Pattern Recognition Project(1): Apartment Rent Prediction Milestone 1 Report Team_ID: CS_29

لجين عماد محمد صلاح	2021170413
مارینا نبیل کامل بنیامین	2021170432
جنی محمود مرسی محمود	2021170143
لطيفه احمد حنفى عبدالفتاح	2021170414
مريم مصطفى عبد اللاه	2021170514

Preprocessing Techniques

1. Missing Data Handling:

- Null values in categorical columns such as 'pets_allowed' and 'amenities' were replaced with 'none' to signify the absence of these features.
- For numeric columns like 'bathrooms' and 'bedrooms' missing values were filled with the mode, as these are discrete categories. Additionally, these columns were converted from float to integer for data integrity.
- For continuous data like 'latitude' and 'longitude' missing values were replaced with the mean as they are continuous data.
- The 'cityname' and 'state' columns their missing values were updated first from the new columns which are 'city_name_from_body' and 'state_from_body' that we extract from 'body' column using regular expression on it.

Then remaining missing on them were replaced with **mode**, The most common city or state was used to fill any remaining missing values.

 The column 'address' we apply geocoding preprocessing to fill nulls in it by deriving the address from 'longitude' and 'latitude'.

2. Feature Engineering and Encoding

- Label Encoding was applied to transform categorical columns ('price_type', 'currency', 'category', 'fee') into numeric labels. It assigns a unique integer value to each category within a column. Label encoding is appropriate when there are relatively few unique categories in a column such as in ('price_type', 'currency', 'category', 'fee',).
- One-hot encoding was used for columns like 'has_photo', 'pets_allowed', 'amenities ' and 'source'. One-hot encoding converts a categorical variable into one or more

columns, where each column represents a unique category . and after encoding, the original columns were dropped to avoid redundancy. We use this as there are more than 2 unique variables but less than 50. In two columns 'pets_allowed' and 'amenities' we separated by (,) in each row. We create a column for each unique variable. In 'source' due to having multiple unique variables but except the top two the rest had very low frequency. We grouped them into single category called 'Other' before performing One-Hot encoding.

• CatBoost encoding was applied for the 'state', 'cityname', 'body', 'title', and 'address' columns. This approach transformed these text-based columns into numeric format. CatBoost encoding is a form of target encoding which is a technique used in data preprocessing to transform categorical features based on the target variable (price_display). Unlike label

encoding and one-hot encoding, target encoding uses the statistical relationship between a categorical feature and the target variable to create a numeric representation. Which is helps handle categorical variables with high cardinality (a large number of unique categories). The difference is Catboost is normalized compared to target encoding which catboost is used here for higher performance.

3. Data Cleaning and Transformation:

- The 'price_display' column, initially a string, was stripped of non-numeric characters and we convert to integers. We remove from it the comma(,) and dollar sign(\$). We drop 'price' column and we put 'price_display' after cleaning as the target column 'Y'.
- For column 'body' we extract information from it and create two new columns which are 'city_name_from_body' and 'state_from_body' using Regular

- **expression** applied on 'body' column. We use these new columns we extract to replace nulls in 'cityname' column and 'state' column.
- For column 'title' we extract information from it and create two new columns which are 'bedrooms_from_title' and 'addresses_from_title' using Regular expression applied on 'title' column.

4. Apply NLP

- We find that there is columns such that data['body'] which contain text we decide to preprocess it by applying NLP to collect the most words that affect on the target data['price'].We do first
 - **1**-preprocesses the text data in the 'body' column of our Data by tokenizing each row.
 - 2-converting tokens to lowercase,

- **3**-removing stopwords
- **4** and joining the filtered tokens back into a string.
- **5-**We uses TF-IDF vectorization to transform the preprocessed text data into a TF-IDF matrix.

After Applying TF-IDF on the preprocessed column we try to calculate the sum of TF-IDF scores for each word across all documents in corpus, then sorts these word scores in descending order to identify the most important words. And to select the top 50 words with the highest cumulative TF-IDF scores and print them.

