INTERVALE DE ÎNCREDERE (1)

- •Pentru nivel de încredere 95%: ce scor z_1 delimitează cele mai mici 2,5% valori și ce scor z_2 delimitează cele mai mari 2,5% valori, într-o distribuție normală?
- Întotdeauna, $z_1 = -1.96$, $z_2 = +1.96$.
- Distribuția mediei de selecție este $N(\mu, \sigma^2/n)$.
- Deci, pentru 95% din cazuri, x se va afla la distanță cel mult 1,96 $\sigma/n^{(1/2)}$ de μ , sau: în 95% din cazuri, μ se va afla la distanță cel mult 1,96 $\sigma/n^{(1/2)}$ de \overline{x}

INTERVALE DE ÎNCREDERE (2)

- Intervalele de încredere au fost introduse în 1937 de Jerzy Neyman.
- Intervalele de încredere pot fi folosite cu calcule specifice pentru estimarea oricărui parametru.
- Valoarea critică este independentă de cazul concret - depinde doar de nivelul de încredere.

DISTRIBUŢIA MEDIEI DE SONDAJ (1)

- Presupunem o populație de 90000 de elevi din clasele I-IX, câte 10000 din fiecare clasă. Variabila aleatoare este clasa fiecărui elev.
- Distribuție rectangulară, media $\mu = 5$, dispersia $\sigma^2 = 6,67$, deviație standard $\sigma = 2,58$.
- Experiment: 90000 mingi de ping-pong de extras aleator dintr-o cutie: 10000 au scris pe ele "1", 10000, "2" etc.
- Extragem de trei ori câte două: (2,9), (4,4), (2,7).
- Mediile eşantioanelor sunt: 5,5; 4; 4,5.
- Aceste trei numere au o nouă distribuție, cu media_eşantion = 4,65, dispersia_eşantion = 0,39, deviație standard eşantion = 0,62.

DISTRIBUŢIA MEDIEI DE SONDAJ (2)

• Reguli:

- Media distribuţiei mediilor eşantioanelor este (aproape) egală cu media populaţiei iniţiale;
- Împrăștierea distribuției mediilor eșantioanelor este mai mică decât împrăștierea populației inițiale;
- Forma distribuţiei mediilor eşantioanelor este aproximativ normală (oricum, unimodală şi simetrică).

• "Teorema limită centrală":

- Dacă se iau suficient de multe eşantioane, mediile mari şi cele mici se echilibrează;
- Şansa de avea două valori extreme ambele foarte mari sau ambele foarte mici este mică: efectul moderator al numerelor mari (mediile extreme sunt rare). Deci şi împrăştierea distribuției mediilor va fi mai mică.

DISTRIBUŢIA MEDIEI DE SONDAJ (3)

- Cu eşantioane de 1 individ, medii de 1 sau 9 ar fi relativ frecvente (1/9 din total). Cu eşantioane de 2 indivizi, mediile de 1 sau 9 sunt mult mai rare. Cu eşantioane de 10 indivizi, mediile de 1 sau 9 aproape nu mai apar.
- Dispersia mediilor pentru eșantioane de 2 indivizi s-a apropiat de 3,33 jumătate din dispersia eșantioanelor de 1 individ (6,67). La eșantioane de trei indivizi ar fi fost 2,22.
- Dispersia mediilor eşantioanelor de n indivizi este întotdeauna 1/n din dispersia populației inițiale.
- Pornind de la o distribuție rectangulară, mediile eșantioanelor au dat o distribuție aproape **normală**.
- Distribuția mediilor eșantioanelor este normală dacă eșantioanele au cel puțin 30 de indivizi sau dacă populația inițială era normală. Altfel, distribuția mediilor eșantioanelor este (doar) unimodală și simetrică.

TESTE PENTRU MEDII DE POPULAȚII

1.- σ CUNOSCUT: TESTUL Z

- Exemplul II ilustrează <u>testul Z pentru media unei populații</u> <u>distribuită normal</u>. *Condițiile* testului Z:
 - nu se cunoaște media μ a populației;
 - se cunoaște deviația standard σ a populației.
- Descrierea testului Z:
 - ipoteza nulă este: $\mu = \mu_0$, unde μ_0 este o valoare dată;
 - statistica testului este media de sondaj standardizată

$$z = \frac{\overline{x_n} - \mu_0}{\sigma / \sqrt{n}}$$

• H_0 adevărată $\Rightarrow Z \approx N(0,1)$ (unde z e o valoare a lui Z).

