- 1. Множеством называется совокупность определенных вполне различаемых объектов, рассматриваемых как единое целое. Создатель теории множеств Георг Кантор давал следующее определение множества «множество есть многое, мыслимое нами как целое».
- 2. Отдельные объекты, из которых состоит множество, называются элементами множества.
- 3. Множество называются конечным, если число его элементов конечно, то есть если существует натуральное число n, являющееся числом элементов множества. $A = \{a \ 1 \ , a \ 2 \ , a \ 3 \ , ..., a \ n \}$.
- 4. Множество называется бесконечным, если оно содержит бесконечное число элементов. $B=\{b\ 1\ ,b\ 2\ ,b\ 3\ ,\ldots\}$.
- 5. Пустое множество множество, не содержащее ни одного элемента Ø.
- 6. Число элементов в конечном множестве M называется мощностью множества M и обозначается |M|.
- 7. Два множества называются равными, если они состоят из одних и тех же элементов, то есть представляют собой одно и тоже множество.
- 8. Счетное множество это такое множество A, все элементы которого могут быть занумерованы в последовательность (может быть бесконечную) а 1, а 2, а 3, ..., а n, ... так, чтобы при этом каждый элемент получил ишь один номер n и каждое натуральное число n было бы в качестве номера дано одному и лишь одному элементу нашего множества.

9.

1. Определение 15. Отображение \overline{f} множества N всех натуральных чисел в множество функций называется последовательностью функций.

10.

Определение 16. Точка $x \in X$ называется точкой сходимости последовательности (f_n) , если сходится последовательность чисел $f_1(x)$,.... Последовательность (f_n) называется точечно сходящейся, если множество всех точек сходимости совпадает с множеством X. Точечно сходящаяся последовательность обозначается знаком $f_n \to 0$. Функция f называется точечным пределом последовательности функций (f_n) , если $f(x) = \lim_{n \to \infty} f_n(x)$ для всех $x \in X$. Будем писать $f_n \to f$, если f есть точечный предел последовательности (f_n) .

Определение 17. Величина $\sup_{x \in D_f} |f(x)|$. (— область определения функции), конечная или бесконечная, называется равномерной нормой функции и обозначается $\|f\|_{\infty}$ или, короче, $\|f\|_{\infty}$

12.

Определение 18. Функция f называется равномерным пределом последовательности функций (f_n) , если $||f - f_n|| \to 0$ при $n \to +\infty$. В этом случае будем писать $f_n \to f$.

13.

Теорема 3(о равномерном пределе произведения). Пусть $f_n \to f$, $g_n \to g$, $\|f_n\| < +\infty$, $\|g_n\| < +\infty$ для всех $n \in N$. Тогда $f_n \cdot g_n \to f \cdot g$ (подразумевается, что $X = D_{f_n} = D_{g_n} = D_{f_n} = D_{g_n}$ для всех $n \in N$).

14.

Определение 19. Последовательность функций (f_n) называется равномерно фундаментальной, если для любого числа $\varepsilon > 0$ существует номер $n_{\varepsilon} \in N$, такой, что для всех $n > n_{\varepsilon}$ μ $m > n_{\varepsilon}$ $\|f_n - f_m\| < \varepsilon$.

Это условие можно переписать в эквивалентной форме $\forall \varepsilon > 0$ $\exists n_{\varepsilon} \in N$ $\forall n > n_{\varepsilon}$ $\forall p \in N \ \|f_n - f_{n+p}\| < \varepsilon$.

15.

Теорема 4. (критерий Коши). Последовательность функций (f_n) равномерно сходится тогда и только тогда, когда она равномерно фундаментальна.

16.

Теорема 5 (о непрерывности предела). Пусть все функции f_n , $n \in N$ непрерывны в точке $x_0 \in X$, $X = D_{f_n}$ при всех $n \in N$. Если $f_n = 1$, то функция f непрерывна в точке x_0 .

