Задачи по булеви функции.

Съдържание

1	Teo	ретична основа	1
	1.1	Дефиниция на "булева функция"	1
	1.2	Булеви вектори	1
	1.3	Променливи	2
	1.4	Композиция	2
	1.5	Представяния на булеви функции	
		1.5.1 Представяне чрез вектор (канонично представяне)	3
		1.5.2 Представяне чрез хиперкуб	4
		1.5.3 Представяне чрез формули	8
	1.6	Пълнота на множества от булеви функции	10
	1.7	Съвършена дизюнктивна нормална форма на булева функция	11
	1.8	Разни	12
2	Зад	цачи	12
3	Бла	агодарности	30

1 Теоретична основа

1.1 Дефиниция на "булева функция"

 $J_2 \stackrel{\text{деф}}{=} \{0,1\}$. $J_2^n \stackrel{\text{деф}}{=} \underbrace{J_2 \times J_2 \times \cdots \times J_2}_{n \text{ изъти}}$. Булева функция на n променливи е всяка функция $f: J_2^n \to J_2$ за някое $n \ge 1$.

Можем да дефинираме и булеви функции на 0 променливи. 0-кратното декартово произведение е {()}, следователно домейнът е едноелементен и има точно две булеви функции на 0 променливи, които булеви функции отъждествяваме с двете булеви константи 0 и 1.

Множеството от всички булеви функции на n променливи е \mathcal{F}_2^n . Множеството от всички булеви функции е

$$\mathcal{F}_2 = \bigcup_{n \in \mathbb{N}} \mathcal{F}_2^n$$

1.2 Булеви вектори

Елементите на J_2^n са *булевите вектори с дължина* n. За краткост изпускаме прилагателното "булеви" (понеже не разглеждаме други вектори) и казваме просто "n-вектори" или дори само "вектори", ако броят на елементите е без значение. Ползваме удобната конвенция имената на векторите да бъдат записвани с удебелени букви (в полиграфията се казва "получерен шрифт", на английски е *boldface*), например \mathbf{b} . Ако сме дефинирали някакво име на \mathbf{n} -вектор, да кажем \mathbf{b} , то неговите елементи именуваме със същото име, само че тях изписваме с

нормално дебели букви ($regular\ face$), например $\mathbf{b}=(b_1,b_2,\dots b_n)$. За удобство може да запишем това като $\mathbf{b}=b_1b_2\cdots b_n$.

Нека $x,y\in J_2.$ $x\stackrel{\text{деф}}{=}\overline{y},$ ако

$$x = \begin{cases} 1, & \text{ako } y = 0 \\ 0, & \text{ako } y = 1 \end{cases}$$

 Π ротивоположни вектори са вектори с една и съща дължина, които се различават във всеки елемент. Например, ако ${\bf a}$ и ${\bf b}$ са ${\bf n}$ -вектори, те са противоположни, ако

$$\forall i \in \{1, 2, \ldots, n\} : a_i = \overline{b_i}$$

Факта, че \mathbf{a} и \mathbf{b} са противоположни, записваме накратко така: $\mathbf{a} = \overline{\mathbf{b}}$. Добре известно е, че $\overline{\overline{\mathbf{a}}} = \mathbf{a}$, така че $\mathbf{a} = \overline{\mathbf{b}} \leftrightarrow \overline{\mathbf{a}} = \overline{\overline{\mathbf{b}}} = \mathbf{b}$.

1.3 Променливи

Нека f е булева функция на n променливи. За какви променливи става дума? Всяка булева променлива се асоциира с точно едно от множествата J_2 от домейна $\underbrace{J_2 \times J_2 \times \cdots \times J_2}_{n \text{ пъти}}$. Иначе

казано, домейнът е множество от вектори, 2^n на брой, и всяка от n-те позиции в тези вектори е (по-точно, се асоциира с) булева променлива – тя може да взема стойности 0 или 1 независимо от стойностите на другите позиции. Имената на променливите обикновено записваме с x_1 , x_2 и така нататък, а факта, че f е функция на n променливи, записваме по познатия начин: $f(x_1, x_2, \ldots, x_n)$.

Променливата \mathbf{x}_{i} се нарича $\phi u \kappa m u \varepsilon h a$, ако

$$f(x_1, x_2, \dots, x_{i-1}, 0, x_{i+1}, x_{i+2}, \dots, x_n) = f(x_1, x_2, \dots, x_{i-1}, 1, x_{i+1}, x_{i+2}, \dots, x_n)$$

за всяка стойност на (n-1)-вектора $x_1x_2\cdots x_{i-1}x_{i+1}x_{i+2}\cdots x_n$. Променлива, която не е фиктивна, се нарича *съществена*.

1.4 Композиция

Нека $f(x_1, x_2, ..., x_n)$ и $g(y_1, y_2, ..., y_m)$ са булеви[†] функции. Композицията на g на мястото на x_i във f е функцията $f(x_1, x_2, ..., x_{i-1}, g(y_1, y_2, ..., y_m), x_{i+1}, x_{i+2}, ..., x_n)$. Това е функция, която е **различна** (в общия случай) и от f, и от g. Ако се интересуваме от изчисляването на тази функция, процедура за нейното изчисляване може да се получи от процедури за изчисляването на f и на g.

Ако $(\{x_1,\ldots,x_n\}\setminus\{x_i\})\cap\{y_1,\ldots,y_m\}=\emptyset^{\ddagger}$, то въпросната композиция е функция на n+m-1 променливи. В общия случай обаче $(\{x_1,\ldots,x_n\}\setminus\{x_i\})\cap\{y_1,\ldots,y_m\}\neq\emptyset$ и броят на променливите и́ е n+m-1-k, където k е броят на променливите, общи за $\{x_1,\ldots,x_n\}\setminus\{x_i\}$ и $\{y_1,\ldots,y_m\}$. Във всеки случай, множеството от променливите на функцията-композиция е $(\{x_1,\ldots,x_n\}\setminus\{x_i\})\cup\{y_1,\ldots,y_m\}$.

 $^{^{\}dagger}$ Не е необходимо тези f и g да са **булеви** функции, за да може говорим за композиция. Композиция на функцията g на мястото на x_i във функцията f е мислима дори когато f и g са произволни функции при условие, че кодомейнът на g е същият като i-ия домейн на f. Казано на програмистки жаргон, при условие, че типът на изхода на g е същият като типа на i-ия вход на f.

 $^{^{\}ddagger}$ С други думи, ако променливите на f без x_i , от една страна, и променливите на g, от друга страна, нямат общи елементи.

Ако g_1, g_2, \ldots, g_n са булеви функции съответно на m_1, \ldots, m_n променливи, а именно

$$g_1(y_{1,1},...,y_{1,m_1})$$

 $g_2(y_{2,1},...,y_{2,m_1})$
...
 $g_n(y_{n,1},...,y_{n,m_n})$

то композицията на g_1 на мястото на x_1 , на g_2 на мястото на x_2, \ldots , на g_n на мястото на x_n е булевата функция:

$$f(g_1(y_{1,1},\ldots,y_{1,m_1}),g_2(y_{2,1},\ldots,y_{2,m_2}),\ldots,g_n(y_{n,1},\ldots,y_{n,m_n}))$$

1.5 Представяния на булеви функции

1.5.1 Представяне чрез вектор (канонично представяне)

По дефиниция, всяка булева функция на **n** променливи е множество от наредени двойки, 2ⁿ на брой, първият елемент от които е **n**-вектор, а вторият, булева стойност (0 или 1). Въпросните **n**-вектори са *входните вектори*. Това име има смисъл, ако си представяме булевата функция като алгоритъм, който по даден вход (**n**-вектор) връща булева стойност.

Ето пример за булева функция на 3 променливи:

$$f = \{((0,0,0),0), ((0,0,1),1), ((0,1,0),1), ((0,1,1),0) \\ ((1,0,0),1), ((1,0,1),0), ((1,1,0),0), ((1,1,1),1)\}$$

Можем да опишем тази функция много по-прегледно с таблица:

x_1	χ_2	χ_3	f
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

В таблицата са дадени имена на променливите, което не е необходимо, за да определим функцията. Нещо повече. Ако се разберем, че 3-векторите са подредени отгоре надолу лексикографски, както е в случая, не е необходимо да ги пишем, за да определим функцията. Бихме могли да я определим само чрез колоната от нейните стойности (в случая 8 на брой):

f	
0	
1	
1	
0	
1	
0	
0	
1	

За да пестим място при писането, записваме функцията не като колона, а хоризонтално:

$$f = 01101001$$

Това е *каноничното представяне* на булева функция: вектор от 2ⁿ на брой булеви стойности, с имплицитното допускане, че входните вектори са подредени лексикографски. Ако се опитаме да определим функцията чрез вектор, чиято дължина **не е** точна степен на двойката, например

$$g = 010110$$

то това представяне е невалидно, тоест не задава никаква булева функция.

1.5.2 Представяне чрез хиперкуб

Понякога е много удобно да мислим за булевите функции на **n** променливи в термините на *хиперкуб*. **n**-мерен хиперкуб е обобщение на редицата от геометрични обекти **точка**, **отсечка**, **квадрат**, **куб** и така нататък:

- точката е 0-мерен хиперкуб, който е атомарен в смисъл, че няма структура,
- отсечката е 1-мерен хиперкуб, състоящ се от 2 точки и едномерния обект, който ги свързва—можем да кажем, в някакъв смисъл, "който е ограден от тях",
- квадратът е 2-мерен хиперкуб, състоящ се от 4 точки, 4 отсечки и двумерния обект, ограден от тях,
- кубът е 3-мерен хиперкуб, състоящ се от 8 точки, 12 околни ръба, 6 квадрата и тримерния обект, ограден от тях,
- и така нататък.

От тази гледна точка \mathfrak{n} -мерният хиперкуб е общият член на тази редица. Той е геометричен обект в \mathfrak{n} -мерното пространство. Може да мислим за хиперкуба като за обект, състоящ се от:

- 2ⁿ точки, които са върховете му,
- $n2^{n-1}$ отсечки, които са околните му ръбове,
- ullet (%) 2^{n-2} квадрата, които са околните му стени,
- $\binom{n}{3} 2^{n-3}$ куба,
- и така нататък
- ullet $\binom{\mathfrak{n}}{\mathfrak{n}-1}2^{\mathfrak{n}-(\mathfrak{n}-1)}=2\mathfrak{n}$ на брой, $(\mathfrak{n}-1)$ -мерни обекта,
- \bullet един n-мерен обект, ограден от (n-1)-мерните обекти.

Лесно се вижда, че k-мерните компоненти на \mathfrak{n} -мерния хиперкуб са $\binom{\mathfrak{n}}{k} 2^{\mathfrak{n}-k}$ на брой.

Може да пренебрегнем геометричния аспект на хиперкуба и да мислим за него като за чисто комбинаторен обект по следния начин:

• Върховете му са векторите от J₂ⁿ. Това са 0-мерните компоненти на **n**-мерния хиперкуб.

