Technische Grundlagen der Informatik Übungsblatt 2

Aufgabe 4.

- (a) Decodieren Sie die nachfolgende EAN!
- (b) Codieren Sie die EAN 7 235953 52525! Berechnen Sie hierzu die Prüfziffer und tragen Sie den resultierenden Code in den vorgedruckten Raster ein.

Lösung. (a)

Decodierter EAN: 7 812345 67797 Prüfziffer: $134 + p \equiv 0 \mod 10$

p = 6

(b)

Prüfziffer: $107 + p \equiv 0 \mod 10$

p = 3

Aufgabe 5. Gegeben ist der nachfolgende Signalverlauf mit Pegel 1 (high) und Pegel 2 (low).

- (a) Interpretieren Sie den Signalverlauf in NRZ-L-Codierung und geben Sie die decodierte 0/1-Folge an!
- (b) Interpretieren Sie den Signalverlauf in NRZ-S-Codierung und geben Sie die decodierte 0/1-Folge an! Gehen Sie davon aus, dass die Folge bei Pegel low mit Wert 0 startet.
- (c) Zeichnen Sie zum nachfolgend gegebenen Signalverlauf in NRZ-L-Codierung darunter den entsprechenden Signalverlauf in NRZ-M-Codierung! Gehen Sie davon aus, dass NRZ-M mit Pegel *high* startet.

Lösung. (a)

Decodierter Signalverlauf: 01010001110110

(b)

Decodierter Signalverlauf: 00000110110010

(c)

Decodierter Signalverlauf: 01001110000101

Aufgabe 7. Gegeben ist ein Code mit fünf Codewörtern: 0011001, 0010101, 1101011, 0001111 und 1010100.

(a) Berechnen Sie die Hamming-Distanz zwischen den einzelnen Codewörtern und vervollständigen Sie die nachfolgende Distanz-Matrix!

	0011001	0010101	1101011	0001111	1010100
0011001	0	2	4	3	4
0010101	2	0	6	3	2
1101011	4	6	0	3	6
0001111	3	3	3	0	5
1010100	4	2	6	5	0

- (b) Geben Sie den Hamming-Abstand D des Codes an!
- (c) Wie viele Bits braucht man mindestens, um einen Code für sechs Codewörter zu entwerfen, der einen Hamming-Abstand von D=2 aufweist?

Lösung. (a) Siehe Angabe!

(b) Hamming Abstand D=2

Aufgabe 8. Es soll ein Hamming-Code für 4 Datenbits konstruiert werden.

- (a) Wie viele Prüfbits werden benötigt? Wie hoch ist die Anzahl der resultierenden Codebits?
- (b) Wie lauten die Gleichungen für die nötigen Prüfbits dieses Codes?
- (c) Listen Sie alle gültigen Codewörter dieses Codes in einer Tabelle auf!
- (d) Überprüfen Sie anhand von zwei Beispielen, ob es sich um einen linearen Code handeln könnte!
- (e) Decodieren und ggf. korrigieren Sie das empfangene Codewort 1101110 unter der Annahme, dass maximal ein Bit gestört wurde!
- (f) Decodieren und ggf. korrigieren Sie das empfangene Codewort 1110110 unter der Annahme, dass maximal ein Bit gestört wurde!

Lösung. (a) Es werden 3 Prüfbits benötigt und die Anzahl der resultierenden Codebits beträgt 7.

(b)
$$p_1 = c_1 = (c_3 + c_5 + c_7) \mod 2 = c_3 \otimes c_5 \otimes c_7$$
$$p_2 = c_2 = (c_3 + c_6 + c_7) \mod 2 = c_3 \otimes c_6 \otimes c_7$$
$$p_3 = c_4 = (c_5 + c_6 + c_7) \mod 2 = c_5 \otimes c_6 \otimes c_7$$

(c)

c_1	c_2	c_3	c_4	c_5	c_6	c_7
0	0	0	0	0	0	0
1	1	0	1	0	0	0
1	0	1	0	1	0	0
0	1	1	1	1	0	0
0	1	1	0	0	1	0
1	0	1	1	0	1	0
1	1	0	0	1	1	0
0	0	0	1	1	1	0
1	1	1	0	0	0	1
0	0	1	1	0	0	1
0	1	0	0	1	0	1
1	0	0	1	1	0	1
1	0	0	0	0	1	1
0	1	0	1	0	1	1
0	0	1	0	1	1	1
1	1	1	1	1	1	1

$$(0110010 + 1011010) \mod 2 = 0000000$$

 $(0010111 + 0100101) = 00111100$

(e)

$$p_1 = c_1 = 0 \otimes 1 \otimes 0 = 1 = 1$$
 \checkmark $p_2 = c_2 = 0 \otimes 1 \otimes 0 = 1 = 1$ \checkmark

$$p_3 = c_4 = 1 \otimes 1 \otimes 0 = 0 \neq 1$$
 4

 c_4 gestört! Richtig: 1100110

(f)

$$p_1=c_1=1\otimes 1\otimes 0=0 \neq 1$$
 4

$$p_2 = c_2 = 1 \otimes 1 \otimes 0 = 0 \neq 1$$
 4

$$p_3 = c_4 = 1 \otimes 1 \otimes 0 = 0 = 0 \quad \checkmark$$

 c_3 gestört, weil (1+2)=3! Richtig: 1100110