Analisi Funzionale

Prodotti scalari e spazi di Hilbert

Prof. Alessio Martini

Politecnico di Torino a.a. 2023/2024

Prodotti scalari su spazi vettoriali reali

Def. Sia H uno spazio vettoriale su \mathbb{R} . Un *prodotto scalare* su H è una mappa $\langle \cdot, \cdot \rangle : H \times H \to \mathbb{R}$ con le seguenti proprietà:

- (a) $\langle \alpha x + \beta y, z \rangle = \alpha \langle x, z \rangle + \beta \langle y, z \rangle$ per ogni $x, y, z \in H$ e $\alpha, \beta \in \mathbb{R}$ (lineare nella prima variabile);
- (b) $\langle x, y \rangle = \langle y, x \rangle$ per ogni $x, y \in H$ (simmetrica);
- (c) $\langle x, x \rangle \ge 0$ per ogni $x \in H$, e $\langle x, x \rangle = 0$ se e solo se x = 0 (definita positiva).

Oss. Dalle proprietà (a) e (b) segue anche:

(a') $\langle x, \alpha y + \beta z \rangle = \alpha \langle x, y \rangle + \beta \langle x, z \rangle$ per ogni $x, y, z \in H$ e $\alpha, \beta \in \mathbb{R}$ (lineare nella seconda variabile).

Una mappa che soddisfi (a) e (a') si dice bilineare.

Per questo motivo, diciamo che un prodotto scalare su H è una forma bilineare simmetrica definita positiva su H.

Prodotti scalari su spazi vettoriali complessi

Def. Sia H uno spazio vettoriale su \mathbb{C} . Un *prodotto scalare* su H è una mappa $\langle \cdot, \cdot \rangle : H \times H \to \mathbb{C}$ con le seguenti proprietà:

- (a) $\langle \alpha x + \beta y, z \rangle = \alpha \langle x, z \rangle + \beta \langle y, z \rangle$ per ogni $x, y, z \in H$ e $\alpha, \beta \in \mathbb{C}$ (lineare nella prima variabile);
- (b) $\langle x, y \rangle = \overline{\langle y, x \rangle}$ per ogni $x, y \in H$ (hermitiana);
- (c) $\langle x, x \rangle \ge 0$ per ogni $x \in H$, e $\langle x, x \rangle = 0$ se e solo se x = 0 (definita positiva).

Oss. Dalle proprietà (a) e (b) segue anche:

(a') $\langle x, \alpha y + \beta z \rangle = \overline{\alpha} \langle x, y \rangle + \overline{\beta} \langle x, z \rangle$ per ogni $x, y, z \in H$ e $\alpha, \beta \in \mathbb{C}$ (antilineare nella seconda variabile).

Una mappa che soddisfi (a) e (a') si dice *sesquilineare*. Per questo motivo, diciamo che un prodotto scalare su H è una *forma sesquilineare hermitiana definita positiva* su H.

Prodotti scalari e spazi pre-hilbertiani

Oss. Sia $\mathbb F$ il campo dei numeri reali $\mathbb R$ oppure dei numeri complessi $\mathbb C$. Sia H uno spazio vettoriale su $\mathbb F$.

Allora un prodotto scalare $\langle \cdot, \cdot \rangle$ su H soddisfa le seguenti proprietà:

(a)
$$\langle \alpha x + \beta y, z \rangle = \alpha \langle x, z \rangle + \beta \langle y, z \rangle$$
 per ogni $x, y, z \in H$ e $\alpha, \beta \in \mathbb{F}$;

(a')
$$\langle x, \alpha y + \beta z \rangle = \overline{\alpha} \langle x, y \rangle + \overline{\beta} \langle x, z \rangle$$
 per ogni $x, y, z \in H$ e $\alpha, \beta \in \mathbb{F}$;

(b)
$$\langle x, y \rangle = \overline{\langle y, x \rangle}$$
 per ogni $x, y \in H$;

(c)
$$\langle x, x \rangle \ge 0$$
 per ogni $x \in H$, e $\langle x, x \rangle = 0$ se e solo se $x = 0$.

[Nel caso $\mathbb{F}=\mathbb{R}$ si ha $\alpha=\overline{\alpha}$ per ogni scalare α , dunque la "antilinearità" è lo stesso della "linearità".]

Def. Uno spazio vettoriale H su \mathbb{F} dotato di un prodotto scalare $\langle \cdot, \cdot \rangle$ si dice *spazio pre-hilbertiano* (o *spazio con prodotto scalare*).

Esempi di spazi pre-hilbertiani

▶ Il prodotto scalare euclideo (o standard) su \mathbb{F}^n è dato da

$$\langle x,y\rangle = \sum_{i=1}^n x_j \overline{y_j} \qquad \forall x = (x_1,\ldots,x_n), y = (y_1,\ldots,y_n) \in \mathbb{F}^n.$$

▶ Sullo spazio ℓ^2 un prodotto scalare è dato da

$$\langle \underline{x}, \underline{y} \rangle = \sum_{k=0}^{\infty} x_k \overline{y_k} \qquad \forall \underline{x}, \underline{y} \in \ell^2.$$
 (†)

[La convergenza della serie in (†) segue dalla disug. di Hölder.]