- Два вектора са съседни тогава и само тогава, когато се различават в точно една позиция. Например, ако n = 3, векторите 001 и 011 се различават в точно една позиция (втората) и те задават един околен ръб на 3-мерния хиперкуб. И така, всеки околен ръб се идентифицира с двата върха, които му притадлежат, а те се различават в точно една позиция. С други думи, 1-мерните компоненти са всички (ненаредени) двойки вектори, които се различават в точно една позиция.
- Аналогично, всяка околна стена се идентифицира с четирите върха, които и принадлежат. С други думи, 2-мерните компоненти са всички (ненаредени) четворки вектори, такива че има точно две позиции, в които тези четири вектора се различават.
- Аналогично, 3-мерните компоненти са всички (ненаредени) осморки вектори, такива че има точно три позиции, в които се различават.
- И така нататък.
- n-мерната компонента е точно една: това е множеството от всички, 2ⁿ на брой, nвектори.

Тогава общият брой компоненти на **n**-мерния хиперкуб е:

$$\begin{split} \sum_{k=0}^{n} \binom{n}{k} 2^{n-k} &= \sum_{k=0}^{n} \binom{n}{n-k} 2^{n-k} = \sum_{0 \leq k \leq n} \binom{n}{n-k} 2^{n-k} = \\ \sum_{0 \geq -k \geq -n} \binom{n}{n-k} 2^{n-k} &= \sum_{n \geq n-k \geq 0} \binom{n}{n-k} 2^{n-k} = \sum_{0 \leq k \leq n} \binom{n}{k} 2^k = \sum_{0 \leq k \leq n} \binom{n}{k} 2^k 1^{n-k} = 3^n \end{split}$$

Като пример да разгледаме 3-мерния хиперкуб, записан напълно подробно:

Обикновено хиперкубът се рисува като граф: само върховете и страните. Това означава, че 0-мерните и 1-мерните компоненти се изобразяват, а останалите, не. Така е много попрегледно. Но ние знаем, че хиперкубът като комбинаторен обект е съвкупност от обектите от всички размерности, от 0 до n † . Ето типично изображение на 3-мерния хиперкуб:

 $^{^\}dagger$ Ако говорим за $\mathit{грa}\phi$ - $\mathit{xunepky6}$, тогава имаме предвид обекта, който е съвкупност само от 0-мерните компоненти (върховете) и 1-мерните компоненти, които в този контекст наричаме "ребра". \mathfrak{n} -мерен графхиперкуб не е същото нещо като \mathfrak{n} -мерен хиперкуб: графът-хиперкуб е подмножество на хиперкуба. Хиперкубът съдържа и компонентите от размерности ≥ 2 .

Върховете на n-мерния хиперкуб се разбиват на n+1 *слоя*. Върховете от един слой са точно тези вектори, които имат един и същи брой единици. Броят на единиците може да е $0, 1, \ldots, n$, затова и слоевете са n+1. Когато говорим за слой $k, 0 \le k \le n$, имаме предвид слоя от векторите, всеки от които има точно k единици. Очевидно слой k има $\binom{n}{k}$ вехктора в себе си. Ето същия хиперкуб, като четирите слоя са указани с различни цветове:

Всяка булева функция на **n** променливи може да бъде разглеждана като асоцииране на всеки връх на **n**-мерния хиперкуб (помним, че върховете му са точно **n**-векторите) с една булева стойност. Например, функцията f = 01101001 от миналата подсекция се изобразява върху хиперкуба така:

Стойностите на функцията върху векторите са написани с червено.

От казаното дотук изглежда, че каноничното представяне на дадена булева функция и представянето чрез хиперкуб са едно и също нещо. Всъщност, разлика има и тя е само в наредбата на векторите. При каноничното представяне, векторите са наредени лексикографски[†], а при представянето с хиперкуб те са наредени от частичната наредба ≼, дефинирана по следния начин:

$$\forall \mathbf{a}, \mathbf{b} \in J_2^n : \mathbf{a} \preccurlyeq \mathbf{b} \leftrightarrow (\forall i \in \{1, 2, \dots, n\} : \alpha_i \le b_i) \tag{1}$$

Това е частична наредба, която не е линейна, понеже има двойки вектори, които не са сравними (спрямо нея), например 011 и 100. Тази частична наредба е полезна за осмислянето на различни понятия и решаването на много задачи от областта на булевите функции. На горния пример всъщност е показана диаграмата на Hasse на частичната наредба ≼ върху 3-векторите.

Както казахме вече, съседни вектори са такива, които се различават в точно една позиция ‡ . Съседството на вектори може да осмислим и в термините на хиперкуба: два негови вектора са съседни, ако са в съседни слоеве. Съседство на вектори може да осмислим и чрез релацията \preccurlyeq (виж (1)). А именно, ако $\bf a$ и $\bf b$ са $\bf n$ -вектори, то те са съседни тогава и само тогава, когато $\bf a \prec \bf b$ или $\bf b \prec \bf a$, където релацията \prec се дефинира така:

$$\forall \mathbf{a}, \mathbf{b} \in J_2^n : \mathbf{a} \prec \mathbf{b} \leftrightarrow \mathbf{a} \leq \mathbf{b} \land \mathbf{a} \neq \mathbf{b} \land \neg \exists \mathbf{c} (\mathbf{a} \leq \mathbf{c} \leq \mathbf{b})$$
 (2)

Срязване на **n**-мерния хиперкуб в **i**-тата дименсия е понятие, което първо ще онагледим с пример. Ето срязване на **3**-мерния хиперкуб във втората дименсия:

[†]Лексикографската наредба е линейна.

[‡]Освен това, за да говорим за съседство на вектори, трябва те да имат една и съща дължина. При вектори с различни дължини за съседство не може да става дума.

За удобство, нека да мислим за хиперкуба като за граф-хиперкуб, тоест съвкупност от върхове и ребра. Срязването се състои в премахване на i-тата позиция на всички векторивърхове, след което тяхната дължина става n-1, и премахването на точно тези ребра, които са от вида:

$$\{\alpha 0\beta, \alpha 1\beta\}$$

където α е булев вектор с дължина i-1, а β е булев вектор с дължина n-i. В примера със срязването на 3-мерния хиперкуб във втората дименсия, ребрата, които махаме, са точно

Ако гледаме на хиперкуба не като на граф, а като на "истински" хиперкуб с компоненти от всички възможни размерности, ясно е, че срязването води до изчезването на n-мерната компонента, както и до намаляването на броя на k-мерните компоненти от $\binom{n}{k}2^{n-k}$ на $\binom{n-1}{k}2^{n-k-1}$, тъй като резултатът от срязването е появата на два нови хиперкуба, всеки с размерност n-1.

От казаното досега може да не е ясно защо настояваме да се казва, че срязваме именно в i-тата размерност. Например, на последната фигура от един куб се получават два квадрата и по нищо не личи точно в коя от трите размерности е бил срязан куба. Отговорът на тази забележка е, че хиперкубът ни интересува в контекста на булевите функции, когато върховете му са "маркирани" с нули или единици – стойностите на булевата функция. При срязването асоциацията между върхове и стойности на функцията се запазва, така че в общия случай резултатът от срязването в различни размерности е различен.

1.5.3 Представяне чрез формули

 Φ ормула е чисто синтактично понятие. Средношколското разбиране за "формула" е "прост алгоритъм", например "формулата за лицето на кръг с радуис $r \in S = \pi r^2$ ". Тук ние възприемаме съвсем друго разбиране за "формула". Φ ормула е всеки стринг, конструиран над

дадена азбука съгласно дадени правила. Етимологията на думата е следната: на латински "formula" е умалително от "forma". Не е грешка да казваме "форма" вместо "формула".

Формулите на булевите функции може да се дефинират индуктивно по следния начин. Да фиксираме изброимо безкрайно множество от булеви променливи $\{x_0, x_1, \ldots\}$. Нека Σ е азбуката:

$$\Sigma = \{f, x, 0, 1, \dots, 9, (,), ,\}$$

С червено са записани буквите от езика, който ще опишем, а именно езика от формулите на булевите функции, а с черно са буквите от метаезика, който използваме, за да опишем езика от формулите на булевите функции. Нека $\Sigma_d = \{0,1,\ldots,9\}$. Нека $\widetilde{\Sigma}$ е множеството от стрингове над Σ_d , които са валидни записи на числа в десетична позиционна бройна система. Нека ι е стандартната десетична позиционна бройна система, тоест биекцията

$$\iota:\widetilde{\Sigma}\to\mathbb{N}$$

която знаем от училище. Нека t е произволно изброяване на всички булеви функции, тоест биекция $t:\mathcal{F}_2\to\mathbb{N}$. За удобство можем да вземем най-простото и естествено изброяване на булевите функции:

- ullet за всяко $n\in\mathbb{N},$ ако $f\in\mathcal{F}_2^n$ и $g\in\mathcal{F}_2^{n+1},$ то t(f)< t(g),
- за всяко $n \in \mathbb{N}$, ако $f,g \in \mathcal{F}_2^n$ и $f \neq g$, то t(f) < t(g) тогава и само тогава, когато каноничното представяне на f предхожда лексикографски каноничното представяне на g.

Нека изброените от t булеви финкции са f_0 , f_1 и така нататък. Тогава дефинираме "формула на булева функция" чрез следната индуктивна дефиниция.

Определение 1 (Формулите на булевите функции). Всеки стринг $\phi \in \Sigma^+$ е *формула на булева функция* тогава и само тогава, когато в сила е точно едно от двете:

- База. $\varphi = \mathbf{x}\alpha$, където $\alpha \in \widetilde{\Sigma}$
- Индуктивна стъпка. $\varphi = f\alpha(\varphi_1, \varphi_2, \ldots, \varphi_n)$ където $\varphi_1, \varphi_2, \ldots, \varphi_n$ са формули на булеви функции, $\alpha \in \widetilde{\Sigma}$ и $t^{-1}(\iota(\alpha))$ има точно n променливи ‡ .

Въвеждаме и функцията ν , която се нарича *дълбочина на формулата*:

- В базовия случай, $\nu(\phi) \stackrel{\text{деф}}{=} 0$.
- ullet В индуктивната стъпка, $u(\varphi) \stackrel{\text{де}\varphi}{=} \max\{\nu(\varphi_1), \nu(\varphi_2), \ldots, \nu(\varphi_n)\} + 1$

Неформално, ако си представим съответна реализация чрез функционални елементи, то дълбочината на схемата е максималният брой функционални елементи, през които трябва да премине сигналът.

Това дали дефинираме $\mathbf{x}\alpha$ —запис на номерирана променлива—като формула или не, е въпрос на наш избор. Ако не желаем това, може да усложним Определение 1 или, което е по-просто решение, да дефинираме допълнително, че *истинска формула на булева функция* е всяка формула с дълбочина поне единица.

[†]Например 0017 не е валиден запис заради двете водещи нули.

