## А. К. Голубев

# НАБОР ДЛЯ ПРОГРАММИРОВАНИЯ LITTLEBITS

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ





MOCKBA 2021 УДК 372.8:004 ББК 32.816 М36

#### Голубев А. К.

М36 Набор для программирования littleBits: методические рекомендации / А. К. Голубев. — М.: Издательство «Экзамен», 2021. — 64 с. ISBN 978-5-377-16847-8

Базовый комплект модульной электроники «Набор для программирования» представляет собой набор электронных и структурных компонентов, предназначенных для получения базовых знаний в отрасли электроники и программирования, путем создания различных устройств с электрическими схемами, с помощью комбинирования элементов (модулей) электроники, входящих в комплект, и последующего их программирования.

Комплект предназначен для занятий на уроках робототехники в основной и средней школе. Он реализует требования образовательного стандарта к реализации системно-деятельностного подхода в обучении, развития мотивации к учению, интеллектуальной и творческой деятельности обучающихся, а также обеспечивает возможности групповой деятельности обучающихся, поддержку коммуникации между участниками образовательных отношений.

УДК 372.8:004 ББК 32.816

Подписано в печать с диапозитивов 09.02.2021. Формат 60х90/8. Гарнитура «Calibri». Бумага офсетная. Усл. печ. л. 8. Тираж 250 экз. Заказ №

ISBN 978-5-377-16847-8

- © Голубев А. К., 2021
- © Издательство **«ЭКЗАМЕН»**, 2021
- © **«ЭКЗАМЕН-ТЕХНОЛАБ»**, 2021

## СОДЕРЖАНИЕ

| 1. Базовый образовательный комплект модульной электроники «Набор для программирования» и комплекты расширений к нему | стр. 4  |
|----------------------------------------------------------------------------------------------------------------------|---------|
| 2. Знакомство                                                                                                        | стр. 14 |
| 3. Ввод-вывод                                                                                                        | стр. 20 |
| 4. Циклы                                                                                                             | стр. 26 |
| 5. Логика                                                                                                            | стр. 34 |
| 6. Переменные                                                                                                        | стр. 40 |
| 7. Функции                                                                                                           | стр. 48 |
| 8. Устранение неполадок                                                                                              | стр. 54 |
| 9. Решение проблем во время эксплуатации компонентов littleBits                                                      | стр. 58 |
| 10. Conocuto they have move                                                                                          | ctn 62  |

1. БАЗОВЫЙ КОМПЛЕКТ МОДУЛЬНОЙ ЭЛЕКТРОНИКИ «НАБОР ДЛЯ ПРОГРАММИРОВАНИЯ» И КОМПЛЕКТЫ РАСШИРЕНИЙ К НЕМУ

## ОБРАЗОВАТЕЛЬНЫЙ КОМПЛЕКТ МОДУЛЬНОЙ ЭЛЕКТРОНИКИ «НАБОР ДЛЯ ПРОГРАММИРОВАНИЯ»



Базовый образовательный комплект модульной электроники «Набор для программирования» представляет собой набор электронных и структурных компонентов, предназначенных для получения базовых знаний в отрасли электроники и программирования путем создания различных устройств с электрическими схемами, с помощью комбинирования элементов (модулей) электроники, входящих в комплект, и последующего их программирования. Программирование осуществляется в блочно-модульной графической среде Blockly, с возможностью представления кода в текстовой среде JavaScript. Комплект позволяет создавать и программировать электрические схемы без их сборки на макетной плате и без пайки.

Комплект предусматривает магнитное соединение электронных модулей между собой, а также возможность крепления модулей на монтажной панели. Магнитное соединение электронных модулей между собой исключает возможность размещения модулей в неправильном порядке.

Электронные модули имеют обозначения, указывающие направление движения тока через них.

Электронные модули сгруппированы в соответствии с их функционалом. Модули одной группы имеют одинаковый цвет.

#### Комплект включает в себя 16 электронных модулей:

| Наиме-<br>нование<br>(англ.) | Наиме-<br>нование<br>(рус.)                     | Кол-во<br>в набо-<br>ре | Фото | Описание                                                                                                                                                                                                                                                                                 |
|------------------------------|-------------------------------------------------|-------------------------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bargraph                     | Гисто-<br>грамма                                | 1                       |      | Показывает, какое количество сигнала получает модуль с дисплеем из пяти светодиодов разных цветов                                                                                                                                                                                        |
| Branch                       | Развет-<br>витель                               | 1                       |      | Обеспечивает под-<br>ключение одного<br>модуля к 3 другим в<br>разных направлениях<br>от разветвителя                                                                                                                                                                                    |
| Button                       | Кнопки<br>включе-<br>ния\<br>выклю-<br>чения    | 2                       |      | Выполняют функцию включения\ выключения                                                                                                                                                                                                                                                  |
| codeBit™                     | Про-<br>грамми-<br>руемый<br>модуль<br>codeBit™ |                         |      | Позволяет програм-<br>мировать созданные<br>схемы, служить для<br>создания уникальных<br>звуков, движений и<br>анимации, обеспечи-<br>вать прием\передачу<br>данных по беспро-<br>водной сети с ком-<br>пьютера или другого<br>устройства, использу-<br>емого для написания<br>программы |
| Dimmer                       | Диммер                                          | 1                       |      | Позволяет регулировать силу сигнала, передаваемого по цепи                                                                                                                                                                                                                               |

| Наиме-          | Наиме-                       | Кол-во  |      |                                                                                                                                                                  |
|-----------------|------------------------------|---------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| нование (англ.) | нование (рус.)               | в набо- | Фото | Описание                                                                                                                                                         |
| Slide<br>dimmer | Ползун-<br>ковый<br>диммер   | 1       |      | Позволяет регулировать силу сигнала, передаваемого по цепи, при помощи соответствующего ползунка                                                                 |
| Speaker         | Динамик                      | 1       |      | Позволяет воспро-<br>изводить сигналы,<br>поступающие от<br>программируемого<br>модуля или плеера                                                                |
| Wire            | Прово-<br>дные<br>модули     | 3       |      | Позволяют разме-<br>щать соединяемые<br>модули на расстоя-<br>нии друг от друга, из-<br>менять углы соедине-<br>ния, а также вращать<br>соединенные модули       |
| LED<br>matrix   | Свето-<br>диодная<br>матрица | 1       |      | Представляет из себя цветной дисплей, которым можно управлять, используя написанную программу либо другие модули, а также имеет 2 режима воспроизведения сигнала |
| USB<br>power    | Модуль<br>питания<br>USB     | 1       |      | Позволяет обеспечивать питанием собранную электрическую схему путем подключения его через USB-кабель к источнику питания                                         |

| Наиме-<br>нование<br>(англ.) | Наиме-<br>нование<br>(рус.) | Кол-во<br>в набо-<br>ре | Фото | Описание                                                                                                                                                                                                                                           |
|------------------------------|-----------------------------|-------------------------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pressure<br>sensor           | Датчик<br>силы<br>нажатия   | 1                       |      | Позволяет регулировать силу передаваемого сигнала в зависимости от силы нажатия на его подушку                                                                                                                                                     |
| Servo                        | Servo                       | 1                       |      | Представляет собой управляемый двигатель, который может вращаться вперед и назад или поворачиваться в определенное положение, имеет вал поперечной оси, который совместим с любым аксессуаром данного комплекта, имеющим соответствующее отверстие |
| Sound<br>trigger             | Звуковой<br>триггер         | 1                       |      | Позволяет определять уровень шума в помещении и передавать сигнал включения по цепи при достижении определенного уровня шума                                                                                                                       |

