Classification

Jiayu Zhou

¹Department of Computer Science and Engineering Michigan State University East Lansing, MI USA

Table of contents

- Introduction
 - Classification and Decision Surface
 - Multiple Classes
- Non-probabilistic Methods
 - Least Squares
 - Fisher's Linear Discriminant
 - Perceptron
- Probabilistic Discriminative Models
 - Generative Model Vs. Discriminative Mode
 - Logistic Regression
 - Logistic Regression Optimization

Problem Statement

Given an input vector \mathbf{x} and a set of training patterns $\{\mathbf{x}_1, \dots, \mathbf{x}_N\}$, the goal is to assign it to one of K discrete classes \mathcal{C}_k where $k = 1, \dots, K$

Different Approaches to Classification

- Construct a discriminant function which assigns each vector x to a specific class
- Model the conditional probability distribution $p(C_k|\mathbf{x})$ in an inference stage, and use this distribution to make optimal decisions
- ullet Two methods to model $p(\mathcal{C}_k|\mathbf{x})$
 - Discriminant model Example: Representing $p(\mathcal{C}_k|\mathbf{x})$ as parametric models and then optimizing the parameters using a training set
 - Generative method Model the class-conditional densities $p(\mathbf{x}|\mathcal{C}_k)$ and prior probabilities $p(\mathcal{C}_k)$, and compute $p(\mathcal{C}_k|\mathbf{x})$ using Bayes theorem

$$p(C_k|\mathbf{x}) = \frac{p(\mathbf{x}|C_k)p(C_k)}{p(\mathbf{x})}$$

Basic Definitions

- Discriminant
 - A **discriminant** is a function that takes an input vector ${\bf x}$ and assign it to one of K classes, denoted as ${\cal C}_k$
- Linear discriminant
 In linear discriminant, the decision boundaries (or decision surfaces)
 are hyperplanes in the input space
- Linear separable
 Data sets whose classes can be separated exactly by linear decision surfaces are said to be linear separable
- Generalized linear models

$$y(\mathbf{x}) = f(\mathbf{w}^T \mathbf{x} + w_0)$$

f(.) is called **activation function**, and it may be **nonlinear**.

Discriminant Functions - Two Classes

Formulation

$$y(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + w_0$$

• w: weight vector

• w_0 : bias

• $-w_0$: threshold

Decision Rule

An input vector \mathbf{x} is assigned to class C_1 if $y(\mathbf{x}) \geq 0$ and to class C_2 otherwise

- The geometric property
 - w: the direction of decision surface
 - ullet w_0 : the location of decision surface
 - ullet The signed distance r of point ${f x}$ from the decision surface

$$r = \frac{y(\mathbf{x})}{\|\mathbf{w}\|}$$

An Example of Geometry

Discriminant Functions - Multiple Classes

- Possible Methods
 - $lue{f O}$ One-versus-the-rest Use K-1 two-class classifiers
 - ② One-versus-one Use K(K-1)/2 two-class classifiers
- ullet Define a single K-class discriminant comprising K linear functions of the form

$$y_k(\mathbf{x}) = \mathbf{w}_k^T \mathbf{x} + w_{k0}$$

- Decision Rule Assigning a point $\mathbf x$ to class $\mathcal C_k$ if $y_k(\mathbf x)>y_j(\mathbf x)$ for all $j\neq k$
- ullet The decision boundary between class \mathcal{C}_k and class \mathcal{C}_j

$$y_k(\mathbf{x}) = y_j(\mathbf{x})$$

This boundary is hyperplane defined by:

$$(\mathbf{w}_k - \mathbf{w}_i)^T \mathbf{x} + (w_{k0} - w_{i0}) = 0$$

The Difficulty of One-versus-the-rest and One-versus-one

The dilemma of One-versus-the-rest

The dilemma of One-versus-one

Properties of Multi-class Classifier

The decision regions of the discriminant given by $y_k(\mathbf{x}) = \mathbf{w}_k^T \mathbf{x} + w_{k0}$ are convex.