TESTUL Z: IPOTEZA ALTERNATIVĂ

- a) <u>asimetrică la dreapta</u>. $\mathbf{H_a}$: $\mu > \mu_0$. În acest caz, valoarea P este dată de $P\{Z \ge z\}$, z fiind valoarea obținută din eşantion (exemplul II).
- b) <u>asimetrică la stânga</u>. $\mathbf{H_a}$: $\mu < \mu_0$. (P=P{Z\leq z}).
- c) simetrică. H_a : $\mu \neq \mu_0$. În acest caz, din simetria curbei normale, $P=P\{|Z| \geq |z|\}$
- •Toate probabilitățile calculate mai sus sunt exacte pentru populații normale și aproximative pentru altfel de populații cu atât mai exacte cu cât n este mai mare.

σ NECUNOSCUT: TESTUL t

- Deosebirea dintre testul t şi testul z este că, dispersia σ fiind necunoscută, ea se estimează prin s – estimatorul ei nedeplasat.
- Proceduri t bazate pe un eşantion.
- $\frac{s}{\sqrt{n}}$ se numește *eroarea standard estimată* a mediei eșantionului (cea exactă nu se cunoaște).
- Media standardizată a eșantionului $z = \frac{x \mu}{\sigma / \sqrt{n}}$ are distribuție N(0,1).
- Statistica $t = \frac{x \mu}{s / \sqrt{n}}$ are <u>distribuția t</u>.

DISTRIBUŢIA t (1)

- Pentru e.a. de cardinalitate n, selectate dintr-o populație distribuită după $N(\mu,\sigma)$, statistica unieșantion $t = \frac{x \mu}{s / \sqrt{n}}$ are distribuție t cu n-1 grade de libertate.
- Variabila t este repartizată Student (Gosset) cu n grade de libertate dacă densitatea sa de probabilitate este dată de:

$$f(t) = \frac{\Gamma((n+1)/2)}{\sqrt{\pi \cdot n} \cdot \Gamma(n/2)} \cdot (1 + t^2/n)^{-(n+1)/2}$$

• M[t] = 0.

DISTRIBUŢIA t (2)

- <u>Teoremă</u>. Dacă t este variabilă aleatoare Student cu n grade de libertate, atunci șirul de variabile aleatoare $t_n = \frac{t}{\sqrt{n/(n-2)}}$, $n \in \mathbb{N}$, tinde la $\mathbb{N}(0,1)$.
- <u>Teoremă</u>. Statistica testului t este o v.a. t(n-1).
- Fiecare cardinalitate de eşantion dă o altă distribuție t, cu atât mai apropiată de N(0,1) cu cât n (numărul de grade de libertate) este mai mare.
- Şi statistica s are n-1 grade de libertate: oricare n-1 deviații de la medie o determină pe a n-a.
- t(n) are un plus de variabilitate față de N(0,1), datorat aproximării lui σ .

DISTRIBUŢIA t (3)

- Proprietăți ale distribuției t:
 - Media distribuţiei t este 0;
 - Distribuția este simetrică față de medie;
 - Dispersia este mai mare decât 1. Cu cât n creşte, cu atât dispersia se apropie de 1;
 - "Vârful" este mai puțin înalt decât la N(0,1), iar
 "cozile" acoperă o arie mai mare;
 - t sunt o familie de distribuții una pentru fiecare n. Când n creşte, t se apropie de N(0,1).
 - Peste n=29, valorile t se consideră a fi cele corespunzătoare lui z la α respectiv.

TESTE t UNI-EŞANTION

- Față de testul z, singurele modificări sunt:
 - se înlocuieşte σ/sqrt(n) prin s/sqrt(n): statistica z devine statistica t;
 - valorile critice se iau din tabelele variabilei t.
- Exemplu. În secolul trecut, Newcomb a măsurat timpul de trecere a luminii pe o anumită distanță. Cele 64 de măsurători au dat o medie de 27,750 și o eroare standard estimată s=5,083·sqrt(5). Măsurătorile moderne au dat o medie 33,02, considerată valoare corectă.
- Există diferență semnificativă în rezultatele lui Newcomb față de rezultatul corect?

TESTUL t – EXEMPLUL I (valoare P)

- H_0 : $\mu = 33,02$ (μ media tuturor măsurătorilor posibile ale lui Newcomb).
- $H_a: \mu \neq 33,02.$
- Statistica t: $t = \frac{x \mu}{s / \sqrt{n}} = \frac{27,75 33,02}{5,083 / \sqrt{64}} = -8,29$
- Valoarea P (probabilitatea unor astfel de dovezi dacă H₀ este adevărată) este egală cu P{|t|≥8,29} pentru t(63).
- Tabelul indică: P<<0,001.
- Concluzie: rezultatele diferă semnificativ.

