

КФ МГТУ им. Н.Э. Баумана Р.И. Гришин e-mail: mr.grischinroman@yandex.ru

Постановка задачи

Цель работы: разработать бортовую систему навигации и ориентации на основе SLAM модели.

Рисунок 1 – Структурная схема мобильного узла

Ограничения:

-работа в замкнутом помещении -невысокая производительность -низкая скорость движения

Задачи:

- Выполнить анализ алгоритмов SLAM;
- Разработать стенд для экспериментальной проверки решений;
- Разработать схему эксперимента;
- Провести эксперимент и выполнить анализ полученных результатов.

Актуальность (область применения):

- обнаружение задымления в помещении и оповещение о ЧП;
- функционирование систем ПВО на базе сочлененных гусеничных мащин;
- проведение работ в среде, непригодной для нахождения в ней человека;
- обслуживание социальной и бытовой сферы;
- транспортировка грузов в складских помещениях;
- выполнение подзадач системы «умного дома»;
- автоматизации видеонаблюдения;

Анализ методов позиционирования и картирования

• Метод инвариантных моментов

Основывается на теории алгебраических инвариантов Ху [19]

Алгоритм содержит следующие этапы:

$$M_1' = r \cdot h, \quad M_2' = \frac{M_2}{r^4}, \quad M_3' = \frac{M_3}{r^6}, \dots$$
 (1)

- 1) определение центральных моментов порядка не выше третьего;
- 2) получение моментов, инвариантных к операциям поворота, переноса и зеркального отображения;
- 3) получение моментов, инвариантных к полной группе аффинных преобразований:

• Бесплатформенная инерциальная система (БИС)

Инерциальная навигация - метод навигации, основанный на свойствах инерции тел, являющийся автономным, не требующим наличия внешних ориентиров или поступающих извне сигналов.

Сущность инерциальной навигации состоит в определении ускорения объекта и его угловых скоростей с помощью установленных на движущемся объекте приборов и устройств.

[19]Hu M. K. Visual pattern recognition by moment invariants. – IRE Transactions on Information Theory 8, 1962, pp. 179-187

Анализ методов позиционирования и картирования

Reinforcement Learning (обучение с подкреплением)

Агент обучается взаимодействуя со средой.

Откликом среды на принятые решения являются сигналы подкрепления, поэтому такое обучение является частным случаем обучения с учителем, но учителем является среда или её модель.

- SLAM (Simultaneous Localization and Mapping) алгоритм одновременного картирования и локализации
- -- Шаг 1: Предсказательный

Используем данные, полученные с датчиков, чтобы вычислить оценку её нового положения.

- --Шаг 2: Обновление состояния из повторно наблюдаемых ключевых точек
- -- Шаг 3: Добавление новых ориентиров в текущее состояние

На данном шаге обновим вектор состояния X и ковариационную матрицу Р с новыми ориентирами.

Цель – увеличить количество ключевых точек.

Термины и определения

- SLAM (Simultaneous Localization and Mapping) одновременное вычисление позиции робота и построение карты окружения
- Localization обнаружение позиции робота
- Mapping построение карты окружения
- VSLAM (Visual Simultaneous Localization and Mapping) метод SLAM, использующий в качестве датчика оптическую систему
- Особая точка точка на изображении, окрестность которой выделяется среди остального изображения
- Ориентир точка в пространстве, изображение окрестности которой было классифицировано как особая точка на нескольких кадрах

Рисунок 4 – Схема работы алгоритма

Математический аппарат

Шаг 1: Предсказательный - обновление данных, с использованием одометрии

Вектор оценки текущего местоположения X_p и ковариационная матрица P_p

 x_p — оценка координаты робота по оси абсцисс, y_p — оценка координаты робота по оси ординат, ϕ_p — оценка ориентации робота

$$X_p = \begin{bmatrix} x_p & y_p & \varphi_p \end{bmatrix}^T \tag{2}$$

$$P_{p} = \begin{pmatrix} \sigma_{x_{p}x'_{p}}^{2} & \sigma_{x_{p}y_{p}}^{2} & \sigma_{x_{p}\varphi_{p}}^{2} \\ \sigma_{x_{p}y_{p}}^{2} & \sigma_{y_{p}y_{p}}^{2} & \sigma_{y_{p}\varphi_{p}}^{2} \\ \sigma_{x_{p}\varphi_{p}}^{2} & \sigma_{y_{p}\varphi_{p}}^{2} & \sigma_{\varphi_{p}\varphi_{p}}^{2} \end{pmatrix}$$
(3)

Математический аппарат

Шаг 2: Обновление состояния из повторно наблюдаемых ключевых точек

Коэффициент Калмана (4) содержит информацию о количестве ориентиров и позиций робота которые должны быть обновлены в соответствии с повторно наблюдаемыми ориентирами.

