THE FLAVORS OF PHYSICS

Jeanette Henry

Masters of Science in Data Science

Practicum I

CERN – The European Organization for Nuclear Research

1989 – CERN invented the World Wide Web to meet the demand for sharing very large amounts of scientific information between scientists around the world

1998 – CERN began building the Large Hadron Collider (**LHC**)

2010 – First data was collected from the LHC, producing 300 GByte/s of data

2012 – CERN confirms the Higgs boson was discovered at the LHC

2018 – CERN observes the Higgs boson decay into a pair of **tau leptons**

LARGE HADRON COLLIDER

Popular Explanation:

Physicists are using the collider to reproduce the conditions just after the big bang to see what the universe was like when it just started!

More Accurate Explanation:

We are trying to understand the most basic laws of nature.

BEYOND THE STANDARD MODEL OF PHYSICS

- Many questions remain unanswered by the current Standard Model of Particle physics, we need models.
- Physics beyond the Standard Model (BSM) is needed to explain
 - The Nature of Dark Matter
 - Origin of Mass
 - Matter-antimatter asymmetry
- How do we open the door to BSM without knowing what to look for?
- Charged lepton flavor violations (cLFV) have never been observed.
- Experiments to observe cLFV would be a CLEAR sign of NEW PHYSICS beyond the Standard Model.

LEPTON FLAVOR VIOLATIONS

LHC produces 600 M events/sec

Filtering algorithms reduce and record only "interesting events"

O.I M events/sec

Process to only
200 events

per

<u>cLFV</u> EXPERIMENT

Predict the probability that a LHC event is the

tau → 3 mu

decay

MODEL EVALUATION

Weighted AUC Score

Note: Kaggle competition's weighted AUC is calculated only for events (simulated signal events for tau-> $\mu\mu\mu$ and real background events for tau-> $\mu\mu\mu$) with min_ANNmuon > 0.4

DATA

Training.csv

67,553 events with 51 variables

Test.csv

855,819 events with 47 variables

Target Variable:

"Signal"

TEST

- 10 kinematic features (momenta, transverse momenta, and pseudorapidities of p0, p1, and p2; transverse momentum of the mother particle)
- 35 "geometric" features (impact parameters, track isolation variables, flight distance and lifetime of the mother particle, etc.)
- SPDhits (number of hits in the Scintillating Pad Detector, SPD)

OMITTED VARIABLES

Omitted by CERN:

- Signal Target Variable
- Production τ production mechanism
- Min_ANNmuon CERN's neural network prediction for muon
- Mass Avoid training bias on an approximated number

Omitted by me:

- SPDhits hits in the Scintillating Pad Detector, SPD
 - Causes model to exploit simulated data imperfections and fail Kaggle's "agreement test"

VALUES OF ALL VARIABLES IN TRAIN.CSV

FEATURE IMPORTANCES

Python package: from sklearn.ensemble import GradientBoostingClassifier

- Split train data into training and validation sets
- Train a baseline model on all 46 testing variables
- 3. Sort through the "feature importances"

FEAT. IMPORTANCE THRESHOLDS

III OKIANCE	IIIXESIIOEE
	importance
isolationd	0.002999
isolatione	0.003026
isolationf	0.004032
isolationb	0.007695
isolationc	0.008320
isolationa	0.008556
iso	0.011978
CDF1	0.014434
FlightDistance	0.015011
p2_pt	0.015169
p0 eta	0.015775
DOCAone	0.016383
CDF2	0.016421
p1 pt	0.016519
FlightDistanceError	0.016910
DOCAthree	0.018937
	0.019053
p1_p	
p0_p	0.019255
CDF3	0.019451
p0_pt	0.019558
p2_p	0.020499
p1_eta	0.020732
p2_eta	0.020832
p1_IP	0.020892
p1_IsoBDT	0.021180
pt	0.021221
p2_IsoBDT	0.021568
p1_IPSig	0.021841
DOCAtwo	0.022036
p0_IP	0.022199
p0_IsoBDT	0.022571
p2_IP	0.022666
dira	0.022913
LifeTime	0.024793
p2_IPSig	0.025179
p0_IPSig	0.027679
p2_track_Chi2Dof	0.032479
IP_p0p2	0.033720
ISO_SumBDT	0.034714
IP_p1p2	0.035592
p1_track_Chi2Dof	0.037100
VertexChi2	0.038781
p0_track_Chi2Dof	0.042942
IP	0.043879
IPSig	0.072506

