INTRODUCTION AUX TESTS STATISTIQUES

MATTHIEU KOWALSKI

1. Introduction à la théorie des tests

La théorie des tests consiste à tester si une hypothèse est vraie. On dit qu'on teste H_0 (l'hypothèse nulle) contre H_1 (hypothèse alternative). Dans cette situation, il est possible de commettre deux erreurs : conclure que H_0 est vraie alors qu'en réalité c'est H_1 qui est vérifiée, et vice versa. On définie ces deux erreurs :

Définition 1 (Erreur de première et seconde espèce). *On appelle erreur de première espèce ou erreur de type I la quantité*

$$\alpha = \mathbb{P}\{accepter H_0 | H_1 \text{ est vraie}\}$$
.

On appelle erreur de seconde espèce ou erreur de type II la quantité

$$\beta = \mathbb{P}\{accepter H_1 | H_0 \text{ est vraie}\}$$
.

Pour construire un test statistique au risque α , on fixe l'erreur de première espèce à α , avec α «petit» (de l'ordre de 5%, 1% voire moins). Une fois cette erreur fixée, on n'a plus aucun contrôle sur l'erreur de seconde espèce β !

On réalise un test selon les étapes suivantes :

- (1) Définition des hypothèse H_0 et H_1 . Cela implique de faire un choix : quelle est l'hypothèse privilégiée, suivant l'erreur qu'on veut contrôler.
- (2) Choix du niveau α (petit).
- (3) Calculer la statistique du test. Ce calcul se fait à l'aide des observations statistiques à notre disposition, et du test choisis.
- (4) Conclusion au vu de l'échantillon selon la règle de décision associée au test. La conclusion étant le rejet ou l'acceptation de H_0 .

Remarque 1. Si, à l'issu du test, on accepte H_1 , alors l'erreur commise est α (par définition!). Puisque α est fixé «petit», l'erreur commise est «petite».

Si on rejette H_0 , l'erreur commise est β (toujours par définition!). Cette erreur n'est pas contrôlée et peut être très grande : l'acceptation de H_0 ne permet donc pas, a priori, de conclure que H_0 est effectivement vraie.

2. Un test paramétrique : le test de Fisher-Student

On dispose de deux échantillons (X_1,\ldots,X_{n_X}) et (Y_1,\ldots,Y_{n_Y}) (de tailles éventuellement différente) de loi P_1 et P_2 indépendantes de moyenne μ_X et μ_Y et de variance σ_X^2 et σ_Y^2 finies. Autrement dit

$$\forall i \ \mathbb{E}\{X_i\} = \mu_1 \quad \text{Var}\{X_i\} = \sigma_1^2 ,$$

1

CES NOTES SONT TRÈS LARGEMENT INSPIRÉES DES NOTES MANUSCRITES DE SÉBASTIENT LOUSTAU, MERCI À LUI!

Licence MASS Atelier

et

$$\forall i \ \mathbb{E}\{Y_i\} = \mu_2 \quad \text{Var}\{Y_i\} = \sigma_2^2.$$

On note

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n_X} X_i \quad \text{et} \quad \bar{Y} = \frac{1}{n} \sum_{i=1}^{n_Y} Y_i$$

les moyennes empiriques et

$$S_X^2 = \frac{1}{n} \sum_{i=1}^{n_X} (X_i - \bar{X})^2$$
 et $S_Y^2 = \frac{1}{n} \sum_{i=1}^{n_Y} (Y_i - \bar{Y})^2$

les variances empiriques.

On veut tester

 H_0 : les moyennes sont égales, ie $\mu_X = \mu_Y$

 H_1 : les moyennes sont différentes, ie $\mu_X \neq \mu_Y$.

Pour cela, on suppose que X_i et Y_i suivent des lois normales. Le test s'effectue en deux étapes : on teste d'abord l'égalité des variances, et si ce test est accepté, alors on teste l'égalité des moyennes.

2.1. 1ère étape : test de Fisher d'égalité des variances.

