<u>DATA ANALYTICS</u> <u>Assignment 3</u>

Amrutha S - USN: PES120700829

Yoshitha - USN: PES1201701744

Dhruv - USN: PES1201700122

Swathi - USN: PES1201701826

PROBLEM STATEMENT:

Perform Regression on a Crypt currency dataset.

```
# reset the data frame index
df.reset_index(drop=True ,inplace=True)
df.head()
```

Out[5]:

	slug	asset	name	date	ranknow	open	high	low	close	volume	market	close_ratio	spread
0	bitcoin	втс	Bitcoin	28- 04- 2013	1	101.475	101.9850	99.0750	100.6575	0	1.500520e+09	0.5438	3.88
1	bitcoin	BTC	Bitcoin	29- 04- 2013	1	100.830	110.6175	100.5000	108.4050	0	1.491160e+09	0.7813	13.49
2	bitcoin	BTC	Bitcoin	30- 04- 2013	1	108.000	110.1975	100.5375	104.2500	0	1.597780e+09	0.3843	12.88
3	bitcoin	BTC	Bitcoin	01- 05- 2013	1	104.250	104.9175	80.7900	87.7425	0	1.542820e+09	0.2882	32.17
4	bitcoin	BTC	Bitcoin	02- 05- 2013	1	87.285	94.2000	69.2100	78.9075	0	1.292190e+09	0.3881	33.32

In [6]: # dropping irrelevant columns
 df.drop(labels=['slug', 'ranknow', 'volume', 'market', 'close_ratio', 'spread'], inplace=True, axis=1)
 df.head()

Out[6]:

	asset	name	date	open	high	low	close
0	втс	Bitcoin	28-04-2013	101.475	101.9850	99.0750	100.6575
1	втс	Bitcoin	29-04-2013	100.830	110.6175	100.5000	108.4050
2	втс	Bitcoin	30-04-2013	108.000	110.1975	100.5375	104.2500
3	втс	Bitcoin	01-05-2013	104.250	104.9175	80.7900	87.7425
4	втс	Bitcoin	02-05-2013	87.285	94.2000	69.2100	78.9075

```
In [7]: import sqlite3
         # import cx Oracle 'username/password@hostname:port/service name'
         # connect function opens a connection to the SQLite database file,
         conn = sqlite3.connect('session.db')
         #Similarly we will make connection with other databases like Oracle, DB2 etc.
         print(conn)
         <sqlite3.Connection object at 0x000002CA23CB2AB0>
In [8]: # Drop a table name Crypto if it exists already
        try:
    conn.execute('DROP TABLE IF EXISTS `Crypto` ')
        except Exception as e:
           raise(e)
        finally:
          print('Table dropped')
        Table dropped
In [9]: # Create a new Table named as Crypto
        try:
            conn.execute('''
                 CREATE TABLE Crypto
                            INTEGER PRIMARY KEY,
                 (ID
                            TEXT NOT NULL,
                 ASSET
                 NAME
                            TEXT
                                   NOT NULL,
                 Date
                            datetime,
                            Float DEFAULT 0,
                 Open
                 High
                            Float DEFAULT 0.
                           Float DEFAULT 0,
                 Low
                           Float DEFAULT 0);''')
                 Close
            print ("Table created successfully");
        except Exception as e:
           print(str(e))
            print('Table Creation Failed!!!!')
        finally:
            conn.close() # this closes the database connection
        Table created successfully
In [10]: crypto_list = df.values.tolist()
          # Lets make new connection to Insert crypto data in SQL DB
          conn = sqlite3.connect('session.db')
          # make a cursor - it will help with querying SQL DB
          cur = conn.cursor()
```

Data Inserted Successfully