Trigonometria

Ângulos, Geometria Básica e o Círculo Unitário

Exercício 1. Converta de graus para radianos:

- (a) 300°
- (b) -18°
- (c) 36°
- (d) 9°

Exercício 2. Converta de radiano para graus:

- (a) $\frac{5\pi}{6}$
- (b) 2 (c) $-\frac{3\pi}{8}$ (d) 4π

Exercício 3. Encontre o comprimento de um arco de um círculo de raio 12 cm, cujo ângulo central é 30°.

Exercício 4. Um círculo tem raio de 1,5 m. Qual o ângulo subentendido no centro do círculo por um arco de 1 m de comprimento?

Exercício 5. Determine o raio de um setor circular com ângulo $3\pi/4$ e comprimento de arco 6 cm.

Exercício 6. Encontre os valores exatos:

- (a) $\tan \pi/3$
- (b) $sen(7\pi/6)$ (c) $sec(5\pi/3)$

Exercício 7. Expresse os comprimentos $a \in b$ na figura abaixo em termos de θ .

Exercício 8. Determine todos os números t tais que (1/3, t) seja um ponto sobre o círculo unitário.

Exercício 9. Qual o ângulo entre o ponteiro das horas e o ponteiro dos minutos em um relógio marcando 4 horas e 30 minutos?

Exercício 10.* Mostre que a soma das medidas dos ângulos (em radianos) de um polígono convexo de n lados é $S_n = (n-2)\pi$.

Funções Trigonométricas

Exercício 1. Encontre o domínio da função:

(a)
$$f(x) = \frac{\cos x}{1 - \sin x}$$

(b)
$$g(x) = \frac{1}{1 - \tan x}$$

Exercício 2. Se sen $x = \frac{1}{3}$ e sec $y = \frac{5}{4}$, onde $x, y \in [0, \pi/2]$, avalie sen(x + y).

Exercício 3. Demonstre as identidades:

(a)
$$\tan \theta \sec \theta + \cos \theta = \sec \theta$$

(b)
$$\frac{2\tan\theta}{1+\tan^2\theta} = \sin 2\theta$$

Exercício 4. Encontre todos os valores de x tais que sen $2x = \operatorname{sen} x$ e $x \in [0, 2\pi]$.

Exercício 5. Determine o menor número $\theta > 4\pi$ tal que $\cos \theta = 0$

Exercício 6. Determine o menor número $\theta > 6\pi$ tal que sen $\theta = \frac{\sqrt{2}}{2}$.

Exercício 7. Encontre o menor número x > 0 tal que sen $(e^x) = 0$

Exercício 8. Explique por que $\pi^{\cos x} > \frac{1}{4}$ para todo $x \in \mathbb{R}$.

Esboce o gráfico da função $y = 1 + \sin 2x$ sem usar recursos compu-Exercício 9. tacionais.

Exercício 10. Demonstre as identidades:

(a)
$$\cos\left(\frac{\pi}{2} - x\right) = \sin x$$

(a)
$$\cos\left(\frac{\pi}{2} - x\right) = \sin x$$
 (b) $\sin\left(\frac{\pi}{2} + x\right) = \cos x$

(c)
$$sen(\pi - x) = sen x$$
 (d) $sen \theta cot \theta = cos \theta$

(d)
$$\sin \theta \cot \theta = \cos \theta$$

Licensed to Elton de Assis Guedes Neto - eltonassisguedesoten@outlook.com.br

(e)
$$(\sin x + \cos x)^2 = 1 + \sin 2x$$

(e)
$$(\sin x + \cos x)^2 = 1 + \sin 2x$$
 (f) $\cot^2 x + \sec^2 x = \tan^2 x + \csc^2 x$

(g)
$$\tan 2\theta = \frac{2\tan \theta}{1 - \tan^2 \theta}$$

(h)
$$\frac{1}{1-\sin\theta} + \frac{1}{1+\sin\theta} = 2\sec^2\theta$$

(g)
$$\tan 2\theta = \frac{2\tan \theta}{1 - \tan^2 \theta}$$
 (h) $\frac{1}{1 - \sin \theta} + \frac{1}{1 + \sin \theta} = 2\sec^2 \theta$
(i) $\tan x + \tan y = \frac{\sin(x + y)}{\cos x \cos y}$ (j) $\tan\left(\theta + \frac{\pi}{2}\right) = -\cot \theta$

(j)
$$\tan\left(\theta + \frac{\pi}{2}\right) = -\cot\theta$$

Exercício 11. Se sen $x = \frac{1}{3}$ e sec $y = \frac{5}{4}$, onde $x, y \in [0, \pi/2]$, calcule:

(a)
$$sen(x+y)$$
 (b) $cos(x-y)$ (c) $sen 2y$

(b)
$$\cos(x-y)$$

(c)
$$\sin 2y$$

(d)
$$\cos(x+y)$$
 (e) $\sin(x-y)$ (f) $\cos 2y$

(e)
$$sen(x-y)$$

(f)
$$\cos 2y$$

Exercício 12. Esboce o gráfico das seguintes funções:

(a)
$$y = \cos\left(x - \frac{\pi}{3}\right)$$

(a)
$$y = \cos\left(x - \frac{\pi}{3}\right)$$
 (b) $y = \frac{1}{3}\tan\left(x - \frac{\pi}{2}\right)$

(c)
$$y = |\sin x|$$

(c)
$$y = |\sin x|$$
 (d) $y = 2 + \sin(x + \frac{\pi}{4})$

Exercício 13. A função arco cosseno é par, impar ou nenhuma das duas opções? E quanto a arco seno?

Exercício 14^{*} Mostre que, para todo $t \in (-1,1)$,

$$\arcsin t = \arctan \frac{t}{\sqrt{1-t^2}}$$

Exercício 15. Mostre que

$$\cos(3\theta) = 4\cos^3\theta - 3\cos\theta$$

Exercício 16. Mostre que

$$\tan^2 \frac{x}{2} = \frac{1 - \cos x}{1 + \cos x}$$

Exercício 17.* Demonstre que $\cos 20^{\circ}$ é um zero do polinômio $8x^3 - 6x - 1$.

Exercício 18. Mostre que

$$\operatorname{sen} x - \operatorname{sen} y = 2 \cos \frac{x+y}{2} \operatorname{sen} \frac{x-y}{2}$$

Exercício 19. Prove uma identidade análoga à do exemplo anterior para $\sin x + \sin y$.

Exercício 20. Mostre que

$$\cos x - \cos y = 2 \operatorname{sen} \frac{x+y}{2} \operatorname{sen} \frac{y-x}{2}$$

Exercício 21. Prove que

$$\tan\frac{x+y}{2} = \frac{\cos x - \cos y}{\sin y - \sin x}$$

Exercício 22* Mostre que

$$\cos\frac{\pi}{32} = \frac{\sqrt{2+\sqrt{2+\sqrt{2}+\sqrt{2}}}}{2}$$

Exercício 23^{*} Mostre a identidade

$$\arctan 1 + \arctan 2 + \arctan 3 = \pi$$

 $(Sugest\~ao: calcule tan(arctan 2 + arctan 3))$

3 Números Complexos na Forma Polar

Exercício 1. Escreva na forma polar:

(a)
$$2-2i$$
 (b) $-3+3\sqrt{3}i$ (c) 4 (d) $1+\sqrt{3}i$ (e) $-3i$ (f) $\frac{1+i}{i}$ (g) $\frac{1}{1-i}-\frac{1}{i}$

Exercício 2. Demonstre que

$$\frac{1}{\cos\theta + i\sin\theta} = \cos\theta - i\sin\theta$$

Exercício 3. Escreva na forma polar:

(a)
$$\left(\cos\frac{\pi}{7} + i\sin\frac{\pi}{7}\right)\left(\cos\frac{\pi}{9} + i\sin\frac{\pi}{9}\right)$$
 (b) $\left(\cos\frac{\pi}{5} + i\sin\frac{\pi}{5}\right)\left(\cos\frac{\pi}{11} - i\sin\frac{\pi}{11}\right)$

Exercício 4. Calcule:

(a)
$$(2-2i)^{333}$$
 (b) $(-3+3\sqrt{3}i)^{555}$ (c) $\left(\frac{\sqrt{3}}{2}-\frac{1}{2}i\right)^{100}$

(d)
$$\frac{i}{\left(-\frac{1}{2} - \frac{\sqrt{3}}{2}i\right)^6}$$
 (e) $\left(\frac{1}{\sqrt{2}} - \frac{i}{\sqrt{2}}\right)^7 - \left(-\frac{1}{\sqrt{2}} + \frac{i}{\sqrt{2}}\right)^{10}$

Exercício 5* Calcule todas as raízes n-ésimas abaixo:

(a)
$$\sqrt{-7+24i}$$
 (b) $\sqrt{5+12i}$ (c) $\sqrt[4]{-8+8\sqrt{3}i}$ (d) $\sqrt[3]{-8i}$ (e) $\sqrt[3]{-1}$

Exercício 6* Determine três números complexos distintos tais que $z^3 = 4i$.

Exercício 7.* Determine quatro números complexos distintos tais que $z^4 = -2$.