BEST AVAILABLE COPY

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2004-026608

(43) Date of publication of application: 29.01.2004

(51)Int.CI.

C01F 7/16 **H01B** 1/08

H01B 13/00

(21)Application number: 2002-

(71)Applicant: JAPAN SCIENCE &

TECHNOLOGY CORP

(22)Date of filing:

27.06.2002

188561

(72)Inventor: HOSONO HIDEO

HIRANO MASAHIRO HAYASHI KATSURO MIYAGAWA HITOSHI

(54) ELECTRICALLY CONDUCTIVE INORGANIC COMPOUND INCLUDING **ALKALI METAL**

(57) Abstract:

PROBLEM TO BE SOLVED: To obtain substances having a high electrical conductivity (>10-4 Scm-1) at room temperature in a solid solution system of CaO and Al2O3. SOLUTION: The substances include a 12CaO-7Al2O3 compound including alkali metal atoms or ions of a concentration of ≥1x1018 cm-3, a 12SrO-7Al2O3 compound including alkali metal atoms or ions of a concentration of ≥1x1018 cm-3, and further a mixed crystal compound of 12CaO-7Al2O3 and 12SrO-7Al2O3 including alkali metal atoms or ions of a concentration of ≥1x1018 cm-3. These compounds have an

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

electrical conductivity of ≥10-4 Scm-1.

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

(19) 日本国特許庁(JP)

(12)公 開 特 許 公 報(A)

(11)特許出願公開番号

特開2004-26608 (P2004-26608A)

(43) 公開日 平成16年1月29日(2004.1.29)

(51) Int.C1. ⁷	FI		テーマコード (参考)
CO1F 7/16	CO1F 7/16		4G076
HO1B 1/08	HO1B 1/08		5G3O1
HO1B 13/00	HO1B 13/00	Z	

		審査請才	* 未請求 請求項の数 9 OL (全 8 頁)
(21) 出願番号 (22) 出願日	特願2002-188561 (P2002-188561) 平成14年6月27日 (2002.6.27)	(71) 出願人	396020800 科学技術振興事業団 埼玉県川口市本町4丁目1番8号
		(74) 代理人	100108671
		(72) 発明者	細野 秀雄 神奈川県大和市下鶴間2786-4-21 2
·		(72) 発明者	平野 正浩 東京都世田谷区松原5-5-6
		(72) 発明者	林克郎
			神奈川県川崎市中原区新城中町6-20カ ピトール川崎 I 408
			最終頁に続く

(54) 【発明の名称】アルカリ金属を包接する電子伝導性無機化合物。

(57)【要約】

【課題】これまで、 $CaOEAl_2O_3$ の固溶系におい て、室温で高い電気伝導性 (>10⁻⁴ Scm⁻¹) を 有する物質を得ることは困難であった。また、先に開発 した水素陰イオンを包接したC12A7では、永続的な 電気伝導性を実現するためには、紫外線照射の処理が必 要であった

【構成】1×10¹⁸ 個 c m⁻³ 以上の濃度のアルカ リ金属原子及び/又はイオンを包接することを特徴とす る12CaO・7Al₂O₃化合物。1×10¹⁸個 cm^{-3} 以上の濃度のアルカリ金属原子及び/又はイオ ンを包接することを特徴とする125rO・7Al。O 3 化合物。 1×10¹⁸ 個 c m⁻³ 以上の濃度のアル カリ金属原子及び/又はイオンを包接することを特徴と t312CaO·7Al2O3 &12SrO·7Al2 O₃ との混晶化合物。これらの化合物は室温で電気伝導 率10⁻⁶ Scm⁻¹ 以上の電気伝導性を有する。

【選択図】 図3

10

30

【特許請求の範囲】

【請求項1】

 1×10^{-18} 個 c m $^{-3}$ 以上の濃度のアルカリ金属原子及び/又はイオンを包接することを特徴とする 1 2 C a O \cdot 7 A 1 2 O $_3$ 化合物。

【請求項2】

 1×10^{-1} ⁸ 個 c m ⁻³ 以上の濃度のアルカリ金属原子及び/又はイオンを包接することを特徴とする 1 2 S r O · 7 A 1 ₂ O ₃ 化合物。

