Regression Analysis Assignment 1 Solution

November 1, 2021

Problem1. Let $L(\boldsymbol{\beta}^t, \lambda^t) = ||\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}||^2 + \sum_{i=1}^q \lambda_j (\mathbf{A}^t \boldsymbol{\beta} - \boldsymbol{c})_j$, where $\lambda = (\lambda_1, \dots, \lambda_q)^t \in \mathbb{R}^q$. Suppose $\gamma \in \mathbb{R}^{p+1}$ and $u = (u_1, u_2, \dots u_q)^t \in \mathbb{R}^q$ satisfy following:

$$\frac{\partial \mathcal{L}}{\partial \beta_i}\Big|_{\beta = \gamma, \lambda = u} = 0, \quad \text{for } i = 1, 2, \dots, p + 1$$
 (1)

$$\frac{\partial \mathbf{L}}{\partial \boldsymbol{\beta}_{i}} \Big|_{\boldsymbol{\beta} = \boldsymbol{\gamma}, \lambda = u} = 0, \quad \text{for } i = 1, 2, \dots, p + 1$$

$$\frac{\partial \mathbf{L}}{\partial \lambda_{i}} \Big|_{\boldsymbol{\beta} = \boldsymbol{\gamma}, \lambda = u} = 0 \quad \text{for } j = 1, 2, \dots, q$$
(2)

Write $\mathbf{A} = (\mathbf{A_1}|\mathbf{A_2}|\cdots|\mathbf{A_q})$. Solving the equation (1) gives

$$\frac{\partial \mathbf{L}}{\partial \boldsymbol{\beta}_{i}} \Big|_{\boldsymbol{\beta} = \boldsymbol{\gamma}, \lambda = u} = 2 \sum_{k=1}^{p+1} (\mathbf{X}^{t} \mathbf{X})_{ik} \boldsymbol{\gamma}_{k} - 2(\mathbf{X}^{t} \mathbf{Y})_{i} + \sum_{l=1}^{q} u_{l} (\mathbf{A}_{l}^{t})_{i}$$

$$= 2 \sum_{k=1}^{p+1} (\mathbf{X}^{t} \mathbf{X})_{ik} \boldsymbol{\gamma}_{k} - 2(\mathbf{X}^{t} \mathbf{Y})_{i} + \sum_{l=1}^{q} u_{l} \mathbf{A}_{il} = 0, \text{ for } i = 1, 2, \dots p+1$$

Reformulating this, we have $2(\mathbf{X}^{t}\mathbf{X})\gamma - 2\mathbf{X}^{t}\mathbf{Y} + \mathbf{A}u = 0 \cdots (*)$. Solving equation (2) gives

$$\frac{\partial \mathbf{L}}{\partial \lambda_i}\Big|_{\boldsymbol{\beta}=\boldsymbol{\gamma},\lambda=u} = \mathbf{A}_j^t \boldsymbol{\gamma}_j - \mathbf{c}_j = 0, \mathbf{A}_j^t \boldsymbol{\gamma}_j = \mathbf{c}_j \text{ for } j = 1, 2, \dots, q.$$

Again, reformulation of this equation is given by $A^{t}\gamma = \mathbf{c} \cdots (**)$, which is our given constraint. To solve (*),

$$2(\mathbf{X}^{\mathbf{t}}\mathbf{X})\boldsymbol{\gamma} = 2\mathbf{X}^{\mathbf{t}}\mathbf{Y} - \mathbf{A}u, \quad , \boldsymbol{\gamma} = (\mathbf{X}^{\mathbf{t}}\mathbf{X})^{-1}\mathbf{X}^{\mathbf{t}}\mathbf{Y} - \frac{1}{2}(\mathbf{X}^{\mathbf{t}}\mathbf{X})^{-1}\mathbf{A}u$$

