計算機方式論

第6章 データ形式 - 負の整数の加算と浮動小数点数

負の整数の加算

- ① 符号と絶対値表現の下での加算
- ◆ 符号と絶対値表現下の整数加算は、 2つの2進数X.Yの表す値の10進数加算値を求めるとき、XとY の符号ビットを見て、それに応じて絶対値の和や差を求める。
- ◆ 手順が煩雑な上、加算回路以外にも減算回路を必要とする。

[注意]通常の2進数加算、減算を+2、-2と書くとする。

3ビットの2進数加減算なら、101+2010=111、101-2010=011。 一方、10進数-5と2の10進数加算は+と書き、(-5)+2 = -3。

同符号の場合 ⇒ 各絶対値を 2進数加算+っして同じ符号を付ける 異符号の場合 ⇒ 各絶対値を

2進数減算-。して大きい方の符号

負の整数の加算

- ◆ 符号付き2進数Xの表す負の整数は、符号と絶対値、 1の補数、2の補数の3通りあり、それぞれ、表す値 (10進数値)を(X)_{sM}、(X)₁₀、(X)₂₀とした。
- ◆ 一方、<mark>符号無し2進数X,Y</mark>は、**2進数加算**(+₂と表記) をしたとき、(X+,Y)の値は、それぞれの値(X)。、(Y)。 の(10進)加算(+と表記)をした値(X),+(Y),となる。 tx > 5, $(X +_{2}Y)_{2} = (X)_{2} + (Y)_{2}$

 $X = 0101 = 5(X)_2$

◆符号付き2進数X,Yの加算は、どうなるのか?

負の整数の加算 ②1の補数表現の下での加算

◆ ここでは、2進数XとYとの循環桁上げを伴う2進数加算をX+2Y と書くことにする(循環桁上げ(end around carry)とは、符号か らの桁上が生じたとき、和にさらに1を加えること)。 $X \geq Y O 1 O$ 補数による符号を考慮した (10 進数) 値を $(X)_{10} \geq$ $(Y)_{10}$ とする。このとき、 $X+_{9}Y$ の符号を考慮した値は $(X)_{10}+(Y)_{10}$ $(X+_{2}Y)_{10} = (X)_{10}+(Y)_{10}$

```
X(0101) +5 (X)_{10}
                               X 1101
  Y = 0 0 1 0 +2 (Y)_{1C}
X+_{2}Y\mid 0 \ 1 \ 1 \ 1 + 7 (X)_{1C}+(Y)_{1C}
                                 11001
                                   -←符号ビット<mark>への</mark>/からの桁上
                                      →+1 循環桁上
                          X+_2Y 1 0 1 0, -5(X)_{1C}+(Y)_{1C}
```

②XとYの符号が同じとき

- ◆ Xが正の場合、(X)_{1C}=(X)₂、<mark>負</mark>の場合、Xの1の補数の値を負としたものより、(X)_{1C}=-{2ⁿ-1-(X)₂}、すなわち、(X)₂=2ⁿ-1+(X)_{1C}。
- ◆ XとYが正の場合、(X+₂Y)₂=(X)₂+(Y)₂=(X)_{1c}+(Y)_{1c}。 ただし、X+₂Yの符号が1になるときはオーバーフロー。
- ★ XとYの符号が異なるときも同様に考える。 (1) (1) (1) (1) (2) (2) (3) (4) (4) (5) (6) (7)

②XとYとが異符号のとき

- ◆ Xが正,Yが負として、(X)₂=(X)_{1C}、(Y)₂=(2ⁿ-1)+(Y)_{1C}より、(X+₂Y)₂=(X)₂+(Y)₂=(2ⁿ-1)+(X)_{1C}+(Y)_{1C} オーバーフローは生じない!

