Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering

Robert Wang

January 2024

Introduction

- We saw before graphs can capture relationship between datapoints
- Graphs can also capture relationship between features
- ► For this talk, we will assume our graph has *n* vertices, each associated with a feature
- $x \in \mathbb{R}^n$ is the vector of features for a single data point

Introduction

► **Example:** Image data: each feature is a pixel. Graph is the grid-graph over pixels

Convolutional Neural Network

 Convolutional Neural Network capture local structures by looking at relationship between nearby pixels

$$1 \times 1 + 0 \times 2 + 1 \times 3 + 0 \times 4 + 1 \times 5 + 1 \times 6 + 1 \times 7 + 0 \times 8 + 1 \times 9 = 31$$

CNN is a Spatial Graph Convolution

- Sum feature value around neighborhood of vertex
- ▶ Can be interpreted as the map $x \mapsto Ax$ where A is the adjacency matrix
- ► CNN with uniform Kernel = spatial convolution on grid graph

$$0 \times 1 + 1 \times 1 + 0 \times 1 + 0 \times 1 + 2 \times 1 + 2 \times 1 + 1 - 2 \times 1 + 0 \times 1 = 4$$

Question

- Sometimes, relationship between features are captured by arbitrary graphs (ex: temperature collected from weather stations)
- Since graph is not a grid graph, cannot apply CNN
- Question: can we generalize CNNs to arbitrary graphs?

(c) Weather stations across the U.S.

Why is it Important?

- ► CNNs are perform very well on Images
- CNNs are scalable because they require few training parameters
- Is Natural to try to generalize to aribtrary graphs

Why don't Previous Solution Work

- Vanilla GCN has no learnable kernel like in CNN
- Can add learned edgeweights through graph attention etc. But...
 - 1. Number of learned parameters = number of edges, which is too high
 - 2. In CNN Kernel size is much smaller than n

Signals and Convolutions (in discrete terms)

- ▶ We can interpret a **signal** as a vector $x \in \mathbb{R}^n$
- ▶ let $g \in \mathbb{R}^k$ be a filter. Then the convolution $g * x \in \mathbb{R}^{n+k}$ is defined by

$$g * x(t) = \sum_{i=1}^{t} x(i)g(t-i)$$

ightharpoonup a = (1,2,3) and b = (4,5,6)

ightharpoonup a = (1, 2, 3) and b = (4, 5, 6)

ightharpoonup a = (1,2,3) and b = (4,5,6)

$$(1,2,3)*(4,5,6) = \begin{pmatrix} c_1 & c_2 \\ 4,13,28, \end{pmatrix}$$

$$1 \cdot 6 + 2 \cdot 5 + 3 \cdot 4$$

$$\begin{bmatrix} a_0 & a_1 & a_2 \\ 1 & 2 & 3 \\ b_2 & b_1 & b_0 \end{bmatrix}$$

ightharpoonup a = (1, 2, 3) and b = (4, 5, 6)

ightharpoonup a = (1,2,3) and b = (4,5,6)

$$(1,2,3)*(4,5,6) = \begin{pmatrix} c_1 & c_2 & c_3 & c_4 \\ 4,13,28,27,18 \end{pmatrix}$$

$$3 \cdot 6$$

$$\begin{bmatrix} a_0 & a_1 & a_2 \\ 1 & 2 & 3 \end{bmatrix}$$

$$\begin{bmatrix} 6 & 5 & 4 \\ b_2 & b_1 & b_0 \end{bmatrix}$$

Example: CNN

- CNNs are prominent examples of discrete convolutions
- ightharpoonup x = Input, g = Kernel, g * x = Output
- ► The filter/Kernel contains learned parameters

Discrete Fourier Transform (Informal)

- **Fourier Basis:** a set of *n* orthonormal vectors $b_1, ... b_n$
- We can also express x as a linear combination of an orthonormal fourier basis i.e. $x = \sum_i c_i b_i$
- $ightharpoonup c_i$'s are **Fourier Coefficients** of x
- Fourier Transform maps Φ is a change of basis from standard basis to Fourier basis

$$\Phi: (x(1), x(2), ...x(n)) = (c_1, c_2, ...c_n)$$

Fourier Transform and Convolution

► **Theorem:** Convolution in the standard basis in is equalled to point-wise vector multiplication in the fourier basis

$$\Phi(g*x)=\Phi g\circ \Phi x$$

Where $u \circ v(t) = u(t)v(t)$ denotes the point-wise vector product

Since Fourier Transforms are invertible, we have

$$g * x = \Phi^{-1}(\Phi g \circ \Phi x)$$

Example of Convolution Theorem

ightharpoonup say x is a vector of coefficients for polynomial

$$p_x(y) = x(0) + x(1)y + ...x(n)y^{n-1}$$

 $\Phi(x)$ is the vector of evaluating the polynomial at some n points. Let's say...the n roots of unity

$$\Phi_X = (p_X(e^{2\pi i/n}), p_X(e^{4\pi i/n}), ...p(e^{2\pi i}))$$

- ► Multiplying two polynomials means...
 - 1. Convolution in terms of their coefficients
 - 2. Point-wise Multiplications in terms of their values

