WO0191787

Publication Title:

COMPLEXES OF ALPHA (2) MACROGLOBULIN AND ANTIGENIC MOLECULES FOR IMMUNOTHERAPY

Abstract:

Abstract of WO0191787

The present invention relates to complexes of alpha (2) macroglobulin associated with antigenic molecules for use in immunotherapy. The invention relates to methods for using such compositions in the diagnosis and treatment of immune disorders, proliferative disorders, and infectious diseases. Data supplied from the esp@cenet database - Worldwide

Courtesy of http://v3.espacenet.com

This Patent PDF Generated by Patent Fetcher(TM), a service of Stroke of Color, Inc.

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 6 December 2001 (06.12.2001)

PCT

(10) International Publication Number WO 01/91787 A1

- (51) International Patent Classification⁷: A61K 39/00, 39/385, 39/39, 47/00, 35/14, C07K 1/02, 1/04
- (21) International Application Number: PCT/US01/18047
- (22) International Filing Date: 4 June 2001 (04.06.2001)
- (25) Filing Language:

01.00.2001)

(26) Publication Language:

English English

(30) Priority Data:

60/209,266 09/625,139 2 June 2000 (02.06.2000) US 25 July 2000 (25.07.2000) US

- (71) Applicant: UNIVERSITY OF CONNECTICUT HEALTH CENTER [US/US]; 263 Farmington Avenue, Farmington, CT 06030 (US).
- (72) Inventor: SRIVASTAVA, Pramod, K.; 70 Pheasent Run, Avon, CT 06001 (US).

- (74) Agents: ANTLER, Adriane, M. et al.; Pennie & Edmonds LLP, 1155 Avenue of the Americas, New York, NY 10036 (US).
- (81) Designated States (national): AU, CA, JP.
- (84) Designated States (regional): European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR).

Published:

- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

1/91787 A

(54) Title: COMPLEXES OF ALPHA (2) MACROGLOBULIN AND ANTIGENIC MOLECULES FOR IMMUNOTHERAPY

(57) Abstract: The present invention relates to complexes of alpha (2) macroglobulin associated with antigenic molecules for use in immunotherapy. The invention relates to methods for using such compositions in the diagnosis and treatment of immune disorders, proliferative disorders, and infectious diseases.

COMPLEXES OF ALPHA (2) MACROGLOBULIN AND ANTIGENIC MOLECULES FOR IMMUNOTHERAPY

This invention was made with government support under grant number CA64394 awarded by the National Institutes of Health. The government has certain rights in the invention.

1. INTRODUCTION

The present invention relates to complexes of alpha (2) macroglobulin associated
with antigenic molecules for use in immunotherapy. The invention relates to methods for
using such compositions in the diagnosis and treatment of immune disorders, proliferative
disorders, and infectious diseases.

2. BACKGROUND OF THE INVENTION

2.1. HEAT SHOCK PROTEINS

15

20

25

Heat shock proteins (HSPs), also referred to as stress proteins, were first identified as proteins synthesized by cells in response to heat shock. Hsps have classified into five families, based on molecular weight, Hsp100, Hsp90, Hsp70, Hsp60, and smHsp. Many members of these families were found subsequently to be induced in response to other stressful stimuli including nutrient deprivation, metabolic disruption, oxygen radicals, and infection with intracellular pathogens (see Welch, May 1993, Scientific American 56-64; Young, 1990, Annu. Rev. Immunol. 8:401-420; Craig, 1993, Science 260:1902-1903; Gething et al., 1992, Nature 355:33-45; and Lindquist et al., 1988, Annu. Rev. Genetics 22:631-677).

Heat shock proteins are among the most highly conserved proteins in existence. For example, DnaK, the Hsp70 from *E. coli* has about 50% amino acid sequence identity with Hsp70 proteins from excoriates (Bardwell *et al.*, 1984, Proc. Natl. Acad. Sci. 81:848-852). The Hsp60 and Hsp90 families also show similarly high levels of intra-family conservation (Hickey *et al.*, 1989, Mol. Cell. Biol. 9:2615-2626; Jindal, 1989, Mol. Cell. Biol. 9:2279-2283). In addition, it has been discovered that the Hsp60, Hsp70 and Hsp90 families are composed of proteins that are related to the stress proteins in sequence, for example, having greater than 35% amino acid identity, but whose expression levels are not altered by stress.

Studies on the cellular response to heat shock and other physiological stresses revealed that the HSPs are involved not only in cellular protection against these adverse conditions, but also in essential biochemical and immunological processes in unstressed

cells. Hsps accomplish different kinds of chaperoning functions. For example, members of the Hsp70 family, located in the cell cytoplasm, nucleus, mitochondria, or endoplasmic reticulum (Lindquist et al., 1988, Ann. Rev. Genetics 22:631-677), are involved in the presentation of antigens to the cells of the immune system, and are also involved in the transfer, folding and assembly of proteins in normal cells. Hsps are capable of binding proteins or peptides, and releasing the bound proteins or peptides in the presence of adenosine triphosphate (ATP) or low pH.

2.2. IMMUNOGENICITY OF HSP-PEPTIDE COMPLEXES

Srivastava et al. demonstrated immune response to methylcholanthrene-induced 10 sarcomas of inbred mice (1988, Immunol. Today 9:78-83). In these studies, it was found that the molecules responsible for the individually distinct immunogenicity of these tumors were glycoproteins of 96kDa (gp96) and intracellular proteins of 84 to 86kDa (Srivastava et al., 1986, Proc. Natl. Acad. Sci. USA 83:3407-3411; Ullrich et al., 1986, Proc. Natl. Acad. Sci. USA 83:3121-3125). Immunization of mice with gp96 or p84/86 isolated from a 15 particular tumor rendered the mice immune to that particular tumor, but not to antigenically distinct tumors. Isolation and characterization of genes encoding gp96 and p84/86 revealed significant homology between them, and showed that gp96 and p84/86 were, respectively, the endoplasmic reticular and cytosolic counterparts of the same heat shock proteins (Srivastava et al., 1988, Immunogenetics 28:205-207; Srivastava et al., 1991, Curr. Top. 20 Microbiol. Immunol. 167:109-123). Further, Hsp70 was shown to elicit immunity to the tumor from which it was isolated but not to antigenically distinct tumors. However, Hsp70 depleted of peptides was found to lose its immunogenic activity (Udono and Srivastava, 1993, J. Exp. Med. 178:1391-1396). These observations suggested that the heat shock proteins are not immunogenic per se, but form noncovalent complexes with antigenic peptides, and the complexes can elicit specific immunity to the antigenic peptides (Srivastava, 1993, Adv. Cancer Res. 62:153-177; Udono et al., 1994, J. Immunol., 152:5398-5403; Suto et al., 1995, Science 269:1585-1588).

Noncovalent complexes of HSPs and peptide, purified from cancer cells, can be used for the treatment and prevention of cancer and have been described in PCT publications WO 96/10411, dated April 11, 1996, and WO 97/10001, dated March 20, 1997 (U.S. Patent No. 5,750,119 issued April 12, 1998, and U.S. Patent No. 5,837,251 issued November 17, 1998, respectively, each of which is incorporated by reference herein in its entirety). The isolation and purification of stress protein-antigen complexes has been described, for example, from pathogen-infected cells, and used for the treatment and prevention of infection caused by the pathogen, such as viruses, and other intracellular pathogens, including bacteria, protozoa, fungi and parasites (see, for example, PCT Publication WO 95/24923, dated September 21,

1995). Immunogenic stress protein-antigen complexes can also be prepared by in vitro complexing of stress protein and antigenic peptides, and the uses of such complexes for the treatment and prevention of cancer and infectious diseases has been described in PCT publication WO 97/10000, dated March 20, 1997 (U.S. Patent No. 6,030,618 issued February 29, 2000. The use of stress protein-antigen complexes for sensitizing antigen presenting cells in vitro for use in adoptive immunotherapy is described in PCT publication WO 97/10002, dated March 20, 1997 (see also U.S. Patent No. 5,985,270 issued November 16, 1999).

2.3. ALPHA (2) MACROGLOBULIN RECEPTOR

10

20

25

35

The α-macroglobulins are members of a protein superfamily of structurally related proteins which also comprises complement components C3, C4 and C5. The human plasma protein alpha (2) macroglobulin (α2M) is a 720 kDa homotetrameric protein primarily known as proteinase inhibitor and plasma and inflammatory fluid proteinase scavenger molecule (for review see Chu and Pizzo, 1994, Lab. Invest. 71:792). Alpha (2) macroglobulin is synthesized as a 1474 amino acid precursor, the first 23 of which function as a signal sequence that is cleaved to yield a 1451 amino acid mature protein (Kan et al., 1985, Proc. Natl. Acad. Sci. U.S.A. 82:2282-2286).

Alpha (2) macroglobulin promiscuously binds to proteins and peptides with nucleophilic amino acid side chains in a covalent manner (Chu et al., 1994, Ann. N.Y. Acad. Sci. 737:291-307) and targets them to cells which express the α2M receptor (α2MR) (Chu and Pizzo, 1993, J. Immunol. 150:48). Binding of α2M to the α2M receptor is mediated by the C-terminal portion of α2M (Holtet et al., 1994, FEBS Lett. 344:242-246) and key residues have been identified (Nielsen et al., 1996, J. Biol. Chem. 271:12909-12912).

Generally known for inhibiting protease activity, $\alpha 2M$ binds to a variety of proteases thorough multiple binding sites (see, e.g., Hall et al., 1981, Biochem. Biophys. Res. Commun. 100(1):8-16). Protease interaction with $\alpha 2M$ results in a complex structural rearrangement called transformation, which is the result of a cleavage within the "bait" region of $\alpha 2M$ after the proteinase becomes "trapped" by thioesters. The conformational change exposes residues required for receptor binding, allowing the $\alpha 2M$ -proteinase complex to bind to the $\alpha 2MR$. Methylamine can induce similar conformational changes and cleavage as that induced by proteinases. The uncleaved form of $\alpha 2M$, which is not recognized by the receptor, is often referred to as the "slow" form (s- $\alpha 2M$). The cleaved form is referred to as the "fast" form (f- $\alpha 2M$) (reviewed by Chu et al., 1994, Ann. N.Y. Acad. Sci. 737:291-307).

Studies have shown that in addition to its proteinase-inhibitory functions, α2M, when complexed to antigens, can enhance the antigens' ability to be taken up by antigen presenting cells such as macrophages and presented to T cell hybridomas *in vitro* by up to two orders of

magnitude (Chu and Pizzo, 1994, Lab. Invest. 71:792), and induce T cell proliferation (Osada et al., 1987, Biochem. Biophys. Res. Commun.146:26-31). Further evidence suggests that complexing antigen with α2M enhances antibody production by crude spleen cells *in vitro* (Osada *et al.*, 1988, Biochem. Biophys. Res. Commun. 150:883) elicits an *in vivo* antibody responses in experimental rabbits (Chu *et al.*, 1994, J. Immunol. 152:1538-1545) and mice (Mitsuda *et al.*, 1993, Biochem. Biophys. Res. Commun. 101:1326-1331). However, none of these studies have shown whether alpha2M-antigen complexes are capable of eliciting cytotoxic T cell responses *in vivo*.

2.4. IMMUNOGENICITY OF HEAT SHOCK/STRESS PROTEINS

10

15

20

25

30

Srivastava et al. demonstrated immune response to methylcholanthrene-induced sarcomas of inbred mice (1988, Immunol. Today 9:78-83). In these studies, it was found that the molecules responsible for the individually distinct immunogenicity of these tumors were identified as cell-surface glycoproteins of 96kDa (gp96) and intracellular proteins of 84 to 86kDa (Srivastava et al., 1986, Proc. Natl. Acad. Sci. USA 83:3407-3411; Ullrich, S.J. et al., 1986, Proc. Natl. Acad. Sci. USA 83:3121-3125). Immunization of mice with gp96 or p84/86 isolated from a particular tumor rendered the mice immune to that particular tumor, but not to antigenically distinct tumors. Isolation and characterization of genes encoding gp96 and p84/86 revealed significant homology between them, and showed that gp96 and p84/86 were, respectively, the endoplasmic reticular and cytosolic counterparts of the same heat shock proteins (Srivastava et al., 1988, Immunogenetics 28:205-207; Srivastava et al., 1991, Curr. Top. Microbiol. Immunol. 167:109-123). Further, Hsp70 was shown to elicit immunity to the tumor from which it was isolated but not to antigenically distinct tumors. However, Hsp70 depleted of peptides was found to lose its immunogenic activity (Udono and Srivastava, 1993, J. Exp. Med. 178:1391-1396). These observations suggested that the heat shock proteins are not immunogenic per se, but form noncovalent complexes with antigenic peptides, and the complexes can elicit specific immunity to the antigenic peptides (Srivastava, 1993, Adv. Cancer Res. 62:153-177; Udono et al., 1994, J. Immunol., 152:5398-5403; Suto et al., 1995, Science, 269:1585-1588).

The use of noncovalent complexes of stress proteins and peptides, purified from cancer cells, for the treatment and prevention of cancer, as well as the use of such complexes in combination with adoptive immunotherapy, has been described (see U.S. Patent No. 5,750,199; U.S. Patent No. 5,830,464; Patent Cooperation Treaty ("PCT") publications WO 96/10411, dated April 11, 1996; and WO 97/10001, dated March 20, 1997; each of which is incorporated by reference herein in its entirety. The purification of stress protein-peptide complexes from cell lysates has been described previously; stress protein-peptide complexes can be isolated from pathogen-infected cells and used for the treatment and prevention of

infection caused by pathogens, such as viruses and other intracellular pathogens, including bacteria, protozoa, fungi and parasites (see PCT publication WO 95/24923, dated September 21, 1995).

Immunogenic stress protein-peptide complexes can also be prepared by *in vitro* complexing of stress protein and antigenic peptides, and the uses of such complexes for the treatment and prevention of infectious diseases and cancer has been described in PCT publication WO 97/10000, dated March 20, 1997. The use of heat shock proteins in combination with a defined antigen for the treatment of infectious diseases and cancer have also been described in PCT publication WO 97/06821, dated February 27, 1997. The administration of expressible polynucleotides encoding eukaryotic heat shock proteins to mammalian cells for stimulating an immune response, and for treatment of infectious diseases and cancer has been described in PCT publications, WO 97/06685 and WO 97/06828, both dated February 27, 1997. The use of stress protein-peptide complexes for sensitizing antigen presenting cells *in vitro* for use in adoptive immunotherapy is described in PCT publication WO 97/10002, dated March 20, 1997.

2.5. ANTIGEN PRESENTATION

5

10

15

20

30

Major histocompatibility complex (MHC) molecules present antigens on the cell surface of antigen-presenting cells. Cytotoxic T lymphocytes (CTLs) then recognize MHC molecules and their associated peptides and kill the target cell. Antigens are processed by two distinct antigen processing routes depending upon whether their origin is intracellular or extracellular. Intracellular or endogenous protein antigens, *i.e.*, antigens synthesized within the antigen-presenting cell, are presented by MHC class I (MHC I) molecules to CD8+ cytotoxic T lymphocytes. On the other hand, extracellular or exogenously synthesized antigenic determinants are presented on the cell surface of "specialized" or "professional" APCs (macrophages, for example) by MHC class II molecules to CD4+ T cells (see, generally, Fundamental Immunology, W.E. Paul (ed.), New York: Raven Press, 1984). This compartmental segregation of antigen processing routes is important to prevent tissue destruction that could otherwise occur during an immune response as a result of shedding of neighboring cell MHC I antigens.

The heat shock protein gp96 chaperones a wide array of peptides, depending upon the source from which gp96 is isolated (for review, see Srivastava et al., 1998, Immunity 8: 657-665). Tumor-derived gp96 carries tumor-antigenic peptides (Ishii et al., 1999, J. Immunology 162:1303-1309); gp96 preparations from virus-infected cells carry viral epitopes (Suto and Srivastava, 1995, Science 269:1585-1588; Nieland et al., 1998, Proc. Natl. Acad. Sci. USA 95:1800-1805), and gp96 preparations from cells transfected with model antigens such as ovalbumin or β-galactosidase are associated with the corresponding

epitopes (Arnold et al., 1995, J. Exp. Med.182:885-889; Breloer et al., 1998, Eur. J. Immunol. 28:1016-1021). The association of gp96 with peptides occurs in vivo (Menoret and Srivastava, 1999, Biochem. Biophys. Research Commun. 262:813-818). Gp96-peptide complexes, whether isolated from cells (Tamura et al., 1997, Science 278:117-120), or reconstituted in vitro (Blachere et al., 1997, J. Exp. Med. 186:1183-1406) are excellent immunogens and have been used extensively to elicit CD8+ T cell responses specific for the gp96-chaperoned antigenic peptides.

The capacity of gp96-peptide complexes to elicit an immune response is dependent upon the transfer of the peptide to MHC class I molecules of antigen-presenting cells (Suto and Srivastava, 1995, *supra*). Endogenously synthesized antigens chaperoned by gp96 in the endoplasmic reticulum [ER] can prime antigen-specific CD8+ T cells (or MHC I-restricted CTLs) *in vivo*; this priming of CD8+ T cells requires macrophages. However, the process whereby exogenously introduced gp96-peptide complexes elicit the antigen-specific CD8+ T cell response is not completely understood since there is no established pathway for the translocation of extracellular antigens into the class I presentation machinery. Yet antigenic peptides of extracellular origin associated with HSPs are somehow salvaged by macrophages, channeled into the endogenous pathway, and presented by MHC I molecules to be recognized by CD8+ lymphocytes (Suto and Srivastava, 1995, *supra*; Blachere *et al.*, 1997, J. Exp. Med. 186:1315-22).

Several models have been proposed to explain the delivery of extracellular peptides 20 for antigen presentation. One proposal, known as the "direct transfer" model, suggests that HSP-chaperoned peptides are transferred to MHC I molecules on the cell surface of macrophages for presentation to CD8+ T lymphocytes. Another suggestion is that soluble extracellular proteins can be trafficked to the cytosol via constitutive macropinocytosis in bone marrow-derived macrophages and dendritic cells (Norbury et al., 1997, Eur. J. 25 Immunol. 27:280-288). Yet another proposed mechanism is that HSPs are taken up by the MHC class I molecules of the macrophage, which stimulate the appropriate T cells (Srivastava et al., 1994, Immunogenetics 39:93-98. Others have suggested that a novel intracellular trafficking pathway may be involved for the transport of peptides from the extracellular medium into the lumen of ER (Day et al., 1997, Proc. Natl. Acad. Sci. 94:8064-8069; Nicchitta, 1998, Curr. Opin. in Immunol. 10:103-109). Further suggestions include the involvement of phagocytes which (a) possess an ill-defined pathway to shunt protein from the phagosome into the cytosol where it would enter the normal class I pathway; (b) digest ingested material in lysosomes and regurgitate peptides for loading on the surface to class I molecules (Bevan, 1995, J. Exp. Med. 182:639-41). 35

Still others have proposed a receptor-mediated pathway for the delivery of extracellular peptides to the cell surface of APS for antigen presentation. In view of the

extremely small quantity of gp96-chaperoned antigenic peptides required for immunization (Blachere et al., 1997, supra), and the strict dependence of immunogenicity of gp96-peptide complexes on functional antigen presenting cells (APCs) (Udono et al., 1994, Proc. Natl. Acad. Sci. U.S.A. 91:3077-3081), APCs had been proposed to possess receptors for gp96 (Srivastava et al., 1994, Immunogenetics 39:93-98). Preliminary microscopic evidence consistent with such receptors has been recently obtained (Binder et al., 1998, Cell Stress & Chaperones 3 (Supp.1):2.; Arnold-Schild et al., 1999, J. Immunol. 162: 3757-3760; and Wassenberg et al., 1999, J. Cell Sci. 1:12). One hypothesis is that the mannose receptor is used in the uptake of gp96, but no mechanism has been proposed for the non-glycosylated HSPs, such as Hsp70 (Ciupitu et al., 1998, J. Exp. Med., 187:685-691).

5

10

The identification and characterization of specific molecules involved in HSP-mediated antigen presentation of peptides, could provide useful reagents and techniques for eliciting specific immunity by HSP and HSP-peptide complexes, and for developing novel diagnostic and therapeutic methods.

15 Citation or discussion of a reference herein shall not be construed as an admission that such is prior art to the present invention.

3. SUMMARY OF THE INVENTION

The present invention provides complexes comprising alpha (2) macroglobulin ("α2M") and methods for their use in immunotherapy. The invention is based, in part, on the Applicant's discovery that α2M directly competes for the binding of heat shock protein gp96 to the α2M receptor, indicating that α2M and HSPs may bind to a common recognition site on the alpha (2) macroglobulin receptor. Thus, because HSPs and α2M have a number of common functional attributes, such as the ability to bind peptides and the recognition and uptake by the alpha (2) macroglobulin receptor, the Applicants have discovered that α2M can be used in the methods described herein for immunotherapy against cancer and infectious disease. Alpha-2-macroglobulin can form complexes with antigens, which are taken up by antigen presenting cells ("APCs") via the alpha (2) macroglobulin receptor, also known as LDL (low-density lipoprotein) Receptor-Related Protein ("LRP") or CD91. Thus, the invention provides methods and compositions for using specific α2M-antigenic molecule complexes for targeting an immune response against immune disorders, proliferative disorders, and infectious diseases.

The invention encompasses complexes of alpha (2) macroglobulin noncovalently associated antigenic molecules, recombinant cells that express the complexes of α2M associated with antigenic molecules, and antibodies and other molecules that specifically

recognize α 2M-antigenic molecule complexes. The invention also provides methods for using these compositions in the diagnosis and treatment of immune disorders, proliferative disorders, and infectious diseases.

As used herein, an alpha (2) macroglobulin is associated with an antigenic molecule is bound to the antigenic molecule by a covalent or noncovalent bond. A covalent bond can be a peptide bond or a thioester linkage, for example. Thus, fusion proteins between alpha (2) macroglobulin and an antigenic molecule are within the scope of the invention.

5

20

30

The invention provides a pharmaceutical composition comprising an amount of a molecular complex effective for treatment or prevention of an infectious disease or cancer, and a pharmaceutically acceptable carrier, said molecular complex comprising an alpha (2) macroglobulin polypeptide noncovalently associated with an antigenic molecule which displays the antigenicity of an antigen of an infectious agent or an antigen overexpressed in a cancer cell relative to its expression in a noncancerous cell of said cell type. As used herein a cell type of a cancer cell, refers to the cell type of the tissue of origin, e.g., breast, lung, ovarian. In one embodiment, the antigenic molecule displays the antigenicity of an antigen of an infectious agent. In another embodiment, the antigenic molecule displays the antigenicity of an antigen overexpressed in a cancer cell relative to its expression in a noncancerous cell of said cell type. In another embodiment, the antigenic molecule is a tumor specific antigen or a tumor-associated antigen. In another embodiment, the antigenic molecule displays the antigenicity of an antigen overexpressed in a cancer cell relative to its expression in a noncancerous cell of said cell type.

In another embodiment, the molecular complex effective for treatment or prevention of an infectious disease or cancer, comprising the alpha (2) macroglobulin polypeptide noncovalently associated with the antigenic molecule is purified. In particular, the term "purified" molecular complexes refer to complexes which are at least 65% 75%, 80%, 85%, 90%, 95%, 98% or 100% noncovalent complexes of the alpha (2) macroglobulin polypeptide and the antigenic molecule. In another embodiment, the purified molecular complex comprising an alpha (2) macroglobulin polypeptide associated with an antigenic molecule of an infectious agent or an antigen overexpressed in a cancer cell relative to its expression in a noncancerous cell of said cell type.

The invention further provides a purified population of molecular complexes in which at least 65%, 70%, 75%, 80%, 85%, 90%, 95%, 98%, or 100% of the complexes comprise an alpha (2) macroglobulin noncovalently associated with an antigenic molecule. Also provided by the invention is a purified population of molecular complexes purified from a recombinant cell in which at least 65%, 70%, 75%, 80%, 85%, 90%, 95%, 98%, or 100% of the complexes comprise an alpha (2) macroglobulin noncovalently associated with an antigenic molecule.

5

15

20

The invention also provides a recombinant cell infected with a pathogen and transformed with a nucleic acid comprising a nucleotide sequence that (i) is operably linked to a promoter, and (ii) encodes an alpha (2) macroglobulin polypeptide, which alpha (2) macroglobulin polypeptide associates with an antigenic molecule, when said antigenic molecule is present, to form a complex that in sufficient amount is capable of eliciting an immune response to the antigenic molecule. The invention provides a recombinant cancer cell transformed with a nucleic acid comprising a nucleotide sequence that (i) is operably linked to a promoter, and (ii) encodes an alpha (2) macroglobulin polypeptide, which alpha (2) macroglobulin polypeptide associates with an antigenic molecule, when said antigen is present, to form a complex that in sufficient amount is capable of eliciting an immune 10 response to the antigenic molecule. In another embodiment, the invention provides a recombinant cell transformed with (i) a first nucleic acid comprising a first nucleotide sequence that is operably linked to a first promoter and encodes an alpha (2) macroglobulin polypeptide, and (ii) a second nucleic acid comprising a second nucleotide sequence that is operably linked to a second promoter and encodes an antigenic molecule, such that the alpha (2) macroglobulin polypeptide and the antigenic molecule are expressed within the cell and associate with each other to form a complex that in sufficient amount is capable of eliciting an immune response to the antigenic molecule. In various embodiments, the recombinant cells are human cells. In various embodiments, the pharmaceutical composition comprises a recombinant cell and a pharmaceutically acceptable carrier.

In one embodiment, a method is provided for preparing a complex of an alpha (2) macroglobulin polypeptide noncovalently associated with an antigenic molecule, said alpha (2) macroglobulin polypeptide comprising: (a) culturing a cell transformed with a nucleic acid comprising a nucleotide sequence encoding the alpha (2) macroglobulin polypeptide, under conditions such that said alpha (2) macroglobulin polypeptide is expressed by the cells and associates with an antigenic molecule of the cell; and (b) recovering a population of complexes of the alpha (2) macroglobulin polypeptide noncovalently associated with antigenic molecules from the cells.

The invention further provides a method for preparing an alpha (2) macroglobulin polypeptide noncovalently associated with antigenic molecules derived from one or more antigens of an infectious agent, comprising: culturing infected cells, transformed with a nucleic acid comprising a nucleotide sequence encoding the alpha (2) macroglobulin polypeptide, or fragment, analog, or variant thereof, and operably linked to a promoter, under conditions such that the alpha (2) macroglobulin polypeptideis expressed by the cells and associates with peptides of the cells; and (b) recovering from the cells a population of complexes of the alpha (2) macroglobulin polypeptide noncovalently associated with peptides derived from the infectious agent. In one embodiment, the method further

comprises purifying the complexes. In another embodiment, the method further comprising purifying the complexes by affinity chromatography.

The invention further provides a method of treating or preventing an infectious disease in an individual having an infectious disease comprising administering to the individual one or more immunogenic complexes of an alpha (2) macroglobulin polypeptide noncovalently associated with a first antigenic molecule, wherein the first antigenic molecule displays the antigenicity of an antigen of an infectious agent of the infectious disease. In another embodiment, the method further comprises, before, concurrently or after administration of the immunogenic complex, administering to the individual a composition comprising antigen presenting cells sensitized *in vitro* with a sensitizing amount of a second complex of alpha (2) macroglobulin polypeptide noncovalently associated with a second antigenic molecule, said second antigenic molecule displaying the antigenicity of a second antigenic molecule of said infectious agent.

The invention further provides a method of treating or preventing an infectious disease in a subject having an infectious disease comprising: a) culturing an infected cell transformed with a nucleic acid comprising a nucleotide sequence encoding an alpha (2) macroglobulin polypeptide, said infected cell displaying the antigenicity of an antigen of an infectious agent of the infectious disease, said nucleotide sequence being operably linked to a promoter, under conditions such that the alpha (2) macroglobulin polypeptide is expressed by the infected cells and associates with antigenic molecules of the cell; b) recovering complexes of the alpha (2) macroglobulin polypeptide noncovalently associated with antigenic molecules from the infected cell; and c) administering to the subject an amount of the recovered complexes effective to treat or prevent the infectious disease. In one embodiment, the method further comprises, prior to step (a), the step of obtaining infected cells from the subject and transforming the infected cells with the nucleic acid. In another embodiment, the method further comprises, prior to step (a), the step of obtaining the infected cell from one or more individuals and transforming the infected cells with the nucleic acid, said one or more individuals being different from the subject and having the same type of infectious disease as the subject.

The invention further provides a method of treating or preventing an infectious disease in a subject having an infectious disease comprising: a) culturing a recombinant cell transformed with (i) a first nucleic acid encoding an alpha (2) macroglobulin polypeptide and (ii) a second nucleic acid encoding an antigenic molecule displaying the antigenicity of an antigen of an infectious agent of the infectious disease; b) recovering complexes of the alpha (2) macroglobulin polypeptide noncovalently associated with the antigen; and c) administering to the subject an amount of the recovered complexes effective to treat or prevent the infectious disease. In various embodiments, the infectious disease is caused by

5

20

an infectious agent selected from the group consisting of a virus, a bacterium, a fungus, and a parasite.

Also provide by the invention is a method of treating or preventing cancer in an individual having a type of cancer or in whom prevention of a type of cancer is desired comprising administering to the individual an immunogenic complex of an alpha (2) macroglobulin polypeptide noncovalently associated with a first antigenic molecule, wherein either (a) the first antigenic molecule displays antigenicity of said type of cancer or a metastasis thereof; or (b) the complex is obtained by recovering complexes from said type of cancer cells or a metastasis thereof that recombinantly express the alpha (2) macroglobulin polypeptide. In one embodiment, this method further comprises, before, concurrently or after administration of the immunogenic complex, administering to the individual a composition comprising antigen presenting cells sensitized in vitro with a sensitizing amount of a second complex of an alpha (2) macroglobulin noncovalently associated with a second antigenic molecule, said second antigenic molecule displaying the antigenicity of an antigen overexpressed in a cancer cell relative to its expression in a noncancerous cell of said cell type. an infectious agent of the infectious disease. In another embodiment, the first antigenic molecule is an antigen overexpressed in a cancer cell relative to its expression in a noncancerous cell of said cell type.

In one embodiment, a method is provided for treating or preventing cancer in a subject having a type of cancer or in whom prevention of a type of cancer is desired comprising: a) culturing a cancer cell of said type transformed with a nucleic acid comprising a nucleotide sequence encoding an alpha (2) macroglobulin polypeptide said nucleotide sequence being operably linked to a promoter, under conditions such that the alpha (2) macroglobulin polypeptide is expressed by the cancer cell and associates with at least one antigenic molecule of the cell; b) recovering complexes of the alpha (2) macroglobulin polypeptide noncovalently associated with at least one antigenic molecule from the cancer cell; and c) administering to the subject an amount of the recovered complexes effective to treat or prevent cancer. In one embodiment, the method further comprises, prior to step (a), the step of obtaining cancer cells from the subject and transforming the cancer cells with the nucleic acid. In another embodiment, the method further comprises, prior to step (a), the step of obtaining cancer cells from one or more individuals and transforming the cancer cells with the nucleic acid, said one or more individuals being different from the subject and having the same type of cancer as the subject.

The invention further provides a method of treating or preventing cancer in a subject having a type of cancer or in whom prevention of a type of cancer is desired comprising: a) culturing a recombinant cell transformed with (i) a first nucleic acid encoding an alpha (2) macroglobulin polypeptide, and (ii) a second nucleic acid encoding an antigenic molecule

displaying the antigenicity of an antigen of a cancer cell; b) recovering complexes of the alpha (2) macroglobulin polypeptide noncovalently associated with the antigen; and c) administering to the subject an amount of the recovered complexes effective to treat or prevent cancer.

5

20

25

As used herein a "type of cancer" refers to e.g., melanoma, breast cancer, renal carcinoma, or a metastasis thereof, where a metastasis refers to the same type of cancer as the cell of origin. In various embodiments, the cancer is selected from the group consisting of fibrosarcoma, myxosarcoma, liposarcoma, chondrosarcoma, osteogenic sarcoma, chordoma, angiosarcoma, endotheliosarcoma, lymphangiosarcoma, lymphangioendotheliosarcoma, synovioma, mesothelioma, Ewing's tumor, leiomyosarcoma, rhabdomyosarcoma, colon carcinoma, pancreatic cancer, breast cancer, ovarian cancer, prostate cancer, squamous cell carcinoma, basal cell carcinoma, adenocarcinoma, sweat gland carcinoma, sebaceous gland carcinoma, papillary carcinoma, papillary adenocarcinomas, cystadenocarcinoma, medullary carcinoma, bronchogenic carcinoma, renal cell carcinoma, hepatoma, bile duct carcinoma, choriocarcinoma, seminoma, embryonal carcinoma, Wilms' tumor, cervical cancer, testicular tumor, lung carcinoma, small cell lung carcinoma, bladder carcinoma, epithelial carcinoma, glioma, astrocytoma, medulloblastoma, craniopharyngioma, ependymoma, pinealoma, hemangioblastoma, acoustic neuroma, oligodendroglioma, meningioma, melanoma, neuroblastoma, retinoblastoma, leukemia, lymphoma, multiple myeloma, Waldenström's macroglobulinemia, and heavy chain disease.

The invention also encompasses a method for treating an autoimmune disorder comprising administering to a mammal in need of such treatment an antibody specific for alpha (2) macroglobulin. In one embodiment, the antibody is purified.

4. BRIEF DESCRIPTION OF THE FIGURES

FIG. 1A-D. Identification of an 80 kDa polypeptide as a putative gp96 receptor. A. Confocal microscopy of re-presentation-competent RAW264.7 cells stained with gp96-FITC and B. with albumin-FITC. C. SDS-PAGE analysis of detergent extracts of plasma

30 membranes from surface biotinylated RAW264.7 (re-presentation-competent) or P815 cells (representation-incompetent) eluted from gp96 or albumin-Sepharose (SA) columns and stained with silver stain (top) or avidin-peroxidase (bottom). D. gp96-SASD-I¹²⁵ was cross-linked to live peritoneal macrophages (MO) or P815 cells, and the cell lysates examined by SDS-PAGE and autoradiography. Various components were omitted as controls, as indicated.

FIG. 2A-B. Anti-p80 antiserum detects an 80 kDa molecule and inhibits re-presentation of gp96-chaperoned AHI peptide by macrophage. A. Pre-immune and immune sera were used to probe blots of plasma membrane extracts of RAW264.7, peritoneal macrophages (both cell types re-presentation-competent), or P815 cells. B. Re-presentation of gp96-chaperoned peptide AHI. Sera were added at the final dilution indicated. The solid cross indicates the level of T cell stimulation when the APCs were pulsed directly with the AHi peptide. The open cross indicates the corresponding value with unpulsed APCs.

- FIG. 3A-C. Protein microsequencing of the 80 kDa protein. A. Analysis of a single tryptic (GALHIYHQR) peptide by tandem- mass spectrometry. All possible b- and y-ion series together with identified b-ion series (red) and y-ion series (blue) are shown. B. Collision-induced dissociation (CID) spectrum of this peptide is shown. C. Four identified peptides from the α2M receptor, peptide mass, and sequence are shown.
- FIG. 4. α2-Macroglobulin inhibits re-presentation of gp96-chaperoned AH1 peptide by macrophage. The solid cross indicates the level of T cell stimulation when the APCs were pulsed directly with the AH1 peptide. The open cross indicates the corresponding value with unpulsed APCs.
- FIG. 5. α2M receptor is a sensor of necrotic cell death due to its ability to detect extracellular gp96. Conversely, receptors (psR) for phosphatidyl serine (ps) detect apoptotic cell death.
- FIG. 6A-B. A. The mouse α2MR cDNA (SEQ ID NO:1) and predicted open reading frame of murine α2MR protein (Genbank accession no. CAA47817). B. The murine α2M protein (SEQ ID NO:2), with residues identified by microsequencing an 80 kDa, gp96-interacting fragment of the receptor highlighted in bold.
- FIG. 7A-B. A. Amino acid sequence of α2M (SEQ ID NO: 3). B. Nucleotide sequence of α2M (SEQ ID NO: 4). The 138 amino acid sequence (SEQ ID NO.: 5) of the receptor binding domain from α2M is underlined.

5

5. DETAILED DESCRIPTION OF THE INVENTION

The present invention provides compositions and methods for alpha (2) macroglobulin ("a2M") vaccines for use in immunotherapy. The invention is based, in part, on the Applicant's discovery that α2M blocks uptake of heat shock proteins by antigen presenting cells. In particular, the invention provides complexes of α2M associated with antigenic molecules, which are recognized by the alpha (2) macroglobulin receptor on antigen presenting cells ("APCs"), and are presented by such cells to the immune system. Thus, the invention provides methods and compositions for using specific a2M-antigenic molecule complexes for targeting an immune response against immune disorders, proliferative disorders, and infectious diseases.

The human plasma protein alpha (2) macroglobulin is a 720 kDa homotetrameric proteinase inhibitor primarily known as proteinase inhibitor and plasma and inflammatory fluid proteinase scavenger molecule (for review see Chu and Pizzo, 1994, Lab. Invest. 71:792). During proteolytic activation of a2M, non-proteolytic ligands can become incorporated, covalently and noncovalently, to the activated thioesters (see Osada et al., 1987, Biochem. Biophys. Res. Comm. 146:26-31; Osada et al., 1988, Biochem. Biophys. Res. Comm. 150:883-889; Chu and Pizzo, 1993, J. Immunology 150: 48-58; Chu et al., 1994, 152:1538-1545; Mitsuda et al., 1993, Biochem. Biophys. Res. Comm. 191:1326-1331). As described herein, when complexes formed between α2M and an antigenic molecule having the antigenicity of a cancer cell antigen or of a pathogen, such α2M -antigenic molecule complexes can be used to stimulate a cytotoxic T cell response directed against the a2M incorporated antigen. Such complexes can be used as immunotherapeutic agents to treat cancer and infectious diseases.

Described in detailed hereinbelow are methods and compositions for use in preparation and delivery of such therapeutic α2M-antigenic molecule complexes. The invention encompasses complexes of alpha (2) macroglobulin associated antigenic molecules, antigenic cells that express the α2M, and antibodies and other molecules that specifically recognize α2M-antigenic molecule complexes. The invention also relates to methods for using these compositions in the diagnosis and treatment of immune disorders, proliferative disorders, and infectious diseases.

5

5.1 COMPOSITIONS OF THE INVENTION

The present invention provides compositions that can be used in immunotherapy against proliferative disorders, infectious diseases, and immune disorders. Such compositions include antibodies that specifically recognize a2M complexes, isolated

antigenic cells that express $\alpha 2M$ complexes, and recombinant cells that contain recombinant $\alpha 2M$ and sequences encoding antigenic molecules.

It is contemplated that the definition of a2M, as used herein, embraces other polypeptide fragments, analogs, and variants of α2M having at least 35% to 55%, preferably 55% to 75%, and most preferably 75% to 85% amino acid identity with α2M, and is capable of forming a complex with an antigenic molecule, which complex is capable of being taken up by an antigen presenting cell and eliciting an immune response against the antigenic molecule. The determination of percent identity between two sequences can also be accomplished using a mathematical algorithm. A preferred, non-limiting example of a mathematical algorithm utilized for the comparison of two sequences is the algorithm of Karlin and Altschul, 1990, Proc. Natl. Acad. Sci. USA 87:2264-2268, modified as in Karlin and Altschul, 1993, Proc. Natl. Acad. Sci. USA 90:5873-5877. Such an algorithm is incorporated into the NBLAST and XBLAST programs of Altschul, et al., 1990, J. Mol. Biol. 215:403-410. BLAST nucleotide searches can be performed with the NBLAST program, score = 100, wordlength = 12 to obtain nucleotide sequences homologous to a nucleic acid molecules of the invention. BLAST protein searches can be performed with the XBLAST program, score = 50, wordlength = 3 to obtain amino acid sequences homologous to a protein molecules of the invention. To obtain gapped alignments for comparison purposes, Gapped BLAST can be utilized as described in Altschul et al., 1997, Nucleic Acids Res.25:3389-3402. Alternatively, PSI-Blast can be used to perform an iterated search which detects distant relationships between molecules (Altschul et al., 1997, supra). When utilizing BLAST, Gapped BLAST, and PSI-Blast programs, the default parameters of the respective programs (e.g., XBLAST and NBLAST) can be used (see http://www.ncbi.nlm.nih.gov). Another preferred, non-limiting example of a mathematical algorithm utilized for the comparison of sequences is the algorithm of Myers and Miller, 1988, CABIOS 4:11-17. Such an algorithm is incorporated into the ALIGN program (version 2.0) which is part of the GCG sequence alignment software package. When utilizing the ALIGN program for comparing amino acid sequences, a PAM120 weight residue table, a gap length penalty of 12, and a gap penalty of 4 can be used.

The immunogenic $\alpha 2M$ -antigenic molecule complexes of the invention may include any complex containing an $\alpha 2M$ and an antigenic peptide that is capable of inducing an immune response in a mammal.

α2M and/or antigenic molecules can be purified from natural sources, chemically synthesized, or recombinantly produced.

35

30

5.1.1. a2M POLYPEPTIDES

5

15

20

The alpha (2) macroglobulin complex of the invention is comprised of an alpha (2) macroglobulin polypeptide associated with an antigenic peptide. Alpha (2) macroglobulin polypeptides may be produced by recombinant DNA techniques, synthetic methods, or by enzymatic or chemical cleavage of native α 2M polypeptides. Described herein are methods for producing such α 2M polypeptides..

5.1.1.1 ISOLATION OF a2M GENE SEQUENCES

In various aspects, the invention relates to compositions comprising amino acid sequences of α 2M, and fragments, derivatives, analogs, and variants thereof. Nucleic acids encoding α 2M are provided, as well as nucleic acids complementary to and capable of hybridizing to such nucleic acids.

Any eukaryotic cell may serve as the nucleic acid source for obtaining the coding region of an $\alpha 2M$ gene. Nucleic acid sequences encoding $\alpha 2M$ can be isolated from vertebrate, mammalian, as well as primate sources, including humans.

Amino acid sequences and nucleotide sequences of naturally occurring a2M polypeptides are generally available in sequence databases, such as GenBank. Non-limiting examples of $\alpha 2M$ sequences that can be used for preparation of the $\alpha 2M$ polypeptides of the invention are as follows: Genbank Accession Nos. M11313, P01023, AAA51551; Kan et al., 1985, Proc. Nat. Acad. Sci. 82: 2282-2286. Due to the degeneracy of the genetic code, the term "a2M gene", as used herein, refers not only to the naturally occurring nucleotide sequence but also encompasses all the other degenerate DNA sequences that encode an a2M polypeptide. Computer programs, such as Entrez, can be used to browse the database, and retrieve any amino acid sequence and genetic sequence data of interest by accession number. These databases can also be searched to identify sequences with various degrees of similarities to a query sequence using programs, such as FASTA and BLAST, which rank the similar sequences by alignment scores and statistics. BLAST nucleotide searches can be performed with the NBLAST program, score = 100, wordlength = 12 to obtain nucleotide sequences homologous to a nucleic acid molecules of the invention. BLAST protein searches can be performed with the XBLAST program, score = 50, wordlength = 3 to obtain amino acid sequences homologous to a protein molecules of the invention. To obtain gapped alignments for comparison purposes, Gapped BLAST can be utilized as described in Altschul et al., 1997, Nucleic Acids Res.25:3389-3402. Alternatively, PSI-Blast can be used to perform an iterated search which detects distant relationships between molecules (Altschul et al., 1997, supra). When utilizing BLAST, Gapped BLAST, and PSI-Blast programs, the default parameters of the respective programs (e.g., XBLAST and NBLAST) can be used (see http://www.ncbi.nlm.nih.gov).

5

25

30

The DNA may be obtained by standard procedures known in the art by DNA amplification or molecular cloning directly from a tissue, cell culture, or cloned DNA (e.g., a DNA "library"). Clones derived from genomic DNA may contain regulatory and intron DNA regions in addition to coding regions; clones derived from cDNA will contain only exon sequences. Whatever the source, the a2M gene should be cloned into a suitable vector for propagation of the gene.

In a preferred embodiment, DNA can be amplified from genomic or cDNA by polymerase chain reaction (PCR) amplification using primers designed from the known sequence of a related or homologous a2M. PCR is used to amplify the desired sequence in DNA clone or a genomic or cDNA library, prior to selection. PCR can be carried out, e.g., by use of a thermal cycler and Taq polymerase (sold under the trademark GENE AMP). The DNA being amplified can include cDNA or genomic DNA from any species. Oligonucleotide primers representing known nucleic acid sequences of related HSPs can be used as primers in PCR. In a preferred aspect, the oligonucleotide primers represent at least part of the a2M gene that is highly conserved between a2M genes of different species. One can choose to synthesize several different degenerate primers, for use in the PCR reactions. It is also possible to vary the stringency of hybridization conditions used in priming the PCR reactions, to allow for greater or lesser degrees of nucleotide sequence similarity between the known a2M nucleotide sequence and the nucleic acid homolog being isolated. For cross species hybridization, low stringency conditions are preferred. For same species hybridization, moderately stringent conditions are preferred. After successful amplification, the sequence encoding an a2M may be cloned and sequenced. If the size of the coding region of the a2M gene being amplified is too large to be amplified in a single PCR, several PCR covering the entire gene, preferably with overlapping regions, may be carried out, and the products of the PCR ligated together to form the entire coding sequence. Alternatively, if a segment of an a2M gene is amplified, that segment may be cloned, and utilized as a probe to isolate a complete cDNA or genomic clone.

In another embodiment, for the molecular cloning of an α2M gene from genomic DNA, DNA fragments are generated to form a genomic library. Since some of the sequences encoding related α2Ms are available and can be purified and labeled, the cloned DNA fragments in the genomic DNA library may be screened by nucleic acid hybridization to the labeled probe (Benton and Davis, 1977, Science 196:180; Grunstein and Hogness, 1975, Proc. Natl. Acad. Sci. U.S.A. 72:3961). Those DNA fragments with substantial homology to the probe will hybridize. It is also possible to identify the appropriate fragment by restriction enzyme digestion(s) and comparison of fragment sizes with those expected according to a known restriction map if such is available.

Alternatives to isolating the $\alpha 2M$ genomic DNA include, but are not limited to, chemically synthesizing the gene sequence itself from a known sequence or making cDNA to the mRNA which encodes $\alpha 2M$. For example, RNA for cDNA cloning of the $\alpha 2M$ gene can be isolated from cells which express $\alpha 2M$. A cDNA library may be generated by methods known in the art and screened by methods, such as those disclosed for screening a genomic DNA library. If an antibody to $\alpha 2M$ is available, $\alpha 2M$ may be identified by binding of labeled antibody to the putatively $\alpha 2M$ synthesizing clones.

Other specific embodiments for the cloning of a nucleotide sequence encoding an α 2M, are presented as examples but not by way of limitation, as follows:

In a specific embodiment, nucleotide sequences encoding $\alpha 2M$ proteins within a family can be identified and obtained by hybridization with a probe comprising nucleotide sequence encoding $\alpha 2M$ under conditions of low to medium stringency.

10

By way of example and not limitation, procedures using such conditions of low stringency are as follows (see also Shilo and Weinberg, 1981, Proc. Natl. Acad. Sci. USA 78:6789-6792). Filters containing DNA are pretreated for 6 h at 40°C in a solution containing 35% formamide, 5X SSC, 50 mM Tris-HCl (pH 7.5), 5 mM EDTA, 0.1% PVP, 0.1% Ficoll, 1% BSA, and 500 μg/ml denatured salmon sperm DNA. Hybridizations are carried out in the same solution with the following modifications: 0.02% PVP, 0.02% Ficoll, 0.2% BSA, 100 μg/ml salmon sperm DNA, 10% (wt/vol) dextran sulfate, and 5-20 X 10⁶ cpm ³²P-labeled probe is used. Filters are incubated in hybridization mixture for 18-20 h at 40°C, and then washed for 1.5 h at 55°C in a solution containing 2X SSC, 25 mM Tris-HCl (pH 7.4), 5 mM EDTA, and 0.1% SDS. The wash solution is replaced with fresh solution and incubated an additional 1.5 h at 60°C. Filters are blotted dry and exposed for autoradiography. If necessary, filters are washed for a third time at 65-68°C and reexposed to film. Other conditions of low stringency which may be used are well known in the art (e.g., as employed for cross-species hybridizations).

An a2M gene fragment can be inserted into an appropriate cloning vector and introduced into host cells so that many copies of the gene sequence are generated. A large number of vector-host systems known in the art may be used such as, but not limited to, bacteriophages such as lambda derivatives, or plasmids such as pBR322 or pUC plasmid derivatives or the Bluescript vector (Stratagene).

Any technique for mutagenesis known in the art can be used to modify individual nucleotides in a DNA sequence, for purpose of making amino acid substitution(s) in the expressed peptide sequence, or for creating/deleting restriction sites to facilitate further manipulations. Such techniques include but are not limited to, chemical mutagenesis, in vitro site-directed mutagenesis (Hutchinson et al., 1978, J. Biol. Chem 253:6551), oligonucleotide-directed mutagenesis (Smith, 1985, Ann. Rev. Genet. 19:423-463; Hill et al.,

5

15

35

1987, Methods Enzymol. 155:558-568), PCR-based overlap extension (Ho et al., 1989, Gene 77:51-59), PCR-based megaprimer mutagenesis (Sarkar et al., 1990, Biotechniques, 8:404-407), etc. Modifications can be confirmed by double stranded dideoxy DNA sequencing.

The polymerase chain reaction (PCR) is commonly used for obtaining genes or gene fragments of interest. For example, a nucleotide sequence encoding $\alpha 2M$ polypeptide of any desired length can be generated using PCR primers that flank the nucleotide sequence encoding $\alpha 2M$, or the peptide-binding domain thereof. Alternatively, an $\alpha 2M$ gene sequence can be cleaved at appropriate sites with restriction endonuclease(s) if such sites are available, releasing a fragment of DNA encoding $\alpha 2M$, or the peptide-binding domain thereof. If convenient restriction sites are not available, they may be created in the appropriate positions by site-directed mutagenesis and/or DNA amplification methods known in the art (see, for example, Shankarappa *et al.*, 1992, PCR Method Appl. 1:277-278). The DNA fragment that encodes $\alpha 2M$, or the peptide-binding domain thereof, is then isolated, and ligated into an appropriate expression vector, care being taken to ensure that the proper translation reading frame is maintained.