 | 0≤(X)_{1C}≤2ⁿ⁻¹-1 -(2ⁿ⁻¹-1)≤(Y)_{1C}<0
- ◆ (X)_{1C}+(Y)_{1C}>0 のとき 2ⁿ≤(X+₂Y)₂ = (2ⁿ-1)+(X)_{1C}+(Y)_{1C}≤2ⁿ+2ⁿ⁻¹-2 なので、 符号ビットからの桁上げと符号ビットへの桁上げが共に生じる。 (X+₂Y)₂で (2ⁿ-1)を循環桁上げで無視した値(X)_{1C}+(Y)_{1C}が、求める<mark>和</mark>。
- ◆ (X)_{1C}+(Y)_{1C}≤0 のとき
 -(2ⁿ⁻¹-1)≦(X)_{1C}+(Y)_{1C}≤0 なので、
 2ⁿ⁻¹≦(X+₂Y)₂ = (2ⁿ-1)+(X)_{1C}+(Y)_{1C}≤2ⁿ-1。
 (X+₂Y)₂は符号ビットが1で、
 位-(X)_{1C}+(Y)_{1C}の1の補数より、
 位(X)_{1C}+(Y)_{1C}を表す。
 (010···00)₂ (011···11)₂
 (011···11)₂

7

②正**のオーバーフロー**のとき ◆ 2進数加算X+。Yの際、 「符号ビットへの桁上げ」と 「符号ビットからの桁上げ」の 片方だけが生じるときがオーバーフローとなる。 ◆ X,Y共に正のとき、0≤(X)₁₀,(Y)₁₀≤2ⁿ⁻¹-1、 $(X)_{2}=(X)_{10}, (Y)_{2}=(Y)_{10}$ から、求める和は $0 \le (X+_2Y)_2=(X)_2+(Y)_2=(X)_{10}+(Y)_{10} \le 2^{n-1}-1$ $(000...00)_2$ (001...11)2 符号ビットへの桁上げが生じない **オーバーフロー**は、和が**nビット**に納まらず、符号ビットが1になる。 $2^{n-1} \leq (X+_2Y)_2 = (X)_{1C} + (Y)_{1C} \leq 2^{n-2}$ $(010\cdots00)_{2}$ $(011\cdots10)_{2}$ ← 符号ビットへの桁上げが生じる ← 符号ビットからの桁上げは生じない

```
負数の1の補数表現の下での加算例
     X 0 1 0 1 +5 (X)_{10}
                                 0101 + 5
  +_{2} Y 0 0 1 0 +2 (Y)<sub>10</sub>
                             +2 0 1 0 0 +4
  X+_2Y \ 0 \ 1 \ 1 \ 1 \ +7 \ (X)_{1C}+(Y)_{1C}
                                 1001 オーバーフロー
                                  ← 符号ビットへの桁上げ
2進数加算 桁上げ無し
                    10進数加算
    X 1 1 0 1 -2 (X)_{1C}
                                 1101 -2
  +_2 Y 1 1 0 0 -3 (Y)<sub>1C</sub>
                             +_2 1001 -6
    \lfloor (2^{n-1}) + \{(2^{n-1}) + (X)_{1C} + (Y)_{1C}\} \rfloor
       1 1 0 0 1
                                10110
       ←←符号ビットへの/からの桁上げ ← 符号ビットからの桁上げ
       └--→+1 循環桁上げ
                                 └--→+1 循環桁上げ
   X+_{2}Y 1 0 1 0 -5 (X)_{1C}+(Y)_{1C}
                                  0111 オーバーフロー
           (2^{n-1})+(X)_{1C}+(Y)_{1C}
```

```
X 1 1 0 1 -2 (X)_{10}
                                0101 + 5
+_{2} Y 1 0 1 0 -5 (Y)<sub>10</sub>
                             +<sub>2</sub> 1100 -3
     10111
                               10001
     ←符号ビットからの桁上げ
     └--→+1 循環桁上げ
                                └--→+1 循環桁上げ
X+_2Y = 10000 -7 (X)_{1C}+(Y)_{1C}
                                 0010 +2
      ←符号ビットへの桁上げ
  X 1010 -5 (X)_{10}
                                0 1 0 1 +5
+_{2} Y \overline{0} 0 1 1 +3 (Y)<sub>10</sub>
                             +2 1111 -0 負のゼロ
 X+_{2}Y 1 1 0 1 -2 (X)_{1C}+(Y)_{1C} 1 0 1 0 0
      析上げ無し
                                └---→ +1 循環桁上げ
                                 0101 + 5
```


