

Classification Analysis

Dr. Rathachai Chawuthai

Department of Computer Engineering
Faculty of Engineering
King Mongkut's Institute of Technology Ladkrabang

Agenda

- Classification
- Classifier I
- Evaluation Methods
- Classifiers II
- Regularization

Data Analytics

Ref:

- Four types of analytics capability (Gartner, 2014)
- (image) https://www.healthcatalyst.com/closed-loop-analytics-method-healthcare-data-insights

Machine Learning

Supervised Learning

Develop predictive model based on both input and output data

Unsupervised Learning

Develop predictive model based on both input and output data

Regression

- Linear Regression
- Polynomial Regression

Classification

- Decision Tree
- Logistic Regression
- Neural Network
- etc.

Clustering

- K-Means
- DB-SCAN
- etc.

Classification

Table

• 4 leg

Ref:

- sit (yes)
- sleep (no)

Classification

- Class named by Label
- Attributes or Features

Binary Classification

- Has 2 Classes
- We often have to deal with the simple task of Binary Classification. Some examples are:
 - Sentiment Analysis (positive/negative),
 - Spam Detection (spam/not-spam),
 - Fraud Detection (fraud/not-fraud).

Multi-Class Classification

- Has more than 2 classes
- For example,
 - Genres of Movies
 - Grades
 - Sentiment Analysis
 (Positive, Natural,
 Negative)
 - etc.

Ref:

Classification

Classifier I

Decision Tree

Ref:

Decision Tree

- A decision tree is a decision support tool that uses a tree-like graph or model of decisions and their possible consequences, including chance event outcomes, resource costs, and utility. It is one way to display an algorithm that only contains conditional control statements.
- Decision trees are commonly used in operations research, specifically in decision analysis, to help identify a strategy most likely to reach a goal, but are also a popular tool in machine learning.
- A decision tree consists of three types of nodes:
 - Decision nodes typically represented by squares
 - Chance nodes typically represented by circles
 - End nodes typically represented by triangles

Ref:

Case

CASE	TEMPERATURE	HEADACHE	NAUSEA	Flu
1	high	YES	no	YES
2	very_high	YES	YES	YES
3	normal	no	no	no
4	high	YES	YES	YES
5	high	no	YES	no
6	normal	YES	no	no
7	normal	no	YES	no

Tree

Case

CASE	TEMPERATURE	HEADACHE	NAUSEA	Flu
1	high	YES	no	YES
2	very_high	YES	YES	YES
3	normal	no	no	no
4	high	YES	YES	YES
5	high	no	YES	no
6	normal	YES	no	no
7	normal	no	YES	no

Case

CASE	TEMPERATURE	HEADACHE	NAUSEA	Flu
1	high	YES	no	YES
2	very_high	YES	YES	YES
3	normal	no	no	no
4	high	YES	YES	YES
5	high	no	YES	no
6	normal	YES	no	no
7	normal	no	YES	no

Information Gain

- Same things --> Low
- Different things -->High

$$Entropy = \sum_{i=1}^{C} -p_i * \log_2(p_i)$$

CASE	TEMPERATURE	HEADACHE	NAUSEA	Flu
1	high	YES	no	YES
2	very_high	YES	YES	YES
3	normal	no	no	no
4	high	YES	YES	YES
5	high	no	YES	no
6	normal	YES	no	no
7	normal	no	YES	no

	Headache = YES		Headache = no
H(Flu Headache) =			
_		_	
		_	

CASE	TEMPERATURE	HEADACHE	NAUSEA	Flu
1	high	YES	no	YES
2	very_high	YES	YES	YES
3	normal	no	no	no
4	high	YES	YES	YES
5	high	no	YES	no
6	normal	YES	no	no
7	normal	no	YES	no

H(Flu | Headache) =
$$-\frac{4}{7}$$

Headache = no
$$\frac{3}{7}$$

CASE	TEMPERATURE	HEADACHE	NAUSEA	Flu
1	high	YES	no	YES
2	very_high	YES	YES	YES
3	normal	no	no	no
4	high	YES	YES	YES
5	high	no	YES	no
6	normal	YES	no	no
7	normal	no	YES	no

