

Regression

Machine Learning: Jordan Boyd-Graber University of Maryland

Content Questions

dimension	weight
b	1
w_1	2.0
w_2	-1.0
σ	1.0
	1.0

1.
$$\mathbf{x}_1 = \{0.0, 0.0\}; y_1 =$$

2.
$$\mathbf{x}_2 = \{1.0, 1.0\}; y_2 =$$

3.
$$\mathbf{x}_3 = \{.5, 2\}; y_3 =$$

dimension	weight
b	1
w_1	2.0
w_2	-1.0
σ	1.0

1.
$$\mathbf{x}_1 = \{0.0, 0.0\}; y_1 = 1.0$$

2.
$$\mathbf{x}_2 = \{1.0, 1.0\}; y_2 =$$

3.
$$\mathbf{x}_3 = \{.5, 2\}; y_3 =$$

dimension	weight
b	1
w_1	2.0
w_2	-1.0
σ	1.0

1.
$$\mathbf{x}_1 = \{0.0, 0.0\}; y_1 = 1.0$$

2.
$$\mathbf{x}_2 = \{1.0, 1.0\}; y_2 = 2.0$$

3.
$$\mathbf{x}_3 = \{.5, 2\}; y_3 =$$

dimension	weight
b	1
w_1	2.0
w_2	-1.0
σ	1.0

1.
$$\mathbf{x}_1 = \{0.0, 0.0\}; y_1 = 1.0$$

2.
$$\mathbf{x}_2 = \{1.0, 1.0\}; y_2 = 2.0$$

3.
$$\mathbf{x}_3 = \{.5, 2\}; y_3 = 0.0$$

dimension	weight
w_0	1
w_1	2.0
W_2	-1.0
σ	1.0

$$\rho(y|x) = y \sim N\left(b + \sum_{j=1}^{p} w_j x_j, \sigma^2\right)$$
$$\rho(y|x) = \frac{\exp\left\{-\frac{(y-\hat{y})^2}{2}\right\}}{\sqrt{2\pi}}$$

1.
$$p(y_1 = 1 | \mathbf{x}_1 = \{0.0, 0.0\}) =$$

2.
$$p(y_2 = 3 | \mathbf{x}_2 = \{1.0, 1.0\}) =$$

3.
$$p(y_3 = -1 | \mathbf{x}_3 = \{.5, 2\}) =$$

dimension	weight
w_0	1
w_1	2.0
w_2	-1.0
σ	1.0

$$p(y|x) = y \sim N\left(b + \sum_{j=1}^{p} w_j x_j, \sigma^2\right)$$
$$p(y|x) = \frac{\exp\left\{-\frac{(y-\hat{y})^2}{2}\right\}}{\sqrt{2\pi}}$$

1.
$$p(y_1 = 1 | \mathbf{x}_1 = \{0.0, 0.0\}) = 0.399$$

2.
$$p(y_2 = 3 | \mathbf{x}_2 = \{1.0, 1.0\}) =$$

3.
$$p(y_3 = -1 | \mathbf{x}_3 = \{.5, 2\}) =$$

dimension	weight
w_0	1
w_1	2.0
w_2	-1.0
σ	1.0

$$p(y|x) = y \sim N\left(b + \sum_{j=1}^{p} w_j x_j, \sigma^2\right)$$
$$p(y|x) = \frac{\exp\left\{-\frac{(y-\hat{y})^2}{2}\right\}}{\sqrt{2\pi}}$$

1.
$$p(y_1 = 1 | \mathbf{x}_1 = \{0.0, 0.0\}) = 0.399$$

2.
$$p(y_2 = 3 | \mathbf{x}_2 = \{1.0, 1.0\}) = 0.242$$

3.
$$p(y_3 = -1 | \mathbf{x}_3 = \{.5, 2\}) =$$

dimension	weight
w_0	1
w_1	2.0
W_2	-1.0
σ	1.0

$$p(y|x) = y \sim N\left(b + \sum_{j=1}^{p} w_j x_j, \sigma^2\right)$$
$$p(y|x) = \frac{\exp\left\{-\frac{(y-\hat{y})^2}{2}\right\}}{\sqrt{2\pi}}$$

1.
$$p(y_1 = 1 | \mathbf{x}_1 = \{0.0, 0.0\}) = 0.399$$

2.
$$p(y_2 = 3 | \mathbf{x}_2 = \{1.0, 1.0\}) = 0.242$$

3.
$$p(y_3 = -1 | \mathbf{x}_3 = \{.5, 2\}) = 0.242$$

Which is the better OLS solution?

