Taller de aprendizaje profundo aplicado en biomedicina

Raúl Fernández Díaz

Organización

Sesión 1: Fundamentos de aprendizaje profundo Sesión 2: Aplicación de arquitecturas avanzadas en biomedicina Sesión 3: Clasificación de cánceres de piel

Sesión 1: Contenidos

¿Qué es el aprendizaje automático?

¿Cómo funcionan las redes neurales?

¿Qué problemas podemos encontrar?

Primera Parte

¿Qué es el aprendizaje automático?

Inteligencia artificial: Máquinas que piensan

Inteligencia artificial: Máquinas que piensan

¿Tengo hambre?

Si Mario a la izqda: Mueve a la izqda

Si no:

Mueve a la dcha

Aprendizaje automático: Máquinas que aprenden

Aprendizaje automático: Máquinas que aprenden

Aprendizaje automático: Tipos de aprendizaje

Supervisado

No supervisado

Reforzado

Aprendizaje automático: Tipos de aprendizaje

Supervisado

Lista de ejemplos con sus soluciones

Supervisado

Lista de ejemplos con sus soluciones

No supervisado

Separa por su cuenta

Aprendizaje automático: Tipos de aprendizaje

No supervisado

Separa por su cuenta

Modelo 1

Aprendizaje automático: Tipos de aprendizaje

No supervisado

Separa por su cuenta

Modelo 2

Aprendizaje automático: Tipos de aprendizaje

No supervisado

Separa por su cuenta

Modelo 3

Aprendizaje automático: Tipos de aprendizaje

Supervisado

No supervisado

No supervisado

Semisupervisado Perro Algunos ejemplos con solución y separa por su cuenta Pez

Supervisado

Aprendizaje automático: Tipos de aprendizaje

Supervisado

No supervisado

Reforzado

Aprende los pasos óptimos para realizar una tarea

Aprendizaje automático: Tipos de aprendizaje

Intenta andar:

Si caes:

Movimiento -10

Si no:

Movimiento +10

Reforzado

Aprende los pasos óptimos para realizar una tarea

Aprendizaje automático: Tipos de aprendizaje

Supervisado

Lista de ejemplos con sus soluciones

No supervisado

Separa por su cuenta

Reforzado

Aprende los pasos óptimos para realizar una tarea

Aprendizaje profundo: Cerebros de silicio

Aprendizaje profundo: Cerebros de silicio

Aprendizaje profundo: Cerebros de silicio

Primera parada: ¿Preguntas hasta aquí?

Segunda Parte

¿Cómo funcionan las redes neurales?

Redes neurales: caso más simple

Redes neurales: caso más simple

Redes neurales: caso más simple

Redes neurales: aumentando la complejidad

Tensorflow Playground

https://playground.tensorflow.org/

Redes neurales: funciones de activación

Funciones de activación

Tensorflow Playground

https://playground.tensorflow.org/

Segunda Parada: ¿Preguntas hasta aquí?

Tercera Parte

¿Qué problemas podemos encontrar al usar redes neurales profundas?

Redes neurales profundas: muchas capas

Redes neurales profundas: muchas capas

Problemas: ¿Qué están haciendo?

Problemas: Sobreajuste del modelo a los datos

Infrajustado:
modelo demasiado
sencillo o no
suficientes
ejemplos para
aprender

Problemas: Sobreajuste del modelo a los datos

Sobreajustado:
el modelo aprende
de memoria los
ejemplos y no se
puede utilizar sobre
datos nuevos

Sobreajuste del modelo a los datos

Infrajustado:
modelo demasiado
sencillo o no
suficientes
ejemplos para
aprender

Buen ajuste: ""
modelo ajustado a
la complejidad del
problema y
suficientes
ejemplos

Sobreajustado:
el modelo aprende
de memoria los
ejemplos y no se
puede utilizar sobre
datos nuevos

Tensorflow Playground

https://playground.tensorflow.org/

Solución al sobreajuste

1- Utilizar conjuntos de datos lo más amplios posibles evitando repeticiones y sesgos

Problemas

Sesgo en los datos

Sesgo en los datos: Reducir datos

Sesgo en los datos

Sesgo en los datos: Aumentar datos

Solución al sobreajuste

1- Utilizar conjuntos de datos lo más amplios posibles evitando repeticiones y sesgos

