

Lecture: Machine Learning for Data Science

Winter semester 2021/22

Lecture 13: Unsupervised learning — Clustering evaluation

Prof. Dr. Eirini Ntoutsi

Clustering topics covered in this lecture

- Partitioning-based clustering
 - □ k-Means, k-Medoids
- Hierarchical clustering
- Density-based clustering
- Grid-based clustering
- Soft clustering
- Clustering evaluation

Outline

- Intro to clustering evaluation
- Internal measures
- External measures
- Things you should know from this lecture & reading material

Cluster Validity

- In supervised learning, there is a variety of measures to evaluate how good a classifier is
 - accuracy, precision, recall, AUC, ...
- For cluster analysis, the analogous question is how to evaluate the "goodness" of the resulting clusters?
 - That is a tricky question as "clusters are in the eye of the beholder"!

Clusters found in random data

Machine Learning for Data Science: Lecture 13 - Clustering (Evaluation)

Different Aspects of Cluster Validation

- Cluster validation has different goals:
 - Determining the clustering tendency of a dataset, i.e., distinguishing whether non-random structure actually exists in the data.
 - Comparing the results of a cluster analysis to externally known results, e.g., to externally given class labels.
 - Evaluating how well the results of a cluster analysis fit the data without reference to external information.
 - Use only the data
 - Comparing the results of two different sets of cluster analyses to determine which is better.
 - Determining the 'correct' number of clusters (and other input parameters).
- Another aspect: Do we want to evaluate the entire clustering or just individual clusters?

Measures of Cluster Validity

- Numerical measures that are applied to judge various aspects of cluster validity, are classified into the following three types:
 - Internal Indices/Criteria/Validity measures: Used to measure the goodness of a clustering structure without any external information.
 - Sum of Squared Error (SSE)
 - External Indices/Criteria/Validity measures: Used to measure the extent to which cluster labels match externally supplied class labels.
 - Entropy
 - Relative Indices/Criteria/Validity measures: Used to compare two different clusterings or clusters.
 - Often an external or internal index is used for this function, e.g., SSE or entropy

Outline

- Intro to clustering evaluation
- Internal measures
- External measures
- Things you should know from this lecture & reading material

Internal measures of cluster validity

- Rely on cluster-member characteristics, no external information is available
- Examples: cohesion and separation
- Cluster Cohesion: How closely related are objects in a cluster
 - Cohesion is measured by the within cluster sum of squares (SSE)

$$WSS = \sum_{i=1}^{k} \sum_{x \in C_i} (x - c_i)^2$$

- c_i : centroid of cluster C_i ; $|C_i|$: cardinality of cluster C_i
- Cluster separation: How well-separated a cluster is from other clusters
 - Separation is measured by the between clusters sum of squares

$$BSS = \sum_{i} |C_{i}| (c - c_{i})^{2}$$

c is the overall mean of all data points

(see also k-Means)

Example

Compute cluster cohesion and cluster separation for the following example (k=2 clusters)

$$WSS = (1-1.5)^{2} + (2-1.5)^{2} + (4-4.5)^{2} + (5-4.5)^{2} = 1$$

$$BSS = 2 \times (3-1.5) + 2 \times (4.5-3)^{2} = 9$$

• What about the following example? (k=2 clusters)

$$WSS = (1-2.3)^2 + (2-2.3)^2 + (3-2.3)^2 + (5-5)^2 = 1,87$$

$$BSS = 3 \times (3-2.3) + 1 \times (3-5)^2 = 6,1$$

Machine Learning for Data Science: Lecture 13 - Clustering (Evaluation)

Internal measures of cluster validity

- A proximity graph based approach can also be used for defining cohesion and separation.
 - Cluster cohesion is the sum of the weight of all links within a cluster.
 - Cluster separation is the sum of the weights between nodes in the cluster and nodes outside the cluster.

separation

Internal Measures: Silhouette Coefficient

(already discussed in the context of *k*-Means

- Silhouette Coefficient combines ideas of cohesion and separation, for individual points, as well as for clusters and clusterings
- Silhouette coefficient of an object i (Kaufman & Rousseeuw 1990)
 - Let A be the cluster to which i belongs
 - Let a(i) the distance of object i to A (the so-called best first cluster distance)

$$a(i) := \frac{1}{|A| - 1} \sum_{j \in A, j \neq i} d(i, j)$$

= average dissimilarity of i to all other objects of A.

Let b(i) be the distance of i to its second best cluster (we denote it by B)

$$b(i) := \min_{C \neq A} \ d(i, C).$$

where

$$d(i,C) := \frac{1}{|C|} \sum_{j \in C} d(i,j)$$

= average dissimilarity of i to all objects of C.

What is the right number of clusters

The Silhouette value s(i) of the object i is given by:

$$s(i) = \frac{b(i) - a(i)}{\max\{a(i), b(i)\}}$$

- Interpreting Silhouette values
 - The closer to 1 the best

$$-1 \le s(i) \le +1$$

 $s(i) \sim -1 / 0 / +1 : bad / indifferent /good assignment$

- □ $s(i)^{\sim}1 \rightarrow a(i) < < b(i)$. Small a(i) means it is well matched to its own cluster A. Large b(i) means is badly matched to its neighboring cluster $B \rightarrow \text{good assignment}$
- □ $s(i)^{\sim}-1$ the neighbor cluster B seems more appropriate \rightarrow bad assignment
- \circ s(i)~0 \rightarrow in the border between the two natural clusters A, B \rightarrow indifferent assignment

