The Transcendence of e and π

Steve Fan

April 14, 2021

Table of Contents

- Introduction
- 2 Transcendence of e
- 3 Transcendence of π
- 4 Generalizations
- Open Problems

Recall that a complex number $\alpha \in \mathbb{C}$ is called algebraic if there exists a nonzero polynomial $f \in \mathbb{Q}[x]$ such that $f(\alpha) = 0$. The degree of α is defined to be the degree of the extension $\mathbb{Q}(\alpha)/\mathbb{Q}$. It is easy to find algebraic numbers of any degrees because of the following theorem.

Recall that a complex number $\alpha \in \mathbb{C}$ is called algebraic if there exists a nonzero polynomial $f \in \mathbb{Q}[x]$ such that $f(\alpha) = 0$. The degree of α is defined to be the degree of the extension $\mathbb{Q}(\alpha)/\mathbb{Q}$. It is easy to find algebraic numbers of any degrees because of the following theorem.

The Fundamental Theorem of Algebra

Every non-constant polynomial $f \in \mathbb{C}[x]$ has a zero in \mathbb{C} .

Recall that a complex number $\alpha \in \mathbb{C}$ is called algebraic if there exists a nonzero polynomial $f \in \mathbb{Q}[x]$ such that $f(\alpha) = 0$. The degree of α is defined to be the degree of the extension $\mathbb{Q}(\alpha)/\mathbb{Q}$. It is easy to find algebraic numbers of any degrees because of the following theorem.

The Fundamental Theorem of Algebra

Every non-constant polynomial $f \in \mathbb{C}[x]$ has a zero in \mathbb{C} .

The set $\overline{\mathbb{Q}} \subseteq \mathbb{C}$ of all algebraic numbers is a field.

Recall that a complex number $\alpha \in \mathbb{C}$ is called algebraic if there exists a nonzero polynomial $f \in \mathbb{Q}[x]$ such that $f(\alpha) = 0$. The degree of α is defined to be the degree of the extension $\mathbb{Q}(\alpha)/\mathbb{Q}$. It is easy to find algebraic numbers of any degrees because of the following theorem.

The Fundamental Theorem of Algebra

Every non-constant polynomial $f \in \mathbb{C}[x]$ has a zero in \mathbb{C} .

The set $\overline{\mathbb{Q}} \subseteq \mathbb{C}$ of all algebraic numbers is a field.

Examples

 $\sqrt{2} + i$, $\sqrt[3]{2} + \sqrt[5]{3}$, $\sqrt[3]{10}/\sqrt[5]{12}$, $\sqrt{3}e^{2\pi i/7} - 2e^{2\pi i/5}$ are all algebraic.

Recall that a complex number $\alpha \in \mathbb{C}$ is called algebraic if there exists a nonzero polynomial $f \in \mathbb{Q}[x]$ such that $f(\alpha) = 0$. The degree of α is defined to be the degree of the extension $\mathbb{Q}(\alpha)/\mathbb{Q}$. It is easy to find algebraic numbers of any degrees because of the following theorem.

The Fundamental Theorem of Algebra

Every non-constant polynomial $f \in \mathbb{C}[x]$ has a zero in \mathbb{C} .

The set $\overline{\mathbb{Q}} \subseteq \mathbb{C}$ of all algebraic numbers is a field.

Examples

$$\sqrt{2} + i$$
, $\sqrt[3]{2} + \sqrt[5]{3}$, $\sqrt[3]{10}/\sqrt[5]{12}$, $\sqrt{3}e^{2\pi i/7} - 2e^{2\pi i/5}$ are all algebraic.

A complex number $\alpha \in \mathbb{C}$ is called transcendental if $\alpha \notin \overline{\mathbb{Q}}$. Unlike $\overline{\mathbb{Q}}$, the set of all transcendental numbers in \mathbb{C} does not possess good algebraic structures.

Here are some natural questions to ask about transcendental numbers.

Here are some natural questions to ask about transcendental numbers.

Question 1

Do transcendental numbers exist? If yes, how many are there compared to algebraic numbers?

Here are some natural questions to ask about transcendental numbers.

Question 1

Do transcendental numbers exist? If yes, how many are there compared to algebraic numbers?

Question 2

Can one exhibit a transcendental number?

Here are some natural questions to ask about transcendental numbers.

Question 1

Do transcendental numbers exist? If yes, how many are there compared to algebraic numbers?

Question 2

Can one exhibit a transcendental number?

Question 3

Is e = 2.718... transcendental? What about $\pi = 3.141...$?

• Euler (1744) showed that e is irrational.

- Euler (1744) showed that e is irrational.
- Lambert (1761) showed that π is irrational.

