$t_{\text{Student}}(286) = -0.59, p = 0.55, \hat{r}_{\text{Pearson}} = -0.04, \text{Cl}_{95\%} \text{ [-0.15, 0.08]}, n_{\text{pairs}} = 288$

 $log_{e}(BF_{01}) = 2.23$, $\hat{\rho}_{Pearson}^{posterior} = -0.04$, $Cl_{95\%}^{HDI}$ [-0.15, 0.08], $r_{beta}^{JZS} = 1.41$

dusk

 $t_{\text{Student}}(179) = -1.92, p = 0.06, \hat{r}_{\text{Pearson}} = -0.14, \text{Cl}_{95\%} \text{ [-0.28, 3.77e-03]}, n_{\text{pairs}} = 181$

 $log_e(BF_{01}) = 0.37$, $\hat{\rho}_{Pearson}^{posterior} = -0.14$, $Cl_{95\%}^{HDI}$ [-0.28, 6.33e-03], $r_{beta}^{JZS} = 1.41$

$$t_{\text{Student}}(344) = 2.63, p = 8.81\text{e-}03, \hat{r}_{\text{Pearson}} = 0.14, \text{Cl}_{95\%}[0.04, 0.24], n_{\text{pairs}} = 346$$

 $log_e(BF_{01}) = -0.92$, $\hat{\rho}_{Pearson}^{posterior} = 0.14$, $Cl_{95\%}^{HDI}$ [0.04, 0.24], $r_{beta}^{JZS} = 1.41$

dusk

$$t_{\text{Student}}(370) = 2.69, p = 7.52\text{e-}03, \hat{r}_{\text{Pearson}} = 0.14, \text{Cl}_{95\%} [0.04, 0.24], n_{\text{pairs}} = 372$$

$$log_e(BF_{01}) = -1.02$$
, $\hat{\rho}_{Pearson}^{posterior} = 0.14$, $Cl_{95\%}^{HDI}$ [0.04, 0.24], $r_{beta}^{JZS} = 1.41$

 $t_{\text{Student}}(382) = 3.46, p = 5.98\text{e-}04, \hat{r}_{\text{Pearson}} = 0.17, \text{Cl}_{95\%} [0.08, 0.27], n_{\text{pairs}} = 384$

 $log_{e}(BF_{01}) = -3.31$, $\hat{\rho}_{Pearson}^{posterior} = 0.17$, $Cl_{95\%}^{HDI}$ [0.07, 0.26], $r_{beta}^{JZS} = 1.41$

dusk

 t_{Student} (634) = 1.16, p = 0.25, \hat{r}_{Pearson} = 0.05, $Cl_{95\%}$ [-0.03, 0.12], n_{pairs} = 636

 $log_e(BF_{01}) = 2.13$, $\hat{\rho}_{Pearson}^{posterior} = 0.05$, $Cl_{95\%}^{HDI}$ [-0.03, 0.12], $r_{beta}^{JZS} = 1.41$

 $t_{\text{Student}}(236) = 0.30, p = 0.76, \hat{r}_{\text{Pearson}} = 0.02, \text{Cl}_{95\%} \text{ [-0.11, 0.15]}, n_{\text{pairs}} = 238$

$$log_e(BF_{01}) = 2.26$$
, $\hat{\rho}_{Pearson}^{posterior} = 0.02$, $Cl_{95\%}^{HDI}$ [-0.11, 0.14], $r_{beta}^{JZS} = 1.41$

dusk

 $t_{\text{Student}}(199) = 3.88, p = 1.44\text{e-}04, \hat{r}_{\text{Pearson}} = 0.26, \text{Cl}_{95\%}[0.13, 0.39], n_{\text{pairs}} = 201$

$$log_e(BF_{01}) = -4.92$$
, $\hat{\rho}_{Pearson}^{posterior} = 0.26$, $Cl_{95\%}^{HDI}$ [0.14, 0.39], $r_{beta}^{JZS} = 1.41$

 $t_{\text{Student}}(13) = 0.90, p = 0.38, \hat{r}_{\text{Pearson}} = 0.24, \text{Cl}_{95\%}$ [-0.31, 0.67], $n_{\text{pairs}} = 15$

 $log_{e}(BF_{01}) = 0.63$, $\hat{\rho}_{Pearson}^{posterior} = 0.19$, $Cl_{95\%}^{HDI}$ [-0.26, 0.62], $r_{beta}^{JZS} = 1.41$

dusk

 $t_{\text{Student}}(5) = 0.18, p = 0.86, \hat{r}_{\text{Pearson}} = 0.08, \text{Cl}_{95\%}$ [-0.72, 0.79], $n_{\text{pairs}} = 7$

 $log_e(BF_{01}) = 0.62$, $\hat{\rho}_{Pearson}^{posterior} = 0.06$, $Cl_{95\%}^{HDI}$ [-0.56, 0.66], $r_{beta}^{JZS} = 1.41$

$$t_{\text{Student}}(249) = 0.82, p = 0.41, \hat{r}_{\text{Pearson}} = 0.05, \text{Cl}_{95\%} \text{ [-0.07, 0.17]}, n_{\text{pairs}} = 251$$

 $log_e(BF_{01}) = 2.00$, $\hat{\rho}_{Pearson}^{posterior} = 0.05$, $Cl_{95\%}^{HDI}$ [-0.08, 0.16], $r_{beta}^{JZS} = 1.41$

dusk

$$t_{\text{Student}}(186) = -0.32, p = 0.75, \hat{r}_{\text{Pearson}} = -0.02, \text{Cl}_{95\%} \text{ [-0.17, 0.12]}, n_{\text{pairs}} = 188$$

$$log_{e}(BF_{01}) = 2.14$$
, $\hat{\rho}_{Pearson}^{posterior} = -0.02$, $Cl_{95\%}^{HDI}$ [-0.17, 0.12], $r_{beta}^{JZS} = 1.41$

 $t_{\text{Student}}(240) = -0.61, p = 0.54, \hat{r}_{\text{Pearson}} = -0.04, \text{Cl}_{95\%} \text{ [-0.16, 0.09]}, n_{\text{pairs}} = 242$

$$log_e(BF_{01}) = 2.13$$
, $\hat{\rho}_{Pearson}^{posterior} = -0.04$, $Cl_{95\%}^{HDI}$ [-0.16, 0.09], $r_{beta}^{JZS} = 1.41$

dusk

 $t_{\text{Student}}(128) = 0.38, p = 0.70, \hat{r}_{\text{Pearson}} = 0.03, \text{Cl}_{95\%}$ [-0.14, 0.20], $n_{\text{pairs}} = 130$

 $log_{e}(BF_{01}) = 1.93$, $\hat{\rho}_{Pearson}^{posterior} = 0.03$, $Cl_{95\%}^{HDI}$ [-0.14, 0.20], $r_{beta}^{JZS} = 1.41$

$$t_{\text{Student}}(317) = -6.14, p = 2.50e-09, \hat{r}_{\text{Pearson}} = -0.33, \text{Cl}_{95\%} \text{ [-0.42, -0.22]}, n_{\text{pairs}} = 319$$

 $log_{e}(BF_{01}) = -15.19$, $\hat{\rho}_{Pearson}^{posterior} = -0.32$, $Cl_{95\%}^{HDI}$ [-0.41, -0.22], $r_{beta}^{JZS} = 1.41$

dusk

$$t_{\text{Student}}(418) = -3.04, p = 2.54\text{e}-03, \hat{r}_{\text{Pearson}} = -0.15, \text{Cl}_{95\%} \text{ [-0.24, -0.05]}, n_{\text{pairs}} = 420$$

 $log_{e}(BF_{01}) = -1.94$, $\hat{\rho}_{Pearson}^{posterior} = -0.15$, $Cl_{95\%}^{HDI}$ [-0.24, -0.05], $r_{beta}^{JZS} = 1.41$

