

Rob J Hyndman

Coherent mortality forecasting using functional time series models

Outline

- 1 Functional forecasting
- 2 Forecasting groups
- 3 Coherent cohort life expectancy forecasts
- 4 Conclusions

Outline

- 1 Functional forecasting
- 2 Forecasting groups
- 3 Coherent cohort life expectancy forecasts
- 4 Conclusions

$$y_{t,x} = f_t(x) + \sigma_t(x)\varepsilon_{t,x}$$

$$f_t(x) = \mu(x) + \sum_{k=1}^K \beta_{t,k} \phi_k(x) + e_t(x)$$

- Estimate $f_t(x)$ using penalized regression splines
- Estimate $\mu(x)$ as mean $f_t(x)$ across years
- Estimate $\beta_{t,k}$ and $\phi_k(x)$ using functional principal components

$$y_{t,x} = f_t(x) + \sigma_t(x)\varepsilon_{t,x}$$

$$f_t(x) = \mu(x) + \sum_{k=1}^K \beta_{t,k} \phi_k(x) + e_t(x)$$

- Estimate $f_t(x)$ using penalized regression splines.
- Estimate $\mu(x)$ as mean $f_t(x)$ across years.
- Estimate $\beta_{t,k}$ and $\phi_k(x)$ using functional principal components.
- $lacksquare \varepsilon_{t,x} \stackrel{\text{iid}}{\sim} N(0,1) \text{ and } e_t(x) \stackrel{\text{iid}}{\sim} N(0,v(x)).$

$$y_{t,x} = f_t(x) + \sigma_t(x)\varepsilon_{t,x}$$

$$f_t(x) = \mu(x) + \sum_{k=1}^K \beta_{t,k} \phi_k(x) + e_t(x)$$

- Estimate $f_t(x)$ using penalized regression splines.
- Estimate $\mu(x)$ as mean $f_t(x)$ across years.
- Estimate $\beta_{t,k}$ and $\phi_k(x)$ using functional principal components.
- $\epsilon_{t,x} \stackrel{\text{iid}}{\sim} N(0,1) \text{ and } e_t(x) \stackrel{\text{iid}}{\sim} N(0,v(x)).$

$$y_{t,x} = f_t(x) + \sigma_t(x)\varepsilon_{t,x}$$

$$f_t(x) = \mu(x) + \sum_{k=1}^K \beta_{t,k} \phi_k(x) + e_t(x)$$

- Estimate $f_t(x)$ using penalized regression splines.
- Estimate $\mu(x)$ as mean $f_t(x)$ across years.
- Estimate $\beta_{t,k}$ and $\phi_k(x)$ using functional principal components.
- $\epsilon_{t,x} \stackrel{\text{iid}}{\sim} N(0,1) \text{ and } e_t(x) \stackrel{\text{iid}}{\sim} N(0,v(x)).$

$$y_{t,x} = f_t(x) + \sigma_t(x)\varepsilon_{t,x}$$

$$f_t(x) = \mu(x) + \sum_{k=1}^K \beta_{t,k} \phi_k(x) + e_t(x)$$

- Estimate $f_t(x)$ using penalized regression splines.
- Estimate $\mu(x)$ as mean $f_t(x)$ across years.
- Estimate $\beta_{t,k}$ and $\phi_k(x)$ using functional principal components.
- \bullet $\varepsilon_{t,x} \stackrel{\text{iid}}{\sim} N(0,1)$ and $e_t(x) \stackrel{\text{iid}}{\sim} N(0,v(x))$.

Australian male mortality model

Australian male mortality model

$$y_{t,x} = f_t(x) + \sigma_t(x)\varepsilon_{t,x}$$

$$f_t(x) = \mu(x) + \sum_{k=1}^K \beta_{t,k} \phi_k(x) + e_t(x)$$

- The eigenfunctions $\phi_k(x)$ show the main regions of variation.
- The scores $\{\beta_{t,k}\}$ are uncorrelated by construction. So we can forecast each $\beta_{t,k}$ using a univariate time series model.
- Univariate ARIMA models can be used for forecasting.

$$y_{t,x} = f_t(x) + \sigma_t(x)\varepsilon_{t,x}$$

$$f_t(x) = \mu(x) + \sum_{k=1}^K \beta_{t,k} \phi_k(x) + e_t(x)$$

- The eigenfunctions $\phi_k(x)$ show the main regions of variation.
- The scores $\{\beta_{t,k}\}$ are uncorrelated by construction. So we can forecast each $\beta_{t,k}$ using a univariate time series model.
- Univariate ARIMA models can be used for forecasting.

