

ENTREGABLE N°7

Metodología VDI

Autores:

Rodríguez Cruz, Ivanna Jael
Saenz Villarreal, Luciana Mercedes
Reymundo Capcha, Sebastián Adriano
Neciosup Villarreal, Jared Matias
Salazar Zárate, Alexandra Estephania
Quispe Cueva, Tatiana Abigail

Profesor:

Juan Manuel Zuñiga

Curso:

Fundamentos de Biodiseño

I. Modelos y principios de solución:

Black box

Esquema de funciones

Matriz morfológica

Solución A → opción seleccionada

Solución B → alternativa de respaldo

Tabla de valoración

		Soluciones		
Criterios		Cojín de soporte con sistema vibracional / masajeador	Cojín con sistema regulador de presión con válvulas de aire	Cojín regulador de temperatura con activación automática
1	Medición de presión	4	3	3
2	Costo de tecnología	3	3	2
3	Portabilidad	4	2	4
4	Fuente de energía	3	2	4
5	Seguridad - fail safe	4	3	2
6	Innovación	3	2	2
7	Respuesta activa	4	4	0
Total		25	19	17

Los resultados indican que la solución más adecuada es la primera, ya que presenta un equilibrio en todos los parámetros considerados. Sin embargo, se optó por elegir el material y el recubrimiento de la opción 2 (espuma viscoelástica y malla 3D) con el objetivo de optimizar la transpirabilidad y cuidar del microclima en el área de contacto.

II. Espacio de solución:

TÍTULO DEL PROYECTO: <u>Cojín Inteligente Advanzado</u>
DIBUJADO POR: <u>equipo</u> 14

BOCETO EN CONJUNTO:

Descripción del funcionamiento:

V Detección de presión en punto clave. √Alerta al osvario mediante app. √activación de vibración mediante app √8 sensores mayor cantidad para mayor precisión

LISTA DE DESPIECE:

PIEZA	NOMBRE	MATERIAL
	}	

III. Fabricar o adquirir:

ACCIÓN	COMPONENTE	MATERIAL/TIPO	JUSTIFICACIÓN
Fabricar	Estructura principal del cojín	Espuma viscoelástica + capa superior de malla 3D espaciadora	Corte y ensamblado manual. La malla 3D mejora la transpirabilidad y mantiene un microclima adecuado.
Fabricar	Funda externa removible	Tejido 3D Spandex o neopreno con cierre impermeable	Permite lavado y desinfección sin afectar la estructura interna.
Adquirir	Sensores de presión	Tipo ESR 406 o HX7	Capaces de soportar

		10	hasta 100 kg. Compactos, fácil de calibrar y de bajo costo (8-12 USD c/u)
Adquirir	Motores vibratorios LRA	Prefabricados encapsulados en silicona	De bajo consumo (<80 mA) y alta durabilidad. El encapsulado permite el aislamiento frente a la humedad.
Fabricar	Carcasa de soporte interno	PLA (impresión 3D)	Para fijar los componentes y evitar que se desplacen por la presión ejercida por el usuario.
Adquirir	Microcontrolador ESP32	Electrónica	Permite la conexión Bluetooth para enviar datos a la app.
Adquirir	Fuente de alimentación	Batería recargable	Para sesiones de larga duración. Recarga vía USB
Fabricar	Carcasa del módulo electrónico	PLA (impresión 3D)	Protegen al circuito y facilitan su limpieza.
Adquirir	Conectores, cables, protoboard	Plástico y cobre	Permiten que las conexiones sean desmontables durante el prototipado.

IV. Secuencia de procesos:

A. Ruta clínica:

- Montaje del paciente: Se coloca al paciente en la silla sentándose encima del cojín. Al sentir una presión ejercida, el sistema se activará automáticamente. Se emitirá una notificación a la app si la presión en el cojín no está correctamente distribuida.
- 2. Calibración: Una vez activado el sistema, se enlazará vía bluetooth con un dispositivo móvil a través de un app.
- 3. Sesión de terapia: A través de la app, el personal de salud configura la duración de los masajes y en qué zonas se le aplicará.

- Desmontaje: Se retira al paciente de la silla de ruedas o se retira el cojín. El sistema se desactiva automáticamente al dejar de ejercer presión sobre el cojín.
- 5. Limpieza: La funda se retira fácilmente para su lavado y desinfección. La limpieza de los componentes será superficial.