Plug in this into (**). Then we obtain

$$\begin{split} \mathbf{A}^t &((\mathbf{X}^t\mathbf{X})^{-1}\mathbf{X}^t\mathbf{Y} - \frac{1}{2}(\mathbf{X}^t\mathbf{X})^{-1}\mathbf{A}u) = \mathbf{c} \\ \mathbf{A}^t &(\mathbf{X}^t\mathbf{X})^{-1}\mathbf{X}^t\mathbf{Y} - \frac{1}{2}\mathbf{A}^t(\mathbf{X}^t\mathbf{X})^{-1}\mathbf{A}u = \mathbf{c} \\ &-\frac{1}{2}\mathbf{A}^t(\mathbf{X}^t\mathbf{X})^{-1}\mathbf{A}u = -\mathbf{A}^t(\mathbf{X}^t\mathbf{X})^{-1}\mathbf{X}^t\mathbf{Y} + \mathbf{c}. \end{split}$$

So, $u = 2[\mathbf{A^t}(\mathbf{X^tX})^{-1}\mathbf{A}]^{-1}(\mathbf{A^t}(\mathbf{X^tX})^{-1}\mathbf{X^tY} - \mathbf{c})$. Note that as \mathbf{A} is full rank, $\mathbf{A^t}(\mathbf{X^tX})^{-1}\mathbf{A}$ is indeed invertible. Thus we have

$$\boldsymbol{\gamma} = (\mathbf{X}^t\mathbf{X})^{-1}\mathbf{X}^t\mathbf{Y} - (\mathbf{X}^t\mathbf{X})^{-1}\mathbf{A}[\mathbf{A}^t(\mathbf{X}^t\mathbf{X})^{-1}\mathbf{A}]^{-1}(\mathbf{A}^t(\mathbf{X}^t\mathbf{X})^{-1}\mathbf{X}^t\mathbf{Y} - \mathbf{c})$$

By KKT condition, we already have $\hat{\beta}_r = \gamma$. Alternatively, one can easily verify $\gamma = \arg\min||\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}||$ by direct computation.

Problem2. Write $\mathbf{X}_{(k)} = (\mathbf{X}_1^t | \mathbf{X}_2^t | \cdots | \mathbf{X}_k^t)$ and $\mathbf{X}_{(-)} = (\mathbf{X}_{k+1}^t | \cdots | \mathbf{X}_n^t)$, so that $\mathbf{X} = (\mathbf{X}_{(k)}^t | \mathbf{X}_{(-)}^t)^t$. Similarly, write $\mathbf{Y}_{(k)} = (Y_1, \dots, Y_k)^t$ and $\mathbf{Y}_{(-)} = (Y_{k+1}, \dots, Y_n)^t$, so that $\mathbf{Y} = (\mathbf{Y}_{(k)}^t, \mathbf{Y}_{(-)}^t)^t$. Note that $\hat{\boldsymbol{\beta}}_{(-)} = (\mathbf{X}_{(-)}^t \mathbf{X}_{(-)})^{-1} \mathbf{X}_{(-)}^t \mathbf{Y}_{(-)}$. Since $||\mathbf{Y}_{(k)} - \mathbf{X}_{(k)}\boldsymbol{\beta}|| \geq 0$ for all $\boldsymbol{\beta} \in \mathbb{R}^{p+1}$ and the equality holds when $\boldsymbol{\beta} = \hat{\boldsymbol{\beta}}$, by the uniqueness of minimizer of $g(\boldsymbol{\beta}) = ||\mathbf{Y}_{(k)} - \mathbf{X}_{(k)}\boldsymbol{\beta}||$, one can see that $\hat{\boldsymbol{\beta}} = (\mathbf{X}_{(k)}^t \mathbf{X}_{(k)})^{-1} \mathbf{X}_{(k)}^t \mathbf{Y}_{(k)}$. Because \mathbf{X} is full rank, so are $\mathbf{X}_{(k)}$ and $\mathbf{X}_{(-)}$. Hence, $\mathbf{X}_{(k)}^t \mathbf{X}_{(k)}$ and $\mathbf{X}_{(-)}^t \mathbf{X}_{(-)}$ are invertible. Since $\mathbf{X}^t \mathbf{X} = \mathbf{X}_{(k)}^t \mathbf{X}_{(k)} + \mathbf{X}_{(-)}^t \mathbf{X}_{(-)}$,