## Также в комплекте представлены дополнительные аксессуары, среди которых:

- USB кабели 2 шт.;
- аккумуляторная батарея 1 шт.;
- беспроводной передатчик данных 1 шт.;
- полоски для крепления модулей 2 шт.;
- дополнительные аксессуары для крепления модулей 12 шт.;
- устройства подачи питания 3 шт.;
- механический захват 1 шт.;
- монтажная панель (175 мм × 200 мм) 1 шт.

## РЕСУРСНЫЙ НАБОР МОДУЛЬНОЙ ЭЛЕКТРОНИКИ «ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ»



Ресурсный набор модульной электроники «Информационные технологии» является расширением к комплекту «Набор для программирования». Он представляет собой набор электронных и структурных компонентов, предназначенных для расширения полученных навыков программирования путем программирования устройств с электрическими схемами, созданных с помощью комбинирования элементов (модулей) электроники.

Программирование осуществляется в блочно-модульной графической среде Blockly, с возможностью представления кода в текстовой среде JavaScript.

#### Комплект включает в себя 9 электронных модулей:

| Δ. |                              |                             |                         | <i></i> |                                                             |
|----|------------------------------|-----------------------------|-------------------------|---------|-------------------------------------------------------------|
|    | Наиме-<br>нование<br>(англ.) | Наиме-<br>нование<br>(рус.) | Кол-во<br>в набо-<br>ре | Фото    | Описание                                                    |
|    | Accele-<br>rometer           | Акселе-<br>рометр           | 1                       | RA      | Определяет величину его ускорения в созданной цепи          |
|    | Fork                         | Вилка                       | 1                       | PAPE    | Позволяет одновременно подключить один модуль к трем другим |

| Наиме-<br>нование<br>(англ.) | Наиме-<br>нование<br>(рус.) | Кол-во<br>в набо-<br>ре | Фото | Описание                                                                                                                                   |
|------------------------------|-----------------------------|-------------------------|------|--------------------------------------------------------------------------------------------------------------------------------------------|
| Light<br>sensor              | Датчик<br>освещен-<br>ности | 1                       |      | Обеспечивает управление созданной цепи при помощи определения изменения освещенности вокруг датчика                                        |
| Long LED                     | Длинные<br>светоди-<br>оды  | 2                       |      | Представляют собой светодиоды, под-<br>ключенные к плате с<br>помощью кабеля                                                               |
| Number                       | Чис-<br>ловой<br>модуль     | 1                       |      | Отображает информацию в числовом виде, полученную от модулей, расположенных до него в цепи                                                 |
| Proximity sensor             | Датчик<br>прибли-<br>жения  | 1                       |      | Определяет расстояние до объекта перед датчиком                                                                                            |
| Random                       | Модуль<br>случай-<br>ности  | 1                       |      | Выдает случайные величины напряжения или уровня шума                                                                                       |
| Wire                         | Провод-<br>ной<br>модуль    | 1                       |      | Позволяет размещать соединяемые модули на расстоянии друг от друга, изменять углы соединения, а также позволяет вращать соединенные модули |

Также в комплекте представлены дополнительные аксессуары, среди которых:

- монтажная панель (175 мм × 200 мм) 1 шт.;
- дополнительные аксессуары для крепления модулей 12 шт.;
- полоски для крепления модулей 2 шт.

## РЕСУРСНЫЙ НАБОР МОДУЛЬНОЙ ЭЛЕКТРОНИКИ «ТЕХНОЛОГИЯ»



Ресурсный набор модульной электроники «Технология» является расширением к комплекту «Набор для программирования». Он представляет собой набор электронных и структурных компонентов, предназначенных для расширения полученных навыков в области технологии путем программирования устройств с электрическими схемами, созданных с помощью комбинирования элементов (модулей) электроники.

Программирование осуществляется в блочно-модульной графической среде Blockly, с возможностью представления кода в текстовой среде JavaScript.

#### Комплект включает в себя 13 электронных модулей:

| Наиме-<br>нование<br>(англ) | Наиме-<br>нование<br>(рус) | Кол-во<br>в набо-<br>ре | Фото | Описание                                               |
|-----------------------------|----------------------------|-------------------------|------|--------------------------------------------------------|
| Power                       | Модуль<br>питания          | 1                       |      | Использует щелочную батарею для обеспечения током цепи |

| Наиме-<br>нование<br>(англ) | Наиме-<br>нование<br>(рус)              | Кол-во<br>в набо-<br>ре | Фото | Описание                                                                                                      |
|-----------------------------|-----------------------------------------|-------------------------|------|---------------------------------------------------------------------------------------------------------------|
| Bargraph                    | Гисто-<br>грамма                        | 1                       |      | Показывает, какое количество сигнала получает модуль с дисплеем из 5 светодиодов разных цветов                |
| Buzzer                      | Зуммер                                  | 1                       |      | Выполняет функцию сигнального устрой-<br>ства                                                                 |
| DC Motor                    | Двигате-<br>ли посто-<br>янного<br>тока | 2                       | 333  | Обеспечивают вращение поперечного вала                                                                        |
| Light<br>sensor             | Датчик<br>освещен-<br>ности             | 1                       |      | Обеспечивает управление созданной цепи при помощи определения изменения освещенности вокруг датчика           |
| Long LED                    | Длинный<br>светоди-<br>од               | 1                       |      | Представляет собой светодиод, подключенный к плате с помощью кабеля                                           |
| Number                      | Чис-<br>ловой<br>модуль                 | 1                       |      | Отображает инфор-<br>мацию в числовом<br>виде, полученную<br>от модулей, распо-<br>ложенных до него в<br>цепи |
| Proximity sensor            | Датчик<br>прибли-<br>жения              | 1                       | R.A  | Определяет расстояние до объекта перед датчиком                                                               |

| Наиме-<br>нование<br>(англ) | Наиме-<br>нование<br>(рус) | Кол-во<br>в набо-<br>ре | Фото | Описание                                                                                                                                                                                                      |
|-----------------------------|----------------------------|-------------------------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Split                       | Модуль<br>разделе-<br>ния  | 1                       | 0 P  | Обеспечивает под-<br>ключение одного<br>модуля к 2 другим<br>с использованием<br>проводов, что по-<br>зволяет размещать<br>соединяемые модули<br>на расстоянии друг<br>от друга и изменять<br>углы соединения |
| Wire                        | Прово-<br>дные<br>модули   | 3                       |      | Позволяют размещать соединяемые модули на расстоянии друг от друга, изменять углы соединения, а также вращать соединенные модули                                                                              |

