线性代数 中国科学技术大学 2023 春 欧氏空间

主讲: 杨金榜 地空楼 525

助教: 苏煜庭、陈鉴、夏小凡

欧氏空间的定义

定义(内积,欧氏空间)

设 V 为有限维 \mathbb{R} -线性空间. 若存在一个映射 (-,-): $V \times V \to \mathbb{R}$ 满足:

- 对称性: (a,b) = (b,a);
- ② 双线性: $(\lambda a, b) = \lambda(b, a), (a + b, c)(a, c) + (b, c);$
- ③ 正定性: $(a, a) \ge 0$, 且等号成立当且仅当 a = 0,

则称 (a,b) 为 a 和 b 的内积. 带内积的 \mathbb{R} -线性空间称为欧氏空间(或,欧几里得空间).

长度与夹角

定义(长度,夹角)

设 V 为欧氏空间. 对于任意向量 $a,b \in V$.

- ① $|a| := \sqrt{(a,a)}$ 为 a 的长度(或,模长);
- ② 称 |a-b| 为 a 和 b 之间的距离. 记为d(a,b).
- ③ 若 a,b 不为零,定义 a 和 b 之间的夹角为 $\theta = \arccos \frac{(a,b)}{|a| \cdot |b|} a$. 特别 地, 当 (a,b) = 0 时, 称 a = b正交或垂直, 记为 $a \perp b$.
- **●** 称 a 为单位向量, 若 |a|=1. 若 $b\neq 0$, 称 $\frac{1}{|a|}b$ 为 b 的单位化.

$$|(a,b)| \le \sqrt{(a,a) \cdot (b,b)}.$$

^aCauchy-Schwarz 不等式

内积的矩阵表示

设 α_1,\cdots,α_n 为欧氏空间 V 的一组基. 令 $g_{ij}:=(\alpha_i,\alpha_j)(1\leq ij\leq n)$. 记 $G:=(g_{ij})_{n\times n}.$

则

$$(\alpha, \beta) = x^T G y. \tag{1}$$

其中x,y分别为 α 和 β 在基 α_1,\dots,α_n 下的坐标. 称G为内积(-,-)在基 α_1,\dots,α_n 下的度量矩阵.

通过度量矩阵我们有如下映射

$$V$$
上的内积 $\xrightarrow{ \begin{subarray}{c} \begin{subar$

度量矩阵的正定性

问题: 哪些矩阵落在这个映射的像集里面?即, 哪些矩阵能够成为某个内积的度量矩阵?

性质(度量矩阵的基本性质)

- ① 设G为V上某内积(-,-)在基 α_1,\cdots,α_n 下的度量矩阵.则
 - · G为实对称矩阵:
 - 对任意 $x \in \mathbb{R}^n$, 都有 $x^T G x \ge 0$, 且等号成立当且仅当 x = 0. 称满足如上性质的矩阵为正定矩阵. 因此内积的度量矩阵为正定矩阵.
- ② 反之, 对于任意给定的正定矩阵 G, 通过 $(\alpha,\beta) := x^T G y$ 可以构造中 V 上的一个内积 其中 r ,为 α 和 β 的

可以构造出 V上的一个内积, 其中 x, y 为 α 和 β 的坐标.

相合关系

性质

设P为欧氏空间的两组基 α_1,\cdots,α_n 和 η_1,\cdots,η_n 为之间的过渡矩阵

$$(\eta_1,\cdots,\eta_n)=(\alpha_1,\cdots,\alpha_n)P.$$

设内积在 $\alpha_1, \dots, \alpha_n$ 和 η_1, \dots, η_n 下的度量矩阵为 G 和 \overline{G} . 即,

$$G = \Big((\alpha_i, \alpha_j) \Big)_{n \times n}, \quad \overline{G} = \Big((\eta_i, \eta_j) \Big)_{n \times n}.$$

则

$$\overline{G} = P^T G T$$
.

定义(相合)

称两个矩阵 G和 \overline{G} 相合, 若存在可逆阵 P使得

$$\overline{G} = P^T G P$$
.

标准正交基

度量矩阵的最简形式?为了回答这一问题,我们需要引入标准正交基.

定义(标准正交基)

设V为n维欧氏空间.

- 称由一组两两正交的非零向量为正交向量组;
- ② 称由正交向量组构成的基为正交基;
- ③ 称由单位向量组成的正交基为标准正交基.

性质

正交向量组线性无关.

定理(标准正交基使度量矩阵最简)

设V为n维欧氏空间.设G为内积在基 α_1,\cdots,α_n 下的度量矩阵.则

$$\alpha_1, \dots, \alpha_n$$
 为标准正交基 \Leftrightarrow $G = I_n$.

下面将讨论标准正交基的存在性.

Schmidt 正交化

定理 (Schmidt 正交化)

给定欧氏空间的任意一组基 $\alpha_1, \cdots, \alpha_n$,则存在一组标准正交基 e_1, \dots, e_n 使得 (对所有的 $i = 1, 2, \dots, n$)

$$\langle \alpha_1, \cdots, \alpha_i \rangle = \langle e_1, \cdots, e_i \rangle.$$

几何解释? 证明思路: 递归地定义 $\beta_k = \alpha_k - \sum_{i=1}^{k-1} (\alpha_k, e_i) e_i \neq 0$ 以及 $e_k = \frac{\beta_k}{|\beta_k|}$.

