MINIMAL ALGEBRAS

ARTURO

1. Preliminaries

Definition 1.1. Let F be a set of function symbols and \mathbf{A} be an algebra over F. We denote by $Clo(\mathbf{A})$ the smallest set containing

$$\{f^{\mathbf{A}}: f \in F\}$$
 and $\{\pi_i^n: A^n \to A, 1 \le i \le n, n \in \omega\}$

and closed under composition. The elements of $Clo(\mathbf{A})$ are called **term** operations. We say that two algebras \mathbf{A} and \mathbf{B} on the same carrier are **term equivalent** if $Clo(\mathbf{A}) \simeq Clo(\mathbf{B})$.

Definition 1.2. Let F be a set of function symbols and \mathbf{A} be an algebra over F. We denote by $Pol(\mathbf{A})$ the smallest set containing

- (1) $\{f^{\mathbf{A}}: f \in F\};$
- $(2) \ \{\pi_i^n: A^n \to A, 1 \le i \le n, n \in \omega\};$
- (3) the constant 0-ary operations

and closed under composition. The elements of $Pol(\mathbf{A})$ are called **polynomial** operations. We say that two algebras \mathbf{A} and \mathbf{B} on the same carrier are **polynomially** equivalent if $Pol(\mathbf{A}) \simeq Pol(\mathbf{B})$.

Example 1.3. If $\varphi \in Clo_{m+n}(\mathbf{A})$ and $(a_1, \ldots, a_m) \in A^m$, then

$$\psi: A^n \to A \quad (b_1, \dots, b_n) \mapsto \varphi(a_1, \dots, a_m, b_1, \dots, b_n)$$

is a polynomial operation.

Remark 1.4. Let **A** be an algebra. An equivalence relation α is a congruence of **A** iff $\varphi(\alpha) \subseteq \alpha$ for every $\varphi \in \text{Pol}_1(\mathbf{A})$.

Let **A** be a finite algebra. We adopt the following convention, concerning the restriction (-|U) operation, for $U \subseteq A$:

- if $\theta \in \text{Con}(\mathbf{A})$, $\theta | U := \theta \cap U^2$;
- if $\varphi: A^n \to A$, $\varphi|U$ is the function $U^n \to A$, $(u_1, \dots, u_n) \mapsto \varphi(u_1, \dots, u_n)$;
- $\operatorname{Pol}(\mathbf{A})|U := \{\psi|U : \psi \in \operatorname{Pol}(\mathbf{A}) \text{ and } \psi[U^n] \subseteq U\};$
- $\mathbf{A}||U := (U, \operatorname{Pol}(\mathbf{A})|U).$

2. Finite Minimal Algebras

Definition 2.1. A nontrivial finite algebra **A** is **minimal** iff every noncostant element of $Pol_1(\mathbf{A})$ is bijective.

The goal is to classify, up to polynomial equivalence, all the finite minimal algebras.

Example 2.2. The following are examples of minimal algebras.

- (1) any algebra with carrier 2;
- (2) a nontrivial finite vector space **A** over a finite field **k**: every $\pi \in \operatorname{Pol}_1(\mathbf{A})$ is of the form $\pi(v) = av + b$ for some $a \in k, b \in A$;
- (3) a group of permutations acting on a finite set. If **G** is a group acting on a set A each $g \in G$ induces an operation $\varphi_g : A \to A$ given by $\varphi_g(a) = g \cdot a$. Let $\Phi_{\mathbf{G}} := \{ \varphi_g : g \in G \}$. A **G**-set can be seen as an algebra $(A, \Phi_{\mathbf{G}})$.

We shall see that, up to polynomial equivalence, there are no other finite minimal algebras.

Lemma 2.3. Let \mathbf{A} be a minimal algebra. If every element of $\operatorname{Pol}(\mathbf{A})$ is essentially unary, then \mathbf{A} is polynomially equivalent to $(A, \Phi_{\mathbf{G}})$ where \mathbf{G} is a finite group acting on A.

Proof. Since **A** is minimal, $\operatorname{Pol}_1(\mathbf{A}) \cap \operatorname{Sym}(A)$ is a subgroup of $\operatorname{Sym}(A)$. Let $\mathbf{G} := \operatorname{Pol}_1(\mathbf{A}) \cap \operatorname{Sym}(A)$. If $\psi \in \operatorname{Pol}(\mathbf{A})$, either ψ is constant or ψ is essentially unary, hence $(A, \Phi_{\mathbf{G}})$ is polynomially equivalent to **A**.

Theorem 2.4 ([3]). Let **A** be a minimal algebra with |A| > 2. If Pol(**A**) contains an operation which is not essentially unary, then **A** is polynomially equivalent to a **k**-vector space for a finite field **k**.

Theorem 2.5. Every algebra **A** with carrier 2 is polynomially equivalent to one of the following:

- (1) $\mathbf{E}_0 = (2, \emptyset);$
- (2) $\mathbf{E}_1 = (2, \neg);$
- (3) $\mathbf{E}_3 = (2, \land, \lor, \neg);$
- (4) $\mathbf{E}_4 = (2, \wedge, \vee);$
- (5) $\mathbf{E}_5 = (2, \vee);$
- (6) $\mathbf{E}_6 = (2, \wedge).$

Each of them is not polynomially equivalent to the other¹.

¹A classical theorem by Post states that the set of clones of operations on 2 is countable infinite. By Theorem 2.5 among these there are exactly seven distinct clones containing the constant operations. However it has been proven that the set of clones on 3 containing the constant operations is uncountable.

Remark 2.6. Up to isomorphism, $\mathbf{E}_5(\simeq \mathbf{E}_6)$ is the only semilattice with two elements, while \mathbf{E}_3 and \mathbf{E}_4 are the only Boolean algebra and lattice, respectively, with two elements.

Definition 2.7. Let **A** be a minimal algebra. We say that **A** is of

- (1) **type 1** (or **unary**) if **A** is polynomially equivalent to $(A, \Phi_{\mathbf{G}})$ for some $\mathbf{G} \leq \operatorname{Sym}(A)$;
- (2) **type 2** (or **affine**) if **A** is polynomially equivalent to a vector space over a finite field **k**;
- (3) **type 3** (or **Boolean**) if **A** is polynomially equivalent to \mathbf{E}_3 ;
- (4) **type 4** (or **lattice**) if **A** is polynomially equivalent to \mathbf{E}_4 ;
- (5) type 5 (or semilattice) if A is polynomially equivalent to E_5 .
 - 3. Minimal Algebras Relative to a Congruence

Definition 3.1. Let **A** be a finite algebra and let $\theta \in \text{Con}(\mathbf{A})$, $\Delta_A \neq \theta$. We say that **A** is θ -minimal if for all $\varepsilon \in \text{Pol}_1(\mathbf{A})$ either ε is bijective or ε is constant on the θ -equivalence classes.

