Izmir Institute of Technology

CENG 461 – Artificial Intelligence

Markov Decision Processes

Planning under Uncertainty

	Deterministic	Stochastic
Fully Observable	A*, Depth-first, Breadth-first	MDP
Partially Observable		POMDP

Markov Decision Process (MDP)

- An MDP is defined by
 - \triangleright a set of states $s_1, ..., s_N$,
 - \triangleright a set of actions $a_1, ..., a_K$
 - a transition modelT(s, a, s') = P(s'| s, a)
 - a reward function R(s)(reward of being at a state)
- The solution must specify an action for each state and such a solution is called a policy $\pi(s)$.
- The optimal policy π*(s)
 maximizes the expected reward.

Grid World

+ I and - I are the absorbing states, i.e. the agent leaves the environment

Going N may also result in E (10%) or W(10%). We represent as p=(0.8,0.1,0.1).

Planning @ Stochastic Environments

 Conventional planning has some problems in stochastic environments

Branching factor is huge since T(s, a, s') have different possible outcomes

States are visited many times. Algorithms like A* does not solve the problem since those states are not planned but occurred due to the stochastic environment

Optimal Policy $\pi^*(s)$

When R(s)=0 for states other than absorbing states, i.e. there is no cost for wandering around

Optimal Policy for R(s) = -0.03

R(s)=-0.03 for states other than absorbing states, i.e. moving within the grid world has a step cost.

Optimal Policies for Different R(s)

Finding the Optimal Policy

An optimal policy satisfies:

$$\pi^* = \underset{\pi}{\operatorname{argmax}} E\left[\sum_{t=0}^{\infty} \gamma^t R(s_t)\right]$$

- This maximizes the expected sum of discounted rewards
- γ^t , is the discount factor, describes the preference of an agent for current awards over future awards. When $\gamma=1$, future rewards are equivalent to current awards. Usually values like 0.9 are chosen.

Utility of a state

Given a certain policy, the utility of a state:

$$U^{\pi}(s) = E\left[\sum_{t=0}^{\infty} \gamma^{t} R(s_{t})\right]$$

where $s_0 = s$.

This can also be written on the condition that agent chooses the optimal action

$$U(s) = R(s) + \gamma \max_{a} \sum_{s'} P(s'|a,s)U(s')$$

In short: The utility of a state is the immediate reward plus the expected discount utility for the next state.

Utility for States in Grid World

Calculated with R(s)=-0.03 , γ =1 , p=(0.8,0.1,0.1)

Value Iteration Algorithm

- Calculating the final utilities is an iterative process and can be performed by 'value iteration algorithm'.
- We can start with U(s) = 0 for all states.
- We iterate the values of each state with the following equation

$$U_{i+1}(s) = R(s) + \gamma \max_{a} \sum_{s'} P(s'|s, a) U_i(s')$$

- Convergence to the actual state utilities is guaranteed.
- The optimal policy action is the action that maximizes the max part of the update equations.

Value Iteration in a Deterministic World

Start with U(s) = 0 for all states except for absorbing ones. Take R(s)=-0.03 and $\gamma=1$. p=(1,0,0). Apply value iteration.

$$U_{i+1}(s) = R(s) + \gamma \max_{a} \sum_{s'} P(s'|s, a) U_i(s')$$

3	0.91	0.94	0.97	+1
2	0.88		0.94	-1
1	0.85	0.88	0.91	0.88

$$U(3,3) = ?$$

 $U(3,2) = ?$
 $U(3,1) = ?$
.
.
.
.
.
.
.
.
.

Value Iteration in a Stochastic World

Start with U(s) = 0 for all states except for absorbing ones. Take R(s)=-0.03 and $\gamma=1$. p=(0.8,0.1,0.1). Apply value iteration

$$U_{i+1}(s) = R(s) + \gamma \max_{a} \sum_{s'} P(s'|s, a) U_i(s')$$

3	Ø 0.586	0.770 0.847	+1
2		0.486	-1
1			

$$U(3,3) = ?$$

$$U(3,2) = ?$$

$$U(2,3) = ?$$

At first iteration?

At second iteration?

Value Iterations and Policy

Converged value iteration algorithm and corresponding policy

Review

- Fully observable s_1 , ..., s_N , a_1 , ..., a_K
- Stochastic P(s'|s, a)
- Reward
 R(s)
- Objective:

$$\max E[\sum_{t=0}^{\infty} \gamma^t R(s_t)]$$

Value iteration:

$$U_{i+1}(s) = R(s) + \gamma \max_{a} \sum_{s'} P(s'|s, a) U_i(s')$$

Policy: Converged value iteration provides us a solution called a policy $\pi(s)$.

Partially Observable MDPs (POMDPs)

- When the environment is partially observable the agent has to alternate between
 - Information gathering actions
 - Goal oriented actions

