Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

5-(3-Chlorophenylsulfanyl)-1-methyl-3-trifluoromethyl-1*H*-pyrazole-4-carbaldehyde *O*-[(2-chloro-1,3-thiazol-5-yl)-methyl]oxime

Hong Dai, a,b Shuang Li,a Kun-Peng Luo,a Jian-Xin Fangb* and Yu-Jun Shia

^aCollege of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, People's Republic of China, and ^bState Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, People's Republic of China

Correspondence e-mail: daihong_2001@yahoo.com.cn

Received 17 October 2011; accepted 12 December 2011

Key indicators: single-crystal X-ray study; T = 113 K; mean σ (C–C) = 0.006 Å; R factor = 0.088; wR factor = 0.273; data-to-parameter ratio = 13.0.

In the title compound, $C_{16}H_{11}Cl_2F_3N_4OS_2$, the benzene ring and the thiazole ring make dihedral angles of 83.2 (3) and 78.3 (3)°, respectively, with the pyrazole ring. The crystal packing shows $S \cdot \cdot \cdot N$ contacts of 3.309 (2) Å.

Related literature

For the bioactivity of pyrazole oxime derivatives, see: Takao *et al.* (1994); Watanabe *et al.* (2001). For the biological activity of thiazole derivatives, see: Fahmy & Bekhit (2002); Sidoova *et al.* (1999); Zhang *et al.* (2000).

Experimental

Crystal data

 $\begin{array}{lll} \text{C}_{16}\text{H}_{11}\text{Cl}_2\text{F}_3\text{N}_4\text{OS}_2 & V = 1944.3 \ (9) \ \text{Å}^3 \\ M_r = 467.31 & Z = 4 \\ \text{Monoclinic, } P2_1/n & \text{Mo } K\alpha \text{ radiation} \\ a = 12.328 \ (3) \ \text{Å} & \mu = 0.59 \ \text{mm}^{-1} \\ b = 12.787 \ (3) \ \text{Å} & T = 113 \ \text{K} \\ c = 13.139 \ (3) \ \text{Å} & 0.20 \times 0.16 \times 0.10 \ \text{mm} \\ \beta = 110.16 \ (3)^\circ \end{array}$

Data collection

Rigaku Saturn diffractometer 9881 measured reflections Absorption correction: multi-scan (CrystalClear; Rigaku, 2008) 2725 reflections with $I > 2\sigma(I)$ $T_{\min} = 0.891, T_{\max} = 0.943$ $R_{\rm int} = 0.116$

Refinement

 $\begin{array}{ll} R[F^2 > 2\sigma(F^2)] = 0.088 & 254 \ {\rm parameters} \\ WR(F^2) = 0.273 & {\rm H-atom\ parameters\ constrained} \\ S = 1.10 & \Delta\rho_{\rm max} = 0.81\ {\rm e\ \mathring{A}^{-3}} \\ 3309\ {\rm reflections} & \Delta\rho_{\rm min} = -0.94\ {\rm e\ \mathring{A}^{-3}} \end{array}$

Data collection: *CrystalClear* (Rigaku, 2008); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

This work was supported by the National Natural Science Foundation of China (NNSFC) (grant No. 20772068), the Science and Technology Projects Fund of Nantong City (grant Nos. K2010016, AS2010005), the Science Foundation of Nantong University (grant Nos. 09Z010, 09 C001) and the Scientific Research Foundation for Talent Introduction of Nantong University.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AA2035).

References

Fahmy, H. Y. T. & Bekhit, A. A. (2002). *Pharmazie*, **57**, 800–803. Rigaku (2008). *CrystalClear*. Rigaku Corporation, Toyko, Japan. Sheldrick, G. M. (2008). *Acta Cryst.* A**64**, 112–122. Sidoova, E., Kralova, K. & Loos, D. (1999). *Molecules*, **4**, 73–80. Takao, H., Wakisaka, S. & Murai, K. (1994). Jpn Patent No. 06329633. Watanabe, M., Kuwata, T., Okada, T., Ohita, S., Asahara, T., Noritake, T. & Fukuda, Y. (2001). Jpn Patent No. 2001233861. Zhang, A. G., Kayser, H., Maienfisch, P. & Casida, J. E. (2000). *J. Neurochem.* **75**, 1294–1303.