Proof

Any point $\hat{\mathbf{x}}$ that lies on the line connecting \mathbf{x}_A and \mathbf{x}_B can be expressed in the form

$$\hat{\mathbf{x}} = \lambda \mathbf{x}_A + (1 - \lambda)\mathbf{x}_B$$
, where $0 \le \lambda \le 1$

If \mathbf{x}_A and \mathbf{x}_B lies in \mathcal{R}_k , then

$$y_k(\mathbf{x}_A) > y_j(\mathbf{x}_A)$$
 for all $j \neq k$

$$y_k(\mathbf{x}_B) > y_j(\mathbf{x}_B)$$
 for all $j \neq k$

From the linearity of the discriminant functions, it follows that

$$y_k(\hat{\mathbf{x}}) > y_j(\hat{\mathbf{x}})$$
 for all $j \neq k$

It means that $\hat{\mathbf{x}} \in \mathcal{R}_k$.

Least Squares for Classification

ullet Each 1-vs-rest classifier \mathcal{C}_k is described by a linear model so that

$$y_k(\mathbf{x}) = \mathbf{w}_k^T \mathbf{x} + w_{k0}$$

where k = 1, ..., K - 1

Or equivalently

$$\mathbf{y} = \tilde{\mathbf{W}}^T \tilde{\mathbf{x}}$$

where
$$\tilde{\mathbf{W}} = [\tilde{\mathbf{w}}_1, \dots, \tilde{\mathbf{w}}_{K-1}], \tilde{\mathbf{w}}_k = (w_{k0}, \mathbf{w}_k^T)^T, \tilde{\mathbf{x}} = (1, \mathbf{x}^T)^T$$

ullet By defining the target matrix T, the sum-of-squares error function is

$$E_D(\tilde{\mathbf{W}}) = \frac{1}{2} ||\tilde{\mathbf{X}}\tilde{\mathbf{W}} - \mathbf{T}||_F^2$$
$$= \frac{1}{2} \text{Tr} \{ (\tilde{\mathbf{X}}\tilde{\mathbf{W}} - \mathbf{T})^T (\tilde{\mathbf{X}}\tilde{\mathbf{W}} - \mathbf{T}) \}$$

Least Squares for Classification (cont.)

The solution is

$$\tilde{\mathbf{W}} = (\tilde{\mathbf{X}}^T \tilde{\mathbf{X}})^{-1} \tilde{\mathbf{X}}^T \mathbf{T} = \tilde{\mathbf{X}}^\dagger \mathbf{T}$$

Then the discriminant is

$$\mathbf{y}(\mathbf{x}) = \tilde{\mathbf{W}}^T \tilde{\mathbf{x}} = \mathbf{T}^T (\tilde{\mathbf{X}}^\dagger)^T \tilde{\mathbf{x}}$$

Drawbacks of Least Square

- Sometimes least squares have poor performance
 Least squares corresponds to maximum likelihood under the
 assumption of a Gaussian conditional distribution, whereas binary
 target vectors clearly have a distribution that is far from Gaussian

Least-squares Solutions Lack Robustness to Outliers

Original Boundary. Magenta curve is least squares and green curve is logistic regression

Poor Performance of Least-squares

Fisher's Linear Discriminant

Basic Idea
 Project the data in the original D-dimensional space into lower space. In the projection, we expect to maximize the between-class distance and minimize within-class distance
 3-class feature data

 For simplicity, we First consider the projection to 1-dimensional space for two-class problem.

Formal Formulation

- N_1 : number of points in class C_1 N_2 : number of points in class C_2
- The mean vectors of each class in original space

$$\mathbf{m}_1 = \frac{1}{N_1} \sum_{n \in \mathcal{C}_1} \mathbf{x}_n \tag{1}$$

$$\mathbf{m}_2 = \frac{1}{N_2} \sum_{n \in \mathcal{C}_2} \mathbf{x}_n \tag{2}$$

• The linear projection is

$$y = \mathbf{w}^T \mathbf{x}$$

Fisher's Linear Discriminant

 The distance between classes is measured by the distance of means in the projected 1-dimensional space

$$m_2 - m_1 = \mathbf{w}^T (\mathbf{m}_2 - \mathbf{m}_1)$$

• The measure of within-class distance is measured by the variance within each class in the projected 1-dimensional space

$$s_k^2 = \sum_{n \in \mathcal{C}_k} (y_n - m_k)^2$$

Fisher criterion

$$\max J(\mathbf{w}) = \frac{(m_2 - m_1)^2}{s_1^2 + s_2^2}$$

Example of Linear Projection

Projection onto the line jointing class means

Fishers Linear Discriminant

Reformulation

$$\max J(\mathbf{w}) = \frac{\mathbf{w}^T \mathbf{S}_B \mathbf{w}}{\mathbf{w}^T \mathbf{S}_W \mathbf{w}}$$