 $^{^{\}ddagger}$ Забележете, че $\iota(\alpha)$ е число, а $\mathsf{t}^{-1}(\iota(\alpha))$ е една от всички булеви функции, защото $\mathsf{t}^{-1}:\mathbb{N}\to\mathcal{F}_2$.

Дотук сме дефинирали, чисто синтактично, формулите на булевите функции. Не сме казали нищо за техния смисъл, или, иначе казано, за тяхната *семантика*. Семантиката можем да дефинираме, използвайки индуктивната дефиниция на синтаксиса, като аналогът на синтактичната операция "вмъкване на стринг на мястото на подстринг" (има се предвид вмъкването на формулите ф_і на местата на имената на променливите) е семантичната "композиция на функция на мястото на променлива в друга функция". И така:

- семантиката на всяка формула с дълбочина нула $\mathbf{x}\alpha$ е булевата променлива $\mathbf{x}_{\iota(\alpha)}$.
- семантиката на всяка формула с дълбочина единица $f\alpha(x\beta_1,x\beta_2,\ldots,x\beta_n)$, където $\beta_i \in \widetilde{\Sigma}$ за $1 \leq i \leq n$, е булевата функция $f_i(x_{k_1},x_{k_2},\ldots,x_{k_n})$, където $f_i = t^{-1}(\iota(\alpha))$ и x_{k_j} за $1 \leq j \leq n$ е булевата променлива, чийто индекс k_i е $\iota(\beta_i)$.
- семантиката на всяка формула с дълбочина повече от единица $\phi = f\alpha(\phi_1, \phi_2, \dots, \phi_n)$ е композицията на семантиките на ϕ_1, \dots, ϕ_n на местата на съответно първата, ..., n-тата променлива на функцията f_i , където $f_i = t^{-1}(\iota(\alpha))$.

Лесно се вижда, че при изредените правила булевата функция, която е семантиката на някаква формула, е **една единствена**, но обратното не е вярно: за всяка функция има **безброй много** формули, на които тя е семантика. Ако булевата функция f е семантиката на формулата ф ще казваме, че f *съответства на* ф.

Често срещана задача е: дадени са две формули, да се реши дали са еквивалентни, тоест дали съответната им булева функция е една и съща, или не. Това е частен случай на общата задача: дадени са два синтактични обекта (някакви стрингове, изградени по някакви правила), да се определи дали семантиката им е една и съща, или не, като семантиката е добре дефинирана функция.

Функциите, чиито формули ще използваме най-често, са "стандартните" булеви функции на две променливи: конюнкцията, дизюнкцията, импликацията, сумата по модул 2, стрелката на Peirce и чертата на Sheffer, а така също и отрицанието, което е функция на една променлива. Има смисъл множеството от функциите, чиито формули ще се ползват, да бъде пълно множество (вж. Секция 1.6).

1.6 Пълнота на множества от булеви функции

Нека $F \subseteq \mathcal{F}_2$. Неформално, множеството F е *пълно*, ако всяка булева функция $f \in \mathcal{F}_2$ може да бъде представена като композиция на функциите от F. Формално, нека [F] означава затварянето на F спрямо композиция. Затварянето може да се дефинира чрез следната индуктивна дефиниция:

- [F] съдържа всички функции от F.
- Нека f и g са произволни функции от [F]. Нека f има n променливи за някакво $n \ge 0$. Тогава композицията на g на мястото на i-тата променлива на f също се съдържа в [F], за $1 \le i \le n$.

И така, F е пълно множество, ако $[F] = \mathcal{F}_2$.

Теорема 1 (теорема на Boole). Множеството от трите булеви функции конюнкция, дизюнкция и отрицание е пълно. \Box

1.7 Съвършена дизюнктивна нормална форма на булева функция

Нека са фиксирани краен брой булеви променливи x_1, \ldots, x_n за $n \geq 1$. Литерал ще наричаме всяко име на променлива с черта отгоре (отрицание). Литералите от първия вид се наричаме положсителни, а от втория – отрицателни. Веднага подчертаваме, че литералите са формули и като такива са качествено различни от самите променливи, понеже формулите са понятия от синтактичното ниво, а променливите са от по-високото семантично ниво. Това, че използваме един и същи запис " x_1 " и за името на променлива (което е формула), и за самата променлива, не води до объркване, защото опитният читател винаги може да разбере от контекста дали става дума за синтактичното ниво или за семантичното ниво. Примери за положителни литерали са x_1 , x_4 и така нататък. Примери за отрицателни литерали са $\overline{x_1}$, $\overline{x_3}$ и така нататък.

Елементарна конюнкция е непразна формула, която се състои от конкатенация на литерали, такива че всяко име на променлива се появява най-много веднъж – било като положителен, било като отрицателен литерал. Ако променливите са x_1, \ldots, x_6 , примери за елементарни конюнкции са $x_1x_3x_4, x_1\overline{x_4}, x_1x_2x_3x_4x_5x_6, \overline{x_3}, x_2\overline{x_5}\,\overline{x_6}$ и така нататък. Не е задължително, но е силно препоръчително имената да се записват отляво надясно в нарастващ ред на индексите. Тук подчертаваме, че "елементарна конюнкция" е формула, тоест понятие от синтактичното ниво. Но знаем, че думата "конюнкция" се използва и за добре известната булева функция на две променливи и това може да бъде объркващо, защото последното понятие е от семантичното ниво.

 Π ълна елементарна конюнкция е елементарна конюнкция, която съдържа точно ${\bf n}$ литерала. С други думи, това е непразна формула, която се състои от конкатенация на литерали, такива че всяко име на променлива се появява точно веднъж — било като положителен, било като отрицателен литерал. Ако променливите са ${\bf x}_1, \ldots, {\bf x}_6$, примери за елементарни конюнкции са ${\bf x}_1 {\bf x}_2 {\bf x}_3 {\bf x}_4 {\bf x}_5 {\bf x}_6$ и така нататък. Не е задължително, но е силно препоръчително имената да се записват отляво надясно в нарастващ ред на индексите.

Дизюнктивна нормална форма, съкратено ДНФ, е формула, която се състои от една или повече различни ‡ елементарни конюнкции, "слепени" помежду си със символа " \lor ". В горния контекст, примери за ДНФ са $x_2\overline{x_3}x_4$, $x_1x_4 \lor x_2\overline{x_5}$ $\overline{x_6} \lor \overline{x_2}$ $\overline{x_3}$ и така нататък. Събършена дизюнктивна нормална форма, съкратено СъвДНФ е дизюнктивна нормална форма, в която участват само пълни елементарни конюнкции. В горния контекст, пример за СъвДНФ е $x_1\overline{x_2}x_3x_4x_5x_6 \lor \overline{x_1}$ $\overline{x_2}$ $\overline{x_3}$ $\overline{x_4}$ $\overline{x_5}$ $\overline{x_6}$.

Семантиката на литералите, елементарните конюнкции и ДНФ е очевидната: чертата отговаря на функцията отрицание, конкатенацията, на функцията конюнкция и слепването с " \vee ", на функцията дизюнкция. Като пример да разгледаме формулата (тя е СъвДНФ, ако $\mathfrak{n}=6$)

$$\varphi = x_1 \overline{x_2} x_3 x_4 x_5 x_6 \vee \overline{x_1} \overline{x_2} \overline{x_3} \overline{x_4} \overline{x_5} \overline{x_6}$$

Очевидно, нейната семантика е булевата функция—да я наречем h—на шестте променливи x_1 , ..., x_6 , която има стойност 1 върху векторите 000000 и 101111 и има стойност 0 върху всички останали, 62 на брой, вектори. Сега да си представим, че трябва да запишем h чрез формула, изградена съгласно индуктивното Определение 1. Естествено, има безброй начини да сторим това, но нека се опитаме да напишем формула, която е аналогична на ϕ . Лесно се вижда, че ни трябват формули за функциите отрицание, конюнкция и дизюнкция. Функцията h е равна

[†]Която е 1 тстк и двете и променливи са 1.

[‡]Кога две елементарни конюнкции са различни? Ако настояваме индексите на променливите да са в нарастващ ред отляво надясно, то две елементарни конюнкции са различни тстк са различни като стрингове. Без това ограничение можем да дефинираме "различни формули" чрез разлика в семантиките.

на някаква композиция от тези функции[†], а именно на дизюнкция от някакви конюнкции. Аналогът на това в синтактичния свят на формулите е: че формула за h може да бъде получена, като във формула за дизюнкция заместим стринговете-имена на променливи с някакви формули за конюнкции.

Да направим формула за h точно по Определение 1, като използваме червен цвят за буквите \acute{u} . Функциите отрицание, конюнкция и дизюнкция имат номера съответно 4, 7 и 13 в изброяването t, тоест, това са съответно f_4 , f_7 и f_{13} . Ето пример за формула, съответна на h:

$$\psi = f13(f7(x1, f7(f4(x2), f7(x3, f7(x4, f7(x5, x6))))),$$

$$f7(f4(x1), f7(f4(x2), f7(f4(x3), f7(f4(x4), f7(f4(x5), f4(x6))))))$$

Очевидно ф е несравнимо по-лека за четене от ψ , макар че са еквивалентни, имайки една и съща семантика. Може да възникне въпросът, защо изобщо ползваме тромавата конструкция на Определение 1, след като има начин да се записват еквивалентни формули, които са много по-лесни за четене. Отговорът е, че конструкцията на Определение 1 има чисто теоретично значение. Там искахме да дефинираме прецизно и кратко "формула" и "функция, съответна на формула", а не сме имали за цел получените формули да са кратки и ясни. Говорейки за ДНФ искаме друго – кратък и много ясен запис на формулите. За тази цел е много по-удачно да се въведат литерали и елементарни конюнкции и чрез тях и буквите " \vee " да се дефинират ДНФ.

Доказателството на теоремата на Boole се основава на факта, че всяка булева функция на ≥ 1 променливи, която не е константа-нула, има една единствена СъвДНФ.

1.8 Разни

Функция (може дори да не е булева, но типовете на променливите трябва да са едни и същи) на \mathfrak{n} променливи, да я наречем $f(x_1, x_2, \ldots, x_n)$ се нарича *симетрична*, ако стойността и́ се запазва при всяка пермутация на променливите. С други думи,

$$f(x_1, x_2, ..., x_n) = f(x_{\pi(1)}, x_{\pi(2)}, ..., x_{\pi(n)})$$

за всяка пермутация $\pi(1), \pi(2), \ldots, \pi(n)$ на вектора $1, 2, \ldots, n$. Например, ако n = 3, то:

$$f(x_1, x_2, x_3) = f(x_1, x_3, x_2) = f(x_2, x_1, x_3) = f(x_2, x_3, x_1) = f(x_3, x_1, x_2) = f(x_3, x_2, x_1)$$

Ако пък n = 2, то:

$$f(x_1, x_2) = f(x_2, x_1)$$

Очевидно комутативността е частен случай на симетричността.

2 Задачи

Задача 1. Намерете $|\mathcal{F}_2^n|$.

