Gabriel Van Dreel 800886655 November 24, 2021 ECGR 4105-C01

Homework 4

The source code developed for homework 4 was uploaded to the Github repository at the following link:

https://github.com/Gabrielvd616/ECGR4105/tree/main/Homework4

```
In [1]:
         import matplotlib.pyplot as plt
         import numpy as np
         import pandas as pd
         from sklearn import metrics
         from sklearn.datasets import load breast cancer
         from sklearn.decomposition import PCA
         from sklearn.model_selection import train_test_split
         from sklearn.preprocessing import MinMaxScaler, StandardScaler
         from sklearn.svm import SVC, SVR
         # Problem 1, Part 1
         # Loads breast labelled training data
         breast = load_breast_cancer()
         # Formats np array since breast object contains separate fields for data and labels
         breast data = breast.data
         labels = np.reshape(breast.target, (breast_data.shape[0], 1))
         df = pd.DataFrame(np.concatenate([breast data, labels], axis=1))
         n = breast_data.shape[1]
         x = df.values[:, :n]
         y = df.values[:, n]
         # Performs MIN MAX scaling
         mms = MinMaxScaler()
         x = mms.fit_transform(x)
         # Performs standardization
         ss = StandardScaler()
         x = ss.fit_transform(x)
         # Performs PCA on the data
         pca = PCA()
         pcs = pca.fit transform(x)
         # Performs 80% and 20% split of the labelled data into training and test sets
         np.random.seed(0)
         x_train_p, x_test_p, y_train_p, y_test_p = train_test_split(pcs, y, train_size=0.8,
                                                                      test size=0.2,
                                                                      random_state=np.random)
         # Initializes evaluation metrics for SVM classifier model PCA
         k = pcs.shape[1]
```

```
accuracy = np.zeros(k)
precision = np.zeros(k)
recall = np.zeros(k)
# Iteratively evaluates different kernels for SVM classifier with optimal PCA
kernels = ['linear', 'poly', 'rbf', 'sigmoid']
for i in range(len(kernels)):
    # Iteratively trains and evaluates model for principal components
    acc max = 0
    k opt = 0
    svm_best = None
    for j in range(k):
        # Performs SVM classification by instantiating SVC object with linear kernel
        svm = SVC(kernel=kernels[i])
        svm.fit(x_train_p[:, :j + 1], y_train_p)
        y_pred = svm.predict(x_test_p[:, :j + 1])
        # Evaluates model using accuracy, precision, and recall evaluation metrics
        accuracy[j] = metrics.accuracy score(y test p, y pred)
        precision[j] = metrics.precision_score(y_test_p, y_pred)
        recall[j] = metrics.recall_score(y_test_p, y_pred)
        if accuracy[j] > acc max:
            acc_max = accuracy[j]
            k_{opt} = j + 1
            svm\_best = svm
    # Displays optimal K and corresponding accuracy, precision, and recall
    print('Optimal value of K for PCA with {} kernel:'.format(kernels[i]), k opt)
    print('Accuracy:', acc_max)
    print('Precision:', precision[k_opt - 1])
    print('Recall:', recall[k_opt - 1])
    print()
    # Problem 1, Part 2
    # Creates subplots for metrics and 2D projection of decision boundary
    fig, (ax1, ax2) = plt.subplots(1, 2)
    # Plots accuracy, precision, and recall for varying numbers of PCs
    ax1.plot(np.linspace(1, k, k), accuracy, color='red',
             label='Accuracy')
    ax1.plot(np.linspace(1, k, k), precision, color='green',
             label='Precision')
    ax1.plot(np.linspace(1, k, k), recall, color='blue',
             label='Recall')
    ax1.grid()
    ax1.set xlabel('K')
    ax1.set ylabel('Metric value')
    ax1.set title('Accuracy, precision, and recall for SVC with K PCs')
    ax1.legend()
    # Problem 1, Part 3
    # Plots data points
    ax2.scatter(x[:, 0], x[:, 1], c=y)
    # Creates grid to evaluate model
    xlim = ax2.get xlim()
    ylim = ax2.get_ylim()
    x_grid = np.linspace(xlim[0], xlim[1], 30)
    y_grid = np.linspace(ylim[0], ylim[1], 30)
```

Optimal value of K for PCA with linear kernel: 19

Accuracy: 0.9736842105263158 Precision: 0.9705882352941176 Recall: 0.9850746268656716

Optimal value of K for PCA with poly kernel: 4

Accuracy: 0.9035087719298246 Precision: 0.8589743589743589

Recall: 1.0

Optimal value of K for PCA with rbf kernel: 8

Accuracy: 0.9824561403508771 Precision: 0.9850746268656716 Recall: 0.9850746268656716

Optimal value of K for PCA with sigmoid kernel: 7

Accuracy: 0.956140350877193 Precision: 0.9428571428571428 Recall: 0.9850746268656716

Accuracy, precision, and recall followithour thought for SVC with linear kernel

Accuracy, precision, and recall for DEACIS with bour dary for SVC with poly kernel

Accuracy, precision, and recall for Decisionth both ary for SVC with rbf kernel

Accuracy, precision, and recall fore 6 ly (ion libuth & asy for SVC with sigmoid kernel


```
# Problem 2, Part 1
# Defines the map function to map strings to numbers in table
def binary_map(x):
    return x.map({'yes': 1, 'no': 0})
```

```
# Reads Labelled training data
housing data = pd.read csv(r'Housing.csv')
# List of variables to map
varlist = ['mainroad', 'guestroom', 'basement', 'hotwaterheating', 'airconditioning',
           'prefarea'l
# Applies binary_map function to and selects features from housing_data
housing_data[varlist] = housing_data[varlist].apply(binary_map)
housing data = housing data[housing data.columns[:12]]
# Performs MIN MAX scaling
housing_data = mms.fit_transform(housing_data)
# Performs standardization
housing_data = ss.fit_transform(housing_data)
# Performs 80% and 20% split of the labelled data into training and test sets
x = housing data[:, 1:12]
y = housing data[:, 0]
x_train, x_test, y_train, y_test = train_test_split(x, y, train_size=0.8,
                                                     test_size=0.2,
                                                     random state=np.random)
# Fits the SVM regression model with all available kernels
svr_lin = SVR(kernel='linear')
svr_poly = SVR(kernel='poly')
svr rbf = SVR(kernel='rbf')
svr_sig = SVR(kernel='sigmoid')
m = x \text{ test.shape}[0]
x_test_reduced = np.hstack([x_test[:, 0].reshape(m, 1), np.zeros((m, 10))])
y lin = svr lin.fit(x train, y train).predict(x test reduced)
y_poly = svr_poly.fit(x_train, y_train).predict(x_test_reduced)
y_rbf = svr_rbf.fit(x_train, y_train).predict(x_test_reduced)
y_sig = svr_sig.fit(x_train, y_train).predict(x_test_reduced)
a = x \text{ test}[:, 0].\text{reshape}(m, 1)
# Plots the SVM regressions and data points
plt.figure(5)
plt.scatter(x[:, 0], y, color='darkorange', label='Data')
plt.plot(x_test[:, 0], y_lin, color='navy', label='linear kernel')
plt.plot(x\_test[:, \ 0], \ y\_poly, \ color='c', \ label='poly \ kernel')
plt.plot(x_test[:, 0], y_rbf, color='g', label='rbf kernel')
plt.plot(x_test[:, 0], y_sig, color='cornflowerblue', label='sigmoid kernel')
plt.xlabel('Preprocessed area')
plt.ylabel('Preprocessed housing price')
plt.title('SVM regression with different kernels')
plt.legend()
```

