Épreuve écrite

Examen de fin d'études secondaires 2015

Sections: Bet C

Branche: Physique

Numéro d'ordre du candidat

1. MOUVEMENT DANS UN CHAMP MAGNÉTIQUE

Un électron, initialement au repos, est accéléré sous une tension $U_1=0.2~\mathrm{kV}$ entre les plaques du condensateur (1). Il pénètre ensuite dans un champ magnétique \overrightarrow{B} perpendiculaire au plan de la figure. Après avoir parcouru un demi-cercle, l'électron entre dans le condensateur (2) dont la plaque D sert de détecteur d'électrons.

- a) Représenter aux points M et N la force de Lorentz \vec{f} exercée sur l'électron. Exprimer \vec{f} dans la base de Frenet.
- b) Montrer que le mouvement de l'électron est uniforme et établir l'expression de la valeur de sa vitesse en fonction de l'intensité de \vec{B} et du diamètre d de la trajectoire circulaire.

POINTS: 8+2+1 = 11

Points: 3+4+4+2 = 13

- c) Calculer la valeur de la vitesse de l'électron à la sortie du condensateur (1). Déterminer le sens du champ magnétique et calculer son intensité sachant que d=8 cm.
- d) La tension U_2 entre les plaques du condensateur (2) est initialement nulle. On l'augmente jusqu'à ce qu'aucun électron ne soit détecté en D. Donner, sans calcul, cette valeur limite de U_2 et indiquer la polarité des plaques.

2. EXPÉRIENCE DE MELDE

On étudie une corde de masse linéique $\mu=7,72~{\rm g\cdot m^{-1}}$ et de longueur $\ell=7,2~{\rm m}$ dont une extrémité est animée par un vibreur de fréquence $f=20~{\rm Hz}$ et dont l'autre est soumise à une force \vec{F} .

- a) En se basant sur l'élongation de la source, établir l'expression du mouvement en tout point de la corde et en déduire les abscisses des ventres d'une onde stationnaire.
- b) Calculer les intensités des forces à appliquer si l'on veut réaliser une onde stationnaire avec un ou deux ventres.
- c) Expliquer comment il faut varier l'intensité de la force si l'on veut multiplier le nombre de fuseaux par trois ou quatre?

Épreuve écrite

Examen de fin d'études secondaires 2015

Sections : B et C

Branche: Physique

Numéro d'ordre du candidat

3. OSCILLATEUR MÉCANIQUE

POINTS: 4+3+1+(3+1)+3=15

Un solide **S** de masse 680 g peut se déplacer sans frottements le long d'un axe horizontal Ox. **S** est relié à un ressort de raideur $k = 65 \text{ N} \cdot \text{m}^{-1}$, dont l'autre extrémité est fixe. À l'équilibre, le centre de gravité G du solide se projette sur Ox en O, origine des abscisses.

On écarte le solide de $\Delta x=11$ cm de sa position d'équilibre. À l'instant t=0 s, le solide est lâché sans vitesse.

- a) Faire une figure et le bilan des forces à l'instant t=0. Établir l'équation différentielle du mouvement.
- b) Donner une équation horaire générale du mouvement du solide **S** et vérifier qu'elle est une solution de l'équation différentielle. Indiquer la solution avec les valeurs numériques.
- c) Calculer la période propre du système.
- d) Exprimer l'énergie mécanique totale du système, en fonction de k, m, x et $\dot{x} = \frac{dx}{dt}$.
 - [1] Montrer que l'énergie mécanique est constante. En déduire l'expression de l'énergie mécanique en fonction de la constante de raideur k du ressort et de l'amplitude X_m .
 - [2] Calculer la valeur de l'énergie mécanique.
- e) Calculer la vitesse maximale et en déduire l'accélération maximale du solide S.

4. Physique nucléaire

À la rentrée 2000, le laboratoire de physique d'un lycée a acheté une source radioactive de césium 137, émetteur β^- ayant une activité de 63,4 kBq. La demi-vie de cet isotope du césium est 30,07 a. Le noyau fils est émis dans un état excité.

