Applied Econometric Time Series – Problem Set 3

Marek Chadim, Love Leijonklo, Shivani Gaikwad, Hugo Ryberg¹

1. (a) To show that $Cov(y_t, \varepsilon_{zt}) \neq 0$, we can express the covariance as expectations and perform the calculations with substitutions from the bivariate system:

$$Cov(y_t, \varepsilon_{zt}) = E[[y_t - E[y_t]] \cdot [\varepsilon_{zt} - E[\varepsilon_{zt}]]$$

We can express substitute the expression of y_t from the bivariate system. The expectation of all factors that are multiplied by ε_{zt} and ε_{yt} goes to zero by the white-noise process assumption, and we are left with:

$$Cov(y_t, \varepsilon_{zt}) = Cov(\frac{\varepsilon_{yt} - b_{12}\varepsilon_{zt}}{1 - b_{12}b_{21}}, \varepsilon_{zt})$$

$$Cov(y_t, \varepsilon_{zt}) = Cov(\frac{-b_{12}\varepsilon_{zt}}{1 - b_{12}b_{21}}, \varepsilon_{zt}) = \frac{-b_{12}}{1 - b_{12}b_{21}} \cdot \sigma_z^2$$

We can now conclude that the covariance will be different from zero as long as $b_{12} \neq 0$ and $1 - b_{12}b_{21} \neq 0$.

- (b) From the derivations in part a) we can conclude that the $Cov(y_t, \varepsilon_{zt}) \neq 0$, would not hold if $b_{12} = 0$. Setting $b_{12} = 0$ removes the direct link between z_t and y_t hence also removing the pathway between ε_{zt} and y_t .
- (c) We begin with the following set of equations:

$$y_t = -b_{12}z_t + \gamma_{11}y_{t-1} + \gamma_{12}z_{t-1} + \epsilon_{yt}$$

$$z_t = -b_{21}y_t + \gamma_{21}y_{t-1} + \gamma_{22}z_{t-1} + \epsilon_{zt}$$

We use matrix algebra to write the system in a compact form:

$$X_{t} = \begin{bmatrix} y_{t} \\ z_{t} \end{bmatrix}$$

$$B = \begin{bmatrix} 1 & b_{12} \\ b_{21} & 1 \end{bmatrix}$$

$$\Gamma = \begin{bmatrix} \gamma_{11} & \gamma_{12} \\ \gamma_{21} & \gamma_{22} \end{bmatrix}$$

$$\epsilon_{t} = \begin{bmatrix} \epsilon_{yt} \\ \epsilon_{zt} \end{bmatrix}$$

$$Thus,$$

$$BX_{t} = \Gamma.X_{t-1} + \epsilon_{t}$$

¹42624@student.hhs.se, 24851@student.hhs.se, 42664@student.hhs.se, 42597@student.hhs.se

Multiplying by B^{-1} ,

$$B^{-1}BX_t = B^{-1}\Gamma.X_{t-1} + B^{-1}\epsilon_t$$
$$X_t = A_1X_{t-1} + e_t....(1)$$

where,

$$A_1 = B^{-1}\Gamma$$
$$e_t = B^{-1}\epsilon_t$$

(1) is known as the reduced form representation. It can also be expressed as:

$$y_t = a_{11}y_{t-1} + a_{12}z_{t-1} + e_{yt}$$

$$z_t = a_{21}y_{t-1} + a_{22}z_{t-1} + e_{zt}$$

(d) We know that:

$$A_{1} = \begin{bmatrix} 0.50 & 0.10 \\ 0.40 & 0.20 \end{bmatrix}$$

$$\Sigma_{e} = \begin{bmatrix} 1 & 0.50 \\ 0.50 & 2 \end{bmatrix}$$

$$b_{12} = 0$$

We start with the A_1 matrix,

$$A_{1} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} = B^{-1}\Gamma$$

$$B^{-1}\Gamma = \frac{1}{\delta} \begin{bmatrix} 1 & -b_{12} \\ -b_{21} & 1 \end{bmatrix} \begin{bmatrix} \gamma_{11} & \gamma_{12} \\ \gamma_{21} & \gamma_{22} \end{bmatrix}$$

$$\delta = |B| = \begin{vmatrix} 1 & b_{12} \\ b_{21} & 1 \end{vmatrix} = 1 - b_{12}b_{21} = 1$$

