Compartmental models in epidemiology

Masamune Oguri (RESCEU/Physics/Kavli IPMU, Univ. of Tokyo)

Purpose

- explain simple (indeed very simple) mathematical models in epidemiology
- probably too simplistic for detailed analysis of COVID-19 but should still be useful to learn the basics of epidemiology and get some insight into what is happening now
- ref: "Compartmental models in epidemiology" in wikipedia and references therein (and some others)

Contents

- introduction of some models
 - SIR model
 - SEIR model
 - SEIRS model
- implications for COVID-19

SIR model (w/o vital dynamics)

$$\frac{dS}{dt} = -\frac{\beta SI}{N}$$

$$\frac{dI}{dt} = \frac{\beta SI}{N} - \gamma I$$

$$\frac{dR}{dt} = \gamma I$$

$$N = S + I + R = \text{const}.$$

 β [T⁻¹]: time scale of contacts/infections

 γ [T⁻¹]: time scale of recovery

$$R_0 = \frac{\beta}{\gamma}$$
 controls the dynamics

R₀: basic reproduction number

Reproduction numbers

basic reproduction number

$$R_0 = \frac{\beta}{\gamma} \xrightarrow{\text{contact/infection time scale}} \xrightarrow{\text{depends on environmental conditions}} \xrightarrow{\text{(culture, lockdown, social distancing, ...)}} \\ \xrightarrow{\text{recovery time scale}} \xrightarrow{\text{(mainly) biological constant}}$$

- * however, it is often defined as a value in absence of any deliberate intervention in disease transmission
- effective reproduction number

$$R_{\rm e} = \frac{\beta}{\gamma} \frac{S}{N}$$
 change with time, $R_{\rm e} \approx R_0$ when $S \approx N$

 here I mostly use R₀ and regards it as a variable (unlike the convention in this field)

R₀ of well-known diseases

	Values of R ₀ of well-known infectious diseases ^[1]		
	Disease +	Transmission +	R ₀ \$
はしか	Measles	Aerosol	12–18 ^[2]
水痘	Chickenpox (varicella)	Aerosol	10–12 ^[3]
おたふく風	Mumps	Respiratory droplets	10–12 ^[4]
ポリオ	Polio	Fecal-oral route	5–7 ^[citation needed]
風疹	Rubella	Respiratory droplets	5–7 ^[citation needed]
百日咳	Pertussis	Respiratory droplets	5.5 ^[5]
	COVID-19	Respiratory droplets	3.8–8.9 ^[6]
天然痘	Smallpox	Respiratory droplets	3.5–6 ^[7]
	HIV/AIDS	Body fluids	2–5 ^[citation needed]
	SARS	Respiratory droplets	3.1–4.2 ^[8]
	Common cold	Respiratory droplets	2–3 ^[9]
ジフテリフ	D iphtheria	Saliva	1.7–4.3 ^[10]
	Influenza (1918 pandemic strain)	Respiratory droplets	1.4–2.8 ^[11]
	Ebola (2014 Ebola outbreak)	Body fluids	1.5–1.9 ^[12]
	Influenza (2009 pandemic strain)	Respiratory droplets	1.4–1.6 ^[13]
	Influenza (seasonal strains)	Respiratory droplets	0.9–2.1 ^[14]
	MERS	Respiratory droplets	0.3–0.8 ^[15]

(from wikipedia)

SIR model: example

 β =0.3day⁻¹

 γ =0.1 day⁻¹

 $R_0 = 3$

>90% people experiences infections in the end

Effect of different $R_0(\beta)$

smaller $R_0 \rightarrow$ lower peak at later time ("flatten the curve")

converged values of fraction of Removed persons depend on R₀

Limiting behaviors

at early stage when S≈N

$$\frac{dI}{dt} \sim \gamma (R_0 - 1)I \qquad \qquad I \propto e^{\gamma (R_0 - 1)t}$$
 slope depends on R₀