Также в комплекте представлены дополнительные аксессуары, среди которых:

- ба<mark>тарея пит</mark>ания 9В 1 шт.;
- кабель для батареи питания 1 шт.;
- зажим для батареи 1 шт.;
- механический захват 1 шт.;
- колеса 2 шт.;
- крепление к двигателю 1 шт.;
- ролик 1 шт.;
- ось 1 шт.;
- монтажная панель (175 мм × 200 мм) 1 шт.





#### ОБЗОР УРОКА

Класс обучения: 3-5 классы

Продолжительность занятия: 60 минут

проектная деятельность

Изучаем основы базового набора (Образовательный комплект модульной электроники «Набор для программирования»).



#### ОСНОВНЫЕ МОМЕНТЫ

| СТУПЕНЬ     | УЧЕБНЫЕ      | СЛОЖНОСТЬ       | продолжитель- |
|-------------|--------------|-----------------|---------------|
| ОБРАЗОВАНИЯ | дисциплины   |                 | НОСТЬ         |
| Начальная,  | Информатика, | Ознакомительная | 60 минут      |

#### ТРЕБУЕМЫЕ НАВЫКИ

средняя

Набирать текст на клавиатуре, использовать манипулятор типа «мышь»



#### **НЕОБХОДИМЫЕ МАТЕРИАЛЫ**

#### модули

Набор для программирования

#### ДРУГОЕ

Компьютер с установленным приложением Code Kit App, USB-порт

## **РИТРИВЕ ДОХ**



#### **ШАГ 1: НАСТРОЙКА**

Продолжительность: 10 минут

Загрузите и установите приложение Code Kit App на компьютеры учеников. Ученики смогут разделиться на группы по 2-3 человека и использовать 1 набор на группу.



#### **ШАГ 2: ВВЕДЕНИЕ**

Продолжительность: 10 минут

Программируем робота-учителя.

Представьте, что ваш учитель сегодня превратился в компьютер и вам, учени-кам, предстоит помочь ему выполнить задание с помощью четких указаний (например, выключи свет или отпусти всех домой пораньше).

Напишите подробную инструкцию, как робот-учитель должен будет выполнить поставленную вами задачу.

Поделитесь программой с классом и запрограммируйте робота-учителя на выполнение вашей задачи. Помните, что компьютер будет делать именно то, что вы ему скажете.



#### Обсудите:

- Есть ли разница в манере объяснения задачи компьютеру и человеку?
- Какого рода инструкции наиболее полезны?

Компьютер не может догадаться или домыслить, что вы имели в виду. Когда мы даем команду компьютеру, мы должны делать это максимально четко,

иначе, получив команду «вперед», компьютер будет идти вперед, пока не обойдет земной шар или не упрется в стенку.



#### **ШАГ 3: ТВОРЧЕСТВО**

Продолжительность: 15 минут

Разбейтесь на группы по 2-3 ученика и возьмите по одному набору Code Kit и компьютеру на группу.

#### Познаем основы

Самостоятельно начните изучать состав наборов и базовые функции модулей. Назовите особенности LittleBits.

#### Делимся знаниями

Обсудите со всем классом, что нового вы узнали о LittleBits.

#### Смотрим видео (дополнительно)

Видеоролик про базовые возможности набора LittleBits.

#### Знакомство с модулем codeBit™

Настало время познакомиться с программированием LittleBits. Воспользуйтесь предложенной ниже схемой и соберите собственную цепь. Затем запрограммируйте ее так, чтобы при нажатии на кнопку светодиодная матрица высвечивала улыбку. При повторном нажатии будет светиться слово «Hello, World!». Помните, что светодиодная матрица небольшая и одновременно может вместить только часть слова.





#### **ШАГ 4: УЧИМСЯ ИГРАЯ**

Продолжительность: 10 минут

#### Программируем

Попросите учеников запустить приложение Code Kit App и найти в нем «Hello, World!» («Здравствуй, Мир!»). Вам необходимо будет проследовать инструкциям и запрограммировать свою схему, загрузив в нее код из приложения. Это упражнение позволит ученикам понять принцип программирования схем с помощью приложения.

#### Принцип работы:

• Ниже представлены принципы работы каждого типа модулей:



• Программный код:



В соответствии с кодом, представленным выше, программа будет выполнять определенное действие только после нажатия кнопки.

После нажатия кнопки модуль программирования получит сигнал запустить следующий программный блок и направит на светодиодную матрицу текст, который вы укажете.

Это однократная программа, если вы захотите заново отправить текст на матрицу, вам необходимо будет начать программу заново.



#### **ШАГ 5: ДОПОЛНЯЕМ**

Продолжительность: 5 минут

Не стесняйтесь экспериментировать и пробовать новое. Ниже вы найдете ряд дополнительных заданий:

- Какие еще изображения вы можете направить на светодиодную матрицу? Сможете нарисовать своего любимого персонажа или животное?
- С помощью каких других модулей набора мы сможем вывести изображение или текст?
- Вам удалось запустить изображение на светодиодной матрице с помощью нажатия кнопки. Сможете ли вы создать более длительную анимацию из нескольких изображений? (Скорее всего для решения этой задачи вам понадобится блок [WAIT 1 SECOND])



#### **ШАГ 6: ДЕЛИМСЯ РЕЗУЛЬТАТАМИ**

Продолжительность: 5 минут

Расскажите всему классу о том, какое изображение вы вывели на светодиодную матрицу. С какими сложностями вам пришлось столкнуться и как вы их решили? Обсудите всем классом принцип работы схемы «Здравствуй, Мир!».





**ШАГ 7: ЗАВЕРШЕНИЕ** 

Продолжительность: 5 минут

Чистота и порядок на рабочем месте – залог успеха. Разберем все собранные схемы и уберем все детали на свои места.





#### ОБЗОР УРОКА

Класс обучения: 3-5 классы

Продолжительность занятия: 85 минут

Ученики выполнят ряд упражнений для изучения основ ввода-вывода в приложении Code Kit App и смогут узнать, как управлять изображениями, звуком и движениями.



