Wednesday, April 10, 2019 11:26

K/F is Galois, K is a tower of Galois extensions. G = Gal(K/F)

K=ln Vi, there is

| Gal(Li/Li-1)
| L1
| F=L.

H_n=1
| \(\forall i, \text{ H}_i = Gal(\forall \forall i)
| \(\text{H}_i \)
| \(\text{H}_i \)
| \(\text{H}_i \)
| \(\text{H}_i \)
| \(\text{G} = \text{H}_i \)

1=Hn & Hn-1 & ... & H2 & H1 & H0 = 6.

Subnormal Series

∀i, Hi-1/Hi = Gal(Li/Li-1).

Conversely, if

1= Hn & Hn-1 & ... & H, & Ho = G is a subhurnul series in G,

Then K is a tower of Galois extensions:

where Yo, L:= Fix (Hi)

where $\forall i$, $L_i = F_{i \times}(H_i)$, $Gal(L_i/L_{i-1}) \cong H_{i-1}/H_i$, a = F

Abelian Extensions

Galois extension is abelian if Gal(K/F) is abelian.

If K/F is abelian, then any subextension L/F (LEK) is normal.

Let $\alpha \in K$. Let $L=F(\alpha)$. Then $F(\alpha)/F$ is normal, i.e. all conjugates of α one in $F(\alpha)$.

Fp/Fp - abelian. Cyclotomic extensions Q(W)/Q

 $\mathbb{Q}(\mathbb{V}_a, \omega)/\mathbb{Q}(\omega)$ - asselim.

Q(52,53)/Q - abelian.

6-finite abelian group

⇒ G ≅ H, ×···× H,

Let
$$G = H_1 \times \cdots \times H_K \implies \forall i$$
, let $N_i = H_1 \times \cdots \times H_{i+1} \times H_{i+1} \times \cdots \times H_{i+1}$
by $Gal(K/F)$
Let $L_i = Fix(N_i)$.

Then
$$K = L_1 \cdots L_k$$
, and $[K:F] = [L_i:F] \cdots [L_k:F]$,
and $\forall i$, $L_i \cap (L_i \cup L_i \cup L_i \cup L_k) = F$
 $\begin{cases} \text{Smce } H_i = \bigcap_{j \neq i} N_j, \text{ and } H_i \cdot N_i = G \end{cases}$

$$K/F$$
 is abelian

 $\Rightarrow K = L_1 - L_K$,

Where each Li/F is a cyclic extension

(i.e. $Gal(Li/F)$ is cyclic)

Therem if $|G|=p^r$, then there is a sequence $|G|=H_0 \circ H_1 \circ \dots \circ H_r=G$ s.t. $\forall i$, $H_i/H_{i-1}\cong \mathbb{Z}_p$ (Yi, $H_i \circ G$)

If K/F is a "P"-extension (K/F is Galois & [K:F]=P"),
Then K is a tower

K = Lr where $\forall i$, $L_{r-1} \qquad Gal(Li/L_{i-1}) \cong \mathbb{Z}_p.$

F.T. Algebra: C is algebraically closed, C=R.

To prove: any irreducible poll f EIR[x] splits completely in C.

Facts: O if f ER[X], degf is odd, then f has a root in R.

2) any pru dratic pol-1 from ((x) splits in C.

<u>Proof</u> let f∈ R[x] be irreducible let K be the

Splitting field of f over C. Let G=Gal(K/R). Let H be the sylow 2-subgroup of G. $(|G|=2^{c}m, modd. |H|=2^{c})$. Let L=Fix(H). Then [L:R] = m - odd. Let XEL, Thun deg mx, is odd. So Mx, F has a root in IR. This is impossible unless XEIR. So L=R and H=G is a 2-group. So K is a tower K=Lr of gundratic extensions. But my quadratic Subextension of KIR is equal to C, and I has no quadratic extensions So Y=1 and K=L=C.

 $K_{n} = K$ $K_{$

KL