Remark 3.2. Observe that **A** is minimal iff **A** is ∇_A -minimal.

Definition 3.3. Let **A** be a θ -minimal algebra. A θ -trace of **A** is a nontrivial θ -equivalence class.

Lemma 3.4. Let **A** be a finite θ -minimal algebra and let N be a θ -trace. Then the algebra $\mathbf{A}||N|$ is minimal.

Proof. We need to show that for every

$$\psi \in \text{Pol}_1(\mathbf{A}||N) = \{\varphi|N : \varphi \in \text{Pol}_1(\mathbf{A}), \varphi[N] \subseteq N\}$$

either ψ is bijective, or ψ is constant. Let $\psi = \varphi | N$. Since **A** is θ -minimal, either φ is bijective or φ is constant on the θ -equivalence classes. Clearly, in the first case ψ is bijective, in the second ψ is constant.

Definition 3.5. Let **A** be a finite algebra and $B, C \subseteq A$. We say that B, C are **polynomially isomorphic** $(B \sim C)$ if there are $\varphi, \psi \in \operatorname{Pol}_1(\mathbf{A})$ such that $\varphi[B] = C, \psi[C] = B$ and $\psi\varphi[B = 1_B, \varphi\psi[C] = 1_C$.

Remark 3.6. If $B, C \subseteq A$ are polynomial isomorphic in \mathbf{A} , then $\mathbf{A}||B \simeq \mathbf{A}||C$. Let $\pi := \varphi|B$, so that $\pi^{-1} = \psi|C$. Of course, $\pi : B \to C$ is a bijection. We show that π is a homomorphism. Let $f \in \operatorname{Pol}_n(\mathbf{A})$ such that $f[B^n] \subseteq B$. Then $g(-,\ldots,-) := \pi f(\pi^{-1}(-),\ldots,\pi^{-1}(-)) \in \operatorname{Pol}_n(\mathbf{A})$ too, $g[C^n] \subseteq C$ and

$$\pi f(b_1,\ldots,b_n) = g(\pi(b_1,\ldots,b_n))$$

for all $b_1, \ldots, b_n \in B^n$.

Lemma 3.7. Let **A** be a θ -minimal algebra and N be a θ -trace. Then

4

- (1) $(-|N): [\Delta_A, \theta] \to \operatorname{Con}(\mathbf{A}||N)$ is a surjective lattice homomorphism;
- (2) if any two θ -traces are polynomially isomorphic, then it is an isomorphism.

Proof. Clearly, the map is well defined and preserves meets. We show that

$$(\alpha \vee \beta) \cap N^2 = (\alpha \cap N^2) \vee (\beta \cap N^2).$$

Let $(x,y) \in (\alpha \vee \beta) \cap N^2$. Then there are $x = x_0, \dots, x_{n+1} = y$ such that either $(x_i, x_{i+1}) \in \alpha$ or $(x_i, x_{i+1}) \in \beta$. We show that for each $i, (x_i, x_{i+1}) \in N^2$. Inductively, if $x_i \in N$, and, say, $(x_i, x_{i+1}) \in \alpha \subseteq \theta$, then $x_{i+1} \in N$. Now, for $\beta \in \text{Con}(\mathbf{A}||N)$, let $\hat{\beta}$ be

$$\{(x,y) \in \theta : (\psi(x),\psi(y)) \in \mathbb{N}^2 \implies (\psi(x),\psi(y)) \in \beta \quad \forall \psi \in \operatorname{Pol}_1(\mathbf{A})\}$$

Then $\hat{\beta}$ is a congruence. We show that $\hat{\beta} \cap N^2 = \beta$, proving surjectivity. If $(x,y) \in \hat{\beta}$, then $(\psi(x), \psi(y)) \in N^2 \implies (\psi(x), \psi(y)) \in \beta$ for all $\psi \in \operatorname{Pol}_1(\mathbf{A})$; if $(x,y) \in N^2$, then $(\psi(x), \psi(y)) \in N^2$. Therefore $(\psi(x), \psi(y)) \in \beta$ for all $\psi \in \operatorname{Pol}_1(\mathbf{A})$, and, taking $\psi(x) = x$, $(x,y) \in \beta$. Conversely, let $(x,y) \in \beta$. As $\beta \subseteq N^2 \subseteq \theta$, $(x,y) \in \theta$. Let $\psi \in \operatorname{Pol}_1(\mathbf{A})$. If $(\psi(x), \psi(y)) \in N^2$, then $\psi \in \operatorname{Pol}_1(\mathbf{A}||N)$. Since $\beta \in \operatorname{Con}(\mathbf{A}||N)$, $(\psi(x), \psi(y)) \in \beta$.

We need to prove injectivity. Let $\alpha < \beta \leq \theta$. Let $(x,y) \in \beta - \alpha$. Then $(x,y) \in \theta$ and $P := x/\theta$ is a θ -trace. Since P is polynomially isomorphic to N, there is $\psi \in \operatorname{Pol}_1(\mathbf{A})$ such that

$$\psi[P] = \psi[x/\theta] = \{\psi(z) : (x, z) \in \theta\} = N.$$

Then, $(\psi(x), \psi(y)) \in \theta \cap N^2$. Also, $(\psi(x), \psi(y)) \in \beta - \alpha$, so that $(\psi(x), \psi(y)) \in \beta | N - \alpha | N$ and $\alpha | N / < \beta | N$.

Lemma 3.8. Let **A** be a θ -minimal algebra with $\Delta_A \prec \theta$. Let N, K be two θ -traces. Then N and K are polynomially isomorphic.

Proof. Since $\Delta_A \prec \theta$, $\theta_{\mathbf{A}}(N) = \theta$. But $\theta_{\mathbf{A}}(N)$ is the transitive closure of the relation $\{(\psi(x), \psi(y)) : (x, y) \in N^2, \psi \in \operatorname{Pol}_1(\mathbf{A})\}$. Then, as K is a θ -class, there is $\varphi \in \operatorname{Pol}_1(\mathbf{A})$ such that $\varphi[N] \cap K \neq \varnothing$ and φ is not constant on N. This implies that $\varphi \in \operatorname{Sym}(A)$, so that $\varphi[N] = K$. Similarly, there is $\psi \in \operatorname{Pol}_1(\mathbf{A}) \cap \operatorname{Sym}(A)$ such that $\psi[N] = K$. Now, $\psi \varphi \in \operatorname{Sym}(A)$, hence $(\psi \varphi)^k = 1_A$ for some k > 0. The polynomials $\varphi(\psi \varphi)^{k-1}$ and ψ witness that $N \sim K$.

