

- void EUSCI_A_SPI_changeClockPhasePolarity (uint16_t baseAddress, uint16_t clockPhase, uint16_t clockPolarity)
- void EUSCI_A_SPI_changeMasterClock (uint16_t baseAddress, EUSCI_A_SPI_changeMasterClockParam *param)
- void EUSCI_A_SPI_clearInterruptFlag (uint16_t baseAddress, uint8_t mask)
- void EUSCI_A_SPI_disable (uint16_t baseAddress)
- void EUSCI_A_SPI_disableInterrupt (uint16_t baseAddress, uint8_t mask)
- void EUSCI A SPI enable (uint16 t baseAddress)
- void EUSCI_A_SPI_enableInterrupt (uint16_t baseAddress, uint8_t mask)
- uint8_t EUSCI_A_SPI_getInterruptStatus (uint16_t baseAddress, uint8_t mask)
- uint32_t EUSCI_A_SPI_getReceiveBufferAddress (uint16_t baseAddress)
- uint32 t EUSCI A SPI getTransmitBufferAddress (uint16 t baseAddress)
- void EUSCI_A_SPI_initMaster (uint16_t baseAddress, EUSCI_A_SPI_initMasterParam *param)

- void EUSCI_A_SPI_initSlave (uint16_t baseAddress, EUSCI_A_SPI_initSlaveParam *param)
- uint16_t EUSCI_A_SPI_isBusy (uint16_t baseAddress)
- void EUSCI_A_SPI_masterChangeClock (uint16_t baseAddress, uint32_t clockSourceFrequency, uint32_t desiredSpiClock)
- void EUSCI_A_SPI_masterInit (uint16_t baseAddress, uint8_t selectClockSource, uint32_t clockSourceFrequency, uint32_t desiredSpiClock, uint16_t msbFirst, uint16_t clockPhase, uint16_t clockPolarity, uint16_t spiMode)
- uint8 t EUSCI A SPI receiveData (uint16 t baseAddress)
- void EUSCI A SPI select4PinFunctionality (uint16 t baseAddress, uint8 t select4PinFunctionality)
- void EUSCI_A_SPI_slaveInit (uint16_t baseAddress, uint16_t msbFirst, uint16_t clockPhase, uint16_t clockPolarity, uint16_t spiMode)
- void EUSCI A SPI transmitData (uint16 t baseAddress, uint8 t transmitData)

11.2.1 Detailed Description

To use the module as a master, the user must call <code>EUSCl_A_SPl_masterInit()</code> to configure the SPI Master. This is followed by enabling the SPI module using <code>EUSCl_A_SPl_enable()</code>. The interrupts are then enabled (if needed). It is recommended to enable the SPI module before enabling the interrupts. A data transmit is then initiated using <code>EUSCl_A_SPl_transmitData()</code> and then when the receive flag is set, the received data is read using <code>EUSCl_A_SPl_receiveData()</code> and this indicates that an RX/TX operation is complete.

To use the module as a slave, initialization is done using EUSCI_A_SPI_slaveInit() and this is followed by enabling the module using EUSCI_A_SPI_enable(). Following this, the interrupts may be enabled as needed. When the receive flag is set, data is first transmitted using EUSCI_A_SPI_transmitData() and this is followed by a data reception by EUSCI_A_SPI_receiveData()

The SPI API is broken into 3 groups of functions: those that deal with status and initialization, those that handle data, and those that manage interrupts.

The status and initialization of the SPI module are managed by

- EUSCI_A_SPI_masterInit()
- EUSCI A SPI slaveInit()
- EUSCI_A_SPI_disable()
- EUSCI_A_SPI_enable()
- EUSCI_A_SPI_masterChangeClock()
- EUSCI_A_SPI_isBusy()
- EUSCI A SPI select4PinFunctionality()
- EUSCI_A_SPI_changeClockPhasePolarity()

Data handling is done by

- EUSCI A SPI transmitData()
- EUSCI_A_SPI_receiveData()

Interrupts from the SPI module are managed using

- EUSCI A SPI disableInterrupt()
- EUSCI_A_SPI_enableInterrupt()
- EUSCI_A_SPI_getInterruptStatus()
- EUSCI_A_SPI_clearInterruptFlag()

DMA related

- EUSCI_A_SPI_getReceiveBufferAddressForDMA()
- EUSCI A SPI getTransmitBufferAddressForDMA()

11.2.2 Function Documentation

11.2.2.1 void EUSCI_A_SPI_changeClockPhasePolarity (uint16_t baseAddress, uint16_t clockPhase, uint16_t clockPolarity)

Changes the SPI clock phase and polarity. At the end of this function call, SPI module is left enabled.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	56
TI Compiler 4.2.1	Size	22
TI Compiler 4.2.1 IAR 5.51.6	Speed None	22
IAR 5.51.6	Size	18
IAR 5.51.6	Speed	18
MSPGCC 4.8.0	None	94
MSPGCC 4.8.0	Size	22
MSPGCC 4.8.0	Speed	22

Parameters:

baseAddress is the base address of the EUSCI_A_SPI module.

clockPhase is clock phase select. Valid values are:

- EUSCI A SPI PHASE DATA CHANGED ONFIRST CAPTURED ON NEXT [Default]
- EUSCI_A_SPI_PHASE_DATA_CAPTURED_ONFIRST_CHANGED_ON_NEXT

clockPolarity is clock polarity select Valid values are:

- EUSCI A SPI CLOCKPOLARITY INACTIVITY HIGH
- EUSCI_A_SPI_CLOCKPOLARITY_INACTIVITY_LOW [Default]

Modified bits are UCCKPL, UCCKPH and UCSWRST of UCAxCTLW0 register.

Returns:

None

11.2.2.2 void EUSCI_A_SPI_changeMasterClock (uint16_t baseAddress, EUSCI_A_SPI_changeMasterClockParam * param)

Initializes the SPI Master clock. At the end of this function call, SPI module is left enabled.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	54
TI Compiler 4.2.1	Size	40
TI Compiler 4.2.1	Speed	40
IAR 5.51.6	None	50
IAR 5.51.6	Size	46
IAR 5.51.6	Speed	46
MSPGCC 4.8.0	None	88
MSPGCC 4.8.0	Size	46
MSPGCC 4.8.0	Speed	46

Parameters:

baseAddress is the base address of the EUSCI_A_SPI module.

param is the pointer to struct for master clock setting.

Modified bits are UCSWRST of UCAxCTLW0 register.

Returns:

None

11.2.2.3 void EUSCI A SPI clearInterruptFlag (uint16 t baseAddress, uint8 t mask)

Clears the selected SPI interrupt status flag.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	28
TI Compiler 4.2.1	Size	8
TI Compiler 4.2.1	Speed	8
IAR 5.51.6	None	14
IAR 5.51.6	Size	4
IAR 5.51.6	Speed	4
MSPGCC 4.8.0	None	46
MSPGCC 4.8.0	Size	10
MSPGCC 4.8.0	Speed	10

Parameters:

baseAddress is the base address of the EUSCI_A_SPI module.

mask is the masked interrupt flag to be cleared. Mask value is the logical OR of any of the following:

- EUSCI_A_SPI_TRANSMIT_INTERRUPT
- EUSCI_A_SPI_RECEIVE_INTERRUPT

Modified bits of **UCAxIFG** register.

Returns:

None

11.2.2.4 void EUSCI_A_SPI_disable (uint16_t baseAddress)

Disables the SPI block.

This will disable operation of the SPI block.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1 TI Compiler 4.2.1	None Size	16 6
TI Compiler 4.2.1	Speed	6
IAR 5.51.6	None	8
IAR 5.51.6	Size	6
IAR 5.51.6	Speed	6
MSPGCC 4.8.0	None	22
MSPGCC 4.8.0	Size	6
MSPGCC 4.8.0	Speed	6

Parameters:

baseAddress is the base address of the EUSCI_A_SPI module.

Modified bits are **UCSWRST** of **UCAxCTLW0** register.

Returns:

None

11.2.2.5 void EUSCI_A_SPI_disableInterrupt (uint16_t baseAddress, uint8_t mask)

Disables individual SPI interrupt sources.

Disables the indicated SPI interrupt sources. Only the sources that are enabled can be reflected to the processor interrupt; disabled sources have no effect on the processor.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	28
TI Compiler 4.2.1	Size	8
TI Compiler 4.2.1	Speed	8
IAR 5.51.6	None	14
IAR 5.51.6	Size	6
IAR 5.51.6	Speed	6
MSPGCC 4.8.0	None	46
MSPGCC 4.8.0	Size	10
MSPGCC 4.8.0	Speed	10

Parameters:

baseAddress is the base address of the EUSCI_A_SPI module.

mask is the bit mask of the interrupt sources to be disabled. Mask value is the logical OR of any of the following:

- EUSCI_A_SPI_TRANSMIT_INTERRUPT
- EUSCI_A_SPI_RECEIVE_INTERRUPT

Modified bits of **UCAxIE** register.

Returns:

None

11.2.2.6 void EUSCI_A_SPI_enable (uint16_t baseAddress)

Enables the SPI block.

This will enable operation of the SPI block.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	16
TI Compiler 4.2.1	Size	6
TI Compiler 4.2.1	Speed	6
IAR 5.51.6	None	8
IAR 5.51.6	Size	0
IAR 5.51.6	Speed	0
MSPGCC 4.8.0	None	22
MSPGCC 4.8.0	Size	6
MSPGCC 4.8.0	Speed	6

Parameters:

baseAddress is the base address of the EUSCI_A_SPI module.

Modified bits are UCSWRST of UCAxCTLW0 register.

Returns:

None

11.2.2.7 void EUSCI A SPI enableInterrupt (uint16 t baseAddress, uint8 t mask)

Enables individual SPI interrupt sources.

Enables the indicated SPI interrupt sources. Only the sources that are enabled can be reflected to the processor interrupt; disabled sources have no effect on the processor. Does not clear interrupt flags.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	28
TI Compiler 4.2.1	Size	8
TI Compiler 4.2.1	Speed	8
IAR 5.51.6	None	14
IAR 5.51.6	Size	4
IAR 5.51.6	Speed	4
MSPGCC 4.8.0	None	42
MSPGCC 4.8.0	Size	10
MSPGCC 4.8.0	Speed	10

Parameters:

baseAddress is the base address of the EUSCI_A_SPI module.

mask is the bit mask of the interrupt sources to be enabled. Mask value is the logical OR of any of the following:

- EUSCI_A_SPI_TRANSMIT_INTERRUPT
- EUSCI_A_SPI_RECEIVE_INTERRUPT

Modified bits of **UCAxIFG** register and bits of **UCAxIE** register.

Returns:

None

11.2.2.8 uint8_t EUSCI_A_SPI_getInterruptStatus (uint16_t baseAddress, uint8_t mask)

Gets the current SPI interrupt status.

This returns the interrupt status for the SPI module based on which flag is passed.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	22
TI Compiler 4.2.1	Size	8
TI Compiler 4.2.1	Speed	8
IAR 5.51.6	None	10
IAR 5.51.6	Size	10
IAR 5.51.6	Speed	10
MSPGCC 4.8.0	None	38
MSPGCC 4.8.0	Size	8
MSPGCC 4.8.0	Speed	8

Parameters:

baseAddress is the base address of the EUSCI A SPI module.

mask is the masked interrupt flag status to be returned. Mask value is the logical OR of any of the following:

■ EUSCI_A_SPI_TRANSMIT_INTERRUPT

■ EUSCI_A_SPI_RECEIVE_INTERRUPT

Returns:

Logical OR of any of the following:

- EUSCI_A_SPI_TRANSMIT_INTERRUPT
- EUSCI_A_SPI_RECEIVE_INTERRUPT indicating the status of the masked interrupts

11.2.2.9 uint32_t EUSCI_A_SPI_getReceiveBufferAddress (uint16_t baseAddress)

Returns the address of the RX Buffer of the SPI for the DMA module.

Returns the address of the SPI RX Buffer. This can be used in conjunction with the DMA to store the received data directly to memory.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	18
TI Compiler 4.2.1	Size	8
TI Compiler 4.2.1	Speed	8
IAR 5.51.6	None	8
IAR 5.51.6	Size	8
IAR 5.51.6	Speed	8
MSPGCC 4.8.0	None	24
MSPGCC 4.8.0	Size	8
MSPGCC 4.8.0	Speed	8

Parameters:

baseAddress is the base address of the EUSCI_A_SPI module.

Returns:

the address of the RX Buffer

11.2.2.10 uint32_t EUSCI_A_SPI_getTransmitBufferAddress (uint16_t baseAddress)

Returns the address of the TX Buffer of the SPI for the DMA module.

Returns the address of the SPI TX Buffer. This can be used in conjunction with the DMA to obtain transmitted data directly from memory.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	18
TI Compiler 4.2.1	Size	8
TI Compiler 4.2.1	Speed	8
IAR 5.51.6	None	8
IAR 5.51.6	Size	8
IAR 5.51.6	Speed	8
MSPGCC 4.8.0	None	24
MSPGCC 4.8.0	Size	8
MSPGCC 4.8.0	Speed	8

Parameters:

baseAddress is the base address of the EUSCI_A_SPI module.

Returns:

the address of the TX Buffer

11.2.2.11 void EUSCI_A_SPI_initMaster (uint16_t baseAddress, EUSCI A SPI initMasterParam * param)

Initializes the SPI Master block.

Upon successful initialization of the SPI master block, this function will have set the bus speed for the master, but the SPI Master block still remains disabled and must be enabled with EUSCI_A_SPI_enable()

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	114
TI Compiler 4.2.1	Size	84
TI Compiler 4.2.1	Speed	84
IAR 5.51.6	None	98
IAR 5.51.6	Size	92
IAR 5.51.6	Speed	92
MSPGCC 4.8.0	None	190
MSPGCC 4.8.0	Size	90
MSPGCC 4.8.0	Speed	90

Parameters:

baseAddress is the base address of the EUSCI_A_SPI Master module.

 $\ensuremath{\textit{param}}$ is the pointer to struct for master initialization.

Modified bits are UCCKPH, UCCKPL, UC7BIT, UCMSB, UCSSELx and UCSWRST of UCAxCTLW0 register.

Returns:

STATUS_SUCCESS

11.2.2.12 void EUSCI_A_SPI_initSlave (uint16_t baseAddress, EU-SCI_A_SPI_initSlaveParam * param)

Initializes the SPI Slave block.

Upon successful initialization of the SPI slave block, this function will have initialized the slave block, but the SPI Slave block still remains disabled and must be enabled with EUSCI_A_SPI_enable()

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	56
TI Compiler 4.2.1	Size	34
TI Compiler 4.2.1	Speed	34
IAR 5.51.6	None	36
IAR 5.51.6	Size	34
IAR 5.51.6	Speed	34
MSPGCC 4.8.0	None	96
MSPGCC 4.8.0	Size	34
MSPGCC 4.8.0	Speed	34

Parameters:

baseAddress is the base address of the EUSCI_A_SPI Slave module.

param is the pointer to struct for slave initialization.

Modified bits are UCMSB, UCMST, UC7BIT, UCCKPL, UCCKPH, UCMODE and UCSWRST of UCAXCTLW0 register.

Returns:

STATUS_SUCCESS

11.2.2.13 uint16_t EUSCI_A_SPI_isBusy (uint16_t baseAddress)

Indicates whether or not the SPI bus is busy.

This function returns an indication of whether or not the SPI bus is busy. This function checks the status of the bus via UCBBUSY bit

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	18
TI Compiler 4.2.1	Size	10
TI Compiler 4.2.1	Speed	10
IAR 5.51.6	None	10
IAR 5.51.6	Size	10
IAR 5.51.6	Speed	10
MSPGCC 4.8.0	None	20
MSPGCC 4.8.0	Size	8
MSPGCC 4.8.0	Speed	8

Parameters:

baseAddress is the base address of the EUSCI_A_SPI module.

Returns:

One of the following:

- EUSCI_A_SPI_BUSY
- EUSCI_A_SPI_NOT_BUSY
 indicating if the EUSCI_A_SPI is busy

11.2.2.14 void EUSCI_A_SPI_masterChangeClock (uint16_t baseAddress, uint32_t clockSourceFrequency, uint32_t desiredSpiClock)

DEPRECATED - Initializes the SPI Master clock. At the end of this function call, SPI module is left enabled.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	90
TI Compiler 4.2.1	Size	36
TI Compiler 4.2.1	Speed	36
IAR 5.51.6	None	66
IAR 5.51.6	Size	46
IAR 5.51.6	Speed	42
MSPGCC 4.8.0	None	92
MSPGCC 4.8.0	Size	50
MSPGCC 4.8.0	Speed	60

Parameters:

baseAddress is the base address of the EUSCI_A_SPI module.

clockSourceFrequency is the frequency of the selected clock source desiredSpiClock is the desired clock rate for SPI communication

Modified bits are UCSWRST of UCAxCTLW0 register.

Returns:

None

11.2.2.15 void EUSCI_A_SPI_masterInit (uint16_t baseAddress, uint8_t selectClockSource, uint32_t clockSourceFrequency, uint32_t desiredSpiClock, uint16_t msbFirst, uint16_t clockPhase, uint16_t clockPolarity, uint16_t spiMode)

DEPRECATED - Initializes the SPI Master block.

Upon successful initialization of the SPI master block, this function will have set the bus speed for the master, but the SPI Master block still remains disabled and must be enabled with EUSCI_A_SPI_enable()

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	106
TI Compiler 4.2.1	Size	118
TI Compiler 4.2.1	Speed	118
IAR 5.51.6	None	108
IAR 5.51.6	Size	102
IAR 5.51.6	Speed	102
MSPGCC 4.8.0	None	126
MSPGCC 4.8.0	Size	94
MSPGCC 4.8.0	Speed	86

Parameters:

baseAddress is the base address of the EUSCI_A_SPI Master module.

selectClockSource selects Clock source. Valid values are:

- EUSCI_A_SPI_CLOCKSOURCE_ACLK
- EUSCI_A_SPI_CLOCKSOURCE_SMCLK

clockSourceFrequency is the frequency of the selected clock source

desiredSpiClock is the desired clock rate for SPI communication

msbFirst controls the direction of the receive and transmit shift register. Valid values are:

- EUSCI_A_SPI_MSB_FIRST
- EUSCI_A_SPI_LSB_FIRST [Default]

clockPhase is clock phase select. Valid values are:

- EUSCI_A_SPI_PHASE_DATA_CHANGED_ONFIRST_CAPTURED_ON_NEXT [Default]
- EUSCI_A_SPI_PHASE_DATA_CAPTURED_ONFIRST_CHANGED_ON_NEXT

clockPolarity is clock polarity select Valid values are:

- EUSCI_A_SPI_CLOCKPOLARITY_INACTIVITY_HIGH
- EUSCI_A_SPI_CLOCKPOLARITY_INACTIVITY_LOW [Default]

spiMode is SPI mode select Valid values are:

- EUSCI_A_SPI_3PIN
- EUSCI_A_SPI_4PIN_UCxSTE_ACTIVE_HIGH
- EUSCI_A_SPI_4PIN_UCxSTE_ACTIVE_LOW

Modified bits are UCCKPH, UCCKPL, UC7BIT, UCMSB, UCSSELx and UCSWRST of UCAxCTLW0 register.

Returns:

STATUS_SUCCESS

11.2.2.16 uint8_t EUSCI_A_SPI_receiveData (uint16_t baseAddress)

Receives a byte that has been sent to the SPI Module.

This function reads a byte of data from the SPI receive data Register.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	16
TI Compiler 4.2.1	Size	8
TI Compiler 4.2.1	Speed	8
IAR 5.51.6	None	8
IAR 5.51.6	Size	8
IAR 5.51.6	Speed	8
MSPGCC 4.8.0	None	24
MSPGCC 4.8.0	Size	6
MSPGCC 4.8.0	Speed	6

Parameters:

baseAddress is the base address of the EUSCI_A_SPI module.

Returns:

Returns the byte received from by the SPI module, cast as an uint8 t.

11.2.2.17 void EUSCI_A_SPI_select4PinFunctionality (uint16_t baseAddress, uint8_t select4PinFunctionality)

Selects 4Pin Functionality.

This function should be invoked only in 4-wire mode. Invoking this function has no effect in 3-wire mode.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	30
TI Compiler 4.2.1	Size	12
TI Compiler 4.2.1	Speed	12
IAR 5.51.6	None	14
IAR 5.51.6	Size	6
IAR 5.51.6	Speed	6
MSPGCC 4.8.0	None	50
MSPGCC 4.8.0	Size	14
MSPGCC 4.8.0	Speed	14

Parameters:

baseAddress is the base address of the EUSCI_A_SPI module.

select4PinFunctionality selects 4 pin functionality Valid values are:

- EUSCI_A_SPI_PREVENT_CONFLICTS_WITH_OTHER_MASTERS
- EUSCI_A_SPI_ENABLE_SIGNAL_FOR_4WIRE_SLAVE

Modified bits are UCSTEM of UCAxCTLW0 register.

Returns:

None

11.2.2.18 void EUSCI_A_SPI_slaveInit (uint16_t baseAddress, uint16_t msbFirst, uint16_t clockPhase, uint16_t clockPolarity, uint16_t spiMode)

DEPRECATED - Initializes the SPI Slave block.

Upon successful initialization of the SPI slave block, this function will have initialized the slave block, but the SPI Slave block still remains disabled and must be enabled with EUSCI_A_SPI_enable()

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	82
TI Compiler 4.2.1	Size	30
TI Compiler 4.2.1	Speed	30
IAR 5.51.6	None	62
IAR 5.51.6	Size	42
IAR 5.51.6	Speed	54
MSPGCC 4.8.0	None	76
MSPGCC 4.8.0	Size	30
MSPGCC 4.8.0	Speed	30

Parameters:

baseAddress is the base address of the EUSCI_A_SPI Slave module.

msbFirst controls the direction of the receive and transmit shift register. Valid values are:

- EUSCI_A_SPI_MSB_FIRST
- EUSCI_A_SPI_LSB_FIRST [Default]

clockPhase is clock phase select. Valid values are:

- EUSCI_A_SPI_PHASE_DATA_CHANGED_ONFIRST_CAPTURED_ON_NEXT [Default]
- EUSCI_A_SPI_PHASE_DATA_CAPTURED_ONFIRST_CHANGED_ON_NEXT

clockPolarity is clock polarity select Valid values are:

- EUSCI_A_SPI_CLOCKPOLARITY_INACTIVITY_HIGH
- EUSCI_A_SPI_CLOCKPOLARITY_INACTIVITY_LOW [Default]

spiMode is SPI mode select Valid values are:

- EUSCI_A_SPI_3PIN
- EUSCI_A_SPI_4PIN_UCxSTE_ACTIVE_HIGH
- EUSCI_A_SPI_4PIN_UCxSTE_ACTIVE_LOW

Modified bits are UCMSB, UCMST, UC7BIT, UCCKPL, UCCKPH, UCMODE and UCSWRST of UCAxCTLW0 register.

Returns:

STATUS SUCCESS

11.2.2.19 void EUSCI_A_SPI_transmitData (uint16_t baseAddress, uint8_t transmitData)

Transmits a byte from the SPI Module.

This function will place the supplied data into SPI transmit data register to start transmission.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	22
TI Compiler 4.2.1	Size	8
TI Compiler 4.2.1	Speed	8
IAR 5.51.6	None	14
IAR 5.51.6	Size	12
IAR 5.51.6	Speed	12
MSPGCC 4.8.0	None	30
MSPGCC 4.8.0	Size	10
MSPGCC 4.8.0	Speed	10

Parameters:

baseAddress is the base address of the EUSCI_A_SPI module. **transmitData** data to be transmitted from the SPI module

Returns:

None

11.3 Programming Example

The following example shows how to use the SPI API to configure the SPI module as a master device, and how to do a simple send of data.

12 EUSCI Synchronous Peripheral Interface (EUSCI_B_SPI)

Introduction	10	3
API Functions	10	3
Programming Example		

12.1 Introduction

The Serial Peripheral Interface Bus or SPI bus is a synchronous serial data link standard named by Motorola that operates in full duplex mode. Devices communicate in master/slave mode where the master device initiates the data frame.

This library provides the API for handling a SPI communication using EUSCI.

The SPI module can be configured as either a master or a slave device.

The SPI module also includes a programmable bit rate clock divider and prescaler to generate the output serial clock derived from the module's input clock.

This driver is contained in eusci_b_spi.c, with eusci_b_spi.h containing the API definitions for use by applications.

T

he following code metrics were performed with the TI Compiler 4.2.1 compiler, IAR 5.51.6 compiler and MSPGCC 4.8.0 compiler with different optimization settings. Users may see different code sizes depending on their project settings so it is best to perform your benchmarks within your project. These sizes contain all functions of the peripheral but only functions that are used will be linked into the application and added to the total code size. To see individual API code metrics see the specific API below.

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None Size	812 458
TI Compiler 4.2.1	Speed	458
IAR 5.51.6	None	568
IAR 5.51.6 IAR 5.51.6	Size Speed	438 462
MSPGCC 4.8.0 MSPGCC 4.8.0 MSPGCC 4.8.0	None Size Speed	1138 466 464

12.2 Functions

Functions

- void EUSCI_B_SPI_changeClockPhasePolarity (uint16_t baseAddress, uint16_t clockPhase, uint16_t clockPolarity)
- void EUSCI_B_SPI_changeMasterClock (uint16_t baseAddress, EUSCI_B_SPI_changeMasterClockParam *param)
- void EUSCI_B_SPI_clearInterruptFlag (uint16_t baseAddress, uint8_t mask)
- void EUSCI_B_SPI_disable (uint16_t baseAddress)
- void EUSCI_B_SPI_disableInterrupt (uint16_t baseAddress, uint8_t mask)
- void EUSCI B SPI enable (uint16 t baseAddress)
- void EUSCI_B_SPI_enableInterrupt (uint16_t baseAddress, uint8_t mask)
- uint8_t EUSCI_B_SPI_getInterruptStatus (uint16_t baseAddress, uint8_t mask)
- uint32_t EUSCI_B_SPI_getReceiveBufferAddress (uint16_t baseAddress)
- uint32 t EUSCI B SPI getTransmitBufferAddress (uint16 t baseAddress)
- void EUSCI_B_SPI_initMaster (uint16_t baseAddress, EUSCI_B_SPI_initMasterParam *param)

- void EUSCI_B_SPI_initSlave (uint16_t baseAddress, EUSCI_B_SPI_initSlaveParam *param)
- uint16_t EUSCI_B_SPI_isBusy (uint16_t baseAddress)
- void EUSCI_B_SPI_masterChangeClock (uint16_t baseAddress, uint32_t clockSourceFrequency, uint32_t desiredSpiClock)
- void EUSCI_B_SPI_masterInit (uint16_t baseAddress, uint8_t selectClockSource, uint32_t clockSourceFrequency, uint32_t desiredSpiClock, uint16_t msbFirst, uint16_t clockPhase, uint16_t clockPolarity, uint16_t spiMode)
- uint8 t EUSCI B SPI receiveData (uint16 t baseAddress)
- void EUSCI B SPI select4PinFunctionality (uint16 t baseAddress, uint8 t select4PinFunctionality)
- void EUSCI_B_SPI_slaveInit (uint16_t baseAddress, uint16_t msbFirst, uint16_t clockPhase, uint16_t clockPolarity, uint16_t spiMode)
- void EUSCI B SPI transmitData (uint16 t baseAddress, uint8 t transmitData)

12.2.1 Detailed Description

To use the module as a master, the user must call <code>EUSCl_B_SPl_masterInit()</code> to configure the SPI Master. This is followed by enabling the SPI module using <code>EUSCl_B_SPl_enable()</code>. The interrupts are then enabled (if needed). It is recommended to enable the SPI module before enabling the interrupts. A data transmit is then initiated using <code>EUSCl_B_SPl_transmitData()</code> and then when the receive flag is set, the received data is read using <code>EUSCl_B_SPl_receiveData()</code> and this indicates that an RX/TX operation is complete.

To use the module as a slave, initialization is done using EUSCI_B_SPI_slaveInit() and this is followed by enabling the module using EUSCI_B_SPI_enable(). Following this, the interrupts may be enabled as needed. When the receive flag is set, data is first transmitted using EUSCI_B_SPI_transmitData() and this is followed by a data reception by EUSCI_B_SPI_receiveData()

The SPI API is broken into 3 groups of functions: those that deal with status and initialization, those that handle data, and those that manage interrupts.

The status and initialization of the SPI module are managed by

- EUSCI_B_SPI_masterInit()
- EUSCI B SPI slaveInit()
- EUSCI_B_SPI_disable()
- EUSCI_B_SPI_enable()
- EUSCI_B_SPI_masterChangeClock()
- EUSCI_B_SPI_isBusy()
- EUSCI B SPI select4PinFunctionality()
- EUSCI_B_SPI_changeClockPhasePolarity()

Data handling is done by

- EUSCI B SPI transmitData()
- EUSCI B SPI receiveData()

Interrupts from the SPI module are managed using

- EUSCI B SPI disableInterrupt()
- EUSCI_B_SPI_enableInterrupt()
- EUSCI_B_SPI_getInterruptStatus()
- EUSCI_B_SPI_clearInterruptFlag()

DMA related

- EUSCI_B_SPI_getReceiveBufferAddressForDMA()
- EUSCI B SPI getTransmitBufferAddressForDMA()

12.2.2 Function Documentation

12.2.2.1 void EUSCI_B_SPI_changeClockPhasePolarity (uint16_t baseAddress, uint16_t clockPhase, uint16_t clockPolarity)

Changes the SPI clock phase and polarity. At the end of this function call, SPI module is left enabled.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	56
TI Compiler 4.2.1	Size	22
TI Compiler 4.2.1	Speed	22
IAR 5.51.6	None	28
IAR 5.51.6	Size	18
IAR 5.51.6	Speed	18
MSPGCC 4.8.0	None	94
MSPGCC 4.8.0	Size	22
MSPGCC 4.8.0	Speed	22

Parameters:

baseAddress is the base address of the EUSCI_B_SPI module.

clockPhase is clock phase select. Valid values are:

- EUSCI B SPI PHASE DATA CHANGED ONFIRST CAPTURED ON NEXT [Default]
- EUSCI_B_SPI_PHASE_DATA_CAPTURED_ONFIRST_CHANGED_ON_NEXT

clockPolarity is clock polarity select Valid values are:

- EUSCI_B_SPI_CLOCKPOLARITY_INACTIVITY_HIGH
- EUSCI_B_SPI_CLOCKPOLARITY_INACTIVITY_LOW [Default]

Modified bits are UCCKPL, UCCKPH and UCSWRST of UCAxCTLW0 register.

Returns:

None

12.2.2.2 void EUSCI_B_SPI_changeMasterClock (uint16_t baseAddress, EUSCI_B_SPI_changeMasterClockParam * param)

Initializes the SPI Master clock. At the end of this function call, SPI module is left enabled.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	54
TI Compiler 4.2.1	Size	40
TI Compiler 4.2.1	Speed	40
IAR 5.51.6	None	50
IAR 5.51.6	Size	38
IAR 5.51.6	Speed	46
MSPGCC 4.8.0	None	88
MSPGCC 4.8.0	Size	46
MSPGCC 4.8.0	Speed	46

Parameters:

baseAddress is the base address of the EUSCI_B_SPI module.

param is the pointer to struct for master clock setting.

Modified bits are UCSWRST of UCAxCTLW0 register.

Returns:

None

12.2.2.3 void EUSCI B SPI clearInterruptFlag (uint16 t baseAddress, uint8 t mask)

Clears the selected SPI interrupt status flag.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	28
TI Compiler 4.2.1	Size	8
TI Compiler 4.2.1	Speed	8
IAR 5.51.6	None	14
IAR 5.51.6	Size	4
IAR 5.51.6	Speed	4
MSPGCC 4.8.0	None	46
MSPGCC 4.8.0	Size	10
MSPGCC 4.8.0	Speed	10

Parameters:

baseAddress is the base address of the EUSCI_B_SPI module.

mask is the masked interrupt flag to be cleared. Mask value is the logical OR of any of the following:

- EUSCI_B_SPI_TRANSMIT_INTERRUPT
- EUSCI_B_SPI_RECEIVE_INTERRUPT

Modified bits of UCAxIFG register.

Returns:

None

12.2.2.4 void EUSCI_B_SPI_disable (uint16_t baseAddress)

Disables the SPI block.

This will disable operation of the SPI block.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	16
TI Compiler 4.2.1	Size	6
TI Compiler 4.2.1	Speed	6
IAR 5.51.6	None	8
IAR 5.51.6	Size	6
IAR 5.51.6	Speed	6
MSPGCC 4.8.0	None	22
MSPGCC 4.8.0	Size	6
MSPGCC 4.8.0	Speed	6

Parameters:

baseAddress is the base address of the EUSCI_B_SPI module.

Modified bits are **UCSWRST** of **UCAxCTLW0** register.

Returns:

None

12.2.2.5 void EUSCI_B_SPI_disableInterrupt (uint16_t baseAddress, uint8_t mask)

Disables individual SPI interrupt sources.

Disables the indicated SPI interrupt sources. Only the sources that are enabled can be reflected to the processor interrupt; disabled sources have no effect on the processor.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	28
TI Compiler 4.2.1	Size	8
TI Compiler 4.2.1	Speed	8
IAR 5.51.6	None	14
IAR 5.51.6	Size	6
IAR 5.51.6	Speed	6
MSPGCC 4.8.0	None	46
MSPGCC 4.8.0	Size	10
MSPGCC 4.8.0	Speed	10

Parameters:

baseAddress is the base address of the EUSCI_B_SPI module.

mask is the bit mask of the interrupt sources to be disabled. Mask value is the logical OR of any of the following:

- EUSCI_B_SPI_TRANSMIT_INTERRUPT
- EUSCI_B_SPI_RECEIVE_INTERRUPT

Modified bits of **UCAxIE** register.

Returns:

None

12.2.2.6 void EUSCI_B_SPI_enable (uint16_t baseAddress)

Enables the SPI block.

This will enable operation of the SPI block.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	16
TI Compiler 4.2.1	Size	6
TI Compiler 4.2.1	Speed	6
IAR 5.51.6	None	8
IAR 5.51.6	Size	0
IAR 5.51.6	Speed	0
MSPGCC 4.8.0	None	22
MSPGCC 4.8.0	Size	6
MSPGCC 4.8.0	Speed	6

Parameters:

baseAddress is the base address of the EUSCI_B_SPI module.

Modified bits are UCSWRST of UCAxCTLW0 register.

Returns:

None

12.2.2.7 void EUSCI B SPI enableInterrupt (uint16 t baseAddress, uint8 t mask)

Enables individual SPI interrupt sources.

Enables the indicated SPI interrupt sources. Only the sources that are enabled can be reflected to the processor interrupt; disabled sources have no effect on the processor. Does not clear interrupt flags.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	28
TI Compiler 4.2.1	Size	8
TI Compiler 4.2.1	Speed	8
IAR 5.51.6	None	14
IAR 5.51.6	Size	4
IAR 5.51.6	Speed	4
MSPGCC 4.8.0	None	42
MSPGCC 4.8.0	Size	10
MSPGCC 4.8.0	Speed	10

Parameters:

baseAddress is the base address of the EUSCI_B_SPI module.

mask is the bit mask of the interrupt sources to be enabled. Mask value is the logical OR of any of the following:

- EUSCI_B_SPI_TRANSMIT_INTERRUPT
- EUSCI_B_SPI_RECEIVE_INTERRUPT

Modified bits of UCAxIFG register and bits of UCAxIE register.

Returns:

None

12.2.2.8 uint8_t EUSCI_B_SPI_getInterruptStatus (uint16_t baseAddress, uint8_t mask)

Gets the current SPI interrupt status.

This returns the interrupt status for the SPI module based on which flag is passed.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	22
TI Compiler 4.2.1 TI Compiler 4.2.1	Size Speed	8 8
IAR 5.51.6 IAR 5.51.6	None Size	10 10
MSPGCC 4.8.0	Speed None	10 38
MSPGCC 4.8.0 MSPGCC 4.8.0	Size Speed	8

Parameters:

baseAddress is the base address of the EUSCI B SPI module.

mask is the masked interrupt flag status to be returned. Mask value is the logical OR of any of the following:

■ EUSCI_B_SPI_TRANSMIT_INTERRUPT

■ EUSCI_B_SPI_RECEIVE_INTERRUPT

Returns:

Logical OR of any of the following:

- EUSCI_B_SPI_TRANSMIT_INTERRUPT
- EUSCI_B_SPI_RECEIVE_INTERRUPT indicating the status of the masked interrupts

12.2.2.9 uint32_t EUSCI_B_SPI_getReceiveBufferAddress (uint16_t baseAddress)

Returns the address of the RX Buffer of the SPI for the DMA module.

Returns the address of the SPI RX Buffer. This can be used in conjunction with the DMA to store the received data directly to memory.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	18
TI Compiler 4.2.1	Size	8
TI Compiler 4.2.1	Speed	8
IAR 5.51.6	None	8
IAR 5.51.6	Size	8
IAR 5.51.6	Speed	8
MSPGCC 4.8.0	None	24
MSPGCC 4.8.0	Size	8
MSPGCC 4.8.0	Speed	8

Parameters:

baseAddress is the base address of the EUSCI_B_SPI module.

Returns:

the address of the RX Buffer

12.2.2.10 uint32_t EUSCI_B_SPI_getTransmitBufferAddress (uint16_t baseAddress)

Returns the address of the TX Buffer of the SPI for the DMA module.

Returns the address of the SPI TX Buffer. This can be used in conjunction with the DMA to obtain transmitted data directly from memory.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	18
TI Compiler 4.2.1	Size	8
TI Compiler 4.2.1	Speed	8
IAR 5.51.6	None	8
IAR 5.51.6	Size	8
IAR 5.51.6	Speed	8
MSPGCC 4.8.0	None	24
MSPGCC 4.8.0	Size	8
MSPGCC 4.8.0	Speed	8

Parameters:

baseAddress is the base address of the EUSCI_B_SPI module.

Returns:

the address of the TX Buffer

12.2.2.11 void EUSCI_B_SPI_initMaster (uint16_t baseAddress, EUSCI B SPI initMasterParam * param)

Initializes the SPI Master block.

Upon successful initialization of the SPI master block, this function will have set the bus speed for the master, but the SPI Master block still remains disabled and must be enabled with EUSCI_B_SPI_enable()

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	108
TI Compiler 4.2.1	Size	80
TI Compiler 4.2.1	Speed	80
IAR 5.51.6	None	90
IAR 5.51.6	Size	78
IAR 5.51.6	Speed	86
MSPGCC 4.8.0	None	180
MSPGCC 4.8.0	Size	86
MSPGCC 4.8.0	Speed	86

Parameters:

baseAddress is the base address of the EUSCI_B_SPI Master module.

param is the pointer to struct for master initialization.

Modified bits are UCCKPH, UCCKPL, UC7BIT, UCMSB, UCSSELx and UCSWRST of UCAxCTLW0 register.

Returns:

STATUS_SUCCESS

12.2.2.12 void EUSCI_B_SPI_initSlave (uint16_t baseAddress, EU-SCI_B_SPI_initSlaveParam * param)

Initializes the SPI Slave block.

Upon successful initialization of the SPI slave block, this function will have initialized the slave block, but the SPI Slave block still remains disabled and must be enabled with EUSCI_B_SPI_enable()

Code Metrics:

Optimization	Code Size
None	56
Size	34
Speed	34
None	36
Size	34
Speed	34
None	96
Size	34
Speed	34
	None Size Speed None Size Speed None Size

Parameters:

baseAddress is the base address of the EUSCI_B_SPI Slave module.

param is the pointer to struct for slave initialization.

Modified bits are UCMSB, UCMST, UC7BIT, UCCKPL, UCCKPH, UCMODE and UCSWRST of UCAXCTLW0 register.

Returns:

STATUS_SUCCESS

12.2.2.13 uint16_t EUSCI_B_SPI_isBusy (uint16_t baseAddress)

Indicates whether or not the SPI bus is busy.

This function returns an indication of whether or not the SPI bus is busy. This function checks the status of the bus via UCBBUSY bit

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	18
TI Compiler 4.2.1	Size	10
TI Compiler 4.2.1	Speed	10
IAR 5.51.6	None	8
IAR 5.51.6	Size	8
IAR 5.51.6	Speed	8
MSPGCC 4.8.0	None	18
MSPGCC 4.8.0	Size	8
MSPGCC 4.8.0	Speed	8

Parameters:

baseAddress is the base address of the EUSCI_B_SPI module.

Returns:

One of the following:

- EUSCI_B_SPI_BUSY
- EUSCI_B_SPI_NOT_BUSY
 indicating if the EUSCI_B_SPI is busy

12.2.2.14 void EUSCI_B_SPI_masterChangeClock (uint16_t baseAddress, uint32_t clockSourceFrequency, uint32_t desiredSpiClock)

DEPRECATED - Initializes the SPI Master clock. At the end of this function call, SPI module is left enabled.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	90
TI Compiler 4.2.1	Size	36
TI Compiler 4.2.1	Speed	36
IAR 5.51.6	None	66
IAR 5.51.6	Size	46
IAR 5.51.6	Speed	42
MSPGCC 4.8.0	None	92
MSPGCC 4.8.0	Size	50
MSPGCC 4.8.0	Speed	60

Parameters:

baseAddress is the base address of the EUSCI_B_SPI module.

clockSourceFrequency is the frequency of the selected clock source desiredSpiClock is the desired clock rate for SPI communication

Modified bits are UCSWRST of UCAxCTLW0 register.

Returns:

None

12.2.2.15 void EUSCI_B_SPI_masterInit (uint16_t baseAddress, uint8_t selectClockSource, uint32_t clockSourceFrequency, uint32_t desiredSpiClock, uint16_t msbFirst, uint16_t clockPhase, uint16_t clockPolarity, uint16_t spiMode)

DEPRECATED - Initializes the SPI Master block.

Upon successful initialization of the SPI master block, this function will have set the bus speed for the master, but the SPI Master block still remains disabled and must be enabled with EUSCI_B_SPI_enable()

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	106
TI Compiler 4.2.1	Size	118
TI Compiler 4.2.1	Speed	118
IAR 5.51.6	None	108
IAR 5.51.6	Size	102
IAR 5.51.6	Speed	102
MSPGCC 4.8.0	None	126
MSPGCC 4.8.0	Size	94
MSPGCC 4.8.0	Speed	82

Parameters:

baseAddress is the base address of the EUSCI_B_SPI Master module.

selectClockSource selects Clock source. Valid values are:

- EUSCI_B_SPI_CLOCKSOURCE_ACLK
- EUSCI_B_SPI_CLOCKSOURCE_SMCLK

clockSourceFrequency is the frequency of the selected clock source

desiredSpiClock is the desired clock rate for SPI communication

msbFirst controls the direction of the receive and transmit shift register. Valid values are:

- EUSCI_B_SPI_MSB_FIRST
- EUSCI_B_SPI_LSB_FIRST [Default]

clockPhase is clock phase select. Valid values are:

- EUSCI_B_SPI_PHASE_DATA_CHANGED_ONFIRST_CAPTURED_ON_NEXT [Default]
- EUSCI_B_SPI_PHASE_DATA_CAPTURED_ONFIRST_CHANGED_ON_NEXT

clockPolarity is clock polarity select Valid values are:

- EUSCI_B_SPI_CLOCKPOLARITY_INACTIVITY_HIGH
- EUSCI_B_SPI_CLOCKPOLARITY_INACTIVITY_LOW [Default]

spiMode is SPI mode select Valid values are:

- EUSCI_B_SPI_3PIN
- EUSCI_B_SPI_4PIN_UCxSTE_ACTIVE_HIGH
- EUSCI_B_SPI_4PIN_UCxSTE_ACTIVE_LOW

Modified bits are UCCKPH, UCCKPL, UC7BIT, UCMSB, UCSSELx and UCSWRST of UCAxCTLW0 register.

Returns:

STATUS_SUCCESS

12.2.2.16 uint8_t EUSCI_B_SPI_receiveData (uint16_t baseAddress)

Receives a byte that has been sent to the SPI Module.

This function reads a byte of data from the SPI receive data Register.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1 TI Compiler 4.2.1	None Size	16 8
TI Compiler 4.2.1	Speed	8
IAR 5.51.6	None	8
IAR 5.51.6	Size	8
IAR 5.51.6	Speed	8
MSPGCC 4.8.0	None	24
MSPGCC 4.8.0	Size	6
MSPGCC 4.8.0	Speed	6

Parameters:

baseAddress is the base address of the EUSCI_B_SPI module.

Returns:

Returns the byte received from by the SPI module, cast as an uint8 t.

12.2.2.17 void EUSCI_B_SPI_select4PinFunctionality (uint16_t baseAddress, uint8_t select4PinFunctionality)

Selects 4Pin Functionality.

This function should be invoked only in 4-wire mode. Invoking this function has no effect in 3-wire mode.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	30
TI Compiler 4.2.1	Size	12
TI Compiler 4.2.1	Speed	12
IAR 5.51.6	None	14
IAR 5.51.6	Size	6
IAR 5.51.6	Speed	6
MSPGCC 4.8.0	None	50
MSPGCC 4.8.0	Size	14
MSPGCC 4.8.0	Speed	14

Parameters:

baseAddress is the base address of the EUSCI_B_SPI module.

select4PinFunctionality selects 4 pin functionality Valid values are:

- EUSCI_B_SPI_PREVENT_CONFLICTS_WITH_OTHER_MASTERS
- EUSCI_B_SPI_ENABLE_SIGNAL_FOR_4WIRE_SLAVE

Modified bits are UCSTEM of UCAxCTLW0 register.

Returns:

None

12.2.2.18 void EUSCI_B_SPI_slaveInit (uint16_t baseAddress, uint16_t msbFirst, uint16_t clockPhase, uint16_t clockPolarity, uint16_t spiMode)

DEPRECATED - Initializes the SPI Slave block.

Upon successful initialization of the SPI slave block, this function will have initialized the slave block, but the SPI Slave block still remains disabled and must be enabled with EUSCI_B_SPI_enable()

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	82
TI Compiler 4.2.1	Size	30
TI Compiler 4.2.1	Speed	30
IAR 5.51.6	None	62
IAR 5.51.6	Size	42
IAR 5.51.6	Speed	54
MSPGCC 4.8.0	None	76
MSPGCC 4.8.0	Size	30
MSPGCC 4.8.0	Speed	30

Parameters

baseAddress is the base address of the EUSCI_B_SPI Slave module.

msbFirst controls the direction of the receive and transmit shift register. Valid values are:

- EUSCI_B_SPI_MSB_FIRST
- EUSCI_B_SPI_LSB_FIRST [Default]

clockPhase is clock phase select. Valid values are:

- EUSCI_B_SPI_PHASE_DATA_CHANGED_ONFIRST_CAPTURED_ON_NEXT [Default]
- EUSCI_B_SPI_PHASE_DATA_CAPTURED_ONFIRST_CHANGED_ON_NEXT

clockPolarity is clock polarity select Valid values are:

- EUSCI_B_SPI_CLOCKPOLARITY_INACTIVITY_HIGH
- EUSCI_B_SPI_CLOCKPOLARITY_INACTIVITY_LOW [Default]

spiMode is SPI mode select Valid values are:

- EUSCI_B_SPI_3PIN
- EUSCI_B_SPI_4PIN_UCxSTE_ACTIVE_HIGH
- EUSCI_B_SPI_4PIN_UCxSTE_ACTIVE_LOW

Modified bits are UCMSB, UCMST, UC7BIT, UCCKPL, UCCKPH, UCMODE and UCSWRST of UCAxCTLW0 register.

Returns:

STATUS SUCCESS

12.2.2.19 void EUSCI_B_SPI_transmitData (uint16_t baseAddress, uint8_t transmitData)

Transmits a byte from the SPI Module.

This function will place the supplied data into SPI transmit data register to start transmission.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	22
TI Compiler 4.2.1	Size	8
TI Compiler 4.2.1	Speed	8
IAR 5.51.6	None	14
IAR 5.51.6	Size	12
IAR 5.51.6	Speed	12
MSPGCC 4.8.0	None	30
MSPGCC 4.8.0	Size	10
MSPGCC 4.8.0	Speed	10

baseAddress is the base address of the EUSCI_B_SPI module. **transmitData** data to be transmitted from the SPI module

Returns:

None

12.3 Programming Example

The following example shows how to use the SPI API to configure the SPI module as a master device, and how to do a simple send of data.

13 EUSCI Inter-Integrated Circuit (EUSCI_B_I2C)

Introduction	116
API Functions	118
Programming Example 1	141

13.1 Introduction

In I2C mode, the eUSCI_B module provides an interface between the device and I2C-compatible devices connected by the two-wire I2C serial bus. External components attached to the I2C bus serially transmit and/or receive serial data to/from the eUSCI_B module through the 2-wire I2C interface. The Inter-Integrated Circuit (I2C) API provides a set of functions for using the MSP430Ware I2C modules. Functions are provided to initialize the I2C modules, to send and receive data, obtain status, and to manage interrupts for the I2C modules.

The I2C module provide the ability to communicate to other IC devices over an I2C bus. The I2C bus is specified to support devices that can both transmit and receive (write and read) data. Also, devices on the I2C bus can be designated as either a master or a slave. The MSP430Ware I2C modules support both sending and receiving data as either a master or a slave, and also support the simultaneous operation as both a master and a slave.

I2C module can generate interrupts. The I2C module configured as a master will generate interrupts when a transmit or receive operation is completed (or aborted due to an error). The I2C module configured as a slave will generate interrupts when data has been sent or requested by a master.

13.1.1 Master Operations

To drive the master module, the APIs need to be invoked in the following order

- EUSCI_B_I2C_masterInit
- EUSCI B I2C setSlaveAddress
- EUSCI B I2C setMode
- EUSCI B I2C enable
- EUSCI_B_!2C_enableInterrupt (if interrupts are being used) This may be followed by the APIs for transmit or receive as required

The user must first initialize the I2C module and configure it as a master with a call to EUSCI_B_I2C_masterInit(). That function will set the clock and data rates. This is followed by a call to set the slave address with which the master intends to communicate with using EUSCI_B_I2C_setSlaveAddress. Then the mode of operation (transmit or receive) is chosen using EUSCI_B_I2C_setMode. The I2C module may now be enabled using EUSCI_B_I2C_enable. It is recommended to enable the EUSCI_B_I2C module before enabling the interrupts. Any transmission or reception of data may be initiated at this point after interrupts are enabled (if any).

The transaction can then be initiated on the bus by calling the transmit or receive related APIs as listed below.

Master Single Byte Transmission

EUSCI_B_I2C_masterSendSingleByte()

Master Multiple Byte Transmission

- EUSCI_B_I2C_masterMultiByteSendStart()
- EUSCI_B_I2C_masterMultiByteSendNext()
- EUSCI B I2C masterMultiByteSendStop()

Master Single Byte Reception

■ EUSCI_B_I2C_masterReceiveSingleByte()

Master Multiple Byte Reception

- EUSCI_B_I2C_masterMultiByteReceiveStart()
- EUSCI B I2C masterMultiByteReceiveNext()
- EUSCI_B_I2C_masterMultiByteReceiveFinish()
- EUSCI_B_I2C_masterMultiByteReceiveStop()

For the interrupt-driven transaction, the user must register an interrupt handler for the I2C devices and enable the I2C interrupt.

13.1.2 Slave Operations

To drive the slave module, the APIs need to be invoked in the following order

- EUSCI_B_I2C_slaveInit()
- EUSCI B I2C setMode()
- EUSCI B I2C enable()
- EUSCI_B_I2C_enableInterrupt() (if interrupts are being used) This may be followed by the APIs for transmit or receive as required

The user must first call the EUSCI_B_I2C_slaveInit to initialize the slave module in I2C mode and set the slave address. This is followed by a call to set the mode of operation (transmit or receive). The I2C module may now be enabled using EUSCI_B_I2C_enable. It is recommended to enable the I2C module before enabling the interrupts. Any transmission or reception of data may be initiated at this point after interrupts are enabled (if any).

The transaction can then be initiated on the bus by calling the transmit or receive related APIs as listed below.