- Euler (1744) showed that e is irrational.
- Lambert (1761) showed that π is irrational.
- Liouville (1840) proved that e^2 is irrational.

- Euler (1744) showed that e is irrational.
- Lambert (1761) showed that π is irrational.
- Liouville (1840) proved that e^2 is irrational.
- Liouville (1844) constructed, for the first time, a class of transendental numbers including $\sum_{n=1}^{\infty} 10^{-n!}$.

- Euler (1744) showed that e is irrational.
- Lambert (1761) showed that π is irrational.
- Liouville (1840) proved that e^2 is irrational.
- Liouville (1844) constructed, for the first time, a class of transendental numbers including $\sum_{n=1}^{\infty} 10^{-n!}$.
- Hermite (1873) proved that e is transcendental.

- Euler (1744) showed that e is irrational.
- Lambert (1761) showed that π is irrational.
- Liouville (1840) proved that e^2 is irrational.
- Liouville (1844) constructed, for the first time, a class of transendental numbers including $\sum_{n=1}^{\infty} 10^{-n!}$.
- Hermite (1873) proved that e is transcendental.
- Cantor (1874) showed that almost all complex numbers are transcendental.

- Euler (1744) showed that e is irrational.
- Lambert (1761) showed that π is irrational.
- Liouville (1840) proved that e^2 is irrational.
- Liouville (1844) constructed, for the first time, a class of transendental numbers including $\sum_{n=1}^{\infty} 10^{-n!}$.
- Hermite (1873) proved that e is transcendental.
- Cantor (1874) showed that almost all complex numbers are transcendental.
- Lindemann (1882) established the transcendence of π .

Squaring the Circle

A geometric problem proposed by ancient Greeks asks whether it is possible to construct a square with the same area as a given circle with compass and straightedge only. Algebraically, one is asked to find an algebraic number x satisfying the equation $x^2=\pi$. Lindemann's result implies that $\sqrt{\pi}$ is transcendental, proving that this problem is unsolvable.

Table of Contents

- Introduction
- 2 Transcendence of e
- \bigcirc Transcendence of π
- 4 Generalizations
- Open Problems

We need the following lemma.

We need the following lemma.

Lemma 1

Let R be a domain and $c \in R$. Suppose $f \in R[x]$. Then $f^{(j)}(c)/j! \in R$ for all $j \ge 0$.

We need the following lemma.

Lemma 1

Let R be a domain and $c \in R$. Suppose $f \in R[x]$. Then $f^{(j)}(c)/j! \in R$ for all $j \ge 0$.

Proof.

Since R[x] = R[x - c], we may write

$$f(x) = \sum_{j=0}^{m} a_j (x-c)^j,$$

where $m = \deg f$ and $a_0, ..., a_m \in R$. It follows that $a_j = f^{(j)}(c)/j! \in R$ for all $0 \le j \le m$. For j > m we have $f^{(j)}(c) = 0$.

Let $f(x) = \sum_{r=0}^{m} a_r x^r$ be a polynomial of degree m with complex

coefficients, and let $\bar{f}(x) := \sum_{r=0}^{m} |a_r| x^r$. For $z \in \mathbb{C}$, define

$$I(z) := \int_0^z e^{z-t} f(t) dt.$$

Let $f(x) = \sum_{r=0}^{m} a_r x^r$ be a polynomial of degree m with complex

coefficients, and let $\bar{f}(x) := \sum_{r=0}^{m} |a_r| x^r$. For $z \in \mathbb{C}$, define

$$I(z) := \int_0^z e^{z-t} f(t) dt.$$

Lemma 2

I(z) satisfies the following properties:

(i)
$$I(z) = e^z \sum_{j=0}^m f^{(j)}(0) - \sum_{j=0}^m f^{(j)}(z)$$
.

(ii) $|I(z)| \leq |z|e^{|z|}\overline{f}(|z|)$.

◆ロト ◆卸 ト ◆ 恵 ト ◆ 恵 ・ り へ ②

Theorem 1 (Hermite, 1873)

e is transcendental.

Theorem 1 (Hermite, 1873)

e is transcendental.

Proof.

Assume $e \in \overline{\mathbb{Q}}$. Then there exist $a_0,...,a_n \in \mathbb{Z}$ such that $a_0 \neq 0$ and

$$\sum_{k=0}^{n} a_k e^k = 0. {1}$$

Theorem 1 (Hermite, 1873)

e is transcendental.

Proof.

Assume $e \in \overline{\mathbb{Q}}$. Then there exist $a_0,...,a_n \in \mathbb{Z}$ such that $a_0 \neq 0$ and

$$\sum_{k=0}^{n} a_k e^k = 0. ag{1}$$

10 / 32

Define an auxiliary polynomial

$$f(x) := x^{p-1}(x-1)^p \cdots (x-n)^p,$$

where p is a prime, and consider

$$J:=\sum_{k=0}^n a_k I(k).$$

Proof (Cont).

