Elementare Geometrie

Mitschrieb, gehört bei Prof. Leuzinger im WS17/18

Jens Ochsenmeier

Inhaltsverzeichnis

1	Eins	stieg — Metrische Räume	5		
	1.1	Vorbemerkungen	5		
	1.2	Definitionen zu metrischen Räumen	5		
	1.3	Beispiele zu metrischen Räumen	6		
2	Längenmetriken				
	2.1	Graphen — Definitionen	9		
	2.2	Euklidische Metrik	10		
	2.3	Sphärische Geometrie	13		
3	Woz	zu sind Metriken gut?	17		
	3 1	Finleitendes	17		

Einstieg — Metrische Räume

1.1 Vorbemerkungen

Inhalt dieser Vorlesung wird sowohl *Stetigkeitsgeometrie* (Topologie) als auch *metrische Geometrie* sein. Die seitlich abgebildeten Objekte sind im Sinne der Stetigkeitsgeometrie "topologisch äquivalent", im Sinne der metrischen Geometrie sind diese allerdings verschieden.

1.1.1 Kartographieproblem.

Ein zentrales Problem der Kartographie ist die *längentreue* Abbildung einer Fläche auf der Weltkugel auf eine Fläche auf Papier. Mithilfe der Differentialgeometrie und der Gauß-Krümmung lässt sich zeigen, dass das nicht möglich ist.

1.2 Definitionen zu metrischen Räumen

1.2.1 Definition — Metrik.

Sei X eine Menge. Eine Funktion $d: X \times X \to \mathbb{R}_{>0}$ ist eine *Metrik* (Abstandsfunktion), falls $\forall x, y, z \in X$ gilt:

- 1. **Positivität**: $d(x, y) = 0 \Leftrightarrow x = y$
- 2. **Symmetrie**: d(x,y) = d(y,x)
- 3. **Dreiecksungleichung**: $d(x,z) \le d(x,y) + d(y,z)$

1.2.2 Definition — Metrischer Raum.

Ein metrischer Raum ist ein Paar (X, d) aus einer Menge und einer Metrik auf dieser.

1.2.3 Definition — Pseudometrik.

Eine *Pseudometrik* erfüllt die gleichen Bedingungen wie eine Metrik, außer $d(x, y) = 0 \Rightarrow x = y$ — die Umkehrung gilt.

Abbildung 1.1: Diese Objekte sind "topologisch äquivalent" (später mehr zur genauen Definition), aus Sicht der metrischen Geometrie allerdings nicht.

Abbildung 1.2: Die Projektion einer Fläche auf einer Kugel auf Papier — nicht längentreu möglich!

1.2.4 Definition — Abgeschlossener r-Ball um x.

Eine Teilmenge $\overline{B_r(x)} := \{ y \in X : d(x,y) \le r \}$ heißt *abgeschlossener* r-Ball $um \ x$.

1.2.5 Definition — Abstandserhaltende Abbildung.

Sind (X, d_X) und (Y, d_Y) metrische Räume, so heißt eine Abbildung $f: X \to Y$ abstandserhaltend, falls

$$\forall x, y \in X : d_Y(f(x), f(y)) = d_X(x, y).$$

1.2.6 Definition — Isometrie.

Eine *Isometrie* ist eine bijektive, abstandserhaltende Abbildung. Falls eine Isometrie $f:(X,d_X)\to (Y,d_Y)$ existiert, so heißen X und Y isometrisch.

1.3 Beispiele zu metrischen Räumen

1.3.1 Beispiel — Triviale Metrik.

Menge $X, d(x,y) := \begin{cases} 0, & x = y \\ 1, & x \neq y \end{cases}$ \rightarrow jede Menge lässt sich zu einer Metrik verwursten.

1.3.2 Beispiel — Simple Metriken.

Sei $X = \mathbb{R}$.

- $d_1(s,t) := |s-t|$ ist Metrik.
- $d_2(s,t) := \log(|s-t|+1)$ ist Metrik.