- a) Écrire les équations des transformations nucléaires.
- b) Calculer la masse du césium contenue dans la source à la date de l'achat. La masse d'un atome de césium est 136,9 u.
- c) Calculer l'activité de la source à la rentrée 2014.
- d) Sans calcul, donner la date à laquelle l'activité n'est plus que 25% de l'activité initiale.
- e) La figure ci-contre montre le diagramme énergétique du noyau fils. Calculer la longueur d'onde du rayonnement émis lors de la transition de l'état excité c vers l'état fondamental a.

POINTS: 2+3+2+2+2=11

Épreuve écrite

Examen de fin d'études secondaires 2015

Sections : B et C

Branche: Physique

Numéro d'ordre du candidat

5. RELATIVITÉ

POINTS: 2+1+2+3+2 = 10

Dans un futur lointain des touristes de la Vénus vont passer leurs vacances sur Mars. Les quatre astres étant alignés au cours de ce voyage, ils vont passer près de la Terre et de la Lune. Le voyage Terre-Lune est surveillé depuis un centre de contrôle installé sur la Terre en coopération avec un contrôleur sur la Lune.

La distance de la Terre à la Lune, mesurée dans le référentiel Terre--Lune, est de 384 402 kilomètres.

Au cours de ce voyage le mouvement de la Lune autour de la Terre est négligeable.

La navette touristique effectue le trajet à la vitesse $v=0.15\,c$.

Les horloges de la Lune et de la Terre ont été synchronisées par l'envoi d'un signal lumineux.

- a) Définir intervalle de temps propre et intervalle de temps impropre.
- b) Les passagers et le centre de contrôle vont mesurer la durée du trajet Terre-Lune. Qui va mesurer la durée propre ? Justifier.
- c) Est-ce que les passagers de la navette verront la distance Terre-Lune plus grande ou plus petite que les observateurs dans le référentiel de la Terre ? Justifier.
- d) Calculer la différence des durée du trajet Terre--Lune mesurée par les passagers de la navette et le centre de contrôle sur la Terre.
- e) Une autre navette NGV (navette à grande vitesse) atteint une vitesse de v' > v. Comparer les distances parcourues dans les référentiels des passagers des deux navettes ?

Relevé des principales constantes physiques

Grandeur physique	Symbole	Valeur	Unité
	usuel	numérique	
Constante d'Avogadro	N _A (ou L)	$6,022 \cdot 10^{23}$	mol ⁻¹
Constante molaire des gaz parfaits	R	8,314	J K ⁻¹ mol ⁻¹
Constante de gravitation	K (ou G)	6,673·10 ⁻¹¹	$N m^2 kg^{-2}$
Constante électrique pour le vide	$k = \frac{1}{4\pi\varepsilon_0}$	8,988·10 ⁹	N m ² C ⁻²
Célérité de la lumière dans le vide	С	2,998·10 ⁸	m s ⁻¹
Perméabilité du vide	μ ₀	$4\pi \cdot 10^{-7}$	H m ⁻¹
Permittivité du vide	$\varepsilon_0 = \frac{1}{\mu_0 c^2}$	8,854·10 ⁻¹²	F m ⁻¹
Charge élémentaire	е	1,602·10 ⁻¹⁹	С
Masse au repos de l'électron	m _e	9,1094·10 ⁻³¹ 5,4858·10 ⁻⁴ 0,5110	kg u MeV/c ²
Masse au repos du proton	m _p	1,6726·10 ⁻²⁷ 1,0073 938,27	kg u MeV/c ²
Masse au repos du neutron	m _n	1,6749·10 ⁻²⁷ 1,0087 939,57	kg u MeV/c ²
Masse au repos d'une particule α	m_{α}	6,6447·10 ⁻²⁷ 4,0015 3727,4	kg u MeV/c ²
Constante de Planck	h	6,626·10 ⁻³⁴	Js
Constante de Rydberg de l'atome d'hydrogène	R _H	$1,097 \cdot 10^7$	m ⁻¹
Rayon de Bohr	r ₁ (ou a ₀)		m
Energie de l'atome d'hydrogène dans l'état fondamental	E_1		eV

Grandeurs liées à la Terre et au Soleil (elles peuvent dépendre du lieu ou du temps)		E	tilisée sauf n contraire
Composante horizontale du champ magnétique terrestre	B_h	2.10-5	T
Accélération de la pesanteur à la surface terrestre	g	9,81	m s ⁻²
Rayon moyen de la Terre	R	6370	km
Jour sidéral	T	86164	S
Masse de la Terre	M _T	5,98·10 ²⁴	kg
Masse du Soleil	Ms	1,99.10 ³⁰	kg

