МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

УЧРЕЖДЕНИЕ ОБРАЗОВАНИЯ «БРЕСТСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» КАФЕДРА ВЫСШЕЙ МАТЕМАТИКИ

ЗАДАЧИ И УПРАЖНЕНИЯ

по курсу «Математика» для студентов факультета электронно-информационных систем

Кратные и криволинейные интегралы

II семестр

УДК 517.37 (076)

Настоящие методические указания содержат задачи и упражнения из раздела «Кратные и криволинейные интегралы». Представлены краткие теоретические сведения по темам, наборы заданий для аудиторных и индивидуальных работ, варианты аттестационной работы и решение типового варианта. Указания составлены в соответствии с действующей программой для студентов первого курса факультета электронно-информационных систем.

Составители: Каримова Т.И., доцент, к.ф.-м.н.

Гладкий И.И., старший преподаватель

Махнист Л.П., доцент, к.т.н. **Черненко В.П.**, доцент

Рецензент: Мирская Е.И., доцент кафедры алгебры, геометрии и математического моделирования учреждения образования «Брестский государственный университет им. А.С. Пушкина», к.ф.-м.н., доцент.

КРАТНЫЕ ИНТЕГРАЛЫ

1. Двойной интеграл и его вычисление в декартовых координатах

Пусть функция z = f(x,y) определена в некоторой ограниченной замкнутой области D плоскости xOy. Разобьем область D произвольным образом на $n, n \in \mathbb{N}$ элементарных областей D_1, D_2, \dots, D_n , имеющих площади $\Delta S_1, \Delta S_2, \dots, \Delta S_n$ и диаметры d_1, d_2, \dots, d_n соответственно. Пусть λ — наибольший из диаметров областей $D_i, i = \overline{1,n}$. Выберем в каждой элементарной области D_i произвольную точку $P_i(x_i, y_i)$, и найдем

$$f(P_i) = f(x_i, y_i)$$
. Составим интегральную сумму: $\sum_{i=1}^n f(x_i, y_i) \Delta S_i$.

Если существует конечный предел интегральной суммы при $n \to \infty$ и $\lambda \to 0$, не зависящий от способа разбиения области D и выбора точек P_i , то его называют двойным интегралом функции f(x,y) по области D:

$$\lim_{\lambda\to 0}\sum_{i=1}^n f(x_i,y_i)\Delta S_i = \iint_D f(x,y)dS = \iint_D f(x,y)dxdy.$$

Если подынтегральная функция f(x, y) в области интегрирования непрерывна, то такой предел интегральной суммы всегда существует.

Геометрический смысл двойного интеграла: если $f(x,y) \ge 0$, для всех $(x;y) \in D$, то двойной интеграл равен объему цилиндрического тела, ограниченного сверху поверхностью z = f(x,y), снизу плоскостью z = 0, сбоку цилиндрической поверхностью, образующие которой параллельны оси Oz, а направляющая — граница области интегрирования:

$$V=\iint_{\Omega}f(x,y)dxdy.$$

Если f(x, y) = 1, то двойной интеграл равен *площади области D*, т.е.

$$S_D = \iint_D dS = \iint_D dxdy.$$

Механический смысл двойного интеграла: если область D — плоская пластинка, расположенная в плоскости xOy и имеющая поверхностную плотность $\mu = \mu(x,y)$, то *масса пластины* равна $m = \int_{D}^{\infty} \mu(x,y) dx dy$.

Основные свойства двойного интеграла

1.
$$\iint_{D} (\alpha f_1(x,y) \pm \beta f_2(x,y)) dxdy = \alpha \iint_{D} f_1(x,y) dxdy \pm \beta \iint_{D} f_2(x,y) dxdy.$$

- 2. Если область интегрирования разбита на несколько областей без общих точек, то $\iint_D f(x,y) dx dy = \sum_{i=1}^n \iint_{D_i} f(x,y) dx dy$.
- 3. Если в области D функция f(x,y) ограничена, т.е. $m \le f(x,y) \le M$, то $m \cdot S \le \iint_D f(x,y) dx dy \le M \cdot S$, где S площадь области D.
- 4. *Теорема о среднем.* Если функция f(x,y) непрерывна в замкнутой области D, то существует точка $P_0(x_0, y_0)$ в этой области такая, что

$$\iint_{\Gamma} f(x,y) dx dy = f(x_0, y_0) \cdot S,$$

где S – площадь области D, $f(x_0,y_0)$ называют средним значением функции f(x,y) в области D.

Вычисление двойного интеграла в декартовых координатах сводится к вычислению повторного интеграла, вид которого зависит от формы области интегрирования.

Если область D правильная относительно оси Oy (рис.1), т. е. она ограничена слева и справа прямыми x = a, x = b, a < b, а снизу и сверху — непрерывными кривыми $y = y_1(x)$, $y = y_2(x)$, $y_1(x) \le y_2(x)$, $x \in (a,b)$, каждая из которых пересекается вертикальными прямыми только в одной точке, то двойной интеграл вычисляется по формуле

$$\iint\limits_D f(x,y)dxdy = \int\limits_a^b dx \int\limits_{y_1(x)}^{y_2(x)} f(x,y)dy.$$

Если область *D правильная относительно оси Ох* (рис.2), т. е. она ограничена снизу и сверху прямыми $y=c,\ y=d,\ c< d$, а слева и справа – непрерывными кривыми $x=x_1(y),\ x=x_2(y),\ x_1(y)\leq x_2(y),\ y\in (c,d),$

каждая из которых пересекается горизонтальными прямыми только в одной точке, то двойной интеграл вычисляется по формуле

$$\iint_D f(x,y)dxdy = \int_c^d dy \int_{x_1(y)}^{x_2(y)} f(x,y)dx.$$

Задания для аудиторной работы

- **1.** Записать двойной интеграл функции f(x;y) по области D в виде повторных интегралов двумя способами. Сделать чертеж области интегрирования.
 - 1) область *D* ограничена линиями x = 1, x = 2, y = 0, y = 4;
 - 2) область D ограничена линиями y = 0, x = y, x + y = 4;
 - 3) область *D* ограничена линиями y = x, x + y = 6, y = 1;
 - 4) область *D* ограничена линиями $y = x^2$, $4 y = x^2$;
 - 5) область *D* ограничена линиями $y = -\sqrt{2x x^2}$, x = 0, x = 1, y = 1.
- 2. Изменить порядок интегрирования в повторных интегралах:

1)
$$\int_{-2}^{2} dx \int_{x^{2}}^{4} f(x,y) dy$$
 2) $\int_{1}^{2} dx \int_{\frac{1}{x}}^{x} f(x,y) dy$; 3) $\int_{0}^{1} dx \int_{x^{3}}^{\sqrt{x}} f(x,y) dy$;

4)
$$\int_{0}^{3} dx \int_{0}^{x/3} f(x;y) dy + \int_{3}^{4} dx \int_{0}^{4-x} f(x;y) dy.$$

3. Вычислить данные повторные интегралы:

1)
$$\int_{0}^{2} dx \int_{0}^{1} (x^{2} + 2y) dy$$
; 2) $\int_{1}^{2} dx \int_{1}^{x} \frac{x^{2}}{y^{2}} dy$; 3) $\int_{0}^{2\pi} dx \int_{a \sin \varphi}^{a} r dr$.

4. Вычислить двойные интегралы:

1)
$$\iint_D (x-y) dx dy$$
, где область D ограничена прямыми $y=0$, $x=y$, $x+y=2$;

$$(x + y = 2);$$
2) $\iint_D x^4 y \, dx dy$, где область D ограничена линиями $xy = 1$, $x = y$, $x = 2$;

3)
$$\iint_D x \cos(x+y) dxdy$$
, где область D ограничена линиями $y=0$,

$$X = \pi$$
, $Y = X$;

4)
$$\iint_{D} e^{\frac{x}{y}} dxdy$$
, где *D* ограничена линиями $x = y^{2}$, $x = 0$, $y = 1$.

Задания для индивидуальной работы

- **5.** Записать двойной интеграл функции f(x;y) по указанной области D в виде повторных интегралов двумя способами. Сделать чертеж области интегрирования.

- 1) D: x = 0, x = y, y = 5;2) D: x = 0, y = 2x, x + y = 3;3) $D: y^2 = x + 3; y = -x;$ 4) $D: x \ge 0; y \ge 0; y \le 1; y = \ln x;$ 5) $D: x^2 = 2 y; x + y = 0;$ 6) $D: y = \sqrt{2 x^2}; y = x^2.$
- 6. Изменить порядок интегрирования в повторных интегралах:

1)
$$\int_{0}^{1} dx \int_{3x}^{3x} f(x;y)dy$$
;

$$2) \int_{0}^{1} dy \int_{0}^{\sqrt{y}} f(x;y) dx;$$

1)
$$\int_{0}^{1} dx \int_{2x}^{3x} f(x;y) dy$$
; 2) $\int_{0}^{1} dy \int_{y}^{\sqrt{y}} f(x;y) dx$; 3) $\int_{0}^{4} dx \int_{3x^{2}}^{12x} f(x;y) dy$;

4)
$$\int_{0}^{1} dy \int_{2}^{\sqrt{3-y^2}} f(x;y) dx$$
;

4)
$$\int_{0}^{1} dy \int_{y^{2}}^{\sqrt{3-y^{2}}} f(x;y) dx;$$
 5) $\int_{-1}^{3} dx \int_{2}^{\frac{x+5}{2}} f(x,y) dy + \int_{3}^{6} dx \int_{2}^{6-\frac{2}{3}x} f(x,y) dy;$

6)
$$\int_{\frac{1}{2}}^{2} 2y \int_{-\sqrt{y-1}}^{\sqrt{y-1}} f(x,y) dx + \int_{2}^{5} dy \int_{-\sqrt{y-1}}^{3-y} f(x,y) dx.$$

7. Вычислить следующие повторные интегралы:

1)
$$\int_{3}^{4} dx \int_{1}^{2} \frac{dy}{(x+y)^{2}}$$

1)
$$\int_{3}^{4} dx \int_{1}^{2} \frac{dy}{(x+y)^{2}};$$
 2) $\int_{0}^{\pi} dx \int_{0}^{1+\cos x} y^{2} \sin x \, dy;$ 3) $\int_{0}^{\pi/2} dx \int_{\cos x}^{1} y^{4} dy;$
4) $\int_{0}^{2\pi} d\varphi \int_{0}^{\pi} r \, dr;$ 5) $\int_{1}^{2} dx \int_{0}^{x^{2}} (2x-y) dy;$ 6) $\int_{0}^{\pi} \cos^{2} x \, dx \int_{0}^{4} y \, dy.$

$$3) \int_{0}^{\pi/2} dx \int_{\cos x}^{1} y^4 dy$$

4)
$$\int_{0}^{2\pi} d\varphi \int_{a\sin\varphi}^{a} r \, dr$$

5)
$$\int_{0}^{2} dx \int_{0}^{x^{2}} (2x - y) dy$$

$$6) \int_{0}^{\pi} \cos^2 x \, dx \int_{0}^{4} y \, dy$$

- 8. Вычислить данные двойные интегралы:
 - 1) $\iint xydxdy$, где область *D* ограничена линиями x = 2, x = 4;

$$y = 1, y = 2;$$

- 2) $\iint \frac{x^2}{v^2} dx dy$, где область *D* ограничена линиями x = 2; y = x; xy = 1;
- 3) $\iint \cos(x+y) dxdy$, где область D ограничена прямыми x=0; $y=\pi$;

$$y = x$$
;

4)
$$\iint_D dxdy$$
, где область *D* ограничена линиями $y = 2 - x$; $y^2 = 4x + 4$;

5)
$$\iint_D (x+y) dx dy$$
, где область D ограничена прямыми $2x+y=1$; $2x+y=3$; $x-y=-1$; $x-y=2$.

2. Замена переменных в двойном интеграле

Двойной интеграл в криволинейных координатах

Пусть переменные x и y связаны с переменными u и v соотношениями $x = \varphi(u,v), \ y = \psi(u,v),$ при которых область D плоскости xOy переходит в область D_1 плоскости uO_1v , причем функции $\varphi(u,v),\ \psi(u,v)$ однозначны, непрерывны и имеют непрерывные частные производные первого порядка в области D_1 , тогда формула замены переменных в двойном интеграле имеет вид

$$\iint_{D} f(x,y) dxdy = \iint_{D_{1}} f(\varphi(u,v),\psi(u,v)) |J(u,v)| dudv,$$

где J(u,v) – определитель Якоби или якобиан перехода

$$J(u,v) = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix} \neq 0.$$

Пределы интегрирования в новом интеграле расставляют по изложенному ранее правилу с учетом формы области D_1 .

Пример 1. Вычислить $\iint_D (x+y) dx dy$, если область D ограничена прямыми 2x+y=1, 2x+y=3, x-y=-1, x-y=2.

Решение. Изобразим область *D* на плоскости *xOy*.

Введем новые переменные u = 2x + y, v = x - y, тогда $x = \frac{1}{3}(u + v)$,

$$y = \frac{1}{3}(u-2v), \ 1 \le u \le 3, \ -1 \le v \le 2.$$

Найдем якобиан преобразования:

$$J = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix} = \begin{vmatrix} \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & -\frac{2}{3} \end{vmatrix} = -\frac{2}{9} - \frac{1}{9} = -\frac{3}{9} = -\frac{1}{3}; \qquad |J| = \frac{1}{3}.$$

Тогда:

$$\begin{split} \iint_{D} \left(x + y \right) dx dy &= \iint_{D_{1}} \left(\frac{u + v}{3} + \frac{u - 2v}{3} \right) \cdot \frac{1}{3} du dv = \frac{1}{9} \iint_{D_{1}} \left(2u - v \right) du dv = \\ &= \frac{1}{9} \int_{1}^{3} du \int_{-1}^{2} \left(2u - v \right) dv = \frac{2}{9} \int_{1}^{3} u du \int_{-1}^{2} dv - \frac{1}{9} \int_{1}^{3} du \int_{-1}^{2} v dv = \\ &= \frac{2}{9} \cdot \left(\frac{u^{2}}{2} \right) \Big|_{1}^{3} \cdot v \Big|_{-1}^{2} - \frac{1}{9} \cdot u \Big|_{1}^{3} \cdot \left(\frac{v^{2}}{2} \right) \Big|_{-1}^{2} = \frac{9 - 1}{9} \cdot 3 - \frac{(3 - 1)}{18} \cdot (4 - 1) = \frac{8}{3} - \frac{1}{3} = \frac{7}{3}. \end{split}$$

$$Omeem: \frac{7}{3}.$$

Двойной интеграл в полярных координатах

Рассмотрим частный случай замены переменной: замену декартовых координат x и y полярными координатами r и φ .

В качестве u и v возьмем полярные координаты r и φ . Известно, что декартовы координаты (x; y) и полярные координаты $(r; \varphi)$ связаны соотношениями $x = r \cos \varphi$, $y = r \sin \varphi$.

Якобиан перехода будет равен

$$J(r,\varphi) = \begin{vmatrix} \frac{\partial x}{\partial r} & \frac{\partial x}{\partial \varphi} \\ \frac{\partial y}{\partial r} & \frac{\partial y}{\partial \varphi} \end{vmatrix} = \begin{vmatrix} \cos \varphi & -r \sin \varphi \\ \sin \varphi & r \cos \varphi \end{vmatrix} = r.$$

Формула замены переменных примет вид

$$\iint_{D} f(x,y) dxdy = \iint_{D_{x}^{*}} f(r\cos\varphi, r\sin\varphi) r dr d\varphi,$$

где $\textbf{\textit{D}}^*$ – область в полярной системе координат, соответствующая области $\textbf{\textit{D}}$ в декартовой системе координат.

Для вычисления двойного интеграла в полярных координатах применяется тоже правило сведения его к повторному интегралу.

Если в полярной системе координат задана область D^* , ограниченная кривыми $r = r_1(\varphi), \ r = r_2(\varphi), \ \varphi = \alpha, \ \varphi = \beta$, где $\alpha < \beta$ и $r_1(\varphi) \le r_2(\varphi)$ (см. рис.3), т. е. область D правильная: каждый луч, выходящий из полюса, проходящий через внутреннюю точку области, пересекает ее границу не более чем в двух точках, то формула замены переменных примет вид

$$\iint_{D} f(x,y) dx dy = \int_{\alpha}^{\beta} d\varphi \int_{r_{1}(\varphi)}^{r_{2}(\varphi)} f(r \cos \varphi, r \sin \varphi) r dr.$$

Если область D^* в полярной системе координат определяется неравенствами $0<\varphi<2\pi$ и $0\leq r\leq r\left(\varphi\right)$, как на рис. 4, то формула замены переменных примет вид

$$\iint_{D} f(x,y) dxdy = \int_{0}^{2\pi} d\varphi \int_{0}^{r(\varphi)} f(r\cos\varphi, r\sin\varphi) r dr.$$

Двойной интеграл в обобщенных полярных координатах

Обобщенными полярными (эллиптическими) координатами называют координаты $(r;\varphi)$, связанные с декартовыми координатами (x;y) равенствами $x = ar\cos\varphi, \ y = br\sin\varphi$, где $r \ge 0, \ 0 \le \varphi < 2\pi, \ a > 0, \ b > 0, \ a \ne b$, $|J(r;\varphi)| = abr$.

