

Лекция 4

Как интерпретировать частотные данные

Частотные списки, коллокации, ключевые слова

Ольга Ляшевская ** olesar@yandex.ru

Корпус - не только примеры

Что мы можем узнать из корпуса текстов:

- в каких контекстах используется слово
- **лексикографический портрет** слова самые характерные для него формы, словосочетания и конструкции
- как используются словосочетания и конструкции
- как два (под)корпуса различаются по частотному распределению слов, словосочетаний и конструкций

Частотные списки

- Составляются для
 - всего корпуса
 - о подкорпусов отдельных авторов, жанров, периодов и т. п.
 - о для зоны заголовков, рифмовки в поэзии и т. п.
- Языковые единицы характеризоваться абсолютной и относительной частотой, а также рангом

1и 12	2851	99 лицо	275	999 можете	27	9999 вытянул	2
2 не 6	5474	100 сказать	275	1000 мои	27	10000 вытянуть	2
3 что 6	5070	101 этот	272	1001 Москвы	27	10001 выучить	2
4 B 5	5689	102 вас	271	1002 несомненно	27	10002 выучиться	2
5 он 5	5526	103 Левина	271	1003 новым	27	10003 выходившей	2
6 на 3	3584	104 раз	271	1004 ног	27	10004 выходу	2
						6	01.0

Закон Ципфа

Если все слова упорядочить по убыванию частоты, то частота n-ного слова окажется примерно обратно пропорциональна его рангу (порядковому номеру).

Например, второе по частоте слово встреча примерно в два раза реже, чем первое, треты три раза реже, чем первое, и т. п.

$$freq(w) * rank(w)^{\gamma} = Const$$

Кстати, на материале больших веб-корпусов этот закон выполняется примерно для половины слов. Для морфологически богатых языков (ср. также словоформы - леммы) скорость убывает иначе. ү - поправка Бенуа Мандельброта (1965) к закону Джорджа Кингсли Ципфа (1949). Он выделил голову (стоп-слова), среднюю часть и хвост (гапаксы) - broken power law.

Закон Ципфа

Если все слова упорядочить по убыванию частоты, то частота n-ного слова окажется примерно обратно пропорциональна его рангу (порядковому номеру).

100

Например, второе по частоте слово встреча примерно в два раза реже, чем первое, треты три раза реже, чем первое, и т. п.

$$freq(w) * rank(w)^{\gamma} = Const$$

Кстати, на материале больших веб-корпусов этот закон выполі 1 10 100 1000 Для морфологически богатых языков (ср. также словоформы - лемиы) скорость уольвает иначе. у - поправка Бенуа Мандельброта (1965) к закону Джорджа Кингсли Ципфа (1949). Он выделил голову (стоп-слова), среднюю часть и хвост (гапаксы) - broken power law.

Частотные списки

- Могут представлять
 - словоформы, лексемы (леммы)
 - части речи, пунктуацию
 - о буквы, сочетания букв

1331722

5 *cmB*

- сочетания слов (биграммы, триграммы для форм и лемм)
- (синтаксические) конструкции более сложные запросы

10 *льн*

• пары синтаксически связанных слов (синтаксические биграммы)

1 ocm	1723246	6 cma	1281976	(По данным Частотного словаря
2 ени	1652167	7 что	1249647	русского языка, 2011)
3 про	1591587	8 при	1223950	
4 020	1564559	9 енн	1206823	

1185312

N-граммы

И долго буду тем любезен я народу

• биграмма: сочетание словоформ, не всегда информативна

И долго буду тем любезен я народу

- синтаксическая биграмма: сочетание связанных синтаксическим отношением словоформ или лемм
- могут отличаться в зависимости от выбранного способа анализа:

Связанные (несвободные) сочетания слов, которые характеризуют язык а целом, конкретный текст или жанр/регистр

N-грамы корпуса на шкале:

случайные сочетания (*и в, красный же...*)
свободные сочетания (вы были)
коллокации (ставить условие, резкий рост)
неоднословные номинации и термины
(Иван Грозный, транспортное средство)
фраземы (идиомы) (ничего себе,
всего доброго)

Композициональность

- значение сложного выражения есть функция от значения его частей и правил их комбинации
- часто нарушается:

дом - красный дом, но уголок - красный уголок куртка - красная куртка книга - красная книга

 носители языка легко справляются с некомпозициональностью, свободно используют и понимают единицы: потупить взгляд, нанести урон, бурные аплодисменты, – лексические функции

Можно также попросить носителей языка заполнить пропуски. Много ли вариантов получится?

