Photonic devices for quantum information processing:

coupling to dots, structure design and fabrication

Clarice Demarchi Aiello

Optoelectronics Group, Cavendish Lab

Outline

- The ingredients
 - Photonic crystals
 - Quantum dots
- The theoretical cake
 - Solid-state cavity QED!
 - The add-drop filter
- 3 Designing the recipe
 - Working principle
 - Simulations
- 4 Issues on the fabrication of the cake
 - Microfabrication
- 5 Conclusion and further cakes

Definition

Definition

Definition

Definition

Periodic medium and unit cell

Periodic medium and unit cell

Periodic medium and unit cell

Bloch waves and bandgap formation

Bloch waves and bandgap formation

Bloch waves and bandgap formation

Definition

Structure with periodic modulation of dielectric constant in space

It follows that...

- Photonic crystals present discrete translational symmetry
- Forbidden propagation of photons within certain energy ranges, in determined crystal directions
- Light transmission properties dictated by geometry, periodicity, and dielectric constants of media composing the crystal (and not by some atomic-scale property!)

(Intentional) defects in photonic crystals

Local breaking of translational symmetry ("photonic doping")

Effect.

Introduction of peaks in the density of states of the crystal falling within the bandgap

(Intentional) defects in photonic crystals

Local breaking of translational symmetry ("photonic doping")

Effect

Localized/evanescent field modes with complex wave vector become (physical) solutions of Maxwell's equations, decaying exponentially from the defect

(Intentional) defects in photonic crystals

Tayloring defects → localization and trapping of evanescent modes

Defect cavities in photonic crystals

Tayloring defects \rightarrow localization and trapping of evanescent modes

Definition

Semiconductor nanostructures confining carriers in 3D

Self-assembled InAs dots

 $\begin{array}{l} {\sf Density} \\ \sim 10^{10} dots/cm^2 \end{array}$

Nucleation by strain (lattice mismatch)

Grown by MBE on GaAs substrate

Definition

Semiconductor nanostructures confining carriers in 3D

 $\begin{array}{c} \mathsf{Bandgap\ InAs} < \mathsf{GaAs} \\ \downarrow \\ \mathsf{carriers\ confined} \\ \downarrow \\ \mathsf{only\ discrete\ energy\ levels\ can} \\ \mathsf{be\ occupied} \end{array}$

Definition

Semiconductor nanostructures confining carriers in 3D

It follows that...

- Carriers present a discrete spectrum: "artificial atoms"
- Photoemission range: $\sim 900-1100$ nm (isotropic)
- Dipole moment: $d \sim 10-100 \times >$ atomic dipole moment
 - → enhanced coupling to light

Definition

Semiconductor nanostructures confining carriers in 3D

Bear in mind...

- ullet Ideal QD \sim perfectly circular disk \longrightarrow only one neutral exciton line
- Real QD → neutral exciton split in orthogonal polarisation peaks via spin-spin electron-hole exchange interaction

Definition

Semiconductor nanostructures confining carriers in 3D

Why put together PhC and QDs?

Solid-state cavity QED!

Model

Parameters and assumptions

• Defect acting as a cavity:

$$\omega_{\it cav} \sim 100 \mu eV \longrightarrow au_{\it cav} \equiv rac{1}{\gamma_{\it cav}} \sim 1 ps$$
 quality factor $Q \equiv rac{\omega_{\it cav}}{\gamma_{\it cav}}$ mode volume V

 QD as point-like emitter, placed at the antinode of a PhC defect cavity in-plane electric field mode E:

$$\omega_{QD} \ \gamma_{QD} \sim 5 \mu eV \longrightarrow au_{QD} \equiv rac{1}{\gamma_{QD}} \sim 1 ext{ns}$$
 dipole moment d

• Enhanced interaction light-matter

Model

Hamiltonian

• Exciton-photon coupling parameter 2g (Rabi splitting):

$$2g = \frac{2|\langle d \cdot E \rangle|}{\hbar}$$

• Eigenfrequencies in resonance ($\omega_{QD} = \omega_{cav} \equiv \omega_{res}$):

$$\Omega_{\pm} = \omega_{ extit{res}} - rac{i}{4} (\gamma_{QD} + \gamma_{ extit{cav}}) \pm \sqrt{g^2 - (rac{\gamma_{QD} - \gamma_{ extit{cav}}}{4})^2}$$

