

Neural Dynamics Discovery via Gaussian Process Recurrent Neural Networks

Qi She Intel Labs China

Anqi Wu Princeton University

July 23rd, UAI 2019

Conceptual Illustration

Cunningham, John P., and M. Yu Byron. "Dimensionality reduction for large-scale neural recordings." *Nature neuroscience* 17.11 (2014): 1500.

Conceptual Illustration

Cunningham, John P., and M. Yu Byron. "Dimensionality reduction for large-scale neural recordings." *Nature neuroscience* 17.11 (2014): 1500.

Conceptual Illustration

Cunningham, John P., and M. Yu Byron. "Dimensionality reduction for large-scale neural recordings." *Nature neuroscience* 17.11 (2014): 1500.

Neural Dynamics

Low-dimensional Smooth Time-evolving

High-dimensional Noisy (Gaussian or Poisson)

Neural Dynamics

 \mathcal{X}_t Neural spiking activity

Low-dimensional Smooth Time-evolving

High-dimensional Noisy (Gaussian or Poisson)

Latent Dynamics Z_t

Latent Dynamics Z_t

1. Linear Dynamic: $z_t = Az_{t-1} + b$

Pros: Efficient, tractable

Cons: Nonlinear complex dynamics

2. Gaussian Process: $z_t \sim gp(0, k_t)$

Pros: Smooth, Nonlinear dynamics

Cons: Pairwise dependence, implicit dynamics

3. RNNs: $z_t = \text{RNN}_{\theta}(z_{t-1}, q_{t-1})$

Pros: Long short-term memory

Cons: Deterministic dynamics, rely on initial state

Latent Dynamics Zt

1. Linear Dynamic:

$$z_t = Az_{t-1} + b$$

 $z_t \sim gp(0,k_t)$

2. Gaussian Process:

$$\nu_t = \text{RNN}(\nu_{t-1}, z_{t-1})$$

Prior with RNN structure
$$z_t \sim \text{Gaussian}(\mu_{\nu_t}, \sigma_{\nu_t}^2)$$

$$z_t = \text{RNN}_{\theta}(z_{t-1}, q_{t-1})$$

(2) better uncertainty propagation

Mapping function

Low-dimensional Smooth Time-evolving

High-dimensional Noisy (Gaussian or Poisson)

Mapping function

Low-dimensional Smooth Time-evolving

High-dimensional Noisy (Gaussian or Poisson)

$$x_t = \text{Poisson}\left(\lambda_t = \exp(\text{NN}(z_t))\right)$$

- Smooth turning curve
- Better modelling uncertainty

$$\mathbf{f}_i | z_{1:T} \sim gp(0, \mathbf{K}_z)$$

$$x_t | f_i, z_t \sim \text{Poisson}\left(\lambda_t = \exp\left(f_i(z_t)\right)\right)$$

Observation

Simultaneous recording of many hundreds or thousands of neurons

Dynamics

$$\nu_t = \text{RNN}(\nu_{t-1}, z_{t-1})$$

$$z_t \sim \text{Gaussian}(\mu_{\nu_t}, \sigma_{\nu_t}^2)$$

1. Gaussian response

$$x_t | f_i, z_t \sim \text{Gaussian}(f_i(z_t), l)$$

Mapping function

$$f_i | z_t \sim gp(0,k_z)$$

2. Poisson response

$$x_t | f_i, z_t \sim \text{Poisson}\left(\lambda_t = \exp(f_i(z_t))\right)$$

Gaussian Process Recurrent Neural Networks

Gaussian Process Recurrent Neural Networks

Gaussian Process Recurrent Neural Networks

Simultaneous recording of many hundreds or thousands of neurons

Dynamics

$$\nu_t = \text{RNN}(\nu_{t-1}, z_{t-1})$$

$$z_t \sim \text{Gaussian}(\mu_{\nu_t}, \sigma_{\nu_t}^2)$$

1. Gaussian response

$$x_t | f_i, z_t \sim \text{Gaussian}(f_i(z_t), l)$$

Mapping function

$$f_i \mid z_t \sim gp(0,k_z)$$

$$p(x|z) = \int p(x|f,z)p(f|z)df$$
?

