

Tarea 5

20 de octubre de 2020

 $2^{\underline{0}}$ semestre 2020 - Profesores G. Diéguez - F. Suárez

Requisitos

- La tarea es individual. Los casos de copia serán sancionados con la reprobación del curso con nota 1,1.
- Entrega: Hasta las 23:59:59 del 2 de noviembre a través del buzón habilitado en el sitio del curso (Canvas).
 - Esta tarea debe ser hecha completamente en L^AT_EX. Tareas hechas a mano o en otro procesador de texto **no serán corregidas**.
 - Debe usar el template L^AT_FX publicado en la página del curso.
 - Cada problema debe entregarse en un archivo independiente de las demas preguntas.
 - Los archivos que debe entregar son un archivo PDF por cada pregunta con su solución con nombre numalumno-P1.pdf y numalumno-P2.pdf, junto con un zip con nombre numalumno.zip, conteniendo los archivos numalumno-P1.tex y numalumno-P2.tex que compilan su tarea. Si su código hace referencia a otros archivos, debe incluirlos también.
- El no cumplimiento de alguna de las reglas se penalizará con un descuento de 0.5 en la nota final (acumulables).
- No se aceptarán tareas atrasadas.
- Si tiene alguna duda, el foro de Canvas es el lugar oficial para realizarla.

Problemas

Problema 1 - Correctitud y Complejidad

- a) Escriba un algoritmo iterativo que resuelva el problema del Mínimo Común Múltiplo. Su algoritmo debe recibir como input dos números y devolver como output el número natural que corresponda al mínimo común múltiplo del input.
- b) Demuestre que su algoritmo es correcto.
- c) Calcule la complejidad de su algorimo, en el mejor y peor caso, en función de la cantidad de dígitos del input.

Problema 2 - Notación asintótica

Son ciertas las siguientes afirmaciones? Demuestre

- a) $\sqrt{n!} \in O(n\sqrt{n})$
- b) $n^{\sqrt{n}} \in O((\sqrt{n})^n)$