Acta Cryst. (2012). E68, o155 doi:10.1107/S160053681105358X Dai et al. **0155**

supplementary m	aterials	

Acta Cryst. (2012). E68, o155 [doi:10.1107/S160053681105358X]

5-(3-Chlorophenylsulfanyl)-1-methyl-3-trifluoromethyl-1H-pyrazole-4-carbaldehyde <math>O-[(2-chloro-1,3-thiazol-5-yl)methyl] oxime

H. Dai, S. Li, K.-P. Luo, J.-X. Fang and Y.-J. Shi

Comment

Recently, pyrazole oximes are reported to possess diverse biological activities, such as fungicidal, insecticidal, and acaricidal activities (Takao *et al.*, 1994; Watanabe *et al.*, 2001). On the other hand, many thiazole derivatives have been found to show insecticidal, herbicidal, and anticancer activities (Sidoova *et al.*, 1999; Zhang *et al.*, 2000; Fahmy & Bekhit, 2002). In search of novel pyrazole oxime derivatives with good bioactivities, we have sought to synthesize new pyrazole oxime ethers containing thiazole units. We report here the crystal structure of the target compound, (I). It contains three planes, the pyrazole ring (C2/C3/C4/N1/N2), the substituted phenyl ring (C6/C7/C8/C9/C10/C11) and the thiazole ring (C15/C14/S2/C16/N4) (Fig. 1). The dihedral angles between the the phenyl ring and the pyrazole ring and between the thiazole ring and the pyrazole ring are 83.2 (3)° and 78.3 (3)°, respectively. The crystal structure of (I) is stabilized by S···N contacts.

Experimental

To a violently stirred solution of 1-methyl-3-trifluoromethyl-5- (3-chlorophenylthio)-1H-pyrazole-4-carbaldehyde oxime (3 mmol) and potassium carbonate (9 mmol) in 20 ml of anhydrous N,N-dimethylformamide, was added dropwise a solution of 2-chloro-5-chloromethylthiazole (3.6 mmol) in 10 ml of anhydrous N,N-dimethylformamide. Then, to the above mixture was added a catalytic amount of caesium chloride at room temperature. The resulting solution was heated to 373 K for 6 h. After cooling to room temperature, the mixture was poured into water (200 ml) and extracted with ethyl acetate (3 × 50 ml). The organic layer was washed with 10% sodium carbonate solution (3 × 30 ml) and dried over anhydrous magnesium sulfate. After removal of the solvent, the residue was separated by column chromatography on silica gel using a mixture of petroleum ether/ethyl acetate to obtain colourless crystals.

Refinement

Although all H atoms were visible in difference maps, they were placed in geometrically calculated positions and included in the final refinement in the riding-model approximation with C—H distances of 0.93–0.97 ° A, and $U_{iso}(H) = 1.2U_{eq}(C)$.

Figures

Fig. 1. View of the title compound (I), with displacement ellipsoids drawn at the 30% probability level.

5-(3-Chlorophenylsulfanyl)-1-methyl-3-trifluoromethyl-1*H*-pyrazole-4- carbaldehyde *O*-[(2-chloro-1,3-thiazol-5-yl)methyl]oxime

