6 Лабораторная работа №6. Сложение, вычитание. Логика

Цель: изучить действие инструкций ADDWF, ANDWF, IORWF, XORWF, SUBWF. Выполнить сложение, вычитание, применить логические функции.

Задание для внеаудиторной подготовки:

Изучить формат инструкций ADDWF, SUBWF, ANDWF, IORWF, XORWF по приложению Д.

6.1 Общие сведения

Операции сложения и вычитания применяются, например, для автоматизации учета количества автомашин на объекте, которые могут свободно въезжать и выезжать с территории через ворота.

В таблице 6.1 представлены логические функции, их таблицы истинности, условные обозначения и интерпретация на электрической схеме. Все логические операции выполняются поразрядно.

Таблица 6.1 – Логические функции Y=f(X1, X2)

Инструкция	Таблица истинности			Условное обозначение	Интерпретация на электрической схеме		
	X1	X2	Y				
IORWF	0	0	0		Ø X1 Ø		
Функция	0	1	1	X1	 		
OR (ИЛИ)	1	0	1	$\begin{bmatrix} -1 \end{bmatrix} Y$	X2 Y		
	1	1	1	X2 1 1			
					При замыкании любого		
					контакта в цепи будет ток		
ANDWF	0	0	0	X7.1	\varnothing X1 X2 \Longrightarrow \varnothing		
Функция	0	1	0	X1	Y		
AND (И)	1	0	0	$ _{X2}$ & $ _{X2}$			
	1	1	1				
					Ток в цепи будет только при		
			_		замыкании обоих контактов		
XORWF	0	0	0	X1	$ \emptyset X1 X2 $		
Функция	0	1	1	=1 Y	X_2 X_1 Y		
XOR	1	0	1	X2 -1 -	X2 X1 Y		
(Исключи-	1	1	0		Ток в цепи будет только тогда,		
тельно					когда переключатели Х1 и Х2		
ИЛИ)					будут в разном положении		

Логическая функция «ИЛИ» («OR») может применяться для включения оборудования любой из двух кнопок, расположенными в разных местах помещения.

Логическая функция «И» («AND») может применяться в том случае, если оборудование должно включаться, при срабатывании (включении) двух контактов. Например, освещение в помещении автоматически включается при низкой освещенности и наличия в нем людей.

Логическая функция «Исключительно ИЛИ» («XOR») применяется, например, для управления освещением длинного тоннеля. С любого конца тоннеля можно включить или выключить освещение.

Изучить программу 6.1, которая выполняет различные действия с двумя константами и выводит результаты работы в регистр REZ.

```
Программа 6.1 – Сложение и вычитание данных.
     include <p16F877.inc>
           EQU h'21'; присваиваем регистру по адресу h'21' имя R1
     R1
     R2
           EQU h'22'; присваиваем регистру по адресу h'22' имя R2
           EQU\ h'23'\ ; R3 – имя регистра по адресу h'23'
     R3
     REZ EOU h'24'; REZ - имя регистра по адресу h'24' для записи результатов
           h'00'
     org
                       ; инструкция (пор) будет записана по адресу h'00'
     nop
                       ; пустая инструкция будет записана по адресу h'00'
     nop
                       ; пустая инструкция будет записана по адресу h'01'
     nop
           h'05'
     org
                       ; следующая инструкция будет записана по адресу h'05'
START
     CLRF STATUS ; очищаем регистр STATUS и выбираем нулевой банк
     BSF STATUS, 5; переходим в первый банк
     CLRF TRISC
                       ; настраиваем биты PORTC на выход
     BCF STATUS, 5; возвращаемся в нулевой банк
     CLRF REZ
                       ; записать в регистр REZ нули
     MOVLW D'5'
                       ; запись константы в W
     MOVWF R3
                       ; запись содержимого W в регистр R3
     MOVLW D'130'; запись константы в W
     MOVWF R2
                       ; запись содержимого W в регистр R2
     MOVLW D'240'; запись константы в W
     MOVWF R1
                       ; запись содержимого W в регистр R1
     MOVF R1, W
                       ; копирование константы из R1 в регистр W
     ADDWF R2, W ; сложение W=R2+ W=R2+R1
     MOVWF REZ
                       ; загрузить содержимое W в регистр REZ
     MOVF R1, W
                       ; копирование константы из R1 в регистр W
     SUBWF R2, W
                       ; вычитание W=R2-W=R2- R1
     MOVWF REZ
                       ; переслать содержимое W в регистр REZ
     MOVF R2, W
                       ; копирование константы из R2 в регистр W
     SUBWF R1, W
                       ; W=R1-W=R1-R2
     MOVWF REZ
```

MOVF R2, W

SUBWF R1, W ; вычитание W=R1-W=R1-R2. Результат оставляем в W

MOVWF REZ ; переслать содержимое W в регистр REZ MOVF R2, W ; запись константы в регистр W из R2

ANDWF R1, W; W=R1 AND W= R1 AND R2. Результат заносим в W

MOVWF REZ ; копируем аккумулятор в регистр REZ.

END

6.2 Порядок выполнения

Ознакомиться с предложенной выше программой и самостоятельно продолжить программу командами для выполнения операций R2-R2, R2+R3, R1 OR R2, R1 XOR R2.

Выбрать вариант по таблице 6.2 и составить программу.

Таблица 6.2 – Варианты задания

	<u> </u>		
Вариант	Числа R1, R2, R3	Вариант	Числа R1, R2, R3
1	81h, 12h, 1h	6	86h, 67h, 6h
2	82h, 23h, 2h	7	87h, 68h, 7h
3	83h, 34h, 3h	8	88h, 69h, 8h
4	84h, 45h, 4h	9	89h, 6Ah, 9h
5	85h, 56h, 5h	10	8Ah, 6Bh, Ah

Создать окно наблюдения для всех применяемых в программе регистров в необходимом формате чисел. Результаты работы всех операций с числами записать в таблицу 6.3.

Таблица 6.3 - Пример записи результатов работы команд

	а входе	Действие	Результат в REZ		Значение
				в Status	
Форма В или D	Форма В или D		Форма В	Форма	Форма В
				D	
R1=D'240'	R2=D'130'	R1+R2	-	114	00011001
R1=D'240'	R2=D'130'	R1-R2	-	110	00011001
R1=D'240'	R2=D'130'	R2-R1	-	146	00011010
R2=D'130'	R2=D'130'	R2-R2	-	0	00011111
R2=D'130'	R3=D'5'	R2+R3	-	135	00011000
R1=b'11110000'	R2=b'10000010'	R1 AND R2	10000000	-	00011011
R1=b'11110000'	R2=b'10000010'	R1 OR R2	11110010	-	00011011
R1=b'11110000'	R2=b'10000010'	R1 XOR R2	01110010	-	00011011

6.3 Контрольные вопросы

- 6.3.1 Как определить с регистрами какого банка работает программа?
- 6.3.2 Что выполняют инструкции:

ADDWF R1, f; SUBWF R2, f; ?

6.3.3 Что выполняют инструкции:

ANDWF R1, f; IORWF R1, W; XORWF R2, W; ?

- 6.3.4 Какое назначение директивы ORG h'05'?
- 6.3.5 Приведите таблицы истинности логических операций.
- 6.3.6 В каком банке находятся регистры R1, R2 и REZ?
- 6.3.7 Какой результат мы увидим при сложении 230+60 в МК?
- 6.3.8 Какой результат мы увидим при вычитании 130-135 в МК?