Activity 10

OBJECTIVE

To verify the algebraic identity:

$$a^3 - b^3 = (a - b)(a^2 + ab + b^2)$$

MATERIAL REQUIRED

Acrylic sheet, sketch pen, glazed papers, scissors, adhesive, cellotape, coloured papers, cutter.

METHOD OF CONSTRUCTION

- 1. Make a cuboid of dimensions $(a-b) \times a \times a$ (b < a), using acrylic sheet and cellotape/adhesive as shown in Fig. 1.
- 2. Make another cuboid of dimensions $(a-b) \times a \times b$, using acrylic sheet and cellotape/adhesive as shown in Fig. 2.
- 3. Make one more cuboid of dimensions $(a-b) \times b \times b$ as shown in Fig. 3.
- 4. Make a cube of dimensions $b \times b \times b$ using acrylic sheet as shown in Fig. 4.

Mathematics 35

5. Arrange the cubes and cuboids made above in Steps (1), (2), (3) and (4) to obtain a solid as shown in Fig. 5, which is a cube of volume a^3 cubic units.

DEMONSTRATION

Volume of cuboid in Fig. 1 = $(a-b) \times a \times a$ cubic units.

Volume of cuboid in Fig. $2 = (a-b) \times a \times b$ cubic units.

Volume of cuboid in Fig. $3 = (a-b) \times b \times b$ cubic units.

Volume of cube in Fig. $4 = b^3$ cubic units.

Volume of solid in Fig. $5 = a^3$ cubic units.

Removing a cube of size b^3 cubic units from the solid in Fig. 5, we obtain a solid as shown in Fig. 6.

Volume of solid in Fig. 6 = $(a-b) a^2 + (a-b) ab + (a-b) b^2$ = $(a-b) (a^2 + ab + b^2)$

Therefore, $a^3 - b^3 = (a - b)(a^2 + ab + b^2)$

OBSERVATION

On actual measurement:

$$a = \dots, b = \dots,$$

So, $a^3 = \dots, b^3 = \dots, (a-b) = \dots, ab = \dots,$
 $a^2 = \dots, b^2 = \dots,$
Therefore, $a^3 - b^3 = (a - b) (a^2 + ab + b^2).$

APPLICATION

The identity may be used in simplification/factorisation of algebraic expressions.

Mathematics 37