WELTORGANISATION FÜR GEISTIGES EIGENTUM Integnationales Büro

INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation 6:

1/68, G01N 33/574

(11) Internationale Veröffentlichungsnummer:

WO 99/61610

C12N 15/12, 5/10, C07K 14/47, C12Q

(43) Internationales Veröffentlichungsdatum:

2. Dezember 1999 (02.12.99)

(21) Internationales Aktenzeichen:

PCT/DE99/01557

A2

(22) Internationales Anmeldedatum:

25. Mai 1999 (25.05.99)

BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

(30) Prioritätsdaten:

198 22 985.2

25. Mai 1998 (25.05.98)

DE

Veröffentlicht

Ohne internationalen Recherchenbericht und erneut zu veröffentlichen nach Erhalt des Berichts.

(81) Bestimmungsstaaten: CA, JP, US, europäisches Patent (AT,

(71) Anmelder (für alle Bestimmungsstaaten ausser US): FRAUN-HOFER-GESELLSCHAFT ZUR FÖRDERUNG DER ANGEWANDTEN FORSCHUNG E.V. [DE/DE]; Leonrodstrasse 54, D-80636 München (DE).

(72) Erfinder; und

- (75) Erfinder/Anmelder (nur für US): PAUL, Dieter [DE/DE]; Alsterblick 24, D-22397 Hamburg (DE). AUGUSTIN, Martin [DE/DE]; Stockenstrasse 15, D-53113 Bonn (DE). SCHMALE, Hartwig [DE/DE]; Goldkäferweg 62, D-22523 Hamburg (DE). BAMBERGER, Casimir [DE/DE]; Ernst-Thälmann-Platz 3, D-20251 Hamburg (DE).
- (74) Anwalt: BAUMBACH, Fritz; Robert-Rössle-Strasse 10, D-13125 Berlin (DE).

(54) Title: TUMOUR SUPPRESSOR GENES OF THE p53 FAMILY

(54) Bezeichnung: TUMORSUPPRESSORGENE DER p53-FAMILIE

(57) Abstract

The invention relates to novel turnour suppressor genes of the p53 family, to polypeptides which code them and to their use. It preferably relates to nucleic acids which code KET, especially those of rats, humans and mice.

(57) Zusammenfassung

Die Erfindung betrifft neue Tumorsuppressorgene der p53-Familie, Polypeptide die sie kodieren, sowie ihre Verwendung. Bevorzugt betrifft sie KET-kodierende Nukleinsäuren, insbesondere der Ratte, des Menschen und der Maus.

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

A1.	Albanien	ES	Spanien	LS	Lesotho	SI	Slowenien
AM	Armenien	FI	Finnland	LT	Litauen	SK	Slowakei
AT	Österreich	FR	Frankreich	LU	Luxemburg	SN	Senegal
AU	Australien	GA	Gabun	LV	Lettland	SZ	Swasiland
AZ	Aserbaidschan	GB	Vereinigtes Königreich	MC	Monaco	TD	Tschad
BA	Bosnien-Herzegowina	GE	Georgien	MD	Republik Moldau	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagaskar	TJ	Tadschikistan
BE	Belgien	GN	Guinea	MK	Die ehemalige jugoslawische	TM	Turkmenistan
BF	Burkina Faso	GR	Griechenland		Republik Mazedonien	TR	Türkei
BG	Bulgarien	HU	Ungarn	ML	Mali	TT	Trinidad und Tobago
BJ	Benin	ΙE	Irland	MN	Mongolei	UA	Ukraine
BR	Brasilien	IL	Israel	MR	Mauretanien	UG	Uganda
BY	Belarus	IS	Island	MW	Malawi	US	Vereinigte Staaten von
CA	Kanada	ΙT	Italien	MX	Mexiko		Amerika
CF	Zentralafrikanische Republik	JP	Japan	NE	Niger	UZ	Usbekistan
CG	Kongo	KE	Kenia	NL	Niederlande	VN	Vietnam
СН	Schweiz	KG	Kirgisistan	NO	Norwegen	YU	Jugoslawien
CI	Côte d'Ivoire	KP	Demokratische Volksrepublik	NZ	Neusceland	zw	Zimbabwe
CM	Kamerun		Korea	PL	Polen		
CN	China	KR	Republik Korea	PT	Portugal		
CU	Kuba	KZ	Kasachstan	RO	Rumānien		
CZ	Tschechische Republik	LC	St. Lucia	RU	Russische Föderation		
DE	Deutschland	u	Liechtenstein	SD	Sudan		
DK	Dänemark	LK	Sri Lanka	SE	Schweden		
EE	Estland	LR	Liberia	SG	Singapur		

1

Tumorsuppressorgene der p53-Familie

Die Erfindung betrifft neue Tumorsuppressorgene der p53-Familie, Polypeptide, die sie kodieren sowie ihre Verwendung. Bevorzugt betrifft sie KET-kodierende Nukleinsäuren, insbesondere der Ratte, des Menschen und der Maus.

Gene, die in der Tumorigenese eine maßgebliche Rolle spielen, können aufgrund ihrer funktionellen Wirkweise grob klassifiziert werden. Führt eine Gain-offunction-Mutation zu einem Allel, das auf die Tumorigenese aktivierend wirkt, so wird das betroffene Gen als Oncogen bezeichnet. Ist eine Loss-of-function-Mutation auf beiden Allele nötig (inaktivierend), um tumorigene Veränderungen möglich werden zu lassen, spricht man von einem Tumorsuppressor-Gen. Das prominenteste und meist untersuchte Tumorsuppressor-Gen kodiert für den nukleären Transkriptionsfaktor p53 (über 2000 Medline Einträge im vergangenen Jahr: NCBI-Datenbank) mit der Hauptfunktion in der Kontrolle des Zell-Zyklus' und der Apoptose (Levine 1997). p53 liegt in humanen Tumoren zu über 50 % mutiert vor (Hollstein et al. 1991), vererbte p53 Mutationen führen zu einer erhöhten Tumorhäufigkeit bei den Trägern des defekten Allels (Evans und Lozano 1997). Derzeit existieren vier p53-knock-out Mauslinien, die von mehreren Arbeitsgruppen unabhängig voneinander hergestellt wurden und als Tiermodelle für den Menschen dienen. p53-defiziente Tiere (Genotyp: +/- und -/-) zeigen schon im frühen Alter eine vermehrte Tumorrate (Donehower et al. 1992, Harvey et al. 1993b). Die Embryo- und Organogenese verläuft jedoch im allgemeinen unauffällig, so daß p53 defiziente Tiere nicht von ihren +/+ Wildtypgeschwistern zu unterscheiden sind (Donehower et al. 1992). Allerdings zeigen einige p53 -/- Embryonen am Tag 13.5 der Embryogenese einen charakteristischen Defekt in der Morphologie des Kopfbereiches, Exencephalie, bei der der Verschluß des Neuralrohres in Vorder und Mittelhim nicht erfolgt. Diese Mißbildung tritt bei 16 % der homozygot-defizienten CV 129 Embryonen auf, während nur 8 % von CV129 X C57BL/6- p53 -/-Interessanterweise variiert auch die sind. betroffen Hybridembryonen Tumorinzidenz im CV129 Hintergrund und CV129 X C57BL/6 Hybridhintergrund. Tumoren entwickeln sich generell schneller in CV 129 Mäusen als in CV 129 X C57BL/6-Hybriden; zusätzlich kommt es in CV 129 Tieren vermehrt zu Teratomen (Donehower et al. 1995, Harvey et al. 1993a). Solche Unterschiede können nur durch die jeweils unterschiedliche Konstitution des genetischen Hintergrundes erklärt werden. Das zeigt im unterschiedlichen genetischen Hintergrund das Vorliegen differenzierter Kompensationseffizienz gegenüber dem p53-Verlust und die Existenz verwandter Gen-Produkte, welche die Funktion von p53 während der Embyogenese und Cancerogenese verrichten.

Der Erfindung lag deshalb die Aufgabe zugrunde, entsprechende Gene bereitzustellen, die für Proteine kodieren, welche bei der Kontrolle des Zell-Zyklus und der Apoptose eine Rolle spielen.

Die Erfindung basiert auf der Erkenntnis, daß das Protein KET mit so bemerkenswerter Homologie in seiner Aminosäuresequenz zu p53 gefunden wurde, daß es mit p53 in einer p53-Familie zusammengefaßt werden kann. Wie p53 besitzt KET eine Transaktivierung-, eine DNA-Bindungs- und eine Oligomerisierungsdomäne. Der höchste Grad an Homologie ist in der DNA-Bindungs-Domäne zu finden. Er beträgt zwischen KET und p53 75%. Die Isolierung der kodierenden cDNAs erfolgte aus der Ratte (SEQ ID No. 1).

Erfindungsgemäß wurde die menschliche KET cDNA (SEQ ID No. 2) kloniert; ein Alignment der abgeleiteten Aminosäuresequenz (SEQ ID No 3) mit der aus Ratte und den Sequenzen von humanem p53 und p73 ist in Abb. 1 gezeigt. Die KET-Aminosäure-Sequenz aus der Ratte zeigt eine Homologie von 98 % zu der des Menschen.

Es wurde eine chromosomale Lokalisation des Gens auf dem Chromosom 3q des Menschen und 16 der Maus (vgl. Abb. 2 Genetische Kartierung) gefunden, woraus sich auf eine Funktion von KET als Tumorsuppressor rückschließen läßt. Interessanterweise kartiert das *Ket*-Gen der Maus in einen Bereich, der in frühen Stadien der Pancreaskanzerogenese deletiert ist und vermutlich einen Suppressor der Angiogenese, Loh2 (Gensymbol: Loh2), beinhaltet, für den Ket somit einen Kandidaten darstellt.

