NAME: Final version 023

# **MAT-181 FINAL TAKE-HOME EXAM**

This exam is to be taken without discussion or correspondance with any human. Please show work!

| question | available points | earned points |
|----------|------------------|---------------|
| 1        | 10               |               |
| 2        | 15               |               |
| 3        | 10               |               |
| 4        | 10               |               |
| 5        | 10               |               |
| 6        | 10               |               |
| 7        | 15               |               |
| 8        | 20               |               |
| EC       | 5                |               |
| EC       | 5                |               |
| Total    | 100              |               |

#### 1. (10 Points)



For each description below, choose which histogram best fits (I, II, III, or IV). Each histogram should be used once.

- (a) The distribution of annual income for school employees where a high percentage of employees are entry-level teachers and only a few are high-paid administrators.
- (b) The distribution of quiz scores on an easy quiz. Most students did very well, but a few did poorly.
- (c) The distribution of heights of adult women
- (d) The distribution of hours that students studied for an exam when about half of students studied a lot and a similar number of students studied very little.

# Solution:

- (a) I
- (b) III
- (c) IV
- (d) II

#### 2. (15 Points)

In a deck of strange cards, there are 374 cards. Each card has an image and a color. The amounts are shown in the table below.

|        | blue | gray | red | Total |
|--------|------|------|-----|-------|
| horn   | 39   | 20   | 14  | 73    |
| jigsaw | 11   | 24   | 30  | 65    |
| needle | 19   | 34   | 36  | 89    |
| pig    | 15   | 43   | 13  | 71    |
| shovel | 12   | 26   | 38  | 76    |
| Total  | 96   | 147  | 131 | 374   |

- (a) What is the probability a random card is either a jigsaw or gray (or both)?
- (b) What is the probability a random card is both a shovel and gray?
- (c) Is a horn or a shovel more likely to be red?
- (d) What is the probability a random card is blue given it is a jigsaw?
- (e) What is the probability a random card is a pig?
- (f) What is the probability a random card is a jigsaw given it is red?
- (g) What is the probability a random card is gray?

### Solution:

- (a) P(jigsaw or gray) = 0.503
- (b) P(shovel and gray) = 0.0695
- (c) P(red given horn) = 0.192 and P(red given shovel) = 0.5, so a shovel is more likely to be red than a horn is.
- (d) P(blue given jigsaw) = 0.169
- (e) P(pig) = 0.19
- (f) P(jigsaw given red) = 0.229
- (g) P(gray) = 0.393

### 3. (10 points)

A farm produces 4 types of fruit: *A*, *B*, *C*, and *D*. The fruits' masses follow normal distributions, with parameters dependent on the type of fruit.

| Type of fruit | Mean mass (g) | Standard deviation of mass (g) |
|---------------|---------------|--------------------------------|
| Α             | 92            | 9                              |
| В             | 96            | 11                             |
| C             | 103           | 6                              |
| D             | 77            | 4                              |

One specimen of each type is weighed. The results are shown below.

| Type of fruit | Mass of specimen (g) |
|---------------|----------------------|
| Α             | 95.87                |
| В             | 105.6                |
| C             | 107                  |
| D             | 78.6                 |

Which specimen is the most unusually far (in either direction) from average (relative to others of its type)?

**Solution:** We compare the absolute z-scores. The largest absolute z-score corresponds to the specimen that is most unusually far from average.

| Type of fruit | formula                       | absolute z-score |
|---------------|-------------------------------|------------------|
| Α             | $Z = \frac{ 95.87 - 92 }{9}$  | 0.43             |
| В             | $Z = \frac{ 105.6 - 96 }{11}$ | 0.87             |
| С             | $Z = \frac{ 107 - 103 }{6}$   | 0.67             |
| D             | $Z = \frac{ 78.6 - 77 }{4}$   | 0.4              |

Thus, the specimen of type B is the most unusually far from average.

## 4. (10 points)

A tree's leaves were found to be normally distributed with a mean of 161.5 millimeters and a standard deviation of 3.7 millimeters. If you pick a random leaf from that tree, what is the probability the length is between 162.9 and 166.6 millimeters?

Solution:

$$\mu = 161.5$$

$$\sigma = 3.7$$

$$x_1 = 162.9$$

$$x_2 = 166.6$$

$$z_1 = \frac{x_1 - \mu}{\sigma} = \frac{162.9 - 161.5}{3.7} = 0.38$$

$$z_2 = \frac{x_2 - \mu}{\sigma} = \frac{166.6 - 161.5}{3.7} = 1.38$$

$$P(x_1 < X < x_2) = P(z_1 < Z < z_2) = 0.9162 - 0.648 = 0.2682$$

### 5. (10 points)

A species of duck is known to have a mean weight of 200.7 grams and a standard deviation of 67.5 grams. A researcher plans to measure the weights of 81 of these ducks sampled randomly. What is the probability the **sample mean** will be between 205.2 and 215.7 grams?

