Math 202A Lecture Notes

Kurtland Chua

Contents

T	Metric Spaces		
	1.1	Basic Notions	1
	1.2	Cauchy Sequences and Completion	2
2	Gen	neral Topology	3

1 Metric Spaces

1.1 Basic Notions

Definition 1.1. Let X be a set. A metric on X is a function $\rho: X \times X \to \mathbb{R}^+$ such that

- (Triangle inequality) $\rho(x,z) \leq \rho(x,y) + \rho(y,z)$ for all $y \in X$.
- $\rho(x,y) = 0$ if and only if x = y.

Together, (X, ρ_X) is referred to as a metric space. If a function ρ satisfies the first two properties but only reverse implication in the third property holds, then ρ is a *semimetric* or a *pseudometric*.

Observe that if $S \subseteq X$ and ρ is a metric on X, the restriction of ρ to S is a metric on S.

Definition 1.2. A norm on a real/complex vector space V is a function $\|\cdot\|: V \to \mathbb{R}^+$ such that

- $\|\alpha v\| = |\alpha| \|v\|$ for $\alpha \in \mathbb{R}$ or $\alpha \in \mathbb{C}$
- $\bullet \ \|x+y\| \leq \|x\| + \|y\|$
- ||x|| = 0 if and only if x = 0.

If only the first two properties hold, then $\|\cdot\|$ is a *seminorm*.

Observe that having a norm on a vector space allows us to define a metric on the space as $\rho(x,y) = ||x-y||$.

 \Diamond

We now define the functions between metric spaces that are 'interesting'. In the following discussion, let (X, ρ_X) , (Y, ρ_Y) be metric spaces.

Definition 1.3. Let $f: X \to Y$ be a function. Then, we say that f is an *isometry* if $\rho_Y(f(x_1), f(x_2)) = \rho_X(x_1, x_2)$ for any $x_1, x_2 \in X$. If f is onto, then f is viewed as an isomorphism between the two metric spaces.

Definition 1.4. Let $f: X \to Y$ be a function. If there exists some constant K such that

$$\rho_Y(f(x_1), f(x_2)) \le K\rho_X(x_1, x_2)$$

for any $x_1, x_2 \in X$, then f is said to be K-Lipschitz, and the smallest K for which the inequality holds above for all pairs of points is referred to as the Lipschitz constant.

Definition 1.5. Let $f: X \to Y$ be a function. Then, f is uniformly continuous if for all $\varepsilon > 0$, there exists some $\delta > 0$ such that

$$\rho_X(x_1, x_2) < \delta \implies \rho_Y(f(x_1), f(x_2)) < \varepsilon$$

for any $x_1, x_2 \in X$.

Definition 1.6. Let $f: X \to Y$ be a function. Then, f is *continuous* if for every x_1 and for all $\varepsilon > 0$, there exists some $\delta > 0$ such that

$$\rho_X(x_1, x) < \delta \implies \rho_Y(f(x_1), f(x)) < \varepsilon.$$

Definition 1.7. Let X be a metric space, and let $(x_n)_{n\in\mathbb{N}}$ be a sequence in X. Then, we say that (x_n) converges to x, or $(x_n) \to x$, if for every $\varepsilon > 0$, there exists some $N \in \mathbb{N}$ such that

$$n > N \implies \rho(x, x_n) < \varepsilon.$$

 \Diamond

 \Diamond

Proposition 1.1. Let X, Y be metric spaces, and let $f: X \to Y$ be a continuous function. Furthermore, let (x_n) be a sequence in X that converges to x. Then, $(f(x_n))$ is convergent, and converges to f(x).

Definition 1.8. Let X be a metric space, and $S \subseteq X$. Then, S is dense in X if for every point $x \in X$ and every $\varepsilon > x$, $S \cap B_{\varepsilon}(x)$ is non-empty.

Proposition 1.2. Let X, Y be metric spaces and let S be a dense subset of X. Furthermore, let f, g be continuous functions from X to Y. Then, if f and g agree on S, then f = g.

1.2 Cauchy Sequences and Completion

Definition 1.9. Let X be a metric space. Then, a sequence (x_n) is Cauchy if for every $\varepsilon > 0$, there exists some $N \in \mathbb{N}$ such that

$$m, n > N \implies \rho(x_m, x_n) < \varepsilon.$$

Definition 1.10. If every Cauchy sequence in a metric space X converges, then X is complete.

As an example of a metric space that is not complete, consider \mathbb{Q} with the metric inherited from \mathbb{R} .

Proposition 1.3. Let X, Y be a metric space, and $f: X \to Y$ a uniformly continuous function. Then, if (x_n) is a Cauchy sequence, then $(f(x_n))$ is also a Cauchy sequence.

Definition 1.11. Let X be a metric space. A *completion* of X is a complete metric space Y together with an isometry $i: X \to Y$ such that i(X) is dense in Y.

Proposition 1.4. If $((Y_1, \rho_{Y_1}), i_1)$ and $((Y_2, \rho_{Y_2}), i_2)$ are completions of X, then there exists an isometric onto function $g: Y_1 \to Y_2$ such that $f_2 = g \circ f_1$.

Proposition 1.5. If $((\tilde{X}_1, \rho_{\tilde{X}_1}), j_1)$ and $((\tilde{X}_2, \rho_{\tilde{X}_2}), j_2)$ are both completions of some metric space X, there exists some isometry i between the two completions such that $j_2 = i \circ j_1$.

