Национальный исследовательский университет "МЭИ"

Кафедра РЗиА

Лабораторная работа № 4 «ГЛУБОКОЕ ОБУЧЕНИЕ ДЛЯ ПРОГНОЗИРОВАНИЯ ВРЕМЕННОГО РЯДА»

Выполнил:	Энтентеев А.Р.
Группа:	Э-13м-19
Проверил	Нухулов С.М.

Москва 2020

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ «МОСКОВСКИЙ ЭНЕРГЕТИЧЕСКИЙ ИНСТИТУТ» Кафедра «РЗиАЭ»

Лабораторная работа №4

Глубокое обучение для прогнозирования временного ряда.

Выполнил: студент группы Э-13м-19

Энтентеев А.Р.

Проверил: Нухулов С.М.

Москва, 2020

In [1]:

import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Flatten, Dense, Activation, Dropout,BatchNormali
zation, Conv1D, GlobalMaxPooling1D, MaxPooling1D, GRU
from sklearn.preprocessing import MinMaxScaler
from tensorflow import keras

Подготовка данных

In [2]:

data = pd.read_csv("AEP_hourly.csv")

```
In [3]:
```

```
data = data.drop('Datetime',axis=1)
data.head()
```

Out[3]:

AEP MW

- **0** 13478.0
- **1** 12865.0
- 2 12577.0
- **3** 12517.0
- 4 12670.0

Генератор для формирования обучающих пакетов

In [12]:

```
def generator(data, lookback, delay, min index, max index,
                 shuffle = True, batch size = 24, step = 2):
    if max index is None:
        \max index = len(data) - delay - 1
    i = min index + lookback
    while 1:
        if shuffle:
                i = np.random.randint(min index + lookback, max index)
        if i + batch size >= max index:
            if shuffle:
                i = np.random.randint(min index + lookback, max index)
                i = min index + lookback
        rows = np.arange(i, min(i + batch_size, max_index))
        i += len(rows)
        samples = np.zeros((len(rows), lookback // step,
                           data.shape[-1]))
        targets = np.zeros((len(rows),))
        for j, row in enumerate(rows):
            indices = range(rows[j] - lookback, rows[j], step)
            samples[j] = data.iloc[indices]
            targets[j] = data.iloc[rows[j] + delay] #[1]
        yield samples, targets
```

In [13]:

```
TrainGen = generator(data,48,1,0,63667,shuffle=True)
ValGen = generator(data,48,1,63668,84890,shuffle=True)
TestGen = generator(data,48,1,84891,121272,shuffle=True)
```

Наивный алгоритм

In [15]:

```
samples, targets = next(ValGen)
print(samples.shape)
prediction = samples[:,-1,0]
plt.plot(prediction)
plt.plot(range(0,24,1),targets[0:24])
ME = np.mean(np.abs(prediction[0:24] - targets[0:24]))
MAE = np.mean(np.abs(prediction[0:24] - targets[0:24])/prediction[0:24])
print("Среднее отклонение = ", ME)
print("Среднее абсолютное отклонение = ", MAE)
```

```
(24, 24, 1)
```

Среднее отклонение = 864.875 Среднее абсолютное отклонение = 0.0662638835093408

Многослойный перцептрон

In [6]:

```
data = pd.read_csv("AEP_hourly.csv")
```

In [7]:

```
scaler = MinMaxScaler(feature_range=(0,1))
data = data.drop('Datetime',axis=1)
scaler.fit(data)
data = scaler.transform(data)
```

```
In [8]:
```

```
data = pd.DataFrame(data)
data
```

Out[8]:

0 0.241839
1 0.203798
2 0.185925
3 0.182202
4 0.191697
...
121268 0.714162
121269 0.708576
121270 0.697468
121271 0.672335
121272 0.646146

In [32]:

```
TrainGen = generator(data,48,1,0,63667,shuffle=True)
ValGen = generator(data,48,1,63668,84890,shuffle=True)
TestGen = generator(data,48,1,84891,121216,shuffle=True)
```