Решение: Добре известно е, че броят на тоталните функции с краен домейн X и краен кодомейн Y е $|Y|^{|X|}$. Прилагаме тази формула с $|X|=2^n$ и |Y|=2 и получаваме $|\mathcal{F}_2^n|=2^{2^n}$. \square

[†]Тази композиция не е единствена заради комутативността на дизюнкцията и конюнкцията.

Задача 2. Нека

$$S = \left\{ f \in \mathcal{F}_2^n \, | \, \forall \mathbf{w}, \mathbf{z} \in J_2^n : \mathbf{w} = \overline{\mathbf{z}} \rightarrow f(\mathbf{w}) = \overline{f(\mathbf{z})} \right\}$$

Намерете |S| (като функция на n, разбира се).

Решение: С други думи, търси се броят на булевите функции, които върху противоположни вектори имат противоположни стойности[†].

Да групираме \mathfrak{n} -векторите по двойки \mathbf{a}, \mathbf{b} , такива че $\mathbf{a} = \overline{\mathbf{b}}$. За всяка функция $\mathbf{f} \in X$ и за всяка от тези двойки е изпълнено следното. Стойността на функцията върху единия елемент от двойката се определя от стойността на функцията върху другия елемент от двойката. Иначе казано, стойностите, които функцията има върху *половината* от \mathfrak{n} -векторите, я определят напълно.

Но n-векторите са 2^n , така че половината от тях са $\frac{1}{2}2^n=2^{n-1}$ на брой. Имайки предвид това, виждаме, че броят на въпросните функции е равен на броя на всички булеви функции върху n-1 променливи. Отговорът е $|S|=2^{2^{n-1}}$.

Задача 3. Нека

$$X = \left\{ f \in \mathcal{F}_2^n \,|\, \forall \mathbf{w}, \mathbf{z} \in J_2^n : \mathbf{w} = \overline{\mathbf{z}} \to f(\mathbf{w}) = f(\mathbf{z}) \right\}$$

Намерете |X|.

Решение: В тази задача се търси броят на функциите, които имат една и съща стойност върху противоположни вектори. Отговорът е $|X|=2^{2^{n-1}}$ със практически същите съображения като в решението на Задача 2.

Задача 4. Намерете броя на булевите функции на n променливи, които имат стойност 1 върху точно k вектора.

Решение: Отговорът очевидно е $\binom{2^n}{k}$.

Задача 5. Да се намери броят на симетричните булеви функции на п променливи.

Решение: Съгласно определението на симетрична функция, става дума за булеви функции, които запазват стойността си при произволно разместване на стойностите на елементите на входния вектор. Входният вектор се състои от нули и единици, следователно се иска върху всички входни вектори \mathbf{c} един и същи брой единици, стойността на функцията да е една и съща. С други думи, иска се върху всеки слой на хиперкуба функцията да има една и съща стойност. Слоевете на \mathbf{n} -мерния хиперкуб са $\mathbf{n}+1$, върху всеки от тях стойността е една и съща, а стойностите върху различни слоеве са произволни една спрямо друга. Тогава отговорът е 2^{n+1} .

Задача 6. Кои са симетричните булеви функции на 2 променливи?

Решение: С други думи, кои са комутативните функции, тъй като при n=2, свойството симетричност съвпада със свойството комутативност. Съгласно Задача 5, тези функции са

[†]Такива функции се наричат *самодвойнствени* (на английски *self-dual*). Просто *двойнствена* функция на $f \in \mathcal{F}_2^n$ е единствената $g \in \mathcal{F}_2^n$, за която е изпълнено $\forall \mathbf{a} \in J_2^n : g(\mathbf{a}) = \overline{f(\overline{\mathbf{a}})}$. Самодвойнствените функции са тези, които са двойнствени на себе си.

 $2^{2+1} = 8$ на брой. В каноничното представяне, това са функциите

 $f_0 = 0000$

 $f_1 = 0001$

 $f_6 = 0110$

 $f_7 = 0111$

 $f_8 = 1000$

 $f_9 = 1001$

 $f_{14} = 1110$

 $f_{15} = 1111$

Задача 7. Да се определи броят на булевите функции на $\mathfrak n$ променливи за $\mathfrak n \geq 2$, които запазват стойността си при размяна на променливите $\mathfrak x_1$ и $\mathfrak x_2$.

Решение: С други думи, иска се

$$f(x_1, x_2, x_3, ..., x_n) = f(x_2, x_1, x_3, ..., x_n)$$

за всички възможни стойности на x_1, \ldots, x_n . Решението ще получим след като съобразим колко различни входни вектори има по отношение на тази задача.

Лесно се вижда, че ако $x_1 = x_2 = 0$ или $x_1 = x_2 = 1$, разместването на x_1 и x_2 няма значение и функцията запазва стойността си по очевидни причини при разместването на x_1 и x_2 . Да разбием множеството от всички входни вектори на 4 равномощни подмножества съгласно четирите възможности за подвектора x_1x_2 :

$$A = 0 \times 0 \times \underbrace{J_2 \times \cdots \times J_2}_{n-2 \text{ пъти}}$$

$$B = 0 \times 1 \times \underbrace{J_2 \times \cdots \times J_2}_{n-2 \text{ пъти}}$$

$$C = 1 \times 0 \times \underbrace{J_2 \times \cdots \times J_2}_{n-2 \text{ пъти}}$$

$$D = 1 \times 1 \times \underbrace{J_2 \times \cdots \times J_2}_{n-2 \text{ пъти}}$$

Всяко от тези множества има мощност 2^{n-2} . Да разгледаме булевите функции на n променливи без ограничения. Всяка булева функция на n променливи без ограничения има 2^{n-2} стойности върху векторите от A, върху векторите от B, върху векторите от C и върху векторите от D. Всички тези стойности на функцията, на брой $4 \times 2^{n-2} = 2^n$ може да са единици или нули независимо една от друга, откъдето и броят на всички функции $e = 2^{2^n}$.

Ако имаме предвид ограничението от условието на задачата, виждаме, че върху всеки вектор от C, стойността на функцията трябва да съвпада със стойността и върху точно един вектор от B. От друга страна, върху векторите от A стойностите на функцията са произволни – без значение какви стойности има върху останалите три множества. Аналогично, върху векторите от D стойностите на функцията са произволни – без значение какви стойности има върху останалите три множества.

За да получим броя на търсените функции, достатъчно е да игнорираме едно от множествата B и C, да кажем, че игнорираме C, и да разглеждаме само A, B и D. За всеки вектор $\mathbf{z} \in A \cup B \cup D$, стойността на функцията е независима от стойността и върху кой да е друг вектор $\mathbf{z}' \in A \cup B \cup D$. Тогава отговорът е

$$2^{2^{|A|+|B|+|D|}} = 2^{3\times 2^{n-2}}$$

Ако заместим n=2, получаваме 2^3 , което точно съвпада с отговора на Задача 6.

Задача 8. Да се намери броят на булевите функции на n променливи, които приемат стойност 1 върху поне една двойка противоположни входни вектори.

Решение: Отговорът очевидно $e = 2^{2^n} - |A|$, където A е множеството от булевите функции на n променливи, които не приемат стойност 1 върху никои два противоположни вектора. С други думи, за всеки входен вектор a и за всяка функция $f \in A$ е изпълнено:

$$(f(\mathbf{a}) = 0 \land f(\overline{\mathbf{a}}) = 0) \lor \tag{3}$$

$$(f(\mathbf{a}) = 0 \land f(\overline{\mathbf{a}}) = 1) \lor \tag{4}$$

$$(f(\mathbf{a}) = 1 \land f(\overline{\mathbf{a}}) = 0) \tag{5}$$

Двойките противоположни вектори на брой са $\frac{1}{2}2^n=2^{n-1}$. За всяка такава двойка показахме, че възможностите са точно 3 (за да може функцията да бъде от A). И така, $|A|=3^{2^{n-1}}$. Отговорът тогава е

$$2^{2^{n}} - 3^{2^{n-1}} \tag{6}$$

Тук може да възникие следното питане. Щом $2^{2^n}-3^{2^{n-1}}$ е мощността на непразно множество, то очевидно това е положително число за всяко \mathfrak{n} . Ако обаче не знаем комбинаторните съображения, довели до отговора, а просто видим $2^{2^n}-3^{2^{n-1}}$, може да се запитаме, това не може ли да е отрицателно за някакви \mathfrak{n} . С помощта на математическия анализ можем да докажем, че не може да е отрицателно при неограничено нарастване на \mathfrak{n} :

$$\lim_{n \to \infty} \frac{2^{2^n}}{3^{2^{n-1}}} = \lim_{n \to \infty} \frac{2^{2^n}}{2^{(\log_2 3)2^{n-1}}} = \lim_{n \to \infty} 2^{(2^n - (\log_2 3)2^{n-1})} = \lim_{n \to \infty} 2^{(2 - \log_2 3)2^{n-1}} = \infty$$

понеже $2 > \log_2 3$.

Следното доказателство на същото твърдение е на Добромир Кралчев:

$$2^{2^n} - 3^{2^{n-1}} = 2^{2 \times 2^{n-1}} - 3^{2^{n-1}} = 4^{2^{n-1}} - 3^{2^{n-1}} > 0$$

Тази задача може да се реши и с други съображения. Нека B е подмножеството на \mathcal{F}_2^n от функциите, които приемат стойност 1 върху поне една двойка противоположни вектори. Ние търсим |B|. Нека B_k за $1 \leq k \leq 2^{n-1}$ е подмножеството от тези функции, които приемат стойност 1 върху точно k двойки противоположни вектори. Очевидно B се разбива на B_1 , ..., $B_{2^{n-1}}$, така че

$$|B| = \sum_{k=1}^{2^{n-1}} |B_k|$$

Лесно се вижда, че

$$|B_k| = {2^{n-1} \choose k} 3^{(2^{n-1}-k)}$$

Съображенията са следните: по $\binom{2^{n-1}}{k}$ начина можем да изберем от всички 2^{n-1} двойки противоположни вектори такива, върху които функцията да има стойност 1, а за всяка от останалите $2^{k-1}-k$ двойки вектори имаме точно 3 възможности (виж (3)), така щото функцията да няма стойност 1 върху двата елемента на двойката. И така, отговорът е:

$$\sum_{k=1}^{2^{n-1}} {2^{n-1} \choose k} 3^{(2^{n-1}-k)} \tag{7}$$

От (6) и (7) извеждаме (с комбинаторни разсъждения) тъждеството:

$$2^{2^{n}} - 3^{2^{n-1}} = \sum_{k=1}^{2^{n-1}} {2^{n-1} \choose k} 3^{(2^{n-1}-k)}$$

Задача 9. За колко булеви функции f на n променливи е изпълнено следното: ако f(a) има стойност 1, то f има стойност 1 върху всеки вектор, който има поне толкова единици, колкото a?

