MÓDULO II PROGRAMACIÓN DE BASES DE DATOS RELACIONALES

Unidad Formativa 1
Diseño de Bases de Datos Relacionales

El Modelo Relacional

MODELO RELACIONAL

MÓDULOS	UNIDADES FORMATIVAS
	DISEÑO DE BASES DE DATOS RELACIONALES
	Introducción a las bases de datos Modelos conceptuales de bases de datos
	El modelo relacional
PROGRAMACIÓN DE	El ciclo de vida de un proyecto
BASES DE DATOS	Creación y diseño de bases de datos
RELACIONALES	DEFINICIÓN Y MANIPULACIÓN DE DATOS
RELACIONALES	Lenguajes relacionales
	El lenguaje de manipulación de la base de datos
	DESARROLLO DE PROGRAMAS EN EL ENTORNO DE LA BASE DE DATOS
	Lenguajes de programación de bases de datos

MODELO RELACIONAL

MÓDULOS	UNIDADES FORMATIVAS
	DISEÑO DE BASES DE DATOS RELACIONALES
	Introducción a las bases de datos
	Modelos conceptuales de bases de datos
PROGRAMACIÓN DE	El modelo relacional
PROGRAMACION DE	El ciclo de vida de un proyecto
BASES DE DATOS	Creación y diseño de bases de datos
RELACIONALES	DEFINICIÓN Y MANIPULACIÓN DE DATOS
RELACIONALES	Lenguajes relacionales
	El lenguaje de manipulación de la base de datos
	DESARROLLO DE PROGRAMAS EN EL ENTORNO DE LA BASE DE DATOS
	Lenguajes de programación de bases de datos

Origen del Modelo Relacional

- Edgar Frank Codd definió las bases del Modelo relacional.
- Publicó "A Relational Model of data for Large Shared Data Banks".
 (1970) Un modelo relacional de datos para grandes bancos de datos compartidos
- Codd era matemático y se basó en la teoría de conjuntos. La base del modelo relacional es la teoría de conjuntos.
 - Los datos se agrupan en "relaciones" denominadas "tablas" que aglutinan datos referidos a una misma entidad de forma organizada.
 - Las "relaciones" estructuran los datos de forma independiente a su almacenamiento real en el ordenador, es decir

ES UN ELEMENTO CONCEPTUAL, NO FÍSICO

Conjuntos

• Es una colección de elementos. Están caracterizados por compartir alguna propiedad. Para que un conjunto esté bien definido debe ser posible discernir si un elemento arbitrario está o no en él.

Explícita

$$A = \{1, 2, 3, 4, 5\}$$

Conjunto vacío

Ø

Implícita

$$A = \{n \text{\'umeros naturales del 1 al 5}\}$$
$$A = \{x/\chi \in \mathbb{N} \land x \le 5\}$$

Inclusión

$$A = \{1, 2, 3, 4, 5\}$$

$$B = \{5, 2\}$$

$$A \supset B \cap A \supseteq B$$

$$B = \{5, 2\}$$

07/05/2025 Pablo López

5 3 2 4

Operaciones de Conjuntos

Unión: $A \cup B$

Diferencia: A - B o $A \setminus B$

Producto cartesiano: $A \times B$

El producto cartesiano de dos conjuntos A y B es el conjunto A × B de todos los pares ordenados (a, b) formados con un primer elemento a perteneciente a A, y un segundo elemento b perteneciente a B.

$$A = \{1, 2\}$$

 $B = \{a, b, c\}$

A x B = {(1, a), (1, b), (1, c), (2, a), (2, b), (2, c)}

Intersección: $A \cap B$

Complemento: A^{C}

Relaciones matemáticas

• Una "relación" R es una regla de correspondencia entre los elementos de n conjuntos.