1.3.3 Beispiel — Standardmetrik.

 $X = \mathbb{R}^n$, $d_e(x,y) := \sqrt{\sum_{i=1}^n (x_i - y_i)^2} = ||x - y||$ ist die (euklidische) Standardmetrik auf dem \mathbb{R}^n . Die Dreiecksungleichung folgt aus der Cauchy-Schwarz-Ungleichung¹.

Bemerkung (aus LA II): Isometrien von (\mathbb{R}^n, d_e) sind Translationen, Rotationen und Spiegelungen.

Anmerkung: Wenn d(x,y) eine Metrik ist, so ist auch $\widetilde{d}(x,y) \coloneqq \lambda d(x,y)$ mit $\lambda \in \mathbb{R}_{>0}$ eine Metrik.

¹ Cauchy-Schwarz-Ungleichung: $\langle x, y \rangle \leq ||x|| \cdot ||y|| \quad (x, y \in \mathbb{R})$

1.3.4 Beispiel — Maximumsmetrik.

$$X = \mathbb{R}, d(x,y) := \max_{1 \le i \le n} |x_i - y_i| \text{ ist Metrik.}$$

1.3.5 Beispiel — 1.3.3 und 1.3.4 allgemein: Norm.

V sei \mathbb{R} -Vektorraum. Eine *Norm* auf V ist eine Abbildung $||\cdot||$: $V \to \mathbb{R}_{>0}$, so dass $\forall v, w \in V, \lambda \in \mathbb{R}$:

- 1. **Definitheit**: $||v|| = 0 \Leftrightarrow v = 0$
- 2. absolute Homogenität: $||\lambda v|| = |\lambda| \cdot ||v||$
- 3. **Dreiecksungleichung**: $||v + w|| \le ||v|| + ||w||$

Eine Norm definiert eine Metrik durch d(v, w) := ||v - w||.

1.3.6 Beispiel — Einheitssphären.

 $S_1^n := \{x \in \mathbb{R}^{n+1} : ||x|| = 1\}$ ist die *n*-te Einheitssphäre. Auf dieser ist mit $d_W(x,y) := \arccos(\langle x,y \rangle)$ die Winkel-Metrik definiert.

1.3.7 Beispiel — Hamming-Metrik.

Es ist \mathbb{F}_2 der Körper mit zwei Elementen $\{0,1\}$,

$$X := \mathbb{F}_2^n = \{ (f_1, \dots, f_n) : f_i = 0 \lor f_i = 1 \ (i \in 1, \dots, n) \}$$

die Menge der binären Zahlenfolgen der Länge n. Die Hamming-Metrik ist definiert als

$$d_H: X \times X \to \mathbb{R}_{>0}, \quad d_H(u, v) = |\{i : u_i \neq v_i\}|.$$

Längenmetriken

2.1 Graphen — Definitionen

2.1.1 Definition — Graph.

Ein *Graph* G = (E, K) besteht aus einer *Ecken*-Menge E und einer Menge von Paaren $\{u, v\}$ $\{u, v \in E\}$, genannt *Kanten*.

2.1.2 Definition — Erreichbarkeit.

Seien $p, q \in E$ von G = (E, K). q ist *erreichbar* von p aus, falls ein *Kantenzug* von p nach q existiert.

2.1.3 Definition — Zusammenhängend.

G = (E, K) heißt zusammenhängend, falls alle Ecken von einer beliebigen, festen Ecke aus erreichbar sind.

Ist G ein zusammenhängender Graph, so ist d(p,q) = minimale Kantenzahl eines Kantenzuges von p nach q eine Metrik.

2.1.4 Beispiel — Wortmetrik.

Sei $\Gamma \coloneqq \langle S \rangle$ vom endlichen Erzeugendensystem S erzeugte Gruppe. Dann:

$$g \in \Gamma \Rightarrow g = s_1 \cdot \dots \cdot s_n$$
 (multiplikativ, nicht eindeutig), (2.1)

z.B. $\mathbb{Z} = \langle \pm 1 \rangle$.

