```
H
In [1]:
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import statsmodels.api as sm
import numpy as np
from statsmodels.stats.outliers_influence import variance_inflation_factor
import scipy.stats as stats
from statsmodels.formula.api import ols
from statsmodels.stats.diagnostic import het white
In [2]:
# Load data from other notebook
gdf = pd.read pickle('data/geodata.pkl')
df = pd.DataFrame(gdf)
In [3]:
                                                                                     Н
df.columns
Out[3]:
Index(['index', 'id', 'date', 'price', 'bedrooms', 'bathrooms', 'sqft l
iving',
       'sqft lot', 'floors', 'waterfront', 'view', 'condition', 'grad
e',
       'sqft_above', 'sqft_basement', 'yr_built', 'yr_renovated', 'zipc
ode',
       'lat', 'long', 'sqft_living15', 'sqft_lot15', 'geometry',
       'dist_2_downtown', 'avg_dists'],
      dtype='object')
```

```
In [4]:
```

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2955 entries, 0 to 2954
Data columns (total 25 columns):

#	Column	Non-Null Count	Dtype
0	index	2955 non-null	 int64
1	id	2955 non-null	int64
2	date	2955 non-null	object
3	price	2955 non-null	_
4	bedrooms	2955 non-null	int64
5	bathrooms	2955 non-null	float64
6	sqft_living	2955 non-null	int64
7	sqft_lot	2955 non-null	int64
8	floors	2955 non-null	float64
9	waterfront	2955 non-null	float64
10	view	2955 non-null	float64
11	condition	2955 non-null	int64
12	grade	2955 non-null	int64
13	sqft_above	2955 non-null	object
14	sqft_basement	2955 non-null	object
15	yr_built	2955 non-null	int64
16	yr_renovated	2955 non-null	float64
17	zipcode	2955 non-null	int64
18	lat	2955 non-null	float64
19	long	2955 non-null	float64
20	sqft_living15	2955 non-null	int64
21	sqft_lot15	2955 non-null	int64
22	geometry	2955 non-null	geometry
23	dist_2_downtown	2955 non-null	float64
24	avg_dists	2955 non-null	float64
dtype	es: float64(9), g	eometry(1), int6	4(12), object(3)
momor	N USAGO: 577 3+ 1	/ D	

memory usage: 577.3+ KB

21

avg dists

memory usage: 508.0 KB

dtypes: float64(9), int64(13)

In [5]: ▶

```
# Clean up the data to change strings to integers and delete unnecessary columns
df['sqft_above'] = df['sqft_above'].astype('int64')
df['sqft_basement'] = df['sqft_basement'].astype('int64')
df['date'] = pd.DatetimeIndex(df['date']).month # get month from date
df = df.drop(columns=['index', 'id', 'geometry'])
df = pd.get_dummies(df)
df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2955 entries, 0 to 2954
Data columns (total 22 columns):
 #
     Column
                       Non-Null Count
                                        Dtype
     _ _ _ _ _
                       _____
_ _ _
                                        _ _ _ _
 0
     date
                       2955 non-null
                                        int64
 1
     price
                       2955 non-null
                                        int64
 2
     bedrooms
                       2955 non-null
                                        int64
 3
     bathrooms
                       2955 non-null
                                        float64
 4
     saft living
                       2955 non-null
                                        int64
 5
     sqft lot
                       2955 non-null
                                        int64
 6
     floors
                       2955 non-null
                                        float64
 7
     waterfront
                       2955 non-null
                                        float64
 8
     view
                       2955 non-null
                                        float64
 9
     condition
                       2955 non-null
                                        int64
 10
     grade
                       2955 non-null
                                        int64
     sqft above
                       2955 non-null
                                        int64
 11
     sqft basement
                       2955 non-null
 12
                                        int64
 13
     yr built
                       2955 non-null
                                        int64
 14
     yr_renovated
                       2955 non-null
                                        float64
     zipcode
                       2955 non-null
                                        int64
 15
 16
     lat
                       2955 non-null
                                        float64
 17
     long
                       2955 non-null
                                        float64
 18
     sqft living15
                       2955 non-null
                                        int64
 19
     sqft lot15
                       2955 non-null
                                        int64
 20
     dist 2 downtown 2955 non-null
                                        float64
```