2.1.1. *Hypothèses*. Pour comparer les moyennes, il faut pouvoir supposer que les variances sont égales. On va donc tester

$$H_0: \sigma_X^2 = \sigma_Y^2$$
 contre $H_1: \sigma_X^2 \neq \sigma_Y^2$.

2.1.2. Statistique de test. Pour cela, on va calculer la statistique de test

$$F = \frac{n_X(n_Y - 1)}{n_Y(n_X - 1)} \frac{S_X^2}{S_Y^2} \ .$$

On s'arrangera en pratique pour avoir $F \ge 1$, i.e. $S_X^2 \ge S_Y^2$.

Pour α fixé, on défini la quantité $\mathcal{F}_{n-1,n-1;1-\alpha/2}$, qui est le fractile d'ordre $1-\alpha/2$ d'une loi de *Fisher*, telle que

$$\mathbb{P}\{Z > \mathcal{F}_{n_X-1,n_Y-1;1-\alpha/2}\} = \frac{\alpha}{2}.$$

où $Z \sim \mathcal{F}(n_X - 1, n_Y - 1)$, i.e. Z suit une loi de Fisher de paramètres $(n_X - 1)$, $(n_Y - 1)$.

La quantité $\mathcal{F}_{n_X-1,n_Y-1;1-\alpha/2}$ est donnée par les tables statistiques de la loi de Fisher.

- 2.1.3. Règle de décision. Ainsi, la règle de décision du test de Fisher est :
 - Si $F < \mathcal{F}_{n_X-1,n_Y-1;1-\alpha/2}$, alors on **accepte** H_0 . On peut donc supposer que les variances sont égales. On passe alors à l'étape 2 : le test de Student d'égalité des moyennes.
 - Si $F > \mathcal{F}_{n_X-1,n_Y-1;1-\alpha/2}$, alors on **rejette** H_0 . On peut conclure (avec un risque α petit de se tromper) que les variances ne sont pas égales, et on ne peut pas poursuivre.

Atelier Licence MASS

Remarque 2. Si les deux échantillons sont de même taille $n_X = n_Y = n$, la statistique de test devient

$$F = \frac{S_X^2}{S_Y^2} \ .$$

et suit une loi de Fisher de paramètres (n-1), (n-1)

- 2.2. 2ème étape : test de Student d'égalité des moyennes.
- 2.2.1. Hypothèses. On va tester

$$H_0: \mu_X^2 = \mu_Y^2$$
 contre $H_1: \mu_X^2 \neq \mu_Y^2$.

2.2.2. Statistique de test. Pour cela, on va calculer la statistique de test

$$T = \frac{\sqrt{n_X + n_Y - 2}}{\sqrt{\frac{1}{n_X} + \frac{1}{n_y}}} \frac{\left| \bar{X} - \bar{Y} \right|}{\sqrt{n_X S_X^2 + n_Y S_Y^2}} .$$

Pour α fixé, on défini la quantité $t_{(n_X+n_Y-2);1-\alpha/2}$, qui est le fractile d'ordre $1-\alpha/2$ d'une loi de Student-t, telle que

$$\mathbb{P}\{Z > t_{(n_X + n_Y - 2); 1 - \alpha/2}\} = \frac{\alpha}{2} ,$$

où $Z \sim t((n_X + n_Y - 2))$, i.e. Z suit une loi de Student-t à $(n_X + n_Y - 2)$ degrés de liberté.

La quantité $t_{(n_X+n_Y-2);1-\alpha/2}$ est donnée par les tables statistiques de la loi de Student-t.

- 2.2.3. Règle de décision. Ainsi, la règle de décision du test de Student est :
 - Si $T < t_{(n_X+n_Y-2);1-\alpha/2}$, alors on **accepte** H_0 . On peut donc supposer que les moyennes sont égales. Le risque de se tromper β est inconnu et peut être élevé.
 - Si $T>t_{(n_X+n_Y-2);1-\alpha/2}$, alors on **rejette** H_0 . On peut conclure (avec un risque α petit de se tromper) que les moyennes ne sont pas égales.