$$\hat{\boldsymbol{\beta}} = (\mathbf{X}^t \mathbf{X})^{-1} \mathbf{X}^t \mathbf{Y} = (\mathbf{X}_{(k)}^t \mathbf{X}_{(k)} + \mathbf{X}_{(-)}^t \mathbf{X}_{(-)})^{-1} (\mathbf{X}_{(k)}^t | \mathbf{X}_{(-)}^t) \mathbf{Y}$$

$$= (\mathbf{I}_{p+1} + (\mathbf{X}_{(k)}^t \mathbf{X}_{(k)})^{-1} \mathbf{X}_{(-)}^t \mathbf{X}_{(-)})^{-1} (\mathbf{X}_{(k)}^t \mathbf{X}_{(k)})^{-1} (\mathbf{X}_{(k)}^t | \mathbf{X}_{(-)}^t) \mathbf{Y}$$

Lemma. For $m \times m$ matrices \mathbf{A}, \mathbf{B} and $m \times m$ identity matrix $\mathbf{I}, \mathbf{I} - \mathbf{A} \mathbf{B}$ is invertible if and only if $\mathbf{I} - \mathbf{B} \mathbf{A}$ is invertible.

Proof. Suppose $\mathbf{I} - \mathbf{A}\mathbf{B}$ is invertible. Suppose for $\mathbf{x} \in \mathbb{R}^m$, $(\mathbf{I} - \mathbf{B}\mathbf{A})\mathbf{x} = \mathbf{0}$, $\mathbf{x} = \mathbf{B}\mathbf{A}\mathbf{x}$. Then, $\mathbf{A}\mathbf{x} = \mathbf{A}\mathbf{B}\mathbf{A}\mathbf{X}$ and so $(\mathbf{I} - \mathbf{A}\mathbf{B})\mathbf{A}\mathbf{x} = \mathbf{0}$. Because $\mathbf{I} - \mathbf{A}\mathbf{B}$ is invertible, $\mathbf{A}\mathbf{x} = \mathbf{0}$ and thus $\mathbf{x} = \mathbf{0}$. ∴ \mathbf{A} is invertible.) This implies $\mathbf{I} - \mathbf{B}\mathbf{A}$ is invertible. By changing the role of \mathbf{A} and \mathbf{B} , one can similarly show that "if" part also holds. □

Using Woodbury's formula and the result of Lemma, we have

$$\begin{split} \hat{\boldsymbol{\beta}} &= (\mathbf{I}_{p+1} + (\mathbf{X}_{(k)}^t \mathbf{X}_{(k)})^{-1} \mathbf{X}_{(-)}^t \mathbf{X}_{(-)})^{-1} (\mathbf{X}_{(k)}^t \mathbf{X}_{(k)})^{-1} (\mathbf{X}_{(k)}^t \mathbf{X}_{(-)}) \mathbf{Y} \\ &= (\mathbf{I}_{p+1} - (\mathbf{X}_{(k)}^t \mathbf{X}_{(k)})^{-1} (\mathbf{I}_{p+1} + \mathbf{X}_{(-)}^t \mathbf{X}_{(-)} (\mathbf{X}_{(k)}^t \mathbf{X}_{(k)})^{-1})^{-1} \mathbf{X}_{(-)}^t \mathbf{X}_{(-)} (\mathbf{X}_{(k)}^t \mathbf{X}_{(k)})^{-1} (\mathbf{X}_{(k)}^t \mathbf{X}_{(k)})^{-1} (\mathbf{X}_{(k)}^t \mathbf{X}_{(-)}) \mathbf{Y} \\ &= (\mathbf{I}_{p+1} - (\mathbf{X}_{(k)}^t \mathbf{X}_{(k)})^{-1} (\mathbf{I}_{p+1} + \mathbf{X}_{(-)}^t \mathbf{X}_{(-)} (\mathbf{X}_{(k)}^t \mathbf{X}_{(k)})^{-1})^{-1} \mathbf{X}_{(-)}^t \mathbf{X}_{(-)} ((\mathbf{X}_{(k)}^t \mathbf{X}_{(k)})^{-1} \mathbf{X}_{(-)}^t \mathbf{Y}_{(k)} \mathbf{Y}_{(k)} \\ &+ (\mathbf{X}_{(k)}^t \mathbf{X}_{(k)})^{-1} \mathbf{X}_{(-)}^t \mathbf{Y}_{(-)}) \\ &= (\mathbf{I}_{p+1} - (\mathbf{X}_{(k)}^t \mathbf{X}_{(k)})^{-1} (\mathbf{I}_{p+1} + \mathbf{X}_{(-)}^t \mathbf{X}_{(-)} (\mathbf{X}_{(k)}^t \mathbf{X}_{(k)})^{-1})^{-1} \mathbf{X}_{(-)}^t \mathbf{X}_{(-)} \mathbf{Y}_{(-)}) \\ &= \hat{\boldsymbol{\beta}} + (\mathbf{X}_{(k)}^t \mathbf{X}_{(k)})^{-1} \mathbf{X}_{(-)}^t \mathbf{Y}_{(-)} - (\mathbf{X}_{(k)}^t \mathbf{X}_{(k)})^{-1} (\mathbf{I}_{p+1} + \mathbf{X}_{(-)}^t \mathbf{X}_{(-)} (\mathbf{X}_{(k)}^t \mathbf{X}_{(k)})^{-1})^{-1} \mathbf{X}_{(-)}^t \mathbf{X}_{(-)} \mathbf{X}_{(-)}) \\ &(\hat{\boldsymbol{\beta}} + (\mathbf{X}_{(k)}^t \mathbf{X}_{(k)})^{-1} \mathbf{X}_{(-)}^t \mathbf{Y}_{(-)}) \end{split}$$

