PSALTer results panel

 $S = \iiint (\mathcal{R}^{\alpha\beta\chi} \ \sigma_{\alpha\beta\chi} + f^{\alpha\beta} \ \tau (\Delta + \mathcal{K})_{\alpha\beta} - \frac{2}{3} t_{\cdot \cdot} (\mathcal{R}^{\alpha_i}_{\ \alpha} \ \mathcal{R}^{\theta}_{i \theta} - 2 \ \mathcal{R}^{\theta}_{\alpha \theta} \ \partial_{i} f^{\alpha_i} + 2 \ \mathcal{R}^{\theta}_{i \theta} \ \partial_{i} f^{\alpha}_{\ \alpha} - \partial_{i} f^{\theta}_{\ \theta} \partial_{i} f^{\alpha}_{\ \alpha} - \partial_{i} f^{\alpha_i}_{\ \theta} \partial_{\theta} f^{\theta}_{\alpha} + 2 \partial_{i} f^{\alpha}_{\ \alpha} \partial_{\theta} f^{\theta}_{i}) - \frac{1}{2} r_{\cdot \cdot} (\partial_{\beta} \mathcal{R}^{\theta}_{i \theta} \partial_{i} \mathcal{R}^{\alpha\beta}_{\ \alpha} + \partial_{\alpha} \mathcal{R}^{\alpha\beta_i} \partial_{\theta} \mathcal{R}^{\theta}_{\beta} - 2 \partial_{i} \mathcal{R}^{\alpha\beta_i}_{\ \alpha} \partial_{\theta} \mathcal{R}^{\theta}_{i \theta} - 2 \partial_{i} \mathcal{R}^{\alpha\beta_i}_{\ \alpha} \partial_{\theta} \mathcal{R}^{\theta}_{i \theta} + 2 \partial_{i} \mathcal{R}^{\alpha\beta_i}_{\ \alpha} \partial_{\theta} \mathcal{R}^{\theta}_{i \theta} + 2 \partial_{i} \mathcal{R}^{\alpha\beta_i}_{\ \alpha} \partial_{\theta} \mathcal{R}^{\theta}_{i \theta} + 2 \partial_{i} \mathcal{R}^{\alpha\beta_i}_{\ \alpha} \partial_{\theta} \mathcal{R}^{\theta}_{i \theta}) - \frac{1}{2} r_{\cdot \cdot} (\partial_{\alpha} \mathcal{R}^{\alpha\beta_i}_{\ \alpha} + \partial_{\alpha} \mathcal{R}^{\alpha\beta_i}_{\ \alpha} \partial_{\theta} \mathcal{R}^{\theta}_{i \theta} + \partial_{\alpha} \mathcal{R}^{\alpha\beta_i}_{\ \alpha} \partial_{\theta} \mathcal{R}^{\theta}_{i \theta} - 2 \partial_{i} \mathcal{R}^{\alpha\beta_i}_{\ \alpha} \partial_{\theta} \mathcal{R}^{\theta}_{i \theta} + 2 \partial_{i} \mathcal{R}^{\alpha\beta_i}_{\ \alpha} \partial_{\theta} \mathcal{R}^{\theta}_{i \theta}) + r_{\cdot \cdot} (\partial_{\alpha} \mathcal{R}^{\alpha\beta_i}_{\ \alpha} - \partial_{\theta} \mathcal{R}^{\alpha\beta_i}_{\ \alpha} - \partial_{\alpha} \mathcal{R}^{\alpha\beta_i}_{\ \alpha}))))[t, x, y, z] dz dy dx dt$