 $t_{\text{Student}}(134) = 1.00, p = 0.32, \hat{r}_{\text{Pearson}} = 0.09, \text{Cl}_{95\%} \text{ [-0.08, 0.25]}, n_{\text{pairs}} = 136$

 $log_e(BF_{01}) = 1.54$, $\hat{\rho}_{Pearson}^{posterior} = 0.09$, $Cl_{95\%}^{HDI}$ [-0.07, 0.25], $r_{beta}^{JZS} = 1.41$

 $t_{\text{Student}}(293) = 1.75, p = 0.08, \hat{r}_{\text{Pearson}} = 0.10, \text{Cl}_{95\%} \text{ [-0.01, 0.21]}, n_{\text{pairs}} = 295$

 $t_{\text{Student}}(34) = -0.65, p = 0.52, \hat{r}_{\text{Pearson}} = -0.11, \text{Cl}_{95\%} \text{ [-0.42, 0.23]}, n_{\text{pairs}} = 36$

 $log_{e}(BF_{01}) = 1.18$, $\hat{\rho}_{Pearson}^{posterior} = -0.10$, $Cl_{95\%}^{HDI}$ [-0.40, 0.22], $r_{beta}^{JZS} = 1.41$

dusk

 $t_{\text{Student}}(48) = 0.69, p = 0.50, \hat{r}_{\text{Pearson}} = 0.10, \text{Cl}_{95\%} \text{ [-0.18, 0.37]}, n_{\text{pairs}} = 50$

 $log_e(BF_{01}) = 1.31$, $\hat{\rho}_{Pearson}^{posterior} = 0.09$, $Cl_{95\%}^{HDI}$ [-0.17, 0.35], $r_{beta}^{JZS} = 1.41$

$$t_{\text{Student}}(265) = -2.34, p = 0.02, \hat{r}_{\text{Pearson}} = -0.14, \text{Cl}_{95\%} \text{ [-0.26, -0.02]}, n_{\text{pairs}} = 267$$

 $log_{e}(BF_{01}) = -0.33$, $\hat{\rho}_{Pearson}^{posterior} = -0.14$, $Cl_{95\%}^{HDI}$ [-0.26, -0.03], $r_{beta}^{JZS} = 1.41$

dusk

$$t_{\text{Student}}(315) = 0.34, p = 0.73, \hat{r}_{\text{Pearson}} = 0.02, Cl_{95\%}$$
 [-0.09, 0.13], $n_{\text{pairs}} = 317$

 $log_e(BF_{01}) = 2.39$, $\hat{\rho}_{Pearson}^{posterior} = 0.02$, $Cl_{95\%}^{HDI}$ [-0.09, 0.13], $r_{beta}^{JZS} = 1.41$

 $t_{\text{Student}}(84) = 0.11, p = 0.91, \hat{r}_{\text{Pearson}} = 0.01, \text{Cl}_{95\%}$ [-0.20, 0.22], $n_{\text{pairs}} = 86$

 $log_e(BF_{01}) = 1.80$, $\widehat{\rho}_{Pearson}^{posterior} = 8.58e-03$, $Cl_{95\%}^{HDI}$ [-0.19, 0.22], $r_{beta}^{JZS} = 1.41$

dusk

 $t_{\text{Student}}(260) = -0.30, p = 0.76, \hat{r}_{\text{Pearson}} = -0.02, \text{Cl}_{95\%} \text{ [-0.14, 0.10]}, n_{\text{pairs}} = 262$

 $log_{e}(BF_{01}) = 2.31$, $\hat{\rho}_{Pearson}^{posterior} = -0.01$, $Cl_{95\%}^{HDI}$ [-0.13, 0.11], $r_{beta}^{JZS} = 1.41$

 $t_{\text{Student}}(135) = 0.65, p = 0.52, \hat{r}_{\text{Pearson}} = 0.06, \text{Cl}_{95\%}$ [-0.11, 0.22], $n_{\text{pairs}} = 137$

 $log_e(BF_{01}) = 1.82$, $\hat{\rho}_{Pearson}^{posterior} = 0.05$, $Cl_{95\%}^{HDI}$ [-0.11, 0.22], $r_{beta}^{JZS} = 1.41$

 $t_{\text{Student}}(60) = -1.66, p = 0.10, \hat{r}_{\text{Pearson}} = -0.21, \text{Cl}_{95\%} \text{ [-0.44, 0.04]}, n_{\text{pairs}} = 62$

 $log_{e}(BF_{01}) = 0.35, \hat{\rho}_{Pearson}^{posterior} = -0.19, Cl_{95\%}^{HDI} [-0.42, 0.05], r_{beta}^{JZS} = 1.41$

 $t_{\text{Student}}(29) = 3.14, p = 3.84\text{e-}03, \hat{r}_{\text{Pearson}} = 0.50, \text{Cl}_{95\%} [0.18, 0.73], n_{\text{pairs}} = 31$

 $log_{e}(BF_{01}) = -2.59$, $\hat{\rho}_{Pearson}^{posterior} = 0.47$, $Cl_{95\%}^{HDI}$ [0.16, 0.71], $r_{beta}^{JZS} = 1.41$

 $t_{\text{Student}}(23) = -0.55, p = 0.59, \hat{r}_{\text{Pearson}} = -0.11, \text{Cl}_{95\%} \text{ [-0.49, 0.29]}, n_{\text{pairs}} = 25$

$$log_{e}(BF_{01}) = 1.07, \hat{\rho}_{Pearson}^{posterior} = -0.11, Cl_{95\%}^{HDI} [-0.44, 0.29], r_{beta}^{JZS} = 1.41$$

 $t_{\text{Student}}(76) = 0.49, p = 0.62, \hat{r}_{\text{Pearson}} = 0.06, \text{Cl}_{95\%}$ [-0.17, 0.28], $n_{\text{pairs}} = 78$

 $log_e(BF_{01}) = 1.64$, $\hat{\rho}_{Pearson}^{posterior} = 0.05$, $Cl_{95\%}^{HDI}$ [-0.17, 0.26], $r_{beta}^{JZS} = 1.41$

dusk

 $t_{\text{Student}}(245) = 0.11, p = 0.91, \hat{r}_{\text{Pearson}} = 7.12\text{e-}03, \text{Cl}_{95\%}$ [-0.12, 0.13], $n_{\text{pairs}} = 247$

 $log_{e}(BF_{01}) = 2.32$, $\hat{\rho}_{Pearson}^{posterior} = 6.55e-03$, $Cl_{95\%}^{HDI}$ [-0.12, 0.13], $r_{beta}^{JZS} = 1.41$

 $t_{\text{Student}}(262) = -1.20, p = 0.23, \hat{r}_{\text{Pearson}} = -0.07, \text{Cl}_{95\%} \text{ [-0.19, 0.05]}, n_{\text{pairs}} = 264$

$$log_{e}(BF_{01}) = 1.64$$
, $\hat{\rho}_{Pearson}^{posterior} = -0.07$, $Cl_{95\%}^{HDI}$ [-0.19, 0.06], $r_{beta}^{JZS} = 1.41$

dusk

 $t_{\text{Student}}(303) = 2.43, p = 0.02, \hat{r}_{\text{Pearson}} = 0.14, \text{Cl}_{95\%}[0.03, 0.25], n_{\text{pairs}} = 305$

 $log_{e}(BF_{01}) = -0.46$, $\hat{\rho}_{Pearson}^{posterior} = 0.14$, $Cl_{95\%}^{HDI}$ [0.03, 0.25], $r_{beta}^{JZS} = 1.41$

