Transfer Learning with Augmented Vocabulary for Tweet Classification

Vineet Kumar¹, Karthikeya Racharla¹, and Debapriyo Majumdar²

¹ IIT Kharagpur, ² ISI Kolkata

6th IEEE International Conference on Multimedia Big Data

26th September 2020

Introduction

- What is our Paper all about?
 - Our approach and methodology of our participation in IEEE BigMM Grand Challenge (BMGC), 2020
 - The challenge was aimed at research towards deeper understanding of multiple facets involved in #MeToo movement
- Problem Context: Classify a set of tweets pertaining to the #MeToo movement based out of five linguistic aspects
- Our best performing approach (team name: entropy) has ranked first on the leader-board when the grand challenge finished, achieving the AUC of 0.56365

Dataset Description

- Kaggle-hosted competition
- Due to Twitter legal requirements, the dataset for the challenge only had tweet-ids and their corresponding labels
- Participants had to download tweets directly, using tweet-ids
 - Training set close to 8,000 tweet IDs and 10 labels
 - Test set close to 2,000 tweet IDs (released at the later part of challenge)
- Tweet Hydration: Extracted corresponding tweets associated with their tweet-IDs using Hydrator API
- We were able to hydrate only -
 - 6,900+ tweets from Train set (rest 14% tweets were deleted)
 - 1,700+ tweets from Test set (rest 13% tweets were deleted)

Dataset Description

- 10 data labels on Relevance, Hate Speech, Dialogue Acts, Stance, Sarcasm
- Evaluation metric: Mean column-wise AUC (Area Under the ROC Curve)
- Data suffers with severe class-imbalance

Feature Extraction from Text data

- Basic tweet pre-processing with analysis restricted to the textual part of tweets
- Removal of stop-words found to hamper classification performance
- Vectorization: Process of transforming the collection of texts in a corpus to a numerical representation of feature vectors
 - We made use of term-weighting based vectorization approaches
 - TfidfVectorizer() to convert the raw tweets into representable TF-IDF matrix forms
- Tokenization: Indexed dictionary of all the tokens in the tweet corpus, then
 vectorized each token by turning it into sequences of integers using indices of
 the token dictionary
 - The coefficients corresponding to each token were extracted using these approaches, followed by zero-padding (for uniform length)
 - Tokenizer() class provided by keras was used

Our Approaches

- Baseline ML Models
 - Logistic Regression
 - GaussianNB
 - Support Vector Machines
- Tree-based ML Classifiers
 - RandomForest
 - XGBoost
 - LightGBM
- Deep-Learning Frameworks
 - Bi-LSTM (Bidirectional LSTM) with Glove Embeddings
- Transfer Learning Architectures
 - BERT (Transformer-based Approach)
 - ULMFiT (Domain specific language-model with Fine-tuning)

Methodology: ML Classifiers

- Logistic Regression, MNB and SVM didn't produce encouraging results in comparison to Tree-based classification approaches
- XGBoost has slightly improved the AUC score able to address class imbalance while training
 - Overall, XGBoost has produced 0.5182 mean-AUC on the Leaderboard
- We chose final model for each class based on AUC score obtained on our validation set
- For these 5 labels, XGBoost and RandomForest were found to be better

Classifiers	Class label	AUC on Validation set		
	Image_Only_Informative	0.539		
VCD a act	Sarcasm	0.535		
XGBoost –	Justification	0.505		
	Refutation	0.578		
RandomForest	Allegation	0.515		

Methodology: BiLSTM

- Bidirectional LSTMs generally work better with sequential classification tasks
- Methodology
 - Used pretrained glove-twitter embeddings (trained on 2B uncased tweets)
 - Implemented BiLSTM using Bidirectional layer wrapper (Keras)
 - Introduced dropout for regularization & Conv1D filter for context capturing
- Results were not much encouraging

Labels / Model	BiLSTM
Support	0.50
Oppose	0.49
Directed Hate	0.52
Generalized Hate	0.51

Image credits: https://www.aclweb.org/anthology/S18-1040.pdf

Methodology: BERT

- Getting a lot of exactly curated training data is always a challenge
- To perform well, deep learning models need to be trained with a lot of data
- BERT outperformed many state-of-the-art
 NLP / NMT tasks
- Our methodology
 - Used BertForSequenceClassification class
 - Fine tuned with our dataset using AdamW optim
 - Used 2×10^{-5} as learning rate & 10^{-8} as **eps** value
- Results: Achieved 67% overall accuracy

Labels / Models	BERT	BERT + ROS
Directed Hate	0.51	0.51
Generalized Hate	0.50	0.50

Most of our vocabulary was unrecognised by BERT

Image credits: https://mccormickml.com/2019/07/22/BERT-fine-tuning/

Methodology: ULMFiT

Fundamental idea behind ULMFiT is tackle the problem of insufficient data

- ULMFiT language model is pre-trained on the wikitext-103 corpus
- Augmented Kaggle Twitter Sentiment 140 and SEM Eval Stance Datasets
- Used fastai.text tokenization technique for appropriate batch sub-division
- Fed the dataset into LM (language model), which is essentially AWD-LSTM

Methodology: ULMFiT

Stance Rule –

Support	Λ	Oppose	Stance
0		0	None
1		0	Favour
0		1	Against

 Learning rate should be order of magnitude below the point at which the loss starts to diverge

Gradual Unfreezing of layers helps in avoiding "catastrophic forgetting"

Results

Labels/Models	MNB	SVM	RF	LGBM	XGB
Text Only Informative	0.506	0.517	0.505	0.500	0.510
Image Only Informative	0.499	0.509	0.501	0.500	0.539
Directed Hate	0.500	0.510	0.503	0.491	0.503
Generalized Hate	0.500	0.524	0.508	0.513	0.524
Sarcasm	0.500	0.496	0.499	0.485	0.535
Allegation	0.500	0.515	0.515	0.491	0.472
Justification	0.500	0.504	0.508	0.495	0.505
Refutation	0.500	0.546	0.565	0.510	0.578
Support	0.496	0.496	0.499	0.504	0.511
Oppose	0.500	0.514	0.511	0.498	0.523

Labels/Models	BiLSTM + Glove	BERT	BERT + ROS	ULMFiT	ULMFiT + AV
Support	0.50	0.49	0.48	0.52	0.58
Oppose	0.49	0.49	0.51	0.51	0.73
Directed Hate	0.52	0.51	0.51	0.50	0.50
Generalized Hate	0.51	0.51	0.50	0.51	0.49

References

In addition to those mentioned in our paper, here are the references used for our presentation

- J. Howard and S. Ruder, "Universal language model fine-tuning for text classification," <u>arXiv preprint arXiv:1801.06146</u>, 2018
- Z. Huang, W. Xu, and K. Yu, "Bidirectional Istmcrf models for sequence tagging," <u>arXiv preprint arXiv:1508.01991, 2015</u>
- Chris McCormick, "BERT Fine-Tuning Tutorial with PyTorch", https://mccormickml.com/2019/07/22/BERT-fine-tuning/
- Sandra Faltl et al., "Universal Language Model Fine-Tuning (ULMFiT)", https://humboldt-wi.github.io/blog/research/information_systems_1819/group4_ulmfit/

Codes for reproducing our results are hosted at https://github.com/vntkumar8/transfer-learning-metoo