Slave Transmission API

■ EUSCI_B_I2C_slaveDataPut()

Slave Reception API

■ EUSCI_B_I2C_slaveDataGet()

For the interrupt-driven transaction, the user must register an interrupt handler for the I2C devices and enable the I2C interrupt.

This driver is contained in <code>eusci_b_i2c.c</code>, with <code>eusci_b_i2c.h</code> containing the API definitions for use by applications.

T

he following code metrics were performed with the TI Compiler 4.2.1 compiler, IAR 5.51.6 compiler and MSPGCC 4.8.0 compiler with different optimization settings. Users may see different code sizes depending on their project settings so it is best to perform your benchmarks within your project. These sizes contain all functions of the peripheral but only functions that are used will be linked into the application and added to the total code size. To see individual API code metrics see the specific API below.

Optimization	Code Size
None	1918
Size	1080
Speed	1078
None	1508
Size	1090
Speed	1228
None	2904
Size	1224
Speed	1214
	None Size Speed None Size Speed None Size

13.2 API Functions

Functions

- void EUSCI B I2C clearInterruptFlag (uint16 t baseAddress, uint16 t mask)
- void EUSCI B I2C disable (uint16 t baseAddress)
- void EUSCI_B_I2C_disableInterrupt (uint16_t baseAddress, uint16_t mask)
- void EUSCI B I2C disableMultiMasterMode (uint16 t baseAddress)
- void EUSCI_B_I2C_enable (uint16_t baseAddress)
- void EUSCI_B_I2C_enableInterrupt (uint16_t baseAddress, uint16_t mask)
- void EUSCI_B_I2C_enableMultiMasterMode (uint16_t baseAddress)
- uint16_t EUSCI_B_I2C_getInterruptStatus (uint16_t baseAddress, uint16_t mask)
- uint8_t EUSCI_B_I2C_getMode (uint16_t baseAddress)
- uint32_t EUSCI_B_I2C_getReceiveBufferAddress (uint16_t baseAddress)
- uint32_t EUSCI_B_I2C_getTransmitBufferAddress (uint16_t baseAddress)
- void EUSCI_B_I2C_initMaster (uint16_t baseAddress, EUSCI_B_I2C_initMasterParam *param)
- void EUSCI_B_I2C_initSlave (uint16_t baseAddress, EUSCI_B_I2C_initSlaveParam *param)
- uint16 t EUSCI B I2C isBusBusy (uint16 t baseAddress)
- void EUSCI_B_I2C_masterInit (uint16_t baseAddress, uint8_t selectClockSource, uint32_t i2cClk, uint32_t dataRate, uint8_t byteCounterThreshold, uint8_t autoSTOPGeneration)
- uint16_t EUSCI_B_I2C_masterIsStartSent (uint16_t baseAddress)
- uint16_t EUSCI_B_I2C_masterIsStopSent (uint16_t baseAddress)
- uint8_t EUSCI_B_I2C_masterMultiByteReceiveFinish (uint16_t baseAddress)
- bool EUSCI_B_I2C_masterMultiByteReceiveFinishWithTimeout (uint16_t baseAddress, uint8_t *txData, uint32_t timeout)
- uint8_t EUSCI_B_I2C_masterMultiByteReceiveNext (uint16_t baseAddress)
- void EUSCI B I2C masterMultiByteReceiveStop (uint16 t baseAddress)
- void EUSCI B I2C masterMultiByteSendFinish (uint16 t baseAddress, uint8 t txData)
- bool EUSCI_B_I2C_masterMultiByteSendFinishWithTimeout (uint16_t baseAddress, uint8_t txData, uint32_t timeout)
- void EUSCI B I2C masterMultiByteSendNext (uint16 t baseAddress, uint8 t txData)
- bool EUSCI B I2C masterMultiByteSendNextWithTimeout (uint16_t baseAddress, uint8_t txData, uint32_t timeout)
- void EUSCI_B_I2C_masterMultiByteSendStart (uint16_t baseAddress, uint8_t txData)
- bool EUSCI_B_I2C_masterMultiByteSendStartWithTimeout (uint16_t baseAddress, uint8_t txData, uint32_t timeout)
- void EUSCI B I2C masterMultiByteSendStop (uint16 t baseAddress)
- bool EUSCI_B_I2C_masterMultiByteSendStopWithTimeout (uint16_t baseAddress, uint32_t timeout)
- uint8 t EUSCI B I2C masterReceiveSingleByte (uint16 t baseAddress)
- void EUSCI_B_I2C_masterReceiveStart (uint16_t baseAddress)
- void EUSCI_B_I2C_masterSendSingleByte (uint16_t baseAddress, uint8_t txData)
- bool EUSCI B I2C masterSendSingleByteWithTimeout (uint16 t baseAddress, uint8 t txData, uint32 t timeout)
- void EUSCI B I2C masterSendStart (uint16 t baseAddress)
- uint8_t EUSCI_B_I2C_masterSingleReceive (uint16_t baseAddress)
- void EUSCI_B_I2C_setMode (uint16_t baseAddress, uint8_t mode)
- void EUSCI_B_I2C_setSlaveAddress (uint16_t baseAddress, uint8_t slaveAddress)
- uint8 t EUSCI B I2C slaveDataGet (uint16 t baseAddress)
- void EUSCI_B_I2C_slaveDataPut (uint16_t baseAddress, uint8_t transmitData)
- void EUSCI_B_I2C_slaveInit (uint16_t baseAddress, uint8_t slaveAddress, uint8_t slaveAddressOffset, uint32_t slaveOwnAddressEnable)

13.2.1 Detailed Description

The eUSCI I2C API is broken into three groups of functions: those that deal with interrupts, those that handle status and initialization, and those that deal with sending and receiving data.

The I2C master and slave interrupts are handled by

- EUSCI_B_I2C_enableInterrupt
- EUSCI_B_I2C_disableInterrupt
- EUSCI B I2C clearInterruptFlag
- EUSCI_B_I2C_getInterruptStatus

Status and initialization functions for the I2C modules are

- EUSCI_B_I2C_masterInit
- EUSCI B I2C enable
- EUSCI B I2C disable
- EUSCI_B_I2C_isBusBusy
- EUSCI_B_I2C_isBusy
- EUSCI_B_I2C_slaveInit
- EUSCI_B_I2C_interruptStatus
- EUSCI_B_I2C_setSlaveAddress
- EUSCI_B_I2C_setMode
- EUSCI_B_I2C_masterIsStopSent
- EUSCI_B_I2C_masterIsStartSent
- EUSCI_B_I2C_selectMasterEnvironmentSelect

Sending and receiving data from the I2C slave module is handled by

- EUSCI_B_I2C_slaveDataPut
- EUSCI_B_I2C_slaveDataGet

Sending and receiving data from the I2C slave module is handled by

- EUSCI_B_I2C_masterSendSingleByte
- EUSCI_B_I2C_masterSendStart
- EUSCI_B_I2C_masterMultiByteSendStart
- EUSCI_B_I2C_masterMultiByteSendNext
- EUSCI_B_I2C_masterMultiByteSendFinish
- EUSCI_B_I2C_masterMultiByteSendStop
- EUSCI_B_I2C_masterMultiByteReceiveNext
- EUSCI_B_I2C_masterMultiByteReceiveFinish
- EUSCI_B_I2C_masterMultiByteReceiveStop
- EUSCI_B_I2C_masterReceiveStart
- EUSCI_B_I2C_masterSingleReceive
- EUSCI_B_I2C_getReceiveBufferAddressForDMA
- EUSCI_B_I2C_getTransmitBufferAddressForDMA

DMA related

- EUSCI_B_I2C_getReceiveBufferAddressForDMA
- EUSCI_B_I2C_getTransmitBufferAddressForDMA

13.2.2 Function Documentation

13.2.2.1 void EUSCI B I2C clearInterruptFlag (uint16 t baseAddress, uint16 t mask)

Clears I2C interrupt sources.

The I2C interrupt source is cleared, so that it no longer asserts. The highest interrupt flag is automatically cleared when an interrupt vector generator is used.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	26
TI Compiler 4.2.1	Size	6
TI Compiler 4.2.1	Speed	6
IAR 5.51.6	None	12
IAR 5.51.6	Size	4
IAR 5.51.6	Speed	4
MSPGCC 4.8.0	None	42
MSPGCC 4.8.0	Size	6
MSPGCC 4.8.0	Speed	6

Parameters:

baseAddress is the base address of the I2C module.

mask is a bit mask of the interrupt sources to be cleared. Mask value is the logical OR of any of the following:

- EUSCI_B_I2C_NAK_INTERRUPT Not-acknowledge interrupt
- EUSCI_B_I2C_ARBITRATIONLOST_INTERRUPT Arbitration lost interrupt
- EUSCI_B_I2C_STOP_INTERRUPT STOP condition interrupt
- EUSCI_B_I2C_START_INTERRUPT START condition interrupt
- EUSCI_B_I2C_TRANSMIT_INTERRUPT0 Transmit interrupt0
- EUSCI_B_I2C_TRANSMIT_INTERRUPT1 Transmit interrupt1
- EUSCI_B_I2C_TRANSMIT_INTERRUPT2 Transmit interrupt2
- EUSCI_B_I2C_TRANSMIT_INTERRUPT3 Transmit interrupt3
- EUSCI_B_I2C_RECEIVE_INTERRUPT0 Receive interrupt0
 EUSCI B I2C RECEIVE INTERRUPT1 Receive interrupt1
- = EUCOL B IOO BEOENE INTERBURTO B
- EUSCI_B_I2C_RECEIVE_INTERRUPT2 Receive interrupt2
- EUSCI_B_I2C_RECEIVE_INTERRUPT3 Receive interrupt3
- EUSCI_B_I2C_BIT9_POSITION_INTERRUPT Bit position 9 interrupt
- EUSCI_B_I2C_CLOCK_LOW_TIMEOUT_INTERRUPT Clock low timeout interrupt enable
- EUSCI_B_I2C_BYTE_COUNTER_INTERRUPT Byte counter interrupt enable

Modified bits of UCBxIFG register.

Returns:

None

13.2.2.2 void EUSCI_B_I2C_disable (uint16_t baseAddress)

Disables the I2C block.

This will disable operation of the I2C block.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	16
TI Compiler 4.2.1	Size	6
TI Compiler 4.2.1	Speed	6
IAR 5.51.6	None	8
IAR 5.51.6	Size	6
IAR 5.51.6	Speed	6
MSPGCC 4.8.0	None	22
MSPGCC 4.8.0	Size	6
MSPGCC 4.8.0	Speed	6

baseAddress is the base address of the USCI I2C module.

Modified bits are UCSWRST of UCBxCTLW0 register.

Returns:

None

13.2.2.3 void EUSCI B I2C disableInterrupt (uint16 t baseAddress, uint16 t mask)

Disables individual I2C interrupt sources.

Disables the indicated I2C interrupt sources. Only the sources that are enabled can be reflected to the processor interrupt; disabled sources have no effect on the processor.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	26
TI Compiler 4.2.1	Size	6
TI Compiler 4.2.1	Speed	6
IAR 5.51.6	None	12
IAR 5.51.6	Size	6
IAR 5.51.6	Speed	6
MSPGCC 4.8.0	None	42
MSPGCC 4.8.0	Size	6
MSPGCC 4.8.0	Speed	6

Parameters:

baseAddress is the base address of the I2C module.

mask is the bit mask of the interrupt sources to be disabled. Mask value is the logical OR of any of the following:

- EUSCI_B_I2C_NAK_INTERRUPT Not-acknowledge interrupt
- EUSCI_B_I2C_ARBITRATIONLOST_INTERRUPT Arbitration lost interrupt
- EUSCI_B_I2C_STOP_INTERRUPT STOP condition interrupt
- EUSCI_B_I2C_START_INTERRUPT START condition interrupt
- EUSCI_B_I2C_TRANSMIT_INTERRUPT0 Transmit interrupt0
- EUSCI_B_I2C_TRANSMIT_INTERRUPT1 Transmit interrupt1
- EUSCI_B_I2C_TRANSMIT_INTERRUPT2 Transmit interrupt2
- EUSCI_B_I2C_TRANSMIT_INTERRUPT3 Transmit interrupt3
- EUSCI B I2C RECEIVE INTERRUPTO Receive interrupt0
- EUSCI_B_I2C_RECEIVE_INTERRUPT1 Receive interrupt1
- EUSCI_B_I2C_RECEIVE_INTERRUPT2 Receive interrupt2
- EUSCI_B_I2C_RECEIVE_INTERRUPT3 Receive interrupt3
- EUSCI B I2C BIT9 POSITION INTERRUPT Bit position 9 interrupt
- EUSCI_B_I2C_CLOCK_LOW_TIMEOUT_INTERRUPT Clock low timeout interrupt enable

■ EUSCI_B_I2C_BYTE_COUNTER_INTERRUPT - Byte counter interrupt enable

Modified bits of UCBxIE register.

Returns:

None

13.2.2.4 void EUSCI_B_I2C_disableMultiMasterMode (uint16_t baseAddress)

Disables Multi Master Mode.

At the end of this function, the I2C module is still disabled till EUSCI_B_I2C_enable is invoked

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	24
TI Compiler 4.2.1	Size	12
TI Compiler 4.2.1	Speed	12
IAR 5.51.6	None	16
IAR 5.51.6	Size	12
IAR 5.51.6	Speed	12
MSPGCC 4.8.0	None	36
MSPGCC 4.8.0	Size	12
MSPGCC 4.8.0	Speed	12

Parameters:

baseAddress is the base address of the I2C module.

Modified bits are UCSWRST and UCMM of UCBxCTLW0 register.

Returns:

None

13.2.2.5 void EUSCI_B_I2C_enable (uint16_t baseAddress)

Enables the I2C block.

This will enable operation of the I2C block.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	16
TI Compiler 4.2.1	Size	6
TI Compiler 4.2.1	Speed	6
IAR 5.51.6	None	8
IAR 5.51.6	Size	6
IAR 5.51.6	Speed	6
MSPGCC 4.8.0	None	22
MSPGCC 4.8.0	Size	6
MSPGCC 4.8.0	Speed	6

Parameters:

baseAddress is the base address of the USCI I2C module.

Modified bits are UCSWRST of UCBxCTLW0 register.

Returns:

None

13.2.2.6 void EUSCI B I2C enableInterrupt (uint16 t baseAddress, uint16 t mask)

Enables individual I2C interrupt sources.

Enables the indicated I2C interrupt sources. Only the sources that are enabled can be reflected to the processor interrupt; disabled sources have no effect on the processor.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	26
TI Compiler 4.2.1	Size	6
TI Compiler 4.2.1	Speed	6
IAR 5.51.6	None	12
IAR 5.51.6	Size	4
IAR 5.51.6	Speed	4
MSPGCC 4.8.0	None	38
MSPGCC 4.8.0	Size	6
MSPGCC 4.8.0	Speed	6

Parameters:

baseAddress is the base address of the I2C module.

mask is the bit mask of the interrupt sources to be enabled. Mask value is the logical OR of any of the following:

- EUSCI_B_I2C_NAK_INTERRUPT Not-acknowledge interrupt
- EUSCI_B_I2C_ARBITRATIONLOST_INTERRUPT Arbitration lost interrupt
- EUSCI_B_I2C_STOP_INTERRUPT STOP condition interrupt
- EUSCI B I2C START INTERRUPT START condition interrupt
- EUSCI B I2C TRANSMIT INTERRUPT0 Transmit interrupt0
- EUSCI_B_I2C_TRANSMIT_INTERRUPT1 Transmit interrupt1
- EUSCI B I2C TRANSMIT INTERRUPT2 Transmit interrupt2
- EUSCI_B_I2C_TRANSMIT_INTERRUPT3 Transmit interrupt3
- EUSCI B I2C RECEIVE INTERRUPT0 Receive interrupt0
- EUSCI_B_I2C_RECEIVE_INTERRUPT1 Receive interrupt1
- EUSCI_B_I2C_RECEIVE_INTERRUPT2 Receive interrupt2
- EUSCI_B_I2C_RECEIVE_INTERRUPT3 Receive interrupt3
- EUSCI_B_I2C_BIT9_POSITION_INTERRUPT Bit position 9 interrupt
- EUSCI_B_I2C_CLOCK_LOW_TIMEOUT_INTERRUPT Clock low timeout interrupt enable
- EUSCI_B_I2C_BYTE_COUNTER_INTERRUPT Byte counter interrupt enable

Modified bits of UCBxIE register.

Returns:

None

13.2.2.7 void EUSCI_B_I2C_enableMultiMasterMode (uint16_t baseAddress)

Enables Multi Master Mode.

At the end of this function, the I2C module is still disabled till EUSCI_B_I2C_enable is invoked

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	24
TI Compiler 4.2.1	Size	12
TI Compiler 4.2.1	Speed	12
IAR 5.51.6	None	16
IAR 5.51.6	Size	12
IAR 5.51.6	Speed	12
MSPGCC 4.8.0	None	36
MSPGCC 4.8.0	Size	12
MSPGCC 4.8.0	Speed	12

baseAddress is the base address of the I2C module.

Modified bits are UCSWRST and UCMM of UCBxCTLW0 register.

Returns:

None

13.2.2.8 uint16 t EUSCI B I2C getInterruptStatus (uint16 t baseAddress, uint16 t mask)

Gets the current I2C interrupt status.

This returns the interrupt status for the I2C module based on which flag is passed.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	20
TI Compiler 4.2.1	Size	8
TI Compiler 4.2.1	Speed	8
IAR 5.51.6	None	10
IAR 5.51.6	Size	10
IAR 5.51.6	Speed	10
MSPGCC 4.8.0	None	26
MSPGCC 4.8.0	Size	8
MSPGCC 4.8.0	Speed	8

Parameters:

baseAddress is the base address of the I2C module.

mask is the masked interrupt flag status to be returned. Mask value is the logical OR of any of the following:

- EUSCI_B_I2C_NAK_INTERRUPT Not-acknowledge interrupt
- EUSCI_B_I2C_ARBITRATIONLOST_INTERRUPT Arbitration lost interrupt
- EUSCI_B_I2C_STOP_INTERRUPT STOP condition interrupt
- EUSCI_B_I2C_START_INTERRUPT START condition interrupt
- EUSCI_B_I2C_TRANSMIT_INTERRUPT0 Transmit interrupt0
- EUSCI_B_I2C_TRANSMIT_INTERRUPT1 Transmit interrupt1
- EUSCI_B_I2C_TRANSMIT_INTERRUPT2 Transmit interrupt2
- EUSCI_B_I2C_TRANSMIT_INTERRUPT3 Transmit interrupt3
- EUSCI_B_I2C_RECEIVE_INTERRUPT0 Receive interrupt0
- EUSCI_B_I2C_RECEIVE_INTERRUPT1 Receive interrupt1
- EUSCI_B_I2C_RECEIVE_INTERRUPT2 Receive interrupt2
 EUSCI B I2C RECEIVE INTERRUPT3 Receive interrupt3
- EUSCI_B_I2C_BIT9_POSITION_INTERRUPT Bit position 9 interrupt
- EUSCI_B_I2C_CLOCK_LOW_TIMEOUT_INTERRUPT Clock low timeout interrupt enable
- EUSCI_B_I2C_BYTE_COUNTER_INTERRUPT Byte counter interrupt enable

Returns:

Logical OR of any of the following:

- EUSCI_B_I2C_NAK_INTERRUPT Not-acknowledge interrupt
- EUSCI_B_I2C_ARBITRATIONLOST_INTERRUPT Arbitration lost interrupt
- EUSCI B I2C STOP INTERRUPT STOP condition interrupt
- EUSCI_B_I2C_START_INTERRUPT START condition interrupt
- EUSCI_B_I2C_TRANSMIT_INTERRUPT0 Transmit interrupt0
- EUSCI B I2C TRANSMIT INTERRUPT1 Transmit interrupt1
- EUSCI_B_I2C_TRANSMIT_INTERRUPT2 Transmit interrupt2
- EUSCI B I2C TRANSMIT INTERRUPT3 Transmit interrupt3
- EUSCI_B_I2C_RECEIVE_INTERRUPT0 Receive interrupt0
- EUSCI B I2C RECEIVE INTERRUPT1 Receive interrupt1
- EUSCI B I2C RECEIVE INTERRUPT2 Receive interrupt2
- EUSCI_B_I2C_RECEIVE_INTERRUPT3 Receive interrupt3
- EUSCI_B_I2C_BIT9_POSITION_INTERRUPT Bit position 9 interrupt
- EUSCI_B_I2C_CLOCK_LOW_TIMEOUT_INTERRUPT Clock low timeout interrupt enable
- EUSCI_B_I2C_BYTE_COUNTER_INTERRUPT Byte counter interrupt enable indicating the status of the masked interrupts

13.2.2.9 uint8 t EUSCI B I2C getMode (uint16 t baseAddress)

Gets the mode of the I2C device.

Current I2C transmit/receive mode.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	18
TI Compiler 4.2.1	Size	8
TI Compiler 4.2.1	Speed	8
IAR 5.51.6	None	8
IAR 5.51.6	Size	8
IAR 5.51.6	Speed	8
MSPGCC 4.8.0	None	28
MSPGCC 4.8.0	Size	8
MSPGCC 4.8.0	Speed	8

Parameters:

baseAddress is the base address of the I2C module.

Modified bits are UCTR of UCBxCTLW0 register.

Returns:

None Return one of the following:

- EUSCI B I2C TRANSMIT MODE
- EUSCI_B_I2C_RECEIVE_MODE indicating the current mode

13.2.2.10 uint32_t EUSCI_B_I2C_getReceiveBufferAddress (uint16_t baseAddress)

Returns the address of the RX Buffer of the I2C for the DMA module.

Returns the address of the I2C RX Buffer. This can be used in conjunction with the DMA to store the received data directly to memory.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	18
TI Compiler 4.2.1	Size	8
TI Compiler 4.2.1	Speed	8
IAR 5.51.6	None	8
IAR 5.51.6	Size	8
IAR 5.51.6	Speed	8
MSPGCC 4.8.0	None	24
MSPGCC 4.8.0	Size	8
MSPGCC 4.8.0	Speed	8

Parameters:

baseAddress is the base address of the I2C module.

Returns:

The address of the I2C RX Buffer

13.2.2.11 uint32_t EUSCI_B_I2C_getTransmitBufferAddress (uint16_t baseAddress)

Returns the address of the TX Buffer of the I2C for the DMA module.

Returns the address of the I2C TX Buffer. This can be used in conjunction with the DMA to obtain transmitted data directly from memory.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1 TI Compiler 4.2.1	None Size	18 8
TI Compiler 4.2.1	Speed	8
IAR 5.51.6	None	8
IAR 5.51.6 IAR 5.51.6	Size	8 8
	Speed	
MSPGCC 4.8.0 MSPGCC 4.8.0	None Size	24
MSPGCC 4.8.0 MSPGCC 4.8.0	Speed	8 8

Parameters:

baseAddress is the base address of the I2C module.

Returns:

The address of the I2C TX Buffer

13.2.2.12 void EUSCI_B_I2C_initMaster (uint16_t baseAddress, EUSCI_B_I2C_initMasterParam * param)

Initializes the I2C Master block.

This function initializes operation of the I2C Master block. Upon successful initialization of the I2C block, this function will have set the bus speed for the master; however I2C module is still disabled till EUSCI_B_I2C_enable is invoked.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	122
TI Compiler 4.2.1	Size	78
TI Compiler 4.2.1	Speed	78
IAR 5.51.6	None	102
IAR 5.51.6	Size	88
IAR 5.51.6	Speed	88
MSPGCC 4.8.0	None	174
MSPGCC 4.8.0	Size	76
MSPGCC 4.8.0	Speed	76

baseAddress is the base address of the I2C Master module. **param** is the pointer to the struct for master initialization.

Returns:

None

13.2.2.13 void EUSCI_B_I2C_initSlave (uint16_t baseAddress, EUSCI_B_I2C_initSlaveParam * param)

Initializes the I2C Slave block.

This function initializes operation of the I2C as a Slave mode. Upon successful initialization of the I2C blocks, this function will have set the slave address but the I2C module is still disabled till EUSCI_B_I2C_enable is invoked.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	56
TI Compiler 4.2.1	Size	36
TI Compiler 4.2.1	Speed	34
IAR 5.51.6	None	52
IAR 5.51.6	Size	38
IAR 5.51.6	Speed	38
MSPGCC 4.8.0	None	106
MSPGCC 4.8.0	Size	34
MSPGCC 4.8.0	Speed	34

Parameters:

baseAddress is the base address of the I2C Slave module. **param** is the pointer to the struct for slave initialization.

Returns:

None

13.2.2.14 uint16_t EUSCI_B_I2C_isBusBusy (uint16_t baseAddress)

Indicates whether or not the I2C bus is busy.

This function returns an indication of whether or not the I2C bus is busy. This function checks the status of the bus via UCBBUSY bit in UCBxSTAT register.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	20
TI Compiler 4.2.1	Size	12
TI Compiler 4.2.1	Speed	12
IAR 5.51.6	None	10
IAR 5.51.6	Size	10
IAR 5.51.6	Speed	10
MSPGCC 4.8.0	None	20
MSPGCC 4.8.0	Size	10
MSPGCC 4.8.0	Speed	10

baseAddress is the base address of the I2C module.

Returns:

One of the following:

- EUSCI_B_I2C_BUS_BUSY
- EUSCI_B_I2C_BUS_NOT_BUSY indicating whether the bus is busy

13.2.2.15 void EUSCI_B_I2C_masterInit (uint16_t baseAddress, uint8_t selectClockSource, uint32_t i2cClk, uint32_t dataRate, uint8_t byteCounterThreshold, uint8_t autoSTOPGeneration)

DEPRECATED - Initializes the I2C Master block.

This function initializes operation of the I2C Master block. Upon successful initialization of the I2C block, this function will have set the bus speed for the master; however I2C module is still disabled till EUSCI_B_I2C_enable is invoked.

Code Metrics:

Optimization	Code Size
None Size	94 92
Speed	92
None	88
Size	86
Speed	86
None	102
Size	82
Speed	72
	None Size Speed None Size Speed None Size

Parameters:

baseAddress is the base address of the I2C Master module.

selectClockSource is the clocksource. Valid values are:

- EUSCI_B_I2C_CLOCKSOURCE_ACLK
- EUSCI_B_I2C_CLOCKSOURCE_SMCLK

i2cClk is the rate of the clock supplied to the I2C module (the frequency in Hz of the clock source specified in selectClockSource).

dataRate setup for selecting data transfer rate. Valid values are:

- EUSCI_B_I2C_SET_DATA_RATE_400KBPS
- EUSCI_B_I2C_SET_DATA_RATE_100KBPS

byteCounterThreshold sets threshold for automatic STOP or UCSTPIFG

autoSTOPGeneration sets up the STOP condition generation. Valid values are:

- EUSCI_B_I2C_NO_AUTO_STOP
- EUSCI_B_I2C_SET_BYTECOUNT_THRESHOLD_FLAG

■ EUSCI_B_I2C_SEND_STOP_AUTOMATICALLY_ON_BYTECOUNT_THRESHOLD

Returns:

None

13.2.2.16 uint16_t EUSCI_B_I2C_masterlsStartSent (uint16_t baseAddress)

Indicates whether Start got sent.

This function returns an indication of whether or not Start got sent This function checks the status of the bus via UCTXSTT bit in UCBxCTL1 register.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	16
TI Compiler 4.2.1	Size	8
TI Compiler 4.2.1	Speed	8
IAR 5.51.6	None	6
IAR 5.51.6	Size	6
IAR 5.51.6	Speed	6
MSPGCC 4.8.0	None	16
MSPGCC 4.8.0	Size	6
MSPGCC 4.8.0	Speed	6

Parameters:

baseAddress is the base address of the I2C Master module.

Returns:

One of the following:

- EUSCI_B_I2C_START_SEND_COMPLETE
- EUSCI_B_I2C_SENDING_START indicating whether the start was sent

13.2.2.17 uint16_t EUSCI_B_I2C_masterIsStopSent (uint16_t baseAddress)

Indicates whether STOP got sent.

This function returns an indication of whether or not STOP got sent This function checks the status of the bus via UCTXSTP bit in UCBxCTL1 register.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	16
TI Compiler 4.2.1	Size	8
TI Compiler 4.2.1	Speed	8
IAR 5.51.6	None	6
IAR 5.51.6	Size	6
IAR 5.51.6	Speed	6
MSPGCC 4.8.0	None	16
MSPGCC 4.8.0	Size	6
MSPGCC 4.8.0	Speed	6

Parameters:

baseAddress is the base address of the I2C Master module.

Returns:

One of the following:

- EUSCI_B_I2C_STOP_SEND_COMPLETE
- EUSCI_B_I2C_SENDING_STOP indicating whether the stop was sent

13.2.2.18 uint8_t EUSCI_B_I2C_masterMultiByteReceiveFinish (uint16_t baseAddress)

Finishes multi-byte reception at the Master end.

This function is used by the Master module to initiate completion of a multi-byte reception. This function receives the current byte and initiates the STOP from master to slave.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	42
TI Compiler 4.2.1	Size	26
TI Compiler 4.2.1	Speed	26
IAR 5.51.6	None	34
IAR 5.51.6	Size	20
IAR 5.51.6	Speed	26
MSPGCC 4.8.0	None	66
MSPGCC 4.8.0	Size	32
MSPGCC 4.8.0	Speed	38

Parameters:

baseAddress is the base address of the I2C Master module.

Modified bits are UCTXSTP of UCBxCTLW0 register.

Returns:

Received byte at Master end.

13.2.2.19 bool EUSCI_B_I2C_masterMultiByteReceiveFinishWithTimeout (uint16_t baseAddress, uint8_t * txData, uint32_t timeout)

Finishes multi-byte reception at the Master end with timeout.

This function is used by the Master module to initiate completion of a multi-byte reception. This function receives the current byte and initiates the STOP from master to slave.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	136
TI Compiler 4.2.1	Size	76
TI Compiler 4.2.1	Speed	76
IAR 5.51.6	None	96
IAR 5.51.6	Size	94
IAR 5.51.6	Speed	94
MSPGCC 4.8.0	None	178
MSPGCC 4.8.0	Size	100
MSPGCC 4.8.0	Speed	100

Parameters:

baseAddress is the base address of the I2C Master module.

txData is a pointer to the location to store the received byte at master end timeout is the amount of time to wait until giving up

Modified bits are UCTXSTP of UCBxCTLW0 register.

Returns:

STATUS_SUCCESS or STATUS_FAILURE of the reception process

13.2.2.20 uint8_t EUSCI_B_I2C_masterMultiByteReceiveNext (uint16_t baseAddress)

Starts multi-byte reception at the Master end one byte at a time.

This function is used by the Master module to receive each byte of a multi- byte reception. This function reads currently received byte.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	16
TI Compiler 4.2.1	Size	8
TI Compiler 4.2.1	Speed	8
IAR 5.51.6	None	8
IAR 5.51.6	Size	0
IAR 5.51.6	Speed	0
MSPGCC 4.8.0	None	24
MSPGCC 4.8.0	Size	6
MSPGCC 4.8.0	Speed	6

Parameters:

baseAddress is the base address of the I2C Master module.

Returns:

Received byte at Master end.

13.2.2.21 void EUSCI_B_I2C_masterMultiByteReceiveStop (uint16_t baseAddress)

Sends the STOP at the end of a multi-byte reception at the Master end.

This function is used by the Master module to initiate STOP

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	16
TI Compiler 4.2.1	Size	6
TI Compiler 4.2.1	Speed	6
IAR 5.51.6	None	8
IAR 5.51.6	Size	0
IAR 5.51.6	Speed	0
MSPGCC 4.8.0	None	22
MSPGCC 4.8.0	Size	6
MSPGCC 4.8.0	Speed	6

Parameters:

baseAddress is the base address of the I2C Master module.

Modified bits are UCTXSTP of UCBxCTLW0 register.

Returns:

None

13.2.2.22 void EUSCI_B_I2C_masterMultiByteSendFinish (uint16_t baseAddress, uint8_t txData)

Finishes multi-byte transmission from Master to Slave.

This function is used by the Master module to send the last byte and STOP. This function transmits the last data byte of a multi-byte transmission to the slave and then sends a stop.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	48
TI Compiler 4.2.1 TI Compiler 4.2.1	Size Speed	30 30
IAR 5.51.6	None	56
IAR 5.51.6	Size	44
IAR 5.51.6	Speed	44
MSPGCC 4.8.0	None	98
MSPGCC 4.8.0	Size	38
MSPGCC 4.8.0	Speed	38

Parameters:

baseAddress is the base address of the I2C Master module.

txData is the last data byte to be transmitted in a multi-byte transmission

Modified bits of UCBxTXBUF register and bits of UCBxCTLW0 register.

Returns:

None

13.2.2.23 bool EUSCI_B_I2C_masterMultiByteSendFinishWithTimeout (uint16_t baseAddress, uint8_t txData, uint32_t timeout)

Finishes multi-byte transmission from Master to Slave with timeout.

This function is used by the Master module to send the last byte and STOP. This function transmits the last data byte of a multi-byte transmission to the slave and then sends a stop.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	138
TI Compiler 4.2.1	Size	84
TI Compiler 4.2.1	Speed	84
IAR 5.51.6	None	116
IAR 5.51.6	Size	106
IAR 5.51.6	Speed	106
MSPGCC 4.8.0	None	196
MSPGCC 4.8.0	Size	94
MSPGCC 4.8.0	Speed	96

Parameters:

baseAddress is the base address of the I2C Master module.

txData is the last data byte to be transmitted in a multi-byte transmission timeout is the amount of time to wait until giving up

Modified bits of UCBxTXBUF register and bits of UCBxCTLW0 register.

Returns:

STATUS SUCCESS or STATUS FAILURE of the transmission process.

13.2.2.24 void EUSCI_B_I2C_masterMultiByteSendNext (uint16_t baseAddress, uint8_t txData)

Continues multi-byte transmission from Master to Slave.

This function is used by the Master module continue each byte of a multi- byte transmission. This function transmits each data byte of a multi-byte transmission to the slave.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	34
TI Compiler 4.2.1	Size	20
TI Compiler 4.2.1	Speed	20
IAR 5.51.6	None	38
IAR 5.51.6	Size	4
IAR 5.51.6	Speed	24
MSPGCC 4.8.0	None	64
MSPGCC 4.8.0	Size	28
MSPGCC 4.8.0	Speed	28

Parameters:

baseAddress is the base address of the I2C Master module.

txData is the next data byte to be transmitted

Modified bits of UCBxTXBUF register.

Returns:

None

13.2.2.25 bool EUSCI_B_I2C_masterMultiByteSendNextWithTimeout (uint16_t baseAddress, uint8_t txData, uint32_t timeout)

Continues multi-byte transmission from Master to Slave with timeout.

This function is used by the Master module continue each byte of a multi- byte transmission. This function transmits each data byte of a multi-byte transmission to the slave.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	76
TI Compiler 4.2.1	Size	46
TI Compiler 4.2.1	Speed	46
IAR 5.51.6	None	70
IAR 5.51.6	Size	60
IAR 5.51.6	Speed	70
MSPGCC 4.8.0	None	110
MSPGCC 4.8.0	Size	64
MSPGCC 4.8.0	Speed	64

baseAddress is the base address of the I2C Master module.

txData is the next data byte to be transmitted

timeout is the amount of time to wait until giving up

Modified bits of UCBxTXBUF register.

Returns:

STATUS_SUCCESS or STATUS_FAILURE of the transmission process.

13.2.2.26 void EUSCI_B_I2C_masterMultiByteSendStart (uint16_t baseAddress, uint8_t txData)

Starts multi-byte transmission from Master to Slave.

This function is used by the master module to start a multi byte transaction.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	74
TI Compiler 4.2.1	Size	38
TI Compiler 4.2.1	Speed	38
IAR 5.51.6	None	62
IAR 5.51.6	Size	28
IAR 5.51.6	Speed	52
MSPGCC 4.8.0	None	138
MSPGCC 4.8.0	Size	46
MSPGCC 4.8.0	Speed	46

Parameters:

baseAddress is the base address of the I2C Master module.

txData is the first data byte to be transmitted

Modified bits of UCBxTXBUF register, bits of UCBxCTLW0 register, bits of UCBxIE register and bits of UCBxIFG register.

Returns:

None

13.2.2.27 bool EUSCI_B_I2C_masterMultiByteSendStartWithTimeout (uint16_t baseAddress, uint8_t txData, uint32_t timeout)

Starts multi-byte transmission from Master to Slave with timeout.

This function is used by the master module to start a multi byte transaction.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	116
TI Compiler 4.2.1	Size	68
TI Compiler 4.2.1	Speed	68
IAR 5.51.6	None	94
IAR 5.51.6	Size	68
IAR 5.51.6	Speed	80
MSPGCC 4.8.0	None	184
MSPGCC 4.8.0	Size	84
MSPGCC 4.8.0	Speed	82

baseAddress is the base address of the I2C Master module.

txData is the first data byte to be transmitted

timeout is the amount of time to wait until giving up

Modified bits of UCBxTXBUF register, bits of UCBxCTLW0 register, bits of UCBxIE register and bits of UCBxIFG register.

Returns

STATUS SUCCESS or STATUS FAILURE of the transmission process.

13.2.2.28 void EUSCI_B_I2C_masterMultiByteSendStop (uint16_t baseAddress)

Send STOP byte at the end of a multi-byte transmission from Master to Slave.

This function is used by the Master module send STOP at the end of a multi- byte transmission. This function sends a stop after current transmission is complete.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	28
TI Compiler 4.2.1	Size	18
TI Compiler 4.2.1	Speed	18
IAR 5.51.6	None	32
IAR 5.51.6	Size	6
IAR 5.51.6	Speed	26
MSPGCC 4.8.0	None	52
MSPGCC 4.8.0	Size	24
MSPGCC 4.8.0	Speed	24

Parameters:

baseAddress is the base address of the I2C Master module.

Modified bits are UCTXSTP of UCBxCTLW0 register.

Returns:

None

13.2.2.29 bool EUSCI_B_I2C_masterMultiByteSendStopWithTimeout (uint16_t baseAddress, uint32 t timeout)

Send STOP byte at the end of a multi-byte transmission from Master to Slave with timeout.

This function is used by the Master module send STOP at the end of a multi- byte transmission. This function sends a stop after current transmission is complete.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	74
TI Compiler 4.2.1	Size	44
TI Compiler 4.2.1	Speed	44
IAR 5.51.6	None	64
IAR 5.51.6	Size	46
IAR 5.51.6	Speed	58
MSPGCC 4.8.0	None	110
MSPGCC 4.8.0	Size	56
MSPGCC 4.8.0	Speed	52

baseAddress is the base address of the I2C Master module.

timeout is the amount of time to wait until giving up

Modified bits are UCTXSTP of UCBxCTLW0 register.

Returns:

STATUS_SUCCESS or STATUS_FAILURE of the transmission process.

13.2.2.30 uint8_t EUSCI_B_I2C_masterReceiveSingleByte (uint16_t baseAddress)

Does single byte reception from Slave.

This function is used by the Master module to receive a single byte. This function sends start and stop, waits for data reception and then receives the data from the slave

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	40
TI Compiler 4.2.1	Size	26
TI Compiler 4.2.1 IAR 5.51.6	Speed None	34
IAR 5.51.6	Size	20
IAR 5.51.6	Speed	26
MSPGCC 4.8.0	None	68
MSPGCC 4.8.0	Size	30
MSPGCC 4.8.0	Speed	30

Parameters:

baseAddress is the base address of the I2C Master module.

Modified bits of UCBxTXBUF register, bits of UCBxCTLW0 register, bits of UCBxIE register and bits of UCBxIFG register.

Returns

STATUS_SUCCESS or STATUS_FAILURE of the transmission process.

13.2.2.31 void EUSCI_B_I2C_masterReceiveStart (uint16_t baseAddress)

Starts reception at the Master end.

This function is used by the Master module initiate reception of a single byte. This function sends a start.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	24
TI Compiler 4.2.1	Size	12
TI Compiler 4.2.1	Speed	12
IAR 5.51.6	None	16
IAR 5.51.6	Size	6
IAR 5.51.6	Speed	6
MSPGCC 4.8.0	None	36
MSPGCC 4.8.0	Size	12
MSPGCC 4.8.0	Speed	12

Parameters:

baseAddress is the base address of the I2C Master module.

Modified bits are UCTXSTT of UCBxCTLW0 register.

Returns:

None

13.2.2.32 void EUSCI_B_I2C_masterSendSingleByte (uint16_t *baseAddress*, uint8_t *txData*)

Does single byte transmission from Master to Slave.

This function is used by the Master module to send a single byte. This function sends a start, then transmits the byte to the slave and then sends a stop.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	98
TI Compiler 4.2.1 TI Compiler 4.2.1	Size Speed	52 52
IAR 5.51.6	None	90
IAR 5.51.6	Size	52
IAR 5.51.6	Speed	68
MSPGCC 4.8.0	None	196
MSPGCC 4.8.0	Size	60
MSPGCC 4.8.0	Speed	60

Parameters:

baseAddress is the base address of the I2C Master module.

txData is the data byte to be transmitted

Modified bits of UCBxTXBUF register, bits of UCBxCTLW0 register, bits of UCBxIE register and bits of UCBxIFG register.

Returns:

None

13.2.2.33 bool EUSCI_B_I2C_masterSendSingleByteWithTimeout (uint16_t *baseAddress*, uint8_t *txData*, uint32_t *timeout*)

Does single byte transmission from Master to Slave with timeout.

This function is used by the Master module to send a single byte. This function sends a start, then transmits the byte to the slave and then sends a stop.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	184
TI Compiler 4.2.1	Size	106
TI Compiler 4.2.1	Speed	106
IAR 5.51.6	None	150
IAR 5.51.6	Size	116
IAR 5.51.6	Speed	122
MSPGCC 4.8.0	None	290
MSPGCC 4.8.0	Size	118
MSPGCC 4.8.0	Speed	118

baseAddress is the base address of the I2C Master module.

txData is the data byte to be transmitted

timeout is the amount of time to wait until giving up

Modified bits of UCBxTXBUF register, bits of UCBxCTLW0 register, bits of UCBxIE register and bits of UCBxIFG register.

Returns:

STATUS_SUCCESS or STATUS_FAILURE of the transmission process.

13.2.2.34 void EUSCI_B_I2C_masterSendStart (uint16_t baseAddress)

This function is used by the Master module to initiate START.

This function is used by the Master module to initiate START

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	16
TI Compiler 4.2.1	Size	6
TI Compiler 4.2.1	Speed	6
IAR 5.51.6	None	8
IAR 5.51.6	Size	2
IAR 5.51.6	Speed	2
MSPGCC 4.8.0	None	22
MSPGCC 4.8.0	Size	6
MSPGCC 4.8.0	Speed	6

Parameters:

baseAddress is the base address of the I2C Master module.

Modified bits are UCTXSTT of UCBxCTLW0 register.

Returns:

None

13.2.2.35 uint8_t EUSCI_B_I2C_masterSingleReceive (uint16_t baseAddress)

receives a byte that has been sent to the I2C Master Module.

This function reads a byte of data from the I2C receive data Register.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	28
TI Compiler 4.2.1	Size	20
TI Compiler 4.2.1	Speed	20
IAR 5.51.6	None	32
IAR 5.51.6	Size	20
IAR 5.51.6	Speed	26
MSPGCC 4.8.0	None	54
MSPGCC 4.8.0	Size	24
MSPGCC 4.8.0	Speed	24

baseAddress is the base address of the I2C Master module.

Returns:

Returns the byte received from by the I2C module, cast as an uint8_t.

13.2.2.36 void EUSCI_B_I2C_setMode (uint16_t baseAddress, uint8_t mode)

Sets the mode of the I2C device.

When the receive parameter is set to EUSCI_B_I2C_TRANSMIT_MODE, the address will indicate that the I2C module is in receive mode; otherwise, the I2C module is in send mode.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	32
TI Compiler 4.2.1	Size	14
TI Compiler 4.2.1	Speed	14
IAR 5.51.6	None	16
IAR 5.51.6	Size	10
IAR 5.51.6	Speed	10
MSPGCC 4.8.0	None	52
MSPGCC 4.8.0	Size	16
MSPGCC 4.8.0	Speed	16

Parameters:

baseAddress is the base address of the USCI I2C module.

mode Mode for the EUSCI_B_I2C module Valid values are:

- EUSCI_B_I2C_TRANSMIT_MODE [Default]
- EUSCI B I2C RECEIVE MODE

Modified bits are UCTR of UCBxCTLW0 register.

Returns:

None

13.2.2.37 void EUSCI_B_I2C_setSlaveAddress (uint16_t baseAddress, uint8_t slaveAddress)

Sets the address that the I2C Master will place on the bus.

This function will set the address that the I2C Master will place on the bus when initiating a transaction.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	22
TI Compiler 4.2.1	Size	8
TI Compiler 4.2.1	Speed	8
IAR 5.51.6	None	14
IAR 5.51.6	Size	8
IAR 5.51.6	Speed	8
MSPGCC 4.8.0	None	30
MSPGCC 4.8.0	Size	10
MSPGCC 4.8.0	Speed	10

baseAddress is the base address of the USCI I2C module.

slaveAddress 7-bit slave address

Modified bits of UCBxI2CSA register.

Returns:

None

13.2.2.38 uint8_t EUSCI_B_I2C_slaveDataGet (uint16_t baseAddress)

Receives a byte that has been sent to the I2C Module.

This function reads a byte of data from the I2C receive data Register.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	16
TI Compiler 4.2.1	Size	8
TI Compiler 4.2.1	Speed	8
IAR 5.51.6	None	8
IAR 5.51.6	Size	2
IAR 5.51.6	Speed	2
MSPGCC 4.8.0	None	24
MSPGCC 4.8.0	Size	6
MSPGCC 4.8.0	Speed	6

Parameters:

baseAddress is the base address of the I2C Slave module.

Returns:

Returns the byte received from by the I2C module, cast as an uint8_t.

13.2.2.39 void EUSCI_B_I2C_slaveDataPut (uint16_t baseAddress, uint8_t transmitData)

Transmits a byte from the I2C Module.

This function will place the supplied data into I2C transmit data register to start transmission.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	22
TI Compiler 4.2.1	Size	8
TI Compiler 4.2.1	Speed	8
IAR 5.51.6	None	14
IAR 5.51.6	Size	2
IAR 5.51.6	Speed	2
MSPGCC 4.8.0	None	30
MSPGCC 4.8.0	Size	10
MSPGCC 4.8.0	Speed	10

Parameters:

baseAddress is the base address of the I2C Slave module. **transmitData** data to be transmitted from the I2C module

Modified bits of UCBxTXBUF register.

Returns:

None

13.2.2.40 void EUSCI_B_I2C_slaveInit (uint16_t baseAddress, uint8_t slaveAddress, uint8 t slaveAddressOffset, uint32 t slaveOwnAddressEnable)

DEPRECATED - Initializes the I2C Slave block.

This function initializes operation of the I2C as a Slave mode. Upon successful initialization of the I2C blocks, this function will have set the slave address but the I2C module is still disabled till EUSCI_B_I2C_enable is invoked.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	82
TI Compiler 4.2.1	Size	36
TI Compiler 4.2.1	Speed	36
IAR 5.51.6	None	66
IAR 5.51.6	Size	58
IAR 5.51.6	Speed	58
MSPGCC 4.8.0	None	86
MSPGCC 4.8.0	Size	54
MSPGCC 4.8.0	Speed	52

Parameters:

baseAddress is the base address of the I2C Slave module.

slaveAddress 7-bit slave address

slaveAddressOffset Own address Offset referred to- 'x' value of UCBxI2COAx. Valid values are:

- EUSCI_B_I2C_OWN_ADDRESS_OFFSET0
- EUSCI_B_I2C_OWN_ADDRESS_OFFSET1
- EUSCI_B_I2C_OWN_ADDRESS_OFFSET2
- EUSCI_B_I2C_OWN_ADDRESS_OFFSET3

slaveOwnAddressEnable selects if the specified address is enabled or disabled. Valid values are:

- EUSCI_B_I2C_OWN_ADDRESS_DISABLE
- EUSCI_B_I2C_OWN_ADDRESS_ENABLE

Returns:

None

13.3 Programming Example

The following example shows how to use the I2C API to send data as a master.

14 FRAM Controller

Introduction	42
API Functions	42
Programming Example	

14.1 Introduction

FRAM memory is a non-volatile memory that reads and writes like standard SRAM. The MSP430 FRAM memory features include:

- Byte or word write access
- Automatic and programmable wait state control with independent wait state settings for access and cycle times
- Error Correction Code with bit error correction, extended bit error detection and flag indicators
- Cache for fast read

This driver is contained in fram.c, with fram.h containing the API definitions for use by applications.

Т

he following code metrics were performed with the TI Compiler 4.2.1 compiler, IAR 5.51.6 compiler and MSPGCC 4.8.0 compiler with different optimization settings. Users may see different code sizes depending on their project settings so it is best to perform your benchmarks within your project. These sizes contain all functions of the peripheral but only functions that are used will be linked into the application and added to the total code size. To see individual API code metrics see the specific API below.

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	384
TI Compiler 4.2.1	Size	142
TI Compiler 4.2.1	Speed	144
IAR 5.51.6	None	162
IAR 5.51.6	Size	118
IAR 5.51.6	Speed	350
MSPGCC 4.8.0	None	518
MSPGCC 4.8.0	Size	200
MSPGCC 4.8.0	Speed	302

14.2 API Functions

Functions

- void FRAM_configureWaitStateControl (uint8_t manualWaitState, uint8_t accessTime, uint8_t prechargeTime)
- void FRAM_disableInterrupt (uint16_t interruptMask)
- void FRAM enableInterrupt (uint8 t interruptMask)
- uint8_t FRAM_getInterruptStatus (uint16_t interruptFlagMask)
- void FRAM_memoryFill32 (uint32_t value, uint32_t *framPtr, uint16_t count)
- void FRAM_write16 (uint16_t *dataPtr, uint16_t *framPtr, uint16_t numberOfWords)
- void FRAM_write32 (uint32_t *dataPtr, uint32_t *framPtr, uint16_t count)
- void FRAM_write8 (uint8_t *dataPtr, uint8_t *framPtr, uint16_t numberOfBytes)

14.2.1 Detailed Description

FRAM_enableInterrupt enables selected FRAM interrupt sources.

FRAM_getInterruptStatus returns the status of the selected FRAM interrupt flags.

FRAM_disableInterrupt disables selected FRAM interrupt sources.

Depending on the kind of writes being performed to the FRAM, this library provides APIs for FRAM writes.

FRAM_write8 facilitates writing into the FRAM memory in byte format. FRAM_write16 facilitates writing into the FRAM memory in word format. FRAM_write32 facilitates writing into the FRAM memory in long format, pass by reference. FRAM_memoryFill32 facilitates writing into the FRAM memory in long format, pass by value.

The FRAM API is broken into 3 groups of functions: those that write into FRAM, those that handle interrupts, and those that configure the wait state.

FRAM writes are managed by

- FRAM write8()
- FRAM_write16()
- FRAM_write32()
- FRAM_memoryFill32()

The FRAM interrupts are handled by

- FRAM enableInterrupt()
- FRAM_getInterruptStatus()
- FRAM_disableInterrupt()

The FRAM wait state is handled by

■ FRAM_configureWaitStateControl()

14.2.2 Function Documentation

14.2.2.1 void FRAM_configureWaitStateControl (uint8_t manualWaitState, uint8_t accessTime, uint8_t prechargeTime)

Configures the wait state control of the FRAM module Configures the wait state control of the FRAM module. If using the FRAM AUTO MODE the values for accessTime and prechargeTime do not matter.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	42
TI Compiler 4.2.1	Size	20
TI Compiler 4.2.1	Speed	20
IAR 5.51.6	None	18
IAR 5.51.6	Size	16
IAR 5.51.6	Speed	16
MSPGCC 4.8.0	None	68
MSPGCC 4.8.0	Size	22
MSPGCC 4.8.0	Speed	22

Parameters:

manual Wait State chooses if the wait state control is manual or automatic Valid values are:

- **FRAM AUTO MODE**
- FRAM_MANUAL_MODE

accessTime Valid values are:

- FRAM_ACCESS_TIME_CYCLES_0
- FRAM ACCESS TIME CYCLES 1
- FRAM_ACCESS_TIME_CYCLES_2

- FRAM_ACCESS_TIME_CYCLES_3
- FRAM ACCESS TIME CYCLES 4
- FRAM ACCESS TIME CYCLES 5
- FRAM_ACCESS_TIME_CYCLES_6
- FRAM_ACCESS_TIME_CYCLES_7
- **FRAM PRECHARGE TIME CYCLES 0**
- **FRAM PRECHARGE TIME CYCLES 1**
- FRAM_PRECHARGE_TIME_CYCLES_2
- FRAM_PRECHARGE_TIME_CYCLES_3
- FRAM_PRECHARGE_TIME_CYCLES_4
- FRAM_PRECHARGE_TIME_CYCLES_5
- FRAM_PRECHARGE_TIME_CYCLES_6
- FRAM_PRECHARGE_TIME_CYCLES_7

prechargeTime

14.2.2.2 void FRAM_disableInterrupt (uint16_t interruptMask)

Disables selected FRAM interrupt sources.