 $t_{\text{Student}}(8) = -2.61, p = 0.03, \hat{r}_{\text{Pearson}} = -0.68, \text{Cl}_{95\%}$ [-0.92, -0.08], $n_{\text{pairs}} = 10$

$$log_e(BF_{01}) = -1.12$$
, $\hat{\rho}_{Pearson}^{posterior} = -0.54$, $Cl_{95\%}^{HDI}$ [-0.89, -0.06], $r_{beta}^{JZS} = 1.41$

dusk

 $t_{\text{Student}}(15) = 1.07, p = 0.30, \hat{r}_{\text{Pearson}} = 0.27, \text{Cl}_{95\%} \text{ [-0.24, 0.66]}, n_{\text{pairs}} = 17$

 $log_{e}(BF_{01}) = 0.54$, $\widehat{\rho}_{Pearson}^{posterior} = 0.23$, $Cl_{95\%}^{HDI}$ [-0.22, 0.61], $r_{beta}^{JZS} = 1.41$

 $t_{\text{Student}}(7) = 0.42, p = 0.69, \hat{r}_{\text{Pearson}} = 0.16, \text{Cl}_{95\%} \text{ [-0.57, 0.74]}, n_{\text{pairs}} = 9$

 $log_e(BF_{01}) = 0.67$, $\hat{\rho}_{Pearson}^{posterior} = 0.11$, $Cl_{95\%}^{HDI}$ [-0.50, 0.60], $r_{beta}^{JZS} = 1.41$

dusk

 $t_{\text{Student}}(66) = 1.73, p = 0.09, \hat{r}_{\text{Pearson}} = 0.21, \text{Cl}_{95\%} \text{ [-0.03, 0.43]}, n_{\text{pairs}} = 68$

 $log_{e}(BF_{01}) = 0.28$, $\widehat{\rho}_{Pearson}^{posterior} = 0.20$, $Cl_{95\%}^{HDI}$ [-0.04, 0.40], $r_{beta}^{JZS} = 1.41$

 $t_{\text{Student}}(34) = 1.02, p = 0.31, \hat{r}_{\text{Pearson}} = 0.17, \text{Cl}_{95\%}$ [-0.16, 0.47], $n_{\text{pairs}} = 36$

 $log_{e}(BF_{01}) = 0.90, \hat{\rho}_{Pearson}^{posterior} = 0.16, Cl_{95\%}^{HDI} [-0.17, 0.45], r_{beta}^{JZS} = 1.41$

 $t_{\text{Student}}(41) = 1.36, p = 0.18, \hat{r}_{\text{Pearson}} = 0.21, \text{Cl}_{95\%} \text{ [-0.10, 0.48]}, n_{\text{pairs}} = 43$

 $log_e(BF_{01}) = 0.61$, $\hat{\rho}_{Pearson}^{posterior} = 0.19$, $Cl_{95\%}^{HDI}$ [-0.08, 0.46], $r_{beta}^{JZS} = 1.41$

$$t_{\text{Student}}(276) = -6.25, p = 1.56\text{e-}09, \hat{r}_{\text{Pearson}} = -0.35, \text{Cl}_{95\%} \text{ [-0.45, -0.24]}, n_{\text{pairs}} = 278$$

 $log_{e}(BF_{01}) = -15.69$, $\hat{\rho}_{Pearson}^{posterior} = -0.35$, $Cl_{95\%}^{HDI}$ [-0.45, -0.25], $r_{beta}^{JZS} = 1.41$

dusk

$$t_{\text{Student}}(132) = -2.59, p = 0.01, \hat{r}_{\text{Pearson}} = -0.22, \text{Cl}_{95\%} \text{ [-0.38, -0.05]}, n_{\text{pairs}} = 134$$

 $log_{e}(BF_{01}) = -1.19$, $\hat{\rho}_{Pearson}^{posterior} = -0.22$, $Cl_{95\%}^{HDI}$ [-0.37, -0.05], $r_{beta}^{JZS} = 1.41$

 $t_{\text{Student}}(107) = -0.76, p = 0.45, \hat{r}_{\text{Pearson}} = -0.07, \text{Cl}_{95\%} \text{ [-0.26, 0.12]}, n_{\text{pairs}} = 109$

 $log_{e}(BF_{01}) = 1.63$, $\hat{\rho}_{Pearson}^{posterior} = -0.07$, $Cl_{95\%}^{HDI}$ [-0.25, 0.11], $r_{beta}^{JZS} = 1.41$

dusk

 $t_{\text{Student}}(108) = 0.20, p = 0.84, \hat{r}_{\text{Pearson}} = 0.02, \text{Cl}_{95\%}$ [-0.17, 0.21], $n_{\text{pairs}} = 110$

 $log_e(BF_{01}) = 1.90, \hat{\rho}_{Pearson}^{posterior} = 0.02, Cl_{95\%}^{HDI} [-0.17, 0.21], r_{beta}^{JZS} = 1.41$

$$t_{\text{Student}}(138) = 2.49, p = 0.01, \hat{r}_{\text{Pearson}} = 0.21, \text{Cl}_{95\%}[0.04, 0.36], n_{\text{pairs}} = 140$$

 $log_{e}(BF_{01}) = -0.92$, $\hat{\rho}_{Pearson}^{posterior} = 0.20$, $Cl_{95\%}^{HDI}$ [0.04, 0.36], $r_{beta}^{JZS} = 1.41$

$$t_{\text{Student}}(81) = 0.25, p = 0.81, \hat{r}_{\text{Pearson}} = 0.03, \text{Cl}_{95\%} \text{ [-0.19, 0.24]}, n_{\text{pairs}} = 83$$

 $log_e(BF_{01}) = 1.76$, $\hat{\rho}_{Pearson}^{posterior} = 0.03$, $Cl_{95\%}^{HDI}$ [-0.19, 0.23], $r_{beta}^{JZS} = 1.41$

#Student(18) = -0.65, p = 0.52, r̂_Pearson = -0.15, Cl_{95%} [-0.56, 0.31], n_{poirs} = 20

Time to darkness

 $log_{e}(BF_{01}) = 0.91$, $\widehat{\rho}_{Pearson}^{posterior} = -0.14$, $Cl_{95\%}^{HDI}$ [-0.52, 0.27], $r_{beta}^{JZS} = 1.41$

t_{Student}(17) = -0.60, p = 0.56, t̂_{Pearson} = -0.14, Cl_{95%} [-0.56, 0.33], n_{pairs} = 19

 $log_{e}(BF_{01}) = 0.92$, $\hat{\rho}_{Pearson}^{posterior} = -0.12$, $Cl_{95\%}^{HDI}$ [-0.50, 0.32], $r_{beta}^{JZS} = 1.41$

 $log_e(BF_{01}) = 0.60$, $\hat{\rho}_{Pearson}^{posterior} = 0.22$, $Cl_{95\%}^{HDI}$ [-0.23, 0.59], $r_{beta}^{JZS} = 1.41$

$$log_{e}(BF_{01}) = -1.16$$
, $\hat{\rho}_{Pearson}^{posterior} = 0.41$, $Cl_{95\%}^{HDI}$ [0.09, 0.71], $r_{beta}^{JZS} = 1.41$

 $t_{\text{Student}}(77) = 1.48, p = 0.14, \hat{r}_{\text{Pearson}} = 0.17, \text{Cl}_{95\%} \text{ [-0.06, 0.37]}, n_{\text{pairs}} = 79$

 $log_e(BF_{01}) = 0.72$, $\hat{\rho}_{Pearson}^{posterior} = 0.16$, $Cl_{95\%}^{HDI}$ [-0.06, 0.37], $r_{beta}^{JZS} = 1.41$

dusk

 $t_{\text{Student}}(8) = 0.31, p = 0.77, \hat{r}_{\text{Pearson}} = 0.11, \text{Cl}_{95\%} \text{ [-0.56, 0.69]}, n_{\text{pairs}} = 10$