- Una relación R, de n conjuntos, es un subconjunto del producto cartesiano de los n conjuntos
- \succ Unaria: R ⊆ A, R(a)
- \triangleright Binaria: R \subseteq A₁ x A₂, R(a₁,a₂)
- \triangleright Ternaria: R \subseteq A₁ x A₂ x A₃, R(a₁,a₂,a₃)
- \triangleright n-aria: R \subseteq A₁ x A₂ x A₃ x ... x A_n, R(a₁, a₂, a₃, ..., a_n)

 $A \times B = \{(a, 1), (a, 2), (a, 3), (b, 1), (b, 2), (b, 3), (c, 1), (c, 2), (c, 3)\}$

$$R = \{(a, 1), (a, 2), (b, 1), (c, 2), (c, 3)\}$$

$$R \subseteq (A \times B)$$

07/05/2025

Relaciones, atributos, tuplas, dominios

Atributos

ID_JUGADOR	NOMBRE	APELLIDOS	DNI	FECHA_NAC
1	Javier	Ortega Desio	4473754P	02/10/1984
2	Marcos	Ayerza	7940816K	08/05/1984
3	Jeronimo	De La Fuente	5169607A	07/06/1986
4	Juan Martin	Fernandez Lobbe	51453600	17/01/1983
5	Santiago	Garcia Botta	3763193R	26/01/1986

Grado

Cantidad de atributos de una relación.

Cardinalidad

Cantidad de tuplas de una relación.

Dominio

Se refiere a un atributo y es el conjunto de todos los posibles valores de ese atributo

Tuplas

Dominio de ID_JUGADOR {naturales > 0 y < 1.000.000}

Dominio de NOMBRE {todos los posibles nombres}

Sinónimos

Relacional	Visual	Ficheros	Representa
relación	tabla	fichero	entidad
tupla	fila	registro	una instancia
atributo	columna / campo /propiedad	campo	una propiedad
grado	nº de columnas	nº de campos	nº propiedades
cardinalidad	nº de filas	nº de registros	nº de instancias
clave primara	clave primaria		identificador instancia

Propiedades de las tablas

- Unicidad de nombre: cada tabla debe tener un nombre distinto
- Atributos atómicos: cada atributo de la tabla solo puede tener un valor en cada tupla
- Cada atributo tiene un nombre distinto en cada tabla (aunque puede coincidir en tablas distintas)
- Cada tupla es única (no hay tuplas duplicadas), pk diferente.
- El orden de los atributos no importa
- El orden de las tuplas no importa

Claves

• <u>superclave</u>

Conjunto de uno o más atributos que, tomados colectivamente, permiten identificar de forma unívoca una tupla en una tabla.

Las superclaves que son mínimas, es decir, que no tienen ningún subconjunto de atributos que sea superclave, se denominan "claves candidatas".

clave primaria (primary key)

Es la "clave candidata" elegida por el diseñador de la BBDD como elemento principal para identificar a las tuplas dentro de la tabla. (identificador).

claves alternativas

Son las claves candidatas de una tabla que no se han elegido como primaria.

• clave foránea, externa o ajena (foreign key)

Conjunto de uno o más atributos cuyos valores deben coincidir con los valores de la clave primaria de otra tabla.

Claves

Jugadores

ID_JUGADOR	NOMBRE	APELLIDOS	DNI	FECHA_NAC	NRO_LICENCIA
1	Javier	Ortega Desio	4473754P	02/10/1984	2934
2	Marcos	Ayerza	7940816K	08/05/1984	1640
3	Jeronimo	De La Fuente	5169607A	07/06/1986	3919
4	Juan Martin	Fernandez Lobbe	51453600	17/01/1983	8742
5	Santiago	Garcia Botta	3763193R	26/01/1986	7578
6	Lucas	Gonzales Amorosino	2807609L	15/04/1993	2910
7	Marinao	Galarza	1485392G	19/02/1988	2310
8	Pablo	Matera	6089091L	23/05/1974	9584
9	Juan	Pablo Socino	6055307E	17/08/1975	9882
10	Guido	Petti Pagadizabal	27739991	16/02/1997	9355
11	Juan	Figallo	8739151Y	09/12/1971	9731
12	Santiago	Gonzalez Iglesias	3846194N	27/08/1987	6555

