# Ley de enfriamiento de Newton

#### Carlos Arturo Cruz Useche

Octubre 13, 2022

## 1. Compañeros

- Diana Carolina Camargo Barajas
- Diego Alejandro Campos Mendez

### 2. Objetivo

Analizar el comportamiento de un termómetro de mercurio, para así hallar la ley de enfriamiento de Newton. Además de esto, medir el comportamiento del agua y el tiempo que tarda para enfriarse.

#### 3. Montaje experimental

El montaje ubicado en la carpeta /circuitoz el código en la carpeta /codigos". Se reutilizaron los montajes del PT100 y el NTC10k.

Se utilizo un termómetro de mercurio y una cámara para obtener el comportamiento del termómetro de mercurio enfriando en agua y al aire, después de haber sido introducido en agua hirviendo.

# 4. Datos y análisis

Cuando vemos el comportamiento del termómetro de mercurio en agua tenemos:



Figura 1: Gráfica de enfriamiento del termómetro de mercurio.

Y sus comportamientos se ven como:

■ En agua:

$$T(t) = [(89 \pm 2)^{\circ} C] e^{(-0.063 \pm 0.005)1/s \cdot t}$$
  
 $R^2 = 0.95$ 

■ En aire:

$$T(t) = [(62 \pm 1)^{\circ} C]e^{(-0.0042 \pm 0.0003)1/s \cdot t}$$
  
 $R^2 = 0.966$ 

Así mismo, cuando vemos el comportamiento del agua, podremos ver que se comporta de forma:

■ Usando PT100:



Figura 2: Enfriamiento de agua en agua y aire medidos con un  $\mathrm{PT}100$ 

#### ■ Usando NTC10k:



Figura 3: Enfriamiento de agua en agua y aire medidos con un NTC10k

### 5. Conclusiones

- El termómetro de mercurio, enfriando desde  $65^{\circ}C$ , tarda en el aire al rededor de 4 minutos y 48 segundos. En cambio, en el agua, empezando de una temperatura de  $75^{\circ}C$ , tan solo tarda en enfriar 40 segundos.
- Los termómetros PT100 y NTC10k concuerdan muy bien con sus medidas.