It is clear that $m := \deg f = (n+1)p-1$. By Lemma 2 and (1) we have

$$J = \sum_{k=0}^{n} a_k e^k \sum_{j=0}^{m} f^{(j)}(0) - \sum_{k=0}^{n} a_k \sum_{j=0}^{m} f^{(j)}(k) = -\sum_{j=0}^{m} \sum_{k=0}^{n} a_k f^{(j)}(k).$$

Proof (Cont).

It is clear that $m := \deg f = (n+1)p-1$. By Lemma 2 and (1) we have

$$J = \sum_{k=0}^{n} a_k e^k \sum_{j=0}^{m} f^{(j)}(0) - \sum_{k=0}^{n} a_k \sum_{j=0}^{m} f^{(j)}(k) = -\sum_{j=0}^{m} \sum_{k=0}^{n} a_k f^{(j)}(k).$$

Observe that $f^{(j)}(k) = 0$ in each of the following two cases:

- $0 \le j < p$ and $1 \le k \le n$.
- $0 \le j < p-1 \text{ and } k = 0.$

Proof (Cont).

It is clear that $m := \deg f = (n+1)p - 1$. By Lemma 2 and (1) we have

$$J = \sum_{k=0}^{n} a_k e^k \sum_{j=0}^{m} f^{(j)}(0) - \sum_{k=0}^{n} a_k \sum_{j=0}^{m} f^{(j)}(k) = -\sum_{j=0}^{m} \sum_{k=0}^{n} a_k f^{(j)}(k).$$

Observe that $f^{(j)}(k) = 0$ in each of the following two cases:

- 0 < i < p and 1 < k < n.
- 0 < i < p-1 and k = 0.

Note also that

$$f^{(p-1)}(0) = (p-1)!(-1)^{np}(n!)^p.$$

By Lemma 1, $f^{(j)}(k) \equiv 0 \pmod{j!}$ for all $j \geq p$ and $0 \leq k \leq n$. Hence, we have

Proof (Cont).

$$J \equiv a_0(p-1)!(-1)^{np}(n!)^p \pmod{p!}.$$

Proof (Cont).

$$J \equiv a_0(p-1)!(-1)^{np}(n!)^p \pmod{p!}.$$

Choose p so large that $p > \max(n, |a_0|)$. Then $(p-1)! \mid J$ but $p! \nmid J$. This implies that $|J| \geq (p-1)!$.

◆ロト ◆個ト ◆ 恵ト ◆ 恵 ・ からぐ

Proof (Cont).

$$J \equiv a_0(p-1)!(-1)^{np}(n!)^p \pmod{p!}.$$

Choose p so large that $p > \max(n, |a_0|)$. Then $(p-1)! \mid J$ but $p! \nmid J$. This implies that $|J| \geq (p-1)!$. On the other hand, we have

$$\bar{f}(k) \le k^{p-1}(k+1)^p ... (k+n)^p \le ((2n)!)^p$$

for all $0 \le k \le n$.

Proof (Cont).

$$J \equiv a_0(p-1)!(-1)^{np}(n!)^p \pmod{p!}.$$

Choose p so large that $p > \max(n, |a_0|)$. Then $(p-1)! \mid J$ but $p! \nmid J$. This implies that $|J| \geq (p-1)!$. On the other hand, we have

$$\bar{f}(k) \le k^{p-1}(k+1)^p ... (k+n)^p \le ((2n)!)^p$$

for all $0 \le k \le n$. It follows from Lemma 2 that

$$|J| \le \sum_{k=0}^n |a_k| |I(k)| \le \sum_{k=0}^n k |a_k| e^k \bar{f}(k) \ll ((2n)!)^p.$$

So $(p-1)! \ll ((2n)!)^p$. This is false when p is sufficiently large.

Table of Contents

- Introduction
- 2 Transcendence of e
- 4 Generalizations
- Open Problems

13/32

Steve Fan GSS Talk April 14, 2021

Algebraic Numbers and Algebraic Integers

We need a few more concepts and facts about algebraic numbers.

- The Galois conjugates of an algebraic number α are the complex zeros of the minimal polynomial of α (over \mathbb{Q}).
- ② A complex number α is called an algebraic integer if it is a zero of a monic non-constant polynomial $f \in \mathbb{Z}[x]$. One can show that α is an algebraic integer if and only if its minimal polynomial has integer coefficients.
- **③** The set $\overline{\mathbb{Z}} \subseteq \overline{\mathbb{Q}}$ of all algebraic integers in \mathbb{C} is a domain with the property that $\overline{\mathbb{Z}} \cap \mathbb{Q} = \mathbb{Z}$.
- Suppose that α ∈ $\overline{\mathbb{Q}}$ is a zero of f ∈ $\mathbb{Z}[x]$ with leading coefficient c ≠ 0. Then cα ∈ $\overline{\mathbb{Z}}$.