- 17. Разность $\Delta x = x x_0$ назовём приращением независимой переменной в точке x_0 , разность $-\Delta y = f(x) f(x_0)$ соответствующим приращением функции.
- 18. $\frac{\Delta y}{\Delta x} = \frac{f(x) f(x_0)}{x x_0}$ разностное отношении функции f(x) для точек x_0 , и x.

- 19. Производная y' = f'(x) характеризует скорость изменения функции y = f(x).
- 20. Если функция y = f(x) дифференцируема в некоторой точке x_0 , то она в этой точке непрерывна.
- 21. Касательная к графику функции в точке это предельное положение секущей в данной точке. Производная функции в точке x_0 численно равна тангенсу угла наклона касательной к графику функции в данной точке.
 - 22. Если функция f(x) и g(x) имеют производные в точке x то:
 - 1. Их сумма f(x) + g(x) имеет производную в точке x причем (f(x) * g(x)) ' = f '(x) + g'(x)
 - 2. Их произведение f(x) * g(x) имеет производную в точке x, причем (f(x) * g(x)) ' = f '(x) * g(x) + g'(x) * f(x)
 - 3. При дополнительном условии $g(x) \neq 0$ их отношение $\frac{f(x)}{g(x)}$ имеет производную в точку x, причем $\left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x)g(x) g'(x)f(x)}{g^2(x)}$
- 23. Если функция y = f(x) имеет производную в точке x_0 а функция z = g(x) имеет производную в точке $y_0 = f(x_0)$, то h(x) имеет производную в точке x_0 причем $h'(x_0) = g'(y_0)f'(x_0)$.
- 24. Пусть функция y = y(x) дифференцируема в точку x_0 и имеет обратную функцию x = x(y) в окрестности точки $y_0 = y(x_0)$. Кроме того $y'(x_0) \neq 0$ тогда обратная функция дифференцируема в точке y_0 причем $x'(y) = \frac{1}{v'(x)} \,.$
- 25. Если функции $\psi(t)$ (пси), $\phi(t)$ дифференцируемы и $\phi(t)' \neq 0$ то заданная параметрически функция $y = y(x) = \psi(\phi^{-1}(x))$ будет также дифференцируема, причем $y'(x) = \frac{\psi'(t)}{\phi(t)'}$ Одна и та же переменная (пример у) может рассматриваться либо как функция х либо как функция t. В подобных ситуациях для уточнения по какой переменной происходит дифференцирование вместо штриха употребляют нижний индекс $y'(t) = y'_t$.

- 26. Передел $\lim_{(x\to 0)} = \frac{\sin \mathbb{Q}(x)}{x} = 1$ (Первый замечательный предел)
- 27. Показательная функция $y = e^x c$ основанием е называется экспонентой.
- 28. Логарифмическая функция по основанию е называется натуральным логарифмом
 - 29. Гиперболический синус shx = $\frac{e^x e^{-x}}{2}$
 - 30. Гиперболический косинус chx = $\frac{e^x + e^{-x}}{2}$
 - 31. Гиперболический тангенс thx = $\frac{shx}{chx}$
 - 32. Гиперболический котангенс cthx = $-\frac{chx}{shx}$
 - 33. Разность квадратов гиперболической функции $ch^2x sh^2 = 1$
 - 34. Двойной гиперболический синус sh2x = 2shx*chx
 - 35. Двойной гиперболический косинус $ch2x = ch^2x + sh^2x$
- 36. Число а называется пределом функции f(x) при x стремящемся x_0 , если для любого сколь угодно малого положительного числа ε существует такое достаточно малое положительное число δ , что в проколотой окрестности $\dot{v}_{\delta}(x_0)$ точки x_0 выполняется неравенство $|f(x) a| < \varepsilon$ $\lim_{x \to x_0} f(x) = a$
- 37. Пределы функции при $x \to x_0 + 0$ и при $x \to x_0 0$ называются односторонними. Приближение к предельной точке слева(+) или справа(-)
 - 38. Двухсторонний предел $x \to x_0$ (одновременно слева и справа)

38.

