ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ

УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ) ФИЗТЕХ-ШКОЛА РАДИОТЕХНИКИ И КОМПЬЮТЕРНЫХ ТЕХНОЛОГИЙ

Работа 1.3.3. Измерение вязкости воздуха по течению в тонких трубках

Работу выполнил: Долгов Александр Алексеевич, группа Б01-106

Долгопрудный, 2022

Содержание

1	Ані		4				
2	Teo	Теоретические сведения					
	2.1	Общая информация	4				
	2.2	Длина установления течения Пуазёйля	5				
3	Экспериментальная установка						
	3.1	Общая информация	6				
	3.2	Газовый счётчик	6				
	3.3	Микроманометр	7				
4	Me	годика измерений	7				
5	Прі	иборы и инструментальные погрешности	8				
6	Обр	работка полученных результатов	8				
	6.1	Получение коэффициента вязкости	8				
	6.2	Исследование распределения давления газа вдоль трубки .	10				
	6.3	Измерение расхода от диаметра трубы при фиксированном					
		градиенте давления	10				
7	Вы	вод	10				
8	Приложения						
	8.1	Таблица 1. Измерения зависимости расхода газа от перепада давления	11				
	8.2	Таблица 2. Измерения распределения давления по трубке .	11				
	8.3	Таблица 3. Измерения зависимости расхода газа от радиуса трубы	12				

8.4	График 1. Ламинарное течение	13
8.5	График 2. Ламинарное и турбулентное течения	13
8.6	График 3. Распределение давления по трубе	14
8.7	График 4. Зависимость расхода от радиуса трубы	14

1 Аннотация

В данной работе изучено течение газа по тонким (диаметр много меньше длины) прямым трубкам круглого сечения при различных числах Рейнольдса. Выявлена область применения формулы Пуазёйля и с её помощью определён коэффициент вязкости воздуха.

2 Теоретические сведения

2.1 Общая информация

Касательное напряжение в жидкости/газа, вызванной вязким трением, может быть найдено из закона Ньютона:

$$\tau_{xy} = -\eta \frac{\partial \nu_x}{\partial y},\tag{1}$$

где τ_{xy} - касательное напряжение, возникающее на поверхности, проходящей через оси Ox и Oy; жидкость движется вдоль оси Ox; ось Oy ортогональна оси Ox; η - коэффициент динамической вязкости.

Объёмных расход (Q) - объём жидкости/газа, протекающий через сечение трубки тока в единицу времени.

Различают два вида течения. Ламинарное течение - течение при котором жидкость/газ перемещается слоями без перемешивания; линии тока являются непрерывными. Турбулентное течение - течение жидкости/газа, при котором возникает образование вихрей и слои жидкости активно перемешиваются. Характер течения можно определить по числу Рейнольдса - безразмерной величине, определяемой формулой:

$$Re = \frac{\rho u a}{\eta}$$
 (2)

где ρ - плотность среды, $\mathfrak u$ - характерная скорость потока, $\mathfrak \eta$ - коэффициент вязкости среды, $\mathfrak a$ - характерный размер системы. Экспериментально получено, что при течении жидкости по трубе круглого сечения ламинарное течение наблюдается при $\mathrm{Re} < \mathrm{Re}_{\mathrm{kp}}$, турбулентное - при $\mathrm{Re} > \mathrm{Re}_{\mathrm{kp}}$, причём $\mathrm{Re}_{\mathrm{kp}} \approx 10^3$.

Далее считает, что газ является несжимаемым. Такое приближение допустимо, если, во-первых, скорость потока много меньше скорости звука, во-вторых, перепад давления при прохождении газом трубы много меньше самого давления. Оба эти условия в нашем опыте выполняются.

Из курса механики известна формула Пуазёйля, позволяющая вычислить объёмный расход вязкой жидкости, протекающей по круглой трубе постоянного сечения в установившемся режиме (течение Пуазёйля):

$$Q = \frac{\pi R^4 \Delta P}{8\eta l}$$
 (3)

где l - длина трубы, R - её радиус, ΔP - перепад давления на концах трубы.

