La Loi des Grands Nombres.

Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires réelles indépendantes et identiquement distribuées. On note, pour tout $n\in \mathbb{N}^*$, $S_n=X_1+\ldots+X_n$ et $M_n=S_n/n$.

L'objectif de ce texte est d'étudier la convergence presque sûre de la suite $(S_n/n)_{n\geq 1}$. Le résultat que nous présentons est dû à Andrey Nikolaevich KOLMOGOROV dans les années 1929/1930.

Avant de poursuivre, rappelons que $\limsup S_n/n$, $\liminf S_n/n$ sont deux variables aléatoires asymptotiques de la suite $(X_n)_{n\geq 1}$; d'après la loi du 0-1 de Kolmogorov elles sont presque sûrement constantes dans $\overline{\mathbb{R}}$. L'événement $\{(M_n)_{n\geq 1} \text{ converge dans } \mathbb{R}\}$ est un événement asymptotique de cette même suite. Il a donc pour probabilité 0 ou 1.

Théorème. Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires réelles indépendantes et identiquement distribuées.

- a. Si X_1 est intégrable, $(S_n/n)_{n\geq 1}$ converge presque sûrement vers $\mathbb{E}[X_1]$.
- b. Lorsque X_1 n'est pas intégrable, au moins un des deux événements $\{\limsup S_n/n = +\infty\}$ et $\{\liminf S_n/n = -\infty\}$ a pour probabilité 1.

Remarque. En particulier, $(M_n)_{n\geq 1}$ converge presque sûrement dans \mathbb{R} si et seulement si X_1 est intégrable ; dans ce cas, la limite est $\mathbb{E}[X_1]$.

Avant d'établir le résultat, rappelons que, pour tout $p \geq 1$,

$$\sum_{k>p+1} \frac{1}{k^2} = \sum_{k>p} \frac{1}{(k+1)^2} \le \sum_{k>p} \int_k^{k+1} \frac{dx}{x^2} = \int_p^{+\infty} \frac{dx}{x^2} = \frac{1}{p}.$$
 (1)

D'autre part, si la suite réelle $(x_n)_{n\geq 1}$ converge vers $x\in\mathbb{R}$, $\lim_{n\to+\infty}n^{-1}\sum_{k=1}^nx_k=x$. En effet, la suite $(x_n)_{n\geq 1}$ est bornée et pour tout $n\geq r\geq 1$,

$$\left| \frac{1}{n} \sum_{k=1}^{n} x_k - x \right| \le \frac{1}{n} \sum_{k=1}^{r} |x_k - x| + \frac{1}{n} \sum_{k=r+1}^{n} |x_k - x| \le \frac{2r}{n} \sup_{k \ge 1} |x_k| + \left(1 - \frac{r}{n}\right) \sup_{k > r} |x_k - x| ;$$

par conséquent.

$$\lim \sup_{n \to +\infty} \left| \frac{1}{n} \sum_{k=1}^{n} x_k - x \right| \le 0 + \sup_{k > r} |x_k - x|$$

ce qui donne le résultat puisque $\lim_{r\to+\infty} \sup_{k>r} |x_k - x| = 0$.

 $D\acute{e}monstration$. Commençons par établir le point a. Supposons que X_1 est intégrable. La démonstration se fait en deux étapes.

• On suppose que les variables aléatoires $(X_n)_{n>1}$ sont positives.

