Master Thesis Defense

Scalable approach for Learning Word Representations

Name: Zhang, Zijian Matrikelnummer: 3184680

First Examiner: Prof.Dr. Avishek Anand Second Examiner: Prof. Dr. techn. Dipl.-Ing. Wolfgang Nejdl Advisor: Prof. Dr. Avishek Anand

Content

- -Background Knowledge Introductions
- -Structure of our Approach
- -Original Corpus Division
- -Merging Approaches
 - -Concatenation+PCA
 - -Manifold Alignment + Vector Averaging
- -Experiments Setup
- -Performance and Timing
- -Conclusion and Future Works

Word Vector Representation

Skip Gram Negative Sampling Word2Vec

Skip Gram

Skip Gram Negative Sampling Word2Vec

$$p(c|w) = \frac{e^{wc}}{\sum_{c' \in V} e^{wc'}}$$

softmax with a hard-to-solve partition function

$$p(s|d;\theta) = \frac{p(d|s;\theta)}{p(d|s;\theta) + p(d|n;\theta)}$$

Noise-Contrastive Estimation **s** for signal **d** for input data **n** for noise

$$p((w,c)|d;\theta) = \frac{p(d|(w,c);\theta)}{p(c|(w,c);\theta) + p(c|(w,\overline{c});\theta)}$$

Negative Sampling \bar{c} for negative samples

Skip Gram Negative Sampling Word2Vec

Objective function:

$$J(\theta) = \sum_{w \in D} \sum_{c \in I(w)} \left\{ \ln \left[p\left(\left(w , c \right) \middle| \theta \right) \right] + E_{\bar{c} \in V} \ln \left[1 - p\left(\left(w , \bar{c} \right) ; \theta \right) \right] \right\}$$

Skip Gram Negative Sampling Word2Vec

Properties of Word2Vec [1]

[1]: Mikolov T, Yih W, Zweig G.
Linguistic regularities in continuous space word representations
Proceedings of the 2013 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. 2013: 746-751.

Challenge:

larger corpus: more **expressive**, longer **time**

On 14GB English Wikidump: \approx **36 hours**!

(dim: 500 Vocabulary: 300k)

Not **scalable** for large corpus

Structure of our Approach

Structure of our Approach

Research Questions:

sub-corpora sub-models

1) How do we sample 2) How do we from the original corpus? combine sub-models?

Trivial approaches: Block-wise partitioning and Stripping

Criterion of Division: "Mimicking" the Original Term Distribution

objective function:

$$J(\theta) = \sum_{w \in D} \sum_{c \in l(w)} \left\{ \ln \left[p((w,c)|\theta) \right] + E_{\overline{c} \in V} \ln \left[1 - p((w,\overline{c});\theta) \right] \right\}$$

local optimum:

$$\frac{\partial J(\theta)}{\partial \theta} = 0$$

final result [1]:

$$\mathbf{w} \, \mathbf{c} = \log \frac{N \, \#(\mathbf{w}, \mathbf{c})}{\#(\mathbf{w}) \#(\mathbf{c})} - \log k$$

[1]: Levy O, Goldberg Y.

Neural word embedding as implicit matrix factorization

Advances in neural information processing systems. 2014: 2177-2185.

Final Approach: Reservoir Sampling

original dataset with S "boxes"

Total count of "balls"

≫

Count of "balls" in each "box"

Distribution preservation

Problem so-far:

1st Approach: Concatenation + Principle Component Analysis

Some Comments on PCA [1]

Law of cosines:

$$||d||^{2} = ||a||^{2} + ||b||^{2} - 2||a|| ||b|| \cos \theta$$
$$||a||^{2} = ||b||^{2} = 1$$
$$2 - ||d||^{2}$$

$$\cos\theta = \frac{2 - ||d||^2}{2}$$

2nd Approach: Manifold Alignment + Vector Averaging

[1]: Ham, Ji Hun, Daniel D. Lee, and Lawrence K. Saul. Learning high dimensional correspondences from low dimensional manifolds

