IEL Semestrální projekt 2020/2021

Vypracoval: Maxim Plička

Login: xplick04

Příklad 1: Stanovte napětí U_{R6} a proud I_{R6} . Použijte metodu postupného zjednodušování obvodu.

sk.	U1 [V]	U2 [V]	R1 [Ω]	R2 [Ω]	R3 [Ω]	R4 [Ω]	R5 [Ω]	R6 [Ω]	R7 [Ω]	R8 [Ω]
Α	80	120	350	650	410	130	360	750	310	190

V prvním kroku si zjednodušíme zapojení dvou sériově zapojených napěťových zdrojů.

$$U_{12} = U_1 + U_2$$

$$200V = 80V + 120V$$

V druhém kroku si zjednodušíme dva paralelně zapojené rezistory R_3 a R_4 v jeden rezistor R_{34} , pomocí vzorce pro paralelní zapojení dvou rezistorů.

$$R_{34} = \frac{R_3 * R_4}{R_3 + R_4}$$

$$98,7039\Omega = \frac{410\Omega * 130\Omega}{410\Omega + 130\Omega}$$

Ve třetím kroku si zjednodušíme sériové zapojení dvou rezistorů R_2 a R_{34} v jeden rezistor R_{234} .

$$R_{234} = R_2 + R_{34}$$

748, 7039 $\Omega = 650\Omega + 98, 7039\Omega$

Ve čtvrtém kroku si zvolím 3 body, A, B a C, které v dalším kroku využiju při zjednodušování

pomocí hvězdy.

V dalším kroku si vytvořím trojúhelník, který upravím na hvězdu a následně ho dosadím zpět do původního obvodu.

Následně si dopočítám R_A , $R_B\,$ a R_C , pomocí vzorců pro hvězdu.

$$R_{A} = \frac{R_{1}*R_{234}}{R_{1}+R_{234}+R_{5}} \qquad 179,6432\Omega = \frac{350\Omega*748,7039\Omega}{350\Omega+748,7039\Omega+360\Omega}$$

$$R_{B} = \frac{R_{1}*R_{5}}{R_{1}+R_{234}+R_{5}} \qquad 86,378\Omega = \frac{350\Omega*748,7039\Omega+360\Omega}{350\Omega+748,7039\Omega+360\Omega}$$

$$R_{C} = \frac{R_{234}*R_{5}}{R_{1}+R_{234}+R_{5}} \qquad 184,7759\Omega = \frac{748,7039\Omega*360\Omega}{350\Omega+748,7039\Omega+360\Omega}$$

Potom dosadím zpět do původního obvodu.

V pátém kroku si spojím sériově zapojené rezistory R_B s R_7 a $R_{\mathcal{C}}$ s R_6 .

$$R_{B7} = R_B + R_7$$
 396, 378 $\Omega = 86$, 378 $\Omega + 310\Omega$

$$R_{C6} = R_C + R_6$$
 934,7759 $\Omega = 184,7759\Omega + 750\Omega$

V šestém kroku si spojím paralelně zapojené rezistory R_{B7} a R_{C6} .

$$R_{C6B7} = \frac{R_{C6} * R_{B7}}{R_{C6} + R_{B7}}$$

$$\mathbf{278,3484}\Omega = \frac{934,7759\Omega * 396,378\Omega}{934,7759\Omega + 396,378\Omega}$$

Pak si spojím sériově zapojené rezistory a dopočítám celkový odpor R_{ekv} a proud I_X . Proud si vyjádřím pomocí Ohmova zákona.

$$R_{ekv} = R_{C6B7} + R_A + R_8$$
 647,9916 $\Omega = 278,3484\Omega + 179,6432\Omega + 190\Omega$

$$I_X = \frac{U_{12}}{R_{ekv}}$$
 0,3086 $A = \frac{200V}{647,9916\Omega}$

V druhé části úkolu se musím vrátit zpět a dopočítat proud a napětí na rezistoru R_6 . Během toho si musím spočítat napětí na jednotlivých rezistorech. Pří rozložení o krok zpět proud na rezistorech zůstává stále stejný, protože jsou zapojené v sérii, takže si mohu dopočítat napětí na jednotlivých rezistorech. Součet napětí na rezistorech se musí rovnat celkovému napětí (2.K.Z.).

