

Micropower Dual Comparator

FEATURES

- Maximum Offset Voltage: 1mVMaximum Bias Current: 15nA
- Typical Output Drive: 70mA
- Operates from 1.1V to 40V
- Internal Pull-Up Current
- Output Can Drive Loads Above V+
- 30μA Supply Current (LT1017)
 110μA Supply Current (LT1018)
- Available in 8-Lead PDIP, 8-Lead Plastic S0, and 16-Lead Plastic SO Packages

APPLICATIONS

- Power Supply Monitors
- Relay Driving
- Oscillators

 \mathcal{LT} , LT, LTC and LTM are registered trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners.

DESCRIPTION

The LT®1017/LT1018 are general purpose micropower comparators. The LT1017 is optimized for lowest operating power while the LT1018 operates at higher power and higher speed. Both devices can operate from a single 1.1V cell up to 40V. The output stage includes a class "B" pull-up current source, eliminating the need for an external resistive pull-up and saving power. The output stage is also designed to allow driving loads connected to a supply more positive than the device, as can comparators with open-collector output stages.

Input specifications are also excellent. On-chip trimming minimizes offset voltage, while high gain and common mode rejection ratio keep other input referred errors low. Common mode voltage range includes ground. Special circuitry prevents false output states even if the input is overdriven.

The LT1017/LT1018 are pin compatible with older dual comparators such as 393 type devices.

TYPICAL APPLICATION

1.5V Powered Refrigerator Alarm

Supply Current

ABSOLUTE MAXIMUM RATINGS (Note 1)

Supply Voltage	40V
Differential Input Voltage	
Input Voltage	
Short-Circuit Duration	
Storage Temperature Range	. −65°C to 150°C

Operating Temperature Range	
LT1017M/LT1018M	-55°C to 125°C
LT1017C/LT1018C	0°C to 70°C
LT1017I/LT1018I	40°C to 85°C
Lead Temperature (Soldering, 10 sec)	300°C

PACKAGE/ORDER INFORMATION

Consider the 8-Lead Plastic Dip Package For Alternate Source

ORDER PART NUMBER	PART MARKING	ORDER PART NUMBER	PART MARKING
LT1017MH LT1017CH LT1018MH LT1018CH		LT1017CSW LT1018CSW	

Order Options Tape and Reel: Add #TR

Lead Free: Add #PBF Lead Free Tape and Reel: Add #TRPBF Lead Free Part Marking: http://www.linear.com/leadfree/

^{*}The temperature grade is identified by a label on the shipping container. Consult LTC Marketing for parts specified with wider operating temperature ranges.

ELECTRICAL CHARACTERISTICS The • denotes the specifications which apply over the full operating temperature range of -55°C to 85°C for M grade parts, -40°C to 85°C for I grade parts and 0°C to 70°C for C grade parts.

PARAMETER	CONDITIONS	,	MIN	LT1017 TYP	MAX	MIN	LT1018 TYP	MAX	UNITS
Offset Voltage (Note 2)	± 0.75 V \leq V _S \leq ± 20 V	25°C 125°C		0.4 0.5	1 1.4 5		0.4 0.5 0.7	1 1.4 1.5	mV mV mV
Bias Current	± 0.75 V \leq V _S \leq ± 20 V	25°C 125°C		5 7 10	15 25 60		15 18	75 100 110	nA nA nA
Offset Current	$\pm 0.75 \text{V} \le \text{V}_{\text{S}} \le \pm 20 \text{V}$	25°C 125°C		0.4 0.5	2 3 20		1 1.6	8 12 20	nA nA nA
Common Mode Rejection Ratio	$V_S = \pm 20V, -20V \le V_{CM} \le 19.1V$	25°C 125°C	105 100 82	115 115 100		105 100 95	115 115 110		dB dB dB
Power Supply Rejection Ratio	± 0.75 V \leq V _S \leq ± 20 V	25°C 125°C	96 95 82	110 105		96 95 86	110 105 100		dB dB dB
Gain	No Load, $V_{OUT} = \pm 19.9V$ (Note 3)	25°C 125°C	110 105 100	115 115		110 105 100	125 120		dB dB dB
	$R_L = 4k, V_{OUT} = \pm 19V$	25°C	100 94	110		100 94	110		dB dB
Output Sink Current	$V^+ = 4.5V$, $V^- = 0V$ Overdrive > 30mV	25°C 125°C	30 25 10	65 50 20		35 25 10	70 50 30		mA mA mA
Output Source Current	$V^{+} = 40V, V^{-} = 0V$ $V_{IN} = 5mV, V_{OUT} = 0.4V$	25°C 125°C	30 25 25	75 70 75		75 50 50	250 220 200		μΑ μΑ μΑ
	$V^{+} = 1.2V, V^{-} = 0V$ $V_{IN} = 5mV, V_{OUT} = 0.4V$	25°C 125°C	25 15 25	35 20 40		70 45 40	140 120 110		μΑ μΑ μΑ
Negative Output Saturation	I _{OUT} = 0mA V ⁺ = 4.5V, V ⁻ = 0V = 0.1mA V _{IN} = -10mV = 1mA = 10mA = 30mA	25°C 25°C 25°C 25°C 25°C		5 35 60 120 350	20 60 120 200 600		5 35 60 120 350	15 60 120 250 700	mV mV mV mV
	$I_{OUT} = 0mA$ $V^{+} = 4.5V$, $V^{-} = 0V$ = 0.1mA $V_{IN} = -10mV$ = 1mA = 10mA = 30mA	•		5 40 75 150 600	20 75 150 300 900		8 35 70 150 500	20 70 150 300 900	mV mV mV mV
	$I_{OUT} = 0mA$ $V^{+} = 4.5V$, $V^{-} = 0V$ = 0.1mA $V_{IN} = -10mV$ = 1mA = 10mA = 30mA	125°C 125°C 125°C 125°C 125°C		25 60 100 300	50 100 200 600		10 60 110 300 900	40 100 200 400	mV mV mV mV
Positive Output Saturation	I _{OUT} = 0μA = 10μA = 0μA = 10μA = 0μA = 10μA	25°C 25°C • 125°C 125°C		40 175 45 190 50	80 250 90 300 100 300		35 175 45 190 50	80 250 90 300 100 300	mV mV mV mV mV

ELECTRICAL CHARACTERISTICS The • denotes the specifications which apply over the full operating temperature range of -55°C to 85°C for M grade parts, -40°C to 85°C for I grade parts and 0°C to 70°C for C grade parts.

PARAMETER	CONDITIONS		MIN	LT1017 TYP	MAX	MIN	LT1018 TYP	MAX	UNITS
Leakage Current	$V_S = 5V, V_{OUT} = 40V V_{IN} \ge 100mV$	25°C 125°C		0.5 0.6	3 3 5		1 1.8	8 10 15	μΑ μΑ μΑ
Supply Current	V _S = 5V	25°C 125°C		30 40	60 80 80		110 110	250 250 300	μΑ μΑ μΑ
	V _S = 40V	25°C 125°C		40 55	90 100 100		130 140	250 270 300	μΑ μΑ μΑ
Minimum Operating Voltage	I _{OUT} = 1mA	25°C 125°C			1.15 1.15 1.15			1.2 1.2 1.2	V V V

Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.

Note 2: Offset voltage is guaranteed over a common mode voltage range of $V^- \le V_{IN} \le (V^+ - 0.9V).$

Note 3: No load gain is guaranteed but not tested (LT1017 only).

TYPICAL PERFORMANCE CHARACTERISTICS

10178ff

TYPICAL PERFORMANCE CHARACTERISTICS

LINEAR TECHNOLOGY

10178ff

Driving Relays

Increasing Positive Output Current

Delay On Power Up

LT1018 Op Amp, $A_V = 100$

LT1017 Op Amp, $A_V = 100$

Negative Voltage Regulator

2-Wire Comparator

5V Power Supply Monitor

Precise Tri-Wave Generator

Power Supply Monitor

1.5V Input Flyback Regulator

Regulated Step-Up Converter

Low Power* V-to-F Converter

N8 Package 8-Lead PDIP (Narrow .300 Inch)

(Reference LTC DWG # 05-08-1510)

NOTE:
1. DIMENSIONS ARE MILLIMETERS

MILLIMETERS

*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .010 INCH (0.254mm)

S8 Package 8-Lead Plastic Small Outline (Narrow .150 Inch)

(Reference LTC DWG # 05-08-1610)

SW Package 16-Lead Plastic Small Outline (Wide .300 Inch)

(Reference LTC DWG # 05-08-1620)

- 2. DRAWING NOT TO SCALE
- 3. PIN 1 IDENT, NOTCH ON TOP AND CAVITIES ON THE BOTTOM OF PACKAGES ARE THE MANUFACTURING OPTIONS.

 THE PART MAY BE SUPPLIED WITH OR WITHOUT ANY OF THE OPTIONS.
- THE PART MAY BE SUPPLIED WITH OR WITHOUT ANY OF THE OPTIONS

 4. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.

 MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)

Fully Isolated Limit Comparator

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS				
LT1011/LT1011A	Voltage Comparators	Improved LT111A, 0.5mV V _{OS(MAX)} , 25nA I _{B(MAX)} , 3nA I _{OS(MAX)} , 250ns t _{PD(MAX)}				
LT1020	Micropower Regulator and Comparator	40μA I _{SUPPLY} , 125mA I _{OUT} , 2.5V Reference Voltage				
LTC1040	Dual Micropower Comparator	1.5µW (1Sample/Second), 0.5mV V _{OS(MAX)} , Rail-to-Rail Input				
LT1120/LT1120A	Micropower Regulator with Comparator and Shutdown	20μΑ I _{SUPPLY} , 125mA I _{OUT} , 2.5V Reference Voltage				
LT319A	Dual Comparators	0.5mV V _{OS(MAX)} , 25mA I _{OUT} , 80ns t _{PD}				
LT1671	Single Supply Ground Sensing Comparator	450μA I _{SUPPLY} , 60ns t _{PD} , 0.8mV V _{OS}				
LT1716	Micropower, 44V, SOT-23 Ground Sensing Comparator	Input Common Mode Range Extends from -5V to 44V from Negative Supply				