Wave operator

	${}^{0^+}\!\mathcal{A}^{\parallel}$	$0.^+f^{\parallel}$	$0.^+f^{\perp}$	${}^{0}\mathcal{F}^{\parallel}$										
^{0,+} <i>Я</i> [∥] †	<i>t</i> . 3	$-i\sqrt{2} kt$.	0	0										
^{0,+} <i>f</i> [∥] †	$i\sqrt{2}kt$.	$2k^{2}t$.	0	0										
$0.^+f^{\perp}$ †	0	0	0	0										
^{0.} Æ [∥] †	0	0	0	0			$^{1^{+}}f^{\parallel}_{\alpha\beta}$	$^{1}\mathcal{A}^{\parallel}{}_{lpha}$	$^{1}\mathcal{A}^{\perp}{}_{lpha}$	$^{1}f^{\parallel}_{\alpha}$	$\frac{1}{2}f_{\alpha}^{\perp}$			
				$^{1.}^{+}\mathcal{A}^{\parallel}\dagger^{lphaeta}$	$k^2 (2r. + r.)$	0	0	0	0	0	0			
				$^{1^{+}}\mathcal{H}^{\scriptscriptstyle \perp}\dagger^{^{lphaeta}}$	0	0	0	0	0	0	0			
				$^{1\overset{+}{\cdot}}f^{\parallel}\dagger^{\alpha\beta}$	0	0	0	0	0	0	0			
				$^{1.}\mathcal{A}^{\parallel}$ † lpha	0	0	0	$k^2 \left(\frac{r_{.3}}{2} + r_{.3}\right) + \frac{2t_{.3}}{3}$	$-\frac{\sqrt{2}\ t.}{3}$	0	$-\frac{2}{3}ikt$			
				¹ - β 1 †α	0	0	0	$-\frac{\sqrt{2} t_{3}}{3}$	t. 3 3	0	$\frac{1}{3} i \sqrt{2} kt.$			
				$^{1}f^{\parallel}\dagger^{\alpha}$	0	0	0	0	0	0	0			
				$\frac{1}{2}f^{\perp}\uparrow^{\alpha}$	0	0	0	$\frac{2ikt.}{3}$	$-\frac{1}{3} i \sqrt{2} kt.$	0	$\frac{2 k^2 t}{3}$	$^{2^{+}}\mathcal{A}^{\parallel}{}_{lphaeta}$	$2^+_{\cdot}f^{\parallel}_{\alpha\beta}$	²⁻ <i>Ά</i> αβ
											$^{2^{+}}\mathcal{A}^{\parallel}$ † $^{\alpha\beta}$	$-\frac{3k^2r}{2}$	0	0
											$2.^+f^{\parallel} \uparrow^{\alpha\beta}$	0	0	0
											$2^{-}\mathcal{H}^{\parallel} \uparrow^{\alpha\beta\chi}$	0	0	0