 $log_e(BF_{01}) = 0.74$, $\hat{\rho}_{Pearson}^{posterior} = 0.08$, $Cl_{95\%}^{HDI}$ [-0.46, 0.60], $r_{beta}^{JZS} = 1.41$

$$t_{\text{Student}}(150) = -4.43, p = 1.79e-05, \hat{r}_{\text{Pearson}} = -0.34, \text{Cl}_{95\%} \text{ [-0.47, -0.19]}, n_{\text{pairs}} = 152$$

 $log_e(BF_{01}) = -6.98$, $\hat{\rho}_{Pearson}^{posterior} = -0.33$, $Cl_{95\%}^{HDI}$ [-0.47, -0.19], $r_{beta}^{JZS} = 1.41$

dusk

Time to darkness

$$log_{e}(BF_{01}) = 1.16, \hat{\rho}_{Pearson}^{posterior} = -0.05, Cl_{95\%}^{HDI} [-0.42, 0.32], r_{beta}^{JZS} = 1.41$$

$$t_{\text{Student}}(78) = -0.45, p = 0.65, \hat{r}_{\text{Pearson}} = -0.05, \text{Cl}_{95\%} \text{ [-0.27, 0.17]}, n_{\text{pairs}} = 80$$

 $log_{e}(BF_{01}) = 1.67$, $\widehat{\rho}_{Pearson}^{posterior} = -0.05$, $Cl_{95\%}^{HDI}$ [-0.28, 0.15], $r_{beta}^{JZS} = 1.41$

dusk

$$t_{\text{Student}}(142) = 2.00, p = 0.05, \hat{r}_{\text{Pearson}} = 0.17, \text{Cl}_{95\%} \text{ [1.65e-03, 0.32]}, n_{\text{pairs}} = 144$$

 $log_{e}(BF_{01}) = 0.13$, $\widehat{\rho}_{Pearson}^{posterior} = 0.16$, $Cl_{95\%}^{HDI}$ [0.01, 0.32], $r_{beta}^{JZS} = 1.41$

$$t_{\text{Student}}(125) = -1.67, p = 0.10, \hat{r}_{\text{Pearson}} = -0.15, \text{Cl}_{95\%} \text{ [-0.31, 0.03]}, n_{\text{pairs}} = 127$$

 $log_{e}(BF_{01}) = 0.64$, $\widehat{\rho}_{Pearson}^{posterior} = -0.15$, $Cl_{95\%}^{HDI}$ [-0.30, 0.03], $r_{beta}^{JZS} = 1.41$

dusk

t_{Student}(20) = 0.54, p = 0.60, r̂_{Pearson} = 0.12, Cl_{95%} [-0.32, 0.52], n_{pairs} = 22

$$log_e(BF_{01}) = 1.01$$
, $\hat{\rho}_{Pearson}^{posterior} = 0.10$, $Cl_{95\%}^{HDI}$ [-0.28, 0.48], $r_{beta}^{JZS} = 1.41$

 $t_{\text{Student}}(192) = 1.68, p = 0.10, \hat{r}_{\text{Pearson}} = 0.12, \text{Cl}_{95\%}$ [-0.02, 0.26], $n_{\text{pairs}} = 194$

 $log_e(BF_{01}) = 0.83$, $\hat{\rho}_{Pearson}^{posterior} = 0.12$, $Cl_{95\%}^{HDI}$ [-0.03, 0.25], $r_{beta}^{JZS} = 1.41$

dusk

 $t_{\text{Student}}(441) = -1.16, p = 0.25, \hat{r}_{\text{Pearson}} = -0.06, Cl_{95\%}$ [-0.15, 0.04], $n_{\text{pairs}} = 443$

 $log_{e}(BF_{01}) = 1.95$, $\hat{\rho}_{Pearson}^{posterior} = -0.05$, $Cl_{95\%}^{HDI}$ [-0.14, 0.04], $r_{beta}^{JZS} = 1.41$

 $t_{\text{Student}}(29) = 0.50, p = 0.62, \hat{r}_{\text{Pearson}} = 0.09, \text{Cl}_{95\%} \text{ [-0.27, 0.43]}, n_{\text{pairs}} = 31$

 $log_e(BF_{01}) = 1.19, \hat{\rho}_{Pearson}^{posterior} = 0.08, Cl_{95\%}^{HDI} [-0.27, 0.40], r_{beta}^{JZS} = 1.41$

#Student(59) = 2.40, p = 0.02, r̂_Pearson = 0.30, Cl_{95%} [0.05, 0.51], n_{pairs} = 61

$$log_{e}(BF_{01}) = -1.00, \hat{\rho}_{Pearson}^{posterior} = 0.28, Cl_{95\%}^{HDI} [0.07, 0.51], r_{beta}^{JZS} = 1.41$$

White-throated Kingfisher

dawn

 $t_{\text{Student}}(38) = 1.76, p = 0.09, \hat{r}_{\text{Pearson}} = 0.27, \text{Cl}_{95\%} \text{ [-0.04, 0.54]}, n_{\text{pairs}} = 40$

 $log_e(BF_{01}) = 0.04$, $\hat{\rho}_{Pearson}^{posterior} = 0.25$, $Cl_{95\%}^{HDI}$ [-0.03, 0.53], $r_{beta}^{JZS} = 1.41$

dusk

 t_{Student} () = NA, p = NA, = NA, $Cl_{95\%}$ [NA, NA], n_{pairs} = 2

 $log_e(BF_{01}) =$, posterior = NA, $Cl_{95\%}^{HDI}$ [NA, NA], $r_{beta}^{JZS} = NA$

 $t_{\text{Student}}(103) = -0.50, p = 0.62, \hat{r}_{\text{Pearson}} = -0.05, \text{Cl}_{95\%} [-0.24, 0.14], n_{\text{pairs}} = 105$

$$log_{e}(BF_{01}) = 1.78$$
, $\hat{\rho}_{Pearson}^{posterior} = -0.05$, $Cl_{95\%}^{HDI}$ [-0.24, 0.13], $r_{beta}^{JZS} = 1.41$

dusk

Student(27) = 0.72, p = 0.48, Î_{Pearson} = 0.14, Cl_{95%} [-0.24, 0.48], n_{poirs} = 29

20
15
10
0.5

1.5

Time to darkness

$$log_{e}(BF_{01}) = 1.04$$
, $\widehat{\rho}_{Pearson}^{posterior} = 0.13$, $Cl_{95\%}^{HDI}$ [-0.26, 0.42], $r_{beta}^{JZS} = 1.41$

$$t_{\text{Student}}$$
 (88) = 1.66, p = 0.10, \hat{r}_{Pearson} = 0.17, $Cl_{95\%}$ [-0.03, 0.37], n_{pairs} = 90

 $log_{e}(BF_{01}) = 0.51$, $\hat{\rho}_{Pearson}^{posterior} = 0.17$, $Cl_{95\%}^{HDI}$ [-0.03, 0.36], $r_{beta}^{JZS} = 1.41$

$$log_{e}(BF_{01}) = 1.23$$
, $\hat{\rho}_{Pearson}^{posterior} = -0.02$, $Cl_{95\%}^{HDI}$ [-0.37, 0.33], $r_{beta}^{JZS} = 1.41$

 $t_{\text{Student}}(37) = -1.84, p = 0.07, \hat{r}_{\text{Pearson}} = -0.29, \text{Cl}_{95\%} \text{ [-0.55, 0.03]}, n_{\text{pairs}} = 39$

 $log_{e}(BF_{01}) = -0.10, \hat{\rho}_{Pearson}^{posterior} = -0.27, CI_{95\%}^{HDI}$ [-0.53, 0.04], $r_{beta}^{JZS} = 1.41$

