Лабораторная работа 4.3.6

Саморепродукция

```
In [4]:
```

```
import numpy as np
import scipy as ps
import pandas as pd
import math
import matplotlib.pyplot as plt
%matplotlib inline
```

А. Исследование двумерных решеток

Определение периода решеток по их пространственному спектру

Для каждой сетки определим расстояние х между соседними дифракционными максимумами на экране:

```
In [47]:
```

```
data = pd.read_excel('lab-436.xlsx', 'table1')
pd.DataFrame(data)
```

Out[47]:

	Nº	X	m	Х/m, мм
0	1	163	6	27.166667
1	2	108	6	18.000000
2	3	45	5	9.000000
3	4	22	5	4.400000
4	5	14	4	3.500000

Расстояние от касеты до экрана – L, длина волны лазера – $\lambda\lambda$.

```
In [48]:
```

```
# B MM:
L = 10**(3)
Lambda = 532 * 10**(-6)
```

Используем формулу $d=\frac{\lambda L}{x}d=\frac{\lambda L}{x}$, где xx – расстояние между соседними максимумами.

```
In [66]:
```

```
d_method1 = list()
for i in range(len(data)):
    d_method1.append(L * Lambda / data.values[i, 3])
pd.DataFrame(d_method1, columns=['$d$, MM'], index=range(1, 6))
```

Out[66]:

	dd, MM
1	0.019583
2	0.029556
3	0.059111
4	0.120909
5	0.152000

Определение периода решеток с помощью линзы

Определим размеры клеток, полученных с помощью линзы, на экране (рассматриваем геометрическое изображение решётки) (DD). Расстояние от линзы до сетки aa, от линзы до экрана bb, тогда период сетки считается по формуле $d=D\frac{a}{b}d=D\frac{a}{b}$.

```
In [73]:
```

```
data4 = pd.read_excel('lab-436.xlsx', 'table4')
d_method2 = []
for i in range(len(data4)):
    d_method2.append(data4.values[i, 0])
pd.DataFrame(d_method2, index = range(1, 6), columns = ['d, MM'])
```

Out[73]:

	d, мм
1	0.01270
2	0.02549
3	0.04961
4	0.11804
5	0.15980

Исследование эффекта саморепродукции с помощью сеток

Получим на экране геометрическое изображение сетки. Перемещая линзу с помощью микровинта, определим координаты $z_n z_n$ плоскостей саморепродукции, соответствующих четкому изображению сетки на экране.

In [11]:

data2 = pd.read_excel('lab-436.xlsx', 'table2')
pd.DataFrame(data2)

Out[11]:

	z_0	z_1	z_2	z_3	z_4	z_5	z_6
0	NaN						
1	58.0	52.0	50.0	48.0	46.0	44.0	42.0
2	58.0	50.0	44.0	37.0	29.0	19.0	NaN
3	58.0	45.0	38.0	17.0	NaN	NaN	NaN
4	58.0	35.0	8.0	NaN	NaN	NaN	NaN

Построим график $z_n=f(n)z_n=f(n)$, по коэффициенту наклона графика kk определим период решетки: $d=\sqrt{\frac{k\lambda}{2}}\,d=\sqrt{\frac{k\lambda}{2}}.$

In [34]:

```
def plot_set(x, y):
    new_x = []
    new_y = []
    for index in range(len(y)):
        x part = []
        y part = []
        for old_x, old_y in zip(x[index], y[index]):
            if not (math.isnan(old_x) or math.isnan(old_y)):
                 x part.append(old x)
                 y_part.append(old_y)
        if y_part:
            new x.append(x part)
            new y.append(y part)
    k = [0 \text{ for } \_ \text{ in } range(len(new_y))]
    b = [0 \text{ for } in \text{ range(len(new x))}]
    for i in range(len(new y)):
        k[i], b[i] = np.polyfit(new x[i], new y[i], deg=1)
    plt.figure(figsize=(14, 8))
    for i in range(len(new_y)):
        new x[i] = np.array(new x[i], dtype=float)
        new y[i] = np.array(new y[i], dtype=float)
        plt.subplot(2, 2, i + 1)
        plt.subplots adjust(left=None, bottom=None, right=None, top=None, wspa
ce=None, hspace=0.3)
        plt.title(i + 1)
        plt.xlabel('n')
        plt.ylabel('$z_n$')
        plt.scatter(new x[i], new y[i])
        plt.plot(new_x[i], k[i] * new_x[i] + b[i])
    plt.legend()
    plt.show()
    return k
```

```
y = []
x = []
for i in range(5):
     y.append(data2.values[i, :].tolist())
     x.append(list(range(7)))
k1 = plot_set(x, y)
                                                60
  57.5
                                                55
  55.0
                                                50
  52.5
                                                45
<sub>N</sub> 50.0
                                                40
                                                35
  47.5
                                                30
  45.0
                                                25
  42.5
                                                20
                        ż
                        3
   60
                                                60
                                                50
   50
                                                40
                                                30
   30
                                                20
   20
                 1.0
                       1.5
                             2.0
                                  2.5
      0.0
            0.5
                                                   0.00
                                                       0.25
                                                           0.50
                                                               0.75
                                                                   1.00
                                                                        1.25
                                                                            1.50
                                                                                1.75
In [36]:
def print k(k):
     for i in range(len(k)):
          print('k[', i + 1, '] = ', k[i], sep='')
print_k(k1)
k[1] = -2.42857142857
k[2] = -7.57142857143
k[3] = -13.0
```

