

Bayesian regression for 3D model fitting

Marcel Lüthi, Departement of Mathematics and Computer Science, University of Basel

Statistical shape models

Idea: Models are learned from example deformation fields

$$\mu(x) = \overline{u}(x) = \frac{1}{n} \sum_{i=1}^{n} u^i(x) \qquad k(x, x') = \frac{1}{n-1} \sum_{i=1}^{n} (u^i(x) - \overline{u}(x)) \left(u^i(x') - \overline{u}(x')\right)^T$$

Statistical shape models

The Karhunen-Loève expansion

We can write $u \sim GP(\mu, k)$

as $u \sim \mu + \sum_{i=1}^{\infty} \alpha_i \sqrt{\lambda_i} \, \phi_i$, $\alpha_i \sim N(0,1)$

 ϕ_i is the Karhunen-Loève basis and λ_i a scaling factor

Low-rank approximation

Approximation of rank r

$$u \sim \mu + \sum_{i=1}^{r} \alpha_i \sqrt{\lambda_i} \, \phi_i, \qquad \alpha_i \sim N(0, 1)$$

Any deformation u is determined by the coefficients

$$\alpha = (\alpha_1, \dots, \alpha_r)$$

$$p(u) = p(\alpha) = \prod_{i=1}^{r} \frac{1}{\sqrt{2\pi}} \exp(-\alpha_i^2/2)$$

Parametric nonparametrics

• We use GPs as a modelling tool, and not because of infinite basis functions.

Revisiting Bayesian linear regression

Linear relationship:

$$s = a(l - \overline{l}) + b + \varepsilon, \ \varepsilon \sim N(0, \sigma^2)$$

Probabilistic Model: $p(s \mid a, b, \sigma^2, l) = N(a \cdot (l - \overline{l}) + b, \sigma^2)$ with priors $p(a), p(b), p(\sigma^2)$

Revisiting Bayesian linear regression - Fitting

Linear relationship:

$$s = a(l - \overline{l}) + b + \varepsilon, \ \varepsilon \sim N(0, \sigma^2)$$

Model is fitted to observations \hat{s}_1 , \hat{l}_1 , ..., \hat{s}_n , \hat{l}_n using posterior $\prod_i^n p(a, b, \sigma^2 \mid \hat{s}_i, \hat{l}_i)$

Bayesian Linear for shape model fitting

Linear relationship: Point x_T is given as

$$x_T \sim x_R + \mu(x_R) + \sum_{i=1}^r \alpha_i \lambda_i \phi_i(x_R) + \varepsilon, \ \varepsilon = N(\vec{0}, I_{3\times 3}\sigma)$$

Probabilistic Model: $p(x_T \mid \alpha_1, ..., \alpha_n, \sigma^2) = N(x_R + \mu(x_R) + \sum_{i=1}^r \alpha_i \lambda_i \phi_i(x_R) + \varepsilon, \sigma^2)$ with suitable priors $p(\alpha), p(\sigma^2)$

Bayesian Linear for shape model fitting

Linear relationship: Point x_T is given as

$$x_T \sim x_R + \mu(x_R) + \sum_{i=1}^r \alpha_i \lambda_i \phi_i(x_R) + \varepsilon, \ \varepsilon = N(\vec{0}, I_{3\times 3}\sigma)$$

Probabilistic Model: $p(x_T \mid \alpha_1, ..., \alpha_n, \sigma^2) = N(x_R + \mu(x_R) + \sum_{i=1}^r \alpha_i \lambda_i \phi_i(x_R) + \varepsilon, \sigma^2)$ with suitable priors $p(\alpha), p(\sigma^2)$

Bayesian Linear for shape model fitting – A complication

Linear relationship: Point x_T is given as

$$x_T \sim x_R + \mu(x_R) + \sum_{i=1}^r \alpha_i \lambda_i \phi_i(x_R) + \varepsilon, \ \varepsilon = N(\vec{0}, I_{3\times 3}\sigma)$$

Model is fitted to observations $\hat{x}_{T,1}$, $\hat{x}_{R,1}$, ..., $\hat{x}_{T,n}$, $\hat{x}_{R,n}$ using posterior $\prod_i p(\alpha_1, ..., \alpha_n, \sigma^2 | \hat{x}_{T,i} \hat{x}_{R,i})$

But what is the observation $\hat{x}_{T,i}$ to $\hat{x}_{R,i}$? Approximation: Used Closest Point on Target surface to $x_R + \mu(x_R) + \sum_{i=1}^r \alpha_i \lambda_i \phi_i(x_R) + \varepsilon$,