Dann lässt sich über die Länge von $g \in \Sigma$ (minimales n in Gleichung 2.1) eine Metrik definieren:

2.1.5 Definition — Wortmetrik.

$$d_S(g,k) \coloneqq |g^{-1}k|$$

Abbildung 2.1: Ein einfacher Graph. Dieser Graph ist <u>nicht</u> zusammenhängend, da die Ecke 1 nicht von den anderen Ecken aus erreicht werden kann.

ist eine Metrik mit

$$d_{s}(kg, kh) = |(kg)^{-1}kh|$$

$$= |g^{-1}\underbrace{k^{-1}k}_{=e}h| = |g^{-1}h|$$

$$= d_{s}(g, h),$$

also ist d_s linksmultiplikativ mit $k \in \Gamma$ und damit eine Isometrie.

2.1.6 Definition — Cayley-Graph.

Der *Cayley-Graph* Cay (Γ, S) von Γ bezüglich S ist der Graph G = (E, K) mit

$$E := \Gamma, \quad K := \{(g, gs) : g \in \Gamma, s \in S\}.$$

Die Graphen-Metrik auf Cay(Σ , S) ist isometrisch zur Wortmetrik.

2.2 Euklidische Metrik

2.2.1 Beispiel — Euklidische Metrik auf \mathbb{R}^2 als Standardmetrik.

Sei

$$c:[a,b] \to \mathbb{R}^2, \quad t \mapsto (x(t),y(t))$$

eine stückweise differenzierbare¹ Kurve. Die *euklidische Länge* von *C* ist

$$L_{\text{eukl}}(c) := \int_{a}^{b} ||C'(t)|| dt \quad \text{(via Polynom-Approximation)}$$
$$= \int_{a}^{b} \sqrt{(x'(t))^{2} + (y'(t))^{2}} dt.$$

Beispiel: Geraden-Segment.

$$g:[0,1] \to \mathbb{R}^2$$
, $t \mapsto g(t) = (1-t)p + tq$

Dann:

$$g'(t) = -p + q, \quad ||g'(t)|| = ||p - q||$$

und damit

$$\underline{L_{\rm eukl}(g)} = \int_0^1 ||p - q|| dt = ||p - q|| = \underline{d_e(p, q)}.$$

2.2.2 Lemma — Unabhängigkeit von Leukl.

1. $L_{\text{eukl}}(c)$ ist unabhängig von Kurvenparametrisierung.

 1 **Hinweis**: Mit *differenzierbar* ist im Folgenden immer C^{∞} -differenzierbar gemeint, wenn nicht anders angegeben.

Abbildung 2.2: c bildet ein Intervall $[a, b] \subseteq \mathbb{R}$ auf eine Kurve im \mathbb{R}^2 ab.

Abbildung 2.3: Durch *Polynom-Approximation* wird eine Kurve sukzessive angenähert.

2. $L_{\text{eukl}}(c)$ ist invariant unter Translationen, Drehungen und Spiegelungen.

Beweis:

1. Zu zeigen: Für $c:[a,b] \to \mathbb{R}^2$, $t\mapsto c(t)$ und einen monoton wachsenden Diffeomorphismus² $t : [c,d] \rightarrow [a,b], s \mapsto t(s)$ gilt:

$$L_{\text{eukl}}(c(t(s))) = L_{\text{eukl}}(c(t)).$$

Das folgt unmittelbar aus der Substitutionsregel für Integrale:

$$\int_{c}^{d} \left\| \frac{dc}{ds} \right\| ds = \int_{c}^{d} \left\| \frac{d_{c}(t(s))}{dt} \right\| \left\| \frac{dt}{ds} ds \right\| = \int_{t(c)=a}^{t(d)=b} \left\| \frac{dc}{dt} \right\| dt.$$

2. • Translation.

$$\overline{\text{Für } p = (p_1, \dots, p_n)} \in \mathbb{R}^2 \text{ sei}$$

$$T_p(c(t)) = c(t) + p = (\lambda(t) + p_1, y(t) + p_2)$$

die von p verschobene Kurve. Es gilt

$$(T_p \circ c)(t) = c'(t) \Rightarrow \int_a^b \left\| (T_p \circ c)' \right\| dt = \int_a^b \left\| c' \right\| dt$$

und damit gilt das Lemma für Translationen.

