

Taller: Control Robusto y Estocástico

Tema: Modelando las incertidumbres

Dr. Julio A. García Rodríguez

Use the ureal uncertain element to represent real numbers whose values are uncertain when modeling dynamic systems with uncertainty. An uncertain real parameter has a nominal value, stored in the NominalValue property, and an uncertainty, which is the potential deviation from the nominal value. ureal stores this deviation equivalently in three different properties: PlusMinus, Range and Percentage.

```
clc, clear all, close all

delta1 = ureal('delta1',2);
delta2 = ureal('delta2',2,'Percentage',[-10 20]);

get(delta1)
get(delta2)
```

You can create an uncertain real parameter whose value can vary from 14 to 19, with a nominal value of 15.5.

```
p1 = ureal('p1',15.5,'Range',[14,19])
get(p1)
```

Create an uncertain real parameter with a nominal value of 24, whose value can increase or decrease by 15%.

```
k1 = ureal('k1',24,'Percentage',15)
get(k1)
```

Exercise 1.

Create a model of a second-order system with natural frequency w0 = 10 ±3 rad/s and a damping ratio that can vary from 0.5 to 0.8, with a nominal value of ζ = 0.6. First, represent the natural frequency and damping ratio values as uncertain real parameters.

```
% Parameters
w0 = ureal('w0',10,'PlusMinus',[-3 3]);
zeta = ureal('zeta',0.6,'Range',[0.5 0.8]);
```

```
% System
sys1 = tf(1,[1/w0^2 2*zeta/w0 1])
figure
step(sys1, 'm--', sys1.NominalValue,'r-')
legend('Uncertain', 'Nominal')
```

LTI Models

Exercise 2.

Let us consider a two-input, two-output system described in the state space by the equations

```
\dot{x} = Ax + Buy = Cx + Du
```

where the matrices are next

```
A = [-1 0 5; 2 1 -4; -6 -3 -2]

B = [5 0; -4 1; 0 6]

C = [-1 0 -4; 2 3 6]

D = [3 -2; -4 1]

rank_CM = rank(ctrb(A, B))

rank_OM = rank(obsv(A, C))
```

This system is completely controllable and completely observable so that its state space model represents a minimal realization.

```
Gss = ss(A,B,C,D)
Gtf = tf(Gss)
```

```
p = pole(Gss)
z = tzero(Gss)
p = pole(Gtf)
z = tzero(Gtf)
G = ss(Gtf)
G = ss(Gtf, 'min')
```

Exercise 3

Insert the next two-input two-output.

$$G = \begin{bmatrix} \frac{6}{(0.9s+1)(0.1s+1)} & \frac{-0.05}{0.1s+1} \\ \frac{0.07}{0.3s+1} & \frac{5}{(1.8s-1)(0.06s+1)} \end{bmatrix}$$

```
s = tf('s');
g11 = 6/((0.9*s + 1)*(0.1*s + 1));
g12 = -0.05/(0.1*s + 1);
g21 = 0.07/(0.3*s + 1);
g22 = 5/((1.8*s - 1)*(0.06*s+1));
```

The system is

```
G = [g11 \ g12; \ g21 \ g22]
```

Students Intervention

What is the order of the system?

```
sigma(G,{10^(-2) 10^3})
title('Plant singular values')
grid
```

Exercise 4.

Consider the 2×2 transfer function matrix

$$G(s) = \begin{bmatrix} \frac{10(s+1)}{s^2 + 0.2s + 100} & \frac{1}{s+1} \\ \frac{s+2}{s^2 + 0.1s + 10} & \frac{5(s+1)}{(s+2)(s+3)} \end{bmatrix}$$

```
s = tf('s');
g11 = 10*(s + 1)/(s^2 + 0.2*s + 100);
g12 = 1/(s + 1);
g21 = (s + 2)/(s^2 + 0.1*s + 10);
g22 = 5*(s + 1)/((s + 2)*(s + 3));
G = [g11 g12 ;g21 g22];

figure
sigma(G,{10^0 10^2})
```

```
grid
norm(G,'inf')
```

Exercise 5.

The mass-damper-system.

The dynamics of such a system can be described by the following second order differential equation, by Newton's Second Law

$$m\ddot{x} + c\dot{x} + kx = u$$

Denoting
$$x_1 = x$$
, $x_2 = \frac{dx}{dt}$

$$\dot{x} = Ax + Bu$$
$$y = Cx + Du$$

$$A = \begin{bmatrix} 0 & 1 \\ -\frac{k}{m} & -\frac{c}{m} \end{bmatrix}, \qquad B = \begin{bmatrix} 0 \\ \frac{1}{m} \end{bmatrix}, \qquad C = \begin{bmatrix} 1 & 0 \end{bmatrix}, \qquad D = 0$$

The transfer function is given by

$$\frac{y(s)}{u(s)} = \frac{1}{ms^2 + cs + k}$$

In a realistic system, the three physical parameters m, c, and k are not known exactly. However, it can be assumed that their values are within certain, known intervals. That is,

$$m = \overline{m}(1 + p_m \delta_m),$$
 $c = \overline{c}(1 + p_c \delta_c),$ $k = \overline{k}(1 + p_k \delta_k)$

```
% Parameters
m = ureal('m',3,'Percentage',[-40, 40])
c = ureal('c',1,'Range',[0.8, 1.2])
k = ureal('k',2,'PlusMinus',[-0.6, 0.6])
% Uncertain system
A = [01; -k/m -c/m];
B = [0 \ 1/m]';
C = [1 0];
D = 0;
uss1 = ss(A,B,C,D)
%Uncertain transfer function
uss2 = tf(1,[m,c,k])
% Using the function feedback
s = tf('s');
g1 = (1/s)/m;
int2 = 1/s;
uss3 = feedback(int2*feedback(g1,c),k)
% Properties of uncertain model
get(uss1)
uss1.Uncertainty
uss1.NominalValue
SYS_1=usubs(uss1, 'm', 3, 'c', 1, 'k', 2)
```

```
% Bode plot of the uncertain plant
w = logspace(-1,1,100);
figure
bode(uss1,w), grid
title('Bode plot of uncertain system')

% Step responses of the uncertain plant
figure
step(uss1), grid
title('Step responses of uncertain system')
% Uncertain frequency response
w = logspace(-1,1,200);
```

```
freqs = ufrd(uss1,w);
figure
bode(freqs), grid
title('Uncertain frequency response')
% Uncertain frequency response
figure
frres = ufrd(uss2,w)
nyquist(frres), grid
title('Nyquist diagram of uncertain system')
% Step response of the mass-damper-spring system
% for a grid of 50 values of uncertain parameters
figure
step(gridureal(uss3,50)), grid
title('Step response for a grid of 50 values of uncertain parameters')
```