If header file contains legacy definitions: FRAM_PUC_ON_DOUBLE_BIT_ERROR - Enable PUC reset if FRAM detects double bit error is detected. FRAM_DOUBLE_BIT_ERROR_INTERRUPT - Interrupts when a double bit error is detected. FRAM_SINGLE_BIT_ERROR_INTERRUPT - Interrupts when a single bit error is detected.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	36
TI Compiler 4.2.1	Size	20
TI Compiler 4.2.1	Speed	20
IAR 5.51.6	None	26
IAR 5.51.6	Size	10
IAR 5.51.6	Speed	20
MSPGCC 4.8.0	None	62
MSPGCC 4.8.0	Size	22
MSPGCC 4.8.0	Speed	22

Parameters:

interruptMask is the bit mask of the memory buffer interrupt sources to be disabled. Mask value is the logical OR of any of the following:

- FRAM_PUC_ON_UNCORRECTABLE_BIT Enable PUC reset if FRAM uncorrectable bit error detected.
- FRAM_UNCORRECTABLE_BIT_INTERRUPT Interrupts when an uncorrectable bit error is detected.
- FRAM_CORRECTABLE_BIT_INTERRUPT Interrupts when a correctable bit error is detected.
- FRAM_ACCESS_VIOLATION_INTERRUPT Interrupts when an access violation occurs.
- FRAM ACCESS TIME ERROR INTERRUPT Interrupts when an access time error occurs.

Returns:

None

14.2.2.3 void FRAM enableInterrupt (uint8 t *interruptMask*)

Enables selected FRAM interrupt sources.

If header file contains legacy definitions: FRAM_PUC_ON_DOUBLE_BIT_ERROR - Enable PUC reset if FRAM detects double bit error is detected. FRAM_DOUBLE_BIT_ERROR_INTERRUPT - Interrupts when a double bit error is detected. FRAM_SINGLE_BIT_ERROR_INTERRUPT - Interrupts when a single bit error is detected.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	38
TI Compiler 4.2.1	Size	22
TI Compiler 4.2.1	Speed	22
IAR 5.51.6	None	28
IAR 5.51.6	Size	12
IAR 5.51.6	Speed	22
MSPGCC 4.8.0	None	62
MSPGCC 4.8.0	Size	26
MSPGCC 4.8.0	Speed	26

interruptMask is the bit mask of the memory buffer interrupt sources to be disabled. Mask value is the logical OR of any of the following:

- FRAM_PUC_ON_UNCORRECTABLE_BIT Enable PUC reset if FRAM uncorrectable bit error detected.
- FRAM_UNCORRECTABLE_BIT_INTERRUPT Interrupts when an uncorrectable bit error is detected.
- FRAM CORRECTABLE BIT INTERRUPT Interrupts when a correctable bit error is detected.
- FRAM_ACCESS_VIOLATION_INTERRUPT Interrupts when an access violation occurs.
- FRAM_ACCESS_TIME_ERROR_INTERRUPT Interrupts when an access time error occurs.

Returns:

None

14.2.2.4 uint8 t FRAM getInterruptStatus (uint16 t interruptFlagMask)

Returns the status of the selected FRAM interrupt flags.

If header file contains legacy definitions: FRAM_SINGLE_BIT_ERROR_FLAG - Interrupt flag is set if a correctable bit error has been detected and corrected in the FRAM memory error detection logic. FRAM_DOUBLE_BIT_ERROR_FLAG .- Interrupt flag is set if an uncorrectable bit error has been detected in the FRAM memory error detection logic.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	16
TI Compiler 4.2.1	Size	8
TI Compiler 4.2.1	Speed	10
IAR 5.51.6	None	10
IAR 5.51.6	Size	8
IAR 5.51.6	Speed	8
MSPGCC 4.8.0	None	36
MSPGCC 4.8.0	Size	8
MSPGCC 4.8.0	Speed	8

Parameters:

interruptFlagMask is a bit mask of the interrupt flags status to be returned. Mask value is the logical OR of any of the following:

- FRAM_ACCESS_TIME_ERROR_FLAG Interrupt flag is set if a wrong setting for NPRECHG and NACCESS is set and FRAM access time is not hold.
- FRAM_UNCORRECTABLE_BIT_FLAG Interrupt flag is set if an uncorrectable bit error has been detected in the FRAM memory error detection logic.
- FRAM_CORRECTABLE_BIT_FLAG Interrupt flag is set if a correctable bit error has been detected and corrected in the FRAM memory error detection logic.
- FRAM_ACCESS_VIOLATION_FLAG Interrupt flag is set if an access violation is triggered.

Returns:

The current interrupt flag status for the corresponding mask. Return Logical OR of any of the following:

- FRAM_ACCESS_TIME_ERROR_FLAG Interrupt flag is set if a wrong setting for NPRECHG and NACCESS is set and FRAM access time is not hold.
- FRAM_UNCORRECTABLE_BIT_FLAG Interrupt flag is set if an uncorrectable bit error has been detected in the FRAM memory error detection logic.
- FRAM_CORRECTABLE_BIT_FLAG Interrupt flag is set if a correctable bit error has been detected and corrected in the FRAM memory error detection logic.
- FRAM_ACCESS_VIOLATION_FLAG Interrupt flag is set if an access violation is triggered. indicating the status of the masked flags

14.2.2.5 void FRAM memoryFill32 (uint32 t value, uint32 t * framPtr, uint16 t count)

Write data into the fram memory in long format, pass by value.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	60
TI Compiler 4.2.1	Size	20
TI Compiler 4.2.1	Speed	20
IAR 5.51.6	None	20
IAR 5.51.6	Size	20
IAR 5.51.6	Speed	84
MSPGCC 4.8.0	None	66
MSPGCC 4.8.0	Size	22
MSPGCC 4.8.0	Speed	22

Parameters:

value is the value to written to FRAM memory framPtr is the pointer into which to write the data count

14.2.2.6 void FRAM_write16 (uint16_t * dataPtr, uint16_t * framPtr, uint16_t numberOfWords)

Write data into the fram memory in word format.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	62
TI Compiler 4.2.1	Size	16
TI Compiler 4.2.1	Speed	16
IAR 5.51.6	None	18
IAR 5.51.6	Size	16
IAR 5.51.6	Speed	60
MSPGCC 4.8.0	None	72
MSPGCC 4.8.0	Size	32
MSPGCC 4.8.0	Speed	20

Parameters:

dataPtr is the pointer to the data to be written framPtr is the pointer into which to write the data numberOfWords

14.2.2.7 void FRAM_write32 (uint32_t * dataPtr, uint32_t * framPtr, uint16_t count)

Write data into the fram memory in long format, pass by reference.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	68
TI Compiler 4.2.1	Size	20
TI Compiler 4.2.1	Speed	20
IAR 5.51.6	None	24
IAR 5.51.6	Size	20
IAR 5.51.6	Speed	80
MSPGCC 4.8.0	None	80
MSPGCC 4.8.0	Size	38
MSPGCC 4.8.0	Speed	26

Parameters:

dataPtr is the pointer to the data to be written
framPtr is the pointer into which to write the data
count

14.2.2.8 void FRAM_write8 (uint8_t * dataPtr, uint8_t * framPtr, uint16_t numberOfBytes)

Write data into the fram memory in byte format.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	62
TI Compiler 4.2.1	Size	16
TI Compiler 4.2.1	Speed	16
IAR 5.51.6	None	18
IAR 5.51.6	Size	16
IAR 5.51.6	Speed	60
MSPGCC 4.8.0	None	72
MSPGCC 4.8.0	Size	30
MSPGCC 4.8.0	Speed	156

Parameters:

dataPtr is the pointer to the data to be writtenframPtr is the pointer into which to write the datanumberOfBytes is the number of bytes to be written

Returns:

None

14.3 Programming Example

The following example shows some FRAM operations using the APIs

15 GPIO

Introduction	148
API Functions	149
Programming Example	166

15.1 Introduction

The Digital I/O (GPIO) API provides a set of functions for using the MSP430Ware GPIO modules. Functions are provided to setup and enable use of input/output pins, setting them up with or without interrupts and those that access the pin value.

The digital I/O features include:

- Independently programmable individual I/Os
- Any combination of input or output
- Individually configurable P1 and P2 interrupts. Some devices may include additional port interrupts.
- Independent input and output data registers
- Individually configurable pullup or pulldown resistors

Devices within the family may have up to twelve digital I/O ports implemented (P1 to P11 and PJ). Most ports contain eight I/O lines; however, some ports may contain less (see the device-specific data sheet for ports available). Each I/O line is individually configurable for input or output direction, and each can be individually read or written. Each I/O line is individually configurable for pullup or pulldown resistors. PJ contains only four I/O lines.

Ports P1 and P2 always have interrupt capability. Each interrupt for the P1 and P2 I/O lines can be individually enabled and configured to provide an interrupt on a rising or falling edge of an input signal. All P1 I/O lines source a single interrupt vector P1IV, and all P2 I/O lines source a different, single interrupt vector P2IV. On some devices, additional ports with interrupt capability may be available (see the device-specific data sheet for details) and contain their own respective interrupt vectors. Individual ports can be accessed as byte-wide ports or can be combined into word-wide ports and accessed via word formats. Port pairs P1/P2, P3/P4, P5/P6, P7/P8, etc., are associated with the names PA, PB, PC, PD, etc., respectively. All port registers are handled in this manner with this naming convention except for the interrupt vector registers, P1IV and P2IV; that is, PAIV does not exist. When writing to port PA with word operations, all 16 bits are written to the port. When writing to the lower byte of the PA port using byte operations, the upper byte remains unchanged. Similarly, writing to the upper byte of the PA port using byte instructions leaves the lower byte unchanged. When writing to a port that contains less than the maximum number of bits possible, the unused bits are a "don't care". Ports PB, PC, PD, PE, and PF behave similarly.

Reading of the PA port using word operations causes all 16 bits to be transferred to the destination. Reading the lower or upper byte of the PA port (P1 or P2) and storing to memory using byte operations causes only the lower or upper byte to be transferred to the destination, respectively. Reading of the PA port and storing to a general-purpose register using byte operations causes the byte transferred to be written to the least significant byte of the register. The upper significant byte of the destination register is cleared automatically. Ports PB, PC, PD, PE, and PF behave similarly. When reading from ports that contain less than the maximum bits possible, unused bits are read as zeros (similarly for port PJ).

The GPIO pin may be configured as an I/O pin with GPIO_setAsOutputPin(), GPIO_setAsInputPin(), GPIO_setAsInputPin(), GPIO_setAsInputPinWithPullDownresistor() or GPIO_setAsInputPinWithPullUpresistor(). The GPIO pin may instead be configured to operate in the Peripheral Module assigned function by configuring the GPIO using GPIO_setAsPeripheralModuleFunctionOutputPin() or GPIO_setAsPeripheralModuleFunctionInputPin().

This driver is contained in gpio.c, with gpio.h containing the API definitions for use by applications.

Т

he following code metrics were performed with the TI Compiler 4.2.1 compiler, IAR 5.51.6 compiler and MSPGCC 4.8.0 compiler with different optimization settings. Users may see different code sizes depending on their project settings so it is best to perform your benchmarks within your project. These sizes contain all functions of the peripheral but only functions that are used will be linked into the application and added to the total code size. To see individual API code metrics see the specific API below.

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	1304
TI Compiler 4.2.1	Size	492
TI Compiler 4.2.1	Speed	500
IAR 5.51.6	None	874
IAR 5.51.6	Size	380
IAR 5.51.6	Speed	704
MSPGCC 4.8.0	None	1878
MSPGCC 4.8.0	Size	586
MSPGCC 4.8.0	Speed	582

15.2 API Functions

Functions

- void GPIO clearInterruptFlag (uint8 t selectedPort, uint16 t selectedPins)
- void GPIO_disableInterrupt (uint8_t selectedPort, uint16_t selectedPins)
- void GPIO_enableInterrupt (uint8_t selectedPort, uint16_t selectedPins)
- uint8_t GPIO_getInputPinValue (uint8_t selectedPort, uint16_t selectedPins)
- uint16_t GPIO_getInterruptStatus (uint8_t selectedPort, uint16_t selectedPins)
- void GPIO_interruptEdgeSelect (uint8_t selectedPort, uint16_t selectedPins, uint8_t edgeSelect)
- void GPIO_setAsInputPin (uint8_t selectedPort, uint16_t selectedPins)
- void GPIO_setAsInputPinWithPullDownResistor (uint8_t selectedPort, uint16_t selectedPins)
- void GPIO_setAsInputPinWithPullUpResistor (uint8_t selectedPort, uint16_t selectedPins)
- void GPIO_setAsOutputPin (uint8_t selectedPort, uint16_t selectedPins)
- void GPIO setAsPeripheralModuleFunctionInputPin (uint8 t selectedPort, uint16 t selectedPins, uint8 t mode)
- void GPIO_setAsPeripheralModuleFunctionOutputPin (uint8_t selectedPort, uint16_t selectedPins, uint8_t mode)
- void GPIO setOutputHighOnPin (uint8 t selectedPort, uint16 t selectedPins)
- void GPIO_setOutputLowOnPin (uint8_t selectedPort, uint16_t selectedPins)
- void GPIO_toggleOutputOnPin (uint8_t selectedPort, uint16_t selectedPins)

15.2.1 Detailed Description

The GPIO API is broken into three groups of functions: those that deal with configuring the GPIO pins, those that deal with interrupts, and those that access the pin value.

The GPIO pins are configured with

- GPIO setAsOutputPin()
- GPIO_setAsInputPin()
- GPIO setAsInputPinWithPullDownresistor()
- GPIO_setAsInputPinWithPullUpresistor()
- GPIO_setAsPeripheralModuleFunctionOutputPin()
- GPIO_setAsPeripheralModuleFunctionInputPin()

The GPIO interrupts are handled with

- GPIO_enableInterrupt()
- GPIO_disbleInterrupt()
- GPIO_clearInterruptFlag()
- GPIO_getInterruptStatus()
- GPIO interruptEdgeSelect()

The GPIO pin state is accessed with

- GPIO_setOutputHighOnPin()
- GPIO_setOutputLowOnPin()
- GPIO_toggleOutputOnPin()
- GPIO_getInputPinValue()

15.2.2 Function Documentation

15.2.2.1 void GPIO_clearInterruptFlag (uint8_t selectedPort, uint16_t selectedPins)

This function clears the interrupt flag on the selected pin.

This function clears the interrupt flag on the selected pin. Note that only Port 1, 2, A have this capability.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	60
TI Compiler 4.2.1	Size	22
TI Compiler 4.2.1	Speed	22
IAR 5.51.6	None	36
IAR 5.51.6	Size	10
IAR 5.51.6	Speed	26
MSPGCC 4.8.0	None	80
MSPGCC 4.8.0	Size	26
MSPGCC 4.8.0	Speed	26

Parameters:

selectedPort is the selected port. Valid values are:

- GPIO_PORT_P1
- GPIO_PORT_P2
- GPIO_PORT_PA

selectedPins is the specified pin in the selected port. Mask value is the logical OR of any of the following:

- GPIO_PIN0
- GPIO_PIN1
- GPIO_PIN2
- GPIO_PIN3
- GPIO_PIN4
- GPIO_PIN5
- GPIO_PIN6
- GPIO_PIN7
- GPIO_PIN8 ■ GPIO PIN9
- GPIO_PIN10
- = CDIO_DIN44
- GPIO_PIN11
- GPIO_PIN12
- GPIO_PIN13
- GPIO_PIN14
- GPIO_PIN15

Modified bits of PxIFG register.

Returns:

None

15.2.2.2 void GPIO_disableInterrupt (uint8_t selectedPort, uint16_t selectedPins)

This function disables the port interrupt on the selected pin.

This function disables the port interrupt on the selected pin. Note that only Port 1, 2, A have this capability.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	60
TI Compiler 4.2.1	Size	22
TI Compiler 4.2.1	Speed	22
IAR 5.51.6	None	36
IAR 5.51.6	Size	8
IAR 5.51.6	Speed	24
MSPGCC 4.8.0	None	80
MSPGCC 4.8.0	Size	26
MSPGCC 4.8.0	Speed	26

Parameters:

selectedPort is the selected port. Valid values are:

- GPIO_PORT_P1
- GPIO_PORT_P2
- **GPIO PORT PA**

selectedPins is the specified pin in the selected port. Mask value is the logical OR of any of the following:

- GPIO_PIN0
- GPIO_PIN1
- GPIO_PIN2
- GPIO_PIN3
- GPIO_PIN4
- GPIO_PIN5
- GPIO_PIN6
- GPIO_PIN7
- GPIO_PIN8 ■ GPIO PIN9
- GPIO PIN10
- GPIO_PIN11
- GPIO_PIN12
- GPIO_PIN13
- GPIO_PIN14
- GPIO_PIN15

Modified bits of PxIE register.

Returns:

None

15.2.2.3 void GPIO_enableInterrupt (uint8_t selectedPort, uint16_t selectedPins)

This function enables the port interrupt on the selected pin.

This function enables the port interrupt on the selected pin. Note that only Port 1, 2, A have this capability.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	60
TI Compiler 4.2.1	Size	22
TI Compiler 4.2.1	Speed	22
IAR 5.51.6	None	36
IAR 5.51.6	Size	10
IAR 5.51.6	Speed	26
MSPGCC 4.8.0	None	76
MSPGCC 4.8.0	Size	26
MSPGCC 4.8.0	Speed	26

selectedPort is the selected port. Valid values are:

- GPIO_PORT_P1
- GPIO_PORT_P2
- GPIO_PORT_PA

selectedPins is the specified pin in the selected port. Mask value is the logical OR of any of the following:

- GPIO PIN0
- GPIO_PIN1
- GPIO_PIN2
- GPIO_PIN3
- GPIO_PIN4
- GPIO_PIN5
- GPIO_PIN6
- GPIO_PIN7
- GPIO_PIN8
- GPIO_PIN9
- GPIO_PIN10
- GPIO_PIN11
- GPIO_PIN12
- GPIO_PIN13
- GPIO_PIN14
- GPIO_PIN15

Modified bits of PxIE register.

Returns:

None

15.2.2.4 uint8_t GPIO_getInputPinValue (uint8_t selectedPort, uint16_t selectedPins)

This function gets the input value on the selected pin.

This function gets the input value on the selected pin.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	66
TI Compiler 4.2.1	Size	26
TI Compiler 4.2.1	Speed	26
IAR 5.51.6	None	46
IAR 5.51.6	Size	18
IAR 5.51.6	Speed	34
MSPGCC 4.8.0	None	78
MSPGCC 4.8.0	Size	36
MSPGCC 4.8.0	Speed	36

selectedPort is the selected port. Valid values are:

- GPIO_PORT_P1
- GPIO_PORT_P2
- GPIO_PORT_P3
- GPIO PORT P4
- GPIO_PORT_P5
- GPIO_PORT_P6
- GPIO_PORT_P7
- GPIO_PORT_P8
- GPIO_PORT_P9
- GPIO PORT P10
- GPIO_PORT_P11
- GPIO_PORT_PA
- GPIO_PORT_PB
- GPIO_PORT_PC
- GPIO_PORT_PD
- GPIO_PORT_PE
- GPIO_PORT_PF
- GPIO_PORT_PJ

selectedPins is the specified pin in the selected port. Valid values are:

- GPIO_PIN0
- GPIO PIN1
- GPIO PIN2
- GPIO_PIN3
- GPIO PIN4
- GPIO PIN5
- GPIO_PIN6
- GPIO_PIN7
- GPIO_PIN8
- GPIO_PIN9
- GPIO_PIN10 ■ GPIO_PIN11
- GPIO PIN12
- GPIO PIN13
- GPIO_PIN14
- GPIO_PIN15

Returns:

One of the following:

- GPIO_INPUT_PIN_HIGH
- GPIO_INPUT_PIN_LOW

indicating the status of the pin

15.2.2.5 uint16_t GPIO_getInterruptStatus (uint8_t selectedPort, uint16_t selectedPins)

This function gets the interrupt status of the selected pin.

This function gets the interrupt status of the selected pin. Note that only Port 1, 2, A have this capability.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	56
TI Compiler 4.2.1 TI Compiler 4.2.1	Size Speed	24 24
<u>'</u>		
IAR 5.51.6 IAR 5.51.6	None Size	36 14
IAR 5.51.6	Speed	30
MSPGCC 4.8.0	None	64
MSPGCC 4.8.0	Size	28
MSPGCC 4.8.0	Speed	28

selectedPort is the selected port. Valid values are:

- GPIO_PORT_P1
- GPIO_PORT_P2
- GPIO_PORT_PA

selectedPins is the specified pin in the selected port. Mask value is the logical OR of any of the following:

- GPIO PIN0
- GPIO_PIN1
- GPIO_PIN2
- GPIO_PIN3
- GPIO_PIN4
- GPIO_PIN5
- GPIO_PIN6
- GPIO_PIN7
- GPIO_PIN8
- GPIO_PIN9
- GPIO_PIN10
- GPIO PIN11
- GPIO_PIN12
- GPIO_PIN13
- GPIO_PIN14 ■ GPIO_PIN15

Returns:

Logical OR of any of the following:

- GPIO_PIN0
- GPIO_PIN1
- GPIO_PIN2
- **GPIO PIN3**
- GPIO_PIN4
- GPIO_PIN5
- GPIO_PIN6
- GPIO_PIN7
- GPIO_PIN8 ■ GPIO_PIN9
- GPIO_PIN10
- GPIO_PIN11
- GPIO_PIN12
- GPIO_PIN13 ■ GPIO_PIN14
- GPIO PIN15

indicating the interrupt status of the selected pins [Default: 0]

15.2.2.6 void GPIO_interruptEdgeSelect (uint8_t selectedPort, uint16_t selectedPins, uint8 t edgeSelect)

This function selects on what edge the port interrupt flag should be set for a transition.

This function selects on what edge the port interrupt flag should be set for a transition. Values for edgeSelect should be GPIO_LOW_TO_HIGH_TRANSITION or GPIO_HIGH_TO_LOW_TRANSITION.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	82
TI Compiler 4.2.1	Size	32
TI Compiler 4.2.1	Speed	32
IAR 5.51.6	None	56
IAR 5.51.6	Size	24
IAR 5.51.6	Speed	32
MSPGCC 4.8.0	None	118
MSPGCC 4.8.0	Size	48
MSPGCC 4.8.0	Speed	40

Parameters:

selectedPort is the selected port. Valid values are:

- GPIO_PORT_P1
- GPIO PORT P2
- GPIO PORT P3
- GPIO_PORT_P4
- GPIO_PORT_P5
- GPIO PORT P6
- GPIO_PORT_P7
- GPIO_PORT_P8
- GPIO PORT P9
- GPIO_PORT_P10
- GPIO_PORT_P11
- GPIO_PORT_PA
- GPIO_PORT_PB
- GPIO_PORT_PC
- GPIO_PORT_PD
- GPIO_PORT_PE
- GPIO_PORT_PF
- GPIO_PORT_PJ

selectedPins is the specified pin in the selected port. Mask value is the logical OR of any of the following:

- GPIO_PIN0
- GPIO_PIN1
- GPIO_PIN2
- GPIO_PIN3
- GPIO_PIN4
- GPIO_PIN5
- GPIO_PIN6
- GPIO_PIN7
- GPIO_PIN8 ■ GPIO PIN9
- GPIO_PIN10
- = 0010_111110
- GPIO_PIN11 ■ GPIO_PIN12
- GPIO PIN13
- GPIO_PIN14

■ GPIO_PIN15

edgeSelect specifies what transition sets the interrupt flag Valid values are:

- GPIO_HIGH_TO_LOW_TRANSITION
- GPIO_LOW_TO_HIGH_TRANSITION

Modified bits of PxIES register.

Returns:

None

15.2.2.7 void GPIO setAsInputPin (uint8 t selectedPort, uint16 t selectedPins)

This function configures the selected Pin as input pin.

This function selected pins on a selected port as input pins.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	100
TI Compiler 4.2.1	Size	36
TI Compiler 4.2.1	Speed	36
IAR 5.51.6	None	64
IAR 5.51.6	Size	44
IAR 5.51.6	Speed	60
MSPGCC 4.8.0	None	160
MSPGCC 4.8.0	Size	40
MSPGCC 4.8.0	Speed	40

Parameters:

selectedPort is the selected port. Valid values are:

- GPIO_PORT_P1
- GPIO_PORT_P2
- GPIO_PORT_P3
- GPIO PORT P4
- GPIO_PORT_P5
- GPIO_PORT_P6
- GPIO_PORT_P7
- GPIO_PORT_P8
- GPIO_PORT_P9
- GPIO_PORT_P10
- GPIO_PORT_P11
- GPIO_PORT_PA
- GPIO_PORT_PB
- GPIO PORT PC
- GPIO_PORT_PD
- GPIO_PORT_PE
- GPIO_PORI_PE
- GPIO_PORT_PF
- GPIO_PORT_PJ

selectedPins is the specified pin in the selected port. Mask value is the logical OR of any of the following:

- GPIO PIN0
- GPIO_PIN1
- GPIO_PIN2
- GPIO_PIN3
- GPIO PIN4
- GPIO_PIN5

- GPIO_PIN6
- GPIO_PIN7
- GPIO_PIN8
- GPIO_PIN9
- GPIO_PIN10
- GPIO_PIN11
- GPIO_PIN12
- GPIO_PIN13
- GPIO_PIN14
- GPIO_PIN15

Modified bits of PxDIR register, bits of PxREN register and bits of PxSEL register.

Returns:

None

15.2.2.8 void GPIO_setAsInputPinWithPullDownResistor (uint8_t selectedPort, uint16_t selectedPins)

This function sets the selected Pin in input Mode with Pull Down resistor.

This function sets the selected Pin in input Mode with Pull Down resistor.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	112
TI Compiler 4.2.1	Size	42
TI Compiler 4.2.1	Speed	42
IAR 5.51.6	None	72
IAR 5.51.6	Size	22
IAR 5.51.6	Speed	70
MSPGCC 4.8.0	None	180
MSPGCC 4.8.0	Size	46
MSPGCC 4.8.0	Speed	46

Parameters:

selectedPort is the selected port. Valid values are:

- GPIO_PORT_P1
- GPIO_PORT_P2
- GPIO PORT P3
- GPIO_PORT_P4
- GPIO_PORT_P5
- GPIO PORT P6
- GPIO PORT P7
- GPIO_PORT_P8
- GPIO_PORT_P9
- GPIO PORT P10
- GPIO_PORT_P11
- GPIO_PORT_PA
- GPIO_PORT_PB
- GPIO_PORT_PC
- GPIO_PORT_PD
- GPIO_PORT_PE
- GPIO_PORT_PF
- GPIO_PORT_PJ

selectedPins is the specified pin in the selected port. Mask value is the logical OR of any of the following:

- GPIO_PIN0
- GPIO_PIN1
- GPIO_PIN2
- GPIO_PIN3
- GPIO_PIN4
- GPIO_PIN5
- GPIO_PIN6
- GPIO_PIN7
- GPIO_PIN8
- GPIO_PIN9
- GPIO_PIN10
- GPIO_PIN11
- GPIO_PIN12
- GPIO_PIN13
- GPIO_PIN14
- GPIO_PIN15

Modified bits of PxDIR register, bits of PxOUT register and bits of PxREN register.

Returns:

None

15.2.2.9 void GPIO_setAsInputPinWithPullUpResistor (uint8_t selectedPort, uint16_t selectedPins)

This function sets the selected Pin in input Mode with Pull Up resistor.

This function sets the selected Pin in input Mode with Pull Up resistor.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	112
TI Compiler 4.2.1 TI Compiler 4.2.1	Size Speed	42 42
IAR 5.51.6	None	72
IAR 5.51.6	Size	16
IAR 5.51.6	Speed	64
MSPGCC 4.8.0	None	176
MSPGCC 4.8.0	Size	46
MSPGCC 4.8.0	Speed	46

Parameters:

selectedPort is the selected port. Valid values are:

- GPIO_PORT_P1
- GPIO_PORT_P2
- GPIO_PORT_P3
- GPIO_PORT_P4
- GPIO_PORT_P5
- GPIO_PORT_P6
- GPIO_PORT_P7
- GPIO_PORT_P8 ■ GPIO PORT P9
- GPIO_PORT_P10
- GPIO_PORT_P11

- GPIO_PORT_PA
- GPIO_PORT_PB
- GPIO_PORT_PC
- GPIO_PORT_PD
- GPIO_PORT_PE
- GPIO_PORT_PF
- GPIO_PORT_PJ

selectedPins is the specified pin in the selected port. Mask value is the logical OR of any of the following:

- GPIO_PIN0
- GPIO_PIN1
- GPIO PIN2
- GPIO PIN3
- GPIO_PIN4
- GPIO_PIN5
- GPIO PIN6
- GPIO_PIN7
- GPIO_PIN8
- GPIO_PIN9
- GPIO_PIN10
- GPIO_PIN11
- GPIO PIN12
- GPIO_PIN13
- GPIO_PIN14
- GPIO_PIN15

Modified bits of PxDIR register, bits of PxOUT register and bits of PxREN register.

Returns:

None

15.2.2.10 void GPIO_setAsOutputPin (uint8_t selectedPort, uint16_t selectedPins)

This function configures the selected Pin as output pin.

This function selected pins on a selected port as output pins.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	86
TI Compiler 4.2.1	Size	34
TI Compiler 4.2.1	Speed	34
IAR 5.51.6	None	54
IAR 5.51.6	Size	12
IAR 5.51.6	Speed	48
MSPGCC 4.8.0	None	130
MSPGCC 4.8.0	Size	38
MSPGCC 4.8.0	Speed	38

Parameters:

selectedPort is the selected port. Valid values are:

- GPIO_PORT_P1
- GPIO_PORT_P2
- GPIO_PORT_P3
- GPIO PORT P4
- GPIO_PORT_P5

- GPIO_PORT_P6
- GPIO PORT P7
- GPIO PORT P8
- GPIO PORT P9
- GPIO_PORT_P10
- GPIO_PORT_P11
- GPIO_PORT_PA
- GPIO_PORT_PB
- GPIO_PORT_PC
- **GPIO PORT PD**
- **GPIO PORT PE**
- **■** GPIO PORT PF
- GPIO PORT PJ

selectedPins is the specified pin in the selected port. Mask value is the logical OR of any of the following:

- GPIO_PIN0
- GPIO_PIN1
- GPIO PIN2
- GPIO_PIN3
- GPIO PIN4
- **GPIO PIN5**
- GPIO PIN6
- GPIO_PIN7
- **GPIO PIN8**
- GPIO_PIN9
- GPIO_PIN10
- GPIO PIN11
- GPIO_PIN12
- GPIO_PIN13
- GPIO_PIN14
- GPIO_PIN15

Modified bits of PxDIR register and bits of PxSEL register.

Returns:

None

15.2.2.11 void GPIO_setAsPeripheralModuleFunctionInputPin (uint8_t selectedPort, uint16_t selectedPins, uint8_t mode)

This function configures the peripheral module function in the input direction for the selected pin for either primary, secondary or ternary module function modes.

This function configures the peripheral module function in the input direction for the selected pin for either primary, secondary or ternary module function modes. Accepted values for mode are GPIO_PRIMARY_MODULE_FUNCTION, GPIO_SECONDARY_MODULE_FUNCTION, and GPIO_TERNARY_MODULE_FUNCTION

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	168
TI Compiler 4.2.1	Size	64
TI Compiler 4.2.1	Speed	68
IAR 5.51.6	None	118
IAR 5.51.6	Size	74
IAR 5.51.6	Speed	102
MSPGCC 4.8.0	None	260
MSPGCC 4.8.0	Size	76
MSPGCC 4.8.0	Speed	78

selectedPort is the selected port. Valid values are:

- GPIO PORT P1
- GPIO_PORT_P2
- GPIO_PORT_P3
- GPIO PORT P4
- GPIO_PORT_P5
- GPIO_PORT_P6
- GPIO_PORT_P7
- GPIO_PORT_P8
- GPIO PORT P9
- GPIO PORT P10
- GPIO_PORT_P11
- GPIO_PORT_PA
- GPIO PORT PB
- GPIO PORT PC
- GPIO_PORT_PD
- GPIO_PORT_PE
- = GFIO_FOITI_FE
- GPIO_PORT_PF
- GPIO_PORT_PJ

selectedPins is the specified pin in the selected port. Mask value is the logical OR of any of the following:

- GPIO PIN0
- GPIO_PIN1
- GPIO PIN2
- **GPIO PIN3**
- GPIO_PIN4
- GPIO_PIN5
- GPIO_PIN6
- GPIO PIN7
- GPIO_PIN8
- GPIO_PIN9 ■ GPIO_PIN10
- GPIO_PIN11
- GPIO_PIN12
- GPIO_PIN13
- GPIO_PIN14
- GPIO_PIN15

mode is the specified mode that the pin should be configured for the module function. Valid values are:

- GPIO_PRIMARY_MODULE_FUNCTION
- **GPIO SECONDARY MODULE FUNCTION**
- GPIO_TERNARY_MODULE_FUNCTION

Modified bits of PxDIR register and bits of PxSEL register.

Returns:

None

15.2.2.12 void GPIO_setAsPeripheralModuleFunctionOutputPin (uint8_t selectedPort, uint16 t selectedPins, uint8 t mode)

This function configures the peripheral module function in the output direction for the selected pin for either primary, secondary or ternary module function modes.

This function configures the peripheral module function in the output direction for the selected pin for either primary, secondary or ternary module function modes. Accepted values for mode are GPIO_PRIMARY_MODULE_FUNCTION, GPIO_SECONDARY_MODULE_FUNCTION, and GPIO_TERNARY_MODULE_FUNCTION

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	168
TI Compiler 4.2.1	Size	60
TI Compiler 4.2.1	Speed	64
IAR 5.51.6	None	118
IAR 5.51.6	Size	74
IAR 5.51.6	Speed	86
MSPGCC 4.8.0	None	256
MSPGCC 4.8.0	Size	72
MSPGCC 4.8.0	Speed	74

Parameters:

selectedPort is the selected port. Valid values are:

- GPIO_PORT_P1
- GPIO_PORT_P2
- GPIO_PORT_P3
- GPIO_PORT_P4
- GPIO_PORT_P5
- GPIO_PORT_P6
- GPIO_PORT_P7
- GPIO_PORT_P8
- GPIO_PORT_P9
- GPIO_PORT_P10
- GPIO_PORT_P11
- GPIO_PORT_PA
- GPIO_PORT_PB
- GPIO_PORT_PC
- GPIO_PORT_PD
- GPIO_PORT_PE
- GPIO_PORT_PF
- GPIO_PORT_PJ

selectedPins is the specified pin in the selected port. Mask value is the logical OR of any of the following:

- GPIO_PIN0
- GPIO_PIN1
- **GPIO PIN2**
- GPIO_PIN3
- GPIO_PIN4
- GPIO_PIN5 ■ GPIO_PIN6
- GPIO_PIN7
- GPIO_PIN7 ■ GPIO_PIN8
- GPIO_PIN9
- GPIO_PIN10
- GPIO_PIN11
- GPIO_PIN12
- GPIO_PIN13
- GPIO PIN14
- GPIO_PIN15

mode is the specified mode that the pin should be configured for the module function. Valid values are:

- GPIO_PRIMARY_MODULE_FUNCTION
- GPIO_SECONDARY_MODULE_FUNCTION
- GPIO_TERNARY_MODULE_FUNCTION

Modified bits of PxDIR register and bits of PxSEL register.

Returns:

None

15.2.2.13 void GPIO_setOutputHighOnPin (uint8_t selectedPort, uint16_t selectedPins)

This function sets output HIGH on the selected Pin.

This function sets output HIGH on the selected port's pin.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	58
TI Compiler 4.2.1	Size	22
TI Compiler 4.2.1	Speed	22
IAR 5.51.6	None	34
IAR 5.51.6	Size	6
IAR 5.51.6	Speed	22
MSPGCC 4.8.0	None	72
MSPGCC 4.8.0	Size	26
MSPGCC 4.8.0	Speed	26

Parameters:

selectedPort is the selected port. Valid values are:

- GPIO_PORT_P1
- GPIO_PORT_P2
- GPIO PORT P3
- GPIO_PORT_P4
- GPIO_PORT_P5
- GPIO_PORT_P6
- GPIO_PORT_P7
- GPIO_PORT_P8
- GPIO_PORT_P9
- GPIO_PORT_P10
- GPIO_PORT_P11
- GPIO_PORT_PA
- GPIO_PORT_PB
- GPIO_PORT_PC
- GPIO_PORT_PD
- GPIO_PORT_PE
- GPIO_PORT_PF
- GPIO PORT PJ

selectedPins is the specified pin in the selected port. Mask value is the logical OR of any of the following:

- GPIO_PIN0
- GPIO PIN1
- GPIO_PIN2
- GPIO_PIN3
- GPIO_PIN4
- GPIO_PIN5
- GPIO_PIN6 ■ GPIO_PIN7
- GPIO_PIN8
- GPIO_PIN9
- GPIO_PIN10
- GPIO_PIN11
- GPIO_PIN12
- GPIO_PIN13
- GPIO_PIN14
- GPIO_PIN15

Modified bits of PxOUT register.

Returns:

None

15.2.2.14 void GPIO setOutputLowOnPin (uint8 t selectedPort, uint16 t selectedPins)

This function sets output LOW on the selected Pin.

This function sets output LOW on the selected port's pin.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	58
TI Compiler 4.2.1	Size	22
TI Compiler 4.2.1	Speed	22
IAR 5.51.6	None	34
IAR 5.51.6	Size	8
IAR 5.51.6	Speed	24
MSPGCC 4.8.0	None	76
MSPGCC 4.8.0	Size	26
MSPGCC 4.8.0	Speed	26

Parameters:

selectedPort is the selected port. Valid values are:

- GPIO_PORT_P1
- GPIO PORT P2
- GPIO_PORT_P3
- GPIO_PORT_P4
- GPIO_PORT_P5
- GPIO_PORT_P6
- GPIO_PORT_P7
- GPIO PORT P8
- GPIO_PORT_P9
- GPIO_PORT_P10
- GPIO_PORT_P11
- GPIO_PORT_PA
- GPIO_PORT_PB
- GPIO_PORT_PC
- GPIO_PORT_PD
- GPIO_PORT_PE
- GPIO_PORT_PF
- GPIO_PORT_PJ

selectedPins is the specified pin in the selected port. Mask value is the logical OR of any of the following:

- GPIO_PIN0
- GPIO_PIN1
- GPIO_PIN2
- GPIO_PIN3
- GPIO_PIN4
- GPIO_PIN5
- GPIO_PIN6
- GPIO_PIN7
- GPIO_PIN8
- GPIO PIN9
- GPIO_PIN10

- GPIO_PIN11
- GPIO_PIN12
- GPIO_PIN13
- GPIO_PIN14
- GPIO_PIN15

Modified bits of PxOUT register.

Returns:

None

15.2.2.15 void GPIO_toggleOutputOnPin (uint8_t selectedPort, uint16_t selectedPins)

This function toggles the output on the selected Pin.

This function toggles the output on the selected port's pin.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	58
TI Compiler 4.2.1	Size	22
TI Compiler 4.2.1	Speed	22
IAR 5.51.6	None	34
IAR 5.51.6	Size	12
IAR 5.51.6	Speed	28
MSPGCC 4.8.0	None	72
MSPGCC 4.8.0	Size	26
MSPGCC 4.8.0	Speed	26

Parameters:

selectedPort is the selected port. Valid values are:

- GPIO_PORT_P1
- GPIO_PORT_P2
- GPIO_PORT_P3
- GPIO_PORT_P4
- GPIO_PORT_P5
- GPIO_PORT_P6
- GPIO_PORT_P7
- GPIO_PORT_P8
- GPIO_PORT_P9
- GPIO_PORT_P10
- GPIO_PORT_P11
- GPIO_PORT_PA
- GPIO_PORT_PB
- GPIO_PORT_PC
- GPIO_PORT_PD
- GPIO_PORT_PE
- GPIO_PORT_PF
- GPIO_PORT_PJ

selectedPins is the specified pin in the selected port. Mask value is the logical OR of any of the following:

- GPIO_PIN0
- GPIO_PIN1
- GPIO_PIN2
- GPIO PIN3
- GPIO_PIN4

- GPIO_PIN5
- GPIO_PIN6
- GPIO_PIN7
- GPIO_PIN8
- GPIO_PIN9
- GPIO_PIN10
- GPIO_PIN11
- GPIO_PIN12
- GPIO_PIN13 ■ GPIO PIN14
- GPIO_PIN15

Modified bits of PxOUT register.

Returns:

None

15.3 Programming Example

The following example shows how to use the GPIO API. A trigger is generated on a hi "TO" low transition on P1.4 (pulled-up input pin), which will generate P1_ISR. In the ISR, we toggle P1.0 (output pin).

```
//Set P1.0 to output direction
{\tt GPIO\_setAsOutputPin}\,(
    GPIO_PORT_P1,
    GPIO_PIN0
    );
//Enable P1.4 internal resistance as pull-Up resistance
GPIO_setAsInputPinWithPullUpresistor(
    GPIO_PORT_P1,
    GPIO_PIN4
    );
//P1.4 interrupt enabled
GPIO_enableInterrupt(
    GPIO_PORT_P1,
    GPIO_PIN4
    );
//P1.4 Hi/Lo edge
GPIO_interruptEdgeSelect(
   GPIO_PORT_P1,
   GPIO_PIN4,
    GPIO_HIGH_TO_LOW_TRANSITION
//P1.4 IFG cleared
GPIO_clearInterruptFlag(
    GPIO_PORT_P1,
   GPIO_PIN4
   );
//Enter LPM4 w/interrupt
__bis_SR_register(LPM4_bits + GIE);
```

```
//For debugger
   __no_operation();
//*********************************
//
//This is the PORT1_VECTOR interrupt vector service routine
//
___interrupt void Port_1 (void) {
#pragma vector=PORT1_VECTOR
   //P1.0 = toggle
   GPIO_toggleOutputOnPin(
       GPIO_PORT_P1,
       GPIO_PIN0
       );
   //P1.4 IFG cleared
   GPIO_clearInterruptFlag(
       GPIO_PORT_P1,
       GPIO_PIN4
       );
}
```

16 Memory Protection Unit (MPU)

Introduction	.10	36
API Functions	10	38
Programming Example	.13	75

16.1 Introduction

The MPU protects against accidental writes to designated read-only memory segments or execution of code from a constant memory segment memory. Clearing the MPUENA bit disables the MPU, making the complete memory accessible for read, write, and execute operations. After a BOR, the complete memory is accessible without restrictions for read, write, and execute operations.

MPU features include:

- Main memory can be configured up to three segments of variable size
- Access rights for each segment can be set independently
- Information memory can have its access rights set independently
- All MPU registers are protected from access by password

This driver is contained in mpu.c, with mpu.h containing the API definitions for use by applications.

Т

he following code metrics were performed with the TI Compiler 4.2.1 compiler, IAR 5.51.6 compiler and MSPGCC 4.8.0 compiler with different optimization settings. Users may see different code sizes depending on their project settings so it is best to perform your benchmarks within your project. These sizes contain all functions of the peripheral but only functions that are used will be linked into the application and added to the total code size. To see individual API code metrics see the specific API below.

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	1262
TI Compiler 4.2.1	Size	816
TI Compiler 4.2.1	Speed	834
IAR 5.51.6	None	1114
IAR 5.51.6	Size	698
IAR 5.51.6	Speed	844
MSPGCC 4.8.0	None	2228
MSPGCC 4.8.0	Size	962
MSPGCC 4.8.0	Speed	1380

16.2 API Functions

Functions

- uint16_t MPU_clearAllInterruptFlags (uint16_t baseAddress)
- uint16_t MPU_clearInterruptFlag (uint16_t baseAddress, uint16_t memAccFlag)
- void MPU_createThreeSegments (uint16_t baseAddress, uint16_t seg1boundary, uint16_t seg2boundary, uint8_t seg1accmask, uint8_t seg2accmask, uint8_t seg3accmask)
- void MPU_disablePUCOnViolation (uint16_t baseAddress, uint16_t segment)
- void MPU enablePUCOnViolation (uint16 t baseAddress, uint16 t segment)
- uint16_t MPU_getInterruptStatus (uint16_t baseAddress, uint16_t memAccFlag)
- void MPU_initInfoSegment (uint16_t baseAddress, uint8_t accmask)
- void MPU initThreeSegments (uint16 t baseAddress, MPU initThreeSegmentsParam *param)

- void MPU_initTwoSegments (uint16_t baseAddress, uint16_t seg1boundary, uint8_t seg1accmask, uint8_t seg2accmask)
- void MPU start (uint16 t baseAddress)

16.2.1 Detailed Description

The MPU API is broken into three groups of functions: those that handle initialization, those that deal with memory segmentation and access rights definition, and those that handle interrupts. Please note that write access to all MPU registers is disabled after calling any MPU API.

The MPU initialization function is

■ MPU_start()

The MPU memory segmentation and access right definition functions are

- MPU_initTwoSegments()
- MPU_initThreeSegments()
- MPU_initInfoSegment()

The MPU interrupt handler functions

- MPU_enablePUCOnViolation()
- MPU getInterruptStatus()
- MPU_clearInterruptFlag()
- MPU_clearAllInterruptFlags()

16.2.2 Function Documentation

16.2.2.1 uint16 t MPU clearAllInterruptFlags (uint16 t baseAddress)

Clears all Memory Segment Access Violation Interrupt Flags.

Code Metrics:

Optimization	Code Size
None	48
Size	32
Speed	32
None	40
Size	24
Speed	34
None	60
Size	32
Speed	32
	None Size Speed None Size Speed None Size

Parameters:

baseAddress is the base address of the MPU module.

Modified bits of MPUCTL1 register.

Returns:

Logical OR of any of the following:

- MPU_SEG_1_ACCESS_VIOLATION is set if an access violation in Main Memory Segment 1 is detected
- MPU_SEG_2_ACCESS_VIOLATION is set if an access violation in Main Memory Segment 2 is detected

- MPU_SEG_3_ACCESS_VIOLATION is set if an access violation in Main Memory Segment 3 is detected
- MPU_SEG_INFO_ACCESS_VIOLATION is set if an access violation in User Information Memory Segment is detected

indicating the status of the interrupt flags.

16.2.2.2 uint16 t MPU clearInterruptFlag (uint16 t baseAddress, uint16 t memAccFlag)

Clears the masked interrupt flags.

Returns the memory segment violation flag status requested by the user or if user is providing a bit mask value, the function will return a value indicating if all flags were cleared.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	52
TI Compiler 4.2.1	Size	28
TI Compiler 4.2.1	Speed	28
IAR 5.51.6	None	36
IAR 5.51.6	Size	20
IAR 5.51.6	Speed	30
MSPGCC 4.8.0	None	76
MSPGCC 4.8.0	Size	28
MSPGCC 4.8.0	Speed	28

Parameters:

baseAddress is the base address of the MPU module.

memAccFlag is the is the memory access violation flag. Mask value is the logical OR of any of the following:

- MPU_SEG_1_ACCESS_VIOLATION is set if an access violation in Main Memory Segment 1 is detected
- MPU SEG 2 ACCESS VIOLATION is set if an access violation in Main Memory Segment 2 is detected ■ MPU SEG 3 ACCESS VIOLATION - is set if an access violation in Main Memory Segment 3 is detected
- MPU_SEG_INFO_ACCESS_VIOLATION is set if an access violation in User Information Memory Segment is detected

Returns:

Logical OR of any of the following:

- MPU_SEG_1_ACCESS_VIOLATION is set if an access violation in Main Memory Segment 1 is detected
- MPU_SEG_2_ACCESS_VIOLATION is set if an access violation in Main Memory Segment 2 is detected
- MPU_SEG_3_ACCESS_VIOLATION is set if an access violation in Main Memory Segment 3 is detected
- MPU_SEG_INFO_ACCESS_VIOLATION is set if an access violation in User Information Memory Segment is detected

indicating the status of the masked flags.

16.2.2.3 void MPU createThreeSegments (uint16 t baseAddress, uint16 t seg1boundary, uint16 t seg2boundary, uint8 t seg1accmask, uint8 t seg2accmask, uint8 t seg3accmask)

DEPRECATED - Initializes MPU with three memory segments.

This function creates three memory segments in FRAM allowing the user to set access right to each segment. To set the correct value for seg1boundary, the user must consult the Device Family User's Guide and provide the MPUSBx value corresponding to the memory address where the user wants to create the partition. Consult the "Segment Border Setting" section in the User's Guide to find the options available for MPUSBx.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	88
TI Compiler 4.2.1	Size	68
TI Compiler 4.2.1	Speed	68
IAR 5.51.6	None	72
IAR 5.51.6	Size	62
IAR 5.51.6	Speed	62
MSPGCC 4.8.0	None	84
MSPGCC 4.8.0	Size	40
MSPGCC 4.8.0	Speed	404

baseAddress is the base address of the MPU module.

seg1boundary Valid values can be found in the Family User's Guide

seg2boundary Valid values can be found in the Family User's Guide

seg1accmask is the bit mask of access right for memory segment 1. Mask value is the logical OR of any of the following:

- MPU READ Read rights
- MPU_WRITE Write rights
- MPU_EXEC Execute rights
- MPU_NO_READ_WRITE_EXEC no read/write/execute rights

seg2accmask is the bit mask of access right for memory segment 2. Mask value is the logical OR of any of the following:

- MPU READ Read rights
- MPU_WRITE Write rights
- MPU_EXEC Execute rights
- MPU_NO_READ_WRITE_EXEC no read/write/execute rights

seg3accmask is the bit mask of access right for memory segment 3. Mask value is the logical OR of any of the following:

- MPU_READ Read rights
- MPU_WRITE Write rights
- MPU_EXEC Execute rights
- MPU_NO_READ_WRITE_EXEC no read/write/execute rights

Modified bits of MPUSAM register, bits of MPUSEG register and bits of MPUCTL0 register.

Returns:

None

16.2.2.4 void MPU_disablePUCOnViolation (uint16_t baseAddress, uint16_t segment)

The following function disables PUC generation when an access violation has Occurred on the memory segment selected by the user.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	44
TI Compiler 4.2.1	Size	20
TI Compiler 4.2.1	Speed	20
IAR 5.51.6	None	32
IAR 5.51.6	Size	10
IAR 5.51.6	Speed	22
MSPGCC 4.8.0	None	70
MSPGCC 4.8.0	Size	20
MSPGCC 4.8.0	Speed	20

baseAddress is the base address of the MPU module.

segment is the bit mask of memory segment that will NOT generate a PUC when an access violation occurs. Mask value is the logical OR of any of the following:

- MPU_FIRST_SEG PUC generation on first memory segment
- MPU_SECOND_SEG PUC generation on second memory segment
- MPU_THIRD_SEG PUC generation on third memory segment
- MPU INFO SEG PUC generation on user information memory segment

Modified bits of MPUSAM register and bits of MPUCTL0 register.

