ALP4 SoSe 2013, Di. 16-18

Lösung Übungsblatt 3

Christoph van Heteren-Frese (Matr.-Nr.: 4465677),

Sven Wildermann (Matr.-Nr.: 4567553)

Tutor: Alexander Steen, eingereicht am 2. Mai 2013

Aufgabe 1

Eine binäre Semaphore kann wie ein Schloss eingesetzt werden. Die Spezifikation einer binärer Semaphore ist in [1, S. 54] und die Implementierung von Lock und Unlock in [1, S. 55] zu finden. Initialer Wert für s: true (bzw. 1).

	A • 1
Aufruf	Auswirkung
P1: s.P	s = false; P1 betritt kritischen Bereich
P2: s.P	s = false; P2 muss warten: $aktiv \rightarrow blockiert$
P3: s.P	s = false; P3 muss warten: $aktiv \rightarrow blockiert$
P1: s.V	P1 verlässt kritischen Bereich; $s = true$; P3: $blockiert \rightarrow bereit$;
	P3 betritt kritischen Bereich; s = false
P4: s.P	s = false; P4 muss warten: $aktiv \rightarrow blockiert$
P3: s.V	P3 verlässt kritischen Bereich; $s = true$; P2: $blockiert \rightarrow bereit$;
	P2 betritt kritischen Bereich; s = false
P5: s.P	$s = false; P5: aktiv \rightarrow blockiert$

Tabelle 1: Protokoll der Aufrufe

Erläuterung: Die Tatsache, das P3 in diesem Beispiel als zweiter Prozess den kritischen Bereich betritt, ergibt sich durch die vorgegebene Reihenfolge der Aufrufe, da P3 der nächste Prozess ist, der eine V-Operation ausführt und "[...] Prozesse P- und V-Operationen stets paarig − in dieser Reihenfolge − ausführen [müssen][vgl. 1, S. 55]." Grundsätzlich gilt: "[...] ein Aufruf von s.V() realisiert den Übergang von blockiert → bereit für einen der auf s blockierten Prozesse [...][vgl. 1, S. 55]." Welcher Prozess das

ist, hängt von der Prozessverwaltung des Betriebssystems ab.

Aufgabe 2

- a)
- b)
- c)

Aufgabe 3

Aufgabe 4

Literatur

[1] Christian Maurer. Nichtsequentille Programmierung mit Go 1 Kompakt. Springer Vieweg, 2012. ISBN 978-3642299681.