- at $t \rightarrow \infty$
 - from the original differential equations

$$\frac{dS}{S} = -R_0 \frac{dR}{N} \longrightarrow \frac{S(\infty)}{S(0)} = e^{-R_0 \{R(\infty) - R(0)\}/N}$$

$$\longrightarrow \frac{S(\infty)}{S(0)} = e^{-R_0 \{1 - S(\infty)/N\}}$$

$$R(0) = 0$$

$$S(\infty) + R(\infty) = N \quad \text{convergence value can be}$$

derived from this equation

Exponential growth

R₀ may be inferred from slope

Importance of R₀ (or R_e)

at early stage
$$I \propto e^{\gamma(R_0-1)t}$$
 or at any time $\frac{dI}{dt} = \gamma(R_{\rm e}-1)I$

 R_0 or $R_e > I \rightarrow$ exponential grow R_0 or $R_e < I \rightarrow$ exponential decay

SEIR model (w/o vital dynamics)

$$\frac{dS}{dt} = -\frac{\beta SI}{N}$$

$$\frac{dE}{dt} = \frac{\beta SI}{N} - \alpha E$$

$$\frac{dI}{dt} = \alpha E - \gamma I$$

$$\frac{dR}{dt} = \gamma I$$

N = S + E + I + R = const.

$$\beta$$
 [T⁻¹]: time scale of contacts/infections

$$\alpha$$
 [T⁻¹]: time scale of incubation

$$\gamma$$
 [T⁻¹]: time scale of recovery

$$R_0 = \frac{\beta}{\gamma}$$
 (will be discussed later)

SEIR model: example

$$\beta = 0.3 \, day^{-1}$$

$$\alpha = 0.1 \, day^{-1}$$

$$\gamma$$
=0. I day⁻¹

$$R_0 = 3$$

>90% people experiences infections in the end

Limiting behavior at $t \rightarrow \infty$

$$\frac{dS}{dt} = -\frac{\beta SI}{N}$$

$$\frac{dS}{S} = -R_0 \frac{dR}{N} \rightarrow \frac{S(\infty)}{S(0)} = e^{-R_0\{1 - S(\infty)/N\}}$$

$$\frac{dR}{dt} = \gamma I$$
same as in SIR model (determined only by R₀)

(determined only by R_0)

Limiting behavior at early stage (1/2)

at early stage when S≈N

$$\frac{d}{dt} \begin{pmatrix} E \\ I \end{pmatrix} = \begin{pmatrix} -\alpha & \beta \\ \alpha & -\gamma \end{pmatrix} \begin{pmatrix} E \\ I \end{pmatrix} = \gamma \begin{pmatrix} -\alpha' & R_0 \\ \alpha' & -1 \end{pmatrix} \begin{pmatrix} E \\ I \end{pmatrix}$$
$$\alpha' = \frac{\alpha}{\gamma} \quad R_0 = \frac{\beta}{\gamma}$$

characteristic equation

$$\begin{vmatrix} -\alpha' - \lambda & R_0 \\ \alpha' & -1 - \lambda \end{vmatrix} = 0$$

$$\lambda_{\pm} = \frac{-(1 + \alpha') \pm \sqrt{(1 + \alpha')^2 + 4\alpha'(R_0 - 1)}}{2}$$

Limiting behavior at early stage (2/2)

- "growing" mode

$$\lambda_{+} = \frac{-(1+\alpha') + \sqrt{(1+\alpha')^2 + 4\alpha'(R_0 - 1)}}{2} \quad \longrightarrow \quad I \propto e^{\gamma \lambda_{+} t}$$

$$\lambda_{+}>0$$
 if $R_{0}>1$, $\lambda_{+}<0$ if $R_{0}<1$

 \rightarrow R₀ can be regarded as basic reproduction number

$$\lambda_+ \sim R_0 - I$$
 at $\alpha' \gg I$

$$\lambda_{+} \sim R_{0} - I$$
 at $\alpha' \gg I$
 $\rightarrow I \propto e^{\gamma(R_{0}-1)}t$ (same as SIR)

$$\lambda_+ \sim \alpha'(R_0 - I)$$
 at $\alpha' \ll I$

$$\rightarrow I \propto e^{\alpha(R_0-1)t}$$
 (slower than SIR)

