Deep contextualized word representations

IIC3692-Alvaro Soto

30/08/2023

Presentado por: Daniel Gómez

Hay limitaciones no superadas

 No toda la información de una palabra en el contexto de la frase se logra guardar (sintaxis y semántica).

• Puede haber palabras con más de un significado (polisemia).

Veamos un ejemplo simple

• La <u>planta</u> debe recibir luz

• Se clavó una astilla en la <u>planta</u> del pie.

¿Qué soluciones se han propuesto?

- Enriquecer los vectores con subpalabras (e.g., Wieting et al., 2016; Bojanowski et al., 2017)
- Aprender distintos vectores de una misma palabra para sus distintos contextos/significados (e.g., Neelakantan et al., 2014).
- Aprender representaciones dependientes del contexto a traves de biLSTM (Belinkov et al. (2017)).

Embeddings from Language Models(ELMo)

- Las representaciones de ELMo son una función de una red bidireccional
- Los embeddings son una función lineal de los estados internos de la red (es un embedding contextual)
- Podemos incorporar ELMo a distintas arquitecturas de redes neuronales de NLP

Como funciona ELMo

Forward RNN Backward RNN Empezamos con dos redes neuronales EOS you how how you **ELMo** ... Las unimos Lstm Lstm

https://sh-tsang.medium.com/review-elmo-deep-contextualized-word-representations-8eb1e58cd25c

Como funciona ELMo

$$R_k = \{\mathbf{x}_k^{LM}, \overrightarrow{\mathbf{h}}_{k,j}^{LM}, \overleftarrow{\mathbf{h}}_{k,j}^{LM} \mid j = 1, \dots, L\}$$
$$= \{\mathbf{h}_{k,j}^{LM} \mid j = 0, \dots, L\},$$

$$ELMo_k = E(R_k; \Theta_e).$$

$$\mathbf{ELMo}_k^{task} = E(R_k; \Theta^{task}) = \gamma^{task} \sum_{j=0}^{L} s_j^{task} \mathbf{h}_{k,j}^{LM}.$$

https://www.youtube.com/watch?v=YZerhaFMPTw&ab_channel=MinsukHeo%ED%97%88%EB%AF%BC%EC%8 4%9D

Resultados

	TASK	PREVIOUS SOTA		OUR BASELINE	ELMO + E BASELINE	INCREASE (ABSOLUTE/ RELATIVE)
Question answering	SQuAD	Liu et al. (2017)	84.4	81.1	85.8	4.7 / 24.9%
Textual entailment	SNLI	Chen et al. (2017)	88.6	88.0	88.7 ± 0.17	0.7 / 5.8%
Semantic role labeling	SRL	He et al. (2017)	81.7	81.4	84.6	3.2 / 17.2%
Coreference resolution	Coref	Lee et al. (2017)	67.2	67.2	70.4	3.2 / 9.8%
Named entity extraction	NER	Peters et al. (2017)	91.93 ± 0.19	90.15	92.22 ± 0.10	2.06 / 21%
Sentiment analysis	SST-5	McCann et al. (2017)	53.7	51.4	54.7 ± 0.5	3.3 / 6.8%

Resultados

Modelos con ELMo usan sets de entrenamiento más eficientemente

Conclusiones

- ELMo permite guardar mas informacion contextual en los embeddings
- Usando multiples layers del biLM se mejora el aprendizaje de caracteristicas sintacticas y semanticas de las frases
- ELMo permite tener una mejora en multiples pruebas de NLP

Análisis Critico

• No se busca ver cuál es el futuro en investigación para ELMo

• Falta analizar más falencias del modelo