Deleting $\hat{\beta}$ in both hand sides, one have

$$\begin{aligned} (\mathbf{X}_{(k)}^t \mathbf{X}_{(k)})^{-1} \mathbf{X}_{(-)}^t \mathbf{Y}_{(-)} &= (\mathbf{X}_{(k)}^t \mathbf{X}_{(k)})^{-1} (\mathbf{I}_{p+1} + \mathbf{X}_{(-)}^t \mathbf{X}_{(-)} (\mathbf{X}_{(k)}^t \mathbf{X}_{(k)})^{-1})^{-1} \mathbf{X}_{(-)}^t \mathbf{X}_{(-)} (\hat{\boldsymbol{\beta}} + (\mathbf{X}_{(k)}^t \mathbf{X}_{(k)})^{-1} \mathbf{X}_{(-)}^t \mathbf{Y}_{(-)}) \\ \mathbf{X}_{(-)}^t \mathbf{Y}_{(-)} &= (\mathbf{I}_{p+1} + \mathbf{X}_{(-)}^t \mathbf{X}_{(-)} (\mathbf{X}_{(k)}^t \mathbf{X}_{(k)})^{-1})^{-1} \mathbf{X}_{(-)}^t \mathbf{X}_{(-)} (\hat{\boldsymbol{\beta}} + (\mathbf{X}_{(k)}^t \mathbf{X}_{(k)})^{-1} \mathbf{X}_{(-)}^t \mathbf{Y}_{(-)}) \end{aligned}$$

By mulliplying both hand sides by $\mathbf{I}_{p+1} + \mathbf{X}_{(-)}^t \mathbf{X}_{(-)} (\mathbf{X}_{(k)}^t \mathbf{X}_{(k)})^{-1}$ on the left,

$$\begin{split} \mathbf{X}_{(-)}^t \mathbf{Y}_{(-)} + \mathbf{X}_{(-)}^t \mathbf{X}_{(-)} (\mathbf{X}_{(k)}^t \mathbf{X}_{(k)})^{-1} \mathbf{X}_{(-)}^t \mathbf{Y}_{(-)} &= \mathbf{X}_{(-)}^t \mathbf{X}_{(-)} \hat{\boldsymbol{\beta}} + \mathbf{X}_{(-)}^t \mathbf{X}_{(-)} (\mathbf{X}_{(k)}^t \mathbf{X}_{(k)})^{-1} \mathbf{X}_{(-)}^t \mathbf{Y}_{(-)} \\ \mathbf{X}_{(-)}^t \mathbf{Y}_{(-)} &= \mathbf{X}_{(-)}^t \mathbf{X}_{(-)} \hat{\boldsymbol{\beta}} \end{split}$$

Therefore, $\hat{\boldsymbol{\beta}} = (\mathbf{X}_{(-)}^t \mathbf{X}_{(-)})^{-1} \mathbf{X}_{(-)}^t \mathbf{Y}_{(-)} = \hat{\boldsymbol{\beta}}_{(-)}$.