Graph Fourier Transform

Given a graph, we want to find a Fourier basis that captures important information about the graph

Graph Laplacian

- ► Adjacency Matrix: A
- Normalized Adjacency Matrix: $A_N = D^{-1/2}AD^{-1/2}$, D = diagonal matrix of degrees
- ▶ **Spectral Theorem:** Any *n* × *n* real-symmetric matrix *M* can be diagonalized with real eigenvalues and *n* orthogonal eigenvectors.
- Since A and A_N are symmetric, they can be diagonalized orthogonal eigenvectors

Spectral Decomposition

- ▶ Let $u_1, ... u_n$ be the eigenvectors of A or A_N
- ▶ Let $U = [u_1, u_2, ...u_n]$ be the matrix with with eigenvectors as columns, then we can express

$$A = U\Lambda U^{\top}$$

$$\Lambda = \begin{bmatrix} \alpha_1 & & & \\ & \alpha_2 & & \\ & & \cdots & \\ & & & \alpha_n \end{bmatrix}$$

Where $\alpha_1 \geq \dots \alpha_n$ are the eigenvalues

▶ Note $UU^{\top} = I$

Discrete Fourier Transform on Graphs

- ightharpoonup Pick $u_1, ... u_n$ as our Fourier Basis
- ▶ Fourier Transform: Given $x \in \mathbb{R}^n$, $\Phi x = U^\top x$ and $\Phi^{-1}x = Ux$
- ▶ **Spectral Convolution:** given a filter vector $g \in \mathbb{R}^n$, we define $g * x = U \text{Diag}(U^T g)U^T x$

Discrete Fourier Transform on Graphs

$$U \mathsf{Diag}(U^{\top}g)U^{\top}x$$

$$= U \underbrace{\begin{bmatrix} \langle u_1, g \rangle & & & & \\ \langle u_2, g \rangle & & & & \\ \langle u_n, g \rangle \end{bmatrix}}_{\mathsf{Fourier Coefficients of } g} \underbrace{\begin{bmatrix} \langle u_1, x \rangle & & \\ \langle u_2, x \rangle & & & \\ \langle u_n, x \rangle & & & \\ \langle u_n, x \rangle & & & \\ \langle u_n, x \rangle & & & \\ \langle u_1, g \rangle \langle u_1, x \rangle & & \\ \langle u_2, g \rangle \langle u_2, x \rangle & & & \\ \langle u_2, g \rangle \langle u_2, x \rangle & & \\ \langle u_n, g \rangle \langle u_n, x \rangle & & \\ \mathsf{point-wise multiplication} \\ = g * x$$

Some Examples:

- ▶ By spectral decomp. $Ax = U\Lambda U^{\top}x = (\alpha_i u_i) * x$ or convolution of x with filter $\sum_i \alpha_i u_i$
- ► Vanilla GCN is also a spectral convolution with a "fixed" filter defined by eigenvalues

Problem Solution

- Perform spectral convolution with a learned filter
- Let $\theta \in \mathbb{R}^n$ be a vector of learning parameters:
- Convolutional Layer:

$$x \mapsto U \mathsf{Diag}(\theta) U^{\top} x$$

- ▶ u_i's are eigenvectors of Normalized Adjacency Matrix
- Runtime: $\tilde{O}(n^2)$ time to compute eigenvectors...too slow, and n training parameters is too many

Polynomial transform

- Let g_{θ} be a polynomial function parameterized by θ , say... $\theta_0 + \theta_1 x + \theta_2 x^2$
- Polynomial on matrices: $g_{\theta}(A) = \theta_0 I + \theta_1 A + \theta_2 A^2$
- ▶ Applying g_{θ} to A gives

$$g_{\theta}(A) = Ug_{\theta}(\Lambda)U^{\top} = U\begin{bmatrix} g_{\theta}(\alpha_1) & & & & \\ & g_{\theta}(\alpha_2) & & & & \\ & & & \cdots & & \\ & & & g_{\theta}(\alpha_n) \end{bmatrix}U^{\top}$$