2nd Approach: Manifold Alignment [1] + Vector Averaging

$$R^{(Y)} = argmin_{R} \frac{1}{2} ||X - XR||_{F}^{2} + \lambda ||R||_{*}$$

$$F^{(X)}, F^{(Y)} = argmin_{F^{X}, F^{Y}} (1 - \mu) \sum_{T = \{X, Y\}} ||F^{T} - RF^{T}||_{F}^{2} + \mu \sum_{i=1}^{N} ||F^{(X)}_{i} - F^{(Y)}_{i}||^{2}$$

$$R^{(Y)} = argmin_R \frac{1}{2} ||Y - YR||_F^2 + \lambda ||R||_*$$

Experiments Setup

Data Set:

Original corpus: English Wikipedia dump file 2016 (14G)

Cleaner: Wikipedia LineSentences cleaner in Gensim

- Sample/Partition size: 1%, 10% of the original corpus

Baseline Model:

Vocabulary: 300k words

– Dimension (size of hidden layer): 500

Training time: 36 hours

Benchmarks:

- Word Similarity: MEN, RW, RG65, WS353, SimLex999, Mturk

Analogy: Google, SemEval 2012 #2, MSR

Categorization: AP, BLESS, Battig

Effect of Dividing (sampling/partitioning):

Approach	AP	Battig	MEN	RG65	RW	WS353	Google	SemEval2012_2
Partition(1/10,10)	0.582	0.420	0.719	0.725	0.232	0.596	0.615	0.162
Random(1/10,10)	0.604	0.435	0.740	0.757	0.209	0.637	0.654	0.188
Partition(1/100,100)	0.505	0.358	0.622	0.723	0.203	0.516	0.467	0.129
Random(1/100,100)	0.517	0.381	0.644	0.746	0.257	0.542	0.487	0.138
Baseline	0.595	0.434	0.736	0.757	0.299	0.611	0.661	0.181

Table 2: Comparison between Random(.,.) and Partition sampling approaches at different granularities. PCA is used as the merging method.

Conclusions:

Sampling performs overall better than partitioning

Larger division size makes the performance better, but less scalability

Surprisingly, some of our approaches even outperform the **baseline**!

Effect of Merging (concatenation/PCA/LRA):

Approach	AP	Battig	MEN	RG65	RW	WS353	Google	SemEval2012_2
Random(1/10,10) + Concat	0.595	0.429	0.742	0.765	0.268	0.611	0.645	0.187
Random(1/10,10) + LRA	0.560	0.327	0.685	0.785	0.264	0.606	0.661	0.158
Random(1/10,10) + PCA	0.604	0.435	0.740	0.757	0.209	0.637	0.654	0.188
Random(1/100,100) + Concat	0.525	0.377	0.643	0.746	0.257	0.542	0.487	0.138
Random(1/100,100) + LRA	_	_	_	_	_	_	_	_
Random(1/100,100) + PCA	0.517	0.381	0.644	0.746	0.257	0.542	0.487	0.138
Baseline	0.595	0.434	0.736	0.757	0.299	0.611	0.661	0.181

Table 3: Evaluation results for merging

Conclusions:

PCA performs overall the best

LRA and Vector average is the slowest

To see the information loss in the PCA, we added the concatenation as a single line, it performs surprisingly robust, despite its higher dimensionality

Effect of sample count (10% of original corpus):

Conclusion:

Larger count of sub-models doesn't help. 8~10 for 10% approach, 20~30 for 1% approach is enough.

After that it goes into flat road.

Effect of sample count (1% of original corpus):

Conclusion:

Larger count of sub-models doesn't help.

8~10 for 10% approach, 20~30 for 1% approach is enough.

After that it goes into flat road.

Timing:

Subject name	Time Elapse (s)				
10% partitioning PCA	10932				
1% partitioning PCA	2093				
10% sampling PCA	12852				
1% sampling PCA	16293				
10% sampling LRA	27385				
Baseline	129015				

Conclusions:

m-part division leads to m-folds speed up

Total training time: from 36h of baseline to 3.6 hours @ 10% and < 1 hour @ 1% approach Time of merging is in minutes

Conclusion and Future Works

Conclusions:

- Sentence-wise sampling to divide, PCA to merge
- M-fold speed up by M-splitting, sometimes even outperform the baseline.

Future works:

 Works on the go: dealing with missing-word problem between sub-models

Thank you for your attention

Questions and comments are highly appreciated

Zhang, Zijian Hannover 08. 03. 2018