Alpha (2) macroglobulin polypeptides of the invention may be expressed as fusion proteins to facilitate recovery and purification from the cells in which they are expressed. For example, an $\alpha 2M$ polypeptide may contain a signal sequence leader peptide to direct its translocation across the ER membrane for secretion into culture medium. Further, an $\alpha 2M$ polypeptide may contain an affinity label, such as a affinity label, fused to any portion of the $\alpha 2M$ polypeptide not involved in binding antigenic peptide, such as for example, the carboxyl terminal. The affinity label can be used to facilitate purification of the protein, by binding to an affinity partner molecule.

Various methods for production of such fusion proteins are well known in the art. The manipulations which result in their production can occur at the gene or protein level, preferably at the gene level. For example, the cloned coding region of an α2M polypeptide may be modified by any of numerous recombinant DNA methods known in the art (Sambrook *et al.*, 1990, Molecular Cloning, A Laboratory Manual, 2d ed., Cold Spring Harbor Laboratory, Cold Spring Harbor, New York; Ausubel *et al.*, in Chapter 8 of Current Protocols in Molecular Biology, Greene Publishing Associates and Wiley Interscience, New York). It will be apparent from the following discussion that substitutions, deletions, insertions, or any combination thereof are introduced or combined to arrive at a final nucleotide sequence encoding an α2M polypeptide.

In various embodiments, fusion proteins comprising the $\alpha 2M$ polypeptide may be made using recombinant DNA techniques. For example, a recombinant gene encoding an $\alpha 2M$ polypeptide may be constructed by introducing an $\alpha 2M$ gene fragment in the proper reading frame into a vector containing the sequence of an affinity label, such that the $\alpha 2M$

polypeptide is expressed as a peptide-tagged fusion protein. Affinity labels, which may be recognized by specific binding partners, may be used for affinity purification of the α2M polypeptide.

In a preferred embodiment, the affinity label is fused at its amino terminal to the carboxyl terminal of $\alpha 2M$. The precise site at which the fusion is made in the carboxyl terminal is not critical. The optimal site can be determined by routine experimentation.

5

15

20

A variety of affinity labels known in the art may be used, such as, but not limited to, the immunoglobulin constant regions, polyhistidine sequence (Petty, 1996, Metal-chelate affinity chromatography, in Current Protocols in Molecular Biology, Vol. 2, Ed. Ausubel et al., Greene Publish. Assoc. & Wiley Interscience), glutathione S-transferase (GST; Smith, 1993, Methods Mol. Cell Bio. 4:220-229), the E. coli maltose binding protein (Guan et al., 1987, Gene 67:21-30), and various cellulose binding domains (U.S. Patent Nos. 5,496,934; 5,202,247; 5,137,819; Tomme et al., 1994, Protein Eng. 7:117-123), etc. Other affinity labels may impart fluorescent properties to an a2M polypeptide, e.g., portions of green fluorescent protein and the like. Other possible affinity labels are short amino acid sequences to which monoclonal antibodies are available, such as but not limited to the following well known examples, the FLAG epitope, the myc epitope at amino acids 408-439, the influenza virus hemagglutinin (HA) epitope. Other affinity labels are recognized by specific binding partners and thus facilitate isolation by affinity binding to the binding partner which can be immobilized onto a solid support. Some affinity labels may afford the α2M polypeptide novel structural properties, such as the ability to form multimers. Dimerization of an α2M polypeptide with a bound peptide may increase avidity of interaction between the α2M polypeptide and its partner in the course of antigen presentation. These affinity labels are usually derived from proteins that normally exist as homopolymers. Affinity labels such as the extracellular domains of CD8 (Shiue et al., 1988, J. Exp. Med. 168:1993-2005), or CD28 (Lee et al., 1990, J. Immunol. 145:344-352), or portions of the immunoglobulin molecule containing sites for interchain disulfide bonds, could lead to the formation of multimers. As will be appreciated by those skilled in the art, many methods can be used to obtain the coding region of the above-mentioned affinity labels, including but not limited to, DNA cloning, DNA amplification, and synthetic methods. Some of the affinity labels and reagents for their detection and isolation are available commercially.

A preferred affinity label is a non-variable portion of the immunoglobulin molecule. Typically, such portions comprise at least a functionally operative CH2 and CH3 domain of the constant region of an immunoglobulin heavy chain. Fusions are also made using the carboxyl terminus of the Fc portion of a constant domain, or a region immediately aminoterminal to the CH1 of the heavy or light chain. Suitable immunoglobulin-based affinity label may be obtained from IgG-1, -2, -3, or -4 subtypes, IgA, IgE, IgD, or IgM, but

5

15

preferably IgG1. Preferably, a human immunoglobulin is used when the α2M polypeptide is intended for *in vivo* use for humans. Many DNA encoding immunoglobulin light or heavy chain constant regions is known or readily available from cDNA libraries. See, for example, Adams *et al.*, Biochemistry, 1980, 19:2711-2719; Gough *et al.*, 1980, Biochemistry, 19:2702-2710; Dolby *et al.*, 1980, Proc. Natl. Acad. Sci. U.S.A., 77:6027-6031; Rice *et al.*, 1982, Proc. Natl. Acad. Sci. U.S.A., 79:7862-7865; Falkner *et al.*, 1982, Nature, 298:286-288; and Morrison *et al.*, 1984, Ann. Rev. Immunol, 2:239-256. Because many immunological reagents and labeling systems are available for the detection of immunoglobulins, the α2M polypeptide—Ig fusion protein can readily be detected and quantified by a variety of immunological techniques known in the art, such as the use of enzyme-linked immunosorbent assay (ELISA), immunoprecipitation, fluorescence activated cell sorting (FACS), etc. Similarly, if the affinity label is an epitope with readily available antibodies, such reagents can be used with the techniques mentioned above to detect, quantitate, and isolate the α2M polypeptide containing the affinity label. In many instances, there is no need to develop specific antibodies to the α2M polypeptide.

A particularly preferred embodiment is a fusion of an α2M polypeptide to the hinge, the CH2 and CH3 domains of human immunoglobulin G-1 (IgG-1; see Bowen *et al.*,1996, J. Immunol. 156:442-49). This hinge region contains three cysteine residues which are normally involved in disulfide bonding with other cysteines in the Ig molecule. Since none of the cysteines are required for the peptide to function as a tag, one or more of these cysteine residues may optionally be substituted by another amino acid residue, such as for example, serine.

Various leader sequences known in the art can be used for the efficient secretion of α2M polypeptide from bacterial and mammalian cells (von Heijne, 1985, J. Mol. Biol. 184:99-105). Leader peptides are selected based on the intended host cell, and may include bacterial, yeast, viral, animal, and mammalian sequences. For example, the herpes virus glycoprotein D leader peptide is suitable for use in a variety of mammalian cells. A preferred leader peptide for use in mammalian cells can be obtained from the V-J2-C region of the mouse immunoglobulin kappa chain (Bernard et al., 1981, Proc. Natl. Acad. Sci. 78:5812-5816). Preferred leader sequences for targeting α2M polypeptide expression in bacterial cells include, but are not limited to, the leader sequences of the E.coli proteins OmpA (Hobom et al., 1995, Dev. Biol. Stand. 84:255-262), Pho A (Oka et al., 1985, Proc. Natl. Acad. Sci. 82:7212-16), OmpT (Johnson et al., 1996, Protein Expression 7:104-113), LamB and OmpF (Hoffman & Wright, 1985, Proc. Natl. Acad. Sci. USA 82:5107-5111), β-lactamase (Kadonaga et al., 1984, J. Biol. Chem. 259:2149-54), enterotoxins (Morioka-Fujimoto et al., 1991, J. Biol. Chem. 266:1728-32), and the Staphylococcus aureus protein A (Abrahmsen et al., 1986, Nucleic Acids Res. 14:7487-7500), and the B. subtilis endoglucanase (Lo et al.,

Appl. Environ. Microbiol. <u>54:</u>2287-2292), as well as artificial and synthetic signal sequences (MacIntyre *et al.*, 1990, Mol. Gen. Genet. 221:466-74; Kaiser *et al.*, 1987, Science, 235:312-317).

DNA sequences encoding a desired affinity label or leader peptide, which may be readily obtained from libraries, produced synthetically, or may be available from commercial suppliers, are suitable for the practice of this invention. Such methods are well known in the art.

5.1.1.2 RECOMBINANT EXPRESSION

5

30

In various embodiments of the invention, sequences encoding an a2M polypeptide are inserted into an expression vector for propagation and expression in recombinant cells.

An expression construct, as used herein, refers to a nucleotide sequence encoding an $\alpha 2M$ polypeptide operably associated with one or more regulatory regions which allows expression of the $\alpha 2M$ polypeptide in an appropriate host cell. "Operably-associated" refers to an association in which the regulatory regions and the $\alpha 2M$ polypeptide sequence to be expressed are joined and positioned in such a way as to permit transcription, and ultimately, translation.

Vectors based on *E. coli* are the most popular and versatile systems for high level expression of foreign proteins (Makrides, 1996, Microbiol Rev, 60:512-538). Non-limiting examples of regulatory regions that can be used for expression in *E. coli* may include but not limited to *lac*, *trp*, *lpp*, *phoA*, *recA*, *tac*, λP_L, and phage T3 and T7 promoters (Makrides, 1996, Microbiol Rev, 60:512-538). Non-limiting examples of prokaryotic expression vectors may include the λgt vector series such as λgt11 (Huynh *et al.*, 1984 in "DNA Cloning Techniques", Vol. I: A Practical Approach (D. Glover, ed.), pp. 49-78, IRL Press, Oxford), and the pET vector series (Studier *et al.*, 1990, Methods Enzymol., 185:60-89). However, a potential drawback of a prokaryotic host-vector system is the inability to perform many of the post-translational processing events of mammalian cells. Thus, an eukaryotic host-vector system is preferred, a mammalian host-vector system is more preferred, and a human host-vector system is the most preferred.

The regulatory regions necessary for transcription of the $\alpha 2M$ polypeptide can be provided by the expression vector. A translation initiation codon (ATG) may also be provided to express a nucleotide sequence encoding an $\alpha 2M$ polypeptide that lacks an initiation codon. In a compatible host-construct system, cellular proteins required for transcription, such as RNA polymerase and transcription factors, will bind to the regulatory regions on the expression construct to effect transcription of the $\alpha 2M$ polypeptide sequence in the host organism. The precise nature of the regulatory regions needed for gene expression may vary from host cell to host cell. Generally, a promoter is required which is

capable of binding RNA polymerase to initiate the transcription of an operably-associated nucleic acid sequence. Such regulatory regions may include those 5'-non-coding sequences involved with initiation of transcription and translation, such as the TATA box, the cap site, a CAAT box, and the like. The non-coding region 3' to the coding sequence may contain transcriptional termination regulatory sequences, such as terminators and polyadenylation sites.

5

20

25

30

Both constitutive and inducible regulatory regions may be used for expression of the $\alpha 2M$ polypeptide. It may be desirable to use inducible promoters when the conditions optimal for growth of the recombinant cells and the conditions for high level expression of the $\alpha 2M$ polypeptide are different. Examples of useful regulatory regions are provided in the next section below.

For expression of α 2M polypeptides in mammalian host cells, a variety of regulatory regions can be used, for example, the SV40 early and late promoters, the cytomegalovirus (CMV) immediate early promoter, and the Rous sarcoma virus long terminal repeat (RSV-LTR) promoter. Inducible promoters that may be useful in mammalian cells include but are not limited to those associated with the metallothionein II gene, mouse mammary tumor virus glucocorticoid responsive long terminal repeats (MMTV-LTR), the β -interferon gene, and the α 2M70 gene (Williams *et al.*, 1989, Cancer Res. 49:2735-42; Taylor *et al.*, 1990, Mol. Cell Biol., 10:165-75).

The following animal regulatory regions, which exhibit tissue specificity and have been utilized in transgenic animals, can also be used in tumor cells of a particular tissue type: clastase I gene control region which is active in pancreatic acinar cells (Swift et al., 1984, Cell 38:639-646; Omitz et al., 1986, Cold Spring Harbor Symp. Quant. Biol. 50:399-409; MacDonald, 1987, Hepatology 7:425-515); insulin gene control region which is active in pancreatic beta cells (Hanahan, 1985, Nature 315:115-122), immunoglobulin gene control region which is active in lymphoid cells (Grosschedl et al., 1984, Cell 38:647-658; Adames et al., 1985, Nature 318:533-538; Alexander et al., 1987, Mol. Cell. Biol. 7:1436-1444), mouse mammary tumor virus control region which is active in testicular, breast, lymphoid and mast cells (Leder et al., 1986, Cell 45:485-495), albumin gene control region which is active in liver (Pinkert et al., 1987, Genes and Devel. 1:268-276), alpha-fetoprotein gene control region which is active in liver (Krumlauf et al., 1985, Mol. Cell. Biol. 5:1639-1648; Hammer et al., 1987, Science 235:53-58; alpha 1-antitrypsin gene control region which is active in the liver (Kelsey et al., 1987, Genes and Devel. 1:161-171), beta-globin gene control region which is active in myeloid cells (Mogram et al., 1985, Nature 315:338-340; Kollias et al., 1986, Cell 46:89-94; myelin basic protein gene control region which is active in oligodendrocyte cells in the brain (Readhead et al., 1987, Cell 48:703-712); myosin light chain-2 gene control region which is active in skeletal muscle (Sani, 1985, Nature 314:283-

286), and gonadotropic releasing hormone gene control region which is active in the hypothalamus (Mason et al., 1986, Science 234:1372-1378).

5

10

The efficiency of expression of the α2M polypeptide in a host cell may be enhanced by the inclusion of appropriate transcription enhancer elements in the expression vector, such as those found in SV40 virus, Hepatitis B virus, cytomegalovirus, immunoglobulin genes, metallothionein, β-actin (see Bittner et al., 1987, Methods in Enzymol. 153:516-544; Gorman, 1990, Curr. Op. in Biotechnol. 1:36-47).

The expression vector may also contain sequences that permit maintenance and replication of the vector in more than one type of host cell, or integration of the vector into the host chromosome. Such sequences may include but are not limited to replication origins, autonomously replicating sequences (ARS), centromere DNA, and telomere DNA. It may also be advantageous to use shuttle vectors that can be replicated and maintained in at least two types of host cells.

In addition, the expression vector may contain selectable or screenable marker genes for initially isolating or identifying host cells that contain DNA encoding an α2M polypeptide. For long term, high yield production of a2M polypeptide-antigenic molecule complexes, stable expression in mammalian cells is preferred. A number of selection systems may be used for mammalian cells, including, but not limited, to the Herpes simplex virus thymidine kinase (Wigler et al., 1977, Cell 11:223), hypoxanthine-guanine phosphoribosyltransferase (Szybalski and Szybalski, 1962, Proc. Natl. Acad. Sci. USA 20 48:2026), and adenine phosphoribosyltransferase (Lowy et al., 1980, Cell 22:817) genes can be employed in tk, hgprf or aprf cells, respectively. Also, antimetabolite resistance can be used as the basis of selection for dihydrofolate reductase (dhfr), which confers resistance to methotrexate (Wigler et al., 1980, Natl. Acad. Sci. USA 77:3567; O'Hare et al., 1981, Proc. Natl. Acad. Sci. USA 78:1527); gpt, which confers resistance to mycophenolic acid (Mulligan & Berg, 1981, Proc. Natl. Acad. Sci. USA 78:2072); neomycin phosphotransferase (neo), which confers resistance to the aminoglycoside G-418 (Colberre-Garapin et al., 1981, J. Mol. Biol. 150:1); and hygromycin phosphotransferase (hyg), which confers resistance to hygromycin (Santerre et al., 1984, Gene 30:147). Other selectable markers, such as but not limited to histidinol and Zeocin™ can also be used. 30

In order to insert the $\alpha 2M$ polypeptide DNA sequence into the cloning site of a vector, DNA sequences with regulatory functions, such as promoters, must be attached to DNA sequences encoding the $\alpha 2M$ peptide-binding region. To do this, linkers or adapters providing the appropriate compatible restriction sites may be ligated to the ends of cDNA or synthetic DNA encoding an $\alpha 2M$ polypeptide, by techniques well known in the art (Wu et al., 1987, Methods in Enzymol 152:343-349). Cleavage with a restriction enzyme can be followed by modification to create blunt ends by digesting back or filling in single-stranded

5

10

30

DNA termini before ligation. Alternatively, a desired restriction enzyme site can be introduced into a fragment of DNA by amplification of the DNA by use of PCR with primers containing the desired restriction enzyme site.

An expression construct comprising an $\alpha 2M$ polypeptide sequence operably associated with regulatory regions can be directly introduced into appropriate host cells for expression and production of $\alpha 2M$ polypeptide-antigenic molecule complexes without further cloning (see, for example, U.S. Patent No. 5,580,859). The expression constructs may also contain DNA sequences that facilitate integration of the $\alpha 2M$ polypeptide sequence into the genome of the host cell, e.g., via homologous recombination. In this instance, it is not necessary to employ an expression vector comprising a replication origin suitable for appropriate host cells in order to propagate and express the $\alpha 2M$ polypeptide in the host cells.

Expression constructs containing cloned nucleotide sequence encoding α2M polypeptides can be introduced into the host cell by a variety of techniques known in the art, including but not limited to, for prokaryotic cells, bacterial transformation (Hanahan, 1985, in DNA Cloning, A Practical Approach, 1:109-136), and for eukaryotic cells, calcium phosphate mediated transfection (Wigler *et al.*, 1977, Cell 11:223-232), liposome-mediated transfection (Schaefer-Ridder *et al.*, 1982, Science 215:166-168), electroporation (Wolff *et al.*, 1987, Proc Natl Acad Sci 84:3344), and microinjection (Cappechi, 1980, Cell 22:479-488). Co-expression of an α2M polypeptide and an antigenic molecule in the same host cell can be achieved by essentially the same methods.

For long term, high yield production of properly processed $\alpha 2M$ polypeptides or $\alpha 2M$ polypeptide—antigenic molecule complexes, stable expression in mammalian cells is preferred. Cell lines that stably express $\alpha 2M$ polypeptides or $\alpha 2M$ polypeptide—antigenic molecule complexes may be engineered by using a vector that contains a selectable marker. By way of example but not limitation, following the introduction of the expression constructs, engineered cells may be allowed to grow for 1-2 days in an enriched media, and then are switched to a selective media. The selectable marker in the expression construct confers resistance to the selection and optimally allows cells to stably integrate the expression construct into their chromosomes and to grow in culture and to be expanded into cell lines. Such cells can be cultured for a long period of time while $\alpha 2M$ polypeptide is expressed continuously.

The recombinant cells may be cultured under standard conditions of temperature, incubation time, optical density, and media composition. Alternatively, a recombinant antigenic cells may be cultured under conditions emulating the nutritional and physiological requirements of the cancer cell or infected cell. However, conditions for growth of recombinant cells may be different from those for expression of $\alpha 2M$ polypeptides and

antigenic proteins. Modified culture conditions and media may also be used to enhance production of $\alpha 2M$ -antigenic molecule complexes. Any techniques known in the art may be applied to establish the optimal conditions for producing $\alpha 2M$ polypeptide or $\alpha 2M$ polypeptide-antigenic molecule complexes.

5

10

20

25

30

35

5.1.1.3 PURIFICATION METHODS FOR RECOMBINANT $\alpha 2M$ POLYPEPTIDES

Generally, the $\alpha 2M$ polypeptides of the invention can be recovered and purified from recombinant cell cultures by known methods, including ammonium sulfate precipitation, acid extraction, anion or cation exchange chromatography, phosphocellulose chromatography, immunoaffinity chromatography, hydroxyapatite chromatography, and lectin chromatography.

The invention provides methods for purification of recombinant $\alpha 2M$ polypeptides by affinity purification, based on the properties of the affinity label present on the $\alpha 2M$ polypeptide. One approach is based on specific molecular interactions between a tag and its binding partner. The other approach relies on the immunospecific binding of an antibody to an epitope present on the tag. The principle of affinity chromatography well known in the art is generally applicable to both of these approaches.

Described below are several methods based on specific molecular interactions of a tag and its binding partner.

A method that is generally applicable to purifying recombinant a2Ms that are fused to the constant regions of immunoglobulin is protein A affinity chromatography, a technique that is well known in the art. Staphylococcus protein A is a 42 kD polypeptide that binds specifically to a region located between the second and third constant regions of heavy chain immunoglobulins. Because of the Fc domains of different classes, subclasses and species of immunoglobulins, affinity of protein A for human Fc regions is strong, but may vary with other species. Subclasses that are less preferred include human IgG-3, and most rat subclasses. For certain subclasses, protein G (of Streptococci) may be used in place of protein A in the purification. Protein-A sepharose (Pharmacia or Biorad) is a commonly used solid phase for affinity purification of antibodies, and can be used essentially in the same manner for the purification of a2M polypeptide fused to an immunoglobulin Fc fragment. Secreted a2M polypeptide present in cell supernatant binds specifically to protein A on the solid phase, while the contaminants are washed away. Bound α2M polypeptide can be eluted by various buffer systems known in the art, including a succession of citrate, acetate and glycine-HCl buffers which gradually lowers the pH. This method is less preferred if the recombinant cells also produce antibodies which will be copurified with the a2M polypeptide. See, for example, Langone, 1982, J. Immunol. meth. 51:3; Wilchek et al.,

5

15

20

25

30

1982, Biochem. Intl. 4:629; Sjobring et al., 1991, J. Biol. Chem. 26:399; page 617-618, in Antibodies A Laboratory Manual, edited by Harlow and Lane, Cold Spring Harbor laboratory, 1988.

Alternatively, a polyhistidine tag may be used, in which case, the $\alpha 2M$ polypeptide can be purified by metal chelate chromatography. The polyhistidine tag, usually a sequence of six histidines, has a high affinity for divalent metal ions, such as nickel ions (Ni²+), which can be immobilized on a solid phase, such as nitrilotriacetic acid matrices. Polyhistidine has a well characterized affinity for Ni²+-NTA-agarose, and can be eluted with either of two mild treatments: imidazole (0.1-0.2 M) will effectively compete with the resin for binding sites; or lowering the pH just below 6.0 will protonate the histidine side-chains and disrupt the binding. The purification method comprises loading the cell culture supernatant onto the Ni²+-NTA-agarose column, washing the contaminants through, and eluting the $\alpha 2M$ polypeptide with imidazole or weak acid. Ni²+-NTA-agarose can be obtained from commercial suppliers such as Sigma (St. Louis) and Qiagen. Antibodies that recognize the polyhistidine tag are also available which can be used to detect and quantify the $\alpha 2M$ polypeptide.

Another exemplary affinity label that can be used is the glutathione-S-transferase (GST) sequence, originally cloned from the helminth, *Schistosoma japonicum*. In general, an α 2M-GST fusion expressed in a prokaryotic host cell, such as *E. coli*, can be purified from the cell culture supernatant by absorption with glutathione agarose beads, followed by elution in the presence of free reduced glutathione at neutral pH. Denaturing conditions are not required at any stage during purification, and therefore, it may be desirable for use in the loading of immobilized α 2M polypeptides with antigenic peptides. Moreover, since GST is known to form dimers under certain conditions, dimeric α 2M polypeptides may be obtained. See, Smith, 1993, Methods Mol. Cell Bio. 4:220-229.

Another useful affinity label that can be used is the maltose binding protein (MBP) of $E.\ coli$, which is encoded by the malE gene. The secreted $\alpha 2M$ polypeptide-MBP present in the cell supernatant binds to amylose resin while contaminants are washed away. The bound $\alpha 2M$ polypeptide-MBP is eluted from the amylose resin by maltose. See, for example, Guan et al., 1987, Gene 67:21-30.

The second approach for purifying a2M polypeptide is applicable to affinity labels that contain an epitope for which polyclonal or monoclonal antibodies are available. Various methods known in the art for purification of protein by immunospecific binding, such as immunoaffinity chromatography, and immunoprecipitation, can be used. See, for example, Chapter 13 in "Antibodies A Laboratory Manual", 1988, Harlow and Lane, (eds.), Cold Spring Harbor Laboratory, N.Y. and Chapter 8, Sections I and II, in "Current Protocols in

Immunology", 1991, Coligan et al. (eds.), John Wiley, the disclosure of which are both incorporated by reference herein.

The embodiments described above may be used to recover and purify a2M polypeptide-antigenic molecule complexes from the cell culture medium of mammalian cells, such as human cells expressing an a2M polypeptide of the invention. The methods can be adapted to perform medium and large scale purification of an α2M polypeptide and/or a2M-antigenic molecule complexes. Methods that do not require lowering pH or denaturing conditions are most preferred for purification of a2M polypeptide-antigenic molecule complexes. The methods may be used to isolate a2M polypeptides from eukaryotic cells, for example, cancer cells, tissues, isolated cells, or immortalized eukaryote cell lines infected with an intracellular pathogen, or cells obtained from a subject infected with a pathogen.

5.1.1.4 HOST-VECTOR SYSTEMS

10

30

Described herein are systems of vectors and host cells that can be used for the 15 expression of α2M polypeptides. A variety of expression vectors may be used in the present invention which include, but are not limited to, plasmids, cosmids, phage, phagemids, or modified viruses. Typically, such expression vectors comprise a functional origin of replication for propagation of the vector in an appropriate host cell, one or more restriction endonuclease sites for insertion of the a2M polypeptide gene sequence, and one or more 20 selection markers. The expression vector must be used with a compatible host cell which may be derived from a prokaryotic or an eukaryotic organism including but not limited to bacteria, yeasts, insects, mammals, and humans.

Expression constructs and vectors are introduced into host cells for the purpose of producing an a2M polypeptide. Any cell type that can produce a2Ms and is compatible with 25 the expression vector may be used, including those that have been cultured in vitro or genetically engineered. Host cells may be obtained from normal or affected subjects, including healthy humans, cancer patients, and patients with an infectious disease, private laboratory deposits, public culture collections such as the American Type Culture Collection, or from commercial suppliers.

Different host cells have characteristic and specific mechanisms for the post-translational processing and modification of proteins. A host cell may be chosen which modifies and processes the expressed gene products in a specific fashion similar to the way the recipient processes a2Ms. For the purpose of producing large amounts of a2M, it is preferable that the type of host cell used in the present invention has been used for expression 35 of heterologous genes, and is reasonably well characterized and developed for large-scale production processes. In a specific embodiment, the host cells are from the same patient to

5

35

whom $\alpha 2M$ polypeptide-antigenic molecule complexes or recombinant cells expressing $\alpha 2M$ polypeptide-antigenic molecule complexes are going to be administered. Otherwise said, the cells used to express the $\alpha 2M$ polypeptide and used subsequently to administer immunotherapy to a subject are autologous to the subject.

Preferred mammalian host cells include but are not limited to those derived from humans, monkeys and rodents, (see, for example, Kriegler M. in "Gene Transfer and Expression: A Laboratory Manual", New York, Freeman & Co. 1990), such as monkey kidney cell line transformed by SV40 (COS-7, ATCC CRL 1651); human embryonic kidney line (293, 293-EBNA, or 293 cells subcloned for growth in suspension culture, Graham et al., J. Gen. Virol., 36:59, 1977; baby hamster kidney cells (BHK, ATCC CCL 10); chinese hamster ovary-cells-DHFR (CHO, Urlaub and Chasin. Proc. Natl. Acad. Sci. 77; 4216, 1980); mouse sertoli cells (Mather, Biol. Reprod. 23:243-251, 1980); mouse fibroblast cells (NIH-3T3), monkey kidney cells (CVI ATCC CCL 70); african green monkey kidney cells (VERO-76, ATCC CRL-1587); human cervical carcinoma cells (HELA, ATCC CCL 2); canine kidney cells (MDCK, ATCC CCL 34); buffalo rat liver cells (BRL 3A, ATCC CRL 1442); human lung cells (W138, ATCC CCL 75); human liver cells (Hep G2, HB 8065); and mouse mammary tumor cells (MMT 060562, ATCC CCL51). Exemplary cancer cell types used for demonstrating the utility of recombinant cells (producing a2M polypeptideantigenic molecule complexes) as a cancer vaccine are provided as follows: mouse fibroblast cell line, NIH3T3, mouse Lewis lung carcinoma cell line, LLC, mouse mastocytoma cell line, P815, mouse lymphoma cell line, EL4 and its ovalbumin transfectant, E.G7, mouse melanoma cell line, B16F10, mouse fibrosarcoma cell line, MC57, and human small cell lung carcinoma cell lines, SCLC#2 and SCLC#7.

A number of viral-based expression systems may also be utilized with mammalian cells to produce α2M polypeptides. Vectors using DNA virus backbones have been derived from simian virus 40 (SV40) (Hamer et al., 1979, Cell 17:725), adenovirus (Van Doren et al., 1984, Mol Cell Biol 4:1653), adeno-associated virus (McLaughlin et al., 1988, J Virol 62:1963), and bovine papillomas virus (Zinn et al., 1982, Proc Natl Acad Sci 79:4897). In cases where an adenovirus is used as an expression vector, the donor DNA sequence may be ligated to an adenovirus transcription/translation control region, e.g., the late promoter and tripartite leader sequence. This chimeric gene may then be inserted in the adenovirus genome by in vitro or in vivo recombination. Insertion in a non-essential region of the viral genome (e.g., region E1 or E3) will result in a recombinant virus that is viable and capable of expressing heterologous products in infected hosts (see e.g., Logan and Shenk, 1984, Proc. Natl. Acad. Sci. (USA) 81:3655-3659).

Bovine papillomavirus (BPV) can infect many higher vertebrates, including man, and its DNA replicates as an episome. A number of shuttle vectors have been developed for

recombinant gene expression which exist as stable, multicopy (20-300 copies/cell) extrachromosomal elements in mammalian cells. Typically, these vectors contain a segment of BPV DNA (the entire genome or a 69% transforming fragment), a promoter with a broad host range, a polyadenylation signal, splice signals, a selectable marker, and "poisonless" plasmid sequences that allow the vector to be propagated in *E. coli*. Following construction and amplification in bacteria, the expression gene construct is transfected into cultured mammalian cells, for example, by the techniques of calcium phosphate coprecipitation or electroporation. For those host cells that do not manifest a transformed phenotype, selection of transformants is achieved by use of a dominant selectable marker, such as histidinol and G418 resistance. For example, BPV vectors such as pBCMGSNeo and pBCMGHis may be used to express α2M polypeptide sequences (Karasuyama *et al.*, Eur. J. Immunol. 18:97-104; Ohe *et al.*, Human Gene Therapy, 6:325-33) which may then be transfected into a diverse range of cell types for expression of the α2M polypeptide.

Alternatively, the vaccinia 7.5K promoter may be used (see, e.g., Mackett et al., 1982, Proc. Natl. Acad. Sci. (USA) 79:7415-7419; Mackett et al., 1984, J. Virol. 49:857-864; Panicali et al., 1982, Proc. Natl. Acad. Sci. 79:4927-4931.) In cases where a human host cell is used, vectors based on the Epstein-Barr virus (EBV) origin (OriP) and EBV nuclear antigen 1 (EBNA-1; a trans-acting replication factor) may be used. Such vectors can be used with a broad range of human host cells, e.g., EBO-pCD (Spickofsky et al., 1990, DNA Prot Eng Tech 2:14-18), pDR2 and λDR2 (available from Clontech Laboratories).

15

20

 $\alpha 2M$ polypeptides may also be made with a retrovirus-based expression system. In contrast to transfection, retroviruses can efficiently infect and transfer genes to a wide range of cell types including, for example, primary hematopoietic cells. In retroviruses such as Moloney murine leukemia virus, most of the viral gene sequences can be removed and replaced with nucleic acid sequences encoding $\alpha 2M$, while the missing viral functions can be supplied in *trans*. The host range for infection by a retroviral vector can also be manipulated by the choice of envelope used for vector packaging.

For example, a retroviral vector can comprise a 5' long terminal repeat (LTR), a 3' LTR, a packaging signal, a bacterial origin of replication, and a selectable marker. The α2M polypeptide DNA is inserted into a position between the 5' LTR and 3' LTR, such that transcription from the 5' LTR promoter transcribes the cloned DNA. The 5' LTR comprises a promoter, including but not limited to an LTR promoter, an R region, a U5 region and a primer binding site, in that order. Nucleotide sequences of these LTR elements are well known in the art. A heterologous promoter as well as multiple drug selection markers may also be included in the expression vector to facilitate selection of infected cells (see McLauchlin et al., 1990, Prog. Nucleic Acid Res. and Molec. Biol. 38:91-135; Morgenstern et al., 1990, Nucleic Acid Res. 18:3587-3596; Choulika et al., 1996, J. Virol 70:1792-1798;

Boesen et al., 1994, Biotherapy 6:291-302; Salmons and Gunzberg, 1993, Human Gene Therapy 4:129-141; and Grossman and Wilson, 1993, Curr. Opin. in Genetics and Devel. 3:110-114).

5

10

15

Other useful eukaryotic host-vector system may include yeast and insect systems. In yeast, a number of vectors containing constitutive or inducible promoters may be used with Saccharomyces cerevisiae (baker's yeast), Schizosaccharomyces pombe (fission yeast), Pichia pastoris, and Hansenula polymorpha (methylotropic yeasts). For a review see, "Current Protocols in Molecular Biology", Vol. 2, 1988, Ausubel et al. (eds.), Greene Publish. Assoc. & Wiley Interscience, Ch. 13; Grant et al., 1987, Expression and Secretion Vectors for Yeast, 1987, in "Methods in Enzymology", Wu and Grossman (eds.), Acad. Press, N.Y., Vol. 153, pp. 516-544; Glover, 1986, DNA Cloning, Vol. II, IRL Press, Wash., D.C., Ch. 3; and Bitter, 1987, Heterologous Gene Expression in Yeast, in "Methods in Enzymology", Berger and Kimmel (eds.), Acad. Press, N.Y., Vol. 152, pp. 673-684; and "The Molecular Biology of the Yeast Saccharomyces", 1982, Strathern et al. (eds.), Cold Spring Harbor Press, Vols. I and II.

In an insect system a baculovirus, Autographa californica nuclear polyhidrosis virus (AcNPV), can be used as a vector to express an α2M polypeptide in Spodoptera frugiperda cells. The α2M polypeptide DNA may be cloned into non-essential regions (for example the polyhedrin gene) of the virus and placed under control of an AcNPV promoter (for example the polyhedrin promoter). These recombinant viruses are then used to infect host cells in which the inserted DNA is expressed (see, e.g., Smith et al., 1983, J. Virol. 46:584; Smith, U.S. Patent No. 4,215,051).

Any of the cloning and expression vectors described herein may be synthesized and assembled from known DNA sequences by techniques well known in the art. The regulatory regions and enhancer elements can be of a variety of origins, both natural and synthetic. Some vectors and host cells may be obtained commercially. Non-limiting examples of useful vectors are described in Appendix 5 of Current Protocols in Molecular Biology, 1988, ed. Ausubel *et al.*, Greene Publish. Assoc. & Wiley Interscience, which is incorporated herein by reference; and the catalogs of commercial suppliers such as Clontech Laboratories, Stratagene Inc., and Invitrogen, Inc.

5.1.1.5 SYNTHETIC PRODUCTION

An alternative to producing $\alpha 2M$ by recombinant techniques is peptide synthesis. For example, a peptide corresponding to a portion of an $\alpha 2M$ comprising the substrate-binding domain, or which binds peptides *in vitro*, can be synthesized by use of a peptide synthesizer. Conventional peptide synthesis may be used or other synthetic protocols well known in the art.

In addition, analogs and derivatives of $\alpha 2M$ polypeptides can be chemically synthesized. Furthermore, if desired, nonclassical amino acids or chemical amino acid analogs can be introduced as a substitution or addition into the $\alpha 2M$ sequence. Non-classical amino acids include but are not limited to the D-isomers of the common amino acids, α -amino isobutyric acid, 4-aminobutyric acid, Abu, 2-amino butyric acid, γ -Abu, ϵ -Ahx, 6-amino hexanoic acid, Aib, 2-amino isobutyric acid, 3-amino propionic acid, ornithine, norleucine, norvaline, hydroxyproline, sarcosine, citrulline, cysteic acid, t-butylglycine, t-butylalanine, phenylglycine, cyclohexylalanine, β -alanine, fluoro-amino acids, designer amino acids such as β -methyl amino acids, $C\alpha$ -methyl amino acids, $N\alpha$ -methyl amino acids, and amino acid analogs in general.

5

10

Peptides having α2M amino acid sequences, or a fragment, analog, mutant or derivative thereof, may be synthesized by solid-phase peptide synthesis using procedures similar to those described by Merrifield, 1963, J. Am. Chem. Soc., 85:2149. During synthesis, N-α-protected amino acids having protected side chains are added stepwise to a growing polypeptide chain linked by its C-terminal and to an insoluble polymeric support i.e., polystyrene beads. The peptides are synthesized by linking an amino group of an N-α-deprotected amino acid to an α-carboxyl group of an N-α-protected amino acid that has been activated by reacting it with a reagent such as dicyclohexylcarbodiimide. The attachment of a free amino group to the activated carboxyl leads to peptide bond formation. The most commonly used N-α-protecting groups include Boc which is acid labile and Fmoc which is base labile. Details of appropriate chemistries, resins, protecting groups, protected amino acids and reagents are well known in the art and so are not discussed in detail herein (*See*, Atherton, *et al.*, 1989, Solid Phase Peptide Synthesis: A Practical Approach, IRL Press, and Bodanszky, 1993, Peptide Chemistry, A Practical Textbook, 2nd Ed., Springer-Verlag).

Purification of the resulting α2M polypeptides accomplished using conventional procedures, such as preparative HPLC using gel permeation, partition and/or ion exchange chromatography. The choice of appropriate matrices and buffers are well known in the art and so are not described in detail herein.

5.2 ANTIGENIC COMPLEXES COMPRISING α2M POLYPEPTIDES

5.2.1 ISOLATION OF INTRACELLULAR COMPLEXES OF $\alpha 2M$ POLYPEPTIDES WITH ANTIGENIC MOLECULES

Described herein are methods for purifying α2M polypeptides or α2M polypeptide-antigenic molecule complexes of the invention from recombinant cells, and, with minor modifications known in the art, the α2M polypeptide or α2M-antigenic molecule complexes from the cell culture. Recombinant cells include, for example, cells expressing

antigenic molecules and recombinantly expressing an a2M polypeptide. Such cells may be derived from a variety of sources, including, but not limited to, cells infected with an infectious agent and cancer cells.

The invention provides methods for purification of recombinant $\alpha 2M$ polypeptide—antigenic molecule complexes by affinity purification, based on the properties of the affinity label present on the $\alpha 2M$ polypeptide. One approach is based on specific molecular interactions between a tag and its binding partner. The other approach relies on the immunospecific binding of an antibody to an epitope present on the tag. The principle of affinity chromatography well known in the art is generally applicable to both of these approaches.

5

10

15

20

25

30

To produce α2M polypeptide-antigenic molecule complexes, a nucleotide sequence encoding an a2M polypeptide can be introduced into a cell. When an antigenic molecule is present in the cell, the a2M polypeptide can associate intracellularly with the antigenic molecule, forming a covalent or a noncovalent complex of a2M polypeptide and the antigenic molecule. Cells into which an a2M polypeptide-encoding nucleotide sequence can be introduced, include, but are not limited to, epithelial cells, endothelial cells, keratinocytes, fibroblasts, muscle cells, hepatocytes; blood cells such as T lymphocytes, B lymphocytes, monocytes, macrophages, neutrophils, eosinophils, megakaryocytes, granulocytes; various stem or progenitor cells, in particular hematopoietic stem or progenitor cells, e.g., as obtained from bone marrow, umbilical cord blood, peripheral blood, fetal liver, etc. The choice of cell type depends on the type of tumor or infectious disease being treated or prevented, and can be determined by one of skill in the art. In a specific embodiment, an expression construct comprising a nucleic acid sequence encoding the a2M polypeptide is introduced into an antigenic cell. As used herein, antigenic cells may include cells that are infected with an infectious agent or pathogen, cells infected with non-infectious or non-pathogenic forms of an infectious agent or pathogen (e.g., by use of a helper infectious agent), cells infected by or engineered to express an attenuated form of an infectious agent or a non-pathogenic or replication-deficient variant of a pathogen, pre-neoplastic cells that are infected with a cancer-causing infectious agent, such as a virus, but which are not yet neoplastic; or antigenic cells that have been exposed to a mutagen or cancer-causing agent, such as, for example DNA-damaging agents, radiation, etc. Other cells that can be used are preneoplastic cells which are in transition from a normal to a neoplastic form as characterized by morphology, physiological or biochemical functions. Preferably, the cancer cells and preneoplastic cells used in the methods of the invention are of mammalian origin. Mammals contemplated by this aspect of the invention include humans, companion animals (e.g., dogs and cats), livestock animals (e.g., sheep, cattle, goats, pigs and horses), laboratory animals (e.g., mice, rats and rabbits), and captive or free wild animals.

In various embodiments, any cancer cell, preferably a human cancer cell, can be used in the present methods for producing $\alpha 2M$ polypeptide—antigenic molecule complexes. The cancer cells provide the antigenic peptides which become associated covalently or noncovalently with the expressed $\alpha 2M$ polypeptide. $\alpha 2M$ polypeptide-antigenic molecule complexes are then purified from the cells and used to treat such cancers. Cancers which can be treated or prevented with immunogenic compositions prepared by methods of the invention include, but are not limited to, tumors such as sarcomas and carcinomas. Examples of cancers that are amenable to the methods of the invention are listed in Section 5.6. Accordingly, any tissues or cells isolated from a pre-neoplastic lesion, a cancer, including cancer that has metastasized to multiple remote sites, can be used in the present method. For example, cells found in abnormally growing tissue, circulating leukemic cells, metastatic lesions as well as solid tumor tissue can be used.

5

15

20

25

30

35

In another embodiment, cell lines derived from a pre-neoplastic lesion, cancer tissues or cancer cells can also be used, provided that the cells of the cell line have at least one or more antigenic determinants in common with antigens on the target cancer cells. Cancer tissues, cancer cells, cells infected with a cancer-causing agent, other pre-neoplastic cells, and cell lines of human origin are preferred.

Cancer and pre-neoplastic cells can be identified by any method known in the art. For example, cancer cells can be identified by morphology, enzyme assays, proliferation assays, cytogenetic characterization, DNA mapping, DNA sequencing, the presence of cancer-causing virus, or a history of exposure to mutagen or cancer-causing agent, imaging, etc. Cancer cells may also be obtained by surgery, endoscopy, or other biopsy techniques. If some distinctive characteristics of the cancer cells are known, they can also be obtained or purified by any biochemical or immunological methods known in the art, such as but not limited to affinity chromatography, and fluorescence activated cell sorting (e.g., with fluorescently tagged antibody against an antigen expressed by the cancer cells).

Cancer tissues, cancer cells or cell lines may be obtained from a single individual or pooled from several individuals. It is not essential that clonal, homogeneous, or purified population of cancer cells be used. It is also not necessary to use cells of the ultimate target in vivo (e.g., cells from the tumor of the intended recipient), so long as at least one or more antigenic determinants on the target cancer cells is present on the cells used for expression of the α 2M polypeptide. In addition, cells derived from distant metastases may be used to prepare an immunogenic composition against the primary cancer. A mixture of cells can be used provided that a substantial number of cells in the mixture are cancer cells and share at least one antigenic determinant with the target cancer cell. In a specific embodiment, the cancer cells to be used in expressing an α 2M polypeptide are purified.

5.2.2 IN VITRO COMPLEXING

5

In another embodiment, complexes of $\alpha 2M$ polypeptides and antigenic molecules are produced in vitro. Immunogenic $\alpha 2M$ polypeptide – antigenic molecule complexes can be generated in vitro by any method known in the art for forming $\alpha 2M$ polypeptide – antigenic molecule complexes. Procedures for forming such $\alpha 2M$ -antigenic molecule complexes and methods for isolating antigenic peptides are described in detail herein.

Methods for formation *in vitro* of noncovalent immunogenic complexes are well known in the art. For example, such complexes can be generated *in vitro* by noncovalent complexing of an α2M polypeptide with an antigenic molecule using methods which have been previously described for noncovalent coupling of an HSP with an antigenic molecule (see *e.g.*, Blachere *et al.*, 1997, *supra*; PCT publication WO 97/10000, dated March 20, 1997). Preferably, the immunogenic molecular complex is not prepared by treatment with a protease, or with an activating agent such as ammonia or methyamine. In another preferred embodiment, the α2M molecule of the immunogenic molecular complex is not cleaved within the "bait" region. In yet another embodiment, the α2M polypeptide is not covalently associated with the antigenic molecule through a thioester linkage.

Methods for covalent coupling are also well known in the art (see, e.g., Osada et al., 1987, supra; Osada et al., 1988, supra; Chu and Pizzo 1993, supra; Chu et al., 1994, supra; Mitsuda et al., 1993, supra). In one embodiment, for example, when an α2M polypeptide is mixed with protease, During proteolytic activation of α2M, non-proteolytic ligands can become covalently bound to the activated thioesters. Non-proteolytic ligands can also be incorporated into the activated α2M molecule by ammonia or methylamine during reversal of the nucleophilic activation, employing heat (Grøn and Pizzo, 1998, Biochemistry, 37: 6009-6014). Such conditions that allow fortuitous trapping of peptides by α2M are employed to prepare the α2M polypeptide — antigenic molecule complexes of the invention.

For example, in various embodiments of the invention, an α2M polypeptide may be mixed with antigenic molecule in the presence of a protease, ammonia or other small amine nucleophiles such as methylamine and ethylamine. Non-limiting examples of proteases which may be used include trypsin, porcine pancreatic elastase (PEP), human neutrophil elastase, cathepsin G, S. aureus V-8 proteinase trypsin, a-chymotrypsin, V8 protease, papain, and proteinase K (see Ausubel et al., (eds.), in "Current Protocols in Molecular Biology", Greene Publishing Associates and Wiley Interscience, New York, 17.4.6-17.4.8).

In another embodiment for preparation of covalent a2M polypeptide-antigenic molecule complexes, a2M polypeptides and antigenic molecules are prepared, and then covalently coupled using, for example, chemical crosslinking. Chemical crosslinking methods are well known in the art. For example, in a preferred embodiment, glutaraldehyde crosslinking may be used. Glutaradehyde crosslinking has been used for formation of

covalent complexes of peptides and hsps (see Barrios et al., 1992, Eur. J. Immunol. $\underline{22}$: 1365-1372). In one embodiment, the following protocol is used. Optionally, α 2M polypeptides may be pretreated with ATP or low pH prior to complexing, in order to remove any peptides that may be associated with the α 2M polypeptide. Preferably, 1 mg of α 2M polypeptide is crosslinked to 1 mg of peptide in the presence of 0.002% glutaraldehyde for 2 hours. Glutaraldehyde is removed by dialysis against phosphate buffered saline (PBS) overnight (Lussow et al., 1991, Eur. J. Immunol. 21: 2297-2302).

Other methods for chemical crosslinking may also be used, in addition other methods for covalent attachment of proteins, such as photocrosslinking (see Current Protocols in Molecular Biology, Ausubel *et al.* (eds.), Greene Publishing Associates and Wiley Interscience, New York).

Antigenic molecules for covalent or noncovalent a2M polypeptide-antigenic molecule complexes may be isolated from various sources, chemically synthesized, or produced recombinantly. Such methods can be readily adapted for medium or large scale production of the immunotherapeutic or prophylactic vaccines of the invention.

Following complexing, the immunogenic α2M-antigenic molecule complexes can optionally be purified. In a preferred embodiment, such complexes are at least 65%, 70%, 75%, 80%, 85%, 90%, 95%, 98%, or 100% nonconvalent complexes of α2M and the antigenic molecule. Such complexes may be assayed *in vitro* using, for example, the mixed lymphocyte target cell assay (MLTC) described below. Once immunogenic complexes have been isolated they can be optionally characterized further in animal models using the preferred administration protocols and excipients discussed below.

5.2.3. α2M – ANTIGENIC MOLECULE FUSION PROTEINS

In another embodiment, recombinant fusion proteins, comprised of α2M sequences linked to antigenic molecule sequences, may be used for immunotherapy. To produce such a recombinant fusion protein, an expression vector is constructed using nucleic acid sequences encoding α2M fused to sequences encoding an antigenic molecule, using recombinant methods known in the art, such as those described in Sections 5.1.1.1 and 5.1.1.2, above (see Suzue et al., 1997, Proc. Natl. Acad. Sci. U.S.A. 94: 13146-51). α2M-antigenic peptide fusions are then expressed and isolated. By specifically designing the antigenic peptide portion of the molecule, such fusion proteins can be used to elicit an immune response and in immunotherapy against target cancer and infectious diseases.

5.2.4 SOURCES OF ANTIGENIC MOLECULES

5

20

35

Antigenic molecules, or antigenic portions thereof, specific to one or more types of cancer or infected cells, can be chosen from among those known in the art. Alternatively, such antigenic molecules can be selected for their antigenicity or their immunogenicity, as determined by immunoassays or by their ability to generate an immune response.

5.2.4.1 EXOGENOUS ANTIGENIC MOLECULES

Preferably, where it is desired to treat or prevent cancer, known tumor-specific antigenic molecules or fragments or derivatives thereof are used. For example, such tumor specific or tumor-associated antigenic molecules include but are not limited to KS 1/4 pancarcinoma antigen (Perez and Walker, 1990, J. Immunol. 142:3662-3667; Bumal, 1988, Hybridoma 7(4):407-415); ovarian carcinoma antigen (CA125) (Yu, et al., 1991, Cancer Res. 51(2):468-475); prostatic acid phosphate (Tailer, et al., 1990, Nucl. Acids Res. 18(16):4928); prostate specific antigen (Henttu and Vihko, 1989, Biochem. Biophys. Res. Comm. 160(2):903-910; Israeli, et al., 1993, Cancer Res. 53:227-230); melanoma-associated antigen p97 (Estin, et al., 1989, J. Natl. Cancer Inst. 81(6):445-446); melanoma antigen gp75 (Vijayasardahl, et al., 1990, J. Exp. Med. 171(4):1375-1380); high molecular weight melanoma antigen (Natali, et al., 1987, Cancer 59:55-63) and prostate specific membrane antigen.