► For example: $A^2 = U\Lambda U^{\top}U\Lambda U^{\top} = U\Lambda^2 U^{\top}$

Localized Spectral Filter

- ▶ **Idea:** let g_{θ} be a degree k polynomial parameterized by $\theta \in \mathbb{R}^k$. Convolutional Layer is $x \mapsto g_{\theta}(A)x$
- Fourier Convolution: $g_{\theta}(A)x = Ug_{\theta}(\Lambda)U^{\top}x$, fourier coefficients of our learned filter are $g_{\theta}(\alpha_i)_{i=1}^n$
- Convolution is Local: each vertex only recieves data from vertices at most k-hops away
- ► $A^k(i,j)$ = number of (or total weight of) paths of length k from i to j
- g_{θ} is degree k and $A^{1}(i,j),...A^{k}(i,j)=0$ if i and j have hop distance greater than k

Localized Spectral Filter with Chebyshev Polynomials

- ► Chebyshev Polynonmials: $T_0 = 1$, $T_1 = x$, $T_k(x) = 2xT_{k-1}(x) T_{k-2}(x)$, easy to compute
- ▶ Given k, we take a linear combination of $T_0, ... T_k$ with learned filter $\theta \in \mathbb{R}^k$
- ▶ Spectral Filter: $g_{\theta}(A_N)x = \sum_{i=1}^K \theta_i T_i(A_N)x$ (normalized adjacency matrix have eigenvalues in [-1,1])
- **Computation:** $x^{(k)} = T_k(A_N)x$ and $x^{(i)} = 2A_Nx^{(i-1)} x^{(i-2)}$. Total runtime = O(K|E|)

Laplacian Matrix

- In the paper, the matrix they use is slightly different
- ▶ Laplacian L = D A, normalized Laplacian $L_N = I A_N$
- lacksquare Actual filter they used was $x\mapsto g_ heta(ilde{L})x$ where $ilde{L}=rac{1}{\lambda_{ ext{max}}}L-I$
- ▶ L_N has same eigenvectors as A_N with eigenvalues $\lambda_1 = 1 \alpha_1, ... \lambda_n = 1 \alpha_n$
- ▶ Using L_N and A_N are essentially the same

Laplacian Matrix Properties

- ▶ Is positive semidefinite, meaning eigenvalues are non-negative
- $\lambda_1 = 0$ and λ_2 is small iff graph can be partitioned into two "balanced" components with few edges in between
- Second eigenvector can be used to find such sparse cuts
- Useful in Image segmentation, finding key features in images

Coarsening and Pooling Layer

- Aggregate neighboring vertices to reduce size and reduce sensitivity to local variation
- Greedily contract edges and take max signal from vertices along contracted edges

Performance on MNIST Data against CNN

Model	Architecture	Accuracy
Classical CNN	C32-P4-C64-P4-FC512	99.33
Proposed graph CNN	GC32-P4-GC64-P4-FC512	99.14

Table 1: Classification accuracies of the proposed graph CNN and a classical CNN on MNIST.

Comparison with Other Spectral GCN

- Non-Param: $x \mapsto U \mathsf{Diag}(\theta) U^{\top} x$, $\theta \in \mathbb{R}^n$
- ▶ $x \mapsto U \mathsf{Diag}(B\theta) U^{\top} x$, where B is spline basis

		Accuracy		
Dataset	Architecture	Non-Param (2)	Spline (7) [4]	Chebyshev (4)
MNIST	GC10	95.75	97.26	97.48
MNIST	GC32-P4-GC64-P4-FC512	96.28	97.15	99.14

Table 3: Classification accuracies for different types of spectral filters (K=25).

Runtime Comparison

Figure 3: Time to process a mini-batch of S=100 20NEWS documents w.r.t. the number of words n.

20News Data

- data: set of 18846 texts, want to classify them into 1 of 20 categories
- ► features: 10,000 most important words, map each word to vector embedding via Word2Vec
- Graph: 16 Nearest-neighbor graph over 10,000 word embedding vertices
- Edge-weights: inverse exponential in embedding vector distance distance

Performance

Model	Accuracy
Linear SVM	65.90
Multinomial Naive Bayes	68.51
Softmax	66.28
FC2500	64.64
FC2500-FC500	65.76
GC32	68.26

Table 2: Accuracies of the proposed graph CNN and other methods on 20NEWS.

Future Questions

- Can we apply this to datasets whose features are more naturally represented as graphs?
- Can we get better intuition as to what Graph Fourier Transform is doing?
- ▶ (Related) what if we just project onto small eigenvectors?