Post-Graduate Course: Big Data & Statistical Learning (FinTech & AI Engineering Studio Edition)

George Tsomidis, PhD

June 2025

1 Course Vision

Welcome to a 11—week FinTech startup simulation, where students will design, build and ship a Python-based analytics product that converts raw economic, financial or even crypto data into concise investment intelligence for an imaginary board.

All theory is delivered **just-in-time** inside weekly "sprints". Every sprint contains:

- a 1 h Practical–Engineering Power Hour (theory / live coding / mini–datathon), followed by
- 10 min individual showcases where each student (analyst henceforth) demos progress to the class (henceforth team, consisting of squads) and your lecturer (who will be playing the "Team Leader" role).

Inclusive Project Scoping. Each project is calibrated to the student's background. For instance, a non-technical person (e.g. lawyer) may focus on regulatory—risk analytics or SQL schema design, while a Computer Science graduate may deep—dive into GPU pipelines. Diversity of skills inside every team is deliberate and assessed.

2 Learning Outcomes

Domain	Competence
AI	Craft, iterate and chain prompts to produce accurate
Prompt-Engineering	insights and code; benchmark large language models (LLMs)
Mastery	for quality and latency.

Tech Stack	Ingest, clean and store large, multi–frequency data sets; implement classical and modern ML in Python; deploy notebooks to lightweight APIs; version control with GitHub.
Visualization & Storytelling	Build dashboards and publication—quality plots; articulate insights visually and narratively in one—page board briefs.
Process	Operate in Agile Scrum using JIRA: user stories, velocity, retrospectives, code review.
Domain Knowledge	Translate statistical output into financial insight; optionally include crypto—asset analytics (on—chain metrics, DeFi yields, or whatever else).
Communication	Produce a decision—ready one—page report and defend it verbally.

3 Tool Stack

- Python ≥ 3.11: pandas / polars, statsmodels, scikit-learn, PyTorch-Forecasting, Prophet, MLflow, Plotly.
- AI & Prompt Toolkit: ChatGPT, Claude, Gemini, local LLMs via LangChain, etc.; Week 5 includes a prompt benchmark harness.
- Collaboration: GitHub Classroom, Slack, **JIRA** (our main project management tool), GitHub Actions CI, Colab, any recommendations are welcome.
- Data Sources: Yahoo Finance, Bloomberg, Coinbase, etc.
- Compute: Jupyter Notebook, any cloud service, or simply on your PCs.

4 Weekly Sprint Themes and Milestones

W k 1	Sprint Focus Startup Onboarding	Concept Burst (15 min) Agile Scrum fundamentals; Git/JIRA etiquette	Hands-On Objectives 1-page project charter; form diverse squads; initialise repo and JIRA board
1	Data Sourcing	Relational databases; SQL joins; API authentication	Harvest one macro and one market dataset; commit raw data
2	Data Wrangling	Data types; missing-value imputation; tidy-data rules	Clean data tables; create two exploratory plots; quality checklist

3	Classical Econometrics	OLS assumptions; hypothesis testing	Fit baseline regression; examine residuals
4	Time-Series Forecasting	Stationarity tests; ACF/PACF; ARIMA models	Build first forecast; compare against naive benchmark
5	ML Regularization	Ridge/Lasso; K-fold cross-validation	Tune penalized model; log prompt-assisted patterns
6	Tree Ensembles	Random Forest; Gradient Boosting; feature importance	Train ensemble; interpret with SHAP
7	Dimensionality Reduction	PCA; factor models; k-means clustering	Derive latent factors; integrate into pipeline
8	Deep Learning for Sequences	RNN/LSTM basics; sequence modeling	Prototype small LSTM; report performance lift
9	Portfolio Analytics	Mean-variance theory; risk metrics; back-testing	Draft trading rule; run walk-forward test
10	Model Audit	Cross-sample validation; stress tests	Create audit notebook; highlight model limits
11	Productization	Reproducibility; FastAPI; CI/CD workflow	Package API/dashboard; pass Confidence Intervals tests
11	Board Presentation	Storytelling; slidecraft best practice	Deliver 10-min pitch and one-page brief; final repo

5 Assessment

Component	${\bf Weight}$	Evidence
Sprint Professionalism	20%	JIRA velocity; stand–ups; pull request etiquette.
Individual Technical Depth	20%	Notebook contributions; code quality; peer review.
Visualisation & Storytelling	15%	Clarity and impact of plots/dashboards across sprints.

Squad Product	25%	Live demo plus repository health (tests, CI, docs).
Final Board Report	20%	One–page PDF (insight density, actionability, narrative flow).

- LLM usage **must be declared** in commits; reproducibility failures can cost up to 40% of a component.
- NO final exam.
- Laptops are mandatory in lectures.
- GR / EN are both acceptable, with a preference though towards EN especially when it comes to reporting.

6 Teaching and Support

- Weekly Rhythm: 1 h Practical Power Hour \rightarrow 10 min showcases \rightarrow squad retrospective.
- One—to—One "Team-Leader Hours": fortnightly, 15 min slots for code or concept deep dives.
- Slack Ask-Me-Anything (AMA) and bookable calendars for on-demand help.
- Resources: JIRA crash course video; template notebooks; prompt pattern library.
- Provided slides, own notes and discussion in class.
- Free Access First, where possible (e.g., Hilpisch PDF, GitHub repos, arXiv papers).

7 Extra Reading and Resources

- An Introduction to Statistical Learning (Python ISLP) core chapters.
- Hyndman & Athanasopoulos, Forecasting: Principles and Practice (Python port).
- Glasserman, Monte Carlo Methods in Financial Engineering (selected sections).
- Roncalli, Machine Learning for Asset Management, Chapter 8.
- QuantEcon lectures; GitHub awesome-llm-ops collection.

References

- Barberis, Janos, Douglas W. Arner, and Ross P. Buckley (2019). The RegTech Book: The Financial Technology Handbook for Investors, Entrepreneurs and Visionaries. Module 7 RegTech, Risk & Compliance. Chichester, UK: John Wiley & Sons.
- Harvey, Campbell R., Ashwin Ramachandran, and Joey Santoro (2021). DeFi and the Future of Finance. Module 5 Blockchain, DeFi & Web3. Hoboken, NJ: John Wiley & Sons.
- Hilpisch, Yves (2019). Python for Finance: Mastering Data-Driven Finance. 2nd ed. Module 1 Python Foundations. Sebastopol, CA: O'Reilly Media.
- James, J. Sergios Makram, Paul A. Spindt, and Georgios Sermpinis (2021). *Machine Learning in Finance: From Theory to Practice*. Module 8 Capstone & Advanced Topics. Cham, Switzerland: Springer.
- Jansen, Stefan (2021). Machine Learning for Algorithmic Trading. 2nd ed. Module 3 ML & Algo Trading. Birmingham, UK: Packt Publishing.
- Lopez de Prado, Marcos (2018). Advances in Financial Machine Learning. Module 2 Time-Series & Alt-Data. Hoboken, NJ: John Wiley & Sons.
- Sivan, Eyal (2024). Open Banking: A Guide to Banking in the Platform Economy. Module 6 Open Banking & API-First Finance. Shelter Island, NY: Manning Publications.
- Thomas, Lyn C., David J. Edelman, and Jonathan N. Crook (2017). *Credit Scoring and Its Applications*. 2nd ed. Module 4 Credit & Lending Risk. Philadelphia, PA: SIAM.