Attorney Docket No.: COOL-01302

Amendments to the Claims

3

4

5

6

The following listing of claims replaces all prior versions, and listings, of claims in this application.

- (Currently Amended) A heat exchanger comprising: a body having a conducting portion 1 1. in contact with a heat source configured along a plane, wherein the conducting portion 2 conducts heat from the heat source to a heat exchanging an intermediate conducting layer 3 configured within the body, the body including at least one inlet port and at least one 4 outlet port, wherein the at least one inlet port channels fluid to the conducting portion, the 5 conducting portion is configured to distribute the fluid and to pass the distributed fluid 6 therethrough to the intermediate conducting layer, further wherein the intermediate 7 conducting layer is configured to pass the fluid therethrough through the heat exchanging 8 layer from a first side proximal to the conducting portion to a second side distal to the 9 10 conducting portion.
- 1 2. (Currently Amended) The heat exchanger according to claim 1 wherein the body further comprises:
 - a first layer having the conducting portion and configured to pass fluid therealong
 from the at least one inlet port; and
 - b. a second layer coupled to the first layer, wherein the heat exchanging intermediate conducting layer is configured between the first layer and the second layer.
- 1 3. (original) The heat exchanger according to claim 2 wherein the first layer further
 2 comprises a recess area having a heat conducting region in contact with the heat
 3 exchanging layer.
- 1 4. (original) The heat exchanger according to claim 2 wherein the first layer includes the at least one inlet port.
- 1 5. (original) The heat exchanger according to claim 2 wherein the first layer includes the at least one outlet port.

(original) The heat exchanger according to claim 2 wherein the second layer includes the 6. 1 2 at least one inlet port. (original) The heat exchanger according to claim 2 wherein the second layer includes the 7. 1 2 at least one outlet port. (original) The heat exchanger according to claim 1 wherein the at least one inlet port is 8. 1 positioned substantially parallel with respect to the plane. 2 (original) The heat exchanger according to claim 1 wherein the at least one inlet port is 9. 1 positioned substantially perpendicular with respect to the plane. 2 (original) The heat exchanger according to claim 1 wherein the at least one outlet port is 1 10. positioned substantially parallel with respect to the plane. 2 (original) The heat exchanger according to claim 1 wherein the at least one outlet port is 1 11. positioned substantially perpendicular with respect to the plane. 2 (Currently Amended) The heat exchanger according to claim 8 wherein the recess area 12. 1 includes a plurality of fluid inlet grooves through in the heat conducting area, the fluid 2 inlet grooves for channeling fluid from the at least one inlet port to the heat exchanging 3 intermediate conducting layer. 4 (Currently Amended) The heat exchanger according to claim 8 wherein the second layer 13. 1 further comprises a plurality of fluid outlet grooves for channeling fluid from the heat 2 exchanging intermediate conducting layer to the second port. 3 (original) The heat exchanger according to claim 1 wherein the fluid is in single phase 14. 1 2 flow conditions. (original) The heat exchanger according to claim 1 wherein at least a portion of the fluid 1 15. is in two phase flow conditions. 2

1 2	16.	(original) The heat exchanger according to claim 1 wherein the conducting portion has a thickness dimension within the range of and including 0.3 to 0.7 millimeters.
1	17.	(original) The heat exchanger according to claim 1 wherein an overhang dimension is within the range of and including 0 to 15 millimeters.
1 2 3	18.	(original) The heat exchanger according to claim 1 wherein at least a portion of the fluid undergoes a transition between single and two phase flow conditions in the heat exchanger.
1 2	19.	(original) The heat exchanger according to claim 2 wherein the first layer is made of a material having a thermal conductivity of at least 100 W/mK.
1 2 3	20.	(original) The heat exchanger according to claim 2 wherein the first layer further comprises a plurality of pillars configured in a predetermined pattern along the interface layer.
1 2 3	21.	(original) The heat exchanger according to claim 20 wherein at least one of the plurality of pillars has an area dimension within the range of and including (10 micron) ² and (100 micron) ² .
1 2 3	22.	(original) The heat exchanger according to claim 20 wherein at least one of the plurality of pillars has a height dimension within the range of and including 50 microns and 2 millimeters.
1 2 3	23.	(original) The heat exchanger according to claim 20 wherein at least two of the plurality of pillars are separate from each other by a spacing dimension within the range of and including 10 to 150 microns.
1	24.	(original) The heat exchanger according to claim 20 wherein at least one of the plurality of pillars includes at least varying dimension along a predetermined direction.