Equipos

ID_EQUIPO	NOMBRE_E	CATEGORIA	LIGA
1	SENIOR A	DHB	NACIONAL
2	SENIOR B	1A	REGIONAL
3	FEMENINO A	DH	NACIONAL
4	M23	1B	NACIONAL
5	M21	2A	REGIONAL

superclave

claves candidatas

claves primarias

Claves foráneas

Jugadores

ID_JUGADOR	NOMBRE	APELLIDOS	DNI	FECHA_NAC	NRO_LICENCIA
1	Javier	Ortega Desio	4473754P	02/10/1984	2934
2	Marcos	Ayerza	7940816K	08/05/1984	1640
3	Jeronimo	De La Fuente	5169607A	07/06/1986	3919
4	Juan Martin	Fernandez Lobbe	51453600	17/01/1983	8742
5	Santiago	Garcia Botta	3763193R	26/01/1986	7578
6	Lucas	Gonzales Amorosino	2807609L	15/04/1993	2910
7	Marinao	Galarza	1485392G	19/02/1988	2310
8	Pablo	Matera	6089091L	23/05/1974	9584
9	Juan	Pablo Socino	6055307E	17/08/1975	9882
10	Guido	Petti Pagadizabal	27739991	16/02/1997	9355
11	Juan	Figallo	8739151Y	09/12/1971	9731
12	Santiago	Gonzalez Iglesias	3846194N	27/08/1987	6555

Equipos

ID_EQUIPO	NOMBRE_E	CATEGORIA	LIGA
1	SENIOR A	DHB	NACIONAL
2	SENIOR B	1A	REGIONAL
3	FEMENINO A	DH	NACIONAL
4	M23	1B	NACIONAL
5	M21	2A	REGIONAL

claves primarias

Claves foráneas

Jugadores

ID_JUGADOR	NOMBRE	APELLIDOS	DNI	FECHA_NAC	NRO_LICENCIA	ID_EQUIPO
1	Javier	Ortega Desio	4473754P	02/10/1984	2934	1
2	Marcos	Ayerza	7940816K	08/05/1984	1640	2
3	Jeronimo	De La Fuente	5169607A	07/06/1986	3919	2
4	Juan Martin	Fernandez Lobbe	51453600	17/01/1983	8742	1
.5	Santiago	Garcia Botta	3763193R	26/01/1986	7578	4
6	Lucas	Gonzales Amorosino	2807609L	15/04/1993	2910	1
7	Marinao	Galarza	1485392G	19/02/1988	2310	1
8	Pablo	Matera	6089091L	23/05/1974	9584	4
9	Juan	Pablo Socino	6055307E	17/08/1975	9882	4
10	Guido	Petti Pagadizabal	27739991	16/02/1997	9355	2
11	Juan	Figallo	8739151Y	09/12/1971	9731	4
12	Santiago	Gonzalez Iglesias	3846194N	27/08/1987	6555	2

Equipos

٠.				
	ID_EQUIPO	NOMBRE_E	CATEGORIA	LIGA
	1	SENIOR A	DHB	NACIONAL
1	2	SENIOR B	1A	REGIONAL
ı	3	FEMENINO A	DH	NACIONAL
	4	M23	1B	NACIONAL
	5	M21	2A	REGIONAL

claves primarias

clave foránea

Claves

Jugadores

ID_JUGADOR	NOMBRE	APELLIDOS	DNI	FECHA_NAC	NRO_LICENCIA	ID_EQUIPO
1	Javier	Ortega Desio	4473754P	02/10/1984	2934	1
2	Marcos	Ayerza	7940816K	08/05/1984	1640	2
3	Jeronimo	De La Fuente	5169607A	07/06/1986	3919	2
4	Juan Martin	Fernandez Lobbe	51453600	17/01/1983	8742	1
5	Santiago	Garcia Botta	3763193R	26/01/1986	7578	4
6	Lucas	Gonzales Amorosino	2807609L	15/04/1993	2910	1
7	Marinao	Galarza	1485392G	19/02/1988	2310	1
8	Pablo	Matera	6089091L	23/05/1974	9584	4
9	Juan	Pablo Socino	6055307E	17/08/1975	9882	4
10	Guido	Petti Pagadizabal	27739991	16/02/1997	9355	2
11	Juan	Figallo	8739151Y	09/12/1971	9731	4
12	Santiago	Gonzalez Iglesias	3846194N	27/08/1987	6555	2

Equipos

ID_EQUIPO	NOMBRE_E	CATEGORIA	LIGA
1	SENIOR A	DHB	NACIONAL
2	SENIOR B	1A	REGIONAL
3	FEMENINO A	DH	NACIONAL
4	M23	1B	NACIONAL
5	M21	2A	REGIONAL

superclave

claves sandidatas

claves alternativas

claves primarias

clave foránea

Valor nulo (null)

- El valor null indica la ausencia de valor en un atributo.
 - Si por ejemplo, en el atributo "email" aparece un null, indica que esa persona no tiene email.

