Solutions to Exercises

Facultad de Ciencias Económicas y Estadistica Universidad Nacional de Rosario Argentina M.T.Blaconá - L. Magnano - L. Andreozzi

May 2012

3.6 Exercises

Exercise 3.1

For the ETS(A,N,N) model,

$$y_t = \ell_{t-1} + \varepsilon_t$$
$$\ell_t = \ell_{t-1} + \alpha \varepsilon_t$$

and $x_t = \ell_{t-1}$. Therefore w = 1, F = 1, $g = \alpha$ and $D = F - gw' = 1 - \alpha$.

Forecastability

$$c_j = \boldsymbol{w}' \boldsymbol{D}^{j-1} \boldsymbol{g} = \alpha (1 - \alpha)^{j-1}$$
 and
$$a_t = \boldsymbol{w}' \boldsymbol{D}^{t-1} \boldsymbol{x}_0 = (1 - \alpha)^{t-1} \ell_0.$$

When $\alpha=0$, $a_t=\ell_0$ and $c_j=0$. Therefore $\sum\limits_{j=1}^{\infty}|c_j|=0$ and $\lim\limits_{t\to\infty}a_t=\ell_0$, and so the process is forecastable.

When $\alpha=2,\ a_t=(-1)^{t-1}\ell_0$ which does not converge as $t\to\infty$ and so the process is not forecastable.

Stationarity

$$d_t = \mathbf{w}' \mathbf{F}^{t-1} \mathbf{x}_0 = \ell_0$$

$$k_j = \mathbf{w}' \mathbf{F}^{j-1} \mathbf{g} = \alpha, \qquad j \ge 1,$$

and $k_0 = 1$. So for stationarity, we require $\sum_{j=0}^{\infty} |k_j| < \infty$.

When $\alpha = 0$, $k_j = 0$ for all $j \ge 1$ and so the process is stationary.

When $\alpha = 2$, $k_j = 2$ for all $j \ge 1$ and so the process is not stationary.

Exercise 3.2

[This question should have read "forecastable" rather than "stable".]

The local level with drift model is

$$y_t = \ell_{t-1} + b + \varepsilon_t$$
$$\ell_t = b + \ell_{t-1} + \alpha \varepsilon_t.$$

Variable: $z_{1,t} = y_t - bt$: This can be written in state space form as

$$z_{1,t} = \ell_{t-1} + b_{t-1} - u_{t-1} + \varepsilon_t$$

$$\ell_t = b_{t-1} + \ell_{t-1} + \alpha \varepsilon_t$$

$$b_t = b_{t-1}$$

$$u_t = u_{t-1} + b_{t-1}$$

where $b_0 = b$ and $u_0 = b$. Therefore, $\mathbf{x}_t = (\ell_t, b_t, u_t)', \mathbf{w} = (1, 1, -1)', \mathbf{g} = (\alpha, 0, 0)',$

$$m{F} = egin{bmatrix} 1 & 1 & 0 \ 0 & 1 & 0 \ 0 & 1 & 1 \end{bmatrix}, \quad m{D} = m{F} - m{g} m{w}' = egin{bmatrix} 1 - lpha & 1 - lpha & lpha \ 0 & 1 & 0 \ 0 & 1 & 1 \end{bmatrix}$$

and
$$\mathbf{D}^k = \begin{bmatrix} (1-\alpha)^k & (k-1) + (1-\alpha)^k & 1 - (1-\alpha)^{k+1} \\ 0 & 1 & 0 \\ 0 & k & 1 \end{bmatrix}$$
.

Therefore $\boldsymbol{w}'\boldsymbol{D}^k = \left[(1-\alpha)^k, (1-\alpha)^k, -(1-\alpha)^{k+1}\right]', \ a_t = \boldsymbol{w}'\boldsymbol{D}^{t-1}\boldsymbol{x}_0 \to 0, \text{ and } c_j = \boldsymbol{w}'\boldsymbol{D}^{j-1}\boldsymbol{g} = \alpha(1-\alpha)^{j-1}.$ If $0 \le \alpha < 2$, then $\sum_{j=1}^{\infty} |c_j|$ is finite and so $z_{1,t}$ is forecastable.

Similarly, $d_t = \boldsymbol{w}' \boldsymbol{F}^{t-1} \boldsymbol{x}_0 = \ell_0$ and $k_j = \boldsymbol{w}' \boldsymbol{F}^{j-1} \boldsymbol{g} = \alpha$ for $j \geq 1$. So $\sum_{j=0}^{\infty} |k_j|$ is infinite and $z_{1,t}$ is not stationary.