CASE	TEMPERATURE	HEADACHE	NAUSEA	Flu
1	high	YES	no	YES
2	very_high	YES	YES	YES
3	normal	no	no	no
4	high	YES	YES	YES
5	high	no	YES	no
6	normal	YES	no	no
7	normal	no	YES	no

H(Flu | Headache) =
$$-\frac{4}{7} \left(\frac{3}{7} log_2 \left(\frac{3}{4} \right) + \frac{1}{7} log_2 \left(\frac{1}{4} \right) \right) - \frac{3}{7} \left(\frac{3}{7} log_2 \left(\frac{3}{4} \right) + \frac{1}{7} log_2 \left(\frac{1}{4} \right) \right)$$
Flu=YES Flu=no

CASE	TEMPERATURE	HEADACHE	NAUSEA	Flu
1	high	YES	no	YES
2	very_high	YES	YES	YES
3	normal	no	no	no
4	high	YES	YES	YES
5	high	no	YES	no
6	normal	YES	no	no
7	normal	no	YES	no

H(Flu | Headache) =
$$-\frac{4}{7} \left(\frac{3}{4} log_2 \left(\frac{3}{4} \right) + \frac{1}{4} log_2 \left(\frac{1}{4} \right) \right) - \frac{3}{7} \left(\frac{0}{3} log_2 \left(\frac{0}{4} \right) + \frac{3}{3} log_2 \left(\frac{3}{3} \right) \right)$$
Flu=YES Flu=no

CASE	TEMPERATURE	HEADACHE	NAUSEA	Flu
1	high	YES	no	YES
2	very_high	YES	YES	YES
3	normal	no	no	no
4	high	YES	YES	YES
5	high	no	YES	no
6	normal	YES	no	no
7	normal	no	YES	no

H(Flu | Headache) =
$$-\frac{4}{7} \left(\frac{3}{4} log_2 \left(\frac{3}{4} \right) + \frac{1}{4} log_2 \left(\frac{1}{4} \right) \right) - \frac{3}{7} \left(\frac{0}{3} log_2 \left(\frac{3}{4} \right) + \frac{3}{2} log_2 \left(\frac{3}{3} \right) \right)$$
 = 0.464

Finding entropy H of every attribute

CASE	TEMPERATURE	HEADACHE	NAUSEA	Flu
1	high	YES	no	YES
2	very_high	YES	YES	YES
3	normal	no	no	no
4	high	YES	YES	YES
5	high	no	YES	no
6	normal	YES	no	no
7	normal	no	YES	no

CASE	TEMPERATURE	HEADACHE	NAUSEA	Flu
1	high	YES	no	YES
2	very_high	YES	YES	YES
3	normal	no	no	no
4	high	YES	YES	YES
5	high	no	YES	no
6	normal	YES	no	no
7	normal	no	YES	no

CASE	TEMPERATURE	HEADACHE	NAUSEA	Flu
1	high	YES	no	YES
2	very_high	YES	YES	YES
3	normal	no	no	no
4	high	YES	YES	YES
5	high	no	YES	no
6	normal	YES	no	no
7	normal	no	YES	no

Finding entropy H of attributes from the remainings

$$H(Flu_{Temperature = high} | Nausea) = 0.667$$

CASE	TEMPERATURE	HEADACHE	NAUSEA	Flu
1	high	YES	no	YES
2	very_high	YES	YES	YES
3	normal	no	no	no
4	high	YES	YES	YES
5	high	no	YES	no
6	normal	YES	no	no
7	normal	no	YES	no

yes, yes

Finding entropy H of attributes from the remainings

$$H(Flu_{Temperature = high} | Headache) = 0$$

$$H(Flu_{Temperature = high} | Nausea) = 0.667$$

no

Evaluation Methods

Accuracy

Ref:

 Accuracy is the most popular performance measure used and for good reason. It's extremely helpful, simple to compute and to understand. It is the proportion of the correctly classified samples and all the samples.

```
from sklearn.metrics import accuracy_score
print accuracy_score(y_test, model.predict(X_test)) # 0.98
```

TP | TN | FP | FN

- There are other ways to measure different aspects of performance. In classic machine learning nomenclature, when we're dealing with binary classification, the classes are: **positive and negative**. Think of these classes in the context of disease detection:
 - **positive** we predict the disease is present
 - **negative** we predict the disease is not present.
- Let's now define some notations:

Ref:

- **TP** True Positives (Samples the classifier has correctly classified as positives)
- TN True Negatives (Samples the classifier has correctly classified as negatives)
- FP False Positives (Samples the classifier has incorrectly classified as positives)
- FN False Negatives (Samples the classifier has incorrectly classified as negatives)

TP | TN | FP | FN

Evaluation Methods

$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

Evaluation Methods

$$Precision = \frac{TP}{TP + FP}$$

$$Recall = \frac{TP}{TP + FN}$$

Precision & Recall

Question

Recall = 0.99

is it good?