Blue! It has lower RSS.

What is the RSS of the better solution?

$$\frac{1}{2}\sum_{i}r_{i}^{2} = \frac{1}{2}((1-1)^{2} + (2.5-2)^{2} + (2.5-3)^{2}) = \frac{1}{4}$$

What is the RSS of the red line?

$$\frac{1}{2}\sum_{i}r_{i}^{2}=\frac{1}{2}\left((1-1)^{2}+(2.5-1.75)^{2}+(2.5-2.5)^{2}\right)=\frac{3}{8}$$

For what λ does the blue line have a better regularized solution with L_2 and L_1 ?

$$RSS(x, y, w) + \lambda \sum_{d} w_{d}^{2} > RSS(x, y, w) + \lambda \sum_{d} w_{d}^{2}$$

RSS(x, y, w) +
$$\lambda \sum_{d} w_{d}^{2} > RSS(x, y, w) + \lambda \sum_{d} w_{d}^{2}$$

 $\frac{1}{4} + \lambda 1 > \frac{3}{8} + \lambda \frac{9}{16}$

$$\frac{\frac{1}{4} + \lambda 1 > \frac{3}{8} + \lambda \frac{9}{16}}{\frac{7}{16}\lambda > \frac{1}{8}}$$

$$\frac{7}{16}\lambda > \frac{1}{8}$$
$$\lambda > \frac{2}{7}$$

$$\lambda > \frac{2}{7}$$

$$RSS(x, y, w) + \lambda \sum_{d} |w_{d}| > RSS(x, y, w) + \lambda \sum_{d} |w_{d}|$$

$$\lambda > \frac{2}{7}$$

$$RSS(x, y, w) + \lambda \sum_{d} |w_{d}| > RSS(x, y, w) + \lambda \sum_{d} |w_{d}|$$
$$\frac{1}{4} + \lambda 1 > \frac{3}{8} + \lambda \frac{3}{4}$$

$$\lambda > \frac{2}{7}$$

$$\frac{1}{4} + \lambda 1 > \frac{3}{8} + \lambda \frac{3}{4}$$

$$\lambda > \frac{2}{7}$$

$$\frac{1}{4}\lambda > \frac{1}{8}$$

$$\lambda > \frac{2}{7}$$

$$\frac{1}{4}\lambda > \frac{1}{8}$$
$$\lambda > \frac{1}{2}$$

$$\lambda > \frac{2}{7}$$

$$\lambda > \frac{1}{2}$$

Bigger λ : preference for lower weights w

MPG Dataset

- Predict mpg from features of a car
 - 1. Number of cylinders
 - 2. Displacement
 - 3. Horsepower
 - 4. Weight
 - 5. Acceleration
 - 6. Year
 - 7. Country (ignore this)

Simple Regression

If w = 0, what's the intercept?

Simple Regression

If w = 0, what's the intercept?

23.4

What are the coefficients for OLS?

What are the coefficients for OLS?

Coefficients

```
cyl
     -0.329859
dis 0.007678
hp
     -0.000391
wgt
     -0.006795
acl
    0.085273
     0.753367
yr
```

What are the coefficients for OLS?

-0.329859 cyl dis 0.007678 hp -0.000391 wgt -0.006795

Coefficients

acl 0.085273

0.753367 yr

Intercept: -14.5

from sklearn import linear model linear_model.LinearRegression() fit = model.fit(x, y)

Lasso

- As you increase the weight of alpha, what feature dominates?
- What happens to the other features?

Weight is Everything

How is ridge different?

Regression isn't special

- Feature engineering
- Regularization
- Overfitting
- Development / Test Data