STAT/MA 41600

In-Class Problem Set #12: September 21, 2015 Solutions by Mark Daniel Ward

Problem Set 12 Answers

- **1a.** The mass of X is $P(X = j) = \binom{3}{j} (.60)^j (.40)^{3-j}$ for $0 \le j \le 3$, so we get $\mathbb{E}(X^2) = 0^2 P(X = 0) + 1^2 P(X = 1) + 2^2 P(X = 2) + 3^2 P(X = 3) = 99/25 = 3.96$.
- **1b.** Let X_1, X_2, X_3 denote (respectively) whether the 1st, 2nd, 3rd person is a fan of da Bears. Then $X = X_1 + X_2 + X_3$, so $\mathbb{E}(X^2) = \mathbb{E}((X_1 + X_2 + X_3)^2)$, which has 6 terms of the form $\mathbb{E}(X_iX_j)$ (for $i \neq j$) and 3 terms of the form $\mathbb{E}(X_j^2)$. Since X_i and X_j are independent for $i \neq j$, then $\mathbb{E}(X_iX_j) = \mathbb{E}(X_i)\mathbb{E}(X_j) = (.6)(.6) = .36$. Also, since indicators only take on values 0 or 1, then $\mathbb{E}(X_j^2) = \mathbb{E}(X_j) = .6$. Thus $\mathbb{E}(X^2) = (6)(.36) + (3)(.6) = .99/25 = 3.96$.
- 1c. We have $Var(X) = \mathbb{E}(X^2) (\mathbb{E}(X))^2 = 3.96 (1.8)^2 = 0.72$. 1d. Since the X_j 's are independent, $Var(X) = Var(X_1 + X_2 + X_3) = Var(X_1) + Var(X_2) + Var(X_3) = Var(X_3) + Var(X_3) = Var(X_3) + Var(X_3) = Var(X_3) + Var(X_3) + Var(X_3) + Var(X_3) = Var(X_3) + Var(X_3) + Var(X_3) + Var(X_3) = Var(X_3) + Var(X_3)$
- 1d. Since the X_j 's are independent, $Var(X) = Var(X_1 + X_2 + X_3) = Var(X_1) + Var(X_2) + Var(X_3)$. We have $Var(X_j) = \mathbb{E}(X_j^2) (\mathbb{E}(X_j))^2 = .6 (.6)^2 = 0.24$, so Var(X) = 3(0.24) = 0.72.
- **2a.** The mass of Y is $P(Y = j) = \binom{2}{j} \binom{6}{2-j} / \binom{8}{2}$ for $0 \le j \le 2$, so we get $\mathbb{E}(Y^2) = 0^2 P(Y = 0) + 1^2 P(Y = 1) + 2^2 P(Y = 2) = (0)(15/28) + (1)(3/7) + (4)(1/28) = 4/7 = 0.5714$.
- **2b.** We have $\mathbb{E}(Y^2) = \mathbb{E}((Y_1 + Y_2)^2) = \mathbb{E}(Y_1^2) + 2\mathbb{E}(Y_1Y_2) + \mathbb{E}(Y_2^2)$. We note $\mathbb{E}(Y_1^2) = \mathbb{E}(Y_1) = 1/4$, and $\mathbb{E}(Y_2^2) = \mathbb{E}(Y_2) = 1/4$, and $\mathbb{E}(Y_1Y_2) = (2/8)(1/7) = 1/28$. Thus $\mathbb{E}(Y^2) = 1/4 + (2)(1/28) + 1/4 = 4/7$.
- **2c.** We have $Var(Y) = \mathbb{E}(Y^2) (\mathbb{E}(Y))^2 = 4/7 (1/2)^2 = 9/28 = 0.3214$.
- **3a.** The mass of X is P(X = 0) = 1/3; P(X = 1) = 1/2; P(X = 2) = 1/6. Thus, we get $\mathbb{E}(X^2) = 0^2 P(X = 0) + 1^2 P(X = 1) + 2^2 P(X = 2) = (0)(1/3) + (1)(1/2) + (4)(1/6) = 7/6 = 1.1667$.
- **3b.** We have $\mathbb{E}(X^2) = \mathbb{E}((X_1 + X_2)^2) = \mathbb{E}(X_1^2) + 2\mathbb{E}(X_1X_2) + \mathbb{E}(X_2^2)$. We note $\mathbb{E}(X_1^2) = \mathbb{E}(X_1) = 1/3$ and $\mathbb{E}(X_2^2) = \mathbb{E}(X_2) = 1/2$, and $\mathbb{E}(X_1X_2) = (1/3)(1/2) = 1/6$. Thus $\mathbb{E}(X^2) = 1/3 + (2)(1/3)(1/2) + 1/2 = 7/6 = 1.1667$.
- **3c.** We have $Var(X) = \mathbb{E}(X^2) (\mathbb{E}(X))^2 = 7/6 (5/6)^2 = 17/36 = 0.4722$.
- **3d.** Since the X_j 's are independent, $\operatorname{Var}(X) = \operatorname{Var}(X_1 + X_2) = \operatorname{Var}(X_1) + \operatorname{Var}(X_2)$. We have $\operatorname{Var}(X_1) = \mathbb{E}(X_1^2) (\mathbb{E}(X_1))^2 = 1/3 (1/3)^2 = 2/9$, and $\operatorname{Var}(X_2) = \mathbb{E}(X_2^2) (\mathbb{E}(X_2))^2 = 1/2 (1/2)^2 = 1/4$, so $\operatorname{Var}(X) = 2/9 + 1/4 = 17/36 = 0.4722$.
- **4a.** The mass of X is $P(X = j) = \binom{3}{j} \binom{6}{5-j} / \binom{9}{5}$ for $0 \le j \le 3$, so we get $\mathbb{E}(X^2) = 0^2 P(X = 0) + 1^2 P(X = 1) + 2^2 P(X = 2) + 3^2 P(X = 3) = (0)(1/21) + (1)(5/14) + (4)(10/21) + (9)(5/42) = 10/3 = 3.3333$.
- **4b.** We have $\mathbb{E}(X^2) = \mathbb{E}((X_1 + \dots + X_5)^2)$, which has 20 terms of the form $\mathbb{E}(X_i X_j)$ (for $i \neq j$) and 5 terms of the form $\mathbb{E}(X_j^2)$. We have $\mathbb{E}(X_i X_j) = (3/9)(2/8) = 1/12 = 0.0833$. Also, since indicators only take on values 0 or 1, then $\mathbb{E}(X_j^2) = \mathbb{E}(X_j) = 3/9 = 1/3 = 0.3333$. Thus $\mathbb{E}(X^2) = (20)(1/12) + (5)(1/3) = (20)(0.0833) + (5)(0.3333) = 10/3 = 3.3333$.
- **4c.** We have $\mathbb{E}(X^2) = \mathbb{E}((Y_1 + Y_2 + Y_3)^2) = 3\mathbb{E}(Y_1^2) + 6\mathbb{E}(Y_1Y_2)$. We note $\mathbb{E}(Y_1^2) = \mathbb{E}(Y_1) = 5/9 = 0.5556$, and $\mathbb{E}(Y_1Y_2) = (5/9)(4/8) = 5/18 = 0.2778$. Thus $\mathbb{E}(X^2) = (3)(5/9) + (6)(5/18) = (3)(0.5556) + (6)(0.2778) = 10/3 = 3.3333$.
- **4d.** We have $Var(X) = \mathbb{E}(X^2) (\mathbb{E}(X))^2 = 10/3 (5/3)^2 = 5/9 = 0.5556$.