IoT hacking

IoT basics

- Internet of things
- Extends Internet connectivity beyond standard devices to everyday objects
- Usually uses IPv6 due to the limited number of IPv4 addresses
- Operating systems: Linux or Windows (10) IoT

Top-level components

Device

- Includes hardware and software that directly interact with the world.
- They connect to a network to communicate with each other, or to centralized applications

Gateway

- Enables services to reach cloud services.
- o Infrastructure component providing security and protocol translations
- Also used as a service that process data on behalf of group or cluster devices.
- Often a device e.g. smart home hub.
- Usually from the same vendor

Cloud

See <u>cloud computing</u>

Sensors

- Detects, measures or indicates any specific physical quantity
- o E.g. light, heat, motion, moisture, pressure, or similar entities
- Converts them into any other form which is mostly, electrical pulses.

IoT communication models

Device-To-Device (D2D)

- Direct communication between devices
- Uses a medium such as Bluetooth Low Energy etc.
- Common in home automation systems e.g. light bulbs or wearables e.g. smart watch and heart monitor.
- Simpler security
- E.g. Vehicle-to-vehicle (V2V)
 - Uses Vehicle Ad Hoc Network (VANET)
 - Based on MANET i.e. decentralized wireless network (without routers)

Device-To-Cloud (D2C)

- IoT device directly communicating with the cloud server
- · Often uses ethernet or WiFi
- Lets the user (and an application) to obtain remote access to a device
- E.g. smart card for dogs, remote monitoring
- Two credentials:
 - the network access credentials (such as the mobile device's SIM card)
 - credentials for cloud access
- E.g. Nest Learning Thermostat

Device-To-Gateway (DTG)

- IoT devices basically connect to an intermediary device to access a cloud service
- Often includes an application software operating on a local gateway device (like a smartphone or a "hub")
- · Gateway provides security, protocol translation and usually does aggregation
- E.g. <u>Samsung SmartThing</u> ecosystem

Back-end data-sharing

- Extends device-to-cloud model
- Access are granted to the uploaded data to third-parties
- E.g. Map My Fitness that compiles data from other applications

Five layer IoT architecture

Each layer is utilized by layer below without knowledge of other layers

Read more: <u>IoT Elements</u>, <u>Layered Architectures and Security Issues</u>: A <u>Comprehensive Survey</u>

Business layer

- Includes business models
- System management
- **Key security components**: privacy protection
- Vulnerabilities

- o Business logic attack: exploits a programming flaw
- Zero-day attack: exploits security hole unknown to the vendor

Application layer

- · Graphic data representation
- Application specific services
- Key security components: authentication, key agreement
- Vulnerabilities
 - Cross site scripting: injecting code through e.g. JavaScript
 - Malicious code attack: can activate itself or require user attention to perform an action.
 - Dealing with Mass Data
 - Caused by massive amount of data transmission
 - Can lead to data loss and network disturbance

Processing (middleware) layer

- · Data analytics: storing, processing and analysis of data
- Key security components: key security layer, secure cloud computing, antivirus
- Vulnerabilities
 - Exhaustion: Can disturb memory, battery e.g. after effect of a DoS
 - o Malware

Network (transport) layer

- Data transmission: Transfer the data through network
- E.g. Wi-Fi, bluetooth
- Key security components: encryption, identity authentication
- Vulnerabilities
 - Denial of Service (DoS) Attack with redundant requests
 - Main-in-The-Middle (MiTM) Attack: to intercept and manipulate data in real-time
 - Storage Attack: Changing data stored in device or cloud
 - Exploit attack: Exploits vulnerabilities in an application, system or hardware

Perception layer

- Physical objects that gather environment data
- Sensors, actuators e.g. heat sensor
- **Key security components**: encryption and key agreement, sensor data protection
- Vulnerabilities
 - Eavesdropping: real time attack to intercept privacy communications.
 - Node Capture: capturing a key node such as gateway to reveal information.
 - Fake Node and Malicious: adding node to input fake data to stop transmitting real information

