Social Interactivity Mentor for Youth with Autism using the NAO Robot (SIMYAN)

Design Review

Andrew Nguyen, Bryce George, Colton Homuth, William Ross

Sponsor: Dr. Adham Atyabi Faculty Sponsor: Mr. Bill Michael

February 26, 2021

Project Recap

Objective:

Create a framework for the NAO robot to support future implementation of ASD treatment/intervention activities designed by medical professionals and researchers.

Social Interactivity for Youth with Autism using the NAO robot

- Core SDK
 - Supports advanced social interactivity behaviors
 - Framework for building Activity Modules
 - Orchestrates Activity Module execution
- Social Interactive Drawing Module
 - PoC Activity Module
 - Guides human subject through a drawing exercise
 - Incorporates social interaction

Presentation Overview

- Proposal Background
- Design Trade-Offs
 - Hardware
 - Software
- Hardware Selection
- Requirements Updates
- Design
 - Schematics and Parts
 - Software
- Software Progress
- Project Schedule
 - Schedule Updates
 - Remaining Work
 - Gantt Chart
- Budget
- Knowledge Integration

Proposal Background

System Design

- Hardware System Design
 - Use of Nvidia Jetson Nano to do all real-time image processing
 - Use of LiDAR depth sensor or Xbox Kinect
- Software System Design
 - Using core SDK and existing functionality from NAOqi framework

Proposal Background

Test Plan

- 1. Unit Testing
- 2. Integration Testing
- 3. Demonstration Plan

Development Strategy

Agile Development

Test Driven Development

Paired-Programming

Hardware Design Trade-Offs

Configuration	NAO (no GPU)	NAO + Jetson Nano
Pros	No additional integration needed	Can handle image processing load
	Simplifies software	Can handle machine learning workloads
	No additional hardware to manage	Can handle additional peripheral video/camera inputs
		Off-load tasks from NAO processor
Cons	Cannot handle sufficient image processing load	Additional integration required
	Cannot handle additional peripheral video/camera inputs	Requires software to function in a distributed system
		Adds hardware management concerns (power, bandwidth, etc.)

Software Design Trade-Offs

Configuration	Wrap NAOqi SDK	Extend NAOqi SDK	
Pros	Condense code needed for SIMYAN activity modules Improve code readability	Decreased team workload Keeping SIMYAN Core SDK simple leaves smaller region for testing and validation	
Cons	Increase the size of the SIMYAN Core SDK May require development of modules that are not useful beyond current project	Less modular design Requires activity implementors to know NAOqi SDK Mixing of calls & responsibilities between SIMYAN SDK and NAOqi SDK	

Hardware Selection

Need two additional pieces of hardware for design

- A depth sensor to augment NAO's vision capabilities
- A GPU/Developer kit to handle all the image/graphics processing

Selected depth sensor: Xbox Kinect

- Existing examples of it being used with NAO robot
- Much cheaper than the other options
- Will be testing to make sure the Kinect can integrate with NAO and provide additional camera accuracy

Selected GPU: Jetson Nano

- Free from advisor Bill Michael
- 4GB of ram and 128 GPU cores which will allow us to run complex vision detection algorithms
- We will be testing GPU using a separate camera feed making sure it can detect objects outside of NAO's camera initially

Requirements Updates

Eliminated extensions

- Most extension features removed
- Automated Object Drawing Specification
 Generator added to core feature set

Reduced robot autonomy

- Marker collection
- Mobility

Wireless connection to Jetson Nano

Power supply needs

Specification Updates

- Wireless communication with Jetson Nano
 - Minimum Transmission Rate: 25 Mbps
 - Wifi card for Jetson Nano
 - No need for GPU "backpack"
- OpenCV for object detection / tracking
 - Canny Edge Detection
 - GOTURN
 - CSRT
- Kinect integration with SIMYAN only not strictly required for drawing activity

Marker Schematic

Whiteboard Schematic

Software Progress

Development Tools

- Robot Jumpstarter
 - A repository containing NAO/Pepper project templates, utilities for creating named projects using the templates, and ability to add custom templates
- Studio Tool Kit (STK)
 - A set of python scripts which provide a simplified interface for accessing NAOqi resources
- qibuild
 - A python-based command line package for bootstrapping, building, and deploying packages to the NAO robot
- Created, built, and deployed a test Application
 - Application template from Robot Jumpstarter
 - Uses STK
 - Built and deployed using qibuild
- Core SDK development in progress

Core SDK Development

Social Interactive Drawing Module Development

Changes:

Activities Master Module B

- Activity Module Loader
- ➤ Activity Module Manager
- > Command Recognition Manager

Speech Recognition Resource Module ^A

Advanced Motor Control Resource Module AB

Advanced Computer Vision Resource Module CW

> Jetson Nano GPU Integration C

Drawing Activity Command Recognition A

Marker Detection ^C

Marker Collection W

Marker Handling B

Drawing Surface Detection C

Drawable Object Loader B

Object Drawing Manager CW

Social Interaction Manager AB

Automated Object Drawing Specification Generator BC

Core SDK Extensions and Social Interactive Drawing Module Extensions Epics Dropped (consistent with scope reductions)

Automated Object Drawing Specification Generator Epic moved to Social Interactive Drawing Module Development

Integration Testing	End-to-end Testing	Final Presentation	Final Report	LEGEND
Run Integration Test Cases * Fix Failures * Re-Test Failed Cases	Run End-to-end Test Cases * Fix Failures * Re-Test Failed	Presentation *	Prepare Final Report * Deliver Final Report *	* – All A – Andrew B – Bryce C – Colton W – Will Italic – In-Progress
*	Cases *	Deliver Final Presentation *		Superscript = Primary Owner(s)

Core SDK Development extended through end of Sprint 2 (3/5)

Start of Drawing Module Development moved to Sprint 3 (3/8), extended through Sprint 4 (4/9)

Item	Quantity	Cost per Unit (\$)
Jetson Nano GPU	1	0 (borrowed from advisor Bill Michael)
Realtek RTL8187L Chipset 2000mW Wireless USB Wifi Adapter 54Mbps Card	1	24
Xbox Kinect	1	50
Markers	1+	0 (provided by team)
Whiteboard	1	0 (provided by team)
Rubber Washers	2	5
Total	84	
Allowance		400

Knowledge Integration

- Agile Development
- Test Driven Development
- System Design and Analysis
 - Problem Decomposition
 - Requirement Identification
 - Architecture
 - Systems Engineering
- Machine Learning
 - Computer Vision
 - Natural Language Processing

Conclusion

- Deliver a solution that is extensible and will expand the existing capabilities of the NAO robot
 - SIMYAN Core SDK fulfills this goal
- Apart from this, we will be using our core SDK to enact a scenario involving drawing with a human
 - Demonstrate functionality of Core SDK
 - Demonstrate a situation that will promote social interaction between a human and NAO
- Overall, we are supplementing the NAO architecture to make it more powerful and easy-to-use in future endeavors

Any Questions?

University of Colorado Colorado Springs

