数字系统设计 浙大数总员

作业 2:

1. 已知以下门电路都是 74 系列 TTL 电路,指出以下各门电路的输出是什么状态(高电平、低电平或高阻态)。

解: Y₁为低电平; Y₂为高电平; Y₃为高电平; Y₄为低电平; Y₅为低电平; Y₆为高阻态; Y₇为低电平; Y₈为低电平。

注:对于TTL电路,输入悬空可视为高电平。

对于TTL电路,如若外接电阻拉高,无论电阻大小,皆可视为高电平,如Y7的输入。

2. 已知以下门电路都是 74HC 系列的 CMOS 电路,指出各门电路的输出是什么状态。

解: Y1为高电平; Y2为高电平; Y3为低电平; Y4为低电平。

3. 计算图中外接电阻 R_L 取值的允许范围。已知 G_1 、 G_2 为 74LS 系列 OC 结构的与非门,输出管截止时的漏电流最大值为 I_{OH} =100uA,低电平输出电流最大值 I_{OLmax} =8mA,这时输出的低电平为 V_{OL} =0.4V。 G_3 、 G_4 、 G_5 分别为 74LS 系列的或非门,它们的低电平输入电流最大值为 I_{IL} =-0.4mA,高电平输入电流最大值为 I_{IH} =20uA。给定 V_{CC} =5V,要求满足高电平 V_{OH} \geqslant 3.4V,低电平 V_{OL} \leqslant 0.4V。

1

数字系统设计 浙大数总册

解:根据前面给出的式(3-6)得到 R_L 的最大允许值为

$$R_{\text{L(max)}} = \frac{V_{\text{CC}} - V_{\text{OH}}}{nI_{\text{OH}} + mI_{\text{IH}}} = \frac{5 - 3.4}{0.1 \times 2 + 0.02 \times 6} \text{ k}\Omega = 5 \text{ k}\Omega$$

又根据式(3-7)得到 R_L的最小允许值为

$$R_{\rm L(min)} = \frac{V_{\rm CC} - V_{\rm OL}}{I_{\rm OL(max)} - |m'I_{\rm IL}|} = \frac{5 - 0.4}{8 - 0.4 \times 6} \text{ k}\Omega = 0.82 \text{ k}\Omega$$

故 R_L 取值的允许范围为 0.82 $k\Omega \leq R_L \leq 5 k\Omega$ 。