Problem3. We first derive $100(1-\alpha)\%$ confidence interval for $\mu_{\mathbf{z}} = \boldsymbol{\beta}_0 + \mathbf{z}^t \boldsymbol{\beta}_1$. Let $\hat{\mu}_{\mathbf{z}} = \hat{\boldsymbol{\beta}}_0 + \mathbf{z}^t \hat{\boldsymbol{\beta}}_1$. Recall that $\hat{\boldsymbol{\beta}}_0 = \bar{Y} - \frac{1}{n} \mathbf{1}^t \mathbf{X}_1 \hat{\boldsymbol{\beta}}_1$. Note that $\mathbf{1}^t \mathbf{X}_{1,\perp} = \mathbf{1}^t (\mathbf{I} - \frac{1}{n} \mathbf{1} \mathbf{1}^t) \mathbf{X}_1 = \mathbf{1}^t - \mathbf{1}^t) \mathbf{X}_1 = \mathbf{0}$. Let $\mathcal{P}_{\mathbf{z}} = \frac{1}{n} \mathbf{1}^t - \frac{1}{n} \mathbf{1}^t \mathbf{X}_1 (\mathbf{X}_{1,\perp}^t \mathbf{X}_{1,\perp})^{-1} \mathbf{X}_{1,\perp}^t + \mathbf{z}^t (\mathbf{X}_{1,\perp}^t \mathbf{X}_{1,\perp})^{-1} \mathbf{X}_{1,\perp}^t$. Then,

$$\begin{split} \mathcal{P}_{\mathbf{z}}\mathcal{P}_{\mathbf{z}}^t &= \frac{1}{n^2} \mathbf{1}^t \mathbf{1} - \frac{1}{n^2} \mathbf{1}^t \mathbf{X}_{1,\perp} (\mathbf{X}_{1,\perp}^t \mathbf{X}_{1,\perp})^{-1} \mathbf{X}_1^t \mathbf{1} + \frac{1}{n^2} \mathbf{1}^t \mathbf{X}_{1,\perp} (\mathbf{X}_{1,\perp}^t \mathbf{X}_{1,\perp})^{-1} \mathbf{z} - \frac{1}{n} \mathbf{1}^t \mathbf{X}_1 (\mathbf{X}_{1,\perp}^t \mathbf{X}_{1,\perp})^{-1} \mathbf{X}_{1,\perp}^t \mathbf{1} \\ &+ \frac{1}{n^2} \mathbf{1}^t \mathbf{X}_1 (\mathbf{X}_{1,\perp}^t \mathbf{X}_{1,\perp})^{-1} \mathbf{X}_{1,\perp}^t \mathbf{X}_{1,\perp} (\mathbf{X}_{1,\perp}^t \mathbf{X}_{1,\perp})^{-1} \mathbf{X}_1^t \mathbf{1} - \frac{1}{n} \mathbf{1}^t \mathbf{X}_1 (\mathbf{X}_{1,\perp}^t \mathbf{X}_{1,\perp})^{-1} \mathbf{X}_{1,\perp}^t \mathbf{X}_{1,\perp} (\mathbf{X}_{1,\perp}^t \mathbf{X}_{1,\perp})^{-1} \mathbf{z} \\ &+ \frac{1}{n} \mathbf{z}^t (\mathbf{X}_{1,\perp}^t \mathbf{X}_{1,\perp})^{-1} \mathbf{X}_{1,\perp}^t \mathbf{1} - \frac{1}{n} \mathbf{z}^t (\mathbf{X}_{1,\perp}^t \mathbf{X}_{1,\perp})^{-1} \mathbf{X}_{1,\perp}^t \mathbf{X}_{1,\perp} (\mathbf{X}_{1,\perp}^t \mathbf{X}_{1,\perp})^{-1} \mathbf{z} \\ &+ \mathbf{z}^t (\mathbf{X}_{1,\perp}^t \mathbf{X}_{1,\perp})^{-1} \mathbf{X}_{1,\perp}^t \mathbf{X}_{1,\perp} (\mathbf{X}_{1,\perp}^t \mathbf{X}_{1,\perp})^{-1} \mathbf{z} \\ &= \frac{1}{n} + \frac{1}{n^2} \mathbf{1}^t \mathbf{X}_1 (\mathbf{X}_{1,\perp}^t \mathbf{X}_{1,\perp})^{-1} \mathbf{X}_1^t \mathbf{1} - \frac{1}{n} \mathbf{1}^t \mathbf{X}_1 (\mathbf{X}_{1,\perp}^t \mathbf{X}_{1,\perp})^{-1} \mathbf{z} - \frac{1}{n} \mathbf{z}^t (\mathbf{X}_{1,\perp}^t \mathbf{X}_{1,\perp})^{-1} \mathbf{X}_1^t \mathbf{1} + \mathbf{z}^t (\mathbf{X}_{1,\perp}^t \mathbf{X}_{1,\perp})^{-1} \mathbf{z} \\ &= \frac{1}{n} + (\mathbf{z}^t - \frac{\mathbf{1}^t \mathbf{X}_1}{n}) (\mathbf{X}_{1,\perp}^t \mathbf{X}_{1,\perp})^{-1} (\mathbf{z} - \frac{\mathbf{X}_1^t \mathbf{1}}{n}) = \mathbf{C}_{\mathbf{z}}. \end{split}$$

