Project Planning Phase

Project Planning Template (Product Backlog, Sprint Planning, Stories, Story points)

Date	18 October 2022
Team ID	PNT2022TMID01463
Project Name	Emerging Methods for Early Detection of Forest Fires
Maximum Marks	8 Marks

Product Backlog, Sprint Schedule, and Estimation (4 Marks)

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members
Sprint-1	Import the Required, Collecting the Dataset	USN-1	To analyse the fire prone areas and to set the surveillance camera to collect and observe the region continuously for early detection.	2	High	ASWATHY B B DEEBENDRAKUM AR K
Sprint-2	Training & Testing of model	USN-2	The collected data are categorized on the basis of parameters set to identify. To train the model, CNN is used to test repeatedly by storing the datasets in server.	1	High	DHANISH KS JEEVAN KARTHICK B
Sprint-3	Model Building, Reviewing the model	USN-3	The main task is to check that the model is efficient to work in real time. Therefore, smallest of error decoded needed to be corrected to avoid future lags	1	Medium	ASWATHY B B DHANISH K S
Sprint-4	Implementing the model	USN-4	The model after testing all it's functionalities is been implemented at forest management offices to get quick responses from the model.	2	High	DEEBENDRA KUMAR K JEEVAN KARTHICK B
Sprint-4	Connecting it with API	USN-5	The model should connect with API named Twilio, which receives & sends the management with messages.	2	High	DHANISH K S JEEVAN KARTHICK B ASWATHY B B DEEBENDRAKUM AR K

Project Tracker, Velocity & Burndown Chart: (4 Marks)

Sprint	Total Story Points	Duration	Sprint Start Date	Sprint End Date (Planned)	Story Points Completed (as on Planned End Date)	Sprint Release Date (Actual)
Sprint-1	20	6 Days	24 Oct 2022	29 Oct 2022	20	29 Oct 2022
Sprint-2	20	6 Days	31 Oct 2022	05 Nov 2022	15	06 Nov 2022
Sprint-3	20	6 Days	07 Nov 2022	12 Nov 2022	10	14 Nov 2022
Sprint-4	20	6 Days	14 Nov 2022	19 Nov 2022	5	20 Nov 2022

Velocity:

Imagine we have a 10-day sprint duration, and the velocity of the team is 20 (points per sprint). Let's calculate the team's average velocity (AV) per iteration unit (story points per day)

$$AV = \frac{sprint\ duration}{velocity} = \frac{20}{10} = 2$$

Burndown Chart:

A burn down chart is a graphical representation of work left to do versus time. It is often used in agile software development methodologies such as Scrum. However, burn down charts can be applied to any project containing measurable progress over time.

SPRINT STAGES