In a specific embodiment, an antigenic molecule or fragment or derivative thereof specific to a certain tumor is selected for complexing to $\alpha 2M$ polypeptide and subsequent administration to a patient having that tumor.

In a preferred embodiment, where it is desired to treat or prevent viral diseases, molecules comprising epitopes of known viruses are used. For example, such antigenic epitopes may be prepared from viruses including, but not limited to, hepatitis type A, hepatitis type B, hepatitis type C, influenza, varicella, adenovirus, herpes simplex type I (HSV-I), herpes simplex type II (HSV-II), rinderpest, rhinovirus, echovirus, rotavirus, respiratory syncytial virus, papilloma virus, papova virus, cytomegalovirus, echinovirus, arbovirus, huntavirus, coxsackie virus, mumps virus, measles virus, rubella virus, polio virus, human immunodeficiency virus type I (HIV-I), and human immunodeficiency virus type II (HIV-II).

In another preferred embodiment, where it is desired to treat or prevent bacterial infections, molecules comprising epitopes of known bacteria are used. For example, such antigenic epitopes may be prepared from bacteria including, but not limited to, mycobacteria rickettsia, mycoplasma, neisseria and legionella.

In another preferred embodiment, where it is desired to treat or prevent protozoal infections, molecules comprising epitopes of known protozoa are used. For example, such

antigenic epitopes may be prepared from protozoa including, but not limited to, leishmania, kokzidioa, and trypanosoma.

In yet another preferred embodiment, where it is desired to treat or prevent parasitic infections, molecules comprising epitopes of known parasites are used. For example, such antigenic epitopes may be from parasites including, but not limited to, chlamydia and rickettsia.

5

10

15

To determine immunogenicity or antigenicity of a putative antigen by detecting binding to antibody, various immunoassays known in the art can be used, including but not limited to competitive and non-competitive assay systems using techniques such as radioimmunoassays, ELISA (enzyme linked immunosorbent assay), "sandwich" immunoassays, immunoradiometric assays, gel diffusion precipitin reactions, immunodiffusion assays, in vivo immunoassays (using colloidal gold, enzyme or radioisotope labels, for example), western blots, immunoprecipitation reactions, agglutination assays (e.g., gel agglutination assays, hemagglutination assays), complement fixation assays, immunofluorescence assays, protein A assays, and immunoelectrophoresis assays, etc. In one aspect, antibody binding is detected by detecting a label on the primary antibody. In another aspect, the primary antibody is detected by detecting binding of a secondary antibody or reagent to the primary antibody. In a further aspect, the secondary antibody is labeled. Many means are known in the art for detecting binding in an immunoassay and are envisioned for use. In one embodiment for detecting immunogenicity, T cell-mediated responses can be assayed by standard methods, e.g., in vitro cytoxicity assays or in vivo delayed-type hypersensitivity assays.

Potentially useful antigenic molecules, or derivatives thereof, can be identified by various criteria, such as the antigen's involvement in neutralization of a pathogen's infectivity (wherein it is desired to treat or prevent infection by such a pathogen) (Norrby, 1985, Summary, in Vaccines 85, Lerner, et al. (eds.), Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp. 388-389), type or group specificity, recognition by patients' antisera or immune cells, and/or the demonstration of protective effects of antisera or immune cells specific for the antigen. In addition, where it is desired to treat or prevent a disease caused by pathogen, the antigen's encoded epitope should preferably display a small or no degree of antigenic variation in time or amongst different isolates of the same pathogen.

5.2.4.2 ANTIGENIC MOLECULES FROM α2M COMPLEXES

Antigenic peptides for complexing in vitro to a2M polypeptides of the invention can also be obtained from endogenous complexes of peptides and a2Ms. Two methods may be used to elute the peptide from an a2M-antigenic molecule complex. One approach involves

incubating the α2M-antigenic molecule complex in the presence of ATP. The other approach involves incubating the complexes in a low pH buffer.

Briefly, the complex of interest is centrifuged through a Centricon 10 assembly (Millipore) to remove any low molecular weight material loosely associated with the complex. The large molecular weight fraction may be removed and analyzed by SDS-PAGE while the low molecular weight may be analyzed by HPLC as described below. In the ATP incubation protocol, the α2M-antigenic molecule complex in the large molecular weight fraction is incubated with 10mM ATP for 30 minutes at room temperature. In the low pH protocol, acetic acid or trifluoroacetic acid (TFA) is added to the α2M-antigenic molecule complex to give a final concentration of 10% (vol/vol) and the mixture incubated at room temperature or in a boiling water bath or any temperature in between, for 10 minutes.

The resulting samples are centrifuged through a Centricon 10 assembly as mentioned previously. The high and low molecular weight fractions are recovered. The remaining large molecular weight $\alpha 2M$ -antigenic molecule complexes can be reincubated with ATP or low pH to remove any remaining peptides.

10

15

20

25

35

The resulting lower molecular weight fractions are pooled, concentrated by evaporation and dissolved in 0.1% TFA. The dissolved material is then fractionated by reverse phase high pressure liquid chromatography (HPLC) using for example a VYDAC C18 reverse phase column equilibrated with 0.1% TFA. The bound material is then eluted at a flow rate of about 0.8 ml/min by developing the column with a linear gradient of 0 to 80% acetonitrile in 0.1% TFA. The elution of the peptides can be monitored by OD₂₁₀ and the fractions containing the peptides collected.

5.2.4.3 PEPTIDE ANTIGENS FROM MHC COMPLEXES

Peptides bound to MHC molecules *in vivo* can also be used *in vitro* to form complexes with α2M polypeptides of the invention. The isolation of potentially immunogenic peptides from MHC molecules is well known in the art and so is not described in detail herein (*see*, Falk, *et al.*, 1990, Nature 348:248-251; Rotzsche, at al., 1990, Nature 348:252-254; Elliott, *et al.*, 1990, Nature 348:191-197; Falk, *et al.*, 1991, Nature 351:290-296; Demotz, *et al.*, 1989, Nature 343:682-684; Rotzsche, *et al.*, 1990, Science 249:283-287), the disclosures of which are incorporated herein by reference.

Briefly, MHC-antigenic molecule complexes may be isolated by a conventional immunoaffinity procedure. The peptides then may be eluted from the MHC-antigenic molecule complex by incubating the complexes in the presence of about 0.1% TFA in acetonitrile. The eluted peptides may be fractionated and purified by reverse phase HPLC, as before.

5.2.4.4 SYNTHETIC ANTIGENIC MOLECULES

The amino acid sequences of the peptides eluted from MHC molecules or $\alpha 2M$ may be determined either by manual or automated amino acid sequencing techniques well known in the art. Once the amino acid sequence of a potentially protective peptide has been determined, the peptide may be synthesized in using conventional peptide synthesis or other protocols well known in the art.

Peptides having the same amino acid sequence as those isolated above may be synthesized by solid-phase peptide synthesis using procedures similar to those described by Merrifield, 1963, J. Am. Chem. Soc., 85:2149. During synthesis, N-α-protected amino acids having protected side chains are added stepwise to a growing polypeptide chain linked by its C-terminal and to an insoluble polymeric support i.e., polystyrene beads. The peptides are synthesized by linking an amino group of an N-α-deprotected amino acid to an α-carboxyl group of an N-α-protected amino acid that has been activated by reacting it with a reagent such as dicyclohexylcarbodiimide. The attachment of a free amino group to the activated carboxyl leads to peptide bond formation. The most commonly used N-α-protecting groups include Boc which is acid labile and Fmoc which is base labile. Details of appropriate chemistries, resins, protecting groups, protected amino acids and reagents are well known in the art and so are not discussed in detail herein (See, Atherton, et al., 1989, Solid Phase Peptide Synthesis: A Practical Approach, IRL Press, and Bodanszky, 1993, Peptide Chemistry, A Practical Textbook, 2nd Ed., Springer-Verlag).

Purification of the resulting peptides is accomplished using conventional procedures, such as preparative HPLC using gel permeation, partition and/or ion exchange chromatography. The choice of appropriate matrices and buffers are well known in the art and so are not described in detail herein.

25

5

15

20

5.2.4.5 RECOMBINANTLY PRODUCED ANTIGENIC MOLECULES

In a particular embodiment of the invention, a nucleotide sequence encoding a protein antigenic molecule or portions thereof can be introduced into a host cell for production of the antigenic molecule. The nucleotide sequence encoding any antigenic protein can be obtained and cloned into an expression vector for expression essentially by the same methods described for the cloning and expression of a nucleotide sequence encoding an $\alpha 2M$ polypeptide. The techniques are described in Sections 5.1.1.1 and 5.1.1.2, and are well known in the art. The recombinant antigenic protein or portions thereof can be purified by any methods appropriate for the protein, and then used to form complexes with $\alpha 2M$ polypeptides in vitro as described in Section 5.2.2. Such an $\alpha 2M$ polypeptide-antigenic molecule complex can be used as a vaccine to stimulate an immune response against the

antigenic protein in a subject for the purpose of treatment or prevention of infectious diseases or cancer.

5.3 THERAPEUTIC APPLICATIONS FOR a2M COMPLEXES

The present invention encompasses the use of $\alpha 2M$ polypeptides in methods for treatment of and prevention of infectious diseases and cancer. In various embodiments described in detail herein, an effective amount of a $\alpha 2M$ polypeptide in a covalent or noncovalent complex with an antigenic molecule is administered to a patient for therapeutic purposes.

10

5

5.3.1 PREVENTION AND TREATMENT OF INFECTIOUS DISEASES

For treatment and prevention of infectious disease, α2M – antigenic molecule complexes are prepared from a cell that displays the antigenicity of an antigen of an infectious agent or pathogenic agent, and used as vaccines against the infectious disease. As 15 will be appreciated by those skilled in the art, the protocols described herein may be used to isolate α2M polypeptide-antigenic molecule complexes from any cell that displays the antigenicity of an antigen of the infectious agent. For example, cells may be infected by the infectious agent itself, or alternatively, cells may be infected by or engineered to express an attenuated form of the infectious agent or a non-pathogenic or replication-deficient variant of 20 the pathogen. In one embodiment, a2M- antigenic molecule complexes can be prepared from cells infected with non-infectious or non-pathogenic forms of the infectious agent (e.g., by use of a helper infectious agent). In another embodiment, the α2M-antigenic molecule complexes of the invention may be prepared from cells infected with an intracellular pathogen. In another embodiment, a2M polypeptide-complexes can be prepared from cells 25 that have been transformed by an intracellular pathogen. For example, immunogenic α2M polypeptide-antigenic molecule complexes may be isolated from eukaryotic cells transformed with a transforming virus such as SV40.

A preferred method for treatment or prevention of an infectious disease comprises introducing into a cell that displays the antigenicity of an infectious agent an expressible α2M polypeptide gene sequence, preferably as an expression gene construct. The α2M polypeptide gene sequence is manipulated by recombinant methods, such as those described above in Sections 5.1.1.1 and 5.1.1.2 above, so that the α2M polypeptide gene sequence, in the form of an expression construct, located extrachromosomally or integrated in the chromosome, is suitable for expression of the α2M polypeptide in the recombinant cells.

The recombinant cells containing the expression gene constructs are cultured under conditions such that α2M polypeptides encoded by the expression gene construct are

expressed. Complexes of α 2M polypeptides covalently or noncovalently associated with antigenic molecules of the infectious agent are purified from the cell culture or culture medium by the methods described in Section 5.2.1.

5

10

15

20

In various embodiments, a2M – antigenic molecule complexes are prepared from a cell genetically manipulated to express an a2M polypeptide, for example, tissues, isolated cells or immortalized eukaryotic cell lines infected with an intracellular pathogen. When immortalized animal cell lines are used as a source of the α2M polypeptide-antigenic molecule complex, it is important to use cell lines that can be infected with the pathogen of interest. In addition, it is preferable to use cells that are derived from the same species as the intended recipient of the vaccine. Techniques for introducing an expressible form of the a2M polypeptide gene sequences into these cell lines are described above in Section 5.1.1.2. If a pathogen is expected to cause lysis of the host cells, it is preferred to introduce the expressible a2M polypeptide gene sequence into the host cell prior to infecting the cells with the pathogen. For example, in order to prepare an a2M polypeptide-antigenic molecule complex for administration to humans that may be effective against HIV-1, the virus may be propagated in human cells which include, but are not limited to, human CD4+ T cells, HepG2 cells, and U937 promonocytic cells, which have already been transfected with an expressible a2M polypeptide sequence. Similarly, influenza viruses may be propagated in, for example, transfected human fibroblast cell lines and MDCK cells, and mycobacteria may be cultured in, for example, transfected human Schwaan cells. The cell supernatant containing a2M-antigenic molecule complex may be collected just prior to lysis of the host cell.

In a preferred aspect of the invention, the purified $\alpha 2M$ – antigenic molecule complex vaccines may have particular utility in the treatment of human diseases caused by intracellular pathogens. It is appreciated, however, that the vaccines developed using the principles described herein will be useful in treating diseases of other mammals, for example, farm animals including: cattle; horses; sheep; goats; and pigs, and household pets including: cats; and dogs, that similarly are caused by intracellular pathogens.

In accordance with the methods described herein, vaccines may be prepared that stimulate an immune response, in particular a cytotoxic T cell responses, against cells infected with viruses including, but not limited to, hepatitis type A, hepatitis type B, hepatitis type C, influenza, varicella, adenovirus, HSV-I, HSV-II, rinderpest rhinovirus, echovirus, rotavirus, respiratory syncytial virus, papilloma virus, papova virus, cytomegalovirus, echinovirus, arbovirus, huntavirus, coxsachie virus, mumps virus, measles virus, rubella virus, polio virus, HIV-I, and HIV-II. Similarly, vaccines may also be prepared that stimulate cytotoxic T cell responses against cells infected with intracellular bacteria, including, but not limited to, *Mycobacteria*, *Rickettsia*, *Mycoplasma*, *Neisseria* and

Legionella. In addition, vaccines may also be prepared that stimulate cytotoxic T cell responses against cells infected with intracellular protozoa, including, but not limited to, Leishmani, Kokzidioa, and Trypanosoma. Furthermore, vaccines may be prepared that stimulate cytotoxic T cell responses against cells infected with intracellular parasites including, but not limited to, Chlamydia and Rickettsia.

The effect of immunotherapy with modified a2M polypeptide-antigenic molecule complexes on progression of infectious diseases can be monitored by any methods known to one skilled in the art.

5.3.2 PREVENTION AND TREATMENT OF CANCER

10

15

20

25

There are many reasons why immunotherapy as provided by the covalent or noncovalent a2M polypeptide-antigenic molecule complexes or recombinant cells expressing a2M polypeptides prepared by the present invention is desired for use in cancer patients. First, if cancer patients are immunosuppressed, and surgery with anesthesia, and subsequent chemotherapy, may worsen the immunosuppression, then with appropriate immunotherapy in the preoperative period, this immunosuppression may be prevented or reversed. This could lead to fewer infectious complications and to accelerated wound healing. Second, tumor bulk is minimal following surgery and immunotherapy is most likely to be effective in this situation. A third reason is the possibility that tumor cells are shed into the circulation at surgery and effective immunotherapy applied at this time can eliminate these cells.

In a specific embodiment, the preventive and therapeutic utility of the invention is directed at enhancing the immunocompetence of the cancer patient either before surgery, at or after surgery, and at inducing tumor-specific immunity to cancer cells, with the objective being inhibition of cancer, and with the ultimate clinical objective being total cancer regression and eradication.

According to the invention, preferred methods of treatment or prevention of cancer comprise isolating cancer cells from one or more individual, preferably the individual in need of treatment, and introducing into such cells an expressible $\alpha 2M$ polypeptide gene sequence, preferably as an expression gene construct. The $\alpha 2M$ polypeptide gene sequence is manipulated by methods described above in Sections 5.1.1.1 and 5.1.1.2, such that the $\alpha 2M$ polypeptide gene sequence, in the form of an expression construct, or intrachromosomally integrated, are suitable for expression of the $\alpha 2M$ polypeptide in the recombinant cells. The recombinant cells containing the expression gene constructs are cultured under conditions such that $\alpha 2M$ polypeptides encoded by the expression gene construct are expressed by the recombinant host cells. Complexes of $\alpha 2M$ polypeptides covalently or noncovalently associated with antigenic molecules of the cancer cell are purified from the cell culture or culture medium by the methods described in Section 5.2.1. Depending on the route of

administration, the α 2M polypeptide—antigenic molecule complexes are formulated accordingly as described in Section 5.7, and administered to the individual autologously (e.g., to treat the primary cancer or metastases thereof), or to other individuals who are in need of treatment for cancer of a similar tissue type, or to individuals at enhanced risk of cancer due to familial history or environmental risk factors.

5

10

20

30

35

For example, treatment with $\alpha 2M$ polypeptide – antigenic molecule complexes prepared as described above may be started any time after surgery. However, if the patient has received chemotherapy, $\alpha 2M$ – antigenic molecule complexes are usually administered after an interval of four weeks or more so as to allow the immune system to recover. The therapeutic regimen may include weekly injections of the $\alpha 2M$ polypeptide – antigenic molecule complex, dissolved in saline or other physiologically compatible solution. The route and site of injection is varied each time, for example, the first injection is given subcutaneously on the left arm, the second injection on the right arm, the third injection on the left abdominal region, the fourth injection on the right abdominal region, the fifth injection on the left thigh, the sixth injection on the right thigh, etc. The same site is repeated after a gap of one or more injections. In addition, injections are split and each half of the dose is administered at a different site on the same day. Overall, the first four to six injections are given at weekly intervals. Subsequently, two injections are given at two-week intervals, followed by a regimen of injections at monthly intervals.

Alternatively, recombinant tumor cells expressing $\alpha 2M$ – antigenic molecule complexes can be used as a vaccine for injection into a patient to stimulate an immune response against the tumor cells or cells bearing tumor antigens. Autologous recombinant tumor cells stably expressing $\alpha 2M$ polypeptide-antigenic molecule complexes are preferred. To determine the appropriate dose, the amount of $\alpha 2M$ polypeptide-antigenic molecule complex produced by the recombinant cells is quantitated, and the number of recombinant cells used for vaccination is adjusted accordingly to assure a consistent level of expression *in vivo*. A preferred dose is the number of recombinant cells that can produce about 100 ng $\alpha 2M$ polypeptide per 24 hours. For the safety of the patient, the recombinant tumor cells can be irradiated (12000 rad) immediately prior to injection into a patient. Irradiated cells do not proliferate, and can continue to express $\alpha 2M$ polypeptide-antigenic molecule complexes for about 7-10 days which is sufficient to induce an immune response.

Cancers that can be treated or prevented by using covalent or noncovalent α2M-antigenic molecule complexes prepared by the methods of the present invention include, but not limited to human sarcomas and carcinomas, e.g., fibrosarcoma, myxosarcoma, liposarcoma, chondrosarcoma, osteogenic sarcoma, chordoma, angiosarcoma, endotheliosarcoma, lymphangiosarcoma, lymphangioendotheliosarcoma, synovioma, mesothelioma, Ewing's tumor, leiomyosarcoma, rhabdomyosarcoma, colon carcinoma,

5

15

20

30

pancreatic cancer, breast cancer, ovarian cancer, prostate cancer, squamous cell carcinoma, basal cell carcinoma, adenocarcinoma, sweat gland carcinoma, sebaceous gland carcinoma, papillary carcinoma, papillary adenocarcinomas, cystadenocarcinoma, medullary carcinoma, bronchogenic carcinoma, renal cell carcinoma, hepatoma, bile duct carcinoma, choriocarcinoma, seminoma, embryonal carcinoma, Wilms' tumor, cervical cancer, testicular tumor, lung carcinoma, small cell lung carcinoma, bladder carcinoma, epithelial carcinoma, glioma, astrocytoma, medulloblastoma, craniopharyngioma, ependymoma, pinealoma, hemangioblastoma, acoustic neuroma, oligodendroglioma, meningioma, melanoma, neuroblastoma, retinoblastoma; leukemias, e.g., acute lymphocytic leukemia and acute myelocytic leukemia (myeloblastic, promyelocytic, myelomonocytic, monocytic and erythroleukemia); chronic leukemia (chronic myelocytic (granulocytic) leukemia and chronic lymphocytic leukemia); and polycythemia vera, lymphoma (Hodgkin's disease and non-Hodgkin's disease), multiple myeloma, Waldenström's macroglobulinemia, and heavy chain disease.

In a specific embodiment, the cancer is metastatic. In another specific embodiment, the patient having a cancer is immunosuppressed by reason of having undergone anti-cancer therapy (e.g., chemotherapy radiation) prior to administration of the $\alpha 2M$ – antigenic molecule complexes of the invention. In another specific embodiment, the cancer is a tumor.

The effect of immunotherapy with $\alpha 2M$ polypeptide-antigenic molecule complexes on progression of neoplastic diseases can be monitored by any methods known to one skilled in the art, including but not limited to measuring: a) delayed hypersensitivity as an assessment of cellular immunity; b) activity of cytolytic T-lymphocytes in vitro; c) levels of tumor specific antigens, e.g., carcinoembryonic (CEA) antigens; d) changes in the morphology of tumors using techniques such as a computed tomographic (CT) scan; e) changes in levels of putative biomarkers of risk for a particular cancer in individuals at high risk, and f) changes in the morphology of tumors using a sonogram. Other techniques that can also be used include scintigraphy and endoscopy.

The preventive effect of immunotherapy using α2M polypeptide-antigenic molecule complexes may also be estimated by determining levels of a putative biomarker for risk of a specific cancer. For example, in individuals at enhanced risk for prostate cancer, serum prostate-specific antigen (PSA) is measured by the procedure described by Brawer *et al.*, 1992, J. Urol. 147:841-845, and Catalona *et al.*, 1993, JAMA 270:948-958; or in individuals at risk for colorectal cancer, CEA is measured by methods known in the art; and in individuals at enhanced risk for breast cancer, 16-α-hydroxylation of estradiol is measured by the procedure described by Schneider *et al.*, 1982, Proc. Natl. Acad. Sci. USA 79:3047-3051. The references cited above are incorporated by reference herein in their entirety.

5.3.3 COMBINATION WITH ADOPTIVE IMMUNOTHERAPY

Adoptive immunotherapy refers to a therapeutic approach for treating infectious diseases or cancer in which immune cells are administered to a host with the aim that the cells mediate specific immunity, either directly or indirectly, to the infected cells or tumor cells and/or antigenic components, and result in treatment of the infectious disease or regression of the tumor, as the case may be (see U.S. Patent Application Serial No. 08/527,546, filed September 13, 1995, which is incorporated by reference herein in its entirety). α2M polypeptides may be used to sensitize antigen presenting cells (APCs) using in covalent or noncovalent complexes with antigenic (or immunogenic) molecules, for adoptive immunotherapy.

According to the invention, therapy by administration of α2M polypeptide-antigenic molecule complexes, using any desired route of administration, is combined with adoptive immunotherapy using APC sensitized with α2M polypeptide-antigenic molecule complexes. The α2M polypeptide-antigenic molecule complex-sensitized APC can be administered concurrently with α2M polypeptide-antigenic molecule complexes, or before or after administration of α2M polypeptide- antigenic molecule complexes. Furthermore, the mode of administration can be varied, including but not limited to, e.g., subcutaneously, intravenously, intraperitoneally, intramuscularly, intradermally or mucosally.

5.3.3.1 SENSITIZATION OF ANTIGEN PRESENTING CELLS WITH $\alpha 2M$ COMPLEXES

20

The antigen-presenting cells, including but not limited to macrophages, dendritic cells and B-cells, are preferably obtained by production *in vitro* from stem and progenitor cells from human peripheral blood or bone marrow as described by Inaba *et al.*, 1992, J. Exp. Med. 176:1693-1702. APC can be obtained by any of various methods known in the art. In a preferred aspect human macrophages are used, obtained from human blood cells.

By way of example, but not limitation, macrophages can be obtained as follows:

Mononuclear cells are isolated from peripheral blood of a patient (preferably the patient to be treated), by Ficoll-Hypaque gradient centrifugation and are seeded on tissue culture dishes
which are pre-coated with the patient's own serum or with other AB+ human serum. The cells are incubated at 37°C for 1 hr, then non-adherent cells are removed by pipetting. To the adherent cells left in the dish, is added cold (4°C) 1 mM EDTA in phosphate-buffered saline and the dishes are left at room temperature for 15 minutes. The cells are harvested, washed with RPMI buffer and suspended in RPMI buffer. Increased numbers of macrophages may be obtained by incubating at 37°C with macrophage-colony stimulating factor (M-CSF); increased numbers of dendritic cells may be obtained by incubating with

granulocyte-macrophage-colony stimulating factor (GM-CSF) as described in detail by Inaba, K., et al., 1992, J. Exp. Med. 176:1693-1702.

APC are sensitized with α 2M polypeptides covalently or noncovalently bound to antigenic molecules by incubating the cells *in vitro* with the complexes. The APC are sensitized with complexes of α 2M polypeptide and antigenic molecules preferably by incubating *in vitro* with the α 2M polypeptide-complex at 37°C for 15 minutes to 24 hours. By way of example but not limitation, $4x10^7$ macrophages can be incubated with 10 microgram α 2M-antigenic molecule complexes per ml or 100 microgram α 2M-antigenic molecule complexes per ml at 37°C for 15 mins to 24 hrs in 1 ml plain RPMI medium. The cells are washed three times and resuspended in a physiological medium preferably sterile, at a convenient concentration (*e.g.*, $1x10^7$ /ml) for injection in a patient. In a preferred embodiment, the antigen presenting cells are autologous to the patient, that is, the patient into which the sensitized APCs are injected is the patient from which the APC were originally isolated,.

Optionally, the ability of sensitized APC to stimulate, for example, the antigenspecific, class I-restricted cytotoxic T-lymphocytes (CTL) can be monitored by their ability to stimulate CTLs to release tumor necrosis factor, and by their ability to act as targets of such CTLs.

5.3.3.2 REINFUSION OF SENSITIZED APC

20

15

The α2M polypeptide-antigen-sensitized APC are reinfused into the patient systemically, preferably intravenously, by conventional clinical procedures. These activated cells are reinfused, preferentially by systemic administration into the autologous patient. Patients generally receive from about 10⁶ to about 10¹² sensitized macrophages, depending on the condition of the patient. In some regimens, patients may optionally receive in addition a suitable dosage of a biological response modifier including but not limited to the cytokines IFN-α, IFN-γ, IL-2, IL-4, IL-6, TNF or other cytokine growth factor.

5.3.4 DETERMINATION OF IMMUNOGENICITY OF α2M-ANTIGEN MOLECULE COMPLEXES

30

In an optional procedure, the purified $\alpha 2M$ polypeptide-antigenic molecule complexes can be assayed for immunogenicity using the mixed lymphocyte target culture assay (MLTC) well known in the art.

By way of example but not limitation, the following procedure can be used. Briefly, mice are injected subcutaneously with the candidate α2M polypeptide-antigenic molecule complexes. As a positive control another set of mice are immunized with whole cancer

cells of the type from which the α 2M polypeptides are derived. As a negative control, mice are injected with either α 2M – antigenic molecule complexes isolated from normal, non-recombinant cells or whole cells (*i.e.*, antigenically distinct from the type of cell from which the α 2M polypeptides are derived). The mice are injected twice, 7-10 days apart. The mice are injected twice, 7-10 days apart. Ten days after the last immunization, the spleens are removed and the lymphocytes released. The released lymphocytes may be restimulated subsequently in vitro by the addition of dead cells that expressed the complex of interest.

For example, 8x10⁶ immune spleen cells may be stimulated with 4x10⁴ mitomycin C treated or γ-irradiated (5-10,000 rads) pathogen-infected cells (or cells transfected with a gene encoding an antigen of the infectious agent, as the case may be), or tumor cells in 3ml RPMI medium containing 10% fetal calf serum. In certain cases 33% secondary mixed lymphocyte culture supernatant or interleukin 2 (IL-2) may be included in the culture medium as a source of T cell growth factors (See, Glasebrook *et al.*, 1980, J. Exp. Med. 151:876). To test the primary cytotoxic T cell response after immunization, spleen cells may be cultured without stimulation. In some experiments spleen cells of the immunized mice may also be restimulated with antigenically distinct cells, to determine the specificity of the cytotoxic T cell response.

10

15

20

30

35

Six days later the cultures are tested for cytotoxicity in a 4 hour ⁵¹Cr-release assay (See, Palladino *et al.*, 1987, Cancer Res. 47:5074-5079 and Blachere, at al., 1993, J. Immunotherapy 14:352-356). In this assay, the mixed lymphocyte culture is added to a target cell suspension to give different effector:target (E:T) ratios (usually 1:1 to 40:1). The target cells are prelabelled by incubating 1x10⁶ target cells in culture medium containing 200 mCi ⁵¹Cr/ml for one hour at 37°C. The cells are washed three times following labeling. Each assay point (E:T ratio) is performed in triplicate and the appropriate controls incorporated to measure spontaneous ⁵¹Cr release (no lymphocytes added to assay) and 100% release (cells lysed with detergent). After incubating the cell mixtures for 4 hours, the cells are pelleted by centrifugation at 200g for 5 minutes. The amount of ⁵¹Cr released into the supernatant is measured by a gamma counter. The percent cytotoxicity is measured as cpm in the test sample minus spontaneously released cpm divided by the total detergent released cpm minus spontaneously released cpm.

In order to block the MHC class I cascade a concentrated hybridoma supernatant derived from K-44 hybridoma cells (an anti-MHC class I hybridoma) is added to the test samples to a final concentration of 12.5% (Heike *et al.*, 1994, J. Immunotherapy 15:165-174).

An alternative to the chromium-release assay is the ELISPOT assay which measures cytokine release by cytotoxic T cells in vitro after stimulation with specific antigen.

Cytokine release is detected by antibodies which are specific for a particular cytokine, such

as interleukin-2, tumor necrosis factor α or interferon-γ (for example, see Scheibenbogen et al., 1997, Int. J. Cancer, 71:932-936). The assay is carried out in a microtiter plate which has been pre-coated with an antibody specific for a cytokine of interest which captures the cytokine secreted by T cells. After incubation of T cells for 24-48 hours in the coated wells, the cytotoxic T cells are removed and replaced with a second labeled antibody that recognizes a different epitope on the cytokine. After extensive washing to remove unbound antibody, an enzyme substrate which produces a colored reaction product is added to the plate. The number of cytokine-producing cells is counted under a microscope. This method has the advantages of short assay time, and sensitivity without the need of a large number of cytotoxic T cells.

5.3.5 MONITORING OF EFFECTS DURING IMMUNOTHERAPY

The effect of immunotherapy with α2M polypeptide-antigenic molecule complexes can be monitored by any methods known to one skilled in the art, including but not limited to 15 measuring: a) delayed hypersensitivity as an assessment of cellular immunity; b) activity of cytolytic T-lymphocytes *in vitro*; c) levels of infective agent-agent or tumor-specific antigens, *e.g.*, carcinoembryonic (CEA) antigens. In the case of the use of α2M – antigenic molecule complexes for prevention or treatment of cancer, the effect can additionally be monitored by: d) changes in the morphology of tumors using techniques such as a computed tomographic (CT) scan; and e) changes in levels of putative biomarkers of risk for a particular cancer in individuals at high risk, and f) changes in the morphology of tumors using a sonogram.

5.3.5.1 DELAYED HYPERSENSITIVITY SKIN TEST

Delayed hypersensitivity skin tests are of great value in the overall immunocompetence and cellular immunity to an antigen. Inability to react to a battery of common skin antigens is termed anergy (Sato et al., 1995, Clin. Immunol. Pathol. 74:35-43).

Proper technique of skin testing requires that the antigens be stored sterile at 4°C, protected from light and reconstituted shorted before use. A 25- or 27-gauge needle ensures intradermal, rather than subcutaneous, administration of antigen. Twenty-four and 48 hours after intradermal administration of the antigen, the largest dimensions of both erythema and induration are measured with a ruler. Hypoactivity to any given antigen or group of antigens is confirmed by testing with higher concentrations of antigen or, in ambiguous circumstances, by a repeat test with an intermediate test.

35

25

5

5.3.5.2 IN VITRO ACTIVATION OF CYTOTOXIC T CELLS

The activity of cytotoxic T-lymphocytes can be assessed *in vitro* using the following method. Eight x 10⁶ peripheral blood-derived T lymphocytes isolated by the Ficoll-Hypaque centrifugation gradient technique, are restimulated with 4x10⁴ mitomycinC-treated tumor cells in 3ml RPMI medium containing 10% fetal calf serum. In some experiments, 33% secondary mixed lymphocyte culture supernatant or IL-2, is included in the culture medium as a source of T cell growth factors.

In order to measure the primary response of cytolytic T-lymphocytes after immunization, T cells are cultured without the stimulator tumor cells. In other experiments, T cells are restimulated with antigenically distinct cells. After six days, the cultures are tested for cytotoxicity in a 4 hour ⁵¹Cr-release assay. The spontaneous ⁵¹Cr-release of the targets should reach a level less than 20%. For the anti-MHC class I blocking activity, a tenfold concentrated supernatant of W6/32 hybridoma is added to the test at a final concentration of 12.5% (Heike M., et al., J. Immunotherapy 15:165-174).

15

5.3.5.3 LEVELS OF TUMOR SPECIFIC ANTIGENS

Although it may not be possible to detect unique tumor antigens on all tumors, many tumors display antigens that distinguish them from normal cells. The monoclonal antibody reagents have permitted the isolation and biochemical characterization of the antigens and have been invaluable diagnostically for distinction of transformed from nontransformed cells and for definition of the cell lineage of transformed cells. The best-characterized human tumor-associated antigens are the oncofetal antigens. These antigens are expressed during embryogenesis, but are absent or very difficult to detect in normal adult tissue. The prototype antigen is carcinoembryonic antigen (CEA), a glycoprotein found on fetal gut and human colon cancer cells, but not on normal adult colon cells. Since CEA is shed from colon carcinoma cells and found in the serum, it was originally thought that the presence of this antigen in the serum could be used to screen patients for colon cancer. However, patients with other tumors, such as pancreatic and breast cancer, also have elevated serum levels of CEA. Therefore, monitoring the fall and rise of CEA levels in cancer patients undergoing therapy has proven useful for predicting tumor progression and responses to treatment.

Several other oncofetal antigens have been useful for diagnosing and monitoring human tumors, e.g., alpha-fetoprotein, an alpha-globulin normally secreted by fetal liver and yolk sac cells, is found in the serum of patients with liver and germinal cell tumors and can be used as a marker of disease status.

5.3.5.4 COMPUTED TOMOGRAPHIC (CT) SCAN

CT remains the choice of techniques for the accurate staging of cancers. CT has proved more sensitive and specific than any other imaging techniques for the detection of metastases. A sonogram remains an alternative choice of technique for the accurate staging of cancers.

5.3.5.5 MEASUREMENT OF PUTATIVE BIOMARKERS

The levels of a putative biomarker for risk of a specific cancer are measured to monitor the effect of α2M covalently or noncovalently bound to antigenic molecule complexes. For example, in individuals at enhanced risk for prostate cancer, serum prostate-specific antigen (PSA) is measured by the procedure described by Brawer et. al., 1992, J. Urol. 147:841-845, and Catalona *et al.*, 1993, JAMA 270:948-958; and in individuals at enhanced risk for breast cancer, 16-α-hydroxylation of estradiol is measured by the procedure described by Schneider *et al.*, 1982, Proc. Natl. Acad. Sci. ISA 79:3047-3051.

15 5.4 TARGET AUTOIMMUNE DISEASES

Autoimmune diseases that can be treated by the methods of the present invention include, but are not limited to, insulin dependent diabetes mellitus (i.e., IDDM, or autoimmune diabetes), multiple sclerosis, systemic lupus erythematosus, Sjogren's 20 syndrome, scleroderma, polymyositis, chronic active hepatitis, mixed connective tissue disease, primary biliary cirrhosis, pernicious anemia, autoimmune thyroiditis, idiopathic Addison's disease, vitiligo, gluten-sensitive enteropathy, Graves' disease, myasthenia gravis, autoimmune neutropenia, idiopathic thrombocytopenia purpura, rheumatoid arthritis, cirrhosis, pemphigus vulgaris, autoimmune infertility, Goodpasture's disease, bullous 25 pemphigoid, discoid lupus, ulcerative colitis, and dense deposit disease. The diseases set forth above, as referred to herein, include those exhibited by animal models for such diseases, such as, for example non-obese diabetic (NOD) mice for IDDM and experimental autoimmune encephalomyelitis (EAE) mice for multiple sclerosis.

The methods of the present invention can be used to treat such autoimmune diseases 30 by reducing or eliminating the immune response to the patient's own (self) tissue, or, alternatively, by reducing or eliminating a pre-existing autoimmune response directed at tissues or organs transplanted to replace self tissues or organs damaged by the autoimmune response.

5.5 TARGET INFECTIOUS DISEASES

The infectious diseases that can be treated or prevented using the methods and compositions of the present invention include those caused by intracellular pathogens such as viruses, bacteria, protozoans, and intracellular parasites. Viruses include, but are not limited to viral diseases such as those caused by hepatitis type B virus, parvoviruses, such as adeno-associated virus and cytomegalovirus, papovaviruses such as papilloma virus, polyoma viruses, and SV40, adenoviruses, herpes viruses such as herpes simplex type I (HSV-I), herpes simplex type II (HSV-II), and Epstein-Barr virus, poxviruses, such as variola (smallpox) and vaccinia virus, RNA viruses, including but not limited to human immunodeficiency virus type I (HIV-I), human immunodeficiency virus type II (HIV-II), human T-cell lymphotropic virus type I (HTLV-I), and human T-cell lymphotropic virus type II (HTLV-II); influenza virus, measles virus, rabies virus, Sendai virus, picornaviruses such as poliomyelitis virus, coxsackieviruses, rhinoviruses, reoviruses, togaviruses such as rubella virus (German measles) and Semliki forest virus, arboviruses, and hepatitis type A virus.

In another embodiment, bacterial infections can be treated or prevented such as, but not limited to disorders caused by pathogenic bacteria including, but not limited to, Streptococcus pyogenes, Streptococcus pneumoniae, Neisseria gonorrhoea, Neisseria meningitidis, Corynebacterium diphtheriae, Clostridium botulinum, Clostridium perfringens, 20 Clostridium tetani, Haemophilus influenzae, Klebsiella pneumoniae, Klebsiella ozaenae, Klebsiella rhinoscleromotis, Staphylococcus aureus, Vibrio cholerae, Escherichia coli, Pseudomonas aeruginosa, Campylobacter (Vibrio) fetus, Campylobacter jejuni, Aeromonas hydrophila, Bacillus cereus, Edwardsiella tarda, Yersinia enterocolitica, Yersinia pestis, Yersinia pseudotuberculosis, Shigella dysenteriae, Shigella flexneri, Shigella sonnei, Salmonella typhiimurium, Salmonella typhii, Treponema pallidum, Treponema pertenue, Treponema carateneum, Borrelia vincentii, Borrelia burgdorferi, Leptospira icterohemorrhagiae, Mycobacterium tuberculosis, Toxoplasma gondii, Pneumocystis carinii, Francisella tularensis, Brucella abortus, Brucella suis, Brucella melitensis, Mycoplasma spp., Rickettsia prowazeki, Rickettsia tsutsugumushi, Chlamydia spp., and Helicobacter pylori.

In another preferred embodiment, the methods can be used to treat or prevent infections caused by pathogenic protozoans such as, but not limited to, Entomoeba histolytica, Trichomonas tenas, Trichomonas hominis, Trichomonas vaginalis, Trypanosoma gambiense, Trypanosoma rhodesiense, Trypanosoma cruzi, Leishmania donovani,

35 Leishmania tropica, Leishmania braziliensis, Pneumocystis pneumonia, Plasmodium vivax, Plasmodium falciparum, and Plasmodium malaria.

5.6 TARGET PROLIFERATIVE CELL DISORDERS

With respect to specific proliferative and oncogenic disease associated with a2Ma2M activity, the diseases that can be treated or prevented by the methods of the present invention include, but are not limited to: human sarcomas and carcinomas, e.g., fibrosarcoma, myxosarcoma, liposarcoma, chondrosarcoma, osteogenic sarcoma, chordoma, angiosarcoma, endotheliosarcoma, lymphangiosarcoma, lymphangioendotheliosarcoma, synovioma, mesothelioma, Ewing's tumor, leiomyosarcoma, rhabdomyosarcoma, colon 10 carcinoma, pancreatic cancer, breast cancer, ovarian cancer, prostate cancer, squamous cell carcinoma, basal cell carcinoma, adenocarcinoma, sweat gland carcinoma, sebaceous gland carcinoma, papillary carcinoma, papillary adenocarcinomas, cystadenocarcinoma, medullary carcinoma, bronchogenic carcinoma, renal cell carcinoma, hepatoma, bile duct carcinoma, choriocarcinoma, seminoma, embryonal carcinoma, Wilms' tumor, cervical cancer, testicular 15 tumor, lung carcinoma, small cell lung carcinoma, bladder carcinoma, epithelial carcinoma, glioma, astrocytoma, medulloblastoma, craniopharyngioma, ependymoma, pinealoma, hemangioblastoma, acoustic neuroma, oligodendroglioma, meningioma, melanoma, neuroblastoma, retinoblastoma; leukemias, e.g., acute lymphocytic leukemia and acute myelocytic leukemia (myeloblastic, promyelocytic, myelomonocytic, monocytic and 20 erythroleukemia); chronic leukemia (chronic myelocytic (granulocytic) leukemia and chronic lymphocytic leukemia); and polycythemia vera, lymphoma (Hodgkin's disease and non-Hodgkin's disease), multiple myeloma, Waldenström's macroglobulinemia, and heavy chain disease.

Diseases and disorders involving a deficiency in cell proliferation or in which cell proliferation is desired for treatment or prevention, and that can be treated or prevented by inhibiting the a2M function, include but are not limited to degenerative disorders, growth deficiencies, hypoproliferative disorders, physical trauma, lesions, and wounds; for example, to promote wound healing, or to promote regeneration in degenerated, lesioned or injured tissues, etc.

30

5.7 DOSAGE REGIMENS AND FORMULATION

Covalent or noncovalent complexes of $\alpha 2M$ polypeptides and antigenic molecules of the invention may be formulated into pharmaceutical preparations for administration to mammals for treatment or prevention of infectious diseases or cancer at therapeutically effective doses for immunotherapy.

Selection of the preferred effective dose will be determined by a skilled artisan based upon considering several factors which will be known to one of ordinary skill in the art. Such factors include the particular form of a2M, and its pharmacokinetic parameters such as bioavailability, metabolism, half-life, etc., which will have been established during the usual development procedures typically employed in obtaining regulatory approval for a pharmaceutical compound. Further factors in considering the dose include the condition or disease to be treated or the benefit to be achieved in a normal individual, the body mass of the patient, the route of administration, whether administration is acute or chronic, 10 concomitant medications, and other factors well known to affect the efficacy of administered pharmaceutical agents. Thus the precise dosage should be decided according to the judgment of the practitioner and each patient's circumstances, e.g., depending upon the condition and the immune status of the individual patient, according to standard clinical techniques.

Covalent or noncovalent complexes of a2M polypeptides and antigenic molecules of the invention may be formulated into pharmaceutical preparations for administration to mammals for treatment or prevention of infectious diseases or cancer. Drug solubility and the site of absorption are factors which should be considered when choosing the route of administration of a therapeutic agent.

15

20

α2M polypeptide-antigenic molecule complexes of the invention may optionally be administered with one or more adjuvants in order to enhance the immunological response. For example, depending on the host species, adjuvants which may be used include, but are not limited to: mineral salts or mineral gels such as aluminum hydroxide, aluminum phosphate, and calcium phosphate; surface active substances such as lysolecithin, pluronic 25 polyols, polyanions, peptides, oil emulsions, keyhole limpet hemocyanins, and dinitrophenol; immunostimulatory molecules, such as cytokines, saponins, muramyl dipeptides and tripeptide derivatives, CpG dinucleotides, CpG oligonucleotides, monophosphoryl Lipid A, and polyphosphazenes; particulate and microparticulate adjuvant, such as emulsions, liposomes, virosomes, cochleates; or an immune stimulating complex mucosal adjuvants, Freund's (complete and incomplete, and potentially useful human adjuvants such as BCG (bacille Calmette-Guerin) and corynebacterium parvum.).

a2M polypeptide-antigenic molecule complexes of the invention may be administered using any desired route of administration, including but not limited to, e.g., subcutaneously, intravenously or intramuscularly, although intradermally or mucosally is 35 preferred. Advantages of intradermal or mucosal administration include use of lower doses and rapid absorption, respectively. Mucosal routes of administration include, but are not limited to, oral, rectal and nasal administration. Preparations for mucosal administrations are

suitable in various formulations as described below. The route of administration can be varied during a course of treatment.

The doses recited above are preferably given once weekly for a period of about 4-6 weeks, and the mode or site of administration is preferably varied with each administration. In a preferred example, subcutaneous administrations are given, with each site of administration varied sequentially. Thus, by way of example and not limitation, the first injection may be given subcutaneously on the left arm, the second on the right arm, the third on the left belly, the fourth on the right belly, the fifth on the left thigh, the sixth on the right thigh, etc. The same site may be repeated after a gap of one or more injections. Also, split injections may be given. Thus, for example, half the dose may be given in one site and the other half on an other site on the same day.

Alternatively, the mode of administration is sequentially varied, e.g., weekly injections are given in sequence subcutaneously, intramuscularly, intravenously or intraperitoneally.

20

After 4-6 weeks, further injections are preferably given at two-week intervals over a period of time of one month. Later injections may be given monthly. The pace of later injections may be modified, depending upon the patient's clinical progress and responsiveness to the immunotherapy.

Compositions comprising covalent or noncovalent complexes formulated in a compatible pharmaceutical carrier may be prepared, packaged, and labeled for treatment of the indicated infectious disease or tumor. In preferred aspects, an amount of $\alpha 2M$ polypeptide – antigenic molecule complex is administered to a human that is in the range of about 2 to 150 μ g, preferably 2 to 50 μ g, most preferably about 25 μ g, given once weekly for about 4-6 weeks, intradermally with the site of administration varied sequentially.

If the complex is water-soluble, then it may be formulated in an appropriate buffer, for example, phosphate buffered saline or other physiologically compatible solutions. Alternatively, if the resulting complex has poor solubility in aqueous solvents, then it may be formulated with a non-ionic surfactant such as Tween, or polyethylene glycol. Thus, the covalent or noncovalent complexes and their physiologically acceptable solvates may be formulated for administration by inhalation or insufflation (either through the mouth or the nose) or oral, buccal, parenteral, rectal administration or, in the case of tumors, directly injected into a solid tumor.

For oral administration, the pharmaceutical preparation may be in liquid form, for example, solutions, syrups or suspensions, or may be presented as a drug product for reconstitution with water or other suitable vehicle before use. Such liquid preparations may be prepared by conventional means with pharmaceutically acceptable additives such as

suspending agents (e.g., sorbitol syrup, cellulose derivatives or hydrogenated edible fats); emulsifying agents (e.g., lecithin or acacia); non-aqueous vehicles (e.g., almond oil, oily esters, or fractionated vegetable oils); and preservatives (e.g., methyl or propyl-p-hydroxybenzoates or sorbic acid). The pharmaceutical compositions may take the form of, for example, tablets or capsules prepared by conventional means with pharmaceutically acceptable excipients such as binding agents (e.g., pregelatinized maize starch, polyvinyl pyrrolidone or hydroxypropyl methylcellulose); fillers (e.g., lactose, microcrystalline cellulose or calcium hydrogen phosphate); lubricants (e.g., magnesium stearate, talc or silica); disintegrants (e.g., potato starch or sodium starch glycolate); or wetting agents (e.g., sodium lauryl sulphate). The tablets may be coated by methods well-known in the art.

Preparations for oral administration may be suitably formulated to give controlled release of the complexes. Such compositions may take the form of tablets or lozenges formulated in conventional manner.

15

30

For administration by inhalation, the complexes may be conveniently delivered in the form of an aerosol spray presentation from pressurized packs or a nebulizer, with the use of a suitable propellant, e.g., dichlorodifluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane, carbon dioxide or other suitable gas. In the case of a pressurized aerosol the dosage unit may be determined by providing a valve to deliver a metered amount. Capsules and cartridges of, e.g., gelatin for use in an inhaler or insufflator may be formulated containing a powder mix of the complexes and a suitable powder base such as lactose or starch.

The complexes may be formulated for parenteral administration by injection, e.g., by bolus injection or continuous infusion. Formulations for injection may be presented in unit dosage form, e.g., in ampoules or in multi-dose containers, with an added preservative. The compositions may take such forms as suspensions, solutions or emulsions in oily or aqueous vehicles, and may contain formulatory agents such as suspending, stabilizing and/or dispersing agents. Alternatively, the active ingredient may be in powder form for constitution with a suitable vehicle, e.g., sterile pyrogen-free water, before use.

The complexes may also be formulated in rectal compositions such as suppositories or retention enemas, e.g., containing conventional suppository bases such as cocoa butter or other glycerides.

In addition to the formulations described previously, the complexes may also be formulated as a depot preparation. Such long acting formulations may be administered by implantation (for example, subcutaneously or intramuscularly) or by intramuscular injection. Thus, for example, the complexes may be formulated with suitable polymeric or hydrophobic materials (for example, as an emulsion in an acceptable oil) or ion exchange resins, or as

sparingly soluble derivatives, for example, as a sparingly soluble salt. Liposomes and emulsions are well known examples of delivery vehicles or carriers for hydrophilic drugs.