Saturated propagator

Source constraints

Spin-parity form	Covariant form	Multiplicities		
0 σ == 0	$\epsilon \eta_{\alpha\beta\chi\delta} \partial^{\delta} \sigma^{\alpha\beta\chi} == 0$	1		
$0^+_{\cdot} \tau^{\perp} == 0$	$\partial_{\beta}\partial_{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta}=0$	1		
$-2 \bar{i} k^{ 0,+} \sigma^{\parallel} + {}^{0,+} \tau^{\parallel} == 0$	$\partial_{\beta}\partial_{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} = \partial_{\beta}\partial^{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\alpha}_{\alpha} + 2\partial_{\chi}\partial^{\chi}\partial_{\beta}\sigma^{\alpha}_{\alpha}^{\beta}$	1		
$2 i k 1 \sigma^{\perp}^{\alpha} + 1 \tau^{\perp}^{\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} + 2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial_{\beta}\sigma^{\beta\alpha\chi}$	3		
$1 \cdot \tau^{\parallel^{\alpha}} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi}==\partial_{\chi}\partial^{\chi}\partial_{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha}$	3		
$1^+_{\cdot} \tau^{\parallel}^{\alpha\beta} == 0$	$\partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi} + \partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\alpha} + \partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta} = \partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta} + \partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha}$	3		
$1^+_{\cdot O^{\perp}}^{\alpha\beta} == 0$	$\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\chi\beta\delta} + \partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\chi\alpha\beta} == \partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\chi\alpha\delta}$	3		
$2^{-}\sigma^{\parallel^{\alpha\beta\chi}}=0$	$3 \partial_{\epsilon} \partial_{\delta} \partial^{\chi} \partial^{\alpha} \sigma^{\delta\beta\epsilon} + 3 \partial_{\epsilon} \partial^{\epsilon} \partial^{\chi} \partial^{\alpha} \sigma^{\delta\beta}_{\delta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\beta} \sigma^{\alpha\chi\delta} + 4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\beta} \sigma^{\chi\alpha\delta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\beta} \sigma^{\delta\alpha\chi} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\delta\alpha\delta} + 4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\delta\alpha\delta} + 2 \partial_{\epsilon} \partial^{\kappa} \partial^{\chi} \sigma^{\delta\alpha\delta} + 2 \partial_{\kappa} \partial^{\kappa} \partial^{\kappa}$	5		
	$3 \partial_{\epsilon} \partial_{\delta} \partial^{\chi} \partial^{\beta} \sigma^{\delta \alpha \epsilon} + 3 \partial_{\epsilon} \partial^{\epsilon} \partial^{\chi} \partial^{\beta} \sigma^{\delta \alpha}{}_{\delta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\beta \chi \delta} + 4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\chi \beta \delta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\delta \beta \chi} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\alpha \beta \delta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\alpha \beta \delta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\alpha \beta \delta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \sigma^{\beta \alpha \chi} + 4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \sigma^{\chi \alpha \beta} + 3 \eta^{\alpha \chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\delta} \sigma^{\delta \alpha \epsilon} + 3 \eta^{\alpha \chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\delta} \sigma^{\delta \alpha \epsilon} + 3 \eta^{\alpha \chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\delta} \sigma^{\delta \alpha \epsilon} + 3 \eta^{\alpha \chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\delta} \sigma^{\delta \alpha \epsilon} + 3 \eta^{\alpha \chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\delta} \sigma^{\delta \alpha \epsilon} + 3 \eta^{\alpha \chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\delta} \sigma^{\delta \alpha \epsilon} + 3 \eta^{\alpha \chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\delta} \sigma^{\delta \alpha \epsilon} + 3 \eta^{\alpha \chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\delta} \sigma^{\delta \alpha \epsilon} + 3 \eta^{\alpha \chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\delta} \sigma^{\delta \alpha \epsilon} + 3 \eta^{\alpha \chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\delta} \sigma^{\delta \alpha \epsilon} + 3 \eta^{\alpha \chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\delta} \sigma^{\delta \alpha \epsilon} + 3 \eta^{\alpha \chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\delta} \sigma^{\delta \alpha \epsilon} + 3 \eta^{\alpha \chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\delta} \sigma^{\delta \alpha \epsilon} + 3 \eta^{\alpha \chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\delta} \sigma^{\delta \alpha \epsilon} + 3 \eta^{\alpha \chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\delta} \sigma^{\delta \alpha \epsilon} + 3 \eta^{\alpha \chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\delta} \sigma^{\delta \alpha \epsilon} + 3 \eta^{\alpha \chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\delta} \sigma^{\delta \alpha \epsilon} + 3 \eta^{\alpha \chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\delta} \sigma^{\delta \alpha \epsilon} + 3 \eta^{\alpha \chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\delta} \sigma^{\delta \alpha \epsilon} + 3 \eta^{\alpha \chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\delta} \sigma^{\delta \alpha \epsilon} + 3 \eta^{\alpha \chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\delta} \partial^{\delta} \sigma^{\delta \alpha \epsilon} + 3 \eta^{\alpha \chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\delta} $			
$2^+_{.\tau}$ $\eta^{\alpha\beta} == 0$	$4 \partial_{\delta} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial^{\beta} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau (\Delta + \mathcal{K})^{\alpha \beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau (\Delta + \mathcal{K})^{\beta \alpha} + 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\beta \alpha} + 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\gamma \delta} = 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\gamma \delta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau (\Delta + \mathcal{K})^{\alpha \beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau (\Delta + \mathcal{K})^{\gamma \alpha} + 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \tau (\Delta + \mathcal{K})^{\gamma \delta} = 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\gamma \delta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau (\Delta + \mathcal{K})^{\gamma \alpha} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau (\Delta + \mathcal{K})^{\gamma \alpha} + 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\gamma \alpha} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau (\Delta + \mathcal{K})^{\gamma \alpha} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau (\Delta + \mathcal{K})^{\gamma \alpha} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau (\Delta + \mathcal{K})^{\gamma \alpha} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau (\Delta + \mathcal{K})^{\gamma \alpha} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau (\Delta + \mathcal{K})^{\gamma \alpha} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau (\Delta + \mathcal{K})^{\gamma \alpha} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau (\Delta + \mathcal{K})^{\gamma \alpha} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau (\Delta + \mathcal{K})^{\gamma \alpha} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau (\Delta + \mathcal{K})^{\gamma \alpha} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau (\Delta + \mathcal{K})^{\gamma \alpha} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau (\Delta + \mathcal{K})^{\gamma \alpha} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau (\Delta + \mathcal{K})^{\gamma \alpha} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau (\Delta + \mathcal{K})^{\gamma \alpha} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau (\Delta + \mathcal{K})^{\gamma \alpha} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau (\Delta + \mathcal{K})^{\gamma \alpha} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau (\Delta + \mathcal{K})^{\gamma \alpha} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau (\Delta + \mathcal{K})^{\gamma \alpha} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau (\Delta + \mathcal{K})^{\gamma \alpha} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau (\Delta + \mathcal{K})^{\gamma \alpha} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau (\Delta + \mathcal{K})^{\gamma \alpha} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau (\Delta + \mathcal{K})^{\gamma \alpha} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau (\Delta + \mathcal{K})^{\gamma \alpha} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau (\Delta + \mathcal{K})^{\gamma \alpha} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau (\Delta + \mathcal{K})^{\gamma \alpha} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau (\Delta + \mathcal{K})^{\gamma \alpha} + 3 \partial_{\delta} \partial$	5		
Total expected gauge generators:				

Massive spectrum

(No particles)

Massless spectrum

Massless particle

Pole residue:	$-\frac{26}{r_{.3}}$	$+\frac{39}{2r.+r.}$	$-\frac{216}{r.+2r.}$	> 0
Polarisations:	2			

Unitarity conditions

 $(r_{3} < 0 \&\& (r_{5} < -\frac{r_{3}}{3} || r_{5} > -2 r_{3})) || (r_{3} > 0 \&\& -2 r_{3} < r_{5} < -\frac{r_{3}}{3})$