n = iteration	$x_n \text{ (upto 8D)}$
0 1 2 3	$x_0 = 1.5$ $x_1 = 1.3733333333$ $x_2 = 1.365262015$ $x_3 = 1.365230014$ $x_4 = 1.365230013$

n = iteration	$x_n \text{ (upto 5D)}$
	$x_0 = 1.5$
0	$x_1 = 1.5333333333$
1	$x_2 = 1.532090643$
2	$x_3 = 1.532088886$
3	$x_4 = 1.532088886$

x	e^{-x}
0	1
1	0.36787
2	0.13533
3	0.04978
-1	2.71820
-2	7.38900

n = iteration	x_n (within 10^{-5})
	$x_0 = 0.79$
0	$x_1 = 0.73962755$
1	$x_2 = 0.739085198$
2	$x_3 = 0.739085133$

i	x_i	$f(x) = \frac{1}{x}$
0	$x_0 = 2$	$f(x_0) = 0.5$
1	$x_1 = 2.5$	$f(x_1) = 0.4$
2	$x_2 = 4$	$f(x_2) = 0.25$

x	f(x)
1.00	0.1924
1.05	0.2414
1.10	0.2933
1.15	0.3492

\overline{x}	f(x)
1.0	1.00000
1.1	1.23368
1.2	1.55271
1.3	1.49372
1.4	2.61170

x	f(x)
0.0	1.0
0.5	1.64872
1.0	2.71858
2.0	7.38906

x_i	$f(x_i)$
$x_0 = 1.2$	$f(x_0) = 0.079181$
$x_1 = 1.4$	$f(x_1) = 0.146128$
$x_2 = 1.6$	$f(x_2) = 0.204120$
$x_3 = 1.8$	$f(x_3) = 0.255273$

	77 11	T: 4	C 1 1: : 1 1 1: c	mi · 1 1· · 1 1 1· · · · · · · · · · · ·
	Zeroth	First	Second divided difference	Third divided difference
	divided	divided difference		
	difference			
	0()	$f[x_i, x_{i+1}]$	$f[x_i, x_{i+1}, x_{i+2}]$	$f[x_i, x_{i+1}, x_{i+2}, x_{i+3}]$
x_i	$f(x_i) = f[x_i]$	$=\frac{f[x_i]-f[x_{i+1}]}{}$	$= f[x_i, x_{i+1}] - f[x_{i+1}, x_{i+2}]$	$= \frac{f[x_i, x_{i+1}, x_{i+2}] - f[x_{i+1}, x_{i+2}, x_{i+3}]}{f[x_{i+1}, x_{i+2}, x_{i+3}]}$
		$\frac{x_i - x_{i+1}}{f[x_0, x_1]}$	$x_i - x_{i+2}$	$x_i - x_{i+3}$
	ar 1 0 0 = 0.10.1	$= \frac{f[x_0] - f[x_1]}{x_0 - x_1}$		
$x_0 = 1.2$	$f[x_0] = 0.079181$	$x_0 - x_1$		
		=0.334735	$f[x_0, x_1, x_2]$	
		0.001,00	$= \frac{f[x_0, x_1] - f[x_1, x_2]}{f[x_1, x_2]}$	
$x_1 = 1.4$	$f[x_1] = 0.146128$	f[]	$=\frac{1}{x_0-x_2}$	er 1
$x_1 - 1.4$	$\int [x_1] = 0.140120$	$f[x_1, x_2]$	=-0.1119375	$f[x_0, x_1, x_2, x_3]$
		$=\frac{f[x_1]-f[x_2]}{}$		$=\frac{f[x_0, x_1, x_2] - f[x_1, x_2, x_3]}{x_0 - x_3}$
		$ x_1 - x_2$	er 1	$ x_0 - x_3$
$x_2 = 1.6$	$f[x_2] = 0.204120$	=0.28996	$f[x_1, x_2, x_3]$	=0.044083333
2 =	J[**2] 0.2022		$=\frac{f[x_1,x_2]-f[x_2,x_3]}{f[x_1,x_2]}$	
		f[]	$x_1 - x_3$	
		$f[x_2, x_3]$	=-0.0854875	
$x_3 = 1.8$	$f[x_3] = 0.255273$	$-\frac{f[x_2]-f[x_3]}{}$		
		$ x_2 - x_3$		
		=0.255765		

