PRACTICE VI

1. The length of a vine during a 12-hour period is given by a twice-differentiable function L, where L(t) is measured in feet and t is measured in weeks for $0 \le t \le 12$. The graph of L is concave down on the interval $0 \le t \le 12$. Selected values of the derivative of L, L'(t), are given in the table below. At time t = 4, the length of the vine is 5 feet.

t	2	4	5	8	10
L'(t)	1.0	0.8	0.7	0.4	0.2

(a) Use the tangent line approximation for L at time t=4 to estimate L(4.3), the length of the vine at time t=4.3. Is the approximation an overestimate or an underestimate for L(4.3)? Give a reason for your answer.

(b) Use a left Riemann sum with four subintervals indicated by the data in the table to approximate $\int_2^{10} L'(t)dt$. Indicate the units of measure

(c) Is the approximation in part (b) an overestimate or an underestimate for $\int_2^{10} L'(t)dt$? Give a reason for your answer.

2.	Find two positive numbers whose sum is 300 and whose product is a maximum
3.	Find two positive numbers whose product is 750 and for which the sum of one and 10 times the other is a minimum
4.	Let x and y be two positive numbers such that $x+2y=50$ and $(x+1)(y+2)$ is a maximum. Find x and y

5. Find the linear approximation to $g(z) = \sqrt[4]{z}$ at z = 2. Use the linear approximation to approximate the value of $\sqrt[4]{3}$ and $\sqrt[4]{10}$. Compare the approximate values to the exact values.

6. Verify that $y=-t\cos t-t$ is a solution of the initial value problem

$$t\frac{dy}{dx} = y + t^2 \sin t, \ y(\pi) = 0$$

7. Find a solution to the initial-value problem

$$y' = -y^2, \ y(0) = \frac{1}{2}$$

8. Find a solution to the initial-value problem

$$y' = xy^3, \ y(0) = 2$$

- 9. Without using technology sketch the following:
 - (a) The solid formed when the region bound by $x = \sqrt{y}$, $x = \sqrt{-y}$, and x = 4, is revolved around the y-axis

(b) The solid formed when the region bound by $y=e^x$, $y=e^{-x}+4$ and the y-axis is revolved around the line x=4