The complexes may, if desired, be presented in a pack or dispenser device which may contain one or more unit dosage forms containing the covalent or noncovalent complexes. The pack may for example comprise metal or plastic foil, such as a blister pack. The pack or dispenser device may be accompanied by instructions for administration.

The invention also provides kits for carrying out the therapeutic regimens of the invention. Such kits comprise in one or more containers therapeutically or prophylactically effective amounts of the covalent or noncovalent α2M polypeptide – antigenic molecule complexes in pharmaceutically acceptable form. The α2M polypeptide – antigenic molecule complexes in a vial of a kit of the invention may be in the form of a pharmaceutically acceptable solution, e.g., in combination with sterile saline, dextrose solution, or buffered solution, or other pharmaceutically acceptable sterile fluid. Alternatively, the complex may be lyophilized or desiccated; in this instance, the kit optionally further comprises in a container a pharmaceutically acceptable solution (e.g., saline, dextrose solution, etc.), preferably sterile, to reconstitute the complex to form a solution for injection purposes.

In another embodiment, a kit of the invention further comprises a needle or syringe, preferably packaged in sterile form, for injecting the complex, and/or a packaged alcohol pad. Instructions are optionally included for administration of α2M polypeptide – antigenic molecule complexes by a clinician or by the patient.

6. EXAMPLE: α2M ANTAGONIZES HSP-MEDIATED ANTIGEN PRESENTATION VIA THE α2M RECEPTOR

²⁵ 6.1 INTRODUCTION

5

The Example presented herein describes the successful identification of an interaction between gp96 and the α 2M receptor present in macrophages and dendritic cells *in vivo*, and the blocking of this interaction by α 2M. The experiments presented herein form the basis for the compositions and therapeutic methods of the present invention which relate to the use of α 2M polypeptide-antigenic molecule complexes as immunotherapeutic agents for treatment of immune disorders, proliferative disorders, and infectious diseases.

The Applicant of the present invention noted that certain observations were inconsistent with a "direct transfer" model of HSP-chaperoned peptide antigen presentation. First, the immunogenicity of HSP preparations is dependent on the presence of functional phagocytic cells but not B cells or other nonprofessional antigen-presenting cells (Udono and Srivastava, 1993, *supra*; Suto and Srivastava, 1995, *supra*), whereas free peptides can

sensitize all cell types. Second, extremely small quantities of HSP-peptide complexes were effective in eliciting specific immunity, i.e., gp96-chaperoned peptides are several hundred times as effective as free peptides in sensitizing macrophages for CTL recognition, suggesting the possibility of a specific uptake mechanism. Third, gp96-chaperoned peptides elicited an MHC I response that was not limited by the size of peptide. Finally, the processing of gp96-peptide complexes in macrophage was found to be sensitive to Brefeldin A (BFA), which blocks transport through the Golgi apparatus, suggesting that processing occurred through an intercellular mechanism. These observations led to the hypothesis that 10 HSP-chaperoned peptides may be processed internally and re-presented by MHC class I molecules on the cell surfaces of macrophages (Suto and Srivastava, 1995, supra). There is also the hypothesis that the mannose receptor is used in the uptake of gp96 but no mechanism has been proposed for the non-glycosylated HSPs, such as HSP70 (Ciupitu et al., 1998, J. Exp. Med., 187: 685-691). Others suggested that a novel intracellular trafficking 15 pathway may be involved for the transport of peptides from the extracellular medium into the lumen of ER) Day et al., 1997, Proc. Natl. Acad. Sci. 94:8065-8069; Nicchitta, 1998, Curr. Opin. in Immunol. 10:103-109). Further suggestions include the involvement of phagocytes which (a) possess an ill-defined pathway to shunt protein from the phagosome into thecytosol where it would enter the normal class I pathway; (b) digest ingested material in 20 lysosomes and regurgitate peptides for loading on the surface to class I molecules (Bevan, 1995, J. Exp. Med. 192:639-41). The discovery of a receptor for heat shock protein as disclosed herein helps to resolve the paradox of how extracellular antigenic peptides complexed to HSPs can be presented by MHC class I molecules on antigen presenting cells.

25 6.2 MATERIALS AND METHODS

Affinity chromatography. Proteins (1mg) in 2ml volume were incubated with 2ml of equilibrated AminoLink beads in PBS with a reductant (NaCNBH₃) for 1 hour. Uncoupled protein was removed by extensive washing of the column and unreactive groups quenched. Immobilization yields were typically >92% of the starting amount of protein. Columns were stored at 4°C until used. Such columns were made with gp96 (purified as described in Srivastava et al., 1986, Proc. Natl. Acad. Sci., U.S.A. 83:3407-3411) and albumin. For membrane purification, cells were lysed by dounce homogenization in hypotonic buffer containing PMSF. Unlyzed cells and nuclei were removed by centrifugation at 1000g for 5 mm. The postnuclear supematant was centrifuged at 100,000g for 90 mins. The pellet contains total membranes and was fractionated by aqueous two-phase partition with a dextran/polyethylene glycol biphase. Briefly membranes were resuspended in PEG (33% wt/wt in 0.22 M sodium phosphate buffer, pH 6.5) and underlaid gently with dextran

(20%wt/wt in 0.22M sodium phosphate buffer, pH 6.5). The two phases were mixed gently and centrifuged at 2000 g for 15 mins. The white material at the interphase was enriched for plasma membranes, whose proteins were extracted by 2 hr incubation in 20mM Tris buffer (pH8, containing 0.08% octylglucoside) at 4°C.

Photo cross-linking of gp96 to putative receptor. The cross-linker (SASD, (Pierce) was labeled with I¹²⁵ using iodobeads (Pierce). Radiolabeled SASD was covalently attached to gp96 by incubation at room temperature for 1 hr. Free SASD and I¹²⁵ were removed by size exclusion column (KwikSep columns, Pierce). For cross-linking studies, I¹²⁵-SASD-gp96 (50 μg gp96) was incubated with purified CD11b⁺ cells. Unbound protein was removed by washing. All procedures to this point were carried out in very dim light. Proteins were cross-linked with UV light. Cells were lysed with lysis buffer (0.5%NP4O, 10mM Tris, 1mMEDTA, 150mM NaCl) and treated with 100 mM 2-mercaptoethanol to cleave the cross-linker. Cell lysates were analyzed by SDS-PAGE and autoradiography.

Re-presentation assays. Re-presentation assays were carried out as described (Suto and Srivastava, 1995, Science 269:1585-1588). Antigen presenting cells (RAW264.7 macrophage cell line) were plated at a 1:1 ratio with AH I -specific T cells in complete RPMI. Approximately 10,000 cells of each type were used. Gp96 (10 μg/ml) chaperoning the AH1-20 mer peptide (RVTYHSPSYVYHQFERRAK) was added to the cells and the entire culture was incubated for 20 hrs. Stimulation of T cells was measured by quantifying the amount of IFN-γ released into the supernatants by ELISA (Endogen).

Protein Microsequencing. Proteins identified by affinity chromatography were analyzed on SDS-PAGE and stained with coomasie blue or transferred onto PVDF membrane and stained with coomasie blue, all of it under keratin-free conditions. Protein bands were excised with a razor from the gel or membrane. Tryptic peptides from an 80kDa faint coomassie band were extracted by 50% acetonitrile, 5% formic acid, dried, and loaded onto a 75 m 10 cm, reverse-phase C18, microcapillary column (3 μl vol) and tryptic peptides were separated by on-line microcapillary liquid chromatography-tendem mass spectrometry followed by database searching using the SEQUEST program as previously described. (Gatlin et al.,2000, Anal. Chem. 72:757-63; Link et al., 1999, Nat. Biotechnol. 17:676-82). The analysis was carried out in a data-dependent auto-MS/MS fashion using a Finnigan LCQ iontrap Mass Spectrometer.

6.3 RESULTS

35

Identification of an 80 kDa protein as a potential gp96 receptor. Homogenous preparations of gp96 were coupled to FITC and the gp96-FITC was used to stain RAW264.7 cells, shown to be functionally capable of re-presenting gp96-chaperoned peptides. Gp96-FITC but not control albumin-FITC preparations stained the cell surface of RAW264.7 cells (FIG. 1A). Plasma membrane preparations of cell surface-biotinylated RAW264.7 cells were solubilized in 0.08% octyl-glucoside and the soluble extract was applied to a gp96-Sepharose column. The bound proteins were eluted with 3M sodium chloride. SDS-PAGE analysis of the eluate showed 2 major bands of ~75-80 kDa size (FIG. 1B, top left). Blotting of this gel with avidin-peroxidase showed that both bands were biotinylated, indicating their surface localization (FIG. 1B, bottom left). Affinity purification of membrane extracts of RAW264.7 cells over control serum albumin affinity columns did not result in isolation of any proteins, nor did probing of immunoblots of such gels with avidin peroxidase detect any albuminbinding surface proteins (FIG. 1B, top and bottom center lanes). As an additional control, chromatography of membrane extracts of P815 cells which do not bind gp96-FITC and which do not re-present gp96-chaperoned peptides, on gp96 affinity columns did not result in elution of any gp96-binding proteins (FIG. 1B, top and bottom right lanes).

In parallel experiments, gp96 molecules were coupled to the radio-iodinated linker sulfosuccinimidyl (4-azidosalicylamido) hexanoate (SASD) which contains a photo crosslinkable group. Gp96-SASD-I¹²⁵ was pulsed onto peritoneal macrophages, which have been shown previously to re-present gp96-chaperoned peptides (Suto and Srivastava, 1995, Science 269:1585-1588). Excess gp96-SASD was removed by multiple rounds of washing of the cells and photoactivation was carried out by exposure of cells to UV light for 10 mm. Cell lysates were reduced in order to transfer the I¹²⁵ group to the putative gp96 ligand and were analyzed by SDS- PAGE followed by autoradiography. The gp96 molecule was observed to cross-link to an ~80 kDa band specifically present in re-presentation-competent macrophage but not in the re-presentation-incompetent P815 cells (FIG. 1C). This band appears to correspond in size to the larger of the two bands seen in eluates of gp96 affinity columns (FIG. 1D). No band corresponding to the lower band in that preparation is seen in the photo cross-linked preparation. The observation of a specific binding of gp96 to an 80 kDa protein in two different re-presentation-competent cell types, but not in a representation-incompetent cell line, and by two independent assays supported the candidacy of the 80 kDa molecule for the gp96 receptor.

Antiserum against the 80 kDa protein inhibits re-presentation of a gp96-chaperoned antigenic peptide. The eluates containing the 75-80 kDa proteins were used to immunize a New Zealand white rabbit, and pre-immune and immune sera were used to probe blots of

5

20

plasma membrane extracts of the re-presentation-competent RAW264.7 and primary peritoneal macrophages and the re-presentation-incompetent P815 cells. The immune but not the pre-immune serum detected the 80 kDa band (and a faint lower 75 kDa band) in plasma membrane extracts of primary macrophage and the RAW264.7 membranes but not of P815 cells (FIG. 2A). The pre-immune and immune sera were tested in a functional assay for their ability to block re-presentation of gp96-chaperoned peptides. The L^d-restricted epitope AH1 derived from the gp70 antigen of murine colon carcinoma CT26 (Huang et al., 1996, Proc. Natl. Acad. Sci. U.S.A. 93:9730-9735) was used as the model system. Complexes of gp96 10 with an AH1 precursor (used to inhibit direct presentation) were pulsed onto RAW264.7 cells which were used to stimulate a L^d/AH1-specific CD8+ T cell clone. Release of interferon-y by the clones was measured as a marker of their activation. RAW264.7 cells were able to re-present gp96-chaperoned AH1 precursor effectively in this assay. It was observed that at the highest concentration, the immune sera inhibited re-presentation 15 completely (FIG. 2B). Although the pre-immune serum was ineffective in inhibiting representation as compared to the immune sera, it did inhibit re-presentation significantly at higher concentrations. The significance of this observation became clear later when we determined the identity of the gp96 receptor. Repeated immunizations with the affinitypurified gp96-binding proteins did not result in corresponding increase in antibody titers.

Identification of the 80 kDa protein as an amino terminal fragment of the heavy chain of the a2M receptor. The 80 kDa protein eluted from the gp96 affinity column was resolved on SDS-PAGE and visualized by staining with Coomassie Brilliant Blue. The protein band was subjected to in-gel trypsin digestion and mass spectrometry-based protein microsequencing as described in the methods in Section 6.2. Four independent tryptic 25 peptides corresponding to N-terminal region of the α2-macroglobulin (α2M) receptor, designated by immunologists as CD91, were identified (FIG. 3C).

α2M inhibits re-presentation of a gp96-chaperoned antigenic peptide by RAW264.7. α2M receptor is one of the known natural ligands for the α2M receptor. Its ability to inhibit re-presentation of gp96-chaperoned antigenic peptide AH1 was tested in the assay described in FIG. 2. a2M but not control proteins selectin (CD62) or serum albumin was observed to inhibit re-presentation completely and titratably (FIG. 4). This observation was also consistent with the result in FIG. 2 that while the pre-immune serum did not detect an 80 kDa band in plasma membranes of RAW264.7 cells, it did inhibit re-presentation to some degree at high concentrations. Thus, by structural as well as functional criteria, the a2M receptor was determined to fulfill the criteria essential for a receptor for gp96.

6.4 DISCUSSION

The a2M receptor, which is also designated CD91, was initially identified as a protein related to the low density lipoprotein (LDL) receptor Related Protein (LRP) (Strickland et al., 1990, J. Biol. Chem. 265:17401-17404; Kristensen et al., 1990, FEBS Lett. 276:151-155). The protein consists of an ~420 kDa α subunit, an 85 kDa β subunit and a 39 kDa tightly associated molecule (RAP). The α and β subunits are encoded by a single transcript of ~15 Kb in size (Van Leuven et al., 1993, Biochim. Biophys. Acta. 1173:71-74. The receptor has been shown to be present in cells of the monocytic lineage and in 10 hepatocytes, fibroblasts and keratinocytes. CD91 has been shown previously to bind the activated form of the plasma glycoprotein a2M, which binds to and inhibits a wide variety of endoproteinases. a2M receptor also binds to other ligands such as transforming growth factor β (O Connor-McCourt et al., 1987, J. Biol. Chem. 262:14090-14099), platelet-derived growth factor (Huang et al., 1984, Proc. Natl. Acad. Sci. U.S.A. 81:342-346), and fibroblast 15 growth factor (Dennis et al., 1989, J. Biol. Chem. 264:7210-7216). α2M is thus believed to regulate, and specifically diminish, the activities of its various ligands. Complexed with these various ligands, a2M binds a2M receptor on the cell surface and is internalized through receptor-mediated endocytosis. Uptake of α2M-complexed ligands has been assumed thus far to be the primary function of the a2M receptor, although a role for it in lipid metabolism 20 is also assumed. α2M receptor ligands other than α2M, such as tissue-specific plasminogen activator-inhibitor complex (Orth et al., 1992, Proc. Natl. Acad. Sci. U.S.A. 89:7422-7426) and urokinase-PAI1 complex (Nykjaer et al., 1992, J. Biol. Chem. 267:14543-14546), have been identified. These ligands attest to a role for a 2M receptor in clearing a range of extracellular, plasma products.

The studies reported here show that the heat shock protein gp96 is an additional ligand for the α2M receptor. The human gp96-coding gene has been mapped previously by us at chromosome 12 (q24.2→q24.3) (Maki et al., 1993, Somatic Cell Mol. Gen. 19:73-81). It is of interest in this regard that the α2M receptor gene has been mapped to the same chromosome and at a not too distant location (q13→q14) (Hilliker et al. Genomics 13:472-474). Gp96 binds α2M receptor directly and not through other ligands such as α2M. Homogenous preparations of gp96, in solution, or cross-linked to a solid matrix, bind to the α2M receptor. Indeed, the major ligand for the α2M receptor, α2M, actually inhibits interaction of gp96 with α2M receptor, instead of promoting it, providing evidence that gp96 is a direct ligand for the α2M receptor. The 80 kDa protein shown to bind gp96 is clearly an amino terminal degradation product of the α subunit of the α2M receptor. Degradation products of the α2M receptor in this size range have also been observed in previous studies

(Jensen et al., 1989, Biochem. Arch. 5:171-176), and may indicate the existence of a discrete ectodomain in the a2M receptor which may be particularly sensitive to proteolytic cleavage.

As shown here, the gp96- a2M receptor interaction provides a new type of function for α2M receptor, a function of a sensor, not only of the extracellular environment with its previously known plasma-based ligands, but also a sensor of the intracellular milieu as well. HSPs such as gp96 are obligate intracellular molecules and are released into the extracellular milieu only under conditions of necrotic (but not apoptotic) cell death. Thus, the α2M receptor may act as a sensor for necrotic cell death (see FIG. 5), just as the scavenger 10 receptor CD36 and the recently identified phosphatidyl serine-binding protein act as sensors of apoptotic cell death and receptors for apoptotic cells (Savill et al., 1992, J. Clin. Invest.90:1513-1522; Fadok et al., 2000, Nature 405:85-90). Interaction of the macrophages with the apoptotic cells leads to a down-regulation of the inflammatory cytokines such as TNF (Fadok et al., 2000, supra), while gp96-APC interaction leads to re-presentation of 15 gp96-chaperoned peptides by MHC I molecules of the APC, followed by stimulation of antigen-specific T cells (Suto and Srivastava, 1995, supra) and, in addition, secretion of proinflammatory cytokines such as TNF, GM-CSF and IL-12. Interestingly, α2M, an independent ligand for the a2M receptor, inhibits representation of gp96-chaperoned peptides by macrophages. This observation suggests that re-presentation of gp96-chaperoned 20 peptides can not occur physiologically in blood, but only within tissues as a result of localized necrotic cell death. This is consistent with the complete absence of gp96 or other HSPs in blood under all conditions tested. Together, these observations point towards a possible mechanism whereby the release of HSPs in the blood as a result of severe tissue injury and lysis will not lead to a systemic and lethal pro-inflammatory cytokine cascade.

It is possible, therefore, that the a2M receptor renders it possible for the APCs to sample (i) the extracellular milieu of the blood through a2M and other plasma ligands and (ii) the intracellular milieu of the tissues through HSPs, particularly of the gp96 family. The former permits APCs to implement their primordial phagocytic function, while the latter allows them to execute its innate and adaptive immunological functions. Viewed in another 30 perspective, recognition of apoptotic cells by APCs through CD36 or phophatidyl serine. leads to anti-inflammatory signals, while interaction of the APC with necrotic cells through a2M receptor leads to pro-inflammatory innate and adaptive immune responses (see Srivastava et al., 1998, Immunity 8: 657-665).

The invention is not to be limited in scope by the specific embodiments described which are intended as single illustrations of individual aspects of the invention, and functionally equivalent methods and components are within the scope of the invention. Indeed various modifications of the invention, in addition to those shown and described herein will become apparent to those skilled in the art from the foregoing description and accompanying drawings. Such modifications are intended to fall within the scope of the appended claims.

All references cited herein, including patent applications, patents, and other publications, are incorporated by reference herein in their entireties for all purposes.

15

20

25

30

WHAT IS CLAIMED IS:

1. A pharmaceutical composition comprising an amount of a molecular complex effective for treatment or prevention of an infectious disease or cancer, and a pharmaceutically acceptable carrier, said molecular complex comprising an alpha (2) macroglobulin polypeptide noncovalently associated with an antigenic molecule which displays the antigenicity of an antigen of an infectious agent or an antigen overexpressed in a cancer cell relative to its expression in a noncancerous cell of said cell type.

- 2. The pharmaceutical composition of Claim 1 wherein the antigenic molecule displays the antigenicity of an antigen of an infectious agent.
- The pharmaceutical composition of Claim 1 wherein the antigenic molecule displays the antigenicity of an antigen overexpressed in a cancer cell relative to its expression in a noncancerous cell of said cell type.
 - 4. The pharmaceutical composition of Claim 1 wherein the antigenic molecule is a tumor specific antigen or a tumor-associated antigen.
- 5. A pharmaceutical composition comprising an amount of a fusion protein effective for treatment or prevention of an infectious disease or cancer, and a pharmaceutically acceptable carrier, said fusion protein comprised of an alpha (2) macroglobulin polypeptide and an antigenic molecule which displays the antigenicity of an antigen of an infectious agent or an antigen overexpressed in a cancer cell relative to its expression in a noncancerous cell of said cell type.
 - 6. The pharmaceutical composition of Claim 1 wherein the molecular complex is purified.
- 7. A purified molecular complex comprising an alpha (2) macroglobulin polypeptide noncovalently associated with an antigenic molecule of an infectious agent or an antigen overexpressed in a cancer cell relative to its expression in a noncancerous cell of said cell type.
- 8. A purified population of molecular complexes in which at least 65% of said complexes comprise an alpha (2) macroglobulin noncovalently associated with an antigenic molecule.

9. A purified population of molecular complexes purified from a recombinant cell in which at least 65% of said complexes comprise an alpha (2) macroglobulin noncovalently associated with an antigenic molecule.

5

- 10. A recombinant cell infected with a pathogen and transformed with a nucleic acid comprising a nucleotide sequence that (i) is operably linked to a promoter, and (ii) encodes an alpha (2) macroglobulin polypeptide, which alpha (2) macroglobulin polypeptide associates with an antigenic molecule, when said antigenic molecule is present, to form a complex that in sufficient amount is capable of eliciting an immune response to the antigenic molecule.
- 11. A recombinant cancer cell transformed with a nucleic acid comprising a nucleotide sequence that (i) is operably linked to a promoter, and (ii) encodes an alpha (2) macroglobulin polypeptide, which alpha (2) macroglobulin polypeptide associates with an antigenic molecule, when said antigen is present, to form a complex that in sufficient amount is capable of eliciting an immune response to the antigenic molecule.
- 12. A recombinant cell transformed with (i) a first nucleic acid comprising a first nucleotide sequence that is operably linked to a first promoter and encodes an alpha (2) macroglobulin polypeptide, and (ii) a second nucleic acid comprising a second nucleotide sequence that is operably linked to a second promoter and encodes an antigenic molecule, such that the alpha (2) macroglobulin polypeptide and the antigenic molecule are expressed within the cell and associate with each other to form a complex that in sufficient amount is capable of eliciting an immune response to the antigenic molecule.
 - 13. The recombinant cell of Claim 10, 11, or 12 which is a human cell.
- 14. A pharmaceutical composition comprising the recombinant cell of any one of Claims 10, 11, or 12 and a pharmaceutically acceptable carrier.
 - 15. A method for preparing a complex of an alpha (2) macroglobulin polypeptide noncovalently associated with an antigenic molecule, said alpha (2) macroglobulin polypeptide comprising:
 - (a) culturing a cell transformed with a nucleic acid comprising a nucleotide sequence encoding the alpha (2) macroglobulin polypeptide, under conditions such that said alpha (2) macroglobulin

polypeptide is expressed by the cells and associates with an antigenic molecule of the cell; and

- (b) recovering a population of complexes of the alpha (2) macroglobulin polypeptide noncovalently associated with antigenic molecules from the cells.
- 16. A method for preparing an alpha (2) macroglobulin polypeptide noncovalently associated with antigenic molecules derived from one or more antigens of an infectious agent, comprising:

5

15

20

- (a) culturing infected cells, transformed with a nucleic acid comprising a nucleotide sequence encoding the alpha (2) macroglobulin polypeptide, or fragment, analog, or variant thereof, and operably linked to a promoter, under conditions such that the alpha (2) macroglobulin polypeptide expressed by the cells and associates with peptides of the cells; and
- (b) recovering from the cells a population of complexes of the alpha (2) macroglobulin polypeptide noncovalently associated with peptides derived from the infectious agent.
- 17. The method of Claim 15 or 16, further comprising purifying the complexes.
- 18. The method of Claim 15 or 16, further comprising purifying the complexes by affinity chromatography.
- 19. A method of treating or preventing an infectious disease in an individual having an infectious disease comprising administering to the individual an immunogenic amount of purified complexes comprising an alpha (2) macroglobulin polypeptide noncovalently associated with a first antigenic molecule, wherein the first antigenic molecule displays the antigenicity of an antigen of an infectious agent of the infectious disease.
- 20. The method of Claim 19, further comprising, before, concurrently or after administration of the immunogenic complex, administering to the individual a composition comprising antigen presenting cells sensitized in vitro with a sensitizing amount of a second complex of alpha (2) macroglobulin polypeptide noncovalently associated with a second antigenic molecule, said second antigenic molecule displaying the antigenicity of a second antigenic molecule of said infectious agent.

21. A method of treating or preventing an infectious disease in a subject having an infectious disease comprising:

5

10

15

20

25

- (a) culturing an infected cell transformed with a nucleic acid comprising a nucleotide sequence encoding an alpha (2) macroglobulin polypeptide, said infected cell displaying the antigenicity of an antigen of an infectious agent of the infectious disease, said nucleotide sequence being operably linked to a promoter, under conditions such that the alpha (2) macroglobulin polypeptide is expressed by the infected cells and associates with antigenic molecules of the cell;
- (b) recovering complexes of the alpha (2) macroglobulin polypeptide noncovalently associated with antigenic molecules from the infected cell; and
- (c) administering to the subject an amount of the recovered complexes effective to treat or prevent the infectious disease.
- 22. The method of Claim 21, further comprising, prior to step (a), the step of obtaining infected cells from the subject and transforming the infected cells with the nucleic acid.
- 23. The method of Claim 21, further comprising, prior to step (a), the step of obtaining the infected cell from one or more individuals and transforming the infected cells with the nucleic acid, said one or more individuals being different from the subject and having the same type of infectious disease as the subject.
- 24. A method of treating or preventing an infectious disease in a subject having an infectious disease comprising:
 - (a) culturing a recombinant cell transformed with (i) a first nucleic acid encoding an alpha (2) macroglobulin polypeptide and (ii) a second nucleic acid encoding an antigenic molecule displaying the antigenicity of an antigen of an infectious agent of the infectious disease;
 - (b) recovering complexes of the alpha (2) macroglobulin polypeptide noncovalently associated with the antigen; and
- administering to the subject an amount of the recovered complexes effective to treat or prevent the infectious disease.

25. The method of Claim 19, 21, or 24, in which the infectious disease is caused by an infectious agent selected from the group consisting of a virus, a bacterium, a fungus, and a parasite.

5

- 26. A method of treating or preventing cancer in an individual having a type of cancer or in whom prevention of a type of cancer is desired comprising administering to the individual an immunogenic amount of purified complexes comprising an alpha (2) macroglobulin polypeptide noncovalently associated with a first antigenic molecule, wherein either (a) the first antigenic molecule displays antigenicity of said type of cancer or a metastasis thereof; or (b) the complex is obtained by recovering complexes from said type of cancer cells or a metastasis thereof that recombinantly express the alpha (2) macroglobulin polypeptide.
- The method of Claim 26, further comprising, before, concurrently or after administration of the immunogenic complex, administering to the individual a composition comprising antigen presenting cells sensitized *in vitro* with a sensitizing amount of a second complex of an alpha (2) macroglobulin noncovalently associated with a second antigenic molecule, said second antigenic molecule displaying the antigenicity of an antigen overexpressed in a cancer cell relative to its expression in a noncancerous cell of said cell type.
- 28. The method of Claim 26, wherein the first antigenic molecule is an antigen overexpressed in a cancer cell relative to its expression in a noncancerous cell of said cell type.
 - 29. The pharmaceutical composition of Claim 26, wherein the antigenic molecule is a tumor-specific antigen or a tumor-associated antigen.
- 30. A method of treating or preventing cancer in a subject having a type of cancer or in whom prevention of a type of cancer is desired comprising:
 - (a) culturing a cancer cell of said type transformed with a nucleic acid comprising a nucleotide sequence encoding an alpha (2) macroglobulin polypeptide said nucleotide sequence being operably linked to a promoter, under conditions such that the alpha (2) macroglobulin polypeptide is expressed by the cancer cell and associates with at least one antigenic molecule of the cell;

(b) recovering complexes of the alpha (2) macroglobulin polypeptide noncovalently associated with at least one antigenic molecule from the cancer cell; and

- (c) administering to the subject an amount of the recovered complexes effective to treat or prevent cancer.
- 31. The method of Claim 30, further comprising, prior to step (a), the step of obtaining cancer cells from the subject and transforming the cancer cells with the nucleic acid.

5

- 32. The method of Claim 30, further comprising, prior to step (a), the step of obtaining cancer cells from one or more individuals and transforming the cancer cells with the nucleic acid, said one or more individuals being different from the subject and having the same type of cancer as the subject.
 - 33. A method of treating or preventing cancer in a subject having a type of cancer or in whom prevention of a type of cancer is desired comprising:
 - (a) culturing a recombinant cell transformed with (i) a first nucleic acid encoding an alpha (2) macroglobulin polypeptide, and (ii) a second nucleic acid encoding an antigenic molecule displaying the antigenicity of an antigen of a cancer cell;
 - (b) recovering complexes of the alpha (2) macroglobulin polypeptide noncovalently associated with the antigen; and
- 25 (c) administering to the subject an amount of the recovered complexes effective to treat or prevent cancer.
 - 34. The method of Claim 26, 30, or 33, in which the type of cancer is selected from the group consisting of fibrosarcoma, myxosarcoma, liposarcoma, chondrosarcoma, osteogenic sarcoma, chordoma, angiosarcoma, endotheliosarcoma, lymphangiosarcoma, lymphangioendotheliosarcoma, synovioma, mesothelioma, Ewing's tumor, leiomyosarcoma, rhabdomyosarcoma, colon carcinoma, pancreatic cancer, breast cancer, ovarian cancer, prostate cancer, squamous cell carcinoma, basal cell carcinoma, adenocarcinoma, sweat gland carcinoma, sebaceous gland carcinoma, papillary carcinoma, papillary adenocarcinomas, cystadenocarcinoma, medullary carcinoma, bronchogenic carcinoma, renal cell carcinoma, hepatoma, bile duct carcinoma, choriocarcinoma, seminoma, embryonal carcinoma, Wilms' tumor, cervical cancer, testicular tumor, lung carcinoma, small cell lung

carcinoma, bladder carcinoma, epithelial carcinoma, glioma, astrocytoma, medulloblastoma, craniopharyngioma, ependymoma, pinealoma, hemangioblastoma, acoustic neuroma, oligodendroglioma, meningioma, melanoma, neuroblastoma, retinoblastoma, leukemia, lymphoma, multiple myeloma, Waldenström's macroglobulinemia, and heavy chain disease.

- 35. A method for treating an autoimmune disorder comprising administering to a mammal in need of such treatment an antibody specific for alpha (2) macroglobulin.
- 10 36. The method of Claim 35, wherein the antibody is purified.

15

20

25

30

· 35

1/65

TC. IA

2/65

FIG.1B

FIG.1C

_	Р	re-immur	ne	Po	Post-immune							
	RAW264.7	Macrophage	p815	RAW264.7	Macrophage	p815						
122 —			:	•		•						
83 —	·					<u>.</u>						
51 —												
35 —	:	. *			: ! .							

FIG.2A

FIG.2B

6/65

Seq	_#_	b	<u>y</u> _	+1
G	1	58.1	_	10
G	2	115.1	1095.2	9
Α	3	186.2	1038.2	8
L	4	299.3	967.1	7
Н	5	436.5	853.9	6
1	6	549.6	716.8	5
Y	7	712.8	603.6	4
Н	8	850.0	440.5	3
Q	9	978.1	303.3	. 2
R	10	-	175.2	1

FIG.3A

FIG.3B

8/65

POSITION	MH+	SEQUENCE	
509-518	955.0122	SGFSLGSDGK	(SEQ ID NO: 54)
328-337	973.1753	GIALDPAMGK	(SEQ ID NO: 55)
460-469	1152.3010	GGALHIYHQR	(SEQ ID NO: 56)
338-348	1315.5116	VFFTDYGQIPK	(SEQ ID NO: 57)

FIG.3C

FIG.4

SUBSTITUTE SHEET (RULE 26)

11/65

CGCTGCTCCC CGCCAGTGCA CTGAGGAGGC GGAAACGGGG GAGCCCCTAG TGCTCCATCA 6												
GGCCCCTACC AAGGCACCCC CATC												
CAATTGTGCA TTTTTGCAGC CGGA												
GAGGGGAGA GGAGCGAGGA GTAA												
CGCACCCGCG TCAGCAGGCC CTTC												
CCTGGTTCGC TTTGCTTAAG GAAG												
GGGACCCCC AATTGGGGGG GGCG			G 420									
CTGTTTGCAT CGGCCCACAC C AT	G CTG ACC CCG C	CG TTG CTG CTG CTC GTG	471									
Me	t Leu Thr Pro Pi	ro Leu Leu Leu Val										
1	į	5 10										
CCG CTG CTT TCA GCT CTG GT			519									
Pro Leu Leu Ser Ala Leu Va		,										
15	20	25										
ACT TOO ACC COT AAC CAC TT	F 000 T00 404 0	10 044 4T0 400 T0T 4T0										
ACT TGC AGC CCT AAG CAG TT			567									
Thr Cys Ser Pro Lys Gln Pho												
30	35	40										
TCA AAC CCC TCC CCC TCT CA	`	T TOO COO CAC COO TOT	C1F									
TCA AAG GGC TGG CGG TGT GA			615									
Ser Lys Gly Trp Arg Cys As 45		•										
45	50	55										
GAT GAA GCC CCT GAG ATC TG	T CCA CAG AGT A	A CCC CAG ACA TCC CCC	663									
Asp Glu Ala Pro Glu Ile Cy			003									
60 65	s rio dili ser Lj	70										
. 05		70										
CCA AAT GAG CAC AGT TGT CTO	S GGG ACT GAG CI	A TOT GTC CCC ATG TCT	711									
Pro Asn Glu His Ser Cys Lei			/11									
75 80	85	•										
75	0.	, 30										
CGT CTC TGC AAC GGG ATC CA	GAC TGC ATG GA	T GGC TCA GAC GAG GGT	759									
Arg Leu Cys Asn Gly Ile Gli			755									
95	100	105										
	100	103										
GCT CAC TGC CGA GAG CTC CGA	A GCC AAC TGT TO	T CGA ATG GGT TGT CAA	807									
Ala His Cys Arg Glu Leu Arg			007									
110	115	120										
- 												
CAC CAT TGT GTA CCT ACA CCC	C AGT GGG CCC AC	G TGC TAC TGT AAC AGC	855									
His His Cys Val Pro Thr Pro												
125	130	135										

12/65 AGC TTC CAG CTC GAG GCA GAT GGC AAG ACG TGC AAA GAT TTT GAC GAG Ser Phe Gln Leu Glu Ala Asp Gly Lys Thr Cys Lys Asp Phe Asp Glu TGT TCC GTG TAT GGC ACC TGC AGC CAG CTT TGC ACC AAC ACA GAT GGC Cys Ser Val Tyr Gly Thr Cys Ser Gln Leu Cys Thr Asn Thr Asp Gly TCC TTC ACA TGT GGC TGT GTT GAA GGC TAC CTG CTG CAA CCG GAC AAC Ser Phe Thr Cys Gly Cys Val Glu Gly Tyr Leu Leu Gln Pro Asp Asn CGC TCC TGC AAG GCC AAG AAT GAG CCA GTA GAT CGG CCG CCA GTG CTA Arg Ser Cys Lys Ala Lys Asn Glu Pro Val Asp Arg Pro Pro Val Leu CTG ATT GCC AAC TCT CAG AAC ATC CTA GCT ACG TAC CTG AGT GGG GCC Leu Ile Ala Asn Ser Gln Asn Ile Leu Ala Thr Tyr Leu Ser Gly Ala CAA GTG TCT ACC ATC ACA CCC ACC AGC ACC CGA CAA ACC ACG GCC ATG Gln Val Ser Thr Ile Thr Pro Thr Ser Thr Arg Gln Thr Thr Ala Met GAC TTC AGT TAT GCC AAT GAG ACC GTA TGC TGG GTG CAC GTT GGG GAC Asp Phe Ser Tyr Ala Asn Glu Thr Val Cys Trp Val His Val Gly Asp AGT GCT GCC CAG ACA CAG CTC AAG TGT GCC CGG ATG CCT GGC CTG AAG Ser Ala Ala Gln Thr Gln Leu Lys Cys Ala Arg Met Pro Gly Leu Lys GGC TTT GTG GAT GAG CAT ACC ATC AAC ATC TCC CTC AGC CTG CAC CAC Gly Phe Val Asp Glu His Thr Ile Asn Ile Ser Leu Ser Leu His His GTG GAG CAG ATG GCA ATC GAC TGG CTG ACG GGA AAC TTC TAC TTT GTC Val Glu Gln Met Ala Ile Asp Trp Leu Thr Gly Asn Phe Tyr Phe Val GAC GAC ATT GAC GAC AGG ATC TTT GTC TGT AAC CGA AAC GGG GAC ACC Asp Asp Ile Asp Asp Arg Ile Phe Val Cys Asn Arg Asn Gly Asp Thr

13/65 TGT GTC ACT CTG CTG GAC CTG GAA CTC TAC AAC CCC AAA GGC ATC GCC Cys Val Thr Leu Leu Asp Leu Glu Leu Tyr Asn Pro Lys Gly Ile Ala TTG GAC CCC GCC ATG GGG AAG GTG TTC TTC ACT GAC TAC GGG CAG ATC Leu Asp Pro Ala Met Gly Lys Val Phe Phe Thr Asp Tyr Gly Gln Ile CCA AAG GTG GAG CGC TGT GAC ATG GAT GGA CAG AAC CGC ACC AAG CTG Pro Lys Val Glu Arg Cys Asp Met Asp Gly Gln Asn Arg Thr Lys Leu GTG GAT AGC AAG ATC GTG TTT CCA CAC GGC ATC ACC CTG GAC CTG GTC Val Asp Ser Lys Ile Val Phe Pro His Gly Ile Thr Leu Asp Leu Val AGC CGC CTC GTC TAC TGG GCG GAC GCC TAC CTA GAC TAC ATC GAG GTG Ser Arg Leu Val Tyr Trp Ala Asp Ala Tyr Leu Asp Tyr Ile Glu Val GTA GAC TAC GAA GGG AAG GGT CGG CAG ACC ATC ATC CAA GGC ATC CTG Val Asp Tyr Glu Gly Lys Gly Arg Gln Thr Ile Ile Gln Gly Ile Leu ATC GAG CAC CTG TAC GGC CTG ACC GTG TTT GAG AAC TAT CTC TAC GCC Ile Glu His Leu Tyr Gly Leu Thr Val Phe Glu Asn Tyr Leu Tyr Ala ACC AAC TCG GAC AAT GCC AAC ACG CAG CAG AAG ACG AGC GTG ATC CGA Thr Asn Ser Asp Asn Ala Asn Thr Gln Gln Lys Thr Ser Val Ile Arg GTG AAC CGG TTC AAC AGT ACT GAG TAC CAG GTC GTC ACC CGT GTG GAC Val Asn Arg Phe Asn Ser Thr Glu Tyr Gln Val Val Thr Arg Val Asp AAG GGT GGT GCC CTG CAT ATC TAC CAC CAG CGA CGC CAG CCC CGA GTG Lys Gly Gly Ala Leu His Ile Tyr His Gln Arg Arg Gln Pro Arg Val CGG AGT CAC GCC TGT GAG AAT GAC CAG TAC GGG AAG CCA GGT GGC TGC Arg Ser His Ala Cys Glu Asn Asp Gln Tyr Gly Lys Pro Gly Gly Cys

14/65 TCC GAC ATC TGC CTC CTG GCC AAC AGT CAC AAG GCA AGG ACC TGC AGG Ser Asp Ile Cys Leu Leu Ala Asn Ser His Lys Ala Arg Thr Cys Arg TGC AGG TCT GGC TTC AGC CTG GGA AGT GAT GGG AAG TCT TGT AAG AAA Cys Arg Ser Gly Phe Ser Leu Gly Ser Asp Gly Lys Ser Cys Lys Lys CCT GAA CAT GAG CTG TTC CTC GTG TAT GGC AAG GGC CGA CCA GGC ATC Pro Glu His Glu Leu Phe Leu Val Tyr Gly Lys Gly Arg Pro Gly Ile ATT AGA GGC ATG GAC ATG GGG GCC AAG GTC CCA GAT GAG CAC ATG ATC Ile Arg Gly Met Asp Met Gly Ala Lys Val Pro Asp Glu His Met Ile CCC ATC GAG AAC CTT ATG AAT CCA CGC GCT CTG GAC TTC CAC GCC GAG Pro Ile Glu Asn Leu Met Asn Pro Arg Ala Leu Asp Phe His Ala Glu ACC GGC TTC ATC TAC TTT GCT GAC ACC ACC AGC TAC CTC ATT GGC CGC Thr Gly Phe Ile Tyr Phe Ala Asp Thr Thr Ser Tyr Leu Ile Gly Arg CAG AAA ATT GAT GGC ACG GAG AGA GAG ACT ATC CTG AAG GAT GGC ATC Gln Lys Ile Asp Gly Thr Glu Arg Glu Thr Ile Leu Lys Asp Gly Ile CAC AAT GTG GAG GGC GTA GCC GTG GAC TGG ATG GGA GAC AAT CTT TAC His Asn Val Glu Gly Val Ala Val Asp Trp Met Gly Asp Asn Leu Tyr TGG ACT GAT GAT GGC CCC AAG AAG ACC ATT AGT GTG GCC AGG CTG GAG Trp Thr Asp Asp Gly Pro Lys Lys Thr Ile Ser Val Ala Arg Leu Glu AAA GCC GCT CAG ACC CGG AAG ACT CTA ATT GAG GGC AAG ATG ACA CAC Lys Ala Ala Gln Thr Arg Lys Thr Leu Ile Glu Gly Lys Met Thr His CCC AGG GCC ATT GTA GTG GAT CCA CTC AAT GGG TGG ATG TAC TGG ACA Pro Arg Ala Ile Val Val Asp Pro Leu Asn Gly Trp Met Tyr Trp Thr

15/65 GAC TGG GAG GAC CCC AAG GAC AGT CGG CGA GGG CGG CTC GAG AGG Asp Trp Glu Glu Asp Pro Lys Asp Ser Arg Arg Gly Arg Leu Glu Arg GCT TGG ATG GAC GGC TCA CAC CGA GAT ATC TTT GTC ACC TCC AAG ACA Ala Trp Met Asp Gly Ser His Arg Asp Ile Phe Val Thr Ser Lys Thr GTG CTT TGG CCC AAT GGG CTA AGC CTG GAT ATC CCA GCC GGA CGC CTC Val Leu Trp Pro Asn Gly Leu Ser Leu Asp Ile Pro Ala Gly Arg Leu TAC TGG GTG GAT GCC TTC TAT GAC CGA ATT GAG ACC ATA CTG CTC AAT Tyr Trp Val Asp Ala Phe Tyr Asp Arg Ile Glu Thr Ile Leu Leu Asn GGC ACA GAC CGG AAG ATT GTA TAT GAG GGT CCT GAA CTG AAT CAT GCC Gly Thr Asp Arg Lys Ile Val Tyr Glu Gly Pro Glu Leu Asn His Ala TTC GGC CTG TGT CAC CAT GGC AAC TAC CTC TTT TGG ACC GAG TAC CGG Phe Gly Leu Cys His His Gly Asn Tyr Leu Phe Trp Thr Glu Tyr Arg AGC GGC AGC GTC TAC CGC TTG GAA CGG GGC GTG GCA GGC GCA CCG CCC Ser Gly Ser Val Tyr Arg Leu Glu Arg Gly Val Ala Gly Ala Pro Pro ACT GTG ACC CTT CTG CGC AGC GAG AGA CCG CCT ATC TTT GAG ATC CGA Thr Val Thr Leu Leu Arg Ser Glu Arg Pro Pro Ile Phe Glu Ile Arg ATG TAC GAC GCG CAC GAG CAG CAA GTG GGT ACC AAC AAA TGC CGG GTA Met Tyr Asp Ala His Glu Gln Gln Val Gly Thr Asn Lys Cys Arg Val AAT AAC GGA GGC TGC AGC AGC CTG TGC CTC GCC ACC CCC GGG AGC CGC Asn Asn Gly Gly Cys Ser Ser Leu Cys Leu Ala Thr Pro Gly Ser Arg CAG TGT GCC TGT GCC GAG GAC CAG GTG TTG GAC ACA GAT GGT GTC ACC Gln Cys Ala Cys Ala Glu Asp Gln Val Leu Asp Thr Asp Gly Val Thr

FIG.6A-5

16/65 TGC TTG GCG AAC CCA TCC TAC GTG CCC CCA CCC CAG TGC CAG CCG GGC Cys Leu Ala Asn Pro Ser Tyr Val Pro Pro Pro Gln Cys Gln Pro Gly CAG TTT GCC TGT GCC AAC AAC CGC TGC ATC CAG GAG CGC TGG AAG TGT Gln Phe Ala Cys Ala Asn Asn Arg Cys Ile Gln Glu Arg Trp Lys Cys GAC GGA GAC AAC GAC TGT CTG GAC AAC AGC GAT GAG GCC CCA GCA CTG Asp Gly Asp Asn Asp Cys Leu Asp Asn Ser Asp Glu Ala Pro Ala Leu TGC CAT CAA CAC ACC TGT CCC TCG GAC CGA TTC AAG TGT GAG AAC AAC Cys His Gln His Thr Cys Pro Ser Asp Arg Phe Lys Cys Glu Asn Asn CGG TGT ATC CCC AAC CGC TGG CTC TGT GAT GGG GAT AAT GAT TGT GGC Arg Cys Ile Pro Asn Arg Trp Leu Cys Asp Gly Asp Asn Asp Cys Gly AAC AGC GAG GAC GAA TCC AAT GCC ACG TGC TCA GCC CGC ACC TGT CCA Asn Ser Glu Asp Glu Ser Asn Ala Thr Cys Ser Ala Arg Thr Cys Pro CCC AAC CAG TTC TCC TGT GCC AGT GGC CGA TGC ATT CCT ATC TCA TGG Pro Asn Gln Phe Ser Cys Ala Ser Gly Arg Cys Ile Pro Ile Ser Trp ACC TGT GAT CTG GAT GAT GAC TGT GGG GAC CGG TCC GAT GAG TCA GCC Thr Cys Asp Leu Asp Asp Asp Cys Gly Asp Arg Ser Asp Glu Ser Ala TCA TGC GCC TAC CCC ACC TGC TTC CCC CTG ACT CAA TTT ACC TGC AAC Ser Cys Ala Tyr Pro Thr Cys Phe Pro Leu Thr Gln Phe Thr Cys Asn AAT GGC AGA TGT ATT AAC ATC AAC TGG CGG TGT GAC AAC GAC AAT GAC Asn Gly Arg Cys Ile Asn Ile Asn Trp Arg Cys Asp Asn Asp Asn Asp TGT GGG GAC AAC AGC GAC GAA GCC GGC TGC AGT CAC TCC TGC TCC AGT Cys Gly Asp Asn Ser Asp Glu Ala Gly Cys Ser His Ser Cys Ser Ser

17/65

Thr					Asn					Пe			CAC His		3543
				Asn					Tyr				ACA Thr	His	3591
			Asn					Pro					CAC His		3639
		Gln					G1 y					Leu	AGG Arg 1080		 3687
	Asp					Cys					Asp		AAG Lys		3735
Glu					Val					Val			GGC G1y		3783
				Cys					Trp				GGC Gly	Asp	3831
			Asp					Glu					CTG Leu		3879
		Pro					Ala					Val	TGC Cys L160		3927
	Asp					Gly					Gly		GGC Gly		3975
Glu					Asp					Asn			GGC Gly		4023

18/65

CAC A His A 1195				Val					Gly					Cys		4071
CTG G Leu G			Glu					Asn					He		Ser	4119
TAC T Tyr C		Ala					Cys					Asp				4167
TTC A Phe S	er					Cys					Val					4215
GGG G Gly G 12					Ser					Lys						4263
TCC A Ser A .275				Glu					Asp					Asp		4311
AGC G Ser V	TC (CTA Leu	Val	CCT Pro .295	GGC G1y	CTG Leu	CGC Ar g	Asn	ACT Thr 1300	ATT Ile	GCC Ala	CTG Leu	Asp	TTC Phe L305	CAC His	4359
CTC A		G1n					Trp					Glu				4407
TAC CO	rg (Asp					Thr					4455
GTG A Val I 13	1e (Leu					Gly						4503
ATT G Ile A 355	CA (GGC ,	AAC Asn	Ile	TAC Tyr 360	TGG Trp	GTG Val	GAG G1u	Ser	AAC Asn .365	CTG Leu	GAC Asp	CAG G1n	Пe	GAA G]u 1370	4551

19/65 GTG GCC AAG CTG GAC GGA ACC CTC CGA ACC ACT CTG CTG GCG GGT GAC Val Ala Lys Leu Asp Gly Thr Leu Arg Thr Thr Leu Leu Ala Gly Asp ATT GAG CAC CCG AGG GCC ATC GCT CTG GAC CCT CGG GAT GGG ATT CTG Ile Glu His Pro Arg Ala Ile Ala Leu Asp Pro Arg Asp Gly Ile Leu TTT TGG ACA GAC TGG GAT GCC AGC CTG CCA CGA ATC GAG GCT GCA TCC Phe Trp Thr Asp Trp Asp Ala Ser Leu Pro Arg Ile Glu Ala Ala Ser ATG AGT GGA GCT GGC CGC CGA ACC ATC CAC CGG GAG ACA GGC TCT GGG Met Ser Gly Ala Gly Arg Arg Thr Ile His Arg Glu Thr Gly Ser Gly GGC TGC GCC AAT GGG CTC ACC GTG GAT TAC CTG GAG AAG CGC ATC CTC Gly Cys Ala Asn Gly Leu Thr Val Asp Tyr Leu Glu Lys Arg Ile Leu TGG ATT GAT GCT AGG TCA GAT GCC ATC TAT TCA GCC CGG TAT GAC GGC Trp Ile Asp Ala Arg Ser Asp Ala Ile Tyr Ser Ala Arg Tyr Asp Gly TCC GGC CAC ATG GAG GTG CTT CGG GGA CAC GAG TTC CTG TCA CAC CCA Ser Gly His Met Glu Val Leu Arg Gly His Glu Phe Leu Ser His Pro TTT GCC GTG ACA CTG TAC GGT GGG GAG GTG TAC TGG ACC GAC TGG CGA Phe Ala Val Thr Leu Tyr Gly Gly Glu Val Tyr Trp Thr Asp Trp Arg ACA AAT ACA CTG GCT AAG GCC AAC AAG TGG ACT GGC CAC AAC GTC ACC Thr Asn Thr Leu Ala Lys Ala Asn Lys Trp Thr Gly His Asn Val Thr GTG GTA CAG AGG ACC AAC ACC CAG CCC TTC GAC CTG CAG GTG TAT CAC Val Val Gln Arg Thr Asn Thr Gln Pro Phe Asp Leu Gln Val Tyr His CCT TCC CGG CAG CCC ATG GCT CCA AAC CCA TGT GAG GCC AAT GGC GGC Pro Ser Arg Gln Pro Met Ala Pro Asn Pro Cys Glu Ala Asn Gly Gly