Steve Fan GSS Talk April 14, 2021 14/32

Let $n \in \mathbb{N}_+$. For each $1 \le k \le n$, the k^{th} elementary symmetric polynomial in n variables is defined by

$$e_k(x_1,...,x_n) := \sum_{1 \leq i_1 < ... < i_k \leq n} x_{i_1} \cdots x_{i_k}.$$

A polynomial $P(x_1,...,x_n)$ is called a symmetric polynomial if $P(x_{\sigma(1)},...,x_{\sigma(n)}) = P(x_1,...,x_n)$ for all permutation $\sigma \in S_n$.

 Steve Fan
 GSS Talk
 April 14, 2021
 15 / 32

Let $n \in \mathbb{N}_+$. For each $1 \le k \le n$, the k^{th} elementary symmetric polynomial in n variables is defined by

$$e_k(x_1,...,x_n) := \sum_{1 \leq i_1 < ... < i_k \leq n} x_{i_1} \cdots x_{i_k}.$$

A polynomial $P(x_1,...,x_n)$ is called a symmetric polynomial if $P(x_{\sigma(1)},...,x_{\sigma(n)})=P(x_1,...,x_n)$ for all permutation $\sigma\in S_n$.

Theorem (Fundamental Theorem of Symmetric Polynomials)

Let R be a commutative ring. Then for every symmetric polynomial $P \in R[x_1,...,x_n]$, there exists a unique $Q \in R[x_1,...,x_n]$ such that

$$P(x_1,...,x_n) = Q(e_1(x_1,...,x_n),...,e_n(x_1,...,x_n)).$$

4□ > 4□ > 4□ > 4□ > 4□ > 4□

 Steve Fan
 GSS Talk
 April 14, 2021
 15 / 32

Lemma 3

Let $f, g \in \mathbb{Z}[x]$ with g monic. Suppose that $\alpha_1, ..., \alpha_n$ are the zeros of g. Then for every $j \geq 0$,

$$\frac{1}{j!}\sum_{k=1}^n f^{(j)}(\alpha_k) \in \mathbb{Z}.$$

 Steve Fan
 GSS Talk
 April 14, 2021
 16 / 32

Lemma 3

Let $f, g \in \mathbb{Z}[x]$ with g monic. Suppose that $\alpha_1, ..., \alpha_n$ are the zeros of g. Then for every $j \geq 0$,

$$\frac{1}{j!}\sum_{k=1}^n f^{(j)}(\alpha_k) \in \mathbb{Z}.$$

Proof.

Consider the symmetric polynomial

$$P(x_1,...,x_n) := \sum_{k=1}^n f^{(j)}(x_k) \in \mathbb{Z}[x_1,...,x_n].$$

There exists $Q \in \mathbb{Z}[x_1,...,x_n]$ such that

$$P(x_1,...,x_n) = Q(e_1(x_1,...,x_n),...,e_n(x_1,...,x_n)).$$

Steve Fan GSS Talk April 14, 2021 16 / 32

Proof (Cont).

Let $g(x) = x^n + a_{n-1}x^{n-1} + ... + a_0 \in \mathbb{Z}[x]$. Then for $1 \le r \le n$, we have $e_r(\alpha_1, ..., \alpha_n) = (-1)^r a_{n-r} \in \mathbb{Z}$. Hence

$$P(\alpha_1,...,\alpha_n) = Q(e_1(\alpha_1,...,\alpha_n),...,e_n(\alpha_1,...,\alpha_n)) \in \mathbb{Z}.$$

Steve Fan GSS Talk April 14, 2021 17 / 32

Proof (Cont).

Let $g(x) = x^n + a_{n-1}x^{n-1} + ... + a_0 \in \mathbb{Z}[x]$. Then for $1 \le r \le n$, we have $e_r(\alpha_1, ..., \alpha_n) = (-1)^r a_{n-r} \in \mathbb{Z}$. Hence

$$P(\alpha_1,...,\alpha_n) = Q(e_1(\alpha_1,...,\alpha_n),...,e_n(\alpha_1,...,\alpha_n)) \in \mathbb{Z}.$$

Since $\alpha_1, ..., \alpha_n \in \overline{\mathbb{Z}}$, it follows from Lemma 1 that

$$\frac{1}{j!}P(\alpha_1,...,\alpha_n) = \sum_{k=1}^n \frac{f^{(j)}(\alpha_k)}{j!} \in \overline{\mathbb{Z}}.$$

Therefore, we have

$$\frac{1}{i!}P(\alpha_1,...,\alpha_n)\in\overline{\mathbb{Z}}\cap\mathbb{Q}=\mathbb{Z}.$$

This completes the proof.

