Tutorat mathématiques : TD5

Université François Rabelais

Département informatique de Blois

Algèbre

* *

Problème 1

- 1. Soit E, un \mathbb{K} -espace vectoriel de vecteur nul 0_E , compléter et répondre aux questions :
 - (a) F est un sous-espace vectoriel de $E\Leftrightarrow \begin{cases} F\subset E\\ 0_E\in F\\ \forall (u,v)\in F, \forall \alpha\in\mathbb{K}, \alpha u+v\in F \end{cases}$

Le plus grand et le plus petit (pour l'inclusion) sous-espace vectoriel de E sont respectivement $\{0_E\}$ et E.

- (b) Si F et G sont deux sous-espaces vectoriels de E alors :
 - $F \cap G$ est un sous-espace vectoriel de E (et de F et G).
 - $F \cup G$ est un sous-espace vectoriel de $E \Leftrightarrow (F \subset G \text{ ou } G \subset F)$.

Définir :

- $F + G = \{u_1 + u_2 | u_1 \in F, u_2 \in G\}$ qui est le plus petit sous-espace vectoriel de E contenant $F \cup G$
- $\bullet \ F + F = F.$
- F + E = E.
- (c) Quels sont les sous-espaces vectoriels de \mathbb{R}^2 ?

Les sous-espaces vectoriels de \mathbb{R}^2 sont :

- $\{(0,0)\}$
- Les droites passant par (0,0).
- \bullet \mathbb{R}^2
- 2. Dans l'espace vectoriel \mathbb{R}^3 , on considère les vecteurs : $u_1 = (1, -1, 0)$ et $u_2 = (0, 1, -1)$.
 - (a) Définir $F = \text{Vect}(u_1, u_2) == \{\alpha u_1 + \beta u_2 | \alpha, \beta \in \mathbb{R}\}.$

Que peut-on dire de F?

F est un sous-espace vectoriel dont (u_1, u_2) est une famille génératrice.

(b) Donner les conditions nécessaires et suffisantes pour que v = (x, y, z) appartienne à F.

$$\exists (\alpha, \beta) \in \mathbb{R}^2 : v(\alpha u_1, \beta u_2) \Leftrightarrow \begin{cases} \alpha &= x \\ -\alpha + \beta &= y \text{ est compatible} \\ -\beta &= z \end{cases}$$

$$\Leftrightarrow \begin{cases} \alpha &= x \\ \beta &= x + y \ L_2 \leftarrow L_2 + L_1 \\ -\beta &= z \end{cases}$$

$$\Leftrightarrow \begin{cases} \alpha &= x \\ \beta &= x + y \ L_3 \leftarrow L_3 + L_2 \\ 0 &= x + y + z \end{cases}$$
Les conditions references at sufferent some range are $\alpha \in \mathbb{R}$ so the

Les conditions nécessaires et suffisantes pour que $v \in F$ sont qu'il vérifier l'équation x + y + z = 0. Soit F est le plan qu'équation : x + y + z = 0

(c) Donner une famille génératrice du plan \mathcal{P} d'équation : x - y + z = 0.

$$\begin{aligned} x - y + z &= 0 \Leftrightarrow x + z = y \\ G &= \{(x, x + z, z) | x, z \in \mathbb{R}\} \\ &= \{x(1, 1, 0) + z(0, 1, 1) | x, r \in \mathbb{R}\} \\ &= \text{Vect}\left((1, 1, 0), (0, 1, 1)\right) \end{aligned}$$

(1,1,0) et (0,1,1) est une famille génératrice de G.

Problème 2

Soit l'espace vectoriel $E = \mathbb{R}^4$ muni de sa base canonique $\mathcal{B} = (e_1, e_2, e_3, e_4)$. On considère les vecteurs suivants:

$$u = (1, 0, 0, 1), v = (1, 0, 1, 1), w = (1, 0, -2, 1)$$
 et $t = (1, 0, -3, 1)$.