Perfect

Precision = 1

Question

Recall = 0.99

is it good?

Perfect

Recall = 1

Evaluation Methods

$$Precision = \frac{TP}{TP + FP}$$

$$Recall = \frac{TP}{TP + FN}$$

$$F1 = 2 \times \frac{Precision \times Recall}{Precision + Recall}$$

Perfect

ROC Curve

Ref:

Receive Operating Characteristic

AUC: Area Under the ROC Curve

The graph at right shows three ROC curves representing excellent, good, and worthless tests plotted on the same graph. An area of 1 represents a perfect test; an area of 0.5 represents a worthless test. A rough guide for classifying the accuracy of a diagnostic test is the traditional academic point system:

- .80 .90 = good(B)
- .70-.80 = fair(C)
- .60-.70 = poor(D)
- .50-.60 = fail (F)

^{• (}content) http://gim.unmc.edu/dxtests/roc3.htm

^{• (}image) http://molevol.altervista.org/blog/roc-curve-area-roc-curve-auc/

AUC

Confusion Matrix

Predicted Class

Actual Class

	Cat	Dog	Rabbit
Cat	5	2	0
Dog	3	3	2
Rabbit	0	1	11

Confusion Matrix: Heatmap

Predicted Class

Confusion Matrix: Comparison

Which one is better?

Classification Methods II

Underfitting vs.. Overfitting

Classification Techniques

- Linear classifiers
 - Fisher's linear discriminant
 - Logistic regression
 - Naive Bayes classifier
 - Perceptron
- Support vector machines
- Quadratic classifiers

- Kernel estimation
 - k-nearest neighbor
- Boosting (meta-algorithm)
- Decision trees
- Neural networks
- Learning vector quantization

Decision Tree

DecisionTreeClassifier is a class capable of performing multi-class classification on a dataset.

As with other classifiers, <code>DecisionTreeClassifier</code> takes as input two arrays: an array X, sparse or dense, of size <code>[n_samples, n_features]</code> holding the training samples, and an array Y of integer values, size <code>[n_samples]</code>, holding the class labels for the training samples:

```
>>> from sklearn import tree
>>> X = [[0, 0], [1, 1]]
>>> Y = [0, 1]
>>> clf = tree.DecisionTreeClassifier()
>>> clf = clf.fit(X, Y)
```

After being fitted, the model can then be used to predict the class of samples:

```
>>> clf.predict([[2., 2.]])
array([1])
```

Alternatively, the probability of each class can be predicted, which is the fraction of training samples of the same class in a leaf:

```
>>> clf.predict_proba([[2., 2.]])
array([[ 0., 1.]])
```



```
from sklearn.linear_model import LogisticRegression
from sklearn import metrics

clf = LogisticRegression()
clf.fit(X_train, y_train)
```

```
from sklearn.metrics import confusion_matrix

confusion_matrix = confusion_matrix(y_test, y_pred)

print(confusion_matrix)
```

```
[[10872, 109]
[ 1122, 254]]
```

Ref:

The result is telling us that we have 10872+254 correct predictions and 1122+109 incorrect predictions.

```
from sklearn.metrics import classification_report
print(classification_report(y_test, y_pred))
```

	precision	recall	f1-score	
0 1	0.91 0.70	0.99 0.18	0.95 0.29	
avg / total	0.88	0.90	0.87	

Naive Bayes

- P(c|x) is the posterior probability
 of class (target)
 given predictor (attribute)
- P(c) is the prior probability of class.
- P(x/c) is the likelihood which is the probability of predictor given class.
- P(x) is the prior probability of predictor.