Тогда формула перехода имеет вид:

$$\iint_{D} f(x,y) dxdy = ab \iint_{D} f(ar \cos \varphi, br \sin \varphi) r drd\varphi.$$

Эта формула используется в тех случаях, когда область интегрирования — эллипс или его часть, и подынтегральная функция содержит выра-

жение вида
$$\left(\frac{x^2}{a^2} + \frac{y^2}{b^2}\right)^k$$
.

Пример 2. Вычислить двойной интеграл
$$\iint_D \sin \pi \left(\frac{x^2}{4} + y^2\right) dxdy$$
, где об-

ласть
$$D: \frac{x^2}{4} + y^2 = 1; \frac{x^2}{16} + \frac{y^2}{4} = 1.$$

Решение. Границами области интегрирования *D* являются эллипсы.

Введем обобщенные полярные координаты: $x = 2r \cos \varphi$, $y = r \sin \varphi$, |J| = 2r.

Запишем уравнения эллипсов в новых координатах. Преобразуем уравне-

ние
$$\frac{x^2}{4} + y^2 = 1$$
. Получим:

$$r^2 \cos^2 \varphi + r^2 \sin^2 \varphi = 1 \implies r = 1.$$

Из уравнения $\frac{x^2}{16} + \frac{y^2}{4} = 1$ получим:

$$\frac{1}{4}\left(r^2\cos^2\varphi+r^2\sin^2\varphi\right)=1 \implies \frac{r^2}{4}=1 \implies r=2, \ 0 \le \varphi < 2\pi.$$

Исходный интеграл будет равен:

$$\iint_{D} \sin \pi \left(\frac{x^{2}}{4} + y^{2}\right) dxdy = \iint_{D} \sin \left(\pi \cdot r^{2}\right) \cdot 2rdrd\varphi = \int_{0}^{2\pi} d\varphi \int_{1}^{2} \sin \left(\pi \cdot r^{2}\right) \cdot 2rdr =$$

$$= 2 \int_{1}^{2} \sin \left(r^{2}\pi\right) d\left(r^{2}\pi\right) = -2 \cos \left(r^{2}\pi\right) \Big|_{1}^{2} = -2 \left(\cos 4\pi - \cos \pi\right) = -4.$$

Ответ: -4.

Задания для аудиторной работы

- **9.** Вычислить двойные интегралы, используя полярную систему координат:
- 1) $\iint_D y \, dx dy$, где область D верхний полукруг радиуса a с центром в точке (a;0);
- 2) $\iint_D (12 x y) dxdy$, где область D ограничена окружностью $x^2 + y^2 = 25$:

3)
$$\iint_D arctg \frac{y}{x} dxdy$$
, где область D — часть кольца $x^2 + y^2 \ge 1$, $x^2 + y^2 \le 9$, $y \ge \frac{x}{\sqrt{3}}$, $y \le x\sqrt{3}$, $y > 0$;

4)
$$\iint_D (x^2 + y^2) dx dy$$
, где область $D: x^2 + y^2 = 4x$;

5)
$$\iint_{D} xydxdy$$
, где область *D* ограничена лемнискатой $(x^{2} + y^{2})^{2} = 2a^{2}xy$.

10. Вычислить повторные интегралы, переходя к полярной системе координат:

1)
$$\int_{-3}^{0} dx \int_{0}^{\sqrt{9-x^2}} \frac{dy}{\sqrt{x^2+y^2}} (x^2+y^2) dy = 2 \int_{0}^{1} dx \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} \frac{\ln(1+\sqrt{x^2+y^2})}{\sqrt{x^2+y^2}} dx = 2 \int_{0}^{1} dx \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} \frac{\ln(1+\sqrt{x^2+y^2})}{\sqrt{x^2+y^2}} dx = 2 \int_{0}^{1} dx \int_{0}^{\sqrt{1-x^2}} dx = 2 \int_{0}^{1} dx$$

11. Вычислить двойной интеграл, переходя к обобщенным полярным координатам: $\iint_D xydxdy, \text{ где } D: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1, \ x = 0, \ y \ge 0.$

Задания для индивидуальной работы

- **12.** Вычислить двойные интегралы, используя полярную систему координат:
 - 1) $\iint_{D} \frac{y \, dx dy}{\sqrt{x^2 + y^2}}$, где область D ограничена двумя окружностями

$$x^2 + y^2 = 1$$
, $x^2 + y^2 = 9$ $(y \ge 0)$;

2)
$$\iint_D (x^2 + y^2) dxdy$$
, где область D – круг $x^2 + y^2 \le 4x$;

3)
$$\iint_D 6 dx dy$$
, если $D: x^2 + y^2 = 4x$, $x^2 + y^2 = 6x$, $y = x$, $y = 0$;

4)
$$\iint_{D} \sqrt{x^2 + y^2} dx dy$$
, если *D* ограничена лемнискатой $(x^2 + y^2)^2 = 2a^2xy$.

13. Вычислить двойные интегралы, переходя к полярной системе координат:

1)
$$\iint_D (6-2x-3y) dxdy$$
, если область D – круг $x^2+y^2 \le 4$.

2)
$$\iint_D \frac{xy}{\sqrt{x^2+y^2}} dxdy$$
, если $D: 1 \le x^2+y^2 \le 4$, $y=x$, $y=0$, $x<0$, $y<0$;

3)
$$\iint_D (x^2 + y^2) dx dy$$
, если $D: x^2 + y^2 = 4x$, $x^2 + y^2 = 6x$, $y = x$, $y = \sqrt{3}x$, $y > 0$;

4)
$$\iint_D (x^2 + y^2) dx dy$$
, если область D ограничена лемнискатой Бернулли $\left(x^2 + y^2\right)^2 = x^2 - y^2$.

14. Вычислить повторные интегралы, переходя к полярной системе координат:

1)
$$\int_{-2}^{0} dx \int_{0}^{\sqrt{4-x^2}} \sin(x^2 + y^2) dy;$$
2)
$$\int_{0}^{1} dx \int_{0}^{\sqrt{1-x^2}} \sqrt{\frac{1-x^2-y^2}{1+x^2+y^2}} dy;$$
3)
$$\int_{-R}^{R} dx \int_{0}^{\sqrt{R^2-x^2}} \frac{dy}{\sqrt{x^2+y^2}\sin^2\sqrt{x^2+y^2}}.$$

3. Вычисление площадей фигур и объемов тел с помощью двойного интеграла

1. Если область D определена неравенствами вида $a \le x \le b$ $y_1(x) \le y \le y_2(x)$, то площадь S этой области можно найти по формуле

$$S = \iint_D dxdy = \int_a^b dx \int_{y_1(x)}^{y_2(x)} dy.$$

2. Если область D определена неравенствами вида $c \le y \le d$, $x_1(y) \le x \le x_2(y)$, то площадь S может быть найдена по формуле

$$S = \iint_D dxdy = \int_c^d dy \int_{x_1(y)}^{x_2(y)} dx.$$

3. Если область D определена в полярных координатах неравенствами $\alpha \le \varphi \le \beta$, $r_1(\varphi) \le r \le r_2(\varphi)$, то площадь S можно найти по формуле

$$S = \iint_{D} r dr d\varphi = \int_{\alpha}^{\beta} d\varphi \int_{r_{1}(\varphi)}^{r_{2}(\varphi)} r dr.$$

4. Пусть цилиндрическое тело ограничено сверху поверхностью z = f(x,y), снизу — плоскостью z = 0, его образующие параллельны оси Oz, а направляющая — замкнутая кривая, ограничивающая в плоскости xOy область D. Объем этого тела может быть найден по формуле:

$$V = \iint_D z dx dy = \iint_D f(x, y) dx dy.$$

Задания для аудиторной работы

15. Вычислить площади фигур, ограниченных следующими линиями:

1)
$$y = x$$
, $y = 5x$, $x = 1$;

1)
$$y = x$$
, $y = 5x$, $x = 1$; 2) $y = x^2$, $y = \frac{3}{4}x^2 + 1$;

3)
$$y^2 = 4 + x$$
, $x + 3y = 0$;

3)
$$y^2 = 4 + x$$
, $x + 3y = 0$; 4) $x = y^2$, $x = \sqrt{2 - y^2}$;

5)
$$(x^2 + y^2)^2 = 2a^2(x^2 - y^2)$$
; 6) $r = a \sin 2\varphi, a > 0$.

6)
$$r = a \sin 2\varphi, a > 0$$
.

- 16. Изобразить на чертеже тело, объем которого выражается интегралом $\int dx \int (x^2 + y^2) dy$, и вычислить этот объем.
- **17.** Вычислить объемы тел, ограниченных следующими поверхностями:

1)
$$x^2 + y^2 = R^2$$
, $x^2 + z^2 = R^2$;

2)
$$z = x^2 + y^2$$
, $z = x + y + 10$, $z = 0$.

- **18.** Вычислить объем тела, ограниченного снизу частью плоскости *хОу,* расположенной внутри лемнискаты $r^2 = a^2 \cos 2\varphi$, сверху – поверхностью шара $x^2 + y^2 + z^2 = a^2$, с боков – цилиндрической поверхностью, направляющей для которой служит лемниската.
- 19. Вычислить объем тела, ограниченного координатными плоскостями, плоскостями x = 4, y = 4 и параболоидом $z = x^2 + y^2 + 1$.
- **20.** Найти массу круга радиуса a, плотность которого в каждой точке пропорциональна расстоянию от этой точки до контура круга.
- 21. Вычислить координаты центра тяжести фигуры, ограниченной кардиоидой $r = a(1 + \cos \varphi)$.
- 22. Вычислить координаты центра тяжести фигуры, ограниченной синусоидой $y = \sin x$ и прямой $x = \frac{\pi}{4}$.

Задания для индивидуальной работы

23. Вычислить площади фигур, ограниченных заданными линиями:

1)
$$y = \sqrt{x}$$
, $y = 2\sqrt{x}$, $x = 4$;

1)
$$y = 2 - x$$
, $y^2 = 4x + 4$;

3)
$$y = 4x - x^2$$
, $y = 2x^2 + 5x$;

4)
$$r = a \sin 2\varphi$$
, $a > 0$.

24. Переходя к полярным координатам, найти площадь области, ограниченной линиями

1)
$$x^2 + y^2 = 2x$$
, $x^2 + y^2 = 4x$, $y = x$, $y = 0$;

2)
$$x^2 + y^2 = a^2$$
, $x^2 + y^2 - 2ax = 0$, $y = 0$.

- 25. Вычислить объемы тел, ограниченных указанными поверхностями:
 - 1) цилиндром $x^2 + y^2 = 1$ и плоскостями x + y z + 10 = 0, z = 0;

- 2) цилиндром $x = 2y^2$ и плоскостями x + 2y + z = 4, y = 0, z = 0;
- 3) параболоидом $z = x^2 + y^2$ и плоскостями z = 0, y = 1, y = 2x, y = 6 x;
 - 4) параболоидами $x^2 + y^2 = 4x$, $2z = x^2 + y^2$ и плоскостью z = 0.
- 26. Вычислить объемы тел, ограниченных указанными поверхностями.

1)
$$z = 4 - x^2$$
, $2x + y = 4$, $x = 0$, $y = 0$, $z = 0$;

2)
$$x^2 + y^2 = a^2$$
, $x^2 + y^2 - z^2 = -a^2$;

3)
$$z = x^2 + y^2$$
; $y = x^2$; $y = 1$, $z = 0$;

4)
$$6z = x^2 + y^2$$
, $x^2 + y^2 + z^2 = 27$, $z > 0$.

4. Тройной интеграл, его вычисление в декартовых, цилиндрических и сферических координатах

1. Если в пространстве задана замкнутая область (V), определенная неравенствами $a \le x \le b$, $y_1(x) \le y \le y_2(x)$, $z_1(x,y) \le z \le z_2(x,y)$, то тройной интеграл от непрерывной в этой области функции f(x,y,z) находится по формуле

$$\iiint\limits_{(V)} f(x,y,z) dx dy dz = \int\limits_{a}^{b} dx \int\limits_{y_{1}(x)}^{y_{2}(x)} dy z \int\limits_{z_{1}(x,y)}^{z_{2}(x,y)} f(x,y,z) dz \,.$$
 Если $f(x,y,z) \equiv 1$, для всех $(x,y,z) \in (V)$, то тройной интеграл

Если $f(x,y,z) \equiv 1$, для всех $(x,y,z) \in (V)$, то тройной интеграл $\iiint\limits_{(V)} dxdydz$ определяет объем данной области, т. е. $V = \iiint\limits_{(V)} dxdydz$.

2. Тройной интеграл в цилиндрических координатах.

Декартовы и цилиндрические координаты точки P(x,y,z) связаны соотношениями $x=r\cos\varphi,\ y=r\sin\varphi,\ z=z\,,$ где $0\le\varphi<2\pi,\ 0\le r<+\infty,$ $|z|<+\infty\,.$

Якобиан преобразования $J(r, \varphi, z) = r$. Формула перехода в тройном интеграле от прямоугольных координат к цилиндрическим имеет вид:

$$\iiint\limits_{(V)} f(x,y,z) dx dy dz = \iiint\limits_{(V_1)} f(r\cos\varphi,r\sin\varphi,z) r dr d\varphi dz.$$

3. Тройной интеграл в сферических координатах.

Декартовы и сферические координатами точки P(x,y,z) связаны соотношениями $x=r\sin\theta\cos\varphi,\ y=r\sin\theta\sin\varphi,\ z=r\cos\theta$, где $0\leq r<+\infty,\ 0\leq\theta\leq\pi,\ 0\leq\varphi<2\pi$.

Якобиан преобразования $J(r,\theta,\varphi) = r^2 \sin \theta$. Формула перехода в тройном интеграле от прямоугольных координат к сферическим имеет вид:

$$\iiint\limits_{(V)} f(x,y,z) dx dy dz = \iiint\limits_{(V_1)} f(r\sin\theta\cos\varphi,r\sin\theta\sin\varphi,r\cos\theta) r^2\sin\theta\,dr\,d\theta\,d\varphi.$$

Пример 3. Расставить пределы интегрирования в тройном интеграле $\iiint\limits_{(V)} f(x,y,z) dx dy dz$, если область интегрирования ограничена поверхно-

стями
$$y = x^2$$
, $z = 0$, $y + z = 4$.

Решение. Изобразим пространственную область (V): $y = x^2$ – параболический цилиндр, ограниченный снизу плоскостью z = 0, сверху – плоскостью, параллельной оси Ox. Проекция на плоскость xOy представляет собой параболический сегмент: $-2 \le x \le 2$, $x^2 \le y \le 4$.

$$\iiint_{(V)} f(x,y,z) dx dy dz = \iint_{D} dx dy \int_{0}^{4-y} f(x,y,z) dz = \int_{-2}^{2} dx \int_{x^{2}}^{4} dy \int_{0}^{4-x^{2}} f(x,y,z) dz.$$

Omeem:
$$\int_{-2}^{2} dx \int_{x^{2}}^{4} dy \int_{0}^{4-x^{2}} f(x,y,z)dz$$
.

Задания для аудиторной работы

27. Вычислить $\iint\limits_{(V)} x^2 y^2 z dx dy dz$, если область (*V*) определяется нера-

венствами $0 \le x \le 1$, $0 \le y \le x$, $0 \le z \le xy$.

28. Расставить пределы интегрирования в тройном интеграле $\iiint\limits_{(V)} f(x;\,y;\,z) dx\,dy\,dz$, где область (V) ограничена поверхностями

 $x^2+y^2=1,\ z=0, z=1, (x\ge 0,\ y\ge 0).$ Интегрирование проводить в последовательности: a) x, y, z; б) y, x, z; в) z, x, y.

29. Вычислить
$$\iint_{(V)} z^3 dx dy dz$$
, (V) ограничена конусом $\frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{z^2}{c^2}$

 $(x \ge 0, y \ge 0, z \ge 0)$, плоскостью z = c и координатными плоскостями.

30. Перейти в тройном интеграле $\iiint f(x; y; z) dx dy dz$ к цилиндрическим

координатам, если область (V) ограничена цилиндром $x^2 + y^2 = R^2$ и плоскостями z = 0, z = 1, y = x, $y = x\sqrt{3}$.

31. Вычислить тройной интеграл с помощью цилиндрических координат.

1)
$$\iiint_{(V)} \frac{y^2 z dx dy dz}{\sqrt{\left(x^2 + y^2\right)^3}}, \ (V): \ y \ge 0, \ y \le \sqrt{3}x, \ z = 3\left(x^2 + y^2\right), \ z = 3;$$

2)
$$\iiint_{(V)} \frac{xydxdydz}{\sqrt{\left(x^2+y^2\right)^3}}, \ (V): \ z=x^2+y^2, \ y\geq 0, \ y\leq x, \ z=4.$$

32. Перейти в тройном интеграле $\iiint f(x; y; z) dx dy dz$ к сферическим ко-

ординатам, если область (V) — часть шара $x^2 + y^2 + z^2 \le R^2$, лежащая в первом октанте.

33. Вычислить тройной интеграл с помощью сферических координат.

