Zusammenfassung Extreme (Auf eigene Gefahr)

#NW #Vorbereitung

3. Allgemeine Relativitätstheorie

3.1 Allgemeines

Die "Allgemeine Relativitätstheorie" von Einstein (1915) behandelt Gravitation als Krümmung der Raum-Zeit. Dies führt zu erstaunlichen Konsequenzen wie Zeitdilatation und Lichtablenkung durch Masse.

3.2 Gravitations-Rotverschiebung

Im Gravitationsfeld verliert ein Photon Energie, was zu einer Rotverschiebung führt. Die Formel f'=f(1-(g.H)/c^2) beschreibt diesen relativistischen Effekt. Obwohl bei normalen Gravitationsfeldern gering, ist dies entscheidend für das GPS-System und wurde durch die ART bestätigt.

4. Quantentheorie

Einleitung (Doppelspaltversuch)

Der Welle-Teilchen-Dualismus führt zur Quantenphysik. De Broglie erweiterte den Dualismus auf Materie, und die Heisenberg'sche Unschärferelation besagt, dass Ort und Impuls nicht beliebig genau bestimmt werden können.

Teilchen im Potentialtopf (Energieniveaus)

Schrödinger postulierte die Schrödinger-Gleichung, eine fundamentale Gleichung der Quantenmechanik. Sie lautet $i\hbar\partial/\partial t \Psi = \hat{H} \Psi$, wobei Ψ die Wellenfunktion, \hat{H} der Hamiltonian-Operator und \hbar das reduzierte Plancksche Wirkungsquantum sind. Die Gleichung beschreibt die zeitliche Entwicklung der Wellenfunktion eines quantenmechanischen Systems. Der Tunneleffekt ermöglicht Teilchen, klassisch unmögliche Bereiche zu durchdringen.

5. Elementarteilchenphysik

5.1 Einleitung

Der Nachweis fundamentaler Teilchen erfolgte relativ spät. Die Starke Kraft hält den Atomkern zusammen. Die Beschreibung erfolgt durch das Schalen- oder Tröpfchenmodell.

5.2 Elementarteilchen

Elementarteilchen sind die kleinsten Bausteine der Materie. Das Standard-Modell unterscheidet zwischen Hadronen und Leptonen. Quarks bilden Hadronen, wobei die Quantenchromodynamik die "Farbladung" einführt. Das Higgs-Boson wurde 2013 im CERN nachgewiesen und verleiht Elementarteilchen Masse.

5.3 Teilchenbeschleuniger

Moderne Beschleunigeranlagen bestehen aus Linear- und Ringbeschleunigern. Der LHC im CERN erreicht bis zu 14TeV. Detektoren analysieren Kollisionen von Teilchen, was zur Entdeckung neuer Elementarteilchen führt.

5.4 Radioaktivität

5.4.3 Alpha-Zerfall

Beim Alpha-Zerfall sendet ein Mutterkern (z.B., 238U) ein Alpha-Teilchen aus. Der Tunnel-Effekt ermöglicht dies, da klassisch zu wenig Energie vorhanden wäre. Die schweren Alpha-Teilchen haben hohe Energien und werden beim Durchgang durch Materie stark abgebremst.

5.4.4 Beta-Zerfall

Freie Neutronen zerfallen mit einer Halbwertszeit von ca. 1000s in ein Proton, ein Elektron und ein Antineutrino. Beispiel: $(_6^{16})C \rightarrow (_7^{16})N + e^- + (v)e$. Beim Beta-Plus-Zerfall wandelt sich ein Proton in ein Neutron um und es entstehen ein Positron und ein Neutrino.

5.4.5 Gamma-Strahlung

Angeregte Atomkerne können überschüssige Energie als Gamma-Strahlung abgeben. Das Spektrum ist diskret, ähnlich den Energieniveaus der Elektronen in der Atomhülle.