$$y_{t,x} = f_t(x) + \sigma_t(x)\varepsilon_{t,x}$$

$$f_t(x) = \mu(x) + \sum_{k=1}^K \beta_{t,k} \phi_k(x) + e_t(x)$$

- The eigenfunctions $\phi_k(x)$ show the main regions of variation.
- The scores $\{\beta_{t,k}\}$ are uncorrelated by construction. So we can forecast each $\beta_{t,k}$ using a univariate time series model.
- Univariate ARIMA models can be used for forecasting.

$$y_{t,x} = f_t(x) + \sigma_t(x)\varepsilon_{t,x}$$

$$f_t(x) = \mu(x) + \sum_{k=1}^K \beta_{t,k} \phi_k(x) + e_t(x)$$

- The eigenfunctions $\phi_k(x)$ show the main regions of variation.
- The scores $\{\beta_{t,k}\}$ are uncorrelated by construction. So we can forecast each $\beta_{t,k}$ using a univariate time series model.
- Univariate ARIMA models can be used for forecasting.

Forecasts

$$y_{t,x} = f_t(x) + \sigma_t(x)\varepsilon_{t,x}$$

$$f_t(x) = \mu(x) + \sum_{k=1}^K \beta_{t,k} \phi_k(x) + e_t(x)$$

Forecasts

$$y_{t,x} = f_t(x) + \sigma_t(x)\varepsilon_{t,x}$$

$$f_t(x) = \mu(x) + \sum_{k=1}^K \beta_{t,k} \phi_k(x) + e_t(x)$$

$$E[y_{n+h,x} | \mathbf{y}] = \hat{\mu}(x) + \sum_{k=1}^{K} \hat{\beta}_{n+h,k} \, \hat{\phi}_{k}(x)$$

$$Var[y_{n+h,x} | \mathbf{y}] = \hat{\sigma}_{\mu}^{2}(x) + \sum_{k=1}^{K} v_{n+h,k} \, \hat{\phi}_{k}^{2}(x) + \sigma_{t}^{2}(x) + v(x)$$

where $v_{n+h,k} = \text{Var}(\beta_{n+h,k} | \beta_{1,k},...,\beta_{n,k})$ and $\mathbf{y} = [y_{1,x},...,y_{n,x}].$

Forecasting the PC scores

Outline

- 1 Functional forecasting
- 2 Forecasting groups
- 3 Coherent cohort life expectancy forecasts
- 4 Conclusions

- Groups may be males and females.
- Groups may be states within a country
- Expected that groups will behave
 - similarly.
 - Coherent forecasts do not diverge over
 - time
 - Existing functional models do not

- Groups may be males and females.
- Groups may be states within a country.
- Expected that groups will behave similarly.
- Coherent forecasts do not diverge over time.
- Existing functional models do not impose coherence.

- Groups may be males and females.
- Groups may be states within a country.
- Expected that groups will behave similarly.
- Coherent forecasts do not diverge over time.
- Existing functional models do not impose coherence.

- Groups may be males and females.
- Groups may be states within a country.
- Expected that groups will behave similarly.
- Coherent forecasts do not diverge over time.
- Existing functional models do not impose coherence.

The problem

Let $f_{t,j}(x)$ be the smoothed mortality rate for age x in group j in year t.

- Groups may be males and females.
- Groups may be states within a country.
- Expected that groups will behave similarly.
- Coherent forecasts do not diverge over time.
- Existing functional models do not impose coherence.

The problem

Let $f_{t,j}(x)$ be the smoothed mortality rate for age x in group j in year t.

- Groups may be males and females.
- Groups may be states within a country.
- Expected that groups will behave similarly.
- Coherent forecasts do not diverge over time.
- Existing functional models do not impose coherence.

Forecasting the coefficients

$$y_{t,x} = f_t(x) + \sigma_t(x)\varepsilon_{t,x}$$

$$f_t(x) = \mu(x) + \sum_{k=1}^K \beta_{t,k} \phi_k(x) + e_t(x)$$

- We use ARIMA models for each coefficient $\{\beta_{1,i,k},...,\beta_{n,i,k}\}$.
- The ARIMA models are non-stationary for the first few coefficients (k = 1, 2)
- Non-stationary ARIMA forecasts will diverge.
 Hence the mortality forecasts are not coherent

Forecasting the coefficients

$$y_{t,x} = f_t(x) + \sigma_t(x)\varepsilon_{t,x}$$

$$f_t(x) = \mu(x) + \sum_{k=1}^K \beta_{t,k} \phi_k(x) + e_t(x)$$

- We use ARIMA models for each coefficient $\{\beta_{1,i,k},...,\beta_{n,i,k}\}.$
- The ARIMA models are non-stationary for the first few coefficients (k = 1, 2)
- Non-stationary ARIMA forecasts will diverge.
 Hence the mortality forecasts are not coherent.

