数学 05

- 同余下的加减乘除
- 同余方程
- 中国剩余定理
- 扩展中国剩余定理(选讲)
- 题目选讲

说在前面

本讲数学推导极多,课后作业是模板题,只要看懂前面的内容就能做,选做作业有一定难度,学有余力的同学可以尝试

同余下的加减乘除

先一起回顾一下同余下的加减乘除,我们特别注意减法和除法同余下的加法

$$(a+b)\%m = (a\%m + b\%m)\%m$$

同余下的减法,算法竞赛不考虑负数,所以要把负数变正

$$(a-b)\%m = (a\%m - b\%m + m)\%m$$

同余下的乘法

$$(a \times b)\%m = (a\%m \times b\%m)\%m$$

同余下的除法,乘以乘法逆元

$$\frac{a}{b}\%m = (a\%m \times b^{-1}\%m)\%m$$

乘法逆元可以使用扩欧或者快速幂求解,当然,后者只适用于模数 m为素数的情况

同余方程

一次同余方程形如

$$ax \equiv b \pmod{m}$$

设方程的一个特解为 x_0 ,那么方程的通解即为

$$x\equiv x_0\ (mod\ m)$$

若最大公因数 (a, m) = 1,则 $x_0 \equiv b \cdot a^{-1} \pmod{m}$,若 $(a, m) \neq 1$,方程无解

中国剩余定理

给定线性同余方程组

$$egin{cases} x_1 \equiv a_1 \; (mod \; m_1) \ x_2 \equiv a_2 \; (mod \; m_2) \ & \cdots \ x_n \equiv a_n \; (mod \; m_n) \end{cases}$$

保证 $m_1, m_2, \ldots m_n$ 两两互质

中国剩余定理可以计算上述方程组的通解

初探解的情况

设
$$m=\prod_{i=1}^n m_i$$
,以及 $M_i=rac{m}{m_i},\;i=1,\;2,\;...,\;n$

则上述同余方程组的通解为

$$x \equiv \sum_{i=1}^{n} a_i \cdot M_i^{-1} \cdot M_i \; (mod \; m)$$

推导解

考虑对于每一个线性同余方程

$$x_i \equiv a_i \; (mod \; m_i)$$

求出对应的一个特解 x_i , 且这个 x_i 要满足

$$egin{cases} x_i \equiv a_j \; (mod \; m_j), \; i=j \ x_i \equiv 0 \; (mod \; m_j), \; i
eq j \end{cases}$$

把 n 个这样的 x_i 求和,就可以得到方程组的一个特解 x

设

$$m = \prod_{i=1}^n m_i$$

以及

$$M_i = rac{m}{m_i}, \; i = 1, \; 2, \; ..., \; n$$

分析 x_i , 其必然是 M_i 的整数倍, 且满足

$$x_i \equiv a_i \; (mod \; m_i)$$

设

$$x_i = y \cdot M_i, \; y \in \mathbb{Z}$$

有

$$y\cdot M_i\equiv a_i\ (mod\ m_i)$$

只要能够解出y,便能得到x的特解;反之,线性同余方程组无解

因为 $(M_i, m_i) = 1$,因此上述方程一定有解

由于不保证 m_i 是素数,所以根据扩欧算法得到乘法逆元

$$y \equiv a_i \cdot M_i^{-1} \ (mod \ m_i)$$

所以

$$x_i = a_i \cdot M_i^{-1} \ (mod \ m_i) \cdot M_i$$

将 $n \uparrow x_i$ 求和得到x的一个特解

$$x = \sum_{i=1}^n a_i \cdot M_i^{-1} \; (mod \; m_i) \cdot M_i$$

为了满足题意,x的通解为

$$x \equiv \sum_{i=1}^n a_i \cdot M_i^{-1} \; (mod \; m_i) \cdot M_i \; (mod \; m)$$

代码见 notes.md

扩展中国剩余定理(选讲)

给定线性同余方程组

$$egin{cases} x_1 \equiv a_1 \; (mod \; m_1) \ x_2 \equiv a_2 \; (mod \; m_2) \ & \cdots \ x_n \equiv a_n \; (mod \; m_n) \end{cases}$$

