3 List of Theorems and Definitions

Definition 3.1 (Upper and Lower Bound). A set $A \subseteq \mathbb{R}$ is bounded above if there exists a number $b \in \mathbb{R}$ such that $a \leq b$ for all $a \in A$. Similarly, the set A is bounded below if there exists a lower bound $l \in \mathbb{R}$ satisfying $l \leq a$ for every $a \in A$.

Definition 3.2 (Supremum (Least Upper Bound)). A real number u is the *least upper bound* for a set $A \subseteq \mathbb{R}$ if it meets the following two criteria

- 1. u is an upper bound for A;
- 2. if b is any upper bound for A, then $u \leq b$.

Definition 3.3 (Infimum (Greatest Lower Bound)). A real number l is the *greatest lower bound* for a set $A \subseteq \mathbb{R}$ if it meets the following two criteria:

- 1. l is a lower bound for A;
- 2. if p is any lower bound for A, then $p \leq l$.

Theorem 3.1 (Characterization of $\sup S$ and $\inf S$).

- 1. An upper bound u of a nonempty set S in \mathbb{R} is the supremum of S if and only if for every $\epsilon > 0$, there exists an $s_{\epsilon} \in S$ such that $u \epsilon < s_{\epsilon}$.
- 2. A lower bound l of a nonempty subset S in \mathbb{R} is the infimum of S if and only if for every $\epsilon > 0$, there exists a $t_{\epsilon} \in S$ such that $l + \epsilon > t_{\epsilon}$.

Theorem 3.2 (Properties). Let S be a nonempty subset of \mathbb{R} and $a \in \mathbb{R}$. Define the sets

$$a + S = \{a + s : s \in S\}, \text{ and } -S = \{s : s \in S\}$$

- 1. If S is bounded above, then $\sup(a+S)=a+\sup S$.
- 2. if S is bounded below, then $\inf(a+S) = a + \inf S$.

3. if S is bounded, then

$$\inf(-S) = -\sup S$$
 and $\sup(-S) = -\inf S$

Definition 3.4 (Maximum and Minimum). A real number s_{max} is a **maximum** of a set S if $s_{max} \geq s$, for any $s \in S$ and $s_{max} \in S$. Similarly, s_{min} is a **minimum** of a set S if $s_{min} \leq s$, for all $s \in S$ and $s_{min} \in S$.

Definition 3.5 (Completeness Property of \mathbb{R}). Every nonempty set of real numbers that has an upper bound also has a supremum (AXIOM).

Theorem 3.3 (Archimedean Property). For every $x \in \mathbb{R}$, there exists $n \in \mathbb{N}$ such that x < n (or equivalently, the set of natural numbers is not bounded above).

Corollary 3.1. Let $y, z \in \mathbb{R}^+ = \{r \in \mathbb{R} : r > 0\}$. Then

- 1. $\exists n \in \mathbb{N} \text{ such that } z < ny$.
- 2. $\exists n \in \mathbb{N} \text{ such that } 0 < \frac{1}{n} < y \text{ (labeled as: Corollary 2)}.$
- 3. $\exists n \in \mathbb{N} \text{ such that } n-1 \leq z < n.$

Theorem 3.4 (Density Theorem). If $a, b \in \mathbb{R}$ such that a < b, then there exist $r \in \mathbb{Q}$ and $y' \in \mathbb{Q}'$ such that a < r < b and a < r' < b.

Theorem 3.5 (Nested Interval Property). For each $n \in \mathbb{N}$, assume that we have a closed interval $I_n = [a_n, b_n]$. Assume further that each I_n contains I_{n+1} , for any $n \in \mathbb{N}$. Then the resulting nested sequence of closed intervals

$$\cdots I_n \subset I_{n-1} \subset \cdots \subset I_3 \subset I_2 \subset I_1.$$

has a nonempty intersection, that is

$$\bigcap_{n=1}^{\infty} I_n \neq \emptyset$$

Moreover, if $\inf\{b_n - a_n : n \in \mathbb{N}\} = 0$, then there exists a unique x such that $x \in I_n$, for any $n \in \mathbb{N}$. That is,

$$\bigcap_{n=1}^{\infty} I_n = x$$

Definition 3.6 (ϵ -neighborhood). Given $a \in \mathbb{R}$ and $\epsilon > 0$, the ϵ -neighborhood of a is the set

$$V_{\epsilon}(a) = \{ x \in \mathbb{R} : |x - a| < \epsilon \},\$$

where a is called the center of the neighborhood.

Definition 3.7 (Open Set). A set $O \subseteq \mathbb{R}$ is *open* if for all $a \in O$, there exists an $\epsilon > 0$ such that the ϵ -neighborhood of a is a proper subset of O. That is, $V_{\epsilon}(a) \subset O$.

Definition 3.8 (Closed). A set $F \subseteq \mathbb{R}$ is **closed** if the complement of $F, F' = \mathbb{R} - F$ is open.

Theorem 3.6 (Union and Intersection of Open Sets).

- 1. The union of an arbitrary collection of open subsets in $\mathbb R$ is open
- 2. The intersection of any finite collection of open sets is open.

Theorem 3.7 (Union and Intersection of Closed Sets).

- 1. The intersection of an arbitrary collection of closed sets is closed
- 2. The union of any finite collection of closed sets is closed.

Definition 3.9 (Cluster and Interior Points).

1. A point $x \in \mathbb{R}$ is a cluster point of X if for every $\epsilon > 0$, $V_e(x)$ contains a point of X different from x. That is, for any $\epsilon > 0$,

$$V_{\epsilon}(x) \cap X \neq \emptyset$$
 and $V_{\epsilon}(x) \cap X \neq \{x\}$

Note: A cluster point is sometimes called a limit point

2. A point $x \in \mathbb{R}$ is an interior point of X if there exists $\epsilon > 0$ such that $V_{\epsilon}(x) \subset X$.

Theorem 3.8 (Characterization of Open and Closed Sets). A subset F of \mathbb{R} is closed if and only if F contains all of its cluster points.

- 2. A subset O of \mathbb{R} is **open** if and only if every point of O is an **interior point** of O.
- 3. A subset of \mathbb{R} is **open** if and only if it is the countable union of disjoint open intervals in \mathbb{R} . (Proof in Bartle & Sherbert 329-330).

Definition 3.10 (Closure of a Set). Let $A \subset \mathbb{R}$ and let C_a be the set of cluster points of A. The *closure* of A, denoted by \overline{A} , is the set

$$\bar{A} = A \cup C_A$$

Theorem 3.9. Let $A \subseteq \mathbb{R}$.

- 1. The closure \bar{A} is closed
- 2. The closure \bar{A} is the smallest closed set containing A.

Definition 3.11 (Open Cover). An open cover of A is a collection of $\mathcal{O} = \{O_{\alpha}\}$ of open sets in \mathbb{R} whose union contains A, that is,

$$A\subseteq\bigcup_{\alpha}O_{\alpha}$$

Definition 3.12 (Subcover). A *subcover* of \mathcal{O} is a subcollection of sets \mathcal{O}' such that $\mathcal{O}' \subset \mathcal{O}$ and \mathcal{O}' is also an open cover of A.