THAT CLAIMED IS:

A power generator comprising:

a stator;

a rotor positioned adjacent the stator, the rotor having a plurality of slots formed therein;

a plurality of a rotor coils each positioned within a respective one of the plurality of slots; and

a plurality of rotor wedges each positioned to retain a respective one of the plurality of rotor coils within the one respective one of the plurality of slots, each of the plurality of rotor wedges having a wedge body and at least one substantially hollow cavity formed in the wedge body so that the at least one hollow cavity is substantially evenly distributed about a neutral axis of stress applied to the wedge body when in use and so that the neutral axis of stress of the wedge body having the hollow cavity is substantially the same neutral axis of stress of a wedge body having substantially the same shape as the wedge body without the hollow cavity.

- A power generator as defined in Claim 1, 2. wherein the at least one hollow cavity extends in a through direction longitudinal substantially positioned is and wedge body the portions of substantially within the outer peripheries of the wedge body.
- 3. A power generator as defined in Claim 1, wherein the at least one hollow cavity comprises a plurality of longitudinally extending and substantially hollow cavities substantially evenly distributed about the neutral axis of stress of the wedge body so that the neutral axis of stress of the wedge body having the plurality of hollow cavities is substantially the same neutral axis of stress of a wedge body having substantially the same shape as the wedge body without the plurality of hollow cavities.

- 4. A power generator as defined in Claim 1, wherein the wedge body is elongate and substantially rigid, wherein the wedge body includes a substantially flat bottom surface and a substantially flat top surface, the top surface having less surface area than the bottom surface, and wherein an imaginary vertical center line extending from the top surface to the bottom surface divides the wedge body into two half portions, the two half portions being substantially mirror images of each other.
 - 5. A power generator as defined in Claim 4, wherein the at least one hollow cavity extends in a substantially longitudinal direction through major portions of the wedge body and is positioned substantially within the outer peripheries of the wedge body.
 - 6. A power generator as defined in Claim 1, wherein the body also includes at least a pair of side peripheries each sloping inwardly and upwardly from the plane of the extent of the substantially flat bottom surface of the wedge body.
 - 7. A power generator as defined in Claim 6, wherein the intersection of the plane of the extent of the bottom surface and the plane of the inwardly and upwardly sloping of the pair of side peripheries define a predetermined angle, the predetermined angle being in the range of about 5 degrees to about 45 degrees.
 - 8. A rotor wedge for a power generator, the rotor wedge comprising a wedge body and at least one substantially hollow cavity formed in the wedge body so that the at least one hollow cavity is substantially evenly distributed about a neutral axis of stress applied to the wedge body when in use and so that the neutral

axis of stress of the wedge body having the hollow cavity is substantially the same neutral axis of stress of a wedge body having substantially the same shape as the wedge body without the hollow cavity.

- A rotor wedge as defined in Claim 8, wherein the at least one hollow cavity extends in a through direction longitudinal substantially positioned is and body wedge of the portions substantially within the outer peripheries of the wedge body.
- wherein the at least one hollow cavity comprises a plurality of substantially hollow cavities substantially evenly distributed about the neutral axis of stress of the wedge body so that the neutral axis of stress of the wedge body having the plurality of hollow cavities is substantially the same neutral axis of stress of a wedge body having substantially the same shape as the wedge body without the plurality of hollow cavities.
 - wherein the wedge body is elongate and substantially rigid, wherein the wedge body includes a substantially flat bottom surface and a substantially flat top surface, the top surface having less surface area than the bottom surface, and wherein an imaginary vertical center line extending from the top surface to the bottom surface divides the body into two half portions, the two half portions being substantially mirror images of each other.
 - 12. A rotor wedge as defined in Claim 11, wherein the at least one hollow cavity extends in a substantially longitudinal direction through major portions of the wedge body and is positioned

substantially within the outer peripheries of the wedge body.

- 13. A rotor wedge as defined in Claim 9, wherein the body also includes at least a pair of side peripheries each sloping inwardly and upwardly from the plane of the extent of the substantially flat bottom surface of the wedge body.
- 14. A rotor wedge as defined in Claim 13, wherein the intersection of the plane of the extent of the bottom surface and the plane of the inwardly and upwardly sloping of the pair of side peripheries define a predetermined angle, the predetermined angle being in the range of about 5 degrees to about 45 degrees.
 - 15. A rotor wedge as defined in Claim 14, wherein the wedge body is formed of a metal material.
 - 16. A method of using a wedge for a power generator, the method comprising:

increasing the mass of the contents of a slot of a power generator; and

positioning a wedge having at least one cavity formed therein and extending longitudinally throughout major portions thereof to overlie the contents of the slot and retain the slot contents therein, the increased mass of the contents of the slot being by an amount substantially equal to or less than the mass required to fill the substantially hollow cavity.

17. A method as defined in Claim 16, further comprising increasing the power output of the power generator responsive to the increased mass of the contents of the slot during operation of the power generator, and wherein the at least one substantially hollow cavity formed in the wedge is substantially evenly

10

distributed about a neutral axis of stress applied to the wedge when in use so that the neutral axis of stress of the wedge having the hollow cavity is substantially the same neutral axis of stress of a wedge having substantially the same shape as the wedge without the hollow cavity.

- A method as defined in Claim 16, further comprising increasing the power efficiency of the power generator responsive to the increased mass of the contents of the slot during operation of the power generator, and wherein the at least one substantially hollow cavity formed in the wedge is substantially evenly distributed about a neutral axis of stress applied to the wedge when in use so that the neut/ral axis of stress of the wedge having the hollow cavity is substantially the wedge of a stress/ of neutral axis $m{t}$ he wedge without the substantially the same shape as hollow cavity.
- A method as defined in Claim 16, wherein the at least one hollow cavity comprises a plurality of cavities substantially hollow substantially distributed about the neutral axis of stress of the wedge so that the neutral axis ϕf stress of the wedge having the plurality of hollow davities is substantially the wedge а of axis of stress neutral substantially the same shape as the wedge without the plurality of hollow cavities.
- 20. A method as defined in Claim 16, wherein the at least one substantially hollow cavity longitudinally extends through major portions of the wedge.