Remarque 3. Si les deux échantillons sont de même taille $n_X = n_Y = n$, la statistique de test devient

$$T = \frac{\sqrt{n-1} \left| \bar{X} - \bar{Y} \right|}{\sqrt{S_Y^2 + S_Y^2}} \ .$$

et suit une loi de Student-t à 2(n-1) degrés de libertés.

3. Tests du
$$\chi^2$$

Le test du χ^2 est *non paramétrique* : contrairement au test de Fisher-Student, on ne va pas tester des paramètres (comme la moyenne ou la variance), mais des distributions. Le test du χ^2 va permettre de répondre aux questions :

- (1) Est-ce que la population que j'observe suit une loi donnée à l'avance?
- (2) Si j'observe deux variables statistiques (X_1, \ldots, X_n) et (Y_1, \ldots, Y_n) (observées sur le même ensemble d'individus), sont-elles indépendantes?
- 3.1. Test du χ^2 d'adéquation.

Licence MASS Atelier

3.1.1. *Hypothèses*. On dispose d'un n-échantillon (X_1, \ldots, X_n) réparti en K classes $(\mathcal{C}_1, \ldots, \mathcal{C}_K)$. On se donne une loi théorique P dont les paramètres son connus ou estimés. On note r le nombre de paramètres que l'on aura estimé (éventuellement r=0 si la loi est parfaitement connue). On va tester

 H_0 : la population est distribuée selon P

contre

 H_1 : la population n'est pas distribuée selon P.

3.1.2. *Statistique de test.* Connaissant la loi P (par hypothèse), on connaît les *effectifs théoriques* pour chacune des classes C_k , $k \in \{1, ..., K\}$. On note

$$p_k = \mathbb{P}\{X \in \mathcal{C}_k\}$$

la probabilité théorique qu'une réalisation de la v.a. X appartienne à C_k . Ainsi, l'effectif théorique n_k de la classe C_k est donné par

$$n_k = np_k$$
.

On note N_k les *effectifs observés* sur notre échantillon (X_1, \ldots, X_n) dans chacune des classes C_k .

La statistique de test que l'on va calculer est :

$$D^{2} = \sum_{k=1}^{K} \frac{(N_{k} - np_{k})^{2}}{np_{k}} .$$

Pour α fixé, on défini la quantité $\chi_{K-1-r;1-\alpha}$, qui est le fractile d'ordre $1-\alpha$ d'une loi de χ^2 , telle que

$$\mathbb{P}\{Z > \chi_{K-1-r:1-\alpha}\} = 1 - \alpha .$$

où $Z\sim \chi^2(K-1-r)$, i.e. Z suit une loi du χ^2 à K-1-r degrés de liberté. On rappelle que K est le nombre de classe et r le nombre de paramètres estimés.

La quantité $\chi_{K-1-r;1-\alpha}$ est donnée par les tables statistiques de la loi du χ^2 .

- 3.1.3. *Règle de décision*. Ainsi, la règle de décision du test du χ^2 d'adéquation est :
 - Si $D^2 < \chi_{K-1-r;1-\alpha}$, alors on **accepte** H_0 . On peut donc supposer que la population est issue de la loi P. Le risque de se tromper β est inconnu et peut être élevé.
 - Si $D^2 > \chi_{K-1-r;1-\alpha}$, alors on **rejette** H_0 . On peut conclure (avec un risque α petit de se tromper) que la population ne suit pas la loi P.
- 3.1.4. *Présentation pratique des calculs*. On résume toutes les informations précédente dans un tableau :

Atelier	Licence MASS
---------	--------------

Classes	effectifs observés	effectifs théoriques	résidus
$\overline{\mathcal{C}_1}$	N_1	np_1	$\frac{(N_1 - np_1)^2}{np_1}$
\mathcal{C}_2	N_2	np_2	$\frac{(N_2 - np_2)^2}{np_2}$
:			
\mathcal{C}_k	N_k	np_k	$\frac{(N_k - np_k)^2}{np_k}$
:			
\mathcal{C}_K	N_K	np_K	$\frac{(N_K - np_K)^2}{np_K}$
Total	N	N	D^2