 $t_{\text{Student}}(70) = -0.04, p = 0.97, \hat{r}_{\text{Pearson}} = -4.70 \text{e-}03, \text{Cl}_{95\%} \text{ [-}0.24, 0.23], n_{\text{pairs}} = 72$ **(1)** 0-10 5 2 Ó Time to darkness

 $log_{e}(BF_{01}) = 1.71$, $\widehat{\rho}_{Pearson}^{posterior} = -6.62e-03$, $Cl_{95\%}^{HDI}$ [-0.23, 0.22], $r_{beta}^{JZS} = 1.41$

 $t_{\text{Student}}(106) = -2.22, p = 0.03, \hat{r}_{\text{Pearson}} = -0.21, \text{Cl}_{95\%} \text{ [-0.38, -0.02]}, n_{\text{pairs}} = 108$

$$log_{e}(BF_{01}) = -0.44$$
, $\hat{\rho}_{Pearson}^{posterior} = -0.21$, $Cl_{95\%}^{HDI}$ [-0.38, -0.03], $r_{beta}^{JZS} = 1.41$

Time to darkness

$$log_{e}(BF_{01}) = -5.01$$
, $\widehat{\rho}_{Pearson}^{posterior} = -0.30$, $Cl_{95\%}^{HDI}$ [-0.44, -0.15], $r_{beta}^{JZS} = 1.41$

$$t_{\text{Student}}(123) = 2.46, p = 0.02, \hat{r}_{\text{Pearson}} = 0.22, \text{Cl}_{95\%}[0.04, 0.38], n_{\text{pairs}} = 125$$

 $log_e(BF_{01}) = -0.89$, $\hat{\rho}_{Pearson}^{posterior} = 0.21$, $Cl_{95\%}^{HDI}$ [0.06, 0.38], $r_{beta}^{JZS} = 1.41$

dusk

$$t_{\text{Student}}(197) = -1.10, p = 0.27, \hat{r}_{\text{Pearson}} = -0.08, \text{Cl}_{95\%} \text{ [-0.22, 0.06]}, n_{\text{pairs}} = 199$$

$$log_{e}(BF_{01}) = 1.62$$
, $\hat{\rho}_{Pearson}^{posterior} = -0.07$, $Cl_{95\%}^{HDI}$ [-0.21, 0.06], $r_{beta}^{JZS} = 1.41$

 $t_{\text{Student}}(26) = 0.05, p = 0.96, \hat{r}_{\text{Pearson}} = 9.11\text{e-}03, \text{Cl}_{95\%}$ [-0.37, 0.38], $n_{\text{pairs}} = 28$

$$log_e(BF_{01}) = 1.26$$
, $\hat{\rho}_{Pearson}^{posterior} = 0.01$, $Cl_{95\%}^{HDI}$ [-0.34, 0.36], $r_{beta}^{JZS} = 1.41$

dusk

 $t_{\text{Student}}(59) = 0.42, p = 0.67, \hat{r}_{\text{Pearson}} = 0.06, Cl_{95\%}$ [-0.20, 0.30], $n_{\text{pairs}} = 61$

 $log_{e}(BF_{01}) = 1.55$, $\hat{\rho}_{Pearson}^{posterior} = 0.05$, $Cl_{95\%}^{HDI}$ [-0.17, 0.31], $r_{beta}^{JZS} = 1.41$

$$t_{\text{Student}}(85) = 2.94, p = 4.20e-03, \hat{r}_{\text{Pearson}} = 0.30, \text{Cl}_{95\%} [0.10, 0.48], n_{\text{pairs}} = 87$$

 $log_e(BF_{01}) = -2.18$, $\hat{\rho}_{Pearson}^{posterior} = 0.29$, $Cl_{95\%}^{HDI}$ [0.10, 0.47], $r_{beta}^{JZS} = 1.41$

$$t_{\text{Student}}(157) = 1.26, p = 0.21, \hat{r}_{\text{Pearson}} = 0.10, \text{Cl}_{95\%} \text{ [-0.06, 0.25]}, n_{\text{pairs}} = 159$$

 $log_{e}(BF_{01}) = 1.33, \hat{\rho}_{Pearson}^{posterior} = 0.10, Cl_{95\%}^{HDI} [-0.06, 0.25], r_{beta}^{JZS} = 1.41$

 $t_{\text{Student}}(252) = 1.42, p = 0.16, \hat{r}_{\text{Pearson}} = 0.09, \text{Cl}_{95\%} \text{ [-0.03, 0.21]}, n_{\text{pairs}} = 254$

 $log_e(BF_{01}) = 1.34$, $\hat{\rho}_{Pearson}^{posterior} = 0.09$, $Cl_{95\%}^{HDI}$ [-0.03, 0.21], $r_{beta}^{JZS} = 1.41$

dusk

 $t_{\text{Student}}(309) = 2.76, p = 6.18e-03, \hat{r}_{\text{Pearson}} = 0.15, \text{Cl}_{95\%}[0.04, 0.26], n_{\text{pairs}} = 311$

 $log_e(BF_{01}) = -1.28$, $\hat{\rho}_{Pearson}^{posterior} = 0.15$, $Cl_{95\%}^{HDI}$ [0.05, 0.27], $r_{beta}^{JZS} = 1.41$

Time to darkness

 $log_{e}(BF_{01}) = 1.00, \hat{\rho}_{Pearson}^{posterior} = 0.11, Cl_{95\%}^{HDI} [-0.24, 0.50], r_{beta}^{JZS} = 1.41$

dusk

 $t_{\text{Student}}() = \text{NA}, p = \text{NA}, = \text{NA}, \text{Cl}_{95\%} [\text{NA}, \text{NA}], n_{\text{pairs}} = 1$

 $log_e(BF_{01}) =$, $posterior = NA, Cl_{95\%}^{HDI} [NA, NA], r_{beta}^{JZS} = NA$

$$t_{\text{Student}}(60) = -2.09, p = 0.04, \hat{r}_{\text{Pearson}} = -0.26, \text{Cl}_{95\%}$$
 [-0.48, -0.01], $n_{\text{pairs}} = 62$

 $log_e(BF_{01}) = -0.38$, $\hat{\rho}_{Pearson}^{posterior} = -0.25$, $Cl_{95\%}^{HDI}$ [-0.47, -0.02], $r_{beta}^{JZS} = 1.41$

$$t_{\text{Student}}(92) = 1.39, p = 0.17, \hat{r}_{\text{Pearson}} = 0.14, \text{Cl}_{95\%}$$
 [-0.06, 0.34], $n_{\text{pairs}} = 94$

 $log_e(BF_{01}) = 0.91$, $\hat{\rho}_{Pearson}^{posterior} = 0.14$, $Cl_{95\%}^{HDI}$ [-0.06, 0.32], $r_{beta}^{JZS} = 1.41$

 $t_{\text{Student}}(68) = 1.30, p = 0.20, \hat{r}_{\text{Pearson}} = 0.16, \text{Cl}_{95\%} \text{ [-0.08, 0.38]}, n_{\text{pairs}} = 70$

 $log_e(BF_{01}) = 0.90$, $\hat{\rho}_{Pearson}^{posterior} = 0.15$, $Cl_{95\%}^{HDI}$ [-0.09, 0.37], $r_{beta}^{JZS} = 1.41$

dusk

 $t_{\text{Student}}(89) = 0.38, p = 0.71, \hat{r}_{\text{Pearson}} = 0.04, \text{Cl}_{95\%}$ [-0.17, 0.24], $n_{\text{pairs}} = 91$