Returns:

None

16.2.2.5 void MPU_enablePUCOnViolation (uint16_t baseAddress, uint16_t segment)

The following function enables PUC generation when an access violation has Occurred on the memory segment selected by the user.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	44
TI Compiler 4.2.1	Size	20
TI Compiler 4.2.1	Speed	20
IAR 5.51.6	None	32
IAR 5.51.6	Size	10
IAR 5.51.6	Speed	22
MSPGCC 4.8.0	None	66
MSPGCC 4.8.0	Size	20
MSPGCC 4.8.0	Speed	20

Parameters:

baseAddress is the base address of the MPU module.

segment is the bit mask of memory segment that will generate a PUC when an access violation occurs. Mask value is the logical OR of any of the following:

- MPU_FIRST_SEG PUC generation on first memory segment
- MPU_SECOND_SEG PUC generation on second memory segment
- MPU_THIRD_SEG PUC generation on third memory segment
- MPU_INFO_SEG PUC generation on user information memory segment

Modified bits of MPUSAM register and bits of MPUCTL0 register.

Returns:

None

16.2.2.6 uint16 t MPU getInterruptStatus (uint16 t baseAddress, uint16 t memAccFlag)

Returns the memory segment violation flag status requested by the user.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	20
TI Compiler 4.2.1	Size	8
TI Compiler 4.2.1	Speed	8
IAR 5.51.6	None	8
IAR 5.51.6	Size	8
IAR 5.51.6	Speed	8
MSPGCC 4.8.0	None	24
MSPGCC 4.8.0	Size	8
MSPGCC 4.8.0	Speed	8

baseAddress is the base address of the MPU module.

memAccFlag is the is the memory access violation flag. Mask value is the logical OR of any of the following:

- MPU_SEG_1_ACCESS_VIOLATION is set if an access violation in Main Memory Segment 1 is detected
- MPU_SEG_2_ACCESS_VIOLATION is set if an access violation in Main Memory Segment 2 is detected
- MPU_SEG_3_ACCESS_VIOLATION is set if an access violation in Main Memory Segment 3 is detected
- MPU_SEG_INFO_ACCESS_VIOLATION is set if an access violation in User Information Memory Segment is detected

Returns:

Logical OR of any of the following:

- MPU_SEG_1_ACCESS_VIOLATION is set if an access violation in Main Memory Segment 1 is detected
- MPU SEG 2 ACCESS VIOLATION is set if an access violation in Main Memory Segment 2 is detected
- MPU_SEG_3_ACCESS_VIOLATION is set if an access violation in Main Memory Segment 3 is detected
- MPU_SEG_INFO_ACCESS_VIOLATION is set if an access violation in User Information Memory Segment is detected

indicating the status of the masked flags.

16.2.2.7 void MPU initInfoSegment (uint16 t baseAddress, uint8 t accmask)

Initializes user information memory segment.

This function initializes user information memory segment with specified access rights.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	164
TI Compiler 4.2.1	Size	112
TI Compiler 4.2.1	Speed	112
IAR 5.51.6	None	150
IAR 5.51.6	Size	90
IAR 5.51.6	Speed	120
MSPGCC 4.8.0	None	314
MSPGCC 4.8.0	Size	136
MSPGCC 4.8.0	Speed	144

Parameters:

baseAddress is the base address of the MPU module.

accmask is the bit mask of access right for user information memory segment. Mask value is the logical OR of any of the following:

- MPU READ Read rights
- MPU_WRITE Write rights
- MPU_EXEC Execute rights
- MPU_NO_READ_WRITE_EXEC no read/write/execute rights

Modified bits of MPUSAM register and bits of MPUCTL0 register.

Returns:

None

16.2.2.8 void MPU_initThreeSegments (uint16_t baseAddress, MPU initThreeSegmentsParam * param)

Initializes MPU with three memory segments.

This function creates three memory segments in FRAM allowing the user to set access right to each segment. To set the correct value for seg1boundary, the user must consult the Device Family User's Guide and provide the MPUSBx value corresponding to the memory address where the user wants to create the partition. Consult the "Segment Border Setting" section in the User's Guide to find the options available for MPUSBx.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	454
TI Compiler 4.2.1	Size	300
TI Compiler 4.2.1	Speed	318
IAR 5.51.6	None	426
IAR 5.51.6	Size	270
IAR 5.51.6	Speed	274
MSPGCC 4.8.0	None	884
MSPGCC 4.8.0	Size	396
MSPGCC 4.8.0	Speed	424

Parameters:

baseAddress is the base address of the MPU module. **param** is the pointer to struct for initializing three segments.

Modified bits of MPUSAM register, bits of MPUSEG register and bits of MPUCTL0 register.

Returns:

None

16.2.2.9 void MPU_initTwoSegments (uint16_t baseAddress, uint16_t seg1boundary, uint8 t seg1accmask, uint8 t seg2accmask)

Initializes MPU with two memory segments.

This function creates two memory segments in FRAM allowing the user to set access right to each segment. To set the correct value for seg1boundary, the user must consult the Device Family User's Guide and provide the MPUSBx value corresponding to the memory address where the user wants to create the partition. Consult the "Segment Border Setting" section in the User's Guide to find the options available for MPUSBx.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	320
TI Compiler 4.2.1	Size	212
TI Compiler 4.2.1	Speed	212
IAR 5.51.6	None	296
IAR 5.51.6	Size	194
IAR 5.51.6	Speed	262
MSPGCC 4.8.0	None	618
MSPGCC 4.8.0	Size	266
MSPGCC 4.8.0	Speed	284

baseAddress is the base address of the MPU module.

seg1boundary Valid values can be found in the Family User's Guide

seg1accmask is the bit mask of access right for memory segment 1. Mask value is the logical OR of any of the following:

- MPU_READ Read rights
- MPU_WRITE Write rights
- MPU_EXEC Execute rights
- MPU_NO_READ_WRITE_EXEC no read/write/execute rights

seg2accmask is the bit mask of access right for memory segment 2 Mask value is the logical OR of any of the following:

- MPU_READ Read rights
- MPU_WRITE Write rights
- MPU_EXEC Execute rights
- MPU_NO_READ_WRITE_EXEC no read/write/execute rights

Modified bits of MPUSAM register, bits of MPUSEG register and bits of MPUCTL0 register.

Returns:

None

16.2.2.10 void MPU_start (uint16_t baseAddress)

The following function enables the MPU module in the device.

This function needs to be called once all memory segmentation has been done. If this function is not called the MPU module will not be activated.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	28
TI Compiler 4.2.1	Size	16
TI Compiler 4.2.1	Speed	16
IAR 5.51.6	None	22
IAR 5.51.6	Size	10
IAR 5.51.6	Speed	10
MSPGCC 4.8.0	None	32
MSPGCC 4.8.0	Size	16
MSPGCC 4.8.0	Speed	16

Parameters:

baseAddress is the base address of the MPU module.

Modified bits of MPUCTL0 register.

Returns:

None

16.3 Programming Example

The following example shows some MPU operations using the APIs

//Initialize struct for three segments configuration
MPU_initThreeSegmentsParam threeSegParam;
threeSegParam.seg1boundary = 0x04;

```
threeSegParam.seg1boundary = 0x08;
threeSegParam.seg1accmask = MPU_READ|MPU_WRITE|MPU_EXEC;
threeSegParam.seg2accmask = MPU_READ;
threeSegParam.seg3accmask = MPU_READ|MPU_WRITE|MPU_EXEC;

//Define memory segment boundaries and set access right for each memory segment
MPU_initThreeSegments(MPU_BASE, &threeSegParam);

// Configures MPU to generate a PUC on access violation on the second segment
MPU_enablePUCOnViolation(MPU_BASE, MPU_SECOND_SEG);

//Enables the MPU module
MPU_start(MPU_BASE);
```

17 32-Bit Hardware Multiplier (MPY32)

Introduction	177
API Functions	177
Programming Example	

17.1 Introduction

The 32-Bit Hardware Multiplier (MPY32) API provides a set of functions for using the MSP430Ware MPY32 modules. Functions are provided to setup the MPY32 modules, set the operand registers, and obtain the results.

The MPY32 Modules does not generate any interrupts.

This driver is contained in mpy32.c, with mpy32.h containing the API definitions for use by applications.

Т

he following code metrics were performed with the TI Compiler 4.2.1 compiler, IAR 5.51.6 compiler and MSPGCC 4.8.0 compiler with different optimization settings. Users may see different code sizes depending on their project settings so it is best to perform your benchmarks within your project. These sizes contain all functions of the peripheral but only functions that are used will be linked into the application and added to the total code size. To see individual API code metrics see the specific API below.

Compiler	Optimization	Code Size
TI Compiler 4.2.1 TI Compiler 4.2.1	None Size	578 294
TI Compiler 4.2.1 IAR 5.51.6 IAR 5.51.6	Speed None Size	294 404 250
MSPGCC 4.8.0	Speed None	1702
MSPGCC 4.8.0 MSPGCC 4.8.0	Size Speed	644 642

17.2 API Functions

Functions

- void MPY32_clearCarryBitValue (void)
- void MPY32_disableFractionalMode (void)
- void MPY32_disableSaturationMode (void)
- void MPY32 enableFractionalMode (void)
- void MPY32_enableSaturationMode (void)
- uint16_t MPY32_getCarryBitValue (void)
- uint8 t MPY32 getFractionalMode (void)
- uint64_t MPY32_getResult (void)
- uint16_t MPY32_getResult16Bit (void)
- uint32_t MPY32_getResult24Bit (void)
- uint32_t MPY32_getResult32Bit (void)
- uint64 MPY32_getResult64Bit (void)
- uint8_t MPY32_getResult8Bit (void)
- uint8_t MPY32_getSaturationMode (void)
- uint16 t MPY32 getSumExtension (void)
- void MPY32 preloadResult (uint64 t result)
- void MPY32_setOperandOne16Bit (uint8_t multiplicationType, uint16_t operand)

- void MPY32_setOperandOne24Bit (uint8_t multiplicationType, uint32_t operand)
- void MPY32_setOperandOne32Bit (uint8_t multiplicationType, uint32_t operand)
- void MPY32_setOperandOne8Bit (uint8_t multiplicationType, uint8_t operand)
- void MPY32_setOperandTwo16Bit (uint16_t operand)
- void MPY32_setOperandTwo24Bit (uint32_t operand)
- void MPY32_setOperandTwo32Bit (uint32_t operand)
- void MPY32_setOperandTwo8Bit (uint8_t operand)
- void MPY32_setWriteDelay (uint16_t writeDelaySelect)

17.2.1 Detailed Description

The MPY32 API is broken into three groups of functions: those that control the settings, those that set the operand registers, and those that return the results, sum extension, and carry bit value.

The settings are handled by

- MPY32_setWriteDelay()
- MPY32_enableSaturationMode()
- MPY32_disableSaturationMode()
- MPY32 enableFractionalMode()
- MPY32_disableFractionalMode()
- MPY32 preloadResult()

The operand registers are set by

- MPY32_setOperandOne8Bit()
- MPY32_setOperandOne16Bit()
- MPY32_setOperandOne24Bit()
- MPY32_setOperandOne32Bit()
- MPY32_setOperandTwo8Bit()
- MPY32_setOperandTwo16Bit()
- MPY32_setOperandTwo24Bit()
- MPY32 setOperandTwo32Bit()

The results can be returned by

- MPY32_getResult()
- MPY32_getSumExtension()
- MPY32_getCarryBitValue()
- MPY32_getSaturationMode()
- MPY32_getFractionalMode()

17.2.2 Function Documentation

17.2.2.1 void MPY32_clearCarryBitValue (void)

Clears the Carry Bit of the last multiplication operation.

This function clears the Carry Bit of the MPY module

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1 TI Compiler 4.2.1 TI Compiler 4.2.1	None Size Speed	6 6
IAR 5.51.6 IAR 5.51.6 IAR 5.51.6	None Size Speed	6 6
MSPGCC 4.8.0 MSPGCC 4.8.0 MSPGCC 4.8.0	None Size Speed	18 6 6

The value of the MPY32 module Carry Bit 0x0 or 0x1.

17.2.2.2 void MPY32_disableFractionalMode (void)

Disables Fraction Mode.

This function disables fraction mode.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	6
TI Compiler 4.2.1	Size	6
TI Compiler 4.2.1	Speed	6
IAR 5.51.6	None	6
IAR 5.51.6	Size	6
IAR 5.51.6	Speed	6
MSPGCC 4.8.0	None	22
MSPGCC 4.8.0	Size	6
MSPGCC 4.8.0	Speed	6

Returns:

None

17.2.2.3 void MPY32_disableSaturationMode (void)

Disables Saturation Mode.

This function disables saturation mode, which allows the raw result of the MPY result registers to be returned.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	6
TI Compiler 4.2.1	Size	6
TI Compiler 4.2.1	Speed	6
IAR 5.51.6	None	6
IAR 5.51.6	Size	6
IAR 5.51.6	Speed	6
MSPGCC 4.8.0	None	22
MSPGCC 4.8.0	Size	6
MSPGCC 4.8.0	Speed	6

Returns:

None

17.2.2.4 void MPY32_enableFractionalMode (void)

Enables Fraction Mode.

This function enables fraction mode.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	6
TI Compiler 4.2.1	Size	6
TI Compiler 4.2.1	Speed	6
IAR 5.51.6	None	6
IAR 5.51.6	Size	6
IAR 5.51.6	Speed	6
MSPGCC 4.8.0	None	22
MSPGCC 4.8.0	Size	6
MSPGCC 4.8.0	Speed	6

Returns:

None

17.2.2.5 void MPY32_enableSaturationMode (void)

Enables Saturation Mode.

This function enables saturation mode. When this is enabled, the result read out from the MPY result registers is converted to the most-positive number in the case of an overflow, or the most-negative number in the case of an underflow. Please note, that the raw value in the registers does not reflect the result returned, and if the saturation mode is disabled, then the raw value of the registers will be returned instead.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	6
TI Compiler 4.2.1	Size	6
TI Compiler 4.2.1	Speed	6
IAR 5.51.6	None	6
IAR 5.51.6	Size	6
IAR 5.51.6	Speed	6
MSPGCC 4.8.0	None	22
MSPGCC 4.8.0	Size	6
MSPGCC 4.8.0	Speed	6

Returns:

None

17.2.2.6 uint16_t MPY32_getCarryBitValue (void)

Returns the Carry Bit of the last multiplication operation.

This function returns the Carry Bit of the MPY module, which either gives the sign after a signed operation or shows a carry after a multiply- and- accumulate operation.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1 TI Compiler 4.2.1	None Size	8
TI Compiler 4.2.1	Speed	8
IAR 5.51.6	None	8
IAR 5.51.6	Size	8
IAR 5.51.6	Speed	8
MSPGCC 4.8.0	None	10
MSPGCC 4.8.0	Size	8
MSPGCC 4.8.0	Speed	8

The value of the MPY32 module Carry Bit 0x0 or 0x1.

17.2.2.7 uint8_t MPY32_getFractionalMode (void)

Gets the Fractional Mode.

This function gets the current fractional mode.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	8
TI Compiler 4.2.1	Size	8
TI Compiler 4.2.1	Speed	8
IAR 5.51.6	None	8
IAR 5.51.6	Size	8
IAR 5.51.6	Speed	8
MSPGCC 4.8.0	None	16
MSPGCC 4.8.0	Size	8
MSPGCC 4.8.0	Speed	8

Returns:

Gets the fractional mode Return one of the following:

- MPY32_FRACTIONAL_MODE_DISABLED
- MPY32_FRACTIONAL_MODE_ENABLED
 Gets the Fractional Mode

17.2.2.8 uint64_t MPY32_getResult (void)

Returns an 64-bit result of the last multiplication operation.

This function returns all 64 bits of the result registers

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	114
TI Compiler 4.2.1	Size	42
TI Compiler 4.2.1	Speed	42
IAR 5.51.6	None	102
IAR 5.51.6	Size	22
IAR 5.51.6	Speed	22
MSPGCC 4.8.0	None	694
MSPGCC 4.8.0	Size	242
MSPGCC 4.8.0	Speed	240

The 64-bit result is returned as a uint64_t type

17.2.2.9 uint16_t MPY32_getResult16Bit (void)

Deprecated - Returns an 16-bit result of the last multiplication operation.

This function returns the 16 least significant bits of the result registers. This can improve efficiency if the operation has no more than a 16-bit result.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	6
TI Compiler 4.2.1	Size	6
TI Compiler 4.2.1	Speed	6
IAR 5.51.6	None	6
IAR 5.51.6	Size	2
IAR 5.51.6	Speed	2
MSPGCC 4.8.0	None	8
MSPGCC 4.8.0	Size	6
MSPGCC 4.8.0	Speed	6

Returns:

The 16-bit result of the last multiplication operation.

17.2.2.10 uint32 t MPY32 getResult24Bit (void)

Deprecated - Returns an 24-bit result of the last multiplication operation.

This function returns the 24 least significant bits of the result registers. This can improve efficiency if the operation has no more than an 24-bit result.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	36
TI Compiler 4.2.1	Size	14
TI Compiler 4.2.1	Speed	14
IAR 5.51.6	None	22
IAR 5.51.6	Size	2
IAR 5.51.6	Speed	2
MSPGCC 4.8.0	None	72
MSPGCC 4.8.0	Size	30
MSPGCC 4.8.0	Speed	30

Returns:

The 24-bit result of the last multiplication operation.

17.2.2.11 uint32_t MPY32_getResult32Bit (void)

Deprecated - Returns an 32-bit result of the last multiplication operation.

This function returns a 32-bit result of the last multiplication operation, which is the maximum amount of bits of a 16×16 operation.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	36
TI Compiler 4.2.1 TI Compiler 4.2.1	Size Speed	14 14
IAR 5.51.6	None	22
IAR 5.51.6 IAR 5.51.6	Size Speed	0 0
MSPGCC 4.8.0	None	72
MSPGCC 4.8.0	Size	30
MSPGCC 4.8.0	Speed	30

The 32-bit result of the last multiplication operation.

17.2.2.12 uint64 MPY32_getResult64Bit (void)

Deprecated - Returns an 64-bit result of the last multiplication operation.

This function returns all 64 bits of the result registers. The way this is passed is with 4 integers contained within a uint16 struct.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	42
TI Compiler 4.2.1	Size	42
TI Compiler 4.2.1	Speed	42
IAR 5.51.6	None	52
IAR 5.51.6	Size	52
IAR 5.51.6	Speed	52
MSPGCC 4.8.0	None	82
MSPGCC 4.8.0	Size	32
MSPGCC 4.8.0	Speed	32

Returns:

The 64-bit result separated into 4 uint16_ts in a uint16 struct

17.2.2.13 uint8_t MPY32_getResult8Bit (void)

Deprecated - Returns an 8-bit result of the last multiplication operation.

This function returns the 8 least significant bits of the result registers. This can improve efficiency if the operation has no more than an 8-bit result.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	6
TI Compiler 4.2.1	Size	6
TI Compiler 4.2.1	Speed	6
IAR 5.51.6	None	6
IAR 5.51.6	Size	6
IAR 5.51.6	Speed	6
MSPGCC 4.8.0	None	10
MSPGCC 4.8.0	Size	6
MSPGCC 4.8.0	Speed	6

The 8-bit result of the last multiplication operation.

17.2.2.14 uint8_t MPY32_getSaturationMode (void)

Gets the Saturation Mode.

This function gets the current saturation mode.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	8
TI Compiler 4.2.1	Size	8
TI Compiler 4.2.1	Speed	8
IAR 5.51.6	None	8
IAR 5.51.6	Size	8
IAR 5.51.6	Speed	8
MSPGCC 4.8.0	None	16
MSPGCC 4.8.0	Size	8
MSPGCC 4.8.0	Speed	8

Returns:

Gets the Saturation Mode Return one of the following:

- MPY32_SATURATION_MODE_DISABLED
- MPY32_SATURATION_MODE_ENABLED
 Gets the Saturation Mode

17.2.2.15 uint16_t MPY32_getSumExtension (void)

Returns the Sum Extension of the last multiplication operation.

This function returns the Sum Extension of the MPY module, which either gives the sign after a signed operation or shows a carry after a multiply- and-accumulate operation. The Sum Extension acts as a check for overflows or underflows.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	6
TI Compiler 4.2.1	Size	6
TI Compiler 4.2.1	Speed	6
IAR 5.51.6	None	6
IAR 5.51.6	Size	6
IAR 5.51.6	Speed	6
MSPGCC 4.8.0	None	8
MSPGCC 4.8.0	Size	6
MSPGCC 4.8.0	Speed	6

Returns:

The value of the MPY32 module Sum Extension.

17.2.2.16 void MPY32_preloadResult (uint64_t result)

Preloads the result register.

This function Preloads the result register

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	52
TI Compiler 4.2.1	Size	18
TI Compiler 4.2.1	Speed	18
IAR 5.51.6	None	18
IAR 5.51.6	Size	18
IAR 5.51.6	Speed	18
MSPGCC 4.8.0	None	198
MSPGCC 4.8.0	Size	78
MSPGCC 4.8.0	Speed	78

Returns:

None

17.2.2.17 void MPY32 setOperandOne16Bit (uint8 t multiplicationType, uint16 t operand)

Sets an 16-bit value into operand 1.

This function sets the first operand for multiplication and determines what type of operation should be performed. Once the second operand is set, then the operation will begin.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	22
TI Compiler 4.2.1	Size	8
TI Compiler 4.2.1	Speed	8
IAR 5.51.6	None	12
IAR 5.51.6	Size	12
IAR 5.51.6	Speed	12
MSPGCC 4.8.0	None	26
MSPGCC 4.8.0	Size	10
MSPGCC 4.8.0	Speed	10

Parameters:

multiplicationType is the type of multiplication to perform once the second operand is set. Valid values are:

- MPY32_MULTIPLY_UNSIGNED
- MPY32 MULTIPLY SIGNED
- MPY32_MULTIPLYACCUMULATE_UNSIGNED
- MPY32_MULTIPLYACCUMULATE_SIGNED

operand is the 16-bit value to load into the 1st operand.

Returns:

None

17.2.2.18 void MPY32_setOperandOne24Bit (uint8_t multiplicationType, uint32_t operand)

Sets an 24-bit value into operand 1.

This function sets the first operand for multiplication and determines what type of operation should be performed. Once the second operand is set, then the operation will begin.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	46
TI Compiler 4.2.1	Size	16
TI Compiler 4.2.1 IAR 5.51.6	Speed None	16 24
IAR 5.51.6	Size	10
IAR 5.51.6	Speed	22
MSPGCC 4.8.0	None	84
MSPGCC 4.8.0	Size	38
MSPGCC 4.8.0	Speed	38

Parameters:

multiplicationType is the type of multiplication to perform once the second operand is set. Valid values are:

- MPY32_MULTIPLY_UNSIGNED
- MPY32_MULTIPLY_SIGNED
- MPY32_MULTIPLYACCUMULATE_UNSIGNED
- MPY32_MULTIPLYACCUMULATE_SIGNED

operand is the 24-bit value to load into the 1st operand.

Returns:

None

17.2.2.19 void MPY32_setOperandOne32Bit (uint8_t multiplicationType, uint32_t operand)

Sets an 32-bit value into operand 1.

This function sets the first operand for multiplication and determines what type of operation should be performed. Once the second operand is set, then the operation will begin.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	44
TI Compiler 4.2.1	Size	16
TI Compiler 4.2.1	Speed	16
IAR 5.51.6	None	24
IAR 5.51.6	Size	10
IAR 5.51.6	Speed	22
MSPGCC 4.8.0	None	82
MSPGCC 4.8.0	Size	38
MSPGCC 4.8.0	Speed	38

Parameters:

multiplicationType is the type of multiplication to perform once the second operand is set. Valid values are:

- MPY32_MULTIPLY_UNSIGNED
- MPY32_MULTIPLY_SIGNED
- MPY32 MULTIPLYACCUMULATE UNSIGNED
- MPY32_MULTIPLYACCUMULATE_SIGNED

operand is the 32-bit value to load into the 1st operand.

Returns:

None

17.2.2.20 void MPY32_setOperandOne8Bit (uint8_t multiplicationType, uint8_t operand)

Sets an 8-bit value into operand 1.

This function sets the first operand for multiplication and determines what type of operation should be performed. Once the second operand is set, then the operation will begin.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	22
TI Compiler 4.2.1	Size	8
TI Compiler 4.2.1	Speed	8
IAR 5.51.6	None	12
IAR 5.51.6	Size	12
IAR 5.51.6	Speed	12
MSPGCC 4.8.0	None	26
MSPGCC 4.8.0	Size	10
MSPGCC 4.8.0	Speed	10

Parameters:

multiplicationType is the type of multiplication to perform once the second operand is set. Valid values are:

- MPY32_MULTIPLY_UNSIGNED
- MPY32_MULTIPLY_SIGNED
- MPY32_MULTIPLYACCUMULATE_UNSIGNED
- MPY32_MULTIPLYACCUMULATE_SIGNED

operand is the 8-bit value to load into the 1st operand.

Returns:

None

17.2.2.21 void MPY32 setOperandTwo16Bit (uint16 t operand)

Sets an 16-bit value into operand 2, which starts the multiplication.

This function sets the second operand of the multiplication operation and starts the operation.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	14
TI Compiler 4.2.1	Size	6
TI Compiler 4.2.1	Speed	6
IAR 5.51.6	None	6
IAR 5.51.6	Size	6
IAR 5.51.6	Speed	6
MSPGCC 4.8.0	None	18
MSPGCC 4.8.0	Size	6
MSPGCC 4.8.0	Speed	6

Parameters:

operand is the 16-bit value to load into the 2nd operand.

None

17.2.2.22 void MPY32_setOperandTwo24Bit (uint32_t operand)

Sets an 24-bit value into operand 2, which starts the multiplication.

This function sets the second operand of the multiplication operation and starts the operation.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	22
TI Compiler 4.2.1	Size	10
TI Compiler 4.2.1	Speed	10
IAR 5.51.6	None	10
IAR 5.51.6	Size	10
IAR 5.51.6	Speed	10
MSPGCC 4.8.0	None	56
MSPGCC 4.8.0	Size	18
MSPGCC 4.8.0	Speed	18

Parameters:

operand is the 24-bit value to load into the 2nd operand.

Returns:

None

17.2.2.23 void MPY32_setOperandTwo32Bit (uint32_t operand)

Sets an 32-bit value into operand 2, which starts the multiplication.

This function sets the second operand of the multiplication operation and starts the operation.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	22
TI Compiler 4.2.1	Size	10
TI Compiler 4.2.1	Speed	10
IAR 5.51.6	None	10
IAR 5.51.6	Size	10
IAR 5.51.6	Speed	10
MSPGCC 4.8.0	None	54
MSPGCC 4.8.0	Size	18
MSPGCC 4.8.0	Speed	18

Parameters:

operand is the 32-bit value to load into the 2nd operand.

Returns:

None

17.2.2.24 void MPY32 setOperandTwo8Bit (uint8 t operand)

Sets an 8-bit value into operand 2, which starts the multiplication.

This function sets the second operand of the multiplication operation and starts the operation.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	14
TI Compiler 4.2.1	Size	6
TI Compiler 4.2.1	Speed	6
IAR 5.51.6	None	6
IAR 5.51.6	Size	6
IAR 5.51.6	Speed	6
MSPGCC 4.8.0	None	20
MSPGCC 4.8.0	Size	6
MSPGCC 4.8.0	Speed	6

Parameters:

operand is the 8-bit value to load into the 2nd operand.

Returns:

None

17.2.2.25 void MPY32_setWriteDelay (uint16_t writeDelaySelect)

Sets the write delay setting for the MPY32 module.

This function sets up a write delay to the MPY module's registers, which holds any writes to the registers until all calculations are complete. There are two different settings, one which waits for 32-bit results to be ready, and one which waits for 64-bit results to be ready. This prevents unpredicatble results if registers are changed before the results are ready.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	20
TI Compiler 4.2.1	Size	12
TI Compiler 4.2.1	Speed	12
IAR 5.51.6	None	12
IAR 5.51.6	Size	12
IAR 5.51.6	Speed	12
MSPGCC 4.8.0	None	44
MSPGCC 4.8.0	Size	16
MSPGCC 4.8.0	Speed	16

Parameters:

writeDelaySelect delays the write to any MPY32 register until the selected bit size of result has been written. Valid values are:

- MPY32_WRITEDELAY_OFF [Default] writes are not delayed
- MPY32_WRITEDELAY_32BIT writes are delayed until a 32-bit result is available in the result registers
- MPY32_WRITEDELAY_64BIT writes are delayed until a 64-bit result is available in the result registers Modified bits are MPYDLY32 and MPYDLYWRTEN of MPY32CTL0 register.

Returns:

None

17.3 Programming Example

The following example shows how to initialize and use the MPY32 API to calculate a 16-bit by 16-bit unsigned multiplication operation.

18 Power Management Module (PMM)

Introduction	191
API Functions	191
Programming Example	197

18.1 Introduction

The PMM manages all functions related to the power supply and its supervision for the device. Its primary functions are first to generate a supply voltage for the core logic, and second, provide several mechanisms for the supervision of the voltage applied to the device (DVCC).

The PMM uses an integrated low-dropout voltage regulator (LDO) to produce a secondary core voltage (VCORE) from the primary one applied to the device (DVCC). In general, VCORE supplies the CPU, memories, and the digital modules, while DVCC supplies the I/Os and analog modules. The VCORE output is maintained using a dedicated voltage reference. The input or primary side of the regulator is referred to as its high side. The output or secondary side is referred to as its low side.

Т

he following code metrics were performed with the TI Compiler 4.2.1 compiler, IAR 5.51.6 compiler and MSPGCC 4.8.0 compiler with different optimization settings. Users may see different code sizes depending on their project settings so it is best to perform your benchmarks within your project. These sizes contain all functions of the peripheral but only functions that are used will be linked into the application and added to the total code size. To see individual API code metrics see the specific API below.

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	184
TI Compiler 4.2.1	Size	168
TI Compiler 4.2.1	Speed	172
IAR 5.51.6	None	168
IAR 5.51.6	Size	112
IAR 5.51.6	Speed	130
MSPGCC 4.8.0	None	420
MSPGCC 4.8.0	Size	204
MSPGCC 4.8.0	Speed	204

18.2 API Functions

Functions

- void PMM_clearInterrupt (uint16_t mask)
- void PMM disableSVSH (void)
- void PMM disableSVSL (void)
- void PMM_enableSVSH (void)
- void PMM enableSVSL (void)
- uint16 t PMM getInterruptStatus (uint16 t mask)
- void PMM_regOff (void)
- void PMM_regOn (void)
- void PMM trigBOR (void)
- void PMM_trigPOR (void)
- void PMM_unlockLPM5 (void)

18.2.1 Detailed Description

PMM_enableSVSH() / PMM_disableSVSH() If disabled on FR57xx, High-side SVS (SVSH) is disabled in LPM4.5. SVSH is always enabled in active mode and LPM0/1/2/3/4 and LPM3.5. If enabled, SVSH is always enabled. Note: this API has different functionality depending on the part.

PMM_enableSVSL() / PMM_disableSVSL() If disabled, Low-side SVS (SVSL) is disabled in low power modes. SVSL is always enabled in active mode and LPM0. If enabled, SVSL is enabled in LPM0/1/2. SVSL is always enabled in AM and always disabled in LPM3/4 and LPM3.5/4.5.

PMM_regOff() / PMM_regOn() If off, Regulator is turned off when going to LPM3/4. System enters LPM3.5 or LPM4.5, respectively. If on, Regulator remains on when going into LPM3/4

PMM_clearInterrupt() Clear selected or all interrupt flags for the PMM

PMM_getInterruptStatus() Returns interrupt status of the selected flag in the PMM module

PMM_lockLPM5() / **PMM_unlockLPM5()** If unlocked, LPMx.5 configuration is not locked and defaults to its reset condition. if locked, LPMx.5 configuration remains locked. Pin state is held during LPMx.5 entry and exit.

This driver is contained in pmm.c, with pmm.h containing the API definitions for use by applications.

18.2.2 Function Documentation

18.2.2.1 void PMM clearInterrupt (uint16 t mask)

Clears interrupt flags for the PMM.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	24
TI Compiler 4.2.1	Size	16
TI Compiler 4.2.1	Speed	16
IAR 5.51.6	None	16
IAR 5.51.6	Size	10
IAR 5.51.6	Speed	12
MSPGCC 4.8.0	None	48
MSPGCC 4.8.0	Size	20
MSPGCC 4.8.0	Speed	20

Parameters:

mask is the mask for specifying the required flag Mask value is the logical OR of any of the following:

- PMM_BOR_INTERRUPT Software BOR interrupt
- PMM_RST_INTERRUPT RESET pin interrupt
- PMM_POR_INTERRUPT Software POR interrupt
- PMM_SVSH_INTERRUPT SVS high side interrupt
- PMM_SVSL_INTERRUPT SVS low side interrupt, not available for FR58xx/59xx
- PMM_LPM5_INTERRUPT LPM5 indication
- PMM_ALL All interrupts

Modified bits of PMMCTL0 register and bits of PMMIFG register.

Returns:

None

18.2.2.2 void PMM_disableSVSH (void)

Disables the high-side SVS circuitry.

Modified bits of PMMCTL0 register.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	18
TI Compiler 4.2.1	Size	18
TI Compiler 4.2.1	Speed	18
IAR 5.51.6	None	18
IAR 5.51.6	Size	12
IAR 5.51.6	Speed	14
MSPGCC 4.8.0	None	42
MSPGCC 4.8.0	Size	22
MSPGCC 4.8.0	Speed	22

Returns:

None

18.2.2.3 void PMM_disableSVSL (void)

Disables the low-side SVS circuitry.

Modified bits of PMMCTL0 register.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	18
TI Compiler 4.2.1	Size	18
TI Compiler 4.2.1	Speed	18
IAR 5.51.6	None	18
IAR 5.51.6	Size	12
IAR 5.51.6	Speed	14
MSPGCC 4.8.0	None	42
MSPGCC 4.8.0	Size	22
MSPGCC 4.8.0	Speed	22

Returns:

None

18.2.2.4 void PMM_enableSVSH (void)

Enables the high-side SVS circuitry.

Modified bits of PMMCTL0 register.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	18
TI Compiler 4.2.1	Size	18
TI Compiler 4.2.1	Speed	18
IAR 5.51.6	None	18
IAR 5.51.6	Size	12
IAR 5.51.6	Speed	14
MSPGCC 4.8.0	None	42
MSPGCC 4.8.0	Size	22
MSPGCC 4.8.0	Speed	22

None

18.2.2.5 void PMM_enableSVSL (void)

Enables the low-side SVS circuitry.

Modified bits of PMMCTL0 register.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	18
TI Compiler 4.2.1	Size	18
TI Compiler 4.2.1	Speed	18
IAR 5.51.6	None	18
IAR 5.51.6	Size	12
IAR 5.51.6	Speed	14
MSPGCC 4.8.0	None	42
MSPGCC 4.8.0	Size	22
MSPGCC 4.8.0	Speed	22

Returns:

None

18.2.2.6 uint16_t PMM_getInterruptStatus (uint16_t *mask*)

Returns interrupt status.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	14
TI Compiler 4.2.1	Size	6
TI Compiler 4.2.1	Speed	10
IAR 5.51.6	None	6
IAR 5.51.6	Size	6
IAR 5.51.6	Speed	6
MSPGCC 4.8.0	None	18
MSPGCC 4.8.0	Size	6
MSPGCC 4.8.0	Speed	6

Parameters:

mask is the mask for specifying the required flag Mask value is the logical OR of any of the following:

- PMM_BOR_INTERRUPT Software BOR interrupt
- PMM_RST_INTERRUPT RESET pin interrupt
- PMM_POR_INTERRUPT Software POR interrupt
- PMM_SVSH_INTERRUPT SVS high side interrupt
- PMM_SVSL_INTERRUPT SVS low side interrupt, not available for FR58xx/59xx
- PMM LPM5 INTERRUPT LPM5 indication
- PMM_ALL All interrupts

Returns:

Logical OR of any of the following:

■ PMM_BOR_INTERRUPT Software BOR interrupt

- PMM_RST_INTERRUPT RESET pin interrupt
- PMM_POR_INTERRUPT Software POR interrupt
- PMM_SVSH_INTERRUPT SVS high side interrupt
- PMM_SVSL_INTERRUPT SVS low side interrupt, not available for FR58xx/59xx
- PMM_LPM5_INTERRUPT LPM5 indication
- PMM_ALL All interrupts indicating the status of the selected interrupt flags

18.2.2.7 void PMM_regOff (void)

Turns OFF the low-dropout voltage regulator (LDO) when going into LPM3/4, thus the system will enter LPM3.5 or LPM4.5 respectively.

Modified bits of PMMCTL0 register.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	18
TI Compiler 4.2.1	Size	18
TI Compiler 4.2.1	Speed	18
IAR 5.51.6	None	18
IAR 5.51.6	Size	12
IAR 5.51.6	Speed	14
MSPGCC 4.8.0	None	42
MSPGCC 4.8.0	Size	22
MSPGCC 4.8.0	Speed	22

Returns:

None

18.2.2.8 void PMM_regOn (void)

Makes the low-dropout voltage regulator (LDO) remain ON when going into LPM 3/4.

Modified bits of PMMCTL0 register.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	18
TI Compiler 4.2.1	Size	18
TI Compiler 4.2.1	Speed	18
IAR 5.51.6	None	18
IAR 5.51.6	Size	10
IAR 5.51.6	Speed	12
MSPGCC 4.8.0	None	42
MSPGCC 4.8.0	Size	22
MSPGCC 4.8.0	Speed	22

Returns:

None

18.2.2.9 void PMM_trigBOR (void)

Calling this function will trigger a software Brown Out Rest (BOR).

Modified bits of PMMCTL0 register.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	16
TI Compiler 4.2.1	Size	16
TI Compiler 4.2.1	Speed	16
IAR 5.51.6	None	16
IAR 5.51.6	Size	10
IAR 5.51.6	Speed	12
MSPGCC 4.8.0	None	40
MSPGCC 4.8.0	Size	20
MSPGCC 4.8.0	Speed	20

Returns:

None

18.2.2.10 void PMM_trigPOR (void)

Calling this function will trigger a software Power On Reset (POR).

Modified bits of PMMCTL0 register.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	16
TI Compiler 4.2.1	Size	16
TI Compiler 4.2.1	Speed	16
IAR 5.51.6	None	16
IAR 5.51.6	Size	10
IAR 5.51.6	Speed	12
MSPGCC 4.8.0	None	40
MSPGCC 4.8.0	Size	20
MSPGCC 4.8.0	Speed	20

Returns:

None

18.2.2.11 void PMM_unlockLPM5 (void)

Unlock LPM5.

LPMx.5 configuration is not locked and defaults to its reset condition. Disable the GPIO power-on default high-impedance mode to activate previously configured port settings.

Code Metrics:

// Clear reset flag

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	6
TI Compiler 4.2.1	Size	6
TI Compiler 4.2.1	Speed	6
IAR 5.51.6	None	6
IAR 5.51.6	Size	6
IAR 5.51.6	Speed	6
MSPGCC 4.8.0	None	22
MSPGCC 4.8.0	Size	6
MSPGCC 4.8.0	Speed	6

Returns:

None

18.3 Programming Example

The following example shows some pmm operations using the APIs

```
//Unlock the GPIO pins.
Base Address of Comparator D,
By default, the pins are unlocked unless waking
up from an LPMx.5 state in which case all \ensuremath{\mathsf{GPIO}}
are previously locked.
   PMM_unlockLPM5 (PMM_BASE);
         //Get Interrupt Status from the PMMIFG register.
           /\star Base Address of Comparator D,
mask:
       PMM_PMMBORIFG
       PMM_PMMRSTIFG,
       PMM_PMMPORIFG,
       PMM_SVSLIFG,
       PMM_SVSHIFG
       PMM_PMMLPM5IFG,
return STATUS_SUCCESS (0x01) or STATUS_FAIL (0x00)
       if (PMM_getInterruptStatus(PMM_BASE, PMM_PMMLPM5IFG)) // Was this device in LPMx.5 mode before
         //Clear Interrupt Flag from the PMMIFG register.
               /* Base Address of Comparator D,
mask:
       PMM_PMMBORIFG
       PMM_PMMRSTIFG,
       PMM_PMMPORIFG,
       PMM_SVSLIFG,
       PMM_SVSHIFG
       PMM_PMMLPM5IFG,
       PMM_ALL
               PMM_clearInterrupt(PMM_BASE, PMM_PMMLPM5IFG);
                                                                                  // Clear the LPMx.5 flag
       if (PMM_getInterruptStatus(PMM_BASE, PMM_PMMRSTIFG))
                                                                 // Was this reset triggered by the Reset :
```

2014-06-25

PMM_clearInterrupt(PMM_BASE, PMM_PMMRSTIFG);

```
__delay_cycles(1000000);
         //Lock GPIO output states (before triggering a BOR)
Base Address of Comparator D,
Forces all GPIO to retain their output
states during a reset.
               */
       PMM_lockLPM5 (PMM_BASE);
        //Trigger a software Brown Out Reset (BOR)
Base Address of Comparator D,
Forces the devices to perform a BOR.
               */
      PMM_trigBOR(PMM_BASE);
                                                                                        // Software trigge
       if (PMM_getInterruptStatus(PMM_BASE, PMM_PMMBORIFG))
                                                             // Was this reset triggered by the BOR fla
               PMM_clearInterrupt(PMM_BASE, PMM_PMMBORIFG);
                                                                                // Clear BOR flag
       __delay_cycles(1000000);
       PMM_lockLPM5 (PMM_BASE);
        //Disable SVSH
              /*
Base Address of Comparator D,
High-side\ SVS\ (SVSH)\ is\ disabled\ in\ LPM4.5.\ SVSH\ is
always enabled in active mode and LPM0/1/2/3/4 and LPM3.5.
       PMM_disableSVSH(PMM_BASE);
        //Disable SVSL
Base Address of Comparator D,
Low-side SVS (SVSL) is disabled in low power modes.
{\tt SVSL} is always enabled in active mode and {\tt LPM0}\,.
               */
       PMM_disableSVSL(PMM_BASE);
        //Disable Regulator
              /*
Base Address of Comparator D,
Regulator is turned off when going to LPM3/4.
System enters LPM3.5 or LPM4.5, respectively.
              */
      PMM_regOff(PMM_BASE);
       __bis_SR_register(LPM4_bits); // Enter LPM4.5, This automatically locks
                                                                  //(if not locked already) all GPIO pins
                                                                  // and will set the LPM5 flag and set
                                                                  // in the PM5CTLO register upon wake up
   while (1)
       __no_operation();
                            // Don't sleep
```

19 Internal Reference (REF)

Introduction	199
API Functions	199
Programming Example	205

19.1 Introduction

The Internal Reference (REF) API provides a set of functions for using the MSP430Ware REF modules. Functions are provided to setup and enable use of the Reference voltage, enable or disable the internal temperature sensor, and view the status of the inner workings of the REF module.

The reference module (REF) is responsible for generation of all critical reference voltages that can be used by various analog peripherals in a given device. These include but are not limited to the ADC12_B and COMP_B modules, dependent upon the particular device. The heart of the reference system is the bandgap from which all other references are derived by unity or non-inverting gain stages. The REFGEN sub-system consists of the bandgap, the bandgap bias, and the non-inverting buffer stage which generates the three primary voltage reference available in the system, namely 1.5 V, 2.0 V, and 2.5 V. In addition, when enabled, a buffered bandgap voltage is also available.

This driver is contained in ref.c, with ref.h containing the API definitions for use by applications.

Т

he following code metrics were performed with the TI Compiler 4.2.1 compiler, IAR 5.51.6 compiler and MSPGCC 4.8.0 compiler with different optimization settings. Users may see different code sizes depending on their project settings so it is best to perform your benchmarks within your project. These sizes contain all functions of the peripheral but only functions that are used will be linked into the application and added to the total code size. To see individual API code metrics see the specific API below.

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	178
TI Compiler 4.2.1	Size	72
TI Compiler 4.2.1	Speed	72
IAR 5.51.6	None	84
IAR 5.51.6	Size	54
IAR 5.51.6	Speed	54
MSPGCC 4.8.0	None	266
MSPGCC 4.8.0	Size	68
MSPGCC 4.8.0	Speed	68

19.2 API Functions

Functions

- void REF_disableReferenceVoltage (uint16_t baseAddress)
- void REF_disableTempSensor (uint16_t baseAddress)
- void REF_enableReferenceVoltage (uint16_t baseAddress)
- void REF_enableTempSensor (uint16_t baseAddress)
- uint16_t REF_getBandgapMode (uint16_t baseAddress)
- bool REF isBandgapActive (uint16 t baseAddress)
- bool REF_isRefGenActive (uint16_t baseAddress)
- uint16_t REF_isRefGenBusy (uint16_t baseAddress)
- void REF_setReferenceVoltage (uint16_t baseAddress, uint8_t referenceVoltageSelect)

19.2.1 Detailed Description

The REF API is broken into three groups of functions: those that deal with the reference voltage, those that handle the internal temperature sensor, and those that return the status of the REF module.

The reference voltage of the REF module is handled by

- REF_setReferenceVoltage()
- REF_enableReferenceVoltage()
- REF_disableReferenceVoltage()

The internal temperature sensor is handled by

- REF_disableTempSensor()
- REF_enableTempSensor()

The status of the REF module is handled by

- REF_getBandgapMode()
- REF_isBandgapActive()
- REF_isRefGenBusy()
- REF isRefGen()

19.2.2 Function Documentation

19.2.2.1 void REF_disableReferenceVoltage (uint16_t baseAddress)

Disables the reference voltage.

This function is used to disable the generated reference voltage. Please note, if the

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	16
TI Compiler 4.2.1	Size	6
TI Compiler 4.2.1	Speed	6
IAR 5.51.6	None	8
IAR 5.51.6	Size	6
IAR 5.51.6	Speed	6
MSPGCC 4.8.0	None	26
MSPGCC 4.8.0	Size	6
MSPGCC 4.8.0	Speed	6

Parameters:

baseAddress is the base address of the REF module.

Modified bits are REFON of REFCTL0 register.

Returns:

None

19.2.2.2 void REF_disableTempSensor (uint16_t baseAddress)

Disables the internal temperature sensor to save power consumption.

This function is used to turn off the internal temperature sensor to save on power consumption. The temperature sensor is enabled by default. Please note, that giving ADC12 module control over the REF module, the state of the temperature sensor is dependent on the controls of the ADC12 module. Please note, if the REF_isRefGenBusy() returns REF_BUSY, this function will have no effect.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1 TI Compiler 4.2.1	None Size	16 6
TI Compiler 4.2.1	Speed	6
IAR 5.51.6	None	8
IAR 5.51.6 IAR 5.51.6	Size Speed	6 6
	<u>'</u>	
MSPGCC 4.8.0 MSPGCC 4.8.0	None Size	26 6
MSPGCC 4.8.0	Speed	6

Parameters:

baseAddress is the base address of the REF module.

Modified bits are **REFTCOFF** of **REFCTL0** register.

Returns:

None

19.2.2.3 void REF_enableReferenceVoltage (uint16_t baseAddress)

Enables the reference voltage to be used by peripherals.

This function is used to enable the generated reference voltage to be used other peripherals or by an output pin, if enabled. Please note, that giving ADC12 module control over the REF module, the state of the reference voltage is dependent on the controls of the ADC12 module. Please note, if the REF_isRefGenBusy() returns REF_BUSY, this function will have no effect.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	16
TI Compiler 4.2.1	Size	6
TI Compiler 4.2.1	Speed	6
IAR 5.51.6	None	8
IAR 5.51.6	Size	6
IAR 5.51.6	Speed	6
MSPGCC 4.8.0	None	26
MSPGCC 4.8.0	Size	6
MSPGCC 4.8.0	Speed	6

Parameters:

baseAddress is the base address of the REF module.

Modified bits are $\ensuremath{\text{REFON}}$ of $\ensuremath{\text{REFCTL0}}$ register.

Returns:

None

19.2.2.4 void REF enableTempSensor (uint16 t baseAddress)

Enables the internal temperature sensor.

This function is used to turn on the internal temperature sensor to use by other peripherals. The temperature sensor is enabled by default. Please note, if the REF_isRefGenBusy() returns REF_BUSY, this function will have no effect.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	16
TI Compiler 4.2.1	Size	6
TI Compiler 4.2.1	Speed	6
IAR 5.51.6	None	8
IAR 5.51.6	Size	6
IAR 5.51.6	Speed	6
MSPGCC 4.8.0	None	26
MSPGCC 4.8.0	Size	6
MSPGCC 4.8.0	Speed	6

Parameters:

baseAddress is the base address of the REF module.

Modified bits are REFTCOFF of REFCTL0 register.

Returns:

None

19.2.2.5 uint16_t REF_getBandgapMode (uint16_t baseAddress)

Returns the bandgap mode of the REF module.

This function is used to return the bandgap mode of the REF module, requested by the peripherals using the bandgap. If a peripheral requests static mode, then the bandgap mode will be static for all modules, whereas if all of the peripherals using the bandgap request sample mode, then that will be the mode returned. Sample mode allows the bandgap to be active only when necessary to save on power consumption, static mode requires the bandgap to be active until no peripherals are using it anymore.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	18
TI Compiler 4.2.1	Size	10
TI Compiler 4.2.1	Speed	10
IAR 5.51.6	None	8
IAR 5.51.6	Size	8
IAR 5.51.6	Speed	8
MSPGCC 4.8.0	None	18
MSPGCC 4.8.0	Size	8
MSPGCC 4.8.0	Speed	8

Parameters:

baseAddress is the base address of the REF module.

Returns:

One of the following:

- REF_STATICMODE if the bandgap is operating in static mode
- REF_SAMPLEMODE if the bandgap is operating in sample mode bandgap mode of the REF module

19.2.2.6 bool REF_isBandgapActive (uint16_t baseAddress)

Returns the active status of the bandgap in the REF module.

This function is used to return the active status of the bandgap in the REF module. If the bandgap is in use by a peripheral, then the status will be seen as active.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	24
TI Compiler 4.2.1	Size	8
TI Compiler 4.2.1	Speed	8
IAR 5.51.6	None	12
IAR 5.51.6	Size	2
IAR 5.51.6	Speed	2
MSPGCC 4.8.0	None	34
MSPGCC 4.8.0	Size	8
MSPGCC 4.8.0	Speed	8

Parameters:

baseAddress is the base address of the REF module.

Returns

One of the following:

- REF_ACTIVE if active
- REF_INACTIVE if not active indicating the bandgap active status of the module

19.2.2.7 bool REF_isRefGenActive (uint16_t baseAddress)

Returns the active status of the reference generator in the REF module.

This function is used to return the active status of the reference generator in the REF module. If the ref. generator is on and ready to use, then the status will be seen as active.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	24
TI Compiler 4.2.1	Size	8
TI Compiler 4.2.1	Speed	8
IAR 5.51.6	None	12
IAR 5.51.6	Size	0
IAR 5.51.6	Speed	0
MSPGCC 4.8.0	None	34
MSPGCC 4.8.0	Size	8
MSPGCC 4.8.0	Speed	8

Parameters:

baseAddress is the base address of the REF module.

Returns:

One of the following:

- REF_ACTIVE if active
- REF_INACTIVE if not active indicating the reference generator active status of the module

19.2.2.8 uint16_t REF_isRefGenBusy (uint16_t baseAddress)

Returns the busy status of the reference generator in the REF module.

This function is used to return the busy status of the reference generator in the REF module. If the ref. generator is in use by a peripheral, then the status will be seen as busy.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	18
TI Compiler 4.2.1	Size	10
TI Compiler 4.2.1	Speed	10
IAR 5.51.6	None	8
IAR 5.51.6	Size	8
IAR 5.51.6	Speed	8
MSPGCC 4.8.0	None	18
MSPGCC 4.8.0	Size	8
MSPGCC 4.8.0	Speed	8

Parameters:

baseAddress is the base address of the REF module.

Returns:

One of the following:

- REF_NOTBUSY if the reference generator is not being used
- REF_BUSY if the reference generator is being used, disallowing changes to be made to the REF module controls indicating the reference generator busy status of the module

19.2.2.9 void REF_setReferenceVoltage (uint16_t baseAddress, uint8_t referenceVoltageSelect)

Sets the reference voltage for the voltage generator.