Solution:

$$n = 81$$

$$\mu = 200.7$$

$$\sigma = 67.5$$

$$SE = \frac{67.5}{\sqrt{81}} = 7.5$$

$$x_1 = 205.2$$

$$x_2 = 215.7$$

$$z_1 = \frac{x_1 - \mu}{SE} = \frac{205.2 - 200.7}{7.5} = 0.6$$

$$z_2 = \frac{x_2 - \mu}{SE} = \frac{215.7 - 200.7}{7.5} = 2$$

$$P(x_1 < \overline{X} < x_2) = P(z_1 < Z < z_2) = 0.9772 - 0.7257 = 0.2515$$

### 6. (10 points)

An ornithologist wishes to characterize the average body mass of *Piranga rubra*. She randomly samples 32 adults of *Piranga rubra*, resulting in a sample mean of 36.13 grams and a sample standard deviation of 7.1 grams. Determine a 95% confidence interval of the true population mean.

**Solution:** We are given the sample size, sample mean, sample standard deviation, and confidence level.

$$n = 32$$
  
 $\bar{x} = 36.13$   
 $s = 7.1$   
 $\gamma = 0.95$ 

Find the degrees of freedom.

$$df = n - 1$$
  
= 32 - 1  
= 31

Determine the critical t value,  $t^*$ , such that  $P(|T| < t^*) = 0.95$  and df = 31.

$$t^* = 2.04$$

Use the formula for bounds (mean,  $\sigma$  unknown).

$$LB = \bar{x} - t^* \frac{s}{\sqrt{n}}$$

$$= 36.13 - 2.04 \times \frac{7.1}{\sqrt{32}}$$

$$= 36.13 + 2.04 \times \frac{7.1}{\sqrt{32}}$$

$$= 38.7$$

$$UB = \bar{x} + t^* \frac{s}{\sqrt{n}}$$

$$= 36.13 + 2.04 \times \frac{7.1}{\sqrt{32}}$$

$$= 38.7$$

We are 95% confident that the population mean is between 33.6 and 38.7 grams.

$$CI = (33.6, 38.7)$$

| _  | , . <b>–</b> |         |
|----|--------------|---------|
| 7. | (15          | points) |

A student is taking a multiple choice test with 800 questions. Each question has 2 choices. You want to detect whether the student does significantly better than random guessing, so you decide to run a hypothesis test with a significance level of 0.05.

Then, the student takes the test and gets 426 questions correct.

- (a) What kind of hypothesis test is appropriate?
- (b) State the hypotheses.
- (c) Determine the test statistic (z or t), draw a sketch, and determine the p-value.

- (d) Decide whether we reject or retain the null hypothesis.
- (e) Did the student do significantly better than random guessing?

**Solution:** This is a right-tail (one-tail) proportion test because we only care whether the student does better than random.

Determine the null population proportion.

$$p_0 = \frac{1}{2} = 0.5$$

State the hypotheses.

$$H_0$$
 claims  $p = 0.5$ 

$$H_A$$
 claims  $p > 0.5$ 

Determine the standard error.

$$\sigma_{\hat{p}} = \sqrt{\frac{p_0(1 - p_0)}{n}} = \sqrt{\frac{0.5(1 - 0.5)}{800}} = 0.0177$$

Determine the sample proportion.

$$\hat{p} = \frac{426}{800} = 0.532$$

Determine a z score. For simplicity, we ignore the continuity correction.

$$Z = \frac{\hat{p} - p_0}{\sigma_{\hat{p}}} = \frac{0.532 - 0.5}{0.0177} = 1.81$$

Make a sketch of the null's sampling distribution. The p-value is a right area.



To determine that right area, we use the z table.

$$p$$
-value =  $P(\hat{p} > 0.532)$   
=  $P(Z > 1.81)$   
=  $1 - P(Z < 1.81)$   
=  $0.0351$ 

Compare *p*-value to  $\alpha$  (which is 0.05).

*p*-value 
$$< \alpha$$

Make the conclusion: we reject the null hypothesis.

We think the student did better than random guessing typically allows.

- (a) Right tail (one-tail) proportion test
- (b) Hypotheses:  $H_0$  claims p = 0.5 and  $H_A$  claims p > 0.5.
- (c) The *p*-value is 0.0351
- (d) We reject the null hypothesis.
- (e) We think the student did better than random guessing typically allows.

8. (20 points) [Note: this question uses 2 pages.]

You have collected the following data:

| X           | У           | xy          |
|-------------|-------------|-------------|
| 2           | 71          |             |
| 6.7         | 16          |             |
| 8.7         | 9.1         |             |
| 9.6         | 5.5         |             |
| 9.3         | 26          |             |
| 4.2         | 22          |             |
| 7           | 11          |             |
| $\sum X =$  | $\sum y =$  | $\sum xy =$ |
| $\bar{X} =$ | $\bar{y} =$ |             |
| $S_X =$     | $s_y =$     |             |

- (a) Complete the table.
- (b) Calculate the correlation coefficient (*r*) using the formula below.

$$r = \frac{\sum xy - n\bar{x}\bar{y}}{(n-1)s_x s_y}$$

(c) The least-squares regression line will be represented as y = a + bx. Determine the parameters (*b* and *a*) using the formulas below.

$$b=r\frac{s_y}{s_x}$$

$$a = \bar{y} - b\bar{x}$$

(d) Write the equation of the regression line (using the calculated values of *a* and *b*.)