Gemäß der Erfindung wurde festgestellt, daß das KET-Protein bei der Tumorsuppression beteiligt ist. Von speziellem Interesse waren vor allem solche Tumoren, in denen bisher keine Veränderungen des *p53* Wildtypallels beschrieben wurden. Die chromosomale Lokalisation der verantwortlichen

Tumorsuppressorgene kann durch cytogenetische Analysen, die Loss of heterozygosity (LOH)-Bereiche identifizieren, vorausgesagt werden. Es wurde nachgewiesen, daß das *KET/Ket*-Gen bei Mensch oder Maus in solche LOH-Regionen kartiert.

Erfindungsgemäß erfolgte eine Kartierung des *KET/Ket*-Gens bei Mensch und Maus mit flankierenden Markern (Abb.2). Zur präzisen chromosomalen Lokalisation beim Menschen wurden Bestrahlungshybride (Radiation Hybrids; GeneBridge 4 Panel, Research Genetics) eingesetzt, die Kartierung bei der Maus erfolgte in einer *M. musculus* X *M. spretus* Rückkreuzungsgeneration. Das *Ket*-Gen kartiert zwischen das Somatostatin-Gen und das Apolipoprotein D Gen auf Chr. 3q des Menschen. Dieselbe Genreihenfolge wurde auf Chr. 16 der Maus bestätigt. A (links) chromosomaler Abschnitt des humanen Chromosoms 3q mit der Position des *KET*-Locus; B (mitte) Position des *Ket*-Locus auf Chr. 16 der Maus. C (rechts) Ket-Haplotypen und Markergene auf Chr. 16. Jede Säule repräsentiert zwei Haplotypen von Chr. 16, die Anzahl der Backcross-Individuen ist unten angegeben (obere Zahl: gefüllte Quadrate/Rechtecke SEG/1 Allel; leere Quadrate/Rechtecke C57BL6J Allel; untere Zahl: das Gegenteil)
Gensymbole: CKCN2/Clc2 – Chlorid-Channel 2; SST/Smst – Somatostatin;

Gensymbole: CKCN2/Clc2 - Chlorid-Channel 2; SST/Smst - Somatostatin; KET/Ket - p53 verwandtes Protein KET; APOD/Apod - Apolipoprotein D; GAP43/Gap43 - Wachstum beeinflußendes Protein 43.

Gegenstand der Erfindung sind deshalb die KET-Nukleinsäuren, vorzugsweise KET-cDNA der Ratte, des Menschen und der Maus sowie deren Fragmente, Varianten und Mutationen, vorzugsweise die SEQ ID No.1 (KET-cDNA der Ratte) und die SEQ ID No. 2 (humane KET-cDNA).

Fragmente, Varianten und Mutationen sind durch Basenaustausche gekennzeichnet. Weiterhin können auch alle T durch U ersetzt sein (Ribonukleinsäure).

Ferner sind Gegenstand der Erfindung die Polypeptide für die die cDNAs kodieren, vorzugsweise SEQ ID No. 3, und deren an einer oder mehreren Stellen durch Austausch von Aminosäuren geänderte Strukturen.

Die Herstellung erfolgt nach an sich bekannten Verfahren, wie z. B. durch Isolierung und Sequenzierung aus cDNA-Bibliotheken.

Desweiteren betrifft die Erfindung die Verwendung der KET-Nukleinsäuren und Polypeptide als Ausgangsbasis zur Entwicklung spezifischer und wirkungsvoller Cancerostatika. Sie werden zum Aufbau von Genen und Vektoren eingesetzt, die die Basis für die Entwicklung dieser pharmazeutisch relevanten Substanzen darstellen.

Außerdem werden sie zur Entwicklung diagnostischer Kits eingesetzt, so z.B. zur Vorhersage eines Krebsrisikos. Gegenstand sind demzufolge auch diagnostische Testkits.

Weiterhin erfolgte die Charakterisierung von genomischen Ket-Klonen des Menschen und der Maus durch die differentielle Darstellung von intronumspannenden PCR-Fragmenten. Diese PCR-Tests wurden auch für die Identifizierung von *Ket*-positiven BACs (Bacterial artificial chromosome) in einer genomischen BAC-Bibliothek (Genome Systems Inc) verwendet. Diese BACs enthalten DNA aus dem CV 129/J Mausstamm, so daß Subfragmente des BAC-Klones direkt zur Konstruktion des *Ket*-Targeting-Vektors eingesetzt werden. Auf den bisher identifizierten BACs befanden sich auch die ersten 5'-Exons. Aus der full-length KET-cDNA Sequenz des Menschen und der Ratte wurden Primersequenzen abgeleitet, die zu Maus Exon 1 spezifischen PCR-Tests führen.

Darüber hinaus wurden Ket-defiziente Mäuse hergestellt.

Die Herstellung von Mäusen, die Nullallele des Ket-Gens tragen, erforderte vier aufeinanderfolgende Prozesse:

- Isolierung und Charakterisierung eines geeigneten Abschnittes des Zielgenes.
- Klonierung eines Targeting-Vektors, in dem der offene Leserahmen des Zielgenes durch die Integration eines Selektionsmarkers (vollständige Transkriptionseinheit für das Neomycin-Resistenz-Gen) zerstört ist.
- Homologe Integration des Rekombinationskonstruktes in das Genom von embryonalen Stammzellen und anschließende Selektion auf die Antibiotika-Resistenz.

• Injektion von ESCs in Blastocysten (oder Kokultur mit Morulae) und anschließender Uterustransfer.

Gegenstand sind auch Targeting-Vektoren. In einer Ausführungsvariante wurde BAC nach Verdau mit geeigneten vorliegende bereits der Restriktionsendonukleasen in pBluescript oder pUC subkloniert (optimale Größe der Subklone 5-10 kb). Über weitere Restriktionskartierung und STS-Mapping (Sequence Tagged Sites) mittels PCR und/oder Southern blotting wurde ein Subklon-Kontig erstellt, das als eine Feinkartierung des 5'-Genbereichs angesehen werden kann. Hierzu wurde die cDNA-Information aus Mensch und Ratte verwendet. Generell kann die Unterbrechung des offenen Leserahmens an zwei Stellen erfolgen: Es wurde in einem Fall die ersten translatierten Exons und im anderen die gesamte putative DNA-Bindungs-Domäne ausgeschaltet. Um die gewebsspezifische Expression von Ket während der Embryo- und Organogenese in Chimären und Ket-defizienten Mäusen zu verfolgen, wurde zusätzlich eine ß-Galactosidase-Kassette so einkloniert, daß sie der Kontrolle des Ket-Promoters unterliegt. Generell waren zwei Formen des gezielten Gentargeting möglich: Bei Verwendung eines Insertionsvektors integrierte der komplette Vektor (ein dem gebräuchlicheren erforderlich), bei Crossover-Ereignis war Replacementvektor integrierte lediglich ein Teil, der von der Wahl intragener Restriktionsschnittstellen abhängig war (zwei Crossover-Ereignisse erforderlich).

Genausschaltung in embryonalen Stammzellen (ESCs)

Wie schon oben aufgeführt, ist die verwendete genomische BAC-Bibliothek CV Aus diesem Mausstamm wurden auch die meisten 129-Ursprungs. gebräuchlichen ESCs isoliert. Der Vorteil der Verwendung von isogenem Material liegt in der höheren Wahrscheinlichkeit zur homologen Rekombination. ESCs wurden nach Transfektion (Elektroporation) durch G418-Selektion überprüft. Im Vektor-interne Replacement-Vektors wurde zusätzlich eine des Thymidinkinase-Kassette zur negativ-Selektion (Gancyclovir) bei nicht homologer Integration genutzt.

Eine erfolgreiche homologe Rekombination wurde über DNA-Analysen (Southern-Blot) geprüft.

Durch die Injektion von so geänderten ESCs in Blastocysten wurden auch Embryonalchimären hergestellt und diagnostiziert.

Für die Blastocysteninjektion oder Morula-Aggregation wurden nur genotypisierte ESCs verwendet. Chimäre Präimplantations-Embryonen wurden in die Uterushörner von scheinschwangeren Rezipientenmäusen übertragen. Chimären wurden in Testverpaarungen auf eine erfolgte Keimbahntransmission von ESC-Abkömmlingen überprüft. F1/F2 Nachkommen von Chimären, die das *Ket* Null-Allel entweder hetero- oder homozygot tragen, wurden mittels Southern-Blotoder PCR-Analysen genotypisiert.

Weiterhin ist die Erfindung durch ein Beispiel und ein Sequenzprotokoll näher erläutert.