This function sets the reference voltage generated by the voltage generator to be used by other peripherals. This reference voltage will only be valid while the REF module is in control. Please note, if the REF_isRefGenBusy() returns REF_BUSY, this function will have no effect.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	30
TI Compiler 4.2.1	Size	12
TI Compiler 4.2.1	Speed	12
IAR 5.51.6	None	12
IAR 5.51.6	Size	12
IAR 5.51.6	Speed	12
MSPGCC 4.8.0	None	58
MSPGCC 4.8.0	Size	12
MSPGCC 4.8.0	Speed	12

Parameters:

baseAddress is the base address of the REF module.

reference Voltage Select is the desired voltage to generate for a reference voltage. Valid values are:

- REF_VREF1_5V [Default]
- REF VREF2 0V
- REF VREF2 5V

Modified bits are REFVSEL of REFCTL0 register.

Returns: None

19.3 Programming Example

The following example shows how to initialize and use the REF API with the ADC12 module to use as a positive reference to the analog signal input.

20 Real-Time Clock (RTC_B)

Introduction	206
API Functions	
Programming Example	

20.1 Introduction

The Real Time Clock (RTC_B) API provides a set of functions for using the MSP430Ware RTC_B modules. Functions are provided to calibrate the clock, initialize the RTC modules in calendar mode, and setup conditions for, and enable, interrupts for the RTC modules. If an RTC_B module is used, then prescale counters are also initialized.

The RTC_B module provides the ability to keep track of the current time and date in calendar mode.

The RTC_B module generates multiple interrupts. There are 2 interrupts that can be defined in calendar mode, and 1 interrupt for user-configured event, as well as an interrupt for each prescaler.

This driver is contained in $rtc_b.c$, with $rtc_b.h$ containing the API definitions for use by applications.

Т

he following code metrics were performed with the TI Compiler 4.2.1 compiler, IAR 5.51.6 compiler and MSPGCC 4.8.0 compiler with different optimization settings. Users may see different code sizes depending on their project settings so it is best to perform your benchmarks within your project. These sizes contain all functions of the peripheral but only functions that are used will be linked into the application and added to the total code size. To see individual API code metrics see the specific API below.

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	1096
TI Compiler 4.2.1	Size	570
TI Compiler 4.2.1	Speed	568
IAR 5.51.6	None	840
IAR 5.51.6	Size	674
IAR 5.51.6	Speed	708
MSPGCC 4.8.0	None	1822
MSPGCC 4.8.0	Size	648
MSPGCC 4.8.0	Speed	652

20.2 API Functions

Functions

- void RTC_B_calendarInit (uint16_t baseAddress, Calendar CalendarTime, uint16_t formatSelect)
- void RTC_B_clearInterrupt (uint16_t baseAddress, uint8_t interruptFlagMask)
- void RTC_B_configureCalendarAlarm (uint16_t baseAddress, RTC_B_configureCalendarAlarmParam *param)
- uint16 t RTC B convertBCDToBinary (uint16 t baseAddress, uint16 t valueToConvert)
- uint16 t RTC B convertBinaryToBCD (uint16 t baseAddress, uint16 t valueToConvert)
- void RTC_B_definePrescaleEvent (uint16_t baseAddress, uint8_t prescaleSelect, uint8_t prescaleEventDivider)
- void RTC_B_disableInterrupt (uint16_t baseAddress, uint8_t interruptMask)
- void RTC_B_enableInterrupt (uint16_t baseAddress, uint8_t interruptMask)
- Calendar RTC_B_getCalendarTime (uint16_t baseAddress)
- uint8_t RTC_B_getInterruptStatus (uint16_t baseAddress, uint8_t interruptFlagMask)
- uint8 t RTC B getPrescaleValue (uint16 t baseAddress, uint8 t prescaleSelect)
- void RTC_B_holdClock (uint16_t baseAddress)
- void RTC_B_initCalendar (uint16_t baseAddress, Calendar *CalendarTime, uint16_t formatSelect)

- void RTC_B_setCalendarAlarm (uint16_t baseAddress, uint8_t minutesAlarm, uint8_t hoursAlarm, uint8_t dayOfWeekAlarm, uint8_t dayOfMonthAlarm)
- void RTC B setCalendarEvent (uint16 t baseAddress, uint16 t eventSelect)
- void RTC B setCalibrationData (uint16 t baseAddress, uint8 t offsetDirection, uint8 t offsetValue)
- void RTC_B_setCalibrationFrequency (uint16_t baseAddress, uint16_t frequencySelect)
- void RTC_B_setPrescaleValue (uint16_t baseAddress, uint8_t prescaleSelect, uint8_t prescaleCounterValue)
- void RTC_B_startClock (uint16_t baseAddress)

20.2.1 Detailed Description

The RTC_B API is broken into 5 groups of functions: clock settings, calender mode, prescale counter, interrupt condition setup/enable functions and data conversion.

The RTC_B clock settings are handled by

- RTC_B_startClock()
- RTC_B_holdClock()
- RTC_B_setCalibrationFrequency()
- RTC_B_setCalibrationData()

The RTC B calender mode is initialized and handled by

- RTC_B_initCalendar()
- RTC_B_configureCalendarAlarm()
- RTC_B_getCalendarTime()

The RTC_B prescale counter is handled by

- RTC_B_getPrescaleValue()
- RTC_B_setPrescaleValue()

The RTC_B interrupts are handled by

- RTC B definePrescaleEvent()
- RTC B setCalendarEvent()
- RTC_B_enableInterrupt()
- RTC_B_disableInterrupt()
- RTC_B_getInterruptStatus()
- RTC_B_clearInterrupt()

The RTC B conversions are handled by

- RTC B convertBCDToBinary()
- RTC_B_convertBinaryToBCD()

20.2.2 Function Documentation

20.2.2.1 void RTC_B_calendarInit (uint16_t baseAddress, Calendar CalendarTime, uint16 t formatSelect)

Deprecated - Initializes the settings to operate the RTC in calendar mode.

This function initializes the Calendar mode of the RTC module.

Code Metrics:

Optimization	Code Size
None	126
Size	84
Speed	84
None	108
Size	90
Speed	104
None	218
Size	126
Speed	126
	None Size Speed None Size Speed None Size

Parameters:

baseAddress is the base address of the RTC_B module.

CalendarTime is the structure containing the values for the Calendar to be initialized to. Valid values should be of type Calendar and should contain the following members and corresponding values: Seconds between 0-59 Minutes between 0-59 Hours between 0-24 DayOfWeek between 0-6 DayOfMonth between 0-31 Year between 0-4095 NOTE: Values beyond the ones specified may result in erratic behavior.

formatSelect is the format for the Calendar registers to use. Valid values are:

- RTC_B_FORMAT_BINARY [Default]
- RTC_B_FORMAT_BCD

Modified bits are RTCBCD of RTCCTL1 register.

Returns:

None

20.2.2.2 void RTC B clearInterrupt (uint16 t baseAddress, uint8 t interruptFlagMask)

Clears selected RTC interrupt flags.

This function clears the RTC interrupt flag is cleared, so that it no longer asserts.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	70
TI Compiler 4.2.1	Size	34
TI Compiler 4.2.1	Speed	34
IAR 5.51.6	None	44
IAR 5.51.6	Size	42
IAR 5.51.6	Speed	42
MSPGCC 4.8.0	None	144
MSPGCC 4.8.0	Size	36
MSPGCC 4.8.0	Speed	36

Parameters:

baseAddress is the base address of the RTC_B module.

interruptFlagMask is a bit mask of the interrupt flags to be cleared. Mask value is the logical OR of any of the following:

- RTC_B_TIME_EVENT_INTERRUPT asserts when counter overflows in counter mode or when Calendar event condition defined by defineCalendarEvent() is met.
- RTC_B_CLOCK_ALARM_INTERRUPT asserts when alarm condition in Calendar mode is met.
- RTC_B_CLOCK_READ_READY_INTERRUPT asserts when Calendar registers are settled.
- RTC_B_PRESCALE_TIMER0_INTERRUPT asserts when Prescaler 0 event condition is met.
- RTC_B_PRESCALE_TIMER1_INTERRUPT asserts when Prescaler 1 event condition is met.
- RTC_B_OSCILLATOR_FAULT_INTERRUPT asserts if there is a problem with the 32kHz oscillator, while the RTC is running.

Returns:

None

20.2.2.3 void RTC_B_configureCalendarAlarm (uint16_t baseAddress, RTC B configureCalendarAlarmParam * param)

Sets and Enables the desired Calendar Alarm settings.

This function sets a Calendar interrupt condition to assert the RTCAIFG interrupt flag. The condition is a logical and of all of the parameters. For example if the minutes and hours alarm is set, then the interrupt will only assert when the minutes AND the hours change to the specified setting. Use the RTC_B_ALARM_OFF for any alarm settings that should not be apart of the alarm condition.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	78
TI Compiler 4.2.1	Size	48
TI Compiler 4.2.1	Speed	48
IAR 5.51.6	None	72
IAR 5.51.6	Size	68
IAR 5.51.6	Speed	68
MSPGCC 4.8.0	None	116
MSPGCC 4.8.0	Size	48
MSPGCC 4.8.0	Speed	48

Parameters:

baseAddress is the base address of the RTC_B module. **param** is the pointer to struct for calendar alarm configuration.

Returns:

None

20.2.2.4 uint16_t RTC_B_convertBCDToBinary (uint16_t baseAddress, uint16_t valueToConvert)

Convert the given BCD value to binary format.

This function converts BCD values to binary format. This API uses the hardware registers to perform the conversion rather than a software method.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	26
TI Compiler 4.2.1	Size	12
TI Compiler 4.2.1	Speed	12
IAR 5.51.6	None	18
IAR 5.51.6	Size	6
IAR 5.51.6	Speed	6
MSPGCC 4.8.0	None	36
MSPGCC 4.8.0	Size	12
MSPGCC 4.8.0	Speed	12

Parameters:

baseAddress is the base address of the RTC_B module.
valueToConvert is the raw value in BCD format to convert to Binary.

Modified bits are **BCD2BIN** of **BCD2BIN** register.

Returns:

The binary version of the input parameter

20.2.2.5 uint16_t RTC_B_convertBinaryToBCD (uint16_t baseAddress, uint16_t valueToConvert)

Convert the given binary value to BCD format.

This function converts binary values to BCD format. This API uses the hardware registers to perform the conversion rather than a software method.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	26
TI Compiler 4.2.1	Size	12
TI Compiler 4.2.1	Speed	12
IAR 5.51.6	None	18
IAR 5.51.6	Size	4
IAR 5.51.6	Speed	4
MSPGCC 4.8.0	None	36
MSPGCC 4.8.0	Size	12
MSPGCC 4.8.0	Speed	12

Parameters:

baseAddress is the base address of the RTC B module.

valueToConvert is the raw value in Binary format to convert to BCD. Modified bits are BIN2BCD of BIN2BCD register.

Returns:

The BCD version of the valueToConvert parameter

20.2.2.6 void RTC_B_definePrescaleEvent (uint16_t baseAddress, uint8_t prescaleSelect, uint8_t prescaleEventDivider)

Sets up an interrupt condition for the selected Prescaler.

This function sets the condition for an interrupt to assert based on the individual prescalers.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	46
TI Compiler 4.2.1	Size	20
TI Compiler 4.2.1	Speed	18
IAR 5.51.6	None	28
IAR 5.51.6	Size	18
IAR 5.51.6	Speed	18
MSPGCC 4.8.0	None	84
MSPGCC 4.8.0	Size	20
MSPGCC 4.8.0	Speed	20

Parameters:

baseAddress is the base address of the RTC_B module.

prescaleSelect is the prescaler to define an interrupt for. Valid values are:

- RTC_B_PRESCALE_0
- RTC_B_PRESCALE_1

prescaleEventDivider is a divider to specify when an interrupt can occur based on the clock source of the selected prescaler. (Does not affect timer of the selected prescaler). Valid values are:

■ RTC B PSEVENTDIVIDER 2 [Default]

- RTC_B_PSEVENTDIVIDER_4
- RTC B PSEVENTDIVIDER 8
- RTC_B_PSEVENTDIVIDER_16
- RTC_B_PSEVENTDIVIDER_32
- RTC_B_PSEVENTDIVIDER_64
- RTC_B_PSEVENTDIVIDER_128
- RTC_B_PSEVENTDIVIDER_256
 Modified bits are RTxIP of RTCPSxCTL register.

None

20.2.2.7 void RTC_B_disableInterrupt (uint16_t baseAddress, uint8_t interruptMask)

Disables selected RTC interrupt sources.

This function disables the selected RTC interrupt source. Only the sources that are enabled can be reflected to the processor interrupt; disabled sources have no effect on the processor.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	66
TI Compiler 4.2.1	Size	36
TI Compiler 4.2.1	Speed	36
IAR 5.51.6	None	44
IAR 5.51.6	Size	38
IAR 5.51.6	Speed	38
MSPGCC 4.8.0	None	148
MSPGCC 4.8.0	Size	36
MSPGCC 4.8.0	Speed	36

Parameters:

baseAddress is the base address of the RTC_B module.

interruptMask is a bit mask of the interrupts to disable. Mask value is the logical OR of any of the following:

- RTC_B_TIME_EVENT_INTERRUPT asserts when counter overflows in counter mode or when Calendar event condition defined by defineCalendarEvent() is met.
- RTC_B_CLOCK_ALARM_INTERRUPT asserts when alarm condition in Calendar mode is met.
- RTC B CLOCK READ READY INTERRUPT asserts when Calendar registers are settled.
- RTC_B_PRESCALE_TIMERO_INTERRUPT asserts when Prescaler 0 event condition is met.
- RTC_B_PRESCALE_TIMER1_INTERRUPT asserts when Prescaler 1 event condition is met.
- RTC_B_OSCILLATOR_FAULT_INTERRUPT asserts if there is a problem with the 32kHz oscillator, while the RTC is running.

Returns:

None

20.2.2.8 void RTC_B_enableInterrupt (uint16_t baseAddress, uint8_t interruptMask)

Enables selected RTC interrupt sources.

This function enables the selected RTC interrupt source. Only the sources that are enabled can be reflected to the processor interrupt; disabled sources have no effect on the processor. Does not clear interrupt flags.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	66
TI Compiler 4.2.1	Size	32
TI Compiler 4.2.1	Speed	32
IAR 5.51.6	None	44
IAR 5.51.6	Size	38
IAR 5.51.6	Speed	38
MSPGCC 4.8.0	None	136
MSPGCC 4.8.0	Size	36
MSPGCC 4.8.0	Speed	36

Parameters:

baseAddress is the base address of the RTC_B module.

interruptMask is a bit mask of the interrupts to enable. Mask value is the logical OR of any of the following:

- RTC_B_TIME_EVENT_INTERRUPT asserts when counter overflows in counter mode or when Calendar event condition defined by defineCalendarEvent() is met.
- RTC_B_CLOCK_ALARM_INTERRUPT asserts when alarm condition in Calendar mode is met.
- RTC_B_CLOCK_READ_READY_INTERRUPT asserts when Calendar registers are settled.
- RTC_B_PRESCALE_TIMERO_INTERRUPT asserts when Prescaler 0 event condition is met.
- RTC_B_PRESCALE_TIMER1_INTERRUPT asserts when Prescaler 1 event condition is met.
- RTC_B_OSCILLATOR_FAULT_INTERRUPT asserts if there is a problem with the 32kHz oscillator, while the RTC is running.

Returns:

None

20.2.2.9 Calendar RTC_B_getCalendarTime (uint16_t baseAddress)

Returns the Calendar Time stored in the Calendar registers of the RTC.

This function returns the current Calendar time in the form of a Calendar structure. The RTCRDY polling is used in this function to prevent reading invalid time.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	80
TI Compiler 4.2.1	Size	68
TI Compiler 4.2.1	Speed	68
IAR 5.51.6	None	104
IAR 5.51.6	Size	104
IAR 5.51.6	Speed	104
MSPGCC 4.8.0	None	148
MSPGCC 4.8.0	Size	68
MSPGCC 4.8.0	Speed	68

Parameters:

baseAddress is the base address of the RTC_B module.

Returns:

A Calendar structure containing the current time.

20.2.2.10 uint8_t RTC_B_getInterruptStatus (uint16_t baseAddress, uint8_t interruptFlagMask)

Returns the status of the selected interrupts flags.

This function returns the status of the interrupt flag for the selected channel.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	86
TI Compiler 4.2.1	Size	40
TI Compiler 4.2.1	Speed	40
IAR 5.51.6	None	54
IAR 5.51.6	Size	44
IAR 5.51.6	Speed	44
MSPGCC 4.8.0	None	142
MSPGCC 4.8.0	Size	50
MSPGCC 4.8.0	Speed	54

Parameters:

baseAddress is the base address of the RTC B module.

interruptFlagMask is a bit mask of the interrupt flags to return the status of. Mask value is the logical OR of any of the following:

- RTC_B_TIME_EVENT_INTERRUPT asserts when counter overflows in counter mode or when Calendar event condition defined by defineCalendarEvent() is met.
- RTC B CLOCK ALARM INTERRUPT asserts when alarm condition in Calendar mode is met.
- RTC B CLOCK READ READY INTERRUPT asserts when Calendar registers are settled.
- RTC_B_PRESCALE_TIMER0_INTERRUPT asserts when Prescaler 0 event condition is met.
- RTC B PRESCALE TIMER1 INTERRUPT asserts when Prescaler 1 event condition is met.
- RTC_B_OSCILLATOR_FAULT_INTERRUPT asserts if there is a problem with the 32kHz oscillator, while the RTC is running.

Returns:

Logical OR of any of the following:

- RTC_B_TIME_EVENT_INTERRUPT asserts when counter overflows in counter mode or when Calendar event condition defined by defineCalendarEvent() is met.
- RTC_B_CLOCK_ALARM_INTERRUPT asserts when alarm condition in Calendar mode is met.
- RTC_B_CLOCK_READ_READY_INTERRUPT asserts when Calendar registers are settled.
- RTC_B_PRESCALE_TIMERO_INTERRUPT asserts when Prescaler 0 event condition is met.
- RTC_B_PRESCALE_TIMER1_INTERRUPT asserts when Prescaler 1 event condition is met.
- RTC_B_OSCILLATOR_FAULT_INTERRUPT asserts if there is a problem with the 32kHz oscillator, while the RTC is running.

indicating the status of the masked interrupts

20.2.2.11 uint8_t RTC_B_getPrescaleValue (uint16_t baseAddress, uint8_t prescaleSelect)

Returns the selected prescaler value.

This function returns the value of the selected prescale counter register. Note that the counter value should be held by calling RTC_B_holdClock() before calling this API.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	40
TI Compiler 4.2.1	Size	24
TI Compiler 4.2.1	Speed	24
IAR 5.51.6	None	30
IAR 5.51.6	Size	28
IAR 5.51.6	Speed	28
MSPGCC 4.8.0	None	58
MSPGCC 4.8.0	Size	36
MSPGCC 4.8.0	Speed	28

baseAddress is the base address of the RTC_B module.

prescaleSelect is the prescaler to obtain the value of. Valid values are:

- RTC_B_PRESCALE_0
- RTC_B_PRESCALE_1

Returns:

The value of the specified prescaler count register

20.2.2.12 void RTC_B_holdClock (uint16_t baseAddress)

Holds the RTC.

This function sets the RTC main hold bit to disable RTC functionality.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	20
TI Compiler 4.2.1	Size	8
TI Compiler 4.2.1	Speed	8
IAR 5.51.6	None	12
IAR 5.51.6	Size	10
IAR 5.51.6	Speed	10
MSPGCC 4.8.0	None	32
MSPGCC 4.8.0	Size	8
MSPGCC 4.8.0	Speed	8

Parameters:

baseAddress is the base address of the RTC_B module.

Returns:

None

20.2.2.13 void RTC_B_initCalendar (uint16_t baseAddress, Calendar * CalendarTime, uint16_t formatSelect)

Initializes the settings to operate the RTC in calendar mode.

This function initializes the Calendar mode of the RTC module.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	130
TI Compiler 4.2.1	Size	58
TI Compiler 4.2.1	Speed	58
IAR 5.51.6	None	106
IAR 5.51.6	Size	88
IAR 5.51.6	Speed	102
MSPGCC 4.8.0	None	220
MSPGCC 4.8.0	Size	58
MSPGCC 4.8.0	Speed	58

Parameters:

baseAddress is the base address of the RTC_B module.

CalendarTime is the pointer to the structure containing the values for the Calendar to be initialized to. Valid values should be of type pointer to Calendar and should contain the following members and corresponding values:

Seconds between 0-59 Minutes between 0-59 Hours between 0-24 DayOfWeek between 0-6 DayOfMonth between 0-31 Year between 0-4095 NOTE: Values beyond the ones specified may result in erratic behavior.

formatSelect is the format for the Calendar registers to use. Valid values are:

- RTC_B_FORMAT_BINARY [Default]
- RTC_B_FORMAT_BCD Modified bits are RTCBCD of RTCCTL1 register.

Returns:

None

20.2.2.14 void RTC_B_setCalendarAlarm (uint16_t baseAddress, uint8_t minutesAlarm, uint8_t hoursAlarm, uint8_t dayOfWeekAlarm, uint8_t dayOfMonthAlarm)

DEPRECATED - Sets and Enables the desired Calendar Alarm settings.

This function sets a Calendar interrupt condition to assert the RTCAIFG interrupt flag. The condition is a logical and of all of the parameters. For example if the minutes and hours alarm is set, then the interrupt will only assert when the minutes AND the hours change to the specified setting. Use the RTC_B_ALARM_OFF for any alarm settings that should not be apart of the alarm condition.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1 TI Compiler 4.2.1 TI Compiler 4.2.1	None Size	78 32 32
IAR 5.51.6 IAR 5.51.6	Speed None Size	64 54
MSPGCC 4.8.0	Speed None	72
MSPGCC 4.8.0 MSPGCC 4.8.0	Size Speed	30 38

Parameters:

baseAddress is the base address of the RTC_B module.

minutesAlarm is the alarm condition for the minutes. Valid values are:

- RTC_B_ALARMCONDITION_OFF [Default]
- An integer between 0-59

hoursAlarm is the alarm condition for the hours. Valid values are:

- RTC_B_ALARMCONDITION_OFF [Default]
- An integer between 0-24

dayOfWeekAlarm is the alarm condition for the day of week. Valid values are:

- RTC_B_ALARMCONDITION_OFF [Default]
- An integer between 0-6

dayOfMonthAlarm is the alarm condition for the day of the month. Valid values are:

- RTC_B_ALARMCONDITION_OFF [Default]
- An integer between 0-31

Returns:

None

20.2.2.15 void RTC B setCalendarEvent (uint16 t baseAddress, uint16 t eventSelect)

Sets a single specified Calendar interrupt condition.

This function sets a specified event to assert the RTCTEVIFG interrupt. This interrupt is independent from the Calendar alarm interrupt.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None Size	30 12
TI Compiler 4.2.1	Speed	12
IAR 5.51.6	None	12
IAR 5.51.6 IAR 5.51.6	Size Speed	0
	<u>'</u>	
MSPGCC 4.8.0 MSPGCC 4.8.0	None Size	48 12
MSPGCC 4.8.0	Speed	12

Parameters:

baseAddress is the base address of the RTC B module.

eventSelect is the condition selected. Valid values are:

- RTC_B_CALENDAREVENT_MINUTECHANGE assert interrupt on every minute
- RTC_B_CALENDAREVENT_HOURCHANGE assert interrupt on every hour
- RTC_B_CALENDAREVENT_NOON assert interrupt when hour is 12
- RTC_B_CALENDAREVENT_MIDNIGHT assert interrupt when hour is 0 Modified bits are RTCTEV of RTCCTL register.

Returns:

None

20.2.2.16 void RTC_B_setCalibrationData (uint16_t baseAddress, uint8_t offsetDirection, uint8_t offsetValue)

Sets the specified calibration for the RTC.

This function sets the calibration offset to make the RTC as accurate as possible. The offsetDirection can be either +4-ppm or -2-ppm, and the offsetValue should be from 1-63 and is multiplied by the direction setting (i.e. +4-ppm * 8 (offsetValue) = +32-ppm). Please note, when measuring the frequency after setting the calibration, you will only see a change on the 1Hz frequency.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	30
TI Compiler 4.2.1	Size	8
TI Compiler 4.2.1	Speed	8
IAR 5.51.6	None	18
IAR 5.51.6	Size	4
IAR 5.51.6	Speed	4
MSPGCC 4.8.0	None	38
MSPGCC 4.8.0	Size	8
MSPGCC 4.8.0	Speed	8

Parameters:

baseAddress is the base address of the RTC_B module.

offsetDirection is the direction that the calibration offset will go. Valid values are:

- RTC_B_CALIBRATION_DOWN2PPM calibrate at steps of -2
- RTC_B_CALIBRATION_UP4PPM calibrate at steps of +4 Modified bits are RTCCALS of RTCCTL2 register.

offsetValue is the value that the offset will be a factor of; a valid value is any integer from 1-63. Modified bits are RTCCAL of RTCCTL2 register.

Returns:

None

20.2.2.17 void RTC_B_setCalibrationFrequency (uint16_t baseAddress, uint16_t frequencySelect)

Allows and Sets the frequency output to RTCCLK pin for calibration measurement.

This function sets a frequency to measure at the RTCCLK output pin. After testing the set frequency, the calibration could be set accordingly.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	34
TI Compiler 4.2.1	Size	14
TI Compiler 4.2.1	Speed	14
IAR 5.51.6	None	20
IAR 5.51.6	Size	4
IAR 5.51.6	Speed	4
MSPGCC 4.8.0	None	56
MSPGCC 4.8.0	Size	14
MSPGCC 4.8.0	Speed	14

Parameters:

baseAddress is the base address of the RTC_B module.

frequencySelect is the frequency output to RTCCLK. Valid values are:

- RTC_B_CALIBRATIONFREQ_OFF [Default] turn off calibration output
- RTC_B_CALIBRATIONFREQ_512HZ output signal at 512Hz for calibration
- RTC_B_CALIBRATIONFREQ_256HZ output signal at 256Hz for calibration
- RTC_B_CALIBRATIONFREQ_1HZ output signal at 1Hz for calibration Modified bits are RTCCALF of RTCCTL3 register.

Returns:

None

20.2.2.18 void RTC_B_setPrescaleValue (uint16_t baseAddress, uint8_t prescaleSelect, uint8_t prescaleCounterValue)

Sets the selected prescaler value.

This function sets the prescale counter value. Before setting the prescale counter, it should be held by calling RTC_B_holdClock().

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	44
TI Compiler 4.2.1	Size	20
TI Compiler 4.2.1	Speed	20
IAR 5.51.6	None	32
IAR 5.51.6	Size	24
IAR 5.51.6	Speed	24
MSPGCC 4.8.0	None	58
MSPGCC 4.8.0	Size	30
MSPGCC 4.8.0	Speed	30

baseAddress is the base address of the RTC_B module.

prescaleSelect is the prescaler to set the value for. Valid values are:

- RTC_B_PRESCALE_0
- RTC_B_PRESCALE_1

prescaleCounterValue is the specified value to set the prescaler to. Valid values are any integer between 0-255 Modified bits are RTxPS of RTxPS register.

Returns:

None

20.2.2.19 void RTC_B_startClock (uint16_t baseAddress)

Starts the RTC.

This function clears the RTC main hold bit to allow the RTC to function.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	20
TI Compiler 4.2.1	Size	8
TI Compiler 4.2.1	Speed	8
IAR 5.51.6	None	12
IAR 5.51.6	Size	10
IAR 5.51.6	Speed	10
MSPGCC 4.8.0	None	32
MSPGCC 4.8.0	Size	8
MSPGCC 4.8.0	Speed	8

Parameters:

baseAddress is the base address of the RTC_B module.

Returns:

None

20.3 Programming Example

The following example shows how to initialize and use the RTC API to setup Calender Mode with the current time and various interrupts.

```
//Initialize calendar struct
Calendar currentTime;
currentTime.Seconds = 0x00;
```

```
currentTime.Minutes
                        = 0x13;
   currentTime.Hours
   currentTime.DayOfWeek = 0x03;
   currentTime.DayOfMonth = 0x20;
                      = 0x07:
   currentTime.Month
   currentTime.Year
                        = 0x2011;
   //Initialize alarm struct
   RTC_B_configureCalendarAlarmParam alarmParam;
   alarmParam.minutesAlarm = 0x00;
   alarmParam.hoursAlarm = 0x17;
   alarmParam.dayOfWeekAlarm = RTC_B_ALARMCONDITION_OFF;
   alarmParam.dayOfMonthAlarm = 0x05;
   //Initialize Calendar Mode of RTC_B
   /*
Base Address of the RTC_B
Pass in current time, initialized above
Use BCD as Calendar Register Format
   RTC_B_initCalendar(RTC_B_BASE,
       &currentTime,
       RTC_B_FORMAT_BCD);
   //Setup Calendar Alarm for 5:00pm on the 5th day of the month.
   //Note: Does not specify day of the week.
   RTC_B_setCalendarAlarm(RTC_B_BASE, &alarmParam);
   //Specify an interrupt to assert every minute
   RTC_B_setCalendarEvent(RTC_B_BASE,
      RTC_B_CALENDAREVENT_MINUTECHANGE);
   //Enable interrupt for RTC_B Ready Status, which asserts when the RTC_B
   //Calendar registers are ready to read.
   //Also, enable interrupts for the Calendar alarm and Calendar event.
   RTC_B_enableInterrupt(RTC_B_BASE,
       RTC_B_CLOCK_READ_READY_INTERRUPT +
      RTC_B_TIME_EVENT_INTERRUPT +
      RTC_B_CLOCK_ALARM_INTERRUPT);
   //Start RTC_B Clock
   RTC_B_startClock(RTC_B_BASE);
   //Enter LPM3 mode with interrupts enabled
   __bis_SR_register(LPM3_bits + GIE);
   __no_operation();
```

21 SFR Module

Introduction	220
API Functions	220
Programming Example	

21.1 Introduction

The Special Function Registers API provides a set of functions for using the MSP430Ware SFR module. Functions are provided to enable and disable interrupts and control the \sim RST/NMI pin

The SFR module can enable interrupts to be generated from other peripherals of the device.

This driver is contained in sfr.c, with sfr.h containing the API definitions for use by applications.

т

he following code metrics were performed with the TI Compiler 4.2.1 compiler, IAR 5.51.6 compiler and MSPGCC 4.8.0 compiler with different optimization settings. Users may see different code sizes depending on their project settings so it is best to perform your benchmarks within your project. These sizes contain all functions of the peripheral but only functions that are used will be linked into the application and added to the total code size. To see individual API code metrics see the specific API below.

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	114
TI Compiler 4.2.1	Size	58
TI Compiler 4.2.1	Speed	60
IAR 5.51.6	None	56
IAR 5.51.6	Size	42
IAR 5.51.6	Speed	42
MSPGCC 4.8.0	None	316
MSPGCC 4.8.0	Size	68
MSPGCC 4.8.0	Speed	68

21.2 API Functions

Functions

- void SFR clearInterrupt (uint8 t interruptFlagMask)
- void SFR_disableInterrupt (uint8_t interruptMask)
- void SFR_enableInterrupt (uint8_t interruptMask)
- uint8 t SFR getInterruptStatus (uint8 t interruptFlagMask)
- void SFR_setNMIEdge (uint16_t edgeDirection)
- void SFR_setResetNMIPinFunction (uint8_t resetPinFunction)
- void SFR setResetPinPullResistor (uint16 t pullResistorSetup)

21.2.1 Detailed Description

The SFR API is broken into 2 groups: the SFR interrupts and the SFR \sim RST/NMI pin control

The SFR interrupts are handled by

- SFR_enableInterrupt()
- SFR_disableInterrupt()

- SFR_getInterruptStatus()
- SFR_clearInterrupt()

The SFR ~RST/NMI pin is controlled by

- SFR_setResetPinPullResistor()
- SFR_setNMIEdge()
- SFR_setResetNMIPinFunction()

21.2.2 Function Documentation

21.2.2.1 void SFR clearInterrupt (uint8 t interruptFlagMask)

Clears the selected SFR interrupt flags.

This function clears the status of the selected SFR interrupt flags.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	14
TI Compiler 4.2.1	Size	6
TI Compiler 4.2.1	Speed	6
IAR 5.51.6	None	6
IAR 5.51.6	Size	6
IAR 5.51.6	Speed	6
MSPGCC 4.8.0	None	46
MSPGCC 4.8.0	Size	6
MSPGCC 4.8.0	Speed	6

Parameters:

interruptFlagMask is the bit mask of interrupt flags that will be cleared. Mask value is the logical OR of any of the following:

- SFR_JTAG_OUTBOX_INTERRUPT JTAG outbox interrupt
- SFR_JTAG_INBOX_INTERRUPT JTAG inbox interrupt
- SFR_NMI_PIN_INTERRUPT NMI pin interrupt, if NMI function is chosen
- SFR_VACANT_MEMORY_ACCESS_INTERRUPT Vacant memory access interrupt
- SFR_OSCILLATOR_FAULT_INTERRUPT Oscillator fault interrupt
- SFR WATCHDOG INTERVAL TIMER INTERRUPT Watchdog interval timer interrupt

Returns:

None

21.2.2.2 void SFR_disableInterrupt (uint8_t interruptMask)

Disables selected SFR interrupt sources.

This function disables the selected SFR interrupt sources. Only the sources that are enabled can be reflected to the processor interrupt; disabled sources have no effect on the processor.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	14
TI Compiler 4.2.1	Size	6
TI Compiler 4.2.1	Speed	6
IAR 5.51.6 IAR 5.51.6 IAR 5.51.6	None Size Speed	6 6
MSPGCC 4.8.0	None	46
MSPGCC 4.8.0	Size	6
MSPGCC 4.8.0	Speed	6

interruptMask is the bit mask of interrupts that will be disabled. Mask value is the logical OR of any of the following:

- SFR_JTAG_OUTBOX_INTERRUPT JTAG outbox interrupt
- SFR_JTAG_INBOX_INTERRUPT JTAG inbox interrupt
- SFR_NMI_PIN_INTERRUPT NMI pin interrupt, if NMI function is chosen
- SFR VACANT MEMORY ACCESS INTERRUPT Vacant memory access interrupt
- SFR OSCILLATOR FAULT INTERRUPT Oscillator fault interrupt
- SFR_WATCHDOG_INTERVAL_TIMER_INTERRUPT Watchdog interval timer interrupt

Returns:

None

21.2.2.3 void SFR enableInterrupt (uint8 t *interruptMask*)

Enables selected SFR interrupt sources.

This function enables the selected SFR interrupt sources. Only the sources that are enabled can be reflected to the processor interrupt; disabled sources have no effect on the processor. Does not clear interrupt flags.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	14
TI Compiler 4.2.1	Size	6
TI Compiler 4.2.1	Speed	6
IAR 5.51.6	None	6
IAR 5.51.6	Size	6
IAR 5.51.6	Speed	6
MSPGCC 4.8.0	None	32
MSPGCC 4.8.0	Size	6
MSPGCC 4.8.0	Speed	6

Parameters:

interruptMask is the bit mask of interrupts that will be enabled. Mask value is the logical OR of any of the following:

- SFR_JTAG_OUTBOX_INTERRUPT JTAG outbox interrupt
- SFR JTAG INBOX INTERRUPT JTAG inbox interrupt
- SFR_NMI_PIN_INTERRUPT NMI pin interrupt, if NMI function is chosen
- SFR_VACANT_MEMORY_ACCESS_INTERRUPT Vacant memory access interrupt
- SFR OSCILLATOR FAULT INTERRUPT Oscillator fault interrupt
- SFR_WATCHDOG_INTERVAL_TIMER_INTERRUPT Watchdog interval timer interrupt

Returns:

None

21.2.2.4 uint8 t SFR getInterruptStatus (uint8 t interruptFlagMask)

Returns the status of the selected SFR interrupt flags.

This function returns the status of the selected SFR interrupt flags in a bit mask format matching that passed into the interruptFlagMask parameter.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	16
TI Compiler 4.2.1	Size	8
TI Compiler 4.2.1	Speed	10
IAR 5.51.6	None	6
IAR 5.51.6	Size	6
IAR 5.51.6	Speed	6
MSPGCC 4.8.0	None	26
MSPGCC 4.8.0	Size	6
MSPGCC 4.8.0	Speed	6

Parameters:

interruptFlagMask is the bit mask of interrupt flags that the status of should be returned. Mask value is the logical OR of any of the following:

- SFR JTAG OUTBOX INTERRUPT JTAG outbox interrupt
- SFR JTAG INBOX INTERRUPT JTAG inbox interrupt
- SFR NMI PIN INTERRUPT NMI pin interrupt, if NMI function is chosen
- SFR VACANT MEMORY ACCESS INTERRUPT Vacant memory access interrupt
- SFR OSCILLATOR FAULT INTERRUPT Oscillator fault interrupt
- SFR WATCHDOG INTERVAL TIMER INTERRUPT Watchdog interval timer interrupt

Returns:

A bit mask of the status of the selected interrupt flags. Return Logical OR of any of the following:

- SFR_JTAG_OUTBOX_INTERRUPT JTAG outbox interrupt
- SFR JTAG INBOX INTERRUPT JTAG inbox interrupt
- SFR_NMI_PIN_INTERRUPT NMI pin interrupt, if NMI function is chosen
- SFR VACANT MEMORY ACCESS INTERRUPT Vacant memory access interrupt
- SFR_OSCILLATOR_FAULT_INTERRUPT Oscillator fault interrupt
- SFR_WATCHDOG_INTERVAL_TIMER_INTERRUPT Watchdog interval timer interrupt indicating the status of the masked interrupts

21.2.2.5 void SFR setNMIEdge (uint16 t edgeDirection)

Sets the edge direction that will assert an NMI from a signal on the ~RST/NMI pin if NMI function is active.

This function sets the edge direction that will assert an NMI from a signal on the ~RST/NMI pin if the NMI function is active. To activate the NMI function of the ~RST/NMI use the SFR_setResetNMIPinFunction() passing SFR_RESETPINFUNC_NMI into the resetPinFunction parameter.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	18
TI Compiler 4.2.1	Size	10
TI Compiler 4.2.1	Speed	10
IAR 5.51.6	None	10
IAR 5.51.6	Size	6
IAR 5.51.6	Speed	6
MSPGCC 4.8.0	None	56
MSPGCC 4.8.0	Size	14
MSPGCC 4.8.0	Speed	14

edgeDirection is the direction that the signal on the ~RST/NMI pin should go to signal an interrupt, if enabled. Valid values are:

- SFR_NMI_RISINGEDGE [Default]
- SFR_NMI_FALLINGEDGE

 Modified bits are SYSNMIIES of SFRRPCR register.

Returns:

None

21.2.2.6 void SFR setResetNMIPinFunction (uint8 t resetPinFunction)

Sets the function of the \sim RST/NMI pin.

This function sets the functionality of the \sim RST/NMI pin, whether in reset mode which will assert a reset if a low signal is observed on that pin, or an NMI which will assert an interrupt from an edge of the signal dependent on the setting of the edgeDirection parameter in SFR_setNMIEdge().

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	18
TI Compiler 4.2.1	Size	10
TI Compiler 4.2.1	Speed	10
IAR 5.51.6	None	10
IAR 5.51.6	Size	4
IAR 5.51.6	Speed	4
MSPGCC 4.8.0	None	52
MSPGCC 4.8.0	Size	14
MSPGCC 4.8.0	Speed	14

Parameters:

resetPinFunction is the function that the \sim RST/NMI pin should take on. Valid values are:

- SFR_RESETPINFUNC_RESET [Default]
- SFR_RESETPINFUNC_NMI Modified bits are SYSNMI of SFRRPCR register.

Returns:

None

21.2.2.7 void SFR setResetPinPullResistor (uint16 t pullResistorSetup)

Sets the pull-up/down resistor on the \sim RST/NMI pin.

This function sets the pull-up/down resistors on the \sim RST/NMI pin to the settings from the pullResistorSetup parameter.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	20
TI Compiler 4.2.1	Size	12
TI Compiler 4.2.1	Speed	12
IAR 5.51.6	None	12
IAR 5.51.6	Size	8
IAR 5.51.6	Speed	8
MSPGCC 4.8.0	None	58
MSPGCC 4.8.0	Size	16
MSPGCC 4.8.0	Speed	16

pullResistorSetup is the selection of how the pull-up/down resistor on the \sim RST/NMI pin should be setup or disabled. Valid values are:

- SFR_RESISTORDISABLE
- SFR_RESISTORENABLE_PULLUP [Default]
- SFR_RESISTORENABLE_PULLDOWN

 Modified bits are SYSRSTUP and SYSRSTRE of SFRRPCR register.

Returns:

None

21.3 Programming Example

The following example shows how to initialize and use the SFR API

22 SYS Module

Introduction	226
API Functions	
Programming Example	

22.1 Introduction

The System Control (SYS) API provides a set of functions for using the MSP430Ware SYS module. Functions are provided to control various SYS controls, setup the BSL, and control the JTAG Mailbox.

This driver is contained in sys.c, with sys.h containing the API definitions for use by applications.

Т

he following code metrics were performed with the TI Compiler 4.2.1 compiler, IAR 5.51.6 compiler and MSPGCC 4.8.0 compiler with different optimization settings. Users may see different code sizes depending on their project settings so it is best to perform your benchmarks within your project. These sizes contain all functions of the peripheral but only functions that are used will be linked into the application and added to the total code size. To see individual API code metrics see the specific API below.

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	268
TI Compiler 4.2.1	Size	160
TI Compiler 4.2.1	Speed	162
IAR 5.51.6	None	178
IAR 5.51.6	Size	150
IAR 5.51.6	Speed	150
MSPGCC 4.8.0	None	618
MSPGCC 4.8.0	Size	196
MSPGCC 4.8.0	Speed	196

22.2 API Functions

Functions

- void SYS_clearJTAGMailboxFlagStatus (uint8_t mailboxFlagMask)
- void SYS_disableBSLMemory (void)
- void SYS_disableBSLProtect (void)
- void SYS_disableRAMBasedInterruptVectors (void)
- void SYS_enableBSLMemory (void)
- void SYS_enableBSLProtect (void)
- void SYS_enableDedicatedJTAGPins (void)
- void SYS_enablePMMAccessProtect (void)
- void SYS_enableRAMBasedInterruptVectors (void)
- uint8 t SYS getBSLEntryIndication (void)
- uint16_t SYS_getJTAGInboxMessage16Bit (uint8_t inboxSelect)
- uint32_t SYS_getJTAGInboxMessage32Bit (void)
- uint8 t SYS getJTAGMailboxFlagStatus (uint8 t mailboxFlagMask)
- void SYS_JTAGMailboxInit (uint8_t mailboxSizeSelect, uint8_t autoClearInboxFlagSelect)
- void SYS_setBSLSize (uint8_t BSLSizeSelect)
- void SYS_setJTAGOutgoingMessage16Bit (uint8_t outboxSelect, uint16_t outgoingMessage)
- void SYS_setJTAGOutgoingMessage32Bit (uint32_t outgoingMessage)
- void SYS_setRAMAssignedToBSL (uint8_t BSLRAMAssignment)

22.2.1 Detailed Description

The SYS API is broken into 3 groups: the various SYS controls, the BSL controls, and the JTAG mailbox controls.

The various SYS controls are handled by

- SYS_enableDedicatedJTAGPins()
- SYS_getBSLEntryIndication()
- SYS_enablePMMAccessProtect()
- SYS_enableRAMBasedInterruptVectors()
- SYS_disableRAMBasedInterruptVectors()

The BSL controls are handled by

- SYS_enableBSLProtect()
- SYS_disableBSLProtect()
- SYS_disableBSLMemory()
- SYS_enableBSLMemory()
- SYS_setRAMAssignedToBSL()
- SYS_setBSLSize()

The JTAG Mailbox controls are handled by

- SYS_JTAGMailboxInit()
- SYS_getJTAGMailboxFlagStatus()
- SYS_getJTAGInboxMessage16Bit()
- SYS_getJTAGInboxMessage32Bit()
- SYS_setJTAGOutgoingMessage16Bit()
- SYS_setJTAGOutgoingMessage32Bit()
- SYS_clearJTAGMailboxFlagStatus()

22.2.2 Function Documentation

22.2.2.1 void SYS clearJTAGMailboxFlagStatus (uint8 t mailboxFlagMask)

Clears the status of the selected JTAG Mailbox flags.

This function clears the selected JTAG Mailbox flags.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	14
TI Compiler 4.2.1	Size	6
TI Compiler 4.2.1 IAR 5.51.6	Speed None	6
IAR 5.51.6	Size	6
IAR 5.51.6	Speed	6
MSPGCC 4.8.0	None	46
MSPGCC 4.8.0	Size	6
MSPGCC 4.8.0	Speed	6

Parameters:

mailboxFlagMask is the bit mask of JTAG mailbox flags that the status of should be cleared. Mask value is the logical OR of any of the following:

- SYS_JTAGOUTBOX_FLAG0 flag for JTAG outbox 0
- SYS_JTAGOUTBOX_FLAG1 flag for JTAG outbox 1
- SYS_JTAGINBOX_FLAG0 flag for JTAG inbox 0
- SYS_JTAGINBOX_FLAG1 flag for JTAG inbox 1

Returns:

None

22.2.2.2 void SYS_disableBSLMemory (void)

Disables BSL memory.

This function disables BSL memory, which makes BSL memory act like vacant memory.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1 TI Compiler 4.2.1	None Size	8
TI Compiler 4.2.1 IAR 5.51.6	Speed None	8
IAR 5.51.6 IAR 5.51.6	Size Speed	8
MSPGCC 4.8.0 MSPGCC 4.8.0 MSPGCC 4.8.0	None Size Speed	20 8 8

Returns:

None

22.2.2.3 void SYS_disableBSLProtect (void)

Disables BSL memory protection.

This function disables protection on the BSL memory.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	8
TI Compiler 4.2.1	Size	8
TI Compiler 4.2.1	Speed	8
IAR 5.51.6	None	8
IAR 5.51.6	Size	8
IAR 5.51.6	Speed	8
MSPGCC 4.8.0	None	20
MSPGCC 4.8.0	Size	8
MSPGCC 4.8.0	Speed	8

Returns:

None

22.2.2.4 void SYS_disableRAMBasedInterruptVectors (void)

Disables RAM-based Interrupt Vectors.

This function disables the interrupt vectors from being generated at the top of the RAM.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	6
TI Compiler 4.2.1	Size	6
TI Compiler 4.2.1	Speed	6
IAR 5.51.6	None	6
IAR 5.51.6	Size	6
IAR 5.51.6	Speed	6
MSPGCC 4.8.0	None	22
MSPGCC 4.8.0	Size	6
MSPGCC 4.8.0	Speed	6

Returns:

None

22.2.2.5 void SYS_enableBSLMemory (void)

Enables BSL memory.

This function enables BSL memory, which allows BSL memory to be addressed

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	8
TI Compiler 4.2.1	Size	8
TI Compiler 4.2.1	Speed	8
IAR 5.51.6	None	8
IAR 5.51.6	Size	8
IAR 5.51.6	Speed	8
MSPGCC 4.8.0	None	20
MSPGCC 4.8.0	Size	8
MSPGCC 4.8.0	Speed	8

Returns:

None

22.2.2.6 void SYS_enableBSLProtect (void)

Enables BSL memory protection.

This function enables protection on the BSL memory, which prevents any reading, programming, or erasing of the BSL memory.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	8
TI Compiler 4.2.1	Size	8
TI Compiler 4.2.1	Speed	8
IAR 5.51.6	None	8
IAR 5.51.6	Size	8
IAR 5.51.6	Speed	8
MSPGCC 4.8.0	None	20
MSPGCC 4.8.0	Size	8
MSPGCC 4.8.0	Speed	8

Returns:

None

22.2.2.7 void SYS_enableDedicatedJTAGPins (void)

Sets the JTAG pins to be exclusively for JTAG until a BOR occurs.

This function sets the JTAG pins to be exclusively used for the JTAG, and not to be shared with the GPIO pins. This setting can only be cleared when a BOR occurs.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	8
TI Compiler 4.2.1	Size	8
TI Compiler 4.2.1	Speed	8
IAR 5.51.6	None	8
IAR 5.51.6	Size	8
IAR 5.51.6	Speed	8
MSPGCC 4.8.0	None	24
MSPGCC 4.8.0	Size	8
MSPGCC 4.8.0	Speed	8

Returns:

None

22.2.2.8 void SYS_enablePMMAccessProtect (void)

Enables PMM Access Protection.

This function enables the PMM Access Protection, which will lock any changes on the PMM control registers until a BOR occurs.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	6
TI Compiler 4.2.1	Size	6
TI Compiler 4.2.1	Speed	6
IAR 5.51.6	None	6
IAR 5.51.6	Size	6
IAR 5.51.6	Speed	6
MSPGCC 4.8.0	None	22
MSPGCC 4.8.0	Size	6
MSPGCC 4.8.0	Speed	6

Returns:

None

22.2.2.9 void SYS_enableRAMBasedInterruptVectors (void)

Enables RAM-based Interrupt Vectors.

This function enables RAM-base Interrupt Vectors, which means that interrupt vectors are generated with the end address at the top of RAM, instead of the top of the lower 64kB of flash.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	6
TI Compiler 4.2.1	Size	6
TI Compiler 4.2.1	Speed	6
IAR 5.51.6	None	6
IAR 5.51.6	Size	6
IAR 5.51.6	Speed	6
MSPGCC 4.8.0	None	22
MSPGCC 4.8.0	Size	6
MSPGCC 4.8.0	Speed	6

Returns:

None

22.2.2.10 uint8_t SYS_getBSLEntryIndication (void)

Returns the indication of a BSL entry sequence from the Spy-Bi-Wire.

This function returns the indication of a BSL entry sequence from the Spy- Bi-Wire.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	16
TI Compiler 4.2.1	Size	14
TI Compiler 4.2.1	Speed	14
IAR 5.51.6	None	16
IAR 5.51.6	Size	12
IAR 5.51.6	Speed	12
MSPGCC 4.8.0	None	26
MSPGCC 4.8.0	Size	10
MSPGCC 4.8.0	Speed	10

Returns:

One of the following:

- SYS_BSLENTRY_INDICATED
- SYS BSLENTRY NOTINDICATED

indicating if a BSL entry sequence was detected

22.2.2.11 uint16_t SYS_getJTAGInboxMessage16Bit (uint8_t inboxSelect)

Returns the contents of the selected JTAG Inbox in a 16 bit format.

This function returns the message contents of the selected JTAG inbox. If the auto clear settings for the Inbox flags were set, then using this function will automatically clear the corresponding JTAG inbox flag.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	16
TI Compiler 4.2.1	Size	8
TI Compiler 4.2.1	Speed	8
IAR 5.51.6	None	10
IAR 5.51.6	Size	10
IAR 5.51.6	Speed	10
MSPGCC 4.8.0	None	20
MSPGCC 4.8.0	Size	10
MSPGCC 4.8.0	Speed	10

Parameters:

inboxSelect is the chosen JTAG inbox that the contents of should be returned Valid values are:

- SYS JTAGINBOX 0 return contents of JTAG inbox 0
- SYS JTAGINBOX 1 return contents of JTAG inbox 1

Returns

The contents of the selected JTAG inbox in a 16 bit format.

22.2.2.12 uint32 t SYS getJTAGInboxMessage32Bit (void)

Returns the contents of JTAG Inboxes in a 32 bit format.

This function returns the message contents of both JTAG inboxes in a 32 bit format. This function should be used if 32-bit messaging has been set in the SYS_JTAGMailboxInit() function. If the auto clear settings for the Inbox flags were set, then using this function will automatically clear both JTAG inbox flags.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	36
TI Compiler 4.2.1	Size	12
TI Compiler 4.2.1	Speed	12
IAR 5.51.6	None	22
IAR 5.51.6	Size	10
IAR 5.51.6	Speed	10
MSPGCC 4.8.0	None	70
MSPGCC 4.8.0	Size	30
MSPGCC 4.8.0	Speed	30

Returns:

The contents of both JTAG messages in a 32 bit format.

22.2.2.13 uint8 t SYS getJTAGMailboxFlagStatus (uint8 t mailboxFlagMask)

Returns the status of the selected JTAG Mailbox flags.

