Machine learning for Big Data

Mai Hai Thanh

KIWI @ ETRI

Introduction

- SQL engines help to extract explicit information
 - Selection, join, group by, aggregation,...
- Machine learning (ML) engines helps to extract hidden information
 - Clustering, classification, prediction,...
- ▶ Both SQL and ML are important

Introduction

Machine learning pipeline

Popular ML libraries for big data

- Apache Spark's MLlib
- Apache Mahout
- Apache Storm's Trident ML lib
- Jubatus
- Graphlab
- DistBelief
- ▶ H2O
- Scikit-learn
- Weka
- **...**

Popular ML algorithms

- Spark's MLlib 1.3 (all use Spark engine)
 - Linear SVM and logistic regression
 - Random forest and gradient-boosted trees
 - Recommendation via alternating least squares
 - Clustering via k-means, Gaussian mixtures, and power iteration clustering
 - Topic modeling via latent Dirichlet allocation
 - Singular value decomposition
 - Linear regression with L1- and L2-regularization
 - Isotonic regression
 - Multinomial naive Bayes
 - Frequent itemset mining via FP-growth

Popular ML algorithms

▶ Mahout 0.10.0

	Single Machine	MapReduce	Spark
User-Based Collaborative Filtering	x		x
Item-Based Collaborative Filtering	x	x	x
Matrix Factorization with ALS	X	X	
Matrix Factorization with ALS on Implicit Feedback	X	X	
Weighted Matrix Factorization, SVD++	X		
Logistic Regression - trained via SGD	x		
Naive Bayes / Complementary Naive Bayes		x	×
Random Forest		X	
Hidden Markov Models	X		
Multilayer Perceptron	X		
k-Means Clustering	x	×	
Fuzzy k-Means	X	×	
Streaming k-Means	x	×	
Spectral Clustering		x	
Singular Value Decomposition	X	X	×
Stochastic SVD	X	x	×
PCA (via Stochastic SVD)	x	×	×
QR Decomposition	×	×	x
Latent Dirichlet Allocation	×	x	

Popular optimization techniques

- Often used for machine learning
 - Gradient descent
 - Stochastic gradient descent
 - Faster than gradient descent
 - ▶ L-BFGS
 - ▶ Faster than gradient descent

Iterative methods

Normal equation

Non-iterative methods

Spark MLlib

- Built on Spark in-memory compute engine
- Very fast, scalable, widely used
- User-friendly APIs
- Developers write applications in Scala, Java, Python
- Use any Hadoop data source (HDFS, HBase, local files,...)
- Interact with other Spark's components (SparkSQL, GraphX, ...) seamlessly
- Example

```
points = spark.textFile("hdfs://...").map(parsePoint)
model = KMeans.train(points, k = 10)
```

ML algorithm selections

Wisdom of the crowd

ML algorithm selections

Wisdom of the crowd