 $(as b_{12} = 0)$ Thus,

$$A_1 = B^{-1}\Gamma = \begin{bmatrix} \gamma_{11} - b_{12}\gamma_{21} & \gamma_{12} - b_{12}\gamma_{22} \\ \gamma_{21} - b_{21}\gamma_{11} & \gamma_{22} - b_{21}\gamma_{12} \end{bmatrix}$$

Now we substitute for e_t ,

$$e_{t} = B^{-1} \epsilon_{t} = \frac{1}{\delta} \begin{bmatrix} 1 & -b_{12} \\ -b_{21} & 1 \end{bmatrix} \begin{bmatrix} \epsilon_{yt} \\ \epsilon_{zt} \end{bmatrix}$$
$$\begin{bmatrix} e_{yt} \\ e_{zt} \end{bmatrix} = \begin{bmatrix} \epsilon_{yt} - b_{12} \epsilon_{zt} \\ \epsilon_{zt} - b_{21} \epsilon_{yt} \end{bmatrix}$$

We know that the $Cov(e_{yt}, e_{zt}) \neq 0$. Substituting for these terms from the derived value of e_t ,

$$Cov(e_{yt}, e_{zt}) = Cov(\epsilon_{yt} - b_{12}\epsilon_{zt}, \epsilon_{zt} - b_{21}\epsilon_{yt})$$

$$= Cov(\epsilon_{yt}, \epsilon_{zt}) - Cov(\epsilon_{yt}, b_{21}\epsilon_{yt}) - Cov(b_{12}\epsilon_{zt}, \epsilon_{zt}) + Cov(b_{12}\epsilon_{zt}, b_{21}\epsilon_{yt})$$

$$= Cov(\epsilon_{yt}, \epsilon_{zt}) - b_{21}Cov(\epsilon_{yt}, \epsilon_{yt}) - b_{12}Cov(\epsilon_{zt}, \epsilon_{zt}) + b_{12}b_{21}Cov(\epsilon_{zt}, \epsilon_{yt})$$

We know that $Cov(X, X) = Var(X) = \sigma_X^2$. Since ϵ_t follows a Vector White Noise process, $Cov(\epsilon_{yt}, \epsilon_{zt}) = 0$.

$$Cov(e_{yt}, e_{zt}) = 0 - b_{21}\sigma_{yt}^2 - b_{12}\sigma_{zt}^2 + 0$$

As $b_{12} = 0$

$$b_{21} = \frac{-Cov(e_{yt}, e_{zt})}{\sigma_{yt}^2}$$

$$b_{21} = \frac{\Sigma_{12}}{\Sigma_{11}} = \frac{-0.5}{1} = -0.5$$

$$B = \begin{bmatrix} 1 & 0 \\ -0.50 & 1 \end{bmatrix}$$

As we know B, we can find the value of Γ by using the value of A_1 ,

$$A_{1} = \begin{bmatrix} 0.50 & 0.10 \\ 0.40 & 0.20 \end{bmatrix} = \begin{bmatrix} \gamma_{11} - b_{12}\gamma_{21} & \gamma_{12} - b_{12}\gamma_{22} \\ \gamma_{21} - b_{21}\gamma_{11} & \gamma_{22} - b_{21}\gamma_{12} \end{bmatrix}$$

$$0.50 = \gamma_{11} - 0\gamma_{21}$$

$$= \gamma_{11}$$

$$0.10 = \gamma_{12} - 0\gamma_{22}$$

$$= \gamma_{12}$$

$$0.40 = \gamma_{21} - (-0.50 * 0.50)$$

$$= \gamma_{21} + 0.25$$

$$\gamma_{21} = 0.15$$

$$0.20 = \gamma_{22} - (-0.50 * 0.10)$$

$$= \gamma_{22} + 0.05$$

$$\gamma_{22} = 0.15$$

$$\Gamma = \begin{bmatrix} 0.50 & 0.10 \\ 0.15 & 0.15 \end{bmatrix}$$

Lastly, we find the value of Σ_{ϵ} ,

$$\begin{bmatrix} e_{yt} \\ e_{zt} \end{bmatrix} = \begin{bmatrix} \epsilon_{yt} - b_{12}\epsilon_{zt} \\ \epsilon_{zt} - b_{21}\epsilon_{yt} \end{bmatrix}$$

$$e_{yt} = \epsilon_{yt} - 0$$

$$\Sigma_{e_{11}} = \Sigma_{\epsilon_{11}} = 1$$

$$e_{zt} = \epsilon_{zt} - b_{21}\epsilon_{yt}$$

$$2 = \epsilon_{zt} - (-0.50 * 1)$$

$$\epsilon_{zt} = 1.50$$

$$\Sigma_{\epsilon} = \begin{bmatrix} 1 & 0 \\ 0 & 1.50 \end{bmatrix}$$

(e) The system is stationary if the unit roots of the characteristic polynomial lay outside the unit circle. For a system of equations, the characteristic polynomial is defined by