2.2 Длина установления течения Пуазёйля

Пусть на входе трубы распределение скоростей является равномерным. Определим по порядку величины, на каком расстоянии $l_{\rm ycr}$ течение станет Пуазёйлевским. Рассмотрим слой жидкости толщиной dx в поперечном сечении трубы. Его кинетическая энергия:

$$K \sim \frac{1}{2}\rho u^2 \cdot \pi R^2 \cdot dx$$

Пусть этот слой переместился на расстояние l. При этом силы вязкого трения совершат работу:

$$A_{\mathtt{TP}} \sim \eta \frac{\partial u}{\partial r} \cdot 2\pi R dx \cdot l$$

Воспользуемся оценками (верна, например, для степенной функции):

$$\frac{du}{dr} = \frac{u}{R}, \ K \sim A_{\mathtt{TP}}$$

Наконец получаем:

$$l_{\text{yct}} \sim \frac{\rho u R^2}{\eta} = Re \cdot R$$

В общем случае узнать численный коэффициент весьма затруднительно, но опытным путём выяснено, что его можно принять за 0,2.

$$l_{yct} \approx 0, 2Re \cdot R$$
 (4)

3 Экспериментальная установка

Рис. 1. Экспериментальная установка

3.1 Общая информация

Схема экспериментальной установки приведена на рисунке 1. Поток воздуха под давлением, немного превышающем атмосферное, поступает через газовый счётчик в тонкие металлические трубки. Воздух нагнетается компрессором, интенсивность подачи регулируется краном К. Трубки снабжены съёмными заглушками на концах и рядом отверстий, к которым можно подключить микроманометр.

Перед входом в газовый счётчик установлен водяной U-образный манометр. Он предназначен для измерения давления газа на входе, а также предохраняет счётчик от выхода из строя. При превышении максимального избыточного давления на входе счётчика (~ 30 см вод. ст.) вода выплёскивается из трубки в защитный баллон Б, создавая шум и привлекая к себе внимание экспериментатора.

3.2 Газовый счётчик

В работе используется газовый счётчик барабанного типа. Он позволяет измерять объём газа, прошедшего через систему за некоторое время. Работа счётчика основана на принципе вытеснения: на цилиндрической ёмкости жёстко укреплены лёгкие чаши, в которые поочередно поступает воздух из входной трубки расходомера. Когда чаша наполняется, она всплывает и её место занимает следующая и т.д. Вращение оси предаётся на счётно-суммирующее устройство.

Рис. 2. Принцип работы барабанного газосчётчика

3.3 Микроманометр

В работе используется жидкостный манометр с наклонной трубкой. Разность давлений на входах манометра измеряется по высоте подъёма рабочей жидкости (в данной работе: этилового спирта). Регулировка наклона позволяет измерять давление в различных диапазонах. На крышке прибора установлен трехходовой кран, имеющий два рабочих положения — (0) и (+). В положении (0) производится установка мениска жидкости на ноль. В положении (+) производятся измерения.

4 Методика измерений

Для проведения основных измерений необходимы также подготовительные. Необходимо рассчитать расход воздуха, соответствующий критическому значению числа Рейнольдса, используя табличное значение вязкости ($\eta \sim 2 \cdot 10^{-5}$ Па). Затем, используя формулу Пуазёйля (3), необходимо получить соответствующий перепад давлений и выразить результат в единицах шкалы микроманометра. Также следует оценить длину $l_{\text{уст}}$ по формуле (4).

Основываясь на полученных значениях, в ходе измерений нужно выбирать участки трубы длина которых превышает l_{ycr} . Перепад давле-

ний для измерений в условиях ламинарного течения не должен превышать $\Delta P_{\mbox{\tiny KD}}.$

5 Приборы и инструментальные погрешности

Давление из единиц микроманометра в паскали переводилось согласно формуле:

$$\Delta P = 0, 2 \cdot 9, 81 \cdot \frac{0,8031}{0,8095} \cdot h,$$

где h - показания микроманометра в миллиметрах, ΔP - перепад давления в паскалях. За погрешность h принималась половина цены деления, то есть 0,5 мм.

Время измерялось с помощью секундомера, установленного на смартфон. Его погрешность пренебрежимо мала, но в качестве погрешности измерения времени возьмём 0,5 с, как характерное время реакции человека.

Поскольку класс точности газового счётчика равен 1, а максимально значение на шкале - 5 л, то его абсолютная погрешность равна 0,05 л.

6 Обработка полученных результатов

6.1 Получение коэффициента вязкости

Была проведена серия из 7 измерений зависимости $Q(\Delta P)$ для ламинарного течения и 6 - для турбулентного. Измерения проходили на участке трубы длиной 50 см; сама труба имеет диаметр $d=3,95\pm0,05$ мм. Результаты измерений представлены в таблице 1. По этим данным построены графики: график 1, содержащий точки, соответствующие ламинарному течению, и график 2, содержащий точки, соответствующие обоим видам течения.

