Chap.13 : Séries de Fourier

Table des matières

1	Fon	$\operatorname{ctions} T$ -périodiques	2
	1.1	Définition	2
	1.2	Régularité	2
	1.3	Intégration	3
2	Séries de Fourier		
	2.1	Interprétation géométrique dans le cas des fonctions continues	3
	2.2	Coefficients de Fourier	6
		2.2.1 Définition	6
		2.2.2 Cas particuliers	6
	2.3	Série de Fourier	8
3	Les théorèmes de convergence		
	3.1	Théorème de Dirichlet	9
	3.2	Théorème de Parseval	12
4	Sou	s Python	13

Dans tout ce chapitre T désigne un réel strictement positif et $\omega=\frac{2\pi}{T}$ la pulsation associée à T.

1 Fonctions T-périodiques

1.1 Définition

Définition 1.1. Soient T>0 et $f:\mathbb{R}\to\mathbb{R}$. f est dite **périodique** de période T ou T-périodique si:

$$\forall t \in \mathbb{R}, f(t+T) = f(t)$$

Exemple 1.2. 1. La fonction $t \mapsto \sin(t)$ est 2π -périodique.

- 2. La fonction $t \mapsto \cos(2\pi t)$ est 1-périodique.
- 3. Voici la fonction f, 3-périodique, définie par $\forall t \in [0; 3[, f(t) = \sqrt{t}]$:

4. Voici la fonction $g, 2\pi$ -périodique et impaire, définie par :

$$\forall t \in]0; \pi[, g(t) = 1 \ et \ g(\pi) = 0 :$$

1.2 Régularité

On rappelle la définition suivante, vue dans le chapitre "Intégrales : rappels et généralisation".

Définition 1.3. Soit f une fonction définie sur [a;b](a < b) et à valeurs dans \mathbb{R} .

On dit que la fonction f est **continue par morceaux** sur [a;b] (resp. de classe \mathcal{C}^1 par morceaux) si, et seulement si, il existe une subdivision

$$a_0 = a < a_1 < \ldots < a_{n-1} < a_n$$

telle que, pour tout $i \in [0; n-1]$, la restriction de f à l'intervalle $]a_i; a_{i+1}[$ peut se prolonger en une fonction continue (resp. de classe \mathscr{C}^1) sur $[a_i; a_{i+1}]$. Autrement dit la fonction f est continue (resp. de classe \mathscr{C}^1) sur tous les intervalles $]a_i; a_{i+1}[$ et f (resp. f et f') admet (resp. admettent) des limites finies à droite et à gauche en a_i pour tout i.

Définition 1.4. Une fonction T-périodique est dite continue par morceaux (resp. de classe \mathcal{C}^1 par morceaux) si elle est continue par morceaux (resp. de classe \mathcal{C}^1 par morceaux) sur une période (c'est-à-dire un intervalle du type [a; a+T])

- **Exemple 1.5.** La fonction représentée sur la figure 1 est continue par morceaux mais pas de classe \mathcal{C}^1 par morceaux car en 0^+ la dérivée de f n'admet pas une limite finie.
 - La fonction représentée sur la figure 2 est de classe \mathscr{C}^1 par morceaux (donc aussi continue par morceaux).

Proposition 1.6. L'ensemble des fonctions T-périodiques et continues par morceaux est un \mathbb{R} -espace vectoriel que nous noterons $\mathscr{C}_{M,T}(\mathbb{R})$.

- Remarque 1.7. Cela signifie que toute combinaison linéaire de deux fonctions T-périodiques et continues par morceaux est une fonction T-périodique et continue par morceaux.
 - On notera $\mathscr{C}_T(\mathbb{R})$ l'espace vectoriel des fonctions continues et T-périodiques.

