Lab 3.3 - Student Notebook

Overview

This lab does not continue the healthcare-provider scenario. Instead, you will work with data from an automobile dataset.

In this lab, you will:

- Encode ordinal categorical data
- Encode non-ordinal categorical data

About this dataset

This dataset consists of three types of entities:

- 1. The specification of an automobile in terms of various characteristics
- 2. Its assigned insurance risk rating
- 3. Its normalized losses in use compared to other cars

The second rating corresponds to the degree to which the automobile is riskier than its price indicates. Cars are initially assigned a risk factor symbol that's associated with its price. Then, if it's riskier (or less risky), this symbol is adjusted by moving it up (or down) the scale. Actuarians call this process symboling. A value of +3 indicates that the car is risky. A value of -3 indicates that the car is probably safe.

The third factor is the relative average loss payment per insured vehicle year. This value is normalized for all cars within a particular size classification (two-door small, station wagons, sports or speciality, and others). It represents the average loss per car per year.

Note: Several attributes in the database could be used as a *class* attribute.

Attribute information

Attribute: Attribute Range

- 1. symboling: -3, -2, -1, 0, 1, 2, 3.
- 2. normalized-losses: continuous from 65 to 256.
- 3. fuel-type: diesel, gas.
- 4. aspiration: std, turbo.
- 5. num-of-doors: four, two.
- 6. body-style: hardtop, wagon, sedan, hatchback, convertible.
- 7. drive-wheels: 4wd, fwd, rwd.
- 8. engine-location: front, rear.

- 9. wheel-base: continuous from 86.6 120.9.
- 10. length: continuous from 141.1 to 208.1.
- 11. width: continuous from 60.3 to 72.3.
- 12. height: continuous from 47.8 to 59.8.
- 13. curb-weight: continuous from 1488 to 4066.
- 14. engine-type: dohc, dohcv, I, ohc, ohcf, ohcv, rotor.
- 15. num-of-cylinders: eight, five, four, six, three, twelve, two.
- 16. engine-size: continuous from 61 to 326.
- 17. fuel-system: 1bbl, 2bbl, 4bbl, idi, mfi, mpfi, spdi, spfi.
- 18. bore: continuous from 2.54 to 3.94.
- 19. stroke: continuous from 2.07 to 4.17.
- 20. compression-ratio: continuous from 7 to 23.
- 21. horsepower: continuous from 48 to 288.
- 22. peak-rpm: continuous from 4150 to 6600.
- 23. city-mpg: continuous from 13 to 49.
- 24. highway-mpg: continuous from 16 to 54.
- 25. price: continuous from 5118 to 45400.

Dataset attributions

This dataset was obtained from: Dua, D. and Graff, C. (2019). UCI Machine Learning Repository (http://archive.ics.uci.edu/ml). Irvine, CA: University of California, School of Information and Computer Science.

Step 1: Importing and exploring the data

You will start by examining the data in the dataset.

To get the most out of this lab, read the instructions and code before you run the cells. Take time to experiment!

Start by importing the pandas package and setting some default display options.

```
import pandas as pd

pd.set_option('display.max_rows', 500)
pd.set_option('display.max_columns', 500)
pd.set_option('display.width', 1000)
pd.set_option('future.no_silent_downcasting',True)
```

Next, load the dataset into a pandas DataFrame.

The data doesn't contain a header, so you will define those column names in a variable that's named col_names to the attributes listed in the dataset description.

```
In [6]: url = "imports-85.csv"
    col_names=['symboling','normalized-losses','fuel-type','aspiration','num-
```

```
'length','width','height','curb-weigh
'fuel-system','bore','stroke','compre

df_car = pd.read_csv(url,sep=',',names = col_names ,na_values="?", heade
```

First, to see the number of rows (instances) and columns (features), you will use shape .

In [7]: df_car.shape

Out[7]: (205, 25)

Next, examine the data by using the head method.

In [4]: df_car.head(5)

Out[4]:

	symboling	normalized- losses	fuel- type	aspiration	num- of- doors	body- style	drive- wheels	engine- location	wheel- base
0	3	NaN	gas	std	two	convertible	rwd	front	88.6
1	3	NaN	gas	std	two	convertible	rwd	front	88.6
2	1	NaN	gas	std	two	hatchback	rwd	front	94.5
3	2	164.0	gas	std	four	sedan	fwd	front	99.8
4	2	164.0	gas	std	four	sedan	4wd	front	99.4

There are 25 columns. Some of the columns have numerical values, but many of them contain text.