20/65 CGG GGC CCC TGT TCC CAT CTG TGC CTC ATC AAC TAC AAC CGG ACC GTC Arg Gly Pro Cys Ser His Leu Cys Leu Ile Asn Tyr Asn Arg Thr Val TCC TGG GCC TGT CCC CAC CTC ATG AAG CTG CAC AAG GAC AAC ACC ACC Ser Trp Ala Cys Pro His Leu Met Lys Leu His Lys Asp Asn Thr Thr TGC TAT GAG TIT AAG AAG TTC CTG CTG TAC GCA CGT CAG ATG GAG ATC Cys Tyr Glu Phe Lys Lys Phe Leu Leu Tyr Ala Arg Gln Met Glu Ile CGG GGC GTG GAC CTG GAT GCC CCG TAC TAC AAT TAT ATC ATC TCC TTC Arg Gly Val Asp Leu Asp Ala Pro Tyr Tyr Asn Tyr Ile Ile Ser Phe ACG GTG CCT GAT ATC GAC AAT GTC ACG GTG CTG GAC TAT GAT GCC CGA Thr Val Pro Asp Ile Asp Asn Val Thr Val Leu Asp Tyr Asp Ala Arg GAG CAG CGA GTT TAC TGG TCT GAT GTG CGG ACT CAA GCC ATC AAA AGG Glu Gln Arg Val Tyr Trp Ser Asp Val Arg Thr Gln Ala Ile Lys Arg GCA TIT ATC AAC GGC ACT GGC GTG GAG ACC GTT GTC TCT GCA GAC TTG Ala Phe Ile Asn Gly Thr Gly Val Glu Thr Val Val Ser Ala Asp Leu CCC AAC GCC CAC GGG CTG GCT GTG GAC TGG GTC TCC CGA AAT CTG TTT Pro Asn Ala His Gly Leu Ala Val Asp Trp Val Ser Arg Asn Leu Phe TGG ACA AGT TAC GAC ACC AAC AAG AAG CAG ATT AAC GTG GCC CGG CTG Trp Thr Ser Tyr Asp Thr Asn Lys Lys Gln Ile Asn Val Ala Arg Leu GAC GGC TCC TTC AAG AAT GCG GTG GTG CAG GGC CTG GAG CAG CCC CAC Asp Gly Ser Phe Lys Asn Ala Val Val Gln Gly Leu Glu Gln Pro His GGC CTG GTC GAC CCG CTT CGT GGC AAG CTC TAC TGG ACT GAT GGG Gly Leu Val Val His Pro Leu Arg Gly Lys Leu Tyr Trp Thr Asp Gly

FIG.6A-10

21/65 GAC AAC ATC AGC ATG GCC AAC ATG GAT GGG AGC AAC CAC ACT CTG CTC Asp Asn Ile Ser Met Ala Ash Met Asp Gly Ser Asn His Thr Leu Leu TTC AGT GGC CAG AAG GGC CCT GTG GGG TTG GCC ATT GAC TTC CCT GAG Phe Ser Gly Gln Lys Gly Pro Val Gly Leu Ala Ile Asp Phe Pro Glu AGC AAA CTC TAC TGG ATC AGC TCT GGG AAC CAC ACA ATC AAC CGT TGC Ser Lys Leu Tyr Trp Ile Ser Ser Gly Asn His Thr Ile Asn Arg Cys AAT CTG GAT GGG AGC GAG CTG GAG GTC ATC GAC ACC ATG CGG AGC CAG Asn Leu Asp Gly Ser Glu Leu Glu Val Ile Asp Thr Met Arg Ser Gln CTG GGC AAG GCC ACT GCC CTG GCC ATC ATG GGG GAC AAG CTG TGG TGG Leu Gly Lys Ala Thr Ala Leu Ala Ile Met Gly Asp Lys Leu Trp Trp GCA GAT CAG GTG TCA GAG AAG ATG GGC ACG TGC AAC AAA GCC GAT GGC Ala Asp Gln Val Ser Glu Lys Met Gly Thr Cys Asn Lys Ala Asp Gly TCT GGG TCC GTG GTG CTG CGG AAC AGT ACC ACG TTG GTT ATG CAC ATG Ser Gly Ser Val Val Leu Arg Asn Ser Thr Thr Leu Val Met His Met AAG GTG TAT GAC GAG AGC ATC CAG CTA GAG CAT GAG GGC ACC AAC CCC Lys Val Tyr Asp Glu Ser Ile Gln Leu Glu His Glu Gly Thr Asn Pro TGC AGT GTC AAC AAC GGA GAC TGT TCC CAG CTC TGC CTG CCA ACA TCA Cys Ser Val Asn Asn Gly Asp Cys Ser Gln Leu Cys Leu Pro Thr Ser GAG ACG ACT CGC TCC TGT ATG TGT ACA GCC GGT TAC AGC CTC CGG AGC Glu Thr Thr Arg Ser Cys Met Cys Thr Ala Gly Tyr Ser Leu Arg Ser GGA CAG CAG GCC TGT GAG GGT GTG GGC TCT TTT CTC CTG TAC TCT GTA Gly Gln Gln Ala Cys Glu Gly Val Gly Ser Phe Leu Leu Tyr Ser Val

22/65 CAT GAG GGA ATT CGG GGG ATT CCA CTA GAT CCC AAT GAC AAG TCG GAT His Glu Gly Ile Arg Gly Ile Pro Leu Asp Pro Asn Asp Lys Ser Asp GCC CTG GTC CCA GTG TCC GGA ACT TCA CTG GCT GTC GGA ATC GAC TTC Ala Leu Val Pro Val Ser Gly Thr Ser Leu Ala Val Gly Ile Asp Phe 1915 · CAT GCC GAA AAT GAC ACT ATT TAT TGG GTG GAT ATG GGC CTA AGC ACC His Ala Glu Asn Asp Thr Ile Tyr Trp Val Asp Met Gly Leu Ser Thr ATC AGC AGG GCC AAG CGT GAC CAG ACA TGG CGA GAG GAT GTG GTG ACC Ile Ser Arg Ala Lys Arg Asp Gln Thr Trp Arg Glu Asp Val Val Thr AAC GGT ATT GGC CGT GTG GAG GGC ATC GCC GTG GAC TGG ATC GCA GGC Asn Gly Ile Gly Arg Val Glu Gly Ile Ala Val Asp Trp Ile Ala Gly AAC ATA TAC TGG ACG GAC CAG GGC TTC GAT GTC ATC GAG GTT GCC CGG Asn Ile Tyr Trp Thr Asp Gln Gly Phe Asp Val Ile Glu Val Ala Arg CTC AAT GGC TCT TTT CGT TAT GTG GTC ATT TCC CAG GGT CTG GAC AAG Leu Asn Gly Ser Phe Arg Tyr Val Val Ile Ser Gln Gly Leu Asp Lys CCT CGG GCC ATC ACT GTC CAC CCA GAG AAG GGG TAC TTG TTC TGG ACC Pro Arg Ala Ile Thr Val His Pro Glu Lys Gly Tyr Leu Phe Trp Thr GAG TGG GGT CAT TAC CCA CGT ATT GAG CGG TCT CGC CTT GAT GGC ACA Glu Trp Gly His Tyr Pro Arg Ile Glu Arg Ser Arg Leu Asp Gly Thr GAG AGA GTG GTG TTG GTT AAT GTC AGC ATC AGC TGG CCC AAT GGC ATC Glu Arg Val Val Leu Val Asn Val Ser Ile Ser Trp Pro Asn Gly Ile TCA GTA GAC TAT CAG GGC GGC AAG CTC TAC TGG TGT GAT GCT CGG ATG Ser Val Asp Tyr Gln Gly Gly Lys Leu Tyr Trp Cys Asp Ala Arg Met

FIG.6A-12

PCT/US01/18047 WO 01/91787

23/65 GAC AAG ATC GAG CGC ATC GAC CTG GAA ACG GGC GAG AAC CGG GAG GTG Asp Lys Ile Glu Arg Ile Asp Leu Glu Thr Gly Glu Asn Arg Glu Val GTC CTG TCC AGC AAT AAC ATG GAT ATG TTC TCC GTG TCC GTG TTT GAG Val Leu Ser Ser Asn Asn Met Asp Met Phe Ser Val Ser Val Phe Glu GAC TTC ATC TAC TGG AGT GAC AGA ACT CAC GCC AAT GGC TCC ATC AAG Asp Phe Ile Tyr Trp Ser Asp Arg Thr His Ala Asn Gly Ser Ile Lys CGC GGC TGC AAA GAC AAT GCT ACA GAC TCC GTG CCT CTG AGG ACA GGC Arg Gly Cys Lys Asp Asn Ala Thr Asp Ser Val Pro Leu Arg Thr Gly ATT GGT GTT CAG CTT AAA GAC ATC AAG GTC TTC AAC AGG GAC AGG CAG Ile Gly Val Gln Leu Lys Asp Ile Lys Val Phe Asn Arg Asp Arg Gln AAG GGT ACC AAT GTG TGC GCG GTA GCC AAC GGC GGG TGC CAG CAG CTC Lys Gly Thr Asn Val Cys Ala Val Ala Asn Gly Gly Cys Gln Gln Leu TGC TI'G TAT CGG GGT GGC GGA CAG CGA GCC TGT GCC TGT GCC CAC GGG Cys Leu Tyr Arg Gly Gly Gly Gln Arg Ala Cys Ala Cys Ala His Gly ATG CTG GCA GAA GAC GGG GCC TCA TGC CGA GAG TAC GCT GGC TAC CTG Met Leu Ala Glu Asp Gly Ala Ser Cys Arg Glu Tyr Ala Gly Tyr Leu CTC TAC TCA GAG CGG ACC ATC CTC AAG AGC ATC CAC CTG TCG GAT GAG Leu Tyr Ser Glu Arg Thr Ile Leu Lys Ser Ile His Leu Ser Asp Glu CGT AAC CTC AAC GCA CCG GTG CAG CCC TTT GAA GAC CCC GAG CAC ATG Arg Asn Leu Asn Ala Pro Val Gln Pro Phe Glu Asp Pro Glu His Met AAA AAT GTC ATC GCC CTG GCC TTT GAC TAC CGA GCA GGC ACC TCC CCG Lys Asn Val Ile Ala Leu Ala Phe Asp Tyr Arg Ala Gly Thr Ser Pro

FIG.6A-13

24/65 GGG ACC CCT AAC CGC ATC TTC TTC AGT GAC ATC CAC TTT GGG AAC ATC Gly Thr Pro Asn Arg Ile Phe Phe Ser Asp Ile His Phe Gly Asn Ile CAG CAG ATC AAT GAC GAT GGC TCG GGC AGG ACC ACC ATC GTG GAA AAT Gln Gln Ile Asn Asp Asp Gly Ser Gly Arg Thr Thr Ile Val Glu Asn GTG GGC TCT GTG GAA GGC CTG GCC TAT CAC CGT GGC TGG GAC ACA CTG Val Gly Ser Val Glu Gly Leu Ala Tyr His Arg Gly Trp Asp Thr Leu TAC TGG ACA AGC TAC ACC ACA TCC ACC ATC ACC CGC CAC ACC GTG GAC Tyr Trp Thr Ser Tyr Thr Thr Ser Thr Ile Thr Arg His Thr Val Asp CAG ACT CGC CCA GGG GCC TTC GAG AGG GAG ACA GTC ATC ACC ATG TCC Gln Thr Arg Pro Gly Ala Phe Glu Arg Glu Thr Val Ile Thr Met Ser GGA GAC CAC CCG AGA GCC TTT GTG CTG GAT GAG TGC CAG AAC CTG. Gly Asp Asp His Pro Arg Ala Phe Val Leu Asp Glu Cys Gln Asn Leu ATG TTC TGG ACC AAT TGG AAC GAG CTC CAT CCA AGC ATC ATG CGG GCA Met Phe Trp Thr Asn Trp Asn Glu Leu His Pro Ser Ile Met Arg Ala GCC CTA TCC GGA GCC AAC GTC CTG ACC CTC ATT GAG AAG GAC ATC CGC Ala Leu Ser Gly Ala Asn Val Leu Thr Leu Ile Glu Lys Asp Ile Arg ACG CCC AAT GGG TTG GCC ATC GAC CAC CGG GCG GAG AAG CTG TAC TTC Thr Pro Asn Gly Leu Ala Ile Asp His Arg Ala Glu Lys Leu Tyr Phe TCG GAT GCC ACC TTG GAC AAG ATC GAG CGC TGC GAG TAC GAC GGC TCC Ser Asp Ala Thr Leu Asp Lys Ile Glu Arg Cys Glu Tyr Asp Gly Ser CAC CGC TAT GTG ATC CTA AAG TCG GAG CCC GTC CAC CCC TTT GGG TTG His Arg Tyr Val Ile Leu Lys Ser Glu Pro Val His Pro Phe Gly Leu

FIG.6A-14

25/65 GCG GTG TAC GGA GAG CAC ATT TTC TGG ACT GAC TGG GTG CGG CGG GCT Ala Val Tyr Gly Glu His Ile Phe Trp Thr Asp Trp Val Arg Arg Ala GTG CAG CGA GCC AAC AAG TAT GTG GGC AGC GAC ATG AAG CTG CTT CGG Val Gln Arg Ala Asn Lys Tyr Val Gly Ser Asp Met Lys Leu Leu Arg GTG GAC ATT CCC CAG CAA CCC ATG GGC ATC ATC GCC GTG GCC AAT GAC Val Asp Ile Pro Gln Gln Pro Met Gly Ile Ile Ala Val Ala Asn Asp ACC AAC AGC TGT GAA CTC TCC CCC TGC CGT ATC AAC AAT GGA GGC TGC Thr Asn Ser Cys Glu Leu Ser Pro Cys Arg Ile Asn Asn Gly Gly Cys CAG GAT CTG TGT CTG CTC ACC CAC CAA GGC CAC GTC AAC TGT TCC TGT Gln Asp Leu Cys Leu Leu Thr His Gln Gly His Val Asn Cys Ser Cys CGA GGG GGC CGG ATC CTC CAG GAG GAC TTC ACC TGC CGG GCT GTG AAC Arg Gly Gly Arg Ile Leu Gln Glu Asp Phe Thr Cys Arg Ala Val Asn TCC TCT TGT CGG GCA CAA GAT GAG TTT GAG TGT GCC AAT GGG GAA TGT Ser Ser Cys Arg Ala Gln Asp Glu Phe Glu Cys Ala Asn Gly Glu Cys ATC AGC TTC AGC CTC ACC TGT GAT GGC GTC TCC CAC TGC AAG GAC AAG Ile Ser Phe Ser Leu Thr Cys Asp Gly Val Ser His Cys Lys Asp Lys TCC GAT GAG AAG CCC TCC TAC TGC AAC TCA CGC CGC TGC AAG AAG ACT Ser Asp Glu Lys Pro Ser Tyr Cys Asn Ser Arg Arg Cys Lys Lys Thr TTC CGC CAG TGT AAC AAT GGC CGC TGT GTA TCC AAC ATG CTG TGG TGC Phe Arg Gln Cys Asn Asn Gly Arg Cys Val Ser Asn Met Leu Trp Cys AAT GGG GTG GAT TAC TGT GGG GAT GGC TCT GAT GAG ATA CCT TGC AAC

FIG.6A-15

Asn Gly Val Asp Tyr Cys Gly Asp Gly Ser Asp Glu Ile Pro Cys Asn

26/65 AAG ACT GCC TGT GGT GTG GGT GAG TTC CGC TGC CGG GAT GGG TCC TGC Lys Thr Ala Cys Gly Val Gly Glu Phe Arg Cys Arg Asp Gly Ser Cys ATC GGG AAC TCC AGT CGC TGC AAC CAG TTT GTG GAT TGT GAG GAT GCC Ile Gly Asn Ser Ser Arg Cys Asn Gln Phe Val Asp Cys Glu Asp Ala TCG GAT GAG ATG AAT TGC AGT GCC ACA GAC TGC AGC AGC TAT TTC CGC Ser Asp Glu Met Asn Cys Ser Ala Thr Asp Cys Ser Ser Tyr Phe Arg CTG GGC GTG AAA GGT GTC CTC TTC CAG CCG TGC GAG CGG ACA TCC CTG Leu Gly Val Lys Gly Val Leu Phe Gln Pro Cys Glu Arg Thr Ser Leu TGC TAC GCA CCT AGC TGG GTG TGT GAT GGC GCC AAC GAC TGT GGA GAC Cys Tyr Ala Pro Ser Trp Val Cys Asp Gly Ala Asn Asp Cys Gly Asp TAC AGC GAT GAA CGT GAC TGT CCA GGT GTG AAG CGC CCT AGG TGC CCG Tyr Ser Asp Glu Arg Asp Cys Pro Gly Val Lys Arg Pro Arg Cys Pro CTC AAT TAC TTT GCC TGC CCC AGC GGG CGC TGT ATC CCC ATG AGC TGG Leu Asn Tyr Phe Ala Cys Pro Ser Gly Arg Cys Ile Pro Met Ser Trp ACG TGT GAC AAG GAG GAT GAC TGT GAG AAC GGC GAG GAT GAG ACC CAC Thr Cys Asp Lys Glu Asp Asp Cys Glu Asn Gly Glu Asp Glu Thr His TGC AAC AAG TTC TGC TCA GAG GCA CAG TTC GAG TGC CAG AAC CAC CGG Cys Asn Lys Phe Cys Ser Glu Ala Gln Phe Glu Cys Gln Asn His Arg TGT ATC TCC AAG CAG TGG CTG TGT GAC GGT AGC GAT GAT TGC GGG GAT Cys Ile Ser Lys Gln Trp Leu Cys Asp Gly Ser Asp Asp Cys Gly Asp GGC TCC GAT GAG GCA GCT CAC TGT GAA GGC AAG ACA TGT GGC CCC TCC Gly Ser Asp Glu Ala Ala His Cys Glu Gly Lys Thr Cys Gly Pro Ser

27/65 TCC TTC TCC TGT CCC GGC ACC CAC GTG TGT GTC CCT GAG CGC TGG CTC Ser Phe Ser Cys Pro Gly Thr His Val Cys Val Pro Glu Arg Trp Leu TGT GAT GGC GAC AAG GAC TGT ACC GAT GGC GCG GAT GAG AGT GTC ACT Cys Asp Gly Asp Lys Asp Cys Thr Asp Gly Ala Asp Glu Ser Val Thr GCT GGC TGC CTG TAC AAC AGC ACC TGT GAT GAC CGT GAG TTC ATG TGC Ala Gly Cys Leu Tyr Asn Ser Thr Cys Asp Asp Arg Glu Phe Met Cys CAG AAC CGC TTG TGT ATT CCC AAG CAT TTC GTG TGC GAC CAT GAC CGT Gln Asn Arg Leu Cys Ile Pro Lys His Phe Val Cys Asp His Asp Arg GAC TGT GCT GAT GGC TCT GAT GAA TCC CCT GAG TGT GAG TAC CCA ACC Asp Cys Ala Asp Gly Ser Asp Glu Ser Pro Glu Cys Glu Tyr Pro Thr TGC GGG CCC AAT GAA TTC CGC TGT GCC AAT GGG CGT TGT CTG AGC TCC Cys Gly Pro Asn Glu Phe Arg Cys Ala Asn Gly Arg Cys Leu Ser Ser CGT CAG TGG GAA TGT GAT GGG GAG AAT GAC TGT CAC GAC CAC AGC GAT Arg Gln Trp Glu Cys Asp Gly Glu Asn Asp Cys His Asp His Ser Asp GAG GCT CCC AAG AAC CCA CAC TGC ACC AGC CCA GAG CAC AAA TGC AAT Glu Ala Pro Lys Asn Pro His Cys Thr Ser Pro Glu His Lys Cys Asn GCC TCA TCA CAG TTC CTG TGC AGC AGC GGG CGC TGC GTG GCT GAG GCG Ala Ser Ser Gln Phe Leu Cys Ser Ser Gly Arg Cys Val Ala Glu Ala TTG CTC TGC AAC GGC CAG GAC GAC TGT GGG GAC GGT TCA GAC GAA CGC Leu Leu Cys Asn Gly Gln Asp Asp Cys Gly Asp Gly Ser Asp Glu Arg GGG TGC CAT GTC AAC GAG TGT CTC AGC CGC AAG CTC AGT GGC TGC AGT Gly Cys His Val Asn Glu Cys Leu Ser Arg Lys Leu Ser Gly Cys Ser

28/65

CAG GAC TGC GAG GAC CTC AAG ATA GGC TTT AAG TGC CGC TGT CGC CCG Gln Asp Cys Glu Asp Leu Lys Ile Gly Phe Lys Cys Arg Cys Arg Pro GGC TTC CGG CTA AAG GAC GAT GGC AGG ACC TGT GCC GAC CTG GAT GAG Gly Phe Arg Leu Lys Asp Asp Gly Arg Thr Cys Ala Asp Leu Asp Glu TGC AGC ACC TTC CCC TGC AGC CAG CTC TGC ATC AAC ACC CAC GGA Cys Ser Thr Thr Phe Pro Cys Ser Gln Leu Cys Ile Asn Thr His Gly AGT TAC AAG TGT CTG TGT GTG GAG GGC TAT GCA CCC CGT GGC GGT GAC Ser Tyr Lys Cys Leu Cys Val Glu Gly Tyr Ala Pro Arg Gly Gly Asp CCC CAC AGC TGC AAA GCT GTG ACC GAT GAG GAG CCA TTT CTC ATC TTT Pro His Ser Cys Lys Ala Val Thr Asp Glu Glu Pro Phe Leu Ile Phe GCC AAC CGG TAC TAC CTG CGG AAG CTC AAC CTG GAC GGC TCC AAC TAC Ala Asn Arg Tyr Tyr Leu Arg Lys Leu Asn Leu Asp Gly Ser Asn Tyr ACA CTG CTT AAG CAG GGC CTG AAC AAT GCG GTC GCC TTG GCA TTT GAC Thr Leu Leu Lys Gln Gly Leu Asn Asn Ala Val Ala Leu Ala Phe Asp TAC CGA GAG CAG ATG ATC TAC TGG ACG GGC GTG ACC ACC CAG GGC AGC Tyr Arg Glu Gln Met Ile Tyr Trp Thr Gly Val Thr Thr Gln Gly Ser ATG ATT CGC AGG ATG CAC CTC AAC GGC AGC AAC GTG CAG GTT CTG CAC Met Ile Arg Arg Met His Leu Asn Gly Ser Asn Val Gln Val Leu His CGG ACG GGC CTT AGT AAC CCA GAT GGG CTC GCT GTG GAC TGG GTG GGT Arg Thr Gly Leu Ser Asn Pro Asp Gly Leu Ala Val Asp Trp Val Gly GGC AAC CTG TAC TGG TGT GAC AAG GGC AGA GAT ACC ATT GAG GTG TCC Gly Asn Leu Tyr Trp Cys Asp Lys Gly Arg Asp Thr Ile Glu Val Ser

29/65

			G1y			CGG Arg		Val					Gly		Arg	9879
		Arg				GTG Val	Asp					Tyr				9927
	Asp					TCA Ser					Ile					9975
Ser					Пe	GTG Val 3185				Пe						10023
CTG Leu 3195	ACC Thr	GTG Va1	GAC Asp	Tyr	GTC Va1 3200	ACG Thr	GAA Glu	CGC Arg	Ile	TAC Tyr 3205	TGG Trp	GCT Ala	GAC Asp	Ala	CGT Arg 3210	10071
			Ile			GCC Ala		Leu					Arg			10119
		Ser				CCA Pro	His					Thr				10167
	Tyr		Tyr			GAC Asp					Ser					10215
His					Ala	AAC Asn 3265				Leu						10263
CGG Arg 3275	CCC Pro	ATG Met	GAC Asp	Leu	CAT His 3280	GTA Va1	TTC Phe	CAC His	Ala	CTG Leu 285	CGC Arg	CAG G1n	CCA Pro	Asp	GTG Val 290	10311
CCC Pro	AAT Asn	CAC His	Pro	TGC Cys 295	AAA Lys	GTC Val	AAC Asn	Asn	GGT G1y 3300	GGC G1y	TGC Cys	AGC Ser	Asn	CTG Leu 305	TGC Cys	10359

30/65 CTG CTG TCC CCT GGG GGT GGT CAC AAG TGC GCC TGC CCC ACC AAC TTC . 10407 Leu Leu Ser Pro Gly Gly Gly His Lys Cys Ala Cys Pro Thr Asn Phe TAT CTG GGT GGC GAT GGC CGT ACC TGT GTG TCC AAC TGC ACA GCA AGC Tyr Leu Gly Gly Asp Gly Arg Thr Cys Val Ser Asn Cys Thr Ala Ser CAG TTT GTG TGC AAA AAT GAC AAG TGC ATC CCC TTC TGG TGG AAG TGT Gin Phe Val Cys Lys Asn Asp Lys Cys Ile Pro Phe Trp Trp Lys Cys GAC ACG GAG GAC TGT GGG GAT CAC TCA GAC GAG CCT CCA GAC TGT Asp Thr Glu Asp Asp Cys Gly Asp His Ser Asp Glu Pro Pro Asp Cys CCC GAG TTC AAG TGC CGC CCA GGC CAG TTC CAG TGC TCC ACC GGC ATC Pro Glu Phe Lys Cys Arg Pro Gly Gln Phe Gln Cys Ser Thr Gly Ile TGC ACC AAC CCT GCC TTC ATC TGT GAT GGG GAC AAT GAC TGC CAA GAC Cys Thr Asn Pro Ala Phe Ile Cys Asp Gly Asp Asn Asp Cys Gln Asp AAT AGT GAC GAG GCC AAT TGC GAC ATT CAC GTC TGC TTG CCC AGC CAA Asn Ser Asp Glu Ala Asn Cys Asp Ile His Val Cys Leu Pro Ser Gln TTC AAG TGC ACC AAC ACC AAC CGC TGC ATT CCT GGC ATC TTC CGT TGC Phe Lys Cys Thr Asn Thr Asn Arg Cys Ile Pro Gly Ile Phe Arg Cys AAT GGG CAG GAC AAC TGC GGG GAC GGC GAG GAT GAG CGG GAT TGC CCT Asn Gly Gln Asp Asn Cys Gly Asp Glu Asp Glu Arg Asp Cys Pro GAG GTG ACC TGC GCC CCC AAC CAG TTC CAG TGC TCC ATC ACC AAG CGC

TGC ATC CCT CGC GTC TGG GTC TGT GAC AGG GAT AAT CAC TGT GTG GAC Cys Ile Pro Arg Val Trp Val Cys Asp Arg Asp Asn His Cys Val Asp

Glu Val Thr Cys Ala Pro Asn Gln Phe Gln Cys Ser Ile Thr Lys Arg

31/65 GGC AGT GAT GAG CCT GCC AAC TGT ACC CAA ATG ACC TGT GGA GTG GAT Gly Ser Asp Glu Pro Ala Asn Cys Thr Gln Met Thr Cys Gly Val Asp GAG TTC CGC TGC AAG GAT TCT GGC CGC TGC ATC CCC GCG CGC TGG AAG Glu Phe Arg Cys Lys Asp Ser Gly Arg Cys Ile Pro Ala Arg Trp Lys TGT GAC GGA GAA GAT GAC TGT GGG GAT GGT TCA GAT GAG CCC AAG GAA Cys Asp Gly Glu Asp Asp Cys Gly Asp Gly Ser Asp Glu Pro Lys Glu GAG TGT GAT GAG CGC ACC TGT GAG CCA TAC CAG TTC CGC TGC AAA AAC Glu Cys Asp Glu Arg Thr Cys Glu Pro Tyr Gln Phe Arg Cys Lys Asn AAC CGC TGT GTC CCA GGC CGT TGG CAA TGT GAC TAC GAC AAC GAC TGC Asn Arg Cys Val Pro Gly Arg Trp Gln Cys Asp Tyr Asp Asn Asp Cys GGA GAT AAC TCG GAC GAG GAG AGC TGC ACA CCT CGG CCC TGC TCT GAG Gly Asp Asn Ser Asp Glu Glu Ser Cys Thr Pro Arg Pro Cys Ser Glu AGT GAG TIT TIC TGT GCC AAT GGC CGC TGC ATC GCT GGG CGC TGG AAG Ser Glu Phe Phe Cys Ala Asn Gly Arg Cys Ile Ala Gly Arg Trp Lys TGT GAT GGG GAC CAT GAC TGT GCC GAC GGC TCA GAC GAG AAA GAC TGC Cys Asp Gly Asp His Asp Cys Ala Asp Gly Ser Asp Glu Lys Asp Cys ACC CCC CGC TGT GAT ATG GAC CAG TTC CAG TGC AAG AGT GGC CAC TGC Thr Pro Arg Cys Asp Met Asp Gln Phe Gln Cys Lys Ser Gly His Cys ATC CCC CTG CGC TGG CCG TGT GAC GCG GAT GCT GAC TGT ATG GAC GGC Ile Pro Leu Arg Trp Pro Cys Asp Ala Asp Ala Asp Cys Met Asp Gly . AGT GAC GAG GAA GCC TGT GGC ACT GGG GTG AGG ACC TGC CCA TTG GAT Ser Asp Glu Glu Ala Cys Gly Thr Gly Val Arg Thr Cys Pro Leu Asp

FIG.6A-21

32/65 GAG TTT CAA TGT AAC AAC ACC TTG TGC AAG CCG CTG GCC TGG AAG TGT Glu Phe Gln Cys Asn Asn Thr Leu Cys Lys Pro Leu Ala Trp Lys Cys GAT GGA GAG GAC TGT GGG GAC AAC TCA GAT GAG AAC CCC GAG GAA Asp Gly Glu Asp Asp Cys Gly Asp Asn Ser Asp Glu Asn Pro Glu Glu TGC GCC CGG TTC ATC TGC CCT CCC AAC CGG CCT TTC CGC TGC AAG AAT Cys Ala Arg Phe Ile Cys Pro Pro Asn Arg Pro Phe Arg Cys Lys Asn GAC CGA GTC TGC CTG TGG ATT GGG CGC CAG TGT GAT GGC GTG GAC AAC Asp Arg Val Cys Leu Trp Ile Gly Arg Gln Cys Asp Gly Val Asp Asn TGT GGA GAT GGG ACT GAC GAG GAG GAC TGT GAG CCC CCC ACG GCC CAG Cys Gly Asp Gly Thr Asp Glu Glu Asp Cys Glu Pro Pro Thr Ala Gln AAC CCC CAC TGC AAA GAC AAG AAG GAG TTC CTG TGC CGA AAC CAG CGC Asn Pro His Cys Lys Asp Lys Lys Glu Phe Leu Cys Arg Asn Gln Arg TGT CTA TCA TCC TCC CTG CGC TGT AAC ATG TTC GAT GAC TGC GGC GAT Cys Leu Ser Ser Leu Arg Cys Asn Met Phe Asp Asp Cys Gly Asp GGC TCC GAT GAA GAA GAT TGC AGC ATC GAC CCC AAG CTG ACC AGC TGT Gly Ser Asp Glu Glu Asp Cys Ser Ile Asp Pro Lys Leu Thr Ser Cys GCC ACC AAT GCC AGC ATG TGT GGG GAC GAA GCT CGT TGT GTG CGC ACT Ala Thr Asn Ala Ser Met Cys Gly Asp Glu Ala Arg Cys Val Arg Thr GAG AAA GCT GCC TAC TGT GCC TGC CGC TCG GGC TTC CAT ACT GTG CCG Glu Lys Ala Ala Tyr Cys Ala Cys Arg Ser Gly Phe His Thr Val Pro GGC CAG CCC GGA TGC CAG GAC ATC AAC GAG TGC CTG CGC TTT GGT ACC Gly Gln Pro Gly Cys Gln Asp Ile Asn Glu Cys Leu Arg Phe Gly Thr

FIG.6A-22

33/65

								33	165						
				Trp	AAC Asn 3840				Gly					Ser	11991
			Phe		AAG Lys			Asn					Glu		12039
		Gln			TAC Tyr		Ala					Ile			12087
	Pro				CAC His	Ser					Thr				12135
Glu					GAT Asp					His					12183
				Asn	TGG Trp 3920				Thr					Ser	12231
			Ala		CCT Pro			Ser					Arg		12279
		Gly			CAC His		Asn					Lys			12327
	Пe				TGG Trp	Val					Tyr				12375
Gly					GAG G1u					Lys					12423
				Gly	ATG Met 1000				Pro					Val	12471

34/65 CCT CTG AGG GGC ACC ATG TAC TGG TCA GAC TGG GGG AAC CAC CCC AAG Pro Leu Arg Gly Thr Met Tyr Trp Ser Asp Trp Gly Asn His Pro Lys ATT GAA ACA GCA GCG ATG GAT GGC ACC CTT CGG GAG ACT CTC GTG CAA Ile Glu Thr Ala Ala Met Asp Gly Thr Leu Arg Glu Thr Leu Val Gln GAC AAC ATT CAG TGG CCT ACA GGG CTG GCT GTG GAC TAT CAC AAT GAA Asp Asn Ile Gln Trp Pro Thr Gly Leu Ala Val Asp Tyr His Asn Glu CGG CTC TAC TGG GCA GAT GCC AAG CTT TCG GTC ATC GGC AGC ATC CGG Arg Leu Tyr Trp Ala Asp Ala Lys Leu Ser Val Ile Gly Ser Ile Arg CTC AAC GGC ACT GAC CCC ATT GTG GCT GCT GAC AGC AAA CGA GGC CTA Leu Asn Gly Thr Asp Pro Ile Val Ala Ala Asp Ser Lys Arg Gly Leu AGT CAC CCC TTC AGC ATC GAT GTG TTT GAA GAC TAC ATC TAC GGA GTC Ser His Pro Phe Ser Ile Asp Val Phe Glu Asp Tyr Ile Tyr Gly Val ACT TAC ATC AAT AAT CGT GTC TTC AAG ATC CAC AAG TTT GGA CAC AGC Thr Tyr Ile Asn Asn Arg Val Phe Lys Ile His Lys Phe Gly His Ser CCC TTG TAC AAC CTA ACT GGG GGC CTG AGC CAT GCC TCT GAT GTA GTC Pro Leu Tyr Asn Leu Thr Gly Gly Leu Ser His Ala Ser Asp Val Val CTT TAC CAT CAA CAC AAG CAG CCT GAA GTG ACC AAC CCC TGT GAC CGC Leu Tyr His Gln His Lys Gln Pro Glu Val Thr Asn Pro Cys Asp Arg AAG AAA TGC GAA TGG CTG TGT CTG CTG AGC CCC AGC GGG CCT GTC TGC Lys Lys Cys Glu Trp Leu Cys Leu Leu Ser Pro Ser Gly Pro Val Cys ACC TGT CCC AAT GGA AAG AGG CTG GAT AAT GGC ACC TGT GTG CCT GTG Thr Cys Pro Asn Gly Lys Arg Leu Asp Asn Gly Thr Cys Val Pro Val

FIG.6A-24

35/65

CCC TCT CCA ACA CCC CCT CCA GAT GCC CCT AGG CCT GGA ACC TGC ACT Pro Ser Pro Thr Pro Pro Pro Asp Ala Pro Arg Pro Gly Thr Cys Thr CTG CAG TGC TTC AAT GGT GGT AGT TGT TTC CTC AAC GCT CGG AGG CAG Leu Gln Cys Phe Asn Gly Gly Ser Cys Phe Leu Asn Ala Arg Arg Gln CCC AAG TGC CGT TGC CAG CCC CGT TAC ACA GGC GAT AAG TGT GAG CTG Pro Lys Cys Arg Cys Gln Pro Arg Tyr Thr Gly Asp Lys Cys Glu Leu GAT CAG TGC TGG GAA TAC TGT CAC AAC GGA GGC ACC TGT GCG GCT TCC Asp Gln Cys Trp Glu Tyr Cys His Asn Gly Gly Thr Cys Ala Ala Ser CCA TCT GGC ATG CCC ACG TGC CGC TGT CCC ACT GGC TTC ACG GGC CCC Pro Ser Gly Met Pro Thr Cys Arg Cys Pro Thr Gly Phe Thr Gly Pro AAA TGC ACC GCA CAG GTG TGT GCA GGC TAC TGC TCT AAC AAC AGC ACC Lys Cys Thr Ala Gln Val Cys Ala Gly Tyr Cys Ser Asn Asn Ser Thr TGC ACC GTC AAC CAG GGC AAC CAG CCC CAG TGC CGA TGT CTA CCT GGC Cys Thr Val Asn Gln Gly Asn Gln Pro Gln Cys Arg Cys Leu Pro Gly TTC CTG GGC GAC CGT TGC CAG TAC CGG CAG TGC TCT GGC TTC TGT GAG Phe Leu Gly Asp Arg Cys Gln Tyr Arg Gln Cys Ser Gly Phe Cys Glu AAC TIT GGC ACC TGT CAG ATG GCT GCT GAT GGC TCC CGA CAA TGT CGC Asn Phe Gly Thr Cys Gln Met Ala Ala Asp Gly Ser Arg Gln Cys Arg TGC ACC GTC TAC TTT GAG GGA CCA AGG TGT GAG GTG AAC AAG TGT AGT Cys Thr Val Tyr Phe Glu Gly Pro Arg Cys Glu Val Asn Lys Cys Ser CGC TGT CTC CAA GGC GCC TGT GTG GTC AAT AAG CAG ACC GGA GAT GTC Arg Cys Leu Gln Gly Ala Cys Val Val Asn Lys Gln Thr Gly Asp Val

36/65

								36	/65							•
	Cys	AAC Asn 4365				Gly					Ser					13575 ⁻
Ile		CAC His			Asn					Thr					ATG Met	13623
		GAG Glu		G1n					Met					Cys		13671
		GTT Val	Val					Pro					Ser			13719
		CTG Leu					Leu					Ala				13767
	Trp	TAT Tyr 4445				Val					Gly					13815
Arg		ACC Thr			Ala					Ile						13863
		TAT Tyr		Gly					Asp					Leu		13911
		TTT Phe	A1a					Lys					Thr			13959
		GCC Ala					Gly					Arg		Ser		14007
	Ser	ACG Thr 4525				Arg					Arg					14055

FIG.6A-26

37/65

	A GAT CCC TT ATGAGTCTTT					14110
			CUTCUCCAGE	COGCCCIICI	CCGGCCCIGC	14170
Glu Ile Gly	y Asp Pro Le					
4540		4545				
CGGGTGTACA	AATGTAAAAA	TGAAGGAATT	ACTTTTTATA	TGTGAGCGAG	CAAGCGAGCA	14230
AGCACAGTAT	TATCTCTTTG	CATTTCCTTC	CTGCCTGCTC	CTCAGTATCC	CCCCCATGCT	14290
GCCTTGAGGG	GGCGGGGAGG	GCTTTGTGGC	TCAAAGGTAT	GAAGGAGTCC	ACATGTTCCC	14350
TACCGAGCAT	ACCCCTGGAA	GCCTGGCGGC	ACGGCCTCCC	CACCACGCCT	GTGCAAGACA	14410
CTCAACGGGG	CTCCGTGTCC	CAGCTTTCCT	TTCCTTGGCT	CTCTGGGGTT	AGTTCAGGGG	14470
AGGTGGAGTC	CTCTGCTGAC	CCTGTCTGGA	AGATTTGGCT	CTAGCTGAGG	AAGGAGTCTT	14530
TTAGTTGAGG	GAAGTCACCC	CAAACCCCAG	CTCCCACTTT	CAGGGGCACC	TCTCAGATGG	14590
	TATCCCTTCC					14650
	CACATTCTTT					14710
	GGCACACCAA					14770
	TTTTGCTGAA					14830
		TICCTITACA	ACTAMATAAC	ACAGATATIG	HATAAATAA	. 14630
AATTGTAAAA	**********					

FIG.6A-27

38/65

Met Leu Thr Pro Pro Leu Leu Leu Leu Val Pro Leu Leu Ser Ala Leu Val Ser Gly Ala Thr Met Asp Ala Pro Lys Thr Cys Ser Pro Lys Gln Phe Ala Cys Arg Asp Gln Ile Thr Cys Ile Ser Lys Gly Trp Arg Cys 40 Asp Gly Glu Arg Asp Cys Pro Asp Gly Ser Asp Glu Ala Pro Glu Ile Cys Pro Gln Ser Lys Ala Gln Arg Cys Pro Pro Asn Glu His Ser Cys Leu Gly Thr Glu Leu Cys Val Pro Met Ser Arg Leu Cys Asn Gly Ile 90 Gln Asp Cys Met Asp Gly Ser Asp Glu Gly Ala His Cys Arg Glu Leu 105 Arg Ala Asn Cys Ser Arg Met Gly Cys Gln His His Cys Val Pro Thr 120 Pro Ser Gly Pro Thr Cys Tyr Cys Asn Ser Ser Phe Gln Leu Glu Ala 135 Asp Gly Lys Thr Cys Lys Asp Phe Asp Glu Cys Ser Val Tyr Gly Thr 150 155 Cys Ser Gln Leu Cys Thr Asn Thr Asp Gly Ser Phe Thr Cys Gly Cys 165 170 Val Glu Gly Tyr Leu Leu Gln Pro Asp Asn Arg Ser Cys Lys Ala Lys 185 Asn Glu Pro Val Asp Arg Pro Pro Val Leu Leu Ile Ala Asn Ser Gln 200 205 Asn Ile Leu Ala Thr Tyr Leu Ser Gly Ala Gln Val Ser Thr Ile Thr 210 220 Pro Thr Ser Thr Arg Gln Thr Thr Ala Met Asp Phe Ser Tyr Ala Asn 230 Glu Thr Val Cys Trp Val His Val Gly Asp Ser Ala Ala Gln Thr Gln 245 250 Leu Lys Cys Ala Arg Met Pro Gly Leu Lys Gly Phe Val Asp Glu His 265 Thr Ile Asn Ile Ser Leu Ser Leu His His Val Glu Gln Met Ala Ile 280 Asp Trp Leu Thr Gly Asn Phe Tyr Phe Val Asp Asp Ile Asp Asp Arg 290 295 Ile Phe Val Cys Asn Arg Asn Gly Asp Thr Cys Val Thr Leu Leu Asp 305 310 315

FIG.6B-1

39/65

Leu Glu Leu Tyr Asn Pro Lys Gly Ile Ala Leu Asp Pro Ala Met Gly Lys Val Phe Phe Thr Asp Tyr Gly Gln Ile Pro Lys Val Glu Arg Cys 340 345 350 Asp Met Asp Gly Gln Asn Arg Thr Lys Leu Val Asp Ser Lys Ile Val 360 365 Phe Pro His Gly Ile Thr Leu Asp Leu Val Ser Arg Leu Val Tyr Trp Ala Asp Ala Tyr Leu Asp Tyr Ile Glu Val Val Asp Tyr Glu Gly Lys 385 390 395 Gly Arg Gln Thr Ile Ile Gln Gly Ile Leu Ile Glu His Leu Tyr Gly 405 410 Leu Thr Val Phe Glu Asn Tyr Leu Tyr Ala Thr Asn Ser Asp Asn Ala 425 Asn Thr Gln Gln Lys Thr Ser Val Ile Arg Val Asn Arg Phe Asn Ser 435 440 Thr Glu Tyr Gln Val Val Thr Arg Val Asp Lys Gly Gly Ala Leu His 455 Ile Tyr His Gln Arg Arg Gln Pro Arg Val Arg Ser His Ala Cys Glu 470 475 Asn Asp Gln Tyr Gly Lys Pro Gly Gly Cys Ser Asp Ile Cys Leu Leu 485 490 Ala Asn Ser His Lys Ala Arg Thr Cys Arg Cys Arg Ser Gly Phe Ser 500 505 Leu Gly Ser Asp Gly Lys Ser Cys Lys Lys Pro Glu His Glu Leu Phe 520 Leu Val Tyr Gly Lys Gly Arg Pro Gly Ile Ile Arg Gly Met Asp Met 530 Gly Ala Lys Val Pro Asp Glu His Met Ile Pro Ile Glu Asn Leu Met 550 555 Asn Pro Arg Ala Leu Asp Phe His Ala Glu Thr Gly Phe Ile Tyr Phe 565 570 Ala Asp Thr Thr Ser Tyr Leu Ile Gly Arg Gln Lys Ile Asp Gly Thr 580 585 Glu Arg Glu Thr Ile Leu Lys Asp Gly Ile His Asn Val Glu Gly Val Ala Val Asp Trp Met Gly Asp Asn Leu Tyr Trp Thr Asp Asp Gly Pro 615 620 Lys Lys Thr Ile Ser Val Ala Arg Leu Glu Lys Ala Ala Gln Thr Arg 625 630 635 Lys Thr Leu Ile Glu Gly Lys Met Thr His Pro Arg Ala Ile Val Val 645 650 655

								10/							
Asp	Pro	Leu	Asn 660	Gly	Trp	Met	Tyr	Trp 665	Thr	Asp	Trp	Glu	G1u 670	Asp	Pro
		675					680					685	•	Gly	
	690					695					700	•		Asn	•
705					710					715				Ala	720
				725					730					Lys 735	
			740					745					750	His	
		755					760					765		Tyr	
	770					775					780			Leu	·
785					790					795				His	800
				805					810					Cys 815	
			820					825					830	Ala	
		835					840					845		Pro	
	850					855					860	•		Ala	
865					870					875				Asp	880
				885		•			890					Thr 895	_
			900					905					910	Asn	
		915					920					925	•	Glu	
	930					935					940			Ser	
A1a 945	Ser	G1 y	Arg	Cys	11e 950	Pro	Ile	Ser	Trp	Thr 955	Cys	Asp	Leu	Asp	Asp 960
	Cys			965					970					975	Thr
Cys	Phe	Pro	Leu 980	Thr	Gln	Phe	Thr	Cys 985	Asn	Asn	G1y	Arg	Cys	Ile	Asn

41/65

He	Asn	Trp 995	Arg	Cys	Asp		Asp 1000			Cys		Asp 1005	Asn	Ser	Asp
	Ala 1010	Gly	Cys	Ser		Ser 1015			Ser		G1n 1020	Phe	Lys	Cys	Asn
Ser 025	Gly	Arg	Cys		Pro 1030		His	Trp	Thr	Cys					Asp 1040
Cys	G1y	Asp	Tyr		Asp	Glu	Thr	His	Ala	Asn	Cys	Thr	Asn		
Thr	Arg		Pro 1060	Gly	Gly		His								Leu
Asp	Gly	Leu 1075	Cys	Ile	Pro	Leu		Trp	Arg	Cys				Thr	Asp
			Ser		Asp			Ser		Glu			Thr	His	Val
Cys 105	Asp	Pro	Asn	Val								Ala	Arg		Ile 1120
	Lys	Ala	Trp	Val	Cys		Gly		Ser	Asp	Cys		-		
Asp	Glu		Asn 1140	Cys	Glu		Leu	Ala		Arg	Pro	Pro			Pro
Cys		Asn 1155	Asn	Thr	Ser						-			Cys	Asp
	Lys 170	Asp	Asp	Cys		Asp 1175		Ser					Leu	Cys	Asp
Gln 185	Cys	Ser	Leu				Gly		Ser			Cys	Ser		A1a 1200
Pro	Gly	G1u	Gly	Ile 1205			Ser		Pro	Leu	Gly				
Ser	Asp		His		Cys		Пe		Ser	Tyr	Cys	Ala	Lys 1230		Leu
Lys		Ser	G1n	Lys	Cys		Gln	Asn	Lys	Phe		Val	Lys	Cys	Ser
			Gly		Va1					Gly				Arg	Ser
		Pro	Phe				Ile	Пе				Arg	His		Ile 280
	Arg	Ile	Asp			Lys	G1 y				Val	Leu			
Leu	Arg	Asn	Thr 1300		Ala	Leu				Leu	Ser				Leu
Tyr			Asp	Ala	Val				IJе	Tyr				Leu	Leu

