Newly Defined Helicity

- Following the definition of the classical relative magnetic helicity.
- The field **B**_c can be further separated as **B**_{p1} + **B**_{c1}

,where
$$(\mathbf{B}_{\rm p1}-\mathbf{B}_{\rm c})\cdot\hat{\mathbf{n}}|_{\partial\Omega}=0$$
 , and $\mathbf{B}_{\rm c1}=\mathbf{B}_{\rm c}$ - $\mathbf{B}_{\rm p1}$

Feature of the Newly Defined Helicity

We can define a relative helicity for the field B_c as

$$H_{\rm cr} = \int_{\Omega} (\mathbf{A}_{\rm c} + \mathbf{A}_{\rm p1}) \cdot (\mathbf{B}_{\rm c} - \mathbf{B}_{\rm p1}) \mathrm{d}^3 \vec{x}$$

- From the field decomposition ${f B}={f B}_p+{f B}_j$ $={f B}_0+{f B}_c$ $={f B}_0+{f B}_{\rm p1}+{f B}_{\rm c1}$
- Clearly, $\mathbf{B}_p = \mathbf{B}_0 + \mathbf{B}_{p1}$ and $\mathbf{B}_j = \mathbf{B}_{c1}$, in most case, \mathbf{B}_{p1} is very small.