 $m_1, m_2, \ldots m_n$ 不一定两两互质

扩展中国剩余定理是为了处理模数不互质的情况

设

$$m=\left[m_1m_2...m_n
ight]$$

则上述方程组通解为

$$x = x_0 + q \cdot rac{m_i}{gcd(m,m_i)}, \; q \in Z$$

其中 x_0 是同余方程组的一个特解,通过n-1次扩欧算法计算得出

精妙的思考

考虑已经解出前 k-1 个方程的解 x_1

习惯的,我们设

$$m=\prod_{i=1}^{k-1}m_i$$

但为了防止溢出,设

$$m=[m_1,\ m_2,..,\ m_{k-1}]$$

设前 k-1 个方程的通解为

$$x\equiv x_1 \; (mod\; m)$$

再设 $x_2=x_1+t\cdot m,\ t\in\mathbb{Z}$

将 x_2 代入第 k 个式子

$$x_1 + t \cdot m \equiv a_k \ (mod \ m_k)$$

即

$$t \cdot m \equiv a_k - x_1 \; (mod \; m_k)$$

若

$$(m,\ m_k) \nmid a_k - x_1$$

则线性同余方程组无解

若

$$(m,\ m_k)\mid a_k-x_1$$

由扩欧算法解出 t,得到特解 x_2 ,那么新的通解为

$$x\equiv x_2\ (mod\ m_k)$$

如此循环即可

excrt 的本质便是合并方程

对于n个方程的线性同余方程组,本质上是作n-1次扩展欧几里得算法

解释具体求法

处理到第k个方程时,具体求 x_2 的过程如下

因为

$$x_2 = x_1 + t \cdot m$$

其中

$$m = [m_1 m_2 ... m_{k-1}]$$

所以即在方程中求 t

$$t\cdot m\equiv a_k-x_1\ (mod\ m_k)$$

先用扩欧求方程

$$t\cdot m + q\cdot m_k = (m,\ m_k)$$

的特解 t_0 , 然后自乘系数

$$\frac{a_k-x_1}{(m,\ m_k)}$$

进而得到通解

$$t=t_0\cdot rac{a_k-x_1}{(m,\ m_k)}+q\cdot rac{m_k}{(m,\ m_k)},\ q\in \mathbb{Z}$$

为了防止溢出,将t取模数 $\frac{m_k}{(m, m_k)}$ 至最小非负数

于是得到

$$x_2 = x_1 + t \cdot m$$

代码见 <u>notes.md</u>

2587. 同余方程

给定正整数 a, b, m, 计算同余方程 $ax \equiv b \pmod{m}$ 的最小正整数 解

输入保证

对于 40% 数据, $2 \le a, b \le m \le 1,000$

对于 60% 数据, $2 \le a, b \le m \le 10,000,000$

对于 100% 数据, $2 \le a, b \le m \le 1,000,000,000$

利用扩欧计算 a^{-1} (mod m), 然后计算 $b \cdot a^{-1}$ (mod m) 即可

2545. 中国剩余定理

给定正整数n,以及 $n \land a_i$, m_i ,保证 m_i 互质,计算如下方程组的最小正整数解

$$egin{cases} x_1 \equiv a_1 \; (mod \; m_1) \ x_2 \equiv a_2 \; (mod \; m_2) \ & \cdots \ x_n \equiv a_n \; (mod \; m_n) \end{cases}$$

保证 $2 \le n \le 10, \ 0 \le a_i < m_i \le 10^2, \ 1 \le \prod a_i \le 10^{18}$,保证 m_i 互质,保证 a_i 不全为 0

CRT 模板题

2553. 扩展中国剩余定理(选做)

给定正整数 n,以及 n 个 a_i , m_i ,不保证 m_i 互质,计算如下方程组的最小正整数解

$$egin{cases} x_1 \equiv a_1 \; (mod \; m_1) \ x_2 \equiv a_2 \; (mod \; m_2) \ & \cdots \ x_n \equiv a_n \; (mod \; m_n) \end{cases}$$

保证 $2 \le n \le 10^5$, $1 \le a_i < m_i \le 10^{12}$,保证所有 m_i 的最小公倍数不超过 10^{18} ,不保证 m_i 互质

EXCRT 模板题,注意数据较大,可能爆 long long int,使用快速乘防止溢出

2545. 构造函数 (选做)

给定质数 p, 整数 n 和 n 个互不相同整数 a_i , 以及整数 k

计算整数对 $(i, j)(1 \le i < j \le n)$ 的数量,使得 $(a_i + a_j)(a_i^2 + a_j^2) \equiv k \pmod{p}$

输入保证, $2 \leq n \leq 3 \cdot 10^5, \ 2 \leq p \leq 10^9, \ 0 \leq k \leq p-1, 0 \leq a_i \leq p-1$

难点在于对式子的变形,具体有

$$(a_i - a_j)(a_i + a_j)(a_i^2 + a_j^2) \equiv k(a_i - a_j) \; (mod \; p)$$

即

$$a_i^4 - ka_i \equiv a_j^4 - ka_j \; (mod \; p)$$

下面只需要对每一个 a_i 计算 $a_i^4 - ka_i \pmod{p}$, 用哈希表 unordered_map<int, int> mp 维护, 统计答案, 时间复杂度 O(n)