42/65

1330 1335	e Glu Val Val Ile Gln Tyr Gly Leu 1340
Ala Thr Pro Glu Gly Leu Ala Val 345 1350	l Asp Trp Ile Ala Gly Asn Ile Tyr 1355 1360
1365	n Ile Glu Val Ala Lys Leu Asp Gly 1370 1375
1380	a Gly Asp Ile Glu His Pro Arg Ala 1385 1390
1395 1400	y Ile Leu Phe Trp Thr Asp Trp Asp 1405
1410 1415	a Ala Ser Met Ser Gly Ala Gly Arg 1420
425 1430	y Ser Gly Gly Cys Ala Asn Gly Leu 1435 1440
1445	
1460	r Asp Gly Ser Gly His Met Glu Val 1465 1470
1475 1480	r His Pro Phe Ala Val Thr Leu Tyr 1485
1490 1495	Trp Arg Thr Asn Thr Leu Ala Lys 1500
505 1510	val Thr Val Val Gln Arg Thr Asn 1515 1520
1525	1000
1540	1 Gly Gly Arg Gly Pro Cys Ser His 1545 1550
	I Ihr Val Ser Trp Ala Cvs Pro His
JAH MAT IVS LAH HIS IVS ASS ASS	1565
1570 1575	1565 In Thr Thr Cys Tyr Glu Phe Lys Lys 1580
1570 1575 Phe Leu Leu Tyr Ala Arg Gln Met 585 1590	1565 In Thr Thr Cys Tyr Glu Phe Lys Lys 1580 In Glu Ile Arg Gly Val Asp Leu Asp 1595
1570 1575 Phe Leu Leu Tyr Ala Arg Gln Met 585 1590 Ala Pro Tyr Tyr Asn Tyr Ile Ile 1605	1565 In Thr Thr Cys Tyr Glu Phe Lys Lys 1580 It Glu Ile Arg Gly Val Asp Leu Asp 1595 I Ser Phe Thr Val Pro Asp Ile Asp 1610 1615
1570 1575 Phe Leu Leu Tyr Ala Arg Gln Met 585 1590 Ala Pro Tyr Tyr Asn Tyr Ile Ile 1605 Asn Val Thr Val Leu Asp Tyr Asp 1620	1565 In Thr Thr Cys Tyr Glu Phe Lys Lys 1580 If Glu Ile Arg Gly Val Asp Leu Asp 1595 I 600 I Ser Phe Thr Val Pro Asp Ile Asp 1610 I Ala Arg Glu Gln Arg Val Tyr Trp 1625 I 1630
1570 1575 Phe Leu Leu Tyr Ala Arg Gln Met 585 1590 Ala Pro Tyr Tyr Asn Tyr Ile Ile 1605 Asn Val Thr Val Leu Asp Tyr Asp 1620 Ser Asp Val Arg Thr Gln Ala Ile 1635 1640	1565 In Thr Thr Cys Tyr Glu Phe Lys Lys 1580 If Glu Ile Arg Gly Val Asp Leu Asp 1595 I600 ISSER Phe Thr Val Pro Asp Ile Asp 1610 I615 I616 I617 I625 I630 ISSER Lys Arg Ala Phe Ile Asn Gly Thr

Α7 -	17. 2		T .	., -	_				-	_		_		_	
665			Trp		1670				-	L675					1680
Asn	Lys	Lys	Gln	Ile 1685		Val			Leu 1690		Gly			Lys 1695	Asr
													3	1032	
Ala	Val	Val	Gln 1700	Gly	Leu	Glu		Pro 1705			Leu		Val 1710	His	Pro
Leu		Gly 1715	Lys	Leu	Tyr		Thr 1720	Asp	Gly	Asp	Asn	Ile 1725	Ser	Met	Ala
Asn	Met	Asp	Gly	Ser	Asn	His	Thr	Leu	Leu	Phe			Gln	Lvc	GIV
	1730	, _F				1735			Lu		1740	uij	um	Lys	ury
		07	1	A7 -									_		
Pro	vai	Gly	Leu	Ala	He	Asp	Phe	Pro	Glu	Ser	Lys	Leu	Tyr	Trp	He
745					1750					L755				1	1760
Ser	Ser	Gly	Asn	His 1765	Thr	Ile	Asn				Leu	-		Ser 1775	Glu
ييم ا	61	Val	Ile		Thr	Mot	Ana								۸٦.
			1780					1785				-	L790		
Leu	Ala	He	Met	Gly	Asp	Lys	Leu	Trp	Trp	Ala	Asp	Gln	Val	Ser	Glu
		1795					1800					1805			
Lvs	Met.	Glv	Thr	Cvs	Asn	Lvs	Δla	Asn	GIV	Ser			Val	Val	Lau
	1810	4.5	****	0,5		1815						361	VQI	Vai	Leu
		C		T I	_						1820	_			_
		5er	Thr			vai	Met	HIS			Val	Tyr	Asp	Glu	Ser
825					1830					1835					L840
Ile	Gln	Leu	Glu	His	Glu	G] v	Thr	Asn	Pro	Cvs	Ser	Val	Asn	Asn	GTv
				1845										1855	٠.,
Acn	Cvc	Can													^
ASP	Cys		Gln			Leu							_	Ser	Cys
			1860					1865				-	L870		
Met	Cys	Thr	Ala	Gly	Tyr	Ser	Leu	Arg	Ser	Gly	Gln	G1n	Ala	Cvs	Glu
		1875		•	•		1880	_		J		1885		- 5 -	
Glv			Son												
	* u i			Pha	וום	الم ا	Tyr	Sar	Val	Hic			110	Ana	Cly
			Sei	Phe							Glu		Пe	Arg	G1 y
	1890				1	L895				1	G1u L900	Gly			
	1890		Asp		1	L895				1	G1u L900	Gly			
Пe	1890 Pro	Leu	Asp	Pro	Asn	L895 Asp	Lys	Ser	Asp	Ala	G1u L900 Leu	Gly Val	Pro	Val	Ser
Ile 905	1890 Pro	Leu	Asp	Pro	1 Asn 1910	L895 Asp	Lys	Ser	Asp 1	1 Ala 1915	G1u L900 Leu	Gly Val	Pro	Val	Ser 1920
Ile 905	1890 Pro	Leu	Asp Leu	Pro 1 Ala	1 Asn 1910	L895 Asp	Lys	Ser Asp	Asp 1 Phe	1 Ala 1915	G1u L900 Leu	Gly Val	Pro Asn	Val 1 Asp	Ser 1920
Ile 905 Gly	1890 Pro Thr	Leu Ser	Asp Leu	Pro 1 Ala 1925	1 Asn 1910 Val	L895 Asp Gly	Lys Ile	Ser Asp	Asp 1 Phe 1930	Ala 1915 His	Glu L900 Leu Ala	Gly Val Glu	Pro Asn	Va1 1 Asp 1935	Ser 1920 Thr
Ile 905 Gly	1890 Pro Thr	Leu Ser Trp	Asp Leu 1 Val	Pro 1 Ala 1925	1 Asn 1910 Val	L895 Asp Gly	Lys Ile	Ser Asp	Asp 1 Phe 1930	Ala 1915 His	Glu L900 Leu Ala	Gly Val Glu	Pro Asn	Va1 1 Asp 1935	Ser 1920 Thr
Ile 905 Gly	1890 Pro Thr	Leu Ser Trp	Asp Leu	Pro 1 Ala 1925	1 Asn 1910 Val	L895 Asp Gly	Lys Ile Leu	Ser Asp	Asp 1 Phe 1930	Ala 1915 His	Glu L900 Leu Ala	Gly Val Glu Arg	Pro Asn	Va1 1 Asp 1935	Ser 1920 Thr
Ile 905 Gly Ile	1890 Pro Thr Tyr	Leu Ser Trp	Asp Leu 7 Val 1940	Pro Ala 1925 Asp	Asn 1910 Val Met	L895 Asp Gly Gly	Lys Ile Leu	Ser Asp Ser L945	Asp Phe 1930 Thr	Ala 1915 His Ile	Glu L900 Leu Ala Ser	Gly Val Glu Arg	Pro Asn 1 Ala 1950	Val Asp 1935 Lys	Ser 1920 Thr
Ile 905 Gly Ile	1890 Pro Thr Tyr Gln	Leu Ser Trp Thr	Asp Leu 1 Val	Pro Ala 1925 Asp	Asn 1910 Val Met	L895 Asp Gly Gly Asp	Lys Ile Leu Val	Ser Asp Ser L945	Asp Phe 1930 Thr	Ala 1915 His Ile	Glu 1900 Leu Ala Ser Gly	Gly Val Glu Arg Ile	Pro Asn 1 Ala 1950	Val Asp 1935 Lys	Ser 1920 Thr
Ile 905 Gly Ile Asp	1890 Pro Thr Tyr Gln	Ser Trp Thr 1955	Asp Leu 1 Val 1940 Trp	Pro Ala 1925 Asp Arg	Asn 1910 Val Met Glu	L895 Asp Gly Gly Asp	Lys Ile Leu Val 1960	Ser Asp Ser 1945 Val	Asp Phe 1930 Thr	Ala 1915 His Ile Asn	Glu L900 Leu Ala Ser Gly	Gly Val Glu Arg Ile	Pro Asn 1 Ala 1950 Gly	Val Asp 1935 Lys Arg	Ser 1920 Thr Arg Val
Ile 905 Gly Ile Asp Glu	1890 Pro Thr Tyr Gln	Ser Trp Thr 1955	Asp Leu 7 Val 1940	Pro Ala 1925 Asp Arg	Asn 1910 Val Met Glu Asp	L895 Asp Gly Gly Asp	Lys Ile Leu Val 1960	Ser Asp Ser 1945 Val	Asp Phe 1930 Thr	Ala 1915 His Ile Asn	Glu L900 Leu Ala Ser Gly Ile	Gly Val Glu Arg Ile	Pro Asn 1 Ala 1950 Gly	Val Asp 1935 Lys Arg	Ser 1920 Thr Arg
Ile 905 Gly Ile Asp Glu	1890 Pro Thr Tyr Gln Gly 1970	Ser Trp Thr 1955 Ile	Asp Leu Val 1940 Trp	Pro Ala 1925 Asp Arg Val	Asn 1910 Val Met Glu Asp	L895 Asp Gly Gly Asp Trp L975	Lys Ile Leu Val 1960 Ile	Ser Asp Ser 1945 Val	Asp Phe 1930 Thr Thr	Ala 1915 His Ile Asn Asn	Glu Leu Ala Ser Gly Ile	Gly Val Glu Arg Ile 1965 Tyr	Pro Asn 1 Ala 1950 Gly Trp	Val Asp 1935 Lys Arg	Ser 1920 Thr Arg Val
Ile 905 Gly Ile Asp Glu	1890 Pro Thr Tyr Gln Gly 1970	Ser Trp Thr 1955 Ile	Asp Leu 1 Val 1940 Trp	Pro Ala 1925 Asp Arg Val	Asn 1910 Val Met Glu Asp	L895 Asp Gly Gly Asp Trp L975	Lys Ile Leu Val 1960 Ile	Ser Asp Ser 1945 Val	Asp Phe 1930 Thr Thr	Ala 1915 His Ile Asn Asn	Glu Leu Ala Ser Gly Ile	Gly Val Glu Arg Ile 1965 Tyr	Pro Asn 1 Ala 1950 Gly Trp	Val Asp 1935 Lys Arg	Ser 1920 Thr Arg Val

44/65

										00						
٠	Tyr	Val	Val	Ile	Ser 2005			Leu		Lys 2010		Arg			Thr 2015	Val
	His	Pro	Glu	Lys 2020	Gly	Tyr	Leu	Phe		Thr		Trp	Gly	His 2030	Tyr	Pro
٠	Arg			Arg			Leu	Asp	Gly	Thr		Arg		Val	Leu	۷a٦
	Asn 2		Ser	Ile	Ser	Trp	Pro 2055	Asn	Gly	Ile	Ser	Val 2060	Asp	Tyr	Gln	Gly
	G1 y 065	Lys	Leu	Tyr		Cys 2070	Asp	Ala	Arg	Met		Lys	Ile	G1u	-	Ile 2080
				Thr	2085		Asn	Arg	Glu 2	Va1 2090	Val	Leu	Ser	Ser	Asn 2095	Asn
			i	Phe 2100	Ser	Val	Ser	Val	Phe 2105	Glu	Asp	Phe	Ile	Tyr 2110	Trp	•
4	Asp	Arg	Thr 2115	His	Ala	Asn	Gly	Ser 2120		Lys	Arg	Gly	Cys 2125	Lys	Asp	Asn
,	A1a 2	Thr 2130	Asp	Ser	Val	Pro		Arg	Thr	Gly	Пe	Gly 2140	Val	Gln	Leu	Lys
,	Asp 145	Ile	Lys	Val	Phe	Asn 2150	Arg	Asp	Arg	Gln		Gly	Thr	Asn		Cys 2160
,	Ala	Va1	Ala	Asn 2	Gly 2165			Gln			Cys				Gly 2175	Gly
(Gly	G1n	Arg	Ala 2180	Cys	Ala	Cys	Ala	His	Gly	Met	Leu	Ala	Glu 2190	Asp	Gly
,	41a	Ser 2	Cys 2195	Arg	Glu	Tyr	Ala 2	Gly 2200	Tyr	Leu	Leu		Ser 2205	Glu	Arg	Thr
	Ile 2	Leu 2210	Lys	Ser	Ile	His 2	Leu 2215	Ser	Asp	Glu	Arg 2	Asn 2220	Leu	Asn	Ala	Pro
1	Va1 225	Gln	Pro	Phe	G1u 2	Asp	Pro	Glu	His	Met	Lys 2235	Asn	Val	Ile		Leu 2240
1	41a	Phe	Asp	Tyr 2		Ala	Gly	Thr	Ser		Gly					
ı	Phe	Phe	Ser 2	Asp 2260	Ile	His	Phe	Gly				Gln				Asp
(31 y	Ser 2	G7y 2275	Arg	Thr	Thr				Asn	Val				Glu	Gly
Į	Leu 2	A1a 290	Tyr	His	Arg				Thr	Leu				Ser	Tyr	Thr
			Thr	Ile	Thr 2			Thr	Va1		G]n 2315	Thr	Arg	Pro		A1a 2320
1	Phe	Glu	Arg	G1u 2			Ile	Thr				Asp	Asp		Pro	Arg

									~ ~						
Ala	Phe		Leu 2340								Phe		Thr 2350	Asn	Trp
Asn		Leu 2355	His	Pro	Ser		Met 2360		Ala			Ser 2365	Gly	Ala	Asn
	Leu 2370	Thr	Leu	Ile	Glu 2	Lys 2375	Asp	Ile	Arg	Thr	Pro 2380	Asn	Gly	Leu	Ala
385			Arg	2	2390				2	2395				2	2400
				2405				2	2410				. 2	2415	
Lys	Ser		Pro 2420	Val									Gly 2430	Glu	His
Ile		Trp 2435	Thr	Asp	Trp		Arg 2440		Ala			Arg 2445	Ala	Asn	Lys
	Va1 2450	Gly	Ser	Asp	Met 2	Lys 2455	Leu	Leu	Arg	Va]	Asp 2460	Ile	Pro	G1n	G1n
Pro 465	Met	Gly	Ile		Ala 2470	Val	Ala	Asn	Asp	Thr 2475	Asn		Cys		Leu 2480
Ser	Pro	Cys	Arg	Ile 2485			Gly			Gln	Asp	Leu		Leu 2495	Leu
Thr	His		Gly 2500		Val						Gly		Arg 2510	Ile	Leu
Gln		Asp 2515	Phe	Thr			A1 a 2520	Val		Ser		Cys 2525	Arg	Ala	Gln
	G1u 2530	Phe	Glu	Cys		Asn 2535	Gly	Glu	Cys		Ser 25 40	Phe	Ser	Leu	Thr
545			Val	2	2550				2	2555				2	2560
Tyr	Cys	Asn	Ser 2	Arg 2565	Arg		Lys		Thr 2570	Phe	Arg	Gln		Asn 2575	Asn
G1 y	Arg		Va1 2580		Asn	Met		Trp 2585		Asn	Gly		Asp 2590	Tyr	Cys
Gly		G1 y 2595	Ser	Asp	Glu		Pro 2600	Cys	Asn	Lys		Ala 2605	Cys	Gly	Val
	Glu 2610	Phe	Arg	Cys		Asp 2615	Gly	Ser	Cys		Gly 2620	Asn	Ser	Ser	Arg
Cys 625	Asn	G1n	Phe		Asp 2630	Cys	Glu	Asp		Ser 2635	Asp	Glu	Met		Cys 2640
Ser	Ala	Thr	Asp 2	Cys 2645	Ser	Ser	Tyr				Gly	Val			
Leu	Phe		Pro 2660	Cys	Glu	Arg				Cys	Tyr				Trp

Val		Asp 2675	G1 y	Ala	Asn		Cys 2680	Gly	Asp	Tyr		Asp 2685	Glu	Arg	Asp
	Pro 2690	Gly	Val	Lys	Arg	Pro 2695		Cys	Pro		Asn 2700	Tyr	Phe	Ala	Cys
Pro 705	Ser	Gly	Arg	Cys	Ile 2710		Met					Asp	Lys		Asp 2720
Asp	Cys	Glu	Asn 2	G1y 2725	Glu	Asp	Glu	Thr	His 2730	Cys	Asn	Lys		Cys 2735	Ser
		2	Phe 2740	Glu	Cys	Gln	2	His 2745	Arg	Cys	Ile	:	2750		•
	7	2755			Asp	2	2760					2765			
2	2770					2775		Pro	Ser	Ser 2	Phe 2780				_
Thr 785	His	Val	Cys		Pro 2790	Glu	Arg	Trp		Cys 2795	Asp	Gly	Asp		Asp 2800
			2	2805	Asp				2810				2	2815	
		2	2820		Arg		2	2825				2	2830		
	ź	2835			Cys	2	2840				2	2845			
2	2850					2855				2	2860				
865				2	Arg 2870				2	2875				2	2880
			2	2885	His			- 1	2890				2	2895	
		2	2900		Glu		2	2905				2	2910		
Cys					Cys		A1a 2920					Cys 2925			Gln
2	2930					2935				2	2940				
Cys 945	Lèu	Ser	Arg		Leu 2950	Ser	G1 y	Cys		G1n 2955	Asp	Cys	Glu		Leu 2960
Lys	Ile	Gly		Lys 2965	Cys	Arg	Cys		Pro 2970	Gly	Phe	Arg		Lys 2975	Asp
Asp	Gly		Thr 2980	Cys	Ala	Asp		Asp 2985	Glu	Cys	Ser				Pro
Cys		G1n 2995	Leu	Cys	Ile		Thr 3000	His	Gly	Ser		Lys 3005	Cys	Leu	Cys

	G1u 3010	Gly	Tyr	Ala		Arg 3015	Gly	Gly	Asp		His 3020	Ser	Cys	Lys	Ala
025				3	3030		Leu			3035				3	3040
			3	3045			Ser		3050				3	3055	
			3060					3065					3070		
	3	3075				3	G1n 3080		Ser	Met	Ile	Arg 3085			
3	3090				3	3095	Val			,	3100				
105				3	3110		Trp		3	3115					3120
	•		3	3125			Glu		3130				3	3135	
		3	3140				Gly	3145					3150		
	3	3155					Leu 3160				3	3165		-	
3	3170				3	3175	Met			(3180				
185				3	3190		Pro		3	3195				3	3200
			3	3205			Asp	;	3210				3	3215	
		3	3220					3225				3	3230		
	3	3235				3					3	3245			
3	3250				3	3255	Asn			3	3260				
265				3	3270		Thr		3	3275			·	3	3280
			3	3285			Pro	(3290				3	3295	
		3	3300					3305				3	3310		_
	3	3315				3	Thr 3320				3	3325			
Arg	Thr 3330	Cys	Val	Ser		Cys 3335	Thr	Ala	Ser		P.he 3340	Val	Cys	Lys	Asn

48/65

Asp 345	Lys	Cys	Ile		Phe 3350	Trp	Trp	Lys		Asp 3355	Thr		Asp	-	Cys 3360
				3365					3370		G1u	Phe		3375	_
			3380				3	3385		Cys	Thr	Asn (Pro 3390		
	3	3395					3400				-	3405			
;	3410					3415				;	Lys 3420				
425			•	3	3430					3435	Gly		-	3	3440
			(3445				(Pro 3450	Glu	Val	Thr	Cys	3455	
		;	3460					3465				3	3470		•
		3475					3480				Ser	3485			
,	3490				(3495				,	Phe 3500				
505				3	3510					3515	Asp				3520
			(3525				3	3530		Cys		3	3535	
		;	3540				3	3545			Arg	3	3550		
	3	3555				3	3560					3565		·	
	3570				(3575				;	G1u 3580			_	
Asn 585											Asp			His	
			;	3605				3	3610		Pro		3	3615	
			3620				3	3625			Pro	3	3630		
	3	3635				3	3640					3645			
;	3650				;	3655			-	;	Phe 3660				
Thr 665	Leu	Cys	Lys		Leu 3670	Ala	Trp	Lys		Asp 3675	Gly	Glu	Asp	•	Cys 3680

49/65

Gly	Asp	Asn	Ser	Asp 3685	Glu		Pro		G1u 3690		Ala	Arg		Ile 3695	Cys
Pro	Pro	Asn	Arg 3700	Pro	Phe	Arg	Cys	Lys 3705		Asp			Cys 3710	Leu	Trp
Ile	Gly	Arg 3715	Gln	Cys	Asp	Gly	Va1 3720	Asp	Asn	Cys	Gly			Thr	Asp
	3730					Pro 3735	Thr	Ala	Gln	;	3740				•
745				;	Cys 3750		•		,	3755				3	3760
			;	3765	Asp			;	3770				3	3775	-
		;	3780		Lys		;	3785					3790		
	(3795			Arg		3800					3805		-	
	3810	•				3815					3820				
825				,	Leu 3830				(3835				3	3840
			;	3845	His			,	3850				3	3855	
		;	3860		Lys		3	3865				3	3870		-
	3	3875			Glu	;	3880				3	3885			
3	3890					3895				,	3900				
905				3	Val 3910				3	3915				3	3920
				3925				(3930				3	3935	
		3	3940		His		3	3945				3	3950		
	3	3955			Leu	3	3960				3	3965		-	-
3	3970					3975				3	3980				
985				3	Gly 3990				3	3995				4	000
He	Asp	Glu	Pro	His 4005	Ala	Ile	Val		Asp	Pro	Leu	Arg		Thr	Met

50/65

								00,	00						
		4	4020		Gly		4	4025				4	4030		
Asp	Gly	Thr 4035	Leu	Arg	Glu	Thr	Leu 4040	Val	Gln	Asp		Ile 4045	Gln	Trp	Pro
	Gly 4050	Leu	Ala	Val	Asp	Tyr 4055		Asn	Glu				Trp	Ala	Asp
Ala 065	Lys	Leu	Ser		Ile 4070		Ser				Asn		Thr		Pro 4080
Ile	Val	Ala		Asp 4085	Ser	Lys	Arg	Gly					Phe		
Asp	Val		Glu 4100		Tyr	Ile		Gly 4105			Tyr				Arg
Val		Lys 4115	Ile	His	Lys	Phe	Gly				Leu			Leu	Thr
Gly	Gly 4130	Leu	Ser	His	Ala 2				Val				Gln	His	Lys
Gln 145	Pro	Glu	Val	Thr	Asn	Pro	Cys	Asp	Arg	Lys			Glu	-	Leu 4160
Cys	Leu	Leu		Pro 4165	Ser	Gly		Val	Cys						
Arg	Leu		Asn 4180		Thr					Pro	Ser				Pro
Pro		Ala 1195			Pro				Thr					Asn	G1 y
	Ser 1210	Cys	Phe	Leu	Asn /	Ala 1215			G1n		Lys 1220	Cys	Arg	Cys	G1n
Pro 225	Arg	Tyr	Thr	Gly 2	Asp 1230	Lys	Cys	Glu	Leu	Asp	Gln	Cys	Trp		Tyr 1240
Cys	His	Asn	Gly	Gly 4245	Thr	Cys	Ala	Ala	Ser 1250	Pro	Ser	Gly			
Cys	Arg		Pro 4260	Thr	G1y	Phe		Gly 1265	Pro	Lys	Cys				Val
Cys		Gly 1275	Tyr	Cys	Ser		Asn 1280	Ser	Thr	Cys				Gln	Gly
	G1n 1290	Pro	Gln	Cys	Arg	Cys 1295	Leu	Pro	Gly				Asp	Arg	Cys
G1n 305	Tyr	Arg	Gln		Ser 1310		Phe	Cys				Gly	Thr		G1n 1320
	Ala	Ala			Ser	Arg	G1n				Thr	Val			
Gly	Pro				Val	Asn				Arg	Cys		Gln	Gly	Ala

51/65

Cys			Asn	Lys	Gln			Asp	Val	Thr			Cys	Thr	Asp
	4	1355				4	4360				4	1365			
	Arg 1370	Val	Ala	Pro		Cys 1375	Leu	Thr	Cys		Asp 4380	His	Cys	Ser	Asn
		Ser	Cys	Thr	Met 1390	Asn	Ser	Lys		Met			Cys		Cys 1400
-	Pro	His	Met	Thr		Pro	Arg	Cys					Va1		
			1	1405				4	4410				1	1415	
Gln	Gln			His	Met	Ala	Ser			Пe	Pro	Leu			Leu
		4	1420				4	4425				4	1430		
Leu			Leu	Leu	Val					Phe	-	-	Lys	Arg	Arg
		1435										1445			
		Gly	Ala	Lys								Thr	Asn	Gly	Ala
2	1450				1	1455				4	1460				
	Asn	Val	Glu	Ile			Pro	Thr					Glu	Gly	Gly
465				4	1470				1	1475				4	1480
Glu	Pro	Asp		Va1 1485	Gly	Gly	Leu				-	Phe		Leu 1495	Asp
Pro	Δsn	Lvc		Thr	Acn	Dha	Thr					۸٦ -			Tvm
110	лэр		1500	* * * * * *	ASII	THE		4505		vai	ıyı		4510	Leu	Tyr
Met			His	Gly	Ser		His	Ser	Leu	Ala		Thr		Glu	Lys
		4515					1520					1525			
		Leu	Leu	Gly			Pro	Glu	Asp			Gly	Asp	Pro	Leu
	1530				4	1535				4	1540				
Ala															
545															

52/65 GCTACAATCC ATCTGGTCTC CTCCAGCTCC TTCTTTCTGC AAC ATG GGG AAG AAC 55 Met Gly Lys Asn 1 AAA CTC CTT CAT CCA AGT CTG GTT CTT CTC CTC TTG GTC CTC CTG CCC 103 Lys Leu Leu His Pro Ser Leu Val Leu Leu Leu Val Leu Leu Pro 5 10 15 20 ACA GAC GCC TCA GTC TCT GGA AAA CCG CAG TAT ATG GTT CTG GTC CCC 151 Thr Asp Ala Ser Val Ser Gly Lys Pro Gln Tyr Met Val Leu Val Pro 25 ·30 35 TCC CTG CTC CAC ACT GAG ACC ACT GAG AAG GGC TGT GTC CTT CTG AGC 199 Ser Leu Leu His Thr Glu Thr Thr Glu Lys Gly Cys Val Leu Leu Ser 45 TAC CTG AAT GAG ACA GTG ACT GTA AGT GCT TCC TTG GAG TCT GTC AGG 247 Tyr Leu Asn Glu Thr Val Thr Val Ser Ala Ser Leu Glu Ser Val Arg 55 60 65 GGA AAC AGG AGC CTC TTC ACT GAC CTG GAG GCG GAG AAT GAC GTA CTC 295 Gly Asn Arg Ser Leu Phe Thr Asp Leu Glu Ala Glu Asn Asp Val Leu 70 75 CAC TGT GTC GCC TTC GCT GTC CCA AAG TCT TCA TCC AAT GAG GAG GTA 343 His Cys Val Ala Phe Ala Val Pro Lys Ser Ser Ser Asn Glu Glu Val 85 95 100 ATG TTC CTC ACT GTC CAA GTG AAA GGA CCA ACC CAA GAA TTT AAG AAG 391 Met Phe Leu Thr Val Gln Val Lys Gly Pro Thr Gln Glu Phe Lys Lys 105 110 115 CGG ACC ACA GTG ATG GTT AAG AAC GAG GAC AGT CTG GTC TTT GTC CAG 439 Arg Thr Thr Val Met Val Lys Asn Glu Asp Ser Leu Val Phe Val Gln 120 125 130 ACA GAC AAA TCA ATC TAC AAA CCA GGG CAG ACA GTG AAA TTT CGT GTT 487 Thr Asp Lys Ser Ile Tyr Lys Pro Gly Gln Thr Val Lys Phe Arg Val 135 140 GTC TCC ATG GAT GAA AAC TIT CAC CCC CTG AAT GAG TTG ATT CCA CTA 535 Val Ser Met Asp Glu Asn Phe His Pro Leu Asn Glu Leu Ile Pro Leu 150 155 160

53/65 GTA TAC ATT CAG GAT CCC AAA GGA AAT CGC ATC GCA CAA TGG CAG AGT Val Tyr Ile Gln Asp Pro Lys Gly Asn Arg Ile Ala Gln Trp Gln Ser TTC CAG TTA GAG GGT GGC CTC AAG CAA TTT TCT TTT CCC CTC TCA TCA Phe Gln Leu Glu Gly Gly Leu Lys Gln Phe Ser Phe Pro Leu Ser Ser GAG CCC TTC CAG GGC TCC TAC AAG GTG GTG GTA CAG AAG AAA TCA GGT Glu Pro Phe Gln Gly Ser Tyr Lys Val Val Gln Lys Lys Ser Gly GGA AGG ACA GAG CAC CCT TTC ACC GTG GAG GAA TTT GTT CTT CCC AAG Gly Arg Thr Glu His Pro Phe Thr Val Glu Glu Phe Val Leu Pro Lys TTT GAA GTA CAA GTA ACA GTG CCA AAG ATA ATC ACC ATC TTG GAA GAA Phe Glu Val Gln Val Thr Val Pro Lys Ile Ile Thr Ile Leu Glu Glu GAG ATG AAT GTA TCA GTG TGT GGC CTA TAC ACA TAT GGG AAG CCT GTC Glu Met Asn Val Ser Val Cys Gly Leu Tyr Thr Tyr Gly Lys Pro Val CCT GGA CAT GTG ACT GTG AGC ATT TGC AGA AAG TAT AGT GAC GCT TCC Pro Gly His Val Thr Val Ser Ile Cys Arg Lys Tyr Ser Asp Ala Ser GAC TGC CAC GGT GAA GAT TCA CAG GCT TTC TGT GAG AAA TTC AGT GGA Asp Cys His Gly Glu Asp Ser Gln Ala Phe Cys Glu Lys Phe Ser Gly CAG CTA AAC AGC CAT GGC TGC TTC TAT CAG CAA GTA AAA ACC AAG GTC Gln Leu Asn Ser His Gly Cys Phe Tyr Gln Gln Val Lys Thr Lys Val TTC CAG CTG AAG AGG AAG GAG TAT GAA ATG AAA CTT CAC ACT GAG GCC Phe Gln Leu Lys Arg Lys Glu Tyr Glu Met Lys Leu His Thr Glu Ala CAG ATC CAA GAA GAA GGA ACA GTG GTG GAA TTG ACT GGA AGG CAG TCC Gln Ile Gln Glu Glu Gly Thr Val Val Glu Leu Thr Gly Arg Gln Ser

54/65 AGT GAA ATC ACA AGA ACC ATA ACC AAA CTC TCA. TTT GTG AAA GTG GAC Ser Glu Ile Thr Arg Thr Ile Thr Lys Leu Ser Phe Val Lys Val Asp TCA CAC TTT CGA CAG GGA ATT CCC TTC TTT GGG CAG GTG CGC CTA GTA Ser His Phe Arg Gln Gly Ile Pro Phe Phe Gly Gln Val Arg Leu Val GAT GGG AAA GGC GTC CCT ATA CCA AAT AAA GTC ATA TTC ATC AGA GGA Asp Gly Lys Gly Val Pro Ile Pro Asn Lys Val Ile Phe Ile Arg Gly AAT GAA GCA AAC TAT TAC TCC AAT GCT ACC ACG GAT GAG CAT GGC CTT Asn Glu Ala Asn Tyr Tyr Ser Asn Ala Thr Thr Asp Glu His Gly Leu 400 . GTA CAG TTC TCT ATC AAC ACC ACC AAC GTT ATG GGT ACC TCT CTT ACT Val Gln Phe Ser Ile Asn Thr Thr Asn Val Met Gly Thr Ser Leu Thr GTT AGG GTC AAT TAC AAG GAT CGT AGT CCC TGT TAC GGC TAC CAG TGG Val Arg Val Asn Tyr Lys Asp Arg Ser Pro Cys Tyr Gly Tyr Gln Trp GTG TCA GAA GAA CAC GAA GAG GCA CAT CAC ACT GCT TAT CTT GTG TTC Val Ser Glu Glu His Glu Glu Ala His His Thr Ala Tyr Leu Val Phe TCC CCA AGC AAG AGC TIT GTC CAC CTT GAG CCC ATG TCT CAT GAA CTA Ser Pro Ser Lys Ser Phe Val His Leu Glu Pro Met Ser His Glu Leu CCC TGT GGC CAT ACT CAG ACA GTC CAG GCA CAT TAT ATT CTG AAT GGA Pro Cys Gly His Thr Gln Thr Val Gln Ala His Tyr Ile Leu Asn Gly GGC ACC CTG CTG GGG CTG AAG AAG CTC TCC TTT TAT TAT CTG ATA ATG Gly Thr Leu Leu Gly Leu Lys Lys Leu Ser Phe Tyr Tyr Leu Ile Met GCA AAG GGA GGC ATT GTC CGA ACT GGG ACT CAT GGA CTG CTT GTG AAG Ala Lys Gly Gly Ile Val Arg Thr Gly Thr His Gly Leu Leu Val Lys

55/65 CAG GAA GAC ATG AAG GGC CAT TTT TCC ATC TCA ATC CCT GTG AAG TCA Gln Glu Asp Met Lys Gly His Phe Ser Ile Ser Ile Pro Val Lys Ser GAC ATT GCT CCT GTC GCT CGG TTG CTC ATC TAT GCT GTT TTA CCT ACC Asp Ile Ala Pro Val Ala Arg Leu Leu Ile Tyr Ala Val Leu Pro Thr GGG GAC GTG ATT GGG GAT TCT GCA AAA TAT GAT GTT GAA AAT TGT CTG Gly Asp Val Ile Gly Asp Ser Ala Lys Tyr Asp Val Glu Asn Cys Leu GCC AAC AAG GTG GAT TTG AGC TTC AGC CCA TCA CAA AGT CTC CCA GCC Ala Asn Lys Val Asp Leu Ser Phe Ser Pro Ser Gln Ser Leu Pro Ala TCA CAC GCC CAC CTG CGA GTC ACA GCG GCT CCT CAG TCC GTC TGC GCC Ser His Ala His Leu Arg Val Thr Ala Ala Pro Gln Ser Val Cys Ala CTC CGT GCT GTG GAC CAA AGC GTG CTG CTC ATG AAG CCT GAT GCT GAG Leu Arg Ala Val Asp Gln Ser Val Leu Leu Met Lys Pro Asp Ala Glu CTC TCG GCG TCC TCG GTT TAC AAC CTG CTA CCA GAA AAG GAC CTC ACT Leu Ser Ala Ser Ser Val Tyr Asn Leu Leu Pro Glu Lys Asp Leu Thr GGC TTC CCT GGG CCT TTG AAT GAC CAG GAC GAT GAA GAC TGC ATC AAT Gly Phe Pro Gly Pro Leu Asn Asp Gln Asp Asp Glu Asp Cys Ile Asn CGT CAT AAT GTC TAT ATT AAT GGA ATC ACA TAT ACT CCA GTA TCA AGT Arg His Asn Val Tyr Ile Asn Gly Ile Thr Tyr Thr Pro Val Ser Ser ACA AAT GAA AAG GAT ATG TAC AGC TTC CTA GAG GAC ATG GGC TTA AAG Thr Asn Glu Lys Asp Met Tyr Ser Phe Leu Glu Asp Met Gly Leu Lys . . 675 GCA TTC ACC AAC TCA AAG ATT CGT AAA CCC AAA ATG TGT CCA CAG CTT Ala Phe Thr Asn Ser Lys Ile Arg Lys Pro Lys Met Cys Pro Gln Leu

56/65 CAA CAG TAT GAA ATG CAT GGA CCT GAA GGT CTA CGT GTA GGT TTT TAT Gln Gln Tyr Glu Met His Gly Pro Glu Gly Leu Arg Val Gly Phe Tyr GAG TCA GAT GTA ATG GGA AGA GGC CAT GCA CGC CTG GTG CAT GTT GAA Glu Ser Asp Val Met Gly Arg Gly His Ala Arg Leu Val His Val Glu GAG CCT CAC ACG GAG ACC GTA CGA AAG TAC TTC CCT GAG ACA TGG ATC Glu Pro His Thr Glu Thr Val Arg Lys Tyr Phe Pro Glu Thr Trp Ile TGG GAT TTG GTG GTG GTA AAC TCA GCA GGG GTG GCT GAG GTA GGA GTA Trp Asp Leu Val Val Val Asn Ser Ala Gly Val Ala Glu Val Gly Val ACA GTC CCT GAC ACC ATC ACC GAG TGG AAG GCA GGG GCC TTC TGC CTG Thr Val Pro Asp Thr Ile Thr Glu Trp Lys Ala Gly Ala Phe Cys Leu TCT GAA GAT GCT GGA CTT GGT ATC TCT TCC ACT GCC TCT CTC CGA GCC Ser Glu Asp Ala Gly Leu Gly Ile Ser Ser Thr Ala Ser Leu Arg Ala TTC CAG CCC TTC TTT GTG GAG CTT ACA ATG CCT TAC TCT GTG ATT CGT Phe Gln Pro Phe Phe Val Glu Leu Thr Met Pro Tyr Ser Val Ile Arg GGA GAG GCC TTC ACA CTC AAG GCC ACG GTC CTA AAC TAC CTT CCC AAA Gly Glu Ala Phe Thr Leu Lys Ala Thr Val Leu Asn Tyr Leu Pro Lys TGC ATC CGG GTC AGT GTG CAG CTG GAA GCC TCT CCC GCC TTC CTT GCT Cys Ile Arg Val Ser Val Gln Leu Glu Ala Ser Pro Ala Phe Leu Ala GTC CCA GTG GAG AAG GAA CAA GCG CCT CAC TGC ATC TGT GCA AAC GGG Val Pro Val Glu Lys Glu Gln Ala Pro His Cys Ile Cys Ala Asn Gly CGG CAA ACT GTG TCC TGG GCA GTA ACC CCA AAG TCA TTA GGA AAT GTG Arg Gln Thr Val Ser Trp Ala Val Thr Pro Lys Ser Leu Gly Asn Val

FIG.7A-5

57/65 AAT TTC ACT GTG AGC GCA GAG GCA CTA GAG TCT CAA GAG CTG TGT GGG Asn Phe Thr Val Ser Ala Glu Ala Leu Glu Ser Gln Glu Leu Cys Gly ACT GAG GTG CCT TCA GTT CCT GAA CAC GGA AGG AAA GAC ACA GTC ATC Thr Glu Val Pro Ser Val Pro Glu His Gly Arg Lys Asp Thr Val Ile AAG CCT CTG TTG GTT GAA CCT GAA GGA CTA GAG AAG GAA ACA ACA TTC Lys Pro Leu Leu Val Glu Pro Glu Gly Leu Glu Lys Glu Thr Thr Phe AAC TCC CTA CTT TGT CCA TCA GGT GGT GAG GTT TCT GAA GAA TTA TCC Asn Ser Leu Leu Cys Pro Ser Gly Gly Glu Val Ser Glu Glu Leu Ser CTG AAA CTG CCA CCA AAT GTG GTA GAA GAA TCT GCC CGA GCT TCT GTC Leu Lys Leu Pro Pro Asn Val Val Glu Glu Ser Ala Arg Ala Ser Val TCA GTT TTG GGA GAC ATA TTA GGC TCT GCC ATG CAA AAC ACA CAA AAT Ser Val Leu Gly Asp Ile Leu Gly Ser Ala Met Gln Asn Thr Gln Asn CTT CTC CAG ATG CCC TAT GGC TGT GGA GAG CAG AAT ATG GTC CTC TTT Leu Leu Gln Met Pro Tyr Gly Cys Gly Glu Gln Asn Met Val Leu Phe GCT CCT AAC ATC TAT GTA CTG GAT TAT CTA AAT GAA ACA CAG CAG CTT Ala Pro Asn Ile Tyr Val Leu Asp Tyr Leu Asn Glu Thr Gln Gln Leu ACT CCA GAG GTC AAG TCC AAG GCC ATT GGC TAT CTC AAC ACT GGT TAC Thr Pro Glu Val Lys Ser Lys Ala Ile Gly Tyr Leu Asn Thr Gly Tyr CAG AGA CAG TTG AAC TAC AAA CAC TAT GAT GGC TCC TAC AGC ACC TTT Gln Arg Gln Leu Asn Tyr Lys His Tyr Asp Gly Ser Tyr Ser Thr Phe GGG GAG CGA TAT GGC AGG AAC CAG GGC AAC ACC TGG CTC ACA GCC TTT Gly Glu Arg Tyr Gly Arg Asn Gln Gly Asn Thr Trp Leu Thr Ala Phe

							65	58								
3223	GAA Glu 1060	Asp					GCC Ala	CGA				Phe				
3271	GAC Asp		Gln		CAG Gln			Trp					Thr			
3319	AAG Lys			Asn	AAC Asn				Gly					Cys		
3367					TAT Tyr					Val					Gly	
3415					GTT Val 1120	Pro					Leu					Leu
3463		Asp			CAA G1n		Thr					Glu				
3511			Phe		TAT Tyr			Leu					Val			
3559				Ser	AAG Lys		Val	Glu		Arg	Lys	Asp	G1n		Gly	
3607					GAG Glu					Asn					Ala	
3655					CAG G1n L200	Pro					Gly					Pro
3703		Ala			TAT Tyr		Leu					Thr				

59/65 CCA GCC CCA ACC TCG GAG GAC CTG ACC TCT GCA ACC AAC ATC GTG AAG Pro Ala Pro Thr Ser Glu Asp Leu Thr Ser Ala Thr Asn Ile Val Lys TGG ATC ACG AAG CAG CAG AAT GCC CAG GGC GGT TTC TCC TCC ACC CAG Trp Ile Thr Lys Gln Gln Asn Ala Gln Gly Gly Phe Ser Ser Thr Gln GAC ACA GTG GTG GCT CTC CAT GCT CTG TCC AAA TAT GGA GCC GCC ACA Asp Thr Val Val Ala Leu His Ala Leu Ser Lys Tyr Gly Ala Ala Thr TTT ACC AGG ACT GGG AAG GCT GCA CAG GTG ACT ATC CAG TCT TCA GGG Phe Thr Arg Thr Gly Lys Ala Ala Gln Val Thr Ile Gln Ser Ser Gly ACA TTT TCC AGC AAA TTC CAA GTG GAC AAC AAC AAT CGC CTG TTA CTG Thr Phe Ser Ser Lys Phe Gln Val Asp Asn Asn Asn Arg Leu Leu CAG CAG GTC TCA TTG CCA GAG CTG CCT GGG GAA TAC AGC ATG AAA GTG Gln Gln Val Ser Leu Pro Glu Leu Pro Gly Glu Tyr Ser Met Lys Val ACA GGA GAA GGA TGT GTC TAC CTC CAG ACC TCC TTG AAA TAC AAT ATT Thr Gly Glu Gly Cys Val Tyr Leu Gln Thr Ser Leu Lys Tyr Asn Ile CTC CCA GAA AAG GAA GAG TTC CCC TTT GCT TTA GGA GTG CAG ACT CTG Leu Pro Glu Lys Glu Glu Phe Pro Phe Ala Leu Gly Val Gln Thr Leu CCT CAA ACT TGT GAT GAA CCC AAA GCC CAC ACC AGC TTC CAA ATC TCC Pro Gln Thr Cys Asp Glu Pro Lys Ala His Thr Ser Phe Gln Ile Ser CTA AGT GTC AGT TAC ACA GGG AGC CGC TCT GCC TCC AAC ATG GCG ATC Leu Ser Val Ser Tyr Thr Gly Ser Arg Ser Ala Ser Asn Met Ala Ile GTT GAT GTG AAG ATG GTC TCT GGC TTC ATT CCC CTG AAG CCA ACA GTG Val Asp Val Lys Met Val Ser Gly Phe Ile Pro Leu Lys Pro Thr Val

60/65																	
			CTT														4279
	Lys	Met	Leu	Glu	Arg	Ser	Asn	His	Val	Ser	Arg	Thr	Glu	Val	Ser	Ser	
			:	1400					1405					1410			
												•					
	AAC	CAT	GTC	TTG	ATT	TAC	CTT	GAT	AAG	GTG	TCA	AAT	CAG	ACA	CTG	AGC	4327
	Asn		Val	Leu	He	Tyr	Leu	Asp	Lys	Val	Ser	Asn	Gln	Thr	Leu	Ser	
			1415]	1420					1425				
			TTC														4375
			Phe	Thr	Val	Leu	G]n	Asp	Val	Pro	Val	Arg	Asp	Leu	Lys	Pro	
	1	L430					1435				-	1440					
			GTG														4423
		He	Val	Lys			Asp	Tyr	Tyr	G1u	Thr	Asp	Glu	Phe	Ala	Ile	
1	445					1450				1	L455				1	L460	
	00-																
															TGA	AGACCA	4474
	Ala	Glu	Tyr			Pro	Cys	Ser		-	Leu	Gly	Asn	Ala			
				J	l465]	L470					<u>l</u>		
	CAAC	·^~	~AA 4	ACT	·^+	ro c-	TOO 8 4	TCC	r ^~	ro rr or	TO 8 C	OT04	2405				420
			3AA <i>F</i> TTT 7										JAUA	AA.	AUA(CGTGTT	4534
		3 I A I I			-441	113 A	1 - 43 43 1	14441	431			1-11					1577

FIG.7A-9

61/65

Ser Val Ser Gly Lys Pro Gln Tyr Met Val Leu Val Pro Ser Leu Leu His Thr Glu Thr Thr Glu Lys Gly Cys Val Leu Leu Ser Tyr Leu Asn 20 25 Glu Thr Val Thr Val Ser Ala Ser Leu Glu Ser Val Arg Gly Asn Arg Ser Leu Phe Thr Asp Leu Glu Ala Glu Asn Asp Val Leu His Cys Val Ala Phe Ala Val Pro Lys Ser Ser Ser Asn Glu Glu Val Met Phe Leu 75 Thr Val Gln Val Lys Gly Pro Thr Gln Glu Phe Lys Lys Arg Thr Thr Val Met Val Lys Asn Glu Asp Ser Leu Val Phe Val Gln Thr Asp Lys 105 Ser Ile Tyr Lys Pro Gly Gln Thr Val Lys Phe Arg Val Val Ser Met 115 120 125 Asp Glu Asn Phe His Pro Leu Asn Glu Leu Ile Pro Leu Val Tyr Ile 135 140 Gln Asp Pro Lys Gly Asn'Arg Ile Ala Gln Trp Gln Ser Phe Gln Leu 150 155 Glu Gly Gly Leu Lys Gln Phe Ser Phe Pro Leu Ser Ser Glu Pro Phe 170 Gln Gly Ser Tyr Lys Val Val Gln Lys Lys Ser Gly Gly Arg Thr 180 185 Glu His Pro Phe Thr Val Glu Glu Phe Val Leu Pro Lys Phe Glu Val 200 205 Gln Val Thr Val Pro Lys Ile Ile Thr Ile Leu Glu Glu Glu Met Asn 210 215 Val Ser Val Cys Gly Leu Tyr Thr Tyr Gly Lys Pro Val Pro Gly His 230 235 Val Thr Val Ser Ile Cys Arg Lys Tyr Ser Asp Ala Ser Asp Cys His 245 250 Gly Glu Asp Ser Gln Ala Phe Cys Glu Lys Phe Ser Gly Gln Leu Asn 260 265 270 Ser His Gly Cys Phe Tyr Gln Gln Val Lys Thr Lys Val Phe Gln Leu 280 285 . Lys Arg Lys Glu Tyr Glu Met Lys Leu His Thr Glu Ala Gln Ile Gln 295 300 Glu Glu Gly Thr Val Val Glu Leu Thr Gly Arg Gln Ser Ser Glu Ile 305 310 315 320

FIG.7B-1

62/65

Thr Arg Thr Ile Thr Lys Leu Ser Phe Val Lys Val Asp Ser His Phe Arg Gln Gly Ile Pro Phe Phe Gly Gln Val Arg Leu Val Asp Gly Lys Gly Val Pro Ile Pro Asn Lys Val Ile Phe Ile Arg Gly Asn Glu Ala Asn Tyr Tyr Ser Asn Ala Thr Thr Asp Glu His Gly Leu Val Gln Phe Ser Ile Asn Thr Thr Asn Val Met Gly Thr Ser Leu Thr Val Arg Val Asn Tyr Lys Asp Arg Ser Pro Cys Tyr Gly Tyr Gln Trp Val Ser Glu Glu His Glu Glu Ala His His Thr Ala Tyr Leu Val Phe Ser Pro Ser Lys Ser Phe Val His Leu Glu Pro Met Ser His Glu Leu Pro Cys Gly His Thr Gln Thr Val Gln Ala His Tyr Ile Leu Asn Gly Gly Thr Leu Leu Gly Leu Lys Lys Leu Ser Phe Tyr Tyr Leu Ile Met Ala Lys Gly Gly Ile Val Arg Thr Gly Thr His Gly Leu Leu Val Lys Gln Glu Asp Met Lys Gly His Phe Ser Ile Ser Ile Pro Val Lys Ser Asp Ile Ala Pro Val Ala Arg Leu Leu Ile Tyr Ala Val Leu Pro Thr Gly Asp Val Ile Gly Asp Ser Ala Lys Tyr Asp Val Glu Asn Cys Leu Ala Asn Lys Val Asp Leu Ser Phe Ser Pro Ser Gln Ser Leu Pro Ala Ser His Ala His Leu Arg Val Thr Ala Ala Pro Gln Ser Val Cys Ala Leu Arg Ala Val Asp Gln Ser Val Leu Leu Met Lys Pro Asp Ala Glu Leu Ser Ala Ser Ser Val Tyr Asn Leu Leu Pro Glu Lys Asp Leu Thr Gly Phe Pro Gly Pro Leu Asn Asp Gln Asp Asp Glu Asp Cys Ile Asn Arg His Asn Val Tyr Ile Asn Gly Ile Thr Tyr Thr Pro Val Ser Ser Thr Asn Glu Lys Asp Met Tyr Ser Phe Leu Glu Asp Met Gly Leu Lys Ala Phe Thr