#### ОСНОВНЫЕ МОМЕНТЫ

| СТУПЕНЬ<br>ОБРАЗОВАНИЯ | УЧЕБНЫЕ<br>ДИСЦИПЛИНЫ | сложность                     | ПРОДОЛЖИТЕЛЬ-<br>НОСТЬ |
|------------------------|-----------------------|-------------------------------|------------------------|
| Начальная,             | Информатика,          | <mark>Ознак</mark> омительная | 85 минут               |
| средняя                | проектная             |                               |                        |
|                        | деятельность          |                               |                        |

#### ТРЕБУЕМЫЕ НАВЫКИ

Понимание работы модулей набора LittleBits, умение программировать с помощью блоков, умение загружать программу в модуль соdeBit™



#### НЕОБХОДИМЫЕ МАТЕРИАЛЫ

МОДУЛИ

Набор для программирования

**ДРУГОЕ** 

Компьютер с установленным приложением Code Kit App, USB-порт

## **РИТРИВЕ ДОХ**



#### **ШАГ 1: НАСТРОЙКА**

Продолжительность: 30 минут

Разделитесь на группы по 2-3 человека.

Каждой группе понадобится один набор для программирования, компьютер с установленным приложением Code Kit App и рабочая тетрадь на каждого ученика.



#### **ШАГ 2: ВВЕДЕНИЕ**

Продолжительность: 10 минут

Что такое ввод? Что такое вывод?

Воспользуйтесь приложением Code Kit App и посмотрите ролик про вводы-выводы.

#### Обсудите:

- Попросите каждую группу выбрать любой элемент вывода из набора и рассказать о нем.
- Попросите каждую группу выбрать любой элемент ввода из набора и рассказать о нем.

Каки<mark>м об</mark>разом модуль codeBit™ работает с элементами ввода-вывода? Почему мы можем называть модуль codeBit™ мозгом всей схемы?



#### ШАГ 3: ТВОРЧЕСТВО

Продолжительность: 30 минут

Вводный урок – давайте создадим игровые контроллеры!

Воспользуйтесь приложением Code Kit App и пройдите ознакомительные уроки в следующем порядке:

- 1.0 Ваш первый игровой контроллер
- 1.1 Звуковые эффекты из игр
- 1.2 Смешиваем звуки [дополнительно]

#### 1.0 Ваш первый игровой контроллер

#### Результат



#### Принцип работы

Блок цикла [DO FOREVER] заставляет написанный внутри него код повторяться бесконечное количество раз.

Блок ожидания [WAIT FOR IN 2 TO BE ON] заставляет программу ожидать до тех пор, пока не поступит сигнал с блока ввода, который подключен к IN 2 модуля codeBit $^{\text{тм}}$ .

В случае если значения codeBit $^{\text{тм}}$  – «ВКЛ», блок [SEND IMAGE TO OUT 1] отправляет изображение на LED-матрицу.

После отправки изображения блок ожидания [WAIT FOR IN 2 TO BE OFF] заставляет программу ожидать до тех пор, пока блок, подсоединенный к IN 2, перестанет посылать сигнал. Как только сигнал перестанет поступать, запустится блок [SEND IMAGE ALL PIXELS [] TO OUT 1] и выключит LED-матрицу.

#### 1.1 Звуковые эффекты из игр

#### Результат



#### Принцип работы

Блок цикла [DO FOREVER] заставляет написанный внутри него код повторяться бесконечное количество раз.

Бл<mark>ок ожидан</mark>ия [WAIT FOR IN 1 TO BE > 50%] заставляет программу ждать до тех пор, пока значение сигнала, поступающего с датчика на IN 1, будет больше 50%.

Как только значение превысит 50%, блок [SEND TONE TO OUT 2 FOR 250 MS] направит звуковой сигнал определенной тональности с определенной продолжительностью на динамики.

#### 1.2. Смешиваем звуки

#### Результат



#### Принцип работы

Блок цикла [DO FOREVER] заставляет написанный внутри него код повторяться бесконечное количество раз.

Блок [SEND TONE TO OUT 2 FOR 250 MS] направляет звуковой сигнал на динамик, присоединенный к OUT 2. Далее нам необходимо, чтобы модуль, присоединенный к IN 2, определил тональность звука, но проблема в том, что звуковой сигнал находится в частоте 0-100, а это очень низкие частоты. Для изменения частот мы воспользовались блоком [SIGNAL FROM IN 2 CONVERTED TO A TONE BETWEEN [50] Hz AND [1000] Hz ] внутри блока [SEND TONE]. Таким образом мы меняем частоту поступающего сигнала. Частота сигнала измеряется в Hz (Гц).



#### **ШАГ 4: ДЕЛИМСЯ РЕЗУЛЬТАТАМИ**

Продолжительность: 10 минут

Что мы узнали, чему научились?

Попросите учеников выполнить в рабочей тетради задания по теме ввод-вывод.



#### **ШАГ 5: ЗАВЕРШЕНИЕ**

Продолжительность: 5 минут

Попросите учеников разобрать все собранные схемы и убрать элементы обратно в коробки.





#### ОБЗОР УРОКА

Класс обучения: 3-5 классы

Продолжительность занятия: 60 минут

деятельность

Ученики выполнят ряд упражнений для изучения основ программируемого цикла в приложении Code Kit App и научатся создавать анимацию.



#### ОСНОВНЫЕ МОМЕНТЫ

| СТУПЕНЬ               | УЧЕБНЫЕ                   | сложность       | ПРОДОЛЖИТЕЛЬ- |
|-----------------------|---------------------------|-----------------|---------------|
| ОБРАЗОВАНИЯ           | ДИСЦИПЛИНЫ                |                 | НОСТЬ         |
| Начальная,<br>средняя | Информатика,<br>проектная | Ознакомительная | 60 минут      |

#### ТРЕБУЕМЫЕ НАВЫКИ

Понимание работы модулей набора LittleBits, умение программировать с помощью блоков, умение загружать программу в модуль соdeBit™, пройденный урок «Вводы-выводы»



#### НЕОБХОДИМЫЕ МАТЕРИАЛЫ

МОДУЛИ

Набор для программирования

ДРУГОЕ

Компьютер с установленным приложением Code Kit App, USB-порт

## 



#### **ШАГ 1: НАСТРОЙКА**

Продолжительность: 10 минут

Разделите учеников на группы по 2-3 человека.

Каждой группе понадобится один набор для программирования, компьютер с установленным приложением Code Kit App и рабочая тетрадь на каждого ученика.



#### **ШАГ 2: ВВЕДЕНИЕ**

Продолжительность: 10 минут

Что такое цикл?