Two regimes

Weak coupling

•

$$2g \ll |rac{\gamma_{QD}-\gamma_{cav}}{2}| \qquad
ightarrow \qquad \Omega_{+} = \omega_{res} - irac{\gamma_{cav}}{2} \ \Omega_{-} = \omega_{res} - i (rac{\gamma_{QD}}{2} + rac{2g^2}{\gamma_{cav}})$$

- Irreversible energy transfer
- Control of the spontaneous emission rate: increase (decrease) for QDs in resonance (out of resonance) with the cavity

Two regimes

Strong coupling

•

$$2g > |rac{\gamma_{QD} - \gamma_{cav}}{2}|$$

---- spontaneous emission spectrum split by

$$2\hbar\sqrt{g^2-(rac{\gamma_{QD}-\gamma_{cav}}{4})^2}$$

- \longrightarrow average linewidth $\frac{(\gamma_{QD} + \gamma_{cav})}{2}$
- Coherent energy transfer

Two regimes

Applications

Generally speaking...

Linear optics Qcomp, Qrepeater, Qmemory, QDlaser...

Applications

Generally speaking...

Linear optics Qcomp, Qrepeater, Qmemory, QDlaser...

In particular...

- Photon storage in a single exciton
- State storage in a single photon (what about state transfer?)
- Interface among different kinds of qubits

Applications

Generally speaking...

Linear optics Qcomp, Qrepeater, Qmemory, QDlaser...

In particular...

- Photon storage in a single exciton
- State storage in a single photon (what about state transfer?)
- Interface among different kinds of qubits

static qubit (QD) ← flying qubit (photon) ← static qubit (QD)

The add-drop filter

static qubit (QD) « flying qubit (photon) « static qubit (QD)

Proposed structure

Defect cavities (L3, L5) with embedded dots connected through a defect waveguide

Working principle

Proposed structure

Defect cavities (L3, L5) with embedded dots connected through a defect waveguide

Excite a QD randomly placed at the input cavity to the point it emits an in-plane photon (centered or not around the cavity resonance!) photon transfer via waveguide at its proximity, the output cavity traps the photon one out-of-plane photon is emitted to free space (and analysed)

Coupled mode theory (forget about the QDs for a while!)

Interaction waveguide/cavity via electromagnetic field

- Defect cavity can act as transmitter in-plane → vertical direction (even with mismatch waveguide mode/cavity resonance!)
- Waveguide: discrete translational symmetry + important dispersion effects (Not regular treatment!)

 \longrightarrow toy model

Toy model dispersion relation for (arbitrary) photonic waveguide

Coupled mode theory (forget about the QDs for a while!)

Non linear dispersion regime

- Edges of the band: group velocity $\equiv \frac{\partial \omega}{\partial \mathbf{k}} \rightarrow 0$ \longrightarrow standing waves that spread into the lattice
- ω_{res} close to waveguide band edge mode \longrightarrow light scattered with ω_{edge}

Band level-off at the edges

Simulated in-plane *E* for waveguide band edge mode

Coupled mode theory (forget about the QDs for a while!)

Non linear dispersion regime

- Edges of the band: group velocity $\equiv \frac{\partial \omega}{\partial \mathbf{k}} \rightarrow 0$ \longrightarrow standing waves that spread into the lattice
- ω_{res} close to waveguide band edge mode \longrightarrow light scattered with ω_{edge}

Toy model dispersion relation for (arbitrary) photonic waveguide

Coupled mode theory (forget about the QDs for a while!)

Linear dispersion regime

• Cavity resonance ω_{res} in the linear dispersion of the waveguide \longrightarrow light scattered with ω_{res} (by resonant tunneling)

Toy model dispersion relation for (arbitrary) photonic waveguide

Working principle in detail (QDs are back)

Proposed structure

Defect cavities (L3, L5) with embedded dots connected through a defect waveguide

Suppose that...

