

生成树 但要保持连通 连通图的生成树是包含图中全部顶点的一个极小连通子图。 若图中顶点数为n,则它的生成树含有 n-1 条边。对生成树而言,若砍去它的一条边,则会变成非连通 图,若加上一条边则会形成一个回路。 A A A A G的生成树1 G的生成树2 正道考研/CSKAOYAN.COM

最小生成树(最小代价树)

对于一个带权连通无向图G = (V, E),生成树不同,每棵树的权(即树中所有边上的权值之和)也可能不同。设R为G的所有生成树的集合,若T为R中边的权值之和最小的生成树,则T称为G的最小生成树(Minimum-Spanning-Tree, MST)。

- 最小生成树可能有多个,但边的权值之和总是唯一且最小的
- 最小生成树的边数 = 顶点数 1。砍掉一条则不连通,增加一条边则会出现回路

最小生成树 (最小代价树)

对于一个带权连通无向图G = (V, E),生成树不同,每棵树的权(即树中所有边上的权值之和)也可能不同。设R为G的所有生成树的集合,若T为R中边的权值之和最小的生成树,则T称为G的最小生成树(Minimum-Spanning-Tree, MST)。

- 如果一个连通图本身就是一棵树,则其最小生成树就是它本身
- 只有连通图才有生成树, 非连通图只有生成森林

王道考研/CSKAOYAN.COM

最小生成树 (最小代价树)

对于一个带权连通无向图G = (V, E),生成树不同,每棵树的权(即树中所有边上的权值之和)也可能不同。设R为G的所有生成树的集合,若T为R中边的权值之和最小的生成树,则T称为G的最小生成树(Minimum-Spanning-Tree, MST)。

- 最小生成树可能有多个,但边的权值之和总是唯一且最小的
- 最小生成树的边数 = 顶点数 1。砍掉一条则不连通,增加一条边则会出现回路
- 如果一个连通图本身就是一棵树,则其最小生成树就是它本身
- 只有连通图才有生成树, 非连通图只有生成森林

求最小生成树

Prim算法

Kruskal算法

Prim 算法(普里姆)

Prim 算法(普里姆):

从某一个顶点开始构建生成树; 每次将代价最小的新顶点纳入生成 树,直到所有顶点都纳入为止。

王道考研/CSKAOYAN.COM

Kruskal 算法(克鲁斯卡尔)

Kruskal 算法(克鲁斯卡尔):

每次选择一条权值最小的边,使这 条边的两头连通(原本已经连通的 就不选)

直到所有结点都连通

Kruskal 算法(克鲁斯卡尔)

Kruskal 算法(克鲁斯卡尔):

每次选择一条权值最小的边,使这 条边的两头连通(原本已经连通的 就不选)

直到所有结点都连通

王道考研/CSKAOYAN.COM

Prim 算法 v.s. Kruskal 算法

Prim 算法(普里姆):

从某一个顶点开始构建生成树; 每次将代价最小的新顶点纳入生成 树,直到所有顶点都纳入为止。

时间复杂度: O(|V|²) 适合用于边稠密图 Kruskal 算法(克鲁斯卡尔):

每次选择一条权值最小的边,使这 条边的两头连通(原本已经连通的 就不选)

直到所有结点都连通

时间复杂度: O(|E|log₂|E|) 适合用于边稀疏图

Prim 算法 v.s. Kruskal 算法

Prim 算法(普里姆):

从某一个顶点开始构建生成树; 每次将代价最小的新顶点纳入生成 树,直到所有顶点都纳入为止。

时间复杂度: O(|V|²) 适合用于边稠密图 Kruskal 算法(克鲁斯卡尔):

每次选择一条权值最小的边,使这 条边的两头连通(原本已经连通的 就不选)

直到所有结点都连通

时间复杂度: O(|E|log₂|E|) 适合用于边稀疏图

第1轮:检查第1条边的两个顶点是否 连通(是否属于同一个集合)

weight	Vertex1	Vertex2
1	V ₀	V ₃
2	V_2	V ₅
3	V ₁	V ₄
4	V_2	V ₃
4	V ₃	V ₅
5	V ₀	V_2
5	V ₁	V ₃
6	V ₀	V ₁
6	V ₃	V ₄
6	V ₄	V 5

王道考研/CSKAOYAN.COM

第1轮:检查第1条边的两个顶点是否连通(是否属于同一个集合)

	weight	Vertex1	Vertex2
y	1	V ₀	V ₃
	2	V ₂	V ₅
	3	V ₁	V_4
ľ	4	V ₂	V ₃
ľ	4	V ₃	V ₅
ľ	5	V ₀	V ₂
	5	V ₁	V ₃
ľ	6	V ₀	V ₁
ľ	6	V ₃	V ₄
	6	V₄	Ve

不连通,连起来!

知识回顾与重要考点

对于一个带权连通无向图G = (V, E),生成树不同,每棵树的权(即树中所有边上的权值之和)也可能不同。设R为G的所有生成树的集合,若T为R中边的权值之和最小的生成树,则T称为G的最小生成树(Minimum-Spanning-Tree, MST)。

Prim 算法(普里姆):

从某一个顶点开始构建生成树; 每次将代价最小的新顶点纳入生成 树,直到所有顶点都纳入为止。

时间复杂度: O(|V|²) 适合用于边稠密图 Kruskal 算法(克鲁斯卡尔):

每次选择一条权值最小的边,使这 条边的两头连通(原本已经连通的 就不选)

直到所有结点都连通

时间复杂度: O(|E|log₂|E|) 适合用于边稀疏图