1.3 Intégration

Proposition 1.8. Soit $f \in \mathscr{C}_{M,T}(\mathbb{R})$. Alors :

- Pour tout réel $a: \int_a^{a+T} f(t) dt = \int_0^T f(t) dt$. En particulier $\int_0^T f(t) dt = \int_{-T/2}^{T/2} f(t) dt$
- Si f est une fonction paire : $\int_0^T f(t)dt = 2 \int_0^{T/2} f(t)dt$.
- Si f est une fonction impaire: $\int_0^T f(t)dt = 0$

2 Séries de Fourier

2.1 Interprétation géométrique dans le cas des fonctions continues

On considère l'espace vectoriel $\mathscr{C}_T(\mathbb{R})$ (fonctions continues T-périodiques) muni du produit scalaire :

$$\langle f \mid g \rangle = \frac{1}{T} \int_0^T f(t)g(t) dt$$

et $\omega = \frac{2\pi}{T}$ la **pulsation** associée à T. Pour tout $n \in \mathbb{N}$ on note c_n la fonction définie par :

$$c_n(t) = \cos(n\omega t)$$

et s_n la fonction définie par :

$$s_n(t) = \sin(n\omega t).$$

Ces fonctions s'appellent les modes de Fourier associés à la période T. Pour tout $N \in \mathbb{N}^*$ on considère

$$F_N = \text{Vect}(c_0, c_1, \dots, c_N, s_1, s_2, \dots, s_N).$$

Nous allons déterminer le projeté orthogonal de la fonction f sur le sousespace vectoriel F_N .

1. Cherchons une BON de F_N :

On remarque tout d'abord que la famille $(c_0, c_1, \ldots, c_N, s_1, s_2, \ldots, s_N)$ est une famille orthogonale :

•
$$\forall (i,j) \in [0;N]^2$$
, tels que $i \neq j$:

$$\langle c_i \mid c_j \rangle =$$

• $\forall (i,j) \in [1;N]^2$, tels que $i \neq j$:

$$\langle s_i \mid s_j \rangle =$$

• $\forall (i,j) \in [0;N] \times [1;N]$, la fonction $t \mapsto \cos(i\omega t)\sin(j\omega t)$ est T-périodique et impaire donc :

$$\langle c_i \mid s_j \rangle =$$

Donc la famille $(c_0, c_1, \ldots, c_N, s_1, s_2, \ldots, s_N)$ est libre (car orthogonale) et génératrice de F_N .

C'est donc une base de F_N .

Comme c'est une famille orthogonale, il suffit de normer les vecteurs pour obtenir une BON.

$$- \|c_0\|^2 = \frac{1}{T} \int_0^T 1 \, dt = 1$$

$$- \forall i \in [1; N], \|c_i\|^2 = \frac{1}{T} \int_0^T (\cos(i\omega t))^2 \, dt = \frac{1}{T} \int_0^T \frac{1}{2} (1 + \cos(2i\omega t)) dt = \frac{1}{2}$$

$$- \forall i \in [1; N], \|s_i\|^2 = \frac{1}{T} \int_0^T (\sin(i\omega t))^2 \, dt = \frac{1}{T} \int_0^T \frac{1}{2} (1 - \cos(2i\omega t)) dt = \frac{1}{2}$$
La famille $\left(c_0, \sqrt{2}c_1, \dots, \sqrt{2}c_N, \sqrt{2}s_1, \sqrt{2}s_2, \dots, \sqrt{2}s_N\right)$ est une BON de F_N .

2. Projection orthogonale : Soit $f \in \mathscr{C}_T(\mathbb{R})$. Alors on sait que :

$$p_{F_N}(f)(t) = \langle f \mid c_0 \rangle c_0 + \sum_{n=1}^N \left(\langle f \mid \sqrt{2}c_n \rangle \sqrt{2}c_n + \langle f \mid \sqrt{2}s_n \rangle \sqrt{2}s_n \right)$$
$$= \underbrace{\langle f \mid c_0 \rangle}_{a_0(f)} + \sum_{n=1}^N \underbrace{(2 \langle f \mid c_n \rangle \cos(n\omega t) + 2 \langle f \mid s_n \rangle \sin(n\omega t))}_{b_n(f)}$$