• Drehung.

 $\overline{\text{Für }\theta \in [0,2\pi]}$ sei

$$D_{\theta} \circ c(t) = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} c(t)$$
$$= (\cos \theta x(t) - \sin \theta y(t), \sin \theta x(t) + \cos \theta y(t))$$

die um Winkel θ gedrehte Kurve.

Da D_{θ} eine orthogonale Abbildung ist, folgt

$$(D_{\theta} \circ c(t))' = D_{\theta} \cdot c'(t)$$

und damit

$$\|(D_{\theta} \circ c(t))'\| = \|D_{\theta} \cdot c'\| \stackrel{\text{orth.}}{=} \|c'\|$$

und damit gilt das Lemma für Drehungen.

• Spiegelungen sind wie Drehungen orthogonal, ihre Invarianz folgt aus der Invarianz der Drehungen.

² **Diffeomorphismus**: Bijektive, stetig differenzierbare Abbildung, deren Umkehrabbildung auch stetig differenzierbar

2.2.3 Lemma — Geraden sind am kürzesten.

Die kürzesten Verbindungskurven zwischen Punkten in \mathbb{R}^2 sind genau die Geradensegmente.

Beweis: Seien $p, q \in \mathbb{R}^2$ beliebig. Durch geeignete Rotation und Translation kann man (p, q) überführen in Punkte in spezieller Lage;

$$p' = (0,0), q' = (0,l).$$

Wegen 2.2.2 ändert sich dabei die Länge entsprechender Verbindungskurven nicht.

Sei jetzt c(t) := (x(t), y(t)) eine stückweise differenzierbare Kurve zwischen p' und q'. Dann gilt:

$$L_{\text{eukl}}(c) = \int_{a}^{b} \sqrt{(x')^{2} + (y')^{2}} dt \ge \int_{a}^{b} |y'| dt \ge \int_{a}^{b} y'(t) dt = \int_{y(a)=0}^{y(b)=1} dy$$

$$= 1.$$

l ist die Länge des Geradensegmentes zwischen p' und q'. \Rightarrow Infimum der Längenwerte wird angenommen. Eindeutigkeit bleibt zu zeigen.

Gilt für eine Kurve c, dass $L_{\text{eukl}}(c) = l$, so hat man in obigen Ungleichungen überall Gleichheit, also insbesondere x'(t) = 0 ($\forall t$), also x(t) = konstant = x(0) = 0 und somit $\tilde{c} = (0, y(t))$. Also ist \tilde{c} auch (parametrisiertes) Geradensegment.

Für $p, q \in \mathbb{R}^2$ sei $\Omega_{pq}(\mathbb{R}^2)$ die Menge der stetig differenzierbaren Verbindungskurven zwischen p und q. Wir setzen dann:

$$(p,q) = \inf L_{\text{eukl}}(c), \quad c \in \Omega_{pq}(\mathbb{R}^2).$$

2.2.5 Satz — "Neuer" metrischer \mathbb{R}^2 .

$$(\mathbb{R}^2, d_{\mathrm{eukl}})$$

ist ein metrischer Raum und isometrisch zu (\mathbb{R}^2 , d_e).

Beweis: Direkter Beweis nach 2.2.3.

Man hat eine explizite Formel

$$d_{\text{eukl}}(p,q) = ||p-q|| = d_e(p,q).$$

Die Identität ist eine Isometrie.

Beweis: Konzeptioneller, allgemeinerer Beweis. Es werden die Metrik-Eigenschaften gezeigt.