In [51]:

```
def createModel():
      NB_CLASSES = y_train.shape[1]
    INPUT_SHAPE = (24,1)
    model = Sequential()
    model.add(Flatten(input shape=INPUT SHAPE))
    model.add(Activation('relu'))
    model.add(Dense(32))
    model.add(Activation('relu'))
   model.add(Dense(32))
    model.add(Activation('relu'))
    model.add(Dense(8))
    model.add(Activation('relu'))
    model.add(Dropout(0.3))
   model.add(Dense(1))
    model.add(Activation('sigmoid'))
    model.summary()
    return model
```

In [52]:

In [53]:

```
def plotHistory(history):
    epochs = history.epoch
    plt.figure()
    plt.plot(epochs, history.history["mae"])
    plt.plot(epochs, history.history["val_mae"])
    plt.legend(["mae","val_mae"])
    plt.show()
```

In [128]:

```
def plotGraph(model):
    samples,targets = next(TestGen)
    prediction = model.predict(samples)
    plt.plot(targets)
    plt.plot(prediction)
```

In [54]:

model_1 = createModel()

Model: "sequential_9"

Layer (type)	Output Shape	Param #
flatten_7 (Flatten)	(None, 24)	0
activation_15 (Activation)	(None, 24)	0
dense_24 (Dense)	(None, 32)	800
activation_16 (Activation)	(None, 32)	0
dense_25 (Dense)	(None, 32)	1056
activation_17 (Activation)	(None, 32)	0
dense_26 (Dense)	(None, 8)	264
activation_18 (Activation)	(None, 8)	0
dropout_11 (Dropout)	(None, 8)	0
dense_27 (Dense)	(None, 1)	9
activation_19 (Activation)	(None, 1)	0

Total params: 2,129 Trainable params: 2,129 Non-trainable params: 0

In [55]:

In [56]:

history_1 = modelLearning(TrainGen, ValGen, model_1,20)

```
Epoch 1/20
- mae: 0.1294 - val loss: 0.0203 - val mae: 0.1187
Epoch 2/20
- mae: 0.1071 - val loss: 0.0174 - val mae: 0.1110
Epoch 3/20
- mae: 0.0890 - val loss: 0.0120 - val mae: 0.0887
Epoch 4/20
300/300 [=========== ] - 4s 14ms/step - loss: 0.0119
- mae: 0.0859 - val_loss: 0.0073 - val_mae: 0.0659
Epoch 5/20
- mae: 0.0825 - val_loss: 0.0125 - val_mae: 0.0909
Epoch 6/20
- mae: 0.0810 - val loss: 0.0069 - val mae: 0.0643
Epoch 7/20
- mae: 0.0794 - val loss: 0.0066 - val mae: 0.0628
Epoch 8/20
- mae: 0.0784 - val_loss: 0.0065 - val_mae: 0.0623
Epoch 9/20
- mae: 0.0774 - val_loss: 0.0076 - val_mae: 0.0672
Epoch 10/20
- mae: 0.0774 - val loss: 0.0073 - val mae: 0.0671
Epoch 11/20
- mae: 0.0722 - val loss: 0.0072 - val mae: 0.0645
Epoch 12/20
300/300 [============= ] - 4s 13ms/step - loss: 0.0095
- mae: 0.0750 - val loss: 0.0076 - val mae: 0.0682
Epoch 13/20
- mae: 0.0724 - val loss: 0.0064 - val mae: 0.0618
Epoch 14/20
300/300 [============ ] - 4s 13ms/step - loss: 0.0095
- mae: 0.0750 - val loss: 0.0057 - val mae: 0.0561
Epoch 15/20
300/300 [============= ] - 4s 13ms/step - loss: 0.0090
- mae: 0.0736 - val loss: 0.0069 - val mae: 0.0646
Epoch 16/20
- mae: 0.0747 - val_loss: 0.0066 - val_mae: 0.0604
- mae: 0.0701 - val loss: 0.0076 - val mae: 0.0664
Epoch 18/20
- mae: 0.0703 - val loss: 0.0079 - val_mae: 0.0673
Epoch 19/20
- mae: 0.0734 - val loss: 0.0066 - val mae: 0.0624
```

300/300 [=============] - 4s 14ms/step - loss: 0.0087

- mae: 0.0709 - val_loss: 0.0068 - val_mae: 0.0644

In [57]:

plotHistory(history_1)

In [127]:

model_1.evaluate(TestGen, steps = 150)

mae: 0.0646

Out[127]:

[0.0074824863113462925, 0.0646476000547409]