Hence the variance of $\hat{\mu}_{\mathbf{z}}$ is given by

$$Var(\hat{\mu}_{\mathbf{z}}) = Var(\bar{Y} - \frac{1}{n} \mathbf{1}^{t} \mathbf{X}_{1} \hat{\boldsymbol{\beta}}_{1} + \mathbf{z}^{t} (\mathbf{X}_{1,\perp}^{t} \mathbf{X}_{1,\perp})^{-1} \mathbf{X}_{1,\perp}^{t} \mathbf{Y})$$

$$= Var(\frac{1}{n} \mathbf{1}^{t} \mathbf{Y} - \frac{1}{n} \mathbf{1}^{t} \mathbf{X}_{1} (\mathbf{X}_{1,\perp}^{t} \mathbf{X}_{1,\perp})^{-1} \mathbf{X}_{1,\perp}^{t} \mathbf{Y} + \mathbf{z}^{t} (\mathbf{X}_{1,\perp}^{t} \mathbf{X}_{1,\perp})^{-1} \mathbf{X}_{1,\perp}^{t} \mathbf{Y})$$

$$= Var(\mathcal{P}_{\mathbf{z}} \mathbf{Y}) = \mathcal{P}_{\mathbf{z}} Var(\mathbf{Y}) \mathcal{P}_{\mathbf{z}}^{t} = \sigma^{2} \mathcal{P}_{\mathbf{z}} \mathcal{P}_{\mathbf{z}}^{t} = \sigma^{2} \mathbf{C}_{\mathbf{z}}$$

Claim. $\hat{\beta} = (\mathbf{X}^t \mathbf{X})^{-1} \mathbf{X}^t \mathbf{Y}$ is independent of SSE= $\mathbf{Y}^t (\mathbf{I} - \mathbf{X} (\mathbf{X}^t \mathbf{X})^{-1} \mathbf{X}^t) \mathbf{Y}$ is independent.

Proof. Observe that $\mathbf{I} - \mathbf{X}(\mathbf{X}^t\mathbf{X})^{-1}\mathbf{X}^t$ is symmetric, idempotent. Hence $SSE = ||(\mathbf{I} - \mathbf{X}(\mathbf{X}^t\mathbf{X})^{-1}\mathbf{X}^t)\mathbf{Y}||^2$. As SSE is a function of $(\mathbf{I} - \mathbf{X}(\mathbf{X}^t\mathbf{X})^{-1}\mathbf{X}^t)\mathbf{Y}$, it suffices to show that $\hat{\boldsymbol{\beta}}$ and $(\mathbf{I} - \mathbf{X}(\mathbf{X}^t\mathbf{X})^{-1}\mathbf{X}^t)\mathbf{Y}$ are independent. Under normality, this can be established if we show the covariance between them are $\mathbf{0}$.

