Jacobian and Leslie Simulations

Mikaela Provost August 6, 2019

I. Load functions

A) sim_model: simulates Leslie and Jacaobian matrices without density dependence

```
sim_model <- function(A, timesteps, initial_eggs, maxage) {</pre>
  age_at_mat <- min(which(!A[1,] ==0)) # set inequality to min threshold for maturity, for cod it is al
  ages = length(seq(1,maxage,by=1))
  NO = c(initial eggs, rep(0,ages-1)) #vector, length=num of ages, first age is initial eggs
  set.seed(2) #Set the seed so that every simulation uses same random sequence
  Nt = matrix(0,ages,timesteps) #empty matrix to store output: rows=ages, cols=time
  Nt[,1] = NO #Put in initial values
  Nt[,2] = A \%*\% Nt[,1] # multiply initial age vector with Jacobian to get 2nd age vector
  eggs = c(initial_eggs, rep(NA,timesteps-2)) #will save egg production here, this will be the input in
  eggs[2] = Nt[1,2]
  for(t in 1:(timesteps-2)){ #step through time
    #Save egg production, this is new number of age 1 individuals
   eggs[t+1] = Nt[1,t+1]
    *perform population projection for one time step
   Nt[,t+2] = A %*% Nt[,t+1]
  Nsize = colSums(Nt[age at mat:maxage,]) #sum rows that correspond to spawning adults
  eggs = eggs[1:(timesteps-1)] #egg production
  return(list(eggs=eggs, Nsize=Nsize))
```

B) sim_model_dd: simulates Leslie and Jacaobian matrices with density dependence and noise

```
sim_model_dd <- function(A,timesteps,alpha,beta,sig_r,initial_eggs) {
   age_at_mat <- min(which(!A[1,] ==0)) # set inequality to min threshold for maturity, for cod it is al
   ages = length(seq(1,maxage,by=1))
   NO = c(initial_eggs, rep(0,ages-1)) #vector, length=num of ages, first age is initial eggs
   set.seed(2) #Set the seed so that every simulation uses same random sequence

Nt = matrix(0,ages,timesteps) #empty matrix to store output: rows=ages, cols=time

Nt[,1] = NO #Put in initial values</pre>
```

```
Nt[,2] = A *** Nt[,1] # multiply initial age vector with Jacobian to get 2nd age vector
eggs = c(initial_eggs, rep(NA,timesteps-2)) #will save eqq production here, this will be the input in
eggs[2] = Nt[1,2]
recruits1 = eggs[1]/( (1/alpha) + (eggs[1]/beta) )
recruits = c(0,rep(NA, timesteps-2)) #will save recruits here (output from BH)
recruits[2] = recruits1 #we are ignoring recording recruits at time 0
for(t in 1:(timesteps-2)){ #step through time
  #Save egg production, this is new number of age 1 individuals
  eggs[t+1] = Nt[1,t+1]
  #save recruits, treat egg production as spawning biomass in BH
 recruits[t+1] = eggs[t]/((1/alpha) + (eggs[t]/beta)) #((alpha*eggs[t+1])/(1+beta*eggs[t+1]))
  #replace age 1 in numbers-at-age matrix with recruits from BH, add noise
 Nt[1,t+1] = (recruits[t+1])*exp(sig_r*rnorm(1,mean=0,sd=1))
  #perform population projection for one time step
 Nt[,t+2] = A %*% Nt[,t+1]
Nsize = colSums(Nt[age_at_mat:maxage,]) #sum rows that correspond to spawning adults
eggs = eggs[1:(timesteps-1)] #eqq production
recruits = recruits[1:(timesteps-1)] #recruits produced via BH, before influence of environmental noi
return(list(eggs=eggs, recruits=recruits, Nsize=Nsize))
```

C) load the function: extract first eigen value()

```
source("C:/Users/provo/Documents/GitHub/popdy/cod_code/2_cod_functions.r")
```