$$0 = U_{RA} + U_{R8} + U_{RC6B7} - U_{12}$$
 $0 = 55,4378V + 58,634V + 85,9282V - 200V$ $U_{RA} = R_A * I_X$ $55,4378V = 179,6432\Omega * 0,3086A$ $U_{R8} = R_8 * I_X$ $58,634V = 190\Omega * 0,3086A$ $U_{RC6B7} = R_{RC6B7} * I_X$ $85,9282V = 278,3484\Omega * 0,3086A$

Potom si rozdělím rezistor R_{C6B7} na dva rezistory R_{C6} a R_{B7} . Jelikož jsou tyto dva rezistory paralelně zapojené, tak vím, že jejich napětí se bude rovnat původnímu napětí na rezistoru a tak stačí dopočítat I_{RC6} na rezistoru R_{C6} .

$$U_{RC6B7} = U_{C6} = U_{B7}$$
 85,9282 $V = U_{C6} = U_{B7}$

$$I_{RC6} = \frac{U_{C6}}{R_{C6}}$$
 0,0919 $A = \frac{85,9282V}{934,7759\Omega}$

Následně mi stačí dopočítat napětí na rezistoru R_6 . Protože vím, že proud v sériovém zapojení se bude rovnat proudu na původním rezistoru R_{C6} .

$$I_{C6} = I_{RC} = I_{R6}$$
 0,0919 $A = I_{RC} = I_{R6}$ $U_{R6} = R_6 * I_{R6}$ 68,925 $V = 750\Omega * 0,0919A$

Sk.	R_{ekv}	I_{R6}	U_{R6}
Α	$647,9916\Omega$	0,0919 <i>A</i>	68,925 <i>V</i>

Příklad 2: Stanovte napětí U_{R3} a proud I_{R3} . Použijte metodu Théveninovy věty.

sk.	U [V]	R1 [V]	R2 [Ω]	R3 [Ω]	R4 [Ω]	R5 [Ω]	R6 [Ω]
D	150	200	200	660	200	550	400

Prvně odpojím rezistor ${\it R}_{\it 3}$, nahradím ho svorkami A, B. Následně zkratuju zdroj U.

Potom si spojím sériově zapojené rezistory R_4 a R_5 .

$$R_{45} = R_4 + R_5$$
 $750\Omega = 200\Omega + 550\Omega$

Pak si spojím paralelně zapojené rezistory R_2 s R_6 a R_1 s R_{45} .

$$R_{26} = \frac{R_2 * R_6}{R_2 + R_6}$$

$$133,33\Omega = \frac{200\Omega * 550\Omega}{200\Omega + 550\Omega}$$

$$R_{145} = \frac{R_1 * R_{45}}{R_1 + R_{45}}$$

$$157,8947\Omega = \frac{200\Omega * 750\Omega}{200\Omega + 750\Omega}$$

A na konec si ještě musím spojit paralelně zapojené rezistory R_{26} a R_{145} . Vzniklý rezistor se bude rovnat hledanému odporu mezi svorkami R_i .

$$R_{14526} = R_{145} + R_{26}$$
 291, 228 Ω = 157, 8947 Ω + 133, 33 Ω $R_i = R_{14526}$ $R_i = 291, 228\Omega$

V druhé části si budu muset dopočítat U_i . Proto celý obvod opět překreslím a R3 nahradím napětím Ui. Následně si ještě dopočítám proudy I_1 a I_2 , s jejichž pomocí si sestavím rovnice pro napětí v obou smyčkách.

$$R_{145} = R_1 + R_{45}$$

$$950\Omega = 200\Omega + 750\Omega$$

$$R_{26}=R_2+R_6$$

$$\mathbf{600}\Omega = \mathbf{200}\Omega + \mathbf{400}\Omega$$

$$I_1 = \frac{U}{R_{145}}$$

$$I_1 = \frac{U}{R_{145}}$$
 0, 1579 $A = \frac{150V}{950\Omega}$
 $I_2 = \frac{U}{R_{26}}$ 0, 25 $A = \frac{150V}{600\Omega}$