What is the right number of clusters

- We can computer the Silhouette value of a cluster or a clustering
- The Silhouette coefficient of a cluster is the avg silhouette of all its objects
 - Is a measure of how tightly grouped all the data in the cluster are.
- The Silhouette coefficient of a clustering is the avg silhouette of all objects
 - is a measure of how appropriately the dataset has been clustered
- How to interpret the Silhouette values?
 - As before, the closer to 1.0 the best
 - □ > 0,7: strong structure, > 0,5: usable structure

Evaluating cluster and clustering quality using Silhouette plots

- The silhouette plot of a cluster A consists all its s(i) ranked in decreasing order.
- The entire silhouette plot of a clustering shows the silhouettes of all clusters below each other, so the quality of the clusters can be compared:

Outline

- Intro to clustering evaluation
- Internal measures
- External measures
- Things you should know from this lecture & reading material

External measures of cluster validity

Idea: Measure the extent to which discovered clusters match externally supplied class labels.

fruit	length	width	weight		
fruit 1	165	38	172		
fruit 2	218	39	230		
fruit 3	76	80	145		
fruit 4	145	35	150		
fruit 5	90	88	160		
fruit n	•••				

Banana Banana Orange Banana Orange

Unlabeled dataset for clustering

External labels used only for evaluation

Typical measures: entropy, purity

External measures of cluster validity

- Idea: Measure the extent to which discovered clusters match externally supplied class labels.
- In our example below, for each cluster (1-6), the distribution of its instances in the different classes (Entertainment, Financial, Foreign, Metro, National, Sports) is provided.
- Intuition: Clusters should be "pure" in terms of classes

Table 5.9.	K-means Clustering	Results for LA	Document Data Set
------------	--------------------	----------------	-------------------

Cluster	Entertainment	Financial	Foreign	Metro	National	Sports
1	3	5	40	506	96	27
2	4	7	280	29	39	2
3	1	1	1	7	4	671
4	10	162	3	119	73	2
5	331	22	5	70	13	23
6	5	358	12	212	48	13
Total	354	555	341	943	273	738

Cluster

Class distribution

External measures of cluster validity: Entropy of a cluster/ clustering

Cluster/Clustering purity is measures in terms of entropy

Table 5.9. K-	means Clustering	Results for LA	Document Data Set
---------------	------------------	----------------	-------------------

Table 5.5. It means oldstelling results for Ex Boodinent Bata Cet								
Cluster	Entertainment	Financial	Foreign	Metro	National	Sports	Entropy	Purity
1	3	5	40	506	96	27	1.2270	0.7474
2	4	7	280	29	39	2	1.1472	0.7756
3	1	1	1	7	4	671	0.1813	0.9796
4	10	162	3	119	73	2	1.7487	0.4390
5	331	22	5	70	13	23	1.3976	0.7134
6	5	358	12	212	48	13	1.5523	0.5525
Total	354	555	341	943	273	738	1.1450	0.7203

Recall the detailed discussion on entropy In classification – decision trees

Cluster

Class distribution

- Entropy of a cluster j: how pure in terms of classes a cluster is:
 - p_{ij} : the probability of observing class i in cluster j.
- Entropy of a clustering:

$$e = \sum_{j=1}^k \frac{m_j}{m} e_j$$

$$e_j = -\sum_{i=1}^L p_{ij} \log_2 p_{ij}$$

$$p_{ij} = m_{ij}/m_j$$

External measures of cluster validity: purity

Purity focuses on the most likely class in a cluster

Table 5.9. K-means Clustering Results for LA Document Data Set

Cluster	Entertainment	Financial	Foreign	Metro	National	Sports	Entropy	Purity
1	3	5	40	506	96	27	1.2270	0.7474
2	4	7	280	29	39	2	1.1472	0.7756
3	1	1	1	7	4	671	0.1813	0.9796
4	10	162	3	119	73	2	1.7487	0.4390
5	331	22	5	70	13	23	1.3976	0.7134
6	5	358	12	212	48	13	1.5523	0.5525
Total	354	555	341	943	273	738	1.1450	0.7203

Cluster

Class distribution

Purity of cluster j:

$$purity_j = max p_{ij}$$

Purity of the clustering:

$$purity = \sum_{j=1}^{k} \frac{m_j}{m} purity_j$$

A final note on cluster validity

"The validation of clustering structures is the most difficult and frustrating part of cluster analysis. Without a strong effort in this direction, cluster analysis will remain a black art accessible only to those true believers who have experience and great courage."

Algorithms for Clustering Data, Jain and Dubes

Outline

- Intro to clustering evaluation
- Internal measures
- External measures
- Things you should know from this lecture & reading material

Overview and Reading

- Clustering evaluation
- Internal measures
- External measures
- Reading
 - □ Tan P.-N., Steinbach M., Kumar V book, Chapter 8.
 - Data Clustering: A Review, https://www.cs.rutgers.edu/~mlittman/courses/lightai03/jain99data.pdf

Hands on experience

See Project 2

Thank you

Questions/Feedback/Wishes?

Acknowledgements

- The slides are based on
 - □ KDD I lecture at LMU Munich (Johannes Aßfalg, Christian Böhm, Karsten Borgwardt, Martin Ester, Eshref Januzaj, Karin Kailing, Peer Kröger, Eirini Ntoutsi, Jörg Sander, Matthias Schubert, Arthur Zimek, Andreas Züfle)
 - □ Introduction to Data Mining book slides at http://www-users.cs.umn.edu/~kumar/dmbook/
 - Thank you to all TAs contributing to their improvement, namely Vasileios Iosifidis, Damianos Melidis, Tai Le Quy, Han Tran.