$$\det(I - Az) = 0.$$

This gives us roots

$$(1 - a_{11}z)(1 - a_{22}z) - (a_{12}a_{a21}z^{2}) = 0,$$

$$1 - 0.8z + 0.07z^{2} = 0,$$

$$z = \frac{40 \pm \sqrt{900}}{7},$$

$$z_{1} = 10, \quad z_{2} = \frac{10}{7}.$$

Since they both are outside the unit circle the system is stationary.

The impulse response of a unit shock can be calculated by recursive substitution. However, a much easier way of computing the impulse responses is to use the VMA representation and note that

$$\frac{\partial x_t}{\partial \epsilon_{t-s}} = A^s.$$

The four period sequence after a unit shock to y_t is,

$$\{y_t\}_{t=0}^4 = \{1, 0.5, 0.33, 0.229, 0.16\},\$$

$${z_t}_{t=0}^4 = {0, 0.4, 0.32, 0.228, 0.16}.$$

The four period sequence after a unit shock to z_t is,

$${y_t}_{t=0}^4 = {0.25, 0.325, 0.24, 0.171, 0.12},$$

$$\{z_t\}_{t=0}^4 = \{1, 0.4, 0.25, 0.172, 0.12\}.$$

The simplest way of introducing unit roots is setting one coefficient in each row equal to 1. Two examples are

$$A_1 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad A_2 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}.$$

The impulse response in a unit root system will not die out, illustrated by the following 4-period impulse responses for A_1 and A_2 . A unit increase in ϵ_y for the system described by A_1 yields

$${y_t}_{t=0}^4 = {1, 1, 1, 1, 1},$$

$${z_t}_{t=0}^4 = {0, 0, 0, 0, 0},$$

and vice versa with a shock to ϵ_z . For A_2 , a unit shock to ϵ_y gives us

$${y_t}_{t=0}^4 = {1, 0, 1, 0, 1},$$

$${z_t}_{t=0}^4 = {0, 1, 0, 1, 0},$$

and vice versa for a shock to ϵ_z .

2. (a) The test rejects the hypothesis (and thus finds evidence of Granger causality) if the statistic is larger than the critical value (if the p-value is small) and fails to reject the hypothesis (and thus finds no evidence of causality) if the statistic is smaller than the critical value. We find that the F-statistic is 2.40 with a p-value of 0.0691. We therefore fail to reject null hypothesis of s_t not being causally prior to Δlip_t at at the 5% significance level.

var dlip dur spread, lags(1/3)Number of obs Sample: 4 thru 213 210 Log likelihood = AIC -5.139007569.5957 FPE 1.18e - 06HQIC -4.945705Det(Sigma ml) =8.84e - 07SBIC -4.660848

Equation	Parms	RMSE	R-sq	chi2	P>chi2
dlip	10	.01236	0.4043	142.5076	0.0000
dur	10	.237422	0.5213	228.7073	0.0000
spread	10	.506265	0.8367	1075.81	0.0000

test [dlip]L1.spread [dlip]L2.spread [dlip]L3.spread, df(180) [dlip]L.spread = [dlip]L2.spread = [dlip]L3.spread = 0
$$F(3, 180) = 2.40 \quad Prob > F = 0.0691$$

(b) The corresponding F-statistic is 6.83 with a p-value of 0.0002. This is statistically significant at any conventional level so we can conclude that the s_t series has a predictively causal impact on $\Delta unemp_t$.

test [dur]L1.spread [dur]L2.spread [dur]L3.spread, df(180) [dur]L.spread = [dur]L2.spread = [dur]L3.spread = 0
$$F(-3,-180) = -6.83 \qquad Prob > F = -0.0002$$

(c) The correlation coefficient between e_{1t} and e_{2t} is -0.719 between e_{1t} and e_{3t} is -0.186 and between e_{2t} and e_{3t} is 0.178. Unless the errors are uncorrelated different orderings will lead to different impulse response functions and forecast error decompositions. In order for impulse responses and forecast error decompositions to be interpreted causally the orthogonalization must be identified by the user based on a structural economic argument. There is no data-dependent choice. The results should therefore be compared the to those obtained by changing the ordering as a sensitivity analysis.

