Fang Clement Note: 6/20 (score total : 6/20)

+107/1/4+

QCM THLR 4

	Nom et prénom, lisibles : Identifiant (de haut en bas) :
	$0 \in \mathcal{C}($
2/2	Q.1 Ne rien écrire sur les bords de la feuille, ni dans les éventuels cadres grisés « ». Noircir les cases plutôt que cocher. Renseigner les champs d'identité. Les questions marquées par « x » peuvent avoir plusieurs réponses justes. Toutes les autres n'en ont qu'une; si plusieurs réponses sont valides, sélectionner la plus restrictive (par exemple s'il est demandé si 0 est <i>nul, non nul, positif,</i> ou <i>négatif,</i> cocher <i>nul</i>). Il n'est pas possible de corriger une erreur, mais vous pouvez utiliser un crayon. Les réponses justes créditent; les incorrectes pénalisent; les blanches et réponses multiples valent 0. J'ai lu les instructions et mon sujet est complet: les 2 entêtes sont +107/1/xx+···+107/2/xx+.
	Q.2 Le langage $\{ \boxtimes^n \supseteq^n \forall n \in \mathbb{N} \}$ est
)/2	☐ fini ☐ vide ☐ rationnel 区 non reconnaissable par automate fini
	Q.3 Le langage $\{ \sigma^n \circ p^n \mid \forall n \in \mathbb{N} : n < 242^{51} - 1 \}$ est
1/2	□ vide
2/2	 Q.4 A propos du lemme de pompage Si un langage ne le vérifie pas, alors il n'est pas rationnel Si un langage ne le vérifie pas, alors il n'est pas forcement rationnel Si un langage le vérifie, alors il est rationnel Q.5 Un automate fini qui a des transitions spontanées
1/2	\square n'accepte pas $arepsilon$ \boxtimes n'est pas déterministe \square est déterministe \bigcirc accepte $arepsilon$
	Q.6 Combien d'états au moins a un automate déterministe émondé qui accepte les mots sur $\Sigma = \{a, b\}$ dont la n -ième lettre avant la fin est un a (i.e., $(a+b)^*a(a+b)^{n-1}$):
2/2	\square Il n'existe pas. \square $n+1$ \square $\frac{n(n+1)}{2}$ \square 2^n
	Q.7 Si un automate de n états accepte a^n , alors il accepte
2/2	
	Q.8 Combien d'états au moins a un automate déterministe émondé qui accepte les mots sur $\Sigma = \{a, b, c, d\}$ dont la n -ième lettre avant la fin est un a (i.e., $(a+b+c+d)^*a(a+b+c+d)^{n-1}$):
)/2	\square Il n'existe pas. \square 4^n \square $\frac{n(n+1)(n+2)(n+3)}{4}$ \boxtimes 2^n
	Q.9 Déterminiser cet automate. a, b a b a b a b a a b a a b a

Q.10 Comment marche la minimisation de Brzozowski d'un automate A?

 \Box $T(Det(T(Det(\mathscr{A}))))$

 \boxtimes $Det(T(Det(T(\mathcal{A}))))$

 \Box $T(Det(T(Det(T(\mathcal{A})))))$

Fin de l'épreuve.

0/2

0/2