Simultaneous recording of many hundreds or thousands of neurons

Dynamics

$$\nu_t = \text{RNN}(\nu_{t-1}, z_{t-1})$$

$$z_t \sim \text{Gaussian}(\mu_{\nu_t}, \sigma_{\nu_t}^2)$$

1. Gaussian response

$$x_t | f_i, z_t \sim \text{Gaussian}(f_i(z_t), l)$$

Mapping function

$$f_i \mid z_t \sim gp(0,k_z)$$

$$p(x|z) = \int p(x|f,z)p(f|z)df$$
?

Simultaneous recording of many hundreds or thousands of neurons

Dynamics

$$\nu_t = \text{RNN}(\nu_{t-1}, z_{t-1})$$

$$z_t \sim \text{Gaussian}(\mu_{\nu_t}, \sigma_{\nu_t}^2)$$

1. Gaussian response

$$x_t | f_i, z_t \sim \text{Gaussian}(f_i(z_t), l)$$

 $x_t | z_t \sim \text{Gaussian}(0, k_z + l)$

$$x_t | z_t \sim \text{Gaussian}(0, k_z + l)$$

Mapping function

$$f_i \mid z_t \sim gp(0,k_z)$$

$$p(x|z) = p(x|f,z)p(f|z)df$$
?

2. Poisson response

$$x_t | f_i, z_t \sim \text{Poisson} \left(\lambda_t = \exp(f_i(z_t)) \right)$$

Approximate Inference

1. Gaussian response

$$x_t | z_t \sim \text{Gaussian}(0, k_z + l)$$

$$p(z \mid x) \propto p(x \mid z)p(z)$$

Laplace approximation

$$q^*(z) \approx p^*(z_{\text{MAP}}) \det(2\pi\Sigma) \text{Gaussian}(z; z_{\text{MAP}}, \Sigma)$$

Moment matching

$$q^*(z) = \operatorname{argmin}_{q^*(z)} \operatorname{KL}(p^*(z) | | q^*(z))$$

Importance sampling

$$q^{\star}(z) = \sum_{k} \frac{1}{K} \frac{p^{\star}(z_m)}{q^{\star}(z_m)} \delta(z - z_m), \quad z_m \sim q(z) \qquad q^{\star}(z) = \operatorname{argmin}_{q^{\star}(z)} \mathrm{KL}(q^{\star}(z) | | p^{\star}(z))$$

Variational free energy

$$q^*(z) = \operatorname{argmin}_{q^*(z)} \operatorname{KL}(q^*(z) | | p^*(z))$$

Inference Network

Inference Network	Vanilla MF	VAE	r-LSTM	1-LSTM	bi-LSTM
Variational Approximation	$q(\mathbf{z}_t)$	$q(\mathbf{z}_t \mathbf{x}_t)$	$q(\mathbf{z}_t \mathbf{x}_{t:T})$	$q(\mathbf{z}_t \mathbf{x}_{1:t})$	$q(\mathbf{z}_t \mathbf{x}_{1:T})$

Simultaneous recording of many hundreds or thousands of neurons

Dynamics

$$\nu_t = \text{RNN}(\nu_{t-1}, z_{t-1})$$

$$z_t \sim \text{Gaussian}(\mu_{\nu_t}, \sigma_{\nu_t}^2)$$

1. Gaussian response

$$x_t | f_i, z_t \sim \text{Gaussian}(f_i(z_t), l)$$

Mapping function

$$f_i \mid z_t \sim gp(0,k_z)$$

$$p(x|z) = \begin{cases} p(x|f,z)p(f|z)df \end{cases}$$
?

2. Poisson response

$$x_t | f_i, z_t \sim \text{Poisson}\left(\lambda_t = \exp(f_i(z_t))\right)$$

Inference on z_t and f_i

$$f_i : \mathbf{R}^L \to \mathbf{R}$$
 $f_i | z_t \sim gp(0, k_z)$ $T \times T$

$$\mathbf{f}_i \in \mathbf{R}^T \qquad \mathbf{f}_i | z_{1:T} \sim \text{Gaussian}(0, \mathbf{K}_z)$$

Laplace approximation

$$\hat{\mathbf{f}}_{i} = \operatorname{argmax}_{\mathbf{f}_{i}} \log p(\mathbf{f}_{i} | \mathbf{x}_{i}, z_{1:T})$$

$$\Sigma = -\nabla \nabla \log p(\mathbf{f}_{i} | \mathbf{x}_{i}, z_{1:T}), \quad \mathbf{f}_{i} = \hat{\mathbf{f}}_{i}$$

