Министерство образования и науки Российской Федерации Московский физико-технический институт (государственный университет)

Физтех-школа прикладной математики и информатики Кафедра системного программирования ИСП РАН Отдел компиляторных технологий

Выпускная квалификационная работа бакалавра

Автоматическое обнаружение гонок при параллельной сборке с использованием утилиты Make

Автор: Студент группы Б05-032 Климов Артем Юрьевич

Научный руководитель: Мельник Дмитрий Михайлович

Научный консультант: Владислав Анатольевич Иванишин

Научный консультант: Александр Владимирович Монаков

Аннотация

Автоматическое обнаружение гонок при параллельной сборке с использованием утилиты Маке $Kлимов\ Apmem\ HOpьeвич$

В этой работе представлен метод и программная реализация автоматического обнаружения потенциальных состояний гонки при сборке программных проектов, использующих систему сборки Make. Представлены результаты применения этого метода на открытых проектах и проведено сравнение с существующим решением для обнаружения состояний гонки.

Abstract

Development of an Automated Race Detection Tool for Parallel Make-Based Builds

Содержание

1	Введение	4
2	Постановка задачи	5
3	Обзор существующих решений	6
4	Исследование и построение решения задачи	7
5	Описание практической части	8
6	Заключение	9

1 Введение

В этой части надо описать предметную область, задачу из которой вы будете решать, объяснить её актуальность (почему надо что-то делать сейчас?). Здесь же стоит ввести определения понятий, которые вам понадобятся в постановке задачи.

2 Постановка задачи

Необходимо формально изложить суть задачи в данной секции, предоставив такие ясные и точные описания, которые позволят в последующем оценить, насколько разработанное решение соответствует поставленной задаче. Текст главы должен следовать структуре технического задания, включая как описание самой задачи, так и набор требований к ее решению.

3 Обзор существующих решений

Здесь надо рассмотреть все существующие решения поставленной задачи, но не просто пересказать, в чем там дело, а оценить степень их соответствия тем ограничениям, которые были сформулированы в постановке задачи.

4 Исследование и построение решения задачи

Требуется разбить большую задачу, описанную в постановке, на более мелкие подзадачи. Процесс декомпозиции следует продолжать до тех пор, пока подзадачи не станут достаточно простыми для решения непосредственно. Это может быть достигнуто, например, путем проведения эксперимента, доказательства теоремы или поиска готового решения.

5 Описание практической части

Если в рамках работы писался какой-то код, здесь должно быть его описание: выбранный язык и библиотеки и мотивы выбора, архитектура, схема функционирования, теоретическая сложность алгоритма, характеристики функционирования (скорость/память).

Автоматическое обнаружение гонок при параллельной сборке с использованием утилиты Make

6 Заключение

Здесь надо перечислить все результаты, полученные в ходе работы. Из текста должно быть понятно, в какой мере решена поставленная задача.

Список литературы

- [1] Mott-Smith, H. The theory of collectors in gaseous discharges / H. Mott-Smith, I. Langmuir // Phys. Rev. 1926. Vol. 28.
- [2] *Морз*, *Р.* Бесстолкновительный РІС-метод / Р. Морз // Вычислительные методы в физике плазмы / Еd. by Б. Олдера, С. Фернбаха, М. Ротенберга. М.: Мир, 1974.
- [3] $\mathit{Киселёв}$, A. A. Численное моделирование захвата ионов бесстолкновительной плазмы электрическим полем поглощающей сферы / A. A. Киселёв, Долгоносов M. C., Красовский B. $\Pi.$ // Девятая ежегодная конференция «Физика плазмы в Солнечной системе». 2014.