Решение: С други думи, ако f има стойност 1 върху някакъв вектор a, то f има стойност 1 върху всички вектори от слоя на хиперкуба, към който слой принадлежи a, и освен това f има стойност 1 върху всички вектори от всички следващи слоеве. Веднага се вижда, че всяка такава функция има една и съща стойност върху всеки слой на хиперкуба и се определя еднозначно от това, къде е "границата" между нулите и единиците върху хиперкуба;. По-подробно казано, върху някакви последователни слоеве на хиперкуба (може и да няма такива), започвайки от слой 0, функцията има стойност само 0, и после върху всички останали слоеве (може и да няма такива), функцията има стойност само 1. Тъй като слоевете са n+1, то има точно n+2 такива функции.

Задача 10. За колко булеви функции f на n променливи е изпълнено следното: ако f(a) има стойност 1, то f има стойност 1 върху всеки вектор, който има повече единици от a?

Решение: Задачата е подобна на Задача 9, но само донякъде. В Задача 10:

- или има някакъв "граничен слой" в хиперкуба, нека да е слой k, в който за първи път се появява стойност на функцията 1, като върху всички слоеве с по-малък номер функцията е задължително 0, а върху всички слоеве с по-голям номер функцията е задължително 1,
- или такъв граничен слой няма, тоест изобщо няма единици, тоест функцията е константанула † .

[†]Благодарности на Добромир Кралчев за посочването на това!

Първо да сметнем колко са функциите от търсения вид, които имат поне една единица (с други думи, не са константа-нула). Числото k (номерът на граничния слой) може да е наймалко 0 и най-много n. Тъй като в слоеве с номера $0,\ldots,\,k-1$ и $k+1,\ldots,\,n$ нещата са фиксирани, единственото, което варира, е как точно са "раздадени" нулите и единиците в слой k по такъв начин, че да има поне една единица.

Знаем, че слой k има мощност $\binom{n}{k}$. Всички начини да "раздадем" нули и единици на неговите елементи са $2^{\binom{n}{k}}$ на брой. От това число вадим единица, за да отразим факта, че върху поне един вектор от слой k функцията е единица (с други думи, изваждаме от разглеждането раздаването само на нули). И така, за дадено k, броят на начините функцията да има поне една единица върху векторите на слой k е $2^{\binom{n}{k}}-1$. А отговорът, съгласно принципа на разбиването, е:

$$\sum_{k=0}^{n} \left(2^{\binom{n}{k}} - 1 \right) = \sum_{k=0}^{n} \left(2^{\binom{n}{k}} \right) - n - 1 \tag{8}$$

Към (8) добавяме единица, защото функцията може да е константа-нула, и получаваме

$$\sum_{k=0}^{n} \left(2^{\binom{n}{k}} \right) - n$$

Задача 11. Да се намери броят на булевите функции на n променливи, които нямат фиктивни променливи.

Решение: Очевидно отговорът $e = 2^{2^n} - |A|$, където A е множеството от булевите функции, които имат поне една фиктивна променлива.

Да разгледаме без ограничение на общността променливата x_1 . В колко функции тя е фиктивна? Може да има и други фиктивни променливи, може и да няма – пита се, за колко функции е изпълнено x_1 да е фиктивна? От дефиницията на фиктивна променлива имаме изискването за всяка от тези функции, да кажем f, да е изпълнено:

$$f(0, x_2, x_3, ..., x_n) = f(1, x_2, x_3, ..., x_n)$$

Ако си представим входните вектори, наредени лексикографски отгоре надолу, иска се функцията (която е колона с височина 2^n) да е такава, че горната половина на колоната да е точно като долната половина. Ето малък пример за функция, в която x_1 е фиктивна:

χ_1	χ_2	χ_3	f
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Виждаме, че за да бъде x_1 фиктивна, стойността на функцията върху половината вектори определя стойността ѝ върху другата половина. Броят на функциите, в които x_1 е фиктивна, е $2^{2^{n-1}}$.

Всяка променлива на функцията може да е фиктивна. Но отговорът на въпроса, колко са функциите с поне една фиктивна променлива, **не е n** \times $2^{2^{n-1}}$, тъй като този израз брои някои функции по няколко пъти. Може да има повече от една фиктивна променлива. Ето пример за функция, в която и x_1 , и x_2 са фиктивни:

χ_1	χ_2	χ_3	f				
0	0	0	0				
0	0	1	1				
0	1	0	0				
0	1	1	1				
1	0	0	0				
1	0	1	1				
1	1	0	0				
1	1	1	1				

От $n \times 2^{2^{n-1}}$ ще изваждаме по принципа на включването и изключването: ще намерим колко са функциите, в които поне две променливи са фиктивни, в колко поне три са фиктивни, и така нататък, в колко поне n са фиктивни, и ще построим израз с алтерниращи положителни и отрицателни знаци съгласно принципа на включването и изключването.

Броят на функциите с поне две фиктивни променливи е $\binom{n}{2} \times 2^{2^{n-2}}$, защото по $\binom{n}{2}$ начина избираме кои да са променливите и след това забелязваме, че една четвърт от входните вектори определят функцията напълно в смисъл, че върху останалите стойностите и́ повтарят тези от четвъртинката. Аналогично, броят на функциите с поне три фиктивни променливи е $\binom{n}{3} \times 2^{2^{n-3}}$.

И така, броят на функциите с поне една фиктивна променлива е:

$$\sum_{k=1}^{n} (-1)^{k} \binom{n}{k} 2^{2^{n-k}}$$

Тогава броят на функциите без фиктивни променливи е:

$$2^{2^{n}} - \sum_{k=1}^{n} (-1)^{k} \binom{n}{k} 2^{2^{n-k}} = \sum_{k=0}^{n} (-1)^{k} \binom{n}{k} 2^{2^{n-k}}$$

Задача 12. Дадени са булевите функции f = 1011 и g = 1001. Да се намери каноничното представяне на функцията $h(x_2, x_4, x_3) = f(g(x_4, x_3), x_2)$.

Решение: Имената на променливите са дадени по този начин за объркване. С просто преименуване получаваме еквивалентен израз $h(x_1, x_2, x_3) = f(g(x_2, x_3), x_1)$. Каквито и имена на променливи да ползваме, става дума за 3 променливи и таблицата на търсената функция трябва да има 8 реда:

χ_1	χ_2	χ_3	$h(x_1,x_2,x_3)$
0	0	0	?
0	0	1	?
0	1	0	?
0	1	1	?
1	0	0	?
1	0	1	?
1	1	0	?
1	1	1	?

Това, че f и g са дадени без имена на променливите няма никакво значение. Очевидно f(00) = 1, g(00) = 1, f(01) = 0 и така нататък. Функцията h е дефинирана като $h(x_1, x_2, x_3) = f(g(x_2, x_3), x_1)$. Заместваме в таблицата:

χ_1	χ_2	χ_3	$f(g(x_2,x_3),x_1)$
0	0	0	?
0	0	1	?
0	1	0	?
0	1	1	?
1	0	0	?
1	0	1	?
1	1	0	?
1	1	1	?

Ще пресмятаме отвътре навън, тъй като тази функция е композиция на $g(x_2, x_3)$ на мястото на първата променлива на f. И така, да видим какви са стойностите на $g(x_2, x_3)$ в таблицата. Те са еднозначно определени, защото на всеки ред x_2 и x_3 си имат някакви стойности, а от каноничната дефиниция на g знаем какви са функционалните и́ стойности върху всеки вход.

χ_1	χ_2	x_3	$g(x_2,x_3)$
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Тук никъде не ползвахме най-лявата колона, защото g не зависеше от x_1 . В следващата стъпка от решението пък няма да ползваме колоните на x_2 и x_3 , защото f зависи непосредствено само от стойностите на g и от x_1 :

χ_1	χ_2	χ_3	$g(x_2,x_3)$	$f(g(x_2,x_3),x_1)$
0	0	0	1	1
0	0	1	0	1
0	1	0	0	1
0	1	1	1	1
1	0	0	1	1
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

За да се убедим, че е така, да си припомним дефиницията f = 1011. Функцията f е нула тогава и само тогава, когато входът е 01. На горните четири реда $x_1 = 0$, а в израза $f(g(x_2, x_3), x_1)$, x_1 е втората променлива, така че на горните четири реда функцията е четири единици. На долните четири реда, $x_1 = 1$, така че функцията просто повтаря стойностите на $g(x_2, x_3)$. \square

Задача 13. Нека f=1000 и g=0001. Да се намери каноничната форма на функцията $h(x_1,x_2,x_3,x_4)=f(x_1,x_2)\wedge g(x_3,x_4)$

Решение:

				1 -()	(
x_1	χ_2	χ_3	χ_4	$f(x_1,x_2)$	$g(x_3,x_4)$	$f(x_1,x_2) \wedge g(x_3,x_4)$
0	0	0	0	1	0	0
0	0	0	1	1	1	1
0	0	1	0	1	1	1
0	0	1	1	1	1	1
0	1	0	0	0	0	0
0	1	0	1	0	1	0
0	1	1	0	0	1	0
0	1	1	1	0	1	0
1	0	0	0	0	0	0
1	0	0	1	0	1	0
1	0	1	0	0	1	0
1	0	1	1	0	1	0
1	1	0	0	0	0	0
1	1	0	1	0	1	0
1	1	1	0	0	1	0
1	1	1	1	0	1	0

И така, h = 0111000000000000.

Задача 14. Дадени са следните функции чрез формули:

$$f(x,y,z) = xy \oplus xz \oplus yz$$

$$g(x,y,z) = (x \to y) \oplus ((y \to z) \oplus (z \to y))$$

$$h(x,y,z) = (x \to y)(y \to z) \to (x \to z)$$

Да се намерят каноничните представяния на функциите.

Отговор:

$$f(x, y, z) = 00010111$$

 $g(x, y, z) = 10010101$
 $h(x, y, z) = 111111111$

Задача 15. Еквивалентни ли са следните две формули:

$$((x \oplus y) \to (x \vee y))((\overline{x} \to y) \to (x \oplus y))$$

$$x|y$$

Решение: Да, еквивалентни са. Ще решим задачата с табличния метод (таблиците не са показани). Първата формула е конюнкция от $\tilde{1} = ((x \oplus y) \to (x \vee y))$ и $1110 = ((\overline{x} \to y) \to (x \oplus y))$, която е очевидно 1110. А долната формула—чертата на Sheffer—е на функцията 1110 по дефиниция.

Задача 16. Докажете чрез еквивалентни преобразувания следните еквивалентности:

•
$$x \to (xy \to ((x \to y) \to y)z) = y \to (x \to z).$$

•
$$x \to (y \to z) = (x \to y) \to (x \to z)$$
.

•
$$\overline{x}(y \oplus z) = \overline{x \vee ((y \to z)(z \to y))}$$
.

Разрешените еквивалентни преобразувания са всички свойства на булевите функции на две променливи, дадени в учебника, и освен това свойството на импликацията $x \to y = \overline{x} \lor y$ и свойството на сумата по модул две $x \oplus y = \overline{x}y \lor x\overline{y}$, свойството на еквивалентността $x \equiv y = xy \lor \overline{x}\overline{y}$, свойството на чертата на Sheffer $x|y = \overline{x}\overline{y}$ и свойството на стрелката на Peirce $x \downarrow y = \overline{x} \lor y$.

