Teaching Elements of Machine Learning in A Quantitative Reasoning Course

Mutiara Sondjaja

New York University

Plug and Play Data Science Lessons MathFest 2019

Slides and lesson materials can be found on: cims.nyu.edu/~sondjaja/teaching and github.com/tiasondjaja/plugplaydslessons

A (Movie) Classification Project

The culmination of a 2-3 week module in a semester-long data- and modeling-centric quantitative reasoning course, taught in Fall 2018 at NYU.

A (Movie) Classification Project

The culmination of a 2-3 week module in a semester-long data- and modeling-centric quantitative reasoning course, taught in Fall 2018 at NYU.

Wanted: A project that

- invites students to get their hands dirty with data
- is accessible: high-level ideas are intuitive
- allows free exploration
- has a high ceiling: room for technical and creative growth; removable scaffolding for more advanced students
- ▶ highlights course theme: Data \rightarrow Model \rightarrow Decision/Prediction.

Tools

1. R/Python

- R (with dplyr and ggplot2) or python (with pandas and matplotlib)
- Emphases on data-centric exploration, general programming elements, and quantitative thinking as opposed to memorizing syntax
- creating, interpreting, working with data visualizations
- understanding how to work with variables and functions; conditional statements and boolean expressions; loops

2. Cloud-based Jupyter Notebooks

Options:

- ► Google Collaboratory
- ► CoCalc.com (formerly Sage Math Cloud)
- Other JupyterHubs or set up your own JupyterHub (e.g., https://tljh.jupyter.org), etc.

Task: Classify data point into one of several categories.

Task: Classify data point into one of several categories.

Examples:

https://developers.google.com/machine-learning/guides/text-classification/

Task: Classify data point into one of several categories.

Examples:

https://miro.medium.com/max/960/1*HgXA9v1EsqlrRDaC_iORhQ.png

Task: Classify data point into one of several categories.

Examples:

 $\label{lem:https://www.wolfram.com/mathematica/new-in-10/enhanced-image-processing/HTMLImages.en/handwritten-digits-classification/smallthumb_10.gif$

The Project

Predict a movie's genre (romance vs. action) based on the frequencies of words.

Title	Genre	Year	Rating	XVotes	XWords	i	the	to	а	
the terminator	action	1984	8.1	183538	1849	0.04002163	0.04380746	0.02541915	0.02487831	
batman	action	1989	7.6	112731	2836	0.05148096	0.03385049	0.02397743	0.02820875	
tomorrow never dies	action	1997	6.4	47198	4215	0.02870700	0.05432977	0.03036773	0.02182681	
batman forever	action	1995	5.4	77223	3032	0.03660950	0.04221636	0.02044855	0.03100264	
supergirl	action	1984	4.1	6576	3842	0.04190526	0.03227486	0.02889120	0.02628839	
the avengers	action	1998	3.4	21519	3586	0.03680982	0.03346347	0.02481874	0.02900167	

242 rows, 5006 columns (242 movies; 6 info cols + 5000 word frequencies)

The Project

Predict a movie's genre (romance vs. action) based on the frequencies of words.

Project Components

- 0. Split data into training and test data
- "Sniff around" understand the dataset; plot some visualizations; find patterns in data
- 2. Use data to build models
 - a. "Simple Classifiers"
 - b. k-Nearest Neighbor Classifiers
- 3. Assess the models
- 4. Lightning talk presentations and written report

The Project

Predict a movie's genre (romance vs. action) based on the frequencies of words.

Project Components

- 0. Split data into training and test data
- "Sniff around" understand the dataset; plot some visualizations; find patterns in data
- 2. Use data to build models
 - a. "Simple Classifiers"
 - b. k-Nearest Neighbor Classifiers
- 3. Assess the models
- 4. Lightning talk presentations and written report

Exploring Data and Building "Simple Classifiers"

Exploring Data and Building "Simple Classifiers"

Exploring Data and Building "Simple Classifiers"

Demonstration

Sample completed project Notebook

Lightning talk progress reportsStudent presentation 1
Student presentation 2

Student Presentation 1

Initial Data Exploration

Student Presentation 1

Simple Classifier

- Majority rules model
- 3 pairs of if-else statements
- Tally up votes

```
simple_classifier <- function(patrol,charm,cia,fiance,prison,boyfriend){
        action votes <- 0
        romance votes <- 0
        if(0.0002 < patrol && 0.000125 < charm){
                action votes <- action votes + 1
        else{
                romance votes <- romance votes + 1
       if(0.000125 < cia && cia < 0.0015 && fiance < 0.000125){
                action votes <- action votes + 1
       else{
                romance votes <- romance votes + 1
        if(0.000125 < prison && prison < 0.0025 && boyfriend < 0.0008){
                action votes <- action votes + 1
        else{
                romance votes <- romance votes + 1
        if(action votes > romance votes){
            final_vote <- 1 #action movie
            final vote <- 0 #romance movie
        final vote
```

Student Presentation 2

Outline of Simple Classifier:

```
classifier <- function(kiss, love, shooter, flower, blood){
     romance points <- rep(0, length(kiss))
    romance points <- romance points + as.numeric(love >= shooter)
    romance points <- romance points + as.numeric(flower >= blood)
    romance points <- romance points + as.numeric(kiss >= blood)
    romance points <- romance points + as.numeric(kiss >= shooter)
    romance points <- romance points + as.numeric(love >= shooter)
     romance points <- romance points + as.numeric(flower >= shooter)
     romance vs action <- (romance points > 4)
     for(index in 1:length(romance vs action)){
         if(romance vs action[index]){
             romance vs action[index] <- "romance"
         }else{
             romance vs action[index] <- "action"
     return(romance vs action)
our preds <- classifier(training$kiss, training$love, training$shooter, training$flower, training$blood)
```

This project

- invites students to get their hands dirty with data
- is accessible: high-level ideas are intuitive
- allows free exploration
- has a high ceiling: room for technical and creative growth; removable scaffolding for more advanced students
- ▶ highlights course theme: Data \rightarrow Model \rightarrow Decision/Prediction.

Thank you!

Slides and lesson materials: cims.nyu.edu/~sondjaja/teaching github.com/tiasondjaja/plugplaydslessons

Email: sondjaja@nyu.edu

Acknowledgments

This project was inspired by a course project in UC Berkeley's "Data Science for Everyone" course.

Among others, we modified the project, course emphases, and goals to that of a QR course, infused a greater degree of free exploration (afforded by smaller class sizes), and adapted material from python to R .