63/65

Asn Ser Lys Ile Arg Lys Pro Lys Met Cys Pro Gln Leu Gln Gln Tyr Glu Met His Gly Pro Glu Gly Leu Arg Val Gly Phe Tyr Glu Ser Asp Val Met Gly Arg Gly His Ala Arg Leu Val His Val Glu Glu Pro His Thr Glu Thr Val Arg Lys Tyr Phe Pro Glu Thr Trp Ile Trp Asp Leu Val Val Asn Ser Ala Gly Val Ala Glu Val Gly Val Thr Val Pro Asp Thr Ile Thr Glu Trp Lys Ala Gly Ala Phe Cys Leu Ser Glu Asp Ala Gly Leu Gly Ile Ser Ser Thr Ala Ser Leu Arg Ala Phe Gln Pro Phe Phe Val Glu Leu Thr Met Pro Tyr Ser Val Ile Arg Gly Glu Ala Phe Thr Leu Lys Ala Thr Val Leu Asn Tyr Leu Pro Lys Cys Ile Arg Val Ser Val Gln Leu Glu Ala Ser Pro Ala Phe Leu Ala Val Pro Val Glu Lys Glu Gln Ala Pro His Cys Ile Cys Ala Asn Gly Arg Gln Thr Val Ser Trp Ala Val Thr Pro Lys Ser Leu Gly Asn Val Asn Phe Thr Val Ser Ala Glu Ala Leu Glu Ser Gln Glu Leu Cys Gly Thr Glu Val Pro Ser Val Pro Glu His Gly Arg Lys Asp Thr Val Ile Lys Pro Leu Leu Val Glu Pro Glu Gly Leu Glu Lys Glu Thr Thr Phe Asn Ser Leu Leu Cys Pro Ser Gly Gly Glu Val Ser Glu Glu Leu Ser Leu Lys Leu Pro Pro Asn Val Val Glu Glu Ser Ala Arg Ala Ser Val Ser Val Leu Gly Asp Ile Leu Gly Ser Ala Met Gln Asn Thr Gln Asn Leu Leu Gln Met Pro Tyr Gly Cys Gly Glu Gln Asn Met Val Leu Phe Ala Pro Asn Ile Tyr Val Leu Asp Tyr Leu Asn Glu Thr Gln Gln Leu Thr Pro Glu Val Lys Ser Lys Ala Ile Gly Tyr Leu Asn Thr Gly Tyr Gln Arg Gln

64/65

								0 171	<i>-</i>						
Leu	Asn	Tyr 995	Lys	His	Tyr	•	-		-	Ser	Thr	Phe 1005	Gly	Glu	Arg
	Gly L010	Arg	Asn	Gln		Asn 1015	Thr		Leu	Thr	Ala 1020	Phe	Val	Leu	Lys
Thr 025	Phe	Ala	G1n			Ala	Tyr	Ile	Phe	Ile	Asp				Ile 1040
Thr	Gln	Ala		Ile 1045	Trp	Leu	Ser	Gln	Arg 1050	Gln	Lys	Asp	Asn	G1 y 1055	
		-	1060					1065		Ala	Ile	Lys	Gly 1070		
Glu		G1u 1075			Leu				He	Thr	Ile	A1a 1085	Leu	Leu	Glu
]	1090					1095					Asn 1100				•
105					1110					1115	Asp			1	l120
				1125					Ala 1130	Phe	Ala	Leu	Ala]	135	
		-	1140					1145			Asn		1150		
		1155					1160				Gln	1165		_	
1	L170				1	1175				• •	Ser 1180				
185					1190					1195			٠]	1200
				L205					1210		Val		. 1	l215	
			1220					1225			Thr		1230		
		1235				-	1240		_			1245			
]	1250]	1255					Ser 1260				
265	•				L270					1275	Leu			1	1280
			-	1285					1290		Lys		1	1295	
			1300				•	1305			Asn		1310		
<u>L.YS</u>		1315	rne	Pro.	Pne		Leu 1320	GIY	vai	GIN	Thr	Leu 1325	Pro	GIN	,I hr

65/65

Cys Asp Glu Pro Lys Ala His Thr Ser Phe Gln Ile Ser Leu Ser Val 1330 1335 1340 Ser Tyr Thr Gly Ser Arg Ser Ala Ser Asn Met Ala Ile Val Asp Val 345 1350 1355 1360 Lys Met Val Ser Gly Phe Ile Pro Leu Lys Pro Thr Val Lys Met Leu Glu Arg Ser Asn His Val Ser Arg Thr Glu Val Ser Ser Asn His Val Leu Ile Tyr Leu Asp Lys Val Ser Asn Gln Thr Leu Ser Leu Phe Phe Thr Val Leu Gln Asp Val Pro Val Arg Asp Leu Lys Pro Ala Ile Val 1410 1415 1420 Lys Val Tyr Asp Tyr Tyr Glu Thr Asp Glu Phe Ala Ile Ala Glu Tyr 425 1430 1435 1440 Asn Ala Pro Cys Ser Lys Asp Leu Gly Asn Ala 1445 1450

SEQUENCE LISTING

```
<110> Antigenics, Inc.
       <120> COMPLEXES OF ALPHA (2) MACROGLOBULIN AND ANTIGENIC
             MOLECULES FOR IMMUNOTHERADY
       <130> 8449-178-228
       <150> 09/625,139
       <151> 2000-07-25
       <150> 60/209,266
       <151> 2000-06-02
       <160> 5
       <170> FastSEQ for Windows Version 3.0
       <210> 1
       <211> 14849
       <212> DNA
       <213> Mus musculus
       <400> 1
cgctgctccc cgccagtgca ctgaggaggc ggaaacgggg gagcccctag tgctccatca
                                                                        60
ggcccctacc aaggcacccc catcgggtcc acgccccca cccccaccc cgcctcctcc
                                                                       120
caattgtgca tttttgcagc cggagtcggc tccgagatgg ggctgtgagc ttcgcctgg
                                                                       180
gaggggaga ggagcgagga gtaaagcagg ggtgaagggt tcgaatttgg gggcaggggg
                                                                       240
cgcacccgcg tcagcaggcc cttcccaggg ggctcggaac tgtaccattt cacctatgcc
                                                                       300
cctggttcgc tttgcttaag gaaggataag atagaagagt cggggagagg aagataaagg
                                                                       360
gggacccccc aattgggggg ggcgaggaca agaagtaaca ggaccagagg gtgggggctg
                                                                       420
ctgtttgcat cggcccacac catgctgacc ccgccgttgc tgctgctcgt gccgctgctt
                                                                       480
tcagctctgg tctccggggc cactatggat gcccctaaaa cttgcagccc taagcagttt
                                                                       540
gcctgcagag accaaatcac ctgtatctca aagggctggc ggtgtgacgg tgaaagagat
                                                                       600
tgccccgacg gctctgatga agcccctgag atctgtccac agagtaaagc ccagagatgc
                                                                       660
ccgccaaatg agcacagttg tctggggact gagctatgtg tccccatgtc tcgtctctgc
                                                                       720
aacgggatcc aggactgcat ggatggctca gacgagggtg ctcactgccg agagctccga
                                                                       780
gccaactgtt ctcgaatggg ttgtcaacac cattgtgtac ctacacccag tgggcccacg
                                                                       840
tgctactgta acagcagett ccagetegag gcagatggca agaegtgcaa agattttgae
                                                                       900
gagtgttccg tgtatggcac ctgcagccag ctttgcacca acacagatgg ctccttcaca
                                                                      960
tgtggctgtg ttgaaggcta cctgctgcaa ccggacaacc gctcctgcaa ggccaagaat
                                                                      1020
gagecagtag ateggeegee agtgetactg attgecaact eteagaacat cetagetacg
                                                                      1080
tacctgagtg gggcccaagt gtctaccatc acacccacca gcacccgaca aaccacggcc
                                                                      1140
atggactica gitatgccaa tgagaccgta tgctgggtgc acgttgggga cagtgctgcc
                                                                      1200
cagacacage teaagtgtge ceggatgeet ggeetgaagg getttgtgga tgagcatace
                                                                      1260
atcaacatct ccctcagcct gcaccacgtg gagcagatgg caatcgactg gctgacggga
                                                                     1320
aacttctact ttgtcgacga cattgacgac aggatctttg tctgtaaccg aaacggggac
                                                                     1380
acctgtgtca ctctgctgga cctggaactc tacaacccca aaggcatcgc cttggacccc
                                                                     1440
gccatgggga aggtgttctt cactgactac gggcagatcc caaaggtgga gcgctgtgac
                                                                     1500
atggatggac agaaccgcac caagctggtg gatagcaaga tcgtgtttcc acacggcatc
                                                                     1560
accetggace tggteageeg cetegtetae tgggeggacg cetacetaga etacategag
                                                                     1620
gtggtagact acgaagggaa gggtcggcag accatcatcc aaggcatcct gatcgagcac
                                                                     1680
ctgtacggcc tgaccgtgtt tgagaactat ctctacgcca ccaactcgga caatgccaac
                                                                     1740
acgcagcaga agacgagcgt gatccgagtg aaccggttca acagtactga gtaccaggtc
                                                                     1800
gtcacccgtg tggacaaggg tggtgccctg catatctacc accagcgacg ccagcccga
                                                                     1860
gtgcggagtc acgcctgtga gaatgaccag tacgggaagc caggtggctg ctccgacatc
                                                                     1920
```

tgcctcctgg	ccaacagtca	caaggcaagg	acctgcaggt	gcaggtctgg	cttcagcctg	1980
ggaagtgatg	ggaagtcttg	taagaaacct	gaacatgagc	tgttcctcgt	gtatggcaag	2040
ggccgaccag	gcatcattag	aggcatggac	atgggggcca	aggtcccaga	tgagcacatg	2100
atccccatcg	agaaccttat	gaatccacgc	gctctggact	tccacgccga	gaccggcttc	2160
atctactttg	ctgacaccac	cagctacctc	attggccgcc	agaaaattga	tggcacggag	2220
agagagacta	tcctgaagga	tggcatccac	aatgtggagg	gcgtagccgt	ggactggatg	2280
ggagacaatc	tttactggac	tgatgatggc	cccaagaaga	ccattagtgt	ggccaggctg	2340
gagaaagccg	ctcagacccg	gaagactcta	attgagggca	agatgacaca	ccccagggcc	2400
attgtagtgg	atccactcaa	tgggtggatg	tactggacag	actgggagga	ggaccccaag	2460
gacagtcggc	gagggcggct	cgagagggct	tggatggacg	gctcacaccq	agatatettt	2520
gtcacctcca	agacagtgct	ttggcccaat	gggctaagcc	tggatatccc	agccggacgc	2580
ctctactggg	tggatgcctt	ctatgaccga	attgagacca	tactqctcaa	tggcacagac	2640
cggaagattg	tatatgaggg	tcctgaactg	aatcatgcct	teggeetata	tcaccatggc	2700
aactacctct	tttggaccga	gtaccggagc	ggcagcgtct	accgcttgga	acqqqqcqtq	2760
gcaggcgcac	cgcccactgt	gacccttctg	cgcagcgaga	gaccqcctat	ctttgagatc	2820
cgaatgtacg	acgcgcacga	gcagcaagtg	ggtaccaaca	aatqccqqqt	aaataacgga	2880
ggctgcagca	gcctgtgcct	cgccaccccc	gggagccgcc	agtgtgcctg	taccaaaaac	2940
caggtgttgg	acacagatgg	tgtcacctgc	ttggcgaacc	catcctacqt	qccccaccc	3000
cagtgccagc	cgggccagtt	tgcctgtgcc	aacaaccqct	gcatccagga	gcactagaag	3060
tgtgacggag	acaacgactg	tctqqacaac	agcgatgagg	cccagcact	gtgccatcaa	3120
cacacctgtc	cctcggaccg	attcaaqtqt	gagaacaacc	ggtgtatccc	caaccactaa	3180
ctctgtgatg	gggataatga	ttqtqqcaac	agcgaggacg	aatccaatgc	cacqtqctca	3240
gcccgcacct	gtccacccaa	ccaqttctcc	tataccaata	accastacst	tectatetea	3300
tggacctgtg	atctggatga	tgactgtggg	gaccggtccg	atgagtgagg	ctcatgcgcc	3360
taccccacct	gcttcccct	gactcaattt	acctgcaaca	atggcagatg	tattaacatc	3420
aactggcggt	gtgacaacga	caatgactgt	ggggacaaca	acascasac	caactacaat	3480
cactcctgct	ccagtaccca	gttcaagtgc	aacagtggca	gatgcatccc	cgaccactgc	3540
acgtgtgatg	gggacaatga	ttatagagac	tacagcgacg	agacacacac	caactotacc	3600
aaccaggcta	caagacctcc	tagtagetae	cactcggatg	agttccagtg	cccactaget	3660
ggcctgtgca	tcccctgag	ataacactac	gacggggaca	ccaactacat	ggattccage	3720
gatgagaaga	gctgtgaggg	cataacccat	gtttgtgacc	cgaatgtcaa	atttaactac	3780
aaggactccg	cccggtgcat	cagcaagggg	tagatatata	ataacaacaa	caectatass	3840
gataactccq	acgaggagaa	ctgtgaggee	ctaacctaca	agccaccctc	ccatccctgc	3900
gccaacaaca	cctctgtctg	cctqcctcct	gacaagctgt	acascaacss	ggatgactgt	3960
ggagacggct	cggatgaggg	cgagctctgt	gaccagtott	ctctgaataa	taataactat	4020
agtcacaact	gctcagtggc	ccctqqtqaa	gacatcatat	actettacce	tctgggcege	4080
gagetggget	ctgacaacca	cacctaccaa	atccagaget	actotoccaa	ccegggcacg	4140
tgcagccaga	agtgtgacca	qaacaagttc	agtgtgaagt	actectacta	caacactaa	4200
gtcttggagc	ctgacgggga	aacqtqccqc	agtetggate	ccttcaaact	atteateate	4260
ttctccaacc	gccacgagat	caggcgcatt	gacetteaca	agggggacta	caccatcatc	4320
gtgcctggcc	tgcgcaacac	tattqccctq	gacttccacc	tcagccagag	taccetetac	4380
tggaccgacg	cggtagagga	caagatctac	cataggaaaa	tectogaças	cagaacccta	4440
accagetttg	aggtggtgat	tcagtatogc	ttggccacac	cagagggcct	aactataaat	4500
tggattgcag	gcaacatcta	ctagatagaa	agcaacctgg	accagatoga	agtogcoaad	4560
ctggacggaa	ccctccgaac	cactctgctg	acaaataaca	ttgaggaggg	gagggccatg	4620
gctctggacc	ctcgggatgg	gattctgttt	togacagact	addataccad	cctaccaca	4680
atcgaggctg	catccatgag	tagaactaga	Caccasacca	tccaccaga	gacagggtet	4740
gggggctgcg	ccaatgggct	caccatagat	tacctggaga	agcgcat.cct	ctggattgat	4800
gctaggtcag	atgccatcta	ttcagcccag	tatgacggct	ccaccacat	ggaggtggtt	4860
cggggacacg	agttectgte	acacccattt	accatascsc	tatacaataa	ggaggtgtec	4920
tggaccgact	ggcgaacaaa	tacactggct	aaggccaaca	agtggactgg	ccacaacatc	4980
accgtggtac	agaggaccaa	cacccaqccc	ttcgacctac	aggtgtatca	cccttcccaa	5040
cagcccatgq	ctccaaaccc	atqtqaqqcc	aatggcggc	aggaccccta	ttcccatctc	5100
tgcctcatca	actacaaccg	gaccgtctcc	tagacctate	cccacctcat	gaagetgeac	5160
aaggacaaca	ccacctgcta	tgagtttaag	aagtteetee	tatacacaca	tcagatggag	5220
atccggggcg	tggacctgga	tgccccqtac	tacaattata	tcatctcctt	cacagtacet	5280
gatatcgaca	atgtcacggt	gctggactat	gatgcccaa	agcagcgagt	ttactogtct	5340
gatgtgcgga	ctcaagccat	caaaaqqqca	tttatcaaco	gcactggcgt	ggagaccgtt	5400
	_	222-4				2400

			•			
gtctctgcag	acttgcccaa	cgcccacggg	ctggctgtgg	actgggtctc	ccgaaatctg	5460
ttttggacaa	gttacgacac	caacaagaag	cagattaacg	tggcccggct	ggacggctcc	5520
ttcaagaatg	cggtggtgca	gggcctggag	cagccccacg	gcctggtcgt	ccacccqctt	5580
cgtggcaagc	tctactggac	tgatggggac	aacatcagca	tggccaacat	ggatgggagc	5640
aaccacactc	tgctcttcag	tggccagaag	ggccctgtgg	ggttggccat	tgacttccct	5700
gagagcaaac	tctactggat	cagctctggg	aaccacacaa	tcaaccqttq	caatctqqat	5760
gggagcgagc	tggaggtcat	cgacaccatg	cggagccagc	tgggcaaggc	cactacccta	5820
gccatcatgg	gggacaagct	gtggtgggca	gatcaggtgt	cagagaagat	agacacatac	5880
aacaaagccq	atggetetgg	atccataata	ctgcggaaca	gtaccacgtt	ggttatgcac	5940
atgaaggtgt	atgacgagag	catccagcta	gagcatgagg	gcaccaaccc	ctgcagtgtc	6000
aacaacqqaq	actqttccca	actetaceta	ccaacatcag	agacgactcg	ctcctatata	6060
tgtacagccg	gttacageet	ccaaacaa	cagcaggcct	ataagaatat	agactctttt	6120
ctcctgtact	ctqtacatqa	gggaattcgg	gggattccac	tagatoccaa	tgacaagtcg	6180
gatgccctgg	teccagtate	cggaacttca	ctggctgtcg	gaatcgactt	ccatacaases	6240
aatgacacta	tttattgggt	ggatatgggc	ctaagcacca	tcaccacaca	caacataaa	6300
cagacatogc	gagaggatgt	adtascasc	ggtattggcc	atataaaaa	catcagagaga	6360
gactggatcg	cagggaagat	atactogaco	gaccagggct	tcatatat	caccyccycy	6420
caactcaata	actetttea	ttatataata	atttcccagg	gtgtggcat	cgaggeegee	
atcactotcc	acccadadaa	ggggtacttg	ttctggaccg	agtaggataa	ttagggee	6480
attgaggggt	ctcaccttaa	taggagaacag	agagtggtgt	taattaatat	grantage	6540
taacccaata	gcatctcagt	agactator	ggcggcaagc	totactecte	tageaceage	6600
atggacaaga	transacast	agactattag	agaggaage	aggggg	cgatgetegg	6660
accaataaca	tagatetatt	ctccctggaa	acgggcgaga	accyggaggt	ggteetgtee	6720
agaactcaca	ccaataacta	catcaagggg	gtgtttgagg	accidaceta	etggagtgae	6780
cctctcacca	caacasttaa	tattangatt	ggctgcaaag	acaatgetae	agaeteegtg	6840
cadaaddata	caggeategg	caccatage	aaagacatca	aggiceteaa	cagggacagg	6900
cagaagggca	ancacacaca	cycyycaycc	aacggcgggt	gccagcaget	ctgcttgtat	6960
tcataccasa	antacactac	ctgcgcccgc	gcccacggga	rgerggeaga	agacggggcc	7020
cacctatcaa	atracrotas	cctcccgccc	tactcagage	ggaccaccec	caagagcatc	7080
atgaaaaatg	tcatcaccct	gacetttase	ccggtgcagc	genetaga	ccccgagcac	7140
aaccccatct	tetteagree	ggcccccgac	taccgagcag	gcacctcccc	ggggacccct	7200
tragarage	ccaccatcat	Caccacccc	gggaacatcc	agcagaccaa	tgacgatgge	7260
aactaaasa	cactotacto	ggaaaacgcg	ggctctgtgg	aaggeetgge	ctateacegt	7320
gaccagagaca	accesagaaa	cttccaccac	accacatcca	tasaash	ccacaecgtg	7380
gaccagaccc	cettteteet	acatasatas	gagacagtca	trattatata	cggagacgac	7440
gagetecate	caaccatcat	ggargagrac	cagaacctga	cgccccggac	caactggaac	7500
gagecccace	tecceace	gegggeagee	ctatccggag	ccaacgteet	gaccctcatt	7560
ttctcggata	ccaccttgg	caargggreg	gccatcgacc	accgggegga	gaagetgtae	7620
atastacts	agtegga	caagaccgag	cgctgcgagt	acgacggete	ceacegetat	7680
ttctcccta	agreggagee	agaggatete	tttgggttgg	cggtgtacgg	agagcacatt	7740
atgaaggtgg	ttcccctcc	gegggergrg	cagcgagcca	acaagtatgt	gggcagcgac	7800
decaccasca	actataeect	ctcccccag	caacccatgg	geateatege	cgtggccaat	7860
tatataata	cccaccaagg	ccccccccgc	cgtatcaaca	arggaggerg	ccaggatetg	7920
gaggacttca	cctaccaagg	totosactoo	tgttcctgtc	gagggggeeg	gateeteeag	7980
accastagga	aatotatoao	cttcagacta	tcttgtcggg	cacaagatga	gtttgagtgt	8040
aartccaata	adegeaceag	ctactacasa	acctgtgatg	gegrereeea	ctgcaaggac	8100
tataacaata	agaagtetet	atagaagaata	tcacgccgct	gcaagaagac	tttccgccag	8160
getageteta	atgagataga	ttggaagag	ctgtggtgca	atggggtgga	ttactgtggg	8220
cacastacat	acyayacacc	goodacaag	actgcctgtg	grgrgggrga	gttccgctgc	8280
acatagasta	agatgaattg	gaactccagt	cgctgcaacc	agtitgigga	ctgtgaggat	8340
aaaaatataa	tattacaaaa	atagagagaga	gactgcagca	getattteeg	cetgggegtg	8400
tatastaca	ccaaccagee	y ry cyagegg	acatccctgt	getacgeace	tagetgggtg	8460
caccetages	accoactass	ttactttac	agcgatgaac	gracegece	aggtgtgaag	8520
tagecatata	acaagggagg	tanatata	tgccccagcg	ggegeegtat	ccccatgagc	8580
tteteeteae	acaayyayya	caactcaac	aacggcgagg	acgagaccca	crgcaacaag	8640
tataacaata	acastastta	caaaastaas	aaccaccggt	graceccaa	geageggeeg	8700
acatotogo	cctcctcctt	ctoctotosa	tccgatgagg	tatatata	tgaaggcaag	8760
ctctgtgatg	gcgacaagge	ctataccast	ggcacccacg	agagtetes =	tagtagetgg	8820
	Jugavaayya	cegcacegat	ggcgcggatg	ayayıyıcac	rgerggerge	8880

ctgtacaaca gcacctgtga tgaccgtgag ttcatgtgcc agaaccgctt gtgtattccc 8940 aagcatttcg tgtgcgacca tgaccgtgac tgtgctgatg gctctgatga atcccctgag 9000 tgtgagtacc caacctgcgg gcccaatgaa ttccgctgtg ccaatgggcg ttgtctgagc 9060 tecegteagt gggaatgtga tggggagaat gaetgteaeg accaeagega tgaggeteee 9120 aagaacccac actgcaccag cccagagcac aaatgcaatg cctcatcaca gttcctgtgc 9180 agcageggge getgegtgge tgaggegttg etetgeaaeg gecaggaega etgtggggae 9240 99ttcagacg aacgcgggtg ccatgtcaac gagtgtctca gccgcaagct cagtggctgc 9300 agtcaggact gcgaggacct caagataggc tttaagtgcc gctgtcgccc gggcttccgg 9360 ctaaaggacg atggcaggac ctgtgccgac ctggatgagt gcagcaccac cttcccctgc 9420 agccagctct gcatcaacac ccacggaagt tacaagtgtc tgtgtgtgga gggctatgca 9480 ccccgtggcg gtgaccccca cagctgcaaa gctgtgaccg atgaggagcc atttctcatc 9540 tttgccaacc ggtactacct gcggaagctc aacctggacg gctccaacta cacactgctt 9600 aagcagggcc tgaacaatgc ggtcgccttg gcatttgact accgagagca gatgatctac 9660 tggacgggcg tgaccaccca gggcagcatg attcgcagga tgcacctcaa cggcagcaac 9720 gtgcaggttc tgcaccggac gggccttagt aacccagatg ggctcgctgt ggactgggtg 9780 ggtggcaacc tgtactggtg tgacaagggc agagatacca ttgaggtgtc caagcttaac 9840 ggggcctatc ggacagtgct ggtcagctct ggcctccggg agcccagagc tctggtagtg 9900 gatgtacaga atgggtacct gtactggaca gactggggtg accactcact gatcggccgg 9960 attggcatgg atggatctgg ccgcagcatc atcgtggaca ctaagatcac atggcccaat 10020 ggcctgaccg tggactacgt cacggaacgc atctactggg ctgacgcccg tgaggactac 10080 atcgagttcg ccagcctgga tggctccaac cgtcacgttg tgctgagcca agacatccca 10140 cacatetttg cgctgaccet atttgaagae tacgtetact ggacagaetg ggaaacgaag 10200 tccatcaacc gggcccacaa gaccacgggt gccaacaaaa cactcctcat cagcaccctg 10260 caccggccca tggacttaca tgtattccac gccctgcgcc agccagatgt gcccaatcac 10320 ccctgcaaag tcaacaatgg tggctgcagc aacctgtgcc tgctgtcccc tgggggtggt 10380 cacaagtgcg cctgccccac caacttctat ctgggtggcg atggccgtac ctgtgtgtcc 10440 aactgcacag caagccagtt tgtgtgcaaa aatgacaagt gcatcccctt ctggtggaag 10500 tgtgacacgg aggacgactg tggggatcac tcagacgagc ctccagactg tcccgagttc 10560 aagtgccgcc caggccagtt ccagtgctcc accggcatct gcaccaaccc tgccttcatc 10620 tgtgatgggg acaatgactg ccaagacaat agtgacgagg ccaattgcga cattcacqtc 10680 tgcttgccca gccaattcaa gtgcaccaac accaaccgct gcattcctgg catcttccgt 10740 tgcaatggcc aggacaactg cggggacggc gaggatgagc gggattgccc tgaggtgacc 10800 tgcgccccca accagttcca gtgctccatc accaagcgct gcatccctcg cgtctgggtc 10860 tgtgacaggg ataatcactg tgtggacggc agtgatgagc ctgccaactg tacccaaatg 10920 acctgtggag tggatgagtt ccgctgcaag gattctggcc gctgcatccc cgcgcgctgg 10980 aagtgtgacg gagaagatga ctgtggggat ggttcagatg agcccaagga agagtgtgat 11040 gagcgcacct gtgagccata ccagttccgc tgcaaaaaca accgctgtgt cccaggccgt 11100 tggcaatgtg actacgacaa cgactgcgga gataactcgg acqaggagag ctgcacacct 11160 eggeeetget etgagagtga gtttttetgt geeaatggee getgeatege tgggegetgg 11220 aagtgtgatg gggaccatga ctgtgccgac ggctcagacg agaaagactg cacccccgc 11280 tgtgatatgg accagttcca gtgcaagagt ggccactgca tccccctgcg ctggccgtgt 11340 gacgcggatg ctgactgtat ggacggcagt gacgaggaag cctgtggcac tggggtgagg 11400 acctgcccat tggatgagtt tcaatgtaac aacaccttgt gcaagccgct ggcctggaag 11460 tgtgatggag aggacgactg tggggacaac tcagatgaga accccgagga atgcgcccgg 11520 ttcatctgcc ctcccaaccg gcctttccgc tgcaagaatg accgagtctg cctgtggatt 11580 gggcgccagt gtgatggcgt ggacaactgt ggagatggga ctgacgagga ggactgtgag 11640 cccccacgg cccagaaccc ccactgcaaa gacaagaagg agttcctgtg ccgaaaccag 11700 cgctgtctat catcctccct gcgctgtaac atgttcgatg actgcggcga tggctccgat 11760 gaagaagatt gcagcatcga ccccaagctg accagctgtg ccaccaatgc cagcatgtgt 11820 ggggacgaag ctcgttgtgt gcgcactgag aaagctgcct actgtgcctg ccgctcgggc 11880 ttccatactg tgccgggcca gcccggatgc caggacatca acgagtgcct gcgctttggt 11940 acctgctctc agctctggaa caaacccaag ggaggccacc tctgcagctg tgcccgcaac 12000 ttcatgaaga cacacaacac ctgcaaagct gaaggctccg agtaccaggt gctatacatc 12060 geggatgaca acgagateeg cagettgtte eegggeeace eecacteage etaegageag 12120 acattccagg gcgatgagag tgtccgcata gatgccatgg atgtccatgt caaggccggc 12180 cgtgtctact ggactaactg gcacacgggc acaatctcct acaggagcct gcccctgcc 12240 geceeteeta eeaetteeaa eegecaeegg aggeagateg aeeggggtgt eaeecaeete 12300 aatatttcag ggctgaagat gccgaggggt atcgctatcg actgggtggc cgggaatgtg 12360

tactggaccg	, attccggccg	, agacgtgatt	gaggtggcgc	: aaatgaaggg	cgagaaccgc	12420
aayacyccca	i tetegggeat	: gattgatgag	ccccatgcca	tcqtqqtqqa	ccctctgagg	12480
ggcaccatgt	. actggtcaga	ı ctgggggaac	Caccccaaga	ttgaaacagg	agcgatggat	12540
ggcacccccc	: gggagactct	cgtgcaagac	aacattcaqt	gacctacaga	actaactata	12600
gactateaca	ı atgaacggct	ctactgggca	gatqccaaqc	tttcaatcat	caacaacatc	12660
cggcccaacg	, gcactgaccc	: cattgtggct	gctgacagca	aacgaggcct	aagtcacccc	12720
ccagcatcg	i argrattega	. agactacatc	tacggagtca	cttacatcaa	taatcototo	12780
cccaagaccc	acaagtttgg	acacagecee	ttgtacaacc	taactggggg	cctgagccat	12840
geetetgatg	Lagreerra	ccatcaacac	aagcagcctg	aaqtqaccaa	cccctatasc	12900
cycaayaaat	gcgaatggct	gtgtctgctg	agccccaqcq	gacctateta	cacctotoco	12960
aacyyaaaya	ggctggataa	tggcacctgt	gtacctatac	cctctccaac	accccctcca	13020
gatgeeeta	ggcctggaac	ctgcactctg	cagtgcttca	atggtggtag	ttatttcctc	13080
aacgetegga	ggcagcccaa	gtgccgttgc	cagccccqtt	acacagggga	taaqtqtqaq	13140
crygattagt	gctgggaata	ctgtcacaac	ggaggcacct	atacaacttc	cccatctggc	13200
argeceacge	geegetgtee	cactggcttc	acqqqcccca	aatgcaccgc	acaggtgtgt	13260
geaggerace	getetaacaa	cagcacctgc	accqtcaacc	agggcaacca	gccccagtgc	13320
cgatgtctac	craactect	gggcgaccgt	tgccaqtacc	ggcagtgctc	taacttetat	13380
gagaactttg	gcacctgtca	gatggctgct	gatggctccc	gacaatgtcg	ctacaccate	13440
Lactityayy	gaccaaggtg	tgaggtgaac	aagtgtagtc	gctgtctcca	aggcgcctat	13500
grggrcaata	agcagaccgg	agatgtcaca	tgcaactqca	ctgatggccg	ggtagcccc	13560
agecyceca	cctgcatcga	tcactgtage	aatqqtqqct	cctgcaccat	gaacagcaag	13620
acgacgcccg	agtgccagtg	cccgccccat	atgacaqqac	cccaatacca	ggagcaggtt	13680
gctagtcage	aacagcctgg	gcatatggcc	tccatcctga	tecetetact	actacttete	13740
ctgetgette	rggrggctgg	cgtggtgttc	tggtataagc	gacgaatcca	aggggctaag	13800
ggccccage	accageggat	gaccaatggg	gccatgaatg	tagaaattag	aaaccctacc	13860
cacaagatgt	argaaggrgg	agagcccgat	gatqtcqqqq	geetaetgga	tactaatttt	13920
gecettigade	ctgacaagce	taccaacttc	accaacccaq	tgtatgccac	getetacato	13980
ggggccacg	geageegeea	ttccctggcc	agcacqqacq	agaagcgaga	actactagae	14040
cggggaccig	aagacgagat	aggagatccc	ttggcatagg	accetacece	gacggatgtc	14100
cccagaaage	cccctgccac	atgagtettt	caatgaaccc	cctccccaqc	cggcccttct	14160
ceggeeetge	cgggtgtaca	aatgtaaaaa	tgaaqqaatt	actttttata	tataaacaaa	14220
caagegagea	agcacagtat	tatctctttg	catttccttc	ctacctactc	ctcagtatee	14280
CCCCCatgot	geettgaggg	ggcggggagg	getttgtgge	tcaaaggtat	gaaggagtee	14340
acatgiteee	taccgagcat	acccctggaa	gcctggcggc	acggcctccc	caccacccct	14400
gegeaagaea	cccaacgggg	ctccgtgtcc	cagctttcct	ttccttqqct	ctctagaatr	14460
agricagggg	aggtggagtc	ctctgctgac	cctqtctqqa	agatttggct	ctagetgagg	14520
aaggagtett	ttagttgagg	gaagtcaccc	caaaccccaq	ctcccacttt	Caddddcacc	14520
cccagacyg	ceatgeteag	tatcccttcc	agacaggccc	tcccctctct	agegeeect	14640
ctgtggttee	Lagggetgaa	cacattcttt	ggtaactqtc	ccccaaqcct	cccat.ccccc	14700
cgagggccag	yaayagtcgg	ggcacaccaa	ggaagggcaa	acaaacaacc	ccattttggg	14760
gacgcgaacg	LLLLaataat	ttttgctgaa	ttcctttaca	actaaataac	acagatatto	14820
ttataaataa	aattgtaaaa	aaaaaaaa			<u>-</u>	14849
						14047

Asp Gly Glu Arg Asp Cys Pro Asp Gly Ser Asp Glu Ala Pro Glu Ile Cys Pro Gln Ser Lys Ala Gln Arg Cys Pro Pro Asn Glu His Ser Cys Leu Gly Thr Glu Leu Cys Val Pro Met Ser Arg Leu Cys Asn Gly Ile Gln Asp Cys Met Asp Gly Ser Asp Glu Gly Ala His Cys Arg Glu Leu Arg Ala Asn Cys Ser Arg Met Gly Cys Gln His His Cys Val Pro Thr Pro Ser Gly Pro Thr Cys Tyr Cys Asn Ser Ser Phe Gln Leu Glu Ala Asp Gly Lys Thr Cys Lys Asp Phe Asp Glu Cys Ser Val Tyr Gly Thr Cys Ser Gln Leu Cys Thr Asn Thr Asp Gly Ser Phe Thr Cys Gly Cys Val Glu Gly Tyr Leu Leu Gln Pro Asp Asn Arg Ser Cys Lys Ala Lys Asn Glu Pro Val Asp Arg Pro Pro Val Leu Leu Ile Ala Asn Ser Gln . 200 Asn Ile Leu Ala Thr Tyr Leu Ser Gly Ala Gln Val Ser Thr Ile Thr Pro Thr Ser Thr Arg Gln Thr Thr Ala Met Asp Phe Ser Tyr Ala Asn Glu Thr Val Cys Trp Val His Val Gly Asp Ser Ala Ala Gln Thr Gln Leu Lys Cys Ala Arg Met Pro Gly Leu Lys Gly Phe Val Asp Glu His Thr Ile Asn Ile Ser Leu Ser Leu His His Val Glu Gln Met Ala Ile Asp Trp Leu Thr Gly Asn Phe Tyr Phe Val Asp Asp Ile Asp Asp Arg Ile Phe Val Cys Asn Arg Asn Gly Asp Thr Cys Val Thr Leu Leu Asp Leu Glu Leu Tyr Asn Pro Lys Gly Ile Ala Leu Asp Pro Ala Met Gly Lys Val Phe Phe Thr Asp Tyr Gly Gln Ile Pro Lys Val Glu Arg Cys Asp Met Asp Gly Gln Asn Arg Thr Lys Leu Val Asp Ser Lys Ile Val Phe Pro His Gly Ile Thr Leu Asp Leu Val Ser Arg Leu Val Tyr Trp Ala Asp Ala Tyr Leu Asp Tyr Ile Glu Val Val Asp Tyr Glu Gly Lys Gly Arg Gln Thr Ile Ile Gln Gly Ile Leu Ile Glu His Leu Tyr Gly Leu Thr Val Phe Glu Asn Tyr Leu Tyr Ala Thr Asn Ser Asp Asn Ala Asn Thr Gln Gln Lys Thr Ser Val Ile Arg Val Asn Arg Phe Asn Ser Thr Glu Tyr Gln Val Val Thr Arg Val Asp Lys Gly Gly Ala Leu His Ile Tyr His Gln Arg Arg Gln Pro Arg Val Arg Ser His Ala Cys Glu Asn Asp Gln Tyr Gly Lys Pro Gly Gly Cys Ser Asp Ile Cys Leu Leu Ala Asn Ser His Lys Ala Arg Thr Cys Arg Cys Arg Ser Gly Phe Ser

Leu Gly Ser Asp Gly Lys Ser Cys Lys Pro Glu His Glu Leu Phe Leu Val Tyr Gly Lys Gly Arg Pro Gly Ile Ile Arg Gly Met Asp Met Gly Ala Lys Val Pro Asp Glu His Met Ile Pro Ile Glu Asn Leu Met Asn Pro Arg Ala Leu Asp Phe His Ala Glu Thr Gly Phe Ile Tyr Phe Ala Asp Thr Thr Ser Tyr Leu Ile Gly Arg Gln Lys Ile Asp Gly Thr Glu Arg Glu Thr Ile Leu Lys Asp Gly Ile His Asn Val Glu Gly Val Ala Val Asp Trp Met Gly Asp Asn Leu Tyr Trp Thr Asp Asp Gly Pro Lys Lys Thr Ile Ser Val Ala Arg Leu Glu Lys Ala Ala Gln Thr Arg Lys Thr Leu Ile Glu Gly Lys Met Thr His Pro Arg Ala Ile Val Val Asp Pro Leu Asn Gly Trp Met Tyr Trp Thr Asp Trp Glu Glu Asp Pro Lys Asp Ser Arg Arg Gly Arg Leu Glu Arg Ala Trp Met Asp Gly Ser His Arg Asp Ile Phe Val Thr Ser Lys Thr Val Leu Trp Pro Asn Gly Leu Ser Leu Asp Ile Pro Ala Gly Arg Leu Tyr Trp Val Asp Ala Phe Tyr Asp Arg Ile Glu Thr Ile Leu Leu Asn Gly Thr Asp Arg Lys Ile Val Tyr Glu Gly Pro Glu Leu Asn His Ala Phe Gly Leu Cys His His Gly Asn Tyr Leu Phe Trp Thr Glu Tyr Arg Ser Gly Ser Val Tyr Arg Leu Glu Arg Gly Val Ala Gly Ala Pro Pro Thr Val Thr Leu Leu Arg Ser Glu Arg Pro Pro Ile Phe Glu Ile Arg Met Tyr Asp Ala His Glu Gln Gln Val Gly Thr Asn Lys Cys Arg Val Asn Asn Gly Gly Cys Ser Ser Leu Cys Leu Ala Thr Pro Gly Ser Arg Gln Cys Ala Cys Ala Glu Asp Gln Val Leu Asp Thr Asp Gly Val Thr Cys Leu Ala Asn Pro Ser Tyr Val Pro Pro Pro Gln Cys Gln Pro Gly Gln Phe Ala Cys Ala Asn Asn Arg Cys Ile Gln Glu Arg Trp Lys Cys Asp Gly Asp Asn Asp Cys Leu Asp Asn Ser Asp Glu Ala Pro Ala Leu Cys His Gln His Thr Cys Pro Ser Asp Arg Phe Lys Cys Glu Asn Asn Arg Cys Ile Pro Asn Arg Trp Leu Cys Asp Gly Asp Asn Asp Cys Gly Asn Ser Glu Asp Glu Ser Asn Ala Thr Cys Ser Ala Arg Thr Cys Pro Pro Asn Gln Phe Ser Cys Ala Ser Gly Arg Cys Ile Pro Ile Ser Trp Thr Cys Asp Leu Asp Asp Asp Cys Gly Asp Arg Ser Asp Glu Ser Ala Ser Cys Ala Tyr Pro Thr

Cys Phe Pro Leu Thr Gln Phe Thr Cys Asn Asn Gly Arg Cys Ile Asn 980 985 Ile Asn Trp Arg Cys Asp Asn Asp Asn Asp Cys Gly Asp Asn Ser Asp 1000 1005 Glu Ala Gly Cys Ser His Ser Cys Ser Ser Thr Gln Phe Lys Cys Asn 1015 1020 Ser Gly Arg Cys Ile Pro Glu His Trp Thr Cys Asp Gly Asp Asn Asp 1030 1035 Cys Gly Asp Tyr Ser Asp Glu Thr His Ala Asn Cys Thr Asn Gln Ala 1050 Thr Arg Pro Pro Gly Gly Cys His Ser Asp Glu Phe Gln Cys Pro Leu 1065 Asp Gly Leu Cys Ile Pro Leu Arg Trp Arg Cys Asp Gly Asp Thr Asp 1080 1085 Cys Met Asp Ser Ser Asp Glu Lys Ser Cys Glu Gly Val Thr His Val 1095 1100 Cys Asp Pro Asn Val Lys Phe Gly Cys Lys Asp Ser Ala Arg Cys Ile 1105 1110 1115 Ser Lys Ala Trp Val Cys Asp Gly Asp Ser Asp Cys Glu Asp Asn Ser 1125 1130 Asp Glu Glu Asn Cys Glu Ala Leu Ala Cys Arg Pro Pro Ser His Pro 1140 1145 1150 Cys Ala Asn Asn Thr Ser Val Cys Leu Pro Pro Asp Lys Leu Cys Asp 1155 1160 1165 Gly Lys Asp Asp Cys Gly Asp Gly Ser Asp Glu Gly Glu Leu Cys Asp 1175 1180 Gln Cys Ser Leu Asn Asn Gly Gly Cys Ser His Asn Cys Ser Val Ala 1195 1190 Pro Gly Glu Gly Ile Val Cys Ser Cys Pro Leu Gly Met Glu Leu Gly 1205 1210 Ser Asp Asn His Thr Cys Gln Ile Gln Ser Tyr Cys Ala Lys His Leu 1220 1225 1230 Lys Cys Ser Gln Lys Cys Asp Gln Asn Lys Phe Ser Val Lys Cys Ser 1235 1240 1245 Cys Tyr Glu Gly Trp Val Leu Glu Pro Asp Gly Glu Thr Cys Arg Ser 1250 1255 1260 Leu Asp Pro Phe Lys Leu Phe Ile Ile Phe Ser Asn Arg His Glu Ile 1265 1270 1275 1280 Arg Arg Ile Asp Leu His Lys Gly Asp Tyr Ser Val Leu Val Pro Gly 1285 1290 Leu Arg Asn Thr Ile Ala Leu Asp Phe His Leu Ser Gln Ser Ala Leu 1305 1310 Tyr Trp Thr Asp Ala Val Glu Asp Lys Ile Tyr Arg Gly Lys Leu Leu 1315 1320 1325 Asp Asn Gly Ala Leu Thr Ser Phe Glu Val Val Ile Gln Tyr Gly Leu 1335 1340 Ala Thr Pro Glu Gly Leu Ala Val Asp Trp Ile Ala Gly Asn Ile Tyr 1350 1355 Trp Val Glu Ser Asn Leu Asp Gln Ile Glu Val Ala Lys Leu Asp Gly 1365 1370 1375 Thr Leu Arg Thr Thr Leu Leu Ala Gly Asp Ile Glu His Pro Arg Ala 1380 1385 Ile Ala Leu Asp Pro Arg Asp Gly Ile Leu Phe Trp Thr Asp Trp Asp 1400 1405 Ala Ser Leu Pro Arg Ile Glu Ala Ala Ser Met Ser Gly Ala Gly Arg 1415 1420 Arg Thr Ile His Arg Glu Thr Gly Ser Gly Gly Cys Ala Asn Gly Leu 1430 1435

Thr Val Asp Tyr Leu Glu Lys Arg Ile Leu Trp Ile Asp Ala Arg Ser Asp Ala Ile Tyr Ser Ala Arg Tyr Asp Gly Ser Gly His Met Glu Val Leu Arg Gly His Glu Phe Leu Ser His Pro Phe Ala Val Thr Leu Tyr Gly Gly Glu Val Tyr Trp Thr Asp Trp Arg Thr Asn Thr Leu Ala Lys Ala Asn Lys Trp Thr Gly His Asn Val Thr Val Val Gln Arg Thr Asn Thr Gln Pro Phe Asp Leu Gln Val Tyr His Pro Ser Arg Gln Pro Met Ala Pro Asn Pro Cys Glu Ala Asn Gly Gly Arg Gly Pro Cys Ser His Leu Cys Leu Ile Asn Tyr Asn Arg Thr Val Ser Trp Ala Cys Pro His 1555 1560 Leu Met Lys Leu His Lys Asp Asn Thr Thr Cys Tyr Glu Phe Lys Lys 1570 1575 · Phe Leu Leu Tyr Ala Arg Gln Met Glu Ile Arg Gly Val Asp Leu Asp 1590 1595 Ala Pro Tyr Tyr Asn Tyr Ile Ile Ser Phe Thr Val Pro Asp Ile Asp Asn Val Thr Val Leu Asp Tyr Asp Ala Arg Glu Gln Arg Val Tyr Trp Ser Asp Val Arg Thr Gln Ala Ile Lys Arg Ala Phe Ile Asn Gly Thr Gly Val Glu Thr Val Val Ser Ala Asp Leu Pro Asn Ala His Gly Leu Ala Val Asp Trp Val Ser Arg Asn Leu Phe Trp Thr Ser Tyr Asp Thr Asn Lys Lys Gln Ile Asn Val Ala Arg Leu Asp Gly Ser Phe Lys Asn Ala Val Val Gln Gly Leu Glu Gln Pro His Gly Leu Val Val His Pro Leu Arg Gly Lys Leu Tyr Trp Thr Asp Gly Asp Asn Ile Ser Met Ala Asn Met Asp Gly Ser Asn His Thr Leu Leu Phe Ser Gly Gln Lys Gly Pro Val Gly Leu Ala Ile Asp Phe Pro Glu Ser Lys Leu Tyr Trp Ile Ser Ser Gly Asn His Thr Ile Asn Arg Cys Asn Leu Asp Gly Ser Glu 1765 1770 Leu Glu Val Ile Asp Thr Met Arg Ser Gln Leu Gly Lys Ala Thr Ala Leu Ala Ile Met Gly Asp Lys Leu Trp Trp Ala Asp Gln Val Ser Glu Lys Met Gly Thr Cys Asn Lys Ala Asp Gly Ser Gly Ser Val Val Leu Arg Asn Ser Thr Thr Leu Val Met His Met Lys Val Tyr Asp Glu Ser Ile Gln Leu Glu His Glu Gly Thr Asn Pro Cys Ser Val Asn Asn Gly Asp Cys Ser Gln Leu Cys Leu Pro Thr Ser Glu Thr Thr Arg Ser Cys Met Cys Thr Ala Gly Tyr Ser Leu Arg Ser Gly Gln Gln Ala Cys Glu Gly Val Gly Ser Phe Leu Leu Tyr Ser Val His Glu Gly Ile Arg Gly

Ile Pro Leu Asp Pro Asn Asp Lys Ser Asp Ala Leu Val Pro Val Ser Gly Thr Ser Leu Ala Val Gly Ile Asp Phe His Ala Glu Asn Asp Thr Ile Tyr Trp Val Asp Met Gly Leu Ser Thr Ile Ser Arg Ala Lys Arg Asp Gln Thr Trp Arg Glu Asp Val Val Thr Asn Gly Ile Gly Arg Val Glu Gly Ile Ala Val Asp Trp Ile Ala Gly Asn Ile Tyr Trp Thr Asp Gln Gly Phe Asp Val Ile Glu Val Ala Arg Leu Asn Gly Ser Phe Arg Tyr Val Val Ile Ser Gln Gly Leu Asp Lys Pro Arg Ala Ile Thr Val His Pro Glu Lys Gly Tyr Leu Phe Trp Thr Glu Trp Gly His Tyr Pro Arg Ile Glu Arg Ser Arg Leu Asp Gly Thr Glu Arg Val Val Leu Val Asn Val Ser Ile Ser Trp Pro Asn Gly Ile Ser Val Asp Tyr Gln Gly Gly Lys Leu Tyr Trp Cys Asp Ala Arg Met Asp Lys Ile Glu Arg Ile Asp Leu Glu Thr Gly Glu Asn Arg Glu Val Val Leu Ser Ser Asn Asn Met Asp Met Phe Ser Val Ser Val Phe Glu Asp Phe Ile Tyr Trp Ser Asp Arg Thr His Ala Asn Gly Ser Ile Lys Arg Gly Cys Lys Asp Asn Ala Thr Asp Ser Val Pro Leu Arg Thr Gly Ile Gly Val Gln Leu Lys Asp Ile Lys Val Phe Asn Arg Asp Arg Gln Lys Gly Thr Asn Val Cys Ala Val Ala Asn Gly Gly Cys Gln Gln Leu Cys Leu Tyr Arg Gly Gly Gly Gln Arg Ala Cys Ala Cys Ala His Gly Met Leu Ala Glu Asp Gly Ala Ser Cys Arg Glu Tyr Ala Gly Tyr Leu Leu Tyr Ser Glu Arg Thr Ile Leu Lys Ser Ile His Leu Ser Asp Glu Arg Asn Leu Asn Ala Pro Val Gln Pro Phe Glu Asp Pro Glu His Met Lys Asn Val Ile Ala Leu Ala Phe Asp Tyr Arg Ala Gly Thr Ser Pro Gly Thr Pro Asn Arg Ile Phe Phe Ser Asp Ile His Phe Gly Asn Ile Gln Gln Ile Asn Asp Asp Gly Ser Gly Arg Thr Thr Ile Val Glu Asn Val Gly Ser Val Glu Gly Leu Ala Tyr His Arg Gly Trp Asp Thr Leu Tyr Trp Thr Ser Tyr Thr Thr Ser Thr Ile Thr Arg His Thr Val Asp Gln Thr Arg Pro Gly Ala Phe Glu Arg Glu Thr Val Ile Thr Met Ser Gly Asp Asp His Pro Arg Ala Phe Val Leu Asp Glu Cys Gln Asn Leu Met Phe Trp Thr Asn Trp Asn Glu Leu His Pro Ser Ile Met Arg Ala Ala Leu Ser Gly Ala Asn