Решение: Ще покажем само последната еквивалентност, която е

$$\overline{\mathbf{x}}(\mathbf{y} \oplus \mathbf{z}) = \overline{\mathbf{x} \vee (\underbrace{(\mathbf{y} \to \mathbf{z})(\mathbf{z} \to \mathbf{y})}_{\mathbf{A}})}$$

Да разгледаме израза $A = (y \rightarrow z)(z \rightarrow y)$. В сила е:

$$A=(y o z)(z o y)$$
 // свойство на импликацията
$$=(\overline{y}\lor z)(\overline{z}\lor y)$$
 // дистрибутивност на конюнкцията над дизюнкцията
$$=\overline{y}\,\overline{z}\lor\underbrace{\overline{y}y}_0\lor\underbrace{z\overline{z}}_0\lor zy$$

$$=yz\lor\overline{y}\,\overline{z}$$

И така, дясната страна е еквивалентна на

$$\overline{x \vee yz \vee \overline{y}\,\overline{z}} = // \text{ De Morgan}$$

$$\overline{x}\,\overline{yz}\,\overline{\overline{y}\,\overline{z}} = // \text{ De Morgan}$$

$$\overline{x}(\overline{y} \vee \overline{z})(\overline{\overline{y}} \vee \overline{\overline{z}}) = \overline{x}(\overline{y} \vee \overline{z})(y \vee z) = \overline{x}(\overline{y}y \vee \overline{y}z \vee \overline{z}y \vee \overline{z}z) =$$

$$\overline{x}(\overline{y}z \vee \overline{z}y) = \overline{x}(y \oplus z)$$

Задача 17. Докажете чрез еквивалентни преобразувания, че x_1 е фиктивна променлива в следните функции:

- $\bullet \ f(x_1,x_2)=(x_2\to x_1)(x_2\downarrow x_2).$
- $g(x_1, x_2) = (x_2 \equiv x_1) \lor (x_1 | x_2).$
- $h(x_1, x_2, x_3) = ((x_1 \oplus x_2) \to x_3)(\overline{x_3 \to x_2}).$

Решение:

$$f(x_1, x_2) = (x_2 \to x_1)(x_2 \downarrow x_2) = (x_2 \to x_1) \left(\overline{x_2 \lor x_2}\right) = (x_2 \to x_1)\overline{x_2} = (\overline{x_2} \lor x_1)\overline{x_2} = \overline{x_2} \overline{x_2} \lor x_1\overline{x_2} = \overline{x_2} \lor x_1\overline{x_2} = \overline{x_2}(1 \lor x_1) = \overline{x_2}$$

П

$$\begin{array}{l} h(x_1,x_2,x_3) = ((x_1 \oplus x_2) \to x_3)(x_3 \to x_2) = (\overline{x_1 \oplus x_2} \vee x_3)(\overline{\overline{x_3} \vee x_2}) = \\ (\overline{x_1 \oplus x_2} \vee x_3)(\overline{\overline{x_3}} \ \overline{x_2}) = (\overline{x_1 \oplus x_2} \vee x_3)\overline{x_2}x_3 = (\overline{x_1}\overline{x_2} \vee \overline{x_1}x_2 \vee x_3)\overline{x_2}x_3 = \\ ((\overline{x_1}\overline{x_2} \ \overline{x_1}x_2) \vee x_3)\overline{x_2}x_3 = ((\overline{x_1} \vee \overline{x_2})(\overline{x_1} \vee \overline{x_2}) \vee x_3)\overline{x_2}x_3 = \\ ((\overline{x_1} \vee x_2)(x_1 \vee \overline{x_2}) \vee x_3)\overline{x_2}x_3 = ((\overline{x_1}x_1 \vee \overline{x_1} \ \overline{x_2} \vee x_2x_1 \vee x_2\overline{x_2}) \vee x_3)\overline{x_2}x_3 = \\ ((\overline{x_1} \ \overline{x_2} \vee x_2x_1) \vee x_3)\overline{x_2}x_3 = (\overline{x_1} \ \overline{x_2} \vee x_2x_1 \vee x_3)\overline{x_2}x_3 = \\ (\overline{x_1} \ \overline{x_2} \ \overline{x_2}x_3 \vee x_2x_1\overline{x_2}x_3 \vee x_3\overline{x_2}x_3 = \overline{x_1} \ \overline{x_2}x_3 \vee 0 \vee \overline{x_2}x_3 = \overline{x_1} \ \overline{x_2}x_3 \vee \overline{x_2}x_3 = \\ (\overline{x_1} \vee 1)\overline{x_2}x_3 = 1\overline{x_2}x_3 = \overline{x_2}x_3 \end{array}$$

Задача 18. Докажете, че всяка симетрична булева функция, различна от константа, има само съществени променливи.

Решение: Да наречем тази функция f. Нека n е броят на нейните променливи. Щом f не е константа, f има стойност 0 върху поне един вектор и стойност 1 върху поне един вектор. Съгласно расзъжденията в решението на Задача 5, за всеки слой на n-мерния хиперкуб, f има една и съща стойност върху всички вектори от този слой. Лесно се вижда, че в хиперкуба има съседни слоеве (тоест, единият има една единица повече от другия), такива че f има стойност 0 върху единия от тях и стойност 1 върху другия от тях.

Без ограничение на общността, нека f има стойност 0 върху всички вектори от слой k и стойност 1 върху всички вектори от слой k+1, за някое k, такова че $0 \le k \le n-1$. Ще докажем едно помощно твърдение, чиято важност налага да го обособим като лема. Използваме контрапозитивното твърдение на Лема 1 и търсеният резултат следва веднага.

Лема 1. Ако $f \in \mathcal{F}_2^n$ има поне една фиктивна променлива, то за всеки два съседни слоя L_k и L_{k+1} на \mathfrak{n} -мерния хиперкуб съществува вектор $\mathbf{a} \in L_k$ и съществува вектор $\mathbf{b} \in L_{k+1}$, такива че $f(\mathbf{a}) = f(\mathbf{b})$.

Доказателство: Нека x_i е фиктивната променлива. По дефиниция:

$$f(x_1, x_2, ..., x_{i-1}, 0, x_{i+1}, x_{i+2}, ..., x_n) = f(x_1, x_2, ..., x_{i-1}, 1, x_{i+1}, x_{i+2}, ..., x_n)$$

за всяко "раздаване" на (булеви) стойности на $x_1, x_2, \ldots, x_{i-1}, x_{i+1}, x_{i+2}, \ldots, x_n$. Да разгледаме произволно k, такова че $0 \le k \le n-1$. Очевидно съществува поне едно "раздаване" ‡ на стойности на $x_1, x_2, \ldots, x_{i-1}, x_{i+1}, x_{i+2}, \ldots, x_n$, което "дава" точно k единици на променливите $x_1, x_2, \ldots, x_{i-1}, x_{i+1}, x_{i+2}, \ldots, x_n$. Да разгледаме кое да е раздаване, даващо k единици, и да го наречем ф. По отношение на ф, векторът

$$\mathbf{a} = x_1, x_2, \dots, x_{i-1}, 0, x_{i+1}, x_{i+2}, \dots, x_n$$

има точно k единици, а векторът

$$b = x_1, x_2, \dots, x_{i-1}, 1, x_{i+1}, x_{i+2}, \dots, x_n$$

има точно k+1 единици[§]. Но \mathbf{a} е вектор от слой k и \mathbf{b} е вектор от слой k+1 на хиперкуба. QED

 $^{^\}dagger$ Контрапозитивното е "Ако съществуват съседни слоеве L_k и L_{k+1} на хиперкуба, такива че $orall \mathbf{a} \in \mathsf{L}_k orall \mathbf{b} \in \mathsf{L}_k$ $L_{k+1}:f(\mathbf{a}) \neq f(\mathbf{b}),$ то f няма фиктивни променливи". ${}^{\ddagger}\Pi$ о-точно казано, има точно $\binom{n-1}{k}$ такива "раздавания".

 $^{^{\}S}$ Забележете, че след като изберем такова ϕ и разглеждаме нещата по отношение на него, символите х $_1$ и така нататък вече не са променливи, а са конкретни булеви стойности.

Следващата задача ползва релацията ≼, дефинирана в (1).

Задача 19. Да разгледаме някаква $f \in \mathcal{F}_2^n$, такава че съществуват k вектори $\mathbf{a}_1, \, \mathbf{a}_2, \, \dots, \, \mathbf{a}_k$ за някакво $k \geq 2$, такива че

$$\mathbf{a}_1 \preccurlyeq \mathbf{a}_2 \preccurlyeq \cdots \preccurlyeq \mathbf{a}_k$$

 $f(\mathbf{a}_1) \neq f(\mathbf{a}_2) \neq \cdots \neq f(\mathbf{a}_k)$

Да се докаже, че функцията има поне k-1 съществени променливи.

Решение: Релацията \leq е рефлексивна, но от второто ограничение следва, че векторите са два по два различни. Да си припомним и релацията \prec , дефинирана в (2). Очевидно, по отношение на \leq има верига

$$a_1 \prec b_{1,1} \prec \cdots \prec b_{1,t_1} \prec a_2 \prec b_{2,1} \prec \cdots \prec b_{2,t_2} \prec \cdots \prec a_{k-1} \prec b_{k-1,1} \prec \cdots \prec b_{k-1,t_{k-1}} \prec a_k$$

Твърдим, че в тази верига има поне k-1 различни съседни двойки вектори[†], такива че функцията има противоположни стойности върху векторите от всяка двойка. Това твърдение е очевидно и няма да го доказваме. Векторите от всяка двойка се различават в точно една позиция, следователно са вектори от два съседни слоя на хиперкуба. Прилагаме контрапозитивното твърдение на Лема 1 и виждаме, че функцията има k-1 фиктивни променливи.

 Φ акта, че всяка двойки задава **различни** фиктивни променливи, поради което заключаваме, че променливите не може да са по-малко от k-1, е очевиден.

Задача 20. Нека $f, g \in \mathbf{F}_2^n$ са такива, че $f(\mathbf{a}) \oplus g(\mathbf{a}) = 1$ за точно нечетен брой вектори $\mathbf{a} \in \mathbf{J}_2^n$. Да се докаже, че всяка променлива е съществена за поне едната от функциите f и g.

Решение: Ограничението " $f(\mathbf{a}) \oplus g(\mathbf{a}) = 1$ за точно нечетен брой вектори" е същото като "f и g се различават върху точно нечетен брой вектори" – това следва тривиално от дефиницията на функцията \oplus .

