Optimal σ for Maximum Kernel Separation

Chieh Wu

Electrical and Computer Engineering Dept., Northeastern University, Boston, MA

Abstract

Although the Gaussian kernel is the most common kernel choice for kernel methods, its σ value is a hyperparameter that must be tuned for each dataset. This work proposes to set the σ value based on the maximum kernel separation. The source code is made publicly available on https://github.com/endsley/opt_gaussian_-.

1 Method

Let $X \in \mathbb{R}^{n \times d}$ be a dataset of n samples with d features and let $Y \in \mathbb{R}^{n \times k}$ be the corresponding one-hot encoded labels where k denotes the number of classes. Given $\kappa_X(\cdot,\cdot)$ and $\kappa_Y(\cdot,\cdot)$ as two kernel functions that applies respectively to X and Y to construct kernel matrices $K_X \in \mathbb{R}^{n \times n}$ and $K_Y \in \mathbb{R}^{n \times n}$. Also let \mathcal{S} and $\tilde{\mathcal{S}}$ be sets of all pairs of samples of (x_i, x_j) from a dataset X that belongs to the same and different classes respectively, then the average kernel value for all (x_i, x_j) pairs with the same class is

$$d_{\mathcal{S}} = \frac{1}{|\mathcal{S}|} \sum_{i, i \in \mathcal{S}} e^{-\frac{||x_i - x_j||^2}{2\sigma^2}}$$
 (1)

and the average kernel value for all (x_i, x_j) pairs between different classes is

$$d_{\bar{S}} = \frac{1}{|\bar{S}|} \sum_{i,j \in \bar{S}} e^{-\frac{||x_i - x_j||^2}{2\sigma^2}}.$$
 (2)

We propose to find the σ that maximizes the difference between $d_{\mathcal{S}}$ and $d_{\bar{\mathcal{S}}}$ or

$$\max_{\sigma} \quad \frac{1}{|\mathcal{S}|} \sum_{i,j \in \mathcal{S}} e^{-\frac{||x_i - x_j||^2}{2\sigma^2}} - \frac{1}{|\bar{\mathcal{S}}|} \sum_{i,j \in \bar{\mathcal{S}}} e^{-\frac{||x_i - x_j||^2}{2\sigma^2}}.$$
 (3)

It turns that that is expression can be computed efficiently. Let $g=\frac{1}{|\mathcal{S}|}$ and $\bar{g}=\frac{1}{|\mathcal{S}|}$, and let $\mathbf{1}_{n\times n}\in\mathbb{R}^{n\times n}$ be a matrix of 1s, then we can define Q as

$$Q = -gK_Y + \bar{g}(\mathbf{1}_{n \times n} - K_Y). \tag{4}$$

Or Q can be written more compactly as

$$Q = \bar{g} \mathbf{1}_{n \times n} - (g + \bar{g}) K_Y. \tag{5}$$

Given Q, Eq. (3) becomes

$$\min_{\sigma} \quad \text{Tr}(K_X Q). \tag{6}$$

Since this is a convex objective, it can be solved with BFGS.

Below, we plot out the average within cluster kernel and the between cluster kernel values as we vary σ . From the plot, we can see that the maximum separation is discovered via BFGS.

Preprint. Under review.

Figure 1: Maximum Kernel separation.

Relation to HSIC. From Eq. (6), we can see that the σ that causes maximum kernel separation is directly related to HSIC. Given that the HSIC objective is normally written as

$$\min_{\sigma} \quad \text{Tr}(K_X H K_Y H), \tag{7}$$

by setting $Q=HK_YH$, we can see how the two formulations are equivalent. We also notice that the $Q_{i,j}$ element is positive/negative for (x_i,x_j) pairs that are with/between classes respectively. Therefore, the argument for the global optimum should be equivalent for both objectives. Below, we show a figure of HSIC values as we vary σ . Notice how the optimal σ is almost equivalent to the solution from maximum kernel separation.

Figure 2: Maximal HSIC.