- Replay (play back) attack: eavesdrops a communication and reusing it to authenticate.
- Timing Attack: Extract secrets by observing respond time

IoT connectivity

Wireless IoT connectivity

Approx. range up to	Connectivity	Speed
10 cm	NFC	424 kbit/s
1 m	RFID	300 tags per second
10 m	Li-Fi	100 gbit/s
60 m	Bluetooth low energi (BLE)	1 or 2 mbit/s
100 m	WiFi	1300 mbit/s
1 km	Wi-Fi HaLow	78 mbit/s
2 km	5G	20 gbit/s
30 km	LTE-Advanced	300 mbit/s
70 km	Celullar	- (depends on 4g etc.)
1000 km	LPWAN	200 kbit/s
World-wide	VSAT	16 mbit/s

Short-range wireless communication

Bluetooth Low Energy (BLE)

- Newer versions of bluetooth (after 4.0)
- Optimized for battery usage.

• Wi-Fi

- Wireless network protocol using radio waves.
- Wi-Fi 6 specification standard (2020) is the latest standard (x6 faster).

• Radio-Frequency Identification (RFID)

- Data storage tag that can be attached to an item for tracking
- Passive tag has range up to 1m while active tags can go up to 100m.
- Used in e.g. passports, credit cards.

• Li-Fi (Light-Fidelity)

• Similar to Wi-Fi, but using visible light for communication

• Near-Field Communication (NFC)

- Based on a radio frequency (RF)
- Used e.g. in phones, payment cards
- Must either either physically touch or be in a few centimeters of each other.

Medium-Range Wireless Communication

- LTE-Advanced: Formally submitted as a candidate 4G, often being described as 3.9G.
- Wi-Fi HaLow: low power, long-range, also known as "WiFi for Internet of Things"
- 5G: Introduced in 2019, highest with minimum of 10 Gbps

Long Range Wireless Communication

- Low-Power Wild-Area Network (LPWAN)
 - Long range communication (up to 10 km) at a low bit rate
- (VSAT) Very Small Aperture Terminal
 - World-wide satellite communication technology uses small dish antennas
- Cellular using e.g. radio towers to spread e.g. 4G, 5G..

Wired IoT connectivity

- Ethernet (cat 6 up to 10 Gbps speed)
- **Power-Line Communication (PLC)**: using electrical wiring to carry power and data, around 200 Mbit/s.

IoT security

IoT threats

Lack of security

- Speed at which IoT is advancing makes it harder to keep up with evolving security requirements.
- Being short on processing power and memory leads to lack of security solutions and encryption protocols.

Vulnerable interfaces

- For both device interfaces and other interfaces (e.g. cloud) it interacts with
- E.g. lack of authentication/authorization, lacking or weak encryption, and a lack of input and output filtering.

• Physical security risk

Cannot secure them as traditional devices by e.g. the storage of routers in secure cabinets

Lack of vendor support

• The support of a certain device may get discontinued

Difficult to update firmware and OS

- Some require manual intervention to be upgraded, some cannot be upgraded at all
- Being compliant makes harder to do changes to e.g. medical devices.

• Interoperability issues

- Interoperability: "the ability to make systems and organizations work together" | Wikipedia
- Each solution provides its own IoT infrastructure, devices, APIs, and data formats
- Caused by competitive nature of IoT e.g. vendor lock-in

OWASP Top 10 IoT (2018)

OWASP Internet of Things Top Ten was introduced in 2004 and updated in 2018

1. Weak, guessable, or hardcoded passwords

- Use of easily brute forced, publicly available, or unchangeable credentials
- Including <u>backdoor</u>s in firmware or client software that grants unauthorized access to deployed systems

2. Insecure network services

- Unneeded or insecure network services running on the device itself
- Bigger threat for those that are expose to the internet
- Allows compromise confidentiality, integrity/authenticity, or availability of information or allow unauthorized remote control...

