CG2023 ASSIGNMENT 3 (Fourier Transform)

- 1. The Fourier transform of signal $x(t) = e^{-\alpha t}u(t)$ is $X(f) = \frac{1}{\alpha + j2\pi f}$.
 - (a) Find the Fourier transform Y(f) of signal $y(t) = e^{\alpha t}u(-t)$ using the Fourier transform properties.
 - (b) Find the Fourier transform Z(f) of the signal $z(t) = e^{-|t|}$.
- 2. The waveform of signal w(t) is shown in Figure 3.1.

- (a) Find the expression of w(t) in terms of rectangular pulses.
- (b) Find the Fourier transform W(f) of w(t).
- (c) For the signal y(t) = W(t), find Y(f).
- 3. The signal spectrum X(f) is shown in Figure 3.2.

- (a) Find the time domain waveform x(t) of X(f).
- (b) Sketch Y(f) where $y(t) = x(t) \cos(2\pi t)$.
- (c) Find the Fourier transform Z(f) of the new signal $z(t) = x(t)\cos(40\pi t) + jx(t)\cos(40\pi t).$
- 4. Given the Fourier transform pair $\delta(t) \leftrightarrow 1$, find the Fourier transform of the signals using the Fourier transform properties.
 - (a) The unit step function $u(t) = \int_{-\infty}^{t} \delta(\tau) d\tau$.
 - (b) The signum function sgn(t) = 2u(t) 1.
 - (c) The function $h(t) = \frac{1}{\pi t}$.

5. The signal x(t) is shown in Figure 3.5. It is made of two half-cycles of two sinusoids.

Figure 3.5

- (a) Express x(t) using sinusoids and rectangular functions.
- (b) Find the Fourier transform X(f) of x(t).
- (c) Let $z(t) = \sum_{n=-\infty}^{\infty} x(t-10n)$. Find the Fourier series of z(t).
- 6. Let $x(t) = \operatorname{sinc}(t)$ and $y(t) = x(t) \times \sum_{n=-\infty}^{\infty} \delta(t-2n)$. Find the Fourier transform Y(f) of y(t).