【請求項3】

 1×10^{-18} 個 c m $^{-3}$ 以上の濃度のアルカリ金属原子及び/又はイオンを包接することを特徴とする $1 \ 2 \ C \ a \ O \cdot 7 \ A \ 1_2 \ O_3$ と $1 \ 2 \ S \ r \ O \cdot 7 \ A \ 1_2 \ O_3$ との混晶化合物。

【請求項4】

アルカリ金属が、ナトリウム又はリチウムであることを特徴とする請求項 1 から 3 のいずれかに記載された化合物。

【請求項5】

室温で電気伝導率 1 0 ⁻⁶ S c m ⁻¹ 以上の電気伝導性を有することを特徴とする請求項 1 から 4 のいずれかに記載された化合物。

【請求項6】

1 2 C a O・7 A l $_2$ O $_3$ 化合物、1 2 S r O・7 A l $_2$ O $_3$ 化合物、又は1 2 C a O・7 A l $_2$ O $_3$ と 1 2 S r O・7 A l $_2$ O $_3$ との混晶化合物をアルカリ金属の存在する雰囲気中で5 0 0 $^{\circ}$ 以上の温度で熱処理を施して 1 × 1 0 $^{\circ}$ 8 個 c m $^{\circ}$ 3 以上の濃度のアルカリ金属原子及び/又はイオンを包接させることを特徴とする請求項 1 から 5 のいずれかに記載の化合物の製造方法。

【請求項7】

請求項1から5のいずれかに記載された化合物を用いることを特徴とする透明電極又は透明配線。

【請求項8】

請求項1から5のいずれかに記載された化合物を用いることを特徴とする透明蛍光体。

【請求項9】

請求項8に記載された透明蛍光体を用いることを特徴とする紫外光又はX線検出素子。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、12 CaO・7 Al $_2$ O $_3$ 化合物(以下C12A7と記す。)、12 SrO・7 Al $_2$ O $_3$ 化合物(以下S12A7と記す。)、又は12 CaO・7 Al $_2$ O $_3$ と12 SrO・7 Al $_2$ O $_3$ との混晶化合物、及びこれらの製造方法と、これらの化合物の用途に関する。

[0002]

【従来の技術】

1970年にH. B. Bartlらは、C12A7結晶が2分子を含む単位胞にある66個の酸素のうち2個を、結晶中に存在するケージ内の空間に「フリー酸素」として包接しているという、特異な特徴を持つことを示していた(H. B. Bartl and T. Scheller, Neuses Jarhrb. Mineral., Monatsh. 1970, 547)。以後、このフリー酸素が種々の陰イオンに置換できることが明らかにされた。

[0003]

本発明者らの一人である細野は、 $CaCO_3$ と Al_2O_3 又は $Al(OH)_3$ を原料とし、空気中で1200 Cの温度で固相反応により合成したC12A7 結晶の電子スピン共鳴を測定することで、 1×10^{19} 個 c m $^{-3}$ 程度の O_2 が包接されていることを発見し、フリー酸素の一部が O_2 の形でケージ内に存在するというモデルを提案した(H. Hosono and Y. Abe, Inorg. Chem. 26, 1193, 1987

. 「材料科学」,第33巻,第4号,p171-172,1996)。

[0004]

本発明者らは、カルシウムとアルミニウムを概略 12:14 の原子当量比で混合した原料を、雰囲気と温度を制御した条件下で固相反応させ、 10^{20} 個 c m $^{-3}$ 以上の高濃度の活性酸素種を包接する C 12A7 化合物が得られることを新たに見出した。その化合物自体、その製法、包接イオンの取り出し手段、活性酸素イオンラジカルの同定法、および該化合物の用途に関する発明について、特許出願した(特願 2001-49524, P C T / J P 01/03252)。

[0005]

また、該化合物中の OH^- イオンなど酸素以外のアニオン濃度を制御し、700 ℃付近で、活性酸素を包接させたり、取り出したりする方法を新たに見出し、これに関する発明を特許出願した(特願 2001-26843)。さらに、活性酸素を高濃度に含むC12 A 7 化合物に電場を印加することで、高密度の O^- イオンビームを取り出せることを見出し、これに関する発明を特許出願した(特願 2001-377293)。

[0006]

