빅데이터 분석을 위한 데이터마이닝 방법론

SAS Enterprise Miner 활용사례를 중심으로

≪제4장≫ 회귀분석

Chapter 4
Regression Analysis

강현철, 한상태, 최종후, 이성건, 김은석, 엄익현 Update: 2014. 4. 1.

차례

- 4.1 선형 회귀분석(Linear Regression Analysis)
- 4.2 로지스틱 회귀분석(Logistic Regression Analysis)
- 4.3 회귀분석의 특징과 제약
- 4.4 분석사례 1: 선형 회귀분석
- 4.5 분석사례 2: 로지스틱 회귀분석
- 4.6 분석사례 3: 신용평점표 작성
- 4.7 연습문제

회귀분석(Regression Analysis)

- 반응변수(response variable)
 - ✓ 목표변수(target variable)
 - ✓ 좋속변수(dependent variable)
 - ✓ 설명(예측)되어지는 변수

- 설명변수(explanatory variable)
 - ✓ 입력변수(input variable)
 - ✓ 독립변수(independent variable)
 - ✓ 반응변수를 설명(예측)하는데 이용되는 변수
- ✓ 회귀분석이란 반응변수가 설명변수들에 의해 어떻게 설명(예측)되는지를 알아보기 위해 적절한 함수식으로 표현하여 분석하는 통계적 자료분석 방법

회귀분석의 종류

- 선형(linear) vs 비선형(nonlinear)
 - ✓ 선형 회귀분석 : 반응변수와 설명변수의 관계를 선형함수로 표현
 - ✓ 비선 영화귀분석 : 반응변수와 설명변수의 관계가 비선영
- 단순(simple) vs 다중(multiple)
 - ✓ 단순 회귀분석 : 설명변수가 한 개
 - ✓ 다중 외귀분석 : 설명변수가 두 개 이상
- 일변량(univariate) vs 다변량(multivariate)
 - ✓ 일변량 회귀분석 : 반응변수가 한 개
 - ✓ 다변량 회귀분석 : 반응변수가 두 개 이상

... 회귀분석의 종류

회귀(Regression)

Table 8.1. Galton's 1885 cross-tabulation of 928 adult children born of 205 midparents, by their height and their midparent's height.

Height of the mid- parent in inches		Height of the adult child												no. of n	Total no. of mid-	no. of	
	<61.7	62.2	63.2	64.2	65.2	66.2	67.2	68.2	69.2	70.2	71.2	72.2	73.2	>73.7	children	parents	Medians
>73.0			•		_	_						1	3		4	5	_
72.5		_	_	_				1	2	1	2	7	2	4	19	6	72.2
71.5	_				1	3	4	3	5	10	4	9	2	2	43	11	69.9
70.5	1		1		1	1	3	12	18	14	7	4	3	3	68	22	69.5
69.5		_	1	16	4	17	27	20	33	25	20	11	4	5	183	41	68.9
68.5	1	_	7	11	16	25	31	34	48	21	18	4	3		219	49	68.2
67.5	_	3	5	14	15	36	38	28	38	19	11	4		_	211	33	67.6
66.5		3	3	- 5	2	17	17	14	13	4					78	20	67.2
65.5	1	_	9	5	7	11	11	7	7	5	2	1			66	12	66.7
64.5	1	1	4	4	1	5	5		2				_		23	5	65.8
<64.0	1		2	4	- 1	2	2	- 1	1		_	_		_	14	1	
Totals	5	7	32	59	48	117	138	120	167	99	64	41	17	14	928	205	
Medians		_	66.3	67.8	67.9	67.7	67.9	68.3	68.5	69.0	69.0	70.0	_			_	

Source: Galton (1886a).

Note: All female heights were multiplied by 1.08 before tabulation. Galton added an explanatory footnote to the table: "In calculating the Medians, the entries have been taken as referring to the middle of the squares in which they stand. The reason why the headings run 62.2, 63.2, &c., instead of 62.5, 63.5, &c., is that the observations are unequally distributed between 62 and 63, 63 and 64, &c., there being a strong bias in favour of integral inches. After careful consideration, I concluded that the headings, as adopted, best satisfied the conditions. This inequality was not apparent in the case of the Mid-parents." Galton republished these data in 1889, where they are referred to as the R.F.F. Data (Record of Family Faculties); he then noted that the first row must be in error (four children cannot have five sets of parents), but he claimed that "the bottom line, which looks suspicious, is correct" (p. 208).