между моло	ртом и
тогда	вопрос, когда же закончится конфликт?
красный ка	K
К ЧІ	іслу сторонников оппозиции

Интересный лингвистический материал:

- лексическая сочетаемость
- лексическая избирательность конструкций
- "легкие" (семантически почти пустые) глаголы и другие слова-функции
- идиоматика

Основные свойства коллокаций:

- некомпозициональность (*отбросить коньки*!= *отбросить* & *коньки*)
- нерегулярность коллокации не порождаются в соответствии со стандартными правилами языка
- устойчивость нельзя заменить один элемент на другой (синоним): крепкий чай != сильный чай
- частотность

Вычислительный подход:

N-грамы корпуса на шкале:

случайные сочетания (и в, красный же...)

свободные сочетания (вы были)

коллокации (ставить условие, резкий рост)

неоднословные номинации и термины

(Иван Грозный, транспортное средство)

фраземы (идиомы) (ничего себе, всего доброго)

редкие N-грамы

частые N-грамы

Сила связности коллокации

Сила связности коллокаций: насколько коллокации не случайны? Самые популярные статистические меры, позволяющие ранжировать выше редкие N-грамы:

• взаимная информация (MI):
$$MI(n,c) = log_2 \frac{f(n,c) \times N}{f(n) \times f(c)}$$

f(n,c)	f(n)
f(c)	N

• взаимная информация (MI):
$$\frac{MI(n,c) = log_2}{f(n) \times f(c)}$$
• t-score:
$$t-score = \frac{f(n,c) - \frac{f(n) \times f(c)}{N}}{\sqrt{f(n,c)}}$$

- логарифмическое правдоподобие: $log-likelihood = 2\sum_{ij}Oij \times log \frac{Oij}{Eii}$
- logDice: $\log Dice = 14 + \log_2 \frac{2f(n,c)}{f(n) + f(c)}$

Сила связности коллокации

- МІ чувствительная к редким коллокатам, находит тематические коллокации
- t-мера чувствительна к частоте самой коллокации (выводит в топ списка такие частотные пары), находит устойчивые сочетания
- (log)Dice находит симметричные устойчивые сочетания (w1 и w2 встречаются только вместе), лучше работает в корпусах большого размера (миллиарды словоупотреблений)

выбор оптимальной меры зависит от задачи

Основные параметры частотных списков

- Ранг место в списке
- Абсолютная частота
- Относительная частота
- ipm items per million доля употреблений на миллион слов/токенов ~ -6 (item) / N/corpus size) * 1,000,000
 - $\circ = f(item) / N(corpus size) * 1 000 000$
- Корпус для сравнения (reference corpus) позволяет сравнить **наблюдаемую** в данном корпусе частоту и **ожидаемую** частоту ("теоретическое" ("математическое") ожидание)

Значимая лексика

частотная мера keyness

Add-N version:

$$K = \frac{f_{foc} / T_{foc} + N}{f_{ref} / T_{ref} + N}$$

 $f_{
m foc}$ -- количество вхождений слова в фокусном подкорпусе $T_{
m foc}$ -- объем фокусного корпуса $f_{
m ref}$ -- количество вхождений слова в референсном подкорпусе $T_{
m ref}$ -- объем референсного корпуса

• мера логарифмического правдоподобия LL

	Подкорпус	Другие тексты	Весь корпус
Частота	a	b	a+b
Размер	С	d	c+d

На основе этой матрицы значение отношения правдоподобия G^2 (LL-score) можно вычислить как:

$$= 2(a \ln(\frac{a}{EI}) + b \ln(\frac{b}{E2}));$$
где $EI = c\frac{a+b}{c+d}; E2 = d\frac{a+b}{c+d}$

Здесь a, b, c, d — наблюдаемые величины, а E1 и E2 — ожидаемый показатель в сравниваемых подкорпусах (см. Rayson & Garside 2000).

Значимая лексика корпуса: примеры

Значимая лексика (лексические маркеры): ремарки у Достоевского (Шайкевич и др. 2003)

- ввернуть, вставить, ввязаться, включить, подсказать
- заторопиться, протянуть, поспешить, скороговоркой, впопыхах
- проворчать, промямлить, промычать, прошамкать

Значимая лексика корпуса: примеры

• Угадай корпус

1	ну	part	1114.6	11	y	pr	4306.1
2	да	part	787.5	12	знать	v	1713.8
3	вот	part	1785.1	13	говорить	V	1755.0
4	там	advpro	1128.1	14	ой	intj	64.5
5	ТЫ	spro	3171.2	15	Э	intj	19.4
6	угу	intj	24.6	16	Э-Э	intj	11.5
7	Я	spro	12684.4	17	ага	intj	40.2
8	нет	part	589.2	18	да	conj	801.0
9	a	conj	8198.0	19	давай	part	100.3
10	вообще	adv	417.6	20	ладно	part	110.3
						10/10/	

Ловушки частотных данных

- слова, часто встречающиеся в одном тексте (*веснянка, whelk*)
- стоп-слова: часто встречаются во всех текстах (u, μa , μa)
- все частотные меры пытаются оценить, насколько слово характерно для данного подкорпуса и насколько оно нехарактерно для контрастного подкорпуса

Меры дистрибуции появления единицы

- Документная частота
- Range (число секций корпуса, в которых встретилось слово, нп. k = 100)
- Коэффициент *D* Жуйяна

$$D = 100 \times \left(1 - \frac{\sigma}{\bar{v}\sqrt{n}}\right)$$
,где $\sigma = \sqrt{\frac{1}{n-1}\sum_{i=1}^{n}(v_i - \bar{v})^2}$; $U = fD$ (D модифиц.)