1)
$$\iiint_{(V)} (x^2 + y^2 + z^2) dx dy dz, (V): x^2 + y^2 + z^2 = 4, x \ge 0, y \ge 0, z \ge 0;$$

2)
$$\iiint_{(V)} x^2 dx dy dz, \ (V): \ 1 \le x^2 + y^2 + z^2 \le 16, \ (V): \ y \ge 0, \ y \le x, \ z \ge 0.$$

Задания для индивидуальной работы

- 34. Расставить пределы интегрирования тройном интеграле $\iiint f(x,y,z) dx dy dz$, где область V ограничена заданными поверхностями:
 - 1) V: 2y + z = 4, y + z = 2, $2y = x^2$; 2) $V: x = z^2 + y^2$, x = 9; 3) $V: x^2 + z^2 = y^2$, $0 \le y \le 3$; 4) $V: x^2 + y^2 + z^2 = 9$, $x \ge 3$

- 4) $V: x^2 + y^2 + z^2 = 9$, $x \ge 0$.

35. Вычислить интегралы:

1)
$$\int_{0}^{a} dx \int_{0}^{x} dy \int_{0}^{xy} x^{3}y^{3}z dz$$
;

2)
$$\iint\limits_{(V)} x\,dx\,dy\,dz$$
, если область V ограничена плоскостями $x=0,\ y=0,\ y=h,\ x+z=a$;

$$x = 0, y = 0, y = h, x + z = a$$

$$z=0,\ y=0,\ y=h,\ x+z=a;$$
3) $\iiint\limits_{V} (2x-y) dx dy dz$, если область V: $z=x+y+4,\ y^2=4x,\ x=4$,

$$z=0$$
.

36. Вычислить интегралы:

1)
$$\int_{0}^{1} dx \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} dy \int_{0}^{1} dz$$
;

2) $\iiint\limits_{V} x^2 y^2 dx dy dz$, если область V ограничена поверхностями

$$z = x^2 + y^2$$
, $x^2 + y^2 = 1$, $z = 0$.

3)
$$\iiint_{(V)} \frac{xzdxdydz}{\sqrt{x^2+y^2}}, \ (V): \ z=2\Big(x^2+y^2\Big), \ y\geq 0, \ y\leq \frac{1}{\sqrt{3}}x, \ z=18.$$

37. Вычислить интегралы:

1)
$$\iiint_{(V)} \frac{x^2 z dx dy dz}{\sqrt{\left(x^2 + y^2 + z^2\right)^3}}, \ (V): \ x^2 + y^2 + z^2 = 16, \ z \ge 0.$$

2) $\iiint_{\partial \Omega} (z+2) dx dy dz$, если область V ограничена поверхностями

$$x^2 + y^2 + z^2 = 4$$
, $x^2 + y^2 + z^2 = 9$, $z = 0$.

5. Приложения тройного интеграла

1. Вычисление объемов, массы тела.

Объем
$$V$$
 области (V) выражается формулой: $V = \iiint\limits_{(V)} dx dy dz$.

В цилиндрических координатах этот интеграл имеет вид:

$$V = \iiint_{(V')} \rho \, d\rho d\varphi dz$$

а в сферических координатах $V = \iiint\limits_{\langle V'' \rangle} r^2 \sin\theta \ dr d\theta d\phi$.

Если тело занимает объем V и $\gamma = \gamma ig(x,y,zig)$ – плотность его в точке M(x,y,z), то масса тела: $m = \iiint_{x \to \infty} \gamma(x,y,z) dxdydz$.

2. Центр масс и моменты инерции тела.

Координаты центра масс тела определяются по формулам:

$$x_c = \frac{1}{m} \iiint_{(V)} \gamma x dx dy dz$$
, $y_c = \frac{1}{m} \iiint_{(V)} \gamma x dx dy dz$, $z_c = \frac{1}{m} \iiint_{(V)} \gamma x dx dy dz$,

где *m* – масса тела.

Если тело является однородным, то плотность в каждой точке $\gamma = 1$.

Моменты инерции тела относительно координатных плоскостей определяются формулами:

$$I_{xy} = \iiint_{(V)} \gamma z^2 dx dy dz$$
, $I_{xz} = \iiint_{(V)} \gamma y^2 dx dy dz$, $I_{yz} = \iiint_{(V)} \gamma x^2 dx dy dz$.

Момент инерции тела относительно некоторой оси Ои можно найти по формуле $I_u = \iiint\limits_{(v)} \gamma r^2 dx dy dz$, где r – расстояние точки $N\left(x,y,z\right)$

тела от оси Ои.

В частности, *моменты инерции тела относительно координатных осей Ох, Оу, Ох* можно вычислить по формулам:

$$\begin{split} I_{x} &= \iiint\limits_{(V)} \gamma \Big(y^2 + z^2\Big) dx dy dz \,, \ I_{y} &= \iiint\limits_{(V)} \gamma \Big(x^2 + z^2\Big) dx dy dz \,, \\ I_{z} &= \iiint\limits_{(V)} \gamma \Big(x^2 + y^2\Big) dx dy dz \,. \end{split}$$

Момент инерции тела относительно начала координат определяется формулой $I_0 = \iiint\limits_{(y)} \gamma \Big(x^2 + y^2 + z^2 \Big) dx dy dz$.

Очевидно, имеют место следующие соотношения:

$$I_x = I_{xy} + I_{xz}$$
, $I_y = I_{yx} + I_{yz}$, $I_z = I_{zx} + I_{zy}$, $I_0 = I_{xy} + I_{yz} + I_{zx}$.

Пример 4. Вычислить объем тела, ограниченного поверхностями $z = \sqrt{x^2 + y^2}$, $2 - z - x^2 - y^2 = 0$.

Решение. $z = \sqrt{x^2 + y^2}$ — часть конуса, которая ограничивает тело снизу. $z = 2 - x^2 - y^2$ — параболоид, который ограничивает тело сверху. Найдем линию и высоту пересечения данных поверхностей.

$$\begin{cases} z = \sqrt{x^2 + y^2}, \\ z = 2 - x^2 - y^2, \end{cases} \Rightarrow \begin{cases} x^2 + y^2 = z^2, \\ x^2 + y^2 = 2 - z, \end{cases} \Rightarrow \begin{cases} z^2 + z - 2 = 0, \\ x^2 + y^2 = 2 - z, \end{cases} \Rightarrow \begin{cases} z_1 = -2, \quad z_2 = 1. \\ x^2 + y^2 = 1. \end{cases}$$

Проекцией области интегрирования Ω на плоскость xOy является круг радиуса R=1 с центром в начале координат. Перейдем к цилиндрическим координатам:

$$0 \le \varphi \le 2\pi$$
, $0 \le r \le 1$, $r \le z \le 2 - r^2$.

Объем тела равен:

$$V = \iiint_{\Omega} dx dy dz = \iiint_{\Omega'} r dr d\varphi dz =$$

$$= \int_{0}^{2\pi} d\varphi \int_{0}^{1} r dr \int_{r}^{2-r^{2}} dz = 2\pi \int_{0}^{1} r \left(2 - r^{2} - r\right) dr = 2\pi \left(r^{2} - \frac{r^{4}}{4} - \frac{r^{3}}{3}\right)\Big|_{0}^{1} =$$

$$= 2\pi \left(1 - \frac{1}{4} - \frac{1}{3}\right) = \frac{5}{6}\pi.$$

Ответ: $\frac{5}{6}\pi$.

Задания для аудиторной работы

- **38.** С помощью тройного интеграла вычислить объем тела, ограниченного указанными поверхностями $x^2 + y^2 = 1$, z = 2 x y, $z \ge 0$. Сделать чертеж.
- **39.** Вычислить объем тела, ограниченного поверхностями $x^2 + y^2 = 10x$, $x^2 + y^2 = 13x$, $z = \sqrt{x^2 + y^2}$, z = 0, $y \ge 0$.
- **40.** Вычислить объем части шара $x^2 + y^2 + z^2 = 1$, расположенной внутри конуса $z^2 = x^2 + y^2$.
- **41.** Вычислить координаты центра масс однородного тела, занимающего область (V): $z=2\sqrt{x^2+y^2}$, z=8 .
- **42.** Вычислить момент инерции относительно оси *Ox* однородного тела, занимающего область (V): $x = y^2 + z^2$, x = 2. Плотность тела γ принять равной 1.

Задания для индивидуальной работы

43. С помощью тройного интеграла вычислить объем тела, ограниченного указанными поверхностями. Сделать чертеж.

1)
$$(V)$$
: $x^2 + y^2 = 4$, $z = 4 - x - y$, $z \ge 0$;

2)
$$(V)$$
: $x \ge 0$, $z \ge 0$, $z = y$, $x = 4$, $y = \sqrt{25 - x^2}$.

44. Вычислить координаты центра масс однородного тела, занимающего область (V), ограниченную указанными поверхностями.

1)
$$(V)$$
: $x = 6\sqrt{y^2 + z^2}$, $y^2 + z^2 = 9$, $x = 0$;

2)
$$(V)$$
: $z = 8(x^2 + y^2)$, $z = 32$.

45. Вычислить момент инерции относительно указанной оси координат однородного тела, занимающего область (V), ограниченную данными поверхностями. Плотность тела γ принять равной 1.

1)
$$(V)$$
: $x = y^2 + z^2$, $x = 9$, Ox ;

2)
$$(V)$$
: $y^2 = x^2 + z^2$, $y = 2$, Oy.

КРИВОЛИНЕЙНЫЕ ИНТЕГРАЛЫ

6. Криволинейные интегралы первого рода (по длине дуги)

Пусть в пространстве \mathbb{R}^3 задана гладкая дуга L_{AB} кривой L, во всех точках которой определена непрерывная функция $u=f\left(x,y,z\right)$. Дугу AB произвольным образом разобьем на n частей длиной $\Delta \ell_i$ ($i=\overline{1,n}$). Обозначим через $\lambda=\max_i \Delta \ell_i$. На каждой элементарной дуге выберем произвольную точку $M_i(x_i,y_i,z_i)$ и вычислим $u_i=f\left(M_i\right)=f\left(x_i,y_i,z_i\right)$.

Составим интегральную сумму $I_n = \sum_{i=1}^n f(x_i,y_i,z_i) \Delta \ell_i$. Конечный предел полученной интегральной суммы при $\lambda \to 0$ называется *криволинейным интегралом первого рода* по дуге L_{AB} от функции f(x,y,z):

$$\int_{AB} f(x,y,z)dl = \lim_{\lambda \to 0} \sum_{i=1}^{n} f(x_i,y_i,z_i) \Delta \ell_i.$$

Если кривая AB лежит в плоскости xOy и в каждой точке этой кривой задана непрерывная функция $f\left(x,y\right)$, то $\int\limits_{AB}f(x,y)d\ell=\lim\limits_{\lambda\to 0}\sum_{i=1}^nf(x_i,y_i)\Delta\ell_i.$

Вычисление криволинейного интеграла первого рода сводится к вычислению определенного интеграла.

а) Пусть дуга AB задана параметрически с помощью уравнений $x=x(t),\ y=y(t),\ z=z(t),\ t\in [\alpha,\beta].$ Тогда

$$\int_{AB} f(x,y,z)d\ell = \int_{\alpha}^{\beta} f(x(t),y(t),z(t)) \sqrt{\left(x'(t)\right)^2 + \left(y'(t)\right)^2 + \left(z'(t)\right)^2} dt.$$

б) Если дуга AB плоской кривой задана непрерывной и дифференцируемой на [a; b] функцией y = g(x), то

$$\int_{AB} f(x,y)d\ell = \int_{a}^{b} f(x,g(x)) \sqrt{1 + (g'(x))^{2}} dx.$$

в) Если дуга AB задана полярным уравнением $r=r\left(\varphi\right), \ \ \varphi\in\left[\alpha;\ \ \beta\right],$ то

$$\int_{AB} f(x,y) d\ell = \int_{\alpha}^{\beta} f(r(\varphi)\cos\varphi, r(\varphi)\sin\varphi) \sqrt{r^{2}(\varphi) + r'^{2}(\varphi)} d\varphi.$$

Некоторые свойства криволинейного интеграла по дуге:

- 1. Криволинейный интеграл первого рода не зависит от направления пути интегрирования.
 - 2. Если дуга $L = L_1 \cup L_2$ и при этом $L_1 \cap L_2 = \emptyset$, то

$$\int_{L} f(x,y,z)d\ell = \int_{L_1} f(x,y,z)d\ell + \int_{L_2} f(x,y,z)d\ell.$$

3. Если f(x, y, z) = 1, то $\int_{AB} d\ell = \ell_{AB} -$ длина дуги AB.

Задания для аудиторной работы

- **46.** Вычислить интеграл $\int_L \frac{d\ell}{x-y}$, где L отрезок прямой $y=\frac{x}{2}-2$, соединяющий точки (0;-2) и (4;0).
- **47.** Вычислить интеграл $\oint_L (x^2 + y^3) d\ell$, где L контур треугольника ABO с вершинами в точках A(1; 0), B(0; 1), O(0; 0).
- **48.** Вычислить интеграл $\int_{L}^{\infty} \sqrt{2y} d\ell$, если L первая арка циклоиды $x = a(t \sin t)$, $y = a(1 \cos t)$ (a > 0).
- **49.** Вычислить интеграл $\int_L x \, y \, z \, d\ell$, если L отрезок прямой между точками A(1; 0; 1) и B(2; 2; 3).
- **50.** Вычислить интеграл $\int\limits_{L} |y| \, d\ell$, если L дуга лемнискаты Бернулли $\left(x^2+y^2\right)^2 = a^2\left(x^2-y^2\right), \ x>0$.
- **51.** Вычислить длину дуги кривой *L*: $x = \cos t, \ y = \sin t, \ z = \sqrt{3} \ t$, $0 \le t \le 2\pi$.

Задания для индивидуальной работы

52. Вычислить интегралы:

1)
$$\int_{L} \frac{dl}{x+y}$$
, если L – отрезок прямой $y=x+2,\ 1 \le x \le 2$;

2)
$$\int_{L} \frac{dl}{x-y}$$
, если L – отрезок прямой $y=2-5x$, $1 \le x \le 3$.

53. Вычислить $\oint_L xyd\ell$, если L – контур прямоугольника с вершинами в точках A(0;0), B(4;0), C(4;2), D(0,2).

54. Вычислить интегралы:

1)
$$\int_L \sqrt{x^2 + y^2} dl$$
, где L – кривая $\begin{cases} x = a(\cos t + t \sin t); \\ y = a(\sin t - t \sin t); \end{cases}$

2)
$$\int_{t}^{\infty} \left(3x - 2\sqrt[3]{a^2y}\right) dl$$
, если $L: x = a\cos^3 t$, $y = a\sin^3 t$, $0 \le t \le \frac{\pi}{2}$.

55. Вычислить интегралы:

1)
$$\int_I arctg \frac{y}{x} dI$$
, где L – кривая $r = 1 + \cos \varphi$, $0 \le \varphi \le \frac{\pi}{2}$;

2)
$$\int_I (x+y) dI$$
, если L : $r^2 = 4\cos 2\varphi$, $0 \le \varphi \le \frac{\pi}{4}$.

56. Вычислить длину дуги кривой L, если:

1)
$$L: x = 3t, y = 3t^2, z = 2t^3, 0 \le t \le 1.$$

2)
$$L: x = e^{-t} \cos t$$
, $y = e^{-t} \sin t$, $z = e^{-t}$, $0 \le t < +\infty$.

7. Криволинейный интеграл второго рода (по координатам)

Пусть задана дуга AB = L, в каждой точке M(x;y;z) которой приложена сила $\vec{F} = \vec{F}(M)$, переменная по величине и направлению $\vec{F}(M) = \left(P(M);Q(M);R(M)\right) = P(x;y)\vec{i} + Q(x;y)\vec{j} + R(x;y)\vec{k}$. Вычислим работу силы \vec{F} при перемещении материальной точки из положения A в положение B по дуге AB.

Разобьем дугу $\stackrel{\circ}{AB}$ на n элементарных дуг $M_{i-1}M_i$, и каждую из них заменим хордой, соединяющей ее концы. Считаем, что при движении материальной точки вдоль элементарной хорды сила остается постоянной, равной $\vec{F} = \vec{F}(M_{i-1})$. Тогда элемент работы вектора силы по перемещению вдоль элементарной дуги будет равен:

$$\Delta A_i = \vec{F} \left(M_{i-1} \right) \cdot \overrightarrow{M_{i-1} M_i}, \qquad \overrightarrow{M_{i-1} M_i} = \left(\Delta x_i, \Delta y_i, \Delta z_i \right),$$
тогда $\Delta A_i = P \left(M_{i-1} \right) \cdot \Delta x_i + Q \left(M_{i-1} \right) \cdot \Delta y_i + R \left(M_{i-1} \right) \cdot \Delta z_i,$

где P(x,y,z), Q(x,y,z), R(x,y,z) – непрерывные функции.