1. Définir F = Vect(u, v, w, t) et le rang r de la famille de vecteurs (u, v, w, t).

Par définition

 $F=\mathrm{Vect}(u,v,w,t)=\{au+bv+cw+dt|a,b,c,d\in\mathbb{R}\}: \mbox{l'ensemble est combinaisons linéaires des vecteurs }u,v,w\mbox{ et }t.$

$$r = \operatorname{rg}(u, v, w, t) = \dim(F)$$

2. En utilisant la méthode d'échelonnement : déterminer r, une base échelonnée et la dimension

$$\Leftrightarrow \begin{cases} 1 & 0 & 0 & 1 & : & u \\ 0 & 0 & 1 & 0 & : & v - u \\ 0 & 0 & 0 & 0 & : & w - u + 2(v - u) \\ 0 & 0 & 0 & 0 & : & t - u + 3(v - u) \end{cases}$$

Cette dernière famille (u, u - v, -3u + 2v + w, -4u + 3v + t) est échelonnée, deux de ses vecteurs sont non nuls, de plus elle est de rang r=2.

(u, v - u) = ((1, 0, 0, 1), (0, 0, 1, 0)) est une base échelonnée de F et donc $\dim(F) = 2$

3. Déduire de ce qui précède un supplémentaire G de F dans E.

$$\begin{cases}
1 & 0 & 0 & 1 & : & u \\
0 & 1 & 0 & 0 & : & e_2 \\
0 & 0 & 1 & 0 & : & v - u \\
0 & 0 & 0 & 1 & : & e_4
\end{cases}$$

 $\begin{cases} 0 & 1 & 0 & 0 & : & e_2 \\ 0 & 0 & 1 & 0 & : & v-u \\ 0 & 0 & 0 & 1 & : & e_4 \end{cases}$ donc $(u,e_2,v-u,e_4)$ est une famille échelonnée de E sans vecteur nul, de plus $\operatorname{rg}(u,e_2,v-u,e_4)$

La famille $(u, e_2, v - u, e_4)$ est libre maximale dans E, c'est donc une base de E.

Par conséquent, $G = \text{Vect}(e_2, e_4)$ est un supplémentaire de F dans E.

4. Déterminer un système d'équation(s) caractérisant F.

$$\nu = (x, y, z, t) \in F \Leftrightarrow \exists (a, b) \mathbb{R}^2 : \nu = (x, y, z, t) = a(1, 0, 0, 1) + b(0, 0, 1, 0)$$

$$\Leftrightarrow \begin{cases}
a = x \\
0 = y \\
b = z \\
a = t
\end{cases}$$

$$\Leftrightarrow \begin{cases}
a = x \\
0 = y \\
b = z \\
a = t
\end{cases}$$

$$\Leftrightarrow \begin{cases}
a = x \\
0 = y \\
b = z \\
a = t
\end{cases}$$

$$\Leftrightarrow \begin{cases}
b = z \\
0 = x - t \\
0 = y
\end{cases}$$

$$\Rightarrow \begin{cases}
b = z \\
0 = x - t \\
0 = y
\end{cases}$$

$$\Rightarrow \begin{cases}
c = x \\
c = z \\
c$$

Problème 3

Soient A, F et G les sous-ensembles de l'espace vectoriel $E = \mathbb{R}^3$ définis tels que : $A = \{(x,y,z) \in \mathbb{R}^3 / x \in \mathbb{Z}\}, F = \{(x,y,z) \in \mathbb{R}^3 / x + y - z = 0\} \text{ et } G = \{a,b,a-b) / (a,b) \in \mathbb{R}^2\}.$

1. Justifier que A n'est pas un sous-espace vectoriel de E.

A n'est pas un sous-espace vectoriel de E car $(1,0,0) \in A$ mais $\frac{1}{2}(1,0,0) \notin A$ étant donné que $\frac{1}{2} \notin \mathbb{Z}$.

