FIG. 1

$$W_1 = [+1]$$
 $W_2 = \begin{bmatrix} +1 & +1 \\ +1 & -1 \end{bmatrix}$
 $W_{2n} = \begin{bmatrix} W_n & W_n \\ W_n & W_n \end{bmatrix}$

FIG. 1

W₁=[+1]

W₂=
$$\begin{bmatrix} +1 & +1 \\ +1 & -1 \end{bmatrix}$$

W₂n= $\begin{bmatrix} W_{1} & W_{1} \\ W_{1} & W_{1} \end{bmatrix}$

W₁=[+1]

W₂= $\begin{bmatrix} +1 & +1 & +1 & +1 \\ +1 & -1 & +1 & -1 \\ +1 & -1 & -1 & +1 \end{bmatrix}$

F164

F16 5