Neparametrické modely - SR a FIR model

Uvažujeme systém v tvare $S(s) = \frac{1}{s^2 + 2s + 1}$ s periódou vzorkovania: Tv=0.1 s.

Doba ustálenia prech. a imp. charakteristiky: približne 10 s ⇒ počet vzoriek: N=100

Prepočet FIR ⇒ **SR**: Porovnanie prechodovej charakteristiky prepočítanej z impulznej charakteristiky a prechodovej charakteristiky vypočítanej priamo príkazom step

Prepočet SR ⇒ **FIR:** Porovnanie impulznej charakteristiky prepočítanej z prechodovej charakteristiky a impulznej charakteristiky vypočítanej priamo príkazom impulse

Výpočet odozvy systému na všeobecný vstupný signál na základe SR a FIR modelu

Vplyv periódy vzorkovania a počtu vzoriek

1. Pri prepočte koeficientov impulznej charakteristiky z koeficientov prechodovej charakteristiky a naopak

2. Pri použití SR a FIR modelu na výpočet odozvy systému na daný vstupný signál

a) Odozva na jednotkový skok

b) Odozva na náhodný signál

Vplyv šumu

1. Pri prepočte koeficientov impulznej charakteristiky z koeficientov prechodovej charakteristiky a naopak

2. Pri použití SR a FIR modelu na výpočet odozvy systému na daný vstupný signál - odozva na náhodný signál

Záver: SR model je citlivejší na šumy merania