Neural Networks

Cynthia Rudin

Duke Machine Learning

Neurons

- 10¹¹ neurons in a brain, 10¹⁴ synapses (connections).
- Signals are electrical potential spikes that travel through the network.

(Credit: Adapted from Russell and Norvig)

McCulloch-Pitts "Neuron" $o_1 = ? \underbrace{w_1 = 1}_{o_2 = ?} \underbrace{w_2 = 1}_{w_0 = 1.5} \underbrace{Step}_{Function} \underbrace{o_1 \quad o_2 \quad output}_{o_1 \quad o_2 \quad output}$

1+1-1.5=0.5

o_1	02	output
0	0	0
1	0	0
0	1	0
1	1	1

This neuron computes the function "and."

There are "or" and "not" neurons too.

o_1	o_2	output
0	0	0
1	0	0
0	1	0
1	1	1

McCulloch-Pitts "Neuron"

$$\phi\left(\sum_{j} w_{j,\text{me}} a_{j}\right) = 1/(1+e^{-x}) \quad \text{"Sigmoid"}$$

Activation Function

Single Layer

- In a brain, the synapses strengthen and weaken in order to learn.
- Say the same thing happens here.
- How should we set the weights in order to learn (reduce the error)?
- Minimize E with respect to the weights.

Backpropagation

- An algorithm that trains the weights of a neural network
- Requires us to propagate information backwards through the network, then forwards, then backwards, then forwards, etc.
- Propagate backwards = chain rule from calculus.

Single Layer Error on one observation $E = \frac{1}{2}(y - o_{100})^{2}$ $\frac{dE}{do_{100}} = \frac{1}{2}2(y - o_{100})(-1) = -(y - o_{100})$ $\frac{dE}{dw_{99,100}} = \frac{dE}{do_{100}} \frac{d \text{ net}_{100}}{d \text{ net}_{100}} \frac{d \text{ net}_{100}}{dw_{99,100}}$

Single Layer

Error on one observation

$$E = \frac{1}{2}(y - o_{100})^2$$

$$\frac{dE}{dw_{99,100}} = \frac{dE}{do_{100}} \frac{do_{100}}{d \text{ net}_{100}} \frac{d \text{ net}_{100}}{dw_{99,100}}$$
$$-(y - o_{100})$$

Single Layer
$$\frac{do_{100}}{d \text{ net}_{100}} = \frac{d\phi(\text{net}_{100})}{d \text{ net}_{100}} = \phi'(\text{net}_{100}) = \phi(\text{net}_{100})(1 - \phi(\text{net}_{100})) = o_{100}(1 - o_{100})$$

$$\frac{dE}{dw_{99,100}} = \frac{dE}{do_{100}} \frac{do_{100}}{d \text{ net}_{100}} \frac{d \text{ net}_{100}}{dw_{99,100}}$$

$$-(y - o_{100})$$

Single Layer

$$\frac{do_{100}}{d \text{ net}_{100}} = \frac{d\phi(\text{net}_{100})}{d \text{ net}_{100}} = \phi'(\text{net}_{100}) = \phi(\text{net}_{100})(1 - \phi(\text{net}_{100})) = o_{100}(1 - o_{100})$$

$$\frac{dE}{dw_{99,100}} = \frac{dE}{do_{100}} \frac{do_{100}}{do_{100}} \frac{do_{10$$

Single Layer

$$\frac{dE}{dw_{99,100}} = \frac{dE}{do_{100}} \frac{do_{100}}{d \cot_{100}} \frac{d \cot_{100}}{dw_{99,100}}$$

$$-(y - o_{100}) \qquad o_{100}(1 - o_{100})$$

$$\frac{dE}{dw_{99,100}} = \frac{dE}{do_{100}} \frac{do_{100}}{d \text{ net}_{100}} \frac{d \text{ net}_{100}}{dw_{99,100}}$$

$$-(y - o_{100}) \qquad o_{100}(1 - o_{100})$$

We will need this later – it depends only on node 100

$$\frac{dE}{dw_{99,100}} = \frac{dE}{do_{100}} \frac{do_{100}}{do_{100}} \frac{d \text{ net}_{100}}{dw_{99,100}} \\
= (-(y - o_{100}))o_{100}(1 - o_{100})o_{99}$$

• Go one layer deeper.

$$\frac{dE}{dw_{87,98}} = \frac{dE}{do_{98}} \frac{do_{98}}{d \text{ net}_{98}} \frac{d \text{ net}_{98}}{dw_{87,98}} o_{87}$$

$$\frac{do_{98}}{d \text{ net}_{98}} = \frac{d\phi(\text{net}_{98})}{d \text{ net}_{98}} = \phi'(\text{net}_{98}) = \phi(\text{net}_{98})(1 - \phi(\text{net}_{98})) = o_{98}(1 - o_{98})$$

- Go even one layer deeper.
- Third time is a charm.

$$\frac{dE}{dw_{a,b}} = \frac{dE}{do_b} \frac{do_b}{d \text{ net}_b} \frac{d \text{ net}_b}{dw_{a,b}}$$

$$= \frac{dE}{do_b} \frac{do_b}{d \text{ net}_b} o_a$$
net

$$\frac{dE}{dw_{a,b}} = \frac{dE}{do_b} \frac{do_b}{d \text{ net}_b} \frac{d \text{ net}_b}{dw_{a,b}}$$

$$= \frac{dE}{do_b} o_b (1 - o_b) o_a$$

$$\text{net}_b \phi (\text{net}_b) o_b$$

The L are downstream. We must have already computed all the $\delta_{\ell}\mbox{`s}$ ahead of us to compute this.

- $\frac{dE}{dw_{a,b}}$ for all of the $w_{a,b}$'s. Now we know how to compute
- · Let's do gradient descent.

$$w_{a,b} \longleftarrow w_{a,b} - \alpha \frac{dE}{dw_{a,b}}$$

- α is between 0 and 1. Called the "learning rate".
- · Now we know how to propagate errors back through the network.
- Remember how to go forward?

 Repeat going backwards (to calculate the gradients), adjusting the weights, and going forwards (to calculate the errors) over and over in order to learn.

Neural networks

- Advantages:
 - highly expressive nonlinear models
 - have advances in computer vision and speech that other methods have not achieved
 - can capture latent structure within the hidden layers
- Disadvantages
 - can get stuck in local optima, could produce bad solutions
 - black box
 - lots of tuning parameters (e.g., the structure of the network)

