Алгебра 9

Igor Engel

1 Нормальные подгруппы

Определение 1.1. $g,h\in G$, тогда ghg^{-1} называется сопряжённым к h при помощи g.

Определение 1.2. $h_1, h_2 \in G$ называются сопрядёнными, если $\exists g \in G \quad h_2 = gh_1g^{-1}$.

Определение 1.3. $H \leq G$ называется нормальной подгруппой G и обозначается $H \triangleleft G$, если

$$\forall h \in H \quad \forall g \in G \quad ghg^{-1} \in H.$$

Теорема 1.1. $H \leq G$, следующие услвоия эквивалентны:

- 1. $H \leq G$
- 2. $\forall g \in G \quad gHg^{-1} = H$
- 3. $\forall g \in G \quad gH = Hg$
- 4. $\forall g \in G \quad gH \subset Hg$

Доказательство. 1 \implies 2: переформулируем формулировку нормальности: $H \subseteq G \iff \forall g \quad gHg^{-1} \subset H$.

Рассмотрим $H=g^{-1}gHg^{-1}g\subset g^{-1}Hg$, пусть $g=k^{-1}$, тогда $H\subset kHk^{-1}$. Значит, $H=\forall g\quad gHg^{-1}$.

- $2 \implies 3$: $gHg^{-1} = H \implies gH = Hg$ (домножение на g справа)
- $3 \implies 4$: тривиально

$$4 \implies 1: gH \subset Hg \to gh \in Hg \implies gh = h'g \implies ghg^{-1} = h'.$$

Лемма 1.1.1. Любая подгруппа абелевой группы - нормальная.

Доказательство. $ghg^{-1} = gg^{-1}h = h$

Определение 1.4. Факторгруппа по $H \leq \langle G, \times \rangle$, называется группа состоящая из смежных классов по H с операцией \cdot :

$$q_1H \cdot q_2H = (q_1 \times q_2)H.$$

Лемма 1.4.1. Операция задана корректоно.

Доказательство. Возьмём два класса: g_1H , g_2H .

Рассмотрим представителей g_1h_1, g_2h_2 .

Тогда
$$g_1h_1g_2h_2 = g_1g_2g_2^{-1}h_1g_2h_2 = g_1g_2h_3h_2 = g_1g_2h_4 \in g_1g_2H$$

Лемма 1.4.2. Факторгруппа - группа.

Доказательство. Докажем свойства:

Ассоциативность: $(g_1H\cdot g_2H)\cdot g_3H=(g_1g_2)g_3H=g_1(g_2g_3)H=g_1H(g_2H\cdot g_3H)$ Нейтральный элемент: eH=H .

Обратный элемент:
$$(gH)^{-1} = g^{-1}H$$
.

Теорема 1.2 (Теорема о изоморфизме). Пусть $f: G \mapsto G_1$ - гомоморфизм.

 $G/\operatorname{Ker} f\cong f(G)$ (гомоморфный образ группы изомофрен факторгруппе по ядру гомоморфизма)

Причём, изоморфизм имеет вид $g \operatorname{Ker} f \mapsto f(g)$.

Доказательство. Пусть $H = \operatorname{Ker} f$

Корректоность: $h \in H$, f(gh) = f(g)f(h) = f(g).

Гомоморфизм: $\hat{f}(g_1g_2H) = f(g_1g_2) = f(g_1)f(g_2) = \hat{f}(g_1H)\hat{f}(g_2H)$.

Инъективность: $gH \in \operatorname{Ker} \hat{f} \iff f(g) = e \iff gH = H$

Сюръективность: $x \in \text{Im } f, f(g) = x$, тогда $\hat{f}(gH) = x$.

Определение 1.5. Группа G называется простой, если в ней нет нетривиальных нормальных подгрупп.

Теорема 1.3. Есть список всех конечных простых групп.