Beispiel

Gewinnung der humanen KET-cDNA (SEQ ID No. 2)

Für die Gewinnung von humaner KET-cDNA wurden 1 x 10⁶ Klone einer menschlichen Skelettmuskel-cDNA-Bibliothek (Stratagene) mit Proben überprüft, die einer Ratten-KET-cDNA entstammten (Schmale und Bamberger, 1997). Ein einziger positiver Klon, hu41m, wurde gewonnen und das Insert von 3226 bp wurde unter Verwendung vektorspezifischer und interner Primer - in zwei Richtungen sequenziert. Das Insert enthielt einen offenen Leserahmen von 1360 bp, homolog zum N-Terminus der Ratten-KET-Sequenz, die Kodiersequenz war jedoch nach dem QQHQHLLQ-Motiv an Position 448 durch eine unbekannte Sequenz unterbrochen. Die Überprüfung von 6 x 105 Klonen einer menschlichen Keratinocyten-cDNA-Bibliothek (Clontech) mit einer Probe, die vom 3'-Ende von hu41m stammte, ergab zwei übereinandergreifende Klone, hu6k und hu10k, die mit einem Teil des cDNA-Klons hu41 identisch waren und die Sequenz zum 3'-Ende hin verlängerten. Um 3'-Endsequenzen zu erhalten, wurde die EST-Datenbank mit dem nichttranslatierten 3'-Bereich des Ratten-KET-Klons durchforscht. Nach Feststellung mehrerer homologer EST-Klone wurden zwei davon (I.M.A.G.E. Consortium Klon ID 149663 und 137665) vollständig sequenziert. Für die Amplifikation und direkte Sequenzierung eines 1,2 Kb-Fragmentes aus der menschlichen Haut-cDNA wurden PCR-Primer gemäß dem 3'-Ende des cDNA-Klons hu10k und dem 5'-Ende des EST-Klons 149663 verwendet. Die vollständige cDNA enthält 4846 bp, einschließlich 27 bp des höchstwahrscheinlich verkürzten nichttranslatierten 5'-Bereichs und 2776 bp des nichttranslatierten 3'-Bereichs . Um die benachbarte Anordnung der aus

. 1

verschiedenen Quellen gewonnenen Sequenzen zu demonstrieren, wurden PCR-Primer, die gemäß der Translationsstart- und -stoppkodons positioniert waren, für die Amplifikation der vollständigen Proteinkodierungssequenzen des KET von menschlicher Haut-cDNA verwendet. Die cDNA enthält einen offenen Leserahmen, der für 680 Aminosäuren kodiert (Abb. 1). Dem vermutlichen Start Methionin geht ein Translationsstoppkodon (nicht dargestellt) im Raster voran. Ein Vergleich der Aminosäuresequenzen der KET von Menschen und Ratten zeigt eine 98 %-ige Identität (Abb. 1). Diese beachtliche interspezifische Konservierung von KET-Proteinen erstreckt sich über die gesamte Moleküllänge. Sie ist im Mittelteil, der den DNA-Bindebereich enthält, sogar noch ausgeprägter; 248 Aminosäuren sind völlig unverändert. Die KET-Proteine sind weitaus konservierter als die entsprechenden p53-Proteine vom Menschen und von Ratten, die zu insgesamt 79 % homolog sind. Lediglich im DNA-Bindebereich erreicht ihre Identität 91 %. Menschliches p73 zeigt eine Identität von insgesamt 58 % mit menschlichem KET. Die Konservierung ist wiederum im DNA-Bindebereich mit einer Identität von 86 % am höchsten, während der N-terminale Bereich, mit Ausnahme des Transaktivierungsbereichs, am meisten abweicht. Außer dem Transaktivierungs- und dem DNA-Bindebereich weisen p53, p73 und KET einen gut erhaltenen Oligomerisationsbereich gemeinsam auf. Es ist wahrscheinlich, daß die drei Proteine in der Lage sind, Mischoligomere zu bilden, die spezifische biologische Funktionen haben.

Bei Proteinen, die aus funktionellen Gründen keine Veränderung tolerieren Mehrfachbindestellen aufweisen, die solche, können. Aminosäuresequenzen im allgemeinen so gut erhalten, wie das bei KET vom Menschen und von Ratten zu beobachten ist. Diese Konservierung läßt vermuten, daß KET ein evolutionäres altes Gen sein kann, das wahrscheinlich bei der Entwicklung und Differenzierung höherer wirbelloser Tiere und Wirbeltiere in die allgemeinen Grundfunktionen einbezogen wurde, p53 kann sich später von seinem Vorläufergen als Protein weiterentwickelt haben, das für spezifische Funktionen wie die Überwachung von Genomschäden verantwortlich ist. Der Umfang der Faktoren von physiologischen Belastung hängt genotoxischen Umweltfaktoren ab, die, zumindest teilweise bei den verschiedenen Arten unterschiedlich sind. So kann die relative Vielgestaltigkeit von p53, im Vergleich zu KET, die artspezifischen Anforderungen an ein solches System widerspiegeln.

Für das Kartierungsverfahren auf der Grundlage von PCR wurden STS vom Menschen (hKET8) und zwei KET STS von Mäusen (muKET8 und muKET)) amplifiziert (s. Tab. 1).

Die Primerpositionen wurden so definiert, daß Fragmente entstanden sind, die ein Intron, flankiert von Exonsequenzen, enthalten. Das ermöglichte die Identifizierung richtiger PCR-Fragmente durch einen Vergleich mit der bekannten KET-cDNA-Sequenz von Ratten. Speziell für die Kartierung des Ket-Gens von Mäusen haben wurden intronhaltige PCR-Fragmente gewählt, um nach einer Restriktion mit geeigneten Endonucleasen leicht nachweisbare Fragment-Längen-Polymorphismen zu erhalten. Die Exon-Intron-Grenzen wurden durch einen Vergleich der KET-Aminosäurensequenz mit der von p53 und p73 (Schmale und Bamberger, 1997; Kaghad et al, 1997) abgeleitet. Die Exonsequenzen entsprachen der KET-Aminosäurensequenz des Menschen (Abb. 1) wie folgt: hKET9, Aminosäurereste 360-390; muKET8, Aminosäurereste 360 - 400; muKET9, Aminosäurereste 383 - 438. PCRs wurden, wie bereits beschrieben (Lengeling et al. 1995), durchgeführt. Nukleotidsequenzen von Primern für den Mit-Mikrosatellitenmarker D16Mit57 wurden aus der MIT-Mausgenomdatenbank gewonnen. Maussegregationsdaten wurden mit dem GENE-LINK Computerprogramm (Montagutelli, 1990) verarbeitet. hKET8, das mittels der GeneBridge wurde 8 umfaßt, Intron Strahlungshybridkartierungspanels kartiert (Research Genetics, Huntsville, AL). Dieses Panel stellt 91 Strahlungshybridklone des gesamten Humangenoms dar. 3g27 zwischen Humanchromosom Das KET-Gen wurde am Mikrosatellitenmarkern D3S1580 und D3S1314 kartiert (Abb. 2A). wahrscheinlichste Genreihenfolge und -abstände waren D3S1580 - 2,2 cR - WI-6145 - 7,1 cR - KET - 4,7 cR - W/1189 - 8,9 cR - D3S1314. Dieser Bereich ist von Somatostatin-, SST (O'Hara et al. 1988) und Apolipoprotein D, APOD (Warden et al, 1992) flankiert. Informationen über die chromosomale Lokalisierung von SST und APOD und die Genreihenfolge wurden der Genome Center; (San Antonio 3-Karte entnommen Chromosomen http://genome.uthcsa.edu/Maps/frame.html).

3q27 ist der mittlere Teil eines Bereich einer gut dokumentierten Syntenie zum Mauschromosom 16, der sich von *CLCN2* nach *GAP43*, bzw. *Clc2* nach *Gap43* im Mausgenom erstreckt (DeBry und Seldin, 1996; Lengeling et al, 1995). Um

1

festzustellen, ob der Maus-Ket-Locus in den homologen Bereich fällt, erfolgte eine Kartierung des Ket-Gens unter Verwendung einer Interspeziesrückkreuzung der Maus (C57BL/6J $wrl + xSEG/1 +/+)*F_1 wrl/+ x (C57BL/6J <math>wrl+)$, die ursprünglich für die Kartierung des Wobbler-Gens etabliert wurde (Kaupmann et al, 1992). Dieses Interspeziesrückkreuzungspanel wurde für über 150 Loci charakterisiert, die über alle Autosome und die X-Chromosomen verteilt waren. Es wurde eine verbesserte Karte des Chromosoms 16 für die Kartierung des Chloridkanalgens Clc2 geschaffen (Lengeling et al, 1995). Beide Maus-KET-Restriktionsfragmentlängenvarianten informative PCR-Fragmente lieferten (RFLVs), die für die Segregationsanalyse verwendet wurden. Das Fragment mit Intron 8 (muKET8) wurde mit Msp1 geschnitten, muKET9 mit Rsa1. KET wurde zwischen Smst und D16Mit63 entdeckt mit Lodserves > 8 (Abb. 2B,C). Das Maushomologe des menschlichen Apolipoproteins D, Apod, der Genmarker an menschlichem Chr 3q eng verbunden distal zu KET, wurde im M. musculus x M. detaillierte iedoch sind Rückkreuzungspanel nicht kartiert, Kartierungsdaten verfügbar (Reeves und Cabin, 1997; Warden et al, 1992; Reeves et al, 1997). Es wurde D16Mit 57 kartiert, das distal zu Apod (Reeves und Cabin, 1997) angeordnet ist und einen Polymorphismus von Fragmentlänge zwischen dem M. musculus C57BL/6J (111 bp) und M. spretus SEG/1 (135 bp) nutzt. Bei 50 Meiosen wurde keine Rekombination von Ket und D16Mit57 festgestellt. Auf der Rückkreuzungstafel von M. musculus x M. spretus waren die wahrscheinlichsten Genreihenfolge und -abstände Cen - D16Mit87 - 3,9 ± 1,7 cM - Smst, D16Mit102 - 4 ± 2,77 cM - Ket, D16Mit 57 - 14 ± 4,91 cM -D16Mit63.

Der Verlust des langen Arms von Chromosom 3 wird selten festgestellt (vgl. Chitayat et al, 1996). Die Symptome mit Eliminierungen 3q27→qter unterscheiden sich erheblich und reichen nicht aus, um ein spezifisches Syndrom abzuleiten. Während in zwei Fällen lediglich kleinere faziale Abnormitäten, Verzögerungen in der Entwicklung und Hypotonien berichtet wurden, zeigten andere ernsthafte, mehrfache kongenitale Abnormitäten, einschließlich Anophtahlmie und Hirnathrophie.