Из части таблицы, соответствующей ламинарному течению, с помощью метода наименьших квадратов получаем коэффициент пропорци-

ональности между Q и ΔP .

$$k \equiv \frac{\pi R^4}{8\eta l} = (640 \pm 1) \cdot 10^{-9} \frac{M^3}{c}$$

Откуда получаем:

$$\eta = \frac{\pi R^4}{8kl} = \frac{\pi d^4}{128kl} = 1,87 \cdot 10^{-5} \text{ Ha} \cdot \text{c}$$

Погрешность вязкости найдём по формуле:

$$\sigma_{\eta} = \eta \sqrt{\left(\frac{4\sigma_d}{d}\right)^2 + \left(\frac{\sigma_k}{k}\right)^2} = 9 \cdot 10^{-7} \text{ Ta} \cdot c$$

Таким образом, окончательно получаем:

$$\eta = (1,87 \pm 0,09) \cdot 10^{-5} \ \Pi a \cdot c$$

Определим также критическое значение числа Рейнольдса, соответствующее условиям данного опыта. В качестве характерной скорости возьмём среднюю по потоку.

$$\overline{u} = \frac{Q}{\pi R^2} = \frac{4Q}{\pi d^2}$$

Поскольку из наблюдений за колебаниями столбика манометра известно, при каком потоке течение перешло в турбулентный режим, в качестве Q возьмём $91,7~\frac{\text{мл}}{c}$. Отсюда находим:

$$\overline{\mathbf{u}} = (7, 5 \pm 0, 1) \frac{\mathbf{m}}{\mathbf{c}}$$

За характерный размер примем радиус трубы, на котором проводились измерения, то есть $r=\frac{1}{2}\cdot 3,95$ мм. Плотность воздуха найдём из законов идеального газа ($T=25,5^{\circ}C$, P=99490 Па; их погрешности неизвестны):

$$\rho = \frac{\mu P}{RT} = 1,16 \ \frac{\kappa r}{\text{m}^3}$$

Окончательно имеем:

$$Re_{KP} = 920 \pm 50$$

6.2 Исследование распределения давления газа вдоль трубки

Выли проведены измерения давления на 5 участках разной длины двух трубок диаметром 3,95 мм (3 наибольших значения по обеим осям) и 3 мм. Результаты измерений приведены в таблице 2. Также по этим данным построен график 3. Сделать вывод о длине участка, на котором устанавливается поток не представляется возможным, так как недостаточно экспериментальных точек между значениями длины 40 и 90 см.

6.3 Измерение расхода от диаметра трубы при фиксированном градиенте давления

Во время выполнения работы удалось провести 3 измерения, относящихся к этому пункту. Их результаты приведены в таблице 3. Коэффициент наклона аппроксимирующей прямой: $k=3.9\pm0.2$. Это значение и является той степенью, в которой входит радиус в формулу Пуазёйля.

7 Вывод

Коэффициент вязкости воздуха с учётом оценённой погрешности соответствует табличных данным. Также с теоретическим расчётом совпадает степень, в которой входи радиус трубы в формулу для объёмного расхода жидкости при ламинарном течении. Однако определить зависимость объёмного расхода от длины трубы не получилось в связи с малым количеством измерений и банальных ошибок экспериментатора (измерения проводились на двух трубах различного радиуса вместо одной).

8 Приложения

8.1 Таблица 1. Измерения зависимости расхода газа от перепада давления

h, мм	ΔР, Па	$σ_{\Delta P}$, Πα	t, c	Q, мл/с	σ_Q , мл/с	
Ламинарное течение						
40	78	1	200	50,0	0,3	
45	88	1	179	55,9	0,3	
50	97	1	160	62,5	0,4	
55	107	1	145	69,0	0,4	
60	117	1	134	74,6	0,5	
65	127	1	123	81,3	0,5	
70	136	1	115	87,0	0,6	
Турбулентное течение						
75	146	1	109	91,7	0,6	
105	204	1	98	102,0	0,7	
130	253	1	90	111,1	0,8	
145	282	1	86	116,3	0,9	
200	389	1	74	135,1	1,1	
230	448	1	69	144,9	1,3	

8.2 Таблица 2. Измерения распределения давления по трубке

h, мм	ΔР, Па	$σ_{\Delta P}$, Πα	х, см
65	127	1	90
34	66	1	40
21	41	1	30
12	23	1	26,5
10	19	1	20

8.3 Таблица 3. Измерения зависимости расхода газа от радиуса трубы

h, мм	ΔР, Па	$σ_{\Delta P}$, Πα	t, c	Q, мл/с	σ_Q , мл/с
50	97	1	274	36,5	0,2
50	97	1	101	99,0	0,7
50	97	1	90	111,1	0,8

8.4 График 1. Ламинарное течение

8.5 График 2. Ламинарное и турбулентное течения

8.6 График 3. Распределение давления по трубе

8.7 График 4. Зависимость расхода от радиуса трубы