Forecasting the coefficients

$$y_{t,x} = f_t(x) + \sigma_t(x)\varepsilon_{t,x}$$

$$f_t(x) = \mu(x) + \sum_{k=1}^K \beta_{t,k} \phi_k(x) + e_t(x)$$

- We use ARIMA models for each coefficient $\{\beta_{1,i,k},...,\beta_{n,i,k}\}.$
- The ARIMA models are non-stationary for the first few coefficients (k = 1, 2)
- Non-stationary ARIMA forecasts will diverge.
 Hence the mortality forecasts are not coherent.

Male fts model

Female fts model

Australian mortality forecasts

Key idea

Model the geometric mean and the mortality ratio instead of the individual rates for each sex separately.

$$p_t(x) = \sqrt{f_{t,M}(x)f_{t,F}(x)}$$
 and $r_t(x) = \sqrt{f_{t,M}(x)/f_{t,F}(x)}$.

 Product and ratio are approximately independent

Key idea

Model the geometric mean and the mortality ratio instead of the individual rates for each sex separately.

$$p_t(x) = \sqrt{f_{t,M}(x)f_{t,F}(x)}$$
 and $r_t(x) = \sqrt{f_{t,M}(x)/f_{t,F}(x)}$.

- Product and ratio are approximately independent
- Ratio should be stationary (for coherence) but product can be non-stationary.

Key idea

Model the geometric mean and the mortality ratio instead of the individual rates for each sex separately.

$$p_t(x) = \sqrt{f_{t,M}(x)f_{t,F}(x)}$$
 and $r_t(x) = \sqrt{f_{t,M}(x)/f_{t,F}(x)}$.

- Product and ratio are approximately independent
- Ratio should be stationary (for coherence) but product can be non-stationary.

Key idea

Model the geometric mean and the mortality ratio instead of the individual rates for each sex separately.

$$p_t(x) = \sqrt{f_{t,M}(x)f_{t,F}(x)}$$
 and $r_t(x) = \sqrt{f_{t,M}(x)/f_{t,F}(x)}$.

- Product and ratio are approximately independent
- Ratio should be stationary (for coherence) but product can be non-stationary.

Product data

Ratio data

$$p_t(x) = \sqrt{f_{t,M}(x)f_{t,F}(x)}$$
 and $r_t(x) = \sqrt{f_{t,M}(x)/f_{t,F}(x)}$.

$$\log[p_{t}(x)] = \mu_{p}(x) + \sum_{k=1}^{K} \beta_{t,k} \phi_{k}(x) + e_{t}(x)$$
$$\log[r_{t}(x)] = \mu_{r}(x) + \sum_{k=1}^{L} \gamma_{t,\ell} \psi_{\ell}(x) + w_{t}(x).$$

$$p_t(x) = \sqrt{f_{t,M}(x)f_{t,F}(x)} \quad \text{and} \quad r_t(x) = \sqrt{f_{t,M}(x)\big/f_{t,F}(x)}.$$

$$\log[p_{t}(x)] = \mu_{p}(x) + \sum_{k=1}^{K} \beta_{t,k} \phi_{k}(x) + e_{t}(x)$$
$$\log[r_{t}(x)] = \mu_{r}(x) + \sum_{k=1}^{L} \gamma_{t,\ell} \psi_{\ell}(x) + w_{t}(x).$$

- $\{\gamma_{t,\ell}\}$ restricted to be stationary processes: either ARMA(p,q) or ARFIMA(p,d,q).
- No restrictions for $\beta_{t,1}, \ldots, \beta_{t,K}$.
- Forecasts: $f_{n+h|n,M}(x) = p_{n+h|n}(x)r_{n+h|n}(x)$ $f_{n+h|n,F}(x) = p_{n+h|n}(x)/r_{n+h|n}(x)$

$$p_t(x) = \sqrt{f_{t,M}(x)f_{t,F}(x)}$$
 and $r_t(x) = \sqrt{f_{t,M}(x)/f_{t,F}(x)}$.

$$\log[p_{t}(x)] = \mu_{p}(x) + \sum_{k=1}^{K} \beta_{t,k} \phi_{k}(x) + e_{t}(x)$$
$$\log[r_{t}(x)] = \mu_{r}(x) + \sum_{k=1}^{L} \gamma_{t,\ell} \psi_{\ell}(x) + w_{t}(x).$$

- $\{\gamma_{t,\ell}\}$ restricted to be stationary processes: either ARMA(p,q) or ARFIMA(p,d,q).
- No restrictions for $\beta_{t,1},...,\beta_{t,K}$.
- Forecasts: $f_{n+h|n,M}(x) = p_{n+h|n}(x)r_{n+h|n}(x)$ $f_{n+h|n,F}(x) = p_{n+h|n}(x)/r_{n+h|n}(x)$.