Всем классом посмотрите вступительный ролик про циклы в приложении Code Kit App.

Сможете ли вы вспомнить что-либо из повседневной жизни, похожее на цикл?



#### **ШАГ 3: ТВОРЧЕСТВО**

Продолжительность: 30 минут

Делаем анимацию!

Воспользуйтесь приложением Code Kit App и пройдите ознакомительные уроки в следующем порядке:

- 2.0 Создайте анимацию для придуманного персонажа
- 2.1 Секрет
- 2.2 Спецэффекты [дополнительно]

#### 2.0 Создайте анимацию для придуманного персонажа

#### Результат



#### Принцип работы

Блок цикла [DO FOREVER] заставляет написанный внутри него код повторяться бесконечное количество раз.

Блок [SEND IMAGE TO OUT 1] создает кадры анимации.

Блок ожидания [WAIT 1 SECONDS] устанавливает время между сменой кадров. Если мы не установим этот блок и нужное нам значение, кадры будут показаны слишком быстро и мы не увидим анимацию. После исполнения последнего блока [DO FOREVER] цикл запускается снова в порядке расположения блоков сверху вниз.

#### 2.1 Секрет

#### Результат



#### Принцип работы

Блок цикла [DO FOREVER] заставляет написанный внутри него код повторяться бесконечное количество раз.

Блок цикла [REPEAT UNTIL, DO], который расположен внутри блока цикла [DO FOREVER], заставляет написанную внутри него часть программы повторяться до тех пор, пока не будут выполнены определенные условия. В нашем случае повтор будет происходить до тех пор, пока мы не нажмем на кнопку, присоединенную к IN 1 [SIGNAL FROM IN 1 IS ON].

Блок [SEND IMAGE] будет работать до тех пор, пока мы не нажмем на кнопку. Когда мы нажмем на кнопку, блок цикла [REPEAT UNTIL] прекратит повторять часть программы, и далее начнется выполнение блока [SEND SCROLLING TEXT]. Как раз этот блок и покажет наше секретное сообщение.

После отправки сообщения на LED-матрицу вся программа начнется заново в порядке расположения блоков сверху вниз.

#### 2.2 Спецэффекты

#### Результат

```
DO FOREVER

COUNT WITH FROM 1 TO 7 BY 1

DO SEND PIXEL AT X: 1 Y: 0 TO OUT 1

WAIT 1 seconds
```

#### Принцип работы

Блок цикла [DO FOREVER] заставляет написанный внутри него код повторяться бесконечное количество раз.

Блок цикла [COUNT WITH [i] FROM [1] TO [7] BY [1], DO] находится внутри блока цикла [DO FOREVER].

Этот блок цикла использует переменную [i], которая содержит часть кода (например – число). В нашем случае каждый раз, когда повторяется цикл, переменная [i] увеличивается на 1.

Мы выбрали интервал значений от 0 до 7, потому что LED-матрица содержит всего 8 пикселей и они пронумерованы от 0 до 7.

Блок [SEND [ ] PIXEL AT X: [i] Y:0 TO OUT1] отправляет изображение на один из пикселей LED-матрицы с координатами X, Y. Переменная [i] будет увеличиваться на 1 каждый раз, когда блок цикла [COUNT WITH] будет срабатывать, что, в свою очередь, будет увеличивать значение X координаты, передвигая изображение на один пиксель вправо по оси X. Как только переменная [i] достигнет значения 7, блок цикла [COUNT WITH] остановится и программа перейдет к выполнению следующего блока.

Блок ожидания [WAIT 1 seconds] добавляет паузу перед запуском блока цикла [DO FOREVER] и запуском блока цикла [COUNT WITH].



#### **ШАГ 4: ДЕЛИМСЯ РЕЗУЛЬТАТАМИ**

Продолжительность: 5 минут

Что нового вы узнали на этом уроке? С чем испытали трудности?

Попросите учеников открыть рабочую тетрадь и выполнить упражнения, связанные с циклами.

[Дополнительно] Обсудите трудности, с которыми ученики столкнулись в процессе выполнения задач этого урока.



#### **ШАГ 5: ЗАВЕРШЕНИЕ**

Продолжительность: 5 минут

Попросите учеников разобрать все собранные схемы и убрать элементы обратно в коробки.







#### ОБЗОР УРОКА

Класс обучения: 3-10 классы

Продолжительность занятия: 60 минут

Ученики выполнят ряд упражнений для изучения основ логики в программировании в приложении Code Kit app и научатся использовать выражения [IF/DO] и [IF/DO/ELSE] для программирования.



#### ОСНОВНЫЕ МОМЕНТЫ

СТУПЕНЬ УЧЕБНЫЕ СЛОЖНОСТЬ ПРОДОЛЖИТЕЛЬ-ОБРАЗОВАНИЯ ДИСЦИПЛИНЫ НОСТЬ

Начальная, Информатика, <mark>Ознаком</mark>ительная 60 минут средняя проектная

деятельность

#### ТРЕБУЕМЫЕ НАВЫКИ

Понимание работы модулей набора LittleBits, умение программировать с помощью блоков, умение загружать программу в модуль соdeBit™, пройденные уроки «Вводы-выводы» и «циклы»



#### НЕОБХОДИМЫЕ МАТЕРИАЛЫ

МОДУЛИ

Набор для программирования

**ДРУГОЕ** 

Компьютер с установленным приложением Code Kit App, USB-порт

## **РИТРИВЕ ДОХ**



#### **ШАГ 1: НАСТРОЙКА**

Продолжительность: 5 минут

Предварительная настройка до начала занятия.

Разделите учеников на группы по 2-3 человека. Каждой группе понадобится один набор для программирования, компьютер с установленным приложением Fusebox App и рабочая тетрадь для каждого ученика.



#### **ШАГ 2: ВВЕДЕНИЕ**

Продолжительность: 15 минут

Что такое логика?

Посмотрите ознакомительный ролик про логику в программировании в приложении Fusebox App.

#### Действия:

- Запишите выражение: IF\_\_\_\_\_ DO\_\_\_\_ ELSE \_\_\_\_\_.
  По очереди ученики подходят к доске и записывают недостающие слова.
  Например, IF (Сегодня пойдет дождь) DO (Взять зонтик) ELSE (Если сегодня не будет дождя, останься дома).
- Обсудите как выбор действий в повседневной жизни похож на логику в программировании.



#### **ШАГ 3: ТВОРЧЕСТВО**

Продолжительность: 15 минут

Программируем!

Воспользуйтесь приложением Fusebox App и пройдите ознакомительные уроки в следующем порядке:

- 3.0 Делаем Эмодзи!
- 3.1 Волшебный меч

## 3.0 Делаем Эмодзи!

#### Результат



#### Принцип работы

Блок цикла [DO FOREVER] заставляет написанный внутри него код повторяться бесконечное количество раз.

