10. Übung zur Vorlesung

Differential- und Integralrechnung für Informatiker

(A 41)

Sei $f: \mathbb{R}^* \times \mathbb{R}^2 \to \mathbb{R}$ definiert durch $f(x, y, z) = \frac{z^2 e^y}{x}$. Man bestimme:

- a) alle partiellen Ableitungen erster Ordnung von f,
- b) alle partiellen Ableitungen zweiter Ordnung von f,
- c) die Vektoren $u := \nabla f(1,0,2), v := \nabla f(2,1,1)$ und deren Skalarprodukt $\langle u,v \rangle$.

(A 42)

Für die Funktion $f \colon \mathbb{R}^2 \to \mathbb{R}$, erklärt als $f(x,y) = \begin{cases} \frac{x^4 - y^4}{2(x^4 + y^4)}, & (x,y) \neq 0_2 \\ 0, & (x,y) = 0_2 \end{cases}$, untersuche man die partielle Differenzierbarkeit (nach beiden Variablen) in 0_2 .

(A 43)

Sei
$$f : \mathbb{R}^2 \to \mathbb{R}$$
 definiert durch $f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2}, & (x,y) \neq 0_2 \\ 0, & (x,y) = 0_2 \end{cases}$.

- a) Man zeige, dass f partiell differenzierbar (nach beiden Variablen) auf \mathbb{R}^2 ist, und bestimme beide partiellen Ableitungen erster Ordnung von f.
- b) Man zeige, dass f in 0_2 nicht stetig ist (obwohl f in 0_2 partiell differenzierbar ist).

(A 44)

Seien $M:=\{(x,y)\in\mathbb{R}^2\mid x+y>0\}$ und $f\colon M\to\mathbb{R}$ die durch $f(x,y)=\frac{x^2+y^2}{x+y}$ definierte Funktion.

- a) Man bestimme die Vektoren $u := \nabla(1,2), v := \nabla(2,-1)$, deren Skalarprodukt $\langle u,v \rangle$ sowie den euklidischen Abstand zwischen ihnen.
- b) Man zeige, dass für alle $(x,y) \in M$ die Gleichheit $x \frac{\partial f}{\partial x}(x,y) + y \frac{\partial f}{\partial y}(x,y) = f(x,y)$ gilt.

(A 45) (Für Schlaufüchse)

Man beweise **S5** in der 10. Vorlesung: Für $S \subseteq \mathbb{R}^n$ gelten int $S \subseteq S$ und int $S \subseteq S'$.