3. Insecure ecosystem interfaces

- o Includes web, backend API, cloud, or mobile interfaces outside of the device
- Allows compromise of the device or its related components.
- E.g. lack of authentication/authorization, lacking or weak encryption, a lack of input and output filtering.

4. Lack of secure update mechanism

- · Lack of firmware validation on device
- Lack of secure delivery (un-encrypted in transit)
- Lack of anti-rollback mechanisms
- Lack of notifications of security changes due to updates.

5. Use of insecure or outdated components

- Use of deprecated or insecure software components/libraries
- Insecure customization of operating system platforms
- Use of third-party software or hardware components from a compromised supply chain

6. Insufficient privacy protection

• Use of users personal information insecurely, improperly, or without permission.

7. Insecure data transfer and storage

- Lack of encryption or access control of sensitive data
- Can be anywhere within the ecosystem e.g. at rest, in transit, or during processing.

8. Lack of device management

- Lack of security support on devices deployed in production
- Capabilities include e.g. asset management, update management, secure decommissioning, systems monitoring, and response.

9. Insecure default settings

Can be shipped with insecure settings or without ability to make restrictions.

10. Lack of physical hardening

· Easily accessible physically

IoT attacks

Access control

E.g. remote access control or gaining access to administration panels

• BlueBorn Attack

 Amalgamation of techniques and attacks against known, already existing <u>Bluetooth</u> <u>vulnerabilities</u>

• Jamming Attack

- Also known as signal jamming attack
- Jamming the signal to prevent the communication of devices

• Man-in-the-middle attack

- E.g. by sniffing through <u>Foren6</u>
 - Passive sniffer
 - Reconstruct a visual and textual representation of network information to support real-world Internet of Thingl

HVAC attack

- Takes place when one hacks IoT devices in order to shut down air conditioning services.
- <u>Backdoor</u> (not just IoT related)
- Exploit kits
- Replay attack
- Ransomware attack
- Privilege escalation

- Side channel attack
- · Web application attacks, web server attacks
- Cloud computing attacks
- Mobile application threats
- DoS / DDoS
- · Forged malicious devices
- Resetting to an insecure state
- · Removal of storage media
- Firmware attack
- Network service attacks
- Unencrypted local data storage
- Confidentiality and integrity issues
- Malicious updates
- Insecure APIs
- Eavesdropping
- Sybil attack

Rolling code attack

- Also known as hopping code attack.
- Used in keyless entry systems such as garage door openers and keyless car entry systems.
- Attacker capture signal from transmitter device, simultaneously blocking the receiver to receive the signal
- Attacker uses the signal to gain unauthorized access
- E.g. stealing car with captured signal
- Tools include <u>HackRF One</u> hardware tool.

Firmware extraction

- Allows looking for data in filesystem or reverse engineering it for vulnerabilities.
- Flow example:
 - 1. binwalk is a common tool for it found on Kali Linux.
 - 2. <u>firmwalker</u> to list vulnerabilities by scanning all files.

Device memory containing credentials

- Can be used for reading/manipulating data
- Allows pushing firmware updates
- Enables usage of devices to other devices in the network

Hacking Methodology

Information gathering

- IP address
- Running protocols
- Open ports
- Type of device
- Vendor
- Shodan is a helpful search engine for IoT

Vulnerability scanning

- Scanning the network and devices to find vulnerabilities
- · Search for weak password
- Software and firmware vulnerabilities
- Tools
 - o nmap
 - o <u>hping</u>
 - o <u>Firmalyzer</u>
 - Security assessments with risk analysis in IoT networks
 - Proprietary platform

Attack

- Exploiting vulnerabilities
- E.g. running rolling code attack

Gain access

- Gain unauthorized access
- Privilege escalation
- Install backdoor

Maintain attack

- Logging out
- Clearing logs
- Covering tracks

Countermeasures

- Firmware update
- Block unnecessary ports
- Disable telnet as it's insecure protocol
- Use encrypted communication (SSL/TLS)
- Use strong password
- Encrypt drives
- · Periodic assessment of devices
- Secure password recovery

- Two-Factor Authentication
- Disable UPnP