Francis Galton(1822~1911): 아버지의 키와 아들의 키의 관계를 연구

4.1.1 단순 회귀모형(Simple Regression)

회귀계수(모수)의 추정

단순 선형 회과모형
$$\rightarrow \quad y_i = \alpha + \beta \; x_i + \varepsilon_i, \quad i = 1, \Lambda \; , n$$
추정된 회과직선 $\rightarrow \quad \hat{y}_i = \hat{\alpha} + \hat{\beta} \; x_i = a + b \; x_i, \quad i = 1, \Lambda \; , n$

$$e_i = y_i - \hat{y}_i \qquad \leftarrow \ \, \overset{\text{Th}}{\leftarrow} \ \, \text{(residual)}$$

최소제곱추정 (Least Square Estimation)

$$Min \sum_{i=1}^{n} e_{i}^{2} = \sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2} = \sum_{i=1}^{n} (y_{i} - a - b x_{i})^{2}$$

$$\Rightarrow b = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})(y_{i} - \overline{y})}{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}, \quad a = \overline{y} - b \overline{x}$$

회귀계수에 대한 해석과 검정

표 4.1 단순 회귀분석의 결과

		Parameter	Standard	T for H0:	
Variable	\mathbf{DF}	Estimate	Error	Parameter=0	$\mathrm{Prob} > \mathrm{T} $
INTERCEP	1	9.736154	6.62064516	1.471	0.1796
X	1	1.440769	0.20044164	7.188	0.0001

• $H_0: \beta=0$

$$t = \frac{b - \beta}{s.e.(b)}$$

- ✓ 자유도 n-1인 t-분포를 따른다.
- ✓ s.e.(b)는 b의 표준오차(standard error)이다.

4.1.2 다중 회귀모형(Multiple Regression)

$$y_i = \alpha + \beta_1 x_{i1} + \beta_2 x_{i2} + \Lambda + \beta_p x_{ip} + \varepsilon_i, i = 1, \Lambda, n$$

$$\begin{pmatrix} y_1 \\ y_2 \\ M \\ y_n \end{pmatrix} = \begin{pmatrix} 1 & x_{11} & \Lambda & x_{1p} \\ 1 & x_{21} & \Lambda & x_{2p} \\ M & M & \Lambda & M \\ 1 & x_{n1} & \Lambda & x_{np} \end{pmatrix} \begin{pmatrix} \alpha \\ \beta_1 \\ M \\ \beta_p \end{pmatrix} + \begin{pmatrix} \varepsilon_1 \\ \varepsilon_2 \\ M \\ \varepsilon_n \end{pmatrix}$$

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon} \implies \hat{\boldsymbol{\beta}} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$$

≪사례≫ 영업수익 평가지수

	Correlation										
Variable	Label	x1	x2	х3	х4	У					
x1	창의력	1.0000									
x2	단순추론능력	0.6010	1.0000								
х3	복합추론능력	0.1032	0.4208	1.0000							
х4	계량능력	0.3937	0.5746	0.5477	1.0000						
У	영업수익 평가지수	0.5310	0.7459	0.4982	0.9443	1.0000					

어떤 회사에서는 신입사원에 대해 4과목(x)=창의력, x2=단순추론능력, x3=복합추론능력, x4=계량능력)의 적성검사를 실시하여 왔다. 이 회사에서는 이러한 적성검사 과목들이 사원의 업무능력을 평가하는데 타당하지를 알아보기 위하여 입사 후 일년 간의 실적을 평가하여 '업무능력지수(y)'를 산출하였다.

분산분석표 및 회귀계수 추정치

Analysis of Variance										
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F					
Model	4	4816.9644	1204.24110	263.55	<.0001					
Error	45	205.6214	4.56936							
Corrected Total	49	5022.5858								

Root MSE	2.1376	R-Square	0.9591
Dependent Mean	106.6220	Adj R-Sq	0.9554
Coeff Var	2.0048		

	Parameter Estimates										
Variable	Label	DF	Parameter Estimate	Standard Error	t Value	Pr > t	Standardized Estimate				
Intercept	Intercept	1	73.15526	1.68258	43.48	<.0001	0				
x1	창의력	1	0.14245	0.10157	1.40	0.1676	0.05498				
x2	단순추론능력	1	0.84501	0.13186	6.41	<.0001	0.28250				
х3	복합추론능력	1	-0.27220	0.16825	-1.62	0.1127	-0.06116				
x4	계량능력	1	0.76269	0.03949	19.31	<.0001	0.79383				

분산분석표(ANOVA Table)

• 제곱합의 분할

$$\sum_{i=1}^{n} (y_i - \bar{y})^2 = \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2 + \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$R^2 = \frac{\text{SSR}}{\text{TSS}} = 1 - \frac{\text{SSE}}{\text{TSS}}$$

분산분석표 (ANOVA table)