In [35]:

k[4] = -25.0

Определим значения периодов решеток, используя найденные коэффициенты.

```
In [75]:

d_method3 = []

for i in range(len(k1)):
    d_method3.append(((-1) * k1[i] * Lambda / 2)**0.5)

pd.DataFrame(d_method3, columns=['$d$, MM'], index=range(1, 5))
```

Out[75]:

	dd, MM
1	0.025417
2	0.044878
3	0.058805
4	0.081548

Сведем результаты измерения решеток тремя способами в единую таблицу.

```
In [76]:
```

```
d_list = []
d_list.append(d_method1)
d_list.append(d_method2)
d_method3.insert(0, 'NaN')
d_list.append(d_method3)
pd.DataFrame(d_list, index=['СПЕКТР', 'ЛИНЗА', "САМОРЕПРОДУКЦИЯ"], columns=[0, 1, 2, 3, 4])
```

Out[76]:

	0	1	2	3	4
спектр	0.0195828	0.029556	0.059111	0.120909	0.152000
линза	0.0127	0.025490	0.049610	0.118040	0.159800
саморепродукция	NaN	0.025417	0.044878	0.058805	0.081548

Результаты совпали по порядку величины.

Б. Исследование решеток миры

Перемещая линзу с помощью микрометрического винта, определим по нониусной шкале координату плоскости, соответствующей изображению миры на экране по законам геометрической оптики, и координаты плоскостей саморепродукции.

Определение периода решеток с помощью саморепродукции

In [39]:

```
data3 = pd.read_excel('lab-436.xlsx', 'table3')
data3.head(len(data))
```

Out[39]:

	z_n (№25)	z_n (№20)
0	78	78
1	60	73
2	46	56

In [40]:

```
y = []
x = []
for i in range(2):
    y.append(data3.values[:, i].tolist())
    x.append(list(range(3)))

k2 = plot_set(x, y)
```


In [41]:

print_k(k2)

k[1] = -16.0k[2] = -11.0

```
In [42]:

d_method4 = []

for i in range(len(k2)):
    d_method4.append(((-1) * k2[i] * Lambda / 2)**0.5)

pd.DataFrame(d_method4, columns=['$d$, MM'], index=['\25', '\20'])
```

Out[42]:

	dd, MM
Nº25	0.065238
Nº20	0.054093

Определение периода решеток по пространственному спектру

In [43]:

```
d_25 = Lambda * 126 / (16 / 18)
d_20 = Lambda * 126 / (16 / 14)
d_method5 = list()
d_method5.append(d_25), d_method5.append(d_20)
pd.DataFrame(d_method5, columns=['$d$, MM'], index=['\25', '\20'])
```

Out[43]:

	<i>dd</i> , мм
Nº25	0.075411
Nº20	0.058653

Определение периода решеток с помощью линзы

In [44]:

```
d_25 = 1.043 * (15 / 236)
d_20 = 1.107 * (12 / 233)
d_method6 = list()
d_method6.append(d_25), d_method6.append(d_20)
pd.DataFrame(d_method6, columns=['$d$, MM'], index=['\25', '\20'])
```

Out[44]:

	d d , мм
№2 5	0.066292
№20	0.057013

Сведем результаты измерения решеток миры тремя способами в одну таблицу.

In [45]:

```
d_list = []
d_list.append(d_method4)
d_list.append(d_method5)
d_list.append(d_method6)
pd.DataFrame(d_list, index=['Саморепродукция', 'СПЕКТР', 'ЛИНЗА'], columns=['№ 25', '№20'])
```

Out[45]:

	№25	№20
саморепродукция	0.065238	0.054093
спектр	0.075411	0.058653
линза	0.066292	0.057013

Результаты совпали по порядку величины.