In [130]:

plotGraph(model_1)

Вывод:

Полученная модель получилась лучше, чем наивный подход и достигает среднего абсолютного отклонения 0,064 на тестовой выборке

Сверточная сеть

In [78]:

```
def createCONVmodel():
    INPUT\_SHAPE = (24,1)
    model = Sequential()
    model.add(Conv1D(filters=32, kernel size=6, activation='relu', input shape=INPUT
SHAPE))
    model.add(MaxPooling1D(pool size=2))
    model.add(Conv1D(filters=64, kernel_size=4, activation='relu'))
    model.add(MaxPooling1D(pool size=2,padding = 'valid'))
      model.add(Conv1D(filters=128, kernel size=4, activation='relu'))
#
#
      model.add(GlobalMaxPooling1D())
    model.add(Flatten())
    model.add(Dense(32, activation='relu'))
    model.add(Dropout(0.3))
    model.add(Dense(16, activation='relu'))
    model.add(Dropout(0.3))
    model.add(Dense(1,activation = 'sigmoid'))
    model.summary()
    return model
```

In [79]:

model_2 = createCONVmodel()

Model: "sequential_17"

Layer (type)	Output	Shape	Param #
conv1d_30 (Conv1D)	(None,	19, 32)	224
max_pooling1d_26 (MaxPooling	(None,	9, 32)	0
conv1d_31 (Conv1D)	(None,	6, 64)	8256
max_pooling1d_27 (MaxPooling	(None,	3, 64)	0
flatten_11 (Flatten)	(None,	192)	0
dense_37 (Dense)	(None,	32)	6176
dropout_18 (Dropout)	(None,	32)	0
dense_38 (Dense)	(None,	16)	528
dropout_19 (Dropout)	(None,	16)	0
dense_39 (Dense)	(None,	1)	17

Total params: 15,201 Trainable params: 15,201 Non-trainable params: 0

In [80]:

In [81]:

history_2 = modelLearning(TrainGen,ValGen,model_2,20)

```
Epoch 1/20
- mae: 0.1309 - val loss: 0.0131 - val mae: 0.0914
Epoch 2/20
- mae: 0.0965 - val loss: 0.0154 - val mae: 0.1032
Epoch 3/20
- mae: 0.0933 - val loss: 0.0087 - val mae: 0.0728
Epoch 4/20
- mae: 0.0863 - val_loss: 0.0083 - val_mae: 0.0703
Epoch 5/20
- mae: 0.0805 - val_loss: 0.0062 - val_mae: 0.0611
Epoch 6/20
- mae: 0.0775 - val loss: 0.0074 - val mae: 0.0675
Epoch 7/20
- mae: 0.0790 - val loss: 0.0088 - val mae: 0.0729
Epoch 8/20
- mae: 0.0754 - val_loss: 0.0083 - val_mae: 0.0705
Epoch 9/20
300/300 [=========== ] - 4s 14ms/step - loss: 0.0091
- mae: 0.0726 - val_loss: 0.0087 - val_mae: 0.0717
Epoch 10/20
300/300 [============ ] - 4s 14ms/step - loss: 0.0094
- mae: 0.0755 - val_loss: 0.0071 - val_mae: 0.0637
Epoch 11/20
- mae: 0.0686 - val loss: 0.0058 - val mae: 0.0579
Epoch 12/20
300/300 [============= ] - 5s 17ms/step - loss: 0.0081
- mae: 0.0688 - val loss: 0.0068 - val mae: 0.0649
Epoch 13/20
- mae: 0.0685 - val loss: 0.0050 - val mae: 0.0545
Epoch 14/20
300/300 [============= ] - 4s 14ms/step - loss: 0.0084
- mae: 0.0701 - val loss: 0.0061 - val mae: 0.0588
Epoch 15/20
- mae: 0.0706 - val loss: 0.0060 - val mae: 0.0610
Epoch 16/20
- mae: 0.0651 - val_loss: 0.0055 - val_mae: 0.0577
- mae: 0.0669 - val loss: 0.0045 - val mae: 0.0516
Epoch 18/20
- mae: 0.0668 - val loss: 0.0069 - val_mae: 0.0638
Epoch 19/20
- mae: 0.0667 - val loss: 0.0049 - val mae: 0.0529
```