To display information about the columns, use the info method.

In [8]: df_car.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 205 entries, 0 to 204
Data columns (total 25 columns):

#	Column	Non-Null Count	Dtype						
0	symboling	205 non-null	int64						
1	normalized-losses	164 non-null	float64						
2	fuel-type	205 non-null	object						
3	aspiration	205 non-null	object						
4	num-of-doors	203 non-null	object						
5	body-style	205 non-null	object						
6	drive-wheels	205 non-null	object						
7	engine-location	205 non-null	object						
8	wheel-base	205 non-null	float64						
9	length	205 non-null	float64						
10	width	205 non-null	float64						
11	height	205 non-null	float64						
12	curb-weight	205 non-null	int64						
13	engine-type	205 non-null	object						
14	num-of-cylinders	205 non-null	object						
15	engine-size	205 non-null	int64						
16	fuel-system	205 non-null	object						
17	bore	201 non-null	float64						
18	stroke	201 non-null	float64						
19	compression-ratio	205 non-null	float64						
20	horsepower	203 non-null	float64						
21	peak-rpm	203 non-null	float64						
22	city-mpg	205 non-null	int64						
23	highway-mpg	205 non-null	int64						
24	price	201 non-null	float64						
dtype	es: float64(11), in	t64(5) , object(9)						
memo	memory usage: 40.2+ KB								

To make it easier to view the dataset when you start encoding, drop the columns that you won't use.

```
In [9]: df_car.columns
```

Out[9]: Index(['symboling', 'normalized-losses', 'fuel-type', 'aspiration', 'num -of-doors', 'body-style', 'drive-wheels', 'engine-location', 'wheel-bas e', 'length', 'width', 'height', 'curb-weight', 'engine-type', 'num-of-c ylinders', 'engine-size', 'fuel-system', 'bore', 'stroke', 'compression-ratio', 'horsepower', 'peak-rpm', 'city-mpg', 'highway-mpg', 'price'], d type='object')

```
In [10]: df_car = df_car[[ 'aspiration', 'num-of-doors', 'drive-wheels', 'num-of
```

You now have four columns. These columns all contain text values.

```
In [11]: df_car.head()
```

Out[11]:	Out[11]: aspiration		num-of-doors	drive-wheels	num-of-cylinders
	0	std	two	rwd	four
	1	std	two	rwd	four
	2	std	two	rwd	six
	3	std	four	fwd	four
	4	std	four	4wd	five

Most machine learning algorithms require inputs that are numerical values.

- The **num-of-cylinders** and **num-of-doors** features have an ordinal value. You could convert the values of these features into their numerical counterparts.
- However, **aspiration** and **drive-wheels** don't have an ordinal value. These features must be converted differently.

You will explore the ordinal features first.

Step 2: Encoding ordinal features

In this step, you will use a mapper function to convert the ordinal features into ordered numerical values.

Start by getting the new column types from the DataFrame:

```
In [12]: df car.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 205 entries, 0 to 204
        Data columns (total 4 columns):
                              Non-Null Count Dtype
             Column
            aspiration
                             205 non-null
         0
                                             object
             num-of-doors
         1
                             203 non-null
                                              object
             drive-wheels
                              205 non-null
                                              object
             num-of-cylinders 205 non-null
                                              object
        dtypes: object(4)
        memory usage: 6.5+ KB
```

First, determine what values the ordinal columns contain.

Starting with the **num-of-doors** feature, you can use **value_counts** to discover the values.

```
In [13]: df_car['num-of-doors'].value_counts()
Out[13]: num-of-doors
    four    114
    two    89
    Name: count, dtype: int64
```

This feature only has two values: *four* and *two*. You can create a simple mapper that contains a dictionary:

You can then use the replace method from pandas to generate a new numerical column based on the **num-of-doors** column.

```
In [29]: df_car['doors'] = df_car["num-of-doors"].replace(door_mapper)
```

When you display the DataFrame, you should see the new column on the right. It contains a numerical representation of the number of doors.

```
In [17]: df_car.head()
```

Out[17]:		aspiration	num-of-doors	drive-wheels	num-of-cylinders	doors
	0	std	two	rwd	four	2.0
	1	std	two	rwd	four	2.0
	2	std	two	rwd	six	2.0
	3	std	four	fwd	four	4.0
	4	std	four	4wd	five	4.0

Repeat the process with the **num-of-cylinders** column.