2955 non-null

float64

In [6]: ▶

```
# Create histograms to get a sense of data
plt.style.use('ggplot')
df.hist(figsize = (20,18));
```


In [7]: ▶

```
# Create histograms of sqft_living to get a better look
plt.style.use('ggplot')
df['sqft_living'].hist(figsize = (5,5));
```


In [8]: ▶

```
# look at features vs. price to get a sense what the influencers are
cols = list(df.columns)
cols.remove('price')
print(cols)
for col in cols:
    sns.jointplot(x=col, y='price', data=df, kind='reg');
```

['date', 'bedrooms', 'bathrooms', 'sqft_living', 'sqft_lot', 'floor
s', 'waterfront', 'view', 'condition', 'grade', 'sqft_above', 'sqft_
basement', 'yr_built', 'yr_renovated', 'zipcode', 'lat', 'long', 'sq
ft_living15', 'sqft_lot15', 'dist_2_downtown', 'avg_dists']

C:\Users\cm_fr\anaconda3\envs\geo\lib\site-packages\seaborn\axisgri d.py:1559: RuntimeWarning: More than 20 figures have been opened. Fi gures created through the pyplot interface (`matplotlib.pyplot.figur e`) are retained until explicitly closed and may consume too much me mory. (To control this warning, see the rcParam `figure.max_open_warning`).

f = plt.figure(figsize=(height, height))

In [9]: ▶

Out[9]:

<AxesSubplot:>


```
In [10]:

# Drop Location-related columns, Leaving "dist_2_downtown"

df = df.drop(columns=['lat', 'long', 'zipcode', 'avg_dists'])
```

In [11]:

```
# Trim obvious outliers
df[(df['price'] <= 1500000) & (df['dist_2_downtown'] <= 50)].reset_index()</pre>
```

Out[11]:

	index	date	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	waterfron
0	0	2	180000	2	1.00	770	10000	1.0	0.0
1	1	5	468000	2	1.00	1160	6000	1.0	0.0
2	2	12	189000	2	1.00	1200	9850	1.0	0.1
3	3	5	252700	2	1.50	1070	9643	1.0	0.1
4	4	12	280000	2	1.50	1190	1265	3.0	0.0
	•••						•••		
2937	2950	10	505000	2	2.50	1430	1201	3.0	0.0
2938	2951	11	414500	2	1.50	1210	1278	2.0	0.1
2939	2952	10	520000	2	2.25	1530	981	3.0	0.0
2940	2953	6	402101	2	0.75	1020	1350	2.0	0.0
2941	2954	10	325000	2	0.75	1020	1076	2.0	0.0

2942 rows × 19 columns

In [12]: ▶

Out[12]:

<AxesSubplot:>

In [13]:

```
# First Model
outcome = 'price' # dependent variable
x_cols = list(df.columns[2:])
x_cols.append('date')# independence variables --> everything except price
print((x_cols))
# Fitting the actual model using OLS
predictors = '+'.join(x_cols)
formula = outcome + '~' + predictors
model = ols(formula=formula, data=df).fit()
model.summary()
```

['bedrooms', 'bathrooms', 'sqft_living', 'sqft_lot', 'floors', 'waterfr ont', 'view', 'condition', 'grade', 'sqft_above', 'sqft_basement', 'yr_built', 'yr_renovated', 'sqft_living15', 'sqft_lot15', 'dist_2_downtow n', 'date']

Out[13]:

OLS Regression Results

Df Model:

view

Covariance Type:

Dep. Variable:	price	R-squared:	0.619
Model:	OLS	Adj. R-squared:	0.616
Method:	Least Squares	F-statistic:	280.2
Date:	Thu, 17 Dec 2020	Prob (F-statistic):	0.00
Time:	23:23:40	Log-Likelihood:	-38671.
No. Observations:	2955	AIC:	7.738e+04
Df Residuals:	2937	BIC:	7.749e+04

17

nonrobust

t P>|t| coef std err [0.025 0.975] Intercept 1.37e+06 2.06e+05 6.653 0.000 9.66e+05 1.77e+06 **bedrooms** -1.419e+04 8971.257 -1.581 0.114 -3.18e+04 3403.123 bathrooms 2.364e+04 6337.707 3.730 0.000 1.12e+04 3.61e+04 sqft_living 99.8358 48.896 2.042 0.041 3.962 195.710 5.205 0.000 sqft_lot 0.3004 0.058 0.187 0.414 floors -1.299e+04 5824.127 -2.230 0.026 -2.44e+04 -1569.843 waterfront 2.123e+05 2.52e+04 8.420 0.000 1.63e+05 2.62e+05