 $log_{e}(BF_{01}) = 1.76$, $\widehat{\rho}_{Pearson}^{posterior} = 0.04$, $Cl_{95\%}^{HDI}$ [-0.16, 0.24], $r_{beta}^{JZS} = 1.41$

$$t_{\text{Student}}(70) = -1.67, p = 0.10, \hat{r}_{\text{Pearson}} = -0.20, \text{Cl}_{95\%}$$
 [-0.41, 0.04], $n_{\text{pairs}} = 72$

 $log_{e}(BF_{01}) = 0.40$, $\hat{\rho}_{Pearson}^{posterior} = -0.19$, $Cl_{95\%}^{HDI}$ [-0.39, 0.04], $r_{beta}^{JZS} = 1.41$

$$t_{\text{Student}}$$
() = NA, p = NA, = NA, $Cl_{95\%}$ [NA, NA], n_{pairs} = 2

$$log_e(BF_{01}) =$$
, $posterior = NA, Cl_{95\%}^{HDI} [NA, NA], r_{beta}^{JZS} = NA$

 $t_{\text{Student}}(22) = 1.23, p = 0.23, \hat{r}_{\text{Pearson}} = 0.25, \text{Cl}_{95\%}$ [-0.17, 0.60], $n_{\text{pairs}} = 24$

 $log_{e}(BF_{01}) = 0.53$, $\hat{\rho}_{Pearson}^{posterior} = 0.22$, $Cl_{95\%}^{HDI}$ [-0.15, 0.57], $r_{beta}^{JZS} = 1.41$

dusk

 $t_{\text{Student}}(18) = 0.13, p = 0.90, \hat{r}_{\text{Pearson}} = 0.03, \text{Cl}_{95\%} \text{ [-0.42, 0.47]}, n_{\text{pairs}} = 20$

 $log_e(BF_{01}) = 1.09$, $\hat{\rho}_{Pearson}^{posterior} = 0.03$, $Cl_{95\%}^{HDI}$ [-0.37, 0.45], $r_{beta}^{JZS} = 1.41$

$$t_{\text{Student}}(16) = 0.95, p = 0.35, \hat{r}_{\text{Pearson}} = 0.23, \text{Cl}_{95\%}$$
 [-0.26, 0.63], $n_{\text{pairs}} = 18$

 $log_e(BF_{01}) = 0.66$, $\hat{\rho}_{Pearson}^{posterior} = 0.20$, $Cl_{95\%}^{HDI}$ [-0.24, 0.58], $r_{beta}^{JZS} = 1.41$

dusk

$$t_{\text{Student}}(18) = 0.73, p = 0.48, \hat{r}_{\text{Pearson}} = 0.17, \text{Cl}_{95\%} \text{ [-0.30, 0.57]}, n_{\text{pairs}} = 20$$

 $log_{e}(BF_{01}) = 0.87$, $\widehat{\rho}_{Pearson}^{posterior} = 0.14$, $Cl_{95\%}^{HDI}$ [-0.31, 0.49], $r_{beta}^{JZS} = 1.41$

 $t_{\text{Student}}(11) = 0.13, p = 0.90, \hat{r}_{\text{Pearson}} = 0.04, \text{Cl}_{95\%} \text{ [-0.52, 0.58]}, n_{\text{pairs}} = 13$

 $log_{e}(BF_{01}) = 0.89$, $\widehat{\rho}_{Pearson}^{posterior} = 0.03$, $Cl_{95\%}^{HDI}$ [-0.49, 0.48], $r_{beta}^{JZS} = 1.41$

 $t_{\text{Student}}(22) = -1.52, p = 0.14, \hat{r}_{\text{Pearson}} = -0.31, \text{Cl}_{95\%}$ [-0.63, 0.11], $n_{\text{pairs}} = 24$

$$log_{e}(BF_{01}) = 0.19, \hat{\rho}_{Pearson}^{posterior} = -0.27, Cl_{95\%}^{HDI} [-0.60, 0.10], r_{beta}^{JZS} = 1.41$$

$$t_{\text{Student}}(3) = -4.45, p = 0.02, \hat{r}_{\text{Pearson}} = -0.93, \text{Cl}_{95\%} \text{ [-1.00, -0.28]}, n_{\text{pairs}} = 5$$

$$log_{e}(BF_{01}) = -1.20$$
, $\widehat{\rho}_{Pearson}^{posterior} = -0.71$, $Cl_{95\%}^{HDI}$ [-0.98, -0.06], $r_{beta}^{JZS} = 1.41$

$$t_{\text{Student}}(12) = 2.14, p = 0.05, \hat{r}_{\text{Pearson}} = 0.53, \text{Cl}_{95\%} \text{ [-6.67e-03, 0.83]}, n_{\text{pairs}} = 14$$

$$log_{e}(BF_{01}) = -0.68, \widehat{\rho}_{Pearson}^{posterior} = 0.44, CI_{95\%}^{HDI} \ [9.39e-03, 0.78], r_{beta}^{JZS} = 1.41$$

$$t_{\text{Student}}(21) = -0.07, p = 0.94, \hat{r}_{\text{Pearson}} = -0.02, \text{Cl}_{95\%} \text{ [-0.43, 0.40]}, n_{\text{pairs}} = 23$$

 $log_e(BF_{01}) = 1.16$, $\hat{\rho}_{Pearson}^{posterior} = -4.75e-03$, $Cl_{95\%}^{HDI}$ [-0.40, 0.37], $r_{beta}^{JZS} = 1.41$

$$t_{\text{Student}}(23) = 0.11, p = 0.92, \hat{r}_{\text{Pearson}} = 0.02, \text{Cl}_{95\%} \text{ [-0.38, 0.41]}, n_{\text{pairs}} = 25$$

$$log_{e}(BF_{01}) = 1.20$$
, $\widehat{\rho}_{Pearson}^{posterior} = 0.02$, $Cl_{95\%}^{HDI}$ [-0.35, 0.37], $r_{beta}^{JZS} = 1.41$

$$t_{\text{Student}}(9) = 0.38, p = 0.72, \hat{r}_{\text{Pearson}} = 0.12, \text{Cl}_{95\%} \text{ [-0.51, 0.67]}, n_{\text{pairs}} = 11$$

 $log_e(BF_{01}) = 0.77$, $\hat{\rho}_{Pearson}^{posterior} = 0.10$, $Cl_{95\%}^{HDI}$ [-0.44, 0.58], $r_{beta}^{JZS} = 1.41$

$$t_{\text{Student}}(15) = 0.04, p = 0.97, \hat{r}_{\text{Pearson}} = 0.01, \text{Cl}_{95\%} \text{ [-0.47, 0.49]}, n_{\text{pairs}} = 17$$

 $log_{e}(BF_{01}) = 1.02$, $\widehat{\rho}_{Pearson}^{posterior} = 0.01$, $Cl_{95\%}^{HDI}$ [-0.39, 0.44], $r_{beta}^{JZS} = 1.41$

 $t_{\text{Student}}(44) = 0.98, p = 0.33, \hat{r}_{\text{Pearson}} = 0.15, \text{Cl}_{95\%}$ [-0.15, 0.42], $n_{\text{pairs}} = 46$

 $log_e(BF_{01}) = 1.05$, $\hat{\rho}_{Pearson}^{posterior} = 0.14$, $Cl_{95\%}^{HDI}$ [-0.15, 0.38], $r_{beta}^{JZS} = 1.41$

dusk

 $t_{\text{Student}}(54) = -1.13, p = 0.26, \hat{r}_{\text{Pearson}} = -0.15, \text{Cl}_{95\%} \text{ [-0.40, 0.12]}, n_{\text{pairs}} = 56$

 $log_{e}(BF_{01}) = 0.99$, $\hat{\rho}_{Pearson}^{posterior} = -0.14$, $Cl_{95\%}^{HDI}$ [-0.39, 0.09], $r_{beta}^{JZS} = 1.41$