This function will return the status of the selected JTAG Mailbox flags in bit mask format matching that passed into the mailboxFlagMask parameter.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	16
TI Compiler 4.2.1	Size	8
TI Compiler 4.2.1	Speed	10
IAR 5.51.6	None	6
IAR 5.51.6	Size	6
IAR 5.51.6	Speed	6
MSPGCC 4.8.0	None	26
MSPGCC 4.8.0	Size	6
MSPGCC 4.8.0	Speed	6

Parameters:

mailboxFlagMask is the bit mask of JTAG mailbox flags that the status of should be returned. Mask value is the logical OR of any of the following:

- SYS_JTAGOUTBOX_FLAG0 flag for JTAG outbox 0
- SYS_JTAGOUTBOX_FLAG1 flag for JTAG outbox 1
- SYS_JTAGINBOX_FLAG0 flag for JTAG inbox 0
- SYS JTAGINBOX FLAG1 flag for JTAG inbox 1

Returns:

A bit mask of the status of the selected mailbox flags.

22.2.2.14 void SYS_JTAGMailboxInit (uint8_t *mailboxSizeSelect*, uint8_t *autoClearInboxFlagSelect*)

Initializes JTAG Mailbox with selected properties.

This function sets the specified settings for the JTAG Mailbox system. The settings that can be set are the size of the JTAG messages, and the auto- clearing of the inbox flags. If the inbox flags are set to auto-clear, then the inbox flags will be cleared upon reading of the inbox message buffer, otherwise they will have to be reset by software using the SYS_clearJTAGMailboxFlagStatus() function.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None Size	30 14
TI Compiler 4.2.1	Speed	14
IAR 5.51.6 IAR 5.51.6 IAR 5.51.6	None Size Speed	16 14 14
MSPGCC 4.8.0 MSPGCC 4.8.0 MSPGCC 4.8.0	None Size Speed	74 18 18

Parameters:

mailboxSizeSelect is the size of the JTAG Mailboxes, whether 16- or 32-bits. Valid values are:

- SYS_JTAGMBSIZE_16BIT [Default] the JTAG messages will take up only one JTAG mailbox (i. e. an outgoing message will take up only 1 outbox of the JTAG mailboxes)
- SYS_JTAGMBSIZE_32BIT the JTAG messages will be contained within both JTAG mailboxes (i. e. an outgoing message will take up both Outboxes of the JTAG mailboxes)

 Modified bits are JMBMODE of SYSJMBC register.

autoClearInboxFlagSelect decides how the JTAG inbox flags should be cleared, whether automatically after the corresponding outbox has been written to, or manually by software. Valid values are:

SYS_JTAGINBOX0AUTO_JTAGINBOX1AUTO [Default] - both JTAG inbox flags will be reset automatically when the corresponding inbox is read from.

- SYS_JTAGINBOX0AUTO_JTAGINBOX1SW only JTAG inbox 0 flag is reset automatically, while JTAG inbox 1 is reset with the
- SYS_JTAGINBOX0SW_JTAGINBOX1AUTO only JTAG inbox 1 flag is reset automatically, while JTAG inbox 0 is reset with the
- SYS_JTAGINBOX0SW_JTAGINBOX1SW both JTAG inbox flags will need to be reset manually by the Modified bits are JMBCLR0OFF and JMBCLR1OFF of SYSJMBC register.

Returns:

None

22.2.2.15 void SYS_setBSLSize (uint8_t BSLSizeSelect)

Sets the size of the BSL in Flash.

This function sets the size of the BSL in Flash memory.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	20
TI Compiler 4.2.1	Size	12
TI Compiler 4.2.1	Speed	12
IAR 5.51.6	None	12
IAR 5.51.6	Size	6
IAR 5.51.6	Speed	6
MSPGCC 4.8.0	None	54
MSPGCC 4.8.0	Size	16
MSPGCC 4.8.0	Speed	16

Parameters

BSLSizeSelect is the amount of segments the BSL should take. Valid values are:

- SYS_BSLSIZE_SEG3
- SYS_BSLSIZE_SEGS23
- SYS_BSLSIZE_SEGS123
- SYS_BSLSIZE_SEGS1234 [Default]
 Modified bits are SYSBSLSIZE of SYSBSLC register.

Returns:

None

22.2.2.16 void SYS_setJTAGOutgoingMessage16Bit (uint8_t *outboxSelect*, uint16_t *outgoingMessage*)

Sets a 16 bit outgoing message in to the selected JTAG Outbox.

This function sets the outgoing message in the selected JTAG outbox. The corresponding JTAG outbox flag is cleared after this function, and set after the JTAG has read the message.

Code Metrics:

Optimization	Code Size
None	22
Size	8
Speed	8
None	12
Size	12
Speed	12
None	26
Size	10
Speed	10
	None Size Speed None Size Speed None Size

outboxSelect is the chosen JTAG outbox that the message should be set it. Valid values are:

- SYS_JTAGOUTBOX_0 set the contents of JTAG outbox 0
- SYS_JTAGOUTBOX_1 set the contents of JTAG outbox 1

outgoingMessage is the message to send to the JTAG.

Modified bits are MSGHI and MSGLO of SYSJMBOx register.

Returns:

None

22.2.2.17 void SYS_setJTAGOutgoingMessage32Bit (uint32_t outgoingMessage)

Sets a 32 bit message in to both JTAG Outboxes.

This function sets the 32-bit outgoing message in both JTAG outboxes. The JTAG outbox flags are cleared after this function, and set after the JTAG has read the message.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	22
TI Compiler 4.2.1	Size	10
TI Compiler 4.2.1	Speed	10
IAR 5.51.6	None	10
IAR 5.51.6	Size	10
IAR 5.51.6	Speed	10
MSPGCC 4.8.0	None	54
MSPGCC 4.8.0	Size	18
MSPGCC 4.8.0	Speed	18

Parameters:

outgoingMessage is the message to send to the JTAG.
Modified bits are MSGHI and MSGLO of SYSJMBOx register.

Returns:

None

22.2.2.18 void SYS_setRAMAssignedToBSL (uint8_t BSLRAMAssignment)

Sets RAM assignment to BSL area.

This function allows RAM to be assigned to BSL, based on the selection of the BSLRAMAssignment parameter.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	18 10
TI Compiler 4.2.1 TI Compiler 4.2.1	Size Speed	10
IAR 5.51.6 IAR 5.51.6 IAR 5.51.6	None Size Speed	10 6 6
MSPGCC 4.8.0 MSPGCC 4.8.0 MSPGCC 4.8.0	None Size Speed	52 14 14

BSLRAMAssignment is the selection of if the BSL should be placed in RAM or not. Valid values are:

- SYS_BSLRAMASSIGN_NORAM [Default]
- SYS_BSLRAMASSIGN_LOWEST16BYTES Modified bits are SYSBSLR of SYSBSLC register.

Returns:

None

22.3 Programming Example

The following example shows how to initialize and use the SYS API

SYS_enableBSLProtect(SYS_BASE);

23 16-Bit Timer_A (TIMER_A)

Introduction	237
API Functions	238
Programming Example	

23.1 Introduction

TIMER_A is a 16-bit timer/counter with multiple capture/compare registers. TIMER_A can support multiple capture/compares, PWM outputs, and interval timing. TIMER_A also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers.

This peripheral API handles Timer A hardware peripheral.

TIMER A features include:

- Asynchronous 16-bit timer/counter with four operating modes
- Selectable and configurable clock source
- Up to seven configurable capture/compare registers
- Configurable outputs with pulse width modulation (PWM) capability
- Asynchronous input and output latching
- Interrupt vector register for fast decoding of all Timer interrupts

TIMER_A can operate in 3 modes

- Continuous Mode
- Up Mode
- Down Mode

TIMER_A Interrupts may be generated on counter overflow conditions and during capture compare events.

The TIMER_A may also be used to generate PWM outputs. PWM outputs can be generated by initializing the compare mode with TIMER_A_initCompare() and the necessary parameters. The PWM may be customized by selecting a desired timer mode (continuous/up/upDown), duty cycle, output mode, timer period etc. The library also provides a simpler way to generate PWM using TIMER_A_generatePWM() API. However the level of customization and the kinds of PWM generated are limited in this API. Depending on how complex the PWM is and what level of customization is required, the user can use TIMER_A_generatePWM() or a combination of Timer_initCompare() and timer start APIs

The TIMER_A API provides a set of functions for dealing with the TIMER_A module. Functions are provided to configure and control the timer, along with functions to modify timer/counter values, and to manage interrupt handling for the timer.

Control is also provided over interrupt sources and events. Interrupts can be generated to indicate that an event has been captured.

This driver is contained in TIMER_A.c, with TIMER_A.h containing the API definitions for use by applications.

т

he following code metrics were performed with the TI Compiler 4.2.1 compiler, IAR 5.51.6 compiler and MSPGCC 4.8.0 compiler with different optimization settings. Users may see different code sizes depending on their project settings so it is best to perform your benchmarks within your project. These sizes contain all functions of the peripheral but only functions that are used will be linked into the application and added to the total code size. To see individual API code metrics see the specific API below.

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	1992
TI Compiler 4.2.1	Size	1072
TI Compiler 4.2.1	Speed	1074
IAR 5.51.6	None	1500
IAR 5.51.6	Size	660
IAR 5.51.6	Speed	1094
MSPGCC 4.8.0	None	2716
MSPGCC 4.8.0	Size	1312
MSPGCC 4.8.0	Speed	1380

23.2 API Functions

Functions

- void TIMER A clear (uint16 t baseAddress)
- void TIMER_A_clearCaptureCompareInterruptFlag (uint16_t baseAddress, uint16_t captureCompareRegister)
- void TIMER_A_clearTimerInterruptFlag (uint16_t baseAddress)
- void TIMER_A_configureContinuousMode (uint16_t baseAddress, uint16_t clockSource, uint16_t clockSourceDivider, uint16_t timerInterruptEnable_TAIE, uint16_t timerClear)
- void TIMER_A_configureUpDownMode (uint16_t baseAddress, uint16_t clockSource, uint16_t clockSourceDivider, uint16_t timerPeriod, uint16_t timerInterruptEnable_TAIE, uint16_t captureCompareInterruptEnable_CCR0_CCIE, uint16_t timerClear)
- void TIMER_A_configureUpMode (uint16_t baseAddress, uint16_t clockSource, uint16_t clockSourceDivider, uint16_t timerPeriod, uint16_t timerInterruptEnable_TAIE, uint16_t captureCompareInterruptEnable_CCR0_CCIE, uint16_t timerClear)
- void TIMER_A_disableCaptureCompareInterrupt (uint16_t baseAddress, uint16_t captureCompareRegister)
- void TIMER_A_disableInterrupt (uint16_t baseAddress)
- void TIMER_A_enableCaptureCompareInterrupt (uint16_t baseAddress, uint16_t captureCompareRegister)
- void TIMER A enableInterrupt (uint16 t baseAddress)
- void TIMER_A_generatePWM (uint16_t baseAddress, uint16_t clockSource, uint16_t clockSourceDivider, uint16_t timerPeriod, uint16_t compareRegister, uint16_t compareOutputMode, uint16_t dutyCycle)
- uint16_t TIMER_A_getCaptureCompareCount (uint16_t baseAddress, uint16_t captureCompareRegister)
- uint32_t TIMER_A_getCaptureCompareInterruptStatus (uint16_t baseAddress, uint16_t captureCompareRegister, uint16_t mask)
- uint16_t TIMER_A_getCounterValue (uint16_t baseAddress)
- uint32_t TIMER_A_getInterruptStatus (uint16_t baseAddress)
- uint8 t TIMER A getOutputForOutputModeOutBitValue (uint16 t baseAddress, uint16 t captureCompareRegister)
- uint8_t TIMER_A_getSynchronizedCaptureCompareInput (uint16_t baseAddress, uint16_t captureCompareRegister, uint16_t synchronized)
- void TIMER_A_initCapture (uint16_t baseAddress, uint16_t captureRegister, uint16_t captureMode, uint16_t captureInputSelect, uint16_t synchronizeCaptureSource, uint16_t captureInterruptEnable, uint16_t captureOutputMode)
- void TIMER A initCaptureMode (uint16 t baseAddress, TIMER A initCaptureModeParam *param)
- void TIMER_A_initCompare (uint16_t baseAddress, uint16_t compareRegister, uint16_t compareInterruptEnable, uint16_t compareOutputMode, uint16_t compareValue)
- void TIMER_A_initCompareMode (uint16_t baseAddress, TIMER_A_initCompareModeParam *param)
- void TIMER_A_initContinuousMode (uint16_t baseAddress, TIMER_A_initContinuousModeParam *param)
- void TIMER A initUpDownMode (uint16 t baseAddress, TIMER A initUpDownModeParam *param)
- void TIMER_A_initUpMode (uint16_t baseAddress, TIMER_A_initUpModeParam *param)
- void TIMER_A_outputPWM (uint16_t baseAddress, TIMER_A_outputPWMParam *param)
- void TIMER A setCompareValue (uint16 t baseAddress, uint16 t compareRegister, uint16 t compareValue)
- void TIMER_A_setOutputForOutputModeOutBitValue (uint16_t baseAddress, uint16_t captureCompareRegister, uint8_t outputModeOutBitValue)
- void TIMER_A_startContinousMode (uint16_t baseAddress, uint16_t clockSource, uint16_t clockSourceDivider, uint16_t timerInterruptEnable_TAIE, uint16_t timerClear)

- void TIMER_A_startContinuousMode (uint16_t baseAddress, uint16_t clockSource, uint16_t clockSourceDivider, uint16_t timerInterruptEnable_TAIE, uint16_t timerClear)
- void TIMER A startCounter (uint16 t baseAddress, uint16 t timerMode)
- void TIMER_A_startUpDownMode (uint16_t baseAddress, uint16_t clockSource, uint16_t clockSourceDivider, uint16_t timerPeriod, uint16_t timerInterruptEnable_TAIE, uint16_t captureCompareInterruptEnable_CCR0_CCIE, uint16_t timerClear)
- void TIMER_A_startUpMode (uint16_t baseAddress, uint16_t clockSource, uint16_t clockSourceDivider, uint16_t timerPeriod, uint16_t timerInterruptEnable_TAIE, uint16_t captureCompareInterruptEnable_CCR0_CCIE, uint16_t timerClear)
- void TIMER A stop (uint16 t baseAddress)

23.2.1 Detailed Description

The TIMER_A API is broken into three groups of functions: those that deal with timer configuration and control, those that deal with timer contents, and those that deal with interrupt handling.

TIMER_A configuration and initialization is handled by

- TIMER_A_startCounter()
- TIMER_A_configureContinuousMode()
- TIMER_A_configureUpMode()
- TIMER_A_configureUpDownMode()
- TIMER_A_startContinuousMode()
- TIMER A startUpMode()
- TIMER_A_startUpDownMode()
- TIMER A initCapture()
- TIMER_A_initCompare()
- TIMER A clear()
- TIMER_A_stop()

TIMER_A outputs are handled by

- TIMER_A_getSynchronizedCaptureCompareInput()
- TIMER A getOutputForOutputModeOutBitValue()
- TIMER_A_setOutputForOutputModeOutBitValue()
- TIMER_A_generatePWM()
- TIMER_A_getCaptureCompareCount()
- TIMER_A_setCompareValue()
- TIMER_A_getCounterValue()

The interrupt handler for the TIMER_A interrupt is managed with

- TIMER A enableInterrupt()
- TIMER_A_disableInterrupt()
- TIMER_A_getInterruptStatus()
- TIMER_A_enableCaptureCompareInterrupt()
- TIMER_A_disableCaptureCompareInterrupt()
- TIMER_A_getCaptureCompareInterruptStatus()
- TIMER_A_clearCaptureCompareInterruptFlag()
- TIMER_A_clearTimerInterruptFlag()

23.2.2 Function Documentation

23.2.2.1 void TIMER_A_clear (uint16_t baseAddress)

Reset/Clear the timer clock divider, count direction, count.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	16
TI Compiler 4.2.1	Size	6
TI Compiler 4.2.1	Speed	6
IAR 5.51.6	None	8
IAR 5.51.6	Size	6
IAR 5.51.6	Speed	6
MSPGCC 4.8.0	None	22
MSPGCC 4.8.0	Size	6
MSPGCC 4.8.0	Speed	6

Parameters:

baseAddress is the base address of the TIMER_A module.

Modified bits of TAxCTL register.

Returns:

None

23.2.2.2 void TIMER_A_clearCaptureCompareInterruptFlag (uint16_t baseAddress, uint16_t captureCompareRegister)

Clears the capture-compare interrupt flag.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	20
TI Compiler 4.2.1	Size	8
TI Compiler 4.2.1	Speed	8
IAR 5.51.6	None	10
IAR 5.51.6	Size	2
IAR 5.51.6	Speed	2
MSPGCC 4.8.0	None	34
MSPGCC 4.8.0	Size	8
MSPGCC 4.8.0	Speed	8

Parameters:

baseAddress is the base address of the TIMER_A module.

captureCompareRegister selects the Capture-compare register being used. Valid values are:

- TIMER_A_CAPTURECOMPARE_REGISTER_0
- TIMER_A_CAPTURECOMPARE_REGISTER_1
- TIMER_A_CAPTURECOMPARE_REGISTER_2
- TIMER_A_CAPTURECOMPARE_REGISTER_3
- TIMER_A_CAPTURECOMPARE_REGISTER_4
- TIMER A CAPTURECOMPARE REGISTER 5
- TIMER_A_CAPTURECOMPARE_REGISTER_6

Modified bits are CCIFG of TAxCCTLn register.

Returns:

None

23.2.2.3 void TIMER A clearTimerInterruptFlag (uint16 t baseAddress)

Clears the Timer TAIFG interrupt flag.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	16
TI Compiler 4.2.1	Size	6
TI Compiler 4.2.1	Speed	6
IAR 5.51.6	None	8
IAR 5.51.6	Size	2
IAR 5.51.6	Speed	2
MSPGCC 4.8.0	None	22
MSPGCC 4.8.0	Size	6
MSPGCC 4.8.0	Speed	6

Parameters:

baseAddress is the base address of the TIMER_A module.

Modified bits are TAIFG of TAXCTL register.

Returns:

None

23.2.2.4 void TIMER_A_configureContinuousMode (uint16_t baseAddress, uint16_t clockSource, uint16_t clockSourceDivider, uint16_t timerInterruptEnable_TAIE, uint16_t timerClear)

DEPRECATED - Configures TIMER_A in continuous mode.

This API does not start the timer. Timer needs to be started when required using the TIMER_A_startCounter API.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	80
TI Compiler 4.2.1	Size	38
TI Compiler 4.2.1	Speed	38
IAR 5.51.6	None	68
IAR 5.51.6	Size	16
IAR 5.51.6	Speed	48
MSPGCC 4.8.0	None	84
MSPGCC 4.8.0	Size	60
MSPGCC 4.8.0	Speed	52

Parameters:

baseAddress is the base address of the TIMER_A module.

clockSource selects Clock source. Valid values are:

■ TIMER_A_CLOCKSOURCE_EXTERNAL_TXCLK [Default]

- TIMER_A_CLOCKSOURCE_ACLK
- TIMER A CLOCKSOURCE SMCLK
- TIMER A CLOCKSOURCE INVERTED EXTERNAL TXCLK

clockSourceDivider is the desired divider for the clock source Valid values are:

- TIMER_A_CLOCKSOURCE_DIVIDER_1 [Default]
- TIMER_A_CLOCKSOURCE_DIVIDER_2
- TIMER_A_CLOCKSOURCE_DIVIDER_3
- TIMER_A_CLOCKSOURCE_DIVIDER_4
- TIMER_A_CLOCKSOURCE_DIVIDER_5
- TIMER A CLOCKSOURCE DIVIDER 6
- TIMER A CLOCKSOURCE DIVIDER 7
- TIMER A CLOCKSOURCE DIVIDER 8
- TIMER_A_CLOCKSOURCE_DIVIDER_10
- TIMER_A_CLOCKSOURCE_DIVIDER_12
- TIMER A CLOCKSOURCE DIVIDER 14
- TIMER_A_CLOCKSOURCE_DIVIDER_16
- TIMER A CLOCKSOURCE DIVIDER 20
- TIMER A CLOCKSOURCE DIVIDER 24
- TIMER A CLOCKSOURCE DIVIDER 28
- TIMER A CLOCKSOURCE DIVIDER 32
- TIMER A CLOCKSOURCE DIVIDER 40
- TIMER_A_CLOCKSOURCE_DIVIDER_48
- TIMER A CLOCKSOURCE DIVIDER 56
- TIMER_A_CLOCKSOURCE_DIVIDER_64

timerInterruptEnable_TAIE is to enable or disable TIMER_A interrupt Valid values are:

- TIMER_A_TAIE_INTERRUPT_ENABLE
- TIMER_A_TAIE_INTERRUPT_DISABLE [Default]

timerClear decides if TIMER A clock divider, count direction, count need to be reset. Valid values are:

- TIMER_A_DO_CLEAR
- TIMER_A_SKIP_CLEAR [Default]

Modified bits of TAxCTL register.

Returns:

None

23.2.2.5 void TIMER_A_configureUpDownMode (uint16_t baseAddress, uint16_t clockSource, uint16_t clockSourceDivider, uint16_t timerPeriod, uint16_t timerInterruptEnable_TAIE, uint16_t captureCompareInterruptEnable CCR0 CCIE, uint16_t timerClear)

DEPRECATED - Configures TIMER_A in up down mode.

This API does not start the timer. Timer needs to be started when required using the TIMER A startCounter API.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	92
TI Compiler 4.2.1	Size	54
TI Compiler 4.2.1	Speed	54
IAR 5.51.6	None	84
IAR 5.51.6	Size	12
IAR 5.51.6	Speed	64
MSPGCC 4.8.0	None	104
MSPGCC 4.8.0	Size	72
MSPGCC 4.8.0	Speed	88

baseAddress is the base address of the TIMER A module.

clockSource selects Clock source. Valid values are:

- TIMER_A_CLOCKSOURCE_EXTERNAL_TXCLK [Default]
- TIMER A CLOCKSOURCE ACLK
- **TIMER A CLOCKSOURCE SMCLK**
- TIMER_A_CLOCKSOURCE_INVERTED_EXTERNAL_TXCLK

clockSourceDivider is the desired divider for the clock source Valid values are:

- TIMER A CLOCKSOURCE DIVIDER 1 [Default]
- TIMER_A_CLOCKSOURCE_DIVIDER_2
- TIMER_A_CLOCKSOURCE_DIVIDER_3
- TIMER A CLOCKSOURCE DIVIDER 4
- TIMER A CLOCKSOURCE DIVIDER 5
- TIMER_A_CLOCKSOURCE_DIVIDER_6
- TIMER A CLOCKSOURCE DIVIDER 7
- TIMER_A_CLOCKSOURCE_DIVIDER_8
- TIMER_A_CLOCKSOURCE_DIVIDER_10
- TIMER_A_CLOCKSOURCE_DIVIDER_12
- TIMER_A_CLOCKSOURCE_DIVIDER_14
- TIMER_A_CLOCKSOURCE_DIVIDER_16
- TIMER_A_CLOCKSOURCE_DIVIDER_20
- TIMER_A_CLOCKSOURCE_DIVIDER_24
- TIMER A CLOCKSOURCE DIVIDER 28
- TIMER A CLOCKSOURCE DIVIDER 32
- TIMER_A_CLOCKSOURCE_DIVIDER_40
- TIMER A CLOCKSOURCE DIVIDER 48
- TIMER A CLOCKSOURCE DIVIDER 56
- TIMER_A_CLOCKSOURCE_DIVIDER_64

timerPeriod is the specified TIMER_A period

timerInterruptEnable_TAIE is to enable or disable TIMER_A interrupt Valid values are:

- TIMER_A_TAIE_INTERRUPT_ENABLE
- TIMER_A_TAIE_INTERRUPT_DISABLE [Default]

captureCompareInterruptEnable_CCR0_CCIE is to enable or disable TIMER_A CCR0 captureComapre interrupt. Valid values are:

- TIMER_A_CCIE_CCR0_INTERRUPT_ENABLE
- TIMER_A_CCIE_CCR0_INTERRUPT_DISABLE [Default]

timerClear decides if TIMER_A clock divider, count direction, count need to be reset. Valid values are:

- TIMER_A_DO_CLEAR
- TIMER_A_SKIP_CLEAR [Default]

Modified bits of TAXCTL register, bits of TAXCCTL0 register and bits of TAXCCR0 register.

Returns:

None

23.2.2.6 void TIMER_A_configureUpMode (uint16_t baseAddress, uint16_t clockSource, uint16_t clockSourceDivider, uint16_t timerPeriod, uint16_t timerInterruptEnable_TAIE, uint16_t captureCompareInterruptEnable CCR0 CCIE, uint16_t timerClear)

DEPRECATED - Configures TIMER A in up mode.

This API does not start the timer. Timer needs to be started when required using the TIMER_A_startCounter API.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	92
TI Compiler 4.2.1	Size	54
TI Compiler 4.2.1	Speed	54
IAR 5.51.6	None	84
IAR 5.51.6	Size	12
IAR 5.51.6	Speed	64
MSPGCC 4.8.0	None	104
MSPGCC 4.8.0	Size	72
MSPGCC 4.8.0	Speed	88

baseAddress is the base address of the TIMER_A module.

clockSource selects Clock source. Valid values are:

- TIMER A CLOCKSOURCE EXTERNAL TXCLK [Default]
- TIMER_A_CLOCKSOURCE_ACLK
- TIMER_A_CLOCKSOURCE_SMCLK
- TIMER A CLOCKSOURCE INVERTED EXTERNAL TXCLK

clockSourceDivider is the desired divider for the clock source Valid values are:

- TIMER_A_CLOCKSOURCE_DIVIDER_1 [Default]
- TIMER A CLOCKSOURCE DIVIDER 2
- TIMER_A_CLOCKSOURCE_DIVIDER_3
- TIMER_A_CLOCKSOURCE_DIVIDER_4
- TIMER A CLOCKSOURCE DIVIDER 5
- TIMER A CLOCKSOURCE DIVIDER 6
- TIMER_A_CLOCKSOURCE_DIVIDER_7
- TIMER_A_CLOCKSOURCE_DIVIDER_8
- TIMER_A_CLOCKSOURCE_DIVIDER_10
- TIMER_A_CLOCKSOURCE_DIVIDER_12
- TIMER_A_CLOCKSOURCE_DIVIDER_14
- TIMER_A_CLOCKSOURCE_DIVIDER_16
- TIMER_A_CLOCKSOURCE_DIVIDER_20
- TIMER_A_CLOCKSOURCE_DIVIDER_24
- TIMER_A_CLOCKSOURCE_DIVIDER_28
- TIMER_A_CLOCKSOURCE_DIVIDER_32 ■ TIMER_A_CLOCKSOURCE_DIVIDER_40
- TIMER A CLOCKSOURCE DIVIDER 48
- TIMER_A_CLOCKSOURCE_DIVIDER_56
- TIMER_A_CLOCKSOURCE_DIVIDER_64

timerPeriod is the specified TIMER_A period. This is the value that gets written into the CCR0. Limited to 16 bits[uint16_t]

timerInterruptEnable_TAIE is to enable or disable TIMER_A interrupt Valid values are:

- **TIMER A TAIE INTERRUPT ENABLE**
- TIMER_A_TAIE_INTERRUPT_DISABLE [Default]

captureCompareInterruptEnable_CCR0_CCIE is to enable or disable TIMER_A CCR0 captureComapre interrupt. Valid values are:

- TIMER_A_CCIE_CCR0_INTERRUPT_ENABLE
- TIMER A CCIE CCR0 INTERRUPT DISABLE [Default]

timerClear decides if TIMER_A clock divider, count direction, count need to be reset. Valid values are:

- TIMER_A_DO_CLEAR
- TIMER_A_SKIP_CLEAR [Default]

Modified bits of TAxCTL register, bits of TAxCCTL0 register and bits of TAxCCR0 register.

Returns:

None

23.2.2.7 void TIMER_A_disableCaptureCompareInterrupt (uint16_t baseAddress, uint16_t captureCompareRegister)

Disable capture compare interrupt.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	22
TI Compiler 4.2.1	Size	10
TI Compiler 4.2.1	Speed	10
IAR 5.51.6	None	12
IAR 5.51.6	Size	10
IAR 5.51.6	Speed	10
MSPGCC 4.8.0	None	36
MSPGCC 4.8.0	Size	10
MSPGCC 4.8.0	Speed	10

Parameters:

baseAddress is the base address of the TIMER_A module.

captureCompareRegister is the selected capture compare register Valid values are:

- TIMER_A_CAPTURECOMPARE_REGISTER_0
- TIMER_A_CAPTURECOMPARE_REGISTER_1
- TIMER_A_CAPTURECOMPARE_REGISTER_2
- TIMER_A_CAPTURECOMPARE_REGISTER_3
- TIMER_A_CAPTURECOMPARE_REGISTER_4
- TIMER_A_CAPTURECOMPARE_REGISTER_5
- TIMER_A_CAPTURECOMPARE_REGISTER_6

Modified bits of TAxCCTLn register.

Returns:

None

23.2.2.8 void TIMER_A_disableInterrupt (uint16_t baseAddress)

Disable timer interrupt.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	16
TI Compiler 4.2.1	Size	6
TI Compiler 4.2.1	Speed	6
IAR 5.51.6	None	8
IAR 5.51.6	Size	6
IAR 5.51.6	Speed	6
MSPGCC 4.8.0	None	22
MSPGCC 4.8.0	Size	6
MSPGCC 4.8.0	Speed	6

Parameters:

baseAddress is the base address of the TIMER_A module.

Modified bits of TAxCTL register.

Returns:

None

23.2.2.9 void TIMER_A_enableCaptureCompareInterrupt (uint16_t baseAddress, uint16_t captureCompareRegister)

Enable capture compare interrupt.

Does not clear interrupt flags

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	22
TI Compiler 4.2.1	Size	10
TI Compiler 4.2.1	Speed	10
IAR 5.51.6	None	12
IAR 5.51.6	Size	10
IAR 5.51.6	Speed	10
MSPGCC 4.8.0	None	36
MSPGCC 4.8.0	Size	10
MSPGCC 4.8.0	Speed	10

Parameters:

baseAddress is the base address of the TIMER_A module.

captureCompareRegister is the selected capture compare register Valid values are:

- TIMER_A_CAPTURECOMPARE_REGISTER_0
- TIMER_A_CAPTURECOMPARE_REGISTER_1
- TIMER_A_CAPTURECOMPARE_REGISTER_2
- TIMER_A_CAPTURECOMPARE_REGISTER_3
- TIMER_A_CAPTURECOMPARE_REGISTER_4
- TIMER_A_CAPTURECOMPARE_REGISTER_5
- TIMER_A_CAPTURECOMPARE_REGISTER_6

Modified bits of TAxCCTLn register.

Returns:

None

23.2.2.10 void TIMER_A_enableInterrupt (uint16_t baseAddress)

Enable timer interrupt.

Does not clear interrupt flags

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	16
TI Compiler 4.2.1	Size	6
TI Compiler 4.2.1	Speed	6
IAR 5.51.6	None	8
IAR 5.51.6	Size	6
IAR 5.51.6	Speed	6
MSPGCC 4.8.0	None	22
MSPGCC 4.8.0	Size	6
MSPGCC 4.8.0	Speed	6

Parameters:

baseAddress is the base address of the TIMER_A module.

Modified bits of TAxCTL register.

Returns:

None

23.2.2.11 void TIMER_A_generatePWM (uint16_t baseAddress, uint16_t clockSource, uint16_t clockSourceDivider, uint16_t timerPeriod, uint16_t compareRegister, uint16_t compareOutputMode, uint16_t dutyCycle)

DEPRECATED - Generate a PWM with timer running in up mode.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	88
TI Compiler 4.2.1	Size	50
TI Compiler 4.2.1	Speed	50
IAR 5.51.6	None	80
IAR 5.51.6	Size	14
IAR 5.51.6	Speed	68
MSPGCC 4.8.0	None	96
MSPGCC 4.8.0	Size	72
MSPGCC 4.8.0	Speed	76

Parameters:

baseAddress is the base address of the TIMER_A module.

clockSource selects Clock source. Valid values are:

- TIMER A CLOCKSOURCE EXTERNAL TXCLK [Default]
- TIMER_A_CLOCKSOURCE_ACLK
- TIMER_A_CLOCKSOURCE_SMCLK
- TIMER_A_CLOCKSOURCE_INVERTED_EXTERNAL_TXCLK

clockSourceDivider is the desired divider for the clock source Valid values are:

- TIMER A CLOCKSOURCE DIVIDER 1 [Default]
- TIMER A CLOCKSOURCE DIVIDER 2
- TIMER_A_CLOCKSOURCE_DIVIDER_3
- TIMER_A_CLOCKSOURCE_DIVIDER_4
- TIMER_A_CLOCKSOURCE_DIVIDER_5
- TIMER_A_CLOCKSOURCE_DIVIDER_6
- TIMER_A_CLOCKSOURCE_DIVIDER_7
- TIMER_A_CLOCKSOURCE_DIVIDER_8
- TIMER_A_CLOCKSOURCE_DIVIDER_10
- TIMER_A_CLOCKSOURCE_DIVIDER_12
- TIMER_A_CLOCKSOURCE_DIVIDER_14
- TIMER_A_CLOCKSOURCE_DIVIDER_16
- TIMER_A_CLOCKSOURCE_DIVIDER_20
- TIMER_A_CLOCKSOURCE_DIVIDER_24
- TIMER_A_CLOCKSOURCE_DIVIDER_28
- TIMER_A_CLOCKSOURCE_DIVIDER_32
- TIMER_A_CLOCKSOURCE_DIVIDER_40 ■ TIMER_A_CLOCKSOURCE_DIVIDER_48
- TIMER_A_CLOCKSOURCE DIVIDER 56
- TIMER_A_CLOCKSOURCE_DIVIDER_64

timerPeriod selects the desired timer period

compareRegister selects the compare register being used. Refer to datasheet to ensure the device has the capture compare register being used. Valid values are:

- TIMER_A_CAPTURECOMPARE_REGISTER_0
- TIMER_A_CAPTURECOMPARE_REGISTER_1
- TIMER_A_CAPTURECOMPARE_REGISTER_2
- TIMER_A_CAPTURECOMPARE_REGISTER_3
- TIMER_A_CAPTURECOMPARE_REGISTER_4
- TIMER_A_CAPTURECOMPARE_REGISTER_5
- TIMER_A_CAPTURECOMPARE_REGISTER_6

compareOutputMode specifies the output mode. Valid values are:

- TIMER_A_OUTPUTMODE_OUTBITVALUE [Default]
- **TIMER A OUTPUTMODE SET**
- **TIMER A OUTPUTMODE TOGGLE RESET**
- TIMER_A_OUTPUTMODE_SET_RESET
- TIMER_A_OUTPUTMODE_TOGGLE
- **TIMER A OUTPUTMODE RESET**
- TIMER_A_OUTPUTMODE_TOGGLE_SET
- TIMER_A_OUTPUTMODE_RESET_SET

dutyCycle specifies the dutycycle for the generated waveform

Modified bits of TAxCTL register, bits of TAxCCTL0 register, bits of TAxCCTL0 register and bits of TAxCCTLn register.

Returns:

None

23.2.2.12 uint16_t TIMER_A_getCaptureCompareCount (uint16_t baseAddress, uint16_t captureCompareRegister)

Get current capturecompare count.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1 TI Compiler 4.2.1	None Size	20 8
TI Compiler 4.2.1	Speed	8
IAR 5.51.6	None	10
IAR 5.51.6	Size	10
IAR 5.51.6	Speed	10
MSPGCC 4.8.0	None	26
MSPGCC 4.8.0	Size	8
MSPGCC 4.8.0	Speed	8

Parameters:

baseAddress is the base address of the TIMER_A module. **captureCompareRegister** Valid values are:

- TIMER_A_CAPTURECOMPARE_REGISTER_0
- TIMER_A_CAPTURECOMPARE_REGISTER_1
- TIMER_A_CAPTURECOMPARE_REGISTER_2
- TIMER_A_CAPTURECOMPARE_REGISTER_3
- TIMER_A_CAPTURECOMPARE_REGISTER_4
- TIMER_A_CAPTURECOMPARE_REGISTER_5
- TIMER_A_CAPTURECOMPARE_REGISTER_6

Returns:

Current count as an uint16_t

23.2.2.13 uint32_t TIMER_A_getCaptureCompareInterruptStatus (uint16_t baseAddress, uint16 t captureCompareRegister, uint16 t mask)

Return capture compare interrupt status.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	30
TI Compiler 4.2.1	Size	10
TI Compiler 4.2.1	Speed	10
IAR 5.51.6	None	10
IAR 5.51.6	Size	10
IAR 5.51.6	Speed	10
MSPGCC 4.8.0	None	46
MSPGCC 4.8.0	Size	10
MSPGCC 4.8.0	Speed	10

Parameters:

baseAddress is the base address of the TIMER_A module.

captureCompareRegister is the selected capture compare register Valid values are:

- TIMER_A_CAPTURECOMPARE_REGISTER_0
- TIMER_A_CAPTURECOMPARE_REGISTER_1
- TIMER_A_CAPTURECOMPARE_REGISTER_2
- TIMER_A_CAPTURECOMPARE_REGISTER_3
- TIMER_A_CAPTURECOMPARE_REGISTER_4
- TIMER_A_CAPTURECOMPARE_REGISTER_5
- TIMER_A_CAPTURECOMPARE_REGISTER_6

mask is the mask for the interrupt status Mask value is the logical OR of any of the following:

- TIMER_A_CAPTURE_OVERFLOW
- TIMER_A_CAPTURECOMPARE_INTERRUPT_FLAG

Returns:

Logical OR of any of the following:

- TIMER_A_CAPTURE_OVERFLOW
- TIMER_A_CAPTURECOMPARE_INTERRUPT_FLAG indicating the status of the masked interrupts

23.2.2.14 uint16 t TIMER A getCounterValue (uint16 t baseAddress)

Reads the current timer count value.

Reads the current count value of the timer. There is a majority vote system in place to confirm an accurate value is returned. The TIMER_A_THRESHOLD define in the corresponding header file can be modified so that the votes must be closer together for a consensus to occur.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	88
TI Compiler 4.2.1	Size	38
TI Compiler 4.2.1	Speed	38
IAR 5.51.6	None	58
IAR 5.51.6	Size	38
IAR 5.51.6	Speed	38
MSPGCC 4.8.0	None	102
MSPGCC 4.8.0	Size	46
MSPGCC 4.8.0	Speed	48

baseAddress is the base address of the TIMER_A module.

Returns:

Majority vote of timer count value

23.2.2.15 uint32_t TIMER_A_getInterruptStatus (uint16_t baseAddress)

Get timer interrupt status.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	18
TI Compiler 4.2.1	Size	10
TI Compiler 4.2.1	Speed	10
IAR 5.51.6	None	8
IAR 5.51.6	Size	8
IAR 5.51.6	Speed	8
MSPGCC 4.8.0	None	34
MSPGCC 4.8.0	Size	8
MSPGCC 4.8.0	Speed	8

Parameters:

baseAddress is the base address of the TIMER_A module.

Returns:

One of the following:

- TIMER_A_INTERRUPT_NOT_PENDING
- TIMER_A_INTERRUPT_PENDING indicating the TIMER_A interrupt status

23.2.2.16 uint8_t TIMER_A_getOutputForOutputModeOutBitValue (uint16_t baseAddress, uint16_t captureCompareRegister)

Get output bit for output mode.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	28
TI Compiler 4.2.1	Size	16
TI Compiler 4.2.1	Speed	16
IAR 5.51.6	None	20
IAR 5.51.6	Size	16
IAR 5.51.6	Speed	16
MSPGCC 4.8.0	None	38
MSPGCC 4.8.0	Size	14
MSPGCC 4.8.0	Speed	14

Parameters:

baseAddress is the base address of the TIMER_A module.

captureCompareRegister Valid values are:

- TIMER_A_CAPTURECOMPARE_REGISTER_0
- TIMER_A_CAPTURECOMPARE_REGISTER_1

- TIMER_A_CAPTURECOMPARE_REGISTER_2
- TIMER A CAPTURECOMPARE REGISTER 3
- TIMER A CAPTURECOMPARE REGISTER 4
- TIMER A CAPTURECOMPARE REGISTER 5
- TIMER_A_CAPTURECOMPARE_REGISTER_6

Returns:

One of the following:

- **TIMER A OUTPUTMODE OUTBITVALUE HIGH**
- TIMER_A_OUTPUTMODE_OUTBITVALUE_LOW

23.2.2.17 uint8_t TIMER_A_getSynchronizedCaptureCompareInput (uint16_t baseAddress, uint16_t captureCompareRegister, uint16_t synchronized)

Get synchronized capturecompare input.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	36
TI Compiler 4.2.1	Size	14
TI Compiler 4.2.1	Speed	14
IAR 5.51.6	None	20
IAR 5.51.6	Size	16
IAR 5.51.6	Speed	16
MSPGCC 4.8.0	None	48
MSPGCC 4.8.0	Size	18
MSPGCC 4.8.0	Speed	18

Parameters:

baseAddress is the base address of the TIMER_A module. **captureCompareRegister** Valid values are:

- TIMER_A_CAPTURECOMPARE_REGISTER_0
- TIMER A CAPTURECOMPARE REGISTER 1
- TIMER A CAPTURECOMPARE REGISTER 2
- TIMER_A_CAPTURECOMPARE_REGISTER_3
- TIMER_A_CAPTURECOMPARE_REGISTER_4
- TIMER_A_CAPTURECOMPARE_REGISTER_5
- TIMER_A_CAPTURECOMPARE_REGISTER_6

synchronized Valid values are:

- TIMER A READ SYNCHRONIZED CAPTURECOMPAREINPUT
- TIMER_A_READ_CAPTURE_COMPARE_INPUT

Returns:

One of the following:

- TIMER_A_CAPTURECOMPARE_INPUT_HIGH
- TIMER_A_CAPTURECOMPARE_INPUT_LOW
- 23.2.2.18 void TIMER_A_initCapture (uint16_t baseAddress, uint16_t captureRegister, uint16_t captureMode, uint16_t captureInputSelect, uint16_t synchronizeCaptureSource, uint16_t captureInterruptEnable, uint16_t captureOutputMode)

DEPRECATED - Initializes Capture Mode.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	88
TI Compiler 4.2.1	Size	50
TI Compiler 4.2.1	Speed	50
IAR 5.51.6	None	80
IAR 5.51.6	Size	16
MSPGCC 4.8.0	Speed None	70 96
MSPGCC 4.8.0	Size	72
MSPGCC 4.8.0	Speed	36

Parameters:

baseAddress is the base address of the TIMER_A module.

captureRegister selects the Capture register being used. Refer to datasheet to ensure the device has the capture compare register being used. Valid values are:

- TIMER_A_CAPTURECOMPARE_REGISTER_0
- TIMER A CAPTURECOMPARE REGISTER 1
- TIMER_A_CAPTURECOMPARE_REGISTER_2
- TIMER_A_CAPTURECOMPARE_REGISTER_3
- TIMER_A_CAPTURECOMPARE_REGISTER_4
- TIMER_A_CAPTURECOMPARE_REGISTER_5
- TIMER_A_CAPTURECOMPARE_REGISTER_6

captureMode is the capture mode selected. Valid values are:

- TIMER_A_CAPTUREMODE_NO_CAPTURE [Default]
- TIMER_A_CAPTUREMODE_RISING_EDGE
- **TIMER A CAPTUREMODE FALLING EDGE**
- TIMER_A_CAPTUREMODE_RISING_AND_FALLING_EDGE

captureInputSelect decides the Input Select Valid values are:

- TIMER_A_CAPTURE_INPUTSELECT_CCIxA
- TIMER_A_CAPTURE_INPUTSELECT_CCIxB
- TIMER_A_CAPTURE_INPUTSELECT_GND
- TIMER_A_CAPTURE_INPUTSELECT_Vcc

synchronizeCaptureSource decides if capture source should be synchronized with timer clock Valid values are:

- TIMER_A_CAPTURE_ASYNCHRONOUS [Default]
- TIMER_A_CAPTURE_SYNCHRONOUS

captureInterruptEnable is to enable or disable timer captureComapre interrupt. Valid values are:

- TIMER_A_CAPTURECOMPARE_INTERRUPT_DISABLE [Default]
- TIMER_A_CAPTURECOMPARE_INTERRUPT_ENABLE

captureOutputMode specifies the output mode. Valid values are:

- TIMER_A_OUTPUTMODE_OUTBITVALUE [Default]
- TIMER_A_OUTPUTMODE_SET
- TIMER_A_OUTPUTMODE_TOGGLE_RESET
- TIMER_A_OUTPUTMODE_SET_RESET
- TIMER_A_OUTPUTMODE_TOGGLE
- TIMER_A_OUTPUTMODE_RESET
- TIMER_A_OUTPUTMODE_TOGGLE_SET
- TIMER_A_OUTPUTMODE_RESET_SET

Modified bits of TAxCCTLn register.

Returns:

None

23.2.2.19 void TIMER_A_initCaptureMode (uint16_t baseAddress, TIMER_A_initCaptureModeParam * param)

Initializes Capture Mode.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1 TI Compiler 4.2.1	None Size	70 48
TI Compiler 4.2.1	Speed	50
IAR 5.51.6	None	50
IAR 5.51.6	Size	48
IAR 5.51.6	Speed	48
MSPGCC 4.8.0	None	128
MSPGCC 4.8.0	Size	48
MSPGCC 4.8.0	Speed	48

Parameters:

baseAddress is the base address of the TIMER_A module. **param** is the pointer to struct for capture mode initialization.

Modified bits of TAxCCTLn register.

Returns:

None

23.2.2.20 void TIMER_A_initCompare (uint16_t baseAddress, uint16_t compareRegister, uint16_t compareInterruptEnable, uint16_t compareOutputMode, uint16_t compareValue)

DEPRECATED - Initializes Compare Mode.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	82
TI Compiler 4.2.1	Size	30
TI Compiler 4.2.1	Speed	30
IAR 5.51.6	None	64
IAR 5.51.6	Size	54
IAR 5.51.6	Speed	54
MSPGCC 4.8.0	None	76
MSPGCC 4.8.0	Size	30
MSPGCC 4.8.0	Speed	28

Parameters:

 ${\it baseAddress}\,$ is the base address of the TIMER_A module.

compareRegister selects the Capture register being used. Refer to datasheet to ensure the device has the capture compare register being used. Valid values are:

- TIMER_A_CAPTURECOMPARE_REGISTER_0
- TIMER_A_CAPTURECOMPARE_REGISTER_1
- TIMER_A_CAPTURECOMPARE_REGISTER_2
- TIMER_A_CAPTURECOMPARE_REGISTER_3
- TIMER_A_CAPTURECOMPARE_REGISTER_4

- TIMER_A_CAPTURECOMPARE_REGISTER_5
- TIMER_A_CAPTURECOMPARE_REGISTER_6

compareInterruptEnable is to enable or disable timer captureComapre interrupt. Valid values are:

- TIMER_A_CAPTURECOMPARE_INTERRUPT_DISABLE [Default]
- TIMER_A_CAPTURECOMPARE_INTERRUPT_ENABLE

compareOutputMode specifies the output mode. Valid values are:

- TIMER_A_OUTPUTMODE_OUTBITVALUE [Default]
- TIMER_A_OUTPUTMODE_SET
- TIMER_A_OUTPUTMODE_TOGGLE_RESET
- TIMER A OUTPUTMODE SET RESET
- **TIMER A OUTPUTMODE TOGGLE**
- TIMER_A_OUTPUTMODE_RESET
- TIMER_A_OUTPUTMODE_TOGGLE_SET
- TIMER_A_OUTPUTMODE_RESET_SET

compareValue is the count to be compared with in compare mode

Modified bits of TAxCCRn register and bits of TAxCCTLn register.

Returns:

None

23.2.2.21 void TIMER_A_initCompareMode (uint16_t baseAddress, TIMER A initCompareModeParam * param)

Initializes Compare Mode.

Code Metrics:

Optimization	Code Size
None	72
Size	46
Speed	46
None	52
Size	50
Speed	50
None	126
Size	46
Speed	46
	None Size Speed None Size Speed None Size

Parameters:

baseAddress is the base address of the TIMER_A module. **param** is the pointer to struct for compare mode initialization.

Modified bits of TAxCCRn register and bits of TAxCCTLn register.

Returns:

None

23.2.2.22 void TIMER_A_initContinuousMode (uint16_t baseAddress, TIMER_A_initContinuousModeParam * param)

Configures TIMER_A in continuous mode.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	106
TI Compiler 4.2.1	Size	70
TI Compiler 4.2.1	Speed	70
IAR 5.51.6	None	78
IAR 5.51.6	Size	70
IAR 5.51.6	Speed	70
MSPGCC 4.8.0	None	170
MSPGCC 4.8.0	Size	82
MSPGCC 4.8.0	Speed	82

baseAddress is the base address of the TIMER_A module. **param** is the pointer to struct for continuous mode initialization.

Modified bits of TAxCTL register.

Returns:

None

23.2.2.23 void TIMER_A_initUpDownMode (uint16_t *baseAddress*, TIMER_A_initUpDownModeParam * *param*)

Configures TIMER_A in up down mode.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	152
TI Compiler 4.2.1	Size	98
TI Compiler 4.2.1	Speed	98
IAR 5.51.6	None	118
IAR 5.51.6	Size	14
IAR 5.51.6	Speed	72
MSPGCC 4.8.0	None	248
MSPGCC 4.8.0	Size	116
MSPGCC 4.8.0	Speed	118

Parameters:

baseAddress is the base address of the TIMER_A module. **param** is the pointer to struct for up-down mode initialization.

Modified bits of TAxCTL register, bits of TAxCCTL0 register and bits of TAxCCR0 register.

Returns:

None

23.2.2.24 void TIMER_A_initUpMode (uint16_t *baseAddress*, TIMER_A_initUpModeParam * *param*)

Configures TIMER_A in up mode.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	152
TI Compiler 4.2.1	Size	98
TI Compiler 4.2.1	Speed	98
IAR 5.51.6	None	120
IAR 5.51.6	Size	16
IAR 5.51.6	Speed	74
MSPGCC 4.8.0	None	248
MSPGCC 4.8.0	Size	116
MSPGCC 4.8.0	Speed	118

baseAddress is the base address of the TIMER_A module. **param** is the pointer to struct for up mode initialization.

Modified bits of TAxCTL register, bits of TAxCCTL0 register and bits of TAxCCR0 register.

Returns:

None

23.2.2.25 void TIMER_A_outputPWM (uint16_t baseAddress, TIMER_A_outputPWMParam * param)

Generate a PWM with timer running in up mode.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	136
TI Compiler 4.2.1	Size	86
TI Compiler 4.2.1	Speed	86
IAR 5.51.6	None	108
IAR 5.51.6	Size	100
IAR 5.51.6	Speed	100
MSPGCC 4.8.0	None	228
MSPGCC 4.8.0	Size	100
MSPGCC 4.8.0	Speed	100

Parameters:

baseAddress is the base address of the TIMER_A module. **param** is the pointer to struct for PWM configuration.

Modified bits of TAxCTL register, bits of TAxCCTL0 register, bits of TAxCCR0 register and bits of TAxCCTLn register.

Returns:

None

23.2.2.26 void TIMER_A_setCompareValue (uint16_t baseAddress, uint16_t compareRegister, uint16_t compareValue)

Sets the value of the capture-compare register.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	30
TI Compiler 4.2.1	Size	8
TI Compiler 4.2.1	Speed	8
IAR 5.51.6	None	14
IAR 5.51.6	Size	12
IAR 5.51.6	Speed	12
MSPGCC 4.8.0	None	38
MSPGCC 4.8.0	Size	8
MSPGCC 4.8.0	Speed	8

baseAddress is the base address of the TIMER_A module.

compareRegister selects the Capture register being used. Refer to datasheet to ensure the device has the capture compare register being used. Valid values are:

- TIMER_A_CAPTURECOMPARE_REGISTER_0
- **TIMER A CAPTURECOMPARE REGISTER 1**
- TIMER_A_CAPTURECOMPARE_REGISTER_2
- TIMER_A_CAPTURECOMPARE_REGISTER_3
- TIMER_A_CAPTURECOMPARE_REGISTER_4
- TIMER_A_CAPTURECOMPARE_REGISTER_5
- TIMER_A_CAPTURECOMPARE_REGISTER_6

compare Value is the count to be compared with in compare mode

Modified bits of TAxCCRn register.