Crystal data

 $C_{16}H_{11}Cl_2F_3N_4OS_2$ F(000) = 944

 $M_r = 467.31$ $D_x = 1.597 \text{ Mg m}^{-3}$

Monoclinic, $P2_1/n$ Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2yn Cell parameters from 5433 reflections

 a = 12.328 (3) Å $\theta = 1.6-27.2^{\circ}$

 b = 12.787 (3) Å $\mu = 0.59 \text{ mm}^{-1}$

 c = 13.139 (3) Å T = 113 K

 $\beta = 110.16 (3)^{\circ}$ Prism, colourless

 $V = 1944.3 (9) Å^3$ $0.20 \times 0.16 \times 0.10 \text{ mm}$

Z = 4

Data collection

Rigaku Saturn 3309 independent reflections diffractometer

Radiation source: rotating anode 2725 reflections with $I > 2\sigma(I)$

confocal $R_{\text{int}} = 0.116$

 $\theta_{\text{max}} = 25.0^{\circ}, \, \theta_{\text{min}} = 2.0^{\circ}$

Absorption correction: multi-scan (CrystalClear; Rigaku, 2008) $h = -11 \rightarrow 14$ $T_{\min} = 0.891, T_{\max} = 0.943 \qquad k = -15 \rightarrow 14$ 9881 measured reflections $l = -15 \rightarrow 15$

Refinement

Refinement on F^2 Primary atom site location: structure-invariant direct

methods

Least-squares matrix: full Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring $R[F^2 > 2\sigma(F^2)] = 0.088$ sites $wR(F^2) = 0.273$ H-atom parameters constrained $w = 1/[\sigma^2(F_0^2) + (0.2P)^2]$ S = 1.10where $P = (F_0^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\text{max}} = 0.001$ 3309 reflections $\Delta \rho_{\text{max}} = 0.81 \text{ e Å}^{-3}$ 254 parameters $\Delta \rho_{min} = -0.94 \text{ e Å}^{-3}$ 0 restraints

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor wR and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

	x	y	Z	$U_{\rm iso}*/U_{\rm eq}$
C11	0.01343 (10)	0.94499 (10)	0.66778 (11)	0.0519 (5)
C12	0.57227 (10)	0.80206 (10)	0.00569 (10)	0.0483 (4)
S1	0.36532 (9)	1.11017 (8)	0.55348 (9)	0.0348 (4)
S2	0.38132 (9)	0.80301 (8)	0.09658 (8)	0.0334 (4)
F1	0.2428 (2)	0.69627 (18)	0.3650(2)	0.0403 (7)
F2	0.3861 (2)	0.62954 (18)	0.49260 (18)	0.0396 (7)
F3	0.4134 (2)	0.70073 (18)	0.3550(2)	0.0388 (7)
O1	0.1746 (3)	0.9511 (2)	0.1630 (2)	0.0351 (7)
N1	0.4428 (3)	0.9119 (3)	0.6202 (2)	0.0280(7)
N2	0.4393 (3)	0.8114 (2)	0.5871 (3)	0.0293 (8)
N3	0.2447 (3)	0.8956 (2)	0.2545 (3)	0.0312 (8)
N4	0.3842 (3)	0.9182 (3)	-0.0643 (3)	0.0402 (9)
C1	0.3548 (3)	0.7100(3)	0.4235 (3)	0.0305 (9)
C2	0.3752 (3)	0.8122 (3)	0.4828 (3)	0.0283 (9)
C3	0.3354(3)	0.9140(3)	0.4454 (3)	0.0279 (8)
C4	0.3791 (3)	0.9760(3)	0.5370(3)	0.0285 (8)
C5	0.5030 (4)	0.9391 (3)	0.7338 (3)	0.0381 (10)
H5A	0.4487	0.9410	0.7714	0.057*
H5B	0.5386	1.0065	0.7379	0.057*
H5C	0.5613	0.8876	0.7666	0.057*
C6	0.2689 (3)	1.1125 (3)	0.6278 (3)	0.0310 (9)
C7	0.2734 (4)	1.2006 (3)	0.6906 (3)	0.0348 (10)
Н7	0.3280	1.2526	0.6967	0.042*

