STAT 530 Homework 6

2022-03-18

(1) Problem 7.55 (a) and (b) Casella & Berger: For each of the following pdfs, let X_1, \ldots, X_n be a sample from that distribution. In each case, find the best unbiased estimator of θ^r .

(a)
$$f(x \mid \theta) = \frac{1}{\theta}, \quad 0 < x < \theta, r < n$$

It is known that $T = X_{(n)}$ is a minimal sufficient and complete statistic (example 6.2.23). Using theorem 7.2.23 from Casella and Berger, we can find a UMVUE $g(X_{(n)})$. We first calculate the density of T:

$$f_T(t) = \frac{\partial}{\partial t} P(X_{(n)} \le t) = \frac{\partial}{\partial t} [F_X(t)]^n$$
$$= n[F_X(t)]^{n-1} f_X(t)$$
$$= \frac{nt^{n-1}}{\theta^n} I(0 < t < \theta)$$

Then the UMVUE g(T) must satisfy

$$\theta^r = \int_0^\theta g(t) \frac{nt^{n-1}}{\theta^n} dt$$

Taking the derivative of both sides with respect to θ , we have

$$r\theta^{r-1} = -n\theta^{-(n+1)} \int_0^\theta g(t)nt^{n-1}dt + \theta^n g(\theta)n\theta^{n-1}$$
$$= -\frac{n}{\theta} \int_0^\theta g(t)\frac{nt^{n-1}}{\theta^n}dt + \frac{ng(\theta)}{\theta}$$
$$= -\frac{n\theta^r}{\theta} + \frac{ng(\theta)}{\theta}.$$

Now we can solve for $g(\theta)$:

$$r\theta^{r-1} = -\frac{n\theta^r}{\theta} + \frac{ng(\theta)}{\theta}$$
$$r\theta^r = -n\theta^r + ng(\theta)$$
$$\theta^r(r+n) = ng(\theta)$$
$$\frac{\theta^r(r+n)}{n} = g(\theta)$$

Replacing θ is the complete sufficient statistic $X_{(n)}$, we have that the UMVUE for θ^r is

$$g(X_{(n)}) = \frac{X_{(n)}^r(n+r)}{n}$$

(b)
$$f(x \mid \theta) = e^{-(x-\theta)}, \quad x > \theta$$

Here, it can be shown that $T = X_{(1)}$ is a complete and sufficient statistic. By the Neyman-Fisher factorization criterion, T is sufficient, and we can show that T is complete as follows:

First we find the density function $f_T(t)$:

$$f_T(t) = \frac{\partial}{\partial t} 1 - [1 - F_X(t)]^n = n[1 - F_X(t)]^{n-1} f_X(t)$$

= $ne^{-n(t-\theta)} I(t > \theta)$.

Now, suppose there exists a function g(T) such that Eg(T) = 0 for all θ . Then we have

$$0 = \int_{\theta}^{\infty} g(t)ne^{n\theta}e^{-nt}dt = -ne^{n\theta}\int_{\infty}^{\theta} g(t)e^{-nt}dt$$

Taking the partial derivative with respect to θ on both sides, we get

$$0 = n \int_{\theta}^{\infty} ng(t)e^{-n(t-\theta)}dt - ng(\theta).$$

The first term, nEg(T), is equal to zero. But then we have that g(t) = 0 for all θ . So by the definition of completeness, T is a complete statistic.

Now that we have established that T is complete and sufficient, we know that an unbiased estimator $\varphi(T)$ of θ^r which is a function of only T will be the UMVUE for θ^r . So we have

$$\theta^{r} = E\varphi(T)$$

$$= \int_{\theta}^{\infty} \phi(t)ne^{-n(t-\theta)}dt$$

Taking the derivative with respect to θ on both sides, we get

$$r\theta^{r-1} = n \int_{\theta}^{\infty} \varphi n e^{-n(t-\theta)} dt - n\varphi(\theta)$$
$$= \theta^r - n\varphi(\theta).$$

We then have that φ must satisfy $\varphi(\theta) = \frac{\theta^{r-1}(n\theta-r)}{n}$, so the UMVUE for θ^r must be

$$\varphi(X_{(1)}) = \frac{X_{(1)}^{r-1}(nX_{(1)} - r)}{n}.$$

(2) Suppose $X_1, \ldots, X_n \stackrel{iid}{\sim} \text{Poisson}(\lambda)$, where

$$P(X = x \mid \lambda) = \frac{e^{-\lambda} \lambda^x}{x!}; \quad x = 0, 1, \dots; \quad 0 \le \lambda < \infty.$$

Find the UMVUE of $\tau(\lambda) = \lambda^r$ for some positive integer r.