In einigen Humankrebsgeweben (z.B. ösophagealem Krebs und squamöse Karzinomen) wurden LOH-Bereiche an Chr 3 entdeckt, die 3q27 enthielten (Sato et al, 1994; Wang et al, 1996). Obwohl statistisch von Bedeutung, war ein Verlust von 3q, der im Vergleich zu anderen chromosomalen Abnormitäten mit einer relativ geringen Häufigkeit auftrat, bei diesen Tumoren zu beobachten.

I

,

Vergleichende Kartierungsdaten zeigten Bereiche einer völlig erhaltenen Syntenie zwischen Chr 3q und den Mauschromosomen 3, 9 und 16 (vgl. DeBry und Seldin, 1996), wovon zwei die vorhergesagten Suppressorgene Loh1 und Loh2 beherbergen, die auf ausgeprägten Stufen der Tumorentwicklung in einem transgenen Mausmodell des Inselzellkarzinoms (Dietrich et al., 1994; Parangi et al., 1995; Shi et al., 1997) deletiert werden. Das Ket-Gen fällt in den gleichen LOH-Bereich mit Loh2 (LOH etwa 15 cM, 14-29 cM von Cen, flankiert durch die Mikrosatellitenmarker D16Mit35 und D16Mit39; (vgl. Parangi et al., 1995). Von Loh2 wird angenommen, daß es einen Suppressor der Angiogenese (Parangi et al., 1995) kodiert. Tatsächlich wurde gezeigt, daß das Protein p53 die Angiogenese in Fibroblasten indirekt hemmt durch die positive Regulierung der Thrombospondin-1-Expression (Dameron et al., 1994). Daher ist Ket ein Kandidat für Loh2 durch seine chromosomale Lokalisierung und durch seine putative Funktion.

Tabelle 1

PCR Primer für STS aus den KET/Ket Regionen

STS	Sequenz (5'→3')	Größe (bp)	Temperierung	Referenz
hKET8	CAGAAAGCAGCAAGTTTCGGAC	750	55°C	
	TGGATGTCATCTGGATACCATG			
muKET8	CAGAAAGCAGCAAGTTTCGGAC	2.300	65°C	
	AGCTCATCATCTGGGGATCTCC			
muKET9	ACACGGAATCCAGATGACTTCC	3,100	65°C	
	TGCTGCCTGTACGTTTCGATCG			
D16Mit57	AAAAAATTTTAAACCATGTGAATGT	111	63°C	MIT
	TGAAGTTTATTATGAGTTGAATCATGC	135°		

Größe des Amplifizierungsproduktes mit C57BL/6J DNA; "(SEG/1)

Zitierte Referenzen

Chitayat, D., Babul, R., Silver, M. M., Jay, V., Teshima, I. E., Babyn, P., and Becker, L. E. (1996). Terminal deletion of the long arm of chromosome 3 [46,XX,del(3)(q27-->qter)]. Am J Med Genet 61, 45-8.

Dameron, K. M., Volpert, O. V., Tainsky, M. A., and Bouck, N. (1994). Control of angiogenesis in fibroblasts by p53 regulation of thrombospondin-1. *Science* **265**, 1582-4.

DeBry, R. W., and Seldin, M. F. (1996). Human/mouse homology relationships. *Genomics* **33**, 337-51.

Dietrich, W., Miller, J., Steen, R., Merchant, M., Damron-Boles, D., Husain, Z., Dredge, R., Daly, M., Ingalls, K., OqConnor, T., and et, a. (1996). A comprehensive genetic map of the mouse genome. *Nature* **380**, 149-52.

Dietrich, W. F., Radany, E. H., Smith, J. S., Bishop, J. M., Hanahan, D., and Lander, E. S. (1994). Genome-wide search for loss of heterozygosity in transgenic mouse tumors reveals candidate tumor suppressor genes on chromosomes 9 and 16. *Proc Natl Acad Sci U S A* 91, 9451-5.

Donehower, L. A., Harvey, M., Slagle, B. L., McArthur, M. J., Montgomery, C. A., Jr., Butel, J. S., and Bradley, A. (1992). Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. *Nature* 356, 215-21.

Donehower, L. A., Harvey, M., Vogel, H., McArthur, M. J., Montgomery, C. A., Jr., Park, S. H., Thompson, T., Ford, R. J., and Bradley, A. (1995). Effects of genetic background on tumorigenesis in p53-deficient mice. *Mol Carcinog* 14, 16-22.

Evans, S. C., and Lozano, G. (1997). The Li-Fraumeni syndrome: an inherited susceptibility to cancer. *Mol Med Today* 3, 390-5.

Harvey, M., McArthur, M. J., Montgomery, C. A., Jr., Butel, J. S., Bradley, A., and Donehower, L. A. (1993). Spontaneous and carcinogen-induced tumorigenesis in p53-deficient mice. *Nat Genet* **5**, 225-9.

Hollstein, M., Sidransky, D., Vogelstein, B., and Harris, C. C. (1991). p53 mutations in human cancers. *Science* **253**, 49-53.

. 1

Kaghad, M., Bonnet, H., Yang, A., Creancier, L., Biscan, J. C., Valent, A., Minty, A., Chalon, P., Lelias, J. M., Dumont, X., Ferrara, P., McKeon, F., and Caput, D. (1997). Monoallelically expressed gene related to p53 at 1p36, a region frequently deleted in neuroblastoma and other human cancers. *Cell* 90, 809-19.

Kaupmann, K., Simon-Chazottes, D., Guenet, J., and Jockusch, H. (1992). Wobbler, a mutation affecting motoneuron survival and gonadal functions in the mouse, maps to proximal chromosome 11. *Genomics* 13, 39-43.

Lengeling, A., Gronemeier, M., Ronsiek, M., Thiemann, A., Jentsch, T. J., and Jockusch, H. (1995). Chloride channel 2 gene (Clc2) maps to chromosome 16 of the mouse, extending a region of conserved synteny with human chromosome 3a. *Genet Res* **66**, 175-8.

Levine, A. J. (1997). p53, the cellular gatekeeper for growth and division. *Cell* 88, 323-31.

Montagutelli, X. (1990). GENE-LINK: a program in PASCAL for backcross genetic analysis. *J Hered* **81**, 490-1.

O'Hara, B., Bendotti, C., Reeves, R., Oster-Granite, M., Coyle, J., and Gearhart, J. (1988). Genetic mapping and analysis of somatostatin expression in Snell dwarf mice. *Brain Res* 464, 283-92.

Parangi, S., Dietrich, W., Christofori, G., Lander, E. S., and Hanahan, D. (1995). Tumor suppressor loci on mouse chromosomes 9 and 16 are lost at distinct stages of tumorigenesis in a transgenic model of islet cell carcinoma. *Cancer Res* **55**, 6071-6.

Reeves, R. H., and Cabin, D. E. (1997). Mouse Chromosome 16. Mamm Genome 7, 264-73.

Reeves, R. H., Patch, D., Sharpe, A. H., Borriello, F., Freeman, G. J., Edelhoff, S., and Disteche, C. (1997). The costimulatory genes Cd80 and Cd86 are linked on mouse chromosome 16 and human chromosome 3. *Mamm Genome* 8, 581-2.

Sah, V. P., Attardi, L. D., Mulligan, G. J., Williams, B. O., Bronson, R. T., and Jacks, T. (1995). A subset of p53-deficient embryos exhibit exencephaly. *Nat Genet* 10, 175-80.

Sato, S., Nakamura, Y., and Tsuchiya, E. (1994). Difference of allelotype between squamous cell carcinoma and adenocarcinoma of the lung. Cancer Res

54, 5652-5.

Schmale, H., and Bamberger, C. (1997). A novel protein with strong homology to the tumor suppressor p53. *Oncogene* 15, 1363-7.

Shi, Y. P., Naik, P., Dietrich, W. F., Gray, J. W., Hanahan, D., and Pinkel, D. (1997). DNA copy number changes associated with characteristic LOH in islet cell carcinomas of transgenic mice. *Genes Chromosomes Cancer* 19, 104-11.

Walter, M. A., Spillett, D. J., Thomas, P., Weissenbach, J., and Goodfellow, P. N. (1994). A method for constructing radiation hybrid maps of whole genomes. *Nat Genet* 7, 22-8.

Wang, L., Li, W., Wang, X., Zhang, C., Zhang, T., Mao, X., and Wu, M. (1996). Genetic alterations on chromosomes 3 and 9 of esophageal cancer tissues from China. *Oncogene* 12, 699-703.

Warden, C., Diep, A., Taylor, B., and Lusis, A. (1992). Localization of the gene for apolipoprotein D on mouse chromosome 16. *Genomics* 12, 851-2.

