МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ УКРАЇНИ "КИЇВСЬКИЙ ПОЛІТЕХНІЧНИЙ ІНСТИТУТ ІМЕНІ ІГОРЯ СІКОРСЬКОГО"

Факультет прикладної математики Кафедра програмного забезпечення комп'ютерних систем

КУРСОВИЙ ПРОЕКТ ТЕХНІЧНЕ ЗАВДАННЯ

з дисципліни "Бази даних"

спеціальність 121 – Програмна інженерія

на тему: **Моніторингова система аналізу популярних відео сервісу YouTube**

Студент групи КП-61	Свинарчук М. В.	
		(підпис)
Викладач		
к.т.н, доцент кафедри		
СПіСКС	Петрашенко А.В.	co A.B.
		(підпис)

3MICT

1.	НАЙМЕНУВАННЯ ТА ГАЛУЗЬ ЗАСТОСУВАННЯ РОЗРОБКИ	3
2.	ДАТА ПОЧАТКУ ТА ЗАКІНЧЕННЯ ПРОЕКТУ	3
3.	МЕТА РОЗРОБКИ	3
4.	ВИМОГИ ДО ПРОГРАМНОГО ЗАБЕЗПЕЧЕННЯ	4
5.	ОБҐРУНТУВАННЯ ВИБОРУ СУБД	7
6.	ВИМОГИ ДО ІНТЕРФЕЙСУ КОРИСТУВАЧА	7
7.	ВИБІР ЗАСОБІВ РОЗРОБКИ	8
8	ЕТАПИ РОЗРОБКИ	9

1. НАЙМЕНУВАННЯ ТА ГАЛУЗЬ ЗАСТОСУВАННЯ РОЗРОБКИ

Найменування: Моніторингова система аналізу популярних відео (трендів) сервісу <u>YouTube</u> по кожній країні окремо, по вибірки країн та загалом по всьому світу.

Галузь застосування: статистика, аналіз соціальних тенденцій та прогнозування популярності певного виду відеоконтенту.

2. ДАТА ПОЧАТКУ ТА ЗАКІНЧЕННЯ ПРОЕКТУ

Дата початку проекту – 25 березня 2018 року (дата видачі завдання для курсового проекту).

Дата закінчення проекту – 20 травня 2019 року (захист курсового проекту).

3. МЕТА РОЗРОБКИ

Метою розробки даного курсового проекту є збір та фільтрація статистики популярних відео сервісу YouTube, аналіз результатів на її основі та формування бізнес-звітів з метою надання корисної інформації для рекламних агентств та інвесторів.

Для потенційних клієнтів дана моніторингова система повинна допомогти знайти категорії відеоконтенту, які мають відносно високий бізнес-потенціал. Наприклад, можливі наступні критерії оцінювання: кількість відео в кожній категорії, коефіцієнт участі (кількість коментарів / кількість переглядів), рейтинг популярності (кількість вподобань / кількість переглядів) і середній темп зростання в трендах. Маючи такого роду статистику, клієнту, будь то інвестор чи рекламне агенство, буде простіше знайти та визначитися яким категоріям відеоконтенту надати перевагу.

4. ВИМОГИ ДО ПРОГРАМНОГО ЗАБЕЗПЕЧЕННЯ

Підсистема попередньої обробки даних містить у собі:

- Засіб генерації даних: розроблення утиліти для збору інформації про відео-тренди сервісу YouTube за допомогою YouTube Data API. Єдиним недоліком такого підходу є обмежена кількість статистичних даних, які можна отримати за певний період: тренди вміщують в себе 50-100 відео та оновлюються кожні 15 хвилин, але при цьому не обов'язково додаються нові відео, а лише змінюється порядок минулих. Тобто постає питання: як часто робити вибірку даних, щоб зменшити кількість попадань конкретного відео (може перебувати в трендах від 4 годин до декількох днів)? Пропонується створити утиліту, яка буде кожного дня в один і той же час збирати збирати дані (один раз на добу). Також ϵ можливим використання готово датасету, зібраного за таким же принципом.
- Засоби фільтрації та валідації даних: розроблення додаткового функціоналу у вищезазначеній утиліті задля корегування отриманих даних та переходу до їх подальшої обробки та структуризації.

База даних: MongoDB

Засоби реплікації даних: нереляційна база даних MongoDB підтримує 2 форми реплікації: реплісети (Replica Sets) і Master-Slave. Пропонується використати більш сучасний підхід – Replica Sets.

Рис. 1.1 Приклад реплікації MongoDB за допомогою Replica Sets (Арбітр не є обов'язковим членом схеми і необхідний лише у випадку існуванні парної кількості реплік)

Засоби масштабування: MongoDB пропонує можливість горизонтального шардингу (sharding) — це поділ однієї таблиці на різні сервера. Поділ таблиці на частини робиться за таким принципом:

- На кількох серверах створюється одна і та ж таблиця (тільки структура, без даних).
- У додатку вибирається умова, за яким буде визначатися потрібне з'єднання (наприклад, парні на один сервер, а непарні на інший).
- Перед кожним зверненням до таблиці відбувається вибір потрібного з'єднання.

