

FCC PART 15.231

TEST REPORT

For

Suzhou Sate Auto Electronic Co., Ltd

No.36 Building, Yangtai Road, Suzou Industrial Park, Suzhou, Jiangsu, China

FCC ID: TTE3666OCU

Product Type: Report Type: Original Report Yard Check TPMS PCBA Max Min **Test Engineer:** Max Min **Report Number:** RSHA180309001-00A 2018-04-16 **Report Date:** Oscar. Ye Oscar Ye **Reviewed By:** RF Leader **Prepared By:** Bay Area Compliance Laboratories Corp. (Kunshan) No.248 Chenghu Road, Kunshan, Jiangsu province, China Tel: +86-0512-86175000 Fax: +86-0512-88934268 www.baclcorp.com.cn

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

TABLE OF CONTENTS

GENERAL INFORMATION	3
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	3
OBJECTIVE	3
RELATED SUBMITTAL(S)/GRANT(S)	3
TEST METHODOLOGY	
MEASUREMENT UNCERTAINTY	4
TEST FACILITY	4
SYSTEM TEST CONFIGURATION	5
JUSTIFICATION	5
EUT Exercise Software	5
EQUIPMENT MODIFICATIONS	5
SUPPORT EQUIPMENT LIST AND DETAILS	5
External I/O Cable	5
BLOCK DIAGRAM OF TEST SETUP	6
SUMMARY OF TEST RESULTS	7
TEST EQUIPMENT LIST	8
FCC§15.203 - ANTENNA REQUIREMENT	
APPLICABLE STANDARD	
ANTENNA CONNECTED CONSTRUCTION	9
FCC §15.205, §15.209, §15.231 (B) - RADIATED EMISSIONS	
APPLICABLE STANDARD	10
EUT SETUP	
EMI TEST RECEIVER SETUP	
TEST PROCEDURE	
CORRECTED AMPLITUDE & MARGIN CALCULATION	
TEST RESULTS SUMMARY	
TEST DATA	12
FCC §15.231(A) (2) - DEACTIVATION TESTING	18
APPLICABLE STANDARD	18
TEST PROCEDURE	
TEST DATA	
FCC §15.231(C) - 20DB EMISSION BANDWIDTH TESTING	20
APPLICABLE STANDARD	
TEST PROCEDURE	
Tech Dana	

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

Applicant	Suzhou Sate Auto Electronic Co., Ltd
Tested Model	3666OCU
Series Model	3696-PCBA
Model Difference	Model Names
Product Type	Yard Check TPMS PCBA
Dimension	51.3 mm(L)*31.5 mm(W)*22.0mm(H)
Power Supply	DC 3.3V

Report No.: RSHA180309001-00A

Objective

This test report is prepared on behalf of Suzhou Sate Auto Electronic Co., Ltd All the test measurements were performed according to the measurement procedure described in ANSI C63.10 - 2013.

The tests were performed in order to determine compliance with FCC Part 15, Subpart C, section 15.203, 15.205, 15.209, 15.35(c) and 15.231 rules.

Related Submittal(s)/Grant(s)

No Related Submittal(s)/Grant(s).

Test Methodology

All measurements contained in this report were conducted with ANSI C63.10 - 2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

All radiated and conducted emissions measurement was performed at Bay Area Compliance Laboratories Corp. (Kunshan). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

FCC Part 15.231 Page 3 of 21

^{*}All measurement and test data in this report was gathered from production sample serial number: 20180309001 (Assigned by the BACL. The EUT supplied by the applicant was received on 2018-03-09)

Measurement Uncertainty

Item		Uncertainty
AC Power Line	es Conducted Emissions	3.19 dB
RF conducte	ed test with spectrum	0.9dB
	30MHz~1GHz	6.11dB
Radiated emission	1GHz~6GHz	4.45dB
	6GHz ~18GHz	5.23dB
Оссир	ied Bandwidth	0.5kHz
Te	emperature	1.0℃
]	Humidity	6%

Report No.: RSHA180309001-00A

Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Kunshan) to collect test data is located on the No.248 Chenghu Road, Kunshan, Jiangsu province, China.

Bay Area Compliance Laboratories Corp. (Kunshan) Lab is accredited to ISO/IEC 17025 by A2LA (Lab code: 4323.01) and the FCC designation No. CN1185 under the FCC KDB 974614 D01. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-2014.

FCC Part 15.231 Page 4 of 21

SYSTEM TEST CONFIGURATION

Justification

The system was configured for testing in a typical fashion (as normally used by a typical user).