И така, двете функции имат противоположни стойности върху подмножество на J_2^n с нечетна мощност. Да допуснем, че съществува променлива x_i , която е фиктивна и за двете функции. По дефиниция:

$$f(x_1, x_2, ..., x_{i-1}, 0, x_{i+1}, x_{i+2}, ..., x_n) = f(x_1, x_2, ..., x_{i-1}, 1, x_{i+1}, x_{i+2}, ..., x_n)$$

$$g(x_1, x_2, ..., x_{i-1}, 0, x_{i+1}, x_{i+2}, ..., x_n) = g(x_1, x_2, ..., x_{i-1}, 1, x_{i+1}, x_{i+2}, ..., x_n)$$

за всяко раздаване на 0 и 1 на променливите $x_1, x_2, \ldots, x_{i-1}, x_{i+1}, x_{i+2}, \ldots, x_n$.

Да си представим и двете функции едновременно върху хиперкуба — да си представим \mathbf{n} -мерния хиперкуб и до всеки негов връх, стойността на функцията \mathbf{f} в червено и стойността на функцията \mathbf{g} в синьо.

Да срежем хиперкуба в **i**-тата размерност. Получаваме два хиперкуба, всеки от размерност n-1. За произволен връх u от единия получен (n-1)-мерен хиперкуб, ако v е неговият съответен връх ‡ в другия (n-1)-мерен хиперкуб, ясно е, че f(u) = f(v) и g(u) = g(v) – това е заради фиктивността на x_i по отношение u на f, u на g.

Следователно, броят на върховете, върху които f и g имат **една и съща стойност** в единия (n-1)-мерен хиперкуб е равен на броя на върховете, върху които f и g имат **една и съща стойност** в другия (n-1)-мерен хиперкуб. А оттук следва, че броят на върховете,

[†]Две такива двойки може да имат общ елемент, въпреки че са различни като двойки.

 $^{^{\}sharp}$ "Съответен връх" означава, че има същия етикет, тоест $(\mathfrak{n}-1)$ -мерен булев вектор.

върху които f и g имат различна стойност в единия (n-1)-мерен хиперкуб е равен на броя на върховете, върху които f и g имат различна стойност в другия (n-1)-мерен хиперкуб. Но броят на върховете, върху които f и g се различават в оригиналния (преди срязването) n-мерен хиперкуб, е равен на сумата от броя на върховете, върху f и g се различават върху единия получен (n-1)-мерен хиперкуб и броя на върховете, върху f и g се различават върху другия получен (n-1)-мерен хиперкуб. Щом двете събираеми са равни, тяхната сума е четно число. Тогава броят на върховете, върху които f и g се различават в оригиналния (преди срязването) n-мерен хиперкуб, е четна. Което противоречи на условието на задачата.

Задача 21. Докажете чрез еквивалентни преобразувания, че следните две формули не са еквивалентни:

$$U = (x \downarrow \overline{y}) \to (\overline{x} \,\overline{z} \to ((\overline{x}|(y \equiv z)) \lor (\overline{x}\overline{y} \lor z)))$$
$$V = ((x \to y)|(x \downarrow (y\overline{z})) \lor \overline{y}\overline{z}$$

Разрешените еквивалентни преобразувания са тези от Задача 16.

Решение: От една страна:

$$\begin{split} \mathbf{U} &= \overline{\mathbf{x} \downarrow \overline{\mathbf{y}}} \lor \left(\overline{\mathbf{x}} \overline{\overline{\mathbf{z}}} \lor ((\overline{\mathbf{x}} | (\mathbf{y} \equiv z)) \lor (\overline{\mathbf{x}} \overline{\mathbf{y}} \lor z)) \right) \\ &= \overline{\overline{\mathbf{x} \lor \overline{\mathbf{y}}}} \lor \overline{\mathbf{x}} \overline{\overline{\mathbf{z}}} \lor ((\overline{\mathbf{x}} | (\mathbf{y} \equiv z)) \lor (\overline{\mathbf{x}} \overline{\mathbf{y}} \lor z)) \\ &= \mathbf{x} \lor \overline{\mathbf{y}} \lor \overline{\overline{\mathbf{x}}} \overline{\overline{\mathbf{z}}} \lor ((\overline{\mathbf{x}} | (\mathbf{y} \equiv z)) \lor \overline{\mathbf{x}} \lor \overline{\mathbf{y}} \lor z = \quad // \text{ понеже e от вида } \mathbf{x} \lor \cdots \overline{\mathbf{x}} \lor \cdots \\ &= 1 \end{split}$$

От друга страна:

$$V = \overline{(\overline{x} \vee y)(\overline{x} \vee y\overline{z})} \vee \overline{y}\overline{z}$$

$$= (\overline{x} \vee y) \vee (\overline{x} \overline{\vee y}\overline{z}) \vee \overline{y} \vee \overline{z}$$

$$= \overline{x}\overline{y} \vee x \vee y\overline{z} \vee \overline{y} \vee \overline{z}$$

$$= x\overline{y} \vee 1\overline{x} \vee y\overline{z} \vee 1\overline{z} \vee \overline{y}$$

$$= x(\overline{y} \vee 1) \vee \overline{z}(y \vee 1) \vee \overline{y} = x \vee \overline{y} \vee \overline{z}$$

Показахме, че V е еквивалентна на $x \vee \overline{y} \vee \overline{z}$. От тази проста формула лесно се вижда, че семантиката на V не е константа-единица. Следователно, U и V не са еквивалентни.

Задача 22. Намерете СъвДНФ на булевата функция f = 01110100.

Решение: Имената на променливите не са уточнени, така че имаме свобода да си ги изберем. Избираме x, y и z, като се ползва традиционната наредба x-преди-y и y-преди-z. Тогава таблицата на функцията е:

χ_1	x_2	χ_3	f
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	0

СъвДНФ е:

$$\overline{x}\,\overline{y}\,z \lor \overline{x}\,y\,\overline{z} \lor \overline{x}\,y\,z \lor x\,\overline{y}\,z$$

Задача 23. Намерете СъвДНФ на следните булеви функции:

- **A)** $(x_1 \oplus x_2) \rightarrow x_2x_3$
- **B**) f = 01101100
- B) q = 0001110110011011
- Γ) $\overline{x_1}\overline{x_2} \rightarrow \overline{x_3}$
- $\mathbf{\Pi}$) $(\mathbf{x}|\mathbf{y})\overline{\mathbf{z}}$
- E) $xy \equiv (y \equiv z)$

Ако променливите не са именувани явно, допуснете подходящо именуване с, например, x, y, z или x_1 , x_2 , x_3 и така нататък.

Отговори и решения:

- A) $(x_1 \oplus x_2) \rightarrow x_2 x_3 = \overline{x_1} \overline{x_2} \overline{x_3} \vee \overline{x_1} \overline{x_2} x_3 \vee \overline{x_1} x_2 x_3 \vee x_1 x_2 \overline{x_3} \vee x_1 x_2 x_3$
- **B**) $f(x,y,z) = \overline{x}\overline{y}\overline{z} \vee \overline{x}y\overline{z} \vee x\overline{y}\overline{z} \vee x\overline{y}z$
- B) $g(x_1, x_2, x_3, x_4) = \overline{x_1} \overline{x_2} x_3 x_4 \vee \overline{x_1} x_2 \overline{x_3} \overline{x_4} \vee \overline{x_1} x_2 \overline{x_3} x_4 \vee \overline{x_1} x_2 \overline{x_3} x_4 \vee \overline{x_1} x_2 \overline{x_3} \overline{x_4} \vee x_1 \overline{x_2} \overline{x_3} \overline{x_4} \vee x_1 \overline{x_2} x_3 x_4 \vee x_1 \overline{x_2} \overline{x_3} \overline{x_4} \vee x_1 \overline{x_2} x_3 x_4 \vee x_1 \overline{x_2} x_3 x_4 \vee x_1 \overline{x_2} \overline{x_3} x_4 \vee x_1 \overline{x_2} x_3 \overline{x_4} \vee x_1 \overline{x_2} x_3 x_4 \vee x_1 \overline{x_2} \overline{x_3} x_4 \vee x_1 \overline{x_2} x_3 x_4 \vee x$
- Γ) $\overline{x_1}\overline{x_2} \to \overline{x_3} = \overline{x_1}\overline{x_2} \vee \overline{x_3} = \overline{x_1} \vee x_2 \vee \overline{x_3} = \overline{x_1} \vee \overline{x_2} \vee \overline{x_3} = x_1 \vee \overline{x_2} \vee x_3$. В този случай намерхиме СъвДНФ с еквивалентни преобразувания. По-точно казано, извършихме редица от еквивалентни преобразувания, резултатът от които е израз, който е СъвДНФ по формални причини: има точно такава форма, каквато трябва да има една СъвДНФ.
- Д) $(x|y)\overline{z} = \overline{xy}\,\overline{z}$. За съжаление, полученият израз **не е** СъвДНФ, защото няма желаната форма! За да е СъвДНФ с една пълна елементарна конюнкция, изразът трябва да е конкатенация от литерали, а този израз не е такъв, защото \overline{xy} нито е литерал, нито е конкатенация от литерали. Ако искаме да решим подзадачата с еквивалентни преобразувания, трябва да продължим. $\overline{xy}\,\overline{z} = (\overline{x} \vee \overline{y})\overline{z} = \overline{x}\,\overline{z} \vee \overline{y}\,\overline{z} = \overline{x}\,\overline{z}(y \vee \overline{y}) \vee \overline{y}\,\overline{z}(x \vee \overline{x}) = \overline{x}y\overline{z} \vee \overline{x}\,\overline{y}\,\overline{z} \vee x\,\overline{y}\,\overline{z} \vee x\,\overline{y}\,\overline{z} = \overline{x}y\overline{z} \vee x\,\overline{y}\,\overline{z}$
- E) $\overline{x}y\overline{z} \vee x\overline{y}z \vee xyz \vee \overline{x}\overline{y}z$

Задача 24. Колко СъвДНФ има над п променливи?

Решение: Броят на пълните елементарни конюнкции е точно 2^n , защото във всяка от тях участват точно n литерала, а за всеки от тях има точно 2 възможности независимо от останалите. Всяка СъвДНФ се определя еднозначно от това, кои пълни елементарни конюнкции участват. Но отговорът 2^{2^n} за броя на всички СъвДНФ не е точен, понеже не може да няма нито една пълна елементарна конюнкция. С други думи, празната формула (празният стринг) не е СъвДНФ по дефиниция. Отговорът е $2^{2^n}-1$.

Можем да го получим и с други разсъждения: всяка булева функция на п променливи без константа-нула има точно една СъвДНФ, а на различни СъвДНФ съответстват различни булеви функции. □

Задача 25. Колко ДНФ има над n променливи?

Решение: Трябва да съобразим колко елементарни конюнкции има. В елементарните конюнкции има три възможности за всяка променлива (а не две, както беше при пълните елементарни конюнкции) – променливата може да участва като положителен литерал, като отрицателен литерал или изобщо да не участва. Това означава 3^n възможности, но ако броим и възможността да няма участващи променливи изобщо, тоест празната последователност от литерали (празният стринг). Но ние искаме всяка пълна елементарна конюнкция да е непразна, тоест да има поне един литерал, така че възможността да няма нито една променлива отпада и възможностите са $3^n - 1$.

