Data-intensive space engineering

Lecture 9

Carlos Sanmiguel Vila

Based on previous work of Cyrill Stachniss from University of Bonn

The Good Old MLP's Input...

pixel intensities

image

CNNs Overcome this Problem

- CNNs maintain the 2D image structure
- Neighborhoods are maintained
- Network layers can learn features that also encode spatial information
- Convolutions are local operators
- CNNs use convolutions & subsampling (called pooling)
- Thanks to the increase in computational power and the amount of available training data, convolutional neural networks (CNNs) have achieved great performance on complex visual tasks
 - Image search services, self-driving cars, video classification systems, etc.
 - Not restricted to visual applications, e.g., voice recognition

CNNs Overcome this Problem

- CNNs maintain the 2D image structure
- Neighborhoods are maintained
- Network layers can learn features that also encode spatial information
- Convolutions are local operators
- CNNs use convolutions & subsampling (called pooling)
- Thanks to the increase in computational power and the amount of available training data, convolutional neural networks (CNNs) have achieved great performance on complex visual tasks
 - Image search services, self-driving cars, video classification systems, etc.
 - Not restricted to visual applications, e.g., voice recognition

Let's Start With the Input

channels/depth

depth=3

Convolution Using a Kernel

Convolution Using a Kernel

example for blurring through a convolution

Convolution Using a Kernel

Convolution Using Multiple Kernel

1 input

4 kernels

4 outputs activation maps

3xWxH

4x 3x5x5

4x 1x(W-4)x(H-4)

Convolution Kernels

- A neuron's weight can be represented as a small image of the size of the receptive field
- We refer to sets of weights as filters or convolutional kernels

Convolution Kernels

• Let us consider two possible sets of weights, i.e., filters

• We obtain feature maps, highlighting the areas in an image that activate the filter the

most

Output Sizes

Size of the activation map depends on

- Size of the input (Width, Height)
- Kernel size (K)

$$W'\times H'=(W-K+1)\times (H-K+1)$$
 Output size
$$\text{Input size and Kernel size}$$

Padding

- Convolutions slightly shrink the image
- We can solve this by creating a border around the input image

Output Sizes with Padding

Size of the activation map depends on

- Size of the input (Width, Height)
- Kernel size (K)
- Padding (P)

$$W' \times H' = (W - K + 1 + 2P) \times (H - K + 1 + 2P)$$

Tensor

- Vector is a 1-dimensional array
- Matrix is a 2-dimensional array
- Voxelgrid is a 3-dimensional array

$$\epsilon_{ijk}$$
 = [Image courtesy: A. Kriesch]

Each Layer is a Tensor

3xWxH

Convolutional Layer Parameters

Stacking Convolutional Layers

Stacking Convolutions Layers With Activation Functions

Pooling

- Besides convolutions, CNNs also use pooling layers
- Pooling combines multiple values into a single value to reduce the tensor sizes and combine information
- We want to reduce the computational load and memory usage
- Prominent examples are:

max-pooling

avg-pooling

Stride

- Stride defines by how many pixels we shift the filter forward each step
- Larger stride reduces overlaps and makes the resulting image smaller

stride=1

stride=2

Size tells us how many values to combine, and stride define by how much to shift the mask

 2×2

2	× 2							
10	23	31	2	თ	34			
8	35	44	33	1	45	35		
2	13	0	2	1	7			
12	3	8	22	9	88			
22	88	3	0	2	0	W/2	$2 \times$	H
1	9	33	3	4	4	• • / ·	_	/

10	23	31	2	3	34
8	35	44	33	1	45
2	13	0	2	1	7
12	3	8	22	9	88
22	88	3	0	2	0
1	9	33	3	4	4

$$W \times H$$

10	23	31	2	3	34
8	35	44	33	1	45
2	13	0	2	1	7
12	3	8	22	9	88
22	88	3	0	2	0
1	9	33	3	4	4

$$W/2 \times H/2$$

$$W \times H$$

10	23	31	2	3	34
8	35	44	33	1	45
2	13	0	2	1	7
12	3	8	22	9	88
22	88	3	0	2	0
1	9	33	3	4	4

 $W \times H$

35	44	45
13	22	88
88	33	4

$$W/2 \times H/2$$

stride and size determine the output size

Training CNNs

- Like MLPs, CNNs are trained using SDG and backpropagation
- Large number of parameters need to be determined
- Fairly large training sets are needed (end-to-end vs. given features)
- A regular feedforward neural network is added composed of fully connected layers
- Final layer outputs the prediction (e.g., a softmax layer that outputs estimated class probabilities)

LeNet-5 by LeCun et al., 1989

- First convolutional network proposed by Yann LeCun et al.
- Recognition of handwritten digits
- Outperformed all other networks (at that time)

AlexNet (2012)

This network is similar to LeNet-5 with just more convolution and pooling layers:

• Parameters: 60 million

• Activation function: ReLu

VGG-16/19 (2014)

- Stacks elements from AlexNet using smaller filters
- 16/19 layers
- 138M parameters (16 layer version)

VGG-16/19 (2014)

- Stacks elements from AlexNet using smaller filters
- 16/19 layers
- 138M parameters (16 layer version)

VGG-16/19 (2014)

- Very deep network:152 layers
- Consists of residual blocks

[Image courtesy: A. Dertat]

50 layers

cfg=[3,4,6,3]