It is known that $T = \bar{X}$ is a complete, sufficient statistic. If we can find a function $\varphi(T)$ that is unbiased for λ^r , then $\phi(T)$ will be the UMVUE for λ^r . So suppose there does exist a function $\phi(T)$ that is an unbiased estimator of λ^r . Then because $T \sim \text{Poisson}(n\lambda)$, we have

$$\lambda^r = \sum_{t=0}^{\infty} \varphi(T) \frac{e^{-n\lambda} (n\lambda)^t}{t!}.$$

Rewriting this equality, we obtain

$$\lambda^r e^{n\lambda} = \sum_{t=0}^{\infty} \varphi(t) \frac{(n\lambda)^t}{t!}$$
$$\sum_{t=0}^{\infty} \frac{n^i \lambda^{r+i}}{i!} = \sum_{t=0}^{\infty} \varphi(t) \frac{(n\lambda)^t}{t!}$$

Since both sides of the equality are polynomials in λ , each term on the left hand side must have the same coefficient as the term on the right side with the corresponding degree. Because the smallest power of λ on the left hand side is r, $\varphi(t) = 0$ for $0 \le t < r$. For $t \ge r$, we see that

$$\frac{n^{t-r}\lambda^t}{(t-r)!} = \varphi(t) \frac{(n\lambda)^t}{t!}$$

Solving for $\varphi(t)$, we find that the UMVUE for λ^r is

$$\varphi(t) = \begin{cases} 0 & \text{for } 0 \le t < r \\ \frac{n^{-r}t!}{(t-r)!} & \text{for } t \ge r \end{cases}$$

- (3) Prove the following claims:
 - (a) Suppose $\hat{\theta}$ is the unique Bayes estimator, then $\hat{\theta}$ is admissible.
 - (b) Suppose θ^* is the unique minimax estimator, then θ^* is admissible.
- (4) For this question, we will study the *breakdown value* in greater depth. The textbook definition of a breakdown value is given below:

Definition 10.2.2 Let $X_{(1)} < \cdots < X_{(n)}$ be an ordered sample of size n, and let T_n be a statistic based on this sample. T_n has breakdown value $b, 0 \le b \le 1$, if, for every $\epsilon > 0$,

$$\lim_{X_{(\{(1-b)n\})}\to\infty}T_n<\infty\quad\text{and}\quad\lim_{X_{(\{(1-(b+\epsilon))n\})}\to\infty}T_n=\infty$$

(Recall Definition 5.4.2 on percentile notation)

Where $\{b\}$ is the number b rounded to the nearest integer. That is, if i is an integer and $i-0.5 \le b < i+0.5$, then $\{b\} = i$. The textbook also claims that the sample median M_n has a breakdown value of 50%. These do not make sense. For example, consider n = 10, b = 50%, and $\epsilon = 0.01$, then $\{(1-b)n\} = \{(1-(b+\epsilon))n\} = 5$. Obviously we cannot have

$$\lim_{X_{(\{(1-b)n\})}\to\infty}M_n=\lim_{X_{(5)}\to\infty}M_n<\infty\quad\text{ and }\quad \lim_{X_{(\{(1-(b+\epsilon))n\})}\to\infty}T_n=\lim_{X_{(5)}\to\infty}M_n=\infty$$

at the same time.

Now consider replacing the equations in Definition 10.2.2 by

$$\lim_{X_{(\lfloor (1-b)n\rfloor)}\to\infty}T_n<\infty\quad\text{ and }\quad \lim_{X_{(\lfloor (1-(b+\epsilon))n\rfloor)\to\infty}}T_n=\infty,$$

where $\lfloor b \rfloor$ is the greatest integer less than or equal to b, that is, the floor function of b. Show that, under the new definition, the sample median M_n has a breakdown value of $\frac{\lfloor \frac{n-3}{2} \rfloor}{n}$ (assume $n \geq 3$). Obviously, this converges to 50% as $n \to \infty$.