Group Assignment 4 - Creative Gaming

Section 51 Gaurav Agrawal, Ajitesh Abhishek, Tarun Joshi

```
checking for file 'C:\Users\a1aji\AppData\Local\Temp\RtmpQhl1bv\remotes11106f27160e\fzettelmeyer-mkt
v checking for file 'C:\Users\a1aji\AppData\Local\Temp\RtmpQhl1bv\remotes11106f27160e\fzettelmeyer-mkt
- preparing 'mktg482':
   checking DESCRIPTION meta-information ...
   checking DESCRIPTION meta-information ...
v checking DESCRIPTION meta-information
   checking for LF line-endings in source and make files and shell scripts
- checking for empty or unneeded directories
- building 'mktg482_0.0.3.0.tar.gz'
Read in the data:
# use load("filename.Rdata") for .Rdata files
data = load("smobile_churn.Rdata")
smobile <- smobile %>% mutate(churn = ifelse(churn == "X1", 1, 0))
##Question 1: Step 1
```

data.train <- smobile %>%
 filter(training==1)

```
data.test <- smobile %>%
filter(training==0)
```

Question 1


```
Call:
glm(formula = fm, family = binomial(logit), data = data.train)
Deviance Residuals:
   Min
             1Q
                 Median
                             3Q
                                     Max
       -0.3140 -0.2634 -0.2158
-0.9621
                                  3.1756
Coefficients: (1 not defined because of singularities)
            Estimate Std. Error z value Pr(>|z|)
(Intercept) -3.0790100 0.3927087 -7.840 4.49e-15 ***
                                 0.871 0.383512
revenue
            0.0023081 0.0026485
mou
           overage
           0.0012991 0.0008707
                                 1.492 0.135689
                                 0.124 0.901454
           0.0011300 0.0091256
roam
changem
           -0.0001456
                      0.0003150 -0.462 0.644007
changer
           -0.0011700 0.0020578 -0.569 0.569664
dropvce
            0.0003786 0.0088781
                                 0.043 0.965982
blckvce
            0.0157017
                      0.0039198
                                 4.006 6.18e-05 ***
           0.0013042
                      0.0021420
                                 0.609 0.542628
unansvce
custcare
           -0.0059974
                      0.0168837 -0.355 0.722428
threeway
           -0.0233032
                      0.0328647
                                -0.709 0.478284
           -0.0181096
                      0.0107572 -1.683 0.092281
months
uniqsubs
            0.1638001
                      0.0636055
                                 2.575 0.010017 *
phones
            0.0311120 0.0708582
                                 0.439 0.660607
eqpdays
            0.0013142 0.0003807
                                 3.452 0.000557 ***
age
           -0.0162599 0.0068316 -2.380 0.017308 *
children1
           -0.5547280 0.2264624 -2.450 0.014304 *
creditaa1
refurb1
           0.0265338 0.1917298
                                 0.138 0.889931
occprof1
            0.2074751 0.1891593
                                 1.097 0.272717
           -0.0641170 0.5219908 -0.123 0.902240
occcler1
occcrft1
           0.5967373 0.3194304
                                 1.868 0.061744 .
            0.2242857
                      0.7366422
                                 0.304 0.760770
occstud1
occhmkr1
            0.8009078
                      0.7505756
                                 1.067 0.285946
            0.1974465
                      0.6198244
                                 0.319 0.750066
occret1
occself1
            0.3147290
                      0.4757480
                                 0.662 0.508262
           -0.1672166
                      0.3064518 -0.546 0.585304
travel1
retcalls
            0.4969203
                      0.2733701
                                 1.818 0.069101 .
           refer
incmiss1
           0.1611407
                      0.3196411
                                 0.504 0.614170
income
           -0.0122394
                      0.0354409
                                -0.345 0.729833
mcycle1
           -0.1849379
                      0.5972747
                                -0.310 0.756838
agemiss1
           -0.4348835
                      0.3683478
                               -1.181 0.237749
training
                  NA
                            NA
                                    NA
                                            NA
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
```

Null deviance: 2325.7 on 6999 degrees of freedom

Residual deviance: 2245.4 on 6966 degrees of freedom

AIC: 2313.4

Number of Fisher Scoring iterations: 6

```
fm <- formula(churn ~. -customer)

random.churn <- ranger(fm, data=data.train, probability = TRUE)

predictions_rf.churn <- predict(random.churn, data = data.test, type="response")[[1]][,2]

data.test <- data.test %>%
    mutate(churn_score_rf = predictions_rf.churn)

gainsplot(data.test$churn_score_rf,label.var = data.test$churn)
```



```
# A tibble: 1 x 2
model auc
<chr> <dbl>
1 data.test$churn_score_rf 0.582
```