Exponential growth

slope gets shallower for smaller α'

SEIRS model (w/o vital dynamics)

$$\frac{dS}{dt} = -\frac{\beta SI}{N} + \xi R$$

$$\frac{dE}{dt} = \frac{\beta SI}{N} - \alpha E$$

$$\frac{dI}{dt} = \alpha E - \gamma I$$

$$\frac{dR}{dt} = \gamma I - \xi R$$

$$\beta$$
 [T⁻¹]: time scale of contacts/infections

$$\alpha$$
 [T⁻¹]: time scale of incubation

$$\gamma$$
 [T⁻¹]: time scale of recovery

$$\xi$$
 [T⁻¹]: time scale of losing immunity

$$R_0 = \frac{\beta}{\gamma}$$

$$N = S + E + I + R = \text{const}$$
.

SEIRS model: example

$$\beta$$
=0.3day⁻¹

$$\alpha = 0.2 day^{-1}$$

$$\gamma$$
=0. I day⁻¹

$$R_0 = 3$$

all converge to non-zero values

(endemic)

Limiting behavior at early stage

at early stage when S≈N

$$\frac{d}{dt} \begin{pmatrix} E \\ I \end{pmatrix} = \begin{pmatrix} -\alpha & \beta \\ \alpha & -\gamma \end{pmatrix} \begin{pmatrix} E \\ I \end{pmatrix} = \gamma \begin{pmatrix} -\alpha' & R_0 \\ \alpha' & -1 \end{pmatrix} \begin{pmatrix} E \\ I \end{pmatrix}$$

same as in SEIR model

Limiting behavior at t→∞

at equilibrium

$$\frac{dS}{dt} = \frac{dE}{dt} = \frac{dI}{dt} = \frac{dR}{dt} = 0$$

$$\frac{S(\infty)}{N} = \frac{1}{R_0}$$

$$\frac{E(\infty)}{N} = \frac{1}{\alpha} \left(\frac{1 - 1/R_0}{1/\alpha + 1/\gamma + 1/\xi} \right)$$

$$\frac{I(\infty)}{N} = \frac{1}{\gamma} \left(\frac{1 - 1/R_0}{1/\alpha + 1/\gamma + 1/\xi} \right)$$

$$\frac{R(\infty)}{N} = \frac{1}{\xi} \left(\frac{1 - 1/R_0}{1/\alpha + 1/\gamma + 1/\xi} \right)$$

Infectious proportional to I-I/R₀

Some examples

Infectious at $t \rightarrow \infty$ proportional to $I-I/R_0$

Introduction to models: summary

- these models are very simple yet capture the essence of epidemiology
- the models can be extended in several ways, e.g., adding more compartments (isolated, vaccination, deceased, ...), considering birth and death, introducing stochasticity in model parameters, etc.

Implications for COVID-19

of infected person need to be below capacity

disaster if R₀ > I

reducing R_0 to $R_0 < I$ is needed

How to reduce R₀

- it's a highly complicated problem
 - vaccine
 - isolation of infected persons
 - social distancing
 - wearing mask
 - lockdown/"lockdown"

– ...

Cluster strategy

analysis of 110 cases in Japan as of Feb. 28

Removing clusters

 $R_0=2$ uniform

$R_0=2$ irregular (COVID-19)

Removing clusters

$R_0=2$ uniform

$R_0=2$ irregular (COVID-19)

- "avoid three Cs" campaign
- find/isolate clusters

significantly reduce Ro

to some extent worked (?)

Reducing Ro: SEIR simulations (1/3)

Reducing R₀: SEIR simulations (2/3)

Reducing Ro: SEIR simulations (3/3)

plausible scenario?

Summary

- compartmental models in epidemiology discussed in this talk are simple and easy to understand, yet they are useful to get qualitative understanding of epidemic
- for quantitative analysis of COVID-19 pandemic more sophisticated modes are (should be) used