Attorney Docket No.: COOL-01302

(original) The heat exchanger according to claim 20 wherein an appropriate number of 25. 1 pillars are disposed in a predetermined area along the interface layer. 2 (original) The heat exchanger according to claim 1 wherein at least a portion of the first 26. 1 2 layer has a roughened surface. (original) The heat exchanger according to claim 20 wherein the plurality of pillars 1 27. include a coating thereupon, wherein the coating has an appropriate thermal conductivity 2 3 of at least 10 W/m-K. (Currently Amended) The heat exchanger according to claim 1 wherein the heat 28. 1 exchanging intermediate conducting layer is made of a porous microstructure. 2 (original) The heat exchanger according to claim 28 wherein the porous microstructure 29. 1 has a porosity within the range of and including 50 to 80 percent. 2 (original) The heat exchanger according to claim 28 wherein the porous microstructure 30. 1 has an average pore size within the range of and including 10 to 200 microns. 2 (original) The heat exchanger according to claim 28 wherein the porous microstructure 1 31. has a height dimension within the range of and including 0.25 to 2.00 millimeters. 2 (original) The heat exchanger according to claim 28 wherein the porous microstructure 32. 1 includes at least one pore having a varying dimension along a predetermined direction. 2 (original) The heat exchanger according to claim 1 further comprising a plurality of 33. 1 microchannels disposed in a predetermined configuration along the first layer. 2 (original) The heat exchanger according to claim 33 wherein at least one of the plurality 1 34. of microchannels has an area dimension within the range of and including (10 micron)² 2 and (100 micron)². 3 (original) The heat exchanger according to claim 33 wherein at least one of the plurality 1 35.

1		of microchannels has a height dimension within the range of and including 50 microns
2		and 2 millimeters.
1	36.	(original) The heat exchanger according to claim 33 wherein at least two of the plurality
2		of microchannels are separate from each other by a spacing dimension within the range of
3		and including 10 to 150 microns.
1	37.	(original) The heat exchanger according to claim 33 wherein at least one of the plurality
2		of microchannels has a width dimension within the range of and including 10 to 100
3		microns.
1	38.	(original) The heat exchanger according to claim 1 wherein the first layer is coupled to
2		the heat source.
1	39.	(original) The heat exchanger according to claim 1 wherein the first layer is integrally
2		formed to the heat source.
1	40.	(original) The heat exchanger according to claim 1 wherein the heat source is an
2		integrated circuit.
1	41.	(original) The heat exchanger according to claim 1 further comprising a thermoelectric
2		device positioned between the conducting portion and the heat source, wherein the
3		thermoelectric device is electrically coupled to a power source.
1	42.	(original) The heat exchanger according to claim 41 wherein the thermoelectric device is
2		integrally formed within the heat exchanger.
1	43.	(original) The heat exchanger according to claim 41 wherein the thermoelectric device is
2		integrally formed within the heat source.
1	44.	(original) The heat exchanger according to claim 41 wherein the thermoelectric device is
2		coupled to the heat exchanger and the heat source.
3		

4	45.	(Currently Amended) A heat exchanger configured to cool a heat source configured along
5		a plane comprising:
6		a. an interface layer having a thermal conductivity for performing thermal exchange
7		with the heat source and configured to pass fluid from a first side to a second side
8		such that heat is passed from the interface layer to the fluid passing therethrough;
9		and
0		b. a manifold layer comprising:
1		i. a first layer in contact with the heat source and configured to pass fluid
12		therethrough to the interface layer, the first layer and having an
13		appropriate thermal conductivity to pass heat from the heat source to the
14		fluid passing therethrough and to pass heat from the heat source to the first
15		side of the interface layer; and
16		ii. a second layer coupled to the first layer and in contact with the second side
17		of the interface layer.
1	46.	(original) The heat exchanger according to claim 45 wherein the first layer further
2		comprises a recess area having a heat conducting region in contact with the interface
3		layer.
1	47.	(original) The heat exchanger according to claim 45 wherein the first layer includes the at
2		least one inlet port.
1	48.	(original) The heat exchanger according to claim 45 wherein the first layer includes the at
2	,	least one outlet port.
1	49.	(original) The heat exchanger according to claim 45 wherein the second layer includes the
2	٦).	at least one inlet port.
	50	('.' 1) The least exchanger according to plaim 45 wherein the second layer includes the
1 2	50.	(original) The heat exchanger according to claim 45 wherein the second layer includes the at least one outlet port.
۷		at readt one outer port
1 2	51.	(original) The heat exchanger according to claim 45 wherein the at least one inlet port is positioned substantially parallel with respect to the plane.