Returns:

None

23.2.2.27 void TIMER_A_setOutputForOutputModeOutBitValue (uint16_t baseAddress, uint16 t captureCompareRegister, uint8 t outputModeOutBitValue)

Set output bit for output mode.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	42
TI Compiler 4.2.1	Size	14
TI Compiler 4.2.1	Speed	14
IAR 5.51.6	None	20
IAR 5.51.6	Size	14
IAR 5.51.6	Speed	14
MSPGCC 4.8.0	None	74
MSPGCC 4.8.0	Size	16
MSPGCC 4.8.0	Speed	16

Parameters:

baseAddress is the base address of the TIMER_A module.
captureCompareRegister Valid values are:

- TIMER_A_CAPTURECOMPARE_REGISTER_0
- TIMER A CAPTURECOMPARE REGISTER 1
- TIMER_A_CAPTURECOMPARE_REGISTER_2
- TIMER_A_CAPTURECOMPARE_REGISTER_3
- TIMER_A_CAPTURECOMPARE_REGISTER_4

- TIMER_A_CAPTURECOMPARE_REGISTER_5
- TIMER_A_CAPTURECOMPARE_REGISTER_6

outputModeOutBitValue is the value to be set for out bit Valid values are:

- TIMER_A_OUTPUTMODE_OUTBITVALUE_HIGH
- TIMER A OUTPUTMODE OUTBITVALUE LOW

Modified bits of TAxCCTLn register.

Returns:

None

23.2.2.8 void TIMER_A_startContinousMode (uint16_t baseAddress, uint16_t clockSource, uint16_t clockSourceDivider, uint16_t timerInterruptEnable_TAIE, uint16_t timerClear)

DEPRECATED - Spelling Error Fixed. Starts timer in continuous mode.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	52
TI Compiler 4.2.1	Size	16
TI Compiler 4.2.1	Speed	16
IAR 5.51.6	None	34
IAR 5.51.6	Size	18
IAR 5.51.6	Speed	2
MSPGCC 4.8.0	None	52
MSPGCC 4.8.0	Size	16
MSPGCC 4.8.0	Speed	58

Parameters:

baseAddress is the base address of the TIMER_A module.

clockSource selects Clock source. Valid values are:

- TIMER_A_CLOCKSOURCE_EXTERNAL_TXCLK [Default]
- TIMER_A_CLOCKSOURCE_ACLK
- TIMER_A_CLOCKSOURCE_SMCLK
- TIMER_A_CLOCKSOURCE_INVERTED_EXTERNAL_TXCLK

clockSourceDivider is the desired divider for the clock source Valid values are:

- TIMER_A_CLOCKSOURCE_DIVIDER_1 [Default]
- TIMER_A_CLOCKSOURCE_DIVIDER_2
- TIMER_A_CLOCKSOURCE_DIVIDER_3
- TIMER_A_CLOCKSOURCE_DIVIDER_4
- TIMER_A_CLOCKSOURCE_DIVIDER_5
- TIMER_A_CLOCKSOURCE_DIVIDER_6
- TIMER_A_CLOCKSOURCE_DIVIDER_7
- TIMER_A_CLOCKSOURCE_DIVIDER_8 ■ TIMER A CLOCKSOURCE DIVIDER 10
- = TIMEN_A_CLOCKSOUNCE_DIVIDEN_IC
- TIMER_A_CLOCKSOURCE_DIVIDER_12
- TIMER_A_CLOCKSOURCE_DIVIDER_14 ■ TIMER_A_CLOCKSOURCE_DIVIDER_16
- TIMER_A_CLOCKSOURCE_DIVIDER_20
- TIMER_A_CLOCKSOURCE_DIVIDER_24
- TIMER_A_CLOCKSOURCE_DIVIDER_28
- TIMER A CLOCKSOURCE DIVIDER 32
- TIMER_A_CLOCKSOURCE_DIVIDER_40

- TIMER_A_CLOCKSOURCE_DIVIDER_48
- TIMER A CLOCKSOURCE DIVIDER 56
- TIMER_A_CLOCKSOURCE_DIVIDER_64

timerInterruptEnable_TAIE is to enable or disable timer interrupt Valid values are:

- **TIMER A TAIE INTERRUPT ENABLE**
- TIMER_A_TAIE_INTERRUPT_DISABLE [Default]

timerClear decides if timer clock divider, count direction, count need to be reset. Valid values are:

- TIMER_A_DO_CLEAR
- TIMER_A_SKIP_CLEAR [Default]

Modified bits of TAxCTL register.

Returns:

None

23.2.2.29 void TIMER_A_startContinuousMode (uint16_t baseAddress, uint16_t clockSource, uint16_t clockSourceDivider, uint16_t timerInterruptEnable_TAIE, uint16_t timerClear)

DEPRECATED - Starts timer in continuous mode.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	80
TI Compiler 4.2.1	Size	38
TI Compiler 4.2.1	Speed	38
IAR 5.51.6	None	68
IAR 5.51.6	Size	14
IAR 5.51.6	Speed	0
MSPGCC 4.8.0	None	84
MSPGCC 4.8.0	Size	64
MSPGCC 4.8.0	Speed	58

Parameters:

baseAddress is the base address of the TIMER_A module.

clockSource selects Clock source. Valid values are:

- TIMER_A_CLOCKSOURCE_EXTERNAL_TXCLK [Default]
- TIMER_A_CLOCKSOURCE_ACLK
- TIMER A CLOCKSOURCE SMCLK
- TIMER A CLOCKSOURCE INVERTED EXTERNAL TXCLK

clockSourceDivider is the desired divider for the clock source Valid values are:

- TIMER_A_CLOCKSOURCE_DIVIDER_1 [Default]
- TIMER A CLOCKSOURCE DIVIDER 2
- TIMER_A_CLOCKSOURCE_DIVIDER_3
- TIMER_A_CLOCKSOURCE_DIVIDER_4
- TIMER_A_CLOCKSOURCE_DIVIDER_5
- TIMER_A_CLOCKSOURCE_DIVIDER_6
- TIMER_A_CLOCKSOURCE_DIVIDER_7
 TIMER A CLOCKSOURCE DIVIDER 8
- TIMER_A_CLOCKSOURCE_DIVIDER_10
- TIMER_A_CLOCKSOURCE_DIVIDER_12
- TIMER_A_CLOCKSOURCE_DIVIDER_14
- TIMER A CLOCKSOURCE DIVIDER 16
- TIMER_A_CLOCKSOURCE_DIVIDER_20

- TIMER_A_CLOCKSOURCE_DIVIDER_24
- TIMER_A_CLOCKSOURCE_DIVIDER_28
- TIMER_A_CLOCKSOURCE_DIVIDER_32
- TIMER_A_CLOCKSOURCE_DIVIDER_40
- TIMER_A_CLOCKSOURCE_DIVIDER_48
- TIMER_A_CLOCKSOURCE_DIVIDER_56
- TIMER_A_CLOCKSOURCE_DIVIDER_64

timerInterruptEnable_TAIE is to enable or disable timer interrupt Valid values are:

- TIMER_A_TAIE_INTERRUPT_ENABLE
- TIMER_A_TAIE_INTERRUPT_DISABLE [Default]

timerClear decides if timer clock divider, count direction, count need to be reset. Valid values are:

- TIMER_A_DO_CLEAR
- TIMER_A_SKIP_CLEAR [Default]

Modified bits of TAxCTL register.

Returns:

None

23.2.2.30 void TIMER_A_startCounter (uint16_t baseAddress, uint16_t timerMode)

Starts TIMER_A counter.

This function assumes that the timer has been previously configured using TIMER_A_configureContinuousMode, TIMER_A_configureUpMode or TIMER_A_configureUpDownMode.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	22
TI Compiler 4.2.1	Size	6
TI Compiler 4.2.1	Speed	6
IAR 5.51.6	None	6
IAR 5.51.6	Size	6
IAR 5.51.6	Speed	6
MSPGCC 4.8.0	None	30
MSPGCC 4.8.0	Size	6
MSPGCC 4.8.0	Speed	6

Parameters:

baseAddress is the base address of the TIMER A module.

timerMode mode to put the timer in Valid values are:

- TIMER_A_STOP_MODE
- TIMER_A_UP_MODE
- TIMER_A_CONTINUOUS_MODE [Default]
- TIMER_A_UPDOWN_MODE

Modified bits of TAxCTL register.

Returns:

None

23.2.2.31 void TIMER_A_startUpDownMode (uint16_t baseAddress, uint16_t clockSource, uint16_t clockSourceDivider, uint16_t timerPeriod, uint16_t timerInterruptEnable_TAIE, uint16_t captureCompareInterruptEnable CCR0 CCIE, uint16_t timerClear)

DEPRECATED - Replaced by TIMER_A_configureUpMode and TIMER_A_startCounter API. Starts timer in up down mode.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	92
TI Compiler 4.2.1	Size	54
TI Compiler 4.2.1	Speed	54
IAR 5.51.6	None	84
IAR 5.51.6	Size	12
IAR 5.51.6	Speed	64
MSPGCC 4.8.0	None	104
MSPGCC 4.8.0	Size	76
MSPGCC 4.8.0	Speed	94

Parameters:

baseAddress is the base address of the TIMER_A module.

clockSource selects Clock source. Valid values are:

- TIMER A CLOCKSOURCE EXTERNAL TXCLK [Default]
- **TIMER A CLOCKSOURCE ACLK**
- TIMER A CLOCKSOURCE SMCLK
- TIMER_A_CLOCKSOURCE_INVERTED_EXTERNAL_TXCLK

clockSourceDivider is the desired divider for the clock source Valid values are:

- TIMER A CLOCKSOURCE DIVIDER 1 [Default]
- TIMER A CLOCKSOURCE DIVIDER 2
- TIMER_A_CLOCKSOURCE_DIVIDER_3
- TIMER_A_CLOCKSOURCE_DIVIDER_4
- TIMER_A_CLOCKSOURCE_DIVIDER_5
- TIMER_A_CLOCKSOURCE_DIVIDER_6 ■ TIMER A CLOCKSOURCE DIVIDER 7
- IIIWIEN_A_CLOCKSOUNCE_DIVIDEN_/
- TIMER_A_CLOCKSOURCE_DIVIDER_8 ■ TIMER_A_CLOCKSOURCE_DIVIDER_10
- TIMER A CLOCKSOURCE DIVIDER 12
- TIMER A CLOCKSOURCE DIVIDER 14
- TIMER_A_CLOCKSOURCE_DIVIDER_16
- TIMER_A_CLOCKSOURCE_DIVIDER_20
- TIMER A_CLOCKSOURCE_DIVIDER_24
- TIMER_A_CLOCKSOURCE_DIVIDER_28
- TIMER_A_CLOCKSOURCE_DIVIDER_32
- TIMER A CLOCKSOURCE DIVIDER 40
- TIMER_A_CLOCKSOURCE_DIVIDER_48
- TIMER_A_CLOCKSOURCE_DIVIDER_56
- TIMER_A_CLOCKSOURCE_DIVIDER_64

timerPeriod is the specified timer period

timerInterruptEnable_TAIE is to enable or disable timer interrupt Valid values are:

- TIMER_A_TAIE_INTERRUPT_ENABLE
- TIMER_A_TAIE_INTERRUPT_DISABLE [Default]

captureCompareInterruptEnable_CCR0_CCIE is to enable or disable timer CCR0 captureComapre interrupt. Valid values are:

■ TIMER_A_CCIE_CCR0_INTERRUPT_ENABLE

■ TIMER_A_CCIE_CCR0_INTERRUPT_DISABLE [Default]

timerClear decides if timer clock divider, count direction, count need to be reset. Valid values are:

- TIMER_A_DO_CLEAR
- TIMER_A_SKIP_CLEAR [Default]

Modified bits of TAXCTL register, bits of TAXCCTL0 register and bits of TAXCCR0 register.

Returns:

None

23.2.2.32 void TIMER_A_startUpMode (uint16_t baseAddress, uint16_t clockSource, uint16_t clockSourceDivider, uint16_t timerPeriod, uint16_t timerInterruptEnable_TAIE, uint16_t captureCompareInterruptEnable_CCR0_CCIE, uint16_t timerClear)

DEPRECATED - Replaced by TIMER_A_configureUpMode and TIMER_A_startCounter API. Starts timer in up mode.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	92
TI Compiler 4.2.1 TI Compiler 4.2.1	Size Speed	54 54
IAR 5.51.6	None	84
IAR 5.51.6	Size	10
IAR 5.51.6	Speed	62
MSPGCC 4.8.0	None	104
MSPGCC 4.8.0	Size	76
MSPGCC 4.8.0	Speed	94

Parameters:

baseAddress is the base address of the TIMER_A module.

clockSource selects Clock source. Valid values are:

- TIMER_A_CLOCKSOURCE_EXTERNAL_TXCLK [Default]
- TIMER_A_CLOCKSOURCE_ACLK
- **TIMER A CLOCKSOURCE SMCLK**
- TIMER A CLOCKSOURCE INVERTED EXTERNAL TXCLK

clockSourceDivider is the desired divider for the clock source Valid values are:

- TIMER A CLOCKSOURCE DIVIDER 1 [Default]
- TIMER_A_CLOCKSOURCE_DIVIDER_2
- TIMER A CLOCKSOURCE DIVIDER 3
- TIMER A CLOCKSOURCE DIVIDER 4
- TIMER A CLOCKSOURCE DIVIDER 5
- TIMER_A_CLOCKSOURCE_DIVIDER_6
- TIMER_A_CLOCKSOURCE_DIVIDER_7
- TIMER_A_CLOCKSOURCE_DIVIDER_8
- TIMER_A_CLOCKSOURCE_DIVIDER_10
- TIMER_A_CLOCKSOURCE_DIVIDER_12
- TIMER_A_CLOCKSOURCE_DIVIDER_14
- TIMER_A_CLOCKSOURCE_DIVIDER_16
- TIMER_A_CLOCKSOURCE_DIVIDER_20
- TIMER_A_CLOCKSOURCE_DIVIDER_24 ■ TIMER A CLOCKSOURCE DIVIDER 28
- TIMER A CLOCKSOURCE DIVIDER 32
- TIMER_A_CLOCKSOURCE_DIVIDER_40

- TIMER_A_CLOCKSOURCE_DIVIDER_48
- TIMER_A_CLOCKSOURCE_DIVIDER_56
- TIMER_A_CLOCKSOURCE_DIVIDER_64

timerPeriod is the specified timer period. This is the value that gets written into the CCR0. Limited to 16 bits[uint16_t] *timerInterruptEnable_TAIE* is to enable or disable timer interrupt Valid values are:

- TIMER_A_TAIE_INTERRUPT_ENABLE
- TIMER_A_TAIE_INTERRUPT_DISABLE [Default]

captureCompareInterruptEnable_CCR0_CCIE is to enable or disable timer CCR0 captureComapre interrupt. Valid values are:

- TIMER_A_CCIE_CCR0_INTERRUPT_ENABLE
- TIMER_A_CCIE_CCR0_INTERRUPT_DISABLE [Default]

timerClear decides if timer clock divider, count direction, count need to be reset. Valid values are:

- TIMER_A_DO_CLEAR
- TIMER_A_SKIP_CLEAR [Default]

Modified bits of TAxCTL register, bits of TAxCCTL0 register and bits of TAxCCR0 register.

Returns:

None

23.2.2.33 void TIMER_A_stop (uint16_t baseAddress)

Stops the timer.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	24
TI Compiler 4.2.1	Size	12
TI Compiler 4.2.1 IAR 5.51.6	Speed None	12
IAR 5.51.6	Size	12
IAR 5.51.6	Speed	12
MSPGCC 4.8.0	None	34
MSPGCC 4.8.0	Size	8
MSPGCC 4.8.0	Speed	8

Parameters:

baseAddress is the base address of the TIMER_A module.

Modified bits of TAxCTL register.

Returns:

None

23.3 Programming Example

The following example shows some TIMER A operations using the APIs

```
{     //Start TIMER_A
     TIMER_A_configureUpDownMode( TIMER_A1_BASE,
          TIMER_A_CLOCKSOURCE_SMCLK,
          TIMER_A_CLOCKSOURCE_DIVIDER_1,
          TIMER_PERIOD,
          TIMER_A_TAIE_INTERRUPT_DISABLE,
```

```
TIMER_A_CCIE_CCR0_INTERRUPT_DISABLE,
   TIMER_A_DO_CLEAR
   );
TIMER_A_startCounter( TIMER_A1_BASE,
           TIMER_A_UPDOWN_MODE
           );
//Initialize compare registers to generate PWM1
TIMER_A_initCompare(TIMER_A1_BASE,
   TIMER_A_CAPTURECOMPARE_REGISTER_1,
    TIMER_A_CAPTURECOMPARE_INTERRUPT_ENABLE,
   TIMER_A_OUTPUTMODE_TOGGLE_SET,
   DUTY_CYCLE1
   );
//Initialize compare registers to generate PWM2
TIMER_A_initCompare(TIMER_A1_BASE,
   TIMER_A_CAPTURECOMPARE_REGISTER_2,
   TIMER_A_CAPTURECOMPARE_INTERRUPT_DISABLE,
   TIMER_A_OUTPUTMODE_TOGGLE_SET,
   DUTY_CYCLE2
   );
//Enter LPM0
__bis_SR_register(LPM0_bits);
//For debugger
__no_operation();
```

24 16-Bit Timer_B (TIMER_B)

Introduction	265
API Functions	. 266
Programming Example	

24.1 Introduction

TIMER_B is a 16-bit timer/counter with multiple capture/compare registers. TIMER_B can support multiple capture/compares, PWM outputs, and interval timing. TIMER_B also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers.

This peripheral API handles Timer B hardware peripheral.

TIMER B features include:

- Asynchronous 16-bit timer/counter with four operating modes
- Selectable and configurable clock source
- Up to seven configurable capture/compare registers
- Configurable outputs with pulse width modulation (PWM) capability
- Asynchronous input and output latching
- Interrupt vector register for fast decoding of all Timer_B interrupts

Differences From Timer A Timer B is identical to Timer A with the following exceptions:

- The length of Timer_B is programmable to be 8, 10, 12, or 16 bits
- Timer_B TBxCCRn registers are double-buffered and can be grouped
- All Timer_B outputs can be put into a high-impedance state
- The SCCI bit function is not implemented in Timer_B

TIMER_B can operate in 3 modes

- Continuous Mode
- Up Mode
- Down Mode

TIMER_B Interrupts may be generated on counter overflow conditions and during capture compare events.

The TIMER_B may also be used to generate PWM outputs. PWM outputs can be generated by initializing the compare mode with TIMER_B_initCompare() and the necessary parameters. The PWM may be customized by selecting a desired timer mode (continuous/up/upDown), duty cycle, output mode, timer period etc. The library also provides a simpler way to generate PWM using TIMER_B_generatePWM() API. However the level of customization and the kinds of PWM generated are limited in this API. Depending on how complex the PWM is and what level of customization is required, the user can use TIMER_B_generatePWM() or a combination of Timer_initCompare() and timer start APIs

The TIMER_B API provides a set of functions for dealing with the TIMER_B module. Functions are provided to configure and control the timer, along with functions to modify timer/counter values, and to manage interrupt handling for the timer.

Control is also provided over interrupt sources and events. Interrupts can be generated to indicate that an event has been captured.

This driver is contained in TIMER_B.c, with TIMER_B.h containing the API definitions for use by applications.

т

he following code metrics were performed with the TI Compiler 4.2.1 compiler, IAR 5.51.6 compiler and MSPGCC 4.8.0 compiler with different optimization settings. Users may see different code sizes depending on their project settings so it is best to perform your benchmarks within your project. These sizes contain all functions of the peripheral but only functions that are used will be linked into the application and added to the total code size. To see individual API code metrics see the specific API below.

Optimization	Code Size
None	2094
Size	1110
Speed	1112
None	1544
Size	674
Speed	1110
None	2884
Size	1350
Speed	1418
	None Size Speed None Size Speed None Size

24.2 API Functions

Functions

- void TIMER_B_clear (uint16_t baseAddress)
- void TIMER_B_clearCaptureCompareInterruptFlag (uint16_t baseAddress, uint16_t captureCompareRegister)
- void TIMER_B_clearTimerInterruptFlag (uint16_t baseAddress)
- void TIMER_B_configureContinuousMode (uint16_t baseAddress, uint16_t clockSource, uint16_t clockSourceDivider, uint16_t timerInterruptEnable_TBIE, uint16_t timerClear)
- void TIMER_B_configureUpDownMode (uint16_t baseAddress, uint16_t clockSource, uint16_t clockSourceDivider, uint16_t timerPeriod, uint16_t timerInterruptEnable_TBIE, uint16_t captureCompareInterruptEnable_CCR0_CCIE, uint16_t timerClear)
- void TIMER_B_configureUpMode (uint16_t baseAddress, uint16_t clockSource, uint16_t clockSourceDivider, uint16_t timerPeriod, uint16_t timerInterruptEnable_TBIE, uint16_t captureCompareInterruptEnable_CCR0_CCIE, uint16_t timerClear)
- void TIMER B disableCaptureCompareInterrupt (uint16 t baseAddress, uint16 t captureCompareRegister)
- void TIMER_B_disableInterrupt (uint16_t baseAddress)
- void TIMER B enableCaptureCompareInterrupt (uint16 t baseAddress, uint16 t captureCompareRegister)
- void TIMER B enableInterrupt (uint16 t baseAddress)
- void TIMER_B_generatePWM (uint16_t baseAddress, uint16_t clockSource, uint16_t clockSourceDivider, uint16_t timerPeriod, uint16_t compareRegister, uint16_t compareOutputMode, uint16_t dutyCycle)
- uint16_t TIMER_B_getCaptureCompareCount (uint16_t baseAddress, uint16_t captureCompareRegister)
- uint32_t TIMER_B_getCaptureCompareInterruptStatus (uint16_t baseAddress, uint16_t captureCompareRegister, uint16_t mask)
- uint16_t TIMER_B_getCounterValue (uint16_t baseAddress)
- uint32_t TIMER_B_getInterruptStatus (uint16_t baseAddress)
- uint8_t TIMER_B_getOutputForOutputModeOutBitValue (uint16_t baseAddress, uint16_t captureCompareRegister)
- uint8_t TIMER_B_getSynchronizedCaptureCompareInput (uint16_t baseAddress, uint16_t captureCompareRegister, uint16_t synchronized)
- void TIMER_B_initCapture (uint16_t baseAddress, uint16_t captureRegister, uint16_t captureMode, uint16_t captureInputSelect, uint16_t synchronizeCaptureSource, uint16_t captureInterruptEnable, uint16_t captureOutputMode)
- void TIMER_B_initCaptureMode (uint16_t baseAddress, TIMER_B_initCaptureModeParam *param)
- void TIMER_B_initCompare (uint16_t baseAddress, uint16_t compareRegister, uint16_t compareInterruptEnable, uint16_t compareOutputMode, uint16_t compareValue)
- void TIMER_B_initCompareLatchLoadEvent (uint16_t baseAddress, uint16_t compareRegister, uint16_t compareLatchLoadEvent)
- void TIMER_B_initCompareMode (uint16_t baseAddress, TIMER_B_initCompareModeParam *param)
- void TIMER_B_initContinuousMode (uint16_t baseAddress, TIMER_B_initContinuousModeParam *param)
- void TIMER_B_initUpDownMode (uint16_t baseAddress, TIMER_B_initUpDownModeParam *param)
- void TIMER_B_initUpMode (uint16_t baseAddress, TIMER_B_initUpModeParam *param)
- void TIMER_B_outputPWM (uint16_t baseAddress, TIMER_B_outputPWMParam *param)
- void TIMER_B_selectCounterLength (uint16_t baseAddress, uint16_t counterLength)
- void TIMER B selectLatchingGroup (uint16 t baseAddress, uint16 t groupLatch)
- void TIMER_B_setCompareValue (uint16_t baseAddress, uint16_t compareRegister, uint16_t compareValue)

- void TIMER_B_setOutputForOutputModeOutBitValue (uint16_t baseAddress, uint16_t captureCompareRegister, uint8 t outputModeOutBitValue)
- void TIMER_B_startContinousMode (uint16_t baseAddress, uint16_t clockSource, uint16_t clockSourceDivider, uint16_t timerInterruptEnable_TBIE, uint16_t timerClear)
- void TIMER_B_startContinuousMode (uint16_t baseAddress, uint16_t clockSource, uint16_t clockSourceDivider, uint16_t timerInterruptEnable_TBIE, uint16_t timerClear)
- void TIMER B startCounter (uint16 t baseAddress, uint16 t timerMode)
- void TIMER_B_startUpDownMode (uint16_t baseAddress, uint16_t clockSource, uint16_t clockSourceDivider, uint16_t timerPeriod, uint16_t timerInterruptEnable_TBIE, uint16_t captureCompareInterruptEnable_CCR0_CCIE, uint16_t timerClear)
- void TIMER_B_startUpMode (uint16_t baseAddress, uint16_t clockSource, uint16_t clockSourceDivider, uint16_t timerPeriod, uint16_t timerInterruptEnable_TBIE, uint16_t captureCompareInterruptEnable_CCR0_CCIE, uint16_t timerClear)
- void TIMER B stop (uint16 t baseAddress)

24.2.1 Detailed Description

The TIMER_B API is broken into three groups of functions: those that deal with timer configuration and control, those that deal with timer contents, and those that deal with interrupt handling.

TIMER_B configuration and initialization is handled by

- TIMER_B_startCounter()
- TIMER_B_configureContinuousMode()
- TIMER B configureUpMode()
- TIMER_B_configureUpDownMode()
- TIMER B startContinuousMode()
- TIMER_B_startUpMode()
- TIMER_B_startUpDownMode()
- TIMER_B_initCapture()
- TIMER B initCompare()
- TIMER B clear()
- TIMER B stop()
- TIMER_B_initCompareLatchLoadEvent()
- TIMER_B_selectLatchingGroup()
- TIMER_B_selectCounterLength()

TIMER_B outputs are handled by

- TIMER_B_getSynchronizedCaptureCompareInput()
- TIMER_B_getOutputForOutputModeOutBitValue()
- TIMER_B_setOutputForOutputModeOutBitValue()
- TIMER_B_generatePWM()
- TIMER_B_getCaptureCompareCount()
- TIMER_B_setCompareValue()
- TIMER_B_getCounterValue()

The interrupt handler for the TIMER B interrupt is managed with

- TIMER B enableInterrupt()
- TIMER_B_disableInterrupt()
- TIMER_B_getInterruptStatus()
- TIMER_B_enableCaptureCompareInterrupt()
- TIMER_B_disableCaptureCompareInterrupt()
- TIMER_B_getCaptureCompareInterruptStatus()
- TIMER_B_clearCaptureCompareInterruptFlag()
- TIMER_B_clearTimerInterruptFlag()

24.2.2 Function Documentation

24.2.2.1 void TIMER B clear (uint16 t baseAddress)

Reset/Clear the TIMER_B clock divider, count direction, count.

Code Metrics:

Optimization	Code Size
None	16
Size	6
Speed	6
None	8
Size	6
Speed	6
None	22
Size	6
Speed	6
	None Size Speed None Size Speed None Size

Parameters:

baseAddress is the base address of the TIMER_B module.

Modified bits of TBxCTL register.

Returns:

None

24.2.2.2 void TIMER_B_clearCaptureCompareInterruptFlag (uint16_t baseAddress, uint16_t captureCompareRegister)

Clears the capture-compare interrupt flag.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	20
TI Compiler 4.2.1	Size	8
TI Compiler 4.2.1	Speed	8
IAR 5.51.6	None	10
IAR 5.51.6	Size	2
IAR 5.51.6	Speed	2
MSPGCC 4.8.0	None	34
MSPGCC 4.8.0	Size	8
MSPGCC 4.8.0	Speed	8

Parameters:

baseAddress is the base address of the TIMER_B module.

captureCompareRegister selects the capture compare register being used. Refer to datasheet to ensure the device has the capture compare register being used. Valid values are:

- TIMER_B_CAPTURECOMPARE_REGISTER_0
- TIMER_B_CAPTURECOMPARE_REGISTER_1
- TIMER_B_CAPTURECOMPARE_REGISTER_2
- TIMER_B_CAPTURECOMPARE_REGISTER_3
- TIMER_B_CAPTURECOMPARE_REGISTER_4
- TIMER_B_CAPTURECOMPARE_REGISTER_5
- TIMER_B_CAPTURECOMPARE_REGISTER_6

Modified bits are CCIFG of TBxCCTLn register.

Returns:

None

24.2.2.3 void TIMER B clearTimerInterruptFlag (uint16 t baseAddress)

Clears the TIMER_B TBIFG interrupt flag.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	16
TI Compiler 4.2.1	Size	6
TI Compiler 4.2.1	Speed	6
IAR 5.51.6	None	8
IAR 5.51.6	Size	2
IAR 5.51.6	Speed	2
MSPGCC 4.8.0	None	22
MSPGCC 4.8.0	Size	6
MSPGCC 4.8.0	Speed	6

Parameters:

baseAddress is the base address of the TIMER_B module.

Modified bits are TBIFG of TBxCTL register.

Returns:

None

24.2.2.4 void TIMER_B_configureContinuousMode (uint16_t baseAddress, uint16_t clockSource, uint16_t clockSourceDivider, uint16_t timerInterruptEnable_TBIE, uint16_t timerClear)

DEPRECATED - Configures TIMER_B in continuous mode.

This API does not start the timer. Timer needs to be started when required using the TIMER_B_startCounter API.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	80
TI Compiler 4.2.1	Size	38
TI Compiler 4.2.1	Speed	38
IAR 5.51.6	None	68
IAR 5.51.6	Size	16
IAR 5.51.6	Speed	48
MSPGCC 4.8.0	None	84
MSPGCC 4.8.0	Size	60
MSPGCC 4.8.0	Speed	52

Parameters:

baseAddress is the base address of the TIMER_B module.

clockSource selects the clock source Valid values are:

■ TIMER_B_CLOCKSOURCE_EXTERNAL_TXCLK [Default]

- TIMER_B_CLOCKSOURCE_ACLK
- TIMER B CLOCKSOURCE SMCLK
- TIMER B CLOCKSOURCE INVERTED EXTERNAL TXCLK

clockSourceDivider is the divider for Clock source. Valid values are:

- TIMER_B_CLOCKSOURCE_DIVIDER_1 [Default]
- TIMER_B_CLOCKSOURCE_DIVIDER_2
- TIMER_B_CLOCKSOURCE_DIVIDER_3
- TIMER B CLOCKSOURCE DIVIDER 4
- TIMER_B_CLOCKSOURCE_DIVIDER_5
- TIMER B CLOCKSOURCE DIVIDER 6
- TIMER B CLOCKSOURCE DIVIDER 7
- TIMER B CLOCKSOURCE DIVIDER 8
- TIMER_B_CLOCKSOURCE_DIVIDER_10
- TIMER_B_CLOCKSOURCE_DIVIDER_12
- TIMER B CLOCKSOURCE DIVIDER 14
- TIMER_B_CLOCKSOURCE_DIVIDER_16
- TIMER B CLOCKSOURCE DIVIDER 20
- TIMER B CLOCKSOURCE DIVIDER 24
- TIMER B CLOCKSOURCE DIVIDER 28
- TIMER B CLOCKSOURCE DIVIDER 32
- TIMER B CLOCKSOURCE DIVIDER 40
- TIMER_B_CLOCKSOURCE_DIVIDER_48
- TIMER B CLOCKSOURCE DIVIDER 56
- TIMER_B_CLOCKSOURCE_DIVIDER_64

timerInterruptEnable_TBIE is to enable or disable TIMER_B interrupt Valid values are:

- TIMER_B_TBIE_INTERRUPT_ENABLE
- TIMER_B_TBIE_INTERRUPT_DISABLE [Default]

timerClear decides if TIMER B clock divider, count direction, count need to be reset. Valid values are:

- TIMER_B_DO_CLEAR
- TIMER_B_SKIP_CLEAR [Default]

Modified bits of TBxCTL register.

Returns:

None

24.2.2.5 void TIMER_B_configureUpDownMode (uint16_t baseAddress, uint16_t clockSource, uint16_t clockSourceDivider, uint16_t timerPeriod, uint16_t timerInterruptEnable_TBIE, uint16_t captureCompareInterruptEnable CCR0 CCIE, uint16_t timerClear)

DEPRECATED - Configures TIMER_B in up down mode.

This API does not start the timer. Timer needs to be started when required using the TIMER B startCounter API.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	92
TI Compiler 4.2.1	Size	54
TI Compiler 4.2.1	Speed	54
IAR 5.51.6	None	84
IAR 5.51.6	Size	12
IAR 5.51.6	Speed	64
MSPGCC 4.8.0	None	104
MSPGCC 4.8.0	Size	72
MSPGCC 4.8.0	Speed	88

baseAddress is the base address of the TIMER B module.

clockSource selects the clock source Valid values are:

- TIMER_B_CLOCKSOURCE_EXTERNAL_TXCLK [Default]
- TIMER B CLOCKSOURCE ACLK
- TIMER B CLOCKSOURCE SMCLK
- TIMER_B_CLOCKSOURCE_INVERTED_EXTERNAL_TXCLK

clockSourceDivider is the divider for Clock source. Valid values are:

- TIMER B CLOCKSOURCE DIVIDER 1 [Default]
- TIMER_B_CLOCKSOURCE_DIVIDER_2
- TIMER_B_CLOCKSOURCE_DIVIDER_3
- TIMER B CLOCKSOURCE DIVIDER 4
- TIMER B CLOCKSOURCE DIVIDER 5
- TIMER_B_CLOCKSOURCE_DIVIDER_6
- TIMER B CLOCKSOURCE DIVIDER 7
- TIMER_B_CLOCKSOURCE_DIVIDER_8
- TIMER_B_CLOCKSOURCE_DIVIDER_10
- TIMER_B_CLOCKSOURCE_DIVIDER_12
- TIMER_B_CLOCKSOURCE_DIVIDER_14
- TIMER_B_CLOCKSOURCE_DIVIDER_16
- TIMER_B_CLOCKSOURCE_DIVIDER_20
- TIMER_B_CLOCKSOURCE_DIVIDER_24
- TIMER B CLOCKSOURCE DIVIDER 28
- TIMER B CLOCKSOURCE DIVIDER 32
- TIMER_B_CLOCKSOURCE_DIVIDER_40
- TIMER B CLOCKSOURCE DIVIDER 48
- TIMER B CLOCKSOURCE DIVIDER 56
- TIMER_B_CLOCKSOURCE_DIVIDER_64

timerPeriod is the specified TIMER_B period

timerInterruptEnable_TBIE is to enable or disable TIMER_B interrupt Valid values are:

- TIMER_B_TBIE_INTERRUPT_ENABLE
- TIMER_B_TBIE_INTERRUPT_DISABLE [Default]

captureCompareInterruptEnable_CCR0_CCIE is to enable or disable TIMER_B CCR0 capture compare interrupt. Valid values are:

- TIMER B CCIE CCR0 INTERRUPT ENABLE
- TIMER_B_CCIE_CCR0_INTERRUPT_DISABLE [Default]

timerClear decides if TIMER_B clock divider, count direction, count need to be reset. Valid values are:

- TIMER_B_DO_CLEAR
- TIMER_B_SKIP_CLEAR [Default]

Modified bits of TBxCTL register, bits of TBxCCTL0 register and bits of TBxCCR0 register.

Returns:

None

24.2.2.6 void TIMER_B_configureUpMode (uint16_t baseAddress, uint16_t clockSource, uint16_t clockSourceDivider, uint16_t timerPeriod, uint16_t timerInterruptEnable_TBIE, uint16_t captureCompareInterruptEnable CCR0 CCIE, uint16_t timerClear)

DEPRECATED - Configures TIMER B in up mode.

This API does not start the timer. Timer needs to be started when required using the TIMER_B_startCounter API.

Code Metrics:

Optimization	Code Size
None Size	92 54
Speed	54
None	84
Size	12
Speed	64
None	104
Size	72
Speed	88
	None Size Speed None Size Speed None Size

baseAddress is the base address of the TIMER_B module.

clockSource selects the clock source Valid values are:

- TIMER B CLOCKSOURCE EXTERNAL TXCLK [Default]
- TIMER_B_CLOCKSOURCE_ACLK
- TIMER_B_CLOCKSOURCE_SMCLK
- TIMER B CLOCKSOURCE INVERTED EXTERNAL TXCLK

clockSourceDivider is the divider for Clock source. Valid values are:

- TIMER B CLOCKSOURCE DIVIDER 1 [Default]
- TIMER B CLOCKSOURCE DIVIDER 2
- TIMER_B_CLOCKSOURCE_DIVIDER_3
- TIMER_B_CLOCKSOURCE_DIVIDER_4
- TIMER B CLOCKSOURCE DIVIDER 5
- TIMER B CLOCKSOURCE DIVIDER 6
- TIMER_B_CLOCKSOURCE_DIVIDER_7
- TIMER_B_CLOCKSOURCE_DIVIDER_8
- TIMER_B_CLOCKSOURCE_DIVIDER_10
- TIMER_B_CLOCKSOURCE_DIVIDER_12
- TIMER_B_CLOCKSOURCE_DIVIDER_14
- TIMER B CLOCKSOURCE DIVIDER 16
- TIMER_B_CLOCKSOURCE_DIVIDER_20
- TIMER_B_CLOCKSOURCE_DIVIDER_24 ■ TIMER B CLOCKSOURCE DIVIDER 28
- TIMER_B_CLOCKSOURCE_DIVIDER_32 ■ TIMER_B_CLOCKSOURCE_DIVIDER_40
- TIMER B CLOCKSOURCE DIVIDER 48
- TIMER_B_CLOCKSOURCE_DIVIDER_56
- TIMER B CLOCKSOURCE DIVIDER 64

timerPeriod is the specified TIMER B period. This is the value that gets written into the CCR0. Limited to 16 bits[uint16_t]

timerInterruptEnable_TBIE is to enable or disable TIMER B interrupt Valid values are:

- **TIMER B TBIE INTERRUPT ENABLE**
- TIMER_B_TBIE_INTERRUPT_DISABLE [Default]

captureCompareInterruptEnable_CCR0_CCIE is to enable or disable TIMER_B CCR0 capture compare interrupt. Valid values are:

- TIMER_B_CCIE_CCR0_INTERRUPT_ENABLE
- TIMER B CCIE CCR0 INTERRUPT DISABLE [Default]

timerClear decides if TIMER_B clock divider, count direction, count need to be reset. Valid values are:

- **TIMER B DO CLEAR**
- TIMER B SKIP CLEAR [Default]

Modified bits of TBxCTL register, bits of TBxCCTL0 register and bits of TBxCCR0 register.

Returns:

None

2014-06-25 274

24.2.2.7 void TIMER_B_disableCaptureCompareInterrupt (uint16_t baseAddress, uint16_t captureCompareRegister)

Disable capture compare interrupt.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	22
TI Compiler 4.2.1	Size	10
TI Compiler 4.2.1	Speed	10
IAR 5.51.6	None	12
IAR 5.51.6	Size	10
IAR 5.51.6	Speed	10
MSPGCC 4.8.0	None	36
MSPGCC 4.8.0	Size	10
MSPGCC 4.8.0	Speed	10

Parameters:

baseAddress is the base address of the TIMER_B module.

captureCompareRegister selects the capture compare register being used. Refer to datasheet to ensure the device has the capture compare register being used. Valid values are:

- TIMER_B_CAPTURECOMPARE_REGISTER_0
- TIMER_B_CAPTURECOMPARE_REGISTER_1
- TIMER_B_CAPTURECOMPARE_REGISTER_2
- TIMER_B_CAPTURECOMPARE_REGISTER_3
- TIMER_B_CAPTURECOMPARE_REGISTER_4
- TIMER_B_CAPTURECOMPARE_REGISTER_5
- TIMER_B_CAPTURECOMPARE_REGISTER_6

 $\label{eq:modified_bits} \mbox{Modified bits of } \textbf{TBxCCTLn register}.$

Returns:

None

24.2.2.8 void TIMER B disableInterrupt (uint16 t baseAddress)

Disable TIMER B interrupt.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	16
TI Compiler 4.2.1	Size	6
TI Compiler 4.2.1	Speed	6
IAR 5.51.6	None	8
IAR 5.51.6	Size	6
IAR 5.51.6	Speed	6
MSPGCC 4.8.0	None	22
MSPGCC 4.8.0	Size	6
MSPGCC 4.8.0	Speed	6

Parameters:

baseAddress is the base address of the TIMER_B module.

Modified bits of TBxCTL register.

Returns:

None

24.2.2.9 void TIMER_B_enableCaptureCompareInterrupt (uint16_t baseAddress, uint16_t captureCompareRegister)

Enable capture compare interrupt.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	22
TI Compiler 4.2.1	Size	10
TI Compiler 4.2.1	Speed	10
IAR 5.51.6	None	12
IAR 5.51.6	Size	10
IAR 5.51.6	Speed	10
MSPGCC 4.8.0	None	36
MSPGCC 4.8.0	Size	10
MSPGCC 4.8.0	Speed	10

Parameters:

baseAddress is the base address of the TIMER B module.

captureCompareRegister selects the capture compare register being used. Refer to datasheet to ensure the device has the capture compare register being used. Valid values are:

- TIMER_B_CAPTURECOMPARE_REGISTER_0
- TIMER_B_CAPTURECOMPARE_REGISTER_1
- TIMER_B_CAPTURECOMPARE_REGISTER_2
- TIMER_B_CAPTURECOMPARE_REGISTER_3
- TIMER_B_CAPTURECOMPARE_REGISTER_4
- TIMER_B_CAPTURECOMPARE_REGISTER_5
- TIMER_B_CAPTURECOMPARE_REGISTER_6

Modified bits of TBxCCTLn register.

Returns:

None

24.2.2.10 void TIMER B enableInterrupt (uint16 t baseAddress)

Enable TIMER_B interrupt.

Enables TIMER_B interrupt. Does not clear interrupt flags.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	16
TI Compiler 4.2.1	Size	6
TI Compiler 4.2.1	Speed	6
IAR 5.51.6	None	8
IAR 5.51.6	Size	6
IAR 5.51.6	Speed	6
MSPGCC 4.8.0	None	22
MSPGCC 4.8.0	Size	6
MSPGCC 4.8.0	Speed	6

Parameters:

baseAddress is the base address of the TIMER_B module.

Modified bits of TBxCTL register.

Returns:

None

24.2.2.11 void TIMER B generatePWM (uint16 t baseAddress, uint16 t clockSource, uint16 t clockSourceDivider, uint16 t timerPeriod, uint16 t compareRegister, uint16 t compareOutputMode, uint16 t dutyCycle)

DEPRECATED - Generate a PWM with TIMER_B running in up mode.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	88
TI Compiler 4.2.1	Size	50
TI Compiler 4.2.1	Speed	50
IAR 5.51.6	None	80
IAR 5.51.6	Size	14
IAR 5.51.6	Speed	68
MSPGCC 4.8.0	None	96
MSPGCC 4.8.0	Size	72
MSPGCC 4.8.0	Speed	76

baseAddress is the base address of the TIMER_B module.

clockSource selects the clock source Valid values are:

- TIMER B CLOCKSOURCE EXTERNAL TXCLK [Default]
- TIMER_B_CLOCKSOURCE_ACLK
- TIMER_B_CLOCKSOURCE_SMCLK
- TIMER_B_CLOCKSOURCE_INVERTED_EXTERNAL_TXCLK

clockSourceDivider is the divider for Clock source. Valid values are:

- TIMER B CLOCKSOURCE DIVIDER 1 [Default]
- TIMER B CLOCKSOURCE DIVIDER 2
- TIMER B CLOCKSOURCE DIVIDER 3
- TIMER_B_CLOCKSOURCE_DIVIDER_4
- TIMER_B_CLOCKSOURCE_DIVIDER_5
- TIMER B CLOCKSOURCE DIVIDER 6
- TIMER_B_CLOCKSOURCE_DIVIDER_7
- TIMER B CLOCKSOURCE DIVIDER 8
- TIMER B CLOCKSOURCE DIVIDER 10
- TIMER_B_CLOCKSOURCE_DIVIDER_12
- TIMER_B_CLOCKSOURCE_DIVIDER_14
- TIMER_B_CLOCKSOURCE_DIVIDER_16
- TIMER_B_CLOCKSOURCE_DIVIDER_20
- TIMER_B_CLOCKSOURCE_DIVIDER_24
- TIMER_B_CLOCKSOURCE_DIVIDER_28
- TIMER_B_CLOCKSOURCE_DIVIDER_32
- TIMER_B_CLOCKSOURCE_DIVIDER_40
- TIMER_B_CLOCKSOURCE_DIVIDER_48 ■ TIMER_B_CLOCKSOURCE DIVIDER 56

■ TIMER_B_CLOCKSOURCE_DIVIDER_64 timerPeriod selects the desired TIMER B period

compareRegister selects the compare register being used. Refer to datasheet to ensure the device has the compare register being used. Valid values are:

2014-06-25 277

- TIMER_B_CAPTURECOMPARE_REGISTER_0
- TIMER_B_CAPTURECOMPARE_REGISTER_1
- TIMER_B_CAPTURECOMPARE_REGISTER_2
- TIMER_B_CAPTURECOMPARE_REGISTER_3
- TIMER_B_CAPTURECOMPARE_REGISTER_4
- TIMER_B_CAPTURECOMPARE_REGISTER_5
- TIMER_B_CAPTURECOMPARE_REGISTER_6

compareOutputMode specifies the output mode. Valid values are:

- TIMER_B_OUTPUTMODE_OUTBITVALUE [Default]
- TIMER_B_OUTPUTMODE_SET
- TIMER B OUTPUTMODE TOGGLE RESET
- TIMER_B_OUTPUTMODE_SET_RESET
- TIMER_B_OUTPUTMODE_TOGGLE
- **TIMER B OUTPUTMODE RESET**
- TIMER_B_OUTPUTMODE_TOGGLE_SET
- TIMER_B_OUTPUTMODE_RESET_SET

dutyCycle specifies the dutycycle for the generated waveform

Modified bits of TBxCCTLn register, bits of TBxCCTL register, bits of TBxCCTL0 register and bits of TBxCCR0 register.

Returns:

None

24.2.2.12 uint16_t TIMER_B_getCaptureCompareCount (uint16_t baseAddress, uint16_t captureCompareRegister)

Get current capturecompare count.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	20
TI Compiler 4.2.1	Size	8
TI Compiler 4.2.1	Speed	8
IAR 5.51.6	None	10
IAR 5.51.6	Size	10
IAR 5.51.6	Speed	10
MSPGCC 4.8.0	None	26
MSPGCC 4.8.0	Size	8
MSPGCC 4.8.0	Speed	8

Parameters:

baseAddress is the base address of the TIMER_B module.

captureCompareRegister selects the capture compare register being used. Refer to datasheet to ensure the device has the capture compare register being used. Valid values are:

- TIMER_B_CAPTURECOMPARE_REGISTER_0
- TIMER B CAPTURECOMPARE REGISTER 1
- TIMER_B_CAPTURECOMPARE_REGISTER_2
- TIMER B CAPTURECOMPARE REGISTER 3
- TIMER_B_CAPTURECOMPARE_REGISTER_4
- TIMER_B_CAPTURECOMPARE_REGISTER_5
- TIMER B CAPTURECOMPARE REGISTER 6

Returns:

Current count as uint16_t

24.2.2.13 uint32_t TIMER_B_getCaptureCompareInterruptStatus (uint16_t baseAddress, uint16_t captureCompareRegister, uint16_t mask)

Return capture compare interrupt status.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	30
TI Compiler 4.2.1 TI Compiler 4.2.1	Size Speed	10 10
IAR 5.51.6	None	10
IAR 5.51.6	Size	10
IAR 5.51.6	Speed	10
MSPGCC 4.8.0	None	46
MSPGCC 4.8.0	Size	10
MSPGCC 4.8.0	Speed	10

Parameters:

baseAddress is the base address of the TIMER_B module.

captureCompareRegister selects the capture compare register being used. Refer to datasheet to ensure the device has the capture compare register being used. Valid values are:

- TIMER B CAPTURECOMPARE REGISTER 0
- TIMER B CAPTURECOMPARE REGISTER 1
- TIMER B CAPTURECOMPARE REGISTER 2
- TIMER_B_CAPTURECOMPARE_REGISTER_3
- TIMER_B_CAPTURECOMPARE_REGISTER_4
- TIMER_B_CAPTURECOMPARE_REGISTER_5
- TIMER_B_CAPTURECOMPARE_REGISTER_6

mask is the mask for the interrupt status Mask value is the logical OR of any of the following:

- TIMER_B_CAPTURE_OVERFLOW
- TIMER B CAPTURECOMPARE INTERRUPT FLAG

Returns:

Logical OR of any of the following:

- TIMER_B_CAPTURE_OVERFLOW
- TIMER_B_CAPTURECOMPARE_INTERRUPT_FLAG indicating the status of the masked interrupts

24.2.2.14 uint16 t TIMER B getCounterValue (uint16 t baseAddress)

Reads the current timer count value.

Reads the current count value of the timer. There is a majority vote system in place to confirm an accurate value is returned. The TIMER_B_THRESHOLD define in the associated header file can be modified so that the votes must be closer together for a consensus to occur.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	88
TI Compiler 4.2.1	Size	38
TI Compiler 4.2.1	Speed	38
IAR 5.51.6	None	58
IAR 5.51.6	Size	38
IAR 5.51.6	Speed	38
MSPGCC 4.8.0	None	102
MSPGCC 4.8.0	Size	46
MSPGCC 4.8.0	Speed	48

baseAddress is the base address of the Timer module.

Returns:

Majority vote of timer count value

24.2.2.15 uint32_t TIMER_B_getInterruptStatus (uint16_t baseAddress)

Get TIMER_B interrupt status.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	18
TI Compiler 4.2.1	Size	10
TI Compiler 4.2.1	Speed	10
IAR 5.51.6	None	8
IAR 5.51.6	Size	8
IAR 5.51.6	Speed	8
MSPGCC 4.8.0	None	34
MSPGCC 4.8.0	Size	8
MSPGCC 4.8.0	Speed	8

Parameters:

baseAddress is the base address of the TIMER_B module.

