Detailed RAG Chatbot Implementation Report

1. Document Structure & Chunking Logic

- Source Document Loading:
 - Uses `PyPDFLoader` to extract text page-by-page, preserving order.
 - Supports multi-file ingestion; can batch process directories.
- Cleaning & Text Normalization:
 - Regex patterns remove headers, footers, page numbers, and boilerplate.
 - Normalize whitespace, unify Unicode characters, strip control codes.
 - Lowercase or maintain casing based on downstream embedding sensitivity.
- · Chunking Strategy:
- `RecursiveCharacterTextSplitter` splits on sentence boundaries and newlines.
- Configured with 300-token chunk size and 50-token overlap for seamless context.
- Overlap ensures terms near boundaries are not lost between chunks.
- Separators prioritized: paragraph breaks, punctuation, then whitespace.
- Storage and Metadata:
 - Each chunk stored with metadata: source file, page number, chunk index.
- Metadata allows traceability back to original document for citation.

2. Embedding Model & Vector Database

- Embedding Model:
 - OllamaEmbeddings (`nomic-embed-text`): delivers 384-dimensional vectors.
 - Pros: on-premises inference, no external API latency or costs.
 - Alternatives:
 - * `all-MiniLM-v2`: faster, smaller footprint, slightly lower accuracy.
 - * `bge-small-en`: higher semantic fidelity, requires more compute.
- Vector Store (FAISS):
 - Flat index (Exact k-NN): constant-time lookup for up to ~100k vectors.
 - Serialization: `index.to_bytes()` for disk persistence and reload.
 - Scaling Options:
 - * HNSW index for approximate but sub-second search at millions of vectors.
 - * Cloud solutions (Pinecone, Weaviate) for multi-region availability.
- Embedding Workflow:
 - 1. Generate embeddings for each chunk via 'embed model.embed documents()'.
 - 2. Store vectors and metadata in FAISS index.
- 3. On query, compute `embed_model.embed_query()` and perform k-NN search.

3. Prompt Format & Generation Logic

- Prompt Template:
 - Structure:
 - "Answer based only on the context below. Context: {context} Question: {input}"
 - Context concatenation includes top-k retrieved chunks separated by markers.
 - Token Budgeting: ensure combined context + question stays within model window.
- LLM & Streaming:
 - Model: Llama3-8b-8192 via `ChatGrog` API with `streaming=True`.
- Benefits: token-by-token delivery yields responsive UX in Streamlit.
- Configuration: temperature=0.1 for factual answers, max_tokens=512 limit.

- RAG Chain Construction:
- `RetrievalQA.from_chain_type(chain_type='stuff')` stitches all chunks into one prompt.
- Returns both the generated answer and source documents for citation display.
- Error & Truncation Handling:
- If context is too large, pre-truncate to nearest sentence boundary.
- Catch exceptions in retrieval or generation, with retry or fallback responses.

4. Notes on Hallucinations & System Limitations

- Hallucination Risks:
 - Occurs when gueries exceed indexed content or context is sparse.
 - Mitigation: lower temperature, increase overlap, return source citations.
- Context Window Constraints:
 - Llama3-8b supports up to 8192 tokens; larger docs require chunk filtering.
 - Plan: use dynamic chunk scoring (TF-IDF) to select highest relevance.
- Performance Considerations:
 - FAISS flat index search <10ms for 100k vectors; embedding/query ~50ms.
- For larger data, use approximate indexes or batched embedding pipelines.
- Latency & UX:
 - Streaming reduces perceived latency; network instability can interrupt streams.
 - Implement heartbeat pings or fallback buffering for smoother UI.
- Future Enhancements:
 - Hybrid search: combine dense embeddings with keyword filters for precision.
 - Multi-language support: integrate language detection & language-specific models.

5. example queries with responses