ullet Between-class covariance matrix ${f S}_B$

$$\mathbf{S}_B = (\mathbf{m}_2 - \mathbf{m}_1)(\mathbf{m}_2 - \mathbf{m}_1)^T$$

ullet Within-class covariance matrix ${f S}_W$

$$\mathbf{S}_W = \sum_{n \in \mathcal{C}_1} (\mathbf{x}_n - \mathbf{x}_1)(\mathbf{x}_n - \mathbf{x}_1)^T + \sum_{n \in \mathcal{C}_2} (\mathbf{x}_n - \mathbf{x}_2)(\mathbf{x}_n - \mathbf{x}_2)^T$$

Set gradient to zero

$$\frac{\partial J}{\partial \mathbf{w}} = 0 \Leftrightarrow (\mathbf{w}^T \mathbf{S}_B \mathbf{w}) \mathbf{S}_W \mathbf{w} = (\mathbf{w}^T \mathbf{S}_W \mathbf{w}) \mathbf{S}_B \mathbf{w} \Rightarrow \mathbf{w} \propto \mathbf{S}_W^{-1} (\mathbf{m}_2 - \mathbf{m}_1)$$

Jiayu Zhou

Least Squares Versus Fishers Linear Discriminant

- For two-class problems, Fishers Linear Discriminant can be considered as a special case of least squares.
- For multi-class problems, Fishers Linear Discriminant can also be considered a special case of least squares by constructing a special indicator matrix (Ye, ICML 2007).

Two-class Problem I

- Key Idea: define a special target variable for different classes in least squares
- Consider a special least squares with the following target variable

$$t_n = \begin{cases} \frac{N}{N_1} & \text{if } n \in \mathcal{C}_1\\ -\frac{N}{N_2} & \text{if } n \in \mathcal{C}_2 \end{cases}$$

• Properties of the target variable:

$$\sum_{n=1}^{N} t_n = 0$$
$$\sum_{n=1}^{N} t_n x_n = N(\mathbf{m}_1 - \mathbf{m}_2)$$

Two-class Problem II

 The corresponding sum-of-squares error function for the target variable is

$$\min E = \frac{1}{2} \sum_{n=1}^{N} (\mathbf{w}^{T} \mathbf{x}_{n} + w_{0} - t_{n})^{2}$$

ullet Setting the derivatives of E with respect to w_0 and ${f w}$ to 0, we have

$$\sum_{n=1}^{N} (\mathbf{w}^{T} \mathbf{x}_{n} + w_{0} - t_{n}) = 0 \Leftrightarrow w_{0} = -\mathbf{w}^{T} \mathbf{m}$$

where
$$\mathbf{m} = \frac{1}{N} \sum_{n=1}^{N} \mathbf{x}_n = \frac{1}{N} (N_1 \mathbf{m}_1 + N_2 \mathbf{m}_2)$$

$$\sum_{m=1}^{N} (\mathbf{w}^{T} \mathbf{x}_{n} + w_{0} - t_{n}) \mathbf{x}_{n} = 0 \Leftrightarrow (\mathbf{S}_{W} + \frac{N_{1} N_{2}}{N} \mathbf{S}_{B}) \mathbf{w} = N(\mathbf{m}_{1} - \mathbf{m}_{2})$$

Two-class Problem III

$$(\mathbf{S}_W + \frac{N_1 N_2}{N} \mathbf{S}_B) \mathbf{w} = N(\mathbf{m}_1 - \mathbf{m}_2)$$

$$\Leftrightarrow \mathbf{S}_W \mathbf{w} = N(\mathbf{m}_1 - \mathbf{m}_2) - \frac{N_1 N_2}{N} \mathbf{S}_B \mathbf{w}$$

Note that

$$\mathbf{S}_B\mathbf{w} = (\mathbf{m}_2 - \mathbf{m}_1)\left((\mathbf{m}_2 - \mathbf{m}_1)^T\mathbf{w}\right) = s(\mathbf{m}_2 - \mathbf{m}_1)$$
, where $s \in \mathbb{R}$

Therefore

$$\mathbf{S}_W \mathbf{w} = s'(\mathbf{m}_2 - \mathbf{m}_1)$$
, where $s' \in \mathbb{R}$
 $\Rightarrow \mathbf{w} \propto \mathbf{S}_W^{-1}(\mathbf{m}_2 - \mathbf{m}_1)$

This result is the same as Fishers Linear Discriminant

Multi-class LDA I

• Suppose the class number is K, we consider project the data in the original D-dimensional space (D>K) data space into D'-dimensional space, where D'>1

$$\mathbf{y} = \mathbf{W}^T \mathbf{x}$$
, where $\mathbf{W} = [\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_{D'}]$

ullet The within class covariance ${f S}_W$

$$\mathbf{S}_W = \sum_{k=1}^K \mathbf{S}_k$$

where

$$\mathbf{S}_k = \sum_{n \in \mathcal{C}_k} (\mathbf{x}_n - \mathbf{m}_k) (\mathbf{x}_n - \mathbf{m}_k)^T$$

$$\mathbf{m}_k = \frac{1}{N_k} \sum_{n \in \mathcal{C}_k} \mathbf{x}_n$$

Multi-class LDA II

ullet The total covariance matrix ${f S}_T$

$$\mathbf{S}_T = \sum_{n=1}^{N} (\mathbf{x}_n - \mathbf{m}_k)(\mathbf{x}_n - \mathbf{m}_k)^T$$

$$\mathbf{m} = \frac{1}{N} \sum_{n=1}^{N} \mathbf{x}_n$$

ullet The between class covariance ${f S}_B$

$$\mathbf{S}_B = \sum_{k=1}^K N_k (\mathbf{m}_k - \mathbf{m}) (\mathbf{m}_k - \mathbf{m})^T$$

• From these definitions we can show that

$$\mathbf{S}_T = \mathbf{S}_R + \mathbf{S}_W$$

Multi-class LDA III

• In the projected space, we can define similar structures

$$\mathbf{s}_W = \sum_{k=1}^K \sum_{n \in \mathcal{C}_k} (\mathbf{y}_n - \boldsymbol{\mu}_k) (\mathbf{y}_n - \boldsymbol{\mu}_k)^T$$

$$\mathbf{s}_B = \sum_{k=1}^K N_k (\boldsymbol{\mu}_k - \boldsymbol{\mu}) (\boldsymbol{\mu}_k - \boldsymbol{\mu})^T$$

where

$$oldsymbol{\mu} = rac{1}{N} \sum_{n=1}^{N} \mathbf{y}_n$$
 $oldsymbol{\mu}_k = rac{1}{N_k} \sum_{n \in \mathcal{C}_k} \mathbf{y}_n$

Multi-class LDA IV

- Many objective functions can be chosen in the lower space.
- One common choice is

$$\max J(\mathbf{W}) = \mathsf{Tr}\{\mathbf{s}_W^{-1}\mathbf{s}_B\}$$

$$\Leftrightarrow \max J(\mathbf{W}) = \mathsf{Tr}\{(\mathbf{W}\mathbf{S}_W\mathbf{W}^T)^{-1}(\mathbf{W}\mathbf{S}_B\mathbf{W}^T)\}$$

- In fact, W is given by the D' eigenvectors of $\mathbf{S}_W^{-1}\mathbf{S}_B$ corresponding to the D' largest eigenvalues.
- \mathbf{S}_B is composed of the sum of K matrices, each of which is an outer product of two vectors and therefore of rank 1. In addition, only (K-1) of these matrices are independent. Thus, \mathbf{S}_B has rank at most equal to (K-1) and so there are at most (K-1) nonzero eigenvalues. In practice, we commonly set D'=K-1.

Perceptron

• The simple yet powerful algorithm we studied in the last lecture.

Generative Model Vs. Discriminative Mode

• Probabilistic Generative Model Model the class-conditional densities $p(\mathbf{x}|\mathcal{C}_k)$ and prior probabilities $p(\mathcal{C}_k)$, and compute $p(\mathcal{C}_k|\mathbf{x})$ using Bayes' theorem

$$p(C_k|\mathbf{x}) = \frac{p(\mathbf{x}|C_k)p(C_k)}{p(\mathbf{x})}$$

- Probabilistic Discriminative Model Maximize a likelihood function defined through the conditional distribution $p(C_k|\mathbf{x})$
- Advantages of Discriminative Models
 - Fewer adaptive parameters need to be determined.
 - Performance will be improved, especially when the class-conditional density assumption gives a poor approximation to the true distributions.

