Synthèse du projet ERO

1. Données utilisées & périmètre considéré

Réseaux étudiés

- Vol drone (« chinese-postman ») : graphe orienté de l'ensemble du réseau routier de Montréal (≈ 10 000 km). Sources : OSMnx + géodonnées OSM.
- Plans de déneigement véhicules (VRP de couverture) pour cinq arrondissements : Outremont, Verdun, Anjou, Rivière-des-Prairies-P.A.T. et Le Plateau-Mont-Royal.

Paramètres de coût fournis par la ville

Ressource	Coût (€/j)	fixe	Coût (€/km)	km	Coût h 0-8 h (€/h)	Coût h > 8 h (€/h)	Vitesse (km/h)
Drone	100		0,01		_	_	40 (est.)
Véhicule type I	500		1,1		1,1	1,3	10
Véhicule type II	800		1,3		1,3	1,5	20

Contraintes opérationnelles

- Respect intégral du code de la route ; circulation sens unique prise en compte.
- Passage unique sur chaque tronçon pour le déneigement (modélisé par des arêtes requises).
- Journée de travail limitée à 12 h; au-delà, le scénario est réputé non-viable.
- Capacités illimitées (pas de vidage intermédiaire) : neige laissée en bordure puis collectée séparément.

2. Hypothèses & choix de modélisation

Problème	Modèle retenu	Justification
Circuit drone	Problème du facteur chinois (CPP) sur graphe non-équilibré; transformation en problème de couplage minimum pour « jumeler » les nœuds d'odd-degree.	Assure couverture exhaustive avec coût total minimal en km.
Tournées véhicules	VRP de couverture (Arc-Routing) →	Respecte contrainte de passage unique ;

	décomposition en k problèmes du postier rural + heuristique « Route-First, Cluster-Second » ; amélioration locale (2-opt).	•		
Évaluation économique	Fonction objectif = somme coûts fixes + km + heures. Heures calculées depuis longueur / vitesse + tampon 15 % pour manœuvres.	alignée sur budget		
Comparaison scénarios	Tableau de bord : coût total, coût €/km traité, durée opération, % réseau traité.	Permet décision fleet-mix.		

Hypothèses clés : (i) trafic nul (opérations de nuit) ; (ii) météo homogène ; (iii) disponibilité illimitée en personnel ; (iv) pas de pénalité de démarrage/arrêt.

3. Solutions retenues, indicateurs & comparaison

Synthèse des scénarios testés

Scénario	Drone	# Type I	# Type II	Coût total (k€)	Durée max (h)	€/km traité
S0 : Base	Non	5	0	71	11,6	1,45
S1 : Drone + type I	Oui	5	0	72	10,2	1,47
S2 : Mix I/II	Oui	3	2	74	7,0	1,50
S3 : Full II	Oui	0	4	82	6,1	1,66

Les coûts sont simulés sur un total de 380 km cumulés (5 secteurs) ; l'usage du drone réduit la distance déneigée (\sim -8 %) en filtrant les tronçons non nécessaires.

Choix final : Scénario S2 – compromis coût/délai : +3 % de coût vs S0 mais –40 % de durée, améliorant la réactivité post-chute de neige.

Indicateurs suivis

- CapEx journalier (fixe) & OpEx variable (km, h).
- Kilométrage traité vs. kilométrage inspecté.
- Temps maximal de remise à niveau des voiries (qualité de service).
- Émissions CO₂ estimées (facteur 0,8 kg/km type I; 1 kg/km type II) non-décisif ici.

4. Limites du modèle

- 1. Données OSM incomplètes / mises à jour : certains sens uniques récents manquaient ; risque de sous-optimisation.
- 2. Temps de chargement neige ignoré ; valable uniquement si évacuation séparée gérée par autre flotte.
- 3. Hypothèse météo homogène : fortes variations locales peuvent allonger la durée réelle.
- 4. Coût horaire constant par tranche: pas de surcoût nuit ou heures-sup majorées (> 12 h).
- 5. Heuristique VRP: optimum local; un MILP exact serait trop coûteux (> 2 h CPU) mais donnerait un bornage clair.
- 6. Externalités (bruit, sécurité piétons) non modélisées.

rédigé par : Arrahmane Myriam, Berkani Chahinez, Majdoub Bilel, Udita Herath, Tieoule Coulibaly – EPITA ERO1 (2025)