Conversion d'unités en usage avec le SI

1 angström

1 électronvolt

1 unité de masse atomique

= 1 \mathring{A} = 10⁻¹⁰ m = 1 eV = 1,602·10⁻¹⁹ J = 1 u = 1,6605·10⁻²⁷ kg = 931,49 MeV/c²

	-	=																
	1												=	2	>	>	 	
1.	1 ITI Hydrogène																	2 He
	1,008							D'L'O	Tablean páriodisno									Hélium
	0 6	0			3		2			ט ס								4,003
7	3 L	Béryllim											200	ပ္ခ	Z	000	L	10 N
	6,941	9,012											Bor 10.81	Carbone 12.01	Azote	Oxygène 16 00	Fluor	Néon
C		11 Na 12 Mg											12 01	J	2,	00,01	סטיפד -	20,10
'n	Sodium	Magnésium											CT	5 .		٦ آو	17	18
	22,99	24,31	IIIa	IVa	Va	Vla	VIIa		VIIIa		<u>a</u>	lla	Aluminium 26.98	Silicium 28.09	Phosphore 30 97	Soufre 32 07	Chlore	Argon
4		20 Ca	21 SC	22 Ti	23 V	24 Cr	24 Cr 25 Mm 26	26 Fe	27 Co	28 Ni	29 Cu	30 Zn		٦	22 AC	9		1 1 1 2 C
	Potassium	Calcium	Scandium	Titane	Vanadium	Chrome	Manganèse	Fer	Coball	Nickel	Onivino) .)	1	30 101
	39,10	40,08	44,96	47,87	50,94		54,94	58,25	58,93	58,69	63,55	65.39	69.77	Sermanium 72 61	Arsenic 74 92	Sélénium 78 o.c	Brome	Krypton
	2		1	,		6		•	1	1		20/21		12,01	76'41	10,30	08'87	83,80
5.	37 17 10		39 🖟	40 C L	41 NO			44 RU	45 RM	46 PC	47 Ag	₽ 2 2 3 4 8 0 7	49 In	50 Sn	51 Sb	52 Te	53	54 X P
	85.47	87.62	Yttnum 88.91	Zirconium 91 22	Niobium 92 91	Molybdène os ov	Technétium	Ruthénium		Palladium	Argent	Cadmium	Indium	Étain		Tellurium	lode	Xénon
1			1			10,00	T	TOT'T	102,3	100,4	10/,9	112,4	114,8	118,7	121,8	127,6	126,9	131,3
6.	_	56 Ba	Lanthanide		73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	₩ ₩	81 I	82 Pb	83	84 PO	85 At	A Se
	Cesium 132 o	Baryum 127.2		Hafnium 170 c	Tantale	Tungstène	Rhénium	Osmium	lridium	Platine		Mercure	Thallium	Plomb		Polonium	Astate	Radon
	2,70	13/,3		1/8,5	180,9	183,8	186,2	190,2	192,2	106,4	197,0	200,6	204,4	207,2	209,0	[509]	[210]	[222]
7	87 Fr	88 Ra	Actinida	104 Rf	105 Db	106 58	107 Bh	108 HS	104 Rf 105 Db 106 Sg 107 Bh 108 HS 109 Mt 110 Uun 111 Uuu 112 Uub	110 UUN	111 UUU	Uub Cub						
	Francium [223]	Radium [226]		Rutherfordium Dubnium [261]	Dubnium [262]	Seaborgium [263]	Bohrium	Hassium	Meitnerium		-							
				[-0-1	[404]	[202]	[504]	[502]	[502]	[569]	[272]	[277]						