$$p_t(x) = \sqrt{f_{t,M}(x)f_{t,F}(x)}$$
 and $r_t(x) = \sqrt{f_{t,M}(x)/f_{t,F}(x)}$.

$$\log[p_{t}(x)] = \mu_{p}(x) + \sum_{k=1}^{K} \beta_{t,k} \phi_{k}(x) + e_{t}(x)$$
$$\log[r_{t}(x)] = \mu_{r}(x) + \sum_{k=1}^{L} \gamma_{t,\ell} \psi_{\ell}(x) + w_{t}(x).$$

- $\{\gamma_{t,\ell}\}$ restricted to be stationary processes: either ARMA(p,q) or ARFIMA(p,d,q).
- No restrictions for $\beta_{t,1},...,\beta_{t,K}$.
- Forecasts: $f_{n+h|n,M}(x) = p_{n+h|n}(x)r_{n+h|n}(x)$ $f_{n+h|n,F}(x) = p_{n+h|n}(x)/r_{n+h|n}(x)$.

Product model

Ratio model

Product forecasts

Ratio forecasts

Coherent forecasts

Ratio forecasts

Life expectancy forecasts

$$p_t(x) = [f_{t,1}(x)f_{t,2}(x)\cdots f_{t,J}(x)]^{1/J}$$
 and
$$r_{t,j}(x) = f_{t,j}(x)/p_t(x),$$

$$\log[p_{t}(x)] = \mu_{p}(x) + \sum_{k=1}^{K} \beta_{t,k} \phi_{k}(x) + e_{t}(x)$$

$$\log[r_{t,j}(x)] = \mu_{r,j}(x) + \sum_{l=1}^{L} \gamma_{t,l,j} \psi_{l,j}(x) + w_{t,j}(x)$$

 $p_t(x)$ and all $r_{t,j}(x)$ Ratios satisfy constraint are approximately $r_{t,j}(x)r_{t,j}(x) \cdots r_{t,j}(x) = 1$ independent.

$$p_t(x) = [f_{t,1}(x)f_{t,2}(x)\cdots f_{t,J}(x)]^{1/J}$$
 and
$$r_{t,j}(x) = f_{t,j}(x)/p_t(x),$$

$$\log[p_{t}(x)] = \mu_{p}(x) + \sum_{k=1}^{K} \beta_{t,k} \phi_{k}(x) + e_{t}(x)$$
$$\log[r_{t,j}(x)] = \mu_{r,j}(x) + \sum_{k=1}^{L} \gamma_{t,l,j} \psi_{l,j}(x) + w_{t,j}(x).$$

 $\begin{array}{ll} p_t(x) \text{ and all } r_{t,j}(x) & \quad & \quad & \quad & \quad & \quad & \\ \text{are approximately} & \quad \\ \text{independent.} & \quad \\ \end{array}$

$$p_{t}(x) = [f_{t,1}(x)f_{t,2}(x)\cdots f_{t,J}(x)]^{1/J}$$
 and
$$r_{t,j}(x) = f_{t,j}(x)/p_{t}(x),$$

$$\log[p_t(x)] = \mu_p(x) + \sum_{k=1}^{L} \beta_{t,k} \phi_k(x) + e_t(x)$$
$$\log[r_{t,j}(x)] = \mu_{r,j}(x) + \sum_{l=1}^{L} \gamma_{t,l,j} \psi_{l,j}(x) + w_{t,j}(x).$$

■ $p_t(x)$ and all $r_{t,j}(x)$ are approximately independent.

- Ratios satisfy constraint $r_{t,1}(x)r_{t,2}(x)\cdots r_{t,J}(x) = 1$
- $\log[f_{t,j}(x)] = \log[p_t(x)r_{t,j}(x)]$

$$p_{t}(x) = [f_{t,1}(x)f_{t,2}(x)\cdots f_{t,J}(x)]^{1/J}$$
 and
$$r_{t,j}(x) = f_{t,j}(x)/p_{t}(x),$$

$$\log[p_{t}(x)] = \mu_{p}(x) + \sum_{k=1}^{L} \beta_{t,k} \phi_{k}(x) + e_{t}(x)$$
$$\log[r_{t,j}(x)] = \mu_{r,j}(x) + \sum_{l=1}^{L} \gamma_{t,l,j} \psi_{l,j}(x) + w_{t,j}(x).$$

• $p_t(x)$ and all $r_{t,j}(x)$ are approximately independent.

