

In the Claims:

Please amend claims 1-12 as indicated below. This listing of claims replaces all prior versions.

1. (Currently Amended) A circuit arrangement for controlling a display device (2) which can be operated in a partial mode, the circuit arrangement comprising a row drive circuit (4) for driving n rows of the display device (2) and a column drive circuit (3) for driving m columns of the display device, wherein the row drive circuit (4) controls the n rows of the display device sequentially from 1 to n, and the column drive circuit (3) supplies column voltages to the m columns, which the column voltages corresponding to the picture data to be displayed of pixels of the controlled row, characterized in that a logic function (L_1-L_n) is included in the row drive circuit (4) in front of at least one row output (Z_1-Z_n), to which logic function a first control signal is (R_E) can be supplied, said first control signal (R_E) achieving a deactivation/activation of the at least one row output (Z_1-Z_n) in dependence on the partial mode.
2. (Currently Amended) A circuit arrangement as claimed in claim 1, characterized in that the logic function (L_1-L_n) is connected in front of each row output (Z_1-Z_n).
3. (Currently Amended) A circuit arrangement as claimed in claim 1, characterized in that the logic function (L_1-L_n) is realized as an AND gate.
4. (Currently Amended) A circuit arrangement as claimed in claim 1, characterized in that the row drive circuit (4) comprises a shift register (41) which has n stages (S_1 to S_n) and n outputs (A_1 to A_n), and in that a second control signal (R_P) can be supplied to the shift register at the an input (E) thereof for controlling the consecutive rows 1 to n, which second control signal activates the outputs (A_1 to A_n) of the shift register (41) consecutively in dependence on a clock signal (T).
5. (Currently Amended) A circuit arrangement as claimed in claim 2, characterized in that the second first control signal (R_P) is capable of switching off all n row outputs (Z_1 to

Z_n) by means of the logic functions (L_1 to L_n) during the control of a line (Z_3, Z_4) that is not to be displayed in the partial mode.

6. (Currently Amended) A circuit arrangement as claimed in claim 1, characterized in that a control logic (S) in the column drive circuit (3) generates the first control signal (R_E) in dependence on ~~a~~ the partial mode and supplies it the first control signal to the row drive circuit (4).

7. (Currently Amended) A circuit arrangement as claimed in claim 1, characterized in that the column drive circuit (3) supplies no column voltages to the m columns outputs (A_1 to A_m) in the a case of a line (Z_3, Z_4) that is not to be displayed.

8. (Currently Amended) A circuit arrangement as claimed in claim 4 [[1]], characterized in that the frequency of the clock signal (T) can be increased in the a case of one or several consecutive rows (Z_3, Z_4) that is or are not to be displayed.

9. (Currently Amended) A row drive circuit (4) for controlling n rows of a display device that is operable in a partial mode, the row drive circuit (2) having n outputs (A₁ to A_n), with a logic function (L₁ to L_n) connected in front of each of the row outputs (Z₁ to Z_n), by means of which wherein the logic function the row outputs (Z₁ to Z_n) can be deactivates[[d]]/activates[[d]] the row outputs in dependence on [[a]] the partial mode upon the supply of responsive to a first control signal (R_E).

10. (Currently Amended) A display device (2) comprising a circuit arrangement as claimed in claim 1.

11. (Currently Amended) An electronic appliance comprising a display device (2) as claimed in claim 10.

12. (Currently Amended) A method of realizing a partial mode wherein of a display device, the display device (2) is controlled by a circuit arrangement comprising that

includes a row drive circuit (4) for driving the n rows and a column drive circuit (3) for supplying column voltages to m columns, the method comprising:

wherein sequentially controlling the n rows are sequentially controlled from 1 to n and

supplying the column voltages to the m columns necessary for displaying the corresponding picture data of this row are supplied to the m columns,

deactivating and wherein all row outputs of the row drive circuit (Z₁ to Z_n) are deactivated by in response to a first control signal (R_E) in the control of when a row (Z₃, Z₄) is not to be displayed in the realization of a partial mode of the display device, and

activating while all of the row outputs (Z₁ to Z_n) are activated again by means of in response to the first control signal (R_E) for the control of when a row (Z₁, Z₂, Z₅) that is to be displayed in the partial mode.