C8	0.1934 (4)	1.2099 (3)	0.7451 (4)	0.0405 (11)
Н8	0.1950	1.2690	0.7869	0.049*
C9	0.1125 (4)	1.1326 (3)	0.7376(3)	0.0397 (10)
H9	0.0596	1.1389	0.7734	0.048*
C10	0.1127 (4)	1.0458 (3)	0.6753 (3)	0.0345 (9)
C11	0.1877 (3)	1.0346 (3)	0.6185(3)	0.0328 (9)
H11	0.1839	0.9763	0.5750	0.039*
C12	0.2648 (3)	0.9524(3)	0.3388 (3)	0.0308 (9)
H12	0.2339	1.0195	0.3321	0.037*
C13	0.1586 (4)	0.8867(3)	0.0688(3)	0.0351 (10)
H13A	0.0938	0.9134	0.0089	0.042*
H13B	0.1397	0.8161	0.0841	0.042*
C14	0.2639(3)	0.8834(3)	0.0357(3)	0.0302 (9)
C15	0.2824 (4)	0.9380(3)	-0.0462(3)	0.0360 (10)
H15	0.2288	0.9862	-0.0877	0.043*
C16	0.4424 (4)	0.8484(3)	0.0046(3)	0.0355 (10)

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0347 (7)	0.0614(8)	0.0707 (9)	-0.0063 (5)	0.0322 (6)	-0.0026 (5)
Cl2	0.0299 (7)	0.0728 (9)	0.0460(7)	0.0030 (5)	0.0179 (5)	-0.0001 (5)
S1	0.0347 (7)	0.0345 (6)	0.0437 (7)	-0.0039 (4)	0.0244 (5)	-0.0030 (4)
S2	0.0270 (7)	0.0436 (7)	0.0312 (7)	0.0031 (4)	0.0119 (5)	0.0028 (4)
F1	0.0242 (13)	0.0447 (14)	0.0503 (15)	-0.0077(9)	0.0109 (11)	-0.0058 (10)
F2	0.0461 (16)	0.0323 (12)	0.0411 (14)	0.0024 (10)	0.0161 (12)	0.0052 (9)
F3	0.0392 (15)	0.0408 (13)	0.0442 (14)	-0.0027 (10)	0.0244 (12)	-0.0076 (10)
O1	0.0342 (16)	0.0420 (15)	0.0284 (14)	0.0115 (11)	0.0100 (12)	0.0036 (11)
N1	0.0197 (16)	0.0392 (17)	0.0297 (17)	-0.0036 (13)	0.0143 (13)	-0.0025 (13)
N2	0.0219 (17)	0.0339 (17)	0.0336 (18)	-0.0021 (12)	0.0115 (14)	-0.0001 (13)
N3	0.0263 (18)	0.0370 (18)	0.0319 (17)	0.0058 (13)	0.0120 (14)	0.0054 (13)
N4	0.036(2)	0.054(2)	0.0329 (19)	-0.0050 (17)	0.0147 (16)	0.0029 (17)
C1	0.022(2)	0.040(2)	0.033(2)	0.0003 (15)	0.0145 (16)	0.0024 (16)
C2	0.0200 (19)	0.037(2)	0.032(2)	-0.0028 (14)	0.0142 (16)	-0.0006 (15)
C3	0.0203 (19)	0.0370 (19)	0.032(2)	-0.0006 (14)	0.0160 (16)	0.0011 (15)
C4	0.0191 (18)	0.040(2)	0.034(2)	-0.0026 (15)	0.0190 (16)	-0.0001 (15)
C5	0.031(2)	0.048(2)	0.035(2)	-0.0055 (17)	0.0110 (18)	-0.0068 (18)
C6	0.026(2)	0.040(2)	0.0281 (19)	0.0018 (15)	0.0111 (16)	0.0017 (15)
C7	0.036(2)	0.035(2)	0.036(2)	0.0047 (15)	0.016(2)	0.0016 (15)
C8	0.042(3)	0.047(2)	0.036(2)	0.0157 (19)	0.019(2)	-0.0039 (18)
C9	0.033(2)	0.056(3)	0.035(2)	0.0158 (19)	0.0181 (19)	0.0011 (19)
C10	0.024(2)	0.046(2)	0.036(2)	0.0040 (16)	0.0134 (17)	0.0046 (17)
C11	0.026(2)	0.041(2)	0.033(2)	0.0066 (16)	0.0125 (17)	0.0007 (16)
C12	0.025(2)	0.036(2)	0.035(2)	0.0039 (15)	0.0158 (17)	0.0010 (15)
C13	0.029(2)	0.047(2)	0.029(2)	0.0040 (16)	0.0098 (17)	0.0009 (16)
C14	0.0233 (19)	0.038(2)	0.0286 (19)	0.0009 (15)	0.0077 (16)	-0.0017 (15)
C15	0.033(2)	0.040(2)	0.034(2)	0.0066 (16)	0.0105 (18)	0.0056 (16)
C16	0.030(2)	0.047(2)	0.031(2)	-0.0041 (17)	0.0120 (17)	-0.0030 (17)