$$I_2 = \frac{U}{R_{26}}$$

$$\mathbf{0}, \mathbf{25}A = \frac{\mathbf{150}V}{\mathbf{600}\Omega}$$

$$U_{R1} + U_i - U_{R2} = 0$$
 $R_1 * I_1 + U_i - R_2 * I_2 = 0$
 $R_2 * I_2 - R_1 * I_1 = U_i$
 $200\Omega * 0,25A - 200\Omega * 0,1579A = U_i$
 $U_i = 18,42V$

$$-U_{R45} + U_i + U_{R6} = 0$$

$$-R_{45} * I_1 + U_i + R_6 * I_2 = 0$$

$$R_{45} * I_1 - R_6 * I_2 = U_i$$

$$750\Omega * 0,1579A - 400 * 0,25A = U_i$$

$$U_i = 18,42V$$

Potom si mohu dopočítat proud, protékající rezistorem R_3 a napětí na rezistoru R_3 .

$$I_{R3} = \frac{U_i}{R_i + R_3}$$
 0,01936 $A = \frac{18,42V}{291,228\Omega + 660\Omega}$
 $U_{R3} = R_3 * I_{R3}$ 12,776 $V = 660\Omega * 0,01936A$

Sk.	U_{R3}	I_{R3}
D	12,776V	0,01936 <i>A</i>

Příklad 3: Stanovte napětí UR2 a proud IR2. Použijte metodu uzlových napětí (UA, UB, UC).

sk.	U [V]	I1 [A]	12 [A]	R1 [Ω]	R2 [Ω]	R3 [Ω]	R4 [Ω]	R5 [Ω]
В	150	0,7	0,8	49	45	61	34	34

Jako první krok si zvolím uzly A, B a C, ve kterých budu následně počítat proudy a zvolím si směry proudů ve smyčkách. Sestavení rovnic pro jednotlivé uzly udělám pomocí 1.K.Z.

$$A: I_{R1} - I_{R3} - I_{R2} = 0$$

$$B: I_1 + I_{R3} - I_{R5} = 0$$

$$C: I_{R5} + I_2 - I_{R4} - I_1 = 0$$

Následně si už jen vyjádřím jednotlivé proudy, které nakonec dosadím do rovnic pro jednotlivé uzly.

$$I_{R1} = \frac{U - U_a}{R_1}$$

$$I_{R2} = \frac{U_a}{R_2}$$

$$I_{R3} = \frac{U_a - U_b}{R_3}$$

$$I_{R4} = \frac{U_c}{R_4}$$

$$I_{R5} = \frac{U_b - U_c}{R_5}$$

$$A: \frac{U - U_a}{R_1} - \frac{U_a - U_b}{R_3} - \frac{U_a}{R_2} = 0$$

$$B: I_1 + \frac{U_a - U_b}{R_3} - \frac{U_b - U_c}{R_5} = 0$$

$$C: \frac{U_b - U_c}{R_5} + I_2 - \frac{U_c}{R_4} - I_1 = 0$$

Následně si čísla přepíšu do matice a dopočítám dané proudy ve smyčkách.

$$\frac{-1}{R_2} + \frac{-1}{R_1} + \frac{-1}{R_3} \qquad \frac{1}{R_3} \qquad 0 \qquad \frac{-U}{R_1} \\
\frac{1}{R_3} \qquad \frac{-1}{R_3} + \frac{-1}{R_5} \qquad \frac{1}{R_5} \qquad \frac{-I_1}{1} \\
0 \qquad \frac{1}{R_5} \qquad \frac{-1}{R_5} + \frac{-1}{R_4} \qquad \frac{I_1 - I_2}{1}$$

$$\frac{-1}{45} + \frac{-1}{49} + \frac{-1}{61} \qquad \frac{1}{61} \qquad 0 \qquad \frac{-150}{49} \\
\frac{1}{61} \qquad \frac{-1}{61} + \frac{-1}{34} \qquad \frac{1}{34} \qquad \frac{-0,7}{1} \\
0 \qquad \frac{1}{34} \qquad \frac{-1}{34} + \frac{-1}{34} \qquad \frac{0,7 - 0,8}{1}$$

$$U_A=68,63$$
V

$$U_B=60,29$$
V

$$U_{\it C}=31,84$$
V

Následně si dopočítám proud a napětí na ${\cal R}_2$ s pomocí Ohmova zákonu.

