STAT 7200

Introduction to Advanced Probability
Lecture 7

Taylor R. Brown

- Probability Triple
 - Extension Theorem
 - Application of Extension Theorem: Uniform Measure on [0,1]
 - Variation of Extension Theorem
 - Uniqueness of Extension Theorem
 - Extension Theorem: Application
 - Extension Theorem: Infinite Number of Coin Tossing
 - Extension Theorem: Product Measure
- Foundation of Probability
 - Random Variable
 - Random Variable: Definition
 - Random Variable: Property
 - Independence
 - Independence: Definition

"A First Look at Rigorous Probability Theory" (Jeffrey Rosenthal) Sections 2.5 (continued), 2.6, 3.1, and 3.2

Theorem 1

The Extension Theorem Let \mathcal{J} be a semialgebra of subsets of Ω , \mathbf{P} a function from \mathcal{J} to [0,1] with the following properties:

- *a*) $P(\emptyset) = 0, P(\Omega) = 1.$
- b) $\mathbf{P}(\bigcup_{i=1}^k A_i) \ge \sum_{i=1}^k \mathbf{P}(A_i)$ whenever $A_1, \dots, A_k \in \mathcal{J}$, $\bigcup_{i=1}^k A_i \in \mathcal{J}$, and A_1, \dots, A_k are pairwise disjoint (finite superadditivity).
- c) $\mathbf{P}(A) \leq \sum_{n} \mathbf{P}(A_n)$ whenever $A, A_1, A_2, \ldots \in \mathcal{J}$, and $A \subseteq \bigcup_{n} A_n$ (countable monotonicity).

Then there is a σ -algebra $\mathcal{M}\supseteq\mathcal{J}$ and a proper probability measure \mathbf{P}^* on \mathcal{M} so that $\mathbf{P}^*(A)=\mathbf{P}(A)$ for all $A\in\mathcal{J}$.

Variation of Extension Theorem

Proposition 2

In the original extension theorem, the finite superadditivity condition and the countable monotonicity condition of **P** can be replaced by the following countable additivity condition:

 $\mathbf{P}(\bigcup_n A_n) = \sum_n \mathbf{P}(A_n)$ for disjoint $A_1, A_2, \ldots \in \mathcal{J}$ with $\bigcup_n A_n \in \mathcal{J}$.

Uniqueness of Extension Theorem

Theorem 3 (Proposition 2.5.7)

Uniqueness of Extension In the extension theorem (or variation), the extended probability measure \mathbf{P}^* over \mathcal{M} is unique in the sense that: For σ -algebra \mathcal{F} so that $\mathcal{J} \subseteq \mathcal{F} \subseteq \mathcal{M}$ and another probability measure \mathbf{Q} over \mathcal{F} so that $\mathbf{Q}(A) = \mathbf{P}(A)$ for all $A \in \mathcal{F}$. Then $\mathbf{Q}(A) = \mathbf{P}^*(A)$ for all $A \in \mathcal{F}$.

• **Proof:** For any $A \in \mathcal{F}$

$$\begin{split} \mathbf{P}^*(A) &= \inf_{A_1,A_2,\ldots\in\mathcal{J},A\subseteq\bigcup_i A_i} \sum_i \mathbf{P}(A_i) = \inf_{A_1,A_2,\ldots\in\mathcal{J},A\subseteq\bigcup_i A_i} \sum_i \mathbf{Q}(A_i) \\ &\geq \inf_{A_1,A_2,\ldots\in\mathcal{J},A\subseteq\bigcup_i A_i} \mathbf{Q}\left(\bigcup_i A_i\right) \text{ (countable subadditivity)} \\ &\geq \inf_{A_1,A_2,\ldots\in\mathcal{J},A\subseteq\bigcup_i A_i} \mathbf{Q}(A) \text{ (by monotonicity)} = \mathbf{Q}(A). \end{split}$$

Uniqueness of Extension Theorem: continued

• **Proof (continued):** The previous derivation shows that $\mathbf{P}^*(A) \geq \mathbf{Q}(A)$ for any $A \in \mathcal{F}$. Similarly, $\mathbf{P}^*(A^c) \geq \mathbf{Q}(A^c)$. But as the probability of complement equals 1 minus the probability, we have $\mathbf{P}^*(A) \leq \mathbf{Q}(A)$, thus $\mathbf{P}^*(A) = \mathbf{Q}(A)$. The extension is unique over \mathcal{F} .

