MAT 244H1Y

Introduction to Ordinary Differential Equations

AUGUST 2010 EXAMINATIONS

August 18, 2010

Instructor: T. Tzaneteas

Duration: 3 hours

PLEASE HAND IN

No calculators or other aids are allowed.

All questions are of equal value.

Family Name:	
Given Name:	
Student Number:	

Question	Mark	Question	Mark
1		6	
2		7	
3		8	
4		9	
5		10	
		Total	

Question 1.

Find the general solution of the differential equation

$$y^{(7)} - y^{(3)} = 0.$$

Question 2.

Find the general solution of equation

$$y''' - 6y'' + 12y' - 8y = 2e^{2t} - 1.$$

Question 3.

Solve the differential equation

$$(1-x)y'' + y = 0$$

by means of a power series about the point x = 0: find the recurrence relation for the coefficients, and the find the first four terms of two independent solutions y_1 and y_2 . Prove that they are independent solutions.

Question 4.

Find the general solution of the system of equations

$$\frac{d\mathbf{x}}{dt} = \left(\begin{array}{ccc} 1 & 0 & 0\\ 2 & 1 & -2\\ 3 & 2 & 1 \end{array}\right) \mathbf{x}.$$

Question 5.

Find the general solution of

$$\frac{d\mathbf{x}}{dt} = \begin{pmatrix} 2 & -5 \\ 1 & -2 \end{pmatrix} \mathbf{x} + \begin{pmatrix} -\cos t \\ \sin t \end{pmatrix}.$$

Question 6.

Consider the differential equation

$$\frac{d\mathbf{x}}{dt} = A\mathbf{x},$$

where A is a 2×2 matrix (independent of t). We have seen that $\mathbf{x} = 0$ is an equilibrium solution of this equation for any A.

- (a) Give an example of a matrix A so that 0 is a saddlepoint.
- (b) Give an example of a matrix A so that 0 is stable but not asymptotically stable.
- (c) Give an example of a matrix A so that there are infinitely many equilibrium solutions.

Question 7.

Consider the system of equations

$$\begin{cases} x' = x - x^2 - xy, \\ y' = 3y - xy - 2y^2. \end{cases}$$

Find all equilibrium points of the system and for each one find the eigenvalues of the linearized system and determine its stability (with respect to the nonlinear system).

Question 8.

Consider the equation

$$\frac{d\mathbf{x}}{dt} = \left(\begin{array}{cc} 0 & \alpha \\ 1 & 2 \end{array}\right) \mathbf{x},$$

where α is a real number.

- (a) Find the critical values at which the qualitative behaviour of the system changes (i.e., the phase portrait changes).
- (b) Draw the phase portrait of the system for $\alpha = -2$ and $\alpha = 3$.

Question 9.

In this question you will prove Abel's Theorem for the second order equation

$$y'' + p(t)y' + q(t)y = 0, \ t \in I,$$

where I is some open interval.

- (a) State Abel's Theorem.
- (b) Let y_1 and y_2 be two solutions of the differential equation above. Differentiate the Wronksian of y_1 and y_2 (with respect to t) 1to find a first order differential equation that it satisfies.
- (c) Solve the equation you found in part (b) for W to complete the proof of Abel's Theorem.

Question 10.

(a) Consider the differential equation

$$M(x,y) + N(x,y)\frac{dy}{dx} = 0.$$

Suppose that the quantity

$$\frac{\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x}}{yN - xM}$$

depends only on xy. Show that the differential equation has an integrating factor of the form $\mu = f(xy)$ and find an explicit formula for μ . (Hint: use the chain rule. It may also be useful to introduce the variable z = xy.)

(b) Use part (a) to find the (implicit) general solution of the differential equation

$$\left(3x + \frac{6}{y}\right) + \left(\frac{x^2}{y} + \frac{3y}{x}\right)\frac{dy}{dx} = 0.$$