Taller 1 Análisis Numérico

David Herrera Caicedo Pablo Alejandro Pulido Febrero 2019

Punto 1:

Primera Ecuación

El número de operaciones fue de: 4

El valor del primer P(x) es igual a: 10.

Por el método de Horner fue: 10.

Segunda Ecuación

El número de operaciones fue de: 5.

El valor del segundo P(x) es igual a: 2030.

Por el método de Horner fue: 2030.

Tercera Ecuación

El número de operaciones fue de: 6.

El valor del tercer P(x) es igual a: 4.

Por el método de Horner fue: 4

Demostración:

Dado un polinomio:

$$p(x) = \sum_{i=0}^{n} a_i x^i = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$

El cual se puede reconstruir como:

$$p(x_0) = a_0 + x(a_1 + x(a_2 + x(a_3 + \dots + x(a_{n-1} + xa_n) \dots))$$

Y utilizando esta secuencia de restricciones:

$$b_n := a_n$$

$$b_{n-1} := a_{n-1} + b_n x_0$$

$$b_{n-2} := a_{n-2} + b_{n-1} x_0$$

$$\vdots$$

Se llega a:

$$p(x_0)=a_0+x(a_1+x(a_2+x(a_3+\cdots+x(a_{n-1}+b_nx_0)\ldots))$$
 Donde sustituyendo de forma iterativa b_i se llega a :
$$p(x_0)=b_0$$

Punto 2:

Como podemos observar en la gráfica, el número de iteraciones contra el tamaño de n representa un comportamiento logarítmico, por lo cual se puede deducir que T(n) es de forma logarítmica, dejándola expresada de la forma O(2log(n))

Punto 3:

A partir del vector de posición $R(t) = (2\cos(t), \sin(t), 0)$, se obtiene la ecuación $F(x) = 3\sin(t)\cos(t) - 4\sin(t) + \cos(t)$ cuya derivada es $F'(x) = -\sin(t)$ -

4cos(t) - 3cos(2t), a esta se le aplica el método de Newton obteniendo los siguientes resultados con un margen de error de 1x10^-4:

Punto 4:

El intervalo utilizado para los dos métodos es [-1,3]

Método de bisección:

Iteracion= 1	Func(x)= 2 $X=0$ Error=	: 1	
Iteracion= 2	Func(x)= 0.6772679 X= -0 .	5 Error= 0.5	
Iteracion= 3	Func(x)= $-0.1558071 X= -0.$	75 Error= 0.25	
Iteracion= 4	Func(x)= 0.2357279 X= -0 .	625 Error= 0.125	
Iteracion= 5	Func(x)= 0.03070317	X= -0.6875 Error=	0.0625
Iteracion= 6	Func(x)= -0.06521648	X= -0.71875 Error=	0.03125
Iteracion= 7	Func(x)= -0.01788049	X= -0.703125 Error=	0.015625
Iteracion= 8	Func(x)= 0.006260805	X= -0.6953125	Error= 0.0078125
Iteracion= 9	Func(x)= -0.00584816	X= -0.6992188	Error= 0.00390625
Iteracion= 10	Func(x) = 0.0001968285	X= -0.6972656	Error= 0.001953125
Iteracion= 11	Func(x)= -0.00282805	X= -0.6982422	Error= 0.0009765625
Iteracion= 12	Func(x)= -0.001316206	X= -0.6977539	Error= 0.0004882812
Iteracion= 13	Func(x)= -0.0005598371	X= -0.6975098	Error= 0.0002441406
Iteracion= 14	Func(x)= -0.0001815414	X= -0.6973877	Error= 0.0001220703
Iteracion= 15	Func(x)= $7.634246e-06$	X= -0.6973267	Error= 6.103516e-05
Iteracion= 16	Func(x)= $-8.69559e-05$	X= -0.6973572	Error= 3.051758e-05
Iteracion= 17	Func(x)= $-3.966141e-05$	X= -0.6973419	Error= 1.525879e-05
Iteracion= 18	Func(x)= $-1.601373e-05$	X= -0.6973343	Error= 7.629395e-06
Iteracion= 19	Func(x)= $-4.189776e-06$	X= -0.6973305	Error= 3.814697e-06
Iteracion= 20	Func(x)= $1.722226e-06$	X= -0.6973286	Error= 1.907349e-06
Iteracion= 21	Func(x)= $-1.233777e-06$	X= -0.6973295	Error= 9.536743e-07
Iteracion= 22	Func(x)= $2.442237e-07$	X= -0.697329 Error=	4.768372e-07
Iteracion= 23	Func(x)= $-4.94777e-07$	X= -0.6973293	Error= 2.384186e-07
Iteracion= 24	Func(x)= $-1.252767e-07$	X= -0.6973292	Error= 1.192093e-07
Iteracion= 25	Func(x)= $5.947351e-08$	X= -0.6973291	Error= 5.960464e-08
Iteracion= 26	Func(x)= $-3.290159e-08$	X= -0.6973291	Error= 2.980232e-08

Iteracion= 27 Func(x)= $1.328596e-08$	X= -0.6973291	Error= 1.490116e-08				
Iteracion= 28 Func(x)= $-9.807813e-09$	X= -0.6973291	Error= 7.450581e-09				
Valor aproximado de iteraciones: 28.57542						

Método de la secante:

Iteracion= 0	Func(x)= -0.4513113	X= -0.8742985	Error= 4.431322
Iteracion= 1	Func(x)= -0.2506719	X= -0.7852055	Error= 0.1134646
Iteracion= 2	Func(x)= 0.07395155	X= -0.6738957	Error= 0.1651736
Iteracion= 3	Func(x) = -0.005953564	X= -0.6992529	Error= 0.03626323
Iteracion= 4	Func(x) = -0.0001067093	X= -0.6973636	Error= 0.002709218
Iteracion= 5	Func(x)= $1.656405e-07$	X= -0.6973291	Error= 4.944762e-05
Iteracion= 6	Func(x)= $-4.580392e-12$	X= -0.6973291	Error= 7.663654e-08
Iteracion= 7	Func(x)= -2.775558e-16	X= -0.6973291	Error= 2.119095e-12

Punto 5:

1. ¿Cómo se ajusta un número infinito binario en un espacio finito de bits?

Infinitos: se ha convenido que cuando todos los bits del exponente están a 1 y todos los del significando a 0, el valor es +/- infinito (según el valor S). Esta distinción ha permitido al Estándar definir procedimientos para continuar las operaciones después que se ha alcanzado uno de estos valores (después de un overflow). Ejemplo:

1 11111111 00000000000000000000000 = - Infinito

3. Error de redondeo:

$$\frac{|f-x|}{|x|} \le \frac{1}{2} * (2^{-52})$$

Punto 7:

a) Se debe asegurar que a y b sean de signo opuesto. ya que esto garantiza que la función en el intervalo [a,b] exista al menos una raíz.
 Esto es: existe al menos un numero p ∈ (α, β) tal que f(p) = 0.
 además, para que la raíz sea única se debe verificar que la derivada de la función mantenga su signo dentro del intervalo [a,b], es decir: x ∈ (a,b) tal que f'(x)>0 O f'(x)<0.