Corollary 4 (Proposition 2.5.8)

Let $\mathcal J$ be a semi-algebra and $\mathcal F$ be the σ – algebra generated by $\mathcal J$. Let $\mathbf P$ and $\mathbf Q$ be two probability measures over $\mathcal F$, so that $\mathbf P(A)=\mathbf Q(A)$ for any $A\in \mathcal J$. Then $\mathbf P(A)=\mathbf Q(A)$ for any $A\in \mathcal F$.

Corollary 5 (2.5.9)

Let **P** and **Q** be two probability measures over \mathcal{B} , the collection of Borel sets, so that $\mathbf{P}((-\infty,x]) = \mathbf{Q}((\infty,x])$ for any $x \in \mathbf{R}$. Then $\mathbf{P}(A) = \mathbf{Q}(A)$ for any $A \in \mathcal{B}$.

Infinite Number of Coin Tossing

- The sample space of tossing a fair coin infinite number of times can be denoted as: $\Omega = \{(r_1, r_2, r_3, ...) : r_i = 0 \text{ or } 1\}.$
- Each outcome in this sample space consists of infinite number of tosses, and each toss equals 0 or 1 with probability 0.5. Then intuitively the probability of each outcome should be 0. However, just as "the probability of X = x should equal 0 if $X \sim Unif$ ", this result does not help us much in understanding this particular sample space.
- Denote $A_{a_1a_2...a_n}$ ($a_i=0$ or 1) as the event that the results of the first n tosses are exactly a_1,a_2,\ldots,a_n , then the collection $\mathcal{J}=\{A_{a_1a_2...a_n}:n\in\mathbf{N},a_i=0\text{ or }1\}\bigcup\{\emptyset,\Omega\}$ is a semi-algebra. The probability function \mathbf{P} over \mathcal{J} can be defined as $\mathbf{P}(A_{a_1a_2...a_n})=1/2^n$. And we can verify that \mathbf{P} satisfies the variation of extension theorem.
- \bullet By the extension theorem, we may extend both ${\cal J}$ and ${\bf P}$ to a proper probability triple.
- This probability triple is actually equivalent to the uniform measure (Lebesgue Measure) as each $x \in [0,1]$ can be represented as: $x = \sum_{k=1}^{\infty} \frac{a_k}{2^k}$ in a binary representation.

Product Measure

- The extension theorem is not limited to one-dimensional sample spaces. We just used it on infinite-dimensional coin-flip spaces, and we can also use it to define a uniform measure over $[0,1] \times [0,1]$.
- We may construct the semi-algebra as the collection of all the rectangles (may be closed or open on any of the four borders), and define P as the area of any rectangle. We then verify the conditions of the extension theorem as we had done for the uniform measure over [0,1] and apply the extension theorem to construct a probability triple.

Product Measure: continued

• Suppose we have two probability measures $(\Omega_1, \mathcal{F}_1, \mathbf{P}_1)$ and $(\Omega_2, \mathcal{F}_2, \mathbf{P}_2)$. To define a probability measure over $\Omega_1 \times \Omega_2$, we may choose \mathcal{I} as:

$$\mathcal{J} = \{A \times B : A \in \mathcal{F}_1, B \in \mathcal{F}_2\}$$

and define $P(A \times B) = P(A) \times P(B)$.

- It is quite easy to verify that \mathcal{J} is a semi-algebra.
- We will show that $P(A \times B)$ is countably additive later. Then we may apply the extension theorem to show that it would be possible to construct a product measure based on two marginal measures.