Всяка от пълните елементарни конюнкции може да участва или да не участва, но трябва да има поне една такава, така че общо възможностите са $2^{3^n-1}-1$.

Задача 26. Намерете броя на булевите функции от \mathcal{F}_2^n , чиито СъвДНФ изпълняват условието:

- 1. Няма пълна елементарна конюнкция, в която броят на положителните литерали е равен на броя на отрицателните литерали.
- 2. Всяка пълна елементарна конюнкция има четен брой отрицателни литерали.
- 3. Всяка пълна елементарна конюнкция има поне два отрицателни литерала.

Решение:

- 1. Ако n е нечетно, то всички СъвДНФ са такива и отговорът е $2^{2^n}-1$. Ако n е четно, отговорът е 2^p-1 , където p е броят на n-векторите с неравен брой нули и единици. Очевидно, $p=2^n-q$, където q е броят на n-векторите с равен брой нули и единици. Но ние знаем, че има точно $\binom{n}{n/2}$ начина да разположим n/2 нули и n/2 единици в линейна наредба, следователно $q=\binom{n}{n/2}$, следователно $p=2^n-\binom{n}{n/2}$, следователно отговорът е $2^{2^n-\binom{n}{n/2}}-1$.
- 2. За всеки входен вектор съответната пълна елементарна конюнкция участва в СъвДНФ тстк функцията има стойност 1 върху този входен вектор. Иска се функцията да е задължително 0 върху всички входни вектори с нечетен брой нули, тоест стойността на функцията може да варира само върху векторите с четен брой нули. Отговорът е $2^{2^{n-1}}-1$, защото точно половината вектори, тоест $\frac{1}{2}2^n=2^{n-1}$, са тези с четен брой нули, а от $2^{2^{n-1}}$ вадим единица заради това, че функцията константа-нула няма СъвДНФ.
- 3. Върху векторите с нула нули и точно една нула, функцията трябва да е задължително 0. Освен това, не може да е константа-нула. Други ограничения няма. Има един вектор с нула нули и $\mathfrak n$ вектора с точно една нула. Отговорът е $2^{2^n-n-1}-1$.

Задача 27. Нека $n \ge 2$. Да се определи дължината на СъвДНФ (като брой на пълните елементарни конюнкции) на следните булеви функции, представени чрез формули:

1.
$$x_1 \oplus x_2 \oplus \cdots \oplus x_n$$

[†]Това се извежда тривиално, имайки предвид резултата от комбинаториката, че броят на подмножествата с четна мощност е равен на броя на подмножествата с нечетна мощност.

2.
$$(x_1 \lor x_2 \lor \cdots \lor x_n)(\overline{x_1} \lor \overline{x_2} \lor \cdots \lor \overline{x_n})$$

3.
$$\bigvee_{1 \leq i \leq j \leq n} x_i x_j$$

4.
$$\bigwedge_{1 \leq i \leq j \leq n} (x_i \rightarrow x_j)$$

Решение: Задачата е същата като "колко единици съдържа каноничното представяне на функцията?". Каноничното представяне на всяка от тези четири функции има лесна за определяне форма. Трябва разберем какъв е pattern-ът на каноничното представяне на всяка от тях. Сторим ли това, решението става тривиално.

- 1. Функцията е сума по модул две на всички променливи. Очевидно, тази сума е 1 точно върху тези вектори, които имат нечетен брой единици. Както вече казахме в решението на Задача 26, векторите с нечетен брой единици са точно половината, тоест $\frac{1}{2}2^n = 2^{n-1}$. Отговорът е точно 2^{n-1} . Забележете, че **не е** $2^{2^{n-1}}$, защото върху въпросните вектори стойностите на функцията не варират, а само единици.
- 2. Лесно се вижда, че функцията е 0 върху точно два вектора: $00\cdots 0$ и $11\cdots 1$. Отговорът е 2^n-2 .
- 3. Функцията има стойност 1 точно върху тези вектори, които имат поне две единици в себе си. Векторите, които нямат поне две единици в себе си, са тези с нула единици (само един) и с точно една единица (n такива). Отговорът е 2^n-n-1 .
- 4. Може би е по-лесно да се съобрази каква е формата на каноничното представяне, ако използваме различно представяне на същата функция:

$$\bigwedge_{1 \leq i < j \leq n} (x_i \to x_j) = \bigwedge_{1 \leq i < j \leq n} (\overline{x_i} \vee x_j)$$

Която и от двете формули да разгледаме, виждаме, че функцията е нула върху точно тези вектори, които имат поне една 1, която е вляво от поне една 0^{\dagger} . Следователно, функцията е единица точно върху векторите $00\cdots00$, $00\cdots01$, $00\cdots11$, ..., $01\cdots11$, $11\cdots11$. Те са точно n+1, и това е отговорът.

Задача 28. Нека $f(x_1, x_2, ..., x_n)$ и $g(y_1, y_2, ..., y_n)$ са булеви функции, такива че СъвДНФ на f има k_1 пълни елементарни конюнкции, а на g, k_2 пълни елементарни конюнкции. Да се определи дължината, в брой пълни елементарни конюнкции, на:

$$\begin{aligned} h(x_1, x_2, \dots, x_n, y_1, y_2, \dots, y_n) &= fg \\ t(x_1, x_2, \dots, x_n, y_1, y_2, \dots, y_n) &= f \lor g \end{aligned}$$

Решение: Да разгледаме първо fg. Забележете, че това е функция **не** на n, а на 2n променливи. Нейната таблица е показана схематично на следната таблица. Да си представим, че върху входните вектори, всеки с дължина 2n, които са общо 2^{2n} на брой, е дефинирано групиране в нещо като правоъгълници с размери $n \times 2^n$, които на таблицата са показани в лявата страна, оцветени в розово и зелено. Всеки зелен правоъгълник огражда една група от стойности на y-променливите, като групите са 2^n общо и съдържанието им е едно и също: всяка група съдържа точно всички n-вектори в лексикографски ред. Розовите правоъгълници ограждат групи от стойности на x-променливите, като тези групи пак са 2^n общо и всяка има 2^n n-вектора, но сега всяка група съдържа 2^n копия на един и същи n-вектор.

 $^{^\}dagger$ Тоест, в които има $x_i=1$ и $x_j=0$ при i< j; тоест, които са от вида $\cdots 1 \cdots 0 \cdots$.

Тъй като функцията g зависи от y-стойностите, а функцията f, от x-стойностите, в дясната страна, където са функционалните стойности, наблюдаваме следните закономерности. Колоната на g се състои от 2^n подколони, всяка от които е копие на един и същи pattern, който има точно k_2 единици (по условие g има СъвДНФ с точно k_2 пълни елементарни конюнкции). Точно какво е съдържанието на тази повтаряща се колона зависи от конкретиката на g. В таблицата " \tilde{g}_i " е кратък запис за $g(\tilde{y}_i)$, където \tilde{y}_i е i-ият вектор от y-векторите, за $0 < i < 2^n - 1$.

От друга страна, колоната на f се състои от 2^n подколони, всяка от които съдържа 2^n копия на една и съща стойност, а именно функционалната стойност на f върху i-ия от хвекторите за $0 \le i \le 2^n - 1$, която е отбелязана с \tilde{f}_i . Очевидно точно k_1 от тези подколони са от единици. Кои точно, зависи от конкретиката на f.

И така, функцията h е конюнкция от f и g. Колоната на h не е изобразена, но лесно може да си я представим написана най-вдясно, с височина 2^{2n} , състояща от поелементни конюнкции от колоните на g и f. Тривиално е да се съобрази, че ако разбием колоната на h на 2^n подколони аналогично на разбиванията на колоните на g и f, точно $2^n - k_1$ от подколоните ще са само от нули, защото колоната на f има точно $2^n - k_1$ от подколони от нули, които в поелементните конюнкции "нулират" стойността на h върху дадения 2n-вектор независимо от стойностите на g върху него. А останалите k_1 на брой подколони на f са само от единици. За всяка от тях, функцията h получава точно k_2 единици заради поелементната конюнкция.

Общо, h има точно $k_1 \times k_2$ единици.

Сега да разгледаме функцията t. Съображенията са аналогични и таблицата е същата, но сега търсим мощността не на сечение, а на обединение. Колоната на g има общо $k_2 \times 2^n$ единици, а колоната на f има общо $k_1 \times 2^n$ единици. От $k_1 2^n + k_2 2^n = (k_1 + k_2) 2^n$ трябва да извадим, съгласно принципа на включването и изключването, мощността на сечението, която, както вече установихме, е $k_1 k_2$. Отговорът е $(k_1 + k_2) 2^n - k_1 k_2$.

x_1, x_2, \ldots, x_n	y ₁ , y ₂ ,, \	Jn	g	f
0, 0,, 0, 0 0, 0,, 0, 0 0, 0,, 0, 0 	0, 0,, 0, 0, 0,, 0, i	си п-вектори, лексикографски	\tilde{g}_0 \tilde{g}_1 \tilde{g}_2 $\tilde{g}_2^{\tilde{p}_1-2}$ $\tilde{g}_2^{\tilde{p}_2-1}$ $\tilde{g}_2^{\tilde{p}_2-1}$	od od od i od
0, 0,, 0, 1 0, 0,, 0, 1 0, 0,, 0, 1 0, 0,, 0, 1 0, 0,, 0, 1	0, 0,, 0, 0, 0,, 0, 1, 1,, 1, 1, 1,, 1,	си п-вектори, лексикографски	\tilde{g}_{2} \tilde{g}_{2} \tilde{g}_{2} \tilde{g}_{2} \tilde{g}_{2} \tilde{g}_{2} \tilde{g}_{3} \tilde{g}_{2} \tilde{g}_{3} \tilde{g}_{4} \tilde{g}_{5} \tilde{g}_{5} \tilde{g}_{5} \tilde{g}_{5} \tilde{g}_{5} \tilde{g}_{5} \tilde{g}_{5} \tilde{g}_{5}	ть т
1, 1,, 1, 1 1, 1,, 1, 1 1, 1,, 1, 1	о, о,, о, о, о,, о, о, о,, о, пти вн	п п-вектори, лексикографски	\tilde{g}_{0} g	$\hat{f}_{2^{n}}^{2}$ $\hat{f}_{2^{n}-1}^{2}$ $\hat{f}_{2^{n}-1}^{2}$ $\hat{f}_{2^{n}-1}^{2}$ $\hat{f}_{2^{n}-1}^{2}$ $\hat{f}_{2^{n}+1}^{2}$ $\hat{f}_{2^{n}+1}^{2}$ $\hat{f}_{2^{n}+1}^{2}$ $\hat{f}_{2^{n}+1}^{2}$ $\hat{f}_{2^{n}+1}^{2}$ $\hat{f}_{2^{n}+1}^{2}$ $\hat{f}_{2^{n}+1}^{2}$ $\hat{f}_{2^{n}+1}^{2^{n}}$

3 Благодарности

Авторът благодари много на **Добромир Кралчев** за многобройните корекции на граматически и стилистични грешки, както и за корекциите на грешки в решенията на две от задачите.