### TEORIA DEI SEGNALI

# Teoria della probabilità e variabili aleatorie

Testi di problemi concepiti e risolti dal Prof. Giorgio Picchi (Lotto 6: Valori Attesi e Trasformazioni di V.A.)

## **Quesito A31** 11/11/11

Una ditta di spedizioni recapita quotidianamente un plico alla vostra ditta. Gli addetti alla consegna sono il sig. A e il sig. B che si alternano casualmente e indipendentemente ma con probabilità diverse  $p_A = P(A)$  e  $p_B = P(B)$ . La consegna dovrebbe avvenire alle ore 10.00 ma gli addetti si presentano con un ritardo che per ciascuno è una v.a.  $R_A$  e  $R_B$ , rispettivamente, con densità di probabilità come in figura.





- Si trovi il valor medio delle v.a.  $R_A$ ,  $R_B$  (ritardi dei rispettivi addetti) e della v.a.  $R = \{Ritardo di consegna in un giorno qualunque \}.$
- Un certo giorno vi avvertono che il corriere è appena arrivato e voi valutate che in quel momento le probabilità che l'addetto arrivato sia A e quella che l'addetto sia B sono uguali: che ore sono? (Si esprima tale ora trovando il ritardo r e sommandolo alle ore 10.00).
- Successivamente allo svolgimento del punto precedente si trovi il valore numerico di r (in minuti e decimali) sostituendo i seguenti valori nell'espressione trovata:
- a=25 min, b=15 min e i valori di  $p_A$  e  $p_B$  ottenuti sapendo che  $p_B$  è il doppio di  $p_A$  (ossia assumendo che l'addetto B si presenti con probabilità doppia rispetto ad A);
- Si trovi la densità di probabilità  $f_R(x)$  della v.a. R. e se ne tracci un grafico accurato di con i dati numerici sopra trovati (si ricavino anche i necessari valori di  $\alpha$  e  $\beta$  (vedi figura sopra).

## **Quesito A16** 2/12/10

Una variabile aleatoria X ha densità di probabilità uniforme con valor medio  $\eta_x$  e varianza  $\sigma_x^2$ . Si individuino gli estremi a e b dell'intervallo di valori che la variabile può assumere. Si calcoli la probabilità  $P\{\eta_x - \sigma_x < X < \eta_x + \sigma_x \}$  ossia la probabilità che la v.a. assuma valori

che si discostano dal valor medio meno di una deviazione standard.

Una volta trovata la probabilità richiesta si verifichi che con i dati del problema risulta verificata la disuguaglianza di Chebychev.

## **Quesito A9** 1/7/11

Una variabile aleatoria Y è ottenuta da una variabile aleatoria X mediante la trasformazione Y = g(X). La densità di probabilità  $f_X(X)$  e la funzione Y = g(X) siano le seguenti:

$$f_X(x) = \begin{cases} & & \text{per} \quad -1/2 < x < 3/2 \\ & & \text{e} \qquad g(x) = \Lambda(x) = (1 - |x|) \cdot \Pi(x/2) \end{cases}$$
  
\(\delta \text{0} \quad \text{altrove}

1

- Si dica quale deve essere il valore di a.

- Si tracci un grafico di g(x)
- Si trovi l'espressione della densità  $f_Y(y)$  e se ne tracci un grafico.

## **Quesito A17** 2/12/10

Su un segmento lungo 10 cm si sceglie un punto a caso. Si trovi la densità di probabilità della v.a.  $Y = \{Area del rettangolo avente per lati le due parti del segmento\}.$ 

## **Quesito A49** 11/9/12

La v.a. X è uniforme nell'intervallo (0, a). La v.a. Y è ottenuta dalla X mediante la trasformazione Y = g(X) dove:

Si tracci un grafico di g(x).

Si determinino la funzione di distribuzione  $F_y(y)$  (CDF) e la densità di probabilità  $f_y(y)$  (PDF) di Y.

## **Quesito A3** 18/2/11

Sono disponibili sei contenitori cilindrici con superficie di base di 1 dm². Due di questi sono alti 6 cm e quattro sono alti 15 cm. Si sceglie a caso un contenitore e vi si versa una quantità di liquido che è una variabile aleatoria *X* uniformemente distribuita fra 0 e 1 litro.