First, get the values.

```
In [18]: df_car['num-of-cylinders'].value_counts()

Out[18]: num-of-cylinders
    four    159
    six    24
    five    11
```

eight 5 two 4 three 1 twelve 1

Name: count, dtype: int64

Next, create the mapper.

Apply the mapper by using the replace method.

```
In [30]: df_car['cylinders'] = df_car['num-of-cylinders'].replace(cylinder_mapper)
In [21]: df_car.head()
```

Out[21]:		aspiration	num-of-doors	drive-wheels	num-of-cylinders	doors	cylinders
	0	std	two	rwd	four	2.0	4
	1	std	two	rwd	four	2.0	4
	2	std	two	rwd	six	2.0	6
	3	std	four	fwd	four	4.0	4
	4	std	four	4wd	five	4.0	5

For more information about the replace method, see pandas.DataFrame.replace in the pandas documentation.

Step 3: Encoding non-ordinal categorical data

In this step, you will encode non-ordinal data by using the get_dummies method from pandas.

The two remaining features are not ordinal.

According to the attribute description, the following values are possible:

- aspiration: std, turbo.
- drive-wheels: 4wd, fwd, rwd.

You might think that the correct strategy is to convert these values into numerical values. For example, consider the **drive-wheels** feature. You could use 4wd = 1, fwd = 2, and rwd = 3. However, fwd isn't less than rwd. These values don't have an order, but you just introduced an order to them by assigning these numerical values.

The correct strategy is to convert these values into *binary features* for each value in the original feature. This process is often called *one-hot encoding* in machine learning, or *dummying* in statistics.

pandas provides a get_dummies method, which converts the data into binary
features. For more information, see pandas.get_dummies in the pandas
documentation.

According to the attribute description, drive-wheels has three possible values.

```
In [22]: df_car['drive-wheels'].value_counts()

Out[22]: drive-wheels
    fwd    120
    rwd    76
    4wd    9
    Name: count, dtype: int64
```

Use the get_dummies method to add new binary features to the DataFrame.

		aspiration	num- of- doors	num-of- cylinders	doors	cylinders	drive- wheels_4wd	drive- wheels_fwd	drive- wheels_rwd
	0	std	two	four	2.0	4	False	False	True
	1	std	two	four	2.0	4	False	False	True
	2	std	two	six	2.0	6	False	False	True
	3	std	four	four	4.0	4	False	True	False
	4	std	four	five	4.0	5	True	False	False

When you examine the dataset, you should see three new columns on the right:

- drive-wheels_4wd
- drive-wheels_fwd
- drive-wheels_rwd

The encoding was straightforward. If the value in the **drive-wheels** column is *4wd*, then a *1* is the value in the **drive-wheels_4wd** column. A *0* is the value for the other columns that were generated. If the value in the **drive-wheels** column is *fwd*, then a *1* is the value in the **drive-wheels_fwd** column, and so on.

These binary features enable you to express the information in a numerical way, without implying any order.

Examine the final column that you will encode.

The data in the **aspiration** column only has two values: *std* and *turbo*. You could encode this column into two binary features. However, you could also ignore the *std* value and record whether it's *turbo* or not. To do this, you would still use the get_dummies method, but specify drop_first as *True*.

Out[27]:

		num- of- doors	num-of- cylinders	doors	cylinders	drive- wheels_4wd	drive- wheels_fwd	drive- wheels_rwd	aspiration_
	0	two	four	2.0	4	False	False	True	
	1	two	four	2.0	4	False	False	True	
	2	two	six	2.0	6	False	False	True	
	3	four	four	4.0	4	False	True	False	
	4	four	five	4.0	5	True	False	False	

Challenge task: Go back to the beginning of this lab, and add other columns to the dataset. How would you encode the values of each column? Update the code to include some of the other features.

Congratulations!

You have completed this lab, and you can now end the lab by following the lab guide instructions.

In []: