NBA 5420 – Investments and Portfolio Management Problem Set 2 – Portfolio Optimization

Problem 1:

Stock A's expected return and standard deviation are $E[R_A] = 5\%$ and $\sigma_A = 15\%$, while stock B's expected return and standard deviation are $E[R_B] = 7\%$ and $\sigma_B = 21\%$.

- **a.** Determine the expected return and standard deviation of the return on a portfolio with weights ω_A =.35 and ω_B =.65 for the following alternative values of correlation between A and B: ρ_{AB} =0.6 and ρ_{AB} = -0.4.
- **b.** Assume now that ρ_{AB} =-1.0 and find the portfolio p of stocks A and B that has no risk (i.e. such that σ_p =0). Can you do the same when ρ_{AB} =1.0? If not, why? If so, find that portfolio.
- **c.** Finally, assume that ρ_{AB} =0. Find the standard deviations of portfolios with the following expected returns: 4%, 5%, 6%, 7%, 8%, 9%, 10%. Plot the expected return—standard deviation pairs on a graph (with the standard deviations on the horizontal axis, and the expected returns on the vertical axis).
- **d.** Consider three stocks, A, B and C. Suppose that both $\rho_{AB}=0$ and $\rho_{BC}=0$. Does that imply $\rho_{AC}=0$? Show that it is, or find a counter-example.

Problem 2:

The following table shows data on two risky assets, and a risk-free asset:

Asset	Expected Return	Standard Deviation
A	13%	40%
В	7%	10%
Risk-free	5%	0%

The returns of assets A and B are uncorrelated.

a. Investor X does not mind taking a lot of risk, and reasons as follows: "The risk-free asset offers a very low return (5%). Asset B is better (7% expected return),

with some risk (10%), but Asset A is better still (13% expected return), with high risk (40%). Since risk doesn't bother me that much, the optimal strategy for me is to forget about Asset B and the risk-free asset, and invest only in Asset A." What do you think about this reasoning? Can you suggest a better strategy? Explain briefly how Investor X should choose her optimal portfolio. (A diagram may be helpful.)

b. Is the following statement TRUE or FALSE? Explain briefly, relating your answer to question C.1 above. (A correct answer with no explanation will receive little credit.)

"Investor Y is much more risk-averse than X. Therefore, his optimal portfolio will include less of asset A, and more of Asset B, than the optimal portfolio for Investor X."

Problem 3:

Suppose that you have n risky assets at your disposal. All n assets have the same expected return μ and the same standard deviation σ and are pairwise uncorrelated. Which of the following statement is true, and why?

- a. Any two portfolios made up with these assets will have the same expected returns and variances.
- b. Since the assets have the same expected return, variance and covariance, they also all have the same correlation with the market portfolio.
- c. Diversification is pointless in this case because since the assets have the same variance most of the risk is systematic.
- d. Diversification can reduce the risk really well in this case because most of the risk is idiosyncratic.

Problem 4:

Consider an economy with 2 stocks. Let stock 1 have a mean return μ_1 =6 and variance of σ_1^2 =10. Stock 2 has a mean return of μ_2 =8 and a variance of σ_2^2 =20. The covariance is σ_{12} =5.

- a. What is the variance of the minimum variance portfolio?
- b. If an investor has the utility function $U = \mu \frac{1}{2} * \sigma^2$ and is only able to invest in those two stocks (and no riskless asset), what is the optimal portfolio?