Supervised Machine Learning Regression predict a number from many possible outputs

Classification Small number of outpats > benign > malignant

Supervised us Unsupervised

Unsupervised Machine Learning

Clustering 6

take data without labels and automatically group them to clusters

Anomaly Detection
Find unusual data
points

Dimensionality Reduction

Compress data using fewer numbers

Linear Regression

Cost function

 $\mathcal{G}^{(i)} = f_{w,b}(\mathbf{x}^{(i)}) \leftarrow$

$$f_{w,b}(\mathbf{x}^{(i)}) = w\mathbf{x}^{(i)} + b$$

Cost function: Squared error cost function

$$\overline{J}(w,b) = \frac{1}{2\pi i} \sum_{i=1}^{m} \left(\hat{y}^{(i)} - y^{(i)} \right)^2$$

$$J(w,b) = \frac{1}{2m} \sum_{l=1}^{m} (f_{w,b}(\mathbf{x}^{(l)}) - \mathbf{y}^{(l)})^2$$

Find w, b:

 $y^{(i)}$ is close to $y^{(i)}$ for all $(x^{(i)}, y^{(i)})$.

@DeepLearning.Al

model:

 $f_{w,b}(x) = wx + b$

parameters:

w, b

cost function:

$$J(w,b) = \frac{1}{2m} \sum_{i=1}^{m} (f_{w,b}(x^{(i)}) - y^{(i)})^2$$

goal:

 $\underset{w,b}{\text{minimize}} J(w,b)$

simplified

 $\underset{\underline{w}}{\text{minimize}} \underline{J(w)}$

Stanford ONLINE

@DeepLearning.Al

@DeepLearning.Al

Stanford ONLINE **DeepLearning.Al

Visualize cost function

 $f_{w,b}(x) = wx + b$ Model

Parameters

 $J(w,b) = \frac{1}{2m} \sum_{i=1}^{m} (f_{w,b}(x^{(i)}) - y^{(i)})^2$ Cost Function

 $\underset{w,b}{\operatorname{minimize}}\, J(w,b)$ Objective

Stanford ONLINE @DeepLearning.Al

Gradient Descent

Have some function J(w,b) for linear regression or any function $\min_{w_1,\dots,w_n,b} J(w_1,w_2,\dots,w_n,b)$ Want $\min_{w,b} J(w,b)$

Outline:

(set w=0, b=0)Start with some w, b

Keep changing w, b to reduce J(w, b)

Until we settle at or near a minimum

may have >1 minimum

Stanford ONLINE

@DeepLearning.Al

J not always

Gradient descent algorithm

repeat until convergence { learning rate $\underline{w} = w - \frac{\partial}{\partial w} J(w, b)$ $\underline{b} = b - \alpha \frac{\partial}{\partial b} J(w, b)$

 $\min J(w)$

Stanford ONLINE

@DeepLearning.Al

aradient Disecent for Linear Regression

"Batch": Each step of gradient descent uses all the training examples.

other gradient descent: subsets

x size in f	feet ² price in \$10	$\sum_{1000's}^{m=47} \sum_{i=1}^{m} (f_{w,b}(x^{(i)}) - y^{(i)})^{2}$
(1) 2104	400	$\sum_{i=1}^{\infty} (w, b(x^i))^{i}$
(2) 1416	232	t-1
(3) 1534	315	
(4) 852	178	
(47) 3210	870	

Stanford ONLINE

Andrew No

Week 2

Multiple Linear Regression

	Size in feet ²	bedrooms		Age of home in years	Price (\$) in \$1000's	j=14
	Xı	X ₂	X3	X4		n=4
-	2104	5	1	45	460	-
=2	1416	3	(2)	40	232	
	1534	3	2	30	315	
	852	2	1	36	178	
		<u></u>			***	
		umber of fe			$\overrightarrow{\mathbf{x}}^{(2)} = [$	1416 3 2 4
		atures of the	and the same of th	example training exam	nle	$x^{(2)} = 7$

Model: Previously: $f_{w,b}(x) = wx + b$ $f_{w,b}(x) = w_1 x_1 + w_2 x_2 + w_3 x_3 + w_4 x_4 + b$ example $f_{w,b}(x) = 0.1 x_1 + 4 x_2 + 10 x_3 + 2 x_4 + 80$ Size #bedrooms #floors years price $f_{w,b}(x) = w_1 x_1 + w_2 x_2 + \dots + w_n x_n + b$ Stanford ONLINE @DeepLearning.Al

Multiple features

Model: Previously: $f_{w,b}(x) = wx + b$ $f_{w,b}(X) = w_1 X_1 + w_2 X_2 + w_3 X_3 + w_4 X_4 + b$ example fw,b(x) = 0.1 x1+ 4x2+10x3+-2x4+80 size #bedrooms #floors years price $f_{w,b}(\mathbf{x}) = w_1 x_1 + w_2 x_2 + \cdots + w_n x_n + b$ Stanford ONLINE DeepLearning.Al

