

JINJA JOINT EXAMINATIONS BOARD MOCK EXAMINATIONS 2022 UACE CHEMISTRY P525/3, 2022

MARKING GUIDE

1. Table of results

Volume of pipette used = 10.0 / 10.00 / 10

Final burette reading (cm ³)	12.00	21.90	31.80
Initial burette reading (cm ³)	2.00	12.00	21.00
Volume of BA2 used (cm ³)	10.00	9.90	9.90

Titre Range ± 3.00

Titre values used to calculate average volume of FA2 used; 9.90 and 9.90 agree ± 0.1

∴Average volume of FA2 used
$$\frac{9.90 + 9.90}{2} = 9.90 \pm 0.1$$

 ± 0.2
 ± 0.3
 ± 0.4
 ± 0.5

Questions

Moles of
$$S_2 O_3^{2-}$$
 reacted = $\frac{9.90 \times 0.1}{1000}$ = 9.90 × 10⁻⁴
Moles of I_2 in $10 \text{cm}^3 = \frac{1}{2} \times 9.90 \times 10^{-4} = 4.95 \times 10^{-4}$
concentration of I_2 per litre = 4.95 × $10^{-4} \times \frac{1000}{10}$
= 0.0495 M

B: RESULTS

Mass of weighing container + T = 2.90gMass of weighing container alone = 1.30gMass of T alone = 1.60gVolume of pipette used = 10.00 / 10.0 / 10

Table II

Final burette reading (cm ³)	10.80	20.20	29.60
Initial burette reading (cm ³)	1.00	10.80	20.20
Volume of BA2 used (cm ³)	9.80	9.40	9.40

Titre Range ± 3.00

Titre values used to calculate average volume of FA2 used; 9.40 and 9.40 agree ± 0.1

∴Average volume of FA2 used
$$\frac{9.40 + 9.40}{2} = 9.40$$
 ± 0.1 ± 0.2 ± 0.3 ± 0.4 ± 0.5

Questions

(a) (i)

Moles of
$$S_2 O_3^{2-}$$
 reacted with excess $I_2 = \frac{9.40 \times 0.1}{1000}$
$$= 9.4 \times 10^{-4}$$

Moles of I_2 reacted = $\frac{1}{2} \times 9.4 \times 10^{-4}$

$$= 4.7 \times 10^{-4}$$

(ii) Moles of
$$I_2$$
 in 20cm^3 of $\text{FA1} = \frac{20 \times 0.0495}{1000}$
= 9.9×10^{-4}
Moles of I_2 reacted with $X = (9.9 \times 10^{-4}) - (4.7 \times 10^{-4})$
= 5.2×10^{-4}

(b)
Moles of T in
$$10 \text{cm}^3$$
 of $FA3 = 5.2 \times 10^{-4}$
 250cm^3 of $FA3$ contain = $5.2 \times 10^{-4} \times \frac{250}{10}$
= 0.013 moles of T

0.013 moles of T weight 1.6g

1 mole of T weigh
$$\frac{1.6 \times 1}{0.013}$$

= 123

∴ Molar mass of T is 123gmol⁻¹

2.

OBSER	VATIONS	DEDUCTIONS
(a) - -	White solid Colourless condensate turns white anhydrous CuSO ₄ blue Colourless gas turns blue litmus red and limewater milky Solid yellow when hot and white on cooling	$CO_{2(g)} :: CO_3^{2-} / HCO_3^{-} / C_2O_4^{2-}$ $ZnO :: Zn^{2+}$
(b) - I	Effervescence Purple vapour / gas / fumes turns blue litmus red	$I_{2(g)} :: I^-$
(c) -	Effervescence of colourless gas turns blue litmus red and limewater milky Colourless solution `	$CO_{2(g)} : CO_3^{2-} \text{ confirmed}$ (reject HCO_3^-)
(d) - - - (e) - (i)	White ppt soluble in excess White residue Colourless filtrate White ppt soluble in acid White ppt soluble in excess	Probably Ba $^{2+}$ or Mg^{2+} or Al^{3+} or Pb^{2+} or Sn^{2+} or Zn^{2+} present Probably Zn^{2+} present Probably Zn^{2+} present
(ii)	giving a colourless solution White ppt soluble in excess giving a colourless solution. Test: Add half spatula endful of solid NH ₄ Cl + Na ₂ HPO ₄ solution + excess	Probably Zn ²⁺ present Zn ²⁺ present
	ammonia solution. Observations: White ppt soluble in excess ammonia	

OBSERVATIONS	DEDUCTIONS
(f) - Colourless solution	Probably Mg^{2+} or Al^{3+} or Sn^{2+} or Sn^{4+}
Colouress solution	Present (reject Ba^{2+} or Pb^{2+})
(i) White ppt insoluble in excess	Probably Mg ²⁺ present (reject Ba ²⁺)
(ii) white ppt insoluble in excess	probably Mg^{2+} present
(iii) Test: Add half spatula end ful of solid NH ₄ Cl + Na ₂ HPO ₄ solution + excess ammonia solution. Observations:	Mg^{2+} present
White ppt insoluble in excess ammonia	
(g) - Partly soluble - White residue	Probably non transition metal ions present in both filtrate and residue
- Colourless filtrate	
(i) Pale yellow ppt insoluble in Ammonia	Probably <i>I</i> ⁻ or <i>Br</i> ⁻ present
(ii) Colourless solution turns	$I_{(aq)}^-$ Oxidised to $I_{2(aq)}$
Brown	I^- present
Brown solution turns	
colourless	
on addition of sodium	
thiosulphate	
(iii) Yellow ppt	<i>I</i> ⁻ confirmed

(h) Cations in $X : Zn^{2+}$ e(iii) and Mg^{2+} f(iii) Anions in $X : CO_3^{2-}$ (c) and I^-g (iii)

3.

OBSERVATION	DEDUCTION	
(a)	DEDUCTION	
- Colourless liquid burns with a	Aliphatic saturated compound with a	
blue non – sooty flame	low carbon content	
(b)	low caroon content	
	Polar compound of lavy	
Miscible with water forming a colourless solution that has no	- Polar compound of low molecular mass	
effect on both blue and red litmus	- Neutral compound.	
	- Probably carbonyl, alcohol,	
	ester etc	
(i) No yellow / orange ppt	- Carbonyl cpd absent	
(ii) No purple colouration or	- Phenol absent	
No observable change		
(c) Purple acidified KMnO ₄ turns	Primary or secondary alcohol	
colourless	(Reject aldehyde)	
(i) Yellow / orange ppt	Primary or secondary alcohol oxidized	
	to carbonyl cpd	
(ii) Orange acidified K ₂ Cr ₂ O ₇ turns	Aldehyde formed from a primary	
green	alcohol.	
(iii) Reddish Brown ppt	Aldehyde formed from a primary	
	alcohol	
(d) No cloudy solution	Primary alcohol	
Or		
No observation change at room		
temperature		
(e) No yellow ppt	Primary alcohol of the form CH ₃ CHR o	
(c) 1.0 Jenow ppr	Ethanol absent OH	
	Luianoi ausciii Off	

(f) Aliphatic primary alcohol without CH₃CHR structure OH

E N D