Рис. 1.2 Схема шардингу у МопдоДВ

Сумісне використання засобів шардингу та реплікації MongoDB забезпечить відмовостійкість бази даних.

Засоби аналізу даних:

- *NumPy* математична бібліотека з підтримкою багатовимірних масивів та високорівневих математичних функцій;
- *Pandas* бібліотека для обробки та аналізу даних, використовується для первинної обробки даних.
- *NLTK* Natural Language Toolkit, пакет бібліотек і програм для символьної і статистичної обробки природної мови.

Задачі аналізу даних:

- Зібрати дані за допомогою YouTube Data API та струкутувати їх з вже існуючим датасетом;
- Здійснити валідацію даних та прибрати зайву інформацію з датасету;
- Провести кореляцію по всіх даних;
- У місцях, де найбільша кореляція, здійснити більш детальний аналіз:
- Сформувати діаграми розсіювання, виокремити кластери та зробити висновки щодо отриманих результатів;
- Створити прогнози на основі отриманих результатів.

Засоби резервування та відновлення даних: передбачені при використанні Replica Sets у MongoDB. Також є можливість використання стандартних утиліт для збереження (mongodump) та відновлення (mongorestore).

5. ОБІРУНТУВАННЯ ВИБОРУ СУБД

Було обрано найпопулярнішу серед нереляційних СУБД – MongoDB. Це документо-орієнтована система управління базами даних із відкритим кодом, яка не потребує опису схеми таблиць. MongoDB займає нішу між швидкими і масштабованими системами, що оперують даними у форматі ключ/значення, і реляційними СУБД, функціональними і зручними у формуванні запитів.

Вибір нереляційної СУБД обгрунтовується наявністю великої кількості ненормалізованих даних, які необхідно обробити швидко. Вона забезпечує можливість отримання неприведених до норм даних та подальшу роботу з ними. Формування додаткових таблиць при появі додаткової інформації у екземплярі (реляційні СУБД) було б недоцільним.

6. ВИМОГИ ДО ІНТЕРФЕЙСУ КОРИСТУВАЧА

- Мінімалістичний інтерфейс реалізований у консолі;
- Можливість вибору країни чи групи країн за якими буде проводитися аналіз;
- Можливість оперування базою даних очистити базу даних, додати інформацію з датасета чи шляхом веб-скрапінгу;
- Можливість обрати необхідні критерії для проведення аналізу;
- Генерація таблиць, отриманих за результатами аналізу,
 графічних елементів 2D графіки, хмари тегів, діаграми та інші зображення, сформовані у результаті досліджень;
- Можливість експорту отриманих результатів до файлів.

7. ВИБІР ЗАСОБІВ РОЗРОБКИ

Мова програмування – Python 3.7.

СКБД – MongoDB.

Бібліотеки:

- *NumPy* математична бібліотека з підтримкою багатовимірних масивів та високорівневих математичних функцій;
- *Pandas* бібліотека для обробки та аналізу даних, використовується для первинної обробки даних.
- *NLTK* Natural Language Toolkit, пакет бібліотек і програм для символьної і статистичної обробки природної мови.
- WordCloud бібліотека для візуального подання списку категорій (або тегів, також званих мітками, ярликами, ключовими словами, тощо).
- Matplotlib бібліотека для візуалізації даних у вигляді 2D і 3D графіків;
- *seaborn* бібліотека візуалізації даних Python, яка базується на matplotlib. Забезпечує інтерфейс високого рівня для малювання привабливої та інформативної статистичної графіки.

8. ЕТАПИ РОЗРОБКИ

Nº	Назва етапу розробки	Термін виконання
1	Затвердження теми курсової роботи. Опрацювання відповідної літератури. Розроблення та узгодження технічного завдання.	01.04.2019
2	Аналіз постановки задачі	10.04.2019
3	Розробка засобів генерації даних.	15.04.2019
4	Додавання засобів фільтрації та валідації даних.	20.04.2019
5	Реалізація зберігання, реплікації та масштабування інформації розробленої моніторингової системи.	26.04.2019
6	Додавання засобів аналізу даних (реалізацію алгоритмів буде запозичено у великих бібліотеках аналізу даних).	03.05.19
7	Додавання засобів резервування та відновлення даних (призначені для оперативного та пакетного збереження фрагментів та всієї бази даних з можливістю її відновлення з урахуванням необхідності підключення додаткового комп'ютера як елемента горизонтального масштабування).	09.05.2019
8	Тестування програми.	15.05.2019
9	Аналіз результатів. Підготовка матеріалів курсового проекту та оформлення пояснювальної записки.	18.05.2019
10	Захист курсової роботи.	20.05.2019