- Ratios satisfy constraint $r_{t,1}(x)r_{t,2}(x)\cdots r_{t,J}(x) = 1$.
 - $\log[f_{t,j}(x)] = \log[p_t(x)r_{t,j}(x)]$

$$p_{t}(x) = [f_{t,1}(x)f_{t,2}(x)\cdots f_{t,J}(x)]^{1/J}$$

and
$$r_{t,j}(x) = f_{t,j}(x)/p_{t}(x),$$

$$\log[p_{t}(x)] = \mu_{p}(x) + \sum_{k=1}^{L} \beta_{t,k} \phi_{k}(x) + e_{t}(x)$$
$$\log[r_{t,j}(x)] = \mu_{r,j}(x) + \sum_{l=1}^{L} \gamma_{t,l,j} \psi_{l,j}(x) + w_{t,j}(x).$$

• $p_t(x)$ and all $r_{t,j}(x)$ are approximately independent.

- Ratios satisfy constraint $r_{t,1}(x)r_{t,2}(x)\cdots r_{t,l}(x) = 1$.
- $\log[f_{t,i}(x)] = \log[p_t(x)r_{t,j}(x)]$

$$\log[f_{t,j}(x)] = \log[p_t(x)r_{t,j}(x)] = \log[p_t(x)] + \log[r_{t,j}]$$

$$= \mu_j(x) + \sum_{k=1}^K \beta_{t,k} \phi_k(x) + \sum_{\ell=1}^L \gamma_{t,\ell,j} \psi_{\ell,j}(x) + z_{t,j}(x)$$

$$\log[f_{t,j}(x)] = \log[p_t(x)r_{t,j}(x)] = \log[p_t(x)] + \log[r_{t,j}]$$

$$= \mu_j(x) + \sum_{k=1}^K \beta_{t,k} \phi_k(x) + \sum_{\ell=1}^L \gamma_{t,\ell,j} \psi_{\ell,j}(x) + z_{t,j}(x)$$

- $\mu_j(x) = \mu_p(x) + \mu_{r,j}(x)$ is group mean
- $z_{t,j}(x) = e_t(x) + w_{t,j}(x)$ is error term.
- $\{\gamma_{t,\ell}\}$ restricted to be stationary processes: either ARMA(p,q) or ARFIMA(p,d,q).
- No restrictions for $\beta_{t,1},...,\beta_{t,K}$.

$$\log[f_{t,j}(x)] = \log[p_t(x)r_{t,j}(x)] = \log[p_t(x)] + \log[r_{t,j}]$$

$$= \mu_j(x) + \sum_{k=1}^K \beta_{t,k} \phi_k(x) + \sum_{\ell=1}^L \gamma_{t,\ell,j} \psi_{\ell,j}(x) + z_{t,j}(x)$$

- $\mu_j(x) = \mu_p(x) + \mu_{r,j}(x)$ is group mean
- $z_{t,j}(x) = e_t(x) + w_{t,j}(x)$ is error term.
- $\{\gamma_{t,\ell}\}$ restricted to be stationary processes either ARMA(p,q) or ARFIMA(p,d,q).
- No restrictions for $\beta_{t,1},...,\beta_{t,K}$

$$\log[f_{t,j}(x)] = \log[p_t(x)r_{t,j}(x)] = \log[p_t(x)] + \log[r_{t,j}]$$

$$= \mu_j(x) + \sum_{k=1}^K \beta_{t,k} \phi_k(x) + \sum_{\ell=1}^L \gamma_{t,\ell,j} \psi_{\ell,j}(x) + z_{t,j}(x)$$

- $\mu_j(x) = \mu_p(x) + \mu_{r,j}(x)$ is group mean
- $z_{t,j}(x) = e_t(x) + w_{t,j}(x)$ is error term.
- $\{\gamma_{t,\ell}\}$ restricted to be stationary processes: either ARMA(p,q) or ARFIMA(p,d,q).
- No restrictions for $\beta_{t,1},...,\beta_{t,K}$

$$\log[f_{t,j}(x)] = \log[p_t(x)r_{t,j}(x)] = \log[p_t(x)] + \log[r_{t,j}]$$

$$= \mu_j(x) + \sum_{k=1}^K \beta_{t,k} \phi_k(x) + \sum_{\ell=1}^L \gamma_{t,\ell,j} \psi_{\ell,j}(x) + z_{t,j}(x)$$

- $\mu_j(x) = \mu_p(x) + \mu_{r,j}(x)$ is group mean
- $z_{t,j}(x) = e_t(x) + w_{t,j}(x)$ is error term.
- $\{\gamma_{t,\ell}\}$ restricted to be stationary processes: either ARMA(p,q) or ARFIMA(p,d,q).
- No restrictions for $\beta_{t,1},...,\beta_{t,K}$.