STAT 7200 9/13

Random Variable: Definition

- On the probability triple $(\Omega, \mathcal{F}, \mathbf{P})$, we define a random variable $X: \Omega \to \mathbf{R}$ if $\{\omega: X(\omega) \leq x\} \in \mathcal{F}$ for any $x \in \mathbf{R}$ or $\{\omega: X^{-1}(B)\} \in \mathcal{F}$ for any $B \in \mathcal{B}$.
- The second condition certainly implies the first condition. To see why the first condition implies the second condition, define $\mathcal{A} = \{A \subseteq \mathbf{R} : X^{-1}(A) \in \mathcal{F}\}$. \mathcal{A} is a σ -algebra. Moreover, for any $x \in \mathbf{R}$, $(-\infty, x] \in \mathcal{A}$. Last, by definition of the Borel σ -algebra, $\mathcal{B} \subseteq \mathcal{A}$. So, for any $B \in \mathcal{B}$, $X^{-1}(B) \in \mathcal{F}$.
- X is a "measurable" function from Ω to \mathbf{R} . Generally speaking, we say a function from $(\Omega_1, \mathcal{F}_1, \mathbf{P}_1)$ to $(\Omega_2, \mathcal{F}_2, \mathbf{P}_2)$ is measurable if the inverse image of any measurable set in Ω_2 is also measurable in Ω_1 .

Proposition 3.1.5

- The indicator of a measurable set A (written $1_A(\omega)$) is a random variable. Take any $B \in \mathcal{B}$. 1 can be in B and/or 0 can be in B, or neither. $X^{-1}(B)$ is then either A, A^c , Ω or \emptyset , all of which are in \mathcal{F} .
- X + c and cX are random variables if X is.
- X^2 is an rv if X is. $\{X^2 \le y\} = \{-\sqrt{y} \le X \le \sqrt{y}\} \in \mathcal{F}$.

Proposition 3.1.5

• If X and Y are r.v.s., then X + Y is still random variable as: $\{X + Y \le z\} = \bigcup_{r \text{ is rational}} \{X \le r\} \cap \{Y \le z - r\}$

• If Z_1, Z_2, \ldots are r.v.s., and $\lim_{n\to\infty} Z_n(\omega)$ exists for every ω , then $Z=\lim_{n\to\infty} Z_n$ is also a random variable

-

$$\begin{aligned} \{Z \le z\} &= \{\limsup_{n} Z_n(\omega) \le z\} \\ &= \{\lim_{n \to \infty} \sup_{k \ge n} Z_k(\omega) \le z\} \\ &= \cup_{n=1}^{\infty} \{\sup_{k \ge n} Z_k(\omega) \le z\} \\ &= \cup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} \{Z_k(\omega) \le z\} \end{aligned}$$

Independence: Definition

- A collection of events $\{A_{\alpha}\}_{{\alpha}\in I}$ (can be finite, countable or uncountable) are independent if and only if for all finite subsets $(\alpha_1,\ldots,\alpha_J)\subseteq I$, $P(\bigcap_{j=1}^J A_{\alpha_j})=\prod_{j=1}^J P(A_{\alpha_j})$.
- It is possible to have any two of the three events to be independent but the three events together are not. For instance, throw a fair dice twice, let A = {First toss is even}, B = {Second toss is odd} and C = {Sum of the first and second dices is even}.
- A collection of random variable $\{X_{\alpha}\}_{{\alpha}\in I}$ are independent if and only if for all finite subsets $(\alpha_1,\ldots,\alpha_J)\subseteq I$, and all Borel sets S_1,\ldots,S_J , $P(X_{\alpha_1}\in S_1,\ldots,X_{\alpha_J}\in S_J)=P(X_{\alpha_1}\in S_1)\ldots P(X_{\alpha_J}\in S_J)$.
- If random variable X and Y are independent, then f(X) and g(Y) are also independent for measurable functions f and g.