ହତ୍	제급합	사유도	평균제곱	분산비
회기	55R	р	M5R=55R/p	E 4465 /4465
오차	55E	n-p-1	MSE=SSE/(n-p-1)	F=MSR/MSE (p-value)
전체	T55	n-1		(p raide)

$$H_0: \beta_1 = \beta_2 = \Lambda = \beta_p = 0$$

회귀계수에 대한 검정

• 회귀계수에 대한 검정

$$H_0: \beta_j = 0 \leftarrow t = b_j / \text{s.e.}(b_j) \sim t(n-p-1)$$

• 표준화 회귀계수

$$y = \alpha^* + \beta_1^* z_1 + \beta_2^* z_2 + \Lambda + \beta_p^* z_p + \varepsilon^* \leftarrow z_j = (x_j - \overline{x}_j)/s_j$$

편상관계수(partial correlation coefficient)

≪예≫ 다중 회귀분석의 결과

		Analysis	of Variance		
		Sum of	Mean		
Source	DF	Squares	Square	F Value	Prob>F
Model	6	722.54361	120.42393	22.433	0.0001
Error	24	128.83794	5.36825		
C Total	30	851.38154			
Root	MSE	2.31695	R-square	0.8487	
Dep M	le a n	47.37581	Adj R-sq	0.8108	
C.V.		4.89057			

Parameter Estimates

		Parameter	Standard	I for HU:	
Variable	DF	Estimate	Error	Parameter=0	Prob > T
INTERCEP	1	102.934479	12.40325810	8.299	0.0001
RUNTIME	1	-2.628653	0.38456220	-6.835	0.0001
AGE	1	-0.226974	0.09983747	-2.273	0.0322
WEIGHT	1	-0.074177	0.05459316	-1.359	0.1869
RUNPULSE	1	-0.369628	0.11985294	-3.084	0.0051
MAXPULSE	1	0.303217	0.13649519	2.221	0.0360
RSTPULSE	1	-0.021534	0.06605428	-0.326	0.7473

매개변수(Lurking Variables)

... 매개변수(Lurking Variables)

... 매개변수(Lurking Variables)

입력변수의 선택

전진선택법 (Forward Selection)

✓ 입력변수를 각 변수의 기여도에 따라서 하나씩 추가하면서 선택하는 방법이다. 이 방법 은 계산시간이 빠르다는 장점이 있지만, 한 번 선택된 변수는 절대로 제거되지 않는다는 단점이 있다.

후진소거법 (Backward Elimination)

✓ 모든 변수를 포함하는 완전모형으로부터 시작하여 불필요한 변수를 하나씩 제거해 나가는 방법이다. 이 방법은 중요한 변수가 모형에서 제외될 가능성이 적으므로 비교적 안전한 방법이라 할 수 있다. 그러나 한 번 제외된 변수는 다시 선택되지 못한다는 단점이 있다.

단계적 방법 (Stepwise Method)

✓ 전진선택법에 후진소거법을 결합한 것으로서, 매 단계마다 선택과 제거를 반복하면서 중요한 변수를 찾아내는 방법이다. 이 방법은 중요한 변수를 하나씩 추가로 선택하면서 이미 선택된 변수들이 제거될 수 있는 지를 매 단계마다 검토하는 방법이다. 그러나 이 방법에 의해서 찾아진 모형도 모든 가능한 회귀를 통해서 얻어진 모형들보다 못할 수 있다.

• 모든 가능한 회귀

✓ 가능한 모든 축소모형을 고려하여 가장 좋은 모형을 찾아내는 방법이다. 이 방법은 가장 안전한 방법이라고 할 수 있지만, 입력변수가 많은 경우에는 탐색시간이 매우 많이 걸리 며 현실적으로 사용하기 어려운 경우가 좋좋 있다.

변수선택 요약

Stepwise Selection: Step 1

Variable x4 Entered: R-Square = 0.8917 and C(p) = 73.0476

Analysis of Variance										
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F					
Model	1	4478.61411	4478.61411	395.19	<.0001					
Error	48	543.97169	11.33274							
Corrected Total	49	5022.58580								

	Summary of Stepwise Selection											
Step	Variable Entered	Variable Removed	Label	Number Vars In	Partial R-Square	Model R-Square	C(p)	F Value	Pr > F			
1	x4		계량능력	1	0.8917	0.8917	73.0476	395.19	<.0001			
2	x2		단순추론능력	2	0.0617	0.9534	7.1888	62.31	<.0001			
3	x3		복합추론능력	3	0.0038	0.9573	4.9670	4.13	0.0478			
4	x1		창의력	4	0.0018	0.9591	5.0000	1.97	0.1676			
5		x1	창의력	3	0.0018	0.9573	4.9670	1.97	0.1676			