4. Minimal Algebras Relative to a Pair

Definition 4.1. Let **A** be a finite algebra and let $\delta < \theta \in \text{Con}(\mathbf{A})$. We say that **A** is (δ, θ) -minimal if for all $\varepsilon \in \text{Pol}_1(\mathbf{A})$ either ε is bijective or $\varepsilon(\theta) \subseteq \delta$.

Remark 4.2. Observe that **A** is minimal iff **A** is (Δ, ∇) -minimal.

Definition 4.3. Let **A** be a (δ, θ) -minimal algebra. An (α, β) -trace of **A** is a β -equivalence class which contains at least two α -equivalence classes.

Lemma 4.4. Let **A** be a finite (δ, θ) -minimal algebra and let N be a (δ, θ) -trace. Then the algebra $(\mathbf{A}||N)/(\delta|N)$ is minimal.

Proof. We need to show that for every

$$\psi \in \operatorname{Pol}_1((\mathbf{A}||N)/(\delta|N)) = \{(\varphi|N)/(\delta|N) : \varphi \in \operatorname{Pol}_1(\mathbf{A}), \varphi[N] \subseteq N\}$$

either ψ is bijective, or ψ is constant. Let $\psi = (\varphi|N)/(\delta|N)$. Since **A** is (δ, θ) -minimal, either φ is bijective or $\varphi(\theta) \subseteq \delta$. Clearly, if φ is bijective, ψ is bijective. If $\varphi(\theta) \subseteq \delta$, ψ is constant: if $(x,y) \in N^2 \subseteq \theta$, then $(\psi(x), \psi(y)) \in \delta$ so that $\psi(x) = \psi(y)$ in $(\mathbf{A}||N)/(\delta|N)$.

Therefore, with an abuse of language, we shall refer unambiguously to the type of N as the type of $(\mathbf{A}||N)/(\delta|N)$.

Theorem 4.5. Let **A** be a (δ, θ) -minimal algebra. Then all (δ, θ) -traces of **A** have the same type.

Definition 4.6. Let **A** be a finite (δ, θ) -minimal algebra. We say that **A** is of type **i** relative to (δ, θ) if each (δ, θ) -trace of **A** is of type **i**.

Lemma 4.7. Let **A** be a (δ, θ) -minimal algebra and N be a (δ, θ) -trace. Then

- (1) there is a surjective lattice homomorphism $[\delta, \theta] \to \text{Con}((\mathbf{A}||N)/(\delta|N));$
- (2) if any two (δ, θ) -traces are polynomially isomorphic, then it is an isomorphism.

Proof. The first part immediately follows from Lemma 3.7. The second is very similar. Let $\delta \leq \alpha < \beta \leq \theta$. Let $(x,y) \in \beta - \alpha$. Then $(x,y) \in \theta - \delta$ and $P := x/\theta$ is a (δ,θ) -trace. Since P is polynomially isomorphic to N, there is $\psi \in \operatorname{Pol}_1(\mathbf{A})$ such that

$$\psi[P] = \psi[x/\theta] = \{\psi(z) : (x, z) \in \theta\} = N.$$

Then, $(\psi(x), \psi(y)) \in (\theta - \delta) \cap N^2$. Also, $(\psi(x), \psi(y)) \in \beta - \alpha$, so that $(\psi(x), \psi(y)) \in \beta \mid N - \alpha \mid N$ and $\alpha \mid N \mid \delta \mid N < \beta \mid N \mid \delta \mid N$.

The following is an example of a sufficient condition that guarantees that the lattices $[\delta, \theta]$ and $\text{Con}((\mathbf{A}||N)/(\delta|N))$ are isomorphic.

Lemma 4.8. Let **A** be a (δ, θ) -minimal algebra with $\delta \prec \theta$. Let N, K be two (δ, θ) -traces. Then N and K are polynomially isomorphic.

Proof. Since $\delta \prec \theta$, $\delta \vee \theta_{\mathbf{A}}(N) = \theta$. Then there is $\varphi \in \operatorname{Pol}_1(\mathbf{A})$ such that $\varphi[N] \cap K \neq \emptyset$ and $\varphi[N]^2 \nsubseteq \delta$. This implies that $\varphi \in \operatorname{Sym}(A)$, so that $\varphi[N] = K$ and $N \sim K$.

5. Tame Congruences

Definition 5.1. Let **A** be a finite algebra and $\alpha, \beta \in \text{Con}(\mathbf{A})$ with $\alpha < \beta$. We denote by

- (1) $E(\mathbf{A})$ the set of $\varepsilon \in Pol_1(\mathbf{A})$ such that $\varepsilon^2 = \varepsilon$;
- (2) $U_{\mathbf{A}}(\alpha, \beta)$ the set $\{\varphi[A] : \varphi \in \operatorname{Pol}_{1}(\mathbf{A}), \varphi(\beta) \not\subseteq \alpha\}$;

(3) $M_{\mathbf{A}}(\alpha, \beta)$ the set of minimal (with respect to the inclusion relation) elements of $U_{\mathbf{A}}(\alpha, \beta)$.

Remark 5.2. A finite algebra \mathbf{A} is (α, β) -minimal iff $A \in \mathbf{M}_{\mathbf{A}}(\alpha, \beta)$. If \mathbf{A} is (α, β) -minimal, every $\psi \in \mathbf{M}_{\mathbf{A}}(\alpha, \beta)$ such that $\psi(\alpha) \nsubseteq \beta$ is bijective. Clearly $A \in \mathbf{U}_{\mathbf{A}}(\alpha, \beta)$, as witnessed by $\varepsilon(x) = x$. If there were $\psi \in \mathrm{Pol}_1(\mathbf{A})$ with $\psi(\alpha) \nsubseteq \beta$ and $\psi[A] \subset A$ we would contradict (α, β) -minimality. Conversely, let $A \in \mathbf{M}_{\mathbf{A}}(\alpha, \beta)$ and $\psi \in \mathrm{Pol}_1(\mathbf{A})$ with $\psi(\alpha) \nsubseteq \beta$; we show that $\psi \in \mathrm{Sym}(A)$. But by definition of $\mathbf{M}_{\mathbf{A}}(\alpha, \beta)$, there is no $\psi \in \mathrm{Pol}_1(\mathbf{A})$ with $\psi(\alpha) \nsubseteq \beta$ and $\psi[A] \subset A$.

Lemma 5.3. Let $\varepsilon \in E(\mathbf{A})$, $U := \varepsilon[A]$, and $\emptyset \neq N \subseteq U$. Then $\mathbf{A}||N = (\mathbf{A}||U)||N$.

