AIMS African Masters in Machine Intelligence 2024

Kernel Methods - Quizz #2

July 26, 2024

Exercise 1: Course questions

Answers can be found in class or with other students

- Q3(c) $\nabla f(x) = (A + A^T)x + b$
- Q7(a) return (x[None, :] x[:, None])**2
- Q7(b) return np.sum((x[None, :, :] x[:, None, :])**2, axis=-1)

Exercise 2: Kernels

- 1. In course
- 2. Idem
- 3. Bonus Show that $\langle X, Y \rangle = \mathbb{E}[XY]$ is an inner product on the space of real-valued random variables.
 - symmetric
 - bilinear, by linearity of expectation
 - $\langle X, X \rangle = \mathbb{E}[X^2] \ge 0$. $\mathbb{E}[X^2] = 0$ implies X = 0 almost everywhere.
- 4. State whether the following functions are p.d. kernels or not. Prove your answer.
 - (a) $\mathcal{X} = \mathbb{R}^2$, $k(x, x') = x_1 x'_1 + sign(x_2) sign(x'_2)$ Choose $\mathcal{H} = \mathbb{R}^2$, $\Phi(x) = [x_1, sign(x_2)]^T$, then $k(x, x') = \langle \Phi(x), \Phi(x') \rangle_{\mathcal{H}}$
 - (b) \mathcal{X} is an inner product space, $k(x, x') = ||x||^2$ k is not symmetric! Choose x = 0 and x' nonzero for example
 - (c) \mathcal{X} is the space of real-valued random variables, k(X, X') = Cov(X, X')Seen in class.

Using the scalar product from Q3, and choosing $\Phi(X) = X - \mathbb{E}[X]$, we have $Cov(X, X') = \langle \Phi(X), \Phi(X') \rangle$

- (d) Let Ω be a set, $\mathcal{X} = \operatorname{Subsets}(\Omega)$, $k(A, B) = \mathbb{P}[A \cap B]$. $k(A, B) = \mathbb{P}[A \cap B] = \mathbb{E}[1_{A \cap B}] = \mathbb{E}[1_A 1_B] = \langle 1_A, 1_B \rangle$ Choose \mathcal{H} as the space of real-valued random variables, and $\Phi(A) = 1_A$
- (e) Same as (c), with $k(A, B) = \mathbb{P}[A \cup B]$ It is not p.d.

From **@Attou**, take $A = \Omega$, $B = \emptyset$, then the Gram matrix is equal to $K = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$, which is not p.s.d. since det(K) = -1 < 0

Exercice 3: Kernel Ridge Regression

All questions are course material.

Exercise 4: Application, XOR

In this exercise we want to classify data points $x = (x_1, x_2) \in \mathbb{R}^2$, with two labels (binary classification), as shown in the picture below. Let X_{\triangle} and X_{\times} be the sets of points with respective labels \triangle and \times .

1. Are the data X_{\triangle} and X_{\times} linearly separable?

NO

2. (a) Find a space \mathcal{X} and a mapping $\Phi : \mathbb{R}^2 \to \mathcal{X}$ such that the projected data $\Phi(X_{\triangle})$ and $\Phi(X_{\times})$ are linearly separable.

There are multiple possibilities for Φ , we choose $\mathcal{X} = \mathbb{R}$ and $\Phi(x) = x_1x_2$ here, many correctly chose $\Phi(x) = sign(x_1x_2)$.

Ask @Najlaa for explanation and drawing.

(b) What is the corresponding kernel function k?

$$k(x, x') = \langle \Phi(x), \Phi(x') \rangle = x_1 x_2 x_1' x_2'$$

(c) Bonus What is the RKHS of k?

The RKHS is the space $\mathcal{H} = \{ f_{\beta} : (t_1, t_2) \to \beta t_1 t_2, \ \beta \in \mathbb{R} \},$

with norm $||f_{\beta}||_{\mathcal{H}} = \beta^2$

Proof: Let $\mathcal{H} = \{K_x, x \in \mathbb{R}^2\}.$

Prove that \mathcal{H} is a vector space, as it is stable under linear combinations: for $a, b \in \mathbb{R}, x, x' \in \mathbb{R}^2$ there exists $z \in \mathbb{R}^2$ such that $aK_x + bK_{x'} = K_z$.

As a consequence the closure of the span of \mathcal{H} is \mathcal{H} itself.

The norm is then $\langle K_x, K_x \rangle = k(x, x) = (x_1 x_2)^2$