 $\begin{array}{lll} matrix & sig_var = e(Sigma)\,, & matrix & corr_var = corr(sig_var) \\ matrix & list & corr_var \end{array}$

		_	
spread	dur	dlip	
		1	dlip
	1	71936136	dur
1	.17848363	18584509	spread

(d) We verify that the forecast error variance decompositions are:

irf set res, irf create res, replace, irf table fevd, noci

dlip impulse		dlip	dur	spread
Impuise	1	1	.517481	.034538
	4	.965395	.655408	.155866
	8	.920089	.587014	.288695
dur	-	dlip	dur	spread
impulse				
	1	0	.482519	.004158
	4	.01492	.3245	.016408
	8	024996	.29426	.016913
spread		dlip	dur	spread
impulse	1	0	0	.961303
	4	.019685	.020092	.827726
	8	.054915	.118726	.694391

(e) We estimate the five lag lip_t, ur_t, s_t VAR model and report diagnostic tests.

var lip urate sprea	ad, lags (1	1/5)			
Sample: 5 thru 213		Nui	mber of ob	s =	209
Log likelihood =	585.9788	AIC	C	=	-5.148122
FPE =	$1.17{\rm e}\!-\!06$	HQ	IC	=	-4.83777
$Det(Sigma_ml) =$	7.37e - 07	SBI	IC	=	-4.380505
Equation	Parms	RMSE	R-sq	chi2	P>chi2
lip	16	.012012	0.9992	249997.1	0.0000
urate	16	.235503	0.9806	10577.52	0.0000
spread	16	.503414	0.8442	1132.134	0.0000

varstable All the eigenvalues lie inside the unit circle. VAR satisfies stability condition.

Lag length of five is appropriate in terms of stability. Yet, remaining serial correlation in residuals suggests model misspecification. $urate_t$ disturbances display a significant departure from normality, the $\Delta urate_t$ transformation is thus likely to be desirable.

varlmar, mlag(12)

Lagrange-multiplier test, HO: no autocorrelation at lag order

lag	chi2	$\mathrm{d}\mathrm{f}$	$\mathrm{Prob} > \mathrm{chi}2$	
1	27.4988	9	0.00116	
4	16.7246	9	0.05321	
8	24.1334	9	0.00410	

varnorm

We conclude that the model is not entirely suitable and would rather opt for optimal information criteria lag lengths: AIC selects three, and the BIC selects two lags.

The forecast error decomposition are comparable to to those above, indicating that shocks in industrial production contribute the most towards the fluctuations of the other variables in the system.

irf set res2, irf create res2, replace, irf table fevd, noci

lip impulse		lip	ur	spread
Impuisc	1	1	.519842	.032788
	$4 \mid$.982678	.714612	.137568
	8	.904433	.682112	.241657
ur		lip	ur	spread
impulse	-			
	1	0	.480158	.006493
	4	.004757	.284058	.031282
	8	.003655	.256073	.048229
spread impulse		lip	ur	spread
imp arso	1	0	0	.960719
	4	.012565	.001329	.83115
	8	.091912	.061815	.710113

(f) We obtain the orthogonolized impulse response functions. Modelling a positive shock to Δlip_t induces a decline in Δur_t that lasts for six quarters. Then, Δur_t overshoots its long-run level before returning to zero.

order (dlip dur spread) irf table oirf, impulse (dlip) response (dur)

Graphs by irfname, impulse variable, and response variable

order1		oirf	Lower	Upper
step	0	166676	193657	139696
	1	144006	178638	109374
	2	085494	123272	047717
	3	051388	086891	015886
	4	020162	055092	.014767
	5	.003389	026572	.033351
	6	.019609	006806	.046024
	7	.029682	.005463	.053901
	8	.033817	.010866	.056767

(g) When using the Cholesky decomposition the recursive structure is determined by the ordering of the variables in the system. The order matters and is the key identifying assumption. The second recursive structure excludes shocks in Δur_t and Δlip_t contemporeneously affecting s_t and, as illustrated below, restricts the contemporaneous impact of a shock in Δlip_t on Δur_t to zero as well.

order(spread dur dlip), irf table oirf, impulse(dlip) response(dur) order2 oirf Lower Upper step 0 1 -.062949-.094589-.031312 -.049399-.012766-.0860313 -.081021-.008515-.0447684 -.032753-.063085-.0024215 -.01535-.038091.00739 6 -.002566-.021993.0168617 .006721-.011259.0247018 .012646-.004359.029651