23) Google Trends, Google Correlate, and Google Surveys

Vitor Kamada

August 2019

Reference

Davidowitz & Varian (2014). A Hands-on Guide to Google Data

```
https://trends.google.com/trends/?geo=US
https://www.google.com/trends/correlate
https://surveys.google.com/
```

August 2019

Google Trends

Jewish has 3.2 times more searches than Mormon

Jewish population is not 3.2 times larger than the Mormon

Comparison Jewish and Mormon

Data are normalized The highest-scoring state has 100

Map correlates ($R^2 = 0.88$) with the proportion of a state's population that is Jewish

Daily Data vs State Data

Range = [0, 100]

100 vs 50 means twice more searches

3	Day	martini recipe	hangover c	ure: (Unite	d States)
4	11/16/2018	17	6		
5	11/17/2018	26	26		
6	11/18/2018	23	32		
7	11/19/2018	12	9		
8	11/20/2018	15	6		
9	11/21/2018	23	13		
10	11/22/2018	26	24		

3	Region	Jewish: (6/16/19 - 8/16/19)			
4	New York	100			
5	District of Colum	82			
6	New Jersey	79			
7	Maryland	62			
8	Missouri	62			
9	Massachusetts	58			
10	Connecticut	57			
11	Pennsylvania	50			
12	Vermont	50			
13	Rhode Island	47			
14	Kentucky	47			
15	Colorado	46			
16	Florida	45			

Data is cached each day

Average multiple samples: get from different days

Match Types

A space means "and"

Vitor Kamada ECO 7110 Econometrics II August 2019

http://research.stlouisfed.org/fred2/series/HSN1FNS

Normalized Data

Right click -> Format Cells -> Custom -> Enter yyyy-dd-mm

1	FRED Graph Observations				
2	Federal Reserve Economic Data				
3	Link: https://fred.stlouisfed.org				
4	Help: https://fred.stlouisfed.org/help-faq				
5	Economic Research Division				
6	Federal Reserve Bank of St. Louis				
7					
8	HSN1FNSA	New One Family Houses §			
9					
10	Frequency: Monthly				
11	observation_date	HSN1FNSA			
12	1963-01-01	42			
13	1963-02-01	35			
14	1963-03-01	44			
15	1963-04-01	52			
16	1963-05-01	58			
17	1963-06-01	48			

C1	•	=(B1-AVERAGE(B:B))/STDEV.S(B:B)			
	Α	В	С		
1	2004-01-01	89	1.401143		
2	2004-02-01	102	1.894153		
3	2004-03-01	123	2.690553		
4	2004-04-01	109	2.15962		
5	2004-05-01	115	2.387163		
6	2004-06-01	105	2.007924		

9/23

=(B1-AVERAGE(B:B))/STDEV.S(B:B)

Copy Column "C" to Text file

=TEXT(A1, "yyy-mm-dd")&","&B1

Google Correlate

User uploaded activity for Houses Sold and United States Web Search activity for 1031 exchange (r=0.9732)

Eine chart Escatter plot

Correlated with Houses Sold

0.9732 1031 exchange 0.9696 1031

0.9688 real estate test

0 9686 exhaust sound

0.9650 new home construction

0.9642 new housing development

0.9640 home communities

0.9638 appreciation rate

0.9611 manufactured

0.9611 irs 1031

Bayesian Structural Time Series

```
# read data from correlate and make it a zoo time series
dat <- read.csv("Data/econ-HSN1FNSA.csv")</pre>
v <- zoo(dat[,2],as.Date(dat[,1]))</pre>
# use correlates as possible predictors
x \leftarrow dat[.3:ncol(dat)]
# set a few parameters
numiter <- 4000
npred <- 5
# describe state space model consisting of
# trend and seasonal components
ss <- AddLocalLinearTrend(list(),y)</pre>
ss <- AddSeasonal(ss,y,nseasons=12)</pre>
# estimate the model
model <- bsts(y~.,state.specification=ss,data=x,</pre>
niter=numiter, expected.model.size=npred,ping=0,seed=123)
```

plot(model)

Posterior Distribution and Actual Outcome

Top Predictors

plot(model, "comp")

Life Expectancy by State

urlk.org/other/state-indicator/life-expectancy/ Abnormally Short Lifespans: put a minus sign in front the entries in the CSV file

User uploaded activity for **negative life expectancy** and United States Web Search activity for **blood pressure medicine** (r=0.9092)


```
# library(BoomSpikeSlab)
dat <- read.csv("Data/correlate-negative_life_expectancy.csv")
d <- dat[,-1]
reg <- lm.spike(negative.life.expectancy ~ .,niter=4000,data=d)
plot(reg,inc=.10)</pre>
```



```
temp <- predict(reg,newdata=d)
neg.life <- rowMeans(temp)
plot(neg.life~d$negative.life.expectancy)
reg1 <- lm(neg.life~d$negative.life.expectancy)
abline(reg1,col=2)</pre>
```


Google Surveys (GS)

City: IP address **Age and gender**: web site visits

Income: location and Census data

Pew and GCS(GS) Answers

GCS surveys similar to surveys published by reputable organizations

Pricing of Google Surveys

Currency	General population or Android-smartphone users		Age, gender, or location targeted		Postal-code targeted*		User-list targeted*	
	1	2-10	1	2-10	1	2-10	1	2-10
USD	0.10	1.00	0.15	1.50	0.60	6.00	1.00	10.00
AUD	0.13	1.30	0.20	2.00	0.75	7.50	1.25	12.50
CAD	0.12	1.20	0.20	2.00	0.75	7.50	1.25	12.50
CHF	0.10	1.00	0.14	1.40	0.58	5.80	0.96	9.60
EUR	0.09	0.90	0.13	1.30	0.51	5.10	0.86	8.60
GBP	0.08	0.80	0.11	1.10	0.46	4.60	0.76	7.60
ILS	0.32	3.20	0.47	4.70	1.89	18.90	3.15	31.50
JPY	11.20	112.00	16.70	167.00	67.00	670.00	111.60	1116.00

I prefer to buy products that are assembled in America [Agree or disagree]

chevrolet

toyota

Most Responsive: Kernshaw, SC; Summersville, WV; Grundy, VA; Chesnee, SC

Least Responsive: Calipatria, CA; Fremont, CA; Mountain View, CA; San Jose, CA

Predictors for "assembled in America" question