(original) The heat exchanger according to claim 45 wherein the at least one inlet port is 52. 1 positioned substantially perpendicular with respect to the plane. 2 (original) The heat exchanger according to claim 45 wherein the at least one outlet port is 1 53. positioned substantially parallel with respect to the plane. 2 (original) The heat exchanger according to claim 45 wherein the at least one outlet port is 54. 1 positioned substantially perpendicular with respect to the plane. 2 (original) The heat exchanger according to claim 46 wherein the recess area includes a 55. 1 plurality of fluid inlet grooves through in the heat conducting region, the fluid inlet 2 grooves for channeling fluid from at least one inlet port to the interface layer. 3 (original) The heat exchanger according to claim 45 wherein the second layer further 1 56. comprises a plurality of fluid outlet grooves for channeling fluid from the interface layer 2 3 to at least one outlet port. (original) The heat exchanger according to claim 45 wherein the fluid is in single phase 1 57. flow conditions. 2 (original) The heat exchanger according to claim 45 wherein at least a portion of the fluid 1 58. is in two phase flow conditions. 2 (original) The heat exchanger according to claim 45 wherein the first layer has a 1 59. thickness dimension within the range of and including 0.3 to 0.7 millimeters. 2 (original) The heat exchanger according to claim 45 wherein an overhang dimension is 1 60. within the range of and including 0 to 15 millimeters. 2 (original) The heat exchanger according to claim 45 wherein at least a portion of the fluid 61. 1 undergoes a transition between single and two phase flow conditions in the heat 2 3 exchanger.

(original) The heat exchanger according to claim 45 wherein the thermal conductivity is 62. 1 at least 100 W/m-K. 2 (original) The heat exchanger according to claim 45 wherein the first layer further 1 63. comprises a plurality of pillars configured in a predetermined pattern along the first layer. 2 (original) The heat exchanger according to claim 63 wherein at least one of the plurality 64. 1 of pillars has an area dimension within the range of and including (10 micron)² and (100 2 micron)². 3 (original) The heat exchanger according to claim 63 wherein at least one of the plurality 65. 1 of pillars has a height dimension within the range of and including 50 microns and 2 2 millimeters. 3 (original) The heat exchanger according to claim 63 wherein at least two of the plurality 66. 1 of pillars are separate from each other by a spacing dimension within the range of and 2 including 10 to 150 microns. 3 (original) The heat exchanger according to claim 63 wherein at least one of the plurality 67. 1 of pillars includes at least varying dimension along a predetermined direction. 2 (original) The heat exchanger according to claim 63 wherein an appropriate number of 1 68. pillars are disposed in a predetermined area along the interface layer. 2 (original) The heat exchanger according to claim 45 wherein at least a portion of the first 1 69. 2 layer has a roughened surface. (original) The heat exchanger according to claim 63 wherein the plurality of pillars 70. 1 include a coating thereupon, wherein the coating has an appropriate thermal conductivity 2 3 of at least 10 W/m-K. (original) The heat exchanger according to claim 45 wherein the interface layer is made 71. 1 2 of a porous microstructure.