Cofficient	Value	Std Error	isDummy	Importance
creditaa1	-0.55473	0.226462	1	0.554728
uniqsubs	0.1638	0.063606	0	0.2910111
age	-0.01626	0.006832	0	0.0299231
blckvce	0.015702	0.00392	0	0.0235413
eqpdays	0.001314	0.000381	0	0.0020756
mou	-0.00052	0.000228	0	0.0009787

Figure 1: Variable Importance

Question 2

Question 3

```
plot_model(logit.churn, type="eff", terms = c("creditaa"))
```

Predicted values of churn

Customers with high credit rating have lower churn. Hence, the firm should take extra care of cutsomers who don't high rating - offer discounts, monitor satisfaction, priority queue for customer complaint handling etc.

```
plot_model(logit.churn, type="eff", terms = c("uniqsubs"))
```


plot_model(logit.churn, type="eff", terms = c("age"))

Launch "For Senior Citizen" plan offering expediated customer service and enrol people above age 50 years.

```
plot_model(logit.churn, type="eff", terms = c("blckvce"))
```


Consumers usually block the spam calls. Hence, work with developer on spam detection model. Lower spam could reduce the churn for the firm.

plot_model(logit.churn, type="eff", terms = c("eqpdays"))

Tieup with equipment provider to help customer switch to new devices. Offer attractive plan to users with new devices.

```
plot_model(logit.churn, type="eff", terms = c("mou"))
```


Build tariff plan offering high minutes to each tier. Also, reduce the call rates or added incentives such as extra 4G data to customers with high monthly minutes of use.

