NAE-CHYUN CHEN

+1-443-467-5174 | naechyun@jhu.edu | https://naechyun.github.io

EDUCATION

Johns Hopkins University (JHU), Ph.D. Student in Computer Science	08/2018 – present
Advisor: Dr. Ben Langmead	
National Taiwan University (NTU), M.S. in Electronics Engineering	09/2015 - 07/2017
Advisor: Dr. Yi-Chang Lu (Lab for Data Processing Systems)	
• Thesis: "A Novel Long Read Aligner Using Fast Seeding and Linking Strategies"	
NTU, B.S. in Electrical Engineering and B.A. in Economics (double-degree)	09/2010 - 06/2015

RESEARCH EXPERIENCE

Langmead Lab, JHU

08/2018 – present

- Developed methods using one [2] or multiple variant-aware references [3] to reduce reference bias.
- Analyzed HLA genotyping accuracy using different variant-inclusion strategies for graph genome [4].

Lab for Data Processing Systems, NTU

09/2013 - 07/2017

- Developed a sequence aligner for Nanopore reads in C/C++ (MS thesis).
- Designed algorithms and accelerators for genomic sequence processing on ASICs and FPGAs.

WORKING EXPERIENCE

Research Intern, DeepVariant Team, Google Health

05/2020 - 12/2020

• Developed a population-aware DeepVariant model that reduced SNP errors by 5% [1].

Technical Intern, IC Compiler II Team, Synopsys

06/2016 - 08/2016

SELECTED PUBLICATIONS

- 1. <u>Nae-Chyun Chen</u>, A. Kolesnikov, S. Goel, T. Yun, P.-C. Chang, A. Carroll, "Improving variant calling using population data and deep learning," in *bioRxiv*, 2021
- 2. T. Mun*, <u>Nae-Chyun Chen</u>*, and B. Langmead, "LevioSAM: Fast lift-over of alternate reference alignments," in *bioRxiv*, 2021 (co-first author)
- 3. <u>Nae-Chyun Chen</u>, B. Solomon, T. Mun, S. Iyer, and B. Langmead, "Reference flow: reducing reference bias using multiple population genomes," in *Genome biology*, 2021
- 4. J. Pritt, <u>Nae-Chyun Chen</u>, and B. Langmead, "FORGe: prioritizing variants for graph genomes," in *Genome biology*, 2018

SKILLS

- Programming Languages: Python, C/C++, R, Verilog
- Toolkit: MTEX, git, gdb, Bash, Snakemake, unittest