Report No.: RSHA180309001-00A

EUT Exercise Software

RF test tool: Commix.exe

Power level: 0

Equipment Modifications

No modification was made to the EUT.

Support Equipment List and Details

Manufacturer	Description	Model	Serial Number
Sate Auto Electronic	Battery	7J24	IFR18650E1500

External I/O Cable

Cable Description Length (m)		From Port	То
Power Cable	0.2	EUT	Battery

FCC Part 15.231 Page 5 of 21

Block Diagram of Test Setup

For Radiated Emissions(Below 1GHz):

For Radiated Emissions(Above 1GHz):

FCC Part 15.231 Page 6 of 21

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
§15.203	Antenna Requirement	Compliance
§15.207(a)	Conducted Emissions	Not applicable (See Note 1)
§15.205, §15.209, §15.231(b)	Radiated Emissions	Compliance
§15.231 (a)(2)	Deactivation	Compliance
§15.231 (c)	20dB Emission Bandwidth	Compliance

Report No.: RSHA180309001-00A

Note 1: The EUT is powered by battery only.

FCC Part 15.231 Page 7 of 21

TEST EQUIPMENT LIST

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date				
Radiated Emission Test (Chamber 1#)									
Rohde & Schwarz	EMI Test Receiver	ESCI	100195	2017-11-12	2018-11-11				
ETS-LINDGREN	PASSIVE LOOP	6512	108100	2016-01-09	2019-01-08				
Sunol Sciences	Broadband Antenna	JB3	A090413-1	2016-12-26	2019-12-25				
Sonoma Instrunent	Pre-amplifier	310N	171205	2017-08-15	2018-08-14				
Rohde & Schwarz	Auto test Software	EMC32	100361	/	/				
MICRO-COAX	Coaxial Cable	Cable-8	008	2017-08-15	2018-08-14				
MICRO-COAX	Coaxial Cable	Cable-9	009	2017-08-15	2018-08-14				
MICRO-COAX	Coaxial Cable	Cable-10	010	2017-08-15	2018-08-14				
	Radiat	ted Emission Test (Chamber 2#)						
Rohde & Schwarz	EMI Test Receiver	ESU40	100207	2017-08-27	2018-08-26				
ETS-LINDGREN	Horn Antenna	3115	6229	2016-01-11	2019-01-10				
Sonoma Instrunent	Pre-amplifier	310N	185700	2017-08-15	2018-08-14				
Narda	Pre-amplifier	AFS42-00101800	2001270	2017-12-12	2018-12-11				
Rohde & Schwarz	Auto test Software	EMC32	100361	/	/				
MICRO-COAX	Coaxial Cable	Cable-6	006	2017-08-15	2018-08-14				
MICRO-COAX	Coaxial Cable	Cable-11	011	2017-08-15	2018-08-14				
MICRO-COAX	Coaxial Cable	Cable-12	012	2017-08-15	2018-08-14				
MICRO-COAX	Coaxial Cable	Cable-13	013	2017-08-15	2018-08-14				

Report No.: RSHA180309001-00A

FCC Part 15.231 Page 8 of 21

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Kunshan) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

FCC§15.203 - ANTENNA REQUIREMENT

Applicable Standard

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

Report No.: RSHA180309001-00A

Antenna Connected Construction

The EUT has a helical fixed antenna arrangement which was permanently attached and the antenna gain is 1.0 dBi; fulfill the requirement of this section. Please refer to EUT photos.

Result: Compliant.

FCC Part 15.231 Page 9 of 21

FCC §15.205, §15.209, §15.231 (b) - RADIATED EMISSIONS

Applicable Standard

FCC §15.205, §15.209, §15.231 (b)

According to FCC §15.231(b), the field strength of emissions from intentional radiators operated under this section shall not exceed the following:

Report No.: RSHA180309001-00A

Fundamental frequency (MHz)	Field strength of fundamental (microvolts/meter)	Field strength of spurious emission (microvolts/meter)
40.66-40.70	2250	225
70-130	1250	125
130-174	1250 to 3750 **	125 to 375 **
174-260	3750	375
260-470	3750 to 12500 **	375 to 1250**
Above 470	12500	1250

