ABSTRACT

Accurate brain tumor segmentation is crucial for diagnosis, treatment planning, and prognosis. Although magnetic resonance imaging (MRI) is a commonly utilized technique for brain tumorsegmentation, the heterogeneity of the tumor and the similarity of the surrounding healthy tissue can make the process difficult. This paper suggests a unique method for segmenting MRI brain tumors utilizing Long Short-Term Memory (LSTM) networks and Swin-Transformer (Swin-T) networks. On a range of image classification tasks, the hierarchical transformer-based vision model Swin-T achieves state-of-the-art performance. Sequential information is best captured by LSTM networks, which is advantageous for medical picture segmentation tasks that need spatial context. The suggested approach combines the long-range dependency learning of LSTM with the feature extraction capabilities of Swin-T. High-level features are extracted from MRI images by the Swin-T encoder, and segmentation masks are gradually improved by the LSTM decoder. The model incorporates a residual connection between the encoder and the decoder to improve accuracy by preserving spatial information that is lost during encoding. When tested on a benchmark dataset for brain tumor segmentation, the Swin-LSTM network performs better than previous methods. It generates robust and accurate segmentation masks, particularly for complicated tumors with irregular shapes. The efficacy of LSTM decoder, residual connection, and Swin-T encoder has been verified by ablation research. To sum up, this work provides a Swin-LSTM technique that uses LSTM for long- range dependency capture and Swin-T for feature extraction for MRI brain tumor segmentation. Its potential as a tool for clinical brain tumor diagnosis and treatment planning is enhanced by integration with a residual connection.

ACKNOWLEDGEMENT

First and foremost, we would like to thank the LORD ALMIGHTY for his abundant blessings that is showered upon our past, present and future successful endeavors.

We extend our sincere gratitude to our college management and principal **Dr. S. Arivazhagan M.E., Ph.D.**, for providing sufficient working environment such as systems and library facilities.

We would like to extend our heartfelt gratitude to our Head of the Artificial Intelligence and Data Science Department **Dr. J. Angela Jennifa Sujana M. Tech., Ph.D.**, Professor & Head for giving us the golden opportunity to undertake the project of this nature and for her most valuable guidance.

We would also like to extend our gratitude to Mrs. L. Prasika M.E., (Ph.D.,) Assistant Professor, Department of Artificial Intelligence and Data Science, for being our project coordinator and directing us throughout our project.

We would also like to extend our gratitude and sincere thanks to Dr.A. Shenbagarajan B.E (EEE), M.E(CSE), Ph.D., Associate Professor, Department of Artificial Intelligence and Data Science for being our project guide and for his moral support and suggestions. He has put his valuable experience and expertise in directing, suggesting and supporting us throughout the project to bring our best.

Our sincere thanks to our revered faculty members, lab technicians and beloved family and our friends for their help at right time for making this project a successful one.

TABLE OF CONTENTS

CHAPTER NO.	TITLE	PAGE NO.
	ABSTRACT	i
	ACKNOWLEDGEMENT	ii
	LIST OF FIGURES	v
	LIST OF ABBREVATIONS	vi
1.	INTRODUCTION	1
	1.1 BACKGROUND AND CONTEXT	1
	1.2 PROBLEM STATEMENT	2
	1.3 OBJECTIVE	3
	1.4 METHODOLOGY OVERVIEW	4
2.	LITERATURE SURVEY	7
3.	SYSTEM DESIGN	17
	3.1 SYSTEM WORKFLOW	17
	3.2 METHODOLOGY	18
	3.2.1 DATA ACQUISITION	18
	3.2.2 DATA PREPROCESSING	19
	3.2.3 FEATURE EXTRACTION USING LSTM	21
	3.2.4 CLASSIFICATION USING SWIN	24
	TRANSFORMER	
4.	SYSTEM STUDY	27
	4.1 LONG SHORT-TERM MEMORY (LSTM)	27
	NETWORKS	
	4.2 SWIN TRANSFORMER	30
	4.3 SWIN-LSTM MODEL	39
5.	RESULTS AND DISCUSSIONS	42
	5.1 AUGMENTED IMAGES	42
	5.2 ACCURACY	42
	5.3 ACCURACY LOSS GRAPH	43
	5.4 CLASSIFICATION REPORT	45
	5.5 DASHBOARD	46

6.	CONCLUSION AND FUTURE ENHANCEMENT	48
	APPENDIX I	49
	APPENDIX II	50
	REFERENCES	57
	PUBLICATIONS	60

LIST OF FIGURES

S.No.	Image	Page Number
3.1.	System Workflow	17
3.2.1.1.	Types of Tumor	19
3.2.2.1.	MRI image before and after pre-processing	21
3.2.3.1.	LSTM Architecture	23
3.2.4.1.	SWIN Transforner Blocks	25
3.2.4.2.	Architecture of SWIN Transformer	26
4.2.1	Patch Partitioning	31
4.2.2.	Shifted Windows	32
4.2.3.	Relative Position Embedding	32
4.2.4.	Self Attention Layer	33
4.2.5.	Self Attention Head	33
4.2.6.	Cyclic Shift	34
4.2.7.	Masked MSA	34
4.2.8.	Batch Computation	35
4.2.9.	Architecture of SWIN Transformer	35
4.2.10.	Variants of SWIN Transformer	39
5.1.1.	Before and After Augmentation	42
5.2.1.	Accuracy for 100 epochs	43
5.3.1.	Accuracy and Loss Graph for SWIN Transformer (2 classes)	44
5.3.2.	Accuracy and Loss Graph for SWIN Transfromer	44
5.3.3.	(4 classes) Accuracy and Loss Graph for SWIN-LSTM Model (2 Classes)	45
5.3.4.	Accuracy and Loss Graph for SWIN-LSTM Model (4 Classes)	45
5.4.1.	Classification Report	46

LIST OF ABBREVIATIONS

ABBREVIATIONS EXPANSION

CNN - Convolutional Neural Network

AI - Artificial Intelligence

LSTM - Long Short Term Memory

SWIN - Shifted Windows

ACC - Accuracy

MRI - Magnetic Resonance Imaging

RNN - Recurrent Neural Network

W-MSA - Window Multi-head Self Attention

SW-MSA - Shifted Window Multi-head Self Attention