例

将
$$\alpha_1 = \begin{pmatrix} 1\\1\\0\\0 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 1\\0\\1\\0 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} -1\\0\\0\\1 \end{pmatrix}$, $\alpha_4 = \begin{pmatrix} 1\\-1\\-1\\0 \end{pmatrix}$ 标准正交化.

推论

对任意正定矩阵 A, 存在可逆实矩阵 P 使得 $A = P^T P$.

正交变换

n维欧氏空间	\leftarrow 标准正交基基 $\alpha_1, \dots, \alpha_n$ \rightarrow $1:1$	ℝ"(带标准内积)
线性变换必	$(\alpha_1, \cdots, \alpha_n) = (\alpha_1, \cdots, \alpha_n)A$ $1:1$	矩阵 A
৶(保持内积)	\longleftrightarrow	??

例

空间(平面)的旋转和镜面反射等.

定义(正交变换)

设 \mathscr{A} 为欧氏空间 V 上的线性变换. 若 \mathscr{A} 保持内积, 即 (对任意 $a,b \in V$, $(\mathscr{A}a,\mathscr{A}b) = (a,b),$

则称 🖋 为正交变换.

正交变换的等价刻画

定理

设 A 为欧氏空间 V上的线性变换. 则以下几条等价

- ❶ ৶ 正交;
- ② ℳ保持向量长度;
- ③ ℳ将标准正交基变为标准正交基.

$$(1)\Rightarrow(2): |\mathscr{A}(\alpha)| = \sqrt{(\mathscr{A}(\alpha),\mathscr{A}(\alpha))} = \sqrt{(\alpha,\alpha)} = |\alpha|;$$

$$(2)\Rightarrow(1): (\mathscr{A}(\alpha),\mathscr{A}(\beta)) = \frac{|\mathscr{A}(\alpha+\beta)|^2 - |\mathscr{A}(\alpha)|^2 - |\mathscr{A}(\beta)|^2}{2}$$

$$=\frac{|\alpha+\beta|^2-|\alpha|^2-|\beta|^2}{2}=(\alpha,\beta)$$

$$(1)$$
⇒ (3) : $e_1, \cdots, e_n =$ 标准正文基 ⇒ $(\mathscr{A}(e_i), sA(e_j)) = (e_i, e_j) = \delta_{ij}$

$$\Rightarrow \mathscr{A}(e_1), \cdots, \mathscr{A}(e_n) =$$
 标准正交基.

$$(3)$$
 \Rightarrow (1) : 设 $\mathscr A$ 将标准正交基 e_1,\cdots,e_n 映为另一组标准正交基 $\mathscr A(e_1),\cdots,\mathscr A(e_n)$. 任取

$$\alpha = \sum_{i=1}^{n} a_i e_i \quad \text{for} \quad \beta = \sum_{i=1}^{n} b_i e_i.$$

则

$$(\mathscr{A}(\alpha), \mathscr{A}(\beta)) = \left(\sum_{i=1}^{n} a_i \mathscr{A}(e_i), \sum_{i=1}^{n} b_j \mathscr{A}(e_j)\right) = \sum_{i=1}^{n} \sum_{i=1}^{n} a_i b_j \left(\mathscr{A}(e_i), \mathscr{A}(e_j)\right)$$
$$= \sum_{i=1}^{n} \sum_{i=1}^{n} a_i b_j \delta_{ij} = \sum_{i=1}^{n} \sum_{i=1}^{n} a_i b_j (e_i, e_j) = (\alpha, \beta)$$

正交变换基本性质

定理(全体正交变换在复合运算下构成群)

设 V 为欧氏空间. 则

- ❶ 单位变换为正交变换;
- ② 正交变换的复合仍然为正交变换;
- 3 正交变换可逆且其逆也为正交变换.

证明思路: 保持长度.

注: 正交变换群描述了欧氏空间的对称性.

正交变换在标准正交基下的矩阵

设正交变换 \mathscr{A} 在标准正交基 e_1, \cdots, e_n 下的矩阵为 A. 这个矩阵 A 满足什么特别的性质?

ダ エ交 ⇔
$$\mathscr{A}e_1, \cdots, \mathscr{A}e_n$$
 为标准正交基
 ⇔ $(\mathscr{A}e_i, \mathscr{A}e_j) = \delta_{ij}$ (対任意的 $1 \le i, j \le n$)
 ⇔ $\left(\sum_{\ell=1}^n a_{\ell i} e_\ell, \sum_{k=1}^n a_{k j} e_k\right) = \delta_{ij}$ (対任意的 $1 \le i, j \le n$)
 ⇔ $\sum_{k=1}^n a_{k i} a_{k j} = \delta_{ij}$ (対任意的 $1 \le i, j \le n$)
 ⇔ $A^T A = I_n$

定义(正交矩阵)

若 n 阶实方阵 A 满足 $A^TA = I_n($ 或 $A^{-1} = A^T)$, 则称 A 为正交矩阵.

注: 正交矩阵的行向量 (或列向量) 构成 \mathbb{R}^n 的标准正交基 (在标准内积下).