Val Leu Thr Leu Ile Glu Lys Asp Ile Arg Thr Pro Asn Gly Leu Ala 2375 2380 Ile Asp His Arg Ala Glu Lys Leu Tyr Phe Ser Asp Ala Thr Leu Asp 2390 2395 Lys Ile Glu Arg Cys Glu Tyr Asp Gly Ser His Arg Tyr Val Ile Leu 2405 2410 Lys Ser Glu Pro Val His Pro Phe Gly Leu Ala Val Tyr Gly Glu His 2425 2420 Ile Phe Trp Thr Asp Trp Val Arg Arg Ala Val Gln Arg Ala Asn Lys 2440 2445 Tyr Val Gly Ser Asp Met Lys Leu Leu Arg Val Asp Ile Pro Gln Gln 2455 2460 Pro Met Gly Ile Ile Ala Val Ala Asn Asp Thr Asn Ser Cys Glu Leu 2470 2475 Ser Pro Cys Arg Ile Asn Asn Gly Gly Cys Gln Asp Leu Cys Leu Leu 2485 2490 Thr His Gln Gly His Val Asn Cys Ser Cys Arg Gly Gly Arg Ile Leu 2500 2505 Gln Glu Asp Phe Thr Cys Arg Ala Val Asn Ser Ser Cys Arg Ala Gln 2515 2520 2525 Asp Glu Phe Glu Cys Ala Asn Gly Glu Cys Ile Ser Phe Ser Leu Thr 2535 2540 Cys Asp Gly Val Ser His Cys Lys Asp Lys Ser Asp Glu Lys Pro Ser 2550 2555 Tyr Cys Asn Ser Arg Arg Cys Lys Lys Thr Phe Arg Gln Cys Asn Asn 2565 2570 Gly Arg Cys Val Ser Asn Met Leu Trp Cys Asn Gly Val Asp Tyr Cys 2580 2585 Gly Asp Gly Ser Asp Glu Ile Pro Cys Asn Lys Thr Ala Cys Gly Val 2600 2605 Gly Glu Phe Arg Cys Arg Asp Gly Ser Cys Ile Gly Asn Ser Ser Arg 2615 2620 Cys Asn Gln Phe Val Asp Cys Glu Asp Ala Ser Asp Glu Met Asn Cys 2630 2635 Ser Ala Thr Asp Cys Ser Ser Tyr Phe Arg Leu Gly Val Lys Gly Val 2645 2650 Leu Phe Gln Pro Cys Glu Arg Thr Ser Leu Cys Tyr Ala Pro Ser Trp 2660 2665 Val Cys Asp Gly Ala Asn Asp Cys Gly Asp Tyr Ser Asp Glu Arg Asp 2675 2680 2685 Cys Pro Gly Val Lys Arg Pro Arg Cys Pro Leu Asn Tyr Phe Ala Cys 2695 · 2700 Pro Ser Gly Arg Cys Ile Pro Met Ser Trp Thr Cys Asp Lys Glu Asp 2710 2715 Asp Cys Glu Asn Gly Glu Asp Glu Thr His Cys Asn Lys Phe Cys Ser 2725 2730 2735 Glu Ala Gln Phe Glu Cys Gln Asn His Arg Cys Ile Ser Lys Gln Trp 2740 2745 Leu Cys Asp Gly Ser Asp Asp Cys Gly Asp Gly Ser Asp Glu Ala Ala 2755 2760 2765 His Cys Glu Gly Lys Thr Cys Gly Pro Ser Ser Phe Ser Cys Pro Gly 2770 2775 2780 Thr His Val Cys Val Pro Glu Arg Trp Leu Cys Asp Gly Asp Lys Asp 2790 2795 Cys Thr Asp Gly Ala Asp Glu Ser Val Thr Ala Gly Cys Leu Tyr Asn 2805 2810 Ser Thr Cys Asp Asp Arg Glu Phe Met Cys Gln Asn Arg Leu Cys Ile 2820 2825

Pro Lys His Phe Val Cys Asp His Asp Arg Asp Cys Ala Asp Gly Ser 2840 Asp Glu Ser Pro Glu Cys Glu Tyr Pro Thr Cys Gly Pro Asn Glu Phe 2855 2860 Arg Cys Ala Asn Gly Arg Cys Leu Ser Ser Arg Gln Trp Glu Cys Asp 2870 2875 Gly Glu Asn Asp Cys His Asp His Ser Asp Glu Ala Pro Lys Asn Pro 2885 2890 His Cys Thr Ser Pro Glu His Lys Cys Asn Ala Ser Ser Gln Phe Leu 2900 2905 Cys Ser Ser Gly Arg Cys Val Ala Glu Ala Leu Leu Cys Asn Gly Gln 2915 2920 Asp Asp Cys Gly Asp Gly Ser Asp Glu Arg Gly Cys His Val Asn Glu 2930 2935 2940 Cys Leu Ser Arg Lys Leu Ser Gly Cys Ser Gln Asp Cys Glu Asp Leu 2950 2955 Lys Ile Gly Phe Lys Cys Arg Cys Arg Pro Gly Phe Arg Leu Lys Asp 2965 2970 2975 Asp Gly Arg Thr Cys Ala Asp Leu Asp Glu Cys Ser Thr Thr Phe Pro 2980 2985 2990 Cys Ser Gln Leu Cys Ile Asn Thr His Gly Ser Tyr Lys Cys Leu Cys 2995 3000 3005 Val Glu Gly Tyr Ala Pro Arg Gly Gly Asp Pro His Ser Cys Lys Ala 3015 3020 Val Thr Asp Glu Glu Pro Phe Leu Ile Phe Ala Asn Arg Tyr Tyr Leu 3025 3030 3035 Arg Lys Leu Asn Leu Asp Gly Ser Asn Tyr Thr Leu Leu Lys Gln Gly 3045 3050 Leu Asn Asn Ala Val Ala Leu Ala Phe Asp Tyr Arg Glu Gln Met Ile 3060 3065 Tyr Trp Thr Gly Val Thr Thr Gln Gly Ser Met Ile Arg Arg Met His 3075 3080 Leu Asn Gly Ser Asn Val Gln Val Leu His Arg Thr Gly Leu Ser Asn 3090 3095 3100 Pro Asp Gly Leu Ala Val Asp Trp Val Gly Gly Asn Leu Tyr Trp Cys 3110 3115 Asp Lys Gly Arg Asp Thr Ile Glu Val Ser Lys Leu Asn Gly Ala Tyr 3125 3130 Arg Thr Val Leu Val Ser Ser Gly Leu Arg Glu Pro Arg Ala Leu Val 3140 3145 Val Asp Val Gln Asn Gly Tyr Leu Tyr Trp Thr Asp Trp Gly Asp His 3155 3160 3165 Ser Leu Ile Gly Arg Ile Gly Met Asp Gly Ser Gly Arg Ser Ile Ile 3170 3175 3180 Val Asp Thr Lys Ile Thr Trp Pro Asn Gly Leu Thr Val Asp Tyr Val 3190 3195 Thr Glu Arg Ile Tyr Trp Ala Asp Ala Arg Glu Asp Tyr Ile Glu Phe 3205 3210 Ala Ser Leu Asp Gly Ser Asn Arg His Val Val Leu Ser Gln Asp Ile 3225 3230 3220 Pro His Ile Phe Ala Leu Thr Leu Phe Glu Asp Tyr Val Tyr Trp Thr 3240 3245 Asp Trp Glu Thr Lys Ser Ile Asn Arg Ala His Lys Thr Thr Gly Ala 3255 3260 Asn Lys Thr Leu Leu Ile Ser Thr Leu His Arg Pro Met Asp Leu His 3270 3275 Val Phe His Ala Leu Arg Gln Pro Asp Val Pro Asn His Pro Cys Lys 3285 3290

Val Asn Asn Gly Gly Cys Ser Asn Leu Cys Leu Leu Ser Pro Gly Gly 3305 Gly His Lys Cys Ala Cys Pro Thr Asn Phe Tyr Leu Gly Gly Asp Gly 3315 3320 3325 Arg Thr Cys Val Ser Asn Cys Thr Ala Ser Gln Phe Val Cys Lys Asn 3335 3340 Asp Lys Cys Ile Pro Phe Trp Trp Lys Cys Asp Thr Glu Asp Asp Cys 3350 3355 Gly Asp His Ser Asp Glu Pro Pro Asp Cys Pro Glu Phe Lys Cys Arg 3365 3370 3375 Pro Gly Gln Phe Gln Cys Ser Thr Gly Ile Cys Thr Asn Pro Ala Phe 3380 3385 3390 Ile Cys Asp Gly Asp Asn Asp Cys Gln Asp Asn Ser Asp Glu Ala Asn 3400 3395 3405 Cys Asp Ile His Val Cys Leu Pro Ser Gln Phe Lys Cys Thr Asn Thr 3415 3420 Asn Arg Cys Ile Pro Gly Ile Phe Arg Cys Asn Gly Gln Asp Asn Cys 3430 3435 Gly Asp Gly Glu Asp Glu Arg Asp Cys Pro Glu Val Thr Cys Ala Pro 3445 3450 Asn Gln Phe Gln Cys Ser Ile Thr Lys Arg Cys Ile Pro Arg Val Trp 3460 3465 Val Cys Asp Arg Asp Asn His Cys Val Asp Gly Ser Asp Glu Pro Ala 3480 3485 Asn Cys Thr Gln Met Thr Cys Gly Val Asp Glu Phe Arg Cys Lys Asp 3490 3495 3500 Ser Gly Arg Cys Ile Pro Ala Arg Trp Lys Cys Asp Gly Glu Asp Asp 3510 3515 Cys Gly Asp Gly Ser Asp Glu Pro Lys Glu Glu Cys Asp Glu Arg Thr 3525 3530 Cys Glu Pro Tyr Gln Phe Arg Cys Lys Asn Asn Arg Cys Val Pro Gly 3540 3545 3550 Arg Trp Gln Cys Asp Tyr Asp Asn Asp Cys Gly Asp Asn Ser Asp Glu 3560 3565 Glu Ser Cys Thr Pro Arg Pro Cys Ser Glu Ser Glu Phe Phe Cys Ala 3575 3580 Asn Gly Arg Cys Ile Ala Gly Arg Trp Lys Cys Asp Gly Asp His Asp 3590 3595 Cys Ala Asp Gly Ser Asp Glu Lys Asp Cys Thr Pro Arg Cys Asp Met 3610 Asp Gln Phe Gln Cys Lys Ser Gly His Cys Ile Pro Leu Arg Trp Pro 3620 3625 3630 Cys Asp Ala Asp Ala Asp Cys Met Asp Gly Ser Asp Glu Glu Ala Cys 3635 3640 3645 Gly Thr Gly Val Arg Thr Cys Pro Leu Asp Glu Phe Gln Cys Asn Asn 3655 3660 Thr Leu Cys Lys Pro Leu Ala Trp Lys Cys Asp Gly Glu Asp Asp Cys 3670 3675 Gly Asp Asn Ser Asp Glu Asn Pro Glu Glu Cys Ala Arg Phe Ile Cys 3685 3690 Pro Pro Asn Arg Pro Phe Arg Cys Lys Asn Asp Arg Val Cys Leu Trp 3700 3705 Ile Gly Arg Gln Cys Asp Gly Val Asp Asn Cys Gly Asp Gly Thr Asp 3720 3725 Glu Glu Asp Cys Glu Pro Pro Thr Ala Gln Asn Pro His Cys Lys Asp 3735 3740 Lys Lys Glu Phe Leu Cys Arg Asn Gln Arg Cys Leu Ser Ser Leu 3750 3755

Arg Cys Asn Met Phe Asp Asp Cys Gly Asp Gly Ser Asp Glu Glu Asp 3770 Cys Ser Ile Asp Pro Lys Leu Thr Ser Cys Ala Thr Asn Ala Ser Met 3785 Cys Gly Asp Glu Ala Arg Cys Val Arg Thr Glu Lys Ala Ala Tyr Cys 3800 3805 Ala Cys Arg Ser Gly Phe His Thr Val Pro Gly Gln Pro Gly Cys Gln 3815 3820 Asp Ile Asn Glu Cys Leu Arg Phe Gly Thr Cys Ser Gln Leu Trp Asn 3830 3835 Lys Pro Lys Gly Gly His Leu Cys Ser Cys Ala Arg Asn Phe Met Lys 3845 3850 Thr His Asn Thr Cys Lys Ala Glu Gly Ser Glu Tyr Gln Val Leu Tyr 3860 3865 Ile Ala Asp Asp Asn Glu Ile Arg Ser Leu Phe Pro Gly His Pro His 3875 3880 3885 Ser Ala Tyr Glu Gln Thr Phe Gln Gly Asp Glu Ser Val Arg Ile Asp 3895 3900 Ala Met Asp Val His Val Lys Ala Gly Arg Val Tyr Trp Thr Asn Trp 3910 3915 His Thr Gly Thr Ile Ser Tyr Arg Ser Leu Pro Pro Ala Ala Pro Pro 3925 3930 Thr Thr Ser Asn Arg His Arg Arg Gln Ile Asp Arg Gly Val Thr His 3940 3945 Leu Asn Ile Ser Gly Leu Lys Met Pro Arg Gly Ile Ala Ile Asp Trp 3960 3965 Val Ala Gly Asn Val Tyr Trp Thr Asp Ser Gly Arg Asp Val Ile Glu 3975 3980 Val Ala Gln Met Lys Gly Glu Asn Arg Lys Thr Leu Ile Ser Gly Met 3990 3995 Ile Asp Glu Pro His Ala Ile Val Val Asp Pro Leu Arg Gly Thr Met 4005 4010 Tyr Trp Ser Asp Trp Gly Asn His Pro Lys Ile Glu Thr Ala Ala Met 4020 4025 4030 Asp Gly Thr Leu Arg Glu Thr Leu Val Gln Asp Asn Ile Gln Trp Pro 4035 4040 Thr Gly Leu Ala Val Asp Tyr His Asn Glu Arg Leu Tyr Trp Ala Asp 4055 4060 Ala Lys Leu Ser Val Ile Gly Ser Ile Arg Leu Asn Gly Thr Asp Pro 4070 4075 Ile Val Ala Ala Asp Ser Lys Arg Gly Leu Ser His Pro Phe Ser Ile 4085 4090 4095 Asp Val Phe Glu Asp Tyr Ile Tyr Gly Val Thr Tyr Ile Asn Asn Arg 4105 4110 Val Phe Lys Ile His Lys Phe Gly His Ser Pro Leu Tyr Asn Leu Thr 4115 4120 4125 Gly Gly Leu Ser His Ala Ser Asp Val Val Leu Tyr His Gln His Lys 4135 4140 Gln Pro Glu Val Thr Asn Pro Cys Asp Arg Lys Lys Cys Glu Trp Leu 4150 4155 Cys Leu Leu Ser Pro Ser Gly Pro Val Cys Thr Cys Pro Asn Gly Lys 4165 4170 4175 Arg Leu Asp Asn Gly Thr Cys Val Pro Val Pro Ser Pro Thr Pro Pro 4185 Pro Asp Ala Pro Arg Pro Gly Thr Cys Thr Leu Gln Cys Phe Asn Gly 4200 4205 Gly Ser Cys Phe Leu Asn Ala Arg Arg Gln Pro Lys Cys Arg Cys Gln 4215

Pro	Arg	Tyr	Thr	Gly			Cys	Glu	Leu			Cys	Trp	Glu	Tyr	
422		7	01	71	423				_	423					4240	
Cys	пть	ASII	GTĀ	424		Cys	Ата	Ala	Ser		Ser	GTÄ	Met			
Cvs	Ara	Cvs	Pro			Dhe	Thr	Glv	4250 Pro		Cr.c		77.	425	5 ***- 1	
0,0	**** 9	Cys	426	0	GLY	FIIC	1111	426		пÃр	Cys	Int	4270		vai	
Cvs	Ala	Glv			Ser	Δen	Δen		Thr	Cue	ጥክሎ	Wa I			al	
-2-		427		0,0		11011	428		1111	Cys	TIIL	4285		GIII	GIY	
Asn	Gln			Cvs	Ara	Cvs			Gly	Dhe	Len			720	Care	
	429	0		O _I D		429!		110	OLY	FIIC	4300		Asp	Arg	Cys	
Gln			Gln	Cvs	Ser	_		Cvs	Glu	Δen			Thr	Cyc	Gln.	
430		- 5		-1	4310			0,0		4315		Cry	1111	Cys	4320	
Met	Ala	Ala	Asp	Gly			Gln	Cvs	Arg			Val	Tvr	Dhe	Glu	
			•	4329	5			-1-	4330		~		-7-	4335		
Gly	Pro	Arg	Cys	Glu	Va1	Asn	Lvs	Cvs	Ser		Cvs	Leu	Gln	Glv	Δla	
_		_	4340				•	434			-1		4350			
Cys	Val	Val	Asn	Lys	Gln	Thr	Gly	Asp	Val	Thr	Cvs	Asn			Asp	
		4355		-			4360				-2	4365			1101	
Gly	Arg	Val	Ala	Pro	Ser	Cys	Leu	Thr	Cys	Ile	qaA			Ser	Asn	
	4370)				4375			•		4380		-2 -			
Gly	Gly	Ser	Cys	Thr	Met	Asn	Ser	Lys	Met	Met	Pro	Glu	Cvs	Gln	Cvs	
4389	5				4390			-		4395			-1 -		4400	
Pro	Pro	His	Met	Thr	Gly	Pro	Arg	Cys	Gln	Glu	Gln	Val	Val	Ser	Gln	
				4405	5				4410)				4415	5	
Gln	Gln	Pro	Gly	His	Met	Ala	Ser	Ile	Leu	Ile	Pro	Leu	Leu	Leu	Leu	
			4420)				4425	5				4430)		
Leu	Leu	Leu	Leu	Leu	Val	Ala	Gly	Val	Val	Phe	Trp	Tyr	Lys	Arg	Arg	
		4435	5				4440)	•			4445	,			
Val	Arg	Gly	Ala	Lys	Gly	Phe	Gln	His	Gln	Arg	Met	Thr	Asn	Gly	Ala	
	4450)				4455	5				4460)		_		
Met	Asn	Val	Glu	Ile	Gly	Asn	Pro	Thr	Tyr	Lys	Met	Tyr	Glu	Gly	Gly	
4465					4470					4475					4480	
GIu	Pro	Asp	Asp			Gly	Leu	Leu	Asp	Ala	Asp	Phe	Ala	Leu	Asp	
		_	_	4485					4490					4495	i	
Pro	Авр	гÀг	Pro	Thr	Asn	Phe			Pro	Val	Tyr	Ala	Thr	Leu	Tyr	
14.L	61		4500		_	_		4505		_			4510	•		
мес	GIY	GIA	HIS	GIY	ser				Leu	Ala				Glu	Lys	
7~~	0 7	4515		a a	_		4520		_		_	4525				
Arg	4530	теп	ьец	GIY	Arg	GIA	Pro	Glu	Asp				Asp	Pro	Leu	
. ה ל ת	4530	,				4535)				4540					
Ala 4545																
4343	,															
	ر ر	10>	3													
		11>														
		12>														
		13>		éan	iena											
	. ~~			Jap	- e112											
	<4	00>	3													
gcta				gtct	e et	ccao	ataa	tto	ttta	tac	2272	tann	ma n	~~~	aaact	~
cctt	cato	ca a	gtct	gatt	c tt	ctcc	tett	aat	cctc	cta	CCC2	Cade	ga a	gaac	gtctc	60 120
tgga	aaac	cg c	agta	tatq	g tt	ctaa	tccc	cto	ccta	ctc	caca	ctas	aa c	cact	gagaa	180
gggc	tgtg	tc c	ttct	gaqc	t ac	ctqa	atga	gac	agtg	act	ataa	atar	gu C tt c	ctta	gagaa gagtc	240
tgtc	aggg	ga a	acag	gage	c tc	ttca	ctqa	cct	adsa	aca	gaga	atoa	ca t	acto	cactg	300
tgtc	gcct	tc g	ctgt	ccca	a ao	tctt	cato	caa	tasa 3343	aau	ataa	tarr	cc t	cact	gtcca	360
agtg	aaag	ga c	caac	ccaa	q aa	ttta	agaa	aca	מפכר	aca ∙	ataa	taar	ta a	gaac	gagga	420
cagt	ctgg	tc t	ttgt	ccag	a ca	gaca	aatc	aat	ctac	aaa	ccaa	aacs.	ga c	aata	gagga aaatt	480
tcat	atta	tc t	ccat	daat	π 22	aart	ttca	CCC						-5-3		700

cattcaggat cccaaaggaa atcgcatcgc acaatggcag agtttccagt tagagggtgg 600 cctcaagcaa ttttcttttc ccctctcatc agagcccttc cagggctcct acaaggtggt 660 ggtacagaag aaatcaggtg gaaggacaga gcaccctttc accgtggagg aatttgttct 720 tcccaagttt gaagtacaag taacagtgcc aaagataatc accatcttgg aagaagagat 780 gaatgtatca gtgtgtggcc tatacacata tgggaagcct gtccctggac atgtgactgt 840 gagcatttgc agaaagtata gtgacgcttc cgactgccac ggtgaagatt cacaggcttt 900 ctgtgagaaa ttcagtggac agctaaacag ccatggctgc ttctatcagc aagtaaaaac 960 1020 ccaagaagaa ggaacagtgg tggaattgac tggaaggcag tccagtgaaa tcacaagaac 1080 cataaccaaa ctctcatttg tgaaagtgga ctcacacttt cgacagggaa ttcccttctt 1140 tgggcaggtg cgcctagtag atgggaaagg cgtccctata ccaaataaag tcatattcat 1200 cagaggaaat gaagcaaact attactccaa tgctaccacg gatgagcatg gccttgtaca 1260 gttctctatc aacaccacca acgttatggg tacctctctt actgttaggg tcaattacaa 1320 ggatcgtagt ccctgttacg gctaccagtg ggtgtcagaa gaacacgaag aggcacatca 1380 cactgettat cttgtgttet ceccaageaa gagetttgte cacettgage ceatgtetea 1440 tgaactaccc tgtggccata ctcagacagt ccaggcacat tatattctga atggaggcac 1500 cctgctgggg ctgaagaagc tctcctttta ttatctgata atggcaaagg gaggcattgt 1560 ccgaactggg actcatggac tgcttgtgaa gcaggaagac atgaaqgqcc atttttccat 1620 ctcaatccct gtgaagtcag acattgctcc tgtcgctcgg ttgctcatct atgctgtttt 1680 acctaccggg gacgtgattg gggattctgc aaaatatgat gttgaaaatt gtctggccaa 1740 caaggtggat ttgagettca geceateaca aagteteeca geeteacaeg eecacetgeg 1800 agtcacageg getectcagt cegtetgege ceteegtget gtggaccaaa gegtgetget 1860 catgaagcct gatgctgagc tctcggcgtc ctcggtttac aacctgctac cagaaaagga 1920 cctcactggc ttccctgggc ctttgaatga ccaggacgat gaagactgca tcaatcgtca 1980 taatgtctat attaatggaa tcacatatac tccagtatca agtacaaatg aaaaggatat 2040 gtacagette etagaggaca tgggettaaa ggeatteace aacteaaaga ttegtaaace 2100 caaaatgtgt ccacagcttc aacagtatga aatgcatgga cctgaaggtc tacgtgtagg 2160 tttttatgag tcagatgtaa tgggaagagg ccatgcacgc ctggtgcatg ttgaagagcc 2220 tcacacggag accgtacgaa agtacttccc tgagacatgg atctgggatt tggtggtggt 2280 aaactcagca ggggtggctg aggtaggagt aacagtccct gacaccatca ccgagtggaa 2340 ggcaggggcc ttctgcctgt ctgaagatgc tggacttggt atctcttcca ctgcctctct 2400 ccgagccttc cagcccttct ttgtggagct tacaatgcct tactctgtga ttcgtggaga 2460 ggccttcaca ctcaaggcca cggtcctaaa ctaccttccc aaatgcatcc gggtcagtgt 2520 gcagctggaa gcctctcccg ccttccttgc tgtcccagtg gagaaggaac aagcgcctca 2580 ctgcatctgt gcaaacgggc ggcaaactgt gtcctgggca gtaaccccaa agtcattagg 2640 aaatgtgaat ttcactgtga gcgcagaggc actagagtct caagagctgt gtgggactga 2700 ggtgccttca gttcctgaac acggaaggaa agacacagtc atcaagcctc tgttggttga 2760 acctgaagga ctagagaagg aaacaacatt caactcccta ctttgtccat caggtggtga 2820 ggtttctgaa gaattatccc tgaaactgcc accaaatgtg gtagaagaat ctgcccgagc 2880 ttctgtctca gttttgggag acatattagg ctctgccatg caaaacacac aaaatcttct 2940 ccagatgccc tatggctgtg gagagcagaa tatggtcctc tttgctccta acatctatgt 3000 actggattat ctaaatgaaa cacagcagct tactccagag gtcaagtcca aggccattgg 3060 ctatctcaac actggttacc agagacagtt gaactacaaa cactatgatg gctcctacag 3120 cacctttggg gagcgatatg gcaggaacca gggcaacacc tggctcacag cctttgttct 3180 gaagactttt gcccaagctc gagcctacat cttcatcqat qaaqcacaca ttacccaaqc 3240 cctcatatgg ctctcccaga ggcagaagga caatggctgt ttcaggagct ctgggtcact 3300 gctcaacaat gccataaagg gaggagtaga agatgaagtg accctctccg cctatatcac 3360 categooott ctggagattc ctctcacagt cactcaccct gttgtccgca atgccctgtt 3420 ttgcctggag tcagcctgga agacagcaca agaaggggac catggcagcc atgtatatac 3480 caaagcactg ctggcctatg cttttgccct ggcaggtaac caggacaaga ggaaggaagt 3540 actcaagtca cttaatgagg aagctgtgaa gaaagacaac tctgtccatt gggagcgccc 3600 tcagaaaccc aaggcaccag tggggcattt ttacgaaccc caggctccct ctgctgaggt 3660 ggagatgaca tectatgtge teetegetta teteaeggee cagecageee caacetegga 3720 ggacctgacc tctgcaacca acatcgtgaa gtggatcacg aagcagcaga atgcccaggg 3780 cggtttctcc tccacccagg acacagtggt ggctctccat gctctgtcca aatatggagc 3840 cgccacattt accaggactg ggaaggctgc acaggtgact atccagtctt cagggacatt 3900 ttccagcaaa ttccaagtgg acaacaacaa tcgcctgtta ctgcagcagg tctcattgcc 3960 agagctgcct ggggaataca gcatgaaagt gacaggagaa ggatgtgtct acctccagac 4020

ctccttgaaa tacaatattc tcccagaaaa ggaagagttc ccctttgctt taggagtgca 4080 gactctgcct caaacttgtg atgaacccaa agcccacacc agcttccaaa tctccctaag 4140 tgtcagttac acagggagcc gctctgcctc caacatggcg atcgttgatg tgaagatggt 4200 ctctggcttc attcccctga agccaacagt gaaaatgctt gaaagatcta accatgtgag 4260 ccggacagaa gtcagcagca accatgtctt gatttacctt gataaqqtqt caaatcaqac 4320 actgagettg ttetteacgg ttetgeaaga tgteecagta agagatetea aaccagecat 4380 agtgaaagtc tatgattact acgagacgga tgagtttgca atcgctgaqt acaatqctcc 4440 ttgcagcaaa gatcttggaa atgcttgaag accacaaggc tgaaaagtgc tttgctggag 4500 tcctgttctc tgagctccac agaagacacg tgtttttgta tctttaaaga cttgatgaat 4560 aaacactttt tctggtc 4577

<210> 4 <211> 4422 <212> DNA <213> Homo sapiens

<400> 4

atggggaaga acaaactcct tcatccaagt ctggttcttc tcctcttggt cctcctgccc 60 acagacgeet cagtetetgg aaaacegeag tatatggtte tggteeeete eetgeteeae 120 actgagacca ctgagaaggg ctgtgtcctt ctgagctacc tgaatgagac agtgactgta 180 agtgcttcct tggagtctgt caggggaaac aggagcctct tcactgacct ggaggcggag 240 aatgacgtac tccactgtgt cgccttcgct gtcccaaagt cttcatccaa tgaggaggta 300 atgttcctca ctgtccaagt gaaaggacca acccaagaat ttaagaagcg gaccacagtg 360 atggttaaga acgaggacag tctggtcttt gtccagacag acaaatcaat ctacaaacca 420 gggcagacag tgaaatttcg tgttgtctcc atggatgaaa actttcaccc cctgaatgag 480 ttgattccac tagtatacat tcaggatccc aaaggaaatc gcatcgcaca atggcagagt 540 ttccagttag agggtggcct caagcaattt tcttttcccc tctcatcaga gcccttccag 600 ggctcctaca aggtggtggt acagaagaaa tcaggtggaa ggacagagca ccctttcacc 660 gtggaggaat ttgttcttcc caagtttgaa gtacaagtaa cagtgccaaa gataatcacc 720 atcttggaag aagagatgaa tgtatcagtg tgtggcctat acacatatgg gaagcctqtc 780 cctggacatg tgactgtgag catttgcaga aagtatagtg acgcttccga ctgccacgqt 840 gaagattcac aggetttetg tgagaaattc agtggacage taaacageca tggetgette 900 tatcagcaag taaaaaccaa ggtcttccag ctgaagagga aggagtatga aatgaaactt 960 cacactgagg cccagatcca agaagaagga acagtggtgg aattgactgg aaggcagtcc 1020 agtgaaatca caagaaccat aaccaaactc tcatttgtga aagtggactc acactttcga 1080 cagggaattc ccttctttgg gcaggtgcgc ctagtagatg ggaaaggcgt ccctatacca 1140 aataaagtca tattcatcag aggaaatgaa gcaaactatt actccaatgc taccacggat 1200 gagcatggcc ttgtacagtt ctctatcaac accaccaacg ttatgggtac ctctcttact 1260 gttagggtca attacaagga tcgtagtccc tgttacggct accagtgggt gtcagaagaa 1320 cacgaagagg cacatcacac tgcttatctt gtgttctccc caagcaagag ctttgtccac 1380 cttgagccca tgtctcatga actaccctgt ggccatactc agacagtcca ggcacattat 1440 attctgaatg gaggcaccct gctggggctg aagaagctct ccttttatta tctqataatg 1500 gcaaagggag gcattgtccg aactgggact catggactgc ttgtgaagca ggaagacatg 1560 aagggccatt tttccatctc aatccctgtg aagtcaqaca ttqctcctqt cqctcqqttq 1620 ctcatctatg ctgttttacc taccggggac gtgattgggg attctgcaaa atatgatgtt 1680 gaaaattgtc tggccaacaa ggtggatttg agcttcagcc catcacaaag tctcccagcc 1740 tcacacgccc acctgcgagt cacagcggct cctcagtccg tctgcgccct ccgtgctgtg 1800 gaccaaagcg tgctgctcat gaagcctgat gctgagctct cggcgtcctc ggtttacaac 1860 ctgctaccag aaaaggacct cactggcttc cctgggcctt tgaatgacca ggacgatgaa 1920 gactgcatca atcgtcataa tgtctatatt aatggaatca catatactcc agtatcaagt 1980 acaaatgaaa aggatatgta cagcttccta gaggacatgg gcttaaaggc attcaccaac 2040 tcaaagattc gtaaacccaa aatgtgtcca cagcttcaac agtatgaaat gcatggacct 2100 quaggictac gtgtaggttt ttatgagtca gatgtaatgg gaagaggcca tgcacgcctg 2160 gtgcatgttg aagagcctca cacggagacc gtacgaaagt acttccctga gacatggatc 2220 tgggatttgg tggtggtaaa ctcagcaggg gtggctgagg taggagtaac agtccctgac 2280 accatcaccg agtggaaggc aggggccttc tgcctgtctg aagatgctgg acttggtatc 2340 tettecactg cetetetecg ageettecag ceettetttg tggagettac aatgeettac 2400 tetgtgatte gtggagagge etteacaete aaggecaegg teetaaaeta eetteecaaa 2460

tgcatccggg tcagtgtgca gctggaagcc tctcccgcct tccttgctgt cccagtqqaq 2520 aaggaacaag cgcctcactg catctgtgca aacgggcggc aaactgtgtc ctgggcaqta 2580 accccaaagt cattaggaaa tgtgaatttc actgtgagcg cagaggcact agagtctcaa 2640 gagctgtgtg ggactgaggt gccttcagtt cctgaacacg gaaggaaaga cacagtcatc 2700 aageetetgt tggttqaace tgaaggacta gagaaggaaa caacattcaa etecetaett 2760 tgtccatcag gtggtgaggt ttctgaagaa ttatccctga aactqccacc aaatgtggta 2820 gaagaatetg eeegagette tgteteagtt ttgggagaca tattaqqete tqccatqcaa 2880 aacacacaaa atcttctcca gatgccctat ggctgtggag agcagaatat ggtcctcttt 2940 gctcctaaca tctatgtact ggattatcta aatgaaacac agcagcttac tccagaggtc 3000 aagtccaagg ccattggcta tctcaacact ggttaccaga gacagttgaa ctacaaacac 3060 tatgatggct cctacagcac ctttggggag cgatatggca ggaaccaggg caacacctgg 3120 ctcacagcct ttgttctgaa gacttttgcc caagctcgag cctacatctt catcgatgaa 3180 gcacacatta cccaagccct catatggctc tcccagaggc agaaggacaa tggctgtttc 3240 aggagetetg ggteactget caacaatgee ataaagggag gagtagaaga tgaagtqace 3300 etetecgeet atateaceat egecettetg gagatteete teacagteae teaceetgtt 3360 gtccgcaatg ccctgttttg cctggagtca gcctggaaga cagcacaaga aggggaccat 3420 ggcagccatg tatataccaa agcactgctg gcctatgctt ttgccctggc aggtaaccag 3480 gacaagagga aggaagtact caagtcactt aatgaggaag ctgtgaagaa agacaactct 3540 gtccattggg agcgccctca gaaacccaag gcaccagtgg ggcattttta cgaaccccag 3600 gctccctctg ctgaggtgga gatgacatcc tatgtgctcc tcgcttatct cacggcccag 3660 ccagccccaa cctcggagga cctgacctct gcaaccaaca tcgtgaagtg gatcacgaag 3720 cagcagaatg cccagggcgg tttctcctcc acccaggaca cagtggtggc tctccatgct 3780 ctgtccaaat atggagccgc cacatttacc aggactggga aggctgcaca ggtgactatc 3840 cagtetteag ggacatttte cageaaatte caaqtqqaca acaacaatcq cetqttactq 3900 cagcaggtet cattgccaga getgeetggg gaatacagca tgaaaqtqac aggaqaagga 3960 tgtgtctacc tccagacctc cttgaaatac aatattctcc caqaaaaqqa aqaqttcccc 4020 tttgctttag gagtgcagac tctgcctcaa acttgtgatg aacccaaagc ccacaccagc 4080 ttccaaatct ccctaagtgt cagttacaca gggagccgct ctgcctccaa catggcgatc 4140 gttgatgtga agatggtctc tggcttcatt cccctgaagc caacagtgaa aatgcttgaa 4200 agatctaacc atgtgagccg gacagaagtc agcagcaacc atgtcttgat ttaccttgat 4260 aaggtgtcaa atcagacact gagcttgttc ttcacggttc tgcaagatgt cccagtaaga 4320 gatctcaaac cagccatagt gaaagtctat gattactacg agacggatga gtttgcaatc 4380 gctgagtaca atgctccttg cagcaaagat cttggaaatg ct 4422

<210> 5 <211> 1474 <212> PRT

<213> Homo sapiens

<400> 5

Met Gly Lys Asn Lys Leu Leu His Pro Ser Leu Val Leu Leu Leu Leu 1 10 Val Leu Leu Pro Thr Asp Ala Ser Val Ser Gly Lys Pro Gln Tyr Met 20 25 Val Leu Val Pro Ser Leu Leu His Thr Glu Thr Thr Glu Lys Gly Cys 40 45 Val Leu Leu Ser Tyr Leu Asn Glu Thr Val Thr Val Ser Ala Ser Leu 55. 60 Glu Ser Val Arg Gly Asn Arg Ser Leu Phe Thr Asp Leu Glu Ala Glu 70 75 Asn Asp Val Leu His Cys Val Ala Phe Ala Val Pro Lys Ser Ser Ser 90 Asn Glu Glu Val Met Phe Leu Thr Val Gln Val Lys Gly Pro Thr Gln 100 105 110 Glu Phe Lys Lys Arg Thr Thr Val Met Val Lys Asn Glu Asp Ser Leu 115 120 125 Val Phe Val Gln Thr Asp Lys Ser Ile Tyr Lys Pro Gly Gln Thr Val 135 140

Lys Phe Arg Val Val Ser Met Asp Glu Asn Phe His Pro Leu Asn Glu 150 Leu Ile Pro Leu Val Tyr Ile Gln Asp Pro Lys Gly Asn Arg Ile Ala 165 170 Gln Trp Gln Ser Phe Gln Leu Glu Gly Gly Leu Lys Gln Phe Ser Phe 185 Pro Leu Ser Ser Glu Pro Phe Gln Gly Ser Tyr Lys Val Val Gln 200 Lys Lys Ser Gly Gly Arg Thr Glu His Pro Phe Thr Val Glu Glu Phe 215 220 Val Leu Pro Lys Phe Glu Val Gln Val Thr Val Pro Lys Ile Ile Thr 230 235 Ile Leu Glu Glu Met Asn Val Ser Val Cys Gly Leu Tyr Thr Tyr 245 250 Gly Lys Pro Val Pro Gly His Val Thr Val Ser Ile Cys Arg Lys Tyr 260 265 Ser Asp Ala Ser Asp Cys His Gly Glu Asp Ser Gln Ala Phe Cys Glu 280 Lys Phe Ser Gly Gln Leu Asn Ser His Gly Cys Phe Tyr Gln Gln Val 295 Lys Thr Lys Val Phe Gln Leu Lys Arg Lys Glu Tyr Glu Met Lys Leu 310 315 His Thr Glu Ala Gln Ile Gln Glu Glu Gly Thr Val Val Glu Leu Thr 325 330 Gly Arg Gln Ser Ser Glu Ile Thr Arg Thr Ile Thr Lys Leu Ser Phe 345 Val Lys Val Asp Ser His Phe Arg Gln Gly Ile Pro Phe Phe Gly Gln 360 365 Val Arg Leu Val Asp Gly Lys Gly Val Pro Ile Pro Asn Lys Val Ile 375 380 Phe Ile Arg Gly Asn Glu Ala Asn Tyr Tyr Ser Asn Ala Thr Thr Asp 390 395 Glu His Gly Leu Val Gln Phe Ser Ile Asn Thr Thr Asn Val Met Gly 405 410 Thr Ser Leu Thr Val Arg Val Asn Tyr Lys Asp Arg Ser Pro Cys Tyr 425 Gly Tyr Gln Trp Val Ser Glu Glu His Glu Glu Ala His His Thr Ala 440 Tyr Leu Val Phe Ser Pro Ser Lys Ser Phe Val His Leu Glu Pro Met 455 460 Ser His Glu Leu Pro Cys Gly His Thr Gln Thr Val Gln Ala His Tyr . 470 475 Ile Leu Asn Gly Gly Thr Leu Leu Gly Leu Lys Lys Leu Ser Phe Tyr 485 490 Tyr Leu Ile Met Ala Lys Gly Gly Ile Val Arg Thr Gly Thr His Gly 505 Leu Leu Val Lys Gln Glu Asp Met Lys Gly His Phe Ser Ile Ser Ile 520 Pro Val Lys Ser Asp Ile Ala Pro Val Ala Arg Leu Leu Ile Tyr Ala 535 Val Leu Pro Thr Gly Asp Val Ile Gly Asp Ser Ala Lys Tyr Asp Val 555 Glu Asn Cys Leu Ala Asn Lys Val Asp Leu Ser Phe Ser Pro Ser Gln 570 Ser Leu Pro Ala Ser His Ala His Leu Arg Val Thr Ala Ala Pro Gln Ser Val Cys Ala Leu Arg Ala Val Asp Gln Ser Val Leu Leu Met Lys 600

Pro Asp Ala Glu Leu Ser Ala Ser Ser Val Tyr Asn Leu Leu Pro Glu Lys Asp Leu Thr Gly Phe Pro Gly Pro Leu Asn Asp Gln Asp Asp Glu Asp Cys Ile Asn Arg His Asn Val Tyr Ile Asn Gly Ile Thr Tyr Thr Pro Val Ser Ser Thr Asn Glu Lys Asp Met Tyr Ser Phe Leu Glu Asp Met Gly Leu Lys Ala Phe Thr Asn Ser Lys Ile Arg Lys Pro Lys Met Cys Pro Gln Leu Gln Gln Tyr Glu Met His Gly Pro Glu Gly Leu Arg Val Gly Phe Tyr Glu Ser Asp Val Met Gly Arg Gly His Ala Arg Leu Val His Val Glu Pro His Thr Glu Thr Val Arg Lys Tyr Phe Pro Glu Thr Trp Ile Trp Asp Leu Val Val Val Asn Ser Ala Gly Val Ala Glu Val Gly Val Thr Val Pro Asp Thr Ile Thr Glu Trp Lys Ala Gly Ala Phe Cys Leu Ser Glu Asp Ala Gly Leu Gly Ile Ser Ser Thr Ala Ser Leu Arg Ala Phe Gln Pro Phe Phe Val Glu Leu Thr Met Pro Tyr Ser Val Ile Arg Gly Glu Ala Phe Thr Leu Lys Ala Thr Val Leu Asn Tyr Leu Pro Lys Cys Ile Arg Val Ser Val Gln Leu Glu Ala Ser Pro Ala Phe Leu Ala Val Pro Val Glu Lys Glu Gln Ala Pro His Cys Ile Cys Ala Asn Gly Arg Gln Thr Val Ser Trp Ala Val Thr Pro Lys Ser Leu Gly Asn Val Asn Phe Thr Val Ser Ala Glu Ala Leu Glu Ser Gln Glu Leu Cys Gly Thr Glu Val Pro Ser Val Pro Glu His Gly Arg Lys Asp Thr Val Ile Lys Pro Leu Leu Val Glu Pro Glu Gly Leu Glu Lys Glu Thr Thr Phe Asn Ser Leu Leu Cys Pro Ser Gly Gly Glu Val Ser Glu Glu Leu Ser Leu Lys Leu Pro Pro Asn Val Val Glu Glu Ser Ala Arg Ala Ser Val Ser Val Leu Gly Asp Ile Leu Gly Ser Ala Met Gln Asn Thr Gln Asn Leu Leu Gln Met Pro Tyr Gly Cys Gly Glu Gln Asn Met Val Leu Phe Ala Pro Asn Ile Tyr Val Leu Asp Tyr Leu Asn Glu Thr Gln Gln Leu Thr Pro Glu Val Lys Ser Lys Ala Ile Gly Tyr Leu Asn Thr Gly Tyr Gln Arg Gln Leu Asn Tyr Lys His Tyr Asp Gly Ser Tyr Ser Thr Phe Gly Glu Arg Tyr Gly Arg Asn Gln Gly Asn Thr Trp Leu Thr Ala Phe Val Leu Lys Thr Phe Ala Gln Ala Arg Ala Tyr Ile Phe Ile Asp Glu Ala His Ile Thr Gln Ala Leu Ile Trp Leu Ser Gln

Arg Gln Lys Asp Asn Gly Cys Phe Arg Ser Ser Gly Ser Leu Leu Asn 1080 Asn Ala Ile Lys Gly Gly Val Glu Asp Glu Val Thr Leu Ser Ala Tyr 1095 1100 Ile Thr Ile Ala Leu Leu Glu Ile Pro Leu Thr Val Thr His Pro Val 1110 1115 Val Arg Asn Ala Leu Phe Cys Leu Glu Ser Ala Trp Lys Thr Ala Gln 1125 1130 Glu Gly Asp His Gly Ser His Val Tyr Thr Lys Ala Leu Leu Ala Tyr 1140 1145 Ala Phe Ala Leu Ala Gly Asn Gln Asp Lys Arg Lys Glu Val Leu Lys 1160 1165 1155 Ser Leu Asn Glu Glu Ala Val Lys Lys Asp Asn Ser Val His Trp Glu 1175 1180 Arg Pro Gln Lys Pro Lys Ala Pro Val Gly His Phe Tyr Glu Pro Gln 1190 1185 1195 Ala Pro Ser Ala Glu Val Glu Met Thr Ser Tyr Val Leu Leu Ala Tyr 1205 1210 1215 Leu Thr Ala Gln Pro Ala Pro Thr Ser Glu Asp Leu Thr Ser Ala Thr 1220 1225 Asn Ile Val Lys Trp Ile Thr Lys Gln Gln Asn Ala Gln Gly Gly Phe 1235 1240 1245 Ser Ser Thr Gln Asp Thr Val Val Ala Leu His Ala Leu Ser Lys Tyr 1250 1255 1260 Gly Ala Ala Thr Phe Thr Arg Thr Gly Lys Ala Ala Gln Val Thr Ile 1265 1270 1275 Gln Ser Ser Gly Thr Phe Ser Ser Lys Phe Gln Val Asp Asn Asn 1285 1290 Arg Leu Leu Gln Gln Val Ser Leu Pro Glu Leu Pro Gly Glu Tyr 1300 1305 1310 Ser Met Lys Val Thr Gly Glu Gly Cys Val Tyr Leu Gln Thr Ser Leu 1320 1325 Lys Tyr Asn Ile Leu Pro Glu Lys Glu Glu Phe Pro Phe Ala Leu Gly 1330 1335 1340 Val Gln Thr Leu Pro Gln Thr Cys Asp Glu Pro Lys Ala His Thr Ser 1350 1355 1360 Phe Gln Ile Ser Leu Ser Val Ser Tyr Thr Gly Ser Arg Ser Ala Ser 1365 1370 1375 Asn Met Ala Ile Val Asp Val Lys Met Val Ser Gly Phe Ile Pro Leu 1380 1385 Lys Pro Thr Val Lys Met Leu Glu Arg Ser Asn His Val Ser Arg Thr 1395 1400 1405 Glu Val Ser Ser Asn His Val Leu Ile Tyr Leu Asp Lys Val Ser Asn 1420 1415 Gln Thr Leu Ser Leu Phe Phe Thr Val Leu Gln Asp Val Pro Val Arg 1430 1435 Asp Leu Lys Pro Ala Ile Val Lys Val Tyr Asp Tyr Tyr Glu Thr Asp 1445 1450 Glu Phe Ala Ile Ala Glu Tyr Asn Ala Pro Cys Ser Lys Asp Leu Gly 1465 Asn Ala

INTERNATIONAL SEARCH REPORT

Int mal application No.
PCT/US01/18047

A. CLAS	SSIFICATION OF SUBJECT MATTER						
IPC(7) : A61K 59/00, 59/385, 39/39, 47/00, 35/14; CO7K 1/02, 1/04							
US CL :Please See Extra Sheet. According to International Patent Classification (IPC) or to both national classification and IPC							
B. FIEL	DS SEARCHED		··				
Minimum d	ocumentation searched (classification system followe	d by classification symbols)					
U.S. :	424/184.1, 185.1, 195.1, 195.11, 196.11, 197.11; 530	0/592, 402, 403					
Documentat searched	ion searched other than minimum documentation to	o the extent that such documents are i	ncluded in the fields				
Electronic d	lata base consulted during the international search (name of data base and, where practicabl	e, search terms used)				
Medline,	Biosis, Embase, Scisearch, WPIDS, USPatfull as: alpha2- macroglobulin, noncovalent complex, mo		,				
C. DOC	UMENTS CONSIDERED TO BE RELEVANT						
Category*	Citation of document, with indication, where ap	propriate, of the relevant passages	Relevant to claim No.				
X	SMORDIN et al. The complex of alph in the plasma of Gastric Carcinoma 1991. Vol. 33. No. 6. pages 699-706.	patients. Scand J Immunol.	7-9				
Furth	ner documents are listed in the continuation of Box	C. See patent family annex.					
	cial categories of cited documents:	"T" later document published after the inte	mational filing date or priority				
"A" doc	ument defining the general state of the art which is not considered	date and not in conflict with the appl the principle or theory underlying the	ication but cited to understand				
	ee of particular relevance tier document published on or after the international filing date	"X" document of particular relovance; the	claimed invention cannot be				
"L" doc	nament which may throw doubts on priority claim(s) or which is	considered novel or cannot be consider when the document is taken alone	•				
spe	cial mason (as specified) mmant referring to an oral dimlosure, use, exhibition or other	"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art					
	nment published prior to the international filing date but later in the priority date claimed	"&" document member of the same patent	family				
	actual completion of the international search	Date of mailing of the international se	arch report				
12 AUGU	JST 2001	25 OCT 2001					
Commission Box PCT Washington	nailing address of the ISA/US ner of Patents and Trademarks n, D.C. 20231	Authorized officer GEETHA P. BANSAL Surf Well 7					
Facsimile N	o. (703) 305-3230	Telephone No. (703) 308-0196					

INTERNATIONAL SEARCH REPORT

Inte ional application No.
PCT/US01/18047

A. CLASSIFICATION OF SUBJECT MATTER: US CL :						
424/184.1, 185.1, 195.1, 195.11, 196.11, 197.11; 530/392, 402, 403						
·						
•						
·						

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
Потигр.

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.