Geometric parameters (Å, °)			
Cl1—C10	1.756 (4)	C3—C12	1.456 (5)
Cl2—C16	1.703 (4)	C5—H5A	0.9600
S1—C4	1.744 (4)	C5—H5B	0.9600
S1—C6	1.780 (4)	C5—H5C	0.9600
S2—C16	1.729 (4)	C6—C7	1.386 (6)
S2—C14	1.730 (4)	C6—C11	1.387 (6)
F1—C1	1.341 (5)	C7—C8	1.409 (6)
F2—C1	1.338 (5)	C7—H7	0.9300
F3—C1	1.339 (5)	C8—C9	1.383 (7)
O1—N3	1.407 (4)	C8—H8	0.9300
O1—C13	1.442 (5)	C9—C10	1.380 (6)
N1—N2	1.352 (5)	С9—Н9	0.9300
N1—C4	1.376 (5)	C10—C11	1.382 (6)
N1—C5	1.461 (5)	C11—H11	0.9300
N2—C2	1.325 (5)	C12—H12	0.9300
N3—C12	1.275 (5)	C13—C14	1.505 (6)
N4—C16	1.298 (6)	C13—H13A	0.9700
N4—C15	1.379 (6)	C13—H13B	0.9700
C1—C2	1.497 (5)	C14—C15	1.366 (6)
C2—C3	1.418 (5)	C15—H15	0.9300
C3—C4	1.386 (5)		
C4—S1—C6	101.37 (18)	C6—C7—C8	118.7 (4)
C16—S2—C14	88.5 (2)	C6—C7—H7	120.7
N3—O1—C13	107.9 (3)	C8—C7—H7	120.7
N2—N1—C4	111.4 (3)	C9—C8—C7	121.1 (4)
N2—N1—C5	120.2 (3)	C9—C8—H8	119.4
C4—N1—C5	128.3 (3)	C7—C8—H8	119.4
C2—N2—N1	105.5 (3)	C10—C9—C8	117.9 (4)
C12—N3—O1	109.5 (3)	C10—C9—H9	121.0
C16—N4—C15	108.8 (4)	C8—C9—H9	121.0
F2—C1—F3	107.0 (3)	C9—C10—C11	122.8 (4)
F2—C1—F1	106.7 (3)	C9—C10—C11	118.7 (3)
F3—C1—F1	106.9 (3)	C11—C10—C11	118.5 (3)
F2—C1—C2	111.1 (3)	C10—C11—C6	118.4 (4)
F3—C1—C2	113.3 (3)	C10—C11—H11	120.8
F1—C1—C2	111.6 (3)	C6—C11—H11	120.8
N2—C2—C3	112.2 (3)	N3—C12—C3	121.1 (4)
N2—C2—C1	117.7 (3)	N3—C12—H12	119.5
C3—C2—C1	130.1 (4)	C3—C12—H12	119.5
C4—C3—C2	103.9 (3)	01—C13—C14	112.8 (3)
C4—C3—C12	124.5 (4)	O1—C13—H13A	109.0
C2—C3—C12	131.6 (3)	C14—C13—H13A	109.0
N1—C4—C3 N1—C4—S1	107.0 (3) 122.7 (3)	O1—C13—H13B C14—C13—H13B	109.0 109.0
C3—C4—S1		H13A—C13—H13B	109.0
N1—C5—H5A	130.2 (3) 109.5	C15—C14—C13	
111—CJ—113A	107.3	C15—C14—C15	127.5 (4)

