Adaptive Lasso for correlated predictors

Keith Knight
Department of Statistics
University of Toronto

e-mail: keith@utstat.toronto.edu

This research was supported by NSERC of Canada.

OUTLINE

- 1. Introduction
- 2. The Lasso under collinearity
- 3. Projection pursuit with the Lasso
- 4. Example: Diabetes data

1. INTRODUCTION

Assume a linear model for $\{(\boldsymbol{x}_i.Y_i): i=1,\cdots,n\}$:

$$Y_{i} = \beta_{0} + \beta_{1}x_{1i} + \dots + \beta_{p}x_{pi} + \varepsilon_{i}$$
$$= \boldsymbol{x}_{i}^{T}\boldsymbol{\beta} + \varepsilon_{i} \qquad (i = 1, \dots, n)$$

- Assume that the predictors are centred and scaled to have mean 0 and variance 1.
- We can estimate β_0 by \bar{Y} least squares estimator.
- Thus we can assume that $\{Y_i\}$ are centred to have mean 0.
- In many applications, p can be much greater than n.
- In this talk, we will assume implicitly that p < n.

Shrinkage estimation

• Bridge regression: Minimize

$$\sum_{i=1}^{n} (Y_i - \boldsymbol{x}_i^T \boldsymbol{\beta})^2 + \lambda \sum_{j=1}^{p} |\beta_j|^{\gamma}$$

for some $\gamma > 0$.

- Includes the Lasso (Tibshirani, 1996) and ridge regression as special cases with $\gamma = 1$ and 2 respectively.
- For $\gamma \leq 1$, it's possible to obtain exact 0 parameter estimates
- Many other variations of the Lasso: elastic nets (Zou & Hastie, 2005), fused lasso (Tibshirani et al., 2006) among
- spirit to the Lasso. The Dantzig selector of Candès & Tao (2007) is similar in

Stagewise fitting: Given $\widehat{\boldsymbol{\beta}}^{(k)}$, minimize

$$\sum_{i=1}^n (Y_i - oldsymbol{x}_i^T \widehat{oldsymbol{eta}}^{(k)} - oldsymbol{x}_i^T oldsymbol{\phi})^2$$

over ϕ with all but 1 (or a small number) of its elements equal to 0. Then define

$$\widehat{\boldsymbol{\beta}}^{(k+1)} = \widehat{\boldsymbol{\beta}}^{(k)} + \epsilon \widehat{\boldsymbol{\phi}} \quad (0 < \epsilon \le 1)$$

and repeat until "convergence".

- This is a special case of **boosting** (Shapire, 1990).
- Also related to LARS (Efron et al., 2004), which in turn is related to the Lasso

2. THE LASSO UNDER COLLINEARITY

- For given λ , the Lasso estimator $\beta(\lambda)$ can be defined in a number of equivalent ways:
- 1. $\beta(\lambda)$ minimizes

$$\sum_{i=1}^{n} (Y_i - \boldsymbol{x}_i^T \boldsymbol{\beta})^2 \quad \text{subject to } \sum_{j=1}^{p} |\beta_j| \le t(\lambda);$$

2. $\beta(\lambda)$ minimizes

$$\sum_{i=1}^{n} (m{x}_i^Tm{eta})^2$$
 subject to $\left|\sum_{i=1}^{n} (Y_i - m{x}_i^Tm{eta}) x_{ij} \right| \leq \lambda$

for $j = 1, \dots, p$.

- The advantage of the Lasso is that it produces exact 0 estimates while $\beta(\lambda)$ is a smooth function of λ .
- This is very useful when $p \gg n$ to produce "sparse" models.
- However, when the predictors $\{x_i\}$ are highly correlated then $\beta(\lambda)$ may contain too many zeroes
- This is not necessarily undesirable but some important effects may be missed as a result.
- How does one interpret a "sparse" model under high collinearity?

Question: Why does this happen?

Answer: Redundancy in the constraints

$$\left| \sum_{i=1}^{n} (Y_i - \boldsymbol{x}_i^T \boldsymbol{\beta}) x_{ij} \right| \le \lambda \quad \text{for } j = 1, \dots, p$$

due to collinearity; that is, we don't have p independent constraints.

The Dantzig selector minimizes $\sum_{j} |\beta_{j}|$ subject to similar constraints on the correlations, and thus will tend to behave

• For LS estimation $(\lambda = 0)$, we have

$$\sum_{i=1}^{T} (Y_i - \boldsymbol{x}_i^T \widehat{\boldsymbol{\beta}}) \boldsymbol{x}_i^T \boldsymbol{a} = 0$$

for any a.

Similarly, we could try to consider estimates $\widetilde{\boldsymbol{\beta}}$ such that

$$\left|\sum_{i=1}^n (Y_i - oldsymbol{x}_i^T \widetilde{oldsymbol{eta}}) oldsymbol{x}_i^T oldsymbol{a}_\ell
ight| \leq \lambda$$

for some set of vectors (projections) $\{a_{\ell}: \ell \in \mathcal{L}\}$.

If the set \mathcal{L} is finite, we can incorporate predictors $\{\boldsymbol{a}_{\ell}^T\boldsymbol{x}\}$ into the Lasso.

 a_1, \cdots, a_p are the eigenvectors of **Example:** Principal components regression $(|\mathcal{L}| = p)$ where

$$C = \sum_{i=1}^n oldsymbol{x}_i oldsymbol{x}_i^T.$$

However ...