③XとYの符号が同じとき

- ◆ Xが正の場合、(X)_{2C}=-(X)₂、<mark>負</mark>の場合、Xの<mark>2の補数の値を負</mark>としたものより、(X)_{2C}=-(2ⁿ-(X)₃)、すなわち、(X)₂=2ⁿ+(X)_{2C}。
- ◆ XとYが正の場合、(X+₂Y)₂=(X)₂+(Y)₂=(X)_{2c}+(Y)_{2c}。 ただし、X+₂Yの符号が1になるときはオーバーフロー。
- ★ XとYの符号が異なるときも← 符号への/からの析上同様に考える。

③負のオーバーフローのとき

- ◆ 2進数加算X+₂Yの際、 「符号ビットへの桁上げ」と「符号ビットからの桁上げ」の 片方だけが生じるときがオーバーフローとなる。
- ◆ X,Y共に負のとき、(X)₂=2ⁿ+(X)₂c、(Y)₂=2ⁿ+(Y)₂c。 (X+₂Y)₂=(X)₂+(Y)₂=2ⁿ+(2ⁿ+(X)₂c+(Y)₂c)、2ⁿは、符号ビットからの析上げで、この項は無視するので、残りの項 [2ⁿ+(X)₂c+(Y)₂c] を扱う。
 -2ⁿ⁻¹≤(X)₂c,(Y)₂c<0 なので、-2ⁿ⁻¹≤(X)₂c+(Y)₂c<0 のときが、求める和。無視した項2ⁿが符号からの析上げを表式符号ビットからの2ⁿ⁻¹≤2ⁿ+(X)₂c+(Y)₂c<2ⁿ 析上げ(項2ⁿ)が(010…00)₂ (011…11)₂ 必ず生じる!
 ← 符号への析上げが生じている ←
 オーバーフローは、和がnビットに納まらず、符号ビットが0になる-2ⁿ≤(X)₂c+(Y)₂c<-2ⁿ⁻¹のとき生じる。このとき、

-2ⁿ≤(X)_{2c}+(Y)_{2c}<-2ⁿ⁻¹のとき生じる。このとき、
0 ≤ 2ⁿ+(X)_{2c}+(Y)_{2c} < 2ⁿ⁻¹
(000···00)₂ (001···11)₂ 符号への桁上げが生じない

負数の2の補数表現の下での加算例

```
X 0 1 0 1 +5 (X)<sub>2C</sub> 0 1 0 1 +5 

+<sub>2</sub> Y 0 0 1 0 +2 (Y)<sub>2C</sub> +<sub>2</sub> 0 1 0 0 +4 

X+<sub>2</sub>Y 0 1 1 1 +7 (X)<sub>2C</sub>+(Y)<sub>2C</sub> 1 0 0 1 オーバーフロー 

②進数加算 桁上げ無し 10進数加算 ← 符号ビットへの桁上げ 

X 1 0 1 1 -5 (X)<sub>2C</sub> 1 0 1 1 -5 

+<sub>2</sub> Y 1 1 0 1 -3 (Y)<sub>2C</sub> +<sub>2</sub> 1 1 0 0 -4 

□ 1 1 0 0 0 1 0 1 1 1 

← 符号ビットへの/からの桁上げ ←符号ビットからの桁上げ 無視 1 0 0 0 -8 (X)<sub>2C</sub>+(Y)<sub>2C</sub> 無視 0 1 1 1 オーバーフロー
```


