Правила дифференцирования и таблица производных

Обычно при нахождении производных сначала используются правила дифференцирования, а затем – таблица производных элементарных функций

Правила дифференцирования:

- 1) (Cu)' = Cu', где C постоянное число константу можно вынести за знак производной;
- **2**) (u + v)' = u' + v' правило дифференцирования суммы;

Правила № 1, 2 часто называют свойством линейности производной.

- **3**) (uv)' = u'v + uv' правило дифференцирования произведения;
- **4)** $\left(\frac{u}{v}\right)' = \frac{u'v uv'}{v^2}$ правило дифференцирования частного;
- **5**) $(u(v))' = u'(v) \cdot v'$ дифференцирование сложной функции.

Таблица производных:

(C)' = 0, где C – константа (число);

$$(x^n)' = nx^{n-1}$$
, в частности: $(\sqrt{x})' = \frac{1}{2\sqrt{x}}$, $(x)' = 1$, $(\frac{1}{x})' = -\frac{1}{x^2}$

Следует обратить внимание, что производная степенной функции – это самая «ходовая» вещь на практике. Любой радикал (корень), например $\sqrt[3]{x^5}$, $\frac{1}{\sqrt[7]{x^2}}$, $\frac{1}{x^5}$, $\sqrt{(4x-7)^3}$, нужно

представить в виде $x^{\frac{a}{b}}$ для применения формулы $(x^n)' = nx^{n-1}$ (как представить – см. *Приложение* **Школьные** формулы).

Производная логарифмическая и показательной функции:

$$(\log_a x)' = \frac{1}{x \ln a}$$
, в частности $(\ln x)' = \frac{1}{x}$

$$(a^{x})' = a^{x} \ln a$$
, в частности $(e^{x})' = e^{x}$

Производные тригонометрических функций:

$$(\sin x)' = \cos x$$

$$(\cos x)' = -\sin x$$

$$(tgx)' = \frac{1}{\cos^2 x}$$

$$(ctgx)' = -\frac{1}{\sin^2 x}$$

Производные обратных тригонометрических функций:

$$(arctgx)' = \frac{1}{1+x^2}$$

$$(arcctgx)' = -\frac{1}{1+x^2}$$

$$(\arcsin x)' = \frac{1}{\sqrt{1 - x^2}}$$

$$(\arccos x)' = -\frac{1}{\sqrt{1-x^2}}$$

Производные гиперболических функций:

$$(shx)' = chx$$

$$(chx)' = shx$$

$$(thx)' = \frac{1}{ch^2x}$$

$$(cthx)' = -\frac{1}{sh^2x}$$

Данные формулы легко вывести, пользуясь определением гиперболических функций:

$$shx = \frac{e^{x} - e^{-x}}{2}$$
, $chx = \frac{e^{x} + e^{-x}}{2}$, $thx = \frac{shx}{chx}$, $cthx = \frac{1}{thx}$