 X_1 étant intégrable, $\sum_{n\geq 1}\mathbb{P}(X_n\geq n)<+\infty$ et donc, d'après le lemme de Borel-Cantelli, $\mathbb{P}(\limsup\{X_n\geq n\})=0$ et

$$\frac{1}{n} \sum_{k \le n} X_k - \frac{1}{n} \sum_{k \le n} X_k \mathbf{1}_{X_k < k}$$

converge presque sûrement vers 0. En effet, si $\omega \in (\limsup\{X_n \geq n\})^c = \liminf\{X_n < n\}$, il existe r_ω tel que pour tout $k > r_\omega$, $X_k(\omega) < k$ et

$$\lim_{n \to +\infty} \left(\frac{1}{n} \sum_{k \le n} X_k(\omega) - \frac{1}{n} \sum_{k \le n} X_k(\omega) \mathbf{1}_{X_k(\omega) < k}(\omega) \right) = \lim_{n \to +\infty} \frac{1}{n} \sum_{k \le r_\omega} X_k(\omega) = 0.$$

Il suffit de monter que, presque sûrement,

$$\frac{1}{n} \sum_{k \le n} X_k \, \mathbf{1}_{X_k \le k} \longrightarrow \mathbb{E}[X_1].$$

Soit $\alpha > 1$. On regarde la « sous-suite » associée à $[\alpha^n] : [\alpha^{n+1}]/[\alpha^n] \longrightarrow \alpha > 1$ donc $n \longmapsto [\alpha^n]$ est strictement croissante à partir d'un certain rang. Posons, pour tout entier $n \ge 1$,

$$U_n = \frac{1}{[\alpha^n]} \sum_{k < [\alpha^n]} X_k \, \mathbf{1}_{X_k < k}.$$

On a, par indépendance, comme $[\alpha^n] \ge \alpha^n/2$,

$$\mathbb{V}(U_n) = \frac{1}{[\alpha^n]^2} \sum_{k \le [\alpha^n]} \mathbb{V}(X_k \mathbf{1}_{X_k < k}) \le \frac{4}{\alpha^{2n}} \sum_{k \le \alpha^n} \mathbb{E}\left[X_1^2 \mathbf{1}_{X_1 < k}\right],$$

et, permuttant les deux sommes puisque tous les termes sont positifs,

$$\sum_{n \ge 1} \mathbb{V}(U_n) \le \sum_{n \ge 1} \frac{4}{\alpha^{2n}} \sum_{k \le \alpha^n} \mathbb{E}\left[X_1^2 \mathbf{1}_{X_1 < k}\right] = 4 \sum_{k \ge 1} \mathbb{E}\left[X_1^2 \mathbf{1}_{X_1 < k}\right] \sum_{n: \alpha^n \ge k} \frac{1}{\alpha^{2n}}.$$

Or, pour tout $k \ge 1$, notant n_0 le plus petit entier r vérifiant $\alpha^r \ge k$, puisque $0 < \alpha^{-2} < 1$,

$$\sum_{n:\alpha^n \ge k} \frac{1}{\alpha^{2n}} = \sum_{n \ge n_0} \frac{1}{\alpha^{2n}} = \frac{1}{\alpha^{2n_0}} \frac{1}{1 - \alpha^{-2}} \le \frac{1}{k^2} \frac{1}{1 - \alpha^{-2}}.$$

On en déduit, par convergence monotone, que

$$\sum_{n\geq 1} \mathbb{V}(U_n) \leq \frac{4}{1-\alpha^{-2}} \sum_{k\geq 1} \mathbb{E}\left[X_1^2 \mathbf{1}_{X_1 < k}\right] \frac{1}{k^2} = \frac{4}{1-\alpha^{-2}} \mathbb{E}\left[X_1^2 \sum_{k\geq 1} \frac{1}{k^2} \mathbf{1}_{X_1 < k}\right].$$

Or, il résulte de la majoration (1), que, pour tout $x \geq 0$,

$$\sum_{k \ge 1} \frac{1}{k^2} \mathbf{1}_{x < k} = \sum_{k \ge [x] + 1} \frac{1}{k^2} = \frac{x^2}{(1 + [x])^2} + \sum_{k \ge [x] + 2} \frac{1}{k^2} \le \frac{1}{(1 + [x])^2} + \frac{1}{1 + [x]} \le \frac{2}{1 + [x]}.$$

Finalement,

$$\sum_{n>1} \mathbb{V}(U_n) \le \frac{8}{1-\alpha^{-2}} \mathbb{E}\left[\frac{X_1^2}{1+[X_1]}\right] \le \frac{8}{1-\alpha^{-2}} \mathbb{E}\left[X_1\right] < +\infty.$$

Par conséquent, via l'inégalité de Tchebychev, pour tout $\varepsilon > 0$,

$$\sum_{n\geq 1} \mathbb{P}\left(|U_n - \mathbb{E}[U_n]| > \varepsilon\right) \leq \sum_{n\geq 1} \mathbb{V}(U_n)\varepsilon^{-2} < +\infty.$$

La suite $(U_n - \mathbb{E}[U_n])_{n \ge 1}$ converge vers 0 presque sûrement.

D'autre part, X_1 étant intégrable, $\lim_{k\to +\infty}\mathbb{E}[X_1\,\mathbf{1}_{X_1< k}]=\mathbb{E}[X_1]$ et le lemme Césaro implique que

$$\frac{1}{n} \sum_{k \le n} \mathbb{E}\left[X_1 \, \mathbf{1}_{X_1 < k}\right] \longrightarrow \mathbb{E}[X_1].$$

En particulier, $\lim_{n\to+\infty} \mathbb{E}[U_n] = \mathbb{E}[X_1]$ et $(U_n)_{n\geq 1}$ converge presque sûrement vers $\mathbb{E}[X_1]$.

Rappelons que $\liminf M_n$ et $\limsup M_n$ sont des variables aléatoires asymptotiques de la suite $(X_n)_{n\geq 1}$ donc presque sûrement constantes dans $\overline{\mathbb{R}}$ disons respectivement égales à c_* et c^* .

Notons, pour tout $n \ge 1$, $k_n = \sup\{k \in \mathbb{N} : [\alpha^k] \le n\} : [\alpha^{k_n}] \le n < [\alpha^{k_n+1}]$. Nous avons comme les variables aléatoires $(X_n)_{n\ge 1}$ sont positives

$$[\alpha^{k_n}] \le n \le [\alpha^{k_n+1}], \qquad S_{[\alpha^{k_n}]} \le S_n \le S_{[\alpha^{k_n+1}]},$$

et donc

$$\frac{\left[\alpha^{k_n}\right]}{\left[\alpha^{k_n+1}\right]}U_{k_n} \le M_n \le U_{k_n+1}\frac{\left[\alpha^{k_n+1}\right]}{\left[\alpha^{k_n}\right]}.$$

Par suite, lorsque $n \to +\infty$, comme $k_n \to +\infty$, $\frac{[\alpha^{k_n+1}]}{[\alpha^{k_n}]} \longrightarrow \alpha$ et $(U_{k_n})_{n\geq 1}$ converge vers 1 presque sûrement. Par conséquent,

$$\frac{1}{\alpha} \mathbb{E}[X_1] \leq \liminf M_n \leq \limsup M_n \leq \alpha \mathbb{E}[X_1], \quad \mathbb{P} - p.s.$$

Donc $\mathbb{E}[X_1]/\alpha \leq c_* \leq c^* \leq \alpha \mathbb{E}[X_1]$. Cette inégalité étant valable pour tout $\alpha > 1$, on a finalement $c_* = c^* = \mathbb{E}[X_1]$ ce qui signifie que $(S_n/n)_{n\geq 1}$ converge presque sûrement vers $\mathbb{E}[X_1]$.

• Montrons que le résultat est encore vrai dans le cas général. Les variables aléatoires $(X_n^+)_{n\geq 1}$ sont indépendantes comme le sont aussi les variables aléatoires $(X_n^-)_{n\geq 1}$; X_1^+ et X_1^- sont intégrables puisque X_1 l'est. D'après la première étape,

$$M_n = \frac{1}{n} \sum_{k \le n} X_k^+ - \frac{1}{n} \sum_{k \le n} X_k^-$$

converge presque sûrement vers $\mathbb{E}[X_1^+] - \mathbb{E}[X_1^-] = \mathbb{E}[X_1]$.

