ALGORITMO DE DIJKSTRA

Natalia Chacon - Juan David Martínez - Alejandra Pardo -Sergio Rodríguez Carlos Alvarez

Algoritmos y Estructuras de Datos

Mayo 2020

Conceptos

Algoritmo de Dijkstra

Herramienta computacional

Algoritmos y estructuras de datos

Retos y futuro

000

Conceptos

Algoritmo de Dijkstra

Herramienta computaciona

Algoritmos y estructuras de datos

Retos y futuro

Grafo

Un grafo G es una terna que consiste en un conjunto de vértices V(G), un conjunto de aristas E(G) y una relación que asocia a cada arista un par de vértices no necesariamente distintos.

Matriz de adyacencia

000

La matriz de adyacencia de un grafo G, es una matriz $n \times n$, A(G), definida por:

 $a_{ij} := \text{número de aristas en G con extremos } \{v_i, v_j\}$

Conceptos

Algoritmo de Dijkstra

Herramienta computacional

Algoritmos y estructuras de datos

Retos y futuro

Definición

El algoritmo de Dijkstra es un algoritmo eficiente (de complejidad $O(n^2)$ donde n es el número de vértices) que sirve para encontrar el camino de coste mínimo desde un nodo origen a todos los demás nodos del grafo. Fue diseñado por el holandés Edsger Wybe Dijkstra en 1959.

Α	В	С	D
0	∞	∞	∞

Α	В	С	D
0	∞	∞	∞
-	4 ^A	2 ^A	∞

Α	В	С	D
0	∞	∞	∞
-	4 ^A	2 ^A	∞
-	4 ^A	-	9 ^C

Α	В	С	D
0	∞	∞	∞
-	4 ^A	2 ^A	∞
-	4 ^A	-	9 ^C
-	-	-	5 ^B

Camino más corto de A a D: A - B - D

Conceptos

Algoritmo de Dijkstra

Herramienta computacional

Algoritmos y estructuras de datos

Retos y futuro

Diseño

- 1. Grafos.hpp, interfase de las clases y estructuras:
 - ► Clases: Arista, Vertice, Grafo.
 - Estructuras: ArrM, GrMat, VmF, MpV.
- 2. Grafos.cpp, implementación de métodos.
 - ► iMatrizDeAdy(), listAdy(), iAristas(), Dijkstra().
- 3. main.cpp, uso de lo implementado anteriormante.

Funcionalidad

La herramienta computacional:

- Genera un grafo aleatorio de n vértices y lo representa con su matriz de adyacencia.
- Genera una lista para cada vértice que contiene sus vecinos.
- ▶ Genera una matriz cuyos componentes $a_{i,j}$ son los pesos de las aristas que unen dos vértices.
- Usa el algoritmo de Dijkstra para encontrar el camino más corto de un vértice v_1 a un vértice v_2 .

Conceptos

Algoritmo de Dijkstra

Herramienta computacional

Algoritmos y estructuras de datos

Retos y futuro

Algoritmos y estructuras de datos

- Lista: Secuencia, contable no necesariamente indexable, de elementos almacenados en espacios de memoria no necesariamente contiguos.
- ► Mapa: Secuencia, contable compuesta de parejas (key, value), en donde los valores de key son únicos.
- Arreglos: Conjunto ordenado con número fijo de elementos, que guarda un solo tipo de objetos ubicados adyacentes en memoria pasados por referencia.

Algoritmos y estructuras de datos

- ► **Estructuras**: Son modelos usados para encapsular colecciones de variables relacionadas (atributos).
- ► Clases: Son modelos definidos por el usuario que se utilizan para encapsular atributos y métodos.

Conceptos

Algoritmo de Dijkstra

Herramienta computaciona

Algoritmos y estructuras de datos

Retos y futuro

Retos y futuro

1. Retos:

- Entender el algoritmo de Dijkstra.
- ► Saber de que vértice "viene" el valor.

2. Futuro:

- Agregar al menú una opción para que el usuario pueda introducir las condiciones que desee del grafo (vértices, aristas y pesos).
- Implementar la opción para poder mostrar gráficamente el grafo.
- Pueda dar solución a grafos dirigidos.

Conceptos

Algoritmo de Dijkstra

Herramienta computacional

Algoritmos y estructuras de datos

Retos y futuro

- Torrubia, G., Terrazas, V. (2012). Algoritmo de Dijkstra. Un tutorial interactivo. VII Jornadas de Enseñanza Universitaria de la Informática (JENUI 2001).
- Douglas B. West, Introduction to Graph Theory, 2nd edition. Pearson, 2000.
- ► Alvarez, C.(2019). Tipos de Datos Abstractos [Diapositivas]. Recuperado de: https://e-aulas.urosario.edu.co/ pluginfile.php/1830152/mod_resource/content/2/ADT.pdf
- ► Alvarez, C.(2020). Clases en C++ [Diapositivas]. Recuperado de: https://e-aulas.urosario.edu.co/pluginfile.php/ 1864318/mod_resource/content/1/clases.pdf
- ► Alvarez, C.(2020). Arreglos [Diapositivas]. Recuperado de: https://e-aulas.urosario.edu.co/pluginfile.php/ 1861394/mod_resource/content/1/tema27.pdf