Х - новый вектор состояния (5)

$$K = P \cdot H^{T} \cdot (H \cdot P \cdot H^{T} + V \cdot R \cdot V^{T})^{-1}$$
 (4)

$$X = X + K \cdot (z - h) \tag{5}$$

Математический аппарат

Шаг 3: Добавление новых ориентиров в текущее состояние

добавляем в вектор оценки состояния системы два новых элемента — оценку х и у координат обнаруженного ориентира (5)

$$X_{k} = \begin{bmatrix} X_{k} \\ f_{i}(X_{pk}, z_{i}) \end{bmatrix}$$
 (5)

A		Е		 			
					 •••		
D		В		 		7	
	D		ь		 		,
			F		 	(()

Рисунок 5 - Общий вид матрицы Р

Метод VSLAM: ORB-SLAM

- Tracking отслеживание кадров.
- Local Mapping выполняет построение карты вблизи текущего положения камеры и оптимизирует карту.
- Loop Closing алгоритм замыкания циклов, который ищет и объединяет похожие кадры.

Рисунок 6 – Основные компоненты ORB-SLAM [23]

[23] Rublee, Ethan; Rabaud, Vincent; Konolige, Kurt; Bradski, Gary (2011). "ORB: an efficient alternative to SIFT or SURF" (PDF). IEEE International Conference on Computer Vision (ICCV).

Метод VSLAM: LSD-SLAM

- tracking непрерывно отслеживает новые изображения с камеры и определяет перемещение камеры.
- depthmapestimation сравнивает новый кадр с текущим, а затем уточняет или полностью заменяет текущий кадр.
- mapoptimization выполняет оптимизацию карты.

Рисунок 7 – Основные компоненты LSD-SLAM [28]

[28]. LSD-SLAM: Large-Scale Direct Monocular SLAM Contact: Jakob Engel, Prof. Dr. Daniel Cremers https://vision.in.tum.de/research/vslam/lsdslam/

Анализ методов VSLAM

Таблица 1 - Сравнительная характеристика алгоритмов ORB и LSD-SLAM

Параметр	ORB-SLAM	LSD-SLAM
Открытый исходный код	+	+
Интеграция с ROS*	+	-
Поддерживаемые типы	Монокамерные, стереокамерные,	Монокамерные
видеосенсоров	RGB-D оптические системы	оптические системы
Ресурсоемкость	низкая	высокая
Карта глубины	разреженная	плотная

^{*}ROS - (Robot Operating System) – фреймворк для программирования роботов

Оценка алгоритмов SLAM

Как оценить работу SLAM:

- -- Использовать истинные данные;
- -- Использовать «псевдоистинные данные» сравнение с другим источником (например лидар)
- -- Сравнение результатов по коэффициенту NEES

Гомогенная точка:
$$L_{HP} = \underline{p} = \begin{bmatrix} m \\ \rho \end{bmatrix} = [m_x \ m_y \ m_z \ \rho]^T \in P^3$$
 (6)

NEES (normalized estimation error squared) нормализованная ошибка оценки в квадрате

$$\eta_k = \frac{1}{N} \sum_{j=1}^{N} (C_k - \hat{C}_k^j)^T P_k^{j-1} (C_k - \hat{C}_k^j)$$
 (9)

Закрепленная однородная точка:
$$L_{AHP} = \begin{bmatrix} P_0 \\ m \\ \rho \end{bmatrix} = [x_0 y_0 z_0 m_x m_y m_z \rho]^T$$
 (7)

Привязанные модифицированные полярные точки:
$$L_{AMPP} = \begin{bmatrix} P_0 \\ (\varepsilon, \alpha) \\ \rho \end{bmatrix} = [x_0 y_0 z_0 \alpha \rho]^T \quad \textbf{(8)}$$

Оценка доступности ресурсов

	Таблица 2 – Характеристики платы		
Процессор	Broadcom BCM2837B0, Cortex-A53		
	64-bit SoC @ 1.4GHz		
Память	1GB LPDDR2 SDRAM		
Интерфейсы	2.4GHz and 5GHz IEEE 802.11.b/g/n/ac wireless LAN, Bluetooth 4.2, BLE Gigabit Ethernet over USB 2.0 4 × USB 2.0		
Порты	Extended 40-pin GPIO header		
Видео/звук	1 × full size HDMI MIPI DSI дисплей порт MIPI CSI порт для подключения камеры		
Мультимедиа	H.264, MPEG-4 decode (1080p30); H.264 encode		
	(1080p30); OpenGL ES 1.1, 2.0 graphics		
Поддержка SD карты	Формат Micro SD для загрузки операционной системы и хранилище данных (не рекомендуется больше 16 Гб)		
Питание	5V/2.5A DC via micro USB connector 5V DC via GPIO header Power over Ethernet (PoE)–enabled (requires separate PoE HAT)		
Связь	Wi-Fi, Ethernet (RJ-45);		
Размеры	Длина 85 мм Ширина 56 мм.		

Рисунок 8 - Состав Raspberry Pi 3B+

Структурные схемы алгоритмов

Рисунок 9 - Схема взаимодействия компонентов ПО

Рисунок 10 - Схема решения задачи

Моделирование

- Создали шаблонное окружения для тестирования навигации
- Создали шаблонного робота
- Подключили алгоритм SLAM
- Настроили конфигурационные файлы
- Запустили в ручном и автоматическом режиме

Рисунок 9 – Карта окружения

← Рисунок 10 – Исследование карты объектом

Результаты моделирования

TurtleBot3 полностью исследовал сцену за 68 минут и проехал в общей сложности 358 м.

Ошибка вычисления собственного положения

Конечные	Расстояние между	Пройденный путь,	Погрешность,
координаты,	начальными и	СМ	%
СМ	конечными		
	координатами, см		
(3,-1)	3,16	100	3,16
(5,2)	5,38	200	2,69
(-4,6)	7,2	300	2,4
(5,7)	8,6	400	2,15
(-3,-4)	5	500	1
(-8,7)	10,63	600	1,77
(8,12)	14,4	700	2,05
(-9,9)	12,72	800	1,59
(10,12)	15,62	900	1,73
(14,9)	16,64	1000	1,66

Ошибка вычисления расстояния

Реальное	Вычисленное	Ошибка,	
расстояние, см	расстояние,	%	
	СМ		
50	49,1	1,8	
80	79,3	0,875	
110	110,3	0,27	
140	141	0,7	
170	172,2	1,29	
200	203,8	1,9	
230	235,4	2,3	

--Для идеальных данных: Средняя относительная погрешность вычисления собственного положения составляет 2,02%, наибольшая относительная погрешность составляет 3,16%.

Разработка и настройка стенда

Классическая калибровка методом Р. Тсая

$$param = \begin{pmatrix} f_x & a_{12} & c_x \\ 0 & f_y & c_y \\ 0 & 0 & 1 \end{pmatrix}$$
 (10)

$$distorsion = [k_1, k_2, p_1, p_2, k_3]$$
 (11)

<u>Метод состоит из 2 - x</u> этапов:

- 1. Определение параметров внешней калибровки
- 2. Определение параметров внутренней калибровки и дисторсии.

Рисунок 11 – Калибровочный шаблон

Рисунок 12 – Мобильная платформа

Рисунок 13 – Система зеркал

Реализация SLAM на Raspberry – Stereo Mode

Рисунок 14 – Схема эксперимента

Рисунок 15 – Изображение с пары камер ->

Рисунок 16 – Карта окружения

Реализация SLAM на Raspberry – Monocam

Рисунок 17 – Карта окружения и траектория

Анализ результатов

Получить 3D точку в системе координат кадра:

$$x = (u * f_{xi} + c_{xi}) * depth$$

$$y = (v * f_{yi} + c_{yi}) * depth$$

$$z = dept * (1 + 2 * sqrt(f_{xi} + f_{yi} * f_{yi}))$$
(10)

где u, v – координаты точки на кадре, idepth – обратная глубина. fxi, fyi - инверсные фокусные расстояния камеры, cxi, cyi- инверсные положения центра камеры

Получить точку в глобальной системе координат:

Для этого необходимо умножить координаты точки в системе координат кадры, на матрицу преобразования – [R|t], где R – матрица поворота кадра, t – вектор смещения кадра.

Рисунок 18 – Сравнение траекторий

- --Время обработки ~1500 кадров составило 12 минут
- --Максимальная ошибка составила: 35,168 см
- --Минимальная ошибка составила: 2,149 см

СПАСИБО ЗА ВНИМАНИЕ!

