Theoretical Constructions of Pseudorandom Objects

Yu Zhang

HIT/CST/NIS

Cryptography, Spring, 2012

Outline

Content

Overview

One of contributions of modern cryptography

The existence of one-way functions is equivalent to the existence of all (non-trivial) private-key cryptography.

One-Way Functions (OWF)

The inverting experiment Invert_{A,f}(n):

- **1** Choose input $x \leftarrow \{0,1\}^n$. Compute y := f(x).
- $\mathbf{2}$ \mathcal{A} is given 1^n and y as input, and outputs x'.
- Invert_{A,f}(n) = 1 if f(x') = y, otherwise 0.

Definitions of OWF/OWP

For polynomial-time algorithm M_f and \mathcal{A} .

Definition 1

A function $f: \{0,1\}^* \to \{0,1\}^*$ is **one-way** if:

- **1** (Easy to compute): $\exists M_f: \forall x, M_f(x) = f(x)$.
- **2** (Hard to invert): $\forall A$, \exists negl such that

$$\Pr[\mathsf{Invert}_{\mathcal{A},f}(n) = 1] \leq \mathsf{negl}(n).$$

or

$$\Pr_{x \leftarrow \{0,1\}^n}[\mathcal{A}(f(x)) \in f^{-1}(f(x))] \leq \mathsf{negl}(n).$$

Definition 2

Let $f: \{0,1\}^* \to \{0,1\}^*$ be length-preserving, and f_n be the restriction of f to the domain $\{0,1\}^n$. A OWP f is a **one-way permutation** if $\forall n, f_n$ is a bijection.

Families of Functions

Definition 3

 $\Pi = (\mathsf{Gen}, \mathsf{Samp}, \mathsf{f})$ is a **family of functions** if:

- **1** Parameter-generation algorithm: $I \leftarrow \text{Gen}(1^n)$.
- **2** sampling algorithm: $x \leftarrow \mathsf{Samp}(I)$.
- **3** The deterministic **evaluation** algorithm: $y := f_I(x)$.

Families of OWF and OWP

The inverting experiment Invert $_{A,\Pi}(n)$:

- **I** Gen (1^n) obtains I, Samp(I) obtains a random $x \leftarrow \mathcal{D}_I$. $y := f_I(x)$.
- $\mathbf{2}$ \mathcal{A} is given I and y as input, and outputs x'.
- 3 Invert_{A,Π}(n) = 1 if $f_I(x') = y$, and 0 otherwise.

Definition 4

a function/permutation family Π is **one-way** if \forall PPT \mathcal{A} , \exists negl such that

$$\Pr[\mathsf{Invert}_{\mathcal{A},\Pi}(n) = 1] \le \mathsf{negl}(n).$$

Candidate One-Way Function

- Multiplication and factoring: $f_{\text{mult}}(x, y) = (xy, ||x||, ||y||)$, x and y are equal-length primes.
- Modular squaring and square roots: $f_{\text{square}}(x) = x^2 \mod N$.
- Discrete exponential and logarithm: $f_{g,p}(x) = g^x \mod p$.
- Subset sum problem: $f(x_1, \ldots, x_n, J) = (x_1, \ldots, x_n, \sum_{j \in J} x_j).$
- Cryptographically secure hash functions: Practical solutions for one-way computation.

Hard-Core Predicates (HCP)

Definition 5

A function hc : $\{0,1\}^* \to \{0,1\}$ is a hard-core predicate of a function f if (1) hc can be computed in polynomial time, and (2) \forall PPT \mathcal{A} , \exists negl such that

$$\Pr_{x \leftarrow \{0,1\}^n}[\mathcal{A}(f(x)) = \mathsf{hc}(x)] \leq \frac{1}{2} + \mathsf{negl}(n).$$

Content

A HCP for Any OWF

Theorem 6

f is OWF. Then \exists an OWF g along with an HCP gI for g. If f is a permutation then so is g.

$$g(x,r) \stackrel{\mathsf{def}}{=} (f(x),r)$$
, for $|x| = |r|$, and define

$$\operatorname{gl}(x,r) \stackrel{\mathsf{def}}{=} \bigoplus_{i=1}^n x_i \cdot r_i.$$

r is a random subset of $\{1,\ldots,n\}$. [Goldreich and Levin]

Constructing PRG from OWP

Theorem 7

f is an OWP and hc is an HCP of f. Then $G(s) \stackrel{\text{def}}{=} (f(s), \text{hc}(s))$ constitutes a PRG with expansion factor $\ell(n) = n + 1$.

Theorem 8

If \exists a PRG with expansion factor $\hat{\ell}(n) = n+1$, then \forall polynomial p(n) > n, \exists a PRG with expansion factor $\ell(n) = p(n)$.

Blum-Micali Generator

$$G(s) = (f^{p'(n)}(s), \mathsf{hc}_{[p'(n)-1]}(f^{[p'(n)-1]}(s)), \dots, \mathsf{hc}_0(s)),$$

is a PRG with expansion factor p(n) = n + p'(n).

Constructing PRF from PRG

Theorem 9

If \exists a PRG with expansion factor $\ell(n) = 2n$, then \exists a PRF.

$$F_k(x_1x_2\cdots x_n) = G_{x_n}(\cdots(G_{x_2}(G_{x_1}(k)))\cdots), G(s) = (G_0(s), G_1(s)).$$

Constructing PRP from PRF

 $F^{(r)}$ is an r-round Feistel network with the mangler function F.

Theorem 10

If F is a length-preserving PRF, then $F^{(3)}$ is a PRP that maps 2n-bit strings to 2n-bit strings (and uses a key of length 3n).

Theorem 11

If F is a length-preserving PRF, then $F^{(4)}$ is a strong PRP that maps 2n-bit strings to 2n-bit strings (and uses a key of length 4n).

A Four-Round Feistel Network

Necessary Assumptions

Theorem 12

Assume that \exists OWP. Then \exists PRG, PRF, strong PRP, CCA-secure private-key encryption schemes, and secure MAC.

Proposition 13

If \exists a private-key encryption scheme that has indistinguishable encryptions in the presence of an eavesdropper, then \exists an OWF.

Proof.

$$f(k, m, r) \stackrel{\mathsf{def}}{=} (\mathsf{Enc}_k(m, r), m).$$

Summary

- OWF implies secure private-key encryption scheme and MAC.
- Secure private-key encryption scheme/MAC implies OWF.