17/32

Theorem 2 (Lindemann, 1882)

 π is transcendental.

Proof.

Assume $\pi \in \overline{\mathbb{Q}}$. Then $\theta := \pi i \in \overline{\mathbb{Q}}$. Let $\theta_1 = \theta, \theta_2, ..., \theta_d$ be the Galois conjugates of θ .

 Steve Fan
 GSS Talk
 April 14, 2021
 18/32

Theorem 2 (Lindemann, 1882)

 π is transcendental.

Proof.

Assume $\pi \in \overline{\mathbb{Q}}$. Then $\theta := \pi i \in \overline{\mathbb{Q}}$. Let $\theta_1 = \theta, \theta_2, ..., \theta_d$ be the Galois conjugates of θ . By Euler's formula $e^{\pi i} + 1 = 0$ we have

$$(e^{\theta_1}+1)\cdots(e^{\theta_d}+1)=0.$$

Expanding the product on the left-hand side we find

Steve Fan GSS Talk April 14, 2021 18 / 32

Theorem 2 (Lindemann, 1882)

 π is transcendental.

Proof.

Assume $\pi \in \overline{\mathbb{Q}}$. Then $\theta := \pi i \in \overline{\mathbb{Q}}$. Let $\theta_1 = \theta, \theta_2, ..., \theta_d$ be the Galois conjugates of θ . By Euler's formula $e^{\pi i} + 1 = 0$ we have

$$(e^{\theta_1}+1)\cdots(e^{\theta_d}+1)=0.$$

Expanding the product on the left-hand side we find

$$\sum_{\alpha} e^{\alpha} = 0,$$

where the sum is over all $\alpha = \epsilon_1 \theta_1 + ... + \epsilon_d \theta_d$ with $\epsilon_1, ..., \epsilon_d \in \{0, 1\}$.

Steve Fan GSS Talk April 14, 2021 18 / 32

Proof (Cont).

Suppose precisely *n* of α 's are nonzero, say $\alpha_1,...,\alpha_n$. Then

$$q + e^{\alpha_1} + ... + e^{\alpha_n} = 0, (2)$$

where $q = 2^d - n$. Let c be a positive integer such that $c\theta_1, ..., c\theta_d$ are algebraic integers.

◆ロト ◆個ト ◆ 恵ト ◆ 恵 ・ から(で)

 Steve Fan
 GSS Talk
 April 14, 2021
 19 / 32

Proof (Cont).

Suppose precisely *n* of α 's are nonzero, say $\alpha_1,...,\alpha_n$. Then

$$q + e^{\alpha_1} + ... + e^{\alpha_n} = 0, (2)$$

where $q=2^d-n$. Let c be a positive integer such that $c\theta_1,...,c\theta_d$ are algebraic integers. Define an auxiliary polynomial

$$f(x) := (cx)^{p-1}(cx - c\alpha_1)^p \cdots (cx - c\alpha_n)^p,$$

where p is a prime. Then $f \in \overline{\mathbb{Z}}[x]$ with degree m = (n+1)p-1.

 Steve Fan
 GSS Talk
 April 14, 2021
 19 / 32

Proof (Cont).

Suppose precisely n of α 's are nonzero, say $\alpha_1,...,\alpha_n$. Then

$$q + e^{\alpha_1} + \dots + e^{\alpha_n} = 0, (2)$$

where $q=2^d-n$. Let c be a positive integer such that $c\theta_1,...,c\theta_d$ are algebraic integers. Define an auxiliary polynomial

$$f(x) := (cx)^{p-1}(cx - c\alpha_1)^p \cdots (cx - c\alpha_n)^p,$$

where p is a prime. Then $f \in \overline{\mathbb{Z}}[x]$ with degree m = (n+1)p-1. Let

$$J:=\sum_{k=1}^n I(\alpha_k).$$

 Steve Fan
 GSS Talk
 April 14, 2021
 19 / 32

Proof (Cont).

By Lemma 2 and (2) we have

$$J = -q \sum_{j=0}^{m} f^{(j)}(0) - \sum_{j=0}^{m} \sum_{k=1}^{n} f^{(j)}(\alpha_k).$$

Proof (Cont).

By Lemma 2 and (2) we have

$$J = -q \sum_{j=0}^{m} f^{(j)}(0) - \sum_{j=0}^{m} \sum_{k=1}^{n} f^{(j)}(\alpha_k).$$

Let

$$g(x) := f(x/c) = x^{p-1}(x - c\alpha_1)^p \cdots (x - c\alpha_n)^p.$$

Then

$$(x-c\alpha_1)\cdots(x-c\alpha_n)\in\mathbb{Z}[x]$$

and thus $f,g \in \mathbb{Z}[x]$. By Lemma 3 we have

$$\frac{1}{j!}\sum_{k=1}^n g^{(j)}(c\alpha_k) \in \mathbb{Z}.$$

Proof (Cont).