• El carácter espacio ´´es diferente de null y 0 es diferente de null

Proposiciones y tablas de verdad

Una proposición p es cualquier enunciado lógico del que se puede formular su veracidad o falsedad, es decir, p puede ser verdadera o falsa.

p: Te he pagado lo que te debía.

q: Te he pagado en efectivo.

Dadas las proposiciones "p" y "q" se definen los siguientes operadores:

Lógica ternaria

null no se considera propiamente como un "valor" sino que indica la ausencia de un valor, por eso las comparaciones con null no resultan ciertas o falsas, sino desconocidas (unknown).

Sin embargo, algunas operaciones con null pueden devolver valores si el null no es relevante en la operación.

Ej: V or null -> será verdadero

negación (not o ¬)			
	р	not p	
	true	false	
	false	true	
	null	null	

Restricciones de integridad

- Son condiciones de obligado cumplimiento orientadas a mantener la integridad de los datos.
- Inherentes
 - Están definidas por el propio hecho que la BBDD sea relacional.
 - No puede haber dos filas iguales
 - El orden de las filas no es significativo
 - El orden de las columnas no es significativo
 - Cada atributo sólo puede tomar un valor en una fila.

Semánticas...

Restricciones de integridad semánticas

- Restricción de clave primaria (primary key)
 - Toda tabla requiere de una clave primaria, sus valores en una tabla deben ser todos diferentes y ningún atributo de ella puede contener null.
- Restricción de unicidad (unique)
 - Impide que los atributos marcados como "unique" puedan repetirse en distintas filas. Deben ser todos distintos o vacíos. Así deben indicarse en las columnas que son claves alternativas.
- Obligatoriedad (not null)
 - Prohíbe que el atributo marcado como "not null" contenga un null. Así deben indicarse en las columnas que son claves alternativas.
- Integridad referencial (foreign key)
 - Indica que las columnas así marcadas deben contener valores de la clave primaria de la tabla que relaciona (tabla principal) o un null.
- Regla de validación (check)
 - Permiten restringir los valores de un atributo. Mayor a 500. Fecha inicio < que Fecha fin.

Paso de ER a Relacional

- Por cada entidad se crea una nueva tabla.
- Todos los atributos simples de la entidad pasan a ser atributos de la tabla.
- Los atributos compuestos, se descomponen y cada componente pasa a ser un atributo de la tabla.
- El atributo ID de la entidad será la Primary Key de la tabla.
- Los atributos que son claves alternativas se definirán como UNIQUE en la tabla.

Relaciones 1-n

- En la tabla del lado de "n" se añade un atributo que funcionará como Foreign Key a la otra tabla.
- Este atributo será simple o compuesto, tal cual sea la primary key de la tabla que referencia y del mismo tipo de dato.
- Deberá crearse la restricción referencial "constraint" foreign key.
- Finalmente, dependiendo de la cardinalidad mínima del lado "1" la foreign key deberá definirse como NOT NULL si es 1, o que acepte null si es 0.

Relaciones 1-n


```
profesores

id_profesor INT

onombre VARCHAR(45)

fk_departamento INT

Indexes

departamentos

id_departamento INT

odepartamento VARCHAR(45)

Indexes
```

```
CREATE TABLE `departamentos` (
    `id_departamento` int NOT NULL AUTO_INCREMENT,
    `departamento` varchar(45) NOT NULL,
    PRIMARY KEY (`id_departamento`),
    UNIQUE KEY `departamento_UNIQUE` (`departamento`)
);

CREATE TABLE `profesores` (
    `id_profesor` int NOT NULL AUTO_INCREMENT,
    `nombre` varchar(45) NOT NULL,
    `fk_departamento` int NOT NULL,
    PRIMARY KEY (`id_profesor`),
    CONSTRAINT `profesores_departamentos` FOREIGN KEY (`fk_departamento`)
        references `departamentos` (`id_departamento`)
);
```

Relaciones 1-1 "caso (1,1) - (1,1)"

• Opción 1:

Crear sólo una tabla con todos los atributos de las dos entidades.