$$U_A = U_{R2} \quad U_{R2} = 68,63V$$

$$I_{R2} = \frac{U_{R2}}{R_2}$$
 1,5251 $A = \frac{68,63V}{45}$

Sk.	U_{R2}	I_{R2}
В	68,63 <i>V</i>	1,5251 <i>A</i>

Příklad 4: Pro napájecí napětí platí: $u1 = U1 \cdot \sin(2\pi f t)$, $u2 = U2 \cdot \sin(2\pi f t)$. Ve vztahu pro napětí $uL2 = UL2 \cdot \sin(2\pi f t + \varphi L2)$ určete |UL2| a $\varphi L2$. Použijte metodu smyčkových proudů. Pozn: Pomocné směry šipek napájecích zdrojů platí pro speciální časový okamžik ($t = \pi 2\omega$).

sk.	U1 [V]	U2 [V]	R1 [Ω]	R2 [Ω]	L1 [mH]	L2 [mH]	C1 [μF]	C2 [μF]	f [Hz]
Α	35	55	12	14	120	100	200	105	70

Nejprve si spočítám ω a následně převedu hodnoty cívek a kondenzátorů do základních jednotek.

$$\omega = 2 * \pi * f$$
 439,8829rad = $2 * \pi * 70$

$$L_1 = 120 \text{mH} = \frac{120}{1000} = 0.12 \text{H}$$

$$L_2 = 100 \text{mH} = \frac{100}{1000} = 0.10 \text{H}$$

$$C_1 = 200 \mu F = \frac{200}{1000000} = 0.0002 F$$

$$C_2 = 105 \mu F = \frac{105}{1000000} = 0.000105 F$$

Potom si spočítám jednotlivé reaktance kondenzátorů a cívek.

$$X_{L2} = \omega * L_2$$
 43,9882 $\Omega = 439,8829 * 0,10$

Následně si vypočítám impedance kondenzátorů a cívek.

$$Z_{C1} = -j * X_{C1}$$
 $-11,3666j = -j * 11,3666$
 $Z_{C2} = -j * X_{C2}$ $-21,6507j = -j * 21,6507$
 $Z_{L1} = j * X_{L1}$ $52,7859j = j * 52,7859$
 $Z_{L2} = j * X_{L2}$ $43,9882j = j * 43,9882$

Pak si zvolím smyčky A, B a C. V těchto smyčkách poteče proud I_A , I_B a I_C . Sestavím rovnice těchto smyček a dopočítám si jejich proudy.

A:
$$R_1 * I_A + U_1 + Z_{L2}(I_A + I_C) + Z_{C1} * (I_A - I_B) = 0$$

B: $R_2 * (I_B + I_C) + Z_{L1}(I_B) + Z_{C1} * (I_B - I_A) = 0$
C: $R_2 * (I_B + I_C) + Z_{C2}(I_C) - U_2 + Z_{L2} * (I_C + I_A) = 0$

Následně si rovnice dosadím do matice a dopočítám proudy.

$$I_C = 1,588 + 1,283i$$

 $I_B = -0,3113 + 0,8419i$

Nyní si mohu dopočítat napětí na $\it U_{L2}$ a to přes dopočítáni velikosti komplexního čísla.

$$U_{L2} = 43,9882i * (-1,482-1,495i +1,588+1,283i)$$

$$U_{L2} = 9,3254 + 4,6627i$$

$$|U_{L2}| = \sqrt{9,3254^2 + 4,6627^2}$$

$$|U_{L2}| = 10,4261 \mathrm{V}$$

A následně si dopočítám fázový posun φ.

$$\phi_{UL2} = \tan^{-1}\left(\frac{4,6627}{9.3254}\right) * \left(\frac{\pi}{180}\right)$$

$$\phi_{UL2} = 0,4643$$
rad

Sk.	$ U_{L2} $	Φ_{UL2}
Α	10,4261V	0,4643rad

Finální výsledky:

Příklad:	Skupina:	Dosažené hodnoty:
1	А	$R_{ekv} = 647,9916\Omega, I_{R6} = 0,0919A,$
		$U_{R6} = 68,925V$
2	D	$U_{R3} = 12,776V, I_{R3} = 0,01936A$
3	В	$U_{R2} = 68,63V, I_{R2} = 1,5251A$
4	Α	$ U_{L2} = 10,4261V, \phi_{UL2} = 0,4643$ rad