LIST OF ALL POTENTIAL TOPOLOGICAL MATERIALS PREDICTED

Space Group	Formula	Space Group	Formula	Space Group	Formula
166	Pb ₂ Pd ₃ S ₂	109	$Al_1Ge_1La_1$	194	Ca ₁
189	Re ₁ Si ₁ Ta ₁	160	$Al_4C_6Zr_3$	229	Ca ₁
142	Ga ₂ Pt ₁	109	As_1Nb_1	194	In_1Mg_3
180	Ge ₂ Nb ₁	5	As_2Ta_1	194	Li_1Tl_1
198	Hg_1Pd_1	36	Bi ₁ Pd ₁	216	N_1Tl_1
166	In_1Mg_3	4	Bi ₁ Pd ₁	225	N_1Tl_1
216	In_1Sb_1	157	Bi_2Pt_1	225	Ga_2Pt_1
186	In_1Sb_1	129	Se ₁ Ti ₁	123	Hg_1Pd_1
221	N_1Ta_1	194	Se ₁ Ti ₁	193	Cl_3Ti_1
191	N ₁ Ta ₁ *	2	Se_2Ta_1	149	Cl ₃ Ti ₁ #
187	N_1Ta_1	166	Se_2Ta_1	12	Cl ₃ Ti ₁ #
225	N_1Ta_1	164	Se_2Ta_1	15	Cl ₃ Ti ₁ #
189	N_1Ta_1	194	Se ₂ Ta ₁ *	62	$N_3Ta_1Th_1$
194	N_1Ta_1	160	Se ₂ Ta ₁	189	$Nb_1Re_1Si_1$
6	N_2Re_1	141	Sr_1	229	Pb_1
13	N_2Re_1	140	Sr_1	194	Pb_1
194	N_2Re_1	229	Sr_1	186	N_1Tl_1
11	N_2Re_1	194	Sr_1	46	$Nb_1Re_1Si_1$
205	N_2Re_1	225	Ta ₁	109	P_1Ta_1
127	N_2Re_1	223	Ta ₁	86	P_1Zr_3
62	N_2Re_1	191	Ta1	199	$Pb_2Pd_3S_2$
194	Nb_1S_2	229	Ta ₁	146	Pd ₈ Sb ₃ #
139	Nb_1S_2	194	Ta ₁	161	Pd ₈ Sb ₃ #
164	Nb_1Se_2	113	Ta ₁	46	$Re_1Si_1Ta_1$
194	Nb_1Se_2	3	Ta ₁	92	Si ₄ Zr ₅
187	Nb ₁ Se ₂ *	136	Ta ₁	167	Al_5Mo_1
74	P_1	187	Te_1Zr_1	166	$As_2Sn_2Sr_1$
139	S ₂ Ti ₁	194	Te_1Zr_1	212	Ba ₁ Si ₂
191	S_2Ti_1	129	$Ag_1Mg_1Sb_1$	18	Be ₁
194	Sb ₁	206	Ge ₁	64	Bi_1
186	Ca ₁ Ge ₂	194	Ge ₁ #		

Table 1: High-confidence materials except Topogivity dataset predictions. These potential topological materials are common predictions from Complete and Spaced datasets. Materials marked with an asterisk (*) have already been identified in Topological Materials Database. Materials marked with a hash (*) have band structures similar to already identified TMs in Topological Materials Database.

Space Group	Formula
11	Bi ₁ *
64	Ca ₁ *
92	Ca ₁
162	Cl ₃ Ti ₁ #
229	Ge ₁ #
148	Ge_1
225	Ge ₁
227	Ge_1
36	Ge ₆ La ₄ Mg ₅

Space Group	Formula
25	In_1Sb_1
59	In_1Sb_1
216	N_1Ta_1
8	N_2Re_1
64	P ₁ *
107	$P_2U_1^{\ \#}$
5	Po ₁
160	S_2Ta_1

Space Group	Formula
164	S ₂ Ti ₁
194	S_2Ti_1 *
62	S_2Ti_1
11	Sb_1
160	Se_2Ta_1
186	Se_2Ta_1
74	Sr_1
62	Te_1Zr_1

Table 1: High-confidence materials common in all dataset predictions. These potential topological materials are common predictions from all the datasets. Materials marked with an asterisk (*) have already been identified in Topological Materials Database. Materials marked with a hash (*) have band structures similar to already identified TMs in Topological Materials Database.

Space Group	Formula
166	Ga ₁ Mn ₁ *
123	Ga_1Mn_1 *
63	Pt_2Ta_1
62	Nb_1Si_1
221	Co_1Ga_1
180	Ge_2Ta_1
225	Bi_1Ti_1
194	Bi_1Ti_1
216	Bi ₁ Ti ₁

Table 3: Predicted Potential Topological Materials.

Materials which had 'Unknown' space groups. Materials marked with an asterisk (*) have already been identified in Topological Materials Database.

Space Group	Formula
146	In ₁ Mg ₃
216	Li ₂₁ Si ₅
143	Al_5Mo_1
160	$As_2Sn_2Sr_1$
194	Be1
151	Cl ₃ Ti ₁
146	In_1Mg_3
43	In_1Sr_1
186	P_3Sc_7
156	Sb ₂ Te ₃
62	Se ₁ Ti ₁
81	Ta ₁
152	$Ag_1Pb_4Pd_6$
80	As_1Nb_1

Table 4: Predicted Potential Topological Materials.

Materials whose band structures were not found in Topological Materials Database.