L6: Framework of Reinforcement Learning (I)

Hao Su

(slides prepared by Tongzhou Mu)

Contents are based on Reinforcement Learning: An Introduction from Prof. Richard S. Sutton and Prof. Andrew G. Barto, and COMPM050/COMPGI13 taught at UCL by Prof. David Silver.

H Show this help

Left & Right Previous & Next step

P Presenter console

F5 / ESC Fullscreen: Enter / Exit

Agenda

- Examples
- Environment Description and Learning Objective
- Inside an RL Agent

click to jump to the section.

H Show this help

Left & Right Previous & Next step

P Presenter console

F5 / ESC Fullscreen: Enter / Exit

RL Applications

Control a humannoid in Mujoco.

https://gym.openai.com/envs/Humanoid-v2/

Play Atari games.

https://gym.openai.com/envs/Enduro-v0/

RL Applications

Play Go.

Learn motor skills for legged robots

https://www.youtube.com/watch?v=ITfBKjBH46E

Agent-Environment Interface

- Agent: learner and decision maker.
- **Environment**: the thing agent interacts with, comprising everything outside the agent.
- Action: how agent interacts with the environment.
- In engineers' terms, they are called controller, controlled system (or plant), and control signal.

Figure 3.1: The agent–environment interaction in a Markov decision process.

Agent-Environment Interface

- ullet At each step t the agent
 - \circ Executes action A_t
 - \circ Receives state S_t
 - $\circ\,$ Receives scalar reward R_t

- The environment
 - \circ Receives action A_t
 - $\circ \;$ Emits state S_{t+1}
 - $\circ \,$ Emits scalar reward R_{t+1}

Figure 3.1: The agent–environment interaction in a Markov decision process.

RL: A Sequential Decision Making Problem

- Goal: select actions to maximize total future reward
- Actions may have long-term consequences
- Reward may be delayed
- It may be better to sacrifice immediate reward to gain more long-term reward
- Examples:
 - A financial investment (may take months to mature)
 - Refuelling a helicopter (might prevent a crash in several hours)
 - Blocking opponent moves (might help winning chances many moves from now)

State

- State: A representation of the entire environment, it may contain
 - o Description about the external environment
 - Description about the agent
 - Description about the desired task / goal
 - 0 ..
- ullet As in control problems, we can use a vector $oldsymbol{s} \in \mathbb{R}^n$ to represent the state.
- We can also use advanced data structures, such as images, small video clips, sets, and graphs.

Transition

- State transition functions can be deterministic or stochastic. More generally, we use a stochastic transition function.
- A state transition function is defined as

11/34

$$\circ \; \mathcal{P}^a_{s,s'} = P(s'|s,a) = \Pr(S_{t+1} = s'|S_t = s, A_t = a)$$

ullet ${\cal P}$ defines the dynamics of the environment.

Markov Property

- "The future is independent of the past given the present"
- Markov state
 - \circ A state S_t is Markov if and only if
 - $\bullet \ \Pr(S_{t+1}|S_t,A_t) = \Pr(S_{t+1}|S_1,A_1,\ldots,S_t,A_t)$
 - $\,\circ\,$ The state captures all relevant information from the history
 - Once the state is known, the history may be thrown away
 - i.e. The state is a sufficient statistic of the future

• The concept of state can be extended to **observation**, which is the thing directly received by the agent from the environment

- The concept of state can be extended to **observation**, which is the thing directly received by the agent from the environment
- Full observability: the observations are *Markov* states,
 - o the RAM of Atari games
 - o full state in simulator like SAPIEN

- The concept of state can be extended to **observation**, which is the thing directly received by the agent from the environment
- Full observability: the observations are Markov states,
 - the RAM of Atari games
 - full state in simulator like SAPIEN
- Partial observability: there are *invisible latent variables* to determine the transition.
 - A robot with camera vision isn't told its absolute location
 - A trading agent only observes current prices
 - A poker playing agent only observes public cards

- The concept of state can be extended to **observation**, which is the thing directly received by the agent from the environment
- Full observability: the observations are Markov states,
 - the RAM of Atari games
 - o full state in simulator like SAPIEN
- Partial observability: there are *invisible latent variables* to determine the transition.
 - o A robot with camera vision isn't told its absolute location
 - o A trading agent only observes current prices
 - A poker playing agent only observes public cards
- In RL community, observation and state are sometimes used interchangeably, but "state" is more like to be Markov state, "observation" is more like to be non-Markov state.

Reward

- ullet A reward R_{t+1} is a **scalar random variable** about the feedback signal
 - \circ Indicates how well agent is doing at step t
 - Like a negative concept of "cost" in optimal control
- The agent's job is to maximize cumulative reward
- Examples:
 - Make a humanoid robot walk
 - + reward for forward motion
 - reward for falling over
 - Playing Go
 - +/- reward for winning/losing a game
 - Manage an investment portfolio
 - + reward for each \$ in bank

Probabilistic Description of Environment: Markov Decision Processes

- A Markov decision process (MDP) is a Markov process with rewards and decisions.
- Definition:
- A Markov decision process is a tuple (S, A, P, R)
 - \circ \mathcal{S} is a set of states (discrete or continuous)
 - \circ \mathcal{A} is a set of actions (discrete or continuous)
 - $\circ \mathcal{P}$ is a state transition probability function

$$lacksquare \mathcal{P}^a_{s,s'} = P(s'|s,a) = \Pr(S_{t+1} = s'|S_t = s, A_t = a)$$

- $\circ \mathcal{R}$ is a reward function
 - $lacksquare \mathcal{R}^a_s = R(s,a) = \mathbb{E}[R_{t+1}|S_t=s,A_t=a]$
- \circ Sometimes, an MDP also includes an initial state distribution μ

Probabilistic Description of Environment: Markov Decision Processes

- Markov decision processes formally describe an environment for reinforcement learning
- Almost all RL problems can be formalized as MDPs, e.g.
 - o Optimal control primarily deals with continuous MDPs
 - o Partially observable problems can be converted into MDPs
 - Bandits are MDPs with one state (we won't discuss this in our class)
- In this course, our RL algorithms are based on the MDP assumption (i.e., fully observable states).

Return

- ullet Infinite-horizon return (total discounted reward) from time-step t (for a given policy):
 - $\circ~G_t = R_{t+1} + \gamma R_{t+2} + \ldots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$
 - $\circ \ \gamma \in [0,1]$: discount factor

17/34

- \circ Note: G_t is a **random variable**, because reward is a random variable
- Does it remind you the concept of "cost-to-go" function?

Return

- ullet Infinite-horizon return (total discounted reward) from time-step t (for a given policy):
 - $\circ~G_t = R_{t+1} + \gamma R_{t+2} + \ldots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$
 - $\circ \; \gamma \in [0,1]$: discount factor
 - \circ Note: G_t is a **random variable**, because reward is a random variable
 - Does it remind you the concept of "cost-to-go" function?
- ullet Introducing γ values immediate reward over delayed reward
 - $\circ \ \gamma$ close to 0 o "myopic" evaluation
 - $\circ \ \gamma$ close to 1
 ightarrow "far-sighted" evaluation

Return

- Infinite-horizon return (total discounted reward) from time-step t (for a given policy):
 - $\circ~G_t = R_{t+1} + \gamma R_{t+2} + \ldots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$
 - $\circ \; \gamma \in [0,1]$: discount factor

17/34

- \circ Note: G_t is a **random variable**, because reward is a random variable
- Does it remind you the concept of "cost-to-go" function?
- ullet Introducing γ values immediate reward over delayed reward
 - $\circ \ \gamma$ close to 0 o "myopic" evaluation
 - $\circ \ \gamma$ close to 1 o "far-sighted" evaluation
- Most Markov reward and decision processes are discounted. Why?
 - $\circ\,$ Mathematically, total reward gets bounded (if step rewards are bounded).
 - Uncertainty about the future may not be fully represented
 - $\circ\,$ Animal/human behaviour shows preference for immediate reward

Episode

- Agent-environment interaction usually breaks naturally into subsequences, which we call episodes, e.g.,
 - o plays of a game
 - o trips through a maze
- Termination of an episode
 - Each episode ends in a special state called the *terminal state*, followed by a **reset** to a standard starting state or to a sample from a standard distribution of starting states.
 - Even if you think of episodes as ending in different ways, such as winning and losing a game, the next episode begins independently of how the previous one ended.
 - \circ **The time of termination**, T, is a random variable that normally varies from episode to episode.
- Tasks with episodes of this kind are called *episodic tasks*.
- In episodic tasks, returns will be truncated to finite-horizon.