また、水中、水分を含む溶媒中、又は水蒸気を含む気体中で水和反応させたC 1 2 A 7 化合物粉末を、酸素雰囲気で焼成することにより、O H $^-$ イオンを 1 O 2 $^-$ 個 c m $^ ^3$ 以上の濃度で包接する C 1 2 A 7 化合物を合成し、その化合物自体、その製法、O H $^-$ イオンの同定法、及び該化合物の応用に関する発明について、特許出願した(特願 2 O O 1 - 1 1 7 5 4 6)。

[0007]

また、水素陰イオンを含む C 1 2 A 7 化合物が高速イオン伝導を示す物質であること、電場の印加によりその水素陰イオンを真空中に引き出せることを見出した。 さらには、紫外線又は X 線照射により緑色の着色が生じること、同時に電気的絶縁体から電気伝導体に永続的に変化し、加熱又は強い可視光の照射により再び絶縁状態に戻せることも発見し、これの応用に関する発明について、特許出願した(特願 2 0 0 2 - 1 1 7 3 1 4)。

[0008]

また、C12A7化合物と同等の結晶構造を持つ物質として、S12A7化合物が知られている (O. Yamaguchi et al., J. Am. Ceram. Soc. 69 [2] C-36, 1986)。本発明者らは、S12A7についてもその合成方法と活性酸素イオンの包接方法、該化合物の応用に関する発明について、特許出願した(特願2002-045302)。

[0009]

【発明が解決しようとする課題】

これまで、 $CaO \& Al_2O_3$ の固溶系において、室温で高い電気伝導性($>10^{-4}Scm^{-1}$)を有する物質を得ることは困難であった。また、上記に述べた水素陰イオンを包接したC12A7では、永続的な電気伝導性を実現するためには、紫外線照射の処理が必要であった。

[0010]

【課題を解決するための手段】

本発明者らは、水素陰イオンを包接したC12A7化合物に関する研究から得られた知見を基に研究を重ねた結果、高温のアルカリ金属蒸気中に保持されたC12A7化合物が、紫外線照射を行わないにも関わらず、緑色の着色を生じていること、また、同時に電気伝導性を有していることを発見した。

[0011]

本発明は、種々の陰イオンを包接することが可能で、安定な固体材料であるC12A7に、アルカリ金属を包接させることによって、本来は電気的絶縁体であるC12A7を電気伝導体に永続的に転換させる方法と、室温大気中で電気伝導性を発現できる材料を提供する。

[0012]

50

40

10

すなわち、本発明は、下記のものからなる。

- (1) 1×10¹⁸個₃cm⁻³以上の濃度のアルカリ金属原子及び/又はイオンを包接することを特徴とするC12A7化合物。
- (2) 1×10^{18} 個 c m $^{-3}$ 以上の濃度のアルカリ金属原子及び/又はイオンを包接することを特徴とする S 1 2 A 7 化合物。
- (3) 1×10¹⁸ 個 c m ³ 以上の濃度のアルカリ金属原子及び/又はイオンを包接することを特徴とするC12A7とS12A7との混晶化合物。
- (4) アルカリ金属が、ナトリウム又はリチウムであることを特徴とする上記(1)から(3)のいずれかに記載された化合物。
- (5) 室温で電気伝導率10⁻⁶ Scm⁻¹ 以上の電気伝導性を有することを特徴とする上記(1)から(4)のいずれかに記載された化合物。

[0013]

(6) 12 CaO・7 A 12 O3 化合物、12 SrO・7 A 12 O3 化合物、又は 12 CaO・7 A 12 O3 と 12 SrO・7 A 12 O3 化 12 SrO・7 A 12 SrO・7 M 12 SrO・7 M 12 SrO・7 M 12 SrO 12 S

[0014]

- (7) 上記(1) から(5) のいずれかに記載された化合物を用いることを特徴とする透明電極又は透明配線。
- (8)上記(1)から(5)のいずれかに記載された化合物を用いることを特徴とする透明蛍光体。
- (9)上記(8)に記載された透明蛍光体を用いることを特徴とする紫外光又はX線検出素子。

[0015]

【発明の実施の形態】

本発明の化合物の製造方法において、出発物質は、純粋なC12A7化合物でもよいし、処理中にC12A7特有の結晶構造が破壊されない限りは、カルシウムとアルミニウムの一部又は全てが他の元素で置換されたC12A7化合物と同等の結晶構造をもつ混晶や固溶体(以下、これらを同等物質と略す)でもよい。

