

ISMAT301

		1 1		Ì		!	1	1	1	1
USN	1	M	S	į .	(į.		į.	ι,	lι
		1		l					L	L

M S RAMAIAH INSTITUTE OF TECHNOLOGY

(AUTONOMOUS INSTITUTE, AFFILIATED TO VTU) BANGALORE – 560 054

SEMESTER END EXAMINATIONS – January 2013

Course & Branch

B.E.- (Information Science and

: III

Subject

Engineering)

Semester

Max. Marks: 100

---,---

: Engineering Mathematics-III

Duration .

: 3 Hrs

Subject Code

: ISMAT301

Instructions to the Candidates:

Answer one full question from each unit.

UNIT - I

1. a) From the following table, estimate the number of students who obtained (06) marks between 40 and 45.

{	Marks	30-40	40 - 50	50 - 60	60-70	70-80
	No. of students	31	42	51	35	31

b) Determine f(x) as the polynomial in x for the following data, using the (07) Lagrange's interpolation formula and hence find f(3).

X	0	1	2	5
y	2	3	12	147

Use Simpson's 1/3 rule and 3/8 rule to evaluate $\int_{0}^{1} \frac{dx}{1+x^2}$ considering seven (07)

equidistant ordinates. Hence find the approximate value of π in each case.

2. a) Given $y_0 = -4$, $y_1 = -2$, $y_4 = 220$, $y_5 = 546$, $y_6 = 1148$ then find y_2 and y_3

corresponding to the equidistant values of x.

b) Find the equation of the cubic curve for the following data using Newton's (07) divided difference formula and hence find f(10).

	Х	4	7	9	12
ĺ	У	-43	83	327	1053

c) Compute y'(2) and y'(4.5) for the data given below using Newton's (07)

backward interpolation formula.

X	-2	-1	0	1	2	3	
У	0	0	6	24	60	120	

UNIT - II

3. a) Discuss the nature of the series $\frac{x}{1.2} + \frac{x^2}{2.3} + \frac{x^3}{3.4} + \dots$ (06)

(06)

ISMAT301

- b) Obtain the Fourier series for the function f(x) = |x|, over the interval $-\pi < x < \pi \text{ and hence deduce that } \frac{\pi^2}{8} = \sum_{n=1}^{\infty} \frac{1}{(2n-1)^2}.$ (07)
- Find the half range Sine series for the function $f(x) = \begin{cases} \frac{1}{4} x, & 0 < x < 1/2 \\ x \frac{3}{4}, & 1/2 < x < 1 \end{cases}$ (06)
 - b) Obtain the Fourier series for the function $f(x)=2x-x^2$ in $0 \le x \le 2$ and hence (07) deduce that $\frac{\pi^2}{12} = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2}$

UNIT - III

- 5. a) Find the Fourier Sine transform of $e^{-|x|}$ and hence evaluate $\int_{0}^{x} \frac{x \sin ax}{1+x^2} dx$, a > 0. (06)
 - b) Find the complex Fourier transform of $f(x) = e^{-a^2x^2}$ where 'a' is a positive constant. Hence deduce that $e^{-x^2/2}$ is self-reciprocal in respect of complex Fourier transform
 - Solve the difference equation $y_{n+2} 4y_n = 0$ with $y_0 = 0$, $y_1 = 2$ by using Z transforms. (07)
- 6. a) Find the inverse Z transforms of the following.

- b) Prove that $Z_T(n^p) = -z \frac{d}{dz} [Z_T(n^{p-1})]$ and hence obtain the Z transform of n (07) and n^2 .
- Employing Parseval's identity to the function $f(x) = \begin{cases} 1, & |x| < 1 \\ 0, & |x| > 1 \end{cases}$, Show that (07) $\int_{0}^{\infty} \frac{\sin^{2} x}{x^{2}} dx = \frac{\pi}{2}$

ISMAT301

UNIT - IV

7. a) Form a partial differential equation by eliminating the arbitrary functions (06) from:

i)
$$\varphi(x+y+z, x^2+y^2-z^2)=0$$

ii)
$$z = f(x+iy) + \varphi(x-iy)$$

- b) Find the general solution of the equation $x^{2}(y-z) p + y^{2}(z-x)q = z^{2}(x-y)$ (07)
- c) Solve the equation $u_t = u_{xx}$ subject to the conditions $u(x,0) = \sin \pi x$, $0 \le x \le 1$; (07) u(0,t) = u(1,t) = 0, using Schmidt method. Carryout computations for two levels taking h=1/3 and k=1/36.
- 8. a) Solve $(y^2 + z^2 x^2)p 2xyq + 2xz = 0$ (06)
 - b) Solve $\frac{\partial u}{\partial x} = 2 \frac{\partial u}{\partial t} + u$, given that $u(x,0) = 6e^{-3x}$ by method of separation of variables. (07)
 - c) Solve the Laplace equation $u_{xx} + u_{yy} = 0$ in the square region shown in the following figure, with the boundary values as indicated in the figure carry out three iterations.

UNIT - V

- 9. a) Determine whether the set $\{x^2 + 3x 1, x + 3, 2x^2 x + 1\}$ is linearly independent over the vector space P₂ of polynomials of degree less than or equal to 2.
 - b) Prove that the set $\{(1,0,-1),(1,1,1),(1,2,4)\}$ of vectors is a basis for the vector (07) space \mathbb{R}^3 .
 - c) Determine the kernel and range of the transformation defined by the (07) following matrix.

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 \\ 0 & -1 & 1 \\ 1 & 1 & 4 \end{bmatrix}$$

10. a) Prove that the following transformation T: $R^2 \rightarrow R^2$ is Linear. (06) T(x,y) = (2x, x+y).

- b) Define coordinate vector. Also determine whether the vector (-3,3,7) is a (07) linear combination of the vectors (1,-1,2),(2,1,0) and (-1,2,1).
- c) Define dilation and contraction of a linear transformation. Find the matrix A (07) of a linear operator T(X)=AX from $R^2\rightarrow R^2$ that rotates a vector X through an angle θ about the origin.

Page 3 of 3