Proof. That $(\operatorname{Pol}(\mathbf{A})|U)|N \subseteq \operatorname{Pol}(\mathbf{A})|N$ is obvious. Conversely, let $\psi = \varphi|N$ for some $\varphi \in \operatorname{Pol}(\mathbf{A})$ with $\varphi[N^k] \subseteq N$. Clearly, $\varepsilon \varphi[U^k] \subseteq U$. If $(a_1, \ldots, a_k) \in N$, $\varphi(a_1, \ldots, a_k) \in N \subseteq U$, hence $\varphi(a_1, \ldots, a_k) = \varepsilon(a)$ for some $a \in A$. Hence $\varepsilon \varphi(a_1, \ldots, a_k) = \varepsilon^2(a) = \varepsilon(a) \in N$ so that $(\varepsilon \varphi|U)|N = \varphi|N$. We have shown that ψ is an operation of $(\mathbf{A}||U)||N$.

Definition 5.4. Let **A** be a finite algebra and $\alpha, \beta \in \text{Con}(\mathbf{A})$ with $\alpha < \beta$. The pair (α, β) is a pair of **tame** congruences if there is $V \in M_{\mathbf{A}}(\alpha, \beta)$, $\varepsilon \in E(\mathbf{A})$ such that $\varepsilon[A] = V$ and $(-|V|) : [\alpha, \beta] \to [\alpha|V, \beta|V]$ is 0, 1-separating

A lattice homomorphism $\alpha: \mathbf{L} \to \mathbf{N}$ is 0,1-separating if $\alpha^{-1}[\{\alpha(i)\}] = i$ for i = 0, 1.

Theorem 5.5. Let (α, β) be a tame pair of congruences of a finite algebra **A**. For every $U \in M_{\mathbf{A}}(\alpha, \beta)$,

- (1) there is $\varepsilon \in E(\mathbf{A})$ such that $\varepsilon[A] = U$;
- (2) $(-|U): [\alpha, \beta] \to \operatorname{Con}(\mathbf{A}||U)$ is a surjective lattice homomorphism which is 0, 1-separating;
- (3) $\mathbf{A}||U|$ is $(\alpha|U,\beta|U)$ -minimal.
- (4) Moreover, any two (α, β) -minimal sets are polynomially isomorphic.

Proof. (1) Since (α, β) is tame, there is $V_0 \in \mathcal{M}_{\mathbf{A}}(\alpha, \beta)$ and $\varepsilon_0 \in \mathcal{E}(\mathbf{A})$ such that $V_0 = \varepsilon_0[A]$ and $(-|V_0|)$ is 0, 1-separating.

Claim 1. If $(x,y) \in \beta - \alpha$, there is $\varphi \in \text{Pol}_1(\mathbf{A})$ with $\varphi[A] = V_0$ and such that $(\varphi(x), \varphi(y)) \in \beta | V_0 - \alpha | V_0$.

Proof. Let $\theta := \{(x,y) \in \beta : (\varepsilon_0 \varphi(x), \varepsilon_0 \varphi(y)) \in \alpha \text{ for all } \varphi \in \text{Pol}_1(\mathbf{A})\}$. Now, $\theta \in [\alpha, \beta]$ and $\alpha | V_0 = \theta | V_0$; that $\alpha | V_0 \subseteq \theta | V_0$ is obvious, for the converse:

$$\theta|V_{0} = \{(a,b) \in \beta \cap V_{0}^{2} : (\varepsilon_{0}\varphi(a), \varepsilon_{0}\varphi(b)) \in \alpha \quad \forall \varphi \in \operatorname{Pol}_{1}(\mathbf{A})\}$$

$$= \{(\varepsilon_{0}(x), \varepsilon_{0}(y)) \in \beta : (\varepsilon_{0}\varphi\varepsilon_{0}(x), \varepsilon_{0}\varphi\varepsilon_{0}(y)) \in \alpha \quad \forall \varphi \in \operatorname{Pol}_{1}(\mathbf{A})\}$$

$$\subseteq \{(\varepsilon_{0}(x), \varepsilon_{0}(y)) \in \beta : (\varepsilon_{0}(x), \varepsilon_{0}(y)) \in \alpha\}$$

$$= \{(a,b) \in \beta : (a,b) \in \alpha \cap V_{0}^{2}\}$$

$$= \alpha|V_{0}$$

This implies that $\theta = \alpha$, since $(-|V_0|)$ is 0-separating. Thus $(x,y) \in \beta - \alpha$ implies $(x,y) \in \beta - \theta$. By definition of θ , there is $\psi \in \operatorname{Pol}_1(\mathbf{A})$ such that $(\varepsilon_0 \psi(x), \varepsilon_0 \psi(y)) \notin \alpha$. Thus $\varphi := \varepsilon_0 \psi$ satisfies the conditions $\varphi[A] \subseteq V_0$ and $(\varphi(x), \varphi(y)) \in \beta |V_0 - \alpha| V_0$. Hence $\varphi[A] = V_0$ by (α, β) -minimality.

Claim 2. The relation β is the transitive closure of

$$\alpha \cup \{(\psi(x), \psi(y)) : (x, y) \in \beta | V_0, \psi \in \operatorname{Pol}_1(\mathbf{A}) \}.$$

Proof. The transitive closure of $\alpha \cup \{(\psi(x), \psi(y)) : (x, y) \in \beta | V_0, \psi \in \operatorname{Pol}_1(\mathbf{A})\}$ is $\alpha \vee \theta_{\mathbf{A}}(\beta | V_0)$. But $\alpha \vee \theta_{\mathbf{A}}(\beta | V_0) \in [\alpha, \beta]$, and therefore, since $(-|V_0|)$ is 1-separating, $\beta = \alpha \vee \theta_{\mathbf{A}}(\beta | V_0)$.

Assume that $U \in M_{\mathbf{A}}(\alpha, \beta)$. Then, by definition, there is $\mu \in \operatorname{Pol}_1(\mathbf{A})$ such that $\mu[A] = U$ and $\mu(\beta) \nsubseteq \alpha$. This implies that the equivalence relation

