Relational Database Design (II)

Chapter 15 in 6th Edition

10.3 Lossless and dependency-preserving decomposition into 3NF

A lossless and dependency-preserving decomposition into 3NF is always possible.

More definitions regarding FD's are needed.

A set F of FD's is minimal if

- 1. Every FD $X \rightarrow Y$ in F is simple: Y consists of a single attribute,
- 2. Every FD $X \rightarrow A$ in F is *left-reduced*: there is no proper subset $Y \subset X$ such that $X \rightarrow A$ can be replaced with $Y \rightarrow A$. that is, there is no $Y \subset X$ such that

$$((F - \{X \rightarrow A\}) \cup \{Y \rightarrow A\})^+ = F^+$$

3. No FD in F can be removed; that is, there is no FD $X \rightarrow A$ in F such that \longrightarrow Iff $X \rightarrow A$ is inferred

$$(F - \{X \rightarrow A\})^+ = F^+. \qquad From F - \{X \rightarrow A\}$$

10.3.1 Computing a minimum cover

F is a set of FD's.

A minimal cover (or canonical cover) for F is a minimal set of FD's F_{min} such that $F^+ = F^+_{min}$.

Algorithm Min Cover

Input: a set F of functional dependencies.

Output: a minimum cover of F.

Step 1: Reduce right side. Apply Algorithm Reduce right to F.

Step 2: Reduce left side. Apply Algorithm Reduce left to the output of Step 2.

Step 3: *Remove redundant* FDs. Apply Algorithm Remove_redundency to the output of Step 2. The output is a minimum cover.

Below we detail the three Steps.

10.3.1 Computing a minimum cover (cont)

Algorithm Reduce_right

INPUT: F.

OUTPUT: right side reduced *F*'.

For each FD $X \rightarrow Y \in F$ where $Y = \{A_1, A_2, ..., A_k\}$, we use all $X \rightarrow \{A_i\}$ (for $i \le i \le k$) to replace $X \rightarrow Y$.

Algorithm Reduce_left

INPUT: right side reduced *F*.

OUTPUT: right and left side reduced F'.

For each $X \to \{A\} \in F$ where $X = \{A_i : 1 \le i \le k\}$, do the following. For i = 1 to k, replace X with $X - \{A_i\}$ if $A \in (X - \{A_i\})^+$.

Algorithm Reduce_redundancy

INPUT: right and left side reduced F.

OUTPUT: a minimum cover F of F.

For each FD $X \to \{A\} \in F$, remove it from F if: $A \in X^+$ with respect to $F - \{X \to \{A\}\}$.

Example:

$$R = (A, B, C, D, E, G)$$

$$F = \{A \rightarrow BCD, B \rightarrow CDE, AC \rightarrow E\}$$

Step 1:
$$F' = \{A \rightarrow B, A \rightarrow C, A \rightarrow D, B \rightarrow C, B \rightarrow D, B \rightarrow E, AC \rightarrow E\}$$

Step 2: AC \rightarrow E

 $C^+ = \{C\}$; thus $C \rightarrow E$ is not inferred by F'.

Hence, $AC \rightarrow E$ cannot be replaced by $A \rightarrow E$.

 $A^+ = \{A, B, C, D, E\}$; thus, $A \rightarrow E$ is inferred by F'.

Hence, $AC \rightarrow E$ can be replaced by $A \rightarrow E$.

$$F'' = \{A \rightarrow B, A \rightarrow C, A \rightarrow D, A \rightarrow E, B \rightarrow C, B \rightarrow D, B \rightarrow E\}$$

Step 3: $A+|_{F''-\{A \rightarrow B\}} = \{A, C, D, E\}$; thus $A \rightarrow B$ is not inferred by $F''-\{A \rightarrow B\}$.

That is, $A \rightarrow B$ is not redundant.

 $A+|_{F^{"}-\{A \rightarrow C\}}=\{A, B, C, D, E\}$; thus, $A \rightarrow C$ is redundant.

Thus, we can remove $A \rightarrow C$ from F" to obtain F".

Iteratively, we can $A \rightarrow D$ and $A \rightarrow E$ but not the others.

Thus,
$$F_{min} = \{A \rightarrow B, B \rightarrow C, B \rightarrow D, B \rightarrow E\}.$$

10.3.2 3NF decomposition algorithm

Algorithm 3NF decomposition

- 1. Find a minimum cover F of F.
- 2. For each left side X that appears in F, do:

```
create a relation schema X \cup A_1 \cup A_2 ... \cup A_m where X \to \{A_1\}, ..., X \to \{A_m\} are all the dependencies in F' with X as left side.
```

3. if none of the relation schemas contains a key of *R*, create one more relation schema that contains attributes that form a key for *R*.

See E/N Algorithm 15.4.

Example:

$$R = (A, B, C, D, E, G)$$

$$F_{min} = \{A \rightarrow B, B \rightarrow C, B \rightarrow D, B \rightarrow E\}.$$

Candidate key: (A, G)

$$R_1 = (A, B), R_2 = (B, C, D, E)$$

$$R_3 = (A, G)$$

10.3.2 3NF decomposition algorithm(cont)

Example 6:(From Desai 6.31)

Beginning again with the *SHIPPING* relation. The functional dependencies already form a canonical cover.

- From *Ship* \rightarrow *Capacity*, derive $R_1(\underline{Ship}, Capacity)$,
- From $\{Ship, Date\} \rightarrow Cargo$, derive $R_2(\underline{Ship}, \underline{Date}, Cargo)$,
- From $\{Capacity, Cargo\} \rightarrow Value$, derive $R_3(\underline{Capacity}, \underline{Cargo}, Value)$.
- There are no attributes not yet included and the original key $\{Ship, Date\}$ is included in R_2 .

10.3.2 3NF decomposition algorithm(cont)

Example 7: Apply the algorithm to the LOTS example given earlier.

A minimal cover is

```
{ Property_Id→Lot_No,

Property_Id → Area, {City,Lot_No} → Property_Id,

Area → Price, Area → City, City → Tax_Rate }.
```

This gives the decomposition:

$$R_1(\underline{Property\ Id}, Lot_No, Area)$$
 $R_2(\underline{City}, \underline{Lot\ No}, Property_Id)$
 $R_3(\underline{Area}, Price, City)$
 $R_4(\underline{City}, \underline{Tax_Rate})$

Exercise 1: Check that this is a lossless, dependency preserving decomposition into 3NF.

Exercise 2: Develop an algorithm for computing a key of a table R with respect to a given F of FDs.

Summary

- Data redundancies are undesirable as they create the potential for update anomalies,
- One way to remove such redundancies is to normalise a design, guided by FD's.
- BCNF removes all redundancies due to FD's, but a dependency preserving decomposition cannot always be found,
- A dependency preserving, lossless decomposition into 3NF can always be found, but some redundancies may remain,
- Even where a dependency preserving, lossless decomposition that removes all redundancies can be found, it may not be possible, for efficiency reasons, to remove all redundancies.