Data Mining Assignment 9

Xuan Han han.xua@husky.neu

December 8, 2015

```
> library(igraph)
> edge.table <- read.table("yeast_broad.tsv", header = FALSE, stringsAsFactors = F)
> load("yeast_names.Rdata")
> G <- graph.data.frame(edge.table, vertices = vertex.table, directed = TRUE)</pre>
```

1: Yeast

(a)Degree BC PR

```
> G.degree = degree(G)
> G.bc = betweenness(G)
> G.pr = page.rank(G)$vector
> par(mfrow = c(2,2))
> hist(log(G.degree))
> hist(log(G.bc))
> hist(log(G.pr))
```

Histogram of log(G.degree)

Leadnency 0.0 1.0 2.0 3.0 log(G.degree)

Histogram of log(G.bc)

Histogram of log(G.pr)

(b)HITS

```
> m = as.matrix(get.adjacency(G))
> hits = function(A, round){
      hub = rep(1, dim(A)[1])
      auth = rep(1, dim(A)[1])
      while(round > 0) {
          auth = t(A) %*% hub
          auth = auth / sqrt(sum(auth ^ 2))
          hub = A \%*\% auth
          hub = hub / sqrt(sum(hub ^ 2))
          round = round - 1
      }
      result <- list(hub=hub,auth=auth)</pre>
      return(result)
+ }
> G.hub = hits(m, 20)$hub
> G.auth = hits(m, 20)\$auth
> par(mfrow = c(2, 1))
> hist(log(G.hub))
> hist(log(G.auth))
```

Histogram of log(G.hub)

Histogram of log(G.auth)

(c)Compare

> feature = data.frame(degree = G.degree, bc = G.bc, pr = G.pr, hub = G.hub, auth = G.auth) > pairs(feature)

> gap = abs(rank(G.auth) - rank(G.degree))
> rank(gap)

YDR463W	YDR421W	YDR081C	YCR097W	YCR096C	YCR040W	YCL067C	YCL066W
94.0	49.5	9.0	71.5	16.0	11.0	3.0	1.5
YJL056C	YIRO17C	YHROO6W	YGR044C	YGL254W	YGL209W	YGL035C	YFL021W
95.5	59.0	57.0	21.0	4.5	95.5	88.0	87.0
YML051W	YLR098C	YLR013W	YKR034W	YKL020C	YJR147W	YJL110C	YJL089W
35.0	92.5	99.0	86.0	92.5	49.5	79.0	91.0
YOL089C	YOLO67C	YNL103W	YMR280C	YMR042W	YMR019W	YML113W	YML099C
97.5	100.0	9.0	67.0	49.5	6.5	97.5	73.0
YCR039C	YDR103W	YPL187W	YKL178C	YPR199C	YPL248C	YPL038W	YORO32C
22.5	14.5	14.5	49.5	89.0	90.0	82.0	82.0
YDR079W	YDR078C	YCR019W	YCR018CA	YIL002WA	YCL065W	YDR317W	YDR042C
65.5	65.5	25.5	25.5	22.5	30.0	9.0	12.5
YJR011C	YJL085W	YHR157W	YHR156C	YGR072W	YGR071C	YGL001C	YDR084C
31.0	68.5	63.5	63.5	32.5	32.5	39.0	34.0
YDR210WD	YDR040C	YOL159C	YOL126C	YNRO49C	YMR228W	YLR262C	YLR261C
4.5	24.0	58.0	52.0	47.0	82.0	82.0	82.0
YBR020W	YBR019C	YMR258C	YMR098C	YLR023C	YGR271W	YDR522C	YDR520C
19.5	19.5	36.5	60.0	54.0	71.5	12.5	85.0
YDR545W	YCRO41W	YCR018C	YOR140W	YLR377C	YDR009W	YDL151C	YDL149W
54.0	28.0	28.0	36.5	6.5	54.0	44.5	44.5
YMR087W	YMR086CA	YER190W	YNL339C	YNL337W	YNL336W	YGR084C	YER189W
17.5	17.5	40.5	44.5	44.5	56.0	40.5	38.0
YDR544C	YDR543C	YBR166C	YBL113C	YBL112C	YBL111C	YBL109W	YNL117W
61.5	70.0	78.0	75.5	75.5	75.5	75.5	28.0

```
YGR296W
          YHR091C YBL074C
                             YPL177C
    68.5
             61.5
                        1.5
                                42.0
> nei.nodes.names = V(G)[nei('YOLO67C')]$name
> sub.nodes.names = c(nei.nodes.names, 'YOL067C')
> sub.nodes = V(G)[sub.nodes.names]
> G.sub = induced.subgraph(G, sub.nodes)
> lay.out <- layout.auto(G.sub)</pre>
> plot.igraph(G.sub,
              layout = lay.out,
              vertex.label.dist = -.5,
              edge.arrow.size = .3,
              main = "Subgraph")
```

Subgraph

- 1. Let's use degree and authrity score as the two metrics. We find that node 'YOL067C' has biggest gap of the two metrics.
- 2. After plotting the subgraph, It's clear why this happen: this node has 20 out degrees and 0 in degree. So although it has big degree, it has low authority score, which is 0.

2: Running time

```
(a)
> node.count = seq(from = 2000, to = 3000, by = 100)
> time.pr = rep(0, length(node.count))
> time.hits = rep(0, length(node.count))
> for (i in 1:length(node.count)){
      n = node.count[i]
      g <- sample_gnp(n, 1 / 20, directed = TRUE)</pre>
      {\tt time.pr[i] = system.time(page.rank(g))}
      m = as.matrix(get.adjacency(g))
      time.hits[i] = system.time(hits(m, 2))
+ }
> time.pr
 [1] 0.017 0.026 0.021 0.023 0.026 0.027 0.029 0.033 0.035 0.037 0.039
> time.hits
 [1] 0.159 0.114 0.125 0.139 0.164 0.164 0.189 0.211 0.213 0.267 0.267
> time.pr = time.pr / sum(time.pr)
> time.hits = time.hits / sum(time.hits)
> plot(node.count, time.pr, col = 'red', type = '1')
> lines(node.count, time.hits, col = 'green', type = 'l')
```


1 2

- 1. More nodes results in a increase in time to compute both PageRank and HITS.
- 2. Higher density result in a increase in time to compute both PageRank and HITS.
- 3. HITS needs more time than PageRank, which is 10 times, since it needs operation on matrix.
- 4. I have to scale them inorder to present in the same plot.