Markov Chain Monte Carlo on a Recursive Substrate:

A UNNS Interpretation of Kernels, Balance, and Mixing

UNNS Research Collective

October 15, 2025

Abstract

We reinterpret Markov Chain Monte Carlo (MCMC) within the UNNS substrate, where information is geometric curvature and computation proceeds by recursion depth. Target densities become *curvature measures*; proposal kernels enact local transport on a depth-augmented manifold; detailed balance is a *harmony* constraint; and mixing rates are governed by *recursive curvature* rather than only spectral gaps in Euclidean state spaces. This note formalizes the correspondences and proposes curvature-aware, depth-coupled samplers (Ton-guided HMC, Klein-flip jumps, collapse–reseed refresh) with convergence guarantees that reduce to classical results when recursion curvature is flat.

1 From Targets to Curvature Measures

Let $\pi(x)$ be a classical target density on \mathbb{R}^d . In UNNS, we lift sampling to a depth-augmented space $\mathcal{M} = \mathcal{X} \times \mathbb{Z}_{\geq 0}$ with coordinates (x, n) and endow it with a recursive potential $\Phi(x, n)$ and curvature density $\kappa(x, n) = \Delta_{x,n}\Phi$. Define the *curvature-weighted* measure

$$\Pi(\mathrm{d}x, n) \propto \exp(-\Phi(x, n)) w(n) \,\mathrm{d}x, \qquad \sum_{n=0}^{\infty} w(n) = 1. \tag{1}$$

A classical $\pi(x)$ is retrieved on the slice $n = n_{\star}$ when $\Phi(x, n_{\star}) = -\log \pi(x) + C$ and $w(n) = \mathbf{1}\{n = n_{\star}\}.$

Remark 1 (Intuition). Φ encodes recursive coherence; high curvature (large κ) marks attractors/valleys where mass concentrates. Sampling π corresponds to traversing the (x, n) manifold while maintaining harmony (bounded recursion) so that marginalization over n yields the desired π .

2 Kernels as Recursive Transports

Let K be a Markov kernel on \mathcal{M} . We decompose

$$K = K_x \circ K_n, \tag{2}$$

with K_n adjusting recursion depth (tempering/annealing analogue) and K_x transporting within the spatial slice.

Ton-guided proposals. Introduce a τ on-field potential $A^{(\tau)}(x,n)$ with field tensor $F^{(\tau)} = dA^{(\tau)}$. Define a preconditioned Riemannian metric G(x,n) via

$$G(x,n) = I + \alpha F^{(\tau)}(x,n) F^{(\tau)}(x,n)^{\top}, \tag{3}$$

and propose (Ton-RHMC step) by integrating the Hamiltonian

$$H(x, p|n) = -\log \pi(x) + \frac{1}{2} p^{\mathsf{T}} G(x, n)^{-1} p, \tag{4}$$

with leapfrog flows in (x, p) while keeping n fixed. Metropolis correction preserves the n-slice invariant law; interleaving K_n completes stationarity for Π .

Klein-flip moves. On non-orientable sectors, define an involution S (Klein duality) acting as $x \mapsto S(x)$, $n \mapsto n \pm 1$. A Barker/Metropolis accept-reject on the pair $\{(x,n), (S(x), n \pm 1)\}$ creates large non-local jumps across topological obstructions, improving mixing across modes separated by orientation reversals.

3 Balance as Harmony

Classical detailed balance requires

$$\Pi(z) K(z, dz') = \Pi(z') K(z', dz), \qquad z = (x, n).$$
 (5)

In UNNS we additionally require *recursive harmony*, i.e. bounded expected change in recursive entropy

$$\mathbb{E}[\mathcal{H}_r(n') - \mathcal{H}_r(n) \mid z] = 0, \qquad \mathcal{H}_r = \int \kappa(\cdot, n) \, \mathrm{d}\mu(\cdot), \tag{6}$$

so that exploration neither explodes nor extinguishes recursive depth.

Proposition 1 (Stationarity under harmony). If K satisfies detailed balance (5) and the harmony constraint (6), then Π is invariant and the marginal on \mathcal{X} is π .