Inference on z_t and f_i

Laplace approximation

$$\begin{aligned} q(\mathbf{f_i} \mid \mathbf{x_i}, z_{1:T}) &= \mathsf{Gaussian}(\hat{\mathbf{f_i}}, \Sigma^{-1}) \\ \hat{\mathbf{f_i}} &= \mathsf{argmax}_{\mathbf{f_i}} \log p(\mathbf{f_i} \mid \mathbf{x_i}, z_{1:T}) & \Sigma = - \ \nabla \ \nabla \log p(\mathbf{f_i} \mid \mathbf{x_i}, z_{1:T}), \quad \mathbf{f_i} = \hat{\mathbf{f_i}} \end{aligned}$$

Inference on z_t and f_i

Laplace approximation

$$\begin{aligned} q(\mathbf{f_i} | \mathbf{x_i}, z_{1:T}) &= \operatorname{Gaussian}(\hat{\mathbf{f_i}}, \Sigma^{-1}) \\ \hat{\mathbf{f_i}} &= \operatorname{argmax}_{\mathbf{f_i}} \log p(\mathbf{f_i} | \mathbf{x_i}, z_{1:T}) & \Sigma = - \nabla \nabla \log p(\mathbf{f_i} | \mathbf{x_i}, z_{1:T}), \quad \mathbf{f_i} = \hat{\mathbf{f_i}} \\ &= \operatorname{argmax}_{\mathbf{f_i}} \log p(\mathbf{x_i}, \mathbf{f_i} | z_{1:T}) \end{aligned}$$

Optimize
$$\Psi(\mathbf{f}_i) = \log p(\mathbf{x}_i | \mathbf{f}_i) - \frac{1}{2} \mathbf{f}_i^{\mathsf{T}} \mathbf{K}_z \mathbf{f}_i - \frac{1}{2} \log |\mathbf{K}_z|$$

$$p(\mathbf{x}_i | z_{1:T}) = \int p(\mathbf{x}_i, \mathbf{f}_i | z_{1:T}) d\mathbf{f}_i$$
 ?

Inference on Z_t and f_i

$$\begin{split} \hat{\mathbf{f}}_{\mathbf{i}} &= \operatorname{argmax}_{\mathbf{f}_{\mathbf{i}}} \log p(\mathbf{f}_{\mathbf{i}} \mid \mathbf{x}_{i}, z_{1:T}) \\ &= \operatorname{argmax}_{\mathbf{f}_{\mathbf{i}}} \log p(\mathbf{x}_{i}, \mathbf{f}_{\mathbf{i}} \mid z_{1:T}) \end{split}$$

$$\mathbf{Optimize} \ \Psi(\mathbf{f}_{\mathbf{i}}) = \log p(\mathbf{x}_{i}, \mathbf{f}_{\mathbf{i}} \mid z_{1:T}) = \log p(\mathbf{x}_{\mathbf{i}} \mid \mathbf{f}_{\mathbf{i}}) - \frac{1}{2} \mathbf{f}_{\mathbf{i}}^{\mathsf{T}} \mathbf{K}_{\mathbf{z}} \mathbf{f}_{i} - \frac{1}{2} \log |\mathbf{K}_{\mathbf{z}}| \end{split}$$

$$p(\mathbf{x}_i | z_{1:T}) = \int p(\mathbf{x}_i, \mathbf{f}_i | z_{1:T}) d\mathbf{f}_i$$
 ?

Taylor
$$\Psi(f_i) \approx \Psi(\hat{f}_i) - \frac{1}{2}(f_i - \hat{f}_i)^{\mathsf{T}} \Sigma(f_i - \hat{f}_i)$$
 expansion

$$p(\mathbf{x}_{i} | z_{1:T}) = \int p(\mathbf{x}_{i}, \mathbf{f}_{i} | z_{1:T}) d\mathbf{f}_{i} \approx \exp(\hat{\mathbf{f}}_{i}) \int \exp(-\frac{1}{2} (\mathbf{f}_{i} - \hat{\mathbf{f}}_{i})^{\mathsf{T}} \Sigma (\mathbf{f}_{i} - \hat{\mathbf{f}}_{i})) d\mathbf{f}_{i}$$