This is the result of the 60 top words

Top 60 most important words: available 606.381675 range 598.732225 rates 589.531261 rental 585.500461 units 560.959301 unit 558.481889 rent 556.214067 located 550.230348 beds 537.984679 apartment 386.359138 one 360.424784 two 315.542305 features 307.767899 include 305.333959 txmonthly 275.364824 fitness 233.325611 balcony 227.635758 deck 227.314766 three 216.986891 street 193.212196 bedrooms 191.343304 bd 188.731278 studio 184.552145			_
range 598.732225 rates 589.531261 rental 585.500461 units 560.959301 unit 558.481889 rent 556.214067 located 550.230348 beds 537.984679 apartment 386.359138 one 360.424784 two 315.542305 features 307.767899 include 305.333959 txmonthly 275.364824 fitness 233.325611 balcony 227.635758 deck 227.314766 three 216.986891 street 193.212196 bedrooms 191.343304 bd 188.731278	Top 60 most	important words:	
rates 589.531261 rental 585.500461 units 560.959301 unit 558.481889 rent 556.214067 located 550.230348 beds 537.984679 apartment 386.359138 one 360.424784 two 315.542305 features 307.767899 include 305.333959 txmonthly 275.364824 fitness 233.325611 balcony 227.635758 deck 227.314766 three 216.986891 street 193.212196 bedrooms 191.343304 bd 188.731278	available	606.381675	
rental 585.500461 units 560.959301 unit 558.481889 rent 556.214067 located 550.230348 beds 537.984679 apartment 386.359138 one 360.424784 two 315.542305 features 307.767899 include 305.333959 txmonthly 275.364824 fitness 233.325611 balcony 227.635758 deck 227.314766 three 216.986891 street 193.212196 bedrooms 191.343304 bd 188.731278	range	598.732225	
units 560.959301 unit 558.481889 rent 556.214067 located 550.230348 beds 537.984679 apartment 386.359138 one 360.424784 two 315.542305 features 307.767899 include 305.333959 txmonthly 275.364824 fitness 233.325611 balcony 227.635758 deck 227.314766 three 216.986891 street 193.212196 bedrooms 191.343304 bd 188.731278	rates	589.531261	
unit 558.481889 rent 556.214067 located 550.230348 beds 537.984679 apartment 386.359138 one 360.424784 two 315.542305 features 307.767899 include 305.333959 txmonthly 275.364824 fitness 233.325611 balcony 227.635758 deck 227.314766 three 216.986891 street 193.212196 bedrooms 191.343304 bd 188.731278	rental	585.500461	
rent 556.214067 located 550.230348 beds 537.984679 apartment 386.359138 one 360.424784 two 315.542305 features 307.767899 include 305.333959 txmonthly 275.364824 fitness 233.325611 balcony 227.635758 deck 227.314766 three 216.986891 street 193.212196 bedrooms 191.343304 bd 188.731278	units	560.959301	
located 550.230348 beds 537.984679 apartment 386.359138 one 360.424784 two 315.542305 features 307.767899 include 305.333959 txmonthly 275.364824 fitness 233.325611 balcony 227.635758 deck 227.314766 three 216.986891 street 193.212196 bedrooms 191.343304 bd 188.731278	unit	558.481889	
beds 537.984679 apartment 386.359138 one 360.424784 two 315.542305 features 307.767899 include 305.333959 txmonthly 275.364824 fitness 233.325611 balcony 227.635758 deck 227.314766 three 216.986891 street 193.212196 bedrooms 191.343304 bd 188.731278	rent	556.214067	
apartment 386.359138 one 360.424784 two 315.542305 features 307.767899 include 305.333959 txmonthly 275.364824 fitness 233.325611 balcony 227.635758 deck 227.314766 three 216.986891 street 193.212196 bedrooms 191.343304 bd 188.731278	located	550.230348	
one 360.424784 two 315.542305 features 307.767899 include 305.333959 txmonthly 275.364824 fitness 233.325611 balcony 227.635758 deck 227.314766 three 216.986891 street 193.212196 bedrooms 191.343304 bd 188.731278	beds	537.984679	
two 315.542305 features 307.767899 include 305.333959 txmonthly 275.364824 fitness 233.325611 balcony 227.635758 deck 227.314766 three 216.986891 street 193.212196 bedrooms 191.343304 bd 188.731278	apartment	386.359138	
features 307.767899 include 305.333959 txmonthly 275.364824 fitness 233.325611 balcony 227.635758 deck 227.314766 three 216.986891 street 193.212196 bedrooms 191.343304 bd 188.731278	one	360.424784	
include 305.333959 txmonthly 275.364824 fitness 233.325611 balcony 227.635758 deck 227.314766 three 216.986891 street 193.212196 bedrooms 191.343304 bd 188.731278	two	315.542305	
txmonthly 275.364824 fitness 233.325611 balcony 227.635758 deck 227.314766 three 216.986891 street 193.212196 bedrooms 191.343304 bd 188.731278	features	307.767899	
fitness 233.325611 balcony 227.635758 deck 227.314766 three 216.986891 street 193.212196 bedrooms 191.343304 bd 188.731278	include	305.333959	
balcony 227.635758 deck 227.314766 three 216.986891 street 193.212196 bedrooms 191.343304 bd 188.731278	txmonthly	275.364824	
deck 227.314766 three 216.986891 street 193.212196 bedrooms 191.343304 bd 188.731278	fitness	233.325611	
three 216.986891 street 193.212196 bedrooms 191.343304 bd 188.731278	balcony	227.635758	
street 193.212196 bedrooms 191.343304 bd 188.731278	deck	227.314766	
bedrooms 191.343304 bd 188.731278	three	216.986891	
bd 188.731278	street	193.212196	
200312.0	bedrooms	191.343304	
studio 184,552145	bd	188.731278	
304.332143	studio	184.552145	