Andrew Ng

$$f_{\overrightarrow{W},b}(\overrightarrow{x}) = w_1x_1 + w_2x_2 + \cdots + w_nx_n + b$$

$$\overrightarrow{w} = [w_1 \ w_2 \ w_3 \dots w_n] \quad \text{parameters} \quad \text{of the model}$$

$$b \text{ is a number}$$

$$vector \overrightarrow{\chi} = [\chi_1 \ \chi_2 \ \chi_3 \dots \chi_n]$$

$$f_{\overrightarrow{W},b}(\overrightarrow{x}) = \overrightarrow{w} \cdot \overrightarrow{x} + b = w_1\chi_1 + w_2\chi_2 + w_3\chi_3 + \cdots + w_n\chi_n + b$$

$$dot \text{ product} \quad \text{multiple linear regression}$$

$$(not \text{ multivariate regression})$$
Stanford ONLINE @DeepLearning.Al Andrew Ng

Vectorization

```
Parameters and features
                                                    Without vectorization
\vec{w} = [w_1 \ w_2 \ w_3] \ n=3
                                                                                     → j=1...N
                                                                 \sum w_j x_j + b
b is a number
linear algebra: count from 1 NumPy
\vec{\mathbf{x}} = \begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix}
                                                    range(0,n) \rightarrow j = 0...n-1
                  w[.] w[1] w[2]
                                                    f = 0
                                                                 range(n)
w = np.array([1.0, 2.5, -3.3])
                                                    for j in range(0,n):
b = 4
                                                       f = f + w[j] * x[j]
x = np.array([10,20,30])
                                                    f = f + b
code: count from 0
                                                    Vectorization
Without vectorization 1=100,000
f_{\overrightarrow{W},b}(\overrightarrow{x}) = w_1x_1 + w_2x_2 + w_3x_3 + b
                                                    f_{\overrightarrow{\mathbf{w}}\,b}(\overrightarrow{\mathbf{x}}) = \overrightarrow{\mathbf{w}}\cdot\overrightarrow{\mathbf{x}} + b
f = w[0] * x[0] +
                                                    f = np.dot(w,x) + b
      w[1] * x[1] +
      w[2] * x[2] + b
 Stanford ONLINE @DeepLearning.Al
                                                                                     Andrew Ng
```


Gradient Descent for multiple linear regression

Vector notation Previous notation $\overrightarrow{w} = \begin{bmatrix} w_1 & \cdots & w_n \end{bmatrix}$ **Parameters** w_1, \cdots, w_n b still a number $f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}) = w_1 \underline{\mathbf{x}}_1 + \dots + w_n \underline{\mathbf{x}}_n + b$ $f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}) = \overrightarrow{\mathbf{w}} \cdot \overrightarrow{\mathbf{x}} + b$ Model dot product $J(w_1, \cdots, w_n, b)$ Cost function Gradient descent repeat { repeat { $w_{j} = w_{j} - \alpha \frac{\partial}{\partial w_{j}} J(\underline{w_{1}, \cdots, w_{n}, b})$ $b = b - \alpha \frac{\partial}{\partial b} J(\underline{w_{1}, \cdots, w_{n}, b})$ $w_j = w_j - \alpha \frac{\partial}{\partial w_i} J(\overline{w}, b)$ $b = b - \alpha \frac{\partial}{\partial b} J(\widehat{\mathbf{w}}b)$ Stanford ONLINE DeepLearning.Al

An alternative to gradient descent

→Normal equation

- Only for linear regression
- Solve for w, b without iterations

Disadvantages

- Doesn't generalize to other learning algorithms.
- Slow when number of features is large (> 10,000)

What you need to know

- Normal equation method may be used in machine learning libraries that implement linear regression.
- Gradient descent is the recommended method for finding parameters w,b

Stanford ONLINE

@DeepLearning.Al

Andrew Ng

feature Scaling

Feature and parameter values

Stanford ONLINE

DeepLearning.Al

Feature scaling

aim for about $-1 \le x_i \le 1$ for each feature x_i

$$-3 \le x_j \le 3$$

$$-0.3 \le x_j \le 0.3$$
acceptable ranges
$$0 \le x_1 \le 3$$

$$-2 \le x_2 \le 0.5$$

$$-100 \le x_3 \le 100$$

$$-100 \le x_3 \le 100$$

$$-0.001 \le x_4 \le 0.001$$

$$98.6 \le x_5 \le 105$$

$$+ coolarge \rightarrow rescale$$

$$+ coolarge \rightarrow rescale$$

convergence of gradient descent

choosing learning rate

Feature Engineering

Polynomial Regression