II. Generate Leslie matrix

I use North Sea cod population as a test case. First I define all the North Sea parameters for assembling the Leslie matrix.

```
#source(file = paste('C:/Users/provo/Documents/GitHub/popdy/cod_pops/','Northsea', '.r', sep=''))
# North Sea example
maxage = 10
K = 0.217
L_{inf} = 126
F.halfmax=0
B0 = -6.42
B1 = 1.72
tknot=0
MG = 0.427
I generate a Leslie matrix (A) and life table (NEAR) using the function assemble Leslie().
Leslieout = assemble_Leslie(maxage=maxage, K=K, L_inf=L_inf,F.halfmax=0, B0=B0, B1=B1, tknot=0)
NEAR = Leslieout$NEAR #Life table
LEP = sum(NEAR$egg_production) #sum eqq production (not adjusted)
A = Leslieout$A #Leslie matrix
Α
##
                 [,1]
                            [,2]
                                       [,3]
                                                 [,4]
                                                            [,5]
                                                                       [,6]
```

```
[1,] 0.001338342 0.04220362 0.4842093 2.3951743 5.2163595 7.5652866
  ##
  [4,] 0.000000000 0.00000000 0.6524636 0.0000000 0.0000000 0.0000000
  [5,] 0.000000000 0.00000000 0.0000000 0.6524636 0.0000000 0.0000000
  ##
  ##
  [,7]
              [,8]
                     [,9]
                          [,10]
  [1,] 9.4974936 11.1752547 12.6402013 13.90409
##
  [2,] 0.0000000 0.0000000 0.0000000 0.00000
  [3,] 0.0000000 0.0000000 0.0000000 0.00000
##
  [4,] 0.0000000 0.0000000 0.0000000 0.00000
##
  [5,] 0.0000000 0.0000000
                  0.0000000
                        0.00000
  [6,] 0.0000000 0.0000000
                  0.0000000
##
                        0.00000
##
  [7,] 0.0000000 0.0000000
                  0.0000000
                        0.00000
  [8,] 0.6524636 0.0000000
                  0.0000000
                        0.00000
  [9,] 0.0000000 0.6524636 0.0000000
                        0.00000
## [10,] 0.0000000 0.0000000 0.6524636 0.00000
```

III. Simulate Leslie and Jacobian without density dependence

A) Leslie simulation without density dependence

Before we simulate the Leslie matrix, we first have to standardize LEP so that LEP is constant among populations. Here I set LEP=1.1. To do this we adjust fecundities, fecundity-at-age should be: f-at-age/(LEP*0.9)

```
conLEP = 1.1 #constant LEP
adjFec = round(1/conLEP,digits=1) #1/LEP is 1.1, which means alpha must be greater than this
A[1,] <- A[1,]/(LEP*adjFec) #adjusted Leslie matrix</pre>
```

Since the leading eigenvalue of the fecundity-adjusted-Leslie matrix is 1.0170278, we expect the population to exponentially grow because lambda 1 > 1. The plot below shows population size increases exponentially.

```
Leslie_output_withoutDD_lambda_small <- sim_model(A=A,timesteps=1000,initial_eggs=100,maxage=10)
plot(Leslie_output_withoutDD_lambda_small$\size,xlab="year",ylab="Pop size",main="Leslie simulation withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_withoutput_w
```

Leslie simulation without density dependence (lambda1=1.02)

B) Jacobian simulation without density dependence (alpha=5.51)

Second, convert Leslie to Jacobian: multiply top row of Leslie by $1/(alpha \times LEP^2)$. The slope at equilibrium is $1/(alpha \times LEP^2)$ (see ch 4 in Loo's book or my appendix for derivation). Since we adjusted LEP to 1.1, we multiply to top row by: $1/(alpha*1.1^2)$ (we call this value 'k'). If alpha is 5.51 then k is 0.15.

```
alpha = 5.51 #with this value of alpha, slope at equilibrium is 0.15
slope_at_equilibrium = 1/(alpha*conLEP^2) #we call the slope 'k'
A[1,] <- A[1,]*slope_at_equilibrium #convert to Jacobian
```

Lambda1 of the Jacobian is 0.7670967. Since lambda1 < 1 we expect a simulation of the Jacobian to converge to zero. The plot below shows the population is perturbed initially, but quickly goes back to zero.

Jacobian_output_withoutDD_lambda_small <- sim_model(A=A,timesteps=1000, initial_eggs=100,maxage=10)
plot(Jacobian_output_withoutDD_lambda_small\$\size,xlab="year",ylab="Pop size",main="Jacobian simulation

Jacobian simulation without density dependence (lambda1=0.76)

C) Jacobian simulation without density dependence (alpha=0.97)

If alpha is 0.97 then k is 0.8520065. With this new Jacobian, the leading eigenvalue is 0.7670967 which means we expect the population to approach zero but at a slower rate than before because lambda1 is closer to 1.

```
alpha0.97 = 0.97

A = Leslieout$A #reset Leslie matrix to original form without adjustments

A[1,] <- A[1,]/(LEP*adjFec) #adjust LEP in Leslie matrix to make LEP=1.1

slope_at_equilibrium = 1/(alpha0.97*conLEP^2) #we call the slope at equilibrium 'k'

A[1,] <- A[1,]*slope_at_equilibrium #convert Leslie to the Jacobian by multiplying top row 1/(alpha*LEP # Simulate Jacobian:

Jacobian_output_withoutDD_lambda_big <- sim_model(A=A,timesteps=1000, initial_eggs=100,maxage=10)

plot(Jacobian_output_withoutDD_lambda_big$Nsize,xlab="year",ylab="Pop size",main="Jacobian simulation w
```