Returns:

One of the following:

- TIMER_B_INTERRUPT_NOT_PENDING
- TIMER_B_INTERRUPT_PENDING indicating the status of the TIMER_B interrupt

24.2.2.16 uint8_t TIMER_B_getOutputForOutputModeOutBitValue (uint16_t baseAddress, uint16_t captureCompareRegister)

Get output bit for output mode.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	28
TI Compiler 4.2.1	Size	16
TI Compiler 4.2.1	Speed	16
IAR 5.51.6	None	20
IAR 5.51.6	Size	16
IAR 5.51.6	Speed	16
MSPGCC 4.8.0	None	38
MSPGCC 4.8.0	Size	14
MSPGCC 4.8.0	Speed	14

Parameters:

baseAddress is the base address of the TIMER_B module.

captureCompareRegister selects the capture compare register being used. Refer to datasheet to ensure the device has the capture compare register being used. Valid values are:

■ TIMER_B_CAPTURECOMPARE_REGISTER_0

- TIMER_B_CAPTURECOMPARE_REGISTER_1
- TIMER_B_CAPTURECOMPARE_REGISTER_2
- TIMER_B_CAPTURECOMPARE_REGISTER_3
- TIMER_B_CAPTURECOMPARE_REGISTER_4
- TIMER B CAPTURECOMPARE REGISTER 5
- TIMER_B_CAPTURECOMPARE_REGISTER_6

Returns:

One of the following:

- **TIMER B OUTPUTMODE OUTBITVALUE HIGH**
- TIMER_B_OUTPUTMODE_OUTBITVALUE_LOW

24.2.2.17 uint8_t TIMER_B_getSynchronizedCaptureCompareInput (uint16_t baseAddress, uint16 t captureCompareRegister, uint16 t synchronized)

Get synchronized capturecompare input.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	36
TI Compiler 4.2.1	Size	14
TI Compiler 4.2.1	Speed	14
IAR 5.51.6	None	20
IAR 5.51.6	Size	16
IAR 5.51.6	Speed	16
MSPGCC 4.8.0	None	48
MSPGCC 4.8.0	Size	18
MSPGCC 4.8.0	Speed	18

Parameters:

baseAddress is the base address of the TIMER_B module.

captureCompareRegister selects the capture compare register being used. Refer to datasheet to ensure the device has the capture compare register being used. Valid values are:

- TIMER B CAPTURECOMPARE REGISTER 0
- TIMER_B_CAPTURECOMPARE_REGISTER_1
- TIMER_B_CAPTURECOMPARE_REGISTER_2
- TIMER_B_CAPTURECOMPARE_REGISTER_3
- TIMER_B_CAPTURECOMPARE_REGISTER_4
- TIMER B CAPTURECOMPARE REGISTER 5
- TIMER B CAPTURECOMPARE REGISTER 6

synchronized selects the type of capture compare input Valid values are:

- TIMER_B_READ_SYNCHRONIZED_CAPTURECOMPAREINPUT
- TIMER_B_READ_CAPTURE_COMPARE_INPUT

Returns:

One of the following:

- TIMER_B_CAPTURECOMPARE_INPUT_HIGH
- TIMER_B_CAPTURECOMPARE_INPUT_LOW

24.2.2.18 void TIMER_B_initCapture (uint16_t baseAddress, uint16_t captureRegister, uint16_t captureMode, uint16_t captureInputSelect, uint16_t synchronizeCaptureSource, uint16_t captureInterruptEnable, uint16_t captureOutputMode)

DEPRECATED - Initializes Capture Mode.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	88
TI Compiler 4.2.1	Size	50
TI Compiler 4.2.1	Speed	50
IAR 5.51.6	None	80
IAR 5.51.6	Size	16
IAR 5.51.6	Speed	70
MSPGCC 4.8.0	None	96
MSPGCC 4.8.0	Size	72
MSPGCC 4.8.0	Speed	36

Parameters:

baseAddress is the base address of the TIMER_B module.

captureRegister selects the capture register being used. Refer to datasheet to ensure the device has the capture register being used. Valid values are:

- TIMER_B_CAPTURECOMPARE_REGISTER_0
- TIMER_B_CAPTURECOMPARE_REGISTER_1
- TIMER B CAPTURECOMPARE REGISTER 2
- TIMER_B_CAPTURECOMPARE_REGISTER_3
- TIMER_B_CAPTURECOMPARE_REGISTER_4
- TIMER_B_CAPTURECOMPARE_REGISTER_5
- TIMER B CAPTURECOMPARE REGISTER 6

captureMode is the capture mode selected. Valid values are:

- TIMER B CAPTUREMODE NO CAPTURE [Default]
- TIMER_B_CAPTUREMODE_RISING_EDGE
- TIMER_B_CAPTUREMODE_FALLING_EDGE
- TIMER_B_CAPTUREMODE_RISING_AND_FALLING_EDGE

captureInputSelect decides the Input Select Valid values are:

- TIMER_B_CAPTURE_INPUTSELECT_CCIxA [Default]
- TIMER_B_CAPTURE_INPUTSELECT_CCIxB
- TIMER_B_CAPTURE_INPUTSELECT_GND
- TIMER B CAPTURE INPUTSELECT Vcc

synchronizeCaptureSource decides if capture source should be synchronized with TIMER_B clock Valid values are:

- TIMER_B_CAPTURE_ASYNCHRONOUS [Default]
- TIMER_B_CAPTURE_SYNCHRONOUS

captureInterruptEnable is to enable or disable TIMER B capture compare interrupt. Valid values are:

- TIMER_B_CAPTURECOMPARE_INTERRUPT_DISABLE [Default]
- TIMER_B_CAPTURECOMPARE_INTERRUPT_ENABLE

captureOutputMode specifies the output mode. Valid values are:

- TIMER_B_OUTPUTMODE_OUTBITVALUE [Default]
- TIMER_B_OUTPUTMODE_SET
- TIMER_B_OUTPUTMODE_TOGGLE_RESET
- TIMER_B_OUTPUTMODE_SET_RESET
- TIMER_B_OUTPUTMODE_TOGGLE
- TIMER_B_OUTPUTMODE_RESET
- TIMER_B_OUTPUTMODE_TOGGLE_SET
- TIMER_B_OUTPUTMODE_RESET_SET

Modified bits of TBxCCTLn register.

Returns:

None

24.2.2.19 void TIMER_B_initCaptureMode (uint16_t baseAddress, TIMER B initCaptureModeParam * param)

Initializes Capture Mode.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	70
TI Compiler 4.2.1	Size	48
TI Compiler 4.2.1	Speed	50
IAR 5.51.6	None	50
IAR 5.51.6	Size	48
IAR 5.51.6	Speed	48
MSPGCC 4.8.0	None	128
MSPGCC 4.8.0	Size	48
MSPGCC 4.8.0	Speed	48

Parameters:

baseAddress is the base address of the TIMER_B module. **param** is the pointer to struct for capture mode initialization.

Modified bits of TBxCCTLn register.

Returns:

None

24.2.2.20 void TIMER_B_initCompare (uint16_t baseAddress, uint16_t compareRegister, uint16_t compareInterruptEnable, uint16_t compareOutputMode, uint16_t compareValue)

DEPRECATED - Initializes Compare Mode.

Code Metrics:

Optimization	Code Size
None	82
Size	30
Speed	30
None	64
Size	54
Speed	54
None	76
Size	30
Speed	28
	None Size Speed None Size Speed None Size

Parameters:

baseAddress is the base address of the TIMER_B module.

compareRegister selects the compare register being used. Refer to datasheet to ensure the device has the compare register being used. Valid values are:

- TIMER_B_CAPTURECOMPARE_REGISTER_0
- TIMER_B_CAPTURECOMPARE_REGISTER_1
- TIMER_B_CAPTURECOMPARE_REGISTER_2
- TIMER_B_CAPTURECOMPARE_REGISTER_3
- TIMER_B_CAPTURECOMPARE_REGISTER_4
- TIMER_B_CAPTURECOMPARE_REGISTER_5
- TIMER_B_CAPTURECOMPARE_REGISTER_6

compareInterruptEnable is to enable or disable TIMER B capture compare interrupt. Valid values are:

- TIMER_B_CAPTURECOMPARE_INTERRUPT_DISABLE [Default]
- TIMER_B_CAPTURECOMPARE_INTERRUPT_ENABLE

compareOutputMode specifies the output mode. Valid values are:

- TIMER_B_OUTPUTMODE_OUTBITVALUE [Default]
- TIMER_B_OUTPUTMODE_SET
- TIMER B OUTPUTMODE TOGGLE RESET
- TIMER_B_OUTPUTMODE_SET_RESET
- TIMER_B_OUTPUTMODE_TOGGLE
- TIMER_B_OUTPUTMODE_RESET
- TIMER_B_OUTPUTMODE_TOGGLE_SET
- TIMER_B_OUTPUTMODE_RESET_SET

compare Value is the count to be compared with in compare mode

Modified bits of TBxCCTLn register and bits of TBxCCRn register.

Returns:

None

24.2.2.21 void TIMER_B_initCompareLatchLoadEvent (uint16_t baseAddress, uint16_t compareRegister, uint16_t compareLatchLoadEvent)

Selects Compare Latch Load Event.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	42
TI Compiler 4.2.1	Size	14
TI Compiler 4.2.1	Speed	14
IAR 5.51.6	None	20
IAR 5.51.6	Size	8
IAR 5.51.6	Speed	8
MSPGCC 4.8.0	None	72
MSPGCC 4.8.0	Size	14
MSPGCC 4.8.0	Speed	14

Parameters:

baseAddress is the base address of the TIMER_B module.

compareRegister selects the compare register being used. Refer to datasheet to ensure the device has the compare register being used. Valid values are:

- TIMER_B_CAPTURECOMPARE_REGISTER_0
- TIMER_B_CAPTURECOMPARE_REGISTER_1
- TIMER_B_CAPTURECOMPARE_REGISTER_2
- TIMER_B_CAPTURECOMPARE_REGISTER_3
- TIMER_B_CAPTURECOMPARE_REGISTER_4
- TIMER_B_CAPTURECOMPARE_REGISTER_5
- TIMER_B_CAPTURECOMPARE_REGISTER_6

compareLatchLoadEvent selects the latch load event Valid values are:

- TIMER_B_LATCH_ON_WRITE_TO_TBxCCRn_COMPARE_REGISTER [Default]
- TIMER B LATCH WHEN COUNTER COUNTS TO 0 IN UP OR CONT MODE
- TIMER B LATCH WHEN COUNTER COUNTS TO 0 IN UPDOWN MODE
- TIMER B LATCH WHEN COUNTER COUNTS TO CURRENT COMPARE LATCH VALUE

Modified bits are CLLD of TBxCCTLn register.

Returns:

None

24.2.2.22 void TIMER_B_initCompareMode (uint16_t baseAddress, TIMER_B_initCompareModeParam * param)

Initializes Compare Mode.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	72
TI Compiler 4.2.1	Size	46
TI Compiler 4.2.1	Speed	46
IAR 5.51.6	None	52
IAR 5.51.6	Size	50
IAR 5.51.6	Speed	50
MSPGCC 4.8.0	None	126
MSPGCC 4.8.0	Size	46
MSPGCC 4.8.0	Speed	46

Parameters:

baseAddress is the base address of the TIMER_B module. **param** is the pointer to struct for compare mode initialization.

Modified bits of TBxCCTLn register and bits of TBxCCRn register.

Returns:

None

24.2.2.23 void TIMER_B_initContinuousMode (uint16_t baseAddress, TIMER_B_initContinuousModeParam * param)

Configures TIMER B in continuous mode.

This API does not start the timer. Timer needs to be started when required using the TIMER_B_startCounter API.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	106
TI Compiler 4.2.1 TI Compiler 4.2.1	Size Speed	70 70
IAR 5.51.6	None	78
IAR 5.51.6	Size	70
IAR 5.51.6	Speed	70
MSPGCC 4.8.0 MSPGCC 4.8.0	None Size	170 82
MSPGCC 4.8.0	Speed	82 82

baseAddress is the base address of the TIMER_B module. **param** is the pointer to struct for continuous mode initialization.

Modified bits of TBxCTL register.

Returns:

None

24.2.2.24 void TIMER_B_initUpDownMode (uint16_t baseAddress, TIMER_B_initUpDownModeParam * param)

Configures TIMER_B in up down mode.

This API does not start the timer. Timer needs to be started when required using the TIMER_B_startCounter API.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	152
TI Compiler 4.2.1	Size	98
TI Compiler 4.2.1	Speed	98
IAR 5.51.6	None	118
IAR 5.51.6	Size	14
IAR 5.51.6	Speed	72
MSPGCC 4.8.0	None	248
MSPGCC 4.8.0	Size	116
MSPGCC 4.8.0	Speed	118

Parameters:

baseAddress is the base address of the TIMER_B module. **param** is the pointer to struct for up-down mode initialization.

Modified bits of TBxCTL register, bits of TBxCCTL0 register and bits of TBxCCR0 register.

Returns:

None

24.2.2.25 void TIMER_B_initUpMode (uint16_t *baseAddress*, TIMER_B_initUpModeParam * *param*)

Configures TIMER_B in up mode.

This API does not start the timer. Timer needs to be started when required using the TIMER_B_startCounter API.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	152
TI Compiler 4.2.1	Size	98
TI Compiler 4.2.1	Speed	98
IAR 5.51.6	None	120
IAR 5.51.6	Size	16
IAR 5.51.6	Speed	74
MSPGCC 4.8.0	None	248
MSPGCC 4.8.0	Size	116
MSPGCC 4.8.0	Speed	118

baseAddress is the base address of the TIMER_B module. **param** is the pointer to struct for up mode initialization.

Modified bits of TBxCTL register, bits of TBxCCTL0 register and bits of TBxCCR0 register.

Returns:

None

24.2.2.26 void TIMER_B_outputPWM (uint16_t *baseAddress*, TIMER_B_outputPWMParam * *param*)

Generate a PWM with TIMER_B running in up mode.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	136
TI Compiler 4.2.1	Size	86
TI Compiler 4.2.1	Speed	86
IAR 5.51.6	None	108
IAR 5.51.6	Size	100
IAR 5.51.6	Speed	100
MSPGCC 4.8.0	None	228
MSPGCC 4.8.0	Size	100
MSPGCC 4.8.0	Speed	100

Parameters:

baseAddress is the base address of the TIMER_B module. **param** is the pointer to struct for PWM configuration.

Modified bits of TBxCCTLn register, bits of TBxCCTL register, bits of TBxCCTL0 register and bits of TBxCCR0 register.

Returns:

None

24.2.2.27 void TIMER_B_selectCounterLength (uint16_t baseAddress, uint16_t counterLength)

Selects TIMER_B counter length.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	30
TI Compiler 4.2.1	Size	12
TI Compiler 4.2.1	Speed	12
IAR 5.51.6	None	12
IAR 5.51.6	Size	8
IAR 5.51.6	Speed	8
MSPGCC 4.8.0	None	48
MSPGCC 4.8.0	Size	12
MSPGCC 4.8.0	Speed	12

Parameters:

baseAddress is the base address of the TIMER_B module.

counterLength selects the value of counter length. Valid values are:

- TIMER_B_COUNTER_16BIT [Default]
- TIMER_B_COUNTER_12BIT
- TIMER_B_COUNTER_10BIT
- TIMER_B_COUNTER_8BIT

Modified bits are CNTL of TBxCTL register.

Returns:

None

24.2.2.28 void TIMER_B_selectLatchingGroup (uint16_t baseAddress, uint16_t groupLatch)

Selects TIMER_B Latching Group.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	30
TI Compiler 4.2.1	Size	12
TI Compiler 4.2.1	Speed	12
IAR 5.51.6	None	12
IAR 5.51.6	Size	6
IAR 5.51.6	Speed	6
MSPGCC 4.8.0	None	48
MSPGCC 4.8.0	Size	12
MSPGCC 4.8.0	Speed	12

Parameters:

baseAddress is the base address of the TIMER_B module.

groupLatch selects the latching group. Valid values are:

- TIMER_B_GROUP_NONE [Default]
- TIMER_B_GROUP_CL12_CL23_CL56
- TIMER_B_GROUP_CL123_CL456
- TIMER_B_GROUP_ALL

Modified bits are TBCLGRP of TBxCTL register.

Returns:

None

24.2.2.29 void TIMER_B_setCompareValue (uint16_t baseAddress, uint16_t compareRegister, uint16_t compareValue)

Sets the value of the capture-compare register.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	30
TI Compiler 4.2.1	Size	8
TI Compiler 4.2.1	Speed	8
IAR 5.51.6	None	14
IAR 5.51.6	Size	12
IAR 5.51.6	Speed	12
MSPGCC 4.8.0	None	38
MSPGCC 4.8.0	Size	8
MSPGCC 4.8.0	Speed	8

Parameters:

baseAddress is the base address of the TIMER_B module.

compareRegister selects the compare register being used. Refer to datasheet to ensure the device has the compare register being used. Valid values are:

- TIMER_B_CAPTURECOMPARE_REGISTER_0
- TIMER_B_CAPTURECOMPARE_REGISTER_1
- TIMER B CAPTURECOMPARE REGISTER 2
- TIMER_B_CAPTURECOMPARE_REGISTER_3
- TIMER_B_CAPTURECOMPARE_REGISTER_4
- TIMER_B_CAPTURECOMPARE_REGISTER_5
- TIMER_B_CAPTURECOMPARE_REGISTER_6

compare Value is the count to be compared with in compare mode

Modified bits of TBxCCRn register.

Returns:

None

24.2.2.30 void TIMER_B_setOutputForOutputModeOutBitValue (uint16_t baseAddress, uint16_t captureCompareRegister, uint8_t outputModeOutBitValue)

Set output bit for output mode.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	42
TI Compiler 4.2.1	Size	14
TI Compiler 4.2.1	Speed	14
IAR 5.51.6	None	20
IAR 5.51.6	Size	10
IAR 5.51.6	Speed	10
MSPGCC 4.8.0	None	74
MSPGCC 4.8.0	Size	16
MSPGCC 4.8.0	Speed	16

Parameters:

baseAddress is the base address of the TIMER_B module.

captureCompareRegister selects the capture compare register being used. Refer to datasheet to ensure the device has the capture compare register being used. Valid values are:

- TIMER_B_CAPTURECOMPARE_REGISTER_0
- TIMER_B_CAPTURECOMPARE_REGISTER_1
- TIMER B CAPTURECOMPARE REGISTER 2
- TIMER B CAPTURECOMPARE REGISTER 3
- TIMER_B_CAPTURECOMPARE_REGISTER_4

- TIMER_B_CAPTURECOMPARE_REGISTER_5
- TIMER_B_CAPTURECOMPARE_REGISTER_6

outputModeOutBitValue the value to be set for out bit Valid values are:

- TIMER_B_OUTPUTMODE_OUTBITVALUE_HIGH
- TIMER B OUTPUTMODE OUTBITVALUE LOW

Modified bits of TBxCCTLn register.

Returns:

None

24.2.2.31 void TIMER_B_startContinousMode (uint16_t baseAddress, uint16_t clockSource, uint16_t clockSourceDivider, uint16_t timerInterruptEnable_TBIE, uint16_t timerClear)

DEPRECATED - Spelling Error Fixed. Starts TIMER B in continuous mode.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	52
TI Compiler 4.2.1	Size	16
TI Compiler 4.2.1	Speed	16
IAR 5.51.6	None	34
IAR 5.51.6	Size	18
IAR 5.51.6	Speed	2
MSPGCC 4.8.0	None	52
MSPGCC 4.8.0	Size	16
MSPGCC 4.8.0	Speed	58

Parameters:

baseAddress is the base address of the TIMER_B module.

clockSource selects the clock source Valid values are:

- TIMER_B_CLOCKSOURCE_EXTERNAL_TXCLK [Default]
- TIMER_B_CLOCKSOURCE_ACLK
- TIMER_B_CLOCKSOURCE_SMCLK
- TIMER_B_CLOCKSOURCE_INVERTED_EXTERNAL_TXCLK

clockSourceDivider is the divider for Clock source. Valid values are:

- TIMER_B_CLOCKSOURCE_DIVIDER_1 [Default]
- TIMER B CLOCKSOURCE DIVIDER 2
- TIMER B CLOCKSOURCE DIVIDER 3
- TIMER_B_CLOCKSOURCE_DIVIDER_4
- TIMER_B_CLOCKSOURCE_DIVIDER_5
- TIMER_B_CLOCKSOURCE_DIVIDER_6
- TIMER_B_CLOCKSOURCE_DIVIDER_7
- TIMER_B_CLOCKSOURCE_DIVIDER_8
- TIMER_B_CLOCKSOURCE_DIVIDER_10
- TIMER_B_CLOCKSOURCE_DIVIDER_12
- TIMER_B_CLOCKSOURCE_DIVIDER_14
- TIMER_B_CLOCKSOURCE_DIVIDER_16 ■ TIMER_B_CLOCKSOURCE_DIVIDER_20
- = TIMER_B_0LOOKOOUROE_BIVIDER_E
- TIMER_B_CLOCKSOURCE_DIVIDER_24 ■ TIMER_B_CLOCKSOURCE_DIVIDER_28
- TIMER B CLOCKSOURCE DIVIDER 32
- TIMER_B_CLOCKSOURCE_DIVIDER_40

- TIMER_B_CLOCKSOURCE_DIVIDER_48
- TIMER_B_CLOCKSOURCE_DIVIDER_56
- TIMER_B_CLOCKSOURCE_DIVIDER_64

timerInterruptEnable_TBIE is to enable or disable TIMER_B interrupt Valid values are:

- TIMER_B_TBIE_INTERRUPT_ENABLE
- TIMER_B_TBIE_INTERRUPT_DISABLE [Default]

timerClear decides if TIMER_B clock divider, count direction, count need to be reset. Valid values are:

- **TIMER B DO CLEAR**
- TIMER_B_SKIP_CLEAR [Default]

Modified bits of TBxCTL register.

Returns:

None

24.2.2.32 void TIMER_B_startContinuousMode (uint16_t baseAddress, uint16_t clockSource, uint16_t clockSourceDivider, uint16_t timerInterruptEnable_TBIE, uint16_t timerClear)

DEPRECATED - Replaced by TIMER_B_configureContinuousMode and TIMER_B_startCounter API. Starts TIMER_B in continuous mode.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	80
TI Compiler 4.2.1	Size	38
TI Compiler 4.2.1	Speed	38
IAR 5.51.6	None	68
IAR 5.51.6	Size	14
IAR 5.51.6	Speed	0
MSPGCC 4.8.0	None	84
MSPGCC 4.8.0	Size	64
MSPGCC 4.8.0	Speed	58

Parameters:

baseAddress is the base address of the TIMER_B module.

clockSource selects the clock source Valid values are:

- TIMER_B_CLOCKSOURCE_EXTERNAL_TXCLK [Default]
- TIMER_B_CLOCKSOURCE_ACLK
- TIMER_B_CLOCKSOURCE_SMCLK
- TIMER_B_CLOCKSOURCE_INVERTED_EXTERNAL_TXCLK

 ${\it clockSourceDivider}\;$ is the divider for Clock source. Valid values are:

- TIMER_B_CLOCKSOURCE_DIVIDER_1 [Default]
- TIMER_B_CLOCKSOURCE_DIVIDER_2
- TIMER_B_CLOCKSOURCE_DIVIDER_3
- TIMER_B_CLOCKSOURCE_DIVIDER_4
- TIMER_B_CLOCKSOURCE_DIVIDER_5
- TIMER_B_CLOCKSOURCE_DIVIDER_6
- TIMER_B_CLOCKSOURCE_DIVIDER_7
 TIMER_B_CLOCKSOURCE_DIVIDER_8
- TIMER_B_CLOCKSOURCE_DIVIDER_10
- TIMER_B_CLOCKSOURCE_DIVIDER_12
- TIMER_B_CLOCKSOURCE_DIVIDER_14
- TIMER_B_CLOCKSOURCE_DIVIDER_16

- TIMER_B_CLOCKSOURCE_DIVIDER_20
- TIMER B CLOCKSOURCE DIVIDER 24
- TIMER_B_CLOCKSOURCE_DIVIDER_28
- TIMER_B_CLOCKSOURCE_DIVIDER_32
- TIMER_B_CLOCKSOURCE_DIVIDER_40
- TIMER_B_CLOCKSOURCE_DIVIDER_48
- TIMER_B_CLOCKSOURCE_DIVIDER_56
- TIMER_B_CLOCKSOURCE_DIVIDER_64

timerInterruptEnable_TBIE is to enable or disable TIMER_B interrupt Valid values are:

- TIMER B TBIE INTERRUPT ENABLE
- TIMER B TBIE INTERRUPT DISABLE [Default]

timerClear decides if TIMER_B clock divider, count direction, count need to be reset. Valid values are:

- TIMER_B_DO_CLEAR
- TIMER_B_SKIP_CLEAR [Default]

Modified bits of TBxCTL register.

Returns:

None

24.2.2.33 void TIMER B startCounter (uint16 t baseAddress, uint16 t timerMode)

Starts TIMER_B counter.

This function assumes that the timer has been previously configured using TIMER_B_configureContinuousMode, TIMER_B_configureUpMode or TIMER_B_configureUpDownMode.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	22
TI Compiler 4.2.1	Size	6
TI Compiler 4.2.1	Speed	6
IAR 5.51.6	None	6
IAR 5.51.6	Size	2
IAR 5.51.6	Speed	4
MSPGCC 4.8.0	None	30
MSPGCC 4.8.0	Size	6
MSPGCC 4.8.0	Speed	6

Parameters:

baseAddress is the base address of the TIMER_B module.

timerMode selects the mode of the timer Valid values are:

- TIMER_B_STOP_MODE
- **TIMER B UP MODE**
- TIMER_B_CONTINUOUS_MODE [Default]
- TIMER_B_UPDOWN_MODE

Modified bits of TBxCTL register.

Returns:

None

24.2.2.34 void TIMER_B_startUpDownMode (uint16_t baseAddress, uint16_t clockSource, uint16_t clockSourceDivider, uint16_t timerPeriod, uint16_t timerInterruptEnable_TBIE, uint16_t captureCompareInterruptEnable CCR0 CCIE, uint16_t timerClear)

DEPRECATED - Replaced by TIMER_B_configureUpDownMode and TIMER_B_startCounter API. Starts TIMER_B in up down mode.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	92
TI Compiler 4.2.1	Size	54
TI Compiler 4.2.1	Speed	54
IAR 5.51.6	None	84
IAR 5.51.6	Size	12
IAR 5.51.6	Speed	64
MSPGCC 4.8.0	None	104
MSPGCC 4.8.0	Size	76
MSPGCC 4.8.0	Speed	94

Parameters:

baseAddress is the base address of the TIMER_B module.

clockSource selects the clock source Valid values are:

- TIMER B CLOCKSOURCE EXTERNAL TXCLK [Default]
- **TIMER B CLOCKSOURCE ACLK**
- TIMER B CLOCKSOURCE SMCLK
- TIMER_B_CLOCKSOURCE_INVERTED_EXTERNAL_TXCLK

clockSourceDivider is the divider for Clock source. Valid values are:

- TIMER B CLOCKSOURCE DIVIDER 1 [Default]
- TIMER_B_CLOCKSOURCE_DIVIDER_2
- TIMER_B_CLOCKSOURCE_DIVIDER_3
- TIMER_B_CLOCKSOURCE_DIVIDER_4
- TIMER_B_CLOCKSOURCE_DIVIDER_5
- TIMER_B_CLOCKSOURCE_DIVIDER_6
- TIMER_B_CLOCKSOURCE_DIVIDER_7
- TIMER_B_CLOCKSOURCE_DIVIDER_8
 TIMER_B_CLOCKSOURCE_DIVIDER_10
- = TIMER_B_0100K00UR0E_BIVIDER_10
- TIMER_B_CLOCKSOURCE_DIVIDER_12
- TIMER_B_CLOCKSOURCE_DIVIDER_14
- TIMER_B_CLOCKSOURCE_DIVIDER_16
- TIMER_B_CLOCKSOURCE_DIVIDER_20 ■ TIMER_B_CLOCKSOURCE_DIVIDER_24
- TIMER_B_CLOCKSOURCE_DIVIDER_28
- TIMER_B_CLOCKSOURCE_DIVIDER_32
- TIMER B CLOCKSOURCE DIVIDER 40
- = IIIVIEN_B_CLOCKSOUNCE_DIVIDEN_40
- TIMER_B_CLOCKSOURCE_DIVIDER_48
- TIMER_B_CLOCKSOURCE_DIVIDER_56
- TIMER_B_CLOCKSOURCE_DIVIDER_64

timerPeriod is the specified TIMER_B period

timerInterruptEnable_TBIE is to enable or disable TIMER_B interrupt Valid values are:

- TIMER_B_TBIE_INTERRUPT_ENABLE
- TIMER_B_TBIE_INTERRUPT_DISABLE [Default]

captureCompareInterruptEnable_CCR0_CCIE is to enable or disable TIMER_B CCR0 capture compare interrupt. Valid values are:

■ TIMER_B_CCIE_CCR0_INTERRUPT_ENABLE

■ TIMER_B_CCIE_CCR0_INTERRUPT_DISABLE [Default]

timerClear decides if TIMER B clock divider, count direction, count need to be reset. Valid values are:

- TIMER_B_DO_CLEAR
- TIMER_B_SKIP_CLEAR [Default]

Modified bits of TBxCTL register, bits of TBxCCTL0 register and bits of TBxCCR0 register.

Returns:

None

24.2.2.35 void TIMER_B_startUpMode (uint16_t baseAddress, uint16_t clockSource, uint16_t clockSourceDivider, uint16_t timerPeriod, uint16_t timerInterruptEnable_TBIE, uint16_t captureCompareInterruptEnable_CCR0_CCIE, uint16_t timerClear)

DEPRECATED - Replaced by TIMER_B_configureUpMode and TIMER_B_startCounter API. Starts TIMER_B in up mode.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	92
TI Compiler 4.2.1	Size	54
TI Compiler 4.2.1	Speed	54
IAR 5.51.6	None	84
IAR 5.51.6	Size	10
IAR 5.51.6	Speed	62
MSPGCC 4.8.0	None	104
MSPGCC 4.8.0	Size	76
MSPGCC 4.8.0	Speed	94

Parameters:

baseAddress is the base address of the TIMER_B module.

clockSource selects the clock source Valid values are:

- TIMER_B_CLOCKSOURCE_EXTERNAL_TXCLK [Default]
- TIMER_B_CLOCKSOURCE_ACLK
- TIMER B CLOCKSOURCE SMCLK
- TIMER B CLOCKSOURCE INVERTED EXTERNAL TXCLK

clockSourceDivider is the divider for Clock source. Valid values are:

- TIMER B CLOCKSOURCE DIVIDER 1 [Default]
- TIMER_B_CLOCKSOURCE_DIVIDER_2
- TIMER B CLOCKSOURCE DIVIDER 3
- IIMEN_B_CLOCKSOUNCE_DIVIDEN_3
- TIMER_B_CLOCKSOURCE_DIVIDER_4
 TIMER B CLOCKSOURCE DIVIDER 5
- TIMER_B_CLOCKSOURCE_DIVIDER_6
- TIMER_B_CLOCKSOURCE_DIVIDER_7
- TIMER_B_CLOCKSOURCE_DIVIDER_8
- TIMER_B_CLOCKSOURCE_DIVIDER_10
- TIMER_B_CLOCKSOURCE_DIVIDER_12
- TIMER_B_CLOCKSOURCE_DIVIDER_14
- TIMER_B_CLOCKSOURCE_DIVIDER_16
- TIMER_B_CLOCKSOURCE_DIVIDER_20
- TIMER_B_CLOCKSOURCE_DIVIDER_24
- TIMER_B_CLOCKSOURCE_DIVIDER_28 ■ TIMER B CLOCKSOURCE DIVIDER 32
- TIMER B CLOCKSOURCE DIVIDER 40

- TIMER_B_CLOCKSOURCE_DIVIDER_48
- TIMER_B_CLOCKSOURCE_DIVIDER_56
- TIMER_B_CLOCKSOURCE_DIVIDER_64

timerPeriod is the specified TIMER_B period. This is the value that gets written into the CCR0. Limited to 16 bits[uint16_t]

timerInterruptEnable_TBIE is to enable or disable TIMER_B interrupt Valid values are:

- TIMER_B_TBIE_INTERRUPT_ENABLE
- TIMER B TBIE INTERRUPT DISABLE [Default]

captureCompareInterruptEnable_CCR0_CCIE is to enable or disable TIMER_B CCR0 capture compare interrupt. Valid values are:

- TIMER B CCIE CCR0 INTERRUPT ENABLE
- TIMER_B_CCIE_CCR0_INTERRUPT_DISABLE [Default]

timerClear decides if TIMER_B clock divider, count direction, count need to be reset. Valid values are:

- **TIMER B DO CLEAR**
- TIMER_B_SKIP_CLEAR [Default]

Modified bits of TBxCTL register, bits of TBxCCTL0 register and bits of TBxCCR0 register.

Returns:

None

24.2.2.36 void TIMER_B_stop (uint16_t baseAddress)

Stops the TIMER_B.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	24
TI Compiler 4.2.1	Size	12
TI Compiler 4.2.1	Speed	12
IAR 5.51.6	None	12
IAR 5.51.6	Size	12
IAR 5.51.6	Speed	12
MSPGCC 4.8.0	None	34
MSPGCC 4.8.0	Size	8
MSPGCC 4.8.0	Speed	8

Parameters:

baseAddress is the base address of the TIMER B module.

Modified bits of TBxCTL register.

Returns:

None

24.3 Programming Example

The following example shows some TIMER_B operations using the APIs

```
TIMER_B_TBIE_INTERRUPT_DISABLE,
  TIMER_B_CCIE_CCR0_INTERRUPT_DISABLE,
  TIMER_B_DO_CLEAR
TIMER_B_startCounter(
                      TIMER_B0_BASE,
        TIMER_B_UP_MODE
//Initialize compare mode to generate PWM1
TIMER_B_initCompare(TIMER_B0_BASE,
  TIMER_B_CAPTURECOMPARE_REGISTER_1,
  TIMER_B_CAPTURECOMPARE_INTERRUPT_DISABLE,
  TIMER_B_OUTPUTMODE_RESET_SET,
  383
  );
//Initialize compare mode to generate PWM2
TIMER_B_initCompare(TIMER_B0_BASE,
  TIMER_B_CAPTURECOMPARE_REGISTER_2,
  TIMER_B_CAPTURECOMPARE_INTERRUPT_ENABLE,
  TIMER_B_OUTPUTMODE_RESET_SET,
  128
  );
```

25 Tag Length Value

Introduction	295
API Functions	295
Programming Example	

25.1 Introduction

The TLV structure is a table stored in flash memory that contains device-specific information. This table is read-only and is write-protected. It contains important information for using and calibrating the device. A list of the contents of the TLV is available in the device-specific data sheet (in the Device Descriptors section), and an explanation on its functionality is available in the MSP430x5xx/MSP430x6xx Family User?s Guide

This driver is contained in tlv.c, with tlv.h containing the API definitions for use by applications.

т

he following code metrics were performed with the TI Compiler 4.2.1 compiler, IAR 5.51.6 compiler and MSPGCC 4.8.0 compiler with different optimization settings. Users may see different code sizes depending on their project settings so it is best to perform your benchmarks within your project. These sizes contain all functions of the peripheral but only functions that are used will be linked into the application and added to the total code size. To see individual API code metrics see the specific API below.

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None Size	602 364
TI Compiler 4.2.1	Speed	368
IAR 5.51.6 IAR 5.51.6 IAR 5.51.6	None Size Speed	456 302 354
MSPGCC 4.8.0 MSPGCC 4.8.0 MSPGCC 4.8.0	None Size Speed	750 432 706

25.2 API Functions

Functions

- uint16_t TLV_getDeviceType ()
- void TLV getInfo (uint8 t tag, uint8 t instance, uint8 t *length, uint16 t **data address)
- uint8_t TLV_getInterrupt (uint8_t tag)
- uint16_t TLV_getMemory (uint8_t instance)
- uint16 t TLV getPeripheral (uint8 t tag, uint8 t instance)

25.2.1 Detailed Description

The APIs that help in querying the information in the TLV structure are listed

- TLV getInfo() This function retrieves the value of a tag and the length of the tag.
- TLV_getDeviceType() This function retrieves the unique device ID from the TLV structure.
- TLV_getMemory() The returned value is zero if the end of the memory list is reached.
- TLV_getPeripheral() The returned value is zero if the specified tag value (peripheral) is not available in the device.
- TLV_getInterrupt() The returned value is zero is the specified interrupt vector is not defined.

25.2.2 Function Documentation

25.2.2.1 uint16_t TLV_getDeviceType (void)

Retrieves the unique device ID from the TLV structure.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	16
TI Compiler 4.2.1	Size	8
TI Compiler 4.2.1	Speed	8
IAR 5.51.6	None	8
IAR 5.51.6	Size	6
IAR 5.51.6	Speed	6
MSPGCC 4.8.0	None	16
MSPGCC 4.8.0	Size	6
MSPGCC 4.8.0	Speed	6

Returns:

The device ID is returned as type uint16_t.

25.2.2.2 void TLV_getInfo (uint8_t tag, uint8_t instance, uint8_t * length, uint16_t ** data_address)

Gets TLV Info.

The TLV structure uses a tag or base address to identify segments of the table where information is stored. Some examples of TLV tags are Peripheral Descriptor, Interrupts, Info Block and Die Record. This function retrieves the value of a tag and the length of the tag.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	126
TI Compiler 4.2.1	Size	72
TI Compiler 4.2.1	Speed	76
IAR 5.51.6	None	82
IAR 5.51.6	Size	70
IAR 5.51.6	Speed	70
MSPGCC 4.8.0	None	168
MSPGCC 4.8.0	Size	100
MSPGCC 4.8.0	Speed	110

Parameters:

tag represents the tag for which the information needs to be retrieved. Valid values are:

- TLV_TAG_LDTAG
- TLV_TAG_PDTAG
- TLV_TAG_Reserved3
- TLV_TAG_Reserved4
- TLV_TAG_BLANK
- TLV_TAG_Reserved6
- TLV_TAG_Reserved7
- TLV_TAG_TAGEND
- TLV_TAG_TAGEXT
- TLV_TAG_TIMER_D_CAL

- TLV_DEVICE_ID_0
- **TLV DEVICE ID 1**
- TLV_TAG_DIERECORD
- TLV_TAG_ADCCAL
- TLV_TAG_ADC12CAL
- TLV_TAG_ADC10CAL
- TLV_TAG_REFCAL

instance In some cases a specific tag may have more than one instance. For example there may be multiple instances of timer calibration data present under a single Timer Cal tag. This variable specifies the instance for which information is to be retrieved (0, 1, etc.). When only one instance exists; 0 is passed.

length Acts as a return through indirect reference. The function retrieves the value of the TLV tag length. This value is pointed to by *length and can be used by the application level once the function is called. If the specified tag is not found then the pointer is null 0.

data_address acts as a return through indirect reference. Once the function is called data_address points to the pointer that holds the value retrieved from the specified TLV tag. If the specified tag is not found then the pointer is null 0.

Returns:

None

25.2.2.3 uint8_t TLV_getInterrupt (uint8_t tag)

Get interrupt information from the TLV.

This function is used to retrieve information on available interrupt vectors. It allows the user to check if a specific interrupt vector is defined in a given device.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	160
TI Compiler 4.2.1	Size	98
TI Compiler 4.2.1	Speed	98
IAR 5.51.6	None	128
IAR 5.51.6	Size	82
IAR 5.51.6	Speed	102
MSPGCC 4.8.0	None	200
MSPGCC 4.8.0	Size	106
MSPGCC 4.8.0	Speed	228

Parameters:

tag represents the tag for the interrupt vector. Interrupt vector tags number from 0 to N depending on the number of available interrupts. Refer to the device datasheet for a list of available interrupts.

Returns:

The returned value is zero is the specified interrupt vector is not defined.

25.2.2.4 uint16_t TLV_getMemory (uint8_t instance)

Gets memory information.

The Peripheral Descriptor tag is split into two portions a list of the available flash memory blocks followed by a list of available peripherals. This function is used to parse through the first portion and calculate the total flash memory available in a device. The typical usage is to call the TLV_getMemory which returns a non-zero value until the entire memory list has been parsed. When a zero is returned, it indicates that all the memory blocks have been counted and the next address holds the beginning of the device peripheral list.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	114
TI Compiler 4.2.1	Size	70
TI Compiler 4.2.1	Speed	70
IAR 5.51.6	None	92
IAR 5.51.6	Size	54
IAR 5.51.6	Speed	70
MSPGCC 4.8.0	None	128
MSPGCC 4.8.0	Size	86
MSPGCC 4.8.0	Speed	120

Parameters:

instance In some cases a specific tag may have more than one instance. This variable specifies the instance for which information is to be retrieved (0, 1 etc). When only one instance exists; 0 is passed.

Returns:

The returned value is zero if the end of the memory list is reached.

25.2.2.5 uint16 t TLV getPeripheral (uint8 t tag, uint8 t instance)

Gets peripheral information from the TLV.

he Peripheral Descriptor tag is split into two portions a list of the available flash memory blocks followed by a list of available peripherals. This function is used to parse through the second portion and can be used to check if a specific peripheral is present in a device. The function calls TLV_getPeripheral() recursively until the end of the memory list and consequently the beginning of the peripheral list is reached. <

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	186
TI Compiler 4.2.1	Size	116
TI Compiler 4.2.1	Speed	116
IAR 5.51.6	None	146
IAR 5.51.6	Size	90
IAR 5.51.6	Speed	106
MSPGCC 4.8.0	None	238
MSPGCC 4.8.0	Size	134
MSPGCC 4.8.0	Speed	242

Parameters:

tag represents represents the tag for a specific peripheral for which the information needs to be retrieved. In the header file tlv. h specific peripheral tags are pre-defined, for example USCIA_B and TA0 are defined as TLV_PID_USCI_AB and TLV_PID_TA2 respectively. Valid values are:

- TLV PID NO MODULE No Module
- **TLV_PID_PORTMAPPING** Port Mapping
- TLV_PID_MSP430CPUXV2 MSP430CPUXV2
- TLV_PID_JTAG JTAG
- TLV PID SBW SBW
- TLV_PID_EEM_XS EEM X-Small
- TLV_PID_EEM_S EEM Small
- TLV_PID_EEM_M EEM Medium
- TLV_PID_EEM_L EEM Large
- TLV_PID_PMM PMM
- TLV_PID_PMM_FR PMM FRAM
- TLV_PID_FCTL Flash
- TLV_PID_CRC16 CRC16

- TLV_PID_CRC16_RB CRC16 Reverse
- TLV PID WDT A WDT A
- TLV_PID_SFR SFR
- TLV_PID_SYS SYS
- TLV_PID_RAMCTL RAMCTL
- TLV_PID_DMA_1 DMA 1
- **TLV_PID_DMA_3** DMA 3
- TLV PID UCS UCS
- TLV_PID_DMA_6 DMA 6
- TLV PID DMA 2 DMA 2
- TLV_PID_PORT1_2 Port 1 + 2 / A
- **TLV_PID_PORT3_4** Port 3 + 4 / B
- **TLV_PID_PORT5_6** Port 5 + 6 / C
- TLV PID PORT7 8 Port 7 + 8 / D
- TLV_PID_PORT9_10 Port 9 + 10 / E
- TLV_PID_PORT11_12 Port 11 + 12 / F
- TLV_PID_PORTU Port U
- TLV_PID_PORTJ Port J
- TLV_PID_TA2 Timer A2
- TLV_PID_TA3 Timer A1
- TLV_PID_TA5 Timer A5
- TLV PID TA7 Timer A7
- TLV_PID_TB3 Timer B3
- TLV_PID_TB5 Timer B5
- TLV PID TB7 Timer B7
- TLV PID RTC RTC
- TLV_PID_BT_RTC BT + RTC
- TLV_PID_BBS Battery Backup Switch
- TLV_PID_RTC_B RTC_B
- TLV_PID_TD2 Timer D2
- TLV_PID_TD3 Timer D1
- TLV PID TD5 Timer D5
- TLV_PID_TD7 Timer D7
- TLV_PID_TEC Timer Event Control
- TLV_PID_RTC_C RTC_C
- TLV_PID_AES AES
- TLV PID MPY16 MPY16
- TLV_PID_MPY32 MPY32
- TLV_PID_MPU MPU
- TLV PID USCI AB USCI AB
- TLV_PID_USCI_A USCI_A
- TLV_PID_USCI_B USCI_B
- TLV_PID_EUSCI_A eUSCI_A
- TLV_PID_EUSCI_B eUSCI_B
- TLV_PID_REF Shared Reference ■ TLV_PID_COMP_B - COMP_B
- TLV_PID_COMP_D COMP_D
- TLV_PID_USB USB
- TLV PID LCD B LCD B
- TLV_PID_LCD_C LCD_C
- TLV_PID_DAC12_A DAC12_A
- TLV_PID_SD16_B_1 SD16_B 1 Channel
- TLV_PID_SD16_B_2 SD16_B 2 Channel
- TLV_PID_SD16_B_3 SD16_B 3 Channel
- TLV_PID_SD16_B_4 SD16_B 4 Channel

```
■ TLV_PID_SD16_B_5 - SD16_B 5 Channel
■ TLV_PID_SD16_B_6 - SD16_B 6 Channel
■ TLV_PID_SD16_B_7 - SD16_B 7 Channel
■ TLV_PID_SD16_B_8 - SD16_B 8 Channel
■ TLV_PID_ADC12_A - ADC12_A
■ TLV_PID_ADC10_A - ADC10_A
■ TLV_PID_ADC10_B - ADC10_B
■ TLV_PID_SD16_A - SD16_A
■ TLV_PID_TI_BSL - BSL
```

instance In some cases a specific tag may have more than one instance. For example a device may have more than a single USCI module, each of which is defined by an instance number 0, 1, 2, etc. When only one instance exists; 0 is passed.

Returns:

The returned value is zero if the specified tag value (peripheral) is not available in the device.

25.3 Programming Example

The following example shows some tlv operations using the APIs

26 WatchDog Timer (WDT_A)

Introduction	301
API Functions	301
Programming Example	305

26.1 Introduction

The Watchdog Timer (WDT_A) API provides a set of functions for using the MSP430Ware WDT_A modules. Functions are provided to initialize the Watchdog in either timer interval mode, or watchdog mode, with selectable clock sources and dividers to define the timer interval.

The WDT_A module can generate only 1 kind of interrupt in timer interval mode. If in watchdog mode, then the WDT_A module will assert a reset once the timer has finished.

This driver is contained in wdt_a.c, with wdt_a.h containing the API definitions for use by applications.

T

he following code metrics were performed with the TI Compiler 4.2.1 compiler, IAR 5.51.6 compiler and MSPGCC 4.8.0 compiler with different optimization settings. Users may see different code sizes depending on their project settings so it is best to perform your benchmarks within your project. These sizes contain all functions of the peripheral but only functions that are used will be linked into the application and added to the total code size. To see individual API code metrics see the specific API below.

Optimization	Code Size
None	172
Size	90
Speed	90
None	140
Size	54
Speed	54
None	236
Size	104
Speed	104
	None Size Speed None Size Speed None Size

26.2 API Functions

Functions

- void WDT A hold (uint16 t baseAddress)
- void WDT_A_intervalTimerInit (uint16_t baseAddress, uint8_t clockSelect, uint8_t clockDivider)
- void WDT_A_resetTimer (uint16_t baseAddress)
- void WDT A start (uint16 t baseAddress)
- void WDT_A_watchdogTimerInit (uint16_t baseAddress, uint8_t clockSelect, uint8_t clockDivider)

26.2.1 Detailed Description

The WDT A API is one group that controls the WDT A module.

- WDT_A_hold()
- WDT_A_start()
- WDT A clearCounter()

- WDT_A_watchdogTimerInit()
- WDT_A_intervalTimerInit()

26.2.2 Function Documentation

26.2.2.1 void WDT_A_hold (uint16_t baseAddress)

Holds the Watchdog Timer.

This function stops the watchdog timer from running, that way no interrupt or PUC is asserted.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	34
TI Compiler 4.2.1	Size	20
TI Compiler 4.2.1	Speed	20
IAR 5.51.6	None	30
IAR 5.51.6	Size	12
IAR 5.51.6	Speed	12
MSPGCC 4.8.0	None	50
MSPGCC 4.8.0	Size	24
MSPGCC 4.8.0	Speed	24

Parameters:

baseAddress is the base address of the WDT_A module.

Returns:

None

26.2.2.2 void WDT_A_intervalTimerInit (uint16_t baseAddress, uint8_t clockSelect, uint8_t clockDivider)

Sets the clock source for the Watchdog Timer in timer interval mode.

This function sets the watchdog timer as timer interval mode, which will assert an interrupt without causing a PUC.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	36
TI Compiler 4.2.1	Size	16
TI Compiler 4.2.1	Speed	16
IAR 5.51.6	None	26
IAR 5.51.6	Size	10
IAR 5.51.6	Speed	10
MSPGCC 4.8.0	None	44
MSPGCC 4.8.0	Size	20
MSPGCC 4.8.0	Speed	20

Parameters:

baseAddress is the base address of the WDT_A module.

clockSelect is the clock source that the watchdog timer will use. Valid values are:

- WDT_A_CLOCKSOURCE_SMCLK [Default]
- WDT_A_CLOCKSOURCE_ACLK

- WDT_A_CLOCKSOURCE_VLOCLK
- WDT_A_CLOCKSOURCE_XCLK
 Modified bits are WDTSSEL of WDTCTL register.

clockDivider is the divider of the clock source, in turn setting the watchdog timer interval. Valid values are:

- WDT_A_CLOCKDIVIDER_2G
- WDT_A_CLOCKDIVIDER_128M
- WDT_A_CLOCKDIVIDER_8192K
- WDT_A_CLOCKDIVIDER_512K
- WDT_A_CLOCKDIVIDER_32K [Default]
- WDT_A_CLOCKDIVIDER_8192
- WDT_A_CLOCKDIVIDER_512
- WDT_A_CLOCKDIVIDER_64

Modified bits are WDTIS and WDTHOLD of WDTCTL register.

Returns:

None

26.2.2.3 void WDT_A_resetTimer (uint16_t baseAddress)

Resets the timer counter of the Watchdog Timer.

This function resets the watchdog timer to 0x0000h.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	32
TI Compiler 4.2.1	Size	18
TI Compiler 4.2.1	Speed	18
IAR 5.51.6	None	28
IAR 5.51.6	Size	8
IAR 5.51.6	Speed	8
MSPGCC 4.8.0	None	48
MSPGCC 4.8.0	Size	22
MSPGCC 4.8.0	Speed	22

Parameters:

baseAddress is the base address of the WDT_A module.

Returns:

None

26.2.2.4 void WDT A start (uint16 t baseAddress)

Starts the Watchdog Timer.

This function starts the watchdog timer functionality to start counting again.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	34
TI Compiler 4.2.1	Size	20
TI Compiler 4.2.1	Speed	20
IAR 5.51.6	None	30
IAR 5.51.6	Size	12
IAR 5.51.6	Speed	12
MSPGCC 4.8.0	None	50
MSPGCC 4.8.0	Size	18
MSPGCC 4.8.0	Speed	18

Parameters:

baseAddress is the base address of the WDT_A module.

Returns:

None

26.2.2.5 void WDT_A_watchdogTimerInit (uint16_t baseAddress, uint8_t clockSelect, uint8_t clockDivider)

Sets the clock source for the Watchdog Timer in watchdog mode.

This function sets the watchdog timer in watchdog mode, which will cause a PUC when the timer overflows. When in the mode, a PUC can be avoided with a call to WDT_A_resetTimer() before the timer runs out.

Code Metrics:

Compiler	Optimization	Code Size
TI Compiler 4.2.1	None	36
TI Compiler 4.2.1	Size	16
TI Compiler 4.2.1	Speed	16
IAR 5.51.6	None	26
IAR 5.51.6	Size	12
IAR 5.51.6	Speed	12
MSPGCC 4.8.0	None	44
MSPGCC 4.8.0	Size	20
MSPGCC 4.8.0	Speed	20

Parameters:

baseAddress is the base address of the WDT_A module.

clockSelect is the clock source that the watchdog timer will use. Valid values are:

- WDT_A_CLOCKSOURCE_SMCLK [Default]
- WDT_A_CLOCKSOURCE_ACLK
- WDT_A_CLOCKSOURCE_VLOCLK
- WDT_A_CLOCKSOURCE_XCLK

Modified bits are WDTSSEL of WDTCTL register.

clockDivider is the divider of the clock source, in turn setting the watchdog timer interval. Valid values are:

- WDT A CLOCKDIVIDER 2G
- WDT_A_CLOCKDIVIDER_128M
- WDT A CLOCKDIVIDER 8192K
- WDT_A_CLOCKDIVIDER_512K
- WDT_A_CLOCKDIVIDER_32K [Default]
- WDT_A_CLOCKDIVIDER_8192
- WDT_A_CLOCKDIVIDER_512
- WDT A CLOCKDIVIDER 64

Modified bits are WDTIS and WDTHOLD of WDTCTL register.

Returns:

None

26.3 Programming Example

The following example shows how to initialize and use the WDT_A API to interrupt about every 32 ms, toggling the LED in the ISR.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Applications www.ti.com/audio amplifier.ti.com Audio **Amplifiers** www.ti.com/automotive dataconverter.ti.com **Data Converters** Automotive www.ti.com/broadband www.dlp.com **DLP® Products** Broadband www.ti.com/digitalcontrol DSP dsp.ti.com Digital Control www.ti.com/medical Clocks and Timers www.ti.com/clocks Medical www.ti.com/military Interface Military interface.ti.com www.ti.com/opticalnetwork Optical Networking Logic logic.ti.com www.ti.com/security Power Mgmt power.ti.com Security www.ti.com/telephony Microcontrollers microcontroller.ti.com Telephony www.ti-rfid.com Video & Imaging www.ti.com/video RF/IF and ZigBee® Solutions www.ti.com/lprf Wireless www.ti.com/wireless

> Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2014, Texas Instruments Incorporated