Or $c_0(t) = 1$ donc $a_0(f) = \langle f \mid c_0 \rangle = \frac{1}{T} \int_0^T f(t) dt$. De plus $a_n(f) = 2 \langle f \mid c_n \rangle = 2 \times \frac{1}{T} \int_0^T f(t) \cos(n\omega t) dt$. Et enfin : $b_n(f) = 2 \langle f \mid s_n \rangle = 2 \times \frac{1}{T} \int_0^T f(t) \sin(n\omega t) dt$.

L'objectif de ce chapitre est de déterminer si, en faisant tendre N vers $+\infty$, $p_{F_N}(f)$ se " rapproche" de f et pour quels types de fonctions cela fonctionne.

5

2.2 Coefficients de Fourier

2.2.1 Définition

Définition 2.1. Soit $T>0, \omega=\frac{2\pi}{T}$ la pulsation associée à T et $f\in \mathscr{C}_{M,T}(\mathbb{R})$.

On appelle **coefficients de Fourier trigonométriques** de f les réels définis par :

$$a_0(f) = \frac{1}{T} \int_0^T f(t) dt = \frac{1}{T} \int_{-T/2}^{T/2} f(t) dt$$

$$\forall n \in \mathbb{N}^*, a_n(f) = \frac{2}{T} \int_0^T f(t) \cos(n\omega t) dt = \frac{2}{T} \int_{-T/2}^{T/2} f(t) \cos(n\omega t) dt$$

$$\forall n \in \mathbb{N}^*, b_n(f) = \frac{2}{T} \int_0^T f(t) \sin(n\omega t) dt = \frac{2}{T} \int_{-T/2}^{T/2} f(t) \sin(n\omega t) dt$$

Remarque 2.2. • Lorsqu'il n'y aura pas de confusion possible on pourra noter a_n et b_n au lieu de $a_n(f)$ et $b_n(f)$.

• Dans cette définition deux formules sont données pour chaque coefficient, mais il est évident qu'il ne faudra en utiliser qu'une en exercice : à vous de choisir la bonne selon le contexte!

2.2.2 Cas particuliers

Proposition 2.3. • $Si \ f \in \mathscr{C}_{M,T}(\mathbb{R}) \ et \ si \ f \ est \ paire \ alors :$

$$\forall n \in \mathbb{N}^*, b_n(f) = 0$$

$$a_0(f) = \frac{2}{T} \int_0^{T/2} f(t) dt \quad et \quad \forall n \in \mathbb{N}^*, a_n(f) = \frac{4}{T} \int_0^{T/2} f(t) \cos(n\omega t) dt$$

• $Si \ f \in \mathscr{C}_{M,T}(\mathbb{R}) \ et \ si \ f \ est \ impaire \ alors :$

$$\forall n \in \mathbb{N}, a_n(f) = 0$$

$$\forall n \in \mathbb{N}^*, b_n(f) = \frac{4}{T} \int_0^{T/2} f(t) \sin(n\omega t) dt$$

Application 2.4. Soit f la fonction 2π -périodique définie par :

$$\forall t \in [-\pi; \pi], f(t) = |t|.$$

Calculer ses coefficients de Fourier.

Application 2.5. On reprend la fonction g qui est 2π -périodique, impaire et telle que :

$$\forall t \in]0; \pi[, g(t) = 1.$$

Calculer ses coefficients de Fourier.

Proposition 2.6. Si $f \in \mathscr{C}_{M,T}(\mathbb{R})$ et si pour tout $x \in \mathbb{R}$, on a :

$$f\left(x + \frac{T}{2}\right) = -f(x)$$

alors tous les coefficients d'indices pairs sont nuls :

$$a_0(f) = 0 \quad \forall p \geqslant 1 \quad a_{2p}(f) = 0 \quad b_{2p}(f) = 0$$

Exemple 2.7. Voici un exemple de fonction vérifiant la propriété :

$$f\left(x + \frac{T}{2}\right) = -f(x).$$

La fonction g de l'application précédente vérifie aussi cette propriété.

2.3 Série de Fourier

Définition 2.8. Soit $T > 0, \omega = \frac{2\pi}{T}$ la pulsation associée à T et $f \in \mathscr{C}_{M,T}(\mathbb{R})$.

- Pour tout réel t, la série $a_0(f) + \sum_{n \geqslant 1} (a_n(f) \cos(n\omega t) + b_n(f) \sin(n\omega t))$ s'appelle la **série de Fourier** de f en t.
- Pour tout $N \in \mathbb{N}^*$, on appelle somme partielle de Fourier d'ordre N de la fonction f la fonction $S_N(f)$ définie par :

$$\forall t \in \mathbb{R}, \quad S_N(f)(t) = a_0(f) + \sum_{n=1}^{N} \left(a_n(f) \cos(n\omega t) + b_n(f) \sin(n\omega t) \right)$$

• Si la série de Fourier de f en t est convergente pour tout t, on appelle somme de la série Fourier de la fonction f la fonction S(f) définie par :

$$\forall t \in \mathbb{R}, \quad S(f)(t) = a_0(f) + \sum_{n=1}^{+\infty} (a_n(f)\cos(n\omega t) + b_n(f)\sin(n\omega t))$$

Remarque 2.9. Dans le cas des fonction continues, $S_N(f) = p_{F_N}(f)$.

Application 2.10. Soit f la fonction 2π -périodique définie par :

$$\forall t \in [-\pi; \pi], f(t) = |t|.$$

déjà étudiée.

Calculer la somme partielle de Fourier d'ordre $N \in \mathbb{N}$.

Application 2.11. On reprend la fonction g qui est 2π -périodique, impaire et telle que :

$$\forall t \in]0; \pi[, g(t) = 1.$$

Calculer la somme partielle de Fourier d'ordre $N \in \mathbb{N}$.

3 Les théorèmes de convergence

3.1 Théorème de Dirichlet

Définition 3.1. Soit f une fonction définie sur \mathbb{R} . On appelle **régularisée** de la fonction f, et on note \tilde{f} , la fonction définie sur \mathbb{R} par

$$\tilde{f}(t) = \frac{1}{2} \lim_{h \to 0} (f(t+h) + f(t-h))$$

Remarque 3.2. Lorsque f est continue en t:

$$\frac{1}{2}\lim_{h\to 0} (f(t+h) + f(t-h)) = f(t)$$

et lorsque f n'est pas continue en t :

$$\frac{1}{2} \lim_{h \to 0} (f(t+h) + f(t-h))$$

correspond à la moyenne de la valeur à droite et la valeur à gauche.

Théorème 3.3. Théorème de Dirichlet

Si f est une fonction T-périodique et de classe \mathscr{C}^1 par morceaux sur \mathbb{R} , alors la série de Fourier de f converge pour tout réel t et on a:

$$\forall t \in \mathbb{R}, \quad a_0(f) + \sum_{n=1}^{+\infty} \left(a_n(f) \cos(n\omega t) + b_n(f) \sin(n\omega t) \right) =$$

$$\frac{1}{2} \lim_{h \to 0} \left(f(t+h) + f(t-h) \right) = \tilde{f}(t)$$

Application 3.4. À l'aide de la fonction g, 2π -périodique et impaire, définie par :

$$\forall t \in [0; \pi[, g(t) = 1 \ et \ g(\pi) = 0]$$

calculer la valeur de $\sum_{n=0}^{+\infty} \frac{(-1)^n}{2n+1}$.

Voici sur un même tracé les courbes des fonctions g et S_N pour différentes valeurs de N.