Внутри основного блока цикла расположены 4 похожих кода. Каждый из этих кодов находится внутри блока [IF/DO], который заставляет схему показывать

то или иное Эмодзи, в зависимости от положения ползунка.

Блок [SIGNAL FROM IN 2 CONVERTED TO NUMBER BETWEEN 1 AND 4] меняет поступающий сигнал с ползунка со значениями 0-100 на значения 1-4. Эти 4 значения соответствуют четырем типам Эмодзи, из которых программа выбирает. Блок [ROUND] округляет поступающий сигнал, и на выходе мы получаем целые числа, соответствующие изображениям Эмодзи. Блок [ = ] позволяет программе понять, какое именно из значений получилось (1, 2, 3, или 4).

Если все работает верно, то блок [SEND IMAGE (IMAGE) ТО OUT 1] направляет изображение 1 на OUT 1, куда присоединена LED-матрица.

#### 3.1 Волшебный меч



#### Принцип работы

Блок цикла [DO FOREVER] заставляет написанный внутри него код повторяться бесконечное количество раз.

Блок [IF/DO/ELSE] заставляет программу проверять, поступает ли (IF) сигнал со всех трех вводов (ON). При значении «истина» включается следующая команда блока (DO) и LED-матрица покажет изображение меча при помощи блоков [DO FOREVER [SEND IMAGE TO OUT 1]]. При значении «ложь» начнет работать иная команда блока (ELSE) и LED-матрица станет вся фиолетовой при помощи блока [SEND IMAGE [ALL PIXELS] TO OUT 1].

Обратите внимание на то, где расположена команда DO – внутри блока цик-

ла [DO FOREVER], это позволит нам вывести постоянное изображение на LED-матрицу. В противном случае изображение будет гореть, только пока мы нажимаем на кнопки.



#### **ШАГ 4: ДЕЛИМСЯ РЕЗУЛЬТАТАМИ**

Продолжительность: 5 минут

Что мы узнали, чему научились?

Попросите учеников выполнить задания по логике в рабочей тетради.



#### **ШАГ 5: ЗАВЕРШЕНИЕ**

Продолжительность: 5 минут

Попросите учеников разобрать все собранные схемы и убрать элементы обратно в коробки.





#### ОБЗОР УРОКА

Класс обучения: 3-5 классы

Продолжительность занятия: 50 минут

деятельность

Ученики выполнят ряд упражнений для изучения основ программируемого цикла в приложении Fusebox App и узнают, как пользоваться переменными «изображение», «время» и «координата».



#### ОСНОВНЫЕ МОМЕНТЫ

СТУПЕНЬ УЧЕБНЫЕ СЛОЖНОСТЬ ПРОДОЛЖИТЕЛЬ-ОБРАЗОВАНИЯ ДИСЦИПЛИНЫ НОСТЬ Начальная, Информатика, Ознакомительная 50 минут средняя проектная

#### ТРЕБУЕМЫЕ НАВЫКИ

Понимание работы модулей набора LittleBits, умение программировать с помощью блоков, умение загружать программу в модуль соdеВit™, пройденные уроки «Вводы-выводы», «Циклы» и «Логика»



#### НЕОБХОДИМЫЕ МАТЕРИАЛЫ

МОДУЛИ

Набор для программирования

Компьютер с установленным приложением Code Kit App, USB-порт

**ДРУГОЕ** 

## **КИТКНАЕ ДОХ**



#### **ШАГ 1: НАСТРОЙКА**

Продолжительность: 10 минут

Предварительная настройка до начала занятия.

Разделите учеников на группы по 2-3 человека. Каждой группе понадобится один набор для программирования, компьютер с установленным приложением Fusebox App и рабочая тетрадь для каждого ученика.

Каждому ученику понадобятся стикеры для записи.



#### **ШАГ 2: ВВЕДЕНИЕ**

Продолжительность: 10 минут

Посмотрите ознакомительный ролик про переменные в приложении Fusebox App.

#### Действия:

- Каждый ученик кладет свой рюкзак на стол и клеит на него стикер. На стикере пишется имя рюкзака он и будет нашей переменной.
- Несколько учеников покажут, что лежит в их рюкзаках (учебник, ручка и т.д.).
- Обратите внимание, как рюкзак выступает в роли переменной, как он хранит разнообразные предметы, которые мы можем достать в любой момент. Приведите примеры других переменных из повседневной жизни (например ведро, шкаф, коробка).



#### **ШАГ 3: ТВОРЧЕСТВО**

Продолжительность: 25 минут

Программируем!

Воспользуйтесь приложением Fusebox App и пройдите ознакомительные уроки в следующем порядке:

- 4.0 День рождения
- 4.1 Спрайт «Прыгающий монстр»
- 4.2 Гонка [дополнительно]

#### 4.0 День рождения

#### Результат



#### Принцип работы

Блок цикла [DO FOREVER] заставляет написанный внутри него код повторяться бесконечное количество раз.

Блок переменной [SET Tone Length TO 500] позволит установить переменную, которой мы дали название «Tone Length» («Длина звука»). Эта переменная хранит число, в нашем случае 500. Вы можете изменить название переменной и ее значение на любые другие.

Блоки звуков [SEND TONE TO OUT 2 FOR [Tone Length] MS] отвечают за воспроизведение звуков из песни продолжительностью в 500 миллисекунд. Если вы поменяете значение переменной «Tone Length» («Длина звука»), то установленное значение появится во всех блоках звуков (как и в любом блоке, который вы включите в эту связку).

## 4.1 Спрайт «Прыгающий монстр»

#### Результат



#### Принцип работы

Блок цикла [DO FOREVER] заставляет написанный внутри него код повторяться бесконечное количество раз.

Блок переменной [SET MONSTER] позволит нам хранить изображение монстра в переменной, которая называется «Monster».

Блок изображения [SEND IMAGE Monster to OUT1] позволит вывести изображение нашего монстра на LED-матрицу (или экран компьютера).

Блок ожидания [WAIT FOR IN1 TO BE on] заставляет программу ожидать, пока мы не нажмем на кнопку (ВКЛ). Когда мы нажмем на кнопку, блок изображения [SEND IMAGE Monster ROTATED 180 TO OUT 1] заставит изображение монстра повернуться на 180 градусов (вверх ногами).

Блоки звуков [SEND TONE TO OUT 2 FOR [Tone Length] MS] заставят программу воспроизвести звуковой сигнал, когда мы нажмем на кнопку и изображение монстра перевернется.