$$\mu^{-1}(\alpha) = \{(a,b) : (\mu(a), \mu(b)) \in \alpha\}$$

is such that $\beta \nsubseteq \mu^{-1}(\alpha)$. Then by Claim 2 there are $a,b \in V_0$ and $\psi \in \operatorname{Pol}_1(\mathbf{A})$ such that $(a,b) \in \beta$ and $(\mu\psi(a),\mu\psi(b)) \notin \alpha$. The function $\mu_1 := \mu\psi\varepsilon_0$ satisfies $\mu_1[A] \subseteq U$ and $\mu_1(\beta) \nsubseteq \alpha$: there are $x,y \in A$ such that $(a,b) = (\varepsilon_0(x),\varepsilon_0(y)) \in \beta$ but $(\mu_1(a),\mu_1(b)) = (\mu\psi\varepsilon_0(x),\mu\psi\varepsilon_0(y)) \notin \alpha$. Thus $\mu_1[A] = U$ by (α,β) -minimality. Observe that $\mu_1[V_0] = \mu_1\varepsilon_0[A] = \mu\psi\varepsilon_0^2[A] = \mu_1[A]$, so that $\mu_1[V_0] = U$. Apply Claim 1 to the pair $(\mu_1(a),\mu_1(b))$ to get $\nu \in \operatorname{Pol}_1(\mathbf{A})$ such that $\nu[A] = V_0$ and $(\nu\mu_1(a),\nu\mu_1(b)) \notin \alpha$. Now, since $\mu_1\nu[A] = \mu_1[V_0] = U$, $\mu_1\nu[U]$ is bijective; since U is finite, there is k > 1 such that $(\mu_1\nu|U)^k = (\mu_1\nu)^k|U = 1_U$. Let $\varepsilon := (\mu_1\nu)^k$. We have: $\varepsilon[A] = (\mu_1\nu)^k[A] = (\mu_1\nu)^{k-1}[U] = U$ and, consequently, for all $a \in A$, $\varepsilon^2(a) = \varepsilon(a)$ since $\varepsilon(a) \in U$. Therefore $\varepsilon \in \mathbf{E}(\mathbf{A})$.

(2) Clearly, the map is well defined and preserves meets. For $\theta \in [\alpha | U, \beta | U]$, let

$$\hat{\theta} = \{(x, y) \in \beta : (\varepsilon \varphi(x), \varepsilon \varphi(y)) \in \theta \text{ for all } \varphi \in \text{Pol}_1(\mathbf{A})\}$$

The relation $\hat{\theta}$ is an equivalence relation. If $(x,y) \in \hat{\theta}$ and $\psi \in \text{Pol}_1(\mathbf{A})$, then $(\psi(x), \psi(y)) \in \hat{\theta}$ so that $\hat{\theta} \in [\alpha, \beta]$. missing

- (4) In the above notation, let $\varphi := \nu$, $\psi := (\mu_1 \nu)^{k-1} \mu_1$. Then $\varphi[U] = V_0$, $\psi[V_0] = U$ and $\psi \varphi[U = 1_U, \varphi \psi] V_0 = 1_{V_0}$. Then fact that any (α, β) -minimal set is polynomially isomorphic to V_0 implies that any two (α, β) -minimal sets are polynomially isomorphic.
- (3) Let $\varphi \in \operatorname{Pol}_1(\mathbf{A}||U) = \{\psi|U : \psi \in \operatorname{Pol}_1(\mathbf{A}), \psi[U] \subseteq U\}$. We need to show that if $\varphi(\beta|U) \not\subseteq \alpha|U$, then $\varphi \in \operatorname{Sym}(U)$. If $\varphi(\beta|U) \not\subseteq \alpha|U$, then in particular $\psi(\beta) \not\subseteq \alpha$, so that, by (α, β) -minimality, $U \subseteq \psi[A]$. Let $\varepsilon \in \operatorname{E}(\mathbf{A})$ such that $\varepsilon[A] = U$ Now, $\varphi(\beta|U) \not\subseteq \alpha|U$ is equivalent $\psi\varepsilon(\beta) \not\subseteq \alpha$, and $\psi\varepsilon[A] \subseteq U$. Then by (α, β) -minimality, $U = \psi\varepsilon[A] = \psi[U]$.

Definition 5.6. Let (α, β) be tame in a finite algebra **A**. An (α, β) -trace* of **A** is $N \subseteq A$ such that for some $U \in \mathcal{M}_{\mathbf{A}}(\alpha, \beta)$ and $x \in U$, $N \subseteq U$ and $N = x/(\beta|U) \neq x/(\alpha|U)$. That is, N is an $(\alpha|U, \beta|U)$ -trace of the minimal algebra $\mathbf{A}||U$.

Definition 5.7. Let (α, β) be tame in a finite algebra **A**. Let $\delta, \theta \in \text{Con}(\mathbf{A})$. Let K be a class of algebras. We define

FIGURE 1. The lattice \mathbf{D}_1 .

(1) the **type** of (α, β) , written $\operatorname{typ}(\alpha, \beta)$, to be the type of $\mathbf{A}||U|$ relative to $(\alpha|U, \beta|U)$;

- (2) $typ{\delta, \theta} := \{typ(\alpha, \beta) : \delta \le \alpha \prec \beta \le \beta\};$
- (3) $typ{A} := typ{\Delta_A, \nabla_A};$
- (4) $typ\{K\} := \bigcup \{typ\{A\} : A \in K_{fin}\}.$

Remark 5.8. If (Δ, ∇) in Con(**A**) is tame, then $\operatorname{typ}(\Delta, \nabla)$ coincides with $\operatorname{typ}(\mathbf{A})$ of Definition 2.7.

Lemma 5.9. Let (α, β) be tame in a finite algebra **A**. For every (α, β) -trace* of **A**, the algebra $(\mathbf{A}||N)/(\alpha|N)$ is minimal and $\operatorname{typ}(\alpha, \beta) = \operatorname{typ}((\mathbf{A}||N)/(\alpha|N))$.

Proof. Let U be any (α, β) -minimal set and N be an $(\alpha|U, \beta|U)$ -trace. The algebra $\mathbf{A}||U$ is minimal relative to $(\alpha|U, \beta|U)$. By Lemma 5.3 $\mathbf{A}||N = (\mathbf{A}||U)||N$ and consequently $(\mathbf{A}||N)/(\alpha|N) = ((\mathbf{A}||U)||N)/((\alpha|U)|N)$. The type of $\mathbf{A}||U$ relative to $(\alpha|U, \beta|U)$ is, by definition, the type of the minimal algebra $\mathbf{M} := ((\mathbf{A}||U)||N)/((\alpha|U)|N)$; but M is the only (Δ_M, ∇_M) -trace of \mathbf{M} , hence this is typ(\mathbf{M}).

6. Congruence Lattice Conditions for Omitting Type One

Definition 6.1. A lattice L is meet semi-distributive if it satisfies

$$(SD(\land)) \qquad \qquad a \land b = a \land c \implies a \land b = a \land (b \lor c)$$

for all $a, b, c \in L$. A lattice **L** is **join semi-distributive** if it satisfies $SD(\vee)$.

The smallest lattice satisfying $SD(\vee)$ but not $SD(\wedge)$ is called \mathbf{D}_1 and it is depicted in Figure 6.

Lemma 6.2. Let **A** be a finite algebra. Suppose that there are $\delta_1, \delta_2, \delta_3 \in \text{Con}(\mathbf{A})$ such that $\text{Con}(\mathbf{A})$ contains an isomorphic copy of \mathbf{D}_1 , like the fugure below. If $0_{\mathbf{D}_1} \prec \alpha \leq \delta_2$, then $\text{typ}(0_{\mathbf{D}_1}, \alpha) = \mathbf{1}$.