• Output cavity ω_{res} sits at non linear dispersion region of waveguide, but $\omega_{res} < \omega_{edge}$

Photonic lattice and slab

Desired properties

- Compromise between quantities increasing with radius of air holes: bandgap \times mode tendence to leak to free space \longrightarrow radius $0.084\mu m$
- Dots photoemission range: ~ 900 − 1100nm → photonic bandgap falling within it → (2D plane wave expansion calculated) bandgap [0.710, 1.012]µm
- Height of slab \longrightarrow constrained by available sample \longrightarrow thickness $0.200 \mu m$

Waveguide

2D plane wave expansion calculated defect waveguide band structure

It means that...

- Not the standard procedure for calculating waveguide supported modes!
- Marked eigenfrequencies: guided modes
- Estimated coupling edge [0.976, 1.026] μm

(Isolated) defect cavities

2D plane wave expansion simulated band structure for crystal with L3 defect cavity

It means that...

Simulated fundamental resonant wavelengths:

L3
$$\longrightarrow$$
 1.026 μ m
L5 \longrightarrow 1.030 μ m

• Monomode cavity for range of order $\sim 0.060 \mu m$ \longrightarrow good optical selectivity of trapped modes

(Isolated) defect cavities

3D FDTD simulated resonant spectrum for crystal with L3 defect cavity

It means that...

- Spectrum computed at the center of the slab
- Simulated fundamental resonant wavelengths:

L3
$$\longrightarrow$$
 0.983 μ m

 Simulated fundamental resonant wavelengths 2D > 3D

(Isolated) defect cavities

3D FDTD simulated resonant spectrum for crystal with L3 defect cavity

It means that...

 Quality factors for the fundamental modes:

(Isolated) Defect cavities

It means that...

- Near-field $\leftarrow FT \rightarrow \text{far-field}$
- By FT separately Ex and $Ey \longrightarrow polarization$ and radiation angle information of scattered light

(Isolated) Defect cavities

It means that...

Scattered light from the cavity is vertically emitted and y polarised

(Isolated) Defect cavities

Real QD exciton has a natural linear polarisation basis \longrightarrow maybe cavity could address only the y polarized exciton

Come together

Simulations methods compared

Defect	2D wl. (μm)	3D wl. (μm)	Discrepancy(%)
hex. latt.	0.719-1.176	0.710-1.012	0.6-7.5
L3	1.026	0.983	2.1
L5	1.030	1.010	1.0
wg.	0.755-0.976	0.985-0.995	13.2-1.0
wg. edge	0.976-1.026	-	-

Come together

π/2a(X)

Results in the QDs sample

Limitations of the technique

- Random position of QDs
- Holes not uniformly etched
- Backscattering of electrons during e-beam lithography → changes in hole radia
- Worse optical confinment than if it were a free-standing membrane

Results in the QDs sample

Limitations of the technique

- Random position of QDs
- Holes not uniformly etched
- Backscattering of electrons during e-beam lithography → changes in hole radia
- Worse optical confinment than if it were a free-standing membrane

Results in the QDs sample

Limitations of the technique

- Random position of QDs
- Holes not uniformly etched
- Backscattering of electrons during e-beam lithography → changes in hole radia
- Worse optical confinment than if it were a free-standing membrane

Conclusion

In summary

- PhC structures suitable for strong and weak couplings to QDs
- Inexpensive and easy (!!!) technique
- Ideal platform for integration → Qnetwork, Qrepeater...
- Scalable

References

In order of appearence!

- J. Vuckovic et al.: APL **82**, 3696 (2003)
- S. Noda et al.: Nature 407, 608 (2000)
- J. D. Joannopoulos et al.: Photonic Crystals molding the flow of light(Princeton University Press, Princeton, 1995)
- M. Pelton et al.: Physica E 17, 564 (2003)
- Biro et al.: PRE 67, 021907 (2003)
- J. G. Fleming et al.: Opt. Lett. 24, 49 (1999)
- M. Fujita et al.: Science 308, 1296 (2005)

References

In order of appearence!

- A. Sugitatsu et al.: APL **86**, 171106 (2005)
- E. Yablonovitch et al.: PRL 67, 3880 (1991)
- J. P. Reithmaier et al.: Nature 432, 197 (2004)
- A. Hogele et al.: *PRL* **93**, 217401 (2004)
- D. Englund et al.: PRL 95, 013904 (2005)
- T. Yoshie et al.: Nature 432, 200 (2004)