

## Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

# «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления» (ИУ)

КАФЕДРА «Информационная безопасность» (ИУ8)

#### Отчёт

по лабораторной работе № 2 по дисциплине «Теория систем и системный анализ»

**Тема: «Исследование метода случайного поиска экстремума функции одного переменного»** 

Вариант 10

Выполнила: Минькова А.А., студент группы ИУ8-31

Проверила: Коннова Н.С., доцент каф. ИУ8

#### 1. Цель работы

Изучение метода случайного поиска экстремума на примере унимодальной и мультимодальной функций одного переменного.

#### 2. Условие задачи

- 1. На интервале [-2; 4] задана унимодальная функция одного переменного  $f(x) = (1-x)^2 + \exp(x)$ . Используя метод случайного поиска осуществить поиск минимума f(x) с заданной вероятностью попадания в окрестность экстремума P при допустимой длине интервала неопределенности  $\varepsilon$ . Определить необходимое число испытаний N. Численный эксперимент выполнить для значений P = 0.90, 0.91,..., 0.99 и значений  $\varepsilon = -($  ) b a q , где q = 0.005, 0.010,..., 0.100. Последовательность действий:
  - определить вероятность  $P_1$  непопадания в  $\epsilon$ -окрестность экстремума за одно испытание;
  - записать выражение для вероятности  $P_N$  непопадания в  $\epsilon$ -окрестность экстремума за N испытаний;
  - из выражения для  $P_N$  определить необходимое число испытаний N в зависимости от заданных  $P_N$  = P и  $\epsilon$  .
- 2. При аналогичных исходных условиях осуществить поиск минимума f(x), модулированной сигналом sin(5x), т.е. мультимодальной функции  $f(x) \cdot sin(5x)$ .

#### 3. Ход работы

Построим графики заданных функций и определим их минимумы:



**Рисунок 1** — График функции f(x) на интервале [-2; 4]



**Рисунок 2 -** График функции f(x)\*sin(5x) на интервале [-2; 4]

### Результат работы программы

Variant 10:

Table with number of points for each p and q:

| +-     |       | -+-     |     | +- |     | +-    |     | +     |      | +- |     | +- |     | -+- |     | -+- |      | +    |       | +    | -+ |
|--------|-------|---------|-----|----|-----|-------|-----|-------|------|----|-----|----|-----|-----|-----|-----|------|------|-------|------|----|
| I      | q/P   | 1       | 0.9 | l  |     |       |     | I     | 0.93 |    |     |    |     |     |     |     | 0.97 | 0.9  | 8     | 0.99 | I  |
| +-<br> | 0.005 | -+-<br> | 460 | 1  | 481 | 10.00 | 504 | +<br> | 531  | 50 | 562 |    | 598 |     | 643 |     | 700  | 78   | <br>1 | 919  | 1  |
| 1      | 0.01  | 1       | 230 | Ī  | 240 | 1     | 252 | ı     | 265  | I  | 280 | 1  | 299 | 1   | 321 | 1   | 349  | 39   | 0     | 459  | 1  |
|        | 0.015 | 1       | 153 | I  | 160 | 1     | 168 | l     | 176  | I  | 187 | 1  | 199 | I   | 213 | 1   | 233  | 1 25 | 9     | 305  | I  |
|        | 0.02  | 1       | 114 | 1  | 120 | 1     | 126 | 1     | 132  | 1  | 140 | 1  | 149 | 1   | 160 | 1   | 174  | 1 19 | 4     | 228  | 1  |
|        | 0.025 | 1       | 91  | 1  | 96  | 1     | 100 | 1     | 106  | 1  | 112 | 1  | 119 | I   | 128 | 1   | 139  | 1 15 | 5     | 182  | I  |
|        | 0.03  | 1       | 76  | I  | 80  | 1     | 83  | 1     | 88   | 1  | 93  | 1  | 99  | 1   | 106 | 1   | 116  | 1 12 | 9     | 152  | J  |
|        | 0.035 | 1       | 65  | 1  | 68  | 1     | 71  | 1     | 75   | 1  | 79  | 1  | 85  | 1   | 91  | 1   | 99   | 1 11 | 0     | 130  | J  |
|        | 0.04  | 1       | 57  | 1  | 59  | 1     | 62  | 1     | 66   | 1  | 69  | 1  | 74  | 1   | 79  | 1   | 86   | 1 9  | 6     | 113  | 1  |
|        | 0.045 | 1       | 51  | 1  | 53  | 1     | 55  | 1     | 58   | 1  | 62  | 1  | 66  | 1   | 70  | 1   | 77   | 1 8  | 5     | 101  | 1  |
|        | 0.05  | 1       | 45  | I  | 47  | 1     | 50  | 1     | 52   | I  | 55  | 1  | 59  | 1   | 63  | 1   | 69   | 7    | 7     | 90   | 1  |
|        | 0.055 | 1       | 41  | 1  | 43  | 1     | 45  | l     | 48   | 1  | 50  | 1  | 53  | 1   | 57  | 1   | 62   | 7    | 0     | l 82 | J  |
|        | 0.06  | 1       | 38  | 1  | 39  | 1     | 41  | 1     | 43   | 1  | 46  | 1  | 49  | 1   | 53  | 1   | 57   | 1 6  | 4     | 75   | J  |
| 0      | 0.065 | 1       | 35  | 1  | 36  | 1     | 38  | 1     | 40   | 1  | 42  | 1  | 45  | 1   | 48  | 1   | 53   | J 5  | 9     | l 69 | J  |
|        | 0.07  | 1       | 32  | 1  | 34  | 1     | 35  | 1     | 37   | 1  | 39  | 1  | 42  | 1   | 45  | 1   | 49   | 1 5  | 4     | 64   | 1  |
|        | 0.075 | 1       | 30  | 1  | 31  | 1     | 33  | 1     | 35   | I  | 37  | 1  | 39  | 1   | 42  | 1   | 45   | 1 5  | 1     | 60   | 1  |
|        | 0.08  | 1       | 28  | 1  | 29  | 1     | 31  | 1     | 32   | I  | 34  | 1  | 36  | I   | 39  | 1   | 43   | 4    | 7     | J 56 | 1  |
|        | 0.085 | 1       | 26  | I  | 28  | 1     | 29  | l     | 30   | I  | 32  | 1  | 34  | I   | 37  | 1   | 40   | 4    | 5     | J 52 | J  |
|        | 0.09  | 1       | 25  | 1  | 26  | 1     | 27  | 1     | 29   | I  | 30  | 1  | 32  | 1   | 35  | 1   | 38   | 4    | 2     | 1 49 | J  |
|        | 0.095 | 1       | 24  | I  | 25  | 1     | 26  | 1     | 27   | I  | 29  | 1  | 31  | 1   | 33  | 1   | 36   | 4    | 0     | 47   | 1  |
|        | 0.1   | 1       | 22  | 1  | 23  | 1     | 24  | 1     | 26   | 1  | 27  | 1  | 29  | 1   | 31  | 1   | 34   | 3    | 8     | 44   | 1  |

Table for function 1:

| +   |       | -+- |         | +- |         | +- |         | + |         | +- |         | +- |         | + |         | +- |         | +- |         | <br>    | +   |
|-----|-------|-----|---------|----|---------|----|---------|---|---------|----|---------|----|---------|---|---------|----|---------|----|---------|---------|-----|
|     | q/P   |     | 0.9     |    | 0.91    |    |         |   |         |    |         |    |         |   |         |    |         |    | 0.98    |         |     |
|     | 0.005 |     | 1.83954 |    | 1.83951 |    | 1.83955 |   | 1.83949 |    | 1.83949 |    | 1.83951 | 3 | 1.83949 | 89 | 1.8395  |    | 1.83963 | 1.83948 | 100 |
| 1   | 0.01  | 1   | 1.83954 | I  | 1.83951 | 1  | 1.84427 | 1 | 1.84221 | l  | 1.84238 | 1  | 1.84012 | 1 | 1.83953 | I  | 1.83954 | 1  | 1.83949 | 1.83997 | 1   |
| 1   | 0.015 | 1   | 1.8396  | I  | 1.83972 | 1  | 1.83951 | 1 | 1.8412  | l  | 1.83953 | I  | 1.83961 | I | 1.84374 | I  | 1.84    | 1  | 1.83993 | 1.83951 | 1   |
| - 1 | 0.02  | 1   | 1.83951 | ľ  | 1.8418  | 1  | 1.84062 | 1 | 1.84034 | 1  | 1.83962 | 1  | 1.83956 | l | 1.84122 | 1  | 1.83956 | 1  | 1.83952 | 1.83949 | 1   |
| 1   | 0.025 | 1   | 1.83991 | I  | 1.83979 | 1  | 1.8395  | 1 | 1.84839 | l  | 1.84554 | I  | 1.84029 | I | 1.84244 | I  | 1.83962 | I  | 1.83951 | 1.83961 | 1   |
| 1   | 0.03  | 1   | 1.84202 | I  | 1.83998 | 1  | 1.84926 | 1 | 1.85552 | L  | 1.83982 | 1  | 1.83959 | I | 1.83969 | I  | 1.84076 | 1  | 1.83964 | 1.83963 | L   |
| 1   | 0.035 | 1   | 1.84721 | I  | 1.84168 | 1  | 1.84033 | l | 1.84038 | 1  | 1.83957 | 1  | 1.84054 | l | 1.83951 | I  | 1.84051 | I  | 1.83952 | 1.84151 | L   |
| - 1 | 0.04  | 1   | 1.83953 | ľ  | 1.84255 | 1  | 1.84067 | 1 | 1.84495 | 1  | 1.84129 | 1  | 1.84426 | l | 1.84037 | 1  | 1.83951 | 1  | 1.84209 | 1.84733 | 1   |
| 1   | 0.045 | 1   | 1.85031 | I  | 1.84034 | 1  | 1.84017 | 1 | 1.84484 | I  | 1.84122 |    | 1.84152 | I | 1.84546 | I  | 1.8404  | 1  | 1.84162 | 1.84149 | 1   |
| 1   | 0.05  | I   | 1.84068 | I  | 1.83948 | 1  | 1.84022 | 1 | 1.84688 | 1  | 1.83956 | 1  | 1.84551 | I | 1.85372 | 1  | 1.83959 | I  | 1.86706 | 1.83949 | 1   |
| 1   | 0.055 | 1   | 1.84453 | 1  | 1.83951 | 1  | 1.96468 | 1 | 1.83948 | 1  | 1.87337 | 1  | 1.83954 | I | 1.85216 | 1  | 1.84052 | 1  | 1.85236 | 1.83967 | 1   |
| - 1 | 0.06  | 1   | 1.85644 | I  | 1.83959 | 1  | 2.08106 | l | 1.84882 | 1  | 1.8395  | I  | 1.84204 | I | 1.83974 | 1  | 1.84113 | 1  | 1.85599 | 1.83985 | 1   |
| 1   | 0.065 | 1   | 1.84369 | 1  | 1.8517  | 1  | 1.84003 | 1 | 1.83992 | 1  | 1.84216 | 1  | 1.86271 | 1 | 1.83985 | 1  | 1.84469 | 1  | 1.84044 | 1.84011 | 1   |
| 1   | 0.07  | 1   | 1.83949 | 1  | 1.8473  | 1  | 1.9668  | 1 | 1.85148 | L  | 1.84022 | I  | 1.86646 | I | 1.84403 | 1  | 1.86653 | 1  | 1.8407  | 1.88796 | 1   |
| -   | 0.075 | 1   | 1.84061 | I  | 1.84037 | 1  | 1.83965 | l | 1.83959 | 1  | 1.86304 | 1  | 1.83991 | I | 1.85262 | L  | 1.86864 | 1  | 1.85604 | 1.86001 | 1   |
| - 1 | 0.08  | 1   | 1.85119 | I  | 1.88544 | 1  | 1.84201 | l | 1.85263 | 1  | 1.94102 | 1  | 1.84122 | I | 1.84082 | 1  | 1.84405 | 1  | 1.84135 | 1.84057 | 1   |
| 1   | 0.085 | 1   | 1.8416  | 1  | 1.8395  | 1  | 1.8491  | 1 | 1.95648 | 1  | 1.85619 | 1  | 1.88049 | I | 1.83962 | 1  | 1.84228 | 1  | 1.84314 | 1.84031 | 1   |
| 1   | 0.09  | 1   | 1.8492  | l  | 1.8779  | 1  | 1.92842 | 1 | 1.84353 | 1  | 1.92947 | 1  | 1.8454  | I | 1.84125 | L  | 1.8395  | 1  | 1.83964 | 1.84006 | 1   |
| -1  | 0.095 | 1   | 1.85067 | I  | 1.88134 | 1  | 1.89414 | 1 | 1.85747 | l  | 1.83954 | 1  | 1.88836 | ı | 1.8395  | ľ  | 1.8473  | 1  | 1.83995 | 1.84662 | 1   |
| 1   | 0.1   | 1   | 1.84572 | I  | 1.84605 | 1  | 1.86125 | 1 | 1.89634 | 1  | 1.98209 | I  | 1.91803 | I | 1.92815 | I  | 1.83995 |    | 1.83983 | 1.84851 | 1   |
| +   |       | -+- |         | +- |         | +- |         | + |         | +- |         | +- |         | + |         | +- |         | +- | +       | <br>    | +   |