$$\begin{aligned} \operatorname{Cov}(\hat{\boldsymbol{\beta}}, (\mathbf{I} - \mathbf{X}(\mathbf{X}^{\mathbf{t}}\mathbf{X})^{-1}\mathbf{X}^{\mathbf{t}})\mathbf{Y}) &= (\mathbf{X}^{t}\mathbf{X})^{-1}\mathbf{X}^{t}\operatorname{Var}(\mathbf{Y})(\mathbf{I} - \mathbf{X}(\mathbf{X}^{\mathbf{t}}\mathbf{X})^{-1}\mathbf{X}^{\mathbf{t}})^{t} \\ &= \sigma^{2}(\mathbf{X}^{t}\mathbf{X})^{-1}\mathbf{X}^{t}(\mathbf{I} - \mathbf{X}(\mathbf{X}^{\mathbf{t}}\mathbf{X})^{-1}\mathbf{X}^{\mathbf{t}}) \\ &= \sigma^{2}((\mathbf{X}^{t}\mathbf{X})^{-1}\mathbf{X}^{t} - (\mathbf{X}^{t}\mathbf{X})^{-1}\mathbf{X}^{t}) = \mathbf{0} \end{aligned}$$

This proves the claim.

Note that $\hat{\mu}_{\mathbf{z}}$ is a function of $\hat{\boldsymbol{\beta}}$ and $E(\hat{\mu}_{\mathbf{z}}) = \mu_{\mathbf{z}}$. So $\hat{\mu}_{\mathbf{z}}$ is independent of SSE. And we know that $\frac{\text{SSE}}{\sigma^2} \sim \chi^2(n-p-1)$. Let $\hat{\sigma}^2$ denote $\frac{\text{SSE}}{n-p-1}$. Since $\frac{\hat{\mu}_{\mathbf{z}} - \mu_{\mathbf{z}}}{\sqrt{\sigma^2 \mathbf{C}_{\mathbf{z}}}} \sim N(0,1)$, we see that

$$\frac{(\hat{\mu}_{\mathbf{z}} - \mu_{\mathbf{z}})/\sqrt{\sigma^2 \mathbf{C}_{\mathbf{z}}}}{\sqrt{\hat{\sigma}^2/\sigma^2}} = \frac{\hat{\mu}_{\mathbf{z}} - \mu_{\mathbf{z}}}{\sqrt{\hat{\sigma}^2 \mathbf{C}_{\mathbf{z}}}} \sim t(n - p - 1).$$

From this, one can deduce that $100(1-\alpha)\%$ confidence interval for $\mu_{\mathbf{z}}$ is

$$\mu_{\mathbf{z}}: \quad \hat{\mu}_{\mathbf{z}} \pm t_{\alpha/2}(n-p-1)\sqrt{\hat{\sigma}^2 \mathbf{C}_{\mathbf{z}}}.$$

 $100(1-\alpha)\%$ confidence interval for $\mathbf{Y_z} = \boldsymbol{\beta}_0 + \mathbf{z}^t\boldsymbol{\beta}_1 + \epsilon$ (out-of-sample response), the difference that for $\mu_{\mathbf{z}}$ is ϵ . In the regression, there is an implicit assumption that ϵ is independent of sample. (This is quite intuitive.) Also, since out-of-sample is mutually independent with in-sample, $\operatorname{Var}(\hat{\mathbf{Y}_z} - \mathbf{Y_z}) = \operatorname{Var}(\hat{\mathbf{Y}_z}) + \operatorname{Var}(\mathbf{Y_z}) = \sigma^2 \mathbf{C_z} + \sigma^2 = \sigma^2 (1 + \mathbf{C_z})$. Here $\mathbf{Y_z} = \hat{\boldsymbol{\beta}}_0 + \mathbf{z}^t \hat{\boldsymbol{\beta}}_1$. Using the similar argument in the above, we see that $100 \ (1-\alpha)\%$ confidence interval for $\mathbf{Y_z}$ is

$$\mathbf{Y}_{\mathbf{z}}: \quad \hat{\mathbf{Y}}_{\mathbf{z}} \pm t_{\alpha/2}(n-p-1)\sqrt{\hat{\sigma}^2(1+\mathbf{C}_{\mathbf{z}})}.$$