1 2	72.	has a porosity within the range of and including 50 to 80 percent.
1 2	73.	(original) The heat exchanger according to claim 71 wherein the porous microstructure has an average pore size within the range of and including 10 to 200 microns.
1 2	74.	(original) The heat exchanger according to claim 71 wherein the porous microstructure has a height dimension within the range of and including 0.25 to 2.00 millimeters.
1 2	75.	(original) The heat exchanger according to claim 71 wherein the porous microstructure includes at least one pore having a varying dimension along a predetermined direction.
1 2	76.	(original) The heat exchanger according to claim 45 further comprising a plurality of microchannels disposed in a predetermined configuration along the first layer.
1 2 3	77.	(original) The heat exchanger according to claim 76 wherein at least one of the plurality of microchannels has an area dimension within the range of and including (10 micron) ² and (100 micron) ² .
1 2 3	78.	(original) The heat exchanger according to claim 76 wherein at least one of the plurality of microchannels has a height dimension within the range of and including 50 microns and 2 millimeters.
1 2 3	79.	(original) The heat exchanger according to claim 76 wherein at least two of the plurality of microchannels are separate from each other by a spacing dimension within the range of and including 10 to 150 microns.
1 2 3	80.	(original) The heat exchanger according to claim 76 wherein at least one of the plurality of microchannels has a width dimension within the range of and including 10 to 100 microns.

1 2	81.	(original) The heat exchanger according to claim 45 wherein the first layer is coupled to the heat source.
1 2	82.	(original) The heat exchanger according to claim 45 wherein the first layer is integrally formed to the heat source.
1 2	83.	(original) The heat exchanger according to claim 45 wherein the heat source is an integrated circuit.
1 2 3	84.	(original) The heat exchanger according to claim 45 further comprising a thermoelectric device positioned between the first layer and the heat source, wherein the thermoelectric device is electrically coupled to a power source.
1 2	85.	(original) The heat exchanger according to claim 84 wherein the thermoelectric device is integrally formed within the heat exchanger.
1 2	86.	(original) The heat exchanger according to claim 84 wherein the thermoelectric device is integrally formed within the heat source.
1	87.	(original) The heat exchanger according to claim 84 wherein the thermoelectric device is coupled to the heat exchanger and the heat source.
1 2 3 4	88.	 (Currently Amended) A method of manufacturing a heat exchanger configured to cool a heat source positioned along a plane, the method comprising the steps of: a. providing a first layer configurable to be in contact with the heat source and to pass fluid along a heat conducting surface, wherein the first layer has an
5		appropriate thermal conductivity to pass heat from the heat source to the fluid passing along the heat conducting surface;
7 8		b. coupling a second layer <u>having a thermal conductivity</u> to the first layer, wherein a first side of the second layer is in contact with the heat conducting surface <u>to</u>
9 10		receive heat therefrom and configured to pass fluid from the first layer therethrough such that heat is passed from the second layer to the fluid; and

1 2		c. coupling a third layer to the first and second layers, wherein a second side of the second layer is in contact with the third layer.
1 2	89.	(original) The method of manufacturing according to claim 88 wherein the first layer further comprises a recess area having the heat conducting surface.
1 2 3	90.	(original) The method of manufacturing according to claim 88 wherein the heat exchanger includes at least one inlet port for channeling fluid to the first side and at least one outlet port for channeling fluid from the second side.
1 2	91.	(original) The method of manufacturing according to claim 90 wherein the first layer includes the at least one inlet port.
1 2	92.	(original) The method of manufacturing according to claim 90 wherein the first layer includes the at least one outlet port.
1 2	93.	(original) The method of manufacturing according to claim 90 wherein the third layer includes the at least one inlet port.
1 2	94.	(original) The method of manufacturing according to claim 90 wherein the third layer includes the at least one outlet port.
1 2	95.	(original) The method of manufacturing according to claim 90 wherein the at least one inlet port is positioned substantially parallel with respect to the plane.
1 2	96.	(original) The method of manufacturing according to claim 90 wherein the at least one inlet port is positioned substantially perpendicular with respect to the plane.
1 2	97.	(original) The method of manufacturing according to claim 90 wherein the at least one outlet port is positioned substantially parallel with respect to the plane.
1 2	98.	(original) The method of manufacturing according to claim 90 wherein the at least one outlet port is positioned substantially perpendicular with respect to the plane.