[0016]

C12A7化合物と同等の結晶構造をもつ物質として、現在、S12A7化合物が知られており、CaとSrの混合比を自由に変化させて混合することができる。つまり、C12A7とS12A7の混晶化合物でもよい。また、初期に包接されている陰イオンの種類や量は、アルカリ金属の包接効果に大きな影響を及ぼさない。さらに、形態は、粉末、膜、多結晶体、単結晶のいずれでもよい。

[0017]

出発物質であるC 1 2 A 7 は、カルシウムとアルミニウムを原子当量比で 1 2 : 1 4 含む原料を用い、焼成温度 1 2 0 0 $^{\circ}$ 以上 1 4 1 5 $^{\circ}$ 未満で固相反応させることで合成される。代表的な原料は炭酸カルシウムと酸化アルミニウムの混合物である。

[0018]

単結晶は、固相反応で得られたC12A7を前駆体として、帯融法(FZ法)によって得ることができる。C12A7単結晶の育成には、棒状のセラミック前駆体に赤外線を集光しながら前駆体棒を引き上げることにより溶融帯を移動させて、溶融帯 - 凝固部界面に単結晶を連続的に成長させる。本発明者らは、高濃度の活性酸素種を含むC12A7化合物単結晶と、気泡の無いC12A7単結晶の製造方法に関する発明について、特許出願している(特願2001-226843号)。

[0019]

本発明の化合物を製造するには、出発物質のC12A7化合物及び同等物質を、アルカリ 金属蒸気を含む雰囲気中に、500℃以上、望ましくは800℃以上、1350℃未満の 30

10

20

50

30

40

50

熱処理温度で、出発物質の形態に応じて、数分から数時間保持することによりアルカリ金属を出発物質に拡散させた後、200℃/時間以上、望ましくは200℃/分以上の降温速度で速やかに冷却する。熱処理温度が500℃未満では、アルカリ金属の該物質への拡散速度が小さく10¹⁸個cm³未満にしかアルカリ金属原子及び/又はイオンを包接できない。1350℃以上の高温では該物質が分解してしまう。アルカリ金属蒸気を含む雰囲気は、石英ガラスのような熱的、化学的耐久性のある容器中にアルカリ金属片やアルカリ金属粉末と出発物質を真空封入し、容器全体を加熱することでアルカリ金属が蒸発することにより形成される。

[0020]

以上の高温熱処理によりアルカリ金属を包接させた当該物質は、純粋なC12A7が出発物質であれば黄緑から深緑色の着色が認められる。同時に高温処理前では電気的絶縁体(10^{-1} Scm^{-1} 以下)であったC12A7が、室温で約 10^{-2} Scm^{-1} 程度の電気伝導性を示すようになる。化合物中にアルカリ金属が包接されていることは、ラザフォード後方散乱分光スペクトルにより確認できる。ただし、該スペクトルからではアルカリ金属の状態がイオンか原子かは識別できない。

[0021]

当該物質中に包接されたアルカリ金属は、包接直後は、電気的に中性な原子状態、又はマイナス1価に帯電したイオン状態、あるいは、その2つが混在した状態にあると考えられる。該状態のアルカリ金属のほとんどは、直ぐに、電子を放出し、原子状態のアルカリ金属はプラス1価のイオン状態に、イオン状態のアルカリ金属は、原子状態に変化すると考えられる。すなわち、包接されたアルカリ金属は、原子又はイオン状態、あるいは両者の混在した状態にあると考えられる。したがって、包接されるアルカリ金属の濃度は原子及び/又はイオンの個数として示すことができる。

[0022]

放出された電子は、当該物質中のケージに緩く束縛され、 F^+ センターを形成する。電場の印加により、 F^+ センターの電子がケージ間をホッピングすることで結晶中を移動し、図 3 に示す電気伝導性を示す様になると解釈される。室温で $1 \ 0^{-4} \ S \ c \ m^{-1}$ 以上の電気伝導度を生じるためには、 $1 \times 1 \ 0^{1-8}$ 個 $c \ m^{-3}$ 、望ましくは $1 \ 0^{1-9}$ 個 $c \ m^{-3}$ 以上の F^+ センターを形成させる必要があり、そのために、 $1 \times 1 \ 0^{1-8}$ 個、望ましくは $1 \ 0^{1-9}$ 個 $c \ m^{-3}$ 以上のアルカリ金属原子及び/又はイオンを包接させる必要がある。