7.672 0.000

2.27e+04

3.84e+04

3.056e+04 3983.074

condition	1.92e+04	3439.793	5.581	0.000	1.25e+04	2.59e+04
grade	6.254e+04	3483.867	17.951	0.000	5.57e+04	6.94e+04
sqft_above	47.1311	49.241	0.957	0.339	-49.419	143.681
sqft_basement	-20.1155	49.155	-0.409	0.682	-116.498	76.267
yr_built	-850.6321	109.839	-7.744	0.000	-1066.001	-635.263
yr_renovated	3.5353	5.918	0.597	0.550	-8.068	15.139
sqft_living15	80.4626	6.521	12.339	0.000	67.676	93.249
sqft_lot15	0.0427	0.106	0.402	0.687	-0.165	0.251
dist_2_downtown	-6100.5962	292.038	-20.890	0.000	-6673.215	-5527.977
date	-2450.4876	690.013	-3.551	0.000	-3803.445	-1097.530

Omnibus: 413.792 Durbin-Watson: 1.987

Prob(Omnibus): 0.000 Jarque-Bera (JB): 1359.832

Skew: 0.701 **Prob(JB):** 5.20e-296

Kurtosis: 6.013 **Cond. No.** 5.08e+06

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 5.08e+06. This might indicate that there are strong multicollinearity or other numerical problems.

In [14]:

```
# Model Refinement I
```

Remove unecessary features

In [15]:

Out[15]:

OLS Regression Results

Dep. Variable: price **R-squared:** 0.614

Model: OLS Adj. R-squared: 0.612

Method: Least Squares **F-statistic:** 389.9

Date: Thu, 17 Dec 2020 Prob (F-statistic): 0.00

Time: 23:23:40 **Log-Likelihood:** -38688.

No. Observations: 2955 **AIC:** 7.740e+04

Df Residuals: 2942 **BIC:** 7.748e+04

Df Model: 12

Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
Intercept	1.426e+06	2.01e+05	7.091	0.000	1.03e+06	1.82e+06
bathrooms	2.273e+04	6333.000	3.589	0.000	1.03e+04	3.51e+04
floors	-5281.4152	5703.626	-0.926	0.355	-1.65e+04	5902.088
sqft_living	115.8976	7.448	15.560	0.000	101.293	130.502
sqft_lot	0.3241	0.048	6.731	0.000	0.230	0.419
waterfront	2.161e+05	2.52e+04	8.561	0.000	1.67e+05	2.66e+05
view	3.042e+04	3995.141	7.613	0.000	2.26e+04	3.82e+04
condition	1.674e+04	3415.873	4.901	0.000	1e+04	2.34e+04
grade	6.594e+04	3425.071	19.253	0.000	5.92e+04	7.27e+04
yr_built	-898.1095	107.505	-8.354	0.000	-1108.902	-687.317
sqft_living15	85.7034	6.447	13.293	0.000	73.062	98.345
dist_2_downtown	-5551.4009	274.244	-20.243	0.000	-6089.130	-5013.671

date -2444.7245 692.283 -3.531 0.000 -3802.132 -1087.317

Omnibus: 439.504 Durbin-Watson: 2.001

Prob(Omnibus): 0.000 Jarque-Bera (JB): 1478.218

Skew: 0.737 **Prob(JB):** 0.00

Kurtosis: 6.136 **Cond. No.** 4.58e+06

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

[2] The condition number is large, 4.58e+06. This might indicate that there are strong multicollinearity or other numerical problems.

In [16]:

Out[16]:

OLS Regression Results

Dep. Variable: price **R-squared:** 0.614

Model: OLS Adj. R-squared: 0.612

Method: Least Squares **F-statistic:** 425.3

Date: Thu, 17 Dec 2020 Prob (F-statistic): 0.00

Time: 23:23:40 **Log-Likelihood:** -38689.