Question 4

```
rollout <- rollout %>%
  mutate(training = 1)

predictions_logit.churn.rollout <- predict(logit.churn, newdata = rollout, type = "response")

rollout <- rollout %>%
  mutate(churn_score_logit = predictions_logit.churn.rollout)

rollout_new <- rollout %>%
  mutate(age=age+10)

churn_age_pred <- predict(logit.churn, newdata = rollout_new, type = "response")

rollout_new <- rollout_new %>%
  mutate(churn_age_pred = churn_age_pred)

orig_churn <- rollout_new %>%
```

```
summarise(mean(churn_score_logit)*100)
new_churn_age <- rollout_new %>%
  summarise(mean(churn_age_pred)*100)
change_per_age <- new_churn_age - orig_churn</pre>
print(orig_churn)
# A tibble: 1 x 1
  `mean(churn_score_logit) * 100`
                             <dbl>
1
                              3.93
print(new_churn_age)
# A tibble: 1 x 1
  `mean(churn_age_pred) * 100`
                          <dbl>
                           3.37
print(change_per_age)
 mean(churn_age_pred) * 100
1
                  -0.5643104
rollout_new <- rollout %>%
    mutate(creditaa = "1")
churn_credit_pred <- predict(logit.churn, newdata = rollout_new, type = "response")</pre>
rollout_new <- rollout_new %>%
  mutate(churn_credit_pred = churn_credit_pred)
orig_churn <- rollout_new %>%
  summarise(mean(churn_score_logit)*100)
new_churn_credit <- rollout_new %>%
  summarise(mean(churn_credit_pred)*100)
change_per_credit <- new_churn_credit - orig_churn</pre>
print(orig_churn)
# A tibble: 1 x 1
  `mean(churn_score_logit) * 100`
                             <dbl>
                              3.93
1
```

```
print(new_churn_credit)
# A tibble: 1 x 1
  `mean(churn_credit_pred) * 100`
                             <dbl>
                             2.45
1
print(change_per_credit)
 mean(churn_credit_pred) * 100
                       -1.48235
rollout_new <- rollout %>%
    mutate(blckvce = blckvce*0.5)
churn_blckvce_pred <- predict(logit.churn, newdata = rollout_new, type = "response")</pre>
rollout_new <- rollout_new %>%
  mutate(churn_blckvce_pred = churn_blckvce_pred)
orig_churn <- rollout_new %>%
  summarise(mean(churn_score_logit)*100)
new_churn_blckvce <- rollout_new %>%
  summarise(mean(churn_blckvce_pred)*100)
change_per_blckvce <- new_churn_blckvce - orig_churn</pre>
print(orig_churn)
# A tibble: 1 x 1
  `mean(churn_score_logit) * 100`
                             <dbl>
                              3.93
print(new_churn_blckvce)
# A tibble: 1 x 1
  `mean(churn_blckvce_pred) * 100`
                              <dbl>
1
                               3.79
print(change_per_blckvce)
 mean(churn_blckvce_pred) * 100
1
                       -0.146341
```

```
rollout_new <- rollout %>%
    mutate(uniqsubs = uniqsubs-1)
churn_uniqsubs_pred <- predict(logit.churn, newdata = rollout_new, type = "response")</pre>
rollout_new <- rollout_new %>%
  mutate(churn_uniqsubs_pred = churn_uniqsubs_pred)
orig_churn <- rollout_new %>%
  summarise(mean(churn_score_logit)*100)
new_churn_uniqsubs <- rollout_new %>%
  summarise(mean(churn_uniqsubs_pred)*100)
change_per_uniqsubs <- new_churn_uniqsubs - orig_churn</pre>
print(orig_churn)
# A tibble: 1 x 1
  `mean(churn_score_logit) * 100`
                             <dbl>
                              3.93
1
print(new_churn_uniqsubs)
# A tibble: 1 x 1
  `mean(churn_uniqsubs_pred) * 100`
                               <dbl>
1
                                3.37
print(change_per_uniqsubs)
  mean(churn_uniqsubs_pred) * 100
1
                       -0.5681776
rollout_new <- rollout %>%
    mutate(eqpdays = eqpdays*0.5)
churn_eqpdays_pred <- predict(logit.churn, newdata = rollout_new, type = "response")</pre>
rollout_new <- rollout_new %>%
  mutate(churn_eqpdays_pred = churn_eqpdays_pred)
orig_churn <- rollout_new %>%
  summarise(mean(churn_score_logit)*100)
new_churn_eqpdays <- rollout_new %>%
  summarise(mean(churn_eqpdays_pred)*100)
```

```
change_per_eqpdays <- new_churn_eqpdays - orig_churn</pre>
print(orig_churn)
# A tibble: 1 x 1
  `mean(churn_score_logit) * 100`
                              3.93
1
print(new_churn_eqpdays)
# A tibble: 1 x 1
  `mean(churn_eqpdays_pred) * 100`
                              <dbl>
1
                               3.05
print(change_per_eqpdays)
  mean(churn_eqpdays_pred) * 100
1
                       -0.8810047
Impact on churn by just changing for a specific segment
rollout %>%
  summarise(mean(mou))
# A tibble: 1 x 1
  `mean(mou)`
        <dbl>
         540.
1
rollout_mou_new <- rollout %>%
  arrange(-mou)%>%
  slice(1:800)%>%
  mutate(mou=mou+180)
churn_mou <- predict(logit.churn, newdata = rollout_mou_new, type = "response")</pre>
rollout_mou_new <- rollout_mou_new %>%
  mutate(churn_mou = churn_mou)
orig_churn_mou <- rollout_mou_new %>%
  summarise(mean(churn_score_logit)*100)
new_churn_mou <- rollout_mou_new %>%
  summarise(mean(churn_mou)*100)
change_mou <- new_churn_mou - orig_churn_mou</pre>