 $t_{\text{Student}}(67) = 0.66, p = 0.51, \hat{r}_{\text{Pearson}} = 0.08, \text{Cl}_{95\%} \text{ [-0.16, 0.31]}, n_{\text{pairs}} = 69$

 $log_e(BF_{01}) = 1.49$, $\hat{\rho}_{Pearson}^{posterior} = 0.08$, $Cl_{95\%}^{HDI}$ [-0.16, 0.31], $r_{beta}^{JZS} = 1.41$

dusk

 $t_{\text{Student}}(63) = -0.35, p = 0.73, \hat{r}_{\text{Pearson}} = -0.04, \text{Cl}_{95\%} \text{ [-0.29, 0.20]}, n_{\text{pairs}} = 65$

$$log_{e}(BF_{01}) = 1.60$$
, $\widehat{\rho}_{Pearson}^{posterior} = -0.04$, $Cl_{95\%}^{HDI}$ [-0.27, 0.21], $r_{beta}^{JZS} = 1.41$

Time to darkness

$$log_{e}(BF_{01}) = 1.53$$
, $\hat{\rho}_{Pearson}^{posterior} = -0.02$, $Cl_{95\%}^{HDI}$ [-0.29, 0.24], $r_{beta}^{JZS} = 1.41$

 $t_{\text{Student}}(67) = 0.96, p = 0.34, \hat{r}_{\text{Pearson}} = 0.12, \text{Cl}_{95\%}$ [-0.12, 0.34], $n_{\text{pairs}} = 69$

 $log_{e}(BF_{01}) = 1.25$, $\hat{\rho}_{Pearson}^{posterior} = 0.11$, $Cl_{95\%}^{HDI}$ [-0.12, 0.33], $r_{beta}^{JZS} = 1.41$

 $t_{\text{Student}}(4) = -1.39, p = 0.24, \hat{r}_{\text{Pearson}} = -0.57, \text{Cl}_{95\%} [-0.94, 0.45], n_{\text{pairs}} = 6$

 $log_{e}(BF_{01}) = 0.02$, $\hat{\rho}_{Pearson}^{posterior} = -0.37$, $Cl_{95\%}^{HDI}$ [-0.87, 0.27], $r_{beta}^{JZS} = 1.41$

 $t_{\text{Student}}(5) = 3.33, p = 0.02, \hat{r}_{\text{Pearson}} = 0.83, \text{Cl}_{95\%}[0.21, 0.97], n_{\text{pairs}} = 7$

$$log_e(BF_{01}) = -1.36$$
, $\hat{\rho}_{Pearson}^{posterior} = 0.64$, $Cl_{95\%}^{HDI}$ [-0.09, 0.96], $r_{beta}^{JZS} = 1.41$

dusk

 $t_{\text{Student}}(16) = -0.77, p = 0.45, \hat{r}_{\text{Pearson}} = -0.19, \text{Cl}_{95\%}$ [-0.60, 0.31], $n_{\text{pairs}} = 18$

 $log_{e}(BF_{01}) = 0.80, \hat{\rho}_{Pearson}^{posterior} = -0.16, Cl_{95\%}^{HDI} [-0.58, 0.24], r_{beta}^{JZS} = 1.41$

 $t_{\text{Student}}(2) = 0.18, p = 0.87, \hat{r}_{\text{Pearson}} = 0.13, \text{Cl}_{95\%} \text{ [-0.95, 0.97]}, n_{\text{pairs}} = 4$

 $log_e(BF_{01}) = 0.39$, $\hat{\rho}_{Pearson}^{posterior} = 0.06$, $Cl_{95\%}^{HDI}$ [-0.64, 0.77], $r_{beta}^{JZS} = 1.41$

dusk

 $t_{\text{Student}}(21) = -1.78, p = 0.09, \hat{r}_{\text{Pearson}} = -0.36, \text{Cl}_{95\%} \text{ [-0.67, 0.06]}, n_{\text{pairs}} = 23$

 $log_e(BF_{01}) = -0.15$, $\hat{\rho}_{Pearson}^{posterior} = -0.33$, $Cl_{95\%}^{HDI}$ [-0.65, 0.05], $r_{beta}^{JZS} = 1.41$

$$t_{\text{Student}}(57) = -1.32, p = 0.19, \hat{r}_{\text{Pearson}} = -0.17, \text{Cl}_{95\%} \text{ [-0.41, 0.09]}, n_{\text{pairs}} = 59$$

 $log_e(BF_{01}) = 0.80$, $\hat{\rho}_{Pearson}^{posterior} = -0.16$, $Cl_{95\%}^{HDI}$ [-0.40, 0.07], $r_{beta}^{JZS} = 1.41$

$$t_{\text{Student}}(22) = 0.87, p = 0.39, \hat{r}_{\text{Pearson}} = 0.18, \text{Cl}_{95\%} \text{ [-0.24, 0.55]}, n_{\text{pairs}} = 24$$

 $log_e(BF_{01}) = 0.85$, $\hat{\rho}_{Pearson}^{posterior} = 0.16$, $Cl_{95\%}^{HDI}$ [-0.23, 0.50], $r_{beta}^{JZS} = 1.41$

 $t_{\text{Student}}(29) = -0.43, p = 0.67, \hat{r}_{\text{Pearson}} = -0.08, \text{Cl}_{95\%} \text{ [-0.42, 0.28]}, n_{\text{pairs}} = 31$

 $log_{e}(BF_{01}) = 1.22$, $\hat{\rho}_{Pearson}^{posterior} = -0.08$, $Cl_{95\%}^{HDI}$ [-0.39, 0.27], $r_{beta}^{JZS} = 1.41$

 $t_{\text{Student}}(30) = 0.11, p = 0.91, \hat{r}_{\text{Pearson}} = 0.02, \text{Cl}_{95\%} \text{ [-0.33, 0.37]}, n_{\text{pairs}} = 32$

 $log_{e}(BF_{01}) = 1.31, \hat{\rho}_{Pearson}^{posterior} = 0.02, Cl_{95\%}^{HDI} [-0.31, 0.35], r_{beta}^{JZS} = 1.41$

 $t_{\text{Student}}(18) = -0.92, p = 0.37, \hat{r}_{\text{Pearson}} = -0.21, \text{Cl}_{95\%} \text{ [-0.60, 0.25]}, n_{\text{pairs}} = 20$

 $log_{e}(BF_{01}) = 0.73$, $\hat{\rho}_{Pearson}^{posterior} = -0.19$, $Cl_{95\%}^{HDI}$ [-0.56, 0.23], $r_{beta}^{JZS} = 1.41$

 $t_{\text{Student}}(17) = 0.19, p = 0.85, \hat{r}_{\text{Pearson}} = 0.05, \text{Cl}_{95\%}$ [-0.42, 0.49], $n_{\text{pairs}} = 19$

$$log_e(BF_{01}) = 1.06$$
, $\hat{\rho}_{Pearson}^{posterior} = 0.04$, $Cl_{95\%}^{HDI}$ [-0.37, 0.44], $r_{beta}^{JZS} = 1.41$

dusk

 $t_{\text{Student}}(1) = -0.45, p = 0.73, \hat{r}_{\text{Pearson}} = -0.41, \text{Cl}_{95\%} \text{ [NA, NA]}, n_{\text{pairs}} = 3$

$$log_{e}(BF_{01}) = 0.24, \\ \widehat{\rho}_{Pearson}^{posterior} = -0.15, \\ Cl_{95\%}^{HDI} \text{ [-0.81, 0.69]}, \\ r_{beta}^{JZS} = 1.41 \\$$

$$t_{\text{Student}}(20) = 0.66, p = 0.52, \hat{r}_{\text{Pearson}} = 0.15, \text{Cl}_{95\%} \text{ [-0.29, 0.53]}, n_{\text{pairs}} = 22$$