2. Montrer que F est un sous-espace vectoriel de E, en donner une base. Idem pour G.

$$F = \{(x, y, z) \in \mathbb{R}^3 / x + y - z = 0\}$$

$$= \{(x, y, x + y) | x, y \in \mathbb{R}\}$$

$$= \{x(1, 0, 1) + y(0, 1, 1) | x, y \in \mathbb{R}\}$$

$$= \text{Vect}((1, 0, 1), (0, 1, 1)$$

F est donc un sous-espace vectoriel de E dont ((1,0,1),(0,1,1)) est une famille génératrice; de plus (1,0,1) et (0,1,1) sont non colinéaires donc ((1,0,1),(0,1,1)) est une famille libre, des lors : ((1,0,1),(0,1,1)) est une base de F et $\dim(F)=2$.

De la même manière G = Vect((1, 0, 1), (0, 1, -1)).

On en déduit aussi que G est un sous-espace vectoriel de E de base ((1,0,1),(0,1,-1)) et donc que $\dim(G)=2$.

3. Déterminer les conditions nécessaires et suffisantes sur les réels x, y, z pour que u = (x, y, z) appartienne à G, en déduire un système d'équation(s) de G.

$$u = (x, y, z) \in G \Leftrightarrow \exists \alpha, \beta \in \mathbb{R} | u = (\alpha, \beta, \alpha - \beta)$$

$$\Leftrightarrow \begin{cases} \alpha &= x \\ \beta &= y \text{ est compatible} \\ \alpha - \beta &= z \end{cases}$$

$$\Leftrightarrow \begin{cases} \alpha &= x \\ \beta &= y \\ x - y - z &= 0 \end{cases}$$

Dès lors $u \in G \Leftrightarrow u \in \mathcal{P} : x - y - z = 0$

4. $F \cup G$ est-il un sous-espace vectoriel? Justifier.

F et G sont des plans de E respectivement d'équation x+y-z=0 et x-y-z=0Soient u=(0,1,1) et v=(1,1,0) $u\in F$ et $v\in G$ Donc $u,v\in F\cup G$. Cependant $u+v=(1,2,1)\notin F$ et $u+v\notin G$. Dès lors $F\cup G$ n'est pas stable pour l'addition, ce n'est pas un sous-espace vectoriel de E.

5. Montrer que $F \cap G$ est un sous-espace vectoriel, en donner une base et sa dimension.

Comme F et G sont des sous-espaces vectoriels on sait que $F \cap G$ est lui aussi un sous-espace vectoriel.

$$u = (x, y, z), u \in F \cap G \Leftrightarrow \begin{cases} x + y - z &= 0 \\ x - y - z &= 0 \end{cases}$$
$$\Leftrightarrow \begin{cases} x + y - z &= 0 \\ y &= 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} x = z \\ y = 0 \end{cases}$$

Par conséquent $F \cap G = \{(x,0,x) | x \in \mathbb{R}\} \Leftrightarrow \text{Vect}((1,0,1))$

 $F \cap G$ est la droite dirigée par le vecteur (1,0,1), de plus $\dim(F \cap G) = 1$

6. Définir F+G puis par un raisonnement que l'on indiquera, déduire de ce qui précède que F+G=E. Cette somme est-elle directe?

Par définition $F + G = \{u + v | u \in F \text{ et } v \in G\}$, de plus on sait que F + G est le plus petit s - ev pour l'inclusion contenant $F \cup G$.

D'après le théorème de Grassman

$$\dim(F+G) = \dim(F) + \dim(G) - \dim(F \cap G)$$

Dès lors $\dim(F + G) = 2 + 2 - 1 = 3$

 $\dim(F+G)=3$ et F+G est un sous-espace vectoriel et F+G=E.

Puisque $F \cap G \neq \{0_E\}$, la somme n'est pas directe.