- (1) The above field strength limits are specified at a distance of 3 meters. The tighter limits apply at the band edges.
- (2) Intentional radiators operating under the provisions of this section shall demonstrate compliance with the limits on the field strength of emissions, as shown in the above table, based on the average value of the measured emissions. As an alternative, compliance with the limits in the above table may be based on the use of measurement instrumentation with a CISPR quasi-peak detector. The specific method of measurement employed shall be specified in the application for equipment authorization. If average emission measurements are employed, the provisions in §15.35 for averaging pulsed emissions and for limiting peak emissions apply. Further, compliance with the provisions of §15.205 shall be demonstrated using the measurement instrumentation specified in that section.
- (3) The limits on the field strength of the spurious emissions in the above table are based on the fundamental frequency of the intentional radiator. Spurious emissions shall be attenuated to the average (or, alternatively, CISPR quasi-peak) limits shown in this table or to the general limits shown in §15.209, whichever limit permits a higher field strength.

FCC Part 15.231 Page 10 of 21

EUT Setup

Below 1GHz:

Report No.: RSHA180309001-00A

Above 1 GHz:

The radiated emission tests were performed in the 3 meters test site, using the setup accordance with the ANSI C63.10 - 2013. The specification used was the FCC 15 \S 15.209, 15.205 and 15.231.

FCC Part 15.231 Page 11 of 21

EMI Test Receiver Setup

The system was investigated from 30 MHz to 5 GHz.

During the radiated emission test, the EMI test Receiver was set with the following configurations:

Frequency Range	RBW	Video B/W	IF B/W	Detector
30 MHz – 1000 MHz	100 kHz	300 kHz	/	PK
1000MHz – 5000MHz	1MHz	3MHz	/	PK

Report No.: RSHA180309001-00A

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

Corrected Amplitude = Meter Reading + Antenna Factor + Cable Loss - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

Margin = Limit – Corrected Amplitude

Test Results Summary

According to the data in the following table, the EUT complied with the FCC §15.205, §15.209, §15.231 (b).

Test Data

Environmental Conditions

Temperature:	24.1 ℃
Relative Humidity:	53 %
ATM Pressure:	101.2 kPa

The testing was performed by Max Min on 2018-03-23&2018-04-16.

Test mode: Transmitting (Scan with X-Axis, Y-Axis and Z-Axis position, the worst case was recorded)

FCC Part 15.231 Page 12 of 21

30MHz-1GHz (FSK modulation)

(Pre-scan in the X,Y and Z axes of orientation, the worst case X-axis of orientation was recorded.)

Report No.: RSHA180309001-00A

-	Corrected Rx Antenna		Corrected	T			
Frequency (MHz)	Amplitude MaxPeak (dBµV /m)	Height (cm)	Polar (H/V)	Turntable Degree	Factor (dB/m)	Limit (dBµV/m)	Margin (dB)
230.67	29.32	100.00	Н	8.00	-12.70	60.83	31.51
413.64	49.09	100.00	Н	24.00	-8.30	60.83	11.74
430.49	48.96	200.00	Н	0.00	-7.80	60.83	11.87
447.71	47.82	200.00	Н	0.00	-7.40	60.83	13.01
474.87	38.95	100.00	V	55.00	-6.70	60.83	21.88
434.10	86.38	100.00	Н	198.00	-7.76	100.83	14.45
868.20	51.32	100.00	Н	106.00	-0.30	80.83	29.51

Field Strength of Average Emission

Frequency	Peak Measurement@3m	Height	Polar	Duty Cycle Corrected	Corrected Ampitude		FCC Part 31(b)/205/209	
(MHz)	(dBμV/m)	(cm)	(H/V)	Factor (dB)	(dBµV/m)	Limit (dBµV/m)	Margin (dB)	
434.10	86.38	100	Н	-20.00	66.38	80.83	14.45	
868.20	51.32	100	Н	-20.00	31.32	60.83	29.51	

FCC Part 15.231 Page 13 of 21

1GHz-5 GHz (FSK modulation)

(Pre-scan in the X,Y and Z axes of orientation, the worst case X-axis of orientation was recorded.)

