

Name: Karappagari Alekya

Batch: 2

ID: cometfwc024 Date: 9th July 2025

GATE Question Paper 2010, EE Question Number 52

The following Karnaugh map represents a function F.

Q.52 A minimized form of the function F is (A) $F = \overline{X}Y + YZ$

(B) $F = \overline{X}\overline{Y} + YZ$

(C) $\vec{F} = \vec{X}\vec{Y} + Y\vec{Z}$

(D) $F = \overline{X}\overline{Y} + \overline{Y}Z$

Figure: Karnaugh Map for Function F

Question Analysis

Given: A K-map with 3 variables: X, Y, and Z. Determine the minimized Boolean expression for function F.

Solution:

Step 1: List the Minterms where F = 1: From the K-map, F = 1 at cells:

 $m(0) = X'Y'Z', \quad m(1) = X'Y'Z, \quad m(3) = X'YZ,$

Step 2: Group the 1s and simplify using K-map rules:

• Group 1: m(0) and $m(1) \Rightarrow X'Y'$

• Group 2: m(1) and $m(3) \Rightarrow X'Z$

• Group 3: m(6) alone $\Rightarrow XYZ'$

Step 3: Optimal Simplification:

Combining best terms:

 $F = \overline{X}Y + YZ$

This matches Option (A).

Correct Option: (A)

 $F = \overline{X}Y + YZ$

Truth Table for Reference

X	Y	\mathbf{Z}	F
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	0

Table: Truth Table for F

Hardware Implementation

Inputs: X, Y, Z via push buttons

Output: LED to represent logic value of F

Hardware Requirements

S.No	Component
1	Pico2W or Arduino Uno
2	Breadboard
3	Push Buttons (3x)
4	LED (1x)
5	Resistors: 220Ω for LED, $10k\Omega$ for buttons
6	Jumper Wires
7	USB Cable

Table: Required Components

Pico2W GPIO Connection

Component	Pico2W Pin	Description
Button X	GP14	Input X
Button Y	GP15	Input Y
Button Z	GP16	Input Z
LED (Output F)	GP13	Output Logic
GND	GND	Common Ground
3.3V	3.3V	Pull-up Supply

Table: Pico2W GPIO Mapping

Steps to Upload Code on Pico2W

- 1. Hold BOOTSEL and connect Pico2W via USB.
- 2. Drag MicroPython '.uf2' file to RPI-RP2 drive.
- 3. Open Thonny IDE \rightarrow select "MicroPython (Raspberry Pi Pico)".
- 4. Write the logic expression in Python:

$$F = \overline{X}Y + YZ$$

5. Upload code and test LED output with buttons.

Arduino Uno GPIO Connection

Component	Arduino Pin	Description
Button X	D2	Input X
Button Y	D3	Input Y
Button Z	D4	Input Z
LED (Output F)	D13	Output LED
GND	GND	Common Ground
5V	VCC	Pull-up for Buttons

Table: Arduino Uno Pin Mapping

Steps to Upload Code on Arduino Uno

- 1. Connect Arduino Uno via USB.
- 2. Open Arduino IDE.
- 3. Select:
 - Board: Arduino Uno
 - Port: COMx (whichever is shown)
- 4. Write code implementing:

$$F = \overline{X}Y + YZ$$

- 5. Click **Upload**.
- 6. Test with button inputs and observe LED output.

GitHub Repository

https://github.com/Alekyakuruba/fwc/tree/main/hardware

Conclusion

The simplified Boolean expression:

$$F = \overline{X}Y + YZ$$

was verified through both **Pico2W** and **Arduino Uno** implementations using push buttons as inputs and LED for logic output.

Figure: K-map implementation using pico2w