• Коэффициент DP Гриса $DP = \frac{\sum_{i=1}^{n} |O_i - E_i|}{2}$, где O_i , E_i - наблюдаемая и ожидаемая частота в каждом сегменте (могут быть разного размера)

Меры дистрибуции появления единицы

ARF (Averaged Reduced Frequency)

Не больше v сегментов начиная с $(n_{i-1} + 1)$ -го по n_i -й содержат слово x

то же количество секций, что и в Range, но разбиение скользит по корпусу, начинаясь с каждого следующего слова

Ресурсы и литература

- Конкордансер **AntConc** и его производные (для <u>Windows, MacOS, Linux</u>)
- **Voyant** <u>tools</u> -- для работы с собственными корпусами
- Google N-grams <u>viewer</u>
- **RusVectōrēs** и его аналоги для вычисления контекстной <u>близости</u> слов
- Ляшевская О. Н., Шаров С. А. Введение к частотному словарю современного русского языка (2011) <u>PDF</u>
- Шайкевич А. Я., В. М. Андрющенко, Н. А. Ребецкая. Статистический словарь языка Достоевского (2003). Введение. <u>PDF</u>
- Захаров В. П., Хохлова М. В. Анализ эфффективности статистических методов выявления коллокаций в текстах на русском языке (2010) <u>PDF</u>
- Statistics used in Sketch Engine (2015) <u>PDF</u>, <u>logDice</u>, <u>MI-score</u>, <u>t-score</u>
- OpenCorpora.org Wiki: Коллокации <u>сайт</u>

Какие слова имеют близкие контексты?

WebVectors

Similar words

Visualizations

Calculator

Miscellaneous

Models

About

Computing associates

Enter a word to produce a list of its 10 nearest semantic tag (*«tea_NOUN»*). Otherwise, *WebVectors* will detect it.

contest NOUN

English Wikipedia

- 1. competition NOUN 0.61
- 2. eurovision NOUN 0.56
- 3. entrant NOUN 0.56
- 4. winner NOUN 0.53
- 5. pageant NOUN 0.51
- 6. finalist NOUN 0.51
- 7. semi-finalist NOUN 0.50
- 8. preselection NOUN 0.49
- 9. runner-up NOUN 0.49

English Gigaword

- 1. race NOUN 0.61
- 2. primary NOUN 0.58
- 3. competition NOUN 0.56
- 4. contestant NOUN 0.49
- 5. match-up NOUN 0.49
- 6. duel NOUN 0.48
- 7. challenger NOUN 0.45
- 8. matchup NOUN 0.44
- 9. rematch NOUN 0.44
- 10. contender NOUN 0.44

Распределение слов по времени

Google Books Ngram Viewer

Распределение слов по времени

Google Books Ngram Viewer

Распределение слов по времени

Google Books Ngram Viewer

Пользовательские корпуса

Несколько примеров

- корпус твиттера / отзывов booking.com
- корпус Михаила Шолохова
- корпус школьных сочинений
- корпус речей президентов США

Обычно отличаются

- размером (сильно больше или сильно меньше, чем BNC)
- доступностью (для себя)
- разметкой (под свои исследовательские задачи)

🥦 Need more согриѕ 🥗 please!

Обработка данных для корпуса

Стандартная

- препроцессинг текстов (дубликаты, опечатки, служебная информация)
- метаразметка
- разбиение на предложения, токены
- лемматизация
-

Этап могут быть пропущены или добавлены, в зависимости от задач корпуса и нужд исследования

Need more corpus splease!

Частотные меры

• TF*IDF

TF*ICTF (term frequency – inverse collection term-frequency)

$$TF*ICTF = \frac{f_d}{F_d} * \log \frac{F_D}{f_D},$$
 где

 f_d – количество анализируемых словоформ/лемм (term) в документе,

 F_d — количество всех словоформ/лемм в анализируемом документе,

 F_{D} – общее количество словоформ/лемм контрастном подкорпусе,

 f_{D} – количество анализируемых слов/лемм контрастном подкорпусе.

• модифицированная

TF*ICTF' =
$$(0.5 + 0.5 \frac{f_d}{F_d}) * \log \frac{F_D - F_d}{f_D - f_d}$$
, где

 $F_D - F_d$ — объем контрастного подкорпуса без объема документа, в которую входит единица, для которой вычисляется вес,

 $f_D - f_d$ – количество анализируемой словоформы в контрастном подкорпусе, кроме количества словоформы в документе, в которую входит анализируемая единица⁹.