CS1138

Machine Learning

Lecture : Gradient Descent

(Slide Credits: Andrew Ng)

Arpan Gupta

Have some function
$$J(\theta_0,\theta_1)$$
 $J(\theta_0,\theta_1)$ $J(\theta_0,\theta_1)$

Outline:

- Start with some θ_0, θ_1 (Say $\Theta_0 = 0, \Theta_1 = 0$)
- Keep changing $\underline{\theta}_0,\underline{\theta}_1$ to reduce $\underline{J}(\theta_0,\theta_1)$ until we hopefully end up at a minimum

Case: When gradient descent reaches global minima

Case: When gradient descent does not reach global minima

```
repeat until convergence { \theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) \quad \text{(for } j = 0 \text{ and } j = 1) }
```

Correct: Simultaneous update

```
temp0 := \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)
temp1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)
\theta_0 := temp0
\theta_1 := temp1
```


(for
$$j = 0$$
 and $j = 1$)

Simultaneously update

Correct: Simultaneous update

$$-$$
 temp $0 := \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$

$$\rightarrow$$
 temp1 := $\theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$

$$\rightarrow \theta_0 := \text{temp}0$$

$$\rightarrow \theta_1 := \text{temp1}$$

$$\rightarrow \text{temp0} := \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$$

$$\rightarrow \theta_0 := \text{temp} 0$$

$$\rightarrow \underline{\text{temp1}} := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$$

$$\rightarrow \theta_1 := \text{temp1}$$

repeat until convergence { (simultaneously update j = 0 and j = 1O, EIR

Assuming that J is a function of single parameter Θ_1 When slope is positive (move left).

Assuming that J is a function of single parameter Θ_1 When slope is negative (move right).

Effect of Learning Rate (α)

$$\theta_1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_1)$$

If α is too small, gradient descent can be slow.

Effect of Learning Rate (α)

If α is too large, gradient descent can overshoot the minimum. It may fail to converge, or even diverge.

What will one step of gradient descent do if Θ_1 is already at the local minima?

Therefore, no change.

Gradient descent can converge to a local minimum, even with the learning rate α fixed.

$$\theta_1 := \theta_1 - \alpha \frac{d}{d\theta_1} J(\theta_1)$$

As we approach a local minimum, gradient descent will automatically take smaller steps. So, no need to decrease α over time.

Gradient descent can converge to a local minimum, even with the learning rate α fixed.

$$\theta_1 := \theta_1 - \alpha \frac{d}{d\theta_1} J(\theta_1)$$

As we approach a local minimum, gradient descent will automatically take smaller steps. So, no need to decrease α over time.

Gradient Descent for linear regression

$$\frac{\partial}{\partial \theta_{j}} J(\theta_{0}, \theta_{1}) = \frac{\partial}{\partial \theta_{0}} \cdot \frac{1}{2m} \sum_{i=1}^{m} \left(h_{0}(x^{(i)}) - y^{(i)} \right)^{2}$$

$$= \frac{\partial}{\partial \theta_{j}} \frac{1}{2m} \sum_{i=1}^{m} \left(\Theta_{0} + \Theta_{1} x^{(i)} - y^{(i)} \right)^{2}$$

$$\Theta \circ j = 0 : \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1) = \frac{1}{m} \underbrace{\sum_{i=1}^{m} \left(h_0(x^{(i)}) - y^{(i)} \right)}_{i=1}$$

$$\Theta_1 j = 1 : \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1) = \frac{1}{m} \underbrace{\sum_{i=1}^{m} \left(h_0(x^{(i)}) - y^{(i)} \right)}_{i=1} \cdot y^{(i)}$$

```
repeat until convergence {
\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m \left( h_{\theta}(x^{(i)}) - y^{(i)} \right)
\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m \left( h_{\theta}(x^{(i)}) - y^{(i)} \right) \cdot x^{(i)}
}
```

2](0,0)

repeat until convergence {

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)} \right)$$

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)} \right) \cdot x^{(i)}$$

update $heta_0$ and $heta_1$ simultaneously

(for fixed θ_0 , θ_1 , this is a function of x)

(function of the parameters θ_0, θ_1)

(for fixed θ_0 , θ_1 , this is a function of x)

 $J(\theta_0,\theta_1)$

(function of the parameters θ_0, θ_1)

 $J(heta_0, heta_1)$ (function of the parameters $heta_0, heta_1$)

 $J(heta_0, heta_1)$ (function of the parameters $heta_0, heta_1$)

(for fixed θ_0 , θ_1 , this is a function of x)

(function of the parameters θ_0, θ_1)

Gradient Descent (Summary)

Aim: To Find (Θ_0, Θ_1) that minimizes height of the surface $J(\Theta)$.

- Start at some point.
- Find gradient and go down in the direction (steepest descent direction chosen)

- Note: For non-linear cost function with multiple minima points, it may get stuck at local minima
- For linear regression, there is no local optima. The cost function for linear regression is a Convex Function (bowl shaped).
 Convergence guaranteed.

"Batch" Gradient Descent

"Batch": Each step of gradient descent uses all the training examples.

If m is large (e.g., 1M examples), then computing the derivative becomes very slow, just to make a tiny update.

Stochastic Gradient Descent (SGD): Use only one random sample to compute the derivative and then update the parameters.

- It takes a noisy (random) path, but on average is headed towards the global minima.
- Used in practice for large datasets. Much **faster** in practice. May not quite converge to the exact global minima.

Multivariate LR: Using Multiple Features (Variables)

Multiple features (variables).

Size (feet²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)
*1	Xs	*3	*4	9
2104	5	1	45	460
-> 1416	3	2	40	232 + M = 47
1534	3	2	30	315
852	2	1	36	178
] / []
Notation:	*	*	1	$\chi^{(2)} = \begin{bmatrix} 1416 \\ 3 \end{bmatrix}$
$\rightarrow n$ = number of features $n = 4$				<u>~</u> ≥ €
$\rightarrow x^{(i)}$ = input (features) of i^{th} training example.				
$\rightarrow x_i^{(i)}$ = value of feature j in i^{th} training example.				

Hypothesis (Multiple Features)

$$k_{\Theta}(x) = \Theta_{0} + \Theta_{1}x_{1} + \Theta_{2}x_{2} + \Theta_{3}x_{3} + \Theta_{4}x_{4}$$

$$k_{\Theta}(x) = 80 + 0.1x_{1} + 0.01x_{2} + 3x_{3} - 2x_{4}$$

$$k_{\Theta}(x) = 80 + 0.1x_{1} + 0.01x_{2} + 3x_{3} - 2x_{4}$$

$$k_{\Theta}(x) = 80 + 0.1x_{1} + 0.01x_{2} + 3x_{3} - 2x_{4}$$

$$k_{\Theta}(x) = 80 + 0.1x_{1} + 0.01x_{2} + 3x_{3} - 2x_{4}$$

$$k_{\Theta}(x) = 80 + 0.1x_{1} + 0.01x_{2} + 3x_{3} - 2x_{4}$$

$$k_{\Theta}(x) = 80 + 0.1x_{1} + 0.01x_{2} + 3x_{3} - 2x_{4}$$

$$k_{\Theta}(x) = 80 + 0.1x_{1} + 0.01x_{2} + 3x_{3} - 2x_{4}$$

$$k_{\Theta}(x) = 80 + 0.1x_{1} + 0.01x_{2} + 3x_{3} - 2x_{4}$$

$$k_{\Theta}(x) = 80 + 0.1x_{1} + 0.01x_{2} + 3x_{3} - 2x_{4}$$

$$k_{\Theta}(x) = 80 + 0.1x_{1} + 0.01x_{2} + 3x_{3} - 2x_{4}$$

$$k_{\Theta}(x) = 80 + 0.1x_{1} + 0.01x_{2} + 3x_{3} - 2x_{4}$$

$$k_{\Theta}(x) = 80 + 0.1x_{1} + 0.01x_{2} + 3x_{3} - 2x_{4}$$

$$k_{\Theta}(x) = 80 + 0.1x_{1} + 0.01x_{2} + 3x_{3} - 2x_{4}$$

$$k_{\Theta}(x) = 80 + 0.1x_{1} + 0.01x_{2} + 3x_{3} - 2x_{4}$$

$$k_{\Theta}(x) = 80 + 0.1x_{1} + 0.01x_{2} + 3x_{3} - 2x_{4}$$

$$k_{\Theta}(x) = 80 + 0.1x_{1} + 0.01x_{2} + 3x_{3} - 2x_{4}$$

$$k_{\Theta}(x) = 80 + 0.1x_{1} + 0.01x_{2} + 3x_{3} + 0.01x_{2} + 3x_{4}$$

$$k_{\Theta}(x) = 80 + 0.1x_{1} + 0.01x_{2} + 3x_{3} + 0.01x_{2} + 3x_{4} + 0.01x_{2} + 3x_{4} + 0.01x_{2} + 3x_{4} + 0.01x_{4} + 0.01x$$

For convenience of notation, define
$$x_0 = 1$$
. $(x_0) = 1$. $(x_0) =$

Multivariate linear regression.

Gradient Descent for Multiple Variables

Hypothesis: $h_{\theta}(x) = \theta^T x = \theta_0 x_0 + \theta_1 x_1 + \theta_2 x_2 + \cdots + \theta_n x_n$

Parameters: $\theta_0, \theta_1, \dots, \theta_n$

Cost function:

$$J(\theta_0, \theta_1, \dots, \theta_n) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Gradient descent:

Repeat { $\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \dots, \theta_n)$ (simultaneously update for every $j = 0, \dots, n$)

Gradient Descent

Previously (n=1):

$$\theta_0 := \theta_0 - o \underbrace{\frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)})}_{\frac{\partial}{\partial \theta_0} J(\theta)}$$

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) \underline{x^{(i)}}$$

(simultaneously update $heta_0, heta_1$)

}

New algorithm $(n \ge 2)$:

$$\theta_j := \theta_j - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)}$$

(simultaneously update θ_j for $j = 0, \dots, n$)

1

Gradient Descent

Previously (n=1):

$$\theta_0 := \theta_0 - o \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})$$

$$\underbrace{\left[\frac{\partial}{\partial \theta_0} J(\theta)\right]}$$

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) \underline{x^{(i)}}$$

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) x_0^{(i)}$$

(simultaneously update $heta_0, heta_1$)

New algorithm $(n \ge 2)$:

$$\theta_j := \theta_j - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)}$$

(simultaneously update $heta_i$ for j = 0, ..., n

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_0^{(i)}$$

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_1^{(i)}$$

$$\theta_2 := \theta_2 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_2^{(i)}$$

Feature Scaling

Idea: Make sure features are on a similar scale.

$$\Rightarrow x_1 = \frac{\text{size (feet}^2)}{2000}$$

$$\Rightarrow x_2 = \frac{\text{number of bedrooms}}{5}$$

Mean normalization

Replace x_i with $x_i - \mu_i$ to make features have approximately zero mean (Do not apply to $x_0 = 1$).

E.g.
$$x_1 = \frac{size-1000}{2000}$$

$$x_2 = \frac{\#bedrooms-2}{5}$$

$$-0.5 \le x_1 \le 0.5, -0.5 \le x_2 \le 0.5$$

$$x_1 \leftarrow \underbrace{x_1 - \mu_1}_{\text{in training}}$$

$$x_2 \leftarrow \underbrace{x_2 \leftarrow 0.5}_{\text{toge}}$$

Gradient descent

$$\rightarrow \theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$

- "Debugging": How to make sure gradient descent is working correctly.
- How to choose learning rate α .

Making sure gradient descent is working correctly.

Example automatic convergence test:

Declare convergence if $J(\theta)$ decreases by less than 10^{-3} in one iteration.

Making sure gradient descent is working correctly.

Gradient descent not working.

Use smaller α .

- For sufficiently small lpha, J(heta) should decrease on every iteration.
- But if α is too small, gradient descent can be slow to converge.

Summary:

- If α is too small: slow convergence.
- If α is too large: $J(\theta)$ may not decrease on every iteration; may not converge. (Slow converge cles possible)

To choose α , try

$$\dots, 0.001,$$

$$, 0.1, , 1, \dots$$

7(0)

#itere

Features and Polynomial Regression

Housing prices prediction $h_{\theta}(x) = \theta_0 + \theta_1 \times frontage + \theta_2 \times depth$ Area x = frontage * depth ho(x) =00 +01x

Polynomial regression

$$h_{\theta}(x) = \theta_{0} + \theta_{1}x_{1} + \theta_{2}x_{2} + \theta_{3}x_{3}$$

$$= \theta_{0} + \theta_{1}(size) + \theta_{2}(size)^{2} + \theta_{3}(size)^{3}$$

$$\Rightarrow x_{1} = (size)$$

$$\Rightarrow x_{2} = (size)^{2}$$

$$\Rightarrow x_{3} = (size)^{3}$$
Size: |-|000,000|
$$Size^{2} : |-|000,000|$$

Choice of features

$$\rightarrow h_{\theta}(x) = \theta_0 + \theta_1(size) + \theta_2(size)^2$$

$$\rightarrow h_{\theta}(x) = \theta_0 + \theta_1(size) + \theta_2\sqrt{(size)}$$

Normal Equation: Method to solve for Θ analytically

Intuition: If 1D $(\theta \in \mathbb{R})$

$$J(\theta) = a\theta^2 + b\theta + c$$

$$\frac{\partial}{\partial \phi} J(\phi) = \frac{\sec^2 \phi}{\cos^2 \phi}$$
Solve for ϕ

$$\theta \in \mathbb{R}^{n+1}$$

$$J(\theta_0, \theta_1, \dots, \theta_n) = \frac{1}{2m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})^2$$

$$\frac{\partial}{\partial \theta_j} J(\theta) = \dots = 0 \quad \text{(for every j)}$$

 $_{\scriptscriptstyle{\mathsf{JKLU}\,\mathsf{2024-25}}}\mathsf{Solve}\,\mathsf{for}\,\, heta_0, heta_1,\ldots, heta_n$

Examples: m=4.

	J	Size (feet²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)	
$\rightarrow x_0$		x_1	x_2	x_3	x_4	y	_
,	1	2104	5	1	45	460	7
	1	1416	3	2	40	232	1
	1	1534	3	2	30	315	
	1	852	2	_1	36	178	7
24-25	>	$X = \begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{bmatrix}$	$2104 5 1$ $416 3 2$ $852 2 1$ $M \times (N+1)$ $(TX)^{-1}$	$\begin{bmatrix} 2 & 30 \\ 36 \end{bmatrix}$	$y = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$	460 232 315 178	Vestor

$m \text{ examples } (x^{(1)}, y^{(1)}), \dots, (x^{(m)}, y^{(m)}) \text{ ; } \underline{n \text{ features.}}$

$$\theta = (X^T X)^{-1} X^T y$$

Question

- Which of the following is/are True w.r.t. normal equation?
 - It may not have a solution.
- → It may have a unique solution.
- → It may have infinite solutions.
- \rightarrow It is the least squares solution of Ax = b

Homework

- Derivation of Normal Equation.
- In which cases will a unique solution be not available using the Normal Equation (for linear regression).
- Is feature scaling necessary when using a Normal Equation to solve the linear regression task. (Hint: Are iterations needed.)

\underline{m} training examples, \underline{n} features.

Gradient Descent

- \rightarrow Need to choose α .
- → Needs many iterations.
 - Works well even when n is large.

Normal Equation

- \rightarrow No need to choose α .
- Don't need to iterate.
 - Need to compute
- $(X^TX)^{-1}$
- $\frac{1\times N}{1\times N}$
- Slow if n is very large.

References

Gradient Descent Playground

https://uclaacm.github.io/gradient-descent-visualiser/

Stanford CS229 Machine Learning Course by Andrew Ng.

End of Lecture