Лекция 15. Локальные свойства голоморфных функций.

Теория функций комплексного переменного

Принцип сохранения области

Принципом сохранения области называется следующий факт.

Теорема 9.1. Пусть $U \subset \mathbb{C}$ — связное открытое множество u $f: U \to \mathbb{C}$ — голоморфная функция, не являющаяся постоянной. Тогда для всякого открытого подмножества $V \subset U$ его образ $f(V) \subset \mathbb{C}$ также открыт.

Отображения, переводящие открытые множества в открытые, в топологии называют открытыми. Таким образом, принцип сохранения области гласит, что отличное от константы голоморфное отображение, определенное на связном открытом множестве, является открытым.

• Отличие от вещественного случая! (пример: $f(x) = x^2$).

Доказательство

- Пусть $a \in U$, $f(z) = b + (z a)^k g(z)$, $k = \operatorname{ord}_a(f b)$.
- Образ маленькой окружности $\{|z-a|=\varepsilon\}$ обходит k раз вокруг точки b=f(a).
- Этот же образ окружности обходит k раз вокруг точек c, близких к точке b.
- Значит, уравнение f(z) = c имеет k > 0 решений в диске $\{|z a| < \varepsilon\}$, с учетом кратностей.

Теорема об обратной функции

Предложение 9.2 (теорема об обратной функции). Пусть f — голоморфная функция на открытом множестве $U \subset \mathbb{C}$, и пусть $f'(a) \neq 0$ в точке $a \in \mathbb{C}$. Тогда существуют такие открытые множества $U_1 \ni a$ и $V_1 \ni f(a)$, что $f(U_1) = V_1$ и f индуцирует биекцию U_1 на V_1 , причем обратное отображение $f^{-1}: V_1 \to U_1$ также голоморфно.

• Достаточно, чтобы жорданова кривая ∂U_1 отображалась в жорданову кривую ∂U_2 взаимно однозначно с сохранением ориентации. (По принципу аргумента).

Соответствующая вещественная теорема

Замечание 9.3. Предложение 9.2 немедленно следует из «теоремы об обратной функции» вещественного анализа (см. [1, гл. VIII, §6]): в самом деле, голоморфные функции автоматически непрерывно дифференцируемы, а производная f в точке a (см. раздел 1.5) есть умножение на ненулевое комплексное число, что является обратимым линейным оператором. Так как я стремился минимизировать предварительные сведения из анализа многих переменных, необходимые для чтения книги, у нас приведено независимое доказательство.

• Все же есть упрощение: в комплексном анализе не надо требовать непрерывности производной!

Индекс ветвления

- Пусть $a \in U$, $f(z) = b + (z a)^k g(z)$, $k = \operatorname{ord}_a(f b)$.
- Число k называется индексом ветвления функции f в точке a.
- При k>1 точка a называется критической точкой.
- Другими словами, f'(a) = 0.
- Но это аналитическое условие эквивалентно топологическому!

Свойства индекса ветвления

Предложение 9.5. Пусть функция f голоморфна в окрестности точки a u нu b какой ее окрестности не является константой. Положим f(a) = b, u пусть

$$f(z) = c_0 + c_1(z - a) + \dots + c_n(z - a)^n + \dots$$

- разложение f в степенной ряд в окрестности точки а. Тогда следующие три числа совпадают:
 - (1) индекс ветвления функции f в точке а;
 - (2) $\min\{k > 0: c_k \neq 0\}$;
 - (3) $\min\{k > 0 : f^{(k)}(a) \neq 0\}.$

Поведение функции в окрестности критической точки

• Мы уже фактически доказали это утверждение, когда доказывали принцип сохранения области.

Более сильное утверждение

• Другими словами, можно так выбрать голоморфные координаты в образе или в прообразе, чтобы отображение записывалось формулой $g(z)=z^k$.

Набросок доказательства

- $f(z) = b + (z a)^k g(z)$ вблизи точки a,
- $g(z) = h(z)^k$,
- $f(z) b = ((z-a)h(z))^k$,
- Положим $\alpha(z) = (z a)h(z), \ \beta(w) = w b.$

Разветвленные накрытия сферы

- Рассмотрим непрерывное отображение $f: \mathbb{S}^2 \to \mathbb{S}^2$.
- Пусть $\forall a \in \mathbb{S}^2 \ \exists \ k \in \mathbb{Z}_{>0}$, окрестности U, V точек a, b = f(a) и гомеоморфные вложения $\alpha \colon U \to \mathbb{C}, \ \beta \colon V \to \mathbb{C}$, такие, что $\beta \big(f(z) \big) = \big(\alpha(z) \big)^k$ для всех $z \in U$.
- Тогда f называется разветвленным накрытием.
- Пример: любая рациональная функция.

Голоморфная биекция биголоморфна

Предложение 9.9. Пусть $f: U \to V$ — голоморфное и биективное отображение между двумя открытыми подмножествами комплексной плоскости. Тогда производная отображения f не обращается в нуль нигде на U и обратное отображение $f^{-1}: V \to U$ также голоморфно.

• В самом деле, *f* не может быть инъекцией ни в какой окрестности критической точки (согласно локальному описанию, данному выше).

Что голоморфное отображение делает с углами

Предложение 9.10. Пусть функция f голоморфна g точке g и имеет g этой точке индекс ветвления g. Если g и g — гладкие кривые, выходящие из точки g и образующие угол g, то угол между кривыми g (g) и g (g) g точке g (g) равен g .

В лекции использованы иллюстрации и материалы из следующих источников:

- С.М. Львовский, «Принципы комплексного анализа». МЦНМО.
- https://wikipedia.org

НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