Li-Lee method

Li & Lee (*Demography*, 2005) method is a special case of our approach.

$$f_{t,j}(x) = \mu_j(x) + \beta_t \phi(x) + \gamma_{t,j} \psi_j(x) + e_{t,j}(x)$$

where f is unsmoothed log mortality rate, β_t is a random walk with drift and $\gamma_{t,i}$ is AR(1) process.

- No smoothing.
- Only one basis function for each part,
- Random walk with drift very limiting.
- AR(1) very limiting.
- The $\gamma_{t,j}$ coefficients will be highly correlated with each other, and so independent models are not appropriate

Li & Lee (*Demography*, 2005) method is a special case of our approach.

$$f_{t,j}(x) = \mu_j(x) + \beta_t \phi(x) + \gamma_{t,j} \psi_j(x) + e_{t,j}(x)$$

- No smoothing.
- Only one basis function for each part,
- Random walk with drift very limiting.
- \blacksquare AR(1) very limiting.
- The $\gamma_{t,j}$ coefficients will be highly correlated with each other, and so independent models are not appropriate.

Li & Lee (*Demography*, 2005) method is a special case of our approach.

$$f_{t,j}(x) = \mu_j(x) + \beta_t \phi(x) + \gamma_{t,j} \psi_j(x) + e_{t,j}(x)$$

- No smoothing.
- Only one basis function for each part,
- Random walk with drift very limiting.
- \blacksquare AR(1) very limiting.
- The $\gamma_{t,j}$ coefficients will be highly correlated with each other, and so independent models are not appropriate.

Li & Lee (*Demography*, 2005) method is a special case of our approach.

$$f_{t,j}(x) = \mu_j(x) + \beta_t \phi(x) + \gamma_{t,j} \psi_j(x) + e_{t,j}(x)$$

- No smoothing.
- Only one basis function for each part,
- Random walk with drift very limiting.
- \blacksquare AR(1) very limiting.
- The $\gamma_{t,j}$ coefficients will be highly correlated with each other, and so independent models are not appropriate.

Li & Lee (*Demography*, 2005) method is a special case of our approach.

$$f_{t,j}(x) = \mu_j(x) + \beta_t \phi(x) + \gamma_{t,j} \psi_j(x) + e_{t,j}(x)$$

- No smoothing.
- Only one basis function for each part,
- Random walk with drift very limiting.
- \blacksquare AR(1) very limiting.
- The $\gamma_{t,j}$ coefficients will be highly correlated with each other, and so independent models are not appropriate.

Outline

- 1 Functional forecasting
- 2 Forecasting groups
- 3 Coherent cohort life expectancy forecasts
- 4 Conclusions

Using standard life table calculations:

For
$$x = 0, 1, ..., \omega - 1$$
:
$$q_x = m_x / (1 + (1 - a_x) m_x)$$

$$\ell_{x+1} = \ell_x (1 - q_x)$$

$$L_x = \ell_x [1 - q_x (1 - a_x)]$$

$$T_x = L_x + L_{x+1} + \dots + L_{\omega-1} + L_{\omega+1}$$

$$e_x = T_x / L_x$$

where $a_x=0.5$ for $x\geq 1$ and a_0 taken from Coale et al (1983). $q_{\omega+}=1$, $L_{\omega+}=l_x/m_x$, and $T_{\omega+}=L_{\omega+}$.

- Period life expectancy: let $m_x = m_{x,t}$ for some vear t.
- Cohort life expectancy: let m_i = m_{in+1} for birth cohort in year t

Using standard life table calculations:

For
$$x = 0, 1, ..., \omega - 1$$
: $q_x = m_x/(1 + (1 - a_x)m_x)$ $\ell_{x+1} = \ell_x(1 - q_x)$ $\ell_x = \ell_x[1 - q_x(1 - a_x)]$ $\ell_x = \ell_x + \ell_{x+1} + \dots + \ell_{\omega-1} + \ell_{\omega+1} + \ell_{\omega} + \ell_x = \ell_x + \ell_x$

where $a_x=0.5$ for $x\geq 1$ and a_0 taken from Coale et al (1983). $q_{\omega+}=1$, $L_{\omega+}=l_x/m_x$, and $T_{\omega+}=L_{\omega+}$.

- Period life expectancy: let $m_x = m_{x,t}$ for some year t
- Cohort life expectancy: let $m_x = m_{x,t+x}$ for birth cohort in vear t.