7. Quels sont les supplémentaires de F dans E? Illustrer par une figure.

F étant un plan de E, ses supplémentaires sont toutes droites Δ de E: Vect (α, β, γ) telles que $\Delta \not\subseteq F$, c'est à dire toute droite dirigée par (α, β, γ) mais avec $\alpha + \beta - \gamma \neq 0$

FIGURE 1 : Représentation de F et d'un supplémentaire Δ

Problème 4

Soit f l'application linéaire de \mathbb{R}^3 dans \mathbb{R}^2 telle que f(x, y, z) = (x + z, y - 2z)

1. Montrer que f est effectivement une application linéaire.

Soient E et F deux espaces vectoriels et f une application de $E \to F$. On dit que f est une application linéaire si

$$\begin{cases} \forall v, w \in E, & f(v+w) = f(v) + f(w) \\ \forall v \in E, \forall \lambda \in \mathbb{R}, & f(\lambda v) = \lambda f(v) \end{cases}$$

Dans notre cas:

- Pour $\forall (x, y, z), (x', y', z') \in \mathbb{R}^3$, f((x, y, z) + (x', y', z')) = f(x, y, z) + f(x', y', z')f((x, y, z) + (x', y', z')) = f(x + x', y + y', z + z') = ((x + x') + (z + z'), (y + y') - 2(z + z')) = (x + z + x' + z', y - 2z + y' - 2z') = f(x, y, z) + f(x', y', z')
- Pour $\forall (x, y, z) \in \mathbb{R}^3, \forall \lambda \in \mathbb{R}, f(\lambda(x, y, z)) = \lambda f(x, y, z)$ $f(\lambda(x, y, z)) = f(\lambda x, \lambda y, \lambda z)$ $= (\lambda x + \lambda z, \lambda y - 2\lambda z)$ $= (\lambda (x + z), \lambda (y - 2z))$ $= \lambda (x + z, y - 2z)$ $= \lambda f(x, y, z)$
- 2. Sans le démontrer, donner la dimension de $\mathcal{L}(\mathbb{R}^3, \mathbb{R}^2)$ et la matrice A, représentative de f relativement aux bases canonique de \mathbb{R}^3 et \mathbb{R}^2 .

 $\dim(\mathcal{L}(\mathbb{R}^3, \mathbb{R}^2)) = 3 \times 2 = 6$ et $A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & -2 \end{pmatrix}$ relativement aux bases canoniques de \mathbb{R}^3 et \mathbb{R}^2 .

3. Déterminer le noyau de f, en donner une base et sa dimension. Que peut-on en déduire pour f?

$$\ker(f) = \{(x, y, z) \mathbb{R}^3 | f(x, y, z) = (0, 0)\} \Leftrightarrow \begin{cases} x + z = 0 \\ y - 2z = 0 \end{cases}$$
$$\Leftrightarrow \begin{cases} x = -z \\ y = 2z \\ z = z \end{cases}$$

 $\ker(f) = \{(-z, 2z, z) | z \in \mathbb{R}\} = \operatorname{Vect}((-1, 2, 1))$. Soit la droite dirigée par (-1, 2, 1): $\dim(\ker(f)) = 1 \neq 0 \Leftrightarrow f$ est non injective.

4. Énoncer le théorème du rang pour f, puis, en déduire que f est surjective.

Le théorème du rang s'énonce tel que :

$$\dim(D\acute{e}part) = \dim(\ker(f)) + \dim(\operatorname{Im}(f))$$

Soit ici : $\dim(\mathbb{R}^3) = 1 + \dim(\operatorname{Im}(f)) \Leftrightarrow 2 = \dim(\operatorname{Im}(f))$ $\dim(\operatorname{Im}(f)) = \dim(\operatorname{Arriv\acute{e}})$. On en conclut que f est surjective.