	•	
	air	123.698301
)	living	122.592280
	controlled	119.023724
	surface	118.962291
	laundry	116.221391
	income	112.773281
	avenue	112.648291
	garbage	111.956380
	san	110.718008
	feet	109.466361
	facilities	105.093109
	parking	101.639744
	new	98.018812
	home	97.335778
	water	95.864636
	pool	93.123475
	park	90.328699
	dishwasher	87.339754
	road	87.037075
	city	86.491900
	area	86.156659
	wamonthly	86.055809
	access	85.406318
	pet	83.967847
	ilmonthly	83.193128
	heat	82.150342
	dtype: float64	4

Then we try to find the correlation between

Two, community, features, include

and the target (data['Price'])

This is the final results

two	-0.078374
community	-0.012413
features	-0.105371
include	-0.095018

From the results we don't found that there is not a new features that has correlation more than 0.3 which we use to feature selection step So we ignore them.

5. Standardization (Feature Scaling):

Standard scaling is used to standardize the range of the data by centering the data around the mean and scaling it to unit variance. This helps ensure that all features contribute equally to the model's learning process.

Analysis of dataset:

This is the number of columns in the data and its info:

Data	columns (total		
#	Column	Non-Null Count	Dtype
0	id	9000 non-null	int64
1	category	9000 non-null	object
2	title	9000 non-null	object
3	body	9000 non-null	object
4	amenities	9000 non-null	object
5	bathrooms	9000 non-null	int64
6	bedrooms	9000 non-null	int64
7	currency	9000 non-null	object
8	fee	9000 non-null	object
9	has_photo	9000 non-null	object
10	pets_allowed	9000 non-null	object
11	price	9000 non-null	int64
12	price_display	9000 non-null	object
13	price_type	9000 non-null	object
14	square_feet	9000 non-null	int64
15	address	9000 non-null	object
16	cityname	9000 non-null	object
17	state	9000 non-null	object
18	latitude	9000 non-null	float64
19	longitude	9000 non-null	float64
20	source	9000 non-null	object
21	time	9000 non-null	int64
dtype	es: float64(2),	int64(6), object	t(14)

	id	bathrooms	bedrooms	price	square_feet	latitude	longitude	time
count	9.000000e+03	9000.000000	9000.000000	9000.000000	9000.000000	9000.000000	9000.000000	9.000000e+03
mean	5.623668e+09	1.346000	1.346000	1487.286222	947.138667	37.676890	-94.778612	1.574906e+09
std	7.007402e+07	0.581081	0.581081	1088.561190	668.806214	5.513124	15.763098	3.755142e+06
min	5.508654e+09	1.000000	1.000000	200.000000	106.000000	21.315500	-158.022100	1.568744e+09
25%	5.509250e+09	1.000000	1.000000	950.000000	650.000000	33.666975	-101.543850	1.568781e+09
50%	5.668610e+09	1.000000	1.000000	1275.000000	802.000000	38.744000	-93.737500	1.577358e+09
75%	5.668626e+09	2.000000	2.000000	1695.000000	1100.000000	41.349800	-82.474025	1.577359e+09
max	5.668663e+09	8.000000	8.000000	52500.000000	40000.000000	61.594000	-70.191600	1.577362e+09

• Feature selection:

We calculate the correlation matrix between the features (columns) and a target variable 'price_display'. Then, we select the features ('bathrooms','bedrooms','cityname','state', square_feet' and 'address') that have an absolute correlation coefficient greater than 0.3 with the price_display variable.

Size of Train and test:

We split the dataset into training and testing sets for both features (X) and the target variable (Y), where testing set is 20% of the total dataset.

