

Component Models

oemof v0.3.1

Sarah Berendes

Session 3

RLI, 17.09.2019

Agenda

Introduction **Basic Components** Components **Custom Components Current Development Discussion**

Intro: Components (Models)

We define all technologies (e.g. power plants), energy carriers (e.g. diesel) and demands (e.g. electricity demand) of the physical energy system as components. A component model describes an abstract representation of a component in the physical system.

Intro: oemof Characteristics

Modularity and generalization have been key principles behind oemof

Intro: oemof Package Structure

Package Structure: oemof.solph

Relevant modules that contain components:

- network (basic components)
- components
- custom

own elaboration, © Reiner Lemoine Institut | CC BY 4.0

Reminder: oemof Modelling Principles

- (Mixed Integer) Linear Programming + Graph Theory
- Models composed of Nodes and Edges
 - Node / Bus or Component (oemof)
 - Edge / Flow (oemof)
- 2 Components can't be directly connected, Bus required in between
- Bus balance (example)

Overview Basic Components

Sink

Source

Transformer

Module: oemof.solph.network

API-Documentation:

https://oemof.readthedocs.io/en/stable/api/oemof.solph.html#moduleoemof.solph.network

Note! See example and further information here:

https://github.com/smartie2076/oe mof_workshop/tree/master/Day_2_C omponents_Oemof/03_oemof_basic_ component.ipynb

Overview Components

GenericStorage

Module: oemof.solph.components

GenericCHP

API-Documentation:

https://oemof.readthedocs.io/en/stable/api/oemof.solph.html#module-oemof.solph.components

ExtractionTurbineCHP

OffSetTransformer

Components.GenericStorage

Description	Model class to model basic characteristics of (energy) storages
Input(s)/Output(s)	n/m
Bases	Transformer
Balance	Linear
Parameterization (not complete)	nominal_storage_capacity, initial_storage_level, balanced, loss_rate, inflow_conversion_factor, outflow_conversion_factor, min_storage_level, max_storage_level
Examples	Battery Energy System, Pumped Hydro Storage, etc

Components.GenericCHP

Description	Component GenericCHP to model combined heat and power plants.
Input(s)/Output(s)	n/m
Bases	Transformer
Balance	Mixed Integer Linear
Parameterization (not complete)	fuel_input, électrical_output, heat_output, beta (power loss index) back_pressure
Examples	Combined Cycle, Back pressure turbines

Components.ExtractionTurbineCHP

Description	Model combined heat and power plant with extraction turbine
Input(s)/Output(s)	n/m
Bases	Transformer
Balance	Linear
Parameterization (not complete)	conversion_factor, conversion_factor_full_cond ensation (no tapped flow extraction)
Examples	Simplified CHP model, Extraction Turbine

Components.OffsetTransformer

Description	Model Transformers with an offset
Input(s)/Output(s)	n/m
Bases	Transformer
Balance	Mixed Integer Linear

${\bf Components. Offset Transformer}$

Description	Model Transformers with an offset
Input(s)/Output(s)	n/m
Bases	Transformer
Balance	Mixed Integer Linear
Parameterization (not complete)	coefficients (y-intersection and slope)
Examples	Diesel Generator, CAES

Overview Customs

Link

Module: oemof.solph.custom

ElectricalLine

API-Documentation:

https://oemof.readthedocs.io/en/stable/api/oemof.solph.html#module-oemof.solph.customs

ElectricalBus

GenericCAES

Custom.Link

Description	To directly link two nodes Buses
Input(s)/Output(s)	n/m
Bases	Pyomo
Balance	Linear
Parameterization (not complete)	conversion_factors
Examples	Transshipment Link

Note!

- Experimental
- Needs improvment

Custom.ElectricalLine

Description	To do linear optimal power flow calculations based on angle formulation.
Input(s)/Output(s)	either in or out
Bases	Flow
Balance	Mixed Integer Linear
Parameterization (not complete)	reactance
Examples	Grid model

Note!

- connected buses need to be of the type ElectricalBus.
- It does not work together with flows that have set the attr.`nonconvex`
- Input and output of this component are set equal, therefore just use either only the input or the output to parameterize.
- Default attribute min of in/outflows is overwritten by -1 if not set differently by the user

Custom.ElectricalBus

Description	Bus object to be used with Electrical Line for LOPF
Input(s)/Output(s)	n/m
Bases	Bus
Balance	Mixed Integer Linear
Parameterization (not complete)	slack max_voltage_angle min_voltage_angle
Examples	Grid model

Custom.GenericCAES

Description	To model a arbitrary compressed air energy storage
Input(s)/Output(s)	n/m
Bases	Transformer
Balance	Mixed Integer Linear
Parameterization (not complete)	electrical_input, fuel input, electrical_output,
Examples	_

Note!

- Set of equations can be found in Kaldemeyer, C.; Boysen, C.; Tuschy, I. A Generic Formulation of Compressed Air Energy Storage as Mixed Integer Linear Program Unit Commitment of Specific Technical Concepts in Arbitrary Market Environments Materials Today: Proceedings 00 (2018)
- experimental

Components- Current Developments

oemof-tabular.facades

provide energy specific access; provide interface to tabular data sources that models can be created easily. Map technology specific parameterization to energy system model principles in oemof.solph using oemof.tabular.facades

Link: https://github.com/oemof/oemof-tabular/

Project: oemof_heat

Heat components for oemof e.g. heat pump, solar thermal collector, hot water storage, concentrating solar

Link: https://reiner-lemoine-institut.de/en/oemof_heat/

https://github.com/oemof-heat

Project: oemof_mobility

Non-linear Transformer, Timestep approach rather than Perfect Foresight.

Discussion

Questions? Comments?

THANK YOU FOR YOUR ATTENTION!

How to follow Oemof's activities?

Website: https://oemof.org/

Github: https://github.com/oemof

Or join our mailing list!

License

Except where otherwise noted, this work and its content (texts and illustrations) are licensed under the Attribution 4.0 International (CC BY 4.0)

See license text for further information.

Tel: +49 (0)30 1208 434 0

E-Mail: sarah.berendes@rl-institut.de

Web: http://www.rl-institut.de

Twitter: @rl_institut

Please quote as: "oemof Component Models" @ Reiner Lemoine Institut | CC BY 4.0