No. Observations: 2955 **AIC:** 7.740e+04

Df Residuals: 2943 **BIC:** 7.747e+04

Df Model: 11

Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
Intercept	1.496e+06	1.86e+05	8.029	0.000	1.13e+06	1.86e+06
bathrooms	2.115e+04	6098.350	3.468	0.001	9191.130	3.31e+04
sqft_living	116.3032	7.435	15.642	0.000	101.724	130.882
sqft_lot	0.3233	0.048	6.715	0.000	0.229	0.418
waterfront	2.153e+05	2.52e+04	8.534	0.000	1.66e+05	2.65e+05
view	3.032e+04	3993.702	7.592	0.000	2.25e+04	3.82e+04
condition	1.678e+04	3415.494	4.914	0.000	1.01e+04	2.35e+04
grade	6.57e+04	3414.887	19.239	0.000	5.9e+04	7.24e+04
yr_built	-936.5623	99.158	-9.445	0.000	-1130.989	-742.136
sqft_living15	86.2147	6.423	13.422	0.000	73.620	98.809
dist_2_downtown	-5490.5062	266.236	-20.623	0.000	-6012.534	-4968.479
date	-2447.5704	692.259	-3.536	0.000	-3804.932	-1090.209

Omnibus: 439.866 Durbin-Watson: 2.001

Prob(Omnibus): 0.000 Jarque-Bera (JB): 1477.938

 Skew:
 0.738
 Prob(JB):
 0.00

 Kurtosis:
 6.135
 Cond. No.
 4.24e+06

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 4.24e+06. This might indicate that there are strong multicollinearity or other numerical problems.

```
In [17]:
# Model Refinement II
# normalize and standardize features

In [18]:

# try to normalize non-normal features via box-cox transformation
non_normal = ['sqft_living', 'sqft_lot', 'sqft_living15', 'dist_2_downtown']
for feat in non_normal:
    fitted_data, fitted_lambda = stats.boxcox(df[feat])
    df[feat] = fitted_data
```

In [19]:

df[x_cols].hist(figsize = (20,18));

M

```
In [20]:
```

```
# Create histograms of sqft_living to get a better look
plt.style.use('ggplot')
df['sqft_living'].hist(figsize = (5,5));
```


In [21]:

```
# apply the z-score method in Pandas using the .mean() and .std() methods to standard
# copy the dataframe
df_std = df.copy()
# apply the z-score method
for column in x_cols:
    df_std[column] = (df_std[column] - df_std[column].mean()) / df_std[column].std()
# call the z_score function
df = df_std
```

M

In [22]:

```
predictors = '+'.join(x_cols)
formula = outcome + '~' + predictors
model = ols(formula=formula, data=df).fit()
model.summary()
```

Out[22]:

OLS Regression Results

Dep. Variable: price **R-squared:** 0.597

Model: OLS Adj. R-squared: 0.595

Method: Least Squares F-statistic: 395.9

Date: Thu, 17 Dec 2020 Prob (F-statistic): 0.00

Time: 23:23:43 **Log-Likelihood:** -38753.

No. Observations: 2955 **AIC:** 7.753e+04

Df Residuals: 2943 **BIC:** 7.760e+04

Df Model: 11

Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
Intercept	3.949e+05	2212.373	178.495	0.000	3.91e+05	3.99e+05
bathrooms	2.232e+04	3381.513	6.600	0.000	1.57e+04	2.89e+04
sqft_living	3.446e+04	3460.357	9.958	0.000	2.77e+04	4.12e+04
sqft_lot	2.418e+04	3364.899	7.185	0.000	1.76e+04	3.08e+04
waterfront	2.205e+04	2629.772	8.386	0.000	1.69e+04	2.72e+04
view	2.531e+04	2756.396	9.184	0.000	1.99e+04	3.07e+04
condition	1.309e+04	2348.465	5.575	0.000	8488.842	1.77e+04
grade	6.93e+04	3495.800	19.823	0.000	6.24e+04	7.62e+04
yr_built	-2.645e+04	3421.957	-7.730	0.000	-3.32e+04	-1.97e+04
sqft_living15	3.496e+04	2742.348	12.749	0.000	2.96e+04	4.03e+04
dist_2_downtown	-5.971e+04	3018.161	-19.783	0.000	-6.56e+04	-5.38e+04
date	-8514.4862	2221.674	-3.832	0.000	-1.29e+04	-4158.294