Всю работу вектора силы по перемещению по дуге АВ получим, если

перейдем к пределу
$$A = \lim_{\substack{n \to \infty \\ \Delta x_i \to 0 \\ \Delta z_i \to 0}} \sum_{i=1}^n \Delta A_i.$$

Конечный предел такого вида интегральных сумм называют *криволи- нейным интегралом второго рода (КРИ-II)* (по координатам) и обозначают

$$\int_{L} \vec{F}(M) \cdot d\vec{s} = \int_{L} P(x,y,z) dx + Q(x,y,z) dy + R(x,y,z) dz, \quad d\vec{s} = (dx,dy,dz).$$

Таким образом,
$$A = \int_{t} \vec{f}(M) \cdot d\vec{s}$$
.

КРИ–II зависит от выбора направления обхода кривой: если изменить направление обхода, то интеграл меняет знак:

$$\int_{AB} Pdx + Qdy + Rdz = -\int_{BA} Pdx + Qdy + Rdz.$$

Вычисление КРИ–II сводится к вычислению определенного интеграла.

Если линия L задана параметрическими уравнениями x=x(t), $y=y(t),\ z=z(t)\ (t_1\leq t\leq t_2)$ и значению t_1 соответствует точка A, а значению t_2 — точка B, то

$$\int_{AB} P(x,y,z) dx + Q(x,y,z) dy + R(x,y,z) dz =
= \int_{t_1}^{t_2} \{ P(x(t),y(t),z(t)) x'(t) + Q(x(t),y(t),z(t)) y'(t) +
+ R(x(t),y(t,)z(t)) z'(t) \} dt.$$

В частности, для кривой L, лежащей в плоскости xOy, формула примет вид:

$$\int_{AB} P(x,y) dx + Q(x,y) dy = \int_{t_1}^{t_2} \{ P(x(t),y(t)) x'(t) + Q(x(t),y(t)) y'(t) \} dt.$$

Задания для аудиторной работы

57. Вычислить данные криволинейные интегралы:

1)
$$\int_{L} (y + x^2) dx + (2x - y) dy$$
, где L – дуга параболы $y = 2x - x^2$ от $A(1; 1)$

до B(3; -3);

2)
$$\int_{L_{AB}} (x^2 - y^2) dx + xy dy$$
, где L_{AB} — отрезок прямой AB от $A(1,1)$ до

B(3,4);

3)
$$\int\limits_{L_{AB}} 2xydx + y^2dy + z^2dz$$
, где L_{AB} – дуга одного витка L_{AB} винтовой ли-

нии $x = \cos t$, $y = \sin t$, z = 2t; A(1,0,0), $B(1,0,4\pi)$.

4)
$$\oint_{L} y dx - x dy$$
, где L – дуга эллипса $x = 3\cos t$, $y = 2\sin t$, «пробегае-

мая» в положительном направлении обхода.

5)
$$\int_L x(y-2)dx + y(2-x)dy$$
, где L – контур треугольника с вершинами

A(-2;0), B(0;0), C(0;1), пробегаемый в положительном направлении;

58. Вычислить работу силы $\vec{F} = yz \vec{i} + xz \vec{j} + xy \vec{k}$ вдоль отрезка прямой BC, если B(1;1;1) и C(2;3;4).

Задания для индивидуальной работы

59. Вычислить криволинейные интегралы

1)
$$\int_{L} (xy-y^2)dx + xdy$$
, где L — дуга параболы $y=2x^2$ от $O(0,0)$ до $A(1,2)$;

2)
$$\int_{L} (2x+y)dx + (xy-x^2)dy$$
, где L – отрезок прямой $y = 4x+6$ от

$$A(-1;2)$$
 до $B(0;6)$;

3)
$$\int_{L_{AB}} x dx + y dy + (x - y + 1) dz$$
, где L_{AB} – отрезок прямой AB от $A(1,1,1)$

до B(2,3,4);

4)
$$\int_{t}^{t} xydx + zx^{2}dy + xyzdz$$
, где L : $x = e^{t}$, $y = e^{-t}$, $z = t^{2}$, $0 \le t \le 1$.

5) $\int_{L_{AB}} \frac{x^2 dy - y^2 dx}{\sqrt[3]{x^5} + \sqrt[3]{y^5}}$, где L_{AB} — дуга астроиды $x = 2\cos^3 t$, $y = 2\sin^3 t$ от точки A(2,0) до точки B(0,2).

60. Вычислить криволинейные интегралы

1)
$$\int_{L} (xy - x^2) dx + (x + y) dy$$
, где $L -$ дуга параболы $y^2 = 2x$ от $A(2; -2)$

до B(8;4);

2)
$$\int\limits_{(0;\,0)}^{(\pi;\,2\pi)} -x\cos y\,dx + y\sin x\,dy$$
 , вдоль отрезка прямой;

3)
$$\int_{L_{OB}}^{(0,0)} xy^2 dx + yz^2 dy - x^2 z dz$$
, где L_{OB} – отрезок прямой OB от $O(0,0,0)$

до B(-2,4,5);

4)
$$\int\limits_{(L)}^{(-2,4,5)}$$
, 4) $\int\limits_{(L)}^{(-2,4,5)}$ dy, где L – контур прямоугольника, образованного пря-

мыми x = 1, x = 3, y = 1, y = 5;

5)
$$\oint_L (x+2y)dx + (x-y)dy$$
, L – окружность $x = 2\cos t$, $y = 2\sin t$ при по-

ложительном направлении обхода.

61. Вычислить работу силы $\vec{F} = (x^2 + y^2 + 1)\vec{i} + 2xy\vec{j}$ вдоль дуги параболы $y = x^3$, заключенной между точками A(0,0) и B(1,1).

8. Формула Грина. Независимость криволинейного интеграла 2-го рода от пути интегрирования

Теорема. Пусть функции P(x,y), Q(x,y) и их частные производные непрерывны в замкнутой области D, ограниченной контуром C. Тогда имеет место формула *Грина*

$$\oint_C P(x,y)dx + Q(x,y)dy = \iint_D \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) dxdy,$$

при этом обход контура C совершается так, что область D все время остается слева.

Криволинейный интеграл

$$\int_L P(x,y)dx + Q(x,y)dy,$$

где контур L целиком лежит внутри некоторой односвязной области D, в которой функции P(x,y) и Q(x,y) непрерывны вместе со своими частными производными, не зависит от пути интегрирования тогда и только тогда, когда

$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}.$$

В этом случае равносильны следующие утверждения:

1) $\oint_L P(x,y)dx + Q(x,y)dy = 0$, где L – любой замкнутый контур, содер-

жащийся в области D.

2) $\oint_{AB} P(x,y)dx + Q(x,y)dy$ не зависит от пути интегрирования, соеди-

няющего точки А и В.

3) Выражение P(x,y)dx + Q(x,y)dy является полным дифференциалом некоторой функции u = u(x,y), т. е. du = P(x,y)dx + Q(x,y)dy, где $P(x,y) = \frac{\partial u}{\partial x}$, $Q(x,y) = \frac{\partial u}{\partial y}$. Тогда

$$\int_{AB} P(x,y) dx + Q(x,y) dy = \int_{A}^{B} du = u(B) - u(A).$$

Таким образом, интеграл не зависит от пути интегрирования, а зависит только от значений функции u(x,y) в начальной и конечной точках пути интегрирования. Функцию u(x,y) можно найти по формуле

$$u(x,y) = \int_{x_0}^{x} P(x,y_0) dx + \int_{y_0}^{y} Q(x,y) dy + C,$$

где (x_0, y_0) – произвольная фиксированная точка из области D, (x, y) – переменная точка из области D.

С помощью криволинейного интеграла второго рода можно вычислить *площадь* области *D*:

$$S = \frac{1}{2} \oint_C \left(-y dx + x dy \right).$$

Криволинейный интеграл

$$\int_{I} P(x,y,z)dx + Q(x,y,z)dy + R(x,y,z)dz,$$

где L – контур, целиком лежащий в односвязной области $V \subset \mathbb{R}^3$, в которой функции P(x,y,z), Q(x,y,z), R(x,y,z) непрерывны вместе со своими

частными производными, не зависит от пути интегрирования тогда и только тогда, когда выполняются равенства:

$$\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}; \quad \frac{\partial R}{\partial y} = \frac{\partial Q}{\partial z}; \quad \frac{\partial P}{\partial z} = \frac{\partial R}{\partial x}.$$

В этом случае подынтегральное выражение представляет собой полный дифференциал некоторой функции:

$$P(x,y,z)dx + Q(x,y,z)dy + R(x,y,z)dz = du(x,y,z),$$

$$\int_{(x_{1},y_{1},z_{1})}^{(x_{2},y_{2},z_{2})} Pdx + Qdy + Rdz = u(x_{2},y_{2},z_{2}) - u(x_{1},y_{1},z_{1}).$$

В частности, криволинейный интеграл по замкнутому контуру в этом случае равен нулю:

$$\oint_I Pdx + Qdy + Rdz = 0.$$

Задания для аудиторной работы

62. Применив формулу Грина, вычислить $\oint_L y^2 dx + (x+y)^2 dy$,

где L – контур треугольника ABC с вершинами в точках A(3,0), B(3,3) и C(0,3).

63. Вычислить криволинейный интеграл

$$\int_{AB} (3x^2y - 4xy^2) dx + (x^3 - 4x^2y + 3y^2) dy,$$

где B(1,1), предварительно определив функцию u(x,y), полным дифференциалом которой является подынтегральное выражение.

64. Вычислить
$$\int_{(-1,0)}^{(3,1)} (2xy + x^3 - 5) dx + (x^2 - y^2 + 3) dy.$$

65. Проверить, являются ли данные выражения полным дифференциалом функции двух переменных, если это так, то найти эти функции:

1)
$$(3x^2-2xy+y^2)dx-(x^2-2xy+3y^2)dy$$
;

2)
$$(e^{2y} - 5y^3e^x)dx + (2xe^{2y} - 15y^2e^x)dy$$
.

66. С помощью криволинейного интеграла второго рода вычислить площадь фигуры, ограниченной первой аркой циклоиды $x = a(t - \sin t)$, $y = a(1 - \cos t)$ и осью Ох.

Задания для индивидуальной работы

67. Применив формулу Грина, вычислить интеграл $\oint_{L_{ABC}} y^2 dx + (x+y)^2 dy$

по контуру треугольника ABC с вершинами A(2,0), B(2,2) и C(0,2).

68. Вычислить криволинейный интеграл

$$\int_{AB} (3y^2 + 4y) dx + (6xy + 4x - 4y) dy$$
, где $A(0,1)$, $B(1,2)$, предварительно

определив функцию u(x,y), полным дифференциалом которой является подынтегральное выражение.

69. Вычислить криволинейные интегралы:

1)
$$\int_{(2;1)}^{(4;3)} \left(x^2 + 2xy - y^2\right) dx + \left(x^2 - 2xy + y^2\right) dy;$$

1)
$$\int_{(2;1)}^{(3;4)} (x^2 + 2xy - y^2) dx + (x^2 - 2xy + y^2) dy;$$
2)
$$\int_{(-1;-2)}^{(3;4)} (\sin x + 2xy - y^2) dx + (x^2 - 2xy + \cos y) dy;$$

3)
$$\int_{(1;0)}^{(4;3)} \frac{xdx + ydy}{\sqrt{x^2 + y^2}}.$$

АТТЕСТАЦИОННАЯ РАБОТА

Вариант 1

Задание 1. Изменить порядок интегрирования: $\int_{0}^{1} dx \int_{0}^{\sqrt{x}} f dy + \int_{1}^{2} dx \int_{0}^{\sqrt{2-x}} f dy$.

Задание 2. Вычислить двойной интеграл $\iint_D (x^2 + y) dx dy$ по области

$$D: y = x^2; y^2 = x.$$

Задание 3. С помощью двойного интеграла вычислить площадь плоской фигуры, ограниченной линиями (использовать полярные координаты):

$$y^2 - 2y + x^2 = 0$$
, $y^2 - 4y + x^2 = 0$, $y = \frac{x}{\sqrt{3}}$, $y = \sqrt{3} \cdot x$.

Задание 4. Вычислить тройной интеграл: $\iiint_V 8y^2ze^{-xyz}dxdydz$, где об-

ласть V: x = 2, x = 0, y = -1, y = 0, z = 2, z = 0.

Задание 5. С помощью тройного интеграла вычислить массу тела, заданного ограничивающими его поверхностями, где $\mu(x,y)$ – плотность:

$$V: z \ge 0, z = 2 \ y \ge \pm x, z^2 = 4(x^2 + y^2); \mu = y\sqrt{x^2 + y^2}.$$

Задание 6. Вычислить криволинейный интеграл

 $\int\limits_{L} \sqrt{2-z^2} \left(2z-\sqrt{x^2+y^2}\right) d\ell$, где L — дуга кривой $x=t\cos t$, $y=t\sin t$, z=t , $0 \le t \le 2\pi$.

Задание 7. Вычислить криволинейный интеграл

 $\int\limits_{L_{AB}} \Big(x^2-2xy\Big) dx + \Big(y^2-2xy\Big) dy$, где L_{AB} — дуга параболы $y=x^2$ от точки A(-1,1) до точки B(1,1) .

Вариант 2

Задание 1. Изменить порядок интегрирования: $\int_{0}^{1} dx \int_{0}^{x} f dy + \int_{1}^{\sqrt{2}} dx \int_{0}^{\sqrt{2}-x^2} f dy$.

Задание 2. Вычислить двойной интеграл $\iint_{D} (7x+5y+3) dx dy$ по области

D:
$$y = \frac{1}{x}$$
; $y = x$; $y = -2$.

Задание3. С помощью двойного интеграла вычислить площадь плоской фигуры, ограниченной линиями (использовать полярные координаты):

$$x^2 - 4y + y^2 = 0$$
, $x^2 - 8x + y^2 = 0$, $y = 0$, $y = \frac{x}{\sqrt{3}}$.

Задание 4. Вычислить тройной интеграл: $\iint_V 2y^2z \ ch(2xyz) dxdydz$, где

область
$$V: x = \frac{1}{2}, x = 0, y = 2, y = 0, z = -1, z = 0.$$

Задание 5. С помощью тройного интеграла вычислить массу тела, заданного ограничивающими его поверхностями, μ -плотность:

$$V: 1 \le x^2 + y^2 \le 36, \ z \ge 0, \ x \ge 0, \ y \ge x; \ \mu = 4.$$

Задание 6. Вычислить криволинейный интеграл $\oint_L (x^2 + y^2) d\ell$, где L -

окружность $x^2 + y^2 = 4$.

Задание 7. Вычислить криволинейный интеграл $\int_{L_{AB}} \frac{x^2 dy - y^2 dx}{\sqrt[3]{x^5} + \sqrt[3]{y^5}}$, где L_{AB} -

дуга астроиды $\begin{cases} x = 2\cos^3 t \\ y = 2\sin^3 t \end{cases}$ от точки A(2,0) до точки B(0,2).

Вариант 3

Задание 1. Изменить порядок интегрирования

порядок интегрирования
$$\int_{0}^{\sqrt{3}} dx \int_{0}^{2-\sqrt{4-x^2}} f dy + \int_{\sqrt{3}}^{2} dx \int_{0}^{\sqrt{4-x^2}} f dy.$$

Задание 2. Вычислить двойной интеграл $\iint_{\mathcal{D}} (4x - xy + 7) dx dy$ по области

D:
$$y = \frac{1}{x}$$
; $y = 1$; $x = 2$.

Задание3. С помощью двойного интеграла вычислить площадь плоской фигуры, ограниченной линиями (использовать полярные координаты):

$$y^2 - 6y + x^2 = 0$$
, $y^2 - 8y + x^2 = 0$, $y = \frac{x}{\sqrt{3}}$, $y = \sqrt{3} \cdot x$.

Задание 4. Вычислить тройной интеграл $\iiint_V y^2 z \ ch\left(\frac{xyz}{2}\right) dx dy dz$, область $V: x=2, \ x=0, \ y=-1, \ y=0, \ z=2, \ z=0$.

Задание 5. С помощью тройного интеграла вычислить массу тела, заданного ограничивающими его поверхностями, μ -плотность:

$$V: x^2 + y^2 + z^2 = 32, y^2 = x^2 + z^2, y \ge 0; \mu = y.$$

Задание 6. Вычислить криволинейный интеграл $\int\limits_{L_{OB}} \frac{d\ell}{\sqrt{8-x^2-y^2}}$, где

 $L_{OB}-$ отрезок прямой, соединяющий точки O(0,0) и B(2,2).

Задание 7. Вычислить криволинейный интеграл $\int_{L_{OA}} (x^2 + y^2) dx + 2xy dy$,

где L_{OA} - дуга кубической параболы $y=x^3$ от точки $O\big(0,0\big)$ до точки $A\big(1,1\big)$.

Вариант 4

. **Задание 1.** Изменить порядок интегрирования $\int\limits_{-\sqrt{2}}^{-1} dy \int\limits_{-\sqrt{2-y^2}}^{0} f dx + \int\limits_{-1}^{0} dy \int\limits_{y}^{0} f dx$.

Задание 2. Вычислить двойной интеграл $\iint_D (yx + y - 1) dx dy$ по области

D:
$$y = \frac{1}{x}$$
; $y = \sqrt{x}$; $x = 2$.

Задание 3. С помощью двойного интеграла вычислить площадь плоской фигуры, ограниченной линиями (использовать полярные координаты):

$$x^2 - 2x + y^2 = 0$$
, $x^2 - 4x + y^2 = 0$, $y = 0$, $y = x$.