TESTUL t - EXEMPLUL II (nivel α)

- t(df,α) indică valoarea t dincolo de care (la dreapta) rămâne aria α **sub** curba t cu df grade de libertate.
- $t(df,1-\alpha) = 1-t(df,\alpha)$
- Exemplu. "Nivelul mediu al poluării cu monoxid de carbon este cel mult 4,9". Dacă la 25 de citiri ale nivelului s-a obținut o medie de 5,1 și o eroare standard estimată s=10,5, se poate respinge afirmația de mai sus?
- Soluție. $H_0: \mu = 4.9 \le 1.$ $H_a: \mu > 4.9.$
- $t_{\text{tabel}} (24; 0.05) = 1.71.$ $t_{\text{eşantion}} = 0.476 \ (\rightarrow H_0!)$

TESTUL t – EXEMPLUL II (valoare P)

- Cum se estimează probabilitatea ca t să ia cel puțin valoarea din eșantion: $P\{t_{24} > 0,48\}$, în ipoteza H_0 ?
- Rezultă $P\{t_{24} > 0.48\} > 0.25$ - din tabel, $P\{t_{24} > 0.685\} = 0.25$; descreşte.
- Exercițiu. Care este valoarea P dacă H_0 : μ =55; H_a : $\mu \neq$ 55; df = 15; $t_{esantion}$ = -1,84.
- Soluție. $P = P\{t_{15} < -1.84\} + P\{t_{15} > 1.84\} = 2P\{t_{15} > 1.84\} \rightarrow 0.05 < P < 0.10.$

INTERVAL DE ÎNCREDERE PENTRU MEDIE, CU σ NECUNOSCUT

• Când deviația standard a populației se aproximează prin deviația standard s a eșantionului, intervalul de încredere la nivel α devine:

$$(\overline{x} - t(df, \alpha/2) \cdot \frac{s}{\sqrt{n}}; \overline{x} + t(df, \alpha/2) \cdot \frac{s}{\sqrt{n}})$$

- Exemplul I: interval de încredere 99%. Valoarea critică 0,005 a lui t(63): $t^* = 2,660$.
- Intervalul: $\bar{x} \pm t^* \cdot \frac{s}{\sqrt{n}}$: (26,06; 29,44).
- $33,02 \notin (26,06; 29,44)$, cu nivel de încredere 99%.

EXEMPLUL III

- 20 de băieți de aceeași vârstă aruncă greutatea în medie la 6,87m, cu deviație standard a eșantionului de 1,76. Să se estimeze la nivel de încredere 0,95 distanța medie la care aruncă greutatea băieții de vârsta respectivă.
- $x_{med_{esantion}}=6,87, s=1,76, n=20; \alpha=0,05.$
- Din tabel: t(19; 0.025) = 2.09.
- Rezultă intervalul: (6,05; 7,69).

TESTUL t PENTRU PERECHI

• Exemplu. 20 de profesori de franceză urmează un curs de perfecționare. Se compară scorurile la două teste cu întrebări diferite: unul înainte, celălalt după curs. Diferențele de punctaj au fost:

- A fost cursul util?
- Soluție. Studiem v.a. care dă diferențele.
- $H_0: \mu = 0$ (curs inutil). $\bar{x} = 2.5; s = 2.89$
- $H_a: \mu > 0.$ $t = \frac{x \mu}{s / \sqrt{n}} = \frac{2.5}{2.89 / \sqrt{20}} = 3.87$
- $P\{t_{19} = 3.87 / H_0\} = 0.00052$. Se respinge H_0 .

INFERENȚĂ PENTRU POPULAȚII NON-NORMALE

- Inferențele pentru populații non-normale, bazate pe eșantioane mici se bazează pe:
 - Utilizarea unei distribuţii non-normale pentru care există metode de inferenţă;
 - Transformarea datelor pentru a deveni simetrice și aproape normale (logaritmare...);
 - Proceduri de inferență independente de distribuție: nonparametrice.
- Cel mai simplu test non-parametric este <u>testul</u> <u>semnelor</u>.
- Statistica ipotezelor se modifică: se utilizează mediana și nu media.

TESTUL SEMNELOR

- Exemplul. 17 schimbări de scor, dintre care una negativă.
- Fie p probabilitatea ca un profesor să-și crească scorul. Mediana este 0 dacă are loc H_0 :
- $H_0: p = 0.5$ (exclusiv şansa). $H_a: p > 0.5$.
- 17 profesori înseamnă 17 experimente independente, "succes" însemnând "creştere a scorului". H_0 afirmă că X = B(17; 0,5).
- Valoarea P=P{X\ge 16 / H₀}=P{X=16}+P{X=17}= $C_{17}^{16} \cdot (0,5)^{16} \cdot (0,5)^1 + C_{17}^{17} \cdot (0,5)^{17} \cdot (0,5)^0 = 0,00014$
- Cum P este foarte mic, H_0 se respinge.

TESTUL SEMNELOR PENTRU PERECHI

- Se ignoră diferențele 0;
- Se numără perechile rămase (n);
- Statistica testului este numărul X de perechi cu diferență pozitivă ("succese");
- Valorile P pentru X sunt date de B(n; 0,5), care se calculează sau se citesc din tabele;
- Se compară cu α prestabilit și se decide asupra ipotezei H_0 .