Opción 2

Tratarlo como un caso especial de 1-n. Se agrega una foreign key que debe ser UNIQUE NOT NULL

Relaciones 1-1 "caso (1,1) - (1,1)"

• Opción 1:

Crear sólo una tabla con todos los atributos de las dos entidades.

```
CREATE TABLE `clientes` (
   `id_cliente` int NOT NULL,
   `nombre` varchar(45) NOT NULL,
   `otros_datos_cliente` varchar(45) DEFAULT NULL,
   `calle` varchar(25) NOT NULL,
   `nro` varchar(10) NOT NULL,
   `otros_datos_domicilio` varchar(45) NOT NULL,
   PRIMARY KEY (`id_cliente`)
);
```

Relaciones 1-1 "caso (1,1) - (1,1)"

```
Tecnicos

(1, 1) asignar

(1, 1) Ordenadores

descripcion
```

```
CREATE TABLE `ordenadores` (
   `id_ordenador` int NOT NULL,
   `descripcion` varchar(45) NOT NULL,
   `otros_datos_ordenador` varchar(45) DEFAULT NULL,
   `fk_tecnico` int NOT NULL,
   PRIMARY KEY (`id_ordenador`),
   UNIQUE KEY `fk_tecnico_UNIQUE` (`fk_tecnico`),
   CONSTRAINT `ordenadores_tecnicos` FOREIGN KEY (`fk_tecnico`)
        REFERENCES `tecnicos` (`id_tecnico`)
);
```

 Opción 2: tratarlo como un caso especial de 1-n.
 Se agrega una foreign key "EN CUALQUIERA DE LAS DOS TABLAS" y debe ser UNIQUE NOT NULL

```
CREATE TABLE `tecnicos` (
   `id_tecnico` int NOT NULL,
   `nombre` varchar(45) NOT NULL,
   `otros_datos_tecnico` varchar(45) DEFAULT NULL,
   PRIMARY KEY (`id_tecnico`)
);
```


Relaciones 1-1 "caso (1,1) - (0,1)"

```
Empleados (1, 1) asignar (0, 1) Moviles
```

07/05/2025

 Se trata como un caso especial de 1-n. Del lado (0,1) se agrega una foreign key y debe ser UNIQUE NOT NULL

```
CREATE TABLE `empleados` (
   `id_empleado` int NOT NULL,
   `nombre` varchar(45) NOT NULL,
   `otros_datos_empleado` varchar(45) DEFAULT NULL,
   PRIMARY KEY (`id_empleado`)
);
```


Pablo López

Relaciones 1-1 "caso (0,1) - (0,1)"

```
Empleados (0, 1) asignar (0, 1) Moviles
```

```
CREATE TABLE `moviles` (
   `id_movil` int NOT NULL,
   `descripcion` varchar(45) NOT NULL,
   `otros_datos_movil` varchar(45) DEFAULT NULL,
   `fk_empleado` int DEFAULT NULL,
   PRIMARY KEY (`id_movil`),
   UNIQUE KEY `fk_empleado_UNIQUE` (`fk_empleado`),
   CONSTRAINT `moviles_empleados` FOREIGN KEY (`fk_empleado`)
   REFERENCES `empleados` (`id_empleado`)
);
```

 Se trata como un caso especial de 1-n. Se agrega una foreign key y debe ser sólo UNIQUE

```
CREATE TABLE `empleados` (
   `id_empleado` int NOT NULL,
   `nombre` varchar(45) NOT NULL,
   `otros_datos_empleado` varchar(45) DEFAULT NULL,
   PRIMARY KEY (`id_empleado`)
);
```


Relaciones 1-1 "caso (0,1) – (0,1)" ¿De qué lado poner la FK?

Si casi todos los móviles son entregados a empleados y muchos empleados no tienen móviles, entonces se acerca a:

Si casi todos los empleados tienen un móvil y hay muchos móviles no asignados a empleados, entonces se acerca a:

Relaciones 1-1 "caso (0,1) – (0,1)" ¿Y si hay muy pocas interrelaciones?