4 Curvature and Mixing Rates

Let \mathcal{L} be the generator of a reversible diffusion limit of K on \mathcal{M} endowed with metric G. If the sectional curvature of (\mathcal{M}, G) is bounded below by $\underline{\mathcal{K}}$, a Bakry–Émery argument yields a Poincaré/Log-Sobolev control and hence spectral gap bounds:

$$\lambda_1(\mathcal{L}) \gtrsim c_1 \underline{\mathcal{K}} \quad \Rightarrow \quad \operatorname{Var}_{\Pi}(f_t) \le e^{-2\lambda_1 t} \operatorname{Var}_{\Pi}(f_0).$$
 (7)

Thus, positive recursive curvature accelerates contraction; highly negative curvature signals slow mixing unless compensated by topological jumps (Klein flips) or stronger Ton preconditioning (larger α).

5 UNNS Reinterpretation of Classical MCMC

- Metropolis-Hastings: local random walk in a flat recursion slice (G = I), no depth moves $(K_n = Id)$.
- **HMC**: geodesic transport with constant metric; Ton-RHMC generalizes with G(x, n) shaped by $F^{(\tau)}$.
- **Tempering/Annealing**: depth moves K_n with schedule w(n); UNNS provides a geometric schedule via $\Phi(x, n)$ so swaps follow curvature ladders.

- Non-reversible lifts: add divergence-free drift aligned with Ton streamlines (improves asymptotic variance while preserving Π).
- Slice/auxiliary samplers: depth acts as an explicit slice; collapsing and reseeding correspond to UNNS *Collapse* and *Repair* operators.

6 Algorithms (Sketches)

Ton-RHMC (one iteration).

- 1. Sample momentum $p \sim \mathcal{N}(0, G(x, n))$.
- 2. Integrate leapfrog on (x,p) for L steps with step size ϵ using G(x,n).
- 3. Metropolis accept with prob. min $\{1, e^{-\Delta H}\}$.
- 4. Optionally perform a Klein flip proposal $(x, n) \leftrightarrow (S(x), n \pm 1)$ with Barker/Metropolis correction.
- 5. Update depth via K_n (e.g., curvature-aware tempering: propose $n' = n \pm 1$ with bias proportional to $e^{-\Delta\Phi}$ and accept by Metropolis).

Collapse–Reseed refresh. Every m steps, apply UNNS Collapse: $x \leftarrow x + \eta$, $n \leftarrow n_0$ with small $\eta \sim \mathcal{N}(0, \sigma^2 I)$ (structured silence), then reseed via one Ton-RHMC step. This preserves Π when implemented as a reversible mixture kernel.

7 Diagnostics in UNNS Coordinates

- Recursive entropy drift: estimate $\widehat{\Delta \mathcal{H}_r}$ across iterations; harmony suggests $\mathbb{E}[\widehat{\Delta \mathcal{H}_r}] \approx 0$.
- Curvature-normalized ESS: $ESS_{\kappa} = ESS/(1+|\overline{\kappa}|)$; penalizes chains that mix only in flat regions.
- **Klein crossing rate**: frequency of accepted flip moves; near zero indicates topological trapping.

8 Limits and Reductions

If $F^{(\tau)} \equiv 0$ (no Ton guidance), G = I and $K_n = \text{Id}$, the framework reduces to classical MCMC. If $\Phi(x, n) = \Phi_0(x) + c(n)$ with c affine in n, UNNS tempering collapses to standard simulated tempering with a linear inverse-temperature ladder.

Outlook

UNNS supplies geometry to the probabilistic core of MCMC: metrics from τ on-fields, non-orientable jump symmetries (Klein flips), and depth schedules from recursive potentials. This yields principled preconditioners, global moves across topological barriers, and convergence bounds in terms of curvature. Practical next steps: (i) Ton-RHMC implementation on target posteriors with multi-modal structure; (ii) empirical relation between $\underline{\mathcal{K}}$ estimates and spectral gaps; (iii) automated harmony tuning to stabilize adaptation.