Si N=6:

Si N = 20:

Corollaire 3.5. Théorème de Dirichlet pour une fonction continue $Si\ f$ une fonction T-périodique continue $sur\ \mathbb{R}$ et de classe \mathscr{C}^1 par morceaux $sur\ \mathbb{R}$, alors la série de Fourier de f converge pour tout réel t et on a:

$$\forall t \in \mathbb{R}, \quad a_0(f) + \sum_{n=1}^{+\infty} \left(a_n(f) \cos(n\omega t) + b_n(f) \sin(n\omega t) \right) = f(t)$$

Application 3.6. A l'aide de la fonction f déjà étudiée 2π -périodique définie par :

$$\forall t \in [-\pi; \pi], f(t) = |t|.$$

montrer que la série $\sum_{n\in\mathbb{N}} \frac{1}{(2n+1)^2}$ converge et calculons sa somme.

Voici sur un même tracé les courbes des fonctions f et S_N pour différentes valeurs de N.

Si ${\cal N}=3$:

Si N=8:

3.2 Théorème de Parseval

Théorème 3.7. Théorème de Parseval

Si f une fonction T-périodique et continue par morceaux sur \mathbb{R} alors les séries $\sum (a_n(f))^2$ et $\sum (b_n(f))^2$ convergent et on a :

$$\frac{1}{T} \int_0^T (f(t))^2 dt = (a_0(f))^2 + \frac{1}{2} \sum_{n=1}^{+\infty} \left((a_n(f))^2 + (b_n(f))^2 \right)$$

Remarque:

Si on reprend le produit scalaire utilisé pour l'interprétation géométrique des séries de Fourier pour les fonctions continues on remarque que le théorème de Parseval s'écrit :

$$||f||^2 = \lim_{N \to +\infty} ||S_N(f)||^2$$

En effet :

$$||S_N(f)||^2 = ||p_{F_N}(f)||^2 = |\langle f \mid c_0 \rangle|^2 + \sum_{n=1}^N \left(\left| \langle f \mid \sqrt{2}c_n \rangle \right|^2 + \left| \langle f \mid \sqrt{2}s_n \rangle \right|^2 \right).$$

Or:

•
$$\left| \left\langle f \mid \sqrt{2}c_n \right\rangle \right|^2 = 2 \left(\frac{1}{T} \int_0^T f(t) \cos(n\omega t) dt \right)^2 = \frac{1}{2} \left(a_n(f) \right)^2$$

•
$$\left|\left\langle f \mid \sqrt{2}s_n\right\rangle\right|^2 = \frac{1}{2} \left(b_n(f)\right)^2$$
.

On obtient bien l'égalité de Parseval.

Application 3.8. A l'aide de la fonction f 2π -périodique définie par :

$$\forall t \in [-\pi; \pi], f(t) = |t|.$$

montrer que la série $\sum_{n\in\mathbb{N}} \frac{1}{(2n+1)^4}$ converge et calculer sa somme.

4 Sous Python

Reprenons l'exemple de la fonction f, 2π -périodique définie par :

$$\forall t \in [-\pi; \pi], f(t) = |t|.$$

On souhaite obtenir les courbes de f et de S_N (la somme partielle de Fourier) sur un même graphique.

```
1 import numpy as np
{\scriptstyle 2} import matplotlib.pyplot as plt
5 def S(t,N):
      s=np.pi/2
       for i in range (0,(N-1)//2):
           s=s-(4/np.pi)*(1/(2*i+1)**2)*np.cos((2*i+1)*t)
9
       return s
10
11
12 N=int(input('Saisir N'))
13
14
15
16 T=[-np.pi+2*np.pi*i/100 for i in range(101)]
17 Y = []
18 for t in T:
19
       if t \ge -np.pi and t < 0:
           Y.append(-t)
20
21
       else:
           Y.append(t)
22
Z = [S(t,N) \text{ for t in } T]
25 plt.plot(T,Z,'r')
26 plt.plot(T,Y,'y')
27 plt.show()
```