Since f(x) = g(cx), we have

$$\frac{1}{j!}\sum_{k=1}^n f^{(j)}(\alpha_k) = \frac{c^j}{j!}\sum_{k=1}^n g^{(j)}(c\alpha_k) \in \mathbb{Z}.$$

Proof (Cont).

Since f(x) = g(cx), we have

$$\frac{1}{j!}\sum_{k=1}^n f^{(j)}(\alpha_k) = \frac{c^j}{j!}\sum_{k=1}^n g^{(j)}(c\alpha_k) \in \mathbb{Z}.$$

Observe that $f^{(j)}(\alpha_k) = 0$ if $0 \le j < p-1$ and

$$\sum_{k=1}^n f^{(j)}(\alpha_k) \equiv 0 \pmod{j!}$$

if $j \ge p$. So we have

$$\sum_{j=0}^{m} \sum_{k=1}^{n} f^{(j)}(\alpha_k) \equiv 0 \pmod{p!}.$$

Proof (Cont).

By Lemma 1, we have $f^{(j)}(0) \equiv 0 \pmod{j!}$ for all $j \geq p$. Note also that $f^{(j)}(0) = 0$ if $0 \leq j < p-1$ and that

$$f^{(p-1)}(0) = c^{p-1}(-1)^{np}(p-1)![(c\alpha_1)\cdots(c\alpha_n)]^p.$$

Hence, we have

$$J \equiv c^{p-1}(-1)^{np}(p-1)![(c\alpha_1)\cdots(c\alpha_n)]^p \pmod{p!}.$$

 Steve Fan
 GSS Talk
 April 14, 2021
 22 / 32

Proof (Cont).

By Lemma 1, we have $f^{(j)}(0) \equiv 0 \pmod{j!}$ for all $j \geq p$. Note also that $f^{(j)}(0) = 0$ if $0 \leq j < p-1$ and that

$$f^{(p-1)}(0) = c^{p-1}(-1)^{np}(p-1)![(c\alpha_1)\cdots(c\alpha_n)]^p.$$

Hence, we have

$$J \equiv c^{p-1}(-1)^{np}(p-1)![(c\alpha_1)\cdots(c\alpha_n)]^p \pmod{p!}.$$

Choose p sufficiently large so that $p > \max(c, |(c\alpha_1)\cdots(c\alpha_n)|)$. Then $(p-1)! \mid J$ but $p! \nmid J$. This implies that $|J| \geq (p-1)!$.

 Steve Fan
 GSS Talk
 April 14, 2021
 22 / 32

Proof (Cont).

On the other hand, we have

$$\bar{f}(|\alpha_k|) \leq (cA)^m 2^{np}$$

for all $1 \le k \le n$, where $A = \max_{1 \le k \le n} |\alpha_k|$.

 Steve Fan
 GSS Talk
 April 14, 2021
 23 / 32

Proof (Cont).

On the other hand, we have

$$\bar{f}(|\alpha_k|) \leq (cA)^m 2^{np}$$

for all $1 \leq k \leq n$, where $A = \max_{1 \leq k \leq n} |\alpha_k|$. It follows from Lemma 2 that

$$|J| \leq \sum_{k=1}^{n} |I(\alpha_k)| \leq \sum_{k=1}^{n} k e^k \bar{f}(|\alpha_k|) \ll B^p$$

for some constant B>0. So $(p-1)!\ll B^p$. This is impossible when p is sufficiently large.

 Steve Fan
 GSS Talk
 April 14, 2021
 23 / 32

Table of Contents

- Introduction
- 2 Transcendence of e
- \bigcirc Transcendence of π
- 4 Generalizations
- Open Problems

Steve Fan GSS Talk April 14, 2021 24/32

Lindemann proved in 1882 that if $\alpha \in \overline{\mathbb{Q}} \setminus \{0\}$, then e^{α} is transcendental. In 1885, Weierstrass proved the following more general theorem.

Steve Fan GSS Talk April 14, 2021 25 / 32

Lindemann proved in 1882 that if $\alpha \in \overline{\mathbb{Q}} \setminus \{0\}$, then e^{α} is transcendental. In 1885, Weierstrass proved the following more general theorem.

Theorem (Lindemann-Weierstrass, 1885)

Let $\alpha_1,...,\alpha_n$ be distinct algebraic numbers. Then $e^{\alpha_1},...,e^{\alpha_n}$ are linearly independent over $\overline{\mathbb{Q}}$.