Задание 4. Вычислить тройной интеграл $\iiint_V y^2 \cos\left(\frac{xyz}{9}\right) dxdydz$, где

область $V: x = 9, x = 0, y = 1, y = 0, z = 2\pi, z = 0.$

Задание 5. С помощью тройного интеграла вычислить массу тела, заданного ограничивающими его поверхностями, μ -плотность:

$$V: x^2 + y^2 + z^2 = 8, x^2 = y^2 + z^2, x \ge 0; \mu = x.$$

Задание 6. Вычислить криволинейный интеграл $\int\limits_{L_{AB}} \left(4\sqrt[3]{x} - 3\sqrt{y} \right) d\ell$, где

 L_{AB} – отрезок прямой AB от точки Aig(-1,0ig) до точки Big(0,1ig) .

Задание 7. Вычислить криволинейный интеграл $\oint_I (x+2y)dx + (x-y)dy$,

где L – окружность $x = 2\cos t$, $y = 2\sin t$ при положительном направлении обхода.

Вариант 5

Задание 1. Изменить порядок интегрирования $\int_{0}^{1} dx \int_{0}^{x^{2}} f dy + \int_{1}^{\sqrt{2}} dx \int_{v}^{\sqrt{2-x^{2}}} f dy$.

Задание 2. Вычислить двойной интеграл $\iint_{\mathcal{D}} (2 + x - xy) dx dy$ по области

$$D: y = x^2 + 1; y = 1 - x.$$

Задание 3. С помощью двойного интеграла вычислить площадь плоской фигуры, ограниченной линиями (использовать полярные координаты):

$$y^2 - 8y + x^2 = 0$$
, $y^2 - 10y + x^2 = 0$, $y = \frac{x}{\sqrt{3}}$, $y = \sqrt{3} \cdot x$.

Задание 4. Вычислить тройной интеграл $\iiint\limits_V y^2 z\ ch(xyz) dxdydz$, где об-

ласть V: x = 1, x = 0, y = 1, y = 0, z = 1, z = 0.

Задание 5. С помощью тройного интеграла вычислить массу тела, заданного ограничивающими его поверхностями, μ -плотность:

$$V: z = \sqrt{8 - x^2 - y^2}, z = \sqrt{x^2 + y^2}, y \ge 0; \mu = y.$$

Задание 6. Вычислить криволинейный интеграл $\int\limits_{L_{AB}} \frac{d\ell}{\sqrt{5(x-y)}}$, где L_{AB} –

отрезок прямой, заключенной между точками A(0,4) и B(4,0).

Задание 7. Вычислить криволинейный интеграл

 $\oint_L (x^2y - x)dx + (y^2x - 2y)dy$, где L – эллипс $x = 3\cos t$, $y = 2\sin t$ при по-

ложительном направлении обхода.

Вариант 6

Задание 1. Изменить порядок интегрирования $\int\limits_{-2}^{-1} dy \int\limits_{-(2+y)}^{0} f dx + \int\limits_{-1}^{0} dy \int\limits_{\sqrt[3]{y}}^{0} f dx$.

Задание 2. Вычислить двойной интеграл $\iint_D (y^2 + xy) dx dy$ по области

D:
$$y = \sqrt{-x}$$
, $y = 1$; $x = 0$.

Задание 3. С помощью двойного интеграла вычислить площадь плоской фигуры, ограниченной линиями (использовать полярные координаты):

$$x^2 - 4y + y^2 = 0$$
, $x^2 - 8x + y^2 = 0$, $y = 0$, $y = x$.

Задание 4. Вычислить тройной интеграл $\iiint_V x^2 z \sin\left(\frac{xyz}{2}\right) dx dy dz$, где

область $V: x = 1, x = 0, y = 4, y = 0, z = \pi, z = 0$.

Задание 5. С помощью тройного интеграла вычислить массу тела, заданного ограничивающими его поверхностями, μ -плотность:

$$V: y \ge 0, y \le \sqrt{3} \cdot x, z = 3(x^2 + y^2), z = 3; \mu = \frac{y^2 z}{\sqrt{(x^2 + y^2)^3}}.$$

Задание 6. Вычислить криволинейный интеграл $\int_{L}^{\infty} \frac{y}{\sqrt{x^2 + y^2}} d\ell$, где L –

дуга кардиоиды $\rho = 2(1+\cos\varphi), \ 0 \le \varphi \le \frac{\pi}{2}.$

Задание 7. Вычислить криволинейный интеграл $\int_{L_{AB}} (xy-1)dx + x^2ydy$,

где L_{AB} — дуга эллипса $x=\cos t$, $y=2\sin t$ от точки A(1,0) до точки B(0,2).

Вариант 7

Задание 1. Изменить порядок интегрирования $\int_{0}^{1} dy \int_{0}^{y^{2}} f dx + \int_{1}^{2} dy \int_{0}^{2-y} f dx$.

Задание 2. Вычислить двойной интеграл $\iint_{\mathcal{D}} (2 + x^2 y) dx dy$ по области

D:
$$x = -y^2$$
; $x = -1$.

Задание 3. С помощью двойного интеграла вычислить площадь плоской фигуры, ограниченной линиями (использовать полярные координаты):

$$y^2 - 4y + x^2 = 0$$
, $y^2 - 6y + x^2 = 0$, $y = x$, $x = 0$.

Задание 4. Вычислить тройной интеграл $\int\int\limits_V \int 2x^2z \, sh(2xyz) dxdydz$, где

область
$$V: x = 2, x = 0, y = \frac{1}{2}, y = 0, z = \frac{1}{2}, z = 0.$$

Задание 5. С помощью тройного интеграла вычислить массу тела, заданного ограничивающими его поверхностями, μ -плотность:

V:
$$z = 2(x^2 + y^2)$$
, $y \ge 0$, $y \le \frac{1}{\sqrt{3}} \cdot x$; $z = 18$; $\mu = \frac{xz}{\sqrt{x^2 + y^2}}$.

Задание 6. Вычислить криволинейный интеграл $\int\limits_{L_{AB}} y d\ell$, где $L_{AB}-$ дуга астроиды $x=\cos^3 t$, $y=\sin^3 t$, заключенная между точками A(1,0) и B(0,1).

Задание 7. Вычислить криволинейный интеграл $\int_{L_{OBA}} 2xydx - x^2dy$, где L_{OBA} – ломаная OBA; O(0,0); B(2,0); A(2,1).

Вариант 8

Задание 1. Изменить порядок интегрирования $\int_{0}^{1} dy \int_{-\sqrt{V}}^{0} f dx + \int_{1}^{2} dy \int_{-\sqrt{2-V}}^{0} f dx$.

Задание 2. Вычислить двойной интеграл $\iint_{D} (xy+1) dxdy$ по области

D: $y = x^2$; $x = -y^2$.

Задание 3. С помощью двойного интеграла вычислить площадь плоской фигуры, ограниченной линиями (использовать полярные координаты):

$$x^2 - 2x + y^2 = 0$$
, $x^2 - 10x + y^2 = 0$, $y = 0$, $y = \sqrt{3} \cdot x$.

Задание 4. Вычислить тройной интеграл $\iiint\limits_V 2x^2z \, sh(xyz) dxdydz$, где

область V: x = 1, x = 0, y = -1, y = 0, z = 1, z = 0.

Задание 5. С помощью тройного интеграла вычислить массу тела, заданного ограничивающими его поверхностями, μ -плотность:

$$V: z = x^2 + y^2, y \ge 0, y \le x, z = 4; \mu = \frac{xy}{\left(\sqrt{x^2 + y^2}\right)^3}.$$

Задание 6. Вычислить криволинейный интеграл $\int\limits_{L_{OB}}^{\cdot} y d\ell$, где L_{OB} — дуга

параболы $y^2 = \frac{2}{3}x$ между точками O(0,0) и $B\left(\frac{35}{6}, \frac{\sqrt{35}}{3}\right)$.

Задание 7. Вычислить криволинейный интеграл $\int_{L_{AB}} (x^2 - y^2) dx + xy dy$,

где L_{AB} – отрезок прямой AB, A(1,1) B(3,4).

Вариант 9

Задание 1. Изменить порядок интегрирования $\int_{0}^{1} dy \int_{0}^{\sqrt{y}} f dx + \int_{1}^{\sqrt{2}} dy \int_{0}^{\sqrt{2-y^2}} f dx$.

Задание 2. Вычислить двойной интеграл $\iint_{D} (4x + 5y) dxdy$ по области

D:
$$y = x$$
; $y = -x$; $y = -1$.

Задание 3. С помощью двойного интеграла вычислить площадь плоской фигуры, ограниченной линиями (использовать полярные координаты):

$$y^2 - 6y + x^2 = 0$$
, $y^2 - 10y + x^2 = 0$, $y = x$, $x = 0$.

Задание 4. Вычислить тройной интеграл $\iiint_V y^2 z \cos\left(\frac{xyz}{3}\right) dx dy dz$, где

область $V: x = 3, x = 0, y = 1, y = 0, z = 2\pi, z = 0$.

Задание 5. С помощью тройного интеграла вычислить массу тела, заданного ограничивающими его поверхностями, μ -плотность:

V:
$$x^2 + y^2 = 4y$$
, $y + z = 4$; $z \ge 0$, $\mu = \frac{z}{\sqrt{x^2 + y^2}}$.

Задание 6. Вычислить криволинейный интеграл $\int\limits_{L} \left(x^2 + y^2 + z^2 \right) d\ell$, где

L – дуга кривой $x=\cos t$, $y=\sin t$, $z=\sqrt{3t}$, $0\leq t\leq 2\pi$.

Задание 7. Вычислить криволинейный интеграл $\int\limits_{\mathcal{L}_{AB}} \cos y dx - \sin x dy$, где

 L_{AB} – отрезок прямой AB, $A(2\pi, -2\pi)$, $B(2\pi, 2\pi)$.

Вариант 10

Задание 1. Изменить порядок интегрирования $\int\limits_{-2}^{-1} dx \int\limits_{-(2+x)}^{0} f dy + \int\limits_{-1}^{0} dx \int\limits_{\sqrt[3]{x}}^{0} f dy$.

Задание 2. Вычислить двойной интеграл $\iint_D (2-3xy^2) dxdy$ по области D:

$$y = -x^2$$
; $y = x$.

Задание 3. С помощью двойного интеграла вычислить площадь плоской фигуры, ограниченной линиями (использовать полярные координаты):

$$x^2 - 2x + y^2 = 0$$
, $x^2 - 4x + y^2 = 0$, $y = \frac{x}{\sqrt{3}}$, $y = \sqrt{3} \cdot x$.

Задание 4. Вычислить тройной интеграл $\iiint\limits_V x^2 z \ sh(xyz) dxdydz$, где об-

ласть V: x = 2, x = 0, y = 1, y = 0, z = 1, z = 0.

Задание 5. С помощью тройного интеграла вычислить массу тела, заданного ограничивающими его поверхностями, μ -плотность:

V:
$$x^2 + y^2 = 2x$$
, $x + z = 2$, $y \ge 0$ $z \ge 0$; $\mu = \frac{y}{\sqrt{x^2 + y^2}}$.

Задание 6. Вычислить криволинейный интеграл $\int\limits_{L} arctg \frac{y}{x} d\ell$, где L- дуга

кардиоиды $\rho = (1 + \cos \varphi), \ 0 \le \varphi \le \frac{\pi}{2}.$

Задание 7. Вычислить криволинейный интеграл $\int_{L_{AB}} \frac{ydx + xdy}{x^2 + y^2}$, где L_{AB} отрезок прямой AB, A(1,2), B(3,6).

Вариант 11

Задание 1. Изменить порядок интегрирования: $\int_{0}^{1} dy \int_{0}^{3/y} f dx + \int_{1}^{2} dy \int_{0}^{y} f dx$.

Задание 2. Вычислить двойной интеграл $\iint_{\mathcal{D}} (3-2xy) dxdy$ по области

D:
$$y = x^2 - 2$$
; $y = -x$.

Задание 3. С помощью двойного интеграла вычислить площадь плоской фигуры, ограниченной линиями (использовать полярные координаты):

$$y^2 - 2y + x^2 = 0$$
, $y^2 - 4y + x^2 = 0$, $y = \sqrt{3} \cdot x$, $x = 0$.

Задание 4. Вычислить тройной интеграл $\iiint_V 2y^2z e^{xyz}dxdydz$, где об-

ласть V: x = 1, x = 0, y = 1, y = 0, z = 1, z = 0.

Задание 5. С помощью тройного интеграла вычислить массу тела, заданного ограничивающими его поверхностями, μ -плотность:

$$V: x^2 + y^2 = 16y, y + z = 16, x \ge 0, z \ge 0; \mu = \frac{x}{\sqrt{x^2 + y^2}}.$$

Задание 6. Вычислить криволинейный интеграл $\int_L \sqrt{2y} d\ell$, где L – первая арка циклоиды $x=2(t\sin t),\ y=2(1-\cos t).$

Задание 7. Вычислить криволинейный интеграл $\int\limits_{L_{AB}} xy dx + (y-x) dy$, где

 L_{AB} – дуга кубической параболы $y=x^3$ от точки $A\big(0,0\big)$ до точки $B\big(1,1\big)$.

Вариант 12

Задание 1. Изменить порядок интегрирования:

$$\int_{-2}^{-\sqrt{3}} dx \int_{-\sqrt{4-x^2}}^{0} f dy + \int_{-\sqrt{3}}^{0} dx \int_{\sqrt{4-x^2}-2}^{0} f dy.$$

Задание 2. Вычислить двойной интеграл $\iint_{D} (3-2xy^2) dxdy$ по области

D: y = -x; x = -1; y = 0.

Задание 3. С помощью двойного интеграла вычислить площадь плоской фигуры, ограниченной линиями (использовать полярные координаты):

$$x^2 - 2x + y^2 = 0$$
, $x^2 - 6x + y^2 = 0$, $y = \frac{x}{\sqrt{3}}$; $y = \sqrt{3} \cdot x$.

Задание 4. Вычислить тройной интеграл $\iiint_V x^2 z \sin\left(\frac{xyz}{4}\right) dx dy dz$, где

область $V: x = 1, x = 0, y = 2\pi, y = 0, z = 4, z = 0$.

Задание 5. С помощью тройного интеграла вычислить массу тела, заданного ограничивающими его поверхностями, μ -плотность:

V:
$$x^2 + y^2 = 2x$$
, $y + z = 2$, $z \ge 0$; $\mu = \sqrt{x^2 + y^2}$.

Задание 6. Вычислить криволинейный интеграл $\int\limits_{\mathcal{L}_{OA}} \frac{d\ell}{\sqrt{x^2+y^2+4}}$, где

 L_{OA} – отрезок прямой, соединяющий точки O(0,0) и A(1,2).

Задание 7. Вычислить криволинейный интеграл

 $\int\limits_{L_{ABC}}ig(x^2+y^2ig)dx+ig(x+y^2ig)dy$, где L_{ABC} — ломаная, соединяющая точки

A(1,2), B(3,2), C(3,5).

Вариант 13

. **Задание 1**. Изменить порядок интегрирования $\int\limits_{0}^{1} dy \int\limits_{-\sqrt{y}}^{0} f dx + \int\limits_{1}^{e} dy \int\limits_{-1}^{-\ln y} f dx$.

Задание 2. Вычислить двойной интеграл $\iint_{D} (5x^2y - 3) dx dy$ по области

D: y = x - 1; y = 0; x = 0.

Задание 3. С помощью двойного интеграла вычислить площадь плоской фигуры, ограниченной линиями (использовать полярные координаты):

$$y^2 - 4y + x^2 = 0$$
, $y^2 - 6y + x^2 = 0$, $y = \sqrt{3} \cdot x$, $x = 0$.

Задание 4. Вычислить тройной интеграл $\iiint_V y^2 z \cos(xyz) dxdydz$, где

область $V: x = 1, x = 0, y = \pi, y = 0, z = 2, z = 0.$

Задание 5. С помощью тройного интеграла вычислить массу тела, заданного ограничивающими его поверхностями, μ -плотность:

$$V: 2 \le x^2 + y^2 + z^2 \le 8, \ z^2 = y^2 + x^2, \ x \ge 0, \ y \ge 0, \ z \ge 0; \ \mu = xy.$$

Задание 6. Вычислить криволинейный интеграл $\int_{L}^{L} \frac{\left(y^2 - x^2\right)}{\left(x^2 + y^2\right)^2} d\ell$, где L –

дуга кривой $\rho = 9 \sin 2\varphi$, $0 \le \varphi \le \frac{\pi}{4}$.

Задание 7. Вычислить криволинейный интеграл $\int\limits_{\mathcal{L}_{OB}} xy^2 dx + yz^2 dy - x^2 z dz$,

где L_{OB} – отрезок прямой OB, O(0,0,0), B(-2,4,5).

Вариант 14

Задание 1. Изменить порядок интегрирования:

$$\int_{0}^{\frac{1}{\sqrt{2}}} dy \int_{0}^{\arcsin y} f dx + \int_{\frac{1}{\sqrt{2}}}^{1} dy \int_{0}^{\arccos y} f dx.$$

Задание 2. Вычислить двойной интеграл $\iint_{\mathcal{D}} (8y + 5) dx dy$ по области

D:
$$y = 1 - x^2$$
; $y = x^2 (x \le 0)$.