[0023]

 10^{19} 個 c m $^{-3}$ の個数のアルカリ金属を原子及び/又はイオンの形で包接する C 12 A 7 はほぼ同数の F $^+$ センターが形成される。 F $^+$ センターは、 440 n m 付近に吸収バンドを有するが、 200 n m 厚さの試料の可視光透過率は 99% であり、透明膜とみなすことができる。

[0024]

C12A7中に存在するケージの個数は約7×10²¹個cm⁻³である。したがって、単純に1つのケージに一個のアルカリ金属原子及び/又はイオンが包接されると、包接される最大個数は約7×10²¹個cm⁻³である。また、ケージの大きさは約0.4 nmであり、アルカリ金属のイオン半径は0.06~0.17 nmである。つまり、Li、Na、K、Rb、Csのアルカリ金属を当該物質は包接することが可能であり、いずれのアルカリ金属イオンを包接させても当該物質を電気伝導体に転換することができる。よって、これらの化合物を太陽電池、液晶表示素子などの透明電極又は透明配線として用いることができる。

[0025]

アルカリ金属を包接した当該物質は、図4に示すように、紫外光又はX線励起により、波長375nmを中心とした300~500nmにわたるブロードな蛍光を示す。 よって、これらの化合物を励起光源に対する透明蛍光体として用いることが可能である。 また、同蛍光体を紫外光又はX線検出素子(イメージインテンシファイア)の蛍光面に用いることが可能である。イオン・電子線による当該物質の励起においては、当該物質が電 気伝導性を持つことから、従来の蛍光体に比べチャージアップ効果が低く抑えられる。

[0026]

【実施例】

次に、実施例によって本発明をさらに詳細に説明する。

実施例1

帯融法によって作製した C 1 2 A 7 単結晶を切り出し、両面研磨することで厚み約 0 . 3 m m の板状の試料に加工した。これを約 0 . 0 3 m g の金属ナトリウム片と共に、石英管中に挿入、封管し、8 0 0 ℃で 3 時間保持した後、炉外室温環境に取り出し、速やかに冷却した。図 1 に、ラザフォード後方散乱分光法(R B S)により求めたこの試料の深さ方向に対する N a 金属原子及び/又はイオンの濃度分布を示す。図 2 は、昇温前後における N a 金属を包接した C 1 2 A 7 単結晶の光吸収スペクトルを N a 金属を包接しない C 1 2 A 7 単結晶と比較して示したものである。

[0027]

図 3 に、この試料の電気伝導度の温度依存性を示す。 N a 金属包接前では電気伝導性を示さなかった試料 $(1\ 0^{-1}\ S\ c\ m^{-1}\ 以下)$ が、包接後に室温大気中で 4 . $3\times 1\ 0^{-2}\ S\ c\ m^{-1}$ の電気伝導度を示すようになる。試料の可視域での吸収率は、 $2\ 0\ 0\ n\ m$ の厚みに対しては 1 %以下であり、当該化合物を透明導電膜として用いることが可能である。

[0028]

図4に、この試料の励起スペクトル及び蛍光スペクトルを示す。 Na金属を包接後300~500nmにわたりブロードな発光を示している。

【図面の簡単な説明】

【図1】図1は、実施例1で得られたC12A7単結晶表面からのNa金属原子及び/又はイオンの濃度分布(縦軸には濃度を、横軸には深さをとった。)を示すグラフである。

【図2】図2は、実施例1で得られたC12A7単結晶の光吸収スペクトルを示すグラフである。

【図3】図3は、実施例1で得られたC12A7単結晶の電気伝導度の温度依存性(縦軸には導電率の対数を、横軸には絶対温度の-1/4乗をとった。)を示すグラフである。

【図4】図4は、実施例1で得られたC12A7単結晶の励起スペクトルと蛍光スペクトルを示すグラフである。

30

フロントページの続き

(72)発明者 宮川 仁

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ other:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.