Si trovi la densità di probabilità della variabile aleatoria  $Y = \{Livello raggiunto dal liquido nel contenitore\}.$ 

## **Quesito A12** 13/09/11

La quantità di denaro che il sig. Rossi ha in tasca quando si ferma a rifornire di benzina la sua auto è una variabile aleatoria X (supposta continua) uniformemente distribuita fra 0 e 200 euro.

Il sig. Rossi ha l'abitudine di comportarsi così:

- se in tasca ha più di 60 euro mette 30 euro di benzina;
- se ha meno di 60 euro (o 60 euro) mette una quantità di benzina corrispondente alla metà dei soldi che ha in tasca.

Si trovi la densità di probabilità della v.a.  $Y = \{Quantità di denaro che il sig. Rossi ha in tasca dopo un generico rifornimento\}.$ 

(N.B. – Si ipotizza che occorrano sempre più di 30 euro per raggiungere il pieno).

## **Quesito A23** 18/2/11

- 1) Si scriva l'espressione analitica della densità di probabilità di una variabile aleatoria gaussiana X con valor medio  $\eta_x$  e varianza  $\sigma_x^2$ , ossia una v.a. N ( $\eta_x$ ,  $\sigma_x^2$ ).
- 2) Si consideri la v.a Y ottenuta dalla precedente mediante la trasformazione Y = c(X + d) con c e d costanti reali. Si dimostri che Y è ancora gaussiana e se ne trovino il valor medio e la varianza  $\eta_Y$ ,  $\sigma_{Y}^2$  espressi in termini di  $\eta_X$ ,  $\sigma_{X}^2$ , c e d.
- 3) Si trovino i valori di c e d, se esistono, che rendano la v.a. Y una v.a. N (0, 1).

## **Quesito A33** 16/01/12

Si sceglie a caso un punto di ascissa X nell'intervallo (0,1). Le lunghezze dei due segmenti in cui risulta suddiviso l'intervallo siano rispettivamente la parte reale e il coefficiente della parte immaginaria di un numero complesso Z.

Si trovi la densità di probabilità della v.a.  $Y = \{\text{Modulo quadro di } Z\} = |Z|^2$  e se ne tracci un grafico.

### **Quesito A45** 2/7/12

La velocità con cui gli atleti di un certo gruppo corrono i cento metri (velocità supposta costante durante tutta la gara) è una v.a. *X* uniformemente distribuita fra 9 e 10 m/s.

Si trovi la densità di probabilità  $f_Y(y)$  della v.a.  $Y = \{Tempo impiegato a correre i cento metri da$ un atleta di tale gruppo}.

Si organizza una gara (di cento metri) con 6 di tali atleti scelti a caso dal gruppo. Qual è la probabilità che il 1° e il 2° classificato arrivino al traguardo in meno di  $t_0$  = 10,4 s e tutti gli altri arrivino in un tempo maggiore di  $t_0$ ?

### **Quesito A56** 21/1/13

Sia *X* una v.a. uniformemente distribuita fra  $a \in b$ , con 0 < a < b.

$$Y = c \cdot \sqrt[3]{X}$$

- a) Si trovi la densità di probabilità della variabile
- , con c > 0, e se ne tracci un grafico. b) Si trovi il valor medio della variabile *Y*.

## **Ouesito A85**

Una variabile aleatoria *Y* è ottenuta da una variabile aleatoria *X* mediante la trasformazione

$$Y = e^{X}$$

a) Si trovi la densità di probabilità  $f_Y(y)$  della v.a. Y sapendo che la densità della X è la seguente:

$$f_X(x) = 2e^{-2x} u(x)$$

b) Si trovi il valor medio della v.a. Y senza usare la densità  $f_Y(y)$  trovata al punto precedente.

#### **Quesito A101** 20/01/15

Una variabile aleatoria *Y* è ottenuta da una variabile aleatoria *X* mediante la trasformazione Y = q(X). La densità di probabilità  $f_X(X)$  sia uniforme fra -3 e +1 e la funzione q(X) sia:

$$g(x) = (1 - x^2/4) \cdot \Pi(x/4)$$
.

- a) Si traccino i grafici di g(x) e di  $f_X(x)$ .
- b) Si trovi l'espressione della densità  $f_Y(y)$  e se ne tracci un grafico.