(e) Please plot the data and a corresponding regression line.



**Solution:** Remember the formula for the correlation coefficient.

$$r = \frac{\sum x_i y_i - n\bar{x}\bar{y}}{(n-1)s_x s_y}$$

We calculate the necessary values.

| X                 | У                 | xy                      |  |
|-------------------|-------------------|-------------------------|--|
| 2                 | 71                | 142                     |  |
| 6.7               | 16                | 107.2                   |  |
| 8.7               | 9.1               | 79.17                   |  |
| 9.6               | 5.5               | 52.8                    |  |
| 9.3               | 26                | 241.8                   |  |
| 4.2               | 22                | 92.4                    |  |
| 7                 | 11                | 77                      |  |
| $\sum x = 47.5$   | $\sum y = 160.6$  | $\sum x_i y_i = 792.37$ |  |
| $\bar{x} = 6.786$ | $\bar{y} = 22.94$ |                         |  |
| $s_x = 2.815$     | $s_y = 22.38$     |                         |  |

$$r = \frac{792.37 - (7)(6.786)(22.94)}{(7 - 1)(2.815)(22.38)} = -0.787$$

If you didn't round any of the steps up to here, you'd get an exact value which is pretty close to our value.

$$r_{\text{exact}} = -0.7866275$$

The regression line has the form

$$y = a + bx$$

So, a is the y-intercept and b is the slope. We have formulas to determine them:

$$b = r \frac{s_y}{s_x} = -0.787 \cdot \frac{22.38}{2.815} = -6.26$$

$$a = \bar{y} - b\bar{x} = 22.9 - (-6.26)(6.79) = 65.4$$

Our regression line:

$$y = 65.4 + (-6.26)x$$

Make a plot.



### 9. (Extra credit: 5 points)

Let each trial have a chance of success p = 0.19. If 185 trials occur, what is the probability of getting at least 37 but at most 43 successes?

In other words, let  $X \sim \text{Bin}(n = 185, p = 0.19)$  and find  $P(37 \le X \le 43)$ .

Use a normal approximation along with the continuity correction.

**Solution:** Find the mean.

$$\mu = np = (185)(0.19) = 35.15$$

Find the standard deviation.

$$\sigma = \sqrt{np(1-p)} = \sqrt{(185)(0.19)(1-0.19)} = 5.3359$$

Make a sketch, specifically try to picture whether you need to add or subtract 0.5 for the continuity correction.



Find the z scores.

$$z_1 = \frac{36.5 - 35.15}{5.3359} = 0.25$$

$$Z_2 = \frac{43.5 - 35.15}{5.3359} = 1.56$$

Find the percentiles (from z-table).

$$\ell_1 = 0.5987$$

$$\ell_2 = 0.9406$$

Calculate the probability.

$$P(37 \le X \le 43) = 0.9406 - 0.5987 = 0.3419$$

### 10. (Extra credit: 5 points)

A null hypothesis claims a population has a mean  $\mu$  = 80. You decide to run two-tail test on a sample of size n = 9 using a significance level  $\alpha$  = 0.02.

You then collect the sample:

| 79.6 | 80.9 | 82.7 | 79.4 | 83 |
|------|------|------|------|----|
| 85.3 | 81   | 82.5 | 81.5 |    |

- (a) Determine the *p*-value.
- (b) Do you reject the null hypothesis?

**Solution:** State the hypotheses.

$$H_0$$
 claims  $\mu = 80$ 

$$H_A$$
 claims  $\mu \neq 80$ 

Find the mean and standard deviation of the sample.

$$\bar{x} = 81.767$$

$$s = 1.841$$

Determine the degrees of freedom.

$$df = 9 - 1 = 8$$

Find the standard error.

$$\sigma_{\bar{x}} = \frac{s}{\sqrt{n}} = \frac{1.841}{\sqrt{9}} = 0.614$$

Make a sketch of the null's sampling distribution.



Find the *t* score.

$$t = \frac{\bar{x} - \mu_0}{\sigma_{\bar{y}}} = \frac{81.767 - 80}{0.614} = 2.88$$

Find the *p*-value.

$$p$$
-value =  $P(|T| > 2.88)$ 

We can't get an exact value with our table, but we can determine an interval that contains the p-value. (Look at row with df = 8.)

$$P(|T| > 2.9) = 0.02$$

$$P(|T| > 2.45) = 0.04$$

Basically, because t is between 2.9 and 2.45, we know the p-value is between 0.02 and 0.04.

$$0.02 < p$$
-value  $< 0.04$ 

Compare the *p*-value and the significance level ( $\alpha$  = 0.02).

*p*-value 
$$> \alpha$$

No, we do not reject the null hypothesis.

- (a) 0.02 < p-value < 0.04
- (b) No, we do not reject the null hypothesis.