Variable: $z_{2,t} = y_t - y_{t-1}$: This can be written in state space form as

$$z_{2,t} = \ell_{t-1} - u_{t-1} + \varepsilon_t$$
$$\ell_t = b_{t-1} + \ell_{t-1} + \alpha \varepsilon_t$$
$$b_t = b_{t-1}$$
$$u_t = \ell_{t-1} + \varepsilon_t$$

where $b_0 = b$. Therefore, $\boldsymbol{x}_t = (\ell_t, b_t, u_t)', \, \boldsymbol{w} = (1, 0, -1)', \, \boldsymbol{g} = (\alpha, 0, 1)',$

$$m{F} = egin{bmatrix} 1 & 1 & 0 \ 0 & 1 & 0 \ 1 & 0 & 0 \end{bmatrix} \quad ext{and} \quad m{D} = m{F} - m{g}m{w}' = egin{bmatrix} 1 - lpha & 1 & lpha \ 0 & 1 & 0 \ 0 & 0 & 1 \end{bmatrix}.$$

Thus

$$\mathbf{D}^k = \begin{bmatrix} (1-\alpha)^k & [1-(1-\alpha)^k]/\alpha & 1-(1-\alpha)^k \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

Therefore $\boldsymbol{w}'\boldsymbol{D}^k = \left[(1-\alpha)^k, \left[1-(1-\alpha)^k\right]/\alpha, -(1-\alpha)^k\right]', a_t = \boldsymbol{w}'\boldsymbol{D}^{t-1}\boldsymbol{x}_0 \to b_0/\alpha$, and $c_j = \boldsymbol{w}'\boldsymbol{D}^{j-1}\boldsymbol{g} = -(1-\alpha)^j$. So for $0 < \alpha < 2$, $\sum_{j=1}^{\infty} |c_j|$ is finite and $z_{2,t}$ is forecastable.

Similarly, $d_t = \boldsymbol{w}' \boldsymbol{F}^{t-1} \boldsymbol{x}_0 = \ell_0 - u_0$ and $k_j = \boldsymbol{w}' \boldsymbol{F}^{j-1} \boldsymbol{g} = 0$ for $j \geq 2$. So $\sum_{j=0}^{\infty} |k_j|$ is finite and $z_{1,t}$ is stationary.

Exercise 3.3

$$y_{t} = \ell_{t-1} + \varepsilon_{t}$$

$$= \ell_{t-2} + \alpha \varepsilon_{t-1} + \varepsilon_{t}$$

$$\dots$$

$$= \ell_{0} + \varepsilon_{t} + \sum_{i=1}^{t-1} \alpha \varepsilon_{t-j}$$

Therefore

$$E(y_t \mid \ell_0) = \ell_0$$

and

$$Var(y_t \mid \ell_0) = \sigma^2 + (t - 1)\alpha^2 \sigma^2 = [1 + (t - 1)\alpha^2]\sigma^2.$$

[Note that the book has a typo here and replaces σ^2 by ℓ_0^2 .]

Exercise 3.4

 $ETS(A,A_d,N)$

$$y_t = \ell_{t-1} + \phi b_{t-1} + \varepsilon_t$$
$$\ell_t = \ell_{t-1} + \phi b_{t-1} + \alpha \varepsilon_t$$
$$b_t = \phi b_{t-1} + \beta \varepsilon_t$$

Therefore $\boldsymbol{x}_t = (\ell_{t-1}, b_{t-1})'$, $\boldsymbol{w}_t = (1, \phi)'$, $\boldsymbol{F} = \begin{bmatrix} 1 & \phi \\ 0 & \phi \end{bmatrix}$, $\boldsymbol{g} = \begin{bmatrix} \alpha \\ \beta \end{bmatrix}$, and

$$m{D} = m{F} - m{g}m{w}' = egin{bmatrix} 1 & \phi \\ 0 & \phi \end{bmatrix} - egin{bmatrix} lpha \\ eta \end{bmatrix} egin{bmatrix} 1 & \phi \end{bmatrix} = egin{bmatrix} 1 - lpha & \phi(1-lpha) \\ -eta & \phi(1-eta) \end{bmatrix}.$$

To find the eigenvalues of D, we must solve:

$$\det(\mathbf{D} - \mathbf{I}\lambda) = \det\begin{bmatrix} 1 - \alpha - \lambda & \phi(1 - \alpha) \\ -\beta & \phi(1 - \beta) - \lambda \end{bmatrix} = (1 - \alpha - \lambda)(\phi(1 - \beta) - \lambda) + \beta\phi(1 - \alpha) = 0$$

Therefore

$$\lambda^{2} - \lambda [\phi(1 - \beta) + (1 - \alpha)] + \phi(1 - \alpha) = 0,$$

and

$$\lambda = \frac{(1 - \alpha) + \phi(1 - \beta) \pm \sqrt{[(1 - \alpha) + \phi(1 - \beta)]^2 - 4\phi(1 - \alpha)}}{2}.$$