Abbildung 2.4: Verschiebung von p und q auf p' und q'.

• Symmetrie.

Sei

$$\Omega_{pq}(\mathbb{R}^2) \ni c : [a, b] \to \mathbb{R}^2.$$

Idee: Kurve wird rückwärts durchlaufen.

Es ist $d_{\text{eukl}} = d_{\text{eukl}}$, denn ist $\tilde{c}(t) = (a + b - t) \in \Omega_{av}(\mathbb{R}^2)$ (mit gleicher Länge wie c) und die Abbildung $c \mapsto \tilde{c}$ ist bijektiv. Dann $L(\tilde{c}) = L(c)$, und damit

$$d(q, p) = \inf(L(\tilde{c})) = \inf(L(c)) = d(p, q).$$

• Dreiecksungleichung.

Zu zeigen: $d_{\text{eukl}}(p,q) \le d_{\text{euk}}(p,r) + d_{\text{euk}}(r,q) \ (\forall p,q,r \in \mathbb{R}^2).$ Verknüpfen von Wegen von p nach r mit solchen von r nach qliefert gewisse — aber i.A. nicht alle — Wege von *p* nach *q*:

$$\Omega_{pr} \cup \Omega_{rq} \subseteq \Omega_{pq}$$
.

Infimumbildung liefert die Behauptung.

· Positivität.

Zu zeigen: $d_{\text{eukl}}(p,q) = 0 \iff p = q$.

- Falls p = q.

Die konstante Kurve $c:[0,1] \to \mathbb{R}^2, t \mapsto c(t) = p$ hat

$$c'(t) = 0 \Rightarrow L_{\text{eukl}}(c) = 0 \Rightarrow d_{\text{eukl}}(p, p) = 0.$$

- Falls $p \neq q$.

Die kürzeste Kurve ist das Geradensegment³

$$t \mapsto (1-t)p + tq$$

mit der Länge $d_{\text{eukl}} = ||p - q|| = 0$.

Sphärische Geometrie

2.3.1 Beispiel — 2-dimensionale sphärische Geometrie als Längenraum.

Eine 2-dimensionale Sphäre von Radius R in \mathbb{R}^3 ist

$$S_{\mathbb{R}}^2 := \{ x \in \mathbb{R}^3 : ||x|| = \mathbb{R} \} = \{ (x_1, x_2, x_3) \in \mathbb{R}^3 : x_1^2 + x_2^2 + x_3^2 = \mathbb{R}^2 \}.$$

Für eine stückweise differenzierbare Kurve

$$c:[a,b] \to S_{\mathbb{R}}^2 \subset \mathbb{R}^3, \ t \mapsto (x_1(t), x_2(t), x_3(t))$$

³ Anmerkung: nur an dieser Stelle wird die Geometrie des \mathbb{R}^2 benötigt!

definiere die sphärische Länge durch

$$L_S(c) := \int_a^b ||c'(t)|| dt = \int_a^b \sqrt{x_1'^2 + x_2'^2 + x_3'^2} dt$$

und

$$d_s(p,q) := \inf L_s(c) \quad (c \in \Omega_{pq}(S^2_{\mathbb{R}})).$$

2.3.2 Lemma — Kurvenlängen rotationsinvariant.

Die Länge einer differenzierbaren Kurve auf $S_{\mathbb{R}}^2$ ist invariant unter Rotationen von \mathbb{R}^2 .

Beweis: Eine orthogonale Matrix im \mathbb{R}^2 ist (bzgl. Standardbasis) gegeben durch eine orthogonale Matrix $D \in \mathbb{R}^{2 \times 2}$. Da ||D(x)|| = ||x|| für $x \in \mathbb{R}^3$ gilt, ist $D(S_{\mathbb{R}}^2) = S_{\mathbb{R}}^2$. Insbesondere ist für eine Kurve c in $S_{\mathbb{R}}^2$ auch das Bild $D \circ c \subset S_{\mathbb{R}}^2$.