x_i	Zeroth Divided Difference $f(x_i) = f[x_i]$	First Divided Difference $f[x_i, x_{i+1}]$ $= \frac{f[x_i] - f[x_{i+1}]}{x_i - x_{i+1}}$	Second divided difference $ f[x_i, x_{i+1}, x_{i+2}] $ $ = \frac{f[x_i, x_{i+1}] - f[x_{i+1}, x_{i+2}]}{x_i - x_{i+2}} $	Third divided difference $f[x_i, x_{i+1}, x_{i+2}, x_{i+3}] = \frac{f[x_i, x_{i+1}, x_{i+2}] - f[x_{i+1}, x_{i+2}, x_{i+3}]}{x_i - x_{i+3}}$
$x_0 = 1.2$	$f[x_0] = 0.079181$	$f[x_0, x_1]$ $= \frac{f[x_0] - f[x_1]}{x_0 - x_1}$ $= 0.334735$	$f[x_0, x_1, x_2] = f[x_0, x_1] - f[x_1, x_2]$	
	$f[x_1] = 0.146128$ $f[x_2] = 0.204120$	$f[x_1, x_2] = \frac{f[x_1] - f[x_2]}{x_1 - x_2} = 0.28996$	$x_0 - x_2$ = -0.1119375 $f[x_1, x_2, x_3]$	$f[x_0, x_1, x_2, x_3] = \frac{f[x_0, x_1, x_2] - f[x_1, x_2, x_3]}{x_0 - x_3}$ =0.044083333
	$f[x_3] = 0.255273$	$f[x_2, x_3] = \frac{f[x_2] - f[x_3]}{x_2 - x_3} = 0.255765$	$= \frac{f[x_1, x_2] - f[x_2, x_3]}{x_1 - x_3}$ $= -0.0854875$	

x_i	$f(x_i)$
$x_0 = 1.05$ $x_1 = 1.20$ $x_2 = 1.30$ $x_3 = 1.43$	$f(x_0) = 1.7433$ $f(x_1) = 2.5722$ $f(x_2) = 3.6021$ $f(x_3) = 8.2381$

Marks	No. of students
30 - 40	31
40 - 50	42
50 - 60	51
60 - 70	35
70 - 80	31

x	f(x)	$\Delta f(x)$	$\Delta^2 f(x)$	$\Delta^3 f(x)$	$\Delta^4 f(x)$	$\Delta^5 f(x)$
40	31					
50	73	42	9	-25		
60	124	51	-16	12	37	
70	159	35	-4			
80	190	31				

Year	Population (in thousands)		
1911	12	Age (x)	Premium $f(x)$
1921	15	20	0.01427
1931	20	24	0.1581
1941	27	28	0.01772
1951	39	32	0.01996
1961	52		

Age x	Premium $f(x)$	$\Delta f(x)$	$\Delta^2 f(x)$	$\Delta^3 f(x)$
20	0.01427			
		0.00155		
24	0.01581		0.0037	
		0.00191		-0.00004
28	0.01772		0.00033	
		0.00224		
32	0.01996			

$\mathbf{k}{\rightarrow}$	0	1	2	3	4	5	6
$x_1^{(k)}$	0	0.6000	1.0302	1.0066	1.0004	1.0001	1.0000
$x_2^{(k)}$	0	2.3273	2.0370	2.0036	2.0003	2.0000	2.0000
$x_3^{(k)}$	0	-0.9873	-1.0145	-1.0025	-1.0003	-1.0000	-1.0000
$x_4^{(k)}$	0	0.8789	0.4843	0.9984	0.9998	1.0000	1.0000

Operation	Coefficient of			R.H.S.	Eq. #	Check Sum
	x	y	z			
	16	5	7	29	Eq1	57
	5	12	9	5	Eq2	31
	8	11	20	35	Eq3	74
Eq 1/16	1	0.3125	0.4375	1.8125	Eq4*	3.5625
Eq $2/5$	1	2.4000	1.8000	1.000	Eq5	6.2000
Eq 3/8	1	1.3750	2.5000	4.3750	Eq6	9.2500
Eq 5 - Eq 4		2.0875	1.3625	-0.8125	Eq7	2.6375
Eq 6 - Eq 4		1.0625	2.0625	2.5625	Eq8	5.6875
Eq $7/2.0875$		1	0.6527	-0.3892	Eq9*	1.2635
Eq 8/1.0625		1	1.9412	2.4118	Eq10	5.3530
Eq 10 - Eq 9			1.2885	2.8010	Eq11*	4.0895

	(Coefficient o	of			
Operation	\overline{x}	y	\overline{z}	R.H.S	Eq. #	Check sum
	16.0000 5.0000 8.0000	5.0000 12.0000 11.0000	7.0000 9.0000 20.0000	29.0000 5.0000 35.0000	Eq1 Eq2 Eq3	57.0000 31.0000 74.0000
Eq 1/16 Eq 2/5 Eq 3/8	1.0000 1.0000 1.0000	0.3125 2.4000 1.3750	0.4375 1.8000 2.5000	1.8125 1.0000 4.3750	Eq4* Eq5 Eq6	3.5625 6.2000 9.2500
Eq 5 - Eq 4 Eq 6 - Eq 4		2.0875 1.0625	1.3625 2.0625	-0.8125 2.5625	Eq7 Eq8	2.6375 5.6875
Eq 7/2.0875 Eq 8/1.0625		1.0000 1.0000	0.6527 1.9412	-0.3892 2.4118	Eq9* Eq10	1.2635 5.3530
Eq 10 - Eq 9			1.2885	2.8010	Eq11*	4.0895