Passons à présent à la seconde assertion de l'énoncé. Supposons que X_1 n'est pas intégrable. Soit c>0. X_1/c n'est pas intégrable donc $\sum_{n\geq 1}\mathbb{P}(|X_n|\geq cn)=\sum_{n\geq 1}\mathbb{P}(|X_1|\geq cn)=+\infty$. D'après le lemme de Borel-Cantelli $\mathbb{P}(\limsup\{|X_n|/n\geq c\})=1$; presque sûrement, $\limsup |X_n|/n\geq c$. Il s'en suit que, presque sûrement, $\limsup |X_n|/n=+\infty$. Or, pour tout $n\geq 2$,

$$\frac{X_n}{n} = M_n - \frac{n-1}{n} M_{n-1}, \qquad \frac{|X_n|}{n} \le |M_n| + |M_{n-1}|$$

et par suite, presque sûrement,

$$+\infty = \limsup |X_n|/n \le 2 \limsup |M_n|.$$

Or $\{\limsup |M_n| = +\infty\} \subset \{\limsup M_n = +\infty\} \cup \{\liminf M_n = -\infty\}$. Ces deux événements ne peuvent pas être tous deux négligeables puisque leur union a pour probabilité 1. Comme il s'agit de deux événements asymptotiques, au moins un des deux a pour probabilité 1.

Corollaire. Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires réelles indépendantes et identiquement distribuées.

Si X_1 possède un moment d'ordre $p \ge 1$, $(S_n/n)_{n\ge 1}$ converge dans L^p vers $\mathbb{E}[X_1]$.

Démonstration. D'après le résultat précédent, $(M_n)_{n\geq 1}$ converge presque sûrement vers $\mathbb{E}[X_1]$ notée m dans la suite. De plus, pour tous $r\geq 1$, $n\geq 1$,

$$\mathbb{E}[|M_n - m|^p] = \mathbb{E}[\min(|M_n - m|^p, r)] + \mathbb{E}[(|M_n - m|^p - r)^+];$$

et par croissance et convexité de la fonction $x \longmapsto (x^p - r)^+$ on obtient

$$(|M_n - m|^p - r)^+ \le \left(\left[n^{-1} \sum_{k \le n} |X_k - m| \right]^p - r \right)^+ \le \frac{1}{n} \sum_{k \le n} (|X_k - m|^p - r)^+$$

d'où il résulte que

$$\mathbb{E}[|M_n - m|^p] \le \mathbb{E}[\min(|M_n - m|^p, r)] + \mathbb{E}[(|X_1 - m|^p - r)^+].$$

Par convergence dominée, pour tout $r \geq 1$, $\mathbb{E}\left[\min\left(|M_n - m|^p, r\right)\right] \longrightarrow 0$ si $n \to +\infty$ et donc

$$\limsup_{n \to +\infty} \mathbb{E}\left[|M_n - m|^p \right] \le 0 + \mathbb{E}\left[(|X_1 - m|^p - r)^+ \right] ;$$

pour conclure, notons que par convergence dominée, $\lim_{r\to +\infty} \mathbb{E}\left[(|X_1-m|^p-r)^+\right]=0.$

Remarque. Si les $(X_n)_{n\geq 1}$ sont positives, indépendantes et identiquement distribuées avec $\mathbb{E}[X_1] = +\infty$, alors $(M_n)_{n\geq 1}$ converge presque sûrement vers $+\infty$, puisque, pour tout entier $r\geq 1$, presque sûrement,

$$\lim\inf M_n \ge \lim\inf \frac{1}{n} \sum_{k \le n} \min(X_k, r) = \mathbb{E}[\min(X_1, r)],$$

et, par convergence monotone, $\mathbb{E}[\min(X_1, r)]$ croît vers $\mathbb{E}[X_1] = +\infty$ si $r \to +\infty$.