3.2. Test du χ^2 d'indépendance.

3.2.1. *Hypothèses.* Soit (X_1,\ldots,X_n) et (Y_1,\ldots,Y_n) deux variables statistiques *qualitatives* observés sur un échantillon de n individus. On suppose que les facteurs X et Y prennent respectivement les modalités c_1,\ldots,c_r et d_1,\ldots,d_s . Le but est d'étudier l'interaction entre les deux facteurs X et Y. On va tester

 H_0 : les facteurs X et Y sont indépendants

contre

 H_1 : les facteurs X et Y interagissent.

3.2.2. Statistique de test. Pour cela, on va utiliser le tableau de contingence. Ce tableau résume comment une caractéristique dépend d'une autre et donne le nombre d'individus possédant simultanément la modalité c_i de la variable X et la modalité d_j de la variable Y. Un tel tableau se présente sous la forme suivante, pour un échantillon de taille n:

X	d_1	•••	d_j	 d_s	
c_1	N_{11}		N_{1j}	N_{1J}	$N_{1\bullet}$
:			:		
c_i	N_{i1}		N_{ij}	 N_{iJ}	$N_{i\bullet}$
:			:		
c_r	N_{I1}		N_{Ij}	N_{IJ}	$N_{I\bullet}$
	$N_{\bullet 1}$		$N_{\bullet j}$	$N_{\bullet J}$	N

où N_{ij} désigne le nombre de fois où X à pris la modalité c_r et Y la modalité d_j . Autrement dit, N_{ij} représente le nombre d'individus qui possède à la fois la caractéristique c_i et la caractéristique c_j . On définit les quantités

$$N_{i\bullet} = \sum_{i=1}^{s} N_{ij}$$
 $N_{\bullet j} = \sum_{i=1}^{r} N_{ij}$

qui représentent respectivement le nombre d'individus qui possèdent la modalité c_i et le nombre d'individus avec la modalité c_j .

Licence MASS Atelier

Comme pour les test du χ^2 d'adéquation, on connaît les *effectifs observés* N_{ij} , qu'on va comparer aux *effectifs théoriques*. On note

$$p_{ij} = \mathbb{P}\{X = c_i, Y = d_j\}, \quad p_{i\bullet} = \mathbb{P}\{X = c_i\}, \quad p_{\bullet j} = \mathbb{P}\{Y = d_j\} \;.$$

Si les variables X et Y sont indépendantes, alors on a $p_{ij}=p_{i\bullet}p_{\bullet j}$, et l'effectif théorique de chaque cas est donné par $np_{i\bullet}p_{\bullet j}$. Cependant, les $p_{i\bullet}$ et $p_{\bullet j}$ ne sont pas connus. On les estime alors par

$$\hat{p}_{i\bullet} = \frac{N_{i\bullet}}{N}$$
 et $\hat{p}_{\bullet j} \frac{N_{\bullet j}}{N}$.

La statistique de test que l'on va calculer est :

$$D^2 = \sum_{i=1}^r \sum_{j=1}^s \frac{\left(N_{ij} - \frac{N_{i\bullet}N_{\bullet j}}{n}\right)^2}{\frac{N_{i\bullet}N_{\bullet j}}{n}}.$$

Pour α fixé, on défini la quantité $\chi_{(r-1)(s-1);1-\alpha}$, qui est le fractile d'ordre $1-\alpha$ d'une loi de χ^2 , telle que

$$\mathbb{P}\{Z > \chi_{(r-1)(s-1);1-\alpha}\} = 1 - \alpha$$
.

où $Z\sim \chi^2((r-1)(s-1))$, i.e. Z suit une loi du χ^2 à (r-1)(s-1) degrés de liberté. La quantité $\chi_{(r-1)(s-1);1-\alpha}$ est donnée par les tables statistiques de la loi du χ^2 .

