COMP9020 - Assignment 1

Jack(z5129432)

14ed August 2017

Question 1

- (a) Show that: $\sum_{i=1}^n i^2 = O(n^3)$ correct. $\sum_{i=1}^n i^2 = \frac{n(n+1)(2n+1)}{6}$, which is $O(n^3)$ Related Nodes:
 - Arithmetic progression: SUM = $n \frac{(a_1 + a_n)}{2}$
 - Geometric progression: SUM = $a_1 \frac{1-r^n}{1-r}$
 - Square number: SUM = $\frac{n(n+1)(2n+1)}{6}$
 - Cubic number: SUM = $(\frac{n(n+1)}{2})^2$
- (b) let $p(n) = n^c$, then $\log p(n) = \log n^c = c \log n$

Big-O Complexity Chart

Elements

- O(1): constant
- O(logn): logarithmic
- O(n): linear
- O(nlogn): loglinear
- $O(n^c)$: polynomial
- $O(c^n)$: exponential
- (c) Show that $\sum_{i=1}^{n} \log i = O(n \log n)$

$$\sum_{i=1}^{n} \log i \le \sum_{i=1}^{n} \log n = O(n \log n)$$

(d) Show that $\sum_{i=1}^{n} \frac{i}{2^i} = O(1)$