VARIABLE SELECTION LOOP

Thresh=0.002999, n=45, AUC: 0.984050

Basline AUC: 0.984050

Thresh=0.003026, n=44, AUC: 0.983583 Thresh=0.004032, n=43, AUC: 0.984252 Thresh=0.007695, n=42, AUC: 0.984945 Thresh=0.008320, n=41, AUC: 0.985029 Thresh=0.008556, n=40, AUC: 0.983928 Thresh=0.011978, n=39, AUC: 0.982815 Thresh=0.014434, n=38, AUC: 0.983715 Thresh=0.015011, n=37, AUC: 0.983858 Thresh=0.015169, n=36, AUC: 0.985136 Thresh=0.015775, n=35, AUC: 0.984464 Thresh=0.016383, n=34, AUC: 0.984668 Thresh=0.016421, n=33, AUC: 0.983949 Thresh=0.016519, n=32, AUC: 0.984217 Thresh=0.016910, n=31, AUC: 0.984202 Thresh=0.018937, n=30, AUC: 0.983723 Thresh=0.019053, n=29, AUC: 0.983153 Thresh=0.019255, n=28, AUC: 0.983194 Thresh=0.019451, n=27, AUC: 0.982219 Thresh=0.019558, n=26, AUC: 0.983566 Thresh=0.020499, n=25, AUC: 0.984289 Thresh=0.020732, n=24, AUC: 0.983030 Thresh=0.020832, n=23, AUC: 0.982702 Thresh=0.020892, n=22, AUC: 0.981903 Thresh=0.021180, n=21, AUC: 0.982184 Thresh=0.021221, n=20, AUC: 0.983123 Thresh=0.021568, n=19, AUC: 0.981621 Thresh=0.021841, n=18, AUC: 0.981509 Thresh=0.022036, n=17, AUC: 0.980400 Thresh=0.022199, n=16, AUC: 0.981149 Thresh=0.022571, n=15, AUC: 0.979629 Thresh=0.022666, n=14, AUC: 0.980524 Thresh=0.022913, n=13, AUC: 0.980108 Thresh=0.024793, n=12, AUC: 0.980628 Thresh=0.025179, n=11, AUC: 0.978924 Thresh=0.027679, n=10, AUC: 0.978799 Thresh=0.032479, n=9, AUC: 0.977865 Thresh=0.033720, n=8, AUC: 0.977296 Thresh=0.034714, n=7, AUC: 0.973143 Thresh=0.035592, n=6, AUC: 0.965965 Thresh=0.037100, n=5, AUC: 0.961653 Thresh=0.038781, n=4, AUC: 0.962452 Thresh=0.042942, n=3, AUC: 0.954894 Thresh=0.043879, n=2, AUC: 0.951143 Thresh=0.072506, n=1, AUC: 0.948675

OPTIMIZING VARIABLE SELECTION

How can removing variables increase the weighted AUC score of model?

```
model = GradientBoostingClassifier(n estimators=200, learning rate=0.1, subsample=0.4,
                                      min samples leaf=3, max depth=6, random state=11)
model.fit(X train, y train)
# make predictions for test data and evaluate
val probs = model.predict proba(X test)[:, 1]
roc_auc = evaluation.roc_auc_truncated(y_test, val_probs)
print("AUC: %.6f" % (roc auc))
# Fit model using each importance as a threshold
thresholds = sort(model.feature importances )
for thresh in thresholds:
        # select features using threshold
    selection = SelectFromModel(model, threshold=thresh, prefit=True)
    select X train = selection.transform(X train)
    # train model
    selection model = GradientBoostingClassifier(n estimators=200, learning rate=0.1, subsample=0.4,
                                      min samples leaf=3, max depth=6, random state=11)
    selection model.fit(select X train, y train)
    # evaluate model
    select X test = selection.transform(X test)
    val probs = selection model.predict proba(select X test)[:, 1]
    roc auc = evaluation.roc auc truncated(y test, val probs)
    print("Thresh=%.6f, n=%d, AUC: %.6f" % (thresh, select_X_train.shape[1], roc_auc))
```

Baseline AUC: 0.984050 Selection AUC: 0.985136

READY TO SUBMIT?

CORRELATION TEST

- Check that model is not correlated with mass
- PASS!

AGREEMENT TEST

- Check that model is not bias on simulated data
- Fail!!!

```
check_agreement = pandas.read_csv(folder + 'check_agreement.csv', index_col='id')
agreement_probs = model.predict_proba(check_agreement[variables])[:, 1]

ks = evaluation.compute_ks(
    agreement_probs[check_agreement['signal'].values == 0],
    agreement_probs[check_agreement['signal'].values == 1],
    check_agreement[check_agreement['signal'] == 0]['weight'].values,
    check_agreement[check_agreement['signal'] == 1]['weight'].values)
print('KS metric', ks, ks < 0.09)</pre>
KS metric 0.119832313137 False
```

MODEL #2

Reduce the training variables further to reduce bias

```
variables2 = ['IPSig', 'p0_track_Chi2Dof', 'p1_track_Chi2Dof', 'p2_track_Chi2Dof', 'VertexChi2', 'ISO_SumBDT']

model2 = GradientBoostingClassifier(n_estimators=200, learning_rate=0.1, subsample=0.4, min_samples_leaf=3, max_depth=6, random_state=11)

model2.fit(X_train2, y_train)
```

Passes Correlation test
and
Passes Agreement Test

COMBINE THE PREDICTIONS

28% MODEL I + 72% MODEL 2

Check correlation test

Check agreement test

KS metric 0.0896123420242 True

Compute weighted AUC on the training data with min_ANNmuon > 0.4

SUBMISSION TO KAGGLE

Submission and Description

Private Score

JH101618.csv

18 minutes ago by JeanetteHenry

Ensemble

This competition is brought to you by:

