

Scheduling Algorithms

Chandravva Hebbi

Department of Computer Science

Slides Credits for all PPTs of this course

- The slides/diagrams in this course are an adaptation,
 combination, and enhancement of material from the following resources and persons:
- 1. Slides of Operating System Concepts, Abraham Silberschatz, Peter Baer Galvin, Greg Gagne 9th edition 2013 and some slides from 10th edition 2018
- 2. Some conceptual text and diagram from Operating Systems Internals and Design Principles, William Stallings, 9th edition 2018
- 3. Some presentation transcripts from A. Frank P. Weisberg
- 4. Some conceptual text from Operating Systems: Three Easy Pieces, Remzi Arpaci-Dusseau, Andrea Arpaci Dusseau

FCFS, SJF, SRTF, Priority Scheduling

Chandravva Hebbi

Department of Computer Science

Example of Shortest-remaining-time-first

- □ Preemptive SJF Scheduling is sometimes called SRTF
- Now we add the concepts of varying arrival times and preemption to the analysis

<u>Process</u>	<u>Arrival Time</u>	Burst Time	
P_1	0	8	
P_2	1	4	
P_3	2	9	
P_4	3	5	

Preemptive SJF Gantt Chart

	P ₁	F	2	P_4	P ₁		P_3	
()	1	į	5	10	17		26

 \square Average waiting time = [(10-1)+(1-1)+(17-2)+5-3)]/4 = 26/4 = 6.5 msec

Priority Scheduling

PES UNIVERSITY ONLINE

- ☐ A priority number (integer) is associated with each process
- □ The CPU is allocated to the process with the highest priority (smallest integer = highest priority)
 - Preemptive
 - Nonpreemptive
- □ SJF is priority scheduling where priority is the inverse of predicted next CPU burst time
- □ Problem = Starvation low priority processes may never execute
- Solution ≡ Aging as time progresses increase the priority of the process

Example of Priority Scheduling

<u>Process</u>	Burst Time	<u>Priority</u>
P_1	10	3
P_2	1	1
P_3	2	4
P_4	1	5
P_5	5	2

Priority Scheduling Gantt chart

P_2	P_{5}	P_{1}	P ₃	P_4
0	1 (5 1	6 1	18 19

 \square Average waiting time = (6 + 0 + 16 + 18 + 1) / 5 = 41/5 = 8.2

Additional Examples

Consider three CPU-intensive processes, which require 10, 20 and 30 time units and arrive at times 0, 2 and 6, respectively. How many context switches are needed if the operating system implements a shortest remaining time first scheduling algorithm? Do not count the context switches at time zero and at the end

Additional Examples

Consider three CPU-intensive processes, which require 10, 20 and 30 time units and arrive at times 0, 2 and 6, respectively. How many context switches are needed if the operating system implements a shortest remaining time first scheduling algorithm? Do not count the context switches at time zero and at the end

Additional Examples

Consider the following table of arrival time and burst time for three processes P0, P1 and P2.

Process Arrival tir	ne Burst lime	5
---------------------	---------------	---

0 ms	9 ms
	0 ms

P1 1 ms 4 ms

P2 2 ms 9 ms

The pre-emptive shortest job first scheduling algorithm is used. Scheduling is carried out only at arrival or completion of processes. What is the average waiting time for the three processes

THANK YOU

Chandravva Hebbi
Department of Computer Science Engineering
chandravvahebbi@pes.edu