Задание 3. С помощью двойного интеграла вычислить площадь плоской фигуры, ограниченной линиями (использовать полярные координаты):

$$x^2 - 2x + y^2 = 0$$
, $x^2 - 8x + y^2 = 0$, $y = \frac{x}{\sqrt{3}}$, $y = \sqrt{3} \cdot x$.

Задание 4. Вычислить тройной интеграл $\iiint\limits_V 8y^2z e^{2xyz}dxdydz$, где об-

ласть V: x = -1, x = 0, y = 2, y = 0, z = 1, z = 0.

Задание 5. С помощью тройного интеграла вычислить массу тела, заданного ограничивающими его поверхностями, μ -плотность:

$$V: x^2 + y^2 = 2y, x^2 + y^2 = 4y, x \ge 0, z \ge 0, z = 6; \mu = \frac{y}{\sqrt{x^2 + y^2}}.$$

Задание 6. Вычислить криволинейный интеграл $\int\limits_{L_{OABC}} xyd\ell$, где L_{OABC} –

 \mathcal{L}_{OABC} контур прямоугольника с вершинами $O(0,0),\ A(4,0),\ B(4,2),\ C(0,2).$

Задание 7. Вычислить криволинейный интеграл $\int\limits_{\mathcal{L}_{OB}} y dx + x dy$, где \mathcal{L}_{OA} —

дуга окружности $X = R\cos t$, $y = R\sin t$; O(R,0), A(0,R).

Вариант 15

Задание 1. Изменить порядок интегрирования $\int_{0}^{1} dy \int_{0}^{\sqrt{y}} f dx + \int_{1}^{2} dy \int_{0}^{\sqrt{2-y}} f dx$.

Задание 2. Вычислить двойной интеграл $\iint_{\mathcal{D}} (4-3xy) dxdy$ по области

D:
$$y = x$$
; $y = -x$, $x = -1$.

Задание 3. С помощью двойного интеграла вычислить площадь плоской фигуры, ограниченной линиями (использовать полярные координаты):

$$y^2 - 2y + x^2 = 0$$
, $y^2 - 6y + x^2 = 0$, $y = \frac{x}{\sqrt{3}}$, $x = 0$.

Задание 4. Вычислить тройной интеграл $\iiint_V x^2 z \sin(xyz) dxdydz$, где об-

ласть $V: x = 2, x = 0, y = \pi, y = 0, z = 1, z = 0.$

Задание 5. С помощью тройного интеграла вычислить массу тела, заданного ограничивающими его поверхностями, μ -плотность:

$$V: x^2 + y^2 = 2x, x^2 + y^2 = 4x, y \ge 0, y \le x, z \ge 0, z = 4; \mu = \frac{x}{\sqrt{x^2 + y^2}}.$$

Задание 6. Вычислить криволинейный интеграл $\int\limits_{L_{ABO}} ig(x+yig) d\ell$, где L_{ABO} —

контур треугольника с вершинами A(1,0), B(0,1), O(0,0).

Задание 7. Вычислить криволинейный интеграл $\int\limits_{\mathcal{L}_{OA}} xydx + (y-x)dy$, где

 L_{OA} – дуга параболы $y^2 = x$ от точки O(0,0) до точки A(1,1).

Вариант 16

Задание 1. Изменить порядок интегрирования:

$$\int_{0}^{1} dy \int_{-\sqrt{y}}^{0} f dx + \int_{1}^{\sqrt{2}} dy \int_{-\sqrt{2-y^{2}}}^{0} f dx.$$

Задание 2. Вычислить двойной интеграл $\iint_{D} (x+2y-3) dx dy$ по области

D:
$$x = y^2$$
; $x = 9$.

Задание 3. С помощью двойного интеграла вычислить площадь плоской фигуры, ограниченной линиями (использовать полярные координаты):

$$x^2 - 2x + y^2 = 0$$
, $x^2 - 4x + y^2 = 0$, $y = \frac{x}{\sqrt{3}}$, $y = 0$.

Задание 4. Вычислить тройной интеграл $\iint_V 2y^2 e^{xy} dx dy dz$, где область

$$V: x = 0, y = 1, y = x, z = 1, z = 0.$$

Задание 5. С помощью тройного интеграла вычислить массу тела, заданного ограничивающими его поверхностями, μ -плотность:

V:
$$x^2 - 2x + y^2 = 0$$
, $y \ge 0$, $z \ge 0$, $x + z = 2$; $\mu = \sqrt{x^2 + y^2}$.

Задание 6. Вычислить криволинейный интеграл $\int\limits_{L} \frac{z^2 d\ell}{x^2 + y^2}$, где L – первый

виток винтовой линии $x = 2\cos t$, $y = 2\sin t$, z = 2t.

Задание 7. Вычислить криволинейный интеграл

$$\int\limits_{L_{AB}} x dx + y dy + ig(x - y + 1ig) dz$$
, где L_{AB} — отрезок прямой AB , $Aig(1,1,1ig)$, $Big(2,3,4ig)$.

Вариант 17

. **Задание 1**. Изменить порядок интегрирования $\int\limits_{-2}^{-1} dy \int\limits_{-\sqrt{2+y}}^{0} f dx + \int\limits_{-1}^{0} dy \int\limits_{-\sqrt{-y}}^{0} f dx$.

Задание 2. Вычислить двойной интеграл $\iint_D e^{\frac{x}{y}} dxdy$ по области D: $y^2 = x$;

$$x = 0, y = 1.$$

Задание 3. С помощью двойного интеграла вычислить площадь плоской фигуры, ограниченной линиями (использовать полярные координаты):

$$x^2 - 2y + y^2 = 0$$
, $y^2 - 10y + x^2 = 0$, $y = \frac{x}{\sqrt{3}}$, $y = 0$.

Задание 4. Вычислить тройной интеграл $\iint_V y^2 ch(2xy) dx dy dz$, где об-

ласть V: x = 0, y = 2, y = 4x, z = 2, z = 0.

Задание 5. С помощью тройного интеграла вычислить массу тела, заданного ограничивающими его поверхностями, μ -плотность:

V:
$$x^2 + y^2 = 4y$$
, $y + z = 4$, $z \ge 0$; $\mu = \frac{1}{\sqrt{x^2 + y^2}}$.

Задание 6. Вычислить криволинейный интеграл $\int\limits_{L_{OAB}} ig(x+yig) d\ell$, где L_{OAB} —

контур треугольника с вершинами O(0,0), A(-1,0), B(0,1).

Задание 7. Вычислить криволинейный интеграл $\int\limits_{\mathcal{L}_{AB}} (xy-1)dx + x^2ydy$,

где L_{AB} – дуга параболы $y^2 = 4 - 4x$ от точки A(1,0) до точки B(0,2).

Вариант 18

Задание 1. Изменить порядок интегрирования $\int_{0}^{1} dy \int_{0}^{y} f dx + \int_{1}^{\sqrt{2}} dy \int_{0}^{\sqrt{2-y^2}} f dx$.

Задание 2. Вычислить двойной интеграл $\iint_{\mathcal{D}} (2y - x) dx dy$ по области

D:
$$y = \sqrt{x}$$
; $y = 1$, $y = -x$.

Задание 3. С помощью двойного интеграла вычислить площадь плоской фигуры, ограниченной линиями (использовать полярные координаты):

$$x^2 - 2x + y^2 = 0$$
, $x^2 - 6x + y^2 = 0$, $y = \frac{x}{\sqrt{3}}$, $y = 0$.

Задание 4. Вычислить тройной интеграл $\iiint_V x^2 sh(3xy) dxdydz$, где об-

ласть V: x = 1, y = 2x, y = 0, z = 36, z = 0.

Задание 5. С помощью тройного интеграла вычислить массу тела, заданного ограничивающими его поверхностями, μ -плотность:

$$V: x^2 + y^2 = 2y, z \ge 0, z = 3; \mu = z \cdot \sqrt{x^2 + y^2}$$
.

Задание 6. Вычислить криволинейный интеграл $\int\limits_{L}(x+y)d\ell$, где L- дуга

лемнискаты Бернулли $\rho^2 = \cos 2\varphi$, $-\frac{\pi}{4} \le \varphi \le \frac{\pi}{4}$.

Задание 7. Вычислить криволинейный интеграл $\int\limits_{L_{OB}} xydx + (y-x)dy$, где L_{OB} — дуга параболы $y=x^2$ от точки O(0,0) до точки B(1,1).

Вариант 19

Задание 1. Изменить порядок интегрирования $\int_{-\sqrt{2}}^{-1} dx \int_{-\sqrt{2}-x^2}^{0} f dy + \int_{-1}^{0} dx \int_{x}^{0} f dy$.

Задание 2. Вычислить двойной интеграл $\iint_D (4xy+1) dxdy$ по области

D: y = x; y = 1; x = 0.

Задание 3. С помощью двойного интеграла вычислить площадь плоской фигуры, ограниченной линиями (использовать полярные координаты):

$$y^2 - 4y + x^2 = 0$$
, $y^2 - 10y + x^2 = 0$, $y = \frac{x}{\sqrt{3}}$, $y = \sqrt{3} \cdot x$.

Задание 4. Вычислить тройной интеграл $\int\int\limits_{V}\int y^2\cos\left(\frac{\pi}{4}xy\right)dxdydz$, где

область $V: x = 0, y = -1, y = \frac{x}{2}, z = -\pi^2, z = 0.$

Задание 5. С помощью тройного интеграла вычислить массу тела, заданного ограничивающими его поверхностями, μ -плотность:

$$V: x^2 = 2(y^2 + z^2), x = 4 x \ge 0; \mu = x.$$

Задание 6. Вычислить криволинейный интеграл $\int_{L} \sqrt{x^2 + y^2} d\ell$, где L – окружность $x^2 + y^2 = 2y$.

Задание 7. Вычислить криволинейный интеграл $\int_{L_{OB}} (xy-y^2)dx + xdy$, где

 L_{OB} – дуга параболы $y=x^2$ от точки O(0,0) до точки B(1,1).

Вариант 20

Задание 1. Изменить порядок интегрирования: $\int_{-2}^{-1} dy \int_{0}^{\sqrt{2+y}} f dx + \int_{-1}^{0} dy \int_{0}^{\sqrt{-y}} f dx$.

Задание 2. Вычислить двойной интеграл $\iint_D (x^2 + xy) dx dy$ по области

D:
$$y = 1 - x$$
; $y = 0$, $x = 0$.

Задание 3. С помощью двойного интеграла вычислить площадь плоской фигуры, ограниченной линиями (использовать полярные координаты):

$$x^2 - 2x + y^2 = 0$$
, $x^2 - 6x + y^2 = 0$, $y = 0$, $y = x$.

Задание 4. Вычислить тройной интеграл $\iiint\limits_V y^2 \mathrm{e}^{-xy} dx dy dz$, где область

$$V: x = 0, y = -2, y = 4x, z = 1, z = 0.$$

Задание 5. С помощью тройного интеграла вычислить массу тела, заданного ограничивающими его поверхностями, μ -плотность:

$$V: x^2 + y^2 = 1, x^2 + y^2 = 2z, x \ge 0, y \ge 0, z = 0; \mu = 10x.$$

Задание 6. Вычислить криволинейный интеграл $\int\limits_{L_{OABC}} xyd\ell$, где L_{OABC} —

контур прямоугольника с вершинами O(0,0), A(5,0), B(5,3), C(0,3).

Задание 7. Вычислить криволинейный интеграл $\int\limits_{L_{AB}} x dy + y dx$, где L_{AB} —

дуга астроиды $x = 2\cos^3 t$, $y = 2\sin^3 t$ от точки A(2,0) до точки B(0,2).

Вариант 21

Задание 1. Изменить порядок интегрирования $\int\limits_{-\sqrt{2}}^{-1} dx \int\limits_{0}^{\sqrt{2-x^2}} f dy + \int\limits_{-1}^{0} dx \int\limits_{0}^{x^2} f dy$.

Задание 2. Вычислить двойной интеграл $\iint_D (y-2xy) dxdy$ по области

D:
$$y = 1 - x$$
; $y = 1$; $x = 1$.

Задание 3. С помощью двойного интеграла вычислить площадь плоской фигуры, ограниченной линиями (использовать полярные координаты):

$$y^2 - 2y + x^2 = 0$$
, $y^2 - 4y + x^2 = 0$, $y = x$; $x = 0$.

Задание 4. Вычислить тройной интеграл $\int\!\!\int\limits_V y^2 ch(2xyz) dxdydz$, где об-

ласть
$$V: x = 0, y = 1, y = x, z = 8, z = 0.$$

Задание 5. С помощью тройного интеграла вычислить массу тела, заданного ограничивающими его поверхностями, μ -плотность:

$$V: x^2 + y^2 + z^2 = 1, x^2 + y^2 = 4z^2, x \ge 0, y \ge 0, z \ge 0; \mu = 20z.$$

Задание 6. Вычислить криволинейный интеграл $\int_{L} (x^2 + y^2) d\ell$, где L - 2

окружность $x^2 + y^2 = 4x$.

Задание 7. Вычислить криволинейный интеграл $\int\limits_{L_{AB}} (xy-x) dx + \frac{1}{2} x^2 y dy$, где L_{AB} – дуга параболы $y^2 = 4x$ от точки A(0,0) до точки B(1,2).

Вариант 22

Задание 1. Изменить порядок интегрирования $\int_{0}^{1} dx \int_{1-x^2}^{1} f dy + \int_{1}^{e} dx \int_{\ln x}^{1} f dy$.

Задание 2. Вычислить двойной интеграл $\iint_{D} (5x + 3y) dxdy$ по области

D:
$$y = x^2$$
; $y = \sqrt{x}$.

Задание 3. С помощью двойного интеграла вычислить площадь плоской фигуры, ограниченной линиями (использовать полярные координаты):

$$x^2 - 2x + y^2 = 0$$
, $x^2 - 4x + y^2 = 0$, $y = 0$; $y = \sqrt{3} \cdot x$.

Задание 4. Вычислить тройной интеграл $\int\int\limits_V y^2 e^{rac{xy}{2}} dx dy dz$, где область

$$V: x = 0, y = 2, y = 2x, z = -1, z = 0.$$

Задание 5. С помощью тройного интеграла вычислить массу тела, заданного ограничивающими его поверхностями, μ -плотность:

V:
$$36(x^2+y^2)=z^2$$
, $x^2+y^2=1$, $x\geq 0$, $z\geq 0$; $\mu=\frac{5}{6}(x^2+y^2)$.

Задание 6. Вычислить криволинейный интеграл $\int\limits_{\mathcal{L}_{AB}} \left(4\sqrt[3]{x} - 3\sqrt[3]{y} \right) d\ell$, где

 L_{AB} — дуга астроиды $x=\cos^3 t$, $y=\sin^3 t$ заключенная между точками A(1,0) и B(0,1).

Задание 7. Вычислить криволинейный интеграл $\int_{L_{AB}} (xy-1)dx + x^2ydy$,

где L_{AB} – отрезок прямой AB, A(1,0), B(0,2).

Вариант 23

Задание 1. Изменить порядок интегрирования $\int\limits_{0}^{\frac{\pi}{4}} dy \int\limits_{0}^{\sin y} f dx + \int\limits_{\frac{\pi}{4}}^{\frac{n}{2}} dy \int\limits_{0}^{\cos y} f dx$.

Задание 2. Вычислить двойной интеграл $\iint_{\Omega} (xy-2) dxdy$ по области

D:
$$y = x^2$$
; $y = 1$.

Задание 3. С помощью двойного интеграла вычислить площадь плоской фигуры, ограниченной линиями (использовать полярные координаты):

$$y^2 - 6y + x^2 = 0$$
, $y^2 - 8y + x^2 = 0$, $y = x$; $x = 0$.

Задание 4. Вычислить тройной интеграл $\iiint_V y^2 \cos\left(\frac{\pi}{2}xy\right) dx dy dz$, где

область $V: x = 0, y = -1, y = x, z = 2\pi^2, z = 0$.

Задание 5. С помощью тройного интеграла вычислить массу тела, заданного ограничивающими его поверхностями, μ -плотность:

$$V: x^2 + y^2 = 4, x^2 + y^2 = 8z, x \ge 0, y \ge 0, z = 0; \mu = 5x.$$

Задание 6. Вычислить криволинейный интеграл $\int\limits_{L} xyd\ell$, где L — контур

квадрата со сторонами $x = \pm 1$, $y = \pm 1$.

Задание 7. Вычислить криволинейный интеграл $\int\limits_{L_{AB}} 2xydx + y^2dy + z^2dz,$

где L_{AB} — дуга одного витка винтовой линии $x=\cos t$, $y=\sin t$, z=2t от точки A(1,0,0) до точки $B(1,0,4\pi)$.

Вариант 24

Задание 1. Изменить порядок интегрирования $\int_{0}^{1} dy \int_{0}^{\sqrt{y}} f dx + \int_{1}^{e} dy \int_{\ln y}^{1} f dx$.

Задание 2. Вычислить двойной интеграл $\iint_{\mathcal{D}} (3x + xy) dx dy$, если область

D – треугольник $\triangle OBC$, с вершинами в точках O(0;0), B(-1;0), C(0;1).