분산분석표 및 회귀계수 추정치

	Analysis of Variance										
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F						
Model	3	4807.97642	1602.65881	343.52	<.0001						
Error	46	214.60938	4.66542								
Corrected Total	49	5022.58580									

Root MSE	2.15996	R-Square	0.9573
Dependent Mean	106.62200	Adj R-Sq	0.9545
Coeff Var	2.02581		

Parameter Estimates								
Variable	Label	DF	Parameter Estimate	Standard Error	t Value	Pr > t	Standardized Estimate	
Intercept	Intercept	1	73.70797	1.65288	44.59	<.0001	0	
x2	단순추론능력	1	0.94356	0.11274	8.37	<.0001	0.31545	
х3	복합추론능력	1	-0.33374	0.16413	-2.03	0.0478	-0.07498	
x4	계량능력	1	0.77258	0.03927	19.68	<.0001	0.80412	

차례

- 4.1 선형 회귀분석(Linear Regression Analysis)
- 4.2 로지스틱 회귀분석(Logistic Regression Analysis)
- 4.3 회귀분석의 특징과 제약
- 4.4 분석사례 1: 선형 회귀분석
- 4.5 분석사례 2: 로지스틱 회귀분석
- 4.6 분석사례 3: 신용평점표 작성
- 4.7 연습문제

4.2.1 로지스틱 단순 회귀모형

 목표변수가 이항형 또는 다항형으로 나타나는 경우가 있다. 예를 들어, 소비자가 어떤 상품을 구입할 것인지 아닌지(구입=1, 구입하지 않음=0)를 나타내는 변수는 이항형이고, 고객의 신용등급(A=매우 좋음, B=좋음, C=좋지 않음, D=매우 좋지 않음)을 나타내는 변수는 다항형이다.

X	У		ŷ
10	0		0.2
100	1	,	1.1
1000	1		10.1

• 로지스틱 회귀분석

$$\log \frac{P(y=1|x)}{1-P(y=1|x)} = \alpha + \beta x + \varepsilon$$

≪사례≫ 독성실험 자료

번호	용량(g)	사망유무
1	0	阜
2	0	早
3	0	阜
4	0	무무유
5	1	<u>Q</u>
Ь	1	무
7	1	무
234567890	122223333	무 다 다 다 야 야 야 야 야 야
9	5	부
10	5	Ö
11	5	Ö
12	5	Ö
13	3	Ö
14	3	Ö.
15	3	<u>0</u>
16	3	<u>Q</u>

잘못된 분포가정

$$P(Y|x=1)$$

용량(x)	실험대상수	사마수(//)	망비율
0	4	0	0
1	4	1	1/4
2	4	2	2/4
3	4	4	1

$$1/4 = P(Y/x=1) -$$

P(Y|X=1)를 X 에 의해 쉽게 설명한다면...

로짓모형

$$logit(P) = log odds = ln\left(\frac{P}{1-P}\right)$$

Probability

Odds

Logit

0

4.2.2 로지스틱 회귀분석

$$\log \frac{P(y=1|x_1,\dots,x_p)}{1-p(y=1|x_1,\dots,x_p)} = \alpha + \beta_1 x_1 + \dots + \beta_p x_p$$

$$\hat{P}(y=1|x_1,\dots,x_p) = \frac{\exp(a+b_1x_1+\dots+b_px_p)}{1+\exp(a+b_1x_1+\dots+b_px_p)}$$

오즈비(Odds Ratio)

$$Odds \ Ratio = \frac{\exp\left[\alpha + \beta_1 x_1 + \dots + \beta_i (x_i + 1) + \dots + \beta_p x_p\right]}{\exp\left[\alpha + \beta_1 x_1 + \dots + \beta_i (x_i) + \dots + \beta_p x_p\right]} = \exp(\beta_i)$$

- ✓ 오즈비가 1보다 작다(계수가 음의 값을 갖는다)는 것은 입력변수 x가 감소방향으로 영향을 미침을 의미하고, 반대로 오즈비가 1보다 크다(계수가 양의 값을 갖는다)는 것은 증가방향으로 영향을 미침을 의미한다.
- ✓ 예를 들어, 월수입 x(단위 100만원)를 입력변수로 하고 어떤 상품에 대한 구입여부(1=구입, 0=구입하지 않음) ∀를 목표변수로 하여 분석하는 경우에 b=3.73이라고 해보자. 이는 <math>x가 1단위(백만원) 증가하면 구매하지 않을 확률에 대한구매할 확률의 상대비가 exp(3.73)=42배 증가한다는 것을 의미한다.

