A novel notation for quantum cryptography

Applications to some recent quantum cryptographic protocols and their equivalences

Zef Wolffs

External Research Supervisor: Boris Škorić Internal Thesis Advisor: Jacco de Vries

January 12, 2020

Outline

- Introduction
 - Quantum Information
 - Quantum Cryptography
 - The Diagrammatic Notation
 - The Aim
- The Classical One Time Pad
- The Quantum One Time Pad
 - Quantum Teleportation and Quantum One Time Pad Equivalence
- Quantum Key Recycling
- Discussion and Conclusions
- Questions
- References

Introduction

Quantum Information

 The classical bit vs. the qubit

Representation of a classical bit (Left) and a qubit (right) [5].

Encoding and decoding

Quantum Cryptography

 Quantum cryptographic protocols: Sending a message securely using quantum mechanics

Alice, Bob, and Eve's roles in (quantum) cryptographic protocols [2].

Dirac notation is not very intuitive

The Diagrammatic Notation

00000

Diagrams in ecology: food webs [3].

Diagrams in particle physics: Feynman diagrams [6].

The Dagrammatic Notation

 Proposed by Coecke and Kissinger in 2017, in Picturing Quantum Processes [1].

The Aim

- Taking into account the rising popularity of quantum cryptography and the fact that its current notation is insufficient for describing it intuitively we want to give the diagrammatic method a place in the field of quantum cryptography by...
 - Writing a short handbook-style introduction to this notation for physicists who do not want to read the entire book Picturing Quantum Processes [1].
 - 2. Constructing some recent quantum cryptographic developments and protocols in this new notation.

Ideal situation:

Real situation:

(1)

The One Time Pad solution: xor with secret random variable k

 If Eve does not interfere, communication should be provably correct.

The Quantum One Time Pad

The Quantum One Time Pad

The Quantum One Time Pad

The Quantum One Time Pad

The Classical One Time Pad

Quantum Teleportation and Quantum One Time Pad Equivalence

Quantum Teleportation

Quantum Teleportation and Quantum One Time Pad Equivalence

Quantum Teleportation

The Quantum One Time Pad

 Security proof for quantum key recycling in the noiseless case, the starting point:

• With a lot of steps in between, the end result becomes:

 In words: Eve's part of the diagram separates entirely from Alice and Bob's communication channel!

• What novel things did we achieve in this thesis?

- What novel things did we achieve in this thesis?
 - Wrote the first short handbook-style introduction to the diagrammatic notation

- What novel things did we achieve in this thesis?
 - Wrote the first short handbook-style introduction to the diagrammatic notation
 - Developed the classical One Time Pad diagrammatically and showed that it both works and is secure

- What novel things did we achieve in this thesis?
 - Wrote the first short handbook-style introduction to the diagrammatic notation
 - Developed the classical One Time Pad diagrammatically and showed that it both works and is secure
 - Developed the quantum One Time Pad diagrammatically and showed that it both works and is secure

- What novel things did we achieve in this thesis?
 - Wrote the first short handbook-style introduction to the diagrammatic notation
 - Developed the classical One Time Pad diagrammatically and showed that it both works and is secure
 - Developed the quantum One Time Pad diagrammatically and showed that it both works and is secure
 - Showed that Quantum Teleportation is equivalent to the quantum One Time Pad, and therefore also works and is secure

- What novel things did we achieve in this thesis?
 - Wrote the first short handbook-style introduction to the diagrammatic notation
 - Developed the classical One Time Pad diagrammatically and showed that it both works and is secure
 - Developed the quantum One Time Pad diagrammatically and showed that it both works and is secure
 - Showed that Quantum Teleportation is equivalent to the quantum One Time Pad, and therefore also works and is secure
 - Developed Quantum Key Recycling diagrammatically, included a fully fledged security proof and worked out equivalences from a recent paper [4]

• Did this achieve the aims?

- Did this achieve the aims?
 - Writing a short handbook-style introduction to this notation for physicists hesitant to read the entire book *Picturing Quantum Processes* [1].

- Did this achieve the aims?
 - Writing a short handbook-style introduction to this notation for physicists hesitant to read the entire book *Picturing Quantum Processes* [1].
 Maybe, up to the reader to decide.

- Did this achieve the aims?
 - Writing a short handbook-style introduction to this notation for physicists hesitant to read the entire book *Picturing Quantum Processes* [1].
 Maybe, up to the reader to decide.
 - 2. Constructing some recent quantum cryptographic developments and protocols in this new notation.

- Did this achieve the aims?
 - Writing a short handbook-style introduction to this notation for physicists hesitant to read the entire book *Picturing Quantum Processes* [1].
 Maybe, up to the reader to decide.
 - Constructing some recent quantum cryptographic developments and protocols in this new notation. Yes!

- Role of diagrammatic notation?
- More technical: classical channels have a basis?

- In future research it would be interesting to...
 - Develop a full security proof for Quantum Key Recycling with noise
 - Generally work out more protocols and equivalences in this notation

Questions?

References

- [1] Bob Coecke and Aleks Kissinger.

 Picturing Quantum Processes.

 Cambridge University Press. Cambridge, 2017.
- [2] Mathieu Cunche.À l'attaque des codes secrets.Interstices.info, 2011.
- [3] Randi Glaser. Food Web Examples. Blendspace.com, n.d.
- [4] Daan Leermakers and Boris Škorić.
 Quantum Alice and Silent Bob.
 https://eprint.iacr.org/2019/875, 2019.
- [5] Krysztof Pomorski, Panagiotis Giounanlis, Elena Blokhina, and Robert Staszewski. From Quantum Hardware to Quantum Al. University College Dublin, Dublin, 2018.
- [6] Kimberley Vos, H. Wilschut, and R. Timmermans. Limits on lorentz violation in neutral-kaon decay. Proceedings of the Sixth Meeting on CPT and Lorentz Symmetry, 2013.