Определение 32. Пределы функции при $x \to x_0 + \mu$ при $x \to x_0 - \delta$ будем называть односторонними пределами, а предел при $x \to x_0 - \delta$ двусторонним. 39.

Теорема 23 (о связи двустороннего предела функции с односторонними). Двусторонний предел функции при $x \to x_0$ существует тогда и только тогда, когда существуют оба соответствующих односторонних предела и они равны. При этом двусторонний предел равен односторонним.

Определение 30. Число a называется пределом функции f(x) при x стремящемся к x_0 , если для любого сколь угодно малого положительного числа ε существует такое достаточно малое положительное число δ , что в проколотой окрестности $\dot{u}_{\varepsilon}(x_0)$ точки x_0 выполняется неравенство $|f(x)-a|<\varepsilon$ $\left\{a=\lim_{x\to x_0}f(x)\right\} \Leftrightarrow^{df}\left\{\forall \varepsilon>0 \; \exists \delta>0 \colon x\in \dot{u}_{\varepsilon}(x_0)\Rightarrow |f(x)-a|<\varepsilon\right\}$

Число x_0 называется предельной точкой. Условие $x \in \dot{u}_{\delta}(x_0)$, очевидно, эквивалентно неравенству $0 < |x - x_0| < \delta$.

Геометрический смысл этого определения иллюстрируется рис. 1: если значения x

попадают в интервал $(x_0 - \delta, x_0)$ или $(x_0, x_0 + \delta)$, то соответствующие значения y попадают в интервал $(a - \varepsilon, a + \varepsilon)$.

Рис. 1. Геометрический смысл определения предела.

Если элементарная функция f(x) определена в точке x_0 , то ее предел при x, стремящемся к x_0 , часто равен ее значению в этой точке (в этом случае функция называется непрерывной): $\lim_{x\to x_0} f(x) = f(x_0)$.

Например,
$$\lim_{x\to 0} \sin x = 0$$
, $\lim_{x\to 0} \cos x = 1$ и т.д.

Однако, в общем случае, функция может быть не определена в точке x_0 , но при этом иметь предел при $x \to x_0$. Чтобы подчеркнуть это, на рис. 1 точка (x_0, a) изображена в виде пустого кружочка.

Определение 33. Число a называется пределом функции y=f(x) при x, стремящемся к $+\infty$, если при достаточно больших x значения y будут сколь угодно близки к числу a. Более точно это определение формулируется так.

Определение 34. Число a называется пределом функции f(x) при x, стремящемся $\kappa^{+\infty}$, если для любого, сколь угодно малого, положительного числа ε существует такое достаточно большое положительное число δ , что при $x > \delta$ выполняется неравенство $|f(x) - a| < \varepsilon$, то есть $\{a = \lim_{x \to \infty} f(x)\} \Leftrightarrow^{\text{ef}} \{\forall \varepsilon > 0 \ \exists \delta > 0 : x > \delta \Rightarrow |f(x) - a| < \varepsilon\}$

Определение 35. Число *а* называется пределом функции f(x) при x, стремящемся к ∞ , если для любого, сколь угодно малого, положительного числа ε существует такое достаточно большое положительное число δ , что при $|x| > \delta$ выполняется неравенство $|f(x) - a| < \varepsilon$:

$$\left\{a = \lim_{x \to +\infty} f(x)\right\} \Leftrightarrow^{df} \left\{\forall \varepsilon > 0 \mid \exists \delta > 0 : |x| > \delta \Longrightarrow |f(x) - a| < \varepsilon\right\}$$

Неравенство $|x| > \delta$ эквивалентно условию $x \in u_{\delta}(\infty) = u_{\delta}(-\infty) \cup u_{\delta}(+\infty)$ Другими словами, число a называется пределом функции f(x) при x, стремящемся к бесконечности, если оно является пределом этой функции как при x, стремящемся $x + \infty$, так и при x, стремящемся $x + \infty$.

Геометрический смысл этого определения представлен на рис. 5.

Рис. 5. Геометрический смысл предела функции при $x \to \infty$.

42.