2- Utilizar modelos cuya complejidad sea proporcional a la complejidad del problema

Problemas: Complejidad del modelo

$$W\left[\frac{\xi}{\alpha}\left(\frac{\partial f}{\partial t} - \beta^{r}\frac{\partial f}{\partial r}\right) + \frac{v}{\phi^{2}}\frac{\partial f}{\partial r}\right] - \frac{\varepsilon W^{3}}{r\alpha\phi^{3}}\frac{\partial f}{\partial \varepsilon}$$

$$\times \left\{\beta^{r}\phi^{3}\left(-\psi - r\mu\frac{\partial v_{r}}{\partial r}\right) + v_{r}^{2}\phi\left[\beta^{r}\phi\left(2r\frac{\partial\phi}{\partial r} - \psi\phi\right)\right] + v_{r}^{2}\left(-\mu\frac{\partial\alpha}{\partial r} + \mu^{2}\phi^{2}\frac{\partial\beta^{r}}{\partial r} - \frac{\partial\phi^{2}}{\partial t}\right)\right]$$

$$+ v_{r}^{3}\left[r\mu\phi\left(-\mu\frac{\partial\alpha}{\partial r} + \frac{\partial\beta^{r}\phi^{2}}{\partial r} - \frac{\partial\phi^{2}}{\partial t}\right) - \psi\frac{\alpha}{\phi}\frac{\partial r\phi^{2}}{\partial r}\right]$$

$$+ \phi\left[r\mu\left(\mu\alpha\frac{\partial v_{r}}{\partial r} + \frac{\partial\alpha}{\partial r} + \phi^{2}\left(-\mu\frac{\partial\beta^{r}}{\partial r} + \frac{\partial v_{r}}{\partial t}\right)\right)\right]$$

$$+ r\frac{\partial\phi^{2}}{\partial t} - r\beta^{r}\frac{\partial\phi^{2}}{\partial r}\right] + v_{r}\alpha\left[\phi\left(\psi + r\mu\frac{\partial v_{r}}{\partial r}\right)\right]$$

$$+ 2r\psi\frac{\partial\phi}{\partial r} + \phi^{2}\left(\mu\frac{\partial v_{r}}{\partial t} - \frac{\partial\beta^{r}}{\partial r}\right) + \frac{\partial\phi^{2}}{\partial t}\right]$$

$$+ \frac{W^{3}(1-\mu^{2})}{r\alpha\phi^{3}}\frac{\partial f}{\partial\mu}\left\{\alpha\left[\phi\left(\frac{\xi}{W^{2}} - rv\frac{\partial v_{r}}{\partial r}\right) + 2r\frac{\xi}{W^{2}}\frac{\partial\phi}{\partial r}\right]$$

$$+ \phi\left[\beta\phi^{2}\left(r\xi\frac{\partial v_{r}}{\partial r} - \frac{v}{W^{2}}\right) - \frac{r}{W^{2}}\left(\xi\frac{\partial\alpha}{\partial r} - v\phi^{2}\frac{\partial\beta^{r}}{\partial r}\right)$$

$$- r\xi\phi^{2}\frac{\partial v_{r}}{\partial t}\right]\right\} = \mathfrak{C}[f], \tag{26}$$

Problemas: Complejidad del modelo

Solución al sobreajuste

1- Utilizar conjuntos de datos lo más amplios posibles evitando repeticiones y sesgos

3- Diferenciar datos en grupos de entrenamiento, validación y test

2- Utilizar modelos cuya complejidad sea proporcional a la complejidad del problema

Datos

Solución al sobreajuste

1- Utilizar conjuntos de datos lo más amplios posibles evitando repeticiones y sesgos

3- Diferenciar datos en grupos de entrenamiento, validación y test

2- Utilizar modelos cuya complejidad sea proporcional a la complejidad del problema

4- Implementar *dropout*

Dropout

Dropout

Dropout

Tercera Parada: ¿Preguntas hasta aquí?

¡Muchas gracias por su atención!

Taller de aprendizaje profundo aplicado en biomedicina

Raúl Fernández Díaz