3.2.3. *Règle de décision*. Ainsi, la règle de décision du test du χ^2 d'indépendance est :

- Si $D^2 < \chi_{K-1-r;1-lpha}$, alors on **accepte** H_0 . On peut donc supposer que la population est issue de la loi P. Le risque de se tromper β est inconnu et peut être élevé.
- Si $D^2 > \chi_{(r-1)(s-1);1-\alpha}$, alors on **rejette** H_0 . On peut conclure (avec un risque α petit de se tromper) que les deux facteurs X et Y sont indépendant.

3.2.4. *présentation pratique des calculs.* On construit d'abord le tableau des effectifs observés

X	d_1	•••	d_j	•••	d_s	
c_1	N_{11}		N_{1j}		N_{1J}	$N_{1\bullet}$
:			:			
c_i	N_{i1}		N_{ij}		N_{iJ}	$N_{i\bullet}$
:			;			
c_r	N_{I1}		N_{Ij}		N_{IJ}	$N_{I\bullet}$
	$N_{\bullet 1}$		$N_{\bullet j}$		$N_{\bullet J}$	N

On calcul ensuite le tableau des effectifs théoriques

Atelier Licence MASS

X	d_1	•••	d_{j}	 d_s
c_1	$\frac{N_{1\bullet}N_{\bullet 1}}{N}$		$\frac{N_{1\bullet}N_{\bullet j}}{N}$	$\frac{N_{1\bullet}N_{s\bullet}}{N}$
:			:	
c_i	$\frac{N_{i\bullet}N_{\bullet 1}}{N}$		$\frac{N_{i\bullet}N_{\bullet j}}{N}$	 $\frac{N_{i\bullet}N_{\bullet s}}{N}$
:			:	
c_r	$\frac{N_{r\bullet}N_{\bullet 1}}{N}$		$\frac{N_{r \bullet} N_{\bullet j}}{N}$	$\frac{N_{r \bullet} N_{\bullet s}}{N}$

Et enfin le tableau des résidus

min ic tubicu	ini ie tabieau des residus						
X	d_1		d_{j}		d_s		
c_1	$\frac{\left(N_{11} - \frac{N_{1\bullet}N_{\bullet 1}}{N}\right)^{2}}{\frac{N_{1\bullet}N_{\bullet 1}}{N}}$		$\frac{\left(N_{1j} - \frac{N_{1\bullet}N_{\bullet j}}{N}\right)^2}{\frac{N_{1\bullet}N_{\bullet j}}{N}}$		$\frac{\left(N_{1s} - \frac{N_{1\bullet}N_{\bullet s}}{N}\right)^2}{\frac{N_{1\bullet}N_{\bullet s}}{N}}$		
:	(N. N .) 2		$\vdots \\ (N_i \bullet N_{\bullet i})^2$		(N. N.)2		
c_i	$\frac{\left(N_{i1} - \frac{N_{i\bullet}N_{\bullet 1}}{N}\right)^2}{\frac{N_{i\bullet}N_{\bullet 1}}{N}}$		$\frac{\left(N_{ij} - \frac{N_{i \bullet} N_{\bullet j}}{N}\right)^{2}}{\frac{N_{i \bullet} N_{\bullet j}}{N}}$		$\frac{\left(N_{is} - \frac{N_{i \bullet} N_{\bullet s}}{N}\right)^2}{\frac{N_{i \bullet} N_{\bullet s}}{N}}$		
÷			:				
c_r	$\frac{\left(N_{r1} - \frac{N_{r \bullet} N_{\bullet 1}}{N}\right)^2}{\frac{N_{r \bullet} N_{\bullet 1}}{N}}$		$\frac{\left(N_{rj} - \frac{N_{r \bullet} N_{\bullet j}}{N}\right)^2}{\frac{N_{r \bullet} N_{\bullet j}}{N}}$		$\frac{\left(N_{rs} - \frac{N_{r \bullet} N_{\bullet s}}{N}\right)^2}{\frac{N_{r \bullet} N_{\bullet s}}{N}}$		