Discrete Math (Honor) 2022-Fall Homework-8

Instructor: Xiang YIN

Problem 1. (8 Points)

For any relations R and S. Prove that $R \circ S \subseteq S$ if and only if $t(R) \circ S \subseteq S$.

Answer:

- \Rightarrow , if $R \circ S \subseteq S$:
 - For any $\langle x, z \rangle \in t(R) \circ S$, exists some y s.t. $\langle y, z \rangle \in t(R) \land \langle x, y \rangle \in S$ From $\langle y, z \rangle \in t(R)$, we have two cases:
 - $-\langle y,z\rangle\in R$
 - Exists finite $t_1, t_2, ..., t_k (k \ge 1)$ s.t. $\langle y, t_1 \rangle \in R \land \langle t_1, t_2 \rangle \in R \land ... \land ... \langle t_k, z \rangle \in R$. Then we have $\langle x, t_1 \rangle \in R \circ S$, and from $R \circ S \subseteq S$ we immediately get $\langle x, t_2 \rangle \in S$. Similarly, $\langle x, t_3 \rangle \in S$, Finally we have $\langle x, t_k \rangle \in S$ and therefore $\langle x, z \rangle \in S$.
- \Leftarrow , if $t(R) \circ S \subseteq S$: For any $\langle x, z \rangle \in R \circ S$, exists some y s.t. $\langle y, z \rangle \in R \wedge \langle x, y \rangle \in S$ Then $\langle y, z \rangle \in t(R)$, then $\langle x, z \rangle \in t(R) \circ S$. Therefore, $\langle x, z \rangle \in S$

Problem 2. (5 Points)

Let $A = \{a, b, c, d\}$ and $R = \{\langle a, a \rangle, \langle a, b \rangle, \langle b, a \rangle, \langle b, b \rangle, \langle c, c \rangle, \langle c, d \rangle, \langle d, c \rangle, \langle d, d \rangle\} \subseteq A \times A$ be a relation on A. Determine whether or not R is an equivalence relation; if so, determine the quotient set of A.

Answer:

Yes.

The quotient set of A:

 $\{\{a,b\},\{c,d\}\}$

Problem 3. (15 Points)

Let $R_1 \subseteq A \times A$ and $R_2 \subseteq A \times A$ be two non-empty equivalence relations on A. Determine whether or not each of the following relations is an equivalence relation. If so, prove it; otherwise, provide an counter example.

- 1. $(A \times A) R_1$
- 2. $(R_1)^2$
- 3. $R_1 R_2$
- 4. $r(R_1 R_2)$
- 5. $t(R_1 \cup R_2)$

Answer:

- 1. No. Suppose $A = \{a\}, R = \{\langle a, a \rangle\}$
- 2. Yes. For $(x,y) \in R_1^2$, there exists $(x,z), (z,y) \in R_1$. Thus $(z,x), (y,z) \in R_1$. Then $(y,x) \in R_1^2$. Therefore, R_1^2 is symmetric. Since $(a,a) \in R_1$, we have $(a,a) \in R_1^2$. Thus R_1^2 is reflexive. Moreover, for $(x,y), (y,z) \in R_1^2$, there exists $(x,u), (u,y), (y,v), (v,z) \in R_1$. Since R_1 is transitive, we know that $(x,y), (y,z) \in R_1$. Thus $(x,z) \in R_1^2$. Therefore, R_1^2 is transitive.

- 3. No. Suppose any $R_1 = R_2$
- 4. No. Suppose $A = \{a, b, c\}, R_1 = \{\langle a, a \rangle, \langle b, b \rangle, \langle c, c \rangle \langle a, b \rangle, \langle b, a \rangle, \langle a, c \rangle, \langle c, a \rangle, \langle b, c \rangle, \langle c, b \rangle\}, R_2 = \{\langle a, a \rangle, \langle b, b \rangle, \langle c, c \rangle, \langle a, b \rangle, \langle b, a \rangle\}$ then $R_1 R_2 = \{\langle a, c \rangle, \langle c, a \rangle, \langle b, c \rangle, \langle c, b \rangle\}$ $r(R_1 R_2) = \{\langle a, a \rangle, \langle b, b \rangle, \langle c, c \rangle \langle a, c \rangle, \langle c, a \rangle, \langle b, c \rangle, \langle c, b \rangle\}$ is not transitive $(\langle b, c \rangle, \langle c, a \rangle \in r(R_1 R_2))$
- 5. Yes. Since R_1 and R_2 are symmetric and reflexive, we know that $R_1 \cup R_2$ is symmetric and reflexive. Moreover, from Theorem in page 10 of Note-4, $t(R_1 \cup R_2)$ are transitive, symmetric and reflexive.

Problem 4. (8 Points)

Let $\langle S, \leq_1 \rangle$ be $\langle T, \leq_2 \rangle$ be two posets. Prove that $\langle S \times T, \leq \rangle$ is also a poset, where \leq is defined by: $\langle s, t \rangle \leq \langle u, v \rangle$ iff $s \leq_1 u$ and $t \leq_2 v$.

Answer:

- Reflexive: ... (obvious)
- Transitive: ... (easy)
- Anti-symmetric: For any s, t, u, v s.t. $\langle s, t \rangle \leq \langle u, v \rangle$ and $\langle u, v \rangle \leq \langle s, t \rangle$. we have $s \leq_1 u \land u \leq_1 s$ and also $t \leq_2 v \land v \leq_2 t$, so s = u and t = v, and $\langle u, v \rangle = \langle s, t \rangle$.

Problem 5. (15 Points)

Let $A = \{\{1\}, \{2\}, \{4\}, \{1, 2\}, \{1, 4\}, \{2, 4\}, \{3, 4\}, \{1, 3, 4\}, \{2, 3, 4\}\}$ and $\langle A, \subseteq \rangle$ be a poset, where " \subseteq " is the "subset relation". Then answer the following questions.

- 1. Draw the Hasse diagram of the poset.
- 2. Find the minimal element and the maximal element of A.
- 3. Do the greatest element and the least element exist for A?
- 4. Find all upper bounds and the least upper bound of $B = \{\{2\}, \{4\}\}$.
- 5. Find all lower bounds and the greatest lower bound of $B = \{\{1, 3, 4\}, \{2, 3, 4\}\}.$

Answer:

- 2 minimal element: $\{1\}, \{2\}, \{4\},$ maximal element: $\{1, 3, 4\}, \{2, 3, 4\}, \{1, 2\}.$
- 3 No. No.
- 4 upper bounds: $\{2,4\},\{2,3,4\}$, least upper bound: $\{2,4\}$.
- 5 lower bounds: $\{3,4\},\{4\}$, greatest lower bound: $\{3,4\}$.