B. Diagrama de flujo:

V. Técnicas de producción:

Sistema de soporte del usuario (espuma viscoelástica + malla 3D espaciadora)

Técnica	Descripción	Costo estimado	Durabilidad	Facilidad esterilización	de
Corte manual +	Uso de cúter o	-	1–2 años en	La facilidad	de

ensamblaje	cortadora eléctrica para modelar espuma; fijación de capas con adhesivo de poliuretano flexible		uso moderado	esterilización es media porque la espuma absorbe humedad, por lo que hay que usar fundas lavables o desinfectantes químicos suaves.
Termoformado de espuma	Moldeo de espuma viscoelástica mediante calor (~80 °C) para lograr superficies curvas ergonómicas.	20-40 USD por unidad moldeada	Alta (2–4 años)	Se realiza limpieza con desinfectantes comunes solo en la superficie

Se adopta corte y ensamblaje manual, por su bajo costo, accesibilidad en talleres estudiantiles y facilidad de personalización.

Sistema de redistribución de presión

Técnica o adquisición	Descripción	Costo relativo	Durabilida d	Esterilización
Adquisición comercial y encapsulado en silicona	Los motores LRA se compran prefabricados y se sellan en una capa de silicona (tipo Dragon Skin®) para aislamiento y limpieza.	Bajo (≈ 5–10 USD c/u)	Alta	Esta técnica protege el motor del polvo y humedad, aumenta la durabilidad y permite limpiar la superficie con alcohol. El encapsulado reduce riesgo eléctrico
Impresión 3D de carcasa para montaje	El soporte rígido impreso en 3D fija y protege los motores de vibración (LRA) dentro del cojín, evitando que se desplacen o se dañen por la presión del usuario.	Medio (≈ 15–25 USD)	Alta	Alta

Se elige encapsulado en silicona biomédica por su sencillez, bajo costo y elevada durabilidad.

Sistema de procesamiento y control

Técnica o adquisición	Descripción	Costo relativo	Durabilida d	Esterilización
Adquisición comercial (ESP32 DevKitC) + soldadura de pines y cables	Uso de placas prefabricadas; conexión mediante estañado con soldadura de estaño-plomo y funda termorretráctil.	Bajo (35-46)	Alta	La limpieza es solo superficial.
Impresión 3D de carcasa protectora	Producción de carcasa en PLA con recubrimiento acrílico	Medio (≈ 15–30 USD)	Alta	Facilita limpieza, protege contra impactos.

Se adopta la adquisición comercial del ESP32 DevKitC y carcasa impresa en 3D por su equilibrio entre durabilidad y accesibilidad.

Sistema de alimentación eléctrica (puerto USB)

Técnica o adquisición	Descripción	Costo relativo	Durabilidad	Esterilización
Adquisición de puertos USB tipo C y montaje con soldadura manual	Uso de placas prefabricadas; conexión mediante estañado con soldadura de estaño-plomo y funda termorretráctil.	Bajo (≈ 5–10 USD c/u)	Alta	Los conectores metálicos pueden limpiarse con alcohol sin riesgo
Diseño de placa USB personalizada	Fabricación de una placa de circuito impreso (PCB) donde se integra el	10–20 USD por placa	Alta	-

conector USB tipo C o micro-USB como punto de entrada de energía.		
---	--	--

Se escoge soldadura manual y encapsulado de puertos USB tipo C comerciales, a diferencia del PCB no requiere de equipamiento especializado. Es económica, segura y de fácil reposición en caso de daño.

Sistema de comunicación e interfaz

Técnica	Descripción	Costo estimado	Durabilidad	Facilidad de esterilización
Programación directa del BLE del ESP32	Configuración por software (IDE Arduino	-	1–2 años en uso moderado	La comunicación es inalámbrica, por lo que no afecta la limpieza del dispositivo físico.

VI. Estaciones de trabajo:

Espacios donde se usará el sistema

- Laboratorio de rehabilitación / laboratorio de marcha: pruebas de integración, validación funcional con voluntarios; espacio para instrumentación (cámaras, sensores extra).
- Práctica clínica / cama hospitalaria: pruebas controladas en pacientes encamados o en silla de ruedas en entorno clínico (con permiso y supervisión).
- Ambiente real / domicilio: pruebas de campo en sillas de rueda personales (fase piloto).