N1—C5—H5B	109.5	C15—C14—S2	109.1 (3)
H5A—C5—H5B	109.5	C13—C14—S2	123.4 (3)
N1—C5—H5C	109.5	C14—C15—N4	116.8 (4)
H5A—C5—H5C	109.5	C14—C15—H15	121.6
H5B—C5—H5C	109.5	N4—C15—H15	121.6
C7—C6—C11	121.0 (4)	N4—C16—C12	122.5 (3)
C7—C6—S1	116.3 (3)	N4—C16—S2	116.7 (3)
C11—C6—S1	122.5 (3)	Cl2—C16—S2	120.8 (3)
C4—N1—N2—C2	1.0 (4)	C4—S1—C6—C11	-28.8 (4)
C5—N1—N2—C2	177.4 (3)	C11—C6—C7—C8	0.0(6)
C13—O1—N3—C12	177.1 (3)	S1—C6—C7—C8	175.6 (3)
N1—N2—C2—C3	0.1 (4)	C6—C7—C8—C9	0.7(6)
N1—N2—C2—C1	-179.5 (3)	C7—C8—C9—C10	0.2(6)
F2—C1—C2—N2	13.1 (5)	C8—C9—C10—C11	-1.8(6)
F3—C1—C2—N2	-107.4 (4)	C8—C9—C10—C11	178.2 (3)
F1—C1—C2—N2	131.9 (4)	C9—C10—C11—C6	2.4(6)
F2—C1—C2—C3	-166.4 (4)	C11—C10—C11—C6	-177.6(3)
F3—C1—C2—C3	73.2 (5)	C7—C6—C11—C10	-1.4(6)
F1—C1—C2—C3	-47.5 (5)	S1—C6—C11—C10	-176.8 (3)
N2—C2—C3—C4	-1.1 (4)	O1—N3—C12—C3	179.8 (3)
C1—C2—C3—C4	178.4 (4)	C4—C3—C12—N3	167.3 (4)
N2—C2—C3—C12	179.3 (4)	C2—C3—C12—N3	-13.1(7)
C1—C2—C3—C12	-1.3 (7)	N3—O1—C13—C14	-75.3 (4)
N2—N1—C4—C3	-1.7 (4)	O1—C13—C14—C15	-100.8(5)
C5—N1—C4—C3	-177.7 (4)	O1—C13—C14—S2	81.4 (4)
N2—N1—C4—S1	179.5 (3)	C16—S2—C14—C15	-1.1(3)
C5—N1—C4—S1	3.5 (5)	C16—S2—C14—C13	177.0 (4)
C2—C3—C4—N1	1.6 (4)	C13—C14—C15—N4	-177.1 (4)
C12—C3—C4—N1	-178.7 (3)	S2—C14—C15—N4	0.9 (5)
C2—C3—C4—S1	-179.7 (3)	C16—N4—C15—C14	-0.1(5)
C12—C3—C4—S1	0.0(6)	C15—N4—C16—C12	178.8 (3)
C6—S1—C4—N1	-74.0 (3)	C15—N4—C16—S2	-0.9(5)
C6—S1—C4—C3	107.5 (4)	C14—S2—C16—N4	1.2(3)
C4—S1—C6—C7	155.6 (3)	C14—S2—C16—Cl2	-178.5 (3)

Fig. 1