Задание 3. С помощью двойного интеграла вычислить площадь плоской фигуры, ограниченной линиями (использовать полярные координаты):

$$x^2 - 4x + y^2 = 0$$
, $x^2 - 8x + y^2 = 0$, $y = 0$; $y = \sqrt{3} \cdot x$.

Задание 4. Вычислить тройной интеграл $\iiint\limits_{V}y^{2}\cos(\pi xy)dxdydz$, где

область $V: x = 0, y = 1, y = 2x, z = \pi^2, z = 0.$

Задание 5. С помощью тройного интеграла вычислить массу тела, заданного ограничивающими его поверхностями, μ -плотность:

$$V: x^2 + y^2 + z^2 = 4, x^2 + y^2 = z^2, x \ge 0, y \ge 0, z \ge 0; \mu = 6z.$$

Задание 6. Вычислить криволинейный интеграл $\int_{L} y^2 d\ell$, где L – первая арка циклоиды $x = t - \sin t$, $y = 1 - \cos t$.

Задание 7. Вычислить криволинейный интеграл $\int\limits_{L_{AB}} \frac{y}{x} dx + x dy$, где L_{AB} —

дуга линии $y = \ln x$, от точки A(1,0) до точки B(e,1).

Вариант 25

Задание 1. Изменить порядок интегрирования $\int\limits_{0}^{1} dy \int\limits_{-y}^{0} f dx + \int\limits_{1}^{\sqrt{2}} dy \int\limits_{-\sqrt{2-y^2}}^{0} f dx$.

Задание 2. Вычислить двойной интеграл $\iint_{D} (2xy+1) dxdy$ по области

D:
$$y = x^3$$
, $x = 0$, $y = -1$.

Задание 3. С помощью двойного интеграла вычислить площадь плоской фигуры, ограниченной линиями (использовать полярные координаты):

$$y^2 - 4y + x^2 = 0$$
, $y^2 - 8y + x^2 = 0$, $y = x$; $x = 0$.

Задание 4. Вычислить тройной интеграл $\iint_V x^2 \, \mathrm{s} \, h(2xy) \, dx \, dy \, dz$, где об-

ласть V: x = -1, y = x, y = 0, z = 8, z = 0.

Задание 5. С помощью тройного интеграла вычислить массу тела, заданного ограничивающими его поверхностями, μ -плотность:

$$V: 25(x^2+y^2)=z^2, x^2+y^2=4, x\geq 0, y\geq 0, z\geq 0; \mu=2(x^2+y^2).$$

Задание 6. Вычислить криволинейный интеграл $\int\limits_{L_{ABCD}} xyd\ell$, где L_{ABCD} —

контур прямоугольника с вершинами A(2,0), B(4,0), C(4,3), D(2,3).

Задание 7. Вычислить криволинейный интеграл $\int\limits_{L} y dx - x dy$, где L — дуга

эллипса $x = 3\cos t$, $y = 2\sin t$, «пробегаемая» в положительном направлении.

Вариант 26

Задание 1. Изменить порядок интегрирования:

$$\int_{0}^{\sqrt{3}} dx \int_{\sqrt{4-x^2}-2}^{0} f dy + \int_{\sqrt{3}}^{2} dx \int_{-\sqrt{4-x^2}}^{0} f dy.$$

Задание 2. Вычислить двойной интеграл $\iint_{D} (4x - y) dx dy$ по области

D:
$$x = 0$$
, $y = x^2$, $y = 1$.

Задание 3. С помощью двойного интеграла вычислить площадь плоской фигуры, ограниченной линиями (использовать полярные координаты):

$$x^2 - 4x + y^2 = 0$$
, $x^2 - 8x + y^2 = 0$, $y = \frac{x}{\sqrt{3}}$; $y = \sqrt{3} \cdot x$.

Задание 4. Вычислить тройной интеграл $\iiint_V y^2 ch(xy) dx dy dz$, где об-

ласть
$$V: x = 0, y = -1, y = x, z = 2, z = 0.$$

Задание 5. С помощью тройного интеграла вычислить массу тела, заданного ограничивающими его поверхностями, μ -плотность:

$$V: x^2 + y^2 = 1, x^2 + y^2 = 6z, x \ge 0, y \ge 0, z = 0; \mu = 90y.$$

Задание 6. Вычислить криволинейный интеграл $\int\limits_{l} y d\ell$, где L – дуга пара-

болы $y^2 = 2x$, отсеченная параболой $x^2 = 2y$.

Задание 7. Вычислить криволинейный интеграл $\int\limits_{L_{OA}} 2xydx - x^2dy$, где

 L_{OA} — дуга параболы $y = \frac{\chi^2}{4}$, от точки O(0,0) до точки A(2,1).

Вариант 27

Задание 1. Изменить порядок интегрирования $\int_{0}^{1} dy \int_{0}^{y} f dx + \int_{1}^{e} dy \int_{\ln v}^{1} f dx.$

Задание 2. Вычислить двойной интеграл $\iint_{D} (x+2y) dx dy$ по области

D: D:
$$y = 0$$
, $y = \sqrt{x}$, $x = 1$.

Задание 3. С помощью двойного интеграла вычислить площадь плоской фигуры, ограниченной линиями (использовать полярные координаты):

$$y^2 - 4y + x^2 = 0$$
, $y^2 - 8y + x^2 = 0$, $y = \sqrt{3} \cdot x$, $x = 0$.

Задание 4. Вычислить тройной интеграл $\iiint_V x^2 \sin\left(\frac{\pi}{2}xy\right) dx dy dz$, где

область
$$V: x = 2, y = x, y = 0, z = \pi, z = 0$$
.

Задание 5. С помощью тройного интеграла вычислить массу тела, заданного ограничивающими его поверхностями, μ -плотность:

$$V: x^2 + y^2 + z^2 = 4, x^2 + y^2 = 8z^2, x \ge 0, y \ge 0, z \ge 0; \mu = 10z.$$

Задание 6. Вычислить криволинейный интеграл $\int\limits_{L_{AB}} \frac{d\ell}{x-y}$, где L_{AB} — отре-

зок прямой, заключенный между точками A(4,0) и B(6,1).

Задание 7. Вычислить криволинейный интеграл

$$\int\limits_{L_{AB}}ig(x^2+y^2ig)dx+ig(x^2-y^2ig)dy$$
 , где L_{AB} — ломаная линия $y=|x|$, от точки $A(-1,1)$ до точки $B(2,2)$.

Вариант 28

Задание 1. Изменить порядок интегрирования $\int\limits_0^{\frac{\pi}{4}} dx \int\limits_0^{\sin x} f dy + \int\limits_{\frac{\pi}{4}}^{\frac{\pi}{2}} \int\limits_0^{\cos x} f dy \ .$

Задание 2. Вычислить двойной интеграл $\iint_{D}^{T} e^{y} dx dy$ по области

D: $y = \ln x$; y = 0, x = 2.

Задание 3. С помощью двойного интеграла вычислить площадь плоской фигуры, ограниченной линиями (использовать полярные координаты):

$$x^2 - 4x + y^2 = 0$$
, $x^2 - 6x + y^2 = 0$, $y = \frac{x}{\sqrt{3}}$; $y = \sqrt{3} \cdot x$.

Задание 4. Вычислить тройной интеграл $\iiint_V x^2 \sin(\pi xy) dx dy dz$, где об-

ласть $V: x = 1, y = 2x, y = 0, z = 4\pi, z = 0$.

Задание 5. С помощью тройного интеграла вычислить массу тела, заданного ограничивающими его поверхностями, μ -плотность:

V:
$$9(x^2 + y^2) = z^2$$
, $x^2 + y^2 = 4$, $x \ge 0$, $y \ge 0$, $z \ge 0$; $\mu = \frac{5(x^2 + y^2)}{3}$.

Задание 6. Вычислить криволинейный интеграл $\int\limits_{L} \left(x^2 + y^2 \right)^2 d\ell$, где L -

часть окружности $ho=2\,,$ расположенная в первой координатной четверти.

Задание 7. Вычислить криволинейный интеграл $\int_{L_{OA}} 2xydx - x^2dy + zdz$,

где L_{OA} – отрезок прямой, соединяющий точки O(0,0,0) и A(2,1,-1).

Вариант 29

Задание 1. Изменить порядок интегрирования $\int_{0}^{1} dx \int_{0}^{x^{2}} f dy + \int_{1}^{2} dx \int_{0}^{2-x} f dy$.

Задание 2. Вычислить двойной интеграл $\iint_D xy dx dy$ по области D: y = 0,

$$y = \sqrt{x} , x + y = 2.$$

Задание 3. С помощью двойного интеграла вычислить площадь плоской фигуры, ограниченной линиями (использовать полярные координаты):

$$y^2 - 2y + x^2 = 0$$
, $y^2 - 10y + x^2 = 0$, $y = \frac{x}{\sqrt{3}}$, $x = 0$.

Задание 4. Вычислить тройной интеграл $\iiint_V y^2 ch(3xy) dxdydz$, где об-

ласть V: x = 0, y = 2, y = 6x, z = -3, z = 0.

Задание 5. С помощью тройного интеграла вычислить массу тела, заданного ограничивающими его поверхностями, μ -плотность:

$$V: x^2 + y^2 = 1, x^2 + y^2 = z, x \ge 0, y \ge 0, z = 0; \mu = 10y.$$

Задание 6. Вычислить криволинейный интеграл $\int\limits_{L_{AB}} \frac{dl}{\sqrt{x^2 + y^2 + z^2}}$, где

 L_{AB} – отрезок прямой, соединяющий точки A(1,1,1) и B(2,2,2).

Задание 7. Вычислить криволинейный интеграл $\oint_L x dy - y dx$, где L — кон-

тур треугольника с вершинами A(-1,0); B(1,0), C(0,1) при положительном направлении обхода.

Вариант 30

Задание 1. Изменить порядок интегрирования $\int_{0}^{1} dx \int_{0}^{x^{2}} f dy + \int_{1}^{\sqrt{2}} dx \int_{y}^{\sqrt{2-x^{2}}} f dy$.

Задание 2. Вычислить двойной интеграл $\iint_{D} (2x + xy^2) dx dy$, если область

D – треугольник ΔOBC , с вершинами в точках O(0;0), B(2;0), C(0;-2).

Задание 3. С помощью двойного интеграла вычислить площадь плоской фигуры, ограниченной линиями (использовать полярные координаты):

$$y^2 - 4y + x^2 = 0$$
, $y^2 - 8y + x^2 = 0$, $y = x$; $x = 0$.

Задание 4. Вычислить тройной интеграл $\iiint_V x^2 z \sin\left(\frac{xyz}{4}\right) dx dy dz$, где

область $V: x = 1, x = 0, y = 2\pi, y = 0, z = 4, z = 0.$

Задание 5. С помощью тройного интеграла вычислить массу тела, заданного ограничивающими его поверхностями, μ -плотность:

V:
$$36(x^2+y^2)=z^2$$
, $x^2+y^2=1$, $x \ge 0$, $z \ge 0$; $\mu = \frac{5}{6}(x^2+y^2)$.

Задание 6. Вычислить криволинейный интеграл $\int\limits_{L_{AB}} y d\ell$, где $L_{AB}-$ дуга астроиды $x=\cos^3 t$, $y=\sin^3 t$, заключенная между точками A(1,0) и

астроиды $x = \cos^3 t$, $y = \sin^3 t$, заключенная между точками A(1,0) и B(0,1).

Задание 7. Вычислить криволинейный интеграл $\int\limits_{L_{AB}} (xy-1)dx + x^2ydy$, где L_{AB} – дуга параболы $y^2=4-4x$ от точки A(1,0) до точки B(0,2).

Решение типового варианта

Задание 1. Изменить порядок интегрирования $\int\limits_{-\infty}^{\infty} dx \int\limits_{-\infty}^{\infty} f dy + \int\limits_{-\infty}^{\infty} dx \int\limits_{-\infty}^{\infty} f dy$.

Решение. Область интегрирования $D = D_1 \cup D_2$. Область D_1 расположена между прямой y=0 и параболой $y=-\sqrt{x}$ для $x\in[0;1];$ область D_2 —

между прямой
$$y = 0$$
 и параболой $y = -\sqrt{2-x}$ для $x \in [1; 2]$.

Найдем точку пересечения линий
$$y = -\sqrt{x}$$
 и $y = -\sqrt{2-x}$. $-\sqrt{x} = -\sqrt{2-x}$; $x = 2-x$; $x = 1, y = -1$.

Тогда для области D $y \in [-1; 0]$, а переменная x изменяется в данной области при каждом фиксированном y от точек параболы $x = y^2$ до точек параболы $x = 2 - y^2$. Таким образом,

$$\int_{0}^{1} dx \int_{-\sqrt{x}}^{0} f dy + \int_{1}^{2} dx \int_{-\sqrt{2-x}}^{0} f dy = \int_{-1}^{0} dy \int_{y^{2}}^{2-y^{2}} f dx.$$

Задание 2. Вычислить двойной интеграл $\iint (x+y) dx dy$ по области D: $y = x^2$, y = x + 2.

Решение. Область интегрирования *D* изображена на рисунке. Она огра-

ничена сверху прямой y = x + 2, параболой СНИЗУ $y = x^2$. Запишем двойной интеграл в виде повторных и вычислим его.

$$\iint_{D} (x+y) dx dy = \int_{-1}^{2} dx \int_{x^{2}}^{x+2} (x+y) dy =$$

$$= \int_{-1}^{2} \left(xy + \frac{y^{2}}{2} \right) \Big|_{x^{2}}^{x+2} dx =$$

$$= \int_{-1}^{2} \left(x^{2} + 2x + \frac{x^{2} + 4x + 4}{2} - x^{3} - \frac{x^{4}}{2} \right) dx = \int_{-1}^{2} \left(\frac{3}{2} x^{2} + 4x + 2 - x^{3} - \frac{x^{4}}{4} \right) dx =$$

$$= \left(\frac{x^{3}}{2} + 2x^{2} + 2x - \frac{x^{4}}{4} - \frac{x^{5}}{20} \right) \Big|_{-1}^{2} = 11,1.$$

Ответ: 11,1.

Задание 3. С помощью двойного интеграла вычислить площадь плоской фигуры, ограниченной линиями (использовать полярные координаты):

$$x^2 - 6x + y^2 = 0$$
, $x^2 - 10x + y^2 = 0$, $y = \frac{x}{\sqrt{3}}$; $y = \sqrt{3} \cdot x$.

Решение. Приведем уравнения линий, ограничивающие область интегрирования к каноническому виду:

$$x^{2}-6x+y^{2}=0 \iff x^{2}-6x+9+y^{2}=9 \Leftrightarrow (x-3)^{2}+y^{2}=9$$

окружность с центром в точке (3; 0) и радиусом, равным 3.

$$x^{2}-10x+y^{2}=0 \iff x^{2}-10x+25+y^{2}=25 \iff (x-5)^{2}+y^{2}=25$$

окружность с центром в точке (5; 0) и радиусом, равным 5.

$$y = \frac{x}{\sqrt{3}}$$
; $y = \sqrt{3} \cdot x$ – прямые.

Изобразим область интегрирования *D*.

Используя формулы

$$\begin{cases} x = r \cos \varphi, \\ y = r \sin \varphi, \end{cases}$$

перейдем к полярным координатам.

$$x^{2} - 6x + y^{2} = 0 \implies r = 6\cos\varphi;$$

$$x^{2} - 10x + y^{2} = 0 \implies r = 10\cos\varphi.$$

$$y = \frac{x}{\sqrt{3}} \implies \varphi = \frac{\pi}{6};$$

$$y = \sqrt{3}x \implies \varphi = \frac{\pi}{2}.$$

Следовательно, $6\cos\varphi \le r \le 10\cos\varphi$; $\frac{\pi}{6} \le \varphi \le \frac{\pi}{3}$.

Найдем площадь области *D*.

$$S = \iint_{D} r dr d\varphi = \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} d\varphi \int_{6\cos\varphi}^{10\cos\varphi} r dr = \frac{1}{2} \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \left(r^{2} \Big|_{6\cos\varphi}^{10\cos\varphi}\right) d\varphi =$$

$$=\frac{1}{2}\int\limits_{\frac{\pi}{6}}^{\frac{\pi}{3}}\!\!\left(100\cos^2\varphi-36\cos^2\varphi\right)\!d\varphi=32\int\limits_{\frac{\pi}{6}}^{\frac{\pi}{3}}\!\!\cos^2\varphi\!d\varphi=16\int\limits_{\frac{\pi}{6}}^{\frac{\pi}{3}}\!\!\left(1+\cos2\varphi\right)\!\!d\varphi=\\ =16\bigg(\varphi+\frac{1}{2}\sin2\varphi\bigg)\bigg|_{\pi/6}^{\pi/3}=\frac{8}{3}\pi\ \, \text{(кв. ед.)}.$$

Ответ: $\frac{8}{3}\pi$ (кв. ед.).

Задание 4. Вычислить тройной интеграл $\iiint_V x^2 \sin(4\pi xy) dx dy dz$, где область $V: x=1, \ y=\frac{x}{2}, \ y=0, \ z=8\pi, \ z=0$.

Решение. Изобразим на рисунках область интегрирования *V* и ее проекцию в плоскость *xOy*.

