Definição 1: Seja x um número real $e \overline{x}$, sua aproximação.

O erro absoluto (Δ_{abs}) é dado por,

$$\Delta_{abs} \triangleq \Delta_{x} = |x - \overline{x}|$$
 (1)

O erro relativo ($\delta_{\rm rel}$) é descrito por,

$$\delta_{\text{rel}} \triangleq \frac{|\mathbf{x} - \overline{\mathbf{x}}|}{\mathbf{x}} \bigg|_{\mathbf{x} \neq \mathbf{0}} = \frac{\Delta_{\mathbf{x}}}{\mathbf{x}}.$$
 (2)

Como o valor convencionalmente verdadeiro (x) não é conhecido, o erro relativo pode ser aproximado por,

$$\delta_{\rm rel} \approx \frac{\Delta_{\rm x}}{\overline{\rm x}},$$
 (3)

em percentual é dado por,

$$\delta_{\text{rel}(\%)} \approx \frac{\Delta_{\text{x}}}{\overline{\text{x}}} \times 100\%$$
 (4)

Definição 2: Quando um método de medição depende de outras grandezas, então é necessário considerar os **erros parciais** de todas as variáveis envolvidas.

Sabendo disso, e considerando que o valor da medição (y), por exemplo, depende dos valores individuais de $(x_i, ... x_n)$ — então essa relação pode ser descrita pela **equação de medição**,

$$y = f(\mathbf{x}_1, \mathbf{x}_2, \dots \mathbf{x}_n), \tag{5}$$

em que, ao considerar os erros individuais, leva à expressão do erro absoluto (Δ_y) ,

$$\Delta_y = f(x_1 + \Delta x_1, \quad x_2 + \Delta x_2, \quad \dots, \quad x_n + \Delta x_n) - f(x_1, x_2, \dots, x_n)$$
 (6)

Desenvolvendo a expressão (6) em série de Taylor e desprezando os termos de segunda ordem — ao assumir que Δ_{x_i} possui um valor bem pequeno — o erro relativo máximo (δ_{max}) é obtido por meio de,

$$\delta_{\max} \le \sum_{i=1}^{n} \left| \frac{\partial f(\mathbf{x})}{\partial \mathbf{x}_{i}} \frac{\mathbf{x}_{i}}{f(\mathbf{x})} \right| \delta_{\mathbf{x}_{i}}. \tag{7}$$

Definição 3: O erro absoluto (Δ_{abs}) para **medição analógica**, em percentagem, considera o índice de classe e o valor máximo da escala de medição. Que é dado por,

$$\Delta_{\rm abs} = \frac{ic \, V_{EF}}{100},\tag{8}$$

na qual, ic representa o índice de classe e V_{EF} denota o valor máximo (fim de escala).

Definição 4: O erro absoluto (Δ_{abs}) para **medição digital** é dada por duas partes — a primeira considera o erro de medição, enquanto a segunda indica o erro de resolução. Sendo definido por meio de,

$$\Delta_{\rm abs} = \pm \left[\underbrace{x(\%) \times (V_{\rm L})}_{\rm erro\ medição} + \underbrace{(n) \times (LSD)}_{\rm erro\ de\ resolução} \right], \tag{9}$$

em que, x(%) é um número constante (dado pelo fabricante), V_L é o valor medido, n é um número constante (fornecido pelo fabricante) e LSD é descrito como dígito menos significativo, do inglês least significant diqit, (o valor depende da escala utilizada).

Exercícios

- 1) Sabendo que: $\delta_x = 0.37\%$ e $\Delta_x = 456,789$. Determine, x e \bar{x} .
- 2) Determine $\delta_{\rm rel}$ e $\Delta_{\rm abs}$ de:
 - a) x = 3,141592655358979; $\overline{x} = 3,141;$
 - b) y = 2,718281828459045; $\overline{y} = 2,718$ ·
- 3) Determine o erro relativo máximo (δ_{max}) ,
 - a) ao considerar os resistores (R_1) e (R_2) conectados em série;
 - b) ao considerar os resistores (R_1) e (R_2) conectados em paralelo.
- 4) Para um multímetro digital com troca automática de escala têm-se:
 - a) Escala: 100Ω : $\pm [0.05\% \text{ da leitura} + 0.01\% \text{ de fim de escala}];$
 - b) Escala 1000Ω : $\pm [0.03\%]$ da leitura + 0.002% de fim de escala];
 - c) Em que valores de resistência você recomendaria a troca de escala, considerando a variação de 1 a 1000Ω ?
- 5) Com um voltímetro digital de $3^5/_6$ dígitos (fim de escala 59,99V) efetuou-se uma leitura de 32,5V. A especificação do erro do aparelho é $\pm [0,1\%$ da entrada + 2 LSD]. Determine o erro máximo da leitura.