14

Patentansprüche

- 1. KET-kodierende Nukleinsäuren, Fragmente, Varianten und Mutationen.
- 2. KET-Nukleinsäuren nach Anspruch 1, gekennzeichnet durch die KET-cDNA der Ratte mit der Sequenz SEQ ID No. 1 sowie deren Fragmente, Varianten und Mutationen.
- KET-Nukleinsäuren nach Anspruch 1, gekennzeichnet durch die humane KET-cDNA mit der Sequenz SEQ ID No. 2 sowie deren Fragmente, Varianten und Mutationen.
- 4. KET-Nukleinsäuren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß T durch U ausgetauscht ist.
- 5. KET-Nukleinsäuren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß sie vollständig komplementär ist.
- Polypeptide, für die KET-Nukleinsäuren gemäß einem der Ansprüche 1 bis 5 kodieren.
- 7. Polypeptide nach Anspruch 6 gekennzeichnet durch die SEQ ID No. 3 sowie deren an einer oder mehreren Stellen durch Austausch von Aminosäuren geänderte Strukturen.
- 8. Vektoren, die eine KET-Nukleinsäure oder für KET-Polypeptide kodierende DNA nach einem der Ansprüche 1 bis 5 enthalten.
- 9. Wirtszellen, die die Vektoren gemäß Anspruch 8 enthalten.
- 10. Verwendung von KET-Nukleinsäure oder Polypeptiden nach einem der Ansprüche 1 bis 7 zum Nachweis von KET-Nukleinsäuren in biologischen Proben.
- 11. Verwendung nach Anspruch 10, dadurch gekennzeichnet, daß man eine biologische Probe mit mindestens einer Verbindung dieser Nukleinsäuren.

vorzugsweise mit den Verbindungen der SEQ ID No. 1, SEQ ID No. 2 und/oder SEQ ID No. 3, ggf. mit einem Trägermolekül nach an sich üblichen Methoden in Kontakt bringt und der Nachweis anhand des gebildeten Hybridisationskomplexes durch physikalische oder chemische Methoden erfolgt.

- 12. Verwendung nach Anspruch 10 oder 11, dadurch gekennzeichnet, daß die Nukleinsäure DNA ist, die ggf. eine homozygotische Deletion enthält.
- 13. Verwendung nach Anspruch 10, dadurch gekennzeichnet, daß die Nukleinsäure RNA ist.
- 14. Verwendung nach einem der Ansprüche 10 bis 13, dadurch gekennzeichnet, daß die Nukleinsäure markiert ist, vorzugsweise durch ein Radioisotop, eine biolumineszente, eine chemilumineszente oder fluoreszente Verbindung, ein Metallchelat oder ein Enzym.
- 15. Verwendung nach einem der Ansprüche 10 bis 14, dadurch gekennzeichnet, daß die biologische Probe Tumorgewebe mit erfolgter Angiogenese des Menschen oder der Maus ist.
- 16. Verwendung von KET-Nukleinsäuren nach einem der Ansprüche 1 bis 5 zum Nachweis der Gegenwart oder Abwesenheit des menschlichen Chromosoms 3q27 oder dessen Fragmenten anhand des Hybridationsproduktes zwischen chromsomaler DNA und der KET-Nukleinsäure.
- 17. Verwendung von KET-Nukleinsäuren nach einem der Ansprüche 1 bis 5 zum Nachweis der Gegenwart oder Abwesenheit des Mauschromosoms 16 oder dessen Fragmenten anhand des Hybridationsproduktes zwischen chromsomaler DNA und der KET-Nukleinsäure.
- 18. Testkit zum Nachweis oder Veränderungen von KET-Nukleinsäuren enthaltend
 - mindestens eine KET-Nukleinsäure oder ein Polypeptid gemäß einem der Ansprüche 1 bis 7 oder eine Hybridisationsprobe.

2222	552t	250 160 142	280 230 210	3000 3000 3000 3000 3000	340 340 343 343	1913	553 553 497	623 623 567	6360
00 · a	· >00	0000	>=		ボズスm		تنون	444	
>> 0	444	ပပ္ပပ္		0000	7.7. 7.2.		T 17 17	2007 2004	Ξ
900.7	DOW .	7777			22-2 23:4	>	∨ ∨ ∨	D- D- W	w
00 ·>			>>>		mmmm	بند			<
44 · Z	ZZ				>>LL	000	លល ល	Œ Œ Œ	w
00 L W	>>>		4.4≈> 0.00m	>		00Z	OOG	 	00r mm⊢
anno-	000	>>>L		440>		>>> >>>		TIO	m m m
ير وياء	FHK.	≥بدد	0027	mmnin	9,000	- C -C	~~ =	0 T O	шшш
0007	ល ហហ			FEFF			~~~	oo⊢ Ge4	~~~ ***
****	004 ·	7772	2000 2000	KKEZ	200		444	ທ ຫ ຫ	CC -
TTTO	00œ	mm-4	>>>>	22.2	بنتي		عمم	بخيي	000
0000	ZZO·					000	<u> </u>	m00	GGX
LULL	gav ·	>>>>> \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	7777	ينينت د د د د	1127E	****	HHH 000	325 225	XZ4 XXŒ
2>++	 000		تثيي	aaaz	யய்கு	33>	OZZ	000	EEX
4400	660	333∪	0 0 0 C	0000	0000	XXXD		EEX	ŒŒU
த் வ வ வ	ومو	HEFE	0040			UZLL SZZZ	888	200 EE'	400 400
77.7	0000 ·	444>	4444	F.F.20	O O I P		حـ <u>ة</u> به	000	25-
E IL O A	至支の・	XXXX	226	क्षा का का वा		4400	ZZZ		000
2001	222	4444	0000	تينيت		ฉิงาาก		000	LL
FFE>	772	0000	2000 2000	FFFF >>	XXX	00>+		≯ ≯≯	ZZU
PHH-P	502 ·	0000	ZZZo		==>:	000"			000
8890	220 ·	GGGI	THE U		က်ထင္မ	≻≻⊁≥	••	44-	ZZ
0000	FFE	9997	WWO C			2007 2007	, i.i.	EEE.	2
00€0	AXX	#### 0 - 0		6.2.6.2		F05X	300		000
►< • m	4.00>	2227	222	TEEL	ZZKO	வை உ		999	
் வல் - ய	≯ ≱⊢∟	DOWE	m m m m		=-> v			66	
EE : ₹		DOIO FREE		2222	004°	_3.0.∓. -3.70	220		
	555₹	###>	2242	9999	注まるの	ω	- G G N	777	• • •
ຫທ	664	220		0000	ZZOZ	XX & Q	225 225	994 377	
万万 · · · · · · · · · · · · · · · · · ·		6 6 6 6 6		>>> X	0.00Z	000×		440	222
33 ⋅ ⋅		<u> </u>	>>>>	00000	EEXO	لاتنت	999	تحديد	CCZ
60 €	20>		<u> </u>	9999 7722	POK4		ZSZ	200	44-
12.02		7220	FFEE	0000		00.7	معد	33-	60 60 1
エエ・		0000	2223	3332	XXXX		23>	လ်လ ⊢	EFE
، يَقيم	- C	2.2.2		ZZZZ		00 s		***	50=
		D		***	904 ·			<u></u>	E E E
5-			XXXO	222	900	0004		크호크	حدد
11.11	8000	0.00	XXXX		2220		• -	00=	
00 · ·				4444	-44ª			S Y Y	EEI
<u> </u>			- Page 4	FFTO	999		ZZ	⊢ ⊢ ω	>>>
>>	77m 0	44F	3333		DOURT DOUR			0	444 444
90				6000	# 7 Z Z				112
20.			. ===>	>>>>		. 	999	000	>>>
ပြုပ် ၊ ၊								⊢⊢ ∽	M B O
- > > 00								444	000
	• •-			 គាកាក់ក				>> >	EE0
44								ပ်ပပ	ໝ ໝ ຜ
(C)		· · · · · · · · · · · · · · · · · · ·	4	حَجَدِنِ ،	الم م		ي بيد	SOS	មាល
வைப்	ح عَلَيْكِيَّ ،	F OFT.						လူလူမှ	>>0
== · - ⊢ ·								999	<u> </u>
Er.	000	0 >>>	·	-	XXX		. go=	بدي	>>0
ZZ ·		_ 						44⊢ GEG	
3 2 ·	- بيوبه	- 22·	· <u></u> >	بالتات .					-
	- == 22	5 552	2 5 5 5 5	2 222	5888	446	2000	20 82 4 4 4 4 8	624
			(4 th m	- 14 64 64 6	,,,,,,,			_,	

A66 2

SEQUENZPROTOKOLL

.11	ATTCEMEINE	INFORMATION:

- (i) ANMELDER:
 - (A) NAME: Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
 - (B) STRASSE: Leonrodstr. 68
 - (C) ORT: München
 - (E) LAND: Deutschland
 - (F) POSTLEITZAHL: D-80636
- (ii) ANMELDETITEL: Tumorsuppressorgen der p53-Familie
- (iii) ANZAHL DER SEQUENZEN: 3
- (iv) COMPUTER-LESBARE FORM:
 - (A) DATENTRÄGER: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) BETRIEBSSYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.25 (EFA)
- (2) INFORMATION ZU SEQ ID NO: 1:
 - (i) SEQUENZ CHARAKTERISTIKA:
 - (A) LANGE: 4708 Basenpaare
 - (B) ART: Nukleinsäure
 - (C) STRANGFORM: Einzel
 - (D) TOPOLOGIE: linear
 - (ii) ART DES MOLEKULS: CDNS
 - (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 1:

TAAGTGAGTT	CCTCAGCCCA	GAGGTGTTCC	AGCATATCTG	GGATTTTCTG	GAACAGCCTA	60
TATGCTCAGT	ACAGCCCATC	GACTTGAACT	TTGTGGACGA	ACCATCAGAA	AATGGTGCAA	120
CAAACAAGAT	TGAGATTAGC	ATGGATTGTA	TCCGCATGCA	AGACTCAGAC	CTCAGTGACC	130
				CATGGACCAG		240
				ACAGAACAGC		300
				TTCTCCATCC		360
				GTCCTTCCAG		420
				GAAACTCTAC		480
				CCCACAGGGC		540
					•	600
				GGTTGTGAAA		
ACCACGAGCT	GAGCCGCGAG	TTCAATGAGG	GACAGATTGC	CCCTCCCAGT	CATCTGATTC	660