Report No.: RSHA180309001-00A

Frequency (MHz)	Corrected Amplitude MaxPeak (dBµV/m)	Rx Antenna			Corrected		
		Height (cm)	Polar (H/V)	Turntable Degree	Factor (dB/m)	Limit (dBµV/m)	Margin (dB)
1302.30	40.38	150	Н	163	-9.50	74.00	33.62
1736.40	64.35	150	Н	5	-7.00	80.83	16.48
2170.50	67.07	100	Н	349	-5.50	80.83	13.76
2604.60	66.50	200	V	63	-4.10	80.83	14.33
3038.70	56.85	200	V	240	-1.90	80.83	23.98
3472.80	54.72	100	V	158	-1.00	80.83	26.11
3906.90	53.79	100	Н	349	0.50	74.00	20.21
4341.00	47.84	100	Н	0	1.50	74.00	26.16

FCC Part 15.231 Page 14 of 21

Field Strength of Average Emission

Report No.: RSHA180309001-00A

Frequency	Peak Measurement@3m	Height (cm)	Polar (H/V)	Duty Cycle Corrected Factor (dB)	Corrected Ampitude	FCC Part 15.231(b)/205/209	
(MHz)	(dBμV/m)				(dBµV/m)	Limit (dBµV/m)	Margin (dB)
1302.30	40.38	150	Н	-20.00	20.38	54.00	33.62
1736.40	64.35	150	Н	-20.00	44.35	60.83	16.48
2170.50	67.07	100	Н	-20.00	47.07	60.83	13.76
2604.60	66.50	200	V	-20.00	46.50	60.83	14.33
3038.70	56.85	200	V	-20.00	36.85	60.83	23.98
3472.80	54.72	100	V	-20.00	34.72	60.83	26.11
3906.90	53.79	100	Н	-20.00	33.79	54.00	20.21
4341.00	47.84	100	Н	-20.00	27.84	54.00	26.16

FCC Part 15.231 Page 15 of 21

Note 1:

 $\label{eq:corrected} \begin{aligned} & \text{Corrected Factor} = \text{Antenna factor} \; (Rx) + \text{Cable Loss} - \text{Amplifier Factor} \\ & \text{Margin} = \text{Limit} - \text{Corrected Amplitude} \end{aligned}$

Note 2:

Calculate Average value based on Duty Cycle correction factor:

 $T_p = 100 ms$

 $T_{on} = 10.000 \text{ms}$

Duty Cycle Corrected Factor = $20*\log (T_{on}/T_p) = 20*\log (10.000 \text{ms}/100 \text{ms}) = -20 \text{dB}$

Average = Peak + Duty Cycle Corrected Factor

Duty Cycle 1

Report No.: RSHA180309001-00A

Date: 16.APR.2018 15:54:06

FCC Part 15.231 Page 16 of 21

Report No.: RSHA180309001-00A

Duty Cycle 2

Date: 23.MAR.2018 12:04:04

Duty Cycle 3

Date: 16.APR.2018 15:51:32

FCC Part 15.231 Page 17 of 21

FCC §15.231(a) (2) - DEACTIVATION TESTING

Applicable Standard

Per FCC §15.231(a), (2) A transmitter activated automatically shall cease transmission within 5 seconds after activation.

Report No.: RSHA180309001-00A

Test Procedure

- 1. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 2. Set center frequency of spectrum analyzer=operating frequency.
- 3. Set the spectrum analyzer as RBW=100k VBW=300k Span=0Hz.
- 4. Repeat above procedures until all frequency measured was complete.

Test Data

Environmental Conditions

Temperature:	24.1 ℃
Relative Humidity:	53 %
ATM Pressure:	101.2 kPa

The testing was performed by Max Min on 2018-03-23.

Test mode: Transmitting

FCC Part 15.231 Page 18 of 21

5 s

Date: 23.MAR.2018 12:13:01

NOTE: This device can connect the PC through the USB to UART, and can be triggered by the command frrom PC.

FCC Part 15.231 Page 19 of 21

FCC §15.231(c) - 20dB EMISSION BANDWIDTH TESTING

Applicable Standard

Per 15.231(c), The bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz. Bandwidth is determined at the points 20 dB down from the modulated carrier.

Report No.: RSHA180309001-00A

Test Procedure

With the EUT's antenna attached, the waveform was received by the test antenna which was connected to the spectrum analyzer, plot the 20 dB bandwidth.

Test Data

Environmental Conditions

Temperature:	24.1 ℃
Relative Humidity:	53 %
ATM Pressure:	101.2 kPa

The testing was performed by Max Min on 2018-03-23.

Test Mode: Transmitting

FCC Part 15.231 Page 20 of 21

Channel Frequency	20 dB Bandwidth	Limit	Result
(MHz)	(kHz)	(kHz)	
434.10	397.44	1085.25	Pass

Note: Limit = 0.25% * Center Frequency = 0.25% * 434.10 MHz = 1085.25 kHz

20 dB Emission Bandwidth

Date: 23.MAR.2018 12:00:25

***** END OF REPORT *****

FCC Part 15.231 Page 21 of 21