Jacobian simulation without density dependence (lambda1=0.99)

IV. Simulate Leslie and Jacobian with density dependence and noise

A) Simulate Leslie with density dependence (alpha = 5.51):

```
# First, set up the fecundity-adjusted Leslie matrix:

A = Leslieout$A #reset Leslie matrix to original form without adjustments

A[1,] <- A[1,]/(LEP*adjFec) #adjust LEP in Leslie matrix to make LEP=1.1
```

Lambda1 of the Leslie matrix is 1.0170278. A plot of annual recruitment before noise is below.

alpha5.51 <- 5.51 # define alpha for BH in DD

Leslie_output_withDD_lambda_small <- sim_model_dd(A=A,timesteps=1000,alpha=5.51,beta=1000,sig_r=0.3,ini
plot(Leslie_output_withDD_lambda_small\$recruits,xlab="year",ylab="recruits (before noise)",main="Leslie"

Leslie simulation with density dependence (lambda1=1.05)

B) Simulate Jacobian with density dependence (alpha = 5.51):

```
# Second, set up the Jacobian:
slope_at_equilibrium = 1/(alpha5.51*conLEP^2) #we call the slope at equilibrium 'k'
A[1,] <- A[1,]*slope_at_equilibrium #convert Leslie to the Jacobian by multiplying top row 1/(alpha*LEP
# Let's check the leading eigenvalue of this Jacobian:
```

Lambda1 of the Jacobian is 0.7670967. Below is a plot showing a simulation of annual recruits (before noise) using the Jacobian maxtric.

Jacobian_output_withDD_lambda1_small <- sim_model_dd(A=A,timesteps=1000,alpha=5.51,beta=1000,sig_r=0.3,plot(Jacobian_output_withDD_lambda1_small\$recruits,xlab="year",ylab="recruits (before noise)",main="Jacobian_output_withDD_lambda1_small\$recruits,xlab="year",ylab="recruits")

Jacobian simulation with density dependence (lambda1=0.77)

C) Simulate Leslie with density dependence (alpha = 0.97)

Set up the Leslie matrix:

```
alpha0.97 <- 0.97
A = Leslieout$A #reset Leslie matrix to original form without adjustments
A[1,] <- A[1,]/(LEP*adjFec) #adjust LEP in Leslie matrix to make LEP=1.1
```

Lambda1 of the Leslie is 1.0170278. Below is a plot showing a simulation of annual recruits (before noise) using the Leslie matrix.

```
# Simulate adjusted Leslie with density dependence:
Leslie_output_withDD_lambda_big <- sim_model_dd(A=A,timesteps=1000,alpha=0.97,beta=1000,sig_r=0.3,initi
plot(Leslie_output_withDD_lambda_big$recruits,xlab="year",ylab="recruits (before noise)",main="Leslie s</pre>
```

Leslie simulation with density dependence (lambda1=1.05)

D) Simulate Jacobian with density dependence (alpha = 0.97)

```
# Next, set up the Jacobian:
slope_at_equilibrium = 1/(alpha0.97*conLEP^2) #we call the slope at equilibrium 'k'
A[1,] <- A[1,]*slope_at_equilibrium #convert Leslie to the Jacobian</pre>
```

Lambda1 of the Jacobian is 0.9913201. Below is a plot showing a simulation of annual recruits (before noise) using the Jacobian matrix.

```
# Simulate model w/dd:
```

Jacobian_output_withDD_lambda1_big <- sim_model_dd(A=A,timesteps=1000,alpha=0.97,beta=1000,sig_r=0.3,in plot(Jacobian_output_withDD_lambda1_big\$recruits,xlab="year",ylab="recruits (before noise)",main="Jacobian_output_withDD_lambda1_big\$recruits,xlab="year",ylab="recruits",xlab="year",ylab="recruits",xlab="year",ylab="recruits",xlab="year",ylab="recruits",xlab="year",ylab="recruits",xlab="year",ylab="recruits",xlab="year",ylab="recruits",xlab="year",ylab="recruits",xlab="year",ylab

Jacobian simulation with density dependence (lambda1=0.99)