Weiter folgt aus $(D \circ c(t))' = D \circ c'(t)$:

$$L_{s}(D \circ c) = \int_{a}^{b} ||(D \circ c(t))'|| dt = \int_{a}^{b} ||D(c'(t))|| dt$$
$$= \int_{a}^{b} ||c'(t)|| dt = L_{S}(c).$$

2.3.3 Lemma — Großkreise sind am kürzesten.

Die kürzesten Verbindungskurven zwischen zwei Punkten in $S_{\mathbb{R}}^2$ sind Großkreise, also Schnitte von $S_{\mathbb{R}}^2$ und zweidimensionalen Untervektorräumen des \mathbb{R}^3 .

Beweis: Seien zwei beliebige Punkte p, q auf $S_{\mathbb{R}}^2$. Dann finden wir eine Rotation von \mathbb{R}^3 , die p auf p' = (0,0,R) — also den "Nordpol" — und q auf $q' = (0,y,z) \in S_{\mathbb{R}}^2$ abbildet. Nach Lemma 2.3.2 und der Definition ist $d_s(p,q) = d_s(p',q')$. Es genügt also eine kürzeste Verbindung zwischen p' und q' zu finden.

Idee: Mittels "geographischer Koordinaten" φ und θ . Nun kann eine Verbindung zwischen p' und q' geschrieben werden als

$$c(t) = R(\sin \theta(t) \cos \varphi(t), \sin \theta(t) \sin \varphi(t), \cos \theta(t))$$

und somit

also

 $c'(t) = (\theta' \cos \theta \cos \varphi - \varphi' \sin \theta \sin \varphi, \ \theta' \cos \theta \sin \varphi + \varphi' \sin \theta \cos \varphi, \ -\theta' \sin \theta),$

$$||c'(t)|| = R^2(\theta'^2 + \varphi'^2 \sin^2 \theta)$$

und somit

$$L_s(c) = R \int_a^b \sqrt{\theta'^2 + \varphi'^2 \sin^2 \theta} dt \ge R \int_a^b \sqrt{\theta'^2(t)} dt$$
$$= R \int_a^b |\theta'(t)| dt \ge R \int_a^b \theta'(t) dt = \int_{\theta(a)}^{\theta(b)} d\theta = R(\theta(b) - \theta(a))$$

mit oBdA $\theta(b) \ge \theta(a)$.

Diese untere Schranke wird durch ein Großkreissegment realisiert.

Eine weitere Kurve diese Länge kann es (wieder) nicht geben man hätte sonst überall Gleichheit in den Ungleichungen, also insbesondere $\varphi'=0$, also wäre φ konstant = $\varphi(a)=\frac{\pi}{2}$. Also liegt die Kurve auf Meridian und ist somit Großkreis.

2.3.4 Satz — Infimums- & Winkelmetrik isometrisch.

 $(S_{\mathbb{R}}^2, d_s)$ ist ein metrischer Raum und isometrisch zu $(S_{\mathbb{R}}^2, R \cdot d_W)$. **Beweis**: Analog zu (R^2, d_{eukl}) .

Wozu sind Metriken gut?

3.1 Einleitendes

3.1.1 In Analysis I.

In Analysis I heißt eine Folge von reellen Zahlen $(a_n)_{n\in\mathbb{N}}$ konvergent, wenn

$$\exists \ a \in \mathbb{R} : \forall \epsilon > 0 \ \exists \ N = N(\epsilon) : |a_n - a| < \epsilon \quad (\forall n \ge N).$$

3.1.2 Analogie zu metrischen Räumen.

Sei (X,d) metrischer Raum.

Eine Folge $(x_n)_{n\in\mathbb{N}}$ aus X heißt konvergent, wenn

$$\exists \; x \in X \forall \epsilon > 0 \; \exists \; N = N(\epsilon) : d(x_n, x) \leq \epsilon \quad (\forall n \geq N).$$

Also $x_n \in B_{\epsilon}(x) \ (\forall n \geq N)$.