GAGTAGAAGG	GAACAGCCAT	GCCCAGTATG	TAGAAGATCC	TATCACAGGA	AGGCAGAGCG	720
TGCTGGTCCC	TTATGAGCCA	CCACAGGTTG	GCACTGAATT	CACAACAGTC	CTGTACAATT	780
TCATGTGCAA	CAGCAGCTGT	GTCGGAGGAA	TGAACCGCCG	TCCAATTTTA	ATCATCGTTA	840
CTCTGGAAAC	CAGAGATGGG	CAAGTCCTGG	GCCGACGTTG	CTTTGAGGCC	CGGATCTGCG	900
CTTGCCCAGG	AAGAGACCGG	AAGGCCGATG	AAGACAGCAT	CAGAAAGCAG	CAAGTATCAG	960
ACAGCGCAAA	GAACGGCGAT	GGTACGAAGC	GCCCTTTCCG	TCAGAATACC	CACGGAATCC	1020
AGATGACTTC	CATCAAGAAA	CGGAGATCCC	CAGATGATGA	GCTGCTGTAC	CTACCAGTGA	1080
GAGGCCGTGA	GACTTATGAA	ATGCTGCTCA	AGATCAAGGA	GTCGCTCGAG	CTCATGCAGT	1140
ATCTCCCTCA	GCACACGATC	GAGACGTACA	GGCAGCAGCA	GCAGCAGCAG	CACCAACACC	1200
TACTTCAGAA	ACAGACCTCG	ATGCAGTCTC	AGTCTTCATA	CGGTAACAGC	TCACCACCTC	1260
TGAACAAAAT	GAACAGCATG	AACAAGCTGC	CGTCTGTGAG	CCAGCTTATC	AACCCACAGC	1320
AGCGCAACGC	CCTGACTCCC	ACCACCATGC	CTGAGGGCAT	GGGAGCCAAC	ATTCCTATGA	1380
TGGGCACTCA	CATGCCAATG	GCTGGAGACA	TGAATGGACT	CAGCCCCACC	CAAGCTCTTC	1440
CTCCTCCACT	CTCCATGCCC	TCCACCTCCC	ACTGCACCCC	CCCACCTCCG	TACCCAACAG	1500
ACTGCAGCAT	TGTCAGTTTC	TTAGCAAGGT	TGGGCTGTTC	ATCATGTCTG	GACTATTTCA	1560
CGACCCAGGG	GCTGACCACC	ATCTATCAGA	TTGAGCATTA	CTCCATGGAT	GATTTGGCAA	1620
					GACCACAGGC	1680
					GCCTCTACAG	1740
					CGCTTTACTC	1800
					TTTGACATGG	1960
	•				TCCGTCGCCG	1920
					TGATCCTCAA	1980
					GGACGGAGAA	2040
					CTGGCTTTAA	
					TAGCAGAGAA	
			,		ATTTTCAGCC	
					r CGGGTGGGG	
					AACCTTCTTT	
GGAATTTGCT	TGTTTTGGT	r GGCTGATCT	TACCCCTTT(TCAGGGGTA	r CATGTATGGT	2400

GACAGATATT	TAGAGTTGAA	TGGTCTATGT	GAGTAACAGT	GATATATAGG	TCCTCTCCTT	2460
ICTTTGGATG	ATTGCCGTTT	AGCACATCAA	ACCTGTGGAT	GCGTCCAGTC	TGTTTACCAT	2520
TGCTCCTTAT	GAGGTAAAAC	TGCATATACT	GTCAGTCTAT	TTTATGTTAC	TGGTGTCCAT	2580
TCCAGTTAGG	CTGGTTCACT	CTGTGGCCAT	TCCAAGCAAA	ATTTTATGTT	TGCTTTGTCA	2640
CACACTAGAA	GACAGGGCAT	CATCTCTTGC	TTTTGTTTGA	GAATGAGGAG	TACTTTTTT	2700
TTTTTCTGGA	AAATCTTAAA	TGGTCCAAAT	CAGCCATTCC	AAATGGCTGA	TGAAATGTAG	2760
CCAATATAGC	AGTTAGCTCT	CTAAAATTTA	AGACCCAACA	CCCTCGTATT	TATTAGTAAA	2820
ACAAAAATGA	AACATTTGCT	GTCATTAGAG	TAGCCTTAAA	ATTAAATTTC	AATACCAGAT	2880
TGACTGAGTA	AACTATGCAT	TCAATGTTGT	TGTGAGAATT	GGGGCTAATT	AGTCAGGATG	2940
ATTGGAATTT	GTGTAGTTTT	TTATGGTGAG	TTGCAATATC	TATTTAGGAA	GGTTCAGGAA	3000
TAATAAGAAT	GACTCAGAAA	TACTCAATCT	CCGTGACAAC	AGAAAGCAAT	CTCACCAAAC	3060
TCTGAATTTA	AACCCCTTTT	GAAACATGGA	GTGAGGCTTG	GGAAATGTAC	CTTTTAAAGA	3120
CTTTCCTATC	TATAAGACAC	TGCATGCAGG	GGCAAGTTTA	ATCTCTCATC	AAGGTGGAAA	3180
ATAAGAATAG	TAGCTCGGAA	ACTACAAACT	TGCTAGTGTA	GCTTTCACAT	GGCATGAGCT	3240
CAACTATTGT	TATTTTCCTC	TTTATCATCA	AAGCTCCATT	GCTGTAGAAA	GCAGAGGTGA	3300
AGACCCAGTT	TTCCACCTGA	CACTTTCCGG	GCAAGGCATA	GACCAAGAAC	TGTCTACAAA	3360
ACCAGGGCAA	AGCTCTTCAG	TGAAGCTGTT	TAATTCACAT	GGAGAAACAC	TTGTTTCCCA	3420
CTTTGGGAAA	GCATGCAACA	GTGTTCCCCC	TAGATGTTTT	GGAAACATTT	TGAGTCAAAT	3480
ATATTTTTCC	CAGACTAAAC	CAGGCTAATG	AGCTCTACAA	TCCTCCTGCA	CATTTTGGTA	3540
AAGGGCTGTC	ATTGCACAGG	AGCTCCCATT	TTTATCTTAA	AGTGCAAATG	GGCTAATACG	3600
CCTACGAAAT	GTAATGTATG	GGTTTTGCCA	GAAAATAGTA	TATTGTGTA C	ACGTGTCTGT	3660
GTGTGAGTGT	GAGAGTGTGT	GTGTGTGTGT	GTGTGTGTGT	GTGTGTGAAA	TTGCATACTA	372
TGCTGGTTTT	GTTTGTTACT	CTTTCTCTTG	GGGATAGTTC	GGTTTTCCAG	AACCACAGAC	378
GAAACTTTT	TTTGTTGCTG	TTTTTATATT	TTTGCAGAAA	CACCATTTAG	TGAGAATTCA	384
ATGTCAAATT	AGACATGACA	CCTTAATTGT	AAGAAGGGG	GAGAGGGAAA	GTTGGTTTTT	390
TTTAATTTTT	TAAAATTTTG	TATACTAAAG	AGAATGAGT	CTTAATTTCA	ACATTCTGTT	396
GCATTTAAAT	AATGATAAGO	: ATCATTAACT	TCTGTAACA	A CTTCCCAGCT	TGGCAAATTC	402
1 1 TCC 1 TCC 1	CNACNAAGCT	GGGCCTTAGC	CATGTTAGG	G AGAAAAATGO	CTTCTTGGGG	408

GTTGTGAGCA	TTTGGGTTGC	TTTAGCACCG	TTGAGGTGGC	ACAGGGGACT	CCTGAGGCAT	4140
TTCAGCACTA	CTTACGTAGC	ACTAGGGACT	CGGAAATTCC	TGTACTGTAG	CTAATGATTT	4200
TGGCGTTCAC	CATTAGCAGT	AGATAGGCCG	TTTCTCTCCT	CACACCAGTG	TTAAGCGTGT	4260
GAGTAGCCAG	AGCTGTGGGG	AAGAGCATGG	AGAACAGACG	TCTGCTGGAT	GCCTCTCACC	4320
GGAGAATGAG	ATTCCTTCGC	GTGGTGGTGA	AGTAGGATAG	GAAGCAGGAG	TCTCCTTGTT	4380
AGTCCAGTTA	GCTATTGTTT	TCTTGATATT	CCCCCCAAA	ACATTGACTA	TGAGAGATAT	4440
GTGGGGCTTT	TTTATTTTTA	TAATTGTACA	AAATTAAACA	AATATGAAAT	GTTTTATATA	4500
CTTTATTAAT	GTTTTTTTC	AAAAGGTACT	TTCTTATAGA	CATGATCCTT	TTTTTACAGG	4560
TTCAGTTGCT	TGTCCCTTGG	TATTTTTGTG	TTATGGGCTA	TGGTGAGCCT	GAGGCAAATC	4620
TATAAGCCAT	TTTTGTTTGC	CAGGACATGC	AATAAAATTT	ААДААТАААТ	GAAAATACAC	4680
тдаалалал	ААААААА	ААААААА				4708

(2) INFORMATION ZU SEQ ID NO: 2:

- (i) SEQUENZ CHARAKTERISTIKA:
 - (A) LANGE: 4846 Basenpaare
 - (B) ART: Nukleinsäure
 - (C) STRANGFORM: Einzel
 - (D) TOPOLOGIE: linear

(ii) ART DES MOLEKULS: cDNS

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 2:

					TCCCRCCTA	60
CGTTGATATC	AAAGACAGTT	GAAGGAAATG	AATTTTGAAA	CTTCACGGTG	IGCCACCCIA	00
CAGTACTGCC	CTGACCCTTA	CATCCAGCGT	TTCGTAGAAA	CCCCAGCTCA	TTTCTCTTGG	120
AAAGAAAGTT	ATTACCGATC	CACCATGTCC	CAGAGCACAC	AGACAAATGA	ATTCCTCAGT	180
CCAGAGGTTT	TCCAGCATAT	CTGGGATTTT	CTGGAACAGC	CTATATGTTC	AGTTCAGCCC	240
ATTGACTTGA	ACTTTGTGGA	TGAACCATCA	GAAGATGGTG	CGACAAACAA	GATTGAGATT	300
AGCATGGACT	GTATCCGCAT	GCAGGACTCG	GACCTGAGTG	ACCCCATGTG	GCCACAGTAC	360
ACGAACCTGG	GGCTCCTGAA	CAGCATGGAC	CAGCAGATTC	AGAACGGCTC	CTCGTCCACC	420
AGTCCCTATA	ACACAGACCA	CGCGCAGAAC	AGCGTCACGG	CGCCCTCGCC	CTACGCACAG	460
CCCAGCTCCA	CCTTCGATGC	TCTCTCTCCA	TCACCCGCCA	TCCCCTCCAA	CACCGACTAC	540
CCAGGCCCGC	ACAGTTTCGA	CGTGTCCTTC	CAGCAGTCGA	GCACCGCCAA	GTCGGCCACC	600
TGGACGTATT	CCACTGAACT	GAAGAAACTC	TACTGCCAAA	TTGCAAAGAC	ATGCCCCATC	660

CAGATCAAGG	TGATGACCCC	ACCTCCTCAG	GGAGCTGTTA	TCCGCGCCAT	GCCTGTCTAC	720
AAAAAAGCTG	AGCACGTCAC	GGAGGTGGTG	AAGCGGTGCC	CCAACCATGA	GCTGAGCCGT	780
GAATTCAACG	AGGGACAGAT	TGCCCCTCCT	AGTCATTTGA	TTCGAGTAGA	GGGGAACAGC	840
CATGCCCAGT	ATGTAGAAGA	TCCCATCACA	GGAAGACAGA	GTGTGCTGGT	ACCTTATGAG	900
CCACCCCAGG	TTGGCACTGA	ATTCACGACA	GTCTTGTACA	ATTTCATGTG	TAACAGCAGT	960
TGTGTTGGAG	GGATGAACCG	CCGTCCAATT	TTAATCATTG	TTACTCTGGA	AACCAGAGAT	1020
GGGCAAGTCC	TGGGCCGACG	CTGCTTTGAG	GCCCGGATCT	GTGCTTGCCC	AGGAAGAGAC	1080
AGGAAGGCGG	ATGAAGATAG	CATCAGAAAG	CAGCAAGTTT	CGGACAGTAC	AAAGAACGGT	1140
GATGGTACGA	AGCGCCCGTT	TCGTCAGAAC	ACACATGGTA	TCCAGATGAC	ATCCATCAAG	1200
AAACGAAGAT	CCCCAGATGA	TGAACTGTTA	TACTTACCAG	TGAGGGGCCG	TGAGACTTAT	1260
GAAATGCTGT	TGAAGATCAA	AGAGTCCCTG	GAACTCATGC	AGTACCTTCC	TCAGCACACA	1320
ATTGAAACGT	ACAGGCAACA	GCAACAGCAG	CAGCACCAGC	ACTTACTTCA	GAAACAGACC	1380
TCAATACAGT	CTCCATCTTC	ATATGGTAAC	AGCTCCCCAC	CTCTGAACAA	AATGAACAGC	1440
ATGAACAAGC	TGCCTTCTGT	GAGCCAGCTT	ATCAACCCTC	AGCAGCGCAA	CGCCCTCACT	1500
CCTACAACCA	TTCCTGATGG	CATGGGAGCC	AACATTCCCA	TGATGGGCAC	CCACATGCCA	1560
ATGGCTGGAG	ACATGAATGG	ACTCAGCCCC	ACCCAGGCAC	TCCCTCCCCC	ACTCTCCATG	1626
CCATCCACCT	CCCAGTGCAC	ACCCCCACCT	CCGTATCCCA	CAGATTGCAG	CATTGTCAGT	168
TTCTTAGCGA	GGTTGGGCTG	TTCATCATGT	CTGGACTATT	TCACGACCCA	GGGGCTGACC	174
ACCATCTATO	AGATTGAGCA	TTACTCCATG	GATGATCTGG	CAAGTCTGAA	AATCCCTGAG	180
CAATTTCGAC	ATGCGATCTG	GAAGGGCATC	CTGGACCACC	GGCAGCTCCA	CGAATTCTCC	186
TCCCCTTCTC	ATCTCCTGCG	GACCCCAAGC	AGTGCCTCTA	CAGTCAGTGT	GGGCTCCAGT	192
GAGACCCGGG	GTGAGCGTGT	TATTGATGCT	GTGCGATTCA	CCCTCCGCCA	GACCATCTCT	198
TTCCCACCCC	GAGATGAGTG	GAATGACTTC	AACTTTGACA	TGGATGCTCG	CCGCAATAAG	204
CAACAGCGCA	TCAAAGAGGA	. GGGGGAGTGA	GCCTCACCAT	GTGAGCTCTT	CCTATCCCTC	210
TCCTAACTGC	CAGCNCCCTA	AAAGCACTCC	TGCTTAATCT	TCAAAGCCTI	CTCCCTAGCT	216
сстсссстт	CTCTTGTCTG	ATTTCTTAGG	GGAAGGAGAA	GTAAGAGGC1	* ACCTCTTACC	222
TAACATCTG	CCTGGCATCT	· AATTCTGATT	CTGGCTTTA	A GCCTTCAAA	CTATAGCTTG	228
CAGAACTGTA	GCTGCCATGG	CTAGGTAGAA	GTGAGCAAA	AAGAGTTGG	TGTCTCCTTA	234
AGCTGCAGAG	ATTTCTCATT	GACTTTTATA	AAGCATGTT	ACCCTTATA	TCTAAGACTA	240

ТАТАТАТАА	TGTATAAATA	TACAGTATAG	ATTTTGGGTG	GGGGGGCATT	GAGTATTGTT	2460
TAAAATGTAA	TTTAAATGAA	AGAAGATTGA	GTTGCACTTA	TTGACCATTT	TTTAATTTAC	2520
TTGTTTTGGA	TGGCTTGTCT	ATACTCCTTC	CCTTAAGGGG	TATCATGTAT	GGTGATAGGT	2580
ATCTAGAGCT	TAATGCTACA	TGTGAGTGAC	GATGATGTAC	AGATTCTTTC	AGTTCTTTGG	2640
АТТСТАААТА	CATGCCACAT	CAAACCTTTG	AGTAGATCCA	TTTCCATTGC	TTATTATGTA	2700
GGTAAGACTG	TAGATATGTA	TTCTTTTCTC	AGTGTTGGTA	TATTTTATAT	TACTGACATT	2760
TCTTCTAGTG	ATGATGGTTC	ACGTTGGGGT	GATTTAATCC	AGTTATAAGA	AGAAGTTCAT	2820
GTCCAAACGT	CCTCTTTAGT	TTTTGGTTGG	GAATGAGGAA	AATTCTTAAA	AGGCCCATAG	2880
CAGCCAGTTC	AAAAACACCC	GACGTCATGT	ATTTGCGCAT	ATCAGTAACC	CCCTTAAATT	2940
TAATACCAGA	TACCTTATCT	TACAATATTG	attgggaaaa	CATTTGCTGC	CATTACAGAG	3000
GTATTAAAAC	TAAATTTCAC	TACTAGATTG	ACTAACTCAA	ATACACATTT	GCTACTGTTG	3060
TAAGAATTCT	GATTGATTTG	ATTGGGATGA	ATGCCATCTA	TCTAGTTCTA	ACAGTGAAGT	3120
TTTACTGTCT	ATTAATATTC	AGGGTAAATA	GGAATCATTC	AGAAATGTTG	AGTCTGTACT	3180
AAACAGTAAG	ATATCTCAAT	GAACCATAAA	TTCAACTTTG	TAAAAATCTT	TTGAAGCATA	3240
GATAATATTG	TTTGGTAAAT	GTTTCTTTTG	TTTGGTAAAT	GTTTCTTTTA	AAGACCCTCC	3300
TATTCTATAA	AACTCTGCAT	GTAGAGGCTT	GTTTACCTTT	CTCTCTCTAA	GGTTTACAAT	3360
AGGAGTGGTG	ATTTGAAAAA	TATAAAATTA	TGAGATTGGT	TTTCCTGTGG	CATAAATTGC	3420
ATCACTGTAT	CATTTTCTTT	TTTAACCGGT	AAGAGTTTCA	GTTTGTTGGA	AAGTAACTGT	3480
GAGAACCCAG	TTTCCCGTCC	ATCTCCCTTA	GGGACTACCC	ATAGACATGA	AAGGTCCCCA	3540
CAGAGCAAGA	GATAAGTCTT	TCATGGCTGC	TGTTGCTTAA	ACCACTTAAA	CGAAGAGTTC	3600
CCTTGAAACT	TTGGGAAAAC	ATGTTAATGA	CAATATTCCA	GATCTTTCAG	AAATATAACA	3660
CATTTTTTTG	CATGCATGCA	AATGAGCTCT	GAAATCTTCC	CATGCATTCT	GGTCAAGGGC	3720
TGTCATTGCA	CATAAGCTTC	CATTTTAATT	TTAAAGTGCA	AAAGGGCCAG	CGTGGCTCTA	3780
AAAGGTAATG	TGTGGATTGC	CTCTGAAAAG	TGTGTATATA	TTTTGTGTGA	AATTGCATAC	3840
					AACCACACTT	3900
					GAATACCACA	3960
					TTTTTTTATT	4020
AATTTTTTA	AATTTTGTAT	GTTAAAGAGA	ATGAGTCCTT	GATTTCAAAG	TTTTGTTGTA	4080

