MosquitoNet

Jay Gupta & Aliza Kajani

April 24, 2020

Background

- Malaria incidence: >200M new cases per year
 - Infection caused by Plasmodium parasite, carried by mosquitoes
 - Global mosquito surveillance is a component of epidemiological studies
 - Gonotrophic (reproductive) cycle state can be determined through visual inspection of mosquito abdomen
- Objective:
 - Develop a deep learning-based classifier for identification of gonotrophic state from images of mosquitoes

Dataset

- Compiled by DGHI researchers
- Images of 1,327 unique mosquitoes
- Each mosquito imaged from three directions: head-legs, wings, palps
- Species: gambiae, funestus, or demeilloni
- Gonotrophic state: unfed, blood fed, gravid, or half gravid

Methods

- AlexNet architecture: 5 conv layers, 3 FC layers, softmax classifier
- Physical layers
 - Camera angle (head-legs, wings, palps)
 - Pixel size (downsampled to 224x224 px)
- Simulations performed: baseline, data augmentation, and pre-training

Results: AlexNet, head-legs angle only

- Baseline
- 40.23% accuracy

- With data augmentation
 - Rotations
 - Horizontal + Vertical flips
 - Height + Width shifts
- 42.11% accuracy
 - before overfitting

Results: AlexNet, wings angle only

- Baseline
- 34.59% accuracy

- With data augmentation
- 40.23% accuracy

Results: AlexNet, palps angle only

- Baseline
- 40.98% accuracy

- With data augmentation
- 39.85% accuracy

Results: AlexNet, all three angles

- Baseline
- 44.04% accuracy

- With data augmentation
- 45.67% accuracy

Pre-trained model in Keras

- Keras Applications API contains several, downloadable image classification models pre-trained using ImageNet dataset
- InceptionV3 model powerful but supposedly easier to train
 - Suggest fine-tuning the last 2 blocks of this model + classifier

Results: InceptionV3 model, baseline

Results: InceptionV3 model, confusion matrices

Results: InceptionV3 model, all camera angles

Pre-training with IP102 dataset

- Benchmark dataset developed for insect pest recognition tasks
- 75,222 images & 102 classes
- Top 4 classes used

Results: pre-training with IP102 dataset

- Pre-training
- 65.68% accuracy

- Fine tuning
 - all camera angles
- 43.66% accuracy

Summary

- Three major approaches considered
 - AlexNet trained on mosquito dataset
 - InceptionV3 pre-trained on ImageNet and finetuned on mosquito dataset
 - AlexNet pre-trained on IP102 and finetuned on mosquito dataset
- Challenges encountered → solutions considered
 - Overfitting → data augmentation
 - Class imbalance → random oversampling of the minority classes
- Physical layer: camera angle
 - No major differences in camera angle identified, but performance was weak for all

Future Directions

- Alternative physical layers (e.g. downsampling factor)?
- Less complex CNN architecture to reduce overfitting?
- More nuanced methods to handle class imbalances?
 - Alternative performance metrics (e.g. balanced accuracy for binary tasks)?
 - Alternatives to random oversampling?
- Ensemble models?
 - Is there a way to make predictions using all three images, simultaneously?