Теорема 24. Предел постоянной равен этой постоянной: $\lim_{x\to *} C = C$.

43.

Определение 37. Функция y=f(x) называется ограниченной сверху на интервале (a,b), если $\exists M \in \mathbb{R}$: f(x) < M, $\forall x \in (a,b)$.

44.

Определение 38. Функция y=f(x) называется ограниченной на интервале (a,b) снизу, если $\exists m \in \mathbb{R}$: f(x)>m, $\forall x \in \mathbb{B}$.

Определение 39. Функция y=f(x) называется ограниченной на интервале (a,b), если она ограничена на этом интервале и снизу, и сверху.

Функция является ограниченной на интервале (a,b) тогда и только тогда, когда $\exists \ \mu \in R \colon |f(x)| < \mu \ \forall x \in (a,b)$. Совершенно аналогично дается определение ограниченной (сверху, снизу) функции на сегменте или полуинтервале.

46.

Определение 40. Функция называется локально ограниченной в * (или ограниченной при х \rightarrow *), если существует окрестность $\dot{\mathbf{u}}_{\emptyset}$ (*), в которой эта функция ограничена.

47.

Определение 41. Функция называется неограниченной в точке * (при $x \rightarrow *$), если для любого (сколь угодно большого) числа M > 0 и для любого числа $\delta > 0$ найдется хотя бы одна точка $x_1 \in \dot{u}_{\delta}(*)$ такая, что $f(x_1) \models M$:

$$\forall M > 0$$
 и $\forall \delta > 0 \exists x_1 \in u_\delta(*): |f(x_1)| > M.$

48.

Определение 42. Функция f(x) называется бесконечно большой $(\delta.\delta.)$ при $x \to * \ \forall \ \varepsilon > 0 \ \exists \ \delta(\varepsilon) : x \in \mathring{\mathbf{u}}_{\delta}(*) \Rightarrow |f(x)| > \varepsilon$.

Если функция является бесконечно большой (б.б.) при $x \rightarrow *$, говорят, что ее предел при этом стремлении аргумента равен бесконечности:

$$\lim_{x \to *} f(x) = \infty$$

49.

1. **Определение 45.** Функция f(x) называется бесконечно малой (б.м.) при $x \rightarrow *$, если ее предел при этом стремлении равен нулю:

$$\{f(x) - \delta$$
.м. при $x \to *\} \Leftrightarrow^{df} \{\lim_{x \to *} f(x) = 0\}$

Другими словами, функция f (x) называется б.м. при x \to *, если $\forall \varepsilon > 0 \; \exists \delta > 0 \colon x \in \dot{u}_{\delta}(*) \Rightarrow |f(x)| \leqslant \varepsilon$

50.

Теорема 30. Алгебраическая сумма конечного числа б.м. – есть б.м.: $\{\alpha(x), \beta(x) - \delta_{-M}, \text{при } x \to *\} \Rightarrow \{h(x) = \alpha(x) + \beta(x) - \delta_{-M}, \text{при } x \to *\}$

51.

Теорема 31. Произведение б.м. $\alpha(x)$ при $x \to *$ на локально ограниченную f(x) при этом стремлении есть функция б.м. при $x \to *$.

Следствие 2. Произведение б.м. на постоянную – есть б.м.

53.

Теорема 33. Если функция - б.б. при , то функция $g(x) = \frac{1}{f(x)}$ _ б.м. при этом стремлении аргумента.

54.

Теорема 35. (О единственности предела). Если предел функции $f^{(x)}$ существует, то он единственен.

55.

Теорема 36. Пусть существуют конечные пределы $\lim_{x\to x} f(x) = a$, $\lim_{x\to x} g(x) = b$. Тогда существует конечный предел суммы функций $\varphi(x) = f(x) + g(x)$ при $x\to *$ и он равен a+b: $\lim_{x\to *} (f(x)+g(x)) = \lim_{x\to *} f(x) + \lim_{x\to *} g(x)$.