- Si la tratamos como caso especial de 1-n, deberíamos poner, por ejemplo, la FK a "Inmuebles" en "Empleados", pero es FK, sería NULL para casi todos los empleados.
- Si decidimos poner la FK en "Inmuebles" que referencie a "Empleados", pasaría lo mismo, prácticamente todos los inmuebles tendrían un NULL en la FK.
- Debemos crear una nueva tabla donde registrar las pocas interrelaciones que existen.
 - Tendrá las FK a las dos tablas y elegiremos una como PK (no se repetirá) y la otra como UNIQUE, tampoco se repetirá.

07/05/2025

Relaciones 1-1 "caso (0,1) – (0,1)" ¿Y si hay muy pocas interrelaciones?

```
CREATE TABLE `empleados` (
                                                 id empleado
 id inmueble
                                                               'id empleado' int NOT NULL,
                   (0, 1)
                                        (0, 1)
                                              Empleados
          Inmuebles
                             asignar
                                                               `nombre` varchar(45) NOT NULL,
                                                               'otros datos empleado' varchar(45) DEFAULT NULL,
                                               nombre
                                                               PRIMARY KEY ('id empleado')
  inmuelble
                                                             );
CREATE TABLE 'inmuebles empleados' (
 'fk inmueble' int NOT NULL,
  'fk empleado' int NOT NULL,
 PRIMARY KEY ('fk inmueble'),
                                                                    CREATE TABLE `inmuebles` (
 UNIQUE KEY 'id empleado UNIQUE' ('fk empleado'),
                                                                      'id inmueble' int NOT NULL,
 CONSTRAINT 'empleados inmuebles' FOREIGN KEY ('fk empleado')
                                                                      'inmueble' varchar(45) NOT NULL,
     REFERENCES 'empleados' ('id empleado'),
                                                                      'domicilio' varchar(45) NOT NULL,
 CONSTRAINT 'inmuebles empleados' FOREIGN KEY ('fk inmueble')
                                                                      PRIMARY KEY ('id inmueble')
     REFERENCES 'inmuebles' ('id inmueble')
                                                                    );
);
07/05/2025
                                              Pablo López
```

Relaciones n-n

- Cada entidad pasa a ser una tabla con sus atributos.
- Toda relación n-n se convierte en una nueva tabla.
 - Todos los atributos de la relación pasan a ser atributos de la nueva tabla
 - Esta tabla tendrá dos FK, cada una referencia a una tabla de la relación.
 - Las FK en conjunto, conformar la PK compuesta de la tabla.

Relaciones n-n

```
id especialidad
       id medico
                             (0, n)
                                                      (1, n)
                                                            Especialidades
                  Medicos
                                         asignar
                                                             especialidad
        nombre
CREATE TABLE `medicos_especialidades` (
  'fk medico' INT NOT NULL,
  'fk especialidad' INT NOT NULL,
  `anyo` INT NOT NULL,
  PRIMARY KEY ('fk medico', 'fk especialidad'),
  CONSTRAINT 'medicos especialidades' FOREIGN KEY ('fk medico')
    REFERENCES '000_teoria'.'medicos' ('id_medico'),
  CONSTRAINT 'especialidades medicos' FOREIGN KEY ('fk especialidad')
    REFERENCES '000_teoria'.'especialidades' ('id_especialidad')
);
```

```
CREATE TABLE `medicos` (
  'id medico' int NOT NULL,
  'nombre' varchar(45) NOT NULL,
  `matricula` varchar(15) NOT NULL,
  `otros datos medico` varchar(45) DEFAULT NULL,
  PRIMARY KEY ('id medico'),
  UNIQUE KEY `matricula_UNIQUE` (`matricula`)
);
CREATE TABLE 'especialidades' (
  'id especialidad' int NOT NULL,
  'especialidad' varchar(45) NOT NULL,
  `otros_datos_especialidad` varchar(45) DEFAULT NULL,
  PRIMARY KEY ('id especialidad'),
 UNIQUE KEY `especialidad_UNIQUE` (`especialidad`)
);
```

Relaciones n-n