							Lanthar	Lanthanide et Actinide	je.						
-	=	((
(57 La	58 Ce	59 P	0000	61 Pm	Sm	F.	7	F			s U	<u> </u>	WL	-
o O		,				10		5 5		200	2 / 9	- Res	69	70 10	71
	Lanthane	Cerium	Praseodyme	Néodyme	Prométhium	Samarium	Europium	Gadolinium	Torhim	Dispragium	I la landini		:)	5
-	138.9	140 1	140 9	11117	[777]	,	7 2 2			Dyspiosidill	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Eroinm	Hullum	Ytterbium	Lutétium
		1/0.1	COLT	7/447	[74/]	15U,4	152,0	15/3	158,9	162,5	164.9	167.3	168 9	173.0	175
	•		•									2/12	2/201	0/0/7	C/T
	89 AC	6	ر م م	92	00		~ Lo		2	٦	Ľ	_		6	-
7			3	7	2 00	3 - +6	1 C C C C	30 A	9/0	ر 86	S	100	101	102	100
	Actinium	Thorium	Protactinium	Uranium	Neptunium	Plufonium	Américium		1777			- C Property		707	TOT COT
	17,77	222	0 700						Derkellum	Californium	Einsteinium	Fermium	Mendélávirm	Nobelim	anionomic
	[777]	737,0	731,0	738,0	[237]	[244]	[243]	[747]	[747]	[751]	נשנו	ויישכן		illonori il	Lawielloull
					The state of the s				[4.17]	[404]	[767]	[/27]	[857]	729	[262]

Formules trigonométriques

$$\sin^2 x + \cos^2 x = 1$$

$$\cos^2 x = \frac{1}{1 + t\sigma^2 x}$$

$$\sin^2 x = \frac{tg^2 x}{1 + tg^2 x}$$

$$1 + tg^2x = \frac{1}{\cos^2x}$$

$$\sin (\pi - x) = \sin x$$

$$\cos (\pi - x) = -\cos x$$

$$\tan (\pi - x) = -\tan x$$

$$\sin (\pi + x) = - \sin x$$

$$\cos (\pi + x) = - \cos x$$

$$tg (\pi + x) = tg x$$

$$sin (-x) = -sin x$$

 $cos (-x) = cos x$
 $tg (-x) = -tg x$

$$\sin\left(\frac{\pi}{2} - x\right) = \cos x$$

$$\cos\left(\frac{\pi}{2} - x\right) = \sin x$$

$$tg(\frac{\pi}{2} - x) = \cot x$$

$$\sin\left(\frac{\pi}{2} + x\right) = \cos x$$

$$\cos\left(\frac{\pi}{2} + x\right) = -\sin x$$

$$tg \left(\frac{\pi}{2} + x\right) = -\cot g x$$

$$\sin (x + y) = \sin x \cos y + \cos x \sin y$$

 $\sin (x - y) = \sin x \cos y - \cos x \sin y$

$$cos(x + y) = cos x cos y - sin x sin y$$

 $cos(x - y) = cos x cos y + sin x sin y$

$$tg (x + y) = \frac{tg x + tg y}{1 - tg x tg y}$$

$$tg (x - y) = \frac{tg x - tg y}{1 + tg x tg y}$$

$$\sin 2x = 2 \sin x \cos x$$

 $\cos 2x = \cos^2 x - \sin^2 x$

$$2 \cos^2 x = 1 + \cos 2x$$

 $2 \sin^2 x = 1 - \cos 2x$

$$\sin 2x = \frac{2 \operatorname{tg} x}{1 + \operatorname{tg}^2 x}$$

$$\cos 2x = \frac{1 - tg^2x}{1 + tg^2x}$$

$$tg 2x = \frac{2 tg x}{1 - tg^2 x}$$

$$\sin 3 x = 3 \sin x - 4 \sin^3 x$$

$$\cos 3x = -3\cos x + 4\cos^3 x$$

$$\sin p + \sin q = 2 \sin \frac{p+q}{2} \cos \frac{p-q}{2}$$

$$\sin p - \sin q = 2 \sin \frac{p-q}{2} \cos \frac{p+q}{2}$$

$$\cos p + \cos q = 2 \cos \frac{p+q}{2} \cos \frac{p-q}{2}$$

$$\cos p - \cos q = -2 \sin \frac{p+q}{2} \sin \frac{p-q}{2}$$

$$tg p + tg q = \frac{\sin (p+q)}{\cos p \cos q}$$
$$tg p - tg q = \frac{\sin (p-q)}{\cos p \cos q}$$

$$\sin x \cos y = \frac{1}{2} \left[\sin(x + y) + \sin(x - y) \right]$$

$$\cos x \cos y = \frac{1}{2} \left[\cos(x+y) + \cos(x-y) \right]$$

$$\sin x \sin y = \frac{1}{2} \left[\cos(x-y) - \cos(x+y) \right]$$