Блок ожидания [WAIT FOR IN1 TO BE on] говорит программе, что во время нажатия кнопки воспроизведение звуков и поворот изображения должны произойти только один раз. В противном случае поворот и воспроизведение звуков будут работать все время, пока нажата кнопка.

#### 4.2 Гонка

#### Результат



#### Принцип работы

Начнем с того, что установим стартовые позиции участников гонки на оси X со значением 0 с помощью переменных.

Каждый из блоков переменных [SET Player 1 TO [0]] соответствует определенному участнику.

Блок цикла [DO FOREVER] заставляет написанный внутри него код повторяться бесконечное количество раз.

Установим переменную с изображением, используя блок переменной [SET image TO ALL PIXELS [ ]]. Это изображение послужит фоном.

Затем воспользуемся тремя блоками [IF SIGNAL FROM IN 1 IS ON] ( IF/DO ), которые будут проверять, поступают ли сигналы (IF) с вводов IN1, IN 2 и IN 3 (значение ИСТИНА). Если сигнал поступает с ввода (значение ИСТИНА), то блок [ADD 1 TO Player1] будет увеличивать значение переменной с шагом 1 (DO).

Блок ожидания [WAIT FOR IN 1 TO BE off] заставит программу прекратить увеличивать значение переменной с шагом 1 при остановке поступающего сигнала с ввода (значение ЛОЖЬ).

Блок изображения [ADD [ PIXEL AT X: Player 1 Y: [1] ТО image] заставит программу выводить изображение на ось X. Позиция пикселей на LED-матрице будет равна значению переменной из предыдущего кода. Это создаст впечатление движущегося объекта на матрице. Далее стартовая позиция игрока перемещается на ось Y.

Блок изображения [SEND IMAGE TO OUT1] заставляет программу вывести фоновое изображение, которое мы установили ранее в качестве переменной image.



#### **ШАГ 4: ДЕЛИМСЯ РЕЗУЛЬТАТАМИ**

Продолжительность: 5 минут

Что мы узнали, чему научились?

Попросите учеников выполнить задания по переменным в рабочей тетради.



#### **ШАГ 5: ЗАВЕРШЕНИЕ**

Продолжительность: 5 минут

Попросите учеников разобрать все собранные схемы и убрать элементы обратно в коробки.







#### ОБЗОР УРОКА

Класс обучения: 3-5 классы

Продолжительность занятия: 60 минут

проектная деятельность

Ученики выполнят ряд упражнений для изучения основ применения функций в программировании в приложении Fusebox арр и узнают, как создать свой собственный блок для программирования.



#### ОСНОВНЫЕ МОМЕНТЫ

СТУПЕНЬ УЧЕБНЫЕ СЛОЖНОСТЬ ПРОДОЛЖИТЕЛЬ-ОБРАЗОВАНИЯ ДИСЦИПЛИНЫ НОСТЬ Начальная, Информатика, Ознакомительная 60 минут

ТРЕБУЕМЫЕ

средняя

НАВЫКИ

Понимание работы модулей набора LittleBits, умение программировать с помощью блоков, умение загружать программу в модуль соdеВit™, пройденные уроки «Вводы-выводы», «Циклы» и «Логика»



#### НЕОБХОДИМЫЕ МАТЕРИАЛЫ

МОДУЛИ

Набор для программирования

**ДРУГОЕ** 

Компьютер с установленным приложением Code Kit App, USB-порт

## **РИТРИВЕ ДОХ**



#### **ШАГ 1: НАСТРОЙКА**

Продолжительность: 10 минут

Разделите учеников на группы по 2-3 человека. Каждой группе понадобится один набор для программирования, компьютер с установленным приложением Fusebox App и рабочая тетрадь для каждого ученика.



#### **ШАГ 2: ВВЕДЕНИЕ**

Продолжительность: 20 минут

Посмотрите ознакомительный роли<mark>к про исп</mark>ользование функций в программировании в приложении Fusebox App.

#### Действия:

- Попросите 3-х добровольцев придумать простой танец (например, руки вверх, руки в стороны, шаг вправо). Придумайте название этому танцу.
- Затем эти 3 добровольца должны обучить остальной класс придуманному танцу. Инструкции могут быть только голосовые, то есть ничего не показываем!
- После нескольких попыток воспроизвести танец попросите авторов танца показать оригинальную задумку. Сравните с результатами класса. Обсудите, насколько подробными должны быть инструкции.
- Играем в танец функций:
  - 1. Встаньте в круг и включите музыку.
  - 2. Каждый ученик должен задать танец своему соседу по очереди (руки вверх, либо руки в стороны, либо шаг вправо). В свою очередь сосед должен повторять заданное движение много раз. Повторяйте до тех пор, пока не останется не танцующих учеников.
  - 3. Перед окончанием песни попросите учеников произнести название танца. Все ученики прекратят повторять заданные движения и начнут танцевать весь танец целиком.

Обсудите разницу исполнения конкретного движения и исполнения танца целиком.



#### **ШАГ 3: ТВОРЧЕСТВО**

Продолжительность: 20 минут

Создаем собственные блоки кода!

Воспользуйтесь приложением Fusebox App и пройдите ознакомительный

урок:

## 5.0 Супертанец





Если посмотреть на картинку выше, можно увидеть два программных кода в блоках. Слева располагается основной код, где мы задаем значение переменной [Wait Time to 125], которая расположена в блоке переменной [SET Wait Time TO 125]. С помощью этой переменной мы определяем продолжительность воспроизведения каждой ноты между кадрами анимации (более подробно их можно разглядеть на коде справа).

Блок цикла [DO FOREVER] заставляет написанный внутри него код повторяться бесконечное количество раз.

Внутри блока цикла располагаются блоки функции [SPIN], [HIGH KICK] и [SPIN, SPLIT].

Каждый из блоков функции подробно описан на изображении наверху. Внутри блока функции [SPLIT] находится блок изображения SEND IMAGE TO OUT1] и блок звука [SEND TONE TO OUT 2 FOR Wait Time MS]. Последний блок звука использует дополнительный блок ожидания [ Wait Time x 4 ], который увеличивает продолжительность соответствующего звукового сигнала в 4 раза.



#### **ШАГ 4: ДЕЛИМСЯ РЕЗУЛЬТАТАМИ**

Продолжительность: 5 минут

Что мы узнали, чему научились?

Поп<mark>росите уч</mark>еников выполнить задания по использованию функций в рабочей тетради.



#### **ШАГ 5: ЗАВЕРШЕНИЕ**

Продолжительность: 5 минут

Попросите учеников разобрать все собранные схемы и убрать элементы обратно в коробки.



#### **НЕПОЛАДКИ**

Если в ходе работы с оборудованием возникли технические неполадки, ознакомьтесь с данным разделом, в котором вы можете найти решение возникшей проблемы.