Caution

We have deviated from the textbook!

Predicting a Probability

Will someone have a heart attack over the next year?

age	62 years
gender	male
blood suger	120 mg/DL40,000
HDL	50
LDL	120
Mass	190 lbs
Height	5' 10"

Classification: Yes/No \Rightarrow Logistic Regression: Likelihood of heart attack. In logistic regression, $y \in [0,1]$.

$$h(\mathbf{x}) = \sigma\left(\sum_{i=0}^{d} w_i x_i\right) = \sigma(\mathbf{w}^T \mathbf{x})$$

Sigmoid Function σ

Logistic regression,
$$h(\mathbf{x}) = \sigma\left(\sum_{i=0}^{d} w_i x_i\right) = \sigma(\mathbf{w}^T \mathbf{x}).$$

$$\sigma(s) = \frac{e^s}{1 + e^s} = \frac{1}{1 + e^{-s}}$$

How is $\sigma(-s)$ related to $\sigma(s)$?

Sigmoid Function σ

Logistic regression, $h(\mathbf{x}) = \sigma\left(\sum_{i=0}^{d} w_i x_i\right) = \sigma(\mathbf{w}^T \mathbf{x}).$

$$\sigma(s) = \frac{e^s}{1 + e^s} = \frac{1}{1 + e^{-s}}$$

$$\sigma(-s) = \frac{e^{-s}}{1 + e^{-s}} = \frac{1}{1 + e^{s}} = 1 - \sigma(s)$$

The Data is Still Binary, ± 1

$$\mathcal{D} = (\mathbf{x}_1, y_1 = \pm 1), \dots, (\mathbf{x}_N, y_N = \pm 1)$$

 $\mathbf{x}_n \leftarrow \text{a person's health information}$ $y_n = \pm 1 \leftarrow \mathbf{did}$ they have a heart attack or not

- We cannot measure a probability.
- We can only see the occurrence of an event an try to infer a probability.

Jiayu Zhou

• In the textbook we used +1/0 encoding instead of +1/-1, which leads to a slightly different (but equivalent) formulation.

What Makes an h Good?

'fitting' the data means finding a good h

$$h$$
 is good if:
$$\begin{cases} h(\mathbf{x}_n) = \sigma(\mathbf{w}^T \mathbf{x}) \approx 1 & \text{whenever } y_n = +1; \\ h(\mathbf{x}_n) = \sigma(\mathbf{w}^T \mathbf{x}) \approx 0 & \text{whenever } y_n = -1. \end{cases}$$

A simple error measure that captures this:

$$E(h) = \frac{1}{N} \sum_{n=1}^{N} \left(h(\mathbf{x}_n) - \frac{1}{2} (1 + y_n) \right)^2.$$

Hard to minimize!

The Logistic Loss Function

$$E(\mathbf{w}) = \frac{1}{N} \sum_{n=1}^{N} \ln(1 + \exp(-y_n \cdot \mathbf{w}^T \mathbf{x}))$$

It looks complicated and ugly $(\ln,e^{(\cdot)},\dots)$, But,

- it is based on an intuitive probabilistic interpretation of h.
- it is very convenient and mathematically friendly ('easy' to minimize).

Verify:

- $y_n = +1$ encourages $\mathbf{w}^T \mathbf{x}_n \gg 0$, so $h(\mathbf{x}_n) = \sigma(\mathbf{w}^T \mathbf{x}_n) \approx 1$
- $y_n = -1$ encourages $\mathbf{w}^T \mathbf{x}_n \ll 0$, so $h(\mathbf{x}_n) = \sigma(\mathbf{w}^T \mathbf{x}_n) \approx 0$

The Logistic Loss Function

$$E(\mathbf{w}) = \frac{1}{N} \sum_{n=1}^{N} \ln(1 + \exp(-y_n \mathbf{w}^T \mathbf{x}_n))$$

The Probabilistic Interpretation

Suppose that $h(\mathbf{x}) = \sigma(\mathbf{w}^T\mathbf{x})$ closely captures $P[+1|\mathbf{x}]$

$$P(y|\mathbf{x}) = \begin{cases} \sigma(\mathbf{w}^T \mathbf{x}) & \text{for } y = +1; \\ 1 - \sigma(\mathbf{w}^T \mathbf{x}) & \text{for } y = -1. \end{cases}$$

And thus

$$P(y|\mathbf{x}) = \begin{cases} \sigma(\mathbf{w}^T \mathbf{x}) & \text{for } y = +1; \\ \sigma(-\mathbf{w}^T \mathbf{x}) & \text{for } y = -1. \end{cases}$$

... or, more compactly

$$P(y|\mathbf{x}) = \sigma(y \cdot \mathbf{w}^T \mathbf{x})$$

The Likelihood

$$P(y|\mathbf{x}) = \sigma(y \cdot \mathbf{w}^T \mathbf{x})$$

Assume: $(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_N, y_N)$ are independently generated.

Likelihood:

The probability of getting the y_1, \ldots, y_N in \mathcal{D} from the corresponding $\mathbf{x}_1, \ldots, \mathbf{x}_N$:

$$P(y_1,\ldots,y_N|\mathbf{x}_1,\ldots,\mathbf{x}_n)=\prod_{n=1}^N P(y_n|\mathbf{x}_n).$$

The likelihood measures the probability that the data were generated if f were h.

Maximizing the Likelihood

$$\max \prod_{n=1}^{N} P(y_n | \mathbf{x}_n)$$

$$\Leftrightarrow \max \ln \left(\prod_{n=1}^{N} P(y_n | \mathbf{x}_n) \right) \equiv \max \sum_{n=1}^{N} \ln P(y_n | \mathbf{x}_n)$$

$$\Leftrightarrow \min -\frac{1}{N} \sum_{n=1}^{N} \ln P(y_n | \mathbf{x}_n) \equiv \min \frac{1}{N} \sum_{n=1}^{N} \ln \frac{1}{P(y_n | \mathbf{x}_n)}$$

$$\equiv \min \frac{1}{N} \sum_{n=1}^{N} \ln \frac{1}{\sigma(y_n \mathbf{w}^T \mathbf{x}_n)}$$

$$\equiv \min \frac{1}{N} \sum_{n=1}^{N} \ln(1 + \exp(-y_n \mathbf{w}^T \mathbf{x}_n))$$

How to Minimize $E(\mathbf{w})$

- Classification PLA/Pocket (iterative)
- Regression Solving $\nabla_{\mathbf{w}} E(\mathbf{w}) = \mathbf{0}$.
- Logistic Regression No closed form solution.

Numerically/iteratively set $\nabla_{\mathbf{w}} E(\mathbf{w}) \to \mathbf{0}$

Jiayu Zhou

Optimization 101

Finding The Best Weights - Hill Descent

- Ball on a compliated hilly terrain
 - rolls down to a local valley (a local minimum)

- Questions
 - How to get to the bottom of the deepest valley?
 - How to do this when we don't have gravity?

Q1: How to get to the bottom of the deepest valley?

 \bullet Our E has only one valley

Q2: How to "roll down"

• Assume we are at weights $\mathbf{w}(t)$ and we take a step of size η in the direction $\hat{\mathbf{v}}$:

$$\mathbf{w}(t+1) = \mathbf{w}(t) + \eta \hat{\mathbf{v}}$$

We get to pick $\hat{\mathbf{v}}$

• What's the best direction to take the step?

The Gradient is the Fastest Way to Roll Down

- We want $\hat{\mathbf{v}}$ that maximizes $\Delta E = E(\mathbf{w}(t)) E(\mathbf{w}(t+1))$
- ullet We can approximate the ΔE

$$\Delta E = E(\mathbf{w}(t)) - E(\mathbf{w}(t+1)) = E(\mathbf{w}(t)) - E(\mathbf{w}(t) + \eta \hat{\mathbf{v}})$$

$$= E(\mathbf{w}(t)) - \left(E(\mathbf{w}(t)) + \eta \nabla E(\mathbf{w}(t))^T \hat{\mathbf{v}} + O(\eta^2)\right)$$

$$= -\eta \nabla E(\mathbf{w}(t))^T \hat{\mathbf{v}} - O(\eta^2) \approx -\eta \nabla E(\mathbf{w}(t))^T \hat{\mathbf{v}}$$

• When $\hat{\mathbf{v}}$ is a direction vector ($\|\hat{\mathbf{v}}\| = 1$), we have

$$\Delta E \approx -\eta \nabla E(\mathbf{w}(t))^T \hat{\mathbf{v}} \leq \eta \|\nabla E(\mathbf{w}(t))\|_2$$

when
$$\hat{\mathbf{v}} = -\frac{\nabla E(\mathbf{w}(t))}{\|\nabla E(\mathbf{w}(t))\|_2}$$

"Rolling Down" Iterating the Negative Gradient

Update using negative gradient..

$$\mathbf{w}(0) \to \mathbf{w}(1) \to \mathbf{w}(2) \to \mathbf{w}(3) \to \dots$$

 $\eta=0.5$; 15 steps How to set the step size?

