MATH 8200 Homework 4

February 10, 2025

Problem 1. Show that the complement of a finite set of points in \mathbb{R}^n is simply-connected if $n \geq 3$.

Proof. (Note that the following pictures are only for the n=3 case, but a similar idea is followed for n>3.) We begin by imagining these n missing points in an nth dimensional elipsoid-like shape:

From here, we can "pinch" in between the n missing points to create n D^n 's, each missing a point in the center.

Then, note that the pink line continues on the boundary of all n D^n 's, and can be contracted to a point.

Then, in each D^n , the hole in the center can be expanded so that together the D^n and the hole become an S^{n-1} .

This is clearly path connected, as this is a wedge sum of n S^{n-1} 's. Then, because the fundamental group of S^n is trivial for $n \geq 2$, we know

$$\pi_1(\mathbb{R}^n/\{x_0, x_1, \dots, x_n\}) \cong \pi_1(\vee^n(S^{n-1}))$$

$$\cong \pi_1(S^{n-1}) * \dots * \pi_1(S^{n-1})$$

$$\cong 0 * \dots * 0$$

$$\cong 0.$$

Thus the space is path connected and has a trivial fundamental group, so it is simply-connected. \Box

Problem 2. Let $X \subset \mathbb{R}^3$ be the union of n lines through the origin. Compute $\pi_1(\mathbb{R}^3 - X)$.

Proof. Once again, I will provide pictures for the n = 2 case, but describe any n case. First note that when looking at \mathbb{R}^3 as an origin-centered sphere, when a line goes through it, we can deformation retract it to a cylinder:

With this same logic, any other lines through the sphere will have 2 intersection points, which create holes in the cylinder. Thus we end up with a cylinder with 2(n-1) holes in it.

These holes can be expanded, so that we end up with a cylinder with no surface, just 2(n-1) lines connecting the top and bottom circles.

One of the lines can be contracted to a point, giving us 2(n-1) loops with a line connecting them.

This last line can be contracted to a point, and so we end up with 2(n-1)+1=2n-1 S^1 's connected at a point.

Thus we have

$$\pi_1(\mathbb{R}^3 - X) \cong \pi_1(\vee^{2n-1}(S^1))$$

$$\cong \pi_1(S^1) * \cdots * \pi_1(S^1)$$

$$\cong \mathbb{Z} * \cdots * \mathbb{Z}$$

And so $\mathbb{R}^3 - X$ has a fundamental group that is isomorphic to 2n-1 copies of \mathbb{Z} . \square

Problem 3. Let X be the quotient space of S^2 obstained by identifying the north and south poles to a single point. Put a cell complex structure on X and use this to compute $\pi_1(X)$.

Proof. When we identify these two poles, we create the following shape:

We can take this point and expand it into a line

Then we can take the line on the boundary of the sphere and contract it to a point, creating a loop on the outside.

Thus we have $S^2 \vee S^1$, and in terms of cell complex, an e_2^0 attached to an e_1^0 at an e_0^0 . Thus the space's fundamental group can be calculated to be $0 * \mathbb{Z} \cong \mathbb{Z}$.

Problem 4. Compute the fundamental group of the space obtained from two tori $S^1 \times S^1$ by identifying a circle $S^1 \times \{x_0\}$ in the torus with the corresponding circle $S^1 \times \{x_0\}$ in the other torus.

Proof. \Box

Problem 5. The mapping torus T_f of a map $f: X \to X$ is the quotient of $X \times I$ obtained by identifying each point (x,0) with (f(x),1). In the case $X=S^1 \vee S^1$ with f basepoint-preserving, compute a presentation for $\pi_1(T_f)$ in terms of the induced map $f_*: \pi_1(x) \to \pi_1(X)$. Do the same when $X=S^1 \times S^1$.

Proof.