#### 1. Проверьте соединение

#### • Вы точно подсоединили USB-адаптер?

Если нет, подсоедините его. Возможно, вам потребуется перезагрузить компьютер.



#### Вы подключили модуль codeBit™ к приложению?

Если это так, то вы увидите индикатор соединения в приложении. Если модуль не подключен, нажмите на кнопку «CONNECT YOUR CODEBIT», которая расположена в самом низу экрана.

#### • Вы нажали кнопку Вкл/Выкл?

Попробуйте отсоединить, затем присоединить p3 power Bit (Модуль питания) к своей цепи. Снова загрузите код. Если это не помогло, попробуйте перезагрузить приложение.

#### • Напряжение?

Вашей цепи требуется напряжение для работы. Убедитесь, что вы присоединили p3 power Bit (Модуль питания) к своей цепи.

#### 2. Проверьте цепь

#### • Чистка

Время от времени на платы модулей попадает пыль. Попробуйте почистить модули салфеткой. Не следует делать это с помощью острых предметов.



## • Светодиодная матрица в порядке?

Убедитесь, что ваша матрица подключена и работает в правильном режиме.



## • Динамик в порядке?

Убедитесь, что громкость выставлена верно и ваш динамик подсоединен к OUT 2 или OUT 3.



## • Везде ли вы использовали клеммы?

Используйте их!



#### 3. Проверьте программный код

#### • Блоки запрограммированы?

Незаполненные блоки в программе не дадут программе запуститься.



#### • Ваша программа начинается с блока [START]?

Не забывайте соединять весь код с самым п<mark>ервым бл</mark>оком, который запускает всю программу.

• Вы верно указали входы и выходы в программе? Они должны совпадать с реальными значениями в цепи.

Если вы использовали блок [WAIT FOR IN 3 TO BE ON], ваша цепь должна иметь вход IN 3.

#### • Запущен ли код?

Вы можете убедиться в том, что программный код загружен и запущен, если взглянете на красную лампочку. Она должна гореть.



9. РЕШЕНИЕ ПРОБЛЕМ ВО ВРЕМЯ ЭКСПЛУАТАЦИИ КОМПОНЕНТОВ LITTLEBITS



**Убедитесь, что ваш модуль питания включен.** На плате должен загореться красный светодиод.

2



Попробуйте заменить батарею питания 9В на новую. Низкий заряд батарей может привести к неустойчивой работе схемы. Компоненты littleBits имеют разные требования к мощности. Например: может оказаться, что двигатель постоянного тока не работает, в то время как свет все еще ярко светит.

3





Убедитесь, что кабель питания надежно прикреплен к модулю питания и к батарее.

4



#### Проверьте соединение.

Проверьте, все ли компоненты littleBits надежно привязаны друг к другу. Иногда пыль мешает прочному соединению. Вы можете попробовать аккуратно протереть концы защелок мягкой тканью. Попробуйте разъединить, очистить компоненты littleBits и снова собрать все вместе.

5



## Убедитесь, что компоненты littleBits расположены в правильном порядке.

Если выходной компонент littleBits в вашей цепочке стоит вначале, он не будет функционировать полноценно в вашей схеме.

#### УСТРАНЕНИЕ НЕПОЛАДОК

- Первым шагом является определение порядка действий, которому должны следовать ученики, если они столкнулись с проблемой. Некоторые преподаватели используют правило «спросите трех раньше меня», в котором ученики должны попросить помощи у трех сверстников, прежде чем спрашивать у преподавателя. Покажите учащимся, как использовать схемы сборки или другие доступные ресурсы для самостоятельного решения проблем.
- Другой вариант: совместно с учениками составьте контрольный список для устранения неполадок. Этот контрольный список может включать полезные советы. Например, отметьте все соединения, проверьте переключатели и винты, проверьте аккумулятор и т. д.
- Можно разместить плакаты с советами и рекомендациями по аудитории, чтобы помочь ученикам самостоятельно решать общие проблемы, и делитесь креативными идеями для решения. Ученики могут предлагать любые решения, советы или приемы, которые они обнаружили, для создания коллективного ресурса, для использования littleBits.

#### МОЯ ЦЕПЬ НЕ РАБОТАЕТ

- Поверьте, включен ли источник питания. Переключатели маленькие, и иногда ученики совмещают контакты не до полного соединения. Проверьте, чтобы при включении светодиодный индикатор горел красным светом.
- Если вы используете аккумулятор, его нужно периодически заменять или заряжать. Для точного определния заряда батареии вам понадобится тестер батареи.
- Проверьте чистоту разъемов. Если на разъемах пыль, протрите их чистой сухой тканью.
- Проверьте, не окислились ли разъемы. Если какой-либо из трех электрических разъемов окислен, на нем будут темные пятна. В этом случае разъем можно протереть мягкой чистой тканью с небольшим количеством изопропилового спирта.

10. СПРОСИТЕ ТРЕХ РАНЬШЕ МЕНЯ

## ФОРМА ОБРАТНОЙ СВЯЗИ

Для решения проблем и коллективного творчества бывает нужна четкая форма обратной связи. Предложите ученикам заполнить шаблон формы:

| RMN:                                             | Изобретение:                                                          |
|--------------------------------------------------|-----------------------------------------------------------------------|
|                                                  |                                                                       |
| ВАЖНОЕ                                           | компоненты                                                            |
| Что вам действительно понравилось в изобретении? | Как вы думаете, что можно улучшить?                                   |
| вопрос                                           | мпед                                                                  |
| Какие у вас есть вопросы?                        | <b>ИДЕЯ</b> Какие предложения у вас есть, чтобы сделать модель лучше? |
|                                                  |                                                                       |

## Методические рекомендации

## Голубев Алексей Константинович

# Набор для программирования littleBits

## Издательство «ЭКЗАМЕН» «ЭКЗАМЕН-ТЕХНОЛАБ»

Гигиенический сертификат № POCC RU C-RU.AK01.H.04670/19 с 23.07.2019 г.

Главный редактор Л. Д. Лаппо
Корректор О. Ю. Казанаева
Дизайн обложки
и компьютерная верстка А. А. Винокуров

107045, Россия, Москва, Луков пер., д. 8.
E-mail: по общим вопросам: robo@examen-technolab.ru;
www.examen-technolab.ru
www.littlebits.ru
по вопросам реализации: sale@examen-technolab.ru
тел. +7 (495) 641-00-23

Общероссийский классификатор продукции ОК 034-2014; 58.11.1 – книги печатные

Отпечатано в соответствии с предоставленными материалами в ООО «ИПК Парето-Принт», 170546, Россия, г. Тверь, www.pareto-print.ru