Learning Objective of RL

- Formally, the objective of an RL agent is to maximize its *expected return*
- Given an MDP, find a policy π to maximize the expected return induced by π
 - \circ We use τ to denote a trajectory $s_0, a_0, r_1, s_1, a_1, r_2, \ldots$ generated by π
 - The conditional probability of τ given π is

$$egin{aligned} \Pr(au|\pi) &= \Pr(s_0, a_0, r_1, s_1, a_1, r_2, \dots | \pi) \ &= \Pr(S_0 = s_0) \Pr(a_0, r_1, s_1, a_1, r_2, \dots | \pi, s_0) \ &= \Pr(S_0 = s_0) \Pr(a_0, r_1, s_1 | \pi) \Pr(a_1, r_2, \dots | \pi, s_1) \quad // ext{ by Markovian property} \ &= \Pr(S_0 = s_0) \pi(a_0 | s_0) P(s_1 | s_0, a_0) \Pr(r_1 | s_0, a_0) \Pr(a_1, r_2, \dots | \pi, s_1) \ &= \dots \ &= \Pr(S_0 = s_0) \prod_t \pi(a_t | s_t) P(s_{t+1} | s_t, a_t) \Pr(r_{t+1} | s_t, a_t) \end{aligned}$$

Learning Objective of RL

- Formally, the objective of an RL agent is to maximize its *expected return*
- Given an MDP, find a policy π to maximize the expected return induced by π
 - \circ We use au to denote a trajectory $s_0, a_0, r_1, s_1, a_1, r_2, \ldots$ generated by π
 - \circ Optimization problem: $\max_{\pi} J(\pi)$

$$egin{aligned} J(\pi) &= \mathbb{E}_{ au\sim\pi}[R_1 + \gamma R_2 + \dots] \ &= \sum_{ au} \Pr(au | \pi)(r_1 + \gamma r_2 + \dots) \ &= \sum_{ au} \left(\Pr(S_0 = s_0) \prod_t \Big(\pi(a_t | s_t) P(s_{t+1} | s_t, a_t) \Pr(r_{t+1} | s_t, a_t) \Big) (r_1 + \gamma r_2 + \dots) \right) \end{aligned}$$

Data Collection in Supervised Learning and Reinforcement Learning

- In supervised learning,
 - \circ A dataset $\mathcal{D} = \{(x_i, y_i)\}$ is usually given and fixed
 - \circ where x_i is input of a data sample, y_i is the corresponding label
- In reinforcement learning,
 - \circ The "dataset" $\mathcal{D} = \{(s_t, a_t, r_{t+1}, s_{t+1})\}$ is sampled by the agent itself by its policy π
 - $\circ~$ And the data distribution will shift according to the change of π
- This difference introduces a core problem in RL: exploration, which we will elaborate later in this course.

Relationship between Optimal Control and Reinforcement Learning

- Optimal Control
 - Controller
 - o Controlled System
 - Control Signal
 - State
 - Cost
 - o Cost-to-go function

- Reinforcement Learning
 - o Agent
 - Environment
 - Action
 - State / Observation
 - Reward
 - Return

- Differences
 - Environment dynamics is usually known in optimal control, but likely to be unknown in RL.
 - o RL extends the ideas from optimal control to non-traditional control problems.
 - o RL is more data-driven while optimal control is model-driven.

Major Components of an RL Agent

- An RL agent may include one or more of these components:
 - **Model**: agent's representation of the environment
 - o **Policy**: agent's behaviour function
 - **Value function**: how good is each state and/or action

< step-24

Model

- In RL community, the term "model" has a specific meaning
- A **model** predicts what the environment will do next
- \mathcal{P} predicts the next state

$$\circ \; \mathcal{P}^a_{s,s'} = \Pr(S_{t+1} = s' | S_t = s, A_t = a)$$

- Sometimes this is also called *dynamics model*
- \bullet $\mathcal R$ predicts the next (immediate) reward

$$egin{aligned} \circ \; \mathcal{R}_s^a = \mathbb{E}[R_{t+1}|S_t = s, A_t = a] \end{aligned}$$

- Sometimes this is also called *reward model*
- If the agent maintains a model of the environment to learn policies and value, we call its learning method is *model-based*.
- It is also possible for the agents to learn about policies and environments without an environment model. Then, it is called *model-free*.

