Dense subsets of $C_{\mathbb{R}}(X)$. Let X be a compact space, and L a subspace and sublattice of C(X). If L strongly separates points in X, then L is dense in C(X) (for the sup norm).

Remark. Strong separation implies X is necessarily Hausdorff.

Proof gist. Given $f \in C(X)$, we construct a $g \in L$ such that $||f - g|| < \varepsilon$. To do this, we use strong separation to generate families of functions in L, then piece these functions together using compactness and the \land , \lor operators.

Real Stone-Weierstrass. Same statement as before, but instead of L, we consider subalgebra A.

Proof gist. We prove \bar{A} is a subspace and sublattice, then invoke our previous theorem.

Key tricks. There are two key tricks to show that \bar{A} is sublattice. The first is to note

$$f + g = \frac{f + g + |f - g|}{2}, \quad |f| = \sqrt{f^2}.$$

The second is to observe that \sqrt{t} can be uniformly approximated on a compact interval by a polynomial p(t). This uses some power series knowledge.

Extension. We can extend Stone-Weierstrass to the complex case if we force A to be closed under complex conjugation.