TD N° 1: Introduction et rappels

Rappel. On note Φ (resp. φ) la fonction de répartition (resp. la densité) d'une variable aléatoire X qui suit une loi normale centrée réduite :

$$\varphi(x) := \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$$
 et $\Phi(x) = \int_{-\infty}^x \varphi(t) dt$.

En particulier, on notera que $\Phi(0) = 1/2$ (symétrie) et que $\lim_{x \to +\infty} \Phi(x) = 1$ et $\lim_{x \to -\infty} \Phi(x) = 0$

EXERCICE 1. On rappelle que, si $Z = \sigma X + \mu$ pour $X \sim \mathcal{N}(0,1)$ (i.e., X suit une loi normale centrée réduite), alors Z suit une loi normale $\mathcal{N}(\mu, \sigma^2)$ d'espérance μ et de variance σ^2 . Donner la fonction de répartition $\Phi_{\mu,\sigma}$ et la densité $\varphi_{\mu,\sigma}$ de la variable Z. Donner également le lien entre $\varphi_{\mu,\sigma}$ et $\Phi_{\mu,\sigma}$.

EXERCICE 2. Soit X une variable distribuée suivant une loi normale centrée réduite. Donner la valeur des probabilités ci-dessous en fonction de la fonction Φ donnée en rappel (et potentiellement de constantes numériques que vous préciserez).

- 1) $\mathbb{P}(X \le 1.37)$, $\mathbb{P}(X > 1.37)$ et $\mathbb{P}(X = 1.37)$;
- 2) $\mathbb{P}(X < .52)$ et $\mathbb{P}(X < -.52)$;
- 3) $\mathbb{P}(X > 1.79)$ et $\mathbb{P}(X > -1.79)$;
- 4) $\mathbb{P}(-.155 < X < 1.60)$, $\mathbb{P}(-1.3 < X < 2.1)$ et $\mathbb{P}(.06 < X < .8)$;
- 5) $\mathbb{P}(X < -1.9 \text{ ou } X > 2.1)$;
- 6) $\mathbb{P}(|X| < 1.64)$, $\mathbb{P}(|X| < 1)$ et $\mathbb{P}(X < 1.96)$.

EXERCICE 3. Soit Z de loi normale d'espérance 20 et d'écart-type 5. Calculer $\mathbb{P}(Z < 18)$, $\mathbb{P}(Z \le 39)$, $\mathbb{P}(Z > 37)$, $\mathbb{P}(Z > 11)$ et $\mathbb{P}(22 \le Z \le 31)$.

EXERCICE 4. Soit Z de loi normale d'espérance 130 et d'écart-type 5. Résoudre chacune des équations suivantes (l'inconnue est b) en utilisant $q = \Phi^{-1}$, la fonction quantile de la loi normale centrée réduite :

- 1) $\mathbb{P}(Z < b) = 0.975$,
- 2) $\mathbb{P}(Z > b) = 0.025$,
- 3) $\mathbb{P}(Z < b) = 0.305$.

EXERCICE 5. Quartiles approchés et histogrammes

Table 1 – Distribution du nombre de cigarettes fumées par jour pour les 484 mères fumeuses.

Nb de cig.	Nb. de fumeurs (%)
0-5	16
5-10	25
10 – 15	14
15 - 20	4
20 – 30	32
30 – 40	5
40 – 60	4
Total	100

- a) A partir du Tableau 1 trouver des quartiles approchés de la distribution du nombre de cigarettes fumées par jour des mères fumeuses pendant la grossesse.
- b) Combinez les quatre dernières classes de ce tableau et tracez l'histogramme qui estime la densité : on veillera à proposer une courbe d'aire égale à 1.

FIGURE 1 – Histogramme de l'âge des pères dans l'étude CHDS vue en cours. Les nombres indiquent la hauteur (en %) de chaque rectangle. Le rectangle pour la classe [35, 40] est manquant.

c) Regardez l'histogramme de la Figure 1. On a oublié de faire le graphique pour une classe, celle correspondant aux âges entre 35 et 40 ans, que l'on a rempli à tort avec un 0. Comblez cette lacune.

EXERCICE 6. Moyennes et écart-types

- a) Dans une étude du Missouri, le poids moyen à la naissance des bébés issus de mères fumeuses est 3180g et l'écart-type de 500g. Quel est le poids moyen et l'écart-type en onces sachant qu'il y a 0.035 onces dans 1g.
- b) Soient x_1, \ldots, x_n quelques observations. Pour des raisons de commodités, Bob a changé les unités menant à de nouvelles observations

$$y_i = ax_i + b, \qquad i = 1, \dots, n ,$$

avec a > 0 et $b \in \mathbb{R}$. Exprimez la moyenne et l'écart-type des y_i en fonction de ceux des x_i , et des constantes a et b.

EXERCICE 7. La loi normale

- a) On modélise la loi de la taille des mères (dans la même étude que celle vue en cours) par une loi normale d'espérance 64 pouces et d'écart-type 2.5 pouces. Utiliser cette approximation et la fonction Φ pour estimer la proportion de mères mesurant entre 61.5 et 64.5 pouces. Aide : on pourra utiliser les approximations $\Phi(0.2) \approx 0.5793$ et $\Phi(1) \approx 0.8413$.
- b) Supposons que l'on dispose d'observations issues d'une loi normale centrée réduite. Quelle proportion des observations peut-on espérer voir en dehors des « moustaches » de la boîte à moustache? Aide : on pourra utiliser les approximations $\Phi(0.675) \approx 0.75$ et $\Phi(2.7) \approx 0.9965$.