 $log_e(BF_{01}) = 0.95$, $\hat{\rho}_{Pearson}^{posterior} = 0.13$, $Cl_{95\%}^{HDI}$ [-0.26, 0.49], $r_{beta}^{JZS} = 1.41$

$$t_{\text{Student}}(14) = -1.49, p = 0.16, \hat{r}_{\text{Pearson}} = -0.37, \text{Cl}_{95\%}$$
 [-0.73, 0.15], $n_{\text{pairs}} = 16$

$$log_{e}(BF_{01}) = 0.12, \\ \widehat{\rho}_{Pearson}^{posterior} = -0.31, \\ Cl_{95\%}^{HDI} \\ [-0.69, 0.12], \\ r_{beta}^{JZS} = 1.41$$

Oriental Magpie-Robin

dawn

 $t_{\text{Student}}(30) = 1.27, p = 0.22, \hat{r}_{\text{Pearson}} = 0.23, \text{Cl}_{95\%} \text{ [-0.13, 0.53]}, n_{\text{pairs}} = 32$

 $log_{e}(BF_{01}) = 0.60$, $\hat{\rho}_{Pearson}^{posterior} = 0.20$, $Cl_{95\%}^{HDI}$ [-0.12, 0.52], $r_{beta}^{JZS} = 1.41$

 $log_e(BF_{01}) = -0.51$, $\hat{\rho}_{Pearson}^{posterior} = -0.41$, $Cl_{95\%}^{HDI}$ [-0.78, -1.47e-03], $r_{beta}^{JZS} = 1.41$

Student (26) = 0.87, p = 0.39, $\hat{r}_{Pearson}$ = 0.17, $Cl_{95\%}$ [-0.22, 0.51], n_{pairs} = 28

Time to darkness

$$log_e(BF_{01}) = 0.92$$
, $\hat{\rho}_{Pearson}^{posterior} = 0.14$, $Cl_{95\%}^{HDI}$ [-0.20, 0.47], $r_{beta}^{JZS} = 1.41$

 $t_{\text{Student}}(15) = 0.14, p = 0.89, \hat{r}_{\text{Pearson}} = 0.04, \text{Cl}_{95\%} \text{ [-0.45, 0.51]}, n_{\text{pairs}} = 17$

 $log_{e}(BF_{01}) = 1.01$, $\hat{\rho}_{Pearson}^{posterior} = 0.02$, $Cl_{95\%}^{HDI}$ [-0.42, 0.45], $r_{beta}^{JZS} = 1.41$

 $t_{\text{Student}}(53) = -0.82, p = 0.42, \hat{r}_{\text{Pearson}} = -0.11, \text{Cl}_{95\%} \text{ [-0.37, 0.16]}, n_{\text{pairs}} = 55$

 $log_{e}(BF_{01}) = 1.26$, $\widehat{\rho}_{Pearson}^{posterior} = -0.10$, $Cl_{95\%}^{HDI}$ [-0.35, 0.15], $r_{beta}^{JZS} = 1.41$

$$t_{\text{Student}}(8) = -0.76, p = 0.47, \hat{r}_{\text{Pearson}} = -0.26, \text{Cl}_{95\%} [-0.76, 0.44], n_{\text{pairs}} = 10$$

 $log_e(BF_{01}) = 0.56$, $\hat{\rho}_{Pearson}^{posterior} = -0.19$, $Cl_{95\%}^{HDI}$ [-0.66, 0.35], $r_{beta}^{JZS} = 1.41$

$$log_e(BF_{01}) = 0.74$$
, $\hat{\rho}_{Pearson}^{posterior} = 0.13$, $Cl_{95\%}^{HDI}$ [-0.37, 0.60], $r_{beta}^{JZS} = 1.41$

$$t_{\text{Student}}(42) = -0.40, p = 0.69, \hat{r}_{\text{Pearson}} = -0.06, \text{Cl}_{95\%} \text{ [-0.35, 0.24]}, n_{\text{pairs}} = 44$$

$$log_{e}(BF_{01}) = 1.40$$
, $\hat{\rho}_{Pearson}^{posterior} = -0.06$, $Cl_{95\%}^{HDI}$ [-0.34, 0.24], $r_{beta}^{JZS} = 1.41$

$$t_{\text{Student}}(18) = -1.90, p = 0.07, \hat{r}_{\text{Pearson}} = -0.41, \text{Cl}_{95\%} \text{ [-0.72, 0.04]}, n_{\text{pairs}} = 20$$

$$log_{e}(BF_{01}) = -0.34$$
, $\widehat{\rho}_{Pearson}^{posterior} = -0.36$, $Cl_{95\%}^{HDI}$ [-0.67, 0.04], $r_{beta}^{JZS} = 1.41$

$$t_{\text{Student}}(15) = -0.89, p = 0.39, \hat{r}_{\text{Pearson}} = -0.22, \text{Cl}_{95\%} \text{ [-0.64, 0.29]}, n_{\text{pairs}} = 17$$

$$log_e(BF_{01}) = 0.69$$
, $\hat{\rho}_{Pearson}^{posterior} = -0.19$, $Cl_{95\%}^{HDI}$ [-0.60, 0.24], $r_{beta}^{JZS} = 1.41$

$$t_{\text{Student}}(4) = -2.94, p = 0.04, \hat{r}_{\text{Pearson}} = -0.83, \text{Cl}_{95\%} \text{ [-0.98, -0.05]}, n_{\text{pairs}} = 6$$

$$log_{e}(BF_{01}) = -0.92$$
, $\hat{\rho}_{Pearson}^{posterior} = -0.59$, $Cl_{95\%}^{HDI}$ [-0.95, -0.04], $r_{beta}^{JZS} = 1.41$

 $t_{\text{Student}}(39) = -2.10, p = 0.04, \hat{r}_{\text{Pearson}} = -0.32, \text{Cl}_{95\%} \text{ [-0.57, -0.01]}, n_{\text{pairs}} = 41$

$$log_{e}(BF_{01}) = -0.51$$
, $\widehat{\rho}_{Pearson}^{posterior} = -0.30$, $Cl_{95\%}^{HDI}$ [-0.57, -0.01], $r_{beta}^{JZS} = 1.41$

dusk

 $t_{\text{Student}}(2) = 0.86, p = 0.48, \hat{r}_{\text{Pearson}} = 0.52, \text{Cl}_{95\%} \text{ [-0.88, 0.99]}, n_{\text{pairs}} = 4$

 $log_e(BF_{01}) = 0.20$, $\hat{\rho}_{Pearson}^{posterior} = 0.24$, $Cl_{95\%}^{HDI}$ [-0.52, 0.86], $r_{beta}^{JZS} = 1.41$

 $t_{\text{Student}}(12) = -0.60, p = 0.56, \hat{r}_{\text{Pearson}} = -0.17, \text{Cl}_{95\%} \text{ [-0.64, 0.40]}, n_{\text{pairs}} = 14$

$$log_{e}(BF_{01}) = 0.78$$
, $\hat{\rho}_{Pearson}^{posterior} = -0.14$, $Cl_{95\%}^{HDI}$ [-0.62, 0.32], $r_{beta}^{JZS} = 1.41$

dusk

 $t_{\text{Student}}(1) = -16.19, p = 0.04, \hat{r}_{\text{Pearson}} = -1.00, \text{Cl}_{95\%} \text{ [NA, NA]}, n_{\text{pairs}} = 3$

 $log_e(BF_{01}) = , \hat{\rho}_{Pearson}^{posterior} = -0.52, Cl_{95\%}^{HDI} [-0.95, 0.15], r_{beta}^{JZS} = 1.41$