Lindemann proved in 1882 that if $\alpha \in \overline{\mathbb{Q}} \setminus \{0\}$, then e^{α} is transcendental. In 1885, Weierstrass proved the following more general theorem.

Theorem (Lindemann-Weierstrass, 1885)

Let $\alpha_1,...,\alpha_n$ be distinct algebraic numbers. Then $e^{\alpha_1},...,e^{\alpha_n}$ are linearly independent over $\overline{\mathbb{Q}}$.

Corollary 1

Let $\alpha \in \overline{\mathbb{Q}} \setminus \{0\}$. Then $\sin \alpha, \cos \alpha, \tan \alpha$ are all transcendental.

Steve Fan GSS Talk April 14, 2021 25 / 32

Lindemann proved in 1882 that if $\alpha \in \overline{\mathbb{Q}} \setminus \{0\}$, then e^{α} is transcendental. In 1885, Weierstrass proved the following more general theorem.

Theorem (Lindemann-Weierstrass, 1885)

Let $\alpha_1,...,\alpha_n$ be distinct algebraic numbers. Then $e^{\alpha_1},...,e^{\alpha_n}$ are linearly independent over $\overline{\mathbb{Q}}$.

Corollary 1

Let $\alpha \in \overline{\mathbb{Q}} \setminus \{0\}$. Then $\sin \alpha, \cos \alpha, \tan \alpha$ are all transcendental.

Corollary 2

Let $\alpha \in \overline{\mathbb{Q}} \setminus \{0,1\}$. Then $\log \alpha$ is transcendental.

 Steve Fan
 GSS Talk
 April 14, 2021
 25 / 32

The Gelfond-Schneider Theorem

In 1900 Hilbert raised the following question at the International Congress of Mathematicians held in Paris.

Hilbert's 7th Problem

Is α^{β} transcendental for any $\alpha \in \overline{\mathbb{Q}} \setminus \{0,1\}$ and any irrational $\beta \in \overline{\mathbb{Q}}$?

 Steve Fan
 GSS Talk
 April 14, 2021
 26 / 32

The Gelfond-Schneider Theorem

In 1900 Hilbert raised the following question at the International Congress of Mathematicians held in Paris.

Hilbert's 7th Problem

Is α^{β} transcendental for any $\alpha\in\overline{\mathbb{Q}}\setminus\{0,1\}$ and any irrational $\beta\in\overline{\mathbb{Q}}$?

This problem was solved by Gelfond and Schneider independently in 1934.

Theorem (Gelfond-Schneider, 1934)

 $lpha^{eta}$ is transcendental for any $lpha\in\overline{\mathbb{Q}}\setminus\{0,1\}$ and any irrational $eta\in\overline{\mathbb{Q}}.$

 Steve Fan
 GSS Talk
 April 14, 2021
 26 / 32

The Gelfond-Schneider Theorem

In 1900 Hilbert raised the following question at the International Congress of Mathematicians held in Paris.

Hilbert's 7th Problem

Is α^{β} transcendental for any $\alpha\in\overline{\mathbb{Q}}\setminus\{0,1\}$ and any irrational $\beta\in\overline{\mathbb{Q}}$?

This problem was solved by Gelfond and Schneider independently in 1934.

Theorem (Gelfond-Schneider, 1934)

 α^{β} is transcendental for any $\alpha \in \overline{\mathbb{Q}} \setminus \{0,1\}$ and any irrational $\beta \in \overline{\mathbb{Q}}$.

Corollary 3

 $2^{\sqrt{2}}$ and e^{π} are both transcendental.

Steve Fan GSS Talk April 14, 2021 26 / 32

Baker's Theorem

The Gelfond–Schneider theorem is equivalent to the statement that if $\alpha, \beta \in \overline{\mathbb{Q}} \setminus \{0\}$ are such that $\log \alpha, \log \beta$ are linearly independent over $\overline{\mathbb{Q}}$, then they are linearly independent over $\overline{\mathbb{Q}}$.

Steve Fan GSS Talk April 14, 2021 27 / 32

Baker's Theorem

The Gelfond–Schneider theorem is equivalent to the statement that if $\alpha, \beta \in \overline{\mathbb{Q}} \setminus \{0\}$ are such that $\log \alpha, \log \beta$ are linearly independent over \mathbb{Q} , then they are linearly independent over $\overline{\mathbb{Q}}$.

In 1966 Baker obtained the following generalization.

Theorem (Baker, 1966)

If $\alpha_1,...,\alpha_n$ are nonzero algebraic numbers such that $\log \alpha_1,...,\log \alpha_n$ are linearly independent over \mathbb{Q} , then $1,\log \alpha_1,...,\log \alpha_n$ are linearly independent over $\overline{\mathbb{Q}}$.