Maze Example

• States: Agent's location

• Actions: N, E, S, W, stay

• Reward: -1 per time-step

• Termination: Reach goal

Maze Example: Model

- Agent may have an internal model of the environment
- Dynamics: how actions change the state
- Rewards: how much reward from each state
- In the right figure:
 - $\circ~$ Grid layout represents transition model $\mathcal{P}^a_{s,s'}$
 - \circ Numbers represent immediate reward \mathcal{R}^a_s from each state s (same for all a)

Policy

- A policy is the agent's behaviour
- It is a map from state to action, e.g.,
 - \circ Deterministic policy: $a=\pi(s)$
 - \circ Stochastic policy: $\pi(a|s) = \Pr(A_t = a|S_t = s)$

Maze Example: Policy

- ullet Arrows represent policy $\pi(s)$ for each state s
- This is the optimal policy for this Maze MDP

- Value function is a prediction of future reward
- Evaluates the goodness/badness of states

- Value function is a prediction of future reward
- Evaluates the goodness/badness of states
- State-value function
 - \circ The state-value function $V_\pi(s)$ of an MDP is the expected return starting from state s, following the policy π
 - $\circ \ V_\pi(s) = \mathbb{E}_\pi[G_t|S_t=s]$ (assuming infinite horizon here)

- Value function is a prediction of future reward
- Evaluates the goodness/badness of states
- State-value function
 - \circ The state-value function $V_\pi(s)$ of an MDP is the expected return starting from state s, following the policy π
 - $\circ \ V_\pi(s) = \mathbb{E}_\pi[G_t|S_t=s]$ (assuming infinite horizon here)
- Action-value function

30/34

- \circ The action-value function $Q_\pi(s,a)$ is the expected return starting from state s, taking action a, following policy π
- $\circ \ Q_{\pi}(s,a) = \mathbb{E}_{\pi}[G_t|S_t=s,A_t=a]$ (assuming infinite horizon here)

- Value function is a prediction of future reward
- Evaluates the goodness/badness of states
- State-value function
 - \circ The state-value function $V_\pi(s)$ of an MDP is the expected return starting from state s, following the policy π
 - $\circ \ V_{\pi}(s) = \mathbb{E}_{\pi}[G_t|S_t=s]$ (assuming infinite horizon here)
- Action-value function
 - \circ The action-value function $Q_\pi(s,a)$ is the expected return starting from state s, taking action a, following policy π
 - $\circ \ Q_{\pi}(s,a) = \mathbb{E}_{\pi}[G_t|S_t=s,A_t=a]$ (assuming infinite horizon here)
- Notation explanation:
 - \circ In this lecture, when we write \mathbb{E}_{π} , it means we take expectation over all samples/trajectories generated by running the policy π in the environment
 - $\circ~$ So it counts for all the randomness from policy, initial state, state transition, and reward.

Bellman Expectation Equation

• Value functions satisfy recursive relationships:

$$V_{\pi}(s) = \mathbb{E}_{\pi}[R_{t+1} + \gamma V_{\pi}(S_{t+1}) | S_t = s] \quad ext{(Bellman expectation equation)}$$

Proof:
$$V_{\pi}(s) = \mathbb{E}_{\pi}[G_t|S_t = s] = \mathbb{E}_{\pi}[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots |S_t = s]$$

 $= \mathbb{E}_{\pi}[R_{t+1} + \gamma (R_{t+2} + \gamma R_{t+3} + \dots) |S_t = s]$
 $= \mathbb{E}_{\pi}[R_{t+1} + \gamma G_{t+1} | S_t = s]$

- The value function can be decomposed into two parts:
 - $\circ \,$ immediate reward R_{t+1}
 - \circ discounted value of successor state $\gamma V_\pi(S_{t+1})$
- The action-value function can similarly be decomposed:

$$Q_{\pi}(s,a) = \mathbb{E}_{\pi}[R_{t+1} + \gamma Q_{\pi}(S_{t+1},A_{t+1})|S_t = s, A_t = a]$$

Maze Example: Value Function

- ullet Numbers represent value $V_\pi(s)$ of each state s
- This is the value function corresponds to the optimal policy we showed previously

< step-32

32/34