CTTAAATG	GT	AATAAGCACT	GTAAACTTCT	GCAACAAGCA	TGCAGCTTTG	CAAACCCATT	4140
AAGGGGAA	GΑ	ATGAAAGCTG	TTCCTTGGTC	CTAGTAAGAA	GACAAACTGC	TTCCCTTACT	4200
TTGCTGAG	GG	TTTGAATAAA	CCTAGGACTT	CCGAGCTATG	TCAGTACTAT	TCAGGTAACA	4260
CTAGGGCC	TT	GGAAATTCCT	GTACTGTGTC	TCATGGATTT	GGCACTAGCC	AAAGCGAGGC	4320
ACCCTTAC	TG	GCTTACCTCC	TCATGGCAGC	CTACTCTCCT	TGAGTGTATG	AGTAGCCAGG	4380
GTAAGGGG	TA	AAAGGATAGT	AAGCATAGAA	ACCACTAGAA	AGTGGGCTTA	ATGGAGTTCT	4440
TGTGGCCT	CA	GCTCAATGCA	GTTAGCTGAA	GAATTGAAAA	GTTTTTGTTT	GGAGACGTTT	4500
ATAAACAG	AA	ATGGAAAGCA	GAGTTTTCAT	TAAATCCTTT	TACCTTTTTT	TTTTCTTGGT	4560
AATCCCCT	AA	AATAACAGTA	TGTGGGATAT	TGAATGTTAA	AGGGATATTT	TTTTTCTATT	4620
ATTTTTAT	AA	TTGTACAAAA	TTAAGCAAAT	GTTAAAAGTT	TTATATGCTT	TATTAATGTT	4680
TTCAAAAG	GΤ	ATTATACATG	TGATACATTT	TTTAAGCTTC	AGTTGCTTGT	CTTCTGGTAC	4740
TTTCTGTT	TA	GGGCTTTTGG	GGAGCCAGAA	GCCAATCTAC	AATCTCTTTT	TGTTTGCCAG	4800
GACATGCA	ΑT	AAAATTTAAA	AAATAAATAA	AAACTAATTA	AGAAAT		4846

(2) INFORMATION ZU SEQ ID NO: 3:

- (i) SEQUENZ CHARAKTERISTIKA:
 - (A) LÄNGE: 680 Aminosäuren
 - (B) ART: Aminosäure
 - (C) STRANGFORM: Einzel
 - (D) TOPOLOGIE: linear
- (ii) ART DES MOLEKULS: Protein
- (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 3:

Met Asn Phe Glu Thr Ser Arg Cys Ala Thr Leu Gln Tyr Cys Pro Asp 1 5 10 15

Pro Tyr Ile Gln Arg Phe Val Giu Thr Pro Ala His Phe Ser Trp Lys 20 25 30

Glu Ser Tyr Tyr Arg Ser Thr Met Ser Gln Ser Thr Gln Thr Asn Glu 35 40 45

Phe Leu Ser Pro Glu Val Phe Gln His Ile Trp Asp Phe Leu Glu Gln 50 55 60

Pro Ile Cys Ser Val Gin Pro Ile Asp Leu Asn Phe Val Asp Glu Pro 65 70 75 80

Ser Glu Asp Gly Ala Thr Asn Lys Ile Glu Ile Ser Met Asp Cys Ile 85 90 95

Arg	Met	Gln	Asp 100	Ser	Asp	Leu	Ser	Asp 105		Met	Trp	Pro	Gln 110	Tyr	Thr
Asn	Leu	Gly 115		Leu	Asn	Ser	Met 120	Asp	Gln	Gln	Ile	Gln 125	Asn	Gly	Ser
Ser	Ser 130		Ser	Pro	Tyr	Asn 135		Asp	His	Ala	Gln 140	Asn	Ser	Val	Thr
Ala 145	Pro	Ser	Pro	Tyr	Ala 150	Gln	Pro	Ser	Ser	Thr 155	Phe	Asp	Ala	Leu	Ser 160
Pro	Ser	Pro	Ala	Ile 165	Pro	Ser	Asn	Thr	Asp 170	Tyr	Pro	Gly	Pro	His 175	Ser
Phe	Asp	Val	Ser 180	Phe	Gln	Gln	Ser	Ser 185	Thr	Ala	Lys	Ser	Ala 190	Thr	Trp
Thr	Tyr	Ser 195		Glu	Leu	Lys	Lys 200	Leu	Tyr	Cys	Gln	Ile 205	Ala	Lys	Thr
Cys	Pro 210	Ile	Gln	Ile	Lys	Val 215	Met	Thr	Pro	Pro	Pro 220	Gln	Gly	Ala	Val
Ile 225	Arg	Ala	Met	Pro	Val 230	Tyr	Lys	Lys	Ala	Glu 235	His	Val	Thr	Glu	Val 240
Val	Lys	Arg	Cys	Pro 245	Asn	His	Glu	Leu	Ser 250	Arg	Glu	Phe	Asn	Glu 255	Gly
Gln	Ile	Ala	Pro 260	Pro	Ser	His	Leu	Ile 265	Arg	Val	Glu	Gly	Asn 270	Ser	His
Ala	Gln	Tyr 275	Val	Glu	Asp	Pro	Ile 280	Thr	Gly	Arg	Gln	Ser 265	Val	Leu	Val
Pro	Tyr 290	Glu	Pro	Pro	Gln	Val 295	Gly	Thr	Glu	Phe	Thr 300	Thr	Val	Leu	Tyr
Asn 305	Phe	Met	Cys	Asn	Ser 310	Ser	Cys	Val	Gly	Gly 315	Met	Asn	Arg	Arg	Pro 320
Ile	Leu	Ile	Ile	Val 325	Thr	Leu	Glu	Thr	Arg 330	Asp	Gly	Gln	Val	Leu 335	Gly
Arg	Arg.	Cys	Phe 340	Glu	Ala	Arg	Ile	Cys 345	Ala	Cña	Pro	Gly	Arg 350	Asp	Arg
Lys	Ala	Asp 355	Glu	Asp	Ser	Ile	Arg 360	Lys	Gln	Gln	Val	Ser 365	Asp	Ser	Thr
Lys	Asn 370	GŢĀ	Asp	Gly	Thr	Lys 375	Arg	Pro	Phe	Arg	Gln 380	Asn	Thr	His	Gly
Ile 305	Gln	Met	Thr	Ser	Ile 390	Lys	Lys	Arg	Arg	Ser 395	Pro	qzA	Asp	Glu	Leu 400

Leu	Tyr	Leu	Pro	Val 405	Arg	Gly	Arg	Glu	Thr 410		Glu	. Met	Leu	Leu 415	Lys
Ile	Lys	Glu	Ser 420	Leu	Glu	Leu	Met	Gln 425		Leu	Pro	Gln	His 430	Thr	Ile
Glu	Thr	Tyr 435	Arg	Gln	Gln	Gln	Gln 440	Gln	Gln	His	Gln	His 445	Leu	Leu	Gln
Lys	Gln 450	Thr	Ser	Ile	Gln	Ser 455	Pro	Ser	Ser	Tyr	Gly 460	Asn	Ser	Ser	Pro
Pro 465	Leu	Asn	Lys	Met	Asn 470	Ser	Met	Asn	Lys	Leu 475	Pro	Ser	Val	Ser	Gln 480
Leu	Ile	Asn	Pro	Gln 485	Gln	Arg	Asn	Ala	Leu 490	Thr	Pro	Thr	Thr	Ile 495	Pro
Asp	Gly	Met	Gly 500	Ala	Asn	Ile	Pro	Met 505	Met	Gly	Thr	His	Met 510	Pro	Met
Ala	Gly	As p 515	Met	Asn	Gly	Leu	Ser 520	Pro	Thr	Gln	Äla	Leu 525	Pro	Pro	Pro
Leu	Ser 530	Met	Pro	Ser	Thr	Ser 535	Gln	Cys	Thr	Pro	Pro 540	Pro	Pro	Tyr	Pro
Thr 545	Asp	Cys	Ser	Ile	Val 550	Ser	Phe	Leu	Ala	Arg 555	Leu	Gly	Cys	Ser	Ser 560
Cys	Leu	Asp	Tyr	Phe 565	Thr	Thr	Gln	Gly	Leu 570	Thr	Thr	Ile	Tyr	Gln 575	Ile
Glu	His	Tyr	Ser 580	Met	Asp	Asp	Leu	Ala 585	Ser	Leu	Lys	Ile	Pro 590	Glu	Gln
Phe	Arg	His 595	Ala	Ile	Trp	Lys	Gly 600	Ile	Leu	Asp	His	Arg 605	Gln	Leu	His
Glu	Phe 610	Ser	Ser	Pro	Ser	His 615	Leu	Leu	Arg	Thr	Pro 620	Ser	Ser	Ala	ser
Thr 625	Val	Ser	Val	Gly	Ser 630	Ser	Glu	Thr	Arg	Gly 635	Glu	Arg	Val	Ile	Asp 640
Ala	Val	Arg	Phe	Thr 645	Leu	Arg	Gln	Thr	Ile 650	Ser	Phe	Pro	Pro	Arg 655	Asp
Glu	Trp	Asn	Asp 660	Phe	Asn	Phe	Asp	Met 665	Asp	Ala	Arg	Arg	Asn 670	Lys	Gln
Gln	Arg	Ile 675	Lys	Glu	Glu	Gly	680 Gjn							-	