Problème 5

Soit l'endomorphisme f de \mathbb{R}^3 dont la matrice représentative dans la base canonique \mathcal{B} de \mathbb{R}^3 est :

$$A = \left(\begin{array}{rrr} -1 & 1 & 1\\ 1 & -1 & 1\\ 1 & 1 & -1 \end{array}\right)$$

1. Donner $f(e_1), f(e_2), f(e_3)$. Puis $\forall (x, y, z) \in \mathbb{R}^3, f(x, y, z)$.

$$|| f(e_1) = (-1, 1, 1), \quad f(e_2) = (1, -1, 1), \quad f(e_3) = (1, 1, -1)$$

$$\forall (x, y, z) \in \mathbb{R}^3, f(x, y, z) = (-x + y + z, x - y + z, x + y - z)$$

2. Prouver que f est un automorphisme de \mathbb{R}^3 , en déduire son noyau et son image.

f est une matrice carrée, ce qui indique que c'est un endomorphisme, f est bijective si $\det(A) \neq 0.$

$$\det(A) = \begin{vmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{vmatrix}$$

$$= \begin{vmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{vmatrix} C_1 \leftarrow C_1 + C_2 + C_3$$

$$= \begin{vmatrix} 1 & 1 & 1 \\ 0 & -2 & 0 \\ 0 & 0 & -2 \end{vmatrix} L_2 \leftarrow L_2 - L_1, L_3 \leftarrow L_3 - L_1$$

$$= 1 \times (-2) \times (-2) = 4 \neq 0$$

Dès lors f est un automorphisme de \mathbb{R}^3 .

Comme f est bijective, on en déduit que $\ker(f) = \{(0,0,0)\}\$ et que $\operatorname{Im}(f) = \mathbb{R}^3$

3. Déterminer $f^{-1}(x, y, z)$ pour tout (x, y, z) de \mathbb{R}^3 .

$$\mathcal{M}_{\mathcal{B}}(f^{-1}) = A^{-1} = \frac{1}{2} \begin{pmatrix} 0 & 1 & 1\\ 1 & 0 & 1\\ 1 & 1 & 0 \end{pmatrix}.$$

Donc $f^{-1}(x, y, z) = \frac{1}{2}(y + z, x + z, x + y)$

4. Déterminer la matrice B représentant $f \circ f$ dans \mathcal{B} .

$$B = \mathcal{M}_{\mathcal{B}}(f \circ f) = A^2 = \begin{pmatrix} 3 & -1 & -1 \\ -1 & 3 & -1 \\ -1 & -1 & 3 \end{pmatrix}$$

5. Montrer que la famille $\mathcal{B}_1 = (u, v, w)$ avec u = (1, 1, 1), v = (1, -1, 0) et w = (1, 1, -2) est

$$\begin{cases} 1 & 1 & 1 & : & u \\ 1 & -1 & 0 & : & v \Leftrightarrow \\ 1 & 1 & -2 & : & w \end{cases} \Leftrightarrow \begin{cases} 1 & 1 & 1 & : & u \\ 0 & -2 & -1 & : & v - u \\ 0 & 0 & -3 & : & w - u \end{cases}$$

 $\begin{cases} 1 & 1 & 1 & : \ u \\ 1 & -1 & 0 & : \ v \Leftrightarrow \\ 1 & 1 & -2 & : \ w \end{cases} \Leftrightarrow \begin{cases} 1 & 1 & 1 & : \ u \\ 0 & -2 & -1 & : \ v - u \\ 0 & 0 & -3 & : \ w - u \end{cases}$ La famille \mathcal{B}_1 est échelonnée sans vecteur nul, donc de rang 3. $\operatorname{rg}(\mathcal{B}_1) = \operatorname{card}(\mathcal{B}_1) = 3 : \mathcal{B}_1 \text{ est une famille libre et } \operatorname{card}(\mathcal{B}_1) = 3 = \dim(\mathbb{R}^3), \text{ c'est une famille libre maximale de } \mathbb{R}^3.$

Dès lors \mathcal{B}_1 est une base de \mathbb{R}^3 .

6. Déterminer la matrice D représentant f dans \mathcal{B}_1 .

On va représenter les vecteurs dans $D=\mathcal{M}_{\mathcal{B}_1}(f)$

$$f(u) = f(1, 1, 1) = u$$

$$f(v) = f(1, -1, 0) = (-2, 2, 0) = -2v$$

$$f(w) = f(1, 1, -2) = (-2, -2, 4) = -2w$$

$$D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -2 \end{pmatrix}$$