Definition 6.3. Let **A** be a finite algebra. A 1-snag is a pair (a, b) of distinct elements of A such that for some $\varphi \in \operatorname{Pol}_2(\mathbf{A})$

$$\varphi(a,b) = \varphi(b,a) = a \quad \varphi(b,b) = b.$$

A 2-snag is a pair (a, b) of distinct elements of A such that for some $\varphi \in Pol_2(\mathbf{A})$

$$\varphi(a,b) = \varphi(b,a) = \varphi(a,a) = a \quad \varphi(b,b) = b.$$

We denote by $Sn_1(\mathbf{A})$ and $Sn_2(\mathbf{A})$ the set of 1-snags and 2-snags, respectively.

Remark 6.4. If (a,b) is a 2-snag as witnessed by φ , then $\{a,b\}$ is closed under φ and it is a semilattice.

Definition 6.5. Let **A** be a finite algebra. For $\gamma, \delta \in \text{Con}(\mathbf{A})$ we let

$$\gamma \approx \delta \iff \gamma \cap \operatorname{Sn}_1(\mathbf{A}) = \delta \cap \operatorname{Sn}_1(\mathbf{A})$$

$$\gamma \sim \delta \iff \gamma \cap \operatorname{Sn}_2(\mathbf{A}) = \delta \cap \operatorname{Sn}_2(\mathbf{A})$$

Theorem 6.6. Let **A** be a finite algebra. The relations \sim and \approx are congruences of $\mathbf{L} := \operatorname{Con}(\mathbf{A})$. The quotient lattice \mathbf{L}/\sim is meet semi-distributive.

Definition 6.7. Let K be a class of algebras. We define $Con(K) := \{Con(\mathbf{A}) : \mathbf{A} \in K\}$.

Theorem 6.8. Let V be a locally finite variety. The following are equivalent:

- (1) $1 \notin \text{typ}\{V\};$
- (2) $\mathbf{D}_1 \notin IS(\operatorname{Con}(\mathsf{V}));$
- (3) for every $\mathbf{A} \in V$ there is a congruence θ of $\mathbf{L} := \operatorname{Con}(\mathbf{A})$ such that \mathbf{L}/θ is meet semi-distributive and for all $a \in L$, a/θ is modular;
- (4) for every $\mathbf{A} \in V$, if $\alpha, \beta \in \operatorname{Con}(\mathbf{A})$ are such that $\alpha \sim \beta$, then $\alpha \circ \beta = \beta \circ \alpha$;
- (5) there is an idempotent term t such that for every $\mathbf{A} \in V$, if $\Delta_A \sim \theta \in \mathrm{Con}(\mathbf{A})$, then

$$t^{\mathbf{A}}(a,b,b) = a \quad t^{\mathbf{A}}(a,a,b) = b$$

for all $(a,b) \in \theta$, i.e. t is a Mal'cev term on the θ -equivalence classes.

7. SYNTACTIC CONDITIONS FOR OMITTING TYPE ONE

Definition 7.1. Let V be a variety. An algebra $A \in V$ is called

- (1) **free** if there is an isomorphism $\mathbf{A} \simeq \mathbf{F}_{\mathsf{V}}(\kappa)$ for some cardinal κ ;
- (2) **finitely generated** if there is a surjective homomorphism $\mathbf{F}_{\mathsf{V}}(n) \to \mathbf{A}$ for some $n \in \omega$.

Definition 7.2. A variety V is called

- (1) **locally finite** if all its finitely generated algebras are finite;
- (2) **finitely presented** if V has a finite set of function symbols and $V = Alg(\Sigma)$ for a finite set of equations Σ ;
- (3) finitely generated if $V = V(\mathbf{A}_1, \dots, \mathbf{A}_n)$ for $\mathbf{A}_1, \dots, \mathbf{A}_n$ finite similar algebras;
- (4) **linear** if there is a set of equations defining V containing at most one function symbol per side.

Remark 7.3. Observe that $V(\mathbf{A}_1, \dots, \mathbf{A}_n) = V(\mathbf{A}_1 \times \dots \times \mathbf{A}_n)$.

Lemma 7.4. Let V be a variety. If V is finitely generated then it is locally finite.

Proof. By the previous remark, we can assume that $V = V(\mathbf{A})$ for some \mathbf{A} finite. Let $n < \omega$. We prove that $\mathbf{F}_{V}(n)$ is finite. Consider the homomorphism

$$\mathbf{F}_{\mathsf{V}}(n) \to \mathbf{A}^{A^n}, \quad t(x_1, \dots, x_n) \mapsto t^{\mathbf{A}}$$

This homomorphism is injective: if $t^{\mathbf{A}} = s^{\mathbf{A}}$, then $\mathbf{A} \models t \equiv s$, i.e. t = s in $\mathbf{F}_{\mathsf{V}}(n)$. Thus $\mathbf{F}_{\mathsf{V}}(n)$ is finite.

Definition 7.5. Let V and W be two varieties. We say that V is **interpretable** into W $(V \le W)$ if there is a clone homomorphism $Clo(V) \to Clo(W)$.

Remark 7.6. Let W, V be two varieties. We unravel what $V \leq W$ means in a simple case, that is when V is finitely presented. Let F be a finite set of function symbols. Let V be a variety of algebras over F, defined by the equations

$$(\star) s_1 \equiv t_1, \dots, s_k \equiv t_k.$$

Assume that for each $f \in F_n$ there is $t \in Clo_n(W)$ such that the interpetation of the t's satisfy the equations (\star) . Then the assignment $f \mapsto t$ extends to a clone homomorphism $Clo(V) \to Clo(W)$. Of course, the converse also holds; thus this is equivalent to $V \leq W$.

Lemma 7.7. Let \mathbf{M} be finite minimal algebra of type $\mathbf{1}$. Let $\mathbf{A} = (M, \operatorname{Pol}(\mathbf{M}))$. Then $V(\mathbf{A})$ contains a finite algebra \mathbf{S} all of whose polynomials are constant or projections.