3つの負数表現下の加減算比較

- ◆加減算を行うとき、
 - ◆符号と絶対値表現では、加算回路と<mark>減算回路</mark>が 必要になる。
 - ◆補数表現では、減算は補数の加算で行える。
 - ◆1の補数表現での減算は、補数化の後の2進数 加算で循環桁上げが必要になる。
 - ◎2の補数表現での減算は、補数化と2進数加算だけで行える☞次図

加算器•減算器 nビット加算器 S=X+Y Cout — C nビット Y 加算器 負数に**2の補数表現**を使う: nビット<mark>減算器 D=X-Y=X+</mark>マ Cout-補数を加えることで差が求まる nビット ∕Yi ⊕ sign = 0 0 0 Yi S D 1 0 1 Cout 負数に2の補数を使う: Y nビット or 加算器 nビット<mark>加減算器</mark> 信号signが、0のとき加算器 S S or D 1のとき<mark>減算器 sign</mark>上で

14

小数点の表現

- **◆固定小数点**方式
- **◆浮動小数点**方式

17

固定小数点方式

- ◆小数点の位置が予め固定。
- ①最上位桁(Most Significant Digit)と次の桁の間 小数形計算機

符号 2進数表示

• ← 小数点

②最下位桁(Least Significant Digit)の次整数形計算機

号 2進数表示

小数点→■

10

浮動小数点方式

◆仮数部(mantissa)、指数部(exponent)、仮数部の符号とから成る。

仮数M、指数E、基数R、仮数の符号Sとしたとき、数値 (-1)sM・RE</sup> を表す。

(R=2,4,8,10,16)

S 指数部(E) 仮数部(M)

浮動小数点方式-正規化

◆正規化(normalization)

 $0.0011011 \times 2^5 \Rightarrow 1.1011 \times 2^2$ 基数は2

仮数部を標準の形1.xxxxxにすること!

0 0 0 1 0 1 1 0 1 1 0 . . ←小数点

 $-1101100.0 \times 2^{-5} \Rightarrow -1.1011 \times 2^{1}$

1 0 0 0 1 1 1 0 1 1 0

20

浮動小数点方式-けち表現と隠しビット

◆けち表現と隠しビット

(economized form and implicit MSB)

正規化済み仮数部:

 $1.1010 \Rightarrow \pm 1011$

正規化済み仮数部の先頭ビットは常に1なので省略

⇒ 仮数部が1ビット得する!

00010110110 ↑ ← 小数点 00010101100

21

浮動小数点方式-バイアス表現

◆バイアス表現(bias)

指数部が負の数

 1.1011×2^{-3}

を表したい!

0 0 1 0 0 1 1 0 1 1 0

この表現の指数部4ビットで0~15までの正数を表すが、 負の数を表すため、-7のげた($\it N1$ アス値7)を履かせて、 $1.1011 \times 2^{4-7} = 1.1011 \times 2^{-3}$

なる数を表すこととする。

これにより、仮数部× 2^{-7} ~仮数部× 2^{8} なる数を表せる。

浮動小数点方式-IEEE規格

IEEE規格

単精度/倍精度、

仮数の負数は符号と絶対値表現、

指数(8/11bits)と仮数(23/52bits)ともに2進数(基数2)、

指数はバイアス表現(127/1023)、

隠しビット有り

IEEE754の単精度の正規化数

0<**E**<255のとき

S 指数部(E) 仮数部(M)

(-1)^S 2^{E-127}×(1.M):単精度

8ビット

23ビット

バイアス値 隠しビット

23

浮動小数点方式-IBMアーキテクチャ

IBMアーキテクチャ

単精度/倍精度、

仮数の負数は符号と絶対値表現、

指数(7bits)と仮数(24/56bits)ともに16進数(基数16)、

指数はバイアス表現(64)、

仮数は1未満

 $(-1)^{S}$ 16^{E-64} \times (.M)

S 指数部(E) 仮数部(M)

7ビット

24ビット