		Coefficient c	of			
Operation	\overline{x}	y	z	R.H.S	Eq. #	Check sum
	5.0000	12.0000	9.0000	5.0000	Eq1	31.0000
	8.0000	11.0000	20.0000	35.0000	Eq2	74.0000
	16.0000	5.0000	7.0000	29.0000	Eq3	57.0000
Eq 2/20	0.4000	0.5500	1.0000	1.7500	Eq4*	3.7000
Eq 3/7	0.2857	0.7143	1.0000	4.1429	Eq5	8.1429
Eq 1/9	0.5556	1.3333	1.0000	0.5556	Eq6	3.4445
Eq 5 - Eq 4	1.8857	0.1643	0.0000	2.3929	Eq7	4.4429
Eq 6 - Eq 4	0.1556	0.7833	0.0000	-1.1944	Eq8	-0.2555
Eq 7/1.8857	1.0000	0.0871	0.0000	1.2690	Eq9*	2.3561
Eq 8/0.1556	1.0000	5.0341	0.0000	-7.6761	Eq10	-1.6420
Eq 10 - Eq 9	0.0000	4.9470	0.0000	-8.9451	Eq11*	-3.9981

	Usi	ng Max	cima v	vith Par	tial Piv	oting	with 7	Total Pi	voting	
\overline{x}		1.4265	<u> </u>	1	1.4264			1.4265		
y	-	-1.8081	L	-1	1.8080	3080		-1.8082		
z	2.1739)	2.1738			2.1739			
\overline{n}	0	1	2	3	4		9	10	11	
$\overline{x_n}$	0	1.67	1.81	2.48	2.33		2.29	2.29	2.29	
y_n	0	2.71	2.10	1.78	1.52		1.62	1.61	1.61	
z_n	0	0.73	-1.11	-0.89	-0.98		-0.84	-0.84	0.84	

Table 1: Successive iterates of solution (Jacobi Method)

\overline{x}	f(x)	t	D(t)	t	D(t)
0.8	1.5505	8.0	17.453	8.0	17.453
0.9	1.5289	9.0	21.460	9.0	21.460
1.0	1.4687	10.0	25.752	10.0	25.752
1.1	1.3627	11.0	30.301	11.0	30.301
1.2	1.2031	12.0	35.084	12.0	35.084

\overline{x}	f(x)	
0.7	1.297	
0.8	1.597	(b)
1.0	2.287	
1.2	3.094	
1.3	3 536	

x	f(x)
0.7	1.297
0.9	1.927
1.0	2.287
1.1	2.677
1.3	3.536

1.

(a)

_	
x	f(x)
0.7	1.297
0.8	1.597
1.0	2.287
1.2	3.094
1.3	3.536

2.

x	f(x)
0.7	1.297
0.9	1.927
1.0	2.287
1.1	2.677
1.3	3.536

x	$y = f(x) = \ln x$
$x_0 = 4.0$	$y_0 = 1.3862944$
$x_0 + h = 4.2$	$y_1 = 1.4350845$
$x_0 + 2h = 4.4$	$y_2 = 1.4816045$
$x_0 + 3h = 4.6$	$y_3 = 1.5260563$
$x_0 + 4h = 4.8$	$y_4 = 1.5686159$
$x_0 + 5h = 5.0$	$y_5 = 1.6094379$
$x_0 + 6h = 5.2$	$y_6 = 1.6486586$

Description of the strategy

Equations involving M_0 and M_n

Natural cubic spline "a relaxed curve": $S'(x_0)$ and $S''(x_n)$.

$$M_0 = 0,$$

$$M_n = 0$$

Clamped cubic spline:

specify
$$S'(x_0) = A$$
 and $S'(x_n) = B$.

$$2M_0 + M_1 = \frac{6}{h_0} \left[\frac{\Delta y_0}{h_0} - A \right]$$

$$M_n + 2M_{n-1} = \frac{6}{h_{n-1}} 6 \left[B - \frac{\Delta y_{n-1}}{h_{n-1}} \right]$$

Extrapolated cubic spline:

 M_0 as linear extrapolation from

$$M_1$$
 and M_2 : $\frac{M_1-M_0}{h_0} = \frac{M_2-M_1}{h_1}$

 M_n as linear extrapolation from

$$M_{n-1}$$
 and M_{n-2} :

$$\frac{M_n - M_{n-1}}{h_{n-1}} = \frac{M_{n-1} - M_{n-2}}{h_{n-2}}$$

 $M_0 = M_1 - \frac{h_0(M_2 - M_1)}{h_1}$

$$M_n = M_{n-1} - \frac{h_{n-1}(M_{n-1} - M_{n-2})}{h_{n-2}}$$

Parabolically terminated spline

$$(S''(x))$$
 is constant near the end points)

$$M_0 = M_1, \quad M_n = M_{n-1}$$