Inference on Z_t and f_i

$$p(\mathbf{x}_i | z_{1:T}) = \int p(\mathbf{x}_i, \mathbf{f}_i | z_{1:T}) d\mathbf{f}_i \approx \exp(\hat{\mathbf{f}}_i) \int \exp(-\frac{1}{2} (\mathbf{f}_i - \hat{\mathbf{f}}_i)^{\mathsf{T}} \Sigma (\mathbf{f}_i - \hat{\mathbf{f}}_i)) d\mathbf{f}_i$$

$$\log p(\mathbf{x}_i | z_{1:T}) \approx \log p(\mathbf{x}_i | \hat{\mathbf{f}}_i) - \frac{1}{2} (\hat{\mathbf{f}}_i^\mathsf{T} \mathbf{K}_z \mathbf{f}_i + \log |\mathbf{A}|)$$

$$A = |K_z| |K_z^{-1} \nabla \nabla \log p(x_i | \hat{f}_i)|$$

$$p(\mathbf{x}_i | z_{1:T}) = \int p(\mathbf{x}_i, \mathbf{f}_i | z_{1:T}) d\mathbf{f}_i$$

$$p(z \mid x) \propto p(x \mid z)p(z)$$

Inference Network and Dynamical Model Analysis.

Coursian	AR1-GPLVM					GP-RNN				
Gaussian	MF	VAE	r-LSTM	1-LSTM	bi-LSTM	MF	VAE	r-LSTM	1-LSTM	bi-LSTM
linear	4.12	4.10	4.01	3.27	1.64	2.17	2.17	1.98	1.54	0.96
tanh	3.20	3.22	3.01	2.46	1.17	2.01	2.01	1.83	1.41	0.78
sine	3.12	3.12	2.74	2.33	<u>1.02</u>	1.81	1.78	1.34	1.12	<u>0.56</u>

Poisson	AR1-GPLVM					GP-RNN				
POISSOII	MF	VAE	r-LSTM	1-LSTM	bi-LSTM	MF	VAE	r-LSTM	1-LSTM	bi-LSTM
linear	6.34	6.34	6.02	5.71	3.67	6.01	6.01	5.94	5.71	3.10
tanh	3.22	3.21	3.01	2.84	1.57	3.09	3.11	2.98	2.54	1.21
sine	2.80	2.79	2.77	2.51	<u>1.49</u>	2.67	2.67	2.43	2.33	<u>1.14</u>

RMSE of latent trajectories reconstructed from various simulated models are presented.

Mapping Function Analysis

# Data	linear		ta	nh	sine	
	GP	NN	GP	NN	GP	NN
N = 50	2.51	3.88	1.45	2.75	1.97	3.43
N = 100	1.27	1.65	1.15	1.45	1.03	1.31
N = 200	0.96	1.29	0.78	1.22	0.56	0.70
N = 500	0.34	0.35	0.26	0.26	0.12	0.12

Smaller datasets may affect latent dynamics recovery but a Gaussian process mapping enhances nonlinear embedding recovery

Related Models

Model	Dynamics	Mapping function	Link function	Observation	Inference
PLDS	LDS	Linear	exp	Poisson	LP
PfLDS	LDS	NN	exp	Poisson	VI + inference network
GCLDS	LDS	Linear	exp	Count	VI
LFADS	RNN	Linear	exp	Poisson	VI + inference network
P-GPFA	GP	Linear	Identity	Poisson	LP or VI
P-GPLVM	GP	GP	exp	Poisson	LP
$Ours: \mathbf{GP}\text{-}\mathbf{RNN}$	RNN	GP	exp	Poisson/Gaussian	VI + inference network

Dimension	PLDS	GCLDS	PfLDS	P-GPFA	P-GPLVM	GP-RNN
z_1	0.641	0.435	0.698	0.733	0.784	0.869
z_2	0.547	0.364	0.659	0.720	0.785	0.873
z_3	0.903	0.755	0.797	0.960	0.966	0.971

Smooth and Structured Patterns

Code link:

https://github.com/sheqi/GP-RNN_UAI2019

Full Paper

http://auai.org/uai2019/proceedings/papers/159.pdf

Thanks

qi.she@intel.com