 $y \uparrow x = 1$ $y = \frac{x}{2}$ $0 \qquad 1 \qquad x$

Ответ: 1 куб. ед.

грал в виде повторных.
$$\iint_{V} x^{2} \sin(4\pi xy) dx dy dz =$$

$$= \int_{0}^{1} x^{2} dx \int_{0}^{\frac{x}{2}} \sin(4\pi xy) dy \int_{0}^{8\pi} dz =$$

$$= 8\pi \int_{0}^{1} x^{2} dx \int_{0}^{\frac{x}{2}} \sin(4\pi xy) dy =$$

$$= 8\pi \int_{0}^{1} \frac{x^{2}}{4\pi x} (-\cos(4\pi xy)) \Big|_{0}^{\frac{x}{2}} dx =$$

$$= -\frac{8\pi}{4\pi} \int_{0}^{1} (x \cos(2\pi x^{2}) - x) dx =$$

$$= -2 \left(\frac{1}{4\pi} \sin(2\pi x^{2}) - \frac{x^{2}}{2} \right) \Big|_{0}^{1} = 1 \text{ (куб.ед.)}$$

Представим тройной

инте-

Задание 5. С помощью тройного интеграла вычислить массу тела, заданного ограничивающими его поверхностями, μ -плотность:

V:
$$16(x^2+y^2)=z^2$$
, $x^2+y^2=1$, $x\geq 0$, $y\geq 0$, $z\geq 0$; $\mu=5(x^2+y^2)$.

Решение. Тело ограничено поверхностями: $16(x^2 + y^2) = z^2$ – конус, $x^2 + y^2 = 1$ – круговой цилиндр, x = 0, y = 0, z = 0 – координатные плоскости. Неравенства $x \ge 0$, $y \ge 0$, $z \ge 0$ описывают первый октант.

Изобразим на рисунках рассматриваемое тело и его проекцию в плоскость xOy.

Maccy тела вычислим по формуле $m = \iiint \mu(x;y;z) dx dy dz \, .$

В нашем случае
$$m = \iiint\limits_V 5(x^2 + y^2) dx dy dz$$
.

Для вычисления тройного интеграла перейдем к цилиндрическим координатам:

$$\begin{cases} x = r \cos \varphi, \\ y = r \sin \varphi, \\ z = z. \end{cases}$$

Тогда:

$$m = \iiint_{V} 5r^{2}r dr d\varphi dz = \iint_{D} 5r^{3} dr d\varphi \cdot \int_{0}^{4r} dz =$$

$$= 5 \iint_{D} r^{3} z \Big|_{0}^{4r} dr d\varphi = 5 \iint_{D} 4r^{4} dr d\varphi =$$

$$= 20 \int_{0}^{\frac{\pi}{2}} d\varphi \int_{0}^{1} r^{4} dr = 20 \varphi \Big|_{0}^{\frac{\pi}{2}} \cdot \frac{r^{5}}{5} \Big|_{0}^{1} = 4 \cdot \frac{\pi}{2} \cdot 1 = 2\pi.$$

Ответ: 2π .

Задание 6. Вычислить криволинейный интеграл $\int_{L} (x-y) d\ell$, где L- окружность $x^2+y^2=2x$.

Решение. Запишем уравнение окружности $x^2 + y^2 = 2x$ в полярных координатах:

$$r^2 = 2r\cos\varphi$$
 или $r = 2\cos\varphi$, $-\frac{\pi}{2} \le \varphi \le \frac{\pi}{2}$.

Тогда,
$$r'=-2\sin\varphi$$
, $d\ell=\sqrt{r^2+ig(r'ig)^2}darphi=$ $=\sqrt{4\cos^2\varphi+4\sin^2\varphi}darphi=2darphi$.

Следовательно, интеграл примет вид:

$$\int_{L} (x-y)d\ell = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (r\cos\varphi - r\sin\varphi)2d\varphi =$$

$$=2\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left(2\cos^2\varphi - 2\cos\varphi\sin\varphi\right) d\varphi = 2\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left(2\cos^2\varphi - \sin2\varphi\right) d\varphi =$$

$$=2\int\limits_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\left(2\cdot\frac{1+\cos2\varphi}{2}-\sin2\varphi\right)d\varphi=\left(2\varphi+\sin2\varphi+\cos2\varphi\right)\Big|_{-\frac{\pi}{2}}^{\frac{\pi}{2}}=2\pi\;.$$

Ответ: 2π .

Задание 7. Вычислить криволинейный интеграл

 $\int\limits_{L_{ACB}}ig(x^2+yig)dx+ig(x+y^2ig)dy$, где $L_{ACB}-$ ломаная ACB, соединяющая точки

A(2,0), C(5,0), B(5,3).

Решение. Путь интегрирования L_{ACB} разобьем на два отрезка AC и CB.

$$\int_{L_{ACB}} (x^2 + y) dx + (x + y^2) dy =$$

$$= \int_{L_{AC}} (x^2 + y) dx + (x + y^2) dy +$$

$$+ \int_{L_{CB}} (x^2 + y) dx + (x + y^2) dy =$$

$$= \begin{bmatrix} (AC) : y = 0, & 2 \le x \le 5, dy = 0 \\ (CB) : x = 5, & 0 \le y \le 3, & dx = 0 \end{bmatrix} =$$

$$=\int_{2}^{5}x^{2}dx+\int_{0}^{3}\left(5+y^{2}\right)dy=\frac{x^{3}}{3}\bigg|_{2}^{5}+\left(5y+\frac{y^{3}}{3}\right)\bigg|_{0}^{3}=\frac{1}{3}\left(125-8\right)+15+9=63.$$

Ответ: 63.

Ответы

2. 1)
$$\int_{0}^{4} dy \int_{-\sqrt{y}}^{\sqrt{y}} f(x,y) dx$$
; 2)
$$\int_{\frac{1}{2}}^{1} dy \int_{\frac{1}{y}}^{2} f(x,y) dx + \int_{1}^{2} dy \int_{y}^{2} f(x,y) dx$$
. **3.** 1) $\frac{14}{3}$; 2) $\frac{5}{6}$;

3)
$$\frac{\pi a^2}{2}$$
. **4.** 1) $\frac{2}{3}$; 2) $7\frac{19}{21}$ 3) $-\frac{\pi}{2}$; 4) $\frac{1}{2}$. **6.** 1) $\int_{0}^{2} dy \int_{\frac{y}{3}}^{\frac{y}{2}} f(x,y) dx + \int_{2}^{3} dy \int_{\frac{y}{3}}^{1} f(x,y) dx$;

2)
$$\int_{0}^{1} dx \int_{x^{2}}^{x} f(x;y) dy$$
; 3) $\int_{0}^{48} dy \int_{\frac{y}{12}}^{\sqrt{\frac{y}{3}}} f(x;y) dx$;

4)
$$\int_{0}^{\frac{1}{2}} dx \int_{0}^{\sqrt{2}x} f(x;y) dy + \int_{1/2}^{\sqrt{2}} dx \int_{0}^{1} f(x;y) dy + \int_{\sqrt{2}}^{\sqrt{3}} dx \int_{0}^{\sqrt{3-x^{2}}} f(x;y) dy;$$

5)
$$\int_{2}^{4} dy \int_{2y-5}^{9-\frac{3}{2}y} f(x;y) dx; 6) \int_{-2}^{1} dx \int_{x^{2}+1}^{3-y} f(x,y) dy. 7. 1) \ln \frac{25}{24}; 2) \frac{4}{3}; 3) \frac{\pi}{10} - \frac{8}{15}; 4)$$

$$\frac{\pi a^2}{2}$$
. **8.** 1) 9; 2) $\frac{9}{4}$; 3) -2; 4) $\frac{64}{3}$; 5) $\frac{7}{3}$. **9.** 1) $\frac{2a^3}{3}$; 2) 300π ; 3) $\frac{\pi^2}{6}$; 4) 24π ;

5)
$$\frac{a^4}{6}$$
. **10.** 1) $-\frac{\pi}{2} \ln(\cos 3)$. **11.** $\frac{1}{8} a^2 b^2$. **12.** 1) 8; 4) -2π . **13.** 1) 24π . **15.** 2) $\frac{8}{3}$;

3)
$$\frac{125}{6}$$
; 4) $\frac{\pi}{2} + \frac{1}{3}$ 6) $\frac{\pi a^2}{4}$. **16.** 1/6. **18.** $\frac{a^3}{9} (3\pi + 20 - 16\sqrt{2})$. **19.** 560/3.

20.
$$\frac{\pi ka^3}{3}$$
. **21.** $\left(\frac{5a}{6};0\right)$. **23.** 1) $\frac{16}{3}$; 2) $\frac{64}{3}$; 3) $\frac{27}{2}$; 4) $\frac{1}{2}\pi a^2$. **24.** 1) $3\left(\frac{\pi}{4} + \frac{1}{2}\right)$;

2)
$$\frac{1}{2}a^2\left(\frac{\pi}{3}+\frac{\sqrt{3}}{2}\right)$$
. **25.** 1) 40π ; 3) $78\frac{15}{32}$. **27.** $\frac{1}{110}$. **29.** $\frac{abc^4}{6}$.

31. 1)
$$\frac{3(4\pi-3\sqrt{3})}{20}$$
; 2) $\frac{4}{3}$. **33.** 1) $\frac{16\pi}{5}$; 2) $\frac{341(\pi+2)}{20}$. **35.** 1) $\frac{a^{12}}{144}$; 2) $\frac{ha^3}{6}$.

36. 1)
$$\frac{\pi}{6}$$
; 2) $\frac{\pi}{32}$; 3) 81. **37.** 1) $\frac{16\pi}{3}$. **38.** 2π . **39.** 266. **41.** $(0,0,6)$. **42.** $\frac{4\pi}{3}$.

43. 1)
$$16\pi$$
; 2) $\frac{118}{3}$. **44.** 1) $\left(\frac{27}{4},0,0\right)$; 2) $\left(0,0,\frac{64}{3}\right)$. **45.** 1) $\frac{243\pi}{2}$; 2) $\frac{16\pi}{5}$.

46.
$$\sqrt{5} \ln 2$$
. **47.** $\frac{7\sqrt{2}+7}{12}$. **48.** $4\pi a \sqrt{a}$. **49.** 12. **50.** $a^2 \left(2-\sqrt{2}\right)$. **51.** 4π . **53.** 24.

54. 2)
$$-\frac{a^2}{5}$$
. **55.** 1) $\frac{\pi\sqrt{2}}{2} + 2\sqrt{2} - 4$. **57.** 1) $-14\frac{2}{3}$; 2) $11\frac{5}{6}$; 3) $\frac{64\pi^3}{3}$; 4) -12π ;

5)
$$\frac{1}{3}$$
. **58.** 23. **59.** 3) 7; 4) $\frac{3}{2}$; 5) $\frac{3\sqrt[3]{2\pi}}{8}$. **60.** 3) 91; 5) -4π . **61.** $\frac{196}{105}$. **62.** 18.

63. 2,
$$u(x,y) = x^3y - 2x^2y^2 + y^3 + C$$
. **64.** $11\frac{2}{3}$.

65. 1)
$$u(x, y) = x^3 - x^2y + xy^2 - y^3 + C$$
; 2) $u(x, y) = xe^{2y} - 5y^3e^x + C$.

66.
$$3\pi a^2$$
. **67.** $\frac{16}{3}$. **68.** 14, $u(x,y) = 3x^2y + 4xy - 2y^2 + c$.

Литература

- **1.** Differential equations. Multiple integrals. Infinite sequences and series: учебнометодическая разработка на английском языке по дисциплине «Математика» / И.И. Гладкий, А.В. Дворниченко, Н.А. Дерачиц, Т.И. Каримова, Т.В. Шишко. Брест: Брест. гос. техн. ун-т, 2014. 76 с.
- 2. Бугров, Я.С. Дифференциальные уравнения. Кратные интегралы. Ряды. Функции комплексного переменного / Я.С. Бугров, С.М. Никольский. М.: Наука, 1981. 448 с.
- **3.** Высшая математика для инженеров: в 2-х томах / С.А. Минюк [и др.]; под общ. ред. Н.А. Микулина. Минск: ООО «Элайда», 2004. Т.1. 464 с., Т.2. 592 с.
- **4.** Герасимович, А.И. Математический анализ: Справочное пособие: в 2-х частях / А.И. Герасимович [и др.]. Минск: Выш. шк., 1990. 272 с.
- **5.** Задачи и упражнения по курсу «Высшая математика» для студентов электронноинформационных специальностей. II семестр / Составители: Т.А. Тузик, А.И. Тузик, М.Г. Журавель. – Брест: Изд-во БрГТУ, 2007. – 103 с.
- **6.** Индивидуальные задания по высшей математике / Под ред. А.П. Рябушко, I-IIIч. Минск: Выш. шк., 2004-2008. Ч.1. 304 с., Ч.2. 367 с., Ч.3. 367 с.
- 7. Интегральное исчисление функции одной переменной. Дифференциальные уравнения. Интегральное исчисление функций нескольких переменных: методические рекомендации и варианты заданий аттестационных работ по курсу «Математика» для студентов специальности «Промышленное и гражданское строительство» дневной формы обучения / М. М. Юхимук, Т. Ю. Юхимук, Т. М. Сукасян, Л. П. Махнист,. Брест: Брест. гос. техн. ун-т, 2018. 44 с.
- **8.** Кратные и криволинейные интегралы. Ряды : методические указания и варианты контрольных работ для студентов технических специальностей заочной формы обучения / Е.Н. Швычкина, Л.Т. Мороз, С.Н. Наумовец, Л.С. Золотухина. Брест : Брест. гос. техн. ун-т, 2015. 28 с.
- **9.** Кратные и криволинейные интегралы. Теория вероятностей: методические указания и варианты индивидуальных заданий для самостоятельной работы по курсу «Высшая математика» для студентов специальности 74 05 01 «Мелиорация и водное хозяйство» / С.Т. Гусева, Л.С. Золотухина, Т.И. Каримова; УО «Брестский государственный технический университет». Брест: БрГТУ, 2007. 52 с.
- **10.** Неопределенный интеграл. Определенный интеграл. Дифференциальные уравнения. Кратные и криволинейные интегралы: методические рекомендации и варианты контрольной работы по курсу «Высшая математика» для студентов технических специальностей заочной формы обучения / И.И. Гладкий, И.В. Лизунова, Л.Т. Мороз, В.П. Черненко. Брест: Брест. гос. техн. ун-т, 2009. 36 с.
- **11.** Пискунов, Н.С. Дифференциальное и интегральное исчисления: в 2-х томах / Н.С. Пискунов. М.: Наука, 1985. Т.1. 432 с., Т.2. 560 с.
- **12.** Письменный, Д.Т. Конспект лекций по высшей математике / Д.Т. Письменный. М.: АйрисПресс, 2004. Ч.1. 288 с.
- **13.** Практикум по высшей математике для студентов технических специальностей. Часть V: Кратные и криволинейные интегралы / Р.А. Гоголинская, В.Т. Джура, Е.В. Кузьмина, И.В. Лизунова, Л.Т. Мороз; УО «Брестский государственный технический университет». Брест: БрГТУ, 2012. 60 с.
- **14.** Руководство к решению задач по высшей математике: в 2-х частях / Е.И. Гурский. Минск: Выш. шк., 1990. Ч.1. 304 с., Ч.2. 400 с.
- **15.** Сборник задач по высшей математике: с контрольными работами / К.Н. Лунгу, Д.Т. Письменный, С.Н. Федин, Ю.А. Шевченко. М.: АйрисПресс, 2003. 576 с.

Оглавление

Кратные интегралы	3
1. Двойной интеграл и его вычисление в декартовых	
координатах	3
2. Замена переменных в двойном интеграле	
3. Вычисление площадей фигур и объемов тел с	
помощью двойного интеграла	12
4. Тройной интеграл, его вычисление в декартовых,	
цилиндрических и сферических координатах	14
5. Приложения тройного интеграла	
Криволинейные интегралы	20
6. Криволинейные интегралы первого рода	
(по длине дуги)	20
7. Криволинейный интеграл второго рода	
(по координатам)	22
8. Формула Грина. Независимость криволинейного интеграла	
2-го рода от пути интегрирования	25
Аттестационная работа	
Решение типового варианта	
Ответы	
Питепатура	58

Учебное издание

Составители:
Каримова Татьяна Ивановна
Гладкий Иван Иванович
Махнист Леонид Петрович
Черненко Виктор Петрович

ЗАДАЧИ И УПРАЖНЕНИЯ

по курсу «Математика»

для студентов факультета электронно-информационных систем

Кратные и криволинейные интегралы

II семестр

Ответственный за выпуск: Каримова Т.И. Редактор: Боровикова Е.А. Компьютерная вёрстка: Каримова Т.И. Корректор: Никитчик Е.В.

Подписано в печать 04.04.2018 г. Формат 60х84 ¹/₁₆. Бумага «Performer». Гарнитура «Arial». Усл. печ. л. 3,49. Уч. изд. л. 3,75. Заказ № 440. Тираж 23 экз. Отпечатано на ризографе учреждения образования «Брестский государственный технический университет». 224017, г. Брест, ул. Московская, 267.