Omnibus: 685.455 **Durbin-Watson:** 1.998

Prob(Omnibus): 0.000 **Jarque-Bera (JB):** 3596.651

Skew: 1.002 **Prob(JB):** 0.00

Kurtosis: 8.019 **Cond. No.** 3.70

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified

```
In [23]:
```

```
# Check for Multicollinearity --> want values < 5
X = df[x_cols]
vif = [variance_inflation_factor(X.values, i) for i in range(X.shape[1])]
list(zip(x_cols, vif))</pre>
```

Out[23]:

```
[('bathrooms', 2.3353840550342766),
  ('sqft_living', 2.445559021737623),
  ('sqft_lot', 2.3124919492147544),
  ('waterfront', 1.4124483621605053),
  ('view', 1.5517416117950533),
  ('condition', 1.126430138174815),
  ('grade', 2.4959132009887193),
  ('yr_built', 2.3915818257117696),
  ('sqft_living15', 1.5359655109787187),
  ('dist_2_downtown', 1.8604633795396446),
  ('date', 1.008084245232352)]
```

In [24]: ▶

```
# Q-Q Plot to check normality of residuals
residuals = model.resid
fig = sm.graphics.qqplot(residuals, dist=stats.norm, line='45', fit=True)
```


In [25]: ▶

```
# Checking for Homoscedasticity
plt.scatter(model.predict(df[x_cols]), model.resid)
plt.plot(model.predict(df[x_cols]), [0 for i in range(len(df))])
```

Out[25]:

[<matplotlib.lines.Line2D at 0x1de1c792bb0>]

In [26]:

```
white_test = het_white(model.resid, model.model.exog)
labels = ['LM Statistic', 'LM-Test p-value', 'F-Statistic', 'F-Test p-value']
print(dict(zip(labels, white_test)))
```

```
{'LM Statistic': 876.2726504950575, 'LM-Test p-value': 2.28473260763542
73e-136, 'F-Statistic': 15.963162121167544, 'F-Test p-value': 3.9135691
99280514e-166}
```

In [27]: M

```
# Model Refinement III
# Address residual normality issues and heteroscedasticity
```

```
In [28]:
# Finding a cutoff point to narrow the price range
for i in range(0, 20):
    q = i / 100
    print('{} percentile: {}'.format(q, df['price'].quantile(q=q)))
print('---')
for i in range(80, 100):
    q = i / 100
    print('{} percentile: {}'.format(q, df['price'].quantile(q=q)))
0.0 percentile: 78000.0
0.01 percentile: 109270.0
0.02 percentile: 124540.0
0.03 percentile: 144990.5
0.04 percentile: 155000.0
0.05 percentile: 163710.0
0.06 percentile: 174120.0
0.07 percentile: 179989.0
0.08 percentile: 187524.0
0.09 percentile: 192500.0
0.1 percentile: 199950.0
0.11 percentile: 202000.0
0.12 percentile: 208408.16
0.13 percentile: 212000.0
0.14 percentile: 216500.0
0.15 percentile: 220754.99999999997
0.16 percentile: 226512.0
0.17 percentile: 230000.0
0.18 percentile: 235000.0
0.19 percentile: 239950.0
0.8 percentile: 515000.0
0.81 percentile: 525000.0
0.82 percentile: 530000.0
0.83 percentile: 540000.0
0.84 percentile: 549000.0
0.85 percentile: 553000.0
0.86 percentile: 563160.0000000001
0.87 percentile: 575000.0
0.88 percentile: 582260.0
0.89 percentile: 599057.0
0.9 percentile: 605075.0
0.91 percentile: 626129.9999999994
0.92 percentile: 650000.0
0.93 percentile: 665000.0
0.94 percentile: 695000.0
0.95 percentile: 716499.9999999986
0.96 percentile: 751469.9999999994
```

M

0.97 percentile: 800000.00.98 percentile: 850000.0

0.99 percentile: 1054600.0000000005

In [29]: ▶

```
# Keep values between 1% and 90%
lower = 109270
upper = 605075

subset = df[(df['price'] >= lower) & (df['price'] <= upper)].reset_index()
print('Percent removed:',(len(df) - len(subset))/len(df))

predictors = '+'.join(x_cols)
formula = outcome + '~' + predictors
model = ols(formula=formula, data=subset).fit()
model.summary()</pre>
```

Percent removed: 0.11032148900169204

Out[29]:

No.

