可能是全宇宙最通俗易懂的通信课

MIMO技术入门

By@捻叶成剑

- 1. MIMO的来龙去脉
- 2. MIMO的技术原理
- 3. MIMO的传输模式
- 4. MIMO的PMI是什么?
- 5. MIMO的rank是怎么回事?

无线通信的技术进步

不断的提高空口速率

一条路径是不断的增加带宽

载波聚合CA技术,也是变相增加带宽的技术

例如:4G 3CC聚合,相当于60M带宽

增加带宽的效果

MIMO的思路---双人搬砖

MIMO (多入多出) :多天线技术

MIMO:发射端和接收端都有多个天线

MIMO (多入多出) : 多天线技术

此处的多天线,并不是指有多个天线板

对于基站来讲: 是指天线有多套振子,每一套振子都可以看成一个独立的天线

4G 8天线

5G 64T64R

是不是MIMO仅仅是指基站天线多(振子多)?

•答案是:否 手杖

手机也是多天线

MIMO实现效果的分类

空间分集(space diversity)---提升接收质量

采用多个天线发射或接收一个数据流,避免单个信道衰落对整个链路的影响

一个例子

空间复用(space multiplexing)----提升速率

利用较大间距的天线阵元之间或赋形波束之间的不相关性,向一个终端/基站并行发射多个数据流,以提高链路容量(数据率)

Rank

可以理解成传输信道相关性,只有接收端能够区分不相关的两条独立"信道",才能能够实现空间复用!

RANK=1,就是信道相关性很强,手机无法区分两路信道,只能发挥空间分集的效果。 Rank=2,说明手机可以区分两路信道,可以发挥空间复用效果,可以接收两路数据流。

波束赋形 (TDD模式)

利用较小间距的天线阵元之间的相关性,通过阵元发射的波之间形成干涉,集中能量于某个(或某些)特定方向上,形成波束,从而实现更大的覆盖和干扰抑制效果。

在移动通信当中,最早期的应用,是在3G技术TD-SCDMA系统当中。

不同制式的天线效果对比

GSM、WCDMA、 CDMA2000

TD-SCDMA LTE

5G NR天线

传统天线

3, 4G波束赋形

5G NR的波束赋型效果

massive MIMO

天线的要求

4套振子形成一个波束

8T8R,最低标准 TD-SCDMA 和LTE

16T16R及以下 只支持2D MIMO

32T32R天线及以上 支持3D MIMO 5G NR

波束赋形

波的干涉是波束赋型的技术思路源泉

波束赋形

相位是关键因素

波束赋形

相位的改变,可以带来 波束的形成,实际应用 中, 也伴随着幅度的变化。

总结一下

MIMO的信息处理流程

传输块TB:可以简单理解成要给用户发送的原始数据 其实就是一堆0101000100

码字:传输块TB经过信道编码,交织之后变成码字

一个码字就是一股数据流

空间分集

空间复用

层

以空间分集为例,一个码字最后需要两路通道发射出去,因此,构造了层的概念, 把原始数据与原始数据的另一个版本,分别放入层当中去,最终放到天线那里发射出去。

空间分集

层

4G最多为4层,按照单码字和双码字,又有如下划分

实际上,目前,LTE宏站不管单双码字,都是使用的双层

天线端口

可以理解成逻辑通道,并不是实际的天线上的物理端口。可以分为1,2,4端口,目前只使用单端口和双端口

■ 该RE不用于发送

天线端口0上发送的参考符号

天线端口2上发送的参考符号 天线端口3上发送的参考符号

■ 天线端口1上发送的参考符号

◆偶數时隙→◆奇數时隙→

◆偶数时隙→→奇数时隙→

预编码precoding

使用预编码矩阵将层(layer)映射到天线端口(antenna port)的过程 举个简单的例子

Codebook	Number of layers v				
index	1	2			
0	$\frac{1}{\sqrt{2}}\begin{bmatrix}1\\1\end{bmatrix}$	$\frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$			
1	$\frac{1}{\sqrt{2}}\begin{bmatrix}1\\-1\end{bmatrix}$	$\frac{1}{2} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$			
2	$\frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ j \end{bmatrix}$	$\frac{1}{2} \begin{bmatrix} 1 & 1 \\ j & -j \end{bmatrix}$			
3	$\frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -j \end{bmatrix}$	-			

天线端口

预编码矩阵

层

码本:预编码矩阵的集合

LTE的传输模式TM

TM1:单天线模式

TM7和TM8 TM3和TM4 TM2 空间分集 空间复用 波束赋形

TM3和TM4的区别

PMI: 预编码矩阵指示

TM3开环空间复用

- UE不反馈PMI
- UE<mark>高速</mark>运动

Codebook index	Number of layers v			
index	1	2		
0	$\frac{1}{\sqrt{2}}\begin{bmatrix}1\\1\end{bmatrix}$	$\frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$		
1	$\frac{1}{\sqrt{2}}\begin{bmatrix}1\\-1\end{bmatrix}$	$\frac{1}{2} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$		
2	$\frac{1}{\sqrt{2}}\begin{bmatrix}1\\j\end{bmatrix}$	$\frac{1}{2} \begin{bmatrix} 1 & 1 \\ j & -j \end{bmatrix}$		
3	$\frac{1}{\sqrt{2}}\begin{bmatrix} 1\\-j \end{bmatrix}$	_		

TM4闭环空间复用

- UE反馈PMI
- UE<mark>低速</mark>运动

Codebook	Number of layers υ			
index	1	2		
0	$\frac{1}{\sqrt{2}}\begin{bmatrix}1\\1\end{bmatrix}$	$\frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$		
1	$\frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \end{bmatrix}$	$\frac{1}{2} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$		
2	$\frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ j \end{bmatrix}$	$\frac{1}{2} \begin{bmatrix} 1 & 1 \\ j & -j \end{bmatrix}$		
3	$\frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -j \end{bmatrix}$	- /		

TM7和TM8的区别

TM7, 单流波束赋形

TM8, 双流波束赋形

一个定向波束

两个定向波束

总结一下

可以实现网速翻倍的模式:TM3,TM4,TM8

可以提升接收质量:TM2,TM7

无任何变化:TM1

网速排名(用户低速): TM8>TM4>TM3>TM7>TM2>TM1

LTE中实现真正的双流

TM3, TM4、TM8---基站可以发双流

Rank2----手机能够区分两路信道

Rank2+ TM3/TM4/TM8== 双流

比如Rank1+TM3,就是单流。

LTE中TM模式的变化

通过UE反馈,基站选择某一种TM模式,发送信息。 反馈的是CQI, rank和PMI(可选)

CQI是信道质量指示, 表示的是下行信号质量情况 从sinr计算而得出。

CQI

协议没有规定SINR与CQI之间的关系,由芯片厂家自有算法决定

CQI index	modulation	code rate x 1024	efficiency
0	out of range		
1	QPSK	78	0.1523
2	QPSK	120	0.2344
3	QPSK	193	0.3770
4	QPSK	308	0.6016
5	QPSK	449	0.8770
6	QPSK	602	1.1758
7	16QAM	378	1.4766
8	16QAM	490	1.9141
9	16QAM	616	2.4063
10	64QAM	466	2.7305
11	64QAM	567	3.3223
12	64QAM	666	3.9023
13	64QAM	772	4.5234
14	64QAM	873	5.1152
15	64QAM	948	5.5547

希望大家多多支持我的5G付费课程

腾讯课堂链接 https://ke.qq.com/course/3922159

电脑或者安卓手机打开链接,苹果不支持