Equipamiento, insumos y consideraciones adicionales por estación

- Cojín prototipo (espuma viscoelástica + funda + LRAs + sensor de presión + ESP32 + batería/adaptador).
- Teléfono móvil con la app de control (Android/iOS) para ajustar patrones.
- Fuente de alimentación segura (adaptador 12V / banco de pruebas), fusibles.
- Materiales de fijación/seguridad: placa distribuidora rígida, bolsillos para LRAs, velcro, funda removible, fusible térmico.

• Primeros auxilios y equipo de emergencia en pruebas con pacientes.

Consideraciones para realizar pruebas de funcionalidad

- Validar calibración de sensor de presión.
- Comprobar transmisión de datos ESP32 → app (Bluetooth/Wi-Fi) y logging local.
- Ensayos de seguridad: desconexión por sobrecorriente y detección de fallo sensor.
- Protocolos de prueba con voluntarios: sesiones cortas (≤ 15 min), supervisión de terapeuta, registro de molestias.

VII. Automatización:

Nivel medio → Semiautónomo (sistema asiste al paciente, el terapeuta supervisa/interviene).

Justificación técnica

- El sistema integra sensores de presión que detectan el mismo y tiempo sostenido; con esto puede tomar decisiones simples (activar LRA en zona X durante Y segundos).
- El ESP32 + app permite activar patrones automáticamente y ajustar parámetros desde la app.
- Sin embargo, por seguridad clínica (variabilidad de heridas, sensibilidad, comorbilidades) se requiere supervisión humana para casos persistentes, heridas abiertas o reacción adversa; por eso no adoptamos autonomía total.

Justificación clínica

- Intervenciones en piel frágil o UPP requieren juicio clínico: el fisioterapeuta debe validar activación en pacientes con úlceras existentes, decidir no masajear en heridas abiertas y evaluar tolerancia.
- Semiautonomía permite reducción de carga asistencial (activaciones automáticas por presión) el cual mantiene una supervisión clínica cuando el sistema reporta eventos críticos.

Escenarios de seguridad y protocolos

¿Qué pasa si el paciente se desmaya o el sistema falla?

Paciente se desmaya:

- El sistema apaga inmediatamente LRAs y entra en modo "seguro".
- La app envía alerta push al cuidador/terapeuta con información: tiempo, zona y lectura de presión.
- Se activa un registro de eventos para revisión clínica.

Si el sistema falla:

- Reinicio automático del MCU si deja de responder.
- Notificación: app/laptop indica "Fallo: desconexión" y bloquea nuevas activaciones hasta intervención.

Botón de parada de emergencia / protocolo:

El dispositivo no incluye un botón físico de parada de emergencia, ya que su nivel de automatización es medio y el sistema opera a bajo voltaje y baja potencia, lo cual reduce significativamente el riesgo de daño o peligro inmediato al usuario.

Desde el punto de vista clínico, el dispositivo está diseñado para prevención y alivio leve de presión, no para tratamiento activo o invasivo. Por lo tanto, su uso siempre se da en entornos supervisados o con el usuario consciente, donde la intervención manual (retirar al usuario del cojín o desconectar la alimentación) es suficiente ante cualquier eventualidad.

VIII. Interfaces de red global:

Tipo de información a recolectar

- Lecturas de sensores: presión por cuadrante (kg o N), timestamps.
- Eventos de terapia: inicio/parada masaje, duración e intensidad.

• Estado del sistema: batería, alarmas, errores.

Pantalla de Reporte

El dispositivo no está diseñado para mostrar o registrar valores clínicos, debido a que su función principal es prevenir las úlceras por presión mediante estimulación vibratoria localizada. Sin embargo, como propuesta a una futura mejora, se plantea la posibilidad de integrar una interfaz básica que registre datos como duración total de los masajes, frecuencia de aplicación y cantidad de activaciones durante el uso del cojín.

Medidas básicas de seguridad y privacidad

Acceso restringido: cuentas con usuario/contraseña para terapeutas; roles (ver solo pacientes asignados).

Consentimiento y cumplimiento: formulario de consentimiento para recolección de datos y seguir normativas locales de protección de datos.

Referencias