Using standard life table calculations:

For
$$x = 0, 1, ..., \omega - 1$$
: $q_x = m_x/(1 + (1 - a_x)m_x)$ $\ell_{x+1} = \ell_x(1 - q_x)$ $\ell_x = \ell_x[1 - q_x(1 - a_x)]$ $\ell_x = \ell_x + \ell_{x+1} + \dots + \ell_{\omega-1} + \ell_{\omega+1} + \ell_{\omega}$ $\ell_x = \ell_x / \ell_x$

where $a_x = 0.5$ for $x \ge 1$ and a_0 taken from Coale et al (1983). $q_{\omega +} = 1$, $L_{\omega +} = l_x/m_x$, and $T_{\omega +} = L_{\omega +}$.

- Period life expectancy: let $m_x = m_{x,t}$ for some year t.
- Cohort life expectancy: let $m_x = m_{x,t+x}$ for birth cohort in year t.

Using standard life table calculations:

For
$$x = 0, 1, ..., \omega - 1$$
: $q_x = m_x/(1 + (1 - a_x)m_x)$ $\ell_{x+1} = \ell_x(1 - q_x)$ $\ell_x = \ell_x[1 - q_x(1 - a_x)]$ $\ell_x = \ell_x + \ell_{x+1} + \dots + \ell_{\omega-1} + \ell_{\omega+1} + \ell_{\omega}$ $\ell_x = \ell_x / \ell_x$

where $a_x=0.5$ for $x\geq 1$ and a_0 taken from Coale et al (1983). $q_{\omega+}=1$, $L_{\omega+}=l_x/m_x$, and $T_{\omega+}=L_{\omega+}$.

- Period life expectancy: let $m_x = m_{x,t}$ for some year t.
- Cohort life expectancy: let $m_x = m_{x,t+x}$ for birth cohort in year t.

- Because we can forecast $m_{x,t}$ we can estimate the mortality rates for each birth cohort (using actual values when they are available).
- We can simulate future $m_{x,t}$ in order to estimate the uncertainty associated with e_x .

- Because we can forecast $m_{x,t}$ we can estimate the mortality rates for each birth cohort (using actual values when they are available).
- We can simulate future $m_{x,t}$ in order to estimate the uncertainty associated with e_x .

$$p_t(x) = \sqrt{f_{t,M}(x)f_{t,F}(x)}$$
 and $r_t(x) = \sqrt{f_{t,M}(x)/f_{t,F}(x)}$.

$$\log[p_{t}(x)] = \mu_{p}(x) + \sum_{k=1}^{K} \beta_{t,k} \phi_{k}(x) + e_{t}(x)$$
$$\log[r_{t}(x)] = \mu_{r}(x) + \sum_{\ell=1}^{L} \gamma_{t,\ell} \psi_{\ell}(x) + w_{t}(x).$$

$$p_t(x) = \sqrt{f_{t,M}(x)f_{t,F}(x)}$$
 and $r_t(x) = \sqrt{f_{t,M}(x)/f_{t,F}(x)}$.

$$\log[p_{t}(x)] = \mu_{p}(x) + \sum_{k=1}^{K} \beta_{t,k} \phi_{k}(x) + e_{t}(x)$$
$$\log[r_{t}(x)] = \mu_{r}(x) + \sum_{k=1}^{L} \gamma_{t,\ell} \psi_{\ell}(x) + w_{t}(x).$$

- \blacksquare $\{\gamma_{t,\ell}\}$ and $\{\beta_{t,k}\}$ simulated.
- $\{e_t(x)\}\$ and $\{w_t(x)\}\$ bootstrapped.
- Generate many future sample paths for $f_{t,M}(x)$ and $f_{t,F}(x)$ to estimate uncertainty in e_x .

$$p_t(x) = \sqrt{f_{t,M}(x)f_{t,F}(x)}$$
 and $r_t(x) = \sqrt{f_{t,M}(x)/f_{t,F}(x)}$.

$$\log[p_{t}(x)] = \mu_{p}(x) + \sum_{k=1}^{K} \beta_{t,k} \phi_{k}(x) + e_{t}(x)$$
$$\log[r_{t}(x)] = \mu_{r}(x) + \sum_{\ell=1}^{L} \gamma_{t,\ell} \psi_{\ell}(x) + w_{t}(x).$$

- $\{\gamma_{t,\ell}\}$ and $\{\beta_{t,k}\}$ simulated.
- $\{e_t(x)\}\$ and $\{w_t(x)\}\$ bootstrapped.
- Generate many future sample paths for $f_{t,M}(x)$ and $f_{t,F}(x)$ to estimate uncertainty in e_x .

$$p_t(x) = \sqrt{f_{t,M}(x)f_{t,F}(x)}$$
 and $r_t(x) = \sqrt{f_{t,M}(x)/f_{t,F}(x)}$.

$$\log[p_{t}(x)] = \mu_{p}(x) + \sum_{k=1}^{K} \beta_{t,k} \phi_{k}(x) + e_{t}(x)$$
$$\log[r_{t}(x)] = \mu_{r}(x) + \sum_{k=1}^{L} \gamma_{t,\ell} \psi_{\ell}(x) + w_{t}(x).$$

- $\{\gamma_{t,\ell}\}$ and $\{\beta_{t,k}\}$ simulated.
- $\{e_t(x)\}\$ and $\{w_t(x)\}\$ bootstrapped.
- Generate many future sample paths for $f_{t,M}(x)$ and $f_{t,F}(x)$ to estimate uncertainty in e_x .