- mae: 0.0647 - val_loss: 0.0061 - val_mae: 0.0600

In [83]:

plotHistory(history_2)

In [84]:

model_2.evaluate(TestGen, steps = 500)

72 - mae: 0.0671

Out[84]:

[0.00719783129170537, 0.0670531839132309]

In [139]:

plotGraph(model_2)

Вывод:

Полученная модель получилась чуть хуже, чем многослойнвый перцептрон и достигает среднего абсолютного отклонения 0,67 на тестовой выборке

Рекурентная сеть

```
In [93]:
```

```
def createRNNmodel():
    model = Sequential()
    model.add(GRU(32, input_shape = (None, 1)))
    model.add(Dense(1,activation = "sigmoid"))
    model.summary()
    return model
```

In [94]:

```
model_3 = createRNNmodel()
```

Model: "sequential_19"

Layer (type)	Output Shape	Param #
gru_1 (GRU)	(None, 32)	3360
dense_41 (Dense)	(None, 1)	33

Total params: 3,393 Trainable params: 3,393 Non-trainable params: 0

In [95]:

In [96]:

history_3 = modelLearning(TrainGen,ValGen,model_3,20)

```
Epoch 1/20
300/300 [============] - 4s 14ms/step - loss: 0.0246
- mae: 0.1259 - val loss: 0.0173 - val mae: 0.1051
Epoch 2/20
- mae: 0.1086 - val loss: 0.0143 - val mae: 0.0964
Epoch 3/20
- mae: 0.0966 - val loss: 0.0144 - val mae: 0.0945
Epoch 4/20
- mae: 0.0881 - val_loss: 0.0105 - val_mae: 0.0823
Epoch 5/20
- mae: 0.0835 - val_loss: 0.0093 - val_mae: 0.0763
Epoch 6/20
- mae: 0.0810 - val loss: 0.0083 - val mae: 0.0717
Epoch 7/20
- mae: 0.0803 - val loss: 0.0108 - val mae: 0.0809
Epoch 8/20
- mae: 0.0792 - val_loss: 0.0093 - val_mae: 0.0762
Epoch 9/20
300/300 [=========== ] - 4s 14ms/step - loss: 0.0095
- mae: 0.0766 - val_loss: 0.0086 - val_mae: 0.0733
Epoch 10/20
- mae: 0.0757 - val_loss: 0.0087 - val_mae: 0.0724
Epoch 11/20
- mae: 0.0759 - val loss: 0.0080 - val mae: 0.0699
Epoch 12/20
300/300 [============ ] - 4s 14ms/step - loss: 0.0085
- mae: 0.0724 - val loss: 0.0084 - val mae: 0.0731
Epoch 13/20
- mae: 0.0739 - val loss: 0.0069 - val mae: 0.0666
Epoch 14/20
- mae: 0.0733 - val loss: 0.0076 - val mae: 0.0686
Epoch 15/20
300/300 [============= ] - 4s 14ms/step - loss: 0.0090
- mae: 0.0742 - val loss: 0.0089 - val mae: 0.0740
Epoch 16/20
- mae: 0.0739 - val_loss: 0.0082 - val_mae: 0.0715
Epoch 17/20 300/300 [============] - 4s 14ms/step - loss: 0.0091
- mae: 0.0751 - val loss: 0.0087 - val mae: 0.0741
Epoch 18/20
- mae: 0.0686 - val loss: 0.0080 - val_mae: 0.0711
Epoch 19/20
- mae: 0.0714 - val loss: 0.0093 - val mae: 0.0768
```

300/300 [============] - 4s 15ms/step - loss: 0.0092

- mae: 0.0744 - val_loss: 0.0079 - val_mae: 0.0692

In [133]:

model_3.evaluate(TestGen, steps = 500)

500/500 [============] - 4s 8ms/step - loss: 0.0079 -

mae: 0.0698

Out[133]:

[0.007945071905851364, 0.06978649646043777]

In [98]:

plotHistory(history_3)

In [136]:

plotGraph(model_3)

In [108]:

In [113]:

```
model_4 = createRNNmodelplus()
```

WARNING:tensorflow:Layer gru_8 will not use cuDNN kernel since it does n't meet the cuDNN kernel criteria. It will use generic GPU kernel as f allback when running on GPU WARNING:tensorflow:Layer gru_9 will not use cuDNN kernel since it does n't meet the cuDNN kernel criteria. It will use generic GPU kernel as f allback when running on GPU Model: "sequential 24"

Layer (type)	Output Shape	Param #
gru_8 (GRU)	(None, None, 32)	3360
gru_9 (GRU)	(None, 64)	18816
dense_44 (Dense)	(None, 1)	65 ======

Total params: 22,241 Trainable params: 22,241 Non-trainable params: 0

In [114]:

In [115]:

history_4 = modelLearning(TrainGen,ValGen,model_4,20)

```
Epoch 1/20
6 - mae: 0.1173 - val loss: 0.0174 - val mae: 0.1055
Epoch 2/20
9 - mae: 0.1039 - val loss: 0.0104 - val mae: 0.0830
Epoch 3/20
2 - mae: 0.0964 - val loss: 0.0099 - val mae: 0.0784
Epoch 4/20
9 - mae: 0.0887 - val_loss: 0.0080 - val_mae: 0.0711
Epoch 5/20
9 - mae: 0.0847 - val_loss: 0.0091 - val_mae: 0.0754
Epoch 6/20
1 - mae: 0.0822 - val loss: 0.0105 - val mae: 0.0814
Epoch 7/20
9 - mae: 0.0851 - val loss: 0.0079 - val mae: 0.0691
Epoch 8/20
8 - mae: 0.0806 - val_loss: 0.0083 - val_mae: 0.0716
Epoch 9/20
300/300 [============ ] - 33s 108ms/step - loss: 0.010
3 - mae: 0.0796 - val_loss: 0.0085 - val_mae: 0.0720
Epoch 10/20
300/300 [============ ] - 33s 110ms/step - loss: 0.009
2 - mae: 0.0741 - val loss: 0.0112 - val mae: 0.0832
Epoch 11/20
1 - mae: 0.0790 - val loss: 0.0081 - val mae: 0.0707
Epoch 12/20
5 - mae: 0.0764 - val loss: 0.0083 - val mae: 0.0728
Epoch 13/20
8 - mae: 0.0736 - val loss: 0.0073 - val mae: 0.0678
Epoch 14/20
300/300 [============ ] - 33s 109ms/step - loss: 0.009
2 - mae: 0.0747 - val loss: 0.0072 - val mae: 0.0663
Epoch 15/20
300/300 [============ ] - 33s 109ms/step - loss: 0.008
9 - mae: 0.0738 - val loss: 0.0077 - val mae: 0.0657
Epoch 16/20
300/300 [=========== ] - 33s 109ms/step - loss: 0.009
4 - mae: 0.0752 - val_loss: 0.0091 - val_mae: 0.0763
Epoch 17/20
4 - mae: 0.0744 - val loss: 0.0070 - val mae: 0.0653
Epoch 18/20
6 - mae: 0.0719 - val loss: 0.0064 - val mae: 0.0614
Epoch 19/20
6 - mae: 0.0719 - val loss: 0.0099 - val mae: 0.0768
```

300/300 [===========] - 33s 111ms/step - loss: 0.008

8 - mae: 0.0729 - val_loss: 0.0071 - val_mae: 0.0663

In [116]:

model_4.evaluate(TestGen, steps = 500)

500/500 [======] - 6s 11ms/step - loss: 0.0072

- mae: 0.0670

Out[116]:

[0.007208918686956167, 0.06699986010789871]

In [120]:

plotHistory(history_4)

In [144]:

plotGraph(model_4)

Вывод

Усложненная модель рекурентной сети дает незначительно лучшее качество, чем однослойная рекурентная сеть, однако и это значение не превышает до обычного многослойного перцептрона

В ходе работы были разработаны и исследованны модели для прогнозированния временного ряда, все построенные модели дают достаточно хорошее качество и прогнозируемое значение практически совпадает с реальным

Стоит также отметить, что самое лучшее качество пргогнозирования показала модель многослойного перцептрона в виду особенности задачи прогнозирвоания случайоного временного ряда. Причина, по которой сверточаня и рекурентная нейронные сети оказались чуть хуже, заключается в отсутсвии каких-либо существенных закономерностях в данных, критичных для данных видов сетей.

In []:		