Steve Fan GSS Talk April 14, 2021 27 / 32

Baker's Theorem

The Gelfond–Schneider theorem is equivalent to the statement that if $\alpha, \beta \in \overline{\mathbb{Q}} \setminus \{0\}$ are such that $\log \alpha, \log \beta$ are linearly independent over \mathbb{Q} , then they are linearly independent over $\overline{\mathbb{Q}}$.

In 1966 Baker obtained the following generalization.

Theorem (Baker, 1966)

If $\alpha_1,...,\alpha_n$ are nonzero algebraic numbers such that $\log \alpha_1,...,\log \alpha_n$ are linearly independent over \mathbb{Q} , then $1,\log \alpha_1,...,\log \alpha_n$ are linearly independent over $\overline{\mathbb{Q}}$.

Corollary 4

 $e^{\beta_0}\alpha_1^{\beta_1}\cdots\alpha_n^{\beta_n} \text{ is transcendental for any } \alpha_1,...,\alpha_n,\beta_0,...,\beta_n\in\overline{\mathbb{Q}}\setminus\{0\}.$

Baker's Theorem and Thue's Equation

Baker obtained an effective lower bound for the absolute value of

$$\Lambda = \beta_0 + \beta_1 \log \alpha_1 + \dots + \beta_n \log \alpha_n$$

in terms of the degrees and heights of $\alpha_1,...,\alpha_n\in\overline{\mathbb{Q}}\setminus\{0\}$, $\beta_0,...,\beta_n\in\overline{\mathbb{Q}}$: if $\Lambda\neq 0$, then $|\Lambda|>B^{-C}$, where B,C>0 are effective constants.

 Steve Fan
 GSS Talk
 April 14, 2021
 28 / 32

Baker's Theorem and Thue's Equation

Baker obtained an effective lower bound for the absolute value of

$$\Lambda = \beta_0 + \beta_1 \log \alpha_1 + \dots + \beta_n \log \alpha_n$$

in terms of the degrees and heights of $\alpha_1,...,\alpha_n\in\overline{\mathbb{Q}}\setminus\{0\}$, $\beta_0,...,\beta_n\in\overline{\mathbb{Q}}$: if $\Lambda\neq 0$, then $|\Lambda|>B^{-C}$, where B,C>0 are effective constants. Using this lower bound he proved the following theorem.

Theorem (Thue, 1909)

Let

$$f(x,y) := \sum_{k=0}^{n} a_k x^k y^{n-k} \in \mathbb{Z}[x]$$

be an irreducible polynomial of degree $n \geq 3$. Then for every $m \in \mathbb{Z} \setminus \{0\}$, the equation f(x,y) = m has finitely many solutions $(x,y) \in \mathbb{Z}^2$.

Steve Fan GSS Talk April 14, 2021 28 / 32

Table of Contents

- Introduction
- 2 Transcendence of e
- \bigcirc Transcendence of π
- 4 Generalizations
- 5 Open Problems

Open Problems

- Are $e \pm \pi, e\pi, \pi^e$ irrational/transcendental?
- Is Euler's constant

$$\gamma = \lim_{N \to \infty} \left(\sum_{n=1}^{N} \frac{1}{n} - \log N \right)$$

irrational/transcendental?

• In 1978 Apéry established the irrationality of $\zeta(3)$, where

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}.$$

Is $\zeta(3)$ transcendental? What about $\zeta(k)$ for odd $k \geq 5$?

• The Gelfond-Schneider theorem implies that $\log 2$, $\log 3$ are linearly independent over $\overline{\mathbb{Q}}$. Are they algebraically independent?

Steve Fan GSS Talk April 14, 2021 30 / 32

Open Problems

• The six exponentials theorem, proved independently by Lang and Ramachandra, states that if $x_1, x_2, x_3 \in \mathbb{C}$ and $y_1, y_2 \in \mathbb{C}$ are such that x_1, x_2, x_3 are linearly independent over \mathbb{Q} and y_1, y_2 are linearly independent over \mathbb{Q} , then at least one of the following six numbers

$$e^{x_iy_j}$$
, $1 \le i \le 3$, $1 \le j \le 2$,

is transcendental. It is conjectured that if $x_1, x_2 \in \mathbb{C}$ and $y_1, y_2 \in \mathbb{C}$ are such that each pair is linearly independent over \mathbb{Q} , then at least one of the four numbers $e^{x_iy_j}$ is transcendental. This is now referred to as the four exponentials conjecture.

 Steve Fan
 GSS Talk
 April 14, 2021
 31/32

Thank you for your attention!

 Steve Fan
 GSS Talk
 April 14, 2021
 32 / 32