Step Size

Fixed Learning Rate Gradient Descent

• We want $\eta_t \to 0$ when closer to the minimum:

$$\eta_t = \eta \cdot \|\nabla E(\mathbf{w}(t))\|_2$$

• Plug in our update rule:

$$\hat{\mathbf{v}} = -\eta_t \cdot \frac{\nabla E(\mathbf{w}(t))}{\|\nabla E(\mathbf{w}(t))\|_2} = -\eta \cdot \|\nabla E(\mathbf{w}(t))\|_2 \cdot \frac{\nabla E(\mathbf{w}(t))}{\|\nabla E(\mathbf{w}(t))\|_2}$$

Learning Algorithm

- **1** Initialize at step t = 0 to $\mathbf{w}(0)$.
- **2** for t = 0, 1, 3, ... do
 - Compute the graident

$$\mathbf{g}_t = \nabla E(\mathbf{w}(t))$$

2 Update the weights (along the negative gradient):

$$\mathbf{w}(t+1) = \mathbf{w}(t) + \eta(-\nabla E(\mathbf{w}(t)))$$

- Iterate 'until it is time to stop'
- end for
- Return the final weights.

Learning by Gradient Descent

- The gradient descent algorithm can be applied to minimize any smooth function, e.g.,
 - logistic regression $E(\mathbf{w}) = \frac{1}{N} \sum_{n=1}^{N} \ln(1 + \exp(-y_n \mathbf{w}^T \mathbf{x}_n))$
 - ridge regression $E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} (\mathbf{w}^T \mathbf{x}_n y_n)^2 + \lambda ||\mathbf{w}||_2^2$
- When the objective function is convex, we can obtain one global optimal solution.
- What if the data points cannot be loaded into the memory?

Stochastic Gradient Descent (SGD)

• A variation of GD that considers only the error on one data point.

$$E(\mathbf{w}) = \frac{1}{N} \sum_{n=1}^{N} \ln(1 + \exp(-y_n \cdot \mathbf{w}^T \mathbf{x}_n)) = \frac{1}{N} \sum_{n=1}^{N} \ell(\mathbf{w}, \mathbf{x}_n, y_n)$$

- Algorithm
 - Pick a random data point (\mathbf{x}_*, y_*)
 - Run an iteration of GD on $\ell(\mathbf{w}, \mathbf{x}_*, y_*)$
- Logistic Regression

$$\mathbf{w}(t+1) \leftarrow \mathbf{w}(t) + y_* \mathbf{x}_* \left(\frac{\eta}{1 + \exp(+y_* \mathbf{w}^T \mathbf{x}_*)} \right)$$

Recall PLA:

$$\mathbf{w}(t+1) \leftarrow \mathbf{w}(t) + y_* \mathbf{x}_*$$

Stochastic Gradient Descent (SGD)

 $\eta = 6, N = 10, t = 10$

$$\eta=2, t=30$$

Remarks: Stochastic Gradient Descent

- The 'average' move is the same as GD;
- Computation: fraction $\frac{1}{N}$ cheaper per step
- Stochastic: helps escape local minima
- Simple
- Insights into logistic regression: similar to PLA.

Remarks

- \bullet Comparison of logistic regression and generative model in $D\text{-}\mathrm{dimensional}$ space
 - ullet In logistic regression, only D+1 parameters (components of ${f w}$ and bias)
 - In generative model, suppose Gaussian class-conditional densities and maximum likelihood method are used, the number of parameters is D(D+5)/2+1
 - ullet Means: 2D parameters
 - Shared covariance: (D+1)D/2 parameters
 - Prior $p(\mathcal{C}_1)$: 1 parameter
- Maximum Likelihood method is used to determine the parameters of the logistic regression model.
- Maximum likelihood can exhibit severe over-fitting.
- This can be overcome by inclusion of a prior and finding a MAP solution for w, or equivalently by adding a regularization term to the error function.