Table for function 2: +-----+ 0.9 | 0.91 | 0.92 | 0.93 | 0.94 | 0.95 | 0.96 | 0.97 | 0.005 | -38.4238 | -38.4224 | -38.3971 | -38.4144 | -38.421 | -38.4238 | -38.4236 | -38.4236 | -38.4238 | -38.4238 | | 0.01 | -38.4228 | -36.7164 | -38.423 | -38.4154 | -38.2662 | -38.4048 | -38.3812 | -38.3753 | -38.3678 | -38.3943 | | 0.015 | -38.3766 | -38.4225 | -38.2367 | -38.3958 | -38.3703 | -37.9828 | -38.3953 | -38.4136 | -38.3868 | -38.4223 | 0.02 | -33.9452 | -38.256 | -38.2049 | -38.2884 | -37.6962 | -37.2557 | -37.5797 | -38.3632 | -37.8274 | -38.4219 | | 0.025 | -37.0183 | -38.3349 | -38.0939 | -38.4042 | -34.5837 | -33.9343 | -37.4387 | -38.1875 | -36.7521 | -38.3482 | 0.03 | -37.6077 | -35.5787 | -38.4017 | -35.9029 | -37.9687 | -36.7646 | -37.8731 | -38.3635 | -38.2934 | -38.3514 | | 0.035 | -30.2516 | -35.3261 | -36.9969 | -35.7573 | -38.342 | -34.2737 | -37.1377 | -37.2127 | -38.1831 | -38.3334 | | 0.04 | -38.2627 | -37.6684 | -27.4178 | -35.529 | -38.3022 | -38.2578 | -37.7367 | -35.8063 | -38.4232 | -38.2283 | | 0.045 | -38.3446 | -37.851 | -37.9109 | -37.1346 | -38.423 | -38.2488 | -38.2355 | -37.9631 | -35.2301 | -37.286 | | 0.05 | -32.3709 | -35.5979 | -33.6804 | -23.7302 | -38.4009 | -33.8546 | -38.4081 | -32.442 | -37.294 | -36.7072 | | 0.055 | -34.3686 | -38.2609 | -27.2299 | -38.4167 | -37.9551 | -35.1673 | -30.073 | -32.97 | -38.4103 | -38.4212 | | 0.06 | -29.7961 | -31.8972 | -33.408 | -37.7864 | -38.4016 | -36.0542 | -34.3867 | -38.4012 | -38.2834 | -38.3645 | | 0.065 | -35.3663 | -28.5313 | -38.3797 | -37.812 | -38.3454 | -33.9218 | -31.6861 | -36.1267 | -38.4216 | -32.3907 | | 0.07 | -36.0141 | -31.1975 | -26.4051 | -38.2203 | -35.1166 | -10.2812 | -38.0697 | -38.4095 | -35.9232 | -38.3607 | | 0.075 | -36.7159 | -38.3113 | -37.2669 | -38.1701 | -38.199 | -38.4182 | -19.1165 | -38.3013 | -31.2412 | -31.7401 | 0.08 | -38.3289 | -31.3544 | -10.1855 | -38.3732 | -38.0497 | -38.24 | -38.4231 | -24.8377 | -36.6508 | -28.4976 | | 0.085 | -29.6753 | -38.3875 | -34.8057 | -37.8623 | -20.6263 | -38.4238 | -28.8643 | -38.2594 | -33.3077 | -38.298 |

#### 4. Выводы

| 0.09 | -34.9289 | -20.7959 | -37.9272 | -37.9618 | -38.4015 | -38.4162 | -37.1055 | -38.1443 | -37.7688 | -37.842 | | 0.095 | -37.3008 | -31.9304 | -21.1983 | -25.3812 | -31.5017 | -37.2304 | -38.1938 | -35.8783 | -35.7035 | -37.9757 | | 0.1 | -8.72471 | -37.9113 | -31.6758 | -27.2703 | -16.9403 | -29.7313 | -37.8406 | -37.8774 | -37.1939 | -38.4239 | |

Из полученных таблиц и графиков видно, что метод случайного поиска эффективен при поиске экстремума как унимодальной, так и мультимодальной функции одного переменного.

Ссылка на гит-репозиторий: https://github.com/AnnaMinkova/Tsisa\_lab\_02

#### Ответ на контрольный вопрос

В чем состоит сущность метода случайного поиска? Какова область применимости данного метода?

