Document Reproducibility with R and LATEX

Liberty Mlambo

Research Assistant: Micronutrient Action Policy Support Project (MAPS)

June 14, 2022

- 1 Background
- 2 ¿Cómo funciona?
 - Intuición en general
 - Siguiendo curvas de nivel
 - Decidiendo qué hacer
 - Resultados y comentarios

1 Background

- 2 ¿Cómo funciona?
 - Intuición en general
 - Siguiendo curvas de nivel
 - Decidiendo qué hacer
- 3 Resultados y comentarios

Why

¿Qué es el Método de la Ruptura?

■ Un método de optimización numérica

¿Qué es el Método de la Ruptura?

- Un método de optimización numérica
- Implementado para funciones $f: \mathbb{R}^2 \to \mathbb{R}$

¿ Qué es el Método de la Ruptura?

- Un método de optimización numérica
- Implementado para funciones $f: \mathbb{R}^2 \to \mathbb{R}$
- Con un punto de partida \vec{x}_0 estima, potencialmente, todos los mínimos locales

ITam

- 1 Background
- ¿Cómo funciona?
 - Intuición en general
 - Siguiendo curvas de nivel
 - Decidiendo qué hacer
- 3 Resultados y comentarios

- 1 Background
- ¿Cómo funciona?
 - Intuición en general
 - Siguiendo curvas de nivel
 - Decidiendo qué hacer
- 3 Resultados y comentarios

- Conjunto de Nivel: $\ell_f(\vec{x}_0) = \{\vec{x} : f(\vec{x}) = f(\vec{x}_0)\}$
- Curva de Nivel: Una parte conexa de $\ell_f(\vec{x}_0)$

Figure: Función de Himmelblau: $\vec{x}_0 = (3, -2)$

Figure: Función de Himmelblau: $\vec{x}_0 = (3, -2)$

¿Cómo funciona? Intuición en general

University of Nottingham (MAPS Project)

Figure: Función de Himmelblau: $\vec{x}_0 = (4,4)$

- Background
- ¿Cómo funciona?
 - Intuición en general
 - Siguiendo curvas de nivel
 - Decidiendo qué hacer
- 3 Resultados y comentarios

Para Seguir una Curva de Nivel

¿Cómo funciona? Siguiendo curvas de nivel

Requisitos:

Introducir un parámetro de tiempo, t. Así, $\Phi(t) = (x(t), y(t))$ es la parametrización de la curva de nivel.

Encontrar una EDO que siga la curva.

Aplicar un método numérico que siga la EDO

Sabemos que $\nabla f(\vec{x})$ y la curva de nivel son perpendiculares.

Calculamos $\nabla f(\vec{x})$ de manera exacta o con diferencias finitas.

Multiplicamos por $A=\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ para girar 90°

Así, $\begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \nabla f(\vec{x})$, es la EDO que necesitamos para seguir la curva de nivel.

PVI en cada paso:

$$\begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix} = \frac{H(\vec{x})}{\max\{1, ||\nabla f(\vec{x}(t_i))||\}}$$
$$\vec{x}(0) = \vec{x}(t_i)$$

- RK4
- Trapecio Explícito
- ¡Muchos más!

- Background
- 2 ¿Cómo funciona?
 - Intuición en general
 - Siguiendo curvas de nivel
 - Decidiendo qué hacer
- 3 Resultados y comentarios

Para medir la curvatura...

i did illeuli la cuivatura...

 θ_i es el ángulo de $\nabla f(\vec{x_i})$ respecto al eje x.

Figure: Midiendo la Curvatura

Convexidad y Concavidad

¿Cómo funciona? Decidiendo qué hacer

University of Nottingham (MAPS Project)

Tres opciones:

■ Donde $\theta' > 0$, la curva de nivel es convexa (bien inflada).

¿Cómo funciona? Decidiendo qué hacer

Tres opciones:

- Donde $\theta' > 0$, la curva de nivel es convexa (bien inflada).
- lacksquare Donde heta'<0, la curva de nivel es cóncava (hundida hacia adentro).

¿Cómo funciona? Decidiendo qué hacer

University of Nottingham (MAPS Project)

Tres opciones:

- Donde $\theta' > 0$, la curva de nivel es convexa (bien inflada).
- lacksquare Donde heta'<0, la curva de nivel es cóncava (hundida hacia adentro).
- Donde $\theta' = 0$, la curva de nivel es una línea recta.

Figura: Una Curva de Nivel y su medida θ'

Def: Picos negativos

Para una curva de nivel $M_{\vec{x}_0}$, los *Picos Negativos* son aquellos puntos \vec{x}_i donde θ_i' alcanza un mínimo

Si dos Picos Negativos están cerca, creamos una ruptura.

Recursión por Ruptura

University of Nottingham (MAPS Project)

¿Cómo funciona? Decidiendo qué hacer

Figure: Ruptura

¿Cómo funciona? Decidiendo qué hacer

Convexidad Global

Si $\theta'_i > 0$ para toda i, entonces la curva de nivel es globalmente convexa.

Si una curva de nivel es globalmente convexa, entonces:

¿Está cerca de un mínimo?

Método de Newton

¿Está lejos?

Bajar el Nivel

Sea L la longitud de la curva. Luego, tomamos:

$$\vec{y}_0 = \vec{x}_i - kL \frac{\nabla f(\vec{x})}{||\nabla f(\vec{x})||}$$

Aquí, k es un parámetro que representa la proporción de L a avanzar.

MATLAB[®]

Esquema General

¿Cómo funciona? Decidiendo qué hacer

University of Nottingham (MAPS Project)

- 1 Background
- 2 ¿Cómo funciona?
 - Intuición en genera
 - Siguiendo curvas de nivel
 - Decidiendo qué hacer
- 3 Resultados y comentarios

Table: Función de Himmelblau: $\vec{x}_0 = (4,4)$

Minimos	Minimos estimados	Error
(3.0,2.0)	(3.0000, 1.9999)	1.7117 e-12
(-2.805118, 3.131312)	(-2.805118, 3.131312)	5.3283 e-07
(-3.779310, -3.283186)	(-3.779310, -3.283185)	2.5449 e-07
(3.584428, -1.848126)	(3.584428, -1.848126)	6.2730 e-07

Table: Método de la ruptura aplicado a diferentes funciones

Función	\vec{x}_0	Minimos estimados	Error
Styblinski -Tang	(4,4)	(-2.9035,-2.9035)	3.9274e-08
Easom	(1.6, 1.6)	(3.1415,3.1415)	1.7796e-11
Booth	(0,10)	(0.9999, 2.9999)	1.0422e-09
White & Holst	(0,0)	(0.9999,0.9999)	4.2564e-11

- El método requiere funciones suaves y con curvas de nivel cerradas.
- Aproxima bien los mínimos, aunque algunos parámetros deben ser ajustados para cada función f.

- El método requiere funciones suaves y con curvas de nivel cerradas.
- Aproxima bien los mínimos, aunque algunos parámetros deben ser ajustados para cada función f.
- Tener información parcial sobre el conjunto de nivel ha sido un problema constante.

- 1 Amir Beck, Introduction to Nonlinear Optimization Theory, Algorithms and Applications MOS-SIAM series on Optimization. SIAM, 2014.
- 2 Andrei Neculai, *An Unconstrained Optimization Test Function Collection* Advanced Modeling and Optimization, Vol. 10, number 1, 2008.
- **3** Jorge Nocedal and Stephen Wright, *Numerical Optimization*. New York: Springer, 2006.