601.445/601.645 Practical Cryptographic Systems

Symmetric Cryptography

Instructor: Matthew Green

Housekeeping

- New (last!) assignment coming Friday
- Will include written and programming portions

News?

Review

- Last time:
 - Review of GC
- Today:
 - Secret sharing
 - MPC based on secret sharing

Communication Model

Communication Model

Computation model

Computation model (ideal)

Computation model (MPC)

MPC

- Three basic properties we want to achieve
 - Correctness: the output of the function is actually what it should be
 - Privacy: nobody learns anything about honest parties' inputs (other than what they would learn from the function output)
 - Guaranteed output delivery (no dishonest party can prevent honest parties from getting outputs)

Adversarial model

MPC

- We must consider an adversarial model
 - If all parties are totally malicious (and colluding) then there can be no security!
 - So we will assume some parties are "honest" and some are "corrupted"
- What do corrupted parties do?
 - Semi-honest ("honest but curious)") model: they obey the protocol as written, but also try to learn information about the honest parties' input passively
 - Malicious model: adversaries can do/send anything they want

Semi-honest model?

- Why do we think there is a semi-honest model?
- Does this make any sense?
- Can we come up with obviously broken protocols in this model?

Secure channels

Secure channels

- For simplicity we will often assume that the parties can communicate with each other securely
 - le, the adversaries are the <u>corrupted parties</u>, not eavesdroppers on the wire
 - In practice: how do we achieve this?

Types of MPC

- Honest majority: we assume that if there are N participants, then strictly more than N/2 of the participants are honest
- Dishonest majority: more than N/2 may be corrupted, all the way up to N-1
- What does this mean for 2PC?

Applications of MPC

- Key splitting: break a single encryption key into multiple pieces, use MPC to compute decryption/signatures etc.
- Evaluating secret data: compute functions over data that nobody wants to reveal, e.g.,:
 - Sealed-bid auctions: nobody learns non-winning bids
 - Statistical calculations: e.g., compute salary ranges
 - Machine learning: train ML models on large amounts of private data (often this uses a technique called "differential privacy")

Secret sharing

- Problem:
 - Take a given secret s and break it into N different pieces ("shares")
 - Want to recover the original secret from any M of the shares, M <= N
 - What is the security goal?

Secret sharing

- Two algorithms:
 - Share(N, M, s): outputs (t1,, tN)
 - Recover(N, M, t_i1, ..., t_iM): outputs s'

Secret sharing

- Correctness?
- Security definition:
 - (Informal) Given any subset of M-1 shares, no adversary learns <u>any</u> <u>information</u> about *s* (other than its size)
 - Alternative definition: Given a set of M-1 shares of s, and a set of M-1 shares of some random value s', no adversary can tell the difference
 - (E.g., there is no detectable difference between the shares of s and a random element of the same length.)

How do we build secret sharing

- Let's try to build 2-out-of-2 secret sharing
- We have a bitstring s, and wish to compute t1, t2 such that:
 - Neither t1 or t2 (by itself) reveals anything about s (other than length)
 - Given both t1, t2 we can recover s

How do we build secret sharing

- Let's try to build 2-out-of-2 secret sharing
- We have a bitstring s, and wish to compute t1, t2 such that:
 - Neither t1 or t2 (by itself) reveals anything about s (other than length)
 - Given both t1, t2 we can recover s
- Solution (share algorithm):
 - Pick a random string t1 such that |t1| = |s|
 - Set t2 = s XOR t1

How do we build secret sharing

• Let's try to build 2-out-of-3 secret sharing using the same technique

General secret sharing

- What are the downsides of the XOR approach?
- Can we build a more efficient, general-purpose approach?

- Let y=mx+b be the equation of a line
- Imagine I give you a point (x, y) for x != 0
- What can we learn about *b*?

- Let y=mx+b be the equation of a line
- Imagine I give you a point (x, y) for x != 0
- What can we learn about b?
 - For every b, (x, y) there exists a line that passes through (0, b)

- Let y=mx+b be the equation of a line
- Imagine I give you two distinct points (x2, y2), (x1, y1)
- What can we learn about *b*?

- Further optimization: instead of computing over the real numbers, let's compute over the field Zp
- Let y=mx+b mod p be the equation of a line
- Same questions

- This allows us to compute a 2-of-N secret sharing
- Fix some Zp (for largish p)
- Pick a line with constant term (y-intercept) set to s and a random coefficient (slope) m
- For x=1 to N, output shares:
 - t_i = (x, mx+s) mod p
- Recovery is just linear interpolation

Can we generalize this to M>2?

Can we generalize this to M>2?

- Shamir's observations:
 - Any degree-(M-1) polynomial can be uniquely interpolated given M distinct points (using Lagrangian interpolation)
 - Given only M-1 points (or fewer) the polynomial is not constrained

Can we generalize this to M>2?

- Share(M, N, s):
 - Fix Zp
 - Sample coefficients (a1, ..., a_{M-1}), and set P(x) to the polynomial defined by these coefficients, with constant term s
 - Compute shares: (1, P(1)), (2, P(2)), ..., (N, P(N))

Other nice facts about secret sharing

- Polynomials can be added easily
 - Given two (random) polynomials F(), G() with constant terms s1, s2
 - The sum of F() + G() has constant term s1+s2
 - Similarly, adding together a vector of secret shares for secrets s1, s2 (respectively) will produce a set of shares for (s1 + s2)

Other nice facts about secret sharing

- Polynomials can be added easily
 - Given two (random) polynomials F(), G() with constant terms s1, s2
 - The sum of F() + G() has constant term s1+s2
 - Similarly, adding together a vector of secret shares for secrets s1, s2 (respectively) will produce a set of shares for (s1 + s2)
 - Better yet, if F() and G() are random polynomials, then their sum will also be a random polynomial

Can we multiply secret shares?

- Not quite as elegantly
 - If we multiply two polynomials of degree d, we get a polynomial of degree 2d. Also it's not random anymore.
 - This also prevents us from just multiplying shares
 - However, there are interactive protocols for multiplying secret shares, then reducing the degree of the resulting polynomial