Метод случайного поиска представляет собой нахождение экстремума среди значений заданной функции в случайно сгенерированных точках, принадлежащих некоторому отрезку. Различают направленный и ненаправленный случайный поиск. Первый используют для нахождения локального экстремума, второй — для глобального. Этот метод используется при решении задач на областях со сложной геометрией. Обычно вписывают эту область в пмерный параллелепипед, а далее генерируют в этом п-мерном параллелепипеде случайные точки по равномерному закону, оставляя только те, которые попадают в допустимую область.

#### Приложение 1. Исходный код программы

```
#include
<iostream>
             #include <cmath>
             #include <iomanip>
             #include <vector>
             #include <string>
             using namespace std;
             double myF(double x)
                 return pow((1-x),2)+exp(x);
             }
             double F(const double x)
                 return myF(x) * sin(5*x);
             const double A=-2;
             const double B=4;
             const vector<double> P_VALUES = {0.9, 0.91, 0.92, 0.93, 0.94,
                                                     0.95, 0.96, 0.97, 0.98, 0.99};
             const vector<double> Q_VALUES = {0.005, 0.01, 0.015, 0.02, 0.025,
                                                     0.03, 0.035, 0.04, 0.045, 0.05,
                                                     0.055, 0.06, 0.065, 0.07, 0.075,
                                                     0.08, 0.085, 0.09, 0.095, 0.1};
             void printLine()
                 cout << '+' << std::string(7, '-') << '+' << std::string(10, '-')</pre>
                      << '+' << std::string(10, '-') << '+' << std::string(10, '-')
                      << '+' << std::string(10, '-') << '+' << std::string(10, '-')
                      << '+' << std::string(10, '-') << '+' << std::string(10, '-')
                      << '+' << std::string(10, '-') << '+' << std::string(10, '-')
                      << '+' << std::string(10, '-') << '+' << '\n';
             }
             void TableHead(const vector<double>& p)
             printLine();
                 cout << '|' << setw(5) << "q/P" << setw(3) << '|';</pre>
                 for(auto item : p) cout <<setw(9) << item << " |";</pre>
                 cout << '\n';</pre>
             printLine();
             }
```

void Table(const vector<double>& p, const vector<double>& q,const

```
vector<vector<double>>& table)
TableHead(p);
    for (size_t i = 0; i < q.size(); ++i)</pre>
        cout << '|' << setw(6) << q[i] << " |";</pre>
        for(size_t j = 0; j < p.size(); ++j)</pre>
            cout << setw(9) << table[i][j] << " |";</pre>
        }
        cout << '\n';</pre>
printLine();
}
vector<vector<double>> pointsNumber(const vector<double>& p,const vector<double>& q)
{
    vector<vector<double>> points(q.size());
    for(size_t i = 0; i < q.size(); ++i)</pre>
    {
        points[i].resize(p.size());
        for(size_t j = 0; j < p.size(); ++j)</pre>
            points[i][j] = ceil(log(1 - p[j]) / log(1 - q[i]));
        }
    }
    return points;
}
double random(const double a, const double b)
{
    return a + rand() * 1./RAND_MAX * (b - a);
}
template<class F>
vector<vector<double>> rndSearch(const vector<vector<double>>& numbers,const double a,
const double b, F function)
{
    vector<vector<double>> table;
    table.resize(numbers.size());
    for(size_t i = 0; i < table.size(); ++i)</pre>
        table[i].resize(numbers[i].size());
        for(size_t j = 0; j < table[i].size(); ++j)</pre>
            table[i][j] = function(a);
            for(size_t k = 0; k < numbers[i][j]; ++k)</pre>
```

```
double newValue = function(random(a, b));
                if(newValue < table[i][j])</pre>
                     table[i][j] = newValue;
                }
            }
        }
    }
    return table;
}
int main()
{
    cout << "Variant 10: "<<endl;</pre>
    cout << "Table with number of points for each p and q:n";
    auto points = pointsNumber(P_VALUES, Q_VALUES);
    Table(P_VALUES, Q_VALUES, points);
    srand(time(nullptr));
    auto valuesForF = rndSearch(points, A, B, myF);
    cout << "Table for function 1:\n";</pre>
    Table(P_VALUES, Q_VALUES, valuesForF);
    auto valuesForF_ = rndSearch(points, A, B, F);
    cout << "Table for function 2:\n";</pre>
    Table(P_VALUES, Q_VALUES, valuesForF_);
    return 0;
}
```