234053 Numer indeksu

Paweł Galewicz

 $Imi \cite{e} i \ nazwisko$

234067

 $\frac{Numer\ indeksu}{Bartosz\ Jurczewski}$

 $Imie\ i\ nazwisko$

234102

 $\begin{array}{c} \textit{Numer indeksu} \\ \textbf{Zbigniew Nowacki} \end{array}$

Imię i nazwisko

234106

Numer indeksu Karol Podlewski

Imię i nazwisko

234128

 $Numer\ indeksu$

Piotr Wardęcki

Imię i nazwisko

Kierunek Informatyka Stosowana

Stopień II

Specjalizacja Data Science

Semestr 1

Data oddania 18 marca 2020

Metody uczenia maszynowego

Problem set 1

Spis treści

1	Cel		3
2	$\mathbf{W}\mathbf{p}$	rowadzenie	3
	2.1	Algorytm drzew decyzyjnych	3
	2.2	Naiwny klasyfikator Bayesa	3
	2.3	Maszyna wektorów nośnych	3
	2.4	Klasyfikator k-najbliższych sąsiadów	3
	2.5	Algorytm sztucznych sieci neuronowych	4
3	Opi	s implementacji	4
4	Bad	lania	4
	4.1	Algorytm drzew decyzyjnych	5
		4.1.1 Różne ustawienia parametrów konfiguracyjnych	5
		4.1.2 Różne zbiory danych	5
	4.2	Naiwny klasyfikator Bayesa	5
		4.2.1 Różne ustawienia parametrów konfiguracyjnych	5
		4.2.2 Różne zbiory danych	5
	4.3	Maszyna wektorów nośnych	5
		4.3.1 Różne ustawienia parametrów konfiguracyjnych	5
		4.3.2 Różne zbiory danych	5
	4.4	Klasyfikator k-najbliższych sąsiadów	5
		4.4.1 Różne ustawienia parametrów konfiguracyjnych	5
		4.4.2 Różne zbiory danych	5
	4.5	Algorytm sztucznych sieci neuronowych	5
		4.5.1 Różne ustawienia parametrów konfiguracyjnych	5
		4.5.2 Różne zbiory danych	5

1 Cel

Zadanie polega na analizie procesu klasyfikacji danych za pomocą wybranych metod:

- 1. Algorytm drzew decyzyjnych
- 2. Naiwny klasyfikator Bayesa
- 3. Maszyna wektorów nośnych
- 4. Klasyfikator k-najbliższych sąsiadów
- 5. Algorytm sztucznych sieci neuronowych

Należy zaimplementować każdą metodę, a następnie zweryfikować jej działanie biorąc pod uwagę:

- różne możliwe ustawienia parametrów konfiguracyjnych i ich wpływ na wyniki klasyfikacji
- zbiory danych o różnej charakterystyce (przynajmniej 3 różne zbiory)

Każdą metodę należy przetestować na tych samych zbiorach, a następnie porównać wyniki i wyciągnąć wnioski dotyczące skuteczności poszczególnych metod. Jako kryterium porównawcze wystarczy omówić dokładność klasyfikacji (accuracy), pozostałe kryteria są opcjonalne.

2 Wprowadzenie

2.1 Algorytm drzew decyzyjnych

Opis

2.2 Naiwny klasyfikator Bayesa

Opis

2.3 Maszyna wektorów nośnych

Opis

2.4 Klasyfikator k-najbliższych sąsiadów

Algorytm ten należy do grupy algorytmów analizy skupień (wyszukiwanie i wyodrębnianie grup obiektów podobnych do siebie). Algorytm k-średnich polega na przenoszeniu punktów skupień (centroidów) do środków ciężkości podzbiorów punktów. Przebieg algorytmu jest następujący:

- 1. Określamy liczbę skupień (k)
- 2. Wybieramy losowo środki skupień (centroidy)
- 3. Obliczamy odległości wybranych obiektów od środków skupień za pomocą odległości euklidesowej
- 4. Przypisujemy obiekty do skupień
- 5. Ustalamy na nowo środki skupień

Kroki od 3 do 5 są wykonywane, aż zostanie spełniony warunek zatrzymania algorytmu. W tym przypadku będzie to przekroczenie narzuconej wcześniej liczby iteracji, lub doprowadzenie skupień do stanu w którym nie będzie dochodziło już do żadnych przesunięć obiektów.

2.5 Algorytm sztucznych sieci neuronowych

Opis

3 Opis implementacji

Algorytmy zostały zaimplementowane za pomocą języka Python w wersji 3.8.2. Wykorzystano w nim biblioteki NumPy, Sklearn i Pandas. Bazowaliśmy na trzech zestawach danych:

- Fall Detection Data from China https://www.kaggle.com/pitasr/falldata
- Rain in Australia https://www.kaggle.com/jsphyg/weather-dataset-rattle-package
- Suicide Rates Overview 1985 to 2016 https://www.kaggle.com/russellyates88/suicide-rates-over

4 Badania

Cytuję: "Należy zaimplementować każdą metodę, a następnie zweryfikować jej działanie biorac pod uwagę:

- A. różne możliwe ustawienia parametrów konfiguracyjnych i ich wpływ na wyniki klasyfikacji"
- B. zbiory danych o różnej charakterystyce (przynajmniej 3 różne zbiory)

- 4.1 Algorytm drzew decyzyjnych
- 4.1.1 Różne ustawienia parametrów konfiguracyjnych
- 4.1.2 Różne zbiory danych
- 4.2 Naiwny klasyfikator Bayesa
- 4.2.1 Różne ustawienia parametrów konfiguracyjnych
- 4.2.2 Różne zbiory danych
- 4.3 Maszyna wektorów nośnych
- 4.3.1 Różne ustawienia parametrów konfiguracyjnych
- 4.3.2 Różne zbiory danych
- 4.4 Klasyfikator k-najbliższych sąsiadów
- 4.4.1 Różne ustawienia parametrów konfiguracyjnych
- 4.4.2 Różne zbiory danych
- 4.5 Algorytm sztucznych sieci neuronowych
- 4.5.1 Różne ustawienia parametrów konfiguracyjnych
- 4.5.2 Różne zbiory danych