≪사례≫ 신용평가 문제

대출금	대출금잔액	담보금	대출사유	직업	근무년수	신용거래수	신용상태	최초신용	P(나쁨)	P(좋음)
2300	102370	120953	HomeImp	Office	2	13	0	91	0.04	0.96
2400	34863	47471	HomeImp	Mgr	12	21	1	70	0.14	0.86
2400	98449	117195	HomeImp	Office	4	13	0	94	0.03	0.97
2900	103949	112505	HomeImp	Office	1	13	0	96	0.03	0.97
2900	104373	120702	HomeImp	Office	2	13	0	102	0.03	0.97
2900	7750	67996	HomeImp	Other	16	8	1	122	0.68	0.32
2900	61962	70915	DebtCon	Mgr	2	37	1	283	0.19	0.81
3000		14500	HomeImp	Other	3	2	1	9		
3000		14100	HomeImp	Other	1	19	1	104		
3200	74864	87266	HomeImp	ProfExe	7	12	0	251	0.08	0.92
3200	23159		HomeImp	Mgr	20	9	1	118		
3800		73189					0			
3300	130518	164317	DebtCon	Other	9	33	1	192	1.00	0.00
3600	52337	63989	HomeImp	Office	20	20	0	204	0.00	1.00
					vn(1 '	7+73	V - 0	li5 V	+ \	0.97
H D(신용상트	н =	좋음)	=	xp(I.	1,50	<u> </u>	4J/ ₂	••••	1.00
	- B	-	き	1+	avn(17+2	3V -	0.115.1	/ +	0.98
$\hat{P}(\sqrt{19}) = \frac{\exp(1.7 + 2.3X_1 - 0.45X_2 +)}{1 + \exp(1.7 + 2.3X_1 - 0.45X_2 +)} = \frac{0.97}{1.00}$										
4000	54543	61777	HomeImp	Office	21	19	0	206	0.01	0.99
4000	26572	31960	HomeImp	Office	11	8	1	118	0.10	0.90
4100	57992	63797	DebtCon	ProfExe		31	0	166	0.22	0.78
4200	56544	59218	HomeImp	Office	19	20	0	211	0.00	1.00

차례

- 4.1 선형 회귀분석(Linear Regression Analysis)
- 4.2 로지스틱 회귀분석(Logistic Regression Analysis)
- 4.3 회귀분석의 특징과 제약
- 4.4 분석사례 1: 선형 회귀분석
- 4.5 분석사례 2: 로지스틱 회귀분석
- 4.6 분석사례 3: 신용평점표 작성
- 4.7 연습문제

회귀분석의 특징

장점

- ✓ 친밀성(familiarity)
- ✓ 실제성(feasibility)
- ✓ 해석상의 편리(interpretability)

• 단점과 대안

- ✓ 부적절하거나 불필요한 입력변수 : 변수선택방법 사용
- ✓ 선형성 : 다항회귀모형, 의사결정나무분석, 신경망분석 등 사용
- ✓ 교호작용의 결여 : 다항회귀모형, 의사결정나무분석 등 사용
- ✓ 명목형 변수 : 가변수(dummy variable) 사용
- ✓ 결측값 : 대체(imputation)

차례

- 4.1 선형 회귀분석(Linear Regression Analysis)
- 4.2 로지스틱 회귀분석(Logistic Regression Analysis)
- 4.3 회귀분석의 특징과 제약
- 4.4 분석사례 1: 선형 회귀분석
- 4.5 분석사례 2: 로지스틱 회귀분석
- 4.6 분석사례 3: 신용평점표 작성
- 4.7 연습문제

4.4.1 분석흐름도 작성

• 데이터 소스: HOUSING

- ✓ 변수 MEDV의 역할 칼럼을 Target으로 지정한다.
- ✓ 변수 CHAS의 레벨 칼럼을 Binary로 지정하고, 나머지 변수들의 레벨 칼럼은 Interval로 지정한다.

4.4.2 변수들의 분포에 대한 탐색

통계량 탐색(StatExplore) 노드 - 결과

멀티 플롯(Multi Plot) 노드 - 결과

4.4.3 회귀(Regression) 노드의 실행과 결과 보기

회귀(Regression) 노드 - 결과: 출력 윈도우

-₽				격과	- 노드: 회귀(Rearession	n 타이어그	랙· Cha	enter4 1			_	
	편집(E) 보기	へん かんか	`	2-1	<u> </u>	regression	1) -1-1-1-1	B. Chi	ipter=_i				
			,	$\hat{n} = 2$	4.457 -	0.015	\vee Λ CF	1 + 0	000 <	v R T	1	0.051	\vee 7N
		y.		y - 3	1.401 -	0.015	× AGE	7 + 0	1.009 /	хυт	+	0.051	× 211
를 출력	1				-1								
50 51			A	nalysis of Va	riance								^
52				Sum of									
53	Source		DF	Squares	Mean Square	F Value	Pr > F						
54	30di ce		ы	oquai es	mean oquare	1 Yalde	11 21						
55	Mode I		13	19364	1489.531271	76.58	<.0001						
56	Error			6613.066606	19.450196								
57	Corrected	Total	353	25977									
58													
59													
60		Model	Fit Statis	tics				Analysi	s of Maximum	LikeLihood	Estimates		
61								indiyəl	S OF MUNTHUM	. Erkormood	Locimates		
62	R-Square	0.74	_		0.7357					Standard			
63	AIC	1064.33			7.4866		Parameter	DF	Estimate	Error	t Value	Pr > [t]	
64	SBC	1118.50	072 C(p) 1.	4.0000								
65							Intercept	1	34.4572	6.0807	5.67	<.0001	
66 67		Tuno 2 /	Analysis of	Efforto			AGE	1	-0.0151	0.0153	-0.99	0.3248	
68		Type 3 A	MINITYSIS UI	Effects			В	1	0.00877	0.00303	2.89	0.0041	
69			Sum of					0 1	-1.2091	0.4513	-2.68	0.0077	
70	Effect	DF	Squares	F Value	Pr > F		CRIM	1	-0.1216	0.0347	-3.50	0.0005	
71	211000	Σ,	0444,00				DIS	1	-1.5393	0.2272	-6.77	<.0001	
72	AGE	1	18.9142	0.97	0.3248		INDUS	1	-0.0476	0.0708	-0.67	0.5022	
73	В	1	162.3673		0.0041		LSTAT NOX	1	-0.4070 -15.4515	0.0620 4.1906	-6.57 -3.69	<.0001 0.0003	
74	CHAS	1	139.5762	7.18	0.0077		PTRATIO	1	-15.4515	4.1906 0.1469	-3.69 -5.92	<.0003	
75	CRIM	1	238.3808	12.26	0.0005		RAD	1	0.3159	0.1469	4.00	<.0001	
76	DIS	1	892.7026		<.0001		RM	1	4.0489	0.5097	7.94	<.0001	
77	INDUS	1	8.7782		0.5022		TAX	1	-0.0141	0.00450	-3.13	0.0019	
78	LSTAT	1	839.2257		<.0001		ZN	1	0.0512	0.0156	3.29	0.0011	
79	NOX	1	264.4321	13.60	0.0003		L						
80	PTRAT IO	1	682.4788		<.0001								
81	RAD	1	311.8008		<.0001								
82	RM TAV	1	1227.2535		<.0001								
83 84	TAX 7N	1	191.0545 210.9258		0.0019 0.0011								~
Lna	719		Z III. 9Z50	111.04	11 111111								

차례

- 4.1 선형 회귀분석(Linear Regression Analysis)
- 4.2 로지스틱 회귀분석(Logistic Regression Analysis)
- 4.3 회귀분석의 특징과 제약
- 4.4 분석사례 1: 선형 회귀분석
- 4.5 분석사례 2: 로지스틱 회귀분석
- 4.6 분석사례 3: 신용평점표 작성
- 4.7 연습문제

분석사례 - 2를 위한 다이어그램

4.5.1 변수선택 방법의 적용

변수선택 과정의 요약

회귀계수 추정치

범주형 변수에 대한 코딩: 가변수(Dummy Variable)

4.5.2 교호작용과 이차항의 추가

4.5.3 모형 평가

4.5.4 예측확률 계산

스코어(Score) 노드 - 속성 패널

스코어(Score) 노드 - 탐색

차례

- 4.1 선형 회귀분석(Linear Regression Analysis)
- 4.2 로지스틱 회귀분석(Logistic Regression Analysis)
- 4.3 회귀분석의 특징과 제약
- 4.4 분석사례 1: 선형 회귀분석
- 4.5 분석사례 2: 로지스틱 회귀분석
- 4.6 분석사례 3: 신용평점표 작성
- 4.7 연습문제

분석사례-3을 위한 분석흐름도

표 4.5 대화식 범주화의 예

그룹	DEBTINC	DELINQ	CLAGE	VALUE	DEROG
1	Missing	Missing, 0	Missing, 150 미만	Missing	Missing
2	44 미만	1	$150 \sim 240$	47500 미만	0
3	44 이상	2 이상	240 이상	$47500 \sim 200000$	1 이상
4				200000 이상	

4.6.1 대화식 구간화: Interactive Binning 노드

대화식 구간 생성(Interactive Binning) 노드 - 속성 패널

대화식 범주화: DEBTINC(구간형 변수)의 경우

대화식 범주화 - 범주 병합

변수 DEBTINC에 대한 범주화

대화식 범주화: DELINQ(범주형 변수)의 경우

대화식 범주화: 변수 CLAGE의 경우

4.6.2 변수들의 설정 변경: Metadata 노드

4.6.3 로지스틱 회귀분석을 이용한 계수 추정

	Type 3	Analy	sis of	Effects	
				Wald	
Effect		DF	Chi-S	quare	Pr > ChiSq
GRP_CLAGE		2	134	.3582	<.0001
GRP_DEBTIN	IC	2	1078	.8534	<.0001
GRP_DELING	2	2	237	.7478	<.0001
GRP_DEROG		2	117	.8789	<.0001
GRP_VALUE		3	122	.0245	<.0001

Analysis	of	Maximum	Likelihood	Estimates
----------	----	---------	------------	-----------

				Standard	Wald		
Parameter		DF	Estimate	Error	Chi-Square	Pr>ChiSq	Exp(Est)
							_
Intercept		1	-4.0086	0.3991	100.89	<.0001	55.070
GRP_CLAGE	1	1	-1.3861	0.1389	99.61	<.0001	3.999
GRP_CLAGE	2	1	-0.4884	0.1470	11.04	0.0009	1.630
GRP_CLAGE	3	0	0				
GRP_DEBTINC	1	1	1.5979	0.3060	27.27	<.0001	0.202
GRP_DEBTINC	2	1	4.5202	0.3067	217.16	<.0001	0.011
GRP_DEBTINC	3	0	0				
GRP_DELINQ	1	1	1.9949	0.1379	209.27	<.0001	0.136
GRP_DELINQ	2	1	0.9747	0.1688	33.36	<.0001	0.377
GRP_DELINQ	3	0	0				
GRP_DEROG	1	1	2.0150	0.1920	110.16	<.0001	0.133
GRP_DEROG	2	1	0.9343	0.1213	59.31	<.0001	0.393
GRP_DEROG	3	0	0				
GRP_VALUE	1	1	-3.5041	0.4898	51.19	<.0001	33.253
GRP_VALUE	2	1	-0.2164	0.2247	0.93	0.3354	1.242
GRP_VALUE		1	0.6390	0.1921	11.07	0.0009	0.528
GRP_VALUE	4	0	0				
_							

4.6.4 평점표 작성

• 사후확률 추정

$$\begin{cases} f = -4.0086 + 1.5979 \times \text{GRP_DEBTINC}(-1) + \dots + 0 \times \text{GRP_DEROG}(2) \\ \hat{P}(y = 0) = \exp(f)/[1 + \exp(f)] \end{cases}$$

• 회귀계수 추정치의 보정

POD를 이용한 변환

평점표 작성의 예

		회귀계수	보정된		
변수	범주	추정치	추정치	평점	범위
DEBTINC	Missing	1.5979	1.5979	115	326
수입 대비	44 미만	4.5202	4.5202	326	(32.1%)
부채비율	44 이상	0.0000	0.0000	0	
CLAGE	Missing, 150 미만	-1.3861	0.0000	0	100
가장 오래된	150~240	-0.4884	0.8977	65	(9.9%)
거래의 개월 수	240 이상	0.0000	1.3861	100	
DELINQ	Missing, 0	1.9949	1.9949	144	144
부실거래의	1	0.9747	0.9747	70	(14.2%)
수	2 이상	0.0000	0.0000	0	
VALUE	Missing	-3.5041	0.0000	0	299
현재의	47500 미만	-0.2164	3.2877	237	(29.5%)
자산가치	47500~200000	0.6390	4.1431	299	
	200000 이상	0.0000	3.5041	253	
DEROG	Missing	2.0150	2.0150	145	145
주요 부실	0	0.9343	0.9343	67	(14.3%)
거래의 수	1 이상	0.0000	0.0000	0	
				합계	1014

4.6.4 평점표의 타당성 평가

	빈도		평점그룹		전체		누적			
평점그룹	우량	불량	전체	우량%	불량%	우량%	불량%	우량%	불량%	K-S
0-50	0	0	0	-	-	0.0	0.0	0.0	0.0	0.0
50-100	0	1	1	0.0	100.0	0.0	0.1	0.0	0.1	0.1
100-150	0	8	8	0.0	100.0	0.0	0.7	0.0	0.8	0.8
150-200	0	14	14	0.0	100.0	0.0	1.2	0.0	2.0	2.0
200-250	0	8	8	0.0	100.0	0.0	0.7	0.0	2.7	2.7
250-300	0	26	26	0.0	100.0	0.0	2.2	0.0	4.9	4.9
300-350	0	18	18	0.0	100.0	0.0	1.5	0.0	6.4	6.4
350-400	0	26	26	0.0	100.0	0.0	2.2	0.0	8.6	8.6
400-450	4	86	90	4.4	95.6	0.1	7.2	0.1	15.8	15.7
450-500	19	126	145	13.1	86.9	0.4	10.6	0.5	26.4	25.9
500-550	14	101	115	12.2	87.8	0.3	8.5	0.8	34.9	34.1
550-600	55	176	231	23.8	76.2	1.2	14.8	2.0	49.7	47.7
600-650	173	208	381	45.4	54.6	3.6	17.5	5.6	67.2	61.6
650-700	221	97	318	69.5	30.5	4.6	8.2	10.2	75.4	65.2
700-750	128	61	189	67.7	32.3	2.7	5.1	12.9	80.5	67.6
750-800	487	79	566	86.0	14.0	10.2	6.6	23.1	87.1	64.0
800-850	1259	95	1354	93.0	7.0	26.4	8.0	49.5	95.1	45.6
850-900	366	16	382	95.8	4.2	7.7	1.3	57.2	96.4	39.2
900-950	1898	43	1941	97.8	2.2	39.8	3.6	97.0	100.0	3.0
950-1000	84	0	84	100.0	0.0	1.8	0.0	98.8	100.0	1.2
1000-	63	0	63	100.0	0.0	1.3	0.0	100.0	100.0	0.0
전체	4771	1189	5960	80.1	19.9	100.0	100.0	최대집	(K-S)	67.6

K-S(Kolmogrov-Smirnov) 통계량

민감도와 특이도

- n: 전체 개체수
- n₁: 우량으로 관측된 개체수
- n₀: 불량으로 관측된 개체수
- $-n_{11}$: 우량으로 관측된 n_1 개의 개체 중 우량으로 정분류된 개체수
- $-n_{00}$: 불량으로 관측된 n_0 개의 개체 중 불량으로 정분류된 개체수
- 정확도(Accuracy; 정분류율) = $(n_{11} + n_{00})/n$
- 오분류율(Misclassification Rate) = $[(n_1 n_{11}) + (n_0 n_{00})]/n$
- 민감도(Sensitivity) = n_{11}/n_1
- \P 0| Σ (Specificity) = n_{00}/n_0

... 민감도와 특이도

	빈	도	누	적	정분	부류	예측 정확도		
절단값	우량	불량	우량	불량	우량	불량	정확도	민감도	특이도
0	-	-	-	-	4771	0	0.801	1.000	0.000
50	0	1	0	1	4771	1	0.801	1.000	0.001
100	0	8	0	9	4771	9	0.801	1.000	0.008
150	0	14	0	23	4771	23	0.801	1.000	0.019
200	0	8	0	31	4771	31	0.801	1.000	0.026
250	0	26	0	57	4771	57	0.801	1.000	0.048
300	0	18	0	75	4771	75	0.801	1.000	0.063
350	0	26	0	101	4771	101	0.801	1.000	0.085
450	4	86	4	187	4767	187	0.800	0.999	0.157
500	19	126	23	313	4748	313	0.797	0.995	0.263
550	14	101	37	414	4734	414	0.794	0.992	0.348
600	55	176	92	590	4679	590	0.785	0.981	0.496
650	173	208	265	798	4506	798	0.756	0.944	0.671
700	221	97	486	895	4285	895	0.719	0.898	0.753
750	128	61	614	956	4157	956	0.697	0.871	0.804
800	487	79	1101	1035	3670	1035	0.616	0.769	0.870
850	1259	95	2360	1130	2411	1130	0.405	0.505	0.950
900	366	16	2726	1146	2045	1146	0.343	0.429	0.964
950	1898	43	4624	1189	147	1189	0.025	0.031	1.000
1000	84	0	4708	1189	63	1189	0.011	0.013	1.000
Max	63	0	4771	1189	0	1189	0.000	0.000	1.000

ROC(Receiver Operation Characteristic) 곡선

모델 비교(Model Comparison) 노드 - 결과

모델 비교(Model Comparison) 노드 - 결과: 테이블 보기

차례

- 4.1 선형 회귀분석(Linear Regression Analysis)
- 4.2 로지스틱 회귀분석(Logistic Regression Analysis)
- 4.3 회귀분석의 특징과 제약
- 4.4 분석사례 1: 선형 회귀분석
- 4.5 분석사례 2: 로지스틱 회귀분석
- 4.6 분석사례 3: 신용평점표 작성
- 4.7 연습문제

회귀(Regression) 노드 - 속성 패널과 항 편집기