Complete code

```
library(demography)
# Read data
aus <- hmd.mx("AUS", "username", "password", "Australia")</pre>
# Smooth data
aus.sm <- smooth.demogdata(aus)</pre>
#Fit model
aus.pr <- coherentfdm(aus.sm)</pre>
# Forecast
aus.pr.fc <- forecast(aus.pr, h=100)
# Compute life expectancies
e50.m.aus.fc <- flife.expectancy(aus.pr.fc, series="male",
  age=50, PI=TRUE, nsim=1000, type="cohort")
e50.f.aus.fc <- flife.expectancy(aus.pr.fc, series="female",
  age=50, PI=TRUE, nsim=1000, type="cohort")
```


- Compute age 50 remaining cohort life expectancy with a rolling forecast origin beginning in 1921.
- Compare against actual cohort life expectancy where available.
- Compute 80% prediction interval actual coverage.

- Compute age 50 remaining cohort life expectancy with a rolling forecast origin beginning in 1921.
- Compare against actual cohort life expectancy where available.
- Compute 80% prediction interval actual coverage.

- Compute age 50 remaining cohort life expectancy with a rolling forecast origin beginning in 1921.
- Compare against actual cohort life expectancy where available.
- Compute 80% prediction interval actual coverage.

Outline

- 1 Functional forecasting
- 2 Forecasting groups
- 3 Coherent cohort life expectancy forecasts
- 4 Conclusions

- New, automatic, flexible method for coherent forecasting of groups of functional time series.
- Suitable for age-specific mortality.
- Based on geometric means and ratios, so interpretable results.
- More general and flexible than existing methods.
- Easy to compute prediction intervals for any computable statistics.

- New, automatic, flexible method for coherent forecasting of groups of functional time series.
- Suitable for age-specific mortality.
- Based on geometric means and ratios, so interpretable results.
- More general and flexible than existing methods.
- Easy to compute prediction intervals for any computable statistics.

- New, automatic, flexible method for coherent forecasting of groups of functional time series.
- Suitable for age-specific mortality.
- Based on geometric means and ratios, so interpretable results.
- More general and flexible than existing methods.
- Easy to compute prediction intervals for any computable statistics.

- New, automatic, flexible method for coherent forecasting of groups of functional time series.
- Suitable for age-specific mortality.
- Based on geometric means and ratios, so interpretable results.
- More general and flexible than existing methods.
- Easy to compute prediction intervals for any computable statistics.

- New, automatic, flexible method for coherent forecasting of groups of functional time series.
- Suitable for age-specific mortality.
- Based on geometric means and ratios, so interpretable results.
- More general and flexible than existing methods.
- Easy to compute prediction intervals for any computable statistics.

Selected references

- Hyndman, Ullah (2007). "Robust forecasting of mortality and fertility rates: A functional data approach". Computational Statistics and Data Analysis 51(10), 4942–4956
- Hyndman, Shang (2009). "Forecasting functional time series (with discussion)". Journal of the Korean Statistical Society 38(3), 199–221
- Hyndman, Booth, Yasmeen (2013). "Coherent mortality forecasting: the product-ratio method with functional time series models". *Demography* **50**(1), 261–283
- Booth, Hyndman, Tickle (2013). "Prospective Life Tables". Computational Actuarial Science, with R. ed. by Charpentier. Chapman & Hall/CRC, 323–348
- Hyndman (2013). demography: Forecasting mortality, fertility, migration and population data. v1.16. cran.r-project.org/package=demography

Selected references

- Hyndman, Ullah (2007). "Robust forecasting of mortality and fertility rates: A functional data approach". Computational Statistics and Data Analysis 51(10), 4942–4956
- Hyndman, Shang (2009). "Forecasting functional time series (with discussion)". Journal of the Korean Statistical Society 38(3), 199–221
- Hyndman, Booth, Yasmeen (2013). "Coherent mortality forecasting: the product-ratio method with functional time series models". *Demography* **50**(1), 261–283
- Papers and R code: robjhyndman.com
- ► Email: Rob.Hyndman@monash.edu