print(orig_churn_mou)
```

```
# A tibble: 1 x 1
  `mean(churn_score_logit) * 100`
                             <dbl>
1
                              3.34
print(new_churn_mou)
# A tibble: 1 x 1
  `mean(churn mou) * 100`
                     <dbl>
1
                     3.06
print(change_mou)
  mean(churn_mou) * 100
              -0.280125
1
Changing credit rating
rollout_creditaa_new <- rollout %>%
  filter(creditaa==0)%>%
  mutate(creditaa="1")
churn_creditaa <- predict(logit.churn, newdata = rollout_creditaa_new, type = "response")</pre>
rollout_creditaa_new <- rollout_creditaa_new %>%
  mutate(churn_creditaa = churn_creditaa)
orig_churn_creditaa <- rollout_creditaa_new %>%
  summarise(mean(churn_score_logit)*100)
new_churn_creditaa <- rollout_creditaa_new %>%
  summarise(mean(churn_creditaa)*100)
change_creditaa <- new_churn_creditaa - orig_churn_creditaa</pre>
print(orig_churn_creditaa)
# A tibble: 1 x 1
  `mean(churn_score_logit) * 100`
                             <dbl>
1
                              4.18
print(new_churn_creditaa)
# A tibble: 1 x 1
  `mean(churn_creditaa) * 100`
                          <dbl>
1
                           2.45
```

```
print(change_creditaa)
  mean(churn_creditaa) * 100
1
                   -1.722493
avg_monthly_revenue <- rollout%>%
  summarise(mean(revenue))
avg_monthly_revenue
# A tibble: 1 x 1
  `mean(revenue)`
            <dbl>
             58.9
Change Unique Subscribers:
rollout %>%
  tabyl(uniqsubs)
 uniqsubs
                    percent
             n
        1 5173 0.6456565152
        2 2054 0.2563654518
        3 507 0.0632800799
        4 180 0.0224663005
           61 0.0076135796
          27 0.0033699451
           4 0.0004992511
           3 0.0003744383
            1 0.0001248128
       10
           1 0.0001248128
            1 0.0001248128
rollout_uniqsubs_new <- rollout %>%
  filter(uniqsubs==2)%>%
  mutate(uniqsubs=1)
churn_uniqsubs <- predict(logit.churn, newdata = rollout_uniqsubs_new, type = "response")</pre>
rollout_uniqsubs_new <- rollout_uniqsubs_new %>%
  mutate(churn_uniqsubs = churn_uniqsubs)
orig_churn_uniqsubs <- rollout_uniqsubs_new %>%
  summarise(mean(churn_score_logit)*100)
new_churn_uniqsubs <- rollout_uniqsubs_new %>%
  summarise(mean(churn_uniqsubs)*100)
change_uniqsubs <- new_churn_uniqsubs - orig_churn_uniqsubs</pre>
print(orig_churn_uniqsubs)
```

```
# A tibble: 1 x 1
  `mean(churn_score_logit) * 100`
                             <dbl>
1
                              4.37
print(new_churn_uniqsubs)
# A tibble: 1 x 1
  `mean(churn_uniqsubs) * 100`
                          <dbl>
1
                           3.74
print(change_uniqsubs)
  mean(churn_uniqsubs) * 100
1
                  -0.6285828
rollout_blckvce_new <- rollout %>%
  arrange(blckvce)%>%
  slice(1:800)%>%
  mutate(blckvce=blckvce*0.5)
churn_blckvce <- predict(logit.churn, newdata = rollout_mou_new, type = "response")</pre>
rollout_blckvce_new <- rollout_blckvce_new %>%
  mutate(churn_blckvce = churn_blckvce)
orig_churn_blckvce <- rollout_blckvce_new %>%
  summarise(mean(churn_score_logit)*100)
new_churn_blckvce <- rollout_blckvce_new %>%
  summarise(mean(churn_blckvce)*100)
change_blckvce <- new_churn_blckvce - orig_churn_blckvce</pre>
print(orig_churn_blckvce)
# A tibble: 1 x 1
  `mean(churn_score_logit) * 100`
                             <dbl>
                              4.05
print(new_churn_blckvce)
# A tibble: 1 x 1
  `mean(churn_blckvce) * 100`
                         <dbl>
1
                          3.06
```

```
print(change_blckvce)
  mean(churn_blckvce) * 100
                 -0.9895624
rollout %>%
  arrange(-eqpdays)%>%
  slice(1:800)%>%
  summarise(mean(eqpdays))
# A tibble: 1 x 1
  `mean(eqpdays)`
            <dbl>
             901.
rollout_eqpdays_new <- rollout %>%
  arrange(-eqpdays)%>%
  slice(1:800)%>%
  mutate(eqpdays=2*365)
churn_eqpdays <- predict(logit.churn, newdata = rollout_eqpdays_new, type = "response")</pre>
rollout_eqpdays_new <- rollout_eqpdays_new %>%
  mutate(churn_eqpdays = churn_eqpdays)
orig_churn_eqpdays <- rollout_eqpdays_new %>%
  summarise(mean(churn_score_logit)*100)
new_churn_eqpdays <- rollout_eqpdays_new %>%
  summarise(mean(churn_eqpdays)*100)
change_eqpdays <- new_churn_eqpdays - orig_churn_eqpdays</pre>
print(orig_churn_eqpdays)
# A tibble: 1 x 1
  `mean(churn_score_logit) * 100`
                             <dbl>
                              5.81
print(new_churn_eqpdays)
# A tibble: 1 x 1
  `mean(churn eqpdays) * 100`
                         <dbl>
                         4.71
print(change_eqpdays)
 mean(churn_eqpdays) * 100
                  -1.098725
1
```

${\bf Question}~{\bf 5}$

Based on impact on churn, we would target spam control and subsidizing purchase of new devices for customers. These two action have significanly higher impact on churn 4.404% to 3.05% and 5.8% to 4.7% respectively.