Proof. Let $\mathbf{G} := \operatorname{Sym}(M) \cap \operatorname{Pol}_1(\mathbf{M})$, subgroup of $\operatorname{Sym}(M)$. Let $u, v \in M, u \neq v$ and let

$$D := \{ (\sigma(u), \sigma(v)) : \sigma \in \mathbf{G} \} \cup \{ (\sigma(v), \sigma(u)) : \sigma \in \mathbf{G} \}$$

Since **M** is minimal with $typ(\mathbf{M}) = \mathbf{1}$, every polynomial ψ is constant or there is i, $\sigma \in \mathbf{G}$ such that

$$\psi(a_1,\ldots,a_n)=\sigma(a_i).$$

This implies that \mathbf{D} is a subalgebra of \mathbf{A}^2 . Let

$$((x_1, x_2), (y_1, y_2)) \in \theta \iff \sigma(x_i) = y_i \text{ for some } \sigma \in \mathbf{G}$$

We show that every term operation of \mathbf{D}/θ is either constant or a projection. Let $\psi \in \operatorname{Pol}_n(\mathbf{M})$ non constant and $(a_i, b_i) \in D$ for $i = 1, \ldots, n$. Then there is $\tau \in \mathbf{G}$ such that

$$\psi((a_1, b_1)/\theta, \dots, (a_n, b_n)/\theta) = \psi((a_1, b_1), \dots, (a_n, b_n))/\theta$$

$$= (\psi(a_1, \dots, a_n), \psi(b_1, \dots, b_n))/\theta$$

$$= (\tau(a_i), \tau(b_i))/\theta$$

$$= (a_i, b_i)/\theta.$$

Lemma 7.8. Let W, V be two varieties such that $W \leq V$. Assume that W is

- *idempotent*;
- finitely presented;
- linear.

Let $\mathbf{A} \in V$, $\varepsilon \in \mathrm{E}(\mathbf{A})$, $U := \varepsilon[A]$, $\beta \in \mathrm{Con}(\mathbf{A})$ and $N := a/\beta \cap U$ for $a \in U$. Then $\mathsf{W} \leq V(\mathbf{A}||N)$. Moreover, if $\mathbf{1} \in \mathrm{typ}\{\mathsf{V}\}$, then $\mathsf{W} \leq \mathsf{Set}$.

Proof. By assumption W can be described by a finite set of equations of the form

(1)
$$f_i(x_{i_1}, \dots, x_{i_h}) \equiv f_j(x_{j_1}, \dots, x_{j_k})$$

where f_i and f_j are members of a finite set F of function symbols. Since $\mathsf{W} \leq \mathsf{V}$, there is an assignment $f \mapsto t$ extending to a clone homomorphism. We need to find a clone homomorphism $\mathsf{Clo}(\mathsf{W}) \to \mathsf{Clo}(\mathsf{A}||N)$. Consider $f \mapsto \varphi := \varepsilon t^{\mathsf{A}}|N$. Firstly, it is well defined: if $(a_1, \ldots, a_n) \in N$, $(\varphi(a_1, \ldots, a_n), \varphi(a_1, \ldots, a_n)) \in \beta$ but

$$\varphi(a,\ldots,a) = \varepsilon t^{\mathbf{A}}(a,\ldots,a) = \varepsilon(a) = a \in U$$

so that $\varphi(a_1,\ldots,a_n)\in N$ and therefore $\varphi\in\operatorname{Pol}(\mathbf{A})|N$. Finally, using that $\mathsf{W}\leq\mathsf{V}$, for every $a_{i_1},\ldots,a_{i_k},a_{j_1},\ldots,a_{j_k}\in N$

$$\varphi_i(a_{i_1}, \dots, a_{i_h}) = \varepsilon t_i^{\mathbf{A}}(a_{i_1}, \dots, a_{i_h})$$
$$= \varepsilon t_j^{\mathbf{A}}(a_{j_1}, \dots, a_{j_k})$$
$$= \varphi_j(a_{j_1}, \dots, a_{j_k}).$$

If $1 \in \text{typ}\{V\}$, then there is $A \in V$ and $\alpha \prec \beta \in \text{Con}(A)$ such that $\text{typ}(\alpha, \beta) = 1$. Without loss of generality we can assume that $\alpha = \Delta_A$. Let N be a (Δ_A, β) -trace*. Then there are $\varepsilon \in \text{E}(A)$, $U := \varepsilon[A]$ such that $N = a/\beta \cap U$ for some $a \in U$. Thus $W \leq V(A||N)$. The algebra A||N is minimal of type $\text{typ}(\Delta_A, \beta) = 1$. Hence by

Lemma 7.7 there is $\mathbf{S} \in V(\mathbf{A}||N)$ such that every term operation of \mathbf{S} is constant or a projection. Then there is a clone homomorphism $\mathrm{Clo}(\mathbf{A}||N) \to \mathrm{Clo}(\mathbf{S})$. Since $\mathsf{W} \leq V(\mathbf{A}||N)$ there is a clone homomorphism $\mathrm{Clo}(\mathsf{W}) \to \mathrm{Clo}(\mathbf{A}||N)$. Thus we get a clone homomorphism $\mathrm{Clo}(\mathsf{W}) \to \mathrm{Clo}(\mathbf{S})$. But for every $f \in F$, W satisfies $f(x,\ldots,x) \equiv x$, hence the image of f through this clone homomorphism cannot be but a projection. This implies that $\mathsf{W} \leq \mathsf{Set}$.

Lemma 7.9. Let V be an idempotent variety over the set of function symbols F. Then the following are equivalent:

- (1) **V** ≰ Set;
- (2) there is an idempotent, finitely presented, linear variety W such that $W \leq V$ but $W \nleq Set$;
- (3) F is nonempty and V satisfies the equations

$$f(x_{11},\ldots,x_{1n}) \equiv f(y_{11},\ldots,y_{1n})$$

 $(\triangle) \qquad \vdots \qquad \qquad \vdots \qquad \qquad f(x_{n1}, \dots, x_{nn}) \equiv f(y_{n1}, \dots, y_{nn})$

for some n > 0 and $x_{ii} \neq y_{ii}$.

Proof. Firstly, we prove that (3) implies (2). Let W be the variety over $\{f\}$ defined by the equations (\triangle). Then W is idempotent, finitely presented and linear. Clearly, $W \leq V$ but $W \nleq Set$.

The implication " $(2) \implies (1)$ " is obvious.

If
$$V \nleq Set$$

Theorem 7.10. Let V be a locally finite variety. The following are equivalent:

- (1) $\mathbf{1} \notin \operatorname{typ}\{V\};$
- (2) there is an idempotent variety W such that $W \leq V$ and $W \nleq Set$.
- (3) there is m > 0 such that for every $\mathbf{A} \in V$, $\alpha, \beta, \gamma \in \text{Con}(\mathbf{A})$

$$\alpha \wedge (\beta \circ \gamma) \leq \gamma_m \circ \beta_m$$

where

$$\begin{cases} (\beta_0, \gamma_0) = (\beta, \gamma) \\ (\beta_{n+1}, \gamma_{n+1}) = (\beta \vee (\alpha \wedge \gamma_n), \gamma \vee (\alpha \wedge \beta_n)) \end{cases}$$

Proof. (2) \Longrightarrow (1): if there is W idemportent such that $W \nleq Set$, then there is W' idempotent, finitely presented, linear such that $W' \leq W$, $W' \nleq Set$ by Lemma 7.9. Assume that $\mathbf{1} \in \operatorname{typ} V$, then by Lemma 7.8, $W' \leq Set$. Absurd.