Regression Techniques:

1-Multilevel Regression: we perform multilevel linear regression using scikit-learn's Linear Regression model on training set and testing set

- training set: Mean Square Error = 654038.140265437, Accuracy= 44.101605198677106
- testing set: Mean Square Error = 417465.95349291153 , Accuracy= 66.41356801962614

2-Polynomial Regression: we perform polynomial regression; we use Polynomial Features to transform the original features

- (X_train) into polynomial features up to the specified degree (degree 2) and we perform linear regression model (poly_model) from scikit-learn's linear_model module. This model will be used to fit the polynomial features to the target variable (y_train) to generate predictions for the target variable.
 - training set: Mean Square Error = 571602.0901095077, Accuracy= 51.14713143604248
 - testing set: Mean Square Error = 316318.7078759635, Accuracy= 74.55117794084688

3- Random Forest Regression:

It builds multiple decision trees during training and outputs the average prediction of the individual trees. This helps to reduce overfitting and improve the accuracy of the model, we use this model with specific hyperparameters, evaluates its performance such as (n_estimators=300, max_depth=10,

```
min_samples_split=30, n_jobs=-1, random_state=0, oob_score=True).
```

- Out-of-Bag Score: 0.4980237174318204
- Mean Squared Error: 441889.0949326922
- Model Accuracy: 64.44865046922243

4-Decision Tree Regression:

builds a tree-like model that predicts the target variable by partitioning the feature space into regions and assigning a prediction value to each region based on the training data, we use this model with specific hyperparameters such as

- 1.min_samples_split: The minimum number of samples required to split an internal node (30).
- 2.max_depth: The maximum depth of the decision tree (10).
 - Mean Squared Error: 426849.7573937188
 - Model Accuracy: 65.65861186381359

5-Gradient Boosting Regression:

We use Gradient Boosting Regression to handle complex relationships between features and target variables. we use this model with specific hyperparameters such as

- n_estimators: The number of boosting stages or trees to be built (300)
- min_samples_split: The minimum number of samples required to split an internal node(20).

Mean Squared Error: 365979.16850505193

Model Accuracy: 70.55583971247748

Used Features to create Regression Models:

After applying correlation we find that the top features to use are: ['bathrooms', 'bedrooms',

'square_feet', 'address', 'cityname', 'state'] as shown in the selected columns after encoding below:

	bathrooms	bedrooms	square_feet	address	cityname	state
5250	1	1	516	1205.942260	1235.703618	1175.769961
7173	3	3	1850	1487.286222	1624.215548	1132.766296
2661	1	1	556	1487.286222	1186.021086	1299.423722
5018	1	1	675	1487.286222	1487.495249	1266.574433
3969	1	1	410	1487.286222	1306.177713	1294.699298
4829	2	2	1036	1487.286222	1310.095407	1531.997605
7291	1	1	900	1487.286222	1317.665194	1577.722690
1344	1	1	902	1487.286222	1018.031802	1792.752725
7293	1	1	250	1487.286222	2476.457244	1173.554192
1289	1	1	1050	1019.091873	1019.091873	1294.699298

Improve the Results

- 1. In **polynomial regression** we perform hyperparameter tuning by using random search to select the best degree for polynomial regression.
- 2.In Random forest regression we use these hyperparameters to improve accuracy (n_estimators=300, max_depth=10, min_samples_split=30, n_jobs=-1, random_state=0, oob_score=True).

- **3.In Decision Tree Regression** we use these hyperparameters to improve accuracy min_samples_split, max_depth.
- 4.In Gradient Boosting Regression we use these hyperparameters to improve accuracy n_estimators, min_samples_split.

• Conclusion:

1. We predict that Random forest Regression will be the best model in accuracy, and we found that **Polynomial Regression** model is

the best model in accuracy & performance and is our selected model.

- MSE For Random Forest: 441889.0949326922
- Model Accuracy: 64.44865046922243
- MSE For **Polynomial**: 316955.1118780659
- Model Accuracy: 74.49997726316333
 - 2.our intuition about the importance of certain features, specifically the number of bedrooms, bathrooms and square_feet was validated. These features played a significant role in predicting apartment rents. We also found that there are features play a significant role in predicting and have high correlation as: 'cityname', 'address', 'state' in contrast to our first assumption of them not having high enough correlation.

In conclusion of this phase we learn that shouldn't make assumption before analysis of

the data well and clearly and that preprocessing is the most important phase of any machine learning project.