Sia (M, \mathcal{M}, μ) uno spazio di misura. Sullo spazio $L^2(M, \mathcal{M}, \mu)$ un prodotto scalare è dato da

$$\langle f,g\rangle = \int_{M} f\,\overline{g}\,d\mu \qquad \forall f,g\in L^{2}(M,\mathcal{M},\mu).$$

Sia $(H, \langle \cdot, \cdot \rangle)$ uno spazio pre-hilbertiano e V un sottospazio vettoriale di H. Allora V è uno spazio pre-hilbertiano, il cui prodotto scalare è la restrizione di $\langle \cdot, \cdot \rangle$ a $V \times V$ (detta prodotto scalare indotto da $(H, \langle \cdot, \cdot \rangle)$ su V), che per brevità denotiamo ancora con $\langle \cdot, \cdot \rangle$.

Norma indotta da un prodotto scalare

Def. Sia $(H, \langle \cdot, \cdot \rangle)$ uno spazio pre-hilbertiano. La funzione $\|\cdot\|: H \to [0, \infty)$ definita da

$$||x|| = \sqrt{\langle x, x \rangle} \qquad \forall x \in H$$

si dice norma indotta dal prodotto scalare.

Oss. Siccome il prodotto scalare è definito positivo, si ha $\langle x, x \rangle \geq 0$, quindi $||x|| = \sqrt{\langle x, x \rangle}$ è ben definita per ogni $x \in H$.

Teor. (disuguaglianza di Cauchy–Schwarz) Sia $(H, \langle \cdot, \cdot \rangle)$ uno spazio pre-hilbertiano. Allora

$$|\langle x, y \rangle| \le ||x|| ||y|| \quad \forall x, y \in H.$$

Prop. Sia $(H, \langle \cdot, \cdot \rangle)$ uno spazio pre-hilbertiano. La norma $\| \cdot \|$ indotta dal prodotto scalare è una norma su H.

Oss. Dunque ogni spazio pre-hilbertiano è anche uno spazio normato (e in particolare uno spazio metrico).

Def. Uno *spazio di Hilbert* è uno spazio pre-hilbertiano completo.

Esempi e non-esempi di spazi di Hilbert

Gli spazi pre-hilbertiani

$$(\mathbb{F}^n, \langle \cdot, \cdot \rangle), \qquad (\ell^2, \langle \cdot, \cdot \rangle), \qquad (L^2(M, \mathcal{M}, \mu), \langle \cdot, \cdot \rangle)$$
 precedentemente discussi sono tutti spazi di Hilbert.

 \triangleright Lo spazio c_{00} con il prodotto scalare

$$\langle \underline{x}, \underline{y} \rangle = \sum_{k=0}^{\infty} x_k \overline{y_k}$$

indotto da $(\ell^2, \langle \cdot, \cdot \rangle)$ non è uno spazio di Hilbert.

Sia [a, b] un intervallo chiuso e limitato di \mathbb{R} . Lo spazio C[a, b] con il prodotto scalare integrale

$$\langle f,g\rangle = \int_a^b f(t)\,\overline{g(t)}\,dt$$

indotto da $(L^2(a,b),\langle\cdot,\cdot\rangle)$ <u>non</u> è uno spazio di Hilbert.

Proprietà del prodotto scalare e della norma indotta

Prop. Sia $(H, \langle \cdot, \cdot \rangle)$ uno spazio pre-hilbertiano su \mathbb{F} .

(i) Per ogni
$$x, y \in H$$
,

$$4\langle x,y\rangle = \begin{cases} \|x+y\|^2 - \|x-y\|^2 & \text{se } \mathbb{F} = \mathbb{R}, \\ \|x+y\|^2 - \|x-y\|^2 + i\|x+iy\|^2 - i\|x-iy\|^2 & \text{se } \mathbb{F} = \mathbb{C} \end{cases}$$
(identità di polarizzazione).

(ii) Per ogni
$$x, y \in H$$
,
$$\|x + y\|^2 + \|x - y\|^2 = 2\|x\|^2 + 2\|y\|^2$$
 (identità del parallelogramma).

Coroll. Sia $(H, \langle \cdot, \cdot \rangle)$ è uno spazio pre-hilbertiano. Allora la mappa $\langle \cdot, \cdot \rangle : H \times H \to \mathbb{F}$ è continua.

Oss. La validità dell'identità del parallelogramma è condizione necessaria (e sufficiente) affinché la norma $\|\cdot\|$ sia indotta da un prodotto scalare. In particolare, non sono indotte da un prodotto scalare: la norma $\|\cdot\|_p$ su ℓ^p per $p \neq 2$;

- \blacktriangleright la norma $\|\cdot\|_{\infty}$ su C[a,b].