PATENT Attorney Docket No.: COOL-01302

(original) The method of manufacturing according to claim 89 wherein the recess area 99. 1 includes a plurality of fluid inlet grooves along the heat conducting surface, the fluid inlet 2 grooves for channeling fluid from at least one inlet port to the second layer. 3 (original) The method of manufacturing according to claim 88 wherein the fluid is in 100. 1 2 single phase flow conditions. (original) The method of manufacturing according to claim 88 wherein at least a portion 101. 1 of the fluid is in two phase flow conditions. 2 (original) The method of manufacturing according to claim 88 wherein the first layer has 1 102. a thickness dimension within the range of and including 0.3 to 0.7 millimeters. 2 (original) The method of manufacturing according to claim 88 wherein an overhang 1 103. 2 dimension is within the range of and including 0 to 15 millimeters. (original) The method of manufacturing according to claim 88 wherein at least a portion 1 104. of the fluid undergoes a transition between single and two phase flow conditions in the 2 3 heat exchanger. (original) The method of manufacturing according to claim 88 wherein the first layer is 1 105. made of a material having a thermal conductivity of at least 100 W/m-K. 2 (Currently Amended) The method of manufacturing according to claim 88 further 1 106. comprising forming a plurality of pillars in a predetermined pattern along the first 2 3 interface layer. (original) The method of manufacturing according to claim 106 wherein at least one of 1 107. the plurality of pillars has an area dimension within the range of and including (10 2 $micron)^2$ and $(100 micron)^2$. 3 (original) The method of manufacturing according to claim 106 wherein at least one of 108. 1

1 2		the plurality of pillars has a height dimension within the range of and including 50 microns and 2 millimeters.
1 2 3	109.	(original) The method of manufacturing according to claim 106 wherein at least two of the plurality of pillars are separate from each other by a spacing dimension within the range of and including 10 to 150 microns.
1 2 3	110.	(original) The method of manufacturing according to claim 106 wherein at least one of the plurality of pillars includes at least varying dimension along a predetermined direction.
1 2 3	111.	(Currently Amended) The method of manufacturing according to claim 88 further comprising configuring at least a portion of the <u>first</u> interface layer to have a roughened surface.
1 2	112.	(original) The method of manufacturing according to claim 88 wherein the second layer is made of a micro-porous structure.
1 2	113.	(original) The method of manufacturing according to claim 112 wherein the porous microstructure has a porosity within the range of and including 50 to 80 percent.
1 2 3	114.	(original) The method of manufacturing according to claim 112 wherein the porous microstructure has an average pore size within the range of and including 10 to 200 microns.
1 2	115.	(original) The method of manufacturing according to claim 112 wherein the porous microstructure has a height dimension within the range of and including 0.25 to 2.00 millimeters.
1 2	116.	(original) The method of manufacturing according to claim 88 further comprising forming a plurality of microchannels onto the first layer.
1	117.	(original) The method of manufacturing according to claim 116 wherein at least one of

1		the plurality of microchannels has an area dimension within the range of and including
2		$(10 \text{ micron})^2$ and $(100 \text{ micron})^2$.
1	118.	(original) The method of manufacturing according to claim 116 wherein at least one of
2		the plurality of microchannels has a height dimension within the range of and including
3		50 microns and 2 millimeters.
1	119.	(original) The method of manufacturing according to claim 116 wherein at least two of
2		the plurality of microchannels are separate from each other by a spacing dimension
3		within the range of and including 10 to 150 microns.
1	120.	(original) The method of manufacturing according to claim 116 wherein at least one of
2		the plurality of microchannels has a width dimension within the range of and including
3		10 to 100 microns.
1	121.	(original) The method of manufacturing according to claim 88 wherein the first layer is
2		coupled to the heat source.
1	122.	(original) The method of manufacturing according to claim 88 wherein the first layer is
2		integrally formed to the heat source.
1	123.	(original) The method of manufacturing according to claim 88 wherein the heat source is
2		an integrated circuit.
1	124.	(original) The method of manufacturing according to claim 88 further comprising
2		configuring a thermoelectric device between the first layer and the heat source, wherein
3		the thermoelectric device is electrically coupled to a power source.
1	125.	(original) The method of manufacturing according to claim 124 wherein the
2		thermoelectric device is integrally formed within the heat exchanger.
1	126.	(original) The method of manufacturing according to claim 124 wherein the
2		thermoelectric device is integrally formed within the heat source

(original) The method of manufacturing according to claim 124 wherein the 127. 1 2

thermoelectric device is coupled to the heat exchanger and the heat source.