- Projections obtain via PC are based solely on information in the design.
- Moreover, they need not be particular easy to interpret.
- More generally, there's no problem in taking $|\mathcal{L}| \gg p$.

3. PROJECTION PURSUIT WITH THE LASSO

- For collinear predictors, it's often desirable to consider projections of the original predictors.
- Given predictors x_1, \dots, x_p and projections $\{a_\ell : \ell \in \mathcal{L}\}$, we $m{a}_{\ell_1}, \cdots, m{a}_{\ell_p}$ and define new predictors $m{a}_{\ell_1}^T m{x}, \cdots, m{a}_{\ell_p}^T m{x}$. want to identify "interesting" (data-driven) projections
- We can take \mathcal{L} to be very large but the projections we consider should be easily interpretable.
- Coordinate projections (i.e. original predictors).
- Sums and differences of two or more predictors.

Question: How do we do this?

Answer: Two possibilities:

- Use the Lasso on the projections.
- But we need to worry about the choice of λ .
- The "active" projections will depend on λ .
- Look at the Lasso solution as $\lambda \downarrow 0$.
- This identifies a set of p projections.
- These projections can be used in the Lasso.

Question: What happens to the Lasso solution as $\lambda \to 0$?

• Suppose that $\widehat{\beta}(\lambda)$ minimizes

$$\sum_{i=1}^n (Y_i - \boldsymbol{x}_i^T \boldsymbol{\beta})^2 + \lambda \sum_{j=1}^p |\beta_j|$$

and that

$$C = \sum_{i=1}^{T} oldsymbol{x}_i oldsymbol{x}_i^T$$

is singular.

Define

$$\mathcal{D} = \left\{ oldsymbol{\phi} : \sum_{i=1}^n (Y_i - oldsymbol{x}_i^T oldsymbol{\phi})^2 = \min_eta \sum_{i=1}^n (Y_i - oldsymbol{x}_i^T oldsymbol{eta})^2
ight\}.$$

Proposition: For the Lasso estimate $\beta(\lambda)$, we have

$$\lim_{\lambda \downarrow 0} \widehat{oldsymbol{eta}}(\lambda) = \operatorname{argmin} \left\{ \sum_{j=1}^p |\phi_j| : \phi \in \mathcal{D} \right\}.$$

Then $\beta(\lambda)$ minimizes "Proof". Assume (for simplicity) that the minimum RSS is 0.

$$Z_{\lambda}(oldsymbol{eta}) = rac{1}{\lambda} \sum_{i=1}^n (Y_i - oldsymbol{x}_i^T oldsymbol{eta})^2 + \sum_{j=1}^p |eta_j|.$$

for $\beta \in \mathcal{D}$. The conclusion follows using convexity of Z_{λ} As $\lambda \downarrow 0$, the first term of Z_{λ} blows up for $\beta \notin \mathcal{D}$ and is exactly 0

Corollary: The Dantzig selector estimator has the same limit as

- In our problem, define $t_{i\ell}$ to be a scaled version of $\boldsymbol{a}_{\ell}^T \boldsymbol{x}_i$.
- The model now becomes

$$Y_i = \sum_{\ell \in \mathcal{L}} \phi_{\ell} t_{i\ell} + \varepsilon_i$$

= $t_i^T \phi + \varepsilon_i$ $(i = 1, \dots, n)$

• We estimate ϕ by minimizing

$$\sum_{\ell \in \mathcal{L}} |\phi_\ell| \quad ext{subject to} \quad \sum_{i=1}^n (Y_i - oldsymbol{t}_i^T oldsymbol{\phi}) oldsymbol{t}_i = oldsymbol{0}.$$

- This can be solved using linear programming methods.
- Software for the Lasso tends to be unstable as $\lambda \downarrow 0$.

Asymptotics:

- Assume $p < r = |\mathcal{L}|$ are fixed and $n \to \infty$.
- Define matrices

$$C = \lim_{n o \infty} \frac{1}{n} \sum_{i=1}^{n} \boldsymbol{x}_{i} \boldsymbol{x}_{i}^{T}$$
 $D = \lim_{n o \infty} \frac{1}{n} \sum_{i=1}^{n} t_{i} t_{i}^{T}$

where C is non-singular and D singular with rank p.

- Then $\widehat{\phi}_n \stackrel{p}{\longrightarrow} \text{some } \phi_0$.
- We also have $\sqrt{n}(\widehat{\phi}_n \phi_0) \stackrel{d}{\longrightarrow} V$ where the distribution of Vof D. is concentrated on the orthogonal complement of the null space

4. EXAMPLE

Diabetes data (Efron et al., 2004)

- Response: measure of disease progression.
- Predictors: age, sex, BMI, blood pressure, and 6 blood serum measurements (TC, LDL, HDL, TCH, LTG, GLU).
- Some predictors are quite highly correlated.
- Analysis indicates that the most important variables are LTG, BMI, BP, TC, and sex.
- Look at coordinate-wise projections as well as pairwise sums and differences (100 projections in total).

Lasso plot for original predictors.

Results: Estimated projections

0.55	BP - AGE
3.48	HDL + TCH
4.18	TCH - SEX
ა. აა	BP + LTG
5.36	BMI + GLU
6.64	BMI + BP
9.61	BP - SEX
10.32	LDL - TC
14.79	LTG-TC
29.86	BMI + LTG
Estimates	Projections

Lasso plot for the 10 identified projections.

coefficients

Lasso trajectories for original predictors using the projections.