* - 1 из 6 вариантов:

1)
$$x - > x0$$
; 2) $x = 0$; 3) $x > x0$; 4) $x - > \infty$; 5) $x - > (+\infty)$; 6) $x - > (-\infty)$;

- 55. Пусть существует конечные пределы $\lim_{x\to *} f(x) = a$ и $\lim_{x\to *} g(x) = b$,тогда существует конечный предел суммы функции $\phi(\phi u) = f(x) + g(x) = a + b$: $\lim_{x\to *} f(x) + g(x) = \lim_{x\to *} f(x) + \lim_{x\to *} g(x)$.
- 56. Пусть существует конечные пределы $\lim_{x\to *} f(x) = a$ и $\lim_{x\to *} g(x) = b$,тогда существует конечный предел суммы функции $\phi(\phi u) = f(x) \times g(x) = a \times b$: $\lim_{x\to *} f(x) \times g(x) = \lim_{x\to *} f(x) \times \lim_{x\to *} g(x)$.
- 57. Постоянную можно выносить за знак предела. Действительно пусть с постоянная. Тогда $\lim_{x\to *} c \times f(x) = \lim_{x\to *} c \times \lim_{x\to} f(x) = c \times \lim_{x\to *} f(x)$ (поскольку предел постоянной равен этой постоянной).
- 58. Пусть существует конечные пределы $\lim_{x\to *} f(x) = a$ и $\lim_{x\to *} g(x) = b$, при этом $b\neq 0$ тогда существует конечный предел частного $\phi(\phi u) = \frac{f(x)}{g(x)} = \frac{a}{b} : \lim_{x\to *} \frac{f(x)}{g(x)} = \frac{\lim_{x\to g} f(x)}{\lim_{x\to g} g(x)}.$

Первый замечательный предел: $\lim_{x\to 0} \frac{\sin x}{x} = 1$

59. Следствия из теоремы о первом замечательном пределе:

- 1) Предел $\lim_{x\to 0} \frac{\sin (ax)}{x} = a;$
- 2) Предел $\lim_{x\to 0} \frac{\operatorname{tg} x}{x} = 1$;
- 3) Предел $\lim_{x\to 0} \frac{\arcsin x}{x} = 1$;
- 4) Предел $\lim_{x\to 0} \frac{\operatorname{arctg} x}{x} = 1$;
- 5) Предел $\lim_{x\to 0} \frac{1-\cos x}{(x^2)} = \frac{1}{2}$;
- 60. Предел $\lim_{x\to\infty} \left(1+\frac{1}{x}\right)^x = e$ называют вторым замечательным пределом.
 - 61. Следствия из теоремы о втором замечательном пределе:
 - 1) Предел $\lim_{x\to 0} ((1+x)^{\frac{1}{x}}) = e;$
 - 2) Предел $\lim_{x\to 0} \frac{\ln(1+x)}{x} = 1;$
 - 3) Предел $\lim_{x\to 0} \frac{(e^x)^{-1}}{x} = 1$;
 - 4) Предел $\lim_{x\to\infty} \left(1+\frac{a}{x}\right)^x = (e^a)$;
- 62. Если существует конечный предел $\lim_{x\to *} \frac{f(x)}{g(x)}$, то f(x) и g(x) называют б.м (б.б) одного порядка малости (роста) при $x\to *$.
 - 63. См пункт 62.
- 64. Если предел $\lim_{x\to *}\frac{f(x)}{g(x)}=1$, то функции f(x) и g(x) называются эквивалентными при $x\to *$ (при этом используется обозначение $f(x)\sim g(x)$ при $x\to *$).

65.

$$\sin x \sim x$$

$$tgx \sim x$$

$$\arcsin x \sim x$$

$$\arcsin x \sim x$$

$$\arctan \cot gx \sim x$$

$$\log_a (1+x) \sim \frac{x}{\ln a}$$

$$e^x - 1 \sim x \ln a$$

$$e^x - 1 \sim x \ln a$$

$$e^x - 1 \sim x \ln a$$

66. Разность двух эквивалентных 6.м функций f(x) и g(x) имеет высший порядок малости по сравнению с каждой из них.