Definition 1.12. Let (a_n) , (b_n) be Cauchy sequences. Then, we say that the two sequences are *equivalent* if $\rho(a_n,b_n)\to 0$ as $n\to\infty$.

Proposition 1.6. Let X and Y be metric spaces, with Y complete. Furthermore, let S be a dense subset of X with the inherited metric. Let $f: S \to Y$ be a uniformly continuous function. Then, there exists a unique and uniformly continuous extension of f to X.

Theorem 1.1. Every metric space has a completion.

The theorem above gives us a completion of every metric space (X, ρ) , namely, the set of Cauchy sequences in X identified under the equivalence relation

$$(x_n) \sim (y_n) \iff \lim_{n \to \infty} \rho(x_n, y_n) = 0.$$

The metric η on the completion is then defined as

$$\eta([(x_n)], [(y_n)]) = \lim_{n \to \infty} \rho(x_n, y_n) = 0,$$

and the injection j_X is defined such that $x \in X$ is mapped to the constant sequence [(x)] in the completion. Consider the set of continuous functions C([0,1]), with the supremum norm

$$||f||_{\infty} = \sup \{|f(t)| \mid t \in [0,1]\}.$$

This metric space can be shown to be complete. Other possible norms on this space include

$$||f||_1 = \int_0^1 f(x) dx \quad ||f||_2 = \sqrt{\int_0^1 |f(x)|^2 dx}.$$

Under the L^1 norm, the space above is not complete¹.

Assume V is a vector space equipped with a norm. Then, we can give an easier description of the complection of V. In particular, let $\operatorname{Cauchy}(V)$ denote the set of Cauchy sequences in V, and let $\mathcal{N}(V)$ denote the set of sequences in V that converge to 0. Then, the completion can be described as $\operatorname{Cauchy}(V)/\mathcal{N}(V)$.

¹Completion gives us the set of Lebesgue-integrable functions on [0, 1]!

2 General Topology

Definition 2.1. A set is *open* in a metric space if it can expressed as the (possibly arbitrary) union of open balls.

We collect a few useful facts relating to preimages below:

- $f^{-1}(\bigcup_{\alpha} A_{\alpha}) = \bigcup_{\alpha} f^{-1}(A_{\alpha}).$
- $f^{-1}(\bigcap_{\alpha} A_{\alpha}) = \bigcap_{\alpha} f^{-1}(A_{\alpha})$
- $f^{-1}(A_1 \setminus A_2) = f^{-1}(A_1) \setminus f^{-1}(A_2)$

Definition 2.2. Let X be a set. A *topology* on X is a collection of sets \mathcal{T} such that \mathcal{T} is closed under finite intersection, arbitrary unions, and contains both X and \emptyset .

The sets in the topology are referred to as open sets. Complements of open sets are closed sets.

Definition 2.3. Let $A \subseteq X$. Then, the *closure* of A is the intersection of all closed sets that contain A. \diamond

If we let the topology on X be the power set of X, then this topology is referred to as the *discrete topology*. Otherwise, if we let the topology be just X and the empty set, the the topology is referred to as the *indiscrete* or *trivial topology*.

Definition 2.4. Let X be a set with two topologies $\mathcal{T}_1, \mathcal{T}_2$. Then, we say that \mathcal{T}_1 is coarser or weaker if $\mathcal{T}_1 \subseteq \mathcal{T}_2$. Otherwise, we say that \mathcal{T}_1 is finer or stronger if $\mathcal{T}_1 \supseteq \mathcal{T}_2$.

Given a collection of topologies for a set X, the intersection of all these topologies gives a topology that is weaker than all of the topologies in the intersection. It then follows that given a collection S of subsets of X, there exists a smallest topology containing S. Namely, it is the intersection of all topologies containing S.

Definition 2.5. Let (X, \mathcal{T}) be a topological space. Then, \mathcal{B} is a basis for \mathcal{T} if every set in \mathcal{T} can be expressed as a union of sets in \mathcal{B} .

Proposition 2.1. Let \mathcal{B} be a collection of subsets of X such that for any $U, V \in \mathcal{B}$, $U \cap V$ can be expressed as the union of elements of \mathcal{B} . Then, the collection of the unions of elements of \mathcal{B} is a topology, and \mathcal{B} is a base for this generated topology.

Definition 2.6. Let X be a set, and let S be a collection of subsets of X such that the union of all sets in S is all of X. Then, the collection of finite intersections of S forms a base for a topology, and S is a subbase for that topology.

Definition 2.7. Let X, Y be topological spaces. Then, a function f is *continuous* is the preimage of every open set in Y is open in X, as determined by the topologies on the two spaces. \diamond

Proposition 2.2. The composition of continuous functions is continuous.

Definition 2.8. Let X, Y be topological spaces. A bijective function $f: X \to Y$ is a homeomorphism if both f and f^{-1} are continuous.

Proposition 2.3. Let X, Y be a topological spaces where the topology of Y is generated by some basis \mathcal{B} . Then, f is continuous if and only if the preimage of every set in \mathcal{B} is open.

Observe that the previous proposition also holds if we replace basis by subbasis.

Proposition 2.4. Let X be a set, and let $\{Y_{\alpha}\}_{{\alpha}\in I}$ a collection of topological spaces. For each Y_{α} , define a function $f_{\alpha}: X \to Y_{\alpha}$. Then, there exists a weakest topology on X such that f_{α} is continuous for every α , namely the topology generated by the subbase

$$\mathcal{B} = \bigcup_{\alpha \in I} \left\{ f_{\alpha}^{-1}(U) \mid U \in \mathcal{T}_{\alpha} \right\}.$$