(1) \Longrightarrow (3): consider the algebra $\mathbf{F}_{\mathsf{V}}(x,y,z) \in \mathsf{V}$. Let $\alpha := \theta(x,z), \beta := \theta(x,y), \gamma := \theta(y,z)$ and $(\beta_n), (\gamma_n)$ as above. By induction, the two sequences

 $(\beta_n), (\gamma_n)$ are increasing. Since $\mathbf{F}_{\mathbf{V}}(x, y, z)$ is finite, there is m > 0 such that $\beta_m = \beta_{m+1}, \gamma_m = \gamma_{m+1}$. Then

$$\alpha \wedge \gamma_m \leq \beta \vee (\alpha \wedge \gamma_m) = \beta_m$$
$$\alpha \wedge \beta_m \leq \beta \vee (\alpha \wedge \beta_m) = \gamma_m$$

so that $\alpha \wedge \beta_m = \alpha \wedge \gamma_m$. By Lemma 6.6, $\operatorname{Con}(\mathbf{F}_{\mathsf{V}}(x,y,x))/\sim$ is meet semi-distributive, so that

$$\alpha \wedge \beta_m \sim \alpha \wedge (\beta_m \vee \gamma_m).$$

Claim 3. $\gamma_m \sim \beta_m$

By Theorem 6.8, this implies that $\gamma_m \circ \beta_m = \beta_m \circ \gamma_m$. Since $(x, z) \in \beta \circ \gamma \leq \beta_m \circ \gamma_m$, $(x, z) \in \gamma_m \circ \beta_m$. Now, let $\mathbf{A} \in \mathsf{V}$. Let $\alpha, \beta, \gamma \in \mathsf{Con}(\mathbf{A})$ and $(a, c) \in \alpha \wedge (\beta \circ \gamma)$. Let $b \in A$ such that $(a, b) \in \beta, (b, c) \in \gamma$. Let $f : \mathbf{F}_{\mathsf{V}}(x, y, z) \to \mathbf{A}$ be the homomorphism

$$x \mapsto a, y \mapsto b, z \mapsto c.$$

Now, the function $\theta \mapsto f^{-1}(\theta)$ is an isomorphism of lattices

$$\operatorname{Con}(\mathbf{A}) \simeq [f^{-1}(\Delta_A), \nabla_A].$$

Consequently, as $\theta(x, z) \subseteq f^{-1}(\alpha)$, $\theta(x, y) \subseteq f^{-1}(\beta)$, $\theta(y, z) \subseteq f^{-1}(\gamma)$, by induction $\theta(x, z)_m \subseteq f^{-1}(\alpha_m)$, $\theta(x, y)_m \subseteq f^{-1}(\beta_m)$, $\theta(y, z)_m \subseteq f^{-1}(\gamma_m)$. Then $f(\theta(y, z)_m \circ \theta(x, y)_m) \subseteq \gamma_m \circ \beta_m$ and therefore $(a, c) \in \gamma_m \circ \beta_m$.

$$(3) \implies (2)$$
:

Corollary 7.11. Let **A** be a finite idempotent algebra. There is $\mathbf{B} \in HS(\mathbf{A})$ such that $Clo(\mathbf{B}) \simeq \mathbf{N}$ iff $\mathbf{1} \in typ\{HS(\mathbf{A})\}$.

Proof. If $\mathbf{1} \in \operatorname{typ}\{HS(\mathbf{A})\}$, then $\mathbf{1} \in \operatorname{typ}\{V(\mathbf{A})\}$. Since \mathbf{A} is finite, then, by Lemma 7.4 $V(\mathbf{A})$ is locally finite, and therefore, by Theorem 7.10, for every idempotent variety \mathbf{W} , either $\mathbf{W} \nleq V(\mathbf{A})$ or $\mathbf{W} \leq \operatorname{Set}$. In particular, since \mathbf{A} is idempotent, $V(\mathbf{A}) \leq \operatorname{Set}$. This means that there is a clone homomorphism $\operatorname{Clo}(\mathbf{A}) \to \mathbf{N}$. Therefore, there is $\mathbf{S} \in \operatorname{Set}$ such that $\mathbf{S} \in V(\mathbf{A})$. missing

Conversely, let $\mathbf{B} \in HS(\mathbf{A})$ such that $Clo(\mathbf{B}) \simeq \mathbf{N}$; this means that $\mathbf{B} \in Set$ and therefore \mathbf{B} is minimal of type 1.

Definition 7.12. Let **A** be an algebra and **V** be a variety. Let $t = t(x_1, \ldots, x_n)$ with n > 0. We say that t is a

- (1) **Taylor** term
- (2) weak near-unanimity term

for A (or V) if A (or V) satisfies

- (1) $t(x_1,\ldots,x_n) \equiv t(y_1,\ldots,y_n)$ with $x_i,y_i \in \{x,y\}$ and $x_i \neq y_i$;
- (2) $t(y, x, ..., x) \equiv t(x, y, x, ..., x) \equiv ... \equiv t(x, ..., x, y)$

respectively.

Theorem 7.13. Let V be a locally finite variety. The following are equivalent:

- (1) $1 \notin \text{typ}\{V\};$
- (2) V has an n-ary Taylor idempotent term for some n > 1.

Theorem 7.14 ([2]). Let V be a locally finite variety. The following are equivalent:

- (1) $1 \notin \text{typ}\{V\};$
- (2) V has an n-ary weak near-unanimity idempotent term for some n > 1.

Corollary 7.15. Let **A** be a finite idempotent algebra. Then $Clo(\mathbf{A})$ contains a weak near-unanimity operation iff $1 \notin typ\{HS(\mathbf{A})\}$.

Theorem 7.16 ([4]). Let V be a locally finite variety. The following are equivalent:

- (1) $\mathbf{1} \notin \operatorname{typ}\{V\};$
- (2) V has an idempotent 6-ary term t such that V satisfies $t(x, x, x, x, y, y) \equiv t(x, y, x, y, x, x), t(y, y, x, x, x, x) \equiv t(x, x, y, x, y, x)$

References

- [1] Hobby, D., McKenzie, R. (1988). The structure of Finite Algebras. Contemporary Mathematics 76, American Mathematical Society.
- [2] Maróti, M., McKenzie, R. (2008). Existence theorems for weakly symmetric operations. Algebra Universalis 59, 463-489.
- [3] Pálfy, P. P. (1984). Unary polynomials in algebras I. Algebra Universalis 18, 262-273.
- [4] Siggers, M. H. (2010). A strong Mal'cev condition for locally finite varieties omitting the unary type. Algebra Universalis 64, 15-20.