# Identify casting defects from images

Deep Learning

Instructor : Iegor Rudnytskyi

TA: Ilia Azizi



# DATA SPLITTING

#### TRAINING

DEFAULT [1] = 3007 OK [0] = 2300

## VALIDATION

DEFAULT [1] = 751 OK [0] = 575

#### **TEST**

DEFAULT [1] = 453 OK [0] = 262

| script        | learning_rate | epochs | samples | flag_n_neurons | metric_val_acc | metric_val_loss |
|---------------|---------------|--------|---------|----------------|----------------|-----------------|
| vggl6.R       | 1.00E-05      | 100    | 663     | 500            | 0.997          | 0.0385          |
| modell.R      | 1.00E-04      | 100    | 663     | 300            | 0.997          | 0.1378          |
| modell.R      | 1.00E-04      | 100    | 663     | 500            | 0.9947         | 0.0916          |
| modell.R      | 1.00E-04      | 100    | 663     | 200            | 0.9947         | 0.2249          |
| vggl6.R       | 1.00E-05      | 100    | 663     | 100            | 0.9939         | 0.0617          |
| modell.R      | 1.00E-04      | 100    | 663     | 100            | 0.9939         | 0.1429          |
|               |               |        |         |                |                |                 |
| raw vggl6.R   | 1.00E-05      | 30     | 663     | NA             | 0.9939         | 0.0377          |
| vggl6.R       | 1.00E-05      | 100    | 663     | 200            | 0.9932         | 0.0578          |
| vggl6.R       | 1.00E-05      | 100    | 663     | 300            | 0.9924         | 0.0597          |
| vggl6.R       | 1.00E-05      | 100    | 663     | 400            | 0.9917         | 0.0598          |
| modell.R      | 1.00E-04      | 100    | 663     | 50             | 0.9909         | 0.2577          |
| modell.R      | 1.00E-04      | 100    | 663     | 400            | 0.9863         | 0.2196          |
|               |               |        |         |                |                |                 |
| inception_res |               |        |         |                |                |                 |
| net_v2.R      | 1.00E-05      | 30     | 663     | NA             | 0.9378         | 0.34            |
|               |               |        |         |                |                |                 |

# Custom CNN

- 500 neurons
- RMSPROP optimizer with learning rate of 0.00001
- loss crossentropy
- 100 epochs
- early stopping with patience = 7

| <pre>#&gt; Model #&gt; Model: " #&gt;</pre>             | sequential"                                                 |        |                         |         |
|---------------------------------------------------------|-------------------------------------------------------------|--------|-------------------------|---------|
| #> Layer (t                                             |                                                             |        |                         | Param # |
| #> conv2d_3                                             | (Conv2D)                                                    | (None, | 298, 298, 32)           |         |
| <pre>#&gt; max_pool</pre>                               | ing2d_3 (MaxPooling2D)                                      | (None, |                         | 0       |
| #> conv2d_2                                             | (Conv2D)                                                    | (None, | 147, 147, 64)           | 18496   |
| <pre>#&gt; max_pool</pre>                               | ing2d_2 (MaxPooling2D)                                      | (None, | Source Controls Science | 0       |
| #> conv2d_1                                             |                                                             |        | 71, 71, 128)            | 73856   |
|                                                         | ing2d_1 (MaxPooling2D)                                      | (None, | 35, 35, 128)            | 0       |
| #> conv2d (                                             | Conv2D)                                                     |        | 33, 33, 128)            | 147584  |
|                                                         | ing2d (MaxPooling2D)                                        |        | 16, 16, 128)            | 0       |
| #> flatten                                              |                                                             | (None, | 32768)                  | 0       |
| #> dense_1                                              |                                                             | (None, |                         | 9830700 |
| #> dense (D                                             |                                                             | (None, | 2)                      | 602     |
| <pre>#&gt; Total pa #&gt; Trainabl #&gt; Non-trai</pre> | rams: 10,072,134<br>e params: 10,072,134<br>nable params: 0 |        |                         |         |

## Custom CNN Confusion Matrix

- 99.9% ACCURACY
- 99.6% SENSITIVITY
- 100% SPECIFICITY
- 'POSITIVE' CLASS: 0



#### VGG 16 + 2 HIDDEN LAYERS

- 300 neurons
- Relu activation function
- 12 regularizer of 0.01
- RMSPROP optimizer with learning rate of 0.00001
- loss crossentropy
- 100 epochs
- early stopping with patience = 7

```
#> Model
#> Model: "sequential"
#> Layer (type)
              Output Shape Param #
#> ========
#> vgg16 (Functional) (None, 9, 9, 512) 14714688
#> flatten (Flatten)
                   (None, 41472)
#> dense 2 (Dense)
                    (None, 500)
                                      20736500
#>
#> dropout (Dropout) (None, 500)
                    (None, 500)
#> dense 1 (Dense)
                                      250500
#> dense (Dense) (None, 2)
                               1002
#> ========
#> Total params: 35,702,690
#> Trainable params: 20,988,002
#> Non-trainable params: 14,714,688
```

#### VGGI6 Confusion Matrix

- 99.3% ACCURACY
- 100% SENSITIVITY
- 98.9% SPECIFICITY
- 'POSITIVE' CLASS: 0





we would recommend our own CNN architecture for this task





both human and AI quality control



CONCLUSION