$$P(c \mid X) = P(x_1 \mid c) \times P(x_2 \mid c) \times \dots \times P(x_n \mid c) \times P(c)$$

Naive Bayes

$$P(c \mid x) = \frac{P(x \mid c)P(c)}{P(x)}$$

$P(x \mid c) =$	P(Sunny	Yes = 3	3/9 = 0.33
-----------------	---------	----------	------------

Frequency Table		Play Golf		
		Yes	No	
	Sunny	3	2	ı
Outlook	Overcast	4	0	
	Rainy	2	3	

		1	ì		
Likelihood Table		Pla	y G	Golf	
		Yes		No	
Outlook	Sunny	3/9		2/5	5/14 🎳
	Overcast	4/9		0/5	4/14
	Rainy	2/9		3/5	5/14
		9/14		5/14	

$$P(c) = P(Yes) = 9/14 = 0.64$$

Posterior Probability:

$$P(c \mid x) = P(Yes \mid Sunny) = 0.33 \times 0.64 \div 0.36 = 0.60$$

P(x) = P(Sunny)

= 5/14 = 0.36

Naive Bayes

Ref:

>>> import numpy as np
>>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
>>> Y = np.array([1, 1, 1, 2, 2, 2])
>>> from sklearn.naive_bayes import GaussianNB
>>> clf = GaussianNB()
>>> clf.fit(X, Y)
GaussianNB(priors=None)
>>> print(clf.predict([[-0.8, -1]]))
[1]

[0.5]

Ref:

>>> print(neigh.predict([[1.5]]))

>>> X = [[0], [1], [2], [3]]
>>> y = [0, 0, 1, 1]
>>> from sklearn.neighbors import KNeighborsRegressor
>>> neigh = KNeighborsRegressor(n_neighbors=2)
>>> neigh.fit(X, y)
KNeighborsRegressor(...)

Kernels

- Gaussian Radial Basis Function (RBF): $K(x_i,x_j) = \exp(-\gamma \|x_i-x_j\|^2)$
- Polynomial: $K(x_i, x_j) = (\gamma x_i^T x_j + c)^d$
- Sigmoid: $K(x_i, x_j) = \tanh(\gamma x_i^T x_j + c)$

Linear Kernel

C hyperparameter

Polynomial Kernel

C plus gamma, degree and coefficient hyperparameters

RBF Kernel

C phis gamma hyperparameter

```
>>> from sklearn import svm
>>> X = [[0, 0], [1, 1]]
>>> y = [0, 1]
>>> clf = svm.SVC()
>>> clf.fit(X, y)
SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,
    decision_function_shape='ovr', degree=3, gamma='auto', kernel='rbf',
    max_iter=-1, probability=False, random_state=None, shrinking=True,
    tol=0.001, verbose=False)
```

Python Code

Go to

http://scikit-learn.org/stable/auto_examples/classification/plot_classifier_comparison.html

Regularization

Regularization

The minimization

$$\min_{f} |Y_i - f(X_i)|^2$$

may be attained with zero errors.

But the function may not be unique.

Regularization

$$\min_{f \in H} \sum_{i=1}^{n} |Y_i - f(X_i)|^2 + \lambda ||f||_H^2$$

- Regularization with smoothness penalty is preferred for uniqueness and smoothness.
- Link with some RKHS norm and smoothness

L1 vs. L2

L1 regularization on least squares:

$$\mathbf{w}^* = \arg\min_{\mathbf{w}} \sum_{j} \left(t(\mathbf{x}_j) - \sum_{i} w_i h_i(\mathbf{x}_j) \right)^2 + \lambda \sum_{i=1}^{k} |w_i|$$

L2 regularization on least squares:

$$\mathbf{w}^* = \arg\min_{\mathbf{w}} \sum_{j} \left(t(\mathbf{x}_j) - \sum_{i} w_i h_i(\mathbf{x}_j) \right)^2 + \lambda \sum_{i=1}^k w_i^2$$

L2 regularization	L1 regularization	
Computational efficient due to having analytical solutions	Computational inefficient on non-sparse cases	
Non-sparse outputs	Sparse outputs	
No feature selection	Built-in feature selection	

In the spirit of science, there really is no such thing as a 'failed experiment.'

Any test that yields valid data is a valid test.

Adam Savage