OLS Regression Results

0.455	R-squared:	price	Dep. Variable:
0.452	Adj. R-squared:	OLS	Model:
198.4	F-statistic:	Least Squares	Method:
0.00	Prob (F-statistic):	Thu, 17 Dec 2020	Date:
-33681.	Log-Likelihood:	23:23:44	Time:
6.739e+04	AIC:	2629	. Observations:
6.746e+04	BIC:	2617	Df Residuals:
		11	Df Model:

Df Model: 11

Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
Intercept	3.677e+05	1775.217	207.101	0.000	3.64e+05	3.71e+05
bathrooms	1.172e+04	2720.179	4.307	0.000	6381.653	1.7e+04
sqft_living	2.458e+04	2720.795	9.034	0.000	1.92e+04	2.99e+04
sqft_lot	6325.1069	2710.246	2.334	0.020	1010.664	1.16e+04
waterfront	1.208e+04	2939.983	4.111	0.000	6319.982	1.78e+04
view	4451.3717	2834.572	1.570	0.116	-1106.859	1e+04
condition	9573.2081	1859.675	5.148	0.000	5926.626	1.32e+04
grade	4.401e+04	2888.104	15.240	0.000	3.84e+04	4.97e+04
yr_built	-2.13e+04	2709.633	-7.862	0.000	-2.66e+04	-1.6e+04

sqft_living15 2.558e+04 2147.554 11.910 0.000 2.14e+04 2.98e+04 dist_2_downtown -4.623e+04 -19.545 0.000 -5.09e+04 -4.16e+04 2365.351 date -4564.8015 1728.501 -2.641 0.008 -7954.169 -1175.434

Omnibus: 9.387 Durbin-Watson: 1.958

Prob(Omnibus): 0.009 Jarque-Bera (JB): 9.477

Skew: 0.146 **Prob(JB):** 0.00875

Kurtosis: 2.962 **Cond. No.** 3.57

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

In [30]:

fig = sm.graphics.qqplot(model.resid, dist=stats.norm, line='45', fit=True)


```
In [31]: ▶
```

```
plt.scatter(model.predict(subset[x_cols]), model.resid)
plt.plot(model.predict(subset[x_cols]), [0 for i in range(len(subset))])
```

Out[31]:

[<matplotlib.lines.Line2D at 0x1de1e7b0f10>]


```
In [32]:
```

```
white_test = het_white(model.resid, model.model.exog)
labels = ['LM Statistic', 'LM-Test p-value', 'F-Statistic', 'F-Test p-value']
print(dict(zip(labels, white_test)))
```

```
{'LM Statistic': 285.32266762438934, 'LM-Test p-value': 5.5278189791947 92e-26, 'F-Statistic': 4.087949610992519, 'F-Test p-value': 6.075933533 120562e-28}
```

In [33]:

Model Refinement IV
Residual normality improved but still not homoscedastic
Try building a model from the ground up

In [34]: ▶

```
outcome = 'price'

x_cols = ['grade', 'sqft_living', 'dist_2_downtown', 'waterfront']
subset = df[(df['price'] >= lower) & (df['price'] <= upper)].reset_index()
print('Percent removed:',(len(df) - len(subset))/len(df))
# subset['price'] = subset['price'].map(np.log)
predictors = '+'.join(x_cols)
formula = outcome + '~' + predictors
model = ols(formula=formula, data=subset).fit()
model.summary()</pre>
```

Percent removed: 0.11032148900169204

Out[34]:

OLS Regression Results

Dep. Variable: price **R-squared:** 0.378

Model: OLS Adj. R-squared: 0.377

Method: Least Squares **F-statistic:** 399.0

Date: Thu, 17 Dec 2020 **Prob (F-statistic):** 9.60e-269

Time: 23:23:45 **Log-Likelihood**: -33854.

No. Observations: 2629 **AIC:** 6.772e+04

Df Residuals: 2624 **BIC:** 6.775e+04

Df Model: 4

Covariance Type: nonrobust

		coef	std err	t	P> t	[0.025	0.975]
Int	ercept	3.642e+05	1873.671	194.367	0.000	3.61e+05	3.68e+05
	grade	2.84e+04	2533.560	11.210	0.000	2.34e+04	3.34e+04
sqft_	_living	4.358e+04	2470.423	17.639	0.000	3.87e+04	4.84e+04
dist_2_dow	ntown	-4.678e+04	1946.414	-24.033	0.000	-5.06e+04	-4.3e+04
wate	erfront	1.651e+04	2694.059	6.128	0.000	1.12e+04	2.18e+04

Omnibus: 36.631 Durbin-Watson: 1.930

Prob(Omnibus): 0.000 Jarque-Bera (JB): 34.449

Skew: 0.242 **Prob(JB):** 3.31e-08

Kurtosis: 2.718 **Cond. No.** 2.04

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

In [35]:

fig = sm.graphics.qqplot(model.resid, dist=stats.norm, line='45', fit=True)

In [36]:

```
plt.scatter(model.predict(subset[x_cols]), model.resid)
plt.plot(model.predict(subset[x_cols]), [0 for i in range(len(subset))])
```

Out[36]:

[<matplotlib.lines.Line2D at 0x1de1c7a0c10>]


```
In [37]:
```

white_test = het_white(model.resid, model.model.exog)
labels = ['LM Statistic', 'LM-Test p-value', 'F-Statistic', 'F-Test p-value']
print(dict(zip(labels, white_test)))

```
{'LM Statistic': 18.91835463694957, 'LM-Test p-value': 0.12565691921969 73, 'F-Statistic': 1.4580002908665912, 'F-Test p-value': 0.125437345918 53972}
```

```
In [38]:
```

```
# y_pred = model.predict([4, 5, 6])
# >>> print('predicted response:', y_pred, sep='\n')
```

0

In [39]:

```
ypred = model.predict(X)
print(ypred)
```

```
259450.339020
1
        380019.283149
2
        298321.347142
3
        291268.453849
        361253.661936
             . . .
2950
        449338.296909
2951
        426249,590790
2952
        484226.440510
2953
        446353.837983
        446034.272898
2954
Length: 2955, dtype: float64
```

In [40]: M

```
fig, ax = plt.subplots()
bot = 1000
top = 1050
x = ypred.index[bot:top]
y pred = ypred[bot:top]
y actual = df['price'][bot:top]
ax.plot(x, y_pred, 'r-', label="Predicted") # predicted values
ax.plot(x, y_actual, 'b-', label="Actual") # actual values
# ax.plot(np.hstack((x, x)), np.hstack((y pred, y actual)), 'r')
ax.legend(loc="best");
```



```
H
In [41]:
# create additional graphics
from shapely.geometry import Point # Shapely for converting Latitude/Longtitude to ge
import geopandas as gpd # To create GeodataFram
import pandas as pd
from pyproj import CRS
import matplotlib.pyplot as plt
In [42]:
def add geo col(df):
    # create a geometry column
    geometry = [Point(xy) for xy in zip(df['long'], df['lat'])]
    # Coordinate reference system : WGS84 (the GPS model for conversion)
    crs = CRS('epsg:4326')
    # Creating a Geographic data frame
    gdf = gpd.GeoDataFrame(df, crs=crs, geometry=geometry).reset index()
    return gdf
In [43]:
                                                                                     H
gdf2 = pd.read pickle('data/geodata.pkl')
In [44]:
df_top10_employers = pd.read_csv('data/top_employers.csv')
df3 = df top10 employers[df top10 employers['centralized campus']=='y'].reset index()
gdf3 = add geo col(df3)
In [45]:
                                                                                     M
downtown = Point(-122.3244, 47.6150)
gdf4 = gpd.GeoSeries(downtown, crs=4326)
```

In [46]: ▶

```
fig, ax = plt.subplots(ncols=1, sharex=True, sharey=True, figsize=(11, 20))
gdf4.plot(ax=ax, marker='o', color='#FFA12A', markersize=500, label='downtown')
gdf2.plot(ax=ax, marker='s', color='#333333', markersize=1, label='properties')
gdf3.plot(ax=ax, marker='*', color='r', markersize=100, label='employer')
ax.legend()
# gdf2.plot(marker='o', color='b', markersize=0.5)
# gdf3.plot(marker='o', color='r', markersize=0.5)
```

Out[46]:

<matplotlib.legend.Legend at 0x1de1b77bbb0>

In []: