Indian Institute of Information Technology - Vadodara

EL - 101 Digital Logic Design

Jignesh S. Bhatt

Lecture # 2 Autumn 2014

How to learn swimming?

Number System

Decimal Number System:

- 1. Most commonly used by us.
- 2. Ten-valued representation => [0, 9] => coefficients
- 3. Coefficients are multiplied with powers of 10.
- 4. Hence, it has "base" or "radix" 10.

Example: $7392 = 7x10^3 + 3x10^2 + 9x10^1 + 2x10^0$

Recall that we usually write the coefficients only.

Number System

• Base - r number system:

$$a_{n.} r^{n} + a_{n-1.} r^{n-1} + \dots + a_{2.} r^{2} + a_{1.} r + \dots + a_{0}$$

(.) $a_{-1.} r^{-1} + a_{-2.} r^{-2} + \dots + a_{-m.} r^{-m}$

• Coefficients range: [0, r-1]

Binary System

• It is a different number system.

Coefficients => 0 and 1 => bits.

Each coefficients are multiplied by powers of 2.

 And the results are added to get the decimal equivalent number.

Why binary system?

• The most fundamental system for representation in computers.

Unanimously used by all the digital machines.

Binary System

Example:

```
11011 = 1x2^{4} + 1x2^{3} + 0x2^{2} + 1x2^{1} + 1x2^{0}
= 2^{4} + 2^{3} + 2^{1} + 2^{0}
= 27
Ans: (11011)_{2} = (27)_{10}
```

• Equivalence relation between two system: $(Number)_{base-q} = (Number)_{base-p}$

Binary System

• Example:

$$(11011.11)_2 = (?)_{10}$$

Ans:

Arithmetic Operations in Binary System

Remember:

Answers should contain with 0s and 1s.

Binary Addition:

- 1. Similar to decimal addition.
- $2. \quad 1+0=0+1=1$
- 3. 1+1=10
- 4. 1+1+1=11

Binary addition

• Example:

```
augend: 101101
```

addend: 100111

```
+ -----
```

sum: 1010100

Binary subtraction

- 1. similar to decimal rules.
- 2. except: borrows in a given significant position add "2" to a minuend digit.

Example:

minuend: 101101

subtrahend: 100111

difference: 000110

Binary multiplication

110111

- 1. Simplest and similar to decimal rules.
- 2. A product = either multiplicand or "0"
- 3. $1 \times 1 = 1$; $0 \times 0 = 0 \times 1 = 1 \times 0 = 0$

product:

Other popular number systems in computers

- Octal system:
 - 8 coefficients.
 - coefficients range: [0, 7].

Example:

$$(123.4)_8 = (?)_{10}$$

Other popular number systems in computers

Hexadecimal system:

- 16 coefficients.
- 0 to 9 are as per the decimal system.
- A to F letters are used for 10 to 15, respectively. means:

$$A => 10$$

$$B => 11$$

$$D => 13$$

Example:

$$(B44B)_{16} = (?)_{10}$$

Usage in computer work

- 8 bits = 1 byte example: 1100 1010 = 1 byte of data application: A keyboard character is represented in one byte codeword.
- 2¹⁰ => K (kilo) bytes
- 2²⁰ => M (mega) bytes
- $2^{30} => G$ (giga) bytes
- 2⁴⁰ => T (tera) bytes

example: computer hard disk capacity.