Curve Repulsion - 1

Paul Kim

20/01/2023

1 Theory behind Discretization

Figure 1: Discretization process

We now consider a discretization of a curve. Index the points on the curve by $\mathcal{I} = \{1, 2, \cdots, M\}$, such that points are given by $\{\gamma_1, \gamma_2, \cdots, \gamma_M\}$ Using the similar notation to the paper by Yu, Schumacher, and Crane, for edge $I = \{\gamma_i, \gamma_j\} \in E$ and for function $u : \mathbb{R}^3 \to \mathbb{R}$

- $l_I := |\gamma_i \gamma_j|$
- $T_I := \frac{\gamma_j \gamma_i}{l_I}$
- $\mathbf{x}_I \coloneqq \frac{\gamma_i + \gamma_j}{2}$
- $u_I \coloneqq \frac{u_i + u_j}{2}$
 - Syntactic sugar: $u_i \equiv u(\gamma_i)$
- $u[I] := \begin{pmatrix} u_i \\ u_j \end{pmatrix}$

1.1 Discrete Energy

The naı̈ve discretization of $\mathcal{E}^{\alpha}_{\beta} \coloneqq \iint_{M^2} k^{\alpha}_{\beta} \left(\gamma \left(x \right), \gamma \left(y \right), T \left(x \right) \right) \, \mathrm{d}x_{\gamma} \, \mathrm{d}y_{\gamma}$ where $k^{\alpha}_{\beta} \left(p, q, T \right) \coloneqq \frac{|T \times (p-q)|^{\alpha}}{|p-q|^{\beta}}$ is given by

$$\sum_{I \in E} \sum_{J \in E} \int_{\bar{I}} \int_{\bar{J}} k_{\beta}^{\alpha} (\gamma(x), \gamma(y), T_I) \, dx_{\gamma} \, dy_{\gamma}$$
 (1)

However, in a polygonal curve (hence the discretized curve), (1) is ill-defined.

Figure 2: Near each vertex, the integrand is unbounded.

So resolve this by removing the two neighboring edges.¹ Also approximate the kernel by the average of the kernel evaluated at each pair of appropriate edges (total: 4)

$$\hat{\mathcal{E}}^{\alpha}_{\beta} := \sum_{I,J \in E, I \cap J = \emptyset} \left(\hat{k}^{\alpha}_{\beta} \right)_{I,J} l_I l_J \tag{2}$$

$$\left(\hat{k}_{\beta}^{\alpha}\right)_{I,J} := \frac{1}{4} \sum_{i \in J, j \in J} k_{\beta}^{\alpha} \left(\gamma_{i}, \gamma_{j}, T_{I}\right) \tag{3}$$

2 Discrete Gradient Flow in L^2 for Closed Loop

Suppose a curve is discretized as position vectors: x_1, x_2, \cdots, x_M (and $x_{M+1} \coloneqq x_1$).

Also denote the edge from x_i to x_{i+1} as I_i (as opposed to the previous section).

¹In the limit, the contribution from this removed edge goes to zero.

The **discretized energy** E can be expressed as:

$$E = \sum_{i=1}^{M} \sum_{\substack{j=1\\|j-i|>1}} k_{i,j} ||x_{i+1} - x_i|| ||x_{j+1} - x_j||$$

$$\tag{4}$$

$$k_{i,j} = \frac{1}{4} \left(k_{\beta}^{\alpha} \left(x_i, x_j, T_i \right) + k_{\beta}^{\alpha} \left(x_i, x_{j+1}, T_i \right) + k_{\beta}^{\alpha} \left(x_{i+1}, x_j, T_i \right) + k_{\beta}^{\alpha} \left(x_{i+1}, x_{j+1}, T_i \right) \right)$$
(5)

Figure 3: Kernel $k_{i,j}$ computation

Recall the definition of differential, gradient, and gradient flow.

Definition 1 (Differential). Given functional $\mathcal{E}(\gamma)$, the **differential** is defined as:

$$d\mathcal{E}|_{\gamma}(u) = \lim_{\epsilon \to 0} \frac{1}{\epsilon} \left(\mathcal{E} \left(\gamma + \epsilon u \right) - \mathcal{E} \left(\gamma \right) \right) \tag{6}$$

Definition 2 (Gradient). Given functional $\mathcal{E}(\gamma)$ and space V, the **gradient** grad \mathcal{E} is the unique function satisfying the following for any function u:

$$\langle \langle \operatorname{grad} \mathcal{E}, u \rangle \rangle_V = d\mathcal{E}(u)$$
 (7)

Note that the LHS is a inner product of two vector-valued functions. A natural inner product in L^2 to define is:

$$\langle \langle u, v \rangle \rangle_{L^2} := \int_{\Omega} u \cdot v \, \mathrm{d}x$$
 (8)

Definition 3 (Gradient Flow). Given functional $\mathcal{E}(\gamma)$, the **gradient flow** equation is defined as:

$$\frac{d}{dt}\gamma = -\operatorname{grad}\mathcal{E}(\gamma) \tag{9}$$

Note that $\gamma = (\gamma_x, \gamma_y, \gamma_z)^T \in \mathbb{R}^3$, so it might be clearer to write:

$$\frac{d}{dt} \begin{pmatrix} \gamma_x \\ \gamma_y \\ \gamma_z \end{pmatrix} = \operatorname{grad} \mathcal{E} \begin{pmatrix} \gamma_x \\ \gamma_y \\ \gamma_z \end{pmatrix}$$
 (10)

Gradient flow equation in L^2 is given by²:

$$\frac{d\gamma}{dt} = -\underbrace{\frac{\partial \mathcal{E}}{\partial \gamma}}_{\text{Functional Derivative}} \tag{11}$$

or in our case with discrete energy,

$$\dot{x}_i = -\frac{\partial E}{\partial x_i} \tag{12}$$

For an explicit definition of functional derivatives, see link in the footnote.

3 Constraint

There is a risk that the curve might keep expanding in order to minimize the energy.

To mitigate that, we put an additional "penalty" for the length to the energy. In the case of discrete energy, we modify E to F by:

$$F = E + \lambda \sum_{i} \frac{|x_i|^2}{2} \tag{13}$$

which the gradient flow equation turns into

$$\dot{x}_i = -\frac{\partial E}{\partial x_i} - \lambda x_